diff --git a/addheader.yml b/addheader.yml index 18fd9b80..f82da9d2 100644 --- a/addheader.yml +++ b/addheader.yml @@ -13,5 +13,5 @@ path_exclude: - '.jupyter_cache' verbose: 1 sep-len: 80 -jupyter: '_src.ipynb' -... \ No newline at end of file +jupyter: '.ipynb' +... diff --git a/file_header.txt b/file_header.txt index 2a5d95aa..dd7718c8 100644 --- a/file_header.txt +++ b/file_header.txt @@ -2,9 +2,9 @@ The Institute for the Design of Advanced Energy Systems Integrated Platform Framework (IDAES IP) was produced under the DOE Institute for the Design of Advanced Energy Systems (IDAES). -Copyright (c) 2018-2023 by the software owners: The Regents of the +Copyright (c) 2018-2025 by the software owners: The Regents of the University of California, through Lawrence Berkeley National Laboratory, National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University Research Corporation, et al. All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md -for full copyright and license information. \ No newline at end of file +for full copyright and license information. diff --git a/idaes_examples/notebooks/_config.yml b/idaes_examples/notebooks/_config.yml index 1f273dce..0300fb91 100644 --- a/idaes_examples/notebooks/_config.yml +++ b/idaes_examples/notebooks/_config.yml @@ -1,4 +1,5 @@ author: The IDAES Team +copyright: "2018-2025" bibtex_bibfiles: - references.bib exclude_patterns: diff --git a/idaes_examples/notebooks/_dev/notebooks/cache.ipynb b/idaes_examples/notebooks/_dev/notebooks/cache.ipynb index 74e2c269..e0e7c425 100644 --- a/idaes_examples/notebooks/_dev/notebooks/cache.ipynb +++ b/idaes_examples/notebooks/_dev/notebooks/cache.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "ac23bafd", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": 24, diff --git a/idaes_examples/notebooks/_dev/notebooks/ex/notebook_tags_example.ipynb b/idaes_examples/notebooks/_dev/notebooks/ex/notebook_tags_example.ipynb index b2287906..7cfe7821 100644 --- a/idaes_examples/notebooks/_dev/notebooks/ex/notebook_tags_example.ipynb +++ b/idaes_examples/notebooks/_dev/notebooks/ex/notebook_tags_example.ipynb @@ -17,12 +17,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/dae/petsc_chem.ipynb b/idaes_examples/notebooks/docs/dae/petsc_chem.ipynb index 44969c96..e4d9e317 100644 --- a/idaes_examples/notebooks/docs/dae/petsc_chem.ipynb +++ b/idaes_examples/notebooks/docs/dae/petsc_chem.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "id": "6cabc606", "metadata": { "tags": [ "header", @@ -16,17 +17,19 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, { "cell_type": "markdown", + "id": "28bb63c9", "metadata": {}, "source": [ "# PETSc Time-stepping Solver -- Chemical Akzo Nobel Example\n", @@ -41,6 +44,7 @@ }, { "cell_type": "markdown", + "id": "42025a07", "metadata": {}, "source": [ "## Prerequisites\n", @@ -50,6 +54,7 @@ }, { "cell_type": "markdown", + "id": "070fa782", "metadata": {}, "source": [ "## Imports\n", @@ -60,6 +65,7 @@ { "cell_type": "code", "execution_count": 1, + "id": "ca3afd41", "metadata": {}, "outputs": [], "source": [ @@ -73,6 +79,7 @@ }, { "cell_type": "markdown", + "id": "b1872b90", "metadata": {}, "source": [ "## Set Up the Model\n", @@ -83,6 +90,7 @@ { "cell_type": "code", "execution_count": 2, + "id": "0629b344", "metadata": {}, "outputs": [], "source": [ @@ -93,6 +101,7 @@ { "cell_type": "code", "execution_count": 3, + "id": "f27c92dc", "metadata": {}, "outputs": [], "source": [ @@ -102,6 +111,7 @@ }, { "cell_type": "markdown", + "id": "f453bfd4", "metadata": {}, "source": [ "The variables y1 to y6 represent concentrations of chemical species. The values returned by the function above are the correct solution at t = 180. These values can be used to verify the solver results. The Pyomo model is ``m``. We are mainly interested in the y variables. The variables y1 to y5 are differential variables and y6 is an algebraic variable. Initial conditions are required for y1 through y5, and the initial values of the other variables can be calculated from there. The variables y1 through y5 at t = 0 are: ``m.y[0, 1]`` to ``m.y[0, 5]`` and y6 is ``m.y6[0]``. The variables at the final state are ``m.y[180, 1]`` to ``m.y[180, 5]`` and ``m.y6[180]``. The variable y6 is indexed differently because we want to treat it differently than the differential variables." @@ -110,6 +120,7 @@ { "cell_type": "code", "execution_count": 4, + "id": "16c95b9d", "metadata": {}, "outputs": [], "source": [ @@ -124,6 +135,7 @@ }, { "cell_type": "markdown", + "id": "5471f384", "metadata": {}, "source": [ "## Solve\n", @@ -134,6 +146,7 @@ { "cell_type": "code", "execution_count": 5, + "id": "8a34145e", "metadata": {}, "outputs": [], "source": [ @@ -144,6 +157,7 @@ { "cell_type": "code", "execution_count": 6, + "id": "87b95521", "metadata": {}, "outputs": [], "source": [ @@ -173,6 +187,7 @@ { "cell_type": "code", "execution_count": 7, + "id": "513f4f32", "metadata": {}, "outputs": [], "source": [ @@ -187,6 +202,7 @@ }, { "cell_type": "markdown", + "id": "ebfda339", "metadata": {}, "source": [ "## Plot Results Stored in Model\n", @@ -197,6 +213,7 @@ { "cell_type": "code", "execution_count": 8, + "id": "36b069ea", "metadata": {}, "outputs": [], "source": [ @@ -213,6 +230,7 @@ }, { "cell_type": "markdown", + "id": "e9a21252", "metadata": {}, "source": [ "## Plot Trajectory" @@ -221,6 +239,7 @@ { "cell_type": "code", "execution_count": 9, + "id": "ab7e20c6", "metadata": {}, "outputs": [], "source": [ @@ -240,6 +259,7 @@ { "cell_type": "code", "execution_count": 10, + "id": "5bb9a56d", "metadata": {}, "outputs": [], "source": [ @@ -254,6 +274,7 @@ { "cell_type": "code", "execution_count": 11, + "id": "425ccec5", "metadata": {}, "outputs": [], "source": [ @@ -267,6 +288,7 @@ }, { "cell_type": "markdown", + "id": "42511c06", "metadata": {}, "source": [ "## Interpolate Trajectory\n", @@ -277,6 +299,7 @@ { "cell_type": "code", "execution_count": 12, + "id": "a34aca76", "metadata": {}, "outputs": [], "source": [ @@ -287,6 +310,7 @@ { "cell_type": "code", "execution_count": 13, + "id": "d060fdcd", "metadata": {}, "outputs": [], "source": [ @@ -307,6 +331,7 @@ { "cell_type": "code", "execution_count": 14, + "id": "f8a01476", "metadata": {}, "outputs": [], "source": [ @@ -321,6 +346,7 @@ { "cell_type": "code", "execution_count": null, + "id": "a4c8d973", "metadata": {}, "outputs": [], "source": [] diff --git a/idaes_examples/notebooks/docs/dae/petsc_chem_doc.ipynb b/idaes_examples/notebooks/docs/dae/petsc_chem_doc.ipynb index f36b14c1..75737586 100644 --- a/idaes_examples/notebooks/docs/dae/petsc_chem_doc.ipynb +++ b/idaes_examples/notebooks/docs/dae/petsc_chem_doc.ipynb @@ -16,966 +16,165 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# PETSc Time-stepping Solver -- Chemical Akzo Nobel Example\n", - "Author: John Eslick \n", - "Maintainer: John Eslick \n", - "Updated: 2023-06-01 \n", - "\n", - "This example provides an overview of the PETSc time-stepping solver utilities in IDAES, which can be used to solve systems of differential algebraic equations (DAEs). PETSc is a solver suite developed primarily by Argonne National Lab (https://petsc.org/release/). IDAES provides a wrapper for PETSc (https://github.com/IDAES/idaes-ext/tree/main/petsc) that uses the AMPL solver interface (https://ampl.com/resources/learn-more/hooking-your-solver-to-ampl/) and utility functions that allow Pyomo and Pyomo.DAE (https://pyomo.readthedocs.io/en/stable/modeling_extensions/dae.html) problems to be solved using PETSc.\n", - "\n", - "This demonstration problem describes a set of chemical reactions in a reactor. A full description of the problem is available at https://archimede.dm.uniba.it/~testset/report/chemakzo.pdf. This is part of a test set which can be found at https://archimede.uniba.it/~testset/." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prerequisites\n", - "\n", - "The PETSc solver is an extra download for IDAES, which can be downloaded using the command ```idaes get-extensions --extra petsc```, if it is not installed already. See the IDAES solver documentation for more information (https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Imports\n", - "\n", - "Import the modules that will be used. Numpy and matplotlib are used to make some plots, ```idaes.core.solvers.petsc``` contains the PETSc utilities, and ```idaes.core.solvers.features``` contains the example model used here." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "import pyomo.environ as pyo\n", - "import idaes.core.solvers.petsc as petsc # petsc utilities module\n", - "from idaes.core.solvers.features import dae # DAE example/test problem" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Set Up the Model\n", - "\n", - "The model in this example is used for basic solver testing, so it is provided as part of an IDAES solver testing module. The model implementation is standard Pyomo.DAE, and nothing special needs to be done in the model to use the PETSc solver. The IDAES utilities for the PETSc solver will take the discretized Pyomo model and integrate between discrete time points to fill in the solution. To integrate over the entire time domain (as we will do here), you can discretize time using one time element, in which case, the problem will just contain the initial and final points. The intermediate solutions can be read from the trajectory data saved by the solver. The trajectory data can be used for analysis, or interpolation can be used to initialize a Pyomo problem before solving the fully time discretized problem. Integrating over the entire time domain is fastest with a coarsely discretized model (ideally just a single finite element in time) because the model is smaller and there are fewer calls to the integrator. This can be a good way to start testing a new dynamic IDAES model." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# To see the example problem code, uncomment the line below and execute this cell.\n", - "# ??dae" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Get the model and known solution for y variables at t=180 minutes.\n", - "m, y1, y2, y3, y4, y5, y6 = dae(nfe=10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The variables y1 to y6 represent concentrations of chemical species. The values returned by the function above are the correct solution at t = 180. These values can be used to verify the solver results. The Pyomo model is ``m``. We are mainly interested in the y variables. The variables y1 to y5 are differential variables and y6 is an algebraic variable. Initial conditions are required for y1 through y5, and the initial values of the other variables can be calculated from there. The variables y1 through y5 at t = 0 are: ``m.y[0, 1]`` to ``m.y[0, 5]`` and y6 is ``m.y6[0]``. The variables at the final state are ``m.y[180, 1]`` to ``m.y[180, 5]`` and ``m.y6[180]``. The variable y6 is indexed differently because we want to treat it differently than the differential variables." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "at t = 0:\n", - " y1 = 0.444\n", - " y2 = 0.00123\n", - " y3 = 0.0\n", - " y4 = 0.007\n", - " y5 = 0.0\n" - ] - } - ], - "source": [ - "# See the initial conditions:\n", - "print(\"at t = 0:\")\n", - "print(f\" y1 = {pyo.value(m.y[0, 1])}\")\n", - "print(f\" y2 = {pyo.value(m.y[0, 2])}\")\n", - "print(f\" y3 = {pyo.value(m.y[0, 3])}\")\n", - "print(f\" y4 = {pyo.value(m.y[0, 4])}\")\n", - "print(f\" y5 = {pyo.value(m.y[0, 5])}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solve\n", - "\n", - "The ``petsc_dae_by_time_element()`` function is used to solve Pyomo.DAE discretized Pyomo problem with the PETSc time-stepping solver by integrating between discrete time points. In this case there is only one time element." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# To see the docs, uncomment the line below and execute this cell.\n", - "# ?petsc.petsc_dae_by_time_element" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Called fg_read, err: 0 (0 is good)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: DAE: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Reading nl file: C:\\Users\\dkgun\\AppData\\Local\\Temp\\tmp79_vpohc.pyomo.nl\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of constraints: 12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of nonlinear constraints: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of linear constraints: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of inequalities: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of variables: 12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of integers: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of binary: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of objectives: 0 (Ignoring)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of non-zeros in Jacobian: 30 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of degrees of freedom: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 0 SNES Function norm 4.725472106218e+00 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 1 SNES Function norm 6.033402274321e-03 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 2 SNES Function norm 5.511108092160e-19 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: SNESConvergedReason = SNES_CONVERGED_FNORM_ABS, in 2 iterations\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: SNES_CONVERGED_FNORM_ABS\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Called fg_read, err: 0 (0 is good)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: DAE: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Reading nl file: C:\\Users\\dkgun\\AppData\\Local\\Temp\\tmp86gcsgoo.pyomo.nl\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of constraints: 12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of nonlinear constraints: 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of linear constraints: 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of inequalities: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of variables: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of integers: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of binary: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of objectives: 0 (Ignoring)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of non-zeros in Jacobian: 42 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Explicit time variable: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of derivatives: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of differential vars: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of algebraic vars: 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of state vars: 12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: Number of degrees of freedom: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 0 TS dt 0.01 time 0.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 1 TS dt 0.01 time 0.01\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 2 TS dt 0.0253727 time 0.02\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 3 TS dt 0.0263136 time 0.0453727\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 4 TS dt 0.0266656 time 0.0716863\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 5 TS dt 0.0273379 time 0.0983519\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 6 TS dt 0.0278858 time 0.12569\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 7 TS dt 0.0285647 time 0.153576\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 8 TS dt 0.0299787 time 0.18214\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 9 TS dt 0.0330027 time 0.212119\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 10 TS dt 0.0389392 time 0.245122\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 11 TS dt 0.0502022 time 0.284061\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 12 TS dt 0.0725265 time 0.334263\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 13 TS dt 0.12324 time 0.40679\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 14 TS dt 0.275636 time 0.53003\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 15 TS dt 0.851223 time 0.805665\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 16 TS dt 0.943011 time 1.65689\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 17 TS dt 0.992936 time 2.5999\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 18 TS dt 1.05983 time 3.59284\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 19 TS dt 1.10803 time 4.65266\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 20 TS dt 1.11384 time 5.76069\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 21 TS dt 1.08077 time 6.87453\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 22 TS dt 1.03546 time 7.9553\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 23 TS dt 0.996324 time 8.99076\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 24 TS dt 0.969147 time 9.98708\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 25 TS dt 0.952825 time 10.9562\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 26 TS dt 0.945257 time 11.9091\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 27 TS dt 0.944477 time 12.8543\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 28 TS dt 0.94914 time 13.7988\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 29 TS dt 0.95827 time 14.7479\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 30 TS dt 0.971205 time 15.7062\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 31 TS dt 0.987477 time 16.6774\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 32 TS dt 1.00677 time 17.6649\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 33 TS dt 1.02887 time 18.6716\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 34 TS dt 1.05365 time 19.7005\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 35 TS dt 1.08108 time 20.7542\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 36 TS dt 1.11115 time 21.8352\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 37 TS dt 1.14395 time 22.9464\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 38 TS dt 1.17959 time 24.0903\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 39 TS dt 1.21826 time 25.2699\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 40 TS dt 1.2602 time 26.4882\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 41 TS dt 1.30569 time 27.7484\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 42 TS dt 1.35511 time 29.0541\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 43 TS dt 1.40889 time 30.4092\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 44 TS dt 1.46755 time 31.8181\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 45 TS dt 1.53172 time 33.2856\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 46 TS dt 1.60213 time 34.8174\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 47 TS dt 1.67965 time 36.4195\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 48 TS dt 1.76533 time 38.0991\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 49 TS dt 1.86041 time 39.8645\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 50 TS dt 1.96638 time 41.7249\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 51 TS dt 2.08502 time 43.6913\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 52 TS dt 2.21847 time 45.7763\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 53 TS dt 2.36933 time 47.9948\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 54 TS dt 2.5407 time 50.3641\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 55 TS dt 2.73631 time 52.9048\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 56 TS dt 2.96063 time 55.6411\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 57 TS dt 3.21887 time 58.6017\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 58 TS dt 3.51701 time 61.8206\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 59 TS dt 3.86158 time 65.3376\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 60 TS dt 4.25928 time 69.1992\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 61 TS dt 4.71617 time 73.4585\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 62 TS dt 5.23661 time 78.1747\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 63 TS dt 5.82229 time 83.4113\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 64 TS dt 6.47216 time 89.2335\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 65 TS dt 7.18398 time 95.7057\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 66 TS dt 7.9573 time 102.89\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 67 TS dt 8.79623 time 110.847\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 68 TS dt 9.71025 time 119.643\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 69 TS dt 10.7131 time 129.353\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 70 TS dt 11.8212 time 140.067\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 71 TS dt 13.0522 time 151.888\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 72 TS dt 7.53 time 164.94\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 73 TS dt 7.53 time 172.47\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: 74 TS dt 16.8503 time 180.\n" - ] - }, + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# PETSc Time-stepping Solver -- Chemical Akzo Nobel Example\n", + "Author: John Eslick \n", + "Maintainer: John Eslick \n", + "Updated: 2023-06-01 \n", + "\n", + "This example provides an overview of the PETSc time-stepping solver utilities in IDAES, which can be used to solve systems of differential algebraic equations (DAEs). PETSc is a solver suite developed primarily by Argonne National Lab (https://petsc.org/release/). IDAES provides a wrapper for PETSc (https://github.com/IDAES/idaes-ext/tree/main/petsc) that uses the AMPL solver interface (https://ampl.com/resources/learn-more/hooking-your-solver-to-ampl/) and utility functions that allow Pyomo and Pyomo.DAE (https://pyomo.readthedocs.io/en/stable/modeling_extensions/dae.html) problems to be solved using PETSc.\n", + "\n", + "This demonstration problem describes a set of chemical reactions in a reactor. A full description of the problem is available at https://archimede.dm.uniba.it/~testset/report/chemakzo.pdf. This is part of a test set which can be found at https://archimede.uniba.it/~testset/." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prerequisites\n", + "\n", + "The PETSc solver is an extra download for IDAES, which can be downloaded using the command ```idaes get-extensions --extra petsc```, if it is not installed already. See the IDAES solver documentation for more information (https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Imports\n", + "\n", + "Import the modules that will be used. Numpy and matplotlib are used to make some plots, ```idaes.core.solvers.petsc``` contains the PETSc utilities, and ```idaes.core.solvers.features``` contains the example model used here." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import pyomo.environ as pyo\n", + "import idaes.core.solvers.petsc as petsc # petsc utilities module\n", + "from idaes.core.solvers.features import dae # DAE example/test problem" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Set Up the Model\n", + "\n", + "The model in this example is used for basic solver testing, so it is provided as part of an IDAES solver testing module. The model implementation is standard Pyomo.DAE, and nothing special needs to be done in the model to use the PETSc solver. The IDAES utilities for the PETSc solver will take the discretized Pyomo model and integrate between discrete time points to fill in the solution. To integrate over the entire time domain (as we will do here), you can discretize time using one time element, in which case, the problem will just contain the initial and final points. The intermediate solutions can be read from the trajectory data saved by the solver. The trajectory data can be used for analysis, or interpolation can be used to initialize a Pyomo problem before solving the fully time discretized problem. Integrating over the entire time domain is fastest with a coarsely discretized model (ideally just a single finite element in time) because the model is smaller and there are fewer calls to the integrator. This can be a good way to start testing a new dynamic IDAES model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# To see the example problem code, uncomment the line below and execute this cell.\n", + "# ??dae" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Get the model and known solution for y variables at t=180 minutes.\n", + "m, y1, y2, y3, y4, y5, y6 = dae(nfe=10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The variables y1 to y6 represent concentrations of chemical species. The values returned by the function above are the correct solution at t = 180. These values can be used to verify the solver results. The Pyomo model is ``m``. We are mainly interested in the y variables. The variables y1 to y5 are differential variables and y6 is an algebraic variable. Initial conditions are required for y1 through y5, and the initial values of the other variables can be calculated from there. The variables y1 through y5 at t = 0 are: ``m.y[0, 1]`` to ``m.y[0, 5]`` and y6 is ``m.y6[0]``. The variables at the final state are ``m.y[180, 1]`` to ``m.y[180, 5]`` and ``m.y6[180]``. The variable y6 is indexed differently because we want to treat it differently than the differential variables." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: TSConvergedReason = TS_CONVERGED_TIME\n" + "at t = 0:\n", + " y1 = 0.444\n", + " y2 = 0.00123\n", + " y3 = 0.0\n", + " y4 = 0.007\n", + " y5 = 0.0\n" ] - }, + } + ], + "source": [ + "# See the initial conditions:\n", + "print(\"at t = 0:\")\n", + "print(f\" y1 = {pyo.value(m.y[0, 1])}\")\n", + "print(f\" y2 = {pyo.value(m.y[0, 2])}\")\n", + "print(f\" y3 = {pyo.value(m.y[0, 3])}\")\n", + "print(f\" y4 = {pyo.value(m.y[0, 4])}\")\n", + "print(f\" y5 = {pyo.value(m.y[0, 5])}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Solve\n", + "\n", + "The ``petsc_dae_by_time_element()`` function is used to solve Pyomo.DAE discretized Pyomo problem with the PETSc time-stepping solver by integrating between discrete time points. In this case there is only one time element." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# To see the docs, uncomment the line below and execute this cell.\n", + "# ?petsc.petsc_dae_by_time_element" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:22:07 [INFO] idaes.solve.petsc-dae: TS_CONVERGED_TIME\n" + "ename": "RuntimeError", + "evalue": "No PETSc executable found.", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mRuntimeError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[7]\u001b[39m\u001b[32m, line 9\u001b[39m\n\u001b[32m 1\u001b[39m \u001b[38;5;66;03m# The command below will solve the problem. In this case, we want to read the saved\u001b[39;00m\n\u001b[32m 2\u001b[39m \u001b[38;5;66;03m# trajectory for each time element in the Pyomo.DAE problem (in this case there is\u001b[39;00m\n\u001b[32m 3\u001b[39m \u001b[38;5;66;03m# only 1) so we will need to provide solver options to save the trajectory to the PETSc\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 6\u001b[39m \u001b[38;5;66;03m# information written by PETSc and resave it as json. This allows us to cleanly read\u001b[39;00m\n\u001b[32m 7\u001b[39m \u001b[38;5;66;03m# the trajectory data for multiple time elements.\u001b[39;00m\n\u001b[32m----> \u001b[39m\u001b[32m9\u001b[39m result = \u001b[43mpetsc\u001b[49m\u001b[43m.\u001b[49m\u001b[43mpetsc_dae_by_time_element\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 10\u001b[39m \u001b[43m \u001b[49m\u001b[43mm\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 11\u001b[39m \u001b[43m \u001b[49m\u001b[43mtime\u001b[49m\u001b[43m=\u001b[49m\u001b[43mm\u001b[49m\u001b[43m.\u001b[49m\u001b[43mt\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 12\u001b[39m \u001b[43m \u001b[49m\u001b[43mbetween\u001b[49m\u001b[43m=\u001b[49m\u001b[43m[\u001b[49m\u001b[43mm\u001b[49m\u001b[43m.\u001b[49m\u001b[43mt\u001b[49m\u001b[43m.\u001b[49m\u001b[43mfirst\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mm\u001b[49m\u001b[43m.\u001b[49m\u001b[43mt\u001b[49m\u001b[43m.\u001b[49m\u001b[43mlast\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 13\u001b[39m \u001b[43m \u001b[49m\u001b[43mts_options\u001b[49m\u001b[43m=\u001b[49m\u001b[43m{\u001b[49m\n\u001b[32m 14\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_type\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mcn\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Crank–Nicolson\u001b[39;49;00m\n\u001b[32m 15\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_adapt_type\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mbasic\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 16\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_dt\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m0.01\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 17\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_save_trajectory\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m1\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 18\u001b[39m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 19\u001b[39m \u001b[43m)\u001b[49m\n\u001b[32m 20\u001b[39m tj = result.trajectory\n\u001b[32m 21\u001b[39m res = result.results\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/idaes/core/solvers/petsc.py:592\u001b[39m, in \u001b[36mpetsc_dae_by_time_element\u001b[39m\u001b[34m(m, time, timevar, initial_constraints, initial_variables, detect_initial, skip_initial, initial_solver, initial_solver_options, ts_options, keepfiles, symbolic_solver_labels, between, interpolate, calculate_derivatives, previous_trajectory, representative_time, snes_options)\u001b[39m\n\u001b[32m 590\u001b[39m _sub_problem_scaling_suffix(m, t_block)\n\u001b[32m 591\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m idaeslog.solver_log(solve_log, idaeslog.INFO) \u001b[38;5;28;01mas\u001b[39;00m slc:\n\u001b[32m--> \u001b[39m\u001b[32m592\u001b[39m res = \u001b[43minitial_solver_obj\u001b[49m\u001b[43m.\u001b[49m\u001b[43msolve\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 593\u001b[39m \u001b[43m \u001b[49m\u001b[43mt_block\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 594\u001b[39m \u001b[43m \u001b[49m\u001b[43mtee\u001b[49m\u001b[43m=\u001b[49m\u001b[43mslc\u001b[49m\u001b[43m.\u001b[49m\u001b[43mtee\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 595\u001b[39m \u001b[43m \u001b[49m\u001b[43msymbolic_solver_labels\u001b[49m\u001b[43m=\u001b[49m\u001b[43msymbolic_solver_labels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 596\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 597\u001b[39m res_list.append(res)\n\u001b[32m 599\u001b[39m tprev = t0\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/pyomo/opt/base/solvers.py:534\u001b[39m, in \u001b[36mOptSolver.solve\u001b[39m\u001b[34m(self, *args, **kwds)\u001b[39m\n\u001b[32m 531\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34msolve\u001b[39m(\u001b[38;5;28mself\u001b[39m, *args, **kwds):\n\u001b[32m 532\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"Solve the problem\"\"\"\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m534\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mavailable\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexception_flag\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[32m 535\u001b[39m \u001b[38;5;66;03m#\u001b[39;00m\n\u001b[32m 536\u001b[39m \u001b[38;5;66;03m# If the inputs are models, then validate that they have been\u001b[39;00m\n\u001b[32m 537\u001b[39m \u001b[38;5;66;03m# constructed! Collect suffix names to try and import from solution.\u001b[39;00m\n\u001b[32m 538\u001b[39m \u001b[38;5;66;03m#\u001b[39;00m\n\u001b[32m 539\u001b[39m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mpyomo\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mcore\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mbase\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mblock\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m BlockData\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/pyomo/solvers/plugins/solvers/ASL.py:119\u001b[39m, in \u001b[36mASL.available\u001b[39m\u001b[34m(self, exception_flag)\u001b[39m\n\u001b[32m 118\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mavailable\u001b[39m(\u001b[38;5;28mself\u001b[39m, exception_flag=\u001b[38;5;28;01mTrue\u001b[39;00m):\n\u001b[32m--> \u001b[39m\u001b[32m119\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m.\u001b[49m\u001b[43mavailable\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexception_flag\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[32m 120\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[32m 121\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m.version() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/pyomo/opt/solver/shellcmd.py:134\u001b[39m, in \u001b[36mSystemCallSolver.available\u001b[39m\u001b[34m(self, exception_flag)\u001b[39m\n\u001b[32m 132\u001b[39m cm = nullcontext() \u001b[38;5;28;01mif\u001b[39;00m exception_flag \u001b[38;5;28;01melse\u001b[39;00m LoggingIntercept()\n\u001b[32m 133\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m cm:\n\u001b[32m--> \u001b[39m\u001b[32m134\u001b[39m ans = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mexecutable\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 135\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m:\n\u001b[32m 136\u001b[39m ans = \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/pyomo/opt/solver/shellcmd.py:205\u001b[39m, in \u001b[36mSystemCallSolver.executable\u001b[39m\u001b[34m(self)\u001b[39m\n\u001b[32m 198\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mexecutable\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[32m 199\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"\u001b[39;00m\n\u001b[32m 200\u001b[39m \u001b[33;03m Returns the executable used by this solver.\u001b[39;00m\n\u001b[32m 201\u001b[39m \u001b[33;03m \"\"\"\u001b[39;00m\n\u001b[32m 202\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m (\n\u001b[32m 203\u001b[39m \u001b[38;5;28mself\u001b[39m._user_executable\n\u001b[32m 204\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m (\u001b[38;5;28mself\u001b[39m._user_executable \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[32m--> \u001b[39m\u001b[32m205\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_default_executable\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 206\u001b[39m )\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/idaes/core/solvers/petsc.py:124\u001b[39m, in \u001b[36mPetsc._default_executable\u001b[39m\u001b[34m(self)\u001b[39m\n\u001b[32m 122\u001b[39m executable = Executable(\u001b[33m\"\u001b[39m\u001b[33mpetsc\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m 123\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m executable:\n\u001b[32m--> \u001b[39m\u001b[32m124\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[33m\"\u001b[39m\u001b[33mNo PETSc executable found.\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m 125\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m executable.path()\n", + "\u001b[31mRuntimeError\u001b[39m: No PETSc executable found." ] } ], @@ -1005,7 +204,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -1029,24 +228,9 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/z0lEQVR4nO3dd3xUVd4G8OdOz6T3Ain0nhBaBBtIABVBFBGBFYEFG2JBd9V1FXVfRVwLFgRXBURU0F1QBEWKBEE6JIQaaem998mU+/4xySRDCpkwk5vyfD+fMXfu3PKbTEwezj33HEEURRFEREREHYRM6gKIiIiI7InhhoiIiDoUhhsiIiLqUBhuiIiIqENhuCEiIqIOheGGiIiIOhSGGyIiIupQFFIX0NpMJhPS09Ph6uoKQRCkLoeIiIiaQRRFlJSUICgoCDJZ020znS7cpKenIzg4WOoyiIiIqAVSUlLQtWvXJrfpdOHG1dUVgPmb4+bmJnE1RERE1BzFxcUIDg62/B1vSqcLNzWXotzc3BhuiIiI2pnmdClhh2IiIiLqUBhuiIiIqENhuCEiIqIOpdP1uSEiImqrjEYj9Hq91GVIRqVSXfM27+ZguCEiIpKYKIrIzMxEYWGh1KVISiaToVu3blCpVNd1HIYbIiIiidUEGz8/P2i12k45yGzNILsZGRkICQm5ru8Bww0REZGEjEajJdh4e3tLXY6kfH19kZ6eDoPBAKVS2eLjsEMxERGRhGr62Gi1WokrkV7N5Sij0Xhdx2G4ISIiagM646Woq9nre8BwQ0RERB0Kww0RERF1KAw3RERE1KEw3NhRbqkO5zKKpS6DiIhIchkZGZg5cyZ69+4NmUyGp59+utXOzXBjJ9tPZ2DEG7vwj82npC6FiIhIcjqdDr6+vvjnP/+JiIiIVj03x7mxkyGhngCA2ORCpOSXI9iLt/QREVHLiKKICv313Q7dUk5KebPuWlq3bh2eeeYZpKenQ61WW9ZPmTIFrq6u+Oqrr/DBBx8AAFavXu2wehvCcGMnfq4a3NDdGwcu5WFrfAYeG91D6pKIiKidqtAb0f+VXyU599nXJ0CrunY8mDZtGp588kls2bIF06ZNAwBkZ2dj27Zt2LFjh6PLbBIvS9nRpIggAMBPJ9MlroSIiMixnJycMHPmTKxZs8aybv369QgJCcHo0aOlKwxsubGr2wcE4OUfTuNsRjEu5ZSih6+L1CUREVE75KSU4+zrEyQ7d3MtWLAAw4cPR1paGrp06YK1a9dizpw5kg9IyHBjR57OKtzcywd7EnKw9WQGnoruJXVJRETUDgmC0KxLQ1KLjIxEREQE1q1bh/Hjx+PMmTPYtm2b1GXxspS91Vya2nIyDaIoSlwNERGRY82fPx9r167FmjVrEB0djeDgYKlLYrixt3H9/aFSyHAppwznM0ukLoeIiMihZs6cidTUVHz22WeYN2+e1WtxcXGIi4tDaWkpcnJyEBcXh7Nnzzq8JoYbO3PVKDGmjy8AdiwmIqKOz93dHVOnToWLiwumTJli9VpkZCQiIyNx/PhxfPPNN4iMjMSdd97p8JoYbhzActdUfDovTRERUYeXlpaGWbNmWY13A5jH67n6kZiY6PB6GG4c4La+ftCq5EjJr8DJ1CKpyyEiInKIgoICbN68GTExMVi4cKHU5Vgw3DiAVqVAdD9/ALw0RUREHVdkZCTmzJmDZcuWoU+fPlKXY9H27zNrpyZFBGHLyXRsi8/AS3f2g0wm7T3/RERE9tYal5hagi03DnJLbx+4ahTILK7EsaQCqcshIiLqNBhuHEStkOP2AQEAeGmKiIioNTHcOFDNXVM/n8qAwWiSuBoiIqLOgeHGgUb18IaXswp5ZVU4eDlP6nKIiIg6BYYbB1LIZbhjIC9NERERtSaGGweruTS1/XQmdAajxNUQERF1fAw3DjY8zAv+bmoUVxqw789cqcshIiJqFZs2bcK4cePg6+sLNzc3jBw5Er/++murnJvhxsHkMgETB5lbb7bG89IUERF1Dr///jvGjRuHn3/+GcePH8eYMWMwadIkxMbGOvzcHMSvFUyKCMTqP65g59ksVFQZ4aSSS10SERHRdVm3bh2eeeYZpKenW80pNWXKFLi6uuKrr76y2v7NN9/Ejz/+iJ9++gmRkZEOrY0tN61gcLAHuno6oazKiD0J2VKXQ0REbZ0oAlVl0jyaOeHztGnTYDQasWXLFsu67OxsbNu2DfPmzau3vclkQklJCby8vOz2bWoMW25agSAImBQRhJUxl/DTyXTcOShQ6pKIiKgt05cDbwZJc+5/pAMq52tu5uTkhJkzZ2LNmjWYNm0aAGD9+vUICQnB6NGj623/zjvvoLS0FPfff7+9K66HLTet5K5wc6D57Xw2Sir1EldDRER0/RYsWIAdO3YgLS0NALB27VrMmTMHgmA9n+I333yD1157Dd999x38/PwcXhdbblpJ/0A3dPd1xuWcMuw6l4V7IrtKXRIREbVVSq25BUWqczdTZGQkIiIisG7dOowfPx5nzpzBtm3brLbZsGED5s+fj++//x7R0dH2rrZBDDetRBAETAoPwge7L+CnkxkMN0RE1DhBaNalobZg/vz5WL58OdLS0hAdHY3g4GDLa99++y3mzZuHDRs2YOLEia1WEy9LtaJJEeZLU7//mYPC8iqJqyEiIrp+M2fORGpqKj777DOrjsTffPMNZs+ejXfffRdRUVHIzMxEZmYmioqKHF4Tw00r6unnin6BbjCYRGw/nSl1OURERNfN3d0dU6dOhYuLC6ZMmWJZ/5///AcGgwELFy5EYGCg5fHUU085vCZelmplkyICcS6jGFvjM/DAiBCpyyEiIrpuaWlpmDVrltV4NzExMZLVw5abVjYp3Hxr34FLucgp0UlcDRERUcsVFBRg8+bNiImJwcKFC6Uux6JNhJsVK1YgLCwMGo0GUVFROHLkSLP227BhAwRBsGoGa+uCvbQYHOwBkwj8cjpD6nKIiIhaLDIyEnPmzMGyZcvQp08fqcuxkDzcbNy4EYsXL8aSJUtw4sQJREREYMKECcjObnok38TERDz33HO4+eabW6lS+6mZKfynk5xrioiI2q/ExEQUFRXhueeek7oUK5KHm/feew8LFizA3Llz0b9/f6xatQparRarV69udB+j0YhZs2bhtddeQ/fu3Zs8vk6nQ3FxsdVDahMHBUIQgKOJBUgvrJC6HCIiog5F0nBTVVWF48ePWw3qI5PJEB0djYMHDza63+uvvw4/Pz/89a9/veY5li5dCnd3d8uj7v33Uglw12B4mHlujW3xvDRFRERkT5KGm9zcXBiNRvj7+1ut9/f3R2Zmw7dK79+/H1988QU+++yzZp3jxRdfRFFRkeWRkpJy3XXbg+XSVDwvTREREdmT5JelbFFSUoIHH3wQn332GXx8fJq1j1qthpubm9WjLbhjYADkMgHxqUVIzC2TuhwiIqIOQ9Jxbnx8fCCXy5GVlWW1PisrCwEBAfW2v3TpEhITEzFp0iTLOpPJBABQKBRISEhAjx49HFu0nfi4qDGqhzf2XcjFtlMZWDimp9QlERERdQiSttyoVCoMHToUu3fvtqwzmUzYvXs3Ro4cWW/7vn374tSpU4iLi7M8Jk+ejDFjxiAuLq5N9KexBe+aIiIisj/JRyhevHgxHnroIQwbNgwjRozA8uXLUVZWhrlz5wIAZs+ejS5dumDp0qXQaDQYOHCg1f4eHh4AUG99ezBhQABe2nwK5zNL8GdWCXr7u0pdEhERUbsneZ+b6dOn45133sErr7yCwYMHIy4uDtu3b7d0Mk5OTkZGRse8o8jdSYlbe/sBALay9YaIiDqQ/fv348Ybb4S3tzecnJzQt29fvP/++61ybkEURbFVztRGFBcXw93dHUVFRW2ic/GPcWl4akMcuvk447dnb4UgCFKXREREraiyshJXrlxBt27doNFopC7HbmJjY3H+/HmEh4fD2dkZ+/fvxyOPPIL3338fDz/8cIP7NPW9sOXvt+QtN51ddD9/aJQyXMktw5l06QcYJCIiao5169bB29sbOp31PIlTpkzBgw8+iMjISMyYMQMDBgxAWFgY/vKXv2DChAnYt2+fw2tjuJGYs1qBsX3Nl+DYsZiIiABAFEWU68sleTT3gs60adNgNBqxZcsWy7rs7Gxs27YN8+bNq7d9bGwsDhw4gFtvvdVu36fGSN6hmIBJEYHYdioDW+Mz8PztfSGT8dIUEVFnVmGoQNQ3UZKc+/DMw9AqtdfczsnJCTNnzsSaNWswbdo0AMD69esREhKC0aNHW7br2rUrcnJyYDAY8Oqrr2L+/PmOKt2C4aYNGN3HDy5qBdIKKxCbUoChoV5Sl0RERHRNCxYswPDhw5GWloYuXbpg7dq1mDNnjlX/0X379qG0tBSHDh3CCy+8gJ49e2LGjBkOrYvhpg3QKOUY398fm2LT8NPJDIYbIqJOzknhhMMzD0t27uaKjIxEREQE1q1bh/Hjx+PMmTPYtm2b1TbdunUDAAwaNAhZWVl49dVXGW46i0kRQdgUm4ZtpzLw8l39IeelKSKiTksQhGZdGmoL5s+fj+XLlyMtLQ3R0dFNDqhrMpnqdUB2BHYobiNu7OkDD60SOSU6HL6SJ3U5REREzTJz5kykpqbis88+s+pIvGLFCvz000+4cOECLly4gC+++ALvvPMO/vKXvzi8JrbctBEqhQy3DwjAhqMp+OlkBkb1aN7EoERERFJyd3fH1KlTsW3bNkyZMsWy3mQy4cUXX8SVK1egUCjQo0cPLFu2DI888ojDa2LLTRtSM9fUL6czoDeaJK6GiIioedLS0jBr1iyo1WrLukWLFuH06dMoKytDUVERTpw4gcceewwymeOjB8NNG3JDd2/4uKhRWK7H/ou5UpdDRETUpIKCAmzevBkxMTFYuHCh1OVYMNy0IXKZgImDAgBwQD8iImr7IiMjMWfOHCxbtgx9+vSRuhwL9rlpYyZFBOHLg0nYcSYLlXojNEq51CURERE1KDExUeoSGsSWmzZmSIgngtw1KNUZsPfPHKnLISIiancYbtoYmUzAXdUdi3lpioiIyHYMN23QpHBzuNl9LhvlVQaJqyEiImpfGG7aoIFd3BDqrUWF3ohd57KlLoeIiKhdYbhpgwRBsLTe8NIUERGRbRhu2qiaAf32JuSgqEIvcTVERETtB8NNG9UnwBW9/V1QZTRhx5lMqcshIiJqNxhu2jDLpan4DIkrISIiark//vgDCoUCgwcPbpXzMdy0YTW3hP9xMRd5pY6fIp6IiMjeCgsLMXv2bIwdO7bVzslwYyeFWZn447uvceh/G+x2zG4+zhjUxR1Gk4jtvDRFRERtyLp16+Dt7Q2dzvof31OmTMGDDz5oef7oo49i5syZGDlyZKvVxnBjJ8U5WTj0v28R++tWiKJot+NOiggEwLumiIg6E1EUYSovl+TR3L9h06ZNg9FoxJYtWyzrsrOzsW3bNsybNw8AsGbNGly+fBlLlixxyPepMZxbyk6C+vSHQqVGeVEhcpMT4RvazS7HnRgehDd/Po/DV/KRVVwJfzeNXY5LRERtl1hRgYQhQyU5d58TxyFotdfczsnJCTNnzsSaNWswbdo0AMD69esREhKC0aNH48KFC3jhhRewb98+KBStGzfYcmMnCqUSwf0HAgCS4mPtdtwuHk4YGuoJUQS2sWMxERG1IQsWLMCOHTuQlpYGAFi7di3mzJkDk8mEmTNn4rXXXkPv3r1bvS623NhRaPgQXIk7jsT4WAybdK/djjspPBDHkwrwU3w65t1knxYhIiJquwQnJ/Q5cVyyczdXZGQkIiIisG7dOowfPx5nzpzBtm3bUFJSgmPHjiE2NhZPPPEEAMBkMkEURSgUCuzYsQO33Xabo94Cw409hUVEAgDSzp2BvkoHpUptl+PeGR6I17eeRWxyIVLyyxHsde3mQiIiar8EQWjWpaG2YP78+Vi+fDnS0tIQHR2N4OBgmEwmnDp1ymq7Tz75BL/99hv++9//ols3x/5DnZel7MirSzBcvLxh0Fch7fxZux3Xz1WDG7p7AwC28tIUERG1ITNnzkRqaio+++wzS0dimUyGgQMHWj38/Pyg0WgwcOBAODs7O7Qmhhs7EgQBoeHm1ht79rsBaqdj4F1TRETUlri7u2Pq1KlwcXHBlClTpC4HAMON3VnCzckTdj3u7QMCoJAJOJtRjEs5pXY9NhER0fVIS0vDrFmzoFY33h3j1VdfRVxcXKvUw3BjZ6GDBgMAcpITUVqQb7fjejqrcHMvHwDA1pO8NEVERNIrKCjA5s2bERMTg4ULF0pdjgXDjZ1p3dzh160HACD5VJxdj11zaWrLyTS7DhRIRETUEpGRkZgzZw6WLVuGPn36SF2OBe+WcoCw8EhkX7mEpPhY9L/Ffre6jevvD5VChks5ZTifWYJ+gW52OzYREZGtEhMTpS6hQWy5cYDQ8CEAgMT4WLu2sLhqlBjTxxcAOxYTERE1huHGAYL69INCXTsVgz1Z7pqKT+elKSIiogYw3DiAeSqGQQDMrTf2dFtfP2hVcqTkV+BkapFdj01ERNQRMNw4SJiDxrvRqhSI7ucPgJemiIiIGsJw4yA1/W5Sz52Gvkpn12PXXJraFp8Bk4mXpoiIiOpiuHEQry5d4eLlDaNej7RzZ+x67Ft6+8BVo0BmcSWOJRXY9dhERETtHcONg9SdisHe/W7UCjluHxAAgJemiIiIrsZw40A1/W6S7RxuAOCu6ktTP5/KgMFosvvxiYiIrkdMTIx5dvOrHpmZmQ4/Nwfxc6CQQYMBQbBMxeDi6WW3Y4/q4Q0vZxXyyqpw8HIebu7la7djExER2UtCQgLc3GoHnfXz83P4Odly40BaN3f4O2gqBqVchjsG8tIUERFJY926dfD29oZOZ33TzJQpU/Dggw9anvv5+SEgIMDykMkcHz0YbhzMUf1ugNq7prafzoTOYLT78YmISBqiKEKvM0ryaO4AsdOmTYPRaMSWLVss67Kzs7Ft2zbMmzfPsm7w4MEIDAzEuHHj8Mcff9j9e9UQXpZysLDwSBz54XskxcdCNJkg2DGxDg/zgr+bGlnFOuz7MxfR/f3tdmwiIpKOocqE/zy1V5JzP/zBrVCq5dfczsnJCTNnzsSaNWswbdo0AMD69esREhKC0aNH488//8SqVaswbNgw6HQ6fP755xg9ejQOHz6MIUOGOPQ9sOXGwQJ794NSrUF5USFy7DwVg1wmYOKg2ukYiIiIWtOCBQuwY8cOpKWlAQDWrl2LOXPmQBAE9OnTB4888giGDh2KUaNGYfXq1Rg1ahTef/99h9fFlhsHUyiV6Np/IK7EHkNSfCz8wrrb9fiTIgKx+o8r2HU2CxVVRjiprp22iYiobVOoZHj4g1slO3dzRUZGIiIiAuvWrcP48eNx5swZbNu2rdHtR4wYgf3799ujzCYx3LSCsPBIXIk9hsT4WAyfPNWuxx4c7IGunk5ILajAnoRs3Dko0K7HJyKi1icIQrMuDbUF8+fPx/Lly5GWlobo6GgEBwc3um1cXBwCAx3/d4qXpVpBzVQMaefP2H0qBkEQamcK511TRETUymbOnInU1FR89tlnVh2Jly9fjh9//BEXL17E6dOn8fTTT+O3337DwoULHV4Tw00r8OrSFS7ePg6ZigEA7go3p+DfzmejpFJv9+MTERE1xt3dHVOnToWLiwumTJliWV9VVYVnn30WgwYNwq233oqTJ09i165dGDt2rMNrYrhpBYIgWEYrdsQt4f0D3dDd1xk6gwm7zmXZ/fhERERNSUtLw6xZs6BWqy3r/v73v+PixYuoqKhAXl4e9uzZgzFjxrRKPQw3raRmvJskB4QbQRAwKbzm0lSG3Y9PRETUkIKCAmzevBkxMTGtcrmpuRhuWknIwAhAEJBbPRWDvU2KMF+a+v3PHBSWV9n9+ERERFeLjIzEnDlzsGzZMvTp00fqciwYblqJeSqGngAc03rT088V/QLdYDCJ2H7a8ZOSERERJSYmoqioCM8995zUpVhhuGlFYRGOuzQF1LbebI3npSkiIuq8GG5aUeigwQCApFNxEE0mux+/pt/NgUu5yCmx7y3nRERE7YVNg/gVFhZi8+bN2LdvH5KSklBeXg5fX19ERkZiwoQJGDVqlKPq7BCunorB3qMVB3tpMTjYA3EphfjldAZmjwyz6/GJiIjag2a13KSnp2P+/PkIDAzE//3f/6GiogKDBw/G2LFj0bVrV+zZswfjxo1D//79sXHjRkfX3G4plEoEDxgEwHGXpmrGvOGAfkRE1Fk1q+UmMjISDz30EI4fP47+/fs3uE1FRQV++OEHLF++HCkpKW2uc1FbERoeicsnjjpkKgYAuCs8CG/8fA5HEwuQXliBIA8nu5+DiIioLWtWuDl79iy8vb2b3MbJyQkzZszAjBkzkJeXZ5fiOqKa8W7Szp+BXlcJpVpj1+MHuGswPMwLR67kY1t8BhbcYt9LX0RERG1dsy5LXSvYXO/2nYlXUFe4evs6bCoGALVzTcXz0hQREXU+zWq52bJlS7MPOHny5BYX0xkIgoDQ8Eic3rMDifGxCBs81O7nuGNgAF7dcgbxqUVIzC1DmI+z3c9BRER0LTqdDq+//jrWr1+PzMxMBAYG4pVXXrGaYNMRmhVu6k6E1RRBEGA0Gq+nnk4hLMIcbhzVqdjHRY1RPbyx70Iutsan44nbejnkPERERE25//77kZWVhS+++AI9e/ZERkYGTA4YCuVqzQo3rVFIZ2KZiiElCaX5eXDxsv9lvEkRQdXhJoPhhoionRFFEQadNOOVKdRqCIJwze3WrVuHZ555Bunp6VYTZk6ZMgWurq6YNWsW9u7di8uXL8PLywsAEBYW5qiyrTR7nJvZs2fj7rvvxu233w5nZ/te5lixYgX+/e9/IzMzExEREfjoo48wYsSIBrfdtGkT3nzzTVy8eBF6vR69evXCs88+iwcffNCuNTmSk6sb/Lv1RNblC0g6FYcBt9p/+vcJAwLw0uZTOJ9Zgj+zStDb39Xu5yAiIscw6HT48KH7JDn3k1/+F0rNtW92mTZtGp588kls2bIF06ZNAwBkZ2dj27Zt2LFjB77//nsMGzYMb7/9Nr766is4Oztj8uTJ+Ne//gUnJ8feydvsEYp79uyJN998Ez4+PrjjjjuwcuVKpKWlXXcBGzduxOLFi7FkyRKcOHECERERmDBhArKzsxvc3svLCy+99BIOHjyI+Ph4zJ07F3PnzsWvv/563bW0JkdPxeDupMStvX0BAFs55g0REdmZk5MTZs6ciTVr1ljWrV+/HiEhIRg9ejQuX76M/fv34/Tp09i8eTOWL1+O//73v3j88ccdXpsgiqJoyw6pqanYsmULfvzxR+zduxcDBgzA3XffjcmTJ2Pw4ME2FxAVFYXhw4fj448/BmC+BBYcHIxFixbhhRdeaNYxhgwZgokTJ+Jf//rXNbctLi6Gu7s7ioqK4ObmZnO99pJy9hS+e+1FaN098OiqdRBk9p8J48e4NDy1IQ7dfJzx27O3NquZkYiIWldlZSWuXLmCbt26QVPdYtIeLksBQGxsLIYPH46kpCR06dIF4eHhmDZtGl5++WWMHz8e+/btQ2ZmJtzd3QGYr77cd999KCsra7D1pqHvRQ1b/n7b/Be1a9euePzxx/Hrr78iJycHzz//PBISEnDbbbchNDQUTzzxBM6cad4tzlVVVTh+/Diio6NrC5LJEB0djYMHD15zf1EUsXv3biQkJOCWW25pcBudTofi4mKrR1sQ1Luv1VQMjhDdzx8apQxXcstwJr1tvG8iIro2QRCg1GgkedjyD+HIyEhERERg3bp1OH78OM6cOYM5c+YAAAIDA9GlSxdLsAGAfv36QRRFpKam2vtbZuW6mgtcXV1x//334+uvv0ZOTg5Wr14NuVzerGACALm5uTAajfD397da7+/vj8zMzEb3KyoqgouLC1QqFSZOnIiPPvoI48aNa3DbpUuXwt3d3fIIDg5u/ht0ILmidiqGxJMnHHIOZ7UCY/uav7ecjoGIiBxh/vz5WLt2LdasWYPo6GjL39kbb7wR6enpKC0ttWz7559/QiaToWvXrg6tyW7XQuRyOcaOHYsPPvgA8+fPt9dhG+Tq6oq4uDgcPXoUb7zxBhYvXoyYmJgGt33xxRdRVFRkeaSkpDi0NluEhg8B4Lh+NwAwKcI819TW+AyYTDZdgSQiIrqmmTNnIjU1FZ999pnV+DUzZ86Et7c35s6di7Nnz+L333/H3/72N8ybN8/hHYqbPbdUc5upTpxofiuEj48P5HI5srKyrNZnZWUhICCg0f1kMhl69uwJABg8eDDOnTuHpUuXYvTo0fW2VavVVreotSU1nYodNRUDAIzu4wcXtQJphRWITSnA0FAvu5+DiIg6L3d3d0ydOhXbtm2zGhfPxcUFO3fuxKJFizBs2DB4e3vj/vvvx//93/85vCa7DuJnK5VKhaFDh2L37t2Wc5hMJuzevRtPPPFEs49jMpmgk6jj1fXwDOwCVx9flOTmIPXcGXRzwGjFGqUc4/v7Y1NsGn46mcFwQ0REdpeWloZZs2bVa0zo27cvdu7c2er1NCvcLFmyxGEFLF68GA899BCGDRuGESNGYPny5SgrK8PcuXMBmMfX6dKlC5YuXQrA3Idm2LBh6NGjB3Q6HX7++Wd89dVXWLlypcNqdBRBEBA6qGa04hMOCTeAeUC/TbFp2HYqAy/f1R9yGe+aIiKi61dQUICYmBjExMTgk08+kboci2YP4ne148eP49y5cwCAAQMGIDIyskXHmT59OnJycvDKK68gMzMTgwcPxvbt2y2djJOTkyGrc5t0WVkZHn/8caSmpsLJyQl9+/bF+vXrMX369Ja+FUnVTsUQ57Bz3NjTBx5aJXJKdDh8JQ+jevg47FxERNR5REZGoqCgAMuWLUOfPn2kLsfC5nFusrOz8cADDyAmJgYeHh4AgMLCQowZMwYbNmyAr6+vI+q0m7Yyzk2NipJifLJgFiCKeGTllw6ZigEAXvhfPDYcTcGMESFYeu8gh5yDiIhs19TYLp2NZOPcLFq0CCUlJThz5gzy8/ORn5+P06dPo7i4GE8++aSth+v0nFzdENDd3Dk66VScw84zKSIIAPDL6QzojZwrjIiIOi6bw8327dvxySefoF+/fpZ1/fv3x4oVK/DLL7/YtbjOouaWcEeNdwMAN3T3ho+LGoXleuy/mOuw8xARUcvYeCGlQ7LX98DmcGMymaBUKuutVyqVnD28hcLCq+eZOhUH0UHfQ7lMwMRB5tvrOaAfEVHbUfM3tby8XOJKpFdVVQXAPHbe9bC5Q/Ftt92Gp556Ct9++y2CgsyXOtLS0vDMM89g7Fj7z27dGQT27gOlxgkVxUXITroC/249HHKeSRFB+PJgEnacyUKl3giN8vp+eIiI6PrJ5XJ4eHhYJozWarWdci5Ak8mEnJwcaLVaKBQtvt8JQAvCzccff4zJkycjLCzMMsRySkoKBg4ciPXr119XMZ1VzVQMl48fQVJ8rMPCzZAQTwS5a5BeVImYhBzcPrDxgRKJiKj11AxcWxNwOiuZTIaQkJDrDnc2h5vg4GCcOHECu3btwvnz5wGYJ8KqO/kl2S50UGR1uDmBEXff55BzyGQC7ooIwn9+v4yt8ekMN0REbYQgCAgMDISfnx/0er3U5UhGpVJZDf/SUi1q9xEEAePGjWt0skqyXe1UDGcdNhUDAEwKN4eb3eeyUV5lgFZ1fU1/RERkP3K5/Lr7m1ALw83Ro0exZ88eZGdn1+tE/N5779mlsM6mNaZiAICBXdwQ6q1FUl45dp3LxuTqW8SJiIg6Cpvbft58801ERUVhzZo1OHbsGGJjYy2PuLg4B5TYOQiCUHvXVLzjbgkXBAGTws2BhndNERFRR2Rzy80HH3yA1atXY86cOQ4op3MLDR+CU7/tQOLJWIeeZ1JEED7ecxF7E3JQVKGHu1P9W/uJiIjaK5tbbmQyGW688UZH1NLphQyKAAQBeanJKMl33EB7fQJc0dvfBVVGE3acyXTYeYiIiKRgc7h55plnsGLFCkfU0uk5ubgioEcvAHDoRJoAai9NxWc49DxEREStzebLUs899xwmTpyIHj16oH///vVGK960aZPdiuuMwsIjkXnxTyTFx2LgaMfdXn9XRBDe3fkn/riYi7xSHbxd1A47FxERUWuyueXmySefxJ49e9C7d294e3vD3d3d6kHXJ3RQTafiWIdNxQAA3XycMaiLO4wmEdt5aYqIiDoQm1tuvvzyS/zvf//DxIkTHVFPp2eZiqGk2KFTMQDApIhAnEorwqYTaZgxPAQyWecb7puIiDoem1tuvLy80KOH4/7gdnY1UzEA5tYbR7orPAgKmYDjSQV49acznJGWiIg6BJvDzauvvoolS5Zw9lIHao3xbgAgyMMJb98XDkEA1h1Mwps/n2PAISKids/my1IffvghLl26BH9/f4SFhdXrUHzihGP/IHcGoeFDAFRPxVBZCaXGMVMxAMC9Q7pCZzDhxU2n8Nm+K9Ao5Xh2fB+HnY+IiMjRbA43U6ZMcUAZVJdnYBDcfP1QnJON1HOn0S1ymEPPN2NECKoMJizZcgYf/XYRKrkMi8b2cug5iYiIHMXmcLNkyRJH1EF1CIKA0PBInNr9KxLjYx0ebgDgoVFh0BmMePPn83h355/QKOVYcEt3h5+XiIjI3prV54b9MFpfbb8bx3YqruvhW3rg2XG9AQBv/HwO6w4mttq5iYiI7KVZ4WbAgAHYsGEDqqqqmtzuwoULeOyxx/DWW2/ZpbjOLHhgBARBZp6KIc9xUzFcbdHYXlg4xnw33Cs/nsGGI8mtdm4iIiJ7aNZlqY8++gjPP/88Hn/8cYwbNw7Dhg1DUFAQNBoNCgoKcPbsWezfvx9nzpzBE088gccee8zRdXd4Ti6u8O/Rs3a04jHjWu3cz43vA53ehM/3X8GLm09BrZThnsiurXZ+IiKi69GscDN27FgcO3YM+/fvx8aNG/H1118jKSkJFRUV8PHxQWRkJGbPno1Zs2bB09PT0TV3GpapGE7FtWq4EQQBL03sB53BhK8OJeHZ705CJZdjYnhgq9VARETUUjZ1KL7ppptw0003OaoWukpoeCQObdpomYpBkNk8LFGLCYKA1yYPQJXBhI3HUvDUhlgo5QLGDwhotRqIiIhaovX+WpLNAnv1rZ2KIfFyq59fJhPw5r2DMGVwEAwmEU98E4uYhOxWr4OIiMgWDDdtmFyhQMjAcABAYiveNWVVg0zAO9MicOegAFQZTXjkq+M4cLH1OjgTERHZiuGmjQuV4JbwqynkMnzwQCSi+/lBZzDhr18ew9HEfMnqISIiagrDTRtXM95NzVQMUlHKZVgxawhu6e2LCr0Rc9ccRVxKoWT1EBERNYbhpo3zCAiCm68/TEYDUs6dkrQWtUKOT/8yFCO7e6NUZ8DsLw7jdFqRpDURERFdrUXhxmQy4c8//8T+/fvx+++/Wz3IvsxTMQwGACSdlO7SVA0nlRyfPzQMw0I9UVxpwINfHEZCZonUZREREVnYPLfUoUOHMHPmTCQlJdWblkEQBBiNRrsVR2Zh1fNMJZ2Kk7oUAICzWoHVc4fjwc8P42RqEWZ9fhgbH7kBPXxdpC6NiIjI9pabRx99FMOGDcPp06eRn5+PgoICyyM/n51MHUGqqRia4qZRYt28KPQPdENuqQ6zPjuM5LxyqcsiIiKyPdxcuHABb775Jvr16wcPDw+4u7tbPcj+nFxcEdCjFwBp75q6mrtWia/+OgK9/FyQWVyJGZ8dQlphhdRlERFRJ2dzuImKisLFixcdUQs1ITTCfNeUVOPdNMbbRY2vF0Shu48z0gorMPOzQ8gqlu6uLiIiIpvDzaJFi/Dss89i7dq1OH78OOLj460e5BiW8W5OxUE0mSSuxpqfqwZfL4hCsJcTkvLKMfOzQ8gt1UldFhERdVKCeHWv4GuQNTC/kSAIEEWxXXQoLi4uhru7O4qKiuDm5iZ1Oc1mNBjwyfwZqKqowF+WLod/955Sl1RPSn45pn96EOlFlegb4IpvF9wAT2eV1GUREVEHYMvfb5vvlrpy5UqLC6OWkysUCB4QgUvHDiHx5Ik2GW6CvbT4esENmP7pQZzPLMGDqw/j6/k3wN1JKXVpRETUidh8WSo0NLTJBzlOWBuYiuFauvk445sFUfB2VuF0WjHmrDmCUp1B6rKIiKgTadEgfpcuXcKiRYsQHR2N6OhoPPnkk7h06ZK9a6Or1Azml5ZwTtKpGK6lp58r1s+PgodWidjkQsxbcxTlVQw4RETUOmwON7/++iv69++PI0eOIDw8HOHh4Th8+DAGDBiAnTt3OqJGqtaWpmK4ln6BbvhqXhRc1QocSczHw+uOo1LftvtjERFRx2BzuHnhhRfwzDPP4PDhw3jvvffw3nvv4fDhw3j66afx/PPPO6JGqiYIQu2lqTYwFcO1DOrqjrXzRsBZJcf+i7l4bP1xVBna1p1eRETU8dgcbs6dO4e//vWv9dbPmzcPZ8+etUtR1Li2Ot5NY4aGemL1nOHQKGXYk5CDRd+egN7IgENERI5jc7jx9fVFXFxcvfVxcXHw8/OzR03UhJAB5qkY8tNSUJybI3U5zRLV3Rufzx4OlUKGX89kYfF3J2E02TQCARERUbPZfCv4ggUL8PDDD+Py5csYNWoUAOCPP/7AsmXLsHjxYrsXSNY0Li4I6NkLGRcSkHQqFoPGjJe6pGa5qZcPVv1lCB756jh+OpkOlVyGf98XDplMkLo0IiLqYGwONy+//DJcXV3x7rvv4sUXXwQABAUF4dVXX8WTTz5p9wKpvtDwIeZwc7L9hBsAuK2vPz6aEYmF38TifydSoVbK8MaUgRAEBhwiIrIfmy9LCYKAZ555BqmpqSgqKkJRURFSU1Px1FNP8Y9UK7F0Kj59ss1NxXAttw8MxPvTB0MmAN8cTsbrW8/CxkGyiYiImtSicW5quLq6wtXV1V61UDMF9OwNlZMTKkuKkZ14WepybDY5Ighv3xcBAFjzRyLe2n6eAYeIiOymWZelhgwZgt27d8PT0xORkZFNttCcOHHCbsVRw9rDVAzXct/QrtAZjHhp82l8uvcyNAo5nhnXW+qyiIioA2hWuLn77ruhVqsty7z8JL2w8EhcOnYISfGxiLrnfqnLaZFZUaHQ6U14fetZfLD7AtRKGR4f3f6CGhERtS3NCjdLliyxLL/66quOqoVsUDPeTVrCOVRVVkClcZK4opaZd1M36AwmLNt+Hm9vT4BaIcdfb+omdVlERNSO2dznpnv37sjLy6u3vrCwEN27d7dLUXRtHv6BcPczT8WQeva01OVcl8dG98DT0b0AAP/aehbrDyVJXBEREbVnNoebxMREGI315wjS6XRITU21S1F0bYIgIDS8ZrTi9t/P6amxvfDY6B4AgH/+cBrfHUuRuCIiImqvmj3OzZYtWyzLv/76K9zd3S3PjUYjdu/ejW7deDmhNYWFD0H8ru3tYp6paxEEAX+f0AeVeiPW/JGI5/8XD7VChrsHd5G6NCIiameaHW6mTJkCwPxH6KGHHrJ6TalUIiwsDO+++65di6OmBQ8MN0/FkJ6K4txsuPm07+kvBEHAK3f1R5XBhK8PJ2PxdyehVshw+8BAqUsjIqJ2pNmXpUwmE0wmE0JCQpCdnW15bjKZoNPpkJCQgLvuusuRtdJVNM4uCOhlvn06KT5O2mLsRBAE/OvugbhvaFcYTSIWfRuL3eeypC6LiIjaEZv73Fy5cgU+Pj6OqIVaIHRQ9WjF7WSW8OaQyQQsmxqOyRFB0BtFPLb+BPZdaB+ThBIRkfRsnlsKAMrKyrB3714kJyejqqrK6jXOL9W6wsIjceh/3yLpVBxMJiNkMrnUJdmFXCbg3fsjUGUwYfuZTCxYdwxr547ADd29pS6NiIjaOJvDTWxsLO68806Ul5ejrKwMXl5eyM3NhVarhZ+fH8NNKzNPxaBFZWkJsq9cRkCPXlKXZDdKuQwfzojEo+uP47fz2Zi39ii++usIDA31kro0IiJqw2y+LPXMM89g0qRJKCgogJOTEw4dOoSkpCQMHToU77zzjiNqpCbIFQqEDAwH0LEuTdVQKWT4ZNYQ3NzLB+VVRsxZfRTxqYVSl0VERG2YzeEmLi4Ozz77LGQyGeRyOXQ6HYKDg/H222/jH//4hyNqpGsIDR8CoGOMd9MQjVKO/zw4DCO6eaFEZ8CDXxzB2fRiqcsiIqI2yuZwo1QqIZOZd/Pz80NycjIAwN3dHSkpHHhNCmHVg/mlJ5xHVUW5xNU4hpNKjtVzhmNIiAeKKvS4b9UBLNt+HvllVdfemYiIOhWbw01kZCSOHj0KALj11lvxyiuv4Ouvv8bTTz+NgQMH2r1AujaPgEC4+wfAZDQgpZ1PxdAUF7UCa+eNwIhuXiivMmJlzCXctOw3hhwiIrJic7h58803ERhoHlTtjTfegKenJx577DHk5OTgP//5j90LpOapab3piP1u6nLTKLHx4Rvw+exhGNjFjSGHiIjqEURRFJu7sSiKSElJgZ+fHzQajSPrcpji4mK4u7ujqKgIbm5uUpdjNxcOH8CW996EV1BXzH1/ldTltApRFLH7XDaW7/4Tp9PMfXC0KjkeGhWGBTd3h5ezSuIKiYjIXmz5+21Ty40oiujZs6fd+9asWLECYWFh0Gg0iIqKwpEjRxrd9rPPPsPNN98MT09PeHp6Ijo6usntO4urp2LoDARBQHR/f/z0xE1sySEiIgubwo1MJkOvXr2Ql5dntwI2btyIxYsXY8mSJThx4gQiIiIwYcIEZGc3/Ac6JiYGM2bMwJ49e3Dw4EEEBwdj/PjxSEtLs1tN7VFHnIqhuRhyiIioLpsuSwHATz/9hLfffhsrV660SwfiqKgoDB8+HB9//DEA8xxWwcHBWLRoEV544YVr7m80GuHp6YmPP/4Ys2fPvub2HfWyFAAc+P5rHPzvt+g98mZMevp5qcuRDC9XERF1PA67LAUAs2fPxpEjRxAREQEnJyd4eXlZPWxRVVWF48ePIzo6urYgmQzR0dE4ePBgs45RXl4OvV7f6Ll1Oh2Ki4utHh1VzXg3ydVTMXRWbMkhIurcbJ5+4f3334cgCHY5eW5uLoxGI/z9/a3W+/v74/z58806xvPPP4+goCCrgFTX0qVL8dprr113re1BYN2pGC5fQkDP3lKXJKmakDO2n59VS87KmEv48kAiW3KIiDoom8PNnDlzHFBGy7z11lvYsGEDYmJiGr1768UXX8TixYstz4uLixEcHNxaJbYqmVyOkIERuHj0IBLjYzt9uKnBkENE1LnYfFlKLpc32Nk3Ly8PcrltM1L7+PhALpcjKyvLan1WVhYCAgKa3Pedd97BW2+9hR07diA8PLzR7dRqNdzc3KweHVlYROcY76YleLmKiKhzsDncNNb/WKfTQaWy7V++KpUKQ4cOxe7duy3rTCYTdu/ejZEjRza639tvv41//etf2L59O4YNG2bTOTu6mn436X923KkYrhdDDhFRx9bsy1IffvghAPMfhs8//xwuLi6W14xGI37//Xf07dvX5gIWL16Mhx56CMOGDcOIESOwfPlylJWVYe7cuQDMHZi7dOmCpUuXAgCWLVuGV155Bd988w3CwsKQmZkJAHBxcbGqqbPy8A+Au38AirIykXL2NHoMHSF1SW0WL1cREXVMzQ4377//PgBzy82qVausLkGpVCqEhYVh1SrbR8adPn06cnJy8MorryAzMxODBw/G9u3bLZ2Mk5OTLRN1AsDKlStRVVWF++67z+o4S5Yswauvvmrz+TuisPBInNz5C5LiYxlumoEhh4ioY7F5nJsxY8Zg06ZN8PT0dFRNDtWRx7mpceHIAWx59014BnXFvE4yFYM9NTZOzuyRYVhwczd4u6glrpCIqPOx5e+3zeGmvesM4aayrBSfzJ8J0WTCgo9Xw83XT+qS2iWGHCKitsOWv9823wpuNBqxdu1a7N69G9nZ2TCZTFav//bbb7YekuxM4+yCwJ59kP7nOSTGxyJ87ASpS2qXGrtctWrvJaw7mMiQQ0TURtkcbp566imsXbsWEydOxMCBA+02oB/ZV2h4JNL/PIckhpvrxpBDRNS+2HxZysfHB+vWrcOdd97pqJocqjNclgKA9D/P4duX/waNswse+/xryGS2jUFEjePlKiKi1ufQuaVUKhV69uzZ4uKodQT06A211hmVZaXIvnxJ6nI6lMbGyVm19xJufnsP3vrlPPJKdVKXSUTUadkcbp599ll88MEHjQ7mR22DTC5H8ADzyM2JHK3YIRhyiIjaJpsvS91zzz3Ys2cPvLy8MGDAACiVSqvXN23aZNcC7a2zXJYCgJM7f8auzz9B134DMf3Vt6Qup8Pj5SoiIsdx6N1SHh4euOeee1pcHLWe2qkYzqGqohwqJ63EFXVs1+p4/MDwENw5KACRIZ6Qy9gRn4jIUTjOTQf3xZMLUJiVgSl/fxk9hkZJXU6n0lBLDgD4uKhwW18/jOsfgJt7+UCjZGdvIqJrcWjLDQAYDAbExMTg0qVLmDlzJlxdXZGeng43NzfO79TGhIZHonBnBhJPxjLctLK6LTl7ErLxQ2w69iRkI7e0Ct8dS8V3x1KhUcpwcy9fjOvvj7F9/XjpiojIDmwON0lJSbj99tuRnJwMnU6HcePGwdXVFcuWLYNOp2vR/FLkOKERkTi582cksVOxZARBwG19/XFbX39UGUw4ciUfO89mYufZLKQXVWLn2SzsPJsFmQAMDfXEuP7+GNc/AN18nKUunYioXWrRIH7Dhg3DyZMn4e3tbVl/zz33YMGCBXYtjq5fyIBwCDIZCjLSUJyTzakYJKZSyHBTLx/c1MsHr04egDPpxZZwczajGEcTC3A0sQBv/nwePf1cqoOOPwZ39YCM/XSIiJrF5nCzb98+HDhwACqV9QzJYWFhSEtLs1thZB9qrTMCe/VFesJZTsXQxgiCgIFd3DGwizueGdcbqQXl2HU2CzvPZeHw5XxczC7FxexSrIy5BF9XNaL7+WFcf3+M6sF+OkRETbE53JhMJhiNxnrrU1NT4erqapeiyL5CBw1GesJZTsXQxnX11GLOjd0w58ZuKKrQIyYhGzvPZiEmIQc5JTp8eyQF3x5JgVYlxy29fM39efr6wdNZde2DExF1IjbfLTV9+nS4u7vjP//5D1xdXREfHw9fX1/cfffdCAkJwZo1axxVq110trulAE7F0N5VGUw4dDnPcvkqs7jS8ppMAIaFeWF89eWrUG/20yGijsmWv982h5vU1FRMmDABoijiwoULGDZsGC5cuAAfHx/8/vvv8PNr2306OmO4MRmN+GT+TOjKyzDzjXcR2LOP1CVRC4miiNNpxdh5NhM7zmbhfGaJ1eu9/V0sHZLDu7iznw4RdRgODTeA+VbwjRs34uTJkygtLcWQIUMwa9YsODk5tbjo1tIZww0AbHn3TVw4cgA33v8X3DD1AanLITtJyS+3tOgcScyH0VT7v7OfqxrR1S06o3p4Q61gix0RtV8ODzftWWcNNyd3/oJdn69Al74D8MBry6QuhxygsLwKe6r76exNyEFZVW3fOGeVHLf2MY+nM6aPHzy07KdDRO2LQwfxW7p0Kfz9/TFv3jyr9atXr0ZOTg6ef/55Ww9JrSAsIhIAkHHhPHTl5VBrORVDR+OhVeGeyK64J7IrdAYjDlwy99PZdTYL2SU6/HwqEz+fyoRcJmBEmJflNvNgL/4sEFHHYnPLTVhYGL755huMGjXKav3hw4fxwAMP4MqVK3Yt0N46a8sNAHzx1AIUZmbg7r+9jJ7DOFpxZ2EyiYhPK7IMHPhnVqnV630DXC1BZ1AXdwgC++kQUdvj0JabzMxMBAYG1lvv6+uLjIwMWw9HrSg0fAgKM7chKf4Ew00nIpMJGBzsgcHBHvjbhL5Iyiuz9NM5mpiP85klOJ9Zgo9+u4gANw2i+5vnvRrZ3RsqhUzq8omonTCYDNAZdag0VEKECB8nH8lqsTncBAcH448//kC3bt2s1v/xxx8ICgqyW2Fkf2HhkTi5YxuS4uOkLoUkFOrtjPk3d8f8m7ujoKwKv50399P5/UIOMosrsf5QMtYfSoaLWoGbe/lgSIgnBod4YGCQO5xU7JRM1J4YTAZUGipRaay0BI9KYyUqDZXQGXSoMFZAZ9DVrrt6G6MOFYaKBtdbjlt9HIPJYDnvEL8h+PKOLyV73zaHmwULFuDpp5+GXq/HbbfdBgDYvXs3/v73v+PZZ5+1e4FkP8EDBlmmYijKzoK7n7/UJZHEPJ1VmDq0K6YO7YpKvREHLuVWt+pkI7dUh19OZ+KX05kAALlMQN8AV0srUGSIB7r7uPB2c6IWEEURlcZKVBgqzA99Re3yVY+aQFEvcBh01wwfBtFw7WIcwCSaJDlvDZv73IiiiBdeeAEffvghqqqqAAAajQbPP/88XnnlFYcUaU+duc8NAHz7yt+RnnAW4x5+AuFjb5e6HGqjTCYRcamFOHgpD3EphYhLKUROia7edq4ahSXs1Dw4szl1FEaTsTaA6CtQbihvNIDUe1wVVq7et+bSTWvSyDXQKDRQy9XQKDTQyDVQK9RwkjtBrVBbXq9ZX3d7J4WT1X6NrVcr1FDL1ZAJ9r+k3Sq3gpeWluLcuXNwcnJCr169oFa3j19onT3cHPzvtzjw/dfoHXUjJi1+UepyqJ0QRRHpRZWISy5EXEoB4lIKcSqtCJX6+v86C/ZywuBgT0vYGRDkxrmwyKFEUUSVqQpl+jKU6ctQri+3LNd9lBvKzSGjiVaSug+dsX6gd4SakNDYo8lAcdVrjW2rlqvb/c0CHOemCZ093KT/eR7fvvwc1M7OePzzbzgVA7WY3mhCQmYJYlMKLaHnUk5Zve2UcgH9At2sWne6+Ti3+1+0dH1Mognl+nKU6ktrw4jh2uHE6nmd/R15+UWAAI1CYxU4tAqtdQhRNh5Orn5oFVrL9hq5BnL+Hm4Wh94tVVZWhrfeegu7d+9GdnY2TCbrf7ldvnzZ1kNSKwro0QtqZ2foysqQdekiAntxKgZqGaVcZpnV/MEbQgEARRV6xKfWhB3zI6+sCvGpRYhPLcK6g0kAAHcnJSLq9N0Z3NWDE4C2AybRhDJ9GUqqSlBSVYIyfZl1OKkOKM0JJxWGCofUWBMenJXOcFY6Q6vUwkXpAq1SC61CC61S23RIaSCsaOQahvF2xuZwM3/+fOzduxcPPvggAgMD+YG3MzK5HCEDI3Dh8AEkxp9guCG7cndS4uZevri5ly8A8+WC1IIKq9ad0+nFKKrQ4/c/c/D7nzmWfcO8tbWtOyGe6Bfoyikj7EwURZQbylGsK0ZxVbElpJTozV+t1l31vLiqGKVVpXbvJyIX5NAqzWGkJoQ4K2qDSU1IsXooGn5Nq9CyFYQAtOCylIeHB7Zt24Ybb7zRUTU5VGe/LAUA8bu2Y+dnH6NL3/544LW3pS6HOpkqgwnnM4vNLTvJhYhNKcSV3PqXs1RyGfoHudW27gR7IMRL26n/QSWKIioMFQ2GkKvX1Qso1QHGHnexKGVKuKpc4aJ0sQ4hCmc4q5xtCicdoS8ItQ6HXpby9PSEl5dXi4sj6YWGDwYAZFxI4FQM1OpUChnCu3ogvKsHZo80ryssr7Jcxqp5FJbrLctrD5i383JWIaKrOwYHeyIyxAMRwR5wd1JK92ZaqMJQgYLKAhToClBQWYBCXWGjoeTq0GIUjdc+wTUoZAq4qdzgpnKDq8q13qOx12rWqeXt4wYS6rxsbrlZv349fvzxR3z55ZfQtsM/imy5MeNUDNSWiaKIpLxyS7iJTSnE2fQi6I31f11193U2t+4Ee2BwsCf6BrpCKW+9kZWNJiMKdYUo1BVaBZaa0FL3eYGuAIWVhag0Vl7XORWCAm7q6vChbDiANLSubjhhawm1Nw69WyoyMhKXLl2CKIoICwuDUmn9r6YTJ07YXnErYrgx2/XFSpzcsQ2DJ0zE2HmPSV0O0TXpDEacTS+2at1Jyiuvt51KLkOYjxa9/FzRw88FPf1c0NPXBd19na95S3pNn5SaYJJfmV8bWhpapytAsa64Rf1QlDIlPDWe8FR7wkPtATd1060ldUOMk8KJ4YQ6HYdelpoyZUpL66I2pHYqhlipSyFqFrVCjsgQT0SGeFrW5ZXqcDK1tu/OyZRCFFca8GdWafUEoUYI8nIIijLIFGXwcTPAx90AN2cdNJpKyBRlMAqlKNUXmUNLZSGqTFUtqs9d7W4JKp4aT0tw8dTUWVf93FPjCa2ic/cfInIkm8PNkiVLHFEHtbLgAeHVUzGkoyg7E+5+AVKXRNRsFYYKZJdnI6ssC2XKLLgHZqO/eza8u2chvSQbueX5KNYXQmey7qhcVv1AefWjEUqZCp5qT3g5ecJL49VgOPFQe1ieu6vdoZDZ/OuUiBykxf83Hj9+HOfOnQMADBgwAJGRkXYrihxPrdUiqHdfpJ0/i6T4OIRHcyoGkp4oiijQFSCrLMscXsrNX+suZ5VnoaSqpNnHFCDAQ+0BV5U7VIIbBJMz9FVOKK/QoKBEieIyDUSjFqLRGaLBGaLRGRBVyAeQrVGgp58L3Hxd4Onngl5uLujp44ounk6Qc04tojbL5nCTnZ2NBx54ADExMfDw8AAAFBYWYsyYMdiwYQN8fX3tXSM5SGh4JNLOn0Vi/AmGG3I4vVGP7IrsJoNLdnk29CZ9s47npHCCv9Yf/lp/+Gn9rB51Lwu5qdyaHPukuFKPS9mluJhdios5pZbl5PxylFQaEJtciNjkQqt91AoZuvvW9ufpWd23J8xHy7F5iNoAm8PNokWLUFJSgjNnzqBfv34AgLNnz+Khhx7Ck08+iW+//dbuRZJjhIUPwYHvvkZi3AmU5OXC1dtH6pKoHRJFESX6EmSXWbeuXB1c8ivzm31ML41Xg8HF37l2nYvSxS59Vtw0ynp9eQCgUm/Eldwyc+ipE3wu55ZBZzDhXEYxzmUUW+0jlwkI8dKih68LevnXBp8efi5wUfOyFVFrsfluKXd3d+zatQvDhw+3Wn/kyBGMHz8ehYWF9qzP7ni3VC3RZMK3L/8NGRcT0H3IcEz5+yvs4EhWDCYD8iryLCGlsdaW5g6lr5QpzSHlquBSN7T4OvlCKW+7Y9cYTSJS8sstgacm/FzKLkWJrvH5jQLdNeagU6elp6efC7ydVfz/jqgZHHq3lMlkqnf7NwAolcp680xR2ybIZBj/6JNY/8JTuHziKM7vj0G/m8dIXRa1MpNoQnZ5Nq4UXUFScRISixORWJSIxOJEZJRlNHtEWzeVG/yd/S3hxRJc6gQZD7VHu/9DLpcJCPNxRpiPM6Lhb1kviiKyS3S4mF2KC1kldYJPGXJLdcgoqkRGUSX2Xci1Op6HVokevi4I8dIi2NMJXT216OrphGAvLQLcNa06Zg9RR2Fzy83dd9+NwsJCfPvttwgKCgIApKWlYdasWfD09MTmzZsdUqi9sOWmvkObNuKPjV9B4+KKOe9+AmcPz2vvRO1OSVUJkoqTcKXoChKLE81BpigRySXJTba8yAU5fJx8rFpX6gYYf60/fLW+cFI4teK7aV+KyvW4mFNSe4mrutUntaACTf0GlglAoLsTulaHnmCvq8KPm4Ydm6nTcOggfikpKZg8eTLOnDmD4OBgy7qBAwdiy5Yt6Nq1a8srbwUMN/UZDQZ8/dJi5CReRu+oGzFp8YtSl0QtpDfpkVqSagkuicWJlpaYvMq8RvdTCAp0de2KMPcwhLmZH6FuoQhxC4G3xpuTETpIRZURl3NLcTmnDKkFFUgtKEdK9dfUggpUGZpuNVPIBAR6aBBcE3g8tehaHYCCPbXwc1VDxvBDHYRDww1gbn7dtWsXzp8/DwDo168foqOjW1ZtK2O4aVh24mV8/Y9nYDIaMemZF9D7hpukLokaIYoi8irzai8jVYeYpOIkpJakwiA23u/Dx8nHHF7qhJgw9zAEuQRBKWu7/Vw6I5NJRG6pzirspOSXW0JQWmFFg9NR1KWSy9DFs6blp7bVp6YVyNeF0zBQ++HwcNOeMdw07o+NX+HQpo3QunvgoXdWQOvmLnVJnVq5vhzJJcn1WmCSipNQqi9tdD8nhRNC3UItrS9h7mHo5tYNoW6hcFG5tOI7IEcymkRkl1RahR5L+CksR3phJYympn+9qxUyq9AT7FUn/Hg6wYudnakNcUi4+e233/DEE0/g0KFD9Q5aVFSEUaNGYdWqVbj55ptbXnkrYLhpnEGvx/oXnkJeajL63TQady56TuqSOjyjyYiMsgyrTrw1y1nlWY3uJ0BAkEuQVXCpaY3x0/pBJrATamdnMJqQWVyJlPw6LT/VX9MKKpBRVIFrZB9oVXLr8FOn5aerpxM8tEqGH2o1Dgk3kydPxpgxY/DMM880+PqHH36IPXv2sENxO5dxMQHf/vNvEEUTpvz9ZfQYyhnD7aFMX4YLBResWl8SixORXJzc5FxGHmoPSytM3UtJwW7BUMvVrfgOqKOpMpiQWVRZHXiuvuxVgaySyiY7OwPmlh9/Nw383dTVXzUIcNPAr/p5QPU6JxX7bNH1c0i4CQ0Nxfbt2y0D913t/PnzGD9+PJKTk22vuBUx3Fzb3vWrceynTXDx9MJD734CjTMvZdiqoLIAJ7JP4HjWcRzPOo7z+ecbvaVaKVMi1C20wRDjofFo3cKJqukMRqQXVlr186np/5OSX4HcUl2zj+WmUVjCz9VhyN9NjQB3DXxc1LztnZrkkHFusrKyGhzfxnIghQI5OTnNr5LarFH3z8KlY4dQkJGOvV+txoRHn5S6pDYvqyzLEmROZJ/AxcKL9bbx0/qhm3s3q468oW6hCHIO4t1I1OaoFXJ083FGNx/nBl+v1BuRU6JDZnElsoorkVWsq/5aicyiSmSX6JBZVIkKvRHFlQYUV5biQnbjfcUEAfB2ViPAXQ1/Vw38LC0/avi7a+Dval5mPyBqjmaHmy5duuD06dPo2bNng6/Hx8cjMDDQboWRdJQqNcY/+hQ2vvoCTu/ZgT6jbkZYOCdGrSGKIlJKUixh5njWcaSWptbbrod7Dwz1H4oh/kMw1H8oApw58zp1HBqlHMFeWgR7aRvdRhRFlOgMyC6uRGZRdfgpqURWUXUYql7OLtHBUH13WG6pDqdR3OgxVXIZfF3VlhYfP1cNAtyrQ5CrxhyE3DSc7qKTa/ZlqUWLFiEmJgZHjx6FRqOxeq2iogIjRozAmDFj8OGHHzqkUHvhZanm+23Np4jd/hNcfXwx550VUDk1/kusIzOJJlwsvIgTWbWXmXIqrFspZYIMfb36YojfEAzzH4ZI/0h4abwkqpiofTGZROSVVSGruBLZJbVByLxc2yqUV9Z4/7SruagV5r4/1eGnZtnHVQ0fZxV8XNXwdlbBQ6viQIjthEP63GRlZWHIkCGQy+V44okn0KdPHwDmvjYrVqyA0WjEiRMn4O/vf40jSYvhpvmqKivw5XNPoDgnCxHjJyL6r49JXVKrMJgMOJ9/HsezjuNY1jGcyDqB4irrf0kqZUoM9BmIof5DMdR/KAb7DuZt1kQOVmUwIafUfLkru+YSWLHO3DJU/Ty7WNfkHF9XkwmAl7MK3s5qeLuo4O2iho+LCj4u5vDj7WJe71P9ujNbhCTjsHFukpKS8Nhjj+HXX39FzW6CIGDChAlYsWIFunXrdn2VtwKGG9sknYrDf//vnwCA+5csRXD/QRJXZH86ow6nck5ZWmXicuLqTUfgpHBChG+EJcwM8hkEjULTyBGJSEplOkP9fkDVwSe3VIe8sirklepQUK63+dhOSnltCHJWWZa9nVXwdVXXCUkqeGlVULCTtN04fBC/goICXLx4EaIoolevXvD0bD9zETHc2G7nfz5G/O7t8PAPxOx/fwSlun3/US/TlyEuO84SZk7lnoLeZP1LzlXliqF+Qy1hpq93X47gS9TB6I0mFJRXIbekCnllOuSVVlmFn5rnudVfddeYDqMhnlqlJfzUXBKraQ3ydja3EtW0FrmoFews3QSOUNwEhhvb6crLsPa5hSjNy8XQiVMwevZ8qUuySd3bsk9kncC5/HP1bsv2cfKxBJmh/kPR06MnB8IjIgtRFFFeZTQHnrpBqDr8XB2I8surrjlO0NVUClmD4cfTWQVPrRIeWhU8tbXLHlplp7p9nuGmCQw3LXM59ig2v/UaIAiY8fq/EdS7r9QlNarmtuyaQNPQbdldXLpYhZkQ1xD+i4mI7MZoElFQXoW8UnPoya0OP7mWAFTbWpRXqkNZlbFF53FVK+DhrISnVlUdfmqWrb9alp1VcFbJ2+XvO4abJjDctNwvK97D2d9/g1eXYDz41gdQqFRSl2TTbdk1t2Tztmwiamsqqoz1L4mV6ZBbUoXC8ioUlFehoFxfvaxHcaXe5pahGkq5YAlC1oHoqnBU3WLk7tQ2WokcMogf0eiHFiDx5Ankp6Xg4P++xc0zHpKkjtSSVOxP29/kbdl9PPtgqP9Q3pZNRO2Ck+ra4wbVZTSJKKrQo6C8OvyU1SzrrwpC1uuqDCbojSJySnTIKWn+KNOAba1EPq4qBLo7teRbYRdsuSGbXDhyAFvefROCTIZZb7wH/+4ND+roCJeLLuM/8f/BL1d+seozo5ApMMhnEG/LJiJqgiiKqNAbUVCuR0FZbeipaQ1qKBwVlutRVGH7XWUDgtyw7Un7TqTNlhtymF4jRqH3yJvx58F9+HXlcsxa+j7kCsfeRXS58DI+jf8Uv1z5BSLMWXyY/zBEBUbxtmwiomYSBAFalQJalQJdPJrfqtKSViJ/N2l/JzPckM3GznsUKadPIic5EUd++C9G3jfDIee5VHgJn578FNsTt1tCzejg0Xg04lEM8B7gkHMSEZE1uUyAl7MKXs7S97NsLoYbspnWzR23zX0E2z78Nw5t2oieI0bCNyTMbse/UHABn8Z/ih2JOyyh5rbg2/BoxKPo593wrPREREQ1GG6oRfqMugXnD+zDpWOH8OvKDzDz/96BTH59M1v/WfAnPj35KXYk7bCsiw6JxiMRj6CvV9u99ZyIiNoWhhtqEUEQEP3Xx5B67hSyLl/Asa2bMeLu+1p0rIT8BHwa/yl2Ju20rBsXOg6PhD+CPl597FUyERF1Egw31GIuXt4YPXsBfl25HAe+/xo9hkXBu0tws/c/n38eq06uwu7k3QAAAYI51EQ8gt6evR1VNhERdXAMN3RdBtw6FgkHfkfiyRP4ddUHeOC1ZZDJmr48dS7vHFaeXIk9KXsAmEPNhLAJeCT8EfT0bL1by4mIqGNiuKHrIggCxj38BL58biEy/jyPuO1bMeTOuxvc9kzeGaw6uQoxKTHmfSHg9m6345HwR9DDo0frFU1ERB2a5DNurVixAmFhYdBoNIiKisKRI0ca3fbMmTOYOnUqwsLCIAgCli9f3nqFUqPcfPxwy6x5AIB9365DYWaG1etncs/gid1P4IGtDyAmJQYyQYaJ3Sfihyk/4O1b3mawISIiu5I03GzcuBGLFy/GkiVLcOLECURERGDChAnIzs5ucPvy8nJ0794db731FgICODdQWxI+dgKCB4TDUKXDjv98BNFkwqmcU3h81+N4YNsD2Ju6FzJBhru634Uf7v4Bb938Frq7d5e6bCIi6oAknX4hKioKw4cPx8cffwwAMJlMCA4OxqJFi/DCCy80uW9YWBiefvppPP30001up9PpoNPVzp9RXFyM4OBgTr/gAIWZGfjy70/AoNMh6yYP/OJ2EgAsoWbBoAUIcw+TtkgiImqXbJl+QbKWm6qqKhw/fhzR0dG1xchkiI6OxsGDB+12nqVLl8Ld3d3yCA5u/t08ZJtEWRYyIs1DbnseyodrpQp397gbP035CW/c9AaDDRERtQrJwk1ubi6MRiP8/f2t1vv7+yMzM9Nu53nxxRdRVFRkeaSkpNjt2GQWmx2Lh3c8jAd/eRA/e8Yj21MHlUGGhVlj8a8b/4UQtxCpSyQiok6kw98tpVaroVarpS6jQzqedRwrT67E4YzDAACFoMDkXpNx/6i7sPP1N5F55izO7N2NgaOjr3EkIiIi+5Es3Pj4+EAulyMrK8tqfVZWFjsLt3FHM49i1clVOJJpvrNNIShwd8+7MX/QfHR17QoAKJs2C/u+WYuYdZ8hLDwSLl7eUpZMRESdiGSXpVQqFYYOHYrdu3db1plMJuzevRsjR46UqixqwtHMo5j36zzM+3UejmQegUKmwLTe07Dt3m14ddSrlmADAMPuugf+3XtBV1aGXV98Agn7rRMRUScj6WWpxYsX46GHHsKwYcMwYsQILF++HGVlZZg7dy4AYPbs2ejSpQuWLl0KwNwJ+ezZs5bltLQ0xMXFwcXFBT17cmRbRxBFEUcyj2DlyZU4nnUcAKCQKXBvz3sxf9B8BLoENrifTC7HhMeewvoXnsalY4eRcOB39L3x1tYsnYiIOilJw8306dORk5ODV155BZmZmRg8eDC2b99u6WScnJwMmay2cSk9PR2RkZGW5++88w7eeecd3HrrrYiJiWnt8js0URRxOPMwVsatxInsEwAApUyJe3uZQ02A87UvHfqGhOGGe6fjwPdf47c1nyJk0GBo3dwdXToREXVyko5zIwVb7pPvjERRxMGMg1h1chVis2MBACqZClN7T8W8gfOaFWrqMhr0+PrFZ5CTnIg+I2/GXU8/74iyiYiog7Pl73eHv1uKmkcURRxIP4CVJ1fiZI558D2VTIX7et+HeQPnwd/Z/xpHaJhcocSEx57G1y8tRsLBfegz6mb0GjHKnqUTERFZYbjp5ERRxP60/Vh1chXic+MBAGq5GtN6T8PcgXPhp/W77nP4d++J4ZOn4sgP32PX55+ga/9BcHJxve7jEhERNYThphMr15fjid+ewNHMowAAjVyDaX2mYe6AufDV+tr1XCOnzsDFo4eQn5aCmC8/wx0LF9v1+ERERDUknxWcpPPe8fdwNPMoNHINZvefjV+m/oK/D/+73YMNAChUKkx49ClAEHD2999wOfao3c9BREQEMNx0WvtS92FjwkYAwIe3fYi/Df8bfJx8HHrOoN59MfTOuwEAOz9bAV15mUPPR0REnRPDTSdUUFmAVw68AgD4S7+/YGRQ6w2aeOP0v8DDPxClebn4ff2aVjsvERF1Hgw3nYwoinj94OvIrchFd/fueGrIU616fqVag/GPPgkAiN+9HUmn4lr1/ERE1PEx3HQyWy5twa7kXVAICiy9eSk0Ck2r1xDcfxAixk8EAOz49CNUVVa0eg1ERNRxMdx0ImmlaVh6xDyVxcLIhejv3V+yWm6Z+RBcfXxRnJOF/d+uk6wOIiLqeBhuOgmjyYh/7PsHyvRlGOw7GHMHzJW0HpWTFuMfXgQAiN3+E1LPnZa0HiIi6jgYbjqJL89+iRPZJ6BVaPHmzW9CLpNLXRLCIoZg4JjxAIAdn34IfZVO4oqIiKgjYLjpBBLyE/BR7EcAgBdGvIBg12CJK6p164Pz4OLphYKMdBz47mupyyEiog6A4aaD0xl1eGHfCzCYDBgTPAZTek6RuiQrGmcXRC94AgBwfOsPyLiYIHFFRETU3jHcdHAfnvgQFwsvwkvjhSUjl0AQBKlLqqfH0BHod9NoiKIJv678AAa9XuqSiIioHWO46cAOZxzGurPmO5FeH/U6vJ28Ja6ocWPmPAytuwfyUpNxeNMGqcshIqJ2jOGmgyquKsY///gnAOC+3vfh1uBbJa6oaU6ubhg771EAwOEfvkfWlUsSV0RERO0Vw00HtfTwUmSWZSLYNRh/G/Y3qctplt433ITeUTdCNJnw66oPYDQYpC6JiIjaIYabDmh74nZsvbwVMkGGN296E1qlVuqSmu22eY9C4+KKnMTLOLrlf1KXQ0RE7RDDTQeTVZaFfx38FwBgwaAFGOw3WNqCbOTs4Ynb5jwMADj0v2+Rm5IkcUVERNTeMNx0ICbRhJf/eBnFVcXo790fj0Q8InVJLdL3ptHoPmQ4jAYDfl31AUwmo9QlERFRO8Jw04FsOL8BBzMOQi1XY+nNS6GUKaUuqUUEQUD0goVQOWmRefFPnNj2o9QlERFRO8Jw00FcLryM946/BwBYPHQxurt3l7ii6+Pq5YPRs+cDAP7YuB756WkSV0RERO0Fw00HoDfq8cK+F6Az6nBj0I2Y0XeG1CXZxcAx4xAaHgmDvgo7Pv0AoskkdUlERNQOMNx0AKviV+Fc/jm4qdzw+o2vt8lRiFtCEASMf3gRlBonpJ0/i7gd26QuiYiI2gGGm3YuLjsOn5/6HADwyshX4Kf1k7gi+3Lz9cMtM+cAAPZ98yWKsjOlLYiIiNo8hpt2rFxfjn/s/wdMogmTuk/ChLAJUpfkEBHj7kDXfgOh11Vix6cfQRRFqUsiIqI2jOGmHXv76NtIKUlBoHMgXox6UepyHEaQyTD+0SehUKmRfPokTv22Q+qSiIioDWO4aadiUmLwvwv/gwABb9z0BlxVrlKX5FCeAUG4cfpfAAB7v/oCJXm5EldERERtFcNNO5RXkYclB5YAAB4a8BCGBwyXuKLWMeTOyQjs2QdVFeX4+eN3UJjF/jdERFQfw007I4oiXj34KvIr89HLsxcWRS6SuqRWI5PJMeGxpyBXKpF69jRWP/0wfv74XU7RQEREVhhu2pnNFzcjJiUGSpkSS29aCpVcJXVJrcq7awgeeHUZwgYPhWgy4dy+PfjyuYX48Z3/Q+bFP6Uuj4iI2gBB7GS3nhQXF8Pd3R1FRUVwc3OTuhybpBSnYOpPU1FhqMDioYsxd+BcqUuSVNblizj8w3e4cOQgUP1jHDJoMKKm3I/gAYM6zHg/RERk299vhpt2wmAyYO72uYjLicMw/2H4fPznkMvkUpfVJuSlpuDolv/i7L49llGMA3v3RdSU+9F9yHCGHCKiDoDhpgntNdx8Fv8ZPoz9EM5KZ2yavAlBLkFSl9TmFGVn4djWTTj12w4Y9XoAgG9IGEZMmYbeI2+CjGGQiKjdYrhpQnsMN2fzzmLWtlkwiAa8cdMbmNxjstQltWllhQU4/vOPOLljG6oqKgAAHgGBGD75PvS/5TYolO1ztnQios6M4aYJ7S3cVBoqMX3rdFwuuoxxoePw7q3v8jJLM1WWliLu1604/ssWVJYUAwBcvLwx7K57ET52ApQajcQVEhFRczHcNKG9hZu3jryFr899DV8nX2yavAkeGg+pS2p3qiorcGr3rzj20yaUFuQDADSubhh6x2QMvv0uaJxdJK6QiIiuheGmCe0p3BxIP4BHdj4CAFgZvRI3dblJ4oraN4Nej7O/78aRH/+LouoBAFVOThg8fiKG3Hk3nD08Ja6QiIgaw3DThPYSbop0Rbj3x3uRXZGN6X2m4583/FPqkjoMk9GIhEP7cWTzd5YBABVKFQbeNh7DJ90LN9+ONbM6EVFHwHDThPYSbv6+9+/4JfEXhLmF4btJ38FJ4SR1SR2OaDLhcuxRHN70HTIuJgAAZHI5+t00BiOm3AevoK4SV0hERDUYbprQHsLNtsvb8MK+FyAX5Fh/53oM9BkodUkdmiiKSDkTj8Obv0Py6ZPmlYKA3lE3YsSUafDv1kPaAomIiOGmKW093GSWZeLeH+9Fib4Ejw9+HI9FPCZ1SZ1KxoUEHP7he1w6dsiyrtvgoRhxz/3o2neAhJUREXVuDDdNaMvhxiSa8PCOh3E48zDCfcLx5R1fQiFTSF1Wp5SbnIgjP/4X5//4HaJoHvW4S98BiLrnfoRFDOHt+ERErYzhpgltOdx8dfYrvH30bTgpnPD9pO8R6hYqdUmdXmFmBo5u+R/O7N0Fo8EAAPDr1gNR99yPXsNHQpBx7lkiotbAcNOEthpuLhRcwANbH0CVqQov3/Ay7u9zv9QlUR0l+bk4vvUHnNz1Cww6HQDAK6grRkyZhr433gq5gi1sRESOxHDThLYYbqqMVZi5bSYSChJwS9db8PFtH/OyRxtVUVKME7/8hNjtW6ArKwMAuPr4YvjkqRg4ZhyUKrXEFRIRdUwMN01oi+Fm+fHl+OL0F/BUe2LT3Zvg4+QjdUl0DbrycsTv+gXHtm5GeVEhAEDr7oGhE6cgYtydUGu10hZIRNTBMNw0oa2Fm+NZxzF3+1yIELF89HKMDR0rdUlkA32VDmf27MLRn/6H4pxsAIDa2RmRE+5C5B2ToXVzl7hCIqKOgeGmCW0p3JRWleK+n+5DWmkapvScgn/d+C9J66GWMxoMOP/HXhz54Xvkp6cCABRqNSKib8fQu+6Bqxdb44iIrgfDTRPaUrh5+Y+X8cPFH9DFpQv+N/l/cFY6S1oPXT/RZMLFo4dw+IfvkHX5IgBAJldgwOixGDx+Iry7hrDzMRFRCzDcNKGthJvdSbvxdMzTECBg7e1rMcR/iGS1kP2Jooik+Fgc3vwdUs+dtqyXyeVw9w+EV1BXeHXpav4a1AVeQcHQuHB2ciKixjDcNKEthJvcilzc++O9KNAV4K8D/4qnhz4tSR3UOtLOn8WRLf9Fyul46HWVjW6ndfeoDjvm4ONZHXrcfH0hk8lbsWIioraH4aYJUocbURSxcPdC7Evbh75effHNnd9AKVe2eh3U+kRRRGl+HvLTUpGfnoL89FTkp6chPz0VpXm5je4nVyrhGdiltrUnsAu8ugTDM6gLVBpOqEpEnYMtf7958b+Vff/n99iXtg8qmQpLb1rKYNOJCIIAV28fuHr7IDR8sNVrVRXlKMhIR36adegpyEiDUa9HbnIicpMT6x3TxdvHqrXHK9D81cXLm2MlEV2l0X/LN/FP/EZfaqJdoPF9Gj9PY6+JTe7UjOPaullzTteMNhFBJkCpkq7FmeGmFSUVJ+GdY+8AAJ4e+jR6evaUuCJqLtEkwmg0wWQQYTKal40GE0xGESZD9WtGESaDCcbqrzXbmfcxwWQSIYrmY4kiALH6uShCNAGiqIIo9oCTZ3d08QCC+pn3qyzNQ3lhFsoKM1FenI2K4ixUFGVBrytFaV4uSvNykXwqzqpemUINjbMv1C5+0Lj4Qu3sB7XWByqtDwSZAqLpqvNX1wXzaktNEKt/tYq1r9V+rXli/Xve8ovPar141Tb1j2m1r2Wbpve1rqn2vHW+WG/U0Kq6x25w5wYOUVO71QZ2OC/qv9ZkHQ2saKimRg979cHEBhcbOZYNQcHWTNHQ963RbRt7gaQU0N0NU/8+TLLzM9y0EoPJgH/s+wcqDBWICozCrH6zpC6pXRBFEXqdEZWleujKDags1aOyXA+9zmgODwZTw+HC2Nj6muWa183bGg1N7GMwNfWPtFaiBdC9+gHItYBMUwHRVACTMR+iMR+iqaD6ayFMBh3Ki1JRXpRa70iCzB2CzAuC3AuC3BOy6mUITmztIaIOgeGmlXx26jPE58bDVeWK/7vx/yATOteEi6IowlBlQmWZHpVleujK9KgsM1z13LyudlkPXZkBJpPkyaI+AZDLZZApBPNXuXDVsgxyuQCZXAa5wvxcEATIZAAEAYJgbrYVBPPlKkGoXi+rfW5ZLxPMy+ZNqp9ftV2d44omI3RleagoyUJFcRbKi7JRXt3aY6iqgGgqgmgqAgxXrN6SQq2Fi2cAnL0C4OIZAFevQDh5+ECl1kKpcYZcqa5TKyCY/1P7LakTjBrfpuY/1auFq/YVrlpfs6LuYaq/F7X71u5Yd5s6X+p9drWLQv11DezTYOizOr/1Snudt8nzN3Lsxmpqznnq19T0xo2/XP+FRre1IU/bEr5tPZ/QVCEtyPyNn7/xg9nw7WyxZn0P7bCJ1P9QYrhpBadzT+PTk58CAP4Z9U8EOAdIXNH1MVQZzSGkXG9pSbm6ZcXyvE5IMRpMLT6nXCGDxlkBjYsSaq0SSo0ccoU5SNSEDJm8OlBY1tddrg4Z9QLJ1fvUHEuwDi9X7SOTtb8WDlEUUV5UaO7Tk5Za3bfHvFycmw2DrhyFmZdRmHm5wf0FmQxqrTPUzs5QO1V/1Wqh1rpYL2u11c9rlqu/ap0hk/OuLyJyPIYbB6swVODFfS/CKBpxR9gduLP7nVKXZEVXrkdpoQ66Oq0oNWHk6haVmucGfctDikwuQOOshNpZaQ4rzsp6z9VaJTQudZ47KyXtmNZRCIIAZw9POHt4Irj/IKvX9FU6FGakWweftFQU5+WgqrwMJqMRosmEytISVJaWtLgGpcbJEnTqhh5LaGpq2dkZCqVK8n8RElHbx3DjYO8eexeJxYnw0/rhpRtekqwOo8GEwqxy5KaWIj+9FLmpZchPL0Vpga5FxxNkQv0wolVUhxRzMKldVkJdva1SLecfpzZIqVLDN7QbfEO71XtNFEUYdDroysugKy9DZVkZqsrLUFle/bXMvL7qqtd0dZYNOvPPmb6yAvrKCpTm57WoTrlCAZXWGRpnZ6iqW480WmeotHVakpy0UKjUkCuVkCuVUChVUFQvy5UqKFSq6vXVz5UqyFVKKBRKCLLOdbmYqKNiuHGgfan7sDFhIwDg/278P7irHT+JoiiKKC3QIS+ttPphDjEFGeWN9l1R12lBuTqMXL1c05Ki0jCkdBaCIECp0UCp0cDFy7tFxzAaDJZwVFVejsqyUstzXVkZdOXl0JWXWi+Xl1c/Ny9DFGE0GFBRXISK4iI7v0szmVwBhapO6FEqqr+qzOsVyjrhSFUbmJTV6xXVgUqlqvN6nYBVvU39Yyghl8shkysgU8g5aCPRdWK4sRNDXh6Kt26F4OQEmZMWFXIjvolbht6iiOjed2JoVSD0WdmQOWkgc3KCoLz+8W2qKgzISy+rE2RKkZ9eBl25ocHtVU4KeHdxhneQC7y7usA7yBleXVygduKPATmWXKGA1s29xbOkiyYTqior6wSi6vBjFZBqw5PRoIdBr4exqgoGfZV5Wa+HsWa5qgoGgx6Gqiqr245NRgOqKgxARYW93nrLCEJt2JHLzQ+FeVled11NGJIrzNsrFJDJZJZtrdfLLdvK5HLI62xT93hyRf11MkXd8yrMfdeqnwsymfmclmXzV6F6nUwmg1Dztc7rNc+JHIEjFNtJRVwcEh+Y0fwdFArInJzMQcdJA5mTtvq5BoLVshOg0aJc5oYiowuKqrQorFChqFSO0vKGW05kMgEeAVp4d3Exh5kuLvDu4gIXTzVbW4jqEEURJqOxNvTo9TDoq2CsqoLRYIChOhwZ67xmfl1vDlBVNftV1e6rr7PeYHvA6lQEwRyMagKP3DoY1YQh2VXrrNbL679ufm79es068/7m80KoXi8IluNa9q9ZJ9SuF6rrrbutUH0MNPha9TrLMczHlAkyoJHzyK7av/a16rsmLcuy6jssBfP3z3zrZO1+jexj2a4d/i3gCMUSkLm6wu3OO2GqqEB2fgpScy5CYxAQovSHvMoAsaISpooKwGg072AwwFRSAlNJbedMEUCVyg2lzkEoc+mCUmdPlDp3QblzAEyyhlt61LoCOJemw6UsDS5l6XApTYO2PBsyOcwBSaOBQeuEHI0T8pycINM6QdCYQ5XVcnWQkmnqLNeEr+p15iBWvU7NoETtnyAIkCsU5r48Es1kUROwTEaDeawlo8EcuAyGOuuN5ofBAGPNOoMRJlPtsrFmO4PBvN5gfs1Ys85Yvf3Vx6hz3tpt65zTWH1sw1W1GA0wmUwQjUaYTCbzssnc8dxkNC+bjCaIYhM3IFjeu7H1vuFkJjQcfKxCkCUoCU2HLatQZd7PL7Qbbn/8GcneXpsINytWrMC///1vZGZmIiIiAh999BFGjBjR6Pbff/89Xn75ZSQmJqJXr15YtmwZ7rxT2ruQ1D16oMt77yKtNA0Lt0xFmV6Bp4Y8hQmD5lu2EUURol4PsaICuqIy5KUUIz+9FHmZlSjI1aOgwARdVcOBQQ4D3GQlcDMVwkWfA9fKLDiXpUNRXgixogKm6kdteEK98GRvlgCk0Vgva68KSZo6QUqjqROqNLXhSdvAcVQqh9VO1FbUDVgdkXkE7KsCj8kEU00QaigQmYzVYclUHeAaCE51AlVD+4jGxl8XTSZzqLQs164zn6ex12qOf9U60bwOdY959XnEuuurz2N5TbS8v5p1qHseAKjZTqzeX6w9hvm5jXexitXHgAlwQLZUqtT2P6gNJP+/aePGjVi8eDFWrVqFqKgoLF++HBMmTEBCQgL8/PzqbX/gwAHMmDEDS5cuxV133YVvvvkGU6ZMwYkTJzBw4EAJ3kE1owFGXQle+v0FlOnLMNgnHHP7zIJJr0dxrs7cNya9DHlp5j4yRbkVDQwbbh4gzd2v/iUlN28NhGuMrSKKIqDXm4NOZSVM5eXm4FNZCVN5BUwV5RAbWq6sqA5Ilebl8up96i5XmLcRq6pqz1dRAWNFhSP+vzBTKKoDT/VluzrLgkoJQaGEIJdDUCoAuaLOshyCXAFBoQAUcst2dZettqtZVighKOTVywrLo+7zutuZj1l3uXYfy/PO3Kfgei61XNdlGgdd4nHopaOOW3P1GIyQCQDkAiCXA5AD4Lx6zWLDZ1gv/IgmoM5y3SB09TIsQa0mONVZFuuEMrH+NvX2FU1QOTk78JtybZL3uYmKisLw4cPx8ccfAwBMJhOCg4OxaNEivPDCC/W2nz59OsrKyrB161bLuhtuuAGDBw/GqlWrrnk+h80KnnIUqzfMxkZ1PwSWBmJqrgcqq0KQbwiBAQ0nWCdZIbyVKfBWpcJblQZvVSq8VJlQyI0wD1V79UNoZH0jr8vkzdu/ZhKful/NEwtdtc78A2yqMkE0mL+aqoy1ywYTRL0IU5URJoMIsco8nYGoF2HSi/WWTXoRokGESQ/zawbApEfHmitGEKtHFQYEQaw/qq0AAOJVz+u+LtY+t3qt9lgQGtm+5rU652nweRP7Wt6GZbnOh9PgSL5Xr6j7RLSuqbHthKsWr3FuoYF1jddQd7XYrO1s3gbNGAXYsqHtP+zXdTW42XU1d9dG6rf3FetGP0P7Hct2zfjs7HQumw/TBnoMKLr2gOtb++16zHbT56aqqgrHjx/Hiy++aFknk8kQHR2NgwcPNrjPwYMHsXjxYqt1EyZMwA8//NDg9jqdDjpd7VguxcXF1194A/6IT0fFpRWYXP08uc5rcujgrUiGlzIZPopEeCmS4K1IhlZ+1e2sIoCWDTvTagSY/81VT80/xuzQEikaAZNRgMkgQKz+ajIKEKu/mgwyiEZAFAXAZP5qzmJC9QSUgGgSzJnMJJjzWfVX6+2u3s/6eNb7XX28utsJgKmR3yZine3bwm8cIqJW4JReAlcJzy9puMnNzYXRaIS/v7/Ven9/f5w/f77BfTIzMxvcPjMzs8Htly5ditdee80+BTdB7BYAEaXQO5ehT49geAc6wTtQA59ANdy8VZAJw81/WRt6mIy1rSWNPq71enO3aeDclomAar7KrNfVzINVb10T+1jWoYl9Gj6OIAiQQ4Dcsm9Dx67XlFGtweaGRtY3ti0aWd/0MURRhGgwAEYTRIMRotEIGM1fRaMRMBjNAcdU81mZm3BhqkldMM/MXf0a6jT5ono7sc4yYG5JQ/Us2aJYvWwyVb9W8/OA6nPUnM9Uu1z32Kh5DUB107b5dcs7rG0iF+vM1F13musGtrWaxbt2qu/abesdq862dbdpYL8Gz201Y3jdaa4bm5q6kW0aOo4gNLG91UGbPs7V2zdYWwPrGtys/soGG+TtfA7zusYCe9OtGte8YNDU69fct8UvNu/4zdukeRs170DN2MbWY7b00M3fQd0tzLaD25nkfW4c7cUXX7Rq6SkuLkZwcLDdz3Nj3xHosywfCrUMnhpPux+f2r46cYuIiCQkabjx8fGBXC5HVlaW1fqsrCwEBDQ8uWRAQIBN26vVaqjVju+1LcgE+Lq3bPRWIiIish9Jb+VQqVQYOnQodu/ebVlnMpmwe/dujBw5ssF9Ro4cabU9AOzcubPR7YmIiKhzkfyy1OLFi/HQQw9h2LBhGDFiBJYvX46ysjLMnTsXADB79mx06dIFS5cuBQA89dRTuPXWW/Huu+9i4sSJ2LBhA44dO4b//Oc/Ur4NIiIiaiMkDzfTp09HTk4OXnnlFWRmZmLw4MHYvn27pdNwcnKyeWjraqNGjcI333yDf/7zn/jHP/6BXr164YcffpB2jBsiIiJqMyQf56a1OWycGyIiInIYW/5+d+LhU4mIiKgjYrghIiKiDoXhhoiIiDoUhhsiIiLqUBhuiIiIqENhuCEiIqIOheGGiIiIOhSGGyIiIupQGG6IiIioQ5F8+oXWVjMgc3FxscSVEBERUXPV/N1uzsQKnS7clJSUAACCg4MlroSIiIhsVVJSAnd39ya36XRzS5lMJqSnp8PV1RWCINj12MXFxQgODkZKSkqnmreqs75vgO+9M773zvq+Ab73zvje29L7FkURJSUlCAoKsppQuyGdruVGJpOha9euDj2Hm5ub5D8EUuis7xvge++M772zvm+A770zvve28r6v1WJTgx2KiYiIqENhuCEiIqIOheHGjtRqNZYsWQK1Wi11Ka2qs75vgO+9M773zvq+Ab73zvje2+v77nQdiomIiKhjY8sNERERdSgMN0RERNShMNwQERFRh8JwQ0RERB0Kw42drFixAmFhYdBoNIiKisKRI0ekLsnuli5diuHDh8PV1RV+fn6YMmUKEhISrLYZPXo0BEGwejz66KMSVWwfr776ar331LdvX8vrlZWVWLhwIby9veHi4oKpU6ciKytLwortJywsrN57FwQBCxcuBNCxPu/ff/8dkyZNQlBQEARBwA8//GD1uiiKeOWVVxAYGAgnJydER0fjwoULVtvk5+dj1qxZcHNzg4eHB/7617+itLS0Fd+F7Zp633q9Hs8//zwGDRoEZ2dnBAUFYfbs2UhPT7c6RkM/J2+99VYrvxPbXesznzNnTr33dfvtt1tt0x4/c+Da772h/+8FQcC///1vyzZt+XNnuLGDjRs3YvHixViyZAlOnDiBiIgITJgwAdnZ2VKXZld79+7FwoULcejQIezcuRN6vR7jx49HWVmZ1XYLFixARkaG5fH2229LVLH9DBgwwOo97d+/3/LaM888g59++gnff/899u7di/T0dNx7770SVms/R48etXrfO3fuBABMmzbNsk1H+bzLysoQERGBFStWNPj622+/jQ8//BCrVq3C4cOH4ezsjAkTJqCystKyzaxZs3DmzBns3LkTW7duxe+//46HH364td5CizT1vsvLy3HixAm8/PLLOHHiBDZt2oSEhARMnjy53ravv/661c/BokWLWqP863KtzxwAbr/9dqv39e2331q93h4/c+Da773ue87IyMDq1ashCAKmTp1qtV2b/dxFum4jRowQFy5caHluNBrFoKAgcenSpRJW5XjZ2dkiAHHv3r2Wdbfeeqv41FNPSVeUAyxZskSMiIho8LXCwkJRqVSK33//vWXduXPnRADiwYMHW6nC1vPUU0+JPXr0EE0mkyiKHfPzFkVRBCBu3rzZ8txkMokBAQHiv//9b8u6wsJCUa1Wi99++60oiqJ49uxZEYB49OhRyza//PKLKAiCmJaW1mq1X4+r33dDjhw5IgIQk5KSLOtCQ0PF999/37HFOVhD7/2hhx4S77777kb36QifuSg273O/++67xdtuu81qXVv+3Nlyc52qqqpw/PhxREdHW9bJZDJER0fj4MGDElbmeEVFRQAALy8vq/Vff/01fHx8MHDgQLz44osoLy+Xojy7unDhAoKCgtC9e3fMmjULycnJAIDjx49Dr9dbff59+/ZFSEhIh/v8q6qqsH79esybN89q0tmO+Hlf7cqVK8jMzLT6nN3d3REVFWX5nA8ePAgPDw8MGzbMsk10dDRkMhkOHz7c6jU7SlFREQRBgIeHh9X6t956C97e3oiMjMS///1vGAwGaQq0s5iYGPj5+aFPnz547LHHkJeXZ3mts3zmWVlZ2LZtG/7617/We62tfu6dbuJMe8vNzYXRaIS/v7/Ven9/f5w/f16iqhzPZDLh6aefxo033oiBAwda1s+cOROhoaEICgpCfHw8nn/+eSQkJGDTpk0SVnt9oqKisHbtWvTp0wcZGRl47bXXcPPNN+P06dPIzMyESqWq94ve398fmZmZ0hTsID/88AMKCwsxZ84cy7qO+Hk3pOazbOj/85rXMjMz4efnZ/W6QqGAl5dXh/lZqKysxPPPP48ZM2ZYTaL45JNPYsiQIfDy8sKBAwfw4osvIiMjA++9956E1V6/22+/Hffeey+6deuGS5cu4R//+AfuuOMOHDx4EHK5vFN85gDw5ZdfwtXVtd7l9rb8uTPcUIssXLgQp0+ftup7AsDqWvOgQYMQGBiIsWPH4tKlS+jRo0drl2kXd9xxh2U5PDwcUVFRCA0NxXfffQcnJycJK2tdX3zxBe644w4EBQVZ1nXEz5saptfrcf/990MURaxcudLqtcWLF1uWw8PDoVKp8Mgjj2Dp0qXtbtj+uh544AHL8qBBgxAeHo4ePXogJiYGY8eOlbCy1rV69WrMmjULGo3Gan1b/tx5Weo6+fj4QC6X17s7JisrCwEBARJV5VhPPPEEtm7dij179qBr165NbhsVFQUAuHjxYmuU1io8PDzQu3dvXLx4EQEBAaiqqkJhYaHVNh3t809KSsKuXbswf/78JrfriJ83AMtn2dT/5wEBAfVuIjAYDMjPz2/3Pws1wSYpKQk7d+60arVpSFRUFAwGAxITE1unwFbSvXt3+Pj4WH6+O/JnXmPfvn1ISEi45v/7QNv63BlurpNKpcLQoUOxe/duyzqTyYTdu3dj5MiRElZmf6Io4oknnsDmzZvx22+/oVu3btfcJy4uDgAQGBjo4OpaT2lpKS5duoTAwEAMHToUSqXS6vNPSEhAcnJyh/r816xZAz8/P0ycOLHJ7Tri5w0A3bp1Q0BAgNXnXFxcjMOHD1s+55EjR6KwsBDHjx+3bPPbb7/BZDJZQl97VBNsLly4gF27dsHb2/ua+8TFxUEmk9W7ZNPepaamIi8vz/Lz3VE/87q++OILDB06FBEREdfctk197lL3aO4INmzYIKrVanHt2rXi2bNnxYcfflj08PAQMzMzpS7Nrh577DHR3d1djImJETMyMiyP8vJyURRF8eLFi+Lrr78uHjt2TLxy5Yr4448/it27dxdvueUWiSu/Ps8++6wYExMjXrlyRfzjjz/E6Oho0cfHR8zOzhZFURQfffRRMSQkRPztt9/EY8eOiSNHjhRHjhwpcdX2YzQaxZCQEPH555+3Wt/RPu+SkhIxNjZWjI2NFQGI7733nhgbG2u5K+itt94SPTw8xB9//FGMj48X7777brFbt25iRUWF5Ri33367GBkZKR4+fFjcv3+/2KtXL3HGjBlSvaVmaep9V1VViZMnTxa7du0qxsXFWf1/r9PpRFEUxQMHDojvv/++GBcXJ166dElcv3696OvrK86ePVvid3ZtTb33kpIS8bnnnhMPHjwoXrlyRdy1a5c4ZMgQsVevXmJlZaXlGO3xMxfFa/+8i6IoFhUViVqtVly5cmW9/dv6585wYycfffSRGBISIqpUKnHEiBHioUOHpC7J7gA0+FizZo0oiqKYnJws3nLLLaKXl5eoVqvFnj17in/729/EoqIiaQu/TtOnTxcDAwNFlUoldunSRZw+fbp48eJFy+sVFRXi448/Lnp6eoparVa85557xIyMDAkrtq9ff/1VBCAmJCRYre9on/eePXsa/Pl+6KGHRFE03w7+8ssvi/7+/qJarRbHjh1b73uSl5cnzpgxQ3RxcRHd3NzEuXPniiUlJRK8m+Zr6n1fuXKl0f/v9+zZI4qiKB4/flyMiooS3d3dRY1GI/br10988803rQJAW9XUey8vLxfHjx8v+vr6ikqlUgwNDRUXLFhQ7x+t7fEzF8Vr/7yLoih++umnopOTk1hYWFhv/7b+uQuiKIoObRoiIiIiakXsc0NEREQdCsMNERERdSgMN0RERNShMNwQERFRh8JwQ0RERB0Kww0RERF1KAw3RERE1KEw3BAREVGHwnBDRA4RExMDQRDqTSraWnbv3o1+/frBaDRe13EEQcAPP/zQ7O23b9+OwYMHw2QyXdd5iajlGG6I6LqNHj0aTz/9tNW6UaNGISMjA+7u7pLU9Pe//x3//Oc/IZfLr+s4GRkZuOOOO5q9/e233w6lUomvv/76us5LRC3HcENEDqFSqRAQEABBEFr93Pv378elS5cwderU6z5WQEAA1Gq1TfvMmTMHH3744XWfm4hahuGGiK7LnDlzsHfvXnzwwQcQBAGCICAxMbHeZam1a9fCw8MDW7duRZ8+faDVanHfffehvLwcX375JcLCwuDp6Yknn3zS6lKSTqfDc889hy5dusDZ2RlRUVGIiYlpsqYNGzZg3Lhx0Gg0lnWvvvoqBg8ejNWrVyMkJAQuLi54/PHHYTQa8fbbbyMgIAB+fn544403rI5V97JUYmIiBEHApk2bMGbMGGi1WkRERODgwYNW+0yaNAnHjh3DpUuXWv6NJaIWU0hdABG1bx988AH+/PNPDBw4EK+//joAwNfXF4mJifW2LS8vx4cffogNGzagpKQE9957L+655x54eHjg559/xuXLlzF16lTceOONmD59OgDgiSeewNmzZ7FhwwYEBQVh8+bNuP3223Hq1Cn06tWrwZr27duHmTNn1lt/6dIl/PLLL9i+fTsuXbqE++67D5cvX0bv3r2xd+9eHDhwAPPmzUN0dDSioqIafc8vvfQS3nnnHfTq1QsvvfQSZsyYgYsXL0KhMP9KDQkJgb+/P/bt24cePXrY+i0louvEcENE18Xd3R0qlQparRYBAQFNbqvX67Fy5UrLH/z77rsPX331FbKysuDi4oL+/ftjzJgx2LNnD6ZPn47k5GSsWbMGycnJCAoKAgA899xz2L59O9asWYM333yzwfMkJSVZtq/LZDJh9erVcHV1tZwrISEBP//8M2QyGfr06YNly5Zhz549TYab5557DhMnTgQAvPbaaxgwYAAuXryIvn37WrYJCgpCUlJS0988InIIhhsiajVardaqJcPf3x9hYWFwcXGxWpednQ0AOHXqFIxGI3r37m11HJ1OB29v70bPU1FRYXVJqkZYWBhcXV2tziWXyyGTyazW1Zy/MeHh4ZblwMBAAEB2drZVuHFyckJ5eXmTxyEix2C4IaJWo1QqrZ4LgtDguprbqEtLSyGXy3H8+PF6dz3VDURX8/HxQUFBwXWfvznvo6bD9NX75Ofnw9fXt8njEJFjMNwQ0XVTqVTXPZ5MQyIjI2E0GpGdnY2bb77Zpv3Onj1r93qaq7KyEpcuXUJkZKRkNRB1ZrxbioiuW1hYGA4fPozExETk5ubabQC73r17Y9asWZg9ezY2bdqEK1eu4MiRI1i6dCm2bdvW6H4TJkzA/v377VJDSxw6dAhqtRojR46UrAaizozhhoiu23PPPQe5XI7+/fvD19cXycnJdjv2mjVrMHv2bDz77LPo06cPpkyZgqNHjyIkJKTRfWbNmoUzZ84gISHBbnXY4ttvv8WsWbOg1WolOT9RZyeIoihKXQQRkb397W9/Q3FxMT799NNWPW9ubi769OmDY8eOoVu3bq16biIyY8sNEXVIL730EkJDQ1t9jqfExER88sknDDZEEmLLDREREXUobLkhIiKiDoXhhoiIiDoUhhsiIiLqUBhuiIiIqENhuCEiIqIOheGGiIiIOhSGGyIiIupQGG6IiIioQ2G4ISIiog7l/wHhfQPF6/2FcQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\dae\\petsc_chem_doc_15_0.png" - } - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "a = plt.plot(m.t, [pyo.value(m.y[t, 1]) for t in m.t], label=\"y1\")\n", "a = plt.plot(m.t, [pyo.value(m.y[t, 2]) for t in m.t], label=\"y2\")\n", @@ -1068,24 +252,9 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHMElEQVR4nO3dd3wUZf7A8c9szab3Bgmh9xJaRCwoCHhYUEROOBER7BW9U+9+1jtFPE+xoN55CiK2Ow9sKCoICIL03gmQkN57ssnuzu+PTZYEAiRkN5Pyfb+c184888zMd7JIvjzzzPMoqqqqCCGEEEK0ETqtAxBCCCGEcCdJboQQQgjRpkhyI4QQQog2RZIbIYQQQrQpktwIIYQQok2R5EYIIYQQbYokN0IIIYRoUwxaB9DcHA4HaWlp+Pn5oSiK1uEIIYQQogFUVaW4uJjo6Gh0unO3zbS75CYtLY2YmBitwxBCCCHEBTh58iQdO3Y8Z512l9z4+fkBzh+Ov7+/xtEIIYQQoiGKioqIiYlx/R4/l3aX3NQ8ivL395fkRgghhGhlGtKlRDoUCyGEEKJNkeRGCCGEEG2KJDdCCCGEaFPaXZ8bIYQQoqWy2+1UVVVpHYZmTCbTeV/zbghJboQQQgiNqapKRkYGBQUFWoeiKZ1OR+fOnTGZTE06jyQ3QgghhMZqEpvw8HC8vb3b5SCzNYPspqenExsb26SfgSQ3QgghhIbsdrsrsQkJCdE6HE2FhYWRlpaGzWbDaDRe8HmkQ7EQQgihoZo+Nt7e3hpHor2ax1F2u71J55HkRgghhGgB2uOjqNO562cgyY0QQggh2hRJboQQQgjRpkhyI4QQQog2RZIbN6myO8gsqiA5t0zrUIQQQgjNpaenM3XqVHr06IFOp+Phhx9utmtLcuMmW07kkfDiKm5ftFnrUIQQQgjNWa1WwsLC+L//+z8GDhzYrNeWcW7cJNDifH2tsLz9DpsthBDCPVRVpbyqaa9DXyiLUd+gt5YWL17MI488QlpaGmaz2VU+ceJE/Pz8+Oijj3j99dcB+OCDDzwWb30kuXGTYB9ncpNfVoXDoaLTySt9QgghLkx5lZ0+T/+gybX3Pz8Ob9P504PJkyfz4IMP8vXXXzN58mQAsrKyWL58OT/++KOnwzwneSzlJiG+JhQF7A6VnFKr1uEIIYQQHmWxWJg6dSoLFy50lS1ZsoTY2FhGjRqlXWBIy43bGPU6ovy9SCt0dioO9/PSOiQhhBCtlMWoZ//z4zS7dkPNnj2bYcOGkZqaSocOHVi0aBEzZszQfEBCSW7cqEekH2mFFexLK2JoXLDW4QghhGilFEVp0KMhrcXHxzNw4EAWL17M2LFj2bdvH8uXL9c6LHks5U7xMUEAbE3K1zgSIYQQonnMmjWLRYsWsXDhQsaMGUNMTIzWIUly407D4pzJzZbjeaiqqnE0QgghhOdNnTqVlJQU3nvvPWbOnFln386dO9m5cyclJSVkZ2ezc+dO9u/f7/GYWn6bVysSHxuEUa+QUVRBcl4ZnUJ8tA5JCCGE8KiAgAAmTZrE8uXLmThxYp198fHxrvVt27bxySef0KlTJ06cOOHRmKTlxo0sJj0DOwYCsOl4nrbBCCGEEM0kNTWVadOm1RnvBpzj9Zy+eDqxAUlu3G54Z2dH4k3HJLkRQgjRtuXn57Ns2TLWrFnDfffdp3U4LvJYys0SuoTw9ppENh3P1ToUIYQQwqPi4+PJz89n3rx59OzZU+twXCS5cbOhnYLQ6xRS8stJyS+jY5C31iEJIYQQHtEcj5guhDyWcjMfs4H+HQIAeTQlhBBCaEGSGw+4qEsIgDyaEkIIITQgyY0HXNTF2an4N2m5EUIIIZqdJDceMDQuGL1OITmvjNSCcq3DEUIIIdoVSW48wNdsoJ+r3408mhJCCCGakyQ3HnLq0ZQkN0IIIURzkuTGQ2o6FUu/GyGEEO3R0qVLueqqqwgLC8Pf358RI0bwww8/NMu1JbnxkJrxbqTfjRBCiPbol19+4aqrruK7775j27ZtXHHFFVx77bXs2LHD49eWQfw8xM/LSP8OAew8WcDGxFxuGtJR65CEEEIIt1m8eDGPPPIIaWlpdeaUmjhxIn5+fnz00Ud16r/44ot89dVXfPPNN3Um1PQEabnxoBFdnY+mNiZKvxshhBCNoKpQWarNoqoNCnHy5MnY7Xa+/vprV1lWVhbLly9n5syZZ9R3OBwUFxcTHBzsth/T2UjLjQdd3DWEd9YksjExB1VVURRF65CEEEK0BlVl8GK0Ntf+cxqYfM5bzWKxMHXqVBYuXMjkyZMBWLJkCbGxsYwaNeqM+q+88golJSXcfPPN7o74DNJy40FDOwVj1CukFVaQnFemdThCCCGEW82ePZsff/yR1NRUABYtWsSMGTPO+Mf8J598wnPPPcd//vMfwsPDPR6XtNx4kMWkJz4miM0n8tiQmEunkPNnwkIIIQRGb2cLilbXbqD4+HgGDhzI4sWLGTt2LPv27WP58uV16nz22WfMmjWL//73v4wZM8bd0dZLkhsPu6hrCJtP5LExMZdbhsdqHY4QQojWQFEa9GioJZg1axbz588nNTWVMWPGEBMT49r36aefMnPmTD777DMmTJjQbDHJYykPu7i6U/GGxFzUBnbSEkIIIVqLqVOnkpKSwnvvvVenI/Enn3zC9OnT+cc//kFCQgIZGRlkZGRQWFjo8ZgkufGw+NhAzAYdOSVWErNLtA5HCCGEcKuAgAAmTZqEr68vEydOdJX/61//wmazcd999xEVFeVaHnroIY/HJI+lPMxs0DM0Lohfj+by69FcuoX7aR2SEEII4VapqalMmzatzng3a9as0SweablpBhd3DQXg16M5GkcihBBCuE9+fj7Lli1jzZo13HfffVqH49IikpsFCxYQFxeHl5cXCQkJbN68uUHHffbZZyiKUqcZrCW6pJszudl4LBeb3aFxNEIIIYR7xMfHM2PGDObNm0fPnj21DsdF88dSn3/+OXPmzOHdd98lISGB+fPnM27cOA4dOnTOd+FPnDjBY489xqWXXtqM0V6Yfh0C8PcyUFRhY29aEYNiArUOSQghhGiyEydOaB1CvTRvuXn11VeZPXs2t99+O3369OHdd9/F29ubDz744KzH2O12pk2bxnPPPUeXLl3OeX6r1UpRUVGdpbnpdYprKgZ5NCWEEEJ4lqbJTWVlJdu2baszqI9Op2PMmDFs3LjxrMc9//zzhIeHc8cdd5z3GnPnziUgIMC11H7/vjnVPJpaf0SSGyGEEMKTNE1ucnJysNvtRERE1CmPiIggIyOj3mPWr1/P+++/z3vvvdegazz55JMUFha6lpMnTzY57gsxsjq52ZaUT3mlXZMYhBBCiPZA88dSjVFcXMytt97Ke++9R2hoaIOOMZvN+Pv711m00DnUh6gALyrtDrYm5WkSgxBCCNEeaNqhODQ0FL1eT2ZmZp3yzMxMIiMjz6ifmJjIiRMnuPbaa11lDofz7SODwcChQ4fo2rWrZ4O+QIqiMLJbKF9sS2H90Rwu7R6mdUhCCCFEm6Rpy43JZGLIkCGsWrXKVeZwOFi1ahUjRow4o36vXr3Ys2cPO3fudC3XXXcdV1xxBTt37tSsP01DSb8bIYQQwvM0fxV8zpw53HbbbQwdOpThw4czf/58SktLuf322wGYPn06HTp0YO7cuXh5edGvX786xwcGBgKcUd4SXdzN+cbUvrQickushPiaz3OEEEIIIRpL8z43U6ZM4ZVXXuHpp59m0KBB7Ny5kxUrVrg6GScnJ5Oenq5xlO4R7udF7yhnn5/18kq4EEKINmz9+vWMHDmSkJAQLBYLvXr14rXXXmuWa2vecgNw//33c//999e773xzUyxatMj9AXnQZd1DOZBexC+Hc7h+UAetwxFCCCE8wsfHh/vvv58BAwbg4+PD+vXrueuuu/Dx8eHOO+/06LU1b7lpby7r4exIvO5INqqqahyNEEIIcWEWL15MSEgIVqu1TvnEiRO59dZbiY+P55ZbbqFv377ExcXxhz/8gXHjxrFu3TqPxybJTTMb0ikIL6OOrGIrhzKLtQ5HCCFEC6SqKmVVZZosDf2H9+TJk7Hb7Xz99deusqysLJYvX87MmTPPqL9jxw42bNjA5Zdf7raf09m0iMdS7YmXUc9FXUJYcyibdYdz6BWpzbg7QgghWq5yWzkJnyRocu1NUzfhbfQ+bz2LxcLUqVNZuHAhkydPBmDJkiXExsYyatQoV72OHTuSnZ2NzWbj2WefZdasWZ4K3UVabjRQM8bNL0eyNY5ECCGEuHCzZ8/mxx9/JDU1FXD2g50xYwaKorjqrFu3jq1bt/Luu+8yf/58Pv30U4/HJS03Gri8Ryh/BTYdz6Oiyo6XUa91SEIIIVoQi8HCpqmbNLt2Q8XHxzNw4EAWL17M2LFj2bdvH8uXL69Tp3PnzgD079+fzMxMnn32WW655Ra3xnw6SW400DXMl+gAL9IKK9h0PI/Le8hoxUIIIU5RFKVBj4ZaglmzZjF//nxSU1MZM2bMOQfUdTgcZ3RA9gR5LKUBRVFcj6bWHpJHU0IIIVqvqVOnkpKSwnvvvVenI/GCBQv45ptvOHLkCEeOHOH999/nlVde4Q9/+IPHY5LkRiOjejqTmzWHszSORAghhLhwAQEBTJo0CV9fXyZOnOgqdzgcPPnkkwwaNIihQ4eyYMEC5s2bx/PPP+/xmOSxlEZGdg/FoFM4ll1KUm4pnUJ8tA5JCCGEuCCpqalMmzYNs/nUtEIPPPAADzzwgCbxSMuNRvy9jAyNCwJgjTyaEkII0Qrl5+ezbNky1qxZw3333ad1OC6S3GhoVM9wAFYfkkdTQgghWp/4+HhmzJjBvHnz6Nmzp9bhuMhjKQ1d0TOcl74/yMbEXHklXAghRKtz4sQJrUOol7TcaKhHhPOVcKvNwcZjuVqHI4QQQrQJktxoSFEURvVyPppac1AeTQkhhBDuIMmNxkZVD+C3+pDMEi6EEEK4gyQ3GhvZLRSjXiE5r4zE7FKtwxFCCCFaPUluNOZjNpDQOQSAnw9mahyNEEII0fpJctMCjOnt7Hez8oD0uxFCCCGaSpKbFmB07wgAtp7II7+0UuNohBBCiNZNkpsWICbYm16RfjhUGdBPCCFE2/Prr79iMBgYNGhQs1xPkpsW4qo+ztablQek340QQoi2o6CggOnTpzN69Ohmu6YkN25SkJHOL58s4rf/fXZBx4+pfjS19lA2VpvdnaEJIYQQbrd48WJCQkKwWq11yidOnMitt97q2r777ruZOnUqI0aMaLbYJLlxk9LCArZ89QV7Vv90Qcf37xBAuJ+Z0ko7vx3Lc3N0QgghWhNVVXGUlWmyNHTMtcmTJ2O32/n6669dZVlZWSxfvpyZM2cCsHDhQo4dO8YzzzzjkZ/T2cjcUm7iE+ic4bussABVVVEUpVHH63QKo3tH8OnmZFbuz+Ty6sH9hBBCtD9qeTmHBg/R5No9t29D8fY+bz2LxcLUqVNZuHAhkydPBmDJkiXExsYyatQojhw5whNPPMG6deswGJo33ZCWGzfxDQoGwFZppby46ILOcVUf5yvhqw5kymjFQgghWrzZs2fz448/kpqaCsCiRYuYMWMGDoeDqVOn8txzz9GjR49mj0tabtzEYDLhHxZOUXYWuSeT8O47oNHnuLhrKBajnrTCCvamFtG/Y4AHIhVCCNHSKRYLPbdv0+zaDRUfH8/AgQNZvHgxY8eOZd++fSxfvpzi4mK2bt3Kjh07uP/++wFwOByoqorBYODHH3/kyiuv9NQtSHLjTpFdulOUnUXqwf3EXEBy42XUM6pnGN/vzWDFvnRJboQQop1SFKVBj4ZaglmzZjF//nxSU1MZM2YMMTExOBwO9uzZU6fe22+/zc8//8wXX3xB586dPRqTPJZyo5h+AwE4sXvHBZ9jfL9IAL7fmyGPpoQQQrR4U6dOJSUlhffee8/VkVin09GvX786S3h4OF5eXvTr1w8fHx+PxiTJjRvFDRwMQPqRg1jLyi7oHFf2Csek13Esu5SjWSXuDE8IIYRwu4CAACZNmoSvry8TJ07UOhxAkhu3CoyIJDAiCofdTsqBPec/oB5+XkYu6R4KOFtvhBBCiJYuNTWVadOmYTabz1rn2WefZefOnc0SjyQ3btZpQDwAJ3Y14dFUX+ejqRWS3AghhGjB8vPzWbZsGWvWrOG+++7TOhwXSW7crNOAQQAk7dl5wecY0ycCvU5hf3oRybkX9nhLCCGE8LT4+HhmzJjBvHnz6Nmzp9bhuMjbUm4W03cAiqIjPy2F4twc/EJCG32OYB8TCZ2D2ZCYy4p96dx5WVcPRCqEEEI0zYkTJ7QOoV7ScuNmXj6+RHTtBkDy3l0XfJ6at6a+2yOPpoQQQojGkOTGA2KrXwlPbsKjqfF9I1EU2HmygJN58mhKCCGEaChJbjygJrlJ2rvrgseqCff3IqGzc0qH5XvS3RabEEII0dZJcuMBHXr2wWA0UZqfR15qygWf59qB0QB8syvNXaEJIYQQbZ4kNx5gMJmI7tkbgOS9Oy/4PFf3i0KvU9iXVsSxbBnQTwghhGgISW48xPVoas+FdyoO9jExspvzbatvd8ujKSGEEKIhJLnxkNj+zuQmZf8eHA77BZ/n2gFRAHy7Wx5NCSGEEA0hyY2HRHTphsnijbWslKzjxy74PGP7RmLS6zicWcKhjGI3RiiEEEJ4zpo1a5yzm5+2ZGR4fogTSW48RKfT07F3XwBO7r+weaYAAixGLusRBsBXO1PdEpsQQgjRXA4dOkR6erprCQ8P9/g1JbnxoJi+AwA4uW93k84zMd751tRXO9NwOC7s1XIhhBDCnRYvXkxISAhWq7VO+cSJE7n11ltd2+Hh4URGRroWnc7zqYckNx4U06c/AKkH9+GwX3i/mzG9I/AzG0gtKGfT8Tx3hSeEEKKFUlWVKqtdk6Wh47NNnjwZu93O119/7SrLyspi+fLlzJw501U2aNAgoqKiuOqqq/j111/d/rOqj8wt5UFhcZ0x+/hgLS0l8/hRorpd2KRiXkY9v+sfxedbT/LljlRGdA1xc6RCCCFaElulg389tFaTa9/5+uUYzfrz1rNYLEydOpWFCxcyefJkAJYsWUJsbCyjRo3i8OHDvPvuuwwdOhSr1cq///1vRo0axaZNmxg8eLBH70FabjzI2e+mHwAn9114vxuAGwZ3AOC7PelUVF14K5AQQgjhLrNnz+bHH38kNdXZJ3TRokXMmDEDRVHo2bMnd911F0OGDOHiiy/mgw8+4OKLL+a1117zeFzScuNhMX0GkLh1Eyf372H49Tdd8HmGxwXTIdBCakE5Kw9kcs2AaDdGKYQQoiUxmHTc+frlml27oeLj4xk4cCCLFy9m7Nix7Nu3j+XLl5+1/vDhw1m/fr07wjwnSW48LKZvTb+b/dhtNvSGC/uR63QKE+OjWbA6kWXbUyW5EUKINkxRlAY9GmoJZs2axfz580lNTWXMmDHExMScte7OnTuJioryeEzyWMrDwmLj8PLxpaqinMxjR5t0rhviOwKw5nA2WUUV7ghPCCGEaJKpU6eSkpLCe++9V6cj8fz58/nqq684evQoe/fu5eGHH+bnn3/mvvvu83hMktx4mKLT0bFPdb+bJox3A9At3JfBsYHYHSpLd8iYN0IIIbQXEBDApEmT8PX1ZeLEia7yyspKHn30Ufr378/ll1/Orl27WLlyJaNHj/Z4TJLcNIOOvasfTR3Y2+RzTRnmbO77z5aTDX5dTwghhPCk1NRUpk2bhtlsdpX96U9/4ujRo5SXl5Obm8vq1au54oormiUeSW6aQU3LTeqh/U0a7wZgwoBovE16juWUsjUp3x3hCSGEEBckPz+fZcuWsWbNmmZ53NRQktw0g7BOcZi9fagsLyc76XiTzuVrNjChv7Mz1n+2nHRHeEIIIcQFiY+PZ8aMGcybN4+ePS9sLDdPkOSmGeh0ejr06gM0vd8NnHo0tXxPOiVWW5PPJ4QQQlyIEydOUFhYyGOPPaZ1KHVIctNMagbzS3FDv5shnYLoEuZDWaVdJtMUQgghTiPJTTNx9bs5sA/V4WjSuRRFYerwWAA+/i1ZOhYLIYQQtTRqRLmCggKWLVvGunXrSEpKoqysjLCwMOLj4xk3bhwXX3yxp+Js9cLjumI0e1FRWkLOySTCOnVu0vkmDe7Iyz8cYn96ETtOFjA4NshNkQohhBCtW4NabtLS0pg1axZRUVH87W9/o7y8nEGDBjF69Gg6duzI6tWrueqqq+jTpw+ff/65p2NulfQGA9E9ewPueTQV5GPimgHOjsUf/5bc5PMJIYQQbUWDWm7i4+O57bbb2LZtG3369Km3Tnl5OV9++SXz58/n5MmTLa5zUUsQ06c/Sbt3kLJ/L/Hjr23y+f5wUSeWbk/l291pPHVNbwK9TW6IUgghhGjdGpTc7N+/n5CQkHPWsVgs3HLLLdxyyy3k5ua6Jbi2pkPvvgCkHNyHqqooitKk88XHBNI7yp8D6UV8sS2FWZd2cUeYQgghRKvWoMdS50tsmlq/vYjs2gO90UhZYQH56U1/y0lRFP5wkbNj8Ue/JWF3SMdiIYQQokEtN19//XWDT3jdddddcDBtncFoJKp7T1L27yXlwD6Cozs2+Zw3xHdg3vcHScot4+eDWVzVJ8INkQohhBBNZ7Vaef7551myZAkZGRlERUXx9NNP15lg0xMalNzUngjrXBRFwd7E6QXauo69+pKyfy+pB/YyYPS4Jp/P22TgluGx/POXYyz89bgkN0IIIVqMm2++mczMTN5//326detGeno6jiYOh9IQDUpumiOQ9qJD737A56Qc3O+2c946ohPvrTvGhsRcDmYU0SvS323nFkII0fxUVcVmtWpybYPZ3KA+oYsXL+aRRx4hLS2tzoSZEydOxM/Pj2nTprF27VqOHTtGcHAwAHFxcZ4Ku44Gj3Mzffp0rr/+esaPH4+Pj49bg1iwYAF///vfycjIYODAgbz55psMHz683rpLly7lxRdf5OjRo1RVVdG9e3ceffRRbr31VrfG5CnRPXqh6HQUZWdSlJOFf2h4k8/ZMcib8f0i+W5PBot+PcFLkwa4IVIhhBBasVmtvHHbTZpc+8EPv8Do5XXeepMnT+bBBx/k66+/ZvLkyQBkZWWxfPlyfvzxR/773/8ydOhQXn75ZT766CN8fHy47rrr+Otf/4rFYvHoPTR4hOJu3brx4osvEhoaytVXX80777xDamrTO8V+/vnnzJkzh2eeeYbt27czcOBAxo0bR1ZWVr31g4OD+ctf/sLGjRvZvXs3t99+O7fffjs//PBDk2NpDiYvCxGduwLO0Yrd5faRzkEBl+1IJadEm2xfCCFE+2GxWJg6dSoLFy50lS1ZsoTY2FhGjRrFsWPHWL9+PXv37mXZsmXMnz+fL774gnvvvdfjsSlqI8fuT0lJ4euvv+arr75i7dq19O3bl+uvv57rrruOQYMGNTqAhIQEhg0bxltvvQU4H4HFxMTwwAMP8MQTTzToHIMHD2bChAn89a9/PW/doqIiAgICKCwsxN9fm8c3axb/m23Lv2TAmPFcNft+t5xTVVUmLviVXSmFPHhlN+aMbTmzswohhDi7iooKjh8/TufOnfGqbjFpDY+lAHbs2MGwYcNISkqiQ4cODBgwgMmTJ/PUU08xduxY1q1bR0ZGBgEBAYDz6ctNN91EaWlpva039f0sajTm93ej55bq2LEj9957Lz/88APZ2dk8/vjjHDp0iCuvvJJOnTpx//33s29fw1okKisr2bZtG2PGjDkVkE7HmDFj2Lhx43mPV1WVVatWcejQIS677LJ661itVoqKiuosWjs1iab7Wm4UReGuy50tQh9uTKJUZgsXQohWS1EUjF5emiyNGYMtPj6egQMHsnjxYrZt28a+ffuYMWMGAFFRUXTo0MGV2AD07t0bVVVJSUlx94+sjiZNnOnn58fNN9/Mxx9/THZ2Nh988AF6vb5BiQlATk4OdrudiIi6b/hERESQkZFx1uMKCwvx9fXFZDIxYcIE3nzzTa666qp6686dO5eAgADXEhMT0/Ab9JAOvZyjPOelnqSsqNBt5x3XN5JOId4Ullfxn60n3XZeIYQQ4mxmzZrFokWLWLhwIWPGjHH9nh05ciRpaWmUlJS46h4+fBidTkfHjk0fCuVc3DYruF6vZ/To0bz++uvMmjXLXaetl5+fHzt37mTLli288MILzJkzhzVr1tRb98knn6SwsNC1nDyp/S99i58/IR2dg++lHnRf641epzC7epTif687TpVd3nITQgjhWVOnTiUlJYX33nuvzvg1U6dOJSQkhNtvv539+/fzyy+/8Mc//pGZM2d6vENxg+eWamgz1fbt2xt88dDQUPR6PZmZmXXKMzMziYyMPOtxOp2Obt26ATBo0CAOHDjA3LlzGTVq1Bl1zWZznVfUWoqOvfuSm5JMyoF9dB/uvtnUbxrSkdd+OkxqQTnf7k7jhnjPZsdCCCHat4CAACZNmsTy5cvrjIvn6+vLTz/9xAMPPMDQoUMJCQnh5ptv5m9/+5vHY3LrIH6NZTKZGDJkCKtWrXJdw+FwsGrVKu6/v+EdbR0OB1aNOl5dqA69+rLrp+/d2nID4GXUM/OSzvz9h0MsWJ3I9QM7oNM1bQ4rIYQQ4lxSU1OZNm3aGY0JvXr14qeffmr2eBqU3DzzzDMeC2DOnDncdtttDB06lOHDhzN//nxKS0u5/fbbAef4Oh06dGDu3LmAsw/N0KFD6dq1K1arle+++46PPvqId955x2MxekKHXs5JNLOOH6OyvAyTxdtt5751RCf+uTaRo1klfL83gwkDotx2biGEEKJGfn4+a9asYc2aNbz99ttah+PS4EH8Trdt2zYOHDgAQN++fYmPj7+g80yZMoXs7GyefvppMjIyGDRoECtWrHB1Mk5OTkanO9U1qLS0lHvvvZeUlBQsFgu9evViyZIlTJky5UJvRRP+oWH4h0VQlJ1J2uGDxA0c7L5zexmZeUln5q88wps/H+HqfpHSeiOEEMLt4uPjyc/PZ968efTs2XKGIGn0ODdZWVn8/ve/Z82aNQQGBgJQUFDAFVdcwWeffUZYWJgn4nSbljDOTY3v3/oH+9et5qIbpzByintHWC4sq2LkvJ8psdr4561DGNf37H2YhBBCaOdcY7u0N5qNc/PAAw9QXFzMvn37yMvLIy8vj71791JUVMSDDz7Y2NO1ax16Ox9Npbi53w1AgLeRGRfHAfD6yiM4HI3KYYUQQohWq9HJzYoVK3j77bfp3bu3q6xPnz4sWLCA77//3q3BtXU1g/mlHzmErarK7ee/45LO+JkN7E8v4vu9Zx83SAghhPYa+SClTXLXz6DRyY3D4cBoNJ5RbjQaZfbwRgqK6oB3QCD2qioyE4+4//w+Ju641Dnn1D9+OoRNxr0RQogWp+Z3allZmcaRaK+yshJwjp3XFI3uUHzllVfy0EMP8emnnxIdHQ04XwF75JFHGD16dJOCaW8URaFDzz4c2byBlIP7XCMXu9Mdl3Tmww0nOJZdyrIdqUweqv0IzUIIIU7R6/UEBga6Joz29vZu1BQIbYXD4SA7Oxtvb28Mhgt+3wm4gOTmrbfe4rrrriMuLs41xPLJkyfp168fS5YsaVIw7VGHXn05snlD9Xg3k91+fj8vI/eM6sqL3x1k/sojXDcoGrOhaRmxEEII96oZuLYmwWmvdDodsbGxTU7uGp3cxMTEsH37dlauXMnBgwcB50RYtSe/FA3XsbpTcdqhAzgcdnQ69yce00fE8f7646QWlPPRxiRmVU/RIIQQomVQFIWoqCjCw8Op8kAfzNbCZDLVGf7lQl1Qu4+iKFx11VVnnaxSNFxYXGdMFgvWslJykpMIj3N/4uFl1PPImB48sXQPb/58lMlDYgjwPrPflBBCCG3p9fom9zcRF5jcbNmyhdWrV5OVlXVGJ+JXX33VLYG1FzqdnugevTmxazspB/Z5JLkBmDw0hoW/nuBQZjFvrT7CXya4v3+PEEII0RI0uu3nxRdfJCEhgYULF7J161Z27NjhWnbu3OmBENu+mlfCUw/s9dg19DqFJ3/XC4APNySRnCu98oUQQrRNjW65ef311/nggw+YMWOGB8Jpn2oP5qeqqsd6yV/eI4xLu4ey7kgOL604wNvThnjkOkIIIYSWGt1yo9PpGDlypCdiabciu/ZAbzRSVlhAfnqax66jKAp/mdAbnQLf7cng16M5HruWEEIIoZVGJzePPPIICxYs8EQs7ZbBaCSqm3PCsRQPPpoC6BXpz60XdQLg2a/3USUD+wkhhGhjGv1Y6rHHHmPChAl07dqVPn36nDFa8dKlS90WXHvSsXdfUg7sJfXgPgaMHufRa825qiff7E7nSFYJizcmccclnT16PSGEEKI5Nbrl5sEHH2T16tX06NGDkJAQAgIC6iziwnToVd3v5oD7J9E8XYC3kT+Oc7YUzf/pMFlFFR6/phBCCNFcGt1y8+GHH/K///2PCRMmeCKediu6Ry8UnY6i7EyKcrLxDw3z6PVuHhrDp5uT2Z1SyPPf7uetqYM9ej0hhBCiuTS65SY4OJiuXbt6IpZ2zWTxJqKz8+fqnIrBs/Q6hRdv6I9OgW93p7P6UPse8lsIIUTb0ejk5tlnn+WZZ56R2Us94NSjKc92Kq7Rr0MAM0c6+9v837K9lFXamuW6QgghhCc1+rHUG2+8QWJiIhEREcTFxZ3RoXj79u1uC6696di7H9uWf9ks/W5qPHJVD77fm0FqQTmv/XRYRi4WQgjR6jU6uZk4caIHwhAAHXo5E4u81JOUFRXi7e/5Dto+ZgN/ndiXmYu28v7644zvF8WQTkEev64QQgjhKY1Obp555hlPxCEAi58/oTGdyDmZRMqBvfRIaJ7BEq/sFcGN8R1YuiOVP36xi+8evBQvo0zcJoQQonVqUJ8bVVU9HYeo1rGPc56plP3N0++mxjPX9iXcz8yx7FJe++lws15bCCGEcKcGJTd9+/bls88+o7Ky8pz1jhw5wj333MNLL73kluDao469+wOQsn9Ps143wNvIizc4r/3eumNsPZHXrNcXQggh3KVBj6XefPNNHn/8ce69916uuuoqhg4dSnR0NF5eXuTn57N//37Wr1/Pvn37uP/++7nnnns8HXeb1bF6Es3sk0mUlxRj8fVrtmuP6RPBpMEd+d/2FB7+fCffPXQp/l7G8x8ohBBCtCANSm5Gjx7N1q1bWb9+PZ9//jkff/wxSUlJlJeXExoaSnx8PNOnT2fatGkEBUln1KbwCQwiOLojeWkppB7cT7ehCc16/Wev68PmE7mczCvn2a/28eqUQc16fSGEEKKpGtWh+JJLLuGSSy7xVCyiWsfe/chLSyFl/55mT278vIzMnzKIye9uZOmOVEb1Cue6gdHNGoMQQgjRFI0exE94nqtTcTMN5ne6IZ2Cuf/K7gD8ZekeknJLNYlDCCGEuBCS3LRANclN1vFjWMu0SSwevLIbQzsFUWy1ce/H26mosmsShxBCCNFYkty0QH7BoQRGRKGqDlIP7dckBoNex5tT4wn2MbEvrYi/LdcmDiGEEKKxJLlpobQa76a2qAALr948EIAlvyXz1c5UzWIRQgghGkqSmxaqY2/tkxuAUT3Due8K52zlT/xvD/vTijSNRwghhDifRk+/AOBwODh69ChZWVk4HI46+y677DK3BNbexfR1DqiXcewIleVlmCzemsUy56qe7E4pZN2RHO5aspWv77uEIB+TZvEIIYQQ59Lo5Oa3335j6tSpJCUlnTEtg6Io2O3S8dQd/EPDCYiIpDAzg9SD++kcP1SzWPQ6hTdviee6t34lOa+MBz/bwcIZwzDopeFPCCFEy9Po30533303Q4cOZe/eveTl5ZGfn+9a8vJkyH53iunjbL052cxTMdQn0NvEv6YPwdukZ92RHP62/IDWIQkhhBD1anRyc+TIEV588UV69+5NYGAgAQEBdRbhPjF9BwBwct9ujSNx6hXp7+pgvGjDCT7ccELbgIQQQoh6NDq5SUhI4OjRo56IRZympuUm81iiZuPdnG58vygeH98LgOe+2cfqg1kaRySEEELU1eg+Nw888ACPPvooGRkZ9O/fH6Ox7sSKAwYMcFtw7Z1fSCiBkVEUZKSTenA/XQYP0zokAO6+vAvHc0r4z9YU7v9kO5/fNYJ+HaTVTgghRMvQ6ORm0qRJAMycOdNVpigKqqpKh2IPiOnTn4KMdJL37W4xyY2iKPxtYn9O5pWz8VguMxZu4X/3jKBTiI/WoQkhhBCNT26OHz/uiTjEWcT0HcCen38kpQV0Kq7NZNDxz+lDmPLP3ziQXsT0Dzbzxd0XE+Zn1jo0IYQQ7Vyjk5tOnTp5Ig5xFjX9brKOH6OitAQvH1+NIzrF38vIh7cPY9K7G0jKLeP2RZv5ZPZF+HsZz3+wEEII4SEXNFBJYmIiDzzwAGPGjGHMmDE8+OCDJCYmujs2AfgGhxAU1QFVdZByYJ/W4Zwh3N+LxTMTCPExsTe1iNsXbqHUatM6LCGEEO1Yo5ObH374gT59+rB582YGDBjAgAED2LRpE3379uWnn37yRIztXs1oxSf37tI4kvp1DvVh8R3D8fcysC0pn1kfbpVZxIUQQmim0cnNE088wSOPPMKmTZt49dVXefXVV9m0aRMPP/wwjz/+uCdibPdi+znHlkluIePd1KdvdACL70jA12xg47Fc7vxomyQ4QgghNNHo5ObAgQPccccdZ5TPnDmT/fv3uyUoUVfNYH45yScoKyzQNphzGBQTyAczhmEx6vnlcLYkOEIIITTR6OQmLCyMnTt3nlG+c+dOwsPD3RGTOI23fwBhnToDkNxCH03VGN45mPdnDHUlODMXbaGsUvrgCCGEaD6NTm5mz57NnXfeybx581i3bh3r1q3jpZde4q677mL27NmeiFEAsf2crTct+dFUjYu7hvLhzOH4mPRsSHSOg1MinYyFEEI0E0U9fWrv81BVlfnz5/OPf/yDtLQ0AKKjo/njH//Igw8+iKIoHgnUXYqKiggICKCwsBB/f3+tw2mwY9u3sGzecwRERDLrjX9rHU6DbEvKZ8YHmym22hjQMYCFM4YR4ivj4AghhGi8xvz+bnRyU1txcTEAfn5+F3qKZtdak5vK8jIW3HELDrudWW++T0B4hNYhNcjulAJmLNxCXmklXcJ8+OiOBDoEWrQOSwghRCvTmN/fFzTOTQ0/P79Wldi0ZiaLN5FdewCQvK9l97upbUDHQP5z1wiiA7w4ll3KTe9s4EhmsdZhCSGEaMMalNwMHjyY/Px8AOLj4xk8ePBZF+E5rn43e1pPcgPQLdyXL+65mG7hvqQXVjDpnQ1sSMzROiwhhBBtVIOmX7j++usxm82u9Zber6atiu03kN+Wfk7y3l2uiUpbi+hAC/+9awSzF29la1I+t32wmbk3DuCmIR21Dk0IIUQb06Q+N61Ra+1zA2CrqmLBHb/HZrUy/e9vERYbp3VIjVZRZeex/+7i293pADw4ujsPj+6OTtd6EjUhhBDNz6N9brp06UJubu4Z5QUFBXTp0qWxpxONYDAa6di7HwBJu3doHM2F8TLqeeP38dw7qisAb6w6wr0fb5f5qIQQQrhNo5ObEydOYLefOeqs1WolJSXFLUGJs4sbEA+03uQGQKdT+NP4Xrx80wBMeh0r9mUw6Z0NJOeWaR2aEEKINqBBfW4Avv76a9f6Dz/8QEBAgGvbbrezatUqOnfu7N7oxBk69R8EQMqBfdgqKzGYTNoG1AQ3D42ha5gvd320jYMZxVy3YD1v3hLPpd3DtA5NCCFEK9bgPjc6nbORR1EUTj/EaDQSFxfHP/7xD6655hr3R+lGrbnPDTgHUfznPbdRmp/H5KdecE2q2ZqlF5Zz10fb2J1SiKLAw6N78MCV3aQfjhBCCBeP9LlxOBw4HA5iY2PJyspybTscDqxWK4cOHWrxiU1boCgKnaoTmtb8aKq2qAAL/7lrBLcMj0FV4bWVh5mxyDnwnxBCCNFYje5zc/z4cUJDQz0Ri2igTjX9bvbs1DYQN/Iy6pl74wBemTwQL6OOXw5nM+GNdWw+nqd1aEIIIVqZBve5qa20tJS1a9eSnJxMZWXdf10/+OCDbglMnF1sdb+bzOOJlBcXYfFrfY/XzuamIR3p18Gfe5ds51hOKb//10buv6IbD47ujkHfpAG1hRBCtBONHudmx44d/O53v6OsrIzS0lKCg4PJycnB29ub8PBwjh075qlY3aK197mp8eEf7ycn+QQTHvwjvUZernU4bldqtfHs1/v47zbnG3iDYwN5/ffxxAR7axyZEEIILXh0nJtHHnmEa6+9lvz8fCwWC7/99htJSUkMGTKEV1555YKDFo0TN9A51cWJXW2j383pfMwG/j55IG/cEo+f2cD25AKufn0dn29JPqNDuxBCCFFbo5ObnTt38uijj6LT6dDr9VitVmJiYnj55Zf585//7IkYRT1OJTfb2vQv++sGRvPdQ5cytFMQJVYbj/9vDzMXbSGzqELr0IQQQrRQjU5ujEaj67Xw8PBwkpOTAQgICODkyZPujU6cVYdefTGYzZQW5JOddFzrcDwqJtibz+8awZNX98Jk0LH6UDZXvbqWpdtT2nRiJ4QQ4sI0OrmJj49ny5YtAFx++eU8/fTTfPzxxzz88MP069fP7QGK+hmMRmL7OmcJP7Fru8bReJ5ep3DX5V1Z/sAlDOgYQFGFjTn/2cWMhVs4mScjGwshhDil0cnNiy++SFRUFAAvvPACQUFB3HPPPWRnZ/Ovf/3L7QGKs4sbNARoH8lNje4Rfiy952IeG9sDk17H2sPZjH3tF9775Rg2u0Pr8IQQQrQAjXpbSlVVTp48SXh4OF5eXp6My2PayttSAAUZ6bz/0Gx0egP3vf8JJkv7epMoMbuEPy/dw6bqsXD6dfDnbxP7MygmUNvAhBBCuJ3H3pZSVZVu3bq5vW/NggULiIuLw8vLi4SEBDZv3nzWuu+99x6XXnopQUFBBAUFMWbMmHPWb8sCI6MIjIzCYbeRvG+P1uE0u65hvnx250XMm9Qffy8De1OLuOHtX3nif7tldGMhhGjHGpXc6HQ6unfvTm5urtsC+Pzzz5kzZw7PPPMM27dvZ+DAgYwbN46srKx6669Zs4ZbbrmF1atXs3HjRmJiYhg7diypqalui6k1iRtY/Whq51aNI9GGoihMGRbLqkdHcePgDqgqfLblJFe8soaPfkvC7pAOx0II0d40ehC/b775hpdffpl33nnHLR2IExISGDZsGG+99RbgnMMqJiaGBx54gCeeeOK8x9vtdoKCgnjrrbeYPn36eeu3pcdSAMe2b2HZvOfwCw1j9lsfoCjte7LJrSfyeOqrfRxILwKgd5Q//zehNyO7yZQhQgjRmnl0EL/p06ezefNmBg4ciMViITg4uM7SGJWVlWzbto0xY8acCkinY8yYMWzcuLFB5ygrK6Oqquqs17ZarRQVFdVZ2pKYvv0xGE0U52STezJJ63A0NzQumG/uH8nz1/fF38vAgfQipv17E3cs2sLRrBKtwxNCCNEMGj231Guvvea21oGcnBzsdjsRERF1yiMiIjh48GCDzvH4448THR1dJ0Gqbe7cuTz33HNNjrWlMpq9iOk3gOM7tpK4fQuhsXFah6Q5g17H9BFxXDsgmtdXHWHJb0msOpjFmsPZTB0ey4OjuxPmZ9Y6TCGEEB7S6ORmxowZHgjjwrz00kt89tlnrFmz5qxvbz355JPMmTPHtV1UVERMTExzhdgsugwezvEdWzm+YwsJEydrHU6LEeRj4tnr+jJ9RCfmfn+Qn/Zn8tFvSXyxLYWZl8Rx52VdCbAYtQ5TCCGEmzX6sZRer6+3s29ubi56vb5R5woNDUWv15OZmVmnPDMzk8jIyHMe+8orr/DSSy/x448/MmDAgLPWM5vN+Pv711nami6DhwKQdugg5SXFGkfT8nQJ8+W96UP5ZHYCAzsGUF5lZ8HqRC57eTXvrEmkvNKudYhCCCHcqNHJzdn6H1utVkwmU6POZTKZGDJkCKtWrXKVORwOVq1axYgRI8563Msvv8xf//pXVqxYwdChQxt1zbbIPzSc0JhOqKqjXQ3o11gXdw3ly/tG8u4fhtA93JfC8irmrTjIZX9fzfvrj0uSI4QQbUSDH0u98cYbgPPV23//+9/4+vq69tntdn755Rd69erV6ADmzJnDbbfdxtChQxk+fDjz58+ntLSU22+/HXB2YO7QoQNz584FYN68eTz99NN88sknxMXFkZGRAYCvr2+dmNqbzoOHkXMyiWPbNtN75OVah9NiKYrC+H6RXNUngi93pPLaysOk5Jfz12/3886aRO66rAvTLorF29ToJ7ZCCCFaiAb/Df7aa68Bzpabd999t84jKJPJRFxcHO+++26jA5gyZQrZ2dk8/fTTZGRkMGjQIFasWOHqZJycnOyaqBPgnXfeobKykptuuqnOeZ555hmeffbZRl+/regSP5QtX33BiV3bcdjt6Br5iLC90esUJg3pyLUDo/nf9hQWrD5KSn45L3x3gHfWJjL70i784aJY/LykT44QQrQ2jR7n5oorrmDp0qUEBQV5KiaPamvj3NRw2O28M3saFaUlTHn2JTr2lklMG6PK7mDZjlQWrD5KUq5zIk4/LwN/uKgTt4+MI9yvdU43IoQQbYVHx7lZvXp1q01s2jKdXk/nwcMAOLp1k8bRtD5GvY6bh8awas7l/GPyQLqG+VBcYeOdNYlc8tJqnly6m2PZMk6OEEK0Bo1uubHb7SxatIhVq1aRlZWFw1F3Juaff/7ZrQG6W1ttuQE4/Nt6vnntJQIjo5g5/1/tfrTipnA4VFYeyOTdtYlsTy4AQFHgqt4RzLykMwmdg+XnK4QQzagxv78b3WvyoYceYtGiRUyYMIF+/frJX/AtSNzAwegNBgoy0slLTSGkY9saz6c56XQKY/tGMrZvJFtP5PHu2kRWHsjix/2Z/Lg/k95R/tx+cRzXDYrGyyj9m4QQoiVpdMtNaGgoixcv5ne/+52nYvKottxyA/C/uc9wYuc2LrnlNhnQz82OZhXzwa8nWLo9hYoqZ4tlsI+JqcNj+cNFnYgMkH45QgjhKR7tc2MymejWrdsFByc8q9vQBAASt0m/G3frFu7Hizf057cnR/Pk1b3oEGghr7SSt1YfZeS8n7lz8VbWHMrCITORCyGEphqd3Dz66KO8/vrrZx3MT2iry5DhAKQfOURpQb7G0bRNgd4m7rq8K2v/OIp3pg1meOdg7A6VH/dnMmPhFi77+2oWrD5KdrFV61CFEKJdavRjqRtuuIHVq1cTHBxM3759MRrrjgOydOlStwbobm39sRTAkicfIfPYEa66834GjB6vdTjtwpHMYj7elMzS7SkUVdgAMOgUxvaNYPLQGC7rHoZeJ/3ThBDiQnm0Q3FgYCA33HDDBQcnPK/bsIvIPHaEo5s3SnLTTLpH+PHsdX15fHwvvt2dxiebk9mRXMB3ezL4bk8GEf5mbojvyE1DOtItvP2OpC2EEM2h0S03rV17aLnJTT3Jojn3oNMbuOe9JXj5yC9TLexPK+I/W0/y1c5U8suqXOXxsYHcNKQj1wyIllnJhRCigRrz+/uCkhubzcaaNWtITExk6tSp+Pn5kZaWhr+/f4uf36k9JDcAC+fcQ17qSa6+/1H6XHqF1uG0a1abndUHs/hiWwqrD2Vjr+5wbDLoGN0rnOsGRnNFr3B5pVwIIc7Bo8lNUlIS48ePJzk5GavVyuHDh+nSpQsPPfQQVqv1guaXak7tJbn59fOP+G3p53QbNoLrH/uL1uGIatnFVr7ckcp/t53kcOapEY/9zAbG9YvkuoHRXNw1BIO+0X39hRCiTfPoq+APPfQQQ4cOJT8/H4vF4iq/4YYbWLVqVeOjFR7RbfjFAJzYtZ2qigqNoxE1wvzMzL6sCz88fBnfPXgpd13ehegAL4qtNr7YlsL0DzZz0dxVPPPVXracyJPXyoUQ4gI0ukPxunXr2LBhAyaTqU55XFwcqampbgtMNE14XBcCwiMozMrk+M6t9LjoEq1DErUoikKfaH/6RPvz+LhebEvO56udqSzfnU5OSSUfbkziw41JhPmZGdc3gqv7RZHQOVhadIQQogEandw4HA7sdvsZ5SkpKfj5+bklKNF0iqLQPWEkW79ZyuFNGyS5acF0OoVhccEMiwvmmWv7sv5IDl/vSmPlgUyyi60s+S2ZJb8lE+RtZGyfSMb3j2Rk11BMBkl0hBCiPo3uczNlyhQCAgL417/+hZ+fH7t37yYsLIzrr7+e2NhYFi5c6KlY3aK99LkBSDt8kE+fegyjl4V73luC0WTWOiTRCJU2B78m5rBiTwY/7s+o88aVn5eBK3uFM7p3BJf3CJO3roQQbZ5HOxSnpKQwbtw4VFXlyJEjDB06lCNHjhAaGsovv/xCeHh4k4L3tPaU3Kiqynv3z6Q4J5tr5zxJj4SRWockLpDN7mDT8Ty+35vOD/sy64x+bKhu+RndO5wxvSOIC/XRMFIhhPCMZnkV/PPPP2fXrl2UlJQwePBgpk2bVqeDcUvVnpIbgLVLPmDrN0vpMeJSrn34ca3DEW5gd6jsSM7npwOZrDqQxdGskjr7u4b5MKZ3BKN7RzA4NlD66Qgh2gSPJzetWXtLbjISj/Dxnx/BYDZz778+xuglM1e3NUm5paw8kMWqA5lsPp6HrdYbVn5eBkZ2DeWyHmFc1iOUjkHeGkYqhBAXzqPJzdy5c4mIiGDmzJl1yj/44AOys7N5/PGW3TrQ3pIbVVV5/6HZFGZmMOGhP9Hr4su0Dkl4UGF5FWsPZ7PqQCZrDmVTWF5VZ3/XMJ/qRCeMizqHYDHJwIFCiNbBo8lNXFwcn3zyCRdffHGd8k2bNvH73/+e48ePNz7iZtTekhuAdZ9+yOYv/ysD+rUzdofK7pQCfjmcwy9HstmRnE/tYXNMBh3D44K5rEcoF3cNpXeUv0zuKYRosTw6cWZGRgZRUVFnlIeFhZGent7Y04lm0HPEpWz+8r8c37kVa1kZZm95NNEe6HUK8bFBxMcG8dCY7hSWVfFrYg6/HM7ml8PZpBVWsP5oDuuP5gAQYDGS0DmYi7uGMKJrKD0ifFEUSXaEEA1T5ajCarNSYXcOHBtqCdUslkYnNzExMfz666907ty5Tvmvv/5KdHS02wIT7hPWqTNB0R3JT0vh6JaN9L18tNYhCQ0EeBv5Xf8oftc/ClVVScwuYe3hHH49msPm43kUllfx4/5MftyfCUCor4mELiHOZKdLCJ1DfSTZEaIVsTvsWO1Wym3lWO1WKmwVVNgr6nzWlLvq2Cuw2qx11ivsznq112uOrb1uV0+NgTc4fDAfXv2hZvfe6ORm9uzZPPzww1RVVXHllVcCsGrVKv70pz/x6KOPuj1A0XSKotD7ksvZ8J+PObB+jSQ3AkVR6BbuR7dwP+64pDM2u4M9qYVsPJbLxsRctpzII6ekkuW701m+29kiG+nvRUKXYIbGBTMsLoge4X7o5DGWEBfE5rBRbit3Jhq2CspsZVTYK1xlNZ9ltrI62zV1apaaxKJOAlNdr8pRdf5APERF23eVGt3nRlVVnnjiCd544w0qKysB8PLy4vHHH+fpp5/2SJDu1B773AAUZKTz/kOzURQdd76zCN+gYK1DEi2Y1WZn18lCNibmsiExhx3JBVTaHXXq+HsZGNIpqDrZCWZAxwCZ2Vy0GaqquhKJsqoyymxllFWVObdrrddJRuwV9SYkNfvKq8optzuPsTlszXo/Zr0ZL4MXZr0Zi8Hi2vbSe7nKvfRemA3Vn3pznfXT69RXv6aOWW/2SCtvs7wKXlJSwoEDB7BYLHTv3h2zuXWMfttekxuAT556jPTDBxk1fRZDJkzUOhzRilRU2dmWlM+WE3lsPZHP9uR8yirrTsNi0usY0DHA1bIzpFMQgd6ms5xRCPdQVZVKR+WpxKM6EamTlNjKKK8qd63XTkxOT1hqH9scrQ86RYfFYHElGRaDxbXUbNfs8zZ4nyo7bd/piUrtBMasN6NTWv94VzLOzTm05+Rm5w/LWfXBO0R06cYf5s7XOhzRitnsDg6kF7PlRF71kk9OifWMel3CfBgUE0h8TCCDYoLoFeWHUQYVbPccqoOyqjJKq0optZVSWln9WVV6qvy0pcx2lvKqMmyqZ1tBapINb4M33kZvvA3ep5IQo8WVZJyRlNQkK3pnvfoSGKPOKH3ZGsijyU1paSkvvfQSq1atIisrC4ejblP1sWPHGh9xM2rPyU1ZUSH/vHs6DrudGf94h5COMVqHJNoIVVVJyi1ztexsScrjWHbpGfXMBh19o/0ZFBPEoFhn0tMxyCJ/ubcSNoeN0qpSSqpKKKksobiymNKqUoqriimpLHGVl1Q5l9pJS+2l3FbukfjMerMrAalJRixGiysZqUlMau+vnay49tc6zsvg1SZaPdoCj74KPmvWLNauXcutt95KVFSU/KXUinj7BxA3cDDHtm/hwPrVXPL76VqHJNoIRVGIC/UhLtSHyUOdSXNuiZVdKQXsTC5gZ0ohu04WUFhexfbkArYnF8CvzmNDfEwMigl0LrGB9O8QII+zPMDmsLkSkqLKIooqi+omI5UlFFdVJyuVzmTl9MTF3UmJQTHgbfTGx+iDj9HHuW7wcW3XKa/ZNpza9jX6utYtBgsGXaN/pYk2qtEtN4GBgSxfvpyRI1vnJIztueUG4NDGdXw7fx5+IWHMeuvf6HTSAVQ0D1VVOZ5Tys6TBa7lQHoRVfYz/wrqGGShX3QA/Tr407dDAP2iAwjzax39+jxFVVXKbeWuxKS4spgiaxHFVdWftZKWmvXan6VVZ7akXSgvvRc+Rh/8TH74Gn3xMfngZ/TD1+SLr9H31KfR96zJia/JF5POJP9AFg3m0ZaboKAggoPlTZvWquuQBMw+PhTnZpO8dzdxA+K1Dkm0E4qi0CXMly5hvtw4uCPg7Ki8P73I2bpzsoBdKQUk5ZaRkl9OSn45K/ZluI4P9zPTr0MA/aKrE54OAUQHeLW6X452h52SqhIKrYUUWAsotBZSWFno/KxZTtsuriymuLLYLX1LLAYLfiY//E3+rkSk3sSk+rMmgaldZtQb3fCTEMJzGt1ys2TJEr766is+/PBDvFvhSLftveUGYOX777Drx+X0Gnk5Ex78o9bhCFFHYXkV+9OK2JdWyN7UQvamFZGYXUJ9f1MFeRvpGx1A3w7+9I0OoHekH51DfZptJvQKWwUF1gLyK/LJt+aTX5F/KmGpSV4qCymyFrm2iyuLm/QWjkEx4G/2x9/kj5/Jz5WonL7ub/bH33hqvWa/USeJiWidPNqhOD4+nsTERFRVJS4uDqOx7v8o27dvb3zEzUiSG8g4epiP/zIHg9HEXf9cjJePr9YhCXFOpVYbBzOK2Jta5Ep4jmQW15kBvYbJoKNbmC+9Iv3oGelHryh/ekX6Ee537rE37A47hZWFzkSlOkmpSVhO3y6ocK43pQ+Kt8GbQHMgAeYA/M3+BJgCXNuuxXRqX01yYjFIB2zRPnn0sdTEiRMvNC7RQkR07U5Ix1hyU5I5tGEdA6+6WuuQhDgnH7OBIZ2CGdLp1CPxiio7RzJL2FvdwrMvrYjDmcWUVTofde1PLwKlEsVQgqIvwc+nnIggG8F+lVgs5eiNpdgoorAyn9zyXAqsBRfUomJQDAR5BRHoFUiQOYhAc2C9SUqA2Zm81CQr8mhHCM9pdHLzzDPPeCIO0YwURaHfqDGsXfIB+9aslORGtCpWu5Xc8lyyy7PJseeg888hypiNMSKHmPJc0ktyyCnPpbAyH5ta4TrOAaQD6RVAxdnODj4GP0IsQQR5VS9mZ+ISbA4+lcDU2vY1ygSjQrQ0F/ze3LZt2zhw4AAAffv2JT5eOqa2Jr0vvYJ1n35I+tFD5JxMIjSmk9YhiXautKqUzLJMcspynIlLeQ455dXrZafWiyqLGnVek85EsFcIPoZAdKoftkpvSsst5BWZKC61oNp8UO2+qDZfVLs3xejJVJxvbBnCfIkI8yU63Jduvr50C/eV19SFaAUandxkZWXx+9//njVr1hAYGAhAQUEBV1xxBZ999hlhYWHujlF4gE9gEF0GD+folo3sXrWCK2fcpXVIoo2yO+zkVeSRVZZFRlkGWWVZriWzLNO13phXlY06I2GWMEItoYRaQgnzDiPEEkKIV/ViCSHYK5hgr2B8jGefzTyvtJKDGUUcyijmUEYxR7NKOJpdQkFZFSfzyjmZV86aQ9l1jgn1NdElzJnodKv5DPclqhW+uSVEW9XoDsVTpkzh2LFjLF68mN69ewOwf/9+brvtNrp168ann37qkUDdRToUn3J85zaWzn0Gs48Pd727GKOpfY8jIhpPVVXyrfmkl6aTUZJBRlkG6SXpzu2yDDJLM8kpz8Gu2s9/MsDX6OtKVkItoWckMKFezk9/k7/HEglVVcktrXQmOlklJGZXf2aVkFZ49udZ3iY9XauTnc7VAxrGhXgTF+qDv5f0rxGiqTz6tlRAQAArV65k2LBhdco3b97M2LFjKSgoaHTAzUmSm1NUh4N/PziLouwsrr5vDn0uu1LrkEQLU+WoIqM0g7SSNFJLUkkvTSe9xJm4ZJQ6F6v9zDmlTqdTdIR6hRLuHe5aInwiiPCOOLXtHYG3sWUPL1FqtbmSndqJT1JuWb1vbtUI8TFVJzunEp6aBMjXLKPqCtEQHn1byuFwnPH6N4DRaDxjninRsik6Hf2vHMevn3/ErpUrJLlph2wOW53kJa00jbSSNFKKU0grTSOrLAuHeu7/rxUUQi2hRPlEEeETQZRPFFE+UUT6RLqSlxBLSJsYGt/HbGBAx0AGdAysU15pc5CcV1qd8JRyPKeUEzmlnMgtI6fESm5pJbmllWxLyj/jnKG+5roJT4gPcaHexIX44COJjxAXpNEtN9dffz0FBQV8+umnREdHA5Camsq0adMICgpi2bJlHgnUXaTlpq6SvFz+dd/tqA4Ht72yQDoWt0FlVWWklKRwsvgkKcXOz5olvST9vKPemvVmon2jnYtPtCtxifSJdCY03hHyWvM5FFdUkZRbxvGcUpJySzmeU8aJXGfyk1taec5jw/zMdA7xoWOwhZggb2KCvYkJshAT7E2Evxd6nfTxEe2HRx9LnTx5kuuuu459+/YRExPjKuvXrx9ff/01HTt2vPDIm4EkN2f66pUXOLplI/Hjr+XK26VjcWtUYasguTiZpKKkOsvJ4pPklOec81ijzkgH3w5E+0bX+xniFSIdZT2kqKKKpJwyjufWtPScavHJO0/iY9QrdAh0Jjodg7yJOS0BCvaReZtE2+LR5AacHe5WrlzJwYMHAejduzdjxoy5sGibmSQ3Zzqxazv/e/FpTBYLd73zISZLy+730F45VAcZpRkcKzzG8cLjJBUlcaLoBElFSWSUZpzzWH+TPzF+MXWWjn4difGLIdw7HJ3SPNMViIYrLK+qbukpJSW/nJN5ZZzML+NkXjlpBeXn7OMDzg7OMdVJT8fTWn1igr2lr49odTye3LRmktycSXU4WDjnHvLTU7ly5t3Ej7tG65DatSpHFclFySQWJHK88LgrmTlRdOKcw/37mfzo7N+ZWP9YOvl3opN/J2L9Yuno15EAc0Az3oHwNJvdQUZRhfN19fwyUvLKOFkrAcosOn8n7yBvI9GBFucS4EV0oIWoQAsdAp3r4X7y2Eu0LB7pUPzzzz9z//3389tvv51x0sLCQi6++GLeffddLr300guLWmhG0ekYNO4aVi/6JztXfMugsROkObsZ2B12UktSOVJwhKP5Rzla4FxOFJ3A5qi/H4xBZ6CTXye6BHYhzj/OlcR08u9EoDlQvrd2wqDX0THI+ThqBCFn7K+ospNaUJPslFcnP2WuZKigrIr86mVfWv2DIup1CpH+XkS5Eh8vOgRaiA44tR5gMcqfOdEiNTi5mT9/PrNnz643WwoICOCuu+7i1VdfleSmlep7+WjWf7aYvLQUkvbsJG6AjDjtTkWVRRzOO8yh/EMczj/MobxDJBYkUmGvf9wUH6MPXQK60DmgM50DOtMloAtdArrQ0a9jm3jrSHiWl9E55k7XsPonxS2ucA5SmF5YTlphBWkFzkdd6QUVpBaUk1lUgc2hklpQTmpBOdTzlheAxagnurqlJzrAUicJigrwIirAgsWk9+StClGvBv8tuWvXLubNm3fW/WPHjuWVV15xS1Ci+Zm9vel7+Wh2/vAtO1Z8I8nNBVJVlayyLA7kHeBA7gH25+3ncN5h0krT6q1v0pnoGtiVboHd6BbUjW6B3ege2J1In0j5F7HwGD8vI32ijfSJrr9p3+5QyS62klZYN+lJKygnvToZyi2tpLzKTmJ2KYnZZx9d2t/LQIS/F5EBXoT7eRHhb3atRwY4t8N8zRj00u9LuE+Dk5vMzMx6x7dxnchgIDs7+6z7Rcs3aNwEdv7wLce2b6EgM4PAiEitQ2rRVFUlsyyTvTl72Z+7n/15+zmQe4C8irx660f5RNEzqCfdg7rTM7gnPYJ6EOsXi14n/7IVLYtepxAZ4Ew+BscG1VunospOemEF6dWtOzVJT+2WoLJKO0UVNooqSjiSVXLW6ymKc7yfCH8zkf5ehPt7EenvTHwi/L1cS5C3PAYTDdPg5KZDhw7s3buXbt261bt/9+7dREVFuS0w0fxCOsQQN3AwJ3ZtZ/t3X8lr4acpqixib/Ze9ubuZU/OHvbl7CO7/MyEXq/o6RLYhd7Bvekd3NuVyEinXtGWeBn1dK4eeLA+qqpSbLWRVVRBRqGVzKIKMosryCysILPISkZRBVlFFWQVW7FVtxRlF1vZm3r2iVFNeh3h1QnQqaTHmQCF+5kJ9XO2AgVKEtTuNTi5+d3vfsdTTz3F+PHj8fLyqrOvvLycZ555hmuukbdsWruh19zIiV3b2bP6R0ZMnorF10/rkDThUB0cLzzOruxd7Mrexc6snRwrPHZGPb2ip1tgN/qG9qVPcB96h/SmR1APvAxe9ZxViPZDURT8vYz4exnpFn72v0ccDudcXplFFdXLqcQno3o7s6iCvNJKKu0OUvLLSck/+1uD4BwDKMTHTJifmVBfE2F+Netnfvp7GSQRaoMa/Cp4ZmYmgwcPRq/Xc//999OzZ08ADh48yIIFC7Db7Wzfvp2IiAiPBtxU8ir4uamqykePP0h20nEu+f10Em64WeuQmkWlvZJ9ufvYlrmN7Znb2Zm9k+LK4jPqxfjF0C+0H/1D+9MvtB+9gnthMVg0iFiI9sVqs5NVZCWruDoBKjzVEpRRVEFOSSXZxVYKy6sadV6TQUeY76lWnzA/U/XnmcmQTIehLY+Nc5OUlMQ999zDDz/8QM1hiqIwbtw4FixYQOfOnZsWeTOQ5Ob89q9bzfdv/QOfwCBmvfUBhnP0tWqtrHYru7J2sTljM1szt7I3Z+8ZE0B66b3oF9qPgWEDGRQ+iAFhAwj2CtYoYiFEQ1htdnJLKskpsboeddWs1yRA2SVWcoqtFFvPPfXI6SxGfa1WIBOhvmZCfEwE+5gIrrUe4mMiyMeEUTpJu5XHB/HLz8/n6NGjqKpK9+7dCQqqv8NZSyTJzfnZbTb+/cAdlOTlMu7uh+h3xVVah9RkVY4q9ubs5bf039iSsYVdWbuodNQd3j7YK5jB4YOJD49nSMQQegT3wKhre4mdEMKposruSnbqJkG1EyNnQlReZW/0+f29DIT4mp3JT3XS41r3NRHs40yInOsmzAZ5ueBcZITic5DkpmG2fLOUX5Z8QHCHGGa8sgBF17r+BaKqKsnFyWxI28DGtI1sydhCSVXdtzXCLGEMixzGsMhhDIkYQpx/nDx7F0LUq9Rqq9PqU/OZW1pJXvWs73nVS35ZJRfym9XXbDgzEfKtWTefkRx5m9rXYzKPjFAs2pcBo8exaenn5KWe5OiW3+iecLHWIZ1Xha2CLRlbWJe6jvWp6zlZfLLO/gBzAAmRCSREJTAscpgkM0KIBvMxG/AxG4g7y9thtdkdKgVldZOe3NJK8koqySu11kmEcksryS+txOZQKbHaKLHaSM4ra1BMXkYdwd4mAr1NBPkYCfQ2EextIsjbWKcsqLosyMeEn7l9dKCW5EbUy+ztQ/z4a/ht6ef8tvRzug0f0SL/h8gqy2JtylrWnFzDpvRNdfrNGHQGBocPZkT0CEZEjaBXcC8ZU0YI4XF6nUKIr5kQXzPdG1BfVVWKKmzVCY+V3JIzW4Nyq/fllTjXrTYHFVUO57hChfWPdF4fg04hsCb5qfUZ5GMi0FJTZiTAYqquZyTQYsLLqGuRvwPORpIbcVbxV1/H1uVfknUikRM7t9E5fqjWIQFwrPAYK5NWsjp5NXtz99bZF+UTxSUdLuHSDpeSEJWAt1FmOBdCtGyKohBgMRJgMZ513KDaVFWlrNJe5zGYc74wZytQfvX66WXlVXZsDpWckkpySirPe53aTAYdgZZTyU6At/HUtreJgFr7Ar2NhPiaiArQ7k1SSW7EWXn7BzDwqt+x7dtl/Lb0c+IGDdEkc1dVlSMFR/jxxI+sTFpJYmFinf0DQgdwRewVXN7xcroFdmtV/7oQQojGUhTF9ZgsJrjh/4CrqLKfJQlyrheUVVFY7kyKCsqd2wVlzkdmlTYHWcVWsorPP+M8QL8O/nz7gHZzTUpyI85p6DU3sPOHb0k7fICT+/YQ229As107qSiJ749/z4rjK+okNAadgYSoBMbEjmFUzChCLaHNFpMQQrRWXkY9kQF6IgMaPshoTStRTUtQYU3SU157+1RCVFi9L9xP24FMJbkR5+QbFEy/K8ay68flbPziE2L69vdoy0h+RT7fH/+ebxK/qfPIyagzMrLDSMZ2GsvlMZfjb5I33YQQwtNqtxJ1bD2jvkhyI84vYeJk9q7+kZQDe0nas9PtM4ZXOapYl7KOL49+ybqUddhU58BaekXPRVEXMb7zeK6MvVISGiGEEA0iyY04L7+QUAaOuZrt33/Nr59/RKf+g9zSepNclMzSI0v5KvErcspzXOV9QvpwbZdrubrz1YRYQpp8HSGEEO2LJDeiQYZPnMzun38g4+hhjm3fTNchCRd0HpvDxi8pv/D5oc/ZkLbBVR7sFcx1Xa/j+q7X0y2o/pnnhRBCiIaQ5EY0iE9gEIPHX8vmr77g18+X0CV+WKNGLS60FvK/I//j04OfklGaAYCCwsgOI7mp+01cFnOZTHUghBDCLSS5EQ029LpJ7PzxO7KTjnNo4zp6jbz8vMckFyWzeP9ivk78mnJbOQCB5kBu6H4Dk3tMJsYvxtNhCyGEaGckuRENZvH1Y9i1N/Lrf5aw7tPFdBt+8VlnDN+fu58P9n7AT0k/4VAdAPQI6sEfev+B33X5HWa9uTlDF0II0Y5oPhviggULiIuLw8vLi4SEBDZv3nzWuvv27WPSpEnExTnnBJo/f37zBSoAGHLNRHyDginKzmTnim/O2L8rexd3r7ybKd9O4YcTP+BQHVza4VL+PfbffHHtF9zQ/QZJbIQQQniUpsnN559/zpw5c3jmmWfYvn07AwcOZNy4cWRlZdVbv6ysjC5duvDSSy8RGRnZzNEKAKPZi5FTbgXgt2WfU15SDFQnNT/dzR+++wO/pv6KXtEzocsEvrj2C94e8zYJUQkycrAQQohmoajqhUzM7h4JCQkMGzaMt956CwCHw0FMTAwPPPAATzzxxDmPjYuL4+GHH+bhhx8+Zz2r1YrVemq46KKiImJiYho0Zbqon8Nh56PHHyIn+QRdR1/Oz91OsvrkasA5Ns11Xa9jdv/ZxPhLfxohhBDuUVRUREBAQIN+f2vWclNZWcm2bdsYM2bMqWB0OsaMGcPGjRvddp25c+cSEBDgWmJi5BduU+l0egZOvhGAwz+vYevBdegUHRO7TeSbG77h+ZHPS2IjhBBCM5olNzk5OdjtdiIiIuqUR0REkJGR4bbrPPnkkxQWFrqWkydPuu3c7VG5rZx3dr3DnUeeICWsHL2qMOF4d5Zeu5S/jvyrvP0khBBCc23+bSmz2YzZLB1Ym0pVVVYlr2LelnmucWqKR3ZD+aYUr+Qy1MQcGNpV4yiFEEIIDZOb0NBQ9Ho9mZmZdcozMzOls3ALk1yUzAubXnCNKBztE80jQx9hXKdxrFc/ZPNXX7Dmw3/RacAgjCZJJIUQQmhLs8dSJpOJIUOGsGrVKleZw+Fg1apVjBgxQquwRC1Vjir+veff3Pj1jWxI24BRZ+TOAXfy5cQvGR83HkVRSLhxCr4hoRRmZbLlq/9pHbIQQgih7avgc+bM4b333uPDDz/kwIED3HPPPZSWlnL77bcDMH36dJ588klX/crKSnbu3MnOnTuprKwkNTWVnTt3cvToUa1uoc06lHeIqcun8vr217HarSREJbDs+mU8EP8AFoPFVc/kZWHUrXcAsOWrLyjISNcqZCGEEALQuM/NlClTyM7O5umnnyYjI4NBgwaxYsUKVyfj5ORkdLXmL0pLSyM+Pt61/corr/DKK69w+eWXs2bNmuYOv02yOWws3LuQt3e9jc1hw9/kzx+H/ZHru15/1nFqelx0CbH9VpC8dxc/vfcmN/3fCzKmjRBCCM1oOs6NFhrznnx7k1KcwuPrHmd39m4Aroi5gqdHPE2oJfS8xxZkpPPhH+/HVmll3N0P0e+KqzwdrhBCiHakVYxzI1qW749/z+RvJrM7eze+Rl9euOQFXr/i9QYlNgCBkVFcfPM0ANZ89G9KC/I9Ga4QQghxVpLctHNWu5XnNj7Hn375EyVVJQwKG8QX133BdV2va/SjpSG/u56ILt2wlpby88J/eihiIYQQ4twkuWnHUktSmf79dL44/AUKCncNuIuF4xfSwbfDBZ1Pp9cz9q4HUXQ6Dv+2nkMb17s5YiGEEOL8JLlppzanb2bKt1PYn7ufQHMg74x5h/vj78ega1of8/C4LiRMnAzAyn8voCQv1x3hCiGEEA0myU07o6oqnx38jDt/upNCayH9Qvrxn2v+w8gOI912jYsm3UJEl25UlBTzw7uv0876rAshhNCYJDftiN1hZ+7mubyw6QXsqp0JXSawcPxConyj3HodvcHA1fc9isFo4sSu7ez68Tu3nl8IIYQ4F0lu2olyWzmPrHmETw9+CsDDgx9m7iVz8TJ4eeR6IR1juHSaczDGtUs+IDdVJiwVQgjRPCS5aQcKrYXM+nEWq0+uxqQz8crlr3BH/zs8PtBe/LgJdBoQj63SyrevvUSVtcKj1xNCCCFAkps2L7ssmxkrZrA7ezf+Jn/eG/se4+LGNcu1FZ2Oq++bg3dAIDknk+T1cCGEEM1Ckps2rOZV76MFRwmzhLFo/CIGRwxu1hh8AoOY8OAfURQde1f/xL61q85/kBBCCNEEkty0USnFKcxcMZOUkhQ6+nZk8dWL6R7UXZNYYvsNZMRNtwCw8v23yU1J1iQOIYQQ7YMkN21QSnEKM3+YSVppGp38O7Fo/CI6+nXUNKaEG28mtv8gbFYrX73yAhUlJZrGI4QQou2S5KaNySjNYNaPs0gvTSfOP44Pxn1AhE+E1mGh0+mZ8MBj+IWGkZ+eyrevz8Nht2sdlhBCiDZIkps2JLc8lzt/upPUklRi/WJ5f9z7hHuHax2Wi3dAIBP/+BQGs5mk3Tv45eMPtA5JCCFEGyTJTRtRUlnC3Svv5njhcSJ9Inlv7HstKrGpER7XhavvmwPAtuVfsWf1jxpHJIQQoq2R5KYNqLJX8fCahzmYd5Bgr2Deu+o9on2jtQ7rrHokjDzVwfi9t0navVPbgIQQQrQpkty0cg7VwVMbnmJT+iYsBgtvj3mbuIA4rcM6rxGTbqHniEtx2G189Y8XyDyeqHVIQggh2ghJblq5t3e+zfJjyzEoBl4d9Sp9Q/pqHVKDKDod4++bQ0zfAVRVlLN07jMUZGZoHZYQQog2QJKbVmz5seX8c7dz1N+nRzzNJR0u0TiixjEYjVz/2F8I69SZssIC/vfiU5QVFmgdlhBCiFZOkptWanf2bp7+9WkAbu93Ozd0v0HjiC6M2duHG598Dv+wcAoy0vnib/9HeXGR1mEJIYRoxSS5aYVyynN4ePXDVDoqGRUziofiH9I6pCbxDQpm0p//indAINnJJ/jv3/6P8pJircMSQgjRSkly08pUOap4dM2jZJdn0zWgK/MunYdep9c6rCYLju7AzU+/6ExwThzjfy88JaMYCyGEuCCS3LQyr259le1Z2/E1+jL/ivl4G721DsltQjrGMvn//obFz5/MY0f534tPSQuOEEKIRpPkphX58cSPLDmwBIAXLnmhVbzy3VihsXFMfuoFvPz8yUg8wn+efYKSvFytwxJCCNGKSHLTSqQUp/DMhmcAZwfiK2Ov1Dgizwnr1Jmbn34Rn6Bgck4m8enTfyI/I03rsIQQQrQSkty0AlX2Kv70y58oqSphYNhAHoh/QOuQPC4sNo5bnn+ZwIgoirIz+ezpP8lAf0IIIRpEkptW4M2db7InZw9+Jj9evuxljDqj1iE1i4DwSH7//MuExXWhrLCA/zz3BMd2bNE6LCGEEC2cJDct3JaMLSzauwiAv1781xY9Z5Qn+AQGMeWZucT06U9leTnL5j3P1m+Woqqq1qEJIYRooSS5acGKK4v5y/q/oKJyY/cbGd1ptNYhacLs7cOkvzxP/9HjQFVZu+QDfnj3dWxVVVqHJoQQogWS5KYFe2nzS6SXptPBtwN/GvYnrcPRlN5g5KrZ93PFjDtRFB371qzkv8//meK8HK1DE0II0cJIctNC/Zz8M18nfo1O0TH30rn4GH20DklziqIw+OrruOGJZzBZvEk7fICP/vQgx3du0zo0IYQQLYgkNy1QUWURf/vtbwDc1vc24sPjNY6oZek8aAh/mPsa4XFdKS8uYuncZ/jlk0XYbTatQxNCCNECSHLTAr2y5RWyy7OJ84/j3oH3ah1OixQU1YFb/vp3Bo2bAMCWr77gP889SUFmhsaRCSGE0JokNy3MhtQNLDu6DAWF5y5+Di+Dl9YhtVgGk4nRM+/h2keecD2m+vCP97FjxTeoDofW4QkhhNCIJDctSFlVGc9tfA6A3/f6PYMjBmscUevQ46JLmP7yG8T06Y/NauXnhf/kP3/9s7TiCCFEOyXJTQvyz93/JK00jSifKB4e/LDW4bQqAeGRTH7qBUbPvAej2YuU/Xv58I/3sfXbZdIXRwgh2hlJblqII/lHWLxvMQBPDn+yTc323VwUnY5B4yZw2ytvuVpx1n70Ph89/iBJe3ZqHZ4QQohmoqjtbKjXoqIiAgICKCwsxN/fX+twAHCoDm5fcTvbs7ZzRcwVvHHlG1qH1OqpDgd716xk3SeLKC8uApyPry6/dSb+oeEaRyeEEKKxGvP7W1puWoCvjn7F9qztWAwWnhz+pNbhtAmKTkf/K8cyc/6/iB9/LYqi4/Bv61n4yD2s+2QRFSUlWocohBDCQ6TlRut4Kou4Zuk15FvzmTNkDrf3u13rkNqk7KTj/Lzwn6Qc2As4p3QYeu2NDP7ddZi8LBpHJ4QQ4nwa8/tbkhuNzds8jyUHltAloAtfXPdFu5nxWwuqqnJs+2bWf/YROcknALD4B5Aw8WYGjB6H0UteuxdCiJZKkptzaEnJzbGCY0z6ehI21cY/x/yTiztcrGk87YXqcHBw4zo2/GcJBRnpAHj5+TNo7ATix1+Dt3+AxhEKIYQ4nSQ359BSkhtVVbl75d1sSNvAqJhRvHnlm5rF0l7ZbTb2rV3J5q++oLB6TByD0UTfUaMZcs0NBEVGaxyhEEKIGpLcnENLSW5WJ6/mwdUPYtQZ+er6r4jxj9EslvbO4bBzZNNGtnz9PzKPHXEWKgqdBw1hwOjxdBk8DJ1er22QQgjRzjXm97ehmWIStVQ5qvjHtn8AML3PdElsNKbT6ek54hJ6XDSSlP172PLNUo7v2OpafIOC6XflWPpfMRb/MHmNXAghWjppudHAJwc+Ye7muQR7BfPdjd/hY/TRJA5xdnlpqez5+Qf2rVnpGicHRSFuQDy9Rl5Ot2EXYfaW700IIZqLPJY6B62Tm+LKYn639HcUWAt46qKnuLnnzc0eg2g4W1UViVt/Y/fKFSTv3eUq1xsMdI4fSq+Rl9Nl8DCMZnnTSgghPEkeS7Vg/97zbwqsBXQO6MyN3W/UOhxxHgajkZ4jLqXniEvJz0jj4K9rOfjrL+SlnuTolt84uuU3jGYvOscPpcvgYXSOHypvWwkhhMak5aYZpZekc82ya6h0VPLWlW9xeczlzXp94R6qqpJzMolDG37h4IZfXG9aAaAoRHXrQZf4YXQePIzwuC4oiqJdsEII0UbIY6lz0DK5eerXp/jy6JcMixzG+2Pfl196bYCqqmQmHiFx2yYSt28h+8SxOvt9g4KJ6TeQmD79ienTn4CISPnehRDiAkhycw5aJTeJBYnc+PWNOFQHn/zuE/qH9W+2a4vmU5ybw/EdWzm2YwtJe3Zis1rr7PcNDiGmT3869ulPx979CIqKlmRHCCEaQJKbc9AquXno54f4+eTPjIkdw2tXvNZs1xXasVVWknpoPyn793By/x7SjxzGYbfVqePl40tE1+5EdetBRNceRHXrgU9gkEYRCyFEyyXJzTlokdzsyt7FH777AzpFx7LrltElsEuzXFe0LFXWCtKPHOLk/j2c3LebjMQj2KuqzqjnGxJKVNcehHXqTGhsJ0JjOhEQEYlOJwMJCiHaL3lbqoV5Y/sbAFzf9XpJbNoxo9mL2H4Die03EAC7rYqc5CQyEg+TfvQwGUcPk5t6kpLcHI7k5nBk8wbXsQaTmZCOMYTGxBEaE0tobBzB0R3xCwlF0em0uiUhWoVz/hv+wnbVnLjxx51t5znjaEqQDarSwErn+VnWougUjCbt/kEmyY2HbUrfxOaMzRh1Ru4ZeI/W4YjzcDhUHDYHDruKw65itzvXVYfqKnM4nNt2uwO1erumzGFXUVVc5arjzE9VxbWNasZBP8K79iWss0pVZQXF2ckU5yRTmp9GaUEa5UWZ2CqtZB47Suaxo3XiVXQGzN4hmH1DMXuHYvYJwewdisk7BIM5AAUdquq8Jqrzr0jVUXvd+RdV7f2oNX9nqzX/OffVLq9Tr9ZfeLXq1P47sOb8dbap+xels45rq069+s5x5v5TMdT6OPsxrnqnH1D/+Ws26lSr79Cz/cKrc67Trn2W69d7unrOf0ZJffdyvhOfe7Oe/ec54Gz3U29hA+7pvDtESxLZxZ9Jfxqq2fUlufEgVVV5c4dzQszJPSYT5RulcUStg93uoKrCTpXVjq2y5tOBrdL5WVXpLLdVObBXOcvtNoezjs2Bo8r5aa/eb7fVLKpr3VGzbq9er05iWsZfnAagS/UCRj8HqqMQ1Z6Das/BYc9BteeiOgpQHTYqSjKpKMms5zx6FJ0fis4Pqj8Vnb+rTNH5oSim5rwxIYRoFpLceND61PXsyt6FWW9mVv9ZWofTLOx2B9ZSGxUlVVjLqrCW2bCW27CW2agsd25XVtipLLdRWWGjstxOZYWNqgo7lVYbVVY7DluLyDCcFNDpFXQ6BZ1eV/3pXBSd4tpWaj4VxVVf0SkoOmqtV++vLq/ZVnSgUxTQKegUoKaea71WXQXn21UKKDiwlhdQUZxNRXE25TVLUTYVxTmoqr06ASo46+0ZzN54+QZh9g7AyycAk48/Zm9/vHwCMPsEYPZxrhu9fFyxKs6Ln/oRVb/tpShUx3Vqv7NMqflRnnlc7VOddqzrHNR/DqXugbUPOVX/9BfRXPXqHlDfC2v1vsVWb/2zXOu0Y05tKvXuO9dLc+d8o+70859RVTnHvvOf77zXP+e56z+u3rqNeGmwMW8YNvR7OVV81h0X5LyhnqdCgy7byNjO+vNr4Hka9MdI47dAJbnxEFVVeWvnWwDc0usWwrzDNI7owqiqSkVpFWWFlc6lyEpZURXlxZXOpaSK8pIqKkqc61UVdrddW6dXMJr1GEz66k8dBmP1p0mPwajDYNShr17X12zXfBqc63rDqUVnUJzr+lPrOn2tz+pyZwLjTGZaI4fdTnFuNsU5ORTlZlOck01xbjZFOc71opxsKsvLsFnLKLGWUZKbes7z6Q0GvAOCsPj7Y/Hzx8vXD4ufH16+/lj8/LD4+jnL/fxd5SaLRfO/4IQQ7ZMkNx6y5uQa9ufux2KwcHu/27UOp141iUtxbgXFeRWU5Fkpznd+lhZUL0XWxrekKGC2GDB7G/DyMWKyGDB7GzF7G5zrFj0miwGTl3MxeukxeukxmavXzc5Fb5COshdKp9cTEB5JQHjkWetYy0qdSU9eLmWFBZQW5LuWspr1wnyspaXYbTZnspSb3agYzN4+mL19MHl7V69719r2dW2bvb0x1XxavDF5WTB6eWE0e6E3yF9TQojGkb81PEBVVd7Z9Q4AU3tNJdgrWLNYHA6VkrwKCrLKKMwqpzDbuRTllFOUW4HN2rCWFi9fI97+Jtdi8TNh8TM6P32NePma8PIxYPE1YfI2tNoWj/bE7O2DOdaH0Ni4c9azVVa6kp/y4iLKi4uoKCmmvLiYipKiOp/lJcVUFBdjq7TisNtd9ZtCbzRi9LJgqk52XIlPTVn1utHshdFsxmAyYTCZMZpMGMzm6vXq8prtWvUkeRKi7ZH/qz1gzck1HMg7gMVg4ba+tzXLNW1VdvIzyshPLz31mVlGQVbZeVtevP1N+IV44RvkhV+wGd8gL3wCzfgGmfEJNOPtb5JWlHbMYDLhHxaOf1h4g4+pqrRSUVyMtbQEa1kZ1vJSrGVlVJaVUlFaSmWZc9taVkplufPTWlaGtbSUqopyKivKcdidibe9qgp7VRUVTUySzkbR6aqTHTN6oxGD0VT9aURvNKI3mlzrNfucZQb0RhN6gxGDqebTiN5QfZzBgM7g/HSuG6rXq+ucUebc1un18jhPiCaS5MZNbNnZFP34I6iwdd8HjCl3cHHMYJTv11Jo0KPo9WA0ohiN6EwmFLMZpfpT5+WF4uWFzmJxrhuNZ72OqqoU51aQk1JCbmrNUkphVtnZ3kBFb9DhH2YhIMxCQLiFgFCLczvUgm+wGYNRBocT7mU0mTGGmPELCb3gc9htVVRWVFBVUU5VRQWVrs/6ypyftspKqiqt2Cqt2KzWWtuVZ5S5Xu12OKgsL6eyvNxdt99kZyRGegM6gx6d3oBerz9zuzopqne7up6uutx1vF7vWhSdHr3B+ekq1+mc+/R6dDXlOj06va5uWe2lukzR69Dp9CjV59DpdK51RadDUXSSwAmPkuTGTapSU8n8698AuMZVupZ01jb+ZAYDOosFvH0oD+hIiW8MRZYoigxhFCpB2Kg/+TGZIDBIT1C4F0FRPgTHBBAcG4RfmI88JhKtjt5gxOJrxOLr5/Zzq6qK3WarTnaszgTIasVeVYWtqhJ7lc35aavCXlmJzVaFvbIKu63KmShVVbn2OctO7bNXVWK327FXVeGw2bDbbNhtVTjsNevVS1UVDlsVdpvtjPhq6pw5fnXboeh0zqSnJpGqToZqJ0GuxEipW+aqpzuVOLnOp9M5k7SadUWptU9fa1057Ti9q37dc+rrOc+pa6DUvDmpd9VxfdasKzXH1FqvLtfpdNVvRVaf+/Rja5JBXa11V51a56h97Zr6ddarE0pFaReJpSQ3bqILCMBv3Fg2pW2i2FpEnF8sXf06ozrsYLOjVlWh2myolZXOdasVR2UlakUFDqsVe0UlZZZwiv1iKfKLpdg3hhLfjjj0Z45Dojhs+JRl4FuSgm9JGj6lqfiWpmOqLKzzil4FkAbovL3R+fq6Fr2vDzqf6m0fH3S+Puh8fNC7tn2dx/j41F28vWU0XNEmKIqCofrRE/hqGouqqjjs9jqJkN1mq96utW6347DbcNicn6e2bTjsdux2G6rdgb1WHYfd7jy+pq7dhr3WPtficKDa7Tgcp8pUhx2H3VG9v7qsuu6p4x2n7at1jP3MpK3OfTsc2B0OqCe5Ex6mKPUmV0p1oqaggCtROnfSBKfXcR4b3qkz4+99RLNbbBHJzYIFC/j73/9ORkYGAwcO5M0332T48OFnrf/f//6Xp556ihMnTtC9e3fmzZvH7373u2aM+Ezmzp1J/tMUnl35M156H1ZM+pgQS0i9dR12B/kZZWQnF5OVXEx2UhE5J0uwVTnOqGswQnAgBPvaCLJUEGAowcdRgFJeiqOkEkepBUdJJI5SP+wlJThKS3EUF2MvKYHqeYscZWU4ysogK6vJ96lYLM7Ep2ap2fbxdu7zsqCzWFC8a61bvKrXvVC8LOi8zChmL+enl1edR3OK0dgu/lUhRA1FUVyPn87+QLp1Uh0OZzLksDvX7c7PmnWHw+FMomqV1RzjSqQcdY9Rq8tOP8Z1XO111VHvvtP317uvAeep2Yeq1tpWQa2p5yxXVWe56iqzV48cruJwOEB1VI9aXutarvq11tW65zx1vUa+0Vp9bRUHDveN3lGH0WT2zIkbSPPk5vPPP2fOnDm8++67JCQkMH/+fMaNG8ehQ4cIDz+zA+OGDRu45ZZbmDt3Ltdccw2ffPIJEydOZPv27fTr10+DOzhlyf7FANzU4yZXYlNltZObWkJOSgk5J4vJPunsJ2OvJ5ExmvWExfoR1smP8Fg/wmL9CAz3rs6OG89RWYmjuNiZ8JSUYC+uTn5KnGX2khIcrrISHGWl1eXOz9oLDme8ank59vJy7Lm5F/hTOj/FbHb1SdKZTK6+SUrNusl4ap/RiGKsLjPWbBtc/ZsUQ82nwbVPMRhAb6guO23boAe93rmu11eX653/inGVOZupMRicn3oDil7nrKPTndrf3l3InLxNmse3iYM/ttg5hD0UVzPcrwLoAb1OAZ0eDJ7q39dSv7tmUJ2ouBKWmgSovnVVBYd6RmJUk5iBMyF1zqBSc2xNcqVWJ3KcKnMlXafWnSE5MFl8tPuZ0AJmBU9ISGDYsGG89ZZzwDuHw0FMTAwPPPAATzzxxBn1p0yZQmlpKd9++62r7KKLLmLQoEG8++67572ep2YFrzy4nCt++Rthxd24J+QPOPIt5GbbKcyr/8drNKmEhamEhTsIC7cRHlpFYEAVCg5w2MFhA9VevW6vXrdVL3bnBEGu9Zp9jlPH1PmsXe6oXuxUT3J0aqmz3+Har6oO1Co7jkoHjko7DqsdR5WjetuBWqVWbzs/ndsqDpvqXLeBanNuO6qq1+2gVt+O2lZbpRX11Ki9inPbtV7ffmrW1TNHwq05trqOqy7qads1+9X6y+obYVc59We0dhx1y9Qzys84zxn7a13vbHXOGL23dlk9/+/UV7+e8rPVdxbVfy8NPb7eao3994fSuL92L6gxswn3d/ZDzxK3pxtbG3D+JoXQpIMb8V166OfkiVGMm8rQsSt+L6136zlbzazglZWVbNu2jSeffNJVptPpGDNmDBs3bqz3mI0bNzJnzpw6ZePGjePLL7+st77VasVqtbq2i4o88zrp5mRfbt7xLAbVyNEjAKd+Y1t0+YQaThBmPE6o4ThhxmME6NNR7Cqk41xasOrfv5zRFmGqXppIVcGZ0ymoDgXVrlTnZbW3leqcS6kur7XfoVTnZorzXxU1ZXZQ1VrHOYDa2ypQXV5Tz7VfPbWOqrjywJp11Ab8TVFTl5q//uRxmxCifbCkFeP+VwEaTtPkJicnB7vdTkRERJ3yiIgIDh48WO8xGRkZ9dbPyMiot/7cuXN57rnn3BPwOSidvVCVMkq8UhhmTCbYK5MQczohlky8jWVAdbOsogMlBHRh1ev66vLqT9e64bTt6rKz1VN09ZQ5H6ecukb1unPCo+rtmjLl1D7nZEb1l9U0M9Qc69qu00RxZv2zfuKaT0h/ehMGnFG3niaNU3VOL6+zfbay07/IszQr1FOuOhxQ3ZHSmVRVbzsczqZfuwNqPxO3O5+zY69+Tm+vbsK117SUVZ+jpg44W91qmoMdNS1t1c2/NbNvO6rPX7M4ah1bayZttXpf7am/nbHVbNfUVV3N13WmCVdVUJRT9+OaXVs9Vce1WbOt1Nl3Rh2qz19T6PpHcK2Ya1WpNTV5reNqx8Fpx51nqu0zph0/7fizHXfOdc7IY+s9X32XqPe655l9u57j6r/e6WVnu8f6i8/7s6yv/Cz/r53zgUFjrwONaDxpYMUGPtA4b7XzVTj/CdwQRAM1+EfTsIrmznEXHosbaN7nxtOefPLJOi09RUVFxMTEuP06I7sn0O+5MkyBChajxe3nFy1PPU9whBBCtACaJjehoaHo9XoyMzPrlGdmZhIZWf+cOJGRkY2qbzabMZubp9d2QJh3s1xHCCGEEGen6SsdJpOJIUOGsGrVKleZw+Fg1apVjBgxot5jRowYUac+wE8//XTW+kIIIYRoXzR/LDVnzhxuu+02hg4dyvDhw5k/fz6lpaXcfrtzJu3p06fToUMH5s6dC8BDDz3E5Zdfzj/+8Q8mTJjAZ599xtatW/nXv/6l5W0IIYQQooXQPLmZMmUK2dnZPP3002RkZDBo0CBWrFjh6jScnJzsHEGx2sUXX8wnn3zC//3f//HnP/+Z7t278+WXX2o+xo0QQgghWgbNx7lpbp4a50YIIYQQntOY398yjKoQQggh2hRJboQQQgjRpkhyI4QQQog2RZIbIYQQQrQpktwIIYQQok2R5EYIIYQQbYokN0IIIYRoUyS5EUIIIUSbIsmNEEIIIdoUzadfaG41AzIXFRVpHIkQQgghGqrm93ZDJlZod8lNcXExADExMRpHIoQQQojGKi4uJiAg4Jx12t3cUg6Hg7S0NPz8/FAUxa3nLioqIiYmhpMnT7areava632D3Ht7vPf2et8g994e770l3beqqhQXFxMdHV1nQu36tLuWG51OR8eOHT16DX9/f83/EGihvd43yL23x3tvr/cNcu/t8d5byn2fr8WmhnQoFkIIIUSbIsmNEEIIIdoUSW7cyGw288wzz2A2m7UOpVm11/sGuff2eO/t9b5B7r093ntrve9216FYCCGEEG2btNwIIYQQok2R5EYIIYQQbYokN0IIIYRoUyS5EUIIIUSbIsmNmyxYsIC4uDi8vLxISEhg8+bNWofkdnPnzmXYsGH4+fkRHh7OxIkTOXToUJ06o0aNQlGUOsvdd9+tUcTu8eyzz55xT7169XLtr6io4L777iMkJARfX18mTZpEZmamhhG7T1xc3Bn3rigK9913H9C2vu9ffvmFa6+9lujoaBRF4csvv6yzX1VVnn76aaKiorBYLIwZM4YjR47UqZOXl8e0adPw9/cnMDCQO+64g5KSkma8i8Y7131XVVXx+OOP079/f3x8fIiOjmb69OmkpaXVOUd9f05eeumlZr6Txjvfdz5jxowz7mv8+PF16rTG7xzOf+/1/X+vKAp///vfXXVa8vcuyY0bfP7558yZM4dnnnmG7du3M3DgQMaNG0dWVpbWobnV2rVrue+++/jtt9/46aefqKqqYuzYsZSWltapN3v2bNLT013Lyy+/rFHE7tO3b98697R+/XrXvkceeYRvvvmG//73v6xdu5a0tDRuvPFGDaN1ny1bttS5759++gmAyZMnu+q0le+7tLSUgQMHsmDBgnr3v/zyy7zxxhu8++67bNq0CR8fH8aNG0dFRYWrzrRp09i3bx8//fQT3377Lb/88gt33nlnc93CBTnXfZeVlbF9+3aeeuoptm/fztKlSzl06BDXXXfdGXWff/75On8OHnjggeYIv0nO950DjB8/vs59ffrpp3X2t8bvHM5/77XvOT09nQ8++ABFUZg0aVKdei32e1dFkw0fPly97777XNt2u12Njo5W586dq2FUnpeVlaUC6tq1a11ll19+ufrQQw9pF5QHPPPMM+rAgQPr3VdQUKAajUb1v//9r6vswIEDKqBu3LixmSJsPg899JDatWtX1eFwqKraNr9vVVVVQF22bJlr2+FwqJGRkerf//53V1lBQYFqNpvVTz/9VFVVVd2/f78KqFu2bHHV+f7771VFUdTU1NRmi70pTr/v+mzevFkF1KSkJFdZp06d1Ndee82zwXlYffd+2223qddff/1Zj2kL37mqNux7v/7669Urr7yyTllL/t6l5aaJKisr2bZtG2PGjHGV6XQ6xowZw8aNGzWMzPMKCwsBCA4OrlP+8ccfExoaSr9+/XjyyScpKyvTIjy3OnLkCNHR0XTp0oVp06aRnJwMwLZt26iqqqrz/ffq1YvY2Ng29/1XVlayZMkSZs6cWWfS2bb4fZ/u+PHjZGRk1PmeAwICSEhIcH3PGzduJDAwkKFDh7rqjBkzBp1Ox6ZNm5o9Zk8pLCxEURQCAwPrlL/00kuEhIQQHx/P3//+d2w2mzYButmaNWsIDw+nZ8+e3HPPPeTm5rr2tZfvPDMzk+XLl3PHHXecsa+lfu/tbuJMd8vJycFutxMREVGnPCIigoMHD2oUlec5HA4efvhhRo4cSb9+/VzlU6dOpVOnTkRHR7N7924ef/xxDh06xNKlSzWMtmkSEhJYtGgRPXv2JD09neeee45LL72UvXv3kpGRgclkOuMv+oiICDIyMrQJ2EO+/PJLCgoKmDFjhqusLX7f9an5Luv7/7xmX0ZGBuHh4XX2GwwGgoOD28yfhYqKCh5//HFuueWWOpMoPvjggwwePJjg4GA2bNjAk08+SXp6Oq+++qqG0Tbd+PHjufHGG+ncuTOJiYn8+c9/5uqrr2bjxo3o9fp28Z0DfPjhh/j5+Z3xuL0lf++S3IgLct9997F37946fU+AOs+a+/fvT1RUFKNHjyYxMZGuXbs2d5hucfXVV7vWBwwYQEJCAp06deI///kPFotFw8ia1/vvv8/VV19NdHS0q6wtft+iflVVVdx8882oqso777xTZ9+cOXNc6wMGDMBkMnHXXXcxd+7cVjdsf22///3vXev9+/dnwIABdO3alTVr1jB69GgNI2teH3zwAdOmTcPLy6tOeUv+3uWxVBOFhoai1+vPeDsmMzOTyMhIjaLyrPvvv59vv/2W1atX07Fjx3PWTUhIAODo0aPNEVqzCAwMpEePHhw9epTIyEgqKyspKCioU6etff9JSUmsXLmSWbNmnbNeW/y+Add3ea7/zyMjI894icBms5GXl9fq/yzUJDZJSUn89NNPdVpt6pOQkIDNZuPEiRPNE2Az6dKlC6Ghoa4/3235O6+xbt06Dh06dN7/96Flfe+S3DSRyWRiyJAhrFq1ylXmcDhYtWoVI0aM0DAy91NVlfvvv59ly5bx888/07lz5/Mes3PnTgCioqI8HF3zKSkpITExkaioKIYMGYLRaKzz/R86dIjk5OQ29f0vXLiQ8PBwJkyYcM56bfH7BujcuTORkZF1vueioiI2bdrk+p5HjBhBQUEB27Ztc9X5+eefcTgcrqSvNapJbI4cOcLKlSsJCQk57zE7d+5Ep9Od8cimtUtJSSE3N9f157utfue1vf/++wwZMoSBAweet26L+t617tHcFnz22Weq2WxWFy1apO7fv1+988471cDAQDUjI0Pr0NzqnnvuUQMCAtQ1a9ao6enprqWsrExVVVU9evSo+vzzz6tbt25Vjx8/rn711Vdqly5d1Msuu0zjyJvm0UcfVdesWaMeP35c/fXXX9UxY8aooaGhalZWlqqqqnr33XersbGx6s8//6xu3bpVHTFihDpixAiNo3Yfu92uxsbGqo8//nid8rb2fRcXF6s7duxQd+zYoQLqq6++qu7YscP1VtBLL72kBgYGql999ZW6e/du9frrr1c7d+6slpeXu84xfvx4NT4+Xt20aZO6fv16tXv37uott9yi1S01yLnuu7KyUr3uuuvUjh07qjt37qzz/73ValVVVVU3bNigvvbaa+rOnTvVxMREdcmSJWpYWJg6ffp0je/s/M5178XFxepjjz2mbty4UT1+/Li6cuVKdfDgwWr37t3ViooK1zla43euquf/866qqlpYWKh6e3ur77zzzhnHt/TvXZIbN3nzzTfV2NhY1WQyqcOHD1d/++03rUNyO6DeZeHChaqqqmpycrJ62WWXqcHBwarZbFa7deum/vGPf1QLCwu1DbyJpkyZokZFRakmk0nt0KGDOmXKFPXo0aOu/eXl5eq9996rBgUFqd7e3uoNN9ygpqenaxixe/3www8qoB46dKhOeVv7vlevXl3vn+/bbrtNVVXn6+BPPfWUGhERoZrNZnX06NFn/Exyc3PVW265RfX19VX9/f3V22+/XS0uLtbgbhruXPd9/Pjxs/5/v3r1alVVVXXbtm1qQkKCGhAQoHp5eam9e/dWX3zxxToJQEt1rnsvKytTx44dq4aFhalGo1Ht1KmTOnv27DP+0doav3NVPf+fd1VV1X/+85+qxWJRCwoKzji+pX/viqqqqkebhoQQQgghmpH0uRFCCCFEmyLJjRBCCCHaFEluhBBCCNGmSHIjhBBCiDZFkhshhBBCtCmS3AghhBCiTZHkRgghhBBtiiQ3QgghhGhTJLkRQnjEmjVrUBTljElFm8uqVavo3bs3dru9SedRFIUvv/yywfVXrFjBoEGDcDgcTbquEOLCSXIjhGiyUaNG8fDDD9cpu/jii0lPTycgIECTmP70pz/xf//3f+j1+iadJz09nauvvrrB9cePH4/RaOTjjz9u0nWFEBdOkhshhEeYTCYiIyNRFKXZr71+/XoSExOZNGlSk88VGRmJ2Wxu1DEzZszgjTfeaPK1hRAXRpIbIUSTzJgxg7Vr1/L666+jKAqKonDixIkzHkstWrSIwMBAvv32W3r27Im3tzc33XQTZWVlfPjhh8TFxREUFMSDDz5Y51GS1Wrlscceo0OHDvj4+JCQkMCaNWvOGdNnn33GVVddhZeXl6vs2WefZdCgQXzwwQfExsbi6+vLvffei91u5+WXXyYyMpLw8HBeeOGFOueq/VjqxIkTKIrC0qVLueKKK/D29mbgwIFs3LixzjHXXnstW7duJTEx8cJ/sEKIC2bQOgAhROv2+uuvc/jwYfr168fzzz8PQFhYGCdOnDijbllZGW+88QafffYZxcXF3Hjjjdxwww0EBgby3XffcezYMSZNmsTIkSOZMmUKAPfffz/79+/ns88+Izo6mmXLljF+/Hj27NlD9+7d641p3bp1TJ069YzyxMREvv/+e1asWEFiYiI33XQTx44do0ePHqxdu5YNGzYwc+ZMxowZQ0JCwlnv+S9/+QuvvPIK3bt35y9/+Qu33HILR48exWBw/pUaGxtLREQE69ato2vXro39kQohmkiSGyFEkwQEBGAymfD29iYyMvKcdauqqnjnnXdcv/BvuukmPvroIzIzM/H19aVPnz5cccUVrF69milTppCcnMzChQtJTk4mOjoagMcee4wVK1awcOFCXnzxxXqvk5SU5Kpfm8Ph4IMPPsDPz891rUOHDvHdd9+h0+no2bMn8+bNY/Xq1edMbh577DEmTJgAwHPPPUffvn05evQovXr1ctWJjo4mKSnp3D88IYRHSHIjhGg23t7edVoyIiIiiIuLw9fXt05ZVlYWAHv27MFut9OjR48657FarYSEhJz1OuXl5XUeSdWIi4vDz8+vzrX0ej06na5OWc31z2bAgAGu9aioKACysrLqJDcWi4WysrJznkcI4RmS3Aghmo3RaKyzrShKvWU1r1GXlJSg1+vZtm3bGW891U6IThcaGkp+fn6Tr9+Q+6jpMH36MXl5eYSFhZ3zPEIIz5DkRgjRZCaTqcnjydQnPj4eu91OVlYWl156aaOO279/v9vjaaiKigoSExOJj4/XLAYh2jN5W0oI0WRxcXFs2rSJEydOkJOT47YB7Hr06MG0adOYPn06S5cu5fjx42zevJm5c+eyfPnysx43btw41q9f75YYLsRvv/2G2WxmxIgRmsUgRHsmyY0Qoskee+wx9Ho9ffr0ISwsjOTkZLede+HChUyfPp1HH32Unj17MnHiRLZs2UJsbOxZj5k2bRr79u3j0KFDboujMT799FOmTZuGt7e3JtcXor1TVFVVtQ5CCCHc7Y9//CNFRUX885//bNbr5uTk0LNnT7Zu3Urnzp2b9dpCCCdpuRFCtEl/+ctf6NSpU7PP8XTixAnefvttSWyE0JC03AghhBCiTZGWGyGEEEK0KZLcCCGEEKJNkeRGCCGEEG2KJDdCCCGEaFMkuRFCCCFEmyLJjRBCCCHaFEluhBBCCNGmSHIjhBBCiDZFkhshhBBCtCn/D5Lzaq7yXPkfAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\dae\\petsc_chem_doc_17_0.png" - } - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# First plot all y's on one plot\n", "\n", @@ -1102,24 +271,9 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGwCAYAAABSN5pGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpE0lEQVR4nO3de1gWdf7/8ed9c0Y5eOSgKKR4NjEPhLlZiZG5FR1N3Uyz7GClWVmaafVrs6w2s9ys/Za2u5XWVtaaUUbaVhKeK495Jg+AJ0BBTvc9vz9uuPEWMFBgbuD1uK65Zu6Zz8y8h9v2fu3MZ2YshmEYiIiIiIiT1ewCRERERNyNApKIiIjIGRSQRERERM6ggCQiIiJyBgUkERERkTMoIImIiIicQQFJRERE5AyeZhdQX9ntdg4ePEhAQAAWi8XsckRERKQKDMPgxIkThIeHY7VWfp5IAekcHTx4kIiICLPLEBERkXPw+++/07Zt20qXKyCdo4CAAMDxBw4MDDS5GhEREamKnJwcIiIinL/jlVFAOkell9UCAwMVkEREROqZP+oeo07aIiIiImdQQBIRERE5gwKSiIiIyBnUB0lERKSBsdlsFBUVmV2GKby8vPDw8Djv7SggiYiINBCGYZCenk5WVpbZpZgqODiY0NDQ83pOoQKSiIhIA1Eajlq3bo2/v3+je5CxYRjk5eWRmZkJQFhY2DlvSwFJRESkAbDZbM5w1KJFC7PLMY2fnx8AmZmZtG7d+pwvt6mTtoiISANQ2ufI39/f5ErMV/o3OJ9+WApIIiIiDUhju6xWkZr4GyggiYiIiJzBLQLSvHnziIyMxNfXl9jYWFavXn3W9h999BFdunTB19eXnj17smzZMpflhmEwY8YMwsLC8PPzIz4+nh07djiXr1y5EovFUuGwZs2aWjlGERERqT9MD0iLFy9m8uTJzJw5k/Xr19OrVy8SEhKcPdDPtGrVKkaMGMG4cePYsGEDiYmJJCYmsmnTJmeb2bNnM3fuXObPn09qaipNmjQhISGB/Px8AAYMGMChQ4dchjvvvJOoqCj69u1bJ8ctIiIibswwWf/+/Y0JEyY4P9tsNiM8PNyYNWtWhe1vueUWY9iwYS7zYmNjjbvvvtswDMOw2+1GaGio8eKLLzqXZ2VlGT4+PsYHH3xQ4TYLCwuNVq1aGc8880yV687OzjYAIzs7u8rrVMnxNMPIPmgYdnvNbldERBq0U6dOGVu2bDFOnTpldik16uOPPzbi4+ONli1bGgEBAcbFF19sJCUlnXWds/0tqvr7beoZpMLCQtatW0d8fLxzntVqJT4+npSUlArXSUlJcWkPkJCQ4Gy/Z88e0tPTXdoEBQURGxtb6TY///xzjh49ytixYyuttaCggJycHJehVnw5Bf7WBV67CH6aD7bG+SRUERERgP/9738MGTKEZcuWsW7dOi6//HKuueYaNmzYUKv7NfU5SEeOHMFmsxESEuIyPyQkhG3btlW4Tnp6eoXt09PTnctL51XW5kxvv/02CQkJtG3bttJaZ82axdNPP332A6oJhgEWDzi2G5Ieg00fw01vQ3C72t+3iIg0GIZhcKrIZsq+/bw8qnwn2T//+U8eeughDh48iI+Pj3N+YmIiAQEB/Otf/3Jp/9xzz/HZZ5/x3//+l969e9do3adr9A+K3L9/P1999RUffvjhWdtNnTqVyZMnOz/n5OQQERFR8wWNXAQFJ+GXRfDN07B/NcwfCLd+AJGX1Pz+RESkQTpVZKPbjK9M2feWZxLw965axLj55pt58MEH+fzzz7n55psBx0Mev/jiC77++uty7e12OydOnKB58+Y1WvOZTL3E1rJlSzw8PMjIyHCZn5GRQWhoaIXrhIaGnrV96biq21ywYAEtWrTg2muvPWutPj4+BAYGugy1xqcp9LsT7vke2vSB/Gz4YARkbK69fYqIiJjAz8+PkSNHsmDBAue8f//737Rr147LLrusXPuXXnqJkydPcsstt9RqXaaeQfL29qZPnz4kJyeTmJgIOJJhcnIy999/f4XrxMXFkZyczKRJk5zzli9fTlxcHABRUVGEhoaSnJxMTEwM4Djbk5qayr333uuyLcMwWLBgAaNHj8bLy6vGj++8NYuEMcvgX9dD2ir4901w53IIqvxSoIiICDguc215JsG0fVfHXXfdRb9+/Thw4ABt2rRh4cKFjBkzptxluvfff5+nn36azz77jNatW9dkyeWdR8fyGrFo0SLDx8fHWLhwobFlyxZj/PjxRnBwsJGenm4YhmHcdtttxuOPP+5s/+OPPxqenp7GSy+9ZGzdutWYOXOm4eXlZfz666/ONs8//7wRHBxsfPbZZ8Yvv/xiXHfddUZUVFS53uzffPONARhbt26tdt21dhdbRfKOGcbr/Q1jZqBhvHGJYRQV1P4+RUSkXqnvd7FddNFFxnPPPWesXbvWsFqtRlpamsvyDz74wPDz8zOWLl36h9uqibvYTO+DNHz4cA4fPsyMGTNIT08nJiaGpKQkZyfrtLQ0rNayK4EDBgzg/fffZ/r06UybNo3o6GiWLFlCjx49nG2mTJlCbm4u48ePJysri4EDB5KUlISvr6/Lvt9++20GDBhAly5d6uZgz5VfMxj1H3jzUkj/FX74G1z2uNlViYiI1Jg777yTOXPmcODAAeLj4136+X7wwQfccccdLFq0iGHDhtVJPRbDMIw62VMDk5OTQ1BQENnZ2bXbH+l0mz6G/9wBVk8YvxJCe9bNfkVExO3l5+ezZ88eoqKiyp0QqA+ys7MJDw+nuLiYf/7znwwfPhxwXFa7/fbbefXVV7nhhhuc7f38/AgKCqpwW2f7W1T199v0J2lLNXS/AbpeA/ZiWHKvnpEkIiINRlBQEDfeeCNNmzZ19ksGeOuttyguLmbChAmEhYU5h4kTJ9ZqPaZfYpNqsFhg2N9g7w+OS22r/wFx95ldlYiISI04cOAAo0aNcnke0sqVK02pRWeQ6pumrWHwTMf09y9Bfi090VtERKSOHD9+nE8//ZSVK1cyYcIEs8sBFJDqp963QYuOkHcUUuaZXY2IiMh56d27N2PGjOGFF16gc+fOZpcD6BJb/eThCVc8CR/dDimvOx4q2bSV2VWJiIick71795pdQjk6g1RfdbsOwmKg8CR8/7LZ1YiIiDQoCkj1lcUC8U85pte+DScyztpcREREqk4BqT7rcDlExIKtENb8w+xqREREGgwFpPourqS3/5q3oTDP3FpEREQaCAWk+q7LnyG4PZw6Bj9/YHY1IiIiDYICUn1n9YCLSx4W+dPfwW43tx4REZEGQAGpIej9F/AJgqM7YcdXZlcjIiJSK3788Uc8PT2JiYmp9X0pIDUEPk2h7xjHtB4cKSIiDVBWVhajR49m8ODBdbI/BaSGot9dgAX2fg9Hd5ldjYiISJX885//pEWLFhQUFLjMT0xM5LbbbnN+vueeexg5ciRxcXF1UpcCUkMRHAEd4x3TG/5tbi0iImI+w4DCXHMGw6hymTfffDM2m43PP//cOS8zM5MvvviCO+64A4AFCxawe/duZs6cWeN/psroVSMNyUWjYedy2PgeXD4NPLzMrkhERMxSlAfPhZuz72kHwbtJlZr6+fkxcuRIFixYwM033wzAv//9b9q1a8dll13Gjh07ePzxx/n+++/x9Ky72KIzSA1Jp6ugSSs4mQE7vja7GhERkSq56667+Prrrzlw4AAACxcuZMyYMdjtdkaOHMnTTz9Np06d6rQmi2FU4zyYOOXk5BAUFER2djaBgYFml1Pm6ydh1VxHWBq52OxqRESkjuTn57Nnzx6ioqLw9fV1XOYqMukBwl7+jldiVUOfPn246aabuPLKK+nfvz979+4lICCAZs2a4eHh4Wxnt9sxDAMPDw++/vprrrjiinLbKve3OE1Vf791ia2huWi0IyDt+BpyDkKgSadXRUTEXBZLlS9zuYM777yTOXPmcODAAeLj44mIiMBut/Prr7+6tPv73//Ot99+y3/+8x+ioqJqrR5dYmtoWkZDuwFg2B19kUREROqBkSNHsn//fv7xj384O2dbrVZ69OjhMrRu3RpfX1969OhBkya1FwAVkBqi3n9xjH/5sFp3EoiIiJglKCiIG2+8kaZNm5KYmGh2OQpIDVLXa8DDB478Bum/mF2NiIhIlRw4cIBRo0bh4+NTaZunnnqKjRs31notCkgNkW8gdL7KMf3Lh+bWIiIi8geOHz/Op59+ysqVK5kwYYLZ5QAKSA1Xz1sc400fg91mbi0iIiJn0bt3b8aMGcMLL7xA586dzS4H0F1sDVf0EPANghOHYN+PEHWp2RWJiIhUaO/evWaXUI7OIDVUnj7Q7TrHtC6ziYiIVIsCUkNWeplty+dQlG9uLSIiUif0/Oea+RsoIDVk7S+BgHAoyIad35hdjYiI1CIvL8f7N/PyTHp6thsp/RuU/k3OhfogNWRWK3S/Hn6aB1s+g65/NrsiERGpJR4eHgQHB5OZmQmAv78/lmq+7qO+MwyDvLw8MjMzCQ4OdnlFSXUpIDV03a5zBKTtX0JxgaNvkoiINEihoaEAzpDUWAUHBzv/FudKAamha9sPAsIcd7PtWlH2fCQREWlwLBYLYWFhtG7dmqKiIrPLMYWXl9d5nTkqpYDU0Fmt0PVaWP2m4zKbApKISIPn4eFRIyGhMVMn7cag9Hb/7V9AcaG5tYiIiNQDCkiNQbuLoUlryM+GPf8zuxoRERG3p4DUGFg9HC+wBdiyxNRSRERE6gMFpMai9DLbti/AVmxuLSIiIm5OAamxaH8J+DWDU8fg91SzqxEREXFrCkiNhYcndCq5g23bF+bWIiIi4uZMD0jz5s0jMjISX19fYmNjWb169Vnbf/TRR3Tp0gVfX1969uzJsmXLXJYbhsGMGTMICwvDz8+P+Ph4duzYUW47X3zxBbGxsfj5+dGsWTMSExNr8rDcU5dhjvG2paB39YiIiFTK1IC0ePFiJk+ezMyZM1m/fj29evUiISGh0ieArlq1ihEjRjBu3Dg2bNhAYmIiiYmJbNq0ydlm9uzZzJ07l/nz55OamkqTJk1ISEggP7/sZa0ff/wxt912G2PHjuXnn3/mxx9/ZOTIkbV+vKbrcAV4+kLWPsjcYnY1IiIibstimPja39jYWPr168frr78OgN1uJyIiggceeIDHH3+8XPvhw4eTm5vL0qVLnfMuvvhiYmJimD9/PoZhEB4ezsMPP8wjjzwCQHZ2NiEhISxcuJBbb72V4uJiIiMjefrppxk3btw5156Tk0NQUBDZ2dkEBgae83bq3Pu3wm9fwuVPwKApZlcjIiJSp6r6+23aGaTCwkLWrVtHfHx8WTFWK/Hx8aSkpFS4TkpKikt7gISEBGf7PXv2kJ6e7tImKCiI2NhYZ5v169dz4MABrFYrvXv3JiwsjKFDh7qchapIQUEBOTk5LkO9dPplNhEREamQaQHpyJEj2Gw2QkJCXOaHhISQnp5e4Trp6elnbV86Plub3bt3A/DUU08xffp0li5dSrNmzbjssss4duxYpfXOmjWLoKAg5xAREVGNo3UjnYeCxQqHfoas382uRkRExC2Z3km7rtntdgCeeOIJbrzxRvr06cOCBQuwWCx89NFHla43depUsrOzncPvv9fTcNGkJUTEOqa3f2luLSIiIm7KtIDUsmVLPDw8yMjIcJmfkZFBaGhoheuEhoaetX3p+GxtwsLCAOjWrZtzuY+PDxdccAFpaWmV1uvj40NgYKDLUG91HuoY/6aAJCIiUhHTApK3tzd9+vQhOTnZOc9ut5OcnExcXFyF68TFxbm0B1i+fLmzfVRUFKGhoS5tcnJySE1Ndbbp06cPPj4+bN++3dmmqKiIvXv30r59+xo7PrfWqSQg7f0BCk6YW4uIiIgb8jRz55MnT+b222+nb9++9O/fnzlz5pCbm8vYsWMBGD16NG3atGHWrFkATJw4kUGDBvHyyy8zbNgwFi1axNq1a3nrrbcAsFgsTJo0iWeffZbo6GiioqJ48sknCQ8Pdz7nKDAwkHvuuYeZM2cSERFB+/btefHFFwG4+eab6/6PYIaW0dAsCo7vgV0roNu1ZlckIiLiVkwNSMOHD+fw4cPMmDGD9PR0YmJiSEpKcnayTktLw2otO8k1YMAA3n//faZPn860adOIjo5myZIl9OjRw9lmypQp5ObmMn78eLKyshg4cCBJSUn4+vo627z44ot4enpy2223cerUKWJjY/n2229p1qxZ3R28mSwWx2W2n/4OvyUpIImIiJzB1Ocg1Wf19jlIpXZ/B/+8FvxbwiO/gdXD7IpERERqnds/B0lM1i4OfAIh7wgcWG92NSIiIm5FAamx8vSGjoMd07qbTURExIUCUmNWejfb9iRz6xAREXEzCkiNWcd4wAKZmyF7v9nViIiIuA0FpMasSQto288xvWO5ubWIiIi4EQWkxq7TlY7xjq/NrUNERMSNKCA1dtElAWn3SiguMLUUERERd6GA1NiFXghNQ6Eoz/HqEREREVFAavQsFoge4phWPyQRERFAAUkAOiU4xju+MrcOERERN6GAJHDBZWD1gmO74chOs6sRERExnQKSgE8AtI9zTO/UZTYREREFJHEovZtN/ZBEREQUkKREx5KO2nt/gMI8c2sRERExmQKSOLTqDEERYCvQ7f4iItLoKSCJg8VS8m421A9JREQaPQUkKeN8HtLXYBjm1iIiImIiBSQpE3Wp43b/43vh6C6zqxERETGNApKU8QmA9gMc07rMJiIijZgCkrgqvcy28xtz6xARETGRApK4Ku2ovfcHKDplbi0iIiImUUASV626QGBbKM6HvT+aXY2IiIgpFJDElcUCHQc7pnWZTUREGikFJCnP+TwkBSQREWmcFJCkvAsGgdUTju5w3PIvIiLSyCggSXm+QRAR65jWWSQREWmEFJCkYs5+SMnm1iEiImICBSSpWGk/pN3fQXGhubWIiIjUMQUkqVhIT2jSGopy4fefzK5GRESkTikgScWsVt3uLyIijZYCklTOebu/+iGJiEjjooAkletwBWCBjE2Qc8jsakREROqMApJUzr85tOnjmN6ls0giItJ4KCDJ2emp2iIi0ggpIMnZlQakXd+CrdjcWkREROqIApKcXZuLwDcY8rPhwFqzqxEREakTCkhydlaPks7a6G42ERFpNBSQ5I+pH5KIiDQybhGQ5s2bR2RkJL6+vsTGxrJ69eqztv/oo4/o0qULvr6+9OzZk2XLlrksNwyDGTNmEBYWhp+fH/Hx8ezYscOlTWRkJBaLxWV4/vnna/zYGoTSB0Ye3AC5R8ytRUREpA6YHpAWL17M5MmTmTlzJuvXr6dXr14kJCSQmZlZYftVq1YxYsQIxo0bx4YNG0hMTCQxMZFNmzY528yePZu5c+cyf/58UlNTadKkCQkJCeTn57ts65lnnuHQoUPO4YEHHqjVY623AkIdrx7BgF0rzK5GRESk1lkMwzDMLCA2NpZ+/frx+uuvA2C324mIiOCBBx7g8ccfL9d++PDh5ObmsnTpUue8iy++mJiYGObPn49hGISHh/Pwww/zyCOPAJCdnU1ISAgLFy7k1ltvBRxnkCZNmsSkSZOqVGdBQQEFBQXOzzk5OURERJCdnU1gYOC5Hn79sXwm/DgHLrwVbnjT7GpERETOSU5ODkFBQX/4+12tM0hZWVksWLCAO+64g8GDBxMXF8e1117LzJkzWbVqVbWLLCwsZN26dcTHx5cVZLUSHx9PSkpKheukpKS4tAdISEhwtt+zZw/p6ekubYKCgoiNjS23zeeff54WLVrQu3dvXnzxRYqLK7+NfdasWQQFBTmHiIiIah9vvea83T8Z7HZzaxEREallVQpIBw8e5M477yQsLIxnn32WU6dOERMTw+DBg2nbti0rVqxgyJAhdOvWjcWLF1d550eOHMFmsxESEuIyPyQkhPT09ArXSU9PP2v70vEfbfPBBx9k0aJFrFixgrvvvpvnnnuOKVOmVFrr1KlTyc7Odg6///57lY+zQYiIBe+mkHsY0n8xuxoREZFa5VmVRr179+b2229n3bp1dOvWrcI2p06dYsmSJcyZM4fff//deXnLXU2ePNk5feGFF+Lt7c3dd9/NrFmz8PHxKdfex8enwvmNhqc3RA2C7V/AzuUQHmN2RSIiIrWmSgFpy5YttGjR4qxt/Pz8GDFiBCNGjODo0aNV2nnLli3x8PAgIyPDZX5GRgahoaEVrhMaGnrW9qXjjIwMwsLCXNrExMRUWktsbCzFxcXs3buXzp07V6n+RqfjYEdA2vENXPqo2dWIiIjUmipdYvujcHSu7b29venTpw/JyWUPILTb7SQnJxMXF1fhOnFxcS7tAZYvX+5sHxUVRWhoqEubnJwcUlNTK90mwMaNG7FarbRu3bpKtTdKpbf7718Dp7JMLUVERKQ2VekM0ueff17lDV577bXVKmDy5Mncfvvt9O3bl/79+zNnzhxyc3MZO3YsAKNHj6ZNmzbMmjULgIkTJzJo0CBefvllhg0bxqJFi1i7di1vvfUWABaLhUmTJvHss88SHR1NVFQUTz75JOHh4SQmJgKOjt6pqalcfvnlBAQEkJKSwkMPPcRf/vIXmjVrVq36G5VmkdAiGo7ugN0roXuiyQWJiIjUjioFpNJg8UcsFgs2m61aBQwfPpzDhw8zY8YM0tPTiYmJISkpydnJOi0tDau17ETXgAEDeP/995k+fTrTpk0jOjqaJUuW0KNHD2ebKVOmkJuby/jx48nKymLgwIEkJSXh6+sLOPoTLVq0iKeeeoqCggKioqJ46KGHXPolSSWihzgC0s5vFJBERKTBMv05SPVVVZ+j0ODs/Ab+fSMEhMPkLWCxmF2RiIhIldX4c5BGjx7Nxx9/TG5ubo0UKPVU+4Hg6QcnDkLmFrOrERERqRVVDkgdO3bkueeeo2XLlgwdOpQ33niDAwcO1GZt4o68fCHqT47pHcvNrUVERKSWVDkgzZgxg3Xr1rFjxw6uueYalixZQocOHejTpw/PPPMMGzdurMUyxa2UPlV75zfm1iEiIlJLqv2y2rZt23Lffffx1VdfcfjwYR577DG2b9/OFVdcQfv27bn//vvZvHlzbdQq7qI0IKX9BAUnzK1FRESkFlQ7IJ0uICCAW265hffee4/Dhw/zzjvv4OHhUel71KSBaNEBmkWBvQh2f2d2NSIiIjWuSrf5V4WHhweDBw9m8ODBNbVJcWfRV8LqNx2vHen6Z7OrERERqVFVfhebpYq3c69fv/68CpJ6InqIIyDt+AYMQ7f7i4hIg1KjD4qURiRyIHj6Qs5+yNwKIRW/xFhERKQ+qlJAmjlzZm3XIfWNlx9E/slxiW3ncgUkERFpUM65D9K6devYunUrAN27d6d37941VpTUE9FDHOFox3K4ZKLZ1YiIiNSYagekzMxMbr31VlauXElwcDAAWVlZXH755SxatIhWrVrVdI3irpy3+6dAfg74NqJXroiISINW7dv8H3jgAU6cOMHmzZs5duwYx44dY9OmTeTk5PDggw/WRo3irlp0gOYdwF4Me3S7v4iINBzVDkhJSUn8/e9/p2vXrs553bp1Y968eXz55Zc1WpzUA9FXOsY7vja3DhERkRpU7YBkt9vx8vIqN9/Lywu73V4jRUk9Ej3EMd6x3HG7v4iISANQ7YB0xRVXMHHiRA4ePOicd+DAAR566CE9JLIxan8JePnDiUOQ/qvZ1YiIiNSIagek119/nZycHCIjI+nQoQMdOnQgKiqKnJwcXnvttdqoUdyZly9ccJljWpfZRESkgaj2XWwRERGsX7+eb775hm3btgHQtWtX4uPja7w4qSeih8D2ZY6AdOkjZlcjIiJy3s7pOUgWi4UhQ4YwZMiQmq5H6qPSjtr710DeMfBvbm49IiIi5+mcAtKaNWtYsWIFmZmZ5Tpm/+1vf6uRwqQeCWoLrbtD5mbYmQwX3mx2RSIiIuel2gHpueeeY/r06XTu3JmQkBCXl9hW9YW20gBFD3EEpB1fKSCJiEi9V+2A9Oqrr/LOO+8wZsyYWihH6q1OCfDjHNj5DdhtYPUwuyIREZFzVu272KxWK5dccklt1CL1Wdv+4BsEp447+iKJiIjUY9UOSA899BDz5s2rjVqkPvPwLHs3229fmVuLiIjIear2JbZHHnmEYcOG0aFDB7p161buqdqffPJJjRUn9Uynq2DTx46AFD/T7GpERETOWbUD0oMPPsiKFSu4/PLLadGihTpmS5mO8WCxOjprZ6VBcDuzKxIRETkn1Q5I7777Lh9//DHDhg2rjXqkPvNvDhGxkJbiOIvU/y6zKxIRETkn1e6D1Lx5czp06FAbtUhD0CnBMVY/JBERqceqHZCeeuopZs6cSV5eXm3UI/Vdp6sc4z3/g8Jcc2sRERE5R9W+xDZ37lx27dpFSEgIkZGR5Tppr1+/vsaKk3qoVRdH36OsNNj9HXS52uyKREREqq3aASkxMbEWypAGw2JxnEVa/Rb89qUCkoiI1EvVDkgzZ+r2bfkDzoD0NdjtYK32lVwRERFTVemXyzCM2q5DGpLIgeDdFE6mw6ENZlcjIiJSbVUKSN27d2fRokUUFhaetd2OHTu49957ef7552ukOKmnPH2g42DH9PYvza1FRETkHFTpEttrr73GY489xn333ceQIUPo27cv4eHh+Pr6cvz4cbZs2cIPP/zA5s2buf/++7n33ntru25xd52vhi2fOQLSFdPNrkZERKRaLEY1rp/98MMPLF68mO+//559+/Zx6tQpWrZsSe/evUlISGDUqFE0a9asNut1Gzk5OQQFBZGdnU1gYKDZ5bifvGPwYgcw7DDxF2jW3uyKREREqvz7Xa1O2gMHDmTgwIHnXZw0Av7NoV0c7PsRfkuC2LvNrkhERKTKdHuR1J7OQx1j9UMSEZF6xi0C0rx584iMjMTX15fY2FhWr1591vYfffQRXbp0wdfXl549e7Js2TKX5YZhMGPGDMLCwvDz8yM+Pp4dO3ZUuK2CggJiYmKwWCxs3Lixpg5JADqVBKS9P0B+trm1iIiIVIPpAWnx4sVMnjyZmTNnsn79enr16kVCQgKZmZkVtl+1ahUjRoxg3LhxbNiwgcTERBITE9m0aZOzzezZs5k7dy7z588nNTWVJk2akJCQQH5+frntTZkyhfDw8Fo7vkatZUdoEQ32Itj5jdnViIiIVJ1hsv79+xsTJkxwfrbZbEZ4eLgxa9asCtvfcsstxrBhw1zmxcbGGnfffbdhGIZht9uN0NBQ48UXX3Quz8rKMnx8fIwPPvjAZb1ly5YZXbp0MTZv3mwAxoYNG6pcd3Z2tgEY2dnZVV6nUfr6ScOYGWgYH401uxIREZEq/36begapsLCQdevWER8f75xntVqJj48nJSWlwnVSUlJc2gMkJCQ42+/Zs4f09HSXNkFBQcTGxrpsMyMjg7vuuot//etf+Pv7/2GtBQUF5OTkuAxSBV3+7Bj/9jUUF5hbi4iISBVV+1UjAHa7nZ07d5KZmYndbndZdumll1Z5O0eOHMFmsxESEuIyPyQkhG3btlW4Tnp6eoXt09PTnctL51XWxjAMxowZwz333EPfvn3Zu3fvH9Y6a9Ysnn766Sodl5ymTV9oGgInM2Dv99Ax/o/XERERMVm1A9JPP/3EyJEj2bdvX7lXkFgsFmw2W40VV1tee+01Tpw4wdSpU6u8ztSpU5k8ebLzc05ODhEREbVRXsNitToeGrluAWz7QgFJRETqhWpfYis967Jp0yaOHTvG8ePHncOxY8eqta2WLVvi4eFBRkaGy/yMjAxCQ0MrXCc0NPSs7UvHZ2vz7bffkpKSgo+PD56ennTs2BGAvn37cvvtt1e4Xx8fHwIDA10GqaLSy2zbljleXisiIuLmqh2QduzYwXPPPUfXrl0JDg4mKCjIZagOb29v+vTpQ3JysnOe3W4nOTmZuLi4CteJi4tzaQ+wfPlyZ/uoqChCQ0Nd2uTk5JCamupsM3fuXH7++Wc2btzIxo0bnY8JWLx4MX/961+rdQxSBVF/Au8Ax8trD643uxoREZE/VO1LbLGxsezcudN51uV8TZ48mdtvv52+ffvSv39/5syZQ25uLmPHjgVg9OjRtGnThlmzZgEwceJEBg0axMsvv8ywYcNYtGgRa9eu5a233gIcl/kmTZrEs88+S3R0NFFRUTz55JOEh4eTmJgIQLt27VxqaNq0KQAdOnSgbdu2NXJcchpPH4geAps/ga3/hbZ9za5IRETkrKodkB544AEefvhh0tPT6dmzJ15eXi7LL7zwwmptb/jw4Rw+fJgZM2aQnp5OTEwMSUlJzk7WaWlpWK1lJ7oGDBjA+++/z/Tp05k2bRrR0dEsWbKEHj16ONtMmTKF3Nxcxo8fT1ZWFgMHDiQpKQlfX9/qHq7UlC7DHAFp2xcwRJ3dRUTEvVXrZbWAS1hxbsRiwTCMetNJuyboZbXVlJ8Nszs4Hhp5Xyq07mJ2RSIi0gjVystqwfGcIZFq8w2CCy6Dncsdl9kUkERExI1VOyC1b9++NuqQxqDbtSUB6TMY9KjZ1YiIiFTqnJ6kvWvXLh544AHi4+OJj4/nwQcfZNeuXTVdmzQ0nYeBxQPSf4VjOhMpIiLuq9oB6auvvqJbt26sXr2aCy+8kAsvvJDU1FS6d+/O8uXLa6NGaSiatIDISxzTW/9rbi0iIiJnUe1O2r179yYhIYHnn3/eZf7jjz/O119/zfr1jeM5N+qkfY5W/wOWPQJt+8Gd35hdjYiINDJV/f2u9hmkrVu3Mm7cuHLz77jjDrZs2VLdzUljU/pU7f1rIPuAubWIiIhUotoBqVWrVmzcuLHc/I0bN9K6deuaqEkassAwiIh1TG/7wtxaREREKlHtu9juuusuxo8fz+7duxkwYAAAP/74Iy+88ILLy1xFKtX1Wvg9FbZ+DrHjza5GRESknGr3QTIMgzlz5vDyyy9z8OBBAMLDw3n00Ud58MEHsVgstVKou1EfpPOQlQZzeoLFCpO3QUCI2RWJiEgjUdXf72oHpNOdOHECgICAgHPdRL2lgHSe/jEYDqyFq1+C/neZXY2IiDQStdZJ+3QBAQGNMhxJDeie6BhvXmJmFSIiIhWqUh+kiy66iOTkZJo1a0bv3r3PehmtsdzmL+ep23Xw9XTY9yOcSIeAULMrEhERcapSQLruuuvw8fFxTjeWfkZSi4LbOZ6FtH8NbFFnbRERcS/n1QepMVMfpBqQMg++mgbtL4Gxy8yuRkREGoFa64N0wQUXcPTo0XLzs7KyuOCCC6q7OWnMul3nGO9bBTmHzK1FRETkNNUOSHv37sVms5WbX1BQwP79+2ukKGkkgtpC2/6A4XgmkoiIiJuo8oMiP/+87Afsq6++IigoyPnZZrORnJxMVFRUzVYnDV/362H/atj0McTebXY1IiIiQDX6IFmtjpNNFouFM1fx8vIiMjKSl19+mT//+c81X6UbUh+kGpJzCP7WFTBg0q+OztsiIiK1pMb7INntdux2O+3atSMzM9P52W63U1BQwPbt2xtNOJIaFBgGkQMd05s+NrcWERGREtXug7Rnzx5atmxZG7VIY9XzJsf41/+YW4eIiEiJar+sFiA3N5fvvvuOtLQ0CgsLXZY9+OCDNVKYNCJdr4UvHoGMTZC5FVp3NbsiERFp5KodkDZs2MDVV19NXl4eubm5NG/enCNHjuDv70/r1q0VkKT6/JtDx3j47UvHWaTBT5pdkYiINHLVvsT20EMPcc0113D8+HH8/Pz46aef2LdvH3369OGll16qjRqlMSi9zLbpP6Bnl4qIiMmqHZA2btzIww8/jNVqxcPDg4KCAiIiIpg9ezbTpk2rjRqlMeg8FLz84fheOLDO7GpERKSRq3ZA8vLyct7y37p1a9LS0gAICgri999/r9nqpPHwbgKdr3ZM//qRubWIiEijV+2A1Lt3b9asWQPAoEGDmDFjBu+99x6TJk2iR48eNV6gNCIX3uIYb/oYbEXm1iIiIo1atQPSc889R1hYGAB//etfadasGffeey+HDx/mrbfeqvECpRHpcAX4t4Tcw7DrW7OrERGRRqxad7EZhkHr1q2dZ4pat25NUlJSrRQmjZCHF/S8GVLfgJ8XQacEsysSEZFGqlpnkAzDoGPHjuprJLWn162O8bYvID/b3FpERKTRqlZAslqtREdHc/To0dqqRxq7sF7QqgvYCmDLZ2ZXIyIijVS1+yA9//zzPProo2zatKk26pHGzmIpO4v08yJzaxERkUbLYhjVeypfs2bNyMvLo7i4GG9vb/z8/FyWHzt2rEYLdFdVfRuwnIPsA/BKd8CAib9As/ZmVyQiIg1EVX+/q/2qkVdeeQWLxXJexYmcVVAbiLoU9nwHvyyGQVPMrkhERBqZagekMWPG1EIZImfoNcIRkDa+D5c+6rj0JiIiUkeq3QfJw8ODzMzMcvOPHj2Kh4dHjRQlQrdrwTsAju+BfavMrkZERBqZagekyrosFRQU4O3tfd4FiQCOV4/0uMExveFf5tYiIiKNTpUvsc2dOxcAi8XC//3f/9G0aVPnMpvNxv/+9z+6dOlS8xVK49X7Nlj/LmxeAkNng686w4uISN2ockB65ZVXAMcZpPnz57tcTvP29iYyMpL58+fXfIXSeLXtCy07w5HtsPkT6DPG7IpERKSRqPIltj179rBnzx4GDRrEzz//7Py8Z88etm/fzldffUVsbOw5FTFv3jwiIyPx9fUlNjaW1atXn7X9Rx99RJcuXfD19aVnz54sW7bMZblhGMyYMYOwsDD8/PyIj49nx44dLm2uvfZa2rVrh6+vL2FhYdx2220cPHjwnOqXWmKxwEW3OabX6zKbiIjUnWr3QVqxYgXNmjWrsQIWL17M5MmTmTlzJuvXr6dXr14kJCRU2BEcYNWqVYwYMYJx48axYcMGEhMTSUxMdHlw5ezZs5k7dy7z588nNTWVJk2akJCQQH5+vrPN5Zdfzocffsj27dv5+OOP2bVrFzfddFONHZfUkAuHg9UTDqyFzK1mVyMiIo1EtR8UabPZWLhwIcnJyWRmZmK3212Wf/tt9d7CHhsbS79+/Xj99dcBsNvtRERE8MADD/D444+Xaz98+HByc3NZunSpc97FF19MTEwM8+fPxzAMwsPDefjhh3nkkUcAyM7OJiQkhIULF3LrrbdWWMfnn39OYmIiBQUFeHl5/WHdelBkHVo0CrYthbj7IeGvZlcjIiL1WFV/v6t9BmnixIlMnDgRm81Gjx496NWrl8tQHYWFhaxbt474+PiygqxW4uPjSUlJqXCdlJQUl/YACQkJzvZ79uwhPT3dpU1QUBCxsbGVbvPYsWO89957DBgwoNJwVFBQQE5OjssgdaT3Xxzjnz+A4gJzaxERkUah2g+KXLRoER9++CFXX331ee/8yJEj2Gw2QkJCXOaHhISwbdu2CtdJT0+vsH16erpzeem8ytqUeuyxx3j99dfJy8vj4osvdjkrdaZZs2bx9NNPV+3ApGZ1HAIB4XDiIGz9L/TUpVAREald1T6D5O3tTceOHWujljr36KOPsmHDBr7++ms8PDwYPXp0pc95mjp1KtnZ2c7h999/r+NqGzEPT+hzu2N67QJzaxERkUah2gHp4Ycf5tVXX600SFRHy5Yt8fDwICMjw2V+RkYGoaGhFa4TGhp61val46pss2XLlnTq1IkhQ4awaNEili1bxk8//VThfn18fAgMDHQZpA71vg0sVtj3Axz+zexqRESkgat2QPrhhx9477336NChA9dccw033HCDy1Ad3t7e9OnTh+TkZOc8u91OcnIycXFxFa4TFxfn0h5g+fLlzvZRUVGEhoa6tMnJySE1NbXSbZbuFxx9jcQNBbWBTkMd0+t0FklERGpXtfsgBQcHc/3119dYAZMnT+b222+nb9++9O/fnzlz5pCbm8vYsWMBGD16NG3atGHWrFmAo5P4oEGDePnllxk2bBiLFi1i7dq1vPXWW4DjSd+TJk3i2WefJTo6mqioKJ588knCw8NJTEwEIDU1lTVr1jBw4ECaNWvGrl27ePLJJ+nQocNZQ5SYrO9Y2P4FbHwPBs8ALz+zKxIRkQaq2gFpwYKa/X/vw4cP5/Dhw8yYMYP09HRiYmJISkpydrJOS0vDai070TVgwADef/99pk+fzrRp04iOjmbJkiX06NHD2WbKlCnk5uYyfvx4srKyGDhwIElJSfj6+gLg7+/PJ598wsyZM8nNzSUsLIyrrrqK6dOn4+PjU6PHJzWowxUQ3A6y0hyvH4kZYXZFIiLSQFX7OUgAxcXFrFy5kl27djFy5EgCAgI4ePAggYGBLu9oa8j0HCSTfP8yJD8DbfvDncvNrkZEROqZWnsO0r59++jZsyfXXXcdEyZM4PDhwwC88MILzgczitSamL84nqy9fzUc+sXsakREpIE6pwdF9u3bl+PHj+PnV9YH5Prrry/XeVqkxgWEQLfrHNOr3zS3FhERabCqHZC+//57pk+fjre3t8v8yMhIDhw4UGOFiVQq9h7H+JePIPeoubWIiEiDVO2AZLfbsdls5ebv37+fgICAGilK5Kza9oPw3mArgPULza5GREQaoGoHpCuvvJI5c+Y4P1ssFk6ePMnMmTNr5PUjIn/IYik7i7TmbbAVmVuPiIg0ONUOSC+//DI//vgj3bp1Iz8/n5EjRzovr73wwgu1UaNIed2vhyatIOcAbKv8HXoiIiLn4pxv81+8eDE///wzJ0+e5KKLLmLUqFEunbYbOt3m7wZWPAffvQDt4uCOJLOrERGReqCqv9/nFJBEAcktnEiHV7qDvRjGfwfhMWZXJCIibq7WnoM0a9Ys3nnnnXLz33nnHV1ik7oVEOq41Abw09/NrUVERBqUagekN998ky5dupSb3717d+bPn18jRYlU2cX3OcabPobs/ebWIiIiDUa1A1J6ejphYWHl5rdq1YpDhw7VSFEiVdbmIoj8k+My209vmF2NiIg0ENUOSBEREfz444/l5v/444+Eh4fXSFEi1TLgQcd43UI4lWVmJSIi0kB4VneFu+66i0mTJlFUVMQVV1wBQHJyMlOmTOHhhx+u8QJF/lD0EGjVFQ5vhXULYOBDZlckIiL1XLUD0qOPPsrRo0e57777KCwsBMDX15fHHnuMqVOn1niBIn/IYoEBD8Bn98FP8x39kjx9zK5KRETqsXO+zf/kyZNs3boVPz8/oqOj8fFpXD9Ius3fzRQXwqsXwolDcN086P0XsysSERE3VGu3+Zdq2rQp/fr1o0ePHo0uHIkb8vQue/3IqtfAbje3HhERqdeqfYktNzeX559/nuTkZDIzM7Gf8UO0e/fuGitOpFr6joXvX4bD22D7F9D1GrMrEhGReqraAenOO+/ku+++47bbbiMsLAyLxVIbdYlUn28Q9L/LEZK+mw1d/uzonyQiIlJN1Q5IX375JV988QWXXHJJbdQjcn4unuDoqJ3+C+z4GjolmF2RiIjUQ9Xug9SsWTOaN29eG7WInL8mLaDfOMf0d7NBrxoUEZFzUO2A9P/+3/9jxowZ5OXl1UY9IudvwAPg6QcH1sLuFWZXIyIi9VC1L7G9/PLL7Nq1i5CQECIjI/Hy8nJZvn79+horTuScNG0NfcZA6huOs0gXXK6+SCIiUi3VDkiJiYm1UIZIDbtkIqx9B9JSYO8PEPUnsysSEZF65JwfFNnY6UGR9cAXD8Oa/4P2A2HMUp1FEhGRKv9+V/sMUql169axdetWALp3707v3r3PdVMitWPgQ7D+X7DvB9j1LXQcbHZFIiJST1Q7IGVmZnLrrbeycuVKgoODAcjKyuLyyy9n0aJFtGrVqqZrFDk3QW2h353w0zxIfgY6XKGzSCIiUiXVvovtgQce4MSJE2zevJljx45x7NgxNm3aRE5ODg8++GBt1Chy7v40GbybwqGNsPVzs6sREZF6otoBKSkpib///e907drVOa9bt27MmzePL7/8skaLEzlvTVpC3ATH9LfPgq3Y3HpERKReqHZAstvt5W7tB/Dy8ir3XjYRtxB3P/g1gyO/wS+LzK5GRETqgWoHpCuuuIKJEydy8OBB57wDBw7w0EMPMXiwOsGKG/INhIGTHdMrn4fiAnPrERERt1ftgPT666+Tk5NDZGQkHTp0oEOHDkRFRZGTk8Nrr71WGzWKnL/+d0FAOGT/DmveNrsaERFxc+f0HCTDMPjmm2/Ytm0bAF27diU+Pr7Gi3Nneg5SPbRuIfx3IvgGw4MbwF/vFBQRaWyq+vutB0WeIwWkeshug/l/gszNEHsPDH3B7IpERKSOVfX3u8qX2L799lu6detGTk5OuWXZ2dl0796d77///tyqFakLVg+46jnH9Op/wOHt5tYjIiJuq8oBac6cOdx1110Vpq2goCDuvvtu/va3v9VocSI17oLLoPPVYNjg6+lmVyMiIm6qygHp559/5qqrrqp0+ZVXXsm6detqpCiRWjXk/4HVE3Z8DTu/MbsaERFxQ1UOSBkZGRU+/6iUp6cnhw8frpGiRGpVy47Q/27H9FdP6OGRIiJSTpUDUps2bdi0aVOly3/55RfCwsJqpCiRWjfoUfBrDoe3wdp3zK5GRETcTJUD0tVXX82TTz5Jfn5+uWWnTp1i5syZ/PnPfz6nIubNm0dkZCS+vr7ExsayevXqs7b/6KOP6NKlC76+vvTs2ZNly5a5LDcMgxkzZhAWFoafnx/x8fHs2LHDuXzv3r2MGzeOqKgo/Pz86NChAzNnzqSwsPCc6pd6yK8ZXD7NMf3ts3Aiw9x6RETErVQ5IE2fPp1jx47RqVMnZs+ezWeffcZnn33GCy+8QOfOnTl27BhPPPFEtQtYvHgxkydPZubMmaxfv55evXqRkJBAZmZmhe1XrVrFiBEjGDduHBs2bCAxMZHExESXs1uzZ89m7ty5zJ8/n9TUVJo0aUJCQoIz3G3btg273c6bb77J5s2beeWVV5g/fz7Tpk2rdv1Sj/W9A8J7Q0E2fKXvXkRETmNUw969e42hQ4caVqvVsFgshsViMaxWqzF06FBj9+7d1dmUU//+/Y0JEyY4P9tsNiM8PNyYNWtWhe1vueUWY9iwYS7zYmNjjbvvvtswDMOw2+1GaGio8eKLLzqXZ2VlGT4+PsYHH3xQaR2zZ882oqKiqlx3dna2ARjZ2dlVXkfc0IENhvFUsGHMDDSMHd+YXY2IiNSyqv5+V+tVI+3bt2fZsmUcOXKE1NRUfvrpJ44cOcKyZcuIioqqdjgrLCxk3bp1Lk/htlqtxMfHk5KSUuE6KSkp5Z7anZCQ4Gy/Z88e0tPTXdoEBQURGxtb6TbB8Syn5s0rf7JyQUEBOTk5LoM0AOExZR22v3gYik6ZWo6IiLiHar+LDaBZs2b069eP/v3706xZs3Pe+ZEjR7DZbISEhLjMDwkJIT09vcJ10tPTz9q+dFydbe7cuZPXXnuNu+++u9JaZ82aRVBQkHOIiIg4+8FJ/XH5NAgIg+N74Hs9y0tERM4xIDUkBw4c4KqrruLmm2/mrrvuqrTd1KlTyc7Odg6///57HVYptco3sOy1Iz+8Aod/M7ceERExnakBqWXLlnh4eJCR4XoHUUZGBqGhoRWuExoaetb2peOqbPPgwYNcfvnlDBgwgLfeeuustfr4+BAYGOgySAPS9VqIvhLsRbB0EtjtZlckIiImMjUgeXt706dPH5KTk53z7HY7ycnJxMXFVbhOXFycS3uA5cuXO9tHRUURGhrq0iYnJ4fU1FSXbR44cIDLLruMPn36sGDBAqzWRn8yrXGzWODql8CrCez7EVa/aXZFIiJiItNTweTJk/nHP/7Bu+++y9atW7n33nvJzc1l7NixAIwePZqpU6c620+cOJGkpCRefvlltm3bxlNPPcXatWu5//77AbBYLEyaNIlnn32Wzz//nF9//ZXRo0cTHh5OYmIiUBaO2rVrx0svvcThw4dJT0+vtI+SNBLN2sOV/88x/c1TcGTHWZuLiEjD5Wl2AcOHD+fw4cPMmDGD9PR0YmJiSEpKcnayTktLczm7M2DAAN5//32mT5/OtGnTiI6OZsmSJfTo0cPZZsqUKeTm5jJ+/HiysrIYOHAgSUlJ+Pr6Ao4zTjt37mTnzp20bdvWpR7DMOrgqMVt9b0Dtv4Xdq+AJffCHV+B1cPsqkREpI5ZDCWCc5KTk0NQUBDZ2dnqj9TQZO+Hv8dBQQ7EPwUDHzK7IhERqSFV/f02/RKbiNsJagtXPe+YXvEcZGwxtx4REalzCkgiFYkZCZ2Ggq0QPr0bivWePhGRxkQBSaQiFgtc86rjpbbpv0Dy02ZXJCIidUgBSaQyASFw7euO6ZTXYfuX5tYjIiJ1RgFJ5Gy6/hli73VMf3oPZOkJ6iIijYECksgfGfIMhPeG/Cz4zx1gKzK7IhERqWUKSCJ/xNMbbloAPkGwfzV8+//MrkhERGqZApJIVTSPgutK+iP9+Cr89rW59YiISK1SQBKpqm7XQv/xjulP7oKju8ytR0REao0Ckkh1XPkstOnr6I/0wa2Qn212RSIiUgsUkESqw9MHbn0fAtvAkd8cnbbtNrOrEhGRGqaAJFJdASGOkOTpBzu/geUzzK5IRERqmAKSyLkIj4Hr5zumU16H9f80tRwREalZCkgi56p7Ilw2zTG9dDLsW2VqOSIiUnMUkETOx6Ap0P16sBfBByMgY4vZFYmISA1QQBI5HxYLXPd3aNvfcWfbv66H43vNrkpERM6TApLI+fL2h5GLoXU3OJkO/0yEExlmVyUiIudBAUmkJvg3h9s+hWaRcHwP/PsGOJVldlUiInKOFJBEakpAKNy2BJqGQMYmeP8WKMw1uyoRETkHCkgiNal5lONMkm8Q/J4Ki2+DonyzqxIRkWpSQBKpaSHdYdR/wMsfdiXD+zdDwUmzqxIRkWpQQBKpDRH9HSHJuyns+Z+jT5Le2yYiUm8oIInUlshLYPRnZZfb3r0W8o6ZXZWIiFSBApJIbWrbF25fCv4t4NBGWDhMjwAQEakHFJBEalvYhTD2S2gaCplbYMFQyPrd7KpEROQsFJBE6kKrznDHlxDUDo7tgv8bDPvXmV2ViIhUQgFJpK40v8ARklp3g5MZsPBq2PSJ2VWJiEgFFJBE6lJQWxj3NUQnQHE+/GcsrHwBDMPsykRE5DQKSG7GZjcostmx2/WD2WD5BMCIDyDufsfnlc/Bx3fqgZIiIm5EAcnNjFmwmugnvmTJxgNmlyK1yeoBCX+Fa14Fqyds+k/JHW7pZlcmIiKAp9kFSMV0xaWR6DMGmkXBh6PhwFp44xK4/k2Ijje7MmnkDMPAMMBuGNhLxmWfHfOM05aVLjcq+WxQuo3S7bhu0zDA4PR9lbUr3Y9B2TZL2xqnr2sHg7L2ONv8cXvjtO277MvxxyhpV9KWsroAl3WNMz8blcwvWbHcvk5rh3Fmfa7bcH5PldRQ0sLlb3bmdk7fh6M1Z9RilNTq3Jpze6d/Pn3d0sbGWbZtlBVYVovzb1z2edrVXbmwbXB1/unWGAUkN2OxWICyf5zSCFwwCO761hGSMjbBezc6Lr8Nngme3mZXV68YhkGRzaDYbqfYbmCzGRTbSz7bDGz2Sj7b7M7p08c2u4HNMLDZ7djsnDF2tLMbJWN72dixjuOHvnQ7pdNl805bbjjWs5+xnjOM2MFWEhoc8x3HaitZVtrOZnf8WNlOW89+xjpVDTz6P2niDrLyikzbtwKSm7GUjA39r1Pj0qID3JkMX0+HNf+AlNdh349w0zuOu9/cQLHNTqHNTkGRnYJiOwXFNse4yE6hzVYytlNYXDYuKhkXlMwrKjYotNkothmOzyXzikq2XWSzuy6zGc5xsc0RekrblIag4pI2paFGzGGxgNViwWpx/B89C2d8Lll+ejtwjK0VLHeOS7ZtKd0WFudny2n7rXDeaeuW1uP47Jh21F263bJpSvdRuj5l9XBa27Llpy9zXbd0nxVts/Rvw2nzOG2bp9de0bbPbI9LTZZy2zn9u6poW6c1cTm+kt07v0fLaRuqrJay9cpWOP3v5mx7WruK9t8lLOAP/uXVHgUkN1P6D0T/M98IefnCsJfggsvgswlwcAPMvxSumQM9b6p0NcMwyC+yk1tYTF6BzTEuLCa3wEZeoY38Isf4VJFj+lSh6+eywU5+sWN5QbHdOb+gJODU5/Dh5WHBw2rB02rF08OCp7Xss2NswdPDgtViwcvDirVknofF0c7D2d7iXHZmm9L1Paxl47Jp8LA41nGOT5+2gPX09ZxtSsNE2XYsltLlp02XfC7bP6etU/bjXrrM4tzmmaHl9OVl8yxWKm1vwVG7SEOjgORmnP8zU39/i6QaCovtZJ8qcg4n8ovIKbwI28UfErvhMcKzN8DH41jzzWLeD76HjOIm5BYUc6KgmNyCYk7mF5NXZKvzyyGeVgs+nlZ8vDzw8bTi7WnFx9OKl4dj2vvMccm012nzvDwcYcQxlE072jk+e1rLljmCjWPsVTo+fZ6HtSToWJ2Bx8tq1Y+3iJwTBSQ3U9YHSQmpvikstnMst5AjJws4mlvI0ZMFHMst5HheIcfzisjKK+RYbiFZeY4wlJVXxKkiW6Xb82AyD3p+yv0en9Iv+2suyErh2aK/8Kl9IKdFaRf+3h74e3vSxMcx9vOy4u/tia+XB/7eHvh5eeDnXTJ4eeDrZcXPywMfLw98vTzw9bQ6xiXLfEsCUOnYx9MDb0/HWRcRkYZMAcnNlPVBMrUMOU1+kY2MnHzSs/NJLxlnnijg8IkCMk/kc7hkOie/+Jy2b7FAgI8nQf5eBPh4EeDrSaCfY3zc9xEWFw0jYfcsWuTu5BXvN5ge8jNpA/6KV8sONPFxhKEm3p74eXnobImISA1RQHIz6oNU9/IKi/n92CnSjuWRdiyPA8dPcSArj4NZ+RzMOsXR3MIqb8vDaqF5E29aNPGmZVMfmjXxprm/F8H+3jRv4k2wvxfN/B3jID8vgv28aerr+QdnZLqD7TpYNRe+m02LjFW0+O9QGDQFBjwIHl7n/0cQEREXpgekefPm8eKLL5Kenk6vXr147bXX6N+/f6XtP/roI5588kn27t1LdHQ0L7zwAldffbVzuWEYzJw5k3/84x9kZWVxySWX8MYbbxAdHe1s89e//pUvvviCjRs34u3tTVZWVm0eYrU4L7EpIdWoYpudfcfy2JFxkj1Hctlz5CR7j+Sx+0guR04W/OH6vl5WQgN9CQ3yJTTQl5BAX1oF+DiH1gE+tGzqQ6CvV+2cxfHwgj89DN2vh6UPwe6VkPwM/PofGPYytB9Q8/sUEWnETA1IixcvZvLkycyfP5/Y2FjmzJlDQkIC27dvp3Xr1uXar1q1ihEjRjBr1iz+/Oc/8/7775OYmMj69evp0aMHALNnz2bu3Lm8++67REVF8eSTT5KQkMCWLVvw9fUFoLCwkJtvvpm4uDjefvvtOj3mP+K8xKZzSOfEMAwOZeezLT2HrYdOsPVQDjsyTrL7yEmKbJX/TYP8vGjX3J+I5n5ENPMnPNiPNsF+hAf7ER7sS5Cfl8ttsqZpfgHctgR++RC+mgqZW2DBUOh0FQyeASHdza5QRKRBsBgmPnAnNjaWfv368frrrwNgt9uJiIjggQce4PHHHy/Xfvjw4eTm5rJ06VLnvIsvvpiYmBjmz5+PYRiEh4fz8MMP88gjjwCQnZ1NSEgICxcu5NZbb3XZ3sKFC5k0aVKVziAVFBRQUFB2piEnJ4eIiAiys7MJDAw8l8Ov0N3/WstXmzN4NrEHf7m4fY1tt6HKPJHPhrQsft2fzS8Hsvl1fxbHK3mwmJ+XBx1bN6VDqyZEtmxCVMnQvnkTgvzr4WWq3KOw4llY9y4YNsACvW6Fy6dBcDuzqxMRcUs5OTkEBQX94e+3aWeQCgsLWbduHVOnTnXOs1qtxMfHk5KSUuE6KSkpTJ482WVeQkICS5YsAWDPnj2kp6cTH1/2moagoCBiY2NJSUkpF5CqY9asWTz99NPnvH5VlT5CS+ePyjMMg52ZJ/lp91HW7jvOun3H2X/8VLl2HlYLHVs1pUtYAF3DAukcEkB0SFPCg/waVifmJi3gz6/AxRPg2/8HW5bAzx/Apo+h312OS3JNWphdpYhIvWRaQDpy5Ag2m42QkBCX+SEhIWzbtq3CddLT0ytsn56e7lxeOq+yNudq6tSpLuGs9AxSTbOWvD5YT9J22H88j+93HOGHHUf4affRch2mLRboHBJAr7bB9GwbxIVtg+gUEoCvl4dJFZugZUe45V04sA6+eQr2/A9+mgcb/gUDHoB+d4J/c7OrFBGpV0zvpF1f+Pj44OPjU+v7cZ5BaqT5qNhmZ+2+4yRvzSB5Wya7D+e6LPf1stKnfTP6RTanb/vm9IoIIsC3Hl4eqw1t+sDoz2HXt46glP4LrPgr/PAK9P4LXHyv27y2RETE3ZkWkFq2bImHhwcZGRku8zMyMggNDa1wndDQ0LO2Lx1nZGQQFhbm0iYmJqYGq69Fpbf5N6KEVFhs58ddR1j2yyGWb81weTmhh9VCTEQwf4puySUdW9KrbTDenlYTq3VzFgt0HAwXXA5bPnWEo/RfYfVbsOb/oMufHWeVIiq/U1REREwMSN7e3vTp04fk5GQSExMBRyft5ORk7r///grXiYuLIzk5mUmTJjnnLV++nLi4OACioqIIDQ0lOTnZGYhycnJITU3l3nvvrc3DqTFld7E1bIZhsD7tOB+vP8AXvxwi+1RZKAr29+KKzq0Z3DWEgdEtCfLTGaJqs1qhx43Q/QbY8x2seg12fgNbP3cMEbEQdz90GQbWRnQ5UkSkiky9xDZ58mRuv/12+vbtS//+/ZkzZw65ubmMHTsWgNGjR9OmTRtmzZoFwMSJExk0aBAvv/wyw4YNY9GiRaxdu5a33noLcDxDaNKkSTz77LNER0c7b/MPDw93hjCAtLQ0jh07RlpaGjabjY0bNwLQsWNHmjZtWqd/gzOVvmG6Hr8X9KwOnyjgP+v2s3hNGnuP5jnnt2zqw9AeoQztGUr/yOZ4eugsUY2wWBwvv73gMsjYAinz4NcP4fdUxxDc3nH5rdetuvNNROQ0pgak4cOHc/jwYWbMmEF6ejoxMTEkJSU5O1mnpaVhtZb9UA4YMID333+f6dOnM23aNKKjo1myZInzGUgAU6ZMITc3l/Hjx5OVlcXAgQNJSkpyPgMJYMaMGbz77rvOz7179wZgxYoVXHbZZbV81GdnaYCX2AzDYN2+4yxYtZevNqVTXJL+mnh7cFWPMG64qA0XX9BC7/eqbSHdIHEeDH6y5JLb25C1z9FPacVfIepSiBkFXa8B7yZmVysiYipTn4NUn1X1OQrVNWnRBpZsPMj0YV2580/1u0OtzW6w7NdD/OP73fyyP9s5v3e7YEb0b8efLwzD31v3CZimMBe2fA4b34O935fN924K3RMdYaldXFlqFxFpANz+OUhSsbJLbPU3txYW2/lk/X7mf7fLeRnN29NKYkw4YwZE0S285gKlnAfvJhAzwjEc3we/LHaEpeN7YcO/HUOzSLhwOHS+GsJ6KSyJSKOhgORunJfYzC3jXNjsBks2HGBO8m/8fszxAMdgfy/GDIjktovb06Jp7T8mQc5Rs/aOl99e+iikpTiC0uYljrD03QuOIbANdB7qCEuRfwJPb7OrFhGpNQpIbqb0OUj1qZO2YRis2J7Jc8u2sTPzJODodH3PoAsY0b8dTXz0z6zesFgcL75tPwCGzoatSx13ve36FnIOOB4VsOb/wDsAouMdYSl6CPg1M7tyEZEapV8uN+PspF1PbvT/LeMEz/x3Cz/sPAI4zhjdM6gDo+Paq39RfefdBHoNdwxF+Y7HBWxfBtu/hJMZsPlTx2DxcASqDlc4ziyFx4CHHs0gIvWbfsHcjLWeXGI7WVDMq9/8xoIf91JsN/D2sDL2kkjuu7yjnlvUEHn5QqcExzDsFTi4AbZ/AduWweGtjk7epR29vZpAu1iIHAjtB0J4b12OE5F6RwHJzZS9asR9E9K32zJ44tNNHMrOB+DKbiE8+eduRDT3N7kyqRNWK7Tt4xgGz4Bju+G3rx0Bad+PcOq445Lcrm8d7b38HQ+mjLyk5AzTRQpMIuL2FJDcTNnLas2toyLHcwt56r+b+WzjQQAimvvxzLU9uLxLa5MrE1M1vwAuvscx2O2QucURlPZ+D3t/hFPHYPcKxwDg6QshPRx3xYXHQFgMtO6qy3Ii4lYUkNyMxU2fpL1ieyaP/ecXMk8UYLXAnX+6gIfiO+HnrddUyGmsVgjt4Rhi73YEpsPbYO8PsO8HxzjvKBxY6xhKefhASPczQlM3nWkSEdMoILmZsnexuUdCyi+y8dyyrfwzZR8AHVo14W+3xNArItjcwqR+sFodT/AO6Qax4x2nRo/ugkMbHcPBjXDoFyjIhoPrHcO6knU9vB0hKbQntOoMLTtDy2jHK1H0/jgRqWUKSG7Gnd7FtjPzJPe/v55t6ScAGHtJJI9d1QVfL/04yTmyWKBlR8fQ8ybHPMOA43tKwtLGkvHPkJ9VFqRO5+EDLTpCq07Q8rShRUfwVj84EakZCkhuxuom72L7bOMBHv/4V04V2WjRxJu/DY9hUKdWptYkDZTF4ujH1PwC6HGDY55hON4Td3Cjo0/Tkd/g8G9wdCfYCiBzs2M4U1A7x1mmltGOF/EGRzjOOAW3A99gPQlcRKpMAcnNlPZBMisfFRbbeW7ZVhau2gvAgA4tmDM8htaBvmdfUaQmWSyO15w0i3S8F66U3QZZaXBkBxzZ7ghOR3bA4e2OzuDZaY5hV3L5bfoEQtBpgSm43WkBqr3jYZcKUCJSQgHJzZT+77MZ72I7fKKA+95bx5q9xwG4//KOPDSkEx5W/WiIm7B6QPMox9DpStdluUdLAlPJmabs3x1hKisNcg9DQU7lZ57A8ZLeoAgIDIeAUGgaUvHYy6/2j1NETKeA5GbM6oO06UA24/+5loPZ+QT4ePLK8Bjiu4XUbREi56NJC2gSB+3jyi8rzIPs/SWBaZ9reMpKczwZvPCk46GXh7eefT8+QRAQUkGACi2b79/CcUZKnclF6i0FJDdjNeFVI1/+eoiHPtxIfpGdC1o24R+396VDq6Z1tn+RWuft7+jU3apTxcuL8ksC1D44cQhOpDtC05nj4nzHHXcF2Y4zVWdlAb9gR1hyDs1LwlPzM+aXLPMNLnsYmoiYSgHJzTjPINXBKSTDMPj7yl28+NV2AAZ1asXcEb31qhBpfLx8y+6uq4xhQH52xcHp9HHuYccdeBiOp4qfOu645FcVFmtZePJrBr5BVRyCwTdQD9sUqUEKSG6mrh4UWWSz88Snv/Lh2v0AjBkQyfRhXfH00P97FamQpeSMkF+w47lMZ2MrdgSjvKOuw6ljkHes/Py8Y44+UoYd8o44hnPh1aTyEOUTAD5Nwbt03LSCzwGOsYd+GkT0X4GbsdZBJ+2c/CLu+/d6fth5BKsFnrq2O6PjImttfyKNjocnNG3lGKqquLAkQB2F3COOs1D52VUbCk86tlGU6xhOHDy/+j39zhKiKvjs5e8YvP0dIc3LD7ybuM7z8NJdglKvKCC5mdI7xmorHx3MOsXYBWvYnnECf28PXh/Zmyu6qDO2iOk8vR2dvQNCq7+urdhxBqrSEJUFBSeg4CQUlo5Plv9sK3Rsr/iUY8g9XHPHZ/E4IzSdEaq8/R3Byjl92nJPP8dlUJdxyeDpWzb29FUfLqkxCkhupvQSm60WrrFtPZTD2AVrSM/Jp1WADwvG9KNHm6Aa34+I1DEPz5IO4M3PbzvFhSXB6UTZ+I9CVWEuFOU57hQsyi0Znyqbthc5tm3YHCGuIOf8j/dsPHyqFqbKtSkZe/qUhC2fsmkP7zPmlc4/fVo/pw2NvlE34+Hsg1SzAen7HYe599/rOVlQTHTrpiwY24+2zfRaBhE5jac3eNZA0DqdragsRBWdOi1QVTSvJGSdOa/4lONOw3LjfEfb0hAGjiet2wqA7Jo7hqqwWMtC1OnBydO77OxWpUHLu2SZj+NSpEfJ2NOnbJlzeel06fxK2np462zaeVJAcjNlfZBqbpsfrf2dqZ/8SrHdIDaqOW/d1pcgf93tIiJ1wMOrrHN7bbEVl4WlSsPUGeOivNPWyS9bVlzgGGwl4+J8x5m14vzy8+3FZTUY9pLAl1d7x1ldVq+zhKnSIHb6cq/TwpXnaWHrtPkelcx3ae9Ztm+Xaa/T2lUw7WZ91BSQ3IzVWnO3+RuGwZxvdvBq8g4ArosJZ/ZNF+LjqYfXiUgD4uEJHiUdxuuS3VYWlmynhaji00JUVYKWrdCxzFbgOONWXOCYVzoUl05XsLy4ZJ6twDWwgePMmr3IcVauPrB6lYSlkrGHF9zwFkRdako5CkhuprSTtu08L7EVFNt47D+/sGSj426WCZd34OEhnZ0BTEREzpPVw9GJ3NtNuivY7a7ByhmgqhC0bIUlQavojM+FjpBVbn6Ra5vTl9uLT1u3kmnDVkH9Ra6XS6F86KtDCkhuxqMGOmkfyy3k7n+tZc3e43haLTyb2INb+7erqRJFRMQdWa1gLemA7u7s9pLAVBrAzpi2lwSpZlGmlaiA5GacZ5DOMSBtPZTDXf9cy/7jpwjw8eSNv/RhYHTLmixRRETk/FitYC3p/+SmFJDczPkEpKRNh5j84c/kFdpo38Kf/xvdl+iQgJouUUREpMFTQHIzpQGp2G6v8jpFNjsvfb2dN7/bDcAlHVswb+RFBPu7bzIXERFxZwpIbsbLoyQg2ap2Bik9O58HPljPmr3HARh7SSRPXK13qomIiJwPBSQ341nyYK+iKlxiW/brIZ749FeO5xXR1MeT2TddyNU9w2q7RBERkQZPAcnNeDrPIFV+iS07r4iZn29y3sLfPTyQeSMvIrJlkzqpUUREpKFTQHIzPp6OM0iFxeUDkmEYfLL+AM8t28rR3EKsFrjvso48ODgab09dUhMREakpCkhupvQp1wVnBKQNaceZtWwbq/ceA6Bj66bMvulCLmrXrM5rFBERaegUkNyMr5cjIOUVOp4euvVQDq9+s4OkzekA+Hl58ODgaMYNjNJZIxERkVqigORmAnwdX8muw7mMWbCaldsPA46X2N5wUVsmD+lEeLCfmSWKiIg0eApIbub08LNy+2GsFhjaM4yJg6PppIc+ioiI1AkFJDfTvIk3YwZEsvSXg1zdM4xxA6No30J3p4mIiNQlt+jEMm/ePCIjI/H19SU2NpbVq1eftf1HH31Ely5d8PX1pWfPnixbtsxluWEYzJgxg7CwMPz8/IiPj2fHjh0ubY4dO8aoUaMIDAwkODiYcePGcfLkyRo/tnPx1LXdWTt9CM9c10PhSERExASmB6TFixczefJkZs6cyfr16+nVqxcJCQlkZmZW2H7VqlWMGDGCcePGsWHDBhITE0lMTGTTpk3ONrNnz2bu3LnMnz+f1NRUmjRpQkJCAvn5+c42o0aNYvPmzSxfvpylS5fyv//9j/Hjx9f68YqIiIj7sxiGcW6vja8hsbGx9OvXj9dffx0Au91OREQEDzzwAI8//ni59sOHDyc3N5elS5c651188cXExMQwf/58DMMgPDychx9+mEceeQSA7OxsQkJCWLhwIbfeeitbt26lW7durFmzhr59+wKQlJTE1Vdfzf79+wkPD//DunNycggKCiI7O5vAwMCa+FOIiIhILavq77epZ5AKCwtZt24d8fHxznlWq5X4+HhSUlIqXCclJcWlPUBCQoKz/Z49e0hPT3dpExQURGxsrLNNSkoKwcHBznAEEB8fj9VqJTU1tcL9FhQUkJOT4zKIiIhIw2RqQDpy5Ag2m42QkBCX+SEhIaSnp1e4Tnp6+lnbl47/qE3r1q1dlnt6etK8efNK9ztr1iyCgoKcQ0RERBWPUkREROob0/sg1RdTp04lOzvbOfz+++9mlyQiIiK1xNSA1LJlSzw8PMjIyHCZn5GRQWhoaIXrhIaGnrV96fiP2pzZCby4uJhjx45Vul8fHx8CAwNdBhEREWmYTA1I3t7e9OnTh+TkZOc8u91OcnIycXFxFa4TFxfn0h5g+fLlzvZRUVGEhoa6tMnJySE1NdXZJi4ujqysLNatW+ds8+2332K324mNja2x4xMREZH6yfQHRU6ePJnbb7+dvn370r9/f+bMmUNubi5jx44FYPTo0bRp04ZZs2YBMHHiRAYNGsTLL7/MsGHDWLRoEWvXruWtt94CwGKxMGnSJJ599lmio6OJioriySefJDw8nMTERAC6du3KVVddxV133cX8+fMpKiri/vvv59Zbb63SHWwiIiLSsJkekIYPH87hw4eZMWMG6enpxMTEkJSU5OxknZaWhtVadqJrwIABvP/++0yfPp1p06YRHR3NkiVL6NGjh7PNlClTyM3NZfz48WRlZTFw4ECSkpLw9fV1tnnvvfe4//77GTx4MFarlRtvvJG5c+fW3YGLiIiI2zL9OUj1lZ6DJCIiUv/Ui+cgiYiIiLgjBSQRERGRMyggiYiIiJxBAUlERETkDKbfxVZflfZt1zvZRERE6o/S3+0/ukdNAekcnThxAkDvZBMREamHTpw4QVBQUKXLdZv/ObLb7Rw8eJCAgAAsFkuNbTcnJ4eIiAh+//33Rvf4AB174zv2xnrc0HiPvbEeN+jY3eXYDcPgxIkThIeHuzxn8Uw6g3SOrFYrbdu2rbXtN+b3venYG9+xN9bjhsZ77I31uEHH7g7HfrYzR6XUSVtERETkDApIIiIiImdQQHIzPj4+zJw5Ex8fH7NLqXM69sZ37I31uKHxHntjPW7Qsde3Y1cnbREREZEz6AySiIiIyBkUkERERETOoIAkIiIicgYFJBEREZEzKCC5mXnz5hEZGYmvry+xsbGsXr3a7JJq1KxZs+jXrx8BAQG0bt2axMREtm/f7tLmsssuw2KxuAz33HOPSRXXnKeeeqrccXXp0sW5PD8/nwkTJtCiRQuaNm3KjTfeSEZGhokV15zIyMhyx26xWJgwYQLQcL7z//3vf1xzzTWEh4djsVhYsmSJy3LDMJgxYwZhYWH4+fkRHx/Pjh07XNocO3aMUaNGERgYSHBwMOPGjePkyZN1eBTn5mzHXlRUxGOPPUbPnj1p0qQJ4eHhjB49moMHD7pso6J/J88//3wdH0n1/NF3PmbMmHLHdNVVV7m0aYjfOVDhf/MWi4UXX3zR2cadv3MFJDeyePFiJk+ezMyZM1m/fj29evUiISGBzMxMs0urMd999x0TJkzgp59+Yvny5RQVFXHllVeSm5vr0u6uu+7i0KFDzmH27NkmVVyzunfv7nJcP/zwg3PZQw89xH//+18++ugjvvvuOw4ePMgNN9xgYrU1Z82aNS7HvXz5cgBuvvlmZ5uG8J3n5ubSq1cv5s2bV+Hy2bNnM3fuXObPn09qaipNmjQhISGB/Px8Z5tRo0axefNmli9fztKlS/nf//7H+PHj6+oQztnZjj0vL4/169fz5JNPsn79ej755BO2b9/OtddeW67tM8884/Lv4IEHHqiL8s/ZH33nAFdddZXLMX3wwQcuyxvidw64HPOhQ4d45513sFgs3HjjjS7t3PY7N8Rt9O/f35gwYYLzs81mM8LDw41Zs2aZWFXtyszMNADju+++c84bNGiQMXHiRPOKqiUzZ840evXqVeGyrKwsw8vLy/joo4+c87Zu3WoARkpKSh1VWHcmTpxodOjQwbDb7YZhNMzvHDA+/fRT52e73W6EhoYaL774onNeVlaW4ePjY3zwwQeGYRjGli1bDMBYs2aNs82XX35pWCwW48CBA3VW+/k689grsnr1agMw9u3b55zXvn1745VXXqnd4mpRRcd9++23G9ddd12l6zSm7/y6664zrrjiCpd57vyd6wySmygsLGTdunXEx8c751mtVuLj40lJSTGxstqVnZ0NQPPmzV3mv/fee7Rs2ZIePXowdepU8vLyzCivxu3YsYPw8HAuuOACRo0aRVpaGgDr1q2jqKjI5fvv0qUL7dq1a3Dff2FhIf/+97+54447XF703FC/81J79uwhPT3d5TsOCgoiNjbW+R2npKQQHBxM3759nW3i4+OxWq2kpqbWec21KTs7G4vFQnBwsMv8559/nhYtWtC7d29efPFFiouLzSmwBq1cuZLWrVvTuXNn7r33Xo4ePepc1li+84yMDL744gvGjRtXbpm7fud6Wa2bOHLkCDabjZCQEJf5ISEhbNu2zaSqapfdbmfSpElccskl9OjRwzl/5MiRtG/fnvDwcH755Rcee+wxtm/fzieffGJitecvNjaWhQsX0rlzZw4dOsTTTz/Nn/70JzZt2kR6ejre3t7lfixCQkJIT083p+BasmTJErKyshgzZoxzXkP9zk9X+j1W9N946bL09HRat27tstzT05PmzZs3qH8H+fn5PPbYY4wYMcLlxaUPPvggF110Ec2bN2fVqlVMnTqVQ4cO8be//c3Eas/PVVddxQ033EBUVBS7du1i2rRpDB06lJSUFDw8PBrNd/7uu+8SEBBQrtuAO3/nCkhimgkTJrBp0yaXfjiAy7X3nj17EhYWxuDBg9m1axcdOnSo6zJrzNChQ53TF154IbGxsbRv354PP/wQPz8/EyurW2+//TZDhw4lPDzcOa+hfudSXlFREbfccguGYfDGG2+4LJs8ebJz+sILL8Tb25u7776bWbNm1atXVJzu1ltvdU737NmTCy+8kA4dOrBy5UoGDx5sYmV165133mHUqFH4+vq6zHfn71yX2NxEy5Yt8fDwKHfXUkZGBqGhoSZVVXvuv/9+li5dyooVK2jbtu1Z28bGxgKwc+fOuiitzgQHB9OpUyd27txJaGgohYWFZGVlubRpaN//vn37+Oabb7jzzjvP2q4hfuel3+PZ/hsPDQ0td1NGcXExx44daxD/DkrD0b59+1i+fLnL2aOKxMbGUlxczN69e+umwDpwwQUX0LJlS+e/7Yb+nQN8//33bN++/Q//uwf3+s4VkNyEt7c3ffr0ITk52TnPbreTnJxMXFyciZXVLMMwuP/++/n000/59ttviYqK+sN1Nm7cCEBYWFgtV1e3Tp48ya5duwgLC6NPnz54eXm5fP/bt28nLS2tQX3/CxYsoHXr1gwbNuys7Rridx4VFUVoaKjLd5yTk0NqaqrzO46LiyMrK4t169Y523z77bfY7XZnaKyvSsPRjh07+Oabb2jRosUfrrNx40asVmu5S1D12f79+zl69Kjz33ZD/s5Lvf322/Tp04devXr9YVu3+s7N7iUuZRYtWmT4+PgYCxcuNLZs2WKMHz/eCA4ONtLT080urcbce++9RlBQkLFy5Urj0KFDziEvL88wDMPYuXOn8cwzzxhr16419uzZY3z22WfGBRdcYFx66aUmV37+Hn74YWPlypXGnj17jB9//NGIj483WrZsaWRmZhqGYRj33HOP0a5dO+Pbb7811q5da8TFxRlxcXEmV11zbDab0a5dO+Oxxx5zmd+QvvMTJ04YGzZsMDZs2GAAxt/+9jdjw4YNzju1nn/+eSM4ONj47LPPjF9++cW47rrrjKioKOPUqVPObVx11VVG7969jdTUVOOHH34woqOjjREjRph1SFV2tmMvLCw0rr32WqNt27bGxo0bXf7bLygoMAzDMFatWmW88sorxsaNG41du3YZ//73v41WrVoZo0ePNvnIzu5sx33ixAnjkUceMVJSUow9e/YY33zzjXHRRRcZ0dHRRn5+vnMbDfE7L5WdnW34+/sbb7zxRrn13f07V0ByM6+99prRrl07w9vb2+jfv7/x008/mV1SjQIqHBYsWGAYhmGkpaUZl156qdG8eXPDx8fH6Nixo/Hoo48a2dnZ5hZeA4YPH26EhYUZ3t7eRps2bYzhw4cbO3fudC4/deqUcd999xnNmjUz/P39jeuvv944dOiQiRXXrK+++soAjO3bt7vMb0jf+YoVKyr893377bcbhuG41f/JJ580QkJCDB8fH2Pw4MHl/h5Hjx41RowYYTRt2tQIDAw0xo4da5w4ccKEo6mesx37nj17Kv1vf8WKFYZhGMa6deuM2NhYIygoyPD19TW6du1qPPfccy5Bwh2d7bjz8vKMK6+80mjVqpXh5eVltG/f3rjrrrvK/Z/ehvidl3rzzTcNPz8/Iysrq9z67v6dWwzDMGr1FJWIiIhIPaM+SCIiIiJnUEASEREROYMCkoiIiMgZFJBEREREzqCAJCIiInIGBSQRERGRMyggiYiIiJxBAUlERETkDApIIuK2Vq5cicViKfcS37qSnJxM165dsdls57Udi8XCkiVLqtw+KSmJmJgY7Hb7ee1XRM6dApKIuIXLLruMSZMmucwbMGAAhw4dIigoyJSapkyZwvTp0/Hw8Div7Rw6dIihQ4dWuf1VV12Fl5cX77333nntV0TOnQKSiLgtb29vQkNDsVgsdb7vH374gV27dnHjjTee97ZCQ0Px8fGp1jpjxoxh7ty5571vETk3CkgiYroxY8bw3Xff8eqrr2KxWLBYLOzdu7fcJbaFCxcSHBzM0qVL6dy5M/7+/tx0003k5eXx7rvvEhkZSbNmzXjwwQddLosVFBTwyCOP0KZNG5o0aUJsbCwrV648a02LFi1iyJAh+Pr6Ouc99dRTxMTE8M4779CuXTuaNm3Kfffdh81mY/bs2YSGhtK6dWv++te/umzr9Etse/fuxWKx8Mknn3D55Zfj7+9Pr169SElJcVnnmmuuYe3atezatevc/7Aics48zS5AROTVV1/lt99+o0ePHjzzzDMAtGrVir1795Zrm5eXx9y5c1m0aBEnTpzghhtu4Prrryc4OJhly5axe/dubrzxRi655BKGDx8OwP3338+WLVtYtGgR4eHhfPrpp1x11VX8+uuvREdHV1jT999/z8iRI8vN37VrF19++SVJSUns2rWLm266id27d9OpUye+++47Vq1axR133EF8fDyxsbGVHvMTTzzBSy+9RHR0NE888QQjRoxg586deHo6/me5Xbt2hISE8P3339OhQ4fq/klF5DwpIImI6YKCgvD29sbf35/Q0NCzti0qKuKNN95whoabbrqJf/3rX2RkZNC0aVO6devG5ZdfzooVKxg+fDhpaWksWLCAtLQ0wsPDAXjkkUdISkpiwYIFPPfccxXuZ9++fc72p7Pb7bzzzjsEBAQ497V9+3aWLVuG1Wqlc+fOvPDCC6xYseKsAemRRx5h2LBhADz99NN0796dnTt30qVLF2eb8PBw9u3bd/Y/nojUCgUkEalX/P39Xc6ohISEEBkZSdOmTV3mZWZmAvDrr79is9no1KmTy3YKCgpo0aJFpfs5deqUy+W1UpGRkQQEBLjsy8PDA6vV6jKvdP+VufDCC53TYWFhAGRmZroEJD8/P/Ly8s66HRGpHQpIIlKveHl5uXy2WCwVziu9Rf7kyZN4eHiwbt26cnejnR6qztSyZUuOHz9+3vuvynGUdkI/c51jx47RqlWrs25HRGqHApKIuAVvb+/zft5QRXr37o3NZiMzM5M//elP1Vpvy5YtNV5PVeXn57Nr1y569+5tWg0ijZnuYhMRtxAZGUlqaip79+7lyJEjNfaQxE6dOjFq1ChGjx7NJ598wp49e1i9ejWzZs3iiy++qHS9hIQEfvjhhxqp4Vz89NNP+Pj4EBcXZ1oNIo2ZApKIuIVHHnkEDw8PunXrRqtWrUhLS6uxbS9YsIDRo0fz8MMP07lzZxITE1mzZg3t2rWrdJ1Ro0axefNmtm/fXmN1VMcHH3zAqFGj8Pf3N2X/Io2dxTAMw+wiRETc0aOPPkpOTg5vvvlmne73yJEjdO7cmbVr1xIVFVWn+xYRB51BEhGpxBNPPEH79u3r/J1oe/fu5e9//7vCkYiJdAZJRERE5Aw6gyQiIiJyBgUkERERkTMoIImIiIicQQFJRERE5AwKSCIiIiJnUEASEREROYMCkoiIiMgZFJBEREREzqCAJCIiInKG/w+460z7LxoMKQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\dae\\petsc_chem_doc_18_0.png" - } - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# 2 and 4 are pretty low concentration, so plot those so we can see better\n", "a = plt.plot(tj.time, tj.get_vec(m.y[180, 2]), label=\"y2\")\n", @@ -1131,24 +285,9 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAGwCAYAAAAOvdliAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUW0lEQVR4nO3de1xUdf4/8NfMwMwAwiAiDBgKKt4vsJqE1ZqJYrF9o+2ixqaZl36mpZldLMVqK9J0M8tv1n7zUqmYW1lrhhlqNwkVtc1LrhcUbwMCMsP9MvP5/QFzZOTiDA4zMPN6Ph7zGDjzOWfeh8md134+n/M5MiGEABERERE5jNzZBRARERG5GwYwIiIiIgdjACMiIiJyMAYwIiIiIgdjACMiIiJyMAYwIiIiIgdjACMiIiJyMA9nF+DKTCYTLl68CF9fX8hkMmeXQ0RERFYQQqC4uBihoaGQy1unr4oBrBVdvHgRYWFhzi6DiIiIWuDcuXO46aabWuXYDGCtyNfXF0DtB+jn5+fkaoiIiMgaBoMBYWFh0vd4a2AAa0XmYUc/Pz8GMCIionamNacPcRI+ERERkYMxgBERERE5GAMYERERkYNxDhgREZGbMZlMqKqqcnYZTuPp6QmFQuHUGhjAiIiI3EhVVRWys7NhMpmcXYpT+fv7Q6vVOm2dTgYwIiIiNyGEwKVLl6BQKBAWFtZqi4y2ZUIIlJWVIS8vDwAQEhLilDoYwIiIiNxETU0NysrKEBoaCm9vb2eX4zReXl4AgLy8PAQFBTllONL9oi8REZGbMhqNAAClUunkSpzPHECrq6ud8v4MYERERG6G9yd2/t+AAYyIiIjIwRjAiIiIiByMAYyIiIjIwRjAiIiIqN364osvMHr0aHTu3Bl+fn6IjY3F9u3bnV3WdTGAERERUbv1448/YvTo0di2bRuysrIwcuRI3HPPPTh48KCzS2sW1wEjIiJyU0IIlFcbnfLeXp4Kq65E/Pjjj/H000/j4sWLUKlU0vbExET4+vrik08+sWj/xhtv4KuvvsK///1vREdH271ue2EAIyIiclPl1Ub0S3bOcN3RV+Phrbx+DHnwwQfx1FNP4euvv8aDDz4IoHYB1W+++Qbfffddg/YmkwnFxcUICAiwe832xCFIIiIiarO8vLzw8MMPY82aNdK2Tz/9FF27dsUdd9zRoP3SpUtRUlKChx56yIFV2o49YERERG7Ky1OBo6/GO+29rTVt2jTcfPPNuHDhArp06YK1a9fi0UcfbTCEuWHDBrzyyiv46quvEBQUZO+S7YoBjIiIyE3JZDKrhgGdLTo6GoMHD8bHH3+MMWPG4MiRI/jmm28s2qSmpmLq1KnYvHkz4uLinFSp9Zw+BLly5UqEh4dDrVYjJiYGe/fubbb95s2b0adPH6jVagwcOBDbtm2zeF0IgeTkZISEhMDLywtxcXE4ceKERZvXX38dw4cPh7e3N/z9/Ru8x2+//YYJEyYgLCwMXl5e6Nu3L955550bPlciIiJqmalTp2Lt2rVYs2YN4uLiEBYWJr22ceNGTJ48GRs3bkRCQoITq7SeUwPYpk2bMHfuXCxatAgHDhzA4MGDER8fj7y8vEbb79mzBxMmTMCUKVNw8OBBJCYmIjExEYcPH5baLFmyBCtWrMCqVauQmZkJHx8fxMfHo6KiQmpTVVWFBx98EDNmzGj0fbKyshAUFIRPP/0UR44cwUsvvYT58+fjvffea9F5CiFatB8RERHVevjhh3H+/Hn885//xGOPPSZt37BhAyZOnIhly5YhJiYGOp0OOp0Oer3eidVaQTjRsGHDxMyZM6XfjUajCA0NFSkpKY22f+ihh0RCQoLFtpiYGPH4448LIYQwmUxCq9WKt956S3q9qKhIqFQqsXHjxgbHW7NmjdBoNFbV+sQTT4iRI0da1dZMr9cLAOJCXoFN+xEREbWG8vJycfToUVFeXu7sUlrkkUceEQEBAaKiokLaNmLECAGgwWPSpEnNHqu5v4X5+1uv19v7FCRO6wGrqqpCVlaWxTitXC5HXFwcMjIyGt0nIyOjwbhufHy81D47Oxs6nc6ijUajQUxMTJPHtJZer7/uJa2VlZUwGAwWDwAoLq++ofcmIiIi4MKFC0hKSrJYD2z37t0QQjR4rF271nmFWsFpASw/Px9GoxHBwcEW24ODg6HT6RrdR6fTNdve/GzLMa2xZ88ebNq0CdOnT2+2XUpKCjQajfQwj08XVzKAERERtdSVK1fw5ZdfYvfu3Zg5c6azy7ELp0/Cb+sOHz6Me++9F4sWLcKYMWOabTt//nzo9Xrpce7cOQCAobzGEaUSERG5pOjoaDz66KNYvHgxevfu7exy7MJp154GBgZCoVAgNzfXYntubi60Wm2j+2i12mbbm59zc3MREhJi0SYqKsrmGo8ePYpRo0Zh+vTpWLBgwXXbq1Qqi25RM0MFAxgREVFLnTlzxtkl2J3TesCUSiWGDBmC9PR0aZvJZEJ6ejpiY2Mb3Sc2NtaiPQDs2LFDah8REQGtVmvRxmAwIDMzs8ljNuXIkSMYOXIkJk2ahNdff92mfa/FOWBERNSWCF6d7/S/gVNXX5s7dy4mTZqEoUOHYtiwYVi+fDlKS0sxefJkAMDEiRPRpUsXpKSkAABmz56NESNGYNmyZUhISEBqair279+PDz/8EEDtgnJz5szBa6+9hsjISERERGDhwoUIDQ1FYmKi9L45OTkoLCxETk4OjEYjDh06BADo2bMnOnTogMOHD+POO+9EfHw85s6dK80fUygU6Ny5s83nyTlgRETUFigUtavPV1VVwcvLy8nVOFdZWRkAwNPT0ynv79QANm7cOFy+fBnJycnQ6XSIiopCWlqaNIk+JycHcvnVTrrhw4djw4YNWLBgAV588UVERkZiy5YtGDBggNTmueeeQ2lpKaZPn46ioiLcdtttSEtLg1qtltokJydj3bp10u/mu6Xv2rULd9xxB/71r3/h8uXL+PTTT/Hpp59K7bp169aibtDicufcaZ6IiKg+Dw8PeHt74/Lly/D09LT4jnUXQgiUlZUhLy8P/v7+Uih1NJlwdh+cCzMYDNBoNJifmok3xg1zdjlERESoqqpCdnY2TCaTs0txKn9/f2i12gb3kwSufn/r9Xr4+fm1yvu3/RtAuYDiCg5BEhFR26BUKhEZGYmqqipnl+I0np6eTuv5MmMAcwAGMCIiakvkcrnF1BxyPPcb/HWCYi5DQURERPUwgDkA1wEjIiKi+hjAHMDAdcCIiIioHgYwB+A6YERERFQfA5gDlFYaYTJxtQ8iIiKqxQDmAEJwIj4RERFdxQDmIAYuRUFERER1GMAcRM+J+ERERFSHAcxB2ANGREREZgxgDsKlKIiIiMiMAcxBDOWchE9ERES1GMAchEOQREREZMYA5iAcgiQiIiIzBjAH4VWQREREZMYA5iC8ITcRERGZMYA5CIcgiYiIyIwBzEE4CZ+IiIjMGMAchHPAiIiIyIwBzEG4DhgRERGZMYA5CIcgiYiIyIwBzEHKqoyoNpqcXQYRERG1AQxgDsQrIYmIiAhgAHMIX7UCAFDEAEZERERgAHMIjZcSAFBUxgBGREREDGAOofHyBADoy6ucXAkRERG1BQxgDuBXF8DYA0ZEREQAA5hDaNQeABjAiIiIqBYDmANovOt6wDgJn4iIiMAA5hAade0kfH0Z54ARERERA5hDaLzrhiDZA0ZERERgAHMIP7X5KkgGMCIiImIAcwiNN9cBIyIioqsYwBxA41U7BMkeMCIiIgIYwBxCI60Dxkn4RERExADmEJp6c8BMJuHkaoiIiMjZGMAcwLeuB8wkgOLKGidXQ0RERM7GAOYAak8FvDwVAAA9J+ITERG5PQYwB/GXVsPnPDAiIiJ3xwDmIBrekJuIiIjqMIA5iLkHjEtREBEREQOYg/h71S3GygBGRETk9hjAHMQ8BMkbchMREREDmINIk/A5B4yIiMjtMYA5iEa6CpIBjIiIyN0xgDmINAeMPWBERERujwHMQa5eBck5YERERO6OAcxB/LkOGBEREdVxegBbuXIlwsPDoVarERMTg7179zbbfvPmzejTpw/UajUGDhyIbdu2WbwuhEBycjJCQkLg5eWFuLg4nDhxwqLN66+/juHDh8Pb2xv+/v6Nvk9OTg4SEhLg7e2NoKAgPPvss6ipafl9HDVcB4yIiIjqODWAbdq0CXPnzsWiRYtw4MABDB48GPHx8cjLy2u0/Z49ezBhwgRMmTIFBw8eRGJiIhITE3H48GGpzZIlS7BixQqsWrUKmZmZ8PHxQXx8PCoqKqQ2VVVVePDBBzFjxoxG38doNCIhIQFVVVXYs2cP1q1bh7Vr1yI5ObnF5yqthF9eDSFEi49DRERELkA40bBhw8TMmTOl341GowgNDRUpKSmNtn/ooYdEQkKCxbaYmBjx+OOPCyGEMJlMQqvVirfeekt6vaioSKhUKrFx48YGx1uzZo3QaDQNtm/btk3I5XKh0+mkbe+//77w8/MTlZWVVp+fXq8XAIRerxfFFdWi2/NbRbfnt4qyyhqrj0FERESOVf/7u7U4rQesqqoKWVlZiIuLk7bJ5XLExcUhIyOj0X0yMjIs2gNAfHy81D47Oxs6nc6ijUajQUxMTJPHbOp9Bg4ciODgYIv3MRgMOHLkSJP7VVZWwmAwWDzMfJQKeMhlAHhDbiIiInfntACWn58Po9FoEXIAIDg4GDqdrtF9dDpds+3Nz7Yc05b3qf8ejUlJSYFGo5EeYWFh0msymYyLsRIRERGANjAJ35XMnz8fer1eepw7d87idQ2vhCQiIiI4MYAFBgZCoVAgNzfXYntubi60Wm2j+2i12mbbm59tOaYt71P/PRqjUqng5+dn8ajP37t2MVauBUZEROTenBbAlEolhgwZgvT0dGmbyWRCeno6YmNjG90nNjbWoj0A7NixQ2ofEREBrVZr0cZgMCAzM7PJYzb1Pr///rvF1Zg7duyAn58f+vXrZ/VxrsW1wIiIiAgAPJz55nPnzsWkSZMwdOhQDBs2DMuXL0dpaSkmT54MAJg4cSK6dOmClJQUAMDs2bMxYsQILFu2DAkJCUhNTcX+/fvx4YcfAqidZzVnzhy89tpriIyMREREBBYuXIjQ0FAkJiZK75uTk4PCwkLk5OTAaDTi0KFDAICePXuiQ4cOGDNmDPr164dHHnkES5YsgU6nw4IFCzBz5kyoVKoWny/vB0lERESAkwPYuHHjcPnyZSQnJ0On0yEqKgppaWnShPecnBzI5Vc76YYPH44NGzZgwYIFePHFFxEZGYktW7ZgwIABUpvnnnsOpaWlmD59OoqKinDbbbchLS0NarVaapOcnIx169ZJv0dHRwMAdu3ahTvuuAMKhQJbt27FjBkzEBsbCx8fH0yaNAmvvvrqDZ2v+X6QV8o4BElEROTOZEJwVdDWYjAYoNFooNfr4efnh/d2nsDS7/6Lh4behCUPDHZ2eURERNSIa7+/WwOvgnSgAJ/a4cvCUvaAERERuTMGMAfq1KF2CDK/hAGMiIjInTGAOVAnn9oAxh4wIiIi98YA5kABDGBEREQEBjCH6lQ3B6yksgYV1UYnV0NERETOwgDmQH5eHtINudkLRkRE5L4YwBxIJpNxGJKIiIgYwBzNHMAKGMCIiIjcFgOYg5mXoigsrXRyJUREROQsDGAOZp6IX8C1wIiIiNwWA5iDcQiSiIiIGMAcTFqMlT1gREREbosBzMECOrAHjIiIyN0xgDmYNAeMk/CJiIjcFgOYg129CpI9YERERO6KAczBAjgHjIiIyO0xgDmYeRJ+cWUNKmt4P0giIiJ3xADmYH5qT94PkoiIyM0xgDmYXC5DR/NaYByGJCIicksMYE7QiTfkJiIicmsMYE4QwABGRETk1jxsaVxUVIQvv/wSP/30E86ePYuysjJ07twZ0dHRiI+Px/Dhw1urTpfSqUPtWmD5JVwLjIiIyB1Z1QN28eJFTJ06FSEhIXjttddQXl6OqKgojBo1CjfddBN27dqF0aNHo1+/fti0aVNr19zucQiSiIjIvVnVAxYdHY1JkyYhKysL/fr1a7RNeXk5tmzZguXLl+PcuXOYN2+eXQt1JRyCJCIicm9WBbCjR4+iU6dOzbbx8vLChAkTMGHCBBQUFNilOFdlDmC8HyQREZF7smoI8nrh60bbu5tA8w25OQeMiIjILVnVA/b1119bfcD/+Z//aXEx7iKg7obcHIIkIiJyT1YFsMTERKsOJpPJYDTy9jrXwyFIIiIi92ZVADOZTK1dh1uR7gdZUYOqGhOUHlyOjYiIyJ1Y/c0/ceJEfP755ygtLW3NetyCxssTCt4PkoiIyG1ZHcB69uyJN954A4GBgbjrrrvw/vvv48KFC61Zm8uSy2Xo6G0ehuREfCIiIndjdQBLTk5GVlYWTpw4gXvuuQdbtmxBjx49MGTIELz66qs4dOhQK5bpergYKxERkfuyefLRTTfdhCeeeALbt2/H5cuX8fzzz+P48eO488470a1bN8yaNQtHjhxpjVpdChdjJSIicl83NPvb19cXDz30ENavX4/Lly9j9erVUCgUyMjIsFd9LqtT3Vpg+SUMYERERO7GpptxN0ehUGDUqFEYNWqUvQ7p0q4OQXIOGBERkbux+l6QMpnMqgMeOHDghgpyF1yMlYiIyH3ZdSFWsl6AdDsiBjAiIiJ3Y1UAW7RoUWvX4XYCuRo+ERGR22rxHLCsrCwcO3YMANC/f39ER0fbrSh3wKsgiYiI3JfNASwvLw/jx4/H7t274e/vDwAoKirCyJEjkZqais6dO9u7RpfUSRqC5CR8IiIid2PzMhRPPvkkiouLceTIERQWFqKwsBCHDx+GwWDAU0891Ro1uiTzJHxD3f0giYiIyH3Y3AOWlpaG77//Hn379pW29evXDytXrsSYMWPsWpwr8/fyhFwGmARwpawKwX5qZ5dEREREDmJzD5jJZIKnp2eD7Z6enjCZ2JNjLblcJs0D45WQRERE7sXmAHbnnXdi9uzZuHjxorTtwoULePrpp7kIq404EZ+IiMg92RzA3nvvPRgMBoSHh6NHjx7o0aMHIiIiYDAY8O6777ZGjS5L6gHjavhERERuxeY5YGFhYThw4AC+//57/PHHHwCAvn37Ii4uzu7FubpOHWon4nMIkoiIyL20aB0wmUyG0aNHY/To0faux6104hAkERGRW2pRANu3bx927dqFvLy8BhPv//GPf9ilMHcQwNXwiYiI3JLNAeyNN97AggUL0Lt3bwQHB1vcpNvaG3ZTras9YJwDRkRE5E5snoT/zjvvYPXq1Th27Bh2796NXbt2SY+dO3faXMDKlSsRHh4OtVqNmJgY7N27t9n2mzdvRp8+faBWqzFw4EBs27bN4nUhBJKTkxESEgIvLy/ExcXhxIkTFm0KCwuRlJQEPz8/+Pv7Y8qUKSgpKbFos337dtxyyy3w9fVF586dcf/99+PMmTM2n19zOAeMiIjIPdkcwORyOW699Va7vPmmTZswd+5cLFq0CAcOHMDgwYMRHx+PvLy8Rtvv2bMHEyZMwJQpU3Dw4EEkJiYiMTERhw8fltosWbIEK1aswKpVq5CZmQkfHx/Ex8ejoqJCapOUlIQjR45gx44d2Lp1K3788UdMnz5dej07Oxv33nsv7rzzThw6dAjbt29Hfn4+/vrXv9rlvM24DAUREZGbEjZavHixmD17tq27NWrYsGFi5syZ0u9Go1GEhoaKlJSURts/9NBDIiEhwWJbTEyMePzxx4UQQphMJqHVasVbb70lvV5UVCRUKpXYuHGjEEKIo0ePCgBi3759Uptvv/1WyGQyceHCBSGEEJs3bxYeHh7CaDRKbb7++mshk8lEVVVVk+dTUVEh9Hq99Dh37pwAIPR6faPt/6sziG7PbxWDXt7e5DGJiIjIsfR6fbPf3/Zgcw/YvHnzcPz4cfTo0QP33HMP/vrXv1o8rFVVVYWsrCyL5Svkcjni4uKQkZHR6D4ZGRkNlruIj4+X2mdnZ0On01m00Wg0iImJkdpkZGTA398fQ4cOldrExcVBLpcjMzMTADBkyBDI5XKsWbMGRqMRer0en3zyCeLi4hq9C4BZSkoKNBqN9AgLC2v2b2DuAdOXV6PayLsIEBERuQubA9hTTz2FXbt2oVevXujUqZNF4NBoNFYfJz8/H0ajEcHBwRbbg4ODodPpGt1Hp9M12978fL02QUFBFq97eHggICBAahMREYHvvvsOL774IlQqFfz9/XH+/Hl89tlnzZ7T/Pnzodfrpce5c+eabe/vrYS87rqFKxyGJCIichs2XwW5bt06fP7550hISGiNetoEnU6HadOmYdKkSZgwYQKKi4uRnJyMBx54ADt27Gjyak+VSgWVSmX1+yjkMnT0VqKgtAoFpVUI4g25iYiI3ILNASwgIAA9evS44TcODAyEQqFAbm6uxfbc3FxotdpG99Fqtc22Nz/n5uYiJCTEok1UVJTU5tpJ/jU1NSgsLJT2X7lyJTQaDZYsWSK1+fTTTxEWFobMzEzccsstLTjjxgX41AYwTsQnIiJyHzYPQb788stYtGgRysrKbuiNlUolhgwZgvT0dGmbyWRCeno6YmNjG90nNjbWoj0A7NixQ2ofEREBrVZr0cZgMCAzM1NqExsbi6KiImRlZUltdu7cCZPJhJiYGABAWVkZ5HLLP41CoZBqtCcuxkpEROR+bO4BW7FiBU6dOoXg4GCEh4c3mJR+4MABq481d+5cTJo0CUOHDsWwYcOwfPlylJaWYvLkyQCAiRMnokuXLkhJSQEAzJ49GyNGjMCyZcuQkJCA1NRU7N+/Hx9++CGA2oVg58yZg9deew2RkZGIiIjAwoULERoaisTERAC1960cO3Yspk2bhlWrVqG6uhqzZs3C+PHjERoaCgBISEjA22+/jVdffVUagnzxxRfRrVs3REdH2/ona1agtBYYF2MlIiJyFzYHMHOQsYdx48bh8uXLSE5Ohk6nQ1RUFNLS0qRJ9Dk5ORY9UcOHD8eGDRuwYMECvPjii4iMjMSWLVswYMAAqc1zzz2H0tJSTJ8+HUVFRbjtttuQlpYGtfrq/Kr169dj1qxZGDVqFORyOe6//36sWLFCev3OO+/Ehg0bsGTJEixZsgTe3t6IjY1FWloavLy87Hb+ANcCIyIickcyIYRwdhGuymAwQKPRQK/Xw8/Pr9E2b+/4L95JP4GHY7rijfsGOrhCIiIiupY13983yqo5YMxoradTh7oeMN6OiIiIyG1YFcD69++P1NRUVFU1HxJOnDiBGTNm4M0337RLce6gk0/dHDDekJuIiMhtWDUH7N1338Xzzz+PJ554AqNHj8bQoUMRGhoKtVqNK1eu4OjRo/j5559x5MgRzJo1CzNmzGjtul0Gr4IkIiJyP1YFsFGjRmH//v34+eefsWnTJqxfvx5nz55FeXk5AgMDER0djYkTJyIpKQkdO3Zs7ZpdijQEyQBGRETkNmy6CvK2227Dbbfd1lq1uCVzD1hRWTVqjCZ4KGxemo2IiIjaGX7bO1lHbyXMdzYqLGMvGBERkTtgAHMy8/0gAQ5DEhERuQsGsDZAWoyVS1EQERG5BQawNoBXQhIREbkXBrA2ILDuSkjeD5KIiMg92HwvSAAwmUw4efIk8vLyYDKZLF7785//bJfC3AnvB0lERORebA5gv/76Kx5++GGcPXu2wS2KZDIZjEaj3YpzFwHSavgMYERERO7A5gD2//7f/8PQoUPxzTffICQkBDLzGgrUYp3YA0ZERORWbA5gJ06cwL/+9S/07NmzNepxS52kOWAMYERERO7A5kn4MTExOHnyZGvU4rbMN+S+zEn4REREbsHmHrAnn3wSzzzzDHQ6HQYOHAhPT0+L1wcNGmS34txFiEYNANDpKyCE4LAuERGRi7M5gN1///0AgMcee0zaJpPJpODASfi209YFsPJqIwzlNdB4e15nDyIiImrPbA5g2dnZrVGHW1N7KtDR2xNXyqpxyVDOAEZEROTibA5g3bp1a4063J5W41UbwPQV6KP1c3Y5RERE1IpatBDrqVOnsHz5chw7dgwA0K9fP8yePRs9evSwa3HuJESjxrFLBuj0Fc4uhYiIiFqZzVdBbt++Hf369cPevXsxaNAgDBo0CJmZmejfvz927NjRGjW6BfM8sEsMYERERC7P5h6wF154AU8//TTefPPNBtuff/55jB492m7FuZNQ6UrIcidXQkRERK3N5h6wY8eOYcqUKQ22P/bYYzh69KhdinJHWo0XAPaAERERuQObA1jnzp1x6NChBtsPHTqEoKAge9TklkI4BElEROQ2bB6CnDZtGqZPn47Tp09j+PDhAIBffvkFixcvxty5c+1eoLvQ1luMlYiIiFybzQFs4cKF8PX1xbJlyzB//nwAQGhoKF5++WU89dRTdi/QXWj9agNYSWUNiiuq4avmWmBERESuyuYAJpPJ8PTTT+Ppp59GcXExAMDX19fuhbkbH5UH/NQeMFTUQKevYAAjIiJyYTbPAavP19eX4cuOQjgRn4iIyC1Y1QP2pz/9Cenp6ejYsSOio6ObvVn0gQMH7Facu9Fq1DieW8x5YERERC7OqgB27733QqVSST83F8Co5UL9eSUkERGRO7AqgC1atEj6+eWXX26tWtye1q92CFJn4GKsRERErszmOWDdu3dHQUFBg+1FRUXo3r27XYpyV+a1wC4WsQeMiIjIldkcwM6cOQOj0dhge2VlJc6fP2+XotwV1wIjIiJyD1YvQ/H1119LP2/fvh0ajUb63Wg0Ij09HREREfatzs1cXQ2fQ5BERESuzOoAlpiYCKB2HbBJkyZZvObp6Ynw8HAsW7bMrsW5G3MPmKGiBqWVNfBR2bxMGxEREbUDVn/Dm0wmAEBERAT27duHwMDAVivKXfmqPdFB5YGSyhroDBXo0bmDs0siIiKiVmDzHLDs7GyGr1bEeWBERESur0VjXKWlpfjhhx+Qk5ODqqoqi9d4P8gbE6JR42ReCdcCIyIicmE2B7CDBw/i7rvvRllZGUpLSxEQEID8/Hx4e3sjKCiIAewGhUg9YJyIT0RE5KpsHoJ8+umncc899+DKlSvw8vLCr7/+irNnz2LIkCFYunRpa9ToVrR194O8yB4wIiIil2VzADt06BCeeeYZyOVyKBQKVFZWIiwsDEuWLMGLL77YGjW6lRDOASMiInJ5NgcwT09PyOW1uwUFBSEnJwcAoNFocO7cOftW54a0Gt4PkoiIyNXZPAcsOjoa+/btQ2RkJEaMGIHk5GTk5+fjk08+wYABA1qjRrfCOWBERESuz+YesDfeeAMhISEAgNdffx0dO3bEjBkzcPnyZXz44Yd2L9DdhNTdkPtKWTUqqhve8omIiIjaP5t6wIQQCAoKknq6goKCkJaW1iqFuSs/Lw94eSpQXm2ETl+B8EAfZ5dEREREdmZTD5gQAj179uRcr1Ykk8kQ4s95YERERK7MpgAml8sRGRmJgoKC1qqHUG8emIHzwIiIiFyRzXPA3nzzTTz77LM4fPhwa9RDALR188AuFrEHjIiIyBXZHMAmTpyIvXv3YvDgwfDy8kJAQIDFw1YrV65EeHg41Go1YmJisHfv3mbbb968GX369IFarcbAgQOxbds2i9eFEEhOTkZISAi8vLwQFxeHEydOWLQpLCxEUlIS/Pz84O/vjylTpqCkpKTBcZYuXYpevXpBpVKhS5cueP31120+v5bgWmBERESuzeZlKN5++23IZDK7vPmmTZswd+5crFq1CjExMVi+fDni4+Nx/PhxBAUFNWi/Z88eTJgwASkpKfjLX/6CDRs2IDExEQcOHJAuDFiyZAlWrFiBdevWISIiAgsXLkR8fDyOHj0Ktbo22CQlJeHSpUvYsWMHqqurMXnyZEyfPh0bNmyQ3mv27Nn47rvvsHTpUgwcOBCFhYUoLCy0y3lfD9cCIyIicnHCiYYNGyZmzpwp/W40GkVoaKhISUlptP1DDz0kEhISLLbFxMSIxx9/XAghhMlkElqtVrz11lvS60VFRUKlUomNGzcKIYQ4evSoACD27dsntfn222+FTCYTFy5ckNp4eHiIP/7444bOT6/XCwBCr9fbtN/3R3Wi2/NbRcKKH2/o/YmIiMh2Lf3+toXNQ5AKhQJ5eXkNthcUFEChUFh9nKqqKmRlZSEuLk7aJpfLERcXh4yMjEb3ycjIsGgPAPHx8VL77Oxs6HQ6izYajQYxMTFSm4yMDPj7+2Po0KFSm7i4OMjlcmRmZgIA/v3vf6N79+7YunUrIiIiEB4ejqlTp163B6yyshIGg8Hi0RJaDkESERG5NJsDmBCi0e2VlZVQKpVWHyc/Px9GoxHBwcEW24ODg6HT6RrdR6fTNdve/Hy9NtcOb3p4eCAgIEBqc/r0aZw9exabN2/Gxx9/jLVr1yIrKwsPPPBAs+eUkpICjUYjPcLCwppt35SQuhty55dUobKGi7ESERG5GqvngK1YsQJA7TpV//d//4cOHTpIrxmNRvz444/o06eP/St0ApPJhMrKSnz88cfo1asXAOCjjz7CkCFDcPz4cfTu3bvR/ebPn4+5c+dKvxsMhhaFsI7enlB5yFFZY0KeoRJhAd4tOxEiIiJqk6wOYG+//TaA2h6wVatWWQw3KpVKhIeHY9WqVVa/cWBgIBQKBXJzcy225+bmQqvVNrqPVqtttr35OTc3V7pdkvn3qKgoqc21Q6g1NTUoLCyU9g8JCYGHh4cUvgCgb9++AICcnJwmA5hKpYJKpWr2vK0hk8kQolHjTEEZLukrGMCIiIhcjNVDkNnZ2cjOzsaIESPw22+/Sb9nZ2fj+PHj2L59O2JiYqx+Y6VSiSFDhiA9PV3aZjKZkJ6ejtjY2Eb3iY2NtWgPADt27JDaR0REQKvVWrQxGAzIzMyU2sTGxqKoqAhZWVlSm507d8JkMkn133rrraipqcGpU6ekNv/9738BAN26dbP6HG/E1SshuRgrERGRq7F5GYpdu3bZ7c3nzp2LSZMmYejQoRg2bBiWL1+O0tJSTJ48GUDtmmNdunRBSkoKgNqlIUaMGIFly5YhISEBqamp2L9/v3QTcJlMhjlz5uC1115DZGSktAxFaGgoEhMTAdT2ZI0dOxbTpk3DqlWrUF1djVmzZmH8+PEIDQ0FUDsp/09/+hMee+wxLF++HCaTCTNnzsTo0aMtesVak3keGJeiICIicj02BzCj0Yi1a9ciPT0deXl5MJlMFq/v3LnT6mONGzcOly9fRnJyMnQ6HaKiopCWliZNos/JyYFcfrWTbvjw4diwYQMWLFiAF198EZGRkdiyZYu0BhgAPPfccygtLcX06dNRVFSE2267DWlpadIaYACwfv16zJo1C6NGjYJcLsf9998vzXEDaq/G/Pe//40nn3wSf/7zn+Hj44O77roLy5Yts/XP1WK8EpKIiMh1yURTlzU2YdasWVi7di0SEhIQEhLSYFFW81wxqh3+1Gg00Ov18PPzs2nfjzPOIPmrI4jvH4wPHhl6/R2IiIjILm7k+9taNveApaam4rPPPsPdd9/dGvVQHa0fe8CIiIhclc3rgCmVSvTs2bM1aqF6OAeMiIjIddkcwJ555hm88847TS7ISvZhngN2uaQS1UbTdVoTERFRe2LzEOTPP/+MXbt24dtvv0X//v3h6elp8foXX3xht+LcWScfJZQKOaqMJuQVV6KLv5ezSyIiIiI7sTmA+fv747777muNWqgeuVyGYI0K5wrLodOXM4ARERG5EJsD2Jo1a1qjDmpEiJ8XzhWW42JRBYY4Zv1XIiIicgCb54ABtbfu+f777/HBBx+guLgYAHDx4kWUlJTYtTh3x7XAiIiIXJPNPWBnz57F2LFjkZOTg8rKSowePRq+vr5YvHgxKisrbbofJDUvRLodEQMYERGRK7G5B2z27NkYOnQorly5Ai+vq/OS7rvvvgb3aaQbI/WAGXg/SCIiIldicw/YTz/9hD179kCpVFpsDw8Px4ULF+xWGLEHjIiIyFXZ3ANmMplgNBobbD9//jx8fX3tUhTV0tYtxso5YERERK7F5gA2ZswYLF++XPpdJpOhpKQEixYt4u2J7Cy0rgcsr7gSNVyMlYiIyGXYPAS5bNkyxMfHo1+/fqioqMDDDz+MEydOIDAwEBs3bmyNGt1Wpw4qeMhlqDEJ5JdUSXPCiIiIqH2zOYDddNNN+O2337Bp0yb89ttvKCkpwZQpU5CUlGQxKZ9unEIuQ7CfGheKynFJX84ARkRE5CJsDmAA4OHhgaSkJCQlJdm7HrqGVlMbwC4WVSC6q7OrISIiInuweQ5YSkoKVq9e3WD76tWrsXjxYrsURVd1DfAGAJwpKHVyJURERGQvNgewDz74AH369GmwvX///lyEtRV0D/QBAJy+zABGRETkKmwOYDqdDiEhIQ22d+7cGZcuXbJLUXRV984dAACn83mbJyIiIldhcwALCwvDL7/80mD7L7/8gtDQULsURVdF1PWAZeezB4yIiMhV2DwJf9q0aZgzZw6qq6tx5513AgDS09Px3HPP4ZlnnrF7ge7OHMCKyqpRWFqFAB/ldfYgIiKits7mAPbss8+ioKAATzzxBKqqqgAAarUazz//PObPn2/3At2dl1KBUI0aF/UVyM4vQYBPgLNLIiIiohtk8xCkTCbD4sWLcfnyZfz666/47bffUFhYiOTk5Naoj3B1HtgpTsQnIiJyCS1aBwwAOnTogJtvvtmetVATunf2wc8n83klJBERkYuwOYCVlpbizTffRHp6OvLy8mAyWd6j8PTp03YrjmpdnYjPKyGJiIhcgc0BbOrUqfjhhx/wyCOPICQkBDKZrDXqonqkpSjYA0ZEROQSbA5g3377Lb755hvceuutrVEPNcK8GOvZgjIYTQIKOUMvERFRe2bzJPyOHTsiIIBX4jlSqL8XlB5yVBlNuHCl3NnlEBER0Q2yOYD9/e9/R3JyMsrKylqjHmqEQi5DRKfaXrBTnAdGRETU7tk8BLls2TKcOnUKwcHBCA8Ph6enp8XrBw4csFtxdFVEoA+O5xYj+3IpRvZ2djVERER0I2wOYImJia1QBl1P9851N+VmDxgREVG7Z3MAW7RoUWvUQdfBKyGJiIhcR4sXYs3KysKxY8cAAP3790d0dLTdiqKGeFNuIiIi12FzAMvLy8P48eOxe/du+Pv7AwCKioowcuRIpKamonPnzvaukQD0qBuCvKSvQFlVDbyVLc7ORERE5GQ2XwX55JNPori4GEeOHEFhYSEKCwtx+PBhGAwGPPXUU61RIwHw91aio3ftBQ/sBSMiImrfbA5gaWlp+N///V/07dtX2tavXz+sXLkS3377rV2LI0ucB0ZEROQabA5gJpOpwdITAODp6dngvpBkX+YV8RnAiIiI2jebA9idd96J2bNn4+LFi9K2Cxcu4Omnn8aoUaPsWhxZiujMm3ITERG5ApsD2HvvvQeDwYDw8HD06NEDPXr0QEREBAwGA959993WqJHqdA+sG4LkHDAiIqJ2zeZL6cLCwnDgwAF8//33+OOPPwAAffv2RVxcnN2LI0vSYqyXSyGEgEzGm3ITERG1Ry1ay0Amk2H06NEYPXq0veuhZnTr5A25DCiprMHlkkoE+aqdXRIRERG1gNVDkDt37kS/fv1gMBgavKbX69G/f3/89NNPdi2OLKk8FLipozcATsQnIiJqz6wOYMuXL8e0adPg5+fX4DWNRoPHH38c//jHP+xaHDXEFfGJiIjaP6sD2G+//YaxY8c2+fqYMWOQlZVll6KoaVfngfFKSCIiovbK6gCWm5vb6PpfZh4eHrh8+bJdiqKmcTFWIiKi9s/qANalSxccPny4ydf/85//ICQkxC5FUdO6cwiSiIio3bM6gN19991YuHAhKioqGrxWXl6ORYsW4S9/+Ytdi6OGzEOQOYVlqDbyzgNERETtkdXLUCxYsABffPEFevXqhVmzZqF3794AgD/++AMrV66E0WjESy+91GqFUq1gXzW8PBUorzbiXGGZNCRJRERE7YfVASw4OBh79uzBjBkzMH/+fAghANSuCRYfH4+VK1ciODi41QqlWnK5DBGBPjh6yYDTl0sZwIiIiNohmxZi7datG7Zt24YrV67g5MmTEEIgMjISHTt2bK36qBHdO9cFsPwSAAy9RERE7Y3N94IEgI4dO+Lmm2/GsGHD7BK+Vq5cifDwcKjVasTExGDv3r3Ntt+8eTP69OkDtVqNgQMHYtu2bRavCyGQnJyMkJAQeHl5IS4uDidOnLBoU1hYiKSkJPj5+cHf3x9TpkxBSUnjSzucPHkSvr6+8Pf3v6HztBdOxCciImrfWhTA7GnTpk2YO3cuFi1ahAMHDmDw4MGIj49HXl5eo+337NmDCRMmYMqUKTh48CASExORmJhocYXmkiVLsGLFCqxatQqZmZnw8fFBfHy8xQUESUlJOHLkCHbs2IGtW7fixx9/xPTp0xu8X3V1NSZMmIDbb7/d/iffQuZhx1NcioKIiKhdkgnzZC4niYmJwc0334z33nsPAGAymRAWFoYnn3wSL7zwQoP248aNQ2lpKbZu3Sptu+WWWxAVFYVVq1ZBCIHQ0FA888wzmDdvHoDaWyUFBwdj7dq1GD9+PI4dO4Z+/fph3759GDp0KAAgLS0Nd999N86fP4/Q0FDp2M8//zwuXryIUaNGYc6cOSgqKmryXCorK1FZWSn9bjAYEBYWBr1e3+gdBFrqt3NFuHflLwjsoML+BbwJOhERkT0ZDAZoNBq7f3/X59QesKqqKmRlZSEu7mqIkMvliIuLQ0ZGRqP7ZGRkWLQHgPj4eKl9dnY2dDqdRRuNRoOYmBipTUZGBvz9/aXwBQBxcXGQy+XIzMyUtu3cuRObN2/GypUrrTqflJQUaDQa6REWFmbVfrYyL0WRX1IJQ0V1q7wHERERtR6nBrD8/HwYjcYGV08GBwdDp9M1uo9Op2u2vfn5em2CgoIsXvfw8EBAQIDUpqCgAI8++ijWrl1rdfqdP38+9Hq99Dh37pxV+9nKV+2Jzr4qAEA2hyGJiIjaHZuugnQn06ZNw8MPP4w///nPVu+jUqmgUqlasaqrIgJ9cLm4Etn5pRgc5u+Q9yQiIiL7cGoPWGBgIBQKBXJzcy225+bmQqvVNrqPVqtttr35+Xptrp3kX1NTg8LCQqnNzp07sXTpUnh4eMDDwwNTpkyBXq+Hh4cHVq9e3cIztp8evCk3ERFRu+XUAKZUKjFkyBCkp6dL20wmE9LT0xEbG9voPrGxsRbtAWDHjh1S+4iICGi1Wos2BoMBmZmZUpvY2FgUFRUhKytLarNz506YTCbExMQAqJ0ndujQIenx6quvwtfXF4cOHcJ9991nnz/ADegeWHclJJeiICIianecPgQ5d+5cTJo0CUOHDsWwYcOwfPlylJaWYvLkyQCAiRMnokuXLkhJSQEAzJ49GyNGjMCyZcuQkJCA1NRU7N+/Hx9++CGA2pX558yZg9deew2RkZGIiIjAwoULERoaisTERABA3759MXbsWEybNg2rVq1CdXU1Zs2ahfHjx0tXQPbt29eizv3790Mul2PAgAEO+ss0L8K8FhjngBEREbU7Tg9g48aNw+XLl5GcnAydToeoqCikpaVJk+hzcnIgl1/tqBs+fDg2bNiABQsW4MUXX0RkZCS2bNliEYyee+45lJaWYvr06SgqKsJtt92GtLQ0qNVqqc369esxa9YsjBo1CnK5HPfffz9WrFjhuBO/QeYrIU/nl6DGaIKHwulLuhEREZGVnL4OmCtrzXVETCaBwa98h+LKGmx76nb0C22ddUqIiIjcjcuvA0YtJ5fLMChMAwA4dK7IucUQERGRTRjA2rGouuUnDuZccW4hREREZBMGsHYsOqz2RujsASMiImpfGMDasaiu/gCAk5dLeEsiIiKidoQBrB0L7KBCWIAXhAD+c07v7HKIiIjISgxg7VyUNAzJeWBERETtBQNYO3d1In6RU+sgIiIi6zGAtXPRdfPADp0rApd0IyIiah8YwNq5fiF+8FTIUFBahXOF5c4uh4iIiKzAANbOqT0V6BdauyDrQc4DIyIiahcYwFxANOeBERERtSsMYC7APBGfC7ISERG1DwxgLsA8Ef/oRQMqa4zOLYaIiIiuiwHMBXQN8EaAjxJVRhOOXjQ4uxwiIiK6DgYwFyCTyTgMSURE1I4wgLkILshKRETUfjCAuQj2gBEREbUfDGAuYnBdAMspLENBSaVziyEiIqJmMYC5CI2XJ3p09gHAXjAiIqK2jgHMhUSFdQTAAEZERNTWMYC5EPN6YJyIT0RE1LYxgLkQ80T8384VwWQSzi2GiIiImsQA5kL6aH2h9pSjuLIGp/NLnF0OERERNYEBzIV4KOQY1MUfAHCAw5BERERtFgOYi4mqmwfGifhERERtFwOYi4nmivhERERtHgOYizH3gB3XGVBWVePcYoiIiKhRDGAuJkTjBa2fGiYB/H5e7+xyiIiIqBEMYC5IujE354ERERG1SQxgLsg8DHng7BXnFkJERESNYgBzQcN7dAIA/HwyH+VVRidXQ0RERNdiAHNBA7to0MXfC2VVRvzw38vOLoeIiIiuwQDmgmQyGe4eqAUAfHv4kpOrISIiomsxgLmosQNCAADpx/JQUc1hSCIioraEAcxFRYf5Q+unRkllDX4+ke/scoiIiKgeBjAXJZfLMHaAeRhS5+RqiIiIqD4GMBd298DaYcgdR3WoqjE5uRoiIiIyYwBzYUO6dURnXxUMFTXYc4rDkERERG0FA5gLU8hlGNu/bhjydw5DEhERtRUMYC7urrrlKLYf1aHayGFIIiKitoABzMUNCw9AJx8lisqqkXm60NnlEBERERjAXJ6HQo4xdcOQ27goKxERUZvAAOYG7qpbjmL7YR2MJuHkaoiIiIgBzA3E9ugEjZcnCkqrsDebw5BERETOxgDmBjwVcozpFwyA94YkIiJqCxjA3IR5Uda0wzqYOAxJRETkVAxgbmJ4z07wVXsgr7gSB3KuOLscIiIit8YA5iZUHgqM7ls7DLmNi7ISERE5VZsIYCtXrkR4eDjUajViYmKwd+/eZttv3rwZffr0gVqtxsCBA7Ft2zaL14UQSE5ORkhICLy8vBAXF4cTJ05YtCksLERSUhL8/Pzg7++PKVOmoKSkRHp99+7duPfeexESEgIfHx9ERUVh/fr19jtpJ7irbhjy28OXOAxJRETkRE4PYJs2bcLcuXOxaNEiHDhwAIMHD0Z8fDzy8vIabb9nzx5MmDABU6ZMwcGDB5GYmIjExEQcPnxYarNkyRKsWLECq1atQmZmJnx8fBAfH4+KigqpTVJSEo4cOYIdO3Zg69at+PHHHzF9+nSL9xk0aBA+//xz/Oc//8HkyZMxceJEbN26tfX+GK3s9shA+CgVuKSvwG/ni5xdDhERkduSCSGc2hUSExODm2++Ge+99x4AwGQyISwsDE8++SReeOGFBu3HjRuH0tJSiyB0yy23ICoqCqtWrYIQAqGhoXjmmWcwb948AIBer0dwcDDWrl2L8ePH49ixY+jXrx/27duHoUOHAgDS0tJw99134/z58wgNDW201oSEBAQHB2P16tVWnZvBYIBGo4Fer4efn59Nf5fW8tTGg/j6t4uYfGs4Ft3T39nlEBERtTmO+P52ag9YVVUVsrKyEBcXJ22Ty+WIi4tDRkZGo/tkZGRYtAeA+Ph4qX12djZ0Op1FG41Gg5iYGKlNRkYG/P39pfAFAHFxcZDL5cjMzGyyXr1ej4CAgCZfr6yshMFgsHi0NfdFdwEApO49h7ziiuu0JiIiotbg1ACWn58Po9GI4OBgi+3BwcHQ6RqfKK7T6Zptb36+XpugoCCL1z08PBAQENDk+3722WfYt28fJk+e3OT5pKSkQKPRSI+wsLAm2zrLHb07I7qrP8qrjXhv50lnl0NEROSWnD4HrD3YtWsXJk+ejH/+85/o37/pYbv58+dDr9dLj3PnzjmwSuvIZDI8G98bALBxbw7OFZY5uSIiIiL349QAFhgYCIVCgdzcXIvtubm50Gq1je6j1WqbbW9+vl6bayf519TUoLCwsMH7/vDDD7jnnnvw9ttvY+LEic2ej0qlgp+fn8WjLRreIxC3Rwai2ijw9o7/OrscIiIit+PUAKZUKjFkyBCkp6dL20wmE9LT0xEbG9voPrGxsRbtAWDHjh1S+4iICGi1Wos2BoMBmZmZUpvY2FgUFRUhKytLarNz506YTCbExMRI23bv3o2EhAQsXrzY4gpJV2DuBfvy0AUc1xU7uRoiIiL34vQhyLlz5+Kf//wn1q1bh2PHjmHGjBkoLS2V5lpNnDgR8+fPl9rPnj0baWlpWLZsGf744w+8/PLL2L9/P2bNmgWgdohtzpw5eO211/D111/j999/x8SJExEaGorExEQAQN++fTF27FhMmzYNe/fuxS+//IJZs2Zh/Pjx0hWQu3btQkJCAp566incf//90Ol00Ol0KCx0jZtZD7rJH3cN0EIIYOl3x51dDhERkXsRbcC7774runbtKpRKpRg2bJj49ddfpddGjBghJk2aZNH+s88+E7169RJKpVL0799ffPPNNxavm0wmsXDhQhEcHCxUKpUYNWqUOH78uEWbgoICMWHCBNGhQwfh5+cnJk+eLIqLi6XXJ02aJAA0eIwYMcLq89Lr9QKA0Ov11v8xHOhErkFEvLBVdHt+q8g6W+jscoiIiNoER3x/O30dMFfWFtcBu9azm3/D5qzzuKV7ADZOuwUymczZJRERETmVy68DRs43Z3QvKBVy/Hq6ED+dyHd2OURERG6BAczNdfH3QtItXQEAb20/DnaIEhERtT4GMMLMkT3hrVTg9wt6fHu48YVoiYiIyH4YwAiBHVSYelsEgNorImuMJidXRERE5NoYwAgAMPXP3eHv7YnTl0vx+YHzzi6HiIjIpTGAEQDAT+2JmXf0BAC88u+jOHSuyLkFERERuTAGMJJMGh6O2yMDUVZlxOQ1e3Eyr8TZJREREbkkBjCSKD3kWPW3IRgc5o8rZdWY+FEmLunLnV0WERGRy2EAIws+Kg+sefRmdO/sg4v6Ckz8aC+KyqqcXRYREZFL8XB2AdT2BPgo8fFjw/DA+xk4kVeCx9buw/qpt8BLqXB2aURERFYRQqCyxoTKahMqa4yorDGhotq6Z32RodXrYwCjRt3U0RsfTxmGB1dl4EBOEZ5Yn4UPJw6Fp4KdpkREZD2TSVgVeiprjKiobvy5spntFdc+S8dr+ZJKpsoyO/4FGsd7Qbai9nAvyOvJOluIpP/LREW1CX+N7oKlDw6GXM77RRIRtTc1RhMqakyorDZKz80GogYBqe7nxkLPNc9XQ5MJVW1gbUmZDFB7KKD2lEPloYDKUw71Nc/1t6O6DP/42/BW/f5mAGtFrhDAAGDnH7mY9nEWjCaBx26NwEsJfaFgCCMisooQAtVGgcoaI6rqAkllde1zVc3V4bHKmtrfqyx+Nl792Xh1u7nH6OrPDYNV/d8rakwwmpz/de8hl0HlIYfaUyE9K6/5vf5zY0GpYZu653oB69pnT4UMMpn131uO+P5mAGtFrhLAAODzrPN4ZvNvAIC+IX5I/ks/xPbo5OSqiIgaJ4RAjUlcE2auhp3GQlBjbatqTKhs0LY2GFm0r9emstoohSXz622NUiGXen1qQ0ozIcjcxlMBdf3Ac83vTe1/9ThyeLSTaSyO+P7mHDCyyv1DboIA8Oq/j+DYJQMm/PNX3DVAixfv7ouwAG9nl0dEbYTRVK+np37vzDXbrvboNGxbZfHcdK9R1bXtrwk/bbV7wVMhg8qjtufHHISUCjmUdSFF6SGH0kMh/WwOL7VtFY20vX4vkUWPk0LOqSRtAHvAWpEr9YCZXSmtwtvf/xef/noWJlG7dti02yPwxB094aNinidyBpNJSAGl0thYT4458Bjr9dLU9uxUNRWOzNuN1wapJobG6o7bFoa5GuMhlzUILSqPhmHG3ONzbTiqfVY0coz6+za23zXvwfDTLnAIsp1zxQBm9ofOgL9vPYpfThYAAIJ8VXh+bB/cF92F/+NCbsF8ibvlsFTjYcaiB8iqoa+GPTpNDo/VmFDTRkOPXIaroaR+cKkLJqome3+aCDP1ttvSVukh57xVsgkDWDvnygEMqP0C2nE0F699cww5hbWX7A7sosHdA0Nwa89O6B+q4f/okV1ZO5m5wdCUlZOZGwSpRoPP1WO0RTIZpABiHsa6tsdGCiuNhKP6AccyMDXfA9RYCGov832IrsUA1s65egAzq6wxYs0vZ/Bu+gmUVhml7b5qD9zSvRNu7dEJw3sGIjKog01XoZDz1Rhrg0Z1jZCGtqpqTKg2iqtDWvV/r9tW295Ur/3V0FL/+XqTmRu7QqytUnrIoWownNV070/9Xh9VEyGo4fygRsLRNe1tvdqLiBpiAGvn3CWAmeUVV2Drb5ew51QBMk8XoLiyxuL1wA4qDO/RCcN7dMKALhp06qBEgI8SKg+usG80iUYDSvW1PTBGE6rrt7vePja0b+y1NjqyJWmNyczXHk91nd4fc1uGHiLXwQDWzrlbAKuvxmjCkYsG/HIqHxmnCrDvTCEqqhvvvfBVe6CTjxKdOqgQ4KNEYAclOvnU/typ7md/b08o5DLIZIAMtV90tT/XPgMymL//arfJpNfqtweAamNtj03t89Wfq4wm1NTbXlU3t6ZaCioCNebX6trV1Pu5um7/Kum4tT1H1SaTxTHq9/xU17VvqxOX6zMPbZlDi/nhee02heWz57UhR9HINismM1/bA8TJzETUWhjA2jl3DmDXqqwx4mBOEfacKkDGqXycLShDYWlVm5087Gzm4SxPD8twIwUXKdzIpF6e2nayRttfnRNkuU15zfHrB6pr23vIObRFRO6B64CRy1B5KHBL9064pXsnYHQvALUTqg3lNcgvrURhaRUKSiqRX1Il/VxQWoWCkioUlFaiqKy6bjhMQAjAHNuEEBBA7ba6n1H3uvn/W0iv1+3lWdcD46mQSWHDUyGHR/3fPWp/9pDXhppr9zE/lAoZPOq9Zg4s5kvePesdu9HA00hvEefwEBG5PgYwchqZTAaNtyc03p7o0dnZ1RARETkOrxEmIiIicjAGMCIiIiIHYwAjIiIicjAGMCIiIiIHYwAjIiIicjAGMCIiIiIHYwAjIiIicjAGMCIiIiIHYwAjIiIicjAGMCIiIiIHYwAjIiIicjAGMCIiIiIHYwAjIiIicjAGMCIiIiIH83B2Aa5MCAEAMBgMTq6EiIiIrGX+3jZ/j7cGBrBWVFBQAAAICwtzciVERERkq4KCAmg0mlY5NgNYKwoICAAA5OTktNoH2BYZDAaEhYXh3Llz8PPzc3Y5DsPz5nm7A543z9sd6PV6dO3aVfoebw0MYK1ILq+dYqfRaNzqP1wzPz8/nrcb4Xm7F563e3HX8zZ/j7fKsVvtyERERETUKAYwIiIiIgdjAGtFKpUKixYtgkqlcnYpDsXz5nm7A543z9sd8Lxb77xlojWvsSQiIiKiBtgDRkRERORgDGBEREREDsYARkRERORgDGBEREREDsYAZoOVK1ciPDwcarUaMTEx2Lt3b7PtN2/ejD59+kCtVmPgwIHYtm2bxetCCCQnJyMkJAReXl6Ii4vDiRMnWvMUWsSW8/7nP/+J22+/HR07dkTHjh0RFxfXoP2jjz4KmUxm8Rg7dmxrn4bNbDnvtWvXNjgntVpt0cYVP+877rijwXnLZDIkJCRIbdrD5/3jjz/innvuQWhoKGQyGbZs2XLdfXbv3o0//elPUKlU6NmzJ9auXdugja3/m+Fotp73F198gdGjR6Nz587w8/NDbGwstm/fbtHm5ZdfbvB59+nTpxXPwna2nvfu3bsb/e9cp9NZtHO1z7uxf7symQz9+/eX2rT1zzslJQU333wzfH19ERQUhMTERBw/fvy6+zni+5sBzEqbNm3C3LlzsWjRIhw4cACDBw9GfHw88vLyGm2/Z88eTJgwAVOmTMHBgweRmJiIxMREHD58WGqzZMkSrFixAqtWrUJmZiZ8fHwQHx+PiooKR53Wddl63rt378aECROwa9cuZGRkICwsDGPGjMGFCxcs2o0dOxaXLl2SHhs3bnTE6VjN1vMGaleKrn9OZ8+etXjdFT/vL774wuKcDx8+DIVCgQcffNCiXVv/vEtLSzF48GCsXLnSqvbZ2dlISEjAyJEjcejQIcyZMwdTp061CCMt+W/I0Ww97x9//BGjR4/Gtm3bkJWVhZEjR+Kee+7BwYMHLdr179/f4vP++eefW6P8FrP1vM2OHz9ucV5BQUHSa674eb/zzjsW53vu3DkEBAQ0+Pfdlj/vH374ATNnzsSvv/6KHTt2oLq6GmPGjEFpaWmT+zjs+1uQVYYNGyZmzpwp/W40GkVoaKhISUlptP1DDz0kEhISLLbFxMSIxx9/XAghhMlkElqtVrz11lvS60VFRUKlUomNGze2whm0jK3nfa2amhrh6+sr1q1bJ22bNGmSuPfee+1dql3Zet5r1qwRGo2myeO5y+f99ttvC19fX1FSUiJtaw+fd30AxJdfftlsm+eee07079/fYtu4ceNEfHy89PuN/i0dzZrzbky/fv3EK6+8Iv2+aNEiMXjwYPsV1sqsOe9du3YJAOLKlStNtnGHz/vLL78UMplMnDlzRtrW3j7vvLw8AUD88MMPTbZx1Pc3e8CsUFVVhaysLMTFxUnb5HI54uLikJGR0eg+GRkZFu0BID4+XmqfnZ0NnU5n0Uaj0SAmJqbJYzpaS877WmVlZaiurm5wQ9Pdu3cjKCgIvXv3xowZM1BQUGDX2m9ES8+7pKQE3bp1Q1hYGO69914cOXJEes1dPu+PPvoI48ePh4+Pj8X2tvx5t8T1/n3b42/ZHphMJhQXFzf4933ixAmEhoaie/fuSEpKQk5OjpMqtK+oqCiEhIRg9OjR+OWXX6Tt7vJ5f/TRR4iLi0O3bt0strenz1uv1wNAszfZdtT3NwOYFfLz82E0GhEcHGyxPTg4uMEcADOdTtdse/OzLcd0tJac97Wef/55hIaGWvyHOnbsWHz88cdIT0/H4sWL8cMPP+Cuu+6C0Wi0a/0t1ZLz7t27N1avXo2vvvoKn376KUwmE4YPH47z588DcI/Pe+/evTh8+DCmTp1qsb2tf94t0dS/b4PBgPLycrv822kPli5dipKSEjz00EPStpiYGKxduxZpaWl4//33kZ2djdtvvx3FxcVOrPTGhISEYNWqVfj888/x+eefIywsDHfccQcOHDgAwD7/W9nWXbx4Ed9++22Df9/t6fM2mUyYM2cObr31VgwYMKDJdo76/vawuiWRjd58802kpqZi9+7dFhPSx48fL/08cOBADBo0CD169MDu3bsxatQoZ5R6w2JjYxEbGyv9Pnz4cPTt2xcffPAB/v73vzuxMsf56KOPMHDgQAwbNsxiuyt+3gRs2LABr7zyCr766iuLuVB33XWX9POgQYMQExODbt264bPPPsOUKVOcUeoN6927N3r37i39Pnz4cJw6dQpvv/02PvnkEydW5jjr1q2Dv78/EhMTLba3p8975syZOHz4cJuZo8YeMCsEBgZCoVAgNzfXYntubi60Wm2j+2i12mbbm59tOaajteS8zZYuXYo333wT3333HQYNGtRs2+7duyMwMBAnT5684Zrt4UbO28zT0xPR0dHSObn6511aWorU1FSr/ge3rX3eLdHUv28/Pz94eXnZ5b+htiw1NRVTp07FZ5991mCo5lr+/v7o1atXu/68GzNs2DDpnFz98xZCYPXq1XjkkUegVCqbbdtWP+9Zs2Zh69at2LVrF2666aZm2zrq+5sBzApKpRJDhgxBenq6tM1kMiE9Pd2i16O+2NhYi/YAsGPHDql9REQEtFqtRRuDwYDMzMwmj+loLTlvoPbqkL///e9IS0vD0KFDr/s+58+fR0FBAUJCQuxS941q6XnXZzQa8fvvv0vn5MqfN1B7yXZlZSX+9re/Xfd92trn3RLX+/dtj/+G2qqNGzdi8uTJ2Lhxo8VyI00pKSnBqVOn2vXn3ZhDhw5J5+TKnzdQeyXhyZMnrfo/WG3t8xZCYNasWfjyyy+xc+dOREREXHcfh31/23T5gBtLTU0VKpVKrF27Vhw9elRMnz5d+Pv7C51OJ4QQ4pFHHhEvvPCC1P6XX34RHh4eYunSpeLYsWNi0aJFwtPTU/z+++9SmzfffFP4+/uLr776SvznP/8R9957r4iIiBDl5eUOP7+m2Hreb775plAqleJf//qXuHTpkvQoLi4WQghRXFws5s2bJzIyMkR2drb4/vvvxZ/+9CcRGRkpKioqnHKOjbH1vF955RWxfft2cerUKZGVlSXGjx8v1Gq1OHLkiNTGFT9vs9tuu02MGzeuwfb28nkXFxeLgwcPioMHDwoA4h//+Ic4ePCgOHv2rBBCiBdeeEE88sgjUvvTp08Lb29v8eyzz4pjx46JlStXCoVCIdLS0qQ21/tbtgW2nvf69euFh4eHWLlypcW/76KiIqnNM888I3bv3i2ys7PFL7/8IuLi4kRgYKDIy8tz+Pk1xdbzfvvtt8WWLVvEiRMnxO+//y5mz54t5HK5+P7776U2rvh5m/3tb38TMTExjR6zrX/eM2bMEBqNRuzevdviv9mysjKpjbO+vxnAbPDuu++Krl27CqVSKYYNGyZ+/fVX6bURI0aISZMmWbT/7LPPRK9evYRSqRT9+/cX33zzjcXrJpNJLFy4UAQHBwuVSiVGjRoljh8/7ohTsYkt592tWzcBoMFj0aJFQgghysrKxJgxY0Tnzp2Fp6en6Natm5g2bVqb+h8pM1vOe86cOVLb4OBgcffdd4sDBw5YHM8VP28hhPjjjz8EAPHdd981OFZ7+bzNywxc+zCf66RJk8SIESMa7BMVFSWUSqXo3r27WLNmTYPjNve3bAtsPe8RI0Y0216I2uU4QkJChFKpFF26dBHjxo0TJ0+edOyJXYet57148WLRo0cPoVarRUBAgLjjjjvEzp07GxzX1T5vIWqXV/Dy8hIffvhho8ds6593Y+cLwOLfq7O+v2V1BRIRERGRg3AOGBEREZGDMYARERERORgDGBEREZGDMYARERERORgDGBEREZGDMYARERERORgDGBEREZGDMYARERERORgDGBG1a7t374ZMJkNRUZFT3j89PR19+/aF0Wi8oePIZDJs2bLF6vZpaWmIioqCyWS6ofclIudgACOiduOOO+7AnDlzLLYNHz4cly5dgkajcUpNzz33HBYsWACFQnFDx7l06RLuuusuq9uPHTsWnp6eWL9+/Q29LxE5BwMYEbVrSqUSWq0WMpnM4e/9888/49SpU7j//vtv+FharRYqlcqmfR599FGsWLHiht+biByPAYyI2oVHH30UP/zwA9555x3IZDLIZDKcOXOmwRDk2rVr4e/vj61bt6J3797w9vbGAw88gLKyMqxbtw7h4eHo2LEjnnrqKYthw8rKSsybNw9dunSBj48PYmJisHv37mZrSk1NxejRo6FWq6VtL7/8MqKiorB69Wp07doVHTp0wBNPPAGj0YglS5ZAq9UiKCgIr7/+usWx6g9BnjlzBjKZDF988QVGjhwJb29vDB48GBkZGRb73HPPPdi/fz9OnTrV8j8sETmFh7MLICKyxjvvvIP//ve/GDBgAF599VUAQOfOnXHmzJkGbcvKyrBixQqkpqaiuLgYf/3rX3HffffB398f27Ztw+nTp3H//ffj1ltvxbhx4wAAs2bNwtGjR5GamorQ0FB8+eWXGDt2LH7//XdERkY2WtNPP/2Ehx9+uMH2U6dO4dtvv0VaWhpOnTqFBx54AKdPn0avXr3www8/YM+ePXjssccQFxeHmJiYJs/5pZdewtKlSxEZGYmXXnoJEyZMwMmTJ+HhUfs/3V27dkVwcDB++ukn9OjRw9Y/KRE5EQMYEbULGo0GSqUS3t7e0Gq1zbatrq7G+++/L4WSBx54AJ988glyc3PRoUMH9OvXDyNHjsSuXbswbtw45OTkYM2aNcjJyUFoaCgAYN68eUhLS8OaNWvwxhtvNPo+Z8+eldrXZzKZsHr1avj6+krvdfz4cWzbtg1yuRy9e/fG4sWLsWvXrmYD2Lx585CQkAAAeOWVV9C/f3+cPHkSffr0kdqEhobi7Nmzzf/xiKjNYQAjIpfj7e1t0SMUHByM8PBwdOjQwWJbXl4eAOD333+H0WhEr169LI5TWVmJTp06Nfk+5eXlFsOPZuHh4fD19bV4L4VCAblcbrHN/P5NGTRokPRzSEgIACAvL88igHl5eaGsrKzZ4xBR28MARkQux9PT0+J3mUzW6DbzEg4lJSVQKBTIyspqcDVj/dB2rcDAQFy5cuWG39+a8zBfZHDtPoWFhejcuXOzxyGitocBjIjaDaVSecPrbTUmOjoaRqMReXl5uP32223a7+jRo3avx1oVFRU4deoUoqOjnVYDEbUMr4IkonYjPDwcmZmZOHPmDPLz8+22CGmvXr2QlJSEiRMn4osvvkB2djb27t2LlJQUfPPNN03uFx8fj59//tkuNbTEr7/+CpVKhdjYWKfVQEQtwwBGRO3GvHnzoFAo0K9fP3Tu3Bk5OTl2O/aaNWswceJEPPPMM+jduzcSExOxb98+dO3atcl9kpKScOTIERw/ftxuddhi48aNSEpKgre3t1Pen4haTiaEEM4ugoiovXr22WdhMBjwwQcfOPR98/Pz0bt3b+zfvx8REREOfW8iunHsASMiugEvvfQSunXr5vB7Mp45cwb/+7//y/BF1E6xB4yIiIjIwdgDRkRERORgDGBEREREDsYARkRERORgDGBEREREDsYARkRERORgDGBEREREDsYARkRERORgDGBEREREDsYARkRERORg/x/szBv9lf8LSQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\dae\\petsc_chem_doc_19_0.png" - } - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# 2 seems to have some fast dynamics so plot a shorter time\n", "a = plt.plot(tj.vecs[\"_time\"], tj.vecs[str(m.y[180, 2])], label=\"y2\")\n", @@ -1169,7 +308,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -1179,24 +318,9 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACGFUlEQVR4nO3dd3xUVdrA8d+dPum9kYSE3iFUsaI0FQvKIgqrIoKuXdFddXdt67tiWxddUdeGIrZ1FxVFsSAovSPSa0jvvU9m7vvHJEMGAiRkJjfl+X4+49w599x7n5kJyeM5556jqKqqIoQQQgjRQei0DkAIIYQQwpMkuRFCCCFEhyLJjRBCCCE6FEluhBBCCNGhSHIjhBBCiA5FkhshhBBCdCiS3AghhBCiQzFoHUBrczgcZGRk4O/vj6IoWocjhBBCiCZQVZXS0lJiYmLQ6U7fNtPpkpuMjAzi4uK0DkMIIYQQZyE1NZXY2NjT1ul0yY2/vz/g/HACAgI0jkYIIYQQTVFSUkJcXJzr7/jpdLrkpr4rKiAgQJIbIYQQop1pypASGVAshBBCiA5FkhshhBBCdCiS3AghhBCiQ+l0Y26EEEKItsput2Oz2bQOQzMmk+mMt3k3hSQ3QgghhMZUVSUrK4uioiKtQ9GUTqcjMTERk8nUovNIciOEEEJorD6xiYiIwMfHp1NOMls/yW5mZibx8fEt+gwkuRFCCCE0ZLfbXYlNaGio1uFoKjw8nIyMDGprazEajWd9HhlQLIQQQmiofoyNj4+PxpFor747ym63t+g8ktwIIYQQbUBn7Io6kac+A0luhBBCCNGhSHIjhBBCiA5FkhshhBBCdCiS3HhQQXkNB7NLtQ5DCCGE0FxmZibTp0+nV69e6HQ67r///la7tiQ3HrJibzZDn/6BB/6zQ+tQhBBCCM1VV1cTHh7OX//6VwYPHtyq15Z5bjykV6Q/APuzSqmpdWAySN4ohBDi7KiqSqWtZbdDny2rUd+ku5YWLVrEAw88QEZGBmaz2VU+efJk/P39+eCDD3j55ZcBePfdd70Wb2MkufGQ2GArgVYjxZU2DmSXMqBLoNYhCSGEaKcqbXb6Pf6dJtfe87eJ+JjOnB5MnTqVe++9l6VLlzJ16lQAcnJyWLZsGd9//723wzwtaV7wEEVRGFiX0OxKL9Y4GiGEEMK7rFYr06dPZ+HCha6yxYsXEx8fz5gxY7QLDGm58aj+XQJYcyiP39KLuV7rYIQQQrRbVqOePX+bqNm1m2rOnDmMGDGC9PR0unTpwnvvvcfMmTM1n5BQkhsPcrXcZJRoHIkQQoj2TFGUJnUNaS0pKYnBgwezaNEiJkyYwO7du1m2bJnWYUly40kDYpzJzd7MEmx2B0a99PoJIYTo2GbPns38+fNJT09n3LhxxMXFaR2SjLnxpPgQH/zNBmpqHRzKKdM6HCGEEMLrpk+fTlpaGm+99RazZs1y27djxw527NhBWVkZubm57Nixgz179ng9JkluPEinU+jfJQCQQcVCCCE6h8DAQKZMmYKfnx+TJ09225eUlERSUhJbt27lo48+Iikpicsvv9zrMUly42H1XVOS3AghhOgs0tPTmTFjhtt8N+Ccr+fER3JystfjkTE3HjYwVgYVCyGE6BwKCwtZtWoVq1at4rXXXtM6HBdJbjysf13LzZ6MEuwOFb1O29vhhBBCCG9JSkqisLCQ5557jt69e2sdjoskNx7WLcwXX5Oe8ho7R3LL6Fm3LIMQQgjR0bRGF9PZkDE3HqbTKfSLcQ4q3pFapG0wQgghRCckyY0XDE8IAWDj0QKNIxFCCCE6H0luvGB0t1AA1h/OR1VVjaMRQgghOhdJbrxgeEIwRr1CelElqQWVWocjhBBCdCqS3HiBj8nAkLggANYfydM2GCGEEKKTkeTGS+q7ptYdztc4EiGEEKJzkeTGS0Z3DwNk3I0QQojOacmSJYwfP57w8HACAgIYPXo03333XatcW5IbL0mKD8Jk0JFTWs2RvHKtwxFCCCFa1S+//ML48eP55ptv2Lp1KxdffDFXXnkl27dv9/q1ZRI/L7EY9QyLD2b9kXzWHc6ne7if1iEJIYQQHrNo0SIeeOABMjIy3NaUmjx5Mv7+/nzwwQdu9Z955hm+/PJLvvrqK5KSkrwam7TceNG53Z3jbjbIuBshhBDNoapQU67No4lDKaZOnYrdbmfp0qWuspycHJYtW8asWbNOqu9wOCgtLSUkJMRjH9OpSMuNF43uHgo/wIYj+TgcKjpZZ0oIIURT2CrgmRhtrv3nDDD5nrGa1Wpl+vTpLFy4kKlTpwKwePFi4uPjGTNmzEn1X3zxRcrKyrjuuus8HfFJpOXGiwbFBmE16skvr+FATqnW4QghhBAeNWfOHL7//nvS09MBeO+995g5cyaK4v4/8x999BFPPfUU//nPf4iIiPB6XNJy40Umg44RiSH8ciCX9Yfz6RMVoHVIQggh2gOjj7MFRatrN1FSUhKDBw9m0aJFTJgwgd27d7Ns2TK3Op988gmzZ8/ms88+Y9y4cZ6OtlGS3HjZ6G6hruTmlvMStQ5HCCFEe6AoTeoaagtmz57N/PnzSU9PZ9y4ccTFxbn2ffzxx8yaNYtPPvmESZMmtVpM0i3lZaPrBxUfycfukPluhBBCdCzTp08nLS2Nt956y20g8UcffcRNN93EP/7xD0aNGkVWVhZZWVkUFxd7PSZJbrxsQEwA/mYDJVW17M0s0TocIYQQwqMCAwOZMmUKfn5+TJ482VX+5ptvUltby1133UV0dLTrcd9993k9JumW8jKDXsfIxBBW7Mth/eF8BnQJ1DokIYQQwqPS09OZMWOG23w3q1at0iweablpBfVdU+sOyyKaQgghOo7CwkI+//xzVq1axV133aV1OC5tIrlZsGABCQkJWCwWRo0axaZNm5p03CeffIKiKG7NYG1RfXKzObmQWrtD42iEEEIIz0hKSmLmzJk899xz9O7dW+twXDTvlvr000+ZO3cub7zxBqNGjWL+/PlMnDiR/fv3n/Ze+OTkZB566CEuuOCCVoz27PSNCiDIx0hRhY2d6cUMjQ/WOiQhhBCixZKTk7UOoVGat9y89NJLzJkzh1tuuYV+/frxxhtv4OPjw7vvvnvKY+x2OzNmzOCpp56iW7dupz1/dXU1JSUlbo/WptMpnJNY1zV1SLqmhBBCCG/SNLmpqalh69atbpP66HQ6xo0bx/r160953N/+9jciIiK49dZbz3iNefPmERgY6Ho0vP++NV3QKwyAXw5KciOEEEJ4k6bJTV5eHna7ncjISLfyyMhIsrKyGj1mzZo1vPPOO7z11ltNusajjz5KcXGx65GamtriuM/GhT3DAdh2rJCy6lpNYhBCCCE6A827pZqjtLSUG2+8kbfeeouwsLAmHWM2mwkICHB7aCEuxIeEUB9qHSrrZZVwIYQQwms0HVAcFhaGXq8nOzvbrTw7O5uoqKiT6h8+fJjk5GSuvPJKV5nD4bz7yGAwsH//frp37+7doFvggp7hJOcfY/XBXMb3izzzAUIIIYRoNk1bbkwmE8OGDWPFihWuMofDwYoVKxg9evRJ9fv06cNvv/3Gjh07XI+rrrqKiy++mB07dmg2nqapLujpbG1aLeNuhBBCCK/R/FbwuXPncvPNNzN8+HBGjhzJ/PnzKS8v55ZbbgHgpptuokuXLsybNw+LxcKAAQPcjg8KCgI4qbwtGt09FINO4WheOakFFcSFNH3lVSGEEEI0jeZjbqZNm8aLL77I448/zpAhQ9ixYwfLly93DTJOSUkhMzNT4yg9w99idM1x88vBXI2jEUIIIbxnzZo1nHfeeYSGhmK1WunTpw///Oc/W+XamrfcANx9993cfffdje4709oU7733nucD8qILeoaxKbmA1QfymDGqq9bhCCGEEF7h6+vL3XffzaBBg/D19WXNmjXcfvvt+Pr6ctttt3n12pq33HQ2F/Ry3hK+9nCeLMUghBCi3Vq0aBGhoaFUV1e7lU+ePJkbb7yRpKQkbrjhBvr3709CQgK///3vmThxIqtXr/Z6bJLctLKBXQIJ8jFSWlXLr2nFWocjhBCiDVJVlQpbhSYPVVWbFOPUqVOx2+0sXbrUVZaTk8OyZcuYNWvWSfW3b9/OunXruOiiizz2OZ1Km+iW6kz0OoXzeoSxbGcmqw/mMqyrrDMlhBDCXWVtJaM+GqXJtTdO34iP8cw3vFitVqZPn87ChQuZOnUqAIsXLyY+Pp4xY8a46sXGxpKbm0ttbS1PPvkks2fP9lboLtJyo4EL624J/+WADCoWQgjRfs2ZM4fvv/+e9PR0wDkOdubMmSiK4qqzevVqtmzZwhtvvMH8+fP5+OOPvR6XtNxo4Py6pRh2pBZRXGkj0GrUOCIhhBBtidVgZeP0jZpdu6mSkpIYPHgwixYtYsKECezevZtly5a51UlMTARg4MCBZGdn8+STT3LDDTd4NOYTSXKjgS5BVrqH+3I4t5z1h/O4dEC01iEJIYRoQxRFaVLXUFswe/Zs5s+fT3p6OuPGjTvthLoOh+OkAcjeIN1SGrmgrvVGVgkXQgjRnk2fPp20tDTeeustt4HECxYs4KuvvuLgwYMcPHiQd955hxdffJHf//73Xo9JWm40clGvcN5bl8wvB3JRVdWtf1IIIYRoLwIDA5kyZQrLli1j8uTJrnKHw8Gjjz7K0aNHMRgMdO/eneeee47bb7/d6zFJcqORUd1CMOoV0gorSc6vIDHMV+uQhBBCiLOSnp7OjBkzMJvNrrJ77rmHe+65R5N4pFtKIz4mA8O7hgDw8/4cjaMRQgghmq+wsJDPP/+cVatWcdddd2kdjoskNxoa09s57mblfrklXAghRPuTlJTEzJkzee655+jdu7fW4bhIt5SGLukTwbxv97H+SD4VNbX4mOTrEEII0X4kJydrHUKjpOVGQz0i/OgSZKWm1sG6Q/lahyOEEEJ0CJLcaEhRFC7pEwHAShl3I4QQQniEJDcacyU3+3KavFiZEEIIIU5NkhuNje4eitmgI6O4iv3ZpVqHI4QQQrR7ktxozGLUc273UAB+2iddU0IIIURLSXLTBjTsmhJCCCFEy0hy0wZcXJfcbD1WSEF5jcbRCCGEEO2bJDdtQGywD32jA3Co0nojhBCi41m7di0Gg4EhQ4a0yvUkuWkjxvd1tt78uDdb40iEEEIIzykqKuKmm25i7NixrXZNSW48pCgrk7X/WcyG/31yVseP6xcJwM8Hcqmy2T0ZmhBCCOFxixYtIjQ0lOrqarfyyZMnc+ONN7pe/+EPf2D69OmMHj261WKT5MZDSgvy2PC/T/j1x2/P6viBXQKJDDBTUWNn/RGZrVgIITozVVVxVFRo8mjqnGtTp07FbrezdOlSV1lOTg7Lli1j1qxZACxcuJAjR47wxBNPeOVzOhVZzMhDorr3RNHpKCvIpyQvl4Cw8GYdrygK4/pG8uHGFH7Yk83FvSO8FKkQQoi2Tq2sZP/QYZpcu/e2rSg+PmesZ7VamT59OgsXLmTq1KkALF68mPj4eMaMGcPBgwd55JFHWL16NQZD66Yb0nLjIUazhYiEbgBkHNh7VucYX9c1tWJvNg6HzFYshBCibZszZw7ff/896enpALz33nvMnDkTh8PB9OnTeeqpp+jVq1erxyUtNx4U06sv2UcOkXFgL33OvbDZx4/uHoqvSU92STW/pRczOC7I80EKIYRo8xSrld7btmp27aZKSkpi8ODBLFq0iAkTJrB7926WLVtGaWkpW7ZsYfv27dx9990AOBwOVFXFYDDw/fffc8kll3jrLUhy40kxvfqwfflXZB7Yd1bHmw16LuwVzre7svh+T5YkN0II0UkpitKkrqG2YPbs2cyfP5/09HTGjRtHXFwcDoeD3377za3ea6+9xk8//cR///tfEhMTvRqTdEt5UEyvvgDkJB/BVlN9htqNu3RAFADf7sqShTSFEEK0edOnTyctLY233nrLNZBYp9MxYMAAt0dERAQWi4UBAwbg6+vr1ZgkufEg/7Bw/IJDcNjtZB8+eFbnuKRPBCa9jiO55RzKKfNwhEIIIYRnBQYGMmXKFPz8/Jg8ebLW4QCS3HiUoihE9+oDQMZZdk35W4yc3zMMcLbeCCGEEG1deno6M2bMwGw2n7LOk08+yY4dO1olHkluPKy+a+ps75gC964pIYQQoq0qLCzk888/Z9WqVdx1111ah+MiA4o97Hhysw9VVVEUpdnnGN83Er1OYW9mCcfyy+ka6t2+SSGEEOJsJCUlUVhYyHPPPUfv3r21DsdFkhsPi0jsjt5goLKkmKLsTIKjYpp9jmBfE+d0C2HtoXyW78ri9ou6eyFSIYQQomWSk5O1DqFR0i3lYQajkchuPQHI2N+SrqloQLqmhBBCiOaS5MYLYvv2ByB1929nqHlqE/tHoiiwI7WI1IIKT4UmhBBCdHiS3HhBXP9BAKTu2XnW54jwt3BOYigAy37L9EhcQgghRGcgyY0XdOndD53eQEluDsU5Z9+tdMVgZ9fU1zszPBWaEEII0eFJcuMFRouFqB7OhcJSdp99681lA6LR6xR2pZdwNK/cU+EJIYQQHZokN14S338g0LJxNyG+Js7r4ZzQ7+tfpfVGCCGEaApJbrzENe5m984WrRF15SBn19RX0jUlhBBCNIkkN14S3asPeoOBsoJ8irLOPjGZ0D8Kk17Hgewy9meVejBCIYQQwntWrVrlXN38hEdWlvenOJHkxkuMJrNrnamWdE0FWo1c1DscgC93pHskNiGEEKK17N+/n8zMTNcjIiLC69eU5MaL4vo5u6ZaMqgYYPKQLgB8uSMDh+Psu7iEEEIIT1m0aBGhoaFUV1e7lU+ePJkbb7zR9ToiIoKoqCjXQ6fzfuohyY0XxXto3M3YvhH4WwykF1Wy8WiBp8ITQgjRRqmqiq3arsmjqX+vpk6dit1uZ+nSpa6ynJwcli1bxqxZs1xlQ4YMITo6mvHjx7N27VqPf1aNkbWlvCiqZ28MRhMVxUUUpKcSGht/VuexGPVMGhjNJ5tT+Xx7GqO7h3o4UiGEEG1JbY2DN+/7WZNr3/byRRjN+jPWs1qtTJ8+nYULFzJ16lQAFi9eTHx8PGPGjOHAgQO88cYbDB8+nOrqat5++23GjBnDxo0bGTp0qFffg7TceJHBaCSmt3OV8BZ3TSU5u6a+/S2LKpu9xbEJIYQQLTVnzhy+//570tOdY0Lfe+89Zs6ciaIo9O7dm9tvv51hw4Zx7rnn8u6773Luuefyz3/+0+txScuNl8X1H0TKrl9J3b2TpIlXnPV5RiaE0CXISnpRJT/uzeaKQc1fbVwIIUT7YDDpuO3lizS7dlMlJSUxePBgFi1axIQJE9i9ezfLli07Zf2RI0eyZs0aT4R5WpLceNnxdaZ2oTocKGc5kEqnU5icFMOClYf5fFu6JDdCCNGBKYrSpK6htmD27NnMnz+f9PR0xo0bR1xc3Cnr7tixg+joaK/HJN1SXhbVvSdGs4Wq0hLyUo+16FzXJMUCsOpALjklVZ4ITwghhGiR6dOnk5aWxltvveU2kHj+/Pl8+eWXHDp0iF27dnH//ffz008/cdddd3k9JkluvExvMNClTz/AeddUS/SI8GNofBB2h8r/tsmcN0IIIbQXGBjIlClT8PPzY/Lkya7ympoaHnzwQQYOHMhFF13Er7/+yo8//sjYsWO9HpMkN62gvmsqpQWT+dWbNsLZ3PfZltQW3V4uhBBCeEp6ejozZszAbDa7yv70pz9x6NAhKisryc/PZ+XKlVx88cWtEo8kN60grm4RzbS9v+FwtOxOp0mDYvAx6TmSV87m5EJPhCeEEEKclcLCQj7//HNWrVrVKt1NTSXJTSuITOyByWqluryc3OSjLTqXn9nAFXWLaf5nS6onwhNCCCHOSlJSEjNnzuS5556jd+/eWofjIslNK9Dp9cT2HQBA6h7PdU0t25lJaZWtxecTQgghzkZycjLFxcU89NBDWofiRpKbVlKf3KTt3d3icw2ND6ZbuC+VNjtLfz37FceFEEKIjkiSm1ZSn9yk79uN6nC06FyKojB9pHMphw83pMjAYiGEEKKBZk3iV1RUxOeff87q1as5duwYFRUVhIeHk5SUxMSJEzn33HO9FWe7F5HY3TnfTVkp+WkphMUntOh8vxsWywvf7WdPZgnbUooY1jXYM4EKIYQQ7VyTWm4yMjKYPXs20dHR/N///R+VlZUMGTKEsWPHEhsby8qVKxk/fjz9+vXj008/9XbM7ZLeYHCtM5W6d1eLzxfkY3LNUvzhhpZNDiiEEEJ0JE1quUlKSuLmm29m69at9OvXr9E6lZWVfPHFF8yfP5/U1NQ2N7ioLYjt059jO7eTtnd3i9aZqnfj6K78b1saX/+WyV+v6EeIr8kDUQohhBDtW5OSmz179hAaGnraOlarlRtuuIEbbriB/Px8jwTX0cT2qxtUvOc3VFVFUZQWnW9wbCADugSwK72Ez7akcvtF3T0RphBCCNGuNalb6kyJTUvrdxZR3XuhNxqpKC6iMLPldzkpisLvR3UF4MONKdgdMrBYCCGEaFLLzdKlS5t8wquuuuqsg+noDCYT0T16k7Z3F2l7dxES06XF57xqSAzzvt1HSkEFP+3LYXy/SA9EKoQQQrRcdXU1f/vb31i8eDFZWVlER0fz+OOPuy2w6Q1NSm4aLoR1OoqiYLe3bHmBji623wBXcjNo7MQWn8/HZOCGkfG88fNh3llzRJIbIYQQbcZ1111HdnY277zzDj169CAzMxNHC6dDaYomJTetEUhnEdunfjK/lt8xVe+m0V15a/URNhwpYHdGMf1jAj12biGEEK1PVVVqq6s1ubbBbG7SmNBFixbxwAMPkJGR4bZg5uTJk/H392fGjBn8/PPPHDlyhJCQEAASEhK8FbabJs9zc9NNN3H11Vdz6aWX4uvr69EgFixYwAsvvEBWVhaDBw/mX//6FyNHjmy07pIlS3jmmWc4dOgQNpuNnj178uCDD3LjjTd6NCZvienVB51eT2leLiW5OQSER7T8nEFWLhsQxdc7M1m4NpkXpw72QKRCCCG0UltdzSs3/06Ta9/7/n8xWixnrDd16lTuvfdeli5dytSpUwHIyclh2bJlfP/993z22WcMHz6c559/ng8++ABfX1+uuuoqnn76aaxWq1ffQ5NnKO7RowfPPPMMYWFhXHbZZbz++uukp6e3OIBPP/2UuXPn8sQTT7Bt2zYGDx7MxIkTycnJabR+SEgIf/nLX1i/fj07d+7klltu4ZZbbuG7775rcSytwWixENmtB+CZdabqzTo/EYClOzLILdUm2xdCCNF5WK1Wpk+fzsKFC11lixcvJj4+njFjxnDkyBHWrFnDrl27+Pzzz5k/fz7//e9/ufPOO70em6I2c+7+tLQ0li5dypdffsnPP/9M//79ufrqq7nqqqsYMmRIswMYNWoUI0aM4NVXXwWcXWBxcXHcc889PPLII006x9ChQ5k0aRJPP/30GeuWlJQQGBhIcXExAQEBzY7XE375cCGbl/6PARdPYOIf7vXYea95bS3bU4q455IePDih7azOKoQQ4tSqqqo4evQoiYmJWOpaTNpDtxTA9u3bGTFiBMeOHaNLly4MGjSIqVOn8thjjzFhwgRWr15NVlYWgYHO4RJLlizhd7/7HeXl5Y223jT2WdRrzt/vZq8tFRsby5133sl3331Hbm4uDz/8MPv37+eSSy6ha9eu3H333eze3bTFIWtqati6dSvjxo07HpBOx7hx41i/fv0Zj1dVlRUrVrB//34uvPDCRutUV1dTUlLi9tCaa76bvZ5ruQG47YJuACxaf4zy6lqPnlsIIUTrURQFo8WiyaM5c7AlJSUxePBgFi1axNatW9m9ezczZ84EIDo6mi5durgSG4C+ffuiqippaWme/sjctGjhTH9/f6677jo+/PBDcnNzeffdd9Hr9U1KTADy8vKw2+1ERrrf4RMZGUlWVtYpjysuLsbPzw+TycSkSZP417/+xfjx4xutO2/ePAIDA12PuLi4pr9BL+nSux8oCkVZmZQVeG7Cwwn9o0gM86W40sbHm1I8dl4hhBDiVGbPns17773HwoULGTdunOvv7HnnnUdGRgZlZWWuugcOHECn0xEbG+vVmDy2Krher2fs2LG8/PLLzJ4921OnbZS/vz87duxg8+bN/P3vf2fu3LmsWrWq0bqPPvooxcXFrkdqaqpXY2sKs48vEV2drSxp+5rWytUUep3C7Rc6z/v26qPU1MpdbkIIIbxr+vTppKWl8dZbb7nNXzN9+nRCQ0O55ZZb2LNnD7/88gt//OMfmTVrltcHFDd5bammNlNt27atyRcPCwtDr9eTnZ3tVp6dnU1UVNQpj9PpdPTo4RyUO2TIEPbu3cu8efMYM2bMSXXNZrPbLWptRWy/AeQkHyZtzy76nNt4l9rZuGZoF1764QBZJVV8uSOdqcO1b6kSQgjRcQUGBjJlyhSWLVvmNi+en58fP/zwA/fccw/Dhw8nNDSU6667jv/7v//zekwencSvuUwmE8OGDWPFihWuazgcDlasWMHdd9/d5PM4HA6qNRp4dbZi+/Zn2zdfenS+GwCzQc+t5ycy79t9vPHzYa4dGote17I1rIQQQojTSU9PZ8aMGSc1JvTp04cffvih1eNpUnLzxBNPeC2AuXPncvPNNzN8+HBGjhzJ/PnzKS8v55ZbbgGc8+t06dKFefPmAc4xNMOHD6d79+5UV1fzzTff8MEHH/D66697LUZv6NKnPwD5aSlUlBTjE+C5ifemj4rntVWHOZxbzje/ZXLl4BiPnVsIIYSoV1hYyKpVq1i1ahWvvfaa1uG4NHkSvxNt3bqVvXv3AtC/f3+SkpLO6jzTpk0jNzeXxx9/nKysLIYMGcLy5ctdg4xTUlLQ6Y4PDSovL+fOO+8kLS0Nq9VKnz59WLx4MdOmTTvbt6IJn4BAQmPjyU9LIX3fbnqOPNdj5/a3GLn1/ERe+uEAr6w4yKSB0eik9UYIIYSHJSUlUVhYyHPPPUfv3m1nCpJmz3OTk5PD9ddfz6pVqwgKCgKgqKiIiy++mE8++YTw8HBvxOkxbWGem3o/vv0av/7wDUMvv5qLb57j0XOXVNk4/9mfKKmq5dXpSVwxSFpvhBCiLTrd3C6djWbz3Nxzzz2Ulpaye/duCgoKKCgoYNeuXZSUlHDvvZ6bkK4ziO3r7JpK2+PZcTcAARYjt57vvHPqlRUHcTialcMKIYQQ7Vazk5vly5fz2muv0bdvX1dZv379WLBgAd9++61Hg+voYvs6J/PLOXaE6opyj59/5nkJ+FsMHMguY9lvmR4/vxBCCM9pZkdKh+Spz6DZyY3D4cBoNJ5UbjQaZfXwZvILCSUoKhpUlfT9ezx+/kCrkdl1rTcv/XAAm12+HyGEaGvq/6ZWVFRoHIn2ampqAOfceS3R7AHFl1xyCffddx8ff/wxMTHOcRzp6ek88MADjB07tkXBdEaxfQdSlJVJ2p5ddEsa4fHz33pBIu+vT+ZoXjn/3ZrGDSPjPX4NIYQQZ0+v1xMUFORaMNrHx6dZSyB0FA6Hg9zcXHx8fDAYzvp+J+AskptXX32Vq666ioSEBNcUy6mpqQwYMIDFixe3KJjOKLZvf3at/N7j893U8zMbuPviHvzt6z3M//EA1yR1wWJsWUYshBDCs+onrq1PcDornU5HfHx8i5O7Zic3cXFxbNu2jR9//JF9+/YBzoWwGi5+KZquftxN9pFD2KqqMHphpPyMc+J5Z81R0osqWbQ+mdsu7O7xawghhDh7iqIQHR1NREQENptN63A0YzKZ3KZ/OVtn1e6jKArjx48/5WKVoukCIyLxDwunNC+XjAP76DpoiMevYTboeWB8Lx767FcWrDzMdcPjCPIxefw6QgghWkav17d4vIk4y+Rm8+bNrFy5kpycnJMGEb/00kseCawzie07gL2rV5K2b5dXkhuAa5K68PbqI+zLKuXlFQd54sr+XrmOEEIIobVmJzfPPPMMf/3rX+nduzeRkZFu/WKdcQCUJ8T27e9Mbrww3009vU7hr5P68ft3NvLB+mP8/pyudA/389r1hBBCCK00O7l5+eWXeffdd5k5c6YXwumcYvsOBCDz0H5qa2owmLzTZXR+zzDG9olgxb4c5n2zl7dv9vzdWUIIIYTWmj1qR6fTcd5553kjlk4rODoGn8Ag7DYbWYcPePVaj17eF4NO4ce9Oaw5mOfVawkhhBBaaHZy88ADD7BgwQJvxNJpKYriumvKm11TAD0i/Pj9OV0BePKr3dTUysR+QgghOpZmd0s99NBDTJo0ie7du9OvX7+TZitesmSJx4LrTGL7DeDAhjWk7dvt9Ws9MK4XX/2awaGcMhauPcrtF8mt4UIIITqOZrfc3HvvvaxcuZJevXoRGhpKYGCg20OcnfqWm4z9e7HX1nr1WoE+Rh65rA8AL684SGZxpVevJ4QQQrSmZrfcvP/++/zvf/9j0qRJ3oin0wqLjcfi509VWSk5Rw8T3bO3V683ZWgsn25OZcuxQp7+eg+vzRjm1esJIYQQraXZLTchISF07y7dGJ6m6HR06eOce8ZbSzE0pNMp/O3qAegU+Oa3LFbszfb6NYUQQojW0Ozk5sknn+SJJ56Q1Uu9ILZv6yU3AP1iAph9gXPV8L9+sYuyau92hwkhhBCtodndUq+88gqHDx8mMjKShISEkwYUb9u2zWPBdTZx/Zzz3aTv24PDYUen8/4U3A+M68XyXVmkFFTw4nf7efIqmblYCCFE+9bs5Gby5MleCEMAhHdNxGS1Ul1RTl7KMSISunn9mlaTnr9fM4Ab39nE++uTuXJwDMO6Bnv9ukIIIYS3NDu5eeKJJ7wRhwB0ej0xvfuRvGMraXt+a5XkBuCCnuFMGRrL/7al8cfPfmXZvRdgNcnCbUIIIdqnJo25UVXV23GIOq7J/PZ6f76bhh6/oh+RAWaO5JXzwnf7W/XaQgghhCc1Kbnp378/n3zyCTU1Naetd/DgQe644w6effZZjwTXGR1Pbna1alIZ6GPkuSmDAHh37VHWH85vtWsLIYQQntSkbql//etfPPzww9x5552MHz+e4cOHExMTg8ViobCwkD179rBmzRp2797N3XffzR133OHtuDusqO49MJjMVJaWUJCeSmhsfKtde0zvCG4YGcfHm1J56LNf+fb+CwiwGM98oBBCCNGGNCm5GTt2LFu2bGHNmjV8+umnfPjhhxw7dozKykrCwsJISkripptuYsaMGQQHy2DUltAbjMT06k3Krp2k7d3VqskNwF8m9WPNoTxSCyr56+e7ePn6ISiK0qoxCCGEEC3RrAHF559/Pueff763YhF1uvQZQMqunaTu2cXg8Ze36rX9zAZevj6JqW+sZ+mvGYzpHc61Q2NbNQYhhBCiJZo9iZ/wvrh+znE36a087qbe0PhgHhjXE4DHvthFcl55q8cghBBCnC1JbtqgqJ690ekNlBUWUJydpUkMd4zpwajEEMpr7Nzx4TYqa+yaxCGEEEI0lyQ3bZDRZCaqRy8AUvf+pkkMep3Cy9cnEeZnYm9mCX/5/DeZEkAIIUS7IMlNG3W8a6p157tpKCrQwr9uGIpep7BkezqLNxzTLBYhhBCiqSS5aaNiW3GF8NMZ3T2URy7tA8Dfvt7D1mOFmsYjhBBCnEmzl18AcDgcHDp0iJycHBwOh9u+Cy+80COBdXYxvfui6HQU52RTkpdLQFi4ZrHMviCR7amFfPNbFnd+uJWv77mAcH+zZvEIIYQQp9Ps5GbDhg1Mnz6dY8eOnTQGQ1EU7HYZeOoJJqsPkYndyTp8kPS9uwi44GLNYlEUhed/N5j9WaUczi3nno+3sfjWURj00vAnhBCi7Wn2X6c//OEPDB8+nF27dlFQUEBhYaHrUVBQ4I0YO60udUsxpGrcNQXO+W/+feMwfE16Nhwp4G9f75EBxkIIIdqkZic3Bw8e5JlnnqFv374EBQURGBjo9hCeo9UimqfSI8Kff1w3BEWBReuP8fbqo1qHJIQQQpyk2cnNqFGjOHTokDdiESeI7dMfFIXCjDTKi9rGQN5LB0Txl8v7AvD3b/by9c4MjSMSQggh3DV7zM0999zDgw8+SFZWFgMHDsRodF9YcdCgQR4LrrOz+PkRHteV3JRk0vbupvfotrH0xa3nJ5JWWMl765KZ++mvRPhbGJkYonVYQgghBHAWyc2UKVMAmDVrlqtMURRUVZUBxV4Q229gXXKzq80kN4qi8NgV/cgoquT7PdnMWbSFJXeeS/dwP61DE0IIIZqf3Bw9KuMsWlNs3/5sX/4V6W1gUHFD9TMY3/DWBnakFjFz4Sb+d8e5RPhbtA5NCCFEJ9fs5KZr167eiEOcQpe6yfxyU49RWVaK1c9f44iOs5r0vHPzcK59fR3H8iu48e1NfHzbOYT4mrQOTQghRCd2VhOVHD58mHvuuYdx48Yxbtw47r33Xg4fPuzp2ATgGxRMSEwsqKqmSzGcSqifmfdvGUmEv5n92aXc+M5GiittWoclhBCiE2t2cvPdd9/Rr18/Nm3axKBBgxg0aBAbN26kf//+/PDDD96IsdOLrVtnKnX3To0jaVxCmC8fzRlFqK+J3Rkl3PTuJkqrJMERQgihjWYnN4888ggPPPAAGzdu5KWXXuKll15i48aN3H///Tz88MPeiLHT6zpwCADHftuhaRyn0yPCn8WzRxHkY+TX1CJuWbiZ8uparcMSQgjRCTU7udm7dy+33nrrSeWzZs1iz549HglKuIvrPwgUhfy0FMoK2+4s0H2jA1h86yj8LQa2HCtk9vtbqLLJ3XNCCCFaV7OTm/DwcHbs2HFS+Y4dO4iIiPBETOIEVv8AIhO7A5Cy61eNozm9AV0CWTRrJL4mPeuP5HOzdFEJIYRoZc1ObubMmcNtt93Gc889x+rVq1m9ejXPPvsst99+O3PmzPFGjAKIr+uaSmnDXVP1kuKDeW/WSPzMBjYeLeD3b2+ksLxG67CEEEJ0EorazNUPVVVl/vz5/OMf/yAjwzn1fkxMDH/84x+59957URTFK4F6SklJCYGBgRQXFxMQEKB1OE12bOcO/vv3v+IXEsptr73X5j9ngJ1pRdz87iYKK2z0ivRj8a2jiAiQeXCEEEI0X3P+fjc7uWmotLQUAH//tjP3ypm01+TGVlPNglnXY7fZmPnS64R2idM6pCY5mF3KjLc3klNaTXyIDx/OHkVciI/WYQkhhGhnmvP3+6zmuann7+/frhKb9sxoMtOldz+gfXRN1esZ6c9//3Au8SE+pBRUMPWN9RzILtU6LCGEEB1Yk5KboUOHUljoXJU6KSmJoUOHnvIhvCfedUt42x5UfKL4UB8++8Noekb4kVVSxZTX1vHLgVytwxJCCNFBNWn5hauvvhqz2ezabg/jPTqirgOHsObj90ndvROH3Y5Or9c6pCaLDLDwn9tHc/sHW9mUXMAt723mqav68/tzZDkPIYQQntWiMTftUXsdcwPgcNh5ffYMqsrLuOHpF4np1UfrkJqtutbOo0t+Y8m2dABmnZfIXyb1Ra+ThFkIIcSpeXXMTbdu3cjPzz+pvKioiG7dujX3dKIZdDo9cQMGAe1r3E1DZoOef0wdzEMTegHw7tqj3LZoC2Uym7EQQggPaXZyk5ycjN1+8qyz1dXVpKWleSQocWqupRh27dA0jpZQFIW7L+nJq9OTMBl0rNiXw+QFazmcW6Z1aEIIITqAJo25AVi6dKlr+7vvviMwMND12m63s2LFChITEz0bnThJ/aDijP37sFVVYbS033ljrhgUQ0yQlT98sJVDOWVc/epaXpw6mEsHRGkdmhBCiHasyWNudDpnI4+iKJx4iNFoJCEhgX/84x9cccUVno/Sg9rzmBtwTqL49j23UpKbw7WPPkXikGFah9RiOaVV3P3hdjYlO9fNunNMdx6c0FvG4QghhHDxypgbh8OBw+EgPj6enJwc12uHw0F1dTX79+9v84lNR6AoCvEDhgBte5Xw5ojwt/DhnFHMOs/Z8vfaqsPc/O4m8suqNY5MCCFEe9TsMTdHjx4lLCzMG7GIJuo6cDDQfgcVN8ao1/H4lf145YYkrEY9aw7lcdnLq1lzME/r0IQQQrQzTR5z01B5eTk///wzKSkp1NS4L4h47733eiQwcWrxA5zJTe6xo1SUFOMTEHiGI9qPqwbH0DvSn7s+2sahnDJufHcjt13YjQfH98ZkaNGE2kIIITqJZs9zs337di6//HIqKiooLy8nJCSEvLw8fHx8iIiI4MiRI96K1SPa+5ibeov+dA+5x44y6d4/0ue8i7QOx+Mqa+w8vWwPH21MAWBQbCCvXJ9EQpivxpEJIYTQglfnuXnggQe48sorKSwsxGq1smHDBo4dO8awYcN48cUXzzpo0TxdByUBkPzrNo0j8Q6rSc8z1wzkjd8PJdBqZGdaMZNeWc3Hm1JOGtAuhBBCNNTs5GbHjh08+OCD6HQ69Ho91dXVxMXF8fzzz/PnP//ZGzGKRiQOGQ7A0R1bUR0OjaPxnksHRLP8/gsYlRhCeY1zduOb3t1EelGl1qEJIYRoo5qd3BiNRtdt4REREaSkOLsNAgMDSU1N9Wx04pS69OmLyWqloriI7KOHtQ7Hq6IDrXw05xz+OqkvZoOO1QfzmPjPX/hoo7TiCCGEOFmzk5ukpCQ2b94MwEUXXcTjjz/Ohx9+yP3338+AAQM8HqBonN5gpOtAZ9fU0e1bNI7G+/Q6hdkXdOPb+y5gWNdgyqpr+fPnv3HjO5tILajQOjwhhBBtSLOTm2eeeYbo6GgA/v73vxMcHMwdd9xBbm4ub775pscDFKeWmFTXNdUJkpt63cL9+M/to3nsin5YjDrWHMpj/D9/ZsHKQ9TUdtzuOSGEEE3XrLulVFUlNTWViIgILO102v+OcrcUQFlBPv++42ZQFO54c3GHuiW8KY7mlfPnJb+x/ohzIdeeEX783+QBjOoWqnFkQgghPM1rd0upqkqPHj08PrZmwYIFJCQkYLFYGDVqFJs2bTpl3bfeeosLLriA4OBggoODGTdu3Gnrd2R+IaGEJ3QDVe2wd02dTmKYLx/NGcU/pw0m1NfEwZwypr25gT9+9qvMbiyEEJ1Ys5IbnU5Hz549yc/P91gAn376KXPnzuWJJ55g27ZtDB48mIkTJ5KTk9No/VWrVnHDDTewcuVK1q9fT1xcHBMmTCA9Pd1jMbUn3Tph11RDiqJwTVIsKx68iBtGxgPw2dY0xry4irdXH5GuKiGE6ISaPYnfV199xfPPP8/rr7/ukQHEo0aNYsSIEbz66quAcw2ruLg47rnnHh555JEzHm+32wkODubVV1/lpptuOmP9jtQtBZC+bw+fPPEnLL5+3PH2h+h0eq1D0tTWYwU8/uVudmeUANAtzJfHrujHxX0iNI5MCCFES3h1Er+bbrqJTZs2MXjwYKxWKyEhIW6P5qipqWHr1q2MGzfueEA6HePGjWP9+vVNOkdFRQU2m+2U166urqakpMTt0ZFE9+yN2deXqvIyMg8e0DoczQ3rGsLSu8/n2WsHEuZn4kheObe8t5mZCzdxMLtU6/CEEEK0gmavLfXPf/4TRVE8cvG8vDzsdjuRkZFu5ZGRkezbt69J53j44YeJiYlxS5AamjdvHk899VSLY22rdHo9CYOGsn/9ao5u30KX3n21Dklzep3C9SPjuXxQNK/+dIiFa4+yan8uvxzI5XfDYnlgfC+iA61ahymEEMJLmp3czJw50wthnJ1nn32WTz75hFWrVp3y7q1HH32UuXPnul6XlJQQFxfXWiG2isSk4c7kZscWzr/+Rq3DaTMCLEb+fHlfbhgZz7Pf7uW73dn8Z0saX+7IYOZ5Cdx5UQ8CfYxahymEEMLDmt0tpdfrGx3sm5+fj17fvPEeYWFh6PV6srOz3cqzs7OJioo67bEvvvgizz77LN9//z2DBg06ZT2z2UxAQIDbo6NJHDIMgJyjhykrLNA4mrYnMcyXf984nP/dcS4jE0KornXw75+PcMHzP7Fg5SHKqmu1DlEIIYQHNTu5OdX44+rqakwmU7POZTKZGDZsGCtWrHCVORwOVqxYwejRo0953PPPP8/TTz/N8uXLGT58eLOu2RH5BAYR1b0nAMk7tmocTds1rGswn95+Du/OHE7vSH9Kqmp54bv9XPDcT7y26hDlkuQIIUSH0ORuqVdeeQVw3nr79ttv4+fn59pnt9v55Zdf6NOnT7MDmDt3LjfffDPDhw9n5MiRzJ8/n/Lycm655RbAOYC5S5cuzJs3D4DnnnuOxx9/nI8++oiEhASysrIA8PPzc4ups0lMGk7W4YMc3b6FAReP1zqcNktRFC7pE8lFvSL46tcMXllxkCN55Ty/fD9vrz7K7Rd24/fndMXX3OweWyGEEG1Ek3+D//Of/wScLTdvvPGGWxeUyWQiISGBN954o9kBTJs2jdzcXB5//HGysrIYMmQIy5cvdw0yTklJcS3UCfD6669TU1PD7373O7fzPPHEEzz55JPNvn5HkZg0nPX//Zjkndux19aiN8gf59PR6xQmJ3XhikHRfLkjg1d+Osix/ArmfbuP138+zM2jE5h5bgLBvs1rjRRCCKG9Zs9zc/HFF7NkyRKCg4O9FZNXdbR5buqpDgev334jlSXFXPf4M8T1P/U4JHGyWruDz7en8+rKQxzLdy7EaTXquWFkPHMuTJS7q4QQQmNenedm5cqV7Tax6cgUnY7EwUMBOLxts8bRtD8GvY6pw+P46cExvDo9if4xAVTa7Ly79igXPr+SP372K4dyyrQOUwghRBM0u+XGbrfz3nvvsWLFCnJycnA43Ke3/+mnnzwaoKd11JYbgAMb1/LVS/MIioxm1stvemw+os5IVVV+OZjH66sOseGI8w40RYHxfSOZeV4Co7uFyucrhBCtqDl/v5s9MOO+++7jvffeY9KkSQwYMEB+wbchCYOHojcaKcrOJD8thbC4rlqH1G4pisJFvcK5qFc421IKeX3VYX7Yk833dY+eEX7cNLor1wyNxU8GHwshRJvS7JabsLAwFi1axOWXX+6tmLyqI7fcACx59kmObt/C+dffxKhrrtM6nA7lUE4p7687xv+2pVFRYwfAz2xgytAu3Dg6gR4RnfduPSGE8DavjrkxmUz06NHjrIMT3tVjxDkAHNrctLW5RNP1iPDn6ckD2PDnsTx5ZT+6hftSVl3L++uPMe6ln5nx9ga+251FrV1WIhdCCC01O7l58MEHefnll085mZ/QVvdho0BRyDp8kNKCPK3D6ZACLEZmnpfIirkXsfjWUUzoF4lOgbWH8rn9g61c+PxKFqw8RHZJldahCiFEp9TsbqlrrrmGlStXEhISQv/+/TEa3dfmWbJkiUcD9LSO3i0F8NFjD5F5YB9jb72TIRPaZ/dhe5NWWMGHG1P4dHMqBeU1gHMunYt7h3Pd8Dgu7hOBUd/s/5cQQghRx6sDioOCgrjmmmvOOjjhfT2Gn0PmgX0c3rJBkptWEhvsw8OX9uG+sT1ZtjOTTzansDm5kB/35vDj3hzC/c1cO7QLU4bG0ivSX+twhRCiQ2t2y0171xlabgoy0lj4wB/Q6Q3c8dZiLL4y0FULh3LK+GxLKv/blkZeWY2rfECXAK5JiuWqwTGE+5s1jFAIIdqP5vz9Pqvkpra2llWrVnH48GGmT5+Ov78/GRkZBAQEtPn1nTpDcgPw3oN3kp+WwmV3zaXfhZdoHU6nZrM7WLE3h/9tS2PV/hxsduc/Ob1O4cKeYVwzNJYJ/SKxGPVnOJMQQnReXu2WOnbsGJdeeikpKSlUV1czfvx4/P39ee6556iurj6r9aWE5/UcdR75aSkc2LhWkhuNGfU6Lh0QxaUDoigor+HrnRks2ZbOjtQiVu7PZeX+XPzNBsb3j+TKQTGc1yMMk0HG5wghxNlq9m/Q++67j+HDh1NYWIjVeny9nWuuuYYVK1Z4NDhx9nqdcx4Ayb9uo6ayQuNoRL0QXxM3jU7gi7vOY8WDF3HPJT2IDbZSWl3Lkm3p3PLeZkb8/Uf+9N9f+eVALja5rVwIIZqt2S03q1evZt26dZhM7qslJyQkkJ6e7rHARMuExXUlODqGwswMjmzbTJ/zLtI6JHGC7uF+PDihNw+M68XWlEK+/jWDb3ZlkVtazX+2pPGfLWkE+xi5dEA0VwyKZmRiiNxxJYQQTdDs5MbhcGC3208qT0tLw99f7gJpKxRFoeeo89j0xWcc2LhWkps2TKdTGJEQwoiEEB6/sj+bjhbw9c4Mlu/KIr+8ho83pfDxphQCrUbG9o1gYv8oLuwZjtUkY3SEEKIxzR5QPG3aNAIDA3nzzTfx9/dn586dhIeHc/XVVxMfH8/ChQu9FatHdJYBxQDZRw6x+NH7MZjN3PnmhxgtFq1DEs1Qa3ew4Ygz0fl+T7Zr/hwAi1HHhT3Dmdg/irF9IwjyMZ3mTEII0f559W6ptLQ0Jk6ciKqqHDx4kOHDh3Pw4EHCwsL45ZdfiIiIaFHw3taZkhtVVXn7ntmU5GZz5QOP0Ouc87UOSZylWruDrccK+W53Nt/tziK9qNK1T69TGJEQzMW9I7ikTwQ9IvxkQVshRIfTKreCf/rpp/z666+UlZUxdOhQZsyY4TbAuK3qTMkNwM+L32XLV0vodc75XPnAI1qHIzxAVVV2Z5Q4VyjfncW+rFK3/bHBVleiM7p7qNxiLoToELye3LRnnS25cXVNmczc8eYHmKw+WockPCwlv4Kf9mWzcn8u64/kU1N7/A4rs0HHud1DuaRPBGN6RxAXIt+/EKJ98mpyM2/ePCIjI5k1a5Zb+bvvvktubi4PP/xw8yNuRZ0tuVFVlYUP3E5hZgaX3/MQfc8fo3VIwosqampZdyiflftzWLkvh4xi98U7u4X7cn6PMM7vEcY53UMJsBhPcSYhhGhbvJrcJCQk8NFHH3Huuee6lW/cuJHrr7+eo0ePNj/iVtTZkhuAtf9ZzIb/fUK3oSO45uEntA5HtBJVVdmfXcrKfbms3JfD1pRC7I7j/9z1OoXBsYGc3zOc83uEkRQfJLeaCyHaLK8mNxaLhb1795KYmOhWfuTIEfr160dVVdUpjmwbOmNyk5+WwnsP3olOb+APb36A1U9u2e+MiittrD+cz9pDeaw5lMfRvHK3/b4mPaO6hXJ+jzDO7RFKrwh/dDoZmCyEaBqbw0Z1bTVVdmceEGYN8+j5vbr8QlxcHGvXrj0puVm7di0xMTHNPZ1oBaGx8YTFJ5CXksyhTesZeMkErUMSGgi0Gl3LQACkFVaw9lAeqw/mse5wPgXlNfy0L4ef9uUAEORjZGRCCOd0C2VUtxD6RgVIsiNEO2Nz2KiqrTr+sDf+XFlbSbW92rVdZa9yJSr1++pf19ertle7bdvV43PgDY0YyvuXva/Z+252cjNnzhzuv/9+bDYbl1ziXLNoxYoV/OlPf+LBBx/0eIDCM/qceyFrUpLZt/ZnSW4EALHBPkwbEc+0EfE4HCp7MktYcyiPtYfy2JJcSFGFzXlH1p5swJkcjUgI4ZxuzoSnb3QAekl2hDgrdofdlThU2iqpqK1wTzDslc6koUGCUZ9E1CcfbknKKZKXhglHa1LR9l6lZndLqarKI488wiuvvEJNjXNSMYvFwsMPP8zjjz/ulSA9qTN2SwEUZWfxzr2zURQdt722EL+QUK1DEm2Yze5gZ1oxG4/ms/FIAVuSCyivcf8l6W8xMKxrMMPigxnWNZjBcUH4mpv9/0tCtEmqqlLjqKHSVulMQOoe9UlIfbLRcF+TH7ZKahw1Zw7CgxQUrAYrFoMFi96CxWDBrDe7lZkNda/r9jes53quq9dw26J3r2PWm70y11ar3ApeVlbG3r17sVqt9OzZE7PZfFbBtrbOmtwAfPzYH8k4sJcLfz+LEVdeq3U4oh2ptTvYlVHCxiP5bDiSz5bkQkqra93q6HUKfaP9GRYfzNCuzoSnS5BVJhQUXqeqKlX2Kspt5a5WkIraCipsFZTbyl3bzXmurK3EoXp/4VoFBYvBgtVgdT1cyUWDBMNtu+7ZarC6kor64+qTjfqkpT6BMeqM7f7fosxzcxqdObn59Ydv+PHt1wiPT+CmF17VOhzRjtXaHezNLGXrsQK2phSxNbngpNvOAaICLAzrejzZ6RcdgMkgd2R1dqqqUm2vpsxWRrmt3PUoqymjvLac8ppy177K2somJSje7AYx6oxuyYfrYbRi1TdS1ljdUzy81crREXk1uSkvL+fZZ59lxYoV5OTk4HC4Z7ZHjhxpfsStqDMnN5Vlpfz79hux19Zy0/P/Irxr4pkPEqKJMooq2ZZSyNZjhWw7VsjujBJqHe6/XswGHf1iAhgcG8TguEAGxQaRGOorA5XbCbvDTpmtzPmoKXNLTspsZVTYKlz7KmornMlKI/vLbeVeGwtiNVjxNfriY/DBx+iDj8EHq9GKr8HX9drH6IOv0RerwepWz9forFNfXt/6YdBJd2tb4NW7pWbPns3PP//MjTfeSHR0tGSc7YjVz59uQ0dycNM69qxeyUWS3AgPigmyEhNk5YpBzrsmK2vs/JpW5Ep2tqY4BylvTylie0qR6zh/i4GBXQIZHBfE4FhnwhMdaJHfLR6mqiqVtZWU1JS4EpOG26U1pZTWlJ52u9xWfuYLNZOv0df18DP6ub2ufzRMQE58rk9IfAw+WAwWdIq0DIqzaLkJCgpi2bJlnHfeed6Kyas6c8sNwMHN61n64t/xCw5hzmsL0elk3SHROlRV5WheOTvTivk1rYidacXsSi+muvbkcQ1hfmaG1LXsDOwSSL+YACL8pfneZrdRXFNMSU0JJdUlzucG28XVzn2NJSeebC0x6834Gn3xN/njY/DBz+R3ygSl4Wu3bZMfVoNVkhHRZF5tuQkODiYkJOSsgxPa6pY0HIufP2WFBaTs2knCoCStQxKdhKIodAv3o1u4H5OTugDOu7IOZJeyM62YnWlF/JpazP7sUvLKqvlxbw4/7s1xHR/mZ6JvdAD9Y5zJTv+YABJCfdvd7egO1UGZrYziqmKKqosoqi5yJizVJa7nE5OW+oSlsrbyzBc4A4NiwM/kh5/RD3+TP/4mf/yMfviZ/AgwBbj2NdxuWM/f5I9Jb/LAJyGE9zS75Wbx4sV8+eWXvP/++/j4tL9F+Dp7yw3Aj++8zq/fL6PPeRcx6d4/ah2OEG4qa+zsySzm11RnwrM7o4TDuWU4GvlNZTXq6RvtX5fsBNIvOoDeUf6tthJ6tb2awqpCiqudicqJz0XVRZRUlxxPYupaVlrSgqKguBKRAFMAAeaAxrdPkahYDXIHm2ifvDqgOCkpicOHD6OqKgkJCRiN7gvvbdu2rfkRtyJJbo6vFK43GvnDGx9g8fPTOiQhTqvKZmdfVil7MkrYnVHMnswS9maWUGU7uUtLr1PoHu5L/5hA+kT50yvSn15R/sScYRyPqqqU2coorCqkoKqAouoi13ZhVSGF1YXO57rtgqqCFrWkWA1WgsxBBJoDCTQHnjJZCTQFupX5Gf3QS3ey6IS82i01efLks41LtBERid0J75pI7rGj7F27iqSJV2gdkhCnZTHqGRIXxJC4IFeZ3eEcw7M7o5g9GSXsySxhd0YJBeU1HMgu40B2GSg2FH05iqEUX2slEcE2gv2rsVorMRjLcShllNUWUVRVRGF1ITaHrdmxGRQDAeYAgsxBBJmD3LYDzYFu2/WvA82BmPXtY24wIdojmeemk9r27VJWvvcmEQndufG5l7UOR4gmq7HXkFeZR25lLnmVeeRX5pNfle98rswnqzyP7LJcimoKsakVzT6/WWclxBJMqDWEIEsQIZYQgs3BBFvqHnXbIRbnfn+jv3TzCNEKvNpyU2/r1q3s3bsXgP79+5OUJANT25O+54/hl8XvkpN8mOyjh4lM7K51SKKTq6qtciUsORU5zgSmIpfcylzXc15lHkXVRc06r0FnINQSiq8hGCMB2G2+VFRaKSo1U1BqwlHri2r3Ra17LlWN5OGcgLBnpB8xkf50ifCjm68v3SP8CPU1STIjRBvX7OQmJyeH66+/nlWrVhEUFARAUVERF198MZ988gnh4eGejlF4gdU/gO4jRnNg/Wp2rfyeyMQ7tA5JdFCqqlJcXUx2RTbZFdlklWc5t8udr3MqcsityKXUVtrkcxp0BsKt4YRbwwmxhhBqCSXUGnrSc4glhABTwCmTkcoaO4dzy9ifVcqB7FL2Z5dyIKuUjOIqskqcj9UH89yOCbAY6B7hR/dwP7qF+9I93LkdH+Ijsy8L0UY0u1tq2rRpHDlyhEWLFtG3b18A9uzZw80330yPHj34+OOPvRKop0i31HHJv27jf888jtnXl9vfWITRJGMARPOoqkpRdRGZ5ZmuZKVh4lK/XWU/eWmGxpj1ZsKsYUT4RBBmDXMmMD7hrkQmzCeMCGsEgeZAr7aelFTZOJhdxoFsZ9JzJLecw7llpBdVcqrfmHqdQtcQH7eEp3472FdunRaipbx6t1RgYCA//vgjI0aMcCvftGkTEyZMoKioqNkBtyZJbo5zOOy8c+9tlORmM/GO+xkwZpzWIYk2xqE6yK/MJ70snczyTDLKMpyPcudzZnlmk+8YCrGEEOkT6Xz4Hn+O8IlwJTFtffxKlc3O0TxnolOf8NQ/V9Sc+vbuYB8jiWG+JIT60jXUl66hPnQN9SEh1Jcgn/a/oKEQrcGrY24cDsdJt38DGI3Gk9aZEm2bTqdn0NiJrPlkETt/+FaSm06o1lFLbkWue/JSl7jUJy9NuYMo1BJKlG+UW+LS8HWET0SHuDvIYtTTNzqAvtHuv1hVVSWrpOqkhOdwThkZxVUUVtgoTCliW4NlJ+oFWAyuhCfBlfj4khDqQ7jMyizEWWl2y83VV19NUVERH3/8MTExzjVk0tPTmTFjBsHBwXz++edeCdRTpOXGXXlRIW/eeQsOey2/f/ZlGVjcAdnsNtLL0kkpTSG1NJWUkhTXdnppOrVq7WmP1yk6In0iifaNpotfF6L9oonxjSHGz/mI8o3qEImLt1TU1HIkt5xj+RUk55dzLN+5fSy/gqyS03fXWY16t1ae+qQnPtSH6EBru5udWYiW8Gq3VGpqKldddRW7d+8mLi7OVTZgwACWLl1KbGzs2UfeCiS5OdnX859j//rVDBp7KeNvu1vrcMRZqLZXk1aa5pa41G9nlmfiUE/dqmrQGYj2jXYmK74xRPvVJTF1ZRE+ERh1J7fWiparrLGTUuBMelJcyY/zOaOostFZmesZ9QoxQVZig63EBvk4n0OsxAY7tyP9LbLauuhQvJrcgLMJ9scff2Tfvn0A9O3bl3Hj2keXhiQ3J0vd8xv/eepRjGYLt7+xCHM7XFajM1BVlfyqfI4WH+VI0RGOlhx/zi7PRuXU/5StBivx/vHEB8QT5x/nth3hEyGLF7ZBNbUO0gor6lp5ykmuez6WX0FqYQU2++l/dRv1Cl2Cjic7zodzOy7Eh3A/syQ/ol3xenLTnklyczJVVXnvwTspSE/lkltuJ+nSK7UOqVOrddSSVprG0eKjbgnM0eKjlNac+nZpX6OvK2mJ93cmLl0DuhIfEE+oJVTGbnQgdodKdkkVqQUVpBVW1j3qtosqyCiqwn66Zh/ApNfRxZX0uCdB0YFWIvzNGPSS9Iq2wysDin/66SfuvvtuNmzYcNJJi4uLOffcc3njjTe44IILzi5qoRlFURgy4XJ+Wvhvti//miETJqHo5Jeat6mqSlZ5FgeLDnKg8AAHCg9wsPAgySXJ1DoaHwejU3R08etCYmAi3QK7kRiYSGJgIl0DuhJsDpYEppPQ65xdUjFBVkY1sr/W7iCrpOrkxKfuObO4ihq7g6N55RzNK2/0GjoFIgMsRAVaiAm0Eh1Ytx3k3I4JshLmZ5ZxP6JNanJyM3/+fObMmdNothQYGMjtt9/OSy+9JMlNO9X/orGs+eQDCjPTSf51G4lJw7UOqUMprSl1JS8HCw9ysOgghwoPnXLiOoveQmJgIgmBCW6JTNeArjJ4V5yRQa+ra4lpvIu51u4gs7jqhMTn+HZ2SRW1DpXM4ioyi6vYTlHj19EpRAZYTkp8ouuSoeggC2G+0v0lWl+Tk5tff/2V55577pT7J0yYwIsvvuiRoETrM1l9GHDxeLZ98yXbln8lyU0L5Ffms69gH3sL9rI3fy97C/aSWpraaF2DYiAhMIGewT3pFdyLnkE96RHcg2jfaBkHI7zGoNcRF+JDXIgPEHrSfrtDJa+s2pncFFWSUfecWVL3XFzlSoDSiypJLzr1XEdGvTMBigm0Eh10PPGJDDATEWAhwt9MuL8Zs0FWOhee0+TkJjs7u9H5bVwnMhjIzc31SFBCG0mXXsm2b5eSvGMr+emphHaJ0zqkNi+7PJvd+bvZW7CXffn72FOwh5yKnEbrRvlGuRKYnsHOR2JAIka93Ikk2hZ9XYtMZIDFbSX2hmrtDnLLqskoqiKzuJKs4irXdkZxFVnFleSUVmOzq66WodMJ9jESGWAh3N9MZF3SU/8c4XqWJEg0TZOTmy5durBr1y569OjR6P6dO3cSHR3tscBE6wuKjKL7sJEc3rKR7cu/Ztytst5UQxW2Cvbk7+G3vN/YmbuTnXk7G01kFBS6BnSlb2hf+ob0pW9oX/oE9yHIEtT6QQvhJQa9rq4VxgoEN1rHZneQXVLlTHyKj7f6ZNYlPjkl1eSUVmGzq86JDits7Ms6/RpjQT5GIv0tRASYiah7jqxLgCLrysL9zViMkgR1Zk1Obi6//HIee+wxLr30UiwWi9u+yspKnnjiCa644gqPByha19DLruLwlo3s/vlHzpv2e6x+/lqHpAmH6iC5JJmduTv5Lfc3dubt5GDhQeyq+xT7ekVP96Du9AvtR5+QPvQL7Ufv4N74GOV2eiGMZxj7A86B9YUVNnJKq8guqSanpKou8al7XVeeW1pNjd1BUYWNogob+7NPnwQFWo2uZKdh60+Yv5kwPxPhfmbC/MwEWo0yJqgDavKt4NnZ2QwdOhS9Xs/dd99N7969Adi3bx8LFizAbrezbds2IiMjvRpwS8mt4KenqiofPHIfuclHOG/ajZxz7TStQ2oVtY5a9hfsZ0v2FrZmb2VbzjaKq4tPqhdhjWBQ+CAGhQ9iYNhA+oX2k0RGiFagqirFlTa3hCentMrV+tOwvKa26UsBGXQKIb4mwvzMhNYnPf5mQuvK6pOhMD8zIb4mjHJ7vGa8Ns/NsWPHuOOOO/juu++oP0xRFCZOnMiCBQtITExsWeStQJKbM9u7ZhXf/OtFfAKDmP3qOx1ytXCb3cbu/N1syd7Cluwt7MjZQbnN/ZZYi95Cv9B+bslMlG+URhELIZpCVVVKKmvJrkt8sutbgupe55ZVk19WTV5ZDcWVZ1437UTBPkZC/Y4nPGENthuWS9eY53l9Er/CwkIOHTqEqqr07NmT4ODG+1vbIkluzsxeW8u7999GSW4O42bfxeDxl2kdUovZHXb25O9hXcY6Nmdt5tfcX6myu6/r42/0JykyieGRwxkWOYy+oX1l2QEhOrCaWgf55dXkl9WQW1ZNXmk1+eU15JVWk1eXANU/F5RXn3Y5jMb4mvR1LT/OVp8QHxPBviZCfI2E+JoJ8TUS7GMi1NdMsK8RP7NB5qo6DZmh+DQkuWmabd98ycr33yIoKppb/vkGOl37+z+QjLIM1mWsY33GejZkbqCkpsRtf5A5iGGRw1zJTK/gXujb4fsUQnif3aFSVFHTIOFpkPzUJ0V123llNdTYm941Vs+oVwj2MTkTIV9nIhTqa3KVnfza2KnuHvPKDMWicxlwyQTW//djirIyObR5A71Gnad1SGdUY69hc9Zmfkn7hXUZ60guSXbb72/0Z1T0KEZFj2J45HC6BXWTuWSEEE2i1ymE1nU99eb0N1qoqkppda0r0ckrq6awooaCshoKKmooLK8hv7yGwooaCsttFJTXUGmzY7OrdV1o1U2Oy89sINjXSEiDBCjEx0SIX8OWIpOr5aizDKCW5EY0ymSxMmTiJDYs+ZSNS/5Dz5Hntsnm0sKqQn5J+4Wf035mbfpaKmorXPv0ip6BYQM5N+ZcRseMZkDYAAw6+ZEXQniXoigEWIwEWIx0C2/aMZU1dvfEp7yGgroE6MTXzmcbdodKWXUtZdW1pBacfh6hejoFguuSnmAfI0E+JoKsRoLqt32MBFnrnhvs9zHp2+TfgFOR3/TilJIuu4qty74kJ/kwR7ZtpvuwkVqHBEBycTI/pf7Ez6k/syN3Bw71ePNvuDWcC2Mv5IIuFzAiegQBJul6FEK0fVaTni4mK12CrE2q73ColFbVUlDhHA9UUG5zaxEqKK856XVpVS0OFfLrypvDpNcR6GN0JUKBdQlQfYIUWFceXLcd5mcmKtBy5hN7iSQ34pR8AgIZPOFytny1hI1LPqXb0BGaZe6pJal8d+w7lh9dzv7C/W77egf3ZkzcGC6Ou5i+oX2lq0kI0eHpdAqBPkYCfYwkhvk26ZiaWgdFFTV1CZGzS6yosoaiChvFlc7kqKjSRnGFs7ywwkZRRQ02u0qN3UFuqXO+oaYY0CWAr+/Rbq1JSW7EaQ2/4hp2fLeMzEP7OfbbDhIGJbXatTPKMvgu+TuWJy9nT/4eV7lBMTAyeiRj4sYwJnYM0X4yM7YQQpyJyaBzTmYY0PQWFVVVqbTZKaqwUVhRU5f4OCdSrE+MiirqniuPb4f7aTuFiCQ34rR8g4IZNHYi275dyob/fUzXgUO82npTUlPCt0e+ZemRpezM3ekq1yk6RkaN5NKESxkbP1aWMhBCiFagKAo+JgM+JgMxTewyawskuRFnNOKqKfz647ek79vjldYbh+pgU9YmPj/4OStSVlBtdzZ7KigMjxruSmhCrSevXiyEEEKcSJIbcUZ+IaEMHn852775krWfLPJY601mWSZfHP6CLw99SXpZuqu8R1APrulxDZclXka4TxNvNRBCCCHqSHIjmmTk1b9j54rlZB0+yOEtG+kx4pyzOo9DdbAmfQ0f7f2IdRnrUHHOIeln9OPyxMu5tue19Avt165uORRCCNG2SHIjmsQ3KJihl13Fpi8+Y+1/FtN92EgUXdPvSiqtKeWLQ1/w8b6PSS1NdZWPihrF5J6TGRs/Fquh/fTnCiGEaLskuRFNNvzKa9nx3TLyUpLZt341fc+76IzHpJel8/7u9/ni0BdU1jonmfI3+XNtj2uZ1nsacQFx3g5bCCFEJyPJjWgyq58/I668lrX/WcyajxfRc+S5GIyNLyx5qPAQ7+x6h2+PfotdtQPOsTTT+05nUuIkfIw+rRm6EEKITkTz2c4WLFhAQkICFouFUaNGsWnTplPW3b17N1OmTCEhIQFFUZg/f37rBSoAGDZpMn7BIZTkZrNj+Vcn7d+Zu5N7frqHa5Zew9dHvsau2hkdPZq3JrzFkquWMLXXVElshBBCeJWmyc2nn37K3LlzeeKJJ9i2bRuDBw9m4sSJ5OTkNFq/oqKCbt268eyzzxIVFdXK0QoAo8XCudN+D8CGzz+lstS50va+gn3cveJuZnwzg1Wpq1BQGN91PJ9c8QlvTniTc6LPkUHCQgghWoWiqqqq1cVHjRrFiBEjePXVVwFwOBzExcVxzz338Mgjj5z22ISEBO6//37uv//+09arrq6muvr4dNElJSXExcU1acl00TiHw84HD99HXkoy3ceOYU3vLL5L/g5wLlZ5RbcrmDVwFt0Cu2kcqRBCiI6ipKSEwMDAJv391qzlpqamhq1btzJu3Ljjweh0jBs3jvXr13vsOvPmzSMwMND1iIuTAawtpdPpGTJ1CgAHf1rJ+l0rALgs4TK+uPoL/u/8/5PERgghhGY0S27y8vKw2+1ERka6lUdGRpKVleWx6zz66KMUFxe7HqmpqWc+SJxSjb2Gd357h9sOPkJqeAU6VeGyIz347IrPeP6i50kITNA6RCGEEJ1ch79bymw2YzZru4BXR6CqKj+n/cwLm18gpTQFgOLzEon/uhJrWiX6I4UgqyMIIYRoAzRLbsLCwtDr9WRnZ7uVZ2dny2DhNia9LJ2nNzzN2vS1AIRZw3hg2ANc0e0K1imL2fj5f1j1/tskDB6K0SSJpBBCCG1p1i1lMpkYNmwYK1ascJU5HA5WrFjB6NGjtQpLNOBQHXy490Ou+fIa1qavxagzMmvALL6+5muu6n4VOkXHqMnX4RcaRkluNpu++EzrkIUQQghtbwWfO3cub731Fu+//z579+7ljjvuoLy8nFtuuQWAm266iUcffdRVv6amhh07drBjxw5qampIT09nx44dHDp0SKu30GEdKT7Czd/ezLObnqWytpKhEUNZctUSHhj2AL5GX1c9o8XCxTfNBmDTF/8lP03GNAkhhNCWpmNupk2bRm5uLo8//jhZWVkMGTKE5cuXuwYZp6SkoGuwflFGRgZJSUmu1y+++CIvvvgiF110EatWrWrt8Dsku8POwt0LeX3H69Q4avAx+DB32Fym9p6KTmk8F+456jy6DR3BkW2b+eGtV5n2xLxmrTslhBBCeJKm89xooTn3yXc2ORU5PLL6ETZnbQbgvC7n8cQ5TxDtF33GY0tyc1j44B3UVlcz/rZ7GDR2orfDFUII0Ym0i3luRNvyS9ov/G7p79ictRmrwcrT5z3N62Nfb1JiAxAQHsH50250nuvDdykryPdmuEIIIcQpSXLTydnsNl7Y/AJ3rbiLwupC+oT04T9X/IfJPSY3e7mEpEuvJLJbT6rLy/nhrVfpZI2CQggh2ghJbjqxrPIsbvz2RhbtWQTAjL4z+PDyD896Ij6dXs+ld96P3mDgyLbN7PnlJw9GK4QQQjSNJDed1M7cndyw7AZ25+8m0BzIKxe/wiMjH8GkN7XovGFxXRn9u+kArHz/TUoL8jwRrhBCCNFkktx0QsuOLOOW5beQV5lHj6AefHrFp1wcf7HHzj/iqilEdXd2T333+suoDofHzi2EEEKciSQ3nYhDdfDKtld4ZPUj1DhqGBM7hsWXL6aLXxePXken13PpXXMxmMwc27md7cu/8uj5hRBCiNOR5KaTqKqt4sFVD/LWb28BMGvALOZfPN9tQj5PCu0Sx0U33grALx+9R25KsleuI4QQQpxIkptOoNxWzl0r7uLHlB8x6oz8/fy/88CwB9Dr9F697uDxl9Ft6AjsNhvLXn4eW3WVV68nhBBCgCQ3HV5xdTG3fX8bm7I24Wv05d/j/81V3a9qlWsrisLEP9yHT2AQ+Wkp/LTw361yXSGEEJ2bJDcdWF5lHrO+m8XOvJ0EmgN5e8LbjIga0aox+AQGMeneP6IoOnat/IHdP68480FCCCFEC0hy00FllmVyy/JbOFB4gFBLKAsnLmRA2ABNYokfMJjRv7sBgB/feY281GOaxCGEEKJzkOSmA8ooy2Dm8pkklyQT7RvN+5e9T8/gnprGNOra64gfOITa6mq+eOFpKkqKNY1HCCFExyXJTQeTU5HD7O9nk1GeQdeAriy6bBFdA7pqHRY6nZ5J9/6RwMgoirOzWPqPZ6i12bQOSwghRAckyU0HUlBVwJzv55BamkqsXyzvTHiHKN8orcNy8QkI5Jo/PY7J6kP6vt38+NYCWX9KCCGEx0ly00GU28q548c7OFJ8hEifSN6e+DaRvpFah3WS0Nh4rrz/YRSdjt0//8jmpf/TOiQhhBAdjCQ3HYDNbmPuqrnsyd9DiCWEtye87fFZhz0pYcgwLp55GwCrP36fg5vXaxyREEKIjkSSm3ZOVVUeX/c46zLWYTVYWTB2wVmv6t2akiZewZCJk0BV+eZfL5J95JDWIQkhhOggJLlp517/9XW+PvI1BsXAS2Ne0ux277Nx8c230XVQErXV1Sx59kkKszK0DkkIIUQHIMlNO/bt0W95/dfXAXhs9GOc3+V8jSNqHp1ez5UPPEpEQncqiov4398fo6ywQOuwhBBCtHOS3LRTO3N38tc1fwVgZv+ZXNvzWo0jOjtmHx+uffRJgiKjKc7J5n/PPE5laYnWYQkhhGjHJLlph/Iq83hg5QPUOGoYEzeG+4fer3VILeIbFMyUvzyNb1AweSnJfPZ/f6WyrFTrsIQQQrRTkty0MzaHjYd+foicyhy6BXbj2Que9frq3q0hKDKKqY89g09gELnJR/jf3x+jqqxM67CEEEK0Q5LctDMvbXmJrdlb8TX6Mv/i+fgafbUOyWNCY+OY+tjfsfoHkH3kEP/526OUFxVqHZYQQoh2RpKbduSHYz+weO9iAP5+/t9JDEzUOCLPC4vrytTH61pwjh3lk8f/RHFOltZhCSGEaEckuWkn0krTeGLtEwDMGjCLsfFjNY7Ie8LjE7jhby8QGBFJUXYmHz/+J/JSkrUOSwghRDshyU07YHPYePiXhym1lTI4fDB3J92tdUheFxQVzfVPPU9YXFfKCwv49MlHyDiwT+uwhBBCtAOS3LQDr25/lZ15O/E3+fP8hc9j1Bm1DqlV+IWEct2TzxLdqw9V5WV89n9/4fDWTVqHJYQQoo2T5KaN25K1hYW7FgLw9LlPE+MXo3FErcvq58/Uv/wfCYOHUltdzRcvPM2GJZ/KauJCCCFOSZKbNqy0ppS/rPkLKirX9ryWsV077jib0zFaLEz+02MMnuBci2rtpx/w1T/nUVNVqXVoQggh2iBJbtqwZzc9S0Z5Bl38uvCnEX/SOhxN6Q1Gxt16B+Nvuwed3sDBjev4+K8PUZSVqXVoQggh2hhJbtqolSkrWXp4KTpFx7wL5nWo+WxaYtDYiVz3xDznbMapx/jwzw9wdPsWrcMSQgjRhkhy0waV1JTw9IanAbi5380kRSRpHFHb0qV3X2bM+ydRPXpRVV7Gkmef5JcPF2KvrdU6NCGEEG2AJDdt0IubXyS3MpeEgATuHHKn1uG0Sf4hYUx74lmGTJwEwOal/+PTJx+mICNd48iEEEJoTZKbNmZdxjo+P/Q5CgpPnfsUFoNF65DaLIPJxNhZd3DlA49gsvqQeXA/H/zpHrZ8/TkOh13r8IQQQmhEkps2pKq2iqfXO7ujbuhzA0Mjh2ocUfvQ65zzufnFV+k6KIlaWw0/f/AOnz7xCAUZaVqHJoQQQgOS3LQh7+56l7SyNCKsEdw79F6tw2lXAsIimPLnvzH+trsxWa1kHNjLB3+6l81L/ydjcYQQopOR5KaNSC1J5Z3f3gHgjyP/KHdHnQVFURg09lJufnGBqxXnlw8XsuiPd5O8Y6vW4QkhhGglitrJpnotKSkhMDCQ4uJiAgICtA4HAFVVuWvFXaxOX8050efw5vg3URRF67DaNVVV2b3qR3756D0qS4oB6DZsJGNumk1wVOea5VkIITqC5vz9luSmDViRsoL7V96PQWdgyVVLSAxM1DqkDqOqvIwN//uY7cu/xmG3ozcYSLrsKkZe/Tus/m3j+xdCCHFmktycRltLbipsFUz+cjKZ5ZnMGThHxtp4SX5aKqsWvUXyr9sAMFmtDJs0mWGTJmP2kS5AIYRo6yS5OY22lty8vO1l3v7tbaJ9o/ly8pdYDVatQ+qwVFXl6PYtrPlkEbnHjgJg8fVj+JXXknTZlZgs8tkLIURbJcnNabSl5OZI8RGmLJ1CraOW+RfPZ2x851wYs7WpDgcHN61j7X8+pCA9FQCLfwBDxl/GkIlX4BsUrHGEQgghTiTJzWm0peTmDz/+gbXpa7mgywUsGLtABhG3MofDzv61v7Duvx+5FuDUG430Pf9ihl8xmdDYeI0jFEIIUU+Sm9NoK8nNuox13P7D7Rh0Br68+kviA+QPqVYcDjuHNq1ny1efk3lov6s8YcgwBo+7jG5DR6DT6zWMUAghRHP+fhtaKSbRgN1h5x9b/gHA9b2vl8RGYzqdnl7nnE/PUeeRsX8vW77+nENbNpC8YyvJO7biFxzCgIvHM/CSiQSER2gdrhBCiDOQlhsNfHHoCx5b+xj+Rn++ufYbgixBmsQhTq0wK4OdPy5n96ofqSwtcRYqCl0HDqH36AvoMeIcuZVcCCFakXRLnYbWyU1lbSVXfH4FORU5zB02l1sG3NLqMYimq7XZOLxlAzt//JaUXTtd5Tq9nvgBg+k1+nx6jBiN1c9fwyiFEKLjk+TmNLRObt7c+Sb/2v4vYnxjWHrNUsx6c6vHIM5OYVYG+9f+woENa8hNSXaV6/R64gcOodc559F92Ch8AgK1C1IIITooSW5OQ8vkJq8yj0lLJlFRW8GzFzzLpG6TWvX6wnMKMtI4sH7NSYkOikJ0914kDh1Ot6QRRCR0Q9HJEm5CCNFSktychpbJzf9t+D8+3f8p/UP789Gkj9Ap8kevI3AlOpvWkZt8xG2fb1Awcf0HEddvILH9BhAc3UVu+RdCiLMgyc1paJXcHCk+wrVfXotdtfPuxHcZETWi1a4tWk9pQR5Ht2/hyLYtpPy2A1t1ldt+n8AgYvsOILbfAOL6DiA0Nl5adoQQogkkuTkNrZKb+1fez4qUFYyJG8O/LvlXq11XaKfWZiN9327S9u4ibe8uMg/ux26zudUx+/oS2a0nUd17EtWtJ5Hde+IfGiatO0IIcQJJbk5Di+Rmd/5urv/6enSKjiVXLaF7UPdWua5oW2prasg6fIC0PbtI3buLjAN7qa2uPqmeT2AQUd17EtmtB+HxiYTExhEUGY3eINNSCSE6L5nEr41ZsH0BAJcnXi6JTSdmMJmcXVJ9B3AOYK+tJS/1GNmHD5J15CBZhw+Sn3qMiuIijmzbzJFtm13H6vQGgqNjCI2NJzQ2jtDYroTGxhEcHYPeYNTuTQnRzp30//enf3niwac/9xkv3rL96pkrtOjyp6twpnYRRadgNGk3s7skN162I2cHq9NXo1f03DH4Dq3DEWegqiqOWhW73YHDruKwq6gOFYej7tneYPtUZSe8rj/Hia8dDlAdJlT6EZ7Yj7AEFbuthrKCdEpyjlGan0JFUSblxVk4amvIT0shPy3FPWBFh8UvDItvGCbfUMw+IZitIZh8QjBaQ9DpTc7fvw4VVXX+MlQdgFr3uv65bn/9Z4Ba/3tbdf2Cc75U3X6fu+rUV3Xb1/CFe92TztGgwC0OtzrHT9aU493eSyM768950h+IM/1BOHH/CQUnHX6m05/pD+RJ1zvxZRuL/4z1T3x5hgOaef0zXU+0jqhuAUz503DNri/JjZct2OFstbm6x9WyzEITORwqtTV2amsc1NbYsdVvVzfYrrHX7Tu+XWtzYK9VcdQ6sLseda/tDuw2FYf9eHl9HUfDbXtb+U0YV/cAo58KaikOez5q3cNhL0C154NaQ1VpDlWlOY2fRvFB0QWi6AOdzzp/FJ0fiuKHovMDxSrje4QQHY4kN160OWszGzI3YNAZuH3Q7VqH0ypUh0p1RS2VZTVUlddSU+l8VFfWUlNV/9rufK5qsK+ylpoqO7YqO/Zah9Zvw42iU9DpFBR93bMOdCeVOZ91+uPbSt3rhvtPrK8ozvMrinMbnYICx7fryhs+o9TtB2zVxVSWZFNVnkd1WQFV5flUl+VTVZZHbU0lqBWo9gpUe+Yp3psBi28gZr8gLL5BWPyCsfgFYfYNxGQNwOIbgMnXH7PVD51O77qwKx9SQHH+5/g5GyRLioJr38n1jp9IgZPP0bD6iddx26e4Ha8o7hWU+joNc7gTYjpTfnfGBPCE3SdXV86w/wznO7mgWefTPP4zHNDs67Xw/Z7pfGf6vJvjzJ/VGWI94wWaE01jl2/ez0ZTL631/zRJcuMlqqry6vZXAZjScwoxfjEaR3T2aqpqqSiuobyomvLiasqLa6gqs1FVVkNlmY2qchtVZTYqy2xUl9vO1MreLAaTDoNJj9Gkd20bTDqMZr1ru36/3qhDb9ChNyh1zzp0esVZrq973XBf/bZeh96o1NXX1dU/nqho/Y/0bFWVlVGck0VxThZF2VmU5GZTmp9HWUEBZYX5VBQXoTpqqSzNp7I0/4zns/gH4BMQiE9gID4BQfgEBmLx88fi64/Fzw+zrx8WX18svn5Y/Pwx+/lhNMkM3EKI1ifJjZesz1zPtpxtmHQm5gyco3U4p1RTWUtJfiUleVWU5lfVJS/VlBcdT2ZsVfZmn9dkNWDxNWCyGjBbnc+uh0V/crnFgMmqx2iue9QlK+01sWgLLH5+WPx6ENmtR6P77bU2ygsLKS3Ip6wgj7KC/LrtfCpLiqgoLqaipJjKkhJU1UFVaQlVpSUUpKc2OQa90YjFty7x8fN3JT9mPz/MVh9MVh9MVismixWTj4/z2eqD0WLFXPfaYDbLz4EQolkkufECVVVdd0hd1/s6In0jNY2lvKiawuwKirMrKM6tpCTfmciU5FVSXVHbpPMYzHr8gsz4BpnwCTBj9Tdi9TNi8TNh8a3frnv4GtEbZGK6tk5vMBIQHkFAeMRp6zkcdqrKyqgork94nM+VJUVUlpVRXV5GVVkpVeX122VUlZehOhzYbTbKiwopLyo86zgVRYfRYmmQ/Fgxmi0YzWYMdc9GsxmDyewqN5otGOrKjWZL3b7j9fQmIwajCYPJhN5odHa5CSE6DEluvGB1+mp25u3EarBy68BbW+WaDruDwuwK8tPLKMqqoCi7gsLsCopyKqmtPn3Li8XPSECoBf9QC35BFnyCTPgGmvENMuMbaMI3yIzJIj8qnZVOp3d2RwUE1o9xPiNVVamprKS6vIzKslJn0lOf+NS9rq6sxFZZQU1VJTWVFdRUVjofVcefnXdnOer2V3jvPeoNGExGZ+JjrEt8jEb0JmcCZDCa0NeVGUxmDCaj67XeaERvMKI3GFzbOte2oe7RyH63MoNrW6c3SEuVEC0kf7E8pDYvj5Jvl6MYDWze+z4XlTk4P34YppWbKNEbUAx60OtRDEYUgx7FZEZntaBYLOisVnQWC4rVimIynfEXm63GTn56GXmpZeSmlpKXWkZ+ehl2W+MDcRWdQmC4laBIHwLDrQSEWfAPtboSGklchKcpioLZxwezj88ZW4ZORXU4sNVUH0966hOgqkps1VXUVldjq67CVl1NbU01tqoq53NduXN/9fH91VXOOjYbdlsNDvvxpN9hrx/sXumpj6BF9AYDOr0BnUGPTm9Ar9ejMxjQ6U/xuq5e/Wudoa5OM87hfNah6HTodHp0er1zu/5Zp0en06Ho9SdsN6zTWNnx8zRWJomc8Ab5q+YhtrQ0sv/+dwAud5WuIp1VzTuRTudKdHQWCzafIMr8Yim1RFNiiqBEF0Kp6kdj49QNBpXgYB1BIUaCIqwER/sRHBtAYFwwBouMWxDti6LTObuhLFYI9vz5HXY7dpsNW001dpuNWlsN9poaamtqqLXVuJKg2rqy+jrHX9c919Zir7XVPddit9lw1NqOl9ka7GtQ5qh7rq21nTRXS319Tp7AuuNRlBOSKR2K7oQEqS5hUk6bYJ24/3gS5Uq86h+KUvdcX6Yc31aUU9et364/X2PnaVBXp9M5f6efoq7Oeevl8Ws2dp4TYuI0dXV1+08bn9I5xjJKcuMhuoBA/C+7lAO5e0krTiHCFEK/wN6odjuqvRZstXXbdqi14aiuQa2sxFFVhaOqCtVmo9ocTKlfHKX+sc6Exi+OakuI+4Xqfgcaa0rwL0vDvzQVv7I0/MvSsFbmojSYsaoWyK17YDCg8/FB5+vr/nymbV+fUx6nyHIAoh2rb0kwWixah+JMtE5Khmw4au047LU47HZnHXutW9lJr2vr69Y6k6e63zl2e4Pz1JU7GhxbX8/hcKA6nNdyOByuMofDjupw4GhQ73hdh3Nf3XGueiccd0qqWhdb08b/CQ9wJUjOZIcGSY+iU5y3wrv2K8eTPKU+QTq+DSfWcR4b0TWRS+98QLO32Cb+Oi1YsIAXXniBrKwsBg8ezL/+9S9Gjhx5yvqfffYZjz32GMnJyfTs2ZPnnnuOyy+//JT1W4O5WyIRLz7HDZ+Npahaz4KxzxAfe2GjdR0OlaKsCmeXUloZeaml5KaUnnJwr58vhATYCfapIdBYTpC+GFN1KWpFOY4KHY6KMBzlVhwVXXBUVOAoL3c9q/VrF9XW4igpwVFS4rH3rJjNp0+QGkuOGmwrPj7ofX1RrD7ozCZnl5zZjKKXwZ2ic3ElWh30znm1buyUW+JjPyFpqnt2JU0nJVMnJ07OxKrB8wnnaphgqfUJmao6X9fF43ytojrszhnKnVOH18Vx5rrOMnvdLN8O17Wc7/n4Pre69TE0OFfTrn1829FwX4O6TfxCTp9weoDW00Bontx8+umnzJ07lzfeeINRo0Yxf/58Jk6cyP79+4mIOLmvft26ddxwww3MmzePK664go8++ojJkyezbds2BgwYoME7OG7Fzvcoqi4i0ieS82LOA5zjYwrSy90Smfy0MmobGR+j0ykER/sSHudHWJw/YXXPZuvZf01qbS2OysoGCU+D5KdhIlRR7txX0aBeY2Xl5VDrTMLU6mrs1dXYC8/+TphG6fXORMdkQlf37HqYzSgmo7PcWP+6fr8RXd1rDAYUvQHFUDfeyWA4Pt7JYDi+32ioGwt1wv66fc7turFSRoOzWVivB0WHoq9rUq5rekand/6fTP04Ar3e9X8/4gxONTlSo+VtZRbpRrTpdYi1i801l6MCeoMeOOF/YORzOzuNfG7HEytnkoRbYuWeLDmTKbVBInY8KUN11C3R4nAlbtQnd6rD7Rj36zr3m6y+rf1puNF8VfBRo0YxYsQIXn3VOeGdw+EgLi6Oe+65h0ceeeSk+tOmTaO8vJyvv/7aVXbOOecwZMgQ3njjjTNez2urghelcPviqzhm786VtiR6Gs8jLxeK8tVG/90ajCphYQ7Cw+yEhdsIC7ERElyDQWcH1Q6O+mfHCa/toDqze1eZ22tHI6/rnh0O99dNOsbu/AfU4BjVVou9xoFa48BRo+KwOXDUb7teqzhsda9rHM5tG8fL61/XPbfl3x8tpx6fBbfu4dxW3Wf6de1TT6hXV9awXr268kZn33WVqSfPDNzgWNd5Xceq7mUNy08qqz+n+7kavS6NOFXe10i5csoXjfzwnOK8pz5H02JwFjf2Xpt3DtfupuS9yun/cTR3tuBmO/sJbOuc4R+3t3P/FsffsvOfmXc/n9Me7sXP3hDbHf9n13j0nO1mVfCamhq2bt3Ko48+6irT6XSMGzeO9evXN3rM+vXrmTt3rlvZxIkT+eKLLxqtX11dTXX18VF5JR7slmlo8y+bGLTrJQbVvT7Y4AfWqisi3HCEUGMy4YajhBmPEKjPQqc6GgyKaT8UGvnBMdU9zoJrAUO7Upd/Kaj2ukeD144TXp9U30Hdc9226nzGodQtDqk4r9NgP/XHu+0/XtbwWNdrnPGiNvU3Q9153deRxPu/1YUQQhvWjFL8Nby+pslNXl4edrudyEj3Se4iIyPZt29fo8dkZWU1Wj8rK6vR+vPmzeOpp57yTMCnUdYtCqih2qeIfn5FhKm7CbOkE27JxMdUgaLTg87ZnYEuEpSYutcNyxu+dnZpuL+uq3dS3bp6inLCa537MSe9rq9z4utTnbNBneNNCnWfQIP/9XdbUEg5Y1l9t42Cgs6D5220WaQxze02alBfrWv2dT67b7v2qWrdPmezLXZna5hqr2v6tdc399rBodYd44ATylVHXRnUNRvXPwDUBmU0yBhxNSU3fO12DpzXPL7id4N6an25a6lut+uq9WV1TdMn1W34XHfq49vqycVn6p5y291whe9GrnHy8uXuFU4VyymPO815T3V8Y8ed6vyusE61/wzvsbHPo0ktomeodKbG/aZc44znOPNJzljDA9c4dZ36f/MeeB8t/Tyb1Nniic/iTKc4fQVzYsKZr+FFmo+58bZHH33UraWnpKSEuLgmzkTWDGP6n8eol6qpUMoIs4Z5/PyibVJOeBZCCKE9TZObsLAw9Ho92dnZbuXZ2dlERUU1ekxUVFSz6pvNZsxm74/aVhQFHx8LPmh/W6kQQgjRmWm6AJDJZGLYsGGsWLHCVeZwOFixYgWjR49u9JjRo0e71Qf44YcfTllfCCGEEJ2L5t1Sc+fO5eabb2b48OGMHDmS+fPnU15ezi233ALATTfdRJcuXZg3bx4A9913HxdddBH/+Mc/mDRpEp988glbtmzhzTff1PJtCCGEEKKN0Dy5mTZtGrm5uTz++ONkZWUxZMgQli9f7ho0nJKS4pxSus65557LRx99xF//+lf+/Oc/07NnT7744gvN57gRQgghRNug+Tw3rc1r89wIIYQQwmua8/db0zE3QgghhBCeJsmNEEIIIToUSW6EEEII0aFIciOEEEKIDkWSGyGEEEJ0KJLcCCGEEKJDkeRGCCGEEB2KJDdCCCGE6FAkuRFCCCFEh6L58gutrX5C5pKSEo0jEUIIIURT1f/dbsrCCp0uuSktLQUgLi5O40iEEEII0VylpaUEBgaetk6nW1vK4XCQkZGBv78/iqJ49NwlJSXExcWRmpraqdat6qzvG+S9d8b33lnfN8h774zvvS29b1VVKS0tJSYmxm1B7cZ0upYbnU5HbGysV68REBCg+Q+BFjrr+wZ5753xvXfW9w3y3jvje28r7/tMLTb1ZECxEEIIIToUSW6EEEII0aFIcuNBZrOZJ554ArPZrHUoraqzvm+Q994Z33tnfd8g770zvvf2+r473YBiIYQQQnRs0nIjhBBCiA5FkhshhBBCdCiS3AghhBCiQ5HkRgghhBAdiiQ3HrJgwQISEhKwWCyMGjWKTZs2aR2Sx82bN48RI0bg7+9PREQEkydPZv/+/W51xowZg6Iobo8//OEPGkXsGU8++eRJ76lPnz6u/VVVVdx1112Ehobi5+fHlClTyM7O1jBiz0lISDjpvSuKwl133QV0rO/7l19+4corryQmJgZFUfjiiy/c9quqyuOPP050dDRWq5Vx48Zx8OBBtzoFBQXMmDGDgIAAgoKCuPXWWykrK2vFd9F8p3vfNpuNhx9+mIEDB+Lr60tMTAw33XQTGRkZbudo7Ofk2WefbeV30nxn+s5nzpx50vu69NJL3eq0x+8czvzeG/t3rygKL7zwgqtOW/7eJbnxgE8//ZS5c+fyxBNPsG3bNgYPHszEiRPJycnROjSP+vnnn7nrrrvYsGEDP/zwAzabjQkTJlBeXu5Wb86cOWRmZroezz//vEYRe07//v3d3tOaNWtc+x544AG++uorPvvsM37++WcyMjK49tprNYzWczZv3uz2vn/44QcApk6d6qrTUb7v8vJyBg8ezIIFCxrd//zzz/PKK6/wxhtvsHHjRnx9fZk4cSJVVVWuOjNmzGD37t388MMPfP311/zyyy/cdtttrfUWzsrp3ndFRQXbtm3jscceY9u2bSxZsoT9+/dz1VVXnVT3b3/7m9vPwT333NMa4bfImb5zgEsvvdTtfX388cdu+9vjdw5nfu8N33NmZibvvvsuiqIwZcoUt3pt9ntXRYuNHDlSveuuu1yv7Xa7GhMTo86bN0/DqLwvJydHBdSff/7ZVXbRRRep9913n3ZBecETTzyhDh48uNF9RUVFqtFoVD/77DNX2d69e1VAXb9+fStF2Hruu+8+tXv37qrD4VBVtWN+36qqqoD6+eefu147HA41KipKfeGFF1xlRUVFqtlsVj/++GNVVVV1z549KqBu3rzZVefbb79VFUVR09PTWy32ljjxfTdm06ZNKqAeO3bMVda1a1f1n//8p3eD87LG3vvNN9+sXn311ac8piN856ratO/96quvVi+55BK3srb8vUvLTQvV1NSwdetWxo0b5yrT6XSMGzeO9evXaxiZ9xUXFwMQEhLiVv7hhx8SFhbGgAEDePTRR6moqNAiPI86ePAgMTExdOvWjRkzZpCSkgLA1q1bsdlsbt9/nz59iI+P73Dff01NDYsXL2bWrFlui852xO/7REePHiUrK8vtew4MDGTUqFGu73n9+vUEBQUxfPhwV51x48ah0+nYuHFjq8fsLcXFxSiKQlBQkFv5s88+S2hoKElJSbzwwgvU1tZqE6CHrVq1ioiICHr37s0dd9xBfn6+a19n+c6zs7NZtmwZt95660n72ur33ukWzvS0vLw87HY7kZGRbuWRkZHs27dPo6i8z+FwcP/993PeeecxYMAAV/n06dPp2rUrMTEx7Ny5k4cffpj9+/ezZMkSDaNtmVGjRvHee+/Ru3dvMjMzeeqpp7jgggvYtWsXWVlZmEymk37RR0ZGkpWVpU3AXvLFF19QVFTEzJkzXWUd8ftuTP132di/8/p9WVlZREREuO03GAyEhIR0mJ+FqqoqHn74YW644Qa3RRTvvfdehg4dSkhICOvWrePRRx8lMzOTl156ScNoW+7SSy/l2muvJTExkcOHD/PnP/+Zyy67jPXr16PX6zvFdw7w/vvv4+/vf1J3e1v+3iW5EWflrrvuYteuXW5jTwC3vuaBAwcSHR3N2LFjOXz4MN27d2/tMD3isssuc20PGjSIUaNG0bVrV/7zn/9gtVo1jKx1vfPOO1x22WXExMS4yjri9y0aZ7PZuO6661BVlddff91t39y5c13bgwYNwmQycfvttzNv3rx2N21/Q9dff71re+DAgQwaNIju3buzatUqxo4dq2Fkrevdd99lxowZWCwWt/K2/L1Lt1QLhYWFodfrT7o7Jjs7m6ioKI2i8q67776br7/+mpUrVxIbG3vauqNGjQLg0KFDrRFaqwgKCqJXr14cOnSIqKgoampqKCoqcqvT0b7/Y8eO8eOPPzJ79uzT1uuI3zfg+i5P9+88KirqpJsIamtrKSgoaPc/C/WJzbFjx/jhhx/cWm0aM2rUKGpra0lOTm6dAFtJt27dCAsLc/18d+TvvN7q1avZv3//Gf/tQ9v63iW5aSGTycSwYcNYsWKFq8zhcLBixQpGjx6tYWSep6oqd999N59//jk//fQTiYmJZzxmx44dAERHR3s5utZTVlbG4cOHiY6OZtiwYRiNRrfvf//+/aSkpHSo73/hwoVEREQwadKk09briN83QGJiIlFRUW7fc0lJCRs3bnR9z6NHj6aoqIitW7e66vz00084HA5X0tce1Sc2Bw8e5McffyQ0NPSMx+zYsQOdTndSl017l5aWRn5+vuvnu6N+5w298847DBs2jMGDB5+xbpv63rUe0dwRfPLJJ6rZbFbfe+89dc+ePeptt92mBgUFqVlZWVqH5lF33HGHGhgYqK5atUrNzMx0PSoqKlRVVdVDhw6pf/vb39QtW7aoR48eVb/88ku1W7du6oUXXqhx5C3z4IMPqqtWrVKPHj2qrl27Vh03bpwaFham5uTkqKqqqn/4wx/U+Ph49aefflK3bNmijh49Wh09erTGUXuO3W5X4+Pj1YcfftitvKN936Wlper27dvV7du3q4D60ksvqdu3b3fdFfTss8+qQUFB6pdffqnu3LlTvfrqq9XExES1srLSdY5LL71UTUpKUjdu3KiuWbNG7dmzp3rDDTdo9Zaa5HTvu6amRr3qqqvU2NhYdceOHW7/7qurq1VVVdV169ap//znP9UdO3aohw8fVhcvXqyGh4erN910k8bv7MxO995LS0vVhx56SF2/fr169OhR9ccff1SHDh2q9uzZU62qqnKdoz1+56p65p93VVXV4uJi1cfHR3399ddPOr6tf++S3HjIv/71LzU+Pl41mUzqyJEj1Q0bNmgdkscBjT4WLlyoqqqqpqSkqBdeeKEaEhKims1mtUePHuof//hHtbi4WNvAW2jatGlqdHS0ajKZ1C5duqjTpk1TDx065NpfWVmp3nnnnWpwcLDq4+OjXnPNNWpmZqaGEXvWd999pwLq/v373co72ve9cuXKRn++b775ZlVVnbeDP/bYY2pkZKRqNpvVsWPHnvSZ5OfnqzfccIPq5+enBgQEqLfccotaWlqqwbtputO976NHj57y3/3KlStVVVXVrVu3qqNGjVIDAwNVi8Wi9u3bV33mmWfcEoC26nTvvaKiQp0wYYIaHh6uGo1GtWvXruqcOXNO+p/W9vidq+qZf95VVVX//e9/q1arVS0qKjrp+Lb+vSuqqqpebRoSQgghhGhFMuZGCCGEEB2KJDdCCCGE6FAkuRFCCCFEhyLJjRBCCCE6FEluhBBCCNGhSHIjhBBCiA5FkhshhBBCdCiS3AghhBCiQ5HkRgjhFatWrUJRlJMWFW0tK1asoG/fvtjt9hadR1EUvvjiiybXX758OUOGDMHhcLToukKIsyfJjRCixcaMGcP999/vVnbuueeSmZlJYGCgJjH96U9/4q9//St6vb5F58nMzOSyyy5rcv1LL70Uo9HIhx9+2KLrCiHOniQ3QgivMJlMREVFoShKq197zZo1HD58mClTprT4XFFRUZjN5mYdM3PmTF555ZUWX1sIcXYkuRFCtMjMmTP5+eefefnll1EUBUVRSE5OPqlb6r333iMoKIivv/6a3r174+Pjw+9+9zsqKip4//33SUhIIDg4mHvvvdetK6m6upqHHnqILl264Ovry6hRo1i1atVpY/rkk08YP348FovFVfbkk08yZMgQ3n33XeLj4/Hz8+POO+/Ebrfz/PPPExUVRUREBH//+9/dztWwWyo5ORlFUViyZAkXX3wxPj4+DB48mPXr17sdc+WVV7JlyxYOHz589h+sEOKsGbQOQAjRvr388sscOHCAAQMG8Le//Q2A8PBwkpOTT6pbUVHBK6+8wieffEJpaSnXXnst11xzDUFBQXzzzTccOXKEKVOmcN555zFt2jQA7r77bvbs2cMnn3xCTEwMn3/+OZdeeim//fYbPXv2bDSm1atXM3369JPKDx8+zLfffsvy5cs5fPgwv/vd7zhy5Ai9evXi559/Zt26dcyaNYtx48YxatSoU77nv/zlL7z44ov07NmTv/zlL9xwww0cOnQIg8H5KzU+Pp7IyEhWr15N9+7dm/uRCiFaSJIbIUSLBAYGYjKZ8PHxISoq6rR1bTYbr7/+uusP/u9+9zs++OADsrOz8fPzo1+/flx88cWsXLmSadOmkZKSwsKFC0lJSSEmJgaAhx56iOXLl7Nw4UKeeeaZRq9z7NgxV/2GHA4H7777Lv7+/q5r7d+/n2+++QadTkfv3r157rnnWLly5WmTm4ceeohJkyYB8NRTT9G/f38OHTpEnz59XHViYmI4duzY6T88IYRXSHIjhGg1Pj4+bi0ZkZGRJCQk4Ofn51aWk5MDwG+//YbdbqdXr15u56muriY0NPSU16msrHTrkqqXkJCAv7+/27X0ej06nc6trP76pzJo0CDXdnR0NAA5OTluyY3VaqWiouK05xFCeIckN0KIVmM0Gt1eK4rSaFn9bdRlZWXo9Xq2bt160l1PDROiE4WFhVFYWNji6zflfdQPmD7xmIKCAsLDw097HiGEd0hyI4RoMZPJ1OL5ZBqTlJSE3W4nJyeHCy64oFnH7dmzx+PxNFVVVRWHDx8mKSlJsxiE6MzkbikhRIslJCSwceNGkpOTycvL89gEdr169WLGjBncdNNNLFmyhKNHj7Jp0ybmzZvHsmXLTnncxIkTWbNmjUdiOBsbNmzAbDYzevRozWIQojOT5EYI0WIPPfQQer2efv36ER4eTkpKisfOvXDhQm666SYefPBBevfuzeTJk9m8eTPx8fGnPGbGjBns3r2b/fv3eyyO5vj444+ZMWMGPj4+mlxfiM5OUVVV1ToIIYTwtD/+8Y+UlJTw73//u1Wvm5eXR+/evdmyZQuJiYmtem0hhJO03AghOqS//OUvdO3atdXXeEpOTua1116TxEYIDUnLjRBCCCE6FGm5EUIIIUSHIsmNEEIIIToUSW6EEEII0aFIciOEEEKIDkWSGyGEEEJ0KJLcCCGEEKJDkeRGCCGEEB2KJDdCCCGE6FAkuRFCCCFEh/L/IyybrVfWdaEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\dae\\petsc_chem_doc_22_0.png" - } - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# The plot of this new data should look the same as the original, although some of the\n", "# fast dynamics of component 2 will be obscured.\n", @@ -1214,24 +338,9 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAGwCAYAAAAOvdliAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7eElEQVR4nO3deVhUZfsH8O/MwMwAsojIpii474CahFlqolhmYub+qvW69JpraplW2u6eaVqWv1zK3TIzF8xwyw0V0MRdRHEDRGTfZ57fHwOTI6gMMnNg+H6u61wzc+Y559yHQefmee7zHJkQQoCIiIiIzEYudQBEREREVQ0TMCIiIiIzYwJGREREZGZMwIiIiIjMjAkYERERkZkxASMiIiIyMyZgRERERGZmJXUAlkyr1eL27duwt7eHTCaTOhwiIiIqBSEE0tPT4enpCbncNH1VTMBM6Pbt2/Dy8pI6DCIiIiqDGzduoHbt2ibZNxMwE7K3tweg+wAdHBwkjoaIiIhKIy0tDV5eXvrvcVNgAmZCRcOODg4OTMCIiIgqGVOWD7EIn4iIiMjMmIARERERmRkTMCIiIiIzYw0YEREVo9VqkZeXJ3UYRCZhbW0NhUIhaQxMwIiIyEBeXh5iY2Oh1WqlDoXIZJycnODu7i7ZPJ1MwIiISE8IgTt37kChUMDLy8tkk1ASSUUIgaysLCQmJgIAPDw8JImDCRgREekVFBQgKysLnp6esLW1lTocIpOwsbEBACQmJsLV1VWS4Uj+aUNERHoajQYAoFQqJY6EyLSK/sDIz8+X5PhMwIiIqBjev5YsndS/40zAiIiIiMyMCRgRERGRmTEBIyIiKsGqVavg5OQkdRhP7Y033kBISIjUYeh16tQJEydOlDoMyTEBIyIii7dlyxZ07doVNWvWhIODAwIDA7F79+7HbtO/f39cunTJqONYQnJx7do1yGQynDp1yizH8/b2xtdff/1U+zh48CB69uwJT09PyGQybN26tVxiMyUmYEREZPEOHjyIrl27YufOnYiIiEDnzp3Rs2dPREVFPXIbGxsbuLq6mjHKf/EuBMbJzMyEr68vli5dKnUopcYEzAyOxCRJHQIRUZkIIZCVVyDJIoQoVYw//fQTatSogdzcXIP1ISEhGDJkCADg66+/xnvvvYdnnnkGDRs2xJdffomGDRvijz/+eOR+Hx6C/Pjjj+Hn54eff/4Z3t7ecHR0xIABA5Ceng5AN9R34MABLFq0CDKZDDKZDNeuXQMAREdH46WXXkK1atXg5uaGIUOGICnp3++GTp06YezYsZg4cSJcXFwQHBwMQHel3nfffYeXXnoJNjY2qFevHn755ReDOM+cOYMXX3wRNjY2qFGjBkaNGoWMjIxHnldoaCg6dOgAJycn1KhRA6+88gpiYmL07/v4+AAA/P39IZPJ0KlTJ/17//d//4emTZtCrVajSZMm+Pbbbx95HECXGA0dOhTVqlWDh4cHFixYYPB+p06dcP36dbzzzjv6n1lZvPTSS/j888/Ru3fvMm0vBU7Eagbv//IPWtf3hKuDWupQiIiMkp2vQbMZjx+qM5VznwbDVvnkr6m+ffti/Pjx2LZtG/r27QtAN8Hmjh078Oeff5a4jVarRXp6OpydnY2KKSYmBlu3bsX27dtx//599OvXD7Nnz8YXX3yBRYsW4dKlS2jRogU+/fRTAEDNmjWRkpKCF198ESNGjMDChQuRnZ2NqVOnol+/fti7d69+36tXr8bo0aNx+PBhg2N+9NFHmD17NhYtWoSff/4ZAwYMwJkzZ9C0aVNkZmYiODgYgYGBOHHiBBITEzFixAiMHTsWq1atKvEcMjMzMWnSJLRq1QoZGRmYMWMGevfujVOnTkEul+P48eNo164d/vrrLzRv3lw/J9zatWsxY8YMLFmyBP7+/oiKisLIkSNhZ2eHYcOGlXisd999FwcOHMDvv/8OV1dXTJ8+HZGRkfDz8wOgGxr29fXFqFGjMHLkSP12cXFxaNas2WM/i+nTp2P69OmPbVORMQEzg+SsfEzYcAprRgRAIefcOkRE5cnGxgaDBg3CypUr9QnYmjVrUKdOHYPemwfNnz8fGRkZ6Nevn1HH0mq1WLVqFezt7QEAQ4YMQVhYGL744gs4OjpCqVTC1tYW7u7u+m2KEpYvv/xSv27FihXw8vLCpUuX0KhRIwBAw4YNMXfu3GLH7Nu3L0aMGAEA+Oyzz7Bnzx588803+Pbbb7Fu3Trk5OTgp59+gp2dnf54PXv2xJw5c+Dm5lZsf3369DF4vWLFCtSsWRPnzp1DixYtULNmTQBAjRo1DM5j5syZWLBgAV577TUAup6yc+fO4fvvvy8xAcvIyMCPP/6INWvWoEuXLgB0SWbt2rX1bZydnaFQKGBvb29wLE9PzyfWoBmbPFc0TMDMwEYpx9Gr97A47DLe6dpI6nCIiErNxlqBc58GS3bs0ho5ciSeeeYZ3Lp1C7Vq1cKqVavwxhtvlDiktW7dOnzyySf6XhljeHt765MvQHcfwaJ7Cj7K6dOnsW/fPlSrVq3YezExMfoErE2bNiVuHxgYWOx1UXJy/vx5+Pr66pMvAHjuueeg1Wpx8eLFEhOwy5cvY8aMGQgPD0dSUpL+putxcXFo0aJFiTFkZmYiJiYGw4cPN+ipKigogKOjY4nbxMTEIC8vDwEBAfp1zs7OaNy4cYntH2RlZYUGDRo8sV1lxgTMDGa80gwf7LiKxXsvI8DHGe0buEgdEhFRqchkslINA0rN398fvr6++Omnn9CtWzecPXsWO3bsKNZuw4YNGDFiBDZv3oygoCCjj2NtbW3wWiaT6ROYR8nIyND3SD3swRtBP5hEmVLPnj1Rt25dLF++HJ6entBqtWjRosVjC/+LasqWL19ukFABMMl9FKvCEKTkRfhLly6Ft7c31Go1AgICcPz48ce237x5M5o0aQK1Wo2WLVti586dBu8LITBjxgx4eHjAxsYGQUFBuHz5skGbL774Au3bt4etrW2Jc7ycPn0aAwcOhJeXF2xsbNC0aVMsWrSozOfY07cW+rWtDSGACRtP4W567pM3IiIio4wYMQKrVq3CypUrERQUBC8vL4P3169fjzfffBPr169Hjx49TBKDUqnU30+zSOvWrXH27Fl4e3ujQYMGBktpkq5jx44Ve920aVMAQNOmTXH69GlkZmbq3z98+DDkcnmJPU337t3DxYsX8eGHH6JLly5o2rQp7t+/X+wcABich5ubGzw9PXH16tVi51BUtP+w+vXrw9raGuHh4fp19+/fLza1R0k/s6IhyMct//vf/x75M6sMJE3ANm7ciEmTJmHmzJmIjIyEr68vgoODH9mde+TIEQwcOBDDhw9HVFQUQkJCEBISgujoaH2buXPnYvHixVi2bBnCw8NhZ2eH4OBg5OTk6Nvk5eWhb9++GD16dInHiYiIgKurK9asWYOzZ8/igw8+wLRp07BkyZKynagQ+OTVFmjkVg1303PxzsZT0GhLd3UPERGVzqBBg3Dz5k0sX74c//3vfw3eW7duHYYOHYoFCxYgICAA8fHxiI+PR2pqarnG4O3tjfDwcFy7dk0/vDdmzBgkJydj4MCBOHHiBGJiYrB79268+eabxRKPkmzevBkrVqzApUuXMHPmTBw/fhxjx44FAAwePBhqtRrDhg1DdHQ09u3bh3HjxmHIkCElDj9Wr14dNWrUwA8//IArV65g7969mDRpkkEbV1dX2NjYIDQ0FAkJCfqf0SeffIJZs2Zh8eLFuHTpEs6cOYOVK1fiq6++KjHuatWqYfjw4Xj33Xexd+9eREdH44033oBcbph6eHt74+DBg7h165b+ytCiIcjHLQ/WgGVkZOgTMwCIjY3FqVOnEBcX98Sfr2SEhNq1ayfGjBmjf63RaISnp6eYNWtWie379esnevToYbAuICBAvPXWW0IIIbRarXB3dxfz5s3Tv5+SkiJUKpVYv359sf2tXLlSODo6lirWt99+W3Tu3LlUbYukpqYKACI18aYQQojLCWmiyYe7RN2p28Wivy4ZtS8iInPIzs4W586dE9nZ2VKHUiZDhgwRzs7OIicnx2B9x44dBYBiy7Bhwx65r4e/I2bOnCl8fX0N2ixcuFDUrVtX//rixYvi2WefFTY2NgKAiI2NFUIIcenSJdG7d2/h5OQkbGxsRJMmTcTEiROFVqvVxzdhwoRiMQAQS5cuFV27dhUqlUp4e3uLjRs3GrT5559/ROfOnYVarRbOzs5i5MiRIj09Xf/+sGHDRK9evfSv9+zZI5o2bSpUKpVo1aqV2L9/vwAgfvvtN32b5cuXCy8vLyGXy0XHjh3169euXSv8/PyEUqkU1atXFy+88ILYsmXLI3+G6enp4j//+Y+wtbUVbm5uYu7cucXO9ejRo6JVq1ZCpVKJsqYl+/btM/rzfdzvuv77OzW1TPGUhmQJWG5urlAoFAYfuBBCDB06VLz66qslbuPl5SUWLlxosG7GjBmiVatWQgghYmJiBAARFRVl0OaFF14Q48ePL7Y/YxKwwYMHiz59+jy2TU5OjkhNTdUvN27c0H2Acef0bTafvCHqTt0ufN7fLo7GJJXq2ERE5lLZE7AXX3xRjBs3Tuowys3DiRGVH6kTMMmGIJOSkqDRaIp1kbq5uSE+Pr7EbeLj4x/bvujRmH2WxpEjR7Bx40aMGjXqse1mzZoFR0dH/aKvP8hN07d5vU1t9GldG1oBjF8fhaQM1oMRET2t+/fv47fffsP+/fsxZswYqcMheiLJi/AruujoaPTq1QszZ85Et27dHtt22rRpSE1N1S83btzQvZGTZtDus5DmaOBaDYmF9WBa1oMRET0Vf39/vPHGG5gzZ06ppjkgkppk1xa7uLhAoVAgISHBYH1CQoLBZGwPcnd3f2z7oseEhASDS3sTEhL0s+4a49y5c+jSpQtGjRqFDz/88IntVSoVVCpV8TdyDIs8bZVWWDqoNXotPYS/LyfhuwMxGNPZsuc7ISIypaJb/lgaUcrbMVHlI1kPmFKpRJs2bRAWFqZfp9VqERYWVmzSuSKBgYEG7QFgz549+vY+Pj5wd3c3aJOWlobw8PBH7vNRzp49i86dO2PYsGH44osvjNq2mJziV9k0drfHp6/qJrz7as8lHI9NfrpjEBERUaUh6RDkpEmTsHz5cqxevRrnz5/H6NGjkZmZiTfffBMAMHToUEybNk3ffsKECQgNDcWCBQtw4cIFfPzxxzh58qT+clyZTIaJEyfi888/x7Zt23DmzBkMHToUnp6eCAkJ0e8nLi5Of3mqRqPRX7paNNFcdHQ0OnfujG7dumHSpEn6y5Xv3r1bthPNTStxdd+2tdHbvxY0WoHx66OQnPnoSfCIiIjIckg6vXH//v1x9+5dzJgxA/Hx8fDz80NoaKi+iD4uLs5gvpD27dtj3bp1+PDDDzF9+nQ0bNgQW7duNbh1wnvvvYfMzEyMGjUKKSkp6NChA0JDQ6FW/3sj7BkzZmD16tX61/7+/gCAffv2oVOnTvjll19w9+5drFmzBmvWrNG3q1u3btm6uXNKTsBkMhk+D2mB0zdTcPVuJiZtOoUVw56BnPeLJCIismgywQFmk0lLS4OjoyNSf3kHDn1KnqgOAM7fSUPI0sPILdDi/Zea4H8d65sxSiKif+Xk5CA2NhY+Pj4Gf7gSWZrH/a7rv79TU+Hg4GCS4/MqSHN4xBBkkaYeDpjZszkAYN7ui4i4znowIiIiS8YEzBweMQT5oIHtvNDT1xMarcC4dVG4z3owIqJK6dq1a5DJZPrb4pTGqlWrSrw3sbnjIPNhAmYOuU++15hMJsOXvVvAu4YtbqfmYMrm07z8mIionGzZsgVdu3ZFzZo14eDggMDAQOzevdskx/Ly8sKdO3cM6pOfpH///sVuUk2WjQmYOWSX7mav9mprLBnUGkorOcIuJOL//o41cWBERFXDwYMH0bVrV+zcuRMRERHo3LkzevbsiaioqHI9Tl5eHhQKBdzd3WFlVfrr3GxsbODq6lqusVDFxgTMHJ5QA/agFrUc8dErzQAAc0IvIDLuvqmiIiKyCD/99BNq1KiB3FzDW7uFhIRgyJAhAICvv/4a7733Hp555hk0bNgQX375JRo2bIg//vjjsfv+9ddf0bx5c6hUKnh7e2PBggUG73t7e+Ozzz7D0KFD4eDggFGjRpU49Ldt2zY0bNgQarUanTt3xurVqyGTyZCSkgKg+BDkxx9/DD8/P/z888/w9vaGo6MjBgwYgPT0dH2b0NBQdOjQAU5OTqhRowZeeeUVxMTElOEnSFJgAmYOpagBe9B/AuqgR0sPFBTWg6Vm5ZsoMCKiJxACyMuUZillGUbfvn2h0Wiwbds2/brExETs2LED//3vf0vcRqvVIj09Hc7Ozo/cb0REBPr164cBAwbgzJkz+Pjjj/HRRx9h1apVBu3mz58PX19fREVF4aOPPiq2n9jYWLz++usICQnB6dOn8dZbb+GDDz544nnFxMRg69at2L59O7Zv344DBw5g9uzZ+vczMzMxadIknDx5EmFhYZDL5ejduze0Wu0T903Sk3QesCojLx3QagF56fJdmUyGWX1a4sytVMQlZ2HKL6fxw5A2kMk4PxgRmVl+FvClpzTHnn4bUNo9sZmNjQ0GDRqElStXom/fvgCANWvWoE6dOujUqVOJ28yfPx8ZGRno16/fI/f71VdfoUuXLvqkqlGjRjh37hzmzZuHN954Q9/uxRdfxOTJk/WvH54v8vvvv0fjxo0xb948AEDjxo0RHR39xLusaLVarFq1Cvb29gCAIUOGICwsTL9dnz59DNqvWLECNWvWxLlz54yqPyNpsAfMLESpCvEf5KC2xtJBraFUyLHnXAJWHr5mmtCIiCzAyJEj8eeff+LWrVsAdEN6b7zxRol/uK5btw6ffPIJNm3a9Ni6q/Pnz+O5554zWPfcc8/h8uXL0Gg0+nVt27Z9bGwXL17EM888Y7CuXbt2Tzwnb29vffIFAB4eHkhMTNS/vnz5MgYOHIh69erBwcEB3t7eAHSTmFPFxx4wc8lJBWyqG7VJy9qOmP5yE3z8xznM2nUebepWh6+Xk2niIyIqibWtridKqmOXkr+/P3x9ffHTTz+hW7duOHv2LHbs2FGs3YYNGzBixAhs3rwZQUFB5RKmnd2Te+nKwtra2uC1TCYzGF7s2bMn6tati+XLl8PT0xNarRYtWrRAXh6nMaoMmICZSwk35C6NYe29cexqMkLPxmPMukjsGP88HG2sn7whEVF5kMlKNQxYEYwYMQJff/01bt26haCgIHh5eRm8v379evz3v//Fhg0b0KNHjyfur2nTpjh8+LDBusOHD6NRo0ZQKBSljqtx48bYuXOnwboTJ06UevuS3Lt3DxcvXsTy5cvx/PPPAwAOHTr0VPsk8+IQpLmUMQGTyWSY83oreDnb4Ob9bEz95R/OD0ZEVIJBgwbh5s2bWL58ebHi+3Xr1mHo0KFYsGABAgICEB8fj/j4eKSmPvr/5smTJyMsLAyfffYZLl26hNWrV2PJkiWYMmWKUXG99dZbuHDhAqZOnYpLly5h06ZN+kL+stb2Vq9eHTVq1MAPP/yAK1euYO/evZg0aVKZ9kXSYAJmLtkpZd7U0cYaSwa2hrVChtCz8fjp6PXyi4uIyEI4OjqiT58+qFatGkJCQgze++GHH1BQUIAxY8bAw8NDv0yYMOGR+2vdujU2bdqEDRs2oEWLFpgxYwY+/fRTgwL80vDx8cEvv/yCLVu2oFWrVvjuu+/0V0GqVCpjTxMAIJfLsWHDBkRERKBFixZ455139EX+VDnwZtwmpL+Z5/v2cOi7FGg95Kn29+OhWHy2/RyUCjm2vN0eLWo5llOkREQ6lf1m3F26dEHz5s2xePFiqUN5rC+++ALLli3DjRs3pA6lyuLNuKuKMg5BPui/z3mjazM35Gm0GLMuEuk5nB+MiAgA7t+/j99++w379+/HmDFjpA6nmG+//RYnTpzA1atX8fPPP2PevHkYNmyY1GGRhFiEby7lkIDJZDLMe70Veiw+hOv3svD+ljNYMtCf84MRUZXn7++P+/fvY86cOWjcuLHU4RRz+fJlfP7550hOTkadOnUwefJkTJs2TeqwSEJMwMwlJ6VcduNkq8Q3g/zRb9lR7PjnDgLr1cB/nq1bLvsmIqqsHp78tKJZuHAhFi5cKHUYVIFwCNJcyqEHrEjrOtUxtXsTAMCn28/h7O3y2zcRERGZHhMwcynHBAwARjzvgy5NXJFXoMXYdVHIyC0o1/0TUdXG67PI0kn9O84EzFzKOQGTyWSY39cXno5qxCZlYvqWM5L/MhFR5Vc0wShnUydLl5WVBaD4HQfMhTVg5vIU84A9SnW7wnqw749h2+nbCKxfAwPb1Sn34xBR1WFlZQVbW1vcvXsX1tbWkMv5dzpZFiEEsrKykJiYCCcnJ6PualCemICZSzn3gBVpU9cZU7o1xpzQC/h421n4eTmhqYdp5iwhIssnk8ng4eGB2NhYXL/OSZ/Jcjk5OcHd3V2y4zMBMxcTJWAA8NYL9RAeew/7L97FmHWR+GNsB9ip+NESUdkolUo0bNiQw5BksaytrSXr+SrCb2lzyc8ENPmAovzHmuVyGb7q54eXF/2Nq3cz8eHWaHzVz5fzgxFRmcnl8ko5Ez5RZcHBfXMyYS+Ys50Siwf6QyGX4beoW9h88qbJjkVERERPhwmYOagKa7Ky75v0MO18nDGpayMAwIxt0biUkG7S4xEREVHZMAEzBxsn3aOJEzAAGN2xPp5v6IKcfC3eXhuJrDzOD0ZERFTRMAEzB7WT7tEMCZhcLsPC/n5wtVfhSmIGZvx+1uTHJCIiIuMwATMHtaPu0QwJGAC4VFNh0QB/yGXALxE38UsE68GIiIgqEiZg5mDGHrAigfVrYGKQrh7so63RuMx6MCIiogqDCZg5mLEG7EFjOjfAcw1qIDtfgzHrIpGdpzHr8YmIiKhkTMDMQYIeMABQyGX4ur8/XKqpcCkhAx9vYz0YERFRRcAEzBwk6gEDgJr2Kiwa4AeZDNh48ga2Rt0yewxERERkiAmYOeh7wFIkOfxzDVww7sWGAIDpv51BzN0MSeIgIiIiHSZg5mBTXfcoQQ9YkQldGuLZes7IytNgzNpI5OSzHoyIiEgqTMDMQaIasAcp5DIsHuAPl2pKXIhPxyd/nJMsFiIioqqOCZg52Jh3HrBHcXVQY2F/XT3Y+uNx2Hb6tqTxEBERVVVMwMyhqAcsJwXQaqWMBM83rIkxnRoAAKb9+g9ikzIljYeIiKgqYgJmDkUz4QstkJsmbSwAJgY1RDtvZ2SyHoyIiEgSTMDMwVoNWNvqnks8DAkAVgo5Fg/0h7OdEufupOGLHeelDomIiKhKYQJmLhXgSsgHuTuq8VU/XwDAz8euY+eZOxJHREREVHUwATOXCpaAAUCnxq4Y3ak+AGDqL//g+j3WgxEREZkDEzBzKUrAclIkDeNhk7s2Qtu61ZGeW4Ax6yKRW8B6MCIiIlNjAmYuEt6O6HGK6sGcbK0RfSsNs3ZekDokIiIii8cEzFwqwGSsj+LpZKOvB1t15BpCo1kPRkREZEpMwMxFXwOWImkYj/JiEzeMeqEeAODdX/7BjeQsiSMiIiKyXEzAzKUCFuE/7N3gxvCv44T0nAKMXReJvAJpJ40lIiKyVEzAzKUSJGDWCjm+GegPRxtrnL6ZijmhrAcjIiIyBSZg5lIJEjAAqF3dFvP76urBfjwUiz/PxkscERERkeVhAmYulSQBA4CuzdwwvIMPAGDK5tO4eZ/1YEREROVJ8gRs6dKl8Pb2hlqtRkBAAI4fP/7Y9ps3b0aTJk2gVqvRsmVL7Ny50+B9IQRmzJgBDw8P2NjYICgoCJcvXzZo88UXX6B9+/awtbWFk5NTiceJi4tDjx49YGtrC1dXV7z77rsoKCgo+4lW8CL8h03t3gS+Xk5IyynAuPVRyNewHoyIiKi8SJqAbdy4EZMmTcLMmTMRGRkJX19fBAcHIzExscT2R44cwcCBAzF8+HBERUUhJCQEISEhiI6O1reZO3cuFi9ejGXLliE8PBx2dnYIDg5GTk6Ovk1eXh769u2L0aNHl3gcjUaDHj16IC8vD0eOHMHq1auxatUqzJgxo+wn++A8YEKUfT9morSSY8lAf9irrRAVl4J5uy9KHRIREZHlEBJq166dGDNmjP61RqMRnp6eYtasWSW279evn+jRo4fBuoCAAPHWW28JIYTQarXC3d1dzJs3T/9+SkqKUKlUYv369cX2t3LlSuHo6Fhs/c6dO4VcLhfx8fH6dd99951wcHAQubm5pT6/1NRUAUCkpqYKkZMmxEwH3ZKbWep9SG3XmTui7tTtou7U7SLsfPyTNyAiIqrkDL6/TUSyHrC8vDxEREQgKChIv04ulyMoKAhHjx4tcZujR48atAeA4OBgffvY2FjEx8cbtHF0dERAQMAj9/mo47Rs2RJubm4Gx0lLS8PZs2cfuV1ubi7S0tIMFj1lNUBupXteCerAinRv4Y432nsDACZtOo3bKdnSBkRERGQBJEvAkpKSoNFoDJIcAHBzc0N8fMlX3sXHxz+2fdGjMfs05jgPHqMks2bNgqOjo37x8vL6902ZrFIV4j9o2stN0LKWI1Ky8lkPRkREVA4kL8K3JNOmTUNqaqp+uXHjhmGDSpqAqawUWDqoNexVVoi4fh8L/rwkdUhERESVmmQJmIuLCxQKBRISEgzWJyQkwN3dvcRt3N3dH9u+6NGYfRpznAePURKVSgUHBweDxUAlTcAAoE4NW8x5vRUAYNmBGOy7WPKFEkRERPRkkiVgSqUSbdq0QVhYmH6dVqtFWFgYAgMDS9wmMDDQoD0A7NmzR9/ex8cH7u7uBm3S0tIQHh7+yH0+6jhnzpwxuBpzz549cHBwQLNmzUq9n2IqcQIGAC+39MCQZ+sCACZvOo341JwnbEFEREQlkXQIctKkSVi+fDlWr16N8+fPY/To0cjMzMSbb74JABg6dCimTZumbz9hwgSEhoZiwYIFuHDhAj7++GOcPHkSY8eOBQDIZDJMnDgRn3/+ObZt24YzZ85g6NCh8PT0REhIiH4/cXFxOHXqFOLi4qDRaHDq1CmcOnUKGRkZAIBu3bqhWbNmGDJkCE6fPo3du3fjww8/xJgxY6BSqcp+wpU8AQOAD3o0RTMPByRn5mH8+igUsB6MiIjIeCa7vrKUvvnmG1GnTh2hVCpFu3btxLFjx/TvdezYUQwbNsyg/aZNm0SjRo2EUqkUzZs3Fzt27DB4X6vVio8++ki4ubkJlUolunTpIi5evGjQZtiwYQJAsWXfvn36NteuXRMvvfSSsLGxES4uLmLy5MkiPz/fqHMrdhnrrvd101D8+ZFR+6lort7NEM0+2iXqTt0u5oVekDocIiKicmWOaShkQlSCWUErqbS0NDg6OiI1NVVXD3ZwHrD3c8D/P0CvpVKH91S2nb6N8eujIJMBq99shxca1ZQ6JCIionJR7PvbBHgVpDnZuugeM+9JG0c5eNXXE4MC6kAI4J2Np5CQxnowIiKi0mICZk52hb1EmXeljaOczHilGZq42+NeZh4mbIiCRsvOVCIiotJgAmZOdoU9YFlJ0sZRTtTWCiwd3Bq2SgWOXU3GorDLT96IiIiImICZlQUNQRapX7MavuzdEgDwzd7LOHzFMpJLIiIiU2ICZk52NXSPeelAvuXUTIX410L/tl4QApiw4RQS0y3n3IiIiEyBCZg5qZ3+vSG3hQxDFvn41eZo7GaPpIxcvLPxFOvBiIiIHoMJmDnJZA8MQ1pWAmajVGDpYH/YWCtw+Mo9LNl7ReqQiIiIKiwmYOZmYYX4D2rgao/PQ1oAABaFXcLRGMupdSMiIipPTMDMzbawDsyCCvEf1KdNbbzepja0ApiwIQpJGblSh0RERFThMAEzNwubC6wkn/Zqjoau1ZCYrqsH07IejIiIyAATMHOz4CHIIrZKKywd3Bpqazn+vpyE7w7ESB0SERFRhcIEzNwstAj/YY3c7PFpL1092II/L+J4bLLEEREREVUcTMDMrWgusCzLrAF7UN82tfGafy1oBTBufSTusR6MiIgIABMw86sCNWBFZDIZPgtpgfo17ZCQlotJm06zHoyIiAhMwMyvigxBFrFT6erBVFZyHLh0F98fvCp1SERERJJjAmZu+iJ8yx+CLNLE3QEfv9ocADD/z4s4eY31YEREVLUxATO3onnActOAgqpTEzXgGS+86usJjVZg3Poo3M/MkzokIiIiyTABM7cH7wdZRYYhAV092JevtYSPix3upOZg8mbWgxERUdXFBMzc5PJ/e8EseC6wklRTWWHJIH8oreTYeyER/3eI9WBERFQ1MQGTQhUrxH9Qc09HzHilGQBgbuhFRMbdlzgiIiIi82MCJoUqNBdYSQYH1EGPVh4o0AqMWxeFlCzWgxERUdViZUzjlJQU/Pbbb/j7779x/fp1ZGVloWbNmvD390dwcDDat29vqjgtSxWaC6wkMpkMs19riehbqbh+LwtTNv+D5UPbQCaTSR0aERGRWZSqB+z27dsYMWIEPDw88PnnnyM7Oxt+fn7o0qULateujX379qFr165o1qwZNm7caOqYK78qPARZxF5tjaWDWkOpkOOv8wlYcfia1CERERGZTal6wPz9/TFs2DBERESgWbNmJbbJzs7G1q1b8fXXX+PGjRuYMmVKuQZqUarADblLo0UtR3zQoylmbjuL2bvOo03d6vDzcpI6LCIiIpMrVQJ27tw51KhR47FtbGxsMHDgQAwcOBD37lXN2qZSK7oKMpM/p6GBdXHs6j3sio7H2HWR2DH+eTjaWEsdFhERkUmVagjyScnX07avcqp4DdiDZDIZ5rzeCl7ONrh5Pxvv/XIaQnB+MCIismyl6gHbtm1bqXf46quvljmYKoNDkAYcCuvB+nx3BLvPJmD1kWt44zkfqcMiIiIymVIlYCEhIaXamUwmg0ajeZp4qgZ9ET6HIIu0qu2EaS81xafbz+HLnRfQpq4zWtZ2lDosIiIikyjVEKRWqy3VwuSrlIp6wHJTgQLOgVXkzee80a2ZG/I0WoxZF4m0nHypQyIiIjKJUk/EOnToUPz666/IzMw0ZTxVg9oJkCl0zzkMqSeTyTDvdV/UcrJBXHIWpv16hvVgRERkkUqdgDVo0ABffvklXFxc8NJLL+G7777DrVu3TBmb5XrwfpBVeC6wkjjaWmPJIH9YyWXYceYO1oTHSR0SERFRuSt1AjZjxgxERETg8uXL6NmzJ7Zu3Yr69eujTZs2+PTTT3Hq1CkThmmBWIj/SP51quP9l5oAAD774xyib6VKHBEREVH5MvpekLVr18bbb7+N3bt34+7du5g6dSouXryIF198EXXr1sXYsWNx9uxZU8RqWTgX2GMN7+CDoKauyNNoMXZdJNJZD0ZERBbkqW7GbW9vj379+mHt2rW4e/cuVqxYAYVCgaNHj5ZXfJaLc4E9lkwmw/y+vvB0VOPavSxM/y2a9WBERGQxjLoZ9+MoFAp06dIFXbp0Ka9dWjYOQT6Rk60S3wzyR7/vj+GP07cRWK8GBgXUkTosIiKip1bqe0HKZLJS7TAyMvKpAqoyeEPuUmlT1xnvBjfG7F0X8MkfZ+FfxwlNPRykDouIiOiplOtErGQEu8IasCzWgD3JqOfrIfzqPey7eBdj1kZi27gOqKYqt85bIiIisyvVt9jMmTNNHUfVwxqwUpPLZVjQzw8vL/obV5My8eFvZ7Cwv1+pe2WJiIgqmjIX4UdERGDNmjVYs2YNoqKiyjOmqoFDkEZxttPVgynkMmw9dRubTt6QOiQiIqIyM3ocJzExEQMGDMD+/fvh5OQEAEhJSUHnzp2xYcMG1KxZs7xjtEwswjfaM97OmNS1EebtvoiZ287Cz6s6GrvbSx0WERGR0YzuARs3bhzS09Nx9uxZJCcnIzk5GdHR0UhLS8P48eNNEaNlKuoBy+H9II0xumN9vNCoJnLydfeLzMorkDokIiIioxmdgIWGhuLbb79F06ZN9euaNWuGpUuXYteuXeUanEWzqQ7ICn/8LMQvNblchq/6+cLVXoUriRn4aCsn/SUiosrH6ARMq9XC2tq62Hpra2totdpyCapKePB+kByGNIpLNRUWD/SHXAb8GnkTm1kPRkRElYzRCdiLL76ICRMm4Pbt2/p1t27dwjvvvMNJWI3FQvwye7ZeDbwT1AgAMOP3s7ickC5xRERERKVndAK2ZMkSpKWlwdvbG/Xr10f9+vXh4+ODtLQ0fPPNN6aI0XLpC/E5BFkWb3dugA4NXJCdr8GYdZHIztNIHRIREVGpGH0VpJeXFyIjI/HXX3/hwoULAICmTZsiKCio3IOzeEUJGOcCKxOFXIaF/f3w8uK/cSkhAzO3RWPu675Sh0VERPREZZpOXCaToWvXrujatWt5x1O1cAjyqdW0V2FRfz8M/jEcm07eRGD9GujtX1vqsIiIiB6rTAnYiRMnsG/fPiQmJhYrvP/qq6/KJbAqgXOBlYv2DVww/sWGWBR2GR/8Fo2WtZzQwLWa1GERERE9ktEJ2JdffokPP/wQjRs3hpubm8HtYHhrGCMVXQXJHrCnNr5LQxyPTcbRq/cwdl0kto55DmprhdRhERERlcjoIvxFixZhxYoVOH/+PPbv3499+/bpl7179xodwNKlS+Ht7Q21Wo2AgAAcP378se03b96MJk2aQK1Wo2XLlti5c6fB+0IIzJgxAx4eHrCxsUFQUBAuX75s0CY5ORmDBw+Gg4MDnJycMHz4cGRkZBi02b17N5599lnY29ujZs2a6NOnD65du2b0+T2W/n6QTMCelkIuw6IBfnCppsSF+HR88gfnByMioorL6ARMLpfjueeeK5eDb9y4EZMmTcLMmTMRGRkJX19fBAcHIzExscT2R44cwcCBAzF8+HBERUUhJCQEISEhiI6O1reZO3cuFi9ejGXLliE8PBx2dnYIDg5GTk6Ovs3gwYNx9uxZ7NmzB9u3b8fBgwcxatQo/fuxsbHo1asXXnzxRZw6dQq7d+9GUlISXnvttXI5bz0OQZYrVwc1vu7vD5kMWH/8Bn4/dUvqkIiIiEomjDRnzhwxYcIEYzcrUbt27cSYMWP0rzUajfD09BSzZs0qsX2/fv1Ejx49DNYFBASIt956SwghhFarFe7u7mLevHn691NSUoRKpRLr168XQghx7tw5AUCcOHFC32bXrl1CJpOJW7duCSGE2Lx5s7CyshIajUbfZtu2bUImk4m8vLxHnk9OTo5ITU3VLzdu3BAARGpqaskbJJwXYqaDELPqPHKfZLz5uy+IulO3i2Yf7RIxielSh0NERJVMamrq47+/y4HRPWBTpkzBxYsXUb9+ffTs2ROvvfaawVJaeXl5iIiIMJi+Qi6XIygoCEePHi1xm6NHjxab7iI4OFjfPjY2FvHx8QZtHB0dERAQoG9z9OhRODk5oW3btvo2QUFBkMvlCA8PBwC0adMGcrkcK1euhEajQWpqKn7++WcEBQWVeBeAIrNmzYKjo6N+8fLyevwPoagHLCcF0OQ/vi2V2oQuDdHOxxmZeRqMWReFnHzOD0ZERBWL0QnY+PHjsW/fPjRq1Ag1atQwSDgcHR1LvZ+kpCRoNBq4ubkZrHdzc0N8fHyJ28THxz+2fdHjk9q4uroavG9lZQVnZ2d9Gx8fH/z555+YPn06VCoVnJyccPPmTWzatOmx5zRt2jSkpqbqlxs3nnCLHN4P0iSsFHIsHuAPZzslzt9Jw+c7zkkdEhERkQGjr4JcvXo1fv31V/To0cMU8VQI8fHxGDlyJIYNG4aBAwciPT0dM2bMwOuvv449e/Y88mpPlUoFlUpV+gPJFYCNs64GLDMJsHcvpzMgd0c1vurnizdWnsCaY3F4tl4NvNLKU+qwiIiIAJShB8zZ2Rn169d/6gO7uLhAoVAgISHBYH1CQgLc3UtORNzd3R/bvujxSW0eLvIvKChAcnKyvs3SpUvh6OiIuXPnwt/fHy+88ALWrFmDsLAw/TBluWEhvsl0auyKtzvpflff//UMriVlShwRERGRjtEJ2Mcff4yZM2ciKyvrqQ6sVCrRpk0bhIWF6ddptVqEhYUhMDCwxG0CAwMN2gPAnj179O19fHzg7u5u0CYtLQ3h4eH6NoGBgUhJSUFERIS+zd69e6HVahEQEAAAyMrKglxu+KNRKBT6GMsVZ8M3qUldG+EZ7+rIyC3A2PWRyC1gPRgREVUAxlbt+/n5CXt7e1GtWjXRokUL4e/vb7AYY8OGDUKlUolVq1aJc+fOiVGjRgknJycRHx8vhBBiyJAh4v3339e3P3z4sLCyshLz588X58+fFzNnzhTW1tbizJkz+jazZ88WTk5O4vfffxf//POP6NWrl/Dx8RHZ2dn6Nt27dxf+/v4iPDxcHDp0SDRs2FAMHDhQ/35YWJiQyWTik08+EZcuXRIREREiODhY1K1bV2RlZZX6/Ep1FcXGoborIY9+V+r9knFup2QJv092i7pTt4sZW888eQMiIqrSzHEVpNE1YCEhIeWW/PXv3x93797FjBkzEB8fDz8/P4SGhuqL6OPi4gx6otq3b49169bhww8/xPTp09GwYUNs3boVLVq00Ld57733kJmZiVGjRiElJQUdOnRAaGgo1Gq1vs3atWsxduxYdOnSBXK5HH369MHixYv177/44otYt24d5s6di7lz58LW1haBgYEIDQ2FjY1NuZ0/AA5BmoGHow2+6ueHN1edwOqj1/FsvRp4qaWH1GEREVEVJhNCCKmDsFRpaWlwdHREamoqHBwcSm60bxZwYDbQ5k2g59dmja+qmbXzPL4/eBX2aivsGPc86tSwlTokIiKqgEr1/f2USlUDxhzNhNgDZjZTghujdR0npOcUYNz6SOQVlHM9HxERUSmVKgFr3rw5NmzYgLy8vMe2u3z5MkaPHo3Zs2eXS3BVgh2L8M3FWiHHN4Naw9HGGqdvpmL2rgtSh0RERFVUqWrAvvnmG0ydOhVvv/02unbtirZt28LT0xNqtRr379/HuXPncOjQIZw9exZjx47F6NGjTR235eBVkGZVy8kGC/r6YsRPJ7HicCwC6jkjuDnnXyMiIvMqVQLWpUsXnDx5EocOHcLGjRuxdu1aXL9+HdnZ2XBxcYG/vz+GDh2KwYMHo3r16qaO2bJwCNLsgpq5YUQHH/zfoVi8u/k0mnk4wMuZ9WBERGQ+Rl0F2aFDB3To0MFUsVRNRT1g2fcBTQGgMPrCVCqD97o3wYnr93H6RgrGrY/CprcCobQyelo8IiKiMuE3jtRsnQEU3tqI94M0G6WVHEsG+sNBbYVTN1IwbzfrwYiIyHyYgElNrihMwsBhSDPzcrbFvL6+AIDlf8ci7HzCE7YgIiIqH0zAKgIW4ksmuLk73mjvDQCYvPk0bqVkSxsQERFVCUzAKgIW4ktq2stN0Kq2I1Ky8jFuXSTyNZwfjIiITIsJWEXAucAkpbJSYMnA1rBXWSEyLgXz/7wodUhERGThynTJnVarxZUrV5CYmAit1rC34IUXXiiXwKoUDkFKrk4NW8x9vRVGr43E9weu4lmfGujcxFXqsIiIyEIZnYAdO3YMgwYNwvXr14vdokgmk0Gj0ZRbcFUGhyArhJdaemBoYF38dPQ6Jm06hZ0TnoeHYznffJ2IiAhlGIL83//+h7Zt2yI6OhrJycm4f/++fklOTjZFjJaPPWAVxvSXm6K5pwPuZ+Vj/PooFLAejIiITMDoBOzy5cv48ssv0bRpUzg5OcHR0dFgoTJgDViFobZWYOmg1qimssKJa/ex8K9LUodEREQWyOgELCAgAFeuXDFFLFWXXU3dYwbnoaoIvF3sMOu1lgCApfticODSXYkjIiIiS2N0Ddi4ceMwefJkxMfHo2XLlrC2tjZ4v1WrVuUWXJXh4Kl7TL8DCAHIZNLGQ+jp64ljV+9hbXgcJm3U1YO5OailDouIiCyETDxcSf8EcnnxTjOZTAYhBIvwH5KWlgZHR0ekpqbCwcHh0Q3zs4Ev3HXPp14DbHhD84ogJ1+D3t8ewfk7aQjwccbaEQGwUnDmFiIiS1fq7++nYHQPWGxsrCniqNqsbQAbZyA7GUi7zQSsgtDVg/mj5zeHEB6bjMVhlzGpW2OpwyIiIgtgdAJWt25dU8RBDrX+TcDcmksdDRWqV7MavnytJSZsOIVv9l1BO58a6NDQReqwiIiokivTeEpMTAzGjRuHoKAgBAUFYfz48YiJiSnv2KqWojqwtFvSxkHF9PKrhQHPeEEIYOLGU0hMz5E6JCIiquSMTsB2796NZs2a4fjx42jVqhVatWqF8PBwNG/eHHv27DFFjFWDPgG7LW0cVKKPX22OJu72SMrIxcQNp6DRGlU6SUREZMDoBOz999/HO++8g/DwcHz11Vf46quvEB4ejokTJ2Lq1KmmiLFqcKyle2QPWIWktlZgyaDWsFUqcCTmHr7Ze1nqkIiIqBIzOgE7f/48hg8fXmz9f//7X5w7d65cgqqSHAoTsFQmYBVVA9dq+DykBQBgUdhlHInhxLlERFQ2RidgNWvWxKlTp4qtP3XqFFxdefPiMuMQZKXwWuva6NumNoQAJmw4hbvpuVKHRERElZDRV0GOHDkSo0aNwtWrV9G+fXsAwOHDhzFnzhxMmjSp3AOsMop6wJiAVXif9GqOUzdScDkxA5M2ncLqN9tBLufkuUREVHpGT8QqhMDXX3+NBQsW4PZtXbLg6emJd999F+PHj4eMs7jrGTWRW24GMKswCXv/BqA2zcRvVD4uJaTj1SWHkJOvxZRujTD2xYZSh0REROXEHBOxGp2APSg9PR0AYG9vX24BWRKjP8DZdYCcVODtcMC1iekDpKey+eQNvPvLP5DLgPUjn0VAvRpSh0REROXAHAnYU91Xxd7enslXeXLglZCVSd+2XnitdS1oBTB+QxTuZbAejIiISqdUNWCtW7dGWFgYqlevDn9//8cOM0ZGRpZbcFWOgyeQeI51YJXIZ71a4PSNFMTczcQ7m05j1RvPsB6MiIieqFQJWK9evaBSqfTPWedlIizEr3TsVFZYOrg1ei05jIOX7mLZwRi83amB1GEREVEF91Q1YPR4Ro8h758D7P8SaD0MeHWx6QOkcrPheBze33IGCrkMG0Y9i2e8naUOiYiIyqhC1oDVq1cP9+7dK7Y+JSUF9erVK5egqizeD7LS6v+MF3r5eUKjFRi/Pgr3M/OkDomIiCowoxOwa9euQaPRFFufm5uLmzdvlktQVRYnY620ZDIZvujdEvVc7HAnNQeTN5+GlveLJCKiRyj1RKzbtm3TP9+9ezccHR31rzUaDcLCwuDj41O+0VU1vAqyUqumssKSQa0R8u1h7L2QiOV/X8VbHetLHRYREVVApU7AQkJCAOj+0h82bJjBe9bW1vD29saCBQvKNbgqp6gHLCdVNzGrqpq08ZDRmnk6YGbPZvjgt2jM3X0Rbb2d0aZudanDIiKiCqbUQ5BarRZarRZ16tRBYmKi/rVWq0Vubi4uXryIV155xZSxWj61A6AsnFct/Y60sVCZDWpXB6+08tDXg6VksR6MiIgMGV0DFhsbCxcXF1PEQgAL8S2ATCbDrNdawruGLW6lZGPK5n/Ai42JiOhBRt+MGwAyMzNx4MABxMXFIS/P8K/78ePHl0tgVZZjLSDpIgvxKzl7tTWWDGqN1749gr/OJ+DHQ7EY8TyvEiYiIh2jE7CoqCi8/PLLyMrKQmZmJpydnZGUlARbW1u4uroyAXta7AGzGC1qOeLDV5pixu9nMSf0Atp6O8PPy0nqsIiIqAIwegjynXfeQc+ePXH//n3Y2Njg2LFjuH79Otq0aYP58+ebIsaqpehKyFQmYJZgyLN18XJLd+RrBMasjURqVr7UIRERUQVgdAJ26tQpTJ48GXK5HAqFArm5ufDy8sLcuXMxffp0U8RYtXAuMIsik8kwu08r1HHW1YO9+8tp1oMREZHxCZi1tTXkct1mrq6uiIuLAwA4Ojrixo0b5RtdVcT7QVocB7U1lgzyh7VChj/PJWDVkWtSh0RERBIzOgHz9/fHiRMnAAAdO3bEjBkzsHbtWkycOBEtWrQo9wCrHNaAWaRWtZ0w/eWmAIAvd57HPzdTpA2IiIgkZXQC9uWXX8LDwwMA8MUXX6B69eoYPXo07t69ix9++KHcA6xyihKw7GQgP1vaWKhcvdHeG8HN3ZCvERi7LgppOawHIyKqqoxKwIQQcHV1RWBgIADdEGRoaCjS0tIQEREBX19fkwRZpaidAGtb3XMOQ1oUmUyGuX18Ubu6DeKSs/D+r5wfjIioqjI6AWvQoAFrvUxJJmMdmAVztNXND2atkGHnmXisOXZd6pCIiEgCRiVgcrkcDRs2xL1790wVDwG8EtLC+Xk5YWr3JgCAz7afR/StVIkjIiIiczO6Bmz27Nl49913ER0dbYp4CHigB+ymtHGQyQzv4IOgpm7I02gxZl0k0lkPRkRUpRidgA0dOhTHjx+Hr68vbGxs4OzsbLAYa+nSpfD29oZarUZAQACOHz/+2PabN29GkyZNoFar0bJlS+zcudPgfSEEZsyYAQ8PD9jY2CAoKAiXL182aJOcnIzBgwfDwcEBTk5OGD58ODIyMortZ/78+WjUqBFUKhVq1aqFL774wujzKxP2gFk8mUyG+X1boZaTDa7fy8K0LWdYD0ZEVIUYfSuihQsXQiaTlcvBN27ciEmTJmHZsmUICAjA119/jeDgYFy8eBGurq7F2h85cgQDBw7ErFmz8Morr2DdunUICQlBZGSkfgqMuXPnYvHixVi9ejV8fHzw0UcfITg4GOfOnYNarQYADB48GHfu3MGePXuQn5+PN998E6NGjcK6dev0x5owYQL+/PNPzJ8/Hy1btkRycjKSk5PL5byfiAlYleBkq8Tigf7o//1RbP/nDgLr18DggLpSh0VEROYgJNSuXTsxZswY/WuNRiM8PT3FrFmzSmzfr18/0aNHD4N1AQEB4q233hJCCKHVaoW7u7uYN2+e/v2UlBShUqnE+vXrhRBCnDt3TgAQJ06c0LfZtWuXkMlk4tatW/o2VlZW4sKFC091fqmpqQKASE1NNW7DC7uEmOkgxLLnn+r4VDks239F1J26XTT8YKc4e8vI3xUiIip3Zf7+NoLRQ5AKhQKJiYnF1t+7dw8KhaLU+8nLy0NERASCgoL06+RyOYKCgnD06NEStzl69KhBewAIDg7Wt4+NjUV8fLxBG0dHRwQEBOjbHD16FE5OTmjbtq2+TVBQEORyOcLDwwEAf/zxB+rVq4ft27fDx8cH3t7eGDFixBN7wHJzc5GWlmawlAl7wKqUkc/Xw4tNXJFXoMXYdZHIyC2QOiQiIjIxoxMw8Yg6ldzcXCiVylLvJykpCRqNBm5ubgbr3dzcEB8fX+I28fHxj21f9PikNg8Pb1pZWcHZ2Vnf5urVq7h+/To2b96Mn376CatWrUJERARef/31x57TrFmz4OjoqF+8vLwe2/6RiorwM+8CBbll2wdVGnK5DAv6+sLDUY2rSZn44DfWgxERWbpS14AtXrwYgK54+P/+7/9QrVo1/XsajQYHDx5EkyZNyj9CCWi1WuTm5uKnn35Co0aNAAA//vgj2rRpg4sXL6Jx48Ylbjdt2jRMmjRJ/zotLa1sSZitM2ClBgpygPQ7QHXvspwGVSLV7ZT4ZqA/+v9wDL+fuo3AejUwoF0dqcMiIiITKXUCtnDhQgC6HrBly5YZDDcqlUp4e3tj2bJlpT6wi4sLFAoFEhISDNYnJCTA3d29xG3c3d0f277oMSEhQX+7pKLXfn5++jYPD6EWFBQgOTlZv72HhwesrKz0yRcANG2qu49fXFzcIxMwlUoFlUr12PMuFZlMNwyZfFU3DMkErEpo6+2Myd0aYW7oRczcdhZ+dZzQxN1B6rCIiMgESj0EGRsbi9jYWHTs2BGnT5/Wv46NjcXFixexe/duBAQElPrASqUSbdq0QVhYmH6dVqtFWFiY/lZHDwsMDDRoDwB79uzRt/fx8YG7u7tBm7S0NISHh+vbBAYGIiUlBREREfo2e/fuhVar1cf/3HPPoaCgADExMfo2ly5dAgDUrWumq9Q4G36V9L8X6qNjo5rILdBizNpIZLIejIjIMpmsvL8UNmzYIFQqlVi1apU4d+6cGDVqlHBychLx8fFCCCGGDBki3n//fX37w4cPCysrKzF//nxx/vx5MXPmTGFtbS3OnDmjbzN79mzh5OQkfv/9d/HPP/+IXr16CR8fH5Gdna1v0717d+Hv7y/Cw8PFoUOHRMOGDcXAgQP172s0GtG6dWvxwgsviMjISHHy5EkREBAgunbtatT5PdVVFL+O1F0J+fdC47elSi0pPUe0+2KPqDt1u3hnY5TU4RARVTnmuArS6HnANBoNVq1ahbCwMCQmJkKr1Rq8v3fv3lLvq3///rh79y5mzJiB+Ph4+Pn5ITQ0VF9EHxcXB7n830669u3bY926dfjwww8xffp0NGzYEFu3btXPAQYA7733HjIzMzFq1CikpKSgQ4cOCA0N1c8BBgBr167F2LFj0aVLF8jlcvTp00df4wborsb8448/MG7cOLzwwguws7PDSy+9hAULFhj74yo7XglZZdWopsLiAf4YuPwYtkTeQmC9GujbtowXdBARUYUkE8K4y63Gjh2LVatWoUePHvDw8Cg2KWtRrRjphj8dHR2RmpoKBwcja3mOLwd2TgGavAIMWGuaAKlCW7L3Mub/eQlqazm2je2ARm72UodERFQlPNX3dykZ3QO2YcMGbNq0CS+//LIp4qEi7AGr8t7u1ADhscn4+3ISxqyNxO9jn4Ot0uh/skREVAEZPQ+YUqlEgwYNTBELPYgJWJUnl8vwVT8/1LRX4XJiBmb+flbqkIiIqJwYnYBNnjwZixYt4kSRplZ0FWRGAqDJlzYWkkxNexUWDfCDXAZsjriJLZE3pQ6JiIjKgdHjGYcOHcK+ffuwa9cuNG/eHNbW1gbvb9mypdyCq9JsXQCFEtDkAenxgBOLsKuq9vVdML5LQ3z912V8uDUarWo7oYFrtSdvSEREFZbRCZiTkxN69+5tiljoQXI5YO8BpFzXDUMyAavSxr3YEMdjk3Ek5h7GrI3E1jHPwUZZ+nuvEhFRxWJ0ArZy5UpTxEElcahVmIDdBFD6SW7J8ijkMnw9wA8vLzqEiwnp+OSPs5jdp5XUYRERURkZXQMG6G7d89dff+H7779Heno6AOD27dvIyMgo1+CqPBbi0wNc7dVYNMAPMhmw4cQN/H7qltQhERFRGRmdgF2/fh0tW7ZEr169MGbMGNy9excAMGfOHEyZMqXcA6zSmIDRQ55r4IJxnXVXIU/fcgZX7/KPHiKiysjoBGzChAlo27Yt7t+/DxsbG/363r17F7tPIz0l/f0g2dNB/5oQ1AgBPs7IzNNgzLoo5ORrpA6JiIiMZHQC9vfff+PDDz+EUqk0WO/t7Y1bt5golCv2gFEJFHIZFg/0Rw07Jc7fScNn289JHRIRERnJ6ARMq9VCoyn+F/fNmzdhb89bpZQrfQ8YEzAy5Oagxlf9/QAAa8PjsP0f/o4QEVUmRidg3bp1w9dff61/LZPJkJGRgZkzZ/L2ROXNsTABS48HNAXSxkIVTsdGNTGmc30AwPu/nsG1pEyJIyIiotIyOgFbsGABDh8+jGbNmiEnJweDBg3SDz/OmTPHFDFWXXY1AbkVIDRAZqLU0VAF9E5QI7TzdkZGbgHGrItkPRgRUSVhdAJWu3ZtnD59Gh988AHeeecd+Pv7Y/bs2YiKioKrq6spYqy65ArdZKwAhyGpRFYKORYN9EN1W2ucvZ2GL3eelzokIiIqBZngTR1NJi0tDY6OjkhNTYWDg0PZdvJjN+BGONB3FdCcdyCgku27mIg3V54AAHw7uDVebukhcURERJVXuXx/P4HRPWCzZs3CihUriq1fsWIFhyBNobq37jH5qqRhUMXWubEr3upYDwAw9Zd/EHcvS+KIiIjocYxOwL7//ns0adKk2PrmzZtj2bJl5RIUPaBGQ91j0hVp46AKb0q3xmhTtzrScwswdn0kcgtYD0ZEVFEZnYDFx8fDw6P48EbNmjVx586dcgmKHuCim/Uc9y5LGwdVeNYKORYP9IeTrTX+uZmK2bsuSB0SERE9gtEJmJeXFw4fPlxs/eHDh+Hp6VkuQdEDahQlYOwBoyer5WSDBX19AQArD19DaHS8xBEREVFJjE7ARo4ciYkTJ2LlypW4fv06rl+/jhUrVuCdd97ByJEjTRFj1easm+cJ2feBzHvSxkKVQpembhj5vA8A4L1fTuNGMuvBiIgqGitjN3j33Xdx7949vP3228jLywMAqNVqTJ06FdOmTSv3AKs8pS3gUBtIu6nrBbOrIXVEVAm8170JTly7j1M3UjB2fRQ2vxUIpZXRf28REZGJGP0/skwmw5w5c3D37l0cO3YMp0+fRnJyMmbMmGGK+AhgHRgZzVohxzcD/eGgtsLpGymYG8p6MCKiiqTMfxJXq1YNzzzzDFq0aAGVSlWeMdHD9FdCMgGj0vNytsW8wnqw/zsUi7/OJUgcERERFTE6AcvMzMRHH32E9u3bo0GDBqhXr57BQibAQnwqo+Dm7njzOW8AwOTNp3ErJVvagIiICEAZasBGjBiBAwcOYMiQIfDw8IBMJjNFXPQgFyZgVHbTXmqKyOv3cfpmKsaui8SmtwJhrWA9GBGRlIxOwHbt2oUdO3bgueeeM0U8VJKiHrDkq4BWo7tHJFEpKa3kWDKoNV5e/Dei4lIwf/dFTHu5qdRhERFVaUb/GVy9enU4OzubIhZ6FEcvQKECNHlASpzU0VAl5OVsi3mvtwIAfH/wKvZeYD0YEZGUjE7APvvsM8yYMQNZWZxbyGzkCqBG4XxgHIakMurewgPDAusCACZvOo07qawHIyKSitFDkAsWLEBMTAzc3Nzg7e0Na2trg/cjIyPLLTh6QI36QOI5XQLWsKvU0VAlNb1HU0TE3Uf0rTSMXx+F9SOfhRXrwYiIzM7oBCwkJMQEYdATcSoKKgcqKwWWDGyNV745hBPX7uOrPZfwXvcmUodFRFTlGJ2AzZw50xRx0JO4FCZgnIyVnpK3ix1m92mJseui8O3+GLTzcUanxq5Sh0VEVKWUeewhIiICa9aswZo1axAVFVWeMVFJ9HOBxUgbB1mEV1p54j/P1gEATNp0GvGpORJHRERUtRjdA5aYmIgBAwZg//79cHJyAgCkpKSgc+fO2LBhA2rWrFneMRLwbwKWdgvIywSUdtLGQ5Xehz2aIfJ6Cs7dScP4DVFYNyKA9WBERGZi9P+248aNQ3p6Os6ePYvk5GQkJycjOjoaaWlpGD9+vCliJACwdQZsCqf/YC8YlQO1tQJLB7eGnVKB47HJWBTG4W0iInMxOgELDQ3Ft99+i6ZN/53IsVmzZli6dCl27dpVrsHRQ1gHRuXMx8UOX77WEgCwZN8VHLqcJHFERERVg9EJmFarLTb1BABYW1tDq9WWS1D0CPorITkXGJWfXn61MLCdF4QAJm6MQmIa68GIiEzN6ATsxRdfxIQJE3D79m39ulu3buGdd95Bly5dyjU4eggnYyUTmdmzOZq42yMpIw8TNpyCRiukDomIyKIZnYAtWbIEaWlp8Pb2Rv369VG/fn34+PggLS0N33zzjSlipCIcgiQTKaoHs1UqcPTqPSxmPRgRkUkZfRWkl5cXIiMj8ddff+HChQsAgKZNmyIoKKjcg6OHFF0JmXQFEAKQyaSNhyxK/ZrV8EXvFnhn42ks3nsZAT7OaN/AReqwiIgskkwIwbEGE0lLS4OjoyNSU1Ph4ODw9DssyAW+cAeEFph8CbB3e/p9Ej3kvV9OY9PJm6hpr8LO8c+jpr1K6pCIiMyq3L+/S1DqIci9e/eiWbNmSEtLK/Zeamoqmjdvjr///rtcg6OHWKkAJ93kmRyGJFP55NUWaORWDXfTc/HORtaDERGZQqkTsK+//hojR44sMRN0dHTEW2+9ha+++qpcg6MS6GfEZyE+mYaNUoGlg1rDxlqBQ1eS8O0+/q4REZW3Uidgp0+fRvfu3R/5frdu3RAREVEuQdFj8KbcZAYN3ezxWUgLAMDCvy7h2NV7EkdERGRZSp2AJSQklDj/VxErKyvcvXu3XIKix3BhDxiZx+ttaqNP69rQCmD8+igkZeRKHRIRkcUodQJWq1YtREdHP/L9f/75Bx4eHuUSFD0GhyDJjD4LaY4GrtWQWFgPpmU9GBFRuSh1Avbyyy/jo48+Qk5O8Vmys7OzMXPmTLzyyivlGhyVoGgI8v41QJMvaShk+WyVVlg6qDXU1nL8fTkJ3x3gfUiJiMpDqaehSEhIQOvWraFQKDB27Fg0btwYAHDhwgUsXboUGo0GkZGRcHPj1AhFTHIZq1YLzKoF5GcBYyP+HZIkMqGNJ+Iw9dczUMhl2DDqWTzj7Sx1SEREJlOhpqFwc3PDkSNH0KJFC0ybNg29e/dG7969MX36dLRo0QKHDh1i8mUOcvkDtyRiIT6ZR7+2Xgjx84RGKzBuXRSSM/OkDomIqFIz6lZEdevWxc6dO5GUlITw8HAcO3YMSUlJ2LlzJ3x8fEwVIz2MV0KSmclkMnzeuyXqudghPi0HkzexHoyI6GkYfS9IAKhevTqeeeYZtGvXDtWrV3/qIJYuXQpvb2+o1WoEBATg+PHjj22/efNmNGnSBGq1Gi1btsTOnTsN3hdCYMaMGfDw8ICNjQ2CgoJw+bJhspKcnIzBgwfDwcEBTk5OGD58ODIyMko83pUrV2Bvbw8nJ6enOs9yw0J8kkA1lRWWDm4NlZUc+y7exQ9/X5U6JCKiSqtMCVh52rhxIyZNmoSZM2ciMjISvr6+CA4ORmJiYontjxw5goEDB2L48OGIiopCSEgIQkJCDK7QnDt3LhYvXoxly5YhPDwcdnZ2CA4ONriAYPDgwTh79iz27NmD7du34+DBgxg1alSx4+Xn52PgwIF4/vnny//ky0p/U24mYGReTT0cMLNncwDAvN0XEXE9WeKIiIgqJ8nvBRkQEIBnnnkGS5YsAQBotVp4eXlh3LhxeP/994u179+/PzIzM7F9+3b9umeffRZ+fn5YtmwZhBDw9PTE5MmTMWXKFAC6WyW5ublh1apVGDBgAM6fP49mzZrhxIkTaNu2LQAgNDQUL7/8Mm7evAlPT0/9vqdOnYrbt2+jS5cumDhxIlJSUh55Lrm5ucjN/XeupLS0NHh5eZV/Ed+tCGD5i4CdK/AuhyHJvIQQGL/hFP44fRuejmrsGP88qtsppQ6LiKjcVKgifFPIy8tDREQEgoKC9OvkcjmCgoJw9OjRErc5evSoQXsACA4O1rePjY1FfHy8QRtHR0cEBATo2xw9ehROTk765AsAgoKCIJfLER4erl+3d+9ebN68GUuXLi3V+cyaNQuOjo76xcvLq1TbGa2oBiwzEchJNc0xiB5BJpPhy94t4F3DFrdTc/DuL6ch8d9xRESVjqQJWFJSEjQaTbGrJ93c3BAfH1/iNvHx8Y9tX/T4pDaurq4G71tZWcHZ2Vnf5t69e3jjjTewatWqUme/06ZNQ2pqqn65ceNGqbYzmtoBqFZ4fhyGJAnYq62xZFBrKBVy/HU+ET8eipU6JCKiSkXyGrCKauTIkRg0aBBeeOGFUm+jUqng4OBgsJiMvhCfE2OSNFrUcsRHrzQFAMzedQFRcfcljoiIqPKQNAFzcXGBQqFAQkKCwfqEhAS4u7uXuI27u/tj2xc9PqnNw0X+BQUFSE5O1rfZu3cv5s+fDysrK1hZWWH48OFITU2FlZUVVqxYUcYzLkdFCRinoiAJ/efZuujR0gMFWoGx66KQmsW7MxARlYakCZhSqUSbNm0QFhamX6fVahEWFobAwMAStwkMDDRoDwB79uzRt/fx8YG7u7tBm7S0NISHh+vbBAYGIiUlBREREfo2e/fuhVarRUBAAABdndipU6f0y6effgp7e3ucOnUKvXv3Lp8fwNPQXwnJBIykI5PJMKtPS9RxtsWtlGxMYT0YEVGpWEkdwKRJkzBs2DC0bdsW7dq1w9dff43MzEy8+eabAIChQ4eiVq1amDVrFgBgwoQJ6NixIxYsWIAePXpgw4YNOHnyJH744QcAui+EiRMn4vPPP0fDhg3h4+ODjz76CJ6enggJCQEANG3aFN27d8fIkSOxbNky5OfnY+zYsRgwYID+CsimTZsaxHny5EnI5XK0aNHCTD+ZJ+BcYFRBOKitsXRQa/T57gj2nEvAysPX8N8OnJiZiOhxJE/A+vfvj7t372LGjBmIj4+Hn58fQkND9UX0cXFxkMv/7ahr37491q1bhw8//BDTp09Hw4YNsXXrVoPE6L333kNmZiZGjRqFlJQUdOjQAaGhoVCr1fo2a9euxdixY9GlSxfI5XL06dMHixcvNt+JPy39bPhXAE0BoJD8o6QqrGVtR0x/uQk+/uMcZu06jzZ1q8PXy0nqsIiIKizJ5wGzZCadR0SrBebUBXLTgP8dAtxblu/+iYwkhMDoNZEIPRsPL2cbbB/3PBxtrKUOi4jIaBY/Dxg9Bbkc8PTXPb95UtpYiKAb/p/zeivUrm6DG8nZeP/Xf1gPRkT0CEzAKrPahRPJMgGjCsLRRjc/mLVChl3R8fj52HWpQyIiqpCYgFVmtZ/RPd5iAkYVh5+XE95/SXcRy+fbzyP6Fu/WQET0MCZglVmtwh6wuxd5SyKqUP77nDe6NnNDnkaLMesikZ7D+cGIiB7EBKwyq1YTcKoLQAC3IqWOhkhPJpNh3uutUMvJBtfvZeH9LWdYD0ZE9AAmYJVdUR0YhyGpgnGyVeKbQf6wksuw4587WBseJ3VIREQVBhOwyq4WC/Gp4mpdpzre694YAPDp9nM4e5tD5UREABOwyq+oEP/mSYBDPFQBjehQD12auCKvQIux66KQkVsgdUhERJJjAlbZubcE5NZAVhJw/5rU0RAVI5fLML+vLzwd1YhNysR01oMRETEBq/Ss1YBHK93zWxGPb0skkep2unowhVyGbadvY8OJG1KHREQkKSZglkBfB3ZC2jiIHqNNXWdM6aarB/t421mcv5MmcURERNJhAmYJOCM+VRJvvVAPnRrXRG6Bbn6wTNaDEVEVxQTMEhQlYPH/AAW50sZC9BhyuQwL+vrCzUGFq3cz8dHWaNaDEVGVxATMElT3AWxrAJo8IP6M1NEQPVaNaiosHuAPuQzYEnULmyNuSh0SEZHZMQGzBDIZ5wOjSiWgXg1MLqwHm/F7NC4lpEscERGReTEBsxS1WYhPlcvojvXxfEMX5ORr8fbaSGTlsR6MiKoOJmCWolYb3SNvSUSVhFwuw8L+fnC1V+FKYgZm/H5W6pCIiMyGCZilKErA7l8DMpMkDYWotFyqqbCosB7sl4ib+JX1YERURTABsxQ2ToBLI91z1oFRJRJYvwYmdNH97n64NRpXElkPRkSWjwmYJSkqxOcwJFUyY19sgPb1ayA7X4Mxa6OQnaeROiQiIpNiAmZJWIhPlZRCLsPXA/zgUk2Fiwnp+Hgb68GIyLIxAbMkRQnYrUhAq5U2FiIjudqrsWiAH2QyYOPJG9gadUvqkIiITIYJmCVxbQ5Y2QC5acC9y1JHQ2S05xq4YNyLDQEA0387g5i7GRJHRERkGkzALInCCvD01z3nMCRVUhO6NMSz9ZyRlafBmLWRyMlnPRgRWR4mYJamduF0FLwSkiophVyGRQP8UcNOiQvx6fh0+zmpQyIiKndMwCxN7Wd0j0zAqBJzc1BjYX9dPdi68Dj8cfq21CEREZUrJmCWpmgqisSzQF6mtLEQPYUXGtXEmE4NAADTtpxBbBJ/n4nIcjABszSOtQB7T0BogdunpI6G6KlMDGqIdt7OyMgtYD0YEVkUJmCWSF8HxkJ8qtysFHIsHugPZzslzt1Jwxc7zksdEhFRuWACZolqcUJWshzujmp81c8XAPDzsevYeeaOxBERET09JmCWyOcF3WPMPiAvS9pYiMpBp8au+F/H+gCAqb/8g+v3WA9GRJUbEzBL5OkPONYB8jOBmDCpoyEqF5O7NUKbutWRnluAseuikFvAejAiqryYgFkimQxo9qru+bnfpY2FqJxYK+T4ZqA/nGytceZWKmbtvCB1SEREZcYEzFI166V7vBgK5OdIGwtROfF0stHXg606cg2h0awHI6LKiQmYparVVjcdRV46cHWf1NEQlZsXm7hh1Av1AADv/vIPbiSzzpGIKh8mYJZKLn9gGHKbtLEQlbN3gxvDv44T0nMKMHZdJPIKtFKHRERkFCZglkw/DLkDKMiTNhaiclRUD+ZoY43TN1MxJ5T1YERUuTABs2ReAUA1NyAnFYg9KHU0ROWqdnVbzHu9FQDgx0Ox2HMuQeKIiIhKjwmYJZMrgKY9dc/PbZU0FCJT6NbcHf99zgcAMGXzady8z3owIqocmIBZuqJhyAvbAU2+tLEQmcD7LzWBb21HpGbnY9z6KORrWA9GRBUfEzBLV6c9YOsCZN8Hrh2SOhqicqe0kmPJoNawV1shKi4F83ZflDokIqInYgJm6RRWQNNXdM85KStZKC9nW8x7XTc/2A8Hr2LvBdaDEVHFxgSsKmhaOB3F+T8ALW/fQpapewt3vNHeGwAwadNp3E7JljYgIqLHYAJWFfi8AKidgKwk4PoRqaMhMplpLzdBy1qOSMnKx3jWgxFRBcYErCpQWANNOAxJlk9lpcCSQf6wV1nh5PX7+GrPJalDIiIqEROwqqLoasjzfwBa9gqQ5apbww6z++jmB/tufwz2XUyUOCIiouKYgFUV9ToCKkcgIx64eVzqaIhMqkcrDwx5ti4AYPKm04hP5Q3piahiYQJWVVipgMYv6Z5zGJKqgA96NEUzDwckZ+Zh/PooFLAejIgqkAqRgC1duhTe3t5Qq9UICAjA8eOP76HZvHkzmjRpArVajZYtW2Lnzp0G7wshMGPGDHh4eMDGxgZBQUG4fPmyQZvk5GQMHjwYDg4OcHJywvDhw5GRkaF/f//+/ejVqxc8PDxgZ2cHPz8/rF27tvxOWgpFw5DnfucwJFk8tbUCSwe3hp1SgePXkvH1X5efvBERkZlInoBt3LgRkyZNwsyZMxEZGQlfX18EBwcjMbHkuo0jR45g4MCBGD58OKKiohASEoKQkBBER0fr28ydOxeLFy/GsmXLEB4eDjs7OwQHByMn599hiMGDB+Ps2bPYs2cPtm/fjoMHD2LUqFEGx2nVqhV+/fVX/PPPP3jzzTcxdOhQbN++3XQ/DFOr/yKgrAak3QJuR0odDZHJ+bjYYVZhPdjS/Vfw9+W7EkdERKQjE0IIKQMICAjAM888gyVLlgAAtFotvLy8MG7cOLz//vvF2vfv3x+ZmZkGidCzzz4LPz8/LFu2DEIIeHp6YvLkyZgyZQoAIDU1FW5ubli1ahUGDBiA8+fPo1mzZjhx4gTatm0LAAgNDcXLL7+MmzdvwtPTs8RYe/ToATc3N6xYsaJU55aWlgZHR0ekpqbCwcHBqJ+LyfwyHIj+BQgYDbw0W+poiMxi2pYzWH88DjXslNg14Xm4OqilDomIKjBzfH9L2gOWl5eHiIgIBAUF6dfJ5XIEBQXh6NGjJW5z9OhRg/YAEBwcrG8fGxuL+Ph4gzaOjo4ICAjQtzl69CicnJz0yRcABAUFQS6XIzw8/JHxpqamwtnZ+ZHv5+bmIi0tzWCpcFr11z1GrgbSOVs4VQ0zezZDE3d73MvMw/gNUdBoJf27k4hI2gQsKSkJGo0Gbm5uBuvd3NwQHx9f4jbx8fGPbV/0+KQ2rq6uBu9bWVnB2dn5kcfdtGkTTpw4gTfffPOR5zNr1iw4OjrqFy8vr0e2lUzDrkDtZ4D8LODgPKmjITKLonowW6UCx64mY1EY68GISFqS14BVBvv27cObb76J5cuXo3nz5o9sN23aNKSmpuqXGzdumDHKUpLJgC4zdM8jVgH3r0kZDZHZ1K9ZDV/2bgkA+GbvZRy+kiRxRERUlUmagLm4uEChUCAhwXAoLCEhAe7u7iVu4+7u/tj2RY9PavNwkX9BQQGSk5OLHffAgQPo2bMnFi5ciKFDhz72fFQqFRwcHAyWCsnnBaBeZ0CbD+ybJXU0RGYT4l8L/dt6QQhgwoZTSEzn/GBEJA1JEzClUok2bdogLCxMv06r1SIsLAyBgYElbhMYGGjQHgD27Nmjb+/j4wN3d3eDNmlpaQgPD9e3CQwMREpKCiIiIvRt9u7dC61Wi4CAAP26/fv3o0ePHpgzZ47BFZIWoagX7J+NQMI5aWMhMqOPX22Oxm72SMrIxTsbT7EejIgkIfkQ5KRJk7B8+XKsXr0a58+fx+jRo5GZmamvtRo6dCimTZumbz9hwgSEhoZiwYIFuHDhAj7++GOcPHkSY8eOBQDIZDJMnDgRn3/+ObZt24YzZ85g6NCh8PT0REhICACgadOm6N69O0aOHInjx4/j8OHDGDt2LAYMGKC/AnLfvn3o0aMHxo8fjz59+iA+Ph7x8fFITk427w/IVGq1Bpq+CkAAez+XOhois7FRKrB0sD9srBU4fOUelu67InVIRFQViQrgm2++EXXq1BFKpVK0a9dOHDt2TP9ex44dxbBhwwzab9q0STRq1EgolUrRvHlzsWPHDoP3tVqt+Oijj4Sbm5tQqVSiS5cu4uLFiwZt7t27JwYOHCiqVasmHBwcxJtvvinS09P17w8bNkwAKLZ07Nix1OeVmpoqAIjU1NTS/zDMKfGCEB87CTHTQYi441JHQ2RWv5y8IepO3S583t8ujlxJkjocIqpAzPH9Lfk8YJasQs4D9rCtY4BTawDv54Fhf+iK9ImqiCmbT+OXiJtwtVdh54Tn4VJNJXVIRFQBWPw8YFQBdHofUCiBa38DMXuljobIrD7t1RwNXashMV1XD6ZlPRgRmQkTsKrOyQtoO1z3POxTgB2iVIXYKq2wdHBrqK3l+PtyEr47ECN1SERURTABI+D5yYC1HXDnlO5G3URVSCM3e3z6agsAwII/L+J4rIVcaENEFRoTMAKq1QQCx+ie7/0c0BRIGw+RmfVtWxu9/WtBK4Dx66OQnJkndUhEZOGYgJFO+7GATXXg3mXg9DqpoyEyK5lMhs9DWqBeTTvEp+Vg0ibWgxGRaTEBIx21o24oEgB2vQ/cjHh8eyILY6eywtJBraGykmP/xbv4/uBVqUMiIgvGBIz+1e4toP6LQH4msPZ14O4lqSMiMqumHg74+FXd/V7n/3kRJ6+xHoyITIMJGP3LSgn0+xmo1QbITgZ+7g2k3pI6KiKzGvCMF1719YRGKzBufRTusx6MiEyACRgZUlUDBm0GajQE0m4Ca14DstgLQFWHTCbDl6+1hI+LHe6k5mDK5tPgfNVEVN6spA6AKiC7GsCQLcCPwcDdC8C6/sDQ3wGlrdSREZlFNZUVlgzyR+9vjyDsQiL+7+9YjHyhntRhEVEpabQCufkFyMvNRl5OFvJyspGfm4WC3Czk5+ZAk5cJTV4OtHnZ0OTnQJuXBVGQA+TlQBTkIDM91eQx8lZEJlQpbkX0OInngRXdgZwUoGE3YMA6QGEtdVREZvPzsev4aGs0rOQybPpfIFrXqS51SEQVXoFGizyNFrn5WuQWaJGbn4/8wgSoKAkqyMtBQW4WNHnZ0OZnQ+TnQJufA5GfDeTnAgXZQEEuZAU5kBXkQK7JhVyTC4U2BwpNHhTaXFiJXFhp82AtcmEt8qEUuVCKfKiQBxXyoJbll/kc0nIFHGenm/T7mwmYCVX6BAwA4sKBn3rp/jG0GgCEfAfIOXJNVYMQAmPXR2HHP3dQy8kGO8Z3gJOtUuqwiB6pQFOY9BRokVugQV7R83wtcvNydclPbjYK8nRJkCYvW9cLlKdLgkRRElSY+KAgFzJNDmQFuVBocyEvyIFCq3tupc2DtTYXVkKXBClFPpSFyY9uydctMunnltQKGXJlSuRCiTyZEvmwRr5chQKZEvlyFTRyJQrkamgVKmgUKqTnydBl6kYmYJWVRSRgAHBpN7B+ICA0wLNvA90+B+QKqaMiMov0nHy88s0hXL+XhaCmblg+tA1kvGk9PUQIgQKtKEx2NA/1ABUgPy8X+bnZyM/LQUFuDjT52SjIy4UmvzAJys+FtiAH2vxcoCAXokD3qEuAciHT5EGmyYVcmwe5Jg9ybV5hIpQPa5FXmATlQa1PfPKgkuXrX6uRByuZVuofEwqgQF5RElSY/BTIlCgoTII0CjW0CiU0cjWElQpCoYKwsgGsVIC1DWRWKsiUNpBZqSFX2kBRuFgVLSpbWKlsoFTZwlptA6XaFlZKW93ojRH/bs3x/c0EzIQsJgEDgFPrga3/0z13awl0nwX4PC9tTERmEn0rFa99ewR5Gi0+eqUZhnfwkTokeoAQAvka8VCPj0bX45OXo0t8cnOQn5cNbV6OrucnX7do83Ohzc+FyM+GKMjT1QEV5EFociEvyAUKkx/d8Fce5Nr8wsQnDwpRlPzk64bAoFtUssJHFBT2AJV9KMxU8mGFPNm/PUAFciU0cpVuUaigVaigVagLEyA1YK0GrHSLzFoNubUN5Nb/JkFWSjUUSl3yY622hbVKtyiUaqAogbJSA4rKUXrOBKySs6gEDABOrQNC3wdyCosTm74KdPsMqO4taVhE5rD6yDXM3HYW1goZfvlfe/h6OUkdUoUghECeRvtv4pOXj7ycLOTnFSY9uTkoKBziKsjPLSx8ztH39mjzcwx6fIQmF7KCPH2vj7yo10ebp0t6tLqEx0rf65OvG/qS5UOJAqiQV/iYD7msYn69FcAK+TIlCmTWukWuhFau1PUAyZUQCiW0chWElQpQKHUJkEKp6/2xUkFmrYbMSgW5Ug2FtQoKa/W/vUCFPUBWKlsorNWAdVHy828vEhQqlpI8AROwSs7iEjBANyXFvi+Bkz8CQqv7h9x+LNBhkm4KCyILJYTA6DWRCD0bj9rVbbBj/PNwtJH2opSi5Cc3vwC52dnIy81CQW4O8vJyUJCbjfy8bGjyc6HJ1SU/2vyi5OfBHp9/h7p0vT1FiU8e5NrcwsQnv7DoOR9WhQmQNfKhFHm6x8KER4n8CjHMVZICKHR1P4WJj0ZurRv2klnrkh+FCtrC5EcoVBAKpe7/NyvdIrNWQ26lgsxapev5eTDxsVbBSqWGldIW1io1rK3VkCvVBttDoSzsAVIy+akEmIBVchaZgBVJOAuETgNiD+heV3MHgj4GWvXnfy5ksVKz8/HKN3/jRnI2ujdzw9d9myI3N0eX+OTo6nuK6nw0RUu+7lGbr0t8dDU+ORD5uRCaPF2hsyYPsoJcyLS5/yY+mvwHenz+7fWx1ic/ukcV8mEt00j9oymRBnLkQdfLky+z1tX6yKx1PT2ywh4fhQqiqNenKPGxUgEKVfEeH33SoxsCs1KpYGWthrXKFlZKtS75UdpAbv1g4lP4yLpVMgITsErOohMwABACuLgT2D0duH9Nt87DD2geAvh0BDx8+Z8elS8hAE0+UJi06HpuHnyu68VBQV7h+gd7dwrXFeQVrn/w+cNtStqX7hhFCZWyAlzZVRItZMiDdcmJj0ypH+7Syv9NeLSFvT4PJixFvT0yK11vj264S7dYKQsXla72R6mygbXKBkqVGjIr9b/7qST1PkQPYwJWyVl8AlakIBc49h1wcB6Ql/HvepUj4N0BqNcR8HkBqNnEqKtQqALQFOiSEE3eA8lKnu61/nlp3s83TGg0eYbJTrHkqISkqSihqqByhTXyZFb6Ya58FCY+csPERyP/N+EpGu5CUa+Plbqwx0cFeVHiU5j0KJS6xUqphnVh8mOtUkOp1F3pZa3UJUvGXu1FRMUxAavkqkwCViQ9ATi7BYg9CFw7BOSmGb5v56pLxHxe0PWO2dUE7Fx0XzxVnVbzb8JR1Jvz8POiBEafzDyiXbFt8v9NavTvP5Do6N8vIZkSFbOeR09uXXhllrLkehuD5w/U4Dw8PKV//nAbteH2D7TP1CggrFRQKm10yQ+H3oksBhOwSq7KJWAP0hQA8aeBqwd0CVncMd1kriVROepuf2RXE7B10SVlRcmZXU3AtgZg6wzIFIV/2Rf+dV/03OARhs+LtS+MTZMHaPMLk4+iHpkHX+c/ok2BYXvtQ+01JeyzqI1Bz89DyZSomDU8hmT/JjT6Op2i5w8kJwrrf5MZfe+OsuR1JSY7JSVEDydHLGYmItNhAlbJVekE7GEFucDNE7pkLPYgkBwLZCUB2opZRyO5UiczDyZDhe31vT4lJEvF1pVim6LncisObRFRlcAErJJjAvYEQujuM5mZVLjc1S1Z9wqfJ/37mH2/cDhM6LaD+HcfD64TeEIbFCYVVoWP1v8mGXKrf5/r11sb30ZhrRsaK7GN6hG9RSrD7ZnoEBFJxhzf37xEhaQjkwE21XWLS0OpoyEiIjIbFlAQERERmRkTMCIiIiIzYwJGREREZGZMwIiIiIjMjAkYERERkZkxASMiIiIyMyZgRERERGbGBIyIiIjIzJiAEREREZkZEzAiIiIiM2MCRkRERGRmTMCIiIiIzIwJGBEREZGZMQEjIiIiMjMrqQOwZEIIAEBaWprEkRAREVFpFX1vF32PmwITMBO6d+8eAMDLy0viSIiIiMhY9+7dg6Ojo0n2zQTMhJydnQEAcXFxJvsAK6K0tDR4eXnhxo0bcHBwkDocs+F587yrAp43z7sqSE1NRZ06dfTf46bABMyE5HJdiZ2jo2OV+sUt4uDgwPOuQnjeVQvPu2qpqudd9D1ukn2bbM9EREREVCImYERERERmxgTMhFQqFWbOnAmVSiV1KGbF8+Z5VwU8b553VcDzNt15y4Qpr7EkIiIiomLYA0ZERERkZkzAiIiIiMyMCRgRERGRmTEBIyIiIjIzJmBGWLp0Kby9vaFWqxEQEIDjx48/tv3mzZvRpEkTqNVqtGzZEjt37jR4XwiBGTNmwMPDAzY2NggKCsLly5dNeQplYsx5L1++HM8//zyqV6+O6tWrIygoqFj7N954AzKZzGDp3r27qU/DaMac96pVq4qdk1qtNmhjiZ93p06dip23TCZDjx499G0qw+d98OBB9OzZE56enpDJZNi6desTt9m/fz9at24NlUqFBg0aYNWqVcXaGPt/hrkZe95btmxB165dUbNmTTg4OCAwMBC7d+82aPPxxx8X+7ybNGliwrMwnrHnvX///hJ/z+Pj4w3aWdrnXdK/XZlMhubNm+vbVPTPe9asWXjmmWdgb28PV1dXhISE4OLFi0/czhzf30zASmnjxo2YNGkSZs6cicjISPj6+iI4OBiJiYkltj9y5AgGDhyI4cOHIyoqCiEhIQgJCUF0dLS+zdy5c7F48WIsW7YM4eHhsLOzQ3BwMHJycsx1Wk9k7Hnv378fAwcOxL59+3D06FF4eXmhW7duuHXrlkG77t27486dO/pl/fr15jidUjP2vAHdTNEPntP169cN3rfEz3vLli0G5xwdHQ2FQoG+ffsatKvon3dmZiZ8fX2xdOnSUrWPjY1Fjx490LlzZ5w6dQoTJ07EiBEjDJKRsvwOmZux533w4EF07doVO3fuREREBDp37oyePXsiKirKoF3z5s0NPu9Dhw6ZIvwyM/a8i1y8eNHgvFxdXfXvWeLnvWjRIoPzvXHjBpydnYv9+67In/eBAwcwZswYHDt2DHv27EF+fj66deuGzMzMR25jtu9vQaXSrl07MWbMGP1rjUYjPD09xaxZs0ps369fP9GjRw+DdQEBAeKtt94SQgih1WqFu7u7mDdvnv79lJQUoVKpxPr1601wBmVj7Hk/rKCgQNjb24vVq1fr1w0bNkz06tWrvEMtV8ae98qVK4Wjo+Mj91dVPu+FCxcKe3t7kZGRoV9XGT7vBwEQv/3222PbvPfee6J58+YG6/r37y+Cg4P1r5/2Z2lupTnvkjRr1kx88skn+tczZ84Uvr6+5ReYiZXmvPft2ycAiPv37z+yTVX4vH/77Tchk8nEtWvX9Osq2+edmJgoAIgDBw48so25vr/ZA1YKeXl5iIiIQFBQkH6dXC5HUFAQjh49WuI2R48eNWgPAMHBwfr2sbGxiI+PN2jj6OiIgICAR+7T3Mpy3g/LyspCfn5+sRua7t+/H66urmjcuDFGjx6Ne/fulWvsT6Os552RkYG6devCy8sLvXr1wtmzZ/XvVZXP+8cff8SAAQNgZ2dnsL4if95l8aR/3+Xxs6wMtFot0tPTi/37vnz5Mjw9PVGvXj0MHjwYcXFxEkVYvvz8/ODh4YGuXbvi8OHD+vVV5fP+8ccfERQUhLp16xqsr0yfd2pqKgA89ibb5vr+ZgJWCklJSdBoNHBzczNY7+bmVqwGoEh8fPxj2xc9GrNPcyvLeT9s6tSp8PT0NPhF7d69O3766SeEhYVhzpw5OHDgAF566SVoNJpyjb+synLejRs3xooVK/D7779jzZo10Gq1aN++PW7evAmganzex48fR3R0NEaMGGGwvqJ/3mXxqH/faWlpyM7OLpd/O5XB/PnzkZGRgX79+unXBQQEYNWqVQgNDcV3332H2NhYPP/880hPT5cw0qfj4eGBZcuW4ddff8Wvv/4KLy8vdOrUCZGRkQDK5//Kiu727dvYtWtXsX/flenz1mq1mDhxIp577jm0aNHike3M9f1tVeqWREaaPXs2NmzYgP379xsUpA8YMED/vGXLlmjVqhXq16+P/fv3o0uXLlKE+tQCAwMRGBiof92+fXs0bdoU33//PT777DMJIzOfH3/8ES1btkS7du0M1lvi503AunXr8Mknn+D33383qIV66aWX9M9btWqFgIAA1K1bF5s2bcLw4cOlCPWpNW7cGI0bN9a/bt++PWJiYrBw4UL8/PPPEkZmPqtXr4aTkxNCQkIM1lemz3vMmDGIjo6uMDVq7AErBRcXFygUCiQkJBisT0hIgLu7e4nbuLu7P7Z90aMx+zS3spx3kfnz52P27Nn4888/0apVq8e2rVevHlxcXHDlypWnjrk8PM15F7G2toa/v7/+nCz9887MzMSGDRtK9R9uRfu8y+JR/74dHBxgY2NTLr9DFdmGDRswYsQIbNq0qdhQzcOcnJzQqFGjSv15l6Rdu3b6c7L0z1sIgRUrVmDIkCFQKpWPbVtRP++xY8di+/bt2LdvH2rXrv3Ytub6/mYCVgpKpRJt2rRBWFiYfp1Wq0VYWJhBr8eDAgMDDdoDwJ49e/TtfXx84O7ubtAmLS0N4eHhj9ynuZXlvAHd1SGfffYZQkND0bZt2yce5+bNm7h37x48PDzKJe6nVdbzfpBGo8GZM2f052TJnzegu2Q7NzcX//nPf554nIr2eZfFk/59l8fvUEW1fv16vPnmm1i/fr3BdCOPkpGRgZiYmEr9eZfk1KlT+nOy5M8b0F1JeOXKlVL9gVXRPm8hBMaOHYvffvsNe/fuhY+PzxO3Mdv3t1GXD1RhGzZsECqVSqxatUqcO3dOjBo1Sjg5OYn4+HghhBBDhgwR77//vr794cOHhZWVlZg/f744f/68mDlzprC2thZnzpzRt5k9e7ZwcnISv//+u/jnn39Er169hI+Pj8jOzjb7+T2Ksec9e/ZsoVQqxS+//CLu3LmjX9LT04UQQqSnp4spU6aIo0ePitjYWPHXX3+J1q1bi4YNG4qcnBxJzrEkxp73J598Inbv3i1iYmJERESEGDBggFCr1eLs2bP6Npb4eRfp0KGD6N+/f7H1leXzTk9PF1FRUSIqKkoAEF999ZWIiooS169fF0II8f7774shQ4bo21+9elXY2tqKd999V5w/f14sXbpUKBQKERoaqm/zpJ9lRWDsea9du1ZYWVmJpUuXGvz7TklJ0beZPHmy2L9/v4iNjRWHDx8WQUFBwsXFRSQmJpr9/B7F2PNeuHCh2Lp1q7h8+bI4c+aMmDBhgpDL5eKvv/7St7HEz7vIf/7zHxEQEFDiPiv65z169Gjh6Ogo9u/fb/A7m5WVpW8j1fc3EzAjfPPNN6JOnTpCqVSKdu3aiWPHjunf69ixoxg2bJhB+02bNolGjRoJpVIpmjdvLnbs2GHwvlarFR999JFwc3MTKpVKdOnSRVy8eNEcp2IUY867bt26AkCxZebMmUIIIbKyskS3bt1EzZo1hbW1tahbt64YOXJkhfpPqogx5z1x4kR9Wzc3N/Hyyy+LyMhIg/1Z4ucthBAXLlwQAMSff/5ZbF+V5fMummbg4aXoXIcNGyY6duxYbBs/Pz+hVCpFvXr1xMqVK4vt93E/y4rA2PPu2LHjY9sLoZuOw8PDQyiVSlGrVi3Rv39/ceXKFfOe2BMYe95z5swR9evXF2q1Wjg7O4tOnTqJvXv3FtuvpX3eQuimV7CxsRE//PBDifus6J93SecLwODfq1Tf37LCAImIiIjITFgDRkRERGRmTMCIiIiIzIwJGBEREZGZMQEjIiIiMjMmYERERERmxgSMiIiIyMyYgBERERGZGRMwIiIiIjNjAkZEldr+/fshk8mQkpIiyfHDwsLQtGlTaDSap9qPTCbD1q1bS90+NDQUfn5+0Gq1T3VcIpIGEzAiqjQ6deqEiRMnGqxr37497ty5A0dHR0lieu+99/Dhhx9CoVA81X7u3LmDl156qdTtu3fvDmtra6xdu/apjktE0mACRkSVmlKphLu7O2QymdmPfejQIcTExKBPnz5PvS93d3eoVCqjtnnjjTewePHipz42EZkfEzAiqhTeeOMNHDhwAIsWLYJMJoNMJsO1a9eKDUGuWrUKTk5O2L59Oxo3bgxbW1u8/vrryMrKwurVq+Ht7Y3q1atj/PjxBsOGubm5mDJlCmrVqgU7OzsEBARg//79j41pw4YN6Nq1K9RqtX7dxx9/DD8/P6xYsQJ16tRBtWrV8Pbbb0Oj0WDu3Llwd3eHq6srvvjiC4N9PTgEee3aNchkMmzZsgWdO3eGra0tfH19cfToUYNtevbsiZMnTyImJqbsP1gikoSV1AEQEZXGokWLcOnSJbRo0QKffvopAKBmzZq4du1asbZZWVlYvHgxNmzYgPT0dLz22mvo3bs3nJycsHPnTly9ehV9+vTBc889h/79+wMAxo4di3PnzmHDhg3w9PTEb7/9hu7du+PMmTNo2LBhiTH9/fffGDRoULH1MTEx2LVrF0JDQxETE4PXX38dV69eRaNGjXDgwAEcOXIE//3vfxEUFISAgIBHnvMHH3yA+fPno2HDhvjggw8wcOBAXLlyBVZWuv+669SpAzc3N/z999+oX7++sT9SIpIQEzAiqhQcHR2hVCpha2sLd3f3x7bNz8/Hd999p09KXn/9dfz8889ISEhAtWrV0KxZM3Tu3Bn79u1D//79ERcXh5UrVyIuLg6enp4AgClTpiA0NBQrV67El19+WeJxrl+/rm//IK1WixUrVsDe3l5/rIsXL2Lnzp2Qy+Vo3Lgx5syZg3379j02AZsyZQp69OgBAPjkk0/QvHlzXLlyBU2aNNG38fT0xPXr1x//wyOiCocJGBFZHFtbW4MeITc3N3h7e6NatWoG6xITEwEAZ86cgUajQaNGjQz2k5ubixo1ajzyONnZ2QbDj0W8vb1hb29vcCyFQgG5XG6wruj4j9KqVSv9cw8PDwBAYmKiQQJmY2ODrKysx+6HiCoeJmBEZHGsra0NXstkshLXFU3hkJGRAYVCgYiIiGJXMz6YtD3MxcUF9+/ff+rjl+Y8ii4yeHib5ORk1KxZ87H7IaKKhwkYEVUaSqXyqefbKom/vz80Gg0SExPx/PPPG7XduXPnyj2e0srJyUFMTAz8/f0li4GIyoZXQRJRpeHt7Y3w8HBcu3YNSUlJ5TYJaaNGjTB48GAMHToUW7ZsQWxsLI4fP45Zs2Zhx44dj9wuODgYhw4dKpcYyuLYsWNQqVQIDAyULAYiKhsmYERUaUyZMgUKhQLNmjVDzZo1ERcXV277XrlyJYYOHYrJkyejcePGCAkJwYkTJ1CnTp1HbjN48GCcPXsWFy9eLLc4jLF+/XoMHjwYtra2khyfiMpOJoQQUgdBRFRZvfvuu0hLS8P3339v1uMmJSWhcePGOHnyJHx8fMx6bCJ6euwBIyJ6Ch988AHq1q1r9nsyXrt2Dd9++y2TL6JKij1gRERERGbGHjAiIiIiM2MCRkRERGRmTMCIiIiIzIwJGBEREZGZMQEjIiIiMjMmYERERERmxgSMiIiIyMyYgBERERGZGRMwIiIiIjP7fxbyx3DyTVoQAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\dae\\petsc_chem_doc_23_0.png" - } - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "a = plt.plot(tji.time, tji.get_vec(m.y[180, 2]), label=\"y2 interpolate dt=1\")\n", "a = plt.plot(tj.time, tj.get_vec(m.y[180, 2]), label=\"y2 original\")\n", @@ -1265,9 +374,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/dae/petsc_chem_test.ipynb b/idaes_examples/notebooks/docs/dae/petsc_chem_test.ipynb index c92befe9..fecec24b 100644 --- a/idaes_examples/notebooks/docs/dae/petsc_chem_test.ipynb +++ b/idaes_examples/notebooks/docs/dae/petsc_chem_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -160,7 +161,7 @@ " time=m.t,\n", " between=[m.t.first(), m.t.last()],\n", " ts_options={\n", - " \"--ts_type\": \"cn\", # Crank–Nicolson\n", + " \"--ts_type\": \"cn\", # Crank\u2013Nicolson\n", " \"--ts_adapt_type\": \"basic\",\n", " \"--ts_dt\": 0.01,\n", " \"--ts_save_trajectory\": 1,\n", @@ -347,4 +348,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/dae/petsc_chem_usr.ipynb b/idaes_examples/notebooks/docs/dae/petsc_chem_usr.ipynb index c92befe9..fecec24b 100644 --- a/idaes_examples/notebooks/docs/dae/petsc_chem_usr.ipynb +++ b/idaes_examples/notebooks/docs/dae/petsc_chem_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -160,7 +161,7 @@ " time=m.t,\n", " between=[m.t.first(), m.t.last()],\n", " ts_options={\n", - " \"--ts_type\": \"cn\", # Crank–Nicolson\n", + " \"--ts_type\": \"cn\", # Crank\u2013Nicolson\n", " \"--ts_adapt_type\": \"basic\",\n", " \"--ts_dt\": 0.01,\n", " \"--ts_save_trajectory\": 1,\n", @@ -347,4 +348,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/dae/petsc_pid.ipynb b/idaes_examples/notebooks/docs/dae/petsc_pid.ipynb index b00e4c6b..19ff7ae8 100644 --- a/idaes_examples/notebooks/docs/dae/petsc_pid.ipynb +++ b/idaes_examples/notebooks/docs/dae/petsc_pid.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": 1, + "id": "54f17eaa", "metadata": { "pycharm": { "is_executing": true @@ -19,17 +20,19 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, { "cell_type": "markdown", + "id": "75972e4c", "metadata": {}, "source": [ "# PETSc Time-stepping Solver -- PID Control and Steam Example\n", @@ -52,6 +55,7 @@ }, { "cell_type": "markdown", + "id": "b1de1dfa", "metadata": {}, "source": [ "## Prerequisites\n", @@ -63,6 +67,7 @@ }, { "cell_type": "markdown", + "id": "45d10140", "metadata": {}, "source": [ "## Imports" @@ -71,6 +76,7 @@ { "cell_type": "code", "execution_count": 2, + "id": "67b6281f", "metadata": {}, "outputs": [], "source": [ @@ -86,6 +92,7 @@ }, { "cell_type": "markdown", + "id": "06aa08d6", "metadata": {}, "source": [ "## Model Set Up" @@ -94,6 +101,7 @@ { "cell_type": "code", "execution_count": 3, + "id": "36710288", "metadata": {}, "outputs": [], "source": [ @@ -104,6 +112,7 @@ { "cell_type": "code", "execution_count": 4, + "id": "4c19a5af", "metadata": {}, "outputs": [], "source": [ @@ -116,6 +125,7 @@ }, { "cell_type": "markdown", + "id": "755fd8cf", "metadata": {}, "source": [ "## Solve" @@ -124,6 +134,7 @@ { "cell_type": "code", "execution_count": 5, + "id": "592dbbf0", "metadata": {}, "outputs": [], "source": [ @@ -143,6 +154,7 @@ }, { "cell_type": "markdown", + "id": "2802f9b9", "metadata": {}, "source": [ "## Plot Trajectory\n", @@ -153,6 +165,7 @@ { "cell_type": "code", "execution_count": 6, + "id": "545c6d71", "metadata": {}, "outputs": [], "source": [ @@ -164,6 +177,7 @@ { "cell_type": "code", "execution_count": 7, + "id": "c3ef512e", "metadata": {}, "outputs": [], "source": [ @@ -174,6 +188,7 @@ }, { "cell_type": "markdown", + "id": "27c53e18", "metadata": {}, "source": [ "## Model a ramp in inlet pressure\n", @@ -184,6 +199,7 @@ { "cell_type": "code", "execution_count": 8, + "id": "cbf65cfa", "metadata": {}, "outputs": [], "source": [ @@ -221,6 +237,7 @@ { "cell_type": "code", "execution_count": 9, + "id": "7a189bcf", "metadata": {}, "outputs": [], "source": [ @@ -243,6 +260,7 @@ { "cell_type": "code", "execution_count": 10, + "id": "2117da8a", "metadata": {}, "outputs": [], "source": [ @@ -256,6 +274,7 @@ { "cell_type": "code", "execution_count": 11, + "id": "8a2c76dd", "metadata": {}, "outputs": [], "source": [ @@ -267,6 +286,7 @@ { "cell_type": "code", "execution_count": 12, + "id": "446d614d", "metadata": {}, "outputs": [], "source": [ @@ -277,6 +297,7 @@ }, { "cell_type": "markdown", + "id": "bfe890a2", "metadata": {}, "source": [ "## Model a ramp in inlet pressure (again)\n", @@ -287,6 +308,7 @@ { "cell_type": "code", "execution_count": 13, + "id": "e73f85c0", "metadata": {}, "outputs": [], "source": [ @@ -327,6 +349,7 @@ { "cell_type": "code", "execution_count": 14, + "id": "86db8473", "metadata": {}, "outputs": [], "source": [ @@ -349,6 +372,7 @@ { "cell_type": "code", "execution_count": 15, + "id": "f4bc39df", "metadata": {}, "outputs": [], "source": [ @@ -362,6 +386,7 @@ { "cell_type": "code", "execution_count": 16, + "id": "94bd28cf", "metadata": {}, "outputs": [], "source": [ @@ -373,6 +398,7 @@ { "cell_type": "code", "execution_count": 17, + "id": "a1edacc4", "metadata": {}, "outputs": [], "source": [ @@ -384,6 +410,7 @@ { "cell_type": "code", "execution_count": null, + "id": "75977f30", "metadata": {}, "outputs": [], "source": [] diff --git a/idaes_examples/notebooks/docs/dae/petsc_pid_doc.ipynb b/idaes_examples/notebooks/docs/dae/petsc_pid_doc.ipynb index 9fc799cf..2f4dcc5e 100644 --- a/idaes_examples/notebooks/docs/dae/petsc_pid_doc.ipynb +++ b/idaes_examples/notebooks/docs/dae/petsc_pid_doc.ipynb @@ -19,12 +19,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -110,28 +111,28 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:31:29 [INFO] idaes.init.fs.valve_1: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:30:28 [INFO] idaes.init.fs.valve_1: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:31:29 [INFO] idaes.init.fs.tank.control_volume: Initialization Complete\n" + "2025-03-17 17:30:28 [INFO] idaes.init.fs.tank.control_volume: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:31:29 [INFO] idaes.init.fs.tank: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:30:28 [INFO] idaes.init.fs.tank: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:31:29 [INFO] idaes.init.fs.valve_2: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:30:28 [INFO] idaes.init.fs.valve_2: Initialization Complete: optimal - Optimal Solution Found\n" ] } ], @@ -156,4481 +157,226 @@ "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Called fg_read, err: 0 (0 is good)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: DAE: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Reading nl file: C:\\Users\\dkgun\\AppData\\Local\\Temp\\tmp8y_z4ws2.pyomo.nl\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of constraints: 28\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of nonlinear constraints: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of linear constraints: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of inequalities: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of variables: 28\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of integers: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of binary: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of objectives: 0 (Ignoring)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of non-zeros in Jacobian: 83 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of degrees of freedom: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: 0 SNES Function norm 5.783088779321e+05 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: 1 SNES Function norm 4.315325974705e+05 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: 2 SNES Function norm 7.639793381288e+04 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: 3 SNES Function norm 5.928557930246e+03 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: 4 SNES Function norm 5.008361736228e+01 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: 5 SNES Function norm 3.698195211732e-03 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: 6 SNES Function norm 3.725294295263e-09 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: SNESConvergedReason = SNES_CONVERGED_FNORM_RELATIVE, in 6 iterations\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: SNES_CONVERGED_FNORM_RELATIVE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Called fg_read, err: 0 (0 is good)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: DAE: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Reading nl file: C:\\Users\\dkgun\\AppData\\Local\\Temp\\tmp3aw8uqg4.pyomo.nl\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of constraints: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of nonlinear constraints: 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of linear constraints: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of inequalities: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of variables: 34\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of integers: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of binary: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of objectives: 0 (Ignoring)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of non-zeros in Jacobian: 91 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Explicit time variable: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of derivatives: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of differential vars: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of algebraic vars: 24\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of state vars: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: Number of degrees of freedom: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:30 [INFO] idaes.solve.petsc-dae: 0 TS dt 0.1 time 0.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 1 TS dt 0.025 time 0.025\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 2 TS dt 0.0154252 time 0.0381739\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 3 TS dt 0.0133373 time 0.0510085\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 4 TS dt 0.0136013 time 0.0643458\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 5 TS dt 0.0141735 time 0.0779471\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 6 TS dt 0.0146392 time 0.0921205\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 7 TS dt 0.0152517 time 0.10676\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 8 TS dt 0.0158389 time 0.122011\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 9 TS dt 0.0165162 time 0.13785\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 10 TS dt 0.0172093 time 0.154367\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 11 TS dt 0.0179712 time 0.171576\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 12 TS dt 0.0187679 time 0.189547\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 13 TS dt 0.0196222 time 0.208315\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 14 TS dt 0.020514 time 0.227937\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 15 TS dt 0.0214472 time 0.248451\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 16 TS dt 0.022401 time 0.269898\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 17 TS dt 0.0233619 time 0.292299\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 18 TS dt 0.0243005 time 0.315661\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 19 TS dt 0.0251894 time 0.339962\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 20 TS dt 0.0259944 time 0.365151\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 21 TS dt 0.0266898 time 0.391146\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 22 TS dt 0.0272563 time 0.417835\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:33 [INFO] idaes.solve.petsc-dae: 23 TS dt 0.0276902 time 0.445092\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 24 TS dt 0.0279997 time 0.472782\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 25 TS dt 0.0282038 time 0.500782\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 26 TS dt 0.028326 time 0.528985\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 27 TS dt 0.0283913 time 0.557311\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 28 TS dt 0.0284218 time 0.585703\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 29 TS dt 0.0284362 time 0.614124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 30 TS dt 0.0284488 time 0.642561\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 31 TS dt 0.0284703 time 0.671009\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 32 TS dt 0.0285087 time 0.69948\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 33 TS dt 0.0285693 time 0.727988\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 34 TS dt 0.0286562 time 0.756558\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 35 TS dt 0.0287722 time 0.785214\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 36 TS dt 0.0289195 time 0.813986\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 37 TS dt 0.0291001 time 0.842906\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 38 TS dt 0.0293154 time 0.872006\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 39 TS dt 0.0295672 time 0.901321\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 40 TS dt 0.0298571 time 0.930888\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 41 TS dt 0.0301872 time 0.960745\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 42 TS dt 0.0305596 time 0.990933\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 43 TS dt 0.0309769 time 1.02149\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 44 TS dt 0.031442 time 1.05247\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 45 TS dt 0.0319585 time 1.08391\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 46 TS dt 0.0325305 time 1.11587\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 47 TS dt 0.0331626 time 1.1484\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 48 TS dt 0.0338606 time 1.18156\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 49 TS dt 0.0346311 time 1.21542\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 50 TS dt 0.0354817 time 1.25005\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 51 TS dt 0.0364218 time 1.28554\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 52 TS dt 0.0374622 time 1.32196\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 53 TS dt 0.0386159 time 1.35942\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 54 TS dt 0.0398987 time 1.39804\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 55 TS dt 0.0413295 time 1.43793\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:34 [INFO] idaes.solve.petsc-dae: 56 TS dt 0.0429313 time 1.47926\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 57 TS dt 0.0447325 time 1.5222\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 58 TS dt 0.0467682 time 1.56693\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 59 TS dt 0.0490823 time 1.6137\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 60 TS dt 0.0517305 time 1.66278\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 61 TS dt 0.0547839 time 1.71451\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 62 TS dt 0.0583343 time 1.76929\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 63 TS dt 0.0625012 time 1.82763\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 64 TS dt 0.0674415 time 1.89013\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 65 TS dt 0.0733598 time 1.95757\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 66 TS dt 0.0805186 time 2.03093\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 67 TS dt 0.0892348 time 2.11145\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 68 TS dt 0.0998324 time 2.20068\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 69 TS dt 0.112487 time 2.30052\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 70 TS dt 0.12691 time 2.413\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 71 TS dt 0.142117 time 2.53991\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 72 TS dt 0.157007 time 2.68203\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 73 TS dt 0.171623 time 2.83904\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 74 TS dt 0.187368 time 3.01066\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 75 TS dt 0.206382 time 3.19803\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 76 TS dt 0.231364 time 3.40441\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 77 TS dt 0.266076 time 3.63577\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 78 TS dt 0.316702 time 3.90185\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 79 TS dt 0.394852 time 4.21855\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 80 TS dt 0.525171 time 4.6134\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 81 TS dt 0.767756 time 5.13857\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 82 TS dt 1.29836 time 5.90633\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 83 TS dt 2.39766 time 7.20469\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 84 TS dt 2.39766 time 9.60234\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: 85 TS dt 23.9766 time 12.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: TSConvergedReason = TS_CONVERGED_TIME\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:35 [INFO] idaes.solve.petsc-dae: TS_CONVERGED_TIME\n" - ] - } - ], - "source": [ - "result = petsc.petsc_dae_by_time_element(\n", - " m,\n", - " time=m.fs.time,\n", - " ts_options={\n", - " \"--ts_type\": \"beuler\",\n", - " \"--ts_dt\": 0.1,\n", - " \"--ts_monitor\": \"\", # set initial step to 0.1\n", - " \"--ts_save_trajectory\": 1,\n", - " },\n", - ")\n", - "tj = result.trajectory # trajectroy data\n", - "res = result.results # solver status list" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plot Trajectory\n", - "\n", - "At the initial conditions the valve is fully open. At t=0, the controller is activated and the controller adjusts the opening of valve 1 to keep the tank pressure at the setpoint of 300 kPa." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGC0lEQVR4nO3deXSTdd7//1eS7qUL0NIFCwVkkR1hqCw6eqwWcVBxRtkU6Ah+dXAU6gbKojhD1TlyI4oweiN4Mzri/ROduV1QrIAyrIKIyL6WrS0F2tKWbkl+f5QGKgWSkuRKyfNxTg7tleu68k7O2Lzms5rsdrtdAAAAfsRsdAEAAADeRgACAAB+hwAEAAD8DgEIAAD4HQIQAADwOwQgAADgdwhAAADA7wQYXYAvstlsOnr0qCIiImQymYwuBwAAOMFut+v06dNKTEyU2XzpNh4CUB2OHj2qpKQko8sAAAD1cOjQIV1zzTWXPIcAVIeIiAhJ1R9gZGSkwdUAAABnFBUVKSkpyfE9fikEoDrUdHtFRkYSgAAAaGCcGb7CIGgAAOB3CEAAAMDvEIAAAIDfIQABAAC/QwACAAB+hwAEAAD8DgEIAAD4HQIQAADwOwQgAADgdwhAAADA7xgagL777jsNGjRIiYmJMplM+vTTTy97zYoVK3T99dcrODhY1157rRYuXHjBOXPmzFFycrJCQkKUkpKi9evXu794AADQYBkagEpKStStWzfNmTPHqfP379+vO++8U7fccos2b96s8ePHa8yYMfrqq68c5yxevFgZGRmaNm2aNm3apG7duiktLU15eXmeehsAAKCBMdntdrvRRUjVG5d98sknuueeey56zrPPPqvPP/9cW7dudRwbOnSoCgoKtHTpUklSSkqKfvOb3+jNN9+UJNlsNiUlJenPf/6zJk6c6FQtRUVFioqKUmFhoVs3Qz1TYdWJknIFBZjVLCLEbfcFAACufX83qDFAa9asUWpqaq1jaWlpWrNmjSSpoqJCGzdurHWO2WxWamqq45y6lJeXq6ioqNbDE+at3Kv+ryzX69/s9sj9AQCAcxpUAMrJyVFcXFytY3FxcSoqKtKZM2eUn58vq9Va5zk5OTkXvW9mZqaioqIcj6SkJI/UHxkaKEk6XVblkfsDAADnNKgA5CmTJk1SYWGh43Ho0CGPvE5ESIAk6XRZpUfuDwAAnBNgdAGuiI+PV25ubq1jubm5ioyMVGhoqCwWiywWS53nxMfHX/S+wcHBCg4O9kjN54s8G4CKaAECAMBQDaoFqE+fPsrKyqp1bNmyZerTp48kKSgoSD179qx1js1mU1ZWluMcI0WE1HSB0QIEAICRDA1AxcXF2rx5szZv3iypepr75s2blZ2dLam6a2rkyJGO8x955BHt27dPzzzzjHbs2KG33npLH330kSZMmOA4JyMjQ++8847ee+89bd++XY8++qhKSkqUnp7u1fdWl3NdYLQAAQBgJEO7wH744Qfdcsstjt8zMjIkSaNGjdLChQt17NgxRxiSpFatWunzzz/XhAkT9Prrr+uaa67Rf//3fystLc1xzpAhQ3T8+HFNnTpVOTk56t69u5YuXXrBwGgjnGsBIgABAGAkn1kHyJd4ah2g/OJy9frLN5KkvTMGymI2ue3eAAD4u6t2HaCGrqYLTJKKy2kFAgDAKAQgLwoOsCgooPojZyA0AADGIQB5WSTjgAAAMBwByMsimQkGAIDhCEBeVjMOqOgMXWAAABiFAORljqnw5QQgAACMQgDyMhZDBADAeAQgLyMAAQBgPAKQl9V0gRUxDR4AAMMQgLyMafAAABiPAORlzAIDAMB4BCAvYwwQAADGIwB5WWRoTRcYLUAAABiFAORlji4wWoAAADAMAcjLzg2CpgUIAACjEIC8jFlgAAAYjwDkZTVdYKUVVlVabQZXAwCAfyIAeVlNAJJoBQIAwCgEIC8LsJgVFmSRxDggAACMQgAyAGsBAQBgLAKQAWoGQrMaNAAAxiAAGYC1gAAAMBYByAA1q0GzIzwAAMYgABkggrWAAAAwFAHIAJHsCA8AgKEIQAaoaQGiCwwAAGMQgAwQGco0eAAAjEQAMgDT4AEAMBYByAA1s8BoAQIAwBgEIAOcWweIFiAAAIxAADJAJIOgAQAwFAHIAFEMggYAwFAEIAOcPwjabrcbXA0AAP6HAGSAmkHQNrtUXE4rEAAA3kYAMkBwgFmBFpMkusEAADACAcgAJpOJgdAAABiIAGQQx47wZ2gBAgDA2whABmFDVAAAjEMAMohjNehyAhAAAN5GADLIuanwdIEBAOBtBCCDRNAFBgCAYQhABqnpAiskAAEA4HUEIINEsiEqAACGMTwAzZkzR8nJyQoJCVFKSorWr19/0XMrKys1ffp0tWnTRiEhIerWrZuWLl1a65wXXnhBJpOp1qNDhw6efhsui2IaPAAAhjE0AC1evFgZGRmaNm2aNm3apG7duiktLU15eXl1nj958mT9/e9/1xtvvKFt27bpkUce0eDBg/Xjjz/WOq9Tp046duyY47Fq1SpvvB2XONYBogUIAACvMzQAzZw5U2PHjlV6ero6duyoefPmKSwsTO+++26d5y9atEjPPfecBg4cqNatW+vRRx/VwIED9dprr9U6LyAgQPHx8Y5HTEzMJesoLy9XUVFRrYensRI0AADGMSwAVVRUaOPGjUpNTT1XjNms1NRUrVmzps5rysvLFRISUutYaGjoBS08u3fvVmJiolq3bq0RI0YoOzv7krVkZmYqKirK8UhKSqrnu3JeZGjNLDC6wAAA8DbDAlB+fr6sVqvi4uJqHY+Li1NOTk6d16SlpWnmzJnavXu3bDabli1bpiVLlujYsWOOc1JSUrRw4UItXbpUc+fO1f79+3XjjTfq9OnTF61l0qRJKiwsdDwOHTrknjd5CVF0gQEAYJgAowtwxeuvv66xY8eqQ4cOMplMatOmjdLT02t1md1xxx2On7t27aqUlBS1bNlSH330kR566KE67xscHKzg4GCP13++cwshVsput8tkMnn19QEA8GeGtQDFxMTIYrEoNze31vHc3FzFx8fXeU1sbKw+/fRTlZSU6ODBg9qxY4caNWqk1q1bX/R1oqOj1a5dO+3Zs8et9V+pmkHQNrtUXE43GAAA3mRYAAoKClLPnj2VlZXlOGaz2ZSVlaU+ffpc8tqQkBA1b95cVVVV+vjjj3X33Xdf9Nzi4mLt3btXCQkJbqvdHYIDzAqyVH/8RWUEIAAAvMnQWWAZGRl655139N5772n79u169NFHVVJSovT0dEnSyJEjNWnSJMf569at05IlS7Rv3z59//33GjBggGw2m5555hnHOU899ZRWrlypAwcOaPXq1Ro8eLAsFouGDRvm9fd3KSaT6dxUeFaDBgDAqwwdAzRkyBAdP35cU6dOVU5Ojrp3766lS5c6BkZnZ2fLbD6X0crKyjR58mTt27dPjRo10sCBA7Vo0SJFR0c7zjl8+LCGDRumEydOKDY2Vv3799fatWsVGxvr7bd3WZGhAcovLmc7DAAAvMxkt9vtRhfha4qKihQVFaXCwkJFRkZ67HUGv/Uf/ZhdoLcf7KnbO9U97gkAADjHle9vw7fC8Gc1M8FoAQIAwLsIQAY6txYQg6ABAPAmApCBalaDpgUIAADvIgAZKIpZYAAAGIIAZKDzV4MGAADeQwAyUM06QHSBAQDgXQQgA7EhKgAAxiAAGSiKFiAAAAxBADIQ6wABAGAMApCBaAECAMAYBCAD1QSgskqbyqusBlcDAID/IAAZqFHIub1oi86wGjQAAN5CADKQxWxSRAirQQMA4G0EIIMxDggAAO8jABmM7TAAAPA+ApDBaAECAMD7CEAGIwABAOB9BCCDEYAAAPA+ApDBCEAAAHgfAchg7AgPAID3EYAMRgsQAADeRwAyWHQYAQgAAG8jABmMdYAAAPA+ApDB6AIDAMD7CEAGiw4NkiQVlBKAAADwFgKQwWpagM5UWlVeZTW4GgAA/AMByGARIQEymap/phsMAADvIAAZzGw2KTKEgdAAAHgTAcgHMBAaAADvIgD5gJq1gBgIDQCAdxCAfAAtQAAAeBcByAfUBCBagAAA8A4CkA+gBQgAAO8iAPkA9gMDAMC7CEA+4Nxq0BUGVwIAgH8gAPmAKFqAAADwqoD6XJSVlaWsrCzl5eXJZrPVeu7dd991S2H+xDEImgAEAIBXuByAXnzxRU2fPl29evVSQkKCTDX7OKDeomsGQTMLDAAAr3A5AM2bN08LFy7Ugw8+6Il6/FJ02NkxQLQAAQDgFS6PAaqoqFDfvn09UYvfOn8WmN1uN7gaAACufi4HoDFjxuiDDz7wRC1+q2YMkNVm1+nyKoOrAQDg6udyF1hZWZnefvttffPNN+ratasCAwNrPT9z5ky3FecvQgItCg4wq7zKpsLSSsfu8AAAwDNcbgHasmWLunfvLrPZrK1bt+rHH390PDZv3uxyAXPmzFFycrJCQkKUkpKi9evXX/TcyspKTZ8+XW3atFFISIi6deumpUuXXtE9fUXjmnFADIQGAMDjXG4BWr58udtefPHixcrIyNC8efOUkpKiWbNmKS0tTTt37lSzZs0uOH/y5Mn6xz/+oXfeeUcdOnTQV199pcGDB2v16tXq0aNHve7pK6LDApVTVKaCMyyGCACAp9V7IcQ9e/boq6++0pkzZySpXoN3Z86cqbFjxyo9PV0dO3bUvHnzFBYWdtG1hBYtWqTnnntOAwcOVOvWrfXoo49q4MCBeu211+p9T1/BhqgAAHiPywHoxIkTuvXWW9WuXTsNHDhQx44dkyQ99NBDevLJJ52+T0VFhTZu3KjU1NRzxZjNSk1N1Zo1a+q8pry8XCEhIbWOhYaGatWqVfW+Z819i4qKaj28rWYmGFPhAQDwPJcD0IQJExQYGKjs7GyFhYU5jg8ZMqTO8TgXk5+fL6vVqri4uFrH4+LilJOTU+c1aWlpmjlzpnbv3i2bzaZly5ZpyZIljhBWn3tKUmZmpqKiohyPpKQkp9+Hu9SMASpkPzAAADzO5QD09ddf65VXXtE111xT63jbtm118OBBtxVWl9dff11t27ZVhw4dFBQUpMcee0zp6ekym69sS7NJkyapsLDQ8Th06JCbKnZezX5gp+gCAwDA41xODiUlJbVafmqcPHlSwcHBTt8nJiZGFotFubm5tY7n5uYqPj6+zmtiY2P16aefqqSkRAcPHtSOHTvUqFEjtW7dut73lKTg4GBFRkbWenjbuR3hCUAAAHiaywHoxhtv1P/8z/84fjeZTLLZbHr11Vd1yy23OH2foKAg9ezZU1lZWY5jNptNWVlZ6tOnzyWvDQkJUfPmzVVVVaWPP/5Yd9999xXf02jnVoOmCwwAAE9zeRr8q6++qltvvVU//PCDKioq9Mwzz+iXX37RyZMn9Z///Mele2VkZGjUqFHq1auXevfurVmzZqmkpETp6emSpJEjR6p58+bKzMyUJK1bt05HjhxR9+7ddeTIEb3wwguy2Wx65plnnL6nr6rZEJUuMAAAPM/lANS5c2ft2rVLb775piIiIlRcXKx7771X48aNU0JCgkv3GjJkiI4fP66pU6cqJydH3bt319KlSx2DmLOzs2uN7ykrK9PkyZO1b98+NWrUSAMHDtSiRYsUHR3t9D19Vc2GqKcYBA0AgMeZ7Oy+eYGioiJFRUWpsLDQa+OBduQUacCs79U0PEgbp9zmldcEAOBq4sr3t8stQJJ06tQpzZ8/X9u3b5ckdezYUenp6WrSpEl9bgedtxXG2R3hTSaTwRUBAHD1cnkQ9Hfffafk5GTNnj1bp06d0qlTpzR79my1atVK3333nSdq9Avn7whfVMaO8AAAeJLLLUDjxo3TkCFDNHfuXFksFkmS1WrVn/70J40bN04///yz24v0ByGBFoUGWnSm0qqC0gpHIAIAAO7ncgvQnj179OSTTzrCjyRZLBZlZGRoz549bi3O3zQOYz8wAAC8weUAdP311zvG/pxv+/bt6tatm1uK8ldRzAQDAMArXO4Ce/zxx/XEE09oz549uuGGGyRJa9eu1Zw5c/Tyyy9ry5YtjnO7du3qvkr9AC1AAAB4h8sBaNiwYZJUa/HB858zmUyOWUxWq/XKK/QjjWkBAgDAK1wOQPv37/dEHdC57TBYDRoAAM9yOQC1bNnSE3VA560FRAsQAAAeVa+FEPfu3atZs2bVWgjxiSeeUJs2bdxanL+hBQgAAO9weRbYV199pY4dO2r9+vXq2rWrunbtqnXr1qlTp05atmyZJ2r0G7QAAQDgHS63AE2cOFETJkzQyy+/fMHxZ599Vrfdxj5W9dU4vKYFiAAEAIAnudwCtH37dj300EMXHP/jH/+obdu2uaUof+XYEb6ELjAAADzJ5QAUGxurzZs3X3B88+bNatasmTtq8ltNmAYPAIBXuNwFNnbsWD388MPat2+f+vbtK0n6z3/+o1deeUUZGRluL9Cf1IwBKq2wqrzKquAAy2WuAAAA9eFyAJoyZYoiIiL02muvadKkSZKkxMREvfDCC3r88cfdXqA/iQgJkNkk2ezVq0HHRRKAAADwBJcDkMlk0oQJEzRhwgSdPn1akhQREeH2wvyR2WxSdFiQTpZU6FRpheIiQ4wuCQCAq1K91gGqQfBxv8ZhgdUBiIHQAAB4jMuDoOFZTcIZCA0AgKcRgHxMzUDokyUEIAAAPIUA5GMcLUAEIAAAPIYA5GManw1AJ+kCAwDAY+o1CDorK0tZWVnKy8uTzWar9dy7777rlsL8VeOaDVFpAQIAwGNcDkAvvviipk+frl69eikhIUEmk8kTdfktxxggdoQHAMBjXA5A8+bN08KFC/Xggw96oh6/VzMGiB3hAQDwHJfHAFVUVDi2wID7OcYA0QUGAIDHuByAxowZow8++MATtUDnNkQlAAEA4Dkud4GVlZXp7bff1jfffKOuXbsqMDCw1vMzZ850W3H+qKYFqLTCqrJKq0IC2Q8MAAB3czkAbdmyRd27d5ckbd26tdZzDIi+cpEhAQowm1Rls+tUaYUSokKNLgkAgKuOywFo+fLlnqgDZ5lMJjUOD9Lx0+U6UUwAAgDAE65oIcTDhw/r8OHD7qoFZ9WMA2I/MAAAPMPlAGSz2TR9+nRFRUWpZcuWatmypaKjo/XSSy9dsCgi6qcJM8EAAPAol7vAnn/+ec2fP18vv/yy+vXrJ0latWqVXnjhBZWVlemvf/2r24v0NwQgAAA8y+UA9N577+m///u/dddddzmOde3aVc2bN9ef/vQnApAbsCEqAACe5XIX2MmTJ9WhQ4cLjnfo0EEnT550S1H+rmYq/AkCEAAAHuFyAOrWrZvefPPNC46/+eab6tatm1uK8ndNajZEZRA0AAAe4XIX2Kuvvqo777xT33zzjfr06SNJWrNmjQ4dOqQvvvjC7QX6oyaNgiVJJ4oJQAAAeILLLUC//e1vtWvXLg0ePFgFBQUqKCjQvffeq507d+rGG2/0RI1+pymDoAEA8CiXW4AkKTExkcHOHsQsMAAAPMupALRlyxZ17txZZrNZW7ZsueS5Xbt2dUth/qymBehUaYVsNrvMZrYYAQDAnZwKQN27d1dOTo6aNWum7t27y2QyyW63X3CeyWSS1Wp1e5H+pmYWmM0uFZypdLQIAQAA93AqAO3fv1+xsbGOn+FZgRazIkMCVFRWpZMl5QQgAADczKkA1LJlS8fPBw8eVN++fRUQUPvSqqoqrV69uta5qL+YRsEqKqtSfnGFrm1mdDUAAFxdXJ4Fdsstt9S54GFhYaFuueUWlwuYM2eOkpOTFRISopSUFK1fv/6S58+aNUvt27dXaGiokpKSNGHCBJWVlTmef+GFF2QymWo96lq40dcxEBoAAM9xeRaY3W6XyXThoNwTJ04oPDzcpXstXrxYGRkZmjdvnlJSUjRr1iylpaVp586datbswmaPDz74QBMnTtS7776rvn37ateuXRo9erRMJpNmzpzpOK9Tp0765ptvHL//urWqIWjCatAAAHiM08ng3nvvlVQ90Hn06NEKDg52PGe1WrVlyxb17dvXpRefOXOmxo4dq/T0dEnSvHnz9Pnnn+vdd9/VxIkTLzh/9erV6tevn4YPHy5JSk5O1rBhw7Ru3brabyogQPHx8U7XUV5ervLycsfvRUVFLr0PT2ja6GwLEIshAgDgdk53gUVFRSkqKkp2u10RERGO36OiohQfH6+HH35Y//jHP5x+4YqKCm3cuFGpqannijGblZqaqjVr1tR5Td++fbVx40ZHN9m+ffv0xRdfaODAgbXO2717txITE9W6dWuNGDFC2dnZl6wlMzOz1vtJSkpy+n14StPw6oB5sqT8MmcCAABXOd0CtGDBAknVrS5PP/20wsLCruiF8/PzZbVaFRcXV+t4XFycduzYUec1w4cPV35+vvr37y+73a6qqio98sgjeu655xznpKSkaOHChWrfvr2OHTumF198UTfeeKO2bt2qiIiIOu87adIkZWRkOH4vKioyPATVtADRBQYAgPu5PAh65MiROnLkyAXHd+/erQMHDrijpotasWKFZsyYobfeekubNm3SkiVL9Pnnn+ull15ynHPHHXfovvvuU9euXZWWlqYvvvhCBQUF+uijjy563+DgYEVGRtZ6GK0p+4EBAOAxLgeg0aNHa/Xq1RccX7dunUaPHu30fWJiYmSxWJSbm1vreG5u7kXH70yZMkUPPvigxowZoy5dumjw4MGaMWOGMjMzZbPZ6rwmOjpa7dq10549e5yuzRfEOAZB0wUGAIC7uRyAfvzxR/Xr1++C4zfccIM2b97s9H2CgoLUs2dPZWVlOY7ZbDZlZWU5dpn/tdLSUpnNtUu2WCySVOfK1JJUXFysvXv3KiEhwenafAEtQAAAeI7L88NNJpNOnz59wfHCwkKXt8HIyMjQqFGj1KtXL/Xu3VuzZs1SSUmJY1bYyJEj1bx5c2VmZkqSBg0apJkzZ6pHjx5KSUnRnj17NGXKFA0aNMgRhJ566ikNGjRILVu21NGjRzVt2jRZLBYNGzbM1bdqKMcssNIKWW12WdgPDAAAt3E5AN10003KzMzUP//5T0fosFqtyszMVP/+/V2615AhQ3T8+HFNnTpVOTk56t69u5YuXeoYGJ2dnV2rxWfy5MkymUyaPHmyjhw5otjYWA0aNKjWzvSHDx/WsGHDdOLECcXGxqp///5au3atYyuPhqJxWJBMJslur94UNaZR8OUvAgAATjHZL9Z3dBHbtm3TTTfdpOjoaN14442SpO+//15FRUX69ttv1blzZ48U6k1FRUWKiopSYWGhoQOie760TCdKKrR0/I3qEG/8wGwAAHyZK9/fLo8B6tixo7Zs2aL7779feXl5On36tEaOHKkdO3ZcFeHHlzimwjMOCAAAt6rXHhGJiYmaMWOGu2vBr1Qvhlis/GJmggEA4E713iSrtLRU2dnZqqio3TrRtWvXKy4K1WpagPJpAQIAwK1cDkDHjx9Xenq6vvzyyzqfd3UmGC4uxjEVnhYgAADcyeUxQOPHj1dBQYHWrVun0NBQLV26VO+9957atm2rf//7356o0W81DWcMEAAAnuByC9C3336rf/3rX+rVq5fMZrNatmyp2267TZGRkcrMzNSdd97piTr9UkxEdQsQY4AAAHAvl1uASkpK1KxZM0lS48aNdfz4cUlSly5dtGnTJvdW5+dqusAIQAAAuJfLAah9+/bauXOnJKlbt276+9//riNHjmjevHkNbrsJXxfDIGgAADzC5S6wJ554QseOHZMkTZs2TQMGDND777+voKAgLVy40N31+bWaFqDjxeWy2+0ymdgOAwAAd3A5AD3wwAOOn3v27KmDBw9qx44datGihWJiYtxanL+rCUAVVTadLq9SZEigwRUBAHB1cKkLrLKyUm3atNH27dsdx8LCwnT99dcTfjwgNMii8KDq/dbyTzMOCAAAd3EpAAUGBqqsrMxTtaAO52aCMQ4IAAB3cXkQ9Lhx4/TKK6+oqqrKE/XgV5gJBgCA+7k8BmjDhg3KysrS119/rS5duig8PLzW80uWLHFbcTg3E+w4XWAAALiNywEoOjpav//97z1RC+oQy2KIAAC4nVMB6N///rfuuOMOBQYGasGCBZ6uCeeJbRQiiQAEAIA7OTUGaPDgwSooKJAkWSwW5eXlebImnKemBYguMAAA3MepABQbG6u1a9dKEgvyeRkBCAAA93OqC+yRRx7R3XffLZPJJJPJpPj4+Iuea7Va3VYcCEAAAHiCUwHohRde0NChQ7Vnzx7dddddWrBggaKjoz1cGqTzAhDbYQAA4DZOzwLr0KGDOnTooGnTpum+++5TWFiYJ+vCWTXT4CutdhWeqVR0WJDBFQEA0PC5vBDitGnTCD9eFBxgUVRo9R5gdIMBAOAeLgcgeB/jgAAAcC8CUAMQ2+jcOCAAAHDlCEANQE0LUF4RAQgAAHcgADUAzWoC0OkygysBAODq4LYAlJubq+nTp7vrdjhPs8iaAEQLEAAA7uC2AJSTk6MXX3zRXbfDeZpFVO8HRhcYAADu4fQ6QFu2bLnk8zt37rziYlA3usAAAHAvpwNQ9+7dZTKZZLfbL3iu5jirFHsGXWAAALiX0wGoSZMmevXVV3XrrbfW+fwvv/yiQYMGua0wnBN7tgvsdFmVyiqtCgm0GFwRAAANm9MBqGfPnjp69KhatmxZ5/MFBQV1tg7hykWGBCg4wKzyKpvyisrVoikrcQMAcCWcHgT9yCOPKDk5+aLPt2jRQgsWLHBHTfgVk8l0XjcY44AAALhSTrcADR48+JLPN27cWKNGjbriglC3uIgQHTp5RrnMBAMA4IqxEGIDERdZPQ4ot4gWIAAArhQBqIGo6QLLpQsMAIArRgBqIGpagFgMEQCAK0cAaiDi6QIDAMBtCEANhKMLjAAEAMAVq1cA+v777/XAAw+oT58+OnLkiCRp0aJFWrVqlVuLwznnBkHTBQYAwJVyOQB9/PHHSktLU2hoqH788UeVl1d/IRcWFmrGjBluLxDVagJQcXmVisurDK4GAICGzeUA9Je//EXz5s3TO++8o8DAQMfxfv36adOmTW4tDuc0Cg5Qo+DqZZvy6AYDAOCKuByAdu7cqZtuuumC41FRUSooKHC5gDlz5ig5OVkhISFKSUnR+vXrL3n+rFmz1L59e4WGhiopKUkTJkxQWVntQODqPRuKc+OA6AYDAOBKuByA4uPjtWfPnguOr1q1Sq1bt3bpXosXL1ZGRoamTZumTZs2qVu3bkpLS1NeXl6d53/wwQeaOHGipk2bpu3bt2v+/PlavHixnnvuuXrfsyGpmQmWU3TG4EoAAGjYXA5AY8eO1RNPPKF169bJZDLp6NGjev/99/XUU0/p0UcfdeleM2fO1NixY5Wenq6OHTtq3rx5CgsL07vvvlvn+atXr1a/fv00fPhwJScn6/bbb9ewYcNqtfC4es+GxBGACmkBAgDgSrgcgCZOnKjhw4fr1ltvVXFxsW666SaNGTNG/+///T/9+c9/dvo+FRUV2rhxo1JTU88VYzYrNTVVa9asqfOavn37auPGjY7As2/fPn3xxRcaOHBgve8pSeXl5SoqKqr18EXxUTUBiBYgAACuhNObodYwmUx6/vnn9fTTT2vPnj0qLi5Wx44d1ahRI5fuk5+fL6vVqri4uFrH4+LitGPHjjqvGT58uPLz89W/f3/Z7XZVVVXpkUcecXSB1eeekpSZmakXX3zRpfqNkFATgBgEDQDAFXG5Begf//iHSktLFRQUpI4dO6p3794uh5/6WrFihWbMmKG33npLmzZt0pIlS/T555/rpZdeuqL7Tpo0SYWFhY7HoUOH3FSxe8U5usAIQAAAXAmXA9CECRPUrFkzDR8+XF988YWsVmu9XjgmJkYWi0W5ubm1jufm5io+Pr7Oa6ZMmaIHH3xQY8aMUZcuXTR48GDNmDFDmZmZstls9bqnJAUHBysyMrLWwxclRIVKko4RgAAAuCIuB6Bjx47pww8/lMlk0v3336+EhASNGzdOq1evduk+QUFB6tmzp7KyshzHbDabsrKy1KdPnzqvKS0tldlcu2SLxSJJstvt9bpnQ1IzBuh4cbkqrTaDqwEAoOFyeQxQQECAfve73+l3v/udSktL9cknn+iDDz7QLbfcomuuuUZ79+51+l4ZGRkaNWqUevXqpd69e2vWrFkqKSlRenq6JGnkyJFq3ry5MjMzJUmDBg3SzJkz1aNHD6WkpGjPnj2aMmWKBg0a5AhCl7tnQ9Y0PEiBFpMqrXYdP12uxOhQo0sCAKBBcjkAnS8sLExpaWk6deqUDh48qO3bt7t0/ZAhQ3T8+HFNnTpVOTk56t69u5YuXeoYxJydnV2rxWfy5MkymUyaPHmyjhw5otjYWA0aNEh//etfnb5nQ2Y2m9QsIkRHCs7oWGEZAQgAgHoy2e12u6sX1bT8vP/++8rKylJSUpKGDRumESNGqEOHDp6o06uKiooUFRWlwsJCnxsP9Ie5q/XDwVOaM/x63dk1wehyAADwGa58f7vcAjR06FB99tlnCgsL0/33368pU6ZcFeNrGoqacUDHWAsIAIB6czkAWSwWffTRR0pLS3OMu4H31HR7HS1gJhgAAPXlcgB6//33PVEHnJRICxAAAFfMqQA0e/Zsp2/4+OOP17sYXF5CTQsQawEBAFBvTgWg//qv/3LqZiaTiQDkYYk1iyEW0AIEAEB9ORWA9u/f7+k64KTE6HOLIVZU2RQU4PJalgAA+D2+PRuYJuFBCg4wy26XctkUFQCAeqnXQoiHDx/Wv//9b2VnZ6uioqLWczNnznRLYaibyWRSQlSIDpwo1dGCM0pqEmZ0SQAANDguB6CsrCzdddddat26tXbs2KHOnTvrwIEDstvtuv766z1RI34lISq0OgAxEwwAgHpxuQts0qRJeuqpp/Tzzz8rJCREH3/8sQ4dOqTf/va3uu+++zxRI36leWPWAgIA4Eq4HIC2b9+ukSNHSqreGPXMmTNq1KiRpk+frldeecXtBeJCNYshHj5FCxAAAPXhcgAKDw93jPtJSEiotft7fn6++yrDRV1zNgAdYSo8AAD14vIYoBtuuEGrVq3Sddddp4EDB+rJJ5/Uzz//rCVLluiGG27wRI34lZousCOnSg2uBACAhsnlADRz5kwVFxdLkl588UUVFxdr8eLFatu2LTPAvKT5eS1AdrtdJpPJ4IoAAGhYXA5ArVu3dvwcHh6uefPmubUgXF7C2cUQyyptOllSoaaNgg2uCACAhsXlMUBjxozRihUrPFAKnBUcYFGziOrQwzggAABc53IAOn78uAYMGKCkpCQ9/fTT+umnnzxRFy7j3DggAhAAAK5yOQD961//0rFjxzRlyhRt2LBB119/vTp16qQZM2bowIEDHigRdWnOVHgAAOqtXnuBNW7cWA8//LBWrFihgwcPavTo0Vq0aJGuvfZad9eHi7imcfUWGIeZCQYAgMuuaDPUyspK/fDDD1q3bp0OHDiguLg4d9WFy0hqUt0CdIgWIAAAXFavALR8+XKNHTtWcXFxGj16tCIjI/XZZ5/p8OHD7q4PF5F0tgXo0ElagAAAcJXL0+CbN2+ukydPasCAAXr77bc1aNAgBQczDdvbanaBP3yKtYAAAHCVywHohRde0H333afo6GgPlANnJUaHyGSSzlRadaKkQjGsBQQAgNNc7gIbO3Ys4ccHBAdYFBdRvSAi3WAAALjmigZBw1gMhAYAoH4IQA0YA6EBAKgfAlADVjMQmgAEAIBrCEANWMum1QHo4AkCEAAAriAANWA1ASibFiAAAFxCAGrAWjQJlyQdLTyj8iqrwdUAANBwEIAasJhGQQoLsshuZ1NUAABcQQBqwEwmk1qcHQidzTggAACcRgBq4BwBiHFAAAA4jQDUwCXHVI8DOnCixOBKAABoOAhADVzNTLAD+QQgAACcRQBq4Fo1rWkBogsMAABnEYAauJousEMnS1VltRlcDQAADQMBqIGLjwxRcIBZVTY7U+EBAHASAaiBM5tNSj7bDbafcUAAADiFAHQVSI6pHghNAAIAwDkEoKsAU+EBAHANAegq0CamkSRp33ECEAAAziAAXQXaNKtuAdp3vNjgSgAAaBh8IgDNmTNHycnJCgkJUUpKitavX3/Rc2+++WaZTKYLHnfeeafjnNGjR1/w/IABA7zxVgzR+mwL0NHCMpWUVxlcDQAAvs/wALR48WJlZGRo2rRp2rRpk7p166a0tDTl5eXVef6SJUt07Ngxx2Pr1q2yWCy67777ap03YMCAWuf985//9MbbMUTj8CA1CQ+SxEBoAACcYXgAmjlzpsaOHav09HR17NhR8+bNU1hYmN599906z2/SpIni4+Mdj2XLliksLOyCABQcHFzrvMaNG1+0hvLychUVFdV6NDRtYqu7wfbSDQYAwGUZGoAqKiq0ceNGpaamOo6ZzWalpqZqzZo1Tt1j/vz5Gjp0qMLDw2sdX7FihZo1a6b27dvr0Ucf1YkTJy56j8zMTEVFRTkeSUlJ9XtDBmoTW90NtpeB0AAAXJahASg/P19Wq1VxcXG1jsfFxSknJ+ey169fv15bt27VmDFjah0fMGCA/ud//kdZWVl65ZVXtHLlSt1xxx2yWq113mfSpEkqLCx0PA4dOlT/N2WQ1rQAAQDgtACjC7gS8+fPV5cuXdS7d+9ax4cOHer4uUuXLuratavatGmjFStW6NZbb73gPsHBwQoODvZ4vZ50bbPqFqA9uQQgAAAux9AWoJiYGFksFuXm5tY6npubq/j4+EteW1JSog8//FAPPfTQZV+ndevWiomJ0Z49e66oXl/WtlmEJGlffjGbogIAcBmGBqCgoCD17NlTWVlZjmM2m01ZWVnq06fPJa/93//9X5WXl+uBBx647OscPnxYJ06cUEJCwhXX7KuaR4cqNNCiSqtdB06UGl0OAAA+zfBZYBkZGXrnnXf03nvvafv27Xr00UdVUlKi9PR0SdLIkSM1adKkC66bP3++7rnnHjVt2rTW8eLiYj399NNau3atDhw4oKysLN1999269tprlZaW5pX3ZASz2aS2cWe7wfJOG1wNAAC+zfAxQEOGDNHx48c1depU5eTkqHv37lq6dKljYHR2drbM5to5befOnVq1apW+/vrrC+5nsVi0ZcsWvffeeyooKFBiYqJuv/12vfTSSw1+nM/lXNuskbYcLtTu3GIN6Gx0NQAA+C6T3W63G12ErykqKlJUVJQKCwsVGRlpdDlOm7tir15ZukODuiXqjWE9jC4HAACvcuX72/AuMLhPu7NdYLty6AIDAOBSCEBXkQ4J1Wl37/FiVVQxEwwAgIshAF1FEqNCFBESoCqbnQURAQC4BALQVcRkMqlDfPV6QDvpBgMA4KIIQFeZ9mcD0PachrehKwAA3kIAusp0iK8eB0QLEAAAF0cAuspcl3C2BegYLUAAAFwMAegq0yE+UiaTlFtUrvzicqPLAQDAJxGArjLhwQFq1TRckvTLUVqBAACoCwHoKtQxsXoc0C9HCw2uBAAA30QAugp1SoySRAsQAAAXQwC6CnU62wK0jQAEAECdCEBXoS7Nq1uA9ueXqPBMpcHVAADgewhAV6HG4UFKahIqSdp6hHFAAAD8GgHoKtW1ebQkacthAhAAAL9GALpKdb2muhtsy+ECYwsBAMAHEYCuUl2viZZECxAAAHUhAF2lulwTJZNJOlJwRnmny4wuBwAAn0IAuko1Cg5Q+7jqfcE2HSwwthgAAHwMAegqdn3LxpKkH7NPGVwJAAC+hQB0Fbu+RXUA2niQAAQAwPkIQFex61tES5K2HClURZXN2GIAAPAhBKCrWKuYcDUND1JFlU0/syAiAAAOBKCrmMlkUq/k6m6w9ftPGlwNAAC+gwB0levdqqkkaf3+EwZXAgCA7yAAXeVSWjWRJP1w4JSsNrvB1QAA4BsIQFe56xIiFREcoNPlVfrlKOOAAACQCEBXPYvZpJTW1a1A/9lDNxgAABIByC/0uzZGkrR6b77BlQAA4BsIQH6gJgBtOHBS5VVWg6sBAMB4BCA/0LZZI8VGBKus0qaNB1gVGgAAApAfMJlM+m27WEnSil3HDa4GAADjEYD8xM3tqwPQ8h15BlcCAIDxCEB+4sZrY2U2SbvzinX4VKnR5QAAYCgCkJ+ICgtUr5bV0+G/pRUIAODnCEB+5LaOcZKkr37JMbgSAACMRQDyI7d3qg5Aa/edVGFppcHVAABgHAKQH2nZNFwd4iNktdm1bHuu0eUAAGCYAKMLgHfd0TlBO3JO6/9+Oqo/9LzG6HJwGXa7XZVWuyqsNlVUnfew2lRptclqs8tqs6vKZpfNbleVtfp3q90uq80mq02y2mxnn6++n81ul90ux+/VP9tlV/W/Nrsk+/nnS/aztZyr6+y/sjt+t9fxnP1X++/WvJ5T792pz8fZe7ERMOBrfpPcxLFQrxEIQH5mULcE/dc3u7RqT75OFJeraaNgo0u6qtjtdpVWWFV4plIFpZUqPFOpwjMV5/1cqdIKq0orqlRSYdWZsz9XH6v+/UyltVbQAYCr0Z9ubkMAgve0jm2kzs0jtfVIkb74+Zge7JNsdEkNRpXVpqMFZco+WaqcojLlFpXp+Oly5Z79Oe90ufJOl6uiynOhJcBsUqDFrKAAswItZgWYTbKcfQSYTTKf/dfy6+Om6ofFbJLJVL04pkmS2SSZTeeOmU2SSSaZzdX/nn9cks7+I5PJVOt3nb2u+rlfn1vzu+ncz44L63LJJy957aWuvPRrAtWcbVXEleuWFG3o6xOA/NA93Ztr65Ei/X8bDxOAfsVutyu3qFzbc4q0J7dYB0+W6OCJUmWfLNWRU2dUZXPur2OgxaSo0EBFhQYqOiyo+t/QQEWGBio82KKwoACFBVnOPqp/Dg2yKDwoQKFBFgWdF3KCAswKPvuzxcy3OAC4g08EoDlz5uhvf/ubcnJy1K1bN73xxhvq3bt3nefefPPNWrly5QXHBw4cqM8//1xS9ZfYtGnT9M4776igoED9+vXT3Llz1bZtW4++j4binh7N9fKXO/TT4ULtyClSh/hIo0syhM1m157jxdp8qEDbjxVpx7HT2pFTpFOXmCEXHGBWUpMwJUSFKC4yRM0igh3/NosMVrOIEDUJD1JYkMXRSgIA8D2GB6DFixcrIyND8+bNU0pKimbNmqW0tDTt3LlTzZo1u+D8JUuWqKKiwvH7iRMn1K1bN913332OY6+++qpmz56t9957T61atdKUKVOUlpambdu2KSQkxCvvy5fFNArWrdc101e/5GrxhkOaNqiT0SV5xZkKqzYfKtDGgyf1w8FT2nTwlIrKqi44z2I2qXVMuNrFRyi5aZhaNglXi6Zhatk0THERITLTCgMADZ7Jbje2xzMlJUW/+c1v9Oabb0qSbDabkpKS9Oc//1kTJ0687PWzZs3S1KlTdezYMYWHh8tutysxMVFPPvmknnrqKUlSYWGh4uLitHDhQg0dOvSy9ywqKlJUVJQKCwsVGXl1to4s35mn9AUbFBEcoLXP3arwYMOzsNvZ7XbtySvWyl3HtXLXca3bf/KC8TmhgRZ1vSZKnRKj1CEhQh0TInVts0YKCbQYVDUAoL5c+f429FuvoqJCGzdu1KRJkxzHzGazUlNTtWbNGqfuMX/+fA0dOlTh4eGSpP379ysnJ0epqamOc6KiopSSkqI1a9bUGYDKy8tVXl7u+L2oqKi+b6nB+G3bWLWKCdf+/BIt+fGIHryhpdEluYXVZtf6/Sf15dZj+mZbro4WltV6Pi4yWL1aNlHPlo3VK7mxrkuIVKCF5bAAwN8YGoDy8/NltVoVFxdX63hcXJx27Nhx2evXr1+vrVu3av78+Y5jOTk5jnv8+p41z/1aZmamXnzxRVfLb9DMZpMevKGlpn+2Te+u2q/hvVs02AG2Nptda/ef0GdbjunrX3KUX3yuizQowKwbWjfVTW1jdHP7WLWJbcTYHACA8WOArsT8+fPVpUuXiw6YdtakSZOUkZHh+L2oqEhJSUlXWp7PG/KbJL2etVv780v05dZj+l3XRKNLcsnBEyX6eNMRfbzxsI4UnHEcjw4L1O0d4zSgc7z6tI5RaBDdWQCA2gwNQDExMbJYLMrNrb0tQ25uruLj4y95bUlJiT788ENNnz691vGa63Jzc5WQkFDrnt27d6/zXsHBwQoO9r8FAcODA5TeL1mzvtmtN7L26I7OCT7fClRptembbblatPagVu894TgeERKgO7skaGCXBPVp05RuLQDAJRn6LREUFKSePXsqKyvLccxmsykrK0t9+vS55LX/+7//q/Lycj3wwAO1jrdq1Urx8fG17llUVKR169Zd9p7+KL1vK0WGBGhn7mn9a/MRo8u5qPzics36Zpf6v/KtHn1/k1bvPSGTSbqxbYxeH9pdG55P1cu/76qb2sUSfgAAl2V4F1hGRoZGjRqlXr16qXfv3po1a5ZKSkqUnp4uSRo5cqSaN2+uzMzMWtfNnz9f99xzj5o2bVrruMlk0vjx4/WXv/xFbdu2dUyDT0xM1D333OOtt9VgRIUF6tGbr9UrS3fota936Y7OCT7VZbQr97Tmf79fn2w+4pjBFdMoSEN/00LDUlqoeXSowRUCABoiwwPQkCFDdPz4cU2dOlU5OTnq3r27li5d6hjEnJ2dLbO59v+j37lzp1atWqWvv/66zns+88wzKikp0cMPP6yCggL1799fS5cuZQ2gi0jvl6x/rD2oIwVn9Ma3u/XMgA5Gl6QNB05q3oq9ytqR5zjWLSlaf+yXrDs6JygogFYeAED9Gb4OkC/yh3WAfu3rX3L08KKNCrSY9Om4fuqUGOX1Gux2u1buOq45y/dow4FTkqr3b0rrGK+xN7XS9S0aM4MLAHBRDWYdIPiO2zrGKa1TnL76JVfjP9ys//tzf68tBmiz2fX1tlzNWb5HPx8plCQFWcz6fc/mGntja7WObeSVOgAA/oMABEnVY6dmDO6iTdkF2p1XrGc/3qJZQ7p7tMWlymrT5z8f05zle7Qrt1hS9crMw1NaaOyNrRUfRZclAMAzCEBwaNooWK8P7a6R89frX5uPqmWTMGXc3t7tr1NWadUnPx7RvJV7dfBEqSQpIjhAo/omK71fspo28r8lCQAA3kUAQi1928Toxbs76flPtmr2t3skSRNua+eWlqBTJRX6YH22Fq4+oOOnq7ceaRwWqD/2a6WRfZMVFRp4xa8BAIAzCEC4wIiUljpdVqWXv9yh2d/u0f4TpfrLPZ3rHVC2HinU++sO6pMfj6issnoqe0JUiB7q30rDU1ooLIj/GQIAvItvHtTpkd+2UWRIoKb8a6v+76ej2rD/pJ5Ka697uicqwImFBg+dLNXSrTn65Mcj2nbs3OayHRMi9VD/VrqreyILFgIADMM0+Dr44zT4i9l48KQyPvrJMVYnNiJYd3SOV+9WTZTcNFyNggNUZbPrZEmF9ucX6+cjhVq376R25xU77hFoMWlA5wSNSGmhlFZNmMoOAPAIV76/CUB1IADVVlZp1XurD+jt7/bpREnF5S+QZDGb1KtlYw3qlqg7uySocXiQh6sEAPg7AtAVIgDVraLKppW7juv73ce15XChDp86ozMVVTKbTYoOC1Ry03C1i4vQb5Ib64bWTRUdRugBAHgPCyHCI4ICzLqtY5xu6xhndCkAAFwRRqECAAC/QwACAAB+hwAEAAD8DgEIAAD4HQIQAADwOwQgAADgdwhAAADA7xCAAACA3yEAAQAAv0MAAgAAfocABAAA/A4BCAAA+B0CEAAA8DsEIAAA4HcCjC7AF9ntdklSUVGRwZUAAABn1Xxv13yPXwoBqA6nT5+WJCUlJRlcCQAAcNXp06cVFRV1yXNMdmdikp+x2Ww6evSoIiIiZDKZ3HrvoqIiJSUl6dChQ4qMjHTrva82fFbO47NyHp+V8/isnMdn5TxPflZ2u12nT59WYmKizOZLj/KhBagOZrNZ11xzjUdfIzIykv9InMRn5Tw+K+fxWTmPz8p5fFbO89RndbmWnxoMggYAAH6HAAQAAPwOAcjLgoODNW3aNAUHBxtdis/js3Ien5Xz+Kycx2flPD4r5/nKZ8UgaAAA4HdoAQIAAH6HAAQAAPwOAQgAAPgdAhAAAPA7BCAvmjNnjpKTkxUSEqKUlBStX7/e6JJ8TmZmpn7zm98oIiJCzZo10z333KOdO3caXVaD8PLLL8tkMmn8+PFGl+Kzjhw5ogceeEBNmzZVaGiounTpoh9++MHosnyO1WrVlClT1KpVK4WGhqpNmzZ66aWXnNpf6Wr33XffadCgQUpMTJTJZNKnn35a63m73a6pU6cqISFBoaGhSk1N1e7du40p1mCX+qwqKyv17LPPqkuXLgoPD1diYqJGjhypo0ePeq0+ApCXLF68WBkZGZo2bZo2bdqkbt26KS0tTXl5eUaX5lNWrlypcePGae3atVq2bJkqKyt1++23q6SkxOjSfNqGDRv097//XV27djW6FJ916tQp9evXT4GBgfryyy+1bds2vfbaa2rcuLHRpfmcV155RXPnztWbb76p7du365VXXtGrr76qN954w+jSDFdSUqJu3bppzpw5dT7/6quvavbs2Zo3b57WrVun8PBwpaWlqayszMuVGu9Sn1Vpaak2bdqkKVOmaNOmTVqyZIl27typu+66y3sF2uEVvXv3to8bN87xu9VqtScmJtozMzMNrMr35eXl2SXZV65caXQpPuv06dP2tm3b2pctW2b/7W9/a3/iiSeMLsknPfvss/b+/fsbXUaDcOedd9r/+Mc/1jp277332keMGGFQRb5Jkv2TTz5x/G6z2ezx8fH2v/3tb45jBQUF9uDgYPs///lPAyr0Hb/+rOqyfv16uyT7wYMHvVITLUBeUFFRoY0bNyo1NdVxzGw2KzU1VWvWrDGwMt9XWFgoSWrSpInBlfiucePG6c4776z1vy9c6N///rd69eql++67T82aNVOPHj30zjvvGF2WT+rbt6+ysrK0a9cuSdJPP/2kVatW6Y477jC4Mt+2f/9+5eTk1PpvMSoqSikpKfytd0JhYaFMJpOio6O98npshuoF+fn5slqtiouLq3U8Li5OO3bsMKgq32ez2TR+/Hj169dPnTt3Nrocn/Thhx9q06ZN2rBhg9Gl+Lx9+/Zp7ty5ysjI0HPPPacNGzbo8ccfV1BQkEaNGmV0eT5l4sSJKioqUocOHWSxWGS1WvXXv/5VI0aMMLo0n5aTkyNJdf6tr3kOdSsrK9Ozzz6rYcOGeW0zWQIQfNa4ceO0detWrVq1yuhSfNKhQ4f0xBNPaNmyZQoJCTG6HJ9ns9nUq1cvzZgxQ5LUo0cPbd26VfPmzSMA/cpHH32k999/Xx988IE6deqkzZs3a/z48UpMTOSzgttVVlbq/vvvl91u19y5c732unSBeUFMTIwsFotyc3NrHc/NzVV8fLxBVfm2xx57TJ999pmWL1+ua665xuhyfNLGjRuVl5en66+/XgEBAQoICNDKlSs1e/ZsBQQEyGq1Gl2iT0lISFDHjh1rHbvuuuuUnZ1tUEW+6+mnn9bEiRM1dOhQdenSRQ8++KAmTJigzMxMo0vzaTV/z/lb77ya8HPw4EEtW7bMa60/EgHIK4KCgtSzZ09lZWU5jtlsNmVlZalPnz4GVuZ77Ha7HnvsMX3yySf69ttv1apVK6NL8lm33nqrfv75Z23evNnx6NWrl0aMGKHNmzfLYrEYXaJP6dev3wVLKuzatUstW7Y0qCLfVVpaKrO59teDxWKRzWYzqKKGoVWrVoqPj6/1t76oqEjr1q3jb30dasLP7t279c0336hp06ZefX26wLwkIyNDo0aNUq9evdS7d2/NmjVLJSUlSk9PN7o0nzJu3Dh98MEH+te//qWIiAhHv3lUVJRCQ0MNrs63REREXDA2Kjw8XE2bNmXMVB0mTJigvn37asaMGbr//vu1fv16vf3223r77beNLs3nDBo0SH/961/VokULderUST/++KNmzpypP/7xj0aXZrji4mLt2bPH8fv+/fu1efNmNWnSRC1atND48eP1l7/8RW3btlWrVq00ZcoUJSYm6p577jGuaINc6rNKSEjQH/7wB23atEmfffaZrFar4+99kyZNFBQU5PkCvTLXDHa73W5/44037C1atLAHBQXZe/fubV+7dq3RJfkcSXU+FixYYHRpDQLT4C/t//7v/+ydO3e2BwcH2zt06GB/++23jS7JJxUVFdmfeOIJe4sWLewhISH21q1b259//nl7eXm50aUZbvny5XX+jRo1apTdbq+eCj9lyhR7XFycPTg42H7rrbfad+7caWzRBrnUZ7V///6L/r1fvny5V+oz2e0s7QkAAPwLY4AAAIDfIQABAAC/QwACAAB+hwAEAAD8DgEIAAD4HQIQAADwOwQgAADgdwhAAADA7xCAAPi0FStWyGQyqaCgwJDXz8rK0nXXXefU5rJLly5V9+7d2TMLaAAIQAB8xs0336zx48fXOta3b18dO3ZMUVFRhtT0zDPPaPLkyU5tLjtgwAAFBgbq/fff90JlAK4EAQiATwsKClJ8fLxMJpPXX3vVqlXau3evfv/73zt9zejRozV79mwPVgXAHQhAAHzC6NGjtXLlSr3++usymUwymUw6cODABV1gCxcuVHR0tD777DO1b99eYWFh+sMf/qDS0lK99957Sk5OVuPGjfX444/X6rYqLy/XU089pebNmys8PFwpKSlasWLFJWv68MMPddtttykkJMRx7KefftItt9yiiIgIRUZGqmfPnvrhhx8czw8aNEg//PCD9u7d69bPB4B7BRhdAABI0uuvv65du3apc+fOmj59uiQpNjZWBw4cuODc0tJSzZ49Wx9++KFOnz6te++9V4MHD1Z0dLS++OIL7du3T7///e/Vr18/DRkyRJL02GOPadu2bfrwww+VmJioTz75RAMGDNDPP/+stm3b1lnT999/r+HDh9c6NmLECPXo0UNz586VxWLR5s2bFRgY6Hi+RYsWiouL0/fff682bdq46dMB4G4EIAA+ISoqSkFBQQoLC1N8fPwlz62srNTcuXMdAeMPf/iDFi1apNzcXDVq1EgdO3bULbfcouXLl2vIkCHKzs7WggULlJ2drcTEREnSU089paVLl2rBggWaMWNGna9z8OBBx/k1srOz9fTTT6tDhw6SVGd4SkxM1MGDB13+DAB4DwEIQIMTFhZWq3UlLi5OycnJatSoUa1jeXl5kqSff/5ZVqtV7dq1q3Wf8vJyNW3a9KKvc+bMmVrdX5KUkZGhMWPGaNGiRUpNTdV99913QUtPaGioSktL6/3+AHgeAQhAg3N+l5MkmUymOo/VTEcvLi6WxWLRxo0bL5jNdX5o+rWYmBidOnWq1rEXXnhBw4cP1+eff64vv/xS06ZN04cffqjBgwc7zjl58qRiY2Pr9d4AeAcBCIDPCAoKcmq9HVf16NFDVqtVeXl5uvHGG126btu2bRccb9eundq1a6cJEyZo2LBhWrBggSMAlZWVae/everRo4fb6gfgfswCA+AzkpOTtW7dOh04cED5+fluW1CwXbt2GjFihEaOHKklS5Zo//79Wr9+vTIzM/X5559f9Lq0tDStWrXK8fuZM2f02GOPacWKFTp48KD+85//aMOGDbruuusc56xdu1bBwcHq06ePW2oH4BkEIAA+46mnnpLFYlHHjh0VGxur7Oxst917wYIFGjlypJ588km1b99e99xzjzZs2KAWLVpc9JoRI0bol19+0c6dOyVJFotFJ06c0MiRI9WuXTvdf//9uuOOO/Tiiy86rvnnP/+pESNGKCwszG21A3A/k91utxtdBAD4qqefflpFRUX6+9//ftlz8/Pz1b59e/3www9q1aqVF6oDUF+0AAHAJTz//PNq2bKlU91xBw4c0FtvvUX4ARoAWoAAAIDfoQUIAAD4HQIQAADwOwQgAADgdwhAAADA7xCAAACA3yEAAQAAv0MAAgAAfocABAAA/A4BCAAA+J3/H0VaN1o8KbRwAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\dae\\petsc_pid_doc_11_0.png" - } - }, - "output_type": "display_data" - } - ], - "source": [ - "a = plt.plot(tj.time, tj.get_vec(m.fs.valve_1.valve_opening[12]))\n", - "a = plt.ylabel(\"valve 1 fraction open\")\n", - "a = plt.xlabel(\"time (s)\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAGwCAYAAACAZ5AeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVPklEQVR4nO3deXhTVf4/8HfSNumadKErXagWCmWnDDXiCpWCHQcER1QUZHHhCyp0BrAuoM5oGRhHQQEX5gfOoiyOzIysdgoUgQq0UKgsZSsULW2Btkn3JTm/P0qvxBZJIOlNm/frefLQ3Hty88kFm7fnnHuuQgghQERERES3RCl3AURERESdAUMVERERkQ0wVBERERHZAEMVERERkQ0wVBERERHZAEMVERERkQ0wVBERERHZgKvcBTgTk8mEoqIi+Pj4QKFQyF0OERERWUAIgcrKSoSFhUGpvH5/FENVOyoqKkJERITcZRAREdFNuHDhAsLDw6+7n6GqHfn4+ABo/kvRaDQyV0NERESWMBgMiIiIkL7Hr4ehqh21DPlpNBqGKiIiog7mRlN3OFGdiIiIyAYYqoiIiIhsgKGKiIiIyAYYqoiIiIhsgKGKiIiIyAYYqoiIiIhsgKGKiIiIyAYYqoiIiIhsgKGKiIiIyAYYqoiIiIhsgKGKiIiIyAYYqoiIiIhsgKGqExBCYPuJEphMQu5SiIiInBZDVSfw4ppcTFmdjX/sOy93KURERE5L1lC1YsUK9OvXDxqNBhqNBjqdDlu2bDFrk5WVhWHDhsHLywsajQb33HMPamtrpf1lZWWYMGECNBoNfH19MXXqVFRVVZkd48iRI7j77rvh7u6OiIgILFq0qFUt69evR8+ePeHu7o6+ffti8+bNZvuFEJg/fz5CQ0Ph4eGBxMREnDp1yoZn4+YNjvIDAKRtPoHCKzUyV0NEROScZA1V4eHhWLhwIXJycpCdnY1hw4Zh9OjROHr0KIDmQDVy5EiMGDEC+/fvx4EDBzBz5kwolT+VPWHCBBw9ehTp6enYuHEjdu3ahWeffVbabzAYMGLECERFRSEnJweLFy/GG2+8gU8++URqs3fvXjz++OOYOnUqDh06hDFjxmDMmDH4/vvvpTaLFi3C0qVL8dFHH2Hfvn3w8vJCUlIS6urq2uFM/bKn7ohCQrQ/ahuN+HCHYwQ9IiIipyMcjJ+fn1i5cqUQQoiEhATx2muvXbftsWPHBABx4MABaduWLVuEQqEQP/74oxBCiOXLlws/Pz9RX18vtZk3b56IjY2Vnj/66KMiOTnZ7NgJCQniueeeE0IIYTKZREhIiFi8eLG0v6KiQqjVavHFF19Y/Nn0er0AIPR6vcWvsdSBgisiat5G0ePVzcJQ22Dz4xMRETkrS7+/HWZOldFoxJo1a1BdXQ2dTofS0lLs27cPQUFBuPPOOxEcHIx7770Xu3fvll6TlZUFX19fDB48WNqWmJgIpVKJffv2SW3uueceqFQqqU1SUhLy8/NRXl4utUlMTDSrJykpCVlZWQCAgoICFBcXm7XRarVISEiQ2rSlvr4eBoPB7GEv8VF+uK2LF+qbTMg4Xmq39yEiIqK2yR6q8vLy4O3tDbVajeeffx4bNmxAXFwczp49CwB444038Mwzz2Dr1q0YNGgQhg8fLs1lKi4uRlBQkNnxXF1d4e/vj+LiYqlNcHCwWZuW5zdqc+3+a1/XVpu2pKWlQavVSo+IiAjLT4yVFAoFRvYJAQBsP8FQRURE1N5kD1WxsbHIzc3Fvn37MH36dEyaNAnHjh2DyWQCADz33HOYPHkyBg4ciPfeew+xsbH4f//v/8lctWVSU1Oh1+ulx4ULF+z6fvfFNgfMb09d4vIKRERE7Uz2UKVSqRATE4P4+HikpaWhf//+WLJkCUJDQwEAcXFxZu179eqFwsJCAEBISAhKS817ZZqamlBWVoaQkBCpTUlJiVmbluc3anPt/mtf11abtqjVaunKxpaHPQ2I8IWHmwvKaxpx+lLVjV9ARERENiN7qPo5k8mE+vp6dOvWDWFhYcjPzzfbf/LkSURFRQEAdDodKioqkJOTI+3fvn07TCYTEhISpDa7du1CY2Oj1CY9PR2xsbHw8/OT2mRkZJi9T3p6OnQ6HQAgOjoaISEhZm0MBgP27dsntXEEKlclBkX5AgD2FZTJWwwREZGzaaeJ8216+eWXRWZmpigoKBBHjhwRL7/8slAoFOKbb74RQgjx3nvvCY1GI9avXy9OnTolXnvtNeHu7i5Onz4tHWPkyJFi4MCBYt++fWL37t2ie/fu4vHHH5f2V1RUiODgYPHUU0+J77//XqxZs0Z4enqKjz/+WGqzZ88e4erqKv785z+L48ePiwULFgg3NzeRl5cntVm4cKHw9fUV//nPf8SRI0fE6NGjRXR0tKitrbX489rz6r8W7247IaLmbRQpa3Pt9h5ERETOxNLvb1lD1ZQpU0RUVJRQqVQiMDBQDB8+XApULdLS0kR4eLjw9PQUOp1OfPvtt2b7r1y5Ih5//HHh7e0tNBqNmDx5sqisrDRrc/jwYXHXXXcJtVotunbtKhYuXNiqlnXr1okePXoIlUolevfuLTZt2mS232Qyiddff10EBwcLtVothg8fLvLz8636vO0RqjKOF4uoeRvFsD/vsNt7EBERORNLv78VQgjOaG4nBoMBWq0Wer3ebvOrrlTVI/6P/wMAfP9mErzVrnZ5HyIiImdh6fe3w82polsT4K1GqNYdAHD8ov3WxSIiIiJzDFWdUO+w5hT9/Y96mSshIiJyHgxVnVCv0OZQdeJipcyVEBEROQ+Gqk4oNsQHAHCihKGKiIiovTBUdUI9Q5p7qk6VVHJldSIionbCUNUJdQvwhMpViZoGI34or5W7HCIiIqfAUNUJuboocVsXLwDA6UscAiQiImoPDFWdVEyQNwDgVAnvAUhERNQeGKo6KSlUlTJUERERtQeGqk6qJVSdvcRQRURE1B4Yqjqp27pcDVWXq2WuhIiIyDkwVHVS3bp4AgAqahpRXt0gczVERESdH0NVJ+WpckXY1XsAnr3MIUAiIiJ7Y6jqxG4LbB4CLLhcI3MlREREnR9DVScWFdA8BHiO86qIiIjsjqGqE4u+ugBowRWGKiIiIntjqOrEogKaQ9V5hioiIiK7Y6jqxKK7tAz/1UAI3liZiIjInhiqOrFwv+ZQVVXfhPKaRpmrISIi6twYqjoxdzcXhGial1XgECAREZF9MVR1cpFXrwAsLOOyCkRERPbEUNXJRflfDVVXGKqIiIjsiaGqk2tZq+o8e6qIiIjsiqGqk4u42lN1gaGKiIjIrhiqOrmWKwB/KK+VuRIiIqLOjaGqk4vw9wAAXNTXoqHJJHM1REREnRdDVScX6K2Gu5sSJgEUVbC3ioiIyF4Yqjo5hUIhDQFeKOe8KiIiInthqHICEX7NQ4CcV0VERGQ/DFVO4KfJ6uypIiIisheGKicQzp4qIiIiu2OocgJcVoGIiMj+GKqcQEtP1Y8MVURERHbDUOUEWkJVSWUd6puMMldDRETUOTFUOQF/LxXc3ZQQArhYUSd3OURERJ0SQ5UTUCgU6Op7dQiQC4ASERHZBUOVk+h6dbI651URERHZB0OVk+jq6w4A+IE9VURERHbBUOUkWob/eP8/IiIi+2CochJduawCERGRXTFUOYmuvlfnVLGnioiIyC4YqpxE2NU5VcX6OphMQuZqiIiIOh+GKicRrHGHUgE0GE24XF0vdzlERESdjqyhasWKFejXrx80Gg00Gg10Oh22bNki7b/vvvugUCjMHs8//7zZMQoLC5GcnAxPT08EBQVhzpw5aGpqMmuzc+dODBo0CGq1GjExMVi9enWrWpYtW4Zu3brB3d0dCQkJ2L9/v9n+uro6zJgxAwEBAfD29sa4ceNQUlJiu5NhZ24uSgRrmnurirgAKBERkc3JGqrCw8OxcOFC5OTkIDs7G8OGDcPo0aNx9OhRqc0zzzyDixcvSo9FixZJ+4xGI5KTk9HQ0IC9e/fis88+w+rVqzF//nypTUFBAZKTk3H//fcjNzcXs2bNwrRp07Bt2zapzdq1a5GSkoIFCxbg4MGD6N+/P5KSklBaWiq1mT17Nr7++musX78emZmZKCoqwtixY+18hmwrjFcAEhER2Y9wMH5+fmLlypVCCCHuvfde8dJLL1237ebNm4VSqRTFxcXSthUrVgiNRiPq6+uFEELMnTtX9O7d2+x148ePF0lJSdLzIUOGiBkzZkjPjUajCAsLE2lpaUIIISoqKoSbm5tYv3691Ob48eMCgMjKyrL4s+n1egFA6PV6i19jSzM/Pyii5m0Un+46I8v7ExERdUSWfn87zJwqo9GINWvWoLq6GjqdTtr+z3/+E126dEGfPn2QmpqKmpoaaV9WVhb69u2L4OBgaVtSUhIMBoPU25WVlYXExESz90pKSkJWVhYAoKGhATk5OWZtlEolEhMTpTY5OTlobGw0a9OzZ09ERkZKbdpSX18Pg8Fg9pBTy2R1XgFIRERke65yF5CXlwedToe6ujp4e3tjw4YNiIuLAwA88cQTiIqKQlhYGI4cOYJ58+YhPz8fX331FQCguLjYLFABkJ4XFxf/YhuDwYDa2lqUl5fDaDS22ebEiRPSMVQqFXx9fVu1aXmftqSlpeHNN9+08ozYT5iWw39ERET2Inuoio2NRW5uLvR6Pb788ktMmjQJmZmZiIuLw7PPPiu169u3L0JDQzF8+HCcOXMGt99+u4xVWyY1NRUpKSnSc4PBgIiICNnqaZlTdVHPiepERES2Jvvwn0qlQkxMDOLj45GWlob+/ftjyZIlbbZNSEgAAJw+fRoAEBIS0uoKvJbnISEhv9hGo9HAw8MDXbp0gYuLS5ttrj1GQ0MDKioqrtumLWq1WrqyseUhp1Atr/4jIiKyF9lD1c+ZTCbU17e9jlJubi4AIDQ0FACg0+mQl5dndpVeeno6NBqNNISo0+mQkZFhdpz09HRp3pZKpUJ8fLxZG5PJhIyMDKlNfHw83NzczNrk5+ejsLDQbP6Xo2vpqbpcVY/6JqPM1RAREXUusg7/paamYtSoUYiMjERlZSU+//xz7Ny5E9u2bcOZM2fw+eef48EHH0RAQACOHDmC2bNn45577kG/fv0AACNGjEBcXByeeuopLFq0CMXFxXjttdcwY8YMqNVqAMDzzz+PDz/8EHPnzsWUKVOwfft2rFu3Dps2bZLqSElJwaRJkzB48GAMGTIE77//PqqrqzF58mQAgFarxdSpU5GSkgJ/f39oNBq88MIL0Ol0uOOOO9r/xN0kP083uLspUddoQrG+DlEBXnKXRERE1Hm009WIbZoyZYqIiooSKpVKBAYGiuHDh4tvvvlGCCFEYWGhuOeee4S/v79Qq9UiJiZGzJkzp9XljOfOnROjRo0SHh4eokuXLuJ3v/udaGxsNGuzY8cOMWDAAKFSqcRtt90mVq1a1aqWDz74QERGRgqVSiWGDBkivvvuO7P9tbW14v/+7/+En5+f8PT0FA8//LC4ePGiVZ9X7iUVhBDi/sU7RNS8jWLv6cuy1UBERNSRWPr9rRBC8EZw7cRgMECr1UKv18s2v2rCyu+w5/QV/OXR/hg7KFyWGoiIiDoSS7+/HW5OFdlXqJZXABIREdkDQ5WTCZOuAORaVURERLbEUOVkQrlWFRERkV0wVDmZlrWqGKqIiIhsi6HKyfw0p4rDf0RERLbEUOVkQq/eVLmiphG1DVwAlIiIyFYYqpyMxt0N3urmNV+L2FtFRERkMwxVTijk6ryqYs6rIiIishmGKicUymUViIiIbI6hygmFsqeKiIjI5hiqnFDLFYBFDFVEREQ2w1DlhH7qqeLwHxERka0wVDmhEC4ASkREZHMMVU4ojLeqISIisjmGKifU0lOlr21ETUOTzNUQERF1DgxVTujaBUB5BSAREZFtMFQ5Kc6rIiIisi2GKicVylBFRERkUwxVTipEw2UViIiIbImhykmxp4qIiMi2GKqcVMjVVdU5UZ2IiMg2GKqcFHuqiIiIbIuhykm1XP1XbGCoIiIisgWGKifV0lNVVt2AukajzNUQERF1fAxVTkrr4QZ3t+a//hL2VhEREd0yhionpVAoEHp1snpRBUMVERHRrWKocmIta1Wxp4qIiOjWMVQ5sVBOViciIrIZhionJl0ByGUViIiIbhlDlRP7aa0q3qqGiIjoVjFUOTGuqk5ERGQ7DFVOjKuqExER2Q5DlRNrmVN1qaoejUaTzNUQERF1bAxVTszfUwWVixJCAKWV9XKXQ0RE1KExVDkxpVKBII0aAHCxgpPViYiIbgVDlZPjWlVERES2wVDl5HgFIBERkW0wVDk5XgFIRERkGwxVTq7l/n/sqSIiIro1DFVOjnOqiIiIbIOhysnx/n9ERES2wVDl5EKvTlQvMdTBaBIyV0NERNRxuVrT2GQyITMzE99++y3Onz+PmpoaBAYGYuDAgUhMTERERIS96iQ7CfRRw0WpQJNJ4EpVPYKuzrEiIiIi61jUU1VbW4s//vGPiIiIwIMPPogtW7agoqICLi4uOH36NBYsWIDo6Gg8+OCD+O677yx+8xUrVqBfv37QaDTQaDTQ6XTYsmVLq3ZCCIwaNQoKhQL//ve/zfYVFhYiOTkZnp6eCAoKwpw5c9DU1GTWZufOnRg0aBDUajViYmKwevXqVu+xbNkydOvWDe7u7khISMD+/fvN9tfV1WHGjBkICAiAt7c3xo0bh5KSEos/q6NyUSoQ5NO8AGgRhwCJiIhumkWhqkePHjhy5Ag+/fRTGAwGZGVl4V//+hf+8Y9/YPPmzSgsLMSZM2dw991347HHHsOnn35q0ZuHh4dj4cKFyMnJQXZ2NoYNG4bRo0fj6NGjZu3ef/99KBSKVq83Go1ITk5GQ0MD9u7di88++wyrV6/G/PnzpTYFBQVITk7G/fffj9zcXMyaNQvTpk3Dtm3bpDZr165FSkoKFixYgIMHD6J///5ISkpCaWmp1Gb27Nn4+uuvsX79emRmZqKoqAhjx4616HM6Os6rIiIisgFhgWPHjlnSTAghRENDgzh9+rTF7X/Oz89PrFy5Unp+6NAh0bVrV3Hx4kUBQGzYsEHat3nzZqFUKkVxcbG0bcWKFUKj0Yj6+nohhBBz584VvXv3NnuP8ePHi6SkJOn5kCFDxIwZM6TnRqNRhIWFibS0NCGEEBUVFcLNzU2sX79eanP8+HEBQGRlZVn82fR6vQAg9Hq9xa9pD9P/kS2i5m0Uq3aflbsUIiIih2Pp97dFPVW9evWyOKS5ubnh9ttvtzrcGY1GrFmzBtXV1dDpdACAmpoaPPHEE1i2bBlCQkJavSYrKwt9+/ZFcHCwtC0pKQkGg0Hq7crKykJiYqLZ65KSkpCVlQUAaGhoQE5OjlkbpVKJxMREqU1OTg4aGxvN2vTs2RORkZFSm7bU19fDYDCYPRxRiKZ5svpFLqtARER006yaqH6tmpoaFBYWoqGhwWx7v379rDpOXl4edDod6urq4O3tjQ0bNiAuLg5A85DbnXfeidGjR7f52uLiYrNABUB6Xlxc/IttDAYDamtrUV5eDqPR2GabEydOSMdQqVTw9fVt1ablfdqSlpaGN9988wZnQH4h2uY5VRz+IyIiunlWh6pLly5h8uTJbU4oB5p7nKwRGxuL3Nxc6PV6fPnll5g0aRIyMzNx+vRpbN++HYcOHbK2RIeRmpqKlJQU6bnBYHDIKyRb7v/HW9UQERHdPKtD1axZs1BRUYF9+/bhvvvuw4YNG1BSUoI//vGPePfdd60uQKVSISYmBgAQHx+PAwcOYMmSJfDw8MCZM2da9Q6NGzcOd999N3bu3ImQkJBWV+m1XJHXMlwYEhLS6iq9kpISaDQaeHh4wMXFBS4uLm22ufYYDQ0NqKioMKvn2jZtUavVUKvVlp8MmYRyojoREdEts3rxz+3bt+Mvf/kLBg8eDKVSiaioKDz55JNYtGgR0tLSbrkgk8mE+vp6vPzyyzhy5Ahyc3OlBwC89957WLVqFQBAp9MhLy/P7Cq99PR0aDQaaQhRp9MhIyPD7D3S09OleVsqlQrx8fFmbUwmEzIyMqQ28fHxcHNzM2uTn5+PwsJCqU1Hdu39/4TgAqBEREQ3w+qequrqagQFBQEA/Pz8cOnSJfTo0QN9+/bFwYMHrTpWamoqRo0ahcjISFRWVuLzzz/Hzp07sW3bNoSEhLTZCxQZGYno6GgAwIgRIxAXF4ennnoKixYtQnFxMV577TXMmDFD6iF6/vnn8eGHH2Lu3LmYMmUKtm/fjnXr1mHTpk3SMVNSUjBp0iQMHjwYQ4YMwfvvv4/q6mpMnjwZAKDVajF16lSkpKTA398fGo0GL7zwAnQ6He644w5rT6HDCb4aqhqMJpRVNyDA2/F714iIiByN1aEqNjYW+fn56NatG/r374+PP/4Y3bp1w0cffYTQ0FCrjlVaWoqJEyfi4sWL0Gq16NevH7Zt24YHHnjAote7uLhg48aNmD59OnQ6Hby8vDBp0iS89dZbUpvo6Ghs2rQJs2fPxpIlSxAeHo6VK1ciKSlJajN+/HhcunQJ8+fPR3FxMQYMGICtW7eaTV5/7733oFQqMW7cONTX1yMpKQnLly+36vM6KpWrEl281bhcVY+L+jqGKiIiopugEFaO9/zjH/9AY2MjJk+ejJycHIwcORJlZWVQqVRYvXo1xo8fb69aOzyDwQCtVgu9Xg+NRiN3OWYe+mA38n7UY+XEwUiMC77xC4iIiJyEpd/fVvdUPfnkk9LP8fHxOH/+PE6cOIHIyEh06dLl5qol2YVo3ZH3o55rVREREd0kiyeqV1dXY/r06ejatSsCAwPx2GOP4dKlS/D09MSgQYMYqDq4MOkKwFqZKyEiIuqYLA5Vr7/+Ov7+97/j17/+NZ544gls374dzz77rD1ro3bEtaqIiIhujcXDfxs2bMCqVavw29/+FgAwceJE3HHHHWhqaoKr600vzE4OomWtqosVDFVEREQ3w+Keqh9++AFDhw6Vnres3VRUVGSXwqh9hbQM/3FOFRER0U2xOFSZTCa4ubmZbXN1dbX6tjTkmMKk4b9aLgBKRER0EywetxNCYPjw4WZDfTU1NXjooYegUqmkbdYuAEqOIUjTvDZVXaMJ+tpG+HqqbvAKIiIiupbFoWrBggWtto0ePdqmxZB83N1cEOClwpXqBhRV1DFUERERWemWQhV1LiFad1ypbsBFfS3iwhxrcVIiIiJHZ/UNlanzCuVkdSIioptmUagaOXIkvvvuuxu2q6ysxJ/+9CcsW7bslguj9hfaMlmdyyoQERFZzaLhv9/+9rcYN24ctFotHnroIQwePBhhYWFwd3dHeXk5jh07ht27d2Pz5s1ITk7G4sWL7V032UHLsgpcAJSIiMh6FoWqqVOn4sknn8T69euxdu1afPLJJ9Dr9QAAhUKBuLg4JCUl4cCBA+jVq5ddCyb7CfNtGf7jrWqIiIisZfFEdbVajSeffFK6obJer0dtbS0CAgJarV9FHVOIhsN/REREN+um7y+j1Wqh1WptWQvJLPSa4T8hBBQKhcwVERERdRy8+o8kLXOqahuN0Nc2ylwNERFRx8JQRRJ3Nxf4ezUv+snJ6kRERNZhqCIzPw0BcrI6ERGRNRiqyEwol1UgIiK6KTcVqioqKrBy5UqkpqairKwMQPONlH/88UebFkftjwuAEhER3Ryrr/47cuQIEhMTodVqce7cOTzzzDPw9/fHV199hcLCQvztb3+zR53UTkKvrlVVxOE/IiIiq1jdU5WSkoKnn34ap06dgru7u7T9wQcfxK5du2xaHLU/afiPPVVERERWsTpUHThwAM8991yr7V27dkVxcbFNiiL5SMN/7KkiIiKyitWhSq1Ww2AwtNp+8uRJBAYG2qQokk+YFKqaFwAlIiIiy1gdqn7zm9/grbfeQmNj8+KQCoUChYWFmDdvHsaNG2fzAql9BWvVAID6JhPKa7gAKBERkaWsDlXvvvsuqqqqEBQUhNraWtx7772IiYmBj48P3n77bXvUSO1I7eqCLt7NC4AWVXAIkIiIyFJWX/2n1WqRnp6OPXv24PDhw6iqqsKgQYOQmJhoj/pIBqFaD1yuasBFfR36dOX9HYmIiCxhVahqbGyEh4cHcnNzMXToUAwdOtRedZGMQrXuyPtRz8nqREREVrBq+M/NzQ2RkZEwGo32qoccQJhv82T1Ii6rQEREZDGr51S9+uqreOWVV6SV1KnzCfPl/f+IiIisZfWcqg8//BCnT59GWFgYoqKi4OXlZbb/4MGDNiuO5NGyVhUnqhMREVnO6lA1ZswYO5RBjqSlp4rDf0RERJazOlQtWLDAHnWQA2mZU1ViqIPRJOCiVMhcERERkeOzek4VdX5BPu5wUSrQZBK4VFkvdzlEREQdgtWhSqlUwsXF5boP6vhclAoE+zSvrF7EyepEREQWsXr4b8OGDWbPGxsbcejQIXz22Wd48803bVYYySvM1wNF+joUVdRiUKSf3OUQERE5PKtD1ejRo1tte+SRR9C7d2+sXbsWU6dOtUlhJK9QXw/gfDmvACQiIrKQzeZU3XHHHcjIyLDV4UhmvAKQiIjIOjYJVbW1tVi6dCm6du1qi8ORA+h69QpALgBKRERkGauH//z8/KBQ/HSJvRAClZWV8PT0xD/+8Q+bFkfyCdPyVjVERETWsDpUvffee2ahSqlUIjAwEAkJCfDz44TmzuKn+/+xp4qIiMgSVoeqp59+2g5lkKNpGf67Ut2AukYj3N24XAYREdEvsXpO1datW7F7927p+bJlyzBgwAA88cQTKC8vt2lxJB+Nhys8Vc1Bir1VREREN2Z1qJozZw4MBgMAIC8vDykpKXjwwQdRUFCAlJQUq461YsUK9OvXDxqNBhqNBjqdDlu2bJH2P/fcc7j99tvh4eGBwMBAjB49GidOnDA7RmFhIZKTk+Hp6YmgoCDMmTMHTU1NZm127tyJQYMGQa1WIyYmBqtXr25Vy7Jly9CtWze4u7sjISEB+/fvN9tfV1eHGTNmICAgAN7e3hg3bhxKSkqs+rwdiUKhuGYIkPOqiIiIbsTqUFVQUIC4uDgAwL/+9S889NBDeOedd7Bs2TKzQGSJ8PBwLFy4EDk5OcjOzsawYcMwevRoHD16FAAQHx+PVatW4fjx49i2bRuEEBgxYgSMRiMAwGg0Ijk5GQ0NDdi7dy8+++wzrF69GvPnzzerNzk5Gffffz9yc3Mxa9YsTJs2Ddu2bZParF27FikpKViwYAEOHjyI/v37IykpCaWlpVKb2bNn4+uvv8b69euRmZmJoqIijB071trT16FIoYpXABIREd2YsJKfn584evSoEEKIoUOHio8//lgIIURBQYHw8PCw9nBtHn/lypVt7jt8+LAAIE6fPi2EEGLz5s1CqVSK4uJiqc2KFSuERqMR9fX1Qggh5s6dK3r37m12nPHjx4ukpCTp+ZAhQ8SMGTOk50ajUYSFhYm0tDQhhBAVFRXCzc1NrF+/Xmpz/PhxAUBkZWVZ/Nn0er0AIPR6vcWvkdPL/zosouZtFH/5Jl/uUoiIiGRj6fe31T1Vd911F1JSUvCHP/wB+/fvR3JyMgDg5MmTCA8Pv+lwZzQasWbNGlRXV0On07XaX11djVWrViE6OhoREREAgKysLPTt2xfBwcFSu6SkJBgMBqm3KysrC4mJiWbHSkpKQlZWFgCgoaEBOTk5Zm2USiUSExOlNjk5OWhsbDRr07NnT0RGRkpt2lJfXw+DwWD26Eh+WlaBPVVEREQ3YnWo+vDDD+Hq6oovv/wSK1askBb83LJlC0aOHGl1AXl5efD29oZarcbzzz+PDRs2SMOLALB8+XJ4e3vD29sbW7ZsQXp6OlQqFQCguLjYLFABkJ4XFxf/YhuDwYDa2lpcvnwZRqOxzTbXHkOlUsHX1/e6bdqSlpYGrVYrPVrCYEfR1Y/Df0RERJayekmFyMhIbNy4sdX2995776YKiI2NRW5uLvR6Pb788ktMmjQJmZmZUrCaMGECHnjgAVy8eBF//vOf8eijj2LPnj1wd3e/qfdrT6mpqWaT9w0GQ4cKVi1zqn4sZ6giIiK6Eat7qg4ePIi8vDzp+X/+8x+MGTMGr7zyChoaGqwuQKVSISYmBvHx8UhLS0P//v2xZMkSab9Wq0X37t1xzz334Msvv8SJEyewYcMGAEBISEirK/BanoeEhPxiG41GAw8PD3Tp0gUuLi5ttrn2GA0NDaioqLhum7ao1WrpysaWR0fSVZqoXgeTSchcDRERkWOzOlQ999xzOHnyJADg7NmzeOyxx+Dp6Yn169dj7ty5t1yQyWRCfX19m/uEEBBCSPt1Oh3y8vLMrtJLT0+HRqORerp0Ol2rGz2np6dL87ZUKhXi4+PN2phMJmRkZEht4uPj4ebmZtYmPz8fhYWFbc7/6ixCtO5QKoCGJhMuV7f9d0JERERXWTsDXqPRSFffLVy4UIwYMUIIIcTu3btFeHi4Vcd6+eWXRWZmpigoKBBHjhwRL7/8slAoFOKbb74RZ86cEe+8847Izs4W58+fF3v27BEPPfSQ8Pf3FyUlJUIIIZqamkSfPn3EiBEjRG5urti6dasIDAwUqamp0nucPXtWeHp6ijlz5ojjx4+LZcuWCRcXF7F161apzZo1a4RarRarV68Wx44dE88++6zw9fU1u6rw+eefF5GRkWL79u0iOztb6HQ6odPprPq8He3qPyGEuOOd/4moeRvFocJyuUshIiKShaXf31bPqRJCwGQyAQD+97//4de//jUAICIiApcvX7bqWKWlpZg4cSIuXrwIrVaLfv36Ydu2bXjggQdQVFSEb7/9Fu+//z7Ky8sRHByMe+65B3v37kVQUBAAwMXFBRs3bsT06dOh0+ng5eWFSZMm4a233pLeIzo6Gps2bcLs2bOxZMkShIeHY+XKlUhKSpLajB8/HpcuXcL8+fNRXFyMAQMGYOvWrWaT19977z0olUqMGzcO9fX1SEpKwvLly609fR1OmK8HLurr8GN5LQZE+MpdDhERkcNSCCGsmiwzbNgwREREIDExEVOnTsWxY8cQExODzMxMTJo0CefOnbNTqR2fwWCAVquFXq/vMPOrXvziEP57uAivPtgLz9xzm9zlEBERtTtLv7+tnlP1/vvv4+DBg5g5cyZeffVVxMTEAAC+/PJL3HnnnTdfMTmklmUVfuRaVURERL/I6uG/fv36mV3912Lx4sVwcXGxSVHkOFquAPyByyoQERH9Iqt7qgCgoqICK1euRGpqKsrKygAAx44dM7sKjzoH9lQRERFZxuqeqiNHjmD48OHw9fXFuXPn8Mwzz8Df3x9fffUVCgsL8be//c0edZJMwqWeqhqZKyEiInJsVvdUpaSkYPLkyTh16pTZquYPPvggdu3aZdPiSH4tPVWVdU0w1DXKXA0REZHjsjpUHThwAM8991yr7V27dv3F++BRx+SpcoWfpxsA3q6GiIjol1gdqtRqNQwGQ6vtJ0+eRGBgoE2KIscizatiqCIiIrouq0PVb37zG7z11ltobGweClIoFCgsLMS8efMwbtw4mxdI8gv39QTAyepERES/xOpQ9e6776KqqgpBQUGora3Fvffei5iYGPj4+ODtt9+2R40ks5aeKk5WJyIiuj6rr/7TarVIT0/Hnj17cPjwYVRVVWHQoEFITEy0R33kALhWFRER0Y1ZFaoaGxvh4eGB3NxcDB06FEOHDrVXXeRAwrlWFRER0Q1ZNfzn5uaGyMhIGI1Ge9VDDijCv3lOFXuqiIiIrs/qOVWvvvoqXnnlFWklder8WuZUlVU3oLq+SeZqiIiIHJPVc6o+/PBDnD59GmFhYYiKioKXl5fZ/oMHD9qsOHIMGnc3aD3coK9txI8VtegR7CN3SURERA7H6lA1ZswYO5RBji7czwP62kb8UF7DUEVERNQGq0PVggUL7FEHObhwPw8cLTLgQhnnVREREbXF6lDVIjs7G8ePHwcAxMXFIT4+3mZFkeMJ92uZrM61qoiIiNpidaj64Ycf8Pjjj2PPnj3w9fUFAFRUVODOO+/EmjVrEB4ebusayQG0LKvAnioiIqK2WX3137Rp09DY2Ijjx4+jrKwMZWVlOH78OEwmE6ZNm2aPGskBSD1VFeypIiIiaovVPVWZmZnYu3cvYmNjpW2xsbH44IMPcPfdd9u0OHIckVfXqmJPFRERUdus7qmKiIiQbqZ8LaPRiLCwMJsURY6nZfhPX9sIQ13rv38iIiJnZ3WoWrx4MV544QVkZ2dL27Kzs/HSSy/hz3/+s02LI8fhpXZFgJcKAHChjEOAREREP6cQQghrXuDn54eamho0NTXB1bV59LDl558vBMpV180ZDAZotVro9XpoNBq5y7Ha6GV7cPhCBT56Mh4j+4TIXQ4REVG7sPT72+o5Ve+///6t1EUdWISfBw5fqOCyCkRERG2wOlRNmjTJHnVQB9ByY+VCDv8RERG1YvWcKnJeEX4tVwAyVBEREf0cQxVZTFpWoZzLKhAREf0cQxVZ7Ke1qmpgMll1fQMREVGnx1BFFgv1dYeLUoH6JhMuVdXLXQ4REZFDsTpU7dix47r7li1bdkvFkGNzc1EizNcdACerExER/ZzVoWrs2LHIyclptX3JkiVITU21SVHkuFqGAAuvMFQRERFd66ZWVB81ahROnDghbXv33Xcxf/58bNq0yabFkeOJ5LIKREREbbJ6napp06ahrKwMiYmJ2L17N9auXYt33nkHmzdvxtChQ+1RIzmQCH8uq0BERNQWq0MVAMydOxdXrlzB4MGDYTQasW3bNtxxxx22ro0cEHuqiIiI2mZRqFq6dGmrbV27doWnpyfuuece7N+/H/v37wcAvPjii7atkBxKS6g6z1BFRERkxqIbKkdHR1t2MIUCZ8+eveWiOquOfkNlANDXNKL/W98AAI69lQRP1U11dhIREXUYNr2hckFBgc0Ko45N6+kGrYcb9LWNOH+lBr1CO2Y4JCIisjUu/klWiwq4OgTIZRWIiIgkVo/dGI1GrF69GhkZGSgtLYXJZDLbv337dpsVR44pKsALR37Qo7CsWu5SiIiIHIbVoeqll17C6tWrkZycjD59+kChUNijLnJgUf7sqSIiIvo5q0PVmjVrsG7dOjz44IP2qIc6gMgALqtARET0c1bPqVKpVIiJibFHLdRBtPRUnbvC4T8iIqIWVoeq3/3ud1iyZAksWImBOqluXbwAAD+W16KhyXSD1kRERM7B6lC1e/du/POf/8Ttt9+Ohx56CGPHjjV7WGPFihXo168fNBoNNBoNdDodtmzZAgAoKyvDCy+8gNjYWHh4eCAyMhIvvvgi9Hq92TEKCwuRnJwMT09PBAUFYc6cOWhqajJrs3PnTgwaNAhqtRoxMTFYvXp1q1qWLVuGbt26wd3dHQkJCdJipi3q6uowY8YMBAQEwNvbG+PGjUNJSYlVn7ezCPJRw8PNBSYB/FDOIUAiIiLgJkKVr68vHn74Ydx7773o0qULtFqt2cMa4eHhWLhwIXJycpCdnY1hw4Zh9OjROHr0KIqKilBUVIQ///nP+P7777F69Wps3boVU6dOlV5vNBqRnJyMhoYG7N27F5999hlWr16N+fPnS20KCgqQnJyM+++/H7m5uZg1axamTZuGbdu2SW3Wrl2LlJQULFiwAAcPHkT//v2RlJSE0tJSqc3s2bPx9ddfY/369cjMzERRUZHVIbKzUCgU0rIKHAIkIiK6SjgYPz8/sXLlyjb3rVu3TqhUKtHY2CiEEGLz5s1CqVSK4uJiqc2KFSuERqMR9fX1Qggh5s6dK3r37m12nPHjx4ukpCTp+ZAhQ8SMGTOk50ajUYSFhYm0tDQhhBAVFRXCzc1NrF+/Xmpz/PhxAUBkZWVd97PU1dUJvV4vPS5cuCAACL1eb+npcFjP/z1bRM3bKP767Vm5SyEiIrIrvV5v0fe3wyz+aTQasWbNGlRXV0On07XZpmV5eFfX5osWs7Ky0LdvXwQHB0ttkpKSYDAYcPToUalNYmKi2XGSkpKQlZUFAGhoaEBOTo5ZG6VSicTERKlNTk4OGhsbzdr07NkTkZGRUpu2pKWlmfXiRUREWHNKHFpUQPO8KvZUERERNbupG7d9+eWXWLduHQoLC9HQ0GC27+DBg1YdKy8vDzqdDnV1dfD29saGDRsQFxfXqt3ly5fxhz/8Ac8++6y0rbi42CxQAZCeFxcX/2Ibg8GA2tpalJeXw2g0ttnmxIkT0jFUKhV8fX1btWl5n7akpqYiJSVFem4wGDpNsIru0jL8xzlVREREwE3MqVq6dCkmT56M4OBgHDp0CEOGDEFAQADOnj2LUaNGWV1AbGwscnNzsW/fPkyfPh2TJk3CsWPHzNoYDAYkJycjLi4Ob7zxhtXvIRe1Wi1Nwm95dBZST9Vl9lQREREBNxGqli9fjk8++QQffPABVCoV5s6di/T09DavzLNEy7pX8fHxSEtLQ//+/bFkyRJpf2VlJUaOHAkfHx9s2LABbm5u0r6QkJBWV+C1PA8JCfnFNhqNBh4eHujSpQtcXFzabHPtMRoaGlBRUXHdNs4m+uqyCj+U13BZBSIiItxEqCosLMSdd94JAPDw8EBlZSUA4KmnnsIXX3xxywWZTCbU19cDaO6hGjFiBFQqFf773//C3d3drK1Op0NeXp7ZVXrp6enQaDTSEKJOp0NGRobZ69LT06V5WyqVCvHx8WZtTCYTMjIypDbx8fFwc3Mza5Ofn4/CwsLrzv/q7IJ81PBUNS+rcIHLKhAREVkfqkJCQlBWVgYAiIyMxHfffQegeekCYeWCoKmpqdi1axfOnTuHvLw8pKamYufOnZgwYYIUqKqrq/HXv/4VBoMBxcXFKC4uhtFoBACMGDECcXFxeOqpp3D48GFs27YNr732GmbMmAG1Wg0AeP7553H27FnMnTsXJ06cwPLly7Fu3TrMnj1bqiMlJQWffvopPvvsMxw/fhzTp09HdXU1Jk+eDADQarWYOnUqUlJSsGPHDuTk5GDy5MnQ6XS44447rD2FnYJCoZB6qwoucQiQiIjI6iUVpk6dKt544w0hhBAffvih8PDwEImJicLX11dMmTLFqmNNmTJFREVFCZVKJQIDA8Xw4cPFN998I4QQYseOHQJAm4+CggLpGOfOnROjRo0SHh4eokuXLuJ3v/udtORCix07dogBAwYIlUolbrvtNrFq1apWtXzwwQciMjJSqFQqMWTIEPHdd9+Z7a+trRX/93//J/z8/ISnp6d4+OGHxcWLF636vJZektlRzPhnjoiat1F8knlG7lKIiIjsxtLvb4UQ1nUvmUwmmEwmaVmDNWvWYO/evejevTuee+45qFQqm4a+zsRgMECr1UpLQ3R0f/kmH0u3n8bjQyKRNrav3OUQERHZhaXf31YvqfDDDz+YLQvw2GOP4bHHHoMQAhcuXEBkZOTNVUwdTss9AAsuV8lcCRERkfysnlMVHR2NS5cutdpeVlaG6OhomxRFHUPLnKpzlzlRnYiIyOpQJYSAQqFotb2qqqrV1XnUud3WxRsAUGyoQ3V90w1aExERdW4WD/+1rAyuUCjw+uuvw9PTU9pnNBqxb98+DBgwwOYFkuPSerohwEuFK9UNKLhcjT5drbuhNhERUWdicag6dOgQgOaeqry8PLMJ6SqVCv3798fvf/9721dIDu22QC9cqW7AmUtVDFVEROTULA5VO3bsAABMnjwZS5Ys6RRXr9Gtuz3QGwfOleMM16oiIiInZ/XVf6tWrbJHHdRB3R7YPK/q7CVeAUhERM7N6onqRNe6LbD5CkD2VBERkbNjqKJb0tJTVXC5CiaTdbcpIiIi6kwYquiWhPt5wM1FgbpGE4r0tXKXQ0REJBuGKrolri5KdAtoHgI8Xcp5VURE5LwYquiWxQQ1DwEyVBERkTNjqKJb1v1qqDrDKwCJiMiJMVTRLbudPVVEREQMVXTrWob/TpVWQQheAUhERM6JoYpu2e2B3lAogIqaRlypbpC7HCIiIlkwVNEtc3dzQbifBwDgVAmHAImIyDkxVJFN9AjyAQCcLq2UuRIiIiJ5MFSRTXQPbg5VJ9lTRUREToqhimyiR3DzZPWTJeypIiIi58RQRTbRQ+qpquQVgERE5JQYqsgmWq4ALK9pxOUqXgFIRETOh6GKbMJD5YJIf08AwCkOARIRkRNiqCKb6X71CsB8hioiInJCDFVkMz1DroaqYoYqIiJyPgxVZDOxV0PVCYYqIiJyQgxVZDO9Qn+6AtBk4hWARETkXBiqyGa6BXhB5apETYMRP5TXyl0OERFRu2KoIptxdVEiJrB5EdDjxQaZqyEiImpfDFVkU5ysTkREzoqhimyqV6gGAHD8InuqiIjIuTBUkU3FhTWHqmMMVURE5GQYqsimWnqqzl+pQVV9k8zVEBERtR+GKrIpfy8VQjTuAIAT7K0iIiInwlBFNtcyBMh5VURE5EwYqsjmWhYB5bwqIiJyJgxVZHN9wrQAgKNFDFVEROQ8GKrI5npfDVUnLlai0WiSuRoiIqL2wVBFNhfh7wEfd1c0GE04VVIldzlERETtgqGKbE6hUEhDgN8X6WWuhoiIqH0wVJFd9OnafAXg0R8ZqoiIyDkwVJFd9Ona3FN1hKGKiIicBEMV2UXfq6HqWJGBk9WJiMgpyBqqVqxYgX79+kGj0UCj0UCn02HLli3S/k8++QT33XcfNBoNFAoFKioqWh2jrKwMEyZMgEajga+vL6ZOnYqqKvPJ0UeOHMHdd98Nd3d3REREYNGiRa2Os379evTs2RPu7u7o27cvNm/ebLZfCIH58+cjNDQUHh4eSExMxKlTp2xzIjqhbgFe8HF3RX2TCfnFlXKXQ0REZHeyhqrw8HAsXLgQOTk5yM7OxrBhwzB69GgcPXoUAFBTU4ORI0filVdeue4xJkyYgKNHjyI9PR0bN27Erl278Oyzz0r7DQYDRowYgaioKOTk5GDx4sV444038Mknn0ht9u7di8cffxxTp07FoUOHMGbMGIwZMwbff/+91GbRokVYunQpPvroI+zbtw9eXl5ISkpCXV2dHc5Mx6dUKtAv/OoQ4A8cAiQiIicgHIyfn59YuXKl2bYdO3YIAKK8vNxs+7FjxwQAceDAAWnbli1bhEKhED/++KMQQojly5cLPz8/UV9fL7WZN2+eiI2NlZ4/+uijIjk52ezYCQkJ4rnnnhNCCGEymURISIhYvHixtL+iokKo1WrxxRdfXPez1NXVCb1eLz0uXLggAAi9Xm/h2ejYFm45LqLmbRTzvjwsdylEREQ3Ta/XW/T97TBzqoxGI9asWYPq6mrodDqLXpOVlQVfX18MHjxY2paYmAilUol9+/ZJbe655x6oVCqpTVJSEvLz81FeXi61SUxMNDt2UlISsrKyAAAFBQUoLi42a6PVapGQkCC1aUtaWhq0Wq30iIiIsOhzdRb9r/ZUHWZPFREROQHZQ1VeXh68vb2hVqvx/PPPY8OGDYiLi7PotcXFxQgKCjLb5urqCn9/fxQXF0ttgoODzdq0PL9Rm2v3X/u6ttq0JTU1FXq9XnpcuHDBos/VWQyI8AMA5BcbUNPQJHM1RERE9iV7qIqNjUVubi727duH6dOnY9KkSTh27JjcZdmEWq2WJuG3PJxJiNYdoVp3mATnVRERUecne6hSqVSIiYlBfHw80tLS0L9/fyxZssSi14aEhKC0tNRsW1NTE8rKyhASEiK1KSkpMWvT8vxGba7df+3r2mpDbRsY6QsAOFRYIWsdRERE9iZ7qPo5k8mE+vp6i9rqdDpUVFQgJydH2rZ9+3aYTCYkJCRIbXbt2oXGxkapTXp6OmJjY+Hn5ye1ycjIMDt2enq6NLcrOjoaISEhZm0MBgP27dtn8fwvZzXw6hDgocJymSshIiKyL1lDVWpqKnbt2oVz584hLy8Pqamp2LlzJyZMmACgeS5Tbm4uTp8+DaB5/lVubi7KysoAAL169cLIkSPxzDPPYP/+/dizZw9mzpyJxx57DGFhYQCAJ554AiqVClOnTsXRo0exdu1aLFmyBCkpKVIdL730ErZu3Yp3330XJ06cwBtvvIHs7GzMnDkTQPO97GbNmoU//vGP+O9//4u8vDxMnDgRYWFhGDNmTDuesY6npafqYGEFhBDyFkNERGRP7XMxYtumTJkioqKihEqlEoGBgWL48OHim2++kfYvWLBAAGj1WLVqldTmypUr4vHHHxfe3t5Co9GIyZMni8rKSrP3OXz4sLjrrruEWq0WXbt2FQsXLmxVy7p160SPHj2ESqUSvXv3Fps2bTLbbzKZxOuvvy6Cg4OFWq0Ww4cPF/n5+VZ9XksvyexMahuaRMwrm0TUvI2i8Eq13OUQERFZzdLvb4UQ7D5oLwaDAVqtFnq93qkmrT+8fA8OFVbgL4/2x9hB4XKXQ0REZBVLv78dbk4VdT6Do5rnVWWf57wqIiLqvBiqyO4Gd/MHAGSfK5O5EiIiIvthqCK7i7/aU3WypAoVNQ0yV0NERGQfDFVkd1281bitixcA4MA5DgESEVHnxFBF7SLhtuYhwH1nr8hcCRERkX0wVFG7uOO2AADAvgLOqyIios6JoYraRUJ0c6g6WqSHoa7xBq2JiIg6HoYqahchWnd0C/CESQAH2FtFRESdEEMVtZuWIcC9ZzivioiIOh+GKmo3Q2O6AAD2nL4scyVERES2x1BF7aYlVJ0orkRpZZ3M1RAREdkWQxW1G38vFXqHNd8zae9pDgESEVHnwlBF7equ7s29Vd+e4hAgERF1LgxV1K7u6R4IAMg8eQkmk5C5GiIiItthqKJ2NbibHzxVLrhcVY9jFw1yl0NERGQzDFXUrtSuLtKE9Z35pTJXQ0REZDsMVdTu7ottHgLckX9J5kqIiIhsh6GK2t39sUEAgEOF5bhSVS9zNURERLbBUEXtLszXA73DNDAJIOMEhwCJiKhzYKgiWYyICwEApB8rkbkSIiIi22CoIlk8EBcMAPj21CXUNhhlroaIiOjWMVSRLHqF+iDC3wN1jSZeBUhERJ0CQxXJQqFQ4MG+oQCAjXkXZa6GiIjo1jFUkWx+3TcMALD9eClqGppkroaIiOjWMFSRbPp01SDS3xO1jUZs51WARETUwTFUkWwUCgV+3a95CPDfh4pkroaIiOjWMFSRrB4e2BVA8y1ruBAoERF1ZAxVJKvuwT7oF65Fk0ng68PsrSIioo6LoYpkN/Zqb9X6nB8ghJC5GiIiopvDUEWyGz2gK1SuShwtMuDID3q5yyEiIropDFUkOz8vFR7s03zbms/3FcpcDRER0c1hqCKH8ERCFADgv4eLoK9tlLkaIiIi6zFUkUP4VTc/9Aj2Rm2jEesOXJC7HCIiIqsxVJFDUCgUmHpXNABg1Z4CNBlNMldERERkHYYqchijB3RFgJcKRfo6bP6+WO5yiIiIrMJQRQ7D3c0FT+ma51Yt33EaJhOXVyAioo6DoYocytN3doO32hUniivxzbESucshIiKyGEMVORRfTxWevrMbAGBJxin2VhERUYfBUEUOZ+pd0fBWu+L4RQP+c/hHucshIiKyCEMVORw/LxWm33c7AGDx1nzUNRplroiIiOjGGKrIIU29KxpdfT1QpK/DR5ln5C6HiIjohhiqyCG5u7ng5VE9AQDLd5zBmUtVMldERET0yxiqyGH9ul8o7osNRIPRhFe+yuOkdSIicmiyhqoVK1agX79+0Gg00Gg00Ol02LJli7S/rq4OM2bMQEBAALy9vTFu3DiUlJhfZl9YWIjk5GR4enoiKCgIc+bMQVNTk1mbnTt3YtCgQVCr1YiJicHq1atb1bJs2TJ069YN7u7uSEhIwP79+832W1IL2ZZCocAfRveBh5sL9hWU4dNvz8pdEhER0XXJGqrCw8OxcOFC5OTkIDs7G8OGDcPo0aNx9OhRAMDs2bPx9ddfY/369cjMzERRURHGjh0rvd5oNCI5ORkNDQ3Yu3cvPvvsM6xevRrz58+X2hQUFCA5ORn3338/cnNzMWvWLEybNg3btm2T2qxduxYpKSlYsGABDh48iP79+yMpKQmlpaVSmxvVQvYR4e+JBQ/FAQAWb8tH7oUKeQsiIiK6DoUQwqHGVPz9/bF48WI88sgjCAwMxOeff45HHnkEAHDixAn06tULWVlZuOOOO7Blyxb8+te/RlFREYKDgwEAH330EebNm4dLly5BpVJh3rx52LRpE77//nvpPR577DFUVFRg69atAICEhAT86le/wocffggAMJlMiIiIwAsvvICXX34Zer3+hrW0pb6+HvX19dJzg8GAiIgI6PV6aDQa25+8TkoIgZmfH8KmvIsI0bjjPzOHIljjLndZnYbRJFDbaERtQ/OjrsmIhiYTGowmNLb8aTRd3SZabWs0CpiEgNEk0GQSMJkEjKL5zyZT83aTuGZfy0MImETz368QgEDznybR8icAXNMG+MX2Lb/Jmlte/Vnahmu2CbNt1/4GFGi98eft2jr+zbrl19/ay6/W4FBfAUS37MXh3fFg31CbHtNgMECr1d7w+9vVpu96C4xGI9avX4/q6mrodDrk5OSgsbERiYmJUpuePXsiMjJSCjJZWVno27evFKgAICkpCdOnT8fRo0cxcOBAZGVlmR2jpc2sWbMAAA0NDcjJyUFqaqq0X6lUIjExEVlZWQBgUS1tSUtLw5tvvnnL58bZKRQKvDO2L04UG3DmUjWmfZaNtc/dAU+Vw/zzlU19kxFXqhpQVt0AQ20jDHWNMNQ2QS/93AhDXRMMtY2orG9CbYMRNQ3Nf9Y2GlHTYER9E29eTUSdR0VNo2zvLfu3Ul5eHnQ6Herq6uDt7Y0NGzYgLi4Oubm5UKlU8PX1NWsfHByM4uLmm+0WFxebBaqW/S37fqmNwWBAbW0tysvLYTQa22xz4sQJ6Rg3qqUtqampSElJkZ639FSR9bQeblj19BCMWb4HeT/q8fSqA1j19K/gpZb9n7Bd1DUacVFfh6KKWvxYUYuLFXW4XFWPy1X1uFLVgMtV9bhUVY/KuqYbH8xCCgXg4eYCtasSqqsPNxclVC7mP7u5KqFyUUjbXJVKuCgBl5Y/FYqffm5jm1KpgKtSAaWi+aFQQPpToVBAcbUW5TU/t2z/qV3zz811K6BUAAo07wMAxc8+18+3/rydQnHNvlavu7Z96ze49r0sO8/WvcL641v5AqJOJibIW7b3lv0bKTY2Frm5udDr9fjyyy8xadIkZGZmyl2WTajVaqjVarnL6DQiAzzx10mDMfGv+7G/oAxPr9qPTycOhq+nSu7SrGYyCRQb6nDucjXOXanB+SvVOHelGkUVzUHqSnWDxcdyVSrg76WC1sMNWg83aDzcoHF3hablubsbNB6u8Fa7wVPlAg+VCzzcXKSfPVWu8HBzgbub0uovfCIi+onsoUqlUiEmJgYAEB8fjwMHDmDJkiUYP348GhoaUFFRYdZDVFJSgpCQEABASEhIq6v0Wq7Iu7bNz6/SKykpgUajgYeHB1xcXODi4tJmm2uPcaNaqH0MjPTD36YOwcS/7seBc+UYvWwPVk4cjO7BPnKX1qb6JiMKLlfjVEkVTpVU4mRJFc5ersL5KzU3HHbzcHNBmK87wnw9EKb1QJBGjQAvFbr4qNHFW40u3ip08VZD6+HGMERE5ABkD1U/ZzKZUF9fj/j4eLi5uSEjIwPjxo0DAOTn56OwsBA6nQ4AoNPp8Pbbb6O0tBRBQUEAgPT0dGg0GsTFxUltNm/ebPYe6enp0jFUKhXi4+ORkZGBMWPGSDVkZGRg5syZAGBRLdR+Bkb6Yd3zOkz7LBvnr9TgoQ934/cjYjF5aDRclPKECyEEivR1OHHRgOMXDTh+sRInig04d6UGxuusr+WqVCDC3xPdAjwRFeCFbgGeCPfzRKivO7r6ejAsERF1MLJe/ZeamopRo0YhMjISlZWV+Pzzz/GnP/0J27ZtwwMPPIDp06dj8+bNWL16NTQaDV544QUAwN69ewE0T24fMGAAwsLCsGjRIhQXF+Opp57CtGnT8M477wBoXlKhT58+mDFjBqZMmYLt27fjxRdfxKZNm5CUlASgeUmFSZMm4eOPP8aQIUPw/vvvY926dThx4oQ01+pGtVjC0qsHyDJXqurx0ppc7D59GQDQO0yD343ogftjg+waRhqaTDhdWoVjFw04VmTAsYt6HL9YCX1t25MjfdSu6B7sjR7BPuge7IPbA71wWxdvhPm6w9WF6+8SETm6DnH1X2lpKSZOnIiLFy9Cq9WiX79+UqACgPfeew9KpRLjxo1DfX09kpKSsHz5cun1Li4u2LhxI6ZPnw6dTgcvLy9MmjQJb731ltQmOjoamzZtwuzZs7FkyRKEh4dj5cqVUqACgPHjx+PSpUuYP38+iouLMWDAAGzdutVs8vqNaqH2F+Ctxt+nDsGaAxfwzqbjOFpkwJTV2egZ4oNH4sPxmwFhCPK5+aUXWuY9nSypRH5xJU5cfZwurUSjsfX/i7gqFYgJ8kavUA16hfogNkSD2GAfBGvU7HEiInICDrdOVWfGnir7uVJVj0++PYu/7T2P2kajtD0myBu/6uaPmCBvRPp7ItBHLU3KbjQK1F1dVuByVT2K9XUoqazDD+W1OHupGucuV5sd61o+7q6IC9UgLkyD3mFa9Ar1QUyQN9SuLu31kYmIqJ1Y+v3NUNWOGKrsr7y6AV8fKcK/Dv6IwzZYfd1VqUC3Ll6IDfFBr5Dm3qeeIT4I9/Ng7xMRkZNgqHJADFXtq7y6AfvPlSH3QgUKr9TgfFk1yqsbUdfYvPClq1LRvJyAygX+XiqEaNwRrHFHmK87ort44bZAb4T7ecCN856IiJxah5hTRWRPfl4qJPUOQVJvLntBRET2x/8FJyIiIrIBhioiIiIiG2CoIiIiIrIBhioiIiIiG2CoIiIiIrIBhioiIiIiG2CoIiIiIrIBhioiIiIiG2CoIiIiIrIBhioiIiIiG2CoIiIiIrIBhioiIiIiG2CoIiIiIrIBhioiIiIiG3CVuwBnIoQAABgMBpkrISIiIku1fG+3fI9fD0NVO6qsrAQAREREyFwJERERWauyshJarfa6+xXiRrGLbMZkMqGoqAg+Pj5QKBQ2O67BYEBERAQuXLgAjUZjs+N2VjxfluO5shzPleV4rizHc2U5e54rIQQqKysRFhYGpfL6M6fYU9WOlEolwsPD7XZ8jUbD/+iswPNlOZ4ry/FcWY7nynI8V5az17n6pR6qFpyoTkRERGQDDFVERERENsBQ1Qmo1WosWLAAarVa7lI6BJ4vy/FcWY7nynI8V5bjubKcI5wrTlQnIiIisgH2VBERERHZAEMVERERkQ0wVBERERHZAEMVERERkQ0wVHUCy5YtQ7du3eDu7o6EhATs379f7pIcTlpaGn71q1/Bx8cHQUFBGDNmDPLz8+Uuq0NYuHAhFAoFZs2aJXcpDunHH3/Ek08+iYCAAHh4eKBv377Izs6WuyyHZDQa8frrryM6OhoeHh64/fbb8Yc//OGG91NzBrt27cJDDz2EsLAwKBQK/Pvf/zbbL4TA/PnzERoaCg8PDyQmJuLUqVPyFCuzXzpXjY2NmDdvHvr27QsvLy+EhYVh4sSJKCoqapfaGKo6uLVr1yIlJQULFizAwYMH0b9/fyQlJaG0tFTu0hxKZmYmZsyYge+++w7p6elobGzEiBEjUF1dLXdpDu3AgQP4+OOP0a9fP7lLcUjl5eUYOnQo3NzcsGXLFhw7dgzvvvsu/Pz85C7NIf3pT3/CihUr8OGHH+L48eP405/+hEWLFuGDDz6QuzTZVVdXo3///li2bFmb+xctWoSlS5fio48+wr59++Dl5YWkpCTU1dW1c6Xy+6VzVVNTg4MHD+L111/HwYMH8dVXXyE/Px+/+c1v2qc4QR3akCFDxIwZM6TnRqNRhIWFibS0NBmrcnylpaUCgMjMzJS7FIdVWVkpunfvLtLT08W9994rXnrpJblLcjjz5s0Td911l9xldBjJycliypQpZtvGjh0rJkyYIFNFjgmA2LBhg/TcZDKJkJAQsXjxYmlbRUWFUKvV4osvvpChQsfx83PVlv379wsA4vz583avhz1VHVhDQwNycnKQmJgobVMqlUhMTERWVpaMlTk+vV4PAPD395e5Esc1Y8YMJCcnm/37InP//e9/MXjwYPz2t79FUFAQBg4ciE8//VTushzWnXfeiYyMDJw8eRIAcPjwYezevRujRo2SuTLHVlBQgOLiYrP/FrVaLRISEvi73gJ6vR4KhQK+vr52fy/eULkDu3z5MoxGI4KDg822BwcH48SJEzJV5fhMJhNmzZqFoUOHok+fPnKX45DWrFmDgwcP4sCBA3KX4tDOnj2LFStWICUlBa+88goOHDiAF198ESqVCpMmTZK7PIfz8ssvw2AwoGfPnnBxcYHRaMTbb7+NCRMmyF2aQysuLgaANn/Xt+yjttXV1WHevHl4/PHH2+WG1AxV5HRmzJiB77//Hrt375a7FId04cIFvPTSS0hPT4e7u7vc5Tg0k8mEwYMH45133gEADBw4EN9//z0++ugjhqo2rFu3Dv/85z/x+eefo3fv3sjNzcWsWbMQFhbG80U219jYiEcffRRCCKxYsaJd3pPDfx1Yly5d4OLigpKSErPtJSUlCAkJkakqxzZz5kxs3LgRO3bsQHh4uNzlOKScnByUlpZi0KBBcHV1haurKzIzM7F06VK4urrCaDTKXaLDCA0NRVxcnNm2Xr16obCwUKaKHNucOXPw8ssv47HHHkPfvn3x1FNPYfbs2UhLS5O7NIfW8vucv+st1xKozp8/j/T09HbppQIYqjo0lUqF+Ph4ZGRkSNtMJhMyMjKg0+lkrMzxCCEwc+ZMbNiwAdu3b0d0dLTcJTms4cOHIy8vD7m5udJj8ODBmDBhAnJzc+Hi4iJ3iQ5j6NChrZbmOHnyJKKiomSqyLHV1NRAqTT/2nFxcYHJZJKpoo4hOjoaISEhZr/rDQYD9u3bx9/1bWgJVKdOncL//vc/BAQEtNt7c/ivg0tJScGkSZMwePBgDBkyBO+//z6qq6sxefJkuUtzKDNmzMDnn3+O//znP/Dx8ZHmIWi1Wnh4eMhcnWPx8fFpNdfMy8sLAQEBnIP2M7Nnz8add96Jd955B48++ij279+PTz75BJ988oncpTmkhx56CG+//TYiIyPRu3dvHDp0CH/5y18wZcoUuUuTXVVVFU6fPi09LygoQG5uLvz9/REZGYlZs2bhj3/8I7p3747o6Gi8/vrrCAsLw5gxY+QrWia/dK5CQ0PxyCOP4ODBg9i4cSOMRqP0+97f3x8qlcq+xdn9+kKyuw8++EBERkYKlUolhgwZIr777ju5S3I4ANp8rFq1Su7SOgQuqXB9X3/9tejTp49Qq9WiZ8+e4pNPPpG7JIdlMBjESy+9JCIjI4W7u7u47bbbxKuvvirq6+vlLk12O3bsaPN31KRJk4QQzcsqvP766yI4OFio1WoxfPhwkZ+fL2/RMvmlc1VQUHDd3/c7duywe20KIbiULREREdGt4pwqIiIiIhtgqCIiIiKyAYYqIiIiIhtgqCIiIiKyAYYqIiIiIhtgqCIiIiKyAYYqIiIiIhtgqCIiIiKyAYYqInJKO3fuhEKhQEVFhSzvn5GRgV69ell0g+qtW7diwIABvEcekYNjqCKiTu++++7DrFmzzLbdeeeduHjxIrRarSw1zZ07F6+99ppFN6geOXIk3Nzc8M9//rMdKiOim8VQRUROSaVSISQkBAqFot3fe/fu3Thz5gzGjRtn8WuefvppLF261I5VEdGtYqgiok7t6aefRmZmJpYsWQKFQgGFQoFz5861Gv5bvXo1fH19sXHjRsTGxsLT0xOPPPIIampq8Nlnn6Fbt27w8/PDiy++aDZkV19fj9///vfo2rUrvLy8kJCQgJ07d/5iTWvWrMEDDzwAd3d3advhw4dx//33w8fHBxqNBvHx8cjOzpb2P/TQQ8jOzsaZM2dsen6IyHZc5S6AiMielixZgpMnT6JPnz546623AACBgYE4d+5cq7Y1NTVYunQp1qxZg8rKSowdOxYPP/wwfH19sXnzZpw9exbjxo3D0KFDMX78eADAzJkzcezYMaxZswZhYWHYsGEDRo4ciby8PHTv3r3Nmr799ls88cQTZtsmTJiAgQMHYsWKFXBxcUFubi7c3Nyk/ZGRkQgODsa3336L22+/3UZnh4hsiaGKiDo1rVYLlUoFT09PhISE/GLbxsZGrFixQgotjzzyCP7+97+jpKQE3t7eiIuLw/33348dO3Zg/PjxKCwsxKpVq1BYWIiwsDAAwO9//3ts3boVq1atwjvvvNPm+5w/f15q36KwsBBz5sxBz549AaDNQBYWFobz589bfQ6IqH0wVBERXeXp6WnWCxQcHIxu3brB29vbbFtpaSkAIC8vD0ajET169DA7Tn19PQICAq77PrW1tWZDfwCQkpKCadOm4e9//zsSExPx29/+tlWPlIeHB2pqam768xGRfTFUERFdde1wGwAoFIo2t7UsbVBVVQUXFxfk5OS0uorv2iD2c126dEF5ebnZtjfeeANPPPEENm3ahC1btmDBggVYs2YNHn74YalNWVkZAgMDb+qzEZH9MVQRUaenUqksWg/KWgMHDoTRaERpaSnuvvtuq1537NixVtt79OiBHj16YPbs2Xj88cexatUqKVTV1dXhzJkzGDhwoM3qJyLb4tV/RNTpdevWDfv27cO5c+dw+fJlmy2i2aNHD0yYMAETJ07EV199hYKCAuzfvx9paWnYtGnTdV+XlJSE3bt3S89ra2sxc+ZM7Ny5E+fPn8eePXtw4MAB9OrVS2rz3XffQa1WQ6fT2aR2IrI9hioi6vR+//vfw8XFBXFxcQgMDERhYaHNjr1q1SpMnDgRv/vd7xAbG4sxY8bgwIEDiIyMvO5rJkyYgKNHjyI/Px8A4OLigitXrmDixIno0aMHHn30UYwaNQpvvvmm9JovvvgCEyZMgKenp81qJyLbUgghhNxFEBE5mzlz5sBgMODjjz++YdvLly8jNjYW2dnZiI6ObofqiOhmsKeKiEgGr776KqKioiwaijx37hyWL1/OQEXk4NhTRURERGQD7KkiIiIisgGGKiIiIiIbYKgiIiIisgGGKiIiIiIbYKgiIiIisgGGKiIiIiIbYKgiIiIisgGGKiIiIiIbYKgiIiIisoH/D15hb6MIILzzAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\dae\\petsc_pid_doc_12_0.png" - } - }, - "output_type": "display_data" - } - ], - "source": [ - "a = plt.plot(tj.time, tj.get_vec(m.fs.tank.control_volume.properties_out[12].pressure))\n", - "a = plt.ylabel(\"tank pressure (Pa)\")\n", - "a = plt.xlabel(\"time (s)\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Model a ramp in inlet pressure\n", - "\n", - "Next we show how to add an explicit time variable and ramp the inlet pressure from 500 kPa to 600 kPa between 10 and 12 seconds." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.init.fs.valve_1: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.init.fs.tank.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.init.fs.tank: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.init.fs.valve_2: Initialization Complete: optimal - Optimal Solution Found\n" - ] - } - ], - "source": [ - "# Create a new copy of the model that runs to 24 seconds, and add a constraint.\n", - "\n", - "m = pid.create_model(\n", - " time_set=[0, 24],\n", - " nfe=1,\n", - " calc_integ=True,\n", - ")\n", - "# time_var will be an explicit time variable we can use in constraints.\n", - "m.fs.time_var = pyo.Var(m.fs.time)\n", - "\n", - "# We'll add a constraint to calculate the inlet pressure based on time,\n", - "# so we need to unfix pressure.\n", - "m.fs.valve_1.control_volume.properties_in[0].pressure.unfix()\n", - "m.fs.valve_1.control_volume.properties_in[24].pressure.unfix()\n", - "\n", - "# The solver will directly set the time variable for the DAE solve, but\n", - "# solving the initial conditions is just a system of nonlinear equations,\n", - "# so we need to fix the initial time.\n", - "m.fs.time_var[0].fix(m.fs.time.first())\n", - "\n", - "\n", - "# We could break up the time domain and solve this in pieces, but creative use\n", - "# of min and max will let us create the ramping function we want.\n", - "# From 10s to 12s ramp inlet pressure from 500,000 Pa to 600,000 Pa\n", - "@m.fs.Constraint(m.fs.time)\n", - "def inlet_pressure_eqn(b, t):\n", - " return b.valve_1.control_volume.properties_in[t].pressure == smooth_min(\n", - " 600000, smooth_max(500000, 50000 * (b.time_var[t] - 10) + 500000)\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Called fg_read, err: 0 (0 is good)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: DAE: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Reading nl file: C:\\Users\\dkgun\\AppData\\Local\\Temp\\tmpntswp4hz.pyomo.nl\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of constraints: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of nonlinear constraints: 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of linear constraints: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of inequalities: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of variables: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of integers: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of binary: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of objectives: 0 (Ignoring)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of non-zeros in Jacobian: 89 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of degrees of freedom: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: 0 SNES Function norm 5.783088779321e+05 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: 1 SNES Function norm 4.315325974705e+05 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: 2 SNES Function norm 7.639793381288e+04 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: 3 SNES Function norm 5.928557930246e+03 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: 4 SNES Function norm 5.008361736230e+01 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: 5 SNES Function norm 3.698195222021e-03 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: 6 SNES Function norm 3.725635339799e-09 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: SNESConvergedReason = SNES_CONVERGED_FNORM_RELATIVE, in 6 iterations\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: SNES_CONVERGED_FNORM_RELATIVE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Called fg_read, err: 0 (0 is good)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: DAE: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Reading nl file: C:\\Users\\dkgun\\AppData\\Local\\Temp\\tmpzdyo3gs9.pyomo.nl\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of constraints: 30\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of nonlinear constraints: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of linear constraints: 13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of inequalities: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of variables: 36\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of integers: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of binary: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of objectives: 0 (Ignoring)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of non-zeros in Jacobian: 98 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Explicit time variable: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of derivatives: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of differential vars: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of algebraic vars: 25\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of state vars: 30\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: Number of degrees of freedom: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:37 [INFO] idaes.solve.petsc-dae: 0 TS dt 0.1 time 0.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 1 TS dt 0.025 time 0.025\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 2 TS dt 0.0155174 time 0.0382861\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 3 TS dt 0.0134552 time 0.0512442\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 4 TS dt 0.0137323 time 0.0646993\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 5 TS dt 0.0143091 time 0.0784316\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 6 TS dt 0.0147875 time 0.0927408\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 7 TS dt 0.0154095 time 0.107528\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 8 TS dt 0.0160103 time 0.122938\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 9 TS dt 0.0167004 time 0.138948\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 10 TS dt 0.017409 time 0.155648\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 11 TS dt 0.0181867 time 0.173057\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 12 TS dt 0.0190011 time 0.191244\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 13 TS dt 0.0198735 time 0.210245\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 14 TS dt 0.0207844 time 0.230119\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 15 TS dt 0.0217362 time 0.250903\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 16 TS dt 0.0227074 time 0.272639\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 17 TS dt 0.023683 time 0.295347\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 18 TS dt 0.0246322 time 0.31903\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 19 TS dt 0.0255259 time 0.343662\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 20 TS dt 0.0263295 time 0.369188\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 21 TS dt 0.0270172 time 0.395517\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 22 TS dt 0.0275714 time 0.422535\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:41 [INFO] idaes.solve.petsc-dae: 23 TS dt 0.0279905 time 0.450106\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 24 TS dt 0.0282849 time 0.478096\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 25 TS dt 0.0284755 time 0.506381\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 26 TS dt 0.0285871 time 0.534857\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 27 TS dt 0.0286451 time 0.563444\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 28 TS dt 0.0286717 time 0.592089\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 29 TS dt 0.0286852 time 0.620761\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 30 TS dt 0.0286996 time 0.649446\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 31 TS dt 0.0287253 time 0.678146\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 32 TS dt 0.0287697 time 0.706871\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 33 TS dt 0.028838 time 0.735641\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 34 TS dt 0.0289341 time 0.764479\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 35 TS dt 0.0290607 time 0.793413\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 36 TS dt 0.02922 time 0.822473\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 37 TS dt 0.0294138 time 0.851693\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 38 TS dt 0.0296438 time 0.881107\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 39 TS dt 0.0299117 time 0.910751\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 40 TS dt 0.0302194 time 0.940663\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 41 TS dt 0.0305688 time 0.970882\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 42 TS dt 0.0309625 time 1.00145\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 43 TS dt 0.0314033 time 1.03241\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 44 TS dt 0.0318942 time 1.06382\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 45 TS dt 0.0324393 time 1.09571\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 46 TS dt 0.0330429 time 1.12815\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 47 TS dt 0.0337102 time 1.16119\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 48 TS dt 0.0344475 time 1.1949\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 49 TS dt 0.035262 time 1.22935\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 50 TS dt 0.0361623 time 1.26461\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 51 TS dt 0.0371585 time 1.30078\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 52 TS dt 0.0382628 time 1.33793\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 53 TS dt 0.0394897 time 1.3762\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 54 TS dt 0.0408567 time 1.41569\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 55 TS dt 0.0423852 time 1.45654\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 56 TS dt 0.044101 time 1.49893\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 57 TS dt 0.0460366 time 1.54303\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 58 TS dt 0.0482319 time 1.58907\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 59 TS dt 0.0507375 time 1.6373\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 60 TS dt 0.0536178 time 1.68804\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 61 TS dt 0.0569557 time 1.74165\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 62 TS dt 0.0608589 time 1.79861\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:42 [INFO] idaes.solve.petsc-dae: 63 TS dt 0.0654684 time 1.85947\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 64 TS dt 0.0709695 time 1.92494\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 65 TS dt 0.0776028 time 1.99591\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 66 TS dt 0.0856702 time 2.07351\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 67 TS dt 0.0955136 time 2.15918\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 68 TS dt 0.107416 time 2.25469\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 69 TS dt 0.121348 time 2.36211\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 70 TS dt 0.136618 time 2.48346\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 71 TS dt 0.151999 time 2.62007\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 72 TS dt 0.166896 time 2.77207\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 73 TS dt 0.182219 time 2.93897\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 74 TS dt 0.199913 time 3.12119\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 75 TS dt 0.222499 time 3.3211\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 76 TS dt 0.253299 time 3.5436\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 77 TS dt 0.297452 time 3.7969\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 78 TS dt 0.364163 time 4.09435\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 79 TS dt 0.47213 time 4.45851\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 80 TS dt 0.664606 time 4.93064\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 81 TS dt 1.05946 time 5.59525\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 82 TS dt 2.05857 time 6.65471\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 83 TS dt 5.55504 time 8.71328\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 84 TS dt 5.55504 time 9.26879\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 85 TS dt 5.55504 time 9.82429\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 86 TS dt 0.555504 time 9.87984\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 87 TS dt 0.555504 time 9.93539\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:43 [INFO] idaes.solve.petsc-dae: 88 TS dt 0.555504 time 9.99094\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 89 TS dt 0.0651962 time 9.99746\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 90 TS dt 0.0255475 time 10.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 91 TS dt 0.00219863 time 10.0016\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 92 TS dt 0.0219863 time 10.0038\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 93 TS dt 0.0198779 time 10.0258\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 94 TS dt 0.0286557 time 10.0457\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 95 TS dt 0.0273289 time 10.0743\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 96 TS dt 0.0318305 time 10.1016\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 97 TS dt 0.0324311 time 10.1335\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 98 TS dt 0.0357771 time 10.1659\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 99 TS dt 0.0376638 time 10.2017\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 100 TS dt 0.0407834 time 10.2393\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 101 TS dt 0.0432674 time 10.2801\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 102 TS dt 0.0460497 time 10.3234\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 103 TS dt 0.0482229 time 10.3694\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 104 TS dt 0.0500998 time 10.4177\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 105 TS dt 0.0514212 time 10.4678\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 106 TS dt 0.0524739 time 10.5192\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 107 TS dt 0.0533231 time 10.5717\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 108 TS dt 0.0541764 time 10.625\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 109 TS dt 0.055114 time 10.6792\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 110 TS dt 0.0562405 time 10.7343\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 111 TS dt 0.0576083 time 10.7905\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:44 [INFO] idaes.solve.petsc-dae: 112 TS dt 0.0592815 time 10.8481\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 113 TS dt 0.0613148 time 10.9074\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 114 TS dt 0.0637807 time 10.9687\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 115 TS dt 0.066768 time 11.0325\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 116 TS dt 0.0703982 time 11.0993\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 117 TS dt 0.0748361 time 11.1697\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 118 TS dt 0.0803101 time 11.2445\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 119 TS dt 0.0871329 time 11.3248\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 120 TS dt 0.0957104 time 11.4119\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 121 TS dt 0.10648 time 11.5077\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 122 TS dt 0.119574 time 11.6141\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 123 TS dt 0.133912 time 11.7337\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 124 TS dt 0.14655 time 11.8676\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 125 TS dt 0.200821 time 11.9442\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 126 TS dt 0.207161 time 11.9721\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 127 TS dt 0.156004 time 11.9956\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 128 TS dt 0.0227472 time 12.0004\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:45 [INFO] idaes.solve.petsc-dae: 129 TS dt 0.00356448 time 12.0027\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 130 TS dt 0.0274462 time 12.0063\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 131 TS dt 0.0239466 time 12.0302\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 132 TS dt 0.0330238 time 12.0542\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 133 TS dt 0.0325767 time 12.0872\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 134 TS dt 0.0372834 time 12.1198\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 135 TS dt 0.0382607 time 12.157\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 136 TS dt 0.0416555 time 12.1953\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 137 TS dt 0.0434518 time 12.237\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 138 TS dt 0.0461798 time 12.2804\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 139 TS dt 0.0480414 time 12.3266\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 140 TS dt 0.0501207 time 12.3746\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 141 TS dt 0.051711 time 12.4247\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 142 TS dt 0.0533722 time 12.4765\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 143 TS dt 0.0549039 time 12.5298\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 144 TS dt 0.056624 time 12.5847\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 145 TS dt 0.0585145 time 12.6414\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 146 TS dt 0.0607686 time 12.6999\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 147 TS dt 0.0634457 time 12.7606\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 148 TS dt 0.0667122 time 12.8241\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 149 TS dt 0.0707105 time 12.8908\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 150 TS dt 0.0756777 time 12.9615\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 151 TS dt 0.0819182 time 13.0372\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 152 TS dt 0.0898985 time 13.1191\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 153 TS dt 0.100306 time 13.209\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 154 TS dt 0.114194 time 13.3093\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 155 TS dt 0.133091 time 13.4235\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 156 TS dt 0.158824 time 13.5566\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 157 TS dt 0.191975 time 13.7154\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 158 TS dt 0.229408 time 13.9074\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 159 TS dt 0.269761 time 14.1368\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 160 TS dt 0.32234 time 14.4066\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 161 TS dt 0.405611 time 14.7289\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 162 TS dt 0.558837 time 15.1345\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:46 [INFO] idaes.solve.petsc-dae: 163 TS dt 0.890135 time 15.6934\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:47 [INFO] idaes.solve.petsc-dae: 164 TS dt 1.79623 time 16.5835\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:47 [INFO] idaes.solve.petsc-dae: 165 TS dt 2.81014 time 18.3797\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:47 [INFO] idaes.solve.petsc-dae: 166 TS dt 2.81014 time 21.1899\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:47 [INFO] idaes.solve.petsc-dae: 167 TS dt 28.1014 time 24.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:47 [INFO] idaes.solve.petsc-dae: TSConvergedReason = TS_CONVERGED_TIME\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:47 [INFO] idaes.solve.petsc-dae: TS_CONVERGED_TIME\n" - ] - } - ], - "source": [ - "# Solve the new problem. Notice the new argument specifying the explicit time variable.\n", - "result = petsc.petsc_dae_by_time_element(\n", - " m,\n", - " time=m.fs.time,\n", - " timevar=m.fs.time_var,\n", - " ts_options={\n", - " \"--ts_type\": \"beuler\",\n", - " \"--ts_dt\": 0.1,\n", - " \"--ts_monitor\": \"\", # set initial step to 0.1\n", - " \"--ts_save_trajectory\": 1,\n", - " },\n", - ")\n", - "tj = result.trajectory # trajectroy data\n", - "res = result.results # solver status list" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAGwCAYAAABxbMuTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIzElEQVR4nO3deXzU1b3/8fdkmckCk7BmQQggArKKcIlRcblEAkUrSoVSqhRRq6IWcEGqELBVvOitlYqo7a9Su4jQ61IWsSnIaohIRdmMEGODJkMUyEzYss35/QH5wkiQTDKTScLr+XjMo5n5nvnOJ9+OmTfnnDnHZowxAgAAQMCFhboAAACA5oqgBQAAECQELQAAgCAhaAEAAAQJQQsAACBICFoAAABBQtACAAAIkohQF3A+8Xq9KiwsVMuWLWWz2UJdDgAAqAVjjEpLS5WcnKywMP/6qAhaDaiwsFAdO3YMdRkAAKAO9u3bpwsuuMCv5xC0GlDLli0lnfg/yul0hrgaAABQGx6PRx07drQ+x/1B0GpA1cOFTqeToAUAQBNTl2k/TIYHAAAIEoIWAABAkBC0AAAAgoSgBQAAECQELQAAgCAhaAEAAAQJQQsAACBICFoAAABBQtACAAAIEoIWAABAkIQ8aH399df66U9/qjZt2ig6Olp9+/bVRx99ZB03xmjWrFlKSkpSdHS00tPTtWfPHp9zHDx4UOPHj5fT6VR8fLwmTZqkw4cP+7T59NNPNWTIEEVFRaljx46aN2/eGbUsXbpUPXv2VFRUlPr27auVK1f6HK9NLQAAANVCGrQOHTqkK664QpGRkXr33Xe1a9cu/e///q9atWpltZk3b57mz5+vl156STk5OYqNjVVGRoaOHz9utRk/frx27typrKwsLV++XOvXr9ddd91lHfd4PBo2bJhSUlK0detWPfPMM5o9e7ZeeeUVq80HH3ygcePGadKkSfr44481atQojRo1Sjt27PCrFgAAgGo2Y4wJ1Ys/+uij2rRpkzZs2FDjcWOMkpOT9eCDD+qhhx6SJLndbiUkJGjRokX68Y9/rN27d6tXr17asmWLBg0aJElatWqVfvCDH+irr75ScnKyFi5cqMcee0wul0t2u9167bffflufffaZJGns2LE6cuSIli9fbr3+ZZddpksuuUQvvfRSrWo5F4/Ho7i4OLndbjaVBpqZssoqfVNaFuoygPNefIxdLRwRAT1nfT6/A1uJn/7xj38oIyNDt9xyi9atW6cOHTro3nvv1Z133ilJys/Pl8vlUnp6uvWcuLg4paamKjs7Wz/+8Y+VnZ2t+Ph4K2RJUnp6usLCwpSTk6ObbrpJ2dnZuuqqq6yQJUkZGRn6n//5Hx06dEitWrVSdna2pk2b5lNfRkaG3n777VrX8l1lZWUqKzv1h9fj8dTvggFolMoqqzT0f9fpq0PHQl0KcN576qa++klqp1CXYQlp0Priiy+0cOFCTZs2Tb/85S+1ZcsWPfDAA7Lb7ZowYYJcLpckKSEhwed5CQkJ1jGXy6X27dv7HI+IiFDr1q192nTp0uWMc1Qfa9WqlVwu1zlf51y1fNfcuXM1Z86c2l0MAE1WwYGjVshyRIR86itwXgtvZP8JhjRoeb1eDRo0SE899ZQkacCAAdqxY4deeuklTZgwIZSlBcSMGTN8esk8Ho86duwYwooABEOR+8Q8zR4JLfXe1KtCXA2AxiSkuS8pKUm9evXyeeziiy9WQUGBJCkxMVGStH//fp82+/fvt44lJiaquLjY53hlZaUOHjzo06amc5z+Gmdrc/rxc9XyXQ6HQ06n0+cGoPkpcp/ozUqMiwpxJQAam5AGrSuuuEK5ubk+j33++edKSUmRJHXp0kWJiYlavXq1ddzj8SgnJ0dpaWmSpLS0NJWUlGjr1q1WmzVr1sjr9So1NdVqs379elVUVFhtsrKy1KNHD+sbjmlpaT6vU92m+nVqUwuA81NhyYkereR4ghaA7zAh9OGHH5qIiAjz5JNPmj179pi//vWvJiYmxvzlL3+x2jz99NMmPj7evPPOO+bTTz81N954o+nSpYs5duyY1Wb48OFmwIABJicnx2zcuNFcdNFFZty4cdbxkpISk5CQYG699VazY8cOs3jxYhMTE2Nefvllq82mTZtMRESEefbZZ83u3btNZmamiYyMNNu3b/erlu/jdruNJON2u+tz2QA0Mo8s/cSkTF9unv/X56EuBUAQ1OfzO6RByxhjli1bZvr06WMcDofp2bOneeWVV3yOe71eM3PmTJOQkGAcDocZOnSoyc3N9Wlz4MABM27cONOiRQvjdDrNxIkTTWlpqU+bTz75xFx55ZXG4XCYDh06mKeffvqMWpYsWWK6d+9u7Ha76d27t1mxYoXftXwfghbQPP30D5tNyvTl5o0tBaEuBUAQ1OfzO6TraJ1vWEcLaJ7Sf7NOe4sP6y+TUnXlRW1DXQ6AAKvP53cj+xIkADQ9rpPfOkxijhaA7yBoAUA9eI5X6HBZpSQpiW8dAvgOghYA1EPRyW8cxkVHKsYe0qUJATRCBC0AqIfqNbTozQJQE4IWANRD9arwBC0ANSFoAUA9FJWc7NGKjw5xJQAaI4IWANRDdY9WMj1aAGpA0AKAeqgOWolx9GgBOBNBCwDqofDkZHh6tADUhKAFAHVkjDltsVJ6tACciaAFAHXkOVapo+VVkqREJz1aAM5E0AKAOqoeNmwVE6loe3iIqwHQGBG0AKCOrGFDJsIDOAuCFgDUUSGrwgM4B4IWANRR9T6HSfEELQA1I2gBQB0VMXQI4BwIWgBQR2woDeBcCFoAUEf0aAE4F4IWANSBMcbq0UpmjhaAsyBoAUAdlByt0PEKryQpgcVKAZwFQQsA6qB6aYc2sXZFRbJYKYCaEbQAoA5O7XFIbxaAsyNoAUAdFJ4MWolOJsIDODuCFgDUQVEJE+EBnBtBCwDqgH0OAdQGQQsA6oB9DgHUBkELAOrg1GKlBC0AZ0fQAgA/nVis9ETQSo5n6BDA2RG0AMBPB4+Uq7zyxGKl7Z2OEFcDoDEjaAGAn6p7s9q2cMgRwWKlAM6OoAUAfjo1bMj8LADfj6AFAH6q3kw6kT0OAZwDQQsA/FRYwkR4ALVD0AIAP7lYQwtALRG0AMBP1j6HBC0A50DQAgA/Vc/RYugQwLkQtADAD16vOW2fQ3q0AHw/ghYA+OHAkXJVVBnZbFIC3zoEcA4ELQDwQ/WwYbsWDkWG8ycUwPfjrwQA+KF6aYck5mcBqAWCFgD4wVragWFDALVA0AIAP1Rvv5PE9jsAaoGgBQB+qF5DKzmOoUMA50bQAgA/VA8dslgpgNogaAGAH07tc0jQAnBuBC0AqKUqr9F+T/VipQwdAjg3ghYA1NKBw2Wq9BqF2aT2LR2hLgdAE0DQAoBaqp4I375llCJYrBRALfCXAgBqqajk5BpazM8CUEsELQCopSI2kwbgJ4IWANRS9T6HTIQHUFsELQCopUJ6tAD4iaAFALXkcrO0AwD/ELQAoJaYDA/AXwQtAKiFKq/R/tIySexzCKD2CFoAUAvflJapymsUHmZTOxYrBVBLBC0AqIXCk984TGjpUHiYLcTVAGgqQhq0Zs+eLZvN5nPr2bOnddzlcunWW29VYmKiYmNjdemll+r//u//fM5x8OBBjR8/Xk6nU/Hx8Zo0aZIOHz7s0+bTTz/VkCFDFBUVpY4dO2revHln1LJ06VL17NlTUVFR6tu3r1auXOlz3BijWbNmKSkpSdHR0UpPT9eePXsCeDUANGZFJzeTTopn2BBA7YW8R6t3794qKiqybhs3brSO3XbbbcrNzdU//vEPbd++XTfffLPGjBmjjz/+2Gozfvx47dy5U1lZWVq+fLnWr1+vu+66yzru8Xg0bNgwpaSkaOvWrXrmmWc0e/ZsvfLKK1abDz74QOPGjdOkSZP08ccfa9SoURo1apR27NhhtZk3b57mz5+vl156STk5OYqNjVVGRoaOHz8e5CsEoDGoXkMrkaUdAPjDhFBmZqbp37//WY/Hxsaa1157zeex1q1bm9///vfGGGN27dplJJktW7ZYx999911js9nM119/bYwx5sUXXzStWrUyZWVlVpvp06ebHj16WPfHjBljRo4c6fM6qamp5uc//7kxxhiv12sSExPNM888Yx0vKSkxDofDvP7662et//jx48btdlu3ffv2GUnG7Xaf9TkAGqcnlu00KdOXm18v3xnqUgA0MLfbXefP75D3aO3Zs0fJycnq2rWrxo8fr4KCAuvY5ZdfrjfeeEMHDx6U1+vV4sWLdfz4cV1zzTWSpOzsbMXHx2vQoEHWc9LT0xUWFqacnByrzVVXXSW73W61ycjIUG5urg4dOmS1SU9P96krIyND2dnZkqT8/Hy5XC6fNnFxcUpNTbXa1GTu3LmKi4uzbh07dqzjVQIQaqwKD6AuQhq0UlNTtWjRIq1atUoLFy5Ufn6+hgwZotLSUknSkiVLVFFRoTZt2sjhcOjnP/+53nrrLXXr1k3SiTlc7du39zlnRESEWrduLZfLZbVJSEjwaVN9/1xtTj9++vNqalOTGTNmyO12W7d9+/bV/uIAaFTY5xBAXUSE8sVHjBhh/dyvXz+lpqYqJSVFS5Ys0aRJkzRz5kyVlJToX//6l9q2bau3335bY8aM0YYNG9S3b98QVl47DodDDgdfAweaAybDA6iLkAat74qPj1f37t21d+9e5eXl6YUXXtCOHTvUu3dvSVL//v21YcMGLViwQC+99JISExNVXFzsc47KykodPHhQiYmJkqTExETt37/fp031/XO1Of149WNJSUk+bS655JIA/fYAGqvKKq+KS08ErWR6tAD4IeRztE53+PBh5eXlKSkpSUePHpUkhYX5lhgeHi6v1ytJSktLU0lJibZu3WodX7Nmjbxer1JTU60269evV0VFhdUmKytLPXr0UKtWraw2q1ev9nmdrKwspaWlSZK6dOmixMREnzYej0c5OTlWGwDNV3FpmbxGigizqU0LeqkB+CEIk/Nr7cEHHzRr1641+fn5ZtOmTSY9Pd20bdvWFBcXm/LyctOtWzczZMgQk5OTY/bu3WueffZZY7PZzIoVK6xzDB8+3AwYMMDk5OSYjRs3mosuusiMGzfOOl5SUmISEhLMrbfeanbs2GEWL15sYmJizMsvv2y12bRpk4mIiDDPPvus2b17t8nMzDSRkZFm+/btVpunn37axMfHm3feecd8+umn5sYbbzRdunQxx44dq/XvW59vLQAInY++PGBSpi83l89dHepSAIRAfT6/Qxq0xo4da5KSkozdbjcdOnQwY8eONXv37rWOf/755+bmm2827du3NzExMaZfv35nLPdw4MABM27cONOiRQvjdDrNxIkTTWlpqU+bTz75xFx55ZXG4XCYDh06mKeffvqMWpYsWWK6d+9u7Ha76d27t0+YM+bEEg8zZ840CQkJxuFwmKFDh5rc3Fy/fl+CFtA0/WPb1yZl+nLzo4WbQl0KgBCoz+e3zRhjQtundv7weDyKi4uT2+2W0+kMdTkAaun367/Qkyt364b+yfrduAGhLgdAA6vP53ejmqMFAI1R9T6HTIQH4C+CFgCcg7W0A0ELgJ8IWgBwDkWeE0ErkVXhAfiJoAUA51BUcnLoMJ4eLQD+IWgBwPcor/Tqm8NlktjnEID/CFoA8D2KS4/LGCky3KY2sfZzPwEATkPQAoDvUb2ZdGJclMLCbCGuBkBTQ9ACgO9ReHJ+FsOGAOqCoAUA38PlZmkHAHVH0AKA71FkBS16tAD4j6AFAN+jkKUdANQDQQsAvoererFSJ0ELgP8IWgDwPQpPbr+THM/QIQD/EbQA4CzKKqv0rbVYKT1aAPxH0AKAsyj2nAhZ9ogwtWaxUgB1QNACgLM4tYZWlGw2FisF4D+CFgCcRRFraAGoJ4IWAJwFa2gBqC+CFgCcRZH71NAhANQFQQsAzqJ6aYcklnYAUEcELQA4C5fnZI8Wi5UCqCOCFgCcRZHVo0XQAlA3BC0AqMHxiiodOFIuSUpmMjyAOiJoAUAN9p/c49AREab4mMgQVwOgqSJoAUANTt/jkMVKAdQVQQsAasDSDgACgaAFADWoXqw0kaAFoB4IWgBQg+oeLSbCA6gPghYA1IClHQAEAkELAGrAhtIAAoGgBQA1ODUZnqFDAHVH0AKA7zhWXqVDRyskMUcLQP1E1OVJFRUVcrlcOnr0qNq1a6fWrVsHui4ACBnXycVKoyPD5Yyu059JAJDkR49WaWmpFi5cqKuvvlpOp1OdO3fWxRdfrHbt2iklJUV33nmntmzZEsxaAaBBFJWcHDaMj2KxUgD1Uqug9Zvf/EadO3fWq6++qvT0dL399tvatm2bPv/8c2VnZyszM1OVlZUaNmyYhg8frj179gS7bgAImsKTE+EZNgRQX7XqE9+yZYvWr1+v3r1713h88ODBuv322/XSSy/p1Vdf1YYNG3TRRRcFtFAAaCiukxPhWawUQH3VKmi9/vrrtTqZw+HQ3XffXa+CACDUTvVoEbQA1A/fOgSA7zg1R4uhQwD1U6ev03z00UdasmSJCgoKVF5e7nPszTffDEhhABAq7HMIIFD87tFavHixLr/8cu3evVtvvfWWKioqtHPnTq1Zs0ZxcXHBqBEAGlQRk+EBBIjfQeupp57Sc889p2XLlslut+v555/XZ599pjFjxqhTp07BqBEAGszR8kq5j51YrJR9DgHUl99BKy8vTyNHjpQk2e12HTlyRDabTVOnTtUrr7wS8AIBoCFV92bF2sPV0sFipQDqx++g1apVK5WWlkqSOnTooB07dkiSSkpKdPTo0cBWBwANrKjk5GbS8dEsVgqg3vz+59pVV12lrKws9e3bV7fccot+8YtfaM2aNcrKytLQoUODUSMANJhCazNphg0B1J/fQeuFF17Q8eMn/sX32GOPKTIyUh988IFGjx6txx9/POAFAkBDcp0cOiRoAQgEv4LWl19+qaysLJWXl+vqq69Wnz599OijjwarNgBocEVWjxbfOARQf7UOWu+//76uv/56HTt24o9QRESE/vjHP+qnP/1p0IoDgIZWeHKOVjLfOAQQALWeDD9z5kxdd911+vrrr3XgwAHdeeedeuSRR4JZGwA0OJe1WCk9WgDqr9ZBa8eOHXrqqaeUlJSkVq1a6ZlnnlFxcbEOHDgQzPoAoEFVT4Znn0MAgVDroOXxeNS2bVvrfkxMjKKjo+V2u4NSGAA0tMNllSo9XimJfQ4BBIZfk+Hfe+89n212vF6vVq9eba2lJUk//OEPA1cdADQg18nerJaOCLVgsVIAAeDXX5IJEyac8djPf/5z62ebzaaqqqr6VwUAIVBoLVbKsCGAwKh10PJ6vcGsAwBCjqUdAASa31vwAEBzVcRipQACrFZBa/PmzbU+4dGjR7Vz5846FwQAoWLtc0iPFoAAqVXQuvXWW5WRkaGlS5fqyJEjNbbZtWuXfvnLX+rCCy/U1q1bA1okADQEa59D5mgBCJBaBa1du3Zp5MiRevzxxxUfH6/evXvruuuu0w033KArr7xSbdu21aWXXqr8/Hz985//1G233VarF589e7ZsNpvPrWfPnj5tsrOz9d///d+KjY2V0+nUVVddZa1OL0kHDx7U+PHj5XQ6FR8fr0mTJunw4cM+5/j00081ZMgQRUVFqWPHjpo3b94ZtSxdulQ9e/ZUVFSU+vbtq5UrV/ocN8Zo1qxZSkpKUnR0tNLT07Vnz55a/Z4Amgb2OQQQaLUKWpGRkXrggQeUm5ur7Oxs3XnnnerTp486dOiga665Ri+//LIKCwv1+uuvq2/fvn4V0Lt3bxUVFVm3jRs3Wseys7M1fPhwDRs2TB9++KG2bNmi++67T2Fhp8oeP368du7cqaysLC1fvlzr16/XXXfdZR33eDwaNmyYUlJStHXrVj3zzDOaPXu2XnnlFavNBx98oHHjxmnSpEn6+OOPNWrUKI0aNcpn2Yp58+Zp/vz5eumll5STk6PY2FhlZGRYG2wDaPpOzdFi6BBAgJgQyszMNP379z/r8dTUVPP444+f9fiuXbuMJLNlyxbrsXfffdfYbDbz9ddfG2OMefHFF02rVq1MWVmZ1Wb69OmmR48e1v0xY8aYkSNHnvHaP//5z40xxni9XpOYmGieeeYZ63hJSYlxOBzm9ddfP2t9x48fN26327rt27fPSDJut/uszwEQGu5j5SZl+nKTMn25OXy8ItTlAGhE3G53nT+/Q/6twz179ig5OVldu3bV+PHjVVBQIEkqLi5WTk6O2rdvr8svv1wJCQm6+uqrz+jxio+P16BBg6zH0tPTFRYWppycHKvNVVddJbvdbrXJyMhQbm6uDh06ZLVJT0/3qSsjI0PZ2dmSpPz8fLlcLp82cXFxSk1NtdrUZO7cuYqLi7NuHTt2rOtlAhBk1cOGzqgIxbJYKYAACWnQSk1N1aJFi7Rq1SotXLhQ+fn5GjJkiEpLS/XFF19IOjGP684779SqVat06aWXaujQodbcKJfLpfbt2/ucMyIiQq1bt5bL5bLaJCQk+LSpvn+uNqcfP/15NbWpyYwZM+R2u63bvn37an9xADSowpKTexyy9Q6AAArpP9tGjBhh/dyvXz+lpqYqJSVFS5Ys0cUXXyzpxMrzEydOlCQNGDBAq1ev1h//+EfNnTs3JDX7w+FwyOFwhLoMALXAGloAgiHkQ4eni4+PV/fu3bV3714lJSVJknr16uXT5uKLL7aGFxMTE1VcXOxzvLKyUgcPHlRiYqLVZv/+/T5tqu+fq83px09/Xk1tADRt1UErkYnwAAKoXkEr0N+4O3z4sPLy8pSUlKTOnTsrOTlZubm5Pm0+//xzpaSkSJLS0tJUUlLis27XmjVr5PV6lZqaarVZv369KioqrDZZWVnq0aOHWrVqZbVZvXq1z+tkZWUpLS1NktSlSxclJib6tPF4PMrJybHaAGjaiqqHDunRAhBI/s6er6qqMk888YRJTk424eHhJi8vzxhjzOOPP27+8Ic/+HWuBx980Kxdu9bk5+ebTZs2mfT0dNO2bVtTXFxsjDHmueeeM06n0yxdutTs2bPHPP744yYqKsrs3bvXOsfw4cPNgAEDTE5Ojtm4caO56KKLzLhx46zjJSUlJiEhwdx6661mx44dZvHixSYmJsa8/PLLVptNmzaZiIgI8+yzz5rdu3ebzMxMExkZabZv3261efrpp018fLx55513zKeffmpuvPFG06VLF3Ps2LFa/771+dYCgOAa//vNJmX6crP0o32hLgVAI1Ofz2+/g9acOXNM165dzV/+8hcTHR1tBa3Fixebyy67zK9zjR071iQlJRm73W46dOhgxo4d6xOijDFm7ty55oILLjAxMTEmLS3NbNiwwef4gQMHzLhx40yLFi2M0+k0EydONKWlpT5tPvnkE3PllVcah8NhOnToYJ5++ukzalmyZInp3r27sdvtpnfv3mbFihU+x71er5k5c6ZJSEgwDofDDB061OTm5vr1+xK0gMbrv59936RMX2427vkm1KUAaGTq8/ltM8YYf3rAunXrppdffllDhw5Vy5Yt9cknn6hr16767LPPlJaWZi2ZgDN5PB7FxcXJ7XbL6XSGuhwAJxlj1DvzPR0tr9KaB69W13YtQl0SgEakPp/ffs/R+vrrr9WtW7czHvd6vT7zoACgqfAcq9TR8ipJrAoPILD8Dlq9evXShg0bznj873//uwYMGBCQogCgIRV5TkyEj4+JVLQ9PMTVAGhO/F5Ha9asWZowYYK+/vpreb1evfnmm8rNzdVrr72m5cuXB6NGAAiqohL2OAQQHH73aN14441atmyZ/vWvfyk2NlazZs3S7t27tWzZMl133XXBqBEAgqrQzdIOAILDrx6tyspKPfXUU7r99tuVlZUVrJoAoEG5rMVKCVoAAsuvHq2IiAjNmzdPlZWVwaoHABpc4cmhQ/Y5BBBofg8dDh06VOvWrQtGLQAQEkUnhw7Z5xBAoPk9GX7EiBF69NFHtX37dg0cOFCxsbE+x3/4wx8GrDgAaAgMHQIIFr+D1r333itJ+s1vfnPGMZvNpqqqqvpXBQANxBhz2mR4hg4BBJbfQcvr9QajDgAIiZKjFTpeceLvGj1aAALN7zlaANCcFJ0cNmwda1dUJIuVAggsv3u0nnjiie89PmvWrDoXAwANjYnwAILJ76D11ltv+dyvqKhQfn6+IiIidOGFFxK0ADQphW5WhQcQPH4HrY8//viMxzwej372s5/ppptuCkhRANBQXPRoAQiigMzRcjqdmjNnjmbOnBmI0wFAg7H2OYwnaAEIvIBNhne73XK73YE6HQA0CJZ2ABBMfg8dzp8/3+e+MUZFRUX685//rBEjRgSsMABoCCxWCiCY/A5azz33nM/9sLAwtWvXThMmTNCMGTMCVhgABJsxxlregR4tAMHgd9DKz88PRh0A0OAOHilXWeWJxUoT4hwhrgZAc1TvOVoej0dvv/22du/eHYh6AKDBVPdmtW1hlyOCxUoBBJ7fQWvMmDF64YUXJEnHjh3ToEGDNGbMGPXr10//93//F/ACASBYilhDC0CQ+R201q9fryFDhkg6sXipMUYlJSWaP3++fv3rXwe8QAAIFlaFBxBsfgctt9ut1q1bS5JWrVql0aNHKyYmRiNHjtSePXsCXiAABMupHi2CFoDg8DtodezYUdnZ2Tpy5IhWrVqlYcOGSZIOHTqkqCj+WAFoOopKTvZoxTN0CCA4/P7W4ZQpUzR+/Hi1aNFCKSkpuuaaaySdGFLs27dvoOsDgKAppEcLQJD5HbTuvfdeDR48WPv27dN1112nsLATnWJdu3ZljhaAJsXFZHgAQeZ30JKkQYMGadCgQZKkqqoqbd++XZdffrlatWoV0OIAIFi8XnNa0KJHC0Bw+D1Ha8qUKfp//+//SToRsq6++mpdeuml6tixo9auXRvo+gAgKA4cKVd5lVc2G9vvAAgev4PW3//+d/Xv31+StGzZMuXn5+uzzz7T1KlT9dhjjwW8QAAIhurerHYtHIoMr/fazQBQI7//unz77bdKTEyUJK1cuVK33HKLunfvrttvv13bt28PeIEAEAyFrKEFoAH4HbQSEhK0a9cuVVVVadWqVbruuuskSUePHlV4OFtYAGgarKUdmAgPIIj8ngw/ceJEjRkzRklJSbLZbEpPT5ck5eTkqGfPngEvEACCochzciJ8PD1aAILH76A1e/Zs9enTR/v27dMtt9wih+PEjvfh4eF69NFHA14gAARDUQnfOAQQfHVa3uFHP/qRJOn48ePWYxMmTAhMRQDQAE7tc8jQIYDg8XuOVlVVlX71q1+pQ4cOatGihb744gtJ0syZM61lHwCgsave5zCZoUMAQeR30HryySe1aNEizZs3T3a73Xq8T58++sMf/hDQ4gAgGLxeo/0n52gl0qMFIIj8DlqvvfaaXnnlFY0fP97nW4b9+/fXZ599FtDiACAYvj1cpooqozCblNDSEepyADRjfgetr7/+Wt26dTvjca/Xq4qKioAUBQDBVD1s2L5llCJYrBRAEPn9F6ZXr17asGHDGY///e9/14ABAwJSFAAEU/VEeLbeARBsfn/rcNasWZowYYK+/vpreb1evfnmm8rNzdVrr72m5cuXB6NGAAiowhImwgNoGH73aN14441atmyZ/vWvfyk2NlazZs3S7t27tWzZMmuVeABozFzVi5UyER5AkPnVo1VZWamnnnpKt99+u7KysoJVEwAEVWEJ+xwCaBh+9WhFRERo3rx5qqysDFY9ABB01ZPh6dECEGx+Dx0OHTpU69atC0YtANAgXG72OQTQMPyeDD9ixAg9+uij2r59uwYOHKjY2Fif4z/84Q8DVhwABFqV15w2R4ugBSC4/A5a9957ryTpN7/5zRnHbDabqqqq6l8VAATJN6VlqvIahYfZ1L4lQQtAcPkdtLxebzDqAIAGUb2GVkJLh8LDbCGuBkBzx5LIAM4r1RPhWawUQEOoU9BavXq1rr/+el144YW68MILdf311+tf//pXoGsDgICzlnaI5xuHAILP76D14osvavjw4WrZsqV+8Ytf6Be/+IWcTqd+8IMfaMGCBcGoEQACpvobh8n0aAFoAH7P0Xrqqaf03HPP6b777rMee+CBB3TFFVfoqaee0uTJkwNaIAAE0qmhQ3q0AASf3z1aJSUlGj58+BmPDxs2TG63OyBFAUCwFJ6cDE+PFoCG4HfQ+uEPf6i33nrrjMffeecdXX/99QEpCgCC5dRipfRoAQg+v4cOe/XqpSeffFJr165VWlqaJGnz5s3atGmTHnzwQc2fP99q+8ADDwSuUgCop8oqr/azWCmABmQzxhh/ntClS5fandhm0xdffFGnoporj8ejuLg4ud1uOZ3OUJcDnHcKS47p8qfXKCLMptxfj2AdLQC1Up/Pb797tPLz8/19CgA0CtUT4ROcUYQsAA0ipAuWzp49WzabzefWs2fPM9oZYzRixAjZbDa9/fbbPscKCgo0cuRIxcTEqH379nr44YdVWVnp02bt2rW69NJL5XA41K1bNy1atOiM11iwYIE6d+6sqKgopaam6sMPP/Q5fvz4cU2ePFlt2rRRixYtNHr0aO3fv7/e1wBAw6leFZ5hQwANJeQrw/fu3VtFRUXWbePGjWe0+e1vfyub7cx/fVZVVWnkyJEqLy/XBx98oD/96U9atGiRZs2aZbXJz8/XyJEjde2112rbtm2aMmWK7rjjDr333ntWmzfeeEPTpk1TZmam/v3vf6t///7KyMhQcXGx1Wbq1KlatmyZli5dqnXr1qmwsFA333xzgK8GgGAqKmEiPIAGZkIoMzPT9O/f/3vbfPzxx6ZDhw6mqKjISDJvvfWWdWzlypUmLCzMuFwu67GFCxcap9NpysrKjDHGPPLII6Z3794+5xw7dqzJyMiw7g8ePNhMnjzZul9VVWWSk5PN3LlzjTHGlJSUmMjISLN06VKrze7du40kk52dXevf1+12G0nG7XbX+jkAAmfOP3aalOnLzVMrdoW6FABNSH0+v0Peo7Vnzx4lJyera9euGj9+vAoKCqxjR48e1U9+8hMtWLBAiYmJZzw3Oztbffv2VUJCgvVYRkaGPB6Pdu7cabVJT0/3eV5GRoays7MlSeXl5dq6datPm7CwMKWnp1tttm7dqoqKCp82PXv2VKdOnaw2NSkrK5PH4/G5AQid6qFD9jkE0FD8DloFBQUyNXxR0RjjE5JqIzU1VYsWLdKqVau0cOFC5efna8iQISotLZV0Yrju8ssv14033ljj810ul0/IkmTdd7lc39vG4/Ho2LFj+vbbb1VVVVVjm9PPYbfbFR8ff9Y2NZk7d67i4uKsW8eOHc9xRQAEU2H1GlqsCg+ggfj9rcMuXbqoqKhI7du393n84MGD6tKli6qqqmp9rhEjRlg/9+vXT6mpqUpJSdGSJUvUrl07rVmzRh9//LG/JTYaM2bM0LRp06z7Ho+HsAWEkKt6Vfh4erQANAy/e7SMMTVOTD98+LCiour3xys+Pl7du3fX3r17tWbNGuXl5Sk+Pl4RERGKiDiRCUePHq1rrrlGkpSYmHjGN/+q71cPNZ6tjdPpVHR0tNq2bavw8PAa25x+jvLycpWUlJy1TU0cDoecTqfPDUBoVFR5VVxaJomhQwANp9Y9WtU9MzabTTNnzlRMTIx1rKqqSjk5ObrkkkvqVczhw4eVl5enW2+9VWPGjNEdd9zhc7xv37567rnndMMNN0iS0tLS9OSTT6q4uNjqYcvKypLT6VSvXr2sNitXrvQ5T1ZWlrWqvd1u18CBA7V69WqNGjVKkuT1erV69Wpr4+yBAwcqMjJSq1ev1ujRoyVJubm5KigosM4DoHHb7zkuY6TIcJvaxjpCXQ6A80Stg1b1EJ4xRtu3b5fdbreO2e129e/fXw899JBfL/7QQw/phhtuUEpKigoLC5WZmanw8HCNGzdO7dq1q7G3qFOnTtbq9MOGDVOvXr106623at68eXK5XHr88cc1efJkORwn/pDefffdeuGFF/TII4/o9ttv15o1a7RkyRKtWLHCOue0adM0YcIEDRo0SIMHD9Zvf/tbHTlyRBMnTpQkxcXFadKkSZo2bZpat24tp9Op+++/X2lpabrsssv8+p0BhEb1HoeJcVEKY7FSAA2k1kHr/ffflyRNnDhRzz//fECGwb766iuNGzdOBw4cULt27XTllVdq8+bNateuXa2eHx4eruXLl+uee+5RWlqaYmNjNWHCBD3xxBNWmy5dumjFihWaOnWqnn/+eV1wwQX6wx/+oIyMDKvN2LFj9c0332jWrFlyuVy65JJLtGrVKp8J8s8995zCwsI0evRolZWVKSMjQy+++GK9rwGAhmFNhHcyER5Aw/F7r8Nqe/fuVV5enq666ipFR0efde4WTmGvQyB0Xl6Xp7nvfqYbL0nW8z8eEOpyADQh9fn89nsy/MGDBzV06FB1795dP/jBD1RUVCRJmjRpkh588EF/TwcADaKIpR0AhIDfQWvKlCmKjIxUQUGBz4T4sWPHatWqVQEtDgAChX0OAYSC3+to/fOf/9R7772nCy64wOfxiy66SP/5z38CVhgABNKpHi2CFoCG43eP1pEjR3x6sqodPHjQ+qYfADQ21UErmQ2lATQgv4PWkCFD9Nprr1n3bTabvF6v5s2bp2uvvTagxQFAIJRXevXtYRYrBdDw/B46nDdvnoYOHaqPPvpI5eXleuSRR7Rz504dPHhQmzZtCkaNAFAv1YuV2iPC1CbWfu4nAECA+N2j1adPH33++ee68sordeONN+rIkSO6+eab9fHHH+vCCy8MRo0AUC+nz89iGRoADcnvHi3pxErpjz32WKBrAYCgqP7GYaKTYUMADatWQevTTz+t9Qn79etX52IAIBgKS5gIDyA0ahW0LrnkEtlsNp1rEXmbzaaqqqqAFAYAgeJiDS0AIVKroJWfnx/sOgAgaApZQwtAiNQqaKWkpAS7DgAImlOrwjN0CKBh1Wky/J49e/T++++ruLhYXq/X59isWbMCUhgABIqrukcrnh4tAA3L76D1+9//Xvfcc4/atm2rxMREn69K22w2ghaARqWsskrfHi6XRI8WgIbnd9D69a9/rSeffFLTp08PRj0AEFDVvVmOiDC1iokMcTUAzjd+L1h66NAh3XLLLcGoBQAC7vQ9DlmsFEBD8zto3XLLLfrnP/8ZjFoAIOBYrBRAKPk9dNitWzfNnDlTmzdvVt++fRUZ6dsV/8ADDwSsOACor+rFSpkIDyAU/A5ar7zyilq0aKF169Zp3bp1PsdsNhtBC0CjUj1HK5mJ8ABCwO+gxeKlAJoSa+iQxUoBhIDfc7QAoCk5tc8hQQtAw6tVj9a0adP0q1/9SrGxsZo2bdr3tv3Nb34TkMIAIBBcnurtdxg6BNDwahW0Pv74Y1VUVFg/nw1fnQbQmByvqNLBI9WLldKjBaDh1Spovf/++zX+DACNWfUaWtGR4YqLZrFSAA2POVoAmi1rM+n4KHrcAYQEQQtAs1VUvYYWw4YAQoSgBaDZsnq0mAgPIEQIWgCaLWufQ3q0AIQIQQtAs1UdtBLp0QIQIgQtAM1WYcmpyfAAEAoELQDNVvVipexzCCBUCFoAmqVj5VUqOXpioWX2OQQQKgQtAM1S4clvHMbaw+WMqtXazAAQcAQtAM2S6+RE+KT4aBYrBRAyBC0AzZI1EZ5hQwAhRNAC0CxVL+1A0AIQSgQtAM3SqaDFNw4BhA5BC0CzdGr7HXq0AIQOQQtAs2RtKB1PjxaA0CFoAWiWqnu02OcQQCgRtAA0O0fKKuU5XimJxUoBhBZBC0CzU92b1dIRoZZRkSGuBsD5jKAFoNkptOZn0ZsFILQIWgCanepV4RNZ2gFAiBG0ADQ7hUyEB9BIELQANDvW0g70aAEIMYIWgGanyMP2OwAaB4IWgGanqHpDaSbDAwgxghaAZod9DgE0FgQtAM1K6fEKHS47sVgpQ4cAQo2gBaBZqe7NckZFKNYREeJqAJzvCFoAmpXCk/OzktlMGkAjQNAC0KycWqyUYUMAoUfQAtCsFDIRHkAjQtAC0KxUL+3AqvAAGgOCFoBmxeVh6BBA4xHSoDV79mzZbDafW8+ePSVJBw8e1P33368ePXooOjpanTp10gMPPCC32+1zjoKCAo0cOVIxMTFq3769Hn74YVVWVvq0Wbt2rS699FI5HA5169ZNixYtOqOWBQsWqHPnzoqKilJqaqo+/PBDn+PHjx/X5MmT1aZNG7Vo0UKjR4/W/v37A3tBANQbk+EBNCYh79Hq3bu3ioqKrNvGjRslSYWFhSosLNSzzz6rHTt2aNGiRVq1apUmTZpkPbeqqkojR45UeXm5PvjgA/3pT3/SokWLNGvWLKtNfn6+Ro4cqWuvvVbbtm3TlClTdMcdd+i9996z2rzxxhuaNm2aMjMz9e9//1v9+/dXRkaGiouLrTZTp07VsmXLtHTpUq1bt06FhYW6+eabG+AKAagtY8xpi5XSowWgETAhlJmZafr371/r9kuWLDF2u91UVFQYY4xZuXKlCQsLMy6Xy2qzcOFC43Q6TVlZmTHGmEceecT07t3b5zxjx441GRkZ1v3BgwebyZMnW/erqqpMcnKymTt3rjHGmJKSEhMZGWmWLl1qtdm9e7eRZLKzs2tdv9vtNpKM2+2u9XMA1F7J0XKTMn25SZm+3Bwtqwx1OQCaifp8foe8R2vPnj1KTk5W165dNX78eBUUFJy1rdvtltPpVETEiUUIs7Oz1bdvXyUkJFhtMjIy5PF4tHPnTqtNenq6z3kyMjKUnZ0tSSovL9fWrVt92oSFhSk9Pd1qs3XrVlVUVPi06dmzpzp16mS1qUlZWZk8Ho/PDUDwFLlPDBvGx0Qq2h4e4moAIMRDh6mpqdaQ4MKFC5Wfn68hQ4aotLT0jLbffvutfvWrX+muu+6yHnO5XD4hS5J13+VyfW8bj8ejY8eO6dtvv1VVVVWNbU4/h91uV3x8/Fnb1GTu3LmKi4uzbh07djzHFQFQH0UlLO0AoHEJadAaMWKEbrnlFvXr108ZGRlauXKlSkpKtGTJEp92Ho9HI0eOVK9evTR79uzQFFsHM2bMkNvttm779u0LdUlAs8b8LACNTaPaCCw+Pl7du3fX3r17rcdKS0s1fPhwtWzZUm+99ZYiIyOtY4mJiWd8O7D6m4CJiYnW/37324H79++X0+lUdHS0wsPDFR4eXmOb089RXl6ukpISn16t09vUxOFwyOFw+HEFANRH9dAhQQtAYxHyOVqnO3z4sPLy8pSUlCTpRE/WsGHDZLfb9Y9//ENRUb5/PNPS0rR9+3afbwdmZWXJ6XSqV69eVpvVq1f7PC8rK0tpaWmSJLvdroEDB/q08Xq9Wr16tdVm4MCBioyM9GmTm5urgoICqw2A0Cs8OXTI0g4AGouQ9mg99NBDuuGGG5SSkqLCwkJlZmYqPDxc48aNs0LW0aNH9Ze//MVnMnm7du0UHh6uYcOGqVevXrr11ls1b948uVwuPf7445o8ebLVk3T33XfrhRde0COPPKLbb79da9as0ZIlS7RixQqrjmnTpmnChAkaNGiQBg8erN/+9rc6cuSIJk6cKEmKi4vTpEmTNG3aNLVu3VpOp1P333+/0tLSdNlllzX8hQNQI5fnRI9WopMeLQCNQ0iD1ldffaVx48bpwIEDateuna688kpt3rxZ7dq109q1a5WTkyNJ6tatm8/z8vPz1blzZ4WHh2v58uW65557lJaWptjYWE2YMEFPPPGE1bZLly5asWKFpk6dqueff14XXHCB/vCHPygjI8NqM3bsWH3zzTeaNWuWXC6XLrnkEq1atcpngvxzzz2nsLAwjR49WmVlZcrIyNCLL74Y5CsEwB/WZPh4ghaAxsFmjDGhLuJ84fF4FBcXZy1TASBwjDG6eNYqHa/wau1D16hz29hQlwSgmajP53ejmqMFAHXlPlah4xVeSexzCKDxIGgBaBaqJ8K3jrUrKpLFSgE0DgQtAM0CSzsAaIwIWgCaBRYrBdAYEbQANAunerRYQwtA40HQAtAssLQDgMaIoAWgWWDoEEBjRNAC0CwwdAigMSJoAWjyjDFWj1YyQQtAI0LQAtDkHTpaobLKE4uVJsQ5QlwNAJxC0ALQ5BWWnBg2bNvCLkcEi5UCaDwIWgCavFMT4Rk2BNC4ELQANHmukxPh2eMQQGND0ALQ5BVaE+EJWgAaF4IWgCav6OQcraR4hg4BNC4ELQBNHouVAmisCFoAmjwmwwNorAhaAJo0r9fIRY8WgEaKoAWgSTt4tFzlVV7ZbFKCk6AFoHEhaAFo0opKTvRmtW3hkD2CP2kAGhf+KgFo0gpPrqHF0g4AGiOCFoAmrXp+FouVAmiMCFoAmrTqHi2+cQigMSJoAWjSqudoJcfTowWg8SFoAWjSTg0d0qMFoPEhaAFo0pgMD6AxI2gBaLK8XqP9npOLlbLPIYBGiKAFoMn69kiZKqqMbDapfUtHqMsBgDMQtAA0WdUT4du3dCgynD9nABof/jIBaLKKWNoBQCNH0ALQZBWxmTSARo6gBaDJOhW06NEC0DgRtAA0WYUlJ5d2YLFSAI0UQQtAk8U+hwAaO4IWgCaLoUMAjR1BC0CTVOU1cnnY5xBA40bQAtAkfXu4TFVeozCb1K4Fi5UCaJwIWgCapOqJ8AnOKEWwWCmARoq/TgCaJNbQAtAUELQANElMhAfQFBC0ADRJRSXV2+/QowWg8SJoAWiSrB6teHq0ADReBC0ATdKpDaXp0QLQeBG0ADRJTIYH0BQQtAA0OZVVXu23Fitl6BBA40XQAtDkfHO4TF4jRYTZ1JbFSgE0YgQtAE1OYcmJ3qwEZ5TCw2whrgYAzo6gBaDJYSI8gKaCoAWgyXGdnAifSNAC0MgRtAA0OdVDh0yEB9DYEbQANDkMHQJoKghaAJoc1tAC0FQQtAA0Oad6tBg6BNC4EbQANCkVVV4Vl5ZJkpLi6dEC0LgRtAA0KcWlZTJGigy3qW0si5UCaNwIWgCalKKSE8OGCc4ohbFYKYBGLqRBa/bs2bLZbD63nj17WsePHz+uyZMnq02bNmrRooVGjx6t/fv3+5yjoKBAI0eOVExMjNq3b6+HH35YlZWVPm3Wrl2rSy+9VA6HQ926ddOiRYvOqGXBggXq3LmzoqKilJqaqg8//NDneG1qARB8hScnwiczPwtAExDyHq3evXurqKjIum3cuNE6NnXqVC1btkxLly7VunXrVFhYqJtvvtk6XlVVpZEjR6q8vFwffPCB/vSnP2nRokWaNWuW1SY/P18jR47Utddeq23btmnKlCm644479N5771lt3njjDU2bNk2ZmZn697//rf79+ysjI0PFxcW1rgVAw3CdnAjPYqUAmgKbMcaE6sVnz56tt99+W9u2bTvjmNvtVrt27fS3v/1NP/rRjyRJn332mS6++GJlZ2frsssu07vvvqvrr79ehYWFSkhIkCS99NJLmj59ur755hvZ7XZNnz5dK1as0I4dO6xz//jHP1ZJSYlWrVolSUpNTdV//dd/6YUXXpAkeb1edezYUffff78effTRWtVSGx6PR3FxcXK73XI6nXW+bt916Ei5jpRXnrsh0AzMX71HSz76Sj+/uqtmjLg41OUAOA/U5/M7Ikg11dqePXuUnJysqKgopaWlae7cuerUqZO2bt2qiooKpaenW2179uypTp06WeEmOztbffv2tUKWJGVkZOiee+7Rzp07NWDAAGVnZ/uco7rNlClTJEnl5eXaunWrZsyYYR0PCwtTenq6srOzJalWtdSkrKxMZWVl1n2Px1P3C/U9nvlnrv6WUxCUcwONFUOHAJqCkAat1NRULVq0SD169FBRUZHmzJmjIUOGaMeOHXK5XLLb7YqPj/d5TkJCglwulyTJ5XL5hKzq49XHvq+Nx+PRsWPHdOjQIVVVVdXY5rPPPrPOca5aajJ37lzNmTOndhejHiLDbIqKDPkoMNBg2sQ6dHX3dqEuAwDOKaRBa8SIEdbP/fr1U2pqqlJSUrRkyRJFRzf9f63OmDFD06ZNs+57PB517Ngx4K8z58Y+mnNjn4CfFwAA1E+j6gaJj49X9+7dtXfvXiUmJqq8vFwlJSU+bfbv36/ExERJUmJi4hnf/Ku+f642TqdT0dHRatu2rcLDw2tsc/o5zlVLTRwOh5xOp88NAACcPxpV0Dp8+LDy8vKUlJSkgQMHKjIyUqtXr7aO5+bmqqCgQGlpaZKktLQ0bd++3efbgVlZWXI6nerVq5fV5vRzVLepPofdbtfAgQN92ni9Xq1evdpqU5taAAAAzmBC6MEHHzRr1641+fn5ZtOmTSY9Pd20bdvWFBcXG2OMufvuu02nTp3MmjVrzEcffWTS0tJMWlqa9fzKykrTp08fM2zYMLNt2zazatUq065dOzNjxgyrzRdffGFiYmLMww8/bHbv3m0WLFhgwsPDzapVq6w2ixcvNg6HwyxatMjs2rXL3HXXXSY+Pt64XC6rzblqqQ23220kGbfbXddLBgAAGlh9Pr9DGrTGjh1rkpKSjN1uNx06dDBjx441e/futY4fO3bM3HvvvaZVq1YmJibG3HTTTaaoqMjnHF9++aUZMWKEiY6ONm3btjUPPvigqaio8Gnz/vvvm0suucTY7XbTtWtX8+qrr55Ry+9+9zvTqVMnY7fbzeDBg83mzZt9jtemlnMhaAEA0PTU5/M7pOtonW+CtY4WAAAInvp8fjeqOVoAAADNCUELAAAgSAhaAAAAQULQAgAACBKCFgAAQJAQtAAAAIKEoAUAABAkBC0AAIAgIWgBAAAESUSoCzifVC/C7/F4QlwJAACorerP7bpspkPQakClpaWSpI4dO4a4EgAA4K/S0lLFxcX59Rz2OmxAXq9XhYWFatmypWw2W8DO6/F41LFjR+3bt489FBsQ1z00uO6hwXUPDa57aHz3uhtjVFpaquTkZIWF+Tfrih6tBhQWFqYLLrggaOd3Op38hxgCXPfQ4LqHBtc9NLjuoXH6dfe3J6sak+EBAACChKAFAAAQJAStZsDhcCgzM1MOhyPUpZxXuO6hwXUPDa57aHDdQyOQ153J8AAAAEFCjxYAAECQELQAAACChKAFAAAQJAQtAACAICFoNQMLFixQ586dFRUVpdTUVH344YehLqlZmz17tmw2m8+tZ8+eoS6r2Vm/fr1uuOEGJScny2az6e233/Y5bozRrFmzlJSUpOjoaKWnp2vPnj2hKbYZOdd1/9nPfnbG+3/48OGhKbaZmDt3rv7rv/5LLVu2VPv27TVq1Cjl5ub6tDl+/LgmT56sNm3aqEWLFho9erT2798fooqbh9pc92uuueaM9/vdd9/t1+sQtJq4N954Q9OmTVNmZqb+/e9/q3///srIyFBxcXGoS2vWevfuraKiIuu2cePGUJfU7Bw5ckT9+/fXggULajw+b948zZ8/Xy+99JJycnIUGxurjIwMHT9+vIErbV7Odd0lafjw4T7v/9dff70BK2x+1q1bp8mTJ2vz5s3KyspSRUWFhg0bpiNHjlhtpk6dqmXLlmnp0qVat26dCgsLdfPNN4ew6qavNtddku68806f9/u8efP8eyGDJm3w4MFm8uTJ1v2qqiqTnJxs5s6dG8KqmrfMzEzTv3//UJdxXpFk3nrrLeu+1+s1iYmJ5plnnrEeKykpMQ6Hw7z++ushqLB5+u51N8aYCRMmmBtvvDEk9ZwviouLjSSzbt06Y8yJ93ZkZKRZunSp1Wb37t1GksnOzg5Vmc3Od6+7McZcffXV5he/+EW9zkuPVhNWXl6urVu3Kj093XosLCxM6enpys7ODmFlzd+ePXuUnJysrl27avz48SooKAh1SeeV/Px8uVwun/d+XFycUlNTee83gLVr16p9+/bq0aOH7rnnHh04cCDUJTUrbrdbktS6dWtJ0tatW1VRUeHzfu/Zs6c6derE+z2Avnvdq/31r39V27Zt1adPH82YMUNHjx7167xsKt2Effvtt6qqqlJCQoLP4wkJCfrss89CVFXzl5qaqkWLFqlHjx4qKirSnDlzNGTIEO3YsUMtW7YMdXnnBZfLJUk1vverjyE4hg8frptvvlldunRRXl6efvnLX2rEiBHKzs5WeHh4qMtr8rxer6ZMmaIrrrhCffr0kXTi/W632xUfH+/Tlvd74NR03SXpJz/5iVJSUpScnKxPP/1U06dPV25urt58881an5ugBfhpxIgR1s/9+vVTamqqUlJStGTJEk2aNCmElQHB9+Mf/9j6uW/fvurXr58uvPBCrV27VkOHDg1hZc3D5MmTtWPHDuZ9NrCzXfe77rrL+rlv375KSkrS0KFDlZeXpwsvvLBW52bosAlr27atwsPDz/jmyf79+5WYmBiiqs4/8fHx6t69u/bu3RvqUs4b1e9v3vuh17VrV7Vt25b3fwDcd999Wr58ud5//31dcMEF1uOJiYkqLy9XSUmJT3ve74Fxtutek9TUVEny6/1O0GrC7Ha7Bg4cqNWrV1uPeb1erV69WmlpaSGs7Pxy+PBh5eXlKSkpKdSlnDe6dOmixMREn/e+x+NRTk4O7/0G9tVXX+nAgQO8/+vBGKP77rtPb731ltasWaMuXbr4HB84cKAiIyN93u+5ubkqKCjg/V4P57ruNdm2bZsk+fV+Z+iwiZs2bZomTJigQYMGafDgwfrtb3+rI0eOaOLEiaEurdl66KGHdMMNNyglJUWFhYXKzMxUeHi4xo0bF+rSmpXDhw/7/KsxPz9f27ZtU+vWrdWpUydNmTJFv/71r3XRRRepS5cumjlzppKTkzVq1KjQFd0MfN91b926tebMmaPRo0crMTFReXl5euSRR9StWzdlZGSEsOqmbfLkyfrb3/6md955Ry1btrTmXcXFxSk6OlpxcXGaNGmSpk2bptatW8vpdOr+++9XWlqaLrvsshBX33Sd67rn5eXpb3/7m37wgx+oTZs2+vTTTzV16lRdddVV6tevX+1fqF7fWUSj8Lvf/c506tTJ2O12M3jwYLN58+ZQl9SsjR071iQlJRm73W46dOhgxo4da/bu3Rvqspqd999/30g64zZhwgRjzIklHmbOnGkSEhKMw+EwQ4cONbm5uaEtuhn4vut+9OhRM2zYMNOuXTsTGRlpUlJSzJ133mlcLleoy27Sarreksyrr75qtTl27Ji59957TatWrUxMTIy56aabTFFRUeiKbgbOdd0LCgrMVVddZVq3bm0cDofp1q2befjhh43b7fbrdWwnXwwAAAABxhwtAACAICFoAQAABAlBCwAAIEgIWgAAAEFC0AIAAAgSghYAAECQELQAAACChKAFAAAQJAQtAOeltWvXymaznbFRb0NZvXq1Lr74YlVVVZ2z7apVq3TJJZfI6/U2QGUAAomgBaDZu+aaazRlyhSfxy6//HIVFRUpLi4uJDU98sgjevzxxxUeHn7OtsOHD1dkZKT++te/NkBlAAKJoAXgvGS325WYmCibzdbgr71x40bl5eVp9OjRtX7Oz372M82fPz+IVQEIBoIWgGbtZz/7mdatW6fnn39eNptNNptNX3755RlDh4sWLVJ8fLyWL1+uHj16KCYmRj/60Y909OhR/elPf1Lnzp3VqlUrPfDAAz7DfWVlZXrooYfUoUMHxcbGKjU1VWvXrv3emhYvXqzrrrtOUVFR1mOffPKJrr32WrVs2VJOp1MDBw7URx99ZB2/4YYb9NFHHykvLy+g1wdAcEWEugAACKbnn39en3/+ufr06aMnnnhCktSuXTt9+eWXZ7Q9evSo5s+fr8WLF6u0tFQ333yzbrrpJsXHx2vlypX64osvNHr0aF1xxRUaO3asJOm+++7Trl27tHjxYiUnJ+utt97S8OHDtX37dl100UU11rRhwwb95Cc/8Xls/PjxGjBggBYuXKjw8HBt27ZNkZGR1vFOnTopISFBGzZs0IUXXhigqwMg2AhaAJq1uLg42e12xcTEKDEx8XvbVlRUaOHChVaQ+dGPfqQ///nP2r9/v1q0aKFevXrp2muv1fvvv6+xY8eqoKBAr776qgoKCpScnCxJeuihh7Rq1Sq9+uqreuqpp2p8nf/85z9W+2oFBQV6+OGH1bNnT0mqMaQlJyfrP//5j9/XAEDoELQA4KSYmBif3qKEhAR17txZLVq08HmsuLhYkrR9+3ZVVVWpe/fuPucpKytTmzZtzvo6x44d8xk2lKRp06bpjjvu0J///Gelp6frlltuOaPnKjo6WkePHq3z7weg4RG0AOCk04fqJMlms9X4WPUyC4cPH1Z4eLi2bt16xrcHTw9n39W2bVsdOnTI57HZs2frJz/5iVasWKF3331XmZmZWrx4sW666SarzcGDB9WuXbs6/W4AQoOgBaDZs9vttVqvyl8DBgxQVVWViouLNWTIEL+et2vXrjMe7969u7p3766pU6dq3LhxevXVV62gdfz4ceXl5WnAgAEBqx9A8PGtQwDNXufOnZWTk6Mvv/xS3377bcAW/uzevbvGjx+v2267TW+++aby8/P14Ycfau7cuVqxYsVZn5eRkaGNGzda948dO6b77rtPa9eu1X/+8x9t2rRJW7Zs0cUXX2y12bx5sxwOh9LS0gJSO4CGQdAC0Ow99NBDCg8PV69evdSuXTsVFBQE7NyvvvqqbrvtNj344IPq0aOHRo0apS1btqhTp05nfc748eO1c+dO5ebmSpLCw8N14MAB3XbbberevbvGjBmjESNGaM6cOdZzXn/9dY0fP14xMTEBqx1A8NmMMSbURQDA+ebhhx+Wx+PRyy+/fM623377rXr06KGPPvpIXbp0aYDqAAQKPVoAEAKPPfaYUlJSajWM+eWXX+rFF18kZAFNED1aAAAAQUKPFgAAQJAQtAAAAIKEoAUAABAkBC0AAIAgIWgBAAAECUELAAAgSAhaAAAAQULQAgAACBKCFgAAQJD8f6nekVK9q2STAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\dae\\petsc_pid_doc_16_0.png" - } - }, - "output_type": "display_data" - } - ], - "source": [ - "a = plt.plot(\n", - " tj.time, tj.get_vec(m.fs.valve_1.control_volume.properties_in[24].pressure)\n", - ")\n", - "a = plt.ylabel(\"inlet pressure (Pa)\")\n", - "a = plt.xlabel(\"time (s)\")" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/90lEQVR4nO3dd3yV9f3//+c5JznZg5BFIBD2EJIgSAQUsaAglipaSyuWUcUfiBXBUVGRUSvVfqU4aKnKsH7cVasViyMCiiLIEkEIMsPIIIQMsnPO+f0RcjBl5cA55zo5edxvt3Mjuc41Xrlupz1P3+syORwOhwAAAPyY2egCAAAAPI3AAwAA/B6BBwAA+D0CDwAA8HsEHgAA4PcIPAAAwO8ReAAAgN8LMLoAb7Pb7Tpy5IgiIiJkMpmMLgcAADSCw+FQaWmpkpKSZDa73l7T7ALPkSNHlJycbHQZAADgAhw8eFBt2rRx+bhmF3giIiIk1d2wyMhIg6sBAACNUVJSouTkZOf3uKuaXeCp78aKjIwk8AAA0MRc6HAUBi0DAAC/R+ABAAB+j8ADAAD8HoEHAAD4PQIPAADwewQeAADg9wg8AADA7xF4AACA3yPwAAAAv0fgAQAAfs/QwPPFF19o5MiRSkpKkslk0r///e/zHrNq1SpdeumlCgoKUqdOnbRs2TKP1wkAAJo2QwNPWVmZ0tLStHDhwkbtv2/fPl1//fW6+uqrtWXLFt17772644479PHHH3u4UgAA0JQZ+vDQ6667Ttddd12j91+0aJHat2+vp59+WpLUvXt3rVmzRn/96181bNgwT5XZKNW1dh0rq5LN7lCbFqGG1gIAABpqUmN41q5dq6FDhzbYNmzYMK1du/asx1RVVamkpKTByxM2Zx9X/3mfa+yS9R45PwAAuHBNKvDk5uYqISGhwbaEhASVlJSooqLijMfMmzdPUVFRzldycrJHagsLqmssK6+yeeT8AADgwjWpwHMhZsyYoeLiYufr4MGDHrlOiNUiSSqrrvXI+QEAwIUzdAyPqxITE5WXl9dgW15eniIjIxUSEnLGY4KCghQUFOTx2sKsdbeyotomh8Mhk8nk8WsCAIDGaVItPP3791dmZmaDbZ9++qn69+9vUEWn1Lfw1NodqrbZDa4GAAD8lKGB58SJE9qyZYu2bNkiqW7a+ZYtW5SdnS2prjtq7Nixzv0nTZqkvXv36sEHH9TOnTv1t7/9TW+99ZamTZtmRPkNhJ4MPFJdKw8AAPAdhgaeDRs2qHfv3urdu7ckafr06erdu7cee+wxSVJOTo4z/EhS+/bttXz5cn366adKS0vT008/rZdeesnwKemSFGgxyxpQdzvLCDwAAPgUQ8fwDB48WA6H46zvn2kV5cGDB2vz5s0erOrChVotqq61q7yKgcsAAPiSJjWGx9fVD1wup4UHAACfQuBxI6amAwDgmwg8bhR2MvAwaBkAAN9C4HGj0JNdWgxaBgDAtxB43Kh+ajqDlgEA8C0EHjcKDWLQMgAAvojA40ahgSdbeBi0DACATyHwuFFoUH3goYUHAABfQuBxI9bhAQDANxF43Mi5Dg+DlgEA8CkEHjeqX4envIYWHgAAfAmBx42cs7Ro4QEAwKcQeNzIuQ4PY3gAAPApBB43YtAyAAC+icDjRiFW1uEBAMAXEXjciBYeAAB8E4HHjeoXHmRaOgAAvoXA40b1g5YrmJYOAIBPIfC4UejJLq0am0PVtXaDqwEAAPUIPG5U38IjSRWM4wEAwGcQeNwo0GKW1VJ3S8uYqQUAgM8g8LjZqSemE3gAAPAVBB43Cw1ktWUAAHwNgcfN6p+nVVZF4AEAwFcQeNwszDk1nS4tAAB8BYHHzeofL0ELDwAAvoPA42anHi9BCw8AAL6CwONmpx4gSgsPAAC+gsDjZjxAFAAA30PgcTPW4QEAwPcQeNwslEHLAAD4HAKPm4UyaBkAAJ9D4HGzUAYtAwDgcwg8bsagZQAAfA+Bx80YtAwAgO8h8LgZXVoAAPgeAo+b1Q9aLquihQcAAF9B4HGz+haeClp4AADwGQQeN3O28BB4AADwGQQeNwsLooUHAABfQ+Bxs9DAuhaeaptd1bV2g6sBAAASgcft6p+WLtHKAwCAryDwuJk1wCyrpe62ltcwUwsAAF9A4PGAEB4gCgCATyHweECYM/DQwgMAgC8g8HhAWBCLDwIA4EsIPB4QHlwXeE4QeAAA8AkEHg8Ir2/h4QGiAAD4BAKPB4RZ61t4GLQMAIAvIPB4AGN4AADwLQQeDwgPYpYWAAC+hMDjAfUtPAxaBgDANxB4PMAZeCoJPAAA+AICjwcwSwsAAN9C4PGA8CBmaQEA4EsIPB7ALC0AAHwLgccDwgk8AAD4FAKPB4SdnJbOLC0AAHwDgccDaOEBAMC3EHg84NQYHgYtAwDgCwg8HlAfeKptdlXVEnoAADAagccDwqwW58+08gAAYDzDA8/ChQuVkpKi4OBgZWRkaP369Wfdt6amRnPnzlXHjh0VHBystLQ0rVixwovVNk6AxayQQJ6nBQCArzA08Lz55puaPn26Zs2apU2bNiktLU3Dhg1Tfn7+Gfd/9NFH9Y9//EPPPfecfvjhB02aNEmjRo3S5s2bvVz5+fE8LQAAfIehgWf+/PmaOHGiJkyYoB49emjRokUKDQ3VkiVLzrj/K6+8oocfflgjRoxQhw4dNHnyZI0YMUJPP/20lys/P56YDgCA7zAs8FRXV2vjxo0aOnToqWLMZg0dOlRr16494zFVVVUKDg5usC0kJERr1qw563WqqqpUUlLS4OUNtPAAAOA7DAs8BQUFstlsSkhIaLA9ISFBubm5Zzxm2LBhmj9/vn788UfZ7XZ9+umnevfdd5WTk3PW68ybN09RUVHOV3Jyslv/jrNhajoAAL7D8EHLrnjmmWfUuXNndevWTVarVXfffbcmTJggs/nsf8aMGTNUXFzsfB08eNArtbL4IAAAvsOwwBMbGyuLxaK8vLwG2/Py8pSYmHjGY+Li4vTvf/9bZWVlOnDggHbu3Knw8HB16NDhrNcJCgpSZGRkg5c31LfwlBJ4AAAwnGGBx2q1qk+fPsrMzHRus9vtyszMVP/+/c95bHBwsFq3bq3a2lq98847uuGGGzxdrssYtAwAgO8IMPLi06dP17hx49S3b1/169dPCxYsUFlZmSZMmCBJGjt2rFq3bq158+ZJktatW6fDhw8rPT1dhw8f1uzZs2W32/Xggw8a+WecEV1aAAD4DkMDz+jRo3X06FE99thjys3NVXp6ulasWOEcyJydnd1gfE5lZaUeffRR7d27V+Hh4RoxYoReeeUVRUdHG/QXnB2ztAAA8B0mh8PhMLoIbyopKVFUVJSKi4s9Op7npS/36vHlO3RjepIW/Lq3x64DAEBzcLHf301qllZTcqqFh2npAAAYjcDjIWGM4QEAwGcQeDykfpYWY3gAADAegcdDwoMCJRF4AADwBQQeD4kIPrnwYGWNwZUAAAACj4ecCjy08AAAYDQCj4dEBNd1aVXV2lVdaze4GgAAmjcCj4fUr7Qs0a0FAIDRCDweYjGbFGatm6lFtxYAAMYi8HhQfbcWgQcAAGMReDyImVoAAPgGAo8H1QeeElp4AAAwFIHHg+q7tFh8EAAAYxF4PIguLQAAfAOBx4NYfBAAAN9A4PGgU7O0aOEBAMBIBB4PigiihQcAAF8QcP5dTpeZmanMzEzl5+fLbm/42IQlS5a4pTB/QJcWAAC+weXAM2fOHM2dO1d9+/ZVq1atZDKZPFGXX6jv0iqhSwsAAEO5HHgWLVqkZcuW6be//a0n6vEr9S08TEsHAMBYLo/hqa6u1oABAzxRi9/h0RIAAPgGlwPPHXfcoddee80Ttfgd1uEBAMA3uNylVVlZqRdeeEGfffaZUlNTFRgY2OD9+fPnu624po5BywAA+AaXA8/WrVuVnp4uSdq2bVuD9xjA3FB9l1Z5tU21NrsCLKwCAACAEVwOPCtXrvREHX6pvoVHqhu4HB1qNbAaAACarwtucti9e7c+/vhjVVRUSJIcDofbivIXgRazggPrbjHdWgAAGMflwHPs2DENGTJEXbp00YgRI5STkyNJuv3223Xfffe5vcCmjplaAAAYz+XAM23aNAUGBio7O1uhoaHO7aNHj9aKFSvcWpw/OPV4CWZqAQBgFJfH8HzyySf6+OOP1aZNmwbbO3furAMHDritMH/BTC0AAIzncgtPWVlZg5adeoWFhQoKCnJLUf7E2aVVRQsPAABGcTnwXHnllfrnP//p/N1kMslut+upp57S1Vdf7dbi/AEtPAAAGM/lLq2nnnpKQ4YM0YYNG1RdXa0HH3xQ27dvV2Fhob766itP1NikRYXUtfAUl9PCAwCAUVxu4enZs6d27dqlK664QjfccIPKysp00003afPmzerYsaMnamzSnIGngsADAIBRXG7hkaSoqCg98sgj7q7FL0USeAAAMNwFBZ7jx49r8eLF2rFjhySpR48emjBhgmJiYtxanD+ghQcAAOO53KX1xRdfKCUlRc8++6yOHz+u48eP69lnn1X79u31xRdfeKLGJo0WHgAAjOdyC8+UKVM0evRo/f3vf5fFYpEk2Ww23XXXXZoyZYq+//57txfZlNHCAwCA8Vxu4dm9e7fuu+8+Z9iRJIvFounTp2v37t1uLc4f1AeeEgIPAACGcTnwXHrppc6xOz+1Y8cOpaWluaUof+IMPKzDAwCAYVzu0rrnnns0depU7d69W5dffrkk6ZtvvtHChQv15z//WVu3bnXum5qa6r5Km6j6wHOiqla1NrsCLBf8gHoAAHCBTA6Hw+HKAWbzub+wTSaTHA6HTCaTbDbbRRXnCSUlJYqKilJxcbEiIyM9fr1am12dHvmvJGnTzGsUE2b1+DUBAPA3F/v97XILz759+1y+SHMWYDErPChAJ6pqVVxRQ+ABAMAALgeedu3aeaIOvxYVEugMPAAAwPsuaOHBPXv2aMGCBQ0WHpw6dSqPljiLyJBAHS6qIPAAAGAQl0fQfvzxx+rRo4fWr1+v1NRUpaamat26dbrkkkv06aefeqLGJi8qpC5XEngAADCGyy08Dz30kKZNm6Y///nPp23/wx/+oGuuucZtxfkLFh8EAMBYLrfw7NixQ7fffvtp23/3u9/phx9+cEtR/iYymMUHAQAwksuBJy4uTlu2bDlt+5YtWxQfH++OmvwOLTwAABjL5S6tiRMn6s4779TevXs1YMAASdJXX32lJ598UtOnT3d7gf7AGXjKCTwAABjB5cAzc+ZMRURE6Omnn9aMGTMkSUlJSZo9e7buuecetxfoD6JCaeEBAMBILgcek8mkadOmadq0aSotLZUkRUREuL0wf0KXFgAAxrqgdXjqEXQah8ADAICxeJKlF7QIrXucRFF5tcGVAADQPBF4vKA+8BQSeAAAMASBxwtahNV1aVXW2FVR7XtPkAcAwN8ReLwgPChAAWaTJOk4rTwAAHjdBQ1azszMVGZmpvLz82W32xu8t2TJErcU5k9MJpNahFl1tLRKx8urlRQdYnRJAAA0Ky4Hnjlz5mju3Lnq27evWrVqJZPJ5Im6/E6L0MC6wFPGTC0AALzN5cCzaNEiLVu2TL/97W89UY/fqh+4TJcWAADe5/IYnurqaucjJdB4TE0HAMA4LgeeO+64Q6+99ponavFrLcJOTk2nSwsAAK9zuUursrJSL7zwgj777DOlpqYqMDCwwfvz5893W3H+pMXJ52nRpQUAgPe53MKzdetWpaeny2w2a9u2bdq8ebPztWXLFpcLWLhwoVJSUhQcHKyMjAytX7/+nPsvWLBAXbt2VUhIiJKTkzVt2jRVVla6fF1viwljDA8AAEZxuYVn5cqVbrv4m2++qenTp2vRokXKyMjQggULNGzYMGVlZSk+Pv60/V977TU99NBDWrJkiQYMGKBdu3Zp/PjxMplMPt+yFO0ctEyXFgAA3nZRCw8eOnRIhw4duuDj58+fr4kTJ2rChAnq0aOHFi1apNDQ0LOu5fP1119r4MCBuvXWW5WSkqJrr71Wv/nNb87bKuQLYk6utny8jBYeAAC8zeXAY7fbNXfuXEVFRaldu3Zq166doqOj9cc//vG0RQjPpbq6Whs3btTQoUNPFWM2a+jQoVq7du0ZjxkwYIA2btzoDDh79+7VRx99pBEjRpz1OlVVVSopKWnwMkI009IBADCMy11ajzzyiBYvXqw///nPGjhwoCRpzZo1mj17tiorK/WnP/2pUecpKCiQzWZTQkJCg+0JCQnauXPnGY+59dZbVVBQoCuuuEIOh0O1tbWaNGmSHn744bNeZ968eZozZ04j/zrPiakPPLTwAADgdS638Lz88st66aWXNHnyZKWmpio1NVV33XWXXnzxRS1btswDJZ6yatUqPfHEE/rb3/6mTZs26d1339Xy5cv1xz/+8azHzJgxQ8XFxc7XwYMHPVrj2dSvw1NWbVNVLQ8QBQDAm1xu4SksLFS3bt1O296tWzcVFhY2+jyxsbGyWCzKy8trsD0vL0+JiYlnPGbmzJn67W9/qzvuuEOS1KtXL5WVlenOO+/UI488IrP59PwWFBSkoKCgRtflKRHBAbKYTbLZHSoqr1FCpMXokgAAaDZcbuFJS0vT888/f9r2559/XmlpaY0+j9VqVZ8+fZSZmencZrfblZmZqf79+5/xmPLy8tNCjcVSFxwcDkejr20Es9mk6BDW4gEAwAgut/A89dRTuv766/XZZ585g8natWt18OBBffTRRy6da/r06Ro3bpz69u2rfv36acGCBSorK9OECRMkSWPHjlXr1q01b948SdLIkSM1f/589e7dWxkZGdq9e7dmzpypkSNHOoOPL2sRZtWxsmoVMo4HAACvcjnwXHXVVdq1a5cWLlzoHFx800036a677lJSUpJL5xo9erSOHj2qxx57TLm5uUpPT9eKFSucA5mzs7MbtOg8+uijMplMevTRR3X48GHFxcVp5MiRjR4obbRTA5dZiwcAAG8yOXy9L8jNSkpKFBUVpeLiYkVGRnr12pP/b6P+uy1Xc35xicYNSPHqtQEAaMou9vu7US08W7duVc+ePWU2m7V169Zz7puamupyEc1FbHjd4OmCE1UGVwIAQPPSqMCTnp6u3NxcxcfHKz09XSaT6YyDhE0mk2w2plyfDYEHAABjNCrw7Nu3T3Fxcc6fcWFiI+rG8BwtZdAyAADe1KjA065dO+fPBw4c0IABAxQQ0PDQ2tpaff311w32RUO08AAAYAyX1+G5+uqrz7jAYHFxsa6++mq3FOWvCDwAABjD5cDjcDhkMplO237s2DGFhYW5pSh/FfeTwNPMJscBAGCoRq/Dc9NNN0mqG5g8fvz4Bo9rsNls2rp1qwYMGOD+Cv1I/Rieyhq7yqptCg9yeRkkAABwARr9jRsVFSWproUnIiJCISEhzvesVqsuv/xyTZw40f0V+pFQa4BCrRaVV9tUUFpF4AEAwEsa/Y27dOlSSVJKSooeeOABhYaGeqwofxYbHqTswnIVnKhSSixdgAAAeIPLY3jGjh2rw4cPn7b9xx9/1P79+91Rk1+LDa/r1mLgMgAA3uNy4Bk/fry+/vrr07avW7dO48ePd0dNfq1+ptbRE6zFAwCAt7gceDZv3qyBAweetv3yyy/Xli1b3FGTX4uNODlTq5QWHgAAvMXlwGMymVRaWnra9uLiYh4r0QixYXRpAQDgbS4HnkGDBmnevHkNwo3NZtO8efN0xRVXuLU4f+Rs4SHwAADgNS7Pi37yySc1aNAgde3aVVdeeaUk6csvv1RJSYk+//xztxfob06ttswYHgAAvMXlFp4ePXpo69at+tWvfqX8/HyVlpZq7Nix2rlzp3r27OmJGv0Kj5cAAMD7Lmjlu6SkJD3xxBPurqVZiD/ZpZVfUnXWx3QAAAD3uuClfsvLy5Wdna3q6oZdM6mpqRddlD9LjAqWJFXU2FRSWauokECDKwIAwP+5HHiOHj2qCRMm6L///e8Z32em1rkFB1oUHRqoovIa5RZXEngAAPACl8fw3HvvvSoqKtK6desUEhKiFStW6OWXX1bnzp31wQcfeKJGv5MYWdfKk1tSaXAlAAA0Dy638Hz++ed6//331bdvX5nNZrVr107XXHONIiMjNW/ePF1//fWeqNOvJEYFa2duqXKLK4wuBQCAZsHlFp6ysjLFx8dLklq0aKGjR49Kknr16qVNmza5tzo/1erkOJ6cYlp4AADwBpcDT9euXZWVlSVJSktL0z/+8Q8dPnxYixYtUqtWrdxeoD9KjAyRJOXRpQUAgFe43KU1depU5eTkSJJmzZql4cOH69VXX5XVatWyZcvcXZ9fSoyqm5pOCw8AAN7hcuC57bbbnD/36dNHBw4c0M6dO9W2bVvFxsa6tTh/lRhV18KTS+ABAMArXOrSqqmpUceOHbVjxw7nttDQUF166aWEHRfUj+FhlhYAAN7hUuAJDAxUZSVf0hcr4eS09KLyGlXWsG4RAACe5vKg5SlTpujJJ59UbW2tJ+ppFiKDAxRqtUiiWwsAAG9weQzPt99+q8zMTH3yySfq1auXwsLCGrz/7rvvuq04f2UymZQYFay9R8uUU1yplNiw8x8EAAAumMuBJzo6WjfffLMnamlWEiPrAk9uCYsPAgDgaY0KPB988IGuu+46BQYGaunSpZ6uqVlIZPFBAAC8plFjeEaNGqWioiJJksViUX5+vidrahaSTk5NP1JECw8AAJ7WqMATFxenb775RpLkcDhkMpk8WlRz0DYmVJKUXUjgAQDA0xrVpTVp0iTdcMMNMplMdQNuExPPuq/NxjTrxkg+GXgOFpYbXAkAAP6vUYFn9uzZ+vWvf63du3frF7/4hZYuXaro6GgPl+bf2rasCzyHjpfLZnfIYqbVDAAAT2n0LK1u3bqpW7dumjVrlm655RaFhoZ6si6/lxgZrECLSTU2h3JLKtU6OsTokgAA8FsuLzw4a9Yswo4bWMwmtWlxchzPMbq1AADwJJcDD9zHOY7nOIEHAABPIvAYqG1MXTcWA5cBAPAsAo+BTk1NJ/AAAOBJBB4DEXgAAPAOtwWevLw8zZ07112naxZYiwcAAO9wW+DJzc3VnDlz3HW6ZqE+8BScqFZZVa3B1QAA4L8avQ7P1q1bz/l+VlbWRRfT3EQGByomzKrCsmrtP1amS5KijC4JAAC/1OjAk56eLpPJJIfDcdp79dt5xpbrOsaFqbCsWrvzTxB4AADwkEYHnpiYGD311FMaMmTIGd/fvn27Ro4c6bbCmotO8eH6dv9x7ck/YXQpAAD4rUYHnj59+ujIkSNq167dGd8vKio6Y+sPzq1jXLgkafdRAg8AAJ7S6MAzadIklZWVnfX9tm3baunSpW4pqjnpFH8y8NDCAwCAxzQ68IwaNeqc77do0ULjxo276IKam/rAs6+gTLU2uwIsLI0EAIC78e1qsKSoEIUEWlRjc+gA6/EAAOARBB6Dmc0mdUmoa+XJyi01uBoAAPwTgccH9EiKlCRtP1JscCUAAPgnAo8P6NGqLvD8cKTE4EoAAPBPBB4fcKqFh8ADAIAnXFDg+fLLL3Xbbbepf//+Onz4sCTplVde0Zo1a9xaXHPRLTFSJpOUX1qlo6VVRpcDAIDfcTnwvPPOOxo2bJhCQkK0efNmVVXVfUEXFxfriSeecHuBzUFYUIDatwyTxDgeAAA8weXA8/jjj2vRokV68cUXFRgY6Nw+cOBAbdq0ya3FNSepbeqeo7U5u8jYQgAA8EMuB56srCwNGjTotO1RUVEqKipyR03NUp92LSRJm7KPG1wJAAD+x+XAk5iYqN27d5+2fc2aNerQoYNbimqOLj0ZeLZkF8lm55lkAAC4k8uBZ+LEiZo6darWrVsnk8mkI0eO6NVXX9X999+vyZMne6LGZqFrQoTCrBaVVtXqx3wWIAQAwJ0a/Syteg899JDsdruGDBmi8vJyDRo0SEFBQbr//vv1+9//3hM1NgsBFrPS20brq93H9O2+QnVLjDS6JJdU19pVXFGjovJqFVXUqKSiRhU1NlXW2FVVW/dvZY1NVbV2VdXYTv1ca1et3SG7wyGHwyG7XbI7HLI7VPf7yZ/r3q/712Y/9bPd4b7WMHe2q7mxLLfW5dbCJMVHBmv4JYkamZYkawCrXADwXSaH48L+H7C6ulq7d+/WiRMn1KNHD4WHh7u7No8oKSlRVFSUiouLFRnpW6Hi+c9/1P/7ZJeu7ZGgF8b2NbqcBmx2hw4fr9Ceoye05+gJ7SsoU05xpXKKK5VbXKHj5TVGlwgDXZIUqYW3XqqU2DCjSwHgpy72+9vlFp7/+7//00033aTQ0FD16NHD5QueycKFC/WXv/xFubm5SktL03PPPad+/fqdcd/Bgwdr9erVp20fMWKEli9f7pZ6jDKoS5z+3ye7tHbPMdXY7Ao08MnpxRU1WrvnmDZnH9eWg0XadrhYZdW2cx5jMkmRwYGKDg1UVEigggMtda8As4JO/lu3zayggFP/BlhMMptMMpskk+nUz2aTSaaT/5rN9b+feq/+fZOH74XJ5NkrePLsnizd7pB25JRo6Vf7tP1IiW75x1q9O3mAkmNCPXdRALhALrfwxMXFqaKiQr/4xS902223adiwYbJYLBdcwJtvvqmxY8dq0aJFysjI0IIFC/T2228rKytL8fHxp+1fWFio6upq5+/Hjh1TWlqaXnrpJY0fP/681/PlFh6b3aG+j3+q4+U1entSf12WEuPV6+8vKNOHW4/o8535+u5Q8WmDp4MCzGofG6aO8eHqEBumpOgQJUYFq1VUsOIjghUVEiiL2dPxA74mp7hCE5Z+q525peoYF6Z/TxmoiODA8x8IAC642O9vlwNPbW2tVqxYoddff13vv/++QkNDdcstt2jMmDEaMGCAywVkZGTosssu0/PPPy9JstvtSk5O1u9//3s99NBD5z1+wYIFeuyxx5STk6OwsPM3p/ty4JGk37++Wf/57ojuGtxRDw7v5vHrnaiq1XubD+utbw/q+8MNFz3sGBemjA4tlZ4crfTkaHWMCyfQ4Ixyiys16m9fKae4UuP6t9OcG3oaXRIAP+P1wPNT5eXleu+99/Taa6/ps88+U5s2bbRnz55GH19dXa3Q0FD961//0o033ujcPm7cOBUVFen9998/7zl69eql/v3764UXXjjj+1VVVc7VoKW6G5acnOyzgef9LYc19Y0tatcyVKvuH+yx7pTDRRV68Yu9envDQWdXlcVs0oCOLTWiVysN6hKn1tEhHrk2/NNXuws05qV1Mpmkf00a4FxbCgDcwetjeH4qNDRUw4YN0/Hjx3XgwAHt2LHDpeMLCgpks9mUkJDQYHtCQoJ27tx53uPXr1+vbdu2afHixWfdZ968eZozZ45LdRlpaPcEBQeadeBYub4/XKzUNtFuPf/R0ir99bNdeuvbg6o92WXVMS5MYzLa6Yb0JLUMD3Lr9dB8DOwUq5svbaN3Nh3SY+9v04e/v8Lj458AoLEuaFRseXm5Xn31VY0YMUKtW7fWggULNGrUKG3fvt3d9Z3T4sWL1atXr7MOcJakGTNmqLi42Pk6ePCgFyt0XVhQgIZ0rwuAH2w54rbzVlTb9PznP2rwX1bqtXXZqrU7NKBjS71yez99Nv0q/e6K9oQdXLRHru+uMKtF24+UKHNHvtHlAICTyy08v/71r/Xhhx8qNDRUv/rVrzRz5kz179//gi4eGxsri8WivLy8Btvz8vKUmJh4zmPLysr0xhtvaO7cuefcLygoSEFBTeuLfFR6ay3fmqO3Nx7S9Gu7KNR6UQ1x+vSHPM16f5uOFFdKktKSo/XIiO7q1967g6Lh/2LCrPpt/xQtWr1Hz33+o4Z0j6eVB4BPcLmFx2Kx6K233lJOTo6ef/75Cw47kmS1WtWnTx9lZmY6t9ntdmVmZp73vG+//baqqqp02223XfD1fdXV3eLVNiZUxRU1emfT4Qs+T35ppaa8ukkT/7lBR4or1To6RM/8Ol3vTR5A2IHH3HFle4UEWvTdoWKt2nXU6HIAQNIFBJ76rqyLmYr+U9OnT9eLL76ol19+WTt27NDkyZNVVlamCRMmSJLGjh2rGTNmnHbc4sWLdeONN6ply5ZuqcOXWMwmTRiYIkl64Ys9qqw59/o3/8vhcOitbw9q6NOrtfz7HFnMJk26qqM+m36VbkhvLTMzreBBseFBGpPRVpK0ZM0+g6sBgDqN6it59tlnG33Ce+65x6UCRo8eraNHj+qxxx5Tbm6u0tPTtWLFCudA5uzsbJnNDXNZVlaW1qxZo08++cSlazUlv+qbrEWr9+hgYYVe+nKv7v5Z50Ydt7+gTA+/972+3nNMktSzdaT+fFOqeraO8mS5QAPjBqRo8Vf79OWPBTpwrEztWrICMwBjNWpaevv27Rt3MpNJe/fuveiiPMnX1+H5qfop6kEBZr09qf85Z2zV2OxavGaf/vrpLlXV2hUcaNa0oV10+xXtFWDgis1ovsYtWa/Vu47q/7uqg2Zc193ocgA0cYauw9MUNaXA43A49Ltl32pl1lHFRwTpn7f3O+2hoja7Qx9vz9VfPs7SvoIySdIVnWL1xKheatuSJf5hnE+25+rOVzaqZZhVX8/4mYIC3NMNDqB5MnQdHniWyWTSM7/prV/+/WvtyjuhG57/SrdmtFX/Di3lkLT1UJHe33JEh45XSJJiw636w/Bu+mWfNsyMgeF+1i1eiZHByi2p1Mfb8/SLtCSjSwLQjF1QC8+hQ4f0wQcfKDs7u8FzrSRp/vz5bivOE5pSC0+9wrJqTX9ri1ZlnXnGS1RIoMYNSNGdgzooPIgMC9/x9CdZeu7z3fpZt3gtGX+Z0eUAaMK83sKTmZmpX/ziF+rQoYN27typnj17av/+/XI4HLr00ktdLgDnFxNm1ZJxl2nVrnz9e/MRHSgsl81uV7fESOejIIID6S6A77khvbWe+3y3vth1VIVl1YoJsxpdEoBmyuXAM2PGDN1///2aM2eOIiIi9M477yg+Pl5jxozR8OHDPVEjJJnNJv2sW4J+1i3h/DsDPqJTfLguSYrU9iMl+uj7HN12eTujSwLQTLk8fWfHjh0aO3asJCkgIEAVFRUKDw/X3Llz9eSTT7q9QABN2w3pdWN33PmoFABwlcuBJywszDlup1WrVg2ejl5QUOC+ygD4hZFpSTKZpPX7C3WkqMLocgA0Uy4Hnssvv1xr1qyRJI0YMUL33Xef/vSnP+l3v/udLr/8crcXCKBpaxUVon4pdY8y+XArrTwAjOFy4Jk/f74yMjIkSXPmzNGQIUP05ptvKiUlRYsXL3Z7gQCavp+ntpIkrdiWa3AlAJorFh4E4HG5xZW6fF7dQ4LXPzxE8ZHBBlcEoKm52O9vl1t47rjjDq1atcrlCwFovhKjgpWWHC1J+uSHPGOLAdAsuRx4jh49quHDhys5OVkPPPCAvvvuO0/UBcDPDLukbkmFj7fTrQXA+1wOPO+//75ycnI0c+ZMffvtt7r00kt1ySWX6IknntD+/fs9UCIAfzDskkRJ0to9x1RcUWNwNQCamwt6jHaLFi105513atWqVTpw4IDGjx+vV155RZ06dXJ3fQD8RMe4cHWKD1et3aGVO/ONLgdAM3NBgadeTU2NNmzYoHXr1mn//v1KSGAVYABnV9+t9dkOxvEA8K4LCjwrV67UxIkTlZCQoPHjxysyMlIffvihDh065O76APiRn3WLlyR9seuoam12g6sB0Jy4/Cyt1q1bq7CwUMOHD9cLL7ygkSNHKigoyBO1AfAz6cktFB0aqKLyGm3KLlK/9jFGlwSgmXA58MyePVu33HKLoqOjPVAOAH9mMZt0VZc4vb/liD7fmU/gAeA1LndpTZw4kbAD4ILVd2utymLgMgDvuahBywDgqkGd42Q2STtzS3WYh4kC8BICDwCvahFmVe+2LSSJ6ekAvIbAA8Dr6NYC4G0EHgBed3XXusDz1e5jqqyxGVwNgOaAwAPA67q3ilBiZLAqamxat6/Q6HIANAMEHgBeZzKZdHW3OEmM4wHgHQQeAIao79ZayTgeAF5A4AFgiAGdYhVoMenAsXLtLygzuhwAfo7AA8AQ4UEB6tuubqXl1buOGlwNAH9H4AFgmMFd68bxMD0dgKcReAAY5qqTgWftXqanA/AsAg8Aw3RNqJueXllj13qmpwPwIAIPAMOYTHVPT5cYxwPAswg8AAzFOB4A3kDgAWCoAZ1iZTGbtOdomQ4WlhtdDgA/ReABYKiokEBd2jZaEt1aADyHwAPAcINPrrpM4AHgKQQeAIarH7j89e4CVdfaDa4GgD8i8AAwXI9WkYoND1JZtU0bDjA9HYD7EXgAGM5sNmlQl1hJ0uosurUAuB+BB4BPYBwPAE8i8ADwCVd2ipXZJO3MLVVOcYXR5QDwMwQeAD6hRZhVacnRkqQvaOUB4GYEHgA+o3621irG8QBwMwIPAJ9RH3jW/FigGhvT0wG4D4EHgM9IbROtFqGBKq2q1ebsIqPLAeBHCDwAfIbFbNKVneufns7DRAG4D4EHgE859fR0xvEAcB8CDwCfUt/Cs/1IifJLKw2uBoC/IPAA8ClxEUHq1TpKkvTFrgKDqwHgLwg8AHxO/WwtVl0G4C4EHgA+p34cz5c/HpXN7jC4GgD+gMADwOekJ0crIjhAReU1+u5QkdHlAPADBB4APifAYtaVnXl6OgD3IfAA8EmDu9Q9PX0V43gAuAGBB4BPGnRy4PLWQ0UqLKs2uBoATR2BB4BPSowKVrfECDkcdYOXAeBiEHgA+KyrTs7WYhwPgItF4AHgs+rH8azedVR2pqcDuAgEHgA+q0+7FgqzWnSsrFrbj5QYXQ6AJozAA8BnWQPMGtipbnr6qiyeng7gwhF4APg05zgepqcDuAgEHgA+rf65Wpuyj6u4vMbgagA0VYYHnoULFyolJUXBwcHKyMjQ+vXrz7l/UVGRpkyZolatWikoKEhdunTRRx995KVqAXhbmxah6hQfLrtDWrObp6cDuDCGBp4333xT06dP16xZs7Rp0yalpaVp2LBhys8/c199dXW1rrnmGu3fv1//+te/lJWVpRdffFGtW7f2cuUAvKm+lYdxPAAuVICRF58/f74mTpyoCRMmSJIWLVqk5cuXa8mSJXrooYdO23/JkiUqLCzU119/rcDAQElSSkrKOa9RVVWlqqoq5+8lJcz0AJqawV3jtHjNPq3edVQOh0Mmk8nokgA0MYa18FRXV2vjxo0aOnToqWLMZg0dOlRr16494zEffPCB+vfvrylTpighIUE9e/bUE088IZvNdtbrzJs3T1FRUc5XcnKy2/8WAJ51WUqMQgItyi+t0rbD/EcLANcZFngKCgpks9mUkJDQYHtCQoJyc3PPeMzevXv1r3/9SzabTR999JFmzpypp59+Wo8//vhZrzNjxgwVFxc7XwcPHnTr3wHA84IDLc5urU9/OPP/PwDAuRg+aNkVdrtd8fHxeuGFF9SnTx+NHj1ajzzyiBYtWnTWY4KCghQZGdngBaDpufaSuv84+uSHPIMrAdAUGTaGJzY2VhaLRXl5Df/PKy8vT4mJiWc8plWrVgoMDJTFYnFu6969u3Jzc1VdXS2r1erRmgEY52fd4mUxm7Qzt1QHjpWpXcswo0sC0IQY1sJjtVrVp08fZWZmOrfZ7XZlZmaqf//+Zzxm4MCB2r17t+x2u3Pbrl271KpVK8IO4OeiQ63KaB8jSfqUVh4ALjK0S2v69Ol68cUX9fLLL2vHjh2aPHmyysrKnLO2xo4dqxkzZjj3nzx5sgoLCzV16lTt2rVLy5cv1xNPPKEpU6YY9ScA8KJre5zs1tpO4AHgGkOnpY8ePVpHjx7VY489ptzcXKWnp2vFihXOgczZ2dkym09lsuTkZH388ceaNm2aUlNT1bp1a02dOlV/+MMfjPoTAHjRNZckavZ/ftCGA4UqOFGl2PAgo0sC0ESYHA6Hw+givKmkpERRUVEqLi5mADPQBP38uS+17XCJnro5Vb+6jGUmgObiYr+/m9QsLQC4tkfdpIZPmJ4OwAUEHgBNSv309C9/LFB5da3B1QBoKgg8AJqUrgkRahsTqqpau77YxcNEATQOgQdAk2IymU7N1qJbC0AjEXgANDnXnAw8mTvyVWuzn2dvACDwAGiC+rRroZgwq4orarR+X6HR5QBoAgg8AJqcAItZ13Sva+X58Pscg6sB0BQQeAA0ST9PayVJWrEtl24tAOdF4AHQJPXv0FItw6wqLKvW13uOGV0OAB9H4AHQJAVYzBres24Rwg+3HjG4GgC+jsADoMn6eWqSpLpurepaurUAnB2BB0CT1a99jOIiglRSWas1u48aXQ4AH0bgAdBkWcwmXd+rbvDyh98xWwvA2RF4ADRpP0+tCzyf/JCnyhqbwdUA8FUEHgBN2qVtW6hVVLBOVNVq9S66tQCcGYEHQJNm/mm31la6tQCcGYEHQJP387S62VqZO/JUUU23FoDTEXgANHlpbaKUHBOi8mqbPt+Zb3Q5AHwQgQdAk2cymXR9r7pWnv98xyKEAE5H4AHgF+pna63MyteJqlqDqwHgawg8APzCJUmRah8bpqpauz79IdfocgD4GAIPAL9gMpl0Q3pdt9bbGw4ZXA0AX0PgAeA3ftmnjUwm6es9x5R9rNzocgD4EAIPAL/RpkWoruwcJ0l6a8NBg6sB4EsIPAD8yui+yZKktzce5AnqAJwIPAD8yjU9EhQfEaS8kiqmqANwIvAA8CvWALPGD0yRJL345V45HA5jCwLgEwg8APzOmIx2CrNatDO3VJ/8kGd0OQB8AIEHgN+JCgnUuAEpkqQnV+xUjY2xPEBzR+AB4JcmDe6omDCr9h4t0xvrs40uB4DBCDwA/FJkcKCmDuksSXpqRZYOFrIuD9CcEXgA+K0xGW3Vt10LlVbVatqbW1RL1xbQbAUYXQAAeEqAxay/jk7XiGe+1IYDx/X48h2aNbKHTCaT12uptdlVVm1TRbVNNTa7bHaHau121dgcstkdzm3O3+122WwO1c8x++lss/+dd9ZwIprjjNt/ukvD7Q3PdvZjmO2GxosJszoXAfUVBB4Afi05JlR/vjlVU17bpGVf75fFbNLDI7rLYr740FNjsyu3uFIHj5fr0PEKHTpeoSNFFTpeVq3C8modL6tWSWWtyqpqVcUiiGhGLm0bTeABAG+7PrWVjpb20Oz//KDFa/ZpR06JHr+xpzrEhTfqeLvdoYPHy7Ujp1Q7ckq0M7dEO3NLdbCwXHYXGz4sZpMCLSYFmM0KsJgUYK77uX573b91vweYTQ1ao37aMPXTuNZgnwbb67ed+cAz7fu/+zfY7v2GMTRRneMjjC7hNCZHM2unLCkpUVRUlIqLixUZGWl0OQC86P0th/XQO9+rosYms0n6WbcEXd0tTu1bhikxKlg2u0Nl1TbllVRqf0GZ9hWUKSuvVFm5pSqvtp3xnNYAs9q0CFGbFqFq0yJEraNDFBtuVXSoVTFhVkUGByosyKLwoACFWgNkDWDoJHAhLvb7m8ADoFnZe/SE/rR8hzJ35rt0nDXArC4J4eqeGKlurSLVPTFCneLDFRseJLMbuscAnNvFfn/TpQWgWekQF67F4y/Tj3ml+nBrjjZlH9fhogrll1Qp0GJSqDVAMWFWpcSGqX3LUHVOiFD3VhFKaRmmAAutM0BTReAB0Cx1TojQtGt8b5wBAM/gP1cAAIDfI/AAAAC/R+ABAAB+j8ADAAD8HoEHAAD4PQIPAADwewQeAADg9wg8AADA7xF4AACA3yPwAAAAv0fgAQAAfo/AAwAA/B6BBwAA+D0CDwAA8HsBRhfgbQ6HQ5JUUlJicCUAAKCx6r+367/HXdXsAk9paakkKTk52eBKAACAq0pLSxUVFeXycSbHhUalJsput+vIkSOKiIiQyWRy67lLSkqUnJysgwcPKjIy0q3nxtlx343BfTcG990Y3Hdj/PS+R0REqLS0VElJSTKbXR+R0+xaeMxms9q0aePRa0RGRvI/CANw343BfTcG990Y3Hdj1N/3C2nZqcegZQAA4PcIPAAAwO8ReNwoKChIs2bNUlBQkNGlNCvcd2Nw343BfTcG990Y7rzvzW7QMgAAaH5o4QEAAH6PwAMAAPwegQcAAPg9Ag8AAPB7BB43WbhwoVJSUhQcHKyMjAytX7/e6JL82uzZs2UymRq8unXrZnRZfueLL77QyJEjlZSUJJPJpH//+98N3nc4HHrsscfUqlUrhYSEaOjQofrxxx+NKdaPnO++jx8//rTP//Dhw40p1o/MmzdPl112mSIiIhQfH68bb7xRWVlZDfaprKzUlClT1LJlS4WHh+vmm29WXl6eQRX7h8bc98GDB5/2mZ80aZJL1yHwuMGbb76p6dOna9asWdq0aZPS0tI0bNgw5efnG12aX7vkkkuUk5PjfK1Zs8bokvxOWVmZ0tLStHDhwjO+/9RTT+nZZ5/VokWLtG7dOoWFhWnYsGGqrKz0cqX+5Xz3XZKGDx/e4PP/+uuve7FC/7R69WpNmTJF33zzjT799FPV1NTo2muvVVlZmXOfadOm6T//+Y/efvttrV69WkeOHNFNN91kYNVNX2PuuyRNnDixwWf+qaeecu1CDly0fv36OaZMmeL83WazOZKSkhzz5s0zsCr/NmvWLEdaWprRZTQrkhzvvfee83e73e5ITEx0/OUvf3FuKyoqcgQFBTlef/11Ayr0T/973x0Oh2PcuHGOG264wZB6mpP8/HyHJMfq1asdDkfd5zswMNDx9ttvO/fZsWOHQ5Jj7dq1RpXpd/73vjscDsdVV13lmDp16kWdlxaei1RdXa2NGzdq6NChzm1ms1lDhw7V2rVrDazM//34449KSkpShw4dNGbMGGVnZxtdUrOyb98+5ebmNvjsR0VFKSMjg8++F6xatUrx8fHq2rWrJk+erGPHjhldkt8pLi6WJMXExEiSNm7cqJqamgaf+W7duqlt27Z85t3of+97vVdffVWxsbHq2bOnZsyYofLycpfO2+weHupuBQUFstlsSkhIaLA9ISFBO3fuNKgq/5eRkaFly5apa9euysnJ0Zw5c3TllVdq27ZtioiIMLq8ZiE3N1eSzvjZr38PnjF8+HDddNNNat++vfbs2aOHH35Y1113ndauXSuLxWJ0eX7Bbrfr3nvv1cCBA9WzZ09JdZ95q9Wq6OjoBvvymXefM913Sbr11lvVrl07JSUlaevWrfrDH/6grKwsvfvuu40+N4EHTdJ1113n/Dk1NVUZGRlq166d3nrrLd1+++0GVgZ43q9//Wvnz7169VJqaqo6duyoVatWaciQIQZW5j+mTJmibdu2MTbQy8523++8807nz7169VKrVq00ZMgQ7dmzRx07dmzUuenSukixsbGyWCynjdLPy8tTYmKiQVU1P9HR0erSpYt2795tdCnNRv3nm8++8Tp06KDY2Fg+/25y991368MPP9TKlSvVpk0b5/bExERVV1erqKiowf585t3jbPf9TDIyMiTJpc88geciWa1W9enTR5mZmc5tdrtdmZmZ6t+/v4GVNS8nTpzQnj171KpVK6NLaTbat2+vxMTEBp/9kpISrVu3js++lx06dEjHjh3j83+RHA6H7r77br333nv6/PPP1b59+wbv9+nTR4GBgQ0+81lZWcrOzuYzfxHOd9/PZMuWLZLk0meeLi03mD59usaNG6e+ffuqX79+WrBggcrKyjRhwgSjS/Nb999/v0aOHKl27drpyJEjmjVrliwWi37zm98YXZpfOXHiRIP/gtq3b5+2bNmimJgYtW3bVvfee68ef/xxde7cWe3bt9fMmTOVlJSkG2+80bii/cC57ntMTIzmzJmjm2++WYmJidqzZ48efPBBderUScOGDTOw6qZvypQpeu211/T+++8rIiLCOS4nKipKISEhioqK0u23367p06crJiZGkZGR+v3vf6/+/fvr8ssvN7j6put8933Pnj167bXXNGLECLVs2VJbt27VtGnTNGjQIKWmpjb+Qhc1xwtOzz33nKNt27YOq9Xq6Nevn+Obb74xuiS/Nnr0aEerVq0cVqvV0bp1a8fo0aMdu3fvNrosv7Ny5UqHpNNe48aNczgcdVPTZ86c6UhISHAEBQU5hgwZ4sjKyjK2aD9wrvteXl7uuPbaax1xcXGOwMBAR7t27RwTJ0505ObmGl12k3emey7JsXTpUuc+FRUVjrvuusvRokULR2hoqGPUqFGOnJwc44r2A+e779nZ2Y5BgwY5YmJiHEFBQY5OnTo5HnjgAUdxcbFL1zGdvBgAAIDfYgwPAADwewQeAADg9wg8AADA7xF4AACA3yPwAAAAv0fgAQAAfo/AAwAA/B6BBwAA+D0CDwDDrFq1SiaT6bSHMXpLZmamunfvLpvNdt59V6xYofT0dNntdi9UBsDdCDwAvGLw4MG69957G2wbMGCAcnJyFBUVZUhNDz74oB599FFZLJbz7jt8+HAFBgbq1Vdf9UJlANyNwAPAMFarVYmJiTKZTF6/9po1a7Rnzx7dfPPNjT5m/PjxevbZZz1YFQBPIfAA8Ljx48dr9erVeuaZZ2QymWQymbR///7TurSWLVum6Ohoffjhh+ratatCQ0P1y1/+UuXl5Xr55ZeVkpKiFi1a6J577mnQDVVVVaX7779frVu3VlhYmDIyMrRq1apz1vTGG2/ommuuUXBwsHPbd999p6uvvloRERGKjIxUnz59tGHDBuf7I0eO1IYNG7Rnzx633h8AnhdgdAEA/N8zzzyjXbt2qWfPnpo7d64kKS4uTvv37z9t3/Lycj377LN64403VFpaqptuukmjRo1SdHS0PvroI+3du1c333yzBg4cqNGjR0uS7r77bv3www964403lJSUpPfee0/Dhw/X999/r86dO5+xpi+//FK33nprg21jxoxR79699fe//10Wi0VbtmxRYGCg8/22bdsqISFBX375pTp27OimuwPAGwg8ADwuKipKVqtVoaGhSkxMPOe+NTU1+vvf/+4MFL/85S/1yiuvKC8vT+Hh4erRo4euvvpqrVy5UqNHj1Z2draWLl2q7OxsJSUlSZLuv/9+rVixQkuXLtUTTzxxxuscOHDAuX+97OxsPfDAA+rWrZsknTEsJSUl6cCBAy7fAwDGIvAA8CmhoaENWk8SEhKUkpKi8PDwBtvy8/MlSd9//71sNpu6dOnS4DxVVVVq2bLlWa9TUVHRoDtLkqZPn6477rhDr7zyioYOHapbbrnltJackJAQlZeXX/DfB8AYBB4APuWnXUiSZDKZzritfnr4iRMnZLFYtHHjxtNmW/00JP2v2NhYHT9+vMG22bNn69Zbb9Xy5cv13//+V7NmzdIbb7yhUaNGOfcpLCxUXFzcBf1tAIxD4AHgFVartVHr3biqd+/estlsys/P15VXXunScT/88MNp27t06aIuXbpo2rRp+s1vfqOlS5c6A09lZaX27Nmj3r17u61+AN7BLC0AXpGSkqJ169Zp//79KigocNsCfl26dNGYMWM0duxYvfvuu9q3b5/Wr1+vefPmafny5Wc9btiwYVqzZo3z94qKCt19991atWqVDhw4oK+++krffvutunfv7tznm2++UVBQkPr37++W2gF4D4EHgFfcf//9slgs6tGjh+Li4pSdne22cy9dulRjx47Vfffdp65du+rGG2/Ut99+q7Zt2571mDFjxmj79u3KysqSJFksFh07dkxjx45Vly5d9Ktf/UrXXXed5syZ4zzm9ddf15gxYxQaGuq22gF4h8nhcDiMLgIAjPDAAw+opKRE//jHP867b0FBgbp27aoNGzaoffv2XqgOgDvRwgOg2XrkkUfUrl27RnWv7d+/X3/7298IO0ATRQsPAADwe7TwAAAAv0fgAQAAfo/AAwAA/B6BBwAA+D0CDwAA8HsEHgAA4PcIPAAAwO8ReAAAgN8j8AAAAL/3/wNd3BhvvYCYgQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\dae\\petsc_pid_doc_17_0.png" - } - }, - "output_type": "display_data" - } - ], - "source": [ - "a = plt.plot(tj.time, tj.get_vec(m.fs.valve_1.valve_opening[24]))\n", - "a = plt.ylabel(\"valve 1 fraction open\")\n", - "a = plt.xlabel(\"time (s)\")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAGwCAYAAABxbMuTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYoUlEQVR4nO3deXxTZb4/8E+SNumatIUulC5UCoUii5ShRAZcqBToOCA4g4paWVQYdISOgHUB9c5YLugFFES9/C44owiUKzNXVjsFqkDZCoWylcVi2doCpUnp3uT5/VFyILZIA0lOm37er1dekHOenHxzJkw+Ps9znqMQQggQERERkd0p5S6AiIiIyFUxaBERERE5CIMWERERkYMwaBERERE5CIMWERERkYMwaBERERE5CIMWERERkYO4yV1AW2I2m3Hx4kX4+vpCoVDIXQ4RERE1gxAC5eXlCA0NhVJpWx8Vg5YTXbx4EeHh4XKXQURERHfh3LlzCAsLs+k1DFpO5OvrC6DhfyitVitzNURERNQcRqMR4eHh0u+4LRi0nMgyXKjVahm0iIiIWpm7mfbDyfBEREREDsKgRUREROQgDFpEREREDsKgRUREROQgDFpEREREDsKgRUREROQgDFpEREREDsKgRUREROQgDFpEREREDsKgRUREROQgDFpEREREDsKgRUREROQgDFouQAiBvPMGlFXWyl0KERER3YJBywVM/ioHjy/egfWHL8ldChEREd1C1qC1dOlS9OrVC1qtFlqtFnq9Hps2bbJqk52djUcffRTe3t7QarUYPHgwqqqqpP2lpaUYN24ctFot/Pz8MHHiRFy/ft3qGIcPH8agQYPg4eGB8PBwzJs3r1Et6enp6NatGzw8PNCzZ09s3LjRar8QArNnz0aHDh3g6emJhIQEnDp1yo5n4+71jfAHAGxg0CIiImpRZA1aYWFhmDt3LnJycrB//348+uijGDlyJI4ePQqgIWQNGzYMQ4cOxd69e7Fv3z688sorUCpvlj1u3DgcPXoUGRkZWL9+PX744Qe89NJL0n6j0YihQ4ciMjISOTk5mD9/Pt5991188cUXUptdu3bh6aefxsSJE3Hw4EGMGjUKo0aNwpEjR6Q28+bNw8cff4zPPvsMe/bsgbe3NxITE1FdXe2EM/Xrht/fAQCw92wpqutMMldDREREEtHC+Pv7i2XLlgkhhIiPjxdvv/32bdseO3ZMABD79u2Ttm3atEkoFApx4cIFIYQQn376qfD39xc1NTVSm1mzZomYmBjp+R//+EeRlJRkdez4+Hjx8ssvCyGEMJvNIiQkRMyfP1/aX1ZWJjQajfjmm2+a/dkMBoMAIAwGQ7Nf0xxms1n0ff97ETlrvThYeM2uxyYiImrr7uX3u8XM0TKZTFi1ahUqKiqg1+tRUlKCPXv2ICgoCA8++CCCg4Px0EMPYceOHdJrsrOz4efnh379+knbEhISoFQqsWfPHqnN4MGDoVarpTaJiYnIz8/HtWvXpDYJCQlW9SQmJiI7OxsAUFBQgKKiIqs2Op0O8fHxUpum1NTUwGg0Wj0cQaFQoEdHHQDgyAWDQ96DiIiIbCd70MrLy4OPjw80Gg0mT56MdevWITY2Fj/99BMA4N1338WLL76IzZs3o2/fvhgyZIg0N6qoqAhBQUFWx3Nzc0NAQACKioqkNsHBwVZtLM/v1ObW/be+rqk2TUlLS4NOp5Me4eHhzT8xNuoS5AMAOHulwmHvQURERLaRPWjFxMQgNzcXe/bswZQpU5CcnIxjx47BbDYDAF5++WWMHz8eDzzwABYsWICYmBj8z//8j8xVN09qaioMBoP0OHfunMPeK9zfEwBw7lqlw96DiIiIbOMmdwFqtRrR0dEAgLi4OOzbtw+LFi3CG2+8AQCIjY21at+9e3cUFhYCAEJCQlBSUmK1v76+HqWlpQgJCZHaFBcXW7WxPL9Tm1v3W7Z16NDBqk2fPn1u+9k0Gg00Gs0dzoB9RLTzAgAUllbdoSURERE5i+w9Wr9kNptRU1ODTp06ITQ0FPn5+Vb7T548icjISACAXq9HWVkZcnJypP1bt26F2WxGfHy81OaHH35AXV2d1CYjIwMxMTHw9/eX2mRmZlq9T0ZGBvR6PQAgKioKISEhVm2MRiP27NkjtZFbuH9D0Dpfyh4tIiKiFsMBk/Ob7Y033hBZWVmioKBAHD58WLzxxhtCoVCI77//XgghxIIFC4RWqxXp6eni1KlT4u233xYeHh7i9OnT0jGGDRsmHnjgAbFnzx6xY8cO0aVLF/H0009L+8vKykRwcLB47rnnxJEjR8SqVauEl5eX+Pzzz6U2O3fuFG5ubuLDDz8Ux48fF3PmzBHu7u4iLy9PajN37lzh5+cn/vWvf4nDhw+LkSNHiqioKFFVVdXsz+uoqw6FEMJYVSsiZ60XkbPWi4qaOrsfn4iIqK26l99vWYPWhAkTRGRkpFCr1SIwMFAMGTJEClkWaWlpIiwsTHh5eQm9Xi9+/PFHq/1Xr14VTz/9tPDx8RFarVaMHz9elJeXW7U5dOiQ+O1vfys0Go3o2LGjmDt3bqNa1qxZI7p27SrUarXo0aOH2LBhg9V+s9ks3nnnHREcHCw0Go0YMmSIyM/Pt+nzOjJomc1m0e3tTSJy1npx9sp1ux+fiIiorbqX32+FEELI26fWdhiNRuh0OhgMBmi1Wrsff/C8bSgsrUT6ZD1+0ynA7scnIiJqi+7l97vFzdGiuxfk2zDx/nJ5jcyVEBEREcCg5VICbwStEqP8twUiIiIiBi2XYunRKmGPFhERUYvAoOVCAjl0SERE1KIwaLmQIF8PAOzRIiIiaikYtFwIe7SIiIhaFgYtF+LvrQYAlFXWylwJERERAQxaLsXfyx0AcK2y7g4tiYiIyBkYtFyIpUerqs6E6jqTzNUQERERg5YL8dW4wU2pAABc4/AhERGR7Bi0XIhCoYCfZfiwgsOHREREcmPQcjH+XpwQT0RE1FIwaLkYS9AqZdAiIiKSHYOWi/HjlYdEREQtBoOWiwmwrKVVwR4tIiIiuTFouRg/Dh0SERG1GAxaLsayaGkZhw6JiIhkx6DlYiyLlnIdLSIiIvkxaLkYP8+GHi1DFXu0iIiI5Mag5WK0N4KWkUGLiIhIdgxaLkbrYenRqpe5EiIiImLQcjFaTzcAgLGaPVpERERyY9ByMZahw9p6M6rrTDJXQ0RE1LYxaLkYH7UblIqGv7NXi4iISF4MWi5GqVTA18MyIZ7ztIiIiOTEoOWCLPO0uMQDERGRvBi0XJDlykMOHRIREcmLQcsFSUGLPVpERESyYtByQTeXeOAcLSIiIjkxaLkgHVeHJyIiahEYtFwQhw6JiIhaBgYtFyTd75CT4YmIiGTFoOWCtB435mhxHS0iIiJZMWi5IPZoERERtQwMWi7IMhmeC5YSERHJi0HLBWl51SEREVGLwKDlgm6uDM85WkRERHJi0HJB0oKlVXUQQshcDRERUdvFoOWCLD1a9WaBqjqTzNUQERG1XQxaLshLrYJKqQDACfFERERyYtByQQqFglceEhERtQAMWi7K98aipdc5IZ6IiEg2DFouykfTELTKGbSIiIhkI2vQWrp0KXr16gWtVgutVgu9Xo9NmzZJ+x9++GEoFAqrx+TJk62OUVhYiKSkJHh5eSEoKAgzZsxAfb11uNi+fTv69u0LjUaD6OhorFixolEtS5YsQadOneDh4YH4+Hjs3bvXan91dTWmTp2Kdu3awcfHB2PGjEFxcbH9ToadWXq0ymsYtIiIiOQia9AKCwvD3LlzkZOTg/379+PRRx/FyJEjcfToUanNiy++iEuXLkmPefPmSftMJhOSkpJQW1uLXbt24csvv8SKFSswe/ZsqU1BQQGSkpLwyCOPIDc3F9OmTcOkSZOwZcsWqc3q1auRkpKCOXPm4MCBA+jduzcSExNRUlIitZk+fTq+++47pKenIysrCxcvXsTo0aMdfIbuno+mYY4Whw6JiIhkJFoYf39/sWzZMiGEEA899JB47bXXbtt248aNQqlUiqKiImnb0qVLhVarFTU1NUIIIWbOnCl69Ohh9bqxY8eKxMRE6Xn//v3F1KlTpecmk0mEhoaKtLQ0IYQQZWVlwt3dXaSnp0ttjh8/LgCI7OzsZn82g8EgAAiDwdDs19yt6asOishZ68Vn2087/L2IiIhc2b38freYOVomkwmrVq1CRUUF9Hq9tP3rr79G+/btcf/99yM1NRWVlZXSvuzsbPTs2RPBwcHStsTERBiNRqlXLDs7GwkJCVbvlZiYiOzsbABAbW0tcnJyrNoolUokJCRIbXJyclBXV2fVplu3boiIiJDaNKWmpgZGo9Hq4Sw+lsnwHDokIiKSjZvcBeTl5UGv16O6uho+Pj5Yt24dYmNjAQDPPPMMIiMjERoaisOHD2PWrFnIz8/Ht99+CwAoKiqyClkApOdFRUW/2sZoNKKqqgrXrl2DyWRqss2JEyekY6jVavj5+TVqY3mfpqSlpeG9996z8YzYByfDExERyU/2oBUTE4Pc3FwYDAasXbsWycnJyMrKQmxsLF566SWpXc+ePdGhQwcMGTIEZ86cQefOnWWsunlSU1ORkpIiPTcajQgPD3fKe/veWB2eQYuIiEg+sg8dqtVqREdHIy4uDmlpaejduzcWLVrUZNv4+HgAwOnTpwEAISEhja78szwPCQn51TZarRaenp5o3749VCpVk21uPUZtbS3Kyspu26YpGo1GuqLS8nCWm0OHXLCUiIhILrIHrV8ym82oqalpcl9ubi4AoEOHDgAAvV6PvLw8q6sDMzIyoNVqpeFHvV6PzMxMq+NkZGRI88DUajXi4uKs2pjNZmRmZkpt4uLi4O7ubtUmPz8fhYWFVvPJWhJfDh0SERHJTtahw9TUVAwfPhwREREoLy/HypUrsX37dmzZsgVnzpzBypUrMWLECLRr1w6HDx/G9OnTMXjwYPTq1QsAMHToUMTGxuK5557DvHnzUFRUhLfffhtTp06FRqMBAEyePBmLFy/GzJkzMWHCBGzduhVr1qzBhg0bpDpSUlKQnJyMfv36oX///li4cCEqKiowfvx4AIBOp8PEiRORkpKCgIAAaLVavPrqq9Dr9RgwYIDzT1wz+HIyPBERkfwccBVks02YMEFERkYKtVotAgMDxZAhQ8T3338vhBCisLBQDB48WAQEBAiNRiOio6PFjBkzGl1aefbsWTF8+HDh6ekp2rdvL/7yl7+Iuro6qzbbtm0Tffr0EWq1Wtx3331i+fLljWr55JNPREREhFCr1aJ///5i9+7dVvurqqrEn/70J+Hv7y+8vLzEE088IS5dumTT53Xm8g67z1wRkbPWi0fmb3P4exEREbmye/n9VgghhNxhr60wGo3Q6XQwGAwOn6917KIRIz7+Ee19NNj/dsKdX0BERERNupff7xY3R4vsw5eT4YmIiGTHoOWiLOtoVdeZUWcyy1wNERFR28Sg5aIsyzsAvN8hERGRXBi0XJS7SgkP94b/eXnlIRERkTwYtFyYj6ZhdXhjNedpERERyYFBy4VpLRPiOXRIREQkCwYtF+bDRUuJiIhkxaDlwixLPPA2PERERPJg0HJhliUeytmjRUREJAsGLRdmmQzPOVpERETyYNByYTeHDnnVIRERkRwYtFyYLyfDExERyYpBy4VxMjwREZG8GLRcmGWOFoMWERGRPBi0XNjNdbQ4R4uIiEgODFoujEOHRERE8mLQcmG+Gk6GJyIikhODlgvzYY8WERGRrBi0XJivBxcsJSIikhODlguz3IKn1mRGTb1J5mqIiIjaHgYtF2YJWgCHD4mIiOTAoOXCVEoFvNUqABw+JCIikgODlovz4W14iIiIZMOg5eIsE+KNvLE0ERGR0zFouTjLPC0OHRIRETkfg5aL4+rwRERE8mHQcnE3gxaHDomIiJyNQcvFWYYOK2q5jhYREZGzMWi5OMtkeA4dEhEROR+Dlouz9Ghx6JCIiMj5GLRcnC/X0SIiIpINg5aL4/IORERE8mHQcnGco0VERCQfBi0XZ7kFTzmHDomIiJyOQcvFSUOHNZwMT0RE5GwMWi5Oy5XhiYiIZMOg5eIsQ4fXq+shhJC5GiIioraFQcvFWYYO680CNfVmmashIiJqWxi0XJy32g0KRcPfOXxIRETkXAxaLk6pVMBHzdXhiYiI5MCg1Qb4cHV4IiIiWTBotQFcHZ6IiEgebrY0NpvNyMrKwo8//oiff/4ZlZWVCAwMxAMPPICEhASEh4c7qk66B5b7HRoZtIiIiJyqWT1aVVVV+Otf/4rw8HCMGDECmzZtQllZGVQqFU6fPo05c+YgKioKI0aMwO7du5v95kuXLkWvXr2g1Wqh1Wqh1+uxadOmRu2EEBg+fDgUCgX++c9/Wu0rLCxEUlISvLy8EBQUhBkzZqC+3jpQbN++HX379oVGo0F0dDRWrFjR6D2WLFmCTp06wcPDA/Hx8di7d6/V/urqakydOhXt2rWDj48PxowZg+Li4mZ/Vjn53LgND4cOiYiInKtZQatr1644fPgw/vu//xtGoxHZ2dn43//9X3z11VfYuHEjCgsLcebMGQwaNAhPPfUU/vu//7tZbx4WFoa5c+ciJycH+/fvx6OPPoqRI0fi6NGjVu0WLlwIheXSuVuYTCYkJSWhtrYWu3btwpdffokVK1Zg9uzZUpuCggIkJSXhkUceQW5uLqZNm4ZJkyZhy5YtUpvVq1cjJSUFc+bMwYEDB9C7d28kJiaipKREajN9+nR89913SE9PR1ZWFi5evIjRo0c363PKzVcaOuRkeCIiIqcSzXDs2LHmNBNCCFFbWytOnz7d7Pa/5O/vL5YtWyY9P3jwoOjYsaO4dOmSACDWrVsn7du4caNQKpWiqKhI2rZ06VKh1WpFTU2NEEKImTNnih49eli9x9ixY0ViYqL0vH///mLq1KnSc5PJJEJDQ0VaWpoQQoiysjLh7u4u0tPTpTbHjx8XAER2dnazP5vBYBAAhMFgaPZr7GHW2kMictZ68fG/Tzr1fYmIiFzBvfx+N6tHq3v37s0Obu7u7ujcubPNgc9kMmHVqlWoqKiAXq8HAFRWVuKZZ57BkiVLEBIS0ug12dnZ6NmzJ4KDg6VtiYmJMBqNUq9YdnY2EhISrF6XmJiI7OxsAEBtbS1ycnKs2iiVSiQkJEhtcnJyUFdXZ9WmW7duiIiIkNo0paamBkaj0eohh5v3O+TQIRERkTPZNBn+VpWVlSgsLERtba3V9l69etl0nLy8POj1elRXV8PHxwfr1q1DbGwsgIbhugcffBAjR45s8rVFRUVWIQuA9LyoqOhX2xiNRlRVVeHatWswmUxNtjlx4oR0DLVaDT8/v0ZtLO/TlLS0NLz33nt3OAOOZ1neoZxBi4iIyKlsDlqXL1/G+PHjm5y0DjT0TNkiJiYGubm5MBgMWLt2LZKTk5GVlYXTp09j69atOHjwoK0lthipqalISUmRnhuNRlmuzOTyDkRERPKwOWhNmzYNZWVl2LNnDx5++GGsW7cOxcXF+Otf/4qPPvrI5gLUajWio6MBAHFxcdi3bx8WLVoET09PnDlzplEv0pgxYzBo0CBs374dISEhja4OtFwJaBlqDAkJaXR1YHFxMbRaLTw9PaFSqaBSqZpsc+sxamtrUVZWZlXPrW2aotFooNFomn8yHER746pDrgxPRETkXDYvWLp161b813/9F/r16welUonIyEg8++yzmDdvHtLS0u65ILPZjJqaGrzxxhs4fPgwcnNzpQcALFiwAMuXLwcA6PV65OXlWV0dmJGRAa1WKw0/6vV6ZGZmWr1HRkaGNA9MrVYjLi7Oqo3ZbEZmZqbUJi4uDu7u7lZt8vPzUVhYKLVpybgyPBERkTxs7tGqqKhAUFAQAMDf3x+XL19G165d0bNnTxw4cMCmY6WmpmL48OGIiIhAeXk5Vq5cie3bt2PLli0ICQlpsrcoIiICUVFRAIChQ4ciNjYWzz33HObNm4eioiK8/fbbmDp1qtSTNHnyZCxevBgzZ87EhAkTsHXrVqxZswYbNmyQjpmSkoLk5GT069cP/fv3x8KFC1FRUYHx48cDAHQ6HSZOnIiUlBQEBARAq9Xi1VdfhV6vx4ABA2w9hU5nGTrkTaWJiIicy+agFRMTg/z8fHTq1Am9e/fG559/jk6dOuGzzz5Dhw4dbDpWSUkJnn/+eVy6dAk6nQ69evXCli1b8NhjjzXr9SqVCuvXr8eUKVOg1+vh7e2N5ORkvP/++1KbqKgobNiwAdOnT8eiRYsQFhaGZcuWITExUWozduxYXL58GbNnz0ZRURH69OmDzZs3W02QX7BgAZRKJcaMGYOamhokJibi008/tenzysWyMjyDFhERkXMphBDClhd89dVXqKurw/jx45GTk4Nhw4ahtLQUarUaK1aswNixYx1Va6tnNBqh0+lgMBig1Wqd9r6nS8qR8F8/QOfpjkNzhjrtfYmIiFzBvfx+29yj9eyzz0p/j4uLw88//4wTJ04gIiIC7du3t/Vw5AQ+mpu34BFCNLnKPhEREdlfsyfDV1RUYMqUKejYsSMCAwPx1FNP4fLly/Dy8kLfvn0Zslowy9ChySxQXWeWuRoiIqK2o9lB65133sE//vEP/O53v8MzzzyDrVu34qWXXnJkbWQnXmoVLJ1YXOKBiIjIeZo9dLhu3TosX74cf/jDHwAAzz//PAYMGID6+nq4ud31AvPkBAqFAj4aN5RX16O8ph5BchdERETURjS7R+v8+fMYOHCg9NyyttTFixcdUhjZly9XhyciInK6Zgcts9kMd3d3q21ubm4233KH5OErrQ7PoEVEROQszR7zE0JgyJAhVsOElZWVePzxx6FWq6Vtti5aSs5xc3V4ztEiIiJylmYHrTlz5jTaNnLkSLsWQ47D1eGJiIic756CFrUeXB2eiIjI+Wy+qTS1Tr68sTQREZHTNStoDRs2DLt3775ju/Lycvznf/4nlixZcs+FkX1Zhg4ZtIiIiJynWUOHf/jDHzBmzBjodDo8/vjj6NevH0JDQ+Hh4YFr167h2LFj2LFjBzZu3IikpCTMnz/f0XWTjSy34eHQIRERkfM0K2hNnDgRzz77LNLT07F69Wp88cUXMBgMABoWw4yNjUViYiL27duH7t27O7Rgujs352jxqkMiIiJnafZkeI1Gg2effVa6qbTBYEBVVRXatWvXaH0tanl8OEeLiIjI6e763jk6nQ46nc6etZADcWV4IiIi5+NVh20EV4YnIiJyPgatNoJDh0RERM7HoNVG3FwZnpPhiYiInIVBq43Q3tKjJYSQuRoiIqK24a6CVllZGZYtW4bU1FSUlpYCaLiZ9IULF+xaHNmPZejQLIDKWpPM1RAREbUNNl91ePjwYSQkJECn0+Hs2bN48cUXERAQgG+//RaFhYX4+9//7og66R55uqugVDQEres19fDW3PUFp0RERNRMNvdopaSk4IUXXsCpU6fg4eEhbR8xYgR++OEHuxZH9qNQKG6Zp8UJ8URERM5gc9Dat28fXn755UbbO3bsiKKiIrsURY5xc4kHTognIiJyBpuDlkajgdFobLT95MmTCAwMtEtR5Bi+XOKBiIjIqWwOWr///e/x/vvvo66uoVdEoVCgsLAQs2bNwpgxY+xeINmPD1eHJyIiciqbg9ZHH32E69evIygoCFVVVXjooYcQHR0NX19f/O1vf3NEjWQnN28szaBFRETkDDZfeqbT6ZCRkYGdO3fi0KFDuH79Ovr27YuEhARH1Ed25GOZo8WhQyIiIqewKWjV1dXB09MTubm5GDhwIAYOHOiousgBOHRIRETkXDYNHbq7uyMiIgImExe8bI20HrwNDxERkTPZPEfrrbfewptvvimtCE+th9SjxaFDIiIip7B5jtbixYtx+vRphIaGIjIyEt7e3lb7Dxw4YLfiyL4st+HhHC0iIiLnsDlojRo1ygFlkDNwjhYREZFz2Ry05syZ44g6yAm4MjwREZFz2TxHi1ovrgxPRETkXDb3aCmVSigUitvu5xWJLReHDomIiJzL5qC1bt06q+d1dXU4ePAgvvzyS7z33nt2K4zsjyvDExEROZfNQWvkyJGNtj355JPo0aMHVq9ejYkTJ9qlMLI/y1WH12vrYTYLKJW375kkIiKie2e3OVoDBgxAZmamvQ5HDuCraZgMLwRQWcchXiIiIkezS9CqqqrCxx9/jI4dO9rjcOQgHu5KqG70YnGeFhERkePZPHTo7+9vNRleCIHy8nJ4eXnhq6++smtxZF8KhQK+Hm4oq6xDeXUdQnQecpdERETk0mwOWgsWLLAKWkqlEoGBgYiPj4e/v79diyP789HcCFpc4oGIiMjhbA5aL7zwggPKIGfhEg9ERETOY/Mcrc2bN2PHjh3S8yVLlqBPnz545plncO3aNbsWR/anlVaHZ9AiIiJyNJuD1owZM2A0GgEAeXl5SElJwYgRI1BQUICUlBSbjrV06VL06tULWq0WWq0Wer0emzZtkva//PLL6Ny5Mzw9PREYGIiRI0fixIkTVscoLCxEUlISvLy8EBQUhBkzZqC+3jpEbN++HX379oVGo0F0dDRWrFjRqJYlS5agU6dO8PDwQHx8PPbu3Wu1v7q6GlOnTkW7du3g4+ODMWPGoLi42KbP2xJISzzU8DY8REREjmZz0CooKEBsbCwA4H//93/x+OOP44MPPsCSJUusQlJzhIWFYe7cucjJycH+/fvx6KOPYuTIkTh69CgAIC4uDsuXL8fx48exZcsWCCEwdOhQafV5k8mEpKQk1NbWYteuXfjyyy+xYsUKzJ4926repKQkPPLII8jNzcW0adMwadIkbNmyRWqzevVqpKSkYM6cOThw4AB69+6NxMRElJSUSG2mT5+O7777Dunp6cjKysLFixcxevRoW0+f7CxDh+zRIiIicgJhI39/f3H06FEhhBADBw4Un3/+uRBCiIKCAuHp6Wnr4Zo8/rJly5rcd+jQIQFAnD59WgghxMaNG4VSqRRFRUVSm6VLlwqtVitqamqEEELMnDlT9OjRw+o4Y8eOFYmJidLz/v37i6lTp0rPTSaTCA0NFWlpaUIIIcrKyoS7u7tIT0+X2hw/flwAENnZ2c3+bAaDQQAQBoOh2a+xtze/PSwiZ60X//V9vmw1EBERtSb38vttc4/Wb3/7W6SkpOA//uM/sHfvXiQlJQEATp48ibCwsLsOfCaTCatWrUJFRQX0en2j/RUVFVi+fDmioqIQHh4OAMjOzkbPnj0RHBwstUtMTITRaJR6xbKzs5GQkGB1rMTERGRnZwMAamtrkZOTY9VGqVQiISFBapOTk4O6ujqrNt26dUNERITUpik1NTUwGo1WD7n58MbSRERETmNz0Fq8eDHc3Nywdu1aLF26VFqkdNOmTRg2bJjNBeTl5cHHxwcajQaTJ0/GunXrpKFJAPj000/h4+MDHx8fbNq0CRkZGVCr1QCAoqIiq5AFQHpeVFT0q22MRiOqqqpw5coVmEymJtvcegy1Wg0/P7/btmlKWloadDqd9LAERDn5SkOHnKNFRETkaDYv7xAREYH169c32r5gwYK7KiAmJga5ubkwGAxYu3YtkpOTkZWVJYWtcePG4bHHHsOlS5fw4Ycf4o9//CN27twJD4+Wv9hmamqq1QUCRqNR9rCl9eRVh0RERM5ic4/WgQMHkJeXJz3/17/+hVGjRuHNN99EbW2tzQWo1WpER0cjLi4OaWlp6N27NxYtWiTt1+l06NKlCwYPHoy1a9fixIkTWLduHQAgJCSk0ZV/luchISG/2kar1cLT0xPt27eHSqVqss2tx6itrUVZWdlt2zRFo9FIV1RaHnKzLO9gZI8WERGRw9kctF5++WWcPHkSAPDTTz/hqaeegpeXF9LT0zFz5sx7LshsNqOmpqbJfUIICCGk/Xq9Hnl5eVZXB2ZkZECr1Uo9Ynq9vtHNrjMyMqR5YGq1GnFxcVZtzGYzMjMzpTZxcXFwd3e3apOfn4/CwsIm55O1ZFrPhk5MYxV7tIiIiBzO1tnzWq1Wuupv7ty5YujQoUIIIXbs2CHCwsJsOtYbb7whsrKyREFBgTh8+LB44403hEKhEN9//704c+aM+OCDD8T+/fvFzz//LHbu3Ckef/xxERAQIIqLi4UQQtTX14v7779fDB06VOTm5orNmzeLwMBAkZqaKr3HTz/9JLy8vMSMGTPE8ePHxZIlS4RKpRKbN2+W2qxatUpoNBqxYsUKcezYMfHSSy8JPz8/q6sZJ0+eLCIiIsTWrVvF/v37hV6vF3q93qbP2xKuOtxXcFVEzlovBs/bKlsNRERErcm9/H7bPEdLCAGz2QwA+Pe//43f/e53AIDw8HBcuXLFpmOVlJTg+eefx6VLl6DT6dCrVy9s2bIFjz32GC5evIgff/wRCxcuxLVr1xAcHIzBgwdj165dCAoKAgCoVCqsX78eU6ZMgV6vh7e3N5KTk/H+++9L7xEVFYUNGzZg+vTpWLRoEcLCwrBs2TIkJiZKbcaOHYvLly9j9uzZKCoqQp8+fbB582arCfILFiyAUqnEmDFjUFNTg8TERHz66ae2nj7ZWeZoGas4dEhERORoCiGEsOUFjz76KMLDw5GQkICJEyfi2LFjiI6ORlZWFpKTk3H27FkHldr6GY1G6HQ6GAwG2eZrFRmqMSAtEyqlAqf/NtzqBuFERETU2L38fts8R2vhwoU4cOAAXnnlFbz11luIjo4GAKxduxYPPvigrYcjJ7PM0TKZBSprTTJXQ0RE5NpsHjrs1auX1VWHFvPnz4dKpbJLUeQ4nu4quCkVqDcLGKvr4K2x+StAREREzWRzjxYAlJWVYdmyZUhNTUVpaSkA4NixY1ZX/1HLpFAo4OvBKw+JiIicwebujMOHD2PIkCHw8/PD2bNn8eKLLyIgIADffvstCgsL8fe//90RdZIdaT3dca2yjqvDExEROZjNPVopKSkYP348Tp06ZbU6+4gRI/DDDz/YtThyDC5aSkRE5Bw2B619+/bh5ZdfbrS9Y8eOv3rfP2o5uGgpERGRc9gctDQaDYxGY6PtJ0+eRGBgoF2KIsdijxYREZFz2By0fv/73+P9999HXV3Dj7RCoUBhYSFmzZqFMWPG2L1Asj8paHHRUiIiIoeyOWh99NFHuH79OoKCglBVVYWHHnoI0dHR8PX1xd/+9jdH1Eh2Jg0dVnPokIiIyJFsvupQp9MhIyMDO3fuxKFDh3D9+nX07dsXCQkJjqiPHIA9WkRERM5hU9Cqq6uDp6cncnNzMXDgQAwcONBRdZEDSfc75BwtIiIih7Jp6NDd3R0REREwmXjrltaMVx0SERE5h81ztN566y28+eab0orw1PrwqkMiIiLnsHmO1uLFi3H69GmEhoYiMjIS3t7eVvsPHDhgt+LIMaShQ87RIiIiciibg9aoUaMcUAY5080eLQ4dEhEROZLNQWvOnDmOqIOc6OYcrToIIaBQKGSuiIiIyDXZHLQs9u/fj+PHjwMAYmNjERcXZ7eiyLEsPVr1ZoGqOhO81Hf9NSAiIqJfYfMv7Pnz5/H0009j586d8PPzAwCUlZXhwQcfxKpVqxAWFmbvGsnOvNQqqJQKmMwCxqp6Bi0iIiIHsfmqw0mTJqGurg7Hjx9HaWkpSktLcfz4cZjNZkyaNMkRNZKdKRQKaD0sq8NzQjwREZGj2NyVkZWVhV27diEmJkbaFhMTg08++QSDBg2ya3HkOFpPd1yrrOOVh0RERA5kc49WeHi4dEPpW5lMJoSGhtqlKHI8rqVFRETkeDYHrfnz5+PVV1/F/v37pW379+/Ha6+9hg8//NCuxZHj+HpwdXgiIiJHs3no8IUXXkBlZSXi4+Ph5tbw8vr6eri5uWHChAmYMGGC1Jarx7dc7NEiIiJyPJuD1sKFCx1QBjnbrWtpERERkWPYHLSSk5MdUQc5GVeHJyIicjyb52iRa7Dc77CcQ4dEREQOw6DVRmk5GZ6IiMjhGLTaKEuPFifDExEROQ6DVhtlmaNVVsmgRURE5Cg2B61t27bddt+SJUvuqRhyHj+vhqBl4FWHREREDmNz0Bo9ejRycnIabV+0aBFSU1PtUhQ5niVolVXWylwJERGR67qrleGHDx+OEydOSNs++ugjzJ49Gxs2bLBrceQ4Ok81AKC8ph4ms5C5GiIiItdk8zpakyZNQmlpKRISErBjxw6sXr0aH3zwATZu3IiBAwc6okZyAN2NyfBCNCzx4OellrkiIiIi12Nz0AKAmTNn4urVq+jXrx9MJhO2bNmCAQMG2Ls2ciC1mxLeahUqak0oq2TQIiIicoRmBa2PP/640baOHTvCy8sLgwcPxt69e7F3714AwJ///Gf7VkgOo/N0bwhanBBPRETkEM0KWgsWLGhyu0qlws6dO7Fz504AgEKhYNBqRXRealw0VHNCPBERkYM0K2gVFBQ4ug6SgZ8nl3ggIiJyJC5Y2oZxLS0iIiLHsnkyvMlkwooVK5CZmYmSkhKYzWar/Vu3brVbceRYN9fSYtAiIiJyBJuD1muvvYYVK1YgKSkJ999/PxQKhSPqIiew3O+QQYuIiMgxbA5aq1atwpo1azBixAhH1ENO5Hdj0dKyKk6GJyIicgSb52ip1WpER0c7ohZyMsvQoZFztIiIiBzC5qD1l7/8BYsWLYIQvG1La+fHoUMiIiKHsjlo7dixA19//TU6d+6Mxx9/HKNHj7Z62GLp0qXo1asXtFottFot9Ho9Nm3aBAAoLS3Fq6++ipiYGHh6eiIiIgJ//vOfYTAYrI5RWFiIpKQkeHl5ISgoCDNmzEB9fb1Vm+3bt6Nv377QaDSIjo7GihUrGtWyZMkSdOrUCR4eHoiPj5cWYLWorq7G1KlT0a5dO/j4+GDMmDEoLi626fO2NDrLZHj2aBERETmEzXO0/Pz88MQTT9jlzcPCwjB37lx06dIFQgh8+eWXGDlyJA4ePAghBC5evIgPP/wQsbGx+PnnnzF58mRcvHgRa9euBdBwBWRSUhJCQkKwa9cuXLp0Cc8//zzc3d3xwQcfAGhYAywpKQmTJ0/G119/jczMTEyaNAkdOnRAYmIiAGD16tVISUnBZ599hvj4eCxcuBCJiYnIz89HUFAQAGD69OnYsGED0tPTodPp8Morr2D06NHSYq2tkTRHiz1aREREjiFaGH9/f7Fs2bIm961Zs0ao1WpRV1cnhBBi48aNQqlUiqKiIqnN0qVLhVarFTU1NUIIIWbOnCl69OhhdZyxY8eKxMRE6Xn//v3F1KlTpecmk0mEhoaKtLQ0IYQQZWVlwt3dXaSnp0ttjh8/LgCI7Ozs236W6upqYTAYpMe5c+cEAGEwGJp7Ohzq/LVKETlrvejy5kZhNpvlLoeIiKhFMhgMd/373WIWLDWZTFi1ahUqKiqg1+ubbGMwGKDVauHm1tARl52djZ49eyI4OFhqk5iYCKPRiKNHj0ptEhISrI6TmJiI7OxsAEBtbS1ycnKs2iiVSiQkJEhtcnJyUFdXZ9WmW7duiIiIkNo0JS0tDTqdTnqEh4fbckoczjJHq9ZkRlWdSeZqiIiIXI/NQ4cAsHbtWqxZswaFhYWorbVeGuDAgQM2HSsvLw96vR7V1dXw8fHBunXrEBsb26jdlStX8B//8R946aWXpG1FRUVWIQuA9LyoqOhX2xiNRlRVVeHatWswmUxNtjlx4oR0DLVaDT8/v0ZtLO/TlNTUVKSkpEjPjUZjiwpbXmoV3FUK1JkEyirr4KW+q68DERER3YbNPVoff/wxxo8fj+DgYBw8eBD9+/dHu3bt8NNPP2H48OE2FxATE4Pc3Fzs2bMHU6ZMQXJyMo4dO2bVxmg0IikpCbGxsXj33Xdtfg+5aDQaaaK/5dGSKBQK6DhPi4iIyGFsDlqffvopvvjiC3zyySdQq9WYOXMmMjIymrwisDks63LFxcUhLS0NvXv3xqJFi6T95eXlGDZsGHx9fbFu3Tq4u7tL+0JCQhpd+Wd5HhIS8qtttFotPD090b59e6hUqibb3HqM2tpalJWV3bZNayXdhoeLlhIREdmdzUGrsLAQDz74IADA09MT5eXlAIDnnnsO33zzzT0XZDabUVNTA6ChJ2vo0KFQq9X4v//7P3h4eFi11ev1yMvLQ0lJibQtIyMDWq1WGn7U6/XIzMy0el1GRoY0D0ytViMuLs6qjdlsRmZmptQmLi4O7u7uVm3y8/NRWFh42/lkrYXOk4uWEhEROYrNk3JCQkJQWlqKyMhIREREYPfu3ejduzcKCgpsXsQ0NTUVw4cPR0REBMrLy7Fy5Ups374dW7ZskUJWZWUlvvrqKxiNRhiNRgBAYGAgVCoVhg4ditjYWDz33HOYN28eioqK8Pbbb2Pq1KnQaDQAgMmTJ2Px4sWYOXMmJkyYgK1bt2LNmjXYsGGDVEdKSgqSk5PRr18/9O/fHwsXLkRFRQXGjx8PANDpdJg4cSJSUlIQEBAArVaLV199FXq9HgMGDLD1FLYolgnx1zh0SEREZH+2XqY4ceJE8e677wohhFi8eLHw9PQUCQkJws/PT0yYMMGmY02YMEFERkYKtVotAgMDxZAhQ8T3338vhBBi27ZtAkCTj4KCAukYZ8+eFcOHDxeenp6iffv24i9/+Yu0/IPFtm3bRJ8+fYRarRb33XefWL58eaNaPvnkExERESHUarXo37+/2L17t9X+qqoq8ac//Un4+/sLLy8v8cQTT4hLly7Z9Hnv5fJQR/nLmlwROWu9WLLtlNylEBERtUj38vutEMK2biiz2Qyz2SwtsbBq1Srs2rULXbp0wcsvvwy1Wm3XIOhKjEYjdDqdtExFS/DBxuP44oef8OKgKLyV1PhqTyIiorbuXn6/bR46PH/+vNUSBU899RSeeuopCCFw7tw5RERE2HpIkpG/V0MwLq3g0CEREZG92TwZPioqCpcvX260vbS0FFFRUXYpipwnwNsyR4tXHRIREdmbzUFLCAGFQtFo+/Xr1xtdFUgt380eLQYtIiIie2v20KFlhXOFQoF33nkHXl5e0j6TyYQ9e/agT58+di+QHCvAuyFosUeLiIjI/podtA4ePAigoUcrLy/PatK7Wq1G79698frrr9u/QnIof2/2aBERETlKs4PWtm3bAADjx4/HokWLWsxVc3RvAm4MHZZX16POZIa7qsXcZ5yIiKjVs/lXdfny5QxZLkTr6Q7ljSl3HD4kIiKyL3ZftHEqpQJ+N3q1rnGJByIiIrti0CL437ixNOdpERER2ReDFvHKQyIiIgdh0CKupUVEROQgDFp0s0eLQYuIiMiuGLTo5lpaHDokIiKyKwYtktbSYo8WERGRfTFokdSjda2SyzsQERHZE4MWIcC7YXkHXnVIRERkXwxaxKsOiYiIHIRBi3jVIRERkYMwaJE0R6ui1oTqOpPM1RAREbkOBi2Cr8YNalXDV+Eqe7WIiIjshkGLoFAo0M6noVfrSnmNzNUQERG5DgYtAgC099EAAK5cZ9AiIiKyFwYtAgC0t/RoMWgRERHZDYMWAbi1R4tztIiIiOyFQYsAAO19G4LWZc7RIiIishsGLQLAOVpERESOwKBFADhHi4iIyBEYtAgAEMg5WkRERHbHoEUAbs7RYo8WERGR/TBoEYCbc7TKKutQZzLLXA0REZFrYNAiAICfpztUSgUA4CqHD4mIiOyCQYsAAEqlAu28OSGeiIjInhi0SGIZPrzMoEVERGQXDFokkSbEc9FSIiIiu2DQIsnNtbQ4R4uIiMgeGLRIwtXhiYiI7ItBiyRcHZ6IiMi+GLRIEsgbSxMREdkVgxZJgn09AADFxmqZKyEiInINDFokCdZZghZ7tIiIiOyBQYskIdqGoHW9ph7Xa+plroaIiKj1Y9AiibfGDb4aNwBAkYHDh0RERPeKQYus3Bw+ZNAiIiK6V7IGraVLl6JXr17QarXQarXQ6/XYtGmTtP+LL77Aww8/DK1WC4VCgbKyskbHKC0txbhx46DVauHn54eJEyfi+vXrVm0OHz6MQYMGwcPDA+Hh4Zg3b16j46Snp6Nbt27w8PBAz549sXHjRqv9QgjMnj0bHTp0gKenJxISEnDq1Cn7nIgWxDJ8yB4tIiKieydr0AoLC8PcuXORk5OD/fv349FHH8XIkSNx9OhRAEBlZSWGDRuGN99887bHGDduHI4ePYqMjAysX78eP/zwA1566SVpv9FoxNChQxEZGYmcnBzMnz8f7777Lr744gupza5du/D0009j4sSJOHjwIEaNGoVRo0bhyJEjUpt58+bh448/xmeffYY9e/bA29sbiYmJqK52rUASbAla7NEiIiK6d6KF8ff3F8uWLbPatm3bNgFAXLt2zWr7sWPHBACxb98+adumTZuEQqEQFy5cEEII8emnnwp/f39RU1MjtZk1a5aIiYmRnv/xj38USUlJVseOj48XL7/8shBCCLPZLEJCQsT8+fOl/WVlZUKj0Yhvvvnmtp+lurpaGAwG6XHu3DkBQBgMhmaeDeebt/m4iJy1Xrzzzzy5SyEiImoRDAbDXf9+t5g5WiaTCatWrUJFRQX0en2zXpOdnQ0/Pz/069dP2paQkAClUok9e/ZIbQYPHgy1Wi21SUxMRH5+Pq5duya1SUhIsDp2YmIisrOzAQAFBQUoKiqyaqPT6RAfHy+1aUpaWhp0Op30CA8Pb9bnklMwhw6JiIjsRvaglZeXBx8fH2g0GkyePBnr1q1DbGxss15bVFSEoKAgq21ubm4ICAhAUVGR1CY4ONiqjeX5ndrcuv/W1zXVpimpqakwGAzS49y5c836XHKyBC1OhiciIrp3bnIXEBMTg9zcXBgMBqxduxbJycnIyspqdthqyTQaDTQajdxl2CSEc7SIiIjsRvagpVarER0dDQCIi4vDvn37sGjRInz++ed3fG1ISAhKSkqsttXX16O0tBQhISFSm+LiYqs2lud3anPrfsu2Dh06WLXp06dPcz9qqxByY3mHy+U1qDeZ4aaSvdOTyCmKjdU4dK4Mhqo6tPNRIyZEi45+nnKXRUStnOxB65fMZjNqapp3Cxi9Xo+ysjLk5OQgLi4OALB161aYzWbEx8dLbd566y3U1dXB3d0dAJCRkYGYmBj4+/tLbTIzMzFt2jTp2BkZGdJcsaioKISEhCAzM1MKVkajEXv27MGUKVPs8bFbjPY+GqiUCpjMAleu10rBi8hVHT5fhrmbTmDXmauN9vXsqMMffxOOP/YLg8ZNJUN1RNTayRq0UlNTMXz4cERERKC8vBwrV67E9u3bsWXLFgANc6OKiopw+vRpAA3zuXx9fREREYGAgAB0794dw4YNw4svvojPPvsMdXV1eOWVV/DUU08hNDQUAPDMM8/gvffew8SJEzFr1iwcOXIEixYtwoIFC6Q6XnvtNTz00EP46KOPkJSUhFWrVmH//v3SEhAKhQLTpk3DX//6V3Tp0gVRUVF45513EBoailGjRjn3pDmYSqlAoI8GRcZqFBmrGbTIZQkh8N8//oS0TScgRMO27h20CPTVoMRYjVMl15F3wYC8CwZ8uu00ZiTG4IkHOkKhUMhbOBG1Lva/CLL5JkyYICIjI4VarRaBgYFiyJAh4vvvv5f2z5kzRwBo9Fi+fLnU5urVq+Lpp58WPj4+QqvVivHjx4vy8nKr9zl06JD47W9/KzQajejYsaOYO3duo1rWrFkjunbtKtRqtejRo4fYsGGD1X6z2SzeeecdERwcLDQajRgyZIjIz8+36fPey+WhzvT7xTtE5Kz1YlPeJblLIXIYy1ImkbPWi1dXHhDnSius9l8prxb/s+MnEf+3f0vtnl22WxRerbjNEYnIVd3L77dCCMt/y5GjGY1G6HQ6GAwGaLVaucu5rZf/sR9bjhbjvd/3QPKDneQuh8juVu0txBvf5gEA3k7qjom/jbptT1V1nQn/b0cBFmWeQm29Gb4ebpj/ZG8Muz/EmSUTkYzu5febM52pkQ66hgnAFw1VMldCZH+nS8ox5/8a7j4xPaErJg2671eHAz3cVZj6SDS2TBuMByL8UF5dj8lf5eC9746itt7srLKJqJVi0KJGwvwbgtaFawxa5FrMZoHX0w+jpt6MwV0D8eqj0c1+bVR7b6x5WY+XB98HAFi+8yz+8NkunCutdFS5ROQCGLSoEUvQOs+gRS7m24MXkHuuDN5qFeaN6QWl0raJ7e4qJVJHdMey5/tB5+mOQ+cNGPHxj8g8XnznFxNRm8SgRY109PMCAFwoY9Ai11FdZ8KHW/IBAK8O6XJPV9QmxAZj42uDpKHESX/fj8VbT4FTXonolxi0qBFLj9bl8hpU15lkrobIPtbsP4ciYzU66DwwfmCnez5eRz9PrH5Jj2cHREAI4MPvT+K1Vbkwmxm2iOgmBi1qxM/LHd7qhsUZ2atFrqDOZMbS7WcAAH96uLPdFh9Vuynx11E9kTa6J9xVCvzfoYtYs7/l39OUiJyHQYsaUSgU6MgJ8eRCNh8pwiVDNdr7qPGHfuF2P/7T/SMwa1g3AMB/bj6Bqlr2BBNRAwYtalKYf8M8LU6IJ1ewYtdZAMAz8ZHwcHfMrXReeLATwvw9ca2yDt8duuiQ9yCi1odBi5pkuZnuhTJeuk6t2+mS68j5+RpUSgWejY9w2Pu4qZQYFx8JAPj77rOcGE9EABi06DYsE+LPlbJHi1q3dQfPAwAe6hqIIK1j79059jfhULspceSCEUcuGB36XkTUOjBoUZMiAhqGDgu5GCO1YmazwD8PNgzjje7b0eHvF+CtRkL3IADA+jwOHxIRgxbdRmQ7bwDAz1crZK6E6O7tKSjFhbIq+Hq4IaF7sFPe83e9QgEAGw5f4vAhETFoUdMi2zX0aF2rrIOhsk7maojuzrcHGoYNk3p2cNgk+F96JCYInu4qnL9WhcPnDU55TyJquRi0qEneGjcE+WoAAGfZq0WtUE29CZuOFAEARvcNc9r7eqpVGHJj+HBD3iWnvS8RtUwMWnRbnW4MHzJoUWu068xVXK+pR7BWg36R/k597xE9OwAAthwt4vAhURvHoEW31al9w/Dh2SucEE+tT8axhhs9J3QPtvnm0ffqoa6BULsp8fPVSuQXlzv1vYmoZWHQotvihHhqrcxmgX/fCFqPxTpnEvytvDVuGNylPQBgy5Fip78/EbUcDFp0Wxw6pNbq8AUDSspr4KNxg75zO1lqGNojBEDD8CERtV0MWnRblqHDgisMWtS6ZBxrCDcPxQTa7QbStkroHgylAjh2yYhzXI+OqM1i0KLbuq+9DxSKhiUerl6vkbscomazzM8aKsOwoUWAtxq/6RQAAPj+GIcPidoqBi26LU+1CuE3bi59svi6zNUQNc/FsiqcLL4OpQJ4uGuQrLUkcviQqM1j0KJf1SXIBwBwuoRXTlHr8OOpywCAPuF+0Hm5y1rL0B4NPWr7z5ayV5iojWLQol/VJdgXAHu0qPX44eQVAMDgroEyVwKE+Xvh/o5amAXw7+McPiRqixi06Fd1DW7o0TrJtYCoFTCZBXacbghag7rIH7QAIDHWMnzIoEXUFjFo0a/qEtTQo3W6hD1a1PIdPl8GQ1UdtB5u6B2mk7scAEDi/Q1Ba8fpK7heUy9zNUTkbAxa9KuigxquPLxaUcs5JtTiWYYNB0a3h5uqZfzfW5cgH3Rq54XaejOy8i/LXQ4ROVnL+H8iarFuvfIwv4jDh9Sy/XBjInxLmJ9loVAoePUhURvGoEV31CNUCwA4ctEgcyVEt2eoqkPuuTIAwKAbt79pKSyrxG87UYLaerPM1RCRMzFo0R3d37FhrkveBaPMlRDdXvaZKzCZBe4L9EbYjV7YluKBcD8E+WpQXlOPXWeuyF0OETkRgxbdUc8bQevIBfZoUcuVZVnWoYVcbXgrpVIh3dyaq8QTtS0MWnRHlqBVcKUCxuo6mashakwIgR9OWuZntaxhQwvpJtNHilBn4vAhUVvBoEV35O+tRkc/TwDs1aKW6acrFbhQVgW1SokB97WTu5wmPdi5HQJ9NbhaUYvM4yVyl0NETsKgRc3C4UNqySy9Wb+J8oeX2k3maprmrlJiTN8wAMCa/edkroaInIVBi5ql543FHy1XdRG1JNKwYQucn3Wrsb8JBwBszy9BkaFa5mqIyBkYtKhZftMpAACwt6AUQgiZqyG6qabehN0/lQJoWetnNSWqvTf6RwXALIC1OezVImoLGLSoWXqH66BxU+LK9Vqcuczb8VDLsf/sNVTVmRDkq0G3EF+5y7mjp270aq3adw4mM/+jhcjVMWhRs2jcVHggwg8ApN4DopbAMmw4qEsgFAqFzNXc2YieHeDv5Y7z16qw+QhXiidydQxa1GyWq7n2FDBoUcuR1cKXdfglD3cVntN3AgB8/sMZDsUTuTgGLWq2+KgbQeunq/xxoBah8GolThSVQ6lo6NFqLZL1kfBwV+LweQO2nuBSD0SujEGLmu2BCD+o3ZQoKa9BfjFvME3y23z0EoCG/wgI8FbLXE3ztfPRIPnBTgCAD78/CTPnahG5LAYtajYPdxUGRTcMz2Qc5W1ESH6bbsxxGt4zROZKbDd5cGf4atxw/JIRq/bxCkQiV8WgRTYZ2qPhfm1bjnESL8nrkqEKBwvLAACJPVpf0PL3VmPaY10BAP+5+QQul9fIXBEROQKDFtlkSPdgKBXAkQtGXCirkrscasO+2dvQC9Q/KgDBWg+Zq7k7yfpIdO+ghaGqDq+nH+IQIpELkjVoLV26FL169YJWq4VWq4Ver8emTZuk/dXV1Zg6dSratWsHHx8fjBkzBsXF1kNWhYWFSEpKgpeXF4KCgjBjxgzU19dbtdm+fTv69u0LjUaD6OhorFixolEtS5YsQadOneDh4YH4+Hjs3bvXan9zamkL2vto0C+yYfHS74+yV4vkUVtvxjd7CwEAzw2IlLmau+emUmLh2D7QuCmRdfIyFmaekrskIrIzWYNWWFgY5s6di5ycHOzfvx+PPvooRo4ciaNHjwIApk+fju+++w7p6enIysrCxYsXMXr0aOn1JpMJSUlJqK2txa5du/Dll19ixYoVmD17ttSmoKAASUlJeOSRR5Cbm4tp06Zh0qRJ2LJli9Rm9erVSElJwZw5c3DgwAH07t0biYmJKCm5eTXQnWppSyzDh//KvShzJdRWpeecw+XyGgT5alrlsOGtYkJ88f7IHgCAjzNPYfnOApkrIiJ7UogWdp1+QEAA5s+fjyeffBKBgYFYuXIlnnzySQDAiRMn0L17d2RnZ2PAgAHYtGkTfve73+HixYsIDm748f/ss88wa9YsXL58GWq1GrNmzcKGDRtw5MgR6T2eeuoplJWVYfPmzQCA+Ph4/OY3v8HixYsBAGazGeHh4Xj11VfxxhtvwGAw3LGWptTU1KCm5ua8C6PRiPDwcBgMBmi1WvufPCcpKa/Gg2lbUW8W2DJtMGJawWrcNfUmlFfXw1hVB+ONP6/X1KO6zoTqOjNq6q3/rK03w2Q2o94sYDIL1JsFzDf+bHhuhskMAAKWf0ECkJa9aPh7w5+4ZTuk7be87sZz/OI1+GW7Jo5vbw75PwM7F2oWwLFLRpjMAnMej8X4gVF2Pb5cPvo+H59sPQ0AGD+wE2YN6wYPd5Xd36eq1oSyqlpcq6hDWVUtjFUN/w4qa02orL359+o6M+pv/BuoN5lRbxKos/zdLCCEkL6vQgir76TVd1XadqN9U9/3JrZZjnnrMYiaY8rDne3+H2BGoxE6ne6ufr9bzG3uTSYT0tPTUVFRAb1ej5ycHNTV1SEhIUFq061bN0REREjhJjs7Gz179pRCFgAkJiZiypQpOHr0KB544AFkZ2dbHcPSZtq0aQCA2tpa5OTkIDU1VdqvVCqRkJCA7OxsAGhWLU1JS0vDe++9d8/npqUJ8vXAkO5B2HK0GP/YfRZ/HdVT1nrqTGacK61EwZUKFFypwMWyapSUV6PEWNPwZ3kNKmtNstZI9vdITGCrHjb8pZTHukLjpsSH35/E8p1nkZV/Ga8OiUZSz1Co3Zo3+HC9ph4Xy6pwoawKF6VHtfT8cnkNaurNDv4kRPK6er1W7hKsyB608vLyoNfrUV1dDR8fH6xbtw6xsbHIzc2FWq2Gn5+fVfvg4GAUFTXMDSoqKrIKWZb9ln2/1sZoNKKqqgrXrl2DyWRqss2JEyekY9yplqakpqYiJSVFem7p0XIFLzwYhS1Hi5G+/zymJ3RFOx+NU973ek09Dp8vw5ELBuRdMOLoBQN+Lq1s9j3jfDVu0Hq6w9fDDb4ebvBwV0HjpoKHu1L608NdBbWbEm5KBVRKxY0/b3muavhTqVBAAUChABr+BkABy9+guGU/ftHu5jaF5WU3t0Fxy98t2xW3HMP6+PbmiLvY2PuY3mo39OsUAJWy5d9yp7kUCgVeebQLugb74u1/HsFPVyowffUhvPPPo/hNJ390DvRBsNYDSqUCZrNAWVUtSitqUWKskYKUsbr+zm8EwE2pgJ+XGv5eDf8WvNRu8FSr4OmugpdaBU91w78Ld5UCbkol3FQK6e/uqoZ/D6ob2U9x40uvQOPvc1Pfactn/eW/HYXC+t8Bbrzm1u87Ncaz0li3Di1rlEX2oBUTE4Pc3FwYDAasXbsWycnJyMrKkrssu9BoNNBonBNAnG3AfQHoHabDofMGfLr9DN75XaxD3qem3oQ9P5Vi15mryP7pKo5cMDQZqjzdVejU3htR7b0Q5u+FYK0Hgnw1DQ+tBwK81PDxcHOpH2ZyTUN7hCD+vnb4avfP+Hv2WRQba7At/zK25V9u1ut1nu4I9fNERz8PhPp5So+Ofh4I8vWAn5c7fDRuDC5ETiJ70FKr1YiOjgYAxMXFYd++fVi0aBHGjh2L2tpalJWVWfUkFRcXIySkYew1JCSk0dWBlisBb23zy6sDi4uLodVq4enpCZVKBZVK1WSbW49xp1raGoVCgZShMUj+n734e/ZZjIuPwH2BPnY5trG6Dv8+Vox/Hy9GVv5lVPxi2K+jnyd6dtShZ5gO93fUISbYF8FaDX84yGXoPN0x9ZFoTHmoM45dMmL/2VKcv1aFy9cb5nwqFQpoPdwQ4K1BoK8GoX4e6OjniQ5+nvDRyP5/60R0ixb3L9JsNqOmpgZxcXFwd3dHZmYmxowZAwDIz89HYWEh9Ho9AECv1+Nvf/sbSkpKEBQUBADIyMiAVqtFbGys1Gbjxo1W75GRkSEdQ61WIy4uDpmZmRg1apRUQ2ZmJl555RUAaFYtbdFDXQPxUNdAZJ28jNfTD2HNy3q4qe7uQtY6kxlZ+ZexLvcC/n2s2GoeSbBWg0FdAqG/rx0GdG6Hjn6e9voIRC2aUqnA/R0b/oOCiFonWYNWamoqhg8fjoiICJSXl2PlypXYvn07tmzZAp1Oh4kTJyIlJQUBAQHQarV49dVXodfrpcnnQ4cORWxsLJ577jnMmzcPRUVFePvttzF16lRpyG7y5MlYvHgxZs6ciQkTJmDr1q1Ys2YNNmzYINWRkpKC5ORk9OvXD/3798fChQtRUVGB8ePHA0CzammrPhjdE8MW/IADhWV497uj+I+R9ze7Z0kIgQOFZfhX7gV8d+girlXWSfs6B3ojqWcHJMQGo2dHHXuriIioVZI1aJWUlOD555/HpUuXoNPp0KtXL2zZsgWPPfYYAGDBggVQKpUYM2YMampqkJiYiE8//VR6vUqlwvr16zFlyhTo9Xp4e3sjOTkZ77//vtQmKioKGzZswPTp07Fo0SKEhYVh2bJlSExMlNqMHTsWly9fxuzZs1FUVIQ+ffpg8+bNVhPk71RLW9XRzxPz/9AbU77OwVe7C1FXL/Du73vAU337y9JPFZfjX7kX8a9DF3Cu9Obq8u19NBjZJxRPPNARPUK1DFdERNTqtbh1tFzZvazD0dKt3FOIt/+ZB7MAwvw98bw+Ev2j2qGdtxoVtfU4e6UC+89ew4+nriC/uFx6nZdahaGxwXiibxgGdm5310OPREREjuIS62hR6/ZMfARC/TyQ+m0ezl+rwgcbT9y2rZtSgYdjAvH7Ph2R0D0IXmp+DYmIyDXxF47s5uGYIGT+5SGsO3gBm48U4URROa5X10PtpkSndl7o3kELfed2GNwlEP7earnLJSIicjgOHTqRKw8dEhERuap7+f3mhBgiIiIiB2HQIiIiInIQBi0iIiIiB2HQIiIiInIQBi0iIiIiB2HQIiIiInIQBi0iIiIiB2HQIiIiInIQBi0iIiIiB2HQIiIiInIQBi0iIiIiB2HQIiIiInIQBi0iIiIiB2HQIiIiInIQN7kLaEuEEAAAo9EocyVERETUXJbfbcvvuC0YtJyovLwcABAeHi5zJURERGSr8vJy6HQ6m16jEHcTz+iumM1mXLx4Eb6+vlAoFHY7rtFoRHh4OM6dOwetVmu349Kv43mXB8+7PHje5cHzLo9fnnchBMrLyxEaGgql0rZZV+zRciKlUomwsDCHHV+r1fIfogx43uXB8y4Pnnd58LzL49bzbmtPlgUnwxMRERE5CIMWERERkYMwaLkAjUaDOXPmQKPRyF1Km8LzLg+ed3nwvMuD510e9jzvnAxPRERE5CDs0SIiIiJyEAYtIiIiIgdh0CIiIiJyEAYtIiIiIgdh0HIBS5YsQadOneDh4YH4+Hjs3btX7pJc2rvvvguFQmH16Natm9xluZwffvgBjz/+OEJDQ6FQKPDPf/7Tar8QArNnz0aHDh3g6emJhIQEnDp1Sp5iXcidzvsLL7zQ6Ps/bNgweYp1EWlpafjNb34DX19fBAUFYdSoUcjPz7dqU11djalTp6Jdu3bw8fHBmDFjUFxcLFPFrqE55/3hhx9u9H2fPHmyTe/DoNXKrV69GikpKZgzZw4OHDiA3r17IzExESUlJXKX5tJ69OiBS5cuSY8dO3bIXZLLqaioQO/evbFkyZIm98+bNw8ff/wxPvvsM+zZswfe3t5ITExEdXW1kyt1LXc67wAwbNgwq+//N99848QKXU9WVhamTp2K3bt3IyMjA3V1dRg6dCgqKiqkNtOnT8d3332H9PR0ZGVl4eLFixg9erSMVbd+zTnvAPDiiy9afd/nzZtn2xsJatX69+8vpk6dKj03mUwiNDRUpKWlyViVa5szZ47o3bu33GW0KQDEunXrpOdms1mEhISI+fPnS9vKysqERqMR33zzjQwVuqZfnnchhEhOThYjR46UpZ62oqSkRAAQWVlZQoiG77a7u7tIT0+X2hw/flwAENnZ2XKV6XJ+ed6FEOKhhx4Sr7322j0dlz1arVhtbS1ycnKQkJAgbVMqlUhISEB2draMlbm+U6dOITQ0FPfddx/GjRuHwsJCuUtqUwoKClBUVGT13dfpdIiPj+d33wm2b9+OoKAgxMTEYMqUKbh69arcJbkUg8EAAAgICAAA5OTkoK6uzur73q1bN0RERPD7bke/PO8WX3/9Ndq3b4/7778fqampqKystOm4vKl0K3blyhWYTCYEBwdbbQ8ODsaJEydkqsr1xcfHY8WKFYiJicGlS5fw3nvvYdCgQThy5Ah8fX3lLq9NKCoqAoAmv/uWfeQYw4YNw+jRoxEVFYUzZ87gzTffxPDhw5GdnQ2VSiV3ea2e2WzGtGnTMHDgQNx///0AGr7varUafn5+Vm35fbefps47ADzzzDOIjIxEaGgoDh8+jFmzZiE/Px/ffvtts4/NoEVko+HDh0t/79WrF+Lj4xEZGYk1a9Zg4sSJMlZG5HhPPfWU9PeePXuiV69e6Ny5M7Zv344hQ4bIWJlrmDp1Ko4cOcJ5n052u/P+0ksvSX/v2bMnOnTogCFDhuDMmTPo3Llzs47NocNWrH379lCpVI2uPCkuLkZISIhMVbU9fn5+6Nq1K06fPi13KW2G5fvN77787rvvPrRv357ffzt45ZVXsH79emzbtg1hYWHS9pCQENTW1qKsrMyqPb/v9nG7896U+Ph4ALDp+86g1Yqp1WrExcUhMzNT2mY2m5GZmQm9Xi9jZW3L9evXcebMGXTo0EHuUtqMqKgohISEWH33jUYj9uzZw+++k50/fx5Xr17l9/8eCCHwyiuvYN26ddi6dSuioqKs9sfFxcHd3d3q+56fn4/CwkJ+3+/Bnc57U3JzcwHApu87hw5buZSUFCQnJ6Nfv37o378/Fi5ciIqKCowfP17u0lzW66+/jscffxyRkZG4ePEi5syZA5VKhaefflru0lzK9evXrf6rsaCgALm5uQgICEBERASmTZuGv/71r+jSpQuioqLwzjvvIDQ0FKNGjZKvaBfwa+c9ICAA7733HsaMGYOQkBCcOXMGM2fORHR0NBITE2WsunWbOnUqVq5ciX/961/w9fWV5l3pdDp4enpCp9Nh4sSJSElJQUBAALRaLV599VXo9XoMGDBA5upbrzud9zNnzmDlypUYMWIE2rVrh8OHD2P69OkYPHgwevXq1fw3uqdrFqlF+OSTT0RERIRQq9Wif//+Yvfu3XKX5NLGjh0rOnToINRqtejYsaMYO3asOH36tNxluZxt27YJAI0eycnJQoiGJR7eeecdERwcLDQajRgyZIjIz8+Xt2gX8GvnvbKyUgwdOlQEBgYKd3d3ERkZKV588UVRVFQkd9mtWlPnG4BYvny51Kaqqkr86U9/Ev7+/sLLy0s88cQT4tKlS/IV7QLudN4LCwvF4MGDRUBAgNBoNCI6OlrMmDFDGAwGm95HcePNiIiIiMjOOEeLiIiIyEEYtIiIiIgchEGLiIiIyEEYtIiIiIgchEGLiIiIyEEYtIiIiIgchEGLiIiIyEEYtIiIiIgchEGLiNqk7du3Q6FQNLpRr7NkZmaie/fuMJlMd2y7efNm9OnTB2az2QmVEZE9MWgRkct7+OGHMW3aNKttDz74IC5dugSdTidLTTNnzsTbb78NlUp1x7bDhg2Du7s7vv76aydURkT2xKBFRG2SWq1GSEgIFAqF0997x44dOHPmDMaMGdPs17zwwgv4+OOPHVgVETkCgxYRubQXXngBWVlZWLRoERQKBRQKBc6ePdto6HDFihXw8/PD+vXrERMTAy8vLzz55JOorKzEl19+iU6dOsHf3x9//vOfrYb7ampq8Prrr6Njx47w9vZGfHw8tm/f/qs1rVq1Co899hg8PDykbYcOHcIjjzwCX19faLVaxMXFYf/+/dL+xx9/HPv378eZM2fsen6IyLHc5C6AiMiRFi1ahJMnT+L+++/H+++/DwAIDAzE2bNnG7WtrKzExx9/jFWrVqG8vByjR4/GE088AT8/P2zcuBE//fQTxowZg4EDB2Ls2LEAgFdeeQXHjh3DqlWrEBoainXr1mHYsGHIy8tDly5dmqzpxx9/xDPPPGO1bdy4cXjggQewdOlSqFQq5Obmwt3dXdofERGB4OBg/Pjjj+jcubOdzg4RORqDFhG5NJ1OB7VaDS8vL4SEhPxq27q6OixdulQKMk8++ST+8Y9/oLi4GD4+PoiNjcUjjzyCbdu2YezYsSgsLMTy5ctRWFiI0NBQAMDrr7+OzZs3Y/ny5fjggw+afJ+ff/5Zam9RWFiIGTNmoFu3bgDQZEgLDQ3Fzz//bPM5ICL5MGgREd3g5eVl1VsUHByMTp06wcfHx2pbSUkJACAvLw8mkwldu3a1Ok5NTQ3atWt32/epqqqyGjYEgJSUFEyaNAn/+Mc/kJCQgD/84Q+Neq48PT1RWVl515+PiJyPQYuI6IZbh+oAQKFQNLnNsszC9evXoVKpkJOT0+jqwVvD2S+1b98e165ds9r27rvv4plnnsGGDRuwadMmzJkzB6tWrcITTzwhtSktLUVgYOBdfTYikgeDFhG5PLVa3az1qmz1wAMPwGQyoaSkBIMGDbLpdceOHWu0vWvXrujatSumT5+Op59+GsuXL5eCVnV1Nc6cOYMHHnjAbvUTkePxqkMicnmdOnXCnj17cPbsWVy5csVuC3927doV48aNw/PPP49vv/0WBQUF2Lt3L9LS0rBhw4bbvi4xMRE7duyQnldVVeGVV17B9u3b8fPPP2Pnzp3Yt28funfvLrXZvXs3NBoN9Hq9XWonIudg0CIil/f6669DpVIhNjYWgYGBKCwstNuxly9fjueffx5/+ctfEBMTg1GjRmHfvn2IiIi47WvGjRuHo0ePIj8/HwCgUqlw9epVPP/88+jatSv++Mc/Yvjw4Xjvvfek13zzzTcYN24cvLy87FY7ETmeQggh5C6CiKitmTFjBoxGIz7//PM7tr1y5QpiYmKwf/9+REVFOaE6IrIX9mgREcngrbfeQmRkZLOGMc+ePYtPP/2UIYuoFWKPFhEREZGDsEeLiIiIyEEYtIiIiIgchEGLiIiIyEEYtIiIiIgchEGLiIiIyEEYtIiIiIgchEGLiIiIyEEYtIiIiIgchEGLiIiIyEH+PzzGgtsb7xTSAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\dae\\petsc_pid_doc_18_0.png" - } - }, - "output_type": "display_data" - } - ], - "source": [ - "a = plt.plot(tj.time, tj.get_vec(m.fs.tank.control_volume.properties_out[24].pressure))\n", - "a = plt.ylabel(\"tank pressure (Pa)\")\n", - "a = plt.xlabel(\"time (s)\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Model a ramp in inlet pressure (again)\n", - "\n", - "Here we repeat the ramp from the previous simulation in a different way. In this case we do the integration in three parts. 1) Constant pressure at 500 kPa to 10 s 2) ramp from 500 to 600 kPa from 10 to 12 s. 3) Constant pressure at 600 kPa from 12 to 24 s." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.init.fs.valve_1: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.init.fs.tank.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.init.fs.tank: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.init.fs.valve_2: Initialization Complete: optimal - Optimal Solution Found\n" - ] - } - ], - "source": [ - "# Create a new copy of the model that runs to 24 seconds, and add a constraint.\n", - "\n", - "m = pid.create_model(\n", - " time_set=[0, 10, 12, 24],\n", - " nfe=3,\n", - " calc_integ=True,\n", - ")\n", - "# time_var will be an explicit time variable we can use in constraints.\n", - "m.fs.time_var = pyo.Var(m.fs.time)\n", - "\n", - "# We'll add a constraint to calculate the inlet pressure from 10 to 12s. The rest of the\n", - "# time pressure will be fixed. For the time section from 10 to 12s, the constraints are\n", - "# defined by time 12; this means the pressure at time 12 should be unfixed and the\n", - "# pressure constraint should be active. At all other times, pressure should be fixed and\n", - "# the pressure constraint should be deactivated.\n", - "m.fs.valve_1.control_volume.properties_in[0].pressure.fix(500000)\n", - "m.fs.valve_1.control_volume.properties_in[10].pressure.fix(500000)\n", - "m.fs.valve_1.control_volume.properties_in[12].pressure.set_value(600000)\n", - "m.fs.valve_1.control_volume.properties_in[12].pressure.unfix()\n", - "m.fs.valve_1.control_volume.properties_in[24].pressure.fix(600000)\n", - "\n", - "\n", - "@m.fs.Constraint(m.fs.time)\n", - "def inlet_pressure_eqn(b, t):\n", - " return (\n", - " b.valve_1.control_volume.properties_in[t].pressure\n", - " == 50000 * (b.time_var[t] - 10) + 500000\n", - " )\n", - "\n", - "\n", - "m.fs.inlet_pressure_eqn.deactivate()\n", - "m.fs.inlet_pressure_eqn[12].activate()" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Called fg_read, err: 0 (0 is good)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: DAE: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Reading nl file: C:\\Users\\dkgun\\AppData\\Local\\Temp\\tmp7g4th5iv.pyomo.nl\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of constraints: 28\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of nonlinear constraints: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of linear constraints: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of inequalities: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of variables: 28\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of integers: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of binary: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of objectives: 0 (Ignoring)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of non-zeros in Jacobian: 83 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of degrees of freedom: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: 0 SNES Function norm 5.783088779321e+05 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: 1 SNES Function norm 4.315325974705e+05 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: 2 SNES Function norm 7.639793381288e+04 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: 3 SNES Function norm 5.928557930246e+03 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: 4 SNES Function norm 5.008361736228e+01 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: 5 SNES Function norm 3.698195211732e-03 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: 6 SNES Function norm 3.725294295263e-09 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: SNESConvergedReason = SNES_CONVERGED_FNORM_RELATIVE, in 6 iterations\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: SNES_CONVERGED_FNORM_RELATIVE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: WARNING: model contains export suffix 'dae_suffix' that contains 1 component\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Called fg_read, err: 0 (0 is good)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: DAE: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Reading nl file: C:\\Users\\dkgun\\AppData\\Local\\Temp\\tmprvabt9ma.pyomo.nl\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of constraints: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of nonlinear constraints: 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of linear constraints: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of inequalities: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of variables: 34\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of integers: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of binary: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of objectives: 0 (Ignoring)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Number of non-zeros in Jacobian: 91 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:48 [INFO] idaes.solve.petsc-dae: Explicit time variable: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:49 [INFO] idaes.solve.petsc-dae: Number of derivatives: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:49 [INFO] idaes.solve.petsc-dae: Number of differential vars: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:49 [INFO] idaes.solve.petsc-dae: Number of algebraic vars: 24\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:49 [INFO] idaes.solve.petsc-dae: Number of state vars: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:49 [INFO] idaes.solve.petsc-dae: Number of degrees of freedom: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:49 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:49 [INFO] idaes.solve.petsc-dae: 0 TS dt 0.1 time 0.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 1 TS dt 0.025 time 0.025\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 2 TS dt 0.0154252 time 0.0381739\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 3 TS dt 0.0133373 time 0.0510085\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 4 TS dt 0.0136013 time 0.0643458\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 5 TS dt 0.0141735 time 0.0779471\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 6 TS dt 0.0146392 time 0.0921205\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 7 TS dt 0.0152517 time 0.10676\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 8 TS dt 0.0158389 time 0.122011\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 9 TS dt 0.0165162 time 0.13785\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 10 TS dt 0.0172093 time 0.154367\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 11 TS dt 0.0179712 time 0.171576\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 12 TS dt 0.0187679 time 0.189547\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 13 TS dt 0.0196222 time 0.208315\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 14 TS dt 0.020514 time 0.227937\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 15 TS dt 0.0214472 time 0.248451\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 16 TS dt 0.022401 time 0.269898\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 17 TS dt 0.0233619 time 0.292299\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 18 TS dt 0.0243005 time 0.315661\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:52 [INFO] idaes.solve.petsc-dae: 19 TS dt 0.0251894 time 0.339962\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 20 TS dt 0.0259944 time 0.365151\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 21 TS dt 0.0266898 time 0.391146\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 22 TS dt 0.0272563 time 0.417835\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 23 TS dt 0.0276902 time 0.445092\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 24 TS dt 0.0279997 time 0.472782\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 25 TS dt 0.0282038 time 0.500782\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 26 TS dt 0.028326 time 0.528985\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 27 TS dt 0.0283913 time 0.557311\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 28 TS dt 0.0284218 time 0.585703\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 29 TS dt 0.0284362 time 0.614124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 30 TS dt 0.0284488 time 0.642561\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 31 TS dt 0.0284703 time 0.671009\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 32 TS dt 0.0285087 time 0.69948\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 33 TS dt 0.0285693 time 0.727988\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 34 TS dt 0.0286562 time 0.756558\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 35 TS dt 0.0287722 time 0.785214\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 36 TS dt 0.0289195 time 0.813986\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 37 TS dt 0.0291001 time 0.842906\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 38 TS dt 0.0293154 time 0.872006\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 39 TS dt 0.0295672 time 0.901321\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 40 TS dt 0.0298571 time 0.930888\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 41 TS dt 0.0301872 time 0.960745\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 42 TS dt 0.0305596 time 0.990933\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 43 TS dt 0.0309769 time 1.02149\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 44 TS dt 0.031442 time 1.05247\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 45 TS dt 0.0319585 time 1.08391\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 46 TS dt 0.0325305 time 1.11587\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 47 TS dt 0.0331626 time 1.1484\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 48 TS dt 0.0338606 time 1.18156\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 49 TS dt 0.0346311 time 1.21542\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 50 TS dt 0.0354817 time 1.25005\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 51 TS dt 0.0364218 time 1.28554\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 52 TS dt 0.0374622 time 1.32196\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:53 [INFO] idaes.solve.petsc-dae: 53 TS dt 0.0386159 time 1.35942\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 54 TS dt 0.0398987 time 1.39804\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 55 TS dt 0.0413295 time 1.43793\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 56 TS dt 0.0429313 time 1.47926\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 57 TS dt 0.0447325 time 1.5222\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 58 TS dt 0.0467682 time 1.56693\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 59 TS dt 0.0490823 time 1.6137\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 60 TS dt 0.0517305 time 1.66278\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 61 TS dt 0.0547839 time 1.71451\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 62 TS dt 0.0583343 time 1.76929\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 63 TS dt 0.0625012 time 1.82763\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 64 TS dt 0.0674415 time 1.89013\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 65 TS dt 0.0733598 time 1.95757\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 66 TS dt 0.0805186 time 2.03093\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 67 TS dt 0.0892348 time 2.11145\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 68 TS dt 0.0998324 time 2.20068\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 69 TS dt 0.112487 time 2.30052\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 70 TS dt 0.12691 time 2.413\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 71 TS dt 0.142117 time 2.53991\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 72 TS dt 0.157007 time 2.68203\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 73 TS dt 0.171623 time 2.83904\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 74 TS dt 0.187368 time 3.01066\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 75 TS dt 0.206382 time 3.19803\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 76 TS dt 0.231364 time 3.40441\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 77 TS dt 0.266076 time 3.63577\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 78 TS dt 0.316702 time 3.90185\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 79 TS dt 0.394852 time 4.21855\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 80 TS dt 0.525171 time 4.6134\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 81 TS dt 0.767756 time 5.13857\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 82 TS dt 1.29836 time 5.90633\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 83 TS dt 2.79531 time 7.20469\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: 84 TS dt 8.85294 time 10.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: TSConvergedReason = TS_CONVERGED_TIME\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:54 [INFO] idaes.solve.petsc-dae: TS_CONVERGED_TIME\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Called fg_read, err: 0 (0 is good)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: DAE: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Reading nl file: C:\\Users\\dkgun\\AppData\\Local\\Temp\\tmp4d4exz1y.pyomo.nl\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Number of constraints: 30\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Number of nonlinear constraints: 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Number of linear constraints: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Number of inequalities: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Number of variables: 36\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Number of integers: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Number of binary: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Number of objectives: 0 (Ignoring)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Number of non-zeros in Jacobian: 98 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Explicit time variable: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Number of derivatives: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Number of differential vars: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Number of algebraic vars: 25\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Number of state vars: 30\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: Number of degrees of freedom: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 0 TS dt 0.1 time 10.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 1 TS dt 0.1 time 10.1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 2 TS dt 0.0448184 time 10.1371\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 3 TS dt 0.0362261 time 10.1719\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 4 TS dt 0.037926 time 10.2081\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 5 TS dt 0.040655 time 10.246\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 6 TS dt 0.0432601 time 10.2867\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 7 TS dt 0.0460301 time 10.3299\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 8 TS dt 0.0483791 time 10.376\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 9 TS dt 0.0503537 time 10.4243\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 10 TS dt 0.0518023 time 10.4747\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 11 TS dt 0.0529149 time 10.5265\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 12 TS dt 0.0538116 time 10.5794\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 13 TS dt 0.0546803 time 10.6332\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 14 TS dt 0.0556299 time 10.6879\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 15 TS dt 0.056762 time 10.7435\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 16 TS dt 0.0581408 time 10.8003\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 17 TS dt 0.0598299 time 10.8584\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 18 TS dt 0.0618893 time 10.9183\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:55 [INFO] idaes.solve.petsc-dae: 19 TS dt 0.0643931 time 10.9802\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: 20 TS dt 0.0674341 time 11.0445\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: 21 TS dt 0.0711384 time 11.112\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: 22 TS dt 0.0756776 time 11.1831\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: 23 TS dt 0.0812903 time 11.2588\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: 24 TS dt 0.0883011 time 11.3401\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: 25 TS dt 0.09713 time 11.4284\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: 26 TS dt 0.108211 time 11.5255\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: 27 TS dt 0.121606 time 11.6337\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: 28 TS dt 0.122333 time 11.7553\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: 29 TS dt 0.122333 time 11.8777\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: 30 TS dt 0.159258 time 12.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: TSConvergedReason = TS_CONVERGED_TIME\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: TS_CONVERGED_TIME\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: WARNING: model contains export suffix 'dae_suffix' that contains 1 component\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Called fg_read, err: 0 (0 is good)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: DAE: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Reading nl file: C:\\Users\\dkgun\\AppData\\Local\\Temp\\tmp1qggvz23.pyomo.nl\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Number of constraints: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Number of nonlinear constraints: 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Number of linear constraints: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Number of inequalities: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Number of variables: 34\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Number of integers: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Number of binary: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Number of objectives: 0 (Ignoring)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Number of non-zeros in Jacobian: 91 \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Explicit time variable: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Number of derivatives: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Number of differential vars: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Number of algebraic vars: 24\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Number of state vars: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: Number of degrees of freedom: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: 0 TS dt 0.1 time 12.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: 1 TS dt 0.1 time 12.1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:56 [INFO] idaes.solve.petsc-dae: 2 TS dt 0.0494004 time 12.1411\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 3 TS dt 0.0407055 time 12.1802\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 4 TS dt 0.0422725 time 12.2209\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 5 TS dt 0.0447524 time 12.2632\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 6 TS dt 0.0468318 time 12.3079\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 7 TS dt 0.0490217 time 12.3548\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 8 TS dt 0.0508279 time 12.4038\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 9 TS dt 0.0525655 time 12.4546\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 10 TS dt 0.0541373 time 12.5072\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 11 TS dt 0.055779 time 12.5613\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 12 TS dt 0.057531 time 12.6171\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 13 TS dt 0.0595583 time 12.6746\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 14 TS dt 0.061941 time 12.7342\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 15 TS dt 0.064821 time 12.7961\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 16 TS dt 0.0683275 time 12.8609\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 17 TS dt 0.0726534 time 12.9293\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 18 TS dt 0.0780452 time 13.0019\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 19 TS dt 0.0848677 time 13.08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 20 TS dt 0.093653 time 13.1648\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 21 TS dt 0.105212 time 13.2585\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 22 TS dt 0.120767 time 13.3637\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 23 TS dt 0.142036 time 13.4845\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 24 TS dt 0.170717 time 13.6265\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 25 TS dt 0.206234 time 13.7972\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 26 TS dt 0.244736 time 14.0034\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 27 TS dt 0.288411 time 14.2482\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 28 TS dt 0.350093 time 14.5366\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 29 TS dt 0.453668 time 14.8867\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 30 TS dt 0.655245 time 15.3404\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 31 TS dt 1.1261 time 15.9956\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 32 TS dt 2.56902 time 17.1217\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 33 TS dt 4.30929 time 19.6907\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: 34 TS dt 26.3639 time 24.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: TSConvergedReason = TS_CONVERGED_TIME\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:31:57 [INFO] idaes.solve.petsc-dae: TS_CONVERGED_TIME\n" + "ename": "RuntimeError", + "evalue": "No PETSc executable found.", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mRuntimeError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[5]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m result = \u001b[43mpetsc\u001b[49m\u001b[43m.\u001b[49m\u001b[43mpetsc_dae_by_time_element\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 2\u001b[39m \u001b[43m \u001b[49m\u001b[43mm\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 3\u001b[39m \u001b[43m \u001b[49m\u001b[43mtime\u001b[49m\u001b[43m=\u001b[49m\u001b[43mm\u001b[49m\u001b[43m.\u001b[49m\u001b[43mfs\u001b[49m\u001b[43m.\u001b[49m\u001b[43mtime\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 4\u001b[39m \u001b[43m \u001b[49m\u001b[43mts_options\u001b[49m\u001b[43m=\u001b[49m\u001b[43m{\u001b[49m\n\u001b[32m 5\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_type\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mbeuler\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 6\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_dt\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m0.1\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 7\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_monitor\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# set initial step to 0.1\u001b[39;49;00m\n\u001b[32m 8\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_save_trajectory\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m1\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 9\u001b[39m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 10\u001b[39m \u001b[43m)\u001b[49m\n\u001b[32m 11\u001b[39m tj = result.trajectory \u001b[38;5;66;03m# trajectroy data\u001b[39;00m\n\u001b[32m 12\u001b[39m res = result.results \u001b[38;5;66;03m# solver status list\u001b[39;00m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/idaes/core/solvers/petsc.py:592\u001b[39m, in \u001b[36mpetsc_dae_by_time_element\u001b[39m\u001b[34m(m, time, timevar, initial_constraints, initial_variables, detect_initial, skip_initial, initial_solver, initial_solver_options, ts_options, keepfiles, symbolic_solver_labels, between, interpolate, calculate_derivatives, previous_trajectory, representative_time, snes_options)\u001b[39m\n\u001b[32m 590\u001b[39m _sub_problem_scaling_suffix(m, t_block)\n\u001b[32m 591\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m idaeslog.solver_log(solve_log, idaeslog.INFO) \u001b[38;5;28;01mas\u001b[39;00m slc:\n\u001b[32m--> \u001b[39m\u001b[32m592\u001b[39m res = \u001b[43minitial_solver_obj\u001b[49m\u001b[43m.\u001b[49m\u001b[43msolve\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 593\u001b[39m \u001b[43m \u001b[49m\u001b[43mt_block\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 594\u001b[39m \u001b[43m \u001b[49m\u001b[43mtee\u001b[49m\u001b[43m=\u001b[49m\u001b[43mslc\u001b[49m\u001b[43m.\u001b[49m\u001b[43mtee\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 595\u001b[39m \u001b[43m \u001b[49m\u001b[43msymbolic_solver_labels\u001b[49m\u001b[43m=\u001b[49m\u001b[43msymbolic_solver_labels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 596\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 597\u001b[39m res_list.append(res)\n\u001b[32m 599\u001b[39m tprev = t0\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/pyomo/opt/base/solvers.py:534\u001b[39m, in \u001b[36mOptSolver.solve\u001b[39m\u001b[34m(self, *args, **kwds)\u001b[39m\n\u001b[32m 531\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34msolve\u001b[39m(\u001b[38;5;28mself\u001b[39m, *args, **kwds):\n\u001b[32m 532\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"Solve the problem\"\"\"\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m534\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mavailable\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexception_flag\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[32m 535\u001b[39m \u001b[38;5;66;03m#\u001b[39;00m\n\u001b[32m 536\u001b[39m \u001b[38;5;66;03m# If the inputs are models, then validate that they have been\u001b[39;00m\n\u001b[32m 537\u001b[39m \u001b[38;5;66;03m# constructed! Collect suffix names to try and import from solution.\u001b[39;00m\n\u001b[32m 538\u001b[39m \u001b[38;5;66;03m#\u001b[39;00m\n\u001b[32m 539\u001b[39m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mpyomo\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mcore\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mbase\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mblock\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m BlockData\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/pyomo/solvers/plugins/solvers/ASL.py:119\u001b[39m, in \u001b[36mASL.available\u001b[39m\u001b[34m(self, exception_flag)\u001b[39m\n\u001b[32m 118\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mavailable\u001b[39m(\u001b[38;5;28mself\u001b[39m, exception_flag=\u001b[38;5;28;01mTrue\u001b[39;00m):\n\u001b[32m--> \u001b[39m\u001b[32m119\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m.\u001b[49m\u001b[43mavailable\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexception_flag\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[32m 120\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[32m 121\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m.version() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/pyomo/opt/solver/shellcmd.py:134\u001b[39m, in \u001b[36mSystemCallSolver.available\u001b[39m\u001b[34m(self, exception_flag)\u001b[39m\n\u001b[32m 132\u001b[39m cm = nullcontext() \u001b[38;5;28;01mif\u001b[39;00m exception_flag \u001b[38;5;28;01melse\u001b[39;00m LoggingIntercept()\n\u001b[32m 133\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m cm:\n\u001b[32m--> \u001b[39m\u001b[32m134\u001b[39m ans = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mexecutable\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 135\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m:\n\u001b[32m 136\u001b[39m ans = \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/pyomo/opt/solver/shellcmd.py:205\u001b[39m, in \u001b[36mSystemCallSolver.executable\u001b[39m\u001b[34m(self)\u001b[39m\n\u001b[32m 198\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mexecutable\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[32m 199\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"\u001b[39;00m\n\u001b[32m 200\u001b[39m \u001b[33;03m Returns the executable used by this solver.\u001b[39;00m\n\u001b[32m 201\u001b[39m \u001b[33;03m \"\"\"\u001b[39;00m\n\u001b[32m 202\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m (\n\u001b[32m 203\u001b[39m \u001b[38;5;28mself\u001b[39m._user_executable\n\u001b[32m 204\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m (\u001b[38;5;28mself\u001b[39m._user_executable \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[32m--> \u001b[39m\u001b[32m205\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_default_executable\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 206\u001b[39m )\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/idaes/core/solvers/petsc.py:124\u001b[39m, in \u001b[36mPetsc._default_executable\u001b[39m\u001b[34m(self)\u001b[39m\n\u001b[32m 122\u001b[39m executable = Executable(\u001b[33m\"\u001b[39m\u001b[33mpetsc\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m 123\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m executable:\n\u001b[32m--> \u001b[39m\u001b[32m124\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[33m\"\u001b[39m\u001b[33mNo PETSc executable found.\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m 125\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m executable.path()\n", + "\u001b[31mRuntimeError\u001b[39m: No PETSc executable found." ] } ], + "source": [ + "result = petsc.petsc_dae_by_time_element(\n", + " m,\n", + " time=m.fs.time,\n", + " ts_options={\n", + " \"--ts_type\": \"beuler\",\n", + " \"--ts_dt\": 0.1,\n", + " \"--ts_monitor\": \"\", # set initial step to 0.1\n", + " \"--ts_save_trajectory\": 1,\n", + " },\n", + ")\n", + "tj = result.trajectory # trajectroy data\n", + "res = result.results # solver status list" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plot Trajectory\n", + "\n", + "At the initial conditions the valve is fully open. At t=0, the controller is activated and the controller adjusts the opening of valve 1 to keep the tank pressure at the setpoint of 300 kPa." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "a = plt.plot(tj.time, tj.get_vec(m.fs.valve_1.valve_opening[12]))\n", + "a = plt.ylabel(\"valve 1 fraction open\")\n", + "a = plt.xlabel(\"time (s)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "a = plt.plot(tj.time, tj.get_vec(m.fs.tank.control_volume.properties_out[12].pressure))\n", + "a = plt.ylabel(\"tank pressure (Pa)\")\n", + "a = plt.xlabel(\"time (s)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model a ramp in inlet pressure\n", + "\n", + "Next we show how to add an explicit time variable and ramp the inlet pressure from 500 kPa to 600 kPa between 10 and 12 seconds." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a new copy of the model that runs to 24 seconds, and add a constraint.\n", + "\n", + "m = pid.create_model(\n", + " time_set=[0, 24],\n", + " nfe=1,\n", + " calc_integ=True,\n", + ")\n", + "# time_var will be an explicit time variable we can use in constraints.\n", + "m.fs.time_var = pyo.Var(m.fs.time)\n", + "\n", + "# We'll add a constraint to calculate the inlet pressure based on time,\n", + "# so we need to unfix pressure.\n", + "m.fs.valve_1.control_volume.properties_in[0].pressure.unfix()\n", + "m.fs.valve_1.control_volume.properties_in[24].pressure.unfix()\n", + "\n", + "# The solver will directly set the time variable for the DAE solve, but\n", + "# solving the initial conditions is just a system of nonlinear equations,\n", + "# so we need to fix the initial time.\n", + "m.fs.time_var[0].fix(m.fs.time.first())\n", + "\n", + "\n", + "# We could break up the time domain and solve this in pieces, but creative use\n", + "# of min and max will let us create the ramping function we want.\n", + "# From 10s to 12s ramp inlet pressure from 500,000 Pa to 600,000 Pa\n", + "@m.fs.Constraint(m.fs.time)\n", + "def inlet_pressure_eqn(b, t):\n", + " return b.valve_1.control_volume.properties_in[t].pressure == smooth_min(\n", + " 600000, smooth_max(500000, 50000 * (b.time_var[t] - 10) + 500000)\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Solve the new problem. Notice the new argument specifying the explicit time variable.\n", + "result = petsc.petsc_dae_by_time_element(\n", + " m,\n", + " time=m.fs.time,\n", + " timevar=m.fs.time_var,\n", + " ts_options={\n", + " \"--ts_type\": \"beuler\",\n", + " \"--ts_dt\": 0.1,\n", + " \"--ts_monitor\": \"\", # set initial step to 0.1\n", + " \"--ts_save_trajectory\": 1,\n", + " },\n", + ")\n", + "tj = result.trajectory # trajectroy data\n", + "res = result.results # solver status list" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "a = plt.plot(\n", + " tj.time, tj.get_vec(m.fs.valve_1.control_volume.properties_in[24].pressure)\n", + ")\n", + "a = plt.ylabel(\"inlet pressure (Pa)\")\n", + "a = plt.xlabel(\"time (s)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "a = plt.plot(tj.time, tj.get_vec(m.fs.valve_1.valve_opening[24]))\n", + "a = plt.ylabel(\"valve 1 fraction open\")\n", + "a = plt.xlabel(\"time (s)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "a = plt.plot(tj.time, tj.get_vec(m.fs.tank.control_volume.properties_out[24].pressure))\n", + "a = plt.ylabel(\"tank pressure (Pa)\")\n", + "a = plt.xlabel(\"time (s)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model a ramp in inlet pressure (again)\n", + "\n", + "Here we repeat the ramp from the previous simulation in a different way. In this case we do the integration in three parts. 1) Constant pressure at 500 kPa to 10 s 2) ramp from 500 to 600 kPa from 10 to 12 s. 3) Constant pressure at 600 kPa from 12 to 24 s." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a new copy of the model that runs to 24 seconds, and add a constraint.\n", + "\n", + "m = pid.create_model(\n", + " time_set=[0, 10, 12, 24],\n", + " nfe=3,\n", + " calc_integ=True,\n", + ")\n", + "# time_var will be an explicit time variable we can use in constraints.\n", + "m.fs.time_var = pyo.Var(m.fs.time)\n", + "\n", + "# We'll add a constraint to calculate the inlet pressure from 10 to 12s. The rest of the\n", + "# time pressure will be fixed. For the time section from 10 to 12s, the constraints are\n", + "# defined by time 12; this means the pressure at time 12 should be unfixed and the\n", + "# pressure constraint should be active. At all other times, pressure should be fixed and\n", + "# the pressure constraint should be deactivated.\n", + "m.fs.valve_1.control_volume.properties_in[0].pressure.fix(500000)\n", + "m.fs.valve_1.control_volume.properties_in[10].pressure.fix(500000)\n", + "m.fs.valve_1.control_volume.properties_in[12].pressure.set_value(600000)\n", + "m.fs.valve_1.control_volume.properties_in[12].pressure.unfix()\n", + "m.fs.valve_1.control_volume.properties_in[24].pressure.fix(600000)\n", + "\n", + "\n", + "@m.fs.Constraint(m.fs.time)\n", + "def inlet_pressure_eqn(b, t):\n", + " return (\n", + " b.valve_1.control_volume.properties_in[t].pressure\n", + " == 50000 * (b.time_var[t] - 10) + 500000\n", + " )\n", + "\n", + "\n", + "m.fs.inlet_pressure_eqn.deactivate()\n", + "m.fs.inlet_pressure_eqn[12].activate()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], "source": [ "# Solve the new problem. Notice the argument specifying the explicit time variable.\n", "result = petsc.petsc_dae_by_time_element(\n", @@ -4652,22 +398,7 @@ "cell_type": "code", "execution_count": 15, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAGwCAYAAABxbMuTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIdUlEQVR4nO3deXxU9b3/8fdkmUkCTMKaSRACiICsIlxiVFwukUDRilJBpEoVd1wAF6TKoq3ixbZWroh6+7tSu4jQK7YsxqYgqyEiFQWECDE21mSILFnYss339wfMkZEAmWQmM4mv5+MxjzJzvnPmw+mYvPme7/kcmzHGCAAAAAEXEeoCAAAAmiuCFgAAQJAQtAAAAIKEoAUAABAkBC0AAIAgIWgBAAAECUELAAAgSKJCXcAPicfjUWFhoVq1aiWbzRbqcgAAQB0YY1ReXq7k5GRFRPg3R0XQakSFhYXq1KlTqMsAAAD18PXXX+u8887z6z0ErUbUqlUrSSf+j3I6nSGuBgAA1EVZWZk6depk/R73B0GrEXlPFzqdToIWAABNTH2W/bAYHgAAIEgIWgAAAEFC0AIAAAgSghYAAECQELQAAACChKAFAAAQJAQtAACAICFoAQAABAlBCwAAIEgIWgAAAEES8qD1zTff6Kc//anatm2r2NhY9evXTx9//LG13RijWbNmKSkpSbGxsUpPT9eePXt89nHw4EFNmDBBTqdTCQkJmjRpkg4fPuwz5rPPPtPQoUMVExOjTp06ad68eafVsnTpUvXq1UsxMTHq16+fVq1a5bO9LrUAAAB4hTRoHTp0SJdddpmio6P13nvv6fPPP9evf/1rtW7d2hozb948zZ8/X6+++qpycnLUokULZWRk6Pjx49aYCRMmaOfOncrKytKKFSu0fv163X333db2srIyDR8+XCkpKdq6dateeOEFzZkzR6+//ro15sMPP9T48eM1adIkffLJJxo9erRGjx6tHTt2+FULAACAl80YY0L14U888YQ2bdqkDRs21LrdGKPk5GQ98sgjevTRRyVJpaWlSkxM1KJFi3TzzTdr165d6t27t7Zs2aLBgwdLkjIzM/WjH/1I//73v5WcnKyFCxfqySeflNvtlt1utz773Xff1e7duyVJ48aN05EjR7RixQrr8y+55BJddNFFevXVV+tUy7mUlZUpPj5epaWl3FQaaGaOV9WouKxCESE/TwD8sCXE2dXSERXQfTbk93dgK/HT3/72N2VkZOimm27SunXr1LFjR91///266667JEn5+flyu91KT0+33hMfH6/U1FRlZ2fr5ptvVnZ2thISEqyQJUnp6emKiIhQTk6ObrjhBmVnZ+uKK66wQpYkZWRk6L/+67906NAhtW7dWtnZ2Zo2bZpPfRkZGXr33XfrXMv3VVRUqKKiwnpeVlbWsAMGICyVH6/SpXPXqLyiOtSlAD94z93QT7ekdg51GZaQBq0vv/xSCxcu1LRp0/Tzn/9cW7Zs0UMPPSS73a6JEyfK7XZLkhITE33el5iYaG1zu93q0KGDz/aoqCi1adPGZ0zXrl1P24d3W+vWreV2u8/5Oeeq5fvmzp2rp59+um4HA0CTlesut0KWI4opLSCUIsPsP8GQBi2Px6PBgwfrueeekyQNHDhQO3bs0KuvvqqJEyeGsrSAmDFjhs8sWVlZmTp16hTCigAEw7flJ2auL+6coHfuvyzE1QAIJyHNfUlJSerdu7fPaxdeeKEKCgokSS6XS5K0b98+nzH79u2ztrlcLhUXF/tsr66u1sGDB33G1LaPUz/jTGNO3X6uWr7P4XDI6XT6PAA0P4WlJy6ISUqIDXElAMJNSIPWZZddptzcXJ/XvvjiC6WkpEiSunbtKpfLpdWrV1vby8rKlJOTo7S0NElSWlqaSkpKtHXrVmvMmjVr5PF4lJqaao1Zv369qqqqrDFZWVnq2bOndYVjWlqaz+d4x3g/py61APhhKio5JklKcsaEuBIAYceE0EcffWSioqLMs88+a/bs2WP+9Kc/mbi4OPPHP/7RGvP888+bhIQE89e//tV89tln5vrrrzddu3Y1x44ds8aMGDHCDBw40OTk5JiNGzeaCy64wIwfP97aXlJSYhITE82tt95qduzYYRYvXmzi4uLMa6+9Zo3ZtGmTiYqKMr/61a/Mrl27zOzZs010dLTZvn27X7WcTWlpqZFkSktLG3LYAISZ+/+01aRMX2F+t+HLUJcCIAga8vs7pEHLGGOWL19u+vbtaxwOh+nVq5d5/fXXfbZ7PB4zc+ZMk5iYaBwOhxk2bJjJzc31GXPgwAEzfvx407JlS+N0Os3tt99uysvLfcZ8+umn5vLLLzcOh8N07NjRPP/886fVsmTJEtOjRw9jt9tNnz59zMqVK/2u5WwIWkDzdMOCjSZl+gqz6rPCUJcCIAga8vs7pH20fmjoowU0T5fOXa3C0uNadv+lGti59bnfAKBJacjv7zC7CBIAmpYaj9G+k1cdJrMYHsD3ELQAoAGKy4+rxmMUFWFTu5aOUJcDIMwQtACgAYpOtnZIdMYoMsIW4moAhBuCFgA0QFHJyR5a8bR2AHA6ghYANEBR6YkeWi6CFoBaELQAoAG8pw5ZCA+gNgQtAGgA74wWpw4B1IagBQANUMgaLQBnQdACgAZwe28oHc+pQwCnI2gBQD1V13hUXM6MFoAzI2gBQD0Vl1fIY6ToSJqVAqgdQQsA6sm7ED7RGaMImpUCqAVBCwDqiYXwAM6FoAUA9cRCeADnQtACgHoq9PbQSmBGC0DtCFoAUE/WfQ6dBC0AtSNoAUA9FZWdDFrcfgfAGRC0AKCeikq4/Q6AsyNoAUA9VNV49O3hCkkshgdwZgQtAKiHfWXHZYxkj4xQ2xb2UJcDIEwRtACgHopOtnZIjHfQrBTAGRG0AKAeiuihBaAOCFoAUA/ehfDJLIQHcBYELQCoB++MlosZLQBnQdACgHrw3lA6ma7wAM6CoAUA9WDNaNEVHsBZELQAoB68QSuZrvAAzoKgBQB+qqz2aL/VrJQZLQBnRtACAD9ZzUqjItSGZqUAzoKgBQB++q6HVoxsNpqVAjgzghYA+Ml7xSGnDQGcC0ELAPxUWEJXeAB1Q9ACAD+5mdECUEcELQDwU6F3jRatHQCcA0ELAPxkrdGiWSmAcyBoAYCf3NaMFkELwNkRtADADxXVNdp/uFISi+EBnBtBCwD8sK/0REd4R1SEWsdFh7gaAOGOoAUAfig8uT4rOSGWZqUAzomgBQB+8C6Ed7EQHkAdELQAwA9FLIQH4AeCFgD4oehkV/hkFsIDqAOCFgD4wTp1SFd4AHVA0AIAP3hPHSZz6hBAHRC0AMAP3qDlcnLqEMC5EbQAoI6OV9Xo4JETzUqZ0QJQFwQtAKgj7613YqMjFR9Ls1IA50bQAoA68jYrTYqPoVkpgDohaAFAHXEzaQD+ImgBQB1ZzUrpoQWgjghaAFBHhSXfnToEgLogaAFAHbmZ0QLgJ4IWANRRoRW0mNECUDcELQCoI7f3qkMWwwOoI4IWANTBscoaHTpaJYlThwDqjqAFAHXgvZl0nD1SzpioEFcDoKkgaAFAHbhPWZ9Fs1IAdRXSoDVnzhzZbDafR69evaztbrdbt956q1wul1q0aKGLL75Y//d//+ezj4MHD2rChAlyOp1KSEjQpEmTdPjwYZ8xn332mYYOHaqYmBh16tRJ8+bNO62WpUuXqlevXoqJiVG/fv20atUqn+3GGM2aNUtJSUmKjY1Venq69uzZE8CjASCceRfCJydw2hBA3YV8RqtPnz4qKiqyHhs3brS23XbbbcrNzdXf/vY3bd++XTfeeKPGjh2rTz75xBozYcIE7dy5U1lZWVqxYoXWr1+vu+++29peVlam4cOHKyUlRVu3btULL7ygOXPm6PXXX7fGfPjhhxo/frwmTZqkTz75RKNHj9bo0aO1Y8cOa8y8efM0f/58vfrqq8rJyVGLFi2UkZGh48ePB/kIAQgHRSd7aLmcLIQH4AcTQrNnzzYDBgw44/YWLVqYN9980+e1Nm3amP/5n/8xxhjz+eefG0lmy5Yt1vb33nvP2Gw288033xhjjHnllVdM69atTUVFhTVm+vTppmfPntbzsWPHmlGjRvl8TmpqqrnnnnuMMcZ4PB7jcrnMCy+8YG0vKSkxDofDvPXWW2es//jx46a0tNR6fP3110aSKS0tPeN7AISnGe98ZlKmrzC//ntuqEsB0MhKS0vr/fs75DNae/bsUXJysrp166YJEyaooKDA2nbppZfq7bff1sGDB+XxeLR48WIdP35cV111lSQpOztbCQkJGjx4sPWe9PR0RUREKCcnxxpzxRVXyG63W2MyMjKUm5urQ4cOWWPS09N96srIyFB2drYkKT8/X26322dMfHy8UlNTrTG1mTt3ruLj461Hp06d6nmUAIRaEV3hAdRDSINWamqqFi1apMzMTC1cuFD5+fkaOnSoysvLJUlLlixRVVWV2rZtK4fDoXvuuUfLli1T9+7dJZ1Yw9WhQweffUZFRalNmzZyu93WmMTERJ8x3ufnGnPq9lPfV9uY2syYMUOlpaXW4+uvv677wQEQVopoVgqgHkJ6jfLIkSOtP/fv31+pqalKSUnRkiVLNGnSJM2cOVMlJSX6xz/+oXbt2undd9/V2LFjtWHDBvXr1y+EldeNw+GQw+EIdRkAAqCIxfAA6iGsmsEkJCSoR48e2rt3r/Ly8vTyyy9rx44d6tOnjyRpwIAB2rBhgxYsWKBXX31VLpdLxcXFPvuorq7WwYMH5XK5JEkul0v79u3zGeN9fq4xp273vpaUlOQz5qKLLgrQ3x5AuDpaWa3SYyealbqY0QLgh5Cv0TrV4cOHlZeXp6SkJB09elSSFBHhW2JkZKQ8Ho8kKS0tTSUlJdq6dau1fc2aNfJ4PEpNTbXGrF+/XlVVVdaYrKws9ezZU61bt7bGrF692udzsrKylJaWJknq2rWrXC6Xz5iysjLl5ORYYwA0X97ZrJaOKDljokNcDYCmJKRB69FHH9W6dev01Vdf6cMPP9QNN9ygyMhIjR8/Xr169VL37t11zz336KOPPlJeXp5+/etfKysrS6NHj5YkXXjhhRoxYoTuuusuffTRR9q0aZMeeOAB3XzzzUpOTpYk3XLLLbLb7Zo0aZJ27typt99+Wy+99JKmTZtm1fHwww8rMzNTv/71r7V7927NmTNHH3/8sR544AFJks1m05QpU/TLX/7SajVx2223KTk52aoFQPNVVML6LAD1FISrIOts3LhxJikpydjtdtOxY0czbtw4s3fvXmv7F198YW688UbToUMHExcXZ/r3739au4cDBw6Y8ePHm5YtWxqn02luv/12U15e7jPm008/NZdffrlxOBymY8eO5vnnnz+tliVLlpgePXoYu91u+vTpY1auXOmz3ePxmJkzZ5rExETjcDjMsGHDTG6uf5d5N+TyUACh8/aWApMyfYX56e82h7oUACHQkN/fNmOMCXXY+6EoKytTfHy8SktL5XQ6Q10OgDqav3qPfpP1hcYN7qT/+kn/UJcDoJE15Pd3WK3RAoBw5L2hNAvhAfiLoAUA51BY4m3tQNAC4B+CFgCcg9tqVkoPLQD+IWgBwDkUlnL7HQD1Q9ACgLM4XFGt8uPVkqQkusID8BNBCwDOwn1yNqtVTJRaOsLqZhoAmgCCFgCcRSHNSgE0AEELAM6ChfAAGoKgBQBn4V0IT2sHAPVB0AKAs/De59DlZEYLgP8IWgBwFkVlJ08dMqMFoB4IWgBwFkUl9NACUH8ELQA4CxbDA2gIghYAnEH58SqVV5xsVsqMFoB6IGgBwBkUnZzNcsZEqQXNSgHUA0ELAM7AG7SSufUOgHoiaAHAGbAQHkBDEbQA4AwKT85ouVgID6CeCFoAcAbeG0onM6MFoJ4IWgBwBkXWjBZBC0D9ELQA4AwKS7z3OeTUIYD6IWgBQC2MMdaMFovhAdQXQQsAalF2vFpHK2sk0RUeQP0RtACgFt5b7yTERSvWHhniagA0VQQtAKhFYam3hxazWQDqj6AFALUoKmF9FoCGI2gBQC3cpXSFB9BwBC0AqEUhVxwCCACCFgDUoog1WgACgKAFALWwemglMKMFoP4IWgDwPcaYUxbDM6MFoP4IWgDwPWXHqnWsytuslBktAPUXVZ83VVVVye126+jRo2rfvr3atGkT6LoAIGS8PbTatLArJppmpQDqr84zWuXl5Vq4cKGuvPJKOZ1OdenSRRdeeKHat2+vlJQU3XXXXdqyZUswawWARuFdCO9yMpsFoGHqFLR+85vfqEuXLnrjjTeUnp6ud999V9u2bdMXX3yh7OxszZ49W9XV1Ro+fLhGjBihPXv2BLtuAAga70L4ZBbCA2igOp063LJli9avX68+ffrUun3IkCG644479Oqrr+qNN97Qhg0bdMEFFwS0UABoLN6F8C7WZwFooDoFrbfeeqtOO3M4HLr33nsbVBAAhBr3OQQQKFx1CADf4+bUIYAAqddVhx9//LGWLFmigoICVVZW+mx75513AlIYAISKd42Wy8mMFoCG8XtGa/Hixbr00ku1a9cuLVu2TFVVVdq5c6fWrFmj+Pj4YNQIAI3GGGNddciMFoCG8jtoPffcc3rxxRe1fPly2e12vfTSS9q9e7fGjh2rzp07B6NGAGg0JUerdLzKI0lKpL0DgAbyO2jl5eVp1KhRkiS73a4jR47IZrNp6tSpev311wNeIAA0Ju9C+LY0KwUQAH4HrdatW6u8vFyS1LFjR+3YsUOSVFJSoqNHjwa2OgBoZG5uJg0ggPxeDH/FFVcoKytL/fr100033aSHH35Ya9asUVZWloYNGxaMGgGg0RSyEB5AAPkdtF5++WUdP37iB9GTTz6p6OhoffjhhxozZoyeeuqpgBcIAI2pqISF8AACx6+g9dVXXykrK0uVlZW68sor1bdvXz3xxBPBqg0AGp116pBmpQACoM5B64MPPtC1116rY8dO/GsvKipK//u//6uf/vSnQSsOABrbd13hmdEC0HB1Xgw/c+ZMXXPNNfrmm2904MAB3XXXXXr88ceDWRsANLoia0aLoAWg4eoctHbs2KHnnntOSUlJat26tV544QUVFxfrwIEDwawPABrNiWal3tvvcOoQQMPVOWiVlZWpXbt21vO4uDjFxsaqtLQ0KIUBQGM7eKRSldUnmpV2cDpCXA2A5sCvxfDvv/++z212PB6PVq9ebfXSkqQf//jHgasOABqRdzarXUuHHFE0KwXQcH4FrYkTJ5722j333GP92WazqaampuFVAUAIfHfakPVZAAKjzkHL4/EEsw4ACDnvzaRd3OMQQID4fQseAGiuWAgPINDqFLQ2b95c5x0ePXpUO3furHdBABAq3q7wLlo7AAiQOgWtW2+9VRkZGVq6dKmOHDlS65jPP/9cP//5z3X++edr69atAS0SABpDIT20AARYnYLW559/rlGjRumpp55SQkKC+vTpo2uuuUbXXXedLr/8crVr104XX3yx8vPz9fe//1233XZbnT58zpw5stlsPo9evXr5jMnOztZ//ud/qkWLFnI6nbriiius7vSSdPDgQU2YMEFOp1MJCQmaNGmSDh8+7LOPzz77TEOHDlVMTIw6deqkefPmnVbL0qVL1atXL8XExKhfv35atWqVz3ZjjGbNmqWkpCTFxsYqPT1de/bsqdPfE0DT4ObUIYAAq1PQio6O1kMPPaTc3FxlZ2frrrvuUt++fdWxY0ddddVVeu2111RYWKi33npL/fr186uAPn36qKioyHps3LjR2padna0RI0Zo+PDh+uijj7RlyxY98MADioj4ruwJEyZo586dysrK0ooVK7R+/Xrdfffd1vaysjINHz5cKSkp2rp1q1544QXNmTNHr7/+ujXmww8/1Pjx4zVp0iR98sknGj16tEaPHu3TtmLevHmaP3++Xn31VeXk5KhFixbKyMiwbrANoGnzeIwVtFgMDyBgTAjNnj3bDBgw4IzbU1NTzVNPPXXG7Z9//rmRZLZs2WK99t577xmbzWa++eYbY4wxr7zyimndurWpqKiwxkyfPt307NnTej527FgzatSo0z77nnvuMcYY4/F4jMvlMi+88IK1vaSkxDgcDvPWW2+dsb7jx4+b0tJS6/H1118bSaa0tPSM7wEQGt+WHzcp01eYLk+sMJXVNaEuB0AYKS0trffv75Bfdbhnzx4lJyerW7dumjBhggoKCiRJxcXFysnJUYcOHXTppZcqMTFRV1555WkzXgkJCRo8eLD1Wnp6uiIiIpSTk2ONueKKK2S3260xGRkZys3N1aFDh6wx6enpPnVlZGQoOztbkpSfny+32+0zJj4+XqmpqdaY2sydO1fx8fHWo1OnTvU9TACCrKjkxGxW+5YORUeG/EcjgGYipD9NUlNTtWjRImVmZmrhwoXKz8/X0KFDVV5eri+//FLSiXVcd911lzIzM3XxxRdr2LBh1toot9utDh06+OwzKipKbdq0kdvttsYkJib6jPE+P9eYU7ef+r7axtRmxowZKi0ttR5ff/113Q8OgEZVeLKHFgvhAQSSX53hA23kyJHWn/v376/U1FSlpKRoyZIluvDCCyWd6Dx/++23S5IGDhyo1atX63//9381d+7ckNTsD4fDIYeD+6UBTYHbuuKQhfAAAies5scTEhLUo0cP7d27V0lJSZKk3r17+4y58MILrdOLLpdLxcXFPturq6t18OBBuVwua8y+fft8xnifn2vMqdtPfV9tYwA0bd4ZLXpoAQikBgWtQF9xd/jwYeXl5SkpKUldunRRcnKycnNzfcZ88cUXSklJkSSlpaWppKTEp2/XmjVr5PF4lJqaao1Zv369qqqqrDFZWVnq2bOnWrdubY1ZvXq1z+dkZWUpLS1NktS1a1e5XC6fMWVlZcrJybHGAGjavGu0uM8hgIDyd/V8TU2NeeaZZ0xycrKJjIw0eXl5xhhjnnrqKfO73/3Or3098sgjZu3atSY/P99s2rTJpKenm3bt2pni4mJjjDEvvviicTqdZunSpWbPnj3mqaeeMjExMWbv3r3WPkaMGGEGDhxocnJyzMaNG80FF1xgxo8fb20vKSkxiYmJ5tZbbzU7duwwixcvNnFxcea1116zxmzatMlERUWZX/3qV2bXrl1m9uzZJjo62mzfvt0a8/zzz5uEhATz17/+1Xz22Wfm+uuvN127djXHjh2r89+3IVctAAiumxZ+aFKmrzB/2/ZNqEsBEGYa8vvb76D19NNPm27dupk//vGPJjY21gpaixcvNpdccolf+xo3bpxJSkoydrvddOzY0YwbN84nRBljzNy5c815551n4uLiTFpamtmwYYPP9gMHDpjx48ebli1bGqfTaW6//XZTXl7uM+bTTz81l19+uXE4HKZjx47m+eefP62WJUuWmB49ehi73W769OljVq5c6bPd4/GYmTNnmsTERONwOMywYcNMbm6uX39fghYQvi57frVJmb7CbMk/EOpSAISZhvz+thljjD8zYN27d9drr72mYcOGqVWrVvr000/VrVs37d69W2lpaVbLBJyurKxM8fHxKi0tldPpDHU5AE7yeIx6znxPVTVGm574T3WkMzyAUzTk97ffa7S++eYbde/e/bTXPR6PzzooAGgq9h+pUFWNUYRN6tCKK4UBBI7fQat3797asGHDaa//5S9/0cCBAwNSFAA0JqtZaSualQIILL/7aM2aNUsTJ07UN998I4/Ho3feeUe5ubl68803tWLFimDUCABBVUQPLQBB4vc/3a6//notX75c//jHP9SiRQvNmjVLu3bt0vLly3XNNdcEo0YACKoiusIDCBK/ZrSqq6v13HPP6Y477lBWVlawagKARsWMFoBg8WtGKyoqSvPmzVN1dXWw6gGARucNWjQrBRBofp86HDZsmNatWxeMWgAgJIpKuP0OgODwezH8yJEj9cQTT2j79u0aNGiQWrRo4bP9xz/+ccCKA4DGwKlDAMHid9C6//77JUm/+c1vTttms9lUU1PT8KoAoJHUeIz2lXHqEEBw+B20PB5PMOoAgJDYf7hC1Z4TzUrbt6RZKYDAojMfgB8072nDRGeMomhWCiDA/J7ReuaZZ866fdasWfUuBgAaGwvhAQST30Fr2bJlPs+rqqqUn5+vqKgonX/++QQtAE1Kobe1AwvhAQSB30Hrk08+Oe21srIy/exnP9MNN9wQkKIAoLG46QoPIIgCsiDB6XTq6aef1syZMwOxOwBoNN4ZLU4dAgiGgK38LC0tVWlpaaB2BwCNwrtGKzmBU4cAAs/vU4fz58/3eW6MUVFRkf7whz9o5MiRASsMABqD22pWyowWgMDzO2i9+OKLPs8jIiLUvn17TZw4UTNmzAhYYQAQbDUeo33lFZLoCg8gOPwOWvn5+cGoAwAa3bflFarxGEVG2NS+Fc1KAQReg9dolZWV6d1339WuXbsCUQ8ANJrCk1ccJrZyKDLCFuJqADRHfgetsWPH6uWXX5YkHTt2TIMHD9bYsWPVv39//d///V/ACwSAYCkqObk+i4XwAILE76C1fv16DR06VNKJ5qXGGJWUlGj+/Pn65S9/GfACASBYiuihBSDI/A5apaWlatOmjSQpMzNTY8aMUVxcnEaNGqU9e/YEvEAACJYirjgEEGR+B61OnTopOztbR44cUWZmpoYPHy5JOnTokGJi+GEFoOn4bkaLU4cAgsPvqw6nTJmiCRMmqGXLlkpJSdFVV10l6cQpxX79+gW6PgAIGu+MVnIC/0gEEBx+B637779fQ4YM0ddff61rrrlGEREnJsW6devGGi0ATYp3MbyLGS0AQeJ30JKkwYMHa/DgwZKkmpoabd++XZdeeqlat24d0OIAIFiqazwqLj85o8UaLQBB4vcarSlTpuj//b//J+lEyLryyit18cUXq1OnTlq7dm2g6wOAoCgur5DHSFERNrVrSbNSAMHhd9D6y1/+ogEDBkiSli9frvz8fO3evVtTp07Vk08+GfACASAYvAvhE50xiqBZKYAg8Tto7d+/Xy6XS5K0atUq3XTTTerRo4fuuOMObd++PeAFAkAwsBAeQGPwO2glJibq888/V01NjTIzM3XNNddIko4eParIyMiAFwgAwcBCeACNwe/F8LfffrvGjh2rpKQk2Ww2paenS5JycnLUq1evgBcIAMHgvc8hC+EBBJPfQWvOnDnq27evvv76a910001yOE4sIo2MjNQTTzwR8AIBIBjcdIUH0Ajq1d7hJz/5iSTp+PHj1msTJ04MTEUA0AgKSzl1CCD4/F6jVVNTo1/84hfq2LGjWrZsqS+//FKSNHPmTKvtAwCEu6KSk6cOWQwPIIj8DlrPPvusFi1apHnz5slut1uv9+3bV7/73e8CWhwABENVjUffHq6QxH0OAQSX30HrzTff1Ouvv64JEyb4XGU4YMAA7d69O6DFAUAw7Cs7LmOk6Eib2rawn/sNAFBPfgetb775Rt27dz/tdY/Ho6qqqoAUBQDB5LbWZ9GsFEBw+R20evfurQ0bNpz2+l/+8hcNHDgwIEUBQDB5F8InOTltCCC4/L7qcNasWZo4caK++eYbeTwevfPOO8rNzdWbb76pFStWBKNGAAgo70L4JBbCAwgyv2e0rr/+ei1fvlz/+Mc/1KJFC82aNUu7du3S8uXLrS7xABDOiqweWsxoAQguv2a0qqur9dxzz+mOO+5QVlZWsGoCgKDy3lCaZqUAgs2vGa2oqCjNmzdP1dXVwaoHAIKuiK7wABqJ36cOhw0bpnXr1gWjFgBoFN6glZzAqUMAweX3YviRI0fqiSee0Pbt2zVo0CC1aNHCZ/uPf/zjgBUHAIFWWe3R/pPNSl3MaAEIMr+D1v333y9J+s1vfnPaNpvNppqamoZXBQBB4m1Wao+MoFkpgKDzO2h5PJ5g1AEAjaLolGalNhvNSgEEl99rtACgKeOKQwCNqV5Ba/Xq1br22mt1/vnn6/zzz9e1116rf/zjH4GuDQACjoXwABqT30HrlVde0YgRI9SqVSs9/PDDevjhh+V0OvWjH/1ICxYsCEaNABAw3q7wLIQH0Bj8XqP13HPP6cUXX9QDDzxgvfbQQw/psssu03PPPafJkycHtEAACCTvfQ6TCVoAGoHfM1olJSUaMWLEaa8PHz5cpaWlASkKAILFze13ADQiv4PWj3/8Yy1btuy01//617/q2muvDUhRABAs3sXwnDoE0Bj8PnXYu3dvPfvss1q7dq3S0tIkSZs3b9amTZv0yCOPaP78+dbYhx56KHCVAkADVVTXaP/hSkkshgfQOGzGGOPPG7p27Vq3Hdts+vLLL+tVVHNVVlam+Ph4lZaWyul0hroc4Aen4MBRXfHCB3JERWj3L0bQRwtAnTTk97ffM1r5+fn+vgUAwkLhKT20CFkAGkNIG5bOmTNHNpvN59GrV6/TxhljNHLkSNlsNr377rs+2woKCjRq1CjFxcWpQ4cOeuyxx1RdXe0zZu3atbr44ovlcDjUvXt3LVq06LTPWLBggbp06aKYmBilpqbqo48+8tl+/PhxTZ48WW3btlXLli01ZswY7du3r8HHAEDjYSE8gMYW8s7wffr0UVFRkfXYuHHjaWN++9vf1vqvz5qaGo0aNUqVlZX68MMP9fvf/16LFi3SrFmzrDH5+fkaNWqUrr76am3btk1TpkzRnXfeqffff98a8/bbb2vatGmaPXu2/vnPf2rAgAHKyMhQcXGxNWbq1Klavny5li5dqnXr1qmwsFA33nhjgI8GgGAqpCs8gMZmQmj27NlmwIABZx3zySefmI4dO5qioiIjySxbtszatmrVKhMREWHcbrf12sKFC43T6TQVFRXGGGMef/xx06dPH599jhs3zmRkZFjPhwwZYiZPnmw9r6mpMcnJyWbu3LnGGGNKSkpMdHS0Wbp0qTVm165dRpLJzs6u89+3tLTUSDKlpaV1fg+AwHlq2XaTMn2FmZe5K9SlAGhCGvL7O+QzWnv27FFycrK6deumCRMmqKCgwNp29OhR3XLLLVqwYIFcLtdp783Ozla/fv2UmJhovZaRkaGysjLt3LnTGpOenu7zvoyMDGVnZ0uSKisrtXXrVp8xERERSk9Pt8Zs3bpVVVVVPmN69eqlzp07W2NqU1FRobKyMp8HgNAp4tQhgEbmd9AqKCiQqeVCRWOMT0iqi9TUVC1atEiZmZlauHCh8vPzNXToUJWXl0s6cbru0ksv1fXXX1/r+91ut0/IkmQ9d7vdZx1TVlamY8eOaf/+/aqpqal1zKn7sNvtSkhIOOOY2sydO1fx8fHWo1OnTuc4IgCCiRtKA2hsfl912LVrVxUVFalDhw4+rx88eFBdu3ZVTU1Nnfc1cuRI68/9+/dXamqqUlJStGTJErVv315r1qzRJ5984m+JYWPGjBmaNm2a9bysrIywBYQQM1oAGpvfM1rGmFoXph8+fFgxMQ37V2JCQoJ69OihvXv3as2aNcrLy1NCQoKioqIUFXUiE44ZM0ZXXXWVJMnlcp125Z/3ufdU45nGOJ1OxcbGql27doqMjKx1zKn7qKysVElJyRnH1MbhcMjpdPo8AITG8aoaHTxyolkpM1oAGkudZ7S8MzM2m00zZ85UXFycta2mpkY5OTm66KKLGlTM4cOHlZeXp1tvvVVjx47VnXfe6bO9X79+evHFF3XddddJktLS0vTss8+quLjYmmHLysqS0+lU7969rTGrVq3y2U9WVpbV1d5ut2vQoEFavXq1Ro8eLUnyeDxavXq1dePsQYMGKTo6WqtXr9aYMWMkSbm5uSooKLD2AyC8eVs7xERHKCEuOsTVAPihqHPQ8p7CM8Zo+/btstvt1ja73a4BAwbo0Ucf9evDH330UV133XVKSUlRYWGhZs+ercjISI0fP17t27evdbaoc+fOVnf64cOHq3fv3rr11ls1b948ud1uPfXUU5o8ebIcDock6d5779XLL7+sxx9/XHfccYfWrFmjJUuWaOXKldY+p02bpokTJ2rw4MEaMmSIfvvb3+rIkSO6/fbbJUnx8fGaNGmSpk2bpjZt2sjpdOrBBx9UWlqaLrnkEr/+zgBCw3vaMDk+lmalABpNnYPWBx98IEm6/fbb9dJLLwXkNNi///1vjR8/XgcOHFD79u11+eWXa/PmzWrfvn2d3h8ZGakVK1bovvvuU1pamlq0aKGJEyfqmWeescZ07dpVK1eu1NSpU/XSSy/pvPPO0+9+9ztlZGRYY8aNG6dvv/1Ws2bNktvt1kUXXaTMzEyfBfIvvviiIiIiNGbMGFVUVCgjI0OvvPJKg48BgMbBzaQBhILf9zr02rt3r/Ly8nTFFVcoNjb2jGu38B3udQiEzoIP9uqF93M15uLz9OuxA0JdDoAmpCG/v/1eDH/w4EENGzZMPXr00I9+9CMVFRVJkiZNmqRHHnnE390BQKPwzmglJzCjBaDx+B20pkyZoujoaBUUFPgsiB83bpwyMzMDWhwABEpRyYk1Wpw6BNCY/O6j9fe//13vv/++zjvvPJ/XL7jgAv3rX/8KWGEAEEiFpyyGB4DG4veM1pEjR3xmsrwOHjxoXekHAOHG7e0Kz6lDAI3I76A1dOhQvfnmm9Zzm80mj8ejefPm6eqrrw5ocQAQCMcqa3ToaJUkKcnJjBaAxuP3qcN58+Zp2LBh+vjjj1VZWanHH39cO3fu1MGDB7Vp06Zg1AgADeIuO3HaMM4eKWes3z/2AKDe/J7R6tu3r7744gtdfvnluv7663XkyBHdeOON+uSTT3T++ecHo0YAaJCiku96aNGGBkBjqtc/7eLj4/Xkk08GuhYACAoWwgMIlToFrc8++6zOO+zfv3+9iwGAYLAWwtPaAUAjq1PQuuiii2Sz2XSuJvI2m001NTUBKQwAAsU7o0XQAtDY6hS08vPzg10HAASNd41WUgKnDgE0rjoFrZSUlGDXAQBBU8SMFoAQqddi+D179uiDDz5QcXGxPB6Pz7ZZs2YFpDAACJTvghYzWgAal99B63/+53903333qV27dnK5XD6XSttsNoIWgLBytLJapcdONiulKzyARuZ30PrlL3+pZ599VtOnTw9GPQAQUN7ZrBb2SLVy0KwUQOPyu2HpoUOHdNNNNwWjFgAIuKKSk6cNE2JpVgqg0fkdtG666Sb9/e9/D0YtABBwRfTQAhBCfs+jd+/eXTNnztTmzZvVr18/RUdH+2x/6KGHAlYcADQUVxwCCCW/g9brr7+uli1bat26dVq3bp3PNpvNRtACEFa+m9HiikMAjc/voEXzUgBNiXdGK5krDgGEgN9rtACgKfEuhncxowUgBOo0ozVt2jT94he/UIsWLTRt2rSzjv3Nb34TkMIAIBAKT546TGaNFoAQqFPQ+uSTT1RVVWX9+Uy4dBpAODlcUa3y49WSJBdBC0AI1CloffDBB7X+GQDCmfvkbFYrR5RaxUSfYzQABB5rtAA0W1ZrBxbCAwgRghaAZouF8ABCjaAFoNliITyAUCNoAWi23FZXeGa0AIQGQQtAs1XI7XcAhBhBC0CzVVRy8vY7LIYHECIELQDNlpsZLQAhRtAC0CyVH69SecWJZqWs0QIQKgQtAM2SdzbLGROlFo469WYGgIAjaAFolgq54hBAGCBoAWiWWAgPIBwQtAA0S0XMaAEIAwQtAM1S0cmu8FxxCCCUCFoAmqUiWjsACAMELQDNEqcOAYQDghaAZscYw2J4AGGBoAWg2SmvqNaRyhpJnDoEEFoELQDNTlHJidOG8bHRirPTrBRA6BC0ADQ7hVxxCCBMELQANDve2+8kJ7AQHkBoEbQANDvehfAuZrQAhBhBC0Cz473PYTJBC0CIEbQANDtuemgBCBMELQDNDovhAYQLghaAZsUY892MFovhAYQYQQtAs1J2rFpHTzYrdTmZ0QIQWgQtAM2K97Rh67hoxdojQ1wNgB86ghaAZoWF8ADCCUELQLPCQngA4YSgBaBZ8d7nMCmBoAUg9AhaAJqVIk4dAggjBC0AzUoRpw4BhJGQBq05c+bIZrP5PHr16iVJOnjwoB588EH17NlTsbGx6ty5sx566CGVlpb67KOgoECjRo1SXFycOnTooMcee0zV1dU+Y9auXauLL75YDodD3bt316JFi06rZcGCBerSpYtiYmKUmpqqjz76yGf78ePHNXnyZLVt21YtW7bUmDFjtG/fvsAeEAANxowWgHAS8hmtPn36qKioyHps3LhRklRYWKjCwkL96le/0o4dO7Ro0SJlZmZq0qRJ1ntramo0atQoVVZW6sMPP9Tvf/97LVq0SLNmzbLG5Ofna9SoUbr66qu1bds2TZkyRXfeeafef/99a8zbb7+tadOmafbs2frnP/+pAQMGKCMjQ8XFxdaYqVOnavny5Vq6dKnWrVunwsJC3XjjjY1whADUlTGGGS0A4cWE0OzZs82AAQPqPH7JkiXGbrebqqoqY4wxq1atMhEREcbtdltjFi5caJxOp6moqDDGGPP444+bPn36+Oxn3LhxJiMjw3o+ZMgQM3nyZOt5TU2NSU5ONnPnzjXGGFNSUmKio6PN0qVLrTG7du0ykkx2dnad6y8tLTWSTGlpaZ3fA6DuDh6uMCnTV5iU6SvMscrqUJcDoJloyO/vkM9o7dmzR8nJyerWrZsmTJiggoKCM44tLS2V0+lUVFSUJCk7O1v9+vVTYmKiNSYjI0NlZWXauXOnNSY9Pd1nPxkZGcrOzpYkVVZWauvWrT5jIiIilJ6ebo3ZunWrqqqqfMb06tVLnTt3tsbUpqKiQmVlZT4PAMHjPW3YtoVdMdE0KwUQeiENWqmpqdYpwYULFyo/P19Dhw5VeXn5aWP379+vX/ziF7r77rut19xut0/IkmQ9d7vdZx1TVlamY8eOaf/+/aqpqal1zKn7sNvtSkhIOOOY2sydO1fx8fHWo1OnTuc4IgAawnva0MVpQwBhIqRBa+TIkbrpppvUv39/ZWRkaNWqVSopKdGSJUt8xpWVlWnUqFHq3bu35syZE5pi62HGjBkqLS21Hl9//XWoSwKatUIWwgMIM1GhLuBUCQkJ6tGjh/bu3Wu9Vl5erhEjRqhVq1ZatmyZoqOjrW0ul+u0qwO9VwK6XC7rf79/deC+ffvkdDoVGxuryMhIRUZG1jrm1H1UVlaqpKTEZ1br1DG1cTgccjgcfhwBAA3hPjmjlUyzUgBhIuRrtE51+PBh5eXlKSkpSdKJmazhw4fLbrfrb3/7m2JifH94pqWlafv27T5XB2ZlZcnpdKp3797WmNWrV/u8LysrS2lpaZIku92uQYMG+YzxeDxavXq1NWbQoEGKjo72GZObm6uCggJrDIDQ83aF59QhgHAR0hmtRx99VNddd51SUlJUWFio2bNnKzIyUuPHj7dC1tGjR/XHP/7RZzF5+/btFRkZqeHDh6t379669dZbNW/ePLndbj311FOaPHmyNZN077336uWXX9bjjz+uO+64Q2vWrNGSJUu0cuVKq45p06Zp4sSJGjx4sIYMGaLf/va3OnLkiG6//XZJUnx8vCZNmqRp06apTZs2cjqdevDBB5WWlqZLLrmk8Q8cgFp573OYzKlDAGEipEHr3//+t8aPH68DBw6offv2uvzyy7V582a1b99ea9euVU5OjiSpe/fuPu/Lz89Xly5dFBkZqRUrVui+++5TWlqaWrRooYkTJ+qZZ56xxnbt2lUrV67U1KlT9dJLL+m8887T7373O2VkZFhjxo0bp2+//VazZs2S2+3WRRddpMzMTJ8F8i+++KIiIiI0ZswYVVRUKCMjQ6+88kqQjxAAf7hLmdECEF5sxhgT6iJ+KMrKyhQfH2+1qQAQOMYY9ZqZqYpqj9Y/drU6t40LdUkAmomG/P4OqzVaAFBfh45WqaLaI0lKjOciFADhgaAFoFkoLDmxPqtdS7scUTQrBRAeCFoAmgVuJg0gHBG0ADQLbm4mDSAMEbQANAvfdYUnaAEIHwQtAM1C0ck1WkkJnDoEED4IWgCahSJmtACEIYIWgGaBxfAAwhFBC0CTZ4yxusIzowUgnBC0ADR5B45UqrLGI5tNSnQStACED4IWgCavqOTEbFa7lg7Zo/ixBiB88BMJQJNXdLKHVjKnDQGEGYIWgCbPuxDeRdACEGYIWgCavEKrKzxXHAIILwQtAE0eVxwCCFcELQBNnncxPF3hAYQbghaAJq+QxfAAwhRBC0CT5vEY7StjMTyA8ETQAtCk7T9SoaoaQ7NSAGGJoAWgSfMuhO/QyqHoSH6kAQgv/FQC0KQVlnhPG7IQHkD4IWgBaNLoCg8gnBG0ADRp3/XQYkYLQPghaAFo0gppVgogjBG0ADRpRSUnb7+TQNACEH4IWgCatCJmtACEMYIWgCar5pRmpazRAhCOCFoAmqwDhytU7TGKsJ3oowUA4YagBaDJKrSalcYoimalAMIQP5kANFkshAcQ7ghaAJos70L4ZNZnAQhTBC0ATZa3K7yLKw4BhCmCFoAmi2alAMIdQQtAk8XtdwCEO4IWgCaLxfAAwh1BC0CTVOMx2ldeIYnF8ADCF0ELQJP0bXmFajxGkRE2tadZKYAwRdAC0CQVnrziMLGVQ5ERthBXAwC1I2gBaJKshfAJnDYEEL4IWgCapMISemgBCH8ELQBN0ndd4QlaAMIXQQtAk+Q9dejiikMAYYygBaBJ8i6GZ0YLQDgjaAFokopKWAwPIPwRtAA0OdU1HhWXc59DAOGPoAWgySkur5DHSFERNrVrSbNSAOGLoAWgyfFecZjojKFZKYCwRtAC0OQUnVwIz2lDAOGOoAWgyWEhPICmgqAFoMnxnjpkRgtAuCNoAWhyOHUIoKkgaAFocgqtGS1OHQIIbwQtAE2OmxktAE0EQQtAk1JV41FxeYUkKSmBoAUgvBG0ADQpxeUVMkaKjrSpXQualQIIbwQtAE1KUcmJ04aJzhhF0KwUQJgLadCaM2eObDabz6NXr17W9uPHj2vy5Mlq27atWrZsqTFjxmjfvn0++ygoKNCoUaMUFxenDh066LHHHlN1dbXPmLVr1+riiy+Ww+FQ9+7dtWjRotNqWbBggbp06aKYmBilpqbqo48+8tlel1oABJ93IXwyC+EBNAEhn9Hq06ePioqKrMfGjRutbVOnTtXy5cu1dOlSrVu3ToWFhbrxxhut7TU1NRo1apQqKyv14Ycf6ve//70WLVqkWbNmWWPy8/M1atQoXX311dq2bZumTJmiO++8U++//7415u2339a0adM0e/Zs/fOf/9SAAQOUkZGh4uLiOtcCoHF4F8K7WAgPoAmwGWNMqD58zpw5evfdd7Vt27bTtpWWlqp9+/b685//rJ/85CeSpN27d+vCCy9Udna2LrnkEr333nu69tprVVhYqMTEREnSq6++qunTp+vbb7+V3W7X9OnTtXLlSu3YscPa980336ySkhJlZmZKklJTU/Uf//EfevnllyVJHo9HnTp10oMPPqgnnniiTrXURVlZmeLj41VaWiqn01nv4/Z9h45U6khl9bkHAs3A/NV7tOTjf+ueK7tpxsgLQ10OgB+Ahvz+jgpSTXW2Z88eJScnKyYmRmlpaZo7d646d+6srVu3qqqqSunp6dbYXr16qXPnzla4yc7OVr9+/ayQJUkZGRm67777tHPnTg0cOFDZ2dk++/COmTJliiSpsrJSW7du1YwZM6ztERERSk9PV3Z2tiTVqZbaVFRUqKKiwnpeVlZW/wN1Fi/8PVd/zikIyr6BcMWpQwBNQUiDVmpqqhYtWqSePXuqqKhITz/9tIYOHaodO3bI7XbLbrcrISHB5z2JiYlyu92SJLfb7ROyvNu92842pqysTMeOHdOhQ4dUU1NT65jdu3db+zhXLbWZO3eunn766bodjAaIjrDJERXys8BAo2nX0qErerQPdRkAcE4hDVojR460/ty/f3+lpqYqJSVFS5YsUWxs0//X6owZMzRt2jTreVlZmTp16hTwz3n6+r56+vq+Ad8vAABomLCaBklISFCPHj20d+9euVwuVVZWqqSkxGfMvn375HK5JEkul+u0K/+8z881xul0KjY2Vu3atVNkZGStY07dx7lqqY3D4ZDT6fR5AACAH46wClqHDx9WXl6ekpKSNGjQIEVHR2v16tXW9tzcXBUUFCgtLU2SlJaWpu3bt/tcHZiVlSWn06nevXtbY07dh3eMdx92u12DBg3yGePxeLR69WprTF1qAQAAOI0JoUceecSsXbvW5Ofnm02bNpn09HTTrl07U1xcbIwx5t577zWdO3c2a9asMR9//LFJS0szaWlp1vurq6tN3759zfDhw822bdtMZmamad++vZkxY4Y15ssvvzRxcXHmscceM7t27TILFiwwkZGRJjMz0xqzePFi43A4zKJFi8znn39u7r77bpOQkGDcbrc15ly11EVpaamRZEpLS+t7yAAAQCNryO/vkAatcePGmaSkJGO3203Hjh3NuHHjzN69e63tx44dM/fff79p3bq1iYuLMzfccIMpKiry2cdXX31lRo4caWJjY027du3MI488YqqqqnzGfPDBB+aiiy4ydrvddOvWzbzxxhun1fLf//3fpnPnzsZut5shQ4aYzZs3+2yvSy3nQtACAKDpacjv75D20fqhCVYfLQAAEDwN+f0dVmu0AAAAmhOCFgAAQJAQtAAAAIKEoAUAABAkBC0AAIAgIWgBAAAECUELAAAgSAhaAAAAQULQAgAACJKoUBfwQ+Jtwl9WVhbiSgAAQF15f2/X52Y6BK1GVF5eLknq1KlTiCsBAAD+Ki8vV3x8vF/v4V6Hjcjj8aiwsFCtWrWSzWYL2H7LysrUqVMnff3119xDsRFx3EOD4x4aHPfQ4LiHxvePuzFG5eXlSk5OVkSEf6uumNFqRBERETrvvPOCtn+n08l/iCHAcQ8NjntocNxDg+MeGqced39nsrxYDA8AABAkBC0AAIAgIWg1Aw6HQ7Nnz5bD4Qh1KT8oHPfQ4LiHBsc9NDjuoRHI485ieAAAgCBhRgsAACBICFoAAABBQtACAAAIEoIWAABAkBC0moEFCxaoS5cuiomJUWpqqj766KNQl9SszZkzRzabzefRq1evUJfV7Kxfv17XXXedkpOTZbPZ9O677/psN8Zo1qxZSkpKUmxsrNLT07Vnz57QFNuMnOu4/+xnPzvt+z9ixIjQFNtMzJ07V//xH/+hVq1aqUOHDho9erRyc3N9xhw/flyTJ09W27Zt1bJlS40ZM0b79u0LUcXNQ12O+1VXXXXa9/3ee+/163MIWk3c22+/rWnTpmn27Nn65z//qQEDBigjI0PFxcWhLq1Z69Onj4qKiqzHxo0bQ11Ss3PkyBENGDBACxYsqHX7vHnzNH/+fL366qvKyclRixYtlJGRoePHjzdypc3LuY67JI0YMcLn+//WW281YoXNz7p16zR58mRt3rxZWVlZqqqq0vDhw3XkyBFrzNSpU7V8+XItXbpU69atU2FhoW688cYQVt301eW4S9Jdd93l832fN2+efx9k0KQNGTLETJ482XpeU1NjkpOTzdy5c0NYVfM2e/ZsM2DAgFCX8YMiySxbtsx67vF4jMvlMi+88IL1WklJiXE4HOatt94KQYXN0/ePuzHGTJw40Vx//fUhqeeHori42Egy69atM8ac+G5HR0ebpUuXWmN27dplJJns7OxQldnsfP+4G2PMlVdeaR5++OEG7ZcZrSassrJSW7duVXp6uvVaRESE0tPTlZ2dHcLKmr89e/YoOTlZ3bp104QJE1RQUBDqkn5Q8vPz5Xa7fb778fHxSk1N5bvfCNauXasOHTqoZ8+euu+++3TgwIFQl9SslJaWSpLatGkjSdq6dauqqqp8vu+9evVS586d+b4H0PePu9ef/vQntWvXTn379tWMGTN09OhRv/bLTaWbsP3796umpkaJiYk+rycmJmr37t0hqqr5S01N1aJFi9SzZ08VFRXp6aef1tChQ7Vjxw61atUq1OX9ILjdbkmq9bvv3YbgGDFihG688UZ17dpVeXl5+vnPf66RI0cqOztbkZGRoS6vyfN4PJoyZYouu+wy9e3bV9KJ77vdbldCQoLPWL7vgVPbcZekW265RSkpKUpOTtZnn32m6dOnKzc3V++8806d903QAvw0cuRI68/9+/dXamqqUlJStGTJEk2aNCmElQHBd/PNN1t/7tevn/r376/zzz9fa9eu1bBhw0JYWfMwefJk7dixg3WfjexMx/3uu++2/tyvXz8lJSVp2LBhysvL0/nnn1+nfXPqsAlr166dIiMjT7vyZN++fXK5XCGq6ocnISFBPXr00N69e0Ndyg+G9/vNdz/0unXrpnbt2vH9D4AHHnhAK1as0AcffKDzzjvPet3lcqmyslIlJSU+4/m+B8aZjnttUlNTJcmv7ztBqwmz2+0aNGiQVq9ebb3m8Xi0evVqpaWlhbCyH5bDhw8rLy9PSUlJoS7lB6Nr165yuVw+3/2ysjLl5OTw3W9k//73v3XgwAG+/w1gjNEDDzygZcuWac2aNeratavP9kGDBik6Otrn+56bm6uCggK+7w1wruNem23btkmSX993Th02cdOmTdPEiRM1ePBgDRkyRL/97W915MgR3X777aEurdl69NFHdd111yklJUWFhYWaPXu2IiMjNX78+FCX1qwcPnzY51+N+fn52rZtm9q0aaPOnTtrypQp+uUvf6kLLrhAXbt21cyZM5WcnKzRo0eHruhm4GzHvU2bNnr66ac1ZswYuVwu5eXl6fHHH1f37t2VkZERwqqbtsmTJ+vPf/6z/vrXv6pVq1bWuqv4+HjFxsYqPj5ekyZN0rRp09SmTRs5nU49+OCDSktL0yWXXBLi6puucx33vLw8/fnPf9aPfvQjtW3bVp999pmmTp2qK664Qv3796/7BzXomkWEhf/+7/82nTt3Nna73QwZMsRs3rw51CU1a+PGjTNJSUnGbrebjh07mnHjxpm9e/eGuqxm54MPPjCSTntMnDjRGHOixcPMmTNNYmKicTgcZtiwYSY3Nze0RTcDZzvuR48eNcOHDzft27c30dHRJiUlxdx1113G7XaHuuwmrbbjLcm88cYb1phjx46Z+++/37Ru3drExcWZG264wRQVFYWu6GbgXMe9oKDAXHHFFaZNmzbG4XCY7t27m8cee8yUlpb69Tm2kx8GAACAAGONFgAAQJAQtAAAAIKEoAUAABAkBC0AAIAgIWgBAAAECUELAAAgSAhaAAAAQULQAgAACBKCFoAfpLVr18pms512o97Gsnr1al144YWqqak559jMzExddNFF8ng8jVAZgEAiaAFo9q666ipNmTLF57VLL71URUVFio+PD0lNjz/+uJ566ilFRkaec+yIESMUHR2tP/3pT41QGYBAImgB+EGy2+1yuVyy2WyN/tkbN25UXl6exowZU+f3/OxnP9P8+fODWBWAYCBoAWjWfvazn2ndunV66aWXZLPZZLPZ9NVXX5126nDRokVKSEjQihUr1LNnT8XFxeknP/mJjh49qt///vfq0qWLWrdurYceesjndF9FRYUeffRRdezYUS1atFBqaqrWrl171poWL16sa665RjExMdZrn376qa6++mq1atVKTqdTgwYN0scff2xtv+666/Txxx8rLy8voMcHQHBFhboAAAiml156SV988YX69u2rZ555RpLUvn17ffXVV6eNPXr0qObPn6/FixervLxcN954o2644QYlJCRo1apV+vLLLzVmzBhddtllGjdunCTpgQce0Oeff67FixcrOTlZy5Yt04gRI7R9+3ZdcMEFtda0YcMG3XLLLT6vTZgwQQMHDtTChQsVGRmpbdu2KTo62treuXNnJSYmasOGDTr//PMDdHQABBtBC0CzFh8fL7vdrri4OLlcrrOOraqq0sKFC60g85Of/ER/+MMftG/fPrVs2VK9e/fW1VdfrQ8++EDjxo1TQUGB3njjDRUUFCg5OVmS9OijjyozM1NvvPGGnnvuuVo/51//+pc13qugoECPPfaYevXqJUm1hrTk5GT961//8vsYAAgdghYAnBQXF+czW5SYmKguXbqoZcuWPq8VFxdLkrZv366amhr16NHDZz8VFRVq27btGT/n2LFjPqcNJWnatGm688479Yc//EHp6em66aabTpu5io2N1dGjR+v99wPQ+AhaAHDSqafqJMlms9X6mrfNwuHDhxUZGamtW7eedvXgqeHs+9q1a6dDhw75vDZnzhzdcsstWrlypd577z3Nnj1bixcv1g033GCNOXjwoNq3b1+vvxuA0CBoAWj27HZ7nfpV+WvgwIGqqalRcXGxhg4d6tf7Pv/889Ne79Gjh3r06KGpU6dq/PjxeuONN6ygdfz4ceXl5WngwIEBqx9A8HHVIYBmr0uXLsrJydFXX32l/fv3B6zxZ48ePTRhwgTddttteuedd5Sfn6+PPvpIc+fO1cqVK8/4voyMDG3cuNF6fuzYMT3wwANau3at/vWvf2nTpk3asmWLLrzwQmvM5s2b5XA4lJaWFpDaATQOghaAZu/RRx9VZGSkevfurfbt26ugoCBg+37jjTd022236ZFHHlHPnj01evRobdmyRZ07dz7jeyZMmKCdO3cqNzdXkhQZGakDBw7otttuU48ePTR27FiNHDlSTz/9tPWet956SxMmTFBcXFzAagcQfDZjjAl1EQDwQ/PYY4+prKxMr7322jnH7t+/Xz179tTHH3+srl27NkJ1AAKFGS0ACIEnn3xSKSkpdTqN+dVXX+mVV14hZAFNEDNaAAAAQcKMFgAAQJAQtAAAAIKEoAUAABAkBC0AAIAgIWgBAAAECUELAAAgSAhaAAAAQULQAgAACBKCFgAAQJD8f436vl2YmRMFAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\dae\\petsc_pid_doc_22_0.png" - } - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "a = plt.plot(\n", " tj.time, tj.get_vec(m.fs.valve_1.control_volume.properties_in[24].pressure)\n", @@ -4680,22 +411,7 @@ "cell_type": "code", "execution_count": 16, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/60lEQVR4nO3deXxU9b3/8ffMJJnsCRDIAiEBZBUSNgmLGwVlaXHBKioWoYoXxYrEpVIFhLZQ7ZUftaJUq+C1bm1drwsuUVCURTYR2dewZGPJQvbMzO+PkKG5gGTCzJzJyev5eMyDcOacmU9Op86b72pxuVwuAQAAmJjV6AIAAAB8jcADAABMj8ADAABMj8ADAABMj8ADAABMj8ADAABMj8ADAABML8joAvzN6XTqyJEjioqKksViMbocAADQAC6XSyUlJUpKSpLV6nl7TbMLPEeOHFFycrLRZQAAgEY4ePCg2rVr5/F1zS7wREVFSaq9YdHR0QZXAwAAGqK4uFjJycnu73FPNbvAU9eNFR0dTeABAKCJaexwFAYtAwAA0yPwAAAA0yPwAAAA0yPwAAAA0yPwAAAA0yPwAAAA0yPwAAAA0yPwAAAA0yPwAAAA0yPwAAAA0zM08Hz11VcaM2aMkpKSZLFY9O677573muXLl6tv376y2+266KKLtHTpUp/XCQAAmjZDA09paanS09O1aNGiBp2/b98+/fznP9fQoUO1adMm3X///brzzjv1ySef+LhSAADQlBm6eeioUaM0atSoBp+/ePFidejQQU899ZQkqXv37lq5cqX+3//7fxoxYoSvymyQqhqnjpVWyuF0qV2LcENrAQAA9TWpMTyrVq3S8OHD6x0bMWKEVq1adc5rKisrVVxcXO/hCxuzT2jQ/C804aW1Pnl9AADQeE0q8OTm5io+Pr7esfj4eBUXF6u8vPys18yfP18xMTHuR3Jysk9qi7DXNpaVVTp88voAAKDxmlTgaYwZM2aoqKjI/Th48KBP3icsxCZJKq2q8cnrAwCAxjN0DI+nEhISlJeXV+9YXl6eoqOjFRYWdtZr7Ha77Ha7z2uLCKm9leVVDrlcLlksFp+/JwAAaJgm1cIzaNAgZWVl1Tv22WefadCgQQZVdFpdC0+N06Uqh9PgagAAwH8yNPCcPHlSmzZt0qZNmyTVTjvftGmTsrOzJdV2R02YMMF9/pQpU7R37149/PDD2r59u5599ln985//1PTp040ov57wU4FHqm3lAQAAgcPQwLNu3Tr16dNHffr0kSRlZmaqT58+mjVrliQpJyfHHX4kqUOHDvrwww/12WefKT09XU899ZT+/ve/Gz4lXZKCbVaF2GpvZymBBwCAgGLoGJ4rr7xSLpfrnM+fbRXlK6+8Uhs3bvRhVY0XbrepqsypskoGLgMAEEia1BieQFc3cLmMFh4AAAIKgceLmJoOAEBgIvB4UcSpwMOgZQAAAguBx4tOt/AQeAAACCQEHi9yj+Fh0DIAAAGFwONF4XYGLQMAEIgIPF4UHlzbpVXGoGUAAAIKgceLwu11gYcWHgAAAgmBx4vqtpcg8AAAEFgIPF4UfmrQcimDlgEACCgEHi+qW4enrJoWHgAAAgmBx4vCmZYOAEBAIvB4EYOWAQAITAQeL2LQMgAAgYnA40XuLi3W4QEAIKAQeLzIvbUELTwAAAQUAo8XuTcPZdAyAAABhcDjRRGnBi2XMy0dAICAQuDxovDg2i6taodLVTVOg6sBAAB1CDxeVNelJUnljOMBACBgEHi8KCTIqhBb7S0tZaYWAAABg8DjZWHutXgIPAAABAoCj5dFsPggAAABh8DjZaenphN4AAAIFAQeL4uw187UKq+mSwsAgEBB4PGysGBaeAAACDQEHi+ra+Fh0DIAAIGDwONl7JgOAEDgIfB4GYEHAIDAQ+DxsvAQurQAAAg0BB4vC2daOgAAAYfA42UMWgYAIPAQeLyMMTwAAAQeAo+XEXgAAAg8BB4vY9AyAACBh8DjZbTwAAAQeAg8XlbXwlNaSQsPAACBgsDjZRH22haeclp4AAAIGAQeL3Ovw0PgAQAgYBB4vKyuS4sWHgAAAgeBx8vqWniqHE5V1TgNrgYAAEgEHq+ra+GRaOUBACBQEHi8LCTIqmCbRZJUVs1MLQAAAgGBxwfCgtlAFACAQELg8YFIO2vxAAAQSAg8PhBB4AEAIKAQeHygLvCcJPAAABAQCDw+4O7SYgNRAAACAoHHB+q2lzjJoGUAAAICgccH3F1aFbTwAAAQCAg8PsAsLQAAAguBxwcYtAwAQGAh8PgALTwAAAQWAo8PMEsLAIDAQuDxgdNdWszSAgAgEBB4fCDSXreXFi08AAAEAgKPD7C1BAAAgYXA4wPM0gIAILAQeHyAWVoAAAQWAo8PnO7SYtAyAACBgMDjA5EhtYGnyuFUZQ2hBwAAoxF4fKBu81CJVh4AAAKB4YFn0aJFSk1NVWhoqDIyMrR27dpznltdXa25c+eqU6dOCg0NVXp6upYtW+bHahsmyGaVPaj21jKOBwAA4xkaeN58801lZmZq9uzZ2rBhg9LT0zVixAjl5+ef9fzHHntMf/vb3/TXv/5VW7du1ZQpU3T99ddr48aNfq78/CKZqQUAQMAwNPAsWLBAkydP1qRJk9SjRw8tXrxY4eHheumll856/iuvvKLf/e53Gj16tDp27Ki7775bo0eP1lNPPeXnys8vMpSZWgAABArDAk9VVZXWr1+v4cOHny7GatXw4cO1atWqs15TWVmp0NDQesfCwsK0cuXKc75PZWWliouL6z38ISKEFh4AAAKFYYHn6NGjcjgcio+Pr3c8Pj5eubm5Z71mxIgRWrBggXbt2iWn06nPPvtMb7/9tnJycs75PvPnz1dMTIz7kZyc7NXf41wimZoOAEDAMHzQsif+8pe/qHPnzurWrZtCQkJ07733atKkSbJaz/1rzJgxQ0VFRe7HwYMH/VJrBPtpAQAQMAwLPHFxcbLZbMrLy6t3PC8vTwkJCWe9pnXr1nr33XdVWlqqAwcOaPv27YqMjFTHjh3P+T52u13R0dH1Hv7A9hIAAAQOwwJPSEiI+vXrp6ysLPcxp9OprKwsDRo06CevDQ0NVdu2bVVTU6O33npL1157ra/L9RjbSwAAEDiCjHzzzMxM3X777erfv78GDBighQsXqrS0VJMmTZIkTZgwQW3bttX8+fMlSWvWrNHhw4fVu3dvHT58WI8//ricTqcefvhhI3+Ns3K38FQReAAAMJqhgWfcuHEqKCjQrFmzlJubq969e2vZsmXugczZ2dn1xudUVFToscce0969exUZGanRo0frlVdeUWxsrEG/wbm5A08FgQcAAKNZXC6Xy+gi/Km4uFgxMTEqKiry6Xie57/ao3kfbdd1vZO08OY+PnsfAACagwv9/m5Ss7SaktODlpmWDgCA0Qg8PsKgZQAAAgeBx0fYSwsAgMBB4PGRqNBgSQQeAAACAYHHR+paeEoqqg2uBAAAEHh8JOrUbunFTEsHAMBwBB4fiT7VpVVV41RlDTO1AAAwEoHHRyJDT6/pyOKDAAAYi8DjIzarRREhtTumlxB4AAAwFIHHh+paeQg8AAAYi8DjQ3VT05mpBQCAsQg8PsRMLQAAAgOBx4dYfBAAgMBA4PGhqFAWHwQAIBAQeHwoys6gZQAAAgGBx4do4QEAIDAQeHzo9CwtWngAADBS0PlPOVNWVpaysrKUn58vp9NZ77mXXnrJK4WZgbuFh0HLAAAYyuPAM2fOHM2dO1f9+/dXYmKiLBaLL+oyBVp4AAAIDB4HnsWLF2vp0qX61a9+5Yt6TCXSzhgeAAACgcdjeKqqqjR48GBf1GI60WwtAQBAQPA48Nx555167bXXfFGL6bC1BAAAgcHjLq2Kigo9//zz+vzzz5WWlqbg4OB6zy9YsMBrxTV1dYOWT9LCAwCAoTwOPJs3b1bv3r0lSVu2bKn3HAOY66sLPKVVDjmcLtms3B8AAIzgceD58ssvfVGHKUWGnr69JytqFBMe/BNnAwAAX2n0woO7d+/WJ598ovLyckmSy+XyWlFmYQ+yKSSo9hYXM44HAADDeBx4jh07pmHDhqlLly4aPXq0cnJyJEl33HGHHnjgAa8X2NQxUwsAAON5HHimT5+u4OBgZWdnKzw83H183LhxWrZsmVeLM4O6mVonWW0ZAADDeDyG59NPP9Unn3yidu3a1TveuXNnHThwwGuFmQUbiAIAYDyPW3hKS0vrtezUOX78uOx2u1eKMpO6wMMYHgAAjONx4Lnsssv0P//zP+6/WywWOZ1OPfnkkxo6dKhXizOD6FNdWsXldGkBAGAUj7u0nnzySQ0bNkzr1q1TVVWVHn74Yf344486fvy4vvnmG1/U2KTFhNUGnqJyWngAADCKxy08PXv21M6dO3XppZfq2muvVWlpqcaOHauNGzeqU6dOvqixSSPwAABgPI9beCQpJiZGjz76qLdrMaXosLouLQIPAABGaVTgOXHihF588UVt27ZNktSjRw9NmjRJLVu29GpxZhBNCw8AAIbzuEvrq6++Umpqqp5++mmdOHFCJ06c0NNPP60OHTroq6++8kWNTRpdWgAAGM/jFp6pU6dq3Lhxeu6552Sz2SRJDodD99xzj6ZOnaoffvjB60U2ZQQeAACM53ELz+7du/XAAw+4w44k2Ww2ZWZmavfu3V4tzgxiGMMDAIDhPA48ffv2dY/d+U/btm1Tenq6V4oyE3fgYS8tAAAM43GX1n333adp06Zp9+7dGjhwoCRp9erVWrRokf70pz9p8+bN7nPT0tK8V2kTVRd4TlbWqMbhVJCt0RvUAwCARrK4XC6XJxdYrT/9hW2xWORyuWSxWORwOC6oOF8oLi5WTEyMioqKFB0d7fP3q3Y41fnRjyVJG2ZepZYRIT5/TwAAzOZCv789buHZt2+fx2/SnAXbrIoIsam0yqGi8moCDwAABvA48KSkpPiiDlOLCQt2Bx4AAOB/jVp4cM+ePVq4cGG9hQenTZvG1hLnEB0WrCNFFczUAgDAIB6PoP3kk0/Uo0cPrV27VmlpaUpLS9OaNWt08cUX67PPPvNFjU0ea/EAAGAsj1t4HnnkEU2fPl1/+tOfzjj+29/+VldddZXXijMLAg8AAMbyuIVn27ZtuuOOO844/utf/1pbt271SlFmw35aAAAYy+PA07p1a23atOmM45s2bVKbNm28UZPpsNoyAADG8rhLa/Lkybrrrru0d+9eDR48WJL0zTff6IknnlBmZqbXCzSD06stE3gAADCCx4Fn5syZioqK0lNPPaUZM2ZIkpKSkvT444/rvvvu83qBZsAYHgAAjOVx4LFYLJo+fbqmT5+ukpISSVJUVJTXCzOTusBTWEbgAQDACI1ah6cOQadhYsNrA88JAg8AAIZgJ0s/qNtOorCsyuBKAABongg8ftAivDbwnCDwAABgCAKPH9R1aVVUO1VeFXg7yAMAYHYEHj+ItAcpyGqRRCsPAABGaNSg5aysLGVlZSk/P19Op7Pecy+99JJXCjMTi8WiFhEhKiip1ImyKiXFhhldEgAAzYrHgWfOnDmaO3eu+vfvr8TERFksFl/UZTotwoNVUFLJ1HQAAAzgceBZvHixli5dql/96le+qMe0Yk8NXD5eSpcWAAD+5vEYnqqqKveWEmi4luFMTQcAwCgeB54777xTr732mi9qMbUWESw+CACAUTzu0qqoqNDzzz+vzz//XGlpaQoODq73/IIFC7xWnJnQpQUAgHE8buHZvHmzevfuLavVqi1btmjjxo3ux6ZNmzwuYNGiRUpNTVVoaKgyMjK0du3anzx/4cKF6tq1q8LCwpScnKzp06eroqLC4/f1N7q0AAAwjsctPF9++aXX3vzNN99UZmamFi9erIyMDC1cuFAjRozQjh071KZNmzPOf+211/TII4/opZde0uDBg7Vz505NnDhRFosl4FuW2E8LAADjXNDCg4cOHdKhQ4caff2CBQs0efJkTZo0ST169NDixYsVHh5+zrV8vv32Ww0ZMkS33nqrUlNTdfXVV+uWW245b6tQIGhBCw8AAIbxOPA4nU7NnTtXMTExSklJUUpKimJjY/X73//+jEUIf0pVVZXWr1+v4cOHny7GatXw4cO1atWqs14zePBgrV+/3h1w9u7dq48++kijR48+5/tUVlaquLi43sMILU5tIHqcwAMAgN953KX16KOP6sUXX9Sf/vQnDRkyRJK0cuVKPf7446qoqNAf//jHBr3O0aNH5XA4FB8fX+94fHy8tm/fftZrbr31Vh09elSXXnqpXC6XampqNGXKFP3ud7875/vMnz9fc+bMaeBv5zstTnVpFZbSpQUAgL953MLz8ssv6+9//7vuvvtupaWlKS0tTffcc49eeOEFLV261AclnrZ8+XLNmzdPzz77rDZs2KC3335bH374oX7/+9+f85oZM2aoqKjI/Th48KBPazyXui6tksoaVTsa3hIGAAAunMctPMePH1e3bt3OON6tWzcdP368wa8TFxcnm82mvLy8esfz8vKUkJBw1mtmzpypX/3qV7rzzjslSb169VJpaanuuusuPfroo7Jaz8xvdrtddru9wXX5SnRYsKwWyemq3UC0TVSo0SUBANBseNzCk56ermeeeeaM488884zS09Mb/DohISHq16+fsrKy3MecTqeysrI0aNCgs15TVlZ2Rqix2WySJJfL1eD3NoLNalFM2KluLWZqAQDgVx638Dz55JP6+c9/rs8//9wdTFatWqWDBw/qo48+8ui1MjMzdfvtt6t///4aMGCAFi5cqNLSUk2aNEmSNGHCBLVt21bz58+XJI0ZM0YLFixQnz59lJGRod27d2vmzJkaM2aMO/gEshYRITpRVq1jJ6uk+POfDwAAvMPjwHPFFVdo586dWrRokXtw8dixY3XPPfcoKSnJo9caN26cCgoKNGvWLOXm5qp3795atmyZeyBzdnZ2vRadxx57TBaLRY899pgOHz6s1q1ba8yYMQ0eKG20uAi79haU6lhppdGlAADQrFhcgd4X5GXFxcWKiYlRUVGRoqOj/fre97y6Xh/9kKs511ys2wen+vW9AQBoyi70+7tBLTybN29Wz549ZbVatXnz5p88Ny0tzeMimou4yNrB00dP0sIDAIA/NSjw9O7dW7m5uWrTpo169+4ti8Vy1kHCFotFDofD60WaRasIAg8AAEZoUODZt2+fWrdu7f4ZjRMXVbsWT0EJqy0DAOBPDQo8KSkp7p8PHDigwYMHKyio/qU1NTX69ttv652L+uq6tBi0DACAf3m8Ds/QoUPPusBgUVGRhg4d6pWizCousraFhy4tAAD8y+PA43K5ZLFYzjh+7NgxRUREeKUos3IPWqZLCwAAv2rwOjxjx46VVDsweeLEifW2a3A4HNq8ebMGDx7s/QpNpC7wlFc7VFZVo/AQj5dBAgAAjdDgb9yYmBhJtS08UVFRCgsLcz8XEhKigQMHavLkyd6v0EQi7EEKC7apvNqhoyVVat+KwAMAgD80+Bt3yZIlkqTU1FQ99NBDCg8P91lRZtYqMkSHTpSr4GSl2rfiHgIA4A8ej+GZMGGCDh8+fMbxXbt2af/+/d6oydTcM7UYuAwAgN94HHgmTpyob7/99ozja9as0cSJE71Rk6mdXm2ZgcsAAPiLx4Fn48aNGjJkyBnHBw4cqE2bNnmjJlNjajoAAP7nceCxWCwqKSk543hRURHbSjQAXVoAAPifx4Hn8ssv1/z58+uFG4fDofnz5+vSSy/1anFmdLqFhy4tAAD8xeN50U888YQuv/xyde3aVZdddpkk6euvv1ZxcbG++OILrxdoNq1OtfAU0MIDAIDfeNzC06NHD23evFk33XST8vPzVVJSogkTJmj79u3q2bOnL2o0ldZRpwJPCYEHAAB/adTKd0lJSZo3b563a2kWEmNCJUm5RRXn3KYDAAB4V6OX+i0rK1N2draqquqPRUlLS7vgoswsPro28JRXO1RcUaOYsGCDKwIAwPw8DjwFBQWaNGmSPv7447M+z0ytnxYabFNseLAKy6qVV1xB4AEAwA88HsNz//33q7CwUGvWrFFYWJiWLVuml19+WZ07d9b777/vixpNJ+FUK09OUYXBlQAA0Dx43MLzxRdf6L333lP//v1ltVqVkpKiq666StHR0Zo/f75+/vOf+6JOU0mICdX23BLlEXgAAPALj1t4SktL1aZNG0lSixYtVFBQIEnq1auXNmzY4N3qTKquhSe3mMADAIA/eBx4unbtqh07dkiS0tPT9be//U2HDx/W4sWLlZiY6PUCzSiewAMAgF953KU1bdo05eTkSJJmz56tkSNH6tVXX1VISIiWLl3q7fpMKeE/pqYDAADf8zjw3Hbbbe6f+/XrpwMHDmj79u1q37694uLivFqcWRF4AADwL4+6tKqrq9WpUydt27bNfSw8PFx9+/Yl7HigbgxPHl1aAAD4hUeBJzg4WBUVfElfqLrAc6y0SpU1rFsEAICveTxoeerUqXriiSdUU1Pji3qahdjwYIUE1d76/GL21AIAwNc8HsPz3XffKSsrS59++ql69eqliIiIes+//fbbXivOrCwWixJjQnXgWJlyiyuU3DLc6JIAADA1jwNPbGysbrjhBl/U0qzER58KPAxcBgDA5xoUeN5//32NGjVKwcHBWrJkia9rahaSTs3UOlxYbnAlAACYX4PG8Fx//fUqLCyUJNlsNuXn5/uypmahrhvr4PEygysBAMD8GhR4WrdurdWrV0uSXC6XLBaLT4tqDpJbnAo8J2jhAQDA1xrUpTVlyhRde+21slgsslgsSkhIOOe5DgfTrBuCFh4AAPynQYHn8ccf180336zdu3frmmuu0ZIlSxQbG+vj0swtuWWYJOnwiXI5nS5ZrbSaAQDgKw2epdWtWzd169ZNs2fP1o033qjwcKZSX4jEmDAFWS2qcjiVV1KhxJgwo0sCAMC0PF54cPbs2YQdL7BZLWrbojbkZB+jWwsAAF/yOPDAexi4DACAfxB4DFQ3jiebgcsAAPgUgcdAdTO1DhF4AADwKQKPgU53aRF4AADwJa8Fnry8PM2dO9dbL9cs1LXw0KUFAIBveS3w5Obmas6cOd56uWah/anAk1dcqfIqFmwEAMBXGrwOz+bNm3/y+R07dlxwMc1Ny4gQtQgP1omyau09elIXJ8UYXRIAAKbU4MDTu3dvWSwWuVyuM56rO84eW57r1DpS6w6c0J6CUgIPAAA+0uDA07JlSz355JMaNmzYWZ//8ccfNWbMGK8V1ly4A0/+SaNLAQDAtBocePr166cjR44oJSXlrM8XFhaetfUHP61TmwhJ0p4CAg8AAL7S4MAzZcoUlZaWnvP59u3ba8mSJV4pqjm5qE2kJGlPwbnvLQAAuDANDjzXX3/9Tz7fokUL3X777RdcUHPTqXVt4NlbcJJd0wEA8BEWHjRYuxbhsgdZVVnjZD0eAAB8hMBjMJvVoq4JUZKkbTnFBlcDAIA5EXgCQPeEaEkEHgAAfIXAEwC6J9a28Gwl8AAA4BMEngDQPbGuhafE4EoAADCnRgWer7/+WrfddpsGDRqkw4cPS5JeeeUVrVy50qvFNRfdTgWew4XlKiqrNrgaAADMx+PA89Zbb2nEiBEKCwvTxo0bVVlZKUkqKirSvHnzvF5gcxATFuzeSHTz4UJjiwEAwIQ8Djx/+MMftHjxYr3wwgsKDg52Hx8yZIg2bNjg1eKakz7tYyVJG7MLDa0DAAAz8jjw7NixQ5dffvkZx2NiYlRYWOiNmpqlPsmxkqQN2SeMLQQAABPyOPAkJCRo9+7dZxxfuXKlOnbs6JWimqO+KS0k1bbwsCcZAADe5XHgmTx5sqZNm6Y1a9bIYrHoyJEjevXVV/Xggw/q7rvv9kWNzUK3hGjZg6wqKq/W3qPsqwUAgDc1eC+tOo888oicTqeGDRumsrIyXX755bLb7XrwwQf1m9/8xhc1NgshQVb1To7Vmn3HtXrvMfceW02Fy+VSSWWNisqqVVxRrZKKGhWXV6usyqGqGqcqHU5V1dQ+qut+PvVn5anjDqdTTpfkkuR01f7gkktO56k/XVJt41fdz65T5576+dT5xvz+hrytoe9ttUqXXtRavxqUoki7x/8pAQC/srga2X9SVVWl3bt36+TJk+rRo4ciI5vGF3RxcbFiYmJUVFSk6Ohoo8up5+msXVrw2U6N6pmg527rZ3Q5ZygoqdTOvBIdOFamA8dLdfB4mXKKKlRQUqmCkkpV1jiNLhEGiAkL1qOju+umS5KNLgWAiV3o97fH/yz7xz/+obFjxyo8PFw9evTw+A3PZtGiRfrzn/+s3Nxcpaen669//asGDBhw1nOvvPJKrVix4ozjo0eP1ocffuiVeowy5KI4Lfhsp77dc0wOp0s2A3dOL69yaGP2Ca3ed1zfHyzU1pxiFZRUnvc6e5BV0WHBigoNUnRosCLsNoXYrAoJsiok6D9+tllOHbMqxGZTSJBVQVaLLBbJaqn90yLJarXIIkkWi6wWyaJTf5762WKRLJYzjzU3FgN+6cKyKi39dr/2FpTq4bc2a9OhQv3xup6G1AIA5+Nx4Jk+fbqmTJmia665RrfddptGjBghm83W6ALefPNNZWZmavHixcrIyNDChQs1YsQI7dixQ23atDnj/LfffltVVVXuvx87dkzp6em68cYbG11DoEhvF6Moe5CKyqu15XCR0k/N3PKXI4Xl+mxrnj7dmqu1+46r2lG/8c9ikVJbRSi1VbhSWkWofctwJcWGqnVUqNpE2RUXaVdYSOM/C2h6xmekaPGKPXrq0x16bU224iJClHl1V6PLAoAzeNylVVNTo2XLlun111/Xe++9p/DwcN14440aP368Bg8e7HEBGRkZuuSSS/TMM89IkpxOp5KTk/Wb3/xGjzzyyHmvX7hwoWbNmqWcnBxFRESc9/xA7tKSpP96ZZ0++TFPv/nZRXrAD18c5VUOfbwlR/9cd1Cr9x6v91xCdKgyOrZU/9SW6pkUra4JUQoPYawGzvTP7w7q4bc2S5Ke/1U/XX1xgsEVATAbv3dpBQUF6Re/+IV+8YtfqKysTO+8845ee+01DR06VO3atdOePXsa/FpVVVVav369ZsyY4T5mtVo1fPhwrVq1qkGv8eKLL+rmm28+Z9iprKx0rwYt1d6wQDayZ4I++TFPH/6Qo8yruviseyC/pEL/8+0B/WPNARWe2s7CYpH6p7TQ1T0SNKx7G3WIi6B7Ag1y0yXJ2plXor+v3KdZ7/2oQZ1aKSo0+PwXAoCfXNA/18PDwzVixAidOHFCBw4c0LZt2zy6/ujRo3I4HIqPj693PD4+Xtu3bz/v9WvXrtWWLVv04osvnvOc+fPna86cOR7VZaRh3eMVYrNqb0GpduadVNeEKK++flF5tf62Yo9e+mafKqprBxm3axGmcf2TdUO/dkqKDfPq+6H5eHBEV322LU8HjpXpqU936vFrLja6JABwa9TmoWVlZXr11Vc1evRotW3bVgsXLtT111+vH3/80dv1/aQXX3xRvXr1OucAZ0maMWOGioqK3I+DBw/6sULPRYcG6/IucZKkdzcd9trrVtY49MJXe3XFn7/Us8v3qKLaqd7JsXpufF+teGiofjOsM2EHFyQ02KY/XNdTkvTK6gM6eLzM4IoA4DSPW3huvvlmffDBBwoPD9dNN92kmTNnatCgQY1687i4ONlsNuXl5dU7npeXp4SEnx4DUFpaqjfeeENz5879yfPsdrvsdnuj6jPKL/sl6/Nt+Xrzu4OaNqyzQoMvbCDw2n3H9cjbm7W3oHZBw85tIvXwyG4a3r0NXVbwqss6t9ZlneP09a6jenb5bs0fm2Z0SQAgqREtPDabTf/85z+Vk5OjZ555ptFhR5JCQkLUr18/ZWVluY85nU5lZWWd93X/9a9/qbKyUrfddluj3z9QDe/eRkkxoTpeWqUPNuc0+nWKK6r1u3d+0E1/W6W9BaWKi7TryV+madn9l+uqHvGEHfjEfcM6S5L+vf6QDheWG1wNANTyOPDUdWVdyFT0/5SZmakXXnhBL7/8srZt26a7775bpaWlmjRpkiRpwoQJ9QY113nxxRd13XXXqVWrVl6pI5AE2awaPzBFkrToy92qasSCfsu25Gj4Uyv02ppsSdLNlyQrK/MK3dQ/2dD1fWB+l6S21KCOrVTtcOn5FQ2fxAAAvtSgLq2nn366wS943333eVTAuHHjVFBQoFmzZik3N1e9e/fWsmXL3AOZs7OzZbXWz2U7duzQypUr9emnn3r0Xk3J7YNTteSbfdp3tFSvrjmgSUM6NOi6nKJyzX7vR326tbabsGNchOaN7aWBHc0XDBG4pg69SKv2HtNbGw7r4ZHdFMHWEwAM1qB1eDp0aNiXrcVi0d69ey+4KF8K9HV4/tOraw7o0Xe2KDzEpnenDlGX+HPP2HI4XXpl1X7996c7dbKyRkFWi6Zc0Un3/uyiCx4DBHjK5XLpZ0+t0L6jpZo/tpduGdDe6JIANHF+WYdn3759Hr8wLtzNl7TXRz/k6Jvdx3Tny+v08q8HqENc/fWGXC6XVuws0H9/ukNbDteuMdS3fazmje2lbgmBHehgXhaLRbcMSNa8j7br1TUHCDwADNfozUObqqbUwiNJx05W6tpF3+jQiXJFhwZp0pAOGtixlVwulzYfLtK7Gw9re26JJCnKHqSHR3XT+AHtZWWcDgx2vLRKA+dlqcrh1Pv3DlFau1ijSwLQhF3o93ejAs+hQ4f0/vvvKzs7u96+VpK0YMECj4vwp6YWeCQpv7hC//WP9dqYXXjW5+1BVk0YlKIpV3RSq8imNQUf5jbtjY16b9MR3TKgveaP7WV0OQCaML9vLZGVlaVrrrlGHTt21Pbt29WzZ0/t379fLpdLffv29bgAnF+b6FD9678G6eMtufr3+kPKPrWgW6fWEbqyaxv9Ii1RseEhBlcJnGlc/2S9t+mIPvohR3OuuVghQY1a6xQALpjHgWfGjBl68MEHNWfOHEVFRemtt95SmzZtNH78eI0cOdIXNUK1U9XHpCdpTHqS0aUADZbRsZXaRNmVX1Kpr3YWaHiP+PNfBAA+4PE/t7Zt26YJEyZIqt1ItLy8XJGRkZo7d66eeOIJrxcIoOmyWS36RVptSH/v+yMGVwOgOfM48ERERLjH7SQmJtbbHf3o0aPeqwyAKVzbuzbwfL41T6WVNQZXA6C58jjwDBw4UCtXrpQkjR49Wg888ID++Mc/6te//rUGDhzo9QIBNG1p7WKU0ipc5dUOfb4t7/wXAIAPeBx4FixYoIyMDEnSnDlzNGzYML355ptKTU3Viy++6PUCATRtFotF154ae/a/3zd+bzgAuBCswwPA57blFGvUX76WPciqjbOuUngIW00A8MyFfn973MJz5513avny5R6/EYDmq1tClNq3DFdljVMrdhQYXQ6AZsjjwFNQUKCRI0cqOTlZDz30kL7//ntf1AXARCwWi0ZcXDsl/ZMfcw2uBkBz5HHgee+995STk6OZM2fqu+++U9++fXXxxRdr3rx52r9/vw9KBGAGIy5OkCRlbc9XVY3T4GoANDeNWva0RYsWuuuuu7R8+XIdOHBAEydO1CuvvKKLLrrI2/UBMIm+7VsoLtKukooard57zOhyADQzF7TOe3V1tdatW6c1a9Zo//79io9nFVUAZ2e1WnRVD7q1ABijUYHnyy+/1OTJkxUfH6+JEycqOjpaH3zwgQ4dOuTt+gCYyNWnxvF8sT1fzWyCKACDeTw3tG3btjp+/LhGjhyp559/XmPGjJHdzg7dAM5vUMdWCg22KqeoQttzS9Q9kaUhAPiHx4Hn8ccf14033qjY2FgflAPAzEKDbRrSKU5Z2/P1xfZ8Ag8Av/G4S2vy5MmEHQCNdmW3NpKkL7fnG1wJgObkggYtA4CnfnYq8GzIPqHCsiqDqwHQXBB4APhV29gwdY2PktMlrdjJqssA/IPAA8DvhtKtBcDPCDwA/G5o19aSalt4HE6mpwPwPQIPAL/rl9JC0aFBOlFWrU0HTxhdDoBmgMADwO+CbFZd3qW2lefL7YzjAeB7BB4AhqibrfUF43gA+AGBB4AhrujSWhaLtDWnWHnFFUaXA8DkCDwADNEq0q60tjGSmJ4OwPcIPAAMc0WX07O1AMCXCDwADHPFqenpK3cdVY3DaXA1AMyMwAPAMOntYhUdGqSi8mp9f6jI6HIAmBiBB4BhgmxWXUa3FgA/IPAAMBTjeAD4A4EHgKHqAs/mQ4U6Xsru6QB8g8ADwFDx0aHqlhAll0v6ehetPAB8g8ADwHB1s7VW7CDwAPANAg8Aw9V1a321q0BOdk8H4AMEHgCG65/SUhEhNh09WaWtOcVGlwPAhAg8AAwXEmTV4IviJDFbC4BvEHgABAT39HTG8QDwAQIPgIBQF3jWZ59QUXm1wdUAMBsCD4CAkNwyXB1bR8jhdOnb3UeNLgeAyRB4AAQMVl0G4CsEHgAB48qubSTVBh6Xi+npALyHwAMgYGR0aCl7kFU5RRXalX/S6HIAmAiBB0DACA22aWDHVpKYrQXAuwg8AAIK43gA+AKBB0BAqdtXa+2+4yqtrDG4GgBmQeABEFA6xkWoXYswVTmcWr33mNHlADAJAg+AgGKxWHRlV7q1AHgXgQdAwLmiy+np6QDgDQQeAAFnUKdWCrZZdOBYmfYfLTW6HAAmQOABEHAi7UHqn9JSEq08ALyDwAMgINXN1lq+I9/gSgCYAYEHQECqW49n1d5jqqh2GFwNgKaOwAMgIHVLiFJ8tF0V1U59t/+40eUAaOIIPAACksViOb3qMttMALhABB4AAYvp6QC8hcADIGBdelGcrBZpV/5JHS4sN7ocAE0YgQdAwIoJD1af9i0k0a0F4MIQeAAEtCtPjeP5YjvT0wE0HoEHQED7WffacTwrdxcwPR1AoxkeeBYtWqTU1FSFhoYqIyNDa9eu/cnzCwsLNXXqVCUmJsput6tLly766KOP/FQtAH/rkRitpJhQVVQ79c3uo0aXA6CJMjTwvPnmm8rMzNTs2bO1YcMGpaena8SIEcrPP3vTdVVVla666irt379f//73v7Vjxw698MILatu2rZ8rB+AvFotFw7rHS5I+30a3FoDGMTTwLFiwQJMnT9akSZPUo0cPLV68WOHh4XrppZfOev5LL72k48eP691339WQIUOUmpqqK664Qunp6X6uHIA/De9RG3iytuXJ6XQZXA2ApsiwwFNVVaX169dr+PDhp4uxWjV8+HCtWrXqrNe8//77GjRokKZOnar4+Hj17NlT8+bNk8Nx7n79yspKFRcX13sAaFoGdmypiBCb8ksqteVIkdHlAGiCDAs8R48elcPhUHx8fL3j8fHxys3NPes1e/fu1b///W85HA599NFHmjlzpp566in94Q9/OOf7zJ8/XzExMe5HcnKyV38PAL5nD7Lp8lOztT7fmmdwNQCaIsMHLXvC6XSqTZs2ev7559WvXz+NGzdOjz76qBYvXnzOa2bMmKGioiL34+DBg36sGIC3MI4HwIUIMuqN4+LiZLPZlJdX/19reXl5SkhIOOs1iYmJCg4Ols1mcx/r3r27cnNzVVVVpZCQkDOusdvtstvt3i0egN8N7dpaVou0NadYhwvL1TY2zOiSADQhhrXwhISEqF+/fsrKynIfczqdysrK0qBBg856zZAhQ7R79245nU73sZ07dyoxMfGsYQeAebSKtKvvqVWXv9hGtxYAzxjapZWZmakXXnhBL7/8srZt26a7775bpaWlmjRpkiRpwoQJmjFjhvv8u+++W8ePH9e0adO0c+dOffjhh5o3b56mTp1q1K8AwI/qZmt9RrcWAA8Z1qUlSePGjVNBQYFmzZql3Nxc9e7dW8uWLXMPZM7OzpbVejqTJScn65NPPtH06dOVlpamtm3batq0afrtb39r1K8AwI+Gd2+jP328Xav3HNPJyhpF2g39TxiAJsTicrma1aIWxcXFiomJUVFRkaKjo40uB4AHXC6Xhv73cu0/VqZnx/fV6F6JRpcEwE8u9Pu7Sc3SAtC8WSwWXXWqW+uTH8++fAUAnA2BB0CTMrJnbatO1rZ8NhMF0GAEHgBNSp/kWCVEh+pkZY1W7mIzUQANQ+AB0KRYrRaN7Fm7VtdHW3IMrgZAU0HgAdDk1A1W/mxrnqpqnOc5GwAIPACaoH4pLdQ6yq6Sihp9u4duLQDnR+AB0OTYrBaNvLi2W+vjH5itBeD8CDwAmqRRvWoDzydbc1XtoFsLwE8j8ABokgaktlSriBAVllVrzd7jRpcDIMAReAA0SUE2q66+uHYRQmZrATgfAg+AJmvUqUUIP9mSK4ezWe2SA8BDBB4ATdagTq0UExasY6VVWruPbi0A50bgAdBkBdusuvrU3lof060F4CcQeAA0aXWLEC6jWwvATyDwAGjShlwUp+jQIOWXVNKtBeCcCDwAmrSQIKt78PL73x82uBoAgYrAA6DJu7Z3kiTpox9yVVnjMLgaAIGIwAOgycvo2EptouwqKq/WVzvZWwvAmQg8AJo8m9WiX6TVtvK8//0Rg6sBEIgIPABMoa5b67OtuSqtrDG4GgCBhsADwBTS2sUotVW4Kqqd+nAza/IAqI/AA8AULBaLbh7QXpK09Nv9crlYkwfAaQQeAKYxrn+y7EFWbc0p1roDJ4wuB0AAIfAAMI0WESG6vk9bSdLSb/YbWwyAgELgAWAqtw9OlSQt+zFXRwrLjS0GQMAg8AAwle6J0RrYsaUcTpf+sfqA0eUACBAEHgCmM3FwB0nSa2uzVVJRbXA1AAIBgQeA6Qzv3kYd4yJUWFatl1buN7ocAAGAwAPAdIJsVmVe3UWS9MLXe3WitMrgigAYjcADwJRG90xUj8Ronays0ZOf7DC6HAAGI/AAMCWr1aLZY3pIkl5fm62Vu9hUFGjOCDwATCujYytNGJQiSfrtW5tVWEbXFtBcBRldAAD40m9HdtPyHQXKPl6mu/+xQUsmXaLQYJuhNdU4nKpyOFVVU/uorDn9d4fTJZdLcqn2T6fLJZek2p0yXHK6an92nTrurD35P84xn9rf1JzM+r9ZVGiQ+rRvYXQZ9VhczWzDmeLiYsXExKioqEjR0dFGlwPAD7bnFuuGZ79VaZVDl3WO06LxfRUdGnzBr+tyuVRcUaPcogodKSpXblGFcooqlFNYrmOlVSour1ZxRbWKy2tUVlXjDjXOZvVfXTRHfdvH6u17hnj1NS/0+5sWHgCm1y0hWi9OvESTlnynr3cd1Zi/rtQfr+ulSzvHNfg1iiuqtTO3RDvyStx/7sgt0YmyC1vnx2qRQoKsCrFZFRJkU5DVIotFsqh2Q1SLRaf+fpbjdT+r/jm4MJYmcBMDvcLUuAijSzgDLTwAmo0fDhXpv15ZpyNFFZKktHYxGtUzUd0ToxQXaVeEPUglFdUqLKtW9vEy7S0o1Z6Ck9qVV+K+5mxiw4OVEB2qpNgwJcSEKjE6VK2j7IoJC1Z0WLCiQ4MVbrcpxGaVPchaG3BOhZwgG0MpgYa40O9vAg+AZqW4oloLPt2p19Zkq8rh9OjaxJhQdYmPUteEqNo/46PUqU2EwkNoLAd8jcDjIQIPAEk6erJSH27O0Te7jyr7eJmOlVapvMqh6NAgRYUGq22LMHWMi1CH1hHqEh+lLm2iFBN+4eN+ADQOgcdDBB4AAJqeC/3+pvMYAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYXpDRBfiby+WSVLvNPAAAaBrqvrfrvsc91ewCT0lJiSQpOTnZ4EoAAICnSkpKFBMT4/F1Fldjo1IT5XQ6deTIEUVFRclisXj1tYuLi5WcnKyDBw8qOjraq6+Nc+O+G4P7bgzuuzG478b4z/seFRWlkpISJSUlyWr1fEROs2vhsVqtateunU/fIzo6mv9DGID7bgzuuzG478bgvhuj7r43pmWnDoOWAQCA6RF4AACA6RF4vMhut2v27Nmy2+1Gl9KscN+NwX03BvfdGNx3Y3jzvje7QcsAAKD5oYUHAACYHoEHAACYHoEHAACYHoEHAACYHoHHSxYtWqTU1FSFhoYqIyNDa9euNbokU3v88cdlsVjqPbp162Z0Wabz1VdfacyYMUpKSpLFYtG7775b73mXy6VZs2YpMTFRYWFhGj58uHbt2mVMsSZyvvs+ceLEMz7/I0eONKZYE5k/f74uueQSRUVFqU2bNrruuuu0Y8eOeudUVFRo6tSpatWqlSIjI3XDDTcoLy/PoIrNoSH3/corrzzjMz9lyhSP3ofA4wVvvvmmMjMzNXv2bG3YsEHp6ekaMWKE8vPzjS7N1C6++GLl5OS4HytXrjS6JNMpLS1Venq6Fi1adNbnn3zyST399NNavHix1qxZo4iICI0YMUIVFRV+rtRcznffJWnkyJH1Pv+vv/66Hys0pxUrVmjq1KlavXq1PvvsM1VXV+vqq69WaWmp+5zp06frf//3f/Wvf/1LK1as0JEjRzR27FgDq276GnLfJWny5Mn1PvNPPvmkZ2/kwgUbMGCAa+rUqe6/OxwOV1JSkmv+/PkGVmVus2fPdqWnpxtdRrMiyfXOO++4/+50Ol0JCQmuP//5z+5jhYWFLrvd7nr99dcNqNCc/u99d7lcrttvv9117bXXGlJPc5Kfn++S5FqxYoXL5ar9fAcHB7v+9a9/uc/Ztm2bS5Jr1apVRpVpOv/3vrtcLtcVV1zhmjZt2gW9Li08F6iqqkrr16/X8OHD3cesVquGDx+uVatWGViZ+e3atUtJSUnq2LGjxo8fr+zsbKNLalb27dun3Nzcep/9mJgYZWRk8Nn3g+XLl6tNmzbq2rWr7r77bh07dszokkynqKhIktSyZUtJ0vr161VdXV3vM9+tWze1b9+ez7wX/d/7XufVV19VXFycevbsqRkzZqisrMyj1212m4d629GjR+VwOBQfH1/veHx8vLZv325QVeaXkZGhpUuXqmvXrsrJydGcOXN02WWXacuWLYqKijK6vGYhNzdXks762a97Dr4xcuRIjR07Vh06dNCePXv0u9/9TqNGjdKqVatks9mMLs8UnE6n7r//fg0ZMkQ9e/aUVPuZDwkJUWxsbL1z+cx7z9nuuyTdeuutSklJUVJSkjZv3qzf/va32rFjh95+++0GvzaBB03SqFGj3D+npaUpIyNDKSkp+uc//6k77rjDwMoA37v55pvdP/fq1UtpaWnq1KmTli9frmHDhhlYmXlMnTpVW7ZsYWygn53rvt91113un3v16qXExEQNGzZMe/bsUadOnRr02nRpXaC4uDjZbLYzRunn5eUpISHBoKqan9jYWHXp0kW7d+82upRmo+7zzWffeB07dlRcXByffy+599579cEHH+jLL79Uu3bt3McTEhJUVVWlwsLCeufzmfeOc933s8nIyJAkjz7zBJ4LFBISon79+ikrK8t9zOl0KisrS4MGDTKwsubl5MmT2rNnjxITE40updno0KGDEhIS6n32i4uLtWbNGj77fnbo0CEdO3aMz/8Fcrlcuvfee/XOO+/oiy++UIcOHeo9369fPwUHB9f7zO/YsUPZ2dl85i/A+e772WzatEmSPPrM06XlBZmZmbr99tvVv39/DRgwQAsXLlRpaakmTZpkdGmm9eCDD2rMmDFKSUnRkSNHNHv2bNlsNt1yyy1Gl2YqJ0+erPcvqH379mnTpk1q2bKl2rdvr/vvv19/+MMf1LlzZ3Xo0EEzZ85UUlKSrrvuOuOKNoGfuu8tW7bUnDlzdMMNNyghIUF79uzRww8/rIsuukgjRowwsOqmb+rUqXrttdf03nvvKSoqyj0uJyYmRmFhYYqJidEdd9yhzMxMtWzZUtHR0frNb36jQYMGaeDAgQZX33Sd777v2bNHr732mkaPHq1WrVpp8+bNmj59ui6//HKlpaU1/I0uaI4X3P7617+62rdv7woJCXENGDDAtXr1aqNLMrVx48a5EhMTXSEhIa62bdu6xo0b59q9e7fRZZnOl19+6ZJ0xuP22293uVy1U9Nnzpzpio+Pd9ntdtewYcNcO3bsMLZoE/ip+15WVua6+uqrXa1bt3YFBwe7UlJSXJMnT3bl5uYaXXaTd7Z7Lsm1ZMkS9znl5eWue+65x9WiRQtXeHi46/rrr3fl5OQYV7QJnO++Z2dnuy6//HJXy5YtXXa73XXRRRe5HnroIVdRUZFH72M59WYAAACmxRgeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAIZZvny5LBbLGZsx+ktWVpa6d+8uh8Nx3nOXLVum3r17y+l0+qEyAN5G4AHgF1deeaXuv//+escGDx6snJwcxcTEGFLTww8/rMcee0w2m+28544cOVLBwcF69dVX/VAZAG8j8AAwTEhIiBISEmSxWPz+3itXrtSePXt0ww03NPiaiRMn6umnn/ZhVQB8hcADwOcmTpyoFStW6C9/+YssFossFov2799/RpfW0qVLFRsbqw8++EBdu3ZVeHi4fvnLX6qsrEwvv/yyUlNT1aJFC9133331uqEqKyv14IMPqm3btoqIiFBGRoaWL1/+kzW98cYbuuqqqxQaGuo+9v3332vo0KGKiopSdHS0+vXrp3Xr1rmfHzNmjNatW6c9e/Z49f4A8L0gowsAYH5/+ctftHPnTvXs2VNz586VJLVu3Vr79+8/49yysjI9/fTTeuONN1RSUqKxY8fq+uuvV2xsrD766CPt3btXN9xwg4YMGaJx48ZJku69915t3bpVb7zxhpKSkvTOO+9o5MiR+uGHH9S5c+ez1vT111/r1ltvrXds/Pjx6tOnj5577jnZbDZt2rRJwcHB7ufbt2+v+Ph4ff311+rUqZOX7g4AfyDwAPC5mJgYhYSEKDw8XAkJCT95bnV1tZ577jl3oPjlL3+pV155RXl5eYqMjFSPHj00dOhQffnllxo3bpyys7O1ZMkSZWdnKykpSZL04IMPatmyZVqyZInmzZt31vc5cOCA+/w62dnZeuihh9StWzdJOmtYSkpK0oEDBzy+BwCMReABEFDCw8PrtZ7Ex8crNTVVkZGR9Y7l5+dLkn744Qc5HA516dKl3utUVlaqVatW53yf8vLyet1ZkpSZmak777xTr7zyioYPH64bb7zxjJacsLAwlZWVNfr3A2AMAg+AgPKfXUiSZLFYznqsbnr4yZMnZbPZtH79+jNmW/1nSPq/4uLidOLEiXrHHn/8cd1666368MMP9fHHH2v27Nl64403dP3117vPOX78uFq3bt2o3w2AcQg8APwiJCSkQevdeKpPnz5yOBzKz8/XZZdd5tF1W7duPeN4ly5d1KVLF02fPl233HKLlixZ4g48FRUV2rNnj/r06eO1+gH4B7O0APhFamqq1qxZo/379+vo0aNeW8CvS5cuGj9+vCZMmKC3335b+/bt09q1azV//nx9+OGH57xuxIgRWrlypfvv5eXluvfee7V8+XIdOHBA33zzjb777jt1797dfc7q1atlt9s1aNAgr9QOwH8IPAD84sEHH5TNZlOPHj3UunVrZWdne+21lyxZogkTJuiBBx5Q165ddd111+m7775T+/btz3nN+PHj9eOPP2rHjh2SJJvNpmPHjmnChAnq0qWLbrrpJo0aNUpz5sxxX/P6669r/PjxCg8P91rtAPzD4nK5XEYXAQBGeOihh1RcXKy//e1v5z336NGj6tq1q9atW6cOHTr4oToA3kQLD4Bm69FHH1VKSkqDutf279+vZ599lrADNFG08AAAANOjhQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJje/wfWATbFLP4y6gAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\dae\\petsc_pid_doc_23_0.png" - } - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "a = plt.plot(tj.time, tj.get_vec(m.fs.valve_1.valve_opening[24]))\n", "a = plt.ylabel(\"valve 1 fraction open\")\n", @@ -4706,22 +422,7 @@ "cell_type": "code", "execution_count": 17, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAGwCAYAAABxbMuTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABY7ElEQVR4nO3de1xUdf4/8NfMwAzXGS5yEblIohheE1ec3Owiicq2mtZaWZGX0tbalE2NtrTa3fCr21ctzWr9fbXdMlO/ufvNaywqpeINRckLpaJYMKACM8idmc/vD+ToBCaTM3NgeD0fj3nonPOZc96cHZdXn8/nfI5CCCFARERERHanlLsAIiIiIlfFoEVERETkIAxaRERERA7CoEVERETkIAxaRERERA7CoEVERETkIAxaRERERA7iJncBnYnFYkFRURF8fX2hUCjkLoeIiIjaQAiByspKhIWFQam0rY+KQcuJioqKEBERIXcZRERE9AtcvHgR4eHhNn2GQcuJfH19ATT9D6XVamWuhoiIiNrCZDIhIiJC+j1uCwYtJ2oeLtRqtQxaREREHcwvmfbDyfBEREREDsKgRUREROQgDFpEREREDsKgRUREROQgDFpEREREDsKgRUREROQgDFpEREREDsKgRUREROQgDFpEREREDsKgRUREROQgDFpEREREDsKgRUREROQgDFouQAiBvB+MqKiul7sUIiIiugGDlguY8UkOHlq+B5uPF8tdChEREd1A1qC1cuVK9O/fH1qtFlqtFnq9Htu2bbNqk52djQceeADe3t7QarUYPnw4ampqpP1lZWWYNGkStFot/Pz8MHXqVFy9etXqGMePH8c999wDDw8PREREYNGiRS1q2bBhA3r37g0PDw/069cPW7dutdovhMD8+fPRtWtXeHp6IjExEd9//70dr8YvNyjSHwCwhUGLiIioXZE1aIWHh2PhwoXIycnB4cOH8cADD2Ds2LE4ceIEgKaQNWrUKIwcORIHDx7EoUOH8MILL0CpvF72pEmTcOLECWRkZGDz5s34+uuv8dxzz0n7TSYTRo4ciaioKOTk5GDx4sV444038NFHH0lt9u3bh8cffxxTp07F0aNHMW7cOIwbNw7ffvut1GbRokV499138cEHH+DAgQPw9vZGUlISamtrnXClft7ovl0BAAfPl6G2wSxzNURERCQR7Yy/v79YtWqVEEKIhIQE8dprr9207cmTJwUAcejQIWnbtm3bhEKhED/++KMQQoj3339f+Pv7i7q6OqnNvHnzRGxsrPT+d7/7nUhOTrY6dkJCgpg+fboQQgiLxSJCQ0PF4sWLpf0VFRVCo9GIzz77rM0/m9FoFACE0Whs82fawmKxiEFvfSWi5m0WRwvL7XpsIiKizu52fn+3mzlaZrMZ69atQ1VVFfR6PUpLS3HgwAEEBwfj7rvvRkhICO69917s2bNH+kx2djb8/PwwePBgaVtiYiKUSiUOHDggtRk+fDjUarXUJikpCfn5+SgvL5faJCYmWtWTlJSE7OxsAEBBQQEMBoNVG51Oh4SEBKlNa+rq6mAymaxejqBQKNC3mw4A8O2PRoecg4iIiGwne9DKy8uDj48PNBoNZsyYgU2bNiEuLg7nzp0DALzxxht49tlnsX37dgwaNAgjRoyQ5kYZDAYEBwdbHc/NzQ0BAQEwGAxSm5CQEKs2ze9v1ebG/Td+rrU2rUlPT4dOp5NeERERbb8wNooJ9gEAXLhS5bBzEBERkW1kD1qxsbHIzc3FgQMH8PzzzyMlJQUnT56ExWIBAEyfPh2TJ0/GXXfdhSVLliA2Nhb/8z//I3PVbZOWlgaj0Si9Ll686LBzRQZ4AQAKy6oddg4iIiKyjZvcBajVasTExAAA4uPjcejQISxbtgyvvPIKACAuLs6q/Z133onCwkIAQGhoKEpLS632NzY2oqysDKGhoVKbkpISqzbN72/V5sb9zdu6du1q1WbgwIE3/dk0Gg00Gs0troB9XA9aNbdoSURERM4ie4/WT1ksFtTV1aF79+4ICwtDfn6+1f7vvvsOUVFRAAC9Xo+Kigrk5ORI+3fu3AmLxYKEhASpzddff42GhgapTUZGBmJjY+Hv7y+1yczMtDpPRkYG9Ho9ACA6OhqhoaFWbUwmEw4cOCC1kVtEgCcA4Af2aBEREbUfDpic32avvPKKyMrKEgUFBeL48ePilVdeEQqFQnz11VdCCCGWLFkitFqt2LBhg/j+++/Fa6+9Jjw8PMSZM2ekY4waNUrcdddd4sCBA2LPnj2iZ8+e4vHHH5f2V1RUiJCQEPHUU0+Jb7/9Vqxbt054eXmJDz/8UGqzd+9e4ebmJv72t7+JU6dOiQULFgh3d3eRl5cntVm4cKHw8/MT//73v8Xx48fF2LFjRXR0tKipqWnzz+uouw6FEMJUUy+i5m0WUfM2i6q6Brsfn4iIqLO6nd/fsgatKVOmiKioKKFWq0VQUJAYMWKEFLKapaeni/DwcOHl5SX0er345ptvrPZfuXJFPP7448LHx0dotVoxefJkUVlZadXm2LFj4te//rXQaDSiW7duYuHChS1qWb9+vejVq5dQq9WiT58+YsuWLVb7LRaLeP3110VISIjQaDRixIgRIj8/36af15FBy2KxiN6vbRNR8zaL85ev2v34REREndXt/P5WCCGEvH1qnYfJZIJOp4PRaIRWq7X78e9dvAsXrlRjwww9ftU9wO7HJyIi6oxu5/d3u5ujRb9ckE/TxPtSU53MlRARERHAoOVSgrVNQetSpfyPBSIiIiIGLZcS7OsBACitZI8WERFRe8Cg5UKCfK8NHTJoERERtQsMWi6kOWhdYtAiIiJqFxi0XEhz0Lp8lUGLiIioPWDQciH+XmoAQEV1wy1aEhERkTMwaLmQgGtBq6yqXuZKiIiICGDQcil+3u4AgJoGM2obzDJXQ0RERAxaLsRX4wY3pQIAUF7NXi0iIiK5MWi5EIVCAb9rw4flVZynRUREJDcGLRfj79U0fFjBHi0iIiLZMWi5GH/vaxPiGbSIiIhkx6DlYpp7tMq5xAMREZHsGLRcjL80R4s9WkRERHJj0HIxzUOHvOuQiIhIfgxaLkYaOmSPFhERkewYtFyMtLwD52gRERHJjkHLxeg8m3q0TLUMWkRERHJj0HIxUtCqYdAiIiKSG4OWi9F6NPdoNcpcCRERETFouRitpxsAwMgeLSIiItkxaLkY7bWhw/pGC2obzDJXQ0RE1LkxaLkYH7UblIqmv3NCPBERkbwYtFyMUqmAb/M8rRrO0yIiIpITg5YL4jwtIiKi9oFBywVxLS0iIqL2gUHLBUlLPLBHi4iISFYMWi6IQYuIiKh9YNByQc1ztLhoKRERkbwYtFwQH8NDRETUPjBouaDrj+Fh0CIiIpITg5YLal4dnss7EBERyYtBywVJc7S4YCkREZGsGLRcENfRIiIiah8YtFwQl3cgIiJqHxi0XBDnaBEREbUPDFou6PrQYSOEEDJXQ0RE1HkxaLmg5qFDs0Wgut4sczVERESdF4OWC/JwV8JdpQDACfFERERyYtByQQqFQurV4jwtIiIi+TBouSgfj6a1tKrquJYWERGRXBi0XJSvBx8sTUREJDdZg9bKlSvRv39/aLVaaLVa6PV6bNu2Tdp/3333QaFQWL1mzJhhdYzCwkIkJyfDy8sLwcHBmDNnDhobrcPF7t27MWjQIGg0GsTExGDNmjUtalmxYgW6d+8ODw8PJCQk4ODBg1b7a2trMXPmTAQGBsLHxwcTJkxASUmJ/S6GnflomoLWVQYtIiIi2cgatMLDw7Fw4ULk5OTg8OHDeOCBBzB27FicOHFCavPss8+iuLhYei1atEjaZzabkZycjPr6euzbtw8ff/wx1qxZg/nz50ttCgoKkJycjPvvvx+5ubmYNWsWpk2bhh07dkhtPv/8c6SmpmLBggU4cuQIBgwYgKSkJJSWlkptZs+ejS+//BIbNmxAVlYWioqKMH78eAdfoV/O99ocrUoGLSIiIvmIdsbf31+sWrVKCCHEvffeK1566aWbtt26datQKpXCYDBI21auXCm0Wq2oq6sTQggxd+5c0adPH6vPTZw4USQlJUnvhwwZImbOnCm9N5vNIiwsTKSnpwshhKioqBDu7u5iw4YNUptTp04JACI7O7vNP5vRaBQAhNFobPNnfqnZ646KqHmbxYdZZxx+LiIiIld2O7+/280cLbPZjHXr1qGqqgp6vV7a/umnn6JLly7o27cv0tLSUF1dLe3Lzs5Gv379EBISIm1LSkqCyWSSesWys7ORmJhoda6kpCRkZ2cDAOrr65GTk2PVRqlUIjExUWqTk5ODhoYGqza9e/dGZGSk1KY1dXV1MJlMVi9naZ4Mz6FDIiIi+bjJXUBeXh70ej1qa2vh4+ODTZs2IS4uDgDwxBNPICoqCmFhYTh+/DjmzZuH/Px8fPHFFwAAg8FgFbIASO8NBsPPtjGZTKipqUF5eTnMZnOrbU6fPi0dQ61Ww8/Pr0Wb5vO0Jj09HW+++aaNV8Q+OBmeiIhIfrIHrdjYWOTm5sJoNGLjxo1ISUlBVlYW4uLi8Nxzz0nt+vXrh65du2LEiBE4e/YsevToIWPVbZOWlobU1FTpvclkQkREhFPO7aNpmqN1lcs7EBERyUb2oUO1Wo2YmBjEx8cjPT0dAwYMwLJly1ptm5CQAAA4c+YMACA0NLTFnX/N70NDQ3+2jVarhaenJ7p06QKVStVqmxuPUV9fj4qKipu2aY1Go5HuqGx+OUtzj1YlV4YnIiKSjexB66csFgvq6upa3ZebmwsA6Nq1KwBAr9cjLy/P6u7AjIwMaLVaafhRr9cjMzPT6jgZGRnSPDC1Wo34+HirNhaLBZmZmVKb+Ph4uLu7W7XJz89HYWGh1Xyy9qQ5aLFHi4iISD6yDh2mpaVh9OjRiIyMRGVlJdauXYvdu3djx44dOHv2LNauXYsxY8YgMDAQx48fx+zZszF8+HD0798fADBy5EjExcXhqaeewqJFi2AwGPDaa69h5syZ0Gg0AIAZM2Zg+fLlmDt3LqZMmYKdO3di/fr12LJli1RHamoqUlJSMHjwYAwZMgRLly5FVVUVJk+eDADQ6XSYOnUqUlNTERAQAK1WixdffBF6vR5Dhw51/oVrA66jRURE1A444C7INpsyZYqIiooSarVaBAUFiREjRoivvvpKCCFEYWGhGD58uAgICBAajUbExMSIOXPmtLi18vz582L06NHC09NTdOnSRfzxj38UDQ0NVm127dolBg4cKNRqtbjjjjvE6tWrW9Ty3nvvicjISKFWq8WQIUPE/v37rfbX1NSI3//+98Lf3194eXmJhx9+WBQXF9v08zpzeYcD566IqHmbxf2Ldzn8XERERK7sdn5/K4QQQu6w11mYTCbodDoYjUaHz9c6WWTCmHe/QZCvBof+lHjrDxAREVGrbuf3d7ubo0X2wcnwRERE8mPQclHNQau2wYIGs0XmaoiIiDonBi0X5a25fp9DFe88JCIikgWDlotyVynh6a4CwAdLExERyYVBy4X5SPO0GLSIiIjkwKDlwjghnoiISF4MWi7MV8PV4YmIiOTEoOXCfPgYHiIiIlkxaLkwX407AMDEOVpERESyYNByYVKPFoMWERGRLBi0XBgnwxMREcmLQcuFcTI8ERGRvBi0XBiHDomIiOTFoOXCfD04GZ6IiEhODFouzEcaOuQcLSIiIjkwaLkwXz6Ch4iISFYMWi7MlwuWEhERyYpBy4X5XFuwlJPhiYiI5MGg5cI4dEhERCQvBi0X1ry8Q73ZgrpGs8zVEBERdT4MWi7MR+0m/Z29WkRERM7HoOXClErF9SUeGLSIiIicjkHLxfnwMTxERESyYdBycc0T4k18sDQREZHTMWi5OD7vkIiISD4MWi6u+XmHnAxPRETkfAxaLs6Xc7SIiIhkw6Dl4jgZnoiISD4MWi7Oh6vDExERyYZBy8VdfwwP7zokIiJyNgYtF8ehQyIiIvkwaLk4Xy7vQEREJBsGLRfno7m2vAN7tIiIiJyOQcvF+XIyPBERkWwYtFyctDJ8HSfDExERORuDlouTFixljxYREZHTMWi5uBsfwSOEkLkaIiKizoVBy8U1Dx02WgTqGi0yV0NERNS5MGi5OC93FRSKpr9zQjwREZFzMWi5OKVSAR81Fy0lIiKSA4NWJ8DH8BAREcmDQasT8OHq8ERERLJws6WxxWJBVlYWvvnmG1y4cAHV1dUICgrCXXfdhcTERERERDiqTroNzc875OrwREREztWmHq2amhr85S9/QUREBMaMGYNt27ahoqICKpUKZ86cwYIFCxAdHY0xY8Zg//79bT75ypUr0b9/f2i1Wmi1Wuj1emzbtq1FOyEERo8eDYVCgX/9619W+woLC5GcnAwvLy8EBwdjzpw5aGy0DhS7d+/GoEGDoNFoEBMTgzVr1rQ4x4oVK9C9e3d4eHggISEBBw8etNpfW1uLmTNnIjAwED4+PpgwYQJKSkra/LPKyefaEg/s0SIiInKuNgWtXr164fjx4/j73/8Ok8mE7Oxs/O///i8++eQTbN26FYWFhTh79izuuecePPbYY/j73//eppOHh4dj4cKFyMnJweHDh/HAAw9g7NixOHHihFW7pUuXQtF869wNzGYzkpOTUV9fj3379uHjjz/GmjVrMH/+fKlNQUEBkpOTcf/99yM3NxezZs3CtGnTsGPHDqnN559/jtTUVCxYsABHjhzBgAEDkJSUhNLSUqnN7Nmz8eWXX2LDhg3IyspCUVERxo8f36afU26co0VERCQT0QYnT55sSzMhhBD19fXizJkzbW7/U/7+/mLVqlXS+6NHj4pu3bqJ4uJiAUBs2rRJ2rd161ahVCqFwWCQtq1cuVJotVpRV1cnhBBi7ty5ok+fPlbnmDhxokhKSpLeDxkyRMycOVN6bzabRVhYmEhPTxdCCFFRUSHc3d3Fhg0bpDanTp0SAER2dnabfzaj0SgACKPR2ObP2MO8jcdE1LzN4r3M75x6XiIiIldwO7+/29Sjdeedd7Y5uLm7u6NHjx42Bz6z2Yx169ahqqoKer0eAFBdXY0nnngCK1asQGhoaIvPZGdno1+/fggJCZG2JSUlwWQySb1i2dnZSExMtPpcUlISsrOzAQD19fXIycmxaqNUKpGYmCi1ycnJQUNDg1Wb3r17IzIyUmrTmrq6OphMJquXHDhHi4iISB42TYa/UXV1NQoLC1FfX2+1vX///jYdJy8vD3q9HrW1tfDx8cGmTZsQFxcHoGm47u6778bYsWNb/azBYLAKWQCk9waD4WfbmEwm1NTUoLy8HGazudU2p0+flo6hVqvh5+fXok3zeVqTnp6ON9988xZXwPF8OUeLiIhIFjYHrUuXLmHy5MmtTloHmnqmbBEbG4vc3FwYjUZs3LgRKSkpyMrKwpkzZ7Bz504cPXrU1hLbjbS0NKSmpkrvTSaTLHdm+khztBi0iIiInMnmoDVr1ixUVFTgwIEDuO+++7Bp0yaUlJTgL3/5C9555x2bC1Cr1YiJiQEAxMfH49ChQ1i2bBk8PT1x9uzZFr1IEyZMwD333IPdu3cjNDS0xd2BzXcCNg81hoaGtrg7sKSkBFqtFp6enlCpVFCpVK22ufEY9fX1qKiosKrnxjat0Wg00Gg0bb8YDuKr4crwREREcrB5wdKdO3fiv//7vzF48GAolUpERUXhySefxKJFi5Cenn7bBVksFtTV1eGVV17B8ePHkZubK70AYMmSJVi9ejUAQK/XIy8vz+ruwIyMDGi1Wmn4Ua/XIzMz0+ocGRkZ0jwwtVqN+Ph4qzYWiwWZmZlSm/j4eLi7u1u1yc/PR2FhodSmPeOCpURERPKwuUerqqoKwcHBAAB/f39cunQJvXr1Qr9+/XDkyBGbjpWWlobRo0cjMjISlZWVWLt2LXbv3o0dO3YgNDS01d6iyMhIREdHAwBGjhyJuLg4PPXUU1i0aBEMBgNee+01zJw5U+pJmjFjBpYvX465c+diypQp2LlzJ9avX48tW7ZIx0xNTUVKSgoGDx6MIUOGYOnSpaiqqsLkyZMBADqdDlOnTkVqaioCAgKg1Wrx4osvQq/XY+jQobZeQqdrXt7BxOUdiIiInMrmoBUbG4v8/Hx0794dAwYMwIcffoju3bvjgw8+QNeuXW06VmlpKZ5++mkUFxdDp9Ohf//+2LFjBx588ME2fV6lUmHz5s14/vnnodfr4e3tjZSUFLz11ltSm+joaGzZsgWzZ8/GsmXLEB4ejlWrViEpKUlqM3HiRFy6dAnz58+HwWDAwIEDsX37dqsJ8kuWLIFSqcSECRNQV1eHpKQkvP/++zb9vHLx4dAhERGRLBRCCGHLBz755BM0NDRg8uTJyMnJwahRo1BWVga1Wo01a9Zg4sSJjqq1wzOZTNDpdDAajdBqtU4775nSSiT+99fw83JH7vyRTjsvERGRK7id398292g9+eST0t/j4+Nx4cIFnD59GpGRkejSpYuthyMn8NFcX95BCNHqKvtERERkf22eDF9VVYXnn38e3bp1Q1BQEB577DFcunQJXl5eGDRoEENWO9Y8R6vRIlDbYJG5GiIios6jzUHr9ddfxz//+U/85je/wRNPPIGdO3fiueeec2RtZCdeahWaO7Eq6zghnoiIyFnaPHS4adMmrF69Go8++igA4Omnn8bQoUPR2NgIN7dfvMA8OYFCoYCPxg2VtY24WtuIYF+5KyIiIuoc2tyj9cMPP2DYsGHS++a1pYqKihxSGNmXtvkxPLzzkIiIyGnaHLQsFgvc3d2ttrm5udn8yB2Sh/RgaS5aSkRE5DRtHvMTQmDEiBFWw4TV1dV46KGHoFarpW22LlpKzsHnHRIRETlfm4PWggULWmwbO3asXYshx+GipURERM53W0GLOg5fqUeLdx0SERE5i80PlaaOyZcPliYiInK6NgWtUaNGYf/+/bdsV1lZif/6r//CihUrbrswsi8OHRIRETlfm4YOH330UUyYMAE6nQ4PPfQQBg8ejLCwMHh4eKC8vBwnT57Enj17sHXrViQnJ2Px4sWOrpts1PwYnkoGLSIiIqdpU9CaOnUqnnzySWzYsAGff/45PvroIxiNRgBNi2HGxcUhKSkJhw4dwp133unQgumX8eVdh0RERE7X5snwGo0GTz75pPRQaaPRiJqaGgQGBrZYX4vaHx9pjhYnwxMRETnLL352jk6ng06ns2ct5EC+nKNFRETkdLzrsJPggqVERETOx6DVSfhee9YhgxYREZHzMGh1ElzegYiIyPkYtDoJacHSukYIIWSuhoiIqHP4RUGroqICq1atQlpaGsrKygA0PUz6xx9/tGtxZD/NQctsEahpMMtcDRERUedg812Hx48fR2JiInQ6Hc6fP49nn30WAQEB+OKLL1BYWIh//OMfjqiTbpOnuwpKBWARTY/h8VL/4htOiYiIqI1s7tFKTU3FM888g++//x4eHh7S9jFjxuDrr7+2a3FkPwqFQpqnxdXhiYiInMPmoHXo0CFMnz69xfZu3brBYDDYpShyjOY7D/lgaSIiIuewOWhpNBqYTKYW27/77jsEBQXZpShyDD6Gh4iIyLlsDlq//e1v8dZbb6GhoelRLgqFAoWFhZg3bx4mTJhg9wLJfq4v8cDH8BARETmDzUHrnXfewdWrVxEcHIyamhrce++9iImJga+vL/761786okayE64OT0RE5Fw233qm0+mQkZGBvXv34tixY7h69SoGDRqExMRER9RHdsRFS4mIiJzLpqDV0NAAT09P5ObmYtiwYRg2bJij6iIH4GN4iIiInMumoUN3d3dERkbCbOaClx3RjavDExERkePZPEfrT3/6E1599VVpRXjqOKR1tNijRURE5BQ2z9Favnw5zpw5g7CwMERFRcHb29tq/5EjR+xWHNnX9eUdeNchERGRM9gctMaNG+eAMsgZOBmeiIjIuWwOWgsWLHBEHeQE0hwtDh0SERE5hc1ztKjj8tFcewQPe7SIiIicwuYeLaVSCYVCcdP9vCOx/eIjeIiIiJzL5qC1adMmq/cNDQ04evQoPv74Y7z55pt2K4zsz4eT4YmIiJzK5qA1duzYFtseeeQR9OnTB59//jmmTp1ql8LI/nxvmAwvhPjZnkkiIiK6fXabozV06FBkZmba63DkAM09WhYB1DRwiJeIiMjR7BK0ampq8O6776Jbt272OBw5iKe7CiplUy8W52kRERE5ns1Dh/7+/lZDTkIIVFZWwsvLC5988oldiyP7UigU8NG4wVjTgMraRoRo5a6IiIjItdkctJYsWWIVtJRKJYKCgpCQkAB/f3+7Fkf21xy0uMQDERGR49kctJ555hkHlEHOwkVLiYiInMfmOVrbt2/Hnj17pPcrVqzAwIED8cQTT6C8vNyuxZH98XmHREREzmNz0JozZw5MJhMAIC8vD6mpqRgzZgwKCgqQmppq07FWrlyJ/v37Q6vVQqvVQq/XY9u2bdL+6dOno0ePHvD09ERQUBDGjh2L06dPWx2jsLAQycnJ8PLyQnBwMObMmYPGRuvemt27d2PQoEHQaDSIiYnBmjVrWtSyYsUKdO/eHR4eHkhISMDBgwet9tfW1mLmzJkIDAyEj48PJkyYgJKSEpt+3vag+XmHlRw6JCIicjibg1ZBQQHi4uIAAP/7v/+Lhx56CG+//TZWrFhhFZLaIjw8HAsXLkROTg4OHz6MBx54AGPHjsWJEycAAPHx8Vi9ejVOnTqFHTt2QAiBkSNHSqvPm81mJCcno76+Hvv27cPHH3+MNWvWYP78+Vb1Jicn4/7770dubi5mzZqFadOmYceOHVKbzz//HKmpqViwYAGOHDmCAQMGICkpCaWlpVKb2bNn48svv8SGDRuQlZWFoqIijB8/3tbLJzsfj2uP4eHQIRERkeMJG/n7+4sTJ04IIYQYNmyY+PDDD4UQQhQUFAhPT09bD9fq8VetWtXqvmPHjgkA4syZM0IIIbZu3SqUSqUwGAxSm5UrVwqtVivq6uqEEELMnTtX9OnTx+o4EydOFElJSdL7IUOGiJkzZ0rvzWazCAsLE+np6UIIISoqKoS7u7vYsGGD1ObUqVMCgMjOzm7zz2Y0GgUAYTQa2/wZe0v74riImrdZLM34TrYaiIiIOpLb+f1tc4/Wr3/9a6SmpuLPf/4zDh48iOTkZADAd999h/Dw8F8c+MxmM9atW4eqqiro9foW+6uqqrB69WpER0cjIiICAJCdnY1+/fohJCREapeUlASTyST1imVnZyMxMdHqWElJScjOzgYA1NfXIycnx6qNUqlEYmKi1CYnJwcNDQ1WbXr37o3IyEipTWvq6upgMpmsXnLjHC0iIiLnsTloLV++HG5ubti4cSNWrlwpLVK6bds2jBo1yuYC8vLy4OPjA41GgxkzZmDTpk3S0CQAvP/++/Dx8YGPjw+2bduGjIwMqNVqAIDBYLAKWQCk9waD4WfbmEwm1NTU4PLlyzCbza22ufEYarUafn5+N23TmvT0dOh0OunVHBDlpL02dGhi0CIiInI4m5d3iIyMxObNm1tsX7JkyS8qIDY2Frm5uTAajdi4cSNSUlKQlZUlha1JkybhwQcfRHFxMf72t7/hd7/7Hfbu3QsPD49fdD5nSktLs7pBwGQyyR62tJ7XglYN52gRERE5ms09WkeOHEFeXp70/t///jfGjRuHV199FfX19TYXoFarERMTg/j4eKSnp2PAgAFYtmyZtF+n06Fnz54YPnw4Nm7ciNOnT2PTpk0AgNDQ0BZ3/jW/Dw0N/dk2Wq0Wnp6e6NKlC1QqVattbjxGfX09KioqbtqmNRqNRrqjsvklN+21oUP2aBERETmezUFr+vTp+O677wAA586dw2OPPQYvLy9s2LABc+fOve2CLBYL6urqWt0nhIAQQtqv1+uRl5dndXdgRkYGtFqt1COm1+tbPOw6IyNDmgemVqsRHx9v1cZisSAzM1NqEx8fD3d3d6s2+fn5KCwsbHU+WXsm9WgxaBERETmerbPntVqtdNffwoULxciRI4UQQuzZs0eEh4fbdKxXXnlFZGVliYKCAnH8+HHxyiuvCIVCIb766itx9uxZ8fbbb4vDhw+LCxcuiL1794qHHnpIBAQEiJKSEiGEEI2NjaJv375i5MiRIjc3V2zfvl0EBQWJtLQ06Rznzp0TXl5eYs6cOeLUqVNixYoVQqVSie3bt0tt1q1bJzQajVizZo04efKkeO6554Sfn5/V3YwzZswQkZGRYufOneLw4cNCr9cLvV5v08/bHu46PHz+ioiat1nc8187ZauBiIioI7md3982z9ESQsBisQAA/vOf/+A3v/kNACAiIgKXL1+26VilpaV4+umnUVxcDJ1Oh/79+2PHjh148MEHUVRUhG+++QZLly5FeXk5QkJCMHz4cOzbtw/BwcEAAJVKhc2bN+P555+HXq+Ht7c3UlJS8NZbb0nniI6OxpYtWzB79mwsW7YM4eHhWLVqFZKSkqQ2EydOxKVLlzB//nwYDAYMHDgQ27dvt5ogv2TJEiiVSkyYMAF1dXVISkrC+++/b+vlk13zZHjedUhEROR4CiGEsOUDDzzwACIiIpCYmIipU6fi5MmTiImJQVZWFlJSUnD+/HkHldrxmUwm6HQ6GI1G2eZrlZhqkfB2JlRKBc78dbTVA8KJiIiopdv5/W3zHK2lS5fiyJEjeOGFF/CnP/0JMTExAICNGzfi7rvvtvVw5GTNPVpmi0B1vVnmaoiIiFybzUOH/fv3t7rrsNnixYuhUqnsUhQ5joe7Eu4qBRrMAqbaBnhrbP4KEBERURvZ3KMFABUVFVi1ahXS0tJQVlYGADh58qTV3X/UPikUiuuLlnItLSIiIoeyuTvj+PHjGDFiBPz8/HD+/Hk8++yzCAgIwBdffIHCwkL84x//cESdZEe+Hm64UlXPJR6IiIgczOYerdTUVEyePBnff/+91ersY8aMwddff23X4sgxmtfS4p2HREREjmVz0Dp06BCmT5/eYnu3bt1+9rl/1H5w6JCIiMg5bA5aGo0GJpOpxfbvvvsOQUFBdimKHEvrycfwEBEROYPNQeu3v/0t3nrrLTQ0NP2SVigUKCwsxLx58zBhwgS7F0j2d71Hi0GLiIjIkWwOWu+88w6uXr2K4OBg1NTU4N5770VMTAx8fX3x17/+1RE1kp1df94hhw6JiIgcyea7DnU6HTIyMrB3714cO3YMV69exaBBg5CYmOiI+sgBfK+tncUeLSIiIseyKWg1NDTA09MTubm5GDZsGIYNG+aousiBrvdoMWgRERE5kk1Dh+7u7oiMjITZzEe3dGTNk+ErOXRIRETkUDbP0frTn/6EV199VVoRnjoeToYnIiJyDpvnaC1fvhxnzpxBWFgYoqKi4O3tbbX/yJEjdiuOHIOT4YmIiJzD5qA1btw4B5RBzsQeLSIiIuewOWgtWLDAEXWQE/l6XF+wVAgBhUIhc0VERESuyeag1ezw4cM4deoUACAuLg7x8fF2K4ocq3nosMEsUNtggadaJXNFRERErsnmoPXDDz/g8ccfx969e+Hn5wcAqKiowN13341169YhPDzc3jWSnXmrVVAqAItoerA0gxYREZFj2HzX4bRp09DQ0IBTp06hrKwMZWVlOHXqFCwWC6ZNm+aIGsnOFAoF19IiIiJyApt7tLKysrBv3z7ExsZK22JjY/Hee+/hnnvusWtx5DhaD3dUVDfAWMM7D4mIiBzF5h6tiIgI6YHSNzKbzQgLC7NLUeR4zYuWskeLiIjIcWwOWosXL8aLL76Iw4cPS9sOHz6Ml156CX/729/sWhw5jq+GSzwQERE5ms1Dh8888wyqq6uRkJAAN7emjzc2NsLNzQ1TpkzBlClTpLZcPb79ut6jxaFDIiIiR7E5aC1dutQBZZCzNS9aWsmhQyIiIoexOWilpKQ4og5yMumuQ06GJyIichib52iRa5Aew8MeLSIiIodh0OqkmudoGasZtIiIiByFQauT8vNq6tEy8q5DIiIih2HQ6qT8PNUAgIqaepkrISIicl02B61du3bddN+KFStuqxhyHt21Hq0KDh0SERE5jM1Ba/z48cjJyWmxfdmyZUhLS7NLUeR4ftfuOuQcLSIiIsf5RSvDjx49GqdPn5a2vfPOO5g/fz62bNli1+LIcfy8moYOK+sa0WC2yFwNERGRa7J5Ha1p06ahrKwMiYmJ2LNnDz7//HO8/fbb2Lp1K4YNG+aIGskBtB7X/6c31TQg0EcjYzVERESuyeagBQBz587FlStXMHjwYJjNZuzYsQNDhw61d23kQG4qJXw93FBZ24gKBi0iIiKHaFPQevfdd1ts69atG7y8vDB8+HAcPHgQBw8eBAD84Q9/sG+F5DB+Xu5NQYvztIiIiByiTUFryZIlrW5XqVTYu3cv9u7dCwBQKBQMWh2In6caF1EDI5d4ICIicog2Ba2CggJH10Ey4KKlREREjsUFSzsxnSfX0iIiInIkmyfDm81mrFmzBpmZmSgtLYXFYr00wM6dO+1WHDmWHxctJSIiciibg9ZLL72ENWvWIDk5GX379oVCoXBEXeQEzY/h4dAhERGRY9gctNatW4f169djzJgxjqiHnOh6jxYnwxMRETmCzXO01Go1YmJiHFELOZk0R4s9WkRERA5hc9D64x//iGXLlkEI4Yh6yImaH8PDOVpERESOYXPQ2rNnDz799FP06NEDDz30EMaPH2/1ssXKlSvRv39/aLVaaLVa6PV6bNu2DQBQVlaGF198EbGxsfD09ERkZCT+8Ic/wGg0Wh2jsLAQycnJ8PLyQnBwMObMmYPGxkarNrt378agQYOg0WgQExODNWvWtKhlxYoV6N69Ozw8PJCQkCAtwNqstrYWM2fORGBgIHx8fDBhwgSUlJTY9PO2N809WpyjRURE5Bg2z9Hy8/PDww8/bJeTh4eHY+HChejZsyeEEPj4448xduxYHD16FEIIFBUV4W9/+xvi4uJw4cIFzJgxA0VFRdi4cSOApjsgk5OTERoain379qG4uBhPP/003N3d8fbbbwNoWgMsOTkZM2bMwKefforMzExMmzYNXbt2RVJSEgDg888/R2pqKj744AMkJCRg6dKlSEpKQn5+PoKDgwEAs2fPxpYtW7BhwwbodDq88MILGD9+vLRYa0fEOVpEREQOJtoZf39/sWrVqlb3rV+/XqjVatHQ0CCEEGLr1q1CqVQKg8EgtVm5cqXQarWirq5OCCHE3LlzRZ8+fayOM3HiRJGUlCS9HzJkiJg5c6b03mw2i7CwMJGeni6EEKKiokK4u7uLDRs2SG1OnTolAIjs7Oyb/iy1tbXCaDRKr4sXLwoAwmg0tvVyOFSJsUZEzdssol/ZLMxmi9zlEBERtUtGo/EX//5uNwuWms1mrFu3DlVVVdDr9a22MRqN0Gq1cHNr6ojLzs5Gv379EBISIrVJSkqCyWTCiRMnpDaJiYlWx0lKSkJ2djYAoL6+Hjk5OVZtlEolEhMTpTY5OTloaGiwatO7d29ERkZKbVqTnp4OnU4nvSIiImy5JA6nvTZ0aBFAZV3jLVoTERGRrWweOgSAjRs3Yv369SgsLER9vfWw05EjR2w6Vl5eHvR6PWpra+Hj44NNmzYhLi6uRbvLly/jz3/+M5577jlpm8FgsApZAKT3BoPhZ9uYTCbU1NSgvLwcZrO51TanT5+WjqFWq+Hn59eiTfN5WpOWlobU1FTpvclkaldhy8NdBU93FWoazDBWN0hztoiIiMg+bO7RevfddzF58mSEhITg6NGjGDJkCAIDA3Hu3DmMHj3a5gJiY2ORm5uLAwcO4Pnnn0dKSgpOnjxp1cZkMiE5ORlxcXF44403bD6HXDQajTTRv/nV3kjztPhgaSIiIruzOWi9//77+Oijj/Dee+9BrVZj7ty5yMjIaPWOwLZoXpcrPj4e6enpGDBgAJYtWybtr6ysxKhRo+Dr64tNmzbB3f16r0toaGiLO/+a34eGhv5sG61WC09PT3Tp0gUqlarVNjceo76+HhUVFTdt01HxeYdERESOY3PQKiwsxN133w0A8PT0RGVlJQDgqaeewmeffXbbBVksFtTV1QFo6skaOXIk1Go1/u///g8eHh5WbfV6PfLy8lBaWipty8jIgFarlYYf9Xo9MjMzrT6XkZEhzQNTq9WIj4+3amOxWJCZmSm1iY+Ph7u7u1Wb/Px8FBYW3nQ+WUdxvUeLQYuIiMjebJ6jFRoairKyMkRFRSEyMhL79+/HgAEDUFBQYPMipmlpaRg9ejQiIyNRWVmJtWvXYvfu3dixY4cUsqqrq/HJJ5/AZDLBZDIBAIKCgqBSqTBy5EjExcXhqaeewqJFi2AwGPDaa69h5syZ0Gg0AIAZM2Zg+fLlmDt3LqZMmYKdO3di/fr12LJli1RHamoqUlJSMHjwYAwZMgRLly5FVVUVJk+eDADQ6XSYOnUqUlNTERAQAK1WixdffBF6vR5Dhw619RK2K9LzDrnEAxERkf3Zepvi1KlTxRtvvCGEEGL58uXC09NTJCYmCj8/PzFlyhSbjjVlyhQRFRUl1Gq1CAoKEiNGjBBfffWVEEKIXbt2CQCtvgoKCqRjnD9/XowePVp4enqKLl26iD/+8Y/S8g/Ndu3aJQYOHCjUarW44447xOrVq1vU8t5774nIyEihVqvFkCFDxP79+63219TUiN///vfC399feHl5iYcfflgUFxfb9PPezu2hjjJv4zERNW+zePc/38ldChERUbt0O7+/FULY1g1lsVhgsVikJRbWrVuHffv2oWfPnpg+fTrUarVdg6ArMZlM0Ol00jIV7UH6tlP4MOscpv46Gq//puXdnkRERJ3d7fz+tnno8IcffrBaouCxxx7DY489BiEELl68iMjISFsPSTJqHjrkZHgiIiL7s3kyfHR0NC5dutRie1lZGaKjo+1SFDlP82R4I5d3ICIisjubg5YQAgqFosX2q1evtrgrkNo/v2vLO5SzR4uIiMju2jx02LzCuUKhwOuvvw4vLy9pn9lsxoEDBzBw4EC7F0iO5efVNHRYzrsOiYiI7K7NQevo0aMAmnq08vLyrCa9q9VqDBgwAC+//LL9KySHCvRp+t+xrIpBi4iIyN7aHLR27doFAJg8eTKWLVvWbu6ao9vjf61Hy1jTgEazBW6qdvOccSIiog7P5rsOV69e7Yg6SCb+1ybDC9G0OnwXH43MFREREbkOdl90cm4qpfS8w3IOHxIREdkVgxYh0Ltp+PAKgxYREZFdMWgRArw5IZ6IiMgRGLQI/gxaREREDsGgRdLQIYMWERGRfTFoEXu0iIiIHIRBi9ijRURE5CAMWiQtWsqgRUREZF8MWoQAPoaHiIjIIRi0iEOHREREDsKgRdeHDqvrIYSQuRoiIiLXwaBFCLw2dFjfaEFVvVnmaoiIiFwHgxbB010FjVvTV6HsKocPiYiI7IVBi6BQKK7P06pm0CIiIrIXBi0CcOOdh3UyV0JEROQ6GLQIwI1raTXIXAkREZHrYNAiAEAXHw0A4PJV9mgRERHZC4MWAQC6XBs6vFzJoEVERGQvDFoEAAjyberRusQeLSIiIrth0CIA14MWhw6JiIjsh0GLAABBPh4AgEscOiQiIrIbBi0CAHTxbZqjxaBFRERkPwxaBAAIunbXYXl1AxrMFpmrISIicg0MWgSgaR0tlVIBALjCx/AQERHZBYMWAQCUSoW0xAOHD4mIiOyDQYskvPOQiIjIvhi0SNK8Ojx7tIiIiOyDQYskzRPiuWgpERGRfTBokURaHZ49WkRERHbBoEUSPoaHiIjIvhi0SMI5WkRERPbFoEUS6a5DBi0iIiK7YNAiCYcOiYiI7ItBiyTNQauythG1DWaZqyEiIur4GLRI4qtxg8at6StRamKvFhER0e1i0CKJQqFAV50HAMBgqpW5GiIioo5P1qC1cuVK9O/fH1qtFlqtFnq9Htu2bZP2f/TRR7jvvvug1WqhUChQUVHR4hhlZWWYNGkStFot/Pz8MHXqVFy9etWqzfHjx3HPPffAw8MDERERWLRoUYvjbNiwAb1794aHhwf69euHrVu3Wu0XQmD+/Pno2rUrPD09kZiYiO+//94+F6IdCb0WtIqNNTJXQkRE1PHJGrTCw8OxcOFC5OTk4PDhw3jggQcwduxYnDhxAgBQXV2NUaNG4dVXX73pMSZNmoQTJ04gIyMDmzdvxtdff43nnntO2m8ymTBy5EhERUUhJycHixcvxhtvvIGPPvpIarNv3z48/vjjmDp1Ko4ePYpx48Zh3Lhx+Pbbb6U2ixYtwrvvvosPPvgABw4cgLe3N5KSklBb61o9P111ngAAg9G1fi4iIiJZiHbG399frFq1ymrbrl27BABRXl5utf3kyZMCgDh06JC0bdu2bUKhUIgff/xRCCHE+++/L/z9/UVdXZ3UZt68eSI2NlZ6/7vf/U4kJydbHTshIUFMnz5dCCGExWIRoaGhYvHixdL+iooKodFoxGeffXbTn6W2tlYYjUbpdfHiRQFAGI3GNl4N51u47ZSImrdZLPj3t3KXQkRE1C4YjcZf/Pu73czRMpvNWLduHaqqqqDX69v0mezsbPj5+WHw4MHStsTERCiVShw4cEBqM3z4cKjVaqlNUlIS8vPzUV5eLrVJTEy0OnZSUhKys7MBAAUFBTAYDFZtdDodEhISpDatSU9Ph06nk14RERFt+rnkJM3RYo8WERHRbZM9aOXl5cHHxwcajQYzZszApk2bEBcX16bPGgwGBAcHW21zc3NDQEAADAaD1CYkJMSqTfP7W7W5cf+Nn2utTWvS0tJgNBql18WLF9v0c8kpVHttjhYnwxMREd02N7kLiI2NRW5uLoxGIzZu3IiUlBRkZWW1OWy1ZxqNBhqNRu4ybHJ9jhYnwxMREd0u2Xu01Go1YmJiEB8fj/T0dAwYMADLli1r02dDQ0NRWlpqta2xsRFlZWUIDQ2V2pSUlFi1aX5/qzY37r/xc621cRXNdx2WVtahwWyRuRoi57FYBM5euoojheX4rqQS9Y38/hPR7ZM9aP2UxWJBXV3bFsvU6/WoqKhATk6OtG3nzp2wWCxISEiQ2nz99ddoaGiQ2mRkZCA2Nhb+/v5Sm8zMTKtjZ2RkSHPFoqOjERoaatXGZDLhwIEDbZ5P1lEEeqvhrlJACD5cmjqHiup6pG89hSFv/wcj3snC+Pf3YeSSr9FnwXZMWXMIW44Xw2wRcpdJRB2UrEOHaWlpGD16NCIjI1FZWYm1a9di9+7d2LFjB4CmuVEGgwFnzpwB0DSfy9fXF5GRkQgICMCdd96JUaNG4dlnn8UHH3yAhoYGvPDCC3jssccQFhYGAHjiiSfw5ptvYurUqZg3bx6+/fZbLFu2DEuWLJHqeOmll3DvvffinXfeQXJyMtatW4fDhw9LS0AoFArMmjULf/nLX9CzZ09ER0fj9ddfR1hYGMaNG+fci+ZgSqUCIVoP/FBeg2JjLcL8POUuichhDpy7gt9/egRXquoBAJ7uKgT6qGGsbkBlXSN2ni7FztOl6BnsgzlJsXgwLgQKhULmqomoQ3HAXZBtNmXKFBEVFSXUarUICgoSI0aMEF999ZW0f8GCBQJAi9fq1aulNleuXBGPP/648PHxEVqtVkyePFlUVlZanefYsWPi17/+tdBoNKJbt25i4cKFLWpZv3696NWrl1Cr1aJPnz5iy5YtVvstFot4/fXXRUhIiNBoNGLEiBEiPz/fpp/3dm4PdaZHVu4VUfM2i83HiuQuhchhMk4YRI+0LSJq3maR+M5usePbYlHXYBZCNP17/85gEou2nxL9FmwXUfM2i6h5m8WzHx8SBmONzJUTkbPdzu9vhRCCfeJOYjKZoNPpYDQaodVq5S7npl787Ci+PFaE15LvxLR77pC7HCK7O1pYjsc+2o+6RgvG9AvFO48OhKda1WpbY00DPsw6i4++PodGi4DWww1/e3QARvZxrfmZRHRzt/P7u93N0SL5dZUew8MlHsj1mGob8OJnR1HXaMGI3sF497G7bhqyAEDn6Y65o3pj8x9+jf7hOphqG/HcP3Pw580nOWGeiG6JQYtaaF5Li4uWkit6e8sp/FBeg4gATyx5bCDcVG37v8HeoVpsnHE3pv06GgDw//YU4NEPs3GxrNqR5RJRB8egRS105YOlyUUdLSzHukNNCwe/8+hAaD3cbfq82k2J134Th4+eiofWww3HLlYg+d1v8J+TJbf+MBF1Sgxa1ELXa3caFlWwR4tchxACf91yCgAwflA3DIkO+MXHGtknFFv+cA8GRPjBVNuIaf84jHe+yucyEETUAoMWtRDu3xS0SiprUddolrkaIvvYc+YyDl8oh9pNiblJvW/7eBEBXtgwXY9n7u4OAHhv5xn8Yd3R2z4uEbkWBi1qIdBbDU93FYRgrxa5juU7m9bjezIhSnoCwu1Suynxxm/7YOnEgXBXKbDleDEOnS+zy7GJyDUwaFELCoUCEQFNvVqc6Euu4LTBhAMFZVApFXhuuP2XLBl3Vzc8Eh8OAHh/1xm7H5+IOi4GLWpVuL8XAOBiOYMWdXyf7L8AAEjqE2K33qyfmj68B5QKYFf+JZwoMjrkHETU8TBoUasi/Jt7tHjnIXVslbUN2HTkRwDAk0OjHHae7l28kdy/6dFfK3efddh5iKhjYdCiVkUEsEeLXMOmoz+iqt6MmGAf6O8IdOi5pl8bltxxwoCya89PJKLOjUGLWtU8dPgD52hRB7f2QCEA4KmhUQ5/IHTfbjr07aZFg1ng37k/OvRcRNQxMGhRq6TJ8OUcOqSO6/uSSpw2VMJdpcC4gd2ccs5HBjVNit+Y84NTzkdE7RuDFrWqeeiwrKoeV+saZa6G6Jf58ngxAOCenkHQedm2CvwvNXZgN7irFDhRZMKpYpNTzklE7ReDFrVK6+GOQG81AOD85SqZqyGynRACm48XAQAeGtDVaef191bjgd7BAICtecVOOy8RtU8MWnRT0V28AQAFDFrUAZ0sNuHcpSqo3ZRIvDPEqece3bcp2G3/1uDU8xJR+8OgRTfFoEUd2eZrw4b3xwbB18aHR9+u+3sHw12lwPelV3Gm9KpTz01E7QuDFt1UdFBT0Dp3ib8oqONp7k36zbW1rZxJ5+mOu3t0AdC01AMRdV4MWnRTd7BHizqogstVKLhcBTelAvfFBslSw6i+oQAYtIg6OwYtuqnoLj4AgHOXqyCEkLkaorbbnV8KABjc3d/pw4bNHowLgUIBHP/BiB8ruEwKUWfFoEU3FRXoBYUCqKxtxBWuck0dyO78SwCA+2ODZauhi48Gv+oeAADYwUnxRJ0WgxbdlIe7CmG6poVLOXxIHUVNvRn7z10BANwnY9ACgFF9moYPefchUefFoEU/q0dw0/Dh9yWcEE8dw/5zV1DXaEGYzgO9QnxkrSXp2jytQxfKUFpZK2stRCQPBi36WbHXflHlG7jCNXUMzfOz7o0NdvizDW+lm58nBkT4QQhgx4kSWWshInkwaNHPig3VAgBOGyplroTo1oQQ2CXNz5LnbsOfGt23efiQq8QTdUYMWvSzeof6AgDySyp55yG1ewWXq1BYVg13lQJ3x3SRuxwA14PW/nNlKONNJUSdDoMW/ayYYB8oFUBFdQNKK+vkLofoZzX3Zg2JDoCPxk3mappEBXojrqsWZotAxklOiifqbBi06Gd5uKvQ/drCpRw+pPaueX7Wfb3kvdvwp5p7tbbx7kOiTodBi25JGj7khHhqx6rrG3GgoAwAcH/v9jE/q9nofk0Pmd575jKMNQ0yV0NEzsSgRbcUG3JtQnwxe7So/co+ewX1jRZ08/NEjyB5l3X4qZhgH/QM9kGDWeA/J3n3IVFnwqBFt9QvvCloHfuhQt5CiH5G82rw98UGyb6sQ2uS+zf1av0r90eZKyEiZ2LQolsaEO4HADh7qQqmWg57UPvTtKxD0/wsOR+783MmDAoHAOw5cxlFfPYhUafBoEW3FOijQURA06N48n4wylwNUUtnL1Xhh/IaqFVK3B0TKHc5rYoI8MLQOwIgBPDFkR/kLoeInIRBi9qkuVcr92KFrHUQtab5bsOEOwLgpW4fyzq05pH4CADAxpwfuC4dUSfBoEVtMjDCDwBwjEGL2qHm+Vn39mpfdxv+1Jh+ofBWq3D+SjUOXyiXuxwicgIGLWqTAdeCVu7FCv6XOLUrVXWNOCgt69A+52c181K7Ycy1pR7+kX1B5mqIyBkYtKhN+obp4K5SoLSyDoVl1XKXQyT5+rtLqDdbEBXohTuuLa7bnk0eFg0A2JpXjIv8t0Tk8hi0qE081SrcFeEPANh75orM1RBd99W1dalGxoW0y2UdfiouTIt7enaB2SLw//YUyF0OETkYgxa1WfPdXHvPXpa5EqImDWYLMk9dC1p9QmWupu2mD+8BAPj80EWU80HTRC6NQYvabFhMFwBNK3BbLJynRfI7WFAGU20jAr3VGBTpL3c5bTYsJhB9wrSoaTBjzb7zcpdDRA7EoEVtNiDcD15qFcqq6vmAaWoX/i+3CACQeGcIVMr2P2zYTKFQ4Pf3xQAA/v7NOZRW1spcERE5CoMWtZnaTYkh0QEAgD1nLslcDXV2V+sa8eXxpqA1IT5c5mpsN6ZfKAZG+KG63ozF2/PlLoeIHIRBi2zS/HiTrXkGmSuhzu7LY0WorjfjjiBv/Kp7xxk2bKZQKPD6b+IAABtyfsA33/M/XohcEYMW2WR0v1AoFU3rafHWdJKLxSKkdage+1VEh7jbsDXxUf5I0UcBAOZuPI7LV+tkroiI7E3WoLVy5Ur0798fWq0WWq0Wer0e27Ztk/bX1tZi5syZCAwMhI+PDyZMmICSkhKrYxQWFiI5ORleXl4IDg7GnDlz0NjYaNVm9+7dGDRoEDQaDWJiYrBmzZoWtaxYsQLdu3eHh4cHEhIScPDgQav9bamlMwj29UBCdNPdh1vzimWuhjqrfx/7EaeKTfDVuOHRa4+16ajmjuqNO4K8UWysxe8/PYLaBrPcJRGRHckatMLDw7Fw4ULk5OTg8OHDeOCBBzB27FicOHECADB79mx8+eWX2LBhA7KyslBUVITx48dLnzebzUhOTkZ9fT327duHjz/+GGvWrMH8+fOlNgUFBUhOTsb999+P3NxczJo1C9OmTcOOHTukNp9//jlSU1OxYMECHDlyBAMGDEBSUhJKS0ulNreqpTP5zYCmla03H2fQIuerbbg+p+n5+3vA31stc0W3x1vjho+eGgwfjRsOFpRhxic5DFtELkQh2tnzVAICArB48WI88sgjCAoKwtq1a/HII48AAE6fPo0777wT2dnZGDp0KLZt24bf/OY3KCoqQkhICADggw8+wLx583Dp0iWo1WrMmzcPW7Zswbfffiud47HHHkNFRQW2b98OAEhISMCvfvUrLF++HABgsVgQERGBF198Ea+88gqMRuMta2lNXV0d6uquDwWYTCZERETAaDRCq9Xa/+I5yZWrdRjydibMFoGvZg9HrxBfuUv6WUIIXK1rRFlVPSprG3G1rhFVdc1/mlFd34i6RgvqGi1oMFtQ39j0av57o0XAIgSEAAQELBY0vb92bCGa3lsEpG2Wn2yH9Pemz1mE9Wcdfw0cfoqm8zjhHNX1jbhwpRphOg/sfPk+eLirnHBWx8s+ewWT1xxEbYMFfbtpsfzxQehu55XuhRCoqG5AeXU9TLWNqKxtQOUNfzb/O6hrMF/7uxl1DRbUmy2wCIFGc9N32GwR0r8Ls6Xp34S49r9+83dN3HBO6fzSNuv3N24ULTe1OPZNj0EE4A8PxGD0tUdd2YvJZIJOp/tFv7/bzWPuzWYzNmzYgKqqKuj1euTk5KChoQGJiYlSm969eyMyMlIKN9nZ2ejXr58UsgAgKSkJzz//PE6cOIG77roL2dnZVsdobjNr1iwAQH19PXJycpCWlibtVyqVSExMRHZ2NgC0qZbWpKen480337zta9PeBPpo8OCdIdh+woB/ZJ/HX8b1k7WeqrpGnL10FRfLavBDeTUullfjx/IaXLpahytX63Glqh71jRZZayT7mze6t8uELADQ9wjEmslD8PtPj+DbH00YueRrPDk0Ck8kRCAm+Nb/MdNgtsBgrEWxsRZFFTX4saIGRddel67W4XJlPa5U1aHBzGhCrq28ukHuEqzIHrTy8vKg1+tRW1sLHx8fbNq0CXFxccjNzYVarYafn59V+5CQEBgMTXe8GQwGq5DVvL9538+1MZlMqKmpQXl5Ocxmc6ttTp8+LR3jVrW0Ji0tDampqdL75h4tV5Byd3dsP2HAxpwf8NKIXgjy1TjlvMbqBhwpLMfRwnKcMlQi31DZ5mcveqlV0Hq4w1ujgrfGDd5qt6Y/NSp4uKmgdlPCXaWE2u3aS6WA2k0JlVIJpQJQKhRQKgBc+1OpUECBpj9xw37Ftb8DzdsU17YBwA2fVVz/rD2ncttzYri9p5jbqzSdpzv6h/vZ52DtyNA7ArH5xV9j3v8exzffX8b/7C3A/+wtQESAJ/p01SFYq4GPxg0NZgtqGsy4XFmPYmMNioy1uHy1rs09l74aN/h6uMHXw/3an01/93RXQeOuhMZNCY2bqulP96Z/FyqloumlUEB57U+V8vrfb1zG7Pr/zoqfvL/+nbrxe3p9208/Dyia91r/YXUM621tuwbkumKCfeQuwYrsQSs2Nha5ubkwGo3YuHEjUlJSkJWVJXdZdqHRaKDROCeAONvQOwIwMMIPuRcr8EHWWek2dXurqTcj+9xl7M6/hAPnypBf0vpCqV18NIgK9EK4vyci/Jv+DNF6INBHjQBvNQK9NfBUu07vB7muMD9P/GPKEHz9/WX8Y995ZH13CRfLanCxrOaWn1W7KdFV54EwnSfC/DzRzc8DXf08EeyrQZCvBl18NAj0UUPjxn8LRM4ie9BSq9WIiWlaITk+Ph6HDh3CsmXLMHHiRNTX16OiosKqJ6mkpAShoU3PNAsNDW1xd2DznYA3tvnp3YElJSXQarXw9PSESqWCSqVqtc2Nx7hVLZ2NQqHA7Ad7IeV/DuIf2efx+JC2DW+0xdW6Rmz/1oAvjxUh+9yVFsN+0V28MSjSH33CtOjd1Re9Q7UI6OAToolupFAocG+vINzbKwjGmgZ8+6MRpw2VqKhummeodlPCw02JAG81uvp5Ikznia5+Hgj0VnfYpS6IXJXsQeunLBYL6urqEB8fD3d3d2RmZmLChAkAgPz8fBQWFkKv1wMA9Ho9/vrXv6K0tBTBwU0LaWZkZECr1SIuLk5qs3XrVqtzZGRkSMdQq9WIj49HZmYmxo0bJ9WQmZmJF154AQDaVEtnNLxnFzzQOxg7T5dizsbjWD9dD3fVL7uRtb7Rgq+/u4R/5f6I/5wqQW3D9XDVzc8T98UG4Z6eXRAfFeC0YUqi9kDn6Y5hMV2kZ40SUccia9BKS0vD6NGjERkZicrKSqxduxa7d+/Gjh07oNPpMHXqVKSmpiIgIABarRYvvvgi9Hq9NPl85MiRiIuLw1NPPYVFixbBYDDgtddew8yZM6UhuxkzZmD58uWYO3cupkyZgp07d2L9+vXYsmWLVEdqaipSUlIwePBgDBkyBEuXLkVVVRUmT54MAG2qpTNSKBR487d9cOh8GY4WVmDB/53AX8f1bfN/UQshkHOhHP/K/RFbjhdbTWC8I8gb4wZ2w5h+oegR5MP/Siciog5J1qBVWlqKp59+GsXFxdDpdOjfvz927NiBBx98EACwZMkSKJVKTJgwAXV1dUhKSsL7778vfV6lUmHz5s14/vnnodfr4e3tjZSUFLz11ltSm+joaGzZsgWzZ8/GsmXLEB4ejlWrViEpKUlqM3HiRFy6dAnz58+HwWDAwIEDsX37dqsJ8reqpbOKCPDCO48OwPRPcrD2QCHqGy3489i+Pzsf6vuSSvw7twj/yv0RP5Rfn3cS5KvBQ/3DMO6uMPTrpmO4IiKiDq/draPlym5nHY72bv2hi5j3xXEIAXTVeeDJoVEYekcAArw1uFrbiHOXr+JoYQWyvruEgstV0ue81Sok9Q3Fw3d1g/6OQLj9wqFHIiIiR3GJdbSoY/vdryLQzd8Tf1x/DMXGWizekX/Ttu4qBYb3DMK4u7oh8c4Q3g1IREQui0GL7GZYTBfsnnMfNh39ERknS3C62ARjTQN8PNwQ5ueJ/t10SLgjEPf07AJfD3e5yyUiInI4Dh06kSsPHRIREbmq2/n9zQkxRERERA7CoEVERETkIAxaRERERA7CoEVERETkIAxaRERERA7CoEVERETkIAxaRERERA7CoEVERETkIAxaRERERA7CoEVERETkIAxaRERERA7CoEVERETkIAxaRERERA7CoEVERETkIG5yF9CZCCEAACaTSeZKiIiIqK2af283/x63BYOWE1VWVgIAIiIiZK6EiIiIbFVZWQmdTmfTZxTil8Qz+kUsFguKiorg6+sLhUJht+OaTCZERETg4sWL0Gq1djsu/Txed3nwusuD110evO7y+Ol1F0KgsrISYWFhUCptm3XFHi0nUiqVCA8Pd9jxtVot/yHKgNddHrzu8uB1lwevuzxuvO629mQ142R4IiIiIgdh0CIiIiJyEAYtF6DRaLBgwQJoNBq5S+lUeN3lwesuD153efC6y8Oe152T4YmIiIgchD1aRERERA7CoEVERETkIAxaRERERA7CoEVERETkIAxaLmDFihXo3r07PDw8kJCQgIMHD8pdkkt74403oFAorF69e/eWuyyX8/XXX+Ohhx5CWFgYFAoF/vWvf1ntF0Jg/vz56Nq1Kzw9PZGYmIjvv/9enmJdyK2u+zPPPNPi+z9q1Ch5inUR6enp+NWvfgVfX18EBwdj3LhxyM/Pt2pTW1uLmTNnIjAwED4+PpgwYQJKSkpkqtg1tOW633fffS2+7zNmzLDpPAxaHdznn3+O1NRULFiwAEeOHMGAAQOQlJSE0tJSuUtzaX369EFxcbH02rNnj9wluZyqqioMGDAAK1asaHX/okWL8O677+KDDz7AgQMH4O3tjaSkJNTW1jq5Utdyq+sOAKNGjbL6/n/22WdOrND1ZGVlYebMmdi/fz8yMjLQ0NCAkSNHoqqqSmoze/ZsfPnll9iwYQOysrJQVFSE8ePHy1h1x9eW6w4Azz77rNX3fdGiRbadSFCHNmTIEDFz5kzpvdlsFmFhYSI9PV3GqlzbggULxIABA+Quo1MBIDZt2iS9t1gsIjQ0VCxevFjaVlFRITQajfjss89kqNA1/fS6CyFESkqKGDt2rCz1dBalpaUCgMjKyhJCNH233d3dxYYNG6Q2p06dEgBEdna2XGW6nJ9edyGEuPfee8VLL710W8dlj1YHVl9fj5ycHCQmJkrblEolEhMTkZ2dLWNlru/7779HWFgY7rjjDkyaNAmFhYVyl9SpFBQUwGAwWH33dTodEhIS+N13gt27dyM4OBixsbF4/vnnceXKFblLcilGoxEAEBAQAADIyclBQ0OD1fe9d+/eiIyM5Pfdjn563Zt9+umn6NKlC/r27Yu0tDRUV1fbdFw+VLoDu3z5MsxmM0JCQqy2h4SE4PTp0zJV5foSEhKwZs0axMbGori4GG+++SbuuecefPvtt/D19ZW7vE7BYDAAQKvf/eZ95BijRo3C+PHjER0djbNnz+LVV1/F6NGjkZ2dDZVKJXd5HZ7FYsGsWbMwbNgw9O3bF0DT912tVsPPz8+qLb/v9tPadQeAJ554AlFRUQgLC8Px48cxb9485Ofn44svvmjzsRm0iGw0evRo6e/9+/dHQkICoqKisH79ekydOlXGyogc77HHHpP+3q9fP/Tv3x89evTA7t27MWLECBkrcw0zZ87Et99+y3mfTnaz6/7cc89Jf+/Xrx+6du2KESNG4OzZs+jRo0ebjs2hww6sS5cuUKlULe48KSkpQWhoqExVdT5+fn7o1asXzpw5I3cpnUbz95vfffndcccd6NKlC7//dvDCCy9g8+bN2LVrF8LDw6XtoaGhqK+vR0VFhVV7ft/t42bXvTUJCQkAYNP3nUGrA1Or1YiPj0dmZqa0zWKxIDMzE3q9XsbKOperV6/i7Nmz6Nq1q9yldBrR0dEIDQ21+u6bTCYcOHCA330n++GHH3DlyhV+/2+DEAIvvPACNm3ahJ07dyI6Otpqf3x8PNzd3a2+7/n5+SgsLOT3/Tbc6rq3Jjc3FwBs+r5z6LCDS01NRUpKCgYPHowhQ4Zg6dKlqKqqwuTJk+UuzWW9/PLLeOihhxAVFYWioiIsWLAAKpUKjz/+uNyluZSrV69a/VdjQUEBcnNzERAQgMjISMyaNQt/+ctf0LNnT0RHR+P1119HWFgYxo0bJ1/RLuDnrntAQADefPNNTJgwAaGhoTh79izmzp2LmJgYJCUlyVh1xzZz5kysXbsW//73v+Hr6yvNu9LpdPD09IROp8PUqVORmpqKgIAAaLVavPjii9Dr9Rg6dKjM1Xdct7ruZ8+exdq1azFmzBgEBgbi+PHjmD17NoYPH47+/fu3/US3dc8itQvvvfeeiIyMFGq1WgwZMkTs379f7pJc2sSJE0XXrl2FWq0W3bp1ExMnThRnzpyRuyyXs2vXLgGgxSslJUUI0bTEw+uvvy5CQkKERqMRI0aMEPn5+fIW7QJ+7rpXV1eLkSNHiqCgIOHu7i6ioqLEs88+KwwGg9xld2itXW8AYvXq1VKbmpoa8fvf/174+/sLLy8v8fDDD4vi4mL5inYBt7ruhYWFYvjw4SIgIEBoNBoRExMj5syZI4xGo03nUVw7GRERERHZGedoERERETkIgxYRERGRgzBoERERETkIgxYRERGRgzBoERERETkIgxYRERGRgzBoERERETkIgxYRERGRgzBoEVGntHv3bigUihYP6nWWzMxM3HnnnTCbzbdsu337dgwcOBAWi8UJlRGRPTFoEZHLu++++zBr1iyrbXfffTeKi4uh0+lkqWnu3Ll47bXXoFKpbtl21KhRcHd3x6effuqEyojInhi0iKhTUqvVCA0NhUKhcPq59+zZg7Nnz2LChAlt/swzzzyDd99914FVEZEjMGgRkUt75plnkJWVhWXLlkGhUEChUOD8+fMthg7XrFkDPz8/bN68GbGxsfDy8sIjjzyC6upqfPzxx+jevTv8/f3xhz/8wWq4r66uDi+//DK6desGb29vJCQkYPfu3T9b07p16/Dggw/Cw8ND2nbs2DHcf//98PX1hVarRXx8PA4fPiztf+ihh3D48GGcPXvWrteHiBzLTe4CiIgcadmyZfjuu+/Qt29fvPXWWwCAoKAgnD9/vkXb6upqvPvuu1i3bh0qKysxfvx4PPzww/Dz88PWrVtx7tw5TJgwAcOGDcPEiRMBAC+88AJOnjyJdevWISwsDJs2bcKoUaOQl5eHnj17tlrTN998gyeeeMJq26RJk3DXXXdh5cqVUKlUyM3Nhbu7u7Q/MjISISEh+Oabb9CjRw87XR0icjQGLSJyaTqdDmq1Gl5eXggNDf3Ztg0NDVi5cqUUZB555BH885//RElJCXx8fBAXF4f7778fu3btwsSJE1FYWIjVq1ejsLAQYWFhAICXX34Z27dvx+rVq/H222+3ep4LFy5I7ZsVFhZizpw56N27NwC0GtLCwsJw4cIFm68BEcmHQYuI6BovLy+r3qKQkBB0794dPj4+VttKS0sBAHl5eTCbzejVq5fVcerq6hAYGHjT89TU1FgNGwJAamoqpk2bhn/+859ITEzEo48+2qLnytPTE9XV1b/45yMi52PQIiK65sahOgBQKBStbmteZuHq1atQqVTIyclpcffgjeHsp7p06YLy8nKrbW+88QaeeOIJbNmyBdu2bcOCBQuwbt06PPzww1KbsrIyBAUF/aKfjYjkwaBFRC5PrVa3ab0qW911110wm80oLS3FPffcY9PnTp482WJ7r1690KtXL8yePRuPP/44Vq9eLQWt2tpanD17FnfddZfd6icix+Ndh0Tk8rp3744DBw7g/PnzuHz5st0W/uzVqxcmTZqEp59+Gl988QUKCgpw8OBBpKenY8uWLTf9XFJSEvbs2SO9r6mpwQsvvIDdu3fjwoUL2Lt3Lw4dOoQ777xTarN//35oNBro9Xq71E5EzsGgRUQu7+WXX4ZKpUJcXByCgoJQWFhot2OvXr0aTz/9NP74xz8iNjYW48aNw6FDhxAZGXnTz0yaNAknTpxAfn4+AEClUuHKlSt4+umn0atXL/zud7/D6NGj8eabb0qf+eyzzzBp0iR4eXnZrXYicjyFEELIXQQRUWczZ84cmEwmfPjhh7dse/nyZcTGxuLw4cOIjo52QnVEZC/s0SIiksGf/vQnREVFtWkY8/z583j//fcZsog6IPZoERERETkIe7SIiIiIHIRBi4iIiMhBGLSIiIiIHIRBi4iIiMhBGLSIiIiIHIRBi4iIiMhBGLSIiIiIHIRBi4iIiMhBGLSIiIiIHOT/A6VOkGw+OgkRAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\dae\\petsc_pid_doc_24_0.png" - } - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "a = plt.plot(tj.time, tj.get_vec(m.fs.tank.control_volume.properties_out[24].pressure))\n", "a = plt.ylabel(\"tank pressure (Pa)\")\n", @@ -4757,7 +458,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/dae/petsc_pid_usr.ipynb b/idaes_examples/notebooks/docs/dae/petsc_pid_usr.ipynb index 0a43bf12..a0f52288 100644 --- a/idaes_examples/notebooks/docs/dae/petsc_pid_usr.ipynb +++ b/idaes_examples/notebooks/docs/dae/petsc_pid_usr.ipynb @@ -1,418 +1,419 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "pycharm": { - "is_executing": true + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "pycharm": { + "is_executing": true + }, + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# PETSc Time-stepping Solver -- PID Control and Steam Example\n", - "Author: John Eslick \n", - "Maintainer: John Eslick \n", - "Updated: 2023-06-01\n", - "\n", - "This example provides an overview of the PETSc time-stepping solver utilities in IDAES, which can be used to solve systems of differential algebraic equations (DAEs). PETSc is a solver suite developed primarily by Argonne National Lab (https://petsc.org/release/). IDAES provides a wrapper for PETSc (https://github.com/IDAES/idaes-ext/tree/main/petsc) that uses the AMPL solver interface (https://ampl.com/resources/learn-more/hooking-your-solver-to-ampl/) and utility functions that allow Pyomo and Pyomo.DAE (https://pyomo.readthedocs.io/en/stable/modeling_extensions/dae.html) problems to be solved using PETSc.\n", - "\n", - "This demonstration uses the IDAES PID controller model and a flowsheet arranged like so:\n", - "\n", - "```\n", - " \n", - "->--|><|------[]------|><|-->-\n", - " valve_1 tank valve_2 \n", - "```\n", - "\n", - "where the tank pressure is controlled by the opening of valve_1." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prerequisites\n", - "\n", - "The PETSc solver is an extra download for IDAES, which can be downloaded using the command ```idaes get-extensions --extra petsc```, if it is not installed already. See the IDAES solver documentation for more information (https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html).\n", - "\n", - "You may want to review the [\"PETSc Time-stepping Solver -- Chemical Akzo Nobel Example\"](petsc_chem_example_usr.ipynb) notebook first." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Imports" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "import pyomo.environ as pyo\n", - "import pyomo.dae as pyodae\n", - "import idaes.core.solvers.petsc as petsc # petsc utilities module\n", - "import idaes_examples.mod.dae.petsc.pid_steam_tank as pid\n", - "from idaes.core.util.math import smooth_max, smooth_min" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Model Set Up" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# to see the model code uncomment the line below\n", - "# ??pid" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "m = pid.create_model(\n", - " time_set=[0, 12],\n", - " nfe=1,\n", - " calc_integ=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solve" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "result = petsc.petsc_dae_by_time_element(\n", - " m,\n", - " time=m.fs.time,\n", - " ts_options={\n", - " \"--ts_type\": \"beuler\",\n", - " \"--ts_dt\": 0.1,\n", - " \"--ts_monitor\": \"\", # set initial step to 0.1\n", - " \"--ts_save_trajectory\": 1,\n", - " },\n", - ")\n", - "tj = result.trajectory # trajectroy data\n", - "res = result.results # solver status list" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plot Trajectory\n", - "\n", - "At the initial conditions the valve is fully open. At t=0, the controller is activated and the controller adjusts the opening of valve 1 to keep the tank pressure at the setpoint of 300 kPa." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "a = plt.plot(tj.time, tj.get_vec(m.fs.valve_1.valve_opening[12]))\n", - "a = plt.ylabel(\"valve 1 fraction open\")\n", - "a = plt.xlabel(\"time (s)\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "a = plt.plot(tj.time, tj.get_vec(m.fs.tank.control_volume.properties_out[12].pressure))\n", - "a = plt.ylabel(\"tank pressure (Pa)\")\n", - "a = plt.xlabel(\"time (s)\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Model a ramp in inlet pressure\n", - "\n", - "Next we show how to add an explicit time variable and ramp the inlet pressure from 500 kPa to 600 kPa between 10 and 12 seconds." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# Create a new copy of the model that runs to 24 seconds, and add a constraint.\n", - "\n", - "m = pid.create_model(\n", - " time_set=[0, 24],\n", - " nfe=1,\n", - " calc_integ=True,\n", - ")\n", - "# time_var will be an explicit time variable we can use in constraints.\n", - "m.fs.time_var = pyo.Var(m.fs.time)\n", - "\n", - "# We'll add a constraint to calculate the inlet pressure based on time,\n", - "# so we need to unfix pressure.\n", - "m.fs.valve_1.control_volume.properties_in[0].pressure.unfix()\n", - "m.fs.valve_1.control_volume.properties_in[24].pressure.unfix()\n", - "\n", - "# The solver will directly set the time variable for the DAE solve, but\n", - "# solving the initial conditions is just a system of nonlinear equations,\n", - "# so we need to fix the initial time.\n", - "m.fs.time_var[0].fix(m.fs.time.first())\n", - "\n", - "\n", - "# We could break up the time domain and solve this in pieces, but creative use\n", - "# of min and max will let us create the ramping function we want.\n", - "# From 10s to 12s ramp inlet pressure from 500,000 Pa to 600,000 Pa\n", - "@m.fs.Constraint(m.fs.time)\n", - "def inlet_pressure_eqn(b, t):\n", - " return b.valve_1.control_volume.properties_in[t].pressure == smooth_min(\n", - " 600000, smooth_max(500000, 50000 * (b.time_var[t] - 10) + 500000)\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# Solve the new problem. Notice the new argument specifying the explicit time variable.\n", - "result = petsc.petsc_dae_by_time_element(\n", - " m,\n", - " time=m.fs.time,\n", - " timevar=m.fs.time_var,\n", - " ts_options={\n", - " \"--ts_type\": \"beuler\",\n", - " \"--ts_dt\": 0.1,\n", - " \"--ts_monitor\": \"\", # set initial step to 0.1\n", - " \"--ts_save_trajectory\": 1,\n", - " },\n", - ")\n", - "tj = result.trajectory # trajectroy data\n", - "res = result.results # solver status list" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "a = plt.plot(\n", - " tj.time, tj.get_vec(m.fs.valve_1.control_volume.properties_in[24].pressure)\n", - ")\n", - "a = plt.ylabel(\"inlet pressure (Pa)\")\n", - "a = plt.xlabel(\"time (s)\")" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "a = plt.plot(tj.time, tj.get_vec(m.fs.valve_1.valve_opening[24]))\n", - "a = plt.ylabel(\"valve 1 fraction open\")\n", - "a = plt.xlabel(\"time (s)\")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "a = plt.plot(tj.time, tj.get_vec(m.fs.tank.control_volume.properties_out[24].pressure))\n", - "a = plt.ylabel(\"tank pressure (Pa)\")\n", - "a = plt.xlabel(\"time (s)\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Model a ramp in inlet pressure (again)\n", - "\n", - "Here we repeat the ramp from the previous simulation in a different way. In this case we do the integration in three parts. 1) Constant pressure at 500 kPa to 10 s 2) ramp from 500 to 600 kPa from 10 to 12 s. 3) Constant pressure at 600 kPa from 12 to 24 s." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "# Create a new copy of the model that runs to 24 seconds, and add a constraint.\n", - "\n", - "m = pid.create_model(\n", - " time_set=[0, 10, 12, 24],\n", - " nfe=3,\n", - " calc_integ=True,\n", - ")\n", - "# time_var will be an explicit time variable we can use in constraints.\n", - "m.fs.time_var = pyo.Var(m.fs.time)\n", - "\n", - "# We'll add a constraint to calculate the inlet pressure from 10 to 12s. The rest of the\n", - "# time pressure will be fixed. For the time section from 10 to 12s, the constraints are\n", - "# defined by time 12; this means the pressure at time 12 should be unfixed and the\n", - "# pressure constraint should be active. At all other times, pressure should be fixed and\n", - "# the pressure constraint should be deactivated.\n", - "m.fs.valve_1.control_volume.properties_in[0].pressure.fix(500000)\n", - "m.fs.valve_1.control_volume.properties_in[10].pressure.fix(500000)\n", - "m.fs.valve_1.control_volume.properties_in[12].pressure.set_value(600000)\n", - "m.fs.valve_1.control_volume.properties_in[12].pressure.unfix()\n", - "m.fs.valve_1.control_volume.properties_in[24].pressure.fix(600000)\n", - "\n", - "\n", - "@m.fs.Constraint(m.fs.time)\n", - "def inlet_pressure_eqn(b, t):\n", - " return (\n", - " b.valve_1.control_volume.properties_in[t].pressure\n", - " == 50000 * (b.time_var[t] - 10) + 500000\n", - " )\n", - "\n", - "\n", - "m.fs.inlet_pressure_eqn.deactivate()\n", - "m.fs.inlet_pressure_eqn[12].activate()" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "# Solve the new problem. Notice the argument specifying the explicit time variable.\n", - "result = petsc.petsc_dae_by_time_element(\n", - " m,\n", - " time=m.fs.time,\n", - " timevar=m.fs.time_var,\n", - " ts_options={\n", - " \"--ts_type\": \"beuler\",\n", - " \"--ts_dt\": 0.1,\n", - " \"--ts_monitor\": \"\", # set initial step to 0.1\n", - " \"--ts_save_trajectory\": 1,\n", - " },\n", - ")\n", - "tj = result.trajectory # trajectroy data\n", - "res = result.results # solver status list" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "a = plt.plot(\n", - " tj.time, tj.get_vec(m.fs.valve_1.control_volume.properties_in[24].pressure)\n", - ")\n", - "a = plt.ylabel(\"inlet pressure (Pa)\")\n", - "a = plt.xlabel(\"time (s)\")" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "a = plt.plot(tj.time, tj.get_vec(m.fs.valve_1.valve_opening[24]))\n", - "a = plt.ylabel(\"valve 1 fraction open\")\n", - "a = plt.xlabel(\"time (s)\")" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "a = plt.plot(tj.time, tj.get_vec(m.fs.tank.control_volume.properties_out[24].pressure))\n", - "a = plt.ylabel(\"tank pressure (Pa)\")\n", - "a = plt.xlabel(\"time (s)\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "idaes": { - "skip": [ - "test" - ] - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# PETSc Time-stepping Solver -- PID Control and Steam Example\n", + "Author: John Eslick \n", + "Maintainer: John Eslick \n", + "Updated: 2023-06-01\n", + "\n", + "This example provides an overview of the PETSc time-stepping solver utilities in IDAES, which can be used to solve systems of differential algebraic equations (DAEs). PETSc is a solver suite developed primarily by Argonne National Lab (https://petsc.org/release/). IDAES provides a wrapper for PETSc (https://github.com/IDAES/idaes-ext/tree/main/petsc) that uses the AMPL solver interface (https://ampl.com/resources/learn-more/hooking-your-solver-to-ampl/) and utility functions that allow Pyomo and Pyomo.DAE (https://pyomo.readthedocs.io/en/stable/modeling_extensions/dae.html) problems to be solved using PETSc.\n", + "\n", + "This demonstration uses the IDAES PID controller model and a flowsheet arranged like so:\n", + "\n", + "```\n", + " \n", + "->--|><|------[]------|><|-->-\n", + " valve_1 tank valve_2 \n", + "```\n", + "\n", + "where the tank pressure is controlled by the opening of valve_1." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prerequisites\n", + "\n", + "The PETSc solver is an extra download for IDAES, which can be downloaded using the command ```idaes get-extensions --extra petsc```, if it is not installed already. See the IDAES solver documentation for more information (https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html).\n", + "\n", + "You may want to review the [\"PETSc Time-stepping Solver -- Chemical Akzo Nobel Example\"](petsc_chem_example_usr.ipynb) notebook first." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import pyomo.environ as pyo\n", + "import pyomo.dae as pyodae\n", + "import idaes.core.solvers.petsc as petsc # petsc utilities module\n", + "import idaes_examples.mod.dae.petsc.pid_steam_tank as pid\n", + "from idaes.core.util.math import smooth_max, smooth_min" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model Set Up" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# to see the model code uncomment the line below\n", + "# ??pid" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "m = pid.create_model(\n", + " time_set=[0, 12],\n", + " nfe=1,\n", + " calc_integ=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Solve" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "result = petsc.petsc_dae_by_time_element(\n", + " m,\n", + " time=m.fs.time,\n", + " ts_options={\n", + " \"--ts_type\": \"beuler\",\n", + " \"--ts_dt\": 0.1,\n", + " \"--ts_monitor\": \"\", # set initial step to 0.1\n", + " \"--ts_save_trajectory\": 1,\n", + " },\n", + ")\n", + "tj = result.trajectory # trajectroy data\n", + "res = result.results # solver status list" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plot Trajectory\n", + "\n", + "At the initial conditions the valve is fully open. At t=0, the controller is activated and the controller adjusts the opening of valve 1 to keep the tank pressure at the setpoint of 300 kPa." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "a = plt.plot(tj.time, tj.get_vec(m.fs.valve_1.valve_opening[12]))\n", + "a = plt.ylabel(\"valve 1 fraction open\")\n", + "a = plt.xlabel(\"time (s)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "a = plt.plot(tj.time, tj.get_vec(m.fs.tank.control_volume.properties_out[12].pressure))\n", + "a = plt.ylabel(\"tank pressure (Pa)\")\n", + "a = plt.xlabel(\"time (s)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model a ramp in inlet pressure\n", + "\n", + "Next we show how to add an explicit time variable and ramp the inlet pressure from 500 kPa to 600 kPa between 10 and 12 seconds." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a new copy of the model that runs to 24 seconds, and add a constraint.\n", + "\n", + "m = pid.create_model(\n", + " time_set=[0, 24],\n", + " nfe=1,\n", + " calc_integ=True,\n", + ")\n", + "# time_var will be an explicit time variable we can use in constraints.\n", + "m.fs.time_var = pyo.Var(m.fs.time)\n", + "\n", + "# We'll add a constraint to calculate the inlet pressure based on time,\n", + "# so we need to unfix pressure.\n", + "m.fs.valve_1.control_volume.properties_in[0].pressure.unfix()\n", + "m.fs.valve_1.control_volume.properties_in[24].pressure.unfix()\n", + "\n", + "# The solver will directly set the time variable for the DAE solve, but\n", + "# solving the initial conditions is just a system of nonlinear equations,\n", + "# so we need to fix the initial time.\n", + "m.fs.time_var[0].fix(m.fs.time.first())\n", + "\n", + "\n", + "# We could break up the time domain and solve this in pieces, but creative use\n", + "# of min and max will let us create the ramping function we want.\n", + "# From 10s to 12s ramp inlet pressure from 500,000 Pa to 600,000 Pa\n", + "@m.fs.Constraint(m.fs.time)\n", + "def inlet_pressure_eqn(b, t):\n", + " return b.valve_1.control_volume.properties_in[t].pressure == smooth_min(\n", + " 600000, smooth_max(500000, 50000 * (b.time_var[t] - 10) + 500000)\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Solve the new problem. Notice the new argument specifying the explicit time variable.\n", + "result = petsc.petsc_dae_by_time_element(\n", + " m,\n", + " time=m.fs.time,\n", + " timevar=m.fs.time_var,\n", + " ts_options={\n", + " \"--ts_type\": \"beuler\",\n", + " \"--ts_dt\": 0.1,\n", + " \"--ts_monitor\": \"\", # set initial step to 0.1\n", + " \"--ts_save_trajectory\": 1,\n", + " },\n", + ")\n", + "tj = result.trajectory # trajectroy data\n", + "res = result.results # solver status list" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "a = plt.plot(\n", + " tj.time, tj.get_vec(m.fs.valve_1.control_volume.properties_in[24].pressure)\n", + ")\n", + "a = plt.ylabel(\"inlet pressure (Pa)\")\n", + "a = plt.xlabel(\"time (s)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "a = plt.plot(tj.time, tj.get_vec(m.fs.valve_1.valve_opening[24]))\n", + "a = plt.ylabel(\"valve 1 fraction open\")\n", + "a = plt.xlabel(\"time (s)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "a = plt.plot(tj.time, tj.get_vec(m.fs.tank.control_volume.properties_out[24].pressure))\n", + "a = plt.ylabel(\"tank pressure (Pa)\")\n", + "a = plt.xlabel(\"time (s)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model a ramp in inlet pressure (again)\n", + "\n", + "Here we repeat the ramp from the previous simulation in a different way. In this case we do the integration in three parts. 1) Constant pressure at 500 kPa to 10 s 2) ramp from 500 to 600 kPa from 10 to 12 s. 3) Constant pressure at 600 kPa from 12 to 24 s." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a new copy of the model that runs to 24 seconds, and add a constraint.\n", + "\n", + "m = pid.create_model(\n", + " time_set=[0, 10, 12, 24],\n", + " nfe=3,\n", + " calc_integ=True,\n", + ")\n", + "# time_var will be an explicit time variable we can use in constraints.\n", + "m.fs.time_var = pyo.Var(m.fs.time)\n", + "\n", + "# We'll add a constraint to calculate the inlet pressure from 10 to 12s. The rest of the\n", + "# time pressure will be fixed. For the time section from 10 to 12s, the constraints are\n", + "# defined by time 12; this means the pressure at time 12 should be unfixed and the\n", + "# pressure constraint should be active. At all other times, pressure should be fixed and\n", + "# the pressure constraint should be deactivated.\n", + "m.fs.valve_1.control_volume.properties_in[0].pressure.fix(500000)\n", + "m.fs.valve_1.control_volume.properties_in[10].pressure.fix(500000)\n", + "m.fs.valve_1.control_volume.properties_in[12].pressure.set_value(600000)\n", + "m.fs.valve_1.control_volume.properties_in[12].pressure.unfix()\n", + "m.fs.valve_1.control_volume.properties_in[24].pressure.fix(600000)\n", + "\n", + "\n", + "@m.fs.Constraint(m.fs.time)\n", + "def inlet_pressure_eqn(b, t):\n", + " return (\n", + " b.valve_1.control_volume.properties_in[t].pressure\n", + " == 50000 * (b.time_var[t] - 10) + 500000\n", + " )\n", + "\n", + "\n", + "m.fs.inlet_pressure_eqn.deactivate()\n", + "m.fs.inlet_pressure_eqn[12].activate()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Solve the new problem. Notice the argument specifying the explicit time variable.\n", + "result = petsc.petsc_dae_by_time_element(\n", + " m,\n", + " time=m.fs.time,\n", + " timevar=m.fs.time_var,\n", + " ts_options={\n", + " \"--ts_type\": \"beuler\",\n", + " \"--ts_dt\": 0.1,\n", + " \"--ts_monitor\": \"\", # set initial step to 0.1\n", + " \"--ts_save_trajectory\": 1,\n", + " },\n", + ")\n", + "tj = result.trajectory # trajectroy data\n", + "res = result.results # solver status list" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "a = plt.plot(\n", + " tj.time, tj.get_vec(m.fs.valve_1.control_volume.properties_in[24].pressure)\n", + ")\n", + "a = plt.ylabel(\"inlet pressure (Pa)\")\n", + "a = plt.xlabel(\"time (s)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "a = plt.plot(tj.time, tj.get_vec(m.fs.valve_1.valve_opening[24]))\n", + "a = plt.ylabel(\"valve 1 fraction open\")\n", + "a = plt.xlabel(\"time (s)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "a = plt.plot(tj.time, tj.get_vec(m.fs.tank.control_volume.properties_out[24].pressure))\n", + "a = plt.ylabel(\"tank pressure (Pa)\")\n", + "a = plt.xlabel(\"time (s)\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "idaes": { + "skip": [ + "test" + ] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.9" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter.ipynb b/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter.ipynb index e2039fd0..56fc9743 100644 --- a/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter.ipynb +++ b/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter_doc.ipynb b/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter_doc.ipynb index 340fdfcb..5e080691 100644 --- a/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter_doc.ipynb +++ b/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -124,7 +125,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -162,7 +163,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -222,7 +223,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -289,7 +290,13 @@ "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", "Total CPU secs in NLP function evaluations = 0.000\n", "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", + "EXIT: Maximum Number of Iterations Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", @@ -300,10 +307,10 @@ { "data": { "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 5, 'Number of variables': 3, 'Sense': 'unknown'}], 'Solver': [{'Status': 'warning', 'Message': 'Ipopt 3.13.2\\\\x3a Maximum Number of Iterations Exceeded.', 'Termination condition': 'maxIterations', 'Id': 400, 'Error rc': 0, 'Time': 0.004778385162353516}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 5, 'Number of variables': 3, 'Sense': 'unknown'}], 'Solver': [{'Status': 'warning', 'Message': 'Ipopt 3.13.2\\\\x3a Maximum Number of Iterations Exceeded.', 'Termination condition': 'maxIterations', 'Id': 400, 'Error rc': 0, 'Time': 0.008158445358276367}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" ] }, - "execution_count": 6, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -330,7 +337,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -361,7 +368,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -391,7 +398,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -472,7 +479,7 @@ "Number of equality constraint Jacobian evaluations = 17\n", "Number of inequality constraint Jacobian evaluations = 17\n", "Number of Lagrangian Hessian evaluations = 16\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", "Total CPU secs in NLP function evaluations = 0.000\n", "\n", "EXIT: Optimal Solution Found.\n" @@ -481,10 +488,10 @@ { "data": { "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 5, 'Number of variables': 3, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.04887509346008301}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 5, 'Number of variables': 3, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.0076329708099365234}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" ] }, - "execution_count": 9, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -505,7 +512,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -537,7 +544,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -584,36 +591,52 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-17 14:33:20 [INFO] idaes.core.util.model_diagnostics: Searching for Candidate Equations\n", - "2023-11-17 14:33:20 [INFO] idaes.core.util.model_diagnostics: Building MILP model.\n", - "2023-11-17 14:33:20 [INFO] idaes.core.util.model_diagnostics: Solving Candidates MILP model.\n", - "2023-11-17 14:33:20 [INFO] idaes.core.util.model_diagnostics: Searching for Irreducible Degenerate Sets\n", - "2023-11-17 14:33:20 [INFO] idaes.core.util.model_diagnostics: Building MILP model to compute irreducible degenerate set.\n", - "Solving MILP 1 of 2.\n", - "2023-11-17 14:33:20 [INFO] idaes.core.util.model_diagnostics: Solving IDS MILP for constraint con2.\n", - "Solving MILP 2 of 2.\n", - "2023-11-17 14:33:20 [INFO] idaes.core.util.model_diagnostics: Solving IDS MILP for constraint con5.\n", - "====================================================================================\n", - "Irreducible Degenerate Sets\n", - "\n", - " Irreducible Degenerate Set 0\n", - " nu Constraint Name\n", - " 1.0 con2\n", - " -1.0 con5\n", - "\n", - " Irreducible Degenerate Set 1\n", - " nu Constraint Name\n", - " -1.0 con2\n", - " 1.0 con5\n", - "\n", - "====================================================================================\n" + "2025-03-17 17:30:31 [INFO] idaes.core.util.model_diagnostics: Searching for Candidate Equations\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:30:31 [INFO] idaes.core.util.model_diagnostics: Building MILP model.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:30:31 [INFO] idaes.core.util.model_diagnostics: Solving Candidates MILP model.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: Could not locate the 'scip' executable or the older 'scipampl'\n", + "executable, which is required for solver scip\n" + ] + }, + { + "ename": "ApplicationError", + "evalue": "No executable found for solver 'scip'", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mApplicationError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[11]\u001b[39m\u001b[32m, line 2\u001b[39m\n\u001b[32m 1\u001b[39m dh = dt.prepare_degeneracy_hunter()\n\u001b[32m----> \u001b[39m\u001b[32m2\u001b[39m \u001b[43mdh\u001b[49m\u001b[43m.\u001b[49m\u001b[43mreport_irreducible_degenerate_sets\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/idaes/core/util/model_diagnostics.py:2806\u001b[39m, in \u001b[36mDegeneracyHunter2.report_irreducible_degenerate_sets\u001b[39m\u001b[34m(self, stream, tee)\u001b[39m\n\u001b[32m 2803\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m stream \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m 2804\u001b[39m stream = sys.stdout\n\u001b[32m-> \u001b[39m\u001b[32m2806\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mfind_irreducible_degenerate_sets\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtee\u001b[49m\u001b[43m=\u001b[49m\u001b[43mtee\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 2808\u001b[39m stream.write(\u001b[33m\"\u001b[39m\u001b[33m=\u001b[39m\u001b[33m\"\u001b[39m * MAX_STR_LENGTH + \u001b[33m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[33m\"\u001b[39m)\n\u001b[32m 2809\u001b[39m stream.write(\u001b[33m\"\u001b[39m\u001b[33mIrreducible Degenerate Sets\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[33m\"\u001b[39m)\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/idaes/core/util/model_diagnostics.py:2765\u001b[39m, in \u001b[36mDegeneracyHunter2.find_irreducible_degenerate_sets\u001b[39m\u001b[34m(self, tee)\u001b[39m\n\u001b[32m 2763\u001b[39m _log.info(\u001b[33m\"\u001b[39m\u001b[33mSearching for Candidate Equations\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m 2764\u001b[39m \u001b[38;5;28mself\u001b[39m._prepare_candidates_milp()\n\u001b[32m-> \u001b[39m\u001b[32m2765\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_solve_candidates_milp\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtee\u001b[49m\u001b[43m=\u001b[49m\u001b[43mtee\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 2767\u001b[39m \u001b[38;5;66;03m# Find irreducible degenerate sets\u001b[39;00m\n\u001b[32m 2768\u001b[39m \u001b[38;5;66;03m# Check if degenerate_set is not empty\u001b[39;00m\n\u001b[32m 2769\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.degenerate_set:\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/idaes/core/util/model_diagnostics.py:2635\u001b[39m, in \u001b[36mDegeneracyHunter2._solve_candidates_milp\u001b[39m\u001b[34m(self, tee)\u001b[39m\n\u001b[32m 2626\u001b[39m \u001b[38;5;250m\u001b[39m\u001b[33;03m\"\"\"Solve MILP to generate set of candidate equations\u001b[39;00m\n\u001b[32m 2627\u001b[39m \n\u001b[32m 2628\u001b[39m \u001b[33;03mArguments:\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 2631\u001b[39m \n\u001b[32m 2632\u001b[39m \u001b[33;03m\"\"\"\u001b[39;00m\n\u001b[32m 2633\u001b[39m _log.info(\u001b[33m\"\u001b[39m\u001b[33mSolving Candidates MILP model.\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m-> \u001b[39m\u001b[32m2635\u001b[39m results = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_get_solver\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m.\u001b[49m\u001b[43msolve\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mcandidates_milp\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtee\u001b[49m\u001b[43m=\u001b[49m\u001b[43mtee\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 2637\u001b[39m \u001b[38;5;28mself\u001b[39m.degenerate_set = {}\n\u001b[32m 2639\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m check_optimal_termination(results):\n\u001b[32m 2640\u001b[39m \u001b[38;5;66;03m# We found a degenerate set\u001b[39;00m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/pyomo/opt/base/solvers.py:534\u001b[39m, in \u001b[36mOptSolver.solve\u001b[39m\u001b[34m(self, *args, **kwds)\u001b[39m\n\u001b[32m 531\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34msolve\u001b[39m(\u001b[38;5;28mself\u001b[39m, *args, **kwds):\n\u001b[32m 532\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"Solve the problem\"\"\"\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m534\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mavailable\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexception_flag\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[32m 535\u001b[39m \u001b[38;5;66;03m#\u001b[39;00m\n\u001b[32m 536\u001b[39m \u001b[38;5;66;03m# If the inputs are models, then validate that they have been\u001b[39;00m\n\u001b[32m 537\u001b[39m \u001b[38;5;66;03m# constructed! Collect suffix names to try and import from solution.\u001b[39;00m\n\u001b[32m 538\u001b[39m \u001b[38;5;66;03m#\u001b[39;00m\n\u001b[32m 539\u001b[39m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mpyomo\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mcore\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mbase\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mblock\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m BlockData\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/pyomo/opt/solver/shellcmd.py:140\u001b[39m, in \u001b[36mSystemCallSolver.available\u001b[39m\u001b[34m(self, exception_flag)\u001b[39m\n\u001b[32m 138\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m exception_flag:\n\u001b[32m 139\u001b[39m msg = \u001b[33m\"\u001b[39m\u001b[33mNo executable found for solver \u001b[39m\u001b[33m'\u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[33m'\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m--> \u001b[39m\u001b[32m140\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m ApplicationError(msg % \u001b[38;5;28mself\u001b[39m.name)\n\u001b[32m 141\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[32m 142\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m\n", + "\u001b[31mApplicationError\u001b[39m: No executable found for solver 'scip'" ] } ], @@ -828,7 +851,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter_test.ipynb b/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter_test.ipynb index c8c70c3a..48ba8c09 100644 --- a/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter_test.ipynb +++ b/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -868,4 +869,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} \ No newline at end of file +} diff --git a/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter_usr.ipynb b/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter_usr.ipynb index 340fdfcb..0795bdfa 100644 --- a/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter_usr.ipynb +++ b/idaes_examples/notebooks/docs/diagnostics/degeneracy_hunter_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -833,4 +834,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} \ No newline at end of file +} diff --git a/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox.ipynb b/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox.ipynb index 88a87541..af9b74a2 100755 --- a/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox.ipynb +++ b/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox.ipynb @@ -17,12 +17,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_doc.ipynb b/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_doc.ipynb index d1cc0390..bda9c751 100644 --- a/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_doc.ipynb +++ b/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -71,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": { "tags": [ "solution" @@ -85,7 +86,7 @@ "Help on class DiagnosticsToolbox in module idaes.core.util.model_diagnostics:\n", "\n", "class DiagnosticsToolbox(builtins.object)\n", - " | DiagnosticsToolbox(model: pyomo.core.base.block._BlockData, **kwargs)\n", + " | DiagnosticsToolbox(model: pyomo.core.base.block.BlockData, **kwargs)\n", " | \n", " | The IDAES Model DiagnosticsToolbox.\n", " | \n", @@ -129,66 +130,136 @@ " | \n", " | Keyword Arguments\n", " | -----------------\n", - " | variable_bounds_absolute_tolerance: float, default=0.0001\n", + " | variable_bounds_absolute_tolerance: NonNegativeFloat, default=0.0001\n", + " | \n", " | Absolute tolerance for considering a variable to be close to its\n", " | bounds.\n", " | \n", - " | variable_bounds_relative_tolerance: float, default=0.0001\n", + " | variable_bounds_relative_tolerance: NonNegativeFloat, default=0.0001\n", + " | \n", " | Relative tolerance for considering a variable to be close to its\n", " | bounds.\n", " | \n", - " | variable_bounds_violation_tolerance: float, default=0\n", + " | variable_bounds_violation_tolerance: NonNegativeFloat, default=0\n", + " | \n", " | Absolute tolerance for considering a variable to violate its bounds.\n", " | Some solvers relax bounds on variables thus allowing a small violation\n", " | to be considered acceptable.\n", " | \n", - " | constraint_residual_tolerance: float, default=1e-05\n", + " | constraint_residual_tolerance: NonNegativeFloat, default=1e-05\n", + " | \n", " | Absolute tolerance to use when checking constraint residuals.\n", " | \n", - " | variable_large_value_tolerance: float, default=10000.0\n", + " | constraint_term_mismatch_tolerance: NonNegativeFloat, default=1000000.0\n", + " | \n", + " | Magnitude difference to use when checking for mismatched additive\n", + " | terms in constraints.\n", + " | \n", + " | constraint_term_cancellation_tolerance: NonNegativeFloat, default=0.0001\n", + " | \n", + " | Absolute tolerance to use when checking for canceling additive terms\n", + " | in constraints.\n", + " | \n", + " | max_canceling_terms: NonNegativeInt, default=5\n", + " | \n", + " | Maximum number of terms to consider when looking for canceling\n", + " | combinations in expressions.\n", + " | \n", + " | constraint_term_zero_tolerance: NonNegativeFloat, default=1e-10\n", + " | \n", + " | Absolute tolerance to use when determining if a constraint term is\n", + " | equal to zero.\n", + " | \n", + " | variable_large_value_tolerance: NonNegativeFloat, default=10000.0\n", + " | \n", " | Absolute tolerance for considering a value to be large.\n", " | \n", - " | variable_small_value_tolerance: float, default=0.0001\n", + " | variable_small_value_tolerance: NonNegativeFloat, default=0.0001\n", + " | \n", " | Absolute tolerance for considering a value to be small.\n", " | \n", - " | variable_zero_value_tolerance: float, default=1e-08\n", + " | variable_zero_value_tolerance: NonNegativeFloat, default=1e-08\n", + " | \n", " | Absolute tolerance for considering a value to be near to zero.\n", " | \n", - " | jacobian_large_value_caution: float, default=10000.0\n", + " | jacobian_large_value_caution: NonNegativeFloat, default=10000.0\n", + " | \n", " | Tolerance for raising a caution for large Jacobian values.\n", " | \n", - " | jacobian_large_value_warning: float, default=100000000.0\n", + " | jacobian_large_value_warning: NonNegativeFloat, default=100000000.0\n", + " | \n", " | Tolerance for raising a warning for large Jacobian values.\n", " | \n", - " | jacobian_small_value_caution: float, default=0.0001\n", + " | jacobian_small_value_caution: NonNegativeFloat, default=0.0001\n", + " | \n", " | Tolerance for raising a caution for small Jacobian values.\n", " | \n", - " | jacobian_small_value_warning: float, default=1e-08\n", + " | jacobian_small_value_warning: NonNegativeFloat, default=1e-08\n", + " | \n", " | Tolerance for raising a warning for small Jacobian values.\n", " | \n", " | warn_for_evaluation_error_at_bounds: bool, default=True\n", + " | \n", " | If False, warnings will not be generated for things like log(x) with x\n", " | >= 0\n", " | \n", + " | parallel_component_tolerance: NonNegativeFloat, default=1e-08\n", + " | \n", + " | Tolerance for identifying near-parallel Jacobian rows/columns\n", + " | \n", + " | absolute_feasibility_tolerance: NonNegativeFloat, default=1e-06\n", + " | \n", + " | Feasibility tolerance for identifying infeasible constraints and\n", + " | bounds\n", + " | \n", " | Methods defined here:\n", " | \n", - " | __init__(self, model: pyomo.core.base.block._BlockData, **kwargs)\n", + " | __init__(self, model: pyomo.core.base.block.BlockData, **kwargs)\n", " | Initialize self. See help(type(self)) for accurate signature.\n", " | \n", - " | assert_no_numerical_warnings(self)\n", + " | assert_no_numerical_warnings(self, ignore_parallel_components=False)\n", " | Checks for numerical warnings in the model and raises an AssertionError\n", " | if any are found.\n", " | \n", + " | Args:\n", + " | ignore_parallel_components - ignore checks for parallel components\n", + " | \n", " | Raises:\n", " | AssertionError if any warnings are identified by numerical analysis.\n", " | \n", - " | assert_no_structural_warnings(self)\n", + " | assert_no_structural_warnings(self, ignore_evaluation_errors: bool = False, ignore_unit_consistency: bool = False)\n", " | Checks for structural warnings in the model and raises an AssertionError\n", " | if any are found.\n", " | \n", + " | Args:\n", + " | ignore_evaluation_errors - ignore potential evaluation error warnings\n", + " | ignore_unit_consistency - ignore unit consistency warnings\n", + " | \n", " | Raises:\n", " | AssertionError if any warnings are identified by structural analysis.\n", " | \n", + " | compute_infeasibility_explanation(self, stream=None, solver=None, tee=False)\n", + " | This function attempts to determine why a given model is infeasible. It deploys\n", + " | two main algorithms:\n", + " | \n", + " | 1. Relaxes the constraints of the problem, and reports to the user\n", + " | some sets of constraints and variable bounds, which when relaxed, creates a\n", + " | feasible model.\n", + " | 2. Uses the information collected from (1) to attempt to compute a Minimal\n", + " | Infeasible System (MIS), which is a set of constraints and variable bounds\n", + " | which appear to be in conflict with each other. It is minimal in the sense\n", + " | that removing any single constraint or variable bound would result in a\n", + " | feasible subsystem.\n", + " | \n", + " | Args:\n", + " | stream: I/O object to write report to (default = stdout)\n", + " | solver: A pyomo solver object or a string for SolverFactory\n", + " | (default = get_solver())\n", + " | tee: Display intermediate solves conducted (False)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", " | display_components_with_inconsistent_units(self, stream=None)\n", " | Prints a list of all Constraints, Expressions and Objectives in the\n", " | model with inconsistent units of measurement.\n", @@ -199,6 +270,22 @@ " | Returns:\n", " | None\n", " | \n", + " | display_constraints_with_canceling_terms(self, stream=None)\n", + " | Display constraints in model which contain additive terms which potentially cancel each other.\n", + " | \n", + " | Note that this method looks a the current state of the constraint, and will flag terms as\n", + " | cancelling if you have a form A == B + C where C is significantly smaller than A and B. In some\n", + " | cases this behavior is intended, as C is a correction term which happens to be very\n", + " | small at the current state. However, you should review these constraints to determine whether\n", + " | the correction term is important for the situation you are modeling and consider removing the\n", + " | term if it will never be significant.\n", + " | \n", + " | Args:\n", + " | stream: I/O object to write report to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", " | display_constraints_with_extreme_jacobians(self, stream=None)\n", " | Prints the constraints associated with rows in the Jacobian with extreme\n", " | L2 norms. This often indicates poorly scaled constraints.\n", @@ -221,6 +308,24 @@ " | Returns:\n", " | None\n", " | \n", + " | display_constraints_with_mismatched_terms(self, stream=None)\n", + " | Display constraints in model which contain additive terms of significantly different magnitude.\n", + " | \n", + " | Args:\n", + " | stream: I/O object to write report to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_constraints_with_no_free_variables(self, stream=None)\n", + " | Display constraints in model which contain no free variables.\n", + " | \n", + " | Args:\n", + " | stream: I/O object to write report to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", " | display_external_variables(self, stream=None)\n", " | Prints a list of variables that appear within activated Constraints in the\n", " | model but are not contained within the model themselves.\n", @@ -244,6 +349,24 @@ " | Returns:\n", " | None\n", " | \n", + " | display_near_parallel_constraints(self, stream=None)\n", + " | Display near-parallel (duplicate) constraints in model.\n", + " | \n", + " | Args:\n", + " | stream: I/O object to write report to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_near_parallel_variables(self, stream=None)\n", + " | Display near-parallel (duplicate) variables in model.\n", + " | \n", + " | Args:\n", + " | stream: I/O object to write report to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", " | display_overconstrained_set(self, stream=None)\n", " | Prints the variables and constraints in the over-constrained sub-problem\n", " | from a Dulmage-Mendelsohn partitioning.\n", @@ -267,6 +390,25 @@ " | Returns:\n", " | None\n", " | \n", + " | display_problematic_constraint_terms(self, constraint, max_cancellations: int = 5, stream=None)\n", + " | Display a summary of potentially problematic terms in a given constraint.\n", + " | \n", + " | Note that this method looks a the current state of the constraint, and will flag terms as\n", + " | cancelling if you have a form A == B + C where C is significantly smaller than A and B. In some\n", + " | cases this behavior is intended, as C is a correction term which happens to be very\n", + " | small at the current state. However, you should review these constraints to determine whether\n", + " | the correction term is important for the situation you are modeling and consider removing the\n", + " | term if it will never be significant.\n", + " | \n", + " | Args:\n", + " | constraint: ConstraintData object to be examined\n", + " | max_cancellations: maximum number of cancellations per node before termination.\n", + " | None = find all cancellations.\n", + " | stream: I/O object to write report to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", " | display_underconstrained_set(self, stream=None)\n", " | Prints the variables and constraints in the under-constrained sub-problem\n", " | from a Dulmage-Mendelsohn partitioning.\n", @@ -350,6 +492,17 @@ " | Returns:\n", " | None\n", " | \n", + " | display_variables_with_none_value_in_activated_constraints(self, stream=None)\n", + " | Prints a list of variables with values of None that are present in the\n", + " | mathematical program generated to solve the model. This list includes only\n", + " | variables in active constraints that are reachable through active blocks.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", " | display_variables_with_value_near_zero(self, stream=None)\n", " | Prints a list of variables with a value close to zero. The tolerance\n", " | for determining what is close to zero can be set in the class configuration\n", @@ -384,18 +537,23 @@ " | Keyword Arguments\n", " | -----------------\n", " | solver: str, default='scip'\n", + " | \n", " | MILP solver to use for finding irreducible degenerate sets.\n", " | \n", " | solver_options: optional\n", + " | \n", " | Options to pass to MILP solver.\n", " | \n", - " | M: float, default=100000.0\n", + " | M: NonNegativeFloat, default=100000.0\n", + " | \n", " | Maximum value for nu in MILP models.\n", " | \n", - " | m_small: float, default=1e-05\n", + " | m_small: NonNegativeFloat, default=1e-05\n", + " | \n", " | Smallest value for nu to be considered non-zero in MILP models.\n", " | \n", - " | trivial_constraint_tolerance: float, default=1e-06\n", + " | trivial_constraint_tolerance: NonNegativeFloat, default=1e-06\n", + " | \n", " | Tolerance for identifying non-zero rows in Jacobian.\n", " | \n", " | prepare_svd_toolbox(self, **kwargs)\n", @@ -411,21 +569,26 @@ " | Keyword Arguments\n", " | -----------------\n", " | number_of_smallest_singular_values: PositiveInt, optional\n", + " | \n", " | Number of smallest singular values to compute\n", " | \n", - " | svd_callback: svd_callback_validator, default=\n", + " | svd_callback: svd_callback_validator, default=\n", + " | \n", " | Callback to SVD method of choice (default = svd_dense). Callbacks\n", " | should take the Jacobian and number of singular values to compute as\n", " | options, plus any method specific arguments, and should return the u,\n", " | s and v matrices as numpy arrays.\n", " | \n", " | svd_callback_arguments: dict, optional\n", + " | \n", " | Optional arguments to pass to SVD callback (default = None)\n", " | \n", - " | singular_value_tolerance: float, default=1e-06\n", + " | singular_value_tolerance: NonNegativeFloat, default=1e-06\n", + " | \n", " | Tolerance for defining a small singular value\n", " | \n", - " | size_cutoff_in_singular_vector: float, default=0.1\n", + " | size_cutoff_in_singular_vector: NonNegativeFloat, default=0.1\n", + " | \n", " | Size below which to ignore constraints and variables in the singular\n", " | vector\n", " | \n", @@ -466,10 +629,10 @@ " | Data descriptors defined here:\n", " | \n", " | __dict__\n", - " | dictionary for instance variables (if defined)\n", + " | dictionary for instance variables\n", " | \n", " | __weakref__\n", - " | list of weak references to the object (if defined)\n", + " | list of weak references to the object\n", "\n" ] } @@ -491,7 +654,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -534,7 +697,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "metadata": { "tags": [ "solution" @@ -559,7 +722,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "metadata": { "tags": [ "solution" @@ -640,7 +803,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 7, "metadata": { "scrolled": false, "tags": [ @@ -683,7 +846,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -715,7 +878,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 9, "metadata": { "scrolled": true, "tags": [ @@ -783,7 +946,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 10, "metadata": { "tags": [ "solution" @@ -838,7 +1001,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 11, "metadata": { "scrolled": true, "tags": [ @@ -906,7 +1069,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 12, "metadata": { "tags": [ "solution" @@ -957,7 +1120,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 13, "metadata": { "scrolled": true, "tags": [ @@ -1024,7 +1187,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 14, "metadata": { "tags": [ "solution" @@ -1106,10 +1269,17 @@ "Number of equality constraint Jacobian evaluations = 17\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 15\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n", "Total CPU secs in NLP function evaluations = 0.000\n", "\n", "EXIT: Converged to a point of local infeasibility. Problem may be infeasible.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: infeasible\n", @@ -1120,10 +1290,10 @@ { "data": { "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'warning', 'Message': 'Ipopt 3.13.2\\\\x3a Converged to a locally infeasible point. Problem may be infeasible.', 'Termination condition': 'infeasible', 'Id': 200, 'Error rc': 0, 'Time': 0.007064104080200195}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'warning', 'Message': 'Ipopt 3.13.2\\\\x3a Converged to a locally infeasible point. Problem may be infeasible.', 'Termination condition': 'infeasible', 'Id': 200, 'Error rc': 0, 'Time': 0.008040428161621094}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" ] }, - "execution_count": 24, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -1152,7 +1322,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 15, "metadata": { "tags": [ "solution" @@ -1187,6 +1357,7 @@ "Suggested next steps:\n", "\n", " display_constraints_with_large_residuals()\n", + " compute_infeasibility_explanation()\n", " display_variables_at_or_outside_bounds()\n", "\n", "====================================================================================\n" @@ -1215,7 +1386,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 16, "metadata": { "tags": [ "solution" @@ -1262,7 +1433,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 17, "metadata": { "tags": [ "solution" @@ -1311,7 +1482,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 18, "metadata": { "tags": [ "solution" @@ -1341,7 +1512,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 19, "metadata": { "scrolled": true, "tags": [ @@ -1404,7 +1575,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 20, "metadata": { "tags": [ "solution" @@ -1474,19 +1645,20 @@ "Number of equality constraint Jacobian evaluations = 4\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", "Total CPU secs in NLP function evaluations = 0.000\n", "\n", - "EXIT: Optimal Solution Found.\n" + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" ] }, { "data": { "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.02317023277282715}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.009382247924804688}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" ] }, - "execution_count": 36, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1520,7 +1692,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 21, "metadata": { "tags": [ "solution" @@ -1554,8 +1726,9 @@ "Suggested next steps:\n", "\n", " If you still have issues converging your model consider:\n", - " prepare_svd_toolbox()\n", + "\n", " prepare_degeneracy_hunter()\n", + " prepare_svd_toolbox()\n", "\n", "====================================================================================\n" ] @@ -1579,7 +1752,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 22, "metadata": { "tags": [ "solution" @@ -1616,7 +1789,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -1643,7 +1816,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 24, "metadata": { "tags": [ "solution" @@ -1720,10 +1893,10 @@ { "data": { "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.0058002471923828125}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.003998279571533203}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" ] }, - "execution_count": 43, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -1754,7 +1927,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 25, "metadata": { "tags": [ "solution" @@ -1786,8 +1959,9 @@ "Suggested next steps:\n", "\n", " If you still have issues converging your model consider:\n", - " prepare_svd_toolbox()\n", + "\n", " prepare_degeneracy_hunter()\n", + " prepare_svd_toolbox()\n", "\n", "====================================================================================\n" ] @@ -1830,7 +2004,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_exercise.ipynb b/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_exercise.ipynb index aa02ff4f..2840f6f3 100644 --- a/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_exercise.ipynb +++ b/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_exercise.ipynb @@ -1,788 +1,789 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# IDAES Model Diagnostics Toolbox Tutorial\n", - "Author: Andrew Lee \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-10-31 \n", - "\n", - "As you have likely discovered already, developing and solving models in an equation-oriented (EO) environment can be challenging and often takes a significant amount of effort. There are many pitfalls and mistakes that can be encountered when developing a model which can greatly impact the solvability and robustness of the final problem.\n", - "\n", - "Model diagnosis and debugging is often more of an art than a science, and it generally relies on significant experience and understanding both of general EO modeling techniques and the specific model and problem being solved. To assist with this process, IDAES has developed a model diagnostics toolbox that brings together a large number of tools for identifying potential issues in a model to help guide the user through the process of finding and resolving these issues. Note however that whilst these tools can help identify the presence of an issue, remedying the issue always requires some degree of engineering knowledge about the system being modeled, and thus it is ultimately up to the user to find a solution to the problem.\n", - "\n", - "This tutorial will take you through using the {py:class}`DiagnosticsToolbox ` to debug a number of issues in a simple Pyomo model and to take it from initially reporting a possible infeasible solution to returning the correct solution.\n", - "\n", - "To get started, the ``DiagnosticsToolbox`` can be imported from ``idaes.core.util``.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Import the DiagnosticsToolbox in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.util import DiagnosticsToolbox" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To get some information on where to start, try using the Python ``help()`` function to see the documentation for the ``DiagnosticsToolbox``.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call `help(DiagnosticsToolbox)` to see some more information on the toolbox and some instructions on how to get started.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Call the help() function for more information" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The ``help()`` function gives us a lot of information on the ``DiagnosticsToolbox`` and all the methods that it supports (and there are many). However, the important part to start with are the four steps outlined at the top of the doc string that tell us how to get started.\n", - "\n", - "Firstly, we need a model to test (and, for this tutorial at least, one that has a wide range of issues that we need to fix before it will solve). We then also need to fix some variables so that we have 0 degrees of freedom in our model. Whilst our ultimate goal is generally optimization (and thus a system with 1 or more degrees of freedom), all models conceptually derive from a square model representing a nominal state. If this nominal state is not well-posed, then any issues present will also be present in the resulting optimization (even if adding degrees of freedom means that the model is now easier to solve).\n", - "\n", - "The cell below contains a demonstration model for this tutorial that contains a number of issues that we will resolve using the ``DiagnosticsToolbox``." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import pyomo.environ as pyo\n", - "\n", - "m = pyo.ConcreteModel()\n", - "\n", - "m.v1 = pyo.Var(units=pyo.units.m)\n", - "m.v2 = pyo.Var(units=pyo.units.m)\n", - "m.v3 = pyo.Var(bounds=(0, 5))\n", - "m.v4 = pyo.Var()\n", - "m.v5 = pyo.Var(bounds=(0, 10))\n", - "m.v6 = pyo.Var()\n", - "m.v7 = pyo.Var(\n", - " units=pyo.units.m, bounds=(0, 1)\n", - ") # Poorly scaled variable with lower bound\n", - "m.v8 = pyo.Var() # unused variable\n", - "\n", - "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10) # Unit consistency issue\n", - "m.c2 = pyo.Constraint(expr=m.v3 == m.v4 + m.v5)\n", - "m.c3 = pyo.Constraint(expr=2 * m.v3 == 3 * m.v4 + 4 * m.v5 + m.v6)\n", - "m.c4 = pyo.Constraint(expr=m.v7 == 1e-8 * m.v1) # Poorly scaled constraint\n", - "\n", - "m.v4.fix(2)\n", - "m.v5.fix(2)\n", - "m.v6.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, the instructions tell us to create an instance of the ``DiagnosticsToolbox`` and to pass the model we wish to examine as an argument.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Create an instance of the DiagnosticsToolbox: dt = DiagnosticsToolbox(m)\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create an instance of the Diagnostics Toolbox" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, the instructions tell us to run the ``report_structural_issues()`` method. Structural issues represent issues that exist solely in the form of the model equations and thus do not depend on the current value of any of the variables. This is useful as it means we can check for these before we even call a solver, which can be critical as sometimes these issues will cause a solver to fail without providing a useful solution.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call dt.report_structural_issues() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Call the report_structural_issues() method" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looking at the output from the ``report_structural_issues()`` method, we can see that it provides a fairly short summary containing 4 sections.\n", - "\n", - "1. The first section is a summary of the size of the model, indicating things like the number of variables and constraints. The size of the model is often important for judging how difficult it will be to solve, and this information can also be useful for comparison to what is being sent to the solver. Most solvers will report the size of the model in their output logs, and if there is a difference between what is reported here and by the solver, then you should probably look into what is happening. This section also notes some things such as if you have any deactivated Blocks, Constraints or Objectives, or if you have variables which appear in the constraints that are not part of the model; these are not necessarily wrong but it is easy to have accidentally deactivated something you did not intend to so you should always check to see that these are expected.\n", - "\n", - "2. The second section provides a summary of any critical structural issues that were found - in this case we can see that there are 2 warnings we are going to need to look into. Warnings represent issues that need to be addressed before moving on as these will likely cause the solver to fail or give an incorrect answer.\n", - "\n", - "3. The third section lists a summary of any cautions that are found. Cautions represent issues that may or may not be problematic; in many cases these might be expected behaviors or borderline issues. However, these could also represent conceptual issues that should be addressed, so users should take the time to investigate these and determine if they need to be fixed or not.\n", - "\n", - "4. Finally, there is a section that suggests the next steps to take to help guide you through the model diagnosis process. If any warnings were identified, this section will list methods that can help you get more information on each specific problem, and if no warnings are found then it will guide you onto the next step in the model diagnosis workflow.\n", - "\n", - "**Note:** there are methods available to help investigate cautions as well, but these will not show up in the next steps in order to avoid cluttering the output. You can get more information on the available methods for investigating cautions via the documentation or ``help()`` function.\n", - "\n", - "In our current model, we have 2 critical issues (warnings) that we need to look into and resolve. The order in which we resolve these will generally not matter, but be aware that these can often be interrelated - fixing one warning might resolve other warnings as well (or create new ones), and sometimes you will need to look at multiple issues together to find the overall root cause.\n", - "\n", - "To start with, let us look at the unit consistency issue. From the \"Next Steps\" section above, the toolbox is suggesting we run the ``display_components_with_inconsistent_units()`` method for more information.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call the `display_components_with_inconsistent_units()` method from the DiagnosticsToolbox to see more information on which constraint is causing the unit consistency issues.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Call the display_components_with_inconsistent_units() method" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This tells us that the issue lies in constraint ``c1``. If we go back and look at this constraint, we can see that it says ``v1 + v2 == 10``. ``v1`` and ``v2`` both have units of ``m`` which is consistent, but the constant in the expression (right hand side) is unitless. Thus, we need to correct this so that the right hand side has units for the constraint to be consistent.\n", - "\n", - "The cell below shows how to delete a constraint and replace it with a new one with the correct units.\n", - "\n", - "
\n", - "Warning:\n", - "Deleting components can cause unexpected issues if something else in a model is using that component (e.g., deleting a variable which is used in a constraint). You should always be careful when deleting Pyomo components and make sure you only delete components that are not used elsewhere.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# Delete the incorrect Constraint\n", - "m.del_component(m.c1)\n", - "\n", - "# Re-create the Constraint with the correct units\n", - "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10 * pyo.units.m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Warning:\n", - "Fixing issues in models is often an iterative process requiring trial and error. You might also have some results from a model before running the diagnostics tools and the changes you make during debugging may make it difficult to replicate those results afterwards.\n", - " \n", - "It is strongly recommended that you keep a record of the changes you make at each step and why, along with a Git hash (or similar version control marker) corresponding to these changes. This will allow you see what changes and why, and give you a way to go back to previous iterations if the current approach does not work out. The IDAES documentation contains recommendations on how to keep and maintain a modeling logbook.\n", - "
\n", - "\n", - "Now, re-run the ``report_structural_issues()`` method and see if this change has fixed the unit consistency issue.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call dt.report_structural_issues() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Call the report_structural_issues() method" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The unit consistency issue has been resolved by the changes above, so now we need to look at the structural singularity. A structural singularity occurs when one sub-part of the model is over-constrained (negative degrees of freedom), which generally means another part is under-constrained (positive degrees of freedom, assuming that there are 0 degrees of freedom overall).\n", - "\n", - "The toolbox is suggesting we use the ``display_overconstrained_set()`` and ``display_underconstrained_set()`` methods to get more information on the singularity; for now, let us start with the over-constrained set.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call dt.display_overconstrained_set() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Call the display_overconstrained_set() method" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From the output above, the toolbox is telling us that we have two constraints (``c2`` and ``c3``) which only contain a single unfixed variable (``v3``); thus in this part of the model we have -1 degree of freedom and the model is not well defined (structurally singular). If we go back and look at these constraints, we can see the that the constraints are:\n", - "\n", - "``c2: v3 == v4 + v5``\n", - "\n", - "``c3: 2*v3 == 3*v4 + 4*v5 + v6``\n", - "\n", - "We can see that in addition to ``v3`` these constraints actually contain 3 other variables (``v4``, ``v5`` and ``v6``), however these are all variables we fixed to get our initial zero degrees of freedom. It looks like we have either accidentally fixed one too many variables or written one too many constraints.\n", - "\n", - "For this example, let us assume that ``v4`` was not supposed to be fixed and unfix it.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Resolve the structural singularity and then call dt.report_structural_issues() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Unfix v4\n", - "\n", - "# Then call the report_structural_issues() method again" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that the over-constrained set is now empty (0 variables and 0 constraints) but the under-constrained set still has 3 variables and only 2 constraints. We can also see that there is a new warning about having 1 degree of freedom in the model, however this should not be surprising as we have just unfixed ``v4`` to resolve the over-constrained set so we have added a degree of freedom to the model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Display the under-constrained set in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Display the under-constrained set" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looking at the output from the ``display_underconstrained_set()`` method, we can see that we have two constraints, ``c1`` and ``c4``, which contain three unfixed variables, ``v1``, ``v2`` and ``v7``. Thus, we have one degree of freedom that needs to be addressed. To fix this, we could either fix one of the variables shown or add an additional equality constraint to the model.\n", - "\n", - "For this example let's fix ``v2`` to a value of 5 and then re-run the ``report_structural_issues()`` method.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Fix v2 to a value of 5 and then re-run dt.report_structural_issues.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Fix v2 = 5\n", - "\n", - "# Then re-run report_structural_issues() method" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is now telling us that no warnings were found, so we have resolved all the structural issues (for now at least). The toolbox is telling us that there are also 2 non-critical issues (cautions) that we should look at; one about an unused variable and one about a variable fixed to zero. If you wish, you can look into identifying and fixing these yourself, however for this example we will move on to the next step (remember that the toolbox has methods to display more details for each of these which you can find in the documentation or from the ``help()`` function).\n", - "\n", - "For the Next Steps section, the toolbox is recommending we try to solve our model and then check for numerical issues.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Use the Pyomo SolverFactory to create an instance of IPOPT and then try to solve the model. Make sure to set \"tee=True\" as this is going to fail (and it is always good practice to review the solver logs).\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create a solver object\n", - "\n", - "# Try to solve the model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As hinted at above, IPOPT has returned a warning that the problem may be infeasible. Before moving on however, it is always good practice to look over the solver outputs and see what it is telling you.\n", - "\n", - "
\n", - "Warning:\n", - "A lot of useful information is contained in the solver logs which is extremely useful when diagnosing modeling issues. Each solver has its own way of reporting output and its own specific behavior, so you will need to learn to interpret the output of each solver you use. The IDAES Documentation contains some guidance on interpreting output logs for a few common solvers.\n", - "
\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call the report_numerical_issues method in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Check for numerical issues" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The ``report_numerical_issues()`` provides a summary similar to that which we saw for the structural issues. Firstly, it reports to us the Jacobian condition number for our problem which can give us an idea of how well-scaled the problem is, followed by a list of warnings, cautions and suggested next steps.\n", - "\n", - "Unsurprisingly, we are seeing a warning about a constraint with a large residual which we would expect when a solver reports a potentially infeasible problem. We are also seeing a warning about a variable with bound violations which might be contributing to the potential infeasibility.\n", - "\n", - "For the next steps, the toolbox is suggesting some new methods to get more information on these issues; let us start by looking at the constraints with large residuals.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Display the constraint with a large residual in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Display constraint with large residual" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is telling us that the constraint which failed to converge is ``c2``, however this is generally only part of the story. Solvers work by trying to minimize the infeasibility in the model (residual of the constraints), which generally means they push any infeasibility onto the least sensitive constraint in the problem. Thus, the constraint which shows the infeasibility is often not the root cause of the problem, but only the symptom of the underlying issue.\n", - "\n", - "If we look back at the constraints, we can see that the same variables also appear in ``c3`` and that some of these have bounds, all of which could be contributing to the infeasibility. In this case the solver tried to minimize the residual in all the constraints and ended up pushing all the issues off onto ``c2``.\n", - "\n", - "
\n", - "Warning:\n", - "When dealing with solver issues such as this, you should always remember that the obvious symptoms are often just the tip of the iceberg and that the real issue generally lies somewhere else; the challenge is tracing the symptoms back to their ultimate source.\n", - "
\n", - "\n", - "Next, let us take a look at the variables at or outside their bounds as well. When a solver reports an potentially infeasible solution, the most common cause is unexpected bounds violations so you should always check these first.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Display the variables with bounds violations.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Display the variables with bounds violations" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is telling us that ``v3`` is the variable with a potential issue. It is also showing us the current value and bounds for ``v3`` as well as if it is a fixed or free variable, which will be useful for diagnosing the issues.\n", - "\n", - "We can see that ``v3`` is a free variable with bounds between 0 and 5 and a current value of 0. As ``v3`` is a free variable, this suggests that the solver has pushed the value to the bound where it cannot go any further, and this might be part of the cause of our infeasibility.\n", - "\n", - "
\n", - "Warning:\n", - "When dealing with bounds violations you should always start by understanding why the bounds exist and what they mean - in many cases a bound indicates the range over which the model can be trusted and that going beyond this may result in unexpected behavior due to extrapolation.\n", - " \n", - "Never arbitrarily change a bound just because it is causing your model to be infeasible without understanding the consequences of this decision. Often, a bound violation is an indication that you need to re-think some of the constraints in your model to find alternatives which are valid in the actual range of values you are trying to solve for.\n", - "
\n", - "\n", - "For this example, let us assume that we made a mistake with the bounds on ``v3`` and set the lower bound to be -5.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Update the bounds on v3 in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Update bounds for v3" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that we have fixed the bounds issues, we should check whether our model is now feasible. However, before we continue we should recognize that we have just made a structural change to the model. If we were not careful, this could have introduced new structural issues to the model, so we should start from the beginning just to be sure.\n", - "\n", - "
\n", - "Warning:\n", - "In general, you should always start from the beginning of the model diagnosis workflow after you make any change to the model. Remember to also record these changes in your log book in case something unexpected happens so that you can revert any changes that cause problems.\n", - "
\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Check to see if there are any new structural issues in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Check for new structural issues" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Our change has not introduced any new structural issues, so we can move on and try to solve the model again.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Re-solve the model in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Re-solve the model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "IPOPT should have returned optimal solution now, so it looks like those bounds were what was causing the model to be infeasible. At this point, the model is now solving (for the current values at least), so you might think that the model is now ready for optimization.\n", - "\n", - "However, if we look at the solver logs we can see that it took around 3 iterations for IPOPT to solve our model (depending on minor variations in computer architecture). For a model this simple, we would generally expect it to solve in only 1 iteration so there is still some room for improvement.\n", - "\n", - "
\n", - "Warning:\n", - "You should keep in mind that just because you get an optimal solution does not mean that your model is robust and free of issues.\n", - " \n", - "You should always take the time to look over the solver logs to look for signs of trouble, even if you get an optimal solution. While you might get an optimal solution for the current state, there may be advance warning signs of issues that will cause problems later when you try to solve the model at a different state.\n", - "
\n", - "\n", - "Let us run the ``report_numerical_issues`` method again to see if there are any other problems we need to address.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Check for additional numerical issues in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Check for additional numerical issues" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is not reporting any warnings which is good, however there are still 5 numerical cautions that it has identified which might be contributing to the larger than expected number of iterations. As mentioned earlier, the toolbox does not suggest methods for investigating these, but there are methods available. For example, we can look at the variable with an extreme value using the `display_variables_with_extreme_values()` method.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Check for additional information about variables with extreme values.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Display variable with extreme value" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that ``v7`` is potentially causing problems due to having a very small value (on the order of magnitude of the solver tolerance). This can be especially problematic for interior point solvers like IPOPT if there is a lower bound of 0 (which there is in this case). IPOPT tries to avoid bounds and thus perturbs solutions away from these if it gets too close, which can cause convergence to be slow (or fail) if the solution lies close to the bound.\n", - "\n", - "We can address this by scaling the variable so that the value of the scaled variable is large enough that the solution is not close to the lower bound. Additionally, we should look at any constraint that ``v7`` appears in (in this case ``c4``) and ensure that those constraints are well scaled as well (so that a residual of 1e-6 is reasonable for the terms involved).\n", - "\n", - "For this case, we can set a scaling factor of 1e8 for both ``v7`` and ``c4`` as shown below. Note that we also need to apply Pyomo's scaling transformation to create a new scaled model to work with." - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "m.scaling_factor = pyo.Suffix(direction=pyo.Suffix.EXPORT)\n", - "\n", - "m.scaling_factor[m.v7] = 1e8\n", - "m.scaling_factor[m.c4] = 1e8\n", - "\n", - "scaling = pyo.TransformationFactory(\"core.scale_model\")\n", - "scaled_model = scaling.create_using(m, rename=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that we have a scaled model, we can try to solve it and hopefully see better convergence than the unscaled model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Solve the scaled model and check to see how many iterations are required.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Solve scaled model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we can see, the scaled model solved in 0 iterations (indicating that it already had the right solution). However, had we done this to the unscaled model we would have found it required 2-3 iterations again due to IPOPT perturbing the initial (correct) solution away from the bounds.\n", - "\n", - "
\n", - "Warning:\n", - "Normally in these cases we would need to map the solution from the scaled model back to the unscaled model so we can view the results. In this case, we are not actually interested in the solution so we move on with the model diagnosis.\n", - "
\n", - "\n", - "Now that we have fixed the scaling issues, we can go back to the ``DiagnosticsToolbox`` and see if we still have any warnings. Note however that we need to look at the scaled model now rather than the original model, so we need to create a new instance of the ``DiagnosticsToolbox`` with the scaled model as the ``model`` argument.\n", - "\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Create a new instance of the DiagnosticsToolbox and check the scaled model for issues.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create a new diagnostics toolbox for scaled model\n", - "\n", - "# Report numerical issues for scaled model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that applying scaling addressed two of the cautions we had before (the variable with an extreme value and an associated large value in the model Jacobian). Whilst we were able to solve the unscaled model in this case, this is in part because it was a simple linear model. In more complex, non-linear models, scaling becomes much more important and often depends strongly on the current state of the model. That is, you can often find cases where the unscaled (or poorly scaled) model solves for a limited range of conditions but fails to solve if you move too far away for the current state. Whilst you might be able to solve the model at the current state, you should always check the solver logs and numerical cautions for advanced warning signs of scaling issues that might manifest later when you try to solve the model for a different state (e.g., during optimization).\n", - "\n", - "
\n", - "Warning:\n", - "By their nature, numerical issues depend on the current values of the variables in the model, and thus may remain hidden until someone tries to solve the model close to where the issue exists. For this reason, the full model diagnostics workflow contains steps to run the numerical checks across a wide range of variable values to try to ensure that no issues remain hidden. This is beyond the scope of this tutorial however.\n", - "
\n", - "\n", - "At this point, we have addressed all the issues that were preventing us from solving the demonstration model and so reached the end of this tutorial. For cases where we are still having trouble solving the model, we can see that the toolbox is suggesting additional methods for further debugging and these advanced features will be the focus of separate tutorials." - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.5" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# IDAES Model Diagnostics Toolbox Tutorial\n", + "Author: Andrew Lee \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-10-31 \n", + "\n", + "As you have likely discovered already, developing and solving models in an equation-oriented (EO) environment can be challenging and often takes a significant amount of effort. There are many pitfalls and mistakes that can be encountered when developing a model which can greatly impact the solvability and robustness of the final problem.\n", + "\n", + "Model diagnosis and debugging is often more of an art than a science, and it generally relies on significant experience and understanding both of general EO modeling techniques and the specific model and problem being solved. To assist with this process, IDAES has developed a model diagnostics toolbox that brings together a large number of tools for identifying potential issues in a model to help guide the user through the process of finding and resolving these issues. Note however that whilst these tools can help identify the presence of an issue, remedying the issue always requires some degree of engineering knowledge about the system being modeled, and thus it is ultimately up to the user to find a solution to the problem.\n", + "\n", + "This tutorial will take you through using the {py:class}`DiagnosticsToolbox ` to debug a number of issues in a simple Pyomo model and to take it from initially reporting a possible infeasible solution to returning the correct solution.\n", + "\n", + "To get started, the ``DiagnosticsToolbox`` can be imported from ``idaes.core.util``.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Import the DiagnosticsToolbox in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.util import DiagnosticsToolbox" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To get some information on where to start, try using the Python ``help()`` function to see the documentation for the ``DiagnosticsToolbox``.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call `help(DiagnosticsToolbox)` to see some more information on the toolbox and some instructions on how to get started.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Call the help() function for more information" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The ``help()`` function gives us a lot of information on the ``DiagnosticsToolbox`` and all the methods that it supports (and there are many). However, the important part to start with are the four steps outlined at the top of the doc string that tell us how to get started.\n", + "\n", + "Firstly, we need a model to test (and, for this tutorial at least, one that has a wide range of issues that we need to fix before it will solve). We then also need to fix some variables so that we have 0 degrees of freedom in our model. Whilst our ultimate goal is generally optimization (and thus a system with 1 or more degrees of freedom), all models conceptually derive from a square model representing a nominal state. If this nominal state is not well-posed, then any issues present will also be present in the resulting optimization (even if adding degrees of freedom means that the model is now easier to solve).\n", + "\n", + "The cell below contains a demonstration model for this tutorial that contains a number of issues that we will resolve using the ``DiagnosticsToolbox``." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import pyomo.environ as pyo\n", + "\n", + "m = pyo.ConcreteModel()\n", + "\n", + "m.v1 = pyo.Var(units=pyo.units.m)\n", + "m.v2 = pyo.Var(units=pyo.units.m)\n", + "m.v3 = pyo.Var(bounds=(0, 5))\n", + "m.v4 = pyo.Var()\n", + "m.v5 = pyo.Var(bounds=(0, 10))\n", + "m.v6 = pyo.Var()\n", + "m.v7 = pyo.Var(\n", + " units=pyo.units.m, bounds=(0, 1)\n", + ") # Poorly scaled variable with lower bound\n", + "m.v8 = pyo.Var() # unused variable\n", + "\n", + "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10) # Unit consistency issue\n", + "m.c2 = pyo.Constraint(expr=m.v3 == m.v4 + m.v5)\n", + "m.c3 = pyo.Constraint(expr=2 * m.v3 == 3 * m.v4 + 4 * m.v5 + m.v6)\n", + "m.c4 = pyo.Constraint(expr=m.v7 == 1e-8 * m.v1) # Poorly scaled constraint\n", + "\n", + "m.v4.fix(2)\n", + "m.v5.fix(2)\n", + "m.v6.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, the instructions tell us to create an instance of the ``DiagnosticsToolbox`` and to pass the model we wish to examine as an argument.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Create an instance of the DiagnosticsToolbox: dt = DiagnosticsToolbox(m)\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create an instance of the Diagnostics Toolbox" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, the instructions tell us to run the ``report_structural_issues()`` method. Structural issues represent issues that exist solely in the form of the model equations and thus do not depend on the current value of any of the variables. This is useful as it means we can check for these before we even call a solver, which can be critical as sometimes these issues will cause a solver to fail without providing a useful solution.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call dt.report_structural_issues() in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Call the report_structural_issues() method" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looking at the output from the ``report_structural_issues()`` method, we can see that it provides a fairly short summary containing 4 sections.\n", + "\n", + "1. The first section is a summary of the size of the model, indicating things like the number of variables and constraints. The size of the model is often important for judging how difficult it will be to solve, and this information can also be useful for comparison to what is being sent to the solver. Most solvers will report the size of the model in their output logs, and if there is a difference between what is reported here and by the solver, then you should probably look into what is happening. This section also notes some things such as if you have any deactivated Blocks, Constraints or Objectives, or if you have variables which appear in the constraints that are not part of the model; these are not necessarily wrong but it is easy to have accidentally deactivated something you did not intend to so you should always check to see that these are expected.\n", + "\n", + "2. The second section provides a summary of any critical structural issues that were found - in this case we can see that there are 2 warnings we are going to need to look into. Warnings represent issues that need to be addressed before moving on as these will likely cause the solver to fail or give an incorrect answer.\n", + "\n", + "3. The third section lists a summary of any cautions that are found. Cautions represent issues that may or may not be problematic; in many cases these might be expected behaviors or borderline issues. However, these could also represent conceptual issues that should be addressed, so users should take the time to investigate these and determine if they need to be fixed or not.\n", + "\n", + "4. Finally, there is a section that suggests the next steps to take to help guide you through the model diagnosis process. If any warnings were identified, this section will list methods that can help you get more information on each specific problem, and if no warnings are found then it will guide you onto the next step in the model diagnosis workflow.\n", + "\n", + "**Note:** there are methods available to help investigate cautions as well, but these will not show up in the next steps in order to avoid cluttering the output. You can get more information on the available methods for investigating cautions via the documentation or ``help()`` function.\n", + "\n", + "In our current model, we have 2 critical issues (warnings) that we need to look into and resolve. The order in which we resolve these will generally not matter, but be aware that these can often be interrelated - fixing one warning might resolve other warnings as well (or create new ones), and sometimes you will need to look at multiple issues together to find the overall root cause.\n", + "\n", + "To start with, let us look at the unit consistency issue. From the \"Next Steps\" section above, the toolbox is suggesting we run the ``display_components_with_inconsistent_units()`` method for more information.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call the `display_components_with_inconsistent_units()` method from the DiagnosticsToolbox to see more information on which constraint is causing the unit consistency issues.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Call the display_components_with_inconsistent_units() method" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This tells us that the issue lies in constraint ``c1``. If we go back and look at this constraint, we can see that it says ``v1 + v2 == 10``. ``v1`` and ``v2`` both have units of ``m`` which is consistent, but the constant in the expression (right hand side) is unitless. Thus, we need to correct this so that the right hand side has units for the constraint to be consistent.\n", + "\n", + "The cell below shows how to delete a constraint and replace it with a new one with the correct units.\n", + "\n", + "
\n", + "Warning:\n", + "Deleting components can cause unexpected issues if something else in a model is using that component (e.g., deleting a variable which is used in a constraint). You should always be careful when deleting Pyomo components and make sure you only delete components that are not used elsewhere.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Delete the incorrect Constraint\n", + "m.del_component(m.c1)\n", + "\n", + "# Re-create the Constraint with the correct units\n", + "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10 * pyo.units.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Warning:\n", + "Fixing issues in models is often an iterative process requiring trial and error. You might also have some results from a model before running the diagnostics tools and the changes you make during debugging may make it difficult to replicate those results afterwards.\n", + " \n", + "It is strongly recommended that you keep a record of the changes you make at each step and why, along with a Git hash (or similar version control marker) corresponding to these changes. This will allow you see what changes and why, and give you a way to go back to previous iterations if the current approach does not work out. The IDAES documentation contains recommendations on how to keep and maintain a modeling logbook.\n", + "
\n", + "\n", + "Now, re-run the ``report_structural_issues()`` method and see if this change has fixed the unit consistency issue.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call dt.report_structural_issues() in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Call the report_structural_issues() method" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The unit consistency issue has been resolved by the changes above, so now we need to look at the structural singularity. A structural singularity occurs when one sub-part of the model is over-constrained (negative degrees of freedom), which generally means another part is under-constrained (positive degrees of freedom, assuming that there are 0 degrees of freedom overall).\n", + "\n", + "The toolbox is suggesting we use the ``display_overconstrained_set()`` and ``display_underconstrained_set()`` methods to get more information on the singularity; for now, let us start with the over-constrained set.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call dt.display_overconstrained_set() in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Call the display_overconstrained_set() method" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the output above, the toolbox is telling us that we have two constraints (``c2`` and ``c3``) which only contain a single unfixed variable (``v3``); thus in this part of the model we have -1 degree of freedom and the model is not well defined (structurally singular). If we go back and look at these constraints, we can see the that the constraints are:\n", + "\n", + "``c2: v3 == v4 + v5``\n", + "\n", + "``c3: 2*v3 == 3*v4 + 4*v5 + v6``\n", + "\n", + "We can see that in addition to ``v3`` these constraints actually contain 3 other variables (``v4``, ``v5`` and ``v6``), however these are all variables we fixed to get our initial zero degrees of freedom. It looks like we have either accidentally fixed one too many variables or written one too many constraints.\n", + "\n", + "For this example, let us assume that ``v4`` was not supposed to be fixed and unfix it.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Resolve the structural singularity and then call dt.report_structural_issues() in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Unfix v4\n", + "\n", + "# Then call the report_structural_issues() method again" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that the over-constrained set is now empty (0 variables and 0 constraints) but the under-constrained set still has 3 variables and only 2 constraints. We can also see that there is a new warning about having 1 degree of freedom in the model, however this should not be surprising as we have just unfixed ``v4`` to resolve the over-constrained set so we have added a degree of freedom to the model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Display the under-constrained set in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Display the under-constrained set" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looking at the output from the ``display_underconstrained_set()`` method, we can see that we have two constraints, ``c1`` and ``c4``, which contain three unfixed variables, ``v1``, ``v2`` and ``v7``. Thus, we have one degree of freedom that needs to be addressed. To fix this, we could either fix one of the variables shown or add an additional equality constraint to the model.\n", + "\n", + "For this example let's fix ``v2`` to a value of 5 and then re-run the ``report_structural_issues()`` method.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Fix v2 to a value of 5 and then re-run dt.report_structural_issues.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Fix v2 = 5\n", + "\n", + "# Then re-run report_structural_issues() method" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is now telling us that no warnings were found, so we have resolved all the structural issues (for now at least). The toolbox is telling us that there are also 2 non-critical issues (cautions) that we should look at; one about an unused variable and one about a variable fixed to zero. If you wish, you can look into identifying and fixing these yourself, however for this example we will move on to the next step (remember that the toolbox has methods to display more details for each of these which you can find in the documentation or from the ``help()`` function).\n", + "\n", + "For the Next Steps section, the toolbox is recommending we try to solve our model and then check for numerical issues.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Use the Pyomo SolverFactory to create an instance of IPOPT and then try to solve the model. Make sure to set \"tee=True\" as this is going to fail (and it is always good practice to review the solver logs).\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create a solver object\n", + "\n", + "# Try to solve the model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As hinted at above, IPOPT has returned a warning that the problem may be infeasible. Before moving on however, it is always good practice to look over the solver outputs and see what it is telling you.\n", + "\n", + "
\n", + "Warning:\n", + "A lot of useful information is contained in the solver logs which is extremely useful when diagnosing modeling issues. Each solver has its own way of reporting output and its own specific behavior, so you will need to learn to interpret the output of each solver you use. The IDAES Documentation contains some guidance on interpreting output logs for a few common solvers.\n", + "
\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call the report_numerical_issues method in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Check for numerical issues" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The ``report_numerical_issues()`` provides a summary similar to that which we saw for the structural issues. Firstly, it reports to us the Jacobian condition number for our problem which can give us an idea of how well-scaled the problem is, followed by a list of warnings, cautions and suggested next steps.\n", + "\n", + "Unsurprisingly, we are seeing a warning about a constraint with a large residual which we would expect when a solver reports a potentially infeasible problem. We are also seeing a warning about a variable with bound violations which might be contributing to the potential infeasibility.\n", + "\n", + "For the next steps, the toolbox is suggesting some new methods to get more information on these issues; let us start by looking at the constraints with large residuals.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Display the constraint with a large residual in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Display constraint with large residual" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is telling us that the constraint which failed to converge is ``c2``, however this is generally only part of the story. Solvers work by trying to minimize the infeasibility in the model (residual of the constraints), which generally means they push any infeasibility onto the least sensitive constraint in the problem. Thus, the constraint which shows the infeasibility is often not the root cause of the problem, but only the symptom of the underlying issue.\n", + "\n", + "If we look back at the constraints, we can see that the same variables also appear in ``c3`` and that some of these have bounds, all of which could be contributing to the infeasibility. In this case the solver tried to minimize the residual in all the constraints and ended up pushing all the issues off onto ``c2``.\n", + "\n", + "
\n", + "Warning:\n", + "When dealing with solver issues such as this, you should always remember that the obvious symptoms are often just the tip of the iceberg and that the real issue generally lies somewhere else; the challenge is tracing the symptoms back to their ultimate source.\n", + "
\n", + "\n", + "Next, let us take a look at the variables at or outside their bounds as well. When a solver reports an potentially infeasible solution, the most common cause is unexpected bounds violations so you should always check these first.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Display the variables with bounds violations.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Display the variables with bounds violations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is telling us that ``v3`` is the variable with a potential issue. It is also showing us the current value and bounds for ``v3`` as well as if it is a fixed or free variable, which will be useful for diagnosing the issues.\n", + "\n", + "We can see that ``v3`` is a free variable with bounds between 0 and 5 and a current value of 0. As ``v3`` is a free variable, this suggests that the solver has pushed the value to the bound where it cannot go any further, and this might be part of the cause of our infeasibility.\n", + "\n", + "
\n", + "Warning:\n", + "When dealing with bounds violations you should always start by understanding why the bounds exist and what they mean - in many cases a bound indicates the range over which the model can be trusted and that going beyond this may result in unexpected behavior due to extrapolation.\n", + " \n", + "Never arbitrarily change a bound just because it is causing your model to be infeasible without understanding the consequences of this decision. Often, a bound violation is an indication that you need to re-think some of the constraints in your model to find alternatives which are valid in the actual range of values you are trying to solve for.\n", + "
\n", + "\n", + "For this example, let us assume that we made a mistake with the bounds on ``v3`` and set the lower bound to be -5.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Update the bounds on v3 in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Update bounds for v3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have fixed the bounds issues, we should check whether our model is now feasible. However, before we continue we should recognize that we have just made a structural change to the model. If we were not careful, this could have introduced new structural issues to the model, so we should start from the beginning just to be sure.\n", + "\n", + "
\n", + "Warning:\n", + "In general, you should always start from the beginning of the model diagnosis workflow after you make any change to the model. Remember to also record these changes in your log book in case something unexpected happens so that you can revert any changes that cause problems.\n", + "
\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Check to see if there are any new structural issues in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Check for new structural issues" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our change has not introduced any new structural issues, so we can move on and try to solve the model again.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Re-solve the model in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Re-solve the model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "IPOPT should have returned optimal solution now, so it looks like those bounds were what was causing the model to be infeasible. At this point, the model is now solving (for the current values at least), so you might think that the model is now ready for optimization.\n", + "\n", + "However, if we look at the solver logs we can see that it took around 3 iterations for IPOPT to solve our model (depending on minor variations in computer architecture). For a model this simple, we would generally expect it to solve in only 1 iteration so there is still some room for improvement.\n", + "\n", + "
\n", + "Warning:\n", + "You should keep in mind that just because you get an optimal solution does not mean that your model is robust and free of issues.\n", + " \n", + "You should always take the time to look over the solver logs to look for signs of trouble, even if you get an optimal solution. While you might get an optimal solution for the current state, there may be advance warning signs of issues that will cause problems later when you try to solve the model at a different state.\n", + "
\n", + "\n", + "Let us run the ``report_numerical_issues`` method again to see if there are any other problems we need to address.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Check for additional numerical issues in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Check for additional numerical issues" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is not reporting any warnings which is good, however there are still 5 numerical cautions that it has identified which might be contributing to the larger than expected number of iterations. As mentioned earlier, the toolbox does not suggest methods for investigating these, but there are methods available. For example, we can look at the variable with an extreme value using the `display_variables_with_extreme_values()` method.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Check for additional information about variables with extreme values.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Display variable with extreme value" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that ``v7`` is potentially causing problems due to having a very small value (on the order of magnitude of the solver tolerance). This can be especially problematic for interior point solvers like IPOPT if there is a lower bound of 0 (which there is in this case). IPOPT tries to avoid bounds and thus perturbs solutions away from these if it gets too close, which can cause convergence to be slow (or fail) if the solution lies close to the bound.\n", + "\n", + "We can address this by scaling the variable so that the value of the scaled variable is large enough that the solution is not close to the lower bound. Additionally, we should look at any constraint that ``v7`` appears in (in this case ``c4``) and ensure that those constraints are well scaled as well (so that a residual of 1e-6 is reasonable for the terms involved).\n", + "\n", + "For this case, we can set a scaling factor of 1e8 for both ``v7`` and ``c4`` as shown below. Note that we also need to apply Pyomo's scaling transformation to create a new scaled model to work with." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "m.scaling_factor = pyo.Suffix(direction=pyo.Suffix.EXPORT)\n", + "\n", + "m.scaling_factor[m.v7] = 1e8\n", + "m.scaling_factor[m.c4] = 1e8\n", + "\n", + "scaling = pyo.TransformationFactory(\"core.scale_model\")\n", + "scaled_model = scaling.create_using(m, rename=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have a scaled model, we can try to solve it and hopefully see better convergence than the unscaled model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Solve the scaled model and check to see how many iterations are required.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Solve scaled model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see, the scaled model solved in 0 iterations (indicating that it already had the right solution). However, had we done this to the unscaled model we would have found it required 2-3 iterations again due to IPOPT perturbing the initial (correct) solution away from the bounds.\n", + "\n", + "
\n", + "Warning:\n", + "Normally in these cases we would need to map the solution from the scaled model back to the unscaled model so we can view the results. In this case, we are not actually interested in the solution so we move on with the model diagnosis.\n", + "
\n", + "\n", + "Now that we have fixed the scaling issues, we can go back to the ``DiagnosticsToolbox`` and see if we still have any warnings. Note however that we need to look at the scaled model now rather than the original model, so we need to create a new instance of the ``DiagnosticsToolbox`` with the scaled model as the ``model`` argument.\n", + "\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Create a new instance of the DiagnosticsToolbox and check the scaled model for issues.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create a new diagnostics toolbox for scaled model\n", + "\n", + "# Report numerical issues for scaled model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that applying scaling addressed two of the cautions we had before (the variable with an extreme value and an associated large value in the model Jacobian). Whilst we were able to solve the unscaled model in this case, this is in part because it was a simple linear model. In more complex, non-linear models, scaling becomes much more important and often depends strongly on the current state of the model. That is, you can often find cases where the unscaled (or poorly scaled) model solves for a limited range of conditions but fails to solve if you move too far away for the current state. Whilst you might be able to solve the model at the current state, you should always check the solver logs and numerical cautions for advanced warning signs of scaling issues that might manifest later when you try to solve the model for a different state (e.g., during optimization).\n", + "\n", + "
\n", + "Warning:\n", + "By their nature, numerical issues depend on the current values of the variables in the model, and thus may remain hidden until someone tries to solve the model close to where the issue exists. For this reason, the full model diagnostics workflow contains steps to run the numerical checks across a wide range of variable values to try to ensure that no issues remain hidden. This is beyond the scope of this tutorial however.\n", + "
\n", + "\n", + "At this point, we have addressed all the issues that were preventing us from solving the demonstration model and so reached the end of this tutorial. For cases where we are still having trouble solving the model, we can see that the toolbox is suggesting additional methods for further debugging and these advanced features will be the focus of separate tutorials." + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_solution.ipynb b/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_solution.ipynb index 688e5148..2dc54029 100644 --- a/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_solution.ipynb +++ b/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_solution.ipynb @@ -1,2106 +1,2107 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# IDAES Model Diagnostics Toolbox Tutorial\n", - "Author: Andrew Lee \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-10-31 \n", - "\n", - "As you have likely discovered already, developing and solving models in an equation-oriented (EO) environment can be challenging and often takes a significant amount of effort. There are many pitfalls and mistakes that can be encountered when developing a model which can greatly impact the solvability and robustness of the final problem.\n", - "\n", - "Model diagnosis and debugging is often more of an art than a science, and it generally relies on significant experience and understanding both of general EO modeling techniques and the specific model and problem being solved. To assist with this process, IDAES has developed a model diagnostics toolbox that brings together a large number of tools for identifying potential issues in a model to help guide the user through the process of finding and resolving these issues. Note however that whilst these tools can help identify the presence of an issue, remedying the issue always requires some degree of engineering knowledge about the system being modeled, and thus it is ultimately up to the user to find a solution to the problem.\n", - "\n", - "This tutorial will take you through using the {py:class}`DiagnosticsToolbox ` to debug a number of issues in a simple Pyomo model and to take it from initially reporting a possible infeasible solution to returning the correct solution.\n", - "\n", - "To get started, the ``DiagnosticsToolbox`` can be imported from ``idaes.core.util``.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Import the DiagnosticsToolbox in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.util import DiagnosticsToolbox" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To get some information on where to start, try using the Python ``help()`` function to see the documentation for the ``DiagnosticsToolbox``.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call `help(DiagnosticsToolbox)` to see some more information on the toolbox and some instructions on how to get started.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Call the help() function for more information" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on class DiagnosticsToolbox in module idaes.core.util.model_diagnostics:\n", - "\n", - "class DiagnosticsToolbox(builtins.object)\n", - " | DiagnosticsToolbox(model: pyomo.core.base.block._BlockData, **kwargs)\n", - " | \n", - " | The IDAES Model DiagnosticsToolbox.\n", - " | \n", - " | To get started:\n", - " | \n", - " | 1. Create an instance of your model (this does not need to be initialized yet).\n", - " | 2. Fix variables until you have 0 degrees of freedom. Many of these tools presume\n", - " | a square model, and a square model should always be the foundation of any more\n", - " | advanced model.\n", - " | 3. Create an instance of the DiagnosticsToolbox and provide the model to debug as\n", - " | the model argument.\n", - " | 4. Call the ``report_structural_issues()`` method.\n", - " | \n", - " | Model diagnostics is an iterative process and you will likely need to run these\n", - " | tools multiple times to resolve all issues. After making a change to your model,\n", - " | you should always start from the beginning again to ensure the change did not\n", - " | introduce any new issues; i.e., always start from the report_structural_issues()\n", - " | method.\n", - " | \n", - " | Note that structural checks do not require the model to be initialized, thus users\n", - " | should start with these. Numerical checks require at least a partial solution to the\n", - " | model and should only be run once all structural issues have been resolved.\n", - " | \n", - " | Report methods will print a summary containing three parts:\n", - " | \n", - " | 1. Warnings - these are critical issues that should be resolved before continuing.\n", - " | For each warning, a method will be suggested in the Next Steps section to get\n", - " | additional information.\n", - " | 2. Cautions - these are things that could be correct but could also be the source of\n", - " | solver issues. Not all cautions need to be addressed, but users should investigate\n", - " | each one to ensure that the behavior is correct and that they will not be the source\n", - " | of difficulties later. Methods exist to provide more information on all cautions,\n", - " | but these will not appear in the Next Steps section.\n", - " | 3. Next Steps - these are recommended methods to call from the DiagnosticsToolbox to\n", - " | get further information on warnings. If no warnings are found, this will suggest\n", - " | the next report method to call.\n", - " | \n", - " | Args:\n", - " | \n", - " | model: model to be diagnosed. The DiagnosticsToolbox does not support indexed Blocks.\n", - " | \n", - " | Keyword Arguments\n", - " | -----------------\n", - " | variable_bounds_absolute_tolerance: float, default=0.0001\n", - " | Absolute tolerance for considering a variable to be close to its\n", - " | bounds.\n", - " | \n", - " | variable_bounds_relative_tolerance: float, default=0.0001\n", - " | Relative tolerance for considering a variable to be close to its\n", - " | bounds.\n", - " | \n", - " | variable_bounds_violation_tolerance: float, default=0\n", - " | Absolute tolerance for considering a variable to violate its bounds.\n", - " | Some solvers relax bounds on variables thus allowing a small violation\n", - " | to be considered acceptable.\n", - " | \n", - " | constraint_residual_tolerance: float, default=1e-05\n", - " | Absolute tolerance to use when checking constraint residuals.\n", - " | \n", - " | variable_large_value_tolerance: float, default=10000.0\n", - " | Absolute tolerance for considering a value to be large.\n", - " | \n", - " | variable_small_value_tolerance: float, default=0.0001\n", - " | Absolute tolerance for considering a value to be small.\n", - " | \n", - " | variable_zero_value_tolerance: float, default=1e-08\n", - " | Absolute tolerance for considering a value to be near to zero.\n", - " | \n", - " | jacobian_large_value_caution: float, default=10000.0\n", - " | Tolerance for raising a caution for large Jacobian values.\n", - " | \n", - " | jacobian_large_value_warning: float, default=100000000.0\n", - " | Tolerance for raising a warning for large Jacobian values.\n", - " | \n", - " | jacobian_small_value_caution: float, default=0.0001\n", - " | Tolerance for raising a caution for small Jacobian values.\n", - " | \n", - " | jacobian_small_value_warning: float, default=1e-08\n", - " | Tolerance for raising a warning for small Jacobian values.\n", - " | \n", - " | warn_for_evaluation_error_at_bounds: bool, default=True\n", - " | If False, warnings will not be generated for things like log(x) with x\n", - " | >= 0\n", - " | \n", - " | Methods defined here:\n", - " | \n", - " | __init__(self, model: pyomo.core.base.block._BlockData, **kwargs)\n", - " | Initialize self. See help(type(self)) for accurate signature.\n", - " | \n", - " | assert_no_numerical_warnings(self)\n", - " | Checks for numerical warnings in the model and raises an AssertionError\n", - " | if any are found.\n", - " | \n", - " | Raises:\n", - " | AssertionError if any warnings are identified by numerical analysis.\n", - " | \n", - " | assert_no_structural_warnings(self)\n", - " | Checks for structural warnings in the model and raises an AssertionError\n", - " | if any are found.\n", - " | \n", - " | Raises:\n", - " | AssertionError if any warnings are identified by structural analysis.\n", - " | \n", - " | display_components_with_inconsistent_units(self, stream=None)\n", - " | Prints a list of all Constraints, Expressions and Objectives in the\n", - " | model with inconsistent units of measurement.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_constraints_with_extreme_jacobians(self, stream=None)\n", - " | Prints the constraints associated with rows in the Jacobian with extreme\n", - " | L2 norms. This often indicates poorly scaled constraints.\n", - " | \n", - " | Tolerances can be set via the DiagnosticsToolbox config.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the output to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_constraints_with_large_residuals(self, stream=None)\n", - " | Prints a list of Constraints with residuals greater than a specified tolerance.\n", - " | Tolerance can be set in the class configuration options.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_external_variables(self, stream=None)\n", - " | Prints a list of variables that appear within activated Constraints in the\n", - " | model but are not contained within the model themselves.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_extreme_jacobian_entries(self, stream=None)\n", - " | Prints variables and constraints associated with entries in the Jacobian with extreme\n", - " | values. This can be indicative of poor scaling, especially for isolated terms (e.g.\n", - " | variables which appear only in one term of a single constraint).\n", - " | \n", - " | Tolerances can be set via the DiagnosticsToolbox config.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the output to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_overconstrained_set(self, stream=None)\n", - " | Prints the variables and constraints in the over-constrained sub-problem\n", - " | from a Dulmage-Mendelsohn partitioning.\n", - " | \n", - " | This can be used to identify the over-defined part of a model and thus\n", - " | where constraints must be removed or variables unfixed.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_potential_evaluation_errors(self, stream=None)\n", - " | Prints constraints that may be prone to evaluation errors\n", - " | (e.g., log of a negative number) based on variable bounds.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the output to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_underconstrained_set(self, stream=None)\n", - " | Prints the variables and constraints in the under-constrained sub-problem\n", - " | from a Dulmage-Mendelsohn partitioning.\n", - " | \n", - " | This can be used to identify the under-defined part of a model and thus\n", - " | where additional information (fixed variables or constraints) are required.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_unused_variables(self, stream=None)\n", - " | Prints a list of variables that do not appear in any activated Constraints.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_at_or_outside_bounds(self, stream=None)\n", - " | Prints a list of variables with values that fall at or outside the bounds\n", - " | on the variable.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_fixed_to_zero(self, stream=None)\n", - " | Prints a list of variables that are fixed to an absolute value of 0.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_near_bounds(self, stream=None)\n", - " | Prints a list of variables with values close to their bounds. Tolerance can\n", - " | be set in the class configuration options.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_with_extreme_jacobians(self, stream=None)\n", - " | Prints the variables associated with columns in the Jacobian with extreme\n", - " | L2 norms. This often indicates poorly scaled variables.\n", - " | \n", - " | Tolerances can be set via the DiagnosticsToolbox config.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the output to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_with_extreme_values(self, stream=None)\n", - " | Prints a list of variables with extreme values.\n", - " | \n", - " | Tolerances can be set in the class configuration options.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_with_none_value(self, stream=None)\n", - " | Prints a list of variables with a value of None.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_with_value_near_zero(self, stream=None)\n", - " | Prints a list of variables with a value close to zero. The tolerance\n", - " | for determining what is close to zero can be set in the class configuration\n", - " | options.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | get_dulmage_mendelsohn_partition(self)\n", - " | Performs a Dulmage-Mendelsohn partitioning on the model and returns\n", - " | the over- and under-constrained sub-problems.\n", - " | \n", - " | Returns:\n", - " | list-of-lists variables in each independent block of the under-constrained set\n", - " | list-of-lists constraints in each independent block of the under-constrained set\n", - " | list-of-lists variables in each independent block of the over-constrained set\n", - " | list-of-lists constraints in each independent block of the over-constrained set\n", - " | \n", - " | prepare_degeneracy_hunter(self, **kwargs)\n", - " | Create an instance of the DegeneracyHunter and store as self.degeneracy_hunter.\n", - " | \n", - " | After creating an instance of the toolbox, call\n", - " | report_irreducible_degenerate_sets.\n", - " | \n", - " | Returns:\n", - " | \n", - " | Instance of DegeneracyHunter\n", - " | \n", - " | Keyword Arguments\n", - " | -----------------\n", - " | solver: str, default='scip'\n", - " | MILP solver to use for finding irreducible degenerate sets.\n", - " | \n", - " | solver_options: optional\n", - " | Options to pass to MILP solver.\n", - " | \n", - " | M: float, default=100000.0\n", - " | Maximum value for nu in MILP models.\n", - " | \n", - " | m_small: float, default=1e-05\n", - " | Smallest value for nu to be considered non-zero in MILP models.\n", - " | \n", - " | trivial_constraint_tolerance: float, default=1e-06\n", - " | Tolerance for identifying non-zero rows in Jacobian.\n", - " | \n", - " | prepare_svd_toolbox(self, **kwargs)\n", - " | Create an instance of the SVDToolbox and store as self.svd_toolbox.\n", - " | \n", - " | After creating an instance of the toolbox, call\n", - " | display_underdetermined_variables_and_constraints().\n", - " | \n", - " | Returns:\n", - " | \n", - " | Instance of SVDToolbox\n", - " | \n", - " | Keyword Arguments\n", - " | -----------------\n", - " | number_of_smallest_singular_values: PositiveInt, optional\n", - " | Number of smallest singular values to compute\n", - " | \n", - " | svd_callback: svd_callback_validator, default=\n", - " | Callback to SVD method of choice (default = svd_dense). Callbacks\n", - " | should take the Jacobian and number of singular values to compute as\n", - " | options, plus any method specific arguments, and should return the u,\n", - " | s and v matrices as numpy arrays.\n", - " | \n", - " | svd_callback_arguments: dict, optional\n", - " | Optional arguments to pass to SVD callback (default = None)\n", - " | \n", - " | singular_value_tolerance: float, default=1e-06\n", - " | Tolerance for defining a small singular value\n", - " | \n", - " | size_cutoff_in_singular_vector: float, default=0.1\n", - " | Size below which to ignore constraints and variables in the singular\n", - " | vector\n", - " | \n", - " | report_numerical_issues(self, stream=None)\n", - " | Generates a summary report of any numerical issues identified in the model provided\n", - " | and suggest next steps for debugging model.\n", - " | \n", - " | Numerical checks should only be performed once all structural issues have been resolved,\n", - " | and require that at least a partial solution to the model is available.\n", - " | \n", - " | Args:\n", - " | stream: I/O object to write report to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | report_structural_issues(self, stream=None)\n", - " | Generates a summary report of any structural issues identified in the model provided\n", - " | and suggests next steps for debugging the model.\n", - " | \n", - " | This should be the first method called when debugging a model and after any change\n", - " | is made to the model. These checks can be run before trying to initialize and solve\n", - " | the model.\n", - " | \n", - " | Args:\n", - " | stream: I/O object to write report to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | ----------------------------------------------------------------------\n", - " | Readonly properties defined here:\n", - " | \n", - " | model\n", - " | Model currently being diagnosed.\n", - " | \n", - " | ----------------------------------------------------------------------\n", - " | Data descriptors defined here:\n", - " | \n", - " | __dict__\n", - " | dictionary for instance variables (if defined)\n", - " | \n", - " | __weakref__\n", - " | list of weak references to the object (if defined)\n", - "\n" - ] - } - ], - "source": [ - "help(DiagnosticsToolbox)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The ``help()`` function gives us a lot of information on the ``DiagnosticsToolbox`` and all the methods that it supports (and there are many). However, the important part to start with are the four steps outlined at the top of the doc string that tell us how to get started.\n", - "\n", - "Firstly, we need a model to test (and, for this tutorial at least, one that has a wide range of issues that we need to fix before it will solve). We then also need to fix some variables so that we have 0 degrees of freedom in our model. Whilst our ultimate goal is generally optimization (and thus a system with 1 or more degrees of freedom), all models conceptually derive from a square model representing a nominal state. If this nominal state is not well-posed, then any issues present will also be present in the resulting optimization (even if adding degrees of freedom means that the model is now easier to solve).\n", - "\n", - "The cell below contains a demonstration model for this tutorial that contains a number of issues that we will resolve using the ``DiagnosticsToolbox``." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import pyomo.environ as pyo\n", - "\n", - "m = pyo.ConcreteModel()\n", - "\n", - "m.v1 = pyo.Var(units=pyo.units.m)\n", - "m.v2 = pyo.Var(units=pyo.units.m)\n", - "m.v3 = pyo.Var(bounds=(0, 5))\n", - "m.v4 = pyo.Var()\n", - "m.v5 = pyo.Var(bounds=(0, 10))\n", - "m.v6 = pyo.Var()\n", - "m.v7 = pyo.Var(\n", - " units=pyo.units.m, bounds=(0, 1)\n", - ") # Poorly scaled variable with lower bound\n", - "m.v8 = pyo.Var() # unused variable\n", - "\n", - "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10) # Unit consistency issue\n", - "m.c2 = pyo.Constraint(expr=m.v3 == m.v4 + m.v5)\n", - "m.c3 = pyo.Constraint(expr=2 * m.v3 == 3 * m.v4 + 4 * m.v5 + m.v6)\n", - "m.c4 = pyo.Constraint(expr=m.v7 == 1e-8 * m.v1) # Poorly scaled constraint\n", - "\n", - "m.v4.fix(2)\n", - "m.v5.fix(2)\n", - "m.v6.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, the instructions tell us to create an instance of the ``DiagnosticsToolbox`` and to pass the model we wish to examine as an argument.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Create an instance of the DiagnosticsToolbox: dt = DiagnosticsToolbox(m)\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create an instance of the Diagnostics Toolbox" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "dt = DiagnosticsToolbox(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, the instructions tell us to run the ``report_structural_issues()`` method. Structural issues represent issues that exist solely in the form of the model equations and thus do not depend on the current value of any of the variables. This is useful as it means we can check for these before we even call a solver, which can be critical as sometimes these issues will cause a solver to fail without providing a useful solution.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call dt.report_structural_issues() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Call the report_structural_issues() method" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 1 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 4 (External: 0)\n", - " Free Variables with only lower bounds: 0\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 3 (External: 0)\n", - " Activated Equality Constraints: 4 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 WARNINGS\n", - "\n", - " WARNING: 1 Component with inconsistent units\n", - " WARNING: Structural singularity found\n", - " Under-Constrained Set: 3 variables, 2 constraints\n", - " Over-Constrained Set: 1 variables, 2 constraints\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 Cautions\n", - "\n", - " Caution: 1 variable fixed to 0\n", - " Caution: 1 unused variable (0 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_components_with_inconsistent_units()\n", - " display_underconstrained_set()\n", - " display_overconstrained_set()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looking at the output from the ``report_structural_issues()`` method, we can see that it provides a fairly short summary containing 4 sections.\n", - "\n", - "1. The first section is a summary of the size of the model, indicating things like the number of variables and constraints. The size of the model is often important for judging how difficult it will be to solve, and this information can also be useful for comparison to what is being sent to the solver. Most solvers will report the size of the model in their output logs, and if there is a difference between what is reported here and by the solver, then you should probably look into what is happening. This section also notes some things such as if you have any deactivated Blocks, Constraints or Objectives, or if you have variables which appear in the constraints that are not part of the model; these are not necessarily wrong but it is easy to have accidentally deactivated something you did not intend to so you should always check to see that these are expected.\n", - "\n", - "2. The second section provides a summary of any critical structural issues that were found - in this case we can see that there are 2 warnings we are going to need to look into. Warnings represent issues that need to be addressed before moving on as these will likely cause the solver to fail or give an incorrect answer.\n", - "\n", - "3. The third section lists a summary of any cautions that are found. Cautions represent issues that may or may not be problematic; in many cases these might be expected behaviors or borderline issues. However, these could also represent conceptual issues that should be addressed, so users should take the time to investigate these and determine if they need to be fixed or not.\n", - "\n", - "4. Finally, there is a section that suggests the next steps to take to help guide you through the model diagnosis process. If any warnings were identified, this section will list methods that can help you get more information on each specific problem, and if no warnings are found then it will guide you onto the next step in the model diagnosis workflow.\n", - "\n", - "**Note:** there are methods available to help investigate cautions as well, but these will not show up in the next steps in order to avoid cluttering the output. You can get more information on the available methods for investigating cautions via the documentation or ``help()`` function.\n", - "\n", - "In our current model, we have 2 critical issues (warnings) that we need to look into and resolve. The order in which we resolve these will generally not matter, but be aware that these can often be interrelated - fixing one warning might resolve other warnings as well (or create new ones), and sometimes you will need to look at multiple issues together to find the overall root cause.\n", - "\n", - "To start with, let us look at the unit consistency issue. From the \"Next Steps\" section above, the toolbox is suggesting we run the ``display_components_with_inconsistent_units()`` method for more information.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call the `display_components_with_inconsistent_units()` method from the DiagnosticsToolbox to see more information on which constraint is causing the unit consistency issues.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Call the display_components_with_inconsistent_units() method" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "scrolled": false, - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "The following component(s) have unit consistency issues:\n", - "\n", - " c1\n", - "\n", - "For more details on unit inconsistencies, import the assert_units_consistent method\n", - "from pyomo.util.check_units\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_components_with_inconsistent_units()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This tells us that the issue lies in constraint ``c1``. If we go back and look at this constraint, we can see that it says ``v1 + v2 == 10``. ``v1`` and ``v2`` both have units of ``m`` which is consistent, but the constant in the expression (right hand side) is unitless. Thus, we need to correct this so that the right hand side has units for the constraint to be consistent.\n", - "\n", - "The cell below shows how to delete a constraint and replace it with a new one with the correct units.\n", - "\n", - "
\n", - "Warning:\n", - "Deleting components can cause unexpected issues if something else in a model is using that component (e.g., deleting a variable which is used in a constraint). You should always be careful when deleting Pyomo components and make sure you only delete components that are not used elsewhere.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# Delete the incorrect Constraint\n", - "m.del_component(m.c1)\n", - "\n", - "# Re-create the Constraint with the correct units\n", - "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10 * pyo.units.m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Warning:\n", - "Fixing issues in models is often an iterative process requiring trial and error. You might also have some results from a model before running the diagnostics tools and the changes you make during debugging may make it difficult to replicate those results afterwards.\n", - " \n", - "It is strongly recommended that you keep a record of the changes you make at each step and why, along with a Git hash (or similar version control marker) corresponding to these changes. This will allow you see what changes and why, and give you a way to go back to previous iterations if the current approach does not work out. The IDAES documentation contains recommendations on how to keep and maintain a modeling logbook.\n", - "
\n", - "\n", - "Now, re-run the ``report_structural_issues()`` method and see if this change has fixed the unit consistency issue.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call dt.report_structural_issues() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Call the report_structural_issues() method" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "scrolled": true, - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 1 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 4 (External: 0)\n", - " Free Variables with only lower bounds: 0\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 3 (External: 0)\n", - " Activated Equality Constraints: 4 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "1 WARNINGS\n", - "\n", - " WARNING: Structural singularity found\n", - " Under-Constrained Set: 3 variables, 2 constraints\n", - " Over-Constrained Set: 1 variables, 2 constraints\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 Cautions\n", - "\n", - " Caution: 1 variable fixed to 0\n", - " Caution: 1 unused variable (0 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_underconstrained_set()\n", - " display_overconstrained_set()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The unit consistency issue has been resolved by the changes above, so now we need to look at the structural singularity. A structural singularity occurs when one sub-part of the model is over-constrained (negative degrees of freedom), which generally means another part is under-constrained (positive degrees of freedom, assuming that there are 0 degrees of freedom overall).\n", - "\n", - "The toolbox is suggesting we use the ``display_overconstrained_set()`` and ``display_underconstrained_set()`` methods to get more information on the singularity; for now, let us start with the over-constrained set.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call dt.display_overconstrained_set() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Call the display_overconstrained_set() method" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Dulmage-Mendelsohn Over-Constrained Set\n", - "\n", - " Independent Block 0:\n", - "\n", - " Variables:\n", - "\n", - " v3\n", - "\n", - " Constraints:\n", - "\n", - " c2\n", - " c3\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_overconstrained_set()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From the output above, the toolbox is telling us that we have two constraints (``c2`` and ``c3``) which only contain a single unfixed variable (``v3``); thus in this part of the model we have -1 degree of freedom and the model is not well defined (structurally singular). If we go back and look at these constraints, we can see the that the constraints are:\n", - "\n", - "``c2: v3 == v4 + v5``\n", - "\n", - "``c3: 2*v3 == 3*v4 + 4*v5 + v6``\n", - "\n", - "We can see that in addition to ``v3`` these constraints actually contain 3 other variables (``v4``, ``v5`` and ``v6``), however these are all variables we fixed to get our initial zero degrees of freedom. It looks like we have either accidentally fixed one too many variables or written one too many constraints.\n", - "\n", - "For this example, let us assume that ``v4`` was not supposed to be fixed and unfix it.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Resolve the structural singularity and then call dt.report_structural_issues() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Unfix v4\n", - "\n", - "# Then call the report_structural_issues() method again" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "scrolled": true, - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 1 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 5 (External: 0)\n", - " Free Variables with only lower bounds: 0\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 2 (External: 0)\n", - " Activated Equality Constraints: 4 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 WARNINGS\n", - "\n", - " WARNING: 1 Degree of Freedom\n", - " WARNING: Structural singularity found\n", - " Under-Constrained Set: 3 variables, 2 constraints\n", - " Over-Constrained Set: 0 variables, 0 constraints\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 Cautions\n", - "\n", - " Caution: 1 variable fixed to 0\n", - " Caution: 1 unused variable (0 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_underconstrained_set()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m.v4.unfix()\n", - "\n", - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that the over-constrained set is now empty (0 variables and 0 constraints) but the under-constrained set still has 3 variables and only 2 constraints. We can also see that there is a new warning about having 1 degree of freedom in the model, however this should not be surprising as we have just unfixed ``v4`` to resolve the over-constrained set so we have added a degree of freedom to the model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Display the under-constrained set in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Display the under-constrained set" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Dulmage-Mendelsohn Under-Constrained Set\n", - "\n", - " Independent Block 0:\n", - "\n", - " Variables:\n", - "\n", - " v2\n", - " v1\n", - " v7\n", - "\n", - " Constraints:\n", - "\n", - " c1\n", - " c4\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_underconstrained_set()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looking at the output from the ``display_underconstrained_set()`` method, we can see that we have two constraints, ``c1`` and ``c4``, which contain three unfixed variables, ``v1``, ``v2`` and ``v7``. Thus, we have one degree of freedom that needs to be addressed. To fix this, we could either fix one of the variables shown or add an additional equality constraint to the model.\n", - "\n", - "For this example let's fix ``v2`` to a value of 5 and then re-run the ``report_structural_issues()`` method.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Fix v2 to a value of 5 and then re-run dt.report_structural_issues.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Fix v2 = 5\n", - "\n", - "# Then re-run report_structural_issues() method" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "scrolled": true, - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 1 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 4 (External: 0)\n", - " Free Variables with only lower bounds: 0\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 3 (External: 0)\n", - " Activated Equality Constraints: 4 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "0 WARNINGS\n", - "\n", - " No warnings found!\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 Cautions\n", - "\n", - " Caution: 1 variable fixed to 0\n", - " Caution: 1 unused variable (0 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " Try to initialize/solve your model and then call report_numerical_issues()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m.v2.fix(5)\n", - "\n", - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is now telling us that no warnings were found, so we have resolved all the structural issues (for now at least). The toolbox is telling us that there are also 2 non-critical issues (cautions) that we should look at; one about an unused variable and one about a variable fixed to zero. If you wish, you can look into identifying and fixing these yourself, however for this example we will move on to the next step (remember that the toolbox has methods to display more details for each of these which you can find in the documentation or from the ``help()`` function).\n", - "\n", - "For the Next Steps section, the toolbox is recommending we try to solve our model and then check for numerical issues.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Use the Pyomo SolverFactory to create an instance of IPOPT and then try to solve the model. Make sure to set \"tee=True\" as this is going to fail (and it is always good practice to review the solver logs).\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create a solver object\n", - "\n", - "# Try to solve the model" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 7\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 4\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 2\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 4\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 1.40e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 1.39e+01 1.50e+02 -1.0 6.00e+00 - 7.16e-01 4.93e-03h 1\n", - " 2 0.0000000e+00 1.39e+01 3.03e+06 -1.0 5.97e+00 - 1.00e+00 4.95e-05h 1\n", - " 3r 0.0000000e+00 1.39e+01 1.00e+03 1.1 0.00e+00 - 0.00e+00 2.47e-07R 2\n", - " 4r 0.0000000e+00 4.19e+00 9.42e+02 1.1 3.50e+03 - 4.02e-01 3.37e-03f 1\n", - " 5r 0.0000000e+00 2.12e+00 8.72e+02 1.1 5.89e+01 - 4.35e-01 7.06e-02f 1\n", - " 6r 0.0000000e+00 6.74e-01 6.06e+02 1.1 5.29e+00 - 9.93e-03 3.98e-01f 1\n", - " 7r 0.0000000e+00 6.80e-01 3.14e+02 0.4 2.05e-01 - 1.00e+00 1.03e-01f 1\n", - " 8r 0.0000000e+00 6.69e-01 2.78e-05 0.4 2.58e-02 - 1.00e+00 1.00e+00f 1\n", - " 9r 0.0000000e+00 6.67e-01 7.56e+00 -1.7 8.13e-03 - 9.93e-01 9.96e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10r 0.0000000e+00 6.67e-01 2.23e-07 -1.7 4.13e-05 - 1.00e+00 1.00e+00f 1\n", - " 11r 0.0000000e+00 6.67e-01 6.73e-01 -3.7 6.61e-05 - 1.00e+00 1.00e+00f 1\n", - " 12r 0.0000000e+00 6.67e-01 1.91e-09 -3.7 1.48e-09 - 1.00e+00 1.00e+00h 1\n", - " 13r 0.0000000e+00 6.67e-01 2.69e+00 -8.4 5.74e-07 - 1.00e+00 9.26e-01f 1\n", - " 14r 0.0000000e+00 6.67e-01 7.65e+01 -8.4 4.23e-08 - 8.68e-01 1.00e+00f 1\n", - "\n", - "Number of Iterations....: 14\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 3.2644919411246030e-04 3.2644919411246030e-04\n", - "Constraint violation....: 6.6666666333656233e-01 6.6666666333656233e-01\n", - "Complementarity.........: 4.6615546565561981e-09 4.6615546565561981e-09\n", - "Overall NLP error.......: 6.6666666333656233e-01 6.6666666333656233e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 18\n", - "Number of objective gradient evaluations = 5\n", - "Number of equality constraint evaluations = 18\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 17\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 15\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Converged to a point of local infeasibility. Problem may be infeasible.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: infeasible\n", - " - message from solver: Ipopt 3.13.2\\x3a Converged to a locally infeasible\n", - " point. Problem may be infeasible.\n" - ] - }, - { - "data": { - "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'warning', 'Message': 'Ipopt 3.13.2\\\\x3a Converged to a locally infeasible point. Problem may be infeasible.', 'Termination condition': 'infeasible', 'Id': 200, 'Error rc': 0, 'Time': 0.007064104080200195}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "solver = pyo.SolverFactory(\"ipopt\")\n", - "solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As hinted at above, IPOPT has returned a warning that the problem may be infeasible. Before moving on however, it is always good practice to look over the solver outputs and see what it is telling you.\n", - "\n", - "
\n", - "Warning:\n", - "A lot of useful information is contained in the solver logs which is extremely useful when diagnosing modeling issues. Each solver has its own way of reporting output and its own specific behavior, so you will need to learn to interpret the output of each solver you use. The IDAES Documentation contains some guidance on interpreting output logs for a few common solvers.\n", - "
\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call the report_numerical_issues method in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Check for numerical issues" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Jacobian Condition Number: 1.700E+01\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 WARNINGS\n", - "\n", - " WARNING: 1 Constraint with large residuals (>1.0E-05)\n", - " WARNING: 1 Variable at or outside bounds (tol=0.0E+00)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "5 Cautions\n", - "\n", - " Caution: 2 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", - " Caution: 2 Variables with value close to zero (tol=1.0E-08)\n", - " Caution: 1 Variable with extreme value (<1.0E-04 or >1.0E+04)\n", - " Caution: 1 Variable with None value\n", - " Caution: 1 extreme Jacobian Entry (<1.0E-04 or >1.0E+04)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_constraints_with_large_residuals()\n", - " display_variables_at_or_outside_bounds()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The ``report_numerical_issues()`` provides a summary similar to that which we saw for the structural issues. Firstly, it reports to us the Jacobian condition number for our problem which can give us an idea of how well-scaled the problem is, followed by a list of warnings, cautions and suggested next steps.\n", - "\n", - "Unsurprisingly, we are seeing a warning about a constraint with a large residual which we would expect when a solver reports a potentially infeasible problem. We are also seeing a warning about a variable with bound violations which might be contributing to the potential infeasibility.\n", - "\n", - "For the next steps, the toolbox is suggesting some new methods to get more information on these issues; let us start by looking at the constraints with large residuals.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Display the constraint with a large residual in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Display constraint with large residual" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "The following constraint(s) have large residuals (>1.0E-05):\n", - "\n", - " c2: 6.66667E-01\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_constraints_with_large_residuals()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is telling us that the constraint which failed to converge is ``c2``, however this is generally only part of the story. Solvers work by trying to minimize the infeasibility in the model (residual of the constraints), which generally means they push any infeasibility onto the least sensitive constraint in the problem. Thus, the constraint which shows the infeasibility is often not the root cause of the problem, but only the symptom of the underlying issue.\n", - "\n", - "If we look back at the constraints, we can see that the same variables also appear in ``c3`` and that some of these have bounds, all of which could be contributing to the infeasibility. In this case the solver tried to minimize the residual in all the constraints and ended up pushing all the issues off onto ``c2``.\n", - "\n", - "
\n", - "Warning:\n", - "When dealing with solver issues such as this, you should always remember that the obvious symptoms are often just the tip of the iceberg and that the real issue generally lies somewhere else; the challenge is tracing the symptoms back to their ultimate source.\n", - "
\n", - "\n", - "Next, let us take a look at the variables at or outside their bounds as well. When a solver reports an potentially infeasible solution, the most common cause is unexpected bounds violations so you should always check these first.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Display the variables with bounds violations.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Display the variables with bounds violations" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "The following variable(s) have values at or outside their bounds (tol=0.0E+00):\n", - "\n", - " v3 (free): value=0.0 bounds=(0, 5)\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_variables_at_or_outside_bounds()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is telling us that ``v3`` is the variable with a potential issue. It is also showing us the current value and bounds for ``v3`` as well as if it is a fixed or free variable, which will be useful for diagnosing the issues.\n", - "\n", - "We can see that ``v3`` is a free variable with bounds between 0 and 5 and a current value of 0. As ``v3`` is a free variable, this suggests that the solver has pushed the value to the bound where it cannot go any further, and this might be part of the cause of our infeasibility.\n", - "\n", - "
\n", - "Warning:\n", - "When dealing with bounds violations you should always start by understanding why the bounds exist and what they mean - in many cases a bound indicates the range over which the model can be trusted and that going beyond this may result in unexpected behavior due to extrapolation.\n", - " \n", - "Never arbitrarily change a bound just because it is causing your model to be infeasible without understanding the consequences of this decision. Often, a bound violation is an indication that you need to re-think some of the constraints in your model to find alternatives which are valid in the actual range of values you are trying to solve for.\n", - "
\n", - "\n", - "For this example, let us assume that we made a mistake with the bounds on ``v3`` and set the lower bound to be -5.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Update the bounds on v3 in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Update bounds for v3" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "m.v3.setlb(-5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that we have fixed the bounds issues, we should check whether our model is now feasible. However, before we continue we should recognize that we have just made a structural change to the model. If we were not careful, this could have introduced new structural issues to the model, so we should start from the beginning just to be sure.\n", - "\n", - "
\n", - "Warning:\n", - "In general, you should always start from the beginning of the model diagnosis workflow after you make any change to the model. Remember to also record these changes in your log book in case something unexpected happens so that you can revert any changes that cause problems.\n", - "
\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Check to see if there are any new structural issues in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Check for new structural issues" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "scrolled": true, - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 1 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 4 (External: 0)\n", - " Free Variables with only lower bounds: 0\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 3 (External: 0)\n", - " Activated Equality Constraints: 4 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "0 WARNINGS\n", - "\n", - " No warnings found!\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 Cautions\n", - "\n", - " Caution: 1 variable fixed to 0\n", - " Caution: 1 unused variable (0 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " Try to initialize/solve your model and then call report_numerical_issues()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Our change has not introduced any new structural issues, so we can move on and try to solve the model again.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Re-solve the model in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Re-solve the model" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 7\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 4\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 2\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 4\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 6.67e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 6.66e-03 2.97e+00 -1.0 2.00e+00 - 7.17e-01 9.90e-01h 1\n", - " 2 0.0000000e+00 6.27e-05 9.38e+00 -1.0 2.00e-02 - 1.00e+00 9.91e-01h 1\n", - " 3 0.0000000e+00 8.88e-16 1.13e-12 -1.0 1.88e-04 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 8.8817841970012523e-16 8.8817841970012523e-16\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 8.8817841970012523e-16 8.8817841970012523e-16\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - }, - { - "data": { - "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.02317023277282715}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "IPOPT should have returned optimal solution now, so it looks like those bounds were what was causing the model to be infeasible. At this point, the model is now solving (for the current values at least), so you might think that the model is now ready for optimization.\n", - "\n", - "However, if we look at the solver logs we can see that it took around 3 iterations for IPOPT to solve our model (depending on minor variations in computer architecture). For a model this simple, we would generally expect it to solve in only 1 iteration so there is still some room for improvement.\n", - "\n", - "
\n", - "Warning:\n", - "You should keep in mind that just because you get an optimal solution does not mean that your model is robust and free of issues.\n", - " \n", - "You should always take the time to look over the solver logs to look for signs of trouble, even if you get an optimal solution. While you might get an optimal solution for the current state, there may be advance warning signs of issues that will cause problems later when you try to solve the model at a different state.\n", - "
\n", - "\n", - "Let us run the ``report_numerical_issues`` method again to see if there are any other problems we need to address.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Check for additional numerical issues in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Check for additional numerical issues" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Jacobian Condition Number: 1.700E+01\n", - "\n", - "------------------------------------------------------------------------------------\n", - "0 WARNINGS\n", - "\n", - " No warnings found!\n", - "\n", - "------------------------------------------------------------------------------------\n", - "5 Cautions\n", - "\n", - " Caution: 1 Variable with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", - " Caution: 1 Variable with value close to zero (tol=1.0E-08)\n", - " Caution: 1 Variable with extreme value (<1.0E-04 or >1.0E+04)\n", - " Caution: 1 Variable with None value\n", - " Caution: 1 extreme Jacobian Entry (<1.0E-04 or >1.0E+04)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " If you still have issues converging your model consider:\n", - " prepare_svd_toolbox()\n", - " prepare_degeneracy_hunter()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is not reporting any warnings which is good, however there are still 5 numerical cautions that it has identified which might be contributing to the larger than expected number of iterations. As mentioned earlier, the toolbox does not suggest methods for investigating these, but there are methods available. For example, we can look at the variable with an extreme value using the `display_variables_with_extreme_values()` method.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Check for additional information about variables with extreme values.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Display variable with extreme value" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "The following variable(s) have extreme values (<1.0E-04 or > 1.0E+04):\n", - "\n", - " v7: 4.9999999999999945e-08\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_variables_with_extreme_values()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that ``v7`` is potentially causing problems due to having a very small value (on the order of magnitude of the solver tolerance). This can be especially problematic for interior point solvers like IPOPT if there is a lower bound of 0 (which there is in this case). IPOPT tries to avoid bounds and thus perturbs solutions away from these if it gets too close, which can cause convergence to be slow (or fail) if the solution lies close to the bound.\n", - "\n", - "We can address this by scaling the variable so that the value of the scaled variable is large enough that the solution is not close to the lower bound. Additionally, we should look at any constraint that ``v7`` appears in (in this case ``c4``) and ensure that those constraints are well scaled as well (so that a residual of 1e-6 is reasonable for the terms involved).\n", - "\n", - "For this case, we can set a scaling factor of 1e8 for both ``v7`` and ``c4`` as shown below. Note that we also need to apply Pyomo's scaling transformation to create a new scaled model to work with." - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "m.scaling_factor = pyo.Suffix(direction=pyo.Suffix.EXPORT)\n", - "\n", - "m.scaling_factor[m.v7] = 1e8\n", - "m.scaling_factor[m.c4] = 1e8\n", - "\n", - "scaling = pyo.TransformationFactory(\"core.scale_model\")\n", - "scaled_model = scaling.create_using(m, rename=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that we have a scaled model, we can try to solve it and hopefully see better convergence than the unscaled model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Solve the scaled model and check to see how many iterations are required.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Solve scaled model" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 7\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 4\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 2\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 4\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 5.33e-15 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - "\n", - "Number of Iterations....: 0\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 5.3290705182007514e-15 5.3290705182007514e-15\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 5.3290705182007514e-15 5.3290705182007514e-15\n", - "\n", - "\n", - "Number of objective function evaluations = 1\n", - "Number of objective gradient evaluations = 1\n", - "Number of equality constraint evaluations = 1\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 1\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Optimal Solution Found.\n", - "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" - ] - }, - { - "data": { - "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.0058002471923828125}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# IDAES Model Diagnostics Toolbox Tutorial\n", + "Author: Andrew Lee \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-10-31 \n", + "\n", + "As you have likely discovered already, developing and solving models in an equation-oriented (EO) environment can be challenging and often takes a significant amount of effort. There are many pitfalls and mistakes that can be encountered when developing a model which can greatly impact the solvability and robustness of the final problem.\n", + "\n", + "Model diagnosis and debugging is often more of an art than a science, and it generally relies on significant experience and understanding both of general EO modeling techniques and the specific model and problem being solved. To assist with this process, IDAES has developed a model diagnostics toolbox that brings together a large number of tools for identifying potential issues in a model to help guide the user through the process of finding and resolving these issues. Note however that whilst these tools can help identify the presence of an issue, remedying the issue always requires some degree of engineering knowledge about the system being modeled, and thus it is ultimately up to the user to find a solution to the problem.\n", + "\n", + "This tutorial will take you through using the {py:class}`DiagnosticsToolbox ` to debug a number of issues in a simple Pyomo model and to take it from initially reporting a possible infeasible solution to returning the correct solution.\n", + "\n", + "To get started, the ``DiagnosticsToolbox`` can be imported from ``idaes.core.util``.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Import the DiagnosticsToolbox in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.util import DiagnosticsToolbox" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To get some information on where to start, try using the Python ``help()`` function to see the documentation for the ``DiagnosticsToolbox``.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call `help(DiagnosticsToolbox)` to see some more information on the toolbox and some instructions on how to get started.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Call the help() function for more information" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Help on class DiagnosticsToolbox in module idaes.core.util.model_diagnostics:\n", + "\n", + "class DiagnosticsToolbox(builtins.object)\n", + " | DiagnosticsToolbox(model: pyomo.core.base.block._BlockData, **kwargs)\n", + " | \n", + " | The IDAES Model DiagnosticsToolbox.\n", + " | \n", + " | To get started:\n", + " | \n", + " | 1. Create an instance of your model (this does not need to be initialized yet).\n", + " | 2. Fix variables until you have 0 degrees of freedom. Many of these tools presume\n", + " | a square model, and a square model should always be the foundation of any more\n", + " | advanced model.\n", + " | 3. Create an instance of the DiagnosticsToolbox and provide the model to debug as\n", + " | the model argument.\n", + " | 4. Call the ``report_structural_issues()`` method.\n", + " | \n", + " | Model diagnostics is an iterative process and you will likely need to run these\n", + " | tools multiple times to resolve all issues. After making a change to your model,\n", + " | you should always start from the beginning again to ensure the change did not\n", + " | introduce any new issues; i.e., always start from the report_structural_issues()\n", + " | method.\n", + " | \n", + " | Note that structural checks do not require the model to be initialized, thus users\n", + " | should start with these. Numerical checks require at least a partial solution to the\n", + " | model and should only be run once all structural issues have been resolved.\n", + " | \n", + " | Report methods will print a summary containing three parts:\n", + " | \n", + " | 1. Warnings - these are critical issues that should be resolved before continuing.\n", + " | For each warning, a method will be suggested in the Next Steps section to get\n", + " | additional information.\n", + " | 2. Cautions - these are things that could be correct but could also be the source of\n", + " | solver issues. Not all cautions need to be addressed, but users should investigate\n", + " | each one to ensure that the behavior is correct and that they will not be the source\n", + " | of difficulties later. Methods exist to provide more information on all cautions,\n", + " | but these will not appear in the Next Steps section.\n", + " | 3. Next Steps - these are recommended methods to call from the DiagnosticsToolbox to\n", + " | get further information on warnings. If no warnings are found, this will suggest\n", + " | the next report method to call.\n", + " | \n", + " | Args:\n", + " | \n", + " | model: model to be diagnosed. The DiagnosticsToolbox does not support indexed Blocks.\n", + " | \n", + " | Keyword Arguments\n", + " | -----------------\n", + " | variable_bounds_absolute_tolerance: float, default=0.0001\n", + " | Absolute tolerance for considering a variable to be close to its\n", + " | bounds.\n", + " | \n", + " | variable_bounds_relative_tolerance: float, default=0.0001\n", + " | Relative tolerance for considering a variable to be close to its\n", + " | bounds.\n", + " | \n", + " | variable_bounds_violation_tolerance: float, default=0\n", + " | Absolute tolerance for considering a variable to violate its bounds.\n", + " | Some solvers relax bounds on variables thus allowing a small violation\n", + " | to be considered acceptable.\n", + " | \n", + " | constraint_residual_tolerance: float, default=1e-05\n", + " | Absolute tolerance to use when checking constraint residuals.\n", + " | \n", + " | variable_large_value_tolerance: float, default=10000.0\n", + " | Absolute tolerance for considering a value to be large.\n", + " | \n", + " | variable_small_value_tolerance: float, default=0.0001\n", + " | Absolute tolerance for considering a value to be small.\n", + " | \n", + " | variable_zero_value_tolerance: float, default=1e-08\n", + " | Absolute tolerance for considering a value to be near to zero.\n", + " | \n", + " | jacobian_large_value_caution: float, default=10000.0\n", + " | Tolerance for raising a caution for large Jacobian values.\n", + " | \n", + " | jacobian_large_value_warning: float, default=100000000.0\n", + " | Tolerance for raising a warning for large Jacobian values.\n", + " | \n", + " | jacobian_small_value_caution: float, default=0.0001\n", + " | Tolerance for raising a caution for small Jacobian values.\n", + " | \n", + " | jacobian_small_value_warning: float, default=1e-08\n", + " | Tolerance for raising a warning for small Jacobian values.\n", + " | \n", + " | warn_for_evaluation_error_at_bounds: bool, default=True\n", + " | If False, warnings will not be generated for things like log(x) with x\n", + " | >= 0\n", + " | \n", + " | Methods defined here:\n", + " | \n", + " | __init__(self, model: pyomo.core.base.block._BlockData, **kwargs)\n", + " | Initialize self. See help(type(self)) for accurate signature.\n", + " | \n", + " | assert_no_numerical_warnings(self)\n", + " | Checks for numerical warnings in the model and raises an AssertionError\n", + " | if any are found.\n", + " | \n", + " | Raises:\n", + " | AssertionError if any warnings are identified by numerical analysis.\n", + " | \n", + " | assert_no_structural_warnings(self)\n", + " | Checks for structural warnings in the model and raises an AssertionError\n", + " | if any are found.\n", + " | \n", + " | Raises:\n", + " | AssertionError if any warnings are identified by structural analysis.\n", + " | \n", + " | display_components_with_inconsistent_units(self, stream=None)\n", + " | Prints a list of all Constraints, Expressions and Objectives in the\n", + " | model with inconsistent units of measurement.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_constraints_with_extreme_jacobians(self, stream=None)\n", + " | Prints the constraints associated with rows in the Jacobian with extreme\n", + " | L2 norms. This often indicates poorly scaled constraints.\n", + " | \n", + " | Tolerances can be set via the DiagnosticsToolbox config.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the output to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_constraints_with_large_residuals(self, stream=None)\n", + " | Prints a list of Constraints with residuals greater than a specified tolerance.\n", + " | Tolerance can be set in the class configuration options.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_external_variables(self, stream=None)\n", + " | Prints a list of variables that appear within activated Constraints in the\n", + " | model but are not contained within the model themselves.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_extreme_jacobian_entries(self, stream=None)\n", + " | Prints variables and constraints associated with entries in the Jacobian with extreme\n", + " | values. This can be indicative of poor scaling, especially for isolated terms (e.g.\n", + " | variables which appear only in one term of a single constraint).\n", + " | \n", + " | Tolerances can be set via the DiagnosticsToolbox config.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the output to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_overconstrained_set(self, stream=None)\n", + " | Prints the variables and constraints in the over-constrained sub-problem\n", + " | from a Dulmage-Mendelsohn partitioning.\n", + " | \n", + " | This can be used to identify the over-defined part of a model and thus\n", + " | where constraints must be removed or variables unfixed.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_potential_evaluation_errors(self, stream=None)\n", + " | Prints constraints that may be prone to evaluation errors\n", + " | (e.g., log of a negative number) based on variable bounds.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the output to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_underconstrained_set(self, stream=None)\n", + " | Prints the variables and constraints in the under-constrained sub-problem\n", + " | from a Dulmage-Mendelsohn partitioning.\n", + " | \n", + " | This can be used to identify the under-defined part of a model and thus\n", + " | where additional information (fixed variables or constraints) are required.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_unused_variables(self, stream=None)\n", + " | Prints a list of variables that do not appear in any activated Constraints.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_at_or_outside_bounds(self, stream=None)\n", + " | Prints a list of variables with values that fall at or outside the bounds\n", + " | on the variable.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_fixed_to_zero(self, stream=None)\n", + " | Prints a list of variables that are fixed to an absolute value of 0.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_near_bounds(self, stream=None)\n", + " | Prints a list of variables with values close to their bounds. Tolerance can\n", + " | be set in the class configuration options.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_with_extreme_jacobians(self, stream=None)\n", + " | Prints the variables associated with columns in the Jacobian with extreme\n", + " | L2 norms. This often indicates poorly scaled variables.\n", + " | \n", + " | Tolerances can be set via the DiagnosticsToolbox config.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the output to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_with_extreme_values(self, stream=None)\n", + " | Prints a list of variables with extreme values.\n", + " | \n", + " | Tolerances can be set in the class configuration options.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_with_none_value(self, stream=None)\n", + " | Prints a list of variables with a value of None.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_with_value_near_zero(self, stream=None)\n", + " | Prints a list of variables with a value close to zero. The tolerance\n", + " | for determining what is close to zero can be set in the class configuration\n", + " | options.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | get_dulmage_mendelsohn_partition(self)\n", + " | Performs a Dulmage-Mendelsohn partitioning on the model and returns\n", + " | the over- and under-constrained sub-problems.\n", + " | \n", + " | Returns:\n", + " | list-of-lists variables in each independent block of the under-constrained set\n", + " | list-of-lists constraints in each independent block of the under-constrained set\n", + " | list-of-lists variables in each independent block of the over-constrained set\n", + " | list-of-lists constraints in each independent block of the over-constrained set\n", + " | \n", + " | prepare_degeneracy_hunter(self, **kwargs)\n", + " | Create an instance of the DegeneracyHunter and store as self.degeneracy_hunter.\n", + " | \n", + " | After creating an instance of the toolbox, call\n", + " | report_irreducible_degenerate_sets.\n", + " | \n", + " | Returns:\n", + " | \n", + " | Instance of DegeneracyHunter\n", + " | \n", + " | Keyword Arguments\n", + " | -----------------\n", + " | solver: str, default='scip'\n", + " | MILP solver to use for finding irreducible degenerate sets.\n", + " | \n", + " | solver_options: optional\n", + " | Options to pass to MILP solver.\n", + " | \n", + " | M: float, default=100000.0\n", + " | Maximum value for nu in MILP models.\n", + " | \n", + " | m_small: float, default=1e-05\n", + " | Smallest value for nu to be considered non-zero in MILP models.\n", + " | \n", + " | trivial_constraint_tolerance: float, default=1e-06\n", + " | Tolerance for identifying non-zero rows in Jacobian.\n", + " | \n", + " | prepare_svd_toolbox(self, **kwargs)\n", + " | Create an instance of the SVDToolbox and store as self.svd_toolbox.\n", + " | \n", + " | After creating an instance of the toolbox, call\n", + " | display_underdetermined_variables_and_constraints().\n", + " | \n", + " | Returns:\n", + " | \n", + " | Instance of SVDToolbox\n", + " | \n", + " | Keyword Arguments\n", + " | -----------------\n", + " | number_of_smallest_singular_values: PositiveInt, optional\n", + " | Number of smallest singular values to compute\n", + " | \n", + " | svd_callback: svd_callback_validator, default=\n", + " | Callback to SVD method of choice (default = svd_dense). Callbacks\n", + " | should take the Jacobian and number of singular values to compute as\n", + " | options, plus any method specific arguments, and should return the u,\n", + " | s and v matrices as numpy arrays.\n", + " | \n", + " | svd_callback_arguments: dict, optional\n", + " | Optional arguments to pass to SVD callback (default = None)\n", + " | \n", + " | singular_value_tolerance: float, default=1e-06\n", + " | Tolerance for defining a small singular value\n", + " | \n", + " | size_cutoff_in_singular_vector: float, default=0.1\n", + " | Size below which to ignore constraints and variables in the singular\n", + " | vector\n", + " | \n", + " | report_numerical_issues(self, stream=None)\n", + " | Generates a summary report of any numerical issues identified in the model provided\n", + " | and suggest next steps for debugging model.\n", + " | \n", + " | Numerical checks should only be performed once all structural issues have been resolved,\n", + " | and require that at least a partial solution to the model is available.\n", + " | \n", + " | Args:\n", + " | stream: I/O object to write report to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | report_structural_issues(self, stream=None)\n", + " | Generates a summary report of any structural issues identified in the model provided\n", + " | and suggests next steps for debugging the model.\n", + " | \n", + " | This should be the first method called when debugging a model and after any change\n", + " | is made to the model. These checks can be run before trying to initialize and solve\n", + " | the model.\n", + " | \n", + " | Args:\n", + " | stream: I/O object to write report to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | ----------------------------------------------------------------------\n", + " | Readonly properties defined here:\n", + " | \n", + " | model\n", + " | Model currently being diagnosed.\n", + " | \n", + " | ----------------------------------------------------------------------\n", + " | Data descriptors defined here:\n", + " | \n", + " | __dict__\n", + " | dictionary for instance variables (if defined)\n", + " | \n", + " | __weakref__\n", + " | list of weak references to the object (if defined)\n", + "\n" + ] + } + ], + "source": [ + "help(DiagnosticsToolbox)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The ``help()`` function gives us a lot of information on the ``DiagnosticsToolbox`` and all the methods that it supports (and there are many). However, the important part to start with are the four steps outlined at the top of the doc string that tell us how to get started.\n", + "\n", + "Firstly, we need a model to test (and, for this tutorial at least, one that has a wide range of issues that we need to fix before it will solve). We then also need to fix some variables so that we have 0 degrees of freedom in our model. Whilst our ultimate goal is generally optimization (and thus a system with 1 or more degrees of freedom), all models conceptually derive from a square model representing a nominal state. If this nominal state is not well-posed, then any issues present will also be present in the resulting optimization (even if adding degrees of freedom means that the model is now easier to solve).\n", + "\n", + "The cell below contains a demonstration model for this tutorial that contains a number of issues that we will resolve using the ``DiagnosticsToolbox``." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import pyomo.environ as pyo\n", + "\n", + "m = pyo.ConcreteModel()\n", + "\n", + "m.v1 = pyo.Var(units=pyo.units.m)\n", + "m.v2 = pyo.Var(units=pyo.units.m)\n", + "m.v3 = pyo.Var(bounds=(0, 5))\n", + "m.v4 = pyo.Var()\n", + "m.v5 = pyo.Var(bounds=(0, 10))\n", + "m.v6 = pyo.Var()\n", + "m.v7 = pyo.Var(\n", + " units=pyo.units.m, bounds=(0, 1)\n", + ") # Poorly scaled variable with lower bound\n", + "m.v8 = pyo.Var() # unused variable\n", + "\n", + "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10) # Unit consistency issue\n", + "m.c2 = pyo.Constraint(expr=m.v3 == m.v4 + m.v5)\n", + "m.c3 = pyo.Constraint(expr=2 * m.v3 == 3 * m.v4 + 4 * m.v5 + m.v6)\n", + "m.c4 = pyo.Constraint(expr=m.v7 == 1e-8 * m.v1) # Poorly scaled constraint\n", + "\n", + "m.v4.fix(2)\n", + "m.v5.fix(2)\n", + "m.v6.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, the instructions tell us to create an instance of the ``DiagnosticsToolbox`` and to pass the model we wish to examine as an argument.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Create an instance of the DiagnosticsToolbox: dt = DiagnosticsToolbox(m)\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create an instance of the Diagnostics Toolbox" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "dt = DiagnosticsToolbox(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, the instructions tell us to run the ``report_structural_issues()`` method. Structural issues represent issues that exist solely in the form of the model equations and thus do not depend on the current value of any of the variables. This is useful as it means we can check for these before we even call a solver, which can be critical as sometimes these issues will cause a solver to fail without providing a useful solution.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call dt.report_structural_issues() in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Call the report_structural_issues() method" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 4 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 3 (External: 0)\n", + " Activated Equality Constraints: 4 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 WARNINGS\n", + "\n", + " WARNING: 1 Component with inconsistent units\n", + " WARNING: Structural singularity found\n", + " Under-Constrained Set: 3 variables, 2 constraints\n", + " Over-Constrained Set: 1 variables, 2 constraints\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 Cautions\n", + "\n", + " Caution: 1 variable fixed to 0\n", + " Caution: 1 unused variable (0 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_components_with_inconsistent_units()\n", + " display_underconstrained_set()\n", + " display_overconstrained_set()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looking at the output from the ``report_structural_issues()`` method, we can see that it provides a fairly short summary containing 4 sections.\n", + "\n", + "1. The first section is a summary of the size of the model, indicating things like the number of variables and constraints. The size of the model is often important for judging how difficult it will be to solve, and this information can also be useful for comparison to what is being sent to the solver. Most solvers will report the size of the model in their output logs, and if there is a difference between what is reported here and by the solver, then you should probably look into what is happening. This section also notes some things such as if you have any deactivated Blocks, Constraints or Objectives, or if you have variables which appear in the constraints that are not part of the model; these are not necessarily wrong but it is easy to have accidentally deactivated something you did not intend to so you should always check to see that these are expected.\n", + "\n", + "2. The second section provides a summary of any critical structural issues that were found - in this case we can see that there are 2 warnings we are going to need to look into. Warnings represent issues that need to be addressed before moving on as these will likely cause the solver to fail or give an incorrect answer.\n", + "\n", + "3. The third section lists a summary of any cautions that are found. Cautions represent issues that may or may not be problematic; in many cases these might be expected behaviors or borderline issues. However, these could also represent conceptual issues that should be addressed, so users should take the time to investigate these and determine if they need to be fixed or not.\n", + "\n", + "4. Finally, there is a section that suggests the next steps to take to help guide you through the model diagnosis process. If any warnings were identified, this section will list methods that can help you get more information on each specific problem, and if no warnings are found then it will guide you onto the next step in the model diagnosis workflow.\n", + "\n", + "**Note:** there are methods available to help investigate cautions as well, but these will not show up in the next steps in order to avoid cluttering the output. You can get more information on the available methods for investigating cautions via the documentation or ``help()`` function.\n", + "\n", + "In our current model, we have 2 critical issues (warnings) that we need to look into and resolve. The order in which we resolve these will generally not matter, but be aware that these can often be interrelated - fixing one warning might resolve other warnings as well (or create new ones), and sometimes you will need to look at multiple issues together to find the overall root cause.\n", + "\n", + "To start with, let us look at the unit consistency issue. From the \"Next Steps\" section above, the toolbox is suggesting we run the ``display_components_with_inconsistent_units()`` method for more information.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call the `display_components_with_inconsistent_units()` method from the DiagnosticsToolbox to see more information on which constraint is causing the unit consistency issues.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Call the display_components_with_inconsistent_units() method" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": false, + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following component(s) have unit consistency issues:\n", + "\n", + " c1\n", + "\n", + "For more details on unit inconsistencies, import the assert_units_consistent method\n", + "from pyomo.util.check_units\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_components_with_inconsistent_units()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This tells us that the issue lies in constraint ``c1``. If we go back and look at this constraint, we can see that it says ``v1 + v2 == 10``. ``v1`` and ``v2`` both have units of ``m`` which is consistent, but the constant in the expression (right hand side) is unitless. Thus, we need to correct this so that the right hand side has units for the constraint to be consistent.\n", + "\n", + "The cell below shows how to delete a constraint and replace it with a new one with the correct units.\n", + "\n", + "
\n", + "Warning:\n", + "Deleting components can cause unexpected issues if something else in a model is using that component (e.g., deleting a variable which is used in a constraint). You should always be careful when deleting Pyomo components and make sure you only delete components that are not used elsewhere.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Delete the incorrect Constraint\n", + "m.del_component(m.c1)\n", + "\n", + "# Re-create the Constraint with the correct units\n", + "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10 * pyo.units.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Warning:\n", + "Fixing issues in models is often an iterative process requiring trial and error. You might also have some results from a model before running the diagnostics tools and the changes you make during debugging may make it difficult to replicate those results afterwards.\n", + " \n", + "It is strongly recommended that you keep a record of the changes you make at each step and why, along with a Git hash (or similar version control marker) corresponding to these changes. This will allow you see what changes and why, and give you a way to go back to previous iterations if the current approach does not work out. The IDAES documentation contains recommendations on how to keep and maintain a modeling logbook.\n", + "
\n", + "\n", + "Now, re-run the ``report_structural_issues()`` method and see if this change has fixed the unit consistency issue.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call dt.report_structural_issues() in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Call the report_structural_issues() method" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "scrolled": true, + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 4 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 3 (External: 0)\n", + " Activated Equality Constraints: 4 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 WARNINGS\n", + "\n", + " WARNING: Structural singularity found\n", + " Under-Constrained Set: 3 variables, 2 constraints\n", + " Over-Constrained Set: 1 variables, 2 constraints\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 Cautions\n", + "\n", + " Caution: 1 variable fixed to 0\n", + " Caution: 1 unused variable (0 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_underconstrained_set()\n", + " display_overconstrained_set()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The unit consistency issue has been resolved by the changes above, so now we need to look at the structural singularity. A structural singularity occurs when one sub-part of the model is over-constrained (negative degrees of freedom), which generally means another part is under-constrained (positive degrees of freedom, assuming that there are 0 degrees of freedom overall).\n", + "\n", + "The toolbox is suggesting we use the ``display_overconstrained_set()`` and ``display_underconstrained_set()`` methods to get more information on the singularity; for now, let us start with the over-constrained set.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call dt.display_overconstrained_set() in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Call the display_overconstrained_set() method" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Dulmage-Mendelsohn Over-Constrained Set\n", + "\n", + " Independent Block 0:\n", + "\n", + " Variables:\n", + "\n", + " v3\n", + "\n", + " Constraints:\n", + "\n", + " c2\n", + " c3\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_overconstrained_set()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the output above, the toolbox is telling us that we have two constraints (``c2`` and ``c3``) which only contain a single unfixed variable (``v3``); thus in this part of the model we have -1 degree of freedom and the model is not well defined (structurally singular). If we go back and look at these constraints, we can see the that the constraints are:\n", + "\n", + "``c2: v3 == v4 + v5``\n", + "\n", + "``c3: 2*v3 == 3*v4 + 4*v5 + v6``\n", + "\n", + "We can see that in addition to ``v3`` these constraints actually contain 3 other variables (``v4``, ``v5`` and ``v6``), however these are all variables we fixed to get our initial zero degrees of freedom. It looks like we have either accidentally fixed one too many variables or written one too many constraints.\n", + "\n", + "For this example, let us assume that ``v4`` was not supposed to be fixed and unfix it.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Resolve the structural singularity and then call dt.report_structural_issues() in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Unfix v4\n", + "\n", + "# Then call the report_structural_issues() method again" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": true, + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 5 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 2 (External: 0)\n", + " Activated Equality Constraints: 4 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 WARNINGS\n", + "\n", + " WARNING: 1 Degree of Freedom\n", + " WARNING: Structural singularity found\n", + " Under-Constrained Set: 3 variables, 2 constraints\n", + " Over-Constrained Set: 0 variables, 0 constraints\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 Cautions\n", + "\n", + " Caution: 1 variable fixed to 0\n", + " Caution: 1 unused variable (0 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_underconstrained_set()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m.v4.unfix()\n", + "\n", + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that the over-constrained set is now empty (0 variables and 0 constraints) but the under-constrained set still has 3 variables and only 2 constraints. We can also see that there is a new warning about having 1 degree of freedom in the model, however this should not be surprising as we have just unfixed ``v4`` to resolve the over-constrained set so we have added a degree of freedom to the model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Display the under-constrained set in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Display the under-constrained set" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Dulmage-Mendelsohn Under-Constrained Set\n", + "\n", + " Independent Block 0:\n", + "\n", + " Variables:\n", + "\n", + " v2\n", + " v1\n", + " v7\n", + "\n", + " Constraints:\n", + "\n", + " c1\n", + " c4\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_underconstrained_set()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looking at the output from the ``display_underconstrained_set()`` method, we can see that we have two constraints, ``c1`` and ``c4``, which contain three unfixed variables, ``v1``, ``v2`` and ``v7``. Thus, we have one degree of freedom that needs to be addressed. To fix this, we could either fix one of the variables shown or add an additional equality constraint to the model.\n", + "\n", + "For this example let's fix ``v2`` to a value of 5 and then re-run the ``report_structural_issues()`` method.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Fix v2 to a value of 5 and then re-run dt.report_structural_issues.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Fix v2 = 5\n", + "\n", + "# Then re-run report_structural_issues() method" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "scrolled": true, + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 4 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 3 (External: 0)\n", + " Activated Equality Constraints: 4 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 Cautions\n", + "\n", + " Caution: 1 variable fixed to 0\n", + " Caution: 1 unused variable (0 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " Try to initialize/solve your model and then call report_numerical_issues()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m.v2.fix(5)\n", + "\n", + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is now telling us that no warnings were found, so we have resolved all the structural issues (for now at least). The toolbox is telling us that there are also 2 non-critical issues (cautions) that we should look at; one about an unused variable and one about a variable fixed to zero. If you wish, you can look into identifying and fixing these yourself, however for this example we will move on to the next step (remember that the toolbox has methods to display more details for each of these which you can find in the documentation or from the ``help()`` function).\n", + "\n", + "For the Next Steps section, the toolbox is recommending we try to solve our model and then check for numerical issues.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Use the Pyomo SolverFactory to create an instance of IPOPT and then try to solve the model. Make sure to set \"tee=True\" as this is going to fail (and it is always good practice to review the solver logs).\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create a solver object\n", + "\n", + "# Try to solve the model" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 7\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 4\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 2\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 4\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.40e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.39e+01 1.50e+02 -1.0 6.00e+00 - 7.16e-01 4.93e-03h 1\n", + " 2 0.0000000e+00 1.39e+01 3.03e+06 -1.0 5.97e+00 - 1.00e+00 4.95e-05h 1\n", + " 3r 0.0000000e+00 1.39e+01 1.00e+03 1.1 0.00e+00 - 0.00e+00 2.47e-07R 2\n", + " 4r 0.0000000e+00 4.19e+00 9.42e+02 1.1 3.50e+03 - 4.02e-01 3.37e-03f 1\n", + " 5r 0.0000000e+00 2.12e+00 8.72e+02 1.1 5.89e+01 - 4.35e-01 7.06e-02f 1\n", + " 6r 0.0000000e+00 6.74e-01 6.06e+02 1.1 5.29e+00 - 9.93e-03 3.98e-01f 1\n", + " 7r 0.0000000e+00 6.80e-01 3.14e+02 0.4 2.05e-01 - 1.00e+00 1.03e-01f 1\n", + " 8r 0.0000000e+00 6.69e-01 2.78e-05 0.4 2.58e-02 - 1.00e+00 1.00e+00f 1\n", + " 9r 0.0000000e+00 6.67e-01 7.56e+00 -1.7 8.13e-03 - 9.93e-01 9.96e-01f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10r 0.0000000e+00 6.67e-01 2.23e-07 -1.7 4.13e-05 - 1.00e+00 1.00e+00f 1\n", + " 11r 0.0000000e+00 6.67e-01 6.73e-01 -3.7 6.61e-05 - 1.00e+00 1.00e+00f 1\n", + " 12r 0.0000000e+00 6.67e-01 1.91e-09 -3.7 1.48e-09 - 1.00e+00 1.00e+00h 1\n", + " 13r 0.0000000e+00 6.67e-01 2.69e+00 -8.4 5.74e-07 - 1.00e+00 9.26e-01f 1\n", + " 14r 0.0000000e+00 6.67e-01 7.65e+01 -8.4 4.23e-08 - 8.68e-01 1.00e+00f 1\n", + "\n", + "Number of Iterations....: 14\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 3.2644919411246030e-04 3.2644919411246030e-04\n", + "Constraint violation....: 6.6666666333656233e-01 6.6666666333656233e-01\n", + "Complementarity.........: 4.6615546565561981e-09 4.6615546565561981e-09\n", + "Overall NLP error.......: 6.6666666333656233e-01 6.6666666333656233e-01\n", + "\n", + "\n", + "Number of objective function evaluations = 18\n", + "Number of objective gradient evaluations = 5\n", + "Number of equality constraint evaluations = 18\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 17\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 15\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Converged to a point of local infeasibility. Problem may be infeasible.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: infeasible\n", + " - message from solver: Ipopt 3.13.2\\x3a Converged to a locally infeasible\n", + " point. Problem may be infeasible.\n" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'warning', 'Message': 'Ipopt 3.13.2\\\\x3a Converged to a locally infeasible point. Problem may be infeasible.', 'Termination condition': 'infeasible', 'Id': 200, 'Error rc': 0, 'Time': 0.007064104080200195}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver = pyo.SolverFactory(\"ipopt\")\n", + "solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As hinted at above, IPOPT has returned a warning that the problem may be infeasible. Before moving on however, it is always good practice to look over the solver outputs and see what it is telling you.\n", + "\n", + "
\n", + "Warning:\n", + "A lot of useful information is contained in the solver logs which is extremely useful when diagnosing modeling issues. Each solver has its own way of reporting output and its own specific behavior, so you will need to learn to interpret the output of each solver you use. The IDAES Documentation contains some guidance on interpreting output logs for a few common solvers.\n", + "
\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call the report_numerical_issues method in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Check for numerical issues" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 1.700E+01\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 WARNINGS\n", + "\n", + " WARNING: 1 Constraint with large residuals (>1.0E-05)\n", + " WARNING: 1 Variable at or outside bounds (tol=0.0E+00)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "5 Cautions\n", + "\n", + " Caution: 2 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 2 Variables with value close to zero (tol=1.0E-08)\n", + " Caution: 1 Variable with extreme value (<1.0E-04 or >1.0E+04)\n", + " Caution: 1 Variable with None value\n", + " Caution: 1 extreme Jacobian Entry (<1.0E-04 or >1.0E+04)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_constraints_with_large_residuals()\n", + " display_variables_at_or_outside_bounds()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The ``report_numerical_issues()`` provides a summary similar to that which we saw for the structural issues. Firstly, it reports to us the Jacobian condition number for our problem which can give us an idea of how well-scaled the problem is, followed by a list of warnings, cautions and suggested next steps.\n", + "\n", + "Unsurprisingly, we are seeing a warning about a constraint with a large residual which we would expect when a solver reports a potentially infeasible problem. We are also seeing a warning about a variable with bound violations which might be contributing to the potential infeasibility.\n", + "\n", + "For the next steps, the toolbox is suggesting some new methods to get more information on these issues; let us start by looking at the constraints with large residuals.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Display the constraint with a large residual in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Display constraint with large residual" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following constraint(s) have large residuals (>1.0E-05):\n", + "\n", + " c2: 6.66667E-01\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_constraints_with_large_residuals()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is telling us that the constraint which failed to converge is ``c2``, however this is generally only part of the story. Solvers work by trying to minimize the infeasibility in the model (residual of the constraints), which generally means they push any infeasibility onto the least sensitive constraint in the problem. Thus, the constraint which shows the infeasibility is often not the root cause of the problem, but only the symptom of the underlying issue.\n", + "\n", + "If we look back at the constraints, we can see that the same variables also appear in ``c3`` and that some of these have bounds, all of which could be contributing to the infeasibility. In this case the solver tried to minimize the residual in all the constraints and ended up pushing all the issues off onto ``c2``.\n", + "\n", + "
\n", + "Warning:\n", + "When dealing with solver issues such as this, you should always remember that the obvious symptoms are often just the tip of the iceberg and that the real issue generally lies somewhere else; the challenge is tracing the symptoms back to their ultimate source.\n", + "
\n", + "\n", + "Next, let us take a look at the variables at or outside their bounds as well. When a solver reports an potentially infeasible solution, the most common cause is unexpected bounds violations so you should always check these first.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Display the variables with bounds violations.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Display the variables with bounds violations" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following variable(s) have values at or outside their bounds (tol=0.0E+00):\n", + "\n", + " v3 (free): value=0.0 bounds=(0, 5)\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_variables_at_or_outside_bounds()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is telling us that ``v3`` is the variable with a potential issue. It is also showing us the current value and bounds for ``v3`` as well as if it is a fixed or free variable, which will be useful for diagnosing the issues.\n", + "\n", + "We can see that ``v3`` is a free variable with bounds between 0 and 5 and a current value of 0. As ``v3`` is a free variable, this suggests that the solver has pushed the value to the bound where it cannot go any further, and this might be part of the cause of our infeasibility.\n", + "\n", + "
\n", + "Warning:\n", + "When dealing with bounds violations you should always start by understanding why the bounds exist and what they mean - in many cases a bound indicates the range over which the model can be trusted and that going beyond this may result in unexpected behavior due to extrapolation.\n", + " \n", + "Never arbitrarily change a bound just because it is causing your model to be infeasible without understanding the consequences of this decision. Often, a bound violation is an indication that you need to re-think some of the constraints in your model to find alternatives which are valid in the actual range of values you are trying to solve for.\n", + "
\n", + "\n", + "For this example, let us assume that we made a mistake with the bounds on ``v3`` and set the lower bound to be -5.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Update the bounds on v3 in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Update bounds for v3" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "m.v3.setlb(-5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have fixed the bounds issues, we should check whether our model is now feasible. However, before we continue we should recognize that we have just made a structural change to the model. If we were not careful, this could have introduced new structural issues to the model, so we should start from the beginning just to be sure.\n", + "\n", + "
\n", + "Warning:\n", + "In general, you should always start from the beginning of the model diagnosis workflow after you make any change to the model. Remember to also record these changes in your log book in case something unexpected happens so that you can revert any changes that cause problems.\n", + "
\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Check to see if there are any new structural issues in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Check for new structural issues" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "scrolled": true, + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 4 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 3 (External: 0)\n", + " Activated Equality Constraints: 4 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 Cautions\n", + "\n", + " Caution: 1 variable fixed to 0\n", + " Caution: 1 unused variable (0 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " Try to initialize/solve your model and then call report_numerical_issues()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our change has not introduced any new structural issues, so we can move on and try to solve the model again.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Re-solve the model in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Re-solve the model" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 7\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 4\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 2\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 4\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 6.67e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 6.66e-03 2.97e+00 -1.0 2.00e+00 - 7.17e-01 9.90e-01h 1\n", + " 2 0.0000000e+00 6.27e-05 9.38e+00 -1.0 2.00e-02 - 1.00e+00 9.91e-01h 1\n", + " 3 0.0000000e+00 8.88e-16 1.13e-12 -1.0 1.88e-04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 8.8817841970012523e-16 8.8817841970012523e-16\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 8.8817841970012523e-16 8.8817841970012523e-16\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.02317023277282715}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "IPOPT should have returned optimal solution now, so it looks like those bounds were what was causing the model to be infeasible. At this point, the model is now solving (for the current values at least), so you might think that the model is now ready for optimization.\n", + "\n", + "However, if we look at the solver logs we can see that it took around 3 iterations for IPOPT to solve our model (depending on minor variations in computer architecture). For a model this simple, we would generally expect it to solve in only 1 iteration so there is still some room for improvement.\n", + "\n", + "
\n", + "Warning:\n", + "You should keep in mind that just because you get an optimal solution does not mean that your model is robust and free of issues.\n", + " \n", + "You should always take the time to look over the solver logs to look for signs of trouble, even if you get an optimal solution. While you might get an optimal solution for the current state, there may be advance warning signs of issues that will cause problems later when you try to solve the model at a different state.\n", + "
\n", + "\n", + "Let us run the ``report_numerical_issues`` method again to see if there are any other problems we need to address.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Check for additional numerical issues in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Check for additional numerical issues" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 1.700E+01\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "5 Cautions\n", + "\n", + " Caution: 1 Variable with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 1 Variable with value close to zero (tol=1.0E-08)\n", + " Caution: 1 Variable with extreme value (<1.0E-04 or >1.0E+04)\n", + " Caution: 1 Variable with None value\n", + " Caution: 1 extreme Jacobian Entry (<1.0E-04 or >1.0E+04)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " If you still have issues converging your model consider:\n", + " prepare_svd_toolbox()\n", + " prepare_degeneracy_hunter()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is not reporting any warnings which is good, however there are still 5 numerical cautions that it has identified which might be contributing to the larger than expected number of iterations. As mentioned earlier, the toolbox does not suggest methods for investigating these, but there are methods available. For example, we can look at the variable with an extreme value using the `display_variables_with_extreme_values()` method.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Check for additional information about variables with extreme values.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Display variable with extreme value" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following variable(s) have extreme values (<1.0E-04 or > 1.0E+04):\n", + "\n", + " v7: 4.9999999999999945e-08\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_variables_with_extreme_values()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that ``v7`` is potentially causing problems due to having a very small value (on the order of magnitude of the solver tolerance). This can be especially problematic for interior point solvers like IPOPT if there is a lower bound of 0 (which there is in this case). IPOPT tries to avoid bounds and thus perturbs solutions away from these if it gets too close, which can cause convergence to be slow (or fail) if the solution lies close to the bound.\n", + "\n", + "We can address this by scaling the variable so that the value of the scaled variable is large enough that the solution is not close to the lower bound. Additionally, we should look at any constraint that ``v7`` appears in (in this case ``c4``) and ensure that those constraints are well scaled as well (so that a residual of 1e-6 is reasonable for the terms involved).\n", + "\n", + "For this case, we can set a scaling factor of 1e8 for both ``v7`` and ``c4`` as shown below. Note that we also need to apply Pyomo's scaling transformation to create a new scaled model to work with." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "m.scaling_factor = pyo.Suffix(direction=pyo.Suffix.EXPORT)\n", + "\n", + "m.scaling_factor[m.v7] = 1e8\n", + "m.scaling_factor[m.c4] = 1e8\n", + "\n", + "scaling = pyo.TransformationFactory(\"core.scale_model\")\n", + "scaled_model = scaling.create_using(m, rename=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have a scaled model, we can try to solve it and hopefully see better convergence than the unscaled model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Solve the scaled model and check to see how many iterations are required.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Solve scaled model" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 7\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 4\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 2\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 4\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 5.33e-15 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + "\n", + "Number of Iterations....: 0\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 5.3290705182007514e-15 5.3290705182007514e-15\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 5.3290705182007514e-15 5.3290705182007514e-15\n", + "\n", + "\n", + "Number of objective function evaluations = 1\n", + "Number of objective gradient evaluations = 1\n", + "Number of equality constraint evaluations = 1\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 1\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 0\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.0058002471923828125}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver.solve(scaled_model, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see, the scaled model solved in 0 iterations (indicating that it already had the right solution). However, had we done this to the unscaled model we would have found it required 2-3 iterations again due to IPOPT perturbing the initial (correct) solution away from the bounds.\n", + "\n", + "
\n", + "Warning:\n", + "Normally in these cases we would need to map the solution from the scaled model back to the unscaled model so we can view the results. In this case, we are not actually interested in the solution so we move on with the model diagnosis.\n", + "
\n", + "\n", + "Now that we have fixed the scaling issues, we can go back to the ``DiagnosticsToolbox`` and see if we still have any warnings. Note however that we need to look at the scaled model now rather than the original model, so we need to create a new instance of the ``DiagnosticsToolbox`` with the scaled model as the ``model`` argument.\n", + "\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Create a new instance of the DiagnosticsToolbox and check the scaled model for issues.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create a new diagnostics toolbox for scaled model\n", + "\n", + "# Report numerical issues for scaled model" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 1.800E+01\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "3 Cautions\n", + "\n", + " Caution: 1 Variable with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 1 Variable with value close to zero (tol=1.0E-08)\n", + " Caution: 1 Variable with None value\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " If you still have issues converging your model consider:\n", + " prepare_svd_toolbox()\n", + " prepare_degeneracy_hunter()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt_scaled = DiagnosticsToolbox(scaled_model)\n", + "dt_scaled.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that applying scaling addressed two of the cautions we had before (the variable with an extreme value and an associated large value in the model Jacobian). Whilst we were able to solve the unscaled model in this case, this is in part because it was a simple linear model. In more complex, non-linear models, scaling becomes much more important and often depends strongly on the current state of the model. That is, you can often find cases where the unscaled (or poorly scaled) model solves for a limited range of conditions but fails to solve if you move too far away for the current state. Whilst you might be able to solve the model at the current state, you should always check the solver logs and numerical cautions for advanced warning signs of scaling issues that might manifest later when you try to solve the model for a different state (e.g., during optimization).\n", + "\n", + "
\n", + "Warning:\n", + "By their nature, numerical issues depend on the current values of the variables in the model, and thus may remain hidden until someone tries to solve the model close to where the issue exists. For this reason, the full model diagnostics workflow contains steps to run the numerical checks across a wide range of variable values to try to ensure that no issues remain hidden. This is beyond the scope of this tutorial however.\n", + "
\n", + "\n", + "At this point, we have addressed all the issues that were preventing us from solving the demonstration model and so reached the end of this tutorial. For cases where we are still having trouble solving the model, we can see that the toolbox is suggesting additional methods for further debugging and these advanced features will be the focus of separate tutorials." + ] } - ], - "source": [ - "solver.solve(scaled_model, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we can see, the scaled model solved in 0 iterations (indicating that it already had the right solution). However, had we done this to the unscaled model we would have found it required 2-3 iterations again due to IPOPT perturbing the initial (correct) solution away from the bounds.\n", - "\n", - "
\n", - "Warning:\n", - "Normally in these cases we would need to map the solution from the scaled model back to the unscaled model so we can view the results. In this case, we are not actually interested in the solution so we move on with the model diagnosis.\n", - "
\n", - "\n", - "Now that we have fixed the scaling issues, we can go back to the ``DiagnosticsToolbox`` and see if we still have any warnings. Note however that we need to look at the scaled model now rather than the original model, so we need to create a new instance of the ``DiagnosticsToolbox`` with the scaled model as the ``model`` argument.\n", - "\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Create a new instance of the DiagnosticsToolbox and check the scaled model for issues.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create a new diagnostics toolbox for scaled model\n", - "\n", - "# Report numerical issues for scaled model" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Jacobian Condition Number: 1.800E+01\n", - "\n", - "------------------------------------------------------------------------------------\n", - "0 WARNINGS\n", - "\n", - " No warnings found!\n", - "\n", - "------------------------------------------------------------------------------------\n", - "3 Cautions\n", - "\n", - " Caution: 1 Variable with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", - " Caution: 1 Variable with value close to zero (tol=1.0E-08)\n", - " Caution: 1 Variable with None value\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " If you still have issues converging your model consider:\n", - " prepare_svd_toolbox()\n", - " prepare_degeneracy_hunter()\n", - "\n", - "====================================================================================\n" - ] + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" } - ], - "source": [ - "dt_scaled = DiagnosticsToolbox(scaled_model)\n", - "dt_scaled.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that applying scaling addressed two of the cautions we had before (the variable with an extreme value and an associated large value in the model Jacobian). Whilst we were able to solve the unscaled model in this case, this is in part because it was a simple linear model. In more complex, non-linear models, scaling becomes much more important and often depends strongly on the current state of the model. That is, you can often find cases where the unscaled (or poorly scaled) model solves for a limited range of conditions but fails to solve if you move too far away for the current state. Whilst you might be able to solve the model at the current state, you should always check the solver logs and numerical cautions for advanced warning signs of scaling issues that might manifest later when you try to solve the model for a different state (e.g., during optimization).\n", - "\n", - "
\n", - "Warning:\n", - "By their nature, numerical issues depend on the current values of the variables in the model, and thus may remain hidden until someone tries to solve the model close to where the issue exists. For this reason, the full model diagnostics workflow contains steps to run the numerical checks across a wide range of variable values to try to ensure that no issues remain hidden. This is beyond the scope of this tutorial however.\n", - "
\n", - "\n", - "At this point, we have addressed all the issues that were preventing us from solving the demonstration model and so reached the end of this tutorial. For cases where we are still having trouble solving the model, we can see that the toolbox is suggesting additional methods for further debugging and these advanced features will be the focus of separate tutorials." - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.5" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_test.ipynb b/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_test.ipynb index 740f40fe..f8e8ba5a 100644 --- a/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_test.ipynb +++ b/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_test.ipynb @@ -1,1868 +1,1869 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# IDAES Model Diagnostics Toolbox Tutorial\n", - "Author: Andrew Lee \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-10-31 \n", - "\n", - "As you have likely discovered already, developing and solving models in an equation-oriented (EO) environment can be challenging and often takes a significant amount of effort. There are many pitfalls and mistakes that can be encountered when developing a model which can greatly impact the solvability and robustness of the final problem.\n", - "\n", - "Model diagnosis and debugging is often more of an art than a science, and it generally relies on significant experience and understanding both of general EO modeling techniques and the specific model and problem being solved. To assist with this process, IDAES has developed a model diagnostics toolbox that brings together a large number of tools for identifying potential issues in a model to help guide the user through the process of finding and resolving these issues. Note however that whilst these tools can help identify the presence of an issue, remedying the issue always requires some degree of engineering knowledge about the system being modeled, and thus it is ultimately up to the user to find a solution to the problem.\n", - "\n", - "This tutorial will take you through using the {py:class}`DiagnosticsToolbox ` to debug a number of issues in a simple Pyomo model and to take it from initially reporting a possible infeasible solution to returning the correct solution.\n", - "\n", - "To get started, the ``DiagnosticsToolbox`` can be imported from ``idaes.core.util``.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Import the DiagnosticsToolbox in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.util import DiagnosticsToolbox" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To get some information on where to start, try using the Python ``help()`` function to see the documentation for the ``DiagnosticsToolbox``.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call `help(DiagnosticsToolbox)` to see some more information on the toolbox and some instructions on how to get started.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ + "cells": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on class DiagnosticsToolbox in module idaes.core.util.model_diagnostics:\n", - "\n", - "class DiagnosticsToolbox(builtins.object)\n", - " | DiagnosticsToolbox(model: pyomo.core.base.block._BlockData, **kwargs)\n", - " | \n", - " | The IDAES Model DiagnosticsToolbox.\n", - " | \n", - " | To get started:\n", - " | \n", - " | 1. Create an instance of your model (this does not need to be initialized yet).\n", - " | 2. Fix variables until you have 0 degrees of freedom. Many of these tools presume\n", - " | a square model, and a square model should always be the foundation of any more\n", - " | advanced model.\n", - " | 3. Create an instance of the DiagnosticsToolbox and provide the model to debug as\n", - " | the model argument.\n", - " | 4. Call the ``report_structural_issues()`` method.\n", - " | \n", - " | Model diagnostics is an iterative process and you will likely need to run these\n", - " | tools multiple times to resolve all issues. After making a change to your model,\n", - " | you should always start from the beginning again to ensure the change did not\n", - " | introduce any new issues; i.e., always start from the report_structural_issues()\n", - " | method.\n", - " | \n", - " | Note that structural checks do not require the model to be initialized, thus users\n", - " | should start with these. Numerical checks require at least a partial solution to the\n", - " | model and should only be run once all structural issues have been resolved.\n", - " | \n", - " | Report methods will print a summary containing three parts:\n", - " | \n", - " | 1. Warnings - these are critical issues that should be resolved before continuing.\n", - " | For each warning, a method will be suggested in the Next Steps section to get\n", - " | additional information.\n", - " | 2. Cautions - these are things that could be correct but could also be the source of\n", - " | solver issues. Not all cautions need to be addressed, but users should investigate\n", - " | each one to ensure that the behavior is correct and that they will not be the source\n", - " | of difficulties later. Methods exist to provide more information on all cautions,\n", - " | but these will not appear in the Next Steps section.\n", - " | 3. Next Steps - these are recommended methods to call from the DiagnosticsToolbox to\n", - " | get further information on warnings. If no warnings are found, this will suggest\n", - " | the next report method to call.\n", - " | \n", - " | Args:\n", - " | \n", - " | model: model to be diagnosed. The DiagnosticsToolbox does not support indexed Blocks.\n", - " | \n", - " | Keyword Arguments\n", - " | -----------------\n", - " | variable_bounds_absolute_tolerance: float, default=0.0001\n", - " | Absolute tolerance for considering a variable to be close to its\n", - " | bounds.\n", - " | \n", - " | variable_bounds_relative_tolerance: float, default=0.0001\n", - " | Relative tolerance for considering a variable to be close to its\n", - " | bounds.\n", - " | \n", - " | variable_bounds_violation_tolerance: float, default=0\n", - " | Absolute tolerance for considering a variable to violate its bounds.\n", - " | Some solvers relax bounds on variables thus allowing a small violation\n", - " | to be considered acceptable.\n", - " | \n", - " | constraint_residual_tolerance: float, default=1e-05\n", - " | Absolute tolerance to use when checking constraint residuals.\n", - " | \n", - " | variable_large_value_tolerance: float, default=10000.0\n", - " | Absolute tolerance for considering a value to be large.\n", - " | \n", - " | variable_small_value_tolerance: float, default=0.0001\n", - " | Absolute tolerance for considering a value to be small.\n", - " | \n", - " | variable_zero_value_tolerance: float, default=1e-08\n", - " | Absolute tolerance for considering a value to be near to zero.\n", - " | \n", - " | jacobian_large_value_caution: float, default=10000.0\n", - " | Tolerance for raising a caution for large Jacobian values.\n", - " | \n", - " | jacobian_large_value_warning: float, default=100000000.0\n", - " | Tolerance for raising a warning for large Jacobian values.\n", - " | \n", - " | jacobian_small_value_caution: float, default=0.0001\n", - " | Tolerance for raising a caution for small Jacobian values.\n", - " | \n", - " | jacobian_small_value_warning: float, default=1e-08\n", - " | Tolerance for raising a warning for small Jacobian values.\n", - " | \n", - " | warn_for_evaluation_error_at_bounds: bool, default=True\n", - " | If False, warnings will not be generated for things like log(x) with x\n", - " | >= 0\n", - " | \n", - " | Methods defined here:\n", - " | \n", - " | __init__(self, model: pyomo.core.base.block._BlockData, **kwargs)\n", - " | Initialize self. See help(type(self)) for accurate signature.\n", - " | \n", - " | assert_no_numerical_warnings(self)\n", - " | Checks for numerical warnings in the model and raises an AssertionError\n", - " | if any are found.\n", - " | \n", - " | Raises:\n", - " | AssertionError if any warnings are identified by numerical analysis.\n", - " | \n", - " | assert_no_structural_warnings(self)\n", - " | Checks for structural warnings in the model and raises an AssertionError\n", - " | if any are found.\n", - " | \n", - " | Raises:\n", - " | AssertionError if any warnings are identified by structural analysis.\n", - " | \n", - " | display_components_with_inconsistent_units(self, stream=None)\n", - " | Prints a list of all Constraints, Expressions and Objectives in the\n", - " | model with inconsistent units of measurement.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_constraints_with_extreme_jacobians(self, stream=None)\n", - " | Prints the constraints associated with rows in the Jacobian with extreme\n", - " | L2 norms. This often indicates poorly scaled constraints.\n", - " | \n", - " | Tolerances can be set via the DiagnosticsToolbox config.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the output to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_constraints_with_large_residuals(self, stream=None)\n", - " | Prints a list of Constraints with residuals greater than a specified tolerance.\n", - " | Tolerance can be set in the class configuration options.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_external_variables(self, stream=None)\n", - " | Prints a list of variables that appear within activated Constraints in the\n", - " | model but are not contained within the model themselves.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_extreme_jacobian_entries(self, stream=None)\n", - " | Prints variables and constraints associated with entries in the Jacobian with extreme\n", - " | values. This can be indicative of poor scaling, especially for isolated terms (e.g.\n", - " | variables which appear only in one term of a single constraint).\n", - " | \n", - " | Tolerances can be set via the DiagnosticsToolbox config.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the output to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_overconstrained_set(self, stream=None)\n", - " | Prints the variables and constraints in the over-constrained sub-problem\n", - " | from a Dulmage-Mendelsohn partitioning.\n", - " | \n", - " | This can be used to identify the over-defined part of a model and thus\n", - " | where constraints must be removed or variables unfixed.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_potential_evaluation_errors(self, stream=None)\n", - " | Prints constraints that may be prone to evaluation errors\n", - " | (e.g., log of a negative number) based on variable bounds.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the output to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_underconstrained_set(self, stream=None)\n", - " | Prints the variables and constraints in the under-constrained sub-problem\n", - " | from a Dulmage-Mendelsohn partitioning.\n", - " | \n", - " | This can be used to identify the under-defined part of a model and thus\n", - " | where additional information (fixed variables or constraints) are required.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_unused_variables(self, stream=None)\n", - " | Prints a list of variables that do not appear in any activated Constraints.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_at_or_outside_bounds(self, stream=None)\n", - " | Prints a list of variables with values that fall at or outside the bounds\n", - " | on the variable.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_fixed_to_zero(self, stream=None)\n", - " | Prints a list of variables that are fixed to an absolute value of 0.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_near_bounds(self, stream=None)\n", - " | Prints a list of variables with values close to their bounds. Tolerance can\n", - " | be set in the class configuration options.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_with_extreme_jacobians(self, stream=None)\n", - " | Prints the variables associated with columns in the Jacobian with extreme\n", - " | L2 norms. This often indicates poorly scaled variables.\n", - " | \n", - " | Tolerances can be set via the DiagnosticsToolbox config.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the output to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_with_extreme_values(self, stream=None)\n", - " | Prints a list of variables with extreme values.\n", - " | \n", - " | Tolerances can be set in the class configuration options.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_with_none_value(self, stream=None)\n", - " | Prints a list of variables with a value of None.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_with_value_near_zero(self, stream=None)\n", - " | Prints a list of variables with a value close to zero. The tolerance\n", - " | for determining what is close to zero can be set in the class configuration\n", - " | options.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | get_dulmage_mendelsohn_partition(self)\n", - " | Performs a Dulmage-Mendelsohn partitioning on the model and returns\n", - " | the over- and under-constrained sub-problems.\n", - " | \n", - " | Returns:\n", - " | list-of-lists variables in each independent block of the under-constrained set\n", - " | list-of-lists constraints in each independent block of the under-constrained set\n", - " | list-of-lists variables in each independent block of the over-constrained set\n", - " | list-of-lists constraints in each independent block of the over-constrained set\n", - " | \n", - " | prepare_degeneracy_hunter(self, **kwargs)\n", - " | Create an instance of the DegeneracyHunter and store as self.degeneracy_hunter.\n", - " | \n", - " | After creating an instance of the toolbox, call\n", - " | report_irreducible_degenerate_sets.\n", - " | \n", - " | Returns:\n", - " | \n", - " | Instance of DegeneracyHunter\n", - " | \n", - " | Keyword Arguments\n", - " | -----------------\n", - " | solver: str, default='scip'\n", - " | MILP solver to use for finding irreducible degenerate sets.\n", - " | \n", - " | solver_options: optional\n", - " | Options to pass to MILP solver.\n", - " | \n", - " | M: float, default=100000.0\n", - " | Maximum value for nu in MILP models.\n", - " | \n", - " | m_small: float, default=1e-05\n", - " | Smallest value for nu to be considered non-zero in MILP models.\n", - " | \n", - " | trivial_constraint_tolerance: float, default=1e-06\n", - " | Tolerance for identifying non-zero rows in Jacobian.\n", - " | \n", - " | prepare_svd_toolbox(self, **kwargs)\n", - " | Create an instance of the SVDToolbox and store as self.svd_toolbox.\n", - " | \n", - " | After creating an instance of the toolbox, call\n", - " | display_underdetermined_variables_and_constraints().\n", - " | \n", - " | Returns:\n", - " | \n", - " | Instance of SVDToolbox\n", - " | \n", - " | Keyword Arguments\n", - " | -----------------\n", - " | number_of_smallest_singular_values: PositiveInt, optional\n", - " | Number of smallest singular values to compute\n", - " | \n", - " | svd_callback: svd_callback_validator, default=\n", - " | Callback to SVD method of choice (default = svd_dense). Callbacks\n", - " | should take the Jacobian and number of singular values to compute as\n", - " | options, plus any method specific arguments, and should return the u,\n", - " | s and v matrices as numpy arrays.\n", - " | \n", - " | svd_callback_arguments: dict, optional\n", - " | Optional arguments to pass to SVD callback (default = None)\n", - " | \n", - " | singular_value_tolerance: float, default=1e-06\n", - " | Tolerance for defining a small singular value\n", - " | \n", - " | size_cutoff_in_singular_vector: float, default=0.1\n", - " | Size below which to ignore constraints and variables in the singular\n", - " | vector\n", - " | \n", - " | report_numerical_issues(self, stream=None)\n", - " | Generates a summary report of any numerical issues identified in the model provided\n", - " | and suggest next steps for debugging model.\n", - " | \n", - " | Numerical checks should only be performed once all structural issues have been resolved,\n", - " | and require that at least a partial solution to the model is available.\n", - " | \n", - " | Args:\n", - " | stream: I/O object to write report to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | report_structural_issues(self, stream=None)\n", - " | Generates a summary report of any structural issues identified in the model provided\n", - " | and suggests next steps for debugging the model.\n", - " | \n", - " | This should be the first method called when debugging a model and after any change\n", - " | is made to the model. These checks can be run before trying to initialize and solve\n", - " | the model.\n", - " | \n", - " | Args:\n", - " | stream: I/O object to write report to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | ----------------------------------------------------------------------\n", - " | Readonly properties defined here:\n", - " | \n", - " | model\n", - " | Model currently being diagnosed.\n", - " | \n", - " | ----------------------------------------------------------------------\n", - " | Data descriptors defined here:\n", - " | \n", - " | __dict__\n", - " | dictionary for instance variables (if defined)\n", - " | \n", - " | __weakref__\n", - " | list of weak references to the object (if defined)\n", - "\n" - ] - } - ], - "source": [ - "help(DiagnosticsToolbox)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The ``help()`` function gives us a lot of information on the ``DiagnosticsToolbox`` and all the methods that it supports (and there are many). However, the important part to start with are the four steps outlined at the top of the doc string that tell us how to get started.\n", - "\n", - "Firstly, we need a model to test (and, for this tutorial at least, one that has a wide range of issues that we need to fix before it will solve). We then also need to fix some variables so that we have 0 degrees of freedom in our model. Whilst our ultimate goal is generally optimization (and thus a system with 1 or more degrees of freedom), all models conceptually derive from a square model representing a nominal state. If this nominal state is not well-posed, then any issues present will also be present in the resulting optimization (even if adding degrees of freedom means that the model is now easier to solve).\n", - "\n", - "The cell below contains a demonstration model for this tutorial that contains a number of issues that we will resolve using the ``DiagnosticsToolbox``." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import pyomo.environ as pyo\n", - "\n", - "m = pyo.ConcreteModel()\n", - "\n", - "m.v1 = pyo.Var(units=pyo.units.m)\n", - "m.v2 = pyo.Var(units=pyo.units.m)\n", - "m.v3 = pyo.Var(bounds=(0, 5))\n", - "m.v4 = pyo.Var()\n", - "m.v5 = pyo.Var(bounds=(0, 10))\n", - "m.v6 = pyo.Var()\n", - "m.v7 = pyo.Var(\n", - " units=pyo.units.m, bounds=(0, 1)\n", - ") # Poorly scaled variable with lower bound\n", - "m.v8 = pyo.Var() # unused variable\n", - "\n", - "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10) # Unit consistency issue\n", - "m.c2 = pyo.Constraint(expr=m.v3 == m.v4 + m.v5)\n", - "m.c3 = pyo.Constraint(expr=2 * m.v3 == 3 * m.v4 + 4 * m.v5 + m.v6)\n", - "m.c4 = pyo.Constraint(expr=m.v7 == 1e-8 * m.v1) # Poorly scaled constraint\n", - "\n", - "m.v4.fix(2)\n", - "m.v5.fix(2)\n", - "m.v6.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, the instructions tell us to create an instance of the ``DiagnosticsToolbox`` and to pass the model we wish to examine as an argument.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Create an instance of the DiagnosticsToolbox: dt = DiagnosticsToolbox(m)\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "dt = DiagnosticsToolbox(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, the instructions tell us to run the ``report_structural_issues()`` method. Structural issues represent issues that exist solely in the form of the model equations and thus do not depend on the current value of any of the variables. This is useful as it means we can check for these before we even call a solver, which can be critical as sometimes these issues will cause a solver to fail without providing a useful solution.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call dt.report_structural_issues() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 1 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 4 (External: 0)\n", - " Free Variables with only lower bounds: 0\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 3 (External: 0)\n", - " Activated Equality Constraints: 4 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 WARNINGS\n", - "\n", - " WARNING: 1 Component with inconsistent units\n", - " WARNING: Structural singularity found\n", - " Under-Constrained Set: 3 variables, 2 constraints\n", - " Over-Constrained Set: 1 variables, 2 constraints\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 Cautions\n", - "\n", - " Caution: 1 variable fixed to 0\n", - " Caution: 1 unused variable (0 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_components_with_inconsistent_units()\n", - " display_underconstrained_set()\n", - " display_overconstrained_set()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looking at the output from the ``report_structural_issues()`` method, we can see that it provides a fairly short summary containing 4 sections.\n", - "\n", - "1. The first section is a summary of the size of the model, indicating things like the number of variables and constraints. The size of the model is often important for judging how difficult it will be to solve, and this information can also be useful for comparison to what is being sent to the solver. Most solvers will report the size of the model in their output logs, and if there is a difference between what is reported here and by the solver, then you should probably look into what is happening. This section also notes some things such as if you have any deactivated Blocks, Constraints or Objectives, or if you have variables which appear in the constraints that are not part of the model; these are not necessarily wrong but it is easy to have accidentally deactivated something you did not intend to so you should always check to see that these are expected.\n", - "\n", - "2. The second section provides a summary of any critical structural issues that were found - in this case we can see that there are 2 warnings we are going to need to look into. Warnings represent issues that need to be addressed before moving on as these will likely cause the solver to fail or give an incorrect answer.\n", - "\n", - "3. The third section lists a summary of any cautions that are found. Cautions represent issues that may or may not be problematic; in many cases these might be expected behaviors or borderline issues. However, these could also represent conceptual issues that should be addressed, so users should take the time to investigate these and determine if they need to be fixed or not.\n", - "\n", - "4. Finally, there is a section that suggests the next steps to take to help guide you through the model diagnosis process. If any warnings were identified, this section will list methods that can help you get more information on each specific problem, and if no warnings are found then it will guide you onto the next step in the model diagnosis workflow.\n", - "\n", - "**Note:** there are methods available to help investigate cautions as well, but these will not show up in the next steps in order to avoid cluttering the output. You can get more information on the available methods for investigating cautions via the documentation or ``help()`` function.\n", - "\n", - "In our current model, we have 2 critical issues (warnings) that we need to look into and resolve. The order in which we resolve these will generally not matter, but be aware that these can often be interrelated - fixing one warning might resolve other warnings as well (or create new ones), and sometimes you will need to look at multiple issues together to find the overall root cause.\n", - "\n", - "To start with, let us look at the unit consistency issue. From the \"Next Steps\" section above, the toolbox is suggesting we run the ``display_components_with_inconsistent_units()`` method for more information.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call the `display_components_with_inconsistent_units()` method from the DiagnosticsToolbox to see more information on which constraint is causing the unit consistency issues.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "scrolled": false, - "tags": [ - "solution" - ] - }, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# IDAES Model Diagnostics Toolbox Tutorial\n", + "Author: Andrew Lee \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-10-31 \n", + "\n", + "As you have likely discovered already, developing and solving models in an equation-oriented (EO) environment can be challenging and often takes a significant amount of effort. There are many pitfalls and mistakes that can be encountered when developing a model which can greatly impact the solvability and robustness of the final problem.\n", + "\n", + "Model diagnosis and debugging is often more of an art than a science, and it generally relies on significant experience and understanding both of general EO modeling techniques and the specific model and problem being solved. To assist with this process, IDAES has developed a model diagnostics toolbox that brings together a large number of tools for identifying potential issues in a model to help guide the user through the process of finding and resolving these issues. Note however that whilst these tools can help identify the presence of an issue, remedying the issue always requires some degree of engineering knowledge about the system being modeled, and thus it is ultimately up to the user to find a solution to the problem.\n", + "\n", + "This tutorial will take you through using the {py:class}`DiagnosticsToolbox ` to debug a number of issues in a simple Pyomo model and to take it from initially reporting a possible infeasible solution to returning the correct solution.\n", + "\n", + "To get started, the ``DiagnosticsToolbox`` can be imported from ``idaes.core.util``.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Import the DiagnosticsToolbox in the cell below.\n", + "
" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "The following component(s) have unit consistency issues:\n", - "\n", - " c1\n", - "\n", - "For more details on unit inconsistencies, import the assert_units_consistent method\n", - "from pyomo.util.check_units\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_components_with_inconsistent_units()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This tells us that the issue lies in constraint ``c1``. If we go back and look at this constraint, we can see that it says ``v1 + v2 == 10``. ``v1`` and ``v2`` both have units of ``m`` which is consistent, but the constant in the expression (right hand side) is unitless. Thus, we need to correct this so that the right hand side has units for the constraint to be consistent.\n", - "\n", - "The cell below shows how to delete a constraint and replace it with a new one with the correct units.\n", - "\n", - "
\n", - "Warning:\n", - "Deleting components can cause unexpected issues if something else in a model is using that component (e.g., deleting a variable which is used in a constraint). You should always be careful when deleting Pyomo components and make sure you only delete components that are not used elsewhere.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# Delete the incorrect Constraint\n", - "m.del_component(m.c1)\n", - "\n", - "# Re-create the Constraint with the correct units\n", - "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10 * pyo.units.m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Warning:\n", - "Fixing issues in models is often an iterative process requiring trial and error. You might also have some results from a model before running the diagnostics tools and the changes you make during debugging may make it difficult to replicate those results afterwards.\n", - " \n", - "It is strongly recommended that you keep a record of the changes you make at each step and why, along with a Git hash (or similar version control marker) corresponding to these changes. This will allow you see what changes and why, and give you a way to go back to previous iterations if the current approach does not work out. The IDAES documentation contains recommendations on how to keep and maintain a modeling logbook.\n", - "
\n", - "\n", - "Now, re-run the ``report_structural_issues()`` method and see if this change has fixed the unit consistency issue.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call dt.report_structural_issues() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "scrolled": true, - "tags": [ - "solution" - ] - }, - "outputs": [ + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.util import DiagnosticsToolbox" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 1 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 4 (External: 0)\n", - " Free Variables with only lower bounds: 0\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 3 (External: 0)\n", - " Activated Equality Constraints: 4 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "1 WARNINGS\n", - "\n", - " WARNING: Structural singularity found\n", - " Under-Constrained Set: 3 variables, 2 constraints\n", - " Over-Constrained Set: 1 variables, 2 constraints\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 Cautions\n", - "\n", - " Caution: 1 variable fixed to 0\n", - " Caution: 1 unused variable (0 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_underconstrained_set()\n", - " display_overconstrained_set()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The unit consistency issue has been resolved by the changes above, so now we need to look at the structural singularity. A structural singularity occurs when one sub-part of the model is over-constrained (negative degrees of freedom), which generally means another part is under-constrained (positive degrees of freedom, assuming that there are 0 degrees of freedom overall).\n", - "\n", - "The toolbox is suggesting we use the ``display_overconstrained_set()`` and ``display_underconstrained_set()`` methods to get more information on the singularity; for now, let us start with the over-constrained set.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call dt.display_overconstrained_set() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To get some information on where to start, try using the Python ``help()`` function to see the documentation for the ``DiagnosticsToolbox``.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call `help(DiagnosticsToolbox)` to see some more information on the toolbox and some instructions on how to get started.\n", + "
" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Dulmage-Mendelsohn Over-Constrained Set\n", - "\n", - " Independent Block 0:\n", - "\n", - " Variables:\n", - "\n", - " v3\n", - "\n", - " Constraints:\n", - "\n", - " c2\n", - " c3\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_overconstrained_set()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From the output above, the toolbox is telling us that we have two constraints (``c2`` and ``c3``) which only contain a single unfixed variable (``v3``); thus in this part of the model we have -1 degree of freedom and the model is not well defined (structurally singular). If we go back and look at these constraints, we can see the that the constraints are:\n", - "\n", - "``c2: v3 == v4 + v5``\n", - "\n", - "``c3: 2*v3 == 3*v4 + 4*v5 + v6``\n", - "\n", - "We can see that in addition to ``v3`` these constraints actually contain 3 other variables (``v4``, ``v5`` and ``v6``), however these are all variables we fixed to get our initial zero degrees of freedom. It looks like we have either accidentally fixed one too many variables or written one too many constraints.\n", - "\n", - "For this example, let us assume that ``v4`` was not supposed to be fixed and unfix it.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Resolve the structural singularity and then call dt.report_structural_issues() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "scrolled": true, - "tags": [ - "solution" - ] - }, - "outputs": [ + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Help on class DiagnosticsToolbox in module idaes.core.util.model_diagnostics:\n", + "\n", + "class DiagnosticsToolbox(builtins.object)\n", + " | DiagnosticsToolbox(model: pyomo.core.base.block._BlockData, **kwargs)\n", + " | \n", + " | The IDAES Model DiagnosticsToolbox.\n", + " | \n", + " | To get started:\n", + " | \n", + " | 1. Create an instance of your model (this does not need to be initialized yet).\n", + " | 2. Fix variables until you have 0 degrees of freedom. Many of these tools presume\n", + " | a square model, and a square model should always be the foundation of any more\n", + " | advanced model.\n", + " | 3. Create an instance of the DiagnosticsToolbox and provide the model to debug as\n", + " | the model argument.\n", + " | 4. Call the ``report_structural_issues()`` method.\n", + " | \n", + " | Model diagnostics is an iterative process and you will likely need to run these\n", + " | tools multiple times to resolve all issues. After making a change to your model,\n", + " | you should always start from the beginning again to ensure the change did not\n", + " | introduce any new issues; i.e., always start from the report_structural_issues()\n", + " | method.\n", + " | \n", + " | Note that structural checks do not require the model to be initialized, thus users\n", + " | should start with these. Numerical checks require at least a partial solution to the\n", + " | model and should only be run once all structural issues have been resolved.\n", + " | \n", + " | Report methods will print a summary containing three parts:\n", + " | \n", + " | 1. Warnings - these are critical issues that should be resolved before continuing.\n", + " | For each warning, a method will be suggested in the Next Steps section to get\n", + " | additional information.\n", + " | 2. Cautions - these are things that could be correct but could also be the source of\n", + " | solver issues. Not all cautions need to be addressed, but users should investigate\n", + " | each one to ensure that the behavior is correct and that they will not be the source\n", + " | of difficulties later. Methods exist to provide more information on all cautions,\n", + " | but these will not appear in the Next Steps section.\n", + " | 3. Next Steps - these are recommended methods to call from the DiagnosticsToolbox to\n", + " | get further information on warnings. If no warnings are found, this will suggest\n", + " | the next report method to call.\n", + " | \n", + " | Args:\n", + " | \n", + " | model: model to be diagnosed. The DiagnosticsToolbox does not support indexed Blocks.\n", + " | \n", + " | Keyword Arguments\n", + " | -----------------\n", + " | variable_bounds_absolute_tolerance: float, default=0.0001\n", + " | Absolute tolerance for considering a variable to be close to its\n", + " | bounds.\n", + " | \n", + " | variable_bounds_relative_tolerance: float, default=0.0001\n", + " | Relative tolerance for considering a variable to be close to its\n", + " | bounds.\n", + " | \n", + " | variable_bounds_violation_tolerance: float, default=0\n", + " | Absolute tolerance for considering a variable to violate its bounds.\n", + " | Some solvers relax bounds on variables thus allowing a small violation\n", + " | to be considered acceptable.\n", + " | \n", + " | constraint_residual_tolerance: float, default=1e-05\n", + " | Absolute tolerance to use when checking constraint residuals.\n", + " | \n", + " | variable_large_value_tolerance: float, default=10000.0\n", + " | Absolute tolerance for considering a value to be large.\n", + " | \n", + " | variable_small_value_tolerance: float, default=0.0001\n", + " | Absolute tolerance for considering a value to be small.\n", + " | \n", + " | variable_zero_value_tolerance: float, default=1e-08\n", + " | Absolute tolerance for considering a value to be near to zero.\n", + " | \n", + " | jacobian_large_value_caution: float, default=10000.0\n", + " | Tolerance for raising a caution for large Jacobian values.\n", + " | \n", + " | jacobian_large_value_warning: float, default=100000000.0\n", + " | Tolerance for raising a warning for large Jacobian values.\n", + " | \n", + " | jacobian_small_value_caution: float, default=0.0001\n", + " | Tolerance for raising a caution for small Jacobian values.\n", + " | \n", + " | jacobian_small_value_warning: float, default=1e-08\n", + " | Tolerance for raising a warning for small Jacobian values.\n", + " | \n", + " | warn_for_evaluation_error_at_bounds: bool, default=True\n", + " | If False, warnings will not be generated for things like log(x) with x\n", + " | >= 0\n", + " | \n", + " | Methods defined here:\n", + " | \n", + " | __init__(self, model: pyomo.core.base.block._BlockData, **kwargs)\n", + " | Initialize self. See help(type(self)) for accurate signature.\n", + " | \n", + " | assert_no_numerical_warnings(self)\n", + " | Checks for numerical warnings in the model and raises an AssertionError\n", + " | if any are found.\n", + " | \n", + " | Raises:\n", + " | AssertionError if any warnings are identified by numerical analysis.\n", + " | \n", + " | assert_no_structural_warnings(self)\n", + " | Checks for structural warnings in the model and raises an AssertionError\n", + " | if any are found.\n", + " | \n", + " | Raises:\n", + " | AssertionError if any warnings are identified by structural analysis.\n", + " | \n", + " | display_components_with_inconsistent_units(self, stream=None)\n", + " | Prints a list of all Constraints, Expressions and Objectives in the\n", + " | model with inconsistent units of measurement.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_constraints_with_extreme_jacobians(self, stream=None)\n", + " | Prints the constraints associated with rows in the Jacobian with extreme\n", + " | L2 norms. This often indicates poorly scaled constraints.\n", + " | \n", + " | Tolerances can be set via the DiagnosticsToolbox config.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the output to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_constraints_with_large_residuals(self, stream=None)\n", + " | Prints a list of Constraints with residuals greater than a specified tolerance.\n", + " | Tolerance can be set in the class configuration options.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_external_variables(self, stream=None)\n", + " | Prints a list of variables that appear within activated Constraints in the\n", + " | model but are not contained within the model themselves.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_extreme_jacobian_entries(self, stream=None)\n", + " | Prints variables and constraints associated with entries in the Jacobian with extreme\n", + " | values. This can be indicative of poor scaling, especially for isolated terms (e.g.\n", + " | variables which appear only in one term of a single constraint).\n", + " | \n", + " | Tolerances can be set via the DiagnosticsToolbox config.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the output to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_overconstrained_set(self, stream=None)\n", + " | Prints the variables and constraints in the over-constrained sub-problem\n", + " | from a Dulmage-Mendelsohn partitioning.\n", + " | \n", + " | This can be used to identify the over-defined part of a model and thus\n", + " | where constraints must be removed or variables unfixed.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_potential_evaluation_errors(self, stream=None)\n", + " | Prints constraints that may be prone to evaluation errors\n", + " | (e.g., log of a negative number) based on variable bounds.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the output to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_underconstrained_set(self, stream=None)\n", + " | Prints the variables and constraints in the under-constrained sub-problem\n", + " | from a Dulmage-Mendelsohn partitioning.\n", + " | \n", + " | This can be used to identify the under-defined part of a model and thus\n", + " | where additional information (fixed variables or constraints) are required.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_unused_variables(self, stream=None)\n", + " | Prints a list of variables that do not appear in any activated Constraints.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_at_or_outside_bounds(self, stream=None)\n", + " | Prints a list of variables with values that fall at or outside the bounds\n", + " | on the variable.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_fixed_to_zero(self, stream=None)\n", + " | Prints a list of variables that are fixed to an absolute value of 0.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_near_bounds(self, stream=None)\n", + " | Prints a list of variables with values close to their bounds. Tolerance can\n", + " | be set in the class configuration options.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_with_extreme_jacobians(self, stream=None)\n", + " | Prints the variables associated with columns in the Jacobian with extreme\n", + " | L2 norms. This often indicates poorly scaled variables.\n", + " | \n", + " | Tolerances can be set via the DiagnosticsToolbox config.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the output to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_with_extreme_values(self, stream=None)\n", + " | Prints a list of variables with extreme values.\n", + " | \n", + " | Tolerances can be set in the class configuration options.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_with_none_value(self, stream=None)\n", + " | Prints a list of variables with a value of None.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_with_value_near_zero(self, stream=None)\n", + " | Prints a list of variables with a value close to zero. The tolerance\n", + " | for determining what is close to zero can be set in the class configuration\n", + " | options.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | get_dulmage_mendelsohn_partition(self)\n", + " | Performs a Dulmage-Mendelsohn partitioning on the model and returns\n", + " | the over- and under-constrained sub-problems.\n", + " | \n", + " | Returns:\n", + " | list-of-lists variables in each independent block of the under-constrained set\n", + " | list-of-lists constraints in each independent block of the under-constrained set\n", + " | list-of-lists variables in each independent block of the over-constrained set\n", + " | list-of-lists constraints in each independent block of the over-constrained set\n", + " | \n", + " | prepare_degeneracy_hunter(self, **kwargs)\n", + " | Create an instance of the DegeneracyHunter and store as self.degeneracy_hunter.\n", + " | \n", + " | After creating an instance of the toolbox, call\n", + " | report_irreducible_degenerate_sets.\n", + " | \n", + " | Returns:\n", + " | \n", + " | Instance of DegeneracyHunter\n", + " | \n", + " | Keyword Arguments\n", + " | -----------------\n", + " | solver: str, default='scip'\n", + " | MILP solver to use for finding irreducible degenerate sets.\n", + " | \n", + " | solver_options: optional\n", + " | Options to pass to MILP solver.\n", + " | \n", + " | M: float, default=100000.0\n", + " | Maximum value for nu in MILP models.\n", + " | \n", + " | m_small: float, default=1e-05\n", + " | Smallest value for nu to be considered non-zero in MILP models.\n", + " | \n", + " | trivial_constraint_tolerance: float, default=1e-06\n", + " | Tolerance for identifying non-zero rows in Jacobian.\n", + " | \n", + " | prepare_svd_toolbox(self, **kwargs)\n", + " | Create an instance of the SVDToolbox and store as self.svd_toolbox.\n", + " | \n", + " | After creating an instance of the toolbox, call\n", + " | display_underdetermined_variables_and_constraints().\n", + " | \n", + " | Returns:\n", + " | \n", + " | Instance of SVDToolbox\n", + " | \n", + " | Keyword Arguments\n", + " | -----------------\n", + " | number_of_smallest_singular_values: PositiveInt, optional\n", + " | Number of smallest singular values to compute\n", + " | \n", + " | svd_callback: svd_callback_validator, default=\n", + " | Callback to SVD method of choice (default = svd_dense). Callbacks\n", + " | should take the Jacobian and number of singular values to compute as\n", + " | options, plus any method specific arguments, and should return the u,\n", + " | s and v matrices as numpy arrays.\n", + " | \n", + " | svd_callback_arguments: dict, optional\n", + " | Optional arguments to pass to SVD callback (default = None)\n", + " | \n", + " | singular_value_tolerance: float, default=1e-06\n", + " | Tolerance for defining a small singular value\n", + " | \n", + " | size_cutoff_in_singular_vector: float, default=0.1\n", + " | Size below which to ignore constraints and variables in the singular\n", + " | vector\n", + " | \n", + " | report_numerical_issues(self, stream=None)\n", + " | Generates a summary report of any numerical issues identified in the model provided\n", + " | and suggest next steps for debugging model.\n", + " | \n", + " | Numerical checks should only be performed once all structural issues have been resolved,\n", + " | and require that at least a partial solution to the model is available.\n", + " | \n", + " | Args:\n", + " | stream: I/O object to write report to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | report_structural_issues(self, stream=None)\n", + " | Generates a summary report of any structural issues identified in the model provided\n", + " | and suggests next steps for debugging the model.\n", + " | \n", + " | This should be the first method called when debugging a model and after any change\n", + " | is made to the model. These checks can be run before trying to initialize and solve\n", + " | the model.\n", + " | \n", + " | Args:\n", + " | stream: I/O object to write report to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | ----------------------------------------------------------------------\n", + " | Readonly properties defined here:\n", + " | \n", + " | model\n", + " | Model currently being diagnosed.\n", + " | \n", + " | ----------------------------------------------------------------------\n", + " | Data descriptors defined here:\n", + " | \n", + " | __dict__\n", + " | dictionary for instance variables (if defined)\n", + " | \n", + " | __weakref__\n", + " | list of weak references to the object (if defined)\n", + "\n" + ] + } + ], + "source": [ + "help(DiagnosticsToolbox)" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 1 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 5 (External: 0)\n", - " Free Variables with only lower bounds: 0\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 2 (External: 0)\n", - " Activated Equality Constraints: 4 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 WARNINGS\n", - "\n", - " WARNING: 1 Degree of Freedom\n", - " WARNING: Structural singularity found\n", - " Under-Constrained Set: 3 variables, 2 constraints\n", - " Over-Constrained Set: 0 variables, 0 constraints\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 Cautions\n", - "\n", - " Caution: 1 variable fixed to 0\n", - " Caution: 1 unused variable (0 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_underconstrained_set()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m.v4.unfix()\n", - "\n", - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that the over-constrained set is now empty (0 variables and 0 constraints) but the under-constrained set still has 3 variables and only 2 constraints. We can also see that there is a new warning about having 1 degree of freedom in the model, however this should not be surprising as we have just unfixed ``v4`` to resolve the over-constrained set so we have added a degree of freedom to the model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Display the under-constrained set in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The ``help()`` function gives us a lot of information on the ``DiagnosticsToolbox`` and all the methods that it supports (and there are many). However, the important part to start with are the four steps outlined at the top of the doc string that tell us how to get started.\n", + "\n", + "Firstly, we need a model to test (and, for this tutorial at least, one that has a wide range of issues that we need to fix before it will solve). We then also need to fix some variables so that we have 0 degrees of freedom in our model. Whilst our ultimate goal is generally optimization (and thus a system with 1 or more degrees of freedom), all models conceptually derive from a square model representing a nominal state. If this nominal state is not well-posed, then any issues present will also be present in the resulting optimization (even if adding degrees of freedom means that the model is now easier to solve).\n", + "\n", + "The cell below contains a demonstration model for this tutorial that contains a number of issues that we will resolve using the ``DiagnosticsToolbox``." + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Dulmage-Mendelsohn Under-Constrained Set\n", - "\n", - " Independent Block 0:\n", - "\n", - " Variables:\n", - "\n", - " v2\n", - " v1\n", - " v7\n", - "\n", - " Constraints:\n", - "\n", - " c1\n", - " c4\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_underconstrained_set()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looking at the output from the ``display_underconstrained_set()`` method, we can see that we have two constraints, ``c1`` and ``c4``, which contain three unfixed variables, ``v1``, ``v2`` and ``v7``. Thus, we have one degree of freedom that needs to be addressed. To fix this, we could either fix one of the variables shown or add an additional equality constraint to the model.\n", - "\n", - "For this example let's fix ``v2`` to a value of 5 and then re-run the ``report_structural_issues()`` method.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Fix v2 to a value of 5 and then re-run dt.report_structural_issues.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "scrolled": true, - "tags": [ - "solution" - ] - }, - "outputs": [ + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import pyomo.environ as pyo\n", + "\n", + "m = pyo.ConcreteModel()\n", + "\n", + "m.v1 = pyo.Var(units=pyo.units.m)\n", + "m.v2 = pyo.Var(units=pyo.units.m)\n", + "m.v3 = pyo.Var(bounds=(0, 5))\n", + "m.v4 = pyo.Var()\n", + "m.v5 = pyo.Var(bounds=(0, 10))\n", + "m.v6 = pyo.Var()\n", + "m.v7 = pyo.Var(\n", + " units=pyo.units.m, bounds=(0, 1)\n", + ") # Poorly scaled variable with lower bound\n", + "m.v8 = pyo.Var() # unused variable\n", + "\n", + "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10) # Unit consistency issue\n", + "m.c2 = pyo.Constraint(expr=m.v3 == m.v4 + m.v5)\n", + "m.c3 = pyo.Constraint(expr=2 * m.v3 == 3 * m.v4 + 4 * m.v5 + m.v6)\n", + "m.c4 = pyo.Constraint(expr=m.v7 == 1e-8 * m.v1) # Poorly scaled constraint\n", + "\n", + "m.v4.fix(2)\n", + "m.v5.fix(2)\n", + "m.v6.fix(0)" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 1 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 4 (External: 0)\n", - " Free Variables with only lower bounds: 0\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 3 (External: 0)\n", - " Activated Equality Constraints: 4 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "0 WARNINGS\n", - "\n", - " No warnings found!\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 Cautions\n", - "\n", - " Caution: 1 variable fixed to 0\n", - " Caution: 1 unused variable (0 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " Try to initialize/solve your model and then call report_numerical_issues()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m.v2.fix(5)\n", - "\n", - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is now telling us that no warnings were found, so we have resolved all the structural issues (for now at least). The toolbox is telling us that there are also 2 non-critical issues (cautions) that we should look at; one about an unused variable and one about a variable fixed to zero. If you wish, you can look into identifying and fixing these yourself, however for this example we will move on to the next step (remember that the toolbox has methods to display more details for each of these which you can find in the documentation or from the ``help()`` function).\n", - "\n", - "For the Next Steps section, the toolbox is recommending we try to solve our model and then check for numerical issues.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Use the Pyomo SolverFactory to create an instance of IPOPT and then try to solve the model. Make sure to set \"tee=True\" as this is going to fail (and it is always good practice to review the solver logs).\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, the instructions tell us to create an instance of the ``DiagnosticsToolbox`` and to pass the model we wish to examine as an argument.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Create an instance of the DiagnosticsToolbox: dt = DiagnosticsToolbox(m)\n", + "
" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 7\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 4\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 2\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 4\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 1.40e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 1.39e+01 1.50e+02 -1.0 6.00e+00 - 7.16e-01 4.93e-03h 1\n", - " 2 0.0000000e+00 1.39e+01 3.03e+06 -1.0 5.97e+00 - 1.00e+00 4.95e-05h 1\n", - " 3r 0.0000000e+00 1.39e+01 1.00e+03 1.1 0.00e+00 - 0.00e+00 2.47e-07R 2\n", - " 4r 0.0000000e+00 4.19e+00 9.42e+02 1.1 3.50e+03 - 4.02e-01 3.37e-03f 1\n", - " 5r 0.0000000e+00 2.12e+00 8.72e+02 1.1 5.89e+01 - 4.35e-01 7.06e-02f 1\n", - " 6r 0.0000000e+00 6.74e-01 6.06e+02 1.1 5.29e+00 - 9.93e-03 3.98e-01f 1\n", - " 7r 0.0000000e+00 6.80e-01 3.14e+02 0.4 2.05e-01 - 1.00e+00 1.03e-01f 1\n", - " 8r 0.0000000e+00 6.69e-01 2.78e-05 0.4 2.58e-02 - 1.00e+00 1.00e+00f 1\n", - " 9r 0.0000000e+00 6.67e-01 7.56e+00 -1.7 8.13e-03 - 9.93e-01 9.96e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10r 0.0000000e+00 6.67e-01 2.23e-07 -1.7 4.13e-05 - 1.00e+00 1.00e+00f 1\n", - " 11r 0.0000000e+00 6.67e-01 6.73e-01 -3.7 6.61e-05 - 1.00e+00 1.00e+00f 1\n", - " 12r 0.0000000e+00 6.67e-01 1.91e-09 -3.7 1.48e-09 - 1.00e+00 1.00e+00h 1\n", - " 13r 0.0000000e+00 6.67e-01 2.69e+00 -8.4 5.74e-07 - 1.00e+00 9.26e-01f 1\n", - " 14r 0.0000000e+00 6.67e-01 7.65e+01 -8.4 4.23e-08 - 8.68e-01 1.00e+00f 1\n", - "\n", - "Number of Iterations....: 14\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 3.2644919411246030e-04 3.2644919411246030e-04\n", - "Constraint violation....: 6.6666666333656233e-01 6.6666666333656233e-01\n", - "Complementarity.........: 4.6615546565561981e-09 4.6615546565561981e-09\n", - "Overall NLP error.......: 6.6666666333656233e-01 6.6666666333656233e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 18\n", - "Number of objective gradient evaluations = 5\n", - "Number of equality constraint evaluations = 18\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 17\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 15\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Converged to a point of local infeasibility. Problem may be infeasible.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: infeasible\n", - " - message from solver: Ipopt 3.13.2\\x3a Converged to a locally infeasible\n", - " point. Problem may be infeasible.\n" - ] + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "dt = DiagnosticsToolbox(m)" + ] }, { - "data": { - "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'warning', 'Message': 'Ipopt 3.13.2\\\\x3a Converged to a locally infeasible point. Problem may be infeasible.', 'Termination condition': 'infeasible', 'Id': 200, 'Error rc': 0, 'Time': 0.007064104080200195}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, the instructions tell us to run the ``report_structural_issues()`` method. Structural issues represent issues that exist solely in the form of the model equations and thus do not depend on the current value of any of the variables. This is useful as it means we can check for these before we even call a solver, which can be critical as sometimes these issues will cause a solver to fail without providing a useful solution.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call dt.report_structural_issues() in the cell below.\n", + "
" ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "solver = pyo.SolverFactory(\"ipopt\")\n", - "solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As hinted at above, IPOPT has returned a warning that the problem may be infeasible. Before moving on however, it is always good practice to look over the solver outputs and see what it is telling you.\n", - "\n", - "
\n", - "Warning:\n", - "A lot of useful information is contained in the solver logs which is extremely useful when diagnosing modeling issues. Each solver has its own way of reporting output and its own specific behavior, so you will need to learn to interpret the output of each solver you use. The IDAES Documentation contains some guidance on interpreting output logs for a few common solvers.\n", - "
\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call the report_numerical_issues method in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Jacobian Condition Number: 1.700E+01\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 WARNINGS\n", - "\n", - " WARNING: 1 Constraint with large residuals (>1.0E-05)\n", - " WARNING: 1 Variable at or outside bounds (tol=0.0E+00)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "5 Cautions\n", - "\n", - " Caution: 2 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", - " Caution: 2 Variables with value close to zero (tol=1.0E-08)\n", - " Caution: 1 Variable with extreme value (<1.0E-04 or >1.0E+04)\n", - " Caution: 1 Variable with None value\n", - " Caution: 1 extreme Jacobian Entry (<1.0E-04 or >1.0E+04)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_constraints_with_large_residuals()\n", - " display_variables_at_or_outside_bounds()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The ``report_numerical_issues()`` provides a summary similar to that which we saw for the structural issues. Firstly, it reports to us the Jacobian condition number for our problem which can give us an idea of how well-scaled the problem is, followed by a list of warnings, cautions and suggested next steps.\n", - "\n", - "Unsurprisingly, we are seeing a warning about a constraint with a large residual which we would expect when a solver reports a potentially infeasible problem. We are also seeing a warning about a variable with bound violations which might be contributing to the potential infeasibility.\n", - "\n", - "For the next steps, the toolbox is suggesting some new methods to get more information on these issues; let us start by looking at the constraints with large residuals.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Display the constraint with a large residual in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ + "cell_type": "code", + "execution_count": 9, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 4 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 3 (External: 0)\n", + " Activated Equality Constraints: 4 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 WARNINGS\n", + "\n", + " WARNING: 1 Component with inconsistent units\n", + " WARNING: Structural singularity found\n", + " Under-Constrained Set: 3 variables, 2 constraints\n", + " Over-Constrained Set: 1 variables, 2 constraints\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 Cautions\n", + "\n", + " Caution: 1 variable fixed to 0\n", + " Caution: 1 unused variable (0 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_components_with_inconsistent_units()\n", + " display_underconstrained_set()\n", + " display_overconstrained_set()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_structural_issues()" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "The following constraint(s) have large residuals (>1.0E-05):\n", - "\n", - " c2: 6.66667E-01\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_constraints_with_large_residuals()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is telling us that the constraint which failed to converge is ``c2``, however this is generally only part of the story. Solvers work by trying to minimize the infeasibility in the model (residual of the constraints), which generally means they push any infeasibility onto the least sensitive constraint in the problem. Thus, the constraint which shows the infeasibility is often not the root cause of the problem, but only the symptom of the underlying issue.\n", - "\n", - "If we look back at the constraints, we can see that the same variables also appear in ``c3`` and that some of these have bounds, all of which could be contributing to the infeasibility. In this case the solver tried to minimize the residual in all the constraints and ended up pushing all the issues off onto ``c2``.\n", - "\n", - "
\n", - "Warning:\n", - "When dealing with solver issues such as this, you should always remember that the obvious symptoms are often just the tip of the iceberg and that the real issue generally lies somewhere else; the challenge is tracing the symptoms back to their ultimate source.\n", - "
\n", - "\n", - "Next, let us take a look at the variables at or outside their bounds as well. When a solver reports an potentially infeasible solution, the most common cause is unexpected bounds violations so you should always check these first.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Display the variables with bounds violations.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looking at the output from the ``report_structural_issues()`` method, we can see that it provides a fairly short summary containing 4 sections.\n", + "\n", + "1. The first section is a summary of the size of the model, indicating things like the number of variables and constraints. The size of the model is often important for judging how difficult it will be to solve, and this information can also be useful for comparison to what is being sent to the solver. Most solvers will report the size of the model in their output logs, and if there is a difference between what is reported here and by the solver, then you should probably look into what is happening. This section also notes some things such as if you have any deactivated Blocks, Constraints or Objectives, or if you have variables which appear in the constraints that are not part of the model; these are not necessarily wrong but it is easy to have accidentally deactivated something you did not intend to so you should always check to see that these are expected.\n", + "\n", + "2. The second section provides a summary of any critical structural issues that were found - in this case we can see that there are 2 warnings we are going to need to look into. Warnings represent issues that need to be addressed before moving on as these will likely cause the solver to fail or give an incorrect answer.\n", + "\n", + "3. The third section lists a summary of any cautions that are found. Cautions represent issues that may or may not be problematic; in many cases these might be expected behaviors or borderline issues. However, these could also represent conceptual issues that should be addressed, so users should take the time to investigate these and determine if they need to be fixed or not.\n", + "\n", + "4. Finally, there is a section that suggests the next steps to take to help guide you through the model diagnosis process. If any warnings were identified, this section will list methods that can help you get more information on each specific problem, and if no warnings are found then it will guide you onto the next step in the model diagnosis workflow.\n", + "\n", + "**Note:** there are methods available to help investigate cautions as well, but these will not show up in the next steps in order to avoid cluttering the output. You can get more information on the available methods for investigating cautions via the documentation or ``help()`` function.\n", + "\n", + "In our current model, we have 2 critical issues (warnings) that we need to look into and resolve. The order in which we resolve these will generally not matter, but be aware that these can often be interrelated - fixing one warning might resolve other warnings as well (or create new ones), and sometimes you will need to look at multiple issues together to find the overall root cause.\n", + "\n", + "To start with, let us look at the unit consistency issue. From the \"Next Steps\" section above, the toolbox is suggesting we run the ``display_components_with_inconsistent_units()`` method for more information.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call the `display_components_with_inconsistent_units()` method from the DiagnosticsToolbox to see more information on which constraint is causing the unit consistency issues.\n", + "
" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "The following variable(s) have values at or outside their bounds (tol=0.0E+00):\n", - "\n", - " v3 (free): value=0.0 bounds=(0, 5)\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_variables_at_or_outside_bounds()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is telling us that ``v3`` is the variable with a potential issue. It is also showing us the current value and bounds for ``v3`` as well as if it is a fixed or free variable, which will be useful for diagnosing the issues.\n", - "\n", - "We can see that ``v3`` is a free variable with bounds between 0 and 5 and a current value of 0. As ``v3`` is a free variable, this suggests that the solver has pushed the value to the bound where it cannot go any further, and this might be part of the cause of our infeasibility.\n", - "\n", - "
\n", - "Warning:\n", - "When dealing with bounds violations you should always start by understanding why the bounds exist and what they mean - in many cases a bound indicates the range over which the model can be trusted and that going beyond this may result in unexpected behavior due to extrapolation.\n", - " \n", - "Never arbitrarily change a bound just because it is causing your model to be infeasible without understanding the consequences of this decision. Often, a bound violation is an indication that you need to re-think some of the constraints in your model to find alternatives which are valid in the actual range of values you are trying to solve for.\n", - "
\n", - "\n", - "For this example, let us assume that we made a mistake with the bounds on ``v3`` and set the lower bound to be -5.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Update the bounds on v3 in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "m.v3.setlb(-5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that we have fixed the bounds issues, we should check whether our model is now feasible. However, before we continue we should recognize that we have just made a structural change to the model. If we were not careful, this could have introduced new structural issues to the model, so we should start from the beginning just to be sure.\n", - "\n", - "
\n", - "Warning:\n", - "In general, you should always start from the beginning of the model diagnosis workflow after you make any change to the model. Remember to also record these changes in your log book in case something unexpected happens so that you can revert any changes that cause problems.\n", - "
\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Check to see if there are any new structural issues in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "scrolled": true, - "tags": [ - "solution" - ] - }, - "outputs": [ + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": false, + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following component(s) have unit consistency issues:\n", + "\n", + " c1\n", + "\n", + "For more details on unit inconsistencies, import the assert_units_consistent method\n", + "from pyomo.util.check_units\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_components_with_inconsistent_units()" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 1 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 4 (External: 0)\n", - " Free Variables with only lower bounds: 0\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 3 (External: 0)\n", - " Activated Equality Constraints: 4 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "0 WARNINGS\n", - "\n", - " No warnings found!\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 Cautions\n", - "\n", - " Caution: 1 variable fixed to 0\n", - " Caution: 1 unused variable (0 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " Try to initialize/solve your model and then call report_numerical_issues()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Our change has not introduced any new structural issues, so we can move on and try to solve the model again.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Re-solve the model in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This tells us that the issue lies in constraint ``c1``. If we go back and look at this constraint, we can see that it says ``v1 + v2 == 10``. ``v1`` and ``v2`` both have units of ``m`` which is consistent, but the constant in the expression (right hand side) is unitless. Thus, we need to correct this so that the right hand side has units for the constraint to be consistent.\n", + "\n", + "The cell below shows how to delete a constraint and replace it with a new one with the correct units.\n", + "\n", + "
\n", + "Warning:\n", + "Deleting components can cause unexpected issues if something else in a model is using that component (e.g., deleting a variable which is used in a constraint). You should always be careful when deleting Pyomo components and make sure you only delete components that are not used elsewhere.\n", + "
" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 7\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 4\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 2\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 4\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 6.67e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 6.66e-03 2.97e+00 -1.0 2.00e+00 - 7.17e-01 9.90e-01h 1\n", - " 2 0.0000000e+00 6.27e-05 9.38e+00 -1.0 2.00e-02 - 1.00e+00 9.91e-01h 1\n", - " 3 0.0000000e+00 8.88e-16 1.13e-12 -1.0 1.88e-04 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 8.8817841970012523e-16 8.8817841970012523e-16\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 8.8817841970012523e-16 8.8817841970012523e-16\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Delete the incorrect Constraint\n", + "m.del_component(m.c1)\n", + "\n", + "# Re-create the Constraint with the correct units\n", + "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10 * pyo.units.m)" + ] }, { - "data": { - "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.02317023277282715}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Warning:\n", + "Fixing issues in models is often an iterative process requiring trial and error. You might also have some results from a model before running the diagnostics tools and the changes you make during debugging may make it difficult to replicate those results afterwards.\n", + " \n", + "It is strongly recommended that you keep a record of the changes you make at each step and why, along with a Git hash (or similar version control marker) corresponding to these changes. This will allow you see what changes and why, and give you a way to go back to previous iterations if the current approach does not work out. The IDAES documentation contains recommendations on how to keep and maintain a modeling logbook.\n", + "
\n", + "\n", + "Now, re-run the ``report_structural_issues()`` method and see if this change has fixed the unit consistency issue.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call dt.report_structural_issues() in the cell below.\n", + "
" ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "IPOPT should have returned optimal solution now, so it looks like those bounds were what was causing the model to be infeasible. At this point, the model is now solving (for the current values at least), so you might think that the model is now ready for optimization.\n", - "\n", - "However, if we look at the solver logs we can see that it took around 3 iterations for IPOPT to solve our model (depending on minor variations in computer architecture). For a model this simple, we would generally expect it to solve in only 1 iteration so there is still some room for improvement.\n", - "\n", - "
\n", - "Warning:\n", - "You should keep in mind that just because you get an optimal solution does not mean that your model is robust and free of issues.\n", - " \n", - "You should always take the time to look over the solver logs to look for signs of trouble, even if you get an optimal solution. While you might get an optimal solution for the current state, there may be advance warning signs of issues that will cause problems later when you try to solve the model at a different state.\n", - "
\n", - "\n", - "Let us run the ``report_numerical_issues`` method again to see if there are any other problems we need to address.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Check for additional numerical issues in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Jacobian Condition Number: 1.700E+01\n", - "\n", - "------------------------------------------------------------------------------------\n", - "0 WARNINGS\n", - "\n", - " No warnings found!\n", - "\n", - "------------------------------------------------------------------------------------\n", - "5 Cautions\n", - "\n", - " Caution: 1 Variable with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", - " Caution: 1 Variable with value close to zero (tol=1.0E-08)\n", - " Caution: 1 Variable with extreme value (<1.0E-04 or >1.0E+04)\n", - " Caution: 1 Variable with None value\n", - " Caution: 1 extreme Jacobian Entry (<1.0E-04 or >1.0E+04)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " If you still have issues converging your model consider:\n", - " prepare_svd_toolbox()\n", - " prepare_degeneracy_hunter()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is not reporting any warnings which is good, however there are still 5 numerical cautions that it has identified which might be contributing to the larger than expected number of iterations. As mentioned earlier, the toolbox does not suggest methods for investigating these, but there are methods available. For example, we can look at the variable with an extreme value using the `display_variables_with_extreme_values()` method.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Check for additional information about variables with extreme values.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ + "cell_type": "code", + "execution_count": 14, + "metadata": { + "scrolled": true, + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 4 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 3 (External: 0)\n", + " Activated Equality Constraints: 4 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 WARNINGS\n", + "\n", + " WARNING: Structural singularity found\n", + " Under-Constrained Set: 3 variables, 2 constraints\n", + " Over-Constrained Set: 1 variables, 2 constraints\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 Cautions\n", + "\n", + " Caution: 1 variable fixed to 0\n", + " Caution: 1 unused variable (0 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_underconstrained_set()\n", + " display_overconstrained_set()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_structural_issues()" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "The following variable(s) have extreme values (<1.0E-04 or > 1.0E+04):\n", - "\n", - " v7: 4.9999999999999945e-08\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_variables_with_extreme_values()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that ``v7`` is potentially causing problems due to having a very small value (on the order of magnitude of the solver tolerance). This can be especially problematic for interior point solvers like IPOPT if there is a lower bound of 0 (which there is in this case). IPOPT tries to avoid bounds and thus perturbs solutions away from these if it gets too close, which can cause convergence to be slow (or fail) if the solution lies close to the bound.\n", - "\n", - "We can address this by scaling the variable so that the value of the scaled variable is large enough that the solution is not close to the lower bound. Additionally, we should look at any constraint that ``v7`` appears in (in this case ``c4``) and ensure that those constraints are well scaled as well (so that a residual of 1e-6 is reasonable for the terms involved).\n", - "\n", - "For this case, we can set a scaling factor of 1e8 for both ``v7`` and ``c4`` as shown below. Note that we also need to apply Pyomo's scaling transformation to create a new scaled model to work with." - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "m.scaling_factor = pyo.Suffix(direction=pyo.Suffix.EXPORT)\n", - "\n", - "m.scaling_factor[m.v7] = 1e8\n", - "m.scaling_factor[m.c4] = 1e8\n", - "\n", - "scaling = pyo.TransformationFactory(\"core.scale_model\")\n", - "scaled_model = scaling.create_using(m, rename=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that we have a scaled model, we can try to solve it and hopefully see better convergence than the unscaled model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Solve the scaled model and check to see how many iterations are required.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The unit consistency issue has been resolved by the changes above, so now we need to look at the structural singularity. A structural singularity occurs when one sub-part of the model is over-constrained (negative degrees of freedom), which generally means another part is under-constrained (positive degrees of freedom, assuming that there are 0 degrees of freedom overall).\n", + "\n", + "The toolbox is suggesting we use the ``display_overconstrained_set()`` and ``display_underconstrained_set()`` methods to get more information on the singularity; for now, let us start with the over-constrained set.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call dt.display_overconstrained_set() in the cell below.\n", + "
" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 7\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 4\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 2\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 4\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 5.33e-15 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - "\n", - "Number of Iterations....: 0\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 5.3290705182007514e-15 5.3290705182007514e-15\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 5.3290705182007514e-15 5.3290705182007514e-15\n", - "\n", - "\n", - "Number of objective function evaluations = 1\n", - "Number of objective gradient evaluations = 1\n", - "Number of equality constraint evaluations = 1\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 1\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Optimal Solution Found.\n", - "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" - ] + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Dulmage-Mendelsohn Over-Constrained Set\n", + "\n", + " Independent Block 0:\n", + "\n", + " Variables:\n", + "\n", + " v3\n", + "\n", + " Constraints:\n", + "\n", + " c2\n", + " c3\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_overconstrained_set()" + ] }, { - "data": { - "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.0058002471923828125}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the output above, the toolbox is telling us that we have two constraints (``c2`` and ``c3``) which only contain a single unfixed variable (``v3``); thus in this part of the model we have -1 degree of freedom and the model is not well defined (structurally singular). If we go back and look at these constraints, we can see the that the constraints are:\n", + "\n", + "``c2: v3 == v4 + v5``\n", + "\n", + "``c3: 2*v3 == 3*v4 + 4*v5 + v6``\n", + "\n", + "We can see that in addition to ``v3`` these constraints actually contain 3 other variables (``v4``, ``v5`` and ``v6``), however these are all variables we fixed to get our initial zero degrees of freedom. It looks like we have either accidentally fixed one too many variables or written one too many constraints.\n", + "\n", + "For this example, let us assume that ``v4`` was not supposed to be fixed and unfix it.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Resolve the structural singularity and then call dt.report_structural_issues() in the cell below.\n", + "
" ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "solver.solve(scaled_model, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "from pyomo.environ import assert_optimal_termination\n", - "\n", - "res = solver.solve(scaled_model, tee=False)\n", - "assert_optimal_termination(res)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we can see, the scaled model solved in 0 iterations (indicating that it already had the right solution). However, had we done this to the unscaled model we would have found it required 2-3 iterations again due to IPOPT perturbing the initial (correct) solution away from the bounds.\n", - "\n", - "
\n", - "Warning:\n", - "Normally in these cases we would need to map the solution from the scaled model back to the unscaled model so we can view the results. In this case, we are not actually interested in the solution so we move on with the model diagnosis.\n", - "
\n", - "\n", - "Now that we have fixed the scaling issues, we can go back to the ``DiagnosticsToolbox`` and see if we still have any warnings. Note however that we need to look at the scaled model now rather than the original model, so we need to create a new instance of the ``DiagnosticsToolbox`` with the scaled model as the ``model`` argument.\n", - "\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Create a new instance of the DiagnosticsToolbox and check the scaled model for issues.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": true, + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 5 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 2 (External: 0)\n", + " Activated Equality Constraints: 4 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 WARNINGS\n", + "\n", + " WARNING: 1 Degree of Freedom\n", + " WARNING: Structural singularity found\n", + " Under-Constrained Set: 3 variables, 2 constraints\n", + " Over-Constrained Set: 0 variables, 0 constraints\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 Cautions\n", + "\n", + " Caution: 1 variable fixed to 0\n", + " Caution: 1 unused variable (0 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_underconstrained_set()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m.v4.unfix()\n", + "\n", + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that the over-constrained set is now empty (0 variables and 0 constraints) but the under-constrained set still has 3 variables and only 2 constraints. We can also see that there is a new warning about having 1 degree of freedom in the model, however this should not be surprising as we have just unfixed ``v4`` to resolve the over-constrained set so we have added a degree of freedom to the model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Display the under-constrained set in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Dulmage-Mendelsohn Under-Constrained Set\n", + "\n", + " Independent Block 0:\n", + "\n", + " Variables:\n", + "\n", + " v2\n", + " v1\n", + " v7\n", + "\n", + " Constraints:\n", + "\n", + " c1\n", + " c4\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_underconstrained_set()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looking at the output from the ``display_underconstrained_set()`` method, we can see that we have two constraints, ``c1`` and ``c4``, which contain three unfixed variables, ``v1``, ``v2`` and ``v7``. Thus, we have one degree of freedom that needs to be addressed. To fix this, we could either fix one of the variables shown or add an additional equality constraint to the model.\n", + "\n", + "For this example let's fix ``v2`` to a value of 5 and then re-run the ``report_structural_issues()`` method.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Fix v2 to a value of 5 and then re-run dt.report_structural_issues.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "scrolled": true, + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 4 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 3 (External: 0)\n", + " Activated Equality Constraints: 4 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 Cautions\n", + "\n", + " Caution: 1 variable fixed to 0\n", + " Caution: 1 unused variable (0 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " Try to initialize/solve your model and then call report_numerical_issues()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m.v2.fix(5)\n", + "\n", + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is now telling us that no warnings were found, so we have resolved all the structural issues (for now at least). The toolbox is telling us that there are also 2 non-critical issues (cautions) that we should look at; one about an unused variable and one about a variable fixed to zero. If you wish, you can look into identifying and fixing these yourself, however for this example we will move on to the next step (remember that the toolbox has methods to display more details for each of these which you can find in the documentation or from the ``help()`` function).\n", + "\n", + "For the Next Steps section, the toolbox is recommending we try to solve our model and then check for numerical issues.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Use the Pyomo SolverFactory to create an instance of IPOPT and then try to solve the model. Make sure to set \"tee=True\" as this is going to fail (and it is always good practice to review the solver logs).\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 7\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 4\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 2\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 4\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.40e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.39e+01 1.50e+02 -1.0 6.00e+00 - 7.16e-01 4.93e-03h 1\n", + " 2 0.0000000e+00 1.39e+01 3.03e+06 -1.0 5.97e+00 - 1.00e+00 4.95e-05h 1\n", + " 3r 0.0000000e+00 1.39e+01 1.00e+03 1.1 0.00e+00 - 0.00e+00 2.47e-07R 2\n", + " 4r 0.0000000e+00 4.19e+00 9.42e+02 1.1 3.50e+03 - 4.02e-01 3.37e-03f 1\n", + " 5r 0.0000000e+00 2.12e+00 8.72e+02 1.1 5.89e+01 - 4.35e-01 7.06e-02f 1\n", + " 6r 0.0000000e+00 6.74e-01 6.06e+02 1.1 5.29e+00 - 9.93e-03 3.98e-01f 1\n", + " 7r 0.0000000e+00 6.80e-01 3.14e+02 0.4 2.05e-01 - 1.00e+00 1.03e-01f 1\n", + " 8r 0.0000000e+00 6.69e-01 2.78e-05 0.4 2.58e-02 - 1.00e+00 1.00e+00f 1\n", + " 9r 0.0000000e+00 6.67e-01 7.56e+00 -1.7 8.13e-03 - 9.93e-01 9.96e-01f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10r 0.0000000e+00 6.67e-01 2.23e-07 -1.7 4.13e-05 - 1.00e+00 1.00e+00f 1\n", + " 11r 0.0000000e+00 6.67e-01 6.73e-01 -3.7 6.61e-05 - 1.00e+00 1.00e+00f 1\n", + " 12r 0.0000000e+00 6.67e-01 1.91e-09 -3.7 1.48e-09 - 1.00e+00 1.00e+00h 1\n", + " 13r 0.0000000e+00 6.67e-01 2.69e+00 -8.4 5.74e-07 - 1.00e+00 9.26e-01f 1\n", + " 14r 0.0000000e+00 6.67e-01 7.65e+01 -8.4 4.23e-08 - 8.68e-01 1.00e+00f 1\n", + "\n", + "Number of Iterations....: 14\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 3.2644919411246030e-04 3.2644919411246030e-04\n", + "Constraint violation....: 6.6666666333656233e-01 6.6666666333656233e-01\n", + "Complementarity.........: 4.6615546565561981e-09 4.6615546565561981e-09\n", + "Overall NLP error.......: 6.6666666333656233e-01 6.6666666333656233e-01\n", + "\n", + "\n", + "Number of objective function evaluations = 18\n", + "Number of objective gradient evaluations = 5\n", + "Number of equality constraint evaluations = 18\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 17\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 15\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Converged to a point of local infeasibility. Problem may be infeasible.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: infeasible\n", + " - message from solver: Ipopt 3.13.2\\x3a Converged to a locally infeasible\n", + " point. Problem may be infeasible.\n" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'warning', 'Message': 'Ipopt 3.13.2\\\\x3a Converged to a locally infeasible point. Problem may be infeasible.', 'Termination condition': 'infeasible', 'Id': 200, 'Error rc': 0, 'Time': 0.007064104080200195}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver = pyo.SolverFactory(\"ipopt\")\n", + "solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As hinted at above, IPOPT has returned a warning that the problem may be infeasible. Before moving on however, it is always good practice to look over the solver outputs and see what it is telling you.\n", + "\n", + "
\n", + "Warning:\n", + "A lot of useful information is contained in the solver logs which is extremely useful when diagnosing modeling issues. Each solver has its own way of reporting output and its own specific behavior, so you will need to learn to interpret the output of each solver you use. The IDAES Documentation contains some guidance on interpreting output logs for a few common solvers.\n", + "
\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call the report_numerical_issues method in the cell below.\n", + "
" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Jacobian Condition Number: 1.800E+01\n", - "\n", - "------------------------------------------------------------------------------------\n", - "0 WARNINGS\n", - "\n", - " No warnings found!\n", - "\n", - "------------------------------------------------------------------------------------\n", - "3 Cautions\n", - "\n", - " Caution: 1 Variable with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", - " Caution: 1 Variable with value close to zero (tol=1.0E-08)\n", - " Caution: 1 Variable with None value\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " If you still have issues converging your model consider:\n", - " prepare_svd_toolbox()\n", - " prepare_degeneracy_hunter()\n", - "\n", - "====================================================================================\n" - ] + "cell_type": "code", + "execution_count": 26, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 1.700E+01\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 WARNINGS\n", + "\n", + " WARNING: 1 Constraint with large residuals (>1.0E-05)\n", + " WARNING: 1 Variable at or outside bounds (tol=0.0E+00)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "5 Cautions\n", + "\n", + " Caution: 2 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 2 Variables with value close to zero (tol=1.0E-08)\n", + " Caution: 1 Variable with extreme value (<1.0E-04 or >1.0E+04)\n", + " Caution: 1 Variable with None value\n", + " Caution: 1 extreme Jacobian Entry (<1.0E-04 or >1.0E+04)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_constraints_with_large_residuals()\n", + " display_variables_at_or_outside_bounds()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The ``report_numerical_issues()`` provides a summary similar to that which we saw for the structural issues. Firstly, it reports to us the Jacobian condition number for our problem which can give us an idea of how well-scaled the problem is, followed by a list of warnings, cautions and suggested next steps.\n", + "\n", + "Unsurprisingly, we are seeing a warning about a constraint with a large residual which we would expect when a solver reports a potentially infeasible problem. We are also seeing a warning about a variable with bound violations which might be contributing to the potential infeasibility.\n", + "\n", + "For the next steps, the toolbox is suggesting some new methods to get more information on these issues; let us start by looking at the constraints with large residuals.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Display the constraint with a large residual in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following constraint(s) have large residuals (>1.0E-05):\n", + "\n", + " c2: 6.66667E-01\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_constraints_with_large_residuals()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is telling us that the constraint which failed to converge is ``c2``, however this is generally only part of the story. Solvers work by trying to minimize the infeasibility in the model (residual of the constraints), which generally means they push any infeasibility onto the least sensitive constraint in the problem. Thus, the constraint which shows the infeasibility is often not the root cause of the problem, but only the symptom of the underlying issue.\n", + "\n", + "If we look back at the constraints, we can see that the same variables also appear in ``c3`` and that some of these have bounds, all of which could be contributing to the infeasibility. In this case the solver tried to minimize the residual in all the constraints and ended up pushing all the issues off onto ``c2``.\n", + "\n", + "
\n", + "Warning:\n", + "When dealing with solver issues such as this, you should always remember that the obvious symptoms are often just the tip of the iceberg and that the real issue generally lies somewhere else; the challenge is tracing the symptoms back to their ultimate source.\n", + "
\n", + "\n", + "Next, let us take a look at the variables at or outside their bounds as well. When a solver reports an potentially infeasible solution, the most common cause is unexpected bounds violations so you should always check these first.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Display the variables with bounds violations.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following variable(s) have values at or outside their bounds (tol=0.0E+00):\n", + "\n", + " v3 (free): value=0.0 bounds=(0, 5)\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_variables_at_or_outside_bounds()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is telling us that ``v3`` is the variable with a potential issue. It is also showing us the current value and bounds for ``v3`` as well as if it is a fixed or free variable, which will be useful for diagnosing the issues.\n", + "\n", + "We can see that ``v3`` is a free variable with bounds between 0 and 5 and a current value of 0. As ``v3`` is a free variable, this suggests that the solver has pushed the value to the bound where it cannot go any further, and this might be part of the cause of our infeasibility.\n", + "\n", + "
\n", + "Warning:\n", + "When dealing with bounds violations you should always start by understanding why the bounds exist and what they mean - in many cases a bound indicates the range over which the model can be trusted and that going beyond this may result in unexpected behavior due to extrapolation.\n", + " \n", + "Never arbitrarily change a bound just because it is causing your model to be infeasible without understanding the consequences of this decision. Often, a bound violation is an indication that you need to re-think some of the constraints in your model to find alternatives which are valid in the actual range of values you are trying to solve for.\n", + "
\n", + "\n", + "For this example, let us assume that we made a mistake with the bounds on ``v3`` and set the lower bound to be -5.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Update the bounds on v3 in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "m.v3.setlb(-5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have fixed the bounds issues, we should check whether our model is now feasible. However, before we continue we should recognize that we have just made a structural change to the model. If we were not careful, this could have introduced new structural issues to the model, so we should start from the beginning just to be sure.\n", + "\n", + "
\n", + "Warning:\n", + "In general, you should always start from the beginning of the model diagnosis workflow after you make any change to the model. Remember to also record these changes in your log book in case something unexpected happens so that you can revert any changes that cause problems.\n", + "
\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Check to see if there are any new structural issues in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "scrolled": true, + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 4 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 3 (External: 0)\n", + " Activated Equality Constraints: 4 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 Cautions\n", + "\n", + " Caution: 1 variable fixed to 0\n", + " Caution: 1 unused variable (0 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " Try to initialize/solve your model and then call report_numerical_issues()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our change has not introduced any new structural issues, so we can move on and try to solve the model again.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Re-solve the model in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 7\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 4\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 2\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 4\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 6.67e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 6.66e-03 2.97e+00 -1.0 2.00e+00 - 7.17e-01 9.90e-01h 1\n", + " 2 0.0000000e+00 6.27e-05 9.38e+00 -1.0 2.00e-02 - 1.00e+00 9.91e-01h 1\n", + " 3 0.0000000e+00 8.88e-16 1.13e-12 -1.0 1.88e-04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 8.8817841970012523e-16 8.8817841970012523e-16\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 8.8817841970012523e-16 8.8817841970012523e-16\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.02317023277282715}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "IPOPT should have returned optimal solution now, so it looks like those bounds were what was causing the model to be infeasible. At this point, the model is now solving (for the current values at least), so you might think that the model is now ready for optimization.\n", + "\n", + "However, if we look at the solver logs we can see that it took around 3 iterations for IPOPT to solve our model (depending on minor variations in computer architecture). For a model this simple, we would generally expect it to solve in only 1 iteration so there is still some room for improvement.\n", + "\n", + "
\n", + "Warning:\n", + "You should keep in mind that just because you get an optimal solution does not mean that your model is robust and free of issues.\n", + " \n", + "You should always take the time to look over the solver logs to look for signs of trouble, even if you get an optimal solution. While you might get an optimal solution for the current state, there may be advance warning signs of issues that will cause problems later when you try to solve the model at a different state.\n", + "
\n", + "\n", + "Let us run the ``report_numerical_issues`` method again to see if there are any other problems we need to address.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Check for additional numerical issues in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 1.700E+01\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "5 Cautions\n", + "\n", + " Caution: 1 Variable with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 1 Variable with value close to zero (tol=1.0E-08)\n", + " Caution: 1 Variable with extreme value (<1.0E-04 or >1.0E+04)\n", + " Caution: 1 Variable with None value\n", + " Caution: 1 extreme Jacobian Entry (<1.0E-04 or >1.0E+04)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " If you still have issues converging your model consider:\n", + " prepare_svd_toolbox()\n", + " prepare_degeneracy_hunter()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is not reporting any warnings which is good, however there are still 5 numerical cautions that it has identified which might be contributing to the larger than expected number of iterations. As mentioned earlier, the toolbox does not suggest methods for investigating these, but there are methods available. For example, we can look at the variable with an extreme value using the `display_variables_with_extreme_values()` method.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Check for additional information about variables with extreme values.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following variable(s) have extreme values (<1.0E-04 or > 1.0E+04):\n", + "\n", + " v7: 4.9999999999999945e-08\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_variables_with_extreme_values()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that ``v7`` is potentially causing problems due to having a very small value (on the order of magnitude of the solver tolerance). This can be especially problematic for interior point solvers like IPOPT if there is a lower bound of 0 (which there is in this case). IPOPT tries to avoid bounds and thus perturbs solutions away from these if it gets too close, which can cause convergence to be slow (or fail) if the solution lies close to the bound.\n", + "\n", + "We can address this by scaling the variable so that the value of the scaled variable is large enough that the solution is not close to the lower bound. Additionally, we should look at any constraint that ``v7`` appears in (in this case ``c4``) and ensure that those constraints are well scaled as well (so that a residual of 1e-6 is reasonable for the terms involved).\n", + "\n", + "For this case, we can set a scaling factor of 1e8 for both ``v7`` and ``c4`` as shown below. Note that we also need to apply Pyomo's scaling transformation to create a new scaled model to work with." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "m.scaling_factor = pyo.Suffix(direction=pyo.Suffix.EXPORT)\n", + "\n", + "m.scaling_factor[m.v7] = 1e8\n", + "m.scaling_factor[m.c4] = 1e8\n", + "\n", + "scaling = pyo.TransformationFactory(\"core.scale_model\")\n", + "scaled_model = scaling.create_using(m, rename=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have a scaled model, we can try to solve it and hopefully see better convergence than the unscaled model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Solve the scaled model and check to see how many iterations are required.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 7\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 4\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 2\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 4\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 5.33e-15 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + "\n", + "Number of Iterations....: 0\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 5.3290705182007514e-15 5.3290705182007514e-15\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 5.3290705182007514e-15 5.3290705182007514e-15\n", + "\n", + "\n", + "Number of objective function evaluations = 1\n", + "Number of objective gradient evaluations = 1\n", + "Number of equality constraint evaluations = 1\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 1\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 0\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.0058002471923828125}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver.solve(scaled_model, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "from pyomo.environ import assert_optimal_termination\n", + "\n", + "res = solver.solve(scaled_model, tee=False)\n", + "assert_optimal_termination(res)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see, the scaled model solved in 0 iterations (indicating that it already had the right solution). However, had we done this to the unscaled model we would have found it required 2-3 iterations again due to IPOPT perturbing the initial (correct) solution away from the bounds.\n", + "\n", + "
\n", + "Warning:\n", + "Normally in these cases we would need to map the solution from the scaled model back to the unscaled model so we can view the results. In this case, we are not actually interested in the solution so we move on with the model diagnosis.\n", + "
\n", + "\n", + "Now that we have fixed the scaling issues, we can go back to the ``DiagnosticsToolbox`` and see if we still have any warnings. Note however that we need to look at the scaled model now rather than the original model, so we need to create a new instance of the ``DiagnosticsToolbox`` with the scaled model as the ``model`` argument.\n", + "\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Create a new instance of the DiagnosticsToolbox and check the scaled model for issues.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 1.800E+01\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "3 Cautions\n", + "\n", + " Caution: 1 Variable with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 1 Variable with value close to zero (tol=1.0E-08)\n", + " Caution: 1 Variable with None value\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " If you still have issues converging your model consider:\n", + " prepare_svd_toolbox()\n", + " prepare_degeneracy_hunter()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt_scaled = DiagnosticsToolbox(scaled_model)\n", + "dt_scaled.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that applying scaling addressed two of the cautions we had before (the variable with an extreme value and an associated large value in the model Jacobian). Whilst we were able to solve the unscaled model in this case, this is in part because it was a simple linear model. In more complex, non-linear models, scaling becomes much more important and often depends strongly on the current state of the model. That is, you can often find cases where the unscaled (or poorly scaled) model solves for a limited range of conditions but fails to solve if you move too far away for the current state. Whilst you might be able to solve the model at the current state, you should always check the solver logs and numerical cautions for advanced warning signs of scaling issues that might manifest later when you try to solve the model for a different state (e.g., during optimization).\n", + "\n", + "
\n", + "Warning:\n", + "By their nature, numerical issues depend on the current values of the variables in the model, and thus may remain hidden until someone tries to solve the model close to where the issue exists. For this reason, the full model diagnostics workflow contains steps to run the numerical checks across a wide range of variable values to try to ensure that no issues remain hidden. This is beyond the scope of this tutorial however.\n", + "
\n", + "\n", + "At this point, we have addressed all the issues that were preventing us from solving the demonstration model and so reached the end of this tutorial. For cases where we are still having trouble solving the model, we can see that the toolbox is suggesting additional methods for further debugging and these advanced features will be the focus of separate tutorials." + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "dt.assert_no_structural_warnings()\n", + "dt.assert_no_numerical_warnings()" + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" } - ], - "source": [ - "dt_scaled = DiagnosticsToolbox(scaled_model)\n", - "dt_scaled.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that applying scaling addressed two of the cautions we had before (the variable with an extreme value and an associated large value in the model Jacobian). Whilst we were able to solve the unscaled model in this case, this is in part because it was a simple linear model. In more complex, non-linear models, scaling becomes much more important and often depends strongly on the current state of the model. That is, you can often find cases where the unscaled (or poorly scaled) model solves for a limited range of conditions but fails to solve if you move too far away for the current state. Whilst you might be able to solve the model at the current state, you should always check the solver logs and numerical cautions for advanced warning signs of scaling issues that might manifest later when you try to solve the model for a different state (e.g., during optimization).\n", - "\n", - "
\n", - "Warning:\n", - "By their nature, numerical issues depend on the current values of the variables in the model, and thus may remain hidden until someone tries to solve the model close to where the issue exists. For this reason, the full model diagnostics workflow contains steps to run the numerical checks across a wide range of variable values to try to ensure that no issues remain hidden. This is beyond the scope of this tutorial however.\n", - "
\n", - "\n", - "At this point, we have addressed all the issues that were preventing us from solving the demonstration model and so reached the end of this tutorial. For cases where we are still having trouble solving the model, we can see that the toolbox is suggesting additional methods for further debugging and these advanced features will be the focus of separate tutorials." - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "dt.assert_no_structural_warnings()\n", - "dt.assert_no_numerical_warnings()" - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.5" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_usr.ipynb b/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_usr.ipynb index 688e5148..2dc54029 100644 --- a/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_usr.ipynb +++ b/idaes_examples/notebooks/docs/diagnostics/diagnostics_toolbox_usr.ipynb @@ -1,2106 +1,2107 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# IDAES Model Diagnostics Toolbox Tutorial\n", - "Author: Andrew Lee \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-10-31 \n", - "\n", - "As you have likely discovered already, developing and solving models in an equation-oriented (EO) environment can be challenging and often takes a significant amount of effort. There are many pitfalls and mistakes that can be encountered when developing a model which can greatly impact the solvability and robustness of the final problem.\n", - "\n", - "Model diagnosis and debugging is often more of an art than a science, and it generally relies on significant experience and understanding both of general EO modeling techniques and the specific model and problem being solved. To assist with this process, IDAES has developed a model diagnostics toolbox that brings together a large number of tools for identifying potential issues in a model to help guide the user through the process of finding and resolving these issues. Note however that whilst these tools can help identify the presence of an issue, remedying the issue always requires some degree of engineering knowledge about the system being modeled, and thus it is ultimately up to the user to find a solution to the problem.\n", - "\n", - "This tutorial will take you through using the {py:class}`DiagnosticsToolbox ` to debug a number of issues in a simple Pyomo model and to take it from initially reporting a possible infeasible solution to returning the correct solution.\n", - "\n", - "To get started, the ``DiagnosticsToolbox`` can be imported from ``idaes.core.util``.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Import the DiagnosticsToolbox in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.util import DiagnosticsToolbox" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To get some information on where to start, try using the Python ``help()`` function to see the documentation for the ``DiagnosticsToolbox``.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call `help(DiagnosticsToolbox)` to see some more information on the toolbox and some instructions on how to get started.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Call the help() function for more information" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on class DiagnosticsToolbox in module idaes.core.util.model_diagnostics:\n", - "\n", - "class DiagnosticsToolbox(builtins.object)\n", - " | DiagnosticsToolbox(model: pyomo.core.base.block._BlockData, **kwargs)\n", - " | \n", - " | The IDAES Model DiagnosticsToolbox.\n", - " | \n", - " | To get started:\n", - " | \n", - " | 1. Create an instance of your model (this does not need to be initialized yet).\n", - " | 2. Fix variables until you have 0 degrees of freedom. Many of these tools presume\n", - " | a square model, and a square model should always be the foundation of any more\n", - " | advanced model.\n", - " | 3. Create an instance of the DiagnosticsToolbox and provide the model to debug as\n", - " | the model argument.\n", - " | 4. Call the ``report_structural_issues()`` method.\n", - " | \n", - " | Model diagnostics is an iterative process and you will likely need to run these\n", - " | tools multiple times to resolve all issues. After making a change to your model,\n", - " | you should always start from the beginning again to ensure the change did not\n", - " | introduce any new issues; i.e., always start from the report_structural_issues()\n", - " | method.\n", - " | \n", - " | Note that structural checks do not require the model to be initialized, thus users\n", - " | should start with these. Numerical checks require at least a partial solution to the\n", - " | model and should only be run once all structural issues have been resolved.\n", - " | \n", - " | Report methods will print a summary containing three parts:\n", - " | \n", - " | 1. Warnings - these are critical issues that should be resolved before continuing.\n", - " | For each warning, a method will be suggested in the Next Steps section to get\n", - " | additional information.\n", - " | 2. Cautions - these are things that could be correct but could also be the source of\n", - " | solver issues. Not all cautions need to be addressed, but users should investigate\n", - " | each one to ensure that the behavior is correct and that they will not be the source\n", - " | of difficulties later. Methods exist to provide more information on all cautions,\n", - " | but these will not appear in the Next Steps section.\n", - " | 3. Next Steps - these are recommended methods to call from the DiagnosticsToolbox to\n", - " | get further information on warnings. If no warnings are found, this will suggest\n", - " | the next report method to call.\n", - " | \n", - " | Args:\n", - " | \n", - " | model: model to be diagnosed. The DiagnosticsToolbox does not support indexed Blocks.\n", - " | \n", - " | Keyword Arguments\n", - " | -----------------\n", - " | variable_bounds_absolute_tolerance: float, default=0.0001\n", - " | Absolute tolerance for considering a variable to be close to its\n", - " | bounds.\n", - " | \n", - " | variable_bounds_relative_tolerance: float, default=0.0001\n", - " | Relative tolerance for considering a variable to be close to its\n", - " | bounds.\n", - " | \n", - " | variable_bounds_violation_tolerance: float, default=0\n", - " | Absolute tolerance for considering a variable to violate its bounds.\n", - " | Some solvers relax bounds on variables thus allowing a small violation\n", - " | to be considered acceptable.\n", - " | \n", - " | constraint_residual_tolerance: float, default=1e-05\n", - " | Absolute tolerance to use when checking constraint residuals.\n", - " | \n", - " | variable_large_value_tolerance: float, default=10000.0\n", - " | Absolute tolerance for considering a value to be large.\n", - " | \n", - " | variable_small_value_tolerance: float, default=0.0001\n", - " | Absolute tolerance for considering a value to be small.\n", - " | \n", - " | variable_zero_value_tolerance: float, default=1e-08\n", - " | Absolute tolerance for considering a value to be near to zero.\n", - " | \n", - " | jacobian_large_value_caution: float, default=10000.0\n", - " | Tolerance for raising a caution for large Jacobian values.\n", - " | \n", - " | jacobian_large_value_warning: float, default=100000000.0\n", - " | Tolerance for raising a warning for large Jacobian values.\n", - " | \n", - " | jacobian_small_value_caution: float, default=0.0001\n", - " | Tolerance for raising a caution for small Jacobian values.\n", - " | \n", - " | jacobian_small_value_warning: float, default=1e-08\n", - " | Tolerance for raising a warning for small Jacobian values.\n", - " | \n", - " | warn_for_evaluation_error_at_bounds: bool, default=True\n", - " | If False, warnings will not be generated for things like log(x) with x\n", - " | >= 0\n", - " | \n", - " | Methods defined here:\n", - " | \n", - " | __init__(self, model: pyomo.core.base.block._BlockData, **kwargs)\n", - " | Initialize self. See help(type(self)) for accurate signature.\n", - " | \n", - " | assert_no_numerical_warnings(self)\n", - " | Checks for numerical warnings in the model and raises an AssertionError\n", - " | if any are found.\n", - " | \n", - " | Raises:\n", - " | AssertionError if any warnings are identified by numerical analysis.\n", - " | \n", - " | assert_no_structural_warnings(self)\n", - " | Checks for structural warnings in the model and raises an AssertionError\n", - " | if any are found.\n", - " | \n", - " | Raises:\n", - " | AssertionError if any warnings are identified by structural analysis.\n", - " | \n", - " | display_components_with_inconsistent_units(self, stream=None)\n", - " | Prints a list of all Constraints, Expressions and Objectives in the\n", - " | model with inconsistent units of measurement.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_constraints_with_extreme_jacobians(self, stream=None)\n", - " | Prints the constraints associated with rows in the Jacobian with extreme\n", - " | L2 norms. This often indicates poorly scaled constraints.\n", - " | \n", - " | Tolerances can be set via the DiagnosticsToolbox config.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the output to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_constraints_with_large_residuals(self, stream=None)\n", - " | Prints a list of Constraints with residuals greater than a specified tolerance.\n", - " | Tolerance can be set in the class configuration options.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_external_variables(self, stream=None)\n", - " | Prints a list of variables that appear within activated Constraints in the\n", - " | model but are not contained within the model themselves.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_extreme_jacobian_entries(self, stream=None)\n", - " | Prints variables and constraints associated with entries in the Jacobian with extreme\n", - " | values. This can be indicative of poor scaling, especially for isolated terms (e.g.\n", - " | variables which appear only in one term of a single constraint).\n", - " | \n", - " | Tolerances can be set via the DiagnosticsToolbox config.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the output to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_overconstrained_set(self, stream=None)\n", - " | Prints the variables and constraints in the over-constrained sub-problem\n", - " | from a Dulmage-Mendelsohn partitioning.\n", - " | \n", - " | This can be used to identify the over-defined part of a model and thus\n", - " | where constraints must be removed or variables unfixed.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_potential_evaluation_errors(self, stream=None)\n", - " | Prints constraints that may be prone to evaluation errors\n", - " | (e.g., log of a negative number) based on variable bounds.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the output to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_underconstrained_set(self, stream=None)\n", - " | Prints the variables and constraints in the under-constrained sub-problem\n", - " | from a Dulmage-Mendelsohn partitioning.\n", - " | \n", - " | This can be used to identify the under-defined part of a model and thus\n", - " | where additional information (fixed variables or constraints) are required.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_unused_variables(self, stream=None)\n", - " | Prints a list of variables that do not appear in any activated Constraints.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_at_or_outside_bounds(self, stream=None)\n", - " | Prints a list of variables with values that fall at or outside the bounds\n", - " | on the variable.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_fixed_to_zero(self, stream=None)\n", - " | Prints a list of variables that are fixed to an absolute value of 0.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_near_bounds(self, stream=None)\n", - " | Prints a list of variables with values close to their bounds. Tolerance can\n", - " | be set in the class configuration options.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_with_extreme_jacobians(self, stream=None)\n", - " | Prints the variables associated with columns in the Jacobian with extreme\n", - " | L2 norms. This often indicates poorly scaled variables.\n", - " | \n", - " | Tolerances can be set via the DiagnosticsToolbox config.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the output to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_with_extreme_values(self, stream=None)\n", - " | Prints a list of variables with extreme values.\n", - " | \n", - " | Tolerances can be set in the class configuration options.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_with_none_value(self, stream=None)\n", - " | Prints a list of variables with a value of None.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | display_variables_with_value_near_zero(self, stream=None)\n", - " | Prints a list of variables with a value close to zero. The tolerance\n", - " | for determining what is close to zero can be set in the class configuration\n", - " | options.\n", - " | \n", - " | Args:\n", - " | stream: an I/O object to write the list to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | get_dulmage_mendelsohn_partition(self)\n", - " | Performs a Dulmage-Mendelsohn partitioning on the model and returns\n", - " | the over- and under-constrained sub-problems.\n", - " | \n", - " | Returns:\n", - " | list-of-lists variables in each independent block of the under-constrained set\n", - " | list-of-lists constraints in each independent block of the under-constrained set\n", - " | list-of-lists variables in each independent block of the over-constrained set\n", - " | list-of-lists constraints in each independent block of the over-constrained set\n", - " | \n", - " | prepare_degeneracy_hunter(self, **kwargs)\n", - " | Create an instance of the DegeneracyHunter and store as self.degeneracy_hunter.\n", - " | \n", - " | After creating an instance of the toolbox, call\n", - " | report_irreducible_degenerate_sets.\n", - " | \n", - " | Returns:\n", - " | \n", - " | Instance of DegeneracyHunter\n", - " | \n", - " | Keyword Arguments\n", - " | -----------------\n", - " | solver: str, default='scip'\n", - " | MILP solver to use for finding irreducible degenerate sets.\n", - " | \n", - " | solver_options: optional\n", - " | Options to pass to MILP solver.\n", - " | \n", - " | M: float, default=100000.0\n", - " | Maximum value for nu in MILP models.\n", - " | \n", - " | m_small: float, default=1e-05\n", - " | Smallest value for nu to be considered non-zero in MILP models.\n", - " | \n", - " | trivial_constraint_tolerance: float, default=1e-06\n", - " | Tolerance for identifying non-zero rows in Jacobian.\n", - " | \n", - " | prepare_svd_toolbox(self, **kwargs)\n", - " | Create an instance of the SVDToolbox and store as self.svd_toolbox.\n", - " | \n", - " | After creating an instance of the toolbox, call\n", - " | display_underdetermined_variables_and_constraints().\n", - " | \n", - " | Returns:\n", - " | \n", - " | Instance of SVDToolbox\n", - " | \n", - " | Keyword Arguments\n", - " | -----------------\n", - " | number_of_smallest_singular_values: PositiveInt, optional\n", - " | Number of smallest singular values to compute\n", - " | \n", - " | svd_callback: svd_callback_validator, default=\n", - " | Callback to SVD method of choice (default = svd_dense). Callbacks\n", - " | should take the Jacobian and number of singular values to compute as\n", - " | options, plus any method specific arguments, and should return the u,\n", - " | s and v matrices as numpy arrays.\n", - " | \n", - " | svd_callback_arguments: dict, optional\n", - " | Optional arguments to pass to SVD callback (default = None)\n", - " | \n", - " | singular_value_tolerance: float, default=1e-06\n", - " | Tolerance for defining a small singular value\n", - " | \n", - " | size_cutoff_in_singular_vector: float, default=0.1\n", - " | Size below which to ignore constraints and variables in the singular\n", - " | vector\n", - " | \n", - " | report_numerical_issues(self, stream=None)\n", - " | Generates a summary report of any numerical issues identified in the model provided\n", - " | and suggest next steps for debugging model.\n", - " | \n", - " | Numerical checks should only be performed once all structural issues have been resolved,\n", - " | and require that at least a partial solution to the model is available.\n", - " | \n", - " | Args:\n", - " | stream: I/O object to write report to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | report_structural_issues(self, stream=None)\n", - " | Generates a summary report of any structural issues identified in the model provided\n", - " | and suggests next steps for debugging the model.\n", - " | \n", - " | This should be the first method called when debugging a model and after any change\n", - " | is made to the model. These checks can be run before trying to initialize and solve\n", - " | the model.\n", - " | \n", - " | Args:\n", - " | stream: I/O object to write report to (default = stdout)\n", - " | \n", - " | Returns:\n", - " | None\n", - " | \n", - " | ----------------------------------------------------------------------\n", - " | Readonly properties defined here:\n", - " | \n", - " | model\n", - " | Model currently being diagnosed.\n", - " | \n", - " | ----------------------------------------------------------------------\n", - " | Data descriptors defined here:\n", - " | \n", - " | __dict__\n", - " | dictionary for instance variables (if defined)\n", - " | \n", - " | __weakref__\n", - " | list of weak references to the object (if defined)\n", - "\n" - ] - } - ], - "source": [ - "help(DiagnosticsToolbox)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The ``help()`` function gives us a lot of information on the ``DiagnosticsToolbox`` and all the methods that it supports (and there are many). However, the important part to start with are the four steps outlined at the top of the doc string that tell us how to get started.\n", - "\n", - "Firstly, we need a model to test (and, for this tutorial at least, one that has a wide range of issues that we need to fix before it will solve). We then also need to fix some variables so that we have 0 degrees of freedom in our model. Whilst our ultimate goal is generally optimization (and thus a system with 1 or more degrees of freedom), all models conceptually derive from a square model representing a nominal state. If this nominal state is not well-posed, then any issues present will also be present in the resulting optimization (even if adding degrees of freedom means that the model is now easier to solve).\n", - "\n", - "The cell below contains a demonstration model for this tutorial that contains a number of issues that we will resolve using the ``DiagnosticsToolbox``." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import pyomo.environ as pyo\n", - "\n", - "m = pyo.ConcreteModel()\n", - "\n", - "m.v1 = pyo.Var(units=pyo.units.m)\n", - "m.v2 = pyo.Var(units=pyo.units.m)\n", - "m.v3 = pyo.Var(bounds=(0, 5))\n", - "m.v4 = pyo.Var()\n", - "m.v5 = pyo.Var(bounds=(0, 10))\n", - "m.v6 = pyo.Var()\n", - "m.v7 = pyo.Var(\n", - " units=pyo.units.m, bounds=(0, 1)\n", - ") # Poorly scaled variable with lower bound\n", - "m.v8 = pyo.Var() # unused variable\n", - "\n", - "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10) # Unit consistency issue\n", - "m.c2 = pyo.Constraint(expr=m.v3 == m.v4 + m.v5)\n", - "m.c3 = pyo.Constraint(expr=2 * m.v3 == 3 * m.v4 + 4 * m.v5 + m.v6)\n", - "m.c4 = pyo.Constraint(expr=m.v7 == 1e-8 * m.v1) # Poorly scaled constraint\n", - "\n", - "m.v4.fix(2)\n", - "m.v5.fix(2)\n", - "m.v6.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, the instructions tell us to create an instance of the ``DiagnosticsToolbox`` and to pass the model we wish to examine as an argument.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Create an instance of the DiagnosticsToolbox: dt = DiagnosticsToolbox(m)\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create an instance of the Diagnostics Toolbox" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "dt = DiagnosticsToolbox(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, the instructions tell us to run the ``report_structural_issues()`` method. Structural issues represent issues that exist solely in the form of the model equations and thus do not depend on the current value of any of the variables. This is useful as it means we can check for these before we even call a solver, which can be critical as sometimes these issues will cause a solver to fail without providing a useful solution.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call dt.report_structural_issues() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Call the report_structural_issues() method" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 1 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 4 (External: 0)\n", - " Free Variables with only lower bounds: 0\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 3 (External: 0)\n", - " Activated Equality Constraints: 4 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 WARNINGS\n", - "\n", - " WARNING: 1 Component with inconsistent units\n", - " WARNING: Structural singularity found\n", - " Under-Constrained Set: 3 variables, 2 constraints\n", - " Over-Constrained Set: 1 variables, 2 constraints\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 Cautions\n", - "\n", - " Caution: 1 variable fixed to 0\n", - " Caution: 1 unused variable (0 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_components_with_inconsistent_units()\n", - " display_underconstrained_set()\n", - " display_overconstrained_set()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looking at the output from the ``report_structural_issues()`` method, we can see that it provides a fairly short summary containing 4 sections.\n", - "\n", - "1. The first section is a summary of the size of the model, indicating things like the number of variables and constraints. The size of the model is often important for judging how difficult it will be to solve, and this information can also be useful for comparison to what is being sent to the solver. Most solvers will report the size of the model in their output logs, and if there is a difference between what is reported here and by the solver, then you should probably look into what is happening. This section also notes some things such as if you have any deactivated Blocks, Constraints or Objectives, or if you have variables which appear in the constraints that are not part of the model; these are not necessarily wrong but it is easy to have accidentally deactivated something you did not intend to so you should always check to see that these are expected.\n", - "\n", - "2. The second section provides a summary of any critical structural issues that were found - in this case we can see that there are 2 warnings we are going to need to look into. Warnings represent issues that need to be addressed before moving on as these will likely cause the solver to fail or give an incorrect answer.\n", - "\n", - "3. The third section lists a summary of any cautions that are found. Cautions represent issues that may or may not be problematic; in many cases these might be expected behaviors or borderline issues. However, these could also represent conceptual issues that should be addressed, so users should take the time to investigate these and determine if they need to be fixed or not.\n", - "\n", - "4. Finally, there is a section that suggests the next steps to take to help guide you through the model diagnosis process. If any warnings were identified, this section will list methods that can help you get more information on each specific problem, and if no warnings are found then it will guide you onto the next step in the model diagnosis workflow.\n", - "\n", - "**Note:** there are methods available to help investigate cautions as well, but these will not show up in the next steps in order to avoid cluttering the output. You can get more information on the available methods for investigating cautions via the documentation or ``help()`` function.\n", - "\n", - "In our current model, we have 2 critical issues (warnings) that we need to look into and resolve. The order in which we resolve these will generally not matter, but be aware that these can often be interrelated - fixing one warning might resolve other warnings as well (or create new ones), and sometimes you will need to look at multiple issues together to find the overall root cause.\n", - "\n", - "To start with, let us look at the unit consistency issue. From the \"Next Steps\" section above, the toolbox is suggesting we run the ``display_components_with_inconsistent_units()`` method for more information.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call the `display_components_with_inconsistent_units()` method from the DiagnosticsToolbox to see more information on which constraint is causing the unit consistency issues.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Call the display_components_with_inconsistent_units() method" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "scrolled": false, - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "The following component(s) have unit consistency issues:\n", - "\n", - " c1\n", - "\n", - "For more details on unit inconsistencies, import the assert_units_consistent method\n", - "from pyomo.util.check_units\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_components_with_inconsistent_units()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This tells us that the issue lies in constraint ``c1``. If we go back and look at this constraint, we can see that it says ``v1 + v2 == 10``. ``v1`` and ``v2`` both have units of ``m`` which is consistent, but the constant in the expression (right hand side) is unitless. Thus, we need to correct this so that the right hand side has units for the constraint to be consistent.\n", - "\n", - "The cell below shows how to delete a constraint and replace it with a new one with the correct units.\n", - "\n", - "
\n", - "Warning:\n", - "Deleting components can cause unexpected issues if something else in a model is using that component (e.g., deleting a variable which is used in a constraint). You should always be careful when deleting Pyomo components and make sure you only delete components that are not used elsewhere.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# Delete the incorrect Constraint\n", - "m.del_component(m.c1)\n", - "\n", - "# Re-create the Constraint with the correct units\n", - "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10 * pyo.units.m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Warning:\n", - "Fixing issues in models is often an iterative process requiring trial and error. You might also have some results from a model before running the diagnostics tools and the changes you make during debugging may make it difficult to replicate those results afterwards.\n", - " \n", - "It is strongly recommended that you keep a record of the changes you make at each step and why, along with a Git hash (or similar version control marker) corresponding to these changes. This will allow you see what changes and why, and give you a way to go back to previous iterations if the current approach does not work out. The IDAES documentation contains recommendations on how to keep and maintain a modeling logbook.\n", - "
\n", - "\n", - "Now, re-run the ``report_structural_issues()`` method and see if this change has fixed the unit consistency issue.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call dt.report_structural_issues() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Call the report_structural_issues() method" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "scrolled": true, - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 1 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 4 (External: 0)\n", - " Free Variables with only lower bounds: 0\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 3 (External: 0)\n", - " Activated Equality Constraints: 4 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "1 WARNINGS\n", - "\n", - " WARNING: Structural singularity found\n", - " Under-Constrained Set: 3 variables, 2 constraints\n", - " Over-Constrained Set: 1 variables, 2 constraints\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 Cautions\n", - "\n", - " Caution: 1 variable fixed to 0\n", - " Caution: 1 unused variable (0 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_underconstrained_set()\n", - " display_overconstrained_set()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The unit consistency issue has been resolved by the changes above, so now we need to look at the structural singularity. A structural singularity occurs when one sub-part of the model is over-constrained (negative degrees of freedom), which generally means another part is under-constrained (positive degrees of freedom, assuming that there are 0 degrees of freedom overall).\n", - "\n", - "The toolbox is suggesting we use the ``display_overconstrained_set()`` and ``display_underconstrained_set()`` methods to get more information on the singularity; for now, let us start with the over-constrained set.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call dt.display_overconstrained_set() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Call the display_overconstrained_set() method" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Dulmage-Mendelsohn Over-Constrained Set\n", - "\n", - " Independent Block 0:\n", - "\n", - " Variables:\n", - "\n", - " v3\n", - "\n", - " Constraints:\n", - "\n", - " c2\n", - " c3\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_overconstrained_set()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From the output above, the toolbox is telling us that we have two constraints (``c2`` and ``c3``) which only contain a single unfixed variable (``v3``); thus in this part of the model we have -1 degree of freedom and the model is not well defined (structurally singular). If we go back and look at these constraints, we can see the that the constraints are:\n", - "\n", - "``c2: v3 == v4 + v5``\n", - "\n", - "``c3: 2*v3 == 3*v4 + 4*v5 + v6``\n", - "\n", - "We can see that in addition to ``v3`` these constraints actually contain 3 other variables (``v4``, ``v5`` and ``v6``), however these are all variables we fixed to get our initial zero degrees of freedom. It looks like we have either accidentally fixed one too many variables or written one too many constraints.\n", - "\n", - "For this example, let us assume that ``v4`` was not supposed to be fixed and unfix it.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Resolve the structural singularity and then call dt.report_structural_issues() in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Unfix v4\n", - "\n", - "# Then call the report_structural_issues() method again" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "scrolled": true, - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 1 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 5 (External: 0)\n", - " Free Variables with only lower bounds: 0\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 2 (External: 0)\n", - " Activated Equality Constraints: 4 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 WARNINGS\n", - "\n", - " WARNING: 1 Degree of Freedom\n", - " WARNING: Structural singularity found\n", - " Under-Constrained Set: 3 variables, 2 constraints\n", - " Over-Constrained Set: 0 variables, 0 constraints\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 Cautions\n", - "\n", - " Caution: 1 variable fixed to 0\n", - " Caution: 1 unused variable (0 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_underconstrained_set()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m.v4.unfix()\n", - "\n", - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that the over-constrained set is now empty (0 variables and 0 constraints) but the under-constrained set still has 3 variables and only 2 constraints. We can also see that there is a new warning about having 1 degree of freedom in the model, however this should not be surprising as we have just unfixed ``v4`` to resolve the over-constrained set so we have added a degree of freedom to the model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Display the under-constrained set in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Display the under-constrained set" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Dulmage-Mendelsohn Under-Constrained Set\n", - "\n", - " Independent Block 0:\n", - "\n", - " Variables:\n", - "\n", - " v2\n", - " v1\n", - " v7\n", - "\n", - " Constraints:\n", - "\n", - " c1\n", - " c4\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_underconstrained_set()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looking at the output from the ``display_underconstrained_set()`` method, we can see that we have two constraints, ``c1`` and ``c4``, which contain three unfixed variables, ``v1``, ``v2`` and ``v7``. Thus, we have one degree of freedom that needs to be addressed. To fix this, we could either fix one of the variables shown or add an additional equality constraint to the model.\n", - "\n", - "For this example let's fix ``v2`` to a value of 5 and then re-run the ``report_structural_issues()`` method.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Fix v2 to a value of 5 and then re-run dt.report_structural_issues.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Fix v2 = 5\n", - "\n", - "# Then re-run report_structural_issues() method" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "scrolled": true, - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 1 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 4 (External: 0)\n", - " Free Variables with only lower bounds: 0\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 3 (External: 0)\n", - " Activated Equality Constraints: 4 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "0 WARNINGS\n", - "\n", - " No warnings found!\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 Cautions\n", - "\n", - " Caution: 1 variable fixed to 0\n", - " Caution: 1 unused variable (0 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " Try to initialize/solve your model and then call report_numerical_issues()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m.v2.fix(5)\n", - "\n", - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is now telling us that no warnings were found, so we have resolved all the structural issues (for now at least). The toolbox is telling us that there are also 2 non-critical issues (cautions) that we should look at; one about an unused variable and one about a variable fixed to zero. If you wish, you can look into identifying and fixing these yourself, however for this example we will move on to the next step (remember that the toolbox has methods to display more details for each of these which you can find in the documentation or from the ``help()`` function).\n", - "\n", - "For the Next Steps section, the toolbox is recommending we try to solve our model and then check for numerical issues.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Use the Pyomo SolverFactory to create an instance of IPOPT and then try to solve the model. Make sure to set \"tee=True\" as this is going to fail (and it is always good practice to review the solver logs).\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create a solver object\n", - "\n", - "# Try to solve the model" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 7\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 4\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 2\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 4\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 1.40e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 1.39e+01 1.50e+02 -1.0 6.00e+00 - 7.16e-01 4.93e-03h 1\n", - " 2 0.0000000e+00 1.39e+01 3.03e+06 -1.0 5.97e+00 - 1.00e+00 4.95e-05h 1\n", - " 3r 0.0000000e+00 1.39e+01 1.00e+03 1.1 0.00e+00 - 0.00e+00 2.47e-07R 2\n", - " 4r 0.0000000e+00 4.19e+00 9.42e+02 1.1 3.50e+03 - 4.02e-01 3.37e-03f 1\n", - " 5r 0.0000000e+00 2.12e+00 8.72e+02 1.1 5.89e+01 - 4.35e-01 7.06e-02f 1\n", - " 6r 0.0000000e+00 6.74e-01 6.06e+02 1.1 5.29e+00 - 9.93e-03 3.98e-01f 1\n", - " 7r 0.0000000e+00 6.80e-01 3.14e+02 0.4 2.05e-01 - 1.00e+00 1.03e-01f 1\n", - " 8r 0.0000000e+00 6.69e-01 2.78e-05 0.4 2.58e-02 - 1.00e+00 1.00e+00f 1\n", - " 9r 0.0000000e+00 6.67e-01 7.56e+00 -1.7 8.13e-03 - 9.93e-01 9.96e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10r 0.0000000e+00 6.67e-01 2.23e-07 -1.7 4.13e-05 - 1.00e+00 1.00e+00f 1\n", - " 11r 0.0000000e+00 6.67e-01 6.73e-01 -3.7 6.61e-05 - 1.00e+00 1.00e+00f 1\n", - " 12r 0.0000000e+00 6.67e-01 1.91e-09 -3.7 1.48e-09 - 1.00e+00 1.00e+00h 1\n", - " 13r 0.0000000e+00 6.67e-01 2.69e+00 -8.4 5.74e-07 - 1.00e+00 9.26e-01f 1\n", - " 14r 0.0000000e+00 6.67e-01 7.65e+01 -8.4 4.23e-08 - 8.68e-01 1.00e+00f 1\n", - "\n", - "Number of Iterations....: 14\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 3.2644919411246030e-04 3.2644919411246030e-04\n", - "Constraint violation....: 6.6666666333656233e-01 6.6666666333656233e-01\n", - "Complementarity.........: 4.6615546565561981e-09 4.6615546565561981e-09\n", - "Overall NLP error.......: 6.6666666333656233e-01 6.6666666333656233e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 18\n", - "Number of objective gradient evaluations = 5\n", - "Number of equality constraint evaluations = 18\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 17\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 15\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Converged to a point of local infeasibility. Problem may be infeasible.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: infeasible\n", - " - message from solver: Ipopt 3.13.2\\x3a Converged to a locally infeasible\n", - " point. Problem may be infeasible.\n" - ] - }, - { - "data": { - "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'warning', 'Message': 'Ipopt 3.13.2\\\\x3a Converged to a locally infeasible point. Problem may be infeasible.', 'Termination condition': 'infeasible', 'Id': 200, 'Error rc': 0, 'Time': 0.007064104080200195}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "solver = pyo.SolverFactory(\"ipopt\")\n", - "solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As hinted at above, IPOPT has returned a warning that the problem may be infeasible. Before moving on however, it is always good practice to look over the solver outputs and see what it is telling you.\n", - "\n", - "
\n", - "Warning:\n", - "A lot of useful information is contained in the solver logs which is extremely useful when diagnosing modeling issues. Each solver has its own way of reporting output and its own specific behavior, so you will need to learn to interpret the output of each solver you use. The IDAES Documentation contains some guidance on interpreting output logs for a few common solvers.\n", - "
\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call the report_numerical_issues method in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Check for numerical issues" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Jacobian Condition Number: 1.700E+01\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 WARNINGS\n", - "\n", - " WARNING: 1 Constraint with large residuals (>1.0E-05)\n", - " WARNING: 1 Variable at or outside bounds (tol=0.0E+00)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "5 Cautions\n", - "\n", - " Caution: 2 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", - " Caution: 2 Variables with value close to zero (tol=1.0E-08)\n", - " Caution: 1 Variable with extreme value (<1.0E-04 or >1.0E+04)\n", - " Caution: 1 Variable with None value\n", - " Caution: 1 extreme Jacobian Entry (<1.0E-04 or >1.0E+04)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_constraints_with_large_residuals()\n", - " display_variables_at_or_outside_bounds()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The ``report_numerical_issues()`` provides a summary similar to that which we saw for the structural issues. Firstly, it reports to us the Jacobian condition number for our problem which can give us an idea of how well-scaled the problem is, followed by a list of warnings, cautions and suggested next steps.\n", - "\n", - "Unsurprisingly, we are seeing a warning about a constraint with a large residual which we would expect when a solver reports a potentially infeasible problem. We are also seeing a warning about a variable with bound violations which might be contributing to the potential infeasibility.\n", - "\n", - "For the next steps, the toolbox is suggesting some new methods to get more information on these issues; let us start by looking at the constraints with large residuals.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Display the constraint with a large residual in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Display constraint with large residual" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "The following constraint(s) have large residuals (>1.0E-05):\n", - "\n", - " c2: 6.66667E-01\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_constraints_with_large_residuals()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is telling us that the constraint which failed to converge is ``c2``, however this is generally only part of the story. Solvers work by trying to minimize the infeasibility in the model (residual of the constraints), which generally means they push any infeasibility onto the least sensitive constraint in the problem. Thus, the constraint which shows the infeasibility is often not the root cause of the problem, but only the symptom of the underlying issue.\n", - "\n", - "If we look back at the constraints, we can see that the same variables also appear in ``c3`` and that some of these have bounds, all of which could be contributing to the infeasibility. In this case the solver tried to minimize the residual in all the constraints and ended up pushing all the issues off onto ``c2``.\n", - "\n", - "
\n", - "Warning:\n", - "When dealing with solver issues such as this, you should always remember that the obvious symptoms are often just the tip of the iceberg and that the real issue generally lies somewhere else; the challenge is tracing the symptoms back to their ultimate source.\n", - "
\n", - "\n", - "Next, let us take a look at the variables at or outside their bounds as well. When a solver reports an potentially infeasible solution, the most common cause is unexpected bounds violations so you should always check these first.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Display the variables with bounds violations.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Display the variables with bounds violations" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "The following variable(s) have values at or outside their bounds (tol=0.0E+00):\n", - "\n", - " v3 (free): value=0.0 bounds=(0, 5)\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_variables_at_or_outside_bounds()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is telling us that ``v3`` is the variable with a potential issue. It is also showing us the current value and bounds for ``v3`` as well as if it is a fixed or free variable, which will be useful for diagnosing the issues.\n", - "\n", - "We can see that ``v3`` is a free variable with bounds between 0 and 5 and a current value of 0. As ``v3`` is a free variable, this suggests that the solver has pushed the value to the bound where it cannot go any further, and this might be part of the cause of our infeasibility.\n", - "\n", - "
\n", - "Warning:\n", - "When dealing with bounds violations you should always start by understanding why the bounds exist and what they mean - in many cases a bound indicates the range over which the model can be trusted and that going beyond this may result in unexpected behavior due to extrapolation.\n", - " \n", - "Never arbitrarily change a bound just because it is causing your model to be infeasible without understanding the consequences of this decision. Often, a bound violation is an indication that you need to re-think some of the constraints in your model to find alternatives which are valid in the actual range of values you are trying to solve for.\n", - "
\n", - "\n", - "For this example, let us assume that we made a mistake with the bounds on ``v3`` and set the lower bound to be -5.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Update the bounds on v3 in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Update bounds for v3" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "m.v3.setlb(-5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that we have fixed the bounds issues, we should check whether our model is now feasible. However, before we continue we should recognize that we have just made a structural change to the model. If we were not careful, this could have introduced new structural issues to the model, so we should start from the beginning just to be sure.\n", - "\n", - "
\n", - "Warning:\n", - "In general, you should always start from the beginning of the model diagnosis workflow after you make any change to the model. Remember to also record these changes in your log book in case something unexpected happens so that you can revert any changes that cause problems.\n", - "
\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Check to see if there are any new structural issues in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Check for new structural issues" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "scrolled": true, - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 1 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 4 (External: 0)\n", - " Free Variables with only lower bounds: 0\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 3 (External: 0)\n", - " Activated Equality Constraints: 4 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "0 WARNINGS\n", - "\n", - " No warnings found!\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 Cautions\n", - "\n", - " Caution: 1 variable fixed to 0\n", - " Caution: 1 unused variable (0 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " Try to initialize/solve your model and then call report_numerical_issues()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Our change has not introduced any new structural issues, so we can move on and try to solve the model again.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Re-solve the model in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Re-solve the model" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 7\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 4\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 2\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 4\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 6.67e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 6.66e-03 2.97e+00 -1.0 2.00e+00 - 7.17e-01 9.90e-01h 1\n", - " 2 0.0000000e+00 6.27e-05 9.38e+00 -1.0 2.00e-02 - 1.00e+00 9.91e-01h 1\n", - " 3 0.0000000e+00 8.88e-16 1.13e-12 -1.0 1.88e-04 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 8.8817841970012523e-16 8.8817841970012523e-16\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 8.8817841970012523e-16 8.8817841970012523e-16\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - }, - { - "data": { - "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.02317023277282715}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "IPOPT should have returned optimal solution now, so it looks like those bounds were what was causing the model to be infeasible. At this point, the model is now solving (for the current values at least), so you might think that the model is now ready for optimization.\n", - "\n", - "However, if we look at the solver logs we can see that it took around 3 iterations for IPOPT to solve our model (depending on minor variations in computer architecture). For a model this simple, we would generally expect it to solve in only 1 iteration so there is still some room for improvement.\n", - "\n", - "
\n", - "Warning:\n", - "You should keep in mind that just because you get an optimal solution does not mean that your model is robust and free of issues.\n", - " \n", - "You should always take the time to look over the solver logs to look for signs of trouble, even if you get an optimal solution. While you might get an optimal solution for the current state, there may be advance warning signs of issues that will cause problems later when you try to solve the model at a different state.\n", - "
\n", - "\n", - "Let us run the ``report_numerical_issues`` method again to see if there are any other problems we need to address.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Check for additional numerical issues in the cell below.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Check for additional numerical issues" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Jacobian Condition Number: 1.700E+01\n", - "\n", - "------------------------------------------------------------------------------------\n", - "0 WARNINGS\n", - "\n", - " No warnings found!\n", - "\n", - "------------------------------------------------------------------------------------\n", - "5 Cautions\n", - "\n", - " Caution: 1 Variable with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", - " Caution: 1 Variable with value close to zero (tol=1.0E-08)\n", - " Caution: 1 Variable with extreme value (<1.0E-04 or >1.0E+04)\n", - " Caution: 1 Variable with None value\n", - " Caution: 1 extreme Jacobian Entry (<1.0E-04 or >1.0E+04)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " If you still have issues converging your model consider:\n", - " prepare_svd_toolbox()\n", - " prepare_degeneracy_hunter()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The toolbox is not reporting any warnings which is good, however there are still 5 numerical cautions that it has identified which might be contributing to the larger than expected number of iterations. As mentioned earlier, the toolbox does not suggest methods for investigating these, but there are methods available. For example, we can look at the variable with an extreme value using the `display_variables_with_extreme_values()` method.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Check for additional information about variables with extreme values.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Display variable with extreme value" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "The following variable(s) have extreme values (<1.0E-04 or > 1.0E+04):\n", - "\n", - " v7: 4.9999999999999945e-08\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_variables_with_extreme_values()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that ``v7`` is potentially causing problems due to having a very small value (on the order of magnitude of the solver tolerance). This can be especially problematic for interior point solvers like IPOPT if there is a lower bound of 0 (which there is in this case). IPOPT tries to avoid bounds and thus perturbs solutions away from these if it gets too close, which can cause convergence to be slow (or fail) if the solution lies close to the bound.\n", - "\n", - "We can address this by scaling the variable so that the value of the scaled variable is large enough that the solution is not close to the lower bound. Additionally, we should look at any constraint that ``v7`` appears in (in this case ``c4``) and ensure that those constraints are well scaled as well (so that a residual of 1e-6 is reasonable for the terms involved).\n", - "\n", - "For this case, we can set a scaling factor of 1e8 for both ``v7`` and ``c4`` as shown below. Note that we also need to apply Pyomo's scaling transformation to create a new scaled model to work with." - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "m.scaling_factor = pyo.Suffix(direction=pyo.Suffix.EXPORT)\n", - "\n", - "m.scaling_factor[m.v7] = 1e8\n", - "m.scaling_factor[m.c4] = 1e8\n", - "\n", - "scaling = pyo.TransformationFactory(\"core.scale_model\")\n", - "scaled_model = scaling.create_using(m, rename=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that we have a scaled model, we can try to solve it and hopefully see better convergence than the unscaled model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Solve the scaled model and check to see how many iterations are required.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Solve scaled model" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 7\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 4\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 2\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 4\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 5.33e-15 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - "\n", - "Number of Iterations....: 0\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 5.3290705182007514e-15 5.3290705182007514e-15\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 5.3290705182007514e-15 5.3290705182007514e-15\n", - "\n", - "\n", - "Number of objective function evaluations = 1\n", - "Number of objective gradient evaluations = 1\n", - "Number of equality constraint evaluations = 1\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 1\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Optimal Solution Found.\n", - "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" - ] - }, - { - "data": { - "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.0058002471923828125}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# IDAES Model Diagnostics Toolbox Tutorial\n", + "Author: Andrew Lee \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-10-31 \n", + "\n", + "As you have likely discovered already, developing and solving models in an equation-oriented (EO) environment can be challenging and often takes a significant amount of effort. There are many pitfalls and mistakes that can be encountered when developing a model which can greatly impact the solvability and robustness of the final problem.\n", + "\n", + "Model diagnosis and debugging is often more of an art than a science, and it generally relies on significant experience and understanding both of general EO modeling techniques and the specific model and problem being solved. To assist with this process, IDAES has developed a model diagnostics toolbox that brings together a large number of tools for identifying potential issues in a model to help guide the user through the process of finding and resolving these issues. Note however that whilst these tools can help identify the presence of an issue, remedying the issue always requires some degree of engineering knowledge about the system being modeled, and thus it is ultimately up to the user to find a solution to the problem.\n", + "\n", + "This tutorial will take you through using the {py:class}`DiagnosticsToolbox ` to debug a number of issues in a simple Pyomo model and to take it from initially reporting a possible infeasible solution to returning the correct solution.\n", + "\n", + "To get started, the ``DiagnosticsToolbox`` can be imported from ``idaes.core.util``.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Import the DiagnosticsToolbox in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.util import DiagnosticsToolbox" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To get some information on where to start, try using the Python ``help()`` function to see the documentation for the ``DiagnosticsToolbox``.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call `help(DiagnosticsToolbox)` to see some more information on the toolbox and some instructions on how to get started.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Call the help() function for more information" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Help on class DiagnosticsToolbox in module idaes.core.util.model_diagnostics:\n", + "\n", + "class DiagnosticsToolbox(builtins.object)\n", + " | DiagnosticsToolbox(model: pyomo.core.base.block._BlockData, **kwargs)\n", + " | \n", + " | The IDAES Model DiagnosticsToolbox.\n", + " | \n", + " | To get started:\n", + " | \n", + " | 1. Create an instance of your model (this does not need to be initialized yet).\n", + " | 2. Fix variables until you have 0 degrees of freedom. Many of these tools presume\n", + " | a square model, and a square model should always be the foundation of any more\n", + " | advanced model.\n", + " | 3. Create an instance of the DiagnosticsToolbox and provide the model to debug as\n", + " | the model argument.\n", + " | 4. Call the ``report_structural_issues()`` method.\n", + " | \n", + " | Model diagnostics is an iterative process and you will likely need to run these\n", + " | tools multiple times to resolve all issues. After making a change to your model,\n", + " | you should always start from the beginning again to ensure the change did not\n", + " | introduce any new issues; i.e., always start from the report_structural_issues()\n", + " | method.\n", + " | \n", + " | Note that structural checks do not require the model to be initialized, thus users\n", + " | should start with these. Numerical checks require at least a partial solution to the\n", + " | model and should only be run once all structural issues have been resolved.\n", + " | \n", + " | Report methods will print a summary containing three parts:\n", + " | \n", + " | 1. Warnings - these are critical issues that should be resolved before continuing.\n", + " | For each warning, a method will be suggested in the Next Steps section to get\n", + " | additional information.\n", + " | 2. Cautions - these are things that could be correct but could also be the source of\n", + " | solver issues. Not all cautions need to be addressed, but users should investigate\n", + " | each one to ensure that the behavior is correct and that they will not be the source\n", + " | of difficulties later. Methods exist to provide more information on all cautions,\n", + " | but these will not appear in the Next Steps section.\n", + " | 3. Next Steps - these are recommended methods to call from the DiagnosticsToolbox to\n", + " | get further information on warnings. If no warnings are found, this will suggest\n", + " | the next report method to call.\n", + " | \n", + " | Args:\n", + " | \n", + " | model: model to be diagnosed. The DiagnosticsToolbox does not support indexed Blocks.\n", + " | \n", + " | Keyword Arguments\n", + " | -----------------\n", + " | variable_bounds_absolute_tolerance: float, default=0.0001\n", + " | Absolute tolerance for considering a variable to be close to its\n", + " | bounds.\n", + " | \n", + " | variable_bounds_relative_tolerance: float, default=0.0001\n", + " | Relative tolerance for considering a variable to be close to its\n", + " | bounds.\n", + " | \n", + " | variable_bounds_violation_tolerance: float, default=0\n", + " | Absolute tolerance for considering a variable to violate its bounds.\n", + " | Some solvers relax bounds on variables thus allowing a small violation\n", + " | to be considered acceptable.\n", + " | \n", + " | constraint_residual_tolerance: float, default=1e-05\n", + " | Absolute tolerance to use when checking constraint residuals.\n", + " | \n", + " | variable_large_value_tolerance: float, default=10000.0\n", + " | Absolute tolerance for considering a value to be large.\n", + " | \n", + " | variable_small_value_tolerance: float, default=0.0001\n", + " | Absolute tolerance for considering a value to be small.\n", + " | \n", + " | variable_zero_value_tolerance: float, default=1e-08\n", + " | Absolute tolerance for considering a value to be near to zero.\n", + " | \n", + " | jacobian_large_value_caution: float, default=10000.0\n", + " | Tolerance for raising a caution for large Jacobian values.\n", + " | \n", + " | jacobian_large_value_warning: float, default=100000000.0\n", + " | Tolerance for raising a warning for large Jacobian values.\n", + " | \n", + " | jacobian_small_value_caution: float, default=0.0001\n", + " | Tolerance for raising a caution for small Jacobian values.\n", + " | \n", + " | jacobian_small_value_warning: float, default=1e-08\n", + " | Tolerance for raising a warning for small Jacobian values.\n", + " | \n", + " | warn_for_evaluation_error_at_bounds: bool, default=True\n", + " | If False, warnings will not be generated for things like log(x) with x\n", + " | >= 0\n", + " | \n", + " | Methods defined here:\n", + " | \n", + " | __init__(self, model: pyomo.core.base.block._BlockData, **kwargs)\n", + " | Initialize self. See help(type(self)) for accurate signature.\n", + " | \n", + " | assert_no_numerical_warnings(self)\n", + " | Checks for numerical warnings in the model and raises an AssertionError\n", + " | if any are found.\n", + " | \n", + " | Raises:\n", + " | AssertionError if any warnings are identified by numerical analysis.\n", + " | \n", + " | assert_no_structural_warnings(self)\n", + " | Checks for structural warnings in the model and raises an AssertionError\n", + " | if any are found.\n", + " | \n", + " | Raises:\n", + " | AssertionError if any warnings are identified by structural analysis.\n", + " | \n", + " | display_components_with_inconsistent_units(self, stream=None)\n", + " | Prints a list of all Constraints, Expressions and Objectives in the\n", + " | model with inconsistent units of measurement.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_constraints_with_extreme_jacobians(self, stream=None)\n", + " | Prints the constraints associated with rows in the Jacobian with extreme\n", + " | L2 norms. This often indicates poorly scaled constraints.\n", + " | \n", + " | Tolerances can be set via the DiagnosticsToolbox config.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the output to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_constraints_with_large_residuals(self, stream=None)\n", + " | Prints a list of Constraints with residuals greater than a specified tolerance.\n", + " | Tolerance can be set in the class configuration options.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_external_variables(self, stream=None)\n", + " | Prints a list of variables that appear within activated Constraints in the\n", + " | model but are not contained within the model themselves.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_extreme_jacobian_entries(self, stream=None)\n", + " | Prints variables and constraints associated with entries in the Jacobian with extreme\n", + " | values. This can be indicative of poor scaling, especially for isolated terms (e.g.\n", + " | variables which appear only in one term of a single constraint).\n", + " | \n", + " | Tolerances can be set via the DiagnosticsToolbox config.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the output to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_overconstrained_set(self, stream=None)\n", + " | Prints the variables and constraints in the over-constrained sub-problem\n", + " | from a Dulmage-Mendelsohn partitioning.\n", + " | \n", + " | This can be used to identify the over-defined part of a model and thus\n", + " | where constraints must be removed or variables unfixed.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_potential_evaluation_errors(self, stream=None)\n", + " | Prints constraints that may be prone to evaluation errors\n", + " | (e.g., log of a negative number) based on variable bounds.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the output to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_underconstrained_set(self, stream=None)\n", + " | Prints the variables and constraints in the under-constrained sub-problem\n", + " | from a Dulmage-Mendelsohn partitioning.\n", + " | \n", + " | This can be used to identify the under-defined part of a model and thus\n", + " | where additional information (fixed variables or constraints) are required.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_unused_variables(self, stream=None)\n", + " | Prints a list of variables that do not appear in any activated Constraints.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_at_or_outside_bounds(self, stream=None)\n", + " | Prints a list of variables with values that fall at or outside the bounds\n", + " | on the variable.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_fixed_to_zero(self, stream=None)\n", + " | Prints a list of variables that are fixed to an absolute value of 0.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_near_bounds(self, stream=None)\n", + " | Prints a list of variables with values close to their bounds. Tolerance can\n", + " | be set in the class configuration options.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_with_extreme_jacobians(self, stream=None)\n", + " | Prints the variables associated with columns in the Jacobian with extreme\n", + " | L2 norms. This often indicates poorly scaled variables.\n", + " | \n", + " | Tolerances can be set via the DiagnosticsToolbox config.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the output to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_with_extreme_values(self, stream=None)\n", + " | Prints a list of variables with extreme values.\n", + " | \n", + " | Tolerances can be set in the class configuration options.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_with_none_value(self, stream=None)\n", + " | Prints a list of variables with a value of None.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | display_variables_with_value_near_zero(self, stream=None)\n", + " | Prints a list of variables with a value close to zero. The tolerance\n", + " | for determining what is close to zero can be set in the class configuration\n", + " | options.\n", + " | \n", + " | Args:\n", + " | stream: an I/O object to write the list to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | get_dulmage_mendelsohn_partition(self)\n", + " | Performs a Dulmage-Mendelsohn partitioning on the model and returns\n", + " | the over- and under-constrained sub-problems.\n", + " | \n", + " | Returns:\n", + " | list-of-lists variables in each independent block of the under-constrained set\n", + " | list-of-lists constraints in each independent block of the under-constrained set\n", + " | list-of-lists variables in each independent block of the over-constrained set\n", + " | list-of-lists constraints in each independent block of the over-constrained set\n", + " | \n", + " | prepare_degeneracy_hunter(self, **kwargs)\n", + " | Create an instance of the DegeneracyHunter and store as self.degeneracy_hunter.\n", + " | \n", + " | After creating an instance of the toolbox, call\n", + " | report_irreducible_degenerate_sets.\n", + " | \n", + " | Returns:\n", + " | \n", + " | Instance of DegeneracyHunter\n", + " | \n", + " | Keyword Arguments\n", + " | -----------------\n", + " | solver: str, default='scip'\n", + " | MILP solver to use for finding irreducible degenerate sets.\n", + " | \n", + " | solver_options: optional\n", + " | Options to pass to MILP solver.\n", + " | \n", + " | M: float, default=100000.0\n", + " | Maximum value for nu in MILP models.\n", + " | \n", + " | m_small: float, default=1e-05\n", + " | Smallest value for nu to be considered non-zero in MILP models.\n", + " | \n", + " | trivial_constraint_tolerance: float, default=1e-06\n", + " | Tolerance for identifying non-zero rows in Jacobian.\n", + " | \n", + " | prepare_svd_toolbox(self, **kwargs)\n", + " | Create an instance of the SVDToolbox and store as self.svd_toolbox.\n", + " | \n", + " | After creating an instance of the toolbox, call\n", + " | display_underdetermined_variables_and_constraints().\n", + " | \n", + " | Returns:\n", + " | \n", + " | Instance of SVDToolbox\n", + " | \n", + " | Keyword Arguments\n", + " | -----------------\n", + " | number_of_smallest_singular_values: PositiveInt, optional\n", + " | Number of smallest singular values to compute\n", + " | \n", + " | svd_callback: svd_callback_validator, default=\n", + " | Callback to SVD method of choice (default = svd_dense). Callbacks\n", + " | should take the Jacobian and number of singular values to compute as\n", + " | options, plus any method specific arguments, and should return the u,\n", + " | s and v matrices as numpy arrays.\n", + " | \n", + " | svd_callback_arguments: dict, optional\n", + " | Optional arguments to pass to SVD callback (default = None)\n", + " | \n", + " | singular_value_tolerance: float, default=1e-06\n", + " | Tolerance for defining a small singular value\n", + " | \n", + " | size_cutoff_in_singular_vector: float, default=0.1\n", + " | Size below which to ignore constraints and variables in the singular\n", + " | vector\n", + " | \n", + " | report_numerical_issues(self, stream=None)\n", + " | Generates a summary report of any numerical issues identified in the model provided\n", + " | and suggest next steps for debugging model.\n", + " | \n", + " | Numerical checks should only be performed once all structural issues have been resolved,\n", + " | and require that at least a partial solution to the model is available.\n", + " | \n", + " | Args:\n", + " | stream: I/O object to write report to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | report_structural_issues(self, stream=None)\n", + " | Generates a summary report of any structural issues identified in the model provided\n", + " | and suggests next steps for debugging the model.\n", + " | \n", + " | This should be the first method called when debugging a model and after any change\n", + " | is made to the model. These checks can be run before trying to initialize and solve\n", + " | the model.\n", + " | \n", + " | Args:\n", + " | stream: I/O object to write report to (default = stdout)\n", + " | \n", + " | Returns:\n", + " | None\n", + " | \n", + " | ----------------------------------------------------------------------\n", + " | Readonly properties defined here:\n", + " | \n", + " | model\n", + " | Model currently being diagnosed.\n", + " | \n", + " | ----------------------------------------------------------------------\n", + " | Data descriptors defined here:\n", + " | \n", + " | __dict__\n", + " | dictionary for instance variables (if defined)\n", + " | \n", + " | __weakref__\n", + " | list of weak references to the object (if defined)\n", + "\n" + ] + } + ], + "source": [ + "help(DiagnosticsToolbox)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The ``help()`` function gives us a lot of information on the ``DiagnosticsToolbox`` and all the methods that it supports (and there are many). However, the important part to start with are the four steps outlined at the top of the doc string that tell us how to get started.\n", + "\n", + "Firstly, we need a model to test (and, for this tutorial at least, one that has a wide range of issues that we need to fix before it will solve). We then also need to fix some variables so that we have 0 degrees of freedom in our model. Whilst our ultimate goal is generally optimization (and thus a system with 1 or more degrees of freedom), all models conceptually derive from a square model representing a nominal state. If this nominal state is not well-posed, then any issues present will also be present in the resulting optimization (even if adding degrees of freedom means that the model is now easier to solve).\n", + "\n", + "The cell below contains a demonstration model for this tutorial that contains a number of issues that we will resolve using the ``DiagnosticsToolbox``." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import pyomo.environ as pyo\n", + "\n", + "m = pyo.ConcreteModel()\n", + "\n", + "m.v1 = pyo.Var(units=pyo.units.m)\n", + "m.v2 = pyo.Var(units=pyo.units.m)\n", + "m.v3 = pyo.Var(bounds=(0, 5))\n", + "m.v4 = pyo.Var()\n", + "m.v5 = pyo.Var(bounds=(0, 10))\n", + "m.v6 = pyo.Var()\n", + "m.v7 = pyo.Var(\n", + " units=pyo.units.m, bounds=(0, 1)\n", + ") # Poorly scaled variable with lower bound\n", + "m.v8 = pyo.Var() # unused variable\n", + "\n", + "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10) # Unit consistency issue\n", + "m.c2 = pyo.Constraint(expr=m.v3 == m.v4 + m.v5)\n", + "m.c3 = pyo.Constraint(expr=2 * m.v3 == 3 * m.v4 + 4 * m.v5 + m.v6)\n", + "m.c4 = pyo.Constraint(expr=m.v7 == 1e-8 * m.v1) # Poorly scaled constraint\n", + "\n", + "m.v4.fix(2)\n", + "m.v5.fix(2)\n", + "m.v6.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, the instructions tell us to create an instance of the ``DiagnosticsToolbox`` and to pass the model we wish to examine as an argument.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Create an instance of the DiagnosticsToolbox: dt = DiagnosticsToolbox(m)\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create an instance of the Diagnostics Toolbox" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "dt = DiagnosticsToolbox(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, the instructions tell us to run the ``report_structural_issues()`` method. Structural issues represent issues that exist solely in the form of the model equations and thus do not depend on the current value of any of the variables. This is useful as it means we can check for these before we even call a solver, which can be critical as sometimes these issues will cause a solver to fail without providing a useful solution.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call dt.report_structural_issues() in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Call the report_structural_issues() method" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 4 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 3 (External: 0)\n", + " Activated Equality Constraints: 4 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 WARNINGS\n", + "\n", + " WARNING: 1 Component with inconsistent units\n", + " WARNING: Structural singularity found\n", + " Under-Constrained Set: 3 variables, 2 constraints\n", + " Over-Constrained Set: 1 variables, 2 constraints\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 Cautions\n", + "\n", + " Caution: 1 variable fixed to 0\n", + " Caution: 1 unused variable (0 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_components_with_inconsistent_units()\n", + " display_underconstrained_set()\n", + " display_overconstrained_set()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looking at the output from the ``report_structural_issues()`` method, we can see that it provides a fairly short summary containing 4 sections.\n", + "\n", + "1. The first section is a summary of the size of the model, indicating things like the number of variables and constraints. The size of the model is often important for judging how difficult it will be to solve, and this information can also be useful for comparison to what is being sent to the solver. Most solvers will report the size of the model in their output logs, and if there is a difference between what is reported here and by the solver, then you should probably look into what is happening. This section also notes some things such as if you have any deactivated Blocks, Constraints or Objectives, or if you have variables which appear in the constraints that are not part of the model; these are not necessarily wrong but it is easy to have accidentally deactivated something you did not intend to so you should always check to see that these are expected.\n", + "\n", + "2. The second section provides a summary of any critical structural issues that were found - in this case we can see that there are 2 warnings we are going to need to look into. Warnings represent issues that need to be addressed before moving on as these will likely cause the solver to fail or give an incorrect answer.\n", + "\n", + "3. The third section lists a summary of any cautions that are found. Cautions represent issues that may or may not be problematic; in many cases these might be expected behaviors or borderline issues. However, these could also represent conceptual issues that should be addressed, so users should take the time to investigate these and determine if they need to be fixed or not.\n", + "\n", + "4. Finally, there is a section that suggests the next steps to take to help guide you through the model diagnosis process. If any warnings were identified, this section will list methods that can help you get more information on each specific problem, and if no warnings are found then it will guide you onto the next step in the model diagnosis workflow.\n", + "\n", + "**Note:** there are methods available to help investigate cautions as well, but these will not show up in the next steps in order to avoid cluttering the output. You can get more information on the available methods for investigating cautions via the documentation or ``help()`` function.\n", + "\n", + "In our current model, we have 2 critical issues (warnings) that we need to look into and resolve. The order in which we resolve these will generally not matter, but be aware that these can often be interrelated - fixing one warning might resolve other warnings as well (or create new ones), and sometimes you will need to look at multiple issues together to find the overall root cause.\n", + "\n", + "To start with, let us look at the unit consistency issue. From the \"Next Steps\" section above, the toolbox is suggesting we run the ``display_components_with_inconsistent_units()`` method for more information.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call the `display_components_with_inconsistent_units()` method from the DiagnosticsToolbox to see more information on which constraint is causing the unit consistency issues.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Call the display_components_with_inconsistent_units() method" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": false, + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following component(s) have unit consistency issues:\n", + "\n", + " c1\n", + "\n", + "For more details on unit inconsistencies, import the assert_units_consistent method\n", + "from pyomo.util.check_units\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_components_with_inconsistent_units()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This tells us that the issue lies in constraint ``c1``. If we go back and look at this constraint, we can see that it says ``v1 + v2 == 10``. ``v1`` and ``v2`` both have units of ``m`` which is consistent, but the constant in the expression (right hand side) is unitless. Thus, we need to correct this so that the right hand side has units for the constraint to be consistent.\n", + "\n", + "The cell below shows how to delete a constraint and replace it with a new one with the correct units.\n", + "\n", + "
\n", + "Warning:\n", + "Deleting components can cause unexpected issues if something else in a model is using that component (e.g., deleting a variable which is used in a constraint). You should always be careful when deleting Pyomo components and make sure you only delete components that are not used elsewhere.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Delete the incorrect Constraint\n", + "m.del_component(m.c1)\n", + "\n", + "# Re-create the Constraint with the correct units\n", + "m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10 * pyo.units.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Warning:\n", + "Fixing issues in models is often an iterative process requiring trial and error. You might also have some results from a model before running the diagnostics tools and the changes you make during debugging may make it difficult to replicate those results afterwards.\n", + " \n", + "It is strongly recommended that you keep a record of the changes you make at each step and why, along with a Git hash (or similar version control marker) corresponding to these changes. This will allow you see what changes and why, and give you a way to go back to previous iterations if the current approach does not work out. The IDAES documentation contains recommendations on how to keep and maintain a modeling logbook.\n", + "
\n", + "\n", + "Now, re-run the ``report_structural_issues()`` method and see if this change has fixed the unit consistency issue.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call dt.report_structural_issues() in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Call the report_structural_issues() method" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "scrolled": true, + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 4 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 3 (External: 0)\n", + " Activated Equality Constraints: 4 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 WARNINGS\n", + "\n", + " WARNING: Structural singularity found\n", + " Under-Constrained Set: 3 variables, 2 constraints\n", + " Over-Constrained Set: 1 variables, 2 constraints\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 Cautions\n", + "\n", + " Caution: 1 variable fixed to 0\n", + " Caution: 1 unused variable (0 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_underconstrained_set()\n", + " display_overconstrained_set()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The unit consistency issue has been resolved by the changes above, so now we need to look at the structural singularity. A structural singularity occurs when one sub-part of the model is over-constrained (negative degrees of freedom), which generally means another part is under-constrained (positive degrees of freedom, assuming that there are 0 degrees of freedom overall).\n", + "\n", + "The toolbox is suggesting we use the ``display_overconstrained_set()`` and ``display_underconstrained_set()`` methods to get more information on the singularity; for now, let us start with the over-constrained set.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call dt.display_overconstrained_set() in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Call the display_overconstrained_set() method" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Dulmage-Mendelsohn Over-Constrained Set\n", + "\n", + " Independent Block 0:\n", + "\n", + " Variables:\n", + "\n", + " v3\n", + "\n", + " Constraints:\n", + "\n", + " c2\n", + " c3\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_overconstrained_set()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the output above, the toolbox is telling us that we have two constraints (``c2`` and ``c3``) which only contain a single unfixed variable (``v3``); thus in this part of the model we have -1 degree of freedom and the model is not well defined (structurally singular). If we go back and look at these constraints, we can see the that the constraints are:\n", + "\n", + "``c2: v3 == v4 + v5``\n", + "\n", + "``c3: 2*v3 == 3*v4 + 4*v5 + v6``\n", + "\n", + "We can see that in addition to ``v3`` these constraints actually contain 3 other variables (``v4``, ``v5`` and ``v6``), however these are all variables we fixed to get our initial zero degrees of freedom. It looks like we have either accidentally fixed one too many variables or written one too many constraints.\n", + "\n", + "For this example, let us assume that ``v4`` was not supposed to be fixed and unfix it.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Resolve the structural singularity and then call dt.report_structural_issues() in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Unfix v4\n", + "\n", + "# Then call the report_structural_issues() method again" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": true, + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 5 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 2 (External: 0)\n", + " Activated Equality Constraints: 4 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 WARNINGS\n", + "\n", + " WARNING: 1 Degree of Freedom\n", + " WARNING: Structural singularity found\n", + " Under-Constrained Set: 3 variables, 2 constraints\n", + " Over-Constrained Set: 0 variables, 0 constraints\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 Cautions\n", + "\n", + " Caution: 1 variable fixed to 0\n", + " Caution: 1 unused variable (0 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_underconstrained_set()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m.v4.unfix()\n", + "\n", + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that the over-constrained set is now empty (0 variables and 0 constraints) but the under-constrained set still has 3 variables and only 2 constraints. We can also see that there is a new warning about having 1 degree of freedom in the model, however this should not be surprising as we have just unfixed ``v4`` to resolve the over-constrained set so we have added a degree of freedom to the model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Display the under-constrained set in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Display the under-constrained set" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Dulmage-Mendelsohn Under-Constrained Set\n", + "\n", + " Independent Block 0:\n", + "\n", + " Variables:\n", + "\n", + " v2\n", + " v1\n", + " v7\n", + "\n", + " Constraints:\n", + "\n", + " c1\n", + " c4\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_underconstrained_set()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looking at the output from the ``display_underconstrained_set()`` method, we can see that we have two constraints, ``c1`` and ``c4``, which contain three unfixed variables, ``v1``, ``v2`` and ``v7``. Thus, we have one degree of freedom that needs to be addressed. To fix this, we could either fix one of the variables shown or add an additional equality constraint to the model.\n", + "\n", + "For this example let's fix ``v2`` to a value of 5 and then re-run the ``report_structural_issues()`` method.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Fix v2 to a value of 5 and then re-run dt.report_structural_issues.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Fix v2 = 5\n", + "\n", + "# Then re-run report_structural_issues() method" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "scrolled": true, + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 4 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 3 (External: 0)\n", + " Activated Equality Constraints: 4 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 Cautions\n", + "\n", + " Caution: 1 variable fixed to 0\n", + " Caution: 1 unused variable (0 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " Try to initialize/solve your model and then call report_numerical_issues()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m.v2.fix(5)\n", + "\n", + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is now telling us that no warnings were found, so we have resolved all the structural issues (for now at least). The toolbox is telling us that there are also 2 non-critical issues (cautions) that we should look at; one about an unused variable and one about a variable fixed to zero. If you wish, you can look into identifying and fixing these yourself, however for this example we will move on to the next step (remember that the toolbox has methods to display more details for each of these which you can find in the documentation or from the ``help()`` function).\n", + "\n", + "For the Next Steps section, the toolbox is recommending we try to solve our model and then check for numerical issues.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Use the Pyomo SolverFactory to create an instance of IPOPT and then try to solve the model. Make sure to set \"tee=True\" as this is going to fail (and it is always good practice to review the solver logs).\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create a solver object\n", + "\n", + "# Try to solve the model" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 7\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 4\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 2\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 4\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.40e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.39e+01 1.50e+02 -1.0 6.00e+00 - 7.16e-01 4.93e-03h 1\n", + " 2 0.0000000e+00 1.39e+01 3.03e+06 -1.0 5.97e+00 - 1.00e+00 4.95e-05h 1\n", + " 3r 0.0000000e+00 1.39e+01 1.00e+03 1.1 0.00e+00 - 0.00e+00 2.47e-07R 2\n", + " 4r 0.0000000e+00 4.19e+00 9.42e+02 1.1 3.50e+03 - 4.02e-01 3.37e-03f 1\n", + " 5r 0.0000000e+00 2.12e+00 8.72e+02 1.1 5.89e+01 - 4.35e-01 7.06e-02f 1\n", + " 6r 0.0000000e+00 6.74e-01 6.06e+02 1.1 5.29e+00 - 9.93e-03 3.98e-01f 1\n", + " 7r 0.0000000e+00 6.80e-01 3.14e+02 0.4 2.05e-01 - 1.00e+00 1.03e-01f 1\n", + " 8r 0.0000000e+00 6.69e-01 2.78e-05 0.4 2.58e-02 - 1.00e+00 1.00e+00f 1\n", + " 9r 0.0000000e+00 6.67e-01 7.56e+00 -1.7 8.13e-03 - 9.93e-01 9.96e-01f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10r 0.0000000e+00 6.67e-01 2.23e-07 -1.7 4.13e-05 - 1.00e+00 1.00e+00f 1\n", + " 11r 0.0000000e+00 6.67e-01 6.73e-01 -3.7 6.61e-05 - 1.00e+00 1.00e+00f 1\n", + " 12r 0.0000000e+00 6.67e-01 1.91e-09 -3.7 1.48e-09 - 1.00e+00 1.00e+00h 1\n", + " 13r 0.0000000e+00 6.67e-01 2.69e+00 -8.4 5.74e-07 - 1.00e+00 9.26e-01f 1\n", + " 14r 0.0000000e+00 6.67e-01 7.65e+01 -8.4 4.23e-08 - 8.68e-01 1.00e+00f 1\n", + "\n", + "Number of Iterations....: 14\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 3.2644919411246030e-04 3.2644919411246030e-04\n", + "Constraint violation....: 6.6666666333656233e-01 6.6666666333656233e-01\n", + "Complementarity.........: 4.6615546565561981e-09 4.6615546565561981e-09\n", + "Overall NLP error.......: 6.6666666333656233e-01 6.6666666333656233e-01\n", + "\n", + "\n", + "Number of objective function evaluations = 18\n", + "Number of objective gradient evaluations = 5\n", + "Number of equality constraint evaluations = 18\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 17\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 15\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Converged to a point of local infeasibility. Problem may be infeasible.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: infeasible\n", + " - message from solver: Ipopt 3.13.2\\x3a Converged to a locally infeasible\n", + " point. Problem may be infeasible.\n" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'warning', 'Message': 'Ipopt 3.13.2\\\\x3a Converged to a locally infeasible point. Problem may be infeasible.', 'Termination condition': 'infeasible', 'Id': 200, 'Error rc': 0, 'Time': 0.007064104080200195}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver = pyo.SolverFactory(\"ipopt\")\n", + "solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As hinted at above, IPOPT has returned a warning that the problem may be infeasible. Before moving on however, it is always good practice to look over the solver outputs and see what it is telling you.\n", + "\n", + "
\n", + "Warning:\n", + "A lot of useful information is contained in the solver logs which is extremely useful when diagnosing modeling issues. Each solver has its own way of reporting output and its own specific behavior, so you will need to learn to interpret the output of each solver you use. The IDAES Documentation contains some guidance on interpreting output logs for a few common solvers.\n", + "
\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call the report_numerical_issues method in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Check for numerical issues" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 1.700E+01\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 WARNINGS\n", + "\n", + " WARNING: 1 Constraint with large residuals (>1.0E-05)\n", + " WARNING: 1 Variable at or outside bounds (tol=0.0E+00)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "5 Cautions\n", + "\n", + " Caution: 2 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 2 Variables with value close to zero (tol=1.0E-08)\n", + " Caution: 1 Variable with extreme value (<1.0E-04 or >1.0E+04)\n", + " Caution: 1 Variable with None value\n", + " Caution: 1 extreme Jacobian Entry (<1.0E-04 or >1.0E+04)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_constraints_with_large_residuals()\n", + " display_variables_at_or_outside_bounds()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The ``report_numerical_issues()`` provides a summary similar to that which we saw for the structural issues. Firstly, it reports to us the Jacobian condition number for our problem which can give us an idea of how well-scaled the problem is, followed by a list of warnings, cautions and suggested next steps.\n", + "\n", + "Unsurprisingly, we are seeing a warning about a constraint with a large residual which we would expect when a solver reports a potentially infeasible problem. We are also seeing a warning about a variable with bound violations which might be contributing to the potential infeasibility.\n", + "\n", + "For the next steps, the toolbox is suggesting some new methods to get more information on these issues; let us start by looking at the constraints with large residuals.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Display the constraint with a large residual in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Display constraint with large residual" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following constraint(s) have large residuals (>1.0E-05):\n", + "\n", + " c2: 6.66667E-01\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_constraints_with_large_residuals()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is telling us that the constraint which failed to converge is ``c2``, however this is generally only part of the story. Solvers work by trying to minimize the infeasibility in the model (residual of the constraints), which generally means they push any infeasibility onto the least sensitive constraint in the problem. Thus, the constraint which shows the infeasibility is often not the root cause of the problem, but only the symptom of the underlying issue.\n", + "\n", + "If we look back at the constraints, we can see that the same variables also appear in ``c3`` and that some of these have bounds, all of which could be contributing to the infeasibility. In this case the solver tried to minimize the residual in all the constraints and ended up pushing all the issues off onto ``c2``.\n", + "\n", + "
\n", + "Warning:\n", + "When dealing with solver issues such as this, you should always remember that the obvious symptoms are often just the tip of the iceberg and that the real issue generally lies somewhere else; the challenge is tracing the symptoms back to their ultimate source.\n", + "
\n", + "\n", + "Next, let us take a look at the variables at or outside their bounds as well. When a solver reports an potentially infeasible solution, the most common cause is unexpected bounds violations so you should always check these first.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Display the variables with bounds violations.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Display the variables with bounds violations" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following variable(s) have values at or outside their bounds (tol=0.0E+00):\n", + "\n", + " v3 (free): value=0.0 bounds=(0, 5)\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_variables_at_or_outside_bounds()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is telling us that ``v3`` is the variable with a potential issue. It is also showing us the current value and bounds for ``v3`` as well as if it is a fixed or free variable, which will be useful for diagnosing the issues.\n", + "\n", + "We can see that ``v3`` is a free variable with bounds between 0 and 5 and a current value of 0. As ``v3`` is a free variable, this suggests that the solver has pushed the value to the bound where it cannot go any further, and this might be part of the cause of our infeasibility.\n", + "\n", + "
\n", + "Warning:\n", + "When dealing with bounds violations you should always start by understanding why the bounds exist and what they mean - in many cases a bound indicates the range over which the model can be trusted and that going beyond this may result in unexpected behavior due to extrapolation.\n", + " \n", + "Never arbitrarily change a bound just because it is causing your model to be infeasible without understanding the consequences of this decision. Often, a bound violation is an indication that you need to re-think some of the constraints in your model to find alternatives which are valid in the actual range of values you are trying to solve for.\n", + "
\n", + "\n", + "For this example, let us assume that we made a mistake with the bounds on ``v3`` and set the lower bound to be -5.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Update the bounds on v3 in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Update bounds for v3" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "m.v3.setlb(-5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have fixed the bounds issues, we should check whether our model is now feasible. However, before we continue we should recognize that we have just made a structural change to the model. If we were not careful, this could have introduced new structural issues to the model, so we should start from the beginning just to be sure.\n", + "\n", + "
\n", + "Warning:\n", + "In general, you should always start from the beginning of the model diagnosis workflow after you make any change to the model. Remember to also record these changes in your log book in case something unexpected happens so that you can revert any changes that cause problems.\n", + "
\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Check to see if there are any new structural issues in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Check for new structural issues" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "scrolled": true, + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 4 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 3 (External: 0)\n", + " Activated Equality Constraints: 4 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 Cautions\n", + "\n", + " Caution: 1 variable fixed to 0\n", + " Caution: 1 unused variable (0 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " Try to initialize/solve your model and then call report_numerical_issues()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our change has not introduced any new structural issues, so we can move on and try to solve the model again.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Re-solve the model in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Re-solve the model" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 7\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 4\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 2\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 4\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 6.67e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 6.66e-03 2.97e+00 -1.0 2.00e+00 - 7.17e-01 9.90e-01h 1\n", + " 2 0.0000000e+00 6.27e-05 9.38e+00 -1.0 2.00e-02 - 1.00e+00 9.91e-01h 1\n", + " 3 0.0000000e+00 8.88e-16 1.13e-12 -1.0 1.88e-04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 8.8817841970012523e-16 8.8817841970012523e-16\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 8.8817841970012523e-16 8.8817841970012523e-16\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.02317023277282715}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "IPOPT should have returned optimal solution now, so it looks like those bounds were what was causing the model to be infeasible. At this point, the model is now solving (for the current values at least), so you might think that the model is now ready for optimization.\n", + "\n", + "However, if we look at the solver logs we can see that it took around 3 iterations for IPOPT to solve our model (depending on minor variations in computer architecture). For a model this simple, we would generally expect it to solve in only 1 iteration so there is still some room for improvement.\n", + "\n", + "
\n", + "Warning:\n", + "You should keep in mind that just because you get an optimal solution does not mean that your model is robust and free of issues.\n", + " \n", + "You should always take the time to look over the solver logs to look for signs of trouble, even if you get an optimal solution. While you might get an optimal solution for the current state, there may be advance warning signs of issues that will cause problems later when you try to solve the model at a different state.\n", + "
\n", + "\n", + "Let us run the ``report_numerical_issues`` method again to see if there are any other problems we need to address.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Check for additional numerical issues in the cell below.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Check for additional numerical issues" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 1.700E+01\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "5 Cautions\n", + "\n", + " Caution: 1 Variable with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 1 Variable with value close to zero (tol=1.0E-08)\n", + " Caution: 1 Variable with extreme value (<1.0E-04 or >1.0E+04)\n", + " Caution: 1 Variable with None value\n", + " Caution: 1 extreme Jacobian Entry (<1.0E-04 or >1.0E+04)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " If you still have issues converging your model consider:\n", + " prepare_svd_toolbox()\n", + " prepare_degeneracy_hunter()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The toolbox is not reporting any warnings which is good, however there are still 5 numerical cautions that it has identified which might be contributing to the larger than expected number of iterations. As mentioned earlier, the toolbox does not suggest methods for investigating these, but there are methods available. For example, we can look at the variable with an extreme value using the `display_variables_with_extreme_values()` method.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Check for additional information about variables with extreme values.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Display variable with extreme value" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following variable(s) have extreme values (<1.0E-04 or > 1.0E+04):\n", + "\n", + " v7: 4.9999999999999945e-08\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_variables_with_extreme_values()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that ``v7`` is potentially causing problems due to having a very small value (on the order of magnitude of the solver tolerance). This can be especially problematic for interior point solvers like IPOPT if there is a lower bound of 0 (which there is in this case). IPOPT tries to avoid bounds and thus perturbs solutions away from these if it gets too close, which can cause convergence to be slow (or fail) if the solution lies close to the bound.\n", + "\n", + "We can address this by scaling the variable so that the value of the scaled variable is large enough that the solution is not close to the lower bound. Additionally, we should look at any constraint that ``v7`` appears in (in this case ``c4``) and ensure that those constraints are well scaled as well (so that a residual of 1e-6 is reasonable for the terms involved).\n", + "\n", + "For this case, we can set a scaling factor of 1e8 for both ``v7`` and ``c4`` as shown below. Note that we also need to apply Pyomo's scaling transformation to create a new scaled model to work with." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "m.scaling_factor = pyo.Suffix(direction=pyo.Suffix.EXPORT)\n", + "\n", + "m.scaling_factor[m.v7] = 1e8\n", + "m.scaling_factor[m.c4] = 1e8\n", + "\n", + "scaling = pyo.TransformationFactory(\"core.scale_model\")\n", + "scaled_model = scaling.create_using(m, rename=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have a scaled model, we can try to solve it and hopefully see better convergence than the unscaled model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Solve the scaled model and check to see how many iterations are required.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Solve scaled model" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 7\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 4\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 2\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 4\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 5.33e-15 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + "\n", + "Number of Iterations....: 0\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 5.3290705182007514e-15 5.3290705182007514e-15\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 5.3290705182007514e-15 5.3290705182007514e-15\n", + "\n", + "\n", + "Number of objective function evaluations = 1\n", + "Number of objective gradient evaluations = 1\n", + "Number of equality constraint evaluations = 1\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 1\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 0\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 4, 'Number of variables': 4, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.0058002471923828125}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver.solve(scaled_model, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see, the scaled model solved in 0 iterations (indicating that it already had the right solution). However, had we done this to the unscaled model we would have found it required 2-3 iterations again due to IPOPT perturbing the initial (correct) solution away from the bounds.\n", + "\n", + "
\n", + "Warning:\n", + "Normally in these cases we would need to map the solution from the scaled model back to the unscaled model so we can view the results. In this case, we are not actually interested in the solution so we move on with the model diagnosis.\n", + "
\n", + "\n", + "Now that we have fixed the scaling issues, we can go back to the ``DiagnosticsToolbox`` and see if we still have any warnings. Note however that we need to look at the scaled model now rather than the original model, so we need to create a new instance of the ``DiagnosticsToolbox`` with the scaled model as the ``model`` argument.\n", + "\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Create a new instance of the DiagnosticsToolbox and check the scaled model for issues.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create a new diagnostics toolbox for scaled model\n", + "\n", + "# Report numerical issues for scaled model" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 1.800E+01\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "3 Cautions\n", + "\n", + " Caution: 1 Variable with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 1 Variable with value close to zero (tol=1.0E-08)\n", + " Caution: 1 Variable with None value\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " If you still have issues converging your model consider:\n", + " prepare_svd_toolbox()\n", + " prepare_degeneracy_hunter()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt_scaled = DiagnosticsToolbox(scaled_model)\n", + "dt_scaled.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that applying scaling addressed two of the cautions we had before (the variable with an extreme value and an associated large value in the model Jacobian). Whilst we were able to solve the unscaled model in this case, this is in part because it was a simple linear model. In more complex, non-linear models, scaling becomes much more important and often depends strongly on the current state of the model. That is, you can often find cases where the unscaled (or poorly scaled) model solves for a limited range of conditions but fails to solve if you move too far away for the current state. Whilst you might be able to solve the model at the current state, you should always check the solver logs and numerical cautions for advanced warning signs of scaling issues that might manifest later when you try to solve the model for a different state (e.g., during optimization).\n", + "\n", + "
\n", + "Warning:\n", + "By their nature, numerical issues depend on the current values of the variables in the model, and thus may remain hidden until someone tries to solve the model close to where the issue exists. For this reason, the full model diagnostics workflow contains steps to run the numerical checks across a wide range of variable values to try to ensure that no issues remain hidden. This is beyond the scope of this tutorial however.\n", + "
\n", + "\n", + "At this point, we have addressed all the issues that were preventing us from solving the demonstration model and so reached the end of this tutorial. For cases where we are still having trouble solving the model, we can see that the toolbox is suggesting additional methods for further debugging and these advanced features will be the focus of separate tutorials." + ] } - ], - "source": [ - "solver.solve(scaled_model, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we can see, the scaled model solved in 0 iterations (indicating that it already had the right solution). However, had we done this to the unscaled model we would have found it required 2-3 iterations again due to IPOPT perturbing the initial (correct) solution away from the bounds.\n", - "\n", - "
\n", - "Warning:\n", - "Normally in these cases we would need to map the solution from the scaled model back to the unscaled model so we can view the results. In this case, we are not actually interested in the solution so we move on with the model diagnosis.\n", - "
\n", - "\n", - "Now that we have fixed the scaling issues, we can go back to the ``DiagnosticsToolbox`` and see if we still have any warnings. Note however that we need to look at the scaled model now rather than the original model, so we need to create a new instance of the ``DiagnosticsToolbox`` with the scaled model as the ``model`` argument.\n", - "\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Create a new instance of the DiagnosticsToolbox and check the scaled model for issues.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create a new diagnostics toolbox for scaled model\n", - "\n", - "# Report numerical issues for scaled model" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Jacobian Condition Number: 1.800E+01\n", - "\n", - "------------------------------------------------------------------------------------\n", - "0 WARNINGS\n", - "\n", - " No warnings found!\n", - "\n", - "------------------------------------------------------------------------------------\n", - "3 Cautions\n", - "\n", - " Caution: 1 Variable with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", - " Caution: 1 Variable with value close to zero (tol=1.0E-08)\n", - " Caution: 1 Variable with None value\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " If you still have issues converging your model consider:\n", - " prepare_svd_toolbox()\n", - " prepare_degeneracy_hunter()\n", - "\n", - "====================================================================================\n" - ] + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" } - ], - "source": [ - "dt_scaled = DiagnosticsToolbox(scaled_model)\n", - "dt_scaled.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that applying scaling addressed two of the cautions we had before (the variable with an extreme value and an associated large value in the model Jacobian). Whilst we were able to solve the unscaled model in this case, this is in part because it was a simple linear model. In more complex, non-linear models, scaling becomes much more important and often depends strongly on the current state of the model. That is, you can often find cases where the unscaled (or poorly scaled) model solves for a limited range of conditions but fails to solve if you move too far away for the current state. Whilst you might be able to solve the model at the current state, you should always check the solver logs and numerical cautions for advanced warning signs of scaling issues that might manifest later when you try to solve the model for a different state (e.g., during optimization).\n", - "\n", - "
\n", - "Warning:\n", - "By their nature, numerical issues depend on the current values of the variables in the model, and thus may remain hidden until someone tries to solve the model close to where the issue exists. For this reason, the full model diagnostics workflow contains steps to run the numerical checks across a wide range of variable values to try to ensure that no issues remain hidden. This is beyond the scope of this tutorial however.\n", - "
\n", - "\n", - "At this point, we have addressed all the issues that were preventing us from solving the demonstration model and so reached the end of this tutorial. For cases where we are still having trouble solving the model, we can see that the toolbox is suggesting additional methods for further debugging and these advanced features will be the focus of separate tutorials." - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.5" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/diagnostics/structural_singularity.ipynb b/idaes_examples/notebooks/docs/diagnostics/structural_singularity.ipynb index 6142a0e1..71bd02bf 100644 --- a/idaes_examples/notebooks/docs/diagnostics/structural_singularity.ipynb +++ b/idaes_examples/notebooks/docs/diagnostics/structural_singularity.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "1032c7a0", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/idaes_examples/notebooks/docs/diagnostics/structural_singularity_doc.ipynb b/idaes_examples/notebooks/docs/diagnostics/structural_singularity_doc.ipynb index 29eb4cc5..2ef6d85e 100644 --- a/idaes_examples/notebooks/docs/diagnostics/structural_singularity_doc.ipynb +++ b/idaes_examples/notebooks/docs/diagnostics/structural_singularity_doc.ipynb @@ -2,7 +2,33 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -65,9 +91,357 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Constructing a steady model to initialize the dynamic model\n", + "Initializing steady model\n", + "2025-03-17 17:30:38 [INFO] idaes.init.fs.MB: Initialize Thermophysical Properties\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:30:38 [INFO] idaes.init.fs.MB: Initialize Hydrodynamics\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:30:38 [INFO] idaes.init.fs.MB: Initialize Mass Balances\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:30:38 [INFO] idaes.init.fs.MB: Initialize Energy Balances\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 2670\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 966\n", + "\n", + "Total number of variables............................: 850\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 850\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 6.39e-07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.49e-08 0.00e+00 -8.6 9.36e-06 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.2223608791828156e-09 1.4901161193847656e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.2223608791828156e-09 1.4901161193847656e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.007\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Solving square problem with dynamic model\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 32700\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 11506\n", + "\n", + "Total number of variables............................: 10200\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 10200\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.49e-08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", + "\n", + "Number of Iterations....: 0\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.2223608791828156e-09 1.4901161193847656e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.2223608791828156e-09 1.4901161193847656e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 1\n", + "Number of objective gradient evaluations = 1\n", + "Number of equality constraint evaluations = 1\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 1\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 0\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.627\n", + "Total CPU secs in NLP function evaluations = 0.002\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing steady model\n", + "2025-03-17 17:30:40 [INFO] idaes.init.fs.MB: Initialize Thermophysical Properties\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:30:40 [INFO] idaes.init.fs.MB: Initialize Hydrodynamics\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:30:40 [INFO] idaes.init.fs.MB: Initialize Mass Balances\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:30:40 [INFO] idaes.init.fs.MB: Initialize Energy Balances\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 2670\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 966\n", + "\n", + "Total number of variables............................: 850\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 850\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 6.39e-07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.49e-08 0.00e+00 -8.6 9.36e-06 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.2223608791828156e-09 1.4901161193847656e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.2223608791828156e-09 1.4901161193847656e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.007\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 2670\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 966\n", + "\n", + "Total number of variables............................: 850\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 850\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 7.76e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 8.42e+03 0.00e+00 -1.0 5.19e+05 - 1.00e+00 1.00e+00h 1\n", + " 2 0.0000000e+00 1.58e+02 0.00e+00 -1.0 1.03e+05 - 1.00e+00 1.00e+00h 1\n", + " 3 0.0000000e+00 3.69e-02 0.00e+00 -1.7 6.88e+02 - 1.00e+00 1.00e+00h 1\n", + " 4 0.0000000e+00 1.49e-08 0.00e+00 -5.7 4.14e-01 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 4\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.0841176845133305e-09 1.4901161193847656e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.0841176845133305e-09 1.4901161193847656e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 5\n", + "Number of objective gradient evaluations = 5\n", + "Number of equality constraint evaluations = 5\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 5\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 4\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.020\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + } + ], "source": [ "from idaes_examples.mod.diagnostics.gas_solid_contactors.model import make_model\n", "import logging\n", @@ -94,9 +468,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Degrees of freedom: 10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Has large residuals: False\n" + ] + } + ], "source": [ "# Import some useful utilities from the model_statistics module.\n", "# Degrees of freedom and constraint residuals are always good things to check before\n", @@ -118,9 +507,236 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: max_iter=20\n", + "print_user_options=yes\n", + "option_file_name=/tmp/tmp7prq37mb_ipopt.opt\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Using option file \"/tmp/tmp7prq37mb_ipopt.opt\".\n", + "\n", + "\n", + "List of user-set options:\n", + "\n", + " Name Value used\n", + " max_iter = 20 yes\n", + " option_file_name = /tmp/tmp7prq37mb_ipopt.opt yes\n", + " print_info_string = yes yes\n", + " print_user_options = yes yes\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 32820\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 12126\n", + "\n", + "Total number of variables............................: 10220\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 10210\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 1.7682026e+04 1.49e-08 2.93e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0 \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 1.7330638e+04 8.08e+01 3.86e+03 -1.0 5.38e+02 -4.0 1.00e+00 1.25e-01f 4 Nh LTmaxTmaxTmaxTmax\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 2 1.7264117e+04 2.62e+02 2.39e+04 -1.0 2.13e+01 -1.8 1.00e+00 1.00e+00f 1 LMcqsNj L\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 3 1.7284985e+04 9.61e+01 1.96e+06 -1.0 5.31e+00 0.5 1.00e+00 1.00e+00h 1 qLa\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 4 1.7289252e+04 1.01e+02 1.07e+06 -1.0 2.23e+00 1.8 1.00e+00 1.00e+00h 1 qsL\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MA27BD returned iflag=-4 and requires more memory.\n", + " Increase liw from 751170 to 1502340 and la from 3161950 to 6630972 and factorize again.\n", + " 5 1.7280273e+04 4.18e+02 4.82e+06 -1.0 1.42e+01 1.3 1.00e+00 1.00e+00h 1 qLa\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6 1.7280273e+04 2.26e+04 4.82e+06 -1.0 8.19e+23 - 1.00e+00 7.45e-09h 28 STmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmaxTmax\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 7 1.7280273e+04 2.26e+04 4.82e+06 -1.0 1.74e+00 2.6 1.00e+00 1.53e-05h 17 LaS\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Error in an AMPL evaluation. Run with \"halt_on_ampl_error yes\" to see details.\n", + "Warning: SOC step rejected due to evaluation error\n", + " 8r 1.7280273e+04 2.26e+04 9.99e+02 3.4 0.00e+00 2.2 0.00e+00 4.77e-07R 22 \n", + " 9r 1.7280639e+04 1.13e+03 1.61e+02 3.4 2.62e+06 - 1.00e+00 9.90e-04f 1 \n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10r 1.7291982e+04 1.05e+02 1.63e+00 3.4 3.51e+02 - 1.00e+00 9.97e-01f 1 Nhj \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 11 1.7292223e+04 1.05e+02 2.46e+04 -1.0 2.17e+00 1.7 1.00e+00 6.25e-02h 5 L\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 12 1.7292424e+04 1.05e+02 3.05e+04 -1.0 4.75e+00 1.2 1.00e+00 3.12e-02h 6 La\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 13 1.7293185e+04 1.05e+02 2.06e+05 -1.0 2.82e+00 1.6 1.00e+00 1.25e-01h 4 LaS\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 14 1.7294516e+04 1.05e+02 9.35e+05 -1.0 1.32e+00 2.1 1.00e+00 2.50e-01h 3 LaS\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 15 1.7298381e+04 1.06e+02 2.59e+06 -1.0 2.96e-01 3.4 1.00e+00 1.00e+00h 1 LaS\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 16 1.7298544e+04 1.06e+02 1.03e+05 -1.0 2.71e-02 4.7 1.00e+00 1.00e+00h 1 LaS\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 17 1.7298562e+04 1.06e+02 1.16e+04 -1.0 1.02e-02 6.1 1.00e+00 1.00e+00h 1 LaS\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 18 1.7298579e+04 1.06e+02 1.03e+04 -1.0 8.38e-03 6.5 1.00e+00 1.00e+00H 1 sL\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 19 1.7298580e+04 1.06e+02 1.06e+04 -1.0 8.01e-02 6.0 1.00e+00 3.91e-03h 9 LaS\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 20 1.7298595e+04 1.06e+02 1.34e+04 -1.0 6.95e-03 6.4 1.00e+00 5.00e-01h 2 LaS\n", + "\n", + "Number of Iterations....: 20\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 1.7298595037806357e+04 1.7298595037806357e+04\n", + "Dual infeasibility......: 1.3366913073223608e+04 1.3366913073223608e+04\n", + "Constraint violation....: 6.2500000000000000e-02 1.0604230125733011e+02\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 5.8011633535594157e+01 1.3366913073223608e+04\n", + "\n", + "\n", + "Number of objective function evaluations = 90\n", + "Number of objective gradient evaluations = 20\n", + "Number of equality constraint evaluations = 123\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 22\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 20\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 52.652\n", + "Total CPU secs in NLP function evaluations = 0.207\n", + "\n", + "EXIT: Maximum Number of Iterations Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Converged successfully: False\n" + ] + } + ], "source": [ "# Import pyomo.environ for access to solvers\n", "import pyomo.environ as pyo\n", @@ -153,7 +769,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -174,9 +790,52 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 387 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 10200 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 0\n", + " Fixed Variables in Activated Constraints: 212 (External: 0)\n", + " Activated Equality Constraints: 10200 (Deactivated: 10)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 1 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "3 WARNINGS\n", + "\n", + " WARNING: 4457 Components with inconsistent units\n", + " WARNING: Structural singularity found\n", + " Under-Constrained Set: 130 variables, 120 constraints\n", + " Over-Constrained Set: 61 variables, 71 constraints\n", + " WARNING: Found 14300 potential evaluation errors.\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 Cautions\n", + "\n", + " Caution: 143 unused variables (3 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_components_with_inconsistent_units()\n", + " display_underconstrained_set()\n", + " display_overconstrained_set()\n", + " display_potential_evaluation_errors()\n", + "\n", + "====================================================================================\n" + ] + } + ], "source": [ "from idaes.core.util.model_diagnostics import DiagnosticsToolbox\n", "\n", @@ -200,9 +859,428 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Dulmage-Mendelsohn Under-Constrained Set\n", + "\n", + " Independent Block 0:\n", + "\n", + " Variables:\n", + "\n", + " fs.MB.solid_phase.properties[0.0,0.0].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.1].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.2].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.3].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.4].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.5].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.6].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.7].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.8].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.9].flow_mass\n", + " fs.MB.solid_phase._flow_terms[0.0,0.0,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.0,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.0,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.0,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.0,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.0,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.0,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.0,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.0,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.0,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.0,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.0,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.1,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.1,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.1,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.1,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.1,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.1,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.1,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.1,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.1,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.1,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.1,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.1,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.2,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.2,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.2,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.2,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.2,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.2,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.2,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.2,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.2,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.2,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.2,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.2,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.3,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.3,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.3,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.3,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.3,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.3,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.3,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.3,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.3,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.3,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.3,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.3,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.4,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.4,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.4,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.4,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.4,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.4,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.4,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.4,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.4,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.4,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.4,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.4,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.5,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.5,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.5,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.5,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.5,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.5,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.5,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.5,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.5,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.5,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.5,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.5,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.6,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.6,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.6,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.6,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.6,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.6,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.6,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.6,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.6,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.6,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.6,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.6,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.7,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.7,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.7,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.7,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.7,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.7,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.7,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.7,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.7,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.7,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.7,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.7,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.8,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.8,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.8,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.8,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.8,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.8,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.8,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.8,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.8,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.8,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.8,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.8,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.9,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.9,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.9,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.9,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.9,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.9,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.9,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.9,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.9,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.9,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.9,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.9,Sol]\n", + "\n", + " Constraints:\n", + "\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.0,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.0,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.0,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.0,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.0,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.0,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.0,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.0,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.0,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.0,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.0,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.0]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.1,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.1,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.1,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.1,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.1,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.1,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.1,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.1,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.1,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.1,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.1,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.1]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.2,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.2,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.2,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.2,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.2,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.2,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.2,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.2,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.2,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.2,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.2,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.2]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.3,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.3,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.3,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.3,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.3,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.3,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.3,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.3,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.3,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.3,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.3,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.4,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.4,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.4,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.4,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.4,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.4,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.4,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.4,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.4,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.4,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.4,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.5,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.5,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.5,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.5,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.5,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.5,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.5,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.5,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.5,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.5,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.5,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.5]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.6,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.6,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.6,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.6,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.6,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.6,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.6,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.6,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.6,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.6,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.6,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.6]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.7,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.7,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.7,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.7,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.7,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.7,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.7,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.7,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.7,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.7,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.7,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.7]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.8,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.8,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.8,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.8,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.8,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.8,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.8,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.8,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.8,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.8,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.8,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.8]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.9,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.9,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.9,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.9,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.9,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.9,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.9,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.9,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.9,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.9,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.9,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.9]\n", + "\n", + "====================================================================================\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Dulmage-Mendelsohn Over-Constrained Set\n", + "\n", + " Independent Block 0:\n", + "\n", + " Variables:\n", + "\n", + " fs.MB.solid_phase.properties[0.0,0.0].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.0].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.0].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.0].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.0]\n", + " fs.MB.solid_phase.properties[0.0,0.0].dens_mass_particle\n", + " fs.MB.bed_area\n", + " fs.MB.solid_phase.properties[0.0,0.1].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.1].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.1].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.1].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.1]\n", + " fs.MB.solid_phase.properties[0.0,0.1].dens_mass_particle\n", + " fs.MB.solid_phase.properties[0.0,0.2].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.2].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.2].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.2].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.2]\n", + " fs.MB.solid_phase.properties[0.0,0.2].dens_mass_particle\n", + " fs.MB.solid_phase.properties[0.0,0.3].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.3].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.3].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.3].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.3]\n", + " fs.MB.solid_phase.properties[0.0,0.3].dens_mass_particle\n", + " fs.MB.solid_phase.properties[0.0,0.4].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.4].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.4].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.4].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.4]\n", + " fs.MB.solid_phase.properties[0.0,0.4].dens_mass_particle\n", + " fs.MB.solid_phase.properties[0.0,0.5].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.5].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.5].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.5].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.5]\n", + " fs.MB.solid_phase.properties[0.0,0.5].dens_mass_particle\n", + " fs.MB.solid_phase.properties[0.0,0.6].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.6].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.6].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.6].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.6]\n", + " fs.MB.solid_phase.properties[0.0,0.6].dens_mass_particle\n", + " fs.MB.solid_phase.properties[0.0,0.7].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.7].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.7].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.7].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.7]\n", + " fs.MB.solid_phase.properties[0.0,0.7].dens_mass_particle\n", + " fs.MB.solid_phase.properties[0.0,0.8].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.8].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.8].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.8].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.8]\n", + " fs.MB.solid_phase.properties[0.0,0.8].dens_mass_particle\n", + " fs.MB.solid_phase.properties[0.0,0.9].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.9].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.9].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.9].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.9]\n", + " fs.MB.solid_phase.properties[0.0,0.9].dens_mass_particle\n", + "\n", + " Constraints:\n", + "\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.0,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.0,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.0].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.0].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.0]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.0,Sol,Fe2O3]\n", + " fs.MB.bed_area_eqn\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.1,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.1,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.1].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.1].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.1]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.1,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.2,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.2,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.2].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.2].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.2]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.2,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.3,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.3,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.3].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.3].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.3]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.3,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.4,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.4,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.4].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.4].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.4,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.5,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.5,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.5].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.5].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.5]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.5,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.6,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.6,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.6].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.6].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.6]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.6,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.7,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.7,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.7].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.7].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.7]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.7,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.8,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.8,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.8].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.8].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.8]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.8,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.9,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.9,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.9].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.9].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.9]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.9,Sol,Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.0].density_skeletal_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.1].density_skeletal_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.2].density_skeletal_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.3].density_skeletal_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.4].density_skeletal_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.5].density_skeletal_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.6].density_skeletal_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.7].density_skeletal_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.8].density_skeletal_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.9].density_skeletal_constraint\n", + "\n", + "====================================================================================\n" + ] + } + ], "source": [ "dt.display_underconstrained_set()\n", "dt.display_overconstrained_set()" @@ -227,9 +1305,534 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 1 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 847 (External: 847)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 0\n", + " Fixed Variables in Activated Constraints: 103 (External: 103)\n", + " Activated Equality Constraints: 847 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "3 WARNINGS\n", + "\n", + " WARNING: 325 Components with inconsistent units\n", + " WARNING: Structural singularity found\n", + " Under-Constrained Set: 130 variables, 120 constraints\n", + " Over-Constrained Set: 60 variables, 70 constraints\n", + " WARNING: Found 1300 potential evaluation errors.\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 Cautions\n", + "\n", + " No cautions found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_components_with_inconsistent_units()\n", + " display_underconstrained_set()\n", + " display_overconstrained_set()\n", + " display_potential_evaluation_errors()\n", + "\n", + "====================================================================================\n", + "====================================================================================\n", + "Dulmage-Mendelsohn Under-Constrained Set\n", + "\n", + " Independent Block 0:\n", + "\n", + " Variables:\n", + "\n", + " fs.MB.solid_phase.properties[0.0,0.0].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.1].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.2].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.3].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.4].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.5].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.6].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.7].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.8].flow_mass\n", + " fs.MB.solid_phase.properties[0.0,0.9].flow_mass\n", + " fs.MB.solid_phase._flow_terms[0.0,0.0,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.0,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.0,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.0,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.0,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.0,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.0,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.0,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.0,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.0,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.0,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.0,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.1,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.1,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.1,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.1,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.1,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.1,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.1,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.1,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.1,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.1,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.1,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.1,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.2,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.2,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.2,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.2,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.2,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.2,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.2,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.2,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.2,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.2,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.2,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.2,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.3,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.3,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.3,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.3,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.3,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.3,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.3,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.3,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.3,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.3,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.3,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.3,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.4,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.4,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.4,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.4,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.4,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.4,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.4,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.4,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.4,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.4,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.4,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.4,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.5,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.5,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.5,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.5,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.5,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.5,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.5,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.5,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.5,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.5,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.5,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.5,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.6,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.6,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.6,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.6,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.6,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.6,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.6,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.6,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.6,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.6,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.6,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.6,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.7,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.7,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.7,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.7,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.7,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.7,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.7,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.7,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.7,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.7,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.7,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.7,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.8,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.8,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.8,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.8,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.8,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.8,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.8,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.8,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.8,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.8,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.8,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.8,Sol]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.9,Sol,Fe2O3]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.9,Sol,Fe3O4]\n", + " fs.MB.solid_phase._flow_terms[0.0,0.9,Sol,Al2O3]\n", + " fs.MB.solid_phase._enthalpy_flow[0.0,0.9,Sol]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.9,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.9,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx[0.0,0.9,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx[0.0,0.9,Sol]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.9,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.9,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_accumulation[0.0,0.9,Sol,Al2O3]\n", + " fs.MB.solid_phase.energy_accumulation[0.0,0.9,Sol]\n", + "\n", + " Constraints:\n", + "\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.0,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.0,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.0,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.0,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.0,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.0,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.0,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.0,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.0,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.0,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.0,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.0]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.1,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.1,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.1,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.1,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.1,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.1,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.1,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.1,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.1,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.1,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.1,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.1]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.2,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.2,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.2,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.2,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.2,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.2,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.2,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.2,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.2,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.2,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.2,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.2]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.3,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.3,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.3,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.3,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.3,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.3,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.3,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.3,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.3,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.3,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.3,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.4,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.4,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.4,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.4,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.4,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.4,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.4,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.4,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.4,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.4,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.4,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.5,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.5,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.5,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.5,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.5,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.5,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.5,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.5,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.5,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.5,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.5,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.5]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.6,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.6,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.6,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.6,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.6,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.6,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.6,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.6,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.6,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.6,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.6,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.6]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.7,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.7,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.7,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.7,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.7,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.7,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.7,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.7,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.7,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.7,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.7,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.7]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.8,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.8,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.8,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.8,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.8,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.8,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.8,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.8,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.8,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.8,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.8,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.8]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.9,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.9,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_linking_constraints[0.0,0.9,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_linking_constraint[0.0,0.9,Sol]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.9,Sol,Fe2O3]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.9,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_flow_dx_disc_eq[0.0,0.9,Sol,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_flow_dx_disc_eq[0.0,0.9,Sol]\n", + " fs.MB.solid_phase.material_balances[0.0,0.9,Fe2O3]\n", + " fs.MB.solid_phase.material_balances[0.0,0.9,Fe3O4]\n", + " fs.MB.solid_phase.material_balances[0.0,0.9,Al2O3]\n", + " fs.MB.solid_phase.enthalpy_balances[0.0,0.9]\n", + "\n", + "====================================================================================\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Dulmage-Mendelsohn Over-Constrained Set\n", + "\n", + " Independent Block 0:\n", + "\n", + " Variables:\n", + "\n", + " fs.MB.solid_phase.properties[0.0,0.0].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.0].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.0].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.0].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.0]\n", + " fs.MB.solid_phase.properties[0.0,0.0].dens_mass_particle\n", + "\n", + " Constraints:\n", + "\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.0,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.0,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.0].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.0].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.0]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.0,Sol,Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.0].density_skeletal_constraint\n", + "\n", + " Independent Block 1:\n", + "\n", + " Variables:\n", + "\n", + " fs.MB.solid_phase.properties[0.0,0.1].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.1].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.1].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.1].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.1]\n", + " fs.MB.solid_phase.properties[0.0,0.1].dens_mass_particle\n", + "\n", + " Constraints:\n", + "\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.1,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.1,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.1].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.1].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.1]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.1,Sol,Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.1].density_skeletal_constraint\n", + "\n", + " Independent Block 2:\n", + "\n", + " Variables:\n", + "\n", + " fs.MB.solid_phase.properties[0.0,0.2].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.2].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.2].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.2].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.2]\n", + " fs.MB.solid_phase.properties[0.0,0.2].dens_mass_particle\n", + "\n", + " Constraints:\n", + "\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.2,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.2,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.2].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.2].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.2]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.2,Sol,Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.2].density_skeletal_constraint\n", + "\n", + " Independent Block 3:\n", + "\n", + " Variables:\n", + "\n", + " fs.MB.solid_phase.properties[0.0,0.3].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.3].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.3].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.3].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.3]\n", + " fs.MB.solid_phase.properties[0.0,0.3].dens_mass_particle\n", + "\n", + " Constraints:\n", + "\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.3,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.3,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.3].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.3].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.3]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.3,Sol,Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.3].density_skeletal_constraint\n", + "\n", + " Independent Block 4:\n", + "\n", + " Variables:\n", + "\n", + " fs.MB.solid_phase.properties[0.0,0.4].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.4].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.4].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.4].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.4]\n", + " fs.MB.solid_phase.properties[0.0,0.4].dens_mass_particle\n", + "\n", + " Constraints:\n", + "\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.4,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.4,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.4].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.4].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.4,Sol,Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.4].density_skeletal_constraint\n", + "\n", + " Independent Block 5:\n", + "\n", + " Variables:\n", + "\n", + " fs.MB.solid_phase.properties[0.0,0.5].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.5].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.5].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.5].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.5]\n", + " fs.MB.solid_phase.properties[0.0,0.5].dens_mass_particle\n", + "\n", + " Constraints:\n", + "\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.5,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.5,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.5].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.5].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.5]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.5,Sol,Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.5].density_skeletal_constraint\n", + "\n", + " Independent Block 6:\n", + "\n", + " Variables:\n", + "\n", + " fs.MB.solid_phase.properties[0.0,0.6].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.6].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.6].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.6].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.6]\n", + " fs.MB.solid_phase.properties[0.0,0.6].dens_mass_particle\n", + "\n", + " Constraints:\n", + "\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.6,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.6,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.6].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.6].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.6]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.6,Sol,Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.6].density_skeletal_constraint\n", + "\n", + " Independent Block 7:\n", + "\n", + " Variables:\n", + "\n", + " fs.MB.solid_phase.properties[0.0,0.7].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.7].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.7].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.7].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.7]\n", + " fs.MB.solid_phase.properties[0.0,0.7].dens_mass_particle\n", + "\n", + " Constraints:\n", + "\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.7,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.7,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.7].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.7].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.7]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.7,Sol,Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.7].density_skeletal_constraint\n", + "\n", + " Independent Block 8:\n", + "\n", + " Variables:\n", + "\n", + " fs.MB.solid_phase.properties[0.0,0.8].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.8].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.8].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.8].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.8]\n", + " fs.MB.solid_phase.properties[0.0,0.8].dens_mass_particle\n", + "\n", + " Constraints:\n", + "\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.8,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.8,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.8].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.8].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.8]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.8,Sol,Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.8].density_skeletal_constraint\n", + "\n", + " Independent Block 9:\n", + "\n", + " Variables:\n", + "\n", + " fs.MB.solid_phase.properties[0.0,0.9].mass_frac_comp[Fe3O4]\n", + " fs.MB.solid_phase.properties[0.0,0.9].mass_frac_comp[Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.9].mass_frac_comp[Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.9].dens_mass_skeletal\n", + " fs.MB.solid_phase.area[0.0,0.9]\n", + " fs.MB.solid_phase.properties[0.0,0.9].dens_mass_particle\n", + "\n", + " Constraints:\n", + "\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.9,Sol,Fe3O4]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.9,Sol,Al2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.9].sum_component_eqn\n", + " fs.MB.solid_phase.properties[0.0,0.9].density_particle_constraint\n", + " fs.MB.solid_phase_area[0.0,0.9]\n", + " fs.MB.solid_phase.material_holdup_calculation[0.0,0.9,Sol,Fe2O3]\n", + " fs.MB.solid_phase.properties[0.0,0.9].density_skeletal_constraint\n", + "\n", + "====================================================================================\n" + ] + } + ], "source": [ "# We've included a utility function to extract the subsystem of variables and equations\n", "# at a specified point in time. If you are dealing with a process flowsheet, here you\n", @@ -264,9 +1867,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sum_component_eqn : Size=1, Index=None, Active=True\n", + " Key : Lower : Body : Upper : Active\n", + " None : 100.0 : 100.0*(fs.MB.solid_phase.properties[0.0,0.9].mass_frac_comp[Fe2O3] + fs.MB.solid_phase.properties[0.0,0.9].mass_frac_comp[Fe3O4] + fs.MB.solid_phase.properties[0.0,0.9].mass_frac_comp[Al2O3]) : 100.0 : True\n", + "{Member of material_holdup_calculation} : Material holdup calculations\n", + " Size=363, Index=fs._time*fs.MB.solid_length_domain*fs.solid_properties._phase_component_set, Active=True\n", + " Key : Lower : Body : Upper : Active\n", + " (0.0, 0.9, 'Sol', 'Fe3O4') : 0.0 : fs.MB.solid_phase.material_holdup[0.0,0.9,Sol,Fe3O4] - fs.MB.solid_phase.area[0.0,0.9]*1*(fs.MB.solid_phase.properties[0.0,0.9].dens_mass_particle*fs.MB.solid_phase.properties[0.0,0.9].mass_frac_comp[Fe3O4]) : 0.0 : True\n" + ] + } + ], "source": [ "model.fs.MB.solid_phase.properties[0, 0.9].sum_component_eqn.pprint()\n", "model.fs.MB.solid_phase.material_holdup_calculation[0, 0.9, \"Sol\", \"Fe3O4\"].pprint()" @@ -281,9 +1898,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "density_particle_constraint : Size=1, Index=None, Active=True\n", + " Key : Lower : Body : Upper : Active\n", + " None : 0.0 : fs.MB.solid_phase.properties[0.0,0.9].dens_mass_particle - (1 - fs.solid_properties.particle_porosity)*fs.MB.solid_phase.properties[0.0,0.9].dens_mass_skeletal : 0.0 : True\n" + ] + } + ], "source": [ "model.fs.MB.solid_phase.properties[0, 0.9].density_particle_constraint.pprint()" ] @@ -302,9 +1929,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "density_skeletal_constraint : Size=1, Index=None, Active=True\n", + " Key : Lower : Body : Upper : Active\n", + " None : 1.0 : fs.MB.solid_phase.properties[0.0,0.9].dens_mass_skeletal*(0.00019047619047619048*fs.MB.solid_phase.properties[0.0,0.9].mass_frac_comp[Fe2O3] + 0.0002*fs.MB.solid_phase.properties[0.0,0.9].mass_frac_comp[Fe3O4] + 0.00025081514923501377*fs.MB.solid_phase.properties[0.0,0.9].mass_frac_comp[Al2O3]) : 1.0 : True\n" + ] + } + ], "source": [ "model.fs.MB.solid_phase.properties[0, 0.9].density_skeletal_constraint.pprint()" ] @@ -340,9 +1977,357 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Constructing a steady model to initialize the dynamic model\n", + "Initializing steady model\n", + "2025-03-17 17:31:48 [INFO] idaes.init.fs.MB: Initialize Thermophysical Properties\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:31:48 [INFO] idaes.init.fs.MB: Initialize Hydrodynamics\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:31:48 [INFO] idaes.init.fs.MB: Initialize Mass Balances\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:31:48 [INFO] idaes.init.fs.MB: Initialize Energy Balances\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 2670\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 966\n", + "\n", + "Total number of variables............................: 850\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 850\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 6.39e-07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.49e-08 0.00e+00 -8.6 9.36e-06 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.2223608791828156e-09 1.4901161193847656e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.2223608791828156e-09 1.4901161193847656e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.007\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Solving square problem with dynamic model\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 32700\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 11506\n", + "\n", + "Total number of variables............................: 10200\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 10200\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.49e-08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", + "\n", + "Number of Iterations....: 0\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.2223608791828156e-09 1.4901161193847656e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.2223608791828156e-09 1.4901161193847656e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 1\n", + "Number of objective gradient evaluations = 1\n", + "Number of equality constraint evaluations = 1\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 1\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 0\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.539\n", + "Total CPU secs in NLP function evaluations = 0.002\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initializing steady model\n", + "2025-03-17 17:31:50 [INFO] idaes.init.fs.MB: Initialize Thermophysical Properties\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:31:50 [INFO] idaes.init.fs.MB: Initialize Hydrodynamics\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:31:50 [INFO] idaes.init.fs.MB: Initialize Mass Balances\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:31:50 [INFO] idaes.init.fs.MB: Initialize Energy Balances\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 2670\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 966\n", + "\n", + "Total number of variables............................: 850\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 850\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 6.39e-07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.49e-08 0.00e+00 -8.6 9.36e-06 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.2223608791828156e-09 1.4901161193847656e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.2223608791828156e-09 1.4901161193847656e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.005\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 2670\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 966\n", + "\n", + "Total number of variables............................: 850\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 850\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 7.76e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 8.42e+03 0.00e+00 -1.0 5.19e+05 - 1.00e+00 1.00e+00h 1\n", + " 2 0.0000000e+00 1.58e+02 0.00e+00 -1.0 1.03e+05 - 1.00e+00 1.00e+00h 1\n", + " 3 0.0000000e+00 3.69e-02 0.00e+00 -1.7 6.88e+02 - 1.00e+00 1.00e+00h 1\n", + " 4 0.0000000e+00 1.49e-08 0.00e+00 -5.7 4.14e-01 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 4\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.0841176845133305e-09 1.4901161193847656e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.0841176845133305e-09 1.4901161193847656e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 5\n", + "Number of objective gradient evaluations = 5\n", + "Number of equality constraint evaluations = 5\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 5\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 4\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.009\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + } + ], "source": [ "model2 = make_model()\n", "# Make the model square while we try to fix the structural singularity\n", @@ -360,7 +2345,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -380,9 +2365,259 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Constraints containing fs.solid_properties.particle_porosity:\n", + " fs.MB.solid_phase.properties[0.0,0.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.1].density_particle_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.2].density_particle_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.3].density_particle_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.4].density_particle_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.5].density_particle_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.6].density_particle_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.7].density_particle_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.8].density_particle_constraint\n", + " fs.MB.solid_phase.properties[0.0,0.9].density_particle_constraint\n", + " fs.MB.solid_phase.properties[0.0,1.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[30.0,0.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[30.0,0.1].density_particle_constraint\n", + " fs.MB.solid_phase.properties[30.0,0.2].density_particle_constraint\n", + " fs.MB.solid_phase.properties[30.0,0.3].density_particle_constraint\n", + " fs.MB.solid_phase.properties[30.0,0.4].density_particle_constraint\n", + " fs.MB.solid_phase.properties[30.0,0.5].density_particle_constraint\n", + " fs.MB.solid_phase.properties[30.0,0.6].density_particle_constraint\n", + " fs.MB.solid_phase.properties[30.0,0.7].density_particle_constraint\n", + " fs.MB.solid_phase.properties[30.0,0.8].density_particle_constraint\n", + " fs.MB.solid_phase.properties[30.0,0.9].density_particle_constraint\n", + " fs.MB.solid_phase.properties[30.0,1.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[60.0,0.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[60.0,0.1].density_particle_constraint\n", + " fs.MB.solid_phase.properties[60.0,0.2].density_particle_constraint\n", + " fs.MB.solid_phase.properties[60.0,0.3].density_particle_constraint\n", + " fs.MB.solid_phase.properties[60.0,0.4].density_particle_constraint\n", + " fs.MB.solid_phase.properties[60.0,0.5].density_particle_constraint\n", + " fs.MB.solid_phase.properties[60.0,0.6].density_particle_constraint\n", + " fs.MB.solid_phase.properties[60.0,0.7].density_particle_constraint\n", + " fs.MB.solid_phase.properties[60.0,0.8].density_particle_constraint\n", + " fs.MB.solid_phase.properties[60.0,0.9].density_particle_constraint\n", + " fs.MB.solid_phase.properties[60.0,1.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[90.0,0.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[90.0,0.1].density_particle_constraint\n", + " fs.MB.solid_phase.properties[90.0,0.2].density_particle_constraint\n", + " fs.MB.solid_phase.properties[90.0,0.3].density_particle_constraint\n", + " fs.MB.solid_phase.properties[90.0,0.4].density_particle_constraint\n", + " fs.MB.solid_phase.properties[90.0,0.5].density_particle_constraint\n", + " fs.MB.solid_phase.properties[90.0,0.6].density_particle_constraint\n", + " fs.MB.solid_phase.properties[90.0,0.7].density_particle_constraint\n", + " fs.MB.solid_phase.properties[90.0,0.8].density_particle_constraint\n", + " fs.MB.solid_phase.properties[90.0,0.9].density_particle_constraint\n", + " fs.MB.solid_phase.properties[90.0,1.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[120.0,0.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[120.0,0.1].density_particle_constraint\n", + " fs.MB.solid_phase.properties[120.0,0.2].density_particle_constraint\n", + " fs.MB.solid_phase.properties[120.0,0.3].density_particle_constraint\n", + " fs.MB.solid_phase.properties[120.0,0.4].density_particle_constraint\n", + " fs.MB.solid_phase.properties[120.0,0.5].density_particle_constraint\n", + " fs.MB.solid_phase.properties[120.0,0.6].density_particle_constraint\n", + " fs.MB.solid_phase.properties[120.0,0.7].density_particle_constraint\n", + " fs.MB.solid_phase.properties[120.0,0.8].density_particle_constraint\n", + " fs.MB.solid_phase.properties[120.0,0.9].density_particle_constraint\n", + " fs.MB.solid_phase.properties[120.0,1.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[150.0,0.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[150.0,0.1].density_particle_constraint\n", + " fs.MB.solid_phase.properties[150.0,0.2].density_particle_constraint\n", + " fs.MB.solid_phase.properties[150.0,0.3].density_particle_constraint\n", + " fs.MB.solid_phase.properties[150.0,0.4].density_particle_constraint\n", + " fs.MB.solid_phase.properties[150.0,0.5].density_particle_constraint\n", + " fs.MB.solid_phase.properties[150.0,0.6].density_particle_constraint\n", + " fs.MB.solid_phase.properties[150.0,0.7].density_particle_constraint\n", + " fs.MB.solid_phase.properties[150.0,0.8].density_particle_constraint\n", + " fs.MB.solid_phase.properties[150.0,0.9].density_particle_constraint\n", + " fs.MB.solid_phase.properties[150.0,1.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[180.0,0.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[180.0,0.1].density_particle_constraint\n", + " fs.MB.solid_phase.properties[180.0,0.2].density_particle_constraint\n", + " fs.MB.solid_phase.properties[180.0,0.3].density_particle_constraint\n", + " fs.MB.solid_phase.properties[180.0,0.4].density_particle_constraint\n", + " fs.MB.solid_phase.properties[180.0,0.5].density_particle_constraint\n", + " fs.MB.solid_phase.properties[180.0,0.6].density_particle_constraint\n", + " fs.MB.solid_phase.properties[180.0,0.7].density_particle_constraint\n", + " fs.MB.solid_phase.properties[180.0,0.8].density_particle_constraint\n", + " fs.MB.solid_phase.properties[180.0,0.9].density_particle_constraint\n", + " fs.MB.solid_phase.properties[180.0,1.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[210.0,0.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[210.0,0.1].density_particle_constraint\n", + " fs.MB.solid_phase.properties[210.0,0.2].density_particle_constraint\n", + " fs.MB.solid_phase.properties[210.0,0.3].density_particle_constraint\n", + " fs.MB.solid_phase.properties[210.0,0.4].density_particle_constraint\n", + " fs.MB.solid_phase.properties[210.0,0.5].density_particle_constraint\n", + " fs.MB.solid_phase.properties[210.0,0.6].density_particle_constraint\n", + " fs.MB.solid_phase.properties[210.0,0.7].density_particle_constraint\n", + " fs.MB.solid_phase.properties[210.0,0.8].density_particle_constraint\n", + " fs.MB.solid_phase.properties[210.0,0.9].density_particle_constraint\n", + " fs.MB.solid_phase.properties[210.0,1.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[240.0,0.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[240.0,0.1].density_particle_constraint\n", + " fs.MB.solid_phase.properties[240.0,0.2].density_particle_constraint\n", + " fs.MB.solid_phase.properties[240.0,0.3].density_particle_constraint\n", + " fs.MB.solid_phase.properties[240.0,0.4].density_particle_constraint\n", + " fs.MB.solid_phase.properties[240.0,0.5].density_particle_constraint\n", + " fs.MB.solid_phase.properties[240.0,0.6].density_particle_constraint\n", + " fs.MB.solid_phase.properties[240.0,0.7].density_particle_constraint\n", + " fs.MB.solid_phase.properties[240.0,0.8].density_particle_constraint\n", + " fs.MB.solid_phase.properties[240.0,0.9].density_particle_constraint\n", + " fs.MB.solid_phase.properties[240.0,1.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[270.0,0.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[270.0,0.1].density_particle_constraint\n", + " fs.MB.solid_phase.properties[270.0,0.2].density_particle_constraint\n", + " fs.MB.solid_phase.properties[270.0,0.3].density_particle_constraint\n", + " fs.MB.solid_phase.properties[270.0,0.4].density_particle_constraint\n", + " fs.MB.solid_phase.properties[270.0,0.5].density_particle_constraint\n", + " fs.MB.solid_phase.properties[270.0,0.6].density_particle_constraint\n", + " fs.MB.solid_phase.properties[270.0,0.7].density_particle_constraint\n", + " fs.MB.solid_phase.properties[270.0,0.8].density_particle_constraint\n", + " fs.MB.solid_phase.properties[270.0,0.9].density_particle_constraint\n", + " fs.MB.solid_phase.properties[270.0,1.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[300.0,0.0].density_particle_constraint\n", + " fs.MB.solid_phase.properties[300.0,0.1].density_particle_constraint\n", + " fs.MB.solid_phase.properties[300.0,0.2].density_particle_constraint\n", + " fs.MB.solid_phase.properties[300.0,0.3].density_particle_constraint\n", + " fs.MB.solid_phase.properties[300.0,0.4].density_particle_constraint\n", + " fs.MB.solid_phase.properties[300.0,0.5].density_particle_constraint\n", + " fs.MB.solid_phase.properties[300.0,0.6].density_particle_constraint\n", + " fs.MB.solid_phase.properties[300.0,0.7].density_particle_constraint\n", + " fs.MB.solid_phase.properties[300.0,0.8].density_particle_constraint\n", + " fs.MB.solid_phase.properties[300.0,0.9].density_particle_constraint\n", + " fs.MB.solid_phase.properties[300.0,1.0].density_particle_constraint\n", + " fs.MB.solid_phase.reactions[0.0,0.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[0.0,0.1].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[0.0,0.2].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[0.0,0.3].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[0.0,0.4].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[0.0,0.5].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[0.0,0.6].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[0.0,0.7].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[0.0,0.8].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[0.0,0.9].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[0.0,1.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[30.0,0.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[30.0,0.1].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[30.0,0.2].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[30.0,0.3].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[30.0,0.4].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[30.0,0.5].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[30.0,0.6].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[30.0,0.7].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[30.0,0.8].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[30.0,0.9].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[30.0,1.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[60.0,0.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[60.0,0.1].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[60.0,0.2].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[60.0,0.3].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[60.0,0.4].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[60.0,0.5].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[60.0,0.6].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[60.0,0.7].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[60.0,0.8].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[60.0,0.9].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[60.0,1.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[90.0,0.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[90.0,0.1].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[90.0,0.2].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[90.0,0.3].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[90.0,0.4].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[90.0,0.5].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[90.0,0.6].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[90.0,0.7].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[90.0,0.8].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[90.0,0.9].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[90.0,1.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[120.0,0.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[120.0,0.1].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[120.0,0.2].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[120.0,0.3].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[120.0,0.4].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[120.0,0.5].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[120.0,0.6].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[120.0,0.7].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[120.0,0.8].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[120.0,0.9].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[120.0,1.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[150.0,0.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[150.0,0.1].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[150.0,0.2].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[150.0,0.3].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[150.0,0.4].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[150.0,0.5].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[150.0,0.6].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[150.0,0.7].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[150.0,0.8].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[150.0,0.9].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[150.0,1.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[180.0,0.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[180.0,0.1].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[180.0,0.2].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[180.0,0.3].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[180.0,0.4].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[180.0,0.5].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[180.0,0.6].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[180.0,0.7].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[180.0,0.8].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[180.0,0.9].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[180.0,1.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[210.0,0.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[210.0,0.1].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[210.0,0.2].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[210.0,0.3].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[210.0,0.4].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[210.0,0.5].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[210.0,0.6].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[210.0,0.7].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[210.0,0.8].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[210.0,0.9].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[210.0,1.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[240.0,0.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[240.0,0.1].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[240.0,0.2].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[240.0,0.3].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[240.0,0.4].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[240.0,0.5].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[240.0,0.6].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[240.0,0.7].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[240.0,0.8].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[240.0,0.9].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[240.0,1.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[270.0,0.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[270.0,0.1].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[270.0,0.2].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[270.0,0.3].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[270.0,0.4].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[270.0,0.5].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[270.0,0.6].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[270.0,0.7].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[270.0,0.8].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[270.0,0.9].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[270.0,1.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[300.0,0.0].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[300.0,0.1].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[300.0,0.2].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[300.0,0.3].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[300.0,0.4].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[300.0,0.5].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[300.0,0.6].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[300.0,0.7].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[300.0,0.8].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[300.0,0.9].gen_rate_expression[R1]\n", + " fs.MB.solid_phase.reactions[300.0,1.0].gen_rate_expression[R1]\n" + ] + } + ], "source": [ "from pyomo.contrib.incidence_analysis import IncidenceGraphInterface\n", "\n", @@ -402,7 +2637,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -434,7 +2669,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -459,9 +2694,47 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 387 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 10321 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 0\n", + " Fixed Variables in Activated Constraints: 211 (External: 0)\n", + " Activated Equality Constraints: 10321 (Deactivated: 10)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 1 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 WARNINGS\n", + "\n", + " WARNING: 4457 Components with inconsistent units\n", + " WARNING: Found 14300 potential evaluation errors.\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 Cautions\n", + "\n", + " Caution: 144 unused variables (4 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_components_with_inconsistent_units()\n", + " display_potential_evaluation_errors()\n", + "\n", + "====================================================================================\n" + ] + } + ], "source": [ "# Construct a new diagnostics toolbox\n", "dt = DiagnosticsToolbox(model2)\n", @@ -477,9 +2750,244 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: max_iter=20\n", + "print_user_options=yes\n", + "option_file_name=/tmp/tmpj0gx5c3z_ipopt.opt\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Using option file \"/tmp/tmpj0gx5c3z_ipopt.opt\".\n", + "\n", + "\n", + "List of user-set options:\n", + "\n", + " Name Value used\n", + " max_iter = 20 yes\n", + " option_file_name = /tmp/tmpj0gx5c3z_ipopt.opt yes\n", + " print_info_string = yes yes\n", + " print_user_options = yes yes\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 33545\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 12940\n", + "\n", + "Total number of variables............................: 10341\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 10331\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 1.7682026e+04 2.99e+00 2.93e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0 \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 1.7521239e+04 8.45e+01 1.80e+03 -1.0 4.99e+02 -4.0 1.00e+00 1.25e-01f 4 McqNh LTmaxTmaxTmaxTmax\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 2 1.7535291e+04 5.53e+01 1.28e+05 -1.0 4.80e+00 -0.9 1.00e+00 1.00e+00h 1 LDj L\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 3 1.7533314e+04 5.91e+01 9.39e+04 -1.0 2.85e+00 0.5 1.00e+00 1.00e+00h 1 l\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 4 1.7531376e+04 6.18e+01 1.63e+05 -1.0 1.97e+00 0.9 1.00e+00 1.00e+00h 1 l\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 5 1.7532039e+04 5.98e+01 2.44e+05 -1.0 7.29e+00 1.3 1.00e+00 2.50e-01h 3 lTmax\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 6 1.7531943e+04 5.92e+01 1.07e+04 -1.0 8.42e-01 1.7 1.00e+00 1.00e+00h 1 l\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 7 1.7531610e+04 5.78e+01 4.39e+03 -1.0 2.44e-01 1.3 1.00e+00 1.00e+00h 1 l\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 8 1.7530730e+04 5.82e+01 1.35e+04 -1.0 3.83e-01 0.8 1.00e+00 1.00e+00f 1 l\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 9 1.7530159e+04 7.00e+01 2.32e+05 -1.0 7.76e-01 0.3 1.00e+00 1.00e+00h 1 l\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 1.7530383e+04 7.07e+01 2.15e+04 -1.0 2.31e-01 0.7 1.00e+00 1.00e+00h 1 l\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 11 1.7532473e+04 7.05e+01 8.42e+03 -1.0 5.56e-01 0.3 1.00e+00 1.00e+00h 1 l\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 12 1.7532758e+04 7.03e+01 8.16e+03 -1.0 1.85e+00 -0.2 1.00e+00 3.12e-02h 6 l\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 13 1.7532965e+04 7.02e+01 8.09e+03 -1.0 5.55e+00 -0.7 1.00e+00 7.81e-03h 8 lTmax\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 14 1.7533286e+04 7.00e+01 7.84e+03 -1.0 2.09e+00 -0.3 1.00e+00 3.12e-02h 6 l\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 15 1.7533543e+04 6.97e+01 7.38e+03 -1.0 7.88e-01 0.2 1.00e+00 6.25e-02h 5 l\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 16 1.7533908e+04 6.95e+01 7.14e+03 -1.0 2.37e+00 -0.3 1.00e+00 3.12e-02h 6 l\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 17 1.7534200e+04 6.93e+01 6.71e+03 -1.0 8.93e-01 0.1 1.00e+00 6.25e-02h 5 l\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 18 1.7534615e+04 6.91e+01 6.49e+03 -1.0 2.69e+00 -0.4 1.00e+00 3.12e-02h 6 l\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 19 1.7534947e+04 6.88e+01 6.10e+03 -1.0 1.01e+00 0.1 1.00e+00 6.25e-02h 5 l\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 20 1.7535213e+04 6.85e+01 5.41e+03 -1.0 3.84e-01 0.5 1.00e+00 1.25e-01h 4 l\n", + "\n", + "Number of Iterations....: 20\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 1.7535212526993204e+04 1.7535212526993204e+04\n", + "Dual infeasibility......: 5.4114139205253450e+03 5.4114139205253450e+03\n", + "Constraint violation....: 7.6798113076064212e-03 6.8492626244787971e+01\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 3.3869144373417086e+01 5.4114139205253450e+03\n", + "\n", + "\n", + "Number of objective function evaluations = 73\n", + "Number of objective gradient evaluations = 21\n", + "Number of equality constraint evaluations = 79\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 21\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 20\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 14.038\n", + "Total CPU secs in NLP function evaluations = 0.175\n", + "\n", + "EXIT: Maximum Number of Iterations Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Converged successfully: False\n" + ] + } + ], "source": [ "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.unfix()\n", "model2.fs.MB.gas_phase.properties[0, 0].flow_mol.fix()\n", @@ -504,9 +3012,52 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: Undefined (Exactly Singular)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "4 WARNINGS\n", + "\n", + " WARNING: 1290 Constraints with large residuals (>1.0E-05)\n", + " WARNING: 77 Variables with extreme Jacobian values (<1.0E-08 or >1.0E+08)\n", + " WARNING: 77 Constraints with extreme Jacobian values (<1.0E-08 or >1.0E+08)\n", + " WARNING: 11 pairs of constraints are parallel (to tolerance 1.0E-08)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "9 Cautions\n", + "\n", + " Caution: 219 Variables with value close to zero (tol=1.0E-08)\n", + " Caution: 1314 Variables with extreme value (<1.0E-04 or >1.0E+04)\n", + " Caution: 99 Variables with None value\n", + " Caution: 356 Constraints with mismatched terms\n", + " Caution: 1654 Constraints with potential cancellation of terms\n", + " Caution: 10 Constraints with no free variables\n", + " Caution: 1619 Variables with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", + " Caution: 1870 Constraints with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", + " Caution: 3554 extreme Jacobian Entries (<1.0E-04 or >1.0E+04)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_constraints_with_large_residuals()\n", + " compute_infeasibility_explanation()\n", + " display_variables_with_extreme_jacobians()\n", + " display_constraints_with_extreme_jacobians()\n", + " display_near_parallel_constraints()\n", + "\n", + "====================================================================================\n" + ] + } + ], "source": [ "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.fix()\n", "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.fix()\n", @@ -523,9 +3074,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following pairs of constraints are nearly parallel:\n", + "\n", + " fs.MB.solid_super_vel[0.0], fs.MB.density_flowrate_constraint[0.0,1.0]\n", + " fs.MB.solid_super_vel[30.0], fs.MB.density_flowrate_constraint[30.0,1.0]\n", + " fs.MB.solid_super_vel[60.0], fs.MB.density_flowrate_constraint[60.0,1.0]\n", + " fs.MB.solid_super_vel[90.0], fs.MB.density_flowrate_constraint[90.0,1.0]\n", + " fs.MB.solid_super_vel[120.0], fs.MB.density_flowrate_constraint[120.0,1.0]\n", + " fs.MB.solid_super_vel[150.0], fs.MB.density_flowrate_constraint[150.0,1.0]\n", + " fs.MB.solid_super_vel[180.0], fs.MB.density_flowrate_constraint[180.0,1.0]\n", + " fs.MB.solid_super_vel[210.0], fs.MB.density_flowrate_constraint[210.0,1.0]\n", + " fs.MB.solid_super_vel[240.0], fs.MB.density_flowrate_constraint[240.0,1.0]\n", + " fs.MB.solid_super_vel[270.0], fs.MB.density_flowrate_constraint[270.0,1.0]\n", + " fs.MB.solid_super_vel[300.0], fs.MB.density_flowrate_constraint[300.0,1.0]\n", + "\n", + "====================================================================================\n" + ] + } + ], "source": [ "dt.display_near_parallel_constraints()" ] @@ -539,9 +3113,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{Member of solid_super_vel} : Solid superficial velocity\n", + " Size=11, Index=fs._time, Active=True\n", + " Key : Lower : Body : Upper : Active\n", + " 0.0 : 0.0 : fs.MB.velocity_superficial_solid[0.0]*fs.MB.bed_area*fs.MB.solid_phase.properties[0.0,1.0].dens_mass_particle - fs.MB.solid_phase.properties[0.0,1.0].flow_mass : 0.0 : True\n" + ] + } + ], "source": [ "model2.fs.MB.solid_super_vel[0].pprint()" ] @@ -555,7 +3140,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -571,9 +3156,52 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 387 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 10321 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 0\n", + " Fixed Variables in Activated Constraints: 211 (External: 0)\n", + " Activated Equality Constraints: 10310 (Deactivated: 21)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 1 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "4 WARNINGS\n", + "\n", + " WARNING: 11 Degrees of Freedom\n", + " WARNING: 4457 Components with inconsistent units\n", + " WARNING: Structural singularity found\n", + " Under-Constrained Set: 8881 variables, 8870 constraints\n", + " Over-Constrained Set: 0 variables, 0 constraints\n", + " WARNING: Found 14300 potential evaluation errors.\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 Cautions\n", + "\n", + " Caution: 144 unused variables (4 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_components_with_inconsistent_units()\n", + " display_underconstrained_set()\n", + " display_potential_evaluation_errors()\n", + "\n", + "====================================================================================\n" + ] + } + ], "source": [ "dt = DiagnosticsToolbox(model2)\n", "dt.report_structural_issues()" @@ -588,7 +3216,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -604,9 +3232,87 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 387 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 10310 (External: 0)\n", + " Free Variables with only lower bounds: 0\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 0\n", + " Fixed Variables in Activated Constraints: 222 (External: 0)\n", + " Activated Equality Constraints: 10310 (Deactivated: 21)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 1 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 WARNINGS\n", + "\n", + " WARNING: 4457 Components with inconsistent units\n", + " WARNING: Found 14300 potential evaluation errors.\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 Cautions\n", + "\n", + " Caution: 144 unused variables (4 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_components_with_inconsistent_units()\n", + " display_potential_evaluation_errors()\n", + "\n", + "====================================================================================\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 7.617E+25\n", + "\n", + "------------------------------------------------------------------------------------\n", + "3 WARNINGS\n", + "\n", + " WARNING: 1279 Constraints with large residuals (>1.0E-05)\n", + " WARNING: 77 Variables with extreme Jacobian values (<1.0E-08 or >1.0E+08)\n", + " WARNING: 77 Constraints with extreme Jacobian values (<1.0E-08 or >1.0E+08)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "9 Cautions\n", + "\n", + " Caution: 219 Variables with value close to zero (tol=1.0E-08)\n", + " Caution: 1314 Variables with extreme value (<1.0E-04 or >1.0E+04)\n", + " Caution: 99 Variables with None value\n", + " Caution: 356 Constraints with mismatched terms\n", + " Caution: 1654 Constraints with potential cancellation of terms\n", + " Caution: 10 Constraints with no free variables\n", + " Caution: 1619 Variables with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", + " Caution: 1859 Constraints with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", + " Caution: 3543 extreme Jacobian Entries (<1.0E-04 or >1.0E+04)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_constraints_with_large_residuals()\n", + " compute_infeasibility_explanation()\n", + " display_variables_with_extreme_jacobians()\n", + " display_constraints_with_extreme_jacobians()\n", + "\n", + "====================================================================================\n" + ] + } + ], "source": [ "dt = DiagnosticsToolbox(model2)\n", "dt.report_structural_issues()\n", @@ -622,9 +3328,130 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: max_iter=20\n", + "print_user_options=yes\n", + "option_file_name=/tmp/tmpq3s1keqc_ipopt.opt\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Using option file \"/tmp/tmpq3s1keqc_ipopt.opt\".\n", + "\n", + "\n", + "List of user-set options:\n", + "\n", + " Name Value used\n", + " max_iter = 20 yes\n", + " option_file_name = /tmp/tmpq3s1keqc_ipopt.opt yes\n", + " print_info_string = yes yes\n", + " print_user_options = yes yes\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 33480\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 12896\n", + "\n", + "Total number of variables............................: 10330\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 10320\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 1.7535213e+04 6.85e+01 2.93e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0 \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 4.4256949e+03 1.01e+03 1.33e+07 -1.0 3.98e+05 - 1.00e+00 1.00e+00f 1 \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 2 4.4845871e+03 1.00e+00 5.34e+04 -1.0 6.13e+03 - 1.00e+00 1.00e+00h 1 Nhj \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 3 4.4844740e+03 2.80e-04 2.63e+01 -1.0 2.07e+02 - 1.00e+00 1.00e+00h 1 \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 4 4.4844740e+03 2.98e-08 1.19e-07 -5.7 5.10e-03 - 1.00e+00 1.00e+00h 1 \n", + "\n", + "Number of Iterations....: 4\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 4.4844740157746410e+03 4.4844740157746410e+03\n", + "Dual infeasibility......: 1.1920928955078125e-07 1.1920928955078125e-07\n", + "Constraint violation....: 1.6975718608591706e-09 2.9802322387695312e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.6975718608591706e-09 1.1920928955078125e-07\n", + "\n", + "\n", + "Number of objective function evaluations = 5\n", + "Number of objective gradient evaluations = 5\n", + "Number of equality constraint evaluations = 5\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 5\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 4\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 3.445\n", + "Total CPU secs in NLP function evaluations = 0.023\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Converged successfully: True\n" + ] + } + ], "source": [ "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.unfix()\n", "model2.fs.MB.gas_phase.properties[0, 0].flow_mol.fix()\n", @@ -693,7 +3520,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/diagnostics/structural_singularity_test.ipynb b/idaes_examples/notebooks/docs/diagnostics/structural_singularity_test.ipynb index 29eb4cc5..8e0cdda0 100644 --- a/idaes_examples/notebooks/docs/diagnostics/structural_singularity_test.ipynb +++ b/idaes_examples/notebooks/docs/diagnostics/structural_singularity_test.ipynb @@ -1,701 +1,727 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Debugging a Structural Singularity\n", - "===========================\n", - "Author: Robert Parker\\\n", - "Maintainer: Robert Parker\\\n", - "Updated: 2024-06-10\n", - "\n", - "In this tutorial, we will use the [IDAES Diagnostics Toolbox](https://idaes-pse.readthedocs.io/en/2.4.0/explanations/model_diagnostics/index.html#diagnostics-toolbox)\n", - "to diagnose and fix a structural singularity that is preventing us from solving an optimization problem." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jp-MarkdownHeadingCollapsed": true - }, - "source": [ - "# Constructing the model\n", - "\n", - "Suppose a collaborator has given us a model to work with. They give us a square model and tell us what the degrees of freedom are. We construct an optimization problem and try to solve it. In this tutorial, we don't want to worry too much about the details that go into constructing the model. This has been provided in the `idaes_examples.mod.diagnostics.gas_solid_contactors.model` module.\n", - "\n", - "## Model details (OKAY TO SKIP)\n", - "\n", - "The model we are trying to optimize is a dynamic model of a moving bed chemical looping combustion reactor. The model has been described by [Okoli et al.][1] and [Parker and Biegler][2]. This is a gas-solid reactor with counter-current flow. The degrees of freedom are gas and solid inlet flow rates, and we are trying to minimize the deviation from a desired operating point via a least-squares objective function.\n", - "\n", - "[1]: https://www.sciencedirect.com/science/article/pii/S0032591019302803\n", - "[2]: https://www.sciencedirect.com/science/article/pii/S2405896322008825\n", - "\n", - "Again, we don't want to worry too much about the model. The `make_model` function will construct the optimization problem that we want to solve, and whenever we do something model-specific, we will explicitly make note of it." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Trying to solve the original model\n", - "\n", - "With that out of the way, let's construct the model and try to solve it!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes_examples.mod.diagnostics.gas_solid_contactors.model import make_model\n", - "import logging\n", - "\n", - "# We'll turn off IDAES logging. This is not recommended in general, but this is an old model\n", - "# (from IDAES 1.7) that has been ported to work with the current version of IDAES. It generates\n", - "# a lot of warnings.\n", - "logging.getLogger(\"idaes\").setLevel(logging.CRITICAL)\n", - "# We'll also turn off Pyomo logging. This will suppress unit inconsistency warnings later,\n", - "# which otherwise flood our console and slow down this notebook. We have unit inconsistencies\n", - "# as, in IDAES 1.7, we didn't rigorously enforce that models use units.\n", - "logging.getLogger(\"pyomo\").setLevel(logging.CRITICAL)\n", - "\n", - "# This constructs a dynamic model with degrees of freedom and an objective function.\n", - "model = make_model()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Before trying to solve the model, let's make sure it conforms to our expectations, i.e. it (a) has degrees of freedom and (b) is well-initialized to a feasible point." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import some useful utilities from the model_statistics module.\n", - "# Degrees of freedom and constraint residuals are always good things to check before\n", - "# trying to solve a simulation or optimization problem.\n", - "from idaes.core.util.model_statistics import degrees_of_freedom, large_residuals_set\n", - "\n", - "dof = degrees_of_freedom(model)\n", - "print(f\"Degrees of freedom: {dof}\")\n", - "has_large_residuals = bool(large_residuals_set(model, tol=1e-5))\n", - "print(f\"Has large residuals: {has_large_residuals}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the above `make_model` function, the model has been \"solved\" to arrive at a feasible point, then degrees of freedom have been unfixed and an objective function has been added to give us an optimization problem. This looks good so far, so let's try to solve the optimization problem." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import pyomo.environ for access to solvers\n", - "import pyomo.environ as pyo\n", - "\n", - "solver = pyo.SolverFactory(\"ipopt\")\n", - "solver.options[\"max_iter\"] = 20\n", - "solver.options[\"print_user_options\"] = \"yes\"\n", - "solver.options[\"OF_print_info_string\"] = \"yes\"\n", - "res = solver.solve(model, tee=True)\n", - "print(f\"Converged successfully: {pyo.check_optimal_termination(res)}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "IPOPT fails to solve the optimization problem... You can try increasing the iteration limit, but it is very unlikely that this model will ever solve. A telltale sign that something is wrong with our model is the persistence of regularization coefficients, that is, numbers in the `lg(rg)` column of the IPOPT log. These coefficients can have multiple causes. One is that the constraint Jacobian (partial derivative matrix) is singular, which indicates a problem with our model. We have set the `print_info_string` option in IPOPT to display \"diagnostic tags\" to help interpret these regularization coefficients. The \"L\" and \"l\" diagnostic tags, which appear repeatedly, indicate that the Jacobian is singular. For more information on IPOPT diagnostic tags, see the IPOPT [documentation](https://coin-or.github.io/Ipopt/OUTPUT.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Debugging the original model\n", - "\n", - "Let's run the diagnostics toolbox on the model and see what it has to say.\n", - "\n", - "For good practice, we'll first make sure the model we're debugging is square. Remember that we're assuming we already know how to toggle degrees of freedom in our model." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix gas and solid flow rates at their respective inlets\n", - "model.fs.MB.gas_phase.properties[:, 0].flow_mol.fix()\n", - "model.fs.MB.solid_phase.properties[:, 1].flow_mass.fix()\n", - "# Part of our optimization problem was a set of constraints to enforce piecewise\n", - "# constant control inputs. We need to deactivate these as well.\n", - "model.piecewise_constant_constraints.deactivate()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we can run the diagnostics toolbox." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.util.model_diagnostics import DiagnosticsToolbox\n", - "\n", - "dt = DiagnosticsToolbox(model)\n", - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's look at the warnings we got:\n", - "- Inconsistent units\n", - "- Structural singularity\n", - "- Potential evaluation errors\n", - "\n", - "We'll ignore the inconsistent units. The property package and unit model here were extracted from IDAES 1.7, before we rigorously enforced that all models use units. The potential evaluation errors we see here may be worth looking into, but looking at the failing IPOPT log above, we don't notice any evaluation errors. (If evaluation errors occurred in IPOPT, we would see a message like \"Error in AMPL evaluation\" in the IPOPT iteration log, which we don't see here.) The structural singularity looks like the most promising avenue to debug, especially as the IPOPT log displays persistent regularization coefficients that appear to be caused by a singular Jacobian.\n", - "\n", - "Let's follow the toolbox's advice and display the under and over-constrained sets." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dt.display_underconstrained_set()\n", - "dt.display_overconstrained_set()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Over and under-constrained subsystems\n", - "\n", - "Structural singularities are characterized by the [Dulmage-Mendelson decomposition][3], which partitions a system into minimal over and under-constrained subsystems. These subsystems contain the potentially unmatched constraints and variables, respectively. Here, \"unmatched\" effectively means \"causing a singularity\". [Pothen and Fan][4] give a good overview of the Dulmage-Mendelsohn decomposition and [Parker et al.][5] give several examples.\n", - "\n", - "[3]: https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/coverings-of-bipartite-graphs/413735C5888AB542B92D0C4F402800B1\n", - "[4]: https://dl.acm.org/doi/10.1145/98267.98287\n", - "[5]: https://www.sciencedirect.com/science/article/pii/S0098135423002533\n", - "\n", - "The most straightforward way to fix a structural singularity is to fix variables that are in the under-constrained system and deactivate constraints in the over-constrained subsystem. However, this may not be applicable for every model. For example, we may need to add variables and constraints instead. What over and under-constrained subsystems are telling us is that something is wrong with our modeling assumptions. The particular fix that is appropriate will depend heavily on the model.\n", - "\n", - "If the above output gives us any clues, we can go ahead and start trying to fix things. However, suppose it doesn't. A good strategy is to try to break down the model into smaller, square subsystems that we think should be nonsingular. For a dynamic model like this one, a good candidate is the subsystem of variables and equations at each point in time." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# We've included a utility function to extract the subsystem of variables and equations\n", - "# at a specified point in time. If you are dealing with a process flowsheet, here you\n", - "# may want to extract each unit model individually.\n", - "from idaes_examples.mod.diagnostics.util import get_subsystem_at_time\n", - "\n", - "# TemporarySubsystemManager is used to temporarily fix some variables to make sure\n", - "# we're debugging a square subsystem.\n", - "from pyomo.util.subsystems import TemporarySubsystemManager\n", - "\n", - "# Let's start with t=0. Really, we'd probably want to do this in a loop and try all time points.\n", - "t0 = model.fs.time.first()\n", - "t_block, inputs = get_subsystem_at_time(model, model.fs.time, t0)\n", - "# We'll temporarily fix the \"inputs\" to make sure we have a square system while debugging\n", - "with TemporarySubsystemManager(to_fix=inputs):\n", - " dt = DiagnosticsToolbox(t_block)\n", - " dt.report_structural_issues()\n", - " dt.display_underconstrained_set()\n", - " dt.display_overconstrained_set()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "These over and under-constrained subsystems aren't much smaller, but now the over-constrained system decomposes into 10 small, independent blocks. These should be easier to debug.\n", - "\n", - "## Debugging the over-constrained subsystem\n", - "\n", - "To debug the over-constrained subsystem, we look for a constraint that is not calculating any of the variables in the subsystem. The \"odd constraint out\" here seems to be the mass fraction sum, `sum_component_eqn`. This must \"solve for\" one of the mass fractions, which means one of the `material_holdup_calculation` equations must \"solve for\" particle density rather than mass fraction. If we want to see what variables are contained in one of these constraints, we can always `pprint` it:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model.fs.MB.solid_phase.properties[0, 0.9].sum_component_eqn.pprint()\n", - "model.fs.MB.solid_phase.material_holdup_calculation[0, 0.9, \"Sol\", \"Fe3O4\"].pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If one of these `material_holdup_calculation` equations is solving for particle density, then that means that `density_particle_constraint` is not actually solving for density. Maybe `density_particle_constraint` is over-determining our system?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model.fs.MB.solid_phase.properties[0, 0.9].density_particle_constraint.pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But this looks like a very reasonable constraint. After some thought, which admittedly requires some knowledge of the process we are modeling, we decide that the right approach is to make particle porosity a variable. We have assumed that porosity is constant, but this overconstrained subsystem is telling us that this assumption is not valid.\n", - "\n", - "### How did we figure this out? (OKAY TO SKIP)\n", - "Adding a variable (including by unfixing a parameter) to an over-constraining constraint will often remove that constraint from the over-constrained subsystem. But how did we know that this was the right thing to do? If you just care about using the diagnostics toolbox to extract as much information about a singularity as possible, you can skip this section. But if you are curious how we determined that particle porosity should not be constant, read on.\n", - "\n", - "`dens_mass_skeletal` is determined purely by the composition of solid, which is made up of Fe2O3, Fe3O4, and inert Ti2O3. We can view the `density_skeletal_constraint` as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model.fs.MB.solid_phase.properties[0, 0.9].density_skeletal_constraint.pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we assume a constant particle porosity, this gives us a particle porosity that is also uniquely determined by the solid composition by the above `density_particle_constraint`:\n", - "```\n", - "dens_mass_particle = (1 - porosity) * dens_mass_skeletal\n", - "```\n", - "But the composition of the solid is determined by the (somewhat misnamed) `material_holdup_calculation` constraints. While the name of these constraints implies they \"calculate holdups,\" material holdups at $t=0$ are fixed as initial conditions (because holdups are the differential variables with respect to time in this model). At other time points, we assume that holdups are specified by differential and discretization equations of the model. This means that the `material_holdup_calculation` constraints actually calculate the solid phase mass fractions *from* the holdups. But as we hinted at above, the 4-by-4 system of holdup calculation constraints, `sum_component_eqn` (which simply constrains the sum of mass fractions to be one), mass fractions, and `dens_mass_particle`, uniquely solve for `dens_mass_particle` *as well as* the mass fractions. But if the holdup variables can be used to solve for the mass fractions, they *also* solve for `dens_mass_skeletal`. So both sides of `density_particle_constraint` are already uniquely determined! This implies that we don't need this constraint at all, but we also know that this constraint has to hold. Something has to give. With this in mind, we actually have several options for how to resolve this overspecification:\n", - "1. Remove `density_particle_constraint`. Then we would have `dens_mass_particle` and `dens_mass_skeletal`, with no relationship between them. This would leave us with a mathematically sound model, but with densities that contradict constant particle porosity that we have assumed (which is used elsewhere in the reaction rate calculation equations).\n", - "2. Remove the constraints that calculate skeletal density from composition.\n", - "3. Relax particle porosity from a parameter to a variable.\n", - "\n", - "Options 2 and 3 are equally valid. We've chosen option 3, meaning we assume that the particle \"evolves\" with a density that is well determined from its constituent species, rather than changing density to accommodate whatever mass it accumulates via reaction without altering its volume. This exercise should remind us that all mathematical modeling is somewhat of an art. In the process of choosing the \"least bad\" model, it is fairly easy to over or under-specify something by making the wrong combination of assumptions, and the Dulmage-Mendelsohn decomposition is a great tool for detecting when this has happened.\n", - "\n", - "## Debugging the under-constrained subsystem\n", - "\n", - "The under-constrained system does not decompose into independent subsystems, making it more difficult to debug. However, by inspection, we notice that the same constraints and variables seem to be repeated at each point in the length domain. For each point in space, the \"odd variable out\" seems to be the total flow rate `flow_mass`. Using some intuition about this particular process model, we may conclude that this variable should be calculated from the solid phase velocity, which is constant. We expect an equation that looks like\n", - "```\n", - "flow_mass == velocity * area * density\n", - "```\n", - "\n", - "But this equation isn't here... so we need to add it.\n", - "\n", - "# Fixing the model\n", - "\n", - "We'll start by creating a fresh copy of the model, so we don't accidentally rely on IPOPT's point of termination." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2 = make_model()\n", - "# Make the model square while we try to fix the structural singularity\n", - "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.fix()\n", - "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.fix()\n", - "model2.piecewise_constant_constraints.deactivate()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding a new particle porosity variable" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2.fs.MB.particle_porosity = pyo.Var(\n", - " model2.fs.time,\n", - " model2.fs.MB.length_domain,\n", - " initialize=model2.fs.solid_properties.particle_porosity.value,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we need to replace the old particle porosity parameter with this new variable. Luckily, the old parameter is actually implemented as a fixed variable, so we can easily identify all the constraints it participates in with `IncidenceGraphInterface`:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.contrib.incidence_analysis import IncidenceGraphInterface\n", - "\n", - "igraph = IncidenceGraphInterface(model2, include_fixed=True)\n", - "porosity_param = model2.fs.solid_properties.particle_porosity\n", - "print(f\"Constraints containing {porosity_param.name}:\")\n", - "for con in igraph.get_adjacent_to(porosity_param):\n", - " print(f\" {con.name}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Particle porosity only appears in two constraints: the density constraint we saw above, and the reaction rate equation. We can replace particle porosity in these constraints using Pyomo's `replace_expressions` function:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.core.expr import replace_expressions\n", - "\n", - "for t, x in model2.fs.time * model2.fs.MB.length_domain:\n", - " substitution_map = {id(porosity_param): model2.fs.MB.particle_porosity[t, x]}\n", - " sp = model2.fs.MB.solid_phase\n", - " cons = [\n", - " sp.properties[t, x].density_particle_constraint,\n", - " sp.reactions[t, x].gen_rate_expression[\"R1\"],\n", - " ]\n", - " for con in cons:\n", - " con.set_value(\n", - " replace_expressions(\n", - " con.expr, substitution_map, descend_into_named_expressions=True\n", - " )\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have added a new `particle_porosity` variable, and are using it in the relevant locations. Now we can move on to adding the missing constraint.\n", - "\n", - "## Adding a new density-flow rate constraint" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@model2.fs.MB.Constraint(model2.fs.time, model2.fs.MB.length_domain)\n", - "def density_flowrate_constraint(mb, t, x):\n", - " return (\n", - " mb.velocity_superficial_solid[t]\n", - " * mb.bed_area\n", - " * mb.solid_phase.properties[t, x].dens_mass_particle\n", - " == mb.solid_phase.properties[t, x].flow_mass\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Testing the new model\n", - "\n", - "Let's see if these changes have fixed our model." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Construct a new diagnostics toolbox\n", - "dt = DiagnosticsToolbox(model2)\n", - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The structural singularity seems to be gone! Let's unfix our degrees of freedom and see if we can solve." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.unfix()\n", - "model2.fs.MB.gas_phase.properties[0, 0].flow_mol.fix()\n", - "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.unfix()\n", - "model2.fs.MB.solid_phase.properties[0, 1].flow_mass.fix()\n", - "model2.piecewise_constant_constraints.activate()\n", - "\n", - "res = solver.solve(model2, tee=True)\n", - "print(f\"Converged successfully: {pyo.check_optimal_termination(res)}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This doesn't look much better. What's going on? I thought we just fixed the issue?\n", - "\n", - "# Debugging the model, take two\n", - "\n", - "Let's check the diagnostics toolbox for numerical issues." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.fix()\n", - "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.fix()\n", - "model2.piecewise_constant_constraints.deactivate()\n", - "dt.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looks like we have \"parallel constraints\", which are another form of singularity. Let's follow the toolbox's advice to see what they are." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dt.display_near_parallel_constraints()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`density_flowrate_constraint` is the constraint that we added. What is `solid_super_vel`?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2.fs.MB.solid_super_vel[0].pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is the same as the constraint we just added! Looks like that constraint already existed at the solid inlet. We can easily deactivate the new constraints at this point in the length domain:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2.fs.MB.density_flowrate_constraint[:, 1.0].deactivate();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But now we have removed constraints from a square model, and expect to have degrees of freedom. Let's see what the diagnostics toolbox has to say." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dt = DiagnosticsToolbox(model2)\n", - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But this doesn't help us very much. We have some extraneous degrees of freedom, but with 8881 variables in the under-constrained subsystem, it will be difficult to tell what they are. After some thought (and model-specific intuition), we land on the conclusion that maybe we need to fix particle porosity at the solid inlet. Here, total flow rate is specified, and the `solid_super_vel` equation is using it to compute velocity. So we need `dens_mass_particle` to be known, which means we need `particle_porosity` to be fixed." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2.fs.MB.particle_porosity[:, 1.0].fix();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's run the diagnostics toolbox as a sanity check." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dt = DiagnosticsToolbox(model2)\n", - "dt.report_structural_issues()\n", - "dt.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looks good! Now we can release our degrees of freedom and try to solve again." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.unfix()\n", - "model2.fs.MB.gas_phase.properties[0, 0].flow_mol.fix()\n", - "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.unfix()\n", - "model2.fs.MB.solid_phase.properties[0, 1].flow_mass.fix()\n", - "model2.piecewise_constant_constraints.activate()\n", - "\n", - "res = solver.solve(model2, tee=True)\n", - "print(f\"Converged successfully: {pyo.check_optimal_termination(res)}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It worked! For the simple optimization problem we have set up, this solve looks a lot more like what we expect.\n", - "\n", - "# Takeaways from this tutorial\n", - "What have we learned?\n", - "1. IPOPT using non-zero regularization coefficients hints at a singular Jacobian (especially when \"L\"/\"l\" diagnostic tags are present).\n", - "2. When this happens, start by calling `report_structural_issues` to check for a structural singularity. If this looks good, call `report_numerical_issues` to check for a numerical singularity.\n", - "3. When debugging a structural singularity, decomposing a problem into subsystems that each should be nonsingular (e.g. unit models or points in time) is very useful.\n", - "4. The solution to a structural singularity is often to relax a fixed parameter, add a constraint that was forgotten, remove a constraint that was redundant, or fix an extraneous degree of freedom.\n", - "5. Model-specific intuition is usually necessary to diagnose and fix modeling issues. (If you're an algorithm developer, learn about the models you're using! If you don't understand your models, you don't understand your algorithms!)\n", - "6. A modeling issue doesn't necessarily have a unique solution. This is especially true when the issue involves invalid assumptions.\n", - "7. Debugging is an iterative process — fixing one issue can introduce another." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# References\n", - "\n", - "[[1]] Okoli et al., \"A framework for the optimization of chemical looping combustion processes\". *Powder Tech*, 2020.\n", - "\n", - "[[2]] Parker and Biegler, \"Dynamic modeling and nonlinear model predictive control of a moving bed chemical looping combustion reactor\". *IFAC PapersOnline*, 2022.\n", - "\n", - "[[3]] Dulmage and Mendelsohn, \"Coverings of bipartite graphs\". *Can J. Math.*, 1958.\n", - "\n", - "[[4]] Pothen and Fan, \"Computing the block triangular form of a sparse matrix\". *ACM Trans. Math. Softw.*, 1990.\n", - "\n", - "[[5]] Parker et al., \"Applications of the Dulmage-Mendelsohn decomposition for debugging nonlinear optimization problems\". *Comp. Chem. Eng.*, 2023.\n", - "\n", - "[1]: https://www.sciencedirect.com/science/article/pii/S0032591019302803\n", - "[2]: https://www.sciencedirect.com/science/article/pii/S2405896322008825\n", - "[3]: https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/coverings-of-bipartite-graphs/413735C5888AB542B92D0C4F402800B1\n", - "[4]: https://dl.acm.org/doi/10.1145/98267.98287\n", - "[5]: https://www.sciencedirect.com/science/article/pii/S0098135423002533\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Debugging a Structural Singularity\n", + "===========================\n", + "Author: Robert Parker\\\n", + "Maintainer: Robert Parker\\\n", + "Updated: 2024-06-10\n", + "\n", + "In this tutorial, we will use the [IDAES Diagnostics Toolbox](https://idaes-pse.readthedocs.io/en/2.4.0/explanations/model_diagnostics/index.html#diagnostics-toolbox)\n", + "to diagnose and fix a structural singularity that is preventing us from solving an optimization problem." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "# Constructing the model\n", + "\n", + "Suppose a collaborator has given us a model to work with. They give us a square model and tell us what the degrees of freedom are. We construct an optimization problem and try to solve it. In this tutorial, we don't want to worry too much about the details that go into constructing the model. This has been provided in the `idaes_examples.mod.diagnostics.gas_solid_contactors.model` module.\n", + "\n", + "## Model details (OKAY TO SKIP)\n", + "\n", + "The model we are trying to optimize is a dynamic model of a moving bed chemical looping combustion reactor. The model has been described by [Okoli et al.][1] and [Parker and Biegler][2]. This is a gas-solid reactor with counter-current flow. The degrees of freedom are gas and solid inlet flow rates, and we are trying to minimize the deviation from a desired operating point via a least-squares objective function.\n", + "\n", + "[1]: https://www.sciencedirect.com/science/article/pii/S0032591019302803\n", + "[2]: https://www.sciencedirect.com/science/article/pii/S2405896322008825\n", + "\n", + "Again, we don't want to worry too much about the model. The `make_model` function will construct the optimization problem that we want to solve, and whenever we do something model-specific, we will explicitly make note of it." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Trying to solve the original model\n", + "\n", + "With that out of the way, let's construct the model and try to solve it!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes_examples.mod.diagnostics.gas_solid_contactors.model import make_model\n", + "import logging\n", + "\n", + "# We'll turn off IDAES logging. This is not recommended in general, but this is an old model\n", + "# (from IDAES 1.7) that has been ported to work with the current version of IDAES. It generates\n", + "# a lot of warnings.\n", + "logging.getLogger(\"idaes\").setLevel(logging.CRITICAL)\n", + "# We'll also turn off Pyomo logging. This will suppress unit inconsistency warnings later,\n", + "# which otherwise flood our console and slow down this notebook. We have unit inconsistencies\n", + "# as, in IDAES 1.7, we didn't rigorously enforce that models use units.\n", + "logging.getLogger(\"pyomo\").setLevel(logging.CRITICAL)\n", + "\n", + "# This constructs a dynamic model with degrees of freedom and an objective function.\n", + "model = make_model()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before trying to solve the model, let's make sure it conforms to our expectations, i.e. it (a) has degrees of freedom and (b) is well-initialized to a feasible point." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import some useful utilities from the model_statistics module.\n", + "# Degrees of freedom and constraint residuals are always good things to check before\n", + "# trying to solve a simulation or optimization problem.\n", + "from idaes.core.util.model_statistics import degrees_of_freedom, large_residuals_set\n", + "\n", + "dof = degrees_of_freedom(model)\n", + "print(f\"Degrees of freedom: {dof}\")\n", + "has_large_residuals = bool(large_residuals_set(model, tol=1e-5))\n", + "print(f\"Has large residuals: {has_large_residuals}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the above `make_model` function, the model has been \"solved\" to arrive at a feasible point, then degrees of freedom have been unfixed and an objective function has been added to give us an optimization problem. This looks good so far, so let's try to solve the optimization problem." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import pyomo.environ for access to solvers\n", + "import pyomo.environ as pyo\n", + "\n", + "solver = pyo.SolverFactory(\"ipopt\")\n", + "solver.options[\"max_iter\"] = 20\n", + "solver.options[\"print_user_options\"] = \"yes\"\n", + "solver.options[\"OF_print_info_string\"] = \"yes\"\n", + "res = solver.solve(model, tee=True)\n", + "print(f\"Converged successfully: {pyo.check_optimal_termination(res)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "IPOPT fails to solve the optimization problem... You can try increasing the iteration limit, but it is very unlikely that this model will ever solve. A telltale sign that something is wrong with our model is the persistence of regularization coefficients, that is, numbers in the `lg(rg)` column of the IPOPT log. These coefficients can have multiple causes. One is that the constraint Jacobian (partial derivative matrix) is singular, which indicates a problem with our model. We have set the `print_info_string` option in IPOPT to display \"diagnostic tags\" to help interpret these regularization coefficients. The \"L\" and \"l\" diagnostic tags, which appear repeatedly, indicate that the Jacobian is singular. For more information on IPOPT diagnostic tags, see the IPOPT [documentation](https://coin-or.github.io/Ipopt/OUTPUT.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Debugging the original model\n", + "\n", + "Let's run the diagnostics toolbox on the model and see what it has to say.\n", + "\n", + "For good practice, we'll first make sure the model we're debugging is square. Remember that we're assuming we already know how to toggle degrees of freedom in our model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix gas and solid flow rates at their respective inlets\n", + "model.fs.MB.gas_phase.properties[:, 0].flow_mol.fix()\n", + "model.fs.MB.solid_phase.properties[:, 1].flow_mass.fix()\n", + "# Part of our optimization problem was a set of constraints to enforce piecewise\n", + "# constant control inputs. We need to deactivate these as well.\n", + "model.piecewise_constant_constraints.deactivate()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can run the diagnostics toolbox." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.util.model_diagnostics import DiagnosticsToolbox\n", + "\n", + "dt = DiagnosticsToolbox(model)\n", + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's look at the warnings we got:\n", + "- Inconsistent units\n", + "- Structural singularity\n", + "- Potential evaluation errors\n", + "\n", + "We'll ignore the inconsistent units. The property package and unit model here were extracted from IDAES 1.7, before we rigorously enforced that all models use units. The potential evaluation errors we see here may be worth looking into, but looking at the failing IPOPT log above, we don't notice any evaluation errors. (If evaluation errors occurred in IPOPT, we would see a message like \"Error in AMPL evaluation\" in the IPOPT iteration log, which we don't see here.) The structural singularity looks like the most promising avenue to debug, especially as the IPOPT log displays persistent regularization coefficients that appear to be caused by a singular Jacobian.\n", + "\n", + "Let's follow the toolbox's advice and display the under and over-constrained sets." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dt.display_underconstrained_set()\n", + "dt.display_overconstrained_set()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Over and under-constrained subsystems\n", + "\n", + "Structural singularities are characterized by the [Dulmage-Mendelson decomposition][3], which partitions a system into minimal over and under-constrained subsystems. These subsystems contain the potentially unmatched constraints and variables, respectively. Here, \"unmatched\" effectively means \"causing a singularity\". [Pothen and Fan][4] give a good overview of the Dulmage-Mendelsohn decomposition and [Parker et al.][5] give several examples.\n", + "\n", + "[3]: https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/coverings-of-bipartite-graphs/413735C5888AB542B92D0C4F402800B1\n", + "[4]: https://dl.acm.org/doi/10.1145/98267.98287\n", + "[5]: https://www.sciencedirect.com/science/article/pii/S0098135423002533\n", + "\n", + "The most straightforward way to fix a structural singularity is to fix variables that are in the under-constrained system and deactivate constraints in the over-constrained subsystem. However, this may not be applicable for every model. For example, we may need to add variables and constraints instead. What over and under-constrained subsystems are telling us is that something is wrong with our modeling assumptions. The particular fix that is appropriate will depend heavily on the model.\n", + "\n", + "If the above output gives us any clues, we can go ahead and start trying to fix things. However, suppose it doesn't. A good strategy is to try to break down the model into smaller, square subsystems that we think should be nonsingular. For a dynamic model like this one, a good candidate is the subsystem of variables and equations at each point in time." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# We've included a utility function to extract the subsystem of variables and equations\n", + "# at a specified point in time. If you are dealing with a process flowsheet, here you\n", + "# may want to extract each unit model individually.\n", + "from idaes_examples.mod.diagnostics.util import get_subsystem_at_time\n", + "\n", + "# TemporarySubsystemManager is used to temporarily fix some variables to make sure\n", + "# we're debugging a square subsystem.\n", + "from pyomo.util.subsystems import TemporarySubsystemManager\n", + "\n", + "# Let's start with t=0. Really, we'd probably want to do this in a loop and try all time points.\n", + "t0 = model.fs.time.first()\n", + "t_block, inputs = get_subsystem_at_time(model, model.fs.time, t0)\n", + "# We'll temporarily fix the \"inputs\" to make sure we have a square system while debugging\n", + "with TemporarySubsystemManager(to_fix=inputs):\n", + " dt = DiagnosticsToolbox(t_block)\n", + " dt.report_structural_issues()\n", + " dt.display_underconstrained_set()\n", + " dt.display_overconstrained_set()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These over and under-constrained subsystems aren't much smaller, but now the over-constrained system decomposes into 10 small, independent blocks. These should be easier to debug.\n", + "\n", + "## Debugging the over-constrained subsystem\n", + "\n", + "To debug the over-constrained subsystem, we look for a constraint that is not calculating any of the variables in the subsystem. The \"odd constraint out\" here seems to be the mass fraction sum, `sum_component_eqn`. This must \"solve for\" one of the mass fractions, which means one of the `material_holdup_calculation` equations must \"solve for\" particle density rather than mass fraction. If we want to see what variables are contained in one of these constraints, we can always `pprint` it:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fs.MB.solid_phase.properties[0, 0.9].sum_component_eqn.pprint()\n", + "model.fs.MB.solid_phase.material_holdup_calculation[0, 0.9, \"Sol\", \"Fe3O4\"].pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If one of these `material_holdup_calculation` equations is solving for particle density, then that means that `density_particle_constraint` is not actually solving for density. Maybe `density_particle_constraint` is over-determining our system?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fs.MB.solid_phase.properties[0, 0.9].density_particle_constraint.pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But this looks like a very reasonable constraint. After some thought, which admittedly requires some knowledge of the process we are modeling, we decide that the right approach is to make particle porosity a variable. We have assumed that porosity is constant, but this overconstrained subsystem is telling us that this assumption is not valid.\n", + "\n", + "### How did we figure this out? (OKAY TO SKIP)\n", + "Adding a variable (including by unfixing a parameter) to an over-constraining constraint will often remove that constraint from the over-constrained subsystem. But how did we know that this was the right thing to do? If you just care about using the diagnostics toolbox to extract as much information about a singularity as possible, you can skip this section. But if you are curious how we determined that particle porosity should not be constant, read on.\n", + "\n", + "`dens_mass_skeletal` is determined purely by the composition of solid, which is made up of Fe2O3, Fe3O4, and inert Ti2O3. We can view the `density_skeletal_constraint` as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fs.MB.solid_phase.properties[0, 0.9].density_skeletal_constraint.pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we assume a constant particle porosity, this gives us a particle porosity that is also uniquely determined by the solid composition by the above `density_particle_constraint`:\n", + "```\n", + "dens_mass_particle = (1 - porosity) * dens_mass_skeletal\n", + "```\n", + "But the composition of the solid is determined by the (somewhat misnamed) `material_holdup_calculation` constraints. While the name of these constraints implies they \"calculate holdups,\" material holdups at $t=0$ are fixed as initial conditions (because holdups are the differential variables with respect to time in this model). At other time points, we assume that holdups are specified by differential and discretization equations of the model. This means that the `material_holdup_calculation` constraints actually calculate the solid phase mass fractions *from* the holdups. But as we hinted at above, the 4-by-4 system of holdup calculation constraints, `sum_component_eqn` (which simply constrains the sum of mass fractions to be one), mass fractions, and `dens_mass_particle`, uniquely solve for `dens_mass_particle` *as well as* the mass fractions. But if the holdup variables can be used to solve for the mass fractions, they *also* solve for `dens_mass_skeletal`. So both sides of `density_particle_constraint` are already uniquely determined! This implies that we don't need this constraint at all, but we also know that this constraint has to hold. Something has to give. With this in mind, we actually have several options for how to resolve this overspecification:\n", + "1. Remove `density_particle_constraint`. Then we would have `dens_mass_particle` and `dens_mass_skeletal`, with no relationship between them. This would leave us with a mathematically sound model, but with densities that contradict constant particle porosity that we have assumed (which is used elsewhere in the reaction rate calculation equations).\n", + "2. Remove the constraints that calculate skeletal density from composition.\n", + "3. Relax particle porosity from a parameter to a variable.\n", + "\n", + "Options 2 and 3 are equally valid. We've chosen option 3, meaning we assume that the particle \"evolves\" with a density that is well determined from its constituent species, rather than changing density to accommodate whatever mass it accumulates via reaction without altering its volume. This exercise should remind us that all mathematical modeling is somewhat of an art. In the process of choosing the \"least bad\" model, it is fairly easy to over or under-specify something by making the wrong combination of assumptions, and the Dulmage-Mendelsohn decomposition is a great tool for detecting when this has happened.\n", + "\n", + "## Debugging the under-constrained subsystem\n", + "\n", + "The under-constrained system does not decompose into independent subsystems, making it more difficult to debug. However, by inspection, we notice that the same constraints and variables seem to be repeated at each point in the length domain. For each point in space, the \"odd variable out\" seems to be the total flow rate `flow_mass`. Using some intuition about this particular process model, we may conclude that this variable should be calculated from the solid phase velocity, which is constant. We expect an equation that looks like\n", + "```\n", + "flow_mass == velocity * area * density\n", + "```\n", + "\n", + "But this equation isn't here... so we need to add it.\n", + "\n", + "# Fixing the model\n", + "\n", + "We'll start by creating a fresh copy of the model, so we don't accidentally rely on IPOPT's point of termination." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2 = make_model()\n", + "# Make the model square while we try to fix the structural singularity\n", + "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.fix()\n", + "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.fix()\n", + "model2.piecewise_constant_constraints.deactivate()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding a new particle porosity variable" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2.fs.MB.particle_porosity = pyo.Var(\n", + " model2.fs.time,\n", + " model2.fs.MB.length_domain,\n", + " initialize=model2.fs.solid_properties.particle_porosity.value,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we need to replace the old particle porosity parameter with this new variable. Luckily, the old parameter is actually implemented as a fixed variable, so we can easily identify all the constraints it participates in with `IncidenceGraphInterface`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.contrib.incidence_analysis import IncidenceGraphInterface\n", + "\n", + "igraph = IncidenceGraphInterface(model2, include_fixed=True)\n", + "porosity_param = model2.fs.solid_properties.particle_porosity\n", + "print(f\"Constraints containing {porosity_param.name}:\")\n", + "for con in igraph.get_adjacent_to(porosity_param):\n", + " print(f\" {con.name}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Particle porosity only appears in two constraints: the density constraint we saw above, and the reaction rate equation. We can replace particle porosity in these constraints using Pyomo's `replace_expressions` function:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.core.expr import replace_expressions\n", + "\n", + "for t, x in model2.fs.time * model2.fs.MB.length_domain:\n", + " substitution_map = {id(porosity_param): model2.fs.MB.particle_porosity[t, x]}\n", + " sp = model2.fs.MB.solid_phase\n", + " cons = [\n", + " sp.properties[t, x].density_particle_constraint,\n", + " sp.reactions[t, x].gen_rate_expression[\"R1\"],\n", + " ]\n", + " for con in cons:\n", + " con.set_value(\n", + " replace_expressions(\n", + " con.expr, substitution_map, descend_into_named_expressions=True\n", + " )\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have added a new `particle_porosity` variable, and are using it in the relevant locations. Now we can move on to adding the missing constraint.\n", + "\n", + "## Adding a new density-flow rate constraint" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@model2.fs.MB.Constraint(model2.fs.time, model2.fs.MB.length_domain)\n", + "def density_flowrate_constraint(mb, t, x):\n", + " return (\n", + " mb.velocity_superficial_solid[t]\n", + " * mb.bed_area\n", + " * mb.solid_phase.properties[t, x].dens_mass_particle\n", + " == mb.solid_phase.properties[t, x].flow_mass\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Testing the new model\n", + "\n", + "Let's see if these changes have fixed our model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Construct a new diagnostics toolbox\n", + "dt = DiagnosticsToolbox(model2)\n", + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The structural singularity seems to be gone! Let's unfix our degrees of freedom and see if we can solve." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.unfix()\n", + "model2.fs.MB.gas_phase.properties[0, 0].flow_mol.fix()\n", + "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.unfix()\n", + "model2.fs.MB.solid_phase.properties[0, 1].flow_mass.fix()\n", + "model2.piecewise_constant_constraints.activate()\n", + "\n", + "res = solver.solve(model2, tee=True)\n", + "print(f\"Converged successfully: {pyo.check_optimal_termination(res)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This doesn't look much better. What's going on? I thought we just fixed the issue?\n", + "\n", + "# Debugging the model, take two\n", + "\n", + "Let's check the diagnostics toolbox for numerical issues." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.fix()\n", + "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.fix()\n", + "model2.piecewise_constant_constraints.deactivate()\n", + "dt.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looks like we have \"parallel constraints\", which are another form of singularity. Let's follow the toolbox's advice to see what they are." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dt.display_near_parallel_constraints()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`density_flowrate_constraint` is the constraint that we added. What is `solid_super_vel`?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2.fs.MB.solid_super_vel[0].pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is the same as the constraint we just added! Looks like that constraint already existed at the solid inlet. We can easily deactivate the new constraints at this point in the length domain:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2.fs.MB.density_flowrate_constraint[:, 1.0].deactivate();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But now we have removed constraints from a square model, and expect to have degrees of freedom. Let's see what the diagnostics toolbox has to say." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dt = DiagnosticsToolbox(model2)\n", + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But this doesn't help us very much. We have some extraneous degrees of freedom, but with 8881 variables in the under-constrained subsystem, it will be difficult to tell what they are. After some thought (and model-specific intuition), we land on the conclusion that maybe we need to fix particle porosity at the solid inlet. Here, total flow rate is specified, and the `solid_super_vel` equation is using it to compute velocity. So we need `dens_mass_particle` to be known, which means we need `particle_porosity` to be fixed." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2.fs.MB.particle_porosity[:, 1.0].fix();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's run the diagnostics toolbox as a sanity check." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dt = DiagnosticsToolbox(model2)\n", + "dt.report_structural_issues()\n", + "dt.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looks good! Now we can release our degrees of freedom and try to solve again." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.unfix()\n", + "model2.fs.MB.gas_phase.properties[0, 0].flow_mol.fix()\n", + "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.unfix()\n", + "model2.fs.MB.solid_phase.properties[0, 1].flow_mass.fix()\n", + "model2.piecewise_constant_constraints.activate()\n", + "\n", + "res = solver.solve(model2, tee=True)\n", + "print(f\"Converged successfully: {pyo.check_optimal_termination(res)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It worked! For the simple optimization problem we have set up, this solve looks a lot more like what we expect.\n", + "\n", + "# Takeaways from this tutorial\n", + "What have we learned?\n", + "1. IPOPT using non-zero regularization coefficients hints at a singular Jacobian (especially when \"L\"/\"l\" diagnostic tags are present).\n", + "2. When this happens, start by calling `report_structural_issues` to check for a structural singularity. If this looks good, call `report_numerical_issues` to check for a numerical singularity.\n", + "3. When debugging a structural singularity, decomposing a problem into subsystems that each should be nonsingular (e.g. unit models or points in time) is very useful.\n", + "4. The solution to a structural singularity is often to relax a fixed parameter, add a constraint that was forgotten, remove a constraint that was redundant, or fix an extraneous degree of freedom.\n", + "5. Model-specific intuition is usually necessary to diagnose and fix modeling issues. (If you're an algorithm developer, learn about the models you're using! If you don't understand your models, you don't understand your algorithms!)\n", + "6. A modeling issue doesn't necessarily have a unique solution. This is especially true when the issue involves invalid assumptions.\n", + "7. Debugging is an iterative process — fixing one issue can introduce another." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# References\n", + "\n", + "[[1]] Okoli et al., \"A framework for the optimization of chemical looping combustion processes\". *Powder Tech*, 2020.\n", + "\n", + "[[2]] Parker and Biegler, \"Dynamic modeling and nonlinear model predictive control of a moving bed chemical looping combustion reactor\". *IFAC PapersOnline*, 2022.\n", + "\n", + "[[3]] Dulmage and Mendelsohn, \"Coverings of bipartite graphs\". *Can J. Math.*, 1958.\n", + "\n", + "[[4]] Pothen and Fan, \"Computing the block triangular form of a sparse matrix\". *ACM Trans. Math. Softw.*, 1990.\n", + "\n", + "[[5]] Parker et al., \"Applications of the Dulmage-Mendelsohn decomposition for debugging nonlinear optimization problems\". *Comp. Chem. Eng.*, 2023.\n", + "\n", + "[1]: https://www.sciencedirect.com/science/article/pii/S0032591019302803\n", + "[2]: https://www.sciencedirect.com/science/article/pii/S2405896322008825\n", + "[3]: https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/coverings-of-bipartite-graphs/413735C5888AB542B92D0C4F402800B1\n", + "[4]: https://dl.acm.org/doi/10.1145/98267.98287\n", + "[5]: https://www.sciencedirect.com/science/article/pii/S0098135423002533\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/diagnostics/structural_singularity_usr.ipynb b/idaes_examples/notebooks/docs/diagnostics/structural_singularity_usr.ipynb index 29eb4cc5..8e0cdda0 100644 --- a/idaes_examples/notebooks/docs/diagnostics/structural_singularity_usr.ipynb +++ b/idaes_examples/notebooks/docs/diagnostics/structural_singularity_usr.ipynb @@ -1,701 +1,727 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Debugging a Structural Singularity\n", - "===========================\n", - "Author: Robert Parker\\\n", - "Maintainer: Robert Parker\\\n", - "Updated: 2024-06-10\n", - "\n", - "In this tutorial, we will use the [IDAES Diagnostics Toolbox](https://idaes-pse.readthedocs.io/en/2.4.0/explanations/model_diagnostics/index.html#diagnostics-toolbox)\n", - "to diagnose and fix a structural singularity that is preventing us from solving an optimization problem." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "jp-MarkdownHeadingCollapsed": true - }, - "source": [ - "# Constructing the model\n", - "\n", - "Suppose a collaborator has given us a model to work with. They give us a square model and tell us what the degrees of freedom are. We construct an optimization problem and try to solve it. In this tutorial, we don't want to worry too much about the details that go into constructing the model. This has been provided in the `idaes_examples.mod.diagnostics.gas_solid_contactors.model` module.\n", - "\n", - "## Model details (OKAY TO SKIP)\n", - "\n", - "The model we are trying to optimize is a dynamic model of a moving bed chemical looping combustion reactor. The model has been described by [Okoli et al.][1] and [Parker and Biegler][2]. This is a gas-solid reactor with counter-current flow. The degrees of freedom are gas and solid inlet flow rates, and we are trying to minimize the deviation from a desired operating point via a least-squares objective function.\n", - "\n", - "[1]: https://www.sciencedirect.com/science/article/pii/S0032591019302803\n", - "[2]: https://www.sciencedirect.com/science/article/pii/S2405896322008825\n", - "\n", - "Again, we don't want to worry too much about the model. The `make_model` function will construct the optimization problem that we want to solve, and whenever we do something model-specific, we will explicitly make note of it." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Trying to solve the original model\n", - "\n", - "With that out of the way, let's construct the model and try to solve it!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes_examples.mod.diagnostics.gas_solid_contactors.model import make_model\n", - "import logging\n", - "\n", - "# We'll turn off IDAES logging. This is not recommended in general, but this is an old model\n", - "# (from IDAES 1.7) that has been ported to work with the current version of IDAES. It generates\n", - "# a lot of warnings.\n", - "logging.getLogger(\"idaes\").setLevel(logging.CRITICAL)\n", - "# We'll also turn off Pyomo logging. This will suppress unit inconsistency warnings later,\n", - "# which otherwise flood our console and slow down this notebook. We have unit inconsistencies\n", - "# as, in IDAES 1.7, we didn't rigorously enforce that models use units.\n", - "logging.getLogger(\"pyomo\").setLevel(logging.CRITICAL)\n", - "\n", - "# This constructs a dynamic model with degrees of freedom and an objective function.\n", - "model = make_model()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Before trying to solve the model, let's make sure it conforms to our expectations, i.e. it (a) has degrees of freedom and (b) is well-initialized to a feasible point." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import some useful utilities from the model_statistics module.\n", - "# Degrees of freedom and constraint residuals are always good things to check before\n", - "# trying to solve a simulation or optimization problem.\n", - "from idaes.core.util.model_statistics import degrees_of_freedom, large_residuals_set\n", - "\n", - "dof = degrees_of_freedom(model)\n", - "print(f\"Degrees of freedom: {dof}\")\n", - "has_large_residuals = bool(large_residuals_set(model, tol=1e-5))\n", - "print(f\"Has large residuals: {has_large_residuals}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the above `make_model` function, the model has been \"solved\" to arrive at a feasible point, then degrees of freedom have been unfixed and an objective function has been added to give us an optimization problem. This looks good so far, so let's try to solve the optimization problem." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import pyomo.environ for access to solvers\n", - "import pyomo.environ as pyo\n", - "\n", - "solver = pyo.SolverFactory(\"ipopt\")\n", - "solver.options[\"max_iter\"] = 20\n", - "solver.options[\"print_user_options\"] = \"yes\"\n", - "solver.options[\"OF_print_info_string\"] = \"yes\"\n", - "res = solver.solve(model, tee=True)\n", - "print(f\"Converged successfully: {pyo.check_optimal_termination(res)}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "IPOPT fails to solve the optimization problem... You can try increasing the iteration limit, but it is very unlikely that this model will ever solve. A telltale sign that something is wrong with our model is the persistence of regularization coefficients, that is, numbers in the `lg(rg)` column of the IPOPT log. These coefficients can have multiple causes. One is that the constraint Jacobian (partial derivative matrix) is singular, which indicates a problem with our model. We have set the `print_info_string` option in IPOPT to display \"diagnostic tags\" to help interpret these regularization coefficients. The \"L\" and \"l\" diagnostic tags, which appear repeatedly, indicate that the Jacobian is singular. For more information on IPOPT diagnostic tags, see the IPOPT [documentation](https://coin-or.github.io/Ipopt/OUTPUT.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Debugging the original model\n", - "\n", - "Let's run the diagnostics toolbox on the model and see what it has to say.\n", - "\n", - "For good practice, we'll first make sure the model we're debugging is square. Remember that we're assuming we already know how to toggle degrees of freedom in our model." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix gas and solid flow rates at their respective inlets\n", - "model.fs.MB.gas_phase.properties[:, 0].flow_mol.fix()\n", - "model.fs.MB.solid_phase.properties[:, 1].flow_mass.fix()\n", - "# Part of our optimization problem was a set of constraints to enforce piecewise\n", - "# constant control inputs. We need to deactivate these as well.\n", - "model.piecewise_constant_constraints.deactivate()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we can run the diagnostics toolbox." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.util.model_diagnostics import DiagnosticsToolbox\n", - "\n", - "dt = DiagnosticsToolbox(model)\n", - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's look at the warnings we got:\n", - "- Inconsistent units\n", - "- Structural singularity\n", - "- Potential evaluation errors\n", - "\n", - "We'll ignore the inconsistent units. The property package and unit model here were extracted from IDAES 1.7, before we rigorously enforced that all models use units. The potential evaluation errors we see here may be worth looking into, but looking at the failing IPOPT log above, we don't notice any evaluation errors. (If evaluation errors occurred in IPOPT, we would see a message like \"Error in AMPL evaluation\" in the IPOPT iteration log, which we don't see here.) The structural singularity looks like the most promising avenue to debug, especially as the IPOPT log displays persistent regularization coefficients that appear to be caused by a singular Jacobian.\n", - "\n", - "Let's follow the toolbox's advice and display the under and over-constrained sets." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dt.display_underconstrained_set()\n", - "dt.display_overconstrained_set()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Over and under-constrained subsystems\n", - "\n", - "Structural singularities are characterized by the [Dulmage-Mendelson decomposition][3], which partitions a system into minimal over and under-constrained subsystems. These subsystems contain the potentially unmatched constraints and variables, respectively. Here, \"unmatched\" effectively means \"causing a singularity\". [Pothen and Fan][4] give a good overview of the Dulmage-Mendelsohn decomposition and [Parker et al.][5] give several examples.\n", - "\n", - "[3]: https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/coverings-of-bipartite-graphs/413735C5888AB542B92D0C4F402800B1\n", - "[4]: https://dl.acm.org/doi/10.1145/98267.98287\n", - "[5]: https://www.sciencedirect.com/science/article/pii/S0098135423002533\n", - "\n", - "The most straightforward way to fix a structural singularity is to fix variables that are in the under-constrained system and deactivate constraints in the over-constrained subsystem. However, this may not be applicable for every model. For example, we may need to add variables and constraints instead. What over and under-constrained subsystems are telling us is that something is wrong with our modeling assumptions. The particular fix that is appropriate will depend heavily on the model.\n", - "\n", - "If the above output gives us any clues, we can go ahead and start trying to fix things. However, suppose it doesn't. A good strategy is to try to break down the model into smaller, square subsystems that we think should be nonsingular. For a dynamic model like this one, a good candidate is the subsystem of variables and equations at each point in time." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# We've included a utility function to extract the subsystem of variables and equations\n", - "# at a specified point in time. If you are dealing with a process flowsheet, here you\n", - "# may want to extract each unit model individually.\n", - "from idaes_examples.mod.diagnostics.util import get_subsystem_at_time\n", - "\n", - "# TemporarySubsystemManager is used to temporarily fix some variables to make sure\n", - "# we're debugging a square subsystem.\n", - "from pyomo.util.subsystems import TemporarySubsystemManager\n", - "\n", - "# Let's start with t=0. Really, we'd probably want to do this in a loop and try all time points.\n", - "t0 = model.fs.time.first()\n", - "t_block, inputs = get_subsystem_at_time(model, model.fs.time, t0)\n", - "# We'll temporarily fix the \"inputs\" to make sure we have a square system while debugging\n", - "with TemporarySubsystemManager(to_fix=inputs):\n", - " dt = DiagnosticsToolbox(t_block)\n", - " dt.report_structural_issues()\n", - " dt.display_underconstrained_set()\n", - " dt.display_overconstrained_set()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "These over and under-constrained subsystems aren't much smaller, but now the over-constrained system decomposes into 10 small, independent blocks. These should be easier to debug.\n", - "\n", - "## Debugging the over-constrained subsystem\n", - "\n", - "To debug the over-constrained subsystem, we look for a constraint that is not calculating any of the variables in the subsystem. The \"odd constraint out\" here seems to be the mass fraction sum, `sum_component_eqn`. This must \"solve for\" one of the mass fractions, which means one of the `material_holdup_calculation` equations must \"solve for\" particle density rather than mass fraction. If we want to see what variables are contained in one of these constraints, we can always `pprint` it:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model.fs.MB.solid_phase.properties[0, 0.9].sum_component_eqn.pprint()\n", - "model.fs.MB.solid_phase.material_holdup_calculation[0, 0.9, \"Sol\", \"Fe3O4\"].pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If one of these `material_holdup_calculation` equations is solving for particle density, then that means that `density_particle_constraint` is not actually solving for density. Maybe `density_particle_constraint` is over-determining our system?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model.fs.MB.solid_phase.properties[0, 0.9].density_particle_constraint.pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But this looks like a very reasonable constraint. After some thought, which admittedly requires some knowledge of the process we are modeling, we decide that the right approach is to make particle porosity a variable. We have assumed that porosity is constant, but this overconstrained subsystem is telling us that this assumption is not valid.\n", - "\n", - "### How did we figure this out? (OKAY TO SKIP)\n", - "Adding a variable (including by unfixing a parameter) to an over-constraining constraint will often remove that constraint from the over-constrained subsystem. But how did we know that this was the right thing to do? If you just care about using the diagnostics toolbox to extract as much information about a singularity as possible, you can skip this section. But if you are curious how we determined that particle porosity should not be constant, read on.\n", - "\n", - "`dens_mass_skeletal` is determined purely by the composition of solid, which is made up of Fe2O3, Fe3O4, and inert Ti2O3. We can view the `density_skeletal_constraint` as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model.fs.MB.solid_phase.properties[0, 0.9].density_skeletal_constraint.pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we assume a constant particle porosity, this gives us a particle porosity that is also uniquely determined by the solid composition by the above `density_particle_constraint`:\n", - "```\n", - "dens_mass_particle = (1 - porosity) * dens_mass_skeletal\n", - "```\n", - "But the composition of the solid is determined by the (somewhat misnamed) `material_holdup_calculation` constraints. While the name of these constraints implies they \"calculate holdups,\" material holdups at $t=0$ are fixed as initial conditions (because holdups are the differential variables with respect to time in this model). At other time points, we assume that holdups are specified by differential and discretization equations of the model. This means that the `material_holdup_calculation` constraints actually calculate the solid phase mass fractions *from* the holdups. But as we hinted at above, the 4-by-4 system of holdup calculation constraints, `sum_component_eqn` (which simply constrains the sum of mass fractions to be one), mass fractions, and `dens_mass_particle`, uniquely solve for `dens_mass_particle` *as well as* the mass fractions. But if the holdup variables can be used to solve for the mass fractions, they *also* solve for `dens_mass_skeletal`. So both sides of `density_particle_constraint` are already uniquely determined! This implies that we don't need this constraint at all, but we also know that this constraint has to hold. Something has to give. With this in mind, we actually have several options for how to resolve this overspecification:\n", - "1. Remove `density_particle_constraint`. Then we would have `dens_mass_particle` and `dens_mass_skeletal`, with no relationship between them. This would leave us with a mathematically sound model, but with densities that contradict constant particle porosity that we have assumed (which is used elsewhere in the reaction rate calculation equations).\n", - "2. Remove the constraints that calculate skeletal density from composition.\n", - "3. Relax particle porosity from a parameter to a variable.\n", - "\n", - "Options 2 and 3 are equally valid. We've chosen option 3, meaning we assume that the particle \"evolves\" with a density that is well determined from its constituent species, rather than changing density to accommodate whatever mass it accumulates via reaction without altering its volume. This exercise should remind us that all mathematical modeling is somewhat of an art. In the process of choosing the \"least bad\" model, it is fairly easy to over or under-specify something by making the wrong combination of assumptions, and the Dulmage-Mendelsohn decomposition is a great tool for detecting when this has happened.\n", - "\n", - "## Debugging the under-constrained subsystem\n", - "\n", - "The under-constrained system does not decompose into independent subsystems, making it more difficult to debug. However, by inspection, we notice that the same constraints and variables seem to be repeated at each point in the length domain. For each point in space, the \"odd variable out\" seems to be the total flow rate `flow_mass`. Using some intuition about this particular process model, we may conclude that this variable should be calculated from the solid phase velocity, which is constant. We expect an equation that looks like\n", - "```\n", - "flow_mass == velocity * area * density\n", - "```\n", - "\n", - "But this equation isn't here... so we need to add it.\n", - "\n", - "# Fixing the model\n", - "\n", - "We'll start by creating a fresh copy of the model, so we don't accidentally rely on IPOPT's point of termination." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2 = make_model()\n", - "# Make the model square while we try to fix the structural singularity\n", - "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.fix()\n", - "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.fix()\n", - "model2.piecewise_constant_constraints.deactivate()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding a new particle porosity variable" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2.fs.MB.particle_porosity = pyo.Var(\n", - " model2.fs.time,\n", - " model2.fs.MB.length_domain,\n", - " initialize=model2.fs.solid_properties.particle_porosity.value,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we need to replace the old particle porosity parameter with this new variable. Luckily, the old parameter is actually implemented as a fixed variable, so we can easily identify all the constraints it participates in with `IncidenceGraphInterface`:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.contrib.incidence_analysis import IncidenceGraphInterface\n", - "\n", - "igraph = IncidenceGraphInterface(model2, include_fixed=True)\n", - "porosity_param = model2.fs.solid_properties.particle_porosity\n", - "print(f\"Constraints containing {porosity_param.name}:\")\n", - "for con in igraph.get_adjacent_to(porosity_param):\n", - " print(f\" {con.name}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Particle porosity only appears in two constraints: the density constraint we saw above, and the reaction rate equation. We can replace particle porosity in these constraints using Pyomo's `replace_expressions` function:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.core.expr import replace_expressions\n", - "\n", - "for t, x in model2.fs.time * model2.fs.MB.length_domain:\n", - " substitution_map = {id(porosity_param): model2.fs.MB.particle_porosity[t, x]}\n", - " sp = model2.fs.MB.solid_phase\n", - " cons = [\n", - " sp.properties[t, x].density_particle_constraint,\n", - " sp.reactions[t, x].gen_rate_expression[\"R1\"],\n", - " ]\n", - " for con in cons:\n", - " con.set_value(\n", - " replace_expressions(\n", - " con.expr, substitution_map, descend_into_named_expressions=True\n", - " )\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have added a new `particle_porosity` variable, and are using it in the relevant locations. Now we can move on to adding the missing constraint.\n", - "\n", - "## Adding a new density-flow rate constraint" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@model2.fs.MB.Constraint(model2.fs.time, model2.fs.MB.length_domain)\n", - "def density_flowrate_constraint(mb, t, x):\n", - " return (\n", - " mb.velocity_superficial_solid[t]\n", - " * mb.bed_area\n", - " * mb.solid_phase.properties[t, x].dens_mass_particle\n", - " == mb.solid_phase.properties[t, x].flow_mass\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Testing the new model\n", - "\n", - "Let's see if these changes have fixed our model." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Construct a new diagnostics toolbox\n", - "dt = DiagnosticsToolbox(model2)\n", - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The structural singularity seems to be gone! Let's unfix our degrees of freedom and see if we can solve." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.unfix()\n", - "model2.fs.MB.gas_phase.properties[0, 0].flow_mol.fix()\n", - "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.unfix()\n", - "model2.fs.MB.solid_phase.properties[0, 1].flow_mass.fix()\n", - "model2.piecewise_constant_constraints.activate()\n", - "\n", - "res = solver.solve(model2, tee=True)\n", - "print(f\"Converged successfully: {pyo.check_optimal_termination(res)}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This doesn't look much better. What's going on? I thought we just fixed the issue?\n", - "\n", - "# Debugging the model, take two\n", - "\n", - "Let's check the diagnostics toolbox for numerical issues." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.fix()\n", - "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.fix()\n", - "model2.piecewise_constant_constraints.deactivate()\n", - "dt.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looks like we have \"parallel constraints\", which are another form of singularity. Let's follow the toolbox's advice to see what they are." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dt.display_near_parallel_constraints()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`density_flowrate_constraint` is the constraint that we added. What is `solid_super_vel`?" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2.fs.MB.solid_super_vel[0].pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is the same as the constraint we just added! Looks like that constraint already existed at the solid inlet. We can easily deactivate the new constraints at this point in the length domain:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2.fs.MB.density_flowrate_constraint[:, 1.0].deactivate();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But now we have removed constraints from a square model, and expect to have degrees of freedom. Let's see what the diagnostics toolbox has to say." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dt = DiagnosticsToolbox(model2)\n", - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But this doesn't help us very much. We have some extraneous degrees of freedom, but with 8881 variables in the under-constrained subsystem, it will be difficult to tell what they are. After some thought (and model-specific intuition), we land on the conclusion that maybe we need to fix particle porosity at the solid inlet. Here, total flow rate is specified, and the `solid_super_vel` equation is using it to compute velocity. So we need `dens_mass_particle` to be known, which means we need `particle_porosity` to be fixed." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2.fs.MB.particle_porosity[:, 1.0].fix();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's run the diagnostics toolbox as a sanity check." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dt = DiagnosticsToolbox(model2)\n", - "dt.report_structural_issues()\n", - "dt.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looks good! Now we can release our degrees of freedom and try to solve again." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.unfix()\n", - "model2.fs.MB.gas_phase.properties[0, 0].flow_mol.fix()\n", - "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.unfix()\n", - "model2.fs.MB.solid_phase.properties[0, 1].flow_mass.fix()\n", - "model2.piecewise_constant_constraints.activate()\n", - "\n", - "res = solver.solve(model2, tee=True)\n", - "print(f\"Converged successfully: {pyo.check_optimal_termination(res)}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It worked! For the simple optimization problem we have set up, this solve looks a lot more like what we expect.\n", - "\n", - "# Takeaways from this tutorial\n", - "What have we learned?\n", - "1. IPOPT using non-zero regularization coefficients hints at a singular Jacobian (especially when \"L\"/\"l\" diagnostic tags are present).\n", - "2. When this happens, start by calling `report_structural_issues` to check for a structural singularity. If this looks good, call `report_numerical_issues` to check for a numerical singularity.\n", - "3. When debugging a structural singularity, decomposing a problem into subsystems that each should be nonsingular (e.g. unit models or points in time) is very useful.\n", - "4. The solution to a structural singularity is often to relax a fixed parameter, add a constraint that was forgotten, remove a constraint that was redundant, or fix an extraneous degree of freedom.\n", - "5. Model-specific intuition is usually necessary to diagnose and fix modeling issues. (If you're an algorithm developer, learn about the models you're using! If you don't understand your models, you don't understand your algorithms!)\n", - "6. A modeling issue doesn't necessarily have a unique solution. This is especially true when the issue involves invalid assumptions.\n", - "7. Debugging is an iterative process — fixing one issue can introduce another." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# References\n", - "\n", - "[[1]] Okoli et al., \"A framework for the optimization of chemical looping combustion processes\". *Powder Tech*, 2020.\n", - "\n", - "[[2]] Parker and Biegler, \"Dynamic modeling and nonlinear model predictive control of a moving bed chemical looping combustion reactor\". *IFAC PapersOnline*, 2022.\n", - "\n", - "[[3]] Dulmage and Mendelsohn, \"Coverings of bipartite graphs\". *Can J. Math.*, 1958.\n", - "\n", - "[[4]] Pothen and Fan, \"Computing the block triangular form of a sparse matrix\". *ACM Trans. Math. Softw.*, 1990.\n", - "\n", - "[[5]] Parker et al., \"Applications of the Dulmage-Mendelsohn decomposition for debugging nonlinear optimization problems\". *Comp. Chem. Eng.*, 2023.\n", - "\n", - "[1]: https://www.sciencedirect.com/science/article/pii/S0032591019302803\n", - "[2]: https://www.sciencedirect.com/science/article/pii/S2405896322008825\n", - "[3]: https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/coverings-of-bipartite-graphs/413735C5888AB542B92D0C4F402800B1\n", - "[4]: https://dl.acm.org/doi/10.1145/98267.98287\n", - "[5]: https://www.sciencedirect.com/science/article/pii/S0098135423002533\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Debugging a Structural Singularity\n", + "===========================\n", + "Author: Robert Parker\\\n", + "Maintainer: Robert Parker\\\n", + "Updated: 2024-06-10\n", + "\n", + "In this tutorial, we will use the [IDAES Diagnostics Toolbox](https://idaes-pse.readthedocs.io/en/2.4.0/explanations/model_diagnostics/index.html#diagnostics-toolbox)\n", + "to diagnose and fix a structural singularity that is preventing us from solving an optimization problem." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "# Constructing the model\n", + "\n", + "Suppose a collaborator has given us a model to work with. They give us a square model and tell us what the degrees of freedom are. We construct an optimization problem and try to solve it. In this tutorial, we don't want to worry too much about the details that go into constructing the model. This has been provided in the `idaes_examples.mod.diagnostics.gas_solid_contactors.model` module.\n", + "\n", + "## Model details (OKAY TO SKIP)\n", + "\n", + "The model we are trying to optimize is a dynamic model of a moving bed chemical looping combustion reactor. The model has been described by [Okoli et al.][1] and [Parker and Biegler][2]. This is a gas-solid reactor with counter-current flow. The degrees of freedom are gas and solid inlet flow rates, and we are trying to minimize the deviation from a desired operating point via a least-squares objective function.\n", + "\n", + "[1]: https://www.sciencedirect.com/science/article/pii/S0032591019302803\n", + "[2]: https://www.sciencedirect.com/science/article/pii/S2405896322008825\n", + "\n", + "Again, we don't want to worry too much about the model. The `make_model` function will construct the optimization problem that we want to solve, and whenever we do something model-specific, we will explicitly make note of it." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Trying to solve the original model\n", + "\n", + "With that out of the way, let's construct the model and try to solve it!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes_examples.mod.diagnostics.gas_solid_contactors.model import make_model\n", + "import logging\n", + "\n", + "# We'll turn off IDAES logging. This is not recommended in general, but this is an old model\n", + "# (from IDAES 1.7) that has been ported to work with the current version of IDAES. It generates\n", + "# a lot of warnings.\n", + "logging.getLogger(\"idaes\").setLevel(logging.CRITICAL)\n", + "# We'll also turn off Pyomo logging. This will suppress unit inconsistency warnings later,\n", + "# which otherwise flood our console and slow down this notebook. We have unit inconsistencies\n", + "# as, in IDAES 1.7, we didn't rigorously enforce that models use units.\n", + "logging.getLogger(\"pyomo\").setLevel(logging.CRITICAL)\n", + "\n", + "# This constructs a dynamic model with degrees of freedom and an objective function.\n", + "model = make_model()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before trying to solve the model, let's make sure it conforms to our expectations, i.e. it (a) has degrees of freedom and (b) is well-initialized to a feasible point." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import some useful utilities from the model_statistics module.\n", + "# Degrees of freedom and constraint residuals are always good things to check before\n", + "# trying to solve a simulation or optimization problem.\n", + "from idaes.core.util.model_statistics import degrees_of_freedom, large_residuals_set\n", + "\n", + "dof = degrees_of_freedom(model)\n", + "print(f\"Degrees of freedom: {dof}\")\n", + "has_large_residuals = bool(large_residuals_set(model, tol=1e-5))\n", + "print(f\"Has large residuals: {has_large_residuals}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the above `make_model` function, the model has been \"solved\" to arrive at a feasible point, then degrees of freedom have been unfixed and an objective function has been added to give us an optimization problem. This looks good so far, so let's try to solve the optimization problem." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import pyomo.environ for access to solvers\n", + "import pyomo.environ as pyo\n", + "\n", + "solver = pyo.SolverFactory(\"ipopt\")\n", + "solver.options[\"max_iter\"] = 20\n", + "solver.options[\"print_user_options\"] = \"yes\"\n", + "solver.options[\"OF_print_info_string\"] = \"yes\"\n", + "res = solver.solve(model, tee=True)\n", + "print(f\"Converged successfully: {pyo.check_optimal_termination(res)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "IPOPT fails to solve the optimization problem... You can try increasing the iteration limit, but it is very unlikely that this model will ever solve. A telltale sign that something is wrong with our model is the persistence of regularization coefficients, that is, numbers in the `lg(rg)` column of the IPOPT log. These coefficients can have multiple causes. One is that the constraint Jacobian (partial derivative matrix) is singular, which indicates a problem with our model. We have set the `print_info_string` option in IPOPT to display \"diagnostic tags\" to help interpret these regularization coefficients. The \"L\" and \"l\" diagnostic tags, which appear repeatedly, indicate that the Jacobian is singular. For more information on IPOPT diagnostic tags, see the IPOPT [documentation](https://coin-or.github.io/Ipopt/OUTPUT.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Debugging the original model\n", + "\n", + "Let's run the diagnostics toolbox on the model and see what it has to say.\n", + "\n", + "For good practice, we'll first make sure the model we're debugging is square. Remember that we're assuming we already know how to toggle degrees of freedom in our model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix gas and solid flow rates at their respective inlets\n", + "model.fs.MB.gas_phase.properties[:, 0].flow_mol.fix()\n", + "model.fs.MB.solid_phase.properties[:, 1].flow_mass.fix()\n", + "# Part of our optimization problem was a set of constraints to enforce piecewise\n", + "# constant control inputs. We need to deactivate these as well.\n", + "model.piecewise_constant_constraints.deactivate()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can run the diagnostics toolbox." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.util.model_diagnostics import DiagnosticsToolbox\n", + "\n", + "dt = DiagnosticsToolbox(model)\n", + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's look at the warnings we got:\n", + "- Inconsistent units\n", + "- Structural singularity\n", + "- Potential evaluation errors\n", + "\n", + "We'll ignore the inconsistent units. The property package and unit model here were extracted from IDAES 1.7, before we rigorously enforced that all models use units. The potential evaluation errors we see here may be worth looking into, but looking at the failing IPOPT log above, we don't notice any evaluation errors. (If evaluation errors occurred in IPOPT, we would see a message like \"Error in AMPL evaluation\" in the IPOPT iteration log, which we don't see here.) The structural singularity looks like the most promising avenue to debug, especially as the IPOPT log displays persistent regularization coefficients that appear to be caused by a singular Jacobian.\n", + "\n", + "Let's follow the toolbox's advice and display the under and over-constrained sets." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dt.display_underconstrained_set()\n", + "dt.display_overconstrained_set()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Over and under-constrained subsystems\n", + "\n", + "Structural singularities are characterized by the [Dulmage-Mendelson decomposition][3], which partitions a system into minimal over and under-constrained subsystems. These subsystems contain the potentially unmatched constraints and variables, respectively. Here, \"unmatched\" effectively means \"causing a singularity\". [Pothen and Fan][4] give a good overview of the Dulmage-Mendelsohn decomposition and [Parker et al.][5] give several examples.\n", + "\n", + "[3]: https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/coverings-of-bipartite-graphs/413735C5888AB542B92D0C4F402800B1\n", + "[4]: https://dl.acm.org/doi/10.1145/98267.98287\n", + "[5]: https://www.sciencedirect.com/science/article/pii/S0098135423002533\n", + "\n", + "The most straightforward way to fix a structural singularity is to fix variables that are in the under-constrained system and deactivate constraints in the over-constrained subsystem. However, this may not be applicable for every model. For example, we may need to add variables and constraints instead. What over and under-constrained subsystems are telling us is that something is wrong with our modeling assumptions. The particular fix that is appropriate will depend heavily on the model.\n", + "\n", + "If the above output gives us any clues, we can go ahead and start trying to fix things. However, suppose it doesn't. A good strategy is to try to break down the model into smaller, square subsystems that we think should be nonsingular. For a dynamic model like this one, a good candidate is the subsystem of variables and equations at each point in time." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# We've included a utility function to extract the subsystem of variables and equations\n", + "# at a specified point in time. If you are dealing with a process flowsheet, here you\n", + "# may want to extract each unit model individually.\n", + "from idaes_examples.mod.diagnostics.util import get_subsystem_at_time\n", + "\n", + "# TemporarySubsystemManager is used to temporarily fix some variables to make sure\n", + "# we're debugging a square subsystem.\n", + "from pyomo.util.subsystems import TemporarySubsystemManager\n", + "\n", + "# Let's start with t=0. Really, we'd probably want to do this in a loop and try all time points.\n", + "t0 = model.fs.time.first()\n", + "t_block, inputs = get_subsystem_at_time(model, model.fs.time, t0)\n", + "# We'll temporarily fix the \"inputs\" to make sure we have a square system while debugging\n", + "with TemporarySubsystemManager(to_fix=inputs):\n", + " dt = DiagnosticsToolbox(t_block)\n", + " dt.report_structural_issues()\n", + " dt.display_underconstrained_set()\n", + " dt.display_overconstrained_set()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These over and under-constrained subsystems aren't much smaller, but now the over-constrained system decomposes into 10 small, independent blocks. These should be easier to debug.\n", + "\n", + "## Debugging the over-constrained subsystem\n", + "\n", + "To debug the over-constrained subsystem, we look for a constraint that is not calculating any of the variables in the subsystem. The \"odd constraint out\" here seems to be the mass fraction sum, `sum_component_eqn`. This must \"solve for\" one of the mass fractions, which means one of the `material_holdup_calculation` equations must \"solve for\" particle density rather than mass fraction. If we want to see what variables are contained in one of these constraints, we can always `pprint` it:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fs.MB.solid_phase.properties[0, 0.9].sum_component_eqn.pprint()\n", + "model.fs.MB.solid_phase.material_holdup_calculation[0, 0.9, \"Sol\", \"Fe3O4\"].pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If one of these `material_holdup_calculation` equations is solving for particle density, then that means that `density_particle_constraint` is not actually solving for density. Maybe `density_particle_constraint` is over-determining our system?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fs.MB.solid_phase.properties[0, 0.9].density_particle_constraint.pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But this looks like a very reasonable constraint. After some thought, which admittedly requires some knowledge of the process we are modeling, we decide that the right approach is to make particle porosity a variable. We have assumed that porosity is constant, but this overconstrained subsystem is telling us that this assumption is not valid.\n", + "\n", + "### How did we figure this out? (OKAY TO SKIP)\n", + "Adding a variable (including by unfixing a parameter) to an over-constraining constraint will often remove that constraint from the over-constrained subsystem. But how did we know that this was the right thing to do? If you just care about using the diagnostics toolbox to extract as much information about a singularity as possible, you can skip this section. But if you are curious how we determined that particle porosity should not be constant, read on.\n", + "\n", + "`dens_mass_skeletal` is determined purely by the composition of solid, which is made up of Fe2O3, Fe3O4, and inert Ti2O3. We can view the `density_skeletal_constraint` as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fs.MB.solid_phase.properties[0, 0.9].density_skeletal_constraint.pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we assume a constant particle porosity, this gives us a particle porosity that is also uniquely determined by the solid composition by the above `density_particle_constraint`:\n", + "```\n", + "dens_mass_particle = (1 - porosity) * dens_mass_skeletal\n", + "```\n", + "But the composition of the solid is determined by the (somewhat misnamed) `material_holdup_calculation` constraints. While the name of these constraints implies they \"calculate holdups,\" material holdups at $t=0$ are fixed as initial conditions (because holdups are the differential variables with respect to time in this model). At other time points, we assume that holdups are specified by differential and discretization equations of the model. This means that the `material_holdup_calculation` constraints actually calculate the solid phase mass fractions *from* the holdups. But as we hinted at above, the 4-by-4 system of holdup calculation constraints, `sum_component_eqn` (which simply constrains the sum of mass fractions to be one), mass fractions, and `dens_mass_particle`, uniquely solve for `dens_mass_particle` *as well as* the mass fractions. But if the holdup variables can be used to solve for the mass fractions, they *also* solve for `dens_mass_skeletal`. So both sides of `density_particle_constraint` are already uniquely determined! This implies that we don't need this constraint at all, but we also know that this constraint has to hold. Something has to give. With this in mind, we actually have several options for how to resolve this overspecification:\n", + "1. Remove `density_particle_constraint`. Then we would have `dens_mass_particle` and `dens_mass_skeletal`, with no relationship between them. This would leave us with a mathematically sound model, but with densities that contradict constant particle porosity that we have assumed (which is used elsewhere in the reaction rate calculation equations).\n", + "2. Remove the constraints that calculate skeletal density from composition.\n", + "3. Relax particle porosity from a parameter to a variable.\n", + "\n", + "Options 2 and 3 are equally valid. We've chosen option 3, meaning we assume that the particle \"evolves\" with a density that is well determined from its constituent species, rather than changing density to accommodate whatever mass it accumulates via reaction without altering its volume. This exercise should remind us that all mathematical modeling is somewhat of an art. In the process of choosing the \"least bad\" model, it is fairly easy to over or under-specify something by making the wrong combination of assumptions, and the Dulmage-Mendelsohn decomposition is a great tool for detecting when this has happened.\n", + "\n", + "## Debugging the under-constrained subsystem\n", + "\n", + "The under-constrained system does not decompose into independent subsystems, making it more difficult to debug. However, by inspection, we notice that the same constraints and variables seem to be repeated at each point in the length domain. For each point in space, the \"odd variable out\" seems to be the total flow rate `flow_mass`. Using some intuition about this particular process model, we may conclude that this variable should be calculated from the solid phase velocity, which is constant. We expect an equation that looks like\n", + "```\n", + "flow_mass == velocity * area * density\n", + "```\n", + "\n", + "But this equation isn't here... so we need to add it.\n", + "\n", + "# Fixing the model\n", + "\n", + "We'll start by creating a fresh copy of the model, so we don't accidentally rely on IPOPT's point of termination." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2 = make_model()\n", + "# Make the model square while we try to fix the structural singularity\n", + "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.fix()\n", + "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.fix()\n", + "model2.piecewise_constant_constraints.deactivate()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding a new particle porosity variable" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2.fs.MB.particle_porosity = pyo.Var(\n", + " model2.fs.time,\n", + " model2.fs.MB.length_domain,\n", + " initialize=model2.fs.solid_properties.particle_porosity.value,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we need to replace the old particle porosity parameter with this new variable. Luckily, the old parameter is actually implemented as a fixed variable, so we can easily identify all the constraints it participates in with `IncidenceGraphInterface`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.contrib.incidence_analysis import IncidenceGraphInterface\n", + "\n", + "igraph = IncidenceGraphInterface(model2, include_fixed=True)\n", + "porosity_param = model2.fs.solid_properties.particle_porosity\n", + "print(f\"Constraints containing {porosity_param.name}:\")\n", + "for con in igraph.get_adjacent_to(porosity_param):\n", + " print(f\" {con.name}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Particle porosity only appears in two constraints: the density constraint we saw above, and the reaction rate equation. We can replace particle porosity in these constraints using Pyomo's `replace_expressions` function:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.core.expr import replace_expressions\n", + "\n", + "for t, x in model2.fs.time * model2.fs.MB.length_domain:\n", + " substitution_map = {id(porosity_param): model2.fs.MB.particle_porosity[t, x]}\n", + " sp = model2.fs.MB.solid_phase\n", + " cons = [\n", + " sp.properties[t, x].density_particle_constraint,\n", + " sp.reactions[t, x].gen_rate_expression[\"R1\"],\n", + " ]\n", + " for con in cons:\n", + " con.set_value(\n", + " replace_expressions(\n", + " con.expr, substitution_map, descend_into_named_expressions=True\n", + " )\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have added a new `particle_porosity` variable, and are using it in the relevant locations. Now we can move on to adding the missing constraint.\n", + "\n", + "## Adding a new density-flow rate constraint" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@model2.fs.MB.Constraint(model2.fs.time, model2.fs.MB.length_domain)\n", + "def density_flowrate_constraint(mb, t, x):\n", + " return (\n", + " mb.velocity_superficial_solid[t]\n", + " * mb.bed_area\n", + " * mb.solid_phase.properties[t, x].dens_mass_particle\n", + " == mb.solid_phase.properties[t, x].flow_mass\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Testing the new model\n", + "\n", + "Let's see if these changes have fixed our model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Construct a new diagnostics toolbox\n", + "dt = DiagnosticsToolbox(model2)\n", + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The structural singularity seems to be gone! Let's unfix our degrees of freedom and see if we can solve." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.unfix()\n", + "model2.fs.MB.gas_phase.properties[0, 0].flow_mol.fix()\n", + "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.unfix()\n", + "model2.fs.MB.solid_phase.properties[0, 1].flow_mass.fix()\n", + "model2.piecewise_constant_constraints.activate()\n", + "\n", + "res = solver.solve(model2, tee=True)\n", + "print(f\"Converged successfully: {pyo.check_optimal_termination(res)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This doesn't look much better. What's going on? I thought we just fixed the issue?\n", + "\n", + "# Debugging the model, take two\n", + "\n", + "Let's check the diagnostics toolbox for numerical issues." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.fix()\n", + "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.fix()\n", + "model2.piecewise_constant_constraints.deactivate()\n", + "dt.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looks like we have \"parallel constraints\", which are another form of singularity. Let's follow the toolbox's advice to see what they are." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dt.display_near_parallel_constraints()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`density_flowrate_constraint` is the constraint that we added. What is `solid_super_vel`?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2.fs.MB.solid_super_vel[0].pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is the same as the constraint we just added! Looks like that constraint already existed at the solid inlet. We can easily deactivate the new constraints at this point in the length domain:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2.fs.MB.density_flowrate_constraint[:, 1.0].deactivate();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But now we have removed constraints from a square model, and expect to have degrees of freedom. Let's see what the diagnostics toolbox has to say." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dt = DiagnosticsToolbox(model2)\n", + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But this doesn't help us very much. We have some extraneous degrees of freedom, but with 8881 variables in the under-constrained subsystem, it will be difficult to tell what they are. After some thought (and model-specific intuition), we land on the conclusion that maybe we need to fix particle porosity at the solid inlet. Here, total flow rate is specified, and the `solid_super_vel` equation is using it to compute velocity. So we need `dens_mass_particle` to be known, which means we need `particle_porosity` to be fixed." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2.fs.MB.particle_porosity[:, 1.0].fix();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's run the diagnostics toolbox as a sanity check." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dt = DiagnosticsToolbox(model2)\n", + "dt.report_structural_issues()\n", + "dt.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looks good! Now we can release our degrees of freedom and try to solve again." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model2.fs.MB.gas_phase.properties[:, 0].flow_mol.unfix()\n", + "model2.fs.MB.gas_phase.properties[0, 0].flow_mol.fix()\n", + "model2.fs.MB.solid_phase.properties[:, 1].flow_mass.unfix()\n", + "model2.fs.MB.solid_phase.properties[0, 1].flow_mass.fix()\n", + "model2.piecewise_constant_constraints.activate()\n", + "\n", + "res = solver.solve(model2, tee=True)\n", + "print(f\"Converged successfully: {pyo.check_optimal_termination(res)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It worked! For the simple optimization problem we have set up, this solve looks a lot more like what we expect.\n", + "\n", + "# Takeaways from this tutorial\n", + "What have we learned?\n", + "1. IPOPT using non-zero regularization coefficients hints at a singular Jacobian (especially when \"L\"/\"l\" diagnostic tags are present).\n", + "2. When this happens, start by calling `report_structural_issues` to check for a structural singularity. If this looks good, call `report_numerical_issues` to check for a numerical singularity.\n", + "3. When debugging a structural singularity, decomposing a problem into subsystems that each should be nonsingular (e.g. unit models or points in time) is very useful.\n", + "4. The solution to a structural singularity is often to relax a fixed parameter, add a constraint that was forgotten, remove a constraint that was redundant, or fix an extraneous degree of freedom.\n", + "5. Model-specific intuition is usually necessary to diagnose and fix modeling issues. (If you're an algorithm developer, learn about the models you're using! If you don't understand your models, you don't understand your algorithms!)\n", + "6. A modeling issue doesn't necessarily have a unique solution. This is especially true when the issue involves invalid assumptions.\n", + "7. Debugging is an iterative process — fixing one issue can introduce another." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# References\n", + "\n", + "[[1]] Okoli et al., \"A framework for the optimization of chemical looping combustion processes\". *Powder Tech*, 2020.\n", + "\n", + "[[2]] Parker and Biegler, \"Dynamic modeling and nonlinear model predictive control of a moving bed chemical looping combustion reactor\". *IFAC PapersOnline*, 2022.\n", + "\n", + "[[3]] Dulmage and Mendelsohn, \"Coverings of bipartite graphs\". *Can J. Math.*, 1958.\n", + "\n", + "[[4]] Pothen and Fan, \"Computing the block triangular form of a sparse matrix\". *ACM Trans. Math. Softw.*, 1990.\n", + "\n", + "[[5]] Parker et al., \"Applications of the Dulmage-Mendelsohn decomposition for debugging nonlinear optimization problems\". *Comp. Chem. Eng.*, 2023.\n", + "\n", + "[1]: https://www.sciencedirect.com/science/article/pii/S0032591019302803\n", + "[2]: https://www.sciencedirect.com/science/article/pii/S2405896322008825\n", + "[3]: https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/coverings-of-bipartite-graphs/413735C5888AB542B92D0C4F402800B1\n", + "[4]: https://dl.acm.org/doi/10.1145/98267.98287\n", + "[5]: https://www.sciencedirect.com/science/article/pii/S0098135423002533\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing.ipynb b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing.ipynb index 656dc674..8cbcaa64 100644 --- a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing_doc.ipynb b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing_doc.ipynb index 0a6a239c..d775891c 100644 --- a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing_doc.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -120,476 +121,610 @@ "fs.F101\n", "fs.S101\n", "fs.C101\n", - "fs.M101\n" + "fs.M101\n", + "2025-03-17 17:33:04 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.F102.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.F102.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:05 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:47 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:48 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:48 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:48 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:48 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:48 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:48 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:48 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:48 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:48 [INFO] idaes.init.fs.F102.control_volume: Initialization Complete\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:48 [INFO] idaes.init.fs.F102: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:48 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:48 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:48 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:48 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:49 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:49 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:49 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:49 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:49 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:49 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:49 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:49 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:49 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:49 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:49 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:49 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:49 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:49 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:50 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:51 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:52 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:52 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:52 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:52 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { @@ -603,21 +738,28 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:52 [INFO] idaes.init.fs.F102.control_volume: Initialization Complete\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.F102.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:52 [INFO] idaes.init.fs.F102: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:06 [INFO] idaes.init.fs.F102.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Solving flowsheet...\n", + "Solving flowsheet..." + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", "\n" ] }, @@ -664,26 +806,32 @@ " inequality constraints with only upper bounds: 0\n", "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 6.60e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 0 0.0000000e+00 6.60e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " 1 0.0000000e+00 8.69e+03 1.42e+03 -1.0 2.00e+04 - 9.71e-01 4.67e-01H 1\n", " 2 0.0000000e+00 3.05e+03 1.56e+03 -1.0 1.60e+04 - 9.79e-01 4.90e-01h 1\n", - " 3 0.0000000e+00 1.58e+03 1.55e+05 -1.0 1.41e+04 - 9.90e-01 4.99e-01h 1\n", - " 4 0.0000000e+00 5.49e+02 8.87e+08 -1.0 8.43e+03 - 1.00e+00 9.57e-01h 1\n", + " 3 0.0000000e+00 1.58e+03 1.55e+05 -1.0 1.40e+04 - 9.90e-01 4.99e-01h 1\n", + " 4 0.0000000e+00 5.49e+02 8.87e+08 -1.0 8.42e+03 - 1.00e+00 9.57e-01h 1\n", " 5 0.0000000e+00 4.25e+03 2.87e+10 -1.0 8.02e+02 - 1.00e+00 9.90e-01h 1\n", " 6 0.0000000e+00 2.25e+03 1.51e+10 -1.0 8.39e+00 - 1.00e+00 1.00e+00h 1\n", " 7 0.0000000e+00 2.27e+01 1.40e+08 -1.0 2.45e-03 - 1.00e+00 1.00e+00f 1\n", " 8 0.0000000e+00 2.45e-03 1.23e+04 -1.0 2.38e-05 - 1.00e+00 1.00e+00h 1\n", - " 9 0.0000000e+00 7.45e-09 3.06e-01 -2.5 9.06e-08 - 1.00e+00 1.00e+00h 1\n", + " 9 0.0000000e+00 3.73e-08 3.38e-01 -2.5 1.06e-07 - 1.00e+00 1.00e+00h 1\n", "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", "\n", "Number of Iterations....: 9\n", "\n", " (scaled) (unscaled)\n", "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 2.8284422320850682e+05 2.8284422320850682e+05\n", - "Constraint violation....: 2.9103830456733704e-11 7.4505805969238281e-09\n", + "Dual infeasibility......: 2.8284425441187131e+05 2.8284425441187131e+05\n", + "Constraint violation....: 5.8207660913467407e-11 3.7252902984619141e-08\n", "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9103830456733704e-11 2.8284422320850682e+05\n", + "Overall NLP error.......: 5.8207660913467407e-11 2.8284425441187131e+05\n", "\n", "\n", "Number of objective function evaluations = 11\n", @@ -693,8 +841,8 @@ "Number of equality constraint Jacobian evaluations = 10\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 9\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.008\n", - "Total CPU secs in NLP function evaluations = 0.000\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.011\n", + "Total CPU secs in NLP function evaluations = 0.001\n", "\n", "EXIT: Optimal Solution Found.\n" ] @@ -975,13 +1123,25 @@ "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", " 0 0.0000000e+00 1.00e+05 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", " 1 0.0000000e+00 8.81e+04 5.49e+03 -1.0 9.20e+04 - 2.62e-01 1.20e-01h 1\n", - " 2 0.0000000e+00 6.34e+04 2.46e+03 -1.0 8.10e+04 - 5.83e-01 2.87e-01h 1\n", + " 2 0.0000000e+00 6.34e+04 2.46e+03 -1.0 8.10e+04 - 5.83e-01 2.87e-01h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " 3 0.0000000e+00 3.40e+04 5.65e+03 -1.0 5.80e+04 - 5.72e-01 4.86e-01h 1\n", " 4 0.0000000e+00 2.33e+04 5.28e+05 -1.0 3.01e+04 - 7.04e-01 5.09e-01h 1\n", " 5 0.0000000e+00 1.13e+04 2.99e+09 -1.0 1.49e+04 - 8.02e-01 9.65e-01h 1\n", " 6 0.0000000e+00 5.50e+03 1.54e+09 -1.0 8.18e+02 - 9.90e-01 6.10e-01h 1\n", " 7 0.0000000e+00 5.23e+03 1.44e+09 -1.0 3.84e+02 - 9.92e-01 5.07e-02h 1\n", - " 8 0.0000000e+00 5.22e+03 1.44e+09 -1.0 3.70e+02 - 1.00e+00 5.85e-04h 1\n", + " 8 0.0000000e+00 5.22e+03 1.44e+09 -1.0 3.70e+02 - 1.00e+00 5.85e-04h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " 9r 0.0000000e+00 5.22e+03 1.00e+03 2.3 0.00e+00 - 0.00e+00 3.66e-07R 5\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", " 10r 0.0000000e+00 6.47e+04 1.34e+04 2.3 1.78e+05 - 2.30e-03 1.09e-03f 1\n", @@ -1026,17 +1186,17 @@ " 46 0.0000000e+00 7.56e+00 5.75e+06 -1.0 1.54e+01 - 1.00e+00 5.00e-01h 2\n", " 47 0.0000000e+00 3.06e+01 1.36e+07 -1.0 1.62e+00 - 1.00e+00 1.00e+00h 1\n", " 48 0.0000000e+00 3.18e-04 1.31e+03 -1.0 3.34e+01 - 1.00e+00 1.00e+00h 1\n", - " 49 0.0000000e+00 2.24e-08 3.21e-01 -3.8 1.06e-07 - 1.00e+00 1.00e+00h 1\n", + " 49 0.0000000e+00 2.16e-07 7.98e+00 -3.8 6.86e-06 - 1.00e+00 1.00e+00h 1\n", "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", "\n", "Number of Iterations....: 49\n", "\n", " (scaled) (unscaled)\n", "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 1.5041240304748950e+04 1.5041240304748950e+04\n", - "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", + "Dual infeasibility......: 1.5041240458817709e+04 1.5041240458817709e+04\n", + "Constraint violation....: 2.9103830456733704e-11 2.1571759134531021e-07\n", "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9103830456733704e-11 1.5041240304748950e+04\n", + "Overall NLP error.......: 2.9103830456733704e-11 1.5041240458817709e+04\n", "\n", "\n", "Number of objective function evaluations = 74\n", @@ -1046,8 +1206,8 @@ "Number of equality constraint Jacobian evaluations = 51\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 49\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.061\n", - "Total CPU secs in NLP function evaluations = 0.003\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.040\n", + "Total CPU secs in NLP function evaluations = 0.004\n", "\n", "EXIT: Optimal Solution Found.\n" ] @@ -1090,61 +1250,54 @@ "output_type": "stream", "text": [ "Setting inputs...\n", - "\n" + "\n", + "Initializing flowsheet...\n", + "\n", + "Limiting Wegstein tear to 3 iterations to obtain initial solution, if not converged IPOPT will pick up and continue.\n", + "\n", + "2025-03-17 17:33:07 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Initializing flowsheet...\n", - "\n", - "Limiting Wegstein tear to 3 iterations to obtain initial solution, if not converged IPOPT will pick up and continue.\n", - "\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: Wegstein failed to converge in 3 iterations\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Solving flowsheet...\n", - "\n", - "WARNING: model contains export suffix\n", - "'fs.H102.control_volume.properties_out[0.0].scaling_factor' that contains 1\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix 'fs.H102.control_volume.scaling_factor'\n", - "that contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_out[0.0].scaling_factor' that contains 26\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_in[0.0].scaling_factor' that contains 25\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 12\n", "component keys that are not exported as part of the NL file. Skipping.\n" ] }, @@ -1152,355 +1305,865 @@ "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix 'fs.F101.control_volume.scaling_factor'\n", - "that contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_out[0.0].scaling_factor' that contains 25\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_in[0.0].scaling_factor' that contains 25\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix 'fs.R101.control_volume.scaling_factor'\n", - "that contains 2 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_out[0.0].scaling_factor' that contains 26\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_in[0.0].scaling_factor' that contains 25\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Adding distillation column and resolving flowsheet...\n", - "\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.D101.condenser.control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.H102.control_volume.properties_out[0.0].scaling_factor' that contains 1\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix 'fs.H102.control_volume.scaling_factor'\n", - "that contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_out[0.0].scaling_factor' that contains 26\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_in[0.0].scaling_factor' that contains 25\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix 'fs.F101.control_volume.scaling_factor'\n", - "that contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_out[0.0].scaling_factor' that contains 25\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_in[0.0].scaling_factor' that contains 25\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix 'fs.R101.control_volume.scaling_factor'\n", - "that contains 2 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_out[0.0].scaling_factor' that contains 26\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_in[0.0].scaling_factor' that contains 25\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Complete.\n", - "\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.D101.condenser.control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.H102.control_volume.properties_out[0.0].scaling_factor' that contains 1\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix 'fs.H102.control_volume.scaling_factor'\n", - "that contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_out[0.0].scaling_factor' that contains 26\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_in[0.0].scaling_factor' that contains 25\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix 'fs.F101.control_volume.scaling_factor'\n", - "that contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_out[0.0].scaling_factor' that contains 25\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:07 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_in[0.0].scaling_factor' that contains 25\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:08 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix 'fs.R101.control_volume.scaling_factor'\n", - "that contains 2 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:33:08 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_out[0.0].scaling_factor' that contains 26\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:08 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_in[0.0].scaling_factor' that contains 25\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:33:08 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] - } - ], - "source": [ - "from pyomo.common.log import LoggingIntercept\n", - "import logging\n", - "from io import StringIO\n", - "\n", - "stream = StringIO()\n", - "with LoggingIntercept(stream, \"idaes\", logging.WARNING):\n", - " # Source file for prebuilt flowsheets\n", - " from hda_flowsheets_for_costing_notebook import hda_with_distillation\n", - "\n", - " # Build hda model with distillation column and return model object\n", - " n = hda_with_distillation(tee=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Results Comparison and Visualization\n", - "For the two flowsheets above, let's sum the total operating and capital costs of each scenario. We will display overall process economics results and compare the two flowsheets:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# Imports and data gathering\n", - "from matplotlib import pyplot as plt\n", - "\n", - "plt.style.use(\"dark_background\") # if using browser in dark mode, uncomment this line\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "# Automatically get units that we costed - this will exclude C101 for both flowsheets\n", - "\n", - "two_flash_unitlist = [\n", - " getattr(m.fs, unit) for unit in dir(m.fs) if hasattr(getattr(m.fs, unit), \"costing\")\n", - "]\n", - "distillation_unitlist = [\n", - " getattr(n.fs, unit) for unit in dir(n.fs) if hasattr(getattr(n.fs, unit), \"costing\")\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ + }, { "name": "stdout", "output_type": "stream", "text": [ - "Costs in $1000:\n" + "2025-03-17 17:33:08 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:08 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: Wegstein failed to converge in 3 iterations\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:09 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Solving flowsheet...\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 6\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Adding distillation column and resolving flowsheet...\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 7\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Complete.\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 7\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" + ] + } + ], + "source": [ + "from pyomo.common.log import LoggingIntercept\n", + "import logging\n", + "from io import StringIO\n", + "\n", + "stream = StringIO()\n", + "with LoggingIntercept(stream, \"idaes\", logging.WARNING):\n", + " # Source file for prebuilt flowsheets\n", + " from hda_flowsheets_for_costing_notebook import hda_with_distillation\n", + "\n", + " # Build hda model with distillation column and return model object\n", + " n = hda_with_distillation(tee=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Results Comparison and Visualization\n", + "For the two flowsheets above, let's sum the total operating and capital costs of each scenario. We will display overall process economics results and compare the two flowsheets:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Imports and data gathering\n", + "from matplotlib import pyplot as plt\n", + "\n", + "plt.style.use(\"dark_background\") # if using browser in dark mode, uncomment this line\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "# Automatically get units that we costed - this will exclude C101 for both flowsheets\n", + "\n", + "two_flash_unitlist = [\n", + " getattr(m.fs, unit) for unit in dir(m.fs) if hasattr(getattr(m.fs, unit), \"costing\")\n", + "]\n", + "distillation_unitlist = [\n", + " getattr(n.fs, unit) for unit in dir(n.fs) if hasattr(getattr(n.fs, unit), \"costing\")\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Costs in $1000:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "
Equipmentfs.H101fs.R101fs.F101fs.F102
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1539,16 +2202,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHvCAYAAABOhDU1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP1ElEQVR4nO3dfVzN9/8/8Ed0QTmFpCOjLB9ymTTS50NFTIy5Zh+XGbNmKMzVNiuzza5kDfvMJmkXn40PYR9GyYpZzT4aicpFF6dGHSo6hy6O6vX7w7fz21mhk+qcN4/77fa6cV7vq+cpR49e7/f79TYBIEBEREQkQc0MXQARERFRfTHIEBERkWQxyBAREZFkMcgQERGRZDHIEBERkWQxyBAREZFkMcgQERGRZDHIEBERkWQxyBAREZFkMcgQUZMKDg6GEMY/oXhj1Ont7Q0hBLy9vRt0v0RPMgYZokc0Z84cCCHg7u5e6/K4uDikpKTo9GVlZUEIASEEKisrcfPmTZw7dw7btm3DwIEDH3i8UaNGQQiBq1evwsTE5KH1Vf/wrEt7mA4dOiA4OBiurq4PXbeheHt7Y+/evcjLy0N5eTmUSiV++OEHTJgwoclqqLZmzRqMGzeuyY739NNP4/PPP0dGRgZKS0tRXFyMkydPYsmSJWjRokWDH69ly5YIDg5m0CJJMTV0AURPqjNnzmDjxo0AAJlMhh49emDKlClYsGABQkNDsXz58lq3mzFjBrKystClSxcMGzYMx44de+Bx0tLSMHPmTJ2+DRs24Pbt23j33Xf1qtnBwQEhISHIzs5GcnKyXtvWR0hICIKDg3Hp0iVs27YNCoUCtra2GD16NKKiojB9+nR89913jXLsd955B++//75O3+uvv449e/bgwIEDjXLMPxs9ejT+85//oLy8HF999RXOnz8Pc3NzDB48GB999BF69eqFl19+uUGPaWlpiZCQEISEhOD48eMNum+ixiTY2Njq3+bMmSOEEMLd3b3W5XFxcSIlJUWnLysrS/z3v/+tsW6LFi1EVFSUEEKIgICAGsstLS2FWq0WixYtEklJSWLHjh31qjklJUXExcXpvZ27u7sQQog5c+bU++sVHBwsxL3hnwe2SZMmCSGE2L17tzA1Na2x/NlnnxXPPfdck36v1Wq1iIiIqPf23t7eQgghvL29H7iek5OTUKlUIjU1Vcjl8hrLnZ2dxZIlSxr8/dna2gohhAgODm7Srysb2yM2gxfAxibp1pBBBoCwsrISBQUFIjc3t8ayGTNmiIqKCmFvby9WrFghbt26JSwsLPSuubYg06VLF7F7925RWFgo7ty5IxITE8Xo0aO1y6t/CP9VdagZPHiw2L17t1AoFKKsrEzk5OSI0NBQ0aJFC53j1DXIpKamioKCAtGqVauHrmtmZibWrVsnTp8+LW7duiVu374tTpw4IXx8fHTWc3R0FEIIsXz5chEUFCSys7NFSUmJiI+PF7169XpgnbWpDjWdO3cWW7duFenp6aKkpEQUFBSI3bt3C0dHR5191jXIfPbZZ0IIITw9Pev0/WzevLl48803xZUrV0RZWZnIysoS7777rjA3N9dZz93dXRw5ckTcuHFDlJSUiMzMTBEeHq7ztfmr6lBjb28vduzYIXJzc0VZWZm4du2a2L9/f433yMbW1I2nlogaiI2NDWxtbWv0m5mZ6bWfO3fuYN++fZg/fz569uyJ1NRU7bIZM2YgLi4OSqUS33//Pd5//32MHTsWe/bseaTa27dvj4SEBFhaWuLTTz9FYWEh5syZgx9++AGTJ0/G/v37kZaWhrVr12L9+vXYtm0bfv75ZwBAQkICAGDKlCmwtLTEv/71LxQWFmLgwIFYvHgxnnrqKUydOlWverp27YoePXogPDwct2/ffuj61tbWmD9/Pr777jt8+eWXkMlkmDdvHqKjozFw4MAap8Fmz54NmUyGrVu3okWLFggMDMRPP/2EPn364Pr167UeY+bMmdi+fTt+++03fPHFFwCAjIwMAMCAAQPw97//Hd9//z3++OMPODk54ZVXXkF8fDx69uyJ0tJSvd7/2LFjkZGRgcTExDqtv337dvj7++M///kPNm7cCA8PD7z++uvo0aMHJk6cCACws7NDTEwMbty4gffffx+3bt2Ck5OTdvmNGzcQEBCAzz//HFFRUYiKigIAnDt3DgCwd+9e9OrVC5s3b0Z2djbat2+PESNGoHPnzlAoFHq9P6KGZvA0xcYm5VY9IvMg+ozIABCBgYFCCCHGjh2r7bOzsxMajUbMmzdP23fy5Emxb98+vWv+64hMaGioEEKIf/zjH9o+KysrkZGRITIzM4WJiYkAHnxq6a8jLwDEqlWrRGVlpejUqZO2ry4jMmPHjhVCCBEYGFin99OsWTNhZmam02djYyPy8vLE9u3btX3Vow537twRDg4O2v4BAwYIIYTYuHHjA+u836ml2t67h4eHEEKImTNnavvqMiIjk8mEEKLO39e+ffsKIYT44osvdPo//PBDIYTQjkqNGzdOCHH/kUPg/qeWbGxshBD3RrIa63PExlbfxruWiBrIwoULMXz48BqtPhfFVo9CyGQybd8LL7yAqqoq7N27V9v33XffYdSoUWjduvUj1T569GicOnUKv/zyi7bvzp07+OKLL9ClSxf07NnzofsoKyvT/t3S0hK2trZISEhAs2bN4Obmplc91tbWAAC1Wl2n9auqqnD37l0AgImJCdq0aQNTU1OcPn0a/fv3r7H+/v37ce3aNe3r//3vf/j1118xevRoveqs9uf3bmpqirZt2+LKlSu4efNmrcd/EH3fe3XNoaGhOv3VF5I/99xzAIBbt24BAMaMGQNTU/0G40tLS1FeXg4fH59H/rdG1NAYZIgayG+//YZjx47VaDdv3tR7X61atQKg+8Ns5syZ+O2332BrawtnZ2c4OzvjzJkzsLCwwJQpUx6pdkdHR1y8eLFGf1pamnb5w3Tq1AkREREoLCzEnTt3UFBQgBMnTgC4d9pNHyqVCoBukHuY2bNnIzk5GWVlZSgqKkJBQQHGjBlT67EvX75co+/SpUtwcnLSq85qLVq0wLp165CTk4Py8nIUFhaioKAAbdq0afT37ujoiMrKSly5ckWnX6lU4ubNm9rv3fHjx7Fnzx6EhISgoKAA+/fvh7+/P8zNzR96DI1Gg1WrVmHUqFFQKpU4fvw4VqxYAXt7e73eG1FjYJAhMkK9e/cGAO0Pp65du2LgwIEYMmQIrly5om3VIygzZswwWK0A0KxZMxw9ehTPPfccPvjgA4wbNw7Dhw/HnDlztMv1kZ6eDgDo06dPndafMWMGIiMjkZGRgXnz5mHkyJEYPnw4jh07pvex62Pz5s144403sHv3bkydOhUjRozA8OHDUVBQoPfx1Wo1rl69qv03UFeiDvMATZkyBYMGDcKWLVvQsWNHREREICkpCVZWVg/dNiwsDN26dcOaNWtQVlaG9evXIy0tDf369dOrTqKGxot9iYyMlZUVJkyYgJycHO2IyIwZM6DRaDBr1ixUVlbqrD948GAsWbIEnTp1Qm5ubr2OqVAo0L179xr9Li4u2uXA/X9Y9unTB927d8fs2bPx9ddfa/uHDx9er3ouX76M9PR0jBs3DoGBgbhz584D1588eTIyMjK0F65WW7duXa3r/+1vf6vR161bN2RnZz/wOPd7/5MnT0ZkZCRee+01bZ+FhUW9T8McPHgQL7/8MgYNGoRff/31gesqFAo0b94cf/vb37QBELh3AXebNm1qXIh76tQpnDp1Cm+++Sb++c9/4t///jdeeOEFhIeHPzQMZWZmIjQ0FKGhoejatSvOnj2L5cuXY9asWfV6n0QNgSMyREakRYsW+Prrr2Fra6szWd2MGTPw888/Y/fu3di7d69O++ijjwAA//znP+t93B9//BEeHh4YNGiQts/S0hILFixAVlaW9s6p6kDx1x/Q1eHqrzMNBwYG1rum4OBgtGvXDtu3b0fz5s1rLB8xYoT2+o/ajj9w4EB4enrWuu/x48fDwcFB+3rAgAEYNGgQDh8+/MCa7ty5U2s4qaysrPHeFy9erPe1KNU+/PBD3L59G9u3b0f79u1rLH/66aexZMkSAPe+dwAQFBSks86yZcsAAIcOHQJQ83sGAGfPngVwL3QBQElJSa3rtmzZUrtOtYyMDKjV6hr9RE2NIzJEBtKxY0ftKaFWrVqhZ8+emDJlCjp06ICPP/5Ye4vvwIED8be//Q1btmypdT/Xrl3D77//jhkzZuDDDz+sVy3vv/8+/vnPf+Lw4cP49NNPUVRUhDlz5qBLly6YNGmS9jf1jIwM3Lx5EwEBAVCr1bhz5w5OnTqF9PR0XLlyBR9//DE6duwIlUqFSZMmoU2bNvWqBwB2796NPn364M0334Sbmxu+++477cy+fn5+GD58uDa8HTx4EJMmTcK+fftw6NAhdOnSBQEBAUhNTdVeb/RnV65cwcmTJ/Gvf/0LFhYWCAoKQkFBwUO/fklJSRg+fDiWLl2Ka9euISsrC7/99hsOHjyIWbNmobi4GKmpqfD09NSeWqqPzMxMTJ8+Hbt27UJaWprOzL5///vfMWXKFOzcuRPAvdujd+7ciZdffhmtW7fG8ePHMXDgQPj7+2Pfvn2Ij48HcO9RGgsXLsS+ffuQkZEBmUyGl156CcXFxdowVFZWhgsXLmDatGm4dOkSioqKcP78eZiamuLYsWPYvXs3UlNTUVFRgQkTJkAul+P777+v13skakgGv3WKjU3Krb4T4lWrrKwUt27dEikpKWLbtm1iwIABOuuGhYUJIYTo0qXLfWt46623hBBC9OnTp041P2hCvKKiIlFSUiJ+/fVXnQnxqtvYsWPF+fPnhUaj0bkV28XFRcTExAiVSiWuX78utm3bJvr06VPjdu26TohX3YYOHSr27dsn8vPzhUajEUqlUhw4cEDn1nQAYvXq1SIrK0uUlpaKpKQkMXr0aBERESGysrK06/x5QrylS5cKhUIhSktLxfHjx2t87Wqrs1u3biI+Pl7cuXNHCPH/J8SzsbER4eHh4vr160KlUonDhw+Lbt26iaysLJ3btes6IV5169q1q9i2bZvIzMwUZWVlori4WPz888/i1Vdf1Znsrnnz5mLt2rUiIyNDlJeXC4VCUWNCvH79+olvv/1WZGdni9LSUpGfny9++OEH0b9/f51jDho0SPzvf/8TZWVl2lux27ZtKzZv3ixSU1OFWq0WN2/eFImJiWLy5MkG//yxsZn831+IiB57jo6OyM7Oxmuvvaa9PZmIpI3XyBAREZFkMcgQERGRZDHIEBERkWTxGhkiIiKSLI7IEBERkWQxyBAREZFkPRET4jk4ONT5SbJERERkHGQymc6T6mvz2AcZBwcHXL161dBlEBERUT107NjxgWHmsQ8y1SMxHTt25KgMERGRRMhkMly9evWhP7sf+yBTTa1WM8gQERE9ZnixLxEREUkWgwwRERFJFoMMERERSRaDDBEREUkWgwwRERFJFoMMERERSRaDDBEREUkWgwwRERFJFoMMERERSRaDDBEREUkWgwwRERFJFoMMERERSRaDDBEREUkWgwwRERFJlqmhC6DGU3nwRUOXQE2o+Zgdhi6BiKjJcUSGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJMvU0AVQ43mnMsjQJVCT2mHoAoiImhxHZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLKMJsisWrUKQghs2rRJ22dhYYEtW7agoKAAarUae/bsQfv27Q1YJRERERkTowgyzzzzDF5++WUkJyfr9G/atAljx47FlClT4O3tDQcHB0RFRRmoSiIiIjI2Bg8yVlZW+Pbbb/HSSy/h5s2b2n5ra2vMmzcPy5YtQ1xcHH7//XfMnTsX//jHP+Dh4WHAiomIiMhYGDzIbN26FYcOHcKxY8d0+t3d3WFubo7Y2Fht38WLF6FQKODp6Xnf/Zmbm0Mmk+k0IiIiejyZGvLg06ZNQ//+/TFgwIAay+RyOcrLy1FcXKzTr1QqIZfL77vPNWvWICQkpKFLJSIiIiNksBGZp556CmFhYZgxYwbKy8sbbL8bNmyAtbW1tnXs2LHB9k1ERETGxWBBxt3dHfb29vj9999x9+5d3L17Fz4+PliyZAnu3r0LpVIJCwsL2NjY6Gxnb2+P/Pz8++5Xo9FArVbrNCIiIno8GezU0rFjx9C7d2+dvoiICKSnp+ODDz5Abm4uNBoNfH19tXcqdevWDY6OjkhMTDREyURERkOz7jVDl0BNyDz4Y0OXYLQMFmRu376NCxcu6PTduXMHhYWF2v7w8HCEhoaiqKgIKpUKmzdvRkJCAk6dOmWIkomIiMjIGPRi34dZunQpqqqqsHfvXlhYWCA6OhoLFy40dFlERERkJIwqyAwdOlTndXl5ORYtWoRFixYZqCIiIiIyZgafR4aIiIiovhhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLJMDV0ANR4vSwtDl0BERNSoOCJDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJJlaugCiIhIf7/8/SVDl0BN6mNDF2C0OCJDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREkmXQIBMQEIDk5GQUFxejuLgYCQkJ8PPz0y63sLDAli1bUFBQALVajT179qB9+/YGrJiIiIiMiUGDzB9//IHVq1fD3d0dzzzzDH766SccOHAAPXv2BABs2rQJY8eOxZQpU+Dt7Q0HBwdERUUZsmQiIiIyIgZ9aOTBgwd1Xr/55pt45ZVXMGjQIPzxxx+YN28epk+fjri4OADA3LlzkZ6eDg8PD5w6darWfZqbm8PCwkL7WiaTNd4bICIiIoMymmtkmjVrhmnTpsHKygqJiYlwd3eHubk5YmNjtetcvHgRCoUCnp6e993PmjVroFKptO3q1atNUT4REREZgMGDTO/evaFWq1FeXo7PP/8cEyZMQFpaGuRyOcrLy1FcXKyzvlKphFwuv+/+NmzYAGtra23r2LFjY78FIiIiMhCDnloC7o2y9OvXDzY2Npg8eTIiIyPh7e1d7/1pNBpoNJoGrJCIiIiMlcGDzN27d5GRkQEA+P333zFgwAAEBgZi165dsLCwgI2Njc6ojL29PfLz8w1VLhERERkRg59a+qtmzZrBwsICSUlJ0Gg08PX11S7r1q0bHB0dkZiYaMAKiYiIyFgYdETmvffew+HDh5GTkwOZTIbp06fDx8cHI0eOhEqlQnh4OEJDQ1FUVASVSoXNmzcjISHhvncsERER0ZPFoEGmffv2+Oqrr9ChQwcUFxfj3LlzGDlypPZOpaVLl6Kqqgp79+6FhYUFoqOjsXDhQkOWTEREREbEoEFm/vz5D1xeXl6ORYsWYdGiRU1UEREREUmJ0V0jQ0RERFRXDDJEREQkWQwyREREJFkMMkRERCRZDDJEREQkWQwyREREJFkMMkRERCRZDDJEREQkWQwyREREJFkMMkRERCRZDDJEREQkWQwyREREJFkMMkRERCRZDDJEREQkWQwyREREJFkMMkRERCRZDDJEREQkWaaGLoAaj/fwS4YugYiIqFFxRIaIiIgki0GGiIiIJItBhoiIiCTrkYKMubk5zM3NG6oWIiIiIr3oHWSGDx+OQ4cOoaioCCUlJSgpKUFRUREOHToEX1/fxqiRiIiIqFZ6BZnZs2fjxx9/RHFxMZYuXYoxY8ZgzJgxWLp0KW7duoUff/wRM2fObKxaiYiIiHTodfv1G2+8gaCgIHz22Wc1lkVGRuLkyZN466238M033zRYgURERET3o9eITOfOnREbG3vf5ceOHcNTTz31yEURERER1YVeQebChQuYN2/efZe/+OKLSE1NfeSiiIiIiOpCr1NLy5cvx8GDB+Hn54fY2FgolUoAgL29PXx9ffH000/jueeea5RCiYiIiP5KryBz/Phx9O7dG6+88goGDRoEuVwOAMjPz8fhw4fx+eefQ6FQNEqhRERERH+l97OWFAoFVq9e3Ri1EBEREemlXg+NbN68OXr16qUdkcnLy0NaWhoqKioatDgiIiKiB9EryJiYmODtt9/Gq6++ChsbG51lxcXF2LJlC4KDgyGEaNAiiYiIiGqj111L77//PhYsWIDVq1fj6aefhpWVFaysrPD0009j1apVWLBgATZs2NBYtRIRERHp0GtEZvbs2Zg1axZiYmJ0+hUKBb788ksoFAp89dVXvIaGiIiImoReIzIymQzXrl277/K8vDxYWVk9clFEREREdaFXkImPj8fHH38MW1vbGstsbW3xwQcfID4+vqFqIyIiInogvU4tBQQE4Mcff0ReXh5SUlJ0JsTr06cPUlNTMWbMmEYplIiIiOiv9Aoyf/zxB1xdXTFy5EidCfF+++03vP7664iJieEdS0RERNRk9J5HRgiBI0eO4MiRI41RDxER1YH38EuGLoHIKNRrQrwBAwbA09NT5xEFCQkJOH36dIMWR0RERPQgegUZOzs77N27F//4xz+Qk5Ojc43Mpk2b8Msvv2DSpEm4ceNGoxRLRERE9Gd63bX02WefoXnz5ujRowe6dOmCQYMGYdCgQejSpQt69OiBZs2aYevWrY1VKxEREZEOvUZkRo4cCS8vL1y6VPPc7KVLl7BkyRLefk1ERERNRq8RmfLyclhbW993uUwmQ3l5+SMXRURERFQXegWZXbt2ITIyEuPHj4dMJtP2y2QyjB8/HhEREfjuu+8avEgiIiKi2uh1amnZsmVo1qwZvv/+e5iamkKj0QAAzM3NUVFRgfDwcLz22muNUigRERHRX5kA0HsGO5lMBnd3d53br5OSkqBWqxu6vkcmk8mgUqlgbW1tlPU1pirxX0OXQE2omclYQ5dATYif7yfLk/j5ruvP73rNI6NWq3lRLxERERmcXtfIPEz79u2xdu3ahtwlERER0X01aJCRy+UIDg5uyF0SERER3Zdep5b69OnzwOXdu3d/pGKIiIiI9KFXkDl79iyEEDAxMamxrLqfT78mIiKipqJXkCkqKsLKlStx7NixWpf36tUL//0vr6QnIiKipqFXkElKSoKDgwNycnJqXd66detaR2uIiIiIGoNeQebzzz+HlZXVfZfn5ORg7ty5j1wUERERUV3oFWT279//wOW3bt3CV1999Sj1EBEREdWZ3rdfN2/eHGZmZjp98+bNw86dO7Fo0aIGK4yIiIjoYfQOMt9++y3WrVunfb1gwQKEhYXBysoKb731Ft57770GLZCIiIjofvQOMv3798eRI0e0r19++WUEBQVhypQpmDJlCqZPn96gBRIRERHdT52vkdmxYwcA4KmnnsKSJUswZ84cmJiYwNXVFaNGjYKnpydMTU3h4OCA8PBwAPdOORERERE1Fr2ffp2dnY2ZM2fi5MmTGD16NDZt2qSd0dfa2ho5OTlo3bp1I5RaP3z6NT0pnsSn4z7J+Pl+sjyJn+9Ge/p1fHw8vvjiC3z11VeYO3cudu3apV3m6uqKy5cv169iIiIiIj3pfY3MsmXLcPr0aUyfPh0//fSTzsW948ePxzfffNOgBRIRERHdj96nlqSGp5boSfEkDj0/yfj5frI8iZ/vuv781ntEhoiIiMhY6H2NDBE9HiwtLdGuXTs+H80ICCFQUFCAkpISQ5dCJDkGDTKrV6/GxIkT4eLigtLSUiQkJGDVqlW4dOmSdh0LCwts3LgRL7zwAiwsLBAdHY2FCxfi+vXrBqycSLpMTEwwd+5c+Pj4GLoU+ov4+HhERERAiMf6jD9RgzJokPH29sbWrVvxv//9D6ampnjvvfcQExODnj17an8z2bRpE5577jlMmTIFxcXF2LJlC6KiojB48GBDlk4kWXPnzoW3tzd27dqF9PR0VFRUGLqkJ56pqSlcXFwwdepUAP9/3i4iejiDBplRo0bpvPb398eNGzfg7u6On3/+GdbW1pg3bx6mT5+OuLg4APf+E05PT4eHhwdOnTpliLKJJMvKygo+Pj7YtWsXDh06ZOhy6E8yMjIAANOmTcP333/P00xEdWRUF/va2NgAAIqKigAA7u7uMDc3R2xsrHadixcvQqFQwNPTs9Z9mJubQyaT6TQiusfW1hYAkJ6ebuBKqDbV35d27doZuBIi6TCaIGNiYoJPPvkEJ0+exIULFwAAcrkc5eXlKC4u1llXqVRCLpfXup81a9ZApVJp29WrVxu9diKpqL6wl6eTjFP194UXYBPVndEEma1bt6J379544YUXHmk/GzZsgLW1tbZ17NixgSokIiIiY2MUt19v3rwZY8aMgZeXl84ISn5+PiwsLGBjY6MzKmNvb4/8/Pxa96XRaKDRaBq9ZiIiIjI8g4/IbN68GRMmTMCwYcOQnZ2tsywpKQkajQa+vr7avm7dusHR0RGJiYlNXCkRNZU5c+bg5s2bhi6DiCTAoEFm69atmDlzJqZPnw61Wg17e3vY29ujRYsWAACVSoXw8HCEhobCx8cH/fv3R0REBBISEnjHEpGBVM9z8td2+PDhBjvGrl270K1btwbbX2PLyspCYGCgocsgeiIZ9NTSwoULAQDHjx/X6ff390dkZCQAYOnSpaiqqsLevXt1JsQjIsM5fPgw5s6dq9NXXl7eYPsvKytDWVlZg+2PiB5fBh2RMTExqbVVhxjg3n+OixYtgq2tLVq1aoVJkyZBqVQasGoiKi8vh1Kp1Gm3bt0CAHTt2hXHjx9HaWkpLly4gOHDh0MIgXHjxgG4NxGmEEI73QIAuLq6QggBR0dHADVPLQUHB+PMmTNYsGABcnJycOfOHezatQvW1tbadSIiIrBv3z6sWbMG+fn5uHnzJtauXYvmzZvjww8/RGFhIXJzc+Hv76/zXp566ins2rULN2/eRGFhIfbv36+t48/7Xb58Oa5du4aCggJs2bIFpqb3fg+Mi4uDk5MTPvnkE+3oFBE1HYNfI0NEjw8TExNERUVBo9HAw8MDAQEB+OCDDxpk3127dsXUqVMxduxY+Pn5wc3NDZ999pnOOsOGDYODgwO8vLywbNkyvP322zh48CBu3rwJDw8PfP7559i2bZv2bkZTU1NER0dDrVZjyJAh+Mc//oHbt2/jyJEjMDMz0+536NChcHZ2xtChQzFnzhz4+/trA9HEiRORm5uLtWvXQi6X33dqCCJqHAwyRKS3MWPGQK1W67Q1a9Zg+PDhcHFxwezZs3Hu3Dn8/PPPeP311xvkmC1atMDs2bORnJyMn3/+GYsXL8YLL7wAe3t77TpFRUVYsmQJLl26hIiICKSnp8PS0hIbNmzAlStXsGHDBmg0Gu0jTqZNm4ZmzZph/vz5OH/+PNLT0zF37lx07txZ51lUN2/exKJFi3Dx4kUcOnQIhw4d0t6EcPPmTVRWVkKtVmtHp4io6RjF7ddEJC1xcXF45ZVXdPqKioowa9Ys5ObmIi8vT9vfUHcY5uTk4Nq1azr7bd68Obp3764NDxcuXNA5taNUKnH+/Hnt66qqKhQWFqJ9+/YA7p3S6tq1K9Rqtc6xWrRoAWdnZxw9elS736qqKu3yvLw89OnTp0HeFxE9GgYZItLbnTt3tM8G0ld1IPjz7LV/Po3zKO7evavzWghRa1+zZvcGo1u1aoWkpCTMmDGjxr5u3LjxwP1W74OIDItBhogaTFpaGjp16gS5XK6dtHLQoEE661QHhA4dOmgvEO7Xr99D9925c2d06NBBO9ozaNAgVFZW4uLFi/Wu9/fff8e0adNw/fr1GqMy+tBoNGjevHm9tyei+uOvFESkNwsLC+28T9XN1tYWsbGxuHTpEiIjI9G3b18MHjwY7777rs62V65cQU5ODkJCQtC1a1eMHj0ay5cvf+gxy8rKdPb76aefYvfu3Y90Tcq3336LgoICHDhwAIMHD4aTkxO8vb0RFham1+NNsrOz4eXlBQcHB+2DOYmoaTDIEJHeRo0ahfz8fJ128uRJCCEwYcIEtGzZEr/99hu2b9+ON954Q2fbiooK/POf/4SLiwvOnTuHVatW4c0333zoMa9cuYKoqCj8+OOPiImJwblz5x55TqnS0lJ4eXkhJycHUVFRSEtLQ3h4OFq0aAGVSlXn/bz11ltwcnJCRkYGCgoKHqkmItKPCYDHetIDmUwGlUoFa2vrRxo6lqIq8V9Dl0BNqJnJ2Ieu4+joiPXr12Pt2rVQKBRNUNU9QgiMHz8eBw4cqNf2wcHBGD9+PNzc3Bq4MuOiz/eHn+8nS10+34+buv785ogMERERSRaDDBEREUkW71oiokb351ut62PdunVYt25dA1VDRI8TjsgQERGRZDHIEBERkWQxyBAREZFkMcgQERGRZDHIEBERkWQxyBAREZFk8fZrIgIAbExJbLJjLe/jWa/ttm3bhsmTJ6Nt27bo168fkpOTG7gyIpIajsgQkST4+fnB398fY8aMgVwux/nz5+u8raOjI4QQcHV1rbEsLi4OmzZt0r6eMGECoqOjUVBQcN9tLCwssGXLFhQUFECtVmPPnj1o3769zjphYWE4ffo0ysrKcObMGT3eKRHpg0GGiCTB2dkZeXl5SExMhFKpRGVlZaMcx8rKCidPnsSqVavuu86mTZswduxYTJkyBd7e3nBwcEBUVFSN9Xbs2IFdu3Y1Sp1EdA9PLRGR0YuIiIC/vz+Aew+gzM7OxmuvvYbg4GB07doVJSUlOHPmDMaNG4eSkpJHOtY333wD4N4oTm2sra0xb948TJ8+HXFxcQCAuXPnIj09HR4eHjh16hQAIDAwEABgZ2eHvn37PlJNRHR/DDJEZPQCAwORkZGBBQsWYMCAATAzM0NmZiZWrlyJffv2QSaTYciQIY/8KIS6cHd3h7m5OWJjY7V9Fy9ehEKhgKenpzbIEFHTYJAhIqOnUqmgVqtRWVkJpVIJNzc3mJmZISoqCjk5OQBQp2tmEhISUFVVpdPXsmVLnD17ts61yOVylJeXo7i4WKdfqVRCLpfXeT9E1DAYZIhIcpKTkxEbG4uUlBRER0cjJiYGe/bswa1btx643bRp05CWlqbT9+233zZipUTU2HixLxFJTlVVFUaMGIFRo0YhNTUVixcvxsWLF+Hk5PTA7XJzc5GRkaHTSktL9Tp2fn4+LCwsYGNjo9Nvb2+P/Px8fd8KET0iBhkikqyEhASEhITAzc0NGo0GEyZMaPRjJiUlQaPRwNfXV9vXrVs3ODo6IjGx6ebiIaJ7eGqJiCRn4MCB8PX1RUxMDK5fvw4PDw/Y2dlpTxuNHz8eGzZsQI8ePfTed5s2bdC5c2c4ODgAALp37w7g3kiMUqmESqVCeHg4QkNDUVRUBJVKhc2bNyMhIUHnQl9nZ2e0atUKcrkcLVu21M5Hk5qairt37z7ql4CI/g+DDBEBqP9su4agUqng5eWFoKAgWFtbQ6FQYPny5Thy5AgAwMbGBi4uLvXa9/PPP4+dO3dqX1fPAxMSEoJ169YBAJYuXYqqqirs3bsXFhYWiI6OxsKFC3X2s337dvj4+GhfV19Q7OTkBIVCUa/aiKgmEwDC0EU0JplMBpVKBWtra6jVakOX06SqxH8NXQI1oWYmYx+6jqOjI9avX4+1a9fyh6kR0uf7w8/3k6Uun+/HTV1/fvMaGSIiIpIsBhkiIiKSLAYZIiIikiwGGSIiIpIsBhkiIiKSLAYZIiIikiwGGSIiIpIsBhkiIiKSLAYZIiIikiw+ooCIADTtTLH1naV027ZtmDx5Mtq2bYt+/fohOTm5gSsjIqnhiAwRSYKfnx/8/f0xZswYyOVynD9/vs7bOjo6QgihbYWFhYiPj8fgwYN11uvZsyf27NmDrKwsCCEQGBhY6/4WLlyIrKwslJaW4tdff8WAAQN0lr/00kuIi4tDcXExhBCwsbHR/w0TUZ0wyBCRJDg7OyMvLw+JiYlQKpWorKzUex++vr6Qy+Xw8vLCtWvXcPDgQbRv31673NLSEpmZmVi9ejXy8vJq3cfUqVMRGhqKdevWoX///khOTkZ0dDTs7Ox09nPkyBG89957+r9RItILgwwRGb2IiAhs2bJFO7KSlZWFSZMm4dy5cygpKUFBQQGOHj0KS0vLB+6nsLAQSqUSFy5cwHvvvQcbGxt4eHhol58+fRorV67Erl27UF5eXus+li1bhi+//BI7d+5EWloaAgICUFJSghdffFG7TlhYGD744AP8+uuvDfMFIKL74jUyRGT0AgMDkZGRgQULFmDAgAEwMzNDZmYmVq5ciX379kEmk2HIkCEwMTGp0/5atGiB2bNnAwA0Gk2d6zAzM4O7uzs2bNig7RNCIDY2Fp6envq9KSJqEAwyRGT0VCoV1Go1KisroVQq4ebmBjMzM0RFRSEnJwcA6nTNTEJCAqqqqmBpaYlmzZrh9OnTOHbsWJ3raNeuHUxNTaFUKnX6lUolXFxc9HtTRNQgeGqJiCQnOTkZsbGxSElJwe7duzF//ny0bt36odtNmzYNbm5umDRpEi5fvgx/f39UVFQ0fsFE1Gg4IvMY23S+naFLIGoUVVVVGDFiBP7+97/j2WefxeLFi/Huu+/Cw8MD2dnZ990uNzcXV65cwZUrV2Bqaop9+/ahd+/edT69VFBQgIqKCtjb2+v029vbIz8//1Hekt74+Sa6hyMyRCRZCQkJCAkJgZubGzQaDSZMmFDnbffs2YOKigosXLiwztvcvXsXSUlJ8PX11faZmJjA19cXiYmJetVORA2DQYaIJGfgwIFYs2YN3N3d0alTJ0ycOBF2dnZIS0sDAIwfP1779wf59NNPsXr1arRs2RLAvYt5XV1d4erqCnNzc3Ts2BGurq5wdnbWbhMaGoqXXnoJs2fPhouLC/71r3/BysoKERER2nXs7e3h6uqKrl27AgD69OkDV1dXtGnTpiG/DEQEnloiov9T39l2DUGlUsHLywtBQUGwtraGQqHA8uXLceTIEQCAjY1NnS6+jYyMxLvvvotFixbho48+goODA86ePatdvmLFCqxYsQLx8fEYOnQoAGD37t2ws7PD22+/DblcjrNnz8LPzw/Xr1/XbhcQEICQkBDt659//hkA4O/vj8jIyAb4ChBRNRMAwtBFNCaZTAaVSgVra2uo1WpDl9OkNqZwqPtJsrzPw2//dXR0xPr167F27VooFIomqIr0oc/3h5/vJ0tdPt+Pm7r+/OapJSIiIpIsBhkiIiKSLAYZIiIikiwGGSIiIpIsBhkiIiKSLAYZIiIikiwGGSIiIpIsBhkiIiKSLAYZIiIikiw+ooCIAABxRy822bGGjuher+22bduGyZMno23btujXrx+Sk5MbuDIikhqOyBCRJPj5+cHf3x9jxoyBXC7H+fPn67yto6MjhBA12tdff61dJywsDKdPn0ZZWRnOnDlT63769OmDEydOoLS0FDk5OVixYoXO8p49e2LPnj3IysqCEAKBgYH1e7NEVGcckSEiSXB2dkZeXh4SE+v/jCFfX19cuHBB+7q0tFRn+Y4dO+Dh4YG+ffvW2FYmkyEmJgaxsbEICAhAnz59sGPHDty6dQtffvklAMDS0hKZmZn4z3/+g02bNtW7TiKqOwYZIjJ6ERER8Pf3BwAIIZCdnY3XXnsNwcHB6Nq1K0pKSnDmzBmMGzcOJSUl991PYWEhlEplrcuqR0/s7OxqDTIzZsyAubk5XnzxRdy9exepqano168fli1bpg0yp0+fxunTpwEA77///qO8ZSKqIwYZIjJ6gYGByMjIwIIFCzBgwACYmZkhMzMTK1euxL59+yCTyTBkyBCYmJg0Wg2enp44ceIE7t69q+2Ljo7G6tWr0bp1a9y6davRjk1E98cgQ0RGT6VSQa1Wo7KyEkqlEm5ubjAzM0NUVBRycnIAoE7XzCQkJKCqqkr7esiQITh79mydapDL5cjKytLpqx7dkcvlDDJEBsIgQ0SSk5ycjNjYWKSkpCA6OhoxMTHYs2fPQ8PEtGnTkJaWpn2dm5vbyJUSUWMz6F1LQ4YMwQ8//ICrV69CCIFx48bVWGfdunW4du0aSkpKcPToUXTt2tUAlRKRMamqqsKIESMwatQopKamYvHixbh48SKcnJweuF1ubi4yMjK0TaPR1PmY+fn5sLe31+mrfp2fn6/3eyCihmHQIGNlZYXk5GS8+uqrtS5fuXIllixZgoCAAHh4eODOnTuIjo6GhYVFE1dKRMYoISEBISEhcHNzg0ajwYQJExrtWImJifDy8oKp6f8fyB4xYgTS09N5WonIgAwaZI4cOYK1a9di//79tS4PCgrCO++8gx9++AEpKSmYPXs2HBwcMH78+Catk4iMy8CBA7FmzRq4u7ujU6dOmDhxIuzs7LSnjcaPH69zCqkunJ2d4erqCrlcjpYtW8LV1RWurq4wMzMDAPz73/+GRqNBeHg4evbsialTpyIwMBChoaHafZiZmWm3Mzc3R8eOHeHq6gpnZ+eGe/NEpMNor5Hp0qULOnTogNjYWG2fSqXCqVOn4OnpiV27dtW6nbm5uc6IjUwma/RaiR4H9Z1t1xBUKhW8vLwQFBQEa2trKBQKLF++HEeOHAEA2NjYwMXFRa99bt++HT4+PtrX1RcBOzk5QaFQQKVS4dlnn8XWrVuRlJSEgoICvP3229pbrwHAwcFB5+LhFStWYMWKFYiPj8fQoUPr/X6J6P6MNsjI5XIAqDHng1Kp1C6rzZo1axASEtKYpRGRAYSFhSEsLAwAkJ6ejlGjRt133cjISERGRmpfKxSKh96aXZegkZKSAi8vr/sur8txiKhhPXaPKNiwYQOsra21rWPHjoYuiYiIiBqJ0QaZ6rsAartL4EF3CGg0GqjVap1GREREjyejDTJZWVnIy8uDr6+vtk8mk8HDw+ORnrVCREREjw+DXiNjZWWlMy9Mly5d4OrqiqKiIuTm5uKTTz7Bm2++icuXLyMrKwvr16/HtWvX7nuXExERET1ZDBpknnnmGcTHx2tfVz8tdufOnZg7dy4+/PBDWFlZ4YsvvkDr1q1x8uRJ+Pn5oby83EAVExERkTExaJA5fvz4Q6/wDw4ORnBwcBNVRERERFJitNfIEBERET0MgwwRERFJFoMMERERSZbRzuxLRE1Ls+61JjuWefDH9dpu27ZtmDx5Mtq2bYt+/fohOTm5gSsjIqnhiAwRSYKfnx/8/f0xZswYyOVynD9/vs7bOjo6QghRo3399dfadcLCwnD69GmUlZXhzJkzte6nT58+OHHiBEpLS5GTk4MVK1boLJ8/fz5OnDiBoqIiFBUV4ejRoxgwYED93jAR1QlHZIhIEpydnZGXl/dIE2L6+vriwoUL2telpaU6y3fs2AEPDw/07du3xrYymQwxMTGIjY1FQEAA+vTpgx07duDWrVvaB0f6+Pjgu+++Q0JCAsrKyrBq1SrExMSgV69euHbtWr3rJqL7Y5AhIqMXEREBf39/AIAQAtnZ2XjttdcQHByMrl27oqSkBGfOnMG4ceNQUlJy3/0UFhbWeBBttcDAQACAnZ1drUFmxowZMDc3x4svvoi7d+8iNTUV/fr1w7Jly7RBZubMmTrbzJ8/H5MmTYKvr6/O6A8RNRwGGSIyeoGBgcjIyMCCBQswYMAAmJmZITMzEytXrsS+ffsgk8kwZMiQRn3ytKenJ06cOIG7d+9q+6Kjo7F69Wq0bt0at27dqrGNpaUlzMzMUFRU1Gh1ET3pGGSIyOipVCqo1WpUVlZCqVTCzc0NZmZmiIqKQk5ODgDU6ZqZhIQEVFVVaV8PGTIEZ8+erVMNcrkcWVlZOn3VoztyubzWIPPBBx/g2rVriI2NrdMxiEh/DDJEJDnJycmIjY1FSkoKoqOjERMTgz179tQaJv5s2rRpSEtL077Ozc1ttBpXrVqFF154AT4+PnysClEj4l1LRCQ5VVVVGDFiBEaNGoXU1FQsXrwYFy9ehJOT0wO3y83NRUZGhrZpNJo6HzM/Px/29vY6fdWv8/PzdfqXL1+O1atX49lnn0VKSkqdj0FE+mOQISLJSkhIQEhICNzc3KDRaDBhwoRGO1ZiYiK8vLxgavr/B7JHjBiB9PR0nZGgFStWYO3atfDz80NSUlKj1UNE9zDIEJHkDBw4EGvWrIG7uzs6deqEiRMnws7OTnvaaPz48TqnkOrC2dkZrq6ukMvlaNmyJVxdXeHq6gozMzMAwL///W9oNBqEh4ejZ8+emDp1KgIDAxEaGqrdx8qVK7F+/Xq8+OKLyM7Ohr29Pezt7WFlZdVwb56IdPAaGSICUP/Zdg1BpVLBy8sLQUFBsLa2hkKhwPLly3HkyBEAgI2NDVxcXPTa5/bt2+Hj46N9XX0RsJOTExQKBVQqFZ599lls3boVSUlJKCgowNtvv6299RoAXnnlFVhYWGDv3r06+w4JCcG6devq92aJ6IEYZIhIEsLCwhAWFgYASE9Px6hRo+67bmRkJCIjI7WvFQrFQ2/NHjp06ENrSElJgZeX132Xd+nS5aH7IKKGxVNLREREJFkMMkRERCRZDDJEREQkWQwyREREJFkMMkRERCRZDDJEREQkWQwyREREJFkMMkRERCRZDDJEJBnbtm1DYWEhhBBwdXU1dDlEZAQ4sy8RAQDWHTjXZMcKHtdX7238/Pzg7+8PHx8fZGZmoqCgoM7bOjo6Ijs7W/tarVYjJycH8fHx+OSTT3DlyhXtMrlcjo0bN+KZZ55B165d8emnn2Lp0qU19jl58mSsX78eTk5OuHz5MlatWoXDhw9rl0+YMAEBAQFwd3eHra0t+vXrh+TkZL3fNxE9GEdkiEgSnJ2dkZeXh8TERCiVSlRWVuq9D19fX8jlcri6uuL1119Hjx49kJycjGHDhmnXsbCwwI0bN/DOO+/cN3h4enriu+++Q3h4ONzc3LB//37s378fvXr10q5jZWWFkydPYtWqVfq/WSKqMwYZIjJ6ERER2LJlCxwdHSGEQFZWFiZNmoRz586hpKQEBQUFOHr0KCwtLR+4n8LCQiiVSmRlZeGHH37A8OHDcerUKYSHh6NZs3v/HSoUCgQFBeHrr79GcXFxrfsJDAzEkSNH8PHHHyM9PR1vvfUWfv/9dyxatEi7zjfffIP169cjNja24b4QRFQDgwwRGb3AwECsXbsWubm5kMvlGDJkCL777jvs2LEDPXr0gI+PD6Kioh76YMi/EkIgLCwMTk5OcHd3r/N2np6eNQJKdHQ0PD099To+ET06XiNDREZPpVJBrVajsrISSqUSbm5uMDMzQ1RUFHJycgAA58+fr9e+09PTAQBOTk743//+V6dt5HI5lEqlTp9SqYRcLq9XDURUfxyRISLJSU5ORmxsLFJSUrB7927Mnz8frVu3rte+qkdxhBANWCERNRUGGSKSnKqqKowYMQKjRo1CamoqFi9ejIsXL8LJyUnvffXo0QMAkJWVVedt8vPzYW9vr9Nnb2+P/Px8vY9PRI+GQYaIJCshIQEhISFwc3ODRqPBhAkT9NrexMQES5YsQWZmJs6cOVPn7RITE+Hr66vTN2LECCQmJup1fCJ6dLxGhogkZ+DAgfD19UVMTAyuX78ODw8P2NnZIS0tDQAwfvx4bNiwQTvaUs3W1hb29vawtLRE7969ERQUhIEDB+K5555DVVWVdr3qyfZatWoFOzs7uLq6QqPRaPcfFhaG48ePY9myZTh06BBeeOEFPPPMM1iwYIF2H23atEHnzp3h4OAAAOjevTuAe6M5f72+hojqj0GGiCRHpVLBy8sLQUFBsLa2hkKhwPLly3HkyBEAgI2NDVxcXGpsd+zYMQDAnTt3oFAoEBcXhwULFiAjI0NnvbNnz2r//swzz2DGjBnIzs5Gly5dANwbkZk+fTreeecdvPfee7h8+TLGjx+PCxcuaLd7/vnnsXPnTu3rXbt2AQBCQkKwbt26Bvk6EBGDDBH9n/rMttuUwsLCEBYWBuDenUajRo2677qRkZGIjIzUvlYoFHrdml2Xdffs2YM9e/bUuQYiahy8RoaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIJGPbtm0oLCyEEEL7PCQierLxEQVEBACoPPhikx2r+Zgdem/j5+cHf39/+Pj4IDMzEwUFBXXe1tHREdnZ2ejXrx+Sk5N1lsXFxeHs2bNYunQpAGDChAkICAiAu7s7bG1ta93GwsICGzduxAsvvAALCwtER0dj4cKFuH79OgCgb9++WL16NQYPHox27dohOzsbn3/+OT799FO93zcRPRhHZIhIEpydnZGXl4fExEQolUpUVlY2ynGsrKxw8uRJrFq16r7rbNq0CWPHjsWUKVPg7e0NBwcHREVFaZe7u7vj+vXrmDlzJnr16oV3330XGzZswKuvvtooNRM9yTgiQ0RGLyIiAv7+/gAAIQSys7Px2muvITg4GF27dkVJSQnOnDmDcePGoaSk5JGO9c033wC4N4pTG2tra8ybNw/Tp09HXFwcAGDu3LlIT0+Hh4cHTp06hYiICJ1tsrKy4OnpiYkTJ2Lr1q2PVB8R6WKQISKjFxgYiIyMDCxYsAADBgyAmZkZMjMzsXLlSuzbtw8ymQxDhgzR6wnX9eXu7g5zc3PExsZq+y5evAiFQgFPT0+cOnWq1u1sbGxQVFTU6PURPWkYZIjI6KlUKqjValRWVkKpVMLNzQ1mZmaIiopCTk4OAOD8+fMP3U9CQgKqqqp0+lq2bImzZ8/WuRa5XI7y8nIUFxfr9CuVSsjl8lq38fT0xLRp0/Dcc8/V+ThEVDcMMkQkOcnJyYiNjUVKSgqio6MRExODPXv24NatWw/cbtq0aUhLS9Pp+/bbbxuxUqBXr144cOAA1q1bh6NHjzbqsYieRLzYl4gkp6qqCiNGjMCoUaOQmpqKxYsX4+LFi3Bycnrgdrm5ucjIyNBppaWleh07Pz8fFhYWsLGx0em3t7dHfn6+Tl+PHj1w7NgxfPHFF3j33Xf1Og4R1Q2DDBFJVkJCAkJCQuDm5gaNRoMJEyY0+jGTkpKg0Wjg6+ur7evWrRscHR2RmJio7evZsyfi4uIQGRmJN998s9HrInpS8dQSEUnOwIED4evri5iYGFy/fh0eHh6ws7PTnjYaP348NmzYgB49eui97zZt2qBz585wcHAAAHTv3h3AvZEYpVIJlUqF8PBwhIaGoqioCCqVCps3b0ZCQoL2Qt9evXrhp59+QnR0NEJDQ2Fvbw8AqKys1Gv+GyJ6OAYZIpIclUoFLy8vBAUFwdraGgqFAsuXL8eRI0cA3LtDyMXFpV77fv7557Fz507t6127dgEAQkJCsG7dOgDA0qVLUVVVhb179+pMiFdt8uTJaN++PWbNmoVZs2Zp+7Ozs9GlS5d61UVEtTMBIAxdRGOSyWRQqVSwtraGWq02dDlNamNK4sNXosfG8j6eD13H0dER69evx9q1a6FQKJqgKtKHPt8ffr6fLHX5fD9u6vrzm9fIEBERkWQxyBAREZFkMcgQERGRZDHIEBERkWQxyBA9QYS4d22/qSlvWDRG1d+X6u8TET0cgwzRE6SwsBAA6n1rMjWu6u8L55ohqjv+Wkb0BLlz5w7i4+MxdepUAEB6ejoqKioMXBWZmprCxcUFU6dORXx8PEpKSgxdEpFkMMgQPWEiIiIA3HuAIhmX+Ph47feHiOqGQYboCSOEwI4dO/D999+jXbt2MDExMXRJTzwhBAoKCjgSQ1QPDDJET6iSkhLk5OQYugwiokciiYt9Fy5ciKysLJSWluLXX3/FgAEDDF0SERERGQGjDzJTp05FaGgo1q1bh/79+yM5ORnR0dGws7MzdGlERERkYEYfZJYtW4Yvv/wSO3fuRFpaGgICAlBSUoIXX3zR0KURERGRgRn1NTJmZmZwd3fHhg0btH1CCMTGxsLTs/YngZqbm8PCwkL7WiaT6fz5JDFv1tzQJVATehL/jT/J+Pl+sjyJn++6vmejDjLt2rWDqakplEqlTr9SqbzvhF5r1qxBSEhIjf6rV682RolERmORSmXoEoiokTzJn2+ZTAa1Wn3f5UYdZOpjw4YNCA0N1elr27YtioqKDFQRNSWZTIarV6+iY8eOD/yHT0TSw8/3k0cmk+HatWsPXMeog0xBQQEqKipgb2+v029vb4/8/Pxat9FoNNBoNDp9/Af/5FGr1fy+Ez2m+Pl+ctTl+2zUF/vevXsXSUlJ8PX11faZmJjA19cXiYmJBqyMiIiIjIFRj8gAQGhoKCIjI3H69Gn89ttvCAoKgpWVFafxJiIiIuMPMrt374adnR3efvttyOVynD17Fn5+frh+/bqhSyMjVF5ejpCQEJSXlxu6FCJqYPx8U21MAAhDF0FERERUH0Z9jQwRERHRgzDIEBERkWQxyBAREZFkMcgQERGRZDHIEBERkWQxyBAREZFkGf08MkRE9GRq1qwZ/P394evri/bt26NZM93fvf886zs9uRhkiIjIKIWFhcHf3x+HDh3C+fPnIQSnPaOaOCEeSV779u3x8ccfa39rMzEx0Vluasq8TiRFN27cwOzZs3H48GFDl0JGjP/Dk+Tt3LkTnTt3xvr165GXl8ff2ogeExqNBleuXDF0GWTkOCJDkqdSqTBkyBAkJycbuhQiakDLli3D008/jUWLFhm6FDJiHJEhycvNza1xOomIpGnv3r06r4cNG4ZRo0bhwoULuHv3rs6ySZMmNWVpZKQYZEjygoKC8P777+Pll1+GQqEwdDlE9AiKi4t1Xu/bt89AlZBU8NQSSV5RUREsLS1hamqKkpKSGr+12draGqgyIiJqbByRIckLCgoydAlE1AhatGgBExMTlJaWAgA6d+6MCRMmIDU1FUePHjVwdWRMBBsbGxsbm7G16Oho8fLLLwsAwsbGRuTn54ucnBxRUlIiAgICDF4fm3E0PqKAHgvNmjXDxIkT8cYbb+CNN97A+PHja8wCSkTS0r9/f/z8888AgMmTJyM/Px+Ojo6YPXs2lixZYuDqyFjw1BJJnrOzM3788Ud07NgRFy9eBACsWbMGubm5eO6555CZmWngComoPiwtLaFWqwEAzz77LKKioiCEwK+//gpHR0cDV0fGgr+ykuR9+umnyMjIQKdOneDu7g53d3d07twZWVlZ+PTTTw1dHhHV05UrVzB+/Hg89dRTGDlyJGJiYgDcm81bpVIZuDoyJgY/v8XG9ijt9u3bonfv3jX6+/btK9RqtcHrY2Njq1+bNGmSKC8vFxUVFSI6Olrbv3r1avHjjz8avD4242g8tUSSV15eDplMVqO/VatW0Gg0BqiIiBrC3r170blzZ3To0EFn5u5jx45xfhnSYfA0xcb2KC0yMlKkpKSIgQMHavs8PDzEuXPnREREhMHrY2NjY2NrvMYJ8UjybGxsEBkZibFjx2onwzM1NcUPP/wAf39/nksnkjB3d3dMnToVnTt3hrm5uc4yPqKAAN61RI+B4uJijB8/Hl27doWLiwsAIC0tDRkZGQaujIgexbRp0/DVV18hOjoazz77LGJiYtCtWzfY29vz1BJpcUSGiIiMUnJyMrZt24bPPvsMKpUKrq6uyMrKwrZt25CXl4eQkBBDl0hGgEGGJGnjxo1Yu3YtSkpKsHHjxgeuu3z58iaqioga0u3bt9GrVy8oFAoUFBTAx8cH58+fh4uLC3766Sc4ODgYukQyAjy1RJLk5uYGMzMz7d+J6PFz8+ZN7R2JV69eRe/evXH+/Hm0bt0alpaWBq6OjAWDDEnSsGHDav07ET0+Tpw4gREjRuD8+fP4z3/+g7CwMAwbNgwjRozAsWPHDF0eGRGD3zrFxvYoLTw8XLRq1apGv6WlpQgPDzd4fWxsbPVrbdq0ER06dBAAhImJiVi1apU4cOCA+Pjjj0Xr1q0NXh+bcTReI0OSV1FRgQ4dOuDGjRs6/ba2tsjPz9eegiIioscPTy2RZMlkMpiYmMDExAQymQxlZWXaZc2bN8fo0aNx/fp1A1ZIRPqqbZbu+6l+oCQ92RhkSLJu3boFIQSEELh06VKN5UIIBAcHG6AyIqqv6s/1g5iYmEAIAVNT/ggjBhmSsKFDh8LExAQ//fQTJk2ahKKiIu0yjUYDhUKBvLw8A1ZIRPoaOnSooUsgieE1MiR5nTt3Rm5u7kN/iyMioscPgww9Nlq2bFnr81hSUlIMVBER1UdkZCReffVV3L59GwDQt29fpKamoqKiwsCVkTFikCHJa9euHSIiIjBq1Khal/M8OpG0/PVOxOLiYvTr1w9ZWVkGroyMUTNDF0D0qD755BO0bt0aHh4eKC0thZ+fH+bMmYPLly/j+eefN3R5RKQnExOTB74m+jP+qkqSN2zYMIwbNw5JSUmoqqqCQqFAbGwsVCoV1qxZgx9//NHQJRIRUSNhkCHJs7Ky0s4Xc/PmTdjZ2eHy5ctISUlB//79DVwdEdVHz549tXcimpiYwMXFBa1atdJZh9e/EcAgQ4+Bixcvonv37lAoFEhOTsbLL7+M7OxsBAQE8PZrIok6duyYzimlgwcPArg3PxTnkaE/478CkrywsDB06NABALBu3TocOXIEM2bMgEajgb+/v2GLIyK9denSxdAlkITwriV67LRs2RIuLi7IyclBYWGhocshIqJGxCBDREREksVTSyRJGzdurPO6y5cvb8RKiIjIkBhkSJLc3NzqtB4fW0BE9HjjqSUiIiKSLI7IEBGRUWvXrh26d+8O4N50CwUFBQauiIwJgwxJ0t69e+u87qRJkxqxEiJqLJaWlti8eTNmzZqF5s2bAwAqKyvx1VdfYfHixSgtLTVwhWQM+KwlkqTi4uI6NyKSptDQUHh7e+P5559H69at0bp1a4wbNw7e3t56XfBPjzdeI0NEREbpxo0bmDx5Mo4fP67T7+Pjg927d6N9+/YGqoyMCUdkiIjIKFlaWkKpVNbov379OiwtLQ1QERkjjsiQJCUlJcHX1xe3bt3C77///sDbrN3d3ZuwMiJqKLGxsSgsLMTs2bNRXl4OAGjRogUiIyPRtm1bjBgxwsAVkjHgxb4kSQcOHND+x3bgwAHOF0P0GAoMDER0dDT++OMPJCcnAwBcXV1RVlaGkSNHGrg6MhYckSEiIqPVsmVLzJgxAy4uLgCAtLQ0fPvttygrKzNwZWQsGGRI8jIyMjBgwAAUFRXp9NvY2OD333+Hs7OzgSojIqLGxlNLJHlOTk7aOSb+zMLCAk899ZQBKiKihqBQKBAfH4/jx48jLi4OWVlZhi6JjBCDDEnW2LFjtX8fOXKkzpwxzZs3h6+vL//jI5Kw119/HV5eXli1ahW+/PJLXL16FcePH8fx48cRHx+PK1euGLpEMgI8tUSSVVlZCeDegyFNTEx0lt29exfZ2dlYvnw5Dh06ZIjyiKgByeVyeHt7Y8yYMZg2bRqaNWsGU1P+Lk4ckSEJqz6dlJmZiQEDBqCwsNDAFRFRQ2vZsiUGDx4MHx8fDB06FG5ubjh//jzi4+MNXRoZCY7I0GPJxsaGjycgkrhffvkFbm5uSEtL014rc+LECdy6dcvQpZER4cy+JHkrV67E1KlTta93796NoqIi/PHHH+jbt68BKyOiR+Hi4oI7d+4gPT0d6enpSEtLY4ihGhhkSPICAgKQm5sLABg+fDiGDx8OPz8/HD58GB999JGBqyOi+rK1tcWwYcPw66+/YuTIkfjll1/wxx9/4Ntvv8X8+fMNXR4ZEcHGJuVWUlIinnrqKQFAfPLJJ+Lzzz8XAMTf/vY3UVRUZPD62NjYGqa5u7uLiIgIodFoREVFhcHrYTOOxhEZkrybN2+iU6dOAAA/Pz/ExsYCAExMTGqdX4aIjNvatWvRsmVLuLm5YenSpThw4AAKCwuRmJiIvn37YvPmzZg4caKhyyQjYvA0xcb2KG3z5s0iKytLxMTEiBs3bggrKysBQEybNk0kJSUZvD42Njb9WkVFhbCzsxN3794Vv/32m/joo4/EmDFjhLW1tcFrYzO+xtuvSfKWLl2K7OxsdOrUCStXrsSdO3cAAB06dMBnn31m4OqISF/V80K1bdsWarXawNWQsePt10REZFQqKythb2+PgoICQ5dCEsAgQ5I0duxYHD58GBUVFTqPKqjNf//73yaqiogaQmVlJYqLiyHEg3882draNlFFZMwYZEiSKisrIZfLcePGDe2jCmojhOA05kQSU1lZiaCgoIdOavnVV181UUVkzBhkiIjIqPz5FxWih+GvqiRpJiYm8Pf3x8SJE+Hk5AQhBDIzM7F37158/fXXhi6PiOrhYaeUiP6M88iQpP3www/Yvn07OnbsiJSUFFy4cAFOTk7YuXMn9u3bZ+jyiKge/vo0e6KHMfg94Gxs9Wn+/v6iuLhY+Pj41Fg2dOhQUVxcLGbNmmXwOtnY2NjYGq/xGhmSrOjoaPz000/44IMPal2+Zs0aeHt7w8/Pr4krIyKipsJTSyRZffv2xZEjR+67/PDhw3B1dW3CioiIqKkxyJBktW3bFkql8r7LlUol2rRp04QVERFRU2OQIclq3rw5Kioq7ru8srKSc8gQET3m+L88SZaJiQl27tyJ8vLyWpdbWFg0cUVERNTUGGRIsiIjIx+6Dmf+JCJ6vPGuJSIiIpIsXiNDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREkvX/ADtyh4A5HyS/AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHvCAYAAABOhDU1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT9RJREFUeJzt3X1czff/P/BHdEE5haQjoywfcpk00udDRUyMuWYflxmzZijM1TYrs82uZA37zCZpF5+ND2EfRsmKWc0+GonKRRenRh0qOocujur1+8O389tZoZPqnDeP++32unFe76vnKUePXu/3+/U2ASBAREREJEHNDF0AERERUX0xyBAREZFkMcgQERGRZDHIEBERkWQxyBAREZFkMcgQERGRZDHIEBERkWQxyBAREZFkMcgQERGRZDHIEFGTCg4OhhDGP6F4Y9Tp7e0NIQS8vb0bdL9ETzIGGaJHNGfOHAgh4O7uXuvyuLg4pKSk6PRlZWVBCAEhBCorK3Hz5k2cO3cO27Ztw8CBAx94vFGjRkEIgatXr8LExOSh9VX/8KxLe5gOHTogODgYrq6uD123oXh7e2Pv3r3Iy8tDeXk5lEolfvjhB0yYMKHJaqi2Zs0ajBs3rsmO9/TTT+Pzzz9HRkYGSktLUVxcjJMnT2LJkiVo0aJFgx+vZcuWCA4OZtAiSTE1dAFET6ozZ85g48aNAACZTIYePXpgypQpWLBgAUJDQ7F8+fJat5sxYwaysrLQpUsXDBs2DMeOHXvgcdLS0jBz5kydvg0bNuD27dt499139arZwcEBISEhyM7ORnJysl7b1kdISAiCg4Nx6dIlbNu2DQqFAra2thg9ejSioqIwffp0fPfdd41y7HfeeQfvv/++Tt/rr7+OPXv24MCBA41yzD8bPXo0/vOf/6C8vBxfffUVzp8/D3NzcwwePBgfffQRevXqhZdffrlBj2lpaYmQkBCEhITg+PHjDbpvosYk2NjY6t/mzJkjhBDC3d291uVxcXEiJSVFpy8rK0v897//rbFuixYtRFRUlBBCiICAgBrLLS0thVqtFosWLRJJSUlix44d9ao5JSVFxMXF6b2du7u7EEKIOXPm1PvrFRwcLMS94Z8HtkmTJgkhhNi9e7cwNTWtsfzZZ58Vzz33XJN+r9VqtYiIiKj39t7e3kIIIby9vR+4npOTk1CpVCI1NVXI5fIay52dncWSJUsa/P3Z2toKIYQIDg5u0q8rG9sjNoMXwMYm6daQQQaAsLKyEgUFBSI3N7fGshkzZoiKigphb28vVqxYIW7duiUsLCz0rrm2INOlSxexe/duUVhYKO7cuSMSExPF6NGjtcurfwj/VXWoGTx4sNi9e7dQKBSirKxM5OTkiNDQUNGiRQud49Q1yKSmpoqCggLRqlWrh65rZmYm1q1bJ06fPi1u3bolbt++LU6cOCF8fHx01nN0dBRCCLF8+XIRFBQksrOzRUlJiYiPjxe9evV6YJ21qQ41nTt3Flu3bhXp6emipKREFBQUiN27dwtHR0edfdY1yHz22WdCCCE8PT3r9P1s3ry5ePPNN8WVK1dEWVmZyMrKEu+++64wNzfXWc/d3V0cOXJE3LhxQ5SUlIjMzEwRHh6u87X5q+pQY29vL3bs2CFyc3NFWVmZuHbtmti/f3+N98jG1tSNp5aIGoiNjQ1sbW1r9JuZmem1nzt37mDfvn2YP38+evbsidTUVO2yGTNmIC4uDkqlEt9//z3ef/99jB07Fnv27Hmk2tu3b4+EhARYWlri008/RWFhIebMmYMffvgBkydPxv79+5GWloa1a9di/fr12LZtG37++WcAQEJCAgBgypQpsLS0xL/+9S8UFhZi4MCBWLx4MZ566ilMnTpVr3q6du2KHj16IDw8HLdv337o+tbW1pg/fz6+++47fPnll5DJZJg3bx6io6MxcODAGqfBZs+eDZlMhq1bt6JFixYIDAzETz/9hD59+uD69eu1HmPmzJnYvn07fvvtN3zxxRcAgIyMDADAgAED8Pe//x3ff/89/vjjDzg5OeGVV15BfHw8evbsidLSUr3e/9ixY5GRkYHExMQ6rb99+3b4+/vjP//5DzZu3AgPDw+8/vrr6NGjByZOnAgAsLOzQ0xMDG7cuIH3338ft27dgpOTk3b5jRs3EBAQgM8//xxRUVGIiooCAJw7dw4AsHfvXvTq1QubN29GdnY22rdvjxEjRqBz585QKBR6vT+ihmbwNMXGJuVWPSLzIPqMyAAQgYGBQgghxo4dq+2zs7MTGo1GzJs3T9t38uRJsW/fPr1r/uuITGhoqBBCiH/84x/aPisrK5GRkSEyMzOFiYmJAB58aumvIy8AxKpVq0RlZaXo1KmTtq8uIzJjx44VQggRGBhYp/fTrFkzYWZmptNnY2Mj8vLyxPbt27V91aMOd+7cEQ4ODtr+AQMGCCGE2Lhx4wPrvN+ppdreu4eHhxBCiJkzZ2r76jIiI5PJhBCizt/Xvn37CiGE+OKLL3T6P/zwQyGE0I5KjRs3Tghx/5FD4P6nlmxsbIQQ90ayGutzxMZW38a7logayMKFCzF8+PAarT4XxVaPQshkMm3fCy+8gKqqKuzdu1fb991332HUqFFo3br1I9U+evRonDp1Cr/88ou2786dO/jiiy/QpUsX9OzZ86H7KCsr0/7d0tIStra2SEhIQLNmzeDm5qZXPdbW1gAAtVpdp/Wrqqpw9+5dAICJiQnatGkDU1NTnD59Gv3796+x/v79+3Ht2jXt6//973/49ddfMXr0aL3qrPbn925qaoq2bdviypUruHnzZq3HfxB933t1zaGhoTr91ReSP/fccwCAW7duAQDGjBkDU1P9BuNLS0tRXl4OHx+fR/63RtTQGGSIGshvv/2GY8eO1Wg3b97Ue1+tWrUCoPvDbObMmfjtt99ga2sLZ2dnODs748yZM7CwsMCUKVMeqXZHR0dcvHixRn9aWpp2+cN06tQJERERKCwsxJ07d1BQUIATJ04AuHfaTR8qlQqAbpB7mNmzZyM5ORllZWUoKipCQUEBxowZU+uxL1++XKPv0qVLcHJy0qvOai1atMC6deuQk5OD8vJyFBYWoqCgAG3atGn09+7o6IjKykpcuXJFp1+pVOLmzZva793x48exZ88ehISEoKCgAPv374e/vz/Mzc0fegyNRoNVq1Zh1KhRUCqVOH78OFasWAF7e3u93htRY2CQITJCvXv3BgDtD6euXbti4MCBGDJkCK5cuaJt1SMoM2bMMFitANCsWTMcPXoUzz33HD744AOMGzcOw4cPx5w5c7TL9ZGeng4A6NOnT53WnzFjBiIjI5GRkYF58+Zh5MiRGD58OI4dO6b3setj8+bNeOONN7B7925MnToVI0aMwPDhw1FQUKD38dVqNa5evar9N1BXog7zAE2ZMgWDBg3Cli1b0LFjR0RERCApKQlWVlYP3TYsLAzdunXDmjVrUFZWhvXr1yMtLQ39+vXTq06ihsaLfYmMjJWVFSZMmICcnBztiMiMGTOg0Wgwa9YsVFZW6qw/ePBgLFmyBJ06dUJubm69jqlQKNC9e/ca/S4uLtrlwP1/WPbp0wfdu3fH7Nmz8fXXX2v7hw8fXq96Ll++jPT0dIwbNw6BgYG4c+fOA9efPHkyMjIytBeuVlu3bl2t6//tb3+r0detWzdkZ2c/8Dj3e/+TJ09GZGQkXnvtNW2fhYVFvU/DHDx4EC+//DIGDRqEX3/99YHrKhQKNG/eHH/729+0ARC4dwF3mzZtalyIe+rUKZw6dQpvvvkm/vnPf+Lf//43XnjhBYSHhz80DGVmZiI0NBShoaHo2rUrzp49i+XLl2PWrFn1ep9EDYEjMkRGpEWLFvj6669ha2urM1ndjBkz8PPPP2P37t3Yu3evTvvoo48AAP/85z/rfdwff/wRHh4eGDRokLbP0tISCxYsQFZWlvbOqepA8dcf0NXh6q8zDQcGBta7puDgYLRr1w7bt29H8+bNaywfMWKE9vqP2o4/cOBAeHp61rrv8ePHw8HBQft6wIABGDRoEA4fPvzAmu7cuVNrOKmsrKzx3hcvXqz3tSjVPvzwQ9y+fRvbt29H+/btayx/+umnsWTJEgD3vncAEBQUpLPOsmXLAACHDh0CUPN7BgBnz54FcC90AUBJSUmt67Zs2VK7TrWMjAyo1eoa/URNjSMyRAbSsWNH7SmhVq1aoWfPnpgyZQo6dOiAjz/+WHuL78CBA/G3v/0NW7ZsqXU/165dw++//44ZM2bgww8/rFct77//Pv75z3/i8OHD+PTTT1FUVIQ5c+agS5cumDRpkvY39YyMDNy8eRMBAQFQq9W4c+cOTp06hfT0dFy5cgUff/wxOnbsCJVKhUmTJqFNmzb1qgcAdu/ejT59+uDNN9+Em5sbvvvuO+3Mvn5+fhg+fLg2vB08eBCTJk3Cvn37cOjQIXTp0gUBAQFITU3VXm/0Z1euXMHJkyfxr3/9CxYWFggKCkJBQcFDv35JSUkYPnw4li5dimvXriErKwu//fYbDh48iFmzZqG4uBipqanw9PTUnlqqj8zMTEyfPh27du1CWlqazsy+f//73zFlyhTs3LkTwL3bo3fu3ImXX34ZrVu3xvHjxzFw4ED4+/tj3759iI+PB3DvURoLFy7Evn37kJGRAZlMhpdeegnFxcXaMFRWVoYLFy5g2rRpuHTpEoqKinD+/HmYmpri2LFj2L17N1JTU1FRUYEJEyZALpfj+++/r9d7JGpIBr91io1Nyq2+E+JVq6ysFLdu3RIpKSli27ZtYsCAATrrhoWFCSGE6NKly31reOutt4QQQvTp06dONT9oQryioiJRUlIifv31V50J8arb2LFjxfnz54VGo9G5FdvFxUXExMQIlUolrl+/LrZt2yb69OlT43btuk6IV92GDh0q9u3bJ/Lz84VGoxFKpVIcOHBA59Z0AGL16tUiKytLlJaWiqSkJDF69GgREREhsrKytOv8eUK8pUuXCoVCIUpLS8Xx48drfO1qq7Nbt24iPj5e3LlzRwjx/yfEs7GxEeHh4eL69etCpVKJw4cPi27duomsrCyd27XrOiFedevatavYtm2byMzMFGVlZaK4uFj8/PPP4tVXX9WZ7K558+Zi7dq1IiMjQ5SXlwuFQlFjQrx+/fqJb7/9VmRnZ4vS0lKRn58vfvjhB9G/f3+dYw4aNEj873//E2VlZdpbsdu2bSs2b94sUlNThVqtFjdv3hSJiYli8uTJBv/8sbGZ/N9fiIgee46OjsjOzsZrr72mvT2ZiKSN18gQERGRZDHIEBERkWQxyBAREZFk8RoZIiIikiyOyBAREZFkMcgQERGRZD0RE+I5ODjU+UmyREREZBxkMpnOk+pr89gHGQcHB1y9etXQZRAREVE9dOzY8YFh5rEPMtUjMR07duSoDBERkUTIZDJcvXr1oT+7H/sgU02tVjPIEBERPWZ4sS8RERFJFoMMERERSRaDDBEREUkWgwwRERFJFoMMERERSRaDDBEREUkWgwwRERFJFoMMERERSRaDDBEREUkWgwwRERFJFoMMERERSRaDDBEREUkWgwwRERFJFoMMERERSZapoQugxlN58EVDl0BNqPmYHYYugYioyXFEhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCTL1NAFUON5pzLI0CVQk9ph6AKIiJocR2SIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyjCbIrFq1CkIIbNq0SdtnYWGBLVu2oKCgAGq1Gnv27EH79u0NWCUREREZE6MIMs888wxefvllJCcn6/Rv2rQJY8eOxZQpU+Dt7Q0HBwdERUUZqEoiIiIyNgYPMlZWVvj222/x0ksv4ebNm9p+a2trzJs3D8uWLUNcXBx+//13zJ07F//4xz/g4eFhwIqJiIjIWBg8yGzduhWHDh3CsWPHdPrd3d1hbm6O2NhYbd/FixehUCjg6el53/2Zm5tDJpPpNCIiIno8mRry4NOmTUP//v0xYMCAGsvkcjnKy8tRXFys069UKiGXy++7zzVr1iAkJKShSyUiIiIjZLARmaeeegphYWGYMWMGysvLG2y/GzZsgLW1tbZ17NixwfZNRERExsVgQcbd3R329vb4/fffcffuXdy9exc+Pj5YsmQJ7t69C6VSCQsLC9jY2OhsZ29vj/z8/PvuV6PRQK1W6zQiIiJ6PBns1NKxY8fQu3dvnb6IiAikp6fjgw8+QG5uLjQaDXx9fbV3KnXr1g2Ojo5ITEw0RMlEREZDs+41Q5dATcg8+GNDl2C0DBZkbt++jQsXLuj03blzB4WFhdr+8PBwhIaGoqioCCqVCps3b0ZCQgJOnTpliJKJiIjIyBj0Yt+HWbp0KaqqqrB3715YWFggOjoaCxcuNHRZREREZCSMKsgMHTpU53V5eTkWLVqERYsWGagiIiIiMmYGn0eGiIiIqL4YZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyGGSIiIhIshhkiIiISLIYZIiIiEiyTA1dADUeL0sLQ5dARETUqDgiQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSZWroAoiISH+//P0lQ5dATepjQxdgtDgiQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJJl0CATEBCA5ORkFBcXo7i4GAkJCfDz89Mut7CwwJYtW1BQUAC1Wo09e/agffv2BqyYiIiIjIlBg8wff/yB1atXw93dHc888wx++uknHDhwAD179gQAbNq0CWPHjsWUKVPg7e0NBwcHREVFGbJkIiIiMiIGfWjkwYMHdV6/+eabeOWVVzBo0CD88ccfmDdvHqZPn464uDgAwNy5c5Geng4PDw+cOnWq1n2am5vDwsJC+1omkzXeGyAiIiKDMpprZJo1a4Zp06bBysoKiYmJcHd3h7m5OWJjY7XrXLx4EQqFAp6envfdz5o1a6BSqbTt6tWrTVE+ERERGYDBg0zv3r2hVqtRXl6Ozz//HBMmTEBaWhrkcjnKy8tRXFyss75SqYRcLr/v/jZs2ABra2tt69ixY2O/BSIiIjIQg55aAu6NsvTr1w82NjaYPHkyIiMj4e3tXe/9aTQaaDSaBqyQiIiIjJXBg8zdu3eRkZEBAPj9998xYMAABAYGYteuXbCwsICNjY3OqIy9vT3y8/MNVS4REREZEYOfWvqrZs2awcLCAklJSdBoNPD19dUu69atGxwdHZGYmGjAComIiMhYGHRE5r333sPhw4eRk5MDmUyG6dOnw8fHByNHjoRKpUJ4eDhCQ0NRVFQElUqFzZs3IyEh4b53LBEREdGTxaBBpn379vjqq6/QoUMHFBcX49y5cxg5cqT2TqWlS5eiqqoKe/fuhYWFBaKjo7Fw4UJDlkxERERGxKBBZv78+Q9cXl5ejkWLFmHRokVNVBERERFJidFdI0NERERUVwwyREREJFkMMkRERCRZDDJEREQkWQwyREREJFkMMkRERCRZDDJEREQkWQwyREREJFkMMkRERCRZDDJEREQkWQwyREREJFkMMkRERCRZDDJEREQkWQwyREREJFkMMkRERCRZDDJEREQkWQwyREREJFmmhi6AGo/38EuGLoGIiKhRcUSGiIiIJItBhoiIiCSLQYaIiIgk65GCjLm5OczNzRuqFiIiIiK96B1khg8fjkOHDqGoqAglJSUoKSlBUVERDh06BF9f38aokYiIiKhWegWZ2bNn48cff0RxcTGWLl2KMWPGYMyYMVi6dClu3bqFH3/8ETNnzmysWomIiIh06HX79RtvvIGgoCB89tlnNZZFRkbi5MmTeOutt/DNN980WIFERERE96PXiEznzp0RGxt73+XHjh3DU0899chFEREREdWFXkHmwoULmDdv3n2Xv/jii0hNTX3kooiIiIjqQq9TS8uXL8fBgwfh5+eH2NhYKJVKAIC9vT18fX3x9NNP47nnnmuUQomIiIj+Sq8gc/z4cfTu3RuvvPIKBg0aBLlcDgDIz8/H4cOH8fnnn0OhUDRKoURERER/pfezlhQKBVavXt0YtRARERHppV4PjWzevDl69eqlHZHJy8tDWloaKioqGrQ4IiIiogfRK8iYmJjg7bffxquvvgobGxudZcXFxdiyZQuCg4MhhGjQIomIiIhqo9ddS++//z4WLFiA1atX4+mnn4aVlRWsrKzw9NNPY9WqVViwYAE2bNjQWLUSERER6dBrRGb27NmYNWsWYmJidPoVCgW+/PJLKBQKfPXVV7yGhoiIiJqEXiMyMpkM165du+/yvLw8WFlZPXJRRERERHWhV5CJj4/Hxx9/DFtb2xrLbG1t8cEHHyA+Pr6haiMiIiJ6IL1OLQUEBODHH39EXl4eUlJSdCbE69OnD1JTUzFmzJhGKZSIiIjor/QKMn/88QdcXV0xcuRInQnxfvvtN7z++uuIiYnhHUtERETUZPSeR0YIgSNHjuDIkSONUQ8REdWB9/BLhi6ByCjUa0K8AQMGwNPTU+cRBQkJCTh9+nSDFkdERET0IHoFGTs7O+zduxf/+Mc/kJOTo3ONzKZNm/DLL79g0qRJuHHjRqMUS0RERPRnet219Nlnn6F58+bo0aMHunTpgkGDBmHQoEHo0qULevTogWbNmmHr1q2NVSsRERGRDr1GZEaOHAkvLy9culTz3OylS5ewZMkS3n5NRERETUavEZny8nJYW1vfd7lMJkN5efkjF0VERERUF3oFmV27diEyMhLjx4+HTCbT9stkMowfPx4RERH47rvvGrxIIiIiotrodWpp2bJlaNasGb7//nuYmppCo9EAAMzNzVFRUYHw8HC89tprjVIoERER0V+ZANB7BjuZTAZ3d3ed26+TkpKgVqsbur5HJpPJoFKpYG1tbZT1NaYq8V9Dl0BNqJnJWEOXQE2In+8ny5P4+a7rz+96zSOjVqt5US8REREZnF7XyDxM+/btsXbt2obcJREREdF9NWiQkcvlCA4ObshdEhEREd2XXqeW+vTp88Dl3bt3f6RiiIiIiPShV5A5e/YshBAwMTGpsay6n0+/JiIioqaiV5ApKirCypUrcezYsVqX9+rVC//9L6+kJyIioqahV5BJSkqCg4MDcnJyal3eunXrWkdriIiIiBqDXkHm888/h5WV1X2X5+TkYO7cuY9cFBEREVFd6BVk9u/f/8Dlt27dwldfffUo9RARERHVmd63Xzdv3hxmZmY6ffPmzcPOnTuxaNGiBiuMiIiI6GH0DjLffvst1q1bp329YMEChIWFwcrKCm+99Rbee++9Bi2QiIiI6H70DjL9+/fHkSNHtK9ffvllBAUFYcqUKZgyZQqmT5/eoAUSERER3U+dr5HZsWMHAOCpp57CkiVLMGfOHJiYmMDV1RWjRo2Cp6cnTE1N4eDggPDwcAD3TjkRERERNRa9n36dnZ2NmTNn4uTJkxg9ejQ2bdqkndHX2toaOTk5aN26dSOUWj98+jU9KZ7Ep+M+yfj5frI8iZ/vRnv6dXx8PL744gt89dVXmDt3Lnbt2qVd5urqisuXL9evYiIiIiI96X2NzLJly3D69GlMnz4dP/30k87FvePHj8c333zToAUSERER3Y/ep5akhqeW6EnxJA49P8n4+X6yPImf77r+/NZ7RIaIiIjIWOh9jQwRPR4sLS3Rrl07Ph/NCAghUFBQgJKSEkOXQiQ5Bg0yq1evxsSJE+Hi4oLS0lIkJCRg1apVuHTpknYdCwsLbNy4ES+88AIsLCwQHR2NhQsX4vr16wasnEi6TExMMHfuXPj4+Bi6FPqL+Ph4REREQIjH+ow/UYMyaJDx9vbG1q1b8b///Q+mpqZ47733EBMTg549e2p/M9m0aROee+45TJkyBcXFxdiyZQuioqIwePBgQ5ZOJFlz586Ft7c3du3ahfT0dFRUVBi6pCeeqakpXFxcMHXqVAD/f94uIno4gwaZUaNG6bz29/fHjRs34O7ujp9//hnW1taYN28epk+fjri4OAD3/hNOT0+Hh4cHTp06ZYiyiSTLysoKPj4+2LVrFw4dOmTocuhPMjIyAADTpk3D999/z9NMRHVkVBf72tjYAACKiooAAO7u7jA3N0dsbKx2nYsXL0KhUMDT07PWfZibm0Mmk+k0IrrH1tYWAJCenm7gSqg21d+Xdu3aGbgSIukwmiBjYmKCTz75BCdPnsSFCxcAAHK5HOXl5SguLtZZV6lUQi6X17qfNWvWQKVSadvVq1cbvXYiqai+sJenk4xT9feFF2AT1Z3RBJmtW7eid+/eeOGFFx5pPxs2bIC1tbW2dezYsYEqJCIiImNjFLdfb968GWPGjIGXl5fOCEp+fj4sLCxgY2OjMypjb2+P/Pz8Wvel0Wig0WgavWYiIiIyPIOPyGzevBkTJkzAsGHDkJ2drbMsKSkJGo0Gvr6+2r5u3brB0dERiYmJTVwpETWVOXPm4ObNm4Yug4gkwKBBZuvWrZg5cyamT58OtVoNe3t72Nvbo0WLFgAAlUqF8PBwhIaGwsfHB/3790dERAQSEhJ4xxKRgVTPc/LXdvjw4QY7xq5du9CtW7cG219jy8rKQmBgoKHLIHoiGfTU0sKFCwEAx48f1+n39/dHZGQkAGDp0qWoqqrC3r17dSbEIyLDOXz4MObOnavTV15e3mD7LysrQ1lZWYPtj4geXwYdkTExMam1VYcY4N5/josWLYKtrS1atWqFSZMmQalUGrBqIiovL4dSqdRpt27dAgB07doVx48fR2lpKS5cuIDhw4dDCIFx48YBuDcRphBCO90CALi6ukIIAUdHRwA1Ty0FBwfjzJkzWLBgAXJycnDnzh3s2rUL1tbW2nUiIiKwb98+rFmzBvn5+bh58ybWrl2L5s2b48MPP0RhYSFyc3Ph7++v816eeuop7Nq1Czdv3kRhYSH279+vrePP+12+fDmuXbuGgoICbNmyBaam934PjIuLg5OTEz755BPt6BQRNR2DXyNDRI8PExMTREVFQaPRwMPDAwEBAfjggw8aZN9du3bF1KlTMXbsWPj5+cHNzQ2fffaZzjrDhg2Dg4MDvLy8sGzZMrz99ts4ePAgbt68CQ8PD3z++efYtm2b9m5GU1NTREdHQ61WY8iQIfjHP/6B27dv48iRIzAzM9Pud+jQoXB2dsbQoUMxZ84c+Pv7awPRxIkTkZubi7Vr10Iul993aggiahwMMkSktzFjxkCtVuu0NWvWYPjw4XBxccHs2bNx7tw5/Pzzz3j99dcb5JgtWrTA7NmzkZycjJ9//hmLFy/GCy+8AHt7e+06RUVFWLJkCS5duoSIiAikp6fD0tISGzZswJUrV7BhwwZoNBrtI06mTZuGZs2aYf78+Th//jzS09Mxd+5cdO7cWedZVDdv3sSiRYtw8eJFHDp0CIcOHdLehHDz5k1UVlZCrVZrR6eIqOkYxe3XRCQtcXFxeOWVV3T6ioqKMGvWLOTm5iIvL0/b31B3GObk5ODatWs6+23evDm6d++uDQ8XLlzQObWjVCpx/vx57euqqioUFhaiffv2AO6d0uratSvUarXOsVq0aAFnZ2ccPXpUu9+qqirt8ry8PPTp06dB3hcRPRoGGSLS2507d7TPBtJXdSD48+y1fz6N8yju3r2r81oIUWtfs2b3BqNbtWqFpKQkzJgxo8a+bty48cD9Vu+DiAyLQYaIGkxaWho6deoEuVyunbRy0KBBOutUB4QOHTpoLxDu16/fQ/fduXNndOjQQTvaM2jQIFRWVuLixYv1rvf333/HtGnTcP369RqjMvrQaDRo3rx5vbcnovrjrxREpDcLCwvtvE/VzdbWFrGxsbh06RIiIyPRt29fDB48GO+++67OtleuXEFOTg5CQkLQtWtXjB49GsuXL3/oMcvKynT2++mnn2L37t2PdE3Kt99+i4KCAhw4cACDBw+Gk5MTvL29ERYWptfjTbKzs+Hl5QUHBwftgzmJqGkwyBCR3kaNGoX8/HyddvLkSQghMGHCBLRs2RK//fYbtm/fjjfeeENn24qKCvzzn/+Ei4sLzp07h1WrVuHNN9986DGvXLmCqKgo/Pjjj4iJicG5c+ceeU6p0tJSeHl5IScnB1FRUUhLS0N4eDhatGgBlUpV5/289dZbcHJyQkZGBgoKCh6pJiLSjwmAx3rSA5lMBpVKBWtr60caOpaiKvFfQ5dATaiZydiHruPo6Ij169dj7dq1UCgUTVDVPUIIjB8/HgcOHKjX9sHBwRg/fjzc3NwauDLjos/3h5/vJ0tdPt+Pm7r+/OaIDBEREUkWgwwRERFJFu9aIqJG9+dbretj3bp1WLduXQNVQ0SPE47IEBERkWQxyBAREZFkMcgQERGRZDHIEBERkWQxyBAREZFkMcgQERGRZPH2ayICAGxMSWyyYy3v41mv7bZt24bJkyejbdu26NevH5KTkxu4MiKSGo7IEJEk+Pn5wd/fH2PGjIFcLsf58+frvK2joyOEEHB1da2xLC4uDps2bdK+njBhAqKjo1FQUHDfbSwsLLBlyxYUFBRArVZjz549aN++vc46YWFhOH36NMrKynDmzBk93ikR6YNBhogkwdnZGXl5eUhMTIRSqURlZWWjHMfKygonT57EqlWr7rvOpk2bMHbsWEyZMgXe3t5wcHBAVFRUjfV27NiBXbt2NUqdRHQPTy0RkdGLiIiAv78/gHsPoMzOzsZrr72G4OBgdO3aFSUlJThz5gzGjRuHkpKSRzrWN998A+DeKE5trK2tMW/ePEyfPh1xcXEAgLlz5yI9PR0eHh44deoUACAwMBAAYGdnh759+z5STUR0fwwyRGT0AgMDkZGRgQULFmDAgAEwMzNDZmYmVq5ciX379kEmk2HIkCGP/CiEunB3d4e5uTliY2O1fRcvXoRCoYCnp6c2yBBR02CQISKjp1KpoFarUVlZCaVSCTc3N5iZmSEqKgo5OTkAUKdrZhISElBVVaXT17JlS5w9e7bOtcjlcpSXl6O4uFinX6lUQi6X13k/RNQwGGSISHKSk5MRGxuLlJQUREdHIyYmBnv27MGtW7ceuN20adOQlpam0/ftt982YqVE1Nh4sS8RSU5VVRVGjBiBUaNGITU1FYsXL8bFixfh5OT0wO1yc3ORkZGh00pLS/U6dn5+PiwsLGBjY6PTb29vj/z8fH3fChE9IgYZIpKshIQEhISEwM3NDRqNBhMmTGj0YyYlJUGj0cDX11fb161bNzg6OiIxsenm4iGie3hqiYgkZ+DAgfD19UVMTAyuX78ODw8P2NnZaU8bjR8/Hhs2bECPHj303nebNm3QuXNnODg4AAC6d+8O4N5IjFKphEqlQnh4OEJDQ1FUVASVSoXNmzcjISFB50JfZ2dntGrVCnK5HC1bttTOR5Oamoq7d+8+6peAiP4PgwwRAaj/bLuGoFKp4OXlhaCgIFhbW0OhUGD58uU4cuQIAMDGxgYuLi712vfzzz+PnTt3al9XzwMTEhKCdevWAQCWLl2Kqqoq7N27FxYWFoiOjsbChQt19rN9+3b4+PhoX1dfUOzk5ASFQlGv2oioJhMAwtBFNCaZTAaVSgVra2uo1WpDl9OkqsR/DV0CNaFmJmMfuo6joyPWr1+PtWvX8oepEdLn+8PP95OlLp/vx01df37zGhkiIiKSLAYZIiIikiwGGSIiIpIsBhkiIiKSLAYZIiIikiwGGSIiIpIsBhkiIiKSLAYZIiIikiwGGSIiIpIsPqKAiAA07Uyx9Z2ldNu2bZg8eTLatm2Lfv36ITk5uYErIyKp4YgMEUmCn58f/P39MWbMGMjlcpw/f77O2zo6OkIIoW2FhYWIj4/H4MGDddbr2bMn9uzZg6ysLAghEBgYWOv+Fi5ciKysLJSWluLXX3/FgAEDdJa/9NJLiIuLQ3FxMYQQsLGx0f8NE1GdMMgQkSQ4OzsjLy8PiYmJUCqVqKys1Hsfvr6+kMvl8PLywrVr13Dw4EG0b99eu9zS0hKZmZlYvXo18vLyat3H1KlTERoainXr1qF///5ITk5GdHQ07OzsdPZz5MgRvPfee/q/USLSC4MMERm9iIgIbNmyRTuykpWVhUmTJuHcuXMoKSlBQUEBjh49CktLywfup7CwEEqlEhcuXMB7770HGxsbeHh4aJefPn0aK1euxK5du1BeXl7rPpYtW4Yvv/wSO3fuRFpaGgICAlBSUoIXX3xRu05YWBg++OAD/Prrrw3zBSCi++I1MkRk9AIDA5GRkYEFCxZgwIABMDMzQ2ZmJlauXIl9+/ZBJpNhyJAhMDExqdP+WrRogdmzZwMANBpNneswMzODu7s7NmzYoO0TQiA2Nhaenp76vSkiahAMMkRk9FQqFdRqNSorK6FUKuHm5gYzMzNERUUhJycHAOp0zUxCQgKqqqpgaWmJZs2a4fTp0zh27Fid62jXrh1MTU2hVCp1+pVKJVxcXPR7U0TUIHhqiYgkJzk5GbGxsUhJScHu3bsxf/58tG7d+qHbTZs2DW5ubpg0aRIuX74Mf39/VFRUNH7BRNRoOCLzGNt0vp2hSyBqFFVVVRgxYgT+/ve/49lnn8XixYvx7rvvwsPDA9nZ2ffdLjc3F1euXMGVK1dgamqKffv2oXfv3nU+vVRQUICKigrY29vr9Nvb2yM/P/9R3pLe+PkmuocjMkQkWQkJCQgJCYGbmxs0Gg0mTJhQ52337NmDiooKLFy4sM7b3L17F0lJSfD19dX2mZiYwNfXF4mJiXrVTkQNg0GGiCRn4MCBWLNmDdzd3dGpUydMnDgRdnZ2SEtLAwCMHz9e+/cH+fTTT7F69Wq0bNkSwL2LeV1dXeHq6gpzc3N07NgRrq6ucHZ21m4TGhqKl156CbNnz4aLiwv+9a9/wcrKChEREdp17O3t4erqiq5duwIA+vTpA1dXV7Rp06YhvwxEBJ5aIqL/U9/Zdg1BpVLBy8sLQUFBsLa2hkKhwPLly3HkyBEAgI2NTZ0uvo2MjMS7776LRYsW4aOPPoKDgwPOnj2rXb5ixQqsWLEC8fHxGDp0KABg9+7dsLOzw9tvvw25XI6zZ8/Cz88P169f124XEBCAkJAQ7euff/4ZAODv74/IyMgG+AoQUTUTAMLQRTQmmUwGlUoFa2trqNVqQ5fTpDamcKj7SbK8z8Nv/3V0dMT69euxdu1aKBSKJqiK9KHP94ef7ydLXT7fj5u6/vzmqSUiIiKSLAYZIiIikiwGGSIiIpIsBhkiIiKSLAYZIiIikiwGGSIiIpIsBhkiIiKSLAYZIiIikiwGGSIiIpIsPqKAiAAAcUcvNtmxho7oXq/ttm3bhsmTJ6Nt27bo168fkpOTG7gyIpIajsgQkST4+fnB398fY8aMgVwux/nz5+u8raOjI4QQNdrXX3+tXScsLAynT59GWVkZzpw5U+t++vTpgxMnTqC0tBQ5OTlYsWKFzvKePXtiz549yMrKghACgYGB9XuzRFRnHJEhIklwdnZGXl4eEhPr/4whX19fXLhwQfu6tLRUZ/mOHTvg4eGBvn371thWJpMhJiYGsbGxCAgIQJ8+fbBjxw7cunULX375JQDA0tISmZmZ+M9//oNNmzbVu04iqjsGGSIyehEREfD39wcACCGQnZ2N1157DcHBwejatStKSkpw5swZjBs3DiUlJffdT2FhIZRKZa3LqkdP7Ozsag0yM2bMgLm5OV588UXcvXsXqamp6NevH5YtW6YNMqdPn8bp06cBAO+///6jvGUiqiMGGSIyeoGBgcjIyMCCBQswYMAAmJmZITMzEytXrsS+ffsgk8kwZMgQmJiYNFoNnp6eOHHiBO7evavti46OxurVq9G6dWvcunWr0Y5NRPfHIENERk+lUkGtVqOyshJKpRJubm4wMzNDVFQUcnJyAKBO18wkJCSgqqpK+3rIkCE4e/ZsnWqQy+XIysrS6ase3ZHL5QwyRAbCIENEkpOcnIzY2FikpKQgOjoaMTEx2LNnz0PDxLRp05CWlqZ9nZub28iVElFjM+hdS0OGDMEPP/yAq1evQgiBcePG1Vhn3bp1uHbtGkpKSnD06FF07drVAJUSkTGpqqrCiBEjMGrUKKSmpmLx4sW4ePEinJycHrhdbm4uMjIytE2j0dT5mPn5+bC3t9fpq36dn5+v93sgooZh0CBjZWWF5ORkvPrqq7UuX7lyJZYsWYKAgAB4eHjgzp07iI6OhoWFRRNXSkTGKCEhASEhIXBzc4NGo8GECRMa7ViJiYnw8vKCqen/H8geMWIE0tPTeVqJyIAMGmSOHDmCtWvXYv/+/bUuDwoKwjvvvIMffvgBKSkpmD17NhwcHDB+/PgmrZOIjMvAgQOxZs0auLu7o1OnTpg4cSLs7Oy0p43Gjx+vcwqpLpydneHq6gq5XI6WLVvC1dUVrq6uMDMzAwD8+9//hkajQXh4OHr27ImpU6ciMDAQoaGh2n2YmZlptzM3N0fHjh3h6uoKZ2fnhnvzRKTDaK+R6dKlCzp06IDY2Fhtn0qlwqlTp+Dp6Yldu3bVup25ubnOiI1MJmv0WokeB/WdbdcQVCoVvLy8EBQUBGtraygUCixfvhxHjhwBANjY2MDFxUWvfW7fvh0+Pj7a19UXATs5OUGhUEClUuHZZ5/F1q1bkZSUhIKCArz99tvaW68BwMHBQefi4RUrVmDFihWIj4/H0KFD6/1+iej+jDbIyOVyAKgx54NSqdQuq82aNWsQEhLSmKURkQGEhYUhLCwMAJCeno5Ro0bdd93IyEhERkZqXysUiofeml2XoJGSkgIvL6/7Lq/LcYioYT12jyjYsGEDrK2tta1jx46GLomIiIgaidEGmeq7AGq7S+BBdwhoNBqo1WqdRkRERI8now0yWVlZyMvLg6+vr7ZPJpPBw8PjkZ61QkRERI8Pg14jY2VlpTMvTJcuXeDq6oqioiLk5ubik08+wZtvvonLly8jKysL69evx7Vr1+57lxMRERE9WQwaZJ555hnEx8drX1c/LXbnzp2YO3cuPvzwQ1hZWeGLL75A69atcfLkSfj5+aG8vNxAFRMREZExMWiQOX78+EOv8A8ODkZwcHATVURERERSYrTXyBARERE9DIMMERERSRaDDBEREUmW0c7sS0RNS7PutSY7lnnwx/Xabtu2bZg8eTLatm2Lfv36ITk5uYErIyKp4YgMEUmCn58f/P39MWbMGMjlcpw/f77O2zo6OkIIUaN9/fXX2nXCwsJw+vRplJWV4cyZM7Xup0+fPjhx4gRKS0uRk5ODFStW6CyfP38+Tpw4gaKiIhQVFeHo0aMYMGBA/d4wEdUJR2SISBKcnZ2Rl5f3SBNi+vr64sKFC9rXpaWlOst37NgBDw8P9O3bt8a2MpkMMTExiI2NRUBAAPr06YMdO3bg1q1b2gdH+vj44LvvvkNCQgLKysqwatUqxMTEoFevXrh27Vq96yai+2OQISKjFxERAX9/fwCAEALZ2dl47bXXEBwcjK5du6KkpARnzpzBuHHjUFJSct/9FBYW1ngQbbXAwEAAgJ2dXa1BZsaMGTA3N8eLL76Iu3fvIjU1Ff369cOyZcu0QWbmzJk628yfPx+TJk2Cr6+vzugPETUcBhkiMnqBgYHIyMjAggULMGDAAJiZmSEzMxMrV67Evn37IJPJMGTIkEZ98rSnpydOnDiBu3fvavuio6OxevVqtG7dGrdu3aqxjaWlJczMzFBUVNRodRE96RhkiMjoqVQqqNVqVFZWQqlUws3NDWZmZoiKikJOTg4A1OmamYSEBFRVVWlfDxkyBGfPnq1TDXK5HFlZWTp91aM7crm81iDzwQcf4Nq1a4iNja3TMYhIfwwyRCQ5ycnJiI2NRUpKCqKjoxETE4M9e/bUGib+bNq0aUhLS9O+zs3NbbQaV61ahRdeeAE+Pj58rApRI+JdS0QkOVVVVRgxYgRGjRqF1NRULF68GBcvXoSTk9MDt8vNzUVGRoa2aTSaOh8zPz8f9vb2On3Vr/Pz83X6ly9fjtWrV+PZZ59FSkpKnY9BRPpjkCEiyUpISEBISAjc3Nyg0WgwYcKERjtWYmIivLy8YGr6/weyR4wYgfT0dJ2RoBUrVmDt2rXw8/NDUlJSo9VDRPcwyBCR5AwcOBBr1qyBu7s7OnXqhIkTJ8LOzk572mj8+PE6p5DqwtnZGa6urpDL5WjZsiVcXV3h6uoKMzMzAMC///1vaDQahIeHo2fPnpg6dSoCAwMRGhqq3cfKlSuxfv16vPjii8jOzoa9vT3s7e1hZWXVcG+eiHTwGhkiAlD/2XYNQaVSwcvLC0FBQbC2toZCocDy5ctx5MgRAICNjQ1cXFz02uf27dvh4+OjfV19EbCTkxMUCgVUKhWeffZZbN26FUlJSSgoKMDbb7+tvfUaAF555RVYWFhg7969OvsOCQnBunXr6vdmieiBGGSISBLCwsIQFhYGAEhPT8eoUaPuu25kZCQiIyO1rxUKxUNvzR46dOhDa0hJSYGXl9d9l3fp0uWh+yCihsVTS0RERCRZDDJEREQkWQwyREREJFkMMkRERCRZDDJEREQkWQwyREREJFkMMkRERCRZDDJEREQkWQwyRCQZ27ZtQ2FhIYQQcHV1NXQ5RGQEOLMvEQEA1h0412THCh7XV+9t/Pz84O/vDx8fH2RmZqKgoKDO2zo6OiI7O1v7Wq1WIycnB/Hx8fjkk09w5coV7TK5XI6NGzfimWeeQdeuXfHpp59i6dKlNfY5efJkrF+/Hk5OTrh8+TJWrVqFw4cPa5dPmDABAQEBcHd3h62tLfr164fk5GS93zcRPRhHZIhIEpydnZGXl4fExEQolUpUVlbqvQ9fX1/I5XK4urri9ddfR48ePZCcnIxhw4Zp17GwsMCNGzfwzjvv3Dd4eHp64rvvvkN4eDjc3Nywf/9+7N+/H7169dKuY2VlhZMnT2LVqlX6v1kiqjMGGSIyehEREdiyZQscHR0hhEBWVhYmTZqEc+fOoaSkBAUFBTh69CgsLS0fuJ/CwkIolUpkZWXhhx9+wPDhw3Hq1CmEh4ejWbN7/x0qFAoEBQXh66+/RnFxca37CQwMxJEjR/Dxxx8jPT0db731Fn7//XcsWrRIu84333yD9evXIzY2tuG+EERUA4MMERm9wMBArF27Frm5uZDL5RgyZAi+++477NixAz169ICPjw+ioqIe+mDIvxJCICwsDE5OTnB3d6/zdp6enjUCSnR0NDw9PfU6PhE9Ol4jQ0RGT6VSQa1Wo7KyEkqlEm5ubjAzM0NUVBRycnIAAOfPn6/XvtPT0wEATk5O+N///lenbeRyOZRKpU6fUqmEXC6vVw1EVH8ckSEiyUlOTkZsbCxSUlKwe/duzJ8/H61bt67XvqpHcYQQDVghETUVBhkikpyqqiqMGDECo0aNQmpqKhYvXoyLFy/CyclJ73316NEDAJCVlVXnbfLz82Fvb6/TZ29vj/z8fL2PT0SPhkGGiCQrISEBISEhcHNzg0ajwYQJE/Ta3sTEBEuWLEFmZibOnDlT5+0SExPh6+ur0zdixAgkJibqdXwienS8RoaIJGfgwIHw9fVFTEwMrl+/Dg8PD9jZ2SEtLQ0AMH78eGzYsEE72lLN1tYW9vb2sLS0RO/evREUFISBAwfiueeeQ1VVlXa96sn2WrVqBTs7O7i6ukKj0Wj3HxYWhuPHj2PZsmU4dOgQXnjhBTzzzDNYsGCBdh9t2rRB586d4eDgAADo3r07gHujOX+9voaI6o9BhogkR6VSwcvLC0FBQbC2toZCocDy5ctx5MgRAICNjQ1cXFxqbHfs2DEAwJ07d6BQKBAXF4cFCxYgIyNDZ72zZ89q//7MM89gxowZyM7ORpcuXQDcG5GZPn063nnnHbz33nu4fPkyxo8fjwsXLmi3e/7557Fz507t6127dgEAQkJCsG7dugb5OhARgwwR/Z/6zLbblMLCwhAWFgbg3p1Go0aNuu+6kZGRiIyM1L5WKBR63Zpdl3X37NmDPXv21LkGImocvEaGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiIiIJItBhoiIiCSLQYaIiIgki0GGiCRj27ZtKCwshBBC+zwkInqy8REFRAQAqDz4YpMdq/mYHXpv4+fnB39/f/j4+CAzMxMFBQV13tbR0RHZ2dno168fkpOTdZbFxcXh7NmzWLp0KQBgwoQJCAgIgLu7O2xtbWvdxsLCAhs3bsQLL7wACwsLREdHY+HChbh+/ToAoG/fvli9ejUGDx6Mdu3aITs7G59//jk+/fRTvd83ET0YR2SISBKcnZ2Rl5eHxMREKJVKVFZWNspxrKyscPLkSaxateq+62zatAljx47FlClT4O3tDQcHB0RFRWmXu7u74/r165g5cyZ69eqFd999Fxs2bMCrr77aKDUTPck4IkNERi8iIgL+/v4AACEEsrOz8dprryE4OBhdu3ZFSUkJzpw5g3HjxqGkpOSRjvXNN98AuDeKUxtra2vMmzcP06dPR1xcHABg7ty5SE9Ph4eHB06dOoWIiAidbbKysuDp6YmJEydi69atj1QfEelikCEioxcYGIiMjAwsWLAAAwYMgJmZGTIzM7Fy5Urs27cPMpkMQ4YM0esJ1/Xl7u4Oc3NzxMbGavsuXrwIhUIBT09PnDp1qtbtbGxsUFRU1Oj1ET1pGGSIyOipVCqo1WpUVlZCqVTCzc0NZmZmiIqKQk5ODgDg/PnzD91PQkICqqqqdPpatmyJs2fP1rkWuVyO8vJyFBcX6/QrlUrI5fJat/H09MS0adPw3HPP1fk4RFQ3DDJEJDnJycmIjY1FSkoKoqOjERMTgz179uDWrVsP3G7atGlIS0vT6fv2228bsVKgV69eOHDgANatW4ejR4826rGInkS82JeIJKeqqgojRozAqFGjkJqaisWLF+PixYtwcnJ64Ha5ubnIyMjQaaWlpXodOz8/HxYWFrCxsdHpt7e3R35+vk5fjx49cOzYMXzxxRd499139ToOEdUNgwwRSVZCQgJCQkLg5uYGjUaDCRMmNPoxk5KSoNFo4Ovrq+3r1q0bHB0dkZiYqO3r2bMn4uLiEBkZiTfffLPR6yJ6UvHUEhFJzsCBA+Hr64uYmBhcv34dHh4esLOz0542Gj9+PDZs2IAePXrove82bdqgc+fOcHBwAAB0794dwL2RGKVSCZVKhfDwcISGhqKoqAgqlQqbN29GQkKC9kLfXr164aeffkJ0dDRCQ0Nhb28PAKisrNRr/hsiejgGGSKSHJVKBS8vLwQFBcHa2hoKhQLLly/HkSNHANy7Q8jFxaVe+37++eexc+dO7etdu3YBAEJCQrBu3ToAwNKlS1FVVYW9e/fqTIhXbfLkyWjfvj1mzZqFWbNmafuzs7PRpUuXetVFRLUzASAMXURjkslkUKlUsLa2hlqtNnQ5TWpjSuLDV6LHxvI+ng9dx9HREevXr8fatWuhUCiaoCrShz7fH36+nyx1+Xw/bur685vXyBAREZFkMcgQERGRZDHIEBERkWQxyBAREZFkMcgQPUGEuHdtv6kpb1g0RtXfl+rvExE9HIMM0ROksLAQAOp9azI1rurvC+eaIao7/lpG9AS5c+cO4uPjMXXqVABAeno6KioqDFwVmZqawsXFBVOnTkV8fDxKSkoMXRKRZDDIED1hIiIiANx7gCIZl/j4eO33h4jqhkGG6AkjhMCOHTvw/fffo127djAxMTF0SU88IQQKCgo4EkNUDwwyRE+okpIS5OTkGLoMIqJHIomLfRcuXIisrCyUlpbi119/xYABAwxdEhERERkBow8yU6dORWhoKNatW4f+/fsjOTkZ0dHRsLOzM3RpREREZGBGH2SWLVuGL7/8Ejt37kRaWhoCAgJQUlKCF1980dClERERkYEZ9TUyZmZmcHd3x4YNG7R9QgjExsbC07P2J4Gam5vDwsJC+1omk+n8+SQxb9bc0CVQE3oS/40/yfj5frI8iZ/vur5now4y7dq1g6mpKZRKpU6/Uqm874Rea9asQUhISI3+q1evNkaJREZjkUpl6BKIqJE8yZ9vmUwGtVp93+VGHWTqY8OGDQgNDdXpa9u2LYqKigxUETUlmUyGq1evomPHjg/8h09E0sPP95NHJpPh2rVrD1zHqINMQUEBKioqYG9vr9Nvb2+P/Pz8WrfRaDTQaDQ6ffwH/+RRq9X8vhM9pvj5fnLU5fts1Bf73r17F0lJSfD19dX2mZiYwNfXF4mJiQasjIiIiIyBUY/IAEBoaCgiIyNx+vRp/PbbbwgKCoKVlRWn8SYiIiLjDzK7d++GnZ0d3n77bcjlcpw9exZ+fn64fv26oUsjI1ReXo6QkBCUl5cbuhQiamD8fFNtTAAIQxdBREREVB9GfY0MERER0YMwyBAREZFkMcgQERGRZDHIEBERkWQxyBAREZFkMcgQERGRZBn9PDJERPRkatasGfz9/eHr64v27dujWTPd373/POs7PbkYZIiIyCiFhYXB398fhw4dwvnz5yEEpz2jmjghHkle+/bt8fHHH2t/azMxMdFZbmrKvE4kRTdu3MDs2bNx+PBhQ5dCRoz/w5Pk7dy5E507d8b69euRl5fH39qIHhMajQZXrlwxdBlk5DgiQ5KnUqkwZMgQJCcnG7oUImpAy5Ytw9NPP41FixYZuhQyYhyRIcnLzc2tcTqJiKRp7969Oq+HDRuGUaNG4cKFC7h7967OskmTJjVlaWSkGGRI8oKCgvD+++/j5ZdfhkKhMHQ5RPQIiouLdV7v27fPQJWQVPDUEkleUVERLC0tYWpqipKSkhq/tdna2hqoMiIiamwckSHJCwoKMnQJRNQIWrRoARMTE5SWlgIAOnfujAkTJiA1NRVHjx41cHVkTAQbGxsbG5uxtejoaPHyyy8LAMLGxkbk5+eLnJwcUVJSIgICAgxeH5txND6igB4LzZo1w8SJE/HGG2/gjTfewPjx42vMAkpE0tK/f3/8/PPPAIDJkycjPz8fjo6OmD17NpYsWWLg6shY8NQSSZ6zszN+/PFHdOzYERcvXgQArFmzBrm5uXjuueeQmZlp4AqJqD4sLS2hVqsBAM8++yyioqIghMCvv/4KR0dHA1dHxoK/spLkffrpp8jIyECnTp3g7u4Od3d3dO7cGVlZWfj0008NXR4R1dOVK1cwfvx4PPXUUxg5ciRiYmIA3JvNW6VSGbg6MiYGP7/FxvYo7fbt26J37941+vv27SvUarXB62NjY6tfmzRpkigvLxcVFRUiOjpa27969Wrx448/Grw+NuNoPLVEkldeXg6ZTFajv1WrVtBoNAaoiIgawt69e9G5c2d06NBBZ+buY8eOcX4Z0mHwNMXG9igtMjJSpKSkiIEDB2r7PDw8xLlz50RERITB62NjY2Nja7zGCfFI8mxsbBAZGYmxY8dqJ8MzNTXFDz/8AH9/f55LJ5Iwd3d3TJ06FZ07d4a5ubnOMj6igADetUSPgeLiYowfPx5du3aFi4sLACAtLQ0ZGRkGroyIHsW0adPw1VdfITo6Gs8++yxiYmLQrVs32Nvb89QSaXFEhoiIjFJycjK2bduGzz77DCqVCq6ursjKysK2bduQl5eHkJAQQ5dIRoBBhiRp48aNWLt2LUpKSrBx48YHrrt8+fImqoqIGtLt27fRq1cvKBQKFBQUwMfHB+fPn4eLiwt++uknODg4GLpEMgI8tUSS5ObmBjMzM+3fiejxc/PmTe0diVevXkXv3r1x/vx5tG7dGpaWlgaujowFgwxJ0rBhw2r9OxE9Pk6cOIERI0bg/Pnz+M9//oOwsDAMGzYMI0aMwLFjxwxdHhkRg986xcb2KC08PFy0atWqRr+lpaUIDw83eH1sbGz1a23atBEdOnQQAISJiYlYtWqVOHDggPj4449F69atDV4fm3E0XiNDkldRUYEOHTrgxo0bOv22trbIz8/XnoIiIqLHD08tkWTJZDKYmJjAxMQEMpkMZWVl2mXNmzfH6NGjcf36dQNWSET6qm2W7vupfqAkPdkYZEiybt26BSEEhBC4dOlSjeVCCAQHBxugMiKqr+rP9YOYmJhACAFTU/4IIwYZkrChQ4fCxMQEP/30EyZNmoSioiLtMo1GA4VCgby8PANWSET6Gjp0qKFLIInhNTIkeZ07d0Zubu5Df4sjIqLHD4MMPTZatmxZ6/NYUlJSDFQREdVHZGQkXn31Vdy+fRsA0LdvX6SmpqKiosLAlZExYpAhyWvXrh0iIiIwatSoWpfzPDqRtPz1TsTi4mL069cPWVlZBq6MjFEzQxdA9Kg++eQTtG7dGh4eHigtLYWfnx/mzJmDy5cv4/nnnzd0eUSkJxMTkwe+Jvoz/qpKkjds2DCMGzcOSUlJqKqqgkKhQGxsLFQqFdasWYMff/zR0CUSEVEjYZAhybOystLOF3Pz5k3Y2dnh8uXLSElJQf/+/Q1cHRHVR8+ePbV3IpqYmMDFxQWtWrXSWYfXvxHAIEOPgYsXL6J79+5QKBRITk7Gyy+/jOzsbAQEBPD2ayKJOnbsmM4ppYMHDwK4Nz8U55GhP+O/ApK8sLAwdOjQAQCwbt06HDlyBDNmzIBGo4G/v79hiyMivXXp0sXQJZCE8K4leuy0bNkSLi4uyMnJQWFhoaHLISKiRsQgQ0RERJLFU0skSRs3bqzzusuXL2/ESoiIyJAYZEiS3Nzc6rQeH1tARPR446klIiIikiyOyBARkVFr164dunfvDuDedAsFBQUGroiMCYMMSdLevXvrvO6kSZMasRIiaiyWlpbYvHkzZs2ahebNmwMAKisr8dVXX2Hx4sUoLS01cIVkDPisJZKk4uLiOjcikqbQ0FB4e3vj+eefR+vWrdG6dWuMGzcO3t7eel3wT483XiNDRERG6caNG5g8eTKOHz+u0+/j44Pdu3ejffv2BqqMjAlHZIiIyChZWlpCqVTW6L9+/TosLS0NUBEZI47IkCQlJSXB19cXt27dwu+///7A26zd3d2bsDIiaiixsbEoLCzE7NmzUV5eDgBo0aIFIiMj0bZtW4wYMcLAFZIx4MW+JEkHDhzQ/sd24MABzhdD9BgKDAxEdHQ0/vjjDyQnJwMAXF1dUVZWhpEjRxq4OjIWHJEhIiKj1bJlS8yYMQMuLi4AgLS0NHz77bcoKyszcGVkLBhkSPIyMjIwYMAAFBUV6fTb2Njg999/h7Ozs4EqIyKixsZTSyR5Tk5O2jkm/szCwgJPPfWUASoiooagUCgQHx+P48ePIy4uDllZWYYuiYwQgwxJ1tixY7V/HzlypM6cMc2bN4evry//4yOSsNdffx1eXl5YtWoVvvzyS1y9ehXHjx/H8ePHER8fjytXrhi6RDICPLVEklVZWQng3oMhTUxMdJbdvXsX2dnZWL58OQ4dOmSI8oioAcnlcnh7e2PMmDGYNm0amjVrBlNT/i5OHJEhCas+nZSZmYkBAwagsLDQwBURUUNr2bIlBg8eDB8fHwwdOhRubm44f/484uPjDV0aGQmOyNBjycbGho8nIJK4X375BW5ubkhLS9NeK3PixAncunXL0KWREeHMviR5K1euxNSpU7Wvd+/ejaKiIvzxxx/o27evASsjokfh4uKCO3fuID09Henp6UhLS2OIoRoYZEjyAgICkJubCwAYPnw4hg8fDj8/Pxw+fBgfffSRgasjovqytbXFsGHD8Ouvv2LkyJH45Zdf8Mcff+Dbb7/F/PnzDV0eGRHBxiblVlJSIp566ikBQHzyySfi888/FwDE3/72N1FUVGTw+tjY2Bqmubu7i4iICKHRaERFRYXB62EzjsYRGZK8mzdvolOnTgAAPz8/xMbGAgBMTExqnV+GiIzb2rVr0bJlS7i5uWHp0qU4cOAACgsLkZiYiL59+2Lz5s2YOHGiocskI2LwNMXG9iht8+bNIisrS8TExIgbN24IKysrAUBMmzZNJCUlGbw+NjY2/VpFRYWws7MTd+/eFb/99pv46KOPxJgxY4S1tbXBa2Mzvsbbr0nyli5diuzsbHTq1AkrV67EnTt3AAAdOnTAZ599ZuDqiEhf1fNCtW3bFmq12sDVkLHj7ddERGRUKisrYW9vj4KCAkOXQhLAIEOSNHbsWBw+fBgVFRU6jyqozX//+98mqoqIGkJlZSWKi4shxIN/PNna2jZRRWTMGGRIkiorKyGXy3Hjxg3towpqI4TgNOZEElNZWYmgoKCHTmr51VdfNVFFZMwYZIiIyKj8+RcVoofhr6okaSYmJvD398fEiRPh5OQEIQQyMzOxd+9efP3114Yuj4jq4WGnlIj+jPPIkKT98MMP2L59Ozp27IiUlBRcuHABTk5O2LlzJ/bt22fo8oioHv76NHuihzH4PeBsbPVp/v7+ori4WPj4+NRYNnToUFFcXCxmzZpl8DrZ2NjY2Bqv8RoZkqzo6Gj89NNP+OCDD2pdvmbNGnh7e8PPz6+JKyMioqbCU0skWX379sWRI0fuu/zw4cNwdXVtwoqIiKipMciQZLVt2xZKpfK+y5VKJdq0adOEFRERUVNjkCHJat68OSoqKu67vLKyknPIEBE95vi/PEmWiYkJdu7cifLy8lqXW1hYNHFFRETU1BhkSLIiIyMfug5n/iQierzxriUiIiKSLF4jQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJL1/wA7coeAOR8kvwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\flowsheets\\hda_flowsheet_with_costing_doc_23_2.png" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -1646,16 +2305,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHvCAYAAACykR7/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ5klEQVR4nO3deVhUZf8/8PcAggoDKgojKrhF5AIqmZIlKC5UbmVqSgbqU/qYuedSuWSmuWtqlmaKa1ZkroCBu/Jg4oayuAOyKYswsg3L/fujr/NrAhUQOMOZ9+u67ivn3GfO+Zyhw7w5y30UAASIiIiIZMpI6gKIiIiIqhLDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOEdG/+Pj4QAgBBwcHqUshokrAsEOkJx5/wbq6upbaf+zYMUREROhMu3PnDoQQEEKgqKgIGRkZuHLlCn744Qe88sorT13fG2+8ASEEEhISoFAoyl3vW2+9hYCAAKSmpiI3NxcxMTFYtmwZGjRoUO5lSWX27NkYOHCg1GWUysXFBdu3b0dcXBzy8vKQlpaGP//8E76+vjAyqvxf3Y0bN8a8efPg4uJS6csm0geCjY1N+ubj4yOEEMLV1bXU/mPHjomIiAidaXfu3BEXLlwQ3t7ewtvbW4wbN06sWbNGJCYmCiGEWLFixRPXt2PHDnH79m0hhBCenp7lqnXZsmVCCCEuXrwoPv30UzFmzBixfv16kZubK+Lj44Wjo6Pkn2dZmlqtFlu2bCkx3cjISJiZmUlW15gxY0RBQYG4d++eWLx4sRg9erSYNGmS2L9/vygqKhKzZ8+u9HW6uroKIYTw8fGR/OfCxlYFTfIC2NjYUPGwc+DAgRLz1q5dW/z+++9CCCHGjRtXor9u3bpCrVaLCRMmiPDwcPHTTz+Vuc733ntPCCHE7t27hZGRkU5f586dxaNHj8Tly5eFsbFxtX5+CoWi3AHlSWFHytalSxdRUFAgTp48KSwsLEr0u7q6VkkgYdhhk3mTvAA2NjZUbtgBIMzNzUVqaqqIj48v0eft7S0KCwuFra2t+PTTT8XDhw/LHBSioqJEWlqaUCqVpfbPmTNHCCHEsGHDStTeqVMncebMGZGTkyNu374txo4dW+L9pqamYv78+eLGjRsiLy9PxMXFiSVLlghTU1Od+YQQYu3atWLEiBHi6tWrQqPRiIEDBwoAYtq0aeLMmTMiNTVV5OTkiPPnz4vBgweXeP+/PQ4+j38WDg4OJT7rbt26ibCwMJGbmytu3bolRo4cWWIb2rdvL44fPy5ycnJEfHy8+Pzzz4Wvr2+JZZbWDh8+LDQajWjWrFmZfh5169YVy5cvF3FxcSIvL09ER0eLadOmlZivV69e4tSpUyIjI0Oo1WoRHR0tvv76awFAuLu7l/p5PA4+rVu3Fr/99ptISkrSHr3bvXu3sLS0lHy/YWMrY5O8ADY2Nvz/L9iePXsKa2vrEu306dPlCjsAxKZNm4QQQrRp00Zn+uHDh8Wff/4pAIhmzZqJoqIi8e677z6zxtatWwshxFOPBDk4OAghhNi+fbt22rFjx8S9e/dEcnKy+Pbbb8WECRPEyZMnhRBCjBo1SjufQqEQgYGB4tGjR2LlypXiww8/FN9++63QaDRi7969OusRQohr166JlJQUMWfOHPHf//5XuLi4CAAiLi5OrFu3TowfP15MnjxZ/O9//xNCCPHmm29q3+/t7S1yc3PFiRMntKcBu3btqvOz+HfYiYqKEklJSWLhwoVi/Pjx4vz586KoqEjn87WzsxOpqaniwYMHYs6cOWLq1KkiMjJSXLx48Zlhp06dOiI/P18EBweX+f+b4OBgUVRUJDZu3CjGjx8v9u3bJ4QQYuXKldp52rRpI/Ly8sS5c+fEJ598Ij766COxdOlScfz4cQFA2NjYiC+++EIIIcT333+v/TxatGghatWqJW7duiXu3bsnPvvsMzF69GgxZ84cERYWJuzt7SXfb9jYytgkL4CNjQ3//wv2acobdiZNmiSEEKJ///7aaY0aNRIajUaMGTNGO+306dMlwkRpbcCAAUIIISZNmvTU+R4+fCjOnz+vfX3s2DEhhBBTpkzRTqtVq5a4cOGCSE5OFiYmJgL4/0ecunXrprO8jz76SAghhJubm3aaEEIUFhaKl156qcT6a9eurfPaxMREXLlypUSIeNJprCeFHSGEeO2117TTGjZsKHJzc8WyZcu009asWSOKioq0wQuAqF+/vkhNTX1m2Gnfvr0QQohVq1aV6f+Zxz+Pzz77TGf6L7/8IoqKikTLli11/j+wtrZ+4rKedBrLxcVFCCFKHBljY6tJjXdjEemZ8ePHo1evXiXa5cuXy72sR48eAQCUSqV22nvvvYfi4mL4+/trp+3evRtvvPEG6tWr99TlPV6OWq1+6nxqtRqWlpY60woKCvDDDz+UeG1ra6u9A23IkCGIiopCdHQ0rK2tte3o0aMAgB49eugs88SJE4iKiiqx/ry8PO2/69WrBysrK5w6dQqdOnV6at3Pcu3aNZw+fVr7OjU1FTExMWjZsqV2mpeXF0JDQ3V+XhkZGdi5c+czl//4M3vW5/vYm2++icLCQnz77bc601esWAEjIyO88cYbAICHDx8CAAYOHFjuO+8yMzMBAH379kWdOnXK9V4ifcGwQ6Rnzp07h5CQkBItIyOj3MuysLAAoPvl+f777+PcuXOwtrZGq1at0KpVK1y8eBFmZmYYMmTIU5f3eDn/DE+lUSqVJb6wExMTkZOTozPt+vXrAIDmzZsDAF544QW0a9cOqampOu3GjRsAABsbG53337lzp9T1v/XWWwgNDUVubi4yMjKQmpqK8ePHw8rK6ql1P0tcXFyJaRkZGahfv772tYODA27evFlivtKm/VtWVhaAZ3++/1xXYmKiNtQ+9jgAPh4naM+ePTh9+jQ2b96MlJQU7N69G0OGDClT8Ll79y5WrFiBDz/8EKmpqQgMDMT48eNLhFkifWYidQFEVHXatWsH4P9/0bZu3Vo7/k5pX77e3t7YtGnTE5f3+EvU2dn5ifPY29vDysoKkZGR5a7XyMgIV65cwdSpU0vtj4+P13mdm5tbYp7XXnsN+/fvx8mTJzF+/HgkJSWhoKAAo0aNgre3d7lr+qeioqJSp1dknKLS3Lx5EwUFBWjfvn2lLO+xvLw8dO/eHT169MBbb70FLy8vvPfeewgJCUGfPn1QXFz81PdPnz4dW7duxcCBA9GnTx98++23mD17Nrp27YqEhIRKrZWoKjDsEMmUubk53n77bcTFxWlDire3NzQaDUaOHFnii/u1117DxIkT0axZsxKh4rEbN24gJiYGgwYNwqRJk0ocUQCADz74AABw8OBBnel2dnaoW7euztEdR0dHAH8fPQCAW7duwcXFBSEhIRXbaACDBw9GXl4e+vbtC41Go50+atSoEvMKISq8nieJjY1F69atS0wvbdq/5ebm4ujRo+jZsyeaNm2Ke/fuPXNdvXr1goWFhc7PwsnJSdv/mBACR48exdGjRzFt2jTMnj0bixYtQo8ePRASEvLMz+Lq1au4evUqvv76a7i5ueHs2bMYN24c5syZ88ztIpIaT2MRyVDt2rWxfft2WFtb4+uvv9ZO9/b2xqlTp/DLL7/A399fpy1btgwAMHz48Kcue8GCBWjQoAG+//77EiP5durUCTNnzkRERITONUEAUKtWLYwdO7bE6/v37yM8PBwA8Msvv6Bp06b48MMPS92munXrPnPbi4qKIISAsbGxdpqDgwMGDRpUYt7s7OxnXqdUXkFBQXBzc9MZibh+/fplPqr05ZdfQqFQYPv27TA3Ny/R36lTJ22gPHz4MExMTDBhwgSdeaZMmYLi4mIEBARo1/9vly5dAgCYmZkB+PuzAFDi81AqlTqfJQBERESgqKhI+14ifccjO0Q1XJMmTbRfpBYWFmjTpg2GDBmCxo0bY/ny5di4cSMA4JVXXsELL7yAdevWlbqcxMREXLhwAd7e3li6dOkT17dr1y507twZkydPRps2bbBz505kZGSgU6dOGD16NNLS0vDuu++isLBQ530JCQmYOXMmmjdvjuvXr2PYsGHo2LEjPvzwQ+2827dvx9ChQ/H999+jR48eOHPmDIyNjeHk5IShQ4eib9++2mD0JIcOHcK0adMQGBiIXbt2wcbGBh9//DFu3rxZ4lEI4eHh6NWrF6ZMmYLExETcuXMH586de/oH/gxLly7F+++/jz///BNr165FdnY2/vOf/yAuLg7W1tbPPIISGhqKjz/+GN999x2io6Oxfft23LhxA0qlEh4eHhgwYAC++OILAMCBAwdw9OhRfP3112jevDkuX76MPn36YNCgQVi1ahVu374NAJg7dy66d++OQ4cOITY2FjY2Nhg/fjzi4+O1F1zfunULGRkZGDduHNRqNbKzsxEWFgYXFxesW7cOv/76K65fvw4TExPtkcF/B1oifSb5LWFsbGwVH1TwsaKiIvHw4UMREREhfvjhB9G5c2ededesWSOEEKJFixZPrGHu3LlCCCHat2//zHoHDBgggoKCRFpamsjNzRXXr18Xy5YtK/X25tIGFbxz544YP358iXlNTEzEp59+KiIiIkRubq5IS0sTf/31l5gzZ47OQIZC/D2oYGm1jRo1SsTExIjc3FwRGRkpfHx8xLx584T4O2lom6Ojozh+/LjIzs4WQpRtUMHStu3YsWM601xcXMSJEydEbm6uiIuLEzNnzhQTJkwQQghhY2NTpv8fOnbsKHbs2CHu3bsn8vPzRVpamvjzzz/FyJEjhUKh0M5nbm4uVqxYoZ0vJiamxKCCPXr0EHv37hX37t0TeXl54t69e2Lnzp2idevWOvP1799fO0Dj49vQmzdvLn788Udx48YNkZOTI1JTU0VISIjo2bOn5PsMG1tZm+L//kFEVGWOHTuGhg0bVvqFtzXJqlWrMHbsWFhYWDzzgmAiqly8ZoeIqJLVrl1b53WDBg0wcuRInD59mkGHSAK8ZoeIqJKFhobi+PHjiIqKgq2tLcaMGQNLS0t89dVXUpdGZJAYdoiIKtnhw4fx7rvv4qOPPoIQAhcuXMCYMWNw6tQpqUsjMki8ZoeIiIhkjdfsEBERkawx7BAREZGs8Zqd/2NnZ1fmJw0TERGRflAqlUhMTHzqPAw7+Dvo8GF2RERENVOTJk2eGngYdgDtEZ0mTZrw6A4REVENoVQqkZCQ8Mzvboadf1Cr1Qw7REREMsMLlImIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1kykLoCkVSwOSF0CVSMjRX+pSyAiqnY8skNERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGW8+JiGSKQ0sYFg4t8WQ8skNERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREsqY3YWfmzJkQQmDVqlXaaWZmZli3bh1SU1OhVqvx22+/wcbGRud9zZo1w8GDB5GdnY2UlBQsXboUxsbG1V0+ERER6Sm9CDsvv/wyxo4di8uXL+tMX7VqFfr3748hQ4bA3d0ddnZ2+P3337X9RkZGOHToEExNTfHqq6/Cx8cHvr6+WLBgQXVvAhEREekpycOOubk5du7ciQ8//BAZGRna6ZaWlhgzZgymTp2KY8eO4cKFCxg1ahS6deuGLl26AAD69OmDNm3a4P3338fly5cRGBiIOXPm4OOPP0atWrWk2iQiIiLSI5KHnfXr1+PQoUMICQnRme7q6gpTU1MEBwdrp8XExCA2NhZubm4AADc3N0REROD+/fvaeYKCgmBlZYW2bds+cZ2mpqZQKpU6jYiIiOTJRMqVDxs2DJ06dULnzp1L9KlUKuTn5yMzM1NnekpKClQqlXaelJSUEv2P+55k9uzZmD9//nNWT0RERDWBZEd2mjZtijVr1sDb2xv5+fnVuu7FixfD0tJS25o0aVKt6yciIqLqI1nYcXV1ha2tLS5cuICCggIUFBTAw8MDEydOREFBAVJSUmBmZgYrKyud99na2iI5ORkAkJycDFtb2xL9j/ueRKPRQK1W6zQiIiKSJ8nCTkhICNq1a4cOHTpo219//YWdO3eiQ4cOOH/+PDQaDTw9PbXvcXR0hIODA0JDQwEAoaGhaN++PRo1aqSdp3fv3sjMzERkZGS1bxMRERHpH8mu2Xn06BGuXbumMy07OxtpaWna6Zs3b8bKlSuRnp6OrKwsrF27FmfPnkVYWBgA4MiRI4iMjMT27dsxY8YMqFQqLFy4EOvXr4dGo6n2bSIiIiL9I+kFys8yZcoUFBcXw9/fH2ZmZggKCsL48eO1/cXFxejXrx82bNiA0NBQZGdnw8/PD3PnzpWwaiIiItInCgBC6iKkplQqkZWVBUtLS4O7fqdYHJC6BKpGRor+UpdA1Yj7t2ExxP27rN/fko+zQ0RERFSVGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYkDTvjxo3D5cuXkZmZiczMTJw9exZeXl7a/mPHjkEIodM2bNigs4xmzZrh4MGDyM7ORkpKCpYuXQpjY+Pq3hQiIiLSUyZSrvzevXuYNWsWbty4AYVCAR8fH+zbtw8dO3ZEZGQkAGDjxo2YO3eu9j05OTnafxsZGeHQoUNITk7Gq6++isaNG2Pbtm0oKCjA559/Xu3bQ0RERPpH0rBz8OBBnddffPEF/vvf/6Jr167asJOTk4OUlJRS39+nTx+0adMGvXr1wv3793H58mXMmTMHS5Yswfz581FQUFDl20BERET6TW+u2TEyMsKwYcNgbm6O0NBQ7XRvb288ePAAERERWLRoEerUqaPtc3NzQ0REBO7fv6+dFhQUBCsrK7Rt2/aJ6zI1NYVSqdRpREREJE+SHtkBgHbt2iE0NBS1a9fGo0eP8PbbbyMqKgoAsGvXLsTGxiIxMRHOzs5YsmQJXnzxRQwePBgAoFKpShz1efxapVI9cZ2zZ8/G/Pnzq2aDiIiISK9IHnZiYmLQoUMHWFlZ4d1334Wfnx/c3d0RFRWFTZs2aee7evUqkpKScPToUbRs2RK3b9+u8DoXL16MlStXal8rlUokJCQ813YQERGRfpL8NFZBQQFu3bqFCxcu4LPPPsPly5cxadKkUucNCwsDALRu3RoAkJycDFtbW515Hr9OTk5+4jo1Gg3UarVOIyIiInmSPOz8m5GREczMzErt69ChAwAgKSkJABAaGor27dujUaNG2nl69+6NzMxM7QXOREREZNgkPY21aNEiBAQEIC4uDkqlEiNGjICHhwf69u2Lli1bYsSIETh8+DDS0tLg7OyMVatW4cSJE4iIiAAAHDlyBJGRkdi+fTtmzJgBlUqFhQsXYv369dBoNFJuGhEREekJScOOjY0Ntm3bhsaNGyMzMxNXrlxB3759ERwcjKZNm6JXr16YPHkyzM3NER8fD39/fyxcuFD7/uLiYvTr1w8bNmxAaGgosrOz4efnpzMuDxERERk2BQAhdRFSUyqVyMrKgqWlpcFdv1MsDkhdAlUjI0V/qUugasT927AY4v5d1u9vvbtmh4iIiKgyMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkaxJGnbGjRuHy5cvIzMzE5mZmTh79iy8vLy0/WZmZli3bh1SU1OhVqvx22+/wcbGRmcZzZo1w8GDB5GdnY2UlBQsXboUxsbG1b0pREREpKckDTv37t3DrFmz4OrqipdffhlHjx7Fvn370KZNGwDAqlWr0L9/fwwZMgTu7u6ws7PD77//rn2/kZERDh06BFNTU7z66qvw8fGBr68vFixYINUmERERkZ5RABBSF/FPaWlp+PTTT/Hbb7/hwYMHGDFiBPz9/QEAL774IqKjo9G1a1eEhYXBy8sLBw8ehJ2dHe7fvw8AGDt2LJYsWYJGjRqhoKCgTOtUKpXIysqCpaUl1Gp1lW2bPioWB6QugaqRkaK/1CVQNeL+bVgMcf8u6/e33lyzY2RkhGHDhsHc3ByhoaFwdXWFqakpgoODtfPExMQgNjYWbm5uAAA3NzdERERogw4ABAUFwcrKCm3btn3iukxNTaFUKnUaERERyZPkYaddu3ZQq9XIz8/H999/j7fffhtRUVFQqVTIz89HZmamzvwpKSlQqVQAAJVKhZSUlBL9j/ueZPbs2cjKytK2hISESt4qIiIi0heSh52YmBh06NABXbp0wYYNG+Dn54eXXnqpSte5ePFiWFpaaluTJk2qdH1EREQkHROpCygoKMCtW7cAABcuXEDnzp0xadIk7NmzB2ZmZrCystI5umNra4vk5GQAQHJyMl555RWd5dna2mr7nkSj0UCj0VT2phAREZEekvzIzr8ZGRnBzMwM4eHh0Gg08PT01PY5OjrCwcEBoaGhAIDQ0FC0b98ejRo10s7Tu3dvZGZmIjIystprJyIiIv0j6ZGdRYsWISAgAHFxcVAqlRgxYgQ8PDzQt29fZGVlYfPmzVi5ciXS09ORlZWFtWvX4uzZswgLCwMAHDlyBJGRkdi+fTtmzJgBlUqFhQsXYv369TxyQ0RERAAkDjs2NjbYtm0bGjdujMzMTFy5cgV9+/bV3oE1ZcoUFBcXw9/fH2ZmZggKCsL48eO17y8uLka/fv2wYcMGhIaGIjs7G35+fpg7d65Um0RERER6Ru/G2ZECx9khQ2GI43AYMu7fhsUQ9+8aN84OERERUVVg2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIlkrd9gxMTFBcHAwWrduXRX1EBEREVWqcoedwsJCODs7V0UtRERERJWuQqexduzYgTFjxlR2LURERESVzqRCbzIxwejRo9GrVy+Eh4cjOztbp3/atGmVUhwRERHR86pQ2GnXrh0uXLgAAHB0dNTpE0I8f1VERERElaRCYadnz56VXQcRERFRleCt50RERCRrFTqyAwCurq4YOnQo7O3tYWpqqtM3ePDg5y6MiIiIqDJU6MjOsGHDcPbsWbz00kt4++23UatWLbRt2xY9e/ZEZmZmZddIREREVGEVCjufffYZpkyZggEDBkCj0WDSpElwcnLCL7/8gri4uMqukYiIiKjCKhR2WrVqhUOHDgEANBoNzM3NAQCrVq3CRx99VHnVERERET2nCoWdjIwMKJVKAEBCQgLatWsHAKhXrx7q1q1bedURERERPacKhZ2TJ0+id+/eAIBff/0Va9aswcaNG7F7926EhISUeTmzZs3CuXPnkJWVhZSUFOzdu7fEuD3Hjh2DEEKnbdiwQWeeZs2a4eDBg8jOzkZKSgqWLl0KY2PjimwaERERyUyF7saaMGECateuDQD4+uuvUVBQgFdffRX+/v5YuHBhmZfj7u6O9evX46+//oKJiQkWLVqEI0eOoE2bNsjJydHOt3HjRsydO1f7+p99RkZGOHToEJKTk/Hqq6+icePG2LZtGwoKCvD5559XZPOIiIhIRhQA9GbI44YNG+LBgwfo3r07Tp06BeDvIzuXLl3ClClTSn2Pl5cXDh48CDs7O9y/fx8AMHbsWCxZsgSNGjVCQUFBifeYmprCzMxM+1qpVCIhIQGWlpZQq9VVsGX6q1gckLoEqkZGiv5Sl0DViPu3YTHE/VupVCIrK+uZ398VHlSwZcuW+Oqrr7Br1y40atQIwN/Bo02bNhVdJKysrAAA6enpOtO9vb3x4MEDREREYNGiRahTp462z83NDREREdqgAwBBQUGwsrJC27ZtS13P7NmzkZWVpW0JCQkVrpmIiIj0W4XCTvfu3REREYEuXbrgnXfegYWFBQDAxcUFX375ZYUKUSgUWL16NU6fPo1r165pp+/atQvvv/8+evTogcWLF2PkyJHYsWOHtl+lUiElJUVnWY9fq1SqUte1ePFiWFpaaluTJk0qVDMRERHpvwpds/PNN9/giy++wKpVq5CVlaWdfvToUUyYMKFChaxfvx7t2rXDa6+9pjN906ZN2n9fvXoVSUlJOHr0KFq2bInbt29XaF0ajQYajaZC7yUiIqKapUJHdtq3b4+9e/eWmH7//n00bNiw3Mtbu3Yt+vXrhx49ejzzlFJYWBgAoHXr1gCA5ORk2Nra6szz+HVycnK5ayEiIiJ5qVDYefjwIRo3blxieseOHct9/cvatWvx9ttvo2fPnrh79+4z5+/QoQMAICkpCQAQGhqK9u3ba68bAoDevXsjMzMTkZGR5aqFiIiI5KdCYefnn3/GkiVLYGtrCyEEjIyM8Oqrr2L58uXYtm1bmZezfv16vP/++xgxYgTUajVsbW1ha2urva29ZcuW+OKLL9CpUyc4ODigf//+2LZtG06cOIGIiAgAwJEjRxAZGYnt27fD2dkZffr0wcKFC7F+/XqeqiIiIqKK3Xpeq1YtrF+/Hr6+vjA2NkZhYSGMjY2xa9cu+Pr6ori4uEzLEaL0Vfv6+sLPzw9NmzbFjh070K5dO5ibmyM+Ph579+7FwoULdW4xs7e3x4YNG+Dh4YHs7Gz4+flh1qxZKCoqKlMdZb11TY54a6phMcRbUw0Z92/DYoj7d1m/v59rnJ1mzZqhXbt2sLCwwMWLF3Hz5s2KLkpSDDtkKAzxl6Eh4/5tWAxx/y7r93eF7sby8PDA8ePHER8fj/j4+AoXSURERFTVKnTNTmBgIG7evInPP/8cTZs2reyaiIiIiCpNhcJOkyZNsG7dOrz77ru4ffs2AgMDMWTIENSqVauy6yMiIiJ6LhUKO2lpaVi9ejU6duyILl264Pr16/juu++QmJiINWvWwNnZubLrJCIiIqqQCj8b67GLFy9i8eLFWLduHSwsLDB69GiEh4fj5MmTz/WcLCIiIqLKUOGwY2JigsGDB+PQoUOIjY1F3759MWHCBNja2qJ169aIjY3Fr7/+Wpm1EhEREZVbhe7G+vbbbzF8+HAoFAps374dM2bM0Hl4Z2xsLKZPn47ExMRKK5SIiIioIioUdtq0aYNPPvkEv//++xNHKU5NTUWPHj2eqzgiIiKi51WusPPll19i37596NWr1zPnLSoqwsmTJytcGBEREVFlKNc1O02bNkVAQADi4+Px3XffwcvLi7ebExERkV4rV9gZM2YMVCoVhg8fDrVajdWrVyM1NRW//fYbRo4cifr161dVnUREREQVUu67sYQQOH36NGbOnAknJyd06dIFYWFhGDt2LBITE3HixAlMmzYNdnZ2VVEvERERUblU6ALlf4qOjkZ0dDSWLVuGhg0bYsCAARgwYAAAYMWKFc9dIBEREdHzeK6nnpuamgLAE+/Iqin41HMyFIb4VGRDxv3bsBji/l3W7+9yn8bq1asXDh06hPT0dOTk5CAnJwfp6ek4dOgQPD09n6toIiIiospWrrDzwQcf4PDhw8jMzMSUKVPQr18/9OvXD1OmTMHDhw9x+PBhvP/++1VVKxEREVG5leuanc8//xyTJ0/Gd999V6LPz88Pp0+fxty5c7Fjx45KK5CIiIjoeZTryI69vT2Cg4Of2B8SEoKmTZs+d1FERERElaVcYefatWsYM2bME/tHjx6NyMjI5y6KiIiIqLKU6zTWtGnTcPDgQXh5eSE4OBgpKSkAAFtbW3h6eqJly5Z46623qqRQIiIiooooV9g5ceIE2rVrh//+97/o2rUrVCoVACA5ORkBAQH4/vvvERsbWyWFEhEREVVEuQcVjI2NxaxZs6qiFiIiIqJKV6ERlI2NjdG2bVvtkZ2kpCRERUWhsLCwUosjIiIiel7lCjsKhQILFizAxx9/DCsrK52+zMxMrFu3DvPmzYMQFR6UmYiIiKhSleturG+++QYfffQRZs2ahZYtW8Lc3Bzm5uZo2bIlZs6ciY8++giLFy+uqlqJiIiIyq1cz8ZKSkqCj48Pjhw5Ump/nz59sG3bNu3prZqCz8YiQ2GIz84xZNy/DYsh7t9V8mwspVKJxMTEJ/YnJSXB3Ny8PIskIiIiqlLlCjvHjx/H8uXLYW1tXaLP2toaS5YswfHjxyurNiIiIqLnVq4LlMeNG4fDhw8jKSkJEREROoMKtm/fHpGRkejXr1+VFEpERERUEeUKO/fu3YOLiwv69u2rM6jguXPn8Nlnn+HIkSO8E4uIiIj0SrlOYwGAEAKBgYGYP38+xo0bh3HjxmH+/PkICgoqd9CZNWsWzp07h6ysLKSkpGDv3r1wdHTUmcfMzAzr1q1Damoq1Go1fvvtN9jY2OjM06xZMxw8eBDZ2dlISUnB0qVLYWxsXN5NIyIiIhmq0KCCnTt3hpubm87jIs6ePYvz58+Xaznu7u5Yv349/vrrL5iYmGDRokU4cuQI2rRpg5ycHADAqlWr8NZbb2HIkCHasXx+//13vPbaawAAIyMjHDp0CMnJyXj11VfRuHFjbNu2DQUFBfj8888rsnlEREQkI+W69bxRo0bw9/dHt27dEBcXp3PNjr29Pc6cOYPBgwfjwYMHFSqmYcOGePDgAbp3745Tp07B0tISDx48wIgRI+Dv7w8AePHFFxEdHY2uXbsiLCwMXl5eOHjwIOzs7HD//n0AwNixY7FkyRI0atQIBQUFz1wvbz0nQ2GIt6YaMu7fhsUQ9+8qufX8u+++g7GxMV566SW0aNECXbt2RdeuXdGiRQu89NJLMDIywvr16ytc9ONRmdPT0wEArq6uMDU1RXBwsHaemJgYxMbGws3NDQDg5uaGiIgIbdABgKCgIFhZWaFt27alrsfU1BRKpVKnERERkTyVK+z07dsXH3/8Ma5fv16i7/r165g4cSK8vLwqVIhCocDq1atx+vRpXLt2DQCgUqmQn5+PzMxMnXlTUlK0p9BUKpX2CNM/+x/3lWb27NnIysrStoSEhArVTERERPqvXGEnPz8flpaWT+xXKpXIz8+vUCHr169Hu3bt8N5771Xo/eWxePFiWFpaaluTJk2qfJ1EREQkjXKFnT179sDPzw+DBg3SOfWjVCoxaNAgbNmyBbt37y53EWvXrkW/fv3Qo0cPnaMsycnJMDMzK/HQUVtbWyQnJ2vnsbW1LdH/uK80Go0GarVapxEREZE8lSvsTJ06FQEBAfj555+RkZGBnJwc5OTkICMjAz///DMCAgIwffr0chWwdu1avP322+jZsyfu3r2r0xceHg6NRgNPT0/tNEdHRzg4OCA0NBQAEBoaivbt26NRo0baeXr37o3MzExERkaWqxYiIiKSn3LdjfWYUqmEq6urzq3n4eHh5T5Csn79eowYMQIDBw5ETEyMdnpmZiby8vIA/H1R9JtvvglfX19kZWVh7dq1AIBu3boB+PvW80uXLiExMREzZsyASqXC9u3b8eOPP5b51nPejUWGwhDv1jBk3L8NiyHu32X9/q5Q2KksTxqE0NfXF35+fgD+HlRwxYoVGD58OMzMzBAUFITx48frXJRsb2+PDRs2wMPDA9nZ2fDz88OsWbNQVFRUpjoYdshQGOIvQ0PG/duwGOL+LUnYsbGxwdixY/HVV19V1iKrBcMOGQpD/GVoyLh/GxZD3L+rZJydZ1GpVJg3b15lLpKIiIjouZTrcRHt27d/av+LL774XMUQERERVbZyhZ1Lly5BCAGFQlGi7/F0PvWciIiI9Em5wk56ejpmzJiBkJCQUvvbtm2LAwd4jpiIiIj0R7nCTnh4OOzs7BAXF1dqf7169Uo96kNEREQklXKFne+//x7m5uZP7I+Li8OoUaOeuygiIiKiylKusPPHH388tf/hw4fYtm3b89RDREREVKnKfeu5sbExatWqpTNtzJgx2Lp1KyZMmFBphRERERFVhnKHnZ07d+LLL7/Uvv7oo4+wZs0amJubY+7cuVi0aFGlFkhERET0PModdjp16oTAwEDt67Fjx2Ly5MkYMmQIhgwZghEjRlRqgURERETPo8zX7Pz0008AgKZNm2LixInw8fGBQqGAi4sL3njjDbi5ucHExAR2dnbYvHkzgL9PbxERERFJqdzPxrp79y7ef/99nD59Gm+++SZWrVqlHTnZ0tIScXFxqFevXhWUWnX4bCwyFIb47BxDxv3bsBji/l3W7+9y3Y0FAMePH8fGjRuxbds2jBo1Cnv27NH2ubi44MaNGxWrmIiIiKgKlPuanalTp+L8+fMYMWIEjh49qnNB8qBBg7Bjx45KLZCIiIjoeZT7NJYc8TQWGQpDPMxtyLh/GxZD3L/L+v1d7iM7RERERDUJww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyZqkYef111/H/v37kZCQACEEBg4cqNO/ZcsWCCF0WkBAgM489evXx44dO5CZmYmMjAz8+OOPMDc3r87NICIiIj0madgxNzfH5cuX8fHHHz9xnoCAAKhUKm0bPny4Tv/OnTvRtm1b9O7dG/369UP37t2xcePGqi6diIiIaggTKVceGBiIwMDAp86Tn5+PlJSUUvucnJzwxhtv4OWXX0Z4eDgA4JNPPsHhw4cxffp0JCUlVXrNREREVLPo/TU7Hh4eSElJQXR0NL777js0aNBA2+fm5oaMjAxt0AGA4OBgFBcXo0uXLk9cpqmpKZRKpU4jIiIiedLrsBMYGIgPPvgAnp6emDlzJtzd3REQEAAjo7/LVqlUuH//vs57ioqKkJ6eDpVK9cTlzp49G1lZWdqWkJBQpdtBRERE0pH0NNaz7NmzR/vvq1ev4sqVK7h9+zY8PDxw9OjRCi938eLFWLlypfa1Uqlk4CEiIpIpvT6y82937tzBgwcP0Lp1awBAcnIybGxsdOYxNjZGgwYNkJyc/MTlaDQaqNVqnUZERETyVKPCTpMmTWBtba298Dg0NBT169dHp06dtPP07NkTRkZGCAsLk6pMIiIi0iOSnsYyNzfXHqUBgBYtWsDFxQXp6elIT0/HvHnz4O/vj+TkZLRq1QpLly7FzZs3ERQUBACIjo5GQEAANm3ahHHjxqFWrVpYt24dfv75Z96JRURERAAkPrLz8ssv49KlS7h06RIAYNWqVbh06RIWLFiAoqIiODs7Y//+/bh+/To2b96M8PBwvP7669BoNNpleHt7Izo6GiEhITh8+DBOnz6Njz76SKItIiIiIn2jACCkLkJqSqUSWVlZsLS0NLjrd4rFAalLoGpkpOgvdQlUjbh/GxZD3L/L+v1do67ZISIiIiovhh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjVJw87rr7+O/fv3IyEhAUIIDBw4sMQ8X375JRITE5GTk4M///wTrVu31umvX78+duzYgczMTGRkZODHH3+Eubl5dW0CERER6TlJw465uTkuX76Mjz/+uNT+GTNmYOLEiRg3bhy6dOmC7OxsBAUFwczMTDvPzp070bZtW/Tu3Rv9+vVD9+7dsXHjxuraBCIiItJzCgBC6iIAQAiBQYMGYd++fdppiYmJWLFiBVasWAEAsLS0REpKCnx9fbFnzx44OTkhKioKL7/8MsLDwwEAffv2xeHDh9G0aVMkJSWVad1KpRJZWVmwtLSEWq2u/I3TY8XigNQlUDUyUvSXugSqRty/DYsh7t9l/f7W22t2WrRogcaNGyM4OFg7LSsrC2FhYXBzcwMAuLm5ISMjQxt0ACA4OBjFxcXo0qXLE5dtamoKpVKp04iIiEie9DbsqFQqAEBKSorO9JSUFG2fSqXC/fv3dfqLioqQnp6unac0s2fPRlZWlrYlJCRUcvVERESkL/Q27FSlxYsXw9LSUtuaNGkidUlERERURfQ27CQnJwMAbG1tdabb2tpq+5KTk2FjY6PTb2xsjAYNGmjnKY1Go4FardZpREREJE96G3bu3LmDpKQkeHp6aqcplUp06dIFoaGhAIDQ0FDUr18fnTp10s7Ts2dPGBkZISwsrNprJiIiIv1jIuXKzc3NdcbNadGiBVxcXJCeno74+HisXr0aX3zxBW7cuIE7d+7gq6++QmJiIv744w8AQHR0NAICArBp0yaMGzcOtWrVwrp16/Dzzz+X+U4sIiIikjdJw87LL7+M48ePa1+vWrUKALB161aMGjUKS5cuhbm5OTZu3Ih69erh9OnT8PLyQn5+vvY93t7eWLduHUJCQlBcXAx/f39MnDixujeFiIiI9JTejLMjJY6zQ4bCEMfhMGTcvw2LIe7fZf3+lvTIDhHpt7p166Jhw4ZQKBRSl2LQhBBITU1FTk6O1KUQ1UgMO0RUgkKhwKhRo+Dh4SF1KfQPx48fx5YtWyCEwR+QJyoXhh0iKmHUqFFwd3fHnj17EB0djcLCQqlLMmgmJiZwcnLC0KFDAQA//fSTxBUR1SwMO0Skw9zcHB4eHtizZw8OHTokdTn0f27dugUAGDZsGH7++Wee0iIqB70dZ4eIpGFtbQ3g76EdSL88/pk0bNhQ4kqIahaGHSLS8fhiZJ660j+Pfya8YJyofBh2iIiISNYYdoiIiEjWGHaIqEZycHCAEAIuLi4AAHd3dwghYGVlBQDw8fFBRkbGM5cjhMDAgQOrtFYikhbDDhFJ6tixY9pHxfzTP8PKli1bsHfvXp3++Ph4qFQqXL16tdTl7tmzB46OjtrX8+bNw8WLF0vMp1KpEBAQ8DybQER6jreeE1GNVFxcjJSUlCf25+XlIS8v75nLedoyiEgeeGSHiPTavHnz4Ovri0GDBkEIASEE3N3dS5zG+rd/Hhny8fHB/Pnz0aFDB+0yfHx8AJQ8jdW0aVPs2bMHGRkZSEtLwx9//AEHBwdtv7u7O8LCwvDo0SNkZGTg9OnTsLe3r8JPgIieF4/sEJFeW758OV566SVYWlpi1KhRAID09HTY2dmVeRl79uxBu3bt4OXlhV69egEAMjMzS8xnYmKCoKAghIaG4vXXX0dhYSG++OILBAYGwtnZGcXFxfjjjz+wadMmDB8+HKampnjllVf4+AYiPcewQ0R6LTs7G7m5uTAzM6vwKae8vDw8evQIhYWFT13GsGHDYGRkhP/85z/aaaNGjcLDhw/h4eGB8+fPo169ejh48CBu374NgIMvEtUEPI1FRPR/XFxc0Lp1a6jVam1LT09H7dq10apVK2RkZGDLli0ICgrC/v37MXHiRKhUKqnLJqJnYNghIkllZWVpbxf/p3r16pV6qqkqWVhYIDw8HB06dNBpjo6O2LVrFwBg9OjRcHNzw9mzZzFs2DBcv34dXbp0qdY6iah8eBqLiCQVExODPn36lJjeqVMnXL9+HQCg0WhgbGz8XOspyzIuXLiAYcOG4f79+1Cr1U+c79KlS7h06RK++eYbnD17FiNGjEBYWNhz1UdEVYdHdohIUhs2bICjoyPWrFmD9u3bw9HREVOmTMHw4cOxYsUKAMDdu3fh7OwMR0dHWFtbw8Sk/H+n3b17Fy1atICLiwusra1hampaYp6dO3ciNTUV+/btw2uvvYbmzZvD3d0da9asQZMmTdC8eXMsWrQIXbt2hb29PXr37o0XXngBUVFRz/05EFHVYdghIknduXMH3bt3h5OTE4KDgxEWFoahQ4diyJAhCAoKAgBs2rQJMTExOH/+PFJTU9GtW7dyr8ff3x+BgYE4duwYUlNTMXz48BLz5Obmonv37oiLi8Pvv/+OqKgobN68GbVr10ZWVhZycnLg5OQEf39/XL9+HRs3bsT69evxww8/PPfnQERVh6exiEhy58+fR9++fZ/Yn5qaWmr/P5/+feLECZ3Xfn5+8PPz077WaDQYMmTIU5cB/D3IoK+vb6l1qNVqvPPOO0+sk4j0E4/sEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrPHWcwO36mpDqUsgIiKqUjyyQ0RERLLGsENEVAYODg4QQsDFxQUA4O7uDiFEqQ8xJSL9wtNYRFRmKyJCq3V909q7Vev6yuPs2bNQqVTV/mR2Iio/vT6yM2/ePAghdNo/H7hnZmaGdevWITU1FWq1Gr/99htsbGwkrJiIDEVBQQFSUlKkLoOIykCvww4AXL16FSqVSttee+01bd+qVavQv39/DBkyBO7u7rCzs8Pvv/8uYbVEJCWFQoFPP/0UN27cQF5eHmJjY/HZZ58BANq1a4eQkBDk5OQgNTUVP/zwA8zNzXXeO2fOHMTHxyMvLw8XL1586vO6/n0ay8fHBxkZGejTpw8iIyOhVqsREBAAlUqlfY+xsTHWrFmDjIwMpKam4ptvvsHWrVuxd+/eKvpEiAioAWGnsLAQKSkp2paWlgYAsLS0xJgxYzB16lQcO3YMFy5cwKhRo9CtWzd06dJF4qqJSAqLFy/GrFmz8NVXX6FNmzYYMWIEUlJSULduXQQFBSEjIwOdO3fGkCFD0KtXL6xbt0773kmTJmHatGmYPn06nJ2dERQUhP3796N169ZlXn/dunUxffp0jBw5Et27d4e9vT2WL1+u7Z85cya8vb21v6ssLS0xaNCgyvwIiKgUeh92XnjhBSQkJODWrVvYsWMHmjVrBgBwdXWFqakpgoODtfPGxMQgNjYWbm5PP89vamoKpVKp04ioZrOwsMCkSZMwY8YMbNu2Dbdv38aZM2ewefNmjBgxArVr18YHH3yAa9eu4dixY5gwYQJGjhypPfU9ffp0LFmyBHv27MH169cxa9YsXLp0CZMnTy5zDaamphg3bhzCw8Nx8eJFrFu3Dp6entr+Tz75BIsXL8Yff/yBmJgYTJgwAQ8fPqzkT4KI/k2vw05YWBh8fX3h5eWF//73v2jRogVOnToFCwsLqFQq5Ofnl7g4MCUlReewcWlmz56NrKwsbUtISKjKzSCiavDSSy+hdu3aCAkJKbXv8uXLyMnJ0U47c+YMjI2N8eKLL0KpVKJJkyY4c+aMzvvOnDmDl156qcw1ZGdn4/bt29rXSUlJ2jBlaWkJlUqFc+fOafuLi4sRHh5e5uUTUcXo9d1YgYGB2n9HREQgLCwMsbGxGDp0KHJzcyu83MWLF2PlypXa10qlkoGHqIZ7nt8JlaWgoEDntRACRkZ6/TclkUHQ67Dzb5mZmbh+/Tpat26NP//8E2ZmZrCystI5umNra4vk5OSnLkej0UCj0VR1uURUjW7cuIGcnBx4enpi8+bNOn1RUVHw9fVF3bp1tUd3unXrhqKiIsTExECtViMhIQHdunXDyZMnte/r1q2bzpGY55GVlYXk5GR07twZp06dAgAYGRmhU6dOuHTpUqWs4984QjrR32rUnxzm5uZo1aoVkpKSEB4eDo1Go3M+3NHREQ4ODggNrd6xQIhIevn5+ViyZAmWLl2KkSNHomXLlujSpQtGjx6NnTt3Ii8vD35+fmjbti08PDywdu1abN++Hffv3wcALFu2DDNnzsTQoUPh6OiIxYsXo0OHDlizZk2l1bh27VrMnj0bAwYMgKOjI9asWYP69etDCFFp6yCikvT6yM6yZctw4MABxMbGws7ODl9++SWKioqwe/duZGVlYfPmzVi5ciXS09ORlZWFtWvX4uzZswgLC5O6dCKSwFdffYXCwkIsWLAAdnZ2SEpKwvfff4/c3Fz07dsXa9aswV9//YWcnBz4+/tj6tSp2vd+++23sLKywooVK2BjY4PIyEgMGDAAN2/erLT6lixZApVKhW3btqGoqAgbN25EUFAQioqKKm0dRFSSXoedpk2bYvfu3bC2tsaDBw9w+vRpdO3aFampqQCAKVOmoLi4GP7+/jAzM0NQUBDGjx8vcdVE8qXPIxoDf18js2jRIixatKhE39WrV3WOBJf23gULFmDBggWl9sfGxkKhUGhfnzhxQue1n58f/Pz8dN6zb98+nXmKioowceJETJw4EcDfY/tERUXhl19+KdsGElGF6HXYGT58+FP78/PzMWHCBEyYMKGaKiIiqjh7e3v06dMHJ06cgJmZGSZMmIAWLVpg165dUpdGJGs16podIqKarLi4GL6+vvjrr79w5swZtG/fHr169UJ0dLTUpRHJml4f2SEikpN79+7pPPKGiKoHj+wQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQkWwcO3YMq1atqvb1+vj4ICMjo9rXS0Rlw3F2iKjMisWBal2fkaJ/ta6vLO7cuYPVq1frPCB0z549OHz4sIRVEdHTMOwQET2nvLw85OXlSV0GET0BT2MRkawYGRlhyZIlSEtLQ1JSEubNm6fts7KywqZNm3D//n1kZmYiJCQEzs7O2v6WLVvijz/+QHJyMtRqNc6dO6fz8NBjx46hefPmWL16NYQQEEIAKHkaa968ebh48SLef/993LlzBw8fPsTu3bthYWGhncfCwgI7duzAo0ePkJiYiMmTJ0t2Go5I7hh2iEhWfHx8kJ2djS5dumDGjBmYO3cuevXqBQD49ddfYWNjgzfeeAOurq64cOECQkJCUL9+fQB/B5DDhw/D09MTHTt2RGBgIA4cOIBmzZoBAN555x3Ex8djzpw5UKlUUKlUT6yjVatWGDRoEPr164d+/frB3d0ds2bN0vavXLkS3bp1w4ABA9C7d2+8/vrr6NSpUxV+MkSGi6exiEhWrly5ggULFgAAbt68iQkTJsDT0xO5ubl45ZVXYGNjA41GAwD49NNPMWjQILz77rvYtGkTrly5gitXrmiXNXfuXLz99tsYMGAA1q9fj4yMDBQVFUGtViMlJeWpdRgZGcHX1xePHj0CAGzfvh2enp744osvYGFhAR8fH4wYMQJHjx4FAIwaNQqJiYlV8ZEQGTyGHSKSlX+GFQBISkqCjY0NXFxcYGFhgbS0NJ3+OnXqoFWrVgAAc3NzzJ8/H2+99RYaN24MExMT1KlTB/b29uWu4+7du9qg8886gL9Pl5mamuLcuXPa/qysLMTExJR7PUT0bAw7RCQrBQUFOq+FEDAyMoKFhQWSkpLg4eFR4j0PHz4EACxfvhy9e/fG9OnTcfPmTeTm5uK3336DqalppdVBRNWPYYeIDMKFCxegUqlQWFiI2NjYUufp1q0btm7dij/++APA30d6mjdvrjOPRqOBsbHxc9Vy+/ZtaDQadO7cGfHx8QAAS0tLODo64uTJk8+1bCIqiX9mEJFBCA4ORmhoKP744w/07t0bDg4OcHNzw8KFC+Hq6goAuHHjBt555x24uLjA2dkZu3btKnE05u7du+jevTvs7OxgbW1doVoePXoEPz8/LFu2DB4eHmjTpg02b96M4uJi7R1eRFR5GHaIyGC8+eabOHnyJLZs2YLr16/j559/hoODg/Zi46lTpyIjIwNnz57FgQMHEBQUhAsXLugsY+7cuWjevDlu3bqF1NTUCtcydepUhIaG4uDBgwgODsaZM2cQFRXF8XqIqoACgMH/GaFUKpGVlQVLS0uo1Wqpy6lWKyJCpS6BqtG09m7PnMfBwQFfffUV5syZ88TTPVT56tati4SEBEybNg0//fRTqfOU92fD/duwlGX/lpuyfn/zmh0iIgl06NABTk5OOHfuHKysrDB37lwAwL59+ySujEh+GHaIiCQyffp0vPjii9BoNAgPD8frr79e4tZ4Inp+DDtERBK4dOkSXn75ZanLIDIIvECZiIiIZI1hh4h0PL712cSEB371zeOfCW9PJyofhh0i0vH4mhEnJyeJK6F/e/wzeZ5b3okMEf90IyId2dnZOH78OIYOHQoAiI6ORmFhocRVGTYTExM4OTlh6NChOH78OHJycqQuiahGYdghohK2bNkCABg2bJjEldA/HT9+XPuzIaKyY9ghohKEEPjpp5/w888/o2HDhlAoFFKXZNCEEEhNTeURHaIKYtghoifKyclBXFyc1GUQET0X2VygPH78eNy5cwe5ubn43//+h86dO0tdEhEREekBWYSdoUOHYuXKlfjyyy/RqVMnXL58GUFBQWjUqJHUpREREZHEZBF2pk6dik2bNmHr1q2IiorCuHHjkJOTg9GjR0tdGhEREUmsxl+zU6tWLbi6umLx4sXaaUIIBAcHw82t9CfAmpqawszMTPtaqVTq/NeQmBoZS10CVSND/H/ckHH/NiyGuH+XdZtrfNhp2LAhTExMkJKSojM9JSXliYOizZ49G/Pnzy8xPSEhoSpKJNIbE7KypC6BiKqIIe/fSqUSarX6if01PuxUxOLFi7Fy5UqdaQ0aNEB6erpEFVF1UiqVSEhIQJMmTZ66cxBRzcP92/AolUokJiY+dZ4aH3ZSU1NRWFgIW1tbnem2trZITk4u9T0ajQYajUZnGncKw6NWq/lzJ5Ip7t+Goyw/5xp/gXJBQQHCw8Ph6empnaZQKODp6YnQ0FAJKyMiIiJ9UOOP7ADAypUr4efnh/Pnz+PcuXOYPHkyzM3NOaw6ERERySPs/PLLL2jUqBEWLFgAlUqFS5cuwcvLC/fv35e6NNJD+fn5mD9/PvLz86UuhYgqGfdvKo0CgJC6CCIiIqKqUuOv2SEiIiJ6GoYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1WYyzQ0REhsnIyAi+vr7w9PSEjY0NjIx0/4b/5+j6ZLgYdoiIqMZas2YNfH19cejQIVy9ehVCcOg4KomDCpJBsLGxwfLly7V//SkUCp1+ExPmfqKa6MGDB/jggw8QEBAgdSmkx/gbngzC1q1bYW9vj6+++gpJSUn8649IJjQaDW7evCl1GaTneGSHDEJWVhZef/11XL58WepSiKgSTZ06FS1btsSECROkLoX0GI/skEGIj48vceqKiGomf39/ndc9e/bEG2+8gWvXrqGgoECnb/DgwdVZGukphh0yCJMnT8Y333yDsWPHIjY2VupyiOg5ZGZm6rzeu3evRJVQTcHTWGQQ0tPTUbduXZiYmCAnJ6fEX3/W1tYSVUZERFWNR3bIIEyePFnqEoioCtSuXRsKhQK5ubkAAHt7e7z99tuIjIzEn3/+KXF1pE8EGxsbGxtbTWxBQUFi7NixAoCwsrISycnJIi4uTuTk5Ihx48ZJXh+bfjQ+LoIMhpGREd555x18/vnn+PzzzzFo0KASo60SUc3SqVMnnDp1CgDw7rvvIjk5GQ4ODvjggw8wceJEiasjfcHTWGQQWrVqhcOHD6NJkyaIiYkBAMyePRvx8fF46623cPv2bYkrJKKKqFu3LtRqNQCgT58++P333yGEwP/+9z84ODhIXB3pC/5ZSwbh22+/xa1bt9CsWTO4urrC1dUV9vb2uHPnDr799lupyyOiCrp58yYGDRqEpk2bom/fvjhy5AiAv0dNz8rKkrg60ieSn0tjY6vq9ujRI9GuXbsS052dnYVarZa8PjY2toq1wYMHi/z8fFFYWCiCgoK002fNmiUOHz4seX1s+tF4GosMQn5+PpRKZYnpFhYW0Gg0ElRERJXB398f9vb2aNy4sc4I6SEhIRx/h3RInrjY2Kq6+fn5iYiICPHKK69op3Xp0kVcuXJFbNmyRfL62NjY2NiqrnFQQTIIVlZW8PPzQ//+/bUDCpqYmGD//v3w9fXluX2iGszV1RVDhw6Fvb09TE1Ndfr4uAgCeDcWGYjMzEwMGjQIrVu3hpOTEwAgKioKt27dkrgyInoew4YNw7Zt2xAUFIQ+ffrgyJEjcHR0hK2tLU9jkRaP7BARUY11+fJl/PDDD/juu++QlZUFFxcX3LlzBz/88AOSkpIwf/58qUskPcCwQ7K1YsUKzJkzBzk5OVixYsVT5502bVo1VUVElenRo0do27YtYmNjkZqaCg8PD1y9ehVOTk44evQo7OzspC6R9ABPY5FsdezYEbVq1dL+m4jkJyMjQ3unZUJCAtq1a4erV6+iXr16qFu3rsTVkb5g2CHZ6tmzZ6n/JiL5OHnyJHr37o2rV6/i119/xZo1a9CzZ0/07t0bISEhUpdHekTyW8LY2Kq6bd68WVhYWJSYXrduXbF582bJ62NjY6tYq1+/vmjcuLEAIBQKhZg5c6bYt2+fWL58uahXr57k9bHpR+M1O2QQCgsL0bhxYzx48EBnurW1NZKTk7Wnu4iISH54GotkTalUQqFQQKFQQKlUIi8vT9tnbGyMN998E/fv35ewQiIqr9JGQ3+Sxw8JJcPGsEOy9vDhQwghIITA9evXS/QLITBv3jwJKiOiinq8Xz+NQqGAEAImJvyaI4YdkrkePXpAoVDg6NGjGDx4MNLT07V9Go0GsbGxSEpKkrBCIiqvHj16SF0C1TC8ZocMgr29PeLj45/51yAREckPww4ZlDp16pT6/JyIiAiJKiKiivDz88PHH3+MR48eAQCcnZ0RGRmJwsJCiSsjfcSwQwahYcOG2LJlC954441S+3len6hm+fcdlpmZmejQoQPu3LkjcWWkj4ykLoCoOqxevRr16tVDly5dkJubCy8vL/j4+ODGjRsYMGCA1OURUTkpFIqnvib6J/45SwahZ8+eGDhwIMLDw1FcXIzY2FgEBwcjKysLs2fPxuHDh6UukYiIqgjDDhkEc3Nz7Xg6GRkZaNSoEW7cuIGIiAh06tRJ4uqIqCLatGmjvcNSoVDAyckJFhYWOvPwejwCGHbIQMTExODFF19EbGwsLl++jLFjx+Lu3bsYN24cbz0nqqFCQkJ0Tl8dPHgQwN/jZ3GcHfon/l9ABmHNmjVo3LgxAODLL79EYGAgvL29odFo4OvrK21xRFRuLVq0kLoEqkF4NxYZpDp16sDJyQlxcXFIS0uTuhwiIqpCDDtEREQkazyNRbK1YsWKMs87bdq0KqyEiIikxLBDstWxY8cyzcdHSBARyRtPYxEREZGs8cgOERHVeA0bNsSLL74I4O+hJlJTUyWuiPQJww7Jlr+/f5nnHTx4cBVWQkRVpW7duli7di1GjhwJY2NjAEBRURG2bduGTz75BLm5uRJXSPqAz8Yi2crMzCxzI6KaaeXKlXB3d8eAAQNQr1491KtXDwMHDoS7u3u5blIgeeM1O0REVGM9ePAA7777Lk6cOKEz3cPDA7/88gtsbGwkqoz0CY/sEBFRjVW3bl2kpKSUmH7//n3UrVtXgopIH/HIDslWeHg4PD098fDhQ1y4cOGpt5i7urpWY2VEVFmCg4ORlpaGDz74APn5+QCA2rVrw8/PDw0aNEDv3r0lrpD0AS9QJtnat2+f9pffvn37OJ4OkQxNmjQJQUFBuHfvHi5fvgwAcHFxQV5eHvr27StxdaQveGSHiIhqtDp16sDb2xtOTk4AgKioKOzcuRN5eXkSV0b6gmGHDMKtW7fQuXNnpKen60y3srLChQsX0KpVK4kqIyKiqsbTWGQQmjdvrh2D45/MzMzQtGlTCSoiosoQGxuL48eP48SJEzh27Bju3LkjdUmkhxh2SNb69++v/Xffvn11xtQxNjaGp6cnfzkS1WCfffYZunfvjpkzZ2LTpk1ISEjAiRMncOLECRw/fhw3b96UukTSAzyNRbJWVFQE4O+HfSoUCp2+goIC3L17F9OmTcOhQ4ekKI+IKpFKpYK7uzv69euHYcOGwcjICCYm/JueeGSHZO7xqavbt2+jc+fOSEtLk7giIqpsderUwWuvvQYPDw/06NEDHTt2xNWrV3H8+HGpSyM9wSM7ZLCsrKz4qAiiGu7MmTPo2LEjoqKitNfunDx5Eg8fPpS6NNIjHEGZDMKMGTMwdOhQ7etffvkF6enpuHfvHpydnSWsjIieh5OTE7KzsxEdHY3o6GhERUUx6FAJDDtkEMaNG4f4+HgAQK9evdCrVy94eXkhICAAy5Ytk7g6Iqooa2tr9OzZE//73//Qt29fnDlzBvfu3cPOnTvxn//8R+rySI8INja5t5ycHNG0aVMBQKxevVp8//33AoB44YUXRHp6uuT1sbGxVU5zdXUVW7ZsERqNRhQWFkpeD5t+NB7ZIYOQkZGBZs2aAQC8vLwQHBwMAFAoFKWOv0NE+m3OnDmoU6cOOnbsiClTpmDfvn1IS0tDaGgonJ2dsXbtWrzzzjtSl0l6RPLExcZW1W3t2rXizp074siRI+LBgwfC3NxcABDDhg0T4eHhktfHxsZWvlZYWCgaNWokCgoKxLlz58SyZctEv379hKWlpeS1self463nZBCmTJmCu3fvolmzZpgxYways7MBAI0bN8Z3330ncXVEVF6Px81q0KAB1Gq1xNWQvuOt50REVOMUFRXB1tYWqampUpdCNQDDDslW//79ERAQgMLCQp3HRpTmwIED1VQVEVWGoqIiZGZmQoinf4VZW1tXU0Wkzxh2SLaKioqgUqnw4MED7WMjSiOE4JDyRDVMUVERJk+e/MyBQbdt21ZNFZE+Y9ghIqIa559/zBA9C/+cJdlTKBTw9fXFO++8g+bNm0MIgdu3b8Pf3x/bt2+XujwiqoBnnb4i+ieOs0Oyt3//fvz4449o0qQJIiIicO3aNTRv3hxbt27F3r17pS6PiCrg8d1YRGUl+f3vbGxV1Xx9fUVmZqbw8PAo0dejRw+RmZkpRo4cKXmdbGxsbGxV13jNDslaUFAQjh49iiVLlpTaP3v2bLi7u8PLy6uaKyMiourC01gka87OzggMDHxif0BAAFxcXKqxIiIiqm4MOyRrDRo0QEpKyhP7U1JSUL9+/WqsiIiIqhvDDsmasbExCgsLn9hfVFTEMXaIiGSOv+VJ1hQKBbZu3Yr8/PxS+83MzKq5IiIiqm4MOyRrfn5+z5yHI6wSEckb78YiIiIiWeM1O0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRr/w9M0Wpv/x2y+gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHvCAYAAACykR7/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUOZJREFUeJzt3XlYVGX/P/D3AIIKAyoKIyq4ReQCKpmSJSguVG5lakoG6lP6mLnnUrlkprlrapZmimtWZK6AgbvyYOKGsrgDsimLMLINy/37o6/zawIVEDjDmffruu4r59xnzvmcocO8Oct9FAAEiIiIiGTKSOoCiIiIiKoSww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhHRv/j4+EAIAQcHB6lLIaJKwLBDpCcef8G6urqW2n/s2DFEREToTLtz5w6EEBBCoKioCBkZGbhy5Qp++OEHvPLKK09d3xtvvAEhBBISEqBQKMpd71tvvYWAgACkpqYiNzcXMTExWLZsGRo0aFDuZUll9uzZGDhwoNRllMrFxQXbt29HXFwc8vLykJaWhj///BO+vr4wMqr8X92NGzfGvHnz4OLiUunLJtIHgo2NTfrm4+MjhBDC1dW11P5jx46JiIgInWl37twRFy5cEN7e3sLb21uMGzdOrFmzRiQmJgohhFixYsUT17djxw5x+/ZtIYQQnp6e5ap12bJlQgghLl68KD799FMxZswYsX79epGbmyvi4+OFo6Oj5J9nWZparRZbtmwpMd3IyEiYmZlJVteYMWNEQUGBuHfvnli8eLEYPXq0mDRpkti/f78oKioSs2fPrvR1urq6CiGE8PHxkfznwsZWBU3yAtjY2FDxsHPgwIES89auXVv8/vvvQgghxo0bV6K/bt26Qq1WiwkTJojw8HDx008/lbnO9957TwghxO7du4WRkZFOX+fOncWjR4/E5cuXhbGxcbV+fgqFotwB5UlhR8rWpUsXUVBQIE6ePCksLCxK9Lu6ulZJIGHYYZN5k7wANjY2VG7YASDMzc1FamqqiI+PL9Hn7e0tCgsLha2trfj000/Fw4cPyxwUoqKiRFpamlAqlaX2z5kzRwghxLBhw0rU3qlTJ3HmzBmRk5Mjbt++LcaOHVvi/aampmL+/Pnixo0bIi8vT8TFxYklS5YIU1NTnfmEEGLt2rVixIgR4urVq0Kj0YiBAwcKAGLatGnizJkzIjU1VeTk5Ijz58+LwYMHl3j/vz0OPo9/Fg4ODiU+627duomwsDCRm5srbt26JUaOHFliG9q3by+OHz8ucnJyRHx8vPj888+Fr69viWWW1g4fPiw0Go1o1qxZmX4edevWFcuXLxdxcXEiLy9PREdHi2nTppWYr1evXuLUqVMiIyNDqNVqER0dLb7++msBQLi7u5f6eTwOPq1btxa//fabSEpK0h692717t7C0tJR8v2FjK2OTvAA2Njb8/y/Ynj17Cmtr6xLt9OnT5Qo7AMSmTZuEEEK0adNGZ/rhw4fFn3/+KQCIZs2aiaKiIvHuu+8+s8bWrVsLIcRTjwQ5ODgIIYTYvn27dtqxY8fEvXv3RHJysvj222/FhAkTxMmTJ4UQQowaNUo7n0KhEIGBgeLRo0di5cqV4sMPPxTffvut0Gg0Yu/evTrrEUKIa9euiZSUFDFnzhzx3//+V7i4uAgAIi4uTqxbt06MHz9eTJ48Wfzvf/8TQgjx5ptvat/v7e0tcnNzxYkTJ7SnAbt27arzs/h32ImKihJJSUli4cKFYvz48eL8+fOiqKhI5/O1s7MTqamp4sGDB2LOnDli6tSpIjIyUly8ePGZYadOnToiPz9fBAcHl/n/m+DgYFFUVCQ2btwoxo8fL/bt2yeEEGLlypXaedq0aSPy8vLEuXPnxCeffCI++ugjsXTpUnH8+HEBQNjY2IgvvvhCCCHE999/r/08WrRoIWrVqiVu3bol7t27Jz777DMxevRoMWfOHBEWFibs7e0l32/Y2MrYJC+AjY0N//8L9mnKG3YmTZokhBCif//+2mmNGjUSGo1GjBkzRjvt9OnTJcJEaW3AgAFCCCEmTZr01PkePnwozp8/r3197NgxIYQQU6ZM0U6rVauWuHDhgkhOThYmJiYC+P9HnLp166azvI8++kgIIYSbm5t2mhBCFBYWipdeeqnE+mvXrq3z2sTERFy5cqVEiHjSaawnhR0hhHjttde00xo2bChyc3PFsmXLtNPWrFkjioqKtMELgKhfv75ITU19Zthp3769EEKIVatWlen/mcc/j88++0xn+i+//CKKiopEy5Ytdf4/sLa2fuKynnQay8XFRQghShwZY2OrSY13YxHpmfHjx6NXr14l2uXLl8u9rEePHgEAlEqldtp7772H4uJi+Pv7a6ft3r0bb7zxBurVq/fU5T1ejlqtfup8arUalpaWOtMKCgrwww8/lHhta2urvQNtyJAhiIqKQnR0NKytrbXt6NGjAIAePXroLPPEiROIiooqsf68vDztv+vVqwcrKyucOnUKnTp1emrdz3Lt2jWcPn1a+zo1NRUxMTFo2bKldpqXlxdCQ0N1fl4ZGRnYuXPnM5f/+DN71uf72JtvvonCwkJ8++23OtNXrFgBIyMjvPHGGwCAhw8fAgAGDhxY7jvvMjMzAQB9+/ZFnTp1yvVeIn3BsEOkZ86dO4eQkJASLSMjo9zLsrCwAKD75fn+++/j3LlzsLa2RqtWrdCqVStcvHgRZmZmGDJkyFOX93g5/wxPpVEqlSW+sBMTE5GTk6Mz7fr16wCA5s2bAwBeeOEFtGvXDqmpqTrtxo0bAAAbGxud99+5c6fU9b/11lsIDQ1Fbm4uMjIykJqaivHjx8PKyuqpdT9LXFxciWkZGRmoX7++9rWDgwNu3rxZYr7Spv1bVlYWgGd/vv9cV2JiojbUPvY4AD4eJ2jPnj04ffo0Nm/ejJSUFOzevRtDhgwpU/C5e/cuVqxYgQ8//BCpqakIDAzE+PHjS4RZIn1mInUBRFR12rVrB+D/f9G2bt1aO/5OaV++3t7e2LRp0xOX9/hL1NnZ+Ynz2Nvbw8rKCpGRkeWu18jICFeuXMHUqVNL7Y+Pj9d5nZubW2Ke1157Dfv378fJkycxfvx4JCUloaCgAKNGjYK3t3e5a/qnoqKiUqdXZJyi0ty8eRMFBQVo3759pSzvsby8PHTv3h09evTAW2+9BS8vL7z33nsICQlBnz59UFxc/NT3T58+HVu3bsXAgQPRp08ffPvtt5g9eza6du2KhISESq2VqCow7BDJlLm5Od5++23ExcVpQ4q3tzc0Gg1GjhxZ4ov7tddew8SJE9GsWbMSoeKxGzduICYmBoMGDcKkSZNKHFEAgA8++AAAcPDgQZ3pdnZ2qFu3rs7RHUdHRwB/Hz0AgFu3bsHFxQUhISEV22gAgwcPRl5eHvr27QuNRqOdPmrUqBLzCiEqvJ4niY2NRevWrUtML23av+Xm5uLo0aPo2bMnmjZtinv37j1zXb169YKFhYXOz8LJyUnb/5gQAkePHsXRo0cxbdo0zJ49G4sWLUKPHj0QEhLyzM/i6tWruHr1Kr7++mu4ubnh7NmzGDduHObMmfPM7SKSGk9jEclQ7dq1sX37dlhbW+Prr7/WTvf29sapU6fwyy+/wN/fX6ctW7YMADB8+PCnLnvBggVo0KABvv/++xIj+Xbq1AkzZ85ERESEzjVBAFCrVi2MHTu2xOv79+8jPDwcAPDLL7+gadOm+PDDD0vdprp16z5z24uKiiCEgLGxsXaag4MDBg0aVGLe7OzsZ16nVF5BQUFwc3PTGYm4fv36ZT6q9OWXX0KhUGD79u0wNzcv0d+pUydtoDx8+DBMTEwwYcIEnXmmTJmC4uJiBAQEaNf/b5cuXQIAmJmZAfj7swBQ4vNQKpU6nyUAREREoKioSPteIn3HIztENVyTJk20X6QWFhZo06YNhgwZgsaNG2P58uXYuHEjAOCVV17BCy+8gHXr1pW6nMTERFy4cAHe3t5YunTpE9e3a9cudO7cGZMnT0abNm2wc+dOZGRkoFOnThg9ejTS0tLw7rvvorCwUOd9CQkJmDlzJpo3b47r169j2LBh6NixIz788EPtvNu3b8fQoUPx/fffo0ePHjhz5gyMjY3h5OSEoUOHom/fvtpg9CSHDh3CtGnTEBgYiF27dsHGxgYff/wxbt68WeJRCOHh4ejVqxemTJmCxMRE3LlzB+fOnXv6B/4MS5cuxfvvv48///wTa9euRXZ2Nv7zn/8gLi4O1tbWzzyCEhoaio8//hjfffcdoqOjsX37dty4cQNKpRIeHh4YMGAAvvjiCwDAgQMHcPToUXz99ddo3rw5Ll++jD59+mDQoEFYtWoVbt++DQCYO3cuunfvjkOHDiE2NhY2NjYYP3484uPjtRdc37p1CxkZGRg3bhzUajWys7MRFhYGFxcXrFu3Dr/++iuuX78OExMT7ZHBfwdaIn0m+S1hbGxsFR9U8LGioiLx8OFDERERIX744QfRuXNnnXnXrFkjhBCiRYsWT6xh7ty5Qggh2rdv/8x6BwwYIIKCgkRaWprIzc0V169fF8uWLSv19ubSBhW8c+eOGD9+fIl5TUxMxKeffioiIiJEbm6uSEtLE3/99ZeYM2eOzkCGQvw9qGBptY0aNUrExMSI3NxcERkZKXx8fMS8efOE+DtpaJujo6M4fvy4yM7OFkKUbVDB0rbt2LFjOtNcXFzEiRMnRG5uroiLixMzZ84UEyZMEEIIYWNjU6b/Hzp27Ch27Ngh7t27J/Lz80VaWpr4888/xciRI4VCodDOZ25uLlasWKGdLyYmpsSggj169BB79+4V9+7dE3l5eeLevXti586donXr1jrz9e/fXztA4+Pb0Js3by5+/PFHcePGDZGTkyNSU1NFSEiI6Nmzp+T7DBtbWZvi//5BRFRljh07hoYNG1b6hbc1yapVqzB27FhYWFg884JgIqpcvGaHiKiS1a5dW+d1gwYNMHLkSJw+fZpBh0gCvGaHiKiShYaG4vjx44iKioKtrS3GjBkDS0tLfPXVV1KXRmSQGHaIiCrZ4cOH8e677+Kjjz6CEAIXLlzAmDFjcOrUKalLIzJIvGaHiIiIZI3X7BAREZGsMewQERGRrPGanf9jZ2dX5icNExERkX5QKpVITEx86jwMO/g76PBhdkRERDVTkyZNnhp4GHYA7RGdJk2a8OgOERFRDaFUKpGQkPDM726GnX9Qq9UMO0RERDLDC5SJiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNZMpC6ApFUsDkhdAlUjI0V/qUsgIqp2PLJDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxlvPiYhkikNLGBYOLfFkPLJDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLLGsENERESyxrBDREREssawQ0RERLKmN2Fn5syZEEJg1apV2mlmZmZYt24dUlNToVar8dtvv8HGxkbnfc2aNcPBgweRnZ2NlJQULF26FMbGxtVdPhEREekpvQg7L7/8MsaOHYvLly/rTF+1ahX69++PIUOGwN3dHXZ2dvj999+1/UZGRjh06BBMTU3x6quvwsfHB76+vliwYEF1bwIRERHpKcnDjrm5OXbu3IkPP/wQGRkZ2umWlpYYM2YMpk6dimPHjuHChQsYNWoUunXrhi5dugAA+vTpgzZt2uD999/H5cuXERgYiDlz5uDjjz9GrVq1pNokIiIi0iOSh53169fj0KFDCAkJ0Znu6uoKU1NTBAcHa6fFxMQgNjYWbm5uAAA3NzdERETg/v372nmCgoJgZWWFtm3bPnGdpqamUCqVOo2IiIjkyUTKlQ8bNgydOnVC586dS/SpVCrk5+cjMzNTZ3pKSgpUKpV2npSUlBL9j/ueZPbs2Zg/f/5zVk9EREQ1gWRHdpo2bYo1a9bA29sb+fn51bruxYsXw9LSUtuaNGlSresnIiKi6iNZ2HF1dYWtrS0uXLiAgoICFBQUwMPDAxMnTkRBQQFSUlJgZmYGKysrnffZ2toiOTkZAJCcnAxbW9sS/Y/7nkSj0UCtVus0IiIikifJwk5ISAjatWuHDh06aNtff/2FnTt3okOHDjh//jw0Gg08PT2173F0dISDgwNCQ0MBAKGhoWjfvj0aNWqknad3797IzMxEZGRktW8TERER6R/Jrtl59OgRrl27pjMtOzsbaWlp2umbN2/GypUrkZ6ejqysLKxduxZnz55FWFgYAODIkSOIjIzE9u3bMWPGDKhUKixcuBDr16+HRqOp9m0iIiIi/SPpBcrPMmXKFBQXF8Pf3x9mZmYICgrC+PHjtf3FxcXo168fNmzYgNDQUGRnZ8PPzw9z586VsGoiIiLSJwoAQuoipKZUKpGVlQVLS0uDu36nWByQugSqRkaK/lKXQNWI+7dhMcT9u6zf35KPs0NERERUlRh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWJA0748aNw+XLl5GZmYnMzEycPXsWXl5e2v5jx45BCKHTNmzYoLOMZs2a4eDBg8jOzkZKSgqWLl0KY2Pj6t4UIiIi0lMmUq783r17mDVrFm7cuAGFQgEfHx/s27cPHTt2RGRkJABg48aNmDt3rvY9OTk52n8bGRnh0KFDSE5OxquvvorGjRtj27ZtKCgowOeff17t20NERET6R9Kwc/DgQZ3XX3zxBf773/+ia9eu2rCTk5ODlJSUUt/fp08ftGnTBr169cL9+/dx+fJlzJkzB0uWLMH8+fNRUFBQ5dtARERE+k1vrtkxMjLCsGHDYG5ujtDQUO10b29vPHjwABEREVi0aBHq1Kmj7XNzc0NERATu37+vnRYUFAQrKyu0bdv2iesyNTWFUqnUaURERCRPkh7ZAYB27dohNDQUtWvXxqNHj/D2228jKioKALBr1y7ExsYiMTERzs7OWLJkCV588UUMHjwYAKBSqUoc9Xn8WqVSPXGds2fPxvz586tmg4iIiEivSB52YmJi0KFDB1hZWeHdd9+Fn58f3N3dERUVhU2bNmnnu3r1KpKSknD06FG0bNkSt2/frvA6Fy9ejJUrV2pfK5VKJCQkPNd2EBERkX6S/DRWQUEBbt26hQsXLuCzzz7D5cuXMWnSpFLnDQsLAwC0bt0aAJCcnAxbW1udeR6/Tk5OfuI6NRoN1Gq1TiMiIiJ5kjzs/JuRkRHMzMxK7evQoQMAICkpCQAQGhqK9u3bo1GjRtp5evfujczMTO0FzkRERGTYJD2NtWjRIgQEBCAuLg5KpRIjRoyAh4cH+vbti5YtW2LEiBE4fPgw0tLS4OzsjFWrVuHEiROIiIgAABw5cgSRkZHYvn07ZsyYAZVKhYULF2L9+vXQaDRSbhoRERHpCUnDjo2NDbZt24bGjRsjMzMTV65cQd++fREcHIymTZuiV69emDx5MszNzREfHw9/f38sXLhQ+/7i4mL069cPGzZsQGhoKLKzs+Hn56czLg8REREZNgUAIXURUlMqlcjKyoKlpaXBXb9TLA5IXQJVIyNFf6lLoGrE/duwGOL+Xdbvb727ZoeIiIioMjHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsSRp2xo0bh8uXLyMzMxOZmZk4e/YsvLy8tP1mZmZYt24dUlNToVar8dtvv8HGxkZnGc2aNcPBgweRnZ2NlJQULF26FMbGxtW9KURERKSnJA079+7dw6xZs+Dq6oqXX34ZR48exb59+9CmTRsAwKpVq9C/f38MGTIE7u7usLOzw++//659v5GREQ4dOgRTU1O8+uqr8PHxga+vLxYsWCDVJhEREZGeUQAQUhfxT2lpafj000/x22+/4cGDBxgxYgT8/f0BAC+++CKio6PRtWtXhIWFwcvLCwcPHoSdnR3u378PABg7diyWLFmCRo0aoaCgoEzrVCqVyMrKgqWlJdRqdZVtmz4qFgekLoGqkZGiv9QlUDXi/m1YDHH/Luv3t95cs2NkZIRhw4bB3NwcoaGhcHV1hampKYKDg7XzxMTEIDY2Fm5ubgAANzc3REREaIMOAAQFBcHKygpt27Z94rpMTU2hVCp1GhEREcmT5GGnXbt2UKvVyM/Px/fff4+3334bUVFRUKlUyM/PR2Zmps78KSkpUKlUAACVSoWUlJQS/Y/7nmT27NnIysrStoSEhEreKiIiItIXkoedmJgYdOjQAV26dMGGDRvg5+eHl156qUrXuXjxYlhaWmpbkyZNqnR9REREJB0TqQsoKCjArVu3AAAXLlxA586dMWnSJOzZswdmZmawsrLSObpja2uL5ORkAEBycjJeeeUVneXZ2tpq+55Eo9FAo9FU9qYQERGRHpL8yM6/GRkZwczMDOHh4dBoNPD09NT2OTo6wsHBAaGhoQCA0NBQtG/fHo0aNdLO07t3b2RmZiIyMrLaayciIiL9I+mRnUWLFiEgIABxcXFQKpUYMWIEPDw80LdvX2RlZWHz5s1YuXIl0tPTkZWVhbVr1+Ls2bMICwsDABw5cgSRkZHYvn07ZsyYAZVKhYULF2L9+vU8ckNEREQAJA47NjY22LZtGxo3bozMzExcuXIFffv21d6BNWXKFBQXF8Pf3x9mZmYICgrC+PHjte8vLi5Gv379sGHDBoSGhiI7Oxt+fn6YO3euVJtEREREekbvxtmRAsfZIUNhiONwGDLu34bFEPfvGjfODhEREVFVYNghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZK3fYMTExQXBwMFq3bl0V9RARERFVqnKHncLCQjg7O1dFLURERESVrkKnsXbs2IExY8ZUdi1ERERElc6kQm8yMcHo0aPRq1cvhIeHIzs7W6d/2rRplVIcERER0fOqUNhp164dLly4AABwdHTU6RNCPH9VRERERJWkQmGnZ8+elV0HERERUZXgredEREQkaxU6sgMArq6uGDp0KOzt7WFqaqrTN3jw4OcujIiIiKgyVOjIzrBhw3D27Fm89NJLePvtt1GrVi20bdsWPXv2RGZmZmXXSERERFRhFQo7n332GaZMmYIBAwZAo9Fg0qRJcHJywi+//IK4uLjKrpGIiIiowioUdlq1aoVDhw4BADQaDczNzQEAq1atwkcffVR51RERERE9pwqFnYyMDCiVSgBAQkIC2rVrBwCoV68e6tatW3nVERERET2nCoWdkydPonfv3gCAX3/9FWvWrMHGjRuxe/duhISElHk5s2bNwrlz55CVlYWUlBTs3bu3xLg9x44dgxBCp23YsEFnnmbNmuHgwYPIzs5GSkoKli5dCmNj44psGhEREclMhe7GmjBhAmrXrg0A+Prrr1FQUIBXX30V/v7+WLhwYZmX4+7ujvXr1+Ovv/6CiYkJFi1ahCNHjqBNmzbIycnRzrdx40bMnTtX+/qffUZGRjh06BCSk5Px6quvonHjxti2bRsKCgrw+eefV2TziIiISEYUAPRmyOOGDRviwYMH6N69O06dOgXg7yM7ly5dwpQpU0p9j5eXFw4ePAg7Ozvcv38fADB27FgsWbIEjRo1QkFBQYn3mJqawszMTPtaqVQiISEBlpaWUKvVVbBl+qtYHJC6BKpGRor+UpdA1Yj7t2ExxP1bqVQiKyvrmd/fFR5UsGXLlvjqq6+wa9cuNGrUCMDfwaNNmzYVXSSsrKwAAOnp6TrTvb298eDBA0RERGDRokWoU6eOts/NzQ0RERHaoAMAQUFBsLKyQtu2bUtdz+zZs5GVlaVtCQkJFa6ZiIiI9FuFwk737t0RERGBLl264J133oGFhQUAwMXFBV9++WWFClEoFFi9ejVOnz6Na9euaafv2rUL77//Pnr06IHFixdj5MiR2LFjh7ZfpVIhJSVFZ1mPX6tUqlLXtXjxYlhaWmpbkyZNKlQzERER6b8KXbPzzTff4IsvvsCqVauQlZWlnX706FFMmDChQoWsX78e7dq1w2uvvaYzfdOmTdp/X716FUlJSTh69ChatmyJ27dvV2hdGo0GGo2mQu8lIiKimqVCR3bat2+PvXv3lph+//59NGzYsNzLW7t2Lfr164cePXo885RSWFgYAKB169YAgOTkZNja2urM8/h1cnJyuWshIiIiealQ2Hn48CEaN25cYnrHjh3Lff3L2rVr8fbbb6Nnz564e/fuM+fv0KEDACApKQkAEBoaivbt22uvGwKA3r17IzMzE5GRkeWqhYiIiOSnQmHn559/xpIlS2BrawshBIyMjPDqq69i+fLl2LZtW5mXs379erz//vsYMWIE1Go1bG1tYWtrq72tvWXLlvjiiy/QqVMnODg4oH///ti2bRtOnDiBiIgIAMCRI0cQGRmJ7du3w9nZGX369MHChQuxfv16nqoiIiKiit16XqtWLaxfvx6+vr4wNjZGYWEhjI2NsWvXLvj6+qK4uLhMyxGi9FX7+vrCz88PTZs2xY4dO9CuXTuYm5sjPj4ee/fuxcKFC3VuMbO3t8eGDRvg4eGB7Oxs+Pn5YdasWSgqKipTHWW9dU2OeGuqYTHEW1MNGfdvw2KI+3dZv7+fa5ydZs2aoV27drCwsMDFixdx8+bNii5KUgw7ZCgM8ZehIeP+bVgMcf8u6/d3he7G8vDwwPHjxxEfH4/4+PgKF0lERERU1Sp0zU5gYCBu3ryJzz//HE2bNq3smoiIiIgqTYXCTpMmTbBu3Tq8++67uH37NgIDAzFkyBDUqlWrsusjIiIiei4VCjtpaWlYvXo1OnbsiC5duuD69ev47rvvkJiYiDVr1sDZ2bmy6yQiIiKqkAo/G+uxixcvYvHixVi3bh0sLCwwevRohIeH4+TJk8/1nCwiIiKiylDhsGNiYoLBgwfj0KFDiI2NRd++fTFhwgTY2tqidevWiI2Nxa+//lqZtRIRERGVW4Xuxvr2228xfPhwKBQKbN++HTNmzNB5eGdsbCymT5+OxMTESiuUiIiIqCIqFHbatGmDTz75BL///vsTRylOTU1Fjx49nqs4IiIioudVrrDz5ZdfYt++fejVq9cz5y0qKsLJkycrXBgRERFRZSjXNTtNmzZFQEAA4uPj8d1338HLy4u3mxMREZFeK1fYGTNmDFQqFYYPHw61Wo3Vq1cjNTUVv/32G0aOHIn69etXVZ1EREREFVLuu7GEEDh9+jRmzpwJJycndOnSBWFhYRg7diwSExNx4sQJTJs2DXZ2dlVRLxEREVG5VOgC5X+Kjo5GdHQ0li1bhoYNG2LAgAEYMGAAAGDFihXPXSARERHR83iup56bmpoCwBPvyKop+NRzMhSG+FRkQ8b927AY4v5d1u/vcp/G6tWrFw4dOoT09HTk5OQgJycH6enpOHToEDw9PZ+raCIiIqLKVq6w88EHH+Dw4cPIzMzElClT0K9fP/Tr1w9TpkzBw4cPcfjwYbz//vtVVSsRERFRuZXrmp3PP/8ckydPxnfffVeiz8/PD6dPn8bcuXOxY8eOSiuQiIiI6HmU68iOvb09goODn9gfEhKCpk2bPndRRERERJWlXGHn2rVrGDNmzBP7R48ejcjIyOcuioiIiKiylOs01rRp03Dw4EF4eXkhODgYKSkpAABbW1t4enqiZcuWeOutt6qkUCIiIqKKKFfYOXHiBNq1a4f//ve/6Nq1K1QqFQAgOTkZAQEB+P777xEbG1slhRIRERFVRLkHFYyNjcWsWbOqohYiIiKiSlehEZSNjY3Rtm1b7ZGdpKQkREVFobCwsFKLIyIiInpe5Qo7CoUCCxYswMcffwwrKyudvszMTKxbtw7z5s2DEBUelJmIiIioUpXrbqxvvvkGH330EWbNmoWWLVvC3Nwc5ubmaNmyJWbOnImPPvoIixcvrqpaiYiIiMqtXM/GSkpKgo+PD44cOVJqf58+fbBt2zbt6a2ags/GIkNhiM/OMWTcvw2LIe7fVfJsLKVSicTExCf2JyUlwdzcvDyLJCIiIqpS5Qo7x48fx/Lly2FtbV2iz9raGkuWLMHx48crqzYiIiKi51auC5THjRuHw4cPIykpCRERETqDCrZv3x6RkZHo169flRRKREREVBHlCjv37t2Di4sL+vbtqzOo4Llz5/DZZ5/hyJEjvBOLiIiI9Eq5TmMBgBACgYGBmD9/PsaNG4dx48Zh/vz5CAoKKnfQmTVrFs6dO4esrCykpKRg7969cHR01JnHzMwM69atQ2pqKtRqNX777TfY2NjozNOsWTMcPHgQ2dnZSElJwdKlS2FsbFzeTSMiIiIZqtCggp07d4abm5vO4yLOnj2L8+fPl2s57u7uWL9+Pf766y+YmJhg0aJFOHLkCNq0aYOcnBwAwKpVq/DWW29hyJAh2rF8fv/9d7z22msAACMjIxw6dAjJycl49dVX0bhxY2zbtg0FBQX4/PPPK7J5REREJCPluvW8UaNG8Pf3R7du3RAXF6dzzY69vT3OnDmDwYMH48GDBxUqpmHDhnjw4AG6d++OU6dOwdLSEg8ePMCIESPg7+8PAHjxxRcRHR2Nrl27IiwsDF5eXjh48CDs7Oxw//59AMDYsWOxZMkSNGrUCAUFBc9cL289J0NhiLemGjLu34bFEPfvKrn1/LvvvoOxsTFeeukltGjRAl27dkXXrl3RokULvPTSSzAyMsL69esrXPTjUZnT09MBAK6urjA1NUVwcLB2npiYGMTGxsLNzQ0A4ObmhoiICG3QAYCgoCBYWVmhbdu2pa7H1NQUSqVSpxEREZE8lSvs9O3bFx9//DGuX79eou/69euYOHEivLy8KlSIQqHA6tWrcfr0aVy7dg0AoFKpkJ+fj8zMTJ15U1JStKfQVCqV9gjTP/sf95Vm9uzZyMrK0raEhIQK1UxERET6r1xhJz8/H5aWlk/sVyqVyM/Pr1Ah69evR7t27fDee+9V6P3lsXjxYlhaWmpbkyZNqnydREREJI1yhZ09e/bAz88PgwYN0jn1o1QqMWjQIGzZsgW7d+8udxFr165Fv3790KNHD52jLMnJyTAzMyvx0FFbW1skJydr57G1tS3R/7ivNBqNBmq1WqcRERGRPJUr7EydOhUBAQH4+eefkZGRgZycHOTk5CAjIwM///wzAgICMH369HIVsHbtWrz99tvo2bMn7t69q9MXHh4OjUYDT09P7TRHR0c4ODggNDQUABAaGor27dujUaNG2nl69+6NzMxMREZGlqsWIiIikp9y3Y31mFKphKurq86t5+Hh4eU+QrJ+/XqMGDECAwcORExMjHZ6ZmYm8vLyAPx9UfSbb74JX19fZGVlYe3atQCAbt26Afj71vNLly4hMTERM2bMgEqlwvbt2/Hjjz+W+dZz3o1FhsIQ79YwZNy/DYsh7t9l/f6uUNipLE8ahNDX1xd+fn4A/h5UcMWKFRg+fDjMzMwQFBSE8ePH61yUbG9vjw0bNsDDwwPZ2dnw8/PDrFmzUFRUVKY6GHbIUBjiL0NDxv3bsBji/i1J2LGxscHYsWPx1VdfVdYiqwXDDhkKQ/xlaMi4fxsWQ9y/q2ScnWdRqVSYN29eZS6SiIiI6LmU63ER7du3f2r/iy+++FzFEBEREVW2coWdS5cuQQgBhUJRou/xdD71nIiIiPRJucJOeno6ZsyYgZCQkFL727ZtiwMHeI6YiIiI9Ee5wk54eDjs7OwQFxdXan+9evVKPepDREREJJVyhZ3vv/8e5ubmT+yPi4vDqFGjnrsoIiIiospSrrDzxx9/PLX/4cOH2LZt2/PUQ0RERFSpyn3rubGxMWrVqqUzbcyYMdi6dSsmTJhQaYURERERVYZyh52dO3fiyy+/1L7+6KOPsGbNGpibm2Pu3LlYtGhRpRZIRERE9DzKHXY6deqEwMBA7euxY8di8uTJGDJkCIYMGYIRI0ZUaoFEREREz6PM1+z89NNPAICmTZti4sSJ8PHxgUKhgIuLC9544w24ubnBxMQEdnZ22Lx5M4C/T28RERERSancz8a6e/cu3n//fZw+fRpvvvkmVq1apR052dLSEnFxcahXr14VlFp1+GwsMhSG+OwcQ8b927AY4v5d1u/vct2NBQDHjx/Hxo0bsW3bNowaNQp79uzR9rm4uODGjRsVq5iIiIioCpT7mp2pU6fi/PnzGDFiBI4ePapzQfKgQYOwY8eOSi2QiIiI6HmU+zSWHPE0FhkKQzzMbci4fxsWQ9y/y/r9Xe4jO0REREQ1CcMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREcmapGHn9ddfx/79+5GQkAAhBAYOHKjTv2XLFgghdFpAQIDOPPXr18eOHTuQmZmJjIwM/PjjjzA3N6/OzSAiIiI9JmnYMTc3x+XLl/Hxxx8/cZ6AgACoVCptGz58uE7/zp070bZtW/Tu3Rv9+vVD9+7dsXHjxqounYiIiGoIEylXHhgYiMDAwKfOk5+fj5SUlFL7nJyc8MYbb+Dll19GeHg4AOCTTz7B4cOHMX36dCQlJVV6zURERFSz6P01Ox4eHkhJSUF0dDS+++47NGjQQNvn5uaGjIwMbdABgODgYBQXF6NLly5PXKapqSmUSqVOIyIiInnS67ATGBiIDz74AJ6enpg5cybc3d0REBAAI6O/y1apVLh//77Oe4qKipCeng6VSvXE5c6ePRtZWVnalpCQUKXbQURERNKR9DTWs+zZs0f776tXr+LKlSu4ffs2PDw8cPTo0Qovd/HixVi5cqX2tVKpZOAhIiKSKb0+svNvd+7cwYMHD9C6dWsAQHJyMmxsbHTmMTY2RoMGDZCcnPzE5Wg0GqjVap1GRERE8lSjwk6TJk1gbW2tvfA4NDQU9evXR6dOnbTz9OzZE0ZGRggLC5OqTCIiItIjkp7GMjc31x6lAYAWLVrAxcUF6enpSE9Px7x58+Dv74/k5GS0atUKS5cuxc2bNxEUFAQAiI6ORkBAADZt2oRx48ahVq1aWLduHX7++WfeiUVEREQAJD6y8/LLL+PSpUu4dOkSAGDVqlW4dOkSFixYgKKiIjg7O2P//v24fv06Nm/ejPDwcLz++uvQaDTaZXh7eyM6OhohISE4fPgwTp8+jY8++kiiLSIiIiJ9owAgpC5CakqlEllZWbC0tDS463eKxQGpS6BqZKToL3UJVI24fxsWQ9y/y/r9XaOu2SEiIiIqL4YdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1ScPO66+/jv379yMhIQFCCAwcOLDEPF9++SUSExORk5ODP//8E61bt9bpr1+/Pnbs2IHMzExkZGTgxx9/hLm5eXVtAhEREek5ScOOubk5Ll++jI8//rjU/hkzZmDixIkYN24cunTpguzsbAQFBcHMzEw7z86dO9G2bVv07t0b/fr1Q/fu3bFx48bq2gQiIiLScwoAQuoiAEAIgUGDBmHfvn3aaYmJiVixYgVWrFgBALC0tERKSgp8fX2xZ88eODk5ISoqCi+//DLCw8MBAH379sXhw4fRtGlTJCUllWndSqUSWVlZsLS0hFqtrvyN02PF4oDUJVA1MlL0l7oEqkbcvw2LIe7fZf3+1ttrdlq0aIHGjRsjODhYOy0rKwthYWFwc3MDALi5uSEjI0MbdAAgODgYxcXF6NKlyxOXbWpqCqVSqdOIiIhInvQ27KhUKgBASkqKzvSUlBRtn0qlwv3793X6i4qKkJ6erp2nNLNnz0ZWVpa2JSQkVHL1REREpC/0NuxUpcWLF8PS0lLbmjRpInVJREREVEX0NuwkJycDAGxtbXWm29raavuSk5NhY2Oj029sbIwGDRpo5ymNRqOBWq3WaURERCRPeht27ty5g6SkJHh6emqnKZVKdOnSBaGhoQCA0NBQ1K9fH506ddLO07NnTxgZGSEsLKzaayYiIiL9YyLlys3NzXXGzWnRogVcXFyQnp6O+Ph4rF69Gl988QVu3LiBO3fu4KuvvkJiYiL++OMPAEB0dDQCAgKwadMmjBs3DrVq1cK6devw888/l/lOLCIiIpI3ScPOyy+/jOPHj2tfr1q1CgCwdetWjBo1CkuXLoW5uTk2btyIevXq4fTp0/Dy8kJ+fr72Pd7e3li3bh1CQkJQXFwMf39/TJw4sbo3hYiIiPSU3oyzIyWOs0OGwhDH4TBk3L8NiyHu32X9/pb0yA4R6be6deuiYcOGUCgUUpdi0IQQSE1NRU5OjtSlENVIDDtEVIJCocCoUaPg4eEhdSn0D8ePH8eWLVsghMEfkCcqF4YdIiph1KhRcHd3x549exAdHY3CwkKpSzJoJiYmcHJywtChQwEAP/30k8QVEdUsDDtEpMPc3BweHh7Ys2cPDh06JHU59H9u3boFABg2bBh+/vlnntIiKge9HWeHiKRhbW0N4O+hHUi/PP6ZNGzYUOJKiGoWhh0i0vH4YmSeutI/j38mvGCcqHwYdoiIiEjWGHaIiIhI1hh2iKhGcnBwgBACLi4uAAB3d3cIIWBlZQUA8PHxQUZGxjOXI4TAwIEDq7RWIpIWww4RSerYsWPaR8X80z/DypYtW7B3716d/vj4eKhUKly9erXU5e7ZsweOjo7a1/PmzcPFixdLzKdSqRAQEPA8m0BEeo63nhNRjVRcXIyUlJQn9ufl5SEvL++Zy3naMohIHnhkh4j02rx58+Dr64tBgwZBCAEhBNzd3Uucxvq3fx4Z8vHxwfz589GhQwftMnx8fACUPI3VtGlT7NmzBxkZGUhLS8Mff/wBBwcHbb+7uzvCwsLw6NEjZGRk4PTp07C3t6/CT4CInheP7BCRXlu+fDleeuklWFpaYtSoUQCA9PR02NnZlXkZe/bsQbt27eDl5YVevXoBADIzM0vMZ2JigqCgIISGhuL1119HYWEhvvjiCwQGBsLZ2RnFxcX4448/sGnTJgwfPhympqZ45ZVX+PgGIj3HsENEei07Oxu5ubkwMzOr8CmnvLw8PHr0CIWFhU9dxrBhw2BkZIT//Oc/2mmjRo3Cw4cP4eHhgfPnz6NevXo4ePAgbt++DYCDLxLVBDyNRUT0f1xcXNC6dWuo1WptS09PR+3atdGqVStkZGRgy5YtCAoKwv79+zFx4kSoVCqpyyaiZ2DYISJJZWVlaW8X/6d69eqVeqqpKllYWCA8PBwdOnTQaY6Ojti1axcAYPTo0XBzc8PZs2cxbNgwXL9+HV26dKnWOomofHgai4gkFRMTgz59+pSY3qlTJ1y/fh0AoNFoYGxs/FzrKcsyLly4gGHDhuH+/ftQq9VPnO/SpUu4dOkSvvnmG5w9exYjRoxAWFjYc9VHRFWHR3aISFIbNmyAo6Mj1qxZg/bt28PR0RFTpkzB8OHDsWLFCgDA3bt34ezsDEdHR1hbW8PEpPx/p929exctWrSAi4sLrK2tYWpqWmKenTt3IjU1Ffv27cNrr72G5s2bw93dHWvWrEGTJk3QvHlzLFq0CF27doW9vT169+6NF154AVFRUc/9ORBR1WHYISJJ3blzB927d4eTkxOCg4MRFhaGoUOHYsiQIQgKCgIAbNq0CTExMTh//jxSU1PRrVu3cq/H398fgYGBOHbsGFJTUzF8+PAS8+Tm5qJ79+6Ii4vD77//jqioKGzevBm1a9dGVlYWcnJy4OTkBH9/f1y/fh0bN27E+vXr8cMPPzz350BEVYensYhIcufPn0ffvn2f2J+amlpq/z+f/n3ixAmd135+fvDz89O+1mg0GDJkyFOXAfw9yKCvr2+pdajVarzzzjtPrJOI9BOP7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkazx1nMDt+pqQ6lLICIiqlI8skNERESyxrBDRFQGDg4OEELAxcUFAODu7g4hRKkPMSUi/cLTWERUZisiQqt1fdPau1Xr+srj7NmzUKlU1f5kdiIqP70+sjNv3jwIIXTaPx+4Z2ZmhnXr1iE1NRVqtRq//fYbbGxsJKyYiAxFQUEBUlJSpC6DiMpAr8MOAFy9ehUqlUrbXnvtNW3fqlWr0L9/fwwZMgTu7u6ws7PD77//LmG1RCQlhUKBTz/9FDdu3EBeXh5iY2Px2WefAQDatWuHkJAQ5OTkIDU1FT/88APMzc113jtnzhzEx8cjLy8PFy9efOrzuv59GsvHxwcZGRno06cPIiMjoVarERAQAJVKpX2PsbEx1qxZg4yMDKSmpuKbb77B1q1bsXfv3ir6RIgIqAFhp7CwECkpKdqWlpYGALC0tMSYMWMwdepUHDt2DBcuXMCoUaPQrVs3dOnSReKqiUgKixcvxqxZs/DVV1+hTZs2GDFiBFJSUlC3bl0EBQUhIyMDnTt3xpAhQ9CrVy+sW7dO+95JkyZh2rRpmD59OpydnREUFIT9+/ejdevWZV5/3bp1MX36dIwcORLdu3eHvb09li9fru2fOXMmvL29tb+rLC0tMWjQoMr8CIioFHofdl544QUkJCTg1q1b2LFjB5o1awYAcHV1hampKYKDg7XzxsTEIDY2Fm5uTz/Pb2pqCqVSqdOIqGazsLDApEmTMGPGDGzbtg23b9/GmTNnsHnzZowYMQK1a9fGBx98gGvXruHYsWOYMGECRo4cqT31PX36dCxZsgR79uzB9evXMWvWLFy6dAmTJ08ucw2mpqYYN24cwsPDcfHiRaxbtw6enp7a/k8++QSLFy/GH3/8gZiYGEyYMAEPHz6s5E+CiP5Nr8NOWFgYfH194eXlhf/+979o0aIFTp06BQsLC6hUKuTn55e4ODAlJUXnsHFpZs+ejaysLG1LSEioys0gomrw0ksvoXbt2ggJCSm17/Lly8jJydFOO3PmDIyNjfHiiy9CqVSiSZMmOHPmjM77zpw5g5deeqnMNWRnZ+P27dva10lJSdowZWlpCZVKhXPnzmn7i4uLER4eXublE1HF6PXdWIGBgdp/R0REICwsDLGxsRg6dChyc3MrvNzFixdj5cqV2tdKpZKBh6iGe57fCZWloKBA57UQAkZGev03JZFB0Ouw82+ZmZm4fv06WrdujT///BNmZmawsrLSObpja2uL5OTkpy5Ho9FAo9FUdblEVI1u3LiBnJwceHp6YvPmzTp9UVFR8PX1Rd26dbVHd7p164aioiLExMRArVYjISEB3bp1w8mTJ7Xv69atm86RmOeRlZWF5ORkdO7cGadOnQIAGBkZoVOnTrh06VKlrOPfOEI60d9q1J8c5ubmaNWqFZKSkhAeHg6NRqNzPtzR0REODg4IDa3esUCISHr5+flYsmQJli5dipEjR6Jly5bo0qULRo8ejZ07dyIvLw9+fn5o27YtPDw8sHbtWmzfvh33798HACxbtgwzZ87E0KFD4ejoiMWLF6NDhw5Ys2ZNpdW4du1azJ49GwMGDICjoyPWrFmD+vXrQwhRaesgopL0+sjOsmXLcODAAcTGxsLOzg5ffvklioqKsHv3bmRlZWHz5s1YuXIl0tPTkZWVhbVr1+Ls2bMICwuTunQiksBXX32FwsJCLFiwAHZ2dkhKSsL333+P3Nxc9O3bF2vWrMFff/2FnJwc+Pv7Y+rUqdr3fvvtt7CyssKKFStgY2ODyMhIDBgwADdv3qy0+pYsWQKVSoVt27ahqKgIGzduRFBQEIqKiiptHURUkl6HnaZNm2L37t2wtrbGgwcPcPr0aXTt2hWpqakAgClTpqC4uBj+/v4wMzNDUFAQxo8fL3HVRPKlzyMaA39fI7No0SIsWrSoRN/Vq1d1jgSX9t4FCxZgwYIFpfbHxsZCoVBoX584cULntZ+fH/z8/HTes2/fPp15ioqKMHHiREycOBHA32P7REVF4ZdffinbBhJRheh12Bk+fPhT+/Pz8zFhwgRMmDChmioiIqo4e3t79OnTBydOnICZmRkmTJiAFi1aYNeuXVKXRiRrNeqaHSKimqy4uBi+vr7466+/cObMGbRv3x69evVCdHS01KURyZpeH9khIpKTe/fu6TzyhoiqB4/sEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEJFsHDt2DKtWrar29fr4+CAjI6Pa10tEZcNxdoiozIrFgWpdn5Gif7Wuryzu3LmD1atX6zwgdM+ePTh8+LCEVRHR0zDsEBE9p7y8POTl5UldBhE9AU9jEZGsGBkZYcmSJUhLS0NSUhLmzZun7bOyssKmTZtw//59ZGZmIiQkBM7Oztr+li1b4o8//kBycjLUajXOnTun8/DQY8eOoXnz5li9ejWEEBBCACh5GmvevHm4ePEi3n//fdy5cwcPHz7E7t27YWFhoZ3HwsICO3bswKNHj5CYmIjJkydLdhqOSO4YdohIVnx8fJCdnY0uXbpgxowZmDt3Lnr16gUA+PXXX2FjY4M33ngDrq6uuHDhAkJCQlC/fn0AfweQw4cPw9PTEx07dkRgYCAOHDiAZs2aAQDeeecdxMfHY86cOVCpVFCpVE+so1WrVhg0aBD69euHfv36wd3dHbNmzdL2r1y5Et26dcOAAQPQu3dvvP766+jUqVMVfjJEhounsYhIVq5cuYIFCxYAAG7evIkJEybA09MTubm5eOWVV2BjYwONRgMA+PTTTzFo0CC8++672LRpE65cuYIrV65olzV37ly8/fbbGDBgANavX4+MjAwUFRVBrVYjJSXlqXUYGRnB19cXjx49AgBs374dnp6e+OKLL2BhYQEfHx+MGDECR48eBQCMGjUKiYmJVfGREBk8hh0ikpV/hhUASEpKgo2NDVxcXGBhYYG0tDSd/jp16qBVq1YAAHNzc8yfPx9vvfUWGjduDBMTE9SpUwf29vblruPu3bvaoPPPOoC/T5eZmpri3Llz2v6srCzExMSUez1E9GwMO0QkKwUFBTqvhRAwMjKChYUFkpKS4OHhUeI9Dx8+BAAsX74cvXv3xvTp03Hz5k3k5ubit99+g6mpaaXVQUTVj2GHiAzChQsXoFKpUFhYiNjY2FLn6datG7Zu3Yo//vgDwN9Hepo3b64zj0ajgbGx8XPVcvv2bWg0GnTu3Bnx8fEAAEtLSzg6OuLkyZPPtWwiKol/ZhCRQQgODkZoaCj++OMP9O7dGw4ODnBzc8PChQvh6uoKALhx4wbeeecduLi4wNnZGbt27SpxNObu3bvo3r077OzsYG1tXaFaHj16BD8/PyxbtgweHh5o06YNNm/ejOLiYu0dXkRUeRh2iMhgvPnmmzh58iS2bNmC69ev4+eff4aDg4P2YuOpU6ciIyMDZ8+exYEDBxAUFIQLFy7oLGPu3Llo3rw5bt26hdTU1ArXMnXqVISGhuLgwYMIDg7GmTNnEBUVxfF6iKqAAoDB/xmhVCqRlZUFS0tLqNVqqcupVisiQqUugarRtPZuz5zHwcEBX331FebMmfPE0z1U+erWrYuEhARMmzYNP/30U6nzlPdnw/3bsJRl/5absn5/85odIiIJdOjQAU5OTjh37hysrKwwd+5cAMC+ffskroxIfhh2iIgkMn36dLz44ovQaDQIDw/H66+/XuLWeCJ6fgw7REQSuHTpEl5++WWpyyAyCLxAmYiIiGSNYYeIdDy+9dnEhAd+9c3jnwlvTycqH4YdItLx+JoRJycniSuhf3v8M3meW96JDBH/dCMiHdnZ2Th+/DiGDh0KAIiOjkZhYaHEVRk2ExMTODk5YejQoTh+/DhycnKkLomoRmHYIaIStmzZAgAYNmyYxJXQPx0/flz7syGismPYIaIShBD46aef8PPPP6Nhw4ZQKBRSl2TQhBBITU3lER2iCmLYIaInysnJQVxcnNRlEBE9F9lcoDx+/HjcuXMHubm5+N///ofOnTtLXRIRERHpAVmEnaFDh2LlypX48ssv0alTJ1y+fBlBQUFo1KiR1KURERGRxGQRdqZOnYpNmzZh69atiIqKwrhx45CTk4PRo0dLXRoRERFJrMZfs1OrVi24urpi8eLF2mlCCAQHB8PNrfQnwJqamsLMzEz7WqlU6vzXkJgaGUtdAlUjQ/x/3JBx/zYshrh/l3Wba3zYadiwIUxMTJCSkqIzPSUl5YmDos2ePRvz588vMT0hIaEqSiTSGxOysqQugYiqiCHv30qlEmq1+on9NT7sVMTixYuxcuVKnWkNGjRAenq6RBVRdVIqlUhISECTJk2eunMQUc3D/dvwKJVKJCYmPnWeGh92UlNTUVhYCFtbW53ptra2SE5OLvU9Go0GGo1GZxp3CsOjVqv5cyeSKe7fhqMsP+caf4FyQUEBwsPD4enpqZ2mUCjg6emJ0NBQCSsjIiIifVDjj+wAwMqVK+Hn54fz58/j3LlzmDx5MszNzTmsOhEREckj7Pzyyy9o1KgRFixYAJVKhUuXLsHLywv379+XujTSQ/n5+Zg/fz7y8/OlLoWIKhn3byqNAoCQuggiIiKiqlLjr9khIiIiehqGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNVmMs0NERIbJyMgIvr6+8PT0hI2NDYyMdP+G/+fo+mS4GHaIiKjGWrNmDXx9fXHo0CFcvXoVQnDoOCqJgwqSQbCxscHy5cu1f/0pFAqdfhMT5n6imujBgwf44IMPEBAQIHUppMf4G54MwtatW2Fvb4+vvvoKSUlJ/OuPSCY0Gg1u3rwpdRmk53hkhwxCVlYWXn/9dVy+fFnqUoioEk2dOhUtW7bEhAkTpC6F9BiP7JBBiI+PL3HqiohqJn9/f53XPXv2xBtvvIFr166hoKBAp2/w4MHVWRrpKYYdMgiTJ0/GN998g7FjxyI2NlbqcojoOWRmZuq83rt3r0SVUE3B01hkENLT01G3bl2YmJggJyenxF9/1tbWElVGRERVjUd2yCBMnjxZ6hKIqArUrl0bCoUCubm5AAB7e3u8/fbbiIyMxJ9//ilxdaRPBBsbGxsbW01sQUFBYuzYsQKAsLKyEsnJySIuLk7k5OSIcePGSV4fm340Pi6CDIaRkRHeeecdfP755/j8888xaNCgEqOtElHN0qlTJ5w6dQoA8O677yI5ORkODg744IMPMHHiRImrI33B01hkEFq1aoXDhw+jSZMmiImJAQDMnj0b8fHxeOutt3D79m2JKySiiqhbty7UajUAoE+fPvj9998hhMD//vc/ODg4SFwd6Qv+WUsG4dtvv8WtW7fQrFkzuLq6wtXVFfb29rhz5w6+/fZbqcsjogq6efMmBg0ahKZNm6Jv3744cuQIgL9HTc/KypK4OtInkp9LY2Or6vbo0SPRrl27EtOdnZ2FWq2WvD42NraKtcGDB4v8/HxRWFgogoKCtNNnzZolDh8+LHl9bPrReBqLDEJ+fj6USmWJ6RYWFtBoNBJURESVwd/fH/b29mjcuLHOCOkhISEcf4d0SJ642Niquvn5+YmIiAjxyiuvaKd16dJFXLlyRWzZskXy+tjY2NjYqq5xUEEyCFZWVvDz80P//v21AwqamJhg//798PX15bl9ohrM1dUVQ4cOhb29PUxNTXX6+LgIAng3FhmIzMxMDBo0CK1bt4aTkxMAICoqCrdu3ZK4MiJ6HsOGDcO2bdsQFBSEPn364MiRI3B0dIStrS1PY5EWj+wQEVGNdfnyZfzwww/47rvvkJWVBRcXF9y5cwc//PADkpKSMH/+fKlLJD3AsEOytWLFCsyZMwc5OTlYsWLFU+edNm1aNVVFRJXp0aNHaNu2LWJjY5GamgoPDw9cvXoVTk5OOHr0KOzs7KQukfQAT2ORbHXs2BG1atXS/puI5CcjI0N7p2VCQgLatWuHq1evol69eqhbt67E1ZG+YNgh2erZs2ep/yYi+Th58iR69+6Nq1ev4tdff8WaNWvQs2dP9O7dGyEhIVKXR3pE8lvC2Niqum3evFlYWFiUmF63bl2xefNmyetjY2OrWKtfv75o3LixACAUCoWYOXOm2Ldvn1i+fLmoV6+e5PWx6UfjNTtkEAoLC9G4cWM8ePBAZ7q1tTWSk5O1p7uIiEh+eBqLZE2pVEKhUEChUECpVCIvL0/bZ2xsjDfffBP379+XsEIiKq/SRkN/kscPCSXDxrBDsvbw4UMIISCEwPXr10v0CyEwb948CSojoop6vF8/jUKhgBACJib8miOGHZK5Hj16QKFQ4OjRoxg8eDDS09O1fRqNBrGxsUhKSpKwQiIqrx49ekhdAtUwvGaHDIK9vT3i4+Of+dcgERHJD8MOGZQ6deqU+vyciIgIiSoioorw8/PDxx9/jEePHgEAnJ2dERkZicLCQokrI33EsEMGoWHDhtiyZQveeOONUvt5Xp+oZvn3HZaZmZno0KED7ty5I3FlpI+MpC6AqDqsXr0a9erVQ5cuXZCbmwsvLy/4+Pjgxo0bGDBggNTlEVE5KRSKp74m+if+OUsGoWfPnhg4cCDCw8NRXFyM2NhYBAcHIysrC7Nnz8bhw4elLpGIiKoIww4ZBHNzc+14OhkZGWjUqBFu3LiBiIgIdOrUSeLqiKgi2rRpo73DUqFQwMnJCRYWFjrz8Ho8Ahh2yEDExMTgxRdfRGxsLC5fvoyxY8fi7t27GDduHG89J6qhQkJCdE5fHTx4EMDf42dxnB36J/5fQAZhzZo1aNy4MQDgyy+/RGBgILy9vaHRaODr6yttcURUbi1atJC6BKpBeDcWGaQ6derAyckJcXFxSEtLk7ocIiKqQgw7REREJGs8jUWytWLFijLPO23atCqshIiIpMSwQ7LVsWPHMs3HR0gQEckbT2MRERGRrPHIDhER1XgNGzbEiy++CODvoSZSU1Mlroj0CcMOyZa/v3+Z5x08eHAVVkJEVaVu3bpYu3YtRo4cCWNjYwBAUVERtm3bhk8++QS5ubkSV0j6gM/GItnKzMwscyOimmnlypVwd3fHgAEDUK9ePdSrVw8DBw6Eu7t7uW5SIHnjNTtERFRjPXjwAO+++y5OnDihM93DwwO//PILbGxsJKqM9AmP7BARUY1Vt25dpKSklJh+//591K1bV4KKSB/xyA7JVnh4ODw9PfHw4UNcuHDhqbeYu7q6VmNlRFRZgoODkZaWhg8++AD5+fkAgNq1a8PPzw8NGjRA7969Ja6Q9AEvUCbZ2rdvn/aX3759+zieDpEMTZo0CUFBQbh37x4uX74MAHBxcUFeXh769u0rcXWkL3hkh4iIarQ6derA29sbTk5OAICoqCjs3LkTeXl5EldG+oJhhwzCrVu30LlzZ6Snp+tMt7KywoULF9CqVSuJKiMioqrG01hkEJo3b64dg+OfzMzM0LRpUwkqIqLKEBsbi+PHj+PEiRM4duwY7ty5I3VJpIcYdkjW+vfvr/133759dcbUMTY2hqenJ385EtVgn332Gbp3746ZM2di06ZNSEhIwIkTJ3DixAkcP34cN2/elLpE0gM8jUWyVlRUBODvh30qFAqdvoKCAty9exfTpk3DoUOHpCiPiCqRSqWCu7s7+vXrh2HDhsHIyAgmJvybnnhkh2Tu8amr27dvo3PnzkhLS5O4IiKqbHXq1MFrr70GDw8P9OjRAx07dsTVq1dx/PhxqUsjPcEjO2SwrKys+KgIohruzJkz6NixI6KiorTX7pw8eRIPHz6UujTSIxxBmQzCjBkzMHToUO3rX375Benp6bh37x6cnZ0lrIyInoeTkxOys7MRHR2N6OhoREVFMehQCQw7ZBDGjRuH+Ph4AECvXr3Qq1cveHl5ISAgAMuWLZO4OiKqKGtra/Ts2RP/+9//0LdvX5w5cwb37t3Dzp078Z///Efq8kiPCDY2ubecnBzRtGlTAUCsXr1afP/99wKAeOGFF0R6errk9bGxsVVOc3V1FVu2bBEajUYUFhZKXg+bfjQe2SGDkJGRgWbNmgEAvLy8EBwcDABQKBSljr9DRPptzpw5qFOnDjp27IgpU6Zg3759SEtLQ2hoKJydnbF27Vq88847UpdJekTyxMXGVtVt7dq14s6dO+LIkSPiwYMHwtzcXAAQw4YNE+Hh4ZLXx8bGVr5WWFgoGjVqJAoKCsS5c+fEsmXLRL9+/YSlpaXktbHpX+Ot52QQpkyZgrt376JZs2aYMWMGsrOzAQCNGzfGd999J3F1RFRej8fNatCgAdRqtcTVkL7jredERFTjFBUVwdbWFqmpqVKXQjUAww7JVv/+/REQEIDCwkKdx0aU5sCBA9VUFRFVhqKiImRmZkKIp3+FWVtbV1NFpM8Ydki2ioqKoFKp8ODBA+1jI0ojhOCQ8kQ1TFFRESZPnvzMgUG3bdtWTRWRPmPYISKiGueff8wQPQv/nCXZUygU8PX1xTvvvIPmzZtDCIHbt2/D398f27dvl7o8IqqAZ52+IvonjrNDsrd//378+OOPaNKkCSIiInDt2jU0b94cW7duxd69e6Uuj4gq4PHdWERlJfn972xsVdV8fX1FZmam8PDwKNHXo0cPkZmZKUaOHCl5nWxsbGxsVdd4zQ7JWlBQEI4ePYolS5aU2j979my4u7vDy8urmisjIqLqwtNYJGvOzs4IDAx8Yn9AQABcXFyqsSIiIqpuDDskaw0aNEBKSsoT+1NSUlC/fv1qrIiIiKobww7JmrGxMQoLC5/YX1RUxDF2iIhkjr/lSdYUCgW2bt2K/Pz8UvvNzMyquSIiIqpuDDska35+fs+chyOsEhHJG+/GIiIiIlnjNTtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQka/8PTNFqb/8dsvoAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\flowsheets\\hda_flowsheet_with_costing_doc_24_2.png" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -1752,16 +2407,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHvCAYAAACykR7/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABItklEQVR4nO3deXhN5/7H/U8GCYkkNIaYotTPPKdqahszVWMdtFUEp6paFKeGao1tVc1ztVVTPS0tqsaYKVIOSkMSYyTGICKJkNF6/vDYj32CymQnK+/Xdd1Xs+977bW/a8duPnsN97KTZAgAAMCk7G1dAAAAQFYi7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7ADIUmPGjJFhZN5E7Zm9vtzo448/VnBwsOzs7GxdiiSpUqVKSkpKUpUqVWxdCkyKsAOkUc+ePWUYhnx8fB45vnPnTgUGBlr1hYaGyjAMGYahlJQURUVF6e+//9aCBQv00ksvPfH1XnvtNRmGoUuXLj3VHydfX1/La/1T+yfFihXTmDFjVKNGjX9cNqMWLVpkVVt0dLSOHj2qIUOGyMnJKctf/2GVKlXSmDFjVLp06TQ9r0aNGlq2bJnCw8MVHx+vyMhIbd26VX5+frK3z/z/3abn9+Pm5qbhw4dr0qRJMgwj1fv+uLZo0SJJ9/99P9wfGRmpgwcPqlevXo/89+nr66tVq1bpypUrSkhIUEREhH7//Xd17NjRskxwcLA2bNig8ePHZ/xNAR7B0dYFALnFX3/9palTp0q6/wenUqVK6ty5s/r27atp06Zp6NChj3xet27dFBoaqjJlyqhJkybavn37E18nODhY77zzjlXfxIkTdfv2bX3xxRdpqrl48eIaO3aszp8/r2PHjqXpuekRHx+vf//735KkAgUKqFOnTpo6darq1Kmjt956K8tf/4HKlStr7Nix2rVrl8LCwp7qOX369NE333yjiIgILVu2TKdPn5abm5uaNm2qhQsXqlixYpo4cWKm1pme30/v3r3l6Oion376SZK0YMECbdu2zTJepkwZTZgwQQsWLNAff/xh6T979qzl5wsXLmjkyJGSpMKFC6tHjx764YcfVL58eUu/JI0dO1ZjxozRqVOntGDBAoWFhcnT01OtW7fW6tWr9fbbb1vq+Oabb7Rp0yaVLVtW586dS/+bAjyGQaPRnr717NnTMAzD8PHxeeT4zp07jcDAQKu+0NBQY926damWzZs3r7F69WrDMAyjX79+qcZdXFyM2NhY48MPPzQOHz5s/PDDD+mqOTAw0Ni5c2ean+fj42MYhmH07Nkz3e/XmDFjDOP+bqQntkWLFhmxsbFWfXZ2dsbBgwcNwzCMYsWKpWl9GWmdOnUyDMMwfH19n2r5unXrGklJScaePXuM/PnzP/J9zMh7mJm/n6NHjxpLly5N9zof9e87X758Rnh4uBEbG2s4OjpavYcrV6609D3cWrRoYbz++uuWx46OjkZkZKQxbty4LP3d0nJn4zAWYEPx8fHq3r27IiMjNWrUqFTjHTt2VL58+fTLL7/o559/1htvvCFnZ+dMee0yZcpo5cqVioyMVFxcnAICAtS6dWvLuK+vrw4dOiRJWrx4seWwRc+ePSVJL7/8slauXKmwsDDFx8crPDxc06ZNU968eTOlPkkyDEO7du2SJD3//POPXc7Pz0/bt29XRESE4uPjdeLECfXr1y/VcqGhoVq3bp0aNmyoAwcO6O7duzp79qy6d+9uWaZnz5769ddfJUm7du2ybLevr+9jX//BeUTdunXT7du3U40fPnxYS5YssTx2cXHRlClTLIe7QkJCHrlnr1mzZvrjjz8UFRWl2NhYhYSEWPbO/dPv51Gef/551ahRw2pPTma4e/eu/vzzT+XPn1+FCxeWJE2YMEGRkZHq3bu3kpOTUz1ny5Yt2rBhg+VxcnKydu3apfbt22dqbYDEOTtAunl4eMjT0zNVy5MnT5rWExcXpzVr1qhkyZKqXLmy1Vi3bt20c+dORURE6Oeff5abm5vatm2b4dqLFCmi/fv3q2XLlpo3b55GjRqlvHnz6vfff1eHDh0k3T8c9tlnn0m6f6jjnXfe0TvvvKM9e/ZIkjp37iwXFxfNnz9fAwYMkL+/vwYMGKClS5dmuL6HvfDCC5KkyMjIxy7z/vvvKywsTF9++aWGDh2qCxcuaP78+erfv3+qZcuVK6dff/1VW7du1dChQxUVFaXFixdb3vs9e/Zo5syZkqQvvvjCst3BwcGPfO18+fKpadOm2rNnjy5cuPBU2/T7779r8ODB2rx5s4YMGaKTJ09qypQpmjZtmmWZypUra/369XJ2dtbo0aM1dOhQ/f7772rYsKGkf/79PEqDBg0kSUeOHHmqOtOibNmySk5O1q1bt1SuXDlVqlRJv/322yPD3+McPnxYVatWlZubW6bXB9h89xKNlpPag8NYT/K0h7EetEGDBhmGYRht27a19BUuXNhITEw0+vTpY+nbu3evsWbNmjTX/L+HsaZNm2YYhmE0bNjQ0ufq6mqcPXvWOHfunGFnZ2dITz6kkTdv3lR9w4cPN1JSUoxSpUpZ+tJ6GMvT09Pw9PQ0ypYta4wYMcJISUkxjh49+sT1PaqWTZs2GWfOnEn1ezAMw3j55ZctfYUKFTLu3r1rTJ482dKXlsNY1apVMwzDMKZPn/5Uv4t27doZhmEYn3zyiVX/ypUrjZSUFKNs2bJW/yY8PT0fu660HsYaP368YRiG4erqmu517ty50wgKCrL8nipUqGDMmDHDMAzDWLt2rSHJaNu2rWEYhjFo0KA0/Tt98803DcMwjDp16qT53ziN9qTGCcpAOvXv31+nTp1K1T916lQ5ODikaV0Pvv0+/I32zTff1L1797Rq1SpL308//aSpU6eqQIECunXrVvoKl9S6dWsdOHBA+/bts/TFxcXp22+/1VdffaXKlSvrxIkTT1xHfHy85WcXFxfly5dP+/fvl729vWrVqvXUezkelj9/ft24ccOqb9++fVaHmf6pFnd3d+XJk0e7d+9Wq1at5O7urpiYGMv4iRMntHfvXsvjGzdu6OTJkypbtmya633wepIUGxv7VMu3bt1aycnJmjVrllX/1KlT1blzZ7322muaO3eu5ffbvn17yxVTGeXp6amkpCTFxcVlaD2VKlWy+j3du3dP69evV+/evSWl/T15ICoqSpJUqFChDNUH/C/CDpBOBw8e1OHDh1P1R0VFpfl/1vnz55dk/cfhnXfe0cGDBy2Hx6T7V3Q5Ozurc+fO+u6779Jde+nSpXXgwIFU/Q8O1ZQuXfofw06pUqU0fvx4tWvXTs8995zVmIeHR7rqunv3ruUwXUJCgkJDQ3Xp0qV/fF6DBg00btw41a9fX66urqlqeTjshIeHp3p+VFSUChYsmK6aH6z7aQ+9lC5dWpcvX051eOfh916SVqxYoX//+99auHChvvrqK23fvl2rV6/Wr7/+avN5hkJDQ/Xuu+/KMAzFx8fr9OnTun79umU8re/JAw8uXbf19sF8CDtANlC1alVJ0pkzZyTdP6/kwfw7D/oe1q1btwyFnYyyt7fX1q1b9dxzz2nSpEkKCQlRXFycSpQooSVLlqR7TpmUlJR/vLT+f5UtW1bbt29XSEiIhgwZogsXLigxMVGtW7fWkCFDUtWSkpLyyPWkd4K9M2fOKCkpSdWqVUvX8x8nPj5er776qho3bqzXX39drVq10ptvvqnt27erRYsWunfvXprXGRkZqTx58ih//vxpOpfmf8XFxT3x9xQSEiJJaX5PHgTO/927B2QUYQewMVdXV3Xs2FHh4eGWb/fdunVTYmKiunfvnuqP88svv6yBAweqVKlS6TpUJElhYWGqUKFCqv6KFStaxqXHf8OuVq2aKlSooB49emjZsmWW/mbNmqWrnoxo27at8ubNq3bt2lm9H40bN073OtOyZ+Hu3bvasWOHmjRpopIlS+rixYtPXD4sLEzNmjVLFTj+971/UMeOHTu0Y8cODR06VCNHjtSXX36pxo0ba/v27WneA/IghJQpUybVxJeZ6fTp0woJCVH79u01aNCgpz5sVqZMGaWkpDzy8DCQEVyNBdhQ3rx5tWzZMnl6elpN+NetWzf98ccfWrlypVatWmXVJk+eLEkZmmRv48aNqlu3rurVq2fpc3FxUd++fRUaGqqgoCBJsvyRKlCggNXzHwSw/90bMmjQoHTXlF6PqsXd3V29evVK9zoft92PM27cONnZ2WnZsmWpDqNJUu3atdWjRw9J9997R0dHffjhh1bLDB48WPfu3dOmTZsk6ZGH1Y4ePSpJlukH0lpnQECAJOnFF198quUzYsyYMSpUqJC+//77R57D1rx5c73++utWfT4+Pjpx4oTVYUcgM7BnB3hGSpQooW7dukm6f45O5cqV1blzZxUrVkxTpkzRt99+K0l66aWX9H//93+aM2fOI9dz+fJlHTlyRN26ddPXX3+drlq++uorvfXWW9q0aZNmzZqlmzdvqmfPnipTpow6depk2WNw9uxZRUVFqV+/foqNjVVcXJwOHDigkJAQnTlzRlOmTFGJEiUUExOjTp06pfu8l4zYsmWLEhIStG7dOi1YsED58+fXu+++q2vXrql48eLpWufRo0eVnJys4cOHy8PDQwkJCdqxY4fVeSkPCwgI0AcffKB58+YpJCTEagblRo0aqV27dvr0008lSevWrdOOHTv0xRdf6Pnnn9exY8fUokULdejQQdOnT7fMHjx69Gi9+uqr2rBhg8LCwlSkSBH1799fFy5csJxg/bjfz/nz5x9ZZ2hoqAIDA9WsWTPL7R+yysqVK1WtWjV9+umnqlWrln766SfLDMqtWrVSs2bNrAK7o6OjfH19NW/evCytC7mXzS8Jo9FyUkvvDMoPpKSkGLdu3TICAwONBQsWpLrMdubMmYZhGEaZMmUeW8Po0aMNwzCMatWqPVXNj5pBuUyZMsbKlSuNmzdvGnfu3DH+/PNPo3Xr1qme27ZtW+P48eNGYmKi1SXJFStWNLZs2WLExMQY165dMxYsWGC5DPvhy5YzMoPyo9qj1temTRvj6NGjxp07d4xz584ZH3/8seHn52cYhmGULl3a6vfwqCkAdu7cmer96dOnj3HmzBkjKSnpqS9Dr1WrlvHjjz8aFy9eNBISEozIyEhj69atRvfu3S2X80v3L/OfOnWqZbmTJ08aQ4cOtVpX48aNjTVr1hgXL1404uPjjYsXLxrLly83ypUr91S/n8e1jz76yIiJiXnk5fpS+mZQflJ7sB1Xr141EhMTjYiICGPt2rVW0yxIMlq2bGkYhmG88MILmfZZpdEeNLv/7wcAQC7g7u6uc+fOadiwYfrhhx9sXY7FmjVrZBiG3njjDVuXAhMi7ABALjNs2DD16tVLlStXzhaXeVesWFGBgYGqWbPmP055AKQHYQcAAJgaV2MBAABTI+wAAABTI+wAAABTI+wAAABTY1LB/0/x4sXTfIdeAABgW25ubrp8+fITlyHs6H7QeZo7KwMAgOynRIkSTww8hB3JskenRIkS7N0BACCHcHNz06VLl/7xbzdh5yGxsbGEHQAATIYTlAEAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKkRdgAAgKk52roA2NY9Y52tS8AzZG/X1tYlAMAzx54dAABgaoQdAABgaoQdAABgaoQdAABgaoQdAABgaoQdAABgaoQdAABgaoQdAABgaoQdAABgaoQdAABgatwuAgBMitvB5C7cDubx2LMDAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMLduEneHDh8swDE2fPt3S5+zsrDlz5ujGjRuKjY3Vr7/+qiJFilg9r1SpUlq/fr3i4uIUERGhr7/+Wg4ODs+6fAAAkE1li7Dz4osv6r333tOxY8es+qdPn662bduqc+fO8vX1VfHixbV69WrLuL29vTZs2CAnJyc1aNBAPXv2lJ+fn8aPH/+sNwEAAGRTNg87rq6uWr58ud59911FRUVZ+t3d3dWnTx8NGTJEO3fu1JEjR9SrVy81bNhQdevWlSS1aNFClStX1jvvvKNjx45p8+bN+uyzz/TBBx8oT548ttokAACQjdg87MydO1cbNmzQ9u3brfp9fHzk5OSkbdu2WfpOnjypsLAw1a9fX5JUv359BQYG6tq1a5Zl/P395eHhoSpVqjz2NZ2cnOTm5mbVAACAOTna8sW7du2q2rVrq06dOqnGvLy8lJCQoOjoaKv+iIgIeXl5WZaJiIhINf5g7HFGjhypsWPHZrB6AACQE9hsz07JkiU1c+ZMdevWTQkJCc/0tSdOnCh3d3dLK1GixDN9fQAA8OzYLOz4+PioaNGiOnLkiJKSkpSUlKRGjRpp4MCBSkpKUkREhJydneXh4WH1vKJFi+rq1auSpKtXr6po0aKpxh+MPU5iYqJiY2OtGgAAMCebhZ3t27eratWqqlmzpqX997//1fLly1WzZk0dOnRIiYmJatq0qeU55cuXV+nSpRUQECBJCggIULVq1VS4cGHLMs2bN1d0dLSCgoKe+TYBAIDsx2bn7Ny+fVsnTpyw6ouLi1NkZKSlf+HChZo2bZpu3rypmJgYzZ49W/v379eBAwckSVu2bFFQUJCWLVumYcOGycvLS59//rnmzp2rxMTEZ75NAAAg+7HpCcr/ZPDgwbp3755WrVolZ2dn+fv7q3///pbxe/fuqU2bNpo/f74CAgIUFxenJUuWaPTo0TasGgAAZCd2kgxbF2Frbm5uiomJkbu7e647f+eesc7WJeAZsrdra+sS8Azx+c5dcuPn+2n/ftt8nh0AAICsRNgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmRtgBAACmZtOw069fPx07dkzR0dGKjo7W/v371apVK8u4s7Oz5syZoxs3big2Nla//vqrihQpYrWOUqVKaf369YqLi1NERIS+/vprOTg4POtNAQAA2ZRNw87Fixc1YsQI+fj46MUXX9SOHTu0du1aVa5cWZI0ffp0tW3bVp07d5avr6+KFy+u1atXW55vb2+vDRs2yMnJSQ0aNFDPnj3l5+en8ePH22qTAABANmMnybB1EQ+LjIzUxx9/rF9//VXXr1/X22+/rVWrVkmSKlSooJCQENWrV08HDhxQq1attH79ehUvXlzXrl2TJL333nuaNGmSChcurKSkpKd6TTc3N8XExMjd3V2xsbFZtm3Z0T1jna1LwDNkb9fW1iXgGeLznbvkxs/30/79zjbn7Njb26tr165ydXVVQECAfHx85OTkpG3btlmWOXnypMLCwlS/fn1JUv369RUYGGgJOpLk7+8vDw8PValS5bGv5eTkJDc3N6sGAADMyeZhp2rVqoqNjVVCQoK++eYbdezYUcHBwfLy8lJCQoKio6Otlo+IiJCXl5ckycvLSxEREanGH4w9zsiRIxUTE2Nply5dyuStAgAA2YXNw87JkydVs2ZN1a1bV/Pnz9eSJUtUqVKlLH3NiRMnyt3d3dJKlCiRpa8HAABsJ81hx9HRUdu2bVO5cuUypYCkpCSdPXtWR44c0SeffKJjx45p0KBBunr1qpydneXh4WG1fNGiRXX16lVJ0tWrV1W0aNFU4w/GHicxMVGxsbFWDQAAmFOaw05ycrKqV6+eFbVIun/ujrOzsw4fPqzExEQ1bdrUMla+fHmVLl1aAQEBkqSAgABVq1ZNhQsXtizTvHlzRUdHKygoKMtqBAAAOUe6DmP9+OOP6tOnT4Zf/Msvv9Qrr7yi0qVLq2rVqvryyy/VqFEjLV++XDExMVq4cKGmTZumRo0aqXbt2lq0aJH279+vAwcOSJK2bNmioKAgLVu2TNWrV1eLFi30+eefa+7cuUpMTMxwfQAAIOdzTNeTHB3Vu3dvNWvWTIcPH1ZcXJzV+NChQ59qPUWKFNHSpUtVrFgxRUdH6++//1bLli0tV2ANHjxY9+7d06pVq+Ts7Cx/f3/179/f8vx79+6pTZs2mj9/vgICAhQXF6clS5Zo9OjR6dksAABgQumaZ2fHjh2PHTMMw+rQU07APDvILXLjPBy5GZ/v3CU3fr6f9u93uvbsNGnSJN2FAQAAPEs2v/QcAAAgK6Vrz44k+fj4qEuXLvL29paTk5PVWKdOnTJcGAAAQGZI156drl27av/+/apUqZI6duyoPHnyqEqVKmrSpEmqGY8BAABsKV1h55NPPtHgwYPVrl07JSYmatCgQapYsaJWrlyp8PDwzK4RAAAg3dIVdl544QVt2LBB0v3ZiF1dXSVJ06dPV9++fTOvOgAAgAxKV9iJioqy3Cn80qVLqlq1qiSpQIECcnFxybzqAAAAMihdJyjv2bNHzZs31/Hjx/XLL79o5syZatKkiZo3b67t27dndo0AAADplq6w8+GHHypv3rySpC+++EJJSUlq0KCBVq1apc8//zxTCwQAAMiIdIWdqKgoy8+GYWjSpEmZVhAAAEBmSvekgmXLltWECRP0//w//4/lruOtWrVS5cqVM604AACAjEpX2Hn11VcVGBiounXr6o033lD+/PklSTVq1NC4ceMytUAAAICMSFfY+eqrr/Tpp5+qRYsWSkxMtPTv2LFD9erVy7TiAAAAMipdYadatWpas2ZNqv5r166pUKFCGS4KAAAgs6Qr7Ny6dUvFihVL1V+rVi1dunQpw0UBAABklnSFnZ9//lmTJk1S0aJFZRiG7O3t1aBBA02ZMkVLly7N7BoBAADSLd33xgoJCdGFCxeUP39+BQUFac+ePdq/fz/z7AAAgGwlXfPsJCUlqW/fvpowYYKqVq2q/Pnz66+//tKZM2cyuz4AAIAMSVfYadSokXbt2qULFy7owoULmV0TAABApknXYazNmzfrzJkzGjVqlEqWLJnZNQEAAGSadIWdEiVKaM6cOfrXv/6lc+fOafPmzercubPy5MmT2fUBAABkSLrCTmRkpGbMmKFatWqpbt26OnXqlObNm6fLly9r5syZql69embXCQAAkC7pvjfWA3/99ZcmTpyoOXPmKH/+/Ordu7cOHz6sPXv2cJ8sAABgc+kOO46OjurUqZM2bNigsLAwtWzZUh9++KGKFi2qcuXKKSwsTL/88ktm1goAAJBm6boaa9asWXrrrbdkZ2enZcuWadiwYTpx4oRlPCwsTP/5z390+fLlTCsUAAAgPdIVdipXrqwBAwZo9erVVjcCfdiNGzfUuHHjDBUHAACQUWkKO+PGjdPatWvVrFmzf1w2JSVFe/bsSXdhAAAAmSFN5+yULFlSmzZt0oULFzRv3jy1atWKy80BAEC2lqaw06dPH3l5eemtt95SbGysZsyYoRs3bujXX39V9+7dVbBgwayqEwAAIF3SfDWWYRjau3evhg8frooVK6pu3bo6cOCA3nvvPV2+fFm7d+/W0KFDVbx48ayoFwAAIE3SdYLyw0JCQhQSEqLJkyerUKFCateundq1aydJmjp1aoYLBAAAyAg7SUZ6n+zk5CRJj70iK6dwc3NTTEyM3N3dFRsba+tynql7xjpbl4BnyN6ura1LwDPE5zt3yY2f76f9+53mw1jNmjXThg0bdPPmTd25c0d37tzRzZs3tWHDBjVt2jRDRQMAAGS2NIWdHj16aOPGjYqOjtbgwYPVpk0btWnTRoMHD9atW7e0ceNGvfPOO1lVKwAAQJql6ZydUaNG6aOPPtK8efNSjS1ZskR79+7V6NGj9eOPP2ZagQAAABmRpj073t7e2rZt22PHt2/frpIlS2a4KAAAgMySprBz4sQJ9enT57HjvXv3VlBQUIaLAgAAyCxpOow1dOhQrV+/Xq1atdK2bdsUEREhSSpatKiaNm2qsmXL6vXXX8+SQgEAANIjTWFn9+7dqlq1qt5//33Vq1dPXl5ekqSrV69q06ZN+uabbxQWFpYlhQIAAKRHmicVDAsL04gRI7KiFgAAgEyXrhmUHRwcVKVKFcuenStXrig4OFjJycmZWhwAAEBGpSns2NnZafz48frggw/k4eFhNRYdHa05c+ZozJgxMox0T8oMAACQqdJ0NdZXX32lvn37asSIESpbtqxcXV3l6uqqsmXLavjw4erbt68mTpyYVbUCAACkWZrujXXlyhX17NlTW7ZseeR4ixYttHTpUsvhrZyCe2Mht8iN987Jzfh85y658fOdJffGcnNz0+XLlx87fuXKFbm6uqZllQAAAFkqTWFn165dmjJlijw9PVONeXp6atKkSdq1a1dm1QYAAJBhaTpBuV+/ftq4caOuXLmiwMBAq0kFq1WrpqCgILVp0yZLCgUAAEiPNIWdixcvqkaNGmrZsqXVpIIHDx7UJ598oi1btnAlFgAAyFbSPM+OYRjavHmzNm/enBX1AAAAZKp0TSpYp04d1a9f3+p2Efv379ehQ4cytTgAAICMSlPYKVy4sFatWqWGDRsqPDzc6pyd6dOna9++ferUqZOuX7+eJcUCAACkVZquxpo3b54cHBxUqVIllSlTRvXq1VO9evVUpkwZVapUSfb29po7d25W1QoAAJBmadqz07JlS7366qs6depUqrFTp05p4MCBXHoOAACylTTt2UlISJC7u/tjx93c3JSQkJDhogAAADJLmsLOihUrtGTJEnXo0EFubm6Wfjc3N3Xo0EGLFi3STz/9lOlFAgAApFeaDmMNGTJE9vb2+vnnn+Xo6KjExERJkpOTk5KTk7Vw4UL95z//yZJCAQAA0iNNNwJ9wM3NTT4+PlaXnh8+fDjH3kSTG4Eit8iNNwrMzfh85y658fP9tH+/0zXPTmxsLCciAwCAHCFN5+z8kyJFiuizzz7LzFUCAABkSKaGHS8vL40ZMyYzVwkAAJAhaTqMVa1atSeOV6hQIUPFAAAAZLY0hZ2jR4/KMAzZ2dmlGnvQz13PAQBAdpKmsHPz5k0NGzZM27dvf+R4lSpVtG4dZ/8DAIDsI01h5/DhwypevLjCw8MfOV6gQIFH7vUBAACwlTSdoPzNN9/o/Pnzjx0PDw9Xr169nnp9I0aM0MGDBxUTE6OIiAitWbNG5cuXt1rG2dlZc+bM0Y0bNxQbG6tff/1VRYoUsVqmVKlSWr9+veLi4hQREaGvv/5aDg4Oadk0AABgUmkKO7/99puWL1/+2PFbt25p6dKlT70+X19fzZ07V/Xq1VPz5s2VJ08ebdmyRS4uLpZlpk+frrZt26pz587y9fVV8eLFtXr16v9/A+zttWHDBjk5OalBgwbq2bOn/Pz8NH78+LRsGgAAMKk0z6Ds4OAge3t7JSUlWfr69OmjV155RYcOHdKcOXPSXUyhQoV0/fp1vfrqq/rjjz/k7u6u69ev6+2339aqVask3b/iKyQkRPXq1dOBAwfUqlUrrV+/XsWLF9e1a9ckSe+9954mTZqkwoULW9X5gJOTk5ydnS2P3dzcdOnSJWZQhunlxhlWczM+37lLbvx8P+0MymmeZ2f58uUaN26c5XHfvn01c+ZMubq6avTo0fryyy/TV7EkDw8PSfdPhJYkHx8fOTk5adu2bZZlTp48qbCwMNWvX1+SVL9+fQUGBlqCjiT5+/vLw8NDVapUeeTrjBw5UjExMZZ26dKldNcMAACytzSHndq1a2vz5s2Wx++9954++ugjde7cWZ07d9bbb7+drkLs7Ow0Y8YM7d27VydOnJB0f5LChIQERUdHWy0bERFhuS+Xl5eXIiIiUo0/GHuUiRMnyt3d3dJKlCiRrpoBAED299RXY/3www+SpJIlS2rgwIHq2bOn7OzsVKNGDb322muqX7++HB0dVbx4cS1cuFDS/cNbT2vu3LmqWrWqXn755TRuQtolJiZa7tgOAADM7anDTu/evSVJTZo0seyBad26tRo2bKhOnTpJktzd3dW+ffs0hRxJmj17ttq0aaNXX33V6pDS1atX5ezsLA8PD6u9O0WLFtXVq1cty7z00ktW6ytatKhlDAAA5G5pPoy1a9cuffvttxoxYoSmT5+uFStWWMZq1Kih06dPp2l9s2fPVseOHdWkSZNUl7UfPnxYiYmJatq0qaWvfPnyKl26tAICAiRJAQEBqlatmgoXLmxZpnnz5oqOjlZQUFBaNw8AAJhMmiYVlKQhQ4ZoxowZevvtt7Vjxw6rE5I7dOigH3/88anXNXfuXL399ttq3769YmNjLXtkoqOjFR8fr5iYGC1cuFDTpk3TzZs3FRMTo9mzZ2v//v06cOCAJGnLli0KCgrSsmXLNGzYMHl5eenzzz/X3LlzOVQFAADSful5ZnrcfbT8/Py0ZMkSSfcnFZw6dareeustOTs7y9/fX/3797c6Kdnb21vz589Xo0aNFBcXpyVLlmjEiBFKSUl5qjqe9tI1M+LS1NwlN16ampvx+c5dcuPn+2n/fts07GQXhB3kFrnxf4a5GZ/v3CU3fr6zbJ4dAACAnISwAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATM2mYeeVV17R77//rkuXLskwDLVv3z7VMuPGjdPly5d1584dbd26VeXKlbMaL1iwoH788UdFR0crKipK33//vVxdXZ/VJgAAgGzOpmHH1dVVx44d0wcffPDI8WHDhmngwIHq16+f6tatq7i4OPn7+8vZ2dmyzPLly1WlShU1b95cbdq00auvvqpvv/32WW0CAADI5uwkGbYuQpIMw1CHDh20du1aS9/ly5c1depUTZ06VZLk7u6uiIgI+fn5acWKFapYsaKCg4P14osv6vDhw5Kkli1bauPGjSpZsqSuXLnyVK/t5uammJgYubu7KzY2NvM3Lhu7Z6yzdQl4huzt2tq6BDxDfL5zl9z4+X7av9+Oz7CmNClTpoyKFSumbdu2WfpiYmJ04MAB1a9fXytWrFD9+vUVFRVlCTqStG3bNt27d09169bVb7/99sh1Ozk5We0dcnNzy7LtALI7FxcXFSpUSHZ2drYuBel07949XblyRcnJybYuBciWsm3Y8fLykiRFRERY9UdERFjGvLy8dO3aNavxlJQU3bx507LMo4wcOVJjx47N3IKBHMbOzk69evVSo0aNbF0KMkF8fLxGjRql69ev27oUINvJtmEnK02cOFHTpk2zPHZzc9OlS5dsWBHw7PXq1Uu+vr5asWKFQkJC2CuQgzk7O6tfv3569913NXHiRBlGtjg7Acg2sm3YuXr1qiSpaNGilp8fPD569KhlmSJFilg9z8HBQc8995zVc/5XYmKiEhMTM79oIIdwdXVVo0aNtGLFCm3YsMHW5SATrFy5Uv3795eHh4du3bpl63KAbCXbzrMTGhqqK1euqGnTppY+Nzc31a1bVwEBAZKkgIAAFSxYULVr17Ys06RJE9nb2+vAgQPPvGYgp/D09JQkhYSE2LgSZJYHh/Td3d1tXAmQ/dh0z46rq6vVvDllypRRjRo1dPPmTV24cEEzZszQp59+qtOnTys0NFQTJkzQ5cuXLSceh4SEaNOmTfruu+/Ur18/5cmTR3PmzNHPP//81FdiAbnRg5OROXRlHikpKZLEiebAI9g07Lz44ovatWuX5fH06dMlSYsXL1avXr309ddfy9XVVd9++60KFCigvXv3qlWrVkpISLA8p1u3bpozZ462b9+ue/fuadWqVRo4cOCz3hQAAJBN2TTs7N69+x+/hYwZM0Zjxox57HhUVJS6deuW2aUBAACTyLbn7AAAAGQGwg6AbK1o0aKaNWuWzp49q/j4eIWHh+v3339XkyZNMrzunj17KioqKhOqBJCdZdtLzwGgdOnS2rdvn27duqWPP/5YgYGBypMnj1q2bKm5c+eqUqVKti4RQA7Anh0A2da8efNkGIZeeuklrV69WqdPn1ZQUJCmT5+uevXqSZJKlSql3377TbGxsYqOjtaKFSus5t+qXr26duzYoZiYGEVHR+vQoUPy8fGRr6+vFi9erAIFCsgwDBmGYTk/8P3339epU6d09+5dXb16Vb/88otNth9A5mDPDoBsqWDBgmrVqpVGjRqlO3fupBqPjo6WnZ2d1q5dq9u3b8vX11eOjo6aO3euVqxYocaNG0uSli9frr/++kvvv/++UlJSVLNmTSUlJWn//v0aNGiQxo8frwoVKkiSbt++LR8fH82aNUvdu3fX/v379dxzz+mVV155ptsOIHMRdgBkS+XKlZO9vf0TJz5s2rSpqlWrpjJlyujixYuSpB49eigoKEgvvviiDh06JG9vb02ePFknT56UJJ05c8by/OjoaBmGYXUPPm9vb8XFxWn9+vW6ffu2wsPDLbO2A8iZOIwFIFt6msnxKlWqpAsXLliCjiQFBwcrKirKcj7PtGnT9P3332vr1q0aPny4ypYt+8R1bt26VWFhYTp37pyWLl2qt99+W/ny5cvYxgCwKcIOgGzp9OnTunfvnipWrJih9YwbN05VqlTRhg0b1KRJEwUFBalDhw6PXf727duqXbu23nrrLV25ckXjx4/XsWPH5OHhkaE6ANgOYQdAthQVFSV/f3998MEHcnFxSTXu4eGh4OBglSpVSiVLlrT0V6pUSQULFlRQUJCl7/Tp05oxY4Zatmyp1atXq1evXpLu3xTYwcEh1bpTUlK0fft2DR8+XNWrV9fzzz+fKZe6A7ANwg6AbOuDDz6Qg4ODDh48qDfeeEPlypVTxYoVNWDAAAUEBGjbtm0KDAzU8uXLVatWLdWpU0dLly7Vrl27dPjwYeXNm1ezZ8+Wr6+vvL291aBBA9WpU0fBwcGSpPPnz8vNzU1NmjSRp6en8uXLp9dff10DBgxQjRo15O3trR49esje3t5yzg+AnIewAyDbCg0NVe3atbVz505NnTpVx48f19atW9W0aVO9//77kqT27dsrKipKe/bs0bZt23Tu3Dl17dpV0v09NJ6enlq6dKlOnTqllStXatOmTZZLzAMCAjR//nytWLFCN27c0LBhw3Tr1i298cYb2rFjh4KDg9WvXz+99dZbVnuKAOQsXI0FIFu7evWqBgwYoAEDBjxy/MKFC489BycpKUlvv/32E9ffv39/9e/f36rvwWXrAMyBPTsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsAAMDUCDsA8JBFixZpzZo12WY9ADKOGZQBWJkaGPDMXmtotfrP7LWe1qBBg2RnZ2d5vHPnTh09elSDBw+2YVUAMoKwAwAPiYmJsXUJADIZh7EA5Ch2dnb6+OOPdfr0acXHxyssLEyffPKJJOmrr77SyZMnFRcXp7Nnz2r8+PFydPz/v9ONGTNGf/31l/r27avw8HDFxcVpxYoVcnd3tyzz8OGnRYsWqVGjRvroo49kGIYMw1Dp0qVlb2+v77//XufOndOdO3cUEhKigQMHPts3AsBTY88OgBxl4sSJevfddzV48GDt3btXxYoVU8WKFSVJsbGx8vPz0+XLl1WtWjV99913io2N1eTJky3PL1eunLp06aK2bdvK3d1dCxcu1Lx58/TOO++keq1BgwapfPnyOn78uEaPHi1Jun79uuzt7XXx4kV17txZkZGRatCggb799ltduXJFv/zyy7N5IwA8NcIOgBwjf/78GjRokD788EMtXbpUknTu3Dnt27dPkvTFF19Ylg0LC9OUKVP05ptvWoWdvHnzqkePHrp8+bIkacCAAdqwYYOGDh2qiIgIq9eLiYlRYmKi7ty5YzV27949jR071vL4/Pnzql+/vrp06ULYAbIhwg6AHKNSpUrKmzevtm/f/sjxLl26aODAgXrhhReUP39+OTo6pjoHJzw83BJ0JCkgIEAODg6qUKFCqrDzJP3791fv3r3l7e2tfPnyycnJSUePHk3XdgHIWpyzAyDHuHv37mPH6tWrp+XLl2vjxo1q06aNatWqpS+++EJOTk6ZXkfXrl01ZcoULVy4UC1atFDNmjW1aNGiLHktABnHnh0AOcbp06d1584dNW3aVAsXLrQaa9CggcLCwvTll19a+kqXLp1qHd7e3ipWrJiuXLki6X5ISklJ0cmTJx/5momJiXJwcLDqa9iwofbv36/58+db+l544YV0bxeArEXYAZBjJCQkaNKkSfr666+VmJioffv2qXDhwqpSpYpOnz4tb29vde3aVf/973/1+uuvq2PHjqnWER8fryVLlug///mP3N3dNWvWLK1cufKxh7DOnz+vunXrqnTp0rp9+7Zu3ryp06dPq0ePHmrRooVCQ0PVvXt31alTR6GhoVn9FgBIBw5jAchRJkyYoKlTp2r8+PEKDg7WihUrVKRIEa1bt07Tp0/XnDlzdPToUTVo0EATJkxI9fwzZ85o9erV2rhxo7Zs2aK///5b/fv3f+zrTZkyRSkpKQoKCtKNGzfk7e2tBQsWaPXq1VqxYoUOHDggT09PzZs3Lys3G0AG2EkybF2Erbm5uSkmJkbu7u6KjY21dTnP1D1jna1LwDNkb9dW0v3DOxMmTNBnn32msLAwG1f17IwZM0YdOnRQrVq1bF1KpnvU75TPd+7y4POdmzzt32/27AAAAFPjnJ1cbvrxQrYuAQCALMWeHQC5xrhx40x5CAvAkxF2AACAqRF2AACAqRF2AACAqXGCMgCYFBcgAPexZwcAAJgaYQcAAJgaYQcAsphhGGrfvr2tywByLc7ZAWDlWd5iwGzT2z/udhReXl6KioqyUVUACDsA8A/y5MmjpKSkdD//cXdUB/BscBgLQI7i5OSkmTNnKiIiQnfv3tUff/yhF198UZLk6+srwzDUunVrHTt2THfv3lVAQICqVKlitY6GDRtqz549unPnjsLDwzVz5ky5uLhYxkNDQ/Xpp59qyZIlio6O1rfffitJ+uqrr3Ty5EnFxcXp7NmzGj9+vBwd739n7Nmzp8aOHauaNWvKMAwZhqGePXtKsj6MVbp0aRmGoY4dO2rHjh2Ki4vT0aNHVa9ePasa//3vfys8PFxxcXFavXq1Bg8ezN4hIJ0IOwBylK+//lqdOnVSz549Vbt2bZ05c0b+/v4qWLCgZZnJkydr6NChqlOnjq5fv65169ZZQknZsmW1efNmrVq1StWrV1fXrl318ssva86cOVav85///EfHjh1TrVq1NGHCBElSbGys/Pz8VLlyZQ0aNEjvvvuuBg8eLElasWKFpkyZouPHj8vLy0teXl5asWLFY7fjiy++0JQpU1SzZk2dOnVKP/30kxwcHCRJDRo00DfffKOZM2eqZs2a2rp1q0aNGpWp7yOQm3AYC0CO4eLiovfff19+fn7avHmzJOndd99V8+bN1adPH/33v/+VdP8eWNu2bZN0f4/LxYsX1bFjR/3yyy8aOXKkli9frpkzZ0qSzpw5o4EDB2r37t16//33lZCQIEnasWOHpk2bZvX6X3zxheXnsLAwTZkyRW+++aYmT56s+Ph43b59W8nJyU912GrKlCnauHGjpPvn+gQFBalcuXI6efKkBgwYoE2bNmnq1KmSpNOnT6tBgwZq06ZNRt4+INdizw6AHOOFF16Qk5OT9u3bZ+lLTk7WwYMHValSJUtfQECA5eeoqCidPHnSMl6jRg35+fkpNjbW0vz9/eXg4KAyZcpYnnfo0KFUr9+lSxft3btXV65cUWxsrD7//HN5e3una1v+/vtvy89XrlyRJBUpUkSSVKFCBR08eNBq+f99DODpsWcHQK6SP39+LViwQLNmzUo1Fh4ebvk5Li7OaqxevXpavny5xowZI39/f0VHR+vNN9/U0KFD01XHwyc8G4YhSbK35/snkBUIOwByjLNnzyohIUENGza0BBNHR0fVqVNHM2bMsCxXr149XbhwQZJUoEABlS9fXsHBwZKkI0eOqHLlyjp79myaXrtBgwYKCwvTl19+aekrXbq01TKJiYmW824y4uTJk6pTp45V3/8+BvD0+BoBIMe4c+eO5s+fr8mTJ6tly5aqVKmSvvvuO7m4uGjhwoWW5UaPHq0mTZqoSpUqWrx4sW7cuKHffvtNkjRp0iQ1aNBAs2fPVo0aNVSuXDm1a9dOs2fPfuJrnz59Wt7e3uratavKli2rAQMGqGPHjlbLnD9/XmXKlFGNGjXk6ekpJyendG3n7Nmz1bp1aw0ePFjlypVT37599dprr1n2AAFIG8IOgBxlxIgRWrVqlZYtW6YjR46oXLlyatmypW7dumW1zMyZM3X48GF5eXmpbdu2lsNGgYGB8vX1Vfny5fXHH3/or7/+0vjx43X58uUnvu66des0ffp0zZkzR0ePHlWDBg0sV2k9sGrVKm3evFk7d+7UjRs39NZbb6VrG/fv369+/fppyJAhOnbsmFq1aqXp06crPj4+XesDcjsOYwGwkt1nNU5ISNCgQYM0aNCgxy6zd+9eVatW7bHjhw4dUsuWLR87/vCJyg8bPny4hg8fbtX34Kou6f5hrM6dO6d6np2dneXnsLAwq8eSFB0dnarv+++/1/fff295/O233+rMmTOPrRnA4xF2ACAbGjp0qLZu3aq4uDi99tpr6tmzp/r372/rsoAcibADANnQSy+9pGHDhsnNzU3nzp3TwIEDrc5LAvD0CDsATGP37t2pDgflVF27drV1CYBpcIIyAAAwNcIOkAs9uIT5wf2ikPM9mN+Hy9OB1Ag7QC4UGRkpSapYsaKNK0FmeXCriZiYGBtXAmQ/fK0DcqG4uDjt2rVLXbp0kSSFhIQoOTnZxlUhvZydndWlSxeFhIQoOjra1uUA2Q5hB8ilFi1aJIkTYc0iPj5eEydO5DAW8AiEHSCXMgxDP/zwg37++WcVKlTINFcx5UYpKSm6evUqe+eAxyDsALncnTt3rO72DQBmY5oTlPv376/Q0FDdvXtXf/75J3cIBgAAkkwSdrp06aJp06Zp3Lhxql27to4dOyZ/f38VLlzY1qUBAAAbM0XYGTJkiL777jstXrxYwcHB6tevn+7cuaPevXvbujQAAGBjOf6cnTx58sjHx0cTJ0609BmGoW3btql+/fqPfI6Tk5OcnZ0tj93c3Kz+m5s42TvYugQ8Q7nx33huxuc7d8mNn++n3eYcH3YKFSokR0dHRUREWPVHREQ8dsK0kSNHauzYsan6L126lBUlAtnGh0w4B5hWbv58u7m5KTY29rHjOT7spMfEiRM1bdo0q77nnntON2/etFFFeJbc3Nx06dIllShR4okfDgA5D5/v3MfNzU2XL19+4jI5PuzcuHFDycnJKlq0qFV/0aJFdfXq1Uc+JzExUYmJiVZ9fChyn9jYWH7vgEnx+c49nub3nONPUE5KStLhw4fVtGlTS5+dnZ2aNm2qgIAAG1YGAACygxy/Z0eSpk2bpiVLlujQoUM6ePCgPvroI7m6ulqmwwcAALmXKcLOypUrVbhwYY0fP15eXl46evSoWrVqpWvXrtm6NGRDCQkJGjt2rBISEmxdCoBMxucbj2InibvGAQAA08rx5+wAAAA8CWEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYminm2QEA5E729vby8/NT06ZNVaRIEdnbW3+Hf3h2feRehB0AQI41c+ZM+fn5acOGDTp+/LgMg6njkBqTCiJXKFKkiKZMmWL59mdnZ2c17uhI7gdyouvXr6tHjx7atGmTrUtBNsb/4ZErLF68WN7e3powYYKuXLnCtz/AJBITE3XmzBlbl4Fsjj07yBViYmL0yiuv6NixY7YuBUAmGjJkiMqWLasPP/zQ1qUgG2PPDnKFCxcupDp0BSBnWrVqldXjJk2a6LXXXtOJEyeUlJRkNdapU6dnWRqyKcIOcoWPPvpIX331ld577z2FhYXZuhwAGRAdHW31eM2aNTaqBDkFh7GQK9y8eVMuLi5ydHTUnTt3Un378/T0tFFlAICsxp4d5AofffSRrUsAkAXy5s0rOzs73b17V5Lk7e2tjh07KigoSFu3brVxdchODBqNRqPRcmLz9/c33nvvPUOS4eHhYVy9etUIDw837ty5Y/Tr18/m9dGyR+N2Ecg17O3t9cYbb2jUqFEaNWqUOnTokGq2VQA5S+3atfXHH39Ikv71r3/p6tWrKl26tHr06KGBAwfauDpkFxzGQq7wwgsvaOPGjSpRooROnjwpSRo5cqQuXLig119/XefOnbNxhQDSw8XFRbGxsZKkFi1aaPXq1TIMQ3/++adKly5t4+qQXfC1FrnCrFmzdPbsWZUqVUo+Pj7y8fGRt7e3QkNDNWvWLFuXByCdzpw5ow4dOqhkyZJq2bKltmzZIun+rOkxMTE2rg7Zic2PpdFoWd1u375tVK1aNVV/9erVjdjYWJvXR6PR0tc6depkJCQkGMnJyYa/v7+lf8SIEcbGjRttXh8tezQOYyFXSEhIkJubW6r+/PnzKzEx0QYVAcgMq1atkre3t4oVK2Y1Q/r27duZfwdWbJ64aLSsbkuWLDECAwONl156ydJXt25d4++//zYWLVpk8/poNBqNlnWNSQWRK3h4eGjJkiVq27atZUJBR0dH/f777/Lz8+PYPpCD+fj4qEuXLvL29paTk5PVGLeLgMTVWMgloqOj1aFDB5UrV04VK1aUJAUHB+vs2bM2rgxARnTt2lVLly6Vv7+/WrRooS1btqh8+fIqWrQoh7FgwZ4dAECOdezYMS1YsEDz5s1TTEyMatSoodDQUC1YsEBXrlzR2LFjbV0isgHCDkxr6tSp+uyzz3Tnzh1NnTr1icsOHTr0GVUFIDPdvn1bVapUUVhYmG7cuKFGjRrp+PHjqlixonbs2KHixYvbukRkAxzGgmnVqlVLefLksfwMwHyioqIsV1peunRJVatW1fHjx1WgQAG5uLjYuDpkF4QdmFaTJk0e+TMA89izZ4+aN2+u48eP65dfftHMmTPVpEkTNW/eXNu3b7d1echGbH5JGI2W1W3hwoVG/vz5U/W7uLgYCxcutHl9NBotfa1gwYJGsWLFDEmGnZ2dMXz4cGPt2rXGlClTjAIFCti8Plr2aJyzg1whOTlZxYoV0/Xr1636PT09dfXqVcvhLgCA+XAYC6bm5uYmOzs72dnZyc3NTfHx8ZYxBwcHtW7dWteuXbNhhQDS6lGzoT/Og5uEIncj7MDUbt26JcMwZBiGTp06lWrcMAyNGTPGBpUBSK8Hn+snsbOzk2EYcnTkzxwIOzC5xo0by87OTjt27FCnTp108+ZNy1hiYqLCwsJ05coVG1YIIK0aN25s6xKQw3DODnIFb29vXbhw4R+/DQIAzIewg1wlX758j7x/TmBgoI0qApAeS5Ys0QcffKDbt29LkqpXr66goCAlJyfbuDJkR4Qd5AqFChXSokWL9Nprrz1ynOP6QM7yv1dYRkdHq2bNmgoNDbVxZciO7G1dAPAszJgxQwUKFFDdunV19+5dtWrVSj179tTp06fVrl07W5cHII3s7Oye+Bh4GF9nkSs0adJE7du31+HDh3Xv3j2FhYVp27ZtiomJ0ciRI7Vx40ZblwgAyCKEHeQKrq6ulvl0oqKiVLhwYZ0+fVqBgYGqXbu2jasDkB6VK1e2XGFpZ2enihUrKn/+/FbLcD4eJMIOcomTJ0+qQoUKCgsL07Fjx/Tee+/p/Pnz6tevH5eeAznU9u3brQ5frV+/XtL9+bOYZwcP418BcoWZM2eqWLFikqRx48Zp8+bN6tatmxITE+Xn52fb4gCkWZkyZWxdAnIQrsZCrpQvXz5VrFhR4eHhioyMtHU5AIAsRNgBAACmxmEsmNbUqVOfetmhQ4dmYSUAAFsi7MC0atWq9VTLcQsJADA3DmMBAABTY88OACDHK1SokCpUqCDp/lQTN27csHFFyE4IOzCtVatWPfWynTp1ysJKAGQVFxcXzZ49W927d5eDg4MkKSUlRUuXLtWAAQN09+5dG1eI7IB7Y8G0oqOjn7oByJmmTZsmX19ftWvXTgUKFFCBAgXUvn17+fr6pukiBZgb5+wAAHKs69ev61//+pd2795t1d+oUSOtXLlSRYoUsVFlyE7YswMAyLFcXFwUERGRqv/atWtycXGxQUXIjtizA9M6fPiwmjZtqlu3bunIkSNPvMTcx8fnGVYGILNs27ZNkZGR6tGjhxISEiRJefPm1ZIlS/Tcc8+pefPmNq4Q2QEnKMO01q5da/mf39q1a5lPBzChQYMGyd/fXxcvXtSxY8ckSTVq1FB8fLxatmxp4+qQXbBnBwCQo+XLl0/dunVTxYoVJUnBwcFavny54uPjbVwZsgvCDnKFs2fPqk6dOrp586ZVv4eHh44cOaIXXnjBRpUBALIah7GQKzz//POWOTge5uzsrJIlS9qgIgCZISwsTLt27dLu3bu1c+dOhYaG2rokZEOEHZha27ZtLT+3bNnSak4dBwcHNW3alP85AjnYJ598oldffVXDhw/Xd999p0uXLmn37t3avXu3du3apTNnzti6RGQDHMaCqaWkpEi6f7NPOzs7q7GkpCSdP39eQ4cO1YYNG2xRHoBM5OXlJV9fX7Vp00Zdu3aVvb29HB35Tg/27MDkHhy6OnfunOrUqaPIyEgbVwQgs+XLl08vv/yyGjVqpMaNG6tWrVo6fvy4du3aZevSkE2wZwe5loeHB7eKAHK4ffv2qVatWgoODracu7Nnzx7dunXL1qUhG2EGZeQKw4YNU5cuXSyPV65cqZs3b+rixYuqXr26DSsDkBEVK1ZUXFycQkJCFBISouDgYIIOUiHsIFfo16+fLly4IElq1qyZmjVrplatWmnTpk2aPHmyjasDkF6enp5q0qSJ/vzzT7Vs2VL79u3TxYsXtXz5cv373/+2dXnIRgwazeztzp07RsmSJQ1JxowZM4xvvvnGkGT83//9n3Hz5k2b10ej0TKn+fj4GIsWLTISExON5ORkm9dDyx6NPTvIFaKiolSqVClJUqtWrbRt2zZJkp2d3SPn3wGQvX322WfKly+fatWqpcGDB2vt2rWKjIxUQECAqlevrtmzZ+uNN96wdZnIRmyeuGi0rG6zZ882QkNDjS1bthjXr183XF1dDUlG165djcOHD9u8PhqNlraWnJxsFC5c2EhKSjIOHjxoTJ482WjTpo3h7u5u89po2a9x6TlyhcGDB+v8+fMqVaqUhg0bpri4OElSsWLFNG/ePBtXByCtHsyb9dxzzyk2NtbG1SC749JzAECOk5KSoqJFi+rGjRu2LgU5AGEHptW2bVtt2rRJycnJVreNeJR169Y9o6oAZIaUlBRFR0fLMJ78J8zT0/MZVYTsjLAD00pJSZGXl5euX79uuW3EoxiGwZTyQA6TkpKijz766B8nBl26dOkzqgjZGWEHAJDjPPxlBvgnfJ2F6dnZ2cnPz09vvPGGnn/+eRmGoXPnzmnVqlVatmyZrcsDkA7/dPgKeBjz7MD0fv/9d33//fcqUaKEAgMDdeLECT3//PNavHix1qxZY+vyAKTDg6uxgKdl8+vfabSsan5+fkZ0dLTRqFGjVGONGzc2oqOjje7du9u8ThqNRqNlXeOcHZiav7+/duzYoUmTJj1yfOTIkfL19VWrVq2ecWUAgGeFw1gwterVq2vz5s2PHd+0aZNq1KjxDCsCADxrhB2Y2nPPPaeIiIjHjkdERKhgwYLPsCIAwLNG2IGpOTg4KDk5+bHjKSkpzLEDACbH/+VhanZ2dlq8eLESEhIeOe7s7PyMKwIAPGuEHZjakiVL/nEZZlgFAHPjaiwAAGBqnLMDAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABMjbADAABM7f8FDO4gasyes/4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHvCAYAAACykR7/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASLZJREFUeJzt3Xl4Tef+x/1PBgmJJDSGmKLUzzynamobM1VjHbRVBKeqWhSnhmqNbVXNc7VVUz0tLarGmClSDkpDEmMkxiAiiZDRev7w2I99gspkJyvv13XdV7Pve+21v2vHbj57Dfeyk2QIAADApOxtXQAAAEBWIuwAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAAABTI+wAyFJjxoyRYWTeRO2Zvb7c6OOPP1ZwcLDs7OxsXYokqVKlSkpKSlKVKlVsXQpMirADpFHPnj1lGIZ8fHweOb5z504FBgZa9YWGhsowDBmGoZSUFEVFRenvv//WggUL9NJLLz3x9V577TUZhqFLly491R8nX19fy2v9U/snxYoV05gxY1SjRo1/XDajFi1aZFVbdHS0jh49qiFDhsjJySnLX/9hlSpV0pgxY1S6dOk0Pa9GjRpatmyZwsPDFR8fr8jISG3dulV+fn6yt8/8/92m5/fj5uam4cOHa9KkSTIMI9X7/ri2aNEiSff/fT/cHxkZqYMHD6pXr16P/Pfp6+urVatW6cqVK0pISFBERIR+//13dezY0bJMcHCwNmzYoPHjx2f8TQEewdHWBQC5xV9//aWpU6dKuv8Hp1KlSurcubP69u2radOmaejQoY98Xrdu3RQaGqoyZcqoSZMm2r59+xNfJzg4WO+8845V38SJE3X79m198cUXaaq5ePHiGjt2rM6fP69jx46l6bnpER8fr3//+9+SpAIFCqhTp06aOnWq6tSpo7feeivLX/+BypUra+zYsdq1a5fCwsKe6jl9+vTRN998o4iICC1btkynT5+Wm5ubmjZtqoULF6pYsWKaOHFiptaZnt9P79695ejoqJ9++kmStGDBAm3bts0yXqZMGU2YMEELFizQH3/8Yek/e/as5ecLFy5o5MiRkqTChQurR48e+uGHH1S+fHlLvySNHTtWY8aM0alTp7RgwQKFhYXJ09NTrVu31urVq/X2229b6vjmm2+0adMmlS1bVufOnUv/mwI8hkGj0Z6+9ezZ0zAMw/Dx8Xnk+M6dO43AwECrvtDQUGPdunWpls2bN6+xevVqwzAMo1+/fqnGXVxcjNjYWOPDDz80Dh8+bPzwww/pqjkwMNDYuXNnmp/n4+NjGIZh9OzZM93v15gxYwzj/m6kJ7ZFixYZsbGxVn12dnbGwYMHDcMwjGLFiqVpfRlpnTp1MgzDMHx9fZ9q+bp16xpJSUnGnj17jPz58z/yfczIe5iZv5+jR48aS5cuTfc6H/XvO1++fEZ4eLgRGxtrODo6Wr2HK1eutPQ93Fq0aGG8/vrrlseOjo5GZGSkMW7cuCz93dJyZ+MwFmBD8fHx6t69uyIjIzVq1KhU4x07dlS+fPn0yy+/6Oeff9Ybb7whZ2fnTHntMmXKaOXKlYqMjFRcXJwCAgLUunVry7ivr68OHTokSVq8eLHlsEXPnj0lSS+//LJWrlypsLAwxcfHKzw8XNOmTVPevHkzpT5JMgxDu3btkiQ9//zzj13Oz89P27dvV0REhOLj43XixAn169cv1XKhoaFat26dGjZsqAMHDuju3bs6e/asunfvblmmZ8+e+vXXXyVJu3btsmy3r6/vY1//wXlE3bp10+3bt1ONHz58WEuWLLE8dnFx0ZQpUyyHu0JCQh65Z69Zs2b6448/FBUVpdjYWIWEhFj2zv3T7+dRnn/+edWoUcNqT05muHv3rv7880/lz59fhQsXliRNmDBBkZGR6t27t5KTk1M9Z8uWLdqwYYPlcXJysnbt2qX27dtnam2AxDk7QLp5eHjI09MzVcuTJ0+a1hMXF6c1a9aoZMmSqly5stVYt27dtHPnTkVEROjnn3+Wm5ub2rZtm+HaixQpov3796tly5aaN2+eRo0apbx58+r3339Xhw4dJN0/HPbZZ59Jun+o45133tE777yjPXv2SJI6d+4sFxcXzZ8/XwMGDJC/v78GDBigpUuXZri+h73wwguSpMjIyMcu8/777yssLExffvmlhg4dqgsXLmj+/Pnq379/qmXLlSunX3/9VVu3btXQoUMVFRWlxYsXW977PXv2aObMmZKkL774wrLdwcHBj3ztfPnyqWnTptqzZ48uXLjwVNv0+++/a/Dgwdq8ebOGDBmikydPasqUKZo2bZplmcqVK2v9+vVydnbW6NGjNXToUP3+++9q2LChpH/+/TxKgwYNJElHjhx5qjrTomzZskpOTtatW7dUrlw5VapUSb/99tsjw9/jHD58WFWrVpWbm1um1wfYfPcSjZaT2oPDWE/ytIexHrRBgwYZhmEYbdu2tfQVLlzYSExMNPr06WPp27t3r7FmzZo01/y/h7GmTZtmGIZhNGzY0NLn6upqnD171jh37pxhZ2dnSE8+pJE3b95UfcOHDzdSUlKMUqVKWfrSehjL09PT8PT0NMqWLWuMGDHCSElJMY4ePfrE9T2qlk2bNhlnzpxJ9XswDMN4+eWXLX2FChUy7t69a0yePNnSl5bDWNWqVTMMwzCmT5/+VL+Ldu3aGYZhGJ988olV/8qVK42UlBSjbNmyVv8mPD09H7uutB7GGj9+vGEYhuHq6prude7cudMICgqy/J4qVKhgzJgxwzAMw1i7dq0hyWjbtq1hGIYxaNCgNP07ffPNNw3DMIw6deqk+d84jfakxgnKQDr1799fp06dStU/depUOTg4pGldD779PvyN9s0339S9e/e0atUqS99PP/2kqVOnqkCBArp161b6CpfUunVrHThwQPv27bP0xcXF6dtvv9VXX32lypUr68SJE09cR3x8vOVnFxcX5cuXT/v375e9vb1q1ar11Hs5HpY/f37duHHDqm/fvn1Wh5n+qRZ3d3flyZNHu3fvVqtWreTu7q6YmBjL+IkTJ7R3717L4xs3bujkyZMqW7Zsmut98HqSFBsb+1TLt27dWsnJyZo1a5ZV/9SpU9W5c2e99tprmjt3ruX32759e8sVUxnl6emppKQkxcXFZWg9lSpVsvo93bt3T+vXr1fv3r0lpf09eSAqKkqSVKhQoQzVB/wvwg6QTgcPHtThw4dT9UdFRaX5f9b58+eXZP3H4Z133tHBgwcth8ek+1d0OTs7q3Pnzvruu+/SXXvp0qV14MCBVP0PDtWULl36H8NOqVKlNH78eLVr107PPfec1ZiHh0e66rp7967lMF1CQoJCQ0N16dKlf3xegwYNNG7cONWvX1+urq6pank47ISHh6d6flRUlAoWLJiumh+s+2kPvZQuXVqXL19OdXjn4fdeklasWKF///vfWrhwob766itt375dq1ev1q+//mrzeYZCQ0P17rvvyjAMxcfH6/Tp07p+/bplPK3vyQMPLl239fbBfAg7QDZQtWpVSdKZM2ck3T+v5MH8Ow/6HtatW7cMhZ2Msre319atW/Xcc89p0qRJCgkJUVxcnEqUKKElS5ake06ZlJSUf7y0/n+VLVtW27dvV0hIiIYMGaILFy4oMTFRrVu31pAhQ1LVkpKS8sj1pHeCvTNnzigpKUnVqlVL1/MfJz4+Xq+++qoaN26s119/Xa1atdKbb76p7du3q0WLFrp3716a1xkZGak8efIof/78aTqX5n/FxcU98fcUEhIiSWl+Tx4Ezv/duwdkFGEHsDFXV1d17NhR4eHhlm/33bp1U2Jiorp3757qj/PLL7+sgQMHqlSpUuk6VCRJYWFhqlChQqr+ihUrWsalx3/DrlatmipUqKAePXpo2bJllv5mzZqlq56MaNu2rfLmzat27dpZvR+NGzdO9zrTsmfh7t272rFjh5o0aaKSJUvq4sWLT1w+LCxMzZo1SxU4/ve9f1DHjh07tGPHDg0dOlQjR47Ul19+qcaNG2v79u1p3gPyIISUKVMm1cSXmen06dMKCQlR+/btNWjQoKc+bFamTBmlpKQ88vAwkBFcjQXYUN68ebVs2TJ5enpaTfjXrVs3/fHHH1q5cqVWrVpl1SZPnixJGZpkb+PGjapbt67q1atn6XNxcVHfvn0VGhqqoKAgSbL8kSpQoIDV8x8EsP/dGzJo0KB015Rej6rF3d1dvXr1Svc6H7fdjzNu3DjZ2dlp2bJlqQ6jSVLt2rXVo0cPSfffe0dHR3344YdWywwePFj37t3Tpk2bJOmRh9WOHj0qSZbpB9JaZ0BAgCTpxRdffKrlM2LMmDEqVKiQvv/++0eew9a8eXO9/vrrVn0+Pj46ceKE1WFHIDOwZwd4RkqUKKFu3bpJun+OTuXKldW5c2cVK1ZMU6ZM0bfffitJeumll/R///d/mjNnziPXc/nyZR05ckTdunXT119/na5avvrqK7311lvatGmTZs2apZs3b6pnz54qU6aMOnXqZNljcPbsWUVFRalfv36KjY1VXFycDhw4oJCQEJ05c0ZTpkxRiRIlFBMTo06dOqX7vJeM2LJlixISErRu3TotWLBA+fPn17vvvqtr166pePHi6Vrn0aNHlZycrOHDh8vDw0MJCQnasWOH1XkpDwsICNAHH3ygefPmKSQkxGoG5UaNGqldu3b69NNPJUnr1q3Tjh079MUXX+j555/XsWPH1KJFC3Xo0EHTp0+3zB48evRovfrqq9qwYYPCwsJUpEgR9e/fXxcuXLCcYP2438/58+cfWWdoaKgCAwPVrFkzy+0fssrKlStVrVo1ffrpp6pVq5Z++uknywzKrVq1UrNmzawCu6Ojo3x9fTVv3rwsrQu5l80vCaPRclJL7wzKD6SkpBi3bt0yAgMDjQULFqS6zHbmzJmGYRhGmTJlHlvD6NGjDcMwjGrVqj1VzY+aQblMmTLGypUrjZs3bxp37twx/vzzT6N169apntu2bVvj+PHjRmJiotUlyRUrVjS2bNlixMTEGNeuXTMWLFhguQz74cuWMzKD8qPao9bXpk0b4+jRo8adO3eMc+fOGR9//LHh5+dnGIZhlC5d2ur38KgpAHbu3Jnq/enTp49x5swZIykp6akvQ69Vq5bx448/GhcvXjQSEhKMyMhIY+vWrUb37t0tl/NL9y/znzp1qmW5kydPGkOHDrVaV+PGjY01a9YYFy9eNOLj442LFy8ay5cvN8qVK/dUv5/HtY8++siIiYl55OX6UvpmUH5Se7AdV69eNRITE42IiAhj7dq1VtMsSDJatmxpGIZhvPDCC5n2WaXRHjS7/+8HAEAu4O7urnPnzmnYsGH64YcfbF2OxZo1a2QYht544w1blwITIuwAQC4zbNgw9erVS5UrV84Wl3lXrFhRgYGBqlmz5j9OeQCkB2EHAACYGldjAQAAUyPsAAAAUyPsAAAAUyPsAAAAU2NSwf9P8eLF03yHXgAAYFtubm66fPnyE5ch7Oh+0HmaOysDAIDsp0SJEk8MPIQdybJHp0SJEuzdAQAgh3Bzc9OlS5f+8W83YechsbGxhB0AAEyGE5QBAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpEXYAAICpOdq6ANjWPWOdrUvAM2Rv19bWJQDAM8eeHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGrcLgIATIrbweQu3A7m8dizAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATC3bhJ3hw4fLMAxNnz7d0ufs7Kw5c+boxo0bio2N1a+//qoiRYpYPa9UqVJav3694uLiFBERoa+//loODg7PunwAAJBNZYuw8+KLL+q9997TsWPHrPqnT5+utm3bqnPnzvL19VXx4sW1evVqy7i9vb02bNggJycnNWjQQD179pSfn5/Gjx//rDcBAABkUzYPO66urlq+fLneffddRUVFWfrd3d3Vp08fDRkyRDt37tSRI0fUq1cvNWzYUHXr1pUktWjRQpUrV9Y777yjY8eOafPmzfrss8/0wQcfKE+ePLbaJAAAkI3YPOzMnTtXGzZs0Pbt2636fXx85OTkpG3btln6Tp48qbCwMNWvX1+SVL9+fQUGBuratWuWZfz9/eXh4aEqVao89jWdnJzk5uZm1QAAgDk52vLFu3btqtq1a6tOnTqpxry8vJSQkKDo6Gir/oiICHl5eVmWiYiISDX+YOxxRo4cqbFjx2awegAAkBPYbM9OyZIlNXPmTHXr1k0JCQnP9LUnTpwod3d3SytRosQzfX0AAPDs2Czs+Pj4qGjRojpy5IiSkpKUlJSkRo0aaeDAgUpKSlJERIScnZ3l4eFh9byiRYvq6tWrkqSrV6+qaNGiqcYfjD1OYmKiYmNjrRoAADAnm4Wd7du3q2rVqqpZs6al/fe//9Xy5ctVs2ZNHTp0SImJiWratKnlOeXLl1fp0qUVEBAgSQoICFC1atVUuHBhyzLNmzdXdHS0goKCnvk2AQCA7Mdm5+zcvn1bJ06csOqLi4tTZGSkpX/hwoWaNm2abt68qZiYGM2ePVv79+/XgQMHJElbtmxRUFCQli1bpmHDhsnLy0uff/655s6dq8TExGe+TQAAIPux6QnK/2Tw4MG6d++eVq1aJWdnZ/n7+6t///6W8Xv37qlNmzaaP3++AgICFBcXpyVLlmj06NE2rBoAAGQndpIMWxdha25uboqJiZG7u3uuO3/nnrHO1iXgGbK3a2vrEvAM8fnOXXLj5/tp/37bfJ4dAACArETYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApmbTsNOvXz8dO3ZM0dHRio6O1v79+9WqVSvLuLOzs+bMmaMbN24oNjZWv/76q4oUKWK1jlKlSmn9+vWKi4tTRESEvv76azk4ODzrTQEAANmUTcPOxYsXNWLECPn4+OjFF1/Ujh07tHbtWlWuXFmSNH36dLVt21adO3eWr6+vihcvrtWrV1ueb29vrw0bNsjJyUkNGjRQz5495efnp/Hjx9tqkwAAQDZjJ8mwdREPi4yM1Mcff6xff/1V169f19tvv61Vq1ZJkipUqKCQkBDVq1dPBw4cUKtWrbR+/XoVL15c165dkyS99957mjRpkgoXLqykpKSnek03NzfFxMTI3d1dsbGxWbZt2dE9Y52tS8AzZG/X1tYl4Bni85275MbP99P+/c425+zY29ura9eucnV1VUBAgHx8fOTk5KRt27ZZljl58qTCwsJUv359SVL9+vUVGBhoCTqS5O/vLw8PD1WpUuWxr+Xk5CQ3NzerBgAAzMnmYadq1aqKjY1VQkKCvvnmG3Xs2FHBwcHy8vJSQkKCoqOjrZaPiIiQl5eXJMnLy0sRERGpxh+MPc7IkSMVExNjaZcuXcrkrQIAANmFzcPOyZMnVbNmTdWtW1fz58/XkiVLVKlSpSx9zYkTJ8rd3d3SSpQokaWvBwAAbCfNYcfR0VHbtm1TuXLlMqWApKQknT17VkeOHNEnn3yiY8eOadCgQbp69aqcnZ3l4eFhtXzRokV19epVSdLVq1dVtGjRVOMPxh4nMTFRsbGxVg0AAJhTmsNOcnKyqlevnhW1SLp/7o6zs7MOHz6sxMRENW3a1DJWvnx5lS5dWgEBAZKkgIAAVatWTYULF7Ys07x5c0VHRysoKCjLagQAADlHug5j/fjjj+rTp0+GX/zLL7/UK6+8otKlS6tq1ar68ssv1ahRIy1fvlwxMTFauHChpk2bpkaNGql27dpatGiR9u/frwMHDkiStmzZoqCgIC1btkzVq1dXixYt9Pnnn2vu3LlKTEzMcH0AACDnc0zXkxwd1bt3bzVr1kyHDx9WXFyc1fjQoUOfaj1FihTR0qVLVaxYMUVHR+vvv/9Wy5YtLVdgDR48WPfu3dOqVavk7Owsf39/9e/f3/L8e/fuqU2bNpo/f74CAgIUFxenJUuWaPTo0enZLAAAYELpmmdnx44djx0zDMPq0FNOwDw7yC1y4zwcuRmf79wlN36+n/bvd7r27DRp0iTdhQEAADxLNr/0HAAAICula8+OJPn4+KhLly7y9vaWk5OT1VinTp0yXBgAAEBmSNeena5du2r//v2qVKmSOnbsqDx58qhKlSpq0qRJqhmPAQAAbCldYeeTTz7R4MGD1a5dOyUmJmrQoEGqWLGiVq5cqfDw8MyuEQAAIN3SFXZeeOEFbdiwQdL92YhdXV0lSdOnT1ffvn0zrzoAAIAMSlfYiYqKstwp/NKlS6pataokqUCBAnJxccm86gAAADIoXSco79mzR82bN9fx48f1yy+/aObMmWrSpImaN2+u7du3Z3aNAAAA6ZausPPhhx8qb968kqQvvvhCSUlJatCggVatWqXPP/88UwsEAADIiHSFnaioKMvPhmFo0qRJmVYQAABAZkr3pIJly5bVhAkT9P/8P/+P5a7jrVq1UuXKlTOtOAAAgIxKV9h59dVXFRgYqLp16+qNN95Q/vz5JUk1atTQuHHjMrVAAACAjEhX2Pnqq6/06aefqkWLFkpMTLT079ixQ/Xq1cu04gAAADIqXWGnWrVqWrNmTar+a9euqVChQhkuCgAAILOkK+zcunVLxYoVS9Vfq1YtXbp0KcNFAQAAZJZ0hZ2ff/5ZkyZNUtGiRWUYhuzt7dWgQQNNmTJFS5cuzewaAQAA0i3d98YKCQnRhQsXlD9/fgUFBWnPnj3av38/8+wAAIBsJV3z7CQlJalv376aMGGCqlatqvz58+uvv/7SmTNnMrs+AACADElX2GnUqJF27dqlCxcu6MKFC5ldEwAAQKZJ12GszZs368yZMxo1apRKliyZ2TUBAABkmnSFnRIlSmjOnDn617/+pXPnzmnz5s3q3Lmz8uTJk9n1AQAAZEi6wk5kZKRmzJihWrVqqW7dujp16pTmzZuny5cva+bMmapevXpm1wkAAJAu6b431gN//fWXJk6cqDlz5ih//vzq3bu3Dh8+rD179nCfLAAAYHPpDjuOjo7q1KmTNmzYoLCwMLVs2VIffvihihYtqnLlyiksLEy//PJLZtYKAACQZum6GmvWrFl66623ZGdnp2XLlmnYsGE6ceKEZTwsLEz/+c9/dPny5UwrFAAAID3SFXYqV66sAQMGaPXq1VY3An3YjRs31Lhx4wwVBwAAkFFpCjvjxo3T2rVr1axZs39cNiUlRXv27El3YQAAAJkhTefslCxZUps2bdKFCxc0b948tWrVisvNAQBAtpamsNOnTx95eXnprbfeUmxsrGbMmKEbN27o119/Vffu3VWwYMGsqhMAACBd0nw1lmEY2rt3r4YPH66KFSuqbt26OnDggN577z1dvnxZu3fv1tChQ1W8ePGsqBcAACBN0nWC8sNCQkIUEhKiyZMnq1ChQmrXrp3atWsnSZo6dWqGCwQAAMgIO0lGep/s5OQkSY+9IiuncHNzU0xMjNzd3RUbG2vrcp6pe8Y6W5eAZ8jerq2tS8AzxOc7d8mNn++n/fud5sNYzZo104YNG3Tz5k3duXNHd+7c0c2bN7VhwwY1bdo0Q0UDAABktjSFnR49emjjxo2Kjo7W4MGD1aZNG7Vp00aDBw/WrVu3tHHjRr3zzjtZVSsAAECapemcnVGjRumjjz7SvHnzUo0tWbJEe/fu1ejRo/Xjjz9mWoEAAAAZkaY9O97e3tq2bdtjx7dv366SJUtmuCgAAIDMkqawc+LECfXp0+ex471791ZQUFCGiwIAAMgsaTqMNXToUK1fv16tWrXStm3bFBERIUkqWrSomjZtqrJly+r111/PkkIBAADSI01hZ/fu3apataref/991atXT15eXpKkq1evatOmTfrmm28UFhaWJYUCAACkR5onFQwLC9OIESOyohYAAIBMl64ZlB0cHFSlShXLnp0rV64oODhYycnJmVocAABARqUp7NjZ2Wn8+PH64IMP5OHhYTUWHR2tOXPmaMyYMTKMdE/KDAAAkKnSdDXWV199pb59+2rEiBEqW7asXF1d5erqqrJly2r48OHq27evJk6cmFW1AgAApFma7o115coV9ezZU1u2bHnkeIsWLbR06VLL4a2cgntjIbfIjffOyc34fOcuufHznSX3xnJzc9Ply5cfO37lyhW5urqmZZUAAABZKk1hZ9euXZoyZYo8PT1TjXl6emrSpEnatWtXZtUGAACQYWk6Qblfv37auHGjrly5osDAQKtJBatVq6agoCC1adMmSwoFAABIjzSFnYsXL6pGjRpq2bKl1aSCBw8e1CeffKItW7ZwJRYAAMhW0jzPjmEY2rx5szZv3pwV9QAAAGSqdE0qWKdOHdWvX9/qdhH79+/XoUOHMrU4AACAjEpT2ClcuLBWrVqlhg0bKjw83OqcnenTp2vfvn3q1KmTrl+/niXFAgAApFWarsaaN2+eHBwcVKlSJZUpU0b16tVTvXr1VKZMGVWqVEn29vaaO3duVtUKAACQZmnas9OyZUu9+uqrOnXqVKqxU6dOaeDAgVx6DgAAspU07dlJSEiQu7v7Y8fd3NyUkJCQ4aIAAAAyS5rCzooVK7RkyRJ16NBBbm5uln43Nzd16NBBixYt0k8//ZTpRQIAAKRXmg5jDRkyRPb29vr555/l6OioxMRESZKTk5OSk5O1cOFC/ec//8mSQgEAANIjTTcCfcDNzU0+Pj5Wl54fPnw4x95EkxuBIrfIjTcKzM34fOcuufHz/bR/v9M1z05sbCwnIgMAgBwhTefs/JMiRYros88+y8xVAgAAZEimhh0vLy+NGTMmM1cJAACQIWk6jFWtWrUnjleoUCFDxQAAAGS2NIWdo0ePyjAM2dnZpRp70M9dzwEAQHaSprBz8+ZNDRs2TNu3b3/keJUqVbRuHWf/AwCA7CNNYefw4cMqXry4wsPDHzleoECBR+71AQAAsJU0naD8zTff6Pz5848dDw8PV69evZ56fSNGjNDBgwcVExOjiIgIrVmzRuXLl7daxtnZWXPmzNGNGzcUGxurX3/9VUWKFLFaplSpUlq/fr3i4uIUERGhr7/+Wg4ODmnZNAAAYFJpCju//fabli9f/tjxW7duaenSpU+9Pl9fX82dO1f16tVT8+bNlSdPHm3ZskUuLi6WZaZPn662bduqc+fO8vX1VfHixbV69er/fwPs7bVhwwY5OTmpQYMG6tmzp/z8/DR+/Pi0bBoAADCpNM+g7ODgIHt7eyUlJVn6+vTpo1deeUWHDh3SnDlz0l1MoUKFdP36db366qv6448/5O7uruvXr+vtt9/WqlWrJN2/4iskJET16tXTgQMH1KpVK61fv17FixfXtWvXJEnvvfeeJk2apMKFC1vV+YCTk5OcnZ0tj93c3HTp0iVmUIbp5cYZVnMzPt+5S278fD/tDMppnmdn+fLlGjdunOVx3759NXPmTLm6umr06NH68ssv01exJA8PD0n3T4SWJB8fHzk5OWnbtm2WZU6ePKmwsDDVr19fklS/fn0FBgZago4k+fv7y8PDQ1WqVHnk64wcOVIxMTGWdunSpXTXDAAAsrc0h53atWtr8+bNlsfvvfeePvroI3Xu3FmdO3fW22+/na5C7OzsNGPGDO3du1cnTpyQdH+SwoSEBEVHR1stGxERYbkvl5eXlyIiIlKNPxh7lIkTJ8rd3d3SSpQoka6aAQBA9vfUV2P98MMPkqSSJUtq4MCB6tmzp+zs7FSjRg299tprql+/vhwdHVW8eHEtXLhQ0v3DW09r7ty5qlq1ql5++eU0bkLaJSYmWu7YDgAAzO2pw07v3r0lSU2aNLHsgWndurUaNmyoTp06SZLc3d3Vvn37NIUcSZo9e7batGmjV1991eqQ0tWrV+Xs7CwPDw+rvTtFixbV1atXLcu89NJLVusrWrSoZQwAAORuaT6MtWvXLn377bcaMWKEpk+frhUrVljGatSoodOnT6dpfbNnz1bHjh3VpEmTVJe1Hz58WImJiWratKmlr3z58ipdurQCAgIkSQEBAapWrZoKFy5sWaZ58+aKjo5WUFBQWjcPAACYTJomFZSkIUOGaMaMGXr77be1Y8cOqxOSO3TooB9//PGp1zV37ly9/fbbat++vWJjYy17ZKKjoxUfH6+YmBgtXLhQ06ZN082bNxUTE6PZs2dr//79OnDggCRpy5YtCgoK0rJlyzRs2DB5eXnp888/19y5czlUBQAA0n7peWZ63H20/Pz8tGTJEkn3JxWcOnWq3nrrLTk7O8vf31/9+/e3OinZ29tb8+fPV6NGjRQXF6clS5ZoxIgRSklJeao6nvbSNTPi0tTcJTdempqb8fnOXXLj5/tp/37bNOxkF4Qd5Ba58X+GuRmf79wlN36+s2yeHQAAgJyEsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEyNsAMAAEzNpmHnlVde0e+//65Lly7JMAy1b98+1TLjxo3T5cuXdefOHW3dulXlypWzGi9YsKB+/PFHRUdHKyoqSt9//71cXV2f1SYAAIBszqZhx9XVVceOHdMHH3zwyPFhw4Zp4MCB6tevn+rWrau4uDj5+/vL2dnZsszy5ctVpUoVNW/eXG3atNGrr76qb7/99lltAgAAyObsJBm2LkKSDMNQhw4dtHbtWkvf5cuXNXXqVE2dOlWS5O7uroiICPn5+WnFihWqWLGigoOD9eKLL+rw4cOSpJYtW2rjxo0qWbKkrly58lSv7ebmppiYGLm7uys2NjbzNy4bu2ess3UJeIbs7draugQ8Q3y+c5fc+Pl+2r/fjs+wpjQpU6aMihUrpm3btln6YmJidODAAdWvX18rVqxQ/fr1FRUVZQk6krRt2zbdu3dPdevW1W+//fbIdTs5OVntHXJzc8uy7QCyOxcXFxUqVEh2dna2LgXpdO/ePV25ckXJycm2LgXIlrJt2PHy8pIkRUREWPVHRERYxry8vHTt2jWr8ZSUFN28edOyzKOMHDlSY8eOzdyCgRzGzs5OvXr1UqNGjWxdCjJBfHy8Ro0apevXr9u6FCDbybZhJytNnDhR06ZNszx2c3PTpUuXbFgR8Oz16tVLvr6+WrFihUJCQtgrkIM5OzurX79+evfddzVx4kQZRrY4OwHINrJt2Ll69aokqWjRopafHzw+evSoZZkiRYpYPc/BwUHPPfec1XP+V2JiohITEzO/aCCHcHV1VaNGjbRixQpt2LDB1uUgE6xcuVL9+/eXh4eHbt26ZetygGwl286zExoaqitXrqhp06aWPjc3N9WtW1cBAQGSpICAABUsWFC1a9e2LNOkSRPZ29vrwIEDz7xmIKfw9PSUJIWEhNi4EmSWB4f03d3dbVwJkP3YdM+Oq6ur1bw5ZcqUUY0aNXTz5k1duHBBM2bM0KeffqrTp08rNDRUEyZM0OXLly0nHoeEhGjTpk367rvv1K9fP+XJk0dz5szRzz///NRXYgG50YOTkTl0ZR4pKSmSxInmwCPYNOy8+OKL2rVrl+Xx9OnTJUmLFy9Wr1699PXXX8vV1VXffvutChQooL1796pVq1ZKSEiwPKdbt26aM2eOtm/frnv37mnVqlUaOHDgs94UAACQTdk07Ozevfsfv4WMGTNGY8aMeex4VFSUunXrltmlAQAAk8i25+wAAABkBsIOgGytaNGimjVrls6ePav4+HiFh4fr999/V5MmTTK87p49eyoqKioTqgSQnWXbS88BoHTp0tq3b59u3bqljz/+WIGBgcqTJ49atmypuXPnqlKlSrYuEUAOwJ4dANnWvHnzZBiGXnrpJa1evVqnT59WUFCQpk+frnr16kmSSpUqpd9++02xsbGKjo7WihUrrObfql69unbs2KGYmBhFR0fr0KFD8vHxka+vrxYvXqwCBQrIMAwZhmE5P/D999/XqVOndPfuXV29elW//PKLTbYfQOZgzw6AbKlgwYJq1aqVRo0apTt37qQaj46Olp2dndauXavbt2/L19dXjo6Omjt3rlasWKHGjRtLkpYvX66//vpL77//vlJSUlSzZk0lJSVp//79GjRokMaPH68KFSpIkm7fvi0fHx/NmjVL3bt31/79+/Xcc8/plVdeeabbDiBzEXYAZEvlypWTvb39Eyc+bNq0qapVq6YyZcro4sWLkqQePXooKChIL774og4dOiRvb29NnjxZJ0+elCSdOXPG8vzo6GgZhmF1Dz5vb2/FxcVp/fr1un37tsLDwy2ztgPImTiMBSBbeprJ8SpVqqQLFy5Ygo4kBQcHKyoqynI+z7Rp0/T9999r69atGj58uMqWLfvEdW7dulVhYWE6d+6cli5dqrffflv58uXL2MYAsCnCDoBs6fTp07p3754qVqyYofWMGzdOVapU0YYNG9SkSRMFBQWpQ4cOj13+9u3bql27tt566y1duXJF48eP17Fjx+Th4ZGhOgDYDmEHQLYUFRUlf39/ffDBB3JxcUk17uHhoeDgYJUqVUolS5a09FeqVEkFCxZUUFCQpe/06dOaMWOGWrZsqdWrV6tXr16S7t8U2MHBIdW6U1JStH37dg0fPlzVq1fX888/nymXugOwDcIOgGzrgw8+kIODgw4ePKg33nhD5cqVU8WKFTVgwAAFBARo27ZtCgwM1PLly1WrVi3VqVNHS5cu1a5du3T48GHlzZtXs2fPlq+vr7y9vdWgQQPVqVNHwcHBkqTz58/Lzc1NTZo0kaenp/Lly6fXX39dAwYMUI0aNeTt7a0ePXrI3t7ecs4PgJyHsAMg2woNDVXt2rW1c+dOTZ06VcePH9fWrVvVtGlTvf/++5Kk9u3bKyoqSnv27NG2bdt07tw5de3aVdL9PTSenp5aunSpTp06pZUrV2rTpk2WS8wDAgI0f/58rVixQjdu3NCwYcN069YtvfHGG9qxY4eCg4PVr18/vfXWW1Z7igDkLFyNBSBbu3r1qgYMGKABAwY8cvzChQuPPQcnKSlJb7/99hPX379/f/Xv39+q78Fl6wDMgT07AADA1Ag7AADA1Ag7AADA1Ag7AADA1Ag7AADA1Ag7AADA1Ag7AADA1Ag7AADA1Ag7APCQRYsWac2aNdlmPQAyjhmUAViZGhjwzF5raLX6z+y1ntagQYNkZ2dnebxz504dPXpUgwcPtmFVADKCsAMAD4mJibF1CQAyGYexAOQodnZ2+vjjj3X69GnFx8crLCxMn3zyiSTpq6++0smTJxUXF6ezZ89q/PjxcnT8/7/TjRkzRn/99Zf69u2r8PBwxcXFacWKFXJ3d7cs8/Dhp0WLFqlRo0b66KOPZBiGDMNQ6dKlZW9vr++//17nzp3TnTt3FBISooEDBz7bNwLAU2PPDoAcZeLEiXr33Xc1ePBg7d27V8WKFVPFihUlSbGxsfLz89Ply5dVrVo1fffdd4qNjdXkyZMtzy9Xrpy6dOmitm3byt3dXQsXLtS8efP0zjvvpHqtQYMGqXz58jp+/LhGjx4tSbp+/brs7e118eJFde7cWZGRkWrQoIG+/fZbXblyRb/88suzeSMAPDXCDoAcI3/+/Bo0aJA+/PBDLV26VJJ07tw57du3T5L0xRdfWJYNCwvTlClT9Oabb1qFnbx586pHjx66fPmyJGnAgAHasGGDhg4dqoiICKvXi4mJUWJiou7cuWM1du/ePY0dO9by+Pz586pfv766dOlC2AGyIcIOgByjUqVKyps3r7Zv3/7I8S5dumjgwIF64YUXlD9/fjk6OqY6Byc8PNwSdCQpICBADg4OqlChQqqw8yT9+/dX79695e3trXz58snJyUlHjx5N13YByFqcswMgx7h79+5jx+rVq6fly5dr48aNatOmjWrVqqUvvvhCTk5OmV5H165dNWXKFC1cuFAtWrRQzZo1tWjRoix5LQAZx54dADnG6dOndefOHTVt2lQLFy60GmvQoIHCwsL05ZdfWvpKly6dah3e3t4qVqyYrly5Iul+SEpJSdHJkycf+ZqJiYlycHCw6mvYsKH279+v+fPnW/peeOGFdG8XgKxF2AGQYyQkJGjSpEn6+uuvlZiYqH379qlw4cKqUqWKTp8+LW9vb3Xt2lX//e9/9frrr6tjx46p1hEfH68lS5boP//5j9zd3TVr1iytXLnysYewzp8/r7p166p06dK6ffu2bt68qdOnT6tHjx5q0aKFQkND1b17d9WpU0ehoaFZ/RYASAcOYwHIUSZMmKCpU6dq/PjxCg4O1ooVK1SkSBGtW7dO06dP15w5c3T06FE1aNBAEyZMSPX8M2fOaPXq1dq4caO2bNmiv//+W/3793/s602ZMkUpKSkKCgrSjRs35O3trQULFmj16tVasWKFDhw4IE9PT82bNy8rNxtABthJMmxdhK25ubkpJiZG7u7uio2NtXU5z9Q9Y52tS8AzZG/XVtL9wzsTJkzQZ599prCwMBtX9eyMGTNGHTp0UK1atWxdSqZ71O+Uz3fu8uDznZs87d9v9uwAAABT45ydXG768UK2LgEAgCzFnh0Auca4ceNMeQgLwJMRdgAAgKkRdgAAgKkRdgAAgKlxgjIAmBQXIAD3sWcHAACYGmEHAACYGmEHALKYYRhq3769rcsAci3O2QFg5VneYsBs09s/7nYUXl5eioqKslFVAAg7APAP8uTJo6SkpHQ//3F3VAfwbHAYC0CO4uTkpJkzZyoiIkJ3797VH3/8oRdffFGS5OvrK8Mw1Lp1ax07dkx3795VQECAqlSpYrWOhg0bas+ePbpz547Cw8M1c+ZMubi4WMZDQ0P16aefasmSJYqOjta3334rSfrqq6908uRJxcXF6ezZsxo/frwcHe9/Z+zZs6fGjh2rmjVryjAMGYahnj17SrI+jFW6dGkZhqGOHTtqx44diouL09GjR1WvXj2rGv/9738rPDxccXFxWr16tQYPHszeISCdCDsAcpSvv/5anTp1Us+ePVW7dm2dOXNG/v7+KliwoGWZyZMna+jQoapTp46uX7+udevWWUJJ2bJltXnzZq1atUrVq1dX165d9fLLL2vOnDlWr/Of//xHx44dU61atTRhwgRJUmxsrPz8/FS5cmUNGjRI7777rgYPHixJWrFihaZMmaLjx4/Ly8tLXl5eWrFixWO344svvtCUKVNUs2ZNnTp1Sj/99JMcHBwkSQ0aNNA333yjmTNnqmbNmtq6datGjRqVqe8jkJtwGAtAjuHi4qL3339ffn5+2rx5syTp3XffVfPmzdWnTx/997//lXT/Hljbtm2TdH+Py8WLF9WxY0f98ssvGjlypJYvX66ZM2dKks6cOaOBAwdq9+7dev/995WQkCBJ2rFjh6ZNm2b1+l988YXl57CwME2ZMkVvvvmmJk+erPj4eN2+fVvJyclPddhqypQp2rhxo6T75/oEBQWpXLlyOnnypAYMGKBNmzZp6tSpkqTTp0+rQYMGatOmTUbePiDXYs8OgBzjhRdekJOTk/bt22fpS05O1sGDB1WpUiVLX0BAgOXnqKgonTx50jJeo0YN+fn5KTY21tL8/f3l4OCgMmXKWJ536NChVK/fpUsX7d27V1euXFFsbKw+//xzeXt7p2tb/v77b8vPV65ckSQVKVJEklShQgUdPHjQavn/fQzg6bFnB0Cukj9/fi1YsECzZs1KNRYeHm75OS4uzmqsXr16Wr58ucaMGSN/f39FR0frzTff1NChQ9NVx8MnPBuGIUmyt+f7J5AVCDsAcoyzZ88qISFBDRs2tAQTR0dH1alTRzNmzLAsV69ePV24cEGSVKBAAZUvX17BwcGSpCNHjqhy5co6e/Zsml67QYMGCgsL05dffmnpK126tNUyiYmJlvNuMuLkyZOqU6eOVd//Pgbw9PgaASDHuHPnjubPn6/JkyerZcuWqlSpkr777ju5uLho4cKFluVGjx6tJk2aqEqVKlq8eLFu3Lih3377TZI0adIkNWjQQLNnz1aNGjVUrlw5tWvXTrNnz37ia58+fVre3t7q2rWrypYtqwEDBqhjx45Wy5w/f15lypRRjRo15OnpKScnp3Rt5+zZs9W6dWsNHjxY5cqVU9++ffXaa69Z9gABSBvCDoAcZcSIEVq1apWWLVumI0eOqFy5cmrZsqVu3bpltczMmTN1+PBheXl5qW3btpbDRoGBgfL19VX58uX1xx9/6K+//tL48eN1+fLlJ77uunXrNH36dM2ZM0dHjx5VgwYNLFdpPbBq1Spt3rxZO3fu1I0bN/TWW2+laxv379+vfv36aciQITp27JhatWql6dOnKz4+Pl3rA3I7DmMBsJLdZzVOSEjQoEGDNGjQoMcus3fvXlWrVu2x44cOHVLLli0fO/7wicoPGz58uIYPH27V9+CqLun+YazOnTunep6dnZ3l57CwMKvHkhQdHZ2q7/vvv9f3339vefztt9/qzJkzj60ZwOMRdgAgGxo6dKi2bt2quLg4vfbaa+rZs6f69+9v67KAHImwAwDZ0EsvvaRhw4bJzc1N586d08CBA63OSwLw9Ag7AExj9+7dqQ4H5VRdu3a1dQmAaXCCMgAAMDXCDpALPbiE+cH9opDzPZjfh8vTgdQIO0AuFBkZKUmqWLGijStBZnlwq4mYmBgbVwJkP3ytA3KhuLg47dq1S126dJEkhYSEKDk52cZVIb2cnZ3VpUsXhYSEKDo62tblANkOYQfIpRYtWiSJE2HNIj4+XhMnTuQwFvAIhB0glzIMQz/88IN+/vlnFSpUyDRXMeVGKSkpunr1KnvngMcg7AC53J07d6zu9g0AZmOaE5T79++v0NBQ3b17V3/++Sd3CAYAAJJMEna6dOmiadOmady4capdu7aOHTsmf39/FS5c2NalAQAAGzNF2BkyZIi+++47LV68WMHBwerXr5/u3Lmj3r1727o0AABgYzn+nJ08efLIx8dHEydOtPQZhqFt27apfv36j3yOk5OTnJ2dLY/d3Nys/pubONk72LoEPEO58d94bsbnO3fJjZ/vp93mHB92ChUqJEdHR0VERFj1R0REPHbCtJEjR2rs2LGp+i9dupQVJQLZxodMOAeYVm7+fLu5uSk2Nvax4zk+7KTHxIkTNW3aNKu+5557Tjdv3rRRRXiW3NzcdOnSJZUoUeKJHw4AOQ+f79zHzc1Nly9ffuIyOT7s3LhxQ8nJySpatKhVf9GiRXX16tVHPicxMVGJiYlWfXwocp/Y2Fh+74BJ8fnOPZ7m95zjT1BOSkrS4cOH1bRpU0ufnZ2dmjZtqoCAABtWBgAAsoMcv2dHkqZNm6YlS5bo0KFDOnjwoD766CO5urpapsMHAAC5lynCzsqVK1W4cGGNHz9eXl5eOnr0qFq1aqVr167ZujRkQwkJCRo7dqwSEhJsXQqATMbnG49iJ4m7xgEAANPK8efsAAAAPAlhBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmJop5tkBAORO9vb28vPzU9OmTVWkSBHZ21t/h394dn3kXoQdAECONXPmTPn5+WnDhg06fvy4DIOp45AakwoiVyhSpIimTJli+fZnZ2dnNe7oSO4HcqLr16+rR48e2rRpk61LQTbG/+GRKyxevFje3t6aMGGCrly5wrc/wCQSExN15swZW5eBbI49O8gVYmJi9Morr+jYsWO2LgVAJhoyZIjKli2rDz/80NalIBtjzw5yhQsXLqQ6dAUgZ1q1apXV4yZNmui1117TiRMnlJSUZDXWqVOnZ1kasinCDnKFjz76SF999ZXee+89hYWF2bocABkQHR1t9XjNmjU2qgQ5BYexkCvcvHlTLi4ucnR01J07d1J9+/P09LRRZQCArMaeHeQKH330ka1LAJAF8ubNKzs7O929e1eS5O3trY4dOyooKEhbt261cXXITgwajUaj0XJi8/f3N9577z1DkuHh4WFcvXrVCA8PN+7cuWP069fP5vXRskfjdhHINezt7fXGG29o1KhRGjVqlDp06JBqtlUAOUvt2rX1xx9/SJL+9a9/6erVqypdurR69OihgQMH2rg6ZBccxkKu8MILL2jjxo0qUaKETp48KUkaOXKkLly4oNdff13nzp2zcYUA0sPFxUWxsbGSpBYtWmj16tUyDEN//vmnSpcubePqkF3wtRa5wqxZs3T27FmVKlVKPj4+8vHxkbe3t0JDQzVr1ixblwcgnc6cOaMOHTqoZMmSatmypbZs2SLp/qzpMTExNq4O2YnNj6XRaFndbt++bVStWjVVf/Xq1Y3Y2Fib10ej0dLXOnXqZCQkJBjJycmGv7+/pX/EiBHGxo0bbV4fLXs0DmMhV0hISJCbm1uq/vz58ysxMdEGFQHIDKtWrZK3t7eKFStmNUP69u3bmX8HVmyeuGi0rG5LliwxAgMDjZdeesnSV7duXePvv/82Fi1aZPP6aDQajZZ1jUkFkSt4eHhoyZIlatu2rWVCQUdHR/3+++/y8/Pj2D6Qg/n4+KhLly7y9vaWk5OT1Ri3i4DE1VjIJaKjo9WhQweVK1dOFStWlCQFBwfr7NmzNq4MQEZ07dpVS5culb+/v1q0aKEtW7aofPnyKlq0KIexYMGeHQBAjnXs2DEtWLBA8+bNU0xMjGrUqKHQ0FAtWLBAV65c0dixY21dIrIBwg5Ma+rUqfrss890584dTZ069YnLDh069BlVBSAz3b59W1WqVFFYWJhu3LihRo0a6fjx46pYsaJ27Nih4sWL27pEZAMcxoJp1apVS3ny5LH8DMB8oqKiLFdaXrp0SVWrVtXx48dVoEABubi42Lg6ZBeEHZhWkyZNHvkzAPPYs2ePmjdvruPHj+uXX37RzJkz1aRJEzVv3lzbt2+3dXnIRmx+SRiNltVt4cKFRv78+VP1u7i4GAsXLrR5fTQaLX2tYMGCRrFixQxJhp2dnTF8+HBj7dq1xpQpU4wCBQrYvD5a9mics4NcITk5WcWKFdP169et+j09PXX16lXL4S4AgPlwGAum5ubmJjs7O9nZ2cnNzU3x8fGWMQcHB7Vu3VrXrl2zYYUA0upRs6E/zoObhCJ3I+zA1G7duiXDMGQYhk6dOpVq3DAMjRkzxgaVAUivB5/rJ7Gzs5NhGHJ05M8cCDswucaNG8vOzk47duxQp06ddPPmTctYYmKiwsLCdOXKFRtWCCCtGjdubOsSkMNwzg5yBW9vb124cOEfvw0CAMyHsINcJV++fI+8f05gYKCNKgKQHkuWLNEHH3yg27dvS5KqV6+uoKAgJScn27gyZEeEHeQKhQoV0qJFi/Taa689cpzj+kDO8r9XWEZHR6tmzZoKDQ21cWXIjuxtXQDwLMyYMUMFChRQ3bp1dffuXbVq1Uo9e/bU6dOn1a5dO1uXByCN7OzsnvgYeBhfZ5ErNGnSRO3bt9fhw4d17949hYWFadu2bYqJidHIkSO1ceNGW5cIAMgihB3kCq6urpb5dKKiolS4cGGdPn1agYGBql27to2rA5AelStXtlxhaWdnp4oVKyp//vxWy3A+HiTCDnKJkydPqkKFCgoLC9OxY8f03nvv6fz58+rXrx+XngM51Pbt260OX61fv17S/fmzmGcHD+NfAXKFmTNnqlixYpKkcePGafPmzerWrZsSExPl5+dn2+IApFmZMmVsXQJyEK7GQq6UL18+VaxYUeHh4YqMjLR1OQCALETYAQAApsZhLJjW1KlTn3rZoUOHZmElAABbIuzAtGrVqvVUy3ELCQAwNw5jAQAAU2PPDgAgxytUqJAqVKgg6f5UEzdu3LBxRchOCDswrVWrVj31sp06dcrCSgBkFRcXF82ePVvdu3eXg4ODJCklJUVLly7VgAEDdPfuXRtXiOyAe2PBtKKjo5+6AciZpk2bJl9fX7Vr104FChRQgQIF1L59e/n6+qbpIgWYG+fsAAByrOvXr+tf//qXdu/ebdXfqFEjrVy5UkWKFLFRZchO2LMDAMixXFxcFBERkar/2rVrcnFxsUFFyI7YswPTOnz4sJo2bapbt27pyJEjT7zE3MfH5xlWBiCzbNu2TZGRkerRo4cSEhIkSXnz5tWSJUv03HPPqXnz5jauENkBJyjDtNauXWv5n9/atWuZTwcwoUGDBsnf318XL17UsWPHJEk1atRQfHy8WrZsaePqkF2wZwcAkKPly5dP3bp1U8WKFSVJwcHBWr58ueLj421cGbILwg5yhbNnz6pOnTq6efOmVb+Hh4eOHDmiF154wUaVAQCyGoexkCs8//zzljk4Hubs7KySJUvaoCIAmSEsLEy7du3S7t27tXPnToWGhtq6JGRDhB2YWtu2bS0/t2zZ0mpOHQcHBzVt2pT/OQI52CeffKJXX31Vw4cP13fffadLly5p9+7d2r17t3bt2qUzZ87YukRkAxzGgqmlpKRIun+zTzs7O6uxpKQknT9/XkOHDtWGDRtsUR6ATOTl5SVfX1+1adNGXbt2lb29vRwd+U4P9uzA5B4cujp37pzq1KmjyMhIG1cEILPly5dPL7/8sho1aqTGjRurVq1aOn78uHbt2mXr0pBNsGcHuZaHhwe3igByuH379qlWrVoKDg62nLuzZ88e3bp1y9alIRthBmXkCsOGDVOXLl0sj1euXKmbN2/q4sWLql69ug0rA5ARFStWVFxcnEJCQhQSEqLg4GCCDlIh7CBX6Nevny5cuCBJatasmZo1a6ZWrVpp06ZNmjx5so2rA5Benp6eatKkif7880+1bNlS+/bt08WLF7V8+XL9+9//tnV5yEYMGs3s7c6dO0bJkiUNScaMGTOMb775xpBk/N///Z9x8+ZNm9dHo9Eyp/n4+BiLFi0yEhMTjeTkZJvXQ8sejT07yBWioqJUqlQpSVKrVq20bds2SZKdnd0j598BkL199tlnypcvn2rVqqXBgwdr7dq1ioyMVEBAgKpXr67Zs2frjTfesHWZyEZsnrhotKxus2fPNkJDQ40tW7YY169fN1xdXQ1JRteuXY3Dhw/bvD4ajZa2lpycbBQuXNhISkoyDh48aEyePNlo06aN4e7ubvPaaNmvcek5coXBgwfr/PnzKlWqlIYNG6a4uDhJUrFixTRv3jwbVwcgrR7Mm/Xcc88pNjbWxtUgu+PScwBAjpOSkqKiRYvqxo0bti4FOQBhB6bVtm1bbdq0ScnJyVa3jXiUdevWPaOqAGSGlJQURUdHyzCe/CfM09PzGVWE7IywA9NKSUmRl5eXrl+/brltxKMYhsGU8kAOk5KSoo8++ugfJwZdunTpM6oI2RlhBwCQ4zz8ZQb4J3ydhenZ2dnJz89Pb7zxhp5//nkZhqFz585p1apVWrZsma3LA5AO/3T4CngY8+zA9H7//Xd9//33KlGihAIDA3XixAk9//zzWrx4sdasWWPr8gCkw4OrsYCnZfPr32m0rGp+fn5GdHS00ahRo1RjjRs3NqKjo43u3bvbvE4ajUajZV3jnB2Ymr+/v3bs2KFJkyY9cnzkyJHy9fVVq1atnnFlAIBnhcNYMLXq1atr8+bNjx3ftGmTatSo8QwrAgA8a4QdmNpzzz2niIiIx45HRESoYMGCz7AiAMCzRtiBqTk4OCg5Ofmx4ykpKcyxAwAmx//lYWp2dnZavHixEhISHjnu7Oz8jCsCADxrhB2Y2pIlS/5xGWZYBQBz42osAABgapyzAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATI2wAwAATO3/BQzuIGrMnrP+AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\flowsheets\\hda_flowsheet_with_costing_doc_25_2.png" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -1860,9 +2511,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing_test.ipynb b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing_test.ipynb index feceb84b..586036df 100644 --- a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing_test.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing_test.ipynb @@ -1,562 +1,563 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# HDA Flowsheet Costing\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "## Note\n", + "\n", + "This example will demonstrate adding capital and operating costs to the two HDA examples, the basic [HDA with Flash](../tut/hda_flowsheet_solution_test.ipynb) and a comparison with the HDA with Distillation.\n", + "\n", + "\n", + "## Learning outcomes\n", + "\n", + "- Import external pre-built steady-state flowsheets using the IDAES unit model library\n", + "- Define and add costing blocks using the IDAES Process Costing Framework\n", + "- Fomulate and solve a process economics optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Hydrodealkylation is a chemical reaction that often involves reacting\n", + "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", + "simpler aromatic hydrocarbon devoid of functional groups. In this\n", + "example, toluene will be reacted with hydrogen gas at high temperatures\n", + " to form benzene via the following reaction:\n", + "\n", + "**C6H5CH3 + H2 \u2192 C6H6 + CH4**\n", + "\n", + "\n", + "This reaction is often accompanied by an equilibrium side reaction\n", + "which forms diphenyl, which we will neglect for this example.\n", + "\n", + "This example is based on the 1967 AIChE Student Contest problem as\n", + "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", + "McGraw-Hill.\n", + "\n", + "Users may refer to the prior examples linked at the top of this notebook for detailed process descriptions of the two HDA configurations. As before, the properties required for this module are defined in\n", + "\n", + "- `hda_ideal_VLE.py`\n", + "- `idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE`\n", + "- `hda_reaction.py`\n", + "\n", + "Additionally, we will be importing externally-defined flowsheets for the two HDA configurations from\n", + "\n", + "- `hda_flowsheets_for_costing_notebook.py`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Import and run HDA Flowsheets\n", + "First, we will generate solved flowsheets for each HDA model. The external scripts build and set inputs for the flowsheets, initialize unit models and streams, and solve the flowsheets before returning the model objects. Note that the HDA flowsheets contain all unit models and stream connections, and no costing equations." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The flowsheet utilizes the Wegstein method to iteratively solve circular dependencies such as recycle streams, and is intended to approach a feasible solution. As such, the calls below will fail to converge after 3 iterations and pass to IPOPT to obtain an optimal solution as expected:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# Source file for prebuilt flowsheets\n", + "from hda_flowsheets_for_costing_notebook import hda_with_flash\n", + "\n", + "# Build hda model with second flash unit and return model object\n", + "m = hda_with_flash(tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## IDAES Process Costing Framework\n", + "IDAES provides a library of capital costing correlations based on those in the following source:\n", + "\n", + "*Process and Product Design Principles: Synthesis, Analysis, and Evaluation*. Seider, Seader, Lewin, Windagdo, 3rd Ed. John Wiley and Sons Chapter 22. Cost Accounting and Capital Cost Estimation 22.2 Cost Indexes and Capital Investment.\n", + "\n", + "Currently, IDAES supports calculation of capital costing for a wide array of unit operations, vesseel sizing and material properties, and specific unit options such as column tray types and heat exchanger configurations. Users may find further information on specific costing methods and options in the IDAES Process Costing Framework documentation (link pending).\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Add Operating Cost Equations\n", + "Before adding capital costing blocks, we will add operating cost equations taken from the basic [HDA with Flash](../tut/hda_flowsheet_solution_test.ipynb) and the HDA with Distillation examples. The examples assume constant cooling and heating coefficients over an annual cost basis. The IDAES Generic Costing Framework does not currently support variable cost calculations." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Required imports\n", + "from pyomo.environ import Expression\n", + "\n", + "# Operating costs for HDA with second flash (model m)\n", + "m.fs.cooling_cost = Expression(\n", + " expr=0.212e-7 * (-m.fs.F101.heat_duty[0]) + 0.212e-7 * (-m.fs.R101.heat_duty[0])\n", + ")\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", + ")\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Add Capital Costing\n", + "Below, we will add add capital costing blocks to the imported flowsheets and evaluate the economic impact of replacing the second Flash with a Distillation column. First, let's import and define the main flowsheet costing block:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Import costing methods - classes, heaters, vessels, compressors, columns\n", + "from idaes.models.costing.SSLW import (\n", + " SSLWCosting,\n", + " SSLWCostingData,\n", + ")\n", + "from idaes.core import UnitModelCostingBlock\n", + "\n", + "# Costing block\n", + "m.fs.costing = SSLWCosting()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we will build the relevant costing blocks for the equipment we wish to cost. Note how the costing block, methods and flags are passed as arguments in the costing block call itself. Each unit model will have a single costing block, but each flowsheet model (m and n) will also have a single costing block for flowsheet-level properties.\n", + "\n", + "Users should note that IDAES costing methods support a wide array of heating sources (e.g. fired, steam boiler, hot water) and do not support direct capital costing of coolers. If users wish to cost Heater units acting as coolers, it is necessary to cost a \"dummy\" [0D shell and tube exchanger](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/heat_exchanger.html) with appropriate aliased hot stream properties and proper cooling water properties. This is not demonstrated here, as the HDA examples take advantage of Flash and Condenser operations to recover liquid product.\n", + "\n", + "Capital costing is independent of unit model connections, and building cost equations may be done piecewise in this fashion. Default options are passed explicitly to demonstrate proper syntax and usage. Now that all required properties are defined, let's cost our models connecting costing blocks, methods and unit models in each flowsheet." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Flexibility of Costing Block Definitions\n", + "IDAES supports many ways to define batches of costing blocks, and several are shown in the example. Users may employ whichever method fits their modeling needs for explicit or concise code. In the code below, note how the unit model itself is never passed to the costing method; when the full model is executed, the costing block will automatically connect its parent block with child equation blocks.\n", + "\n", + "`Compressor` unit models with isothermal or adiabatic thermodynamics are too simple to cost and are therefore excluded from the economic analysis." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's define costing for the heater unit:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.costing.SSLW import (\n", + " HeaterMaterial,\n", + " HeaterSource,\n", + ")\n", + "\n", + "# Costing for heater - m.fs.H101\n", + "m.fs.H101.costing = UnitModelCostingBlock(\n", + " flowsheet_costing_block=m.fs.costing,\n", + " costing_method=SSLWCostingData.cost_fired_heater,\n", + " costing_method_arguments={\n", + " \"material_type\": HeaterMaterial.CarbonSteel,\n", + " \"heat_source\": HeaterSource.Fuel,\n", + " },\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The costing module provides a `unit_mapping` dictionary linking generic unit model classes with recommended costing methods. In this example, StoichiometricReactor and Flash vessels utilize different vessel costing methods with similar arguments. The diameter and length attributes need to exist in order to cost vessel sizing and material requirements, and we add them if they don't exist already. The `unit_mapping` method provides an opportunity to automatically select the correct vessel orientation (vertical or horizontal) based on the unit type; passing a `StoichiometricReactor` or `PFR` class object will call the `cost_horizontal_vessel` method, while passing a `Flash` or `CSTR` class object will call the `cost_vertical_vessel` method.\n", + "\n", + "All vessels are assigned costing succinctly via a loop below - users may define each block individually if desired:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.costing.SSLW import (\n", + " VesselMaterial,\n", + " TrayType,\n", + " TrayMaterial,\n", + ")\n", + "\n", + "from idaes.core.util.constants import Constants\n", + "from pyomo.environ import Var, Constraint, units as pyunits, Param, value\n", + "from idaes.models.unit_models import StoichiometricReactor, Flash\n", + "\n", + "# Map unit models to unit classes\n", + "# Will pass to unit_mapping which calls costing methods based on unit class\n", + "unit_class_mapping = {\n", + " m.fs.R101: StoichiometricReactor,\n", + " m.fs.F101: Flash,\n", + " m.fs.F102: Flash,\n", + "}\n", + "\n", + "# Costing for vessels - m.fs.R101, m.fs.F101, m.fs.F102\n", + "\n", + "# Loop over units\n", + "for unit in [m.fs.R101, m.fs.F101, m.fs.F102]:\n", + " # Get correct unit class for unit model\n", + " unit_class = unit_class_mapping[unit]\n", + "\n", + " # Add dimension variables and constraint if they don't exist\n", + " if not hasattr(unit, \"diameter\"):\n", + " unit.diameter = Var(initialize=1, units=pyunits.m)\n", + " if not hasattr(unit, \"length\"):\n", + " unit.length = Var(initialize=1, units=pyunits.m)\n", + " if hasattr(unit, \"volume\"): # if volume exists, set diameter from volume\n", + " unit.volume_eq = Constraint(\n", + " expr=unit.volume[0] == unit.length * unit.diameter**2 * 0.25 * Constants.pi\n", + " )\n", + " else: # fix diameter directly\n", + " unit.diameter.fix(0.2214 * pyunits.m)\n", + " # Either way, fix L/D to calculate L from D\n", + " unit.L_over_D = Constraint(expr=unit.length == 3 * unit.diameter)\n", + "\n", + " # Define vessel costing\n", + " unit.costing = UnitModelCostingBlock(\n", + " flowsheet_costing_block=unit.parent_block().costing, # e.g. m.fs.R101.costing\n", + " costing_method=SSLWCostingData.unit_mapping[\n", + " unit_class\n", + " ], # e.g. cost_vertical_vessel()\n", + " costing_method_arguments={\n", + " \"material_type\": VesselMaterial.CarbonSteel,\n", + " \"shell_thickness\": 1.25 * pyunits.inch,\n", + " },\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Solve Flowsheet Costing Blocks\n", + "Now, we may solve the full flowsheet for all costing blocks:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Eefine solver\n", + "from idaes.core.solvers import get_solver\n", + "\n", + "solver = get_solver()\n", + "\n", + "# Check that the degrees of freedom is zero\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "\n", + "assert degrees_of_freedom(m) == 0" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Check physical units consistency, solve and check solver status\n", + "from pyomo.environ import TerminationCondition\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "\n", + "assert_units_consistent(m)\n", + "results = solver.solve(m, tee=True, symbolic_solver_labels=True)\n", + "assert results.solver.termination_condition == TerminationCondition.optimal" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For comparison, we will call and build the HDA flowsheet replacing the second `Flash` with a `TrayColumn` distillation unit model. The flowsheet costing occurs in the external script `hda_flowsheets_for_costing_notebook.py` and is not shown here:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from pyomo.common.log import LoggingIntercept\n", + "import logging\n", + "from io import StringIO\n", + "\n", + "stream = StringIO()\n", + "with LoggingIntercept(stream, \"idaes\", logging.WARNING):\n", + " # Source file for prebuilt flowsheets\n", + " from hda_flowsheets_for_costing_notebook import hda_with_distillation\n", + "\n", + " # Build hda model with distillation column and return model object\n", + " n = hda_with_distillation(tee=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Results Comparison and Visualization\n", + "For the two flowsheets above, let's sum the total operating and capital costs of each scenario. We will display overall process economics results and compare the two flowsheets:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Imports and data gathering\n", + "from matplotlib import pyplot as plt\n", + "\n", + "plt.style.use(\"dark_background\") # if using browser in dark mode, uncomment this line\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "# Automatically get units that we costed - this will exclude C101 for both flowsheets\n", + "\n", + "two_flash_unitlist = [\n", + " getattr(m.fs, unit) for unit in dir(m.fs) if hasattr(getattr(m.fs, unit), \"costing\")\n", + "]\n", + "distillation_unitlist = [\n", + " getattr(n.fs, unit) for unit in dir(n.fs) if hasattr(getattr(n.fs, unit), \"costing\")\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Compare equipment purchase costs (actual capital costs)\n", + "\n", + "two_flash_capcost = {\n", + " unit.name: value(unit.costing.capital_cost / 1e3) for unit in two_flash_unitlist\n", + "}\n", + "distillation_capcost = {\n", + " unit.name: value(unit.costing.capital_cost / 1e3) for unit in distillation_unitlist\n", + "}\n", + "\n", + "two_flash_capdf = pd.DataFrame(\n", + " list(two_flash_capcost.items()), columns=[\"Equipment\", \"Two Flash\"]\n", + ").set_index(\"Equipment\")\n", + "distillation_capdf = pd.DataFrame(\n", + " list(distillation_capcost.items()), columns=[\"Equipment\", \"Distillation\"]\n", + ").set_index(\"Equipment\")\n", + "\n", + "# Add dataframes, merge same indices, replace NaNs with 0s, and transpose\n", + "capcosts = two_flash_capdf.add(distillation_capdf, fill_value=0).fillna(0).transpose()\n", + "\n", + "# Sort according to an easier order to view\n", + "capcosts = capcosts[[\"fs.H101\", \"fs.R101\", \"fs.F101\", \"fs.F102\", \"fs.D101\", \"fs.H102\"]]\n", + "\n", + "print(\"Costs in $1000:\")\n", + "display(capcosts) # view dataframe before plotting\n", + "\n", + "capplot = capcosts.plot(\n", + " kind=\"bar\", stacked=True, title=\"HDA Total Capital Costs\", ylabel=\"$1000\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Compare operating costs (per year)\n", + "\n", + "two_flash_opcost = {\n", + " \"cooling\": value(3600 * 24 * 365 * m.fs.cooling_cost / 1e3),\n", + " \"heating\": value(3600 * 24 * 365 * m.fs.heating_cost / 1e3),\n", + "}\n", + "distillation_opcost = {\n", + " \"cooling\": value(3600 * 24 * 365 * n.fs.cooling_cost / 1e3),\n", + " \"heating\": value(3600 * 24 * 365 * n.fs.heating_cost / 1e3),\n", + "}\n", + "\n", + "two_flash_opdf = pd.DataFrame(\n", + " list(two_flash_opcost.items()), columns=[\"Utilities\", \"Two Flash\"]\n", + ").set_index(\"Utilities\")\n", + "distillation_opdf = pd.DataFrame(\n", + " list(distillation_opcost.items()), columns=[\"Utilities\", \"Distillation\"]\n", + ").set_index(\"Utilities\")\n", + "\n", + "# Add dataframes, merge same indices, replace NaNs with 0s, and transpose\n", + "opcosts = two_flash_opdf.add(distillation_opdf, fill_value=0).fillna(0).transpose()\n", + "\n", + "print(\"Costs in $1000:\")\n", + "display(opcosts) # view dataframe before plotting\n", + "\n", + "opplot = opcosts.plot(\n", + " kind=\"bar\", stacked=True, title=\"HDA Operating Costs\", ylabel=\"$1000/year\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Compare total costs (capital costs and operating costs)\n", + "\n", + "two_flash_totcost = {\n", + " \"capital\": sum(two_flash_capcost[idx] for idx in two_flash_capcost),\n", + " \"operating\": value(m.fs.operating_cost) / 1e3,\n", + "}\n", + "distillation_totcost = {\n", + " \"capital\": sum(distillation_capcost[idx] for idx in distillation_capcost),\n", + " \"operating\": value(n.fs.operating_cost) / 1e3,\n", + "}\n", + "\n", + "two_flash_totdf = pd.DataFrame(\n", + " list(two_flash_totcost.items()), columns=[\"Costs\", \"Two Flash\"]\n", + ").set_index(\"Costs\")\n", + "distillation_totdf = pd.DataFrame(\n", + " list(distillation_totcost.items()), columns=[\"Costs\", \"Distillation\"]\n", + ").set_index(\"Costs\")\n", + "\n", + "# Add dataframes, merge same indices, replace NaNs with 0s, and transpose\n", + "totcosts = two_flash_totdf.add(distillation_totdf, fill_value=0).fillna(0).transpose()\n", + "\n", + "print(\"Costs in $1000:\")\n", + "display(totcosts) # view dataframe before plotting\n", + "\n", + "totplot = totcosts.plot(\n", + " kind=\"bar\", stacked=True, title=\"HDA Total Plant Cost (TPC)\", ylabel=\"$1000/year\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, let's compare the total costs on a production basis. This will account for the greater efficiency provided by the distillation column relative to the less-expensive second flash unit:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "two_flash_cost = value(1e3 * sum(two_flash_totcost[idx] for idx in two_flash_totcost))\n", + "two_flash_prod = value(\n", + " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"] * 365 * 24 * 3600\n", + ")\n", + "distillation_cost = value(\n", + " 1e3 * sum(distillation_totcost[idx] for idx in distillation_totcost)\n", + ")\n", + "distillation_prod = value(n.fs.D101.condenser.distillate.flow_mol[0] * 365 * 24 * 3600)\n", + "\n", + "print(\n", + " f\"Two flash case over one year: ${two_flash_cost/1e3:0.0f}K / {two_flash_prod/1e3:0.0f} kmol benzene = ${two_flash_cost/(two_flash_prod/1e3):0.2f} per kmol benzene produced\"\n", + ")\n", + "print(\n", + " f\"Distillation case over one year: ${distillation_cost/1e3:0.0f}K / {distillation_prod/1e3:0.0f} kmol benzene = ${distillation_cost/(distillation_prod/1e3):0.2f} per kmol benzene produced\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Summary\n", + "In this example, IDAES Process Costing Framework methods were applied to two HDA flowsheets for capital cost estimation. The costing blocks calls showcased multiple methods to define unit costing, demonstrating the flexibility and best practice of the costing framework. In the basic examples, the two-flash HDA did not include costing and the distillation HDA estimated a reactor capital cost comprising 3.3% of the total plant cost (TPC). With more rigorous costing, IDAES obtained total capital costs of 8.5% TPC (two flash HDA) and 9.6% (distillation HDA) and better modeled the impact of equipment cost on process economics. As printed above, the IDAES Process Costing Framework confirmed that replacing the second flash drum with a distillation column results in increased equipment costs, increased production and decreased cost per unit product." + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + } }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# HDA Flowsheet Costing\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "## Note\n", - "\n", - "This example will demonstrate adding capital and operating costs to the two HDA examples, the basic [HDA with Flash](../tut/hda_flowsheet_solution_test.ipynb) and a comparison with the HDA with Distillation.\n", - "\n", - "\n", - "## Learning outcomes\n", - "\n", - "- Import external pre-built steady-state flowsheets using the IDAES unit model library\n", - "- Define and add costing blocks using the IDAES Process Costing Framework\n", - "- Fomulate and solve a process economics optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Hydrodealkylation is a chemical reaction that often involves reacting\n", - "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", - "simpler aromatic hydrocarbon devoid of functional groups. In this\n", - "example, toluene will be reacted with hydrogen gas at high temperatures\n", - " to form benzene via the following reaction:\n", - "\n", - "**C6H5CH3 + H2 → C6H6 + CH4**\n", - "\n", - "\n", - "This reaction is often accompanied by an equilibrium side reaction\n", - "which forms diphenyl, which we will neglect for this example.\n", - "\n", - "This example is based on the 1967 AIChE Student Contest problem as\n", - "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", - "McGraw-Hill.\n", - "\n", - "Users may refer to the prior examples linked at the top of this notebook for detailed process descriptions of the two HDA configurations. As before, the properties required for this module are defined in\n", - "\n", - "- `hda_ideal_VLE.py`\n", - "- `idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE`\n", - "- `hda_reaction.py`\n", - "\n", - "Additionally, we will be importing externally-defined flowsheets for the two HDA configurations from\n", - "\n", - "- `hda_flowsheets_for_costing_notebook.py`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Import and run HDA Flowsheets\n", - "First, we will generate solved flowsheets for each HDA model. The external scripts build and set inputs for the flowsheets, initialize unit models and streams, and solve the flowsheets before returning the model objects. Note that the HDA flowsheets contain all unit models and stream connections, and no costing equations." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The flowsheet utilizes the Wegstein method to iteratively solve circular dependencies such as recycle streams, and is intended to approach a feasible solution. As such, the calls below will fail to converge after 3 iterations and pass to IPOPT to obtain an optimal solution as expected:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# Source file for prebuilt flowsheets\n", - "from hda_flowsheets_for_costing_notebook import hda_with_flash\n", - "\n", - "# Build hda model with second flash unit and return model object\n", - "m = hda_with_flash(tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## IDAES Process Costing Framework\n", - "IDAES provides a library of capital costing correlations based on those in the following source:\n", - "\n", - "*Process and Product Design Principles: Synthesis, Analysis, and Evaluation*. Seider, Seader, Lewin, Windagdo, 3rd Ed. John Wiley and Sons Chapter 22. Cost Accounting and Capital Cost Estimation 22.2 Cost Indexes and Capital Investment.\n", - "\n", - "Currently, IDAES supports calculation of capital costing for a wide array of unit operations, vesseel sizing and material properties, and specific unit options such as column tray types and heat exchanger configurations. Users may find further information on specific costing methods and options in the IDAES Process Costing Framework documentation (link pending).\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Add Operating Cost Equations\n", - "Before adding capital costing blocks, we will add operating cost equations taken from the basic [HDA with Flash](../tut/hda_flowsheet_solution_test.ipynb) and the HDA with Distillation examples. The examples assume constant cooling and heating coefficients over an annual cost basis. The IDAES Generic Costing Framework does not currently support variable cost calculations." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Required imports\n", - "from pyomo.environ import Expression\n", - "\n", - "# Operating costs for HDA with second flash (model m)\n", - "m.fs.cooling_cost = Expression(\n", - " expr=0.212e-7 * (-m.fs.F101.heat_duty[0]) + 0.212e-7 * (-m.fs.R101.heat_duty[0])\n", - ")\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", - ")\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Add Capital Costing\n", - "Below, we will add add capital costing blocks to the imported flowsheets and evaluate the economic impact of replacing the second Flash with a Distillation column. First, let's import and define the main flowsheet costing block:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Import costing methods - classes, heaters, vessels, compressors, columns\n", - "from idaes.models.costing.SSLW import (\n", - " SSLWCosting,\n", - " SSLWCostingData,\n", - ")\n", - "from idaes.core import UnitModelCostingBlock\n", - "\n", - "# Costing block\n", - "m.fs.costing = SSLWCosting()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we will build the relevant costing blocks for the equipment we wish to cost. Note how the costing block, methods and flags are passed as arguments in the costing block call itself. Each unit model will have a single costing block, but each flowsheet model (m and n) will also have a single costing block for flowsheet-level properties.\n", - "\n", - "Users should note that IDAES costing methods support a wide array of heating sources (e.g. fired, steam boiler, hot water) and do not support direct capital costing of coolers. If users wish to cost Heater units acting as coolers, it is necessary to cost a \"dummy\" [0D shell and tube exchanger](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/heat_exchanger.html) with appropriate aliased hot stream properties and proper cooling water properties. This is not demonstrated here, as the HDA examples take advantage of Flash and Condenser operations to recover liquid product.\n", - "\n", - "Capital costing is independent of unit model connections, and building cost equations may be done piecewise in this fashion. Default options are passed explicitly to demonstrate proper syntax and usage. Now that all required properties are defined, let's cost our models connecting costing blocks, methods and unit models in each flowsheet." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Flexibility of Costing Block Definitions\n", - "IDAES supports many ways to define batches of costing blocks, and several are shown in the example. Users may employ whichever method fits their modeling needs for explicit or concise code. In the code below, note how the unit model itself is never passed to the costing method; when the full model is executed, the costing block will automatically connect its parent block with child equation blocks.\n", - "\n", - "`Compressor` unit models with isothermal or adiabatic thermodynamics are too simple to cost and are therefore excluded from the economic analysis." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's define costing for the heater unit:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.costing.SSLW import (\n", - " HeaterMaterial,\n", - " HeaterSource,\n", - ")\n", - "\n", - "# Costing for heater - m.fs.H101\n", - "m.fs.H101.costing = UnitModelCostingBlock(\n", - " flowsheet_costing_block=m.fs.costing,\n", - " costing_method=SSLWCostingData.cost_fired_heater,\n", - " costing_method_arguments={\n", - " \"material_type\": HeaterMaterial.CarbonSteel,\n", - " \"heat_source\": HeaterSource.Fuel,\n", - " },\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The costing module provides a `unit_mapping` dictionary linking generic unit model classes with recommended costing methods. In this example, StoichiometricReactor and Flash vessels utilize different vessel costing methods with similar arguments. The diameter and length attributes need to exist in order to cost vessel sizing and material requirements, and we add them if they don't exist already. The `unit_mapping` method provides an opportunity to automatically select the correct vessel orientation (vertical or horizontal) based on the unit type; passing a `StoichiometricReactor` or `PFR` class object will call the `cost_horizontal_vessel` method, while passing a `Flash` or `CSTR` class object will call the `cost_vertical_vessel` method.\n", - "\n", - "All vessels are assigned costing succinctly via a loop below - users may define each block individually if desired:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.costing.SSLW import (\n", - " VesselMaterial,\n", - " TrayType,\n", - " TrayMaterial,\n", - ")\n", - "\n", - "from idaes.core.util.constants import Constants\n", - "from pyomo.environ import Var, Constraint, units as pyunits, Param, value\n", - "from idaes.models.unit_models import StoichiometricReactor, Flash\n", - "\n", - "# Map unit models to unit classes\n", - "# Will pass to unit_mapping which calls costing methods based on unit class\n", - "unit_class_mapping = {\n", - " m.fs.R101: StoichiometricReactor,\n", - " m.fs.F101: Flash,\n", - " m.fs.F102: Flash,\n", - "}\n", - "\n", - "# Costing for vessels - m.fs.R101, m.fs.F101, m.fs.F102\n", - "\n", - "# Loop over units\n", - "for unit in [m.fs.R101, m.fs.F101, m.fs.F102]:\n", - " # Get correct unit class for unit model\n", - " unit_class = unit_class_mapping[unit]\n", - "\n", - " # Add dimension variables and constraint if they don't exist\n", - " if not hasattr(unit, \"diameter\"):\n", - " unit.diameter = Var(initialize=1, units=pyunits.m)\n", - " if not hasattr(unit, \"length\"):\n", - " unit.length = Var(initialize=1, units=pyunits.m)\n", - " if hasattr(unit, \"volume\"): # if volume exists, set diameter from volume\n", - " unit.volume_eq = Constraint(\n", - " expr=unit.volume[0] == unit.length * unit.diameter**2 * 0.25 * Constants.pi\n", - " )\n", - " else: # fix diameter directly\n", - " unit.diameter.fix(0.2214 * pyunits.m)\n", - " # Either way, fix L/D to calculate L from D\n", - " unit.L_over_D = Constraint(expr=unit.length == 3 * unit.diameter)\n", - "\n", - " # Define vessel costing\n", - " unit.costing = UnitModelCostingBlock(\n", - " flowsheet_costing_block=unit.parent_block().costing, # e.g. m.fs.R101.costing\n", - " costing_method=SSLWCostingData.unit_mapping[\n", - " unit_class\n", - " ], # e.g. cost_vertical_vessel()\n", - " costing_method_arguments={\n", - " \"material_type\": VesselMaterial.CarbonSteel,\n", - " \"shell_thickness\": 1.25 * pyunits.inch,\n", - " },\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solve Flowsheet Costing Blocks\n", - "Now, we may solve the full flowsheet for all costing blocks:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# Eefine solver\n", - "from idaes.core.solvers import get_solver\n", - "\n", - "solver = get_solver()\n", - "\n", - "# Check that the degrees of freedom is zero\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "\n", - "assert degrees_of_freedom(m) == 0" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Check physical units consistency, solve and check solver status\n", - "from pyomo.environ import TerminationCondition\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "\n", - "assert_units_consistent(m)\n", - "results = solver.solve(m, tee=True, symbolic_solver_labels=True)\n", - "assert results.solver.termination_condition == TerminationCondition.optimal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For comparison, we will call and build the HDA flowsheet replacing the second `Flash` with a `TrayColumn` distillation unit model. The flowsheet costing occurs in the external script `hda_flowsheets_for_costing_notebook.py` and is not shown here:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "from pyomo.common.log import LoggingIntercept\n", - "import logging\n", - "from io import StringIO\n", - "\n", - "stream = StringIO()\n", - "with LoggingIntercept(stream, \"idaes\", logging.WARNING):\n", - " # Source file for prebuilt flowsheets\n", - " from hda_flowsheets_for_costing_notebook import hda_with_distillation\n", - "\n", - " # Build hda model with distillation column and return model object\n", - " n = hda_with_distillation(tee=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Results Comparison and Visualization\n", - "For the two flowsheets above, let's sum the total operating and capital costs of each scenario. We will display overall process economics results and compare the two flowsheets:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# Imports and data gathering\n", - "from matplotlib import pyplot as plt\n", - "\n", - "plt.style.use(\"dark_background\") # if using browser in dark mode, uncomment this line\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "# Automatically get units that we costed - this will exclude C101 for both flowsheets\n", - "\n", - "two_flash_unitlist = [\n", - " getattr(m.fs, unit) for unit in dir(m.fs) if hasattr(getattr(m.fs, unit), \"costing\")\n", - "]\n", - "distillation_unitlist = [\n", - " getattr(n.fs, unit) for unit in dir(n.fs) if hasattr(getattr(n.fs, unit), \"costing\")\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# Compare equipment purchase costs (actual capital costs)\n", - "\n", - "two_flash_capcost = {\n", - " unit.name: value(unit.costing.capital_cost / 1e3) for unit in two_flash_unitlist\n", - "}\n", - "distillation_capcost = {\n", - " unit.name: value(unit.costing.capital_cost / 1e3) for unit in distillation_unitlist\n", - "}\n", - "\n", - "two_flash_capdf = pd.DataFrame(\n", - " list(two_flash_capcost.items()), columns=[\"Equipment\", \"Two Flash\"]\n", - ").set_index(\"Equipment\")\n", - "distillation_capdf = pd.DataFrame(\n", - " list(distillation_capcost.items()), columns=[\"Equipment\", \"Distillation\"]\n", - ").set_index(\"Equipment\")\n", - "\n", - "# Add dataframes, merge same indices, replace NaNs with 0s, and transpose\n", - "capcosts = two_flash_capdf.add(distillation_capdf, fill_value=0).fillna(0).transpose()\n", - "\n", - "# Sort according to an easier order to view\n", - "capcosts = capcosts[[\"fs.H101\", \"fs.R101\", \"fs.F101\", \"fs.F102\", \"fs.D101\", \"fs.H102\"]]\n", - "\n", - "print(\"Costs in $1000:\")\n", - "display(capcosts) # view dataframe before plotting\n", - "\n", - "capplot = capcosts.plot(\n", - " kind=\"bar\", stacked=True, title=\"HDA Total Capital Costs\", ylabel=\"$1000\"\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# Compare operating costs (per year)\n", - "\n", - "two_flash_opcost = {\n", - " \"cooling\": value(3600 * 24 * 365 * m.fs.cooling_cost / 1e3),\n", - " \"heating\": value(3600 * 24 * 365 * m.fs.heating_cost / 1e3),\n", - "}\n", - "distillation_opcost = {\n", - " \"cooling\": value(3600 * 24 * 365 * n.fs.cooling_cost / 1e3),\n", - " \"heating\": value(3600 * 24 * 365 * n.fs.heating_cost / 1e3),\n", - "}\n", - "\n", - "two_flash_opdf = pd.DataFrame(\n", - " list(two_flash_opcost.items()), columns=[\"Utilities\", \"Two Flash\"]\n", - ").set_index(\"Utilities\")\n", - "distillation_opdf = pd.DataFrame(\n", - " list(distillation_opcost.items()), columns=[\"Utilities\", \"Distillation\"]\n", - ").set_index(\"Utilities\")\n", - "\n", - "# Add dataframes, merge same indices, replace NaNs with 0s, and transpose\n", - "opcosts = two_flash_opdf.add(distillation_opdf, fill_value=0).fillna(0).transpose()\n", - "\n", - "print(\"Costs in $1000:\")\n", - "display(opcosts) # view dataframe before plotting\n", - "\n", - "opplot = opcosts.plot(\n", - " kind=\"bar\", stacked=True, title=\"HDA Operating Costs\", ylabel=\"$1000/year\"\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# Compare total costs (capital costs and operating costs)\n", - "\n", - "two_flash_totcost = {\n", - " \"capital\": sum(two_flash_capcost[idx] for idx in two_flash_capcost),\n", - " \"operating\": value(m.fs.operating_cost) / 1e3,\n", - "}\n", - "distillation_totcost = {\n", - " \"capital\": sum(distillation_capcost[idx] for idx in distillation_capcost),\n", - " \"operating\": value(n.fs.operating_cost) / 1e3,\n", - "}\n", - "\n", - "two_flash_totdf = pd.DataFrame(\n", - " list(two_flash_totcost.items()), columns=[\"Costs\", \"Two Flash\"]\n", - ").set_index(\"Costs\")\n", - "distillation_totdf = pd.DataFrame(\n", - " list(distillation_totcost.items()), columns=[\"Costs\", \"Distillation\"]\n", - ").set_index(\"Costs\")\n", - "\n", - "# Add dataframes, merge same indices, replace NaNs with 0s, and transpose\n", - "totcosts = two_flash_totdf.add(distillation_totdf, fill_value=0).fillna(0).transpose()\n", - "\n", - "print(\"Costs in $1000:\")\n", - "display(totcosts) # view dataframe before plotting\n", - "\n", - "totplot = totcosts.plot(\n", - " kind=\"bar\", stacked=True, title=\"HDA Total Plant Cost (TPC)\", ylabel=\"$1000/year\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, let's compare the total costs on a production basis. This will account for the greater efficiency provided by the distillation column relative to the less-expensive second flash unit:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "two_flash_cost = value(1e3 * sum(two_flash_totcost[idx] for idx in two_flash_totcost))\n", - "two_flash_prod = value(\n", - " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"] * 365 * 24 * 3600\n", - ")\n", - "distillation_cost = value(\n", - " 1e3 * sum(distillation_totcost[idx] for idx in distillation_totcost)\n", - ")\n", - "distillation_prod = value(n.fs.D101.condenser.distillate.flow_mol[0] * 365 * 24 * 3600)\n", - "\n", - "print(\n", - " f\"Two flash case over one year: ${two_flash_cost/1e3:0.0f}K / {two_flash_prod/1e3:0.0f} kmol benzene = ${two_flash_cost/(two_flash_prod/1e3):0.2f} per kmol benzene produced\"\n", - ")\n", - "print(\n", - " f\"Distillation case over one year: ${distillation_cost/1e3:0.0f}K / {distillation_prod/1e3:0.0f} kmol benzene = ${distillation_cost/(distillation_prod/1e3):0.2f} per kmol benzene produced\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Summary\n", - "In this example, IDAES Process Costing Framework methods were applied to two HDA flowsheets for capital cost estimation. The costing blocks calls showcased multiple methods to define unit costing, demonstrating the flexibility and best practice of the costing framework. In the basic examples, the two-flash HDA did not include costing and the distillation HDA estimated a reactor capital cost comprising 3.3% of the total plant cost (TPC). With more rigorous costing, IDAES obtained total capital costs of 8.5% TPC (two flash HDA) and 9.6% (distillation HDA) and better modeled the impact of equipment cost on process economics. As printed above, the IDAES Process Costing Framework confirmed that replacing the second flash drum with a distillation column results in increased equipment costs, increased production and decreased cost per unit product." - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing_usr.ipynb b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing_usr.ipynb index 8c04460d..1dc29b42 100644 --- a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing_usr.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_costing_usr.ipynb @@ -1,562 +1,563 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# HDA Flowsheet Costing\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "## Note\n", + "\n", + "This example will demonstrate adding capital and operating costs to the two HDA examples, the basic [HDA with Flash](../tut/hda_flowsheet_solution_usr.ipynb) and a comparison with the HDA with Distillation.\n", + "\n", + "\n", + "## Learning outcomes\n", + "\n", + "- Import external pre-built steady-state flowsheets using the IDAES unit model library\n", + "- Define and add costing blocks using the IDAES Process Costing Framework\n", + "- Fomulate and solve a process economics optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Hydrodealkylation is a chemical reaction that often involves reacting\n", + "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", + "simpler aromatic hydrocarbon devoid of functional groups. In this\n", + "example, toluene will be reacted with hydrogen gas at high temperatures\n", + " to form benzene via the following reaction:\n", + "\n", + "**C6H5CH3 + H2 \u2192 C6H6 + CH4**\n", + "\n", + "\n", + "This reaction is often accompanied by an equilibrium side reaction\n", + "which forms diphenyl, which we will neglect for this example.\n", + "\n", + "This example is based on the 1967 AIChE Student Contest problem as\n", + "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", + "McGraw-Hill.\n", + "\n", + "Users may refer to the prior examples linked at the top of this notebook for detailed process descriptions of the two HDA configurations. As before, the properties required for this module are defined in\n", + "\n", + "- `hda_ideal_VLE.py`\n", + "- `idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE`\n", + "- `hda_reaction.py`\n", + "\n", + "Additionally, we will be importing externally-defined flowsheets for the two HDA configurations from\n", + "\n", + "- `hda_flowsheets_for_costing_notebook.py`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Import and run HDA Flowsheets\n", + "First, we will generate solved flowsheets for each HDA model. The external scripts build and set inputs for the flowsheets, initialize unit models and streams, and solve the flowsheets before returning the model objects. Note that the HDA flowsheets contain all unit models and stream connections, and no costing equations." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The flowsheet utilizes the Wegstein method to iteratively solve circular dependencies such as recycle streams, and is intended to approach a feasible solution. As such, the calls below will fail to converge after 3 iterations and pass to IPOPT to obtain an optimal solution as expected:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# Source file for prebuilt flowsheets\n", + "from hda_flowsheets_for_costing_notebook import hda_with_flash\n", + "\n", + "# Build hda model with second flash unit and return model object\n", + "m = hda_with_flash(tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## IDAES Process Costing Framework\n", + "IDAES provides a library of capital costing correlations based on those in the following source:\n", + "\n", + "*Process and Product Design Principles: Synthesis, Analysis, and Evaluation*. Seider, Seader, Lewin, Windagdo, 3rd Ed. John Wiley and Sons Chapter 22. Cost Accounting and Capital Cost Estimation 22.2 Cost Indexes and Capital Investment.\n", + "\n", + "Currently, IDAES supports calculation of capital costing for a wide array of unit operations, vesseel sizing and material properties, and specific unit options such as column tray types and heat exchanger configurations. Users may find further information on specific costing methods and options in the IDAES Process Costing Framework documentation (link pending).\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Add Operating Cost Equations\n", + "Before adding capital costing blocks, we will add operating cost equations taken from the basic [HDA with Flash](../tut/hda_flowsheet_solution_usr.ipynb) and the HDA with Distillation examples. The examples assume constant cooling and heating coefficients over an annual cost basis. The IDAES Generic Costing Framework does not currently support variable cost calculations." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Required imports\n", + "from pyomo.environ import Expression\n", + "\n", + "# Operating costs for HDA with second flash (model m)\n", + "m.fs.cooling_cost = Expression(\n", + " expr=0.212e-7 * (-m.fs.F101.heat_duty[0]) + 0.212e-7 * (-m.fs.R101.heat_duty[0])\n", + ")\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", + ")\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Add Capital Costing\n", + "Below, we will add add capital costing blocks to the imported flowsheets and evaluate the economic impact of replacing the second Flash with a Distillation column. First, let's import and define the main flowsheet costing block:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Import costing methods - classes, heaters, vessels, compressors, columns\n", + "from idaes.models.costing.SSLW import (\n", + " SSLWCosting,\n", + " SSLWCostingData,\n", + ")\n", + "from idaes.core import UnitModelCostingBlock\n", + "\n", + "# Costing block\n", + "m.fs.costing = SSLWCosting()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we will build the relevant costing blocks for the equipment we wish to cost. Note how the costing block, methods and flags are passed as arguments in the costing block call itself. Each unit model will have a single costing block, but each flowsheet model (m and n) will also have a single costing block for flowsheet-level properties.\n", + "\n", + "Users should note that IDAES costing methods support a wide array of heating sources (e.g. fired, steam boiler, hot water) and do not support direct capital costing of coolers. If users wish to cost Heater units acting as coolers, it is necessary to cost a \"dummy\" [0D shell and tube exchanger](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/heat_exchanger.html) with appropriate aliased hot stream properties and proper cooling water properties. This is not demonstrated here, as the HDA examples take advantage of Flash and Condenser operations to recover liquid product.\n", + "\n", + "Capital costing is independent of unit model connections, and building cost equations may be done piecewise in this fashion. Default options are passed explicitly to demonstrate proper syntax and usage. Now that all required properties are defined, let's cost our models connecting costing blocks, methods and unit models in each flowsheet." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Flexibility of Costing Block Definitions\n", + "IDAES supports many ways to define batches of costing blocks, and several are shown in the example. Users may employ whichever method fits their modeling needs for explicit or concise code. In the code below, note how the unit model itself is never passed to the costing method; when the full model is executed, the costing block will automatically connect its parent block with child equation blocks.\n", + "\n", + "`Compressor` unit models with isothermal or adiabatic thermodynamics are too simple to cost and are therefore excluded from the economic analysis." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's define costing for the heater unit:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.costing.SSLW import (\n", + " HeaterMaterial,\n", + " HeaterSource,\n", + ")\n", + "\n", + "# Costing for heater - m.fs.H101\n", + "m.fs.H101.costing = UnitModelCostingBlock(\n", + " flowsheet_costing_block=m.fs.costing,\n", + " costing_method=SSLWCostingData.cost_fired_heater,\n", + " costing_method_arguments={\n", + " \"material_type\": HeaterMaterial.CarbonSteel,\n", + " \"heat_source\": HeaterSource.Fuel,\n", + " },\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The costing module provides a `unit_mapping` dictionary linking generic unit model classes with recommended costing methods. In this example, StoichiometricReactor and Flash vessels utilize different vessel costing methods with similar arguments. The diameter and length attributes need to exist in order to cost vessel sizing and material requirements, and we add them if they don't exist already. The `unit_mapping` method provides an opportunity to automatically select the correct vessel orientation (vertical or horizontal) based on the unit type; passing a `StoichiometricReactor` or `PFR` class object will call the `cost_horizontal_vessel` method, while passing a `Flash` or `CSTR` class object will call the `cost_vertical_vessel` method.\n", + "\n", + "All vessels are assigned costing succinctly via a loop below - users may define each block individually if desired:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.costing.SSLW import (\n", + " VesselMaterial,\n", + " TrayType,\n", + " TrayMaterial,\n", + ")\n", + "\n", + "from idaes.core.util.constants import Constants\n", + "from pyomo.environ import Var, Constraint, units as pyunits, Param, value\n", + "from idaes.models.unit_models import StoichiometricReactor, Flash\n", + "\n", + "# Map unit models to unit classes\n", + "# Will pass to unit_mapping which calls costing methods based on unit class\n", + "unit_class_mapping = {\n", + " m.fs.R101: StoichiometricReactor,\n", + " m.fs.F101: Flash,\n", + " m.fs.F102: Flash,\n", + "}\n", + "\n", + "# Costing for vessels - m.fs.R101, m.fs.F101, m.fs.F102\n", + "\n", + "# Loop over units\n", + "for unit in [m.fs.R101, m.fs.F101, m.fs.F102]:\n", + " # Get correct unit class for unit model\n", + " unit_class = unit_class_mapping[unit]\n", + "\n", + " # Add dimension variables and constraint if they don't exist\n", + " if not hasattr(unit, \"diameter\"):\n", + " unit.diameter = Var(initialize=1, units=pyunits.m)\n", + " if not hasattr(unit, \"length\"):\n", + " unit.length = Var(initialize=1, units=pyunits.m)\n", + " if hasattr(unit, \"volume\"): # if volume exists, set diameter from volume\n", + " unit.volume_eq = Constraint(\n", + " expr=unit.volume[0] == unit.length * unit.diameter**2 * 0.25 * Constants.pi\n", + " )\n", + " else: # fix diameter directly\n", + " unit.diameter.fix(0.2214 * pyunits.m)\n", + " # Either way, fix L/D to calculate L from D\n", + " unit.L_over_D = Constraint(expr=unit.length == 3 * unit.diameter)\n", + "\n", + " # Define vessel costing\n", + " unit.costing = UnitModelCostingBlock(\n", + " flowsheet_costing_block=unit.parent_block().costing, # e.g. m.fs.R101.costing\n", + " costing_method=SSLWCostingData.unit_mapping[\n", + " unit_class\n", + " ], # e.g. cost_vertical_vessel()\n", + " costing_method_arguments={\n", + " \"material_type\": VesselMaterial.CarbonSteel,\n", + " \"shell_thickness\": 1.25 * pyunits.inch,\n", + " },\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Solve Flowsheet Costing Blocks\n", + "Now, we may solve the full flowsheet for all costing blocks:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Eefine solver\n", + "from idaes.core.solvers import get_solver\n", + "\n", + "solver = get_solver()\n", + "\n", + "# Check that the degrees of freedom is zero\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "\n", + "assert degrees_of_freedom(m) == 0" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Check physical units consistency, solve and check solver status\n", + "from pyomo.environ import TerminationCondition\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "\n", + "assert_units_consistent(m)\n", + "results = solver.solve(m, tee=True, symbolic_solver_labels=True)\n", + "assert results.solver.termination_condition == TerminationCondition.optimal" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For comparison, we will call and build the HDA flowsheet replacing the second `Flash` with a `TrayColumn` distillation unit model. The flowsheet costing occurs in the external script `hda_flowsheets_for_costing_notebook.py` and is not shown here:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from pyomo.common.log import LoggingIntercept\n", + "import logging\n", + "from io import StringIO\n", + "\n", + "stream = StringIO()\n", + "with LoggingIntercept(stream, \"idaes\", logging.WARNING):\n", + " # Source file for prebuilt flowsheets\n", + " from hda_flowsheets_for_costing_notebook import hda_with_distillation\n", + "\n", + " # Build hda model with distillation column and return model object\n", + " n = hda_with_distillation(tee=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Results Comparison and Visualization\n", + "For the two flowsheets above, let's sum the total operating and capital costs of each scenario. We will display overall process economics results and compare the two flowsheets:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Imports and data gathering\n", + "from matplotlib import pyplot as plt\n", + "\n", + "plt.style.use(\"dark_background\") # if using browser in dark mode, uncomment this line\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "# Automatically get units that we costed - this will exclude C101 for both flowsheets\n", + "\n", + "two_flash_unitlist = [\n", + " getattr(m.fs, unit) for unit in dir(m.fs) if hasattr(getattr(m.fs, unit), \"costing\")\n", + "]\n", + "distillation_unitlist = [\n", + " getattr(n.fs, unit) for unit in dir(n.fs) if hasattr(getattr(n.fs, unit), \"costing\")\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Compare equipment purchase costs (actual capital costs)\n", + "\n", + "two_flash_capcost = {\n", + " unit.name: value(unit.costing.capital_cost / 1e3) for unit in two_flash_unitlist\n", + "}\n", + "distillation_capcost = {\n", + " unit.name: value(unit.costing.capital_cost / 1e3) for unit in distillation_unitlist\n", + "}\n", + "\n", + "two_flash_capdf = pd.DataFrame(\n", + " list(two_flash_capcost.items()), columns=[\"Equipment\", \"Two Flash\"]\n", + ").set_index(\"Equipment\")\n", + "distillation_capdf = pd.DataFrame(\n", + " list(distillation_capcost.items()), columns=[\"Equipment\", \"Distillation\"]\n", + ").set_index(\"Equipment\")\n", + "\n", + "# Add dataframes, merge same indices, replace NaNs with 0s, and transpose\n", + "capcosts = two_flash_capdf.add(distillation_capdf, fill_value=0).fillna(0).transpose()\n", + "\n", + "# Sort according to an easier order to view\n", + "capcosts = capcosts[[\"fs.H101\", \"fs.R101\", \"fs.F101\", \"fs.F102\", \"fs.D101\", \"fs.H102\"]]\n", + "\n", + "print(\"Costs in $1000:\")\n", + "display(capcosts) # view dataframe before plotting\n", + "\n", + "capplot = capcosts.plot(\n", + " kind=\"bar\", stacked=True, title=\"HDA Total Capital Costs\", ylabel=\"$1000\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Compare operating costs (per year)\n", + "\n", + "two_flash_opcost = {\n", + " \"cooling\": value(3600 * 24 * 365 * m.fs.cooling_cost / 1e3),\n", + " \"heating\": value(3600 * 24 * 365 * m.fs.heating_cost / 1e3),\n", + "}\n", + "distillation_opcost = {\n", + " \"cooling\": value(3600 * 24 * 365 * n.fs.cooling_cost / 1e3),\n", + " \"heating\": value(3600 * 24 * 365 * n.fs.heating_cost / 1e3),\n", + "}\n", + "\n", + "two_flash_opdf = pd.DataFrame(\n", + " list(two_flash_opcost.items()), columns=[\"Utilities\", \"Two Flash\"]\n", + ").set_index(\"Utilities\")\n", + "distillation_opdf = pd.DataFrame(\n", + " list(distillation_opcost.items()), columns=[\"Utilities\", \"Distillation\"]\n", + ").set_index(\"Utilities\")\n", + "\n", + "# Add dataframes, merge same indices, replace NaNs with 0s, and transpose\n", + "opcosts = two_flash_opdf.add(distillation_opdf, fill_value=0).fillna(0).transpose()\n", + "\n", + "print(\"Costs in $1000:\")\n", + "display(opcosts) # view dataframe before plotting\n", + "\n", + "opplot = opcosts.plot(\n", + " kind=\"bar\", stacked=True, title=\"HDA Operating Costs\", ylabel=\"$1000/year\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Compare total costs (capital costs and operating costs)\n", + "\n", + "two_flash_totcost = {\n", + " \"capital\": sum(two_flash_capcost[idx] for idx in two_flash_capcost),\n", + " \"operating\": value(m.fs.operating_cost) / 1e3,\n", + "}\n", + "distillation_totcost = {\n", + " \"capital\": sum(distillation_capcost[idx] for idx in distillation_capcost),\n", + " \"operating\": value(n.fs.operating_cost) / 1e3,\n", + "}\n", + "\n", + "two_flash_totdf = pd.DataFrame(\n", + " list(two_flash_totcost.items()), columns=[\"Costs\", \"Two Flash\"]\n", + ").set_index(\"Costs\")\n", + "distillation_totdf = pd.DataFrame(\n", + " list(distillation_totcost.items()), columns=[\"Costs\", \"Distillation\"]\n", + ").set_index(\"Costs\")\n", + "\n", + "# Add dataframes, merge same indices, replace NaNs with 0s, and transpose\n", + "totcosts = two_flash_totdf.add(distillation_totdf, fill_value=0).fillna(0).transpose()\n", + "\n", + "print(\"Costs in $1000:\")\n", + "display(totcosts) # view dataframe before plotting\n", + "\n", + "totplot = totcosts.plot(\n", + " kind=\"bar\", stacked=True, title=\"HDA Total Plant Cost (TPC)\", ylabel=\"$1000/year\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, let's compare the total costs on a production basis. This will account for the greater efficiency provided by the distillation column relative to the less-expensive second flash unit:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "two_flash_cost = value(1e3 * sum(two_flash_totcost[idx] for idx in two_flash_totcost))\n", + "two_flash_prod = value(\n", + " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"] * 365 * 24 * 3600\n", + ")\n", + "distillation_cost = value(\n", + " 1e3 * sum(distillation_totcost[idx] for idx in distillation_totcost)\n", + ")\n", + "distillation_prod = value(n.fs.D101.condenser.distillate.flow_mol[0] * 365 * 24 * 3600)\n", + "\n", + "print(\n", + " f\"Two flash case over one year: ${two_flash_cost/1e3:0.0f}K / {two_flash_prod/1e3:0.0f} kmol benzene = ${two_flash_cost/(two_flash_prod/1e3):0.2f} per kmol benzene produced\"\n", + ")\n", + "print(\n", + " f\"Distillation case over one year: ${distillation_cost/1e3:0.0f}K / {distillation_prod/1e3:0.0f} kmol benzene = ${distillation_cost/(distillation_prod/1e3):0.2f} per kmol benzene produced\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Summary\n", + "In this example, IDAES Process Costing Framework methods were applied to two HDA flowsheets for capital cost estimation. The costing blocks calls showcased multiple methods to define unit costing, demonstrating the flexibility and best practice of the costing framework. In the basic examples, the two-flash HDA did not include costing and the distillation HDA estimated a reactor capital cost comprising 3.3% of the total plant cost (TPC). With more rigorous costing, IDAES obtained total capital costs of 8.5% TPC (two flash HDA) and 9.6% (distillation HDA) and better modeled the impact of equipment cost on process economics. As printed above, the IDAES Process Costing Framework confirmed that replacing the second flash drum with a distillation column results in increased equipment costs, increased production and decreased cost per unit product." + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + } }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# HDA Flowsheet Costing\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "## Note\n", - "\n", - "This example will demonstrate adding capital and operating costs to the two HDA examples, the basic [HDA with Flash](../tut/hda_flowsheet_solution_usr.ipynb) and a comparison with the HDA with Distillation.\n", - "\n", - "\n", - "## Learning outcomes\n", - "\n", - "- Import external pre-built steady-state flowsheets using the IDAES unit model library\n", - "- Define and add costing blocks using the IDAES Process Costing Framework\n", - "- Fomulate and solve a process economics optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Hydrodealkylation is a chemical reaction that often involves reacting\n", - "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", - "simpler aromatic hydrocarbon devoid of functional groups. In this\n", - "example, toluene will be reacted with hydrogen gas at high temperatures\n", - " to form benzene via the following reaction:\n", - "\n", - "**C6H5CH3 + H2 → C6H6 + CH4**\n", - "\n", - "\n", - "This reaction is often accompanied by an equilibrium side reaction\n", - "which forms diphenyl, which we will neglect for this example.\n", - "\n", - "This example is based on the 1967 AIChE Student Contest problem as\n", - "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", - "McGraw-Hill.\n", - "\n", - "Users may refer to the prior examples linked at the top of this notebook for detailed process descriptions of the two HDA configurations. As before, the properties required for this module are defined in\n", - "\n", - "- `hda_ideal_VLE.py`\n", - "- `idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE`\n", - "- `hda_reaction.py`\n", - "\n", - "Additionally, we will be importing externally-defined flowsheets for the two HDA configurations from\n", - "\n", - "- `hda_flowsheets_for_costing_notebook.py`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Import and run HDA Flowsheets\n", - "First, we will generate solved flowsheets for each HDA model. The external scripts build and set inputs for the flowsheets, initialize unit models and streams, and solve the flowsheets before returning the model objects. Note that the HDA flowsheets contain all unit models and stream connections, and no costing equations." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The flowsheet utilizes the Wegstein method to iteratively solve circular dependencies such as recycle streams, and is intended to approach a feasible solution. As such, the calls below will fail to converge after 3 iterations and pass to IPOPT to obtain an optimal solution as expected:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# Source file for prebuilt flowsheets\n", - "from hda_flowsheets_for_costing_notebook import hda_with_flash\n", - "\n", - "# Build hda model with second flash unit and return model object\n", - "m = hda_with_flash(tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## IDAES Process Costing Framework\n", - "IDAES provides a library of capital costing correlations based on those in the following source:\n", - "\n", - "*Process and Product Design Principles: Synthesis, Analysis, and Evaluation*. Seider, Seader, Lewin, Windagdo, 3rd Ed. John Wiley and Sons Chapter 22. Cost Accounting and Capital Cost Estimation 22.2 Cost Indexes and Capital Investment.\n", - "\n", - "Currently, IDAES supports calculation of capital costing for a wide array of unit operations, vesseel sizing and material properties, and specific unit options such as column tray types and heat exchanger configurations. Users may find further information on specific costing methods and options in the IDAES Process Costing Framework documentation (link pending).\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Add Operating Cost Equations\n", - "Before adding capital costing blocks, we will add operating cost equations taken from the basic [HDA with Flash](../tut/hda_flowsheet_solution_usr.ipynb) and the HDA with Distillation examples. The examples assume constant cooling and heating coefficients over an annual cost basis. The IDAES Generic Costing Framework does not currently support variable cost calculations." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Required imports\n", - "from pyomo.environ import Expression\n", - "\n", - "# Operating costs for HDA with second flash (model m)\n", - "m.fs.cooling_cost = Expression(\n", - " expr=0.212e-7 * (-m.fs.F101.heat_duty[0]) + 0.212e-7 * (-m.fs.R101.heat_duty[0])\n", - ")\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", - ")\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Add Capital Costing\n", - "Below, we will add add capital costing blocks to the imported flowsheets and evaluate the economic impact of replacing the second Flash with a Distillation column. First, let's import and define the main flowsheet costing block:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Import costing methods - classes, heaters, vessels, compressors, columns\n", - "from idaes.models.costing.SSLW import (\n", - " SSLWCosting,\n", - " SSLWCostingData,\n", - ")\n", - "from idaes.core import UnitModelCostingBlock\n", - "\n", - "# Costing block\n", - "m.fs.costing = SSLWCosting()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we will build the relevant costing blocks for the equipment we wish to cost. Note how the costing block, methods and flags are passed as arguments in the costing block call itself. Each unit model will have a single costing block, but each flowsheet model (m and n) will also have a single costing block for flowsheet-level properties.\n", - "\n", - "Users should note that IDAES costing methods support a wide array of heating sources (e.g. fired, steam boiler, hot water) and do not support direct capital costing of coolers. If users wish to cost Heater units acting as coolers, it is necessary to cost a \"dummy\" [0D shell and tube exchanger](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/heat_exchanger.html) with appropriate aliased hot stream properties and proper cooling water properties. This is not demonstrated here, as the HDA examples take advantage of Flash and Condenser operations to recover liquid product.\n", - "\n", - "Capital costing is independent of unit model connections, and building cost equations may be done piecewise in this fashion. Default options are passed explicitly to demonstrate proper syntax and usage. Now that all required properties are defined, let's cost our models connecting costing blocks, methods and unit models in each flowsheet." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Flexibility of Costing Block Definitions\n", - "IDAES supports many ways to define batches of costing blocks, and several are shown in the example. Users may employ whichever method fits their modeling needs for explicit or concise code. In the code below, note how the unit model itself is never passed to the costing method; when the full model is executed, the costing block will automatically connect its parent block with child equation blocks.\n", - "\n", - "`Compressor` unit models with isothermal or adiabatic thermodynamics are too simple to cost and are therefore excluded from the economic analysis." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's define costing for the heater unit:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.costing.SSLW import (\n", - " HeaterMaterial,\n", - " HeaterSource,\n", - ")\n", - "\n", - "# Costing for heater - m.fs.H101\n", - "m.fs.H101.costing = UnitModelCostingBlock(\n", - " flowsheet_costing_block=m.fs.costing,\n", - " costing_method=SSLWCostingData.cost_fired_heater,\n", - " costing_method_arguments={\n", - " \"material_type\": HeaterMaterial.CarbonSteel,\n", - " \"heat_source\": HeaterSource.Fuel,\n", - " },\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The costing module provides a `unit_mapping` dictionary linking generic unit model classes with recommended costing methods. In this example, StoichiometricReactor and Flash vessels utilize different vessel costing methods with similar arguments. The diameter and length attributes need to exist in order to cost vessel sizing and material requirements, and we add them if they don't exist already. The `unit_mapping` method provides an opportunity to automatically select the correct vessel orientation (vertical or horizontal) based on the unit type; passing a `StoichiometricReactor` or `PFR` class object will call the `cost_horizontal_vessel` method, while passing a `Flash` or `CSTR` class object will call the `cost_vertical_vessel` method.\n", - "\n", - "All vessels are assigned costing succinctly via a loop below - users may define each block individually if desired:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.costing.SSLW import (\n", - " VesselMaterial,\n", - " TrayType,\n", - " TrayMaterial,\n", - ")\n", - "\n", - "from idaes.core.util.constants import Constants\n", - "from pyomo.environ import Var, Constraint, units as pyunits, Param, value\n", - "from idaes.models.unit_models import StoichiometricReactor, Flash\n", - "\n", - "# Map unit models to unit classes\n", - "# Will pass to unit_mapping which calls costing methods based on unit class\n", - "unit_class_mapping = {\n", - " m.fs.R101: StoichiometricReactor,\n", - " m.fs.F101: Flash,\n", - " m.fs.F102: Flash,\n", - "}\n", - "\n", - "# Costing for vessels - m.fs.R101, m.fs.F101, m.fs.F102\n", - "\n", - "# Loop over units\n", - "for unit in [m.fs.R101, m.fs.F101, m.fs.F102]:\n", - " # Get correct unit class for unit model\n", - " unit_class = unit_class_mapping[unit]\n", - "\n", - " # Add dimension variables and constraint if they don't exist\n", - " if not hasattr(unit, \"diameter\"):\n", - " unit.diameter = Var(initialize=1, units=pyunits.m)\n", - " if not hasattr(unit, \"length\"):\n", - " unit.length = Var(initialize=1, units=pyunits.m)\n", - " if hasattr(unit, \"volume\"): # if volume exists, set diameter from volume\n", - " unit.volume_eq = Constraint(\n", - " expr=unit.volume[0] == unit.length * unit.diameter**2 * 0.25 * Constants.pi\n", - " )\n", - " else: # fix diameter directly\n", - " unit.diameter.fix(0.2214 * pyunits.m)\n", - " # Either way, fix L/D to calculate L from D\n", - " unit.L_over_D = Constraint(expr=unit.length == 3 * unit.diameter)\n", - "\n", - " # Define vessel costing\n", - " unit.costing = UnitModelCostingBlock(\n", - " flowsheet_costing_block=unit.parent_block().costing, # e.g. m.fs.R101.costing\n", - " costing_method=SSLWCostingData.unit_mapping[\n", - " unit_class\n", - " ], # e.g. cost_vertical_vessel()\n", - " costing_method_arguments={\n", - " \"material_type\": VesselMaterial.CarbonSteel,\n", - " \"shell_thickness\": 1.25 * pyunits.inch,\n", - " },\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Solve Flowsheet Costing Blocks\n", - "Now, we may solve the full flowsheet for all costing blocks:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# Eefine solver\n", - "from idaes.core.solvers import get_solver\n", - "\n", - "solver = get_solver()\n", - "\n", - "# Check that the degrees of freedom is zero\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "\n", - "assert degrees_of_freedom(m) == 0" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Check physical units consistency, solve and check solver status\n", - "from pyomo.environ import TerminationCondition\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "\n", - "assert_units_consistent(m)\n", - "results = solver.solve(m, tee=True, symbolic_solver_labels=True)\n", - "assert results.solver.termination_condition == TerminationCondition.optimal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For comparison, we will call and build the HDA flowsheet replacing the second `Flash` with a `TrayColumn` distillation unit model. The flowsheet costing occurs in the external script `hda_flowsheets_for_costing_notebook.py` and is not shown here:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "from pyomo.common.log import LoggingIntercept\n", - "import logging\n", - "from io import StringIO\n", - "\n", - "stream = StringIO()\n", - "with LoggingIntercept(stream, \"idaes\", logging.WARNING):\n", - " # Source file for prebuilt flowsheets\n", - " from hda_flowsheets_for_costing_notebook import hda_with_distillation\n", - "\n", - " # Build hda model with distillation column and return model object\n", - " n = hda_with_distillation(tee=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Results Comparison and Visualization\n", - "For the two flowsheets above, let's sum the total operating and capital costs of each scenario. We will display overall process economics results and compare the two flowsheets:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# Imports and data gathering\n", - "from matplotlib import pyplot as plt\n", - "\n", - "plt.style.use(\"dark_background\") # if using browser in dark mode, uncomment this line\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "# Automatically get units that we costed - this will exclude C101 for both flowsheets\n", - "\n", - "two_flash_unitlist = [\n", - " getattr(m.fs, unit) for unit in dir(m.fs) if hasattr(getattr(m.fs, unit), \"costing\")\n", - "]\n", - "distillation_unitlist = [\n", - " getattr(n.fs, unit) for unit in dir(n.fs) if hasattr(getattr(n.fs, unit), \"costing\")\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# Compare equipment purchase costs (actual capital costs)\n", - "\n", - "two_flash_capcost = {\n", - " unit.name: value(unit.costing.capital_cost / 1e3) for unit in two_flash_unitlist\n", - "}\n", - "distillation_capcost = {\n", - " unit.name: value(unit.costing.capital_cost / 1e3) for unit in distillation_unitlist\n", - "}\n", - "\n", - "two_flash_capdf = pd.DataFrame(\n", - " list(two_flash_capcost.items()), columns=[\"Equipment\", \"Two Flash\"]\n", - ").set_index(\"Equipment\")\n", - "distillation_capdf = pd.DataFrame(\n", - " list(distillation_capcost.items()), columns=[\"Equipment\", \"Distillation\"]\n", - ").set_index(\"Equipment\")\n", - "\n", - "# Add dataframes, merge same indices, replace NaNs with 0s, and transpose\n", - "capcosts = two_flash_capdf.add(distillation_capdf, fill_value=0).fillna(0).transpose()\n", - "\n", - "# Sort according to an easier order to view\n", - "capcosts = capcosts[[\"fs.H101\", \"fs.R101\", \"fs.F101\", \"fs.F102\", \"fs.D101\", \"fs.H102\"]]\n", - "\n", - "print(\"Costs in $1000:\")\n", - "display(capcosts) # view dataframe before plotting\n", - "\n", - "capplot = capcosts.plot(\n", - " kind=\"bar\", stacked=True, title=\"HDA Total Capital Costs\", ylabel=\"$1000\"\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# Compare operating costs (per year)\n", - "\n", - "two_flash_opcost = {\n", - " \"cooling\": value(3600 * 24 * 365 * m.fs.cooling_cost / 1e3),\n", - " \"heating\": value(3600 * 24 * 365 * m.fs.heating_cost / 1e3),\n", - "}\n", - "distillation_opcost = {\n", - " \"cooling\": value(3600 * 24 * 365 * n.fs.cooling_cost / 1e3),\n", - " \"heating\": value(3600 * 24 * 365 * n.fs.heating_cost / 1e3),\n", - "}\n", - "\n", - "two_flash_opdf = pd.DataFrame(\n", - " list(two_flash_opcost.items()), columns=[\"Utilities\", \"Two Flash\"]\n", - ").set_index(\"Utilities\")\n", - "distillation_opdf = pd.DataFrame(\n", - " list(distillation_opcost.items()), columns=[\"Utilities\", \"Distillation\"]\n", - ").set_index(\"Utilities\")\n", - "\n", - "# Add dataframes, merge same indices, replace NaNs with 0s, and transpose\n", - "opcosts = two_flash_opdf.add(distillation_opdf, fill_value=0).fillna(0).transpose()\n", - "\n", - "print(\"Costs in $1000:\")\n", - "display(opcosts) # view dataframe before plotting\n", - "\n", - "opplot = opcosts.plot(\n", - " kind=\"bar\", stacked=True, title=\"HDA Operating Costs\", ylabel=\"$1000/year\"\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# Compare total costs (capital costs and operating costs)\n", - "\n", - "two_flash_totcost = {\n", - " \"capital\": sum(two_flash_capcost[idx] for idx in two_flash_capcost),\n", - " \"operating\": value(m.fs.operating_cost) / 1e3,\n", - "}\n", - "distillation_totcost = {\n", - " \"capital\": sum(distillation_capcost[idx] for idx in distillation_capcost),\n", - " \"operating\": value(n.fs.operating_cost) / 1e3,\n", - "}\n", - "\n", - "two_flash_totdf = pd.DataFrame(\n", - " list(two_flash_totcost.items()), columns=[\"Costs\", \"Two Flash\"]\n", - ").set_index(\"Costs\")\n", - "distillation_totdf = pd.DataFrame(\n", - " list(distillation_totcost.items()), columns=[\"Costs\", \"Distillation\"]\n", - ").set_index(\"Costs\")\n", - "\n", - "# Add dataframes, merge same indices, replace NaNs with 0s, and transpose\n", - "totcosts = two_flash_totdf.add(distillation_totdf, fill_value=0).fillna(0).transpose()\n", - "\n", - "print(\"Costs in $1000:\")\n", - "display(totcosts) # view dataframe before plotting\n", - "\n", - "totplot = totcosts.plot(\n", - " kind=\"bar\", stacked=True, title=\"HDA Total Plant Cost (TPC)\", ylabel=\"$1000/year\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, let's compare the total costs on a production basis. This will account for the greater efficiency provided by the distillation column relative to the less-expensive second flash unit:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "two_flash_cost = value(1e3 * sum(two_flash_totcost[idx] for idx in two_flash_totcost))\n", - "two_flash_prod = value(\n", - " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"] * 365 * 24 * 3600\n", - ")\n", - "distillation_cost = value(\n", - " 1e3 * sum(distillation_totcost[idx] for idx in distillation_totcost)\n", - ")\n", - "distillation_prod = value(n.fs.D101.condenser.distillate.flow_mol[0] * 365 * 24 * 3600)\n", - "\n", - "print(\n", - " f\"Two flash case over one year: ${two_flash_cost/1e3:0.0f}K / {two_flash_prod/1e3:0.0f} kmol benzene = ${two_flash_cost/(two_flash_prod/1e3):0.2f} per kmol benzene produced\"\n", - ")\n", - "print(\n", - " f\"Distillation case over one year: ${distillation_cost/1e3:0.0f}K / {distillation_prod/1e3:0.0f} kmol benzene = ${distillation_cost/(distillation_prod/1e3):0.2f} per kmol benzene produced\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Summary\n", - "In this example, IDAES Process Costing Framework methods were applied to two HDA flowsheets for capital cost estimation. The costing blocks calls showcased multiple methods to define unit costing, demonstrating the flexibility and best practice of the costing framework. In the basic examples, the two-flash HDA did not include costing and the distillation HDA estimated a reactor capital cost comprising 3.3% of the total plant cost (TPC). With more rigorous costing, IDAES obtained total capital costs of 8.5% TPC (two flash HDA) and 9.6% (distillation HDA) and better modeled the impact of equipment cost on process economics. As printed above, the IDAES Process Costing Framework confirmed that replacing the second flash drum with a distillation column results in increased equipment costs, increased production and decreased cost per unit product." - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation.ipynb b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation.ipynb index 44e6cf27..61ef1614 100644 --- a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_doc.ipynb b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_doc.ipynb index 1e23d2be..afa973ec 100644 --- a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_doc.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -144,7 +145,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": { "tags": [ "solution" @@ -175,7 +176,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -184,7 +185,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -211,7 +212,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -238,7 +239,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -261,7 +262,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -281,7 +282,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -310,7 +311,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -342,7 +343,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 11, "metadata": { "tags": [ "solution" @@ -368,7 +369,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -408,7 +409,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -437,7 +438,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -473,7 +474,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 15, "metadata": { "tags": [ "solution" @@ -489,7 +490,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -528,7 +529,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 17, "metadata": { "tags": [ "solution" @@ -555,7 +556,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -578,7 +579,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 19, "metadata": { "tags": [ "solution" @@ -599,7 +600,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -620,7 +621,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -643,7 +644,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -671,7 +672,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -695,7 +696,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -727,7 +728,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -754,7 +755,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -780,7 +781,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 27, "metadata": { "tags": [ "solution" @@ -804,7 +805,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -824,7 +825,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -844,7 +845,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -864,41 +865,203 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].flow_mol_phase\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n" + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n" ] } ], @@ -932,7 +1095,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 32, "metadata": { "tags": [ "solution" @@ -965,7 +1128,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ @@ -989,7 +1152,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -1014,7 +1177,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -1046,7 +1209,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 36, "metadata": {}, "outputs": [], "source": [ @@ -1078,7 +1241,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ @@ -1102,7 +1265,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 38, "metadata": { "scrolled": false }, @@ -1111,154 +1274,832 @@ "name": "stdout", "output_type": "stream", "text": [ - "2024-08-28 18:38:14 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:16 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 12\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "WARNING: Wegstein failed to converge in 3 iterations\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:33 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n" + "2025-03-17 17:33:16 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] - } - ], - "source": [ - "seq.run(m, function)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:16 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 12\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:17 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: Wegstein failed to converge in 3 iterations\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n" + ] + } + ], + "source": [ + "seq.run(m, function)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WARNING: model contains export suffix 'scaling_factor' that contains 6\n", - "component keys that are not exported as part of the NL file. Skipping.\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", "tol=1e-06\n", "max_iter=200\n", @@ -1304,21 +2145,27 @@ " 2 0.0000000e+00 1.29e+03 1.56e+03 -1.0 1.60e+04 - 9.79e-01 4.90e-01h 1\n", " 3 0.0000000e+00 1.18e+03 1.55e+05 -1.0 1.40e+04 - 9.90e-01 4.99e-01h 1\n", " 4 0.0000000e+00 5.46e+02 2.32e+09 -1.0 8.42e+03 - 1.00e+00 9.82e-01h 1\n", - " 5 0.0000000e+00 5.46e+03 3.66e+10 -1.0 5.97e+02 - 1.00e+00 9.90e-01h 1\n", + " 5 0.0000000e+00 5.46e+03 3.66e+10 -1.0 5.97e+02 - 1.00e+00 9.90e-01h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " 6 0.0000000e+00 1.21e+03 8.01e+09 -1.0 5.75e+00 - 1.00e+00 1.00e+00h 1\n", " 7 0.0000000e+00 6.41e+00 3.87e+07 -1.0 1.53e-03 - 1.00e+00 1.00e+00f 1\n", " 8 0.0000000e+00 1.96e-04 9.36e+02 -1.0 7.28e-06 - 1.00e+00 1.00e+00h 1\n", - " 9 0.0000000e+00 2.24e-08 4.99e-01 -3.8 5.92e-08 - 1.00e+00 1.00e+00h 1\n", + " 9 0.0000000e+00 2.98e-08 1.44e-01 -3.8 1.38e-07 - 1.00e+00 1.00e+00h 1\n", "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", "\n", "Number of Iterations....: 9\n", "\n", " (scaled) (unscaled)\n", "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 1.5042487592972509e+04 1.5042487592972509e+04\n", - "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", + "Dual infeasibility......: 1.5042487594757811e+04 1.5042487594757811e+04\n", + "Constraint violation....: 2.9103830456733704e-11 2.9802322387695312e-08\n", "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9103830456733704e-11 1.5042487592972509e+04\n", + "Overall NLP error.......: 2.9103830456733704e-11 1.5042487594757811e+04\n", "\n", "\n", "Number of objective function evaluations = 11\n", @@ -1328,652 +2175,4264 @@ "Number of equality constraint Jacobian evaluations = 10\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 9\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.011\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.007\n", "Total CPU secs in NLP function evaluations = 0.001\n", "\n", "EXIT: Optimal Solution Found.\n" ] - } - ], - "source": [ - "# Create the solver object\n", - "solver = get_solver()\n", - "\n", - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Add distillation column \n", - "\n", - "As mentioned earlier, the `SequentialDecomposition` tool currently does not support the distillation column model. Thus, we have not included the distillation column in the flowsheet. Now that we have a converged flowsheet, we will add the distillation column and simulate the entire flowsheet. \n", - "\n", - "In the following, we will\n", - "- Add the distillation column \n", - "- Connect it to the heater \n", - "- Add the necessary equality constraints\n", - "- Propagate the state variable information from the outlet of the heater to the inlet of the distillation column \n", - "- Fix the degrees of freedom of the distillation block (reflux ratio, boilup ratio, and condenser pressure)\n", - "- Scale the control volume heat variables to help convergence\n", - "- Initialize the distillation block.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ + } + ], + "source": [ + "# Create the solver object\n", + "solver = get_solver()\n", + "\n", + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add distillation column \n", + "\n", + "As mentioned earlier, the `SequentialDecomposition` tool currently does not support the distillation column model. Thus, we have not included the distillation column in the flowsheet. Now that we have a converged flowsheet, we will add the distillation column and simulate the entire flowsheet. \n", + "\n", + "In the following, we will\n", + "- Add the distillation column \n", + "- Connect it to the heater \n", + "- Add the necessary equality constraints\n", + "- Propagate the state variable information from the outlet of the heater to the inlet of the distillation column \n", + "- Fix the degrees of freedom of the distillation block (reflux ratio, boilup ratio, and condenser pressure)\n", + "- Scale the control volume heat variables to help convergence\n", + "- Initialize the distillation block.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].flow_mol_phase\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_liq_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_liq_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_liq_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_vap_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_vap_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_vap_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_liq_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_liq_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_liq_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_liq_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_vap_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_vap_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_vap_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_vap_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_liq_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_liq_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_vap_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_vap_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_vap_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_flow_reflux[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_liq_out[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_flow_vapor_reboil[0.0]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,benzene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,toluene]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101: Begin initialization.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray: Begin initialization.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_out: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray: Mass balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray: Mass and energy balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray: Initialization complete, status optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:19 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.condenser.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.condenser: Initialization Complete, optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.reboiler: Initialization Complete, optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1]: Begin initialization.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass and energy balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1]: Initialization complete, status optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2]: Begin initialization.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass and energy balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2]: Initialization complete, status optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3]: Begin initialization.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass and energy balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3]: Initialization complete, status optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[4]: Begin initialization.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:20 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass and energy balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.rectification_section[4]: Initialization complete, status optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6]: Begin initialization.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass and energy balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6]: Initialization complete, status optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7]: Begin initialization.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass and energy balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7]: Initialization complete, status optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8]: Begin initialization.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass and energy balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8]: Initialization complete, status optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9]: Begin initialization.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:21 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass and energy balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[9]: Initialization complete, status optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10]: Begin initialization.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass and energy balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10]: Initialization complete, status optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101: Rectification section initialization status optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101: Stripping section initialization status optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101: Column section initialization status optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101: Column section + Condenser initialization status optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: State Released.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101: Column section + Condenser + Reboiler initialization status optimal - Optimal Solution Found.\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_flow_reflux[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_flow_vapor_reboil[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,toluene]\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101: Begin initialization.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray: Begin initialization.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: State Released.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: State Released.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: State Released.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: State Released.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume: Initialization Complete\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser: Initialization Complete, optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: State Released.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: State Released.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler: Initialization Complete, optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: State Released.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1]: Begin initialization.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: State Released.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: State Released.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[2]: Begin initialization.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: State Released.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: State Released.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: State Released.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3]: Begin initialization.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: State Released.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: State Released.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: State Released.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4]: Begin initialization.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: State Released.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: State Released.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6]: Begin initialization.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: State Released.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: State Released.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7]: Begin initialization.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: State Released.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: State Released.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: State Released.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8]: Begin initialization.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: State Released.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: State Released.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: State Released.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9]: Begin initialization.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: State Released.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: State Released.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: State Released.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10]: Begin initialization.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: State Released.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: State Released.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Rectification section initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Stripping section initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: State Released.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: State Released.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Column section initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: State Released.\n", - "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101: Column section + Condenser initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: State Released.\n", - "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101: Column section + Condenser + Reboiler initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: State Released.\n" + "2025-03-17 17:33:22 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: State Released.\n" ] } ], @@ -2024,7 +6483,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 41, "metadata": {}, "outputs": [], "source": [ @@ -2059,7 +6518,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -2067,9 +6526,21 @@ "output_type": "stream", "text": [ "WARNING: model contains export suffix 'scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", "tol=1e-06\n", "max_iter=200\n", @@ -2119,17 +6590,17 @@ " 6 0.0000000e+00 1.16e+03 7.80e+09 -1.0 5.36e+00 - 1.00e+00 1.00e+00h 1\n", " 7 0.0000000e+00 5.96e+00 3.64e+07 -1.0 1.47e-03 - 1.00e+00 1.00e+00f 1\n", " 8 0.0000000e+00 1.69e-04 8.15e+02 -1.0 6.77e-06 - 1.00e+00 1.00e+00h 1\n", - " 9 0.0000000e+00 7.45e-09 6.64e-03 -3.8 2.00e-07 - 1.00e+00 1.00e+00h 1\n", + " 9 0.0000000e+00 7.45e-09 4.10e-02 -3.8 3.45e-08 - 1.00e+00 1.00e+00h 1\n", "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", "\n", "Number of Iterations....: 9\n", "\n", " (scaled) (unscaled)\n", "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 1.5042483516409773e+04 1.5042483516409773e+04\n", + "Dual infeasibility......: 1.5042524550088077e+04 1.5042524550088077e+04\n", "Constraint violation....: 2.9103830456733704e-11 7.4505805969238281e-09\n", "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9103830456733704e-11 1.5042483516409773e+04\n", + "Overall NLP error.......: 2.9103830456733704e-11 1.5042524550088077e+04\n", "\n", "\n", "Number of objective function evaluations = 11\n", @@ -2139,8 +6610,8 @@ "Number of equality constraint Jacobian evaluations = 10\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 9\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.083\n", - "Total CPU secs in NLP function evaluations = 0.013\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.029\n", + "Total CPU secs in NLP function evaluations = 0.006\n", "\n", "EXIT: Optimal Solution Found.\n" ] @@ -2148,10 +6619,10 @@ { "data": { "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 1169, 'Number of variables': 1169, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.2022566795349121}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 1169, 'Number of variables': 1169, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.0450441837310791}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" ] }, - "execution_count": 53, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -2171,25 +6642,25 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "total cost = $ 442301.47075252194\n", - "operating cost = $ 427596.73056805483\n", - "capital cost = $ 14704.740184467111\n", + "total cost = $ 442301.47075252153\n", + "operating cost = $ 427596.7305680539\n", + "capital cost = $ 14704.740184467615\n", "\n", - "Distillate flowrate = 0.16196898920633368 mol/s\n", - "Benzene purity = 89.4916166580088 %\n", - "Residue flowrate = 0.10515007120697904 mol/s\n", - "Toluene purity = 43.32260291055251 %\n", + "Distillate flowrate = 0.16196898920633576 mol/s\n", + "Benzene purity = 89.49161665800844 %\n", + "Residue flowrate = 0.10515007120697695 mol/s\n", + "Toluene purity = 43.322602910552874 %\n", "\n", "Conversion = 75.0 %\n", "\n", - "Overhead benzene loss in F101 = 42.161938483603194 %\n" + "Overhead benzene loss in F101 = 42.16193848360323 %\n" ] } ], @@ -2235,7 +6706,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -2284,7 +6755,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -2338,7 +6809,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 46, "metadata": {}, "outputs": [ { @@ -2414,7 +6885,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 47, "metadata": {}, "outputs": [], "source": [ @@ -2430,7 +6901,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 48, "metadata": {}, "outputs": [], "source": [ @@ -2457,7 +6928,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 49, "metadata": { "tags": [ "solution" @@ -2486,7 +6957,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 50, "metadata": {}, "outputs": [], "source": [ @@ -2528,7 +6999,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 51, "metadata": { "tags": [ "solution" @@ -2554,7 +7025,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 52, "metadata": {}, "outputs": [], "source": [ @@ -2579,7 +7050,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 53, "metadata": { "tags": [ "solution" @@ -2600,7 +7071,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 54, "metadata": {}, "outputs": [], "source": [ @@ -2621,7 +7092,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 55, "metadata": {}, "outputs": [ { @@ -2629,9 +7100,21 @@ "output_type": "stream", "text": [ "WARNING: model contains export suffix 'scaling_factor' that contains 3\n", - "component keys that are not exported as part of the NL file. Skipping.\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", "tol=1e-06\n", "max_iter=200\n", @@ -2683,20 +7166,44 @@ " 8 4.3846260e+05 1.92e+04 6.05e+09 -1.0 4.42e+05 - 5.40e-01 5.74e-02h 1\n", " 9 4.4529853e+05 4.05e+04 4.66e+10 -1.0 2.47e+05 - 9.96e-01 9.90e-01h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 4.4906283e+05 9.76e+03 1.10e+10 -1.0 1.12e+03 -4.0 1.26e-01 7.45e-01h 1\n", + " 10 4.4906283e+05 9.76e+03 1.10e+10 -1.0 1.12e+03 -4.0 1.26e-01 7.45e-01h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " 11 4.5079086e+05 1.19e+03 1.54e+09 -1.0 5.63e+02 -4.5 3.77e-01 1.00e+00h 1\n", " 12 4.5024224e+05 2.66e+00 3.67e+06 -1.0 6.61e+01 -5.0 1.00e+00 1.00e+00f 1\n", - " 13 4.4946170e+05 5.64e-01 9.29e+05 -1.0 1.81e+02 -5.4 1.00e+00 7.88e-01f 1\n", + " 13 4.4946170e+05 5.64e-01 9.29e+05 -1.0 1.81e+02 -5.4 1.00e+00 7.88e-01f 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " 14 4.4916780e+05 8.48e+00 1.62e+05 -1.0 2.83e+02 -5.9 1.00e+00 1.00e+00f 1\n", " 15 4.4899127e+05 4.83e+00 9.07e+04 -1.0 1.01e+02 -6.4 1.00e+00 4.40e-01f 2\n", " 16 4.4886718e+05 7.00e-01 4.61e+02 -1.0 2.35e+02 -6.9 1.00e+00 1.00e+00f 1\n", " 17 4.4800159e+05 1.39e+02 4.52e+06 -3.8 1.17e+03 -7.3 9.79e-01 9.37e-01f 1\n", - " 18 4.4672196e+05 9.59e+02 1.22e+06 -3.8 4.55e+03 -7.8 1.00e+00 9.43e-01f 1\n", + " 18 4.4672196e+05 9.59e+02 1.22e+06 -3.8 4.55e+03 -7.8 1.00e+00 9.43e-01f 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " 19 4.4401667e+05 7.75e+03 1.55e+05 -3.8 1.08e+04 -8.3 1.00e+00 1.00e+00f 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", " 20 4.4185035e+05 1.91e+04 1.36e+04 -3.8 1.33e+04 -8.8 1.00e+00 1.00e+00h 1\n", " 21 4.4241001e+05 3.52e+03 5.96e+03 -3.8 2.94e+03 -9.2 1.00e+00 1.00e+00h 1\n", - " 22 4.4185237e+05 7.82e+00 2.91e+02 -3.8 7.13e+03 -9.7 2.39e-01 1.00e+00h 1\n", + " 22 4.4185237e+05 7.82e+00 2.91e+02 -3.8 7.13e+03 -9.7 2.39e-01 1.00e+00h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " 23 4.4124091e+05 1.53e+01 3.11e+02 -3.8 4.82e+04 -10.2 8.59e-01 1.36e-01f 1\n", " 24 4.4137379e+05 1.80e+00 2.91e+02 -3.8 1.41e+04 - 1.95e-01 1.00e+00h 1\n", " 25 4.3862833e+05 1.70e+03 9.48e+04 -3.8 1.57e+07 - 1.29e-03 9.10e-02f 1\n", @@ -2706,18 +7213,18 @@ " 29 4.3884157e+05 6.48e-07 4.63e-04 -3.8 2.89e+01 - 1.00e+00 1.00e+00h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", " 30 4.3883990e+05 3.57e-01 2.38e+03 -5.7 8.19e+02 - 1.00e+00 1.00e+00f 1\n", - " 31 4.3883992e+05 3.50e-07 7.79e-06 -5.7 3.55e-01 - 1.00e+00 1.00e+00h 1\n", - " 32 4.3883990e+05 5.47e-05 3.63e-01 -8.0 1.01e+01 - 1.00e+00 1.00e+00h 1\n", - " 33 4.3883990e+05 2.24e-08 1.46e-07 -8.0 5.42e-05 - 1.00e+00 1.00e+00h 1\n", + " 31 4.3883992e+05 3.65e-07 1.12e-05 -5.7 3.55e-01 - 1.00e+00 1.00e+00h 1\n", + " 32 4.3883990e+05 5.46e-05 3.63e-01 -8.0 1.01e+01 - 1.00e+00 1.00e+00h 1\n", + " 33 4.3883990e+05 1.49e-08 5.89e-07 -8.0 5.42e-05 - 1.00e+00 1.00e+00h 1\n", "\n", "Number of Iterations....: 33\n", "\n", " (scaled) (unscaled)\n", - "Objective...............: 4.3883989842628603e+02 4.3883989842628600e+05\n", - "Dual infeasibility......: 1.4600704448671754e-07 1.4600704448671753e-04\n", - "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", - "Complementarity.........: 9.0909948039799681e-09 9.0909948039799686e-06\n", - "Overall NLP error.......: 9.0909948039799681e-09 1.4600704448671753e-04\n", + "Objective...............: 4.3883989842628768e+02 4.3883989842628769e+05\n", + "Dual infeasibility......: 5.8892458138371715e-07 5.8892458138371710e-04\n", + "Constraint violation....: 2.9103830456733704e-11 1.4901161193847656e-08\n", + "Complementarity.........: 9.0909948039807953e-09 9.0909948039807953e-06\n", + "Overall NLP error.......: 9.0909948039807953e-09 5.8892458138371710e-04\n", "\n", "\n", "Number of objective function evaluations = 35\n", @@ -2727,8 +7234,8 @@ "Number of equality constraint Jacobian evaluations = 34\n", "Number of inequality constraint Jacobian evaluations = 34\n", "Number of Lagrangian Hessian evaluations = 33\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.164\n", - "Total CPU secs in NLP function evaluations = 0.020\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.095\n", + "Total CPU secs in NLP function evaluations = 0.014\n", "\n", "EXIT: Optimal Solution Found.\n" ] @@ -2749,25 +7256,25 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 56, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "total cost = $ 438839.898426286\n", - "operating cost = $ 408883.5314830889\n", - "capital cost = $ 29956.3669431971\n", + "total cost = $ 438839.8984262877\n", + "operating cost = $ 408883.53148309066\n", + "capital cost = $ 29956.366943197056\n", "\n", - "Distillate flowrate = 0.1799999900263989 mol/s\n", - "Benzene purity = 98.99999900049086 %\n", + "Distillate flowrate = 0.17999999002639894 mol/s\n", + "Benzene purity = 98.99999900049087 %\n", "Residue flowrate = 0.1085161642426372 mol/s\n", - "Toluene purity = 15.676178086213548 %\n", + "Toluene purity = 15.676178086212905 %\n", "\n", - "Conversion = 93.38705916369427 %\n", + "Conversion = 93.38705916369437 %\n", "\n", - "Overhead benzene loss in F101 = 17.34061793115618 %\n" + "Overhead benzene loss in F101 = 17.340617931156153 %\n" ] } ], @@ -2813,7 +7320,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 57, "metadata": {}, "outputs": [ { @@ -2822,13 +7329,13 @@ "text": [ "Optimal Values\n", "\n", - "H101 outlet temperature = 568.923204295196 K\n", + "H101 outlet temperature = 568.9232042951957 K\n", "\n", - "R101 outlet temperature = 790.3655425698853 K\n", + "R101 outlet temperature = 790.3655425698856 K\n", "\n", "F101 outlet temperature = 298.0 K\n", "\n", - "H102 outlet temperature = 368.7414339952852 K\n" + "H102 outlet temperature = 368.74143399528595 K\n" ] } ], @@ -2880,7 +7387,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_exercise.ipynb b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_exercise.ipynb index e44357de..fd5b112c 100644 --- a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_exercise.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_exercise.ipynb @@ -1,2857 +1,2858 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# HDA Flowsheet Simulation and Optimization\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "## Note\n", - "\n", - "This tutorial will be similar to the HDA flowsheet tutorial in the Tutorials section, except that we use a distillation column instead of a second flash (F102) to produce benzene and toluene products.\n", - "\n", - "\n", - "## Learning outcomes\n", - "\n", - "\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Hydrodealkylation is a chemical reaction that often involves reacting\n", - "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", - "simpler aromatic hydrocarbon devoid of functional groups. In this\n", - "example, toluene will be reacted with hydrogen gas at high temperatures\n", - " to form benzene via the following reaction:\n", - "\n", - "**C6H5CH3 + H2 → C6H6 + CH4**\n", - "\n", - "\n", - "This reaction is often accompanied by an equilibrium side reaction\n", - "which forms diphenyl, which we will neglect for this example.\n", - "\n", - "This example is based on the 1967 AIChE Student Contest problem as\n", - "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", - "McGraw-Hill.\n", - "\n", - "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, we use a flash tank, F101, to separate out the non-condensibles, and a distillation column, D101, to further separate the benzene-toluene mixture to improve the benzene purity. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be purged. We will assume ideal gas behavior for this flowsheet. The properties required for this module are defined in\n", - "\n", - "- `hda_ideal_VLE.py`\n", - "- `idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE`\n", - "- `hda_reaction.py`\n", - "\n", - "We will be using two thermodynamic packages: one (first in the list above) containing all four components (i.e., toluene, hydrogen, benzene, and methane) and the other (second in the list above) containing benzene and toluene only. The latter is needed to simplify the VLE calculations in the distillation column model. \n", - "\n", - "![](HDA_flowsheet_distillation.png)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Translator block\n", - "\n", - "Benzene and toluene are separated by distillation, so the process involves phase equilibrium and two-phase flow conditions. However, the presence of hydrogen and methane complicates the calculations. This is because, hydrogen and methane are non-condensable under all conditions of interest; ergo, a vapor phase will always be present, and the mixture bubble point is extremely low. To simplify the phase equilibrium calculations, hydrogen and methane will be considered completely as non-condensable and insoluble in the liquid outlet from the flash F101.\n", - "\n", - "Since no hydrogen and methane will be present in the unit operations following the flash, a different component list can be used to simplify the property calculations. IDAES supports the definition of multiple property packages within a single flowsheet via `Translator` blocks. `Translator` blocks convert between different property calculations, component lists, and equations of state. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required pyomo and idaes components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- ConcreteModel (to create the concrete model object)\n", - "- Expression (to evaluate values as a function of variables defined in the model)\n", - "- Objective (to define an objective function for optimization)\n", - "- SolverFactory (to solve the problem)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- Arc (to connect two unit models)\n", - "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " TransformationFactory,\n", - " value,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Import `Arc` and `SequentialDecomposition` tools from `pyomo.network`\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Import the above mentioned tools from pyomo.network" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From IDAES, we will be needing the FlowsheetBlock and the following unit models:\n", - "- Mixer\n", - "- Heater\n", - "- CSTR\n", - "- Flash\n", - "- Separator (splitter) \n", - "- PressureChanger\n", - "- Translator (to switch from one property package to another)\n", - "- TrayColumn (distillation column)\n", - "- CondenserType (Type of the overhead condenser: complete or partial)\n", - "- TemperatureSpec (Temperature specification inside the condenser)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core import FlowsheetBlock" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models import (\n", - " PressureChanger,\n", - " Mixer,\n", - " Separator as Splitter,\n", - " Heater,\n", - " CSTR,\n", - " Flash,\n", - " Translator,\n", - ")\n", - "\n", - "from idaes.models_extra.column_models import TrayColumn\n", - "from idaes.models_extra.column_models.condenser import CondenserType, TemperatureSpec" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Utility tools to put together the flowsheet and calculate the degrees of freedom\n", - "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state\n", - "from idaes.core.solvers import get_solver\n", - "import idaes.core.util.scaling as iscale\n", - "from idaes.core.util.exceptions import InitializationError\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required thermo and reaction packages\n", - "\n", - "Finally, we import the thermophysical (`ideal_VLE.py` and `BTXParameterBlock`) packages and reaction package (`reaction.py`) for the HDA process. We have created custom thermophysical packages that assume ideal gas behavior with support for VLE. The reaction package consists of the stochiometric coefficients for the reaction, heat of reaction, and kinetic information (Arrhenius constant and activation energy). " - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes_examples.mod.hda import hda_reaction as reaction_props\n", - "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", - " BTXParameterBlock,\n", - ")\n", - "\n", - "from idaes_examples.mod.hda.hda_ideal_VLE import HDAParameterBlock" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block to it. " - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# Create a Pyomo Concrete Model to contain the problem\n", - "m = ConcreteModel()\n", - "\n", - "# Add a steady state flowsheet block to the model\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now add the thermophysical and reaction packages to the flowsheet." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# Property package for benzene, toluene, hydrogen, methane mixture\n", - "m.fs.BTHM_params = HDAParameterBlock()\n", - "\n", - "# Property package for the benzene-toluene mixture\n", - "m.fs.BT_params = BTXParameterBlock(\n", - " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\"\n", - ")\n", - "\n", - "# Reaction package for the HDA reaction\n", - "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", - " property_package=m.fs.BTHM_params\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition, the Mixer unit model needs a `list` consisting of the inlets (toluene feed, hydrogen feed and vapor recycle streams in this case). " - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# Adding the mixer M101 to the flowsheet\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.BTHM_params,\n", - " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", - ")\n", - "\n", - "# Adding the heater H101 to the flowsheet\n", - "m.fs.H101 = Heater(property_package=m.fs.BTHM_params, has_phase_equilibrium=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now add the CSTR (assign the name R101) and pass the following arguments:\n", - "
    \n", - "
  • \"property_package\": m.fs.BTHM_params
  • \n", - "
  • \"reaction_package\": m.fs.reaction_params
  • \n", - "
  • \"has_heat_of_reaction\": True
  • \n", - "
  • \"has_heat_transfer\": True
  • \n", - "
\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add reactor with the specifications above" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add the Flash (assign the name F101), Splitter (assign the name S101) and PressureChanger (assign the name C101)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "# Adding the flash tank F101 to the flowsheet\n", - "m.fs.F101 = Flash(\n", - " property_package=m.fs.BTHM_params, has_heat_transfer=True, has_pressure_change=True\n", - ")\n", - "\n", - "# Adding the splitter S101 to the flowsheet\n", - "m.fs.S101 = Splitter(\n", - " property_package=m.fs.BTHM_params, outlet_list=[\"purge\", \"recycle\"]\n", - ")\n", - "\n", - "# Adding the compressor C101 to the flowsheet\n", - "m.fs.C101 = PressureChanger(\n", - " property_package=m.fs.BTHM_params,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Remark\n", - "\n", - "Currently, the `SequentialDecomposition()` tool, which we will later be using to initialize the flowsheet, does not support the distillation column model. Thus, we will first simulate the flowsheet without the distillation column. After it converges, we will then add the distillation column, initialize it, and simulate the entire flowsheet." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As mentioned above, we use the `m.fs.BTHM_params` package, which contains all the four species, for the reactor loop, and the simpler `m.fs.BT_params` for unit operations following the flash (i.e., heater H102 and the distillation column D101). We define a `Translator` block to link the source property package and the package it is to be translated to in the following manner:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "# Add translator block to convert between property packages\n", - "m.fs.translator = Translator(\n", - " inlet_property_package=m.fs.BTHM_params, outlet_property_package=m.fs.BT_params\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Translator block constraints\n", - "\n", - "The `Translator` block needs to know how to translate between the two property packages. This must be custom coded for each application because of the generality of the IDAES framework.\n", - "\n", - "For this process, five constraints are required based on the state variables used in the outgoing process.\n", - "\n", - "- Since we assumed that only benzene and toluene are present in the liquid phase, the total molar flowrate must be the sum of molar flowrates of benzene and toluene, respectively.\n", - "- Temperature of the inlet and outlet streams must be the same.\n", - "- Pressure of the inlet and outgoing streams must be the same\n", - "- The mole fraction of benzene in the outgoing stream is the ratio of the molar flowrate of liquid benzene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet.\n", - "- The mole fraction of toluene in the outgoing stream is the ratio of the molar flowrate of liquid toluene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "# Add constraint: Total flow = benzene flow + toluene flow (molar)\n", - "m.fs.translator.eq_total_flow = Constraint(\n", - " expr=m.fs.translator.outlet.flow_mol[0]\n", - " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - ")\n", - "\n", - "# Add constraint: Outlet temperature = Inlet temperature\n", - "m.fs.translator.eq_temperature = Constraint(\n", - " expr=m.fs.translator.outlet.temperature[0] == m.fs.translator.inlet.temperature[0]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the above, note that the variable flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Add the constraint to ensure that the outlet pressure is the same as the inlet pressure\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add constraint: Outlet pressure = Inlet pressure" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "# Remaining constraints on the translator block\n", - "\n", - "# Add constraint: Benzene mole fraction definition\n", - "m.fs.translator.eq_mole_frac_benzene = Constraint(\n", - " expr=m.fs.translator.outlet.mole_frac_comp[0, \"benzene\"]\n", - " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " / (\n", - " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - " )\n", - ")\n", - "\n", - "# Add constraint: Toluene mole fraction definition\n", - "m.fs.translator.eq_mole_frac_toluene = Constraint(\n", - " expr=m.fs.translator.outlet.mole_frac_comp[0, \"toluene\"]\n", - " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - " / (\n", - " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Finally, let us add the Heater H102 in the same way as H101 but pass the m.fs.BT_params thermodynamic package. We will add the distillation column after converging the flowsheet.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add the Heater H102 to the flowsheet" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models using Arcs\n", - "\n", - "We have now added the initial set of unit models to the flowsheet. However, we have not yet specified how the units are connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer (M101) to the inlet of the heater (H101). " - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "![](HDA_flowsheet_distillation.png) \n", - "\n", - "
\n", - "Inline Exercise:\n", - "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Connect the H101 outlet to R101 inlet" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be connecting the rest of the units as shown below. Notice how the outlet names are different for the flash tank as it has a vapor and a liquid outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", - "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", - "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", - "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", - "m.fs.s10a = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.translator.inlet)\n", - "m.fs.s10b = Arc(source=m.fs.translator.outlet, destination=m.fs.H102.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Appending additional constraints to the model\n", - "\n", - "Now, we will see how we can add additional constraints to the model using `Constraint` from Pyomo.\n", - "\n", - "Consider the reactor R101. By default, the conversion of a component is not calculated when we simulate the flowsheet. If we are interested either in specifying or constraining the conversion value, we can add the following constraint to calculate the conversion:\n", - "$$ \\text{Conversion of toluene} = \\frac{\\text{molar flow of toluene in the inlet} - \\text{molar flow of toluene in the outlet}}{\\text{molar flow of toluene in the inlet}} $$ \n", - "\n", - "We add the constraint to the model as shown below." - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "# Define the conversion variables using 'Var'\n", - "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", - "\n", - "# Append the constraint to the model\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing feed conditions and Initializing the flowsheet\n", - "\n", - "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "29\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", - "m.fs.M101.toluene_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", - "
    \n", - "
  • FH2 = 0.30 mol/s
  • \n", - "
  • FCH4 = 0.02 mol/s
  • \n", - "
  • Remaining components = 1e-5 mol/s
  • \n", - "
  • T = 303.2 K
  • \n", - "
  • P = 350000 Pa
  • \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", - "m.fs.M101.hydrogen_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Fixing unit model specifications\n", - "\n", - "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set the H101 outlet temperature to 600 K. " - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the temperature of the outlet from the heater H101\n", - "m.fs.H101.outlet.temperature.fix(600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Set the conditions for the reactor R101 to the following conditions:\n", - "
    \n", - "
  • `conversion` = 0.75
  • \n", - "
  • `heat_duty` = 0
  • \n", - "
\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Fix the 'conversion' of the reactor R101\n", - "\n", - "\n", - "# Todo: Fix the 'heat_duty' of the reactor R101" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Flash conditions for F101 can be set as follows. " - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the temperature of the vapor outlet from F101\n", - "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", - "\n", - "# Fix the pressure drop in the flash F101\n", - "m.fs.F101.deltaP.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us fix the split fraction of the purge stream from the splitter S101 and the outlet pressure from the compressor C101" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the split fraction of the 'purge' stream from S101\n", - "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", - "\n", - "# Fix the pressure of the outlet from the compressor C101\n", - "m.fs.C101.outlet.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, let us fix the temperature of the outlet from H102 and the pressure drop in H102 as the following" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the temperature of the outlet from the heater H102\n", - "m.fs.H102.outlet.temperature.fix(375)\n", - "\n", - "# Fix the pressure drop in the heater H102\n", - "m.fs.H102.deltaP.fix(-200000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To avoid convergence issues associated with poorly scaled variables and/or constraints, we scale the variables and constraints corresponding to the heaters H101 and H102, flash F101 and the reactor R101. Scaling factors for the flow rates, temperature, pressure, etc. have been defined in the property package: `ideal_VLE.py` file. Here, we set scaling factors only for the heat duty of the heater, the reaction extent, heat duty and volume of the reactor." - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].flow_mol_phase\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n" - ] - } - ], - "source": [ - "# Set scaling factors for heat duty, reaction extent and volume\n", - "iscale.set_scaling_factor(m.fs.H101.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.R101.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.R101.control_volume.rate_reaction_extent, 1)\n", - "iscale.set_scaling_factor(m.fs.R101.control_volume.volume, 1)\n", - "iscale.set_scaling_factor(m.fs.F101.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.H102.control_volume.heat, 1e-2)\n", - "\n", - "# Set the scaling factors for the remaining variables and all constraints\n", - "iscale.calculate_scaling_factors(m.fs.H101)\n", - "iscale.calculate_scaling_factors(m.fs.R101)\n", - "iscale.calculate_scaling_factors(m.fs.F101)\n", - "iscale.calculate_scaling_factors(m.fs.H102)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Check the degrees of freedom" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initialization\n", - "\n", - "This subsection will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", - "\n", - "Let us first create an object for the `SequentialDecomposition` and specify our options for this. " - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "seq = SequentialDecomposition()\n", - "seq.options.select_tear_method = \"heuristic\"\n", - "seq.options.tear_method = \"Wegstein\"\n", - "seq.options.iterLim = 3\n", - "\n", - "# Using the SD tool\n", - "G = seq.create_graph(m)\n", - "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", - "order = seq.calculation_order(G)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Which is the tear stream? Display tear set and order" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fs.s03\n" - ] - } - ], - "source": [ - "for o in heuristic_tear_set:\n", - " print(o.name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fs.H101\n", - "fs.R101\n", - "fs.F101\n", - "fs.S101\n", - "fs.C101\n", - "fs.M101\n" - ] - } - ], - "source": [ - "for o in order:\n", - " print(o[0].name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet (s03 in the Figure above). We will need to provide a reasonable guess for this.\n", - "\n", - "For the initial guess, we assume that the flowrate of the recycle stream (s09) is zero. Consequently, the flow rate of the stream s03 is simply the sum of the flowrates of the toluene feed and hydrogen feed streams. Further, since the temperature and the pressure of both the toluene and hydrogen feed streams are the same, we specify their values as the initial guess for the temperature and pressure of the stream s03." - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "tear_guesses = {\n", - " \"flow_mol_phase_comp\": {\n", - " (0, \"Vap\", \"benzene\"): 1e-5,\n", - " (0, \"Vap\", \"toluene\"): 1e-5,\n", - " (0, \"Vap\", \"hydrogen\"): 0.30,\n", - " (0, \"Vap\", \"methane\"): 0.02,\n", - " (0, \"Liq\", \"benzene\"): 1e-5,\n", - " (0, \"Liq\", \"toluene\"): 0.30,\n", - " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", - " (0, \"Liq\", \"methane\"): 1e-5,\n", - " },\n", - " \"temperature\": {0: 303.2},\n", - " \"pressure\": {0: 350000},\n", - "}\n", - "\n", - "# Pass the tear_guess to the SD tool\n", - "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. For the initialization, we will import a Block Triangularization Initializer which decomposes the model into a set of subproblems. These subproblems are solved using a block triangularization transformation before applying a simple Newton or user-selected solver. Methods such as block triangularization often solve faster and yield more reliable behavior than heuristic methods, but sometime struggle to decompose models with strongly coupled equations (e.g. column models, systems with counter-current flow, vapor-liquid equilibrium)." - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "def function(unit):\n", - " # Try initializing using default initializer,\n", - " # if it fails (probably due to scaling) try for the second time\n", - " try:\n", - " initializer = unit.default_initializer()\n", - " initializer.initialize(unit, output_level=idaeslog.INFO)\n", - " except InitializationError:\n", - " solver = get_solver()\n", - " solver.solve(unit)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 3 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-08-28 18:38:14 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:16 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 12\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "WARNING: Wegstein failed to converge in 3 iterations\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:33 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n" - ] - } - ], - "source": [ - "seq.run(m, function)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'scaling_factor' that contains 6\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 1097\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 877\n", - "\n", - "Total number of variables............................: 363\n", - " variables with only lower bounds: 8\n", - " variables with lower and upper bounds: 155\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 363\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 3.82e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 8.69e+03 1.44e+03 -1.0 2.00e+04 - 9.71e-01 4.67e-01H 1\n", - " 2 0.0000000e+00 1.29e+03 1.56e+03 -1.0 1.60e+04 - 9.79e-01 4.90e-01h 1\n", - " 3 0.0000000e+00 1.18e+03 1.55e+05 -1.0 1.40e+04 - 9.90e-01 4.99e-01h 1\n", - " 4 0.0000000e+00 5.46e+02 2.32e+09 -1.0 8.42e+03 - 1.00e+00 9.82e-01h 1\n", - " 5 0.0000000e+00 5.46e+03 3.66e+10 -1.0 5.97e+02 - 1.00e+00 9.90e-01h 1\n", - " 6 0.0000000e+00 1.21e+03 8.01e+09 -1.0 5.75e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 0.0000000e+00 6.41e+00 3.87e+07 -1.0 1.53e-03 - 1.00e+00 1.00e+00f 1\n", - " 8 0.0000000e+00 1.96e-04 9.36e+02 -1.0 7.28e-06 - 1.00e+00 1.00e+00h 1\n", - " 9 0.0000000e+00 2.24e-08 4.99e-01 -3.8 5.92e-08 - 1.00e+00 1.00e+00h 1\n", - "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", - "\n", - "Number of Iterations....: 9\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 1.5042487592972509e+04 1.5042487592972509e+04\n", - "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9103830456733704e-11 1.5042487592972509e+04\n", - "\n", - "\n", - "Number of objective function evaluations = 11\n", - "Number of objective gradient evaluations = 10\n", - "Number of equality constraint evaluations = 11\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 10\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 9\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.011\n", - "Total CPU secs in NLP function evaluations = 0.001\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "# Create the solver object\n", - "solver = get_solver()\n", - "\n", - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Add distillation column \n", - "\n", - "As mentioned earlier, the `SequentialDecomposition` tool currently does not support the distillation column model. Thus, we have not included the distillation column in the flowsheet. Now that we have a converged flowsheet, we will add the distillation column and simulate the entire flowsheet. \n", - "\n", - "In the following, we will\n", - "- Add the distillation column \n", - "- Connect it to the heater \n", - "- Add the necessary equality constraints\n", - "- Propagate the state variable information from the outlet of the heater to the inlet of the distillation column \n", - "- Fix the degrees of freedom of the distillation block (reflux ratio, boilup ratio, and condenser pressure)\n", - "- Scale the control volume heat variables to help convergence\n", - "- Initialize the distillation block.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_flow_reflux[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_flow_vapor_reboil[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,toluene]\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101: Begin initialization.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray: Begin initialization.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: State Released.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: State Released.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: State Released.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: State Released.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume: Initialization Complete\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser: Initialization Complete, optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: State Released.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: State Released.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler: Initialization Complete, optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: State Released.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1]: Begin initialization.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: State Released.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: State Released.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[2]: Begin initialization.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: State Released.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: State Released.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: State Released.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3]: Begin initialization.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: State Released.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: State Released.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: State Released.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4]: Begin initialization.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: State Released.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: State Released.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6]: Begin initialization.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: State Released.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: State Released.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7]: Begin initialization.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: State Released.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: State Released.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: State Released.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8]: Begin initialization.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: State Released.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: State Released.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: State Released.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9]: Begin initialization.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: State Released.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: State Released.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: State Released.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10]: Begin initialization.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: State Released.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: State Released.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Rectification section initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Stripping section initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: State Released.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: State Released.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Column section initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: State Released.\n", - "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101: Column section + Condenser initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: State Released.\n", - "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101: Column section + Condenser + Reboiler initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: State Released.\n" - ] - } - ], - "source": [ - "# Add distillation column to the flowsheet\n", - "m.fs.D101 = TrayColumn(\n", - " number_of_trays=10,\n", - " feed_tray_location=5,\n", - " condenser_type=CondenserType.totalCondenser,\n", - " condenser_temperature_spec=TemperatureSpec.atBubblePoint,\n", - " property_package=m.fs.BT_params,\n", - ")\n", - "\n", - "# Connect the outlet from the heater H102 to the distillation column\n", - "m.fs.s11 = Arc(source=m.fs.H102.outlet, destination=m.fs.D101.feed)\n", - "\n", - "# Add the necessary equality constraints\n", - "TransformationFactory(\"network.expand_arcs\").apply_to(m)\n", - "\n", - "# Propagate the state\n", - "propagate_state(m.fs.s11)\n", - "\n", - "# Fix the reflux ratio, boilup ratio, and the condenser pressure\n", - "m.fs.D101.condenser.reflux_ratio.fix(0.5)\n", - "m.fs.D101.reboiler.boilup_ratio.fix(0.5)\n", - "m.fs.D101.condenser.condenser_pressure.fix(150000)\n", - "\n", - "# set scaling factors\n", - "# Set scaling factors for heat duty\n", - "iscale.set_scaling_factor(m.fs.D101.condenser.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.D101.reboiler.control_volume.heat, 1e-2)\n", - "\n", - "# Set the scaling factors for the remaining variables and all constraints\n", - "iscale.calculate_scaling_factors(m.fs.D101)\n", - "\n", - "# Initialize the distillation column\n", - "m.fs.D101.initialize(outlvl=idaeslog.INFO)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding expressions to compute capital and operating costs\n", - "\n", - "In this section, we will add a few Expressions that allow us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [], - "source": [ - "# Expression to compute the total cooling cost\n", - "m.fs.cooling_cost = Expression(\n", - " expr=0.25e-7 * (-m.fs.F101.heat_duty[0])\n", - " + 0.2e-7 * (-m.fs.D101.condenser.heat_duty[0])\n", - ")\n", - "\n", - "# Expression to compute the total heating cost\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", - " + 1.2e-7 * m.fs.H102.heat_duty[0]\n", - " + 1.9e-7 * m.fs.D101.reboiler.heat_duty[0]\n", - ")\n", - "\n", - "# Expression to compute the total operating cost\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", - ")\n", - "\n", - "# Expression to compute the total capital cost\n", - "m.fs.capital_cost = Expression(expr=1e5 * m.fs.R101.volume[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solve the entire flowsheet" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 4042\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 2376\n", - "\n", - "Total number of variables............................: 1169\n", - " variables with only lower bounds: 112\n", - " variables with lower and upper bounds: 365\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 1169\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 3.83e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 8.70e+03 1.50e+03 -1.0 3.69e+04 - 9.71e-01 4.62e-01H 1\n", - " 2 0.0000000e+00 1.53e+03 1.56e+03 -1.0 6.75e+03 - 9.77e-01 4.89e-01h 1\n", - " 3 0.0000000e+00 1.37e+03 1.55e+05 -1.0 9.37e+03 - 9.90e-01 4.99e-01h 1\n", - " 4 0.0000000e+00 6.14e+02 2.31e+09 -1.0 6.09e+03 - 1.00e+00 9.81e-01h 1\n", - " 5 0.0000000e+00 5.32e+03 3.62e+10 -1.0 5.56e+02 - 1.00e+00 9.90e-01h 1\n", - " 6 0.0000000e+00 1.16e+03 7.80e+09 -1.0 5.36e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 0.0000000e+00 5.96e+00 3.64e+07 -1.0 1.47e-03 - 1.00e+00 1.00e+00f 1\n", - " 8 0.0000000e+00 1.69e-04 8.15e+02 -1.0 6.77e-06 - 1.00e+00 1.00e+00h 1\n", - " 9 0.0000000e+00 7.45e-09 6.64e-03 -3.8 2.00e-07 - 1.00e+00 1.00e+00h 1\n", - "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", - "\n", - "Number of Iterations....: 9\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 1.5042483516409773e+04 1.5042483516409773e+04\n", - "Constraint violation....: 2.9103830456733704e-11 7.4505805969238281e-09\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9103830456733704e-11 1.5042483516409773e+04\n", - "\n", - "\n", - "Number of objective function evaluations = 11\n", - "Number of objective gradient evaluations = 10\n", - "Number of equality constraint evaluations = 11\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 10\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 9\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.083\n", - "Total CPU secs in NLP function evaluations = 0.013\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - }, - { - "data": { - "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 1169, 'Number of variables': 1169, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.2022566795349121}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the Results of the Square Problem\n", - "\n", - "How much is the total cost (operating cost + capital cost), operating cost, capital cost, benzene purity in the distillate from the distilation column, and conversion of toluene in the reactor?" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total cost = $ 442301.47075252194\n", - "operating cost = $ 427596.73056805483\n", - "capital cost = $ 14704.740184467111\n", - "\n", - "Distillate flowrate = 0.16196898920633368 mol/s\n", - "Benzene purity = 89.4916166580088 %\n", - "Residue flowrate = 0.10515007120697904 mol/s\n", - "Toluene purity = 43.32260291055251 %\n", - "\n", - "Conversion = 75.0 %\n", - "\n", - "Overhead benzene loss in F101 = 42.161938483603194 %\n" - ] - } - ], - "source": [ - "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", - "print(\"operating cost = $\", value(m.fs.operating_cost))\n", - "print(\"capital cost = $\", value(m.fs.capital_cost))\n", - "print()\n", - "print(\n", - " \"Distillate flowrate = \",\n", - " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", - " \"mol/s\",\n", - ")\n", - "print(\n", - " \"Benzene purity = \",\n", - " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", - " \"%\",\n", - ")\n", - "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", - "print(\n", - " \"Toluene purity = \",\n", - " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", - " \"%\",\n", - ")\n", - "print()\n", - "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", - "print()\n", - "print(\n", - " \"Overhead benzene loss in F101 = \",\n", - " 100\n", - " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", - " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", - " \"%\",\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Get the state of the streams entering and leaving the reactor R101" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 0.0000 : watt : True : (None, None)\n", - " Volume : 0.14705 : meter ** 3 : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.2993e-07\n", - " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 8.4147e-07\n", - " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-12\n", - " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-12\n", - " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.11936 0.35374\n", - " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.31252 0.078129\n", - " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.0377 1.2721\n", - " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.56260 0.32821\n", - " temperature kelvin 600.00 771.85\n", - " pressure pascal 3.5000e+05 3.5000e+05\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m.fs.R101.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Get the state of the streams entering and leaving the reactor R101" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Unit : fs.F101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -70343. : watt : False : (None, None)\n", - " Pressure Change : 0.0000 : pascal : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Vapor Outlet Liquid Outlet\n", - " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 0.20460 \n", - " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 0.062520 \n", - " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", - " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", - " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 1.0000e-08 \n", - " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 1.0000e-08 \n", - " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 1.0000e-08 \n", - " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 1.0000e-08 \n", - " temperature kelvin 771.85 325.00 325.00 \n", - " pressure pascal 3.5000e+05 3.5000e+05 3.5000e+05 \n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m.fs.F101.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "How much benzene are we losing in the F101 vapor outlet stream?\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Units Reactor Light Gases\n", - "flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 \n", - "flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 \n", - "flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 \n", - "flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 \n", - "flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 \n", - "flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 \n", - "flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 \n", - "flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 \n", - "temperature kelvin 771.85 325.00 \n", - "pressure pascal 3.5000e+05 3.5000e+05 \n" - ] - } - ], - "source": [ - "from idaes.core.util.tables import (\n", - " create_stream_table_dataframe,\n", - " stream_table_dataframe_to_string,\n", - ")\n", - "\n", - "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", - "print(stream_table_dataframe_to_string(st))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "You can query additional variables here if you like. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Optimization\n", - "\n", - "\n", - "We saw from the results above that the total operating cost for the base case was $442,297 per year. We are producing 0.162 mol/s of benzene at a purity of 89.5%. However, we are losing around 43.3% of benzene in F101 vapor outlet stream. \n", - "\n", - "Let us try to minimize this cost such that:\n", - "- we are producing at least 0.18 mol/s of benzene as distillate i.e. our product stream\n", - "- purity of benzene i.e. the mole fraction of benzene in the distillate is at least 99%\n", - "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", - "\n", - "For this problem, our decision variables are as follows:\n", - "- H101 outlet temperature\n", - "- R101 outlet temperature\n", - "- F101 outlet temperature\n", - "- H102 outlet temperature\n", - "- Condenser pressure\n", - "- reflux ratio\n", - "- boilup ratio\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost + m.fs.capital_cost)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.R101.conversion.unfix()\n", - "m.fs.F101.vap_outlet.temperature.unfix()\n", - "m.fs.D101.condenser.condenser_pressure.unfix()\n", - "m.fs.D101.condenser.reflux_ratio.unfix()\n", - "m.fs.D101.reboiler.boilup_ratio.unfix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now unfix the remaining variable: the temperature of the outlet from H102\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Unfix the temperature of the outlet from H102" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to set bounds on these decision variables to values shown below:\n", - "\n", - " - H101 outlet temperature [500, 600] K\n", - " - R101 outlet temperature [600, 900] K\n", - " - F101 outlet temperature [298, 450] K\n", - " - H102 outlet temperature [350, 400] K\n", - " - D101 condenser pressure [101325, 150000] Pa\n", - " - D101 reflux ratio [0.1, 5]\n", - " - D101 boilup ratio [0.1, 5]" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [], - "source": [ - "# Set bounds on the temperature of the outlet from H101\n", - "m.fs.H101.outlet.temperature[0].setlb(500)\n", - "m.fs.H101.outlet.temperature[0].setub(600)\n", - "\n", - "# Set bounds on the temperature of the outlet from R101\n", - "m.fs.R101.outlet.temperature[0].setlb(600)\n", - "m.fs.R101.outlet.temperature[0].setub(900)\n", - "\n", - "# Set bounds on the volume of the reactor R101\n", - "m.fs.R101.volume[0].setlb(0)\n", - "\n", - "# Set bounds on the temperature of the vapor outlet from F101\n", - "m.fs.F101.vap_outlet.temperature[0].setlb(298)\n", - "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", - "\n", - "# Set bounds on the temperature of the outlet from H102\n", - "m.fs.H102.outlet.temperature[0].setlb(350)\n", - "m.fs.H102.outlet.temperature[0].setub(400)\n", - "\n", - "# Set bounds on the pressure inside the condenser\n", - "m.fs.D101.condenser.condenser_pressure.setlb(101325)\n", - "m.fs.D101.condenser.condenser_pressure.setub(150000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, set the bounds for the D101 reflux ratio and boilup ratio.\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Set bounds on the reflux ratio\n", - "\n", - "\n", - "# Todo: Set bounds on the boilup ratio" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the only things left to define are our constraints on overhead loss in F101, distillate flowrate and its purity. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 % of the benzene available in the reactor outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [], - "source": [ - "# Ensure that the overhead loss of benzene from F101 <= 20%\n", - "m.fs.overhead_loss = Constraint(\n", - " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, add the constraint such that we are producing at least 0.18 mol/s of benzene in the product stream which is the distillate of D101. Let us name this constraint as m.fs.product_flow. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add minimum product flow constraint" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us add the final constraint on product purity or the mole fraction of benzene in the distillate such that it is at least greater than 99%. " - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.product_purity = Constraint(\n", - " expr=m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"] >= 0.99\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'scaling_factor' that contains 3\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 4073\n", - "Number of nonzeros in inequality constraint Jacobian.: 6\n", - "Number of nonzeros in Lagrangian Hessian.............: 2391\n", - "\n", - "Total number of variables............................: 1176\n", - " variables with only lower bounds: 113\n", - " variables with lower and upper bounds: 372\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 1169\n", - "Total number of inequality constraints...............: 3\n", - " inequality constraints with only lower bounds: 2\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 1\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4230147e+05 2.99e+05 9.90e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 4.3753585e+05 2.91e+05 1.28e+02 -1.0 3.09e+06 - 3.58e-01 2.40e-02f 1\n", - " 2 4.3545100e+05 2.78e+05 1.55e+02 -1.0 1.78e+06 - 3.31e-01 4.74e-02h 1\n", - " 3 4.2822311e+05 2.20e+05 4.50e+02 -1.0 2.99e+06 - 2.95e-02 1.35e-01h 1\n", - " 4 4.2249096e+05 1.45e+05 1.43e+03 -1.0 7.01e+06 - 5.14e-01 2.03e-01h 1\n", - " 5 4.2194364e+05 8.17e+04 1.70e+04 -1.0 6.06e+06 - 5.97e-01 4.28e-01h 1\n", - " 6 4.2602765e+05 4.55e+04 1.10e+06 -1.0 4.32e+06 - 9.26e-01 5.07e-01h 1\n", - " 7 4.3776643e+05 2.03e+04 6.44e+09 -1.0 2.42e+06 - 9.90e-01 9.47e-01h 1\n", - " 8 4.3846260e+05 1.92e+04 6.05e+09 -1.0 4.42e+05 - 5.40e-01 5.74e-02h 1\n", - " 9 4.4529853e+05 4.05e+04 4.66e+10 -1.0 2.47e+05 - 9.96e-01 9.90e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 4.4906283e+05 9.76e+03 1.10e+10 -1.0 1.12e+03 -4.0 1.26e-01 7.45e-01h 1\n", - " 11 4.5079086e+05 1.19e+03 1.54e+09 -1.0 5.63e+02 -4.5 3.77e-01 1.00e+00h 1\n", - " 12 4.5024224e+05 2.66e+00 3.67e+06 -1.0 6.61e+01 -5.0 1.00e+00 1.00e+00f 1\n", - " 13 4.4946170e+05 5.64e-01 9.29e+05 -1.0 1.81e+02 -5.4 1.00e+00 7.88e-01f 1\n", - " 14 4.4916780e+05 8.48e+00 1.62e+05 -1.0 2.83e+02 -5.9 1.00e+00 1.00e+00f 1\n", - " 15 4.4899127e+05 4.83e+00 9.07e+04 -1.0 1.01e+02 -6.4 1.00e+00 4.40e-01f 2\n", - " 16 4.4886718e+05 7.00e-01 4.61e+02 -1.0 2.35e+02 -6.9 1.00e+00 1.00e+00f 1\n", - " 17 4.4800159e+05 1.39e+02 4.52e+06 -3.8 1.17e+03 -7.3 9.79e-01 9.37e-01f 1\n", - " 18 4.4672196e+05 9.59e+02 1.22e+06 -3.8 4.55e+03 -7.8 1.00e+00 9.43e-01f 1\n", - " 19 4.4401667e+05 7.75e+03 1.55e+05 -3.8 1.08e+04 -8.3 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 4.4185035e+05 1.91e+04 1.36e+04 -3.8 1.33e+04 -8.8 1.00e+00 1.00e+00h 1\n", - " 21 4.4241001e+05 3.52e+03 5.96e+03 -3.8 2.94e+03 -9.2 1.00e+00 1.00e+00h 1\n", - " 22 4.4185237e+05 7.82e+00 2.91e+02 -3.8 7.13e+03 -9.7 2.39e-01 1.00e+00h 1\n", - " 23 4.4124091e+05 1.53e+01 3.11e+02 -3.8 4.82e+04 -10.2 8.59e-01 1.36e-01f 1\n", - " 24 4.4137379e+05 1.80e+00 2.91e+02 -3.8 1.41e+04 - 1.95e-01 1.00e+00h 1\n", - " 25 4.3862833e+05 1.70e+03 9.48e+04 -3.8 1.57e+07 - 1.29e-03 9.10e-02f 1\n", - " 26 4.3883308e+05 1.49e+03 8.46e+04 -3.8 1.02e+06 - 1.00e+00 1.35e-01h 1\n", - " 27 4.3885472e+05 2.18e+01 3.40e+03 -3.8 1.38e+05 - 1.00e+00 1.00e+00h 1\n", - " 28 4.3884160e+05 5.90e-02 6.38e+01 -3.8 8.66e+03 - 1.00e+00 1.00e+00h 1\n", - " 29 4.3884157e+05 6.48e-07 4.63e-04 -3.8 2.89e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 4.3883990e+05 3.57e-01 2.38e+03 -5.7 8.19e+02 - 1.00e+00 1.00e+00f 1\n", - " 31 4.3883992e+05 3.50e-07 7.79e-06 -5.7 3.55e-01 - 1.00e+00 1.00e+00h 1\n", - " 32 4.3883990e+05 5.47e-05 3.63e-01 -8.0 1.01e+01 - 1.00e+00 1.00e+00h 1\n", - " 33 4.3883990e+05 2.24e-08 1.46e-07 -8.0 5.42e-05 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 33\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 4.3883989842628603e+02 4.3883989842628600e+05\n", - "Dual infeasibility......: 1.4600704448671754e-07 1.4600704448671753e-04\n", - "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", - "Complementarity.........: 9.0909948039799681e-09 9.0909948039799686e-06\n", - "Overall NLP error.......: 9.0909948039799681e-09 1.4600704448671753e-04\n", - "\n", - "\n", - "Number of objective function evaluations = 35\n", - "Number of objective gradient evaluations = 34\n", - "Number of equality constraint evaluations = 35\n", - "Number of inequality constraint evaluations = 35\n", - "Number of equality constraint Jacobian evaluations = 34\n", - "Number of inequality constraint Jacobian evaluations = 34\n", - "Number of Lagrangian Hessian evaluations = 33\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.164\n", - "Total CPU secs in NLP function evaluations = 0.020\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimization Results\n", - "\n", - "Display the results and product specifications" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total cost = $ 438839.898426286\n", - "operating cost = $ 408883.5314830889\n", - "capital cost = $ 29956.3669431971\n", - "\n", - "Distillate flowrate = 0.1799999900263989 mol/s\n", - "Benzene purity = 98.99999900049086 %\n", - "Residue flowrate = 0.1085161642426372 mol/s\n", - "Toluene purity = 15.676178086213548 %\n", - "\n", - "Conversion = 93.38705916369427 %\n", - "\n", - "Overhead benzene loss in F101 = 17.34061793115618 %\n" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# HDA Flowsheet Simulation and Optimization\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "## Note\n", + "\n", + "This tutorial will be similar to the HDA flowsheet tutorial in the Tutorials section, except that we use a distillation column instead of a second flash (F102) to produce benzene and toluene products.\n", + "\n", + "\n", + "## Learning outcomes\n", + "\n", + "\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Hydrodealkylation is a chemical reaction that often involves reacting\n", + "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", + "simpler aromatic hydrocarbon devoid of functional groups. In this\n", + "example, toluene will be reacted with hydrogen gas at high temperatures\n", + " to form benzene via the following reaction:\n", + "\n", + "**C6H5CH3 + H2 \u2192 C6H6 + CH4**\n", + "\n", + "\n", + "This reaction is often accompanied by an equilibrium side reaction\n", + "which forms diphenyl, which we will neglect for this example.\n", + "\n", + "This example is based on the 1967 AIChE Student Contest problem as\n", + "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", + "McGraw-Hill.\n", + "\n", + "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, we use a flash tank, F101, to separate out the non-condensibles, and a distillation column, D101, to further separate the benzene-toluene mixture to improve the benzene purity. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be purged. We will assume ideal gas behavior for this flowsheet. The properties required for this module are defined in\n", + "\n", + "- `hda_ideal_VLE.py`\n", + "- `idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE`\n", + "- `hda_reaction.py`\n", + "\n", + "We will be using two thermodynamic packages: one (first in the list above) containing all four components (i.e., toluene, hydrogen, benzene, and methane) and the other (second in the list above) containing benzene and toluene only. The latter is needed to simplify the VLE calculations in the distillation column model. \n", + "\n", + "![](HDA_flowsheet_distillation.png)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Translator block\n", + "\n", + "Benzene and toluene are separated by distillation, so the process involves phase equilibrium and two-phase flow conditions. However, the presence of hydrogen and methane complicates the calculations. This is because, hydrogen and methane are non-condensable under all conditions of interest; ergo, a vapor phase will always be present, and the mixture bubble point is extremely low. To simplify the phase equilibrium calculations, hydrogen and methane will be considered completely as non-condensable and insoluble in the liquid outlet from the flash F101.\n", + "\n", + "Since no hydrogen and methane will be present in the unit operations following the flash, a different component list can be used to simplify the property calculations. IDAES supports the definition of multiple property packages within a single flowsheet via `Translator` blocks. `Translator` blocks convert between different property calculations, component lists, and equations of state. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required pyomo and idaes components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- ConcreteModel (to create the concrete model object)\n", + "- Expression (to evaluate values as a function of variables defined in the model)\n", + "- Objective (to define an objective function for optimization)\n", + "- SolverFactory (to solve the problem)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- Arc (to connect two unit models)\n", + "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " TransformationFactory,\n", + " value,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Import `Arc` and `SequentialDecomposition` tools from `pyomo.network`\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Import the above mentioned tools from pyomo.network" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From IDAES, we will be needing the FlowsheetBlock and the following unit models:\n", + "- Mixer\n", + "- Heater\n", + "- CSTR\n", + "- Flash\n", + "- Separator (splitter) \n", + "- PressureChanger\n", + "- Translator (to switch from one property package to another)\n", + "- TrayColumn (distillation column)\n", + "- CondenserType (Type of the overhead condenser: complete or partial)\n", + "- TemperatureSpec (Temperature specification inside the condenser)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core import FlowsheetBlock" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models import (\n", + " PressureChanger,\n", + " Mixer,\n", + " Separator as Splitter,\n", + " Heater,\n", + " CSTR,\n", + " Flash,\n", + " Translator,\n", + ")\n", + "\n", + "from idaes.models_extra.column_models import TrayColumn\n", + "from idaes.models_extra.column_models.condenser import CondenserType, TemperatureSpec" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Utility tools to put together the flowsheet and calculate the degrees of freedom\n", + "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state\n", + "from idaes.core.solvers import get_solver\n", + "import idaes.core.util.scaling as iscale\n", + "from idaes.core.util.exceptions import InitializationError\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required thermo and reaction packages\n", + "\n", + "Finally, we import the thermophysical (`ideal_VLE.py` and `BTXParameterBlock`) packages and reaction package (`reaction.py`) for the HDA process. We have created custom thermophysical packages that assume ideal gas behavior with support for VLE. The reaction package consists of the stochiometric coefficients for the reaction, heat of reaction, and kinetic information (Arrhenius constant and activation energy). " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes_examples.mod.hda import hda_reaction as reaction_props\n", + "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", + " BTXParameterBlock,\n", + ")\n", + "\n", + "from idaes_examples.mod.hda.hda_ideal_VLE import HDAParameterBlock" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block to it. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a Pyomo Concrete Model to contain the problem\n", + "m = ConcreteModel()\n", + "\n", + "# Add a steady state flowsheet block to the model\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now add the thermophysical and reaction packages to the flowsheet." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Property package for benzene, toluene, hydrogen, methane mixture\n", + "m.fs.BTHM_params = HDAParameterBlock()\n", + "\n", + "# Property package for the benzene-toluene mixture\n", + "m.fs.BT_params = BTXParameterBlock(\n", + " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\"\n", + ")\n", + "\n", + "# Reaction package for the HDA reaction\n", + "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", + " property_package=m.fs.BTHM_params\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition, the Mixer unit model needs a `list` consisting of the inlets (toluene feed, hydrogen feed and vapor recycle streams in this case). " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Adding the mixer M101 to the flowsheet\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.BTHM_params,\n", + " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", + ")\n", + "\n", + "# Adding the heater H101 to the flowsheet\n", + "m.fs.H101 = Heater(property_package=m.fs.BTHM_params, has_phase_equilibrium=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now add the CSTR (assign the name R101) and pass the following arguments:\n", + "
    \n", + "
  • \"property_package\": m.fs.BTHM_params
  • \n", + "
  • \"reaction_package\": m.fs.reaction_params
  • \n", + "
  • \"has_heat_of_reaction\": True
  • \n", + "
  • \"has_heat_transfer\": True
  • \n", + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add reactor with the specifications above" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add the Flash (assign the name F101), Splitter (assign the name S101) and PressureChanger (assign the name C101)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Adding the flash tank F101 to the flowsheet\n", + "m.fs.F101 = Flash(\n", + " property_package=m.fs.BTHM_params, has_heat_transfer=True, has_pressure_change=True\n", + ")\n", + "\n", + "# Adding the splitter S101 to the flowsheet\n", + "m.fs.S101 = Splitter(\n", + " property_package=m.fs.BTHM_params, outlet_list=[\"purge\", \"recycle\"]\n", + ")\n", + "\n", + "# Adding the compressor C101 to the flowsheet\n", + "m.fs.C101 = PressureChanger(\n", + " property_package=m.fs.BTHM_params,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Remark\n", + "\n", + "Currently, the `SequentialDecomposition()` tool, which we will later be using to initialize the flowsheet, does not support the distillation column model. Thus, we will first simulate the flowsheet without the distillation column. After it converges, we will then add the distillation column, initialize it, and simulate the entire flowsheet." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As mentioned above, we use the `m.fs.BTHM_params` package, which contains all the four species, for the reactor loop, and the simpler `m.fs.BT_params` for unit operations following the flash (i.e., heater H102 and the distillation column D101). We define a `Translator` block to link the source property package and the package it is to be translated to in the following manner:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# Add translator block to convert between property packages\n", + "m.fs.translator = Translator(\n", + " inlet_property_package=m.fs.BTHM_params, outlet_property_package=m.fs.BT_params\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Translator block constraints\n", + "\n", + "The `Translator` block needs to know how to translate between the two property packages. This must be custom coded for each application because of the generality of the IDAES framework.\n", + "\n", + "For this process, five constraints are required based on the state variables used in the outgoing process.\n", + "\n", + "- Since we assumed that only benzene and toluene are present in the liquid phase, the total molar flowrate must be the sum of molar flowrates of benzene and toluene, respectively.\n", + "- Temperature of the inlet and outlet streams must be the same.\n", + "- Pressure of the inlet and outgoing streams must be the same\n", + "- The mole fraction of benzene in the outgoing stream is the ratio of the molar flowrate of liquid benzene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet.\n", + "- The mole fraction of toluene in the outgoing stream is the ratio of the molar flowrate of liquid toluene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# Add constraint: Total flow = benzene flow + toluene flow (molar)\n", + "m.fs.translator.eq_total_flow = Constraint(\n", + " expr=m.fs.translator.outlet.flow_mol[0]\n", + " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + ")\n", + "\n", + "# Add constraint: Outlet temperature = Inlet temperature\n", + "m.fs.translator.eq_temperature = Constraint(\n", + " expr=m.fs.translator.outlet.temperature[0] == m.fs.translator.inlet.temperature[0]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the above, note that the variable flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Add the constraint to ensure that the outlet pressure is the same as the inlet pressure\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add constraint: Outlet pressure = Inlet pressure" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "# Remaining constraints on the translator block\n", + "\n", + "# Add constraint: Benzene mole fraction definition\n", + "m.fs.translator.eq_mole_frac_benzene = Constraint(\n", + " expr=m.fs.translator.outlet.mole_frac_comp[0, \"benzene\"]\n", + " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " / (\n", + " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + " )\n", + ")\n", + "\n", + "# Add constraint: Toluene mole fraction definition\n", + "m.fs.translator.eq_mole_frac_toluene = Constraint(\n", + " expr=m.fs.translator.outlet.mole_frac_comp[0, \"toluene\"]\n", + " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + " / (\n", + " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Finally, let us add the Heater H102 in the same way as H101 but pass the m.fs.BT_params thermodynamic package. We will add the distillation column after converging the flowsheet.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add the Heater H102 to the flowsheet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models using Arcs\n", + "\n", + "We have now added the initial set of unit models to the flowsheet. However, we have not yet specified how the units are connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer (M101) to the inlet of the heater (H101). " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "![](HDA_flowsheet_distillation.png) \n", + "\n", + "
\n", + "Inline Exercise:\n", + "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Connect the H101 outlet to R101 inlet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be connecting the rest of the units as shown below. Notice how the outlet names are different for the flash tank as it has a vapor and a liquid outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", + "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", + "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", + "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", + "m.fs.s10a = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.translator.inlet)\n", + "m.fs.s10b = Arc(source=m.fs.translator.outlet, destination=m.fs.H102.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Appending additional constraints to the model\n", + "\n", + "Now, we will see how we can add additional constraints to the model using `Constraint` from Pyomo.\n", + "\n", + "Consider the reactor R101. By default, the conversion of a component is not calculated when we simulate the flowsheet. If we are interested either in specifying or constraining the conversion value, we can add the following constraint to calculate the conversion:\n", + "$$ \\text{Conversion of toluene} = \\frac{\\text{molar flow of toluene in the inlet} - \\text{molar flow of toluene in the outlet}}{\\text{molar flow of toluene in the inlet}} $$ \n", + "\n", + "We add the constraint to the model as shown below." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# Define the conversion variables using 'Var'\n", + "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", + "\n", + "# Append the constraint to the model\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing feed conditions and Initializing the flowsheet\n", + "\n", + "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "29\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", + "m.fs.M101.toluene_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", + "
    \n", + "
  • FH2 = 0.30 mol/s
  • \n", + "
  • FCH4 = 0.02 mol/s
  • \n", + "
  • Remaining components = 1e-5 mol/s
  • \n", + "
  • T = 303.2 K
  • \n", + "
  • P = 350000 Pa
  • \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", + "m.fs.M101.hydrogen_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fixing unit model specifications\n", + "\n", + "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set the H101 outlet temperature to 600 K. " + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the temperature of the outlet from the heater H101\n", + "m.fs.H101.outlet.temperature.fix(600)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Set the conditions for the reactor R101 to the following conditions:\n", + "
    \n", + "
  • `conversion` = 0.75
  • \n", + "
  • `heat_duty` = 0
  • \n", + "
\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Fix the 'conversion' of the reactor R101\n", + "\n", + "\n", + "# Todo: Fix the 'heat_duty' of the reactor R101" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Flash conditions for F101 can be set as follows. " + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the temperature of the vapor outlet from F101\n", + "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", + "\n", + "# Fix the pressure drop in the flash F101\n", + "m.fs.F101.deltaP.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us fix the split fraction of the purge stream from the splitter S101 and the outlet pressure from the compressor C101" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the split fraction of the 'purge' stream from S101\n", + "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", + "\n", + "# Fix the pressure of the outlet from the compressor C101\n", + "m.fs.C101.outlet.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, let us fix the temperature of the outlet from H102 and the pressure drop in H102 as the following" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the temperature of the outlet from the heater H102\n", + "m.fs.H102.outlet.temperature.fix(375)\n", + "\n", + "# Fix the pressure drop in the heater H102\n", + "m.fs.H102.deltaP.fix(-200000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To avoid convergence issues associated with poorly scaled variables and/or constraints, we scale the variables and constraints corresponding to the heaters H101 and H102, flash F101 and the reactor R101. Scaling factors for the flow rates, temperature, pressure, etc. have been defined in the property package: `ideal_VLE.py` file. Here, we set scaling factors only for the heat duty of the heater, the reaction extent, heat duty and volume of the reactor." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].flow_mol_phase\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n" + ] + } + ], + "source": [ + "# Set scaling factors for heat duty, reaction extent and volume\n", + "iscale.set_scaling_factor(m.fs.H101.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.R101.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.R101.control_volume.rate_reaction_extent, 1)\n", + "iscale.set_scaling_factor(m.fs.R101.control_volume.volume, 1)\n", + "iscale.set_scaling_factor(m.fs.F101.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.H102.control_volume.heat, 1e-2)\n", + "\n", + "# Set the scaling factors for the remaining variables and all constraints\n", + "iscale.calculate_scaling_factors(m.fs.H101)\n", + "iscale.calculate_scaling_factors(m.fs.R101)\n", + "iscale.calculate_scaling_factors(m.fs.F101)\n", + "iscale.calculate_scaling_factors(m.fs.H102)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Check the degrees of freedom" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Initialization\n", + "\n", + "This subsection will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", + "\n", + "Let us first create an object for the `SequentialDecomposition` and specify our options for this. " + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "seq = SequentialDecomposition()\n", + "seq.options.select_tear_method = \"heuristic\"\n", + "seq.options.tear_method = \"Wegstein\"\n", + "seq.options.iterLim = 3\n", + "\n", + "# Using the SD tool\n", + "G = seq.create_graph(m)\n", + "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", + "order = seq.calculation_order(G)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Which is the tear stream? Display tear set and order" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fs.s03\n" + ] + } + ], + "source": [ + "for o in heuristic_tear_set:\n", + " print(o.name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fs.H101\n", + "fs.R101\n", + "fs.F101\n", + "fs.S101\n", + "fs.C101\n", + "fs.M101\n" + ] + } + ], + "source": [ + "for o in order:\n", + " print(o[0].name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet (s03 in the Figure above). We will need to provide a reasonable guess for this.\n", + "\n", + "For the initial guess, we assume that the flowrate of the recycle stream (s09) is zero. Consequently, the flow rate of the stream s03 is simply the sum of the flowrates of the toluene feed and hydrogen feed streams. Further, since the temperature and the pressure of both the toluene and hydrogen feed streams are the same, we specify their values as the initial guess for the temperature and pressure of the stream s03." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "tear_guesses = {\n", + " \"flow_mol_phase_comp\": {\n", + " (0, \"Vap\", \"benzene\"): 1e-5,\n", + " (0, \"Vap\", \"toluene\"): 1e-5,\n", + " (0, \"Vap\", \"hydrogen\"): 0.30,\n", + " (0, \"Vap\", \"methane\"): 0.02,\n", + " (0, \"Liq\", \"benzene\"): 1e-5,\n", + " (0, \"Liq\", \"toluene\"): 0.30,\n", + " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", + " (0, \"Liq\", \"methane\"): 1e-5,\n", + " },\n", + " \"temperature\": {0: 303.2},\n", + " \"pressure\": {0: 350000},\n", + "}\n", + "\n", + "# Pass the tear_guess to the SD tool\n", + "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. For the initialization, we will import a Block Triangularization Initializer which decomposes the model into a set of subproblems. These subproblems are solved using a block triangularization transformation before applying a simple Newton or user-selected solver. Methods such as block triangularization often solve faster and yield more reliable behavior than heuristic methods, but sometime struggle to decompose models with strongly coupled equations (e.g. column models, systems with counter-current flow, vapor-liquid equilibrium)." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "def function(unit):\n", + " # Try initializing using default initializer,\n", + " # if it fails (probably due to scaling) try for the second time\n", + " try:\n", + " initializer = unit.default_initializer()\n", + " initializer.initialize(unit, output_level=idaeslog.INFO)\n", + " except InitializationError:\n", + " solver = get_solver()\n", + " solver.solve(unit)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 3 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-08-28 18:38:14 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:16 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 12\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "WARNING: Wegstein failed to converge in 3 iterations\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:33 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n" + ] + } + ], + "source": [ + "seq.run(m, function)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 6\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 1097\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 877\n", + "\n", + "Total number of variables............................: 363\n", + " variables with only lower bounds: 8\n", + " variables with lower and upper bounds: 155\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 363\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 3.82e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 8.69e+03 1.44e+03 -1.0 2.00e+04 - 9.71e-01 4.67e-01H 1\n", + " 2 0.0000000e+00 1.29e+03 1.56e+03 -1.0 1.60e+04 - 9.79e-01 4.90e-01h 1\n", + " 3 0.0000000e+00 1.18e+03 1.55e+05 -1.0 1.40e+04 - 9.90e-01 4.99e-01h 1\n", + " 4 0.0000000e+00 5.46e+02 2.32e+09 -1.0 8.42e+03 - 1.00e+00 9.82e-01h 1\n", + " 5 0.0000000e+00 5.46e+03 3.66e+10 -1.0 5.97e+02 - 1.00e+00 9.90e-01h 1\n", + " 6 0.0000000e+00 1.21e+03 8.01e+09 -1.0 5.75e+00 - 1.00e+00 1.00e+00h 1\n", + " 7 0.0000000e+00 6.41e+00 3.87e+07 -1.0 1.53e-03 - 1.00e+00 1.00e+00f 1\n", + " 8 0.0000000e+00 1.96e-04 9.36e+02 -1.0 7.28e-06 - 1.00e+00 1.00e+00h 1\n", + " 9 0.0000000e+00 2.24e-08 4.99e-01 -3.8 5.92e-08 - 1.00e+00 1.00e+00h 1\n", + "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", + "\n", + "Number of Iterations....: 9\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 1.5042487592972509e+04 1.5042487592972509e+04\n", + "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 2.9103830456733704e-11 1.5042487592972509e+04\n", + "\n", + "\n", + "Number of objective function evaluations = 11\n", + "Number of objective gradient evaluations = 10\n", + "Number of equality constraint evaluations = 11\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 10\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 9\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.011\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# Create the solver object\n", + "solver = get_solver()\n", + "\n", + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add distillation column \n", + "\n", + "As mentioned earlier, the `SequentialDecomposition` tool currently does not support the distillation column model. Thus, we have not included the distillation column in the flowsheet. Now that we have a converged flowsheet, we will add the distillation column and simulate the entire flowsheet. \n", + "\n", + "In the following, we will\n", + "- Add the distillation column \n", + "- Connect it to the heater \n", + "- Add the necessary equality constraints\n", + "- Propagate the state variable information from the outlet of the heater to the inlet of the distillation column \n", + "- Fix the degrees of freedom of the distillation block (reflux ratio, boilup ratio, and condenser pressure)\n", + "- Scale the control volume heat variables to help convergence\n", + "- Initialize the distillation block.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_flow_reflux[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_flow_vapor_reboil[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,toluene]\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101: Begin initialization.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray: Begin initialization.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: State Released.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: State Released.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: State Released.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: State Released.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume: Initialization Complete\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser: Initialization Complete, optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: State Released.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: State Released.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler: Initialization Complete, optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: State Released.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1]: Begin initialization.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: State Released.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: State Released.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[2]: Begin initialization.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: State Released.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: State Released.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: State Released.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3]: Begin initialization.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: State Released.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: State Released.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: State Released.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4]: Begin initialization.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: State Released.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: State Released.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6]: Begin initialization.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: State Released.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: State Released.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7]: Begin initialization.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: State Released.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: State Released.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: State Released.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8]: Begin initialization.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: State Released.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: State Released.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: State Released.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9]: Begin initialization.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: State Released.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: State Released.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: State Released.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10]: Begin initialization.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: State Released.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: State Released.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Rectification section initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Stripping section initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: State Released.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: State Released.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Column section initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: State Released.\n", + "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101: Column section + Condenser initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: State Released.\n", + "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101: Column section + Condenser + Reboiler initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: State Released.\n" + ] + } + ], + "source": [ + "# Add distillation column to the flowsheet\n", + "m.fs.D101 = TrayColumn(\n", + " number_of_trays=10,\n", + " feed_tray_location=5,\n", + " condenser_type=CondenserType.totalCondenser,\n", + " condenser_temperature_spec=TemperatureSpec.atBubblePoint,\n", + " property_package=m.fs.BT_params,\n", + ")\n", + "\n", + "# Connect the outlet from the heater H102 to the distillation column\n", + "m.fs.s11 = Arc(source=m.fs.H102.outlet, destination=m.fs.D101.feed)\n", + "\n", + "# Add the necessary equality constraints\n", + "TransformationFactory(\"network.expand_arcs\").apply_to(m)\n", + "\n", + "# Propagate the state\n", + "propagate_state(m.fs.s11)\n", + "\n", + "# Fix the reflux ratio, boilup ratio, and the condenser pressure\n", + "m.fs.D101.condenser.reflux_ratio.fix(0.5)\n", + "m.fs.D101.reboiler.boilup_ratio.fix(0.5)\n", + "m.fs.D101.condenser.condenser_pressure.fix(150000)\n", + "\n", + "# set scaling factors\n", + "# Set scaling factors for heat duty\n", + "iscale.set_scaling_factor(m.fs.D101.condenser.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.D101.reboiler.control_volume.heat, 1e-2)\n", + "\n", + "# Set the scaling factors for the remaining variables and all constraints\n", + "iscale.calculate_scaling_factors(m.fs.D101)\n", + "\n", + "# Initialize the distillation column\n", + "m.fs.D101.initialize(outlvl=idaeslog.INFO)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding expressions to compute capital and operating costs\n", + "\n", + "In this section, we will add a few Expressions that allow us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "# Expression to compute the total cooling cost\n", + "m.fs.cooling_cost = Expression(\n", + " expr=0.25e-7 * (-m.fs.F101.heat_duty[0])\n", + " + 0.2e-7 * (-m.fs.D101.condenser.heat_duty[0])\n", + ")\n", + "\n", + "# Expression to compute the total heating cost\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", + " + 1.2e-7 * m.fs.H102.heat_duty[0]\n", + " + 1.9e-7 * m.fs.D101.reboiler.heat_duty[0]\n", + ")\n", + "\n", + "# Expression to compute the total operating cost\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", + ")\n", + "\n", + "# Expression to compute the total capital cost\n", + "m.fs.capital_cost = Expression(expr=1e5 * m.fs.R101.volume[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Solve the entire flowsheet" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 7\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 4042\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 2376\n", + "\n", + "Total number of variables............................: 1169\n", + " variables with only lower bounds: 112\n", + " variables with lower and upper bounds: 365\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 1169\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 3.83e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 8.70e+03 1.50e+03 -1.0 3.69e+04 - 9.71e-01 4.62e-01H 1\n", + " 2 0.0000000e+00 1.53e+03 1.56e+03 -1.0 6.75e+03 - 9.77e-01 4.89e-01h 1\n", + " 3 0.0000000e+00 1.37e+03 1.55e+05 -1.0 9.37e+03 - 9.90e-01 4.99e-01h 1\n", + " 4 0.0000000e+00 6.14e+02 2.31e+09 -1.0 6.09e+03 - 1.00e+00 9.81e-01h 1\n", + " 5 0.0000000e+00 5.32e+03 3.62e+10 -1.0 5.56e+02 - 1.00e+00 9.90e-01h 1\n", + " 6 0.0000000e+00 1.16e+03 7.80e+09 -1.0 5.36e+00 - 1.00e+00 1.00e+00h 1\n", + " 7 0.0000000e+00 5.96e+00 3.64e+07 -1.0 1.47e-03 - 1.00e+00 1.00e+00f 1\n", + " 8 0.0000000e+00 1.69e-04 8.15e+02 -1.0 6.77e-06 - 1.00e+00 1.00e+00h 1\n", + " 9 0.0000000e+00 7.45e-09 6.64e-03 -3.8 2.00e-07 - 1.00e+00 1.00e+00h 1\n", + "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", + "\n", + "Number of Iterations....: 9\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 1.5042483516409773e+04 1.5042483516409773e+04\n", + "Constraint violation....: 2.9103830456733704e-11 7.4505805969238281e-09\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 2.9103830456733704e-11 1.5042483516409773e+04\n", + "\n", + "\n", + "Number of objective function evaluations = 11\n", + "Number of objective gradient evaluations = 10\n", + "Number of equality constraint evaluations = 11\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 10\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 9\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.083\n", + "Total CPU secs in NLP function evaluations = 0.013\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 1169, 'Number of variables': 1169, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.2022566795349121}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the Results of the Square Problem\n", + "\n", + "How much is the total cost (operating cost + capital cost), operating cost, capital cost, benzene purity in the distillate from the distilation column, and conversion of toluene in the reactor?" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total cost = $ 442301.47075252194\n", + "operating cost = $ 427596.73056805483\n", + "capital cost = $ 14704.740184467111\n", + "\n", + "Distillate flowrate = 0.16196898920633368 mol/s\n", + "Benzene purity = 89.4916166580088 %\n", + "Residue flowrate = 0.10515007120697904 mol/s\n", + "Toluene purity = 43.32260291055251 %\n", + "\n", + "Conversion = 75.0 %\n", + "\n", + "Overhead benzene loss in F101 = 42.161938483603194 %\n" + ] + } + ], + "source": [ + "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", + "print(\"operating cost = $\", value(m.fs.operating_cost))\n", + "print(\"capital cost = $\", value(m.fs.capital_cost))\n", + "print()\n", + "print(\n", + " \"Distillate flowrate = \",\n", + " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", + " \"mol/s\",\n", + ")\n", + "print(\n", + " \"Benzene purity = \",\n", + " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", + " \"%\",\n", + ")\n", + "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", + "print(\n", + " \"Toluene purity = \",\n", + " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", + " \"%\",\n", + ")\n", + "print()\n", + "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", + "print()\n", + "print(\n", + " \"Overhead benzene loss in F101 = \",\n", + " 100\n", + " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", + " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", + " \"%\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get the state of the streams entering and leaving the reactor R101" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 0.0000 : watt : True : (None, None)\n", + " Volume : 0.14705 : meter ** 3 : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.2993e-07\n", + " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 8.4147e-07\n", + " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-12\n", + " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-12\n", + " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.11936 0.35374\n", + " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.31252 0.078129\n", + " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.0377 1.2721\n", + " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.56260 0.32821\n", + " temperature kelvin 600.00 771.85\n", + " pressure pascal 3.5000e+05 3.5000e+05\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m.fs.R101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get the state of the streams entering and leaving the reactor R101" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.F101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -70343. : watt : False : (None, None)\n", + " Pressure Change : 0.0000 : pascal : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Vapor Outlet Liquid Outlet\n", + " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 0.20460 \n", + " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 0.062520 \n", + " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", + " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", + " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 1.0000e-08 \n", + " temperature kelvin 771.85 325.00 325.00 \n", + " pressure pascal 3.5000e+05 3.5000e+05 3.5000e+05 \n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m.fs.F101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "How much benzene are we losing in the F101 vapor outlet stream?\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Units Reactor Light Gases\n", + "flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 \n", + "flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 \n", + "flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 \n", + "flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 \n", + "flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 \n", + "flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 \n", + "flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 \n", + "flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 \n", + "temperature kelvin 771.85 325.00 \n", + "pressure pascal 3.5000e+05 3.5000e+05 \n" + ] + } + ], + "source": [ + "from idaes.core.util.tables import (\n", + " create_stream_table_dataframe,\n", + " stream_table_dataframe_to_string,\n", + ")\n", + "\n", + "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", + "print(stream_table_dataframe_to_string(st))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "You can query additional variables here if you like. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Optimization\n", + "\n", + "\n", + "We saw from the results above that the total operating cost for the base case was $442,297 per year. We are producing 0.162 mol/s of benzene at a purity of 89.5%. However, we are losing around 43.3% of benzene in F101 vapor outlet stream. \n", + "\n", + "Let us try to minimize this cost such that:\n", + "- we are producing at least 0.18 mol/s of benzene as distillate i.e. our product stream\n", + "- purity of benzene i.e. the mole fraction of benzene in the distillate is at least 99%\n", + "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", + "\n", + "For this problem, our decision variables are as follows:\n", + "- H101 outlet temperature\n", + "- R101 outlet temperature\n", + "- F101 outlet temperature\n", + "- H102 outlet temperature\n", + "- Condenser pressure\n", + "- reflux ratio\n", + "- boilup ratio\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost + m.fs.capital_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.R101.conversion.unfix()\n", + "m.fs.F101.vap_outlet.temperature.unfix()\n", + "m.fs.D101.condenser.condenser_pressure.unfix()\n", + "m.fs.D101.condenser.reflux_ratio.unfix()\n", + "m.fs.D101.reboiler.boilup_ratio.unfix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now unfix the remaining variable: the temperature of the outlet from H102\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Unfix the temperature of the outlet from H102" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to set bounds on these decision variables to values shown below:\n", + "\n", + " - H101 outlet temperature [500, 600] K\n", + " - R101 outlet temperature [600, 900] K\n", + " - F101 outlet temperature [298, 450] K\n", + " - H102 outlet temperature [350, 400] K\n", + " - D101 condenser pressure [101325, 150000] Pa\n", + " - D101 reflux ratio [0.1, 5]\n", + " - D101 boilup ratio [0.1, 5]" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "# Set bounds on the temperature of the outlet from H101\n", + "m.fs.H101.outlet.temperature[0].setlb(500)\n", + "m.fs.H101.outlet.temperature[0].setub(600)\n", + "\n", + "# Set bounds on the temperature of the outlet from R101\n", + "m.fs.R101.outlet.temperature[0].setlb(600)\n", + "m.fs.R101.outlet.temperature[0].setub(900)\n", + "\n", + "# Set bounds on the volume of the reactor R101\n", + "m.fs.R101.volume[0].setlb(0)\n", + "\n", + "# Set bounds on the temperature of the vapor outlet from F101\n", + "m.fs.F101.vap_outlet.temperature[0].setlb(298)\n", + "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", + "\n", + "# Set bounds on the temperature of the outlet from H102\n", + "m.fs.H102.outlet.temperature[0].setlb(350)\n", + "m.fs.H102.outlet.temperature[0].setub(400)\n", + "\n", + "# Set bounds on the pressure inside the condenser\n", + "m.fs.D101.condenser.condenser_pressure.setlb(101325)\n", + "m.fs.D101.condenser.condenser_pressure.setub(150000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, set the bounds for the D101 reflux ratio and boilup ratio.\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Set bounds on the reflux ratio\n", + "\n", + "\n", + "# Todo: Set bounds on the boilup ratio" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the only things left to define are our constraints on overhead loss in F101, distillate flowrate and its purity. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 % of the benzene available in the reactor outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "# Ensure that the overhead loss of benzene from F101 <= 20%\n", + "m.fs.overhead_loss = Constraint(\n", + " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, add the constraint such that we are producing at least 0.18 mol/s of benzene in the product stream which is the distillate of D101. Let us name this constraint as m.fs.product_flow. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add minimum product flow constraint" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us add the final constraint on product purity or the mole fraction of benzene in the distillate such that it is at least greater than 99%. " + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.product_purity = Constraint(\n", + " expr=m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"] >= 0.99\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 3\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 4073\n", + "Number of nonzeros in inequality constraint Jacobian.: 6\n", + "Number of nonzeros in Lagrangian Hessian.............: 2391\n", + "\n", + "Total number of variables............................: 1176\n", + " variables with only lower bounds: 113\n", + " variables with lower and upper bounds: 372\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 1169\n", + "Total number of inequality constraints...............: 3\n", + " inequality constraints with only lower bounds: 2\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 1\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 4.4230147e+05 2.99e+05 9.90e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 4.3753585e+05 2.91e+05 1.28e+02 -1.0 3.09e+06 - 3.58e-01 2.40e-02f 1\n", + " 2 4.3545100e+05 2.78e+05 1.55e+02 -1.0 1.78e+06 - 3.31e-01 4.74e-02h 1\n", + " 3 4.2822311e+05 2.20e+05 4.50e+02 -1.0 2.99e+06 - 2.95e-02 1.35e-01h 1\n", + " 4 4.2249096e+05 1.45e+05 1.43e+03 -1.0 7.01e+06 - 5.14e-01 2.03e-01h 1\n", + " 5 4.2194364e+05 8.17e+04 1.70e+04 -1.0 6.06e+06 - 5.97e-01 4.28e-01h 1\n", + " 6 4.2602765e+05 4.55e+04 1.10e+06 -1.0 4.32e+06 - 9.26e-01 5.07e-01h 1\n", + " 7 4.3776643e+05 2.03e+04 6.44e+09 -1.0 2.42e+06 - 9.90e-01 9.47e-01h 1\n", + " 8 4.3846260e+05 1.92e+04 6.05e+09 -1.0 4.42e+05 - 5.40e-01 5.74e-02h 1\n", + " 9 4.4529853e+05 4.05e+04 4.66e+10 -1.0 2.47e+05 - 9.96e-01 9.90e-01h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 4.4906283e+05 9.76e+03 1.10e+10 -1.0 1.12e+03 -4.0 1.26e-01 7.45e-01h 1\n", + " 11 4.5079086e+05 1.19e+03 1.54e+09 -1.0 5.63e+02 -4.5 3.77e-01 1.00e+00h 1\n", + " 12 4.5024224e+05 2.66e+00 3.67e+06 -1.0 6.61e+01 -5.0 1.00e+00 1.00e+00f 1\n", + " 13 4.4946170e+05 5.64e-01 9.29e+05 -1.0 1.81e+02 -5.4 1.00e+00 7.88e-01f 1\n", + " 14 4.4916780e+05 8.48e+00 1.62e+05 -1.0 2.83e+02 -5.9 1.00e+00 1.00e+00f 1\n", + " 15 4.4899127e+05 4.83e+00 9.07e+04 -1.0 1.01e+02 -6.4 1.00e+00 4.40e-01f 2\n", + " 16 4.4886718e+05 7.00e-01 4.61e+02 -1.0 2.35e+02 -6.9 1.00e+00 1.00e+00f 1\n", + " 17 4.4800159e+05 1.39e+02 4.52e+06 -3.8 1.17e+03 -7.3 9.79e-01 9.37e-01f 1\n", + " 18 4.4672196e+05 9.59e+02 1.22e+06 -3.8 4.55e+03 -7.8 1.00e+00 9.43e-01f 1\n", + " 19 4.4401667e+05 7.75e+03 1.55e+05 -3.8 1.08e+04 -8.3 1.00e+00 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 20 4.4185035e+05 1.91e+04 1.36e+04 -3.8 1.33e+04 -8.8 1.00e+00 1.00e+00h 1\n", + " 21 4.4241001e+05 3.52e+03 5.96e+03 -3.8 2.94e+03 -9.2 1.00e+00 1.00e+00h 1\n", + " 22 4.4185237e+05 7.82e+00 2.91e+02 -3.8 7.13e+03 -9.7 2.39e-01 1.00e+00h 1\n", + " 23 4.4124091e+05 1.53e+01 3.11e+02 -3.8 4.82e+04 -10.2 8.59e-01 1.36e-01f 1\n", + " 24 4.4137379e+05 1.80e+00 2.91e+02 -3.8 1.41e+04 - 1.95e-01 1.00e+00h 1\n", + " 25 4.3862833e+05 1.70e+03 9.48e+04 -3.8 1.57e+07 - 1.29e-03 9.10e-02f 1\n", + " 26 4.3883308e+05 1.49e+03 8.46e+04 -3.8 1.02e+06 - 1.00e+00 1.35e-01h 1\n", + " 27 4.3885472e+05 2.18e+01 3.40e+03 -3.8 1.38e+05 - 1.00e+00 1.00e+00h 1\n", + " 28 4.3884160e+05 5.90e-02 6.38e+01 -3.8 8.66e+03 - 1.00e+00 1.00e+00h 1\n", + " 29 4.3884157e+05 6.48e-07 4.63e-04 -3.8 2.89e+01 - 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 30 4.3883990e+05 3.57e-01 2.38e+03 -5.7 8.19e+02 - 1.00e+00 1.00e+00f 1\n", + " 31 4.3883992e+05 3.50e-07 7.79e-06 -5.7 3.55e-01 - 1.00e+00 1.00e+00h 1\n", + " 32 4.3883990e+05 5.47e-05 3.63e-01 -8.0 1.01e+01 - 1.00e+00 1.00e+00h 1\n", + " 33 4.3883990e+05 2.24e-08 1.46e-07 -8.0 5.42e-05 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 33\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 4.3883989842628603e+02 4.3883989842628600e+05\n", + "Dual infeasibility......: 1.4600704448671754e-07 1.4600704448671753e-04\n", + "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", + "Complementarity.........: 9.0909948039799681e-09 9.0909948039799686e-06\n", + "Overall NLP error.......: 9.0909948039799681e-09 1.4600704448671753e-04\n", + "\n", + "\n", + "Number of objective function evaluations = 35\n", + "Number of objective gradient evaluations = 34\n", + "Number of equality constraint evaluations = 35\n", + "Number of inequality constraint evaluations = 35\n", + "Number of equality constraint Jacobian evaluations = 34\n", + "Number of inequality constraint Jacobian evaluations = 34\n", + "Number of Lagrangian Hessian evaluations = 33\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.164\n", + "Total CPU secs in NLP function evaluations = 0.020\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimization Results\n", + "\n", + "Display the results and product specifications" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total cost = $ 438839.898426286\n", + "operating cost = $ 408883.5314830889\n", + "capital cost = $ 29956.3669431971\n", + "\n", + "Distillate flowrate = 0.1799999900263989 mol/s\n", + "Benzene purity = 98.99999900049086 %\n", + "Residue flowrate = 0.1085161642426372 mol/s\n", + "Toluene purity = 15.676178086213548 %\n", + "\n", + "Conversion = 93.38705916369427 %\n", + "\n", + "Overhead benzene loss in F101 = 17.34061793115618 %\n" + ] + } + ], + "source": [ + "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", + "print(\"operating cost = $\", value(m.fs.operating_cost))\n", + "print(\"capital cost = $\", value(m.fs.capital_cost))\n", + "print()\n", + "print(\n", + " \"Distillate flowrate = \",\n", + " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", + " \"mol/s\",\n", + ")\n", + "print(\n", + " \"Benzene purity = \",\n", + " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", + " \"%\",\n", + ")\n", + "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", + "print(\n", + " \"Toluene purity = \",\n", + " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", + " \"%\",\n", + ")\n", + "print()\n", + "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", + "print()\n", + "print(\n", + " \"Overhead benzene loss in F101 = \",\n", + " 100\n", + " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", + " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", + " \"%\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal Values\n", + "\n", + "H101 outlet temperature = 568.923204295196 K\n", + "\n", + "R101 outlet temperature = 790.3655425698853 K\n", + "\n", + "F101 outlet temperature = 298.0 K\n", + "\n", + "H102 outlet temperature = 368.7414339952852 K\n" + ] + } + ], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"H102 outlet temperature = \", value(m.fs.H102.outlet.temperature[0]), \"K\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Key Takeaways\n", + "\n", + "Observe that the optimization was able to reduce the yearly operating cost from \\\\$427,593 to \\\\$408,342 (~4.5%). However, the amortized capital cost more than doubled from \\\\$14,704 to \\\\$29,927 due to the need to increase the conversion in the reactor (from 75% to 93%) to meet the production and purity constraints. \n", + "\n", + "Further, observe that the product flow rate and product purity are at their minimum values (0.18 mol/s and 99%, respectively). This is expected as increasing recovery would require more energy and cost to purify the product.\n", + "\n", + "\n", + "Finally, observe that the operating temperature of the flash (F101) is almost at its lower bound. This helps in minimizing the amount of benzene in the vapor stream leaving the flash." + ] } - ], - "source": [ - "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", - "print(\"operating cost = $\", value(m.fs.operating_cost))\n", - "print(\"capital cost = $\", value(m.fs.capital_cost))\n", - "print()\n", - "print(\n", - " \"Distillate flowrate = \",\n", - " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", - " \"mol/s\",\n", - ")\n", - "print(\n", - " \"Benzene purity = \",\n", - " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", - " \"%\",\n", - ")\n", - "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", - "print(\n", - " \"Toluene purity = \",\n", - " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", - " \"%\",\n", - ")\n", - "print()\n", - "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", - "print()\n", - "print(\n", - " \"Overhead benzene loss in F101 = \",\n", - " 100\n", - " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", - " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", - " \"%\",\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal Values\n", - "\n", - "H101 outlet temperature = 568.923204295196 K\n", - "\n", - "R101 outlet temperature = 790.3655425698853 K\n", - "\n", - "F101 outlet temperature = 298.0 K\n", - "\n", - "H102 outlet temperature = 368.7414339952852 K\n" - ] + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" } - ], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"H102 outlet temperature = \", value(m.fs.H102.outlet.temperature[0]), \"K\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Key Takeaways\n", - "\n", - "Observe that the optimization was able to reduce the yearly operating cost from \\\\$427,593 to \\\\$408,342 (~4.5%). However, the amortized capital cost more than doubled from \\\\$14,704 to \\\\$29,927 due to the need to increase the conversion in the reactor (from 75% to 93%) to meet the production and purity constraints. \n", - "\n", - "Further, observe that the product flow rate and product purity are at their minimum values (0.18 mol/s and 99%, respectively). This is expected as increasing recovery would require more energy and cost to purify the product.\n", - "\n", - "\n", - "Finally, observe that the operating temperature of the flash (F101) is almost at its lower bound. This helps in minimizing the amount of benzene in the vapor stream leaving the flash." - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_solution.ipynb b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_solution.ipynb index 86d59dd3..121bd803 100644 --- a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_solution.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_solution.ipynb @@ -1,3024 +1,3025 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# HDA Flowsheet Simulation and Optimization\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "## Note\n", - "\n", - "This tutorial will be similar to the HDA flowsheet tutorial in the Tutorials section, except that we use a distillation column instead of a second flash (F102) to produce benzene and toluene products.\n", - "\n", - "\n", - "## Learning outcomes\n", - "\n", - "\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Hydrodealkylation is a chemical reaction that often involves reacting\n", - "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", - "simpler aromatic hydrocarbon devoid of functional groups. In this\n", - "example, toluene will be reacted with hydrogen gas at high temperatures\n", - " to form benzene via the following reaction:\n", - "\n", - "**C6H5CH3 + H2 → C6H6 + CH4**\n", - "\n", - "\n", - "This reaction is often accompanied by an equilibrium side reaction\n", - "which forms diphenyl, which we will neglect for this example.\n", - "\n", - "This example is based on the 1967 AIChE Student Contest problem as\n", - "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", - "McGraw-Hill.\n", - "\n", - "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, we use a flash tank, F101, to separate out the non-condensibles, and a distillation column, D101, to further separate the benzene-toluene mixture to improve the benzene purity. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be purged. We will assume ideal gas behavior for this flowsheet. The properties required for this module are defined in\n", - "\n", - "- `hda_ideal_VLE.py`\n", - "- `idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE`\n", - "- `hda_reaction.py`\n", - "\n", - "We will be using two thermodynamic packages: one (first in the list above) containing all four components (i.e., toluene, hydrogen, benzene, and methane) and the other (second in the list above) containing benzene and toluene only. The latter is needed to simplify the VLE calculations in the distillation column model. \n", - "\n", - "![](HDA_flowsheet_distillation.png)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Translator block\n", - "\n", - "Benzene and toluene are separated by distillation, so the process involves phase equilibrium and two-phase flow conditions. However, the presence of hydrogen and methane complicates the calculations. This is because, hydrogen and methane are non-condensable under all conditions of interest; ergo, a vapor phase will always be present, and the mixture bubble point is extremely low. To simplify the phase equilibrium calculations, hydrogen and methane will be considered completely as non-condensable and insoluble in the liquid outlet from the flash F101.\n", - "\n", - "Since no hydrogen and methane will be present in the unit operations following the flash, a different component list can be used to simplify the property calculations. IDAES supports the definition of multiple property packages within a single flowsheet via `Translator` blocks. `Translator` blocks convert between different property calculations, component lists, and equations of state. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required pyomo and idaes components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- ConcreteModel (to create the concrete model object)\n", - "- Expression (to evaluate values as a function of variables defined in the model)\n", - "- Objective (to define an objective function for optimization)\n", - "- SolverFactory (to solve the problem)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- Arc (to connect two unit models)\n", - "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " TransformationFactory,\n", - " value,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Import `Arc` and `SequentialDecomposition` tools from `pyomo.network`\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Import the above mentioned tools from pyomo.network" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Import the above mentioned tools from pyomo.network\n", - "from pyomo.network import Arc, SequentialDecomposition" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From IDAES, we will be needing the FlowsheetBlock and the following unit models:\n", - "- Mixer\n", - "- Heater\n", - "- CSTR\n", - "- Flash\n", - "- Separator (splitter) \n", - "- PressureChanger\n", - "- Translator (to switch from one property package to another)\n", - "- TrayColumn (distillation column)\n", - "- CondenserType (Type of the overhead condenser: complete or partial)\n", - "- TemperatureSpec (Temperature specification inside the condenser)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core import FlowsheetBlock" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models import (\n", - " PressureChanger,\n", - " Mixer,\n", - " Separator as Splitter,\n", - " Heater,\n", - " CSTR,\n", - " Flash,\n", - " Translator,\n", - ")\n", - "\n", - "from idaes.models_extra.column_models import TrayColumn\n", - "from idaes.models_extra.column_models.condenser import CondenserType, TemperatureSpec" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Utility tools to put together the flowsheet and calculate the degrees of freedom\n", - "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state\n", - "from idaes.core.solvers import get_solver\n", - "import idaes.core.util.scaling as iscale\n", - "from idaes.core.util.exceptions import InitializationError\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required thermo and reaction packages\n", - "\n", - "Finally, we import the thermophysical (`ideal_VLE.py` and `BTXParameterBlock`) packages and reaction package (`reaction.py`) for the HDA process. We have created custom thermophysical packages that assume ideal gas behavior with support for VLE. The reaction package consists of the stochiometric coefficients for the reaction, heat of reaction, and kinetic information (Arrhenius constant and activation energy). " - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes_examples.mod.hda import hda_reaction as reaction_props\n", - "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", - " BTXParameterBlock,\n", - ")\n", - "\n", - "from idaes_examples.mod.hda.hda_ideal_VLE import HDAParameterBlock" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block to it. " - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# Create a Pyomo Concrete Model to contain the problem\n", - "m = ConcreteModel()\n", - "\n", - "# Add a steady state flowsheet block to the model\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now add the thermophysical and reaction packages to the flowsheet." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# Property package for benzene, toluene, hydrogen, methane mixture\n", - "m.fs.BTHM_params = HDAParameterBlock()\n", - "\n", - "# Property package for the benzene-toluene mixture\n", - "m.fs.BT_params = BTXParameterBlock(\n", - " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\"\n", - ")\n", - "\n", - "# Reaction package for the HDA reaction\n", - "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", - " property_package=m.fs.BTHM_params\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition, the Mixer unit model needs a `list` consisting of the inlets (toluene feed, hydrogen feed and vapor recycle streams in this case). " - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# Adding the mixer M101 to the flowsheet\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.BTHM_params,\n", - " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", - ")\n", - "\n", - "# Adding the heater H101 to the flowsheet\n", - "m.fs.H101 = Heater(property_package=m.fs.BTHM_params, has_phase_equilibrium=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now add the CSTR (assign the name R101) and pass the following arguments:\n", - "
    \n", - "
  • \"property_package\": m.fs.BTHM_params
  • \n", - "
  • \"reaction_package\": m.fs.reaction_params
  • \n", - "
  • \"has_heat_of_reaction\": True
  • \n", - "
  • \"has_heat_transfer\": True
  • \n", - "
\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add reactor with the specifications above" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add reactor with the specifications above\n", - "m.fs.R101 = CSTR(\n", - " property_package=m.fs.BTHM_params,\n", - " reaction_package=m.fs.reaction_params,\n", - " has_heat_of_reaction=True,\n", - " has_heat_transfer=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add the Flash (assign the name F101), Splitter (assign the name S101) and PressureChanger (assign the name C101)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "# Adding the flash tank F101 to the flowsheet\n", - "m.fs.F101 = Flash(\n", - " property_package=m.fs.BTHM_params, has_heat_transfer=True, has_pressure_change=True\n", - ")\n", - "\n", - "# Adding the splitter S101 to the flowsheet\n", - "m.fs.S101 = Splitter(\n", - " property_package=m.fs.BTHM_params, outlet_list=[\"purge\", \"recycle\"]\n", - ")\n", - "\n", - "# Adding the compressor C101 to the flowsheet\n", - "m.fs.C101 = PressureChanger(\n", - " property_package=m.fs.BTHM_params,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Remark\n", - "\n", - "Currently, the `SequentialDecomposition()` tool, which we will later be using to initialize the flowsheet, does not support the distillation column model. Thus, we will first simulate the flowsheet without the distillation column. After it converges, we will then add the distillation column, initialize it, and simulate the entire flowsheet." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As mentioned above, we use the `m.fs.BTHM_params` package, which contains all the four species, for the reactor loop, and the simpler `m.fs.BT_params` for unit operations following the flash (i.e., heater H102 and the distillation column D101). We define a `Translator` block to link the source property package and the package it is to be translated to in the following manner:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "# Add translator block to convert between property packages\n", - "m.fs.translator = Translator(\n", - " inlet_property_package=m.fs.BTHM_params, outlet_property_package=m.fs.BT_params\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Translator block constraints\n", - "\n", - "The `Translator` block needs to know how to translate between the two property packages. This must be custom coded for each application because of the generality of the IDAES framework.\n", - "\n", - "For this process, five constraints are required based on the state variables used in the outgoing process.\n", - "\n", - "- Since we assumed that only benzene and toluene are present in the liquid phase, the total molar flowrate must be the sum of molar flowrates of benzene and toluene, respectively.\n", - "- Temperature of the inlet and outlet streams must be the same.\n", - "- Pressure of the inlet and outgoing streams must be the same\n", - "- The mole fraction of benzene in the outgoing stream is the ratio of the molar flowrate of liquid benzene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet.\n", - "- The mole fraction of toluene in the outgoing stream is the ratio of the molar flowrate of liquid toluene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "# Add constraint: Total flow = benzene flow + toluene flow (molar)\n", - "m.fs.translator.eq_total_flow = Constraint(\n", - " expr=m.fs.translator.outlet.flow_mol[0]\n", - " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - ")\n", - "\n", - "# Add constraint: Outlet temperature = Inlet temperature\n", - "m.fs.translator.eq_temperature = Constraint(\n", - " expr=m.fs.translator.outlet.temperature[0] == m.fs.translator.inlet.temperature[0]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the above, note that the variable flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Add the constraint to ensure that the outlet pressure is the same as the inlet pressure\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add constraint: Outlet pressure = Inlet pressure" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add constraint: Outlet pressure = Inlet pressure\n", - "m.fs.translator.eq_pressure = Constraint(\n", - " expr=m.fs.translator.outlet.pressure[0] == m.fs.translator.inlet.pressure[0]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "# Remaining constraints on the translator block\n", - "\n", - "# Add constraint: Benzene mole fraction definition\n", - "m.fs.translator.eq_mole_frac_benzene = Constraint(\n", - " expr=m.fs.translator.outlet.mole_frac_comp[0, \"benzene\"]\n", - " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " / (\n", - " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - " )\n", - ")\n", - "\n", - "# Add constraint: Toluene mole fraction definition\n", - "m.fs.translator.eq_mole_frac_toluene = Constraint(\n", - " expr=m.fs.translator.outlet.mole_frac_comp[0, \"toluene\"]\n", - " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - " / (\n", - " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Finally, let us add the Heater H102 in the same way as H101 but pass the m.fs.BT_params thermodynamic package. We will add the distillation column after converging the flowsheet.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add the Heater H102 to the flowsheet" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add the Heater H102 to the flowsheet\n", - "m.fs.H102 = Heater(\n", - " property_package=m.fs.BT_params,\n", - " has_pressure_change=True,\n", - " has_phase_equilibrium=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models using Arcs\n", - "\n", - "We have now added the initial set of unit models to the flowsheet. However, we have not yet specified how the units are connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer (M101) to the inlet of the heater (H101). " - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "![](HDA_flowsheet_distillation.png) \n", - "\n", - "
\n", - "Inline Exercise:\n", - "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Connect the H101 outlet to R101 inlet" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Connect the H101 outlet to R101 inlet\n", - "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be connecting the rest of the units as shown below. Notice how the outlet names are different for the flash tank as it has a vapor and a liquid outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", - "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", - "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", - "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", - "m.fs.s10a = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.translator.inlet)\n", - "m.fs.s10b = Arc(source=m.fs.translator.outlet, destination=m.fs.H102.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Appending additional constraints to the model\n", - "\n", - "Now, we will see how we can add additional constraints to the model using `Constraint` from Pyomo.\n", - "\n", - "Consider the reactor R101. By default, the conversion of a component is not calculated when we simulate the flowsheet. If we are interested either in specifying or constraining the conversion value, we can add the following constraint to calculate the conversion:\n", - "$$ \\text{Conversion of toluene} = \\frac{\\text{molar flow of toluene in the inlet} - \\text{molar flow of toluene in the outlet}}{\\text{molar flow of toluene in the inlet}} $$ \n", - "\n", - "We add the constraint to the model as shown below." - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "# Define the conversion variables using 'Var'\n", - "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", - "\n", - "# Append the constraint to the model\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing feed conditions and Initializing the flowsheet\n", - "\n", - "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "29\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", - "m.fs.M101.toluene_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", - "
    \n", - "
  • FH2 = 0.30 mol/s
  • \n", - "
  • FCH4 = 0.02 mol/s
  • \n", - "
  • Remaining components = 1e-5 mol/s
  • \n", - "
  • T = 303.2 K
  • \n", - "
  • P = 350000 Pa
  • \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", - "m.fs.M101.hydrogen_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Fixing unit model specifications\n", - "\n", - "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set the H101 outlet temperature to 600 K. " - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the temperature of the outlet from the heater H101\n", - "m.fs.H101.outlet.temperature.fix(600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Set the conditions for the reactor R101 to the following conditions:\n", - "
    \n", - "
  • `conversion` = 0.75
  • \n", - "
  • `heat_duty` = 0
  • \n", - "
\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Fix the 'conversion' of the reactor R101\n", - "\n", - "\n", - "# Todo: Fix the 'heat_duty' of the reactor R101" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Fix the 'conversion' of the reactor R101\n", - "m.fs.R101.conversion.fix(0.75)\n", - "\n", - "# Todo: Fix the 'heat_duty' of the reactor R101\n", - "m.fs.R101.heat_duty.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Flash conditions for F101 can be set as follows. " - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the temperature of the vapor outlet from F101\n", - "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", - "\n", - "# Fix the pressure drop in the flash F101\n", - "m.fs.F101.deltaP.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us fix the split fraction of the purge stream from the splitter S101 and the outlet pressure from the compressor C101" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the split fraction of the 'purge' stream from S101\n", - "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", - "\n", - "# Fix the pressure of the outlet from the compressor C101\n", - "m.fs.C101.outlet.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, let us fix the temperature of the outlet from H102 and the pressure drop in H102 as the following" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the temperature of the outlet from the heater H102\n", - "m.fs.H102.outlet.temperature.fix(375)\n", - "\n", - "# Fix the pressure drop in the heater H102\n", - "m.fs.H102.deltaP.fix(-200000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To avoid convergence issues associated with poorly scaled variables and/or constraints, we scale the variables and constraints corresponding to the heaters H101 and H102, flash F101 and the reactor R101. Scaling factors for the flow rates, temperature, pressure, etc. have been defined in the property package: `ideal_VLE.py` file. Here, we set scaling factors only for the heat duty of the heater, the reaction extent, heat duty and volume of the reactor." - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].flow_mol_phase\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n" - ] - } - ], - "source": [ - "# Set scaling factors for heat duty, reaction extent and volume\n", - "iscale.set_scaling_factor(m.fs.H101.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.R101.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.R101.control_volume.rate_reaction_extent, 1)\n", - "iscale.set_scaling_factor(m.fs.R101.control_volume.volume, 1)\n", - "iscale.set_scaling_factor(m.fs.F101.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.H102.control_volume.heat, 1e-2)\n", - "\n", - "# Set the scaling factors for the remaining variables and all constraints\n", - "iscale.calculate_scaling_factors(m.fs.H101)\n", - "iscale.calculate_scaling_factors(m.fs.R101)\n", - "iscale.calculate_scaling_factors(m.fs.F101)\n", - "iscale.calculate_scaling_factors(m.fs.H102)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Check the degrees of freedom" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n" - ] - } - ], - "source": [ - "# Todo: Check the degrees of freedom\n", - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initialization\n", - "\n", - "This subsection will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", - "\n", - "Let us first create an object for the `SequentialDecomposition` and specify our options for this. " - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "seq = SequentialDecomposition()\n", - "seq.options.select_tear_method = \"heuristic\"\n", - "seq.options.tear_method = \"Wegstein\"\n", - "seq.options.iterLim = 3\n", - "\n", - "# Using the SD tool\n", - "G = seq.create_graph(m)\n", - "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", - "order = seq.calculation_order(G)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Which is the tear stream? Display tear set and order" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fs.s03\n" - ] - } - ], - "source": [ - "for o in heuristic_tear_set:\n", - " print(o.name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fs.H101\n", - "fs.R101\n", - "fs.F101\n", - "fs.S101\n", - "fs.C101\n", - "fs.M101\n" - ] - } - ], - "source": [ - "for o in order:\n", - " print(o[0].name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet (s03 in the Figure above). We will need to provide a reasonable guess for this.\n", - "\n", - "For the initial guess, we assume that the flowrate of the recycle stream (s09) is zero. Consequently, the flow rate of the stream s03 is simply the sum of the flowrates of the toluene feed and hydrogen feed streams. Further, since the temperature and the pressure of both the toluene and hydrogen feed streams are the same, we specify their values as the initial guess for the temperature and pressure of the stream s03." - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "tear_guesses = {\n", - " \"flow_mol_phase_comp\": {\n", - " (0, \"Vap\", \"benzene\"): 1e-5,\n", - " (0, \"Vap\", \"toluene\"): 1e-5,\n", - " (0, \"Vap\", \"hydrogen\"): 0.30,\n", - " (0, \"Vap\", \"methane\"): 0.02,\n", - " (0, \"Liq\", \"benzene\"): 1e-5,\n", - " (0, \"Liq\", \"toluene\"): 0.30,\n", - " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", - " (0, \"Liq\", \"methane\"): 1e-5,\n", - " },\n", - " \"temperature\": {0: 303.2},\n", - " \"pressure\": {0: 350000},\n", - "}\n", - "\n", - "# Pass the tear_guess to the SD tool\n", - "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. For the initialization, we will import a Block Triangularization Initializer which decomposes the model into a set of subproblems. These subproblems are solved using a block triangularization transformation before applying a simple Newton or user-selected solver. Methods such as block triangularization often solve faster and yield more reliable behavior than heuristic methods, but sometime struggle to decompose models with strongly coupled equations (e.g. column models, systems with counter-current flow, vapor-liquid equilibrium)." - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "def function(unit):\n", - " # Try initializing using default initializer,\n", - " # if it fails (probably due to scaling) try for the second time\n", - " try:\n", - " initializer = unit.default_initializer()\n", - " initializer.initialize(unit, output_level=idaeslog.INFO)\n", - " except InitializationError:\n", - " solver = get_solver()\n", - " solver.solve(unit)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 3 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-08-28 18:38:14 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:16 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 12\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "WARNING: Wegstein failed to converge in 3 iterations\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:33 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n" - ] - } - ], - "source": [ - "seq.run(m, function)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'scaling_factor' that contains 6\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 1097\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 877\n", - "\n", - "Total number of variables............................: 363\n", - " variables with only lower bounds: 8\n", - " variables with lower and upper bounds: 155\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 363\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 3.82e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 8.69e+03 1.44e+03 -1.0 2.00e+04 - 9.71e-01 4.67e-01H 1\n", - " 2 0.0000000e+00 1.29e+03 1.56e+03 -1.0 1.60e+04 - 9.79e-01 4.90e-01h 1\n", - " 3 0.0000000e+00 1.18e+03 1.55e+05 -1.0 1.40e+04 - 9.90e-01 4.99e-01h 1\n", - " 4 0.0000000e+00 5.46e+02 2.32e+09 -1.0 8.42e+03 - 1.00e+00 9.82e-01h 1\n", - " 5 0.0000000e+00 5.46e+03 3.66e+10 -1.0 5.97e+02 - 1.00e+00 9.90e-01h 1\n", - " 6 0.0000000e+00 1.21e+03 8.01e+09 -1.0 5.75e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 0.0000000e+00 6.41e+00 3.87e+07 -1.0 1.53e-03 - 1.00e+00 1.00e+00f 1\n", - " 8 0.0000000e+00 1.96e-04 9.36e+02 -1.0 7.28e-06 - 1.00e+00 1.00e+00h 1\n", - " 9 0.0000000e+00 2.24e-08 4.99e-01 -3.8 5.92e-08 - 1.00e+00 1.00e+00h 1\n", - "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", - "\n", - "Number of Iterations....: 9\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 1.5042487592972509e+04 1.5042487592972509e+04\n", - "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9103830456733704e-11 1.5042487592972509e+04\n", - "\n", - "\n", - "Number of objective function evaluations = 11\n", - "Number of objective gradient evaluations = 10\n", - "Number of equality constraint evaluations = 11\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 10\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 9\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.011\n", - "Total CPU secs in NLP function evaluations = 0.001\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "# Create the solver object\n", - "solver = get_solver()\n", - "\n", - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Add distillation column \n", - "\n", - "As mentioned earlier, the `SequentialDecomposition` tool currently does not support the distillation column model. Thus, we have not included the distillation column in the flowsheet. Now that we have a converged flowsheet, we will add the distillation column and simulate the entire flowsheet. \n", - "\n", - "In the following, we will\n", - "- Add the distillation column \n", - "- Connect it to the heater \n", - "- Add the necessary equality constraints\n", - "- Propagate the state variable information from the outlet of the heater to the inlet of the distillation column \n", - "- Fix the degrees of freedom of the distillation block (reflux ratio, boilup ratio, and condenser pressure)\n", - "- Scale the control volume heat variables to help convergence\n", - "- Initialize the distillation block.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_flow_reflux[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_flow_vapor_reboil[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,toluene]\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101: Begin initialization.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray: Begin initialization.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: State Released.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: State Released.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: State Released.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: State Released.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume: Initialization Complete\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser: Initialization Complete, optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: State Released.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: State Released.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler: Initialization Complete, optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: State Released.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1]: Begin initialization.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: State Released.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: State Released.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[2]: Begin initialization.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: State Released.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: State Released.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: State Released.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3]: Begin initialization.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: State Released.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: State Released.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: State Released.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4]: Begin initialization.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: State Released.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: State Released.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6]: Begin initialization.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: State Released.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: State Released.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7]: Begin initialization.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: State Released.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: State Released.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: State Released.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8]: Begin initialization.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: State Released.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: State Released.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: State Released.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9]: Begin initialization.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: State Released.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: State Released.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: State Released.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10]: Begin initialization.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: State Released.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: State Released.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Rectification section initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Stripping section initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: State Released.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: State Released.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Column section initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: State Released.\n", - "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101: Column section + Condenser initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: State Released.\n", - "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101: Column section + Condenser + Reboiler initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: State Released.\n" - ] - } - ], - "source": [ - "# Add distillation column to the flowsheet\n", - "m.fs.D101 = TrayColumn(\n", - " number_of_trays=10,\n", - " feed_tray_location=5,\n", - " condenser_type=CondenserType.totalCondenser,\n", - " condenser_temperature_spec=TemperatureSpec.atBubblePoint,\n", - " property_package=m.fs.BT_params,\n", - ")\n", - "\n", - "# Connect the outlet from the heater H102 to the distillation column\n", - "m.fs.s11 = Arc(source=m.fs.H102.outlet, destination=m.fs.D101.feed)\n", - "\n", - "# Add the necessary equality constraints\n", - "TransformationFactory(\"network.expand_arcs\").apply_to(m)\n", - "\n", - "# Propagate the state\n", - "propagate_state(m.fs.s11)\n", - "\n", - "# Fix the reflux ratio, boilup ratio, and the condenser pressure\n", - "m.fs.D101.condenser.reflux_ratio.fix(0.5)\n", - "m.fs.D101.reboiler.boilup_ratio.fix(0.5)\n", - "m.fs.D101.condenser.condenser_pressure.fix(150000)\n", - "\n", - "# set scaling factors\n", - "# Set scaling factors for heat duty\n", - "iscale.set_scaling_factor(m.fs.D101.condenser.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.D101.reboiler.control_volume.heat, 1e-2)\n", - "\n", - "# Set the scaling factors for the remaining variables and all constraints\n", - "iscale.calculate_scaling_factors(m.fs.D101)\n", - "\n", - "# Initialize the distillation column\n", - "m.fs.D101.initialize(outlvl=idaeslog.INFO)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding expressions to compute capital and operating costs\n", - "\n", - "In this section, we will add a few Expressions that allow us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [], - "source": [ - "# Expression to compute the total cooling cost\n", - "m.fs.cooling_cost = Expression(\n", - " expr=0.25e-7 * (-m.fs.F101.heat_duty[0])\n", - " + 0.2e-7 * (-m.fs.D101.condenser.heat_duty[0])\n", - ")\n", - "\n", - "# Expression to compute the total heating cost\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", - " + 1.2e-7 * m.fs.H102.heat_duty[0]\n", - " + 1.9e-7 * m.fs.D101.reboiler.heat_duty[0]\n", - ")\n", - "\n", - "# Expression to compute the total operating cost\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", - ")\n", - "\n", - "# Expression to compute the total capital cost\n", - "m.fs.capital_cost = Expression(expr=1e5 * m.fs.R101.volume[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solve the entire flowsheet" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 4042\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 2376\n", - "\n", - "Total number of variables............................: 1169\n", - " variables with only lower bounds: 112\n", - " variables with lower and upper bounds: 365\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 1169\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 3.83e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 8.70e+03 1.50e+03 -1.0 3.69e+04 - 9.71e-01 4.62e-01H 1\n", - " 2 0.0000000e+00 1.53e+03 1.56e+03 -1.0 6.75e+03 - 9.77e-01 4.89e-01h 1\n", - " 3 0.0000000e+00 1.37e+03 1.55e+05 -1.0 9.37e+03 - 9.90e-01 4.99e-01h 1\n", - " 4 0.0000000e+00 6.14e+02 2.31e+09 -1.0 6.09e+03 - 1.00e+00 9.81e-01h 1\n", - " 5 0.0000000e+00 5.32e+03 3.62e+10 -1.0 5.56e+02 - 1.00e+00 9.90e-01h 1\n", - " 6 0.0000000e+00 1.16e+03 7.80e+09 -1.0 5.36e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 0.0000000e+00 5.96e+00 3.64e+07 -1.0 1.47e-03 - 1.00e+00 1.00e+00f 1\n", - " 8 0.0000000e+00 1.69e-04 8.15e+02 -1.0 6.77e-06 - 1.00e+00 1.00e+00h 1\n", - " 9 0.0000000e+00 7.45e-09 6.64e-03 -3.8 2.00e-07 - 1.00e+00 1.00e+00h 1\n", - "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", - "\n", - "Number of Iterations....: 9\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 1.5042483516409773e+04 1.5042483516409773e+04\n", - "Constraint violation....: 2.9103830456733704e-11 7.4505805969238281e-09\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9103830456733704e-11 1.5042483516409773e+04\n", - "\n", - "\n", - "Number of objective function evaluations = 11\n", - "Number of objective gradient evaluations = 10\n", - "Number of equality constraint evaluations = 11\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 10\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 9\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.083\n", - "Total CPU secs in NLP function evaluations = 0.013\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - }, - { - "data": { - "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 1169, 'Number of variables': 1169, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.2022566795349121}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the Results of the Square Problem\n", - "\n", - "How much is the total cost (operating cost + capital cost), operating cost, capital cost, benzene purity in the distillate from the distilation column, and conversion of toluene in the reactor?" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total cost = $ 442301.47075252194\n", - "operating cost = $ 427596.73056805483\n", - "capital cost = $ 14704.740184467111\n", - "\n", - "Distillate flowrate = 0.16196898920633368 mol/s\n", - "Benzene purity = 89.4916166580088 %\n", - "Residue flowrate = 0.10515007120697904 mol/s\n", - "Toluene purity = 43.32260291055251 %\n", - "\n", - "Conversion = 75.0 %\n", - "\n", - "Overhead benzene loss in F101 = 42.161938483603194 %\n" - ] - } - ], - "source": [ - "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", - "print(\"operating cost = $\", value(m.fs.operating_cost))\n", - "print(\"capital cost = $\", value(m.fs.capital_cost))\n", - "print()\n", - "print(\n", - " \"Distillate flowrate = \",\n", - " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", - " \"mol/s\",\n", - ")\n", - "print(\n", - " \"Benzene purity = \",\n", - " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", - " \"%\",\n", - ")\n", - "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", - "print(\n", - " \"Toluene purity = \",\n", - " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", - " \"%\",\n", - ")\n", - "print()\n", - "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", - "print()\n", - "print(\n", - " \"Overhead benzene loss in F101 = \",\n", - " 100\n", - " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", - " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", - " \"%\",\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Get the state of the streams entering and leaving the reactor R101" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 0.0000 : watt : True : (None, None)\n", - " Volume : 0.14705 : meter ** 3 : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.2993e-07\n", - " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 8.4147e-07\n", - " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-12\n", - " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-12\n", - " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.11936 0.35374\n", - " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.31252 0.078129\n", - " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.0377 1.2721\n", - " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.56260 0.32821\n", - " temperature kelvin 600.00 771.85\n", - " pressure pascal 3.5000e+05 3.5000e+05\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m.fs.R101.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Get the state of the streams entering and leaving the reactor R101" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Unit : fs.F101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -70343. : watt : False : (None, None)\n", - " Pressure Change : 0.0000 : pascal : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Vapor Outlet Liquid Outlet\n", - " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 0.20460 \n", - " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 0.062520 \n", - " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", - " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", - " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 1.0000e-08 \n", - " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 1.0000e-08 \n", - " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 1.0000e-08 \n", - " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 1.0000e-08 \n", - " temperature kelvin 771.85 325.00 325.00 \n", - " pressure pascal 3.5000e+05 3.5000e+05 3.5000e+05 \n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m.fs.F101.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "How much benzene are we losing in the F101 vapor outlet stream?\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Units Reactor Light Gases\n", - "flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 \n", - "flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 \n", - "flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 \n", - "flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 \n", - "flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 \n", - "flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 \n", - "flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 \n", - "flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 \n", - "temperature kelvin 771.85 325.00 \n", - "pressure pascal 3.5000e+05 3.5000e+05 \n" - ] - } - ], - "source": [ - "from idaes.core.util.tables import (\n", - " create_stream_table_dataframe,\n", - " stream_table_dataframe_to_string,\n", - ")\n", - "\n", - "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", - "print(stream_table_dataframe_to_string(st))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "You can query additional variables here if you like. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Optimization\n", - "\n", - "\n", - "We saw from the results above that the total operating cost for the base case was $442,297 per year. We are producing 0.162 mol/s of benzene at a purity of 89.5%. However, we are losing around 43.3% of benzene in F101 vapor outlet stream. \n", - "\n", - "Let us try to minimize this cost such that:\n", - "- we are producing at least 0.18 mol/s of benzene as distillate i.e. our product stream\n", - "- purity of benzene i.e. the mole fraction of benzene in the distillate is at least 99%\n", - "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", - "\n", - "For this problem, our decision variables are as follows:\n", - "- H101 outlet temperature\n", - "- R101 outlet temperature\n", - "- F101 outlet temperature\n", - "- H102 outlet temperature\n", - "- Condenser pressure\n", - "- reflux ratio\n", - "- boilup ratio\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost + m.fs.capital_cost)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.R101.conversion.unfix()\n", - "m.fs.F101.vap_outlet.temperature.unfix()\n", - "m.fs.D101.condenser.condenser_pressure.unfix()\n", - "m.fs.D101.condenser.reflux_ratio.unfix()\n", - "m.fs.D101.reboiler.boilup_ratio.unfix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now unfix the remaining variable: the temperature of the outlet from H102\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Unfix the temperature of the outlet from H102" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Unfix the temperature of the outlet from H102\n", - "m.fs.H102.outlet.temperature.unfix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to set bounds on these decision variables to values shown below:\n", - "\n", - " - H101 outlet temperature [500, 600] K\n", - " - R101 outlet temperature [600, 900] K\n", - " - F101 outlet temperature [298, 450] K\n", - " - H102 outlet temperature [350, 400] K\n", - " - D101 condenser pressure [101325, 150000] Pa\n", - " - D101 reflux ratio [0.1, 5]\n", - " - D101 boilup ratio [0.1, 5]" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [], - "source": [ - "# Set bounds on the temperature of the outlet from H101\n", - "m.fs.H101.outlet.temperature[0].setlb(500)\n", - "m.fs.H101.outlet.temperature[0].setub(600)\n", - "\n", - "# Set bounds on the temperature of the outlet from R101\n", - "m.fs.R101.outlet.temperature[0].setlb(600)\n", - "m.fs.R101.outlet.temperature[0].setub(900)\n", - "\n", - "# Set bounds on the volume of the reactor R101\n", - "m.fs.R101.volume[0].setlb(0)\n", - "\n", - "# Set bounds on the temperature of the vapor outlet from F101\n", - "m.fs.F101.vap_outlet.temperature[0].setlb(298)\n", - "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", - "\n", - "# Set bounds on the temperature of the outlet from H102\n", - "m.fs.H102.outlet.temperature[0].setlb(350)\n", - "m.fs.H102.outlet.temperature[0].setub(400)\n", - "\n", - "# Set bounds on the pressure inside the condenser\n", - "m.fs.D101.condenser.condenser_pressure.setlb(101325)\n", - "m.fs.D101.condenser.condenser_pressure.setub(150000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, set the bounds for the D101 reflux ratio and boilup ratio.\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Set bounds on the reflux ratio\n", - "\n", - "\n", - "# Todo: Set bounds on the boilup ratio" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Set bounds on the reflux ratio\n", - "m.fs.D101.condenser.reflux_ratio.setlb(0.1)\n", - "m.fs.D101.condenser.reflux_ratio.setub(5)\n", - "\n", - "# Todo: Set bounds on the boilup ratio\n", - "m.fs.D101.reboiler.boilup_ratio.setlb(0.1)\n", - "m.fs.D101.reboiler.boilup_ratio.setub(5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the only things left to define are our constraints on overhead loss in F101, distillate flowrate and its purity. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 % of the benzene available in the reactor outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [], - "source": [ - "# Ensure that the overhead loss of benzene from F101 <= 20%\n", - "m.fs.overhead_loss = Constraint(\n", - " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, add the constraint such that we are producing at least 0.18 mol/s of benzene in the product stream which is the distillate of D101. Let us name this constraint as m.fs.product_flow. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add minimum product flow constraint" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add minimum product flow constraint\n", - "m.fs.product_flow = Constraint(expr=m.fs.D101.condenser.distillate.flow_mol[0] >= 0.18)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us add the final constraint on product purity or the mole fraction of benzene in the distillate such that it is at least greater than 99%. " - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.product_purity = Constraint(\n", - " expr=m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"] >= 0.99\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'scaling_factor' that contains 3\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 4073\n", - "Number of nonzeros in inequality constraint Jacobian.: 6\n", - "Number of nonzeros in Lagrangian Hessian.............: 2391\n", - "\n", - "Total number of variables............................: 1176\n", - " variables with only lower bounds: 113\n", - " variables with lower and upper bounds: 372\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 1169\n", - "Total number of inequality constraints...............: 3\n", - " inequality constraints with only lower bounds: 2\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 1\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4230147e+05 2.99e+05 9.90e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 4.3753585e+05 2.91e+05 1.28e+02 -1.0 3.09e+06 - 3.58e-01 2.40e-02f 1\n", - " 2 4.3545100e+05 2.78e+05 1.55e+02 -1.0 1.78e+06 - 3.31e-01 4.74e-02h 1\n", - " 3 4.2822311e+05 2.20e+05 4.50e+02 -1.0 2.99e+06 - 2.95e-02 1.35e-01h 1\n", - " 4 4.2249096e+05 1.45e+05 1.43e+03 -1.0 7.01e+06 - 5.14e-01 2.03e-01h 1\n", - " 5 4.2194364e+05 8.17e+04 1.70e+04 -1.0 6.06e+06 - 5.97e-01 4.28e-01h 1\n", - " 6 4.2602765e+05 4.55e+04 1.10e+06 -1.0 4.32e+06 - 9.26e-01 5.07e-01h 1\n", - " 7 4.3776643e+05 2.03e+04 6.44e+09 -1.0 2.42e+06 - 9.90e-01 9.47e-01h 1\n", - " 8 4.3846260e+05 1.92e+04 6.05e+09 -1.0 4.42e+05 - 5.40e-01 5.74e-02h 1\n", - " 9 4.4529853e+05 4.05e+04 4.66e+10 -1.0 2.47e+05 - 9.96e-01 9.90e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 4.4906283e+05 9.76e+03 1.10e+10 -1.0 1.12e+03 -4.0 1.26e-01 7.45e-01h 1\n", - " 11 4.5079086e+05 1.19e+03 1.54e+09 -1.0 5.63e+02 -4.5 3.77e-01 1.00e+00h 1\n", - " 12 4.5024224e+05 2.66e+00 3.67e+06 -1.0 6.61e+01 -5.0 1.00e+00 1.00e+00f 1\n", - " 13 4.4946170e+05 5.64e-01 9.29e+05 -1.0 1.81e+02 -5.4 1.00e+00 7.88e-01f 1\n", - " 14 4.4916780e+05 8.48e+00 1.62e+05 -1.0 2.83e+02 -5.9 1.00e+00 1.00e+00f 1\n", - " 15 4.4899127e+05 4.83e+00 9.07e+04 -1.0 1.01e+02 -6.4 1.00e+00 4.40e-01f 2\n", - " 16 4.4886718e+05 7.00e-01 4.61e+02 -1.0 2.35e+02 -6.9 1.00e+00 1.00e+00f 1\n", - " 17 4.4800159e+05 1.39e+02 4.52e+06 -3.8 1.17e+03 -7.3 9.79e-01 9.37e-01f 1\n", - " 18 4.4672196e+05 9.59e+02 1.22e+06 -3.8 4.55e+03 -7.8 1.00e+00 9.43e-01f 1\n", - " 19 4.4401667e+05 7.75e+03 1.55e+05 -3.8 1.08e+04 -8.3 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 4.4185035e+05 1.91e+04 1.36e+04 -3.8 1.33e+04 -8.8 1.00e+00 1.00e+00h 1\n", - " 21 4.4241001e+05 3.52e+03 5.96e+03 -3.8 2.94e+03 -9.2 1.00e+00 1.00e+00h 1\n", - " 22 4.4185237e+05 7.82e+00 2.91e+02 -3.8 7.13e+03 -9.7 2.39e-01 1.00e+00h 1\n", - " 23 4.4124091e+05 1.53e+01 3.11e+02 -3.8 4.82e+04 -10.2 8.59e-01 1.36e-01f 1\n", - " 24 4.4137379e+05 1.80e+00 2.91e+02 -3.8 1.41e+04 - 1.95e-01 1.00e+00h 1\n", - " 25 4.3862833e+05 1.70e+03 9.48e+04 -3.8 1.57e+07 - 1.29e-03 9.10e-02f 1\n", - " 26 4.3883308e+05 1.49e+03 8.46e+04 -3.8 1.02e+06 - 1.00e+00 1.35e-01h 1\n", - " 27 4.3885472e+05 2.18e+01 3.40e+03 -3.8 1.38e+05 - 1.00e+00 1.00e+00h 1\n", - " 28 4.3884160e+05 5.90e-02 6.38e+01 -3.8 8.66e+03 - 1.00e+00 1.00e+00h 1\n", - " 29 4.3884157e+05 6.48e-07 4.63e-04 -3.8 2.89e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 4.3883990e+05 3.57e-01 2.38e+03 -5.7 8.19e+02 - 1.00e+00 1.00e+00f 1\n", - " 31 4.3883992e+05 3.50e-07 7.79e-06 -5.7 3.55e-01 - 1.00e+00 1.00e+00h 1\n", - " 32 4.3883990e+05 5.47e-05 3.63e-01 -8.0 1.01e+01 - 1.00e+00 1.00e+00h 1\n", - " 33 4.3883990e+05 2.24e-08 1.46e-07 -8.0 5.42e-05 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 33\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 4.3883989842628603e+02 4.3883989842628600e+05\n", - "Dual infeasibility......: 1.4600704448671754e-07 1.4600704448671753e-04\n", - "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", - "Complementarity.........: 9.0909948039799681e-09 9.0909948039799686e-06\n", - "Overall NLP error.......: 9.0909948039799681e-09 1.4600704448671753e-04\n", - "\n", - "\n", - "Number of objective function evaluations = 35\n", - "Number of objective gradient evaluations = 34\n", - "Number of equality constraint evaluations = 35\n", - "Number of inequality constraint evaluations = 35\n", - "Number of equality constraint Jacobian evaluations = 34\n", - "Number of inequality constraint Jacobian evaluations = 34\n", - "Number of Lagrangian Hessian evaluations = 33\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.164\n", - "Total CPU secs in NLP function evaluations = 0.020\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimization Results\n", - "\n", - "Display the results and product specifications" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total cost = $ 438839.898426286\n", - "operating cost = $ 408883.5314830889\n", - "capital cost = $ 29956.3669431971\n", - "\n", - "Distillate flowrate = 0.1799999900263989 mol/s\n", - "Benzene purity = 98.99999900049086 %\n", - "Residue flowrate = 0.1085161642426372 mol/s\n", - "Toluene purity = 15.676178086213548 %\n", - "\n", - "Conversion = 93.38705916369427 %\n", - "\n", - "Overhead benzene loss in F101 = 17.34061793115618 %\n" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# HDA Flowsheet Simulation and Optimization\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "## Note\n", + "\n", + "This tutorial will be similar to the HDA flowsheet tutorial in the Tutorials section, except that we use a distillation column instead of a second flash (F102) to produce benzene and toluene products.\n", + "\n", + "\n", + "## Learning outcomes\n", + "\n", + "\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Hydrodealkylation is a chemical reaction that often involves reacting\n", + "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", + "simpler aromatic hydrocarbon devoid of functional groups. In this\n", + "example, toluene will be reacted with hydrogen gas at high temperatures\n", + " to form benzene via the following reaction:\n", + "\n", + "**C6H5CH3 + H2 \u2192 C6H6 + CH4**\n", + "\n", + "\n", + "This reaction is often accompanied by an equilibrium side reaction\n", + "which forms diphenyl, which we will neglect for this example.\n", + "\n", + "This example is based on the 1967 AIChE Student Contest problem as\n", + "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", + "McGraw-Hill.\n", + "\n", + "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, we use a flash tank, F101, to separate out the non-condensibles, and a distillation column, D101, to further separate the benzene-toluene mixture to improve the benzene purity. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be purged. We will assume ideal gas behavior for this flowsheet. The properties required for this module are defined in\n", + "\n", + "- `hda_ideal_VLE.py`\n", + "- `idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE`\n", + "- `hda_reaction.py`\n", + "\n", + "We will be using two thermodynamic packages: one (first in the list above) containing all four components (i.e., toluene, hydrogen, benzene, and methane) and the other (second in the list above) containing benzene and toluene only. The latter is needed to simplify the VLE calculations in the distillation column model. \n", + "\n", + "![](HDA_flowsheet_distillation.png)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Translator block\n", + "\n", + "Benzene and toluene are separated by distillation, so the process involves phase equilibrium and two-phase flow conditions. However, the presence of hydrogen and methane complicates the calculations. This is because, hydrogen and methane are non-condensable under all conditions of interest; ergo, a vapor phase will always be present, and the mixture bubble point is extremely low. To simplify the phase equilibrium calculations, hydrogen and methane will be considered completely as non-condensable and insoluble in the liquid outlet from the flash F101.\n", + "\n", + "Since no hydrogen and methane will be present in the unit operations following the flash, a different component list can be used to simplify the property calculations. IDAES supports the definition of multiple property packages within a single flowsheet via `Translator` blocks. `Translator` blocks convert between different property calculations, component lists, and equations of state. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required pyomo and idaes components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- ConcreteModel (to create the concrete model object)\n", + "- Expression (to evaluate values as a function of variables defined in the model)\n", + "- Objective (to define an objective function for optimization)\n", + "- SolverFactory (to solve the problem)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- Arc (to connect two unit models)\n", + "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " TransformationFactory,\n", + " value,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Import `Arc` and `SequentialDecomposition` tools from `pyomo.network`\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Import the above mentioned tools from pyomo.network" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Import the above mentioned tools from pyomo.network\n", + "from pyomo.network import Arc, SequentialDecomposition" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From IDAES, we will be needing the FlowsheetBlock and the following unit models:\n", + "- Mixer\n", + "- Heater\n", + "- CSTR\n", + "- Flash\n", + "- Separator (splitter) \n", + "- PressureChanger\n", + "- Translator (to switch from one property package to another)\n", + "- TrayColumn (distillation column)\n", + "- CondenserType (Type of the overhead condenser: complete or partial)\n", + "- TemperatureSpec (Temperature specification inside the condenser)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core import FlowsheetBlock" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models import (\n", + " PressureChanger,\n", + " Mixer,\n", + " Separator as Splitter,\n", + " Heater,\n", + " CSTR,\n", + " Flash,\n", + " Translator,\n", + ")\n", + "\n", + "from idaes.models_extra.column_models import TrayColumn\n", + "from idaes.models_extra.column_models.condenser import CondenserType, TemperatureSpec" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Utility tools to put together the flowsheet and calculate the degrees of freedom\n", + "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state\n", + "from idaes.core.solvers import get_solver\n", + "import idaes.core.util.scaling as iscale\n", + "from idaes.core.util.exceptions import InitializationError\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required thermo and reaction packages\n", + "\n", + "Finally, we import the thermophysical (`ideal_VLE.py` and `BTXParameterBlock`) packages and reaction package (`reaction.py`) for the HDA process. We have created custom thermophysical packages that assume ideal gas behavior with support for VLE. The reaction package consists of the stochiometric coefficients for the reaction, heat of reaction, and kinetic information (Arrhenius constant and activation energy). " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes_examples.mod.hda import hda_reaction as reaction_props\n", + "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", + " BTXParameterBlock,\n", + ")\n", + "\n", + "from idaes_examples.mod.hda.hda_ideal_VLE import HDAParameterBlock" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block to it. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a Pyomo Concrete Model to contain the problem\n", + "m = ConcreteModel()\n", + "\n", + "# Add a steady state flowsheet block to the model\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now add the thermophysical and reaction packages to the flowsheet." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Property package for benzene, toluene, hydrogen, methane mixture\n", + "m.fs.BTHM_params = HDAParameterBlock()\n", + "\n", + "# Property package for the benzene-toluene mixture\n", + "m.fs.BT_params = BTXParameterBlock(\n", + " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\"\n", + ")\n", + "\n", + "# Reaction package for the HDA reaction\n", + "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", + " property_package=m.fs.BTHM_params\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition, the Mixer unit model needs a `list` consisting of the inlets (toluene feed, hydrogen feed and vapor recycle streams in this case). " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Adding the mixer M101 to the flowsheet\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.BTHM_params,\n", + " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", + ")\n", + "\n", + "# Adding the heater H101 to the flowsheet\n", + "m.fs.H101 = Heater(property_package=m.fs.BTHM_params, has_phase_equilibrium=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now add the CSTR (assign the name R101) and pass the following arguments:\n", + "
    \n", + "
  • \"property_package\": m.fs.BTHM_params
  • \n", + "
  • \"reaction_package\": m.fs.reaction_params
  • \n", + "
  • \"has_heat_of_reaction\": True
  • \n", + "
  • \"has_heat_transfer\": True
  • \n", + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add reactor with the specifications above" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add reactor with the specifications above\n", + "m.fs.R101 = CSTR(\n", + " property_package=m.fs.BTHM_params,\n", + " reaction_package=m.fs.reaction_params,\n", + " has_heat_of_reaction=True,\n", + " has_heat_transfer=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add the Flash (assign the name F101), Splitter (assign the name S101) and PressureChanger (assign the name C101)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Adding the flash tank F101 to the flowsheet\n", + "m.fs.F101 = Flash(\n", + " property_package=m.fs.BTHM_params, has_heat_transfer=True, has_pressure_change=True\n", + ")\n", + "\n", + "# Adding the splitter S101 to the flowsheet\n", + "m.fs.S101 = Splitter(\n", + " property_package=m.fs.BTHM_params, outlet_list=[\"purge\", \"recycle\"]\n", + ")\n", + "\n", + "# Adding the compressor C101 to the flowsheet\n", + "m.fs.C101 = PressureChanger(\n", + " property_package=m.fs.BTHM_params,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Remark\n", + "\n", + "Currently, the `SequentialDecomposition()` tool, which we will later be using to initialize the flowsheet, does not support the distillation column model. Thus, we will first simulate the flowsheet without the distillation column. After it converges, we will then add the distillation column, initialize it, and simulate the entire flowsheet." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As mentioned above, we use the `m.fs.BTHM_params` package, which contains all the four species, for the reactor loop, and the simpler `m.fs.BT_params` for unit operations following the flash (i.e., heater H102 and the distillation column D101). We define a `Translator` block to link the source property package and the package it is to be translated to in the following manner:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# Add translator block to convert between property packages\n", + "m.fs.translator = Translator(\n", + " inlet_property_package=m.fs.BTHM_params, outlet_property_package=m.fs.BT_params\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Translator block constraints\n", + "\n", + "The `Translator` block needs to know how to translate between the two property packages. This must be custom coded for each application because of the generality of the IDAES framework.\n", + "\n", + "For this process, five constraints are required based on the state variables used in the outgoing process.\n", + "\n", + "- Since we assumed that only benzene and toluene are present in the liquid phase, the total molar flowrate must be the sum of molar flowrates of benzene and toluene, respectively.\n", + "- Temperature of the inlet and outlet streams must be the same.\n", + "- Pressure of the inlet and outgoing streams must be the same\n", + "- The mole fraction of benzene in the outgoing stream is the ratio of the molar flowrate of liquid benzene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet.\n", + "- The mole fraction of toluene in the outgoing stream is the ratio of the molar flowrate of liquid toluene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# Add constraint: Total flow = benzene flow + toluene flow (molar)\n", + "m.fs.translator.eq_total_flow = Constraint(\n", + " expr=m.fs.translator.outlet.flow_mol[0]\n", + " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + ")\n", + "\n", + "# Add constraint: Outlet temperature = Inlet temperature\n", + "m.fs.translator.eq_temperature = Constraint(\n", + " expr=m.fs.translator.outlet.temperature[0] == m.fs.translator.inlet.temperature[0]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the above, note that the variable flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Add the constraint to ensure that the outlet pressure is the same as the inlet pressure\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add constraint: Outlet pressure = Inlet pressure" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add constraint: Outlet pressure = Inlet pressure\n", + "m.fs.translator.eq_pressure = Constraint(\n", + " expr=m.fs.translator.outlet.pressure[0] == m.fs.translator.inlet.pressure[0]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "# Remaining constraints on the translator block\n", + "\n", + "# Add constraint: Benzene mole fraction definition\n", + "m.fs.translator.eq_mole_frac_benzene = Constraint(\n", + " expr=m.fs.translator.outlet.mole_frac_comp[0, \"benzene\"]\n", + " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " / (\n", + " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + " )\n", + ")\n", + "\n", + "# Add constraint: Toluene mole fraction definition\n", + "m.fs.translator.eq_mole_frac_toluene = Constraint(\n", + " expr=m.fs.translator.outlet.mole_frac_comp[0, \"toluene\"]\n", + " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + " / (\n", + " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Finally, let us add the Heater H102 in the same way as H101 but pass the m.fs.BT_params thermodynamic package. We will add the distillation column after converging the flowsheet.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add the Heater H102 to the flowsheet" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add the Heater H102 to the flowsheet\n", + "m.fs.H102 = Heater(\n", + " property_package=m.fs.BT_params,\n", + " has_pressure_change=True,\n", + " has_phase_equilibrium=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models using Arcs\n", + "\n", + "We have now added the initial set of unit models to the flowsheet. However, we have not yet specified how the units are connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer (M101) to the inlet of the heater (H101). " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "![](HDA_flowsheet_distillation.png) \n", + "\n", + "
\n", + "Inline Exercise:\n", + "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Connect the H101 outlet to R101 inlet" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Connect the H101 outlet to R101 inlet\n", + "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be connecting the rest of the units as shown below. Notice how the outlet names are different for the flash tank as it has a vapor and a liquid outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", + "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", + "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", + "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", + "m.fs.s10a = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.translator.inlet)\n", + "m.fs.s10b = Arc(source=m.fs.translator.outlet, destination=m.fs.H102.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Appending additional constraints to the model\n", + "\n", + "Now, we will see how we can add additional constraints to the model using `Constraint` from Pyomo.\n", + "\n", + "Consider the reactor R101. By default, the conversion of a component is not calculated when we simulate the flowsheet. If we are interested either in specifying or constraining the conversion value, we can add the following constraint to calculate the conversion:\n", + "$$ \\text{Conversion of toluene} = \\frac{\\text{molar flow of toluene in the inlet} - \\text{molar flow of toluene in the outlet}}{\\text{molar flow of toluene in the inlet}} $$ \n", + "\n", + "We add the constraint to the model as shown below." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# Define the conversion variables using 'Var'\n", + "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", + "\n", + "# Append the constraint to the model\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing feed conditions and Initializing the flowsheet\n", + "\n", + "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "29\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", + "m.fs.M101.toluene_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", + "
    \n", + "
  • FH2 = 0.30 mol/s
  • \n", + "
  • FCH4 = 0.02 mol/s
  • \n", + "
  • Remaining components = 1e-5 mol/s
  • \n", + "
  • T = 303.2 K
  • \n", + "
  • P = 350000 Pa
  • \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", + "m.fs.M101.hydrogen_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fixing unit model specifications\n", + "\n", + "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set the H101 outlet temperature to 600 K. " + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the temperature of the outlet from the heater H101\n", + "m.fs.H101.outlet.temperature.fix(600)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Set the conditions for the reactor R101 to the following conditions:\n", + "
    \n", + "
  • `conversion` = 0.75
  • \n", + "
  • `heat_duty` = 0
  • \n", + "
\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Fix the 'conversion' of the reactor R101\n", + "\n", + "\n", + "# Todo: Fix the 'heat_duty' of the reactor R101" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Fix the 'conversion' of the reactor R101\n", + "m.fs.R101.conversion.fix(0.75)\n", + "\n", + "# Todo: Fix the 'heat_duty' of the reactor R101\n", + "m.fs.R101.heat_duty.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Flash conditions for F101 can be set as follows. " + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the temperature of the vapor outlet from F101\n", + "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", + "\n", + "# Fix the pressure drop in the flash F101\n", + "m.fs.F101.deltaP.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us fix the split fraction of the purge stream from the splitter S101 and the outlet pressure from the compressor C101" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the split fraction of the 'purge' stream from S101\n", + "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", + "\n", + "# Fix the pressure of the outlet from the compressor C101\n", + "m.fs.C101.outlet.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, let us fix the temperature of the outlet from H102 and the pressure drop in H102 as the following" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the temperature of the outlet from the heater H102\n", + "m.fs.H102.outlet.temperature.fix(375)\n", + "\n", + "# Fix the pressure drop in the heater H102\n", + "m.fs.H102.deltaP.fix(-200000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To avoid convergence issues associated with poorly scaled variables and/or constraints, we scale the variables and constraints corresponding to the heaters H101 and H102, flash F101 and the reactor R101. Scaling factors for the flow rates, temperature, pressure, etc. have been defined in the property package: `ideal_VLE.py` file. Here, we set scaling factors only for the heat duty of the heater, the reaction extent, heat duty and volume of the reactor." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].flow_mol_phase\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n" + ] + } + ], + "source": [ + "# Set scaling factors for heat duty, reaction extent and volume\n", + "iscale.set_scaling_factor(m.fs.H101.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.R101.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.R101.control_volume.rate_reaction_extent, 1)\n", + "iscale.set_scaling_factor(m.fs.R101.control_volume.volume, 1)\n", + "iscale.set_scaling_factor(m.fs.F101.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.H102.control_volume.heat, 1e-2)\n", + "\n", + "# Set the scaling factors for the remaining variables and all constraints\n", + "iscale.calculate_scaling_factors(m.fs.H101)\n", + "iscale.calculate_scaling_factors(m.fs.R101)\n", + "iscale.calculate_scaling_factors(m.fs.F101)\n", + "iscale.calculate_scaling_factors(m.fs.H102)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Check the degrees of freedom" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] + } + ], + "source": [ + "# Todo: Check the degrees of freedom\n", + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Initialization\n", + "\n", + "This subsection will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", + "\n", + "Let us first create an object for the `SequentialDecomposition` and specify our options for this. " + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "seq = SequentialDecomposition()\n", + "seq.options.select_tear_method = \"heuristic\"\n", + "seq.options.tear_method = \"Wegstein\"\n", + "seq.options.iterLim = 3\n", + "\n", + "# Using the SD tool\n", + "G = seq.create_graph(m)\n", + "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", + "order = seq.calculation_order(G)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Which is the tear stream? Display tear set and order" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fs.s03\n" + ] + } + ], + "source": [ + "for o in heuristic_tear_set:\n", + " print(o.name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fs.H101\n", + "fs.R101\n", + "fs.F101\n", + "fs.S101\n", + "fs.C101\n", + "fs.M101\n" + ] + } + ], + "source": [ + "for o in order:\n", + " print(o[0].name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet (s03 in the Figure above). We will need to provide a reasonable guess for this.\n", + "\n", + "For the initial guess, we assume that the flowrate of the recycle stream (s09) is zero. Consequently, the flow rate of the stream s03 is simply the sum of the flowrates of the toluene feed and hydrogen feed streams. Further, since the temperature and the pressure of both the toluene and hydrogen feed streams are the same, we specify their values as the initial guess for the temperature and pressure of the stream s03." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "tear_guesses = {\n", + " \"flow_mol_phase_comp\": {\n", + " (0, \"Vap\", \"benzene\"): 1e-5,\n", + " (0, \"Vap\", \"toluene\"): 1e-5,\n", + " (0, \"Vap\", \"hydrogen\"): 0.30,\n", + " (0, \"Vap\", \"methane\"): 0.02,\n", + " (0, \"Liq\", \"benzene\"): 1e-5,\n", + " (0, \"Liq\", \"toluene\"): 0.30,\n", + " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", + " (0, \"Liq\", \"methane\"): 1e-5,\n", + " },\n", + " \"temperature\": {0: 303.2},\n", + " \"pressure\": {0: 350000},\n", + "}\n", + "\n", + "# Pass the tear_guess to the SD tool\n", + "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. For the initialization, we will import a Block Triangularization Initializer which decomposes the model into a set of subproblems. These subproblems are solved using a block triangularization transformation before applying a simple Newton or user-selected solver. Methods such as block triangularization often solve faster and yield more reliable behavior than heuristic methods, but sometime struggle to decompose models with strongly coupled equations (e.g. column models, systems with counter-current flow, vapor-liquid equilibrium)." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "def function(unit):\n", + " # Try initializing using default initializer,\n", + " # if it fails (probably due to scaling) try for the second time\n", + " try:\n", + " initializer = unit.default_initializer()\n", + " initializer.initialize(unit, output_level=idaeslog.INFO)\n", + " except InitializationError:\n", + " solver = get_solver()\n", + " solver.solve(unit)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 3 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-08-28 18:38:14 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:16 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 12\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "WARNING: Wegstein failed to converge in 3 iterations\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:33 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n" + ] + } + ], + "source": [ + "seq.run(m, function)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 6\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 1097\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 877\n", + "\n", + "Total number of variables............................: 363\n", + " variables with only lower bounds: 8\n", + " variables with lower and upper bounds: 155\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 363\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 3.82e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 8.69e+03 1.44e+03 -1.0 2.00e+04 - 9.71e-01 4.67e-01H 1\n", + " 2 0.0000000e+00 1.29e+03 1.56e+03 -1.0 1.60e+04 - 9.79e-01 4.90e-01h 1\n", + " 3 0.0000000e+00 1.18e+03 1.55e+05 -1.0 1.40e+04 - 9.90e-01 4.99e-01h 1\n", + " 4 0.0000000e+00 5.46e+02 2.32e+09 -1.0 8.42e+03 - 1.00e+00 9.82e-01h 1\n", + " 5 0.0000000e+00 5.46e+03 3.66e+10 -1.0 5.97e+02 - 1.00e+00 9.90e-01h 1\n", + " 6 0.0000000e+00 1.21e+03 8.01e+09 -1.0 5.75e+00 - 1.00e+00 1.00e+00h 1\n", + " 7 0.0000000e+00 6.41e+00 3.87e+07 -1.0 1.53e-03 - 1.00e+00 1.00e+00f 1\n", + " 8 0.0000000e+00 1.96e-04 9.36e+02 -1.0 7.28e-06 - 1.00e+00 1.00e+00h 1\n", + " 9 0.0000000e+00 2.24e-08 4.99e-01 -3.8 5.92e-08 - 1.00e+00 1.00e+00h 1\n", + "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", + "\n", + "Number of Iterations....: 9\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 1.5042487592972509e+04 1.5042487592972509e+04\n", + "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 2.9103830456733704e-11 1.5042487592972509e+04\n", + "\n", + "\n", + "Number of objective function evaluations = 11\n", + "Number of objective gradient evaluations = 10\n", + "Number of equality constraint evaluations = 11\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 10\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 9\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.011\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# Create the solver object\n", + "solver = get_solver()\n", + "\n", + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add distillation column \n", + "\n", + "As mentioned earlier, the `SequentialDecomposition` tool currently does not support the distillation column model. Thus, we have not included the distillation column in the flowsheet. Now that we have a converged flowsheet, we will add the distillation column and simulate the entire flowsheet. \n", + "\n", + "In the following, we will\n", + "- Add the distillation column \n", + "- Connect it to the heater \n", + "- Add the necessary equality constraints\n", + "- Propagate the state variable information from the outlet of the heater to the inlet of the distillation column \n", + "- Fix the degrees of freedom of the distillation block (reflux ratio, boilup ratio, and condenser pressure)\n", + "- Scale the control volume heat variables to help convergence\n", + "- Initialize the distillation block.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_flow_reflux[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_flow_vapor_reboil[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,toluene]\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101: Begin initialization.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray: Begin initialization.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: State Released.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: State Released.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: State Released.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: State Released.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume: Initialization Complete\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser: Initialization Complete, optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: State Released.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: State Released.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler: Initialization Complete, optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: State Released.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1]: Begin initialization.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: State Released.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: State Released.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[2]: Begin initialization.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: State Released.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: State Released.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: State Released.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3]: Begin initialization.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: State Released.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: State Released.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: State Released.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4]: Begin initialization.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: State Released.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: State Released.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6]: Begin initialization.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: State Released.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: State Released.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7]: Begin initialization.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: State Released.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: State Released.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: State Released.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8]: Begin initialization.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: State Released.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: State Released.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: State Released.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9]: Begin initialization.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: State Released.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: State Released.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: State Released.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10]: Begin initialization.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: State Released.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: State Released.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Rectification section initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Stripping section initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: State Released.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: State Released.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Column section initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: State Released.\n", + "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101: Column section + Condenser initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: State Released.\n", + "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101: Column section + Condenser + Reboiler initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: State Released.\n" + ] + } + ], + "source": [ + "# Add distillation column to the flowsheet\n", + "m.fs.D101 = TrayColumn(\n", + " number_of_trays=10,\n", + " feed_tray_location=5,\n", + " condenser_type=CondenserType.totalCondenser,\n", + " condenser_temperature_spec=TemperatureSpec.atBubblePoint,\n", + " property_package=m.fs.BT_params,\n", + ")\n", + "\n", + "# Connect the outlet from the heater H102 to the distillation column\n", + "m.fs.s11 = Arc(source=m.fs.H102.outlet, destination=m.fs.D101.feed)\n", + "\n", + "# Add the necessary equality constraints\n", + "TransformationFactory(\"network.expand_arcs\").apply_to(m)\n", + "\n", + "# Propagate the state\n", + "propagate_state(m.fs.s11)\n", + "\n", + "# Fix the reflux ratio, boilup ratio, and the condenser pressure\n", + "m.fs.D101.condenser.reflux_ratio.fix(0.5)\n", + "m.fs.D101.reboiler.boilup_ratio.fix(0.5)\n", + "m.fs.D101.condenser.condenser_pressure.fix(150000)\n", + "\n", + "# set scaling factors\n", + "# Set scaling factors for heat duty\n", + "iscale.set_scaling_factor(m.fs.D101.condenser.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.D101.reboiler.control_volume.heat, 1e-2)\n", + "\n", + "# Set the scaling factors for the remaining variables and all constraints\n", + "iscale.calculate_scaling_factors(m.fs.D101)\n", + "\n", + "# Initialize the distillation column\n", + "m.fs.D101.initialize(outlvl=idaeslog.INFO)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding expressions to compute capital and operating costs\n", + "\n", + "In this section, we will add a few Expressions that allow us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "# Expression to compute the total cooling cost\n", + "m.fs.cooling_cost = Expression(\n", + " expr=0.25e-7 * (-m.fs.F101.heat_duty[0])\n", + " + 0.2e-7 * (-m.fs.D101.condenser.heat_duty[0])\n", + ")\n", + "\n", + "# Expression to compute the total heating cost\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", + " + 1.2e-7 * m.fs.H102.heat_duty[0]\n", + " + 1.9e-7 * m.fs.D101.reboiler.heat_duty[0]\n", + ")\n", + "\n", + "# Expression to compute the total operating cost\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", + ")\n", + "\n", + "# Expression to compute the total capital cost\n", + "m.fs.capital_cost = Expression(expr=1e5 * m.fs.R101.volume[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Solve the entire flowsheet" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 7\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 4042\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 2376\n", + "\n", + "Total number of variables............................: 1169\n", + " variables with only lower bounds: 112\n", + " variables with lower and upper bounds: 365\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 1169\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 3.83e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 8.70e+03 1.50e+03 -1.0 3.69e+04 - 9.71e-01 4.62e-01H 1\n", + " 2 0.0000000e+00 1.53e+03 1.56e+03 -1.0 6.75e+03 - 9.77e-01 4.89e-01h 1\n", + " 3 0.0000000e+00 1.37e+03 1.55e+05 -1.0 9.37e+03 - 9.90e-01 4.99e-01h 1\n", + " 4 0.0000000e+00 6.14e+02 2.31e+09 -1.0 6.09e+03 - 1.00e+00 9.81e-01h 1\n", + " 5 0.0000000e+00 5.32e+03 3.62e+10 -1.0 5.56e+02 - 1.00e+00 9.90e-01h 1\n", + " 6 0.0000000e+00 1.16e+03 7.80e+09 -1.0 5.36e+00 - 1.00e+00 1.00e+00h 1\n", + " 7 0.0000000e+00 5.96e+00 3.64e+07 -1.0 1.47e-03 - 1.00e+00 1.00e+00f 1\n", + " 8 0.0000000e+00 1.69e-04 8.15e+02 -1.0 6.77e-06 - 1.00e+00 1.00e+00h 1\n", + " 9 0.0000000e+00 7.45e-09 6.64e-03 -3.8 2.00e-07 - 1.00e+00 1.00e+00h 1\n", + "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", + "\n", + "Number of Iterations....: 9\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 1.5042483516409773e+04 1.5042483516409773e+04\n", + "Constraint violation....: 2.9103830456733704e-11 7.4505805969238281e-09\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 2.9103830456733704e-11 1.5042483516409773e+04\n", + "\n", + "\n", + "Number of objective function evaluations = 11\n", + "Number of objective gradient evaluations = 10\n", + "Number of equality constraint evaluations = 11\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 10\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 9\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.083\n", + "Total CPU secs in NLP function evaluations = 0.013\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 1169, 'Number of variables': 1169, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.2022566795349121}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the Results of the Square Problem\n", + "\n", + "How much is the total cost (operating cost + capital cost), operating cost, capital cost, benzene purity in the distillate from the distilation column, and conversion of toluene in the reactor?" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total cost = $ 442301.47075252194\n", + "operating cost = $ 427596.73056805483\n", + "capital cost = $ 14704.740184467111\n", + "\n", + "Distillate flowrate = 0.16196898920633368 mol/s\n", + "Benzene purity = 89.4916166580088 %\n", + "Residue flowrate = 0.10515007120697904 mol/s\n", + "Toluene purity = 43.32260291055251 %\n", + "\n", + "Conversion = 75.0 %\n", + "\n", + "Overhead benzene loss in F101 = 42.161938483603194 %\n" + ] + } + ], + "source": [ + "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", + "print(\"operating cost = $\", value(m.fs.operating_cost))\n", + "print(\"capital cost = $\", value(m.fs.capital_cost))\n", + "print()\n", + "print(\n", + " \"Distillate flowrate = \",\n", + " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", + " \"mol/s\",\n", + ")\n", + "print(\n", + " \"Benzene purity = \",\n", + " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", + " \"%\",\n", + ")\n", + "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", + "print(\n", + " \"Toluene purity = \",\n", + " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", + " \"%\",\n", + ")\n", + "print()\n", + "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", + "print()\n", + "print(\n", + " \"Overhead benzene loss in F101 = \",\n", + " 100\n", + " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", + " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", + " \"%\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get the state of the streams entering and leaving the reactor R101" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 0.0000 : watt : True : (None, None)\n", + " Volume : 0.14705 : meter ** 3 : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.2993e-07\n", + " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 8.4147e-07\n", + " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-12\n", + " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-12\n", + " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.11936 0.35374\n", + " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.31252 0.078129\n", + " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.0377 1.2721\n", + " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.56260 0.32821\n", + " temperature kelvin 600.00 771.85\n", + " pressure pascal 3.5000e+05 3.5000e+05\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m.fs.R101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get the state of the streams entering and leaving the reactor R101" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.F101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -70343. : watt : False : (None, None)\n", + " Pressure Change : 0.0000 : pascal : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Vapor Outlet Liquid Outlet\n", + " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 0.20460 \n", + " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 0.062520 \n", + " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", + " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", + " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 1.0000e-08 \n", + " temperature kelvin 771.85 325.00 325.00 \n", + " pressure pascal 3.5000e+05 3.5000e+05 3.5000e+05 \n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m.fs.F101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "How much benzene are we losing in the F101 vapor outlet stream?\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Units Reactor Light Gases\n", + "flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 \n", + "flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 \n", + "flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 \n", + "flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 \n", + "flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 \n", + "flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 \n", + "flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 \n", + "flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 \n", + "temperature kelvin 771.85 325.00 \n", + "pressure pascal 3.5000e+05 3.5000e+05 \n" + ] + } + ], + "source": [ + "from idaes.core.util.tables import (\n", + " create_stream_table_dataframe,\n", + " stream_table_dataframe_to_string,\n", + ")\n", + "\n", + "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", + "print(stream_table_dataframe_to_string(st))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "You can query additional variables here if you like. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Optimization\n", + "\n", + "\n", + "We saw from the results above that the total operating cost for the base case was $442,297 per year. We are producing 0.162 mol/s of benzene at a purity of 89.5%. However, we are losing around 43.3% of benzene in F101 vapor outlet stream. \n", + "\n", + "Let us try to minimize this cost such that:\n", + "- we are producing at least 0.18 mol/s of benzene as distillate i.e. our product stream\n", + "- purity of benzene i.e. the mole fraction of benzene in the distillate is at least 99%\n", + "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", + "\n", + "For this problem, our decision variables are as follows:\n", + "- H101 outlet temperature\n", + "- R101 outlet temperature\n", + "- F101 outlet temperature\n", + "- H102 outlet temperature\n", + "- Condenser pressure\n", + "- reflux ratio\n", + "- boilup ratio\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost + m.fs.capital_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.R101.conversion.unfix()\n", + "m.fs.F101.vap_outlet.temperature.unfix()\n", + "m.fs.D101.condenser.condenser_pressure.unfix()\n", + "m.fs.D101.condenser.reflux_ratio.unfix()\n", + "m.fs.D101.reboiler.boilup_ratio.unfix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now unfix the remaining variable: the temperature of the outlet from H102\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Unfix the temperature of the outlet from H102" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Unfix the temperature of the outlet from H102\n", + "m.fs.H102.outlet.temperature.unfix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to set bounds on these decision variables to values shown below:\n", + "\n", + " - H101 outlet temperature [500, 600] K\n", + " - R101 outlet temperature [600, 900] K\n", + " - F101 outlet temperature [298, 450] K\n", + " - H102 outlet temperature [350, 400] K\n", + " - D101 condenser pressure [101325, 150000] Pa\n", + " - D101 reflux ratio [0.1, 5]\n", + " - D101 boilup ratio [0.1, 5]" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "# Set bounds on the temperature of the outlet from H101\n", + "m.fs.H101.outlet.temperature[0].setlb(500)\n", + "m.fs.H101.outlet.temperature[0].setub(600)\n", + "\n", + "# Set bounds on the temperature of the outlet from R101\n", + "m.fs.R101.outlet.temperature[0].setlb(600)\n", + "m.fs.R101.outlet.temperature[0].setub(900)\n", + "\n", + "# Set bounds on the volume of the reactor R101\n", + "m.fs.R101.volume[0].setlb(0)\n", + "\n", + "# Set bounds on the temperature of the vapor outlet from F101\n", + "m.fs.F101.vap_outlet.temperature[0].setlb(298)\n", + "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", + "\n", + "# Set bounds on the temperature of the outlet from H102\n", + "m.fs.H102.outlet.temperature[0].setlb(350)\n", + "m.fs.H102.outlet.temperature[0].setub(400)\n", + "\n", + "# Set bounds on the pressure inside the condenser\n", + "m.fs.D101.condenser.condenser_pressure.setlb(101325)\n", + "m.fs.D101.condenser.condenser_pressure.setub(150000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, set the bounds for the D101 reflux ratio and boilup ratio.\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Set bounds on the reflux ratio\n", + "\n", + "\n", + "# Todo: Set bounds on the boilup ratio" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Set bounds on the reflux ratio\n", + "m.fs.D101.condenser.reflux_ratio.setlb(0.1)\n", + "m.fs.D101.condenser.reflux_ratio.setub(5)\n", + "\n", + "# Todo: Set bounds on the boilup ratio\n", + "m.fs.D101.reboiler.boilup_ratio.setlb(0.1)\n", + "m.fs.D101.reboiler.boilup_ratio.setub(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the only things left to define are our constraints on overhead loss in F101, distillate flowrate and its purity. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 % of the benzene available in the reactor outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "# Ensure that the overhead loss of benzene from F101 <= 20%\n", + "m.fs.overhead_loss = Constraint(\n", + " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, add the constraint such that we are producing at least 0.18 mol/s of benzene in the product stream which is the distillate of D101. Let us name this constraint as m.fs.product_flow. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add minimum product flow constraint" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add minimum product flow constraint\n", + "m.fs.product_flow = Constraint(expr=m.fs.D101.condenser.distillate.flow_mol[0] >= 0.18)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us add the final constraint on product purity or the mole fraction of benzene in the distillate such that it is at least greater than 99%. " + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.product_purity = Constraint(\n", + " expr=m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"] >= 0.99\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 3\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 4073\n", + "Number of nonzeros in inequality constraint Jacobian.: 6\n", + "Number of nonzeros in Lagrangian Hessian.............: 2391\n", + "\n", + "Total number of variables............................: 1176\n", + " variables with only lower bounds: 113\n", + " variables with lower and upper bounds: 372\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 1169\n", + "Total number of inequality constraints...............: 3\n", + " inequality constraints with only lower bounds: 2\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 1\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 4.4230147e+05 2.99e+05 9.90e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 4.3753585e+05 2.91e+05 1.28e+02 -1.0 3.09e+06 - 3.58e-01 2.40e-02f 1\n", + " 2 4.3545100e+05 2.78e+05 1.55e+02 -1.0 1.78e+06 - 3.31e-01 4.74e-02h 1\n", + " 3 4.2822311e+05 2.20e+05 4.50e+02 -1.0 2.99e+06 - 2.95e-02 1.35e-01h 1\n", + " 4 4.2249096e+05 1.45e+05 1.43e+03 -1.0 7.01e+06 - 5.14e-01 2.03e-01h 1\n", + " 5 4.2194364e+05 8.17e+04 1.70e+04 -1.0 6.06e+06 - 5.97e-01 4.28e-01h 1\n", + " 6 4.2602765e+05 4.55e+04 1.10e+06 -1.0 4.32e+06 - 9.26e-01 5.07e-01h 1\n", + " 7 4.3776643e+05 2.03e+04 6.44e+09 -1.0 2.42e+06 - 9.90e-01 9.47e-01h 1\n", + " 8 4.3846260e+05 1.92e+04 6.05e+09 -1.0 4.42e+05 - 5.40e-01 5.74e-02h 1\n", + " 9 4.4529853e+05 4.05e+04 4.66e+10 -1.0 2.47e+05 - 9.96e-01 9.90e-01h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 4.4906283e+05 9.76e+03 1.10e+10 -1.0 1.12e+03 -4.0 1.26e-01 7.45e-01h 1\n", + " 11 4.5079086e+05 1.19e+03 1.54e+09 -1.0 5.63e+02 -4.5 3.77e-01 1.00e+00h 1\n", + " 12 4.5024224e+05 2.66e+00 3.67e+06 -1.0 6.61e+01 -5.0 1.00e+00 1.00e+00f 1\n", + " 13 4.4946170e+05 5.64e-01 9.29e+05 -1.0 1.81e+02 -5.4 1.00e+00 7.88e-01f 1\n", + " 14 4.4916780e+05 8.48e+00 1.62e+05 -1.0 2.83e+02 -5.9 1.00e+00 1.00e+00f 1\n", + " 15 4.4899127e+05 4.83e+00 9.07e+04 -1.0 1.01e+02 -6.4 1.00e+00 4.40e-01f 2\n", + " 16 4.4886718e+05 7.00e-01 4.61e+02 -1.0 2.35e+02 -6.9 1.00e+00 1.00e+00f 1\n", + " 17 4.4800159e+05 1.39e+02 4.52e+06 -3.8 1.17e+03 -7.3 9.79e-01 9.37e-01f 1\n", + " 18 4.4672196e+05 9.59e+02 1.22e+06 -3.8 4.55e+03 -7.8 1.00e+00 9.43e-01f 1\n", + " 19 4.4401667e+05 7.75e+03 1.55e+05 -3.8 1.08e+04 -8.3 1.00e+00 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 20 4.4185035e+05 1.91e+04 1.36e+04 -3.8 1.33e+04 -8.8 1.00e+00 1.00e+00h 1\n", + " 21 4.4241001e+05 3.52e+03 5.96e+03 -3.8 2.94e+03 -9.2 1.00e+00 1.00e+00h 1\n", + " 22 4.4185237e+05 7.82e+00 2.91e+02 -3.8 7.13e+03 -9.7 2.39e-01 1.00e+00h 1\n", + " 23 4.4124091e+05 1.53e+01 3.11e+02 -3.8 4.82e+04 -10.2 8.59e-01 1.36e-01f 1\n", + " 24 4.4137379e+05 1.80e+00 2.91e+02 -3.8 1.41e+04 - 1.95e-01 1.00e+00h 1\n", + " 25 4.3862833e+05 1.70e+03 9.48e+04 -3.8 1.57e+07 - 1.29e-03 9.10e-02f 1\n", + " 26 4.3883308e+05 1.49e+03 8.46e+04 -3.8 1.02e+06 - 1.00e+00 1.35e-01h 1\n", + " 27 4.3885472e+05 2.18e+01 3.40e+03 -3.8 1.38e+05 - 1.00e+00 1.00e+00h 1\n", + " 28 4.3884160e+05 5.90e-02 6.38e+01 -3.8 8.66e+03 - 1.00e+00 1.00e+00h 1\n", + " 29 4.3884157e+05 6.48e-07 4.63e-04 -3.8 2.89e+01 - 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 30 4.3883990e+05 3.57e-01 2.38e+03 -5.7 8.19e+02 - 1.00e+00 1.00e+00f 1\n", + " 31 4.3883992e+05 3.50e-07 7.79e-06 -5.7 3.55e-01 - 1.00e+00 1.00e+00h 1\n", + " 32 4.3883990e+05 5.47e-05 3.63e-01 -8.0 1.01e+01 - 1.00e+00 1.00e+00h 1\n", + " 33 4.3883990e+05 2.24e-08 1.46e-07 -8.0 5.42e-05 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 33\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 4.3883989842628603e+02 4.3883989842628600e+05\n", + "Dual infeasibility......: 1.4600704448671754e-07 1.4600704448671753e-04\n", + "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", + "Complementarity.........: 9.0909948039799681e-09 9.0909948039799686e-06\n", + "Overall NLP error.......: 9.0909948039799681e-09 1.4600704448671753e-04\n", + "\n", + "\n", + "Number of objective function evaluations = 35\n", + "Number of objective gradient evaluations = 34\n", + "Number of equality constraint evaluations = 35\n", + "Number of inequality constraint evaluations = 35\n", + "Number of equality constraint Jacobian evaluations = 34\n", + "Number of inequality constraint Jacobian evaluations = 34\n", + "Number of Lagrangian Hessian evaluations = 33\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.164\n", + "Total CPU secs in NLP function evaluations = 0.020\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimization Results\n", + "\n", + "Display the results and product specifications" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total cost = $ 438839.898426286\n", + "operating cost = $ 408883.5314830889\n", + "capital cost = $ 29956.3669431971\n", + "\n", + "Distillate flowrate = 0.1799999900263989 mol/s\n", + "Benzene purity = 98.99999900049086 %\n", + "Residue flowrate = 0.1085161642426372 mol/s\n", + "Toluene purity = 15.676178086213548 %\n", + "\n", + "Conversion = 93.38705916369427 %\n", + "\n", + "Overhead benzene loss in F101 = 17.34061793115618 %\n" + ] + } + ], + "source": [ + "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", + "print(\"operating cost = $\", value(m.fs.operating_cost))\n", + "print(\"capital cost = $\", value(m.fs.capital_cost))\n", + "print()\n", + "print(\n", + " \"Distillate flowrate = \",\n", + " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", + " \"mol/s\",\n", + ")\n", + "print(\n", + " \"Benzene purity = \",\n", + " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", + " \"%\",\n", + ")\n", + "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", + "print(\n", + " \"Toluene purity = \",\n", + " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", + " \"%\",\n", + ")\n", + "print()\n", + "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", + "print()\n", + "print(\n", + " \"Overhead benzene loss in F101 = \",\n", + " 100\n", + " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", + " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", + " \"%\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal Values\n", + "\n", + "H101 outlet temperature = 568.923204295196 K\n", + "\n", + "R101 outlet temperature = 790.3655425698853 K\n", + "\n", + "F101 outlet temperature = 298.0 K\n", + "\n", + "H102 outlet temperature = 368.7414339952852 K\n" + ] + } + ], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"H102 outlet temperature = \", value(m.fs.H102.outlet.temperature[0]), \"K\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Key Takeaways\n", + "\n", + "Observe that the optimization was able to reduce the yearly operating cost from \\\\$427,593 to \\\\$408,342 (~4.5%). However, the amortized capital cost more than doubled from \\\\$14,704 to \\\\$29,927 due to the need to increase the conversion in the reactor (from 75% to 93%) to meet the production and purity constraints. \n", + "\n", + "Further, observe that the product flow rate and product purity are at their minimum values (0.18 mol/s and 99%, respectively). This is expected as increasing recovery would require more energy and cost to purify the product.\n", + "\n", + "\n", + "Finally, observe that the operating temperature of the flash (F101) is almost at its lower bound. This helps in minimizing the amount of benzene in the vapor stream leaving the flash." + ] } - ], - "source": [ - "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", - "print(\"operating cost = $\", value(m.fs.operating_cost))\n", - "print(\"capital cost = $\", value(m.fs.capital_cost))\n", - "print()\n", - "print(\n", - " \"Distillate flowrate = \",\n", - " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", - " \"mol/s\",\n", - ")\n", - "print(\n", - " \"Benzene purity = \",\n", - " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", - " \"%\",\n", - ")\n", - "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", - "print(\n", - " \"Toluene purity = \",\n", - " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", - " \"%\",\n", - ")\n", - "print()\n", - "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", - "print()\n", - "print(\n", - " \"Overhead benzene loss in F101 = \",\n", - " 100\n", - " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", - " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", - " \"%\",\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal Values\n", - "\n", - "H101 outlet temperature = 568.923204295196 K\n", - "\n", - "R101 outlet temperature = 790.3655425698853 K\n", - "\n", - "F101 outlet temperature = 298.0 K\n", - "\n", - "H102 outlet temperature = 368.7414339952852 K\n" - ] + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" } - ], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"H102 outlet temperature = \", value(m.fs.H102.outlet.temperature[0]), \"K\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Key Takeaways\n", - "\n", - "Observe that the optimization was able to reduce the yearly operating cost from \\\\$427,593 to \\\\$408,342 (~4.5%). However, the amortized capital cost more than doubled from \\\\$14,704 to \\\\$29,927 due to the need to increase the conversion in the reactor (from 75% to 93%) to meet the production and purity constraints. \n", - "\n", - "Further, observe that the product flow rate and product purity are at their minimum values (0.18 mol/s and 99%, respectively). This is expected as increasing recovery would require more energy and cost to purify the product.\n", - "\n", - "\n", - "Finally, observe that the operating temperature of the flash (F101) is almost at its lower bound. This helps in minimizing the amount of benzene in the vapor stream leaving the flash." - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_test.ipynb b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_test.ipynb index ba91dc8e..3aaf3b21 100644 --- a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_test.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_test.ipynb @@ -1,3033 +1,3034 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# HDA Flowsheet Simulation and Optimization\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "## Note\n", - "\n", - "This tutorial will be similar to the HDA flowsheet tutorial in the Tutorials section, except that we use a distillation column instead of a second flash (F102) to produce benzene and toluene products.\n", - "\n", - "\n", - "## Learning outcomes\n", - "\n", - "\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Hydrodealkylation is a chemical reaction that often involves reacting\n", - "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", - "simpler aromatic hydrocarbon devoid of functional groups. In this\n", - "example, toluene will be reacted with hydrogen gas at high temperatures\n", - " to form benzene via the following reaction:\n", - "\n", - "**C6H5CH3 + H2 → C6H6 + CH4**\n", - "\n", - "\n", - "This reaction is often accompanied by an equilibrium side reaction\n", - "which forms diphenyl, which we will neglect for this example.\n", - "\n", - "This example is based on the 1967 AIChE Student Contest problem as\n", - "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", - "McGraw-Hill.\n", - "\n", - "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, we use a flash tank, F101, to separate out the non-condensibles, and a distillation column, D101, to further separate the benzene-toluene mixture to improve the benzene purity. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be purged. We will assume ideal gas behavior for this flowsheet. The properties required for this module are defined in\n", - "\n", - "- `hda_ideal_VLE.py`\n", - "- `idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE`\n", - "- `hda_reaction.py`\n", - "\n", - "We will be using two thermodynamic packages: one (first in the list above) containing all four components (i.e., toluene, hydrogen, benzene, and methane) and the other (second in the list above) containing benzene and toluene only. The latter is needed to simplify the VLE calculations in the distillation column model. \n", - "\n", - "![](HDA_flowsheet_distillation.png)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Translator block\n", - "\n", - "Benzene and toluene are separated by distillation, so the process involves phase equilibrium and two-phase flow conditions. However, the presence of hydrogen and methane complicates the calculations. This is because, hydrogen and methane are non-condensable under all conditions of interest; ergo, a vapor phase will always be present, and the mixture bubble point is extremely low. To simplify the phase equilibrium calculations, hydrogen and methane will be considered completely as non-condensable and insoluble in the liquid outlet from the flash F101.\n", - "\n", - "Since no hydrogen and methane will be present in the unit operations following the flash, a different component list can be used to simplify the property calculations. IDAES supports the definition of multiple property packages within a single flowsheet via `Translator` blocks. `Translator` blocks convert between different property calculations, component lists, and equations of state. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required pyomo and idaes components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- ConcreteModel (to create the concrete model object)\n", - "- Expression (to evaluate values as a function of variables defined in the model)\n", - "- Objective (to define an objective function for optimization)\n", - "- SolverFactory (to solve the problem)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- Arc (to connect two unit models)\n", - "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " TransformationFactory,\n", - " value,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Import `Arc` and `SequentialDecomposition` tools from `pyomo.network`\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Import the above mentioned tools from pyomo.network\n", - "from pyomo.network import Arc, SequentialDecomposition" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From IDAES, we will be needing the FlowsheetBlock and the following unit models:\n", - "- Mixer\n", - "- Heater\n", - "- CSTR\n", - "- Flash\n", - "- Separator (splitter) \n", - "- PressureChanger\n", - "- Translator (to switch from one property package to another)\n", - "- TrayColumn (distillation column)\n", - "- CondenserType (Type of the overhead condenser: complete or partial)\n", - "- TemperatureSpec (Temperature specification inside the condenser)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core import FlowsheetBlock" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models import (\n", - " PressureChanger,\n", - " Mixer,\n", - " Separator as Splitter,\n", - " Heater,\n", - " CSTR,\n", - " Flash,\n", - " Translator,\n", - ")\n", - "\n", - "from idaes.models_extra.column_models import TrayColumn\n", - "from idaes.models_extra.column_models.condenser import CondenserType, TemperatureSpec" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Utility tools to put together the flowsheet and calculate the degrees of freedom\n", - "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state\n", - "from idaes.core.solvers import get_solver\n", - "import idaes.core.util.scaling as iscale\n", - "from idaes.core.util.exceptions import InitializationError\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required thermo and reaction packages\n", - "\n", - "Finally, we import the thermophysical (`ideal_VLE.py` and `BTXParameterBlock`) packages and reaction package (`reaction.py`) for the HDA process. We have created custom thermophysical packages that assume ideal gas behavior with support for VLE. The reaction package consists of the stochiometric coefficients for the reaction, heat of reaction, and kinetic information (Arrhenius constant and activation energy). " - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes_examples.mod.hda import hda_reaction as reaction_props\n", - "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", - " BTXParameterBlock,\n", - ")\n", - "\n", - "from idaes_examples.mod.hda.hda_ideal_VLE import HDAParameterBlock" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block to it. " - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# Create a Pyomo Concrete Model to contain the problem\n", - "m = ConcreteModel()\n", - "\n", - "# Add a steady state flowsheet block to the model\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now add the thermophysical and reaction packages to the flowsheet." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# Property package for benzene, toluene, hydrogen, methane mixture\n", - "m.fs.BTHM_params = HDAParameterBlock()\n", - "\n", - "# Property package for the benzene-toluene mixture\n", - "m.fs.BT_params = BTXParameterBlock(\n", - " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\"\n", - ")\n", - "\n", - "# Reaction package for the HDA reaction\n", - "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", - " property_package=m.fs.BTHM_params\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition, the Mixer unit model needs a `list` consisting of the inlets (toluene feed, hydrogen feed and vapor recycle streams in this case). " - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# Adding the mixer M101 to the flowsheet\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.BTHM_params,\n", - " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", - ")\n", - "\n", - "# Adding the heater H101 to the flowsheet\n", - "m.fs.H101 = Heater(property_package=m.fs.BTHM_params, has_phase_equilibrium=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now add the CSTR (assign the name R101) and pass the following arguments:\n", - "
    \n", - "
  • \"property_package\": m.fs.BTHM_params
  • \n", - "
  • \"reaction_package\": m.fs.reaction_params
  • \n", - "
  • \"has_heat_of_reaction\": True
  • \n", - "
  • \"has_heat_transfer\": True
  • \n", - "
\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add reactor with the specifications above\n", - "m.fs.R101 = CSTR(\n", - " property_package=m.fs.BTHM_params,\n", - " reaction_package=m.fs.reaction_params,\n", - " has_heat_of_reaction=True,\n", - " has_heat_transfer=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add the Flash (assign the name F101), Splitter (assign the name S101) and PressureChanger (assign the name C101)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "# Adding the flash tank F101 to the flowsheet\n", - "m.fs.F101 = Flash(\n", - " property_package=m.fs.BTHM_params, has_heat_transfer=True, has_pressure_change=True\n", - ")\n", - "\n", - "# Adding the splitter S101 to the flowsheet\n", - "m.fs.S101 = Splitter(\n", - " property_package=m.fs.BTHM_params, outlet_list=[\"purge\", \"recycle\"]\n", - ")\n", - "\n", - "# Adding the compressor C101 to the flowsheet\n", - "m.fs.C101 = PressureChanger(\n", - " property_package=m.fs.BTHM_params,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Remark\n", - "\n", - "Currently, the `SequentialDecomposition()` tool, which we will later be using to initialize the flowsheet, does not support the distillation column model. Thus, we will first simulate the flowsheet without the distillation column. After it converges, we will then add the distillation column, initialize it, and simulate the entire flowsheet." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As mentioned above, we use the `m.fs.BTHM_params` package, which contains all the four species, for the reactor loop, and the simpler `m.fs.BT_params` for unit operations following the flash (i.e., heater H102 and the distillation column D101). We define a `Translator` block to link the source property package and the package it is to be translated to in the following manner:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "# Add translator block to convert between property packages\n", - "m.fs.translator = Translator(\n", - " inlet_property_package=m.fs.BTHM_params, outlet_property_package=m.fs.BT_params\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Translator block constraints\n", - "\n", - "The `Translator` block needs to know how to translate between the two property packages. This must be custom coded for each application because of the generality of the IDAES framework.\n", - "\n", - "For this process, five constraints are required based on the state variables used in the outgoing process.\n", - "\n", - "- Since we assumed that only benzene and toluene are present in the liquid phase, the total molar flowrate must be the sum of molar flowrates of benzene and toluene, respectively.\n", - "- Temperature of the inlet and outlet streams must be the same.\n", - "- Pressure of the inlet and outgoing streams must be the same\n", - "- The mole fraction of benzene in the outgoing stream is the ratio of the molar flowrate of liquid benzene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet.\n", - "- The mole fraction of toluene in the outgoing stream is the ratio of the molar flowrate of liquid toluene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "# Add constraint: Total flow = benzene flow + toluene flow (molar)\n", - "m.fs.translator.eq_total_flow = Constraint(\n", - " expr=m.fs.translator.outlet.flow_mol[0]\n", - " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - ")\n", - "\n", - "# Add constraint: Outlet temperature = Inlet temperature\n", - "m.fs.translator.eq_temperature = Constraint(\n", - " expr=m.fs.translator.outlet.temperature[0] == m.fs.translator.inlet.temperature[0]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the above, note that the variable flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Add the constraint to ensure that the outlet pressure is the same as the inlet pressure\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add constraint: Outlet pressure = Inlet pressure\n", - "m.fs.translator.eq_pressure = Constraint(\n", - " expr=m.fs.translator.outlet.pressure[0] == m.fs.translator.inlet.pressure[0]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "# Remaining constraints on the translator block\n", - "\n", - "# Add constraint: Benzene mole fraction definition\n", - "m.fs.translator.eq_mole_frac_benzene = Constraint(\n", - " expr=m.fs.translator.outlet.mole_frac_comp[0, \"benzene\"]\n", - " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " / (\n", - " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - " )\n", - ")\n", - "\n", - "# Add constraint: Toluene mole fraction definition\n", - "m.fs.translator.eq_mole_frac_toluene = Constraint(\n", - " expr=m.fs.translator.outlet.mole_frac_comp[0, \"toluene\"]\n", - " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - " / (\n", - " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Finally, let us add the Heater H102 in the same way as H101 but pass the m.fs.BT_params thermodynamic package. We will add the distillation column after converging the flowsheet.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add the Heater H102 to the flowsheet\n", - "m.fs.H102 = Heater(\n", - " property_package=m.fs.BT_params,\n", - " has_pressure_change=True,\n", - " has_phase_equilibrium=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models using Arcs\n", - "\n", - "We have now added the initial set of unit models to the flowsheet. However, we have not yet specified how the units are connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer (M101) to the inlet of the heater (H101). " - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "![](HDA_flowsheet_distillation.png) \n", - "\n", - "
\n", - "Inline Exercise:\n", - "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Connect the H101 outlet to R101 inlet\n", - "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be connecting the rest of the units as shown below. Notice how the outlet names are different for the flash tank as it has a vapor and a liquid outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", - "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", - "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", - "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", - "m.fs.s10a = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.translator.inlet)\n", - "m.fs.s10b = Arc(source=m.fs.translator.outlet, destination=m.fs.H102.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Appending additional constraints to the model\n", - "\n", - "Now, we will see how we can add additional constraints to the model using `Constraint` from Pyomo.\n", - "\n", - "Consider the reactor R101. By default, the conversion of a component is not calculated when we simulate the flowsheet. If we are interested either in specifying or constraining the conversion value, we can add the following constraint to calculate the conversion:\n", - "$$ \\text{Conversion of toluene} = \\frac{\\text{molar flow of toluene in the inlet} - \\text{molar flow of toluene in the outlet}}{\\text{molar flow of toluene in the inlet}} $$ \n", - "\n", - "We add the constraint to the model as shown below." - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "# Define the conversion variables using 'Var'\n", - "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", - "\n", - "# Append the constraint to the model\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing feed conditions and Initializing the flowsheet\n", - "\n", - "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "29\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check the degrees of freedom\n", - "assert degrees_of_freedom(m) == 29" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", - "m.fs.M101.toluene_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", - "
    \n", - "
  • FH2 = 0.30 mol/s
  • \n", - "
  • FCH4 = 0.02 mol/s
  • \n", - "
  • Remaining components = 1e-5 mol/s
  • \n", - "
  • T = 303.2 K
  • \n", - "
  • P = 350000 Pa
  • \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", - "m.fs.M101.hydrogen_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Fixing unit model specifications\n", - "\n", - "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set the H101 outlet temperature to 600 K. " - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the temperature of the outlet from the heater H101\n", - "m.fs.H101.outlet.temperature.fix(600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Set the conditions for the reactor R101 to the following conditions:\n", - "
    \n", - "
  • `conversion` = 0.75
  • \n", - "
  • `heat_duty` = 0
  • \n", - "
\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Fix the 'conversion' of the reactor R101\n", - "m.fs.R101.conversion.fix(0.75)\n", - "\n", - "# Todo: Fix the 'heat_duty' of the reactor R101\n", - "m.fs.R101.heat_duty.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Flash conditions for F101 can be set as follows. " - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the temperature of the vapor outlet from F101\n", - "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", - "\n", - "# Fix the pressure drop in the flash F101\n", - "m.fs.F101.deltaP.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us fix the split fraction of the purge stream from the splitter S101 and the outlet pressure from the compressor C101" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the split fraction of the 'purge' stream from S101\n", - "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", - "\n", - "# Fix the pressure of the outlet from the compressor C101\n", - "m.fs.C101.outlet.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, let us fix the temperature of the outlet from H102 and the pressure drop in H102 as the following" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the temperature of the outlet from the heater H102\n", - "m.fs.H102.outlet.temperature.fix(375)\n", - "\n", - "# Fix the pressure drop in the heater H102\n", - "m.fs.H102.deltaP.fix(-200000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To avoid convergence issues associated with poorly scaled variables and/or constraints, we scale the variables and constraints corresponding to the heaters H101 and H102, flash F101 and the reactor R101. Scaling factors for the flow rates, temperature, pressure, etc. have been defined in the property package: `ideal_VLE.py` file. Here, we set scaling factors only for the heat duty of the heater, the reaction extent, heat duty and volume of the reactor." - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].flow_mol_phase\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n" - ] - } - ], - "source": [ - "# Set scaling factors for heat duty, reaction extent and volume\n", - "iscale.set_scaling_factor(m.fs.H101.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.R101.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.R101.control_volume.rate_reaction_extent, 1)\n", - "iscale.set_scaling_factor(m.fs.R101.control_volume.volume, 1)\n", - "iscale.set_scaling_factor(m.fs.F101.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.H102.control_volume.heat, 1e-2)\n", - "\n", - "# Set the scaling factors for the remaining variables and all constraints\n", - "iscale.calculate_scaling_factors(m.fs.H101)\n", - "iscale.calculate_scaling_factors(m.fs.R101)\n", - "iscale.calculate_scaling_factors(m.fs.F101)\n", - "iscale.calculate_scaling_factors(m.fs.H102)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n" - ] - } - ], - "source": [ - "# Todo: Check the degrees of freedom\n", - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check the degrees of freedom\n", - "assert degrees_of_freedom(m) == 0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initialization\n", - "\n", - "This subsection will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", - "\n", - "Let us first create an object for the `SequentialDecomposition` and specify our options for this. " - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "seq = SequentialDecomposition()\n", - "seq.options.select_tear_method = \"heuristic\"\n", - "seq.options.tear_method = \"Wegstein\"\n", - "seq.options.iterLim = 3\n", - "\n", - "# Using the SD tool\n", - "G = seq.create_graph(m)\n", - "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", - "order = seq.calculation_order(G)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Which is the tear stream? Display tear set and order" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fs.s03\n" - ] - } - ], - "source": [ - "for o in heuristic_tear_set:\n", - " print(o.name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fs.H101\n", - "fs.R101\n", - "fs.F101\n", - "fs.S101\n", - "fs.C101\n", - "fs.M101\n" - ] - } - ], - "source": [ - "for o in order:\n", - " print(o[0].name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet (s03 in the Figure above). We will need to provide a reasonable guess for this.\n", - "\n", - "For the initial guess, we assume that the flowrate of the recycle stream (s09) is zero. Consequently, the flow rate of the stream s03 is simply the sum of the flowrates of the toluene feed and hydrogen feed streams. Further, since the temperature and the pressure of both the toluene and hydrogen feed streams are the same, we specify their values as the initial guess for the temperature and pressure of the stream s03." - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "tear_guesses = {\n", - " \"flow_mol_phase_comp\": {\n", - " (0, \"Vap\", \"benzene\"): 1e-5,\n", - " (0, \"Vap\", \"toluene\"): 1e-5,\n", - " (0, \"Vap\", \"hydrogen\"): 0.30,\n", - " (0, \"Vap\", \"methane\"): 0.02,\n", - " (0, \"Liq\", \"benzene\"): 1e-5,\n", - " (0, \"Liq\", \"toluene\"): 0.30,\n", - " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", - " (0, \"Liq\", \"methane\"): 1e-5,\n", - " },\n", - " \"temperature\": {0: 303.2},\n", - " \"pressure\": {0: 350000},\n", - "}\n", - "\n", - "# Pass the tear_guess to the SD tool\n", - "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. For the initialization, we will import a Block Triangularization Initializer which decomposes the model into a set of subproblems. These subproblems are solved using a block triangularization transformation before applying a simple Newton or user-selected solver. Methods such as block triangularization often solve faster and yield more reliable behavior than heuristic methods, but sometime struggle to decompose models with strongly coupled equations (e.g. column models, systems with counter-current flow, vapor-liquid equilibrium)." - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "def function(unit):\n", - " # Try initializing using default initializer,\n", - " # if it fails (probably due to scaling) try for the second time\n", - " try:\n", - " initializer = unit.default_initializer()\n", - " initializer.initialize(unit, output_level=idaeslog.INFO)\n", - " except InitializationError:\n", - " solver = get_solver()\n", - " solver.solve(unit)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 3 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-08-28 18:38:14 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:16 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 12\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "WARNING: Wegstein failed to converge in 3 iterations\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:33 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n" - ] - } - ], - "source": [ - "seq.run(m, function)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'scaling_factor' that contains 6\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 1097\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 877\n", - "\n", - "Total number of variables............................: 363\n", - " variables with only lower bounds: 8\n", - " variables with lower and upper bounds: 155\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 363\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 3.82e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 8.69e+03 1.44e+03 -1.0 2.00e+04 - 9.71e-01 4.67e-01H 1\n", - " 2 0.0000000e+00 1.29e+03 1.56e+03 -1.0 1.60e+04 - 9.79e-01 4.90e-01h 1\n", - " 3 0.0000000e+00 1.18e+03 1.55e+05 -1.0 1.40e+04 - 9.90e-01 4.99e-01h 1\n", - " 4 0.0000000e+00 5.46e+02 2.32e+09 -1.0 8.42e+03 - 1.00e+00 9.82e-01h 1\n", - " 5 0.0000000e+00 5.46e+03 3.66e+10 -1.0 5.97e+02 - 1.00e+00 9.90e-01h 1\n", - " 6 0.0000000e+00 1.21e+03 8.01e+09 -1.0 5.75e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 0.0000000e+00 6.41e+00 3.87e+07 -1.0 1.53e-03 - 1.00e+00 1.00e+00f 1\n", - " 8 0.0000000e+00 1.96e-04 9.36e+02 -1.0 7.28e-06 - 1.00e+00 1.00e+00h 1\n", - " 9 0.0000000e+00 2.24e-08 4.99e-01 -3.8 5.92e-08 - 1.00e+00 1.00e+00h 1\n", - "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", - "\n", - "Number of Iterations....: 9\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 1.5042487592972509e+04 1.5042487592972509e+04\n", - "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9103830456733704e-11 1.5042487592972509e+04\n", - "\n", - "\n", - "Number of objective function evaluations = 11\n", - "Number of objective gradient evaluations = 10\n", - "Number of equality constraint evaluations = 11\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 10\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 9\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.011\n", - "Total CPU secs in NLP function evaluations = 0.001\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "# Create the solver object\n", - "solver = get_solver()\n", - "\n", - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check solver solve status\n", - "from pyomo.environ import TerminationCondition\n", - "\n", - "assert results.solver.termination_condition == TerminationCondition.optimal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Add distillation column \n", - "\n", - "As mentioned earlier, the `SequentialDecomposition` tool currently does not support the distillation column model. Thus, we have not included the distillation column in the flowsheet. Now that we have a converged flowsheet, we will add the distillation column and simulate the entire flowsheet. \n", - "\n", - "In the following, we will\n", - "- Add the distillation column \n", - "- Connect it to the heater \n", - "- Add the necessary equality constraints\n", - "- Propagate the state variable information from the outlet of the heater to the inlet of the distillation column \n", - "- Fix the degrees of freedom of the distillation block (reflux ratio, boilup ratio, and condenser pressure)\n", - "- Scale the control volume heat variables to help convergence\n", - "- Initialize the distillation block.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_flow_reflux[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_flow_vapor_reboil[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,toluene]\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101: Begin initialization.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray: Begin initialization.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: State Released.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: State Released.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: State Released.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: State Released.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume: Initialization Complete\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser: Initialization Complete, optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: State Released.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: State Released.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler: Initialization Complete, optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: State Released.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1]: Begin initialization.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: State Released.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: State Released.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[2]: Begin initialization.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: State Released.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: State Released.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: State Released.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3]: Begin initialization.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: State Released.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: State Released.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: State Released.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4]: Begin initialization.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: State Released.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: State Released.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6]: Begin initialization.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: State Released.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: State Released.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7]: Begin initialization.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: State Released.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: State Released.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: State Released.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8]: Begin initialization.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: State Released.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: State Released.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: State Released.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9]: Begin initialization.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: State Released.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: State Released.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: State Released.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10]: Begin initialization.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: State Released.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: State Released.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Rectification section initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Stripping section initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: State Released.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: State Released.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Column section initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: State Released.\n", - "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101: Column section + Condenser initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: State Released.\n", - "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101: Column section + Condenser + Reboiler initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: State Released.\n" - ] - } - ], - "source": [ - "# Add distillation column to the flowsheet\n", - "m.fs.D101 = TrayColumn(\n", - " number_of_trays=10,\n", - " feed_tray_location=5,\n", - " condenser_type=CondenserType.totalCondenser,\n", - " condenser_temperature_spec=TemperatureSpec.atBubblePoint,\n", - " property_package=m.fs.BT_params,\n", - ")\n", - "\n", - "# Connect the outlet from the heater H102 to the distillation column\n", - "m.fs.s11 = Arc(source=m.fs.H102.outlet, destination=m.fs.D101.feed)\n", - "\n", - "# Add the necessary equality constraints\n", - "TransformationFactory(\"network.expand_arcs\").apply_to(m)\n", - "\n", - "# Propagate the state\n", - "propagate_state(m.fs.s11)\n", - "\n", - "# Fix the reflux ratio, boilup ratio, and the condenser pressure\n", - "m.fs.D101.condenser.reflux_ratio.fix(0.5)\n", - "m.fs.D101.reboiler.boilup_ratio.fix(0.5)\n", - "m.fs.D101.condenser.condenser_pressure.fix(150000)\n", - "\n", - "# set scaling factors\n", - "# Set scaling factors for heat duty\n", - "iscale.set_scaling_factor(m.fs.D101.condenser.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.D101.reboiler.control_volume.heat, 1e-2)\n", - "\n", - "# Set the scaling factors for the remaining variables and all constraints\n", - "iscale.calculate_scaling_factors(m.fs.D101)\n", - "\n", - "# Initialize the distillation column\n", - "m.fs.D101.initialize(outlvl=idaeslog.INFO)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding expressions to compute capital and operating costs\n", - "\n", - "In this section, we will add a few Expressions that allow us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [], - "source": [ - "# Expression to compute the total cooling cost\n", - "m.fs.cooling_cost = Expression(\n", - " expr=0.25e-7 * (-m.fs.F101.heat_duty[0])\n", - " + 0.2e-7 * (-m.fs.D101.condenser.heat_duty[0])\n", - ")\n", - "\n", - "# Expression to compute the total heating cost\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", - " + 1.2e-7 * m.fs.H102.heat_duty[0]\n", - " + 1.9e-7 * m.fs.D101.reboiler.heat_duty[0]\n", - ")\n", - "\n", - "# Expression to compute the total operating cost\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", - ")\n", - "\n", - "# Expression to compute the total capital cost\n", - "m.fs.capital_cost = Expression(expr=1e5 * m.fs.R101.volume[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solve the entire flowsheet" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check that the degrees of freedom is zero\n", - "assert degrees_of_freedom(m) == 0" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 4042\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 2376\n", - "\n", - "Total number of variables............................: 1169\n", - " variables with only lower bounds: 112\n", - " variables with lower and upper bounds: 365\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 1169\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 3.83e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 8.70e+03 1.50e+03 -1.0 3.69e+04 - 9.71e-01 4.62e-01H 1\n", - " 2 0.0000000e+00 1.53e+03 1.56e+03 -1.0 6.75e+03 - 9.77e-01 4.89e-01h 1\n", - " 3 0.0000000e+00 1.37e+03 1.55e+05 -1.0 9.37e+03 - 9.90e-01 4.99e-01h 1\n", - " 4 0.0000000e+00 6.14e+02 2.31e+09 -1.0 6.09e+03 - 1.00e+00 9.81e-01h 1\n", - " 5 0.0000000e+00 5.32e+03 3.62e+10 -1.0 5.56e+02 - 1.00e+00 9.90e-01h 1\n", - " 6 0.0000000e+00 1.16e+03 7.80e+09 -1.0 5.36e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 0.0000000e+00 5.96e+00 3.64e+07 -1.0 1.47e-03 - 1.00e+00 1.00e+00f 1\n", - " 8 0.0000000e+00 1.69e-04 8.15e+02 -1.0 6.77e-06 - 1.00e+00 1.00e+00h 1\n", - " 9 0.0000000e+00 7.45e-09 6.64e-03 -3.8 2.00e-07 - 1.00e+00 1.00e+00h 1\n", - "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", - "\n", - "Number of Iterations....: 9\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 1.5042483516409773e+04 1.5042483516409773e+04\n", - "Constraint violation....: 2.9103830456733704e-11 7.4505805969238281e-09\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9103830456733704e-11 1.5042483516409773e+04\n", - "\n", - "\n", - "Number of objective function evaluations = 11\n", - "Number of objective gradient evaluations = 10\n", - "Number of equality constraint evaluations = 11\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 10\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 9\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.083\n", - "Total CPU secs in NLP function evaluations = 0.013\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - }, - { - "data": { - "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 1169, 'Number of variables': 1169, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.2022566795349121}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check solver solve status\n", - "from pyomo.environ import TerminationCondition\n", - "\n", - "assert results.solver.termination_condition == TerminationCondition.optimal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the Results of the Square Problem\n", - "\n", - "How much is the total cost (operating cost + capital cost), operating cost, capital cost, benzene purity in the distillate from the distilation column, and conversion of toluene in the reactor?" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total cost = $ 442301.47075252194\n", - "operating cost = $ 427596.73056805483\n", - "capital cost = $ 14704.740184467111\n", - "\n", - "Distillate flowrate = 0.16196898920633368 mol/s\n", - "Benzene purity = 89.4916166580088 %\n", - "Residue flowrate = 0.10515007120697904 mol/s\n", - "Toluene purity = 43.32260291055251 %\n", - "\n", - "Conversion = 75.0 %\n", - "\n", - "Overhead benzene loss in F101 = 42.161938483603194 %\n" - ] - } - ], - "source": [ - "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", - "print(\"operating cost = $\", value(m.fs.operating_cost))\n", - "print(\"capital cost = $\", value(m.fs.capital_cost))\n", - "print()\n", - "print(\n", - " \"Distillate flowrate = \",\n", - " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", - " \"mol/s\",\n", - ")\n", - "print(\n", - " \"Benzene purity = \",\n", - " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", - " \"%\",\n", - ")\n", - "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", - "print(\n", - " \"Toluene purity = \",\n", - " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", - " \"%\",\n", - ")\n", - "print()\n", - "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", - "print()\n", - "print(\n", - " \"Overhead benzene loss in F101 = \",\n", - " 100\n", - " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", - " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", - " \"%\",\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "427596.73056805483\n", - "14704.740184467111\n" - ] - } - ], - "source": [ - "import pytest\n", - "\n", - "print(value(m.fs.operating_cost))\n", - "assert value(m.fs.operating_cost) == pytest.approx(427596.731, abs=100)\n", - "print(value(m.fs.capital_cost))\n", - "assert value(m.fs.capital_cost) == pytest.approx(14704.740, abs=100)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Get the state of the streams entering and leaving the reactor R101" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 0.0000 : watt : True : (None, None)\n", - " Volume : 0.14705 : meter ** 3 : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.2993e-07\n", - " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 8.4147e-07\n", - " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-12\n", - " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-12\n", - " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.11936 0.35374\n", - " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.31252 0.078129\n", - " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.0377 1.2721\n", - " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.56260 0.32821\n", - " temperature kelvin 600.00 771.85\n", - " pressure pascal 3.5000e+05 3.5000e+05\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m.fs.R101.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Get the state of the streams entering and leaving the reactor R101" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Unit : fs.F101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -70343. : watt : False : (None, None)\n", - " Pressure Change : 0.0000 : pascal : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Vapor Outlet Liquid Outlet\n", - " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 0.20460 \n", - " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 0.062520 \n", - " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", - " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", - " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 1.0000e-08 \n", - " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 1.0000e-08 \n", - " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 1.0000e-08 \n", - " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 1.0000e-08 \n", - " temperature kelvin 771.85 325.00 325.00 \n", - " pressure pascal 3.5000e+05 3.5000e+05 3.5000e+05 \n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m.fs.F101.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "How much benzene are we losing in the F101 vapor outlet stream?\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Units Reactor Light Gases\n", - "flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 \n", - "flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 \n", - "flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 \n", - "flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 \n", - "flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 \n", - "flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 \n", - "flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 \n", - "flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 \n", - "temperature kelvin 771.85 325.00 \n", - "pressure pascal 3.5000e+05 3.5000e+05 \n" - ] - } - ], - "source": [ - "from idaes.core.util.tables import (\n", - " create_stream_table_dataframe,\n", - " stream_table_dataframe_to_string,\n", - ")\n", - "\n", - "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", - "print(stream_table_dataframe_to_string(st))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "You can query additional variables here if you like. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Optimization\n", - "\n", - "\n", - "We saw from the results above that the total operating cost for the base case was $442,297 per year. We are producing 0.162 mol/s of benzene at a purity of 89.5%. However, we are losing around 43.3% of benzene in F101 vapor outlet stream. \n", - "\n", - "Let us try to minimize this cost such that:\n", - "- we are producing at least 0.18 mol/s of benzene as distillate i.e. our product stream\n", - "- purity of benzene i.e. the mole fraction of benzene in the distillate is at least 99%\n", - "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", - "\n", - "For this problem, our decision variables are as follows:\n", - "- H101 outlet temperature\n", - "- R101 outlet temperature\n", - "- F101 outlet temperature\n", - "- H102 outlet temperature\n", - "- Condenser pressure\n", - "- reflux ratio\n", - "- boilup ratio\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost + m.fs.capital_cost)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.R101.conversion.unfix()\n", - "m.fs.F101.vap_outlet.temperature.unfix()\n", - "m.fs.D101.condenser.condenser_pressure.unfix()\n", - "m.fs.D101.condenser.reflux_ratio.unfix()\n", - "m.fs.D101.reboiler.boilup_ratio.unfix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now unfix the remaining variable: the temperature of the outlet from H102\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Unfix the temperature of the outlet from H102\n", - "m.fs.H102.outlet.temperature.unfix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to set bounds on these decision variables to values shown below:\n", - "\n", - " - H101 outlet temperature [500, 600] K\n", - " - R101 outlet temperature [600, 900] K\n", - " - F101 outlet temperature [298, 450] K\n", - " - H102 outlet temperature [350, 400] K\n", - " - D101 condenser pressure [101325, 150000] Pa\n", - " - D101 reflux ratio [0.1, 5]\n", - " - D101 boilup ratio [0.1, 5]" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [], - "source": [ - "# Set bounds on the temperature of the outlet from H101\n", - "m.fs.H101.outlet.temperature[0].setlb(500)\n", - "m.fs.H101.outlet.temperature[0].setub(600)\n", - "\n", - "# Set bounds on the temperature of the outlet from R101\n", - "m.fs.R101.outlet.temperature[0].setlb(600)\n", - "m.fs.R101.outlet.temperature[0].setub(900)\n", - "\n", - "# Set bounds on the volume of the reactor R101\n", - "m.fs.R101.volume[0].setlb(0)\n", - "\n", - "# Set bounds on the temperature of the vapor outlet from F101\n", - "m.fs.F101.vap_outlet.temperature[0].setlb(298)\n", - "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", - "\n", - "# Set bounds on the temperature of the outlet from H102\n", - "m.fs.H102.outlet.temperature[0].setlb(350)\n", - "m.fs.H102.outlet.temperature[0].setub(400)\n", - "\n", - "# Set bounds on the pressure inside the condenser\n", - "m.fs.D101.condenser.condenser_pressure.setlb(101325)\n", - "m.fs.D101.condenser.condenser_pressure.setub(150000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, set the bounds for the D101 reflux ratio and boilup ratio.\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Set bounds on the reflux ratio\n", - "m.fs.D101.condenser.reflux_ratio.setlb(0.1)\n", - "m.fs.D101.condenser.reflux_ratio.setub(5)\n", - "\n", - "# Todo: Set bounds on the boilup ratio\n", - "m.fs.D101.reboiler.boilup_ratio.setlb(0.1)\n", - "m.fs.D101.reboiler.boilup_ratio.setub(5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the only things left to define are our constraints on overhead loss in F101, distillate flowrate and its purity. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 % of the benzene available in the reactor outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [], - "source": [ - "# Ensure that the overhead loss of benzene from F101 <= 20%\n", - "m.fs.overhead_loss = Constraint(\n", - " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, add the constraint such that we are producing at least 0.18 mol/s of benzene in the product stream which is the distillate of D101. Let us name this constraint as m.fs.product_flow. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add minimum product flow constraint\n", - "m.fs.product_flow = Constraint(expr=m.fs.D101.condenser.distillate.flow_mol[0] >= 0.18)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us add the final constraint on product purity or the mole fraction of benzene in the distillate such that it is at least greater than 99%. " - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.product_purity = Constraint(\n", - " expr=m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"] >= 0.99\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'scaling_factor' that contains 3\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 4073\n", - "Number of nonzeros in inequality constraint Jacobian.: 6\n", - "Number of nonzeros in Lagrangian Hessian.............: 2391\n", - "\n", - "Total number of variables............................: 1176\n", - " variables with only lower bounds: 113\n", - " variables with lower and upper bounds: 372\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 1169\n", - "Total number of inequality constraints...............: 3\n", - " inequality constraints with only lower bounds: 2\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 1\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4230147e+05 2.99e+05 9.90e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 4.3753585e+05 2.91e+05 1.28e+02 -1.0 3.09e+06 - 3.58e-01 2.40e-02f 1\n", - " 2 4.3545100e+05 2.78e+05 1.55e+02 -1.0 1.78e+06 - 3.31e-01 4.74e-02h 1\n", - " 3 4.2822311e+05 2.20e+05 4.50e+02 -1.0 2.99e+06 - 2.95e-02 1.35e-01h 1\n", - " 4 4.2249096e+05 1.45e+05 1.43e+03 -1.0 7.01e+06 - 5.14e-01 2.03e-01h 1\n", - " 5 4.2194364e+05 8.17e+04 1.70e+04 -1.0 6.06e+06 - 5.97e-01 4.28e-01h 1\n", - " 6 4.2602765e+05 4.55e+04 1.10e+06 -1.0 4.32e+06 - 9.26e-01 5.07e-01h 1\n", - " 7 4.3776643e+05 2.03e+04 6.44e+09 -1.0 2.42e+06 - 9.90e-01 9.47e-01h 1\n", - " 8 4.3846260e+05 1.92e+04 6.05e+09 -1.0 4.42e+05 - 5.40e-01 5.74e-02h 1\n", - " 9 4.4529853e+05 4.05e+04 4.66e+10 -1.0 2.47e+05 - 9.96e-01 9.90e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 4.4906283e+05 9.76e+03 1.10e+10 -1.0 1.12e+03 -4.0 1.26e-01 7.45e-01h 1\n", - " 11 4.5079086e+05 1.19e+03 1.54e+09 -1.0 5.63e+02 -4.5 3.77e-01 1.00e+00h 1\n", - " 12 4.5024224e+05 2.66e+00 3.67e+06 -1.0 6.61e+01 -5.0 1.00e+00 1.00e+00f 1\n", - " 13 4.4946170e+05 5.64e-01 9.29e+05 -1.0 1.81e+02 -5.4 1.00e+00 7.88e-01f 1\n", - " 14 4.4916780e+05 8.48e+00 1.62e+05 -1.0 2.83e+02 -5.9 1.00e+00 1.00e+00f 1\n", - " 15 4.4899127e+05 4.83e+00 9.07e+04 -1.0 1.01e+02 -6.4 1.00e+00 4.40e-01f 2\n", - " 16 4.4886718e+05 7.00e-01 4.61e+02 -1.0 2.35e+02 -6.9 1.00e+00 1.00e+00f 1\n", - " 17 4.4800159e+05 1.39e+02 4.52e+06 -3.8 1.17e+03 -7.3 9.79e-01 9.37e-01f 1\n", - " 18 4.4672196e+05 9.59e+02 1.22e+06 -3.8 4.55e+03 -7.8 1.00e+00 9.43e-01f 1\n", - " 19 4.4401667e+05 7.75e+03 1.55e+05 -3.8 1.08e+04 -8.3 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 4.4185035e+05 1.91e+04 1.36e+04 -3.8 1.33e+04 -8.8 1.00e+00 1.00e+00h 1\n", - " 21 4.4241001e+05 3.52e+03 5.96e+03 -3.8 2.94e+03 -9.2 1.00e+00 1.00e+00h 1\n", - " 22 4.4185237e+05 7.82e+00 2.91e+02 -3.8 7.13e+03 -9.7 2.39e-01 1.00e+00h 1\n", - " 23 4.4124091e+05 1.53e+01 3.11e+02 -3.8 4.82e+04 -10.2 8.59e-01 1.36e-01f 1\n", - " 24 4.4137379e+05 1.80e+00 2.91e+02 -3.8 1.41e+04 - 1.95e-01 1.00e+00h 1\n", - " 25 4.3862833e+05 1.70e+03 9.48e+04 -3.8 1.57e+07 - 1.29e-03 9.10e-02f 1\n", - " 26 4.3883308e+05 1.49e+03 8.46e+04 -3.8 1.02e+06 - 1.00e+00 1.35e-01h 1\n", - " 27 4.3885472e+05 2.18e+01 3.40e+03 -3.8 1.38e+05 - 1.00e+00 1.00e+00h 1\n", - " 28 4.3884160e+05 5.90e-02 6.38e+01 -3.8 8.66e+03 - 1.00e+00 1.00e+00h 1\n", - " 29 4.3884157e+05 6.48e-07 4.63e-04 -3.8 2.89e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 4.3883990e+05 3.57e-01 2.38e+03 -5.7 8.19e+02 - 1.00e+00 1.00e+00f 1\n", - " 31 4.3883992e+05 3.50e-07 7.79e-06 -5.7 3.55e-01 - 1.00e+00 1.00e+00h 1\n", - " 32 4.3883990e+05 5.47e-05 3.63e-01 -8.0 1.01e+01 - 1.00e+00 1.00e+00h 1\n", - " 33 4.3883990e+05 2.24e-08 1.46e-07 -8.0 5.42e-05 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 33\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 4.3883989842628603e+02 4.3883989842628600e+05\n", - "Dual infeasibility......: 1.4600704448671754e-07 1.4600704448671753e-04\n", - "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", - "Complementarity.........: 9.0909948039799681e-09 9.0909948039799686e-06\n", - "Overall NLP error.......: 9.0909948039799681e-09 1.4600704448671753e-04\n", - "\n", - "\n", - "Number of objective function evaluations = 35\n", - "Number of objective gradient evaluations = 34\n", - "Number of equality constraint evaluations = 35\n", - "Number of inequality constraint evaluations = 35\n", - "Number of equality constraint Jacobian evaluations = 34\n", - "Number of inequality constraint Jacobian evaluations = 34\n", - "Number of Lagrangian Hessian evaluations = 33\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.164\n", - "Total CPU secs in NLP function evaluations = 0.020\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check solver solve status\n", - "from pyomo.environ import TerminationCondition\n", - "\n", - "assert results.solver.termination_condition == TerminationCondition.optimal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimization Results\n", - "\n", - "Display the results and product specifications" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total cost = $ 438839.898426286\n", - "operating cost = $ 408883.5314830889\n", - "capital cost = $ 29956.3669431971\n", - "\n", - "Distillate flowrate = 0.1799999900263989 mol/s\n", - "Benzene purity = 98.99999900049086 %\n", - "Residue flowrate = 0.1085161642426372 mol/s\n", - "Toluene purity = 15.676178086213548 %\n", - "\n", - "Conversion = 93.38705916369427 %\n", - "\n", - "Overhead benzene loss in F101 = 17.34061793115618 %\n" - ] - } - ], - "source": [ - "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", - "print(\"operating cost = $\", value(m.fs.operating_cost))\n", - "print(\"capital cost = $\", value(m.fs.capital_cost))\n", - "print()\n", - "print(\n", - " \"Distillate flowrate = \",\n", - " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", - " \"mol/s\",\n", - ")\n", - "print(\n", - " \"Benzene purity = \",\n", - " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", - " \"%\",\n", - ")\n", - "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", - "print(\n", - " \"Toluene purity = \",\n", - " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", - " \"%\",\n", - ")\n", - "print()\n", - "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", - "print()\n", - "print(\n", - " \"Overhead benzene loss in F101 = \",\n", - " 100\n", - " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", - " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", - " \"%\",\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "408883.5314830889\n", - "29956.3669431971\n" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# HDA Flowsheet Simulation and Optimization\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "## Note\n", + "\n", + "This tutorial will be similar to the HDA flowsheet tutorial in the Tutorials section, except that we use a distillation column instead of a second flash (F102) to produce benzene and toluene products.\n", + "\n", + "\n", + "## Learning outcomes\n", + "\n", + "\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Hydrodealkylation is a chemical reaction that often involves reacting\n", + "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", + "simpler aromatic hydrocarbon devoid of functional groups. In this\n", + "example, toluene will be reacted with hydrogen gas at high temperatures\n", + " to form benzene via the following reaction:\n", + "\n", + "**C6H5CH3 + H2 \u2192 C6H6 + CH4**\n", + "\n", + "\n", + "This reaction is often accompanied by an equilibrium side reaction\n", + "which forms diphenyl, which we will neglect for this example.\n", + "\n", + "This example is based on the 1967 AIChE Student Contest problem as\n", + "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", + "McGraw-Hill.\n", + "\n", + "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, we use a flash tank, F101, to separate out the non-condensibles, and a distillation column, D101, to further separate the benzene-toluene mixture to improve the benzene purity. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be purged. We will assume ideal gas behavior for this flowsheet. The properties required for this module are defined in\n", + "\n", + "- `hda_ideal_VLE.py`\n", + "- `idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE`\n", + "- `hda_reaction.py`\n", + "\n", + "We will be using two thermodynamic packages: one (first in the list above) containing all four components (i.e., toluene, hydrogen, benzene, and methane) and the other (second in the list above) containing benzene and toluene only. The latter is needed to simplify the VLE calculations in the distillation column model. \n", + "\n", + "![](HDA_flowsheet_distillation.png)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Translator block\n", + "\n", + "Benzene and toluene are separated by distillation, so the process involves phase equilibrium and two-phase flow conditions. However, the presence of hydrogen and methane complicates the calculations. This is because, hydrogen and methane are non-condensable under all conditions of interest; ergo, a vapor phase will always be present, and the mixture bubble point is extremely low. To simplify the phase equilibrium calculations, hydrogen and methane will be considered completely as non-condensable and insoluble in the liquid outlet from the flash F101.\n", + "\n", + "Since no hydrogen and methane will be present in the unit operations following the flash, a different component list can be used to simplify the property calculations. IDAES supports the definition of multiple property packages within a single flowsheet via `Translator` blocks. `Translator` blocks convert between different property calculations, component lists, and equations of state. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required pyomo and idaes components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- ConcreteModel (to create the concrete model object)\n", + "- Expression (to evaluate values as a function of variables defined in the model)\n", + "- Objective (to define an objective function for optimization)\n", + "- SolverFactory (to solve the problem)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- Arc (to connect two unit models)\n", + "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " TransformationFactory,\n", + " value,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Import `Arc` and `SequentialDecomposition` tools from `pyomo.network`\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Import the above mentioned tools from pyomo.network\n", + "from pyomo.network import Arc, SequentialDecomposition" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From IDAES, we will be needing the FlowsheetBlock and the following unit models:\n", + "- Mixer\n", + "- Heater\n", + "- CSTR\n", + "- Flash\n", + "- Separator (splitter) \n", + "- PressureChanger\n", + "- Translator (to switch from one property package to another)\n", + "- TrayColumn (distillation column)\n", + "- CondenserType (Type of the overhead condenser: complete or partial)\n", + "- TemperatureSpec (Temperature specification inside the condenser)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core import FlowsheetBlock" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models import (\n", + " PressureChanger,\n", + " Mixer,\n", + " Separator as Splitter,\n", + " Heater,\n", + " CSTR,\n", + " Flash,\n", + " Translator,\n", + ")\n", + "\n", + "from idaes.models_extra.column_models import TrayColumn\n", + "from idaes.models_extra.column_models.condenser import CondenserType, TemperatureSpec" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Utility tools to put together the flowsheet and calculate the degrees of freedom\n", + "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state\n", + "from idaes.core.solvers import get_solver\n", + "import idaes.core.util.scaling as iscale\n", + "from idaes.core.util.exceptions import InitializationError\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required thermo and reaction packages\n", + "\n", + "Finally, we import the thermophysical (`ideal_VLE.py` and `BTXParameterBlock`) packages and reaction package (`reaction.py`) for the HDA process. We have created custom thermophysical packages that assume ideal gas behavior with support for VLE. The reaction package consists of the stochiometric coefficients for the reaction, heat of reaction, and kinetic information (Arrhenius constant and activation energy). " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes_examples.mod.hda import hda_reaction as reaction_props\n", + "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", + " BTXParameterBlock,\n", + ")\n", + "\n", + "from idaes_examples.mod.hda.hda_ideal_VLE import HDAParameterBlock" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block to it. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a Pyomo Concrete Model to contain the problem\n", + "m = ConcreteModel()\n", + "\n", + "# Add a steady state flowsheet block to the model\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now add the thermophysical and reaction packages to the flowsheet." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Property package for benzene, toluene, hydrogen, methane mixture\n", + "m.fs.BTHM_params = HDAParameterBlock()\n", + "\n", + "# Property package for the benzene-toluene mixture\n", + "m.fs.BT_params = BTXParameterBlock(\n", + " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\"\n", + ")\n", + "\n", + "# Reaction package for the HDA reaction\n", + "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", + " property_package=m.fs.BTHM_params\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition, the Mixer unit model needs a `list` consisting of the inlets (toluene feed, hydrogen feed and vapor recycle streams in this case). " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Adding the mixer M101 to the flowsheet\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.BTHM_params,\n", + " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", + ")\n", + "\n", + "# Adding the heater H101 to the flowsheet\n", + "m.fs.H101 = Heater(property_package=m.fs.BTHM_params, has_phase_equilibrium=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now add the CSTR (assign the name R101) and pass the following arguments:\n", + "
    \n", + "
  • \"property_package\": m.fs.BTHM_params
  • \n", + "
  • \"reaction_package\": m.fs.reaction_params
  • \n", + "
  • \"has_heat_of_reaction\": True
  • \n", + "
  • \"has_heat_transfer\": True
  • \n", + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add reactor with the specifications above\n", + "m.fs.R101 = CSTR(\n", + " property_package=m.fs.BTHM_params,\n", + " reaction_package=m.fs.reaction_params,\n", + " has_heat_of_reaction=True,\n", + " has_heat_transfer=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add the Flash (assign the name F101), Splitter (assign the name S101) and PressureChanger (assign the name C101)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Adding the flash tank F101 to the flowsheet\n", + "m.fs.F101 = Flash(\n", + " property_package=m.fs.BTHM_params, has_heat_transfer=True, has_pressure_change=True\n", + ")\n", + "\n", + "# Adding the splitter S101 to the flowsheet\n", + "m.fs.S101 = Splitter(\n", + " property_package=m.fs.BTHM_params, outlet_list=[\"purge\", \"recycle\"]\n", + ")\n", + "\n", + "# Adding the compressor C101 to the flowsheet\n", + "m.fs.C101 = PressureChanger(\n", + " property_package=m.fs.BTHM_params,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Remark\n", + "\n", + "Currently, the `SequentialDecomposition()` tool, which we will later be using to initialize the flowsheet, does not support the distillation column model. Thus, we will first simulate the flowsheet without the distillation column. After it converges, we will then add the distillation column, initialize it, and simulate the entire flowsheet." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As mentioned above, we use the `m.fs.BTHM_params` package, which contains all the four species, for the reactor loop, and the simpler `m.fs.BT_params` for unit operations following the flash (i.e., heater H102 and the distillation column D101). We define a `Translator` block to link the source property package and the package it is to be translated to in the following manner:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# Add translator block to convert between property packages\n", + "m.fs.translator = Translator(\n", + " inlet_property_package=m.fs.BTHM_params, outlet_property_package=m.fs.BT_params\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Translator block constraints\n", + "\n", + "The `Translator` block needs to know how to translate between the two property packages. This must be custom coded for each application because of the generality of the IDAES framework.\n", + "\n", + "For this process, five constraints are required based on the state variables used in the outgoing process.\n", + "\n", + "- Since we assumed that only benzene and toluene are present in the liquid phase, the total molar flowrate must be the sum of molar flowrates of benzene and toluene, respectively.\n", + "- Temperature of the inlet and outlet streams must be the same.\n", + "- Pressure of the inlet and outgoing streams must be the same\n", + "- The mole fraction of benzene in the outgoing stream is the ratio of the molar flowrate of liquid benzene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet.\n", + "- The mole fraction of toluene in the outgoing stream is the ratio of the molar flowrate of liquid toluene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# Add constraint: Total flow = benzene flow + toluene flow (molar)\n", + "m.fs.translator.eq_total_flow = Constraint(\n", + " expr=m.fs.translator.outlet.flow_mol[0]\n", + " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + ")\n", + "\n", + "# Add constraint: Outlet temperature = Inlet temperature\n", + "m.fs.translator.eq_temperature = Constraint(\n", + " expr=m.fs.translator.outlet.temperature[0] == m.fs.translator.inlet.temperature[0]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the above, note that the variable flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Add the constraint to ensure that the outlet pressure is the same as the inlet pressure\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add constraint: Outlet pressure = Inlet pressure\n", + "m.fs.translator.eq_pressure = Constraint(\n", + " expr=m.fs.translator.outlet.pressure[0] == m.fs.translator.inlet.pressure[0]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "# Remaining constraints on the translator block\n", + "\n", + "# Add constraint: Benzene mole fraction definition\n", + "m.fs.translator.eq_mole_frac_benzene = Constraint(\n", + " expr=m.fs.translator.outlet.mole_frac_comp[0, \"benzene\"]\n", + " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " / (\n", + " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + " )\n", + ")\n", + "\n", + "# Add constraint: Toluene mole fraction definition\n", + "m.fs.translator.eq_mole_frac_toluene = Constraint(\n", + " expr=m.fs.translator.outlet.mole_frac_comp[0, \"toluene\"]\n", + " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + " / (\n", + " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Finally, let us add the Heater H102 in the same way as H101 but pass the m.fs.BT_params thermodynamic package. We will add the distillation column after converging the flowsheet.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add the Heater H102 to the flowsheet\n", + "m.fs.H102 = Heater(\n", + " property_package=m.fs.BT_params,\n", + " has_pressure_change=True,\n", + " has_phase_equilibrium=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models using Arcs\n", + "\n", + "We have now added the initial set of unit models to the flowsheet. However, we have not yet specified how the units are connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer (M101) to the inlet of the heater (H101). " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "![](HDA_flowsheet_distillation.png) \n", + "\n", + "
\n", + "Inline Exercise:\n", + "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Connect the H101 outlet to R101 inlet\n", + "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be connecting the rest of the units as shown below. Notice how the outlet names are different for the flash tank as it has a vapor and a liquid outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", + "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", + "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", + "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", + "m.fs.s10a = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.translator.inlet)\n", + "m.fs.s10b = Arc(source=m.fs.translator.outlet, destination=m.fs.H102.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Appending additional constraints to the model\n", + "\n", + "Now, we will see how we can add additional constraints to the model using `Constraint` from Pyomo.\n", + "\n", + "Consider the reactor R101. By default, the conversion of a component is not calculated when we simulate the flowsheet. If we are interested either in specifying or constraining the conversion value, we can add the following constraint to calculate the conversion:\n", + "$$ \\text{Conversion of toluene} = \\frac{\\text{molar flow of toluene in the inlet} - \\text{molar flow of toluene in the outlet}}{\\text{molar flow of toluene in the inlet}} $$ \n", + "\n", + "We add the constraint to the model as shown below." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# Define the conversion variables using 'Var'\n", + "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", + "\n", + "# Append the constraint to the model\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing feed conditions and Initializing the flowsheet\n", + "\n", + "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "29\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check the degrees of freedom\n", + "assert degrees_of_freedom(m) == 29" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", + "m.fs.M101.toluene_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", + "
    \n", + "
  • FH2 = 0.30 mol/s
  • \n", + "
  • FCH4 = 0.02 mol/s
  • \n", + "
  • Remaining components = 1e-5 mol/s
  • \n", + "
  • T = 303.2 K
  • \n", + "
  • P = 350000 Pa
  • \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", + "m.fs.M101.hydrogen_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fixing unit model specifications\n", + "\n", + "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set the H101 outlet temperature to 600 K. " + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the temperature of the outlet from the heater H101\n", + "m.fs.H101.outlet.temperature.fix(600)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Set the conditions for the reactor R101 to the following conditions:\n", + "
    \n", + "
  • `conversion` = 0.75
  • \n", + "
  • `heat_duty` = 0
  • \n", + "
\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Fix the 'conversion' of the reactor R101\n", + "m.fs.R101.conversion.fix(0.75)\n", + "\n", + "# Todo: Fix the 'heat_duty' of the reactor R101\n", + "m.fs.R101.heat_duty.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Flash conditions for F101 can be set as follows. " + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the temperature of the vapor outlet from F101\n", + "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", + "\n", + "# Fix the pressure drop in the flash F101\n", + "m.fs.F101.deltaP.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us fix the split fraction of the purge stream from the splitter S101 and the outlet pressure from the compressor C101" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the split fraction of the 'purge' stream from S101\n", + "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", + "\n", + "# Fix the pressure of the outlet from the compressor C101\n", + "m.fs.C101.outlet.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, let us fix the temperature of the outlet from H102 and the pressure drop in H102 as the following" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the temperature of the outlet from the heater H102\n", + "m.fs.H102.outlet.temperature.fix(375)\n", + "\n", + "# Fix the pressure drop in the heater H102\n", + "m.fs.H102.deltaP.fix(-200000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To avoid convergence issues associated with poorly scaled variables and/or constraints, we scale the variables and constraints corresponding to the heaters H101 and H102, flash F101 and the reactor R101. Scaling factors for the flow rates, temperature, pressure, etc. have been defined in the property package: `ideal_VLE.py` file. Here, we set scaling factors only for the heat duty of the heater, the reaction extent, heat duty and volume of the reactor." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].flow_mol_phase\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n" + ] + } + ], + "source": [ + "# Set scaling factors for heat duty, reaction extent and volume\n", + "iscale.set_scaling_factor(m.fs.H101.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.R101.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.R101.control_volume.rate_reaction_extent, 1)\n", + "iscale.set_scaling_factor(m.fs.R101.control_volume.volume, 1)\n", + "iscale.set_scaling_factor(m.fs.F101.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.H102.control_volume.heat, 1e-2)\n", + "\n", + "# Set the scaling factors for the remaining variables and all constraints\n", + "iscale.calculate_scaling_factors(m.fs.H101)\n", + "iscale.calculate_scaling_factors(m.fs.R101)\n", + "iscale.calculate_scaling_factors(m.fs.F101)\n", + "iscale.calculate_scaling_factors(m.fs.H102)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] + } + ], + "source": [ + "# Todo: Check the degrees of freedom\n", + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check the degrees of freedom\n", + "assert degrees_of_freedom(m) == 0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Initialization\n", + "\n", + "This subsection will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", + "\n", + "Let us first create an object for the `SequentialDecomposition` and specify our options for this. " + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "seq = SequentialDecomposition()\n", + "seq.options.select_tear_method = \"heuristic\"\n", + "seq.options.tear_method = \"Wegstein\"\n", + "seq.options.iterLim = 3\n", + "\n", + "# Using the SD tool\n", + "G = seq.create_graph(m)\n", + "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", + "order = seq.calculation_order(G)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Which is the tear stream? Display tear set and order" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fs.s03\n" + ] + } + ], + "source": [ + "for o in heuristic_tear_set:\n", + " print(o.name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fs.H101\n", + "fs.R101\n", + "fs.F101\n", + "fs.S101\n", + "fs.C101\n", + "fs.M101\n" + ] + } + ], + "source": [ + "for o in order:\n", + " print(o[0].name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet (s03 in the Figure above). We will need to provide a reasonable guess for this.\n", + "\n", + "For the initial guess, we assume that the flowrate of the recycle stream (s09) is zero. Consequently, the flow rate of the stream s03 is simply the sum of the flowrates of the toluene feed and hydrogen feed streams. Further, since the temperature and the pressure of both the toluene and hydrogen feed streams are the same, we specify their values as the initial guess for the temperature and pressure of the stream s03." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "tear_guesses = {\n", + " \"flow_mol_phase_comp\": {\n", + " (0, \"Vap\", \"benzene\"): 1e-5,\n", + " (0, \"Vap\", \"toluene\"): 1e-5,\n", + " (0, \"Vap\", \"hydrogen\"): 0.30,\n", + " (0, \"Vap\", \"methane\"): 0.02,\n", + " (0, \"Liq\", \"benzene\"): 1e-5,\n", + " (0, \"Liq\", \"toluene\"): 0.30,\n", + " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", + " (0, \"Liq\", \"methane\"): 1e-5,\n", + " },\n", + " \"temperature\": {0: 303.2},\n", + " \"pressure\": {0: 350000},\n", + "}\n", + "\n", + "# Pass the tear_guess to the SD tool\n", + "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. For the initialization, we will import a Block Triangularization Initializer which decomposes the model into a set of subproblems. These subproblems are solved using a block triangularization transformation before applying a simple Newton or user-selected solver. Methods such as block triangularization often solve faster and yield more reliable behavior than heuristic methods, but sometime struggle to decompose models with strongly coupled equations (e.g. column models, systems with counter-current flow, vapor-liquid equilibrium)." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "def function(unit):\n", + " # Try initializing using default initializer,\n", + " # if it fails (probably due to scaling) try for the second time\n", + " try:\n", + " initializer = unit.default_initializer()\n", + " initializer.initialize(unit, output_level=idaeslog.INFO)\n", + " except InitializationError:\n", + " solver = get_solver()\n", + " solver.solve(unit)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 3 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-08-28 18:38:14 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:16 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 12\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "WARNING: Wegstein failed to converge in 3 iterations\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:33 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n" + ] + } + ], + "source": [ + "seq.run(m, function)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 6\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 1097\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 877\n", + "\n", + "Total number of variables............................: 363\n", + " variables with only lower bounds: 8\n", + " variables with lower and upper bounds: 155\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 363\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 3.82e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 8.69e+03 1.44e+03 -1.0 2.00e+04 - 9.71e-01 4.67e-01H 1\n", + " 2 0.0000000e+00 1.29e+03 1.56e+03 -1.0 1.60e+04 - 9.79e-01 4.90e-01h 1\n", + " 3 0.0000000e+00 1.18e+03 1.55e+05 -1.0 1.40e+04 - 9.90e-01 4.99e-01h 1\n", + " 4 0.0000000e+00 5.46e+02 2.32e+09 -1.0 8.42e+03 - 1.00e+00 9.82e-01h 1\n", + " 5 0.0000000e+00 5.46e+03 3.66e+10 -1.0 5.97e+02 - 1.00e+00 9.90e-01h 1\n", + " 6 0.0000000e+00 1.21e+03 8.01e+09 -1.0 5.75e+00 - 1.00e+00 1.00e+00h 1\n", + " 7 0.0000000e+00 6.41e+00 3.87e+07 -1.0 1.53e-03 - 1.00e+00 1.00e+00f 1\n", + " 8 0.0000000e+00 1.96e-04 9.36e+02 -1.0 7.28e-06 - 1.00e+00 1.00e+00h 1\n", + " 9 0.0000000e+00 2.24e-08 4.99e-01 -3.8 5.92e-08 - 1.00e+00 1.00e+00h 1\n", + "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", + "\n", + "Number of Iterations....: 9\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 1.5042487592972509e+04 1.5042487592972509e+04\n", + "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 2.9103830456733704e-11 1.5042487592972509e+04\n", + "\n", + "\n", + "Number of objective function evaluations = 11\n", + "Number of objective gradient evaluations = 10\n", + "Number of equality constraint evaluations = 11\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 10\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 9\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.011\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# Create the solver object\n", + "solver = get_solver()\n", + "\n", + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check solver solve status\n", + "from pyomo.environ import TerminationCondition\n", + "\n", + "assert results.solver.termination_condition == TerminationCondition.optimal" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add distillation column \n", + "\n", + "As mentioned earlier, the `SequentialDecomposition` tool currently does not support the distillation column model. Thus, we have not included the distillation column in the flowsheet. Now that we have a converged flowsheet, we will add the distillation column and simulate the entire flowsheet. \n", + "\n", + "In the following, we will\n", + "- Add the distillation column \n", + "- Connect it to the heater \n", + "- Add the necessary equality constraints\n", + "- Propagate the state variable information from the outlet of the heater to the inlet of the distillation column \n", + "- Fix the degrees of freedom of the distillation block (reflux ratio, boilup ratio, and condenser pressure)\n", + "- Scale the control volume heat variables to help convergence\n", + "- Initialize the distillation block.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_flow_reflux[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_flow_vapor_reboil[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,toluene]\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101: Begin initialization.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray: Begin initialization.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: State Released.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: State Released.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: State Released.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: State Released.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume: Initialization Complete\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser: Initialization Complete, optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: State Released.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: State Released.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler: Initialization Complete, optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: State Released.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1]: Begin initialization.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: State Released.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: State Released.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[2]: Begin initialization.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: State Released.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: State Released.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: State Released.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3]: Begin initialization.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: State Released.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: State Released.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: State Released.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4]: Begin initialization.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: State Released.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: State Released.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6]: Begin initialization.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: State Released.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: State Released.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7]: Begin initialization.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: State Released.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: State Released.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: State Released.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8]: Begin initialization.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: State Released.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: State Released.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: State Released.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9]: Begin initialization.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: State Released.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: State Released.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: State Released.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10]: Begin initialization.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: State Released.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: State Released.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Rectification section initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Stripping section initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: State Released.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: State Released.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Column section initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: State Released.\n", + "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101: Column section + Condenser initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: State Released.\n", + "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101: Column section + Condenser + Reboiler initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: State Released.\n" + ] + } + ], + "source": [ + "# Add distillation column to the flowsheet\n", + "m.fs.D101 = TrayColumn(\n", + " number_of_trays=10,\n", + " feed_tray_location=5,\n", + " condenser_type=CondenserType.totalCondenser,\n", + " condenser_temperature_spec=TemperatureSpec.atBubblePoint,\n", + " property_package=m.fs.BT_params,\n", + ")\n", + "\n", + "# Connect the outlet from the heater H102 to the distillation column\n", + "m.fs.s11 = Arc(source=m.fs.H102.outlet, destination=m.fs.D101.feed)\n", + "\n", + "# Add the necessary equality constraints\n", + "TransformationFactory(\"network.expand_arcs\").apply_to(m)\n", + "\n", + "# Propagate the state\n", + "propagate_state(m.fs.s11)\n", + "\n", + "# Fix the reflux ratio, boilup ratio, and the condenser pressure\n", + "m.fs.D101.condenser.reflux_ratio.fix(0.5)\n", + "m.fs.D101.reboiler.boilup_ratio.fix(0.5)\n", + "m.fs.D101.condenser.condenser_pressure.fix(150000)\n", + "\n", + "# set scaling factors\n", + "# Set scaling factors for heat duty\n", + "iscale.set_scaling_factor(m.fs.D101.condenser.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.D101.reboiler.control_volume.heat, 1e-2)\n", + "\n", + "# Set the scaling factors for the remaining variables and all constraints\n", + "iscale.calculate_scaling_factors(m.fs.D101)\n", + "\n", + "# Initialize the distillation column\n", + "m.fs.D101.initialize(outlvl=idaeslog.INFO)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding expressions to compute capital and operating costs\n", + "\n", + "In this section, we will add a few Expressions that allow us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "# Expression to compute the total cooling cost\n", + "m.fs.cooling_cost = Expression(\n", + " expr=0.25e-7 * (-m.fs.F101.heat_duty[0])\n", + " + 0.2e-7 * (-m.fs.D101.condenser.heat_duty[0])\n", + ")\n", + "\n", + "# Expression to compute the total heating cost\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", + " + 1.2e-7 * m.fs.H102.heat_duty[0]\n", + " + 1.9e-7 * m.fs.D101.reboiler.heat_duty[0]\n", + ")\n", + "\n", + "# Expression to compute the total operating cost\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", + ")\n", + "\n", + "# Expression to compute the total capital cost\n", + "m.fs.capital_cost = Expression(expr=1e5 * m.fs.R101.volume[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Solve the entire flowsheet" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check that the degrees of freedom is zero\n", + "assert degrees_of_freedom(m) == 0" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 7\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 4042\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 2376\n", + "\n", + "Total number of variables............................: 1169\n", + " variables with only lower bounds: 112\n", + " variables with lower and upper bounds: 365\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 1169\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 3.83e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 8.70e+03 1.50e+03 -1.0 3.69e+04 - 9.71e-01 4.62e-01H 1\n", + " 2 0.0000000e+00 1.53e+03 1.56e+03 -1.0 6.75e+03 - 9.77e-01 4.89e-01h 1\n", + " 3 0.0000000e+00 1.37e+03 1.55e+05 -1.0 9.37e+03 - 9.90e-01 4.99e-01h 1\n", + " 4 0.0000000e+00 6.14e+02 2.31e+09 -1.0 6.09e+03 - 1.00e+00 9.81e-01h 1\n", + " 5 0.0000000e+00 5.32e+03 3.62e+10 -1.0 5.56e+02 - 1.00e+00 9.90e-01h 1\n", + " 6 0.0000000e+00 1.16e+03 7.80e+09 -1.0 5.36e+00 - 1.00e+00 1.00e+00h 1\n", + " 7 0.0000000e+00 5.96e+00 3.64e+07 -1.0 1.47e-03 - 1.00e+00 1.00e+00f 1\n", + " 8 0.0000000e+00 1.69e-04 8.15e+02 -1.0 6.77e-06 - 1.00e+00 1.00e+00h 1\n", + " 9 0.0000000e+00 7.45e-09 6.64e-03 -3.8 2.00e-07 - 1.00e+00 1.00e+00h 1\n", + "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", + "\n", + "Number of Iterations....: 9\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 1.5042483516409773e+04 1.5042483516409773e+04\n", + "Constraint violation....: 2.9103830456733704e-11 7.4505805969238281e-09\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 2.9103830456733704e-11 1.5042483516409773e+04\n", + "\n", + "\n", + "Number of objective function evaluations = 11\n", + "Number of objective gradient evaluations = 10\n", + "Number of equality constraint evaluations = 11\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 10\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 9\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.083\n", + "Total CPU secs in NLP function evaluations = 0.013\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 1169, 'Number of variables': 1169, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.2022566795349121}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check solver solve status\n", + "from pyomo.environ import TerminationCondition\n", + "\n", + "assert results.solver.termination_condition == TerminationCondition.optimal" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the Results of the Square Problem\n", + "\n", + "How much is the total cost (operating cost + capital cost), operating cost, capital cost, benzene purity in the distillate from the distilation column, and conversion of toluene in the reactor?" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total cost = $ 442301.47075252194\n", + "operating cost = $ 427596.73056805483\n", + "capital cost = $ 14704.740184467111\n", + "\n", + "Distillate flowrate = 0.16196898920633368 mol/s\n", + "Benzene purity = 89.4916166580088 %\n", + "Residue flowrate = 0.10515007120697904 mol/s\n", + "Toluene purity = 43.32260291055251 %\n", + "\n", + "Conversion = 75.0 %\n", + "\n", + "Overhead benzene loss in F101 = 42.161938483603194 %\n" + ] + } + ], + "source": [ + "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", + "print(\"operating cost = $\", value(m.fs.operating_cost))\n", + "print(\"capital cost = $\", value(m.fs.capital_cost))\n", + "print()\n", + "print(\n", + " \"Distillate flowrate = \",\n", + " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", + " \"mol/s\",\n", + ")\n", + "print(\n", + " \"Benzene purity = \",\n", + " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", + " \"%\",\n", + ")\n", + "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", + "print(\n", + " \"Toluene purity = \",\n", + " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", + " \"%\",\n", + ")\n", + "print()\n", + "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", + "print()\n", + "print(\n", + " \"Overhead benzene loss in F101 = \",\n", + " 100\n", + " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", + " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", + " \"%\",\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "427596.73056805483\n", + "14704.740184467111\n" + ] + } + ], + "source": [ + "import pytest\n", + "\n", + "print(value(m.fs.operating_cost))\n", + "assert value(m.fs.operating_cost) == pytest.approx(427596.731, abs=100)\n", + "print(value(m.fs.capital_cost))\n", + "assert value(m.fs.capital_cost) == pytest.approx(14704.740, abs=100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get the state of the streams entering and leaving the reactor R101" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 0.0000 : watt : True : (None, None)\n", + " Volume : 0.14705 : meter ** 3 : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.2993e-07\n", + " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 8.4147e-07\n", + " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-12\n", + " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-12\n", + " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.11936 0.35374\n", + " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.31252 0.078129\n", + " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.0377 1.2721\n", + " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.56260 0.32821\n", + " temperature kelvin 600.00 771.85\n", + " pressure pascal 3.5000e+05 3.5000e+05\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m.fs.R101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get the state of the streams entering and leaving the reactor R101" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.F101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -70343. : watt : False : (None, None)\n", + " Pressure Change : 0.0000 : pascal : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Vapor Outlet Liquid Outlet\n", + " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 0.20460 \n", + " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 0.062520 \n", + " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", + " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", + " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 1.0000e-08 \n", + " temperature kelvin 771.85 325.00 325.00 \n", + " pressure pascal 3.5000e+05 3.5000e+05 3.5000e+05 \n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m.fs.F101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "How much benzene are we losing in the F101 vapor outlet stream?\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Units Reactor Light Gases\n", + "flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 \n", + "flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 \n", + "flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 \n", + "flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 \n", + "flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 \n", + "flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 \n", + "flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 \n", + "flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 \n", + "temperature kelvin 771.85 325.00 \n", + "pressure pascal 3.5000e+05 3.5000e+05 \n" + ] + } + ], + "source": [ + "from idaes.core.util.tables import (\n", + " create_stream_table_dataframe,\n", + " stream_table_dataframe_to_string,\n", + ")\n", + "\n", + "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", + "print(stream_table_dataframe_to_string(st))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "You can query additional variables here if you like. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Optimization\n", + "\n", + "\n", + "We saw from the results above that the total operating cost for the base case was $442,297 per year. We are producing 0.162 mol/s of benzene at a purity of 89.5%. However, we are losing around 43.3% of benzene in F101 vapor outlet stream. \n", + "\n", + "Let us try to minimize this cost such that:\n", + "- we are producing at least 0.18 mol/s of benzene as distillate i.e. our product stream\n", + "- purity of benzene i.e. the mole fraction of benzene in the distillate is at least 99%\n", + "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", + "\n", + "For this problem, our decision variables are as follows:\n", + "- H101 outlet temperature\n", + "- R101 outlet temperature\n", + "- F101 outlet temperature\n", + "- H102 outlet temperature\n", + "- Condenser pressure\n", + "- reflux ratio\n", + "- boilup ratio\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost + m.fs.capital_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.R101.conversion.unfix()\n", + "m.fs.F101.vap_outlet.temperature.unfix()\n", + "m.fs.D101.condenser.condenser_pressure.unfix()\n", + "m.fs.D101.condenser.reflux_ratio.unfix()\n", + "m.fs.D101.reboiler.boilup_ratio.unfix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now unfix the remaining variable: the temperature of the outlet from H102\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Unfix the temperature of the outlet from H102\n", + "m.fs.H102.outlet.temperature.unfix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to set bounds on these decision variables to values shown below:\n", + "\n", + " - H101 outlet temperature [500, 600] K\n", + " - R101 outlet temperature [600, 900] K\n", + " - F101 outlet temperature [298, 450] K\n", + " - H102 outlet temperature [350, 400] K\n", + " - D101 condenser pressure [101325, 150000] Pa\n", + " - D101 reflux ratio [0.1, 5]\n", + " - D101 boilup ratio [0.1, 5]" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "# Set bounds on the temperature of the outlet from H101\n", + "m.fs.H101.outlet.temperature[0].setlb(500)\n", + "m.fs.H101.outlet.temperature[0].setub(600)\n", + "\n", + "# Set bounds on the temperature of the outlet from R101\n", + "m.fs.R101.outlet.temperature[0].setlb(600)\n", + "m.fs.R101.outlet.temperature[0].setub(900)\n", + "\n", + "# Set bounds on the volume of the reactor R101\n", + "m.fs.R101.volume[0].setlb(0)\n", + "\n", + "# Set bounds on the temperature of the vapor outlet from F101\n", + "m.fs.F101.vap_outlet.temperature[0].setlb(298)\n", + "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", + "\n", + "# Set bounds on the temperature of the outlet from H102\n", + "m.fs.H102.outlet.temperature[0].setlb(350)\n", + "m.fs.H102.outlet.temperature[0].setub(400)\n", + "\n", + "# Set bounds on the pressure inside the condenser\n", + "m.fs.D101.condenser.condenser_pressure.setlb(101325)\n", + "m.fs.D101.condenser.condenser_pressure.setub(150000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, set the bounds for the D101 reflux ratio and boilup ratio.\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Set bounds on the reflux ratio\n", + "m.fs.D101.condenser.reflux_ratio.setlb(0.1)\n", + "m.fs.D101.condenser.reflux_ratio.setub(5)\n", + "\n", + "# Todo: Set bounds on the boilup ratio\n", + "m.fs.D101.reboiler.boilup_ratio.setlb(0.1)\n", + "m.fs.D101.reboiler.boilup_ratio.setub(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the only things left to define are our constraints on overhead loss in F101, distillate flowrate and its purity. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 % of the benzene available in the reactor outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "# Ensure that the overhead loss of benzene from F101 <= 20%\n", + "m.fs.overhead_loss = Constraint(\n", + " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, add the constraint such that we are producing at least 0.18 mol/s of benzene in the product stream which is the distillate of D101. Let us name this constraint as m.fs.product_flow. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add minimum product flow constraint\n", + "m.fs.product_flow = Constraint(expr=m.fs.D101.condenser.distillate.flow_mol[0] >= 0.18)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us add the final constraint on product purity or the mole fraction of benzene in the distillate such that it is at least greater than 99%. " + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.product_purity = Constraint(\n", + " expr=m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"] >= 0.99\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 3\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 4073\n", + "Number of nonzeros in inequality constraint Jacobian.: 6\n", + "Number of nonzeros in Lagrangian Hessian.............: 2391\n", + "\n", + "Total number of variables............................: 1176\n", + " variables with only lower bounds: 113\n", + " variables with lower and upper bounds: 372\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 1169\n", + "Total number of inequality constraints...............: 3\n", + " inequality constraints with only lower bounds: 2\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 1\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 4.4230147e+05 2.99e+05 9.90e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 4.3753585e+05 2.91e+05 1.28e+02 -1.0 3.09e+06 - 3.58e-01 2.40e-02f 1\n", + " 2 4.3545100e+05 2.78e+05 1.55e+02 -1.0 1.78e+06 - 3.31e-01 4.74e-02h 1\n", + " 3 4.2822311e+05 2.20e+05 4.50e+02 -1.0 2.99e+06 - 2.95e-02 1.35e-01h 1\n", + " 4 4.2249096e+05 1.45e+05 1.43e+03 -1.0 7.01e+06 - 5.14e-01 2.03e-01h 1\n", + " 5 4.2194364e+05 8.17e+04 1.70e+04 -1.0 6.06e+06 - 5.97e-01 4.28e-01h 1\n", + " 6 4.2602765e+05 4.55e+04 1.10e+06 -1.0 4.32e+06 - 9.26e-01 5.07e-01h 1\n", + " 7 4.3776643e+05 2.03e+04 6.44e+09 -1.0 2.42e+06 - 9.90e-01 9.47e-01h 1\n", + " 8 4.3846260e+05 1.92e+04 6.05e+09 -1.0 4.42e+05 - 5.40e-01 5.74e-02h 1\n", + " 9 4.4529853e+05 4.05e+04 4.66e+10 -1.0 2.47e+05 - 9.96e-01 9.90e-01h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 4.4906283e+05 9.76e+03 1.10e+10 -1.0 1.12e+03 -4.0 1.26e-01 7.45e-01h 1\n", + " 11 4.5079086e+05 1.19e+03 1.54e+09 -1.0 5.63e+02 -4.5 3.77e-01 1.00e+00h 1\n", + " 12 4.5024224e+05 2.66e+00 3.67e+06 -1.0 6.61e+01 -5.0 1.00e+00 1.00e+00f 1\n", + " 13 4.4946170e+05 5.64e-01 9.29e+05 -1.0 1.81e+02 -5.4 1.00e+00 7.88e-01f 1\n", + " 14 4.4916780e+05 8.48e+00 1.62e+05 -1.0 2.83e+02 -5.9 1.00e+00 1.00e+00f 1\n", + " 15 4.4899127e+05 4.83e+00 9.07e+04 -1.0 1.01e+02 -6.4 1.00e+00 4.40e-01f 2\n", + " 16 4.4886718e+05 7.00e-01 4.61e+02 -1.0 2.35e+02 -6.9 1.00e+00 1.00e+00f 1\n", + " 17 4.4800159e+05 1.39e+02 4.52e+06 -3.8 1.17e+03 -7.3 9.79e-01 9.37e-01f 1\n", + " 18 4.4672196e+05 9.59e+02 1.22e+06 -3.8 4.55e+03 -7.8 1.00e+00 9.43e-01f 1\n", + " 19 4.4401667e+05 7.75e+03 1.55e+05 -3.8 1.08e+04 -8.3 1.00e+00 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 20 4.4185035e+05 1.91e+04 1.36e+04 -3.8 1.33e+04 -8.8 1.00e+00 1.00e+00h 1\n", + " 21 4.4241001e+05 3.52e+03 5.96e+03 -3.8 2.94e+03 -9.2 1.00e+00 1.00e+00h 1\n", + " 22 4.4185237e+05 7.82e+00 2.91e+02 -3.8 7.13e+03 -9.7 2.39e-01 1.00e+00h 1\n", + " 23 4.4124091e+05 1.53e+01 3.11e+02 -3.8 4.82e+04 -10.2 8.59e-01 1.36e-01f 1\n", + " 24 4.4137379e+05 1.80e+00 2.91e+02 -3.8 1.41e+04 - 1.95e-01 1.00e+00h 1\n", + " 25 4.3862833e+05 1.70e+03 9.48e+04 -3.8 1.57e+07 - 1.29e-03 9.10e-02f 1\n", + " 26 4.3883308e+05 1.49e+03 8.46e+04 -3.8 1.02e+06 - 1.00e+00 1.35e-01h 1\n", + " 27 4.3885472e+05 2.18e+01 3.40e+03 -3.8 1.38e+05 - 1.00e+00 1.00e+00h 1\n", + " 28 4.3884160e+05 5.90e-02 6.38e+01 -3.8 8.66e+03 - 1.00e+00 1.00e+00h 1\n", + " 29 4.3884157e+05 6.48e-07 4.63e-04 -3.8 2.89e+01 - 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 30 4.3883990e+05 3.57e-01 2.38e+03 -5.7 8.19e+02 - 1.00e+00 1.00e+00f 1\n", + " 31 4.3883992e+05 3.50e-07 7.79e-06 -5.7 3.55e-01 - 1.00e+00 1.00e+00h 1\n", + " 32 4.3883990e+05 5.47e-05 3.63e-01 -8.0 1.01e+01 - 1.00e+00 1.00e+00h 1\n", + " 33 4.3883990e+05 2.24e-08 1.46e-07 -8.0 5.42e-05 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 33\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 4.3883989842628603e+02 4.3883989842628600e+05\n", + "Dual infeasibility......: 1.4600704448671754e-07 1.4600704448671753e-04\n", + "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", + "Complementarity.........: 9.0909948039799681e-09 9.0909948039799686e-06\n", + "Overall NLP error.......: 9.0909948039799681e-09 1.4600704448671753e-04\n", + "\n", + "\n", + "Number of objective function evaluations = 35\n", + "Number of objective gradient evaluations = 34\n", + "Number of equality constraint evaluations = 35\n", + "Number of inequality constraint evaluations = 35\n", + "Number of equality constraint Jacobian evaluations = 34\n", + "Number of inequality constraint Jacobian evaluations = 34\n", + "Number of Lagrangian Hessian evaluations = 33\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.164\n", + "Total CPU secs in NLP function evaluations = 0.020\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check solver solve status\n", + "from pyomo.environ import TerminationCondition\n", + "\n", + "assert results.solver.termination_condition == TerminationCondition.optimal" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimization Results\n", + "\n", + "Display the results and product specifications" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total cost = $ 438839.898426286\n", + "operating cost = $ 408883.5314830889\n", + "capital cost = $ 29956.3669431971\n", + "\n", + "Distillate flowrate = 0.1799999900263989 mol/s\n", + "Benzene purity = 98.99999900049086 %\n", + "Residue flowrate = 0.1085161642426372 mol/s\n", + "Toluene purity = 15.676178086213548 %\n", + "\n", + "Conversion = 93.38705916369427 %\n", + "\n", + "Overhead benzene loss in F101 = 17.34061793115618 %\n" + ] + } + ], + "source": [ + "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", + "print(\"operating cost = $\", value(m.fs.operating_cost))\n", + "print(\"capital cost = $\", value(m.fs.capital_cost))\n", + "print()\n", + "print(\n", + " \"Distillate flowrate = \",\n", + " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", + " \"mol/s\",\n", + ")\n", + "print(\n", + " \"Benzene purity = \",\n", + " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", + " \"%\",\n", + ")\n", + "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", + "print(\n", + " \"Toluene purity = \",\n", + " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", + " \"%\",\n", + ")\n", + "print()\n", + "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", + "print()\n", + "print(\n", + " \"Overhead benzene loss in F101 = \",\n", + " 100\n", + " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", + " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", + " \"%\",\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "408883.5314830889\n", + "29956.3669431971\n" + ] + } + ], + "source": [ + "import pytest\n", + "\n", + "print(value(m.fs.operating_cost))\n", + "print(value(m.fs.capital_cost))\n", + "\n", + "assert value(m.fs.operating_cost) == pytest.approx(408883.531, abs=100)\n", + "assert value(m.fs.capital_cost) == pytest.approx(29956.367, abs=100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal Values\n", + "\n", + "H101 outlet temperature = 568.923204295196 K\n", + "\n", + "R101 outlet temperature = 790.3655425698853 K\n", + "\n", + "F101 outlet temperature = 298.0 K\n", + "\n", + "H102 outlet temperature = 368.7414339952852 K\n" + ] + } + ], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"H102 outlet temperature = \", value(m.fs.H102.outlet.temperature[0]), \"K\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Key Takeaways\n", + "\n", + "Observe that the optimization was able to reduce the yearly operating cost from \\\\$427,593 to \\\\$408,342 (~4.5%). However, the amortized capital cost more than doubled from \\\\$14,704 to \\\\$29,927 due to the need to increase the conversion in the reactor (from 75% to 93%) to meet the production and purity constraints. \n", + "\n", + "Further, observe that the product flow rate and product purity are at their minimum values (0.18 mol/s and 99%, respectively). This is expected as increasing recovery would require more energy and cost to purify the product.\n", + "\n", + "\n", + "Finally, observe that the operating temperature of the flash (F101) is almost at its lower bound. This helps in minimizing the amount of benzene in the vapor stream leaving the flash." + ] } - ], - "source": [ - "import pytest\n", - "\n", - "print(value(m.fs.operating_cost))\n", - "print(value(m.fs.capital_cost))\n", - "\n", - "assert value(m.fs.operating_cost) == pytest.approx(408883.531, abs=100)\n", - "assert value(m.fs.capital_cost) == pytest.approx(29956.367, abs=100)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal Values\n", - "\n", - "H101 outlet temperature = 568.923204295196 K\n", - "\n", - "R101 outlet temperature = 790.3655425698853 K\n", - "\n", - "F101 outlet temperature = 298.0 K\n", - "\n", - "H102 outlet temperature = 368.7414339952852 K\n" - ] + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" } - ], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"H102 outlet temperature = \", value(m.fs.H102.outlet.temperature[0]), \"K\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Key Takeaways\n", - "\n", - "Observe that the optimization was able to reduce the yearly operating cost from \\\\$427,593 to \\\\$408,342 (~4.5%). However, the amortized capital cost more than doubled from \\\\$14,704 to \\\\$29,927 due to the need to increase the conversion in the reactor (from 75% to 93%) to meet the production and purity constraints. \n", - "\n", - "Further, observe that the product flow rate and product purity are at their minimum values (0.18 mol/s and 99%, respectively). This is expected as increasing recovery would require more energy and cost to purify the product.\n", - "\n", - "\n", - "Finally, observe that the operating temperature of the flash (F101) is almost at its lower bound. This helps in minimizing the amount of benzene in the vapor stream leaving the flash." - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_usr.ipynb b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_usr.ipynb index 86d59dd3..121bd803 100644 --- a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_usr.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheet_with_distillation_usr.ipynb @@ -1,3024 +1,3025 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# HDA Flowsheet Simulation and Optimization\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "## Note\n", - "\n", - "This tutorial will be similar to the HDA flowsheet tutorial in the Tutorials section, except that we use a distillation column instead of a second flash (F102) to produce benzene and toluene products.\n", - "\n", - "\n", - "## Learning outcomes\n", - "\n", - "\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Hydrodealkylation is a chemical reaction that often involves reacting\n", - "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", - "simpler aromatic hydrocarbon devoid of functional groups. In this\n", - "example, toluene will be reacted with hydrogen gas at high temperatures\n", - " to form benzene via the following reaction:\n", - "\n", - "**C6H5CH3 + H2 → C6H6 + CH4**\n", - "\n", - "\n", - "This reaction is often accompanied by an equilibrium side reaction\n", - "which forms diphenyl, which we will neglect for this example.\n", - "\n", - "This example is based on the 1967 AIChE Student Contest problem as\n", - "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", - "McGraw-Hill.\n", - "\n", - "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, we use a flash tank, F101, to separate out the non-condensibles, and a distillation column, D101, to further separate the benzene-toluene mixture to improve the benzene purity. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be purged. We will assume ideal gas behavior for this flowsheet. The properties required for this module are defined in\n", - "\n", - "- `hda_ideal_VLE.py`\n", - "- `idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE`\n", - "- `hda_reaction.py`\n", - "\n", - "We will be using two thermodynamic packages: one (first in the list above) containing all four components (i.e., toluene, hydrogen, benzene, and methane) and the other (second in the list above) containing benzene and toluene only. The latter is needed to simplify the VLE calculations in the distillation column model. \n", - "\n", - "![](HDA_flowsheet_distillation.png)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Translator block\n", - "\n", - "Benzene and toluene are separated by distillation, so the process involves phase equilibrium and two-phase flow conditions. However, the presence of hydrogen and methane complicates the calculations. This is because, hydrogen and methane are non-condensable under all conditions of interest; ergo, a vapor phase will always be present, and the mixture bubble point is extremely low. To simplify the phase equilibrium calculations, hydrogen and methane will be considered completely as non-condensable and insoluble in the liquid outlet from the flash F101.\n", - "\n", - "Since no hydrogen and methane will be present in the unit operations following the flash, a different component list can be used to simplify the property calculations. IDAES supports the definition of multiple property packages within a single flowsheet via `Translator` blocks. `Translator` blocks convert between different property calculations, component lists, and equations of state. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required pyomo and idaes components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- ConcreteModel (to create the concrete model object)\n", - "- Expression (to evaluate values as a function of variables defined in the model)\n", - "- Objective (to define an objective function for optimization)\n", - "- SolverFactory (to solve the problem)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- Arc (to connect two unit models)\n", - "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " TransformationFactory,\n", - " value,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Import `Arc` and `SequentialDecomposition` tools from `pyomo.network`\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Import the above mentioned tools from pyomo.network" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Import the above mentioned tools from pyomo.network\n", - "from pyomo.network import Arc, SequentialDecomposition" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From IDAES, we will be needing the FlowsheetBlock and the following unit models:\n", - "- Mixer\n", - "- Heater\n", - "- CSTR\n", - "- Flash\n", - "- Separator (splitter) \n", - "- PressureChanger\n", - "- Translator (to switch from one property package to another)\n", - "- TrayColumn (distillation column)\n", - "- CondenserType (Type of the overhead condenser: complete or partial)\n", - "- TemperatureSpec (Temperature specification inside the condenser)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core import FlowsheetBlock" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models import (\n", - " PressureChanger,\n", - " Mixer,\n", - " Separator as Splitter,\n", - " Heater,\n", - " CSTR,\n", - " Flash,\n", - " Translator,\n", - ")\n", - "\n", - "from idaes.models_extra.column_models import TrayColumn\n", - "from idaes.models_extra.column_models.condenser import CondenserType, TemperatureSpec" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Utility tools to put together the flowsheet and calculate the degrees of freedom\n", - "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state\n", - "from idaes.core.solvers import get_solver\n", - "import idaes.core.util.scaling as iscale\n", - "from idaes.core.util.exceptions import InitializationError\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required thermo and reaction packages\n", - "\n", - "Finally, we import the thermophysical (`ideal_VLE.py` and `BTXParameterBlock`) packages and reaction package (`reaction.py`) for the HDA process. We have created custom thermophysical packages that assume ideal gas behavior with support for VLE. The reaction package consists of the stochiometric coefficients for the reaction, heat of reaction, and kinetic information (Arrhenius constant and activation energy). " - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes_examples.mod.hda import hda_reaction as reaction_props\n", - "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", - " BTXParameterBlock,\n", - ")\n", - "\n", - "from idaes_examples.mod.hda.hda_ideal_VLE import HDAParameterBlock" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block to it. " - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# Create a Pyomo Concrete Model to contain the problem\n", - "m = ConcreteModel()\n", - "\n", - "# Add a steady state flowsheet block to the model\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now add the thermophysical and reaction packages to the flowsheet." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# Property package for benzene, toluene, hydrogen, methane mixture\n", - "m.fs.BTHM_params = HDAParameterBlock()\n", - "\n", - "# Property package for the benzene-toluene mixture\n", - "m.fs.BT_params = BTXParameterBlock(\n", - " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\"\n", - ")\n", - "\n", - "# Reaction package for the HDA reaction\n", - "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", - " property_package=m.fs.BTHM_params\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition, the Mixer unit model needs a `list` consisting of the inlets (toluene feed, hydrogen feed and vapor recycle streams in this case). " - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# Adding the mixer M101 to the flowsheet\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.BTHM_params,\n", - " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", - ")\n", - "\n", - "# Adding the heater H101 to the flowsheet\n", - "m.fs.H101 = Heater(property_package=m.fs.BTHM_params, has_phase_equilibrium=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now add the CSTR (assign the name R101) and pass the following arguments:\n", - "
    \n", - "
  • \"property_package\": m.fs.BTHM_params
  • \n", - "
  • \"reaction_package\": m.fs.reaction_params
  • \n", - "
  • \"has_heat_of_reaction\": True
  • \n", - "
  • \"has_heat_transfer\": True
  • \n", - "
\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add reactor with the specifications above" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add reactor with the specifications above\n", - "m.fs.R101 = CSTR(\n", - " property_package=m.fs.BTHM_params,\n", - " reaction_package=m.fs.reaction_params,\n", - " has_heat_of_reaction=True,\n", - " has_heat_transfer=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add the Flash (assign the name F101), Splitter (assign the name S101) and PressureChanger (assign the name C101)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "# Adding the flash tank F101 to the flowsheet\n", - "m.fs.F101 = Flash(\n", - " property_package=m.fs.BTHM_params, has_heat_transfer=True, has_pressure_change=True\n", - ")\n", - "\n", - "# Adding the splitter S101 to the flowsheet\n", - "m.fs.S101 = Splitter(\n", - " property_package=m.fs.BTHM_params, outlet_list=[\"purge\", \"recycle\"]\n", - ")\n", - "\n", - "# Adding the compressor C101 to the flowsheet\n", - "m.fs.C101 = PressureChanger(\n", - " property_package=m.fs.BTHM_params,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Remark\n", - "\n", - "Currently, the `SequentialDecomposition()` tool, which we will later be using to initialize the flowsheet, does not support the distillation column model. Thus, we will first simulate the flowsheet without the distillation column. After it converges, we will then add the distillation column, initialize it, and simulate the entire flowsheet." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As mentioned above, we use the `m.fs.BTHM_params` package, which contains all the four species, for the reactor loop, and the simpler `m.fs.BT_params` for unit operations following the flash (i.e., heater H102 and the distillation column D101). We define a `Translator` block to link the source property package and the package it is to be translated to in the following manner:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "# Add translator block to convert between property packages\n", - "m.fs.translator = Translator(\n", - " inlet_property_package=m.fs.BTHM_params, outlet_property_package=m.fs.BT_params\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Translator block constraints\n", - "\n", - "The `Translator` block needs to know how to translate between the two property packages. This must be custom coded for each application because of the generality of the IDAES framework.\n", - "\n", - "For this process, five constraints are required based on the state variables used in the outgoing process.\n", - "\n", - "- Since we assumed that only benzene and toluene are present in the liquid phase, the total molar flowrate must be the sum of molar flowrates of benzene and toluene, respectively.\n", - "- Temperature of the inlet and outlet streams must be the same.\n", - "- Pressure of the inlet and outgoing streams must be the same\n", - "- The mole fraction of benzene in the outgoing stream is the ratio of the molar flowrate of liquid benzene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet.\n", - "- The mole fraction of toluene in the outgoing stream is the ratio of the molar flowrate of liquid toluene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "# Add constraint: Total flow = benzene flow + toluene flow (molar)\n", - "m.fs.translator.eq_total_flow = Constraint(\n", - " expr=m.fs.translator.outlet.flow_mol[0]\n", - " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - ")\n", - "\n", - "# Add constraint: Outlet temperature = Inlet temperature\n", - "m.fs.translator.eq_temperature = Constraint(\n", - " expr=m.fs.translator.outlet.temperature[0] == m.fs.translator.inlet.temperature[0]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the above, note that the variable flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Add the constraint to ensure that the outlet pressure is the same as the inlet pressure\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add constraint: Outlet pressure = Inlet pressure" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add constraint: Outlet pressure = Inlet pressure\n", - "m.fs.translator.eq_pressure = Constraint(\n", - " expr=m.fs.translator.outlet.pressure[0] == m.fs.translator.inlet.pressure[0]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "# Remaining constraints on the translator block\n", - "\n", - "# Add constraint: Benzene mole fraction definition\n", - "m.fs.translator.eq_mole_frac_benzene = Constraint(\n", - " expr=m.fs.translator.outlet.mole_frac_comp[0, \"benzene\"]\n", - " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " / (\n", - " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - " )\n", - ")\n", - "\n", - "# Add constraint: Toluene mole fraction definition\n", - "m.fs.translator.eq_mole_frac_toluene = Constraint(\n", - " expr=m.fs.translator.outlet.mole_frac_comp[0, \"toluene\"]\n", - " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - " / (\n", - " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", - " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Finally, let us add the Heater H102 in the same way as H101 but pass the m.fs.BT_params thermodynamic package. We will add the distillation column after converging the flowsheet.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add the Heater H102 to the flowsheet" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add the Heater H102 to the flowsheet\n", - "m.fs.H102 = Heater(\n", - " property_package=m.fs.BT_params,\n", - " has_pressure_change=True,\n", - " has_phase_equilibrium=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models using Arcs\n", - "\n", - "We have now added the initial set of unit models to the flowsheet. However, we have not yet specified how the units are connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer (M101) to the inlet of the heater (H101). " - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "![](HDA_flowsheet_distillation.png) \n", - "\n", - "
\n", - "Inline Exercise:\n", - "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Connect the H101 outlet to R101 inlet" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Connect the H101 outlet to R101 inlet\n", - "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be connecting the rest of the units as shown below. Notice how the outlet names are different for the flash tank as it has a vapor and a liquid outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", - "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", - "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", - "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", - "m.fs.s10a = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.translator.inlet)\n", - "m.fs.s10b = Arc(source=m.fs.translator.outlet, destination=m.fs.H102.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Appending additional constraints to the model\n", - "\n", - "Now, we will see how we can add additional constraints to the model using `Constraint` from Pyomo.\n", - "\n", - "Consider the reactor R101. By default, the conversion of a component is not calculated when we simulate the flowsheet. If we are interested either in specifying or constraining the conversion value, we can add the following constraint to calculate the conversion:\n", - "$$ \\text{Conversion of toluene} = \\frac{\\text{molar flow of toluene in the inlet} - \\text{molar flow of toluene in the outlet}}{\\text{molar flow of toluene in the inlet}} $$ \n", - "\n", - "We add the constraint to the model as shown below." - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "# Define the conversion variables using 'Var'\n", - "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", - "\n", - "# Append the constraint to the model\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing feed conditions and Initializing the flowsheet\n", - "\n", - "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "29\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", - "m.fs.M101.toluene_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", - "
    \n", - "
  • FH2 = 0.30 mol/s
  • \n", - "
  • FCH4 = 0.02 mol/s
  • \n", - "
  • Remaining components = 1e-5 mol/s
  • \n", - "
  • T = 303.2 K
  • \n", - "
  • P = 350000 Pa
  • \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", - "m.fs.M101.hydrogen_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Fixing unit model specifications\n", - "\n", - "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set the H101 outlet temperature to 600 K. " - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the temperature of the outlet from the heater H101\n", - "m.fs.H101.outlet.temperature.fix(600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Set the conditions for the reactor R101 to the following conditions:\n", - "
    \n", - "
  • `conversion` = 0.75
  • \n", - "
  • `heat_duty` = 0
  • \n", - "
\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Fix the 'conversion' of the reactor R101\n", - "\n", - "\n", - "# Todo: Fix the 'heat_duty' of the reactor R101" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Fix the 'conversion' of the reactor R101\n", - "m.fs.R101.conversion.fix(0.75)\n", - "\n", - "# Todo: Fix the 'heat_duty' of the reactor R101\n", - "m.fs.R101.heat_duty.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Flash conditions for F101 can be set as follows. " - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the temperature of the vapor outlet from F101\n", - "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", - "\n", - "# Fix the pressure drop in the flash F101\n", - "m.fs.F101.deltaP.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us fix the split fraction of the purge stream from the splitter S101 and the outlet pressure from the compressor C101" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the split fraction of the 'purge' stream from S101\n", - "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", - "\n", - "# Fix the pressure of the outlet from the compressor C101\n", - "m.fs.C101.outlet.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, let us fix the temperature of the outlet from H102 and the pressure drop in H102 as the following" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the temperature of the outlet from the heater H102\n", - "m.fs.H102.outlet.temperature.fix(375)\n", - "\n", - "# Fix the pressure drop in the heater H102\n", - "m.fs.H102.deltaP.fix(-200000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To avoid convergence issues associated with poorly scaled variables and/or constraints, we scale the variables and constraints corresponding to the heaters H101 and H102, flash F101 and the reactor R101. Scaling factors for the flow rates, temperature, pressure, etc. have been defined in the property package: `ideal_VLE.py` file. Here, we set scaling factors only for the heat duty of the heater, the reaction extent, heat duty and volume of the reactor." - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].flow_mol_phase\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", - "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n" - ] - } - ], - "source": [ - "# Set scaling factors for heat duty, reaction extent and volume\n", - "iscale.set_scaling_factor(m.fs.H101.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.R101.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.R101.control_volume.rate_reaction_extent, 1)\n", - "iscale.set_scaling_factor(m.fs.R101.control_volume.volume, 1)\n", - "iscale.set_scaling_factor(m.fs.F101.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.H102.control_volume.heat, 1e-2)\n", - "\n", - "# Set the scaling factors for the remaining variables and all constraints\n", - "iscale.calculate_scaling_factors(m.fs.H101)\n", - "iscale.calculate_scaling_factors(m.fs.R101)\n", - "iscale.calculate_scaling_factors(m.fs.F101)\n", - "iscale.calculate_scaling_factors(m.fs.H102)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Check the degrees of freedom" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n" - ] - } - ], - "source": [ - "# Todo: Check the degrees of freedom\n", - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initialization\n", - "\n", - "This subsection will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", - "\n", - "Let us first create an object for the `SequentialDecomposition` and specify our options for this. " - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "seq = SequentialDecomposition()\n", - "seq.options.select_tear_method = \"heuristic\"\n", - "seq.options.tear_method = \"Wegstein\"\n", - "seq.options.iterLim = 3\n", - "\n", - "# Using the SD tool\n", - "G = seq.create_graph(m)\n", - "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", - "order = seq.calculation_order(G)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Which is the tear stream? Display tear set and order" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fs.s03\n" - ] - } - ], - "source": [ - "for o in heuristic_tear_set:\n", - " print(o.name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fs.H101\n", - "fs.R101\n", - "fs.F101\n", - "fs.S101\n", - "fs.C101\n", - "fs.M101\n" - ] - } - ], - "source": [ - "for o in order:\n", - " print(o[0].name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet (s03 in the Figure above). We will need to provide a reasonable guess for this.\n", - "\n", - "For the initial guess, we assume that the flowrate of the recycle stream (s09) is zero. Consequently, the flow rate of the stream s03 is simply the sum of the flowrates of the toluene feed and hydrogen feed streams. Further, since the temperature and the pressure of both the toluene and hydrogen feed streams are the same, we specify their values as the initial guess for the temperature and pressure of the stream s03." - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "tear_guesses = {\n", - " \"flow_mol_phase_comp\": {\n", - " (0, \"Vap\", \"benzene\"): 1e-5,\n", - " (0, \"Vap\", \"toluene\"): 1e-5,\n", - " (0, \"Vap\", \"hydrogen\"): 0.30,\n", - " (0, \"Vap\", \"methane\"): 0.02,\n", - " (0, \"Liq\", \"benzene\"): 1e-5,\n", - " (0, \"Liq\", \"toluene\"): 0.30,\n", - " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", - " (0, \"Liq\", \"methane\"): 1e-5,\n", - " },\n", - " \"temperature\": {0: 303.2},\n", - " \"pressure\": {0: 350000},\n", - "}\n", - "\n", - "# Pass the tear_guess to the SD tool\n", - "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. For the initialization, we will import a Block Triangularization Initializer which decomposes the model into a set of subproblems. These subproblems are solved using a block triangularization transformation before applying a simple Newton or user-selected solver. Methods such as block triangularization often solve faster and yield more reliable behavior than heuristic methods, but sometime struggle to decompose models with strongly coupled equations (e.g. column models, systems with counter-current flow, vapor-liquid equilibrium)." - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "def function(unit):\n", - " # Try initializing using default initializer,\n", - " # if it fails (probably due to scaling) try for the second time\n", - " try:\n", - " initializer = unit.default_initializer()\n", - " initializer.initialize(unit, output_level=idaeslog.INFO)\n", - " except InitializationError:\n", - " solver = get_solver()\n", - " solver.solve(unit)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 3 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-08-28 18:38:14 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:16 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 12\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", - "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", - "WARNING: Wegstein failed to converge in 3 iterations\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", - "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", - "2024-08-28 18:38:33 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n" - ] - } - ], - "source": [ - "seq.run(m, function)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'scaling_factor' that contains 6\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 1097\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 877\n", - "\n", - "Total number of variables............................: 363\n", - " variables with only lower bounds: 8\n", - " variables with lower and upper bounds: 155\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 363\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 3.82e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 8.69e+03 1.44e+03 -1.0 2.00e+04 - 9.71e-01 4.67e-01H 1\n", - " 2 0.0000000e+00 1.29e+03 1.56e+03 -1.0 1.60e+04 - 9.79e-01 4.90e-01h 1\n", - " 3 0.0000000e+00 1.18e+03 1.55e+05 -1.0 1.40e+04 - 9.90e-01 4.99e-01h 1\n", - " 4 0.0000000e+00 5.46e+02 2.32e+09 -1.0 8.42e+03 - 1.00e+00 9.82e-01h 1\n", - " 5 0.0000000e+00 5.46e+03 3.66e+10 -1.0 5.97e+02 - 1.00e+00 9.90e-01h 1\n", - " 6 0.0000000e+00 1.21e+03 8.01e+09 -1.0 5.75e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 0.0000000e+00 6.41e+00 3.87e+07 -1.0 1.53e-03 - 1.00e+00 1.00e+00f 1\n", - " 8 0.0000000e+00 1.96e-04 9.36e+02 -1.0 7.28e-06 - 1.00e+00 1.00e+00h 1\n", - " 9 0.0000000e+00 2.24e-08 4.99e-01 -3.8 5.92e-08 - 1.00e+00 1.00e+00h 1\n", - "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", - "\n", - "Number of Iterations....: 9\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 1.5042487592972509e+04 1.5042487592972509e+04\n", - "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9103830456733704e-11 1.5042487592972509e+04\n", - "\n", - "\n", - "Number of objective function evaluations = 11\n", - "Number of objective gradient evaluations = 10\n", - "Number of equality constraint evaluations = 11\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 10\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 9\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.011\n", - "Total CPU secs in NLP function evaluations = 0.001\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "# Create the solver object\n", - "solver = get_solver()\n", - "\n", - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Add distillation column \n", - "\n", - "As mentioned earlier, the `SequentialDecomposition` tool currently does not support the distillation column model. Thus, we have not included the distillation column in the flowsheet. Now that we have a converged flowsheet, we will add the distillation column and simulate the entire flowsheet. \n", - "\n", - "In the following, we will\n", - "- Add the distillation column \n", - "- Connect it to the heater \n", - "- Add the necessary equality constraints\n", - "- Propagate the state variable information from the outlet of the heater to the inlet of the distillation column \n", - "- Fix the degrees of freedom of the distillation block (reflux ratio, boilup ratio, and condenser pressure)\n", - "- Scale the control volume heat variables to help convergence\n", - "- Initialize the distillation block.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].flow_mol_phase\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_vap_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_flow_reflux[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_liq_out[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,toluene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_flow_vapor_reboil[0.0]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,benzene]\n", - "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,toluene]\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101: Begin initialization.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray: Begin initialization.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: State Released.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: State Released.\n", - "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: State Released.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: State Released.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume: Initialization Complete\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser: Initialization Complete, optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: State Released.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: State Released.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler: Initialization Complete, optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: State Released.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1]: Begin initialization.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: State Released.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: State Released.\n", - "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[2]: Begin initialization.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: State Released.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: State Released.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: State Released.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3]: Begin initialization.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: State Released.\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: State Released.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: State Released.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4]: Begin initialization.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: State Released.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: State Released.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6]: Begin initialization.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: State Released.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: State Released.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7]: Begin initialization.\n", - "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: State Released.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: State Released.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: State Released.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8]: Begin initialization.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: State Released.\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: State Released.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: State Released.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9]: Begin initialization.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: State Released.\n", - "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: State Released.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: State Released.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10]: Begin initialization.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", - "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: State Released.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass and energy balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Initialization complete, status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: State Released.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Rectification section initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Stripping section initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: State Released.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: State Released.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Column section initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: State Released.\n", - "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101: Column section + Condenser initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: State Released.\n", - "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101: Column section + Condenser + Reboiler initialization status optimal - Optimal Solution Found.\n", - "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: State Released.\n" - ] - } - ], - "source": [ - "# Add distillation column to the flowsheet\n", - "m.fs.D101 = TrayColumn(\n", - " number_of_trays=10,\n", - " feed_tray_location=5,\n", - " condenser_type=CondenserType.totalCondenser,\n", - " condenser_temperature_spec=TemperatureSpec.atBubblePoint,\n", - " property_package=m.fs.BT_params,\n", - ")\n", - "\n", - "# Connect the outlet from the heater H102 to the distillation column\n", - "m.fs.s11 = Arc(source=m.fs.H102.outlet, destination=m.fs.D101.feed)\n", - "\n", - "# Add the necessary equality constraints\n", - "TransformationFactory(\"network.expand_arcs\").apply_to(m)\n", - "\n", - "# Propagate the state\n", - "propagate_state(m.fs.s11)\n", - "\n", - "# Fix the reflux ratio, boilup ratio, and the condenser pressure\n", - "m.fs.D101.condenser.reflux_ratio.fix(0.5)\n", - "m.fs.D101.reboiler.boilup_ratio.fix(0.5)\n", - "m.fs.D101.condenser.condenser_pressure.fix(150000)\n", - "\n", - "# set scaling factors\n", - "# Set scaling factors for heat duty\n", - "iscale.set_scaling_factor(m.fs.D101.condenser.control_volume.heat, 1e-2)\n", - "iscale.set_scaling_factor(m.fs.D101.reboiler.control_volume.heat, 1e-2)\n", - "\n", - "# Set the scaling factors for the remaining variables and all constraints\n", - "iscale.calculate_scaling_factors(m.fs.D101)\n", - "\n", - "# Initialize the distillation column\n", - "m.fs.D101.initialize(outlvl=idaeslog.INFO)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding expressions to compute capital and operating costs\n", - "\n", - "In this section, we will add a few Expressions that allow us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [], - "source": [ - "# Expression to compute the total cooling cost\n", - "m.fs.cooling_cost = Expression(\n", - " expr=0.25e-7 * (-m.fs.F101.heat_duty[0])\n", - " + 0.2e-7 * (-m.fs.D101.condenser.heat_duty[0])\n", - ")\n", - "\n", - "# Expression to compute the total heating cost\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", - " + 1.2e-7 * m.fs.H102.heat_duty[0]\n", - " + 1.9e-7 * m.fs.D101.reboiler.heat_duty[0]\n", - ")\n", - "\n", - "# Expression to compute the total operating cost\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", - ")\n", - "\n", - "# Expression to compute the total capital cost\n", - "m.fs.capital_cost = Expression(expr=1e5 * m.fs.R101.volume[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solve the entire flowsheet" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 4042\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 2376\n", - "\n", - "Total number of variables............................: 1169\n", - " variables with only lower bounds: 112\n", - " variables with lower and upper bounds: 365\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 1169\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 3.83e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 8.70e+03 1.50e+03 -1.0 3.69e+04 - 9.71e-01 4.62e-01H 1\n", - " 2 0.0000000e+00 1.53e+03 1.56e+03 -1.0 6.75e+03 - 9.77e-01 4.89e-01h 1\n", - " 3 0.0000000e+00 1.37e+03 1.55e+05 -1.0 9.37e+03 - 9.90e-01 4.99e-01h 1\n", - " 4 0.0000000e+00 6.14e+02 2.31e+09 -1.0 6.09e+03 - 1.00e+00 9.81e-01h 1\n", - " 5 0.0000000e+00 5.32e+03 3.62e+10 -1.0 5.56e+02 - 1.00e+00 9.90e-01h 1\n", - " 6 0.0000000e+00 1.16e+03 7.80e+09 -1.0 5.36e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 0.0000000e+00 5.96e+00 3.64e+07 -1.0 1.47e-03 - 1.00e+00 1.00e+00f 1\n", - " 8 0.0000000e+00 1.69e-04 8.15e+02 -1.0 6.77e-06 - 1.00e+00 1.00e+00h 1\n", - " 9 0.0000000e+00 7.45e-09 6.64e-03 -3.8 2.00e-07 - 1.00e+00 1.00e+00h 1\n", - "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", - "\n", - "Number of Iterations....: 9\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 1.5042483516409773e+04 1.5042483516409773e+04\n", - "Constraint violation....: 2.9103830456733704e-11 7.4505805969238281e-09\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9103830456733704e-11 1.5042483516409773e+04\n", - "\n", - "\n", - "Number of objective function evaluations = 11\n", - "Number of objective gradient evaluations = 10\n", - "Number of equality constraint evaluations = 11\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 10\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 9\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.083\n", - "Total CPU secs in NLP function evaluations = 0.013\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - }, - { - "data": { - "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 1169, 'Number of variables': 1169, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.2022566795349121}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the Results of the Square Problem\n", - "\n", - "How much is the total cost (operating cost + capital cost), operating cost, capital cost, benzene purity in the distillate from the distilation column, and conversion of toluene in the reactor?" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total cost = $ 442301.47075252194\n", - "operating cost = $ 427596.73056805483\n", - "capital cost = $ 14704.740184467111\n", - "\n", - "Distillate flowrate = 0.16196898920633368 mol/s\n", - "Benzene purity = 89.4916166580088 %\n", - "Residue flowrate = 0.10515007120697904 mol/s\n", - "Toluene purity = 43.32260291055251 %\n", - "\n", - "Conversion = 75.0 %\n", - "\n", - "Overhead benzene loss in F101 = 42.161938483603194 %\n" - ] - } - ], - "source": [ - "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", - "print(\"operating cost = $\", value(m.fs.operating_cost))\n", - "print(\"capital cost = $\", value(m.fs.capital_cost))\n", - "print()\n", - "print(\n", - " \"Distillate flowrate = \",\n", - " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", - " \"mol/s\",\n", - ")\n", - "print(\n", - " \"Benzene purity = \",\n", - " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", - " \"%\",\n", - ")\n", - "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", - "print(\n", - " \"Toluene purity = \",\n", - " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", - " \"%\",\n", - ")\n", - "print()\n", - "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", - "print()\n", - "print(\n", - " \"Overhead benzene loss in F101 = \",\n", - " 100\n", - " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", - " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", - " \"%\",\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Get the state of the streams entering and leaving the reactor R101" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 0.0000 : watt : True : (None, None)\n", - " Volume : 0.14705 : meter ** 3 : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.2993e-07\n", - " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 8.4147e-07\n", - " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-12\n", - " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-12\n", - " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.11936 0.35374\n", - " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.31252 0.078129\n", - " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.0377 1.2721\n", - " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.56260 0.32821\n", - " temperature kelvin 600.00 771.85\n", - " pressure pascal 3.5000e+05 3.5000e+05\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m.fs.R101.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Get the state of the streams entering and leaving the reactor R101" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Unit : fs.F101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -70343. : watt : False : (None, None)\n", - " Pressure Change : 0.0000 : pascal : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Vapor Outlet Liquid Outlet\n", - " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 0.20460 \n", - " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 0.062520 \n", - " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", - " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", - " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 1.0000e-08 \n", - " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 1.0000e-08 \n", - " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 1.0000e-08 \n", - " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 1.0000e-08 \n", - " temperature kelvin 771.85 325.00 325.00 \n", - " pressure pascal 3.5000e+05 3.5000e+05 3.5000e+05 \n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m.fs.F101.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "How much benzene are we losing in the F101 vapor outlet stream?\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Units Reactor Light Gases\n", - "flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 \n", - "flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 \n", - "flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 \n", - "flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 \n", - "flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 \n", - "flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 \n", - "flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 \n", - "flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 \n", - "temperature kelvin 771.85 325.00 \n", - "pressure pascal 3.5000e+05 3.5000e+05 \n" - ] - } - ], - "source": [ - "from idaes.core.util.tables import (\n", - " create_stream_table_dataframe,\n", - " stream_table_dataframe_to_string,\n", - ")\n", - "\n", - "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", - "print(stream_table_dataframe_to_string(st))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "You can query additional variables here if you like. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Optimization\n", - "\n", - "\n", - "We saw from the results above that the total operating cost for the base case was $442,297 per year. We are producing 0.162 mol/s of benzene at a purity of 89.5%. However, we are losing around 43.3% of benzene in F101 vapor outlet stream. \n", - "\n", - "Let us try to minimize this cost such that:\n", - "- we are producing at least 0.18 mol/s of benzene as distillate i.e. our product stream\n", - "- purity of benzene i.e. the mole fraction of benzene in the distillate is at least 99%\n", - "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", - "\n", - "For this problem, our decision variables are as follows:\n", - "- H101 outlet temperature\n", - "- R101 outlet temperature\n", - "- F101 outlet temperature\n", - "- H102 outlet temperature\n", - "- Condenser pressure\n", - "- reflux ratio\n", - "- boilup ratio\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost + m.fs.capital_cost)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.R101.conversion.unfix()\n", - "m.fs.F101.vap_outlet.temperature.unfix()\n", - "m.fs.D101.condenser.condenser_pressure.unfix()\n", - "m.fs.D101.condenser.reflux_ratio.unfix()\n", - "m.fs.D101.reboiler.boilup_ratio.unfix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now unfix the remaining variable: the temperature of the outlet from H102\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Unfix the temperature of the outlet from H102" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Unfix the temperature of the outlet from H102\n", - "m.fs.H102.outlet.temperature.unfix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to set bounds on these decision variables to values shown below:\n", - "\n", - " - H101 outlet temperature [500, 600] K\n", - " - R101 outlet temperature [600, 900] K\n", - " - F101 outlet temperature [298, 450] K\n", - " - H102 outlet temperature [350, 400] K\n", - " - D101 condenser pressure [101325, 150000] Pa\n", - " - D101 reflux ratio [0.1, 5]\n", - " - D101 boilup ratio [0.1, 5]" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [], - "source": [ - "# Set bounds on the temperature of the outlet from H101\n", - "m.fs.H101.outlet.temperature[0].setlb(500)\n", - "m.fs.H101.outlet.temperature[0].setub(600)\n", - "\n", - "# Set bounds on the temperature of the outlet from R101\n", - "m.fs.R101.outlet.temperature[0].setlb(600)\n", - "m.fs.R101.outlet.temperature[0].setub(900)\n", - "\n", - "# Set bounds on the volume of the reactor R101\n", - "m.fs.R101.volume[0].setlb(0)\n", - "\n", - "# Set bounds on the temperature of the vapor outlet from F101\n", - "m.fs.F101.vap_outlet.temperature[0].setlb(298)\n", - "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", - "\n", - "# Set bounds on the temperature of the outlet from H102\n", - "m.fs.H102.outlet.temperature[0].setlb(350)\n", - "m.fs.H102.outlet.temperature[0].setub(400)\n", - "\n", - "# Set bounds on the pressure inside the condenser\n", - "m.fs.D101.condenser.condenser_pressure.setlb(101325)\n", - "m.fs.D101.condenser.condenser_pressure.setub(150000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, set the bounds for the D101 reflux ratio and boilup ratio.\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Set bounds on the reflux ratio\n", - "\n", - "\n", - "# Todo: Set bounds on the boilup ratio" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Set bounds on the reflux ratio\n", - "m.fs.D101.condenser.reflux_ratio.setlb(0.1)\n", - "m.fs.D101.condenser.reflux_ratio.setub(5)\n", - "\n", - "# Todo: Set bounds on the boilup ratio\n", - "m.fs.D101.reboiler.boilup_ratio.setlb(0.1)\n", - "m.fs.D101.reboiler.boilup_ratio.setub(5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the only things left to define are our constraints on overhead loss in F101, distillate flowrate and its purity. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 % of the benzene available in the reactor outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [], - "source": [ - "# Ensure that the overhead loss of benzene from F101 <= 20%\n", - "m.fs.overhead_loss = Constraint(\n", - " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, add the constraint such that we are producing at least 0.18 mol/s of benzene in the product stream which is the distillate of D101. Let us name this constraint as m.fs.product_flow. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add minimum product flow constraint" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add minimum product flow constraint\n", - "m.fs.product_flow = Constraint(expr=m.fs.D101.condenser.distillate.flow_mol[0] >= 0.18)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us add the final constraint on product purity or the mole fraction of benzene in the distillate such that it is at least greater than 99%. " - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.product_purity = Constraint(\n", - " expr=m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"] >= 0.99\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'scaling_factor' that contains 3\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", - "that are not Var, Constraint, Objective, or the model. Skipping.\n", - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 4073\n", - "Number of nonzeros in inequality constraint Jacobian.: 6\n", - "Number of nonzeros in Lagrangian Hessian.............: 2391\n", - "\n", - "Total number of variables............................: 1176\n", - " variables with only lower bounds: 113\n", - " variables with lower and upper bounds: 372\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 1169\n", - "Total number of inequality constraints...............: 3\n", - " inequality constraints with only lower bounds: 2\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 1\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4230147e+05 2.99e+05 9.90e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 4.3753585e+05 2.91e+05 1.28e+02 -1.0 3.09e+06 - 3.58e-01 2.40e-02f 1\n", - " 2 4.3545100e+05 2.78e+05 1.55e+02 -1.0 1.78e+06 - 3.31e-01 4.74e-02h 1\n", - " 3 4.2822311e+05 2.20e+05 4.50e+02 -1.0 2.99e+06 - 2.95e-02 1.35e-01h 1\n", - " 4 4.2249096e+05 1.45e+05 1.43e+03 -1.0 7.01e+06 - 5.14e-01 2.03e-01h 1\n", - " 5 4.2194364e+05 8.17e+04 1.70e+04 -1.0 6.06e+06 - 5.97e-01 4.28e-01h 1\n", - " 6 4.2602765e+05 4.55e+04 1.10e+06 -1.0 4.32e+06 - 9.26e-01 5.07e-01h 1\n", - " 7 4.3776643e+05 2.03e+04 6.44e+09 -1.0 2.42e+06 - 9.90e-01 9.47e-01h 1\n", - " 8 4.3846260e+05 1.92e+04 6.05e+09 -1.0 4.42e+05 - 5.40e-01 5.74e-02h 1\n", - " 9 4.4529853e+05 4.05e+04 4.66e+10 -1.0 2.47e+05 - 9.96e-01 9.90e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 4.4906283e+05 9.76e+03 1.10e+10 -1.0 1.12e+03 -4.0 1.26e-01 7.45e-01h 1\n", - " 11 4.5079086e+05 1.19e+03 1.54e+09 -1.0 5.63e+02 -4.5 3.77e-01 1.00e+00h 1\n", - " 12 4.5024224e+05 2.66e+00 3.67e+06 -1.0 6.61e+01 -5.0 1.00e+00 1.00e+00f 1\n", - " 13 4.4946170e+05 5.64e-01 9.29e+05 -1.0 1.81e+02 -5.4 1.00e+00 7.88e-01f 1\n", - " 14 4.4916780e+05 8.48e+00 1.62e+05 -1.0 2.83e+02 -5.9 1.00e+00 1.00e+00f 1\n", - " 15 4.4899127e+05 4.83e+00 9.07e+04 -1.0 1.01e+02 -6.4 1.00e+00 4.40e-01f 2\n", - " 16 4.4886718e+05 7.00e-01 4.61e+02 -1.0 2.35e+02 -6.9 1.00e+00 1.00e+00f 1\n", - " 17 4.4800159e+05 1.39e+02 4.52e+06 -3.8 1.17e+03 -7.3 9.79e-01 9.37e-01f 1\n", - " 18 4.4672196e+05 9.59e+02 1.22e+06 -3.8 4.55e+03 -7.8 1.00e+00 9.43e-01f 1\n", - " 19 4.4401667e+05 7.75e+03 1.55e+05 -3.8 1.08e+04 -8.3 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 4.4185035e+05 1.91e+04 1.36e+04 -3.8 1.33e+04 -8.8 1.00e+00 1.00e+00h 1\n", - " 21 4.4241001e+05 3.52e+03 5.96e+03 -3.8 2.94e+03 -9.2 1.00e+00 1.00e+00h 1\n", - " 22 4.4185237e+05 7.82e+00 2.91e+02 -3.8 7.13e+03 -9.7 2.39e-01 1.00e+00h 1\n", - " 23 4.4124091e+05 1.53e+01 3.11e+02 -3.8 4.82e+04 -10.2 8.59e-01 1.36e-01f 1\n", - " 24 4.4137379e+05 1.80e+00 2.91e+02 -3.8 1.41e+04 - 1.95e-01 1.00e+00h 1\n", - " 25 4.3862833e+05 1.70e+03 9.48e+04 -3.8 1.57e+07 - 1.29e-03 9.10e-02f 1\n", - " 26 4.3883308e+05 1.49e+03 8.46e+04 -3.8 1.02e+06 - 1.00e+00 1.35e-01h 1\n", - " 27 4.3885472e+05 2.18e+01 3.40e+03 -3.8 1.38e+05 - 1.00e+00 1.00e+00h 1\n", - " 28 4.3884160e+05 5.90e-02 6.38e+01 -3.8 8.66e+03 - 1.00e+00 1.00e+00h 1\n", - " 29 4.3884157e+05 6.48e-07 4.63e-04 -3.8 2.89e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 4.3883990e+05 3.57e-01 2.38e+03 -5.7 8.19e+02 - 1.00e+00 1.00e+00f 1\n", - " 31 4.3883992e+05 3.50e-07 7.79e-06 -5.7 3.55e-01 - 1.00e+00 1.00e+00h 1\n", - " 32 4.3883990e+05 5.47e-05 3.63e-01 -8.0 1.01e+01 - 1.00e+00 1.00e+00h 1\n", - " 33 4.3883990e+05 2.24e-08 1.46e-07 -8.0 5.42e-05 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 33\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 4.3883989842628603e+02 4.3883989842628600e+05\n", - "Dual infeasibility......: 1.4600704448671754e-07 1.4600704448671753e-04\n", - "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", - "Complementarity.........: 9.0909948039799681e-09 9.0909948039799686e-06\n", - "Overall NLP error.......: 9.0909948039799681e-09 1.4600704448671753e-04\n", - "\n", - "\n", - "Number of objective function evaluations = 35\n", - "Number of objective gradient evaluations = 34\n", - "Number of equality constraint evaluations = 35\n", - "Number of inequality constraint evaluations = 35\n", - "Number of equality constraint Jacobian evaluations = 34\n", - "Number of inequality constraint Jacobian evaluations = 34\n", - "Number of Lagrangian Hessian evaluations = 33\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.164\n", - "Total CPU secs in NLP function evaluations = 0.020\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimization Results\n", - "\n", - "Display the results and product specifications" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "total cost = $ 438839.898426286\n", - "operating cost = $ 408883.5314830889\n", - "capital cost = $ 29956.3669431971\n", - "\n", - "Distillate flowrate = 0.1799999900263989 mol/s\n", - "Benzene purity = 98.99999900049086 %\n", - "Residue flowrate = 0.1085161642426372 mol/s\n", - "Toluene purity = 15.676178086213548 %\n", - "\n", - "Conversion = 93.38705916369427 %\n", - "\n", - "Overhead benzene loss in F101 = 17.34061793115618 %\n" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# HDA Flowsheet Simulation and Optimization\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "## Note\n", + "\n", + "This tutorial will be similar to the HDA flowsheet tutorial in the Tutorials section, except that we use a distillation column instead of a second flash (F102) to produce benzene and toluene products.\n", + "\n", + "\n", + "## Learning outcomes\n", + "\n", + "\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Hydrodealkylation is a chemical reaction that often involves reacting\n", + "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", + "simpler aromatic hydrocarbon devoid of functional groups. In this\n", + "example, toluene will be reacted with hydrogen gas at high temperatures\n", + " to form benzene via the following reaction:\n", + "\n", + "**C6H5CH3 + H2 \u2192 C6H6 + CH4**\n", + "\n", + "\n", + "This reaction is often accompanied by an equilibrium side reaction\n", + "which forms diphenyl, which we will neglect for this example.\n", + "\n", + "This example is based on the 1967 AIChE Student Contest problem as\n", + "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", + "McGraw-Hill.\n", + "\n", + "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, we use a flash tank, F101, to separate out the non-condensibles, and a distillation column, D101, to further separate the benzene-toluene mixture to improve the benzene purity. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be purged. We will assume ideal gas behavior for this flowsheet. The properties required for this module are defined in\n", + "\n", + "- `hda_ideal_VLE.py`\n", + "- `idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE`\n", + "- `hda_reaction.py`\n", + "\n", + "We will be using two thermodynamic packages: one (first in the list above) containing all four components (i.e., toluene, hydrogen, benzene, and methane) and the other (second in the list above) containing benzene and toluene only. The latter is needed to simplify the VLE calculations in the distillation column model. \n", + "\n", + "![](HDA_flowsheet_distillation.png)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Translator block\n", + "\n", + "Benzene and toluene are separated by distillation, so the process involves phase equilibrium and two-phase flow conditions. However, the presence of hydrogen and methane complicates the calculations. This is because, hydrogen and methane are non-condensable under all conditions of interest; ergo, a vapor phase will always be present, and the mixture bubble point is extremely low. To simplify the phase equilibrium calculations, hydrogen and methane will be considered completely as non-condensable and insoluble in the liquid outlet from the flash F101.\n", + "\n", + "Since no hydrogen and methane will be present in the unit operations following the flash, a different component list can be used to simplify the property calculations. IDAES supports the definition of multiple property packages within a single flowsheet via `Translator` blocks. `Translator` blocks convert between different property calculations, component lists, and equations of state. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required pyomo and idaes components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- ConcreteModel (to create the concrete model object)\n", + "- Expression (to evaluate values as a function of variables defined in the model)\n", + "- Objective (to define an objective function for optimization)\n", + "- SolverFactory (to solve the problem)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- Arc (to connect two unit models)\n", + "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " TransformationFactory,\n", + " value,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Import `Arc` and `SequentialDecomposition` tools from `pyomo.network`\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Import the above mentioned tools from pyomo.network" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Import the above mentioned tools from pyomo.network\n", + "from pyomo.network import Arc, SequentialDecomposition" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From IDAES, we will be needing the FlowsheetBlock and the following unit models:\n", + "- Mixer\n", + "- Heater\n", + "- CSTR\n", + "- Flash\n", + "- Separator (splitter) \n", + "- PressureChanger\n", + "- Translator (to switch from one property package to another)\n", + "- TrayColumn (distillation column)\n", + "- CondenserType (Type of the overhead condenser: complete or partial)\n", + "- TemperatureSpec (Temperature specification inside the condenser)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core import FlowsheetBlock" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models import (\n", + " PressureChanger,\n", + " Mixer,\n", + " Separator as Splitter,\n", + " Heater,\n", + " CSTR,\n", + " Flash,\n", + " Translator,\n", + ")\n", + "\n", + "from idaes.models_extra.column_models import TrayColumn\n", + "from idaes.models_extra.column_models.condenser import CondenserType, TemperatureSpec" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Utility tools to put together the flowsheet and calculate the degrees of freedom\n", + "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state\n", + "from idaes.core.solvers import get_solver\n", + "import idaes.core.util.scaling as iscale\n", + "from idaes.core.util.exceptions import InitializationError\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required thermo and reaction packages\n", + "\n", + "Finally, we import the thermophysical (`ideal_VLE.py` and `BTXParameterBlock`) packages and reaction package (`reaction.py`) for the HDA process. We have created custom thermophysical packages that assume ideal gas behavior with support for VLE. The reaction package consists of the stochiometric coefficients for the reaction, heat of reaction, and kinetic information (Arrhenius constant and activation energy). " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes_examples.mod.hda import hda_reaction as reaction_props\n", + "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", + " BTXParameterBlock,\n", + ")\n", + "\n", + "from idaes_examples.mod.hda.hda_ideal_VLE import HDAParameterBlock" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block to it. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a Pyomo Concrete Model to contain the problem\n", + "m = ConcreteModel()\n", + "\n", + "# Add a steady state flowsheet block to the model\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now add the thermophysical and reaction packages to the flowsheet." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Property package for benzene, toluene, hydrogen, methane mixture\n", + "m.fs.BTHM_params = HDAParameterBlock()\n", + "\n", + "# Property package for the benzene-toluene mixture\n", + "m.fs.BT_params = BTXParameterBlock(\n", + " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\"\n", + ")\n", + "\n", + "# Reaction package for the HDA reaction\n", + "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", + " property_package=m.fs.BTHM_params\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition, the Mixer unit model needs a `list` consisting of the inlets (toluene feed, hydrogen feed and vapor recycle streams in this case). " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Adding the mixer M101 to the flowsheet\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.BTHM_params,\n", + " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", + ")\n", + "\n", + "# Adding the heater H101 to the flowsheet\n", + "m.fs.H101 = Heater(property_package=m.fs.BTHM_params, has_phase_equilibrium=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now add the CSTR (assign the name R101) and pass the following arguments:\n", + "
    \n", + "
  • \"property_package\": m.fs.BTHM_params
  • \n", + "
  • \"reaction_package\": m.fs.reaction_params
  • \n", + "
  • \"has_heat_of_reaction\": True
  • \n", + "
  • \"has_heat_transfer\": True
  • \n", + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add reactor with the specifications above" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add reactor with the specifications above\n", + "m.fs.R101 = CSTR(\n", + " property_package=m.fs.BTHM_params,\n", + " reaction_package=m.fs.reaction_params,\n", + " has_heat_of_reaction=True,\n", + " has_heat_transfer=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add the Flash (assign the name F101), Splitter (assign the name S101) and PressureChanger (assign the name C101)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Adding the flash tank F101 to the flowsheet\n", + "m.fs.F101 = Flash(\n", + " property_package=m.fs.BTHM_params, has_heat_transfer=True, has_pressure_change=True\n", + ")\n", + "\n", + "# Adding the splitter S101 to the flowsheet\n", + "m.fs.S101 = Splitter(\n", + " property_package=m.fs.BTHM_params, outlet_list=[\"purge\", \"recycle\"]\n", + ")\n", + "\n", + "# Adding the compressor C101 to the flowsheet\n", + "m.fs.C101 = PressureChanger(\n", + " property_package=m.fs.BTHM_params,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Remark\n", + "\n", + "Currently, the `SequentialDecomposition()` tool, which we will later be using to initialize the flowsheet, does not support the distillation column model. Thus, we will first simulate the flowsheet without the distillation column. After it converges, we will then add the distillation column, initialize it, and simulate the entire flowsheet." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As mentioned above, we use the `m.fs.BTHM_params` package, which contains all the four species, for the reactor loop, and the simpler `m.fs.BT_params` for unit operations following the flash (i.e., heater H102 and the distillation column D101). We define a `Translator` block to link the source property package and the package it is to be translated to in the following manner:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# Add translator block to convert between property packages\n", + "m.fs.translator = Translator(\n", + " inlet_property_package=m.fs.BTHM_params, outlet_property_package=m.fs.BT_params\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Translator block constraints\n", + "\n", + "The `Translator` block needs to know how to translate between the two property packages. This must be custom coded for each application because of the generality of the IDAES framework.\n", + "\n", + "For this process, five constraints are required based on the state variables used in the outgoing process.\n", + "\n", + "- Since we assumed that only benzene and toluene are present in the liquid phase, the total molar flowrate must be the sum of molar flowrates of benzene and toluene, respectively.\n", + "- Temperature of the inlet and outlet streams must be the same.\n", + "- Pressure of the inlet and outgoing streams must be the same\n", + "- The mole fraction of benzene in the outgoing stream is the ratio of the molar flowrate of liquid benzene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet.\n", + "- The mole fraction of toluene in the outgoing stream is the ratio of the molar flowrate of liquid toluene in the inlet to the sum of molar flowrates of liquid benzene and toluene in the inlet." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# Add constraint: Total flow = benzene flow + toluene flow (molar)\n", + "m.fs.translator.eq_total_flow = Constraint(\n", + " expr=m.fs.translator.outlet.flow_mol[0]\n", + " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + ")\n", + "\n", + "# Add constraint: Outlet temperature = Inlet temperature\n", + "m.fs.translator.eq_temperature = Constraint(\n", + " expr=m.fs.translator.outlet.temperature[0] == m.fs.translator.inlet.temperature[0]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the above, note that the variable flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Add the constraint to ensure that the outlet pressure is the same as the inlet pressure\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add constraint: Outlet pressure = Inlet pressure" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add constraint: Outlet pressure = Inlet pressure\n", + "m.fs.translator.eq_pressure = Constraint(\n", + " expr=m.fs.translator.outlet.pressure[0] == m.fs.translator.inlet.pressure[0]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "# Remaining constraints on the translator block\n", + "\n", + "# Add constraint: Benzene mole fraction definition\n", + "m.fs.translator.eq_mole_frac_benzene = Constraint(\n", + " expr=m.fs.translator.outlet.mole_frac_comp[0, \"benzene\"]\n", + " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " / (\n", + " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + " )\n", + ")\n", + "\n", + "# Add constraint: Toluene mole fraction definition\n", + "m.fs.translator.eq_mole_frac_toluene = Constraint(\n", + " expr=m.fs.translator.outlet.mole_frac_comp[0, \"toluene\"]\n", + " == m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + " / (\n", + " m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"benzene\"]\n", + " + m.fs.translator.inlet.flow_mol_phase_comp[0, \"Liq\", \"toluene\"]\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Finally, let us add the Heater H102 in the same way as H101 but pass the m.fs.BT_params thermodynamic package. We will add the distillation column after converging the flowsheet.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add the Heater H102 to the flowsheet" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add the Heater H102 to the flowsheet\n", + "m.fs.H102 = Heater(\n", + " property_package=m.fs.BT_params,\n", + " has_pressure_change=True,\n", + " has_phase_equilibrium=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models using Arcs\n", + "\n", + "We have now added the initial set of unit models to the flowsheet. However, we have not yet specified how the units are connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer (M101) to the inlet of the heater (H101). " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "![](HDA_flowsheet_distillation.png) \n", + "\n", + "
\n", + "Inline Exercise:\n", + "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Connect the H101 outlet to R101 inlet" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Connect the H101 outlet to R101 inlet\n", + "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be connecting the rest of the units as shown below. Notice how the outlet names are different for the flash tank as it has a vapor and a liquid outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", + "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", + "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", + "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", + "m.fs.s10a = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.translator.inlet)\n", + "m.fs.s10b = Arc(source=m.fs.translator.outlet, destination=m.fs.H102.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Appending additional constraints to the model\n", + "\n", + "Now, we will see how we can add additional constraints to the model using `Constraint` from Pyomo.\n", + "\n", + "Consider the reactor R101. By default, the conversion of a component is not calculated when we simulate the flowsheet. If we are interested either in specifying or constraining the conversion value, we can add the following constraint to calculate the conversion:\n", + "$$ \\text{Conversion of toluene} = \\frac{\\text{molar flow of toluene in the inlet} - \\text{molar flow of toluene in the outlet}}{\\text{molar flow of toluene in the inlet}} $$ \n", + "\n", + "We add the constraint to the model as shown below." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# Define the conversion variables using 'Var'\n", + "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", + "\n", + "# Append the constraint to the model\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing feed conditions and Initializing the flowsheet\n", + "\n", + "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "29\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", + "m.fs.M101.toluene_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", + "
    \n", + "
  • FH2 = 0.30 mol/s
  • \n", + "
  • FCH4 = 0.02 mol/s
  • \n", + "
  • Remaining components = 1e-5 mol/s
  • \n", + "
  • T = 303.2 K
  • \n", + "
  • P = 350000 Pa
  • \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", + "m.fs.M101.hydrogen_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fixing unit model specifications\n", + "\n", + "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set the H101 outlet temperature to 600 K. " + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the temperature of the outlet from the heater H101\n", + "m.fs.H101.outlet.temperature.fix(600)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Set the conditions for the reactor R101 to the following conditions:\n", + "
    \n", + "
  • `conversion` = 0.75
  • \n", + "
  • `heat_duty` = 0
  • \n", + "
\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Fix the 'conversion' of the reactor R101\n", + "\n", + "\n", + "# Todo: Fix the 'heat_duty' of the reactor R101" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Fix the 'conversion' of the reactor R101\n", + "m.fs.R101.conversion.fix(0.75)\n", + "\n", + "# Todo: Fix the 'heat_duty' of the reactor R101\n", + "m.fs.R101.heat_duty.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Flash conditions for F101 can be set as follows. " + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the temperature of the vapor outlet from F101\n", + "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", + "\n", + "# Fix the pressure drop in the flash F101\n", + "m.fs.F101.deltaP.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us fix the split fraction of the purge stream from the splitter S101 and the outlet pressure from the compressor C101" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the split fraction of the 'purge' stream from S101\n", + "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", + "\n", + "# Fix the pressure of the outlet from the compressor C101\n", + "m.fs.C101.outlet.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, let us fix the temperature of the outlet from H102 and the pressure drop in H102 as the following" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the temperature of the outlet from the heater H102\n", + "m.fs.H102.outlet.temperature.fix(375)\n", + "\n", + "# Fix the pressure drop in the heater H102\n", + "m.fs.H102.deltaP.fix(-200000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To avoid convergence issues associated with poorly scaled variables and/or constraints, we scale the variables and constraints corresponding to the heaters H101 and H102, flash F101 and the reactor R101. Scaling factors for the flow rates, temperature, pressure, etc. have been defined in the property package: `ideal_VLE.py` file. Here, we set scaling factors only for the heat duty of the heater, the reaction extent, heat duty and volume of the reactor." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].flow_mol_phase\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Liq,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enth_mol_phase_comp[Vap,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Liq,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].enth_mol_phase_comp[Vap,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", + "2024-08-28 18:38:14 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.H102.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n" + ] + } + ], + "source": [ + "# Set scaling factors for heat duty, reaction extent and volume\n", + "iscale.set_scaling_factor(m.fs.H101.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.R101.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.R101.control_volume.rate_reaction_extent, 1)\n", + "iscale.set_scaling_factor(m.fs.R101.control_volume.volume, 1)\n", + "iscale.set_scaling_factor(m.fs.F101.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.H102.control_volume.heat, 1e-2)\n", + "\n", + "# Set the scaling factors for the remaining variables and all constraints\n", + "iscale.calculate_scaling_factors(m.fs.H101)\n", + "iscale.calculate_scaling_factors(m.fs.R101)\n", + "iscale.calculate_scaling_factors(m.fs.F101)\n", + "iscale.calculate_scaling_factors(m.fs.H102)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Check the degrees of freedom" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] + } + ], + "source": [ + "# Todo: Check the degrees of freedom\n", + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Initialization\n", + "\n", + "This subsection will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", + "\n", + "Let us first create an object for the `SequentialDecomposition` and specify our options for this. " + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "seq = SequentialDecomposition()\n", + "seq.options.select_tear_method = \"heuristic\"\n", + "seq.options.tear_method = \"Wegstein\"\n", + "seq.options.iterLim = 3\n", + "\n", + "# Using the SD tool\n", + "G = seq.create_graph(m)\n", + "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", + "order = seq.calculation_order(G)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Which is the tear stream? Display tear set and order" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fs.s03\n" + ] + } + ], + "source": [ + "for o in heuristic_tear_set:\n", + " print(o.name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fs.H101\n", + "fs.R101\n", + "fs.F101\n", + "fs.S101\n", + "fs.C101\n", + "fs.M101\n" + ] + } + ], + "source": [ + "for o in order:\n", + " print(o[0].name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet (s03 in the Figure above). We will need to provide a reasonable guess for this.\n", + "\n", + "For the initial guess, we assume that the flowrate of the recycle stream (s09) is zero. Consequently, the flow rate of the stream s03 is simply the sum of the flowrates of the toluene feed and hydrogen feed streams. Further, since the temperature and the pressure of both the toluene and hydrogen feed streams are the same, we specify their values as the initial guess for the temperature and pressure of the stream s03." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "tear_guesses = {\n", + " \"flow_mol_phase_comp\": {\n", + " (0, \"Vap\", \"benzene\"): 1e-5,\n", + " (0, \"Vap\", \"toluene\"): 1e-5,\n", + " (0, \"Vap\", \"hydrogen\"): 0.30,\n", + " (0, \"Vap\", \"methane\"): 0.02,\n", + " (0, \"Liq\", \"benzene\"): 1e-5,\n", + " (0, \"Liq\", \"toluene\"): 0.30,\n", + " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", + " (0, \"Liq\", \"methane\"): 1e-5,\n", + " },\n", + " \"temperature\": {0: 303.2},\n", + " \"pressure\": {0: 350000},\n", + "}\n", + "\n", + "# Pass the tear_guess to the SD tool\n", + "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. For the initialization, we will import a Block Triangularization Initializer which decomposes the model into a set of subproblems. These subproblems are solved using a block triangularization transformation before applying a simple Newton or user-selected solver. Methods such as block triangularization often solve faster and yield more reliable behavior than heuristic methods, but sometime struggle to decompose models with strongly coupled equations (e.g. column models, systems with counter-current flow, vapor-liquid equilibrium)." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "def function(unit):\n", + " # Try initializing using default initializer,\n", + " # if it fails (probably due to scaling) try for the second time\n", + " try:\n", + " initializer = unit.default_initializer()\n", + " initializer.initialize(unit, output_level=idaeslog.INFO)\n", + " except InitializationError:\n", + " solver = get_solver()\n", + " solver.solve(unit)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 3 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-08-28 18:38:14 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:16 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:16 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 12\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:17 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:18 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:19 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:20 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:21 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:22 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:23 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 50 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:24 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:25 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:26 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:27 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:28 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:29 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n", + "2024-08-28 18:38:30 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n", + "WARNING: Wegstein failed to converge in 3 iterations\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:31 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_in: Initialization Step 5 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 1 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 2 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 3 optimal - .\n", + "2024-08-28 18:38:32 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 4 optimal - .\n", + "2024-08-28 18:38:33 [INFO] idaes.init.fs.H102.control_volume.properties_out: Initialization Step 5 optimal - .\n" + ] + } + ], + "source": [ + "seq.run(m, function)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 6\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 1097\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 877\n", + "\n", + "Total number of variables............................: 363\n", + " variables with only lower bounds: 8\n", + " variables with lower and upper bounds: 155\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 363\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 3.82e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 8.69e+03 1.44e+03 -1.0 2.00e+04 - 9.71e-01 4.67e-01H 1\n", + " 2 0.0000000e+00 1.29e+03 1.56e+03 -1.0 1.60e+04 - 9.79e-01 4.90e-01h 1\n", + " 3 0.0000000e+00 1.18e+03 1.55e+05 -1.0 1.40e+04 - 9.90e-01 4.99e-01h 1\n", + " 4 0.0000000e+00 5.46e+02 2.32e+09 -1.0 8.42e+03 - 1.00e+00 9.82e-01h 1\n", + " 5 0.0000000e+00 5.46e+03 3.66e+10 -1.0 5.97e+02 - 1.00e+00 9.90e-01h 1\n", + " 6 0.0000000e+00 1.21e+03 8.01e+09 -1.0 5.75e+00 - 1.00e+00 1.00e+00h 1\n", + " 7 0.0000000e+00 6.41e+00 3.87e+07 -1.0 1.53e-03 - 1.00e+00 1.00e+00f 1\n", + " 8 0.0000000e+00 1.96e-04 9.36e+02 -1.0 7.28e-06 - 1.00e+00 1.00e+00h 1\n", + " 9 0.0000000e+00 2.24e-08 4.99e-01 -3.8 5.92e-08 - 1.00e+00 1.00e+00h 1\n", + "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", + "\n", + "Number of Iterations....: 9\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 1.5042487592972509e+04 1.5042487592972509e+04\n", + "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 2.9103830456733704e-11 1.5042487592972509e+04\n", + "\n", + "\n", + "Number of objective function evaluations = 11\n", + "Number of objective gradient evaluations = 10\n", + "Number of equality constraint evaluations = 11\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 10\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 9\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.011\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# Create the solver object\n", + "solver = get_solver()\n", + "\n", + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add distillation column \n", + "\n", + "As mentioned earlier, the `SequentialDecomposition` tool currently does not support the distillation column model. Thus, we have not included the distillation column in the flowsheet. Now that we have a converged flowsheet, we will add the distillation column and simulate the entire flowsheet. \n", + "\n", + "In the following, we will\n", + "- Add the distillation column \n", + "- Connect it to the heater \n", + "- Add the necessary equality constraints\n", + "- Propagate the state variable information from the outlet of the heater to the inlet of the distillation column \n", + "- Fix the degrees of freedom of the distillation block (reflux ratio, boilup ratio, and condenser pressure)\n", + "- Scale the control volume heat variables to help convergence\n", + "- Initialize the distillation block.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_feed[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_liq[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_in_vap[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].flow_mol_phase\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_comp[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_phase_equilibrium[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_out[0.0].eq_P_vap[toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Liq,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].material_flow_terms[Vap,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Liq], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.properties_in[0.0].enthalpy_flow_terms[Vap], enthalpy_flow_terms\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[2].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[3].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[7].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[8].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:34 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[9].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[4].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[6].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.feed_tray.e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_flow_vap_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.rectification_section[1].e_mole_frac_vap_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_flow_reflux[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.condenser.control_volume.e_mole_frac_reflux[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_flow_liq_out[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.stripping_section[10].e_mole_frac_liq_out[0.0,toluene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_flow_vapor_reboil[0.0]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,benzene]\n", + "2024-08-28 18:38:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.D101.reboiler.control_volume.e_mole_frac_vapor_reboil[0.0,toluene]\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101: Begin initialization.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray: Begin initialization.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:35 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:36 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: State Released.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_liq: State Released.\n", + "2024-08-28 18:38:37 [INFO] idaes.init.fs.D101.feed_tray.properties_in_vap: State Released.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:38 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_out: State Released.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume: Initialization Complete\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser: Initialization Complete, optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.condenser.control_volume.properties_in: State Released.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:39 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: State Released.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler: Initialization Complete, optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.reboiler.control_volume.properties_in: State Released.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1]: Begin initialization.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:40 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:41 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: State Released.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_vap: State Released.\n", + "2024-08-28 18:38:42 [INFO] idaes.init.fs.D101.rectification_section[2]: Begin initialization.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:43 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: State Released.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:44 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_vap: State Released.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[2].properties_in_liq: State Released.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3]: Begin initialization.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:45 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: State Released.\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:46 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_vap: State Released.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[3].properties_in_liq: State Released.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4]: Begin initialization.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:47 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:48 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: State Released.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_liq: State Released.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6]: Begin initialization.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:49 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:50 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: State Released.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_vap: State Released.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7]: Begin initialization.\n", + "2024-08-28 18:38:51 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:52 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: State Released.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:53 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_vap: State Released.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[7].properties_in_liq: State Released.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8]: Begin initialization.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:54 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: State Released.\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:55 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_vap: State Released.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[8].properties_in_liq: State Released.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9]: Begin initialization.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:56 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: State Released.\n", + "2024-08-28 18:38:57 [INFO] idaes.init.fs.D101.stripping_section[9].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_vap: State Released.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[9].properties_in_liq: State Released.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10]: Begin initialization.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:58 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n", + "2024-08-28 18:38:59 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: State Released.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_out: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass and energy balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Mass, energy and pressure balance solve optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10]: Initialization complete, status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:00 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_liq: State Released.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Rectification section initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Stripping section initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[4].properties_in_vap: State Released.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.stripping_section[6].properties_in_liq: State Released.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101: Column section initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:01 [INFO] idaes.init.fs.D101.rectification_section[1].properties_in_liq: State Released.\n", + "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101: Column section + Condenser initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:02 [INFO] idaes.init.fs.D101.stripping_section[10].properties_in_vap: State Released.\n", + "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101: Column section + Condenser + Reboiler initialization status optimal - Optimal Solution Found.\n", + "2024-08-28 18:39:03 [INFO] idaes.init.fs.D101.feed_tray.properties_in_feed: State Released.\n" + ] + } + ], + "source": [ + "# Add distillation column to the flowsheet\n", + "m.fs.D101 = TrayColumn(\n", + " number_of_trays=10,\n", + " feed_tray_location=5,\n", + " condenser_type=CondenserType.totalCondenser,\n", + " condenser_temperature_spec=TemperatureSpec.atBubblePoint,\n", + " property_package=m.fs.BT_params,\n", + ")\n", + "\n", + "# Connect the outlet from the heater H102 to the distillation column\n", + "m.fs.s11 = Arc(source=m.fs.H102.outlet, destination=m.fs.D101.feed)\n", + "\n", + "# Add the necessary equality constraints\n", + "TransformationFactory(\"network.expand_arcs\").apply_to(m)\n", + "\n", + "# Propagate the state\n", + "propagate_state(m.fs.s11)\n", + "\n", + "# Fix the reflux ratio, boilup ratio, and the condenser pressure\n", + "m.fs.D101.condenser.reflux_ratio.fix(0.5)\n", + "m.fs.D101.reboiler.boilup_ratio.fix(0.5)\n", + "m.fs.D101.condenser.condenser_pressure.fix(150000)\n", + "\n", + "# set scaling factors\n", + "# Set scaling factors for heat duty\n", + "iscale.set_scaling_factor(m.fs.D101.condenser.control_volume.heat, 1e-2)\n", + "iscale.set_scaling_factor(m.fs.D101.reboiler.control_volume.heat, 1e-2)\n", + "\n", + "# Set the scaling factors for the remaining variables and all constraints\n", + "iscale.calculate_scaling_factors(m.fs.D101)\n", + "\n", + "# Initialize the distillation column\n", + "m.fs.D101.initialize(outlvl=idaeslog.INFO)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding expressions to compute capital and operating costs\n", + "\n", + "In this section, we will add a few Expressions that allow us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "# Expression to compute the total cooling cost\n", + "m.fs.cooling_cost = Expression(\n", + " expr=0.25e-7 * (-m.fs.F101.heat_duty[0])\n", + " + 0.2e-7 * (-m.fs.D101.condenser.heat_duty[0])\n", + ")\n", + "\n", + "# Expression to compute the total heating cost\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", + " + 1.2e-7 * m.fs.H102.heat_duty[0]\n", + " + 1.9e-7 * m.fs.D101.reboiler.heat_duty[0]\n", + ")\n", + "\n", + "# Expression to compute the total operating cost\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", + ")\n", + "\n", + "# Expression to compute the total capital cost\n", + "m.fs.capital_cost = Expression(expr=1e5 * m.fs.R101.volume[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Solve the entire flowsheet" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 7\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 4042\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 2376\n", + "\n", + "Total number of variables............................: 1169\n", + " variables with only lower bounds: 112\n", + " variables with lower and upper bounds: 365\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 1169\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 3.83e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 8.70e+03 1.50e+03 -1.0 3.69e+04 - 9.71e-01 4.62e-01H 1\n", + " 2 0.0000000e+00 1.53e+03 1.56e+03 -1.0 6.75e+03 - 9.77e-01 4.89e-01h 1\n", + " 3 0.0000000e+00 1.37e+03 1.55e+05 -1.0 9.37e+03 - 9.90e-01 4.99e-01h 1\n", + " 4 0.0000000e+00 6.14e+02 2.31e+09 -1.0 6.09e+03 - 1.00e+00 9.81e-01h 1\n", + " 5 0.0000000e+00 5.32e+03 3.62e+10 -1.0 5.56e+02 - 1.00e+00 9.90e-01h 1\n", + " 6 0.0000000e+00 1.16e+03 7.80e+09 -1.0 5.36e+00 - 1.00e+00 1.00e+00h 1\n", + " 7 0.0000000e+00 5.96e+00 3.64e+07 -1.0 1.47e-03 - 1.00e+00 1.00e+00f 1\n", + " 8 0.0000000e+00 1.69e-04 8.15e+02 -1.0 6.77e-06 - 1.00e+00 1.00e+00h 1\n", + " 9 0.0000000e+00 7.45e-09 6.64e-03 -3.8 2.00e-07 - 1.00e+00 1.00e+00h 1\n", + "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", + "\n", + "Number of Iterations....: 9\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 1.5042483516409773e+04 1.5042483516409773e+04\n", + "Constraint violation....: 2.9103830456733704e-11 7.4505805969238281e-09\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 2.9103830456733704e-11 1.5042483516409773e+04\n", + "\n", + "\n", + "Number of objective function evaluations = 11\n", + "Number of objective gradient evaluations = 10\n", + "Number of equality constraint evaluations = 11\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 10\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 9\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.083\n", + "Total CPU secs in NLP function evaluations = 0.013\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 1169, 'Number of variables': 1169, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.2022566795349121}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the Results of the Square Problem\n", + "\n", + "How much is the total cost (operating cost + capital cost), operating cost, capital cost, benzene purity in the distillate from the distilation column, and conversion of toluene in the reactor?" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total cost = $ 442301.47075252194\n", + "operating cost = $ 427596.73056805483\n", + "capital cost = $ 14704.740184467111\n", + "\n", + "Distillate flowrate = 0.16196898920633368 mol/s\n", + "Benzene purity = 89.4916166580088 %\n", + "Residue flowrate = 0.10515007120697904 mol/s\n", + "Toluene purity = 43.32260291055251 %\n", + "\n", + "Conversion = 75.0 %\n", + "\n", + "Overhead benzene loss in F101 = 42.161938483603194 %\n" + ] + } + ], + "source": [ + "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", + "print(\"operating cost = $\", value(m.fs.operating_cost))\n", + "print(\"capital cost = $\", value(m.fs.capital_cost))\n", + "print()\n", + "print(\n", + " \"Distillate flowrate = \",\n", + " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", + " \"mol/s\",\n", + ")\n", + "print(\n", + " \"Benzene purity = \",\n", + " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", + " \"%\",\n", + ")\n", + "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", + "print(\n", + " \"Toluene purity = \",\n", + " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", + " \"%\",\n", + ")\n", + "print()\n", + "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", + "print()\n", + "print(\n", + " \"Overhead benzene loss in F101 = \",\n", + " 100\n", + " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", + " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", + " \"%\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get the state of the streams entering and leaving the reactor R101" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 0.0000 : watt : True : (None, None)\n", + " Volume : 0.14705 : meter ** 3 : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.2993e-07\n", + " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 8.4147e-07\n", + " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-12\n", + " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-12\n", + " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.11936 0.35374\n", + " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.31252 0.078129\n", + " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.0377 1.2721\n", + " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.56260 0.32821\n", + " temperature kelvin 600.00 771.85\n", + " pressure pascal 3.5000e+05 3.5000e+05\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m.fs.R101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get the state of the streams entering and leaving the reactor R101" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.F101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -70343. : watt : False : (None, None)\n", + " Pressure Change : 0.0000 : pascal : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Vapor Outlet Liquid Outlet\n", + " flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 0.20460 \n", + " flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 0.062520 \n", + " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", + " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 2.6712e-07 \n", + " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 1.0000e-08 \n", + " temperature kelvin 771.85 325.00 325.00 \n", + " pressure pascal 3.5000e+05 3.5000e+05 3.5000e+05 \n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m.fs.F101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "How much benzene are we losing in the F101 vapor outlet stream?\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Units Reactor Light Gases\n", + "flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 \n", + "flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 \n", + "flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 \n", + "flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 \n", + "flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 \n", + "flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 \n", + "flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 \n", + "flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 \n", + "temperature kelvin 771.85 325.00 \n", + "pressure pascal 3.5000e+05 3.5000e+05 \n" + ] + } + ], + "source": [ + "from idaes.core.util.tables import (\n", + " create_stream_table_dataframe,\n", + " stream_table_dataframe_to_string,\n", + ")\n", + "\n", + "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", + "print(stream_table_dataframe_to_string(st))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "You can query additional variables here if you like. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Optimization\n", + "\n", + "\n", + "We saw from the results above that the total operating cost for the base case was $442,297 per year. We are producing 0.162 mol/s of benzene at a purity of 89.5%. However, we are losing around 43.3% of benzene in F101 vapor outlet stream. \n", + "\n", + "Let us try to minimize this cost such that:\n", + "- we are producing at least 0.18 mol/s of benzene as distillate i.e. our product stream\n", + "- purity of benzene i.e. the mole fraction of benzene in the distillate is at least 99%\n", + "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", + "\n", + "For this problem, our decision variables are as follows:\n", + "- H101 outlet temperature\n", + "- R101 outlet temperature\n", + "- F101 outlet temperature\n", + "- H102 outlet temperature\n", + "- Condenser pressure\n", + "- reflux ratio\n", + "- boilup ratio\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost + m.fs.capital_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.R101.conversion.unfix()\n", + "m.fs.F101.vap_outlet.temperature.unfix()\n", + "m.fs.D101.condenser.condenser_pressure.unfix()\n", + "m.fs.D101.condenser.reflux_ratio.unfix()\n", + "m.fs.D101.reboiler.boilup_ratio.unfix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now unfix the remaining variable: the temperature of the outlet from H102\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Unfix the temperature of the outlet from H102" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Unfix the temperature of the outlet from H102\n", + "m.fs.H102.outlet.temperature.unfix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to set bounds on these decision variables to values shown below:\n", + "\n", + " - H101 outlet temperature [500, 600] K\n", + " - R101 outlet temperature [600, 900] K\n", + " - F101 outlet temperature [298, 450] K\n", + " - H102 outlet temperature [350, 400] K\n", + " - D101 condenser pressure [101325, 150000] Pa\n", + " - D101 reflux ratio [0.1, 5]\n", + " - D101 boilup ratio [0.1, 5]" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "# Set bounds on the temperature of the outlet from H101\n", + "m.fs.H101.outlet.temperature[0].setlb(500)\n", + "m.fs.H101.outlet.temperature[0].setub(600)\n", + "\n", + "# Set bounds on the temperature of the outlet from R101\n", + "m.fs.R101.outlet.temperature[0].setlb(600)\n", + "m.fs.R101.outlet.temperature[0].setub(900)\n", + "\n", + "# Set bounds on the volume of the reactor R101\n", + "m.fs.R101.volume[0].setlb(0)\n", + "\n", + "# Set bounds on the temperature of the vapor outlet from F101\n", + "m.fs.F101.vap_outlet.temperature[0].setlb(298)\n", + "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", + "\n", + "# Set bounds on the temperature of the outlet from H102\n", + "m.fs.H102.outlet.temperature[0].setlb(350)\n", + "m.fs.H102.outlet.temperature[0].setub(400)\n", + "\n", + "# Set bounds on the pressure inside the condenser\n", + "m.fs.D101.condenser.condenser_pressure.setlb(101325)\n", + "m.fs.D101.condenser.condenser_pressure.setub(150000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, set the bounds for the D101 reflux ratio and boilup ratio.\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Set bounds on the reflux ratio\n", + "\n", + "\n", + "# Todo: Set bounds on the boilup ratio" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Set bounds on the reflux ratio\n", + "m.fs.D101.condenser.reflux_ratio.setlb(0.1)\n", + "m.fs.D101.condenser.reflux_ratio.setub(5)\n", + "\n", + "# Todo: Set bounds on the boilup ratio\n", + "m.fs.D101.reboiler.boilup_ratio.setlb(0.1)\n", + "m.fs.D101.reboiler.boilup_ratio.setub(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the only things left to define are our constraints on overhead loss in F101, distillate flowrate and its purity. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 % of the benzene available in the reactor outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "# Ensure that the overhead loss of benzene from F101 <= 20%\n", + "m.fs.overhead_loss = Constraint(\n", + " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, add the constraint such that we are producing at least 0.18 mol/s of benzene in the product stream which is the distillate of D101. Let us name this constraint as m.fs.product_flow. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add minimum product flow constraint" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add minimum product flow constraint\n", + "m.fs.product_flow = Constraint(expr=m.fs.D101.condenser.distillate.flow_mol[0] >= 0.18)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us add the final constraint on product purity or the mole fraction of benzene in the distillate such that it is at least greater than 99%. " + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.product_purity = Constraint(\n", + " expr=m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"] >= 0.99\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 3\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 150 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n", + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 4073\n", + "Number of nonzeros in inequality constraint Jacobian.: 6\n", + "Number of nonzeros in Lagrangian Hessian.............: 2391\n", + "\n", + "Total number of variables............................: 1176\n", + " variables with only lower bounds: 113\n", + " variables with lower and upper bounds: 372\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 1169\n", + "Total number of inequality constraints...............: 3\n", + " inequality constraints with only lower bounds: 2\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 1\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 4.4230147e+05 2.99e+05 9.90e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 4.3753585e+05 2.91e+05 1.28e+02 -1.0 3.09e+06 - 3.58e-01 2.40e-02f 1\n", + " 2 4.3545100e+05 2.78e+05 1.55e+02 -1.0 1.78e+06 - 3.31e-01 4.74e-02h 1\n", + " 3 4.2822311e+05 2.20e+05 4.50e+02 -1.0 2.99e+06 - 2.95e-02 1.35e-01h 1\n", + " 4 4.2249096e+05 1.45e+05 1.43e+03 -1.0 7.01e+06 - 5.14e-01 2.03e-01h 1\n", + " 5 4.2194364e+05 8.17e+04 1.70e+04 -1.0 6.06e+06 - 5.97e-01 4.28e-01h 1\n", + " 6 4.2602765e+05 4.55e+04 1.10e+06 -1.0 4.32e+06 - 9.26e-01 5.07e-01h 1\n", + " 7 4.3776643e+05 2.03e+04 6.44e+09 -1.0 2.42e+06 - 9.90e-01 9.47e-01h 1\n", + " 8 4.3846260e+05 1.92e+04 6.05e+09 -1.0 4.42e+05 - 5.40e-01 5.74e-02h 1\n", + " 9 4.4529853e+05 4.05e+04 4.66e+10 -1.0 2.47e+05 - 9.96e-01 9.90e-01h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 4.4906283e+05 9.76e+03 1.10e+10 -1.0 1.12e+03 -4.0 1.26e-01 7.45e-01h 1\n", + " 11 4.5079086e+05 1.19e+03 1.54e+09 -1.0 5.63e+02 -4.5 3.77e-01 1.00e+00h 1\n", + " 12 4.5024224e+05 2.66e+00 3.67e+06 -1.0 6.61e+01 -5.0 1.00e+00 1.00e+00f 1\n", + " 13 4.4946170e+05 5.64e-01 9.29e+05 -1.0 1.81e+02 -5.4 1.00e+00 7.88e-01f 1\n", + " 14 4.4916780e+05 8.48e+00 1.62e+05 -1.0 2.83e+02 -5.9 1.00e+00 1.00e+00f 1\n", + " 15 4.4899127e+05 4.83e+00 9.07e+04 -1.0 1.01e+02 -6.4 1.00e+00 4.40e-01f 2\n", + " 16 4.4886718e+05 7.00e-01 4.61e+02 -1.0 2.35e+02 -6.9 1.00e+00 1.00e+00f 1\n", + " 17 4.4800159e+05 1.39e+02 4.52e+06 -3.8 1.17e+03 -7.3 9.79e-01 9.37e-01f 1\n", + " 18 4.4672196e+05 9.59e+02 1.22e+06 -3.8 4.55e+03 -7.8 1.00e+00 9.43e-01f 1\n", + " 19 4.4401667e+05 7.75e+03 1.55e+05 -3.8 1.08e+04 -8.3 1.00e+00 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 20 4.4185035e+05 1.91e+04 1.36e+04 -3.8 1.33e+04 -8.8 1.00e+00 1.00e+00h 1\n", + " 21 4.4241001e+05 3.52e+03 5.96e+03 -3.8 2.94e+03 -9.2 1.00e+00 1.00e+00h 1\n", + " 22 4.4185237e+05 7.82e+00 2.91e+02 -3.8 7.13e+03 -9.7 2.39e-01 1.00e+00h 1\n", + " 23 4.4124091e+05 1.53e+01 3.11e+02 -3.8 4.82e+04 -10.2 8.59e-01 1.36e-01f 1\n", + " 24 4.4137379e+05 1.80e+00 2.91e+02 -3.8 1.41e+04 - 1.95e-01 1.00e+00h 1\n", + " 25 4.3862833e+05 1.70e+03 9.48e+04 -3.8 1.57e+07 - 1.29e-03 9.10e-02f 1\n", + " 26 4.3883308e+05 1.49e+03 8.46e+04 -3.8 1.02e+06 - 1.00e+00 1.35e-01h 1\n", + " 27 4.3885472e+05 2.18e+01 3.40e+03 -3.8 1.38e+05 - 1.00e+00 1.00e+00h 1\n", + " 28 4.3884160e+05 5.90e-02 6.38e+01 -3.8 8.66e+03 - 1.00e+00 1.00e+00h 1\n", + " 29 4.3884157e+05 6.48e-07 4.63e-04 -3.8 2.89e+01 - 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 30 4.3883990e+05 3.57e-01 2.38e+03 -5.7 8.19e+02 - 1.00e+00 1.00e+00f 1\n", + " 31 4.3883992e+05 3.50e-07 7.79e-06 -5.7 3.55e-01 - 1.00e+00 1.00e+00h 1\n", + " 32 4.3883990e+05 5.47e-05 3.63e-01 -8.0 1.01e+01 - 1.00e+00 1.00e+00h 1\n", + " 33 4.3883990e+05 2.24e-08 1.46e-07 -8.0 5.42e-05 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 33\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 4.3883989842628603e+02 4.3883989842628600e+05\n", + "Dual infeasibility......: 1.4600704448671754e-07 1.4600704448671753e-04\n", + "Constraint violation....: 2.9103830456733704e-11 2.2351741790771484e-08\n", + "Complementarity.........: 9.0909948039799681e-09 9.0909948039799686e-06\n", + "Overall NLP error.......: 9.0909948039799681e-09 1.4600704448671753e-04\n", + "\n", + "\n", + "Number of objective function evaluations = 35\n", + "Number of objective gradient evaluations = 34\n", + "Number of equality constraint evaluations = 35\n", + "Number of inequality constraint evaluations = 35\n", + "Number of equality constraint Jacobian evaluations = 34\n", + "Number of inequality constraint Jacobian evaluations = 34\n", + "Number of Lagrangian Hessian evaluations = 33\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.164\n", + "Total CPU secs in NLP function evaluations = 0.020\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimization Results\n", + "\n", + "Display the results and product specifications" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total cost = $ 438839.898426286\n", + "operating cost = $ 408883.5314830889\n", + "capital cost = $ 29956.3669431971\n", + "\n", + "Distillate flowrate = 0.1799999900263989 mol/s\n", + "Benzene purity = 98.99999900049086 %\n", + "Residue flowrate = 0.1085161642426372 mol/s\n", + "Toluene purity = 15.676178086213548 %\n", + "\n", + "Conversion = 93.38705916369427 %\n", + "\n", + "Overhead benzene loss in F101 = 17.34061793115618 %\n" + ] + } + ], + "source": [ + "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", + "print(\"operating cost = $\", value(m.fs.operating_cost))\n", + "print(\"capital cost = $\", value(m.fs.capital_cost))\n", + "print()\n", + "print(\n", + " \"Distillate flowrate = \",\n", + " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", + " \"mol/s\",\n", + ")\n", + "print(\n", + " \"Benzene purity = \",\n", + " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", + " \"%\",\n", + ")\n", + "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", + "print(\n", + " \"Toluene purity = \",\n", + " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", + " \"%\",\n", + ")\n", + "print()\n", + "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", + "print()\n", + "print(\n", + " \"Overhead benzene loss in F101 = \",\n", + " 100\n", + " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", + " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", + " \"%\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal Values\n", + "\n", + "H101 outlet temperature = 568.923204295196 K\n", + "\n", + "R101 outlet temperature = 790.3655425698853 K\n", + "\n", + "F101 outlet temperature = 298.0 K\n", + "\n", + "H102 outlet temperature = 368.7414339952852 K\n" + ] + } + ], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"H102 outlet temperature = \", value(m.fs.H102.outlet.temperature[0]), \"K\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Key Takeaways\n", + "\n", + "Observe that the optimization was able to reduce the yearly operating cost from \\\\$427,593 to \\\\$408,342 (~4.5%). However, the amortized capital cost more than doubled from \\\\$14,704 to \\\\$29,927 due to the need to increase the conversion in the reactor (from 75% to 93%) to meet the production and purity constraints. \n", + "\n", + "Further, observe that the product flow rate and product purity are at their minimum values (0.18 mol/s and 99%, respectively). This is expected as increasing recovery would require more energy and cost to purify the product.\n", + "\n", + "\n", + "Finally, observe that the operating temperature of the flash (F101) is almost at its lower bound. This helps in minimizing the amount of benzene in the vapor stream leaving the flash." + ] } - ], - "source": [ - "print(\"total cost = $\", value(m.fs.capital_cost) + value(m.fs.operating_cost))\n", - "print(\"operating cost = $\", value(m.fs.operating_cost))\n", - "print(\"capital cost = $\", value(m.fs.capital_cost))\n", - "print()\n", - "print(\n", - " \"Distillate flowrate = \",\n", - " value(m.fs.D101.condenser.distillate.flow_mol[0]()),\n", - " \"mol/s\",\n", - ")\n", - "print(\n", - " \"Benzene purity = \",\n", - " 100 * value(m.fs.D101.condenser.distillate.mole_frac_comp[0, \"benzene\"]),\n", - " \"%\",\n", - ")\n", - "print(\"Residue flowrate = \", value(m.fs.D101.reboiler.bottoms.flow_mol[0]()), \"mol/s\")\n", - "print(\n", - " \"Toluene purity = \",\n", - " 100 * value(m.fs.D101.reboiler.bottoms.mole_frac_comp[0, \"toluene\"]),\n", - " \"%\",\n", - ")\n", - "print()\n", - "print(\"Conversion = \", 100 * value(m.fs.R101.conversion), \"%\")\n", - "print()\n", - "print(\n", - " \"Overhead benzene loss in F101 = \",\n", - " 100\n", - " * value(m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"])\n", - " / value(m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]),\n", - " \"%\",\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal Values\n", - "\n", - "H101 outlet temperature = 568.923204295196 K\n", - "\n", - "R101 outlet temperature = 790.3655425698853 K\n", - "\n", - "F101 outlet temperature = 298.0 K\n", - "\n", - "H102 outlet temperature = 368.7414339952852 K\n" - ] + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" } - ], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"H102 outlet temperature = \", value(m.fs.H102.outlet.temperature[0]), \"K\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Key Takeaways\n", - "\n", - "Observe that the optimization was able to reduce the yearly operating cost from \\\\$427,593 to \\\\$408,342 (~4.5%). However, the amortized capital cost more than doubled from \\\\$14,704 to \\\\$29,927 due to the need to increase the conversion in the reactor (from 75% to 93%) to meet the production and purity constraints. \n", - "\n", - "Further, observe that the product flow rate and product purity are at their minimum values (0.18 mol/s and 99%, respectively). This is expected as increasing recovery would require more energy and cost to purify the product.\n", - "\n", - "\n", - "Finally, observe that the operating temperature of the flash (F101) is almost at its lower bound. This helps in minimizing the amount of benzene in the vapor stream leaving the flash." - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheets_for_costing_notebook.py b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheets_for_costing_notebook.py index e365fcd9..e960ed9c 100644 --- a/idaes_examples/notebooks/docs/flowsheets/hda_flowsheets_for_costing_notebook.py +++ b/idaes_examples/notebooks/docs/flowsheets/hda_flowsheets_for_costing_notebook.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# """ Flowsheets for HDA with Flash and HDA with Distillation for costing notebook. diff --git a/idaes_examples/notebooks/docs/flowsheets/methanol_flowsheet.py b/idaes_examples/notebooks/docs/flowsheets/methanol_flowsheet.py index db61295e..c5459dc3 100644 --- a/idaes_examples/notebooks/docs/flowsheets/methanol_flowsheet.py +++ b/idaes_examples/notebooks/docs/flowsheets/methanol_flowsheet.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# """ Task: IDAES Support for ARPE-E Differentiate diff --git a/idaes_examples/notebooks/docs/flowsheets/methanol_flowsheet_w_recycle.py b/idaes_examples/notebooks/docs/flowsheets/methanol_flowsheet_w_recycle.py index 8d5cfd7c..691140c7 100644 --- a/idaes_examples/notebooks/docs/flowsheets/methanol_flowsheet_w_recycle.py +++ b/idaes_examples/notebooks/docs/flowsheets/methanol_flowsheet_w_recycle.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# """ Task: IDAES Support for ARPE-E Differentiate diff --git a/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis.ipynb b/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis.ipynb index 44462419..fceaba76 100644 --- a/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis_doc.ipynb b/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis_doc.ipynb index 6e83e8ed..c157bca9 100644 --- a/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis_doc.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -100,11 +101,7 @@ ] }, "execution_count": 2, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\flowsheets\\methanol_synthesis_doc_4_0.png" - } - }, + "metadata": {}, "output_type": "execute_result" } ], @@ -255,511 +252,511 @@ "DOF after streams specified: 9\n", "DOF after units specified: 0\n", "\n", - "2023-11-02 10:29:50 [INFO] idaes.init.fs.H2.properties: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H2.properties: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.H2.properties: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H2.properties: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.H2.properties: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H2.properties: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.H2: Initialization Complete.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H2: Initialization Complete.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.CO.properties: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.CO.properties: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.CO.properties: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.CO.properties: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.CO.properties: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.CO.properties: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.CO: Initialization Complete.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.CO: Initialization Complete.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.M101.H2_WGS_state: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.M101.H2_WGS_state: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.M101.H2_WGS_state: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.M101.H2_WGS_state: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.M101.CO_WGS_state: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.M101.CO_WGS_state: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.M101.CO_WGS_state: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.M101.CO_WGS_state: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.C101.control_volume.properties_in: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.C101.control_volume.properties_in: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.C101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.C101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:50 [INFO] idaes.init.fs.C101.control_volume.properties_out: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.C101.control_volume.properties_out: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.R101.control_volume.reactions: Initialization Complete.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.R101.control_volume.reactions: Initialization Complete.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.T101.control_volume.properties_in: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.T101.control_volume.properties_in: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.T101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.T101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.T101.control_volume.properties_out: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.T101.control_volume.properties_out: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.T101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.T101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.T101.control_volume.properties_out: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.T101.control_volume.properties_out: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.T101.properties_isentropic: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.T101.properties_isentropic: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.T101.properties_isentropic: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.T101.properties_isentropic: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.T101.properties_isentropic: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.T101.properties_isentropic: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.T101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.T101: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.H102.control_volume.properties_in: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H102.control_volume.properties_in: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.H102.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H102.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.H102.control_volume.properties_out: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H102.control_volume.properties_out: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.H102.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H102.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.H102.control_volume: Initialization Complete\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H102.control_volume: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.H102: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.H102: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.F101.control_volume.properties_in: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.F101.control_volume.properties_in: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.F101.control_volume.properties_in: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.F101.control_volume.properties_in: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.F101.control_volume.properties_in: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.F101.control_volume.properties_in: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.F101.control_volume.properties_in: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.F101.control_volume.properties_in: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.F101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.F101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.F101.control_volume.properties_out: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.F101.control_volume.properties_out: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.F101.control_volume.properties_out: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.F101.control_volume.properties_out: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.F101.control_volume.properties_out: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.F101.control_volume.properties_out: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.F101.control_volume.properties_out: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.F101.control_volume.properties_out: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.F101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.F101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:51 [INFO] idaes.init.fs.EXHAUST.properties: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.EXHAUST.properties: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:52 [INFO] idaes.init.fs.EXHAUST.properties: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.EXHAUST.properties: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:52 [INFO] idaes.init.fs.EXHAUST.properties: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.EXHAUST.properties: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:52 [INFO] idaes.init.fs.EXHAUST: Initialization Complete.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.EXHAUST: Initialization Complete.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:52 [INFO] idaes.init.fs.CH3OH.properties: Starting initialization\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.CH3OH.properties: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:52 [INFO] idaes.init.fs.CH3OH.properties: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.CH3OH.properties: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:52 [INFO] idaes.init.fs.CH3OH.properties: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.CH3OH.properties: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:52 [INFO] idaes.init.fs.CH3OH.properties: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.CH3OH.properties: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:52 [INFO] idaes.init.fs.CH3OH.properties: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.CH3OH.properties: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:52 [INFO] idaes.init.fs.CH3OH.properties: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.CH3OH.properties: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:52 [INFO] idaes.init.fs.CH3OH: Initialization Complete.\n" + "2025-03-17 17:33:26 [INFO] idaes.init.fs.CH3OH: Initialization Complete.\n" ] }, { @@ -768,144 +765,14 @@ "text": [ "DOF before solve: 0\n", "\n", - "Solving initial problem...\n", - "WARNING: model contains export suffix\n", - "'fs.CH3OH.properties[0.0].scaling_factor' that contains 7 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.EXHAUST.properties[0.0].scaling_factor' that contains 4 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.F101.split.scaling_factor' that\n", - "contains 24 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_out[0.0].scaling_factor' that contains 13\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_in[0.0].scaling_factor' that contains 13\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.F101.control_volume.scaling_factor'\n", - "that contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H102.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H102.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.properties_isentropic[0.0].scaling_factor' that contains 8 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.control_volume.properties_in[0.0].scaling_factor' that contains 8\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.T101.control_volume.scaling_factor'\n", - "that contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.reactions[0.0].scaling_factor' that contains 1\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "Solving initial problem...\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 98\n", "component keys that are not exported as part of the NL file. Skipping.\n" ] }, @@ -913,144 +780,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.C101.control_volume.properties_out[0.0].scaling_factor' that contains 8\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.C101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.mixed_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.CO_WGS_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.H2_WGS_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.CO.properties[0.0].scaling_factor'\n", - "that contains 15 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.H2.properties[0.0].scaling_factor'\n", - "that contains 15 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CH3OH.scaling_factor' that contains 11 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.H2.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CO.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CH4.scaling_factor' that contains 8 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_VLE.CH3OH.scaling_factor' that contains 23 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.thermo_params_VLE.H2.scaling_factor'\n", - "that contains 8 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.thermo_params_VLE.CO.scaling_factor'\n", - "that contains 8 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_VLE.CH4.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 160 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -1105,16 +836,16 @@ " 0 0.0000000e+00 2.79e+04 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", " 1 0.0000000e+00 2.79e+02 2.77e+00 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n", " 2 0.0000000e+00 2.77e+00 1.21e+00 -1.0 1.00e-04 - 9.90e-01 9.90e-01h 1\n", - " 3 0.0000000e+00 3.68e-08 1.00e+03 -1.0 1.76e-06 - 9.90e-01 1.00e+00h 1\n", + " 3 0.0000000e+00 3.41e-08 1.00e+03 -1.0 1.76e-06 - 9.90e-01 1.00e+00h 1\n", "\n", "Number of Iterations....: 3\n", "\n", " (scaled) (unscaled)\n", "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 1.2293436154280945e-12 3.6787241697311401e-08\n", + "Constraint violation....: 1.2412789903351633e-12 3.4109689295291901e-08\n", "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 1.2293436154280945e-12 3.6787241697311401e-08\n", + "Overall NLP error.......: 1.2412789903351633e-12 3.4109689295291901e-08\n", "\n", "\n", "Number of objective function evaluations = 4\n", @@ -1166,361 +897,101 @@ "output_type": "stream", "text": [ "\n", - "Solving with costing...\n", - "WARNING: model contains export suffix\n", - "'fs.CH3OH.properties[0.0].scaling_factor' that contains 7 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" + "Solving with costing...\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.EXHAUST.properties[0.0].scaling_factor' that contains 4 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 98\n", + "component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix 'fs.F101.split.scaling_factor' that\n", - "contains 24 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 160 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_out[0.0].scaling_factor' that contains 13\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "Ipopt 3.13.2: tol=1e-06\n", + "max_iter=100\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_in[0.0].scaling_factor' that contains 13\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.F101.control_volume.scaling_factor'\n", - "that contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H102.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H102.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.properties_isentropic[0.0].scaling_factor' that contains 8 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.control_volume.properties_in[0.0].scaling_factor' that contains 8\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.T101.control_volume.scaling_factor'\n", - "that contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.reactions[0.0].scaling_factor' that contains 1\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.C101.control_volume.properties_out[0.0].scaling_factor' that contains 8\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.C101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.mixed_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.CO_WGS_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.H2_WGS_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.CO.properties[0.0].scaling_factor'\n", - "that contains 15 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.H2.properties[0.0].scaling_factor'\n", - "that contains 15 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CH3OH.scaling_factor' that contains 11 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.H2.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CO.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CH4.scaling_factor' that contains 8 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_VLE.CH3OH.scaling_factor' that contains 23 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.thermo_params_VLE.H2.scaling_factor'\n", - "that contains 8 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.thermo_params_VLE.CO.scaling_factor'\n", - "that contains 8 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_VLE.CH4.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: tol=1e-06\n", - "max_iter=100\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 971\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 611\n", - "\n", - "Total number of variables............................: 319\n", - " variables with only lower bounds: 43\n", - " variables with lower and upper bounds: 255\n", - " variables with only upper bounds: 1\n", - "Total number of equality constraints.................: 319\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 -2.8492051e+07 9.10e+04 1.00e+02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 -2.9068962e+07 5.76e+04 6.45e+01 -1.0 1.20e+05 - 5.03e-02 9.90e-01h 1\n", - " 2 -2.9074767e+07 5.71e+02 9.98e+00 -1.0 5.72e+04 - 9.81e-01 9.90e-01h 1\n", - " 3 -2.9074825e+07 5.22e-05 1.00e+03 -1.0 5.67e+02 - 9.90e-01 1.00e+00h 1\n", - " 4 -2.9074825e+07 1.86e-09 9.90e+04 -1.0 5.22e-05 - 9.90e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 4\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: -4.4948186430824144e+01 -2.9074824816033211e+07\n", - "Dual infeasibility......: 8.3561161967102299e-07 5.4051705720246346e-01\n", - "Constraint violation....: 4.5474735088646412e-12 1.8626451492309570e-09\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 4.5474735088646412e-12 5.4051705720246346e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 5\n", - "Number of objective gradient evaluations = 5\n", - "Number of equality constraint evaluations = 5\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 5\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 4\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Optimal Solution Found.\n" + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 971\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 611\n", + "\n", + "Total number of variables............................: 319\n", + " variables with only lower bounds: 43\n", + " variables with lower and upper bounds: 255\n", + " variables with only upper bounds: 1\n", + "Total number of equality constraints.................: 319\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 -2.8492051e+07 9.10e+04 1.00e+02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 -2.9068962e+07 5.76e+04 6.45e+01 -1.0 1.20e+05 - 5.03e-02 9.90e-01h 1\n", + " 2 -2.9074767e+07 5.71e+02 9.98e+00 -1.0 5.72e+04 - 9.81e-01 9.90e-01h 1\n", + " 3 -2.9074825e+07 5.22e-05 1.00e+03 -1.0 5.67e+02 - 9.90e-01 1.00e+00h 1\n", + " 4 -2.9074825e+07 1.16e-09 9.90e+04 -1.0 5.22e-05 - 9.90e-01 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 4\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: -4.4948186430824137e+01 -2.9074824816033222e+07\n", + "Dual infeasibility......: 4.4769483402316870e-07 2.8959230402542491e-01\n", + "Constraint violation....: 4.5474735088646412e-12 1.1641532182693481e-09\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 4.5474735088646412e-12 2.8959230402542491e-01\n", + "\n", + "\n", + "Number of objective function evaluations = 5\n", + "Number of objective gradient evaluations = 5\n", + "Number of equality constraint evaluations = 5\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 5\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 4\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.010\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n" ] }, { @@ -1530,7 +1001,7 @@ "Initial solution process results:\n", "\n", "\n", - "Extent of reaction: 237.60047790000002\n", + "Extent of reaction: 237.6004779\n", "Stoichiometry of each component normalized by the extent:\n", "CH4 : 0.0\n", "H2 : -2.0\n", @@ -1541,28 +1012,34 @@ "Reaction conversion: 0.75\n", "Reactor duty (MW): -45.21917830318435\n", "Duty from Reaction (MW)): 21.536107316856\n", - "Turbine work (MW): -0.9593346445867593\n", + "Turbine work (MW): -0.9593346445867499\n", "Mixer outlet temperature (C)): 20.051714213753257\n", "Compressor outlet temperature (C)): 20.051714213753314\n", "Compressor outlet pressure (Pa)): 5100000.0\n", "Heater outlet temperature (C)): 215.0\n", "Reactor outlet temperature (C)): 234.0\n", - "Turbine outlet temperature (C)): 192.87815244243234\n", + "Turbine outlet temperature (C)): 192.8781524424324\n", "Turbine outlet pressure (Pa)): 3100000.0\n", "Cooler outlet temperature (C)): 134.0\n", "Flash outlet temperature (C)): 134.0\n", - "Methanol recovery(%): 60.004430129216814\n", - "annualized capital cost ($/year) = 219790.50447043404\n", - "operating cost ($/year) = 380701687.4964808\n", - "sales ($/year) = 64685201172.19813\n", + "Methanol recovery(%): 60.004430129216836\n", + "annualized capital cost ($/year) = 219790.5044704343\n", + "operating cost ($/year) = 380701687.4964806\n", + "sales ($/year) = 64685201172.198135\n", "raw materials cost ($/year) = 35229454878.16397\n", - "revenue (1000$/year)= 29074824.816033203\n", + "revenue (1000$/year)= 29074824.81603321\n", "\n", "\n", "====================================================================================\n", "Unit : fs.H2 Time: 0.0\n", "------------------------------------------------------------------------------------\n", - " Stream Table\n", + " Stream Table\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Units Outlet \n", " Total Molar Flowrate mole / second 637.20\n", " Total Mole Fraction CH4 dimensionless 1.0000e-06\n", @@ -1647,278 +1124,30 @@ "text": [ "\n", "Solving optimization problem...\n", - "WARNING: model contains export suffix\n", - "'fs.CH3OH.properties[0.0].scaling_factor' that contains 7 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.EXHAUST.properties[0.0].scaling_factor' that contains 4 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 96\n", + "component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix 'fs.F101.split.scaling_factor' that\n", - "contains 24 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 160 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_out[0.0].scaling_factor' that contains 13\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "Ipopt 3.13.2: tol=1e-06\n", + "max_iter=100\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_in[0.0].scaling_factor' that contains 13\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H102.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H102.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.properties_isentropic[0.0].scaling_factor' that contains 8 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.control_volume.properties_in[0.0].scaling_factor' that contains 8\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.reactions[0.0].scaling_factor' that contains 1\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.C101.control_volume.properties_out[0.0].scaling_factor' that contains 8\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.C101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.mixed_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.CO_WGS_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.H2_WGS_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.CO.properties[0.0].scaling_factor'\n", - "that contains 15 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.H2.properties[0.0].scaling_factor'\n", - "that contains 15 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CH3OH.scaling_factor' that contains 11 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.H2.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CO.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CH4.scaling_factor' that contains 8 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_VLE.CH3OH.scaling_factor' that contains 23 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.thermo_params_VLE.H2.scaling_factor'\n", - "that contains 8 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.thermo_params_VLE.CO.scaling_factor'\n", - "that contains 8 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_VLE.CH4.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: tol=1e-06\n", - "max_iter=100\n", "\n", "\n", "******************************************************************************\n", @@ -1968,52 +1197,63 @@ " 9 -2.8910081e+07 8.51e+04 2.07e+06 -1.0 1.31e+06 - 4.38e-01 9.05e-01h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", " 10 -2.8914184e+07 7.59e+04 7.45e+06 -1.0 9.51e+04 - 9.00e-01 1.08e-01h 1\n", - " 11 -2.8947637e+07 1.17e+03 1.82e+05 -1.0 8.76e+04 - 9.09e-01 9.90e-01h 1\n", - " 12 -2.8897906e+07 2.27e+01 4.44e+06 -1.0 6.65e+03 - 9.89e-01 9.92e-01h 1\n", - " 13 -3.9607639e+07 3.82e+04 7.42e+07 -1.0 5.09e+06 - 8.24e-02 1.77e-01f 3\n", - " 14 -5.3973065e+07 7.32e+04 5.80e+07 -1.0 1.89e+06 - 6.48e-01 1.00e+00F 1\n", - " 15 -5.8002084e+07 1.39e+05 2.82e+06 -1.0 1.54e+06 - 6.75e-01 1.00e+00f 1\n", - " 16 -5.8861909e+07 1.30e+05 2.75e+06 -1.0 3.00e+06 - 2.44e-02 7.50e-02f 1\n", - " 17 -6.8252381e+07 1.25e+05 2.72e+06 -1.0 6.30e+07 - 8.98e-03 4.63e-02f 2\n", - " 18 -6.7691432e+07 5.47e+02 2.17e+06 -1.0 1.32e+04 -4.0 2.04e-01 1.00e+00h 1\n", - " 19 -6.7689998e+07 4.76e-01 2.15e+04 -1.0 1.89e+02 -4.5 9.90e-01 1.00e+00h 1\n", + " 11 -2.8947704e+07 1.17e+03 1.82e+05 -1.0 8.76e+04 - 9.09e-01 9.90e-01h 1\n", + " 12 -2.8956418e+07 1.33e+01 1.66e+06 -1.0 6.65e+03 - 9.89e-01 9.92e-01h 1\n", + " 13 -3.9651704e+07 3.83e+04 1.08e+09 -1.0 4.89e+06 - 4.90e-01 1.84e-01f 3\n", + " 14 -6.4336952e+07 5.29e+05 4.65e+08 -1.0 5.88e+06 - 3.52e-01 4.50e-01F 1\n", + " 15 -6.3892166e+07 4.90e+05 4.29e+08 -1.0 1.30e+06 - 6.84e-01 7.50e-02h 1\n", + " 16 -6.1563748e+07 1.84e+04 2.19e+06 -1.0 1.44e+06 - 2.70e-02 1.00e+00h 1\n", + " 17 -6.9341130e+07 1.74e+04 1.16e+06 -1.0 4.39e+07 - 2.12e-01 5.31e-02f 2\n", + " 18 -7.2756566e+07 1.93e+04 1.09e+06 -1.0 6.62e+07 - 5.91e-03 1.78e-02f 2\n", + " 19 -7.6032508e+07 2.89e+04 8.76e+05 -1.0 6.78e+07 - 7.77e-02 1.76e-02f 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 -6.7690000e+07 1.68e-08 2.33e+01 -1.0 2.45e-01 -5.0 9.99e-01 1.00e+00h 1\n", - " 21 -7.7035618e+07 3.05e+04 5.41e+04 -3.8 4.62e+08 - 6.81e-03 6.33e-03f 1\n", - " 22 -7.7132115e+07 3.01e+04 6.44e+06 -3.8 3.55e+06 - 6.66e-01 1.74e-02h 1\n", - " 23 -7.7647090e+07 3.09e+04 8.42e+06 -3.8 3.42e+06 - 8.94e-01 1.00e-01h 1\n", - " 24 -7.7699683e+07 8.17e+01 3.90e+03 -3.8 2.07e+04 - 9.89e-01 1.00e+00h 1\n", - " 25 -7.7699749e+07 7.87e+01 3.80e+03 -3.8 5.54e+07 - 2.54e-02 8.20e-04h 2\n", - " 26 -7.7699755e+07 3.08e+00 3.03e-01 -3.8 2.79e+05 - 1.00e+00 1.00e+00H 1\n", - " 27 -7.7700174e+07 1.09e+02 5.94e-03 -3.8 3.03e+05 - 1.00e+00 1.00e+00h 1\n", - " 28 -7.7700167e+07 3.00e-02 4.25e-06 -3.8 1.14e+04 - 1.00e+00 1.00e+00h 1\n", - " 29 -7.7700500e+07 3.89e+00 3.43e+02 -5.7 9.59e+04 - 9.77e-01 1.00e+00h 1\n", + " 20 -7.7298453e+07 4.32e+04 3.37e+06 -1.0 3.71e+06 - 9.90e-01 2.02e-01h 1\n", + " 21 -7.7128685e+07 6.83e+03 5.30e+04 -1.0 4.84e+05 - 9.99e-01 1.00e+00h 1\n", + " 22 -7.7533095e+07 4.65e+03 1.55e+03 -1.0 3.06e+05 - 1.00e+00 1.00e+00h 1\n", + " 23 -7.7681920e+07 4.79e+02 5.51e+05 -1.7 6.74e+04 - 1.00e+00 9.31e-01h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 24 -7.7673164e+07 1.14e+00 2.46e+01 -1.7 3.30e+04 - 1.00e+00 1.00e+00f 1\n", + " 25 -7.7696657e+07 3.44e+00 2.10e+02 -2.5 1.14e+04 - 1.00e+00 1.00e+00h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 26 -7.7696184e+07 3.81e+00 1.12e-03 -2.5 6.24e+04 - 1.00e+00 1.00e+00h 1\n", + " 27 -7.7699949e+07 5.40e+00 1.26e+04 -5.7 7.58e+04 - 9.49e-01 9.94e-01h 1\n", + " 28 -7.7700458e+07 8.81e+01 1.03e+03 -5.7 3.66e+05 - 9.25e-01 9.72e-01h 1\n", + " 29 -7.7700530e+07 1.74e+01 1.01e+01 -5.7 6.58e+04 - 1.00e+00 8.03e-01h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 -7.7700531e+07 4.15e-01 1.39e-03 -5.7 2.29e+04 - 1.00e+00 9.07e-01h 1\n", - " 31 -7.7700531e+07 4.98e-04 3.89e-08 -5.7 9.80e+02 - 1.00e+00 1.00e+00f 1\n", - " 32 -7.7700536e+07 9.48e-04 2.13e-01 -8.6 1.62e+03 - 1.00e+00 9.99e-01h 1\n", - " 33 -7.7700536e+07 5.01e-09 1.08e-10 -8.6 1.88e+00 - 1.00e+00 1.00e+00f 1\n", - " 34 -7.7700536e+07 8.38e-09 6.97e-11 -10.9 2.16e+00 - 1.00e+00 1.00e+00h 1\n", + " 30 -7.7700531e+07 2.06e-04 4.19e-06 -5.7 1.25e+03 - 1.00e+00 1.00e+00h 1\n", + " 31 -7.7700536e+07 9.48e-04 1.29e-01 -8.6 1.69e+03 - 1.00e+00 9.99e-01h 1\n", + " 32 -7.7700536e+07 5.24e-09 5.34e-11 -8.6 1.52e+00 - 1.00e+00 1.00e+00f 1\n", + " 33 -7.7700536e+07 7.45e-09 6.97e-11 -10.9 2.16e+00 - 1.00e+00 1.00e+00h 1\n", "\n", - "Number of Iterations....: 34\n", + "Number of Iterations....: 33\n", "\n", " (scaled) (unscaled)\n", - "Objective...............: -1.2012103932708919e+02 -7.7700535938862875e+07\n", - "Dual infeasibility......: 6.9703904435575171e-11 4.5088110809028537e-05\n", - "Constraint violation....: 8.7311491370201111e-11 8.3819031715393066e-09\n", - "Complementarity.........: 1.4074777602064815e-11 9.1042982064351105e-06\n", - "Overall NLP error.......: 8.7311491370201111e-11 4.5088110809028537e-05\n", - "\n", - "\n", - "Number of objective function evaluations = 47\n", - "Number of objective gradient evaluations = 35\n", - "Number of equality constraint evaluations = 47\n", - "Number of inequality constraint evaluations = 47\n", - "Number of equality constraint Jacobian evaluations = 35\n", - "Number of inequality constraint Jacobian evaluations = 35\n", - "Number of Lagrangian Hessian evaluations = 34\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.022\n", - "Total CPU secs in NLP function evaluations = 0.000\n", + "Objective...............: -1.2012103932708921e+02 -7.7700535938862905e+07\n", + "Dual infeasibility......: 6.9708615944535924e-11 4.5091158458078059e-05\n", + "Constraint violation....: 8.7311491370201111e-11 7.4505805969238281e-09\n", + "Complementarity.........: 1.4074777632696104e-11 9.1042982262490221e-06\n", + "Overall NLP error.......: 8.7311491370201111e-11 4.5091158458078059e-05\n", + "\n", + "\n", + "Number of objective function evaluations = 46\n", + "Number of objective gradient evaluations = 34\n", + "Number of equality constraint evaluations = 46\n", + "Number of inequality constraint evaluations = 46\n", + "Number of equality constraint Jacobian evaluations = 34\n", + "Number of inequality constraint Jacobian evaluations = 34\n", + "Number of Lagrangian Hessian evaluations = 33\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.024\n", + "Total CPU secs in NLP function evaluations = 0.004\n", "\n", "EXIT: Optimal Solution Found.\n" ] @@ -2027,31 +1267,31 @@ "\n", "Extent of reaction: 269.280544787992\n", "Stoichiometry of each component normalized by the extent:\n", - "CH4 : -0.0\n", + "CH4 : 0.0\n", "H2 : -2.0\n", "CH3OH : 1.0\n", "CO : -1.0\n", "These coefficients should follow 1*CO + 2*H2 => 1*CH3OH\n", "\n", "Reaction conversion: 0.8500000099999546\n", - "Reactor duty (MW): -51.363573577545786\n", + "Reactor duty (MW): -51.36357357754578\n", "Duty from Reaction (MW)): 24.407588579583596\n", - "Turbine work (MW): -1.9904899177794766\n", - "Mixer outlet temperature (C)): 20.0517142137536\n", - "Compressor outlet temperature (C)): 20.051714213753428\n", + "Turbine work (MW): -1.99048991777949\n", + "Mixer outlet temperature (C)): 20.051714213753428\n", + "Compressor outlet temperature (C)): 20.05171421375337\n", "Compressor outlet pressure (Pa)): 5100000.0\n", "Heater outlet temperature (C)): 215.0\n", "Reactor outlet temperature (C)): 231.85000468716584\n", - "Turbine outlet temperature (C)): 139.85888172675635\n", - "Turbine outlet pressure (Pa)): 1427653.3547820912\n", + "Turbine outlet temperature (C)): 139.85888172675521\n", + "Turbine outlet pressure (Pa)): 1427653.3547820929\n", "Cooler outlet temperature (C)): 52.56999709299214\n", "Flash outlet temperature (C)): 134.0\n", - "Methanol recovery(%): 92.80355474657543\n", - "annualized capital cost ($/year) = 235547.18924473223\n", - "operating cost ($/year) = 451663512.6847628\n", - "sales ($/year) = 113381889876.90083\n", + "Methanol recovery(%): 92.80355474657544\n", + "annualized capital cost ($/year) = 235547.1892447323\n", + "operating cost ($/year) = 451663512.6847631\n", + "sales ($/year) = 113381889876.90086\n", "raw materials cost ($/year) = 35229454878.16397\n", - "revenue (1000$/year)= 77700535.93886286\n", + "revenue (1000$/year)= 77700535.93886289\n", "\n", "\n", "====================================================================================\n", @@ -2066,7 +1306,13 @@ " Total Mole Fraction CH3OH dimensionless 1.0000e-06\n", " Molar Enthalpy joule / mole -142.40\n", " Pressure pascal 3.0000e+06\n", - "====================================================================================\n", + "====================================================================================\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "====================================================================================\n", "Unit : fs.CO Time: 0.0\n", @@ -2207,11 +1453,7 @@ ] }, "execution_count": 8, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\flowsheets\\methanol_synthesis_doc_18_0.png" - } - }, + "metadata": {}, "output_type": "execute_result" } ], @@ -2322,7 +1564,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Unit degrees of freedom\n", + "Unit degrees of freedom" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", "M101 0\n", "C101 1\n", "H101 1\n", @@ -2331,13 +1580,7 @@ "H102 1\n", "F101 2\n", "M102 0\n", - "S101 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "S101 1\n", "Total DOF: 24\n", "DOF after streams specified: 10\n", "DOF after units specified: 0\n", @@ -2358,9 +1601,7 @@ "Initial DOF = 0\n", "Solving fs.H2\n", "DOF = 0\n", - "Solving fs.CO\n", - "DOF = 0\n", - "Solving fs.C101\n" + "Solving fs.CO\n" ] }, { @@ -2368,15 +1609,17 @@ "output_type": "stream", "text": [ "DOF = 0\n", - "Solving fs.M101\n", - "DOF = 0\n", - "Solving fs.H101\n" + "Solving fs.C101\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ + "DOF = 0\n", + "Solving fs.M101\n", + "DOF = 0\n", + "Solving fs.H101\n", "DOF = 0\n", "Solving fs.R101\n", "DOF = 0\n", @@ -2390,45 +1633,27 @@ "DOF = 0\n", "Solving fs.H102\n", "DOF = 0\n", - "Solving fs.F101\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Solving fs.F101\n", + "DOF = 0\n", + "Solving fs.S101\n", "DOF = 0\n", - "Solving fs.S101\n" + "Solving fs.CH3OH\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "DOF = 0\n", - "Solving fs.CH3OH\n", "DOF = 0\n", "Solving fs.EXHAUST\n", "DOF = 0\n", - "Solving fs.M102\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Solving fs.M102\n", "DOF = 0\n", "Solving fs.H2\n", "DOF = 0\n", "Solving fs.CO\n", "DOF = 0\n", - "Solving fs.M101\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Solving fs.M101\n", "DOF = 0\n", "Solving fs.EXHAUST\n", "DOF = 0\n", @@ -2444,342 +1669,16 @@ "DOF before solve: 0\n", "\n", "Solving initial problem...\n", - "WARNING: model contains export suffix\n", - "'fs.CH3OH.properties[0.0].scaling_factor' that contains 7 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.EXHAUST.properties[0.0].scaling_factor' that contains 4 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.S101.recycle_state[0.0].scaling_factor' that contains 4 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.S101.purge_state[0.0].scaling_factor' that contains 4 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 98\n", + "component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.S101.mixed_state[0.0].scaling_factor' that contains 4 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.F101.split.scaling_factor' that\n", - "contains 24 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_out[0.0].scaling_factor' that contains 13\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_in[0.0].scaling_factor' that contains 13\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.F101.control_volume.scaling_factor'\n", - "that contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H102.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H102.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.properties_isentropic[0.0].scaling_factor' that contains 8 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.control_volume.properties_in[0.0].scaling_factor' that contains 8\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.T101.control_volume.scaling_factor'\n", - "that contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.reactions[0.0].scaling_factor' that contains 1\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.C101.control_volume.properties_out[0.0].scaling_factor' that contains 8\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.C101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M102.mixed_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M102.recycle_state[0.0].scaling_factor' that contains 6 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.M102.feed_state[0.0].scaling_factor'\n", - "that contains 6 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.mixed_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.CO_WGS_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.H2_WGS_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.CO.properties[0.0].scaling_factor'\n", - "that contains 15 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.H2.properties[0.0].scaling_factor'\n", - "that contains 15 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CH3OH.scaling_factor' that contains 11 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.H2.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CO.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CH4.scaling_factor' that contains 8 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_VLE.CH3OH.scaling_factor' that contains 23 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.thermo_params_VLE.H2.scaling_factor'\n", - "that contains 8 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.thermo_params_VLE.CO.scaling_factor'\n", - "that contains 8 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_VLE.CH4.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 190 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -2836,9 +1735,9 @@ " (scaled) (unscaled)\n", "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", "Dual infeasibility......: 1.0099088928127794e+05 1.0099088928127794e+05\n", - "Constraint violation....: 2.4013852159823137e-10 7.4442941695451736e-06\n", + "Constraint violation....: 2.4014227693119351e-10 7.4444105848670006e-06\n", "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.4013852159823137e-10 1.0099088928127794e+05\n", + "Overall NLP error.......: 2.4014227693119351e-10 1.0099088928127794e+05\n", "\n", "\n", "Number of objective function evaluations = 4\n", @@ -2848,8 +1747,8 @@ "Number of equality constraint Jacobian evaluations = 4\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", - "Total CPU secs in NLP function evaluations = 0.002\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.010\n", + "Total CPU secs in NLP function evaluations = 0.001\n", "\n", "EXIT: Optimal Solution Found.\n" ] @@ -2883,360 +1782,28 @@ "Now that we have a well-initialized and solved flowsheet, we can add process economics and optimize the revenue. We utilize IDAES costing tools to calculate reactor and flash vessel capital cost, and implement surrogate models to account for heat exchanger capital costs, reactor operating costs and utility costs for heating, cooling and electricity. As before, revenue is determined from total liquid methanol sales, operating costs, annualized capital costs and feed raw material costs. The flowsheet report method returns key process results, which are updated for new results with the presence of a recycle stream:" ] }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.CH3OH.properties[0.0].scaling_factor' that contains 7 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.EXHAUST.properties[0.0].scaling_factor' that contains 4 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.S101.recycle_state[0.0].scaling_factor' that contains 4 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.S101.purge_state[0.0].scaling_factor' that contains 4 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.S101.mixed_state[0.0].scaling_factor' that contains 4 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.F101.split.scaling_factor' that\n", - "contains 24 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_out[0.0].scaling_factor' that contains 13\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_in[0.0].scaling_factor' that contains 13\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.F101.control_volume.scaling_factor'\n", - "that contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H102.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H102.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.properties_isentropic[0.0].scaling_factor' that contains 8 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.control_volume.properties_in[0.0].scaling_factor' that contains 8\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.T101.control_volume.scaling_factor'\n", - "that contains 1 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.reactions[0.0].scaling_factor' that contains 1\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.C101.control_volume.properties_out[0.0].scaling_factor' that contains 8\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.C101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M102.mixed_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M102.recycle_state[0.0].scaling_factor' that contains 6 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.M102.feed_state[0.0].scaling_factor'\n", - "that contains 6 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.mixed_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.CO_WGS_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.H2_WGS_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.CO.properties[0.0].scaling_factor'\n", - "that contains 15 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.H2.properties[0.0].scaling_factor'\n", - "that contains 15 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CH3OH.scaling_factor' that contains 11 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.H2.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CO.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CH4.scaling_factor' that contains 8 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_VLE.CH3OH.scaling_factor' that contains 23 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.thermo_params_VLE.H2.scaling_factor'\n", - "that contains 8 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": false + }, + "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix 'fs.thermo_params_VLE.CO.scaling_factor'\n", - "that contains 8 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 98\n", + "component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_VLE.CH4.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 190 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -3244,13 +1811,7 @@ "output_type": "stream", "text": [ "Ipopt 3.13.2: tol=1e-06\n", - "max_iter=100\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "max_iter=100\n", "\n", "\n", "******************************************************************************\n", @@ -3292,17 +1853,16 @@ " 1 -2.9074832e+07 5.76e+04 4.22e+03 -1.0 1.20e+05 - 5.03e-02 9.90e-01h 1\n", " 2 -2.9080637e+07 5.71e+02 3.82e+03 -1.0 5.72e+04 - 9.81e-01 9.90e-01h 1\n", " 3 -2.9080695e+07 5.22e-05 1.00e+03 -1.0 5.67e+02 - 9.90e-01 1.00e+00h 1\n", - " 4 -2.9080695e+07 6.98e-10 9.90e+04 -1.0 5.22e-05 - 9.90e-01 1.00e+00h 1\n", - "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", + " 4 -2.9080695e+07 1.40e-09 9.90e+04 -1.0 5.22e-05 - 9.90e-01 1.00e+00h 1\n", "\n", "Number of Iterations....: 4\n", "\n", " (scaled) (unscaled)\n", - "Objective...............: -4.4953175283791907e+01 -2.9080695361147862e+07\n", - "Dual infeasibility......: 9.9999999999985807e+06 6.4691081725719443e+12\n", - "Constraint violation....: 4.5474735088646412e-12 6.9849193096160889e-10\n", + "Objective...............: -4.4953175283791850e+01 -2.9080695361147840e+07\n", + "Dual infeasibility......: 2.1493237944298540e-06 1.3904208124051489e+00\n", + "Constraint violation....: 4.5474735088646412e-12 1.3969838619232178e-09\n", "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 4.5474735088646412e-12 6.4691081725719443e+12\n", + "Overall NLP error.......: 4.5474735088646412e-12 1.3904208124051489e+00\n", "\n", "\n", "Number of objective function evaluations = 5\n", @@ -3312,8 +1872,8 @@ "Number of equality constraint Jacobian evaluations = 5\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 4\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.005\n", - "Total CPU secs in NLP function evaluations = 0.000\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.013\n", + "Total CPU secs in NLP function evaluations = 0.002\n", "\n", "EXIT: Optimal Solution Found.\n" ] @@ -3334,27 +1894,27 @@ "These coefficients should follow 1*CO + 2*H2 => 1*CH3OH\n", "\n", "Reaction conversion: 0.75\n", - "Reactor duty (MW): -45.22029794711383\n", + "Reactor duty (MW): -45.22029794711382\n", "Duty from Reaction (MW)): 21.536645732999325\n", - "Compressor work (MW): 4.9022090500807066e-15\n", - "Turbine work (MW): -0.95937850239144\n", - "Feed Mixer outlet temperature (C)): 20.051714213753144\n", - "Recycle Mixer outlet temperature (C)): 20.056485612776044\n", - "Feed Compressor outlet temperature (C)): 20.056485612776157\n", + "Compressor work (MW): -5.562384174525762e-19\n", + "Turbine work (MW): -0.9593785023914313\n", + "Feed Mixer outlet temperature (C)): 20.051714213753314\n", + "Recycle Mixer outlet temperature (C)): 20.056485612776214\n", + "Feed Compressor outlet temperature (C)): 20.056485612776328\n", "Feed Compressor outlet pressure (Pa)): 5100000.0\n", "Heater outlet temperature (C)): 215.0\n", "Reactor outlet temperature (C)): 234.0\n", - "Turbine outlet temperature (C)): 192.87840947667905\n", + "Turbine outlet temperature (C)): 192.87840947667956\n", "Turbine outlet pressure (Pa)): 3100000.0\n", "Cooler outlet temperature (C)): 134.0\n", "Flash outlet temperature (C)): 134.0\n", "Purge percentage (amount of vapor vented to exhaust): 99.99 %\n", - "Methanol recovery(%): 60.00598493491174\n", - "annualized capital cost ($/year) = 219794.2325658716\n", - "operating cost ($/year) = 380711692.18370014\n", - "sales ($/year) = 64691081725.72809\n", + "Methanol recovery(%): 60.005984934911716\n", + "annualized capital cost ($/year) = 219794.23256587196\n", + "operating cost ($/year) = 380711692.1836997\n", + "sales ($/year) = 64691081725.72806\n", "raw materials cost ($/year) = 35229454878.16397\n", - "revenue (1000$/year)= 29080695.36114785\n", + "revenue (1000$/year)= 29080695.36114782\n", "\n", "\n", "====================================================================================\n", @@ -3444,179 +2004,7 @@ "text": [ "\n", "Solving optimization problem...\n", - "WARNING: model contains export suffix\n", - "'fs.CH3OH.properties[0.0].scaling_factor' that contains 7 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.EXHAUST.properties[0.0].scaling_factor' that contains 4 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.S101.recycle_state[0.0].scaling_factor' that contains 4 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.S101.purge_state[0.0].scaling_factor' that contains 4 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.S101.mixed_state[0.0].scaling_factor' that contains 4 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.F101.split.scaling_factor' that\n", - "contains 24 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_out[0.0].scaling_factor' that contains 13\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.F101.control_volume.properties_in[0.0].scaling_factor' that contains 13\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H102.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H102.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.properties_isentropic[0.0].scaling_factor' that contains 8 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.T101.control_volume.properties_in[0.0].scaling_factor' that contains 8\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.reactions[0.0].scaling_factor' that contains 1\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.R101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_out[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.H101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.C101.control_volume.properties_out[0.0].scaling_factor' that contains 8\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.C101.control_volume.properties_in[0.0].scaling_factor' that contains 7\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 96\n", "component keys that are not exported as part of the NL file. Skipping.\n" ] }, @@ -3624,144 +2012,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.M102.mixed_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M102.recycle_state[0.0].scaling_factor' that contains 6 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.M102.feed_state[0.0].scaling_factor'\n", - "that contains 6 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.mixed_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.CO_WGS_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.M101.H2_WGS_state[0.0].scaling_factor' that contains 6 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.CO.properties[0.0].scaling_factor'\n", - "that contains 15 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.H2.properties[0.0].scaling_factor'\n", - "that contains 15 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CH3OH.scaling_factor' that contains 11 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.H2.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CO.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_vapor.CH4.scaling_factor' that contains 8 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_VLE.CH3OH.scaling_factor' that contains 23 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.thermo_params_VLE.H2.scaling_factor'\n", - "that contains 8 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.thermo_params_VLE.CO.scaling_factor'\n", - "that contains 8 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.thermo_params_VLE.CH4.scaling_factor' that contains 8 component keys that\n", - "are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 190 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -3769,13 +2021,7 @@ "output_type": "stream", "text": [ "Ipopt 3.13.2: tol=1e-06\n", - "max_iter=100\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "max_iter=100\n", "\n", "\n", "******************************************************************************\n", @@ -3815,7 +2061,13 @@ "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", " 0 -2.8497829e+07 2.79e+04 1.00e+02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", " 1 -2.8431118e+07 2.74e+04 9.77e+01 -1.0 8.82e+06 - 4.99e-02 1.94e-02h 1\n", - " 2 -2.8430711e+07 2.74e+04 7.81e+02 -1.0 8.52e+06 - 3.76e-02 1.99e-04h 1\n", + " 2 -2.8430711e+07 2.74e+04 7.81e+02 -1.0 8.52e+06 - 3.76e-02 1.99e-04h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " 3 -2.8524881e+07 2.48e+04 1.61e+05 -1.0 6.46e+06 - 2.49e-04 9.25e-02f 1\n", " 4 -2.8526701e+07 2.48e+04 1.61e+05 -1.0 5.76e+06 - 5.84e-02 9.84e-04h 1\n", " 5 -2.8554187e+07 2.48e+04 1.60e+05 -1.0 1.49e+07 - 3.31e-03 8.96e-04h 1\n", @@ -3830,49 +2082,55 @@ " 13 -4.3718128e+07 4.53e+04 1.94e+06 -1.0 3.57e+06 - 5.80e-01 3.23e-04h 1\n", " 14 -4.3760522e+07 4.51e+04 4.15e+07 -1.0 3.56e+06 - 4.25e-01 5.93e-03h 1\n", " 15 -4.4646098e+07 7.99e+04 5.37e+07 -1.0 3.54e+06 - 6.75e-01 1.23e-01h 4\n", - " 16 -6.6609948e+07 4.70e+04 6.17e+06 -1.0 3.14e+06 - 7.83e-01 9.90e-01H 1\n", - " 17 -6.5995574e+07 4.70e+04 3.11e+06 -1.0 2.01e+07 - 3.61e-03 3.25e-03h 5\n", - " 18 -6.5244336e+07 4.71e+04 3.13e+07 -1.0 1.74e+07 - 4.59e-05 4.34e-03h 5\n", - " 19 -6.4062606e+07 2.26e+03 9.67e+06 -1.0 7.97e+04 - 3.33e-04 9.87e-01h 1\n", + " 16 -6.6609954e+07 4.70e+04 6.17e+06 -1.0 3.14e+06 - 7.83e-01 9.90e-01H 1\n", + " 17 -6.5995579e+07 4.70e+04 3.11e+06 -1.0 2.01e+07 - 3.61e-03 3.25e-03h 5\n", + " 18 -6.5244340e+07 4.71e+04 3.13e+07 -1.0 1.74e+07 - 4.59e-05 4.34e-03h 5\n", + " 19 -6.4062612e+07 2.26e+03 9.67e+06 -1.0 7.97e+04 - 3.33e-04 9.87e-01h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 -6.4049002e+07 1.77e+03 8.54e+03 -1.0 2.65e+03 - 9.89e-01 1.00e+00h 1\n", - " 21 -6.5078492e+07 1.26e+03 4.14e+05 -1.0 1.04e+05 - 9.50e-01 9.92e-01f 1\n", - " 22 -7.5331202e+07 1.38e+05 3.86e+06 -1.0 1.20e+06 - 2.40e-01 1.00e+00f 1\n", - " 23 -7.4656453e+07 9.99e+04 2.12e+06 -1.0 1.07e+05 -4.0 9.90e-01 2.77e-01h 1\n", - " 24 -7.4647249e+07 9.94e+04 2.08e+06 -1.0 7.74e+04 -4.5 5.39e-01 5.21e-03h 1\n", - " 25 -7.4611354e+07 9.73e+04 2.02e+06 -1.0 7.24e+04 -5.0 1.00e+00 2.07e-02h 1\n", - " 26 -7.4417188e+07 8.61e+04 1.78e+06 -1.0 7.10e+04 -5.4 5.90e-01 1.15e-01h 1\n", - " 27 -7.4386526e+07 8.46e+04 1.75e+06 -1.0 7.83e+04 -5.9 1.23e-02 1.80e-02h 1\n", - " 28 -7.2736872e+07 3.01e+02 1.72e+06 -1.0 1.09e+05 -6.4 1.06e-04 1.00e+00h 1\n", - " 29 -7.2723082e+07 1.43e-01 6.52e+02 -1.0 5.95e+02 -6.9 1.00e+00 1.00e+00h 1\n", + " 20 -6.4049009e+07 1.77e+03 8.54e+03 -1.0 2.65e+03 - 9.89e-01 1.00e+00h 1\n", + " 21 -6.5078499e+07 1.26e+03 4.14e+05 -1.0 1.04e+05 - 9.50e-01 9.92e-01f 1\n", + " 22 -7.5331204e+07 1.38e+05 3.86e+06 -1.0 1.20e+06 - 2.40e-01 1.00e+00f 1\n", + " 23 -7.4656456e+07 9.99e+04 2.12e+06 -1.0 1.07e+05 -4.0 9.90e-01 2.77e-01h 1\n", + " 24 -7.4647252e+07 9.94e+04 2.08e+06 -1.0 7.74e+04 -4.5 5.39e-01 5.21e-03h 1\n", + " 25 -7.4611357e+07 9.73e+04 2.02e+06 -1.0 7.24e+04 -5.0 1.00e+00 2.07e-02h 1\n", + " 26 -7.4417191e+07 8.61e+04 1.78e+06 -1.0 7.10e+04 -5.4 5.90e-01 1.15e-01h 1\n", + " 27 -7.4386529e+07 8.46e+04 1.75e+06 -1.0 7.83e+04 -5.9 1.23e-02 1.80e-02h 1\n", + " 28 -7.2736876e+07 3.01e+02 1.72e+06 -1.0 1.09e+05 -6.4 1.06e-04 1.00e+00h 1\n", + " 29 -7.2723086e+07 1.43e-01 6.52e+02 -1.0 5.95e+02 -6.9 1.00e+00 1.00e+00h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 -7.2723222e+07 7.89e-05 2.09e+01 -1.7 1.63e+02 -7.3 1.00e+00 1.00e+00f 1\n", - " 31 -8.6816123e+07 8.68e+03 9.78e+05 -2.5 5.17e+06 - 2.86e-02 5.98e-01f 1\n", - " 32 -8.6799976e+07 8.39e+03 5.89e+05 -2.5 1.65e+04 -7.8 9.53e-01 3.34e-02h 1\n", - " 33 -8.6300379e+07 1.51e+01 7.15e+04 -2.5 2.25e+04 -8.3 8.28e-02 1.00e+00h 1\n", - " 34 -8.6315273e+07 4.51e-03 1.67e+00 -2.5 3.37e+03 -8.8 1.00e+00 1.00e+00h 1\n", - " 35 -8.6355832e+07 4.54e-02 7.17e-02 -2.5 1.03e+04 -9.2 1.00e+00 1.00e+00f 1\n" + " 30 -7.2723226e+07 7.89e-05 2.09e+01 -1.7 1.63e+02 -7.3 1.00e+00 1.00e+00f 1\n", + " 31 -8.6816186e+07 8.68e+03 9.78e+05 -2.5 5.17e+06 - 2.86e-02 5.98e-01f 1\n", + " 32 -8.6800038e+07 8.39e+03 5.89e+05 -2.5 1.65e+04 -7.8 9.53e-01 3.34e-02h 1\n", + " 33 -8.6300445e+07 1.51e+01 7.15e+04 -2.5 2.25e+04 -8.3 8.28e-02 1.00e+00h 1\n", + " 34 -8.6315340e+07 4.51e-03 1.67e+00 -2.5 3.37e+03 -8.8 1.00e+00 1.00e+00h 1\n", + " 35 -8.6355898e+07 4.54e-02 7.17e-02 -2.5 1.03e+04 -9.2 1.00e+00 1.00e+00f 1\n", + " 36 -8.6484852e+07 3.89e-01 3.04e+03 -5.7 3.04e+04 -9.7 9.89e-01 1.00e+00f 1\n", + " 37 -8.6863673e+07 3.35e+00 6.38e-01 -5.7 9.16e+04 -10.2 1.00e+00 9.94e-01f 1\n", + " 38 -8.7407084e+07 7.89e+00 3.54e-01 -5.7 2.74e+05 -10.7 1.00e+00 4.78e-01f 1\n", + " 39 -9.0728134e+07 2.04e+02 2.21e+00 -5.7 8.01e+05 -11.2 1.00e+00 1.00e+00f 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - " 36 -8.6484786e+07 3.89e-01 3.04e+03 -5.7 3.04e+04 -9.7 9.89e-01 1.00e+00f 1\n", - " 37 -8.6863607e+07 3.35e+00 6.38e-01 -5.7 9.16e+04 -10.2 1.00e+00 9.94e-01f 1\n", - " 38 -8.7407007e+07 7.89e+00 3.54e-01 -5.7 2.74e+05 -10.7 1.00e+00 4.78e-01f 1\n", - " 39 -9.0728057e+07 2.04e+02 2.21e+00 -5.7 8.01e+05 -11.2 1.00e+00 1.00e+00f 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 -9.9495392e+07 6.13e+02 3.85e+00 -5.7 2.39e+06 -11.6 1.00e+00 9.06e-01f 1\n", - " 41 -9.9495416e+07 6.13e+02 3.85e+00 -5.7 5.53e+06 -12.1 1.07e-01 1.10e-06h 1\n", - " 42 -1.0301582e+08 3.81e+04 2.43e+01 -5.7 7.11e+06 -12.6 3.99e-01 1.44e-01f 1\n", - " 43 -1.0301583e+08 3.81e+04 3.36e+01 -5.7 1.39e+06 - 6.86e-01 1.25e-06h 2\n", + " 40 -9.9495400e+07 6.13e+02 3.85e+00 -5.7 2.39e+06 -11.6 1.00e+00 9.06e-01f 1\n", + " 41 -9.9495423e+07 6.13e+02 3.85e+00 -5.7 5.53e+06 -12.1 1.07e-01 1.10e-06h 1\n", + " 42 -1.0301584e+08 3.81e+04 2.43e+01 -5.7 7.11e+06 -12.6 3.99e-01 1.44e-01f 1\n", + " 43 -1.0301584e+08 3.81e+04 3.36e+01 -5.7 1.39e+06 - 6.86e-01 1.25e-06h 2\n", " 44 -1.0436645e+08 3.42e+05 1.56e+01 -5.7 2.02e+06 - 1.00e+00 1.00e+00h 1\n", - " 45 -1.0441853e+08 3.22e+05 1.44e+01 -5.7 4.91e+06 - 9.43e-01 7.95e-02h 1\n", - " 46 -1.0439096e+08 2.72e+05 1.22e+01 -5.7 1.25e+07 - 2.29e-01 1.53e-01h 1\n", - " 47 -1.0436186e+08 2.08e+05 9.28e+00 -5.7 6.35e+05 - 1.00e+00 2.38e-01h 1\n", + " 45 -1.0441854e+08 3.22e+05 1.44e+01 -5.7 4.91e+06 - 9.43e-01 7.95e-02h 1\n", + " 46 -1.0439096e+08 2.72e+05 1.22e+01 -5.7 1.25e+07 - 2.29e-01 1.54e-01h 1\n", + " 47 -1.0436186e+08 2.07e+05 9.28e+00 -5.7 6.35e+05 - 1.00e+00 2.38e-01h 1\n", " 48 -1.0427962e+08 1.89e+04 8.38e-01 -5.7 2.21e+05 - 1.00e+00 9.09e-01h 1\n", - " 49 -1.0427372e+08 1.22e+01 8.52e-02 -5.7 2.01e+04 - 1.00e+00 1.00e+00h 1\n", + " 49 -1.0427372e+08 1.22e+01 8.52e-02 -5.7 2.01e+04 - 1.00e+00 1.00e+00h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", " 50 -1.0427510e+08 3.31e+02 1.55e+00 -5.7 5.86e+04 -13.1 1.00e+00 9.55e-01h 1\n", " 51 -1.0427510e+08 2.94e+02 5.87e+01 -5.7 2.24e+04 - 7.65e-02 1.13e-01f 1\n", @@ -3881,8 +2139,8 @@ " 54 -1.0427839e+08 2.40e+03 4.05e+01 -5.7 1.34e+05 - 4.18e-01 2.55e-01h 1\n", " 55 -1.0427605e+08 1.01e+03 2.12e+01 -5.7 9.49e+04 - 4.92e-01 1.00e+00h 1\n", " 56 -1.0427605e+08 6.84e-03 5.30e+01 -5.7 1.43e+03 - 2.80e-01 1.00e+00h 1\n", - " 57 -1.0427605e+08 6.92e-04 5.08e-03 -5.7 1.97e+02 - 1.00e+00 1.00e+00h 1\n", - " 58 -1.0427606e+08 1.10e-02 4.86e+00 -5.7 3.32e+02 -10.4 4.14e-01 1.00e+00h 1\n", + " 57 -1.0427605e+08 6.93e-04 5.08e-03 -5.7 1.97e+02 - 1.00e+00 1.00e+00h 1\n", + " 58 -1.0427606e+08 1.10e-02 4.86e+00 -5.7 3.31e+02 -10.4 4.14e-01 1.00e+00h 1\n", " 59 -1.0427605e+08 2.11e-03 5.96e-01 -5.7 2.09e+02 - 2.89e-01 1.00e+00h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", " 60 -1.0427605e+08 7.75e-05 1.67e-01 -5.7 3.44e+02 - 5.92e-01 1.00e+00h 1\n", @@ -3899,17 +2157,17 @@ " 70 -1.0427883e+08 1.43e-01 9.49e-05 -5.7 1.47e+04 - 1.00e+00 1.00e+00h 1\n", " 71 -1.0427883e+08 7.08e-03 1.45e-08 -5.7 2.57e+03 - 1.00e+00 1.00e+00h 1\n", " 72 -1.0427884e+08 5.67e-04 5.09e-06 -8.6 1.47e+03 - 1.00e+00 1.00e+00h 1\n", - " 73 -1.0427884e+08 1.86e-09 3.49e-13 -8.6 6.91e-01 - 1.00e+00 1.00e+00h 1\n", - " 74 -1.0427884e+08 9.31e-10 9.31e-12 -10.9 1.99e+00 - 1.00e+00 1.00e+00h 1\n", + " 73 -1.0427884e+08 1.86e-09 4.62e-13 -8.6 6.91e-01 - 1.00e+00 1.00e+00h 1\n", + " 74 -1.0427884e+08 1.40e-09 9.30e-12 -10.9 1.99e+00 - 1.00e+00 1.00e+00h 1\n", "\n", "Number of Iterations....: 74\n", "\n", " (scaled) (unscaled)\n", - "Objective...............: -1.6119507851269793e+02 -1.0427883997850099e+08\n", - "Dual infeasibility......: 9.3066982868688585e-12 6.0206037947252707e-06\n", - "Constraint violation....: 1.0186340659856796e-10 9.3132257461547852e-10\n", - "Complementarity.........: 1.4067955349081809e-11 9.1007124920134500e-06\n", - "Overall NLP error.......: 1.0186340659856796e-10 9.1007124920134500e-06\n", + "Objective...............: -1.6119507851269799e+02 -1.0427883997850099e+08\n", + "Dual infeasibility......: 9.3031457019390660e-12 6.0183055891049595e-06\n", + "Constraint violation....: 1.0186340659856796e-10 1.3969838619232178e-09\n", + "Complementarity.........: 1.4067955349081809e-11 9.1007124920134466e-06\n", + "Overall NLP error.......: 1.0186340659856796e-10 9.1007124920134466e-06\n", "\n", "\n", "Number of objective function evaluations = 109\n", @@ -3920,7 +2178,7 @@ "Number of inequality constraint Jacobian evaluations = 75\n", "Number of Lagrangian Hessian evaluations = 74\n", "Total CPU secs in IPOPT (w/o function evaluations) = 0.060\n", - "Total CPU secs in NLP function evaluations = 0.010\n", + "Total CPU secs in NLP function evaluations = 0.009\n", "\n", "EXIT: Optimal Solution Found.\n" ] @@ -3941,24 +2199,24 @@ "These coefficients should follow 1*CO + 2*H2 => 1*CH3OH\n", "\n", "Reaction conversion: 0.8500000099996615\n", - "Reactor duty (MW): -59.34022107299144\n", + "Reactor duty (MW): -59.34022107299143\n", "Duty from Reaction (MW)): 28.216865165267237\n", - "Compressor work (MW): 8.44420706806932e-25\n", - "Turbine work (MW): -2.491301208383534\n", - "Feed Mixer outlet temperature (C)): 20.051714213753428\n", - "Recycle Mixer outlet temperature (C)): 41.54321437801781\n", - "Feed Compressor outlet temperature (C)): 41.54321437801781\n", + "Compressor work (MW): 3.5544149580620033e-25\n", + "Turbine work (MW): -2.4913012083835593\n", + "Feed Mixer outlet temperature (C)): 20.0517142137536\n", + "Recycle Mixer outlet temperature (C)): 41.54321437801798\n", + "Feed Compressor outlet temperature (C)): 41.54321437801798\n", "Feed Compressor outlet pressure (Pa)): 5100000.0\n", "Heater outlet temperature (C)): 215.0\n", "Reactor outlet temperature (C)): 231.85000478420352\n", - "Turbine outlet temperature (C)): 141.50037862881612\n", - "Turbine outlet pressure (Pa)): 1487177.2483577346\n", + "Turbine outlet temperature (C)): 141.50037862881595\n", + "Turbine outlet pressure (Pa)): 1487177.2483577342\n", "Cooler outlet temperature (C)): 52.56999699056837\n", "Flash outlet temperature (C)): 134.0\n", "Purge percentage (amount of vapor vented to exhaust): 9.999999000026644 %\n", - "Methanol recovery(%): 92.05882105498138\n", - "annualized capital cost ($/year) = 259559.90821304667\n", - "operating cost ($/year) = 525130020.7095513\n", + "Methanol recovery(%): 92.0588210549814\n", + "annualized capital cost ($/year) = 259559.90821304618\n", + "operating cost ($/year) = 525130020.7095519\n", "sales ($/year) = 140033684437.28275\n", "raw materials cost ($/year) = 35229454878.16397\n", "revenue (1000$/year)= 104278839.978501\n", @@ -4118,9 +2376,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis_test.ipynb b/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis_test.ipynb index a7ec0962..02baea16 100644 --- a/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis_test.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -730,4 +731,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis_usr.ipynb b/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis_usr.ipynb index 86592750..6e4ec273 100644 --- a/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis_usr.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/methanol_synthesis_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -626,4 +627,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/flowsheets/solver_captured.py b/idaes_examples/notebooks/docs/flowsheets/solver_captured.py index faaab841..1e4af4b7 100644 --- a/idaes_examples/notebooks/docs/flowsheets/solver_captured.py +++ b/idaes_examples/notebooks/docs/flowsheets/solver_captured.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# """ Captured solver diff --git a/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption.ipynb b/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption.ipynb index bdb4a02b..0a91523e 100644 --- a/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption_doc.ipynb b/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption_doc.ipynb index 31202935..8aa8f6f5 100644 --- a/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption_doc.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -364,16 +365,70 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-10-26 15:28:28 [INFO] idaes.init.fs.tsa: Starting fixed bed TSA initialization\n", - "2023-10-26 15:28:45 [INFO] idaes.init.fs.tsa.heating: Starting initialization of heating step.\n", - "2023-10-26 15:28:47 [INFO] idaes.init.fs.tsa.heating: Initialization of heating step completed optimal - Optimal Solution Found.\n", - "2023-10-26 15:29:01 [INFO] idaes.init.fs.tsa.cooling: Starting initialization of cooling step.\n", - "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.cooling: Initialization of cooling step completed optimal - Optimal Solution Found.\n", - "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.pressurization: Starting initialization of pressurization step.\n", - "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.pressurization: Initialization of pressurization step completed optimal - Optimal Solution Found.\n", - "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.adsorption: Starting initialization of adsorption step.\n", - "2023-10-26 15:29:04 [INFO] idaes.init.fs.tsa.adsorption: Initialization of adsorption step completed optimal - Optimal Solution Found.\n", - "2023-10-26 15:29:13 [INFO] idaes.init.fs.tsa: Initialization of fixed bed TSA model completed optimal - Optimal Solution Found.\n" + "2025-03-17 17:33:31 [INFO] idaes.init.fs.tsa: Starting fixed bed TSA initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:32 [INFO] idaes.init.fs.tsa.heating: Starting initialization of heating step.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:32 [INFO] idaes.init.fs.tsa.heating: Initialization of heating step completed optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:33 [INFO] idaes.init.fs.tsa.cooling: Starting initialization of cooling step.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:33 [INFO] idaes.init.fs.tsa.cooling: Initialization of cooling step completed optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:33 [INFO] idaes.init.fs.tsa.pressurization: Starting initialization of pressurization step.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:33 [INFO] idaes.init.fs.tsa.pressurization: Initialization of pressurization step completed optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:33 [INFO] idaes.init.fs.tsa.adsorption: Starting initialization of adsorption step.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:33 [INFO] idaes.init.fs.tsa.adsorption: Initialization of adsorption step completed optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:33:34 [INFO] idaes.init.fs.tsa: Initialization of fixed bed TSA model completed optimal - Optimal Solution Found.\n" ] } ], @@ -403,14 +458,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix 'fs.tsa.cooling.scaling_factor' that\n", - "contains 4 component keys that are not exported as part of the NL file.\n", - "Skipping.\n", - "WARNING: model contains export suffix 'fs.tsa.heating.scaling_factor' that\n", - "contains 2 component keys that are not exported as part of the NL file.\n", - "Skipping.\n", - "WARNING: model contains export suffix 'fs.tsa.scaling_factor' that contains 12\n", - "component keys that are not exported as part of the NL file. Skipping.\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 9\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Ipopt 3.13.2: nlp_scaling_method=user-scaling\n", "tol=1e-06\n", "\n", @@ -451,18 +506,30 @@ "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", " 0 0.0000000e+00 3.63e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 1.06e+00 3.00e+03 -1.0 4.96e+00 - 9.90e-01 9.90e-01h 1\n", + " 1 0.0000000e+00 1.06e+00 3.00e+03 -1.0 4.96e+00 - 9.90e-01 9.90e-01h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " 2 0.0000000e+00 4.90e-03 4.83e+03 -1.0 4.91e+00 - 9.90e-01 9.96e-01h 1\n", - " 3 0.0000000e+00 2.44e-07 4.53e+00 -1.0 2.25e-02 - 1.00e+00 1.00e+00h 1\n", + " 3 0.0000000e+00 2.78e-07 4.53e+00 -1.0 2.25e-02 - 1.00e+00 1.00e+00h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Number of Iterations....: 3\n", "\n", " (scaled) (unscaled)\n", "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 1.0710209608078003e-07 2.4400780240796394e-07\n", + "Constraint violation....: 1.0803341865539551e-07 2.7837979033051852e-07\n", "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 1.0710209608078003e-07 2.4400780240796394e-07\n", + "Overall NLP error.......: 1.0803341865539551e-07 2.7837979033051852e-07\n", "\n", "\n", "Number of objective function evaluations = 4\n", @@ -472,8 +539,8 @@ "Number of equality constraint Jacobian evaluations = 4\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 3.208\n", - "Total CPU secs in NLP function evaluations = 0.089\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.464\n", + "Total CPU secs in NLP function evaluations = 0.013\n", "\n", "EXIT: Optimal Solution Found.\n" ] @@ -499,7 +566,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -543,6 +610,198 @@ " Concentration of CO2 emitted to atmosphere [ppm] 13803.\n", "====================================================================================\n" ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "
Equipmentfs.H101fs.R101fs.F101fs.F102fs.D101fs.H102
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Value
Adsorption temperature [K]310.000000
Desorption temperature [K]430.000000
Heating temperature [K]440.000000
Cooling temperature [K]300.000000
Column diameter [m]0.030000
Column length [m]1.200000
Column volume [m3]0.000848
CO2 mole fraction at feed [%]12.000000
Feed flow rate [mol/s]0.009600
Feed velocity [m/s]0.500077
Minimum fluidization velocity [m/s]1.520736
Time of heating step [h]0.370300
Time of cooling step [h]0.208258
Time of pressurization step [h]0.005110
Time of adsorption step [h]0.252212
Cycle time [h]0.835880
Purity [-]0.902192
Recovery [-]0.898726
Productivity [kg CO2/ton/h]84.085281
Specific energy [MJ/kg CO2]3.653238
Heat duty per bed [MW]0.000051
Heat duty total [MW]0.000166
Pressure drop [Pa]5263.600021
Number of beds3.248381
CO2 captured in one cycle per bed [kg/cycle]0.042210
Cycles per year10479.973784
Total CO2 captured per year [tonne/year]1.436938
Amount of flue gas processed per year [Gmol/year]0.000303
Amount of flue gas processed per year (target) [Gmol/year]0.000303
Amount of CO2 to atmosphere [mol/s]0.000117
Concentration of CO2 emitted to atmosphere [ppm]13802.815041
\n", + "
" + ], + "text/plain": [ + " Value\n", + "Adsorption temperature [K] 310.000000\n", + "Desorption temperature [K] 430.000000\n", + "Heating temperature [K] 440.000000\n", + "Cooling temperature [K] 300.000000\n", + "Column diameter [m] 0.030000\n", + "Column length [m] 1.200000\n", + "Column volume [m3] 0.000848\n", + "CO2 mole fraction at feed [%] 12.000000\n", + "Feed flow rate [mol/s] 0.009600\n", + "Feed velocity [m/s] 0.500077\n", + "Minimum fluidization velocity [m/s] 1.520736\n", + "Time of heating step [h] 0.370300\n", + "Time of cooling step [h] 0.208258\n", + "Time of pressurization step [h] 0.005110\n", + "Time of adsorption step [h] 0.252212\n", + "Cycle time [h] 0.835880\n", + "Purity [-] 0.902192\n", + "Recovery [-] 0.898726\n", + "Productivity [kg CO2/ton/h] 84.085281\n", + "Specific energy [MJ/kg CO2] 3.653238\n", + "Heat duty per bed [MW] 0.000051\n", + "Heat duty total [MW] 0.000166\n", + "Pressure drop [Pa] 5263.600021\n", + "Number of beds 3.248381\n", + "CO2 captured in one cycle per bed [kg/cycle] 0.042210\n", + "Cycles per year 10479.973784\n", + "Total CO2 captured per year [tonne/year] 1.436938\n", + "Amount of flue gas processed per year [Gmol/year] 0.000303\n", + "Amount of flue gas processed per year (target) ... 0.000303\n", + "Amount of CO2 to atmosphere [mol/s] 0.000117\n", + "Concentration of CO2 emitted to atmosphere [ppm] 13802.815041" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -561,12 +820,12 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAKnCAYAAADgN8aBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+C0lEQVR4nOzdeVwU9f8H8Nfe3LdcgoK3qCBiIpp5cXhkZn77WpqapaVhP5WytDxSM4/KtMIj8+hbmaZlap6I4H0ieIsXisolICznssf8/kC2Ja5ddmBm2ffz8eDhMjvzmTfvWXwzM5/5fAQMwzAghBBCiN6EXAdACCGEmBoqnoQQQoiBqHgSQgghBqLiSQghhBiIiichhBBiICqehBBCiIGoeBJCCCEGouJJCCGEGEjMdQB8oNFokJaWBltbWwgEAq7DIYQQwgGGYVBQUABPT08IhbWfW1LxBJCWlgZvb2+uwyCEEMIDDx8+hJeXV63rUPEEYGtrCwBISUmBk5MTx9Hwm1KpxKFDhxAeHg6JRMJ1OLzHWr7u3AHatGEvMJ7i3edLN+88PAa8yxePaXPVqhUkHTtWu45cLoe3t7e2JtSGiiegvVRra2sLOzs7jqPhN6VSCSsrK9jZ2dEvqx5Yy1dmJtCtG3uB8RTvPl+6eefhMeBdvnisIlf2WVkQBwfXuq4+t++owxAhpmDECK4jME+6eadj0CSIXn2VlXaoeBJCCCEGouJJCCGEGIiKJyGmYMcOriMwT7p5p2PQJKi3bmWlHSqehJiCGnoHkgamm3c6Bk0C06EDK+1Q8STEFHTqxHUE5kk373QMmgRx166stEPFkxBCCDEQFU9CCCHEQDRIAiE8pdEweJBbjNuZBQieuwD2XAdkjr74ovrXxGRpFi2CiIV2qHgSwgNqDYO7Twpx6WEerj7Ox7U0OW6ky1FUpgYAtHcLwUGOYzRLUVHVvyYmSzN9OhVPQkwRwzB4nFeCy4/ycelhHpKeFcyKQqlLJhZCodJg58fhyHo7D652FhxEbMasrYGioqqvickSOziwchypeBLSwJQa4MKDp0h8JEfC/ae49CgP2YVlVdazkorQubk9/Jvbo1NzO3TytEcrF2sM+/4kRBoNLjx4iiFdPDj4CcyYWl39a2K6WDqOvCmeS5cuxezZszFt2jSsXLkSubm5mD9/Pg4dOoTU1FQ0a9YML7/8MhYtWgR7+3/u/lQ3gO9vv/2G1157rTHDJ0TraVEZEh48xfkHubiQkoukhyKoz56vtI5YKEAHD1sEeDmUf3k7oI2rDUTCqp/n7i0dAQAJVDwJ4Q1eFM/z589j3bp18Pf31y5LS0tDWloavvrqK/j5+eHBgweYPHky0tLSsONfI31s2rQJgwYN0n7v4ODQWKETgrziMpy+m4OTd7Nx9l4ubmcV/msNAVxspHjOxwlBLR3RraUj/DzsYCHR785LUEtH7OgyEBcePGU/eFK7N9+s/jUxWZpx45rGPc/CwkKMGTMG69evx+eff65d3rlzZ/zxxx/a71u3bo3FixfjjTfegEqlglj8T+gODg5wd3dv1LiJ+SopU+Pc/VycupONk3ezcS1NDoapvE7rZtZ4zscJgd52KEy5hLEjwiCVSuu1v6CWjugTMRXix/koKVPDUsrGrz7Ry9q11b8mJksTHd00imdkZCSGDh2K0NDQSsWzOvn5+bCzs6tUOCvamDhxIlq1aoXJkydjwoQJtc7HplAooFAotN/L5XIA5fO9KZVKI36apq8iP+aUJ4ZhcD29APG3snHybg6SHuZBqa5cLVs3s0avVk7o2ar87NLZurxQKpVKxKQDKpVKrzkCq+NmI8bB/01DxLhVSLifjWDfpjthO98+X+LnnoPq/Pkqr/mCb/nis4ocibp3h/LChVrX0QenxXPr1q24ePEizuvxgczOzsaiRYvwzjvvVFq+cOFCDBgwAFZWVjh06BDee+89FBYW4v/+7/9qbGvJkiVYsGBBleVxcXGwsrIy/AcxQzExMVyH0KBK1UByngDX8wS4/lQAubJy4XOQMmhn/8+XvTQfQD5U91Nw9n7V9ozN1+AnqQCA32LOIseLqWNt08eXz9eL169j3759VV7zDV/yZQqYGzdqPI7FxcV6tyNgmH9fcGocDx8+RPfu3RETE6O919mvXz907doVK1eurLSuXC5HWFgYnJycsHv37lpnTJ83bx42bdqEhw8f1rhOdWee3t7eSE9Ph7Ozs3E/WBOnVCoRExODsLCwJjdz/f2cIsQlZyP+1hOcv/+00tmllVSEXq2c0KetC3q1dkJLJyu9ziTZypfA2gZtov5Ev3YuWD+2W73b4Tu+fb7EtrZQFRRUec0XfMsXn1Xk6qVRo2o8jnK5HC4uLtqrnLXh7MwzISEBWVlZ6Nbtn/8I1Go1jh07hu+//x4KhQIikQgFBQUYNGgQbG1tsXPnzjo/IMHBwVi0aBEUCgVkMlm168hksmrfk0gk9AHUU1PIFcMwSM4swL4rGdh/Jb1KR5+Wzlbo394VAzq4IriVE2Ti+t8pMTZfBc8FAwASH+ZDJBJDWE2v3KaEN5+vXr3+iUP3Nc/wJl8mgAkJqTFXhuSQs+I5cOBAXLlypdKyCRMmoEOHDvj4448hEokgl8sREREBmUyG3bt3w8Ki7gfEk5KS4OjoWGPhJOaNYRhcfSzH/qvp2H81AynZ/zwsLRYK0MPXCQM6uKJ/B1e0crGu931Ktlkci4fVgkPIL1HiZkYB/Dxr/6uYsOTIkepfE5OlPnSIlUHdOSuetra26Ny5c6Vl1tbWcHZ2RufOnSGXyxEeHo7i4mL88ssvkMvl2o49zZo1g0gkwp49e5CZmYmePXvCwsICMTEx+OKLL/Dhhx9y8SMRnmIYBpce5WPflXTsu5KOR09LtO9JxUK80LYZhnRxx8CObrC35Odf75LRryMoPArHb2fjbEoOFc/GMmoUsG1b1dfEZIlGjwa2bze6Hc5729bk4sWLOHv2LACgTZs2ld5LSUmBj48PJBIJoqOjMWPGDDAMgzZt2mDFihWYNGkSFyETnnmQU4S/EtPwV9LjSmeYFhIh+rd3xeAuHhjQwRU2Mt7+Gvxj1y70nLy4vHjey8WE3r5cR2Qedu2q/jUxWYI9e1hph1f/a8THx2tf9+vXD3X1ZRo0aFClwREIyS0qw97LadiZ+BgXU/O0yy0kQoR2dMPQLh7o274ZrKS8+ujrpWer8kdUzt3PBcMwvLmkTIg5Mr3/QQj5F7WGwfHbT/D7hYeIuZ6p7SUrFAC927hgRGBzhHdyN40zzJq4uKBLcwdYSITILSrD7axCtHOz5Tqqps/FpfrXxHSxdBxN+H8TYu4ePS3G9guPsP3CQ6Tll2qXd25uhxGBXhgW4AFX2yYyC8mjR5CifLShk3dycOZeDhXPxvDoUfWviclSpaSAjZ4NbHQ6IqTRqNQa7L+SjrEbzqLP8jisir2NtPxSOFhJ8GYvH+yf1gd/v98Hbz/v23QKJwDMnQsA6Olb/hzy2Xu5XEZjPp7lvcprYrKE8+ez0w4rrRDSwHIKFYiOu4M+y+Mw5deLOH47GwwD9G7jjG9fD8SZ2QPx2Uud0NGjifZC/fJLAEBwq2fFMyWnzj4BhAXP8l7lNTFZwhUrWGmHLtsSXrv6OB+bT93H7ktpKFNpAADO1lKMes4brz3XAi2czWs4xQBve8jEQmQXluHukyK0cbXhOiRCzBIVT8I7KrUG+69mYPOp+0jQmYbL38se40N8MNTfQ+/pvJoamViEwBYOOHMvF2dTcqh4EsIRKp6EN0rK1Nie8BDrj9/Dw9zygQwkIgGGdPHA+F4+CPR2MN/HM9LStC97tnIuL573cjEmuCWHQZkBnbxXek1MlurBA+owRJqGvOIyfBt7G72XHcG8XdfwMLcETtZSTBvYFidnDcCq1wLRrYWj+RZOANi7V/sy+FmnoTP36L5ng9PJe6XXxGQJWJoZh4on4UxaXgkW7rmOXkuPYEXMLeQWlcHL0RILh3fCyY8HYEZYu6bVY9YYOqNmBbZwgFQkRFaBAvdz9J9CidSD7mhlNHJZkyCaMoWVduiyLWl0j/NKEB13B9svPNQOaNDRww6T+7bC0C4eEIvob7raWEhE6OrtgHP3c3H2Xg58Xay5DokQs6NX8dy9e7fBDYeFhcHS0tLg7UjTlZ5fXjS3nf+naPZs5YQp/drghbYu5n1Z1kA9Wznh3P1cnLqbg9d6tOA6HELMjl7F8+WXXzaoUYFAgNu3b6NVq1b1iYk0MZnyUqyOu4Pfzj1Embr8cZOQVs6YEdYOPXydOI7OROiM+wyUDzv47ZE7OHknGxoN0+Tn9+SMbt7/dQyIaVIfPszKJVe928jIyICrq6te69ra0rBhpLwjUHTcHfx0+oH2Gc0evk6YEdoOIa2dOY7OtAW2cISVVIScojLcyJCjk6c91yERYlb0Kp7jx4836BLsG2+8ATu7JjrSC6lTqVKNn07dR3TcHchLVQCA7i0dERVWXjTp8mw99OsHlP4zfq9ULETPVs44cjMLJ25nU/FsKLp5/9cxIKZJFBrKynHUq3hu2rRJr8YKCwthY2ODNWvWGBUUMU0aDYO/kh7j60O38Div/DnNDu62+HhwB/Rr14yKJsueb+OCIzezcPx2Nt7t25rrcAgxK3p3a/zmm29qfb+goAARERFGB0RM04nb2Rj63QlE/X4Jj/NK4GFvgS//44+9/9cH/du7UuFsAH3alk+tdO5+LkqVao6jIcS86H3P85NPPoGzszPGjRtX5b2ioiIMGjQIOTk5rAZH+C81pxif772OQ9czAQC2FmK8168NJvT2Mdsh9BrE+vVVFrVxtYGbnQyZcgXO389Fn7bNOAisidPNezXHgJge9Zo1jdth6Oeff8bYsWPh4OCAl156Sbu8qKgIERERePLkCY4ePcpCSMQUlJSp8V3cPaw9dg9lKg1EQgHG9myJaQPbwtFaynV4Tc/QoVUWCQQCPN+mGf64+AgnbmdT8WwIunmv5hgQ08MMGcJKO3oXz//85z/Iy8vD66+/jr1796Jfv37aM87MzEwcPXoUHh4erARF+IthGCRmC7D025NIfzYBde82zpg/rBNNztyQPD2r7eTQp60L/rj4CMdvZ2M2B2E1ebp5r+EYENMibtmy8ToMVZg4cSJyc3MxfPhw7Nq1C/PmzUNaWhqOHj0KT09Po4Mh/HY/uwif/HkZp+6JAJSiuYMl5r7YERGd3OmeJkd6tym/73k9XY7sQgVcbGQcR0SIeTD40u9HH32E3NxcDBw4ED4+PoiPj4eXl1dDxEZ4QqnW4Idj9/Bt7G0oVBpIBAym9GuD9wa0pfuaHGtmK0MHd1vczCjAyTvZGN61OdchEWIW9O5t+8orr2i/bt26BYlEAhcXF0ybNq3Se/W1dOlSCAQCTJ8+XbustLQUkZGRcHZ2ho2NDUaOHInMzMxK26WmpmLo0KGwsrKCq6srZs6cCZVKVe84SGWJqU8x7LsT+PJgMhQqDXq1dsKsrmq8P6A1Fc7GNHNmjW9V9Lo9cTu7saIxH7p5r+UYENOhiYpipR29zzzt7Ss/hP3666+zEgAAnD9/HuvWrYO/v3+l5TNmzMDevXuxfft22NvbY+rUqXjllVdw8uRJAIBarcbQoUPh7u6OU6dOIT09HePGjYNEIsEXX3zBWnzmqKBUia8OJuN/Zx6AYQAnaynmDO2IFzu7Yv/+/VyHZ34WLarxrefbNsP64yk4fjsbDMPQJXQ26ea9lmNATIdmwQKw8We/3sVT34ESDFVYWIgxY8Zg/fr1+Pzzz7XL8/PzsWHDBmzZsgUDBgzQxtCxY0ecOXMGPXv2xKFDh3D9+nUcPnwYbm5u6Nq1KxYtWoSPP/4Yn332GaRS6vVZH3HJWZj9xxVkyMtvqr/SrTnmDPWDk7UUSqWS4+jMlJcX8OhRtW8F+zrBQiJEhrwUNzMK0NGDRvdijW7eazkGxHSIfX1ZOY6cT0kWGRmJoUOHIjQ0tFLxTEhIgFKpRGhoqHZZhw4d0KJFC5w+fRo9e/bE6dOn0aVLF7i5uWnXiYiIwJQpU3Dt2jUEBgZWu0+FQgGFQqH9Xi6XAwCUSqVZF4dChQpLDyRj24XHAABvR0ssGu6H3s/GodXNjznnyRBs5UucnQ1VDW2IAIS0ckJccjYOX0tHGxfTnc2Ib58v3bzXdgy4wrd88Zk2R9nZNebLkDzqVTxfeeUVbN68We/xaseMGYNvvvmmzoHkt27diosXL+L8+fNV3svIyIBUKoWDg0Ol5W5ubsjIyNCuo1s4K96veK8mS5YswYIFC6osj4uLg5WVVa0xN1V35MCWOyLkKMov+fX10OBF7wLkJ5/FvuSq68fExDRyhKbN2Hy9qNFg3759Nb7vUiYAIMLOs7fRouimUfviA758vnTzXtcx4BJf8mUKNLUcx+Ji/SeX16t47tq1C0+ePNGrQYZhsGfPHixatKjW4vnw4UNMmzYNMTExsLCw0C9alsyePRtROjeN5XI5vL290b9/fzg7m9dsHwqlGisO38Gm6+X3Nps7WGDZK50RXMNUYUqlEjExMQgLC4NEImnkaE0PW/kSDB+OIbU83B2QV4LtXx/H/UIBevULg4OVaR4bvn2+dPNe1zHgAt/yxWcVuWJeeqnG41hxFVIfehVPhmHQrl07vRvVR0JCArKystCtWzftMrVajWPHjuH777/HwYMHUVZWhry8vEpnn5mZmXB3dwcAuLu749y5c5XareiNW7FOdWQyGWSyqs/DSSQSs/oAXnmUjxm/J+FOViEAYFR3b8x5sSNsLerOgbnlylhG52v79lq7xvs0k6Cdmw1uZRbi9P08vBRg2s9d8+bzpZv3Oo4Bl3iTLxPA/PZbjbkyJId6Fc+4uDi9G6zQvHntz5sNHDgQV65cqbRswoQJ6NChAz7++GN4e3tDIpEgNjYWI0eOBAAkJycjNTUVISEhAICQkBAsXrwYWVlZ2rPcmJgY2NnZwc/Pz+CYzQXDMNhwIgXLDtyEUs3AxUaGZSO7YGBHt7o3JtwYMAA4cqTWVfp3cMWtzELE3cwy+eLJG7p51+MYEP4ThYcD9ahp/6ZX8ezbt6/RO/o3W1tbdO7cudIya2trODs7a5e//fbbiIqKgpOTE+zs7PD+++8jJCQEPXv2BACEh4fDz88PY8eOxfLly5GRkYE5c+YgMjKy2jNLAuQWleHD7Zdw5GYWAGBQJ3d88UoXONF4tPx26lSdq/Rv74p1R+/h6K0nUGsYiIT0yIrRdPOuxzEg/Cc4fZqVdjjvbVubb775BkKhECNHjoRCoUBERARWr16tfV8kEuHvv//GlClTEBISAmtra4wfPx4LFy7kMGr+OnMvB9O2JiJTroBULMTcF/3wRnALei6wiQhq6QhbCzFyi8pw6VEeurVw5DokQposXhXP+Pj4St9bWFggOjoa0dHRNW7TsmVL3vaA4wu1hsF3R27j29jb0DBA62bW+H50N3oe0JR07FjnKhKREC+0a4a9l9Nx+HomFU826OZdj2NATECHDqw0w9f734QlWQWlGPPjGaw8XF44Xw3ywp73n6fCaWoSE/VaLdyv/L51xfyqxEi6edfzGBB+U1XzaGR9UPFswhIelI9Le+ZeLqylIqwc1RVfvhoAKymvLjgQfUyerNdq/Tu4QiIS4E5WIe4+KWzgoMyAbt71PAaE34SRkey0U5+NVCoVDh8+jHXr1qGgoAAAkJaWhsJC+mXlA4Zh8OvZB3jth9PIlCvQxtUGu99/Hi8H0owbJmvzZr1Ws7OQIKR1+UDxB6/VPFAI0ZNu3vU8BoTfhP/7HyvtGHwK8uDBAwwaNAipqalQKBQICwuDra0tli1bBoVCgbVr17ISGKmfUqUa83Zdxe8XysduHNzZHV++GgAbGZ1tmouITm44dusJDl3LxHv92nAdDiFNksFnntOmTUP37t3x9OlTWFr+M4bmiBEjEBsby2pwxDBpeSX477rT+P3CIwgFwKzBHbB6TDcqnE2BSP95IMI6ukEgAJIe5iEjv7QBgzIDunk34BgQHmPpOBr8v+rx48dx6tSpKjOW+Pj44PHjx6wERQyXmPoUk/6XgOxCBRysJPju9UD0aduM67AIW4qK9F7V1c4Cgd4OuJiah5jrGRgb4tNwcTV1unk34BgQ/lLl5YGNsZgMPvPUaDRQq9VVlj969Ai2trYshEQMtedSGl774QyyCxXo4G6LPVOfp8LZ1KxYYdDqEZ3Kh6ekXrdG0s27gceA8JNw5Up22jF0g/DwcKzU2blAIEBhYSHmz5/Pu0GTmzqGYbDq8G28/1siFCoNBnZwxY4pveDtZJ4zwzRpn3xi0OoVxfP03RzkF9N0VfWmm3cDjwHhJ+Hcuey0Y+gGX331FU6ePAk/Pz+UlpZi9OjR2ku2y5YtYyUoUrdSpRrTtyXhm8O3AAATn/fFD+O60/1NAgDwcbFGezdbqDQMjiTT2SchbDP4f1pvb29cunQJ27Ztw6VLl1BYWIi3334bY8aMqdSBiDSc/GIlJv7vPM7ffwqxUICFwztjdHALrsMiPBPeyQ3JmQU4eDUTIwK9uA6HkCbFoOKpVCrRoUMH/P333xgzZgzGjBnTUHGRGqTllWD8xnO4nVUIWwsx1r4RhN5tXLgOizS0a9cM3iSikzu+O3IHR289QXGZigbHqA/dvNfjGBD+USUlNX6HIYlEgtJS6vrOlVuZBXhl9SncziqEu50Ftk8OocJpLm7cMHiTTp52aOFkhRKlWjuLDjGQbt7rcQwI/whu3mSlHYPveUZGRmLZsmVQqVSsBED0k/DgKf6z5hQy5KVo3cwaf7zXCx3caXxas/Gf/xi8iUAgwLAADwDA7qQ0tiMyD7p5r8cxIPwjeu01Vtox+DrO+fPnERsbi0OHDqFLly6wtrau9P6ff/7JSmDkH+dScjFh0zkUlanRrYUDNox/Do40/ybRw7AAT0TH3UV88hPIS5Wws2DjghUhxODi6eDggJEjRzZELKQap+5m4+3NF1CiVKN3G2esH9ed7l0RvXVwt0M7NxvcyizEwasZeLW7N9chEdIkGPy/8KZNmxoiDlKNY7eeYNL/LkCh0uCFds3ww9ggWEhoiDCztHNnvTcd5u+Jr2NuYc/ldCqehtLNuxHHgPCHevt2ViaypinJeOrIzUxM/OmCdvADKpxmrnXrem86LMATAHDyTjZyChVsRWQedPNuxDEg/MG0asVKOwYXYF9fXwgEghrfv3fvnlEBkfL/5N79OQFKNYOITm747vVukIrp7xyz5u8P1LOnu4+LNfy97HH5UT72Xc3A2J4tWQ6uCdPNuxHHgPCHOCiIleNocPGcPn16pe+VSiUSExNx4MABzJw50+iAzN3Vx/l4538XoFQzGNzZHd++HgiJiAonMc4wf09cfpSPPUlpVDwJYYHBxXPatGnVLo+OjsaFCxeMDsic3c8uwpvPetX2au2Mla91pcJJWPFigAcW77uBc/dzkZ5fAg97Gg2MEGOw9j/z4MGD8ccff7DVnNnJKijF2I1nkV1Yhk6edlg3NggyMd3jJM8YOW60h70levg4AQD+SqRnPvWmm3cau7tJ0HzxBSvtsFY8d+zYAScnJ7aaMytlKg2m/HIRD3NL0NLZCpsn9IAtPY9HdNVwxccQr3RrDgD44+IjMAxjdHtmQTfvLBwDwj3N+++z0o7BxTMwMBDdunXTfgUGBsLDwwOffPIJPjFwyp41a9bA398fdnZ2sLOzQ0hICPbv3w8AuH//PgQCQbVf27dv17ZR3ftbt2419Mfi1KK/ryPhwVPYWoixeUIPNLOVcR0S4RsLC6ObGOLvAQuJEHeyCnH5UT4LQZkB3byzcAwI98QszTtt8D3P4cOHV+ptKxQK0axZM/Tr1w8dOnQwqC0vLy8sXboUbdu2BcMw+OmnnzB8+HAkJiaiQ4cOSE9Pr7T+Dz/8gC+//BKDBw+utHzTpk0YNGiQ9nsHBwdDfyzObL/wED+feQAAWDmqK3xdrOvYgpD6sbOQIKKTO3YlpWFHwiMEeDtwHRIhJsvg4vnZZ5+xtvNhw4ZV+n7x4sVYs2YNzpw5g06dOsHd3b3S+zt37sR///tf2NjYVFru4OBQZV1TcC0tH5/+dRUAMD20LQZ2dOM4ItLU/SfIC7uS0rD7Uho+HdqRnh0mpJ4MLp4ikQjp6elwdXWttDwnJweurq5Qq9X1CkStVmP79u0oKipCSEhIlfcTEhKQlJSE6OjoKu9FRkZi4sSJaNWqFSZPnowJEybU+iyqQqGAQvHPw+JyuRxA+WM3SqWyXvEbSqFUY9pviShTadC/vQum9PFptH0boyJGU4iVD9jKl3DCBGhYyPlzLezhbidDhlyBQ1fTMLgzv/7o5NvnSzfvbB0DNvEtX3xWkSPV+PFADfkyJI8CxsCeA0KhEBkZGVWKZ1paGlq3bo2SkhJDmsOVK1cQEhKC0tJS2NjYYMuWLRgyZEiV9d577z3Ex8fj+vXrlZYvWrQIAwYMgJWVFQ4dOoT58+dj+fLl+L//+78a9/nZZ59hwYIFVZZv2bIFVlZWBsVfXzvvCxGfLoSthMGsADVsqH8QaSR/pwoR81gIPwcN3u2o4TocQnijuLgYo0ePRn5+Puzsap+1Su/i+e233wIAZsyYgUWLFlW6dKpWq3Hs2DHcv38fiYmJBgVbVlaG1NRU5OfnY8eOHfjxxx9x9OhR+Pn5adcpKSmBh4cH5s6diw8++KDW9ubNm4dNmzbh4cOHNa5T3Zmnt7c30tPT4ezsbFD89XE2JRdvbCx/JvaHNwLRv32zBt8nW5RKJWJiYhAWFgaJhCp+XdjKlzgwECoDf7dqkpJdhPBVJyEUAHFRfeDpwJ9nPvn2+dLNO5vHgC18yxefVeRq2CefQJ2UVO06crkcLi4uehVPvS/bfvPNNwAAhmGwdu1aiET/3CuRSqXw8fHB2rVr9W2u0rZt2rQBAAQFBeH8+fNYtWoV1q1bp11nx44dKC4uxrhx4+psLzg4GIsWLYJCoYBMVn2vVZlMVu17EomkwT+ApUo15u4un1T39R4tEN7Zs0H311AaI1dNidH5unOHtXy383BASCtnnL6Xgz8S0xEV3p6VdtnEm8+Xbt5ZPAZs402+TIDg7t0ac2VIDvUunikpKQCA/v37488//4Sjo6PeOzGERqOpdFYIABs2bMBLL72EZs3qPkNLSkqCo6NjjYWTa6vj7yIluwiutjJ8MsSw3smEsGVMzxY4fS8HW88/xPsD29JIVoQYyOAOQ3FxcaztfPbs2Rg8eDBatGiBgoICbNmyBfHx8Th48KB2nTt37uDYsWPYt29fle337NmDzMxM9OzZExYWFoiJicEXX3yBDz/8kLUY2XT3SSHWxt8FAMwf1okGQiD6e+EFVpsL93OHi40UWQUKxN7IwiCedRziDd28s3wMCDeYPn1Qc3dS/dVrWrNHjx5h9+7dSE1NRVlZWaX3VqxYoXc7WVlZGDduHNLT02Fvbw9/f38cPHgQYWFh2nU2btwILy8vhIeHV9leIpEgOjoaM2bMAMMwaNOmDVasWIFJkybV58dqcAv2XEeZWoN+7ZthSBf6z4oY4NAhVpuTioV4tbs31sTfxa9nH1DxrIlu3lk+BoQb6n37WBlaz+DiGRsbi5deegmtWrXCzZs30blzZ9y/fx8Mw6Bbt24GtbVhw4Y61/niiy/wRQ1jEQ4aNKjS4Ah8FpechWO3nkAiEuCzYZ1qfZSGkCpGjgRYHjv69edaYO3Ruzh+OxsPcorQ0pkG6KhCN+8NcAxI4xP997+sTGxucAGePXs2PvzwQ1y5cgUWFhb4448/8PDhQ/Tt2xevvvqq0QE1RWoNgy/2lncSerOXD3xoFCFiqL17WW+yhbMVXmhb3o/gt3M19043a7p5b4BjQBqf4NkQsMYyuHjeuHFD2+tVLBajpKQENjY2WLhwIZbRrAPV2nMpDbezCmFvKcHUAW25DocQrdHBLQCUDxOpUNVvgBNCzJHBxdPa2lp7n9PDwwN3797Vvpednc1eZE2ESq3BqtjbAIB3XmgFe0vqJETqoYGGnxzYwRVudjLkFJXhwNWMBtmHSdPNuwkOAUqqwdJxNLh49uzZEydOnAAADBkyBB988AEWL16Mt956Cz179mQlqKbkz8THSMkugpO1FG/28uE6HGKq7t9vkGbFIiFG92gJANh48j5NVfZvunlvoGNAGpfq9m1W2jG4eK5YsQLBwcEAgAULFmDgwIHYtm0bfHx89OoAZE7KVBp8++ysc3LfVrCW1atzMyHA7NkN1vSYni0gFQtx6WEeLqY+bbD9mCTdvDfgMSCNR/jpp+y0Y8jKarUajx49QosW5fdJrK2tsXbtWly+fBl//PEHWrZsyUpQTcX2hId49LQEzWxlGNvTh+twiCl7NsJXQ3CxkWFE1/KJsn88ntJg+zFJunlvwGNAGo/w2VCzRrdjyMoikQjh4eF4+pT+Oq2LUq3B6rjy+8Hv9WsNSylN/UT46+0+vgCAg9cykJpTzHE0hPCfwZdtO3fujHv37jVELE3KvivpeJxXAmdrKV7v0YLrcAipVTs3W/Rp6wINA2w6RWefhNTF4OL5+eef48MPP8Tff/+N9PR0yOXySl+kfPD8dUfL/8AY38uHJhwmxsvKavBdTOzTCgDw+/mHkJfS/JAAKue9EY4BaXiqx49Zacfg4jlkyBBcunQJL730Ery8vODo6AhHR0c4ODg02GDxpubknRxcT5fDUiLC2J50H5iwoBFGtnmhrQvautqgqEyNbTRoQjndvNPoQk2CgIXRhQCOB4ZvqtYdK7/X+d/uXnC0lnIcDWkSpkwBJkxo0F0IBAJM7OOLj/+4gg0nUjCuV0vIxGZ+1UQ3741wDEjDE02dCkycaHQ7BhfPvn37Gr3Tpux2ZgGO386GUAC8/XwrrsMhxCDDuzbH14duIUNeij8vPqb79YTUoF6Dyx8/fhxvvPEGevXqhcfPrh///PPP2sETzNn/Tj8AAIR2dEMLZyuOoyHEMBYSEd55ofyPvjXxd6FSaziOiBB+Mrh4/vHHH4iIiIClpSUuXryonbg6Pz+/xtlPzIW8VIk/Lj4CUN5RiBDWNOIfpqODW8DRSoLU3GL8fTm90fbLS7p5p5ODJkEdH89KO/Xqbbt27VqsX78eEsk/47T27t0bFy9eZCUoU/VnwiMUl6nRupk1erV25joc0pQ8+yO1MVhJxXj7+fLnPqPj7kCjMeMh+3Tz3ojHgDQglo6jwcUzOTkZL1Qzo7q9vT3y8vLYiMkkMQyD/50pv2Q7vpcPzddJ2DVwYKPubmyID2xlYtzOKsSBa2Y8YLxu3hv5GJCGIYqIYKUdg4unu7s77ty5U2X5iRMn0KqV+XaQOZeSi3tPimAlFWFEYHOuwyHEKPaWEkzo7QMAWBFzC2pzPvskpBoGF89JkyZh2rRpOHv2LAQCAdLS0vDrr7/iww8/xJQpUxoiRpOw7Xz5c3EvBXjC1oKmHSOmb+KzKfTuZBXir0R2HiwnpKkw+FGVWbNmQaPRYODAgSguLsYLL7wAmUyGDz/8EO+//35DxMh7+SVK7L1S3rHiv895cxwNaZI2bmz0XdpZSDC5b2ssO3ATK2NvYViAJ6TienXQN126eefgGBD2qX/4wfDCVw2DfxMEAgE+/fRT5Obm4urVqzhz5gyePHmCRYsWsRCOadp9KQ0KlQbt3GwQ6O3AdTikKQoL42S343u1RDNbGR7mlmDbBTMcdUg37xwdA8IuJjSUlXbq/WekVCqFra0tPDw8YGNjw0owpmrb+VQAwKjnWlBHIdIwvLm5omElFeP9AW0AAN/F3kZJmZqTODijm3eOjgFhl5ilvjkGF0+VSoW5c+fC3t4ePj4+8PHxgb29PebMmQOl0rDBpNesWQN/f3/Y2dnBzs4OISEh2L9/v/b9fv36QSAQVPqaPHlypTZSU1MxdOhQWFlZwdXVFTNnzoRKpTL0x6q3q4/zcfWxHBKRgDoKkSbptedawMvRElkFCvx85j7X4RDCCwZf+n3//ffx559/Yvny5QgJCQEAnD59Gp999hlycnKwZs0avdvy8vLC0qVL0bZtWzAMg59++gnDhw9HYmIiOnXqBKC8g9LChQu121hZ/TNqj1qtxtChQ+Hu7o5Tp04hPT0d48aNg0QiabQBG3YklA+KEO7nDicax5Y0QVKxENND2+HD7ZewOv4u/tvdGw5W9Fkn5s3g4rllyxZs3boVgwcP1i7z9/eHt7c3Xn/9dYOK57Bhwyp9v3jxYqxZswZnzpzRFk8rKyu4u7tXu/2hQ4dw/fp1HD58GG5ubujatSsWLVqEjz/+GJ999hmk0ob9BVepNdoRWEYG0VknaUCzZnG6+xGBzfHj8Xu4mVGAlYdv47OXOnEaT6PRzTvHx4CwQzNzJtiY7sDg4imTyeDj41Nlua+vr1HFSq1WY/v27SgqKtKe0QLAr7/+il9++QXu7u4YNmwY5s6dqz37PH36NLp06QI3Nzft+hEREZgyZQquXbuGwMDAavelUCi0wwoC0M5DqlQqDbr0fPJuDrILFXC0kqCnj4PBl61NUcXPaA4/KxtYy9ennwIc53z2oHYYvzkBP595gFFBnmjjyn5fB959vnTzzoNj8G+8yxePVeRIMXs2JDXky5A8Glw8p06dikWLFmHTpk2QyWTlwSgUWLx4MaZOnWpoc7hy5QpCQkJQWloKGxsb7Ny5E35+fgCA0aNHo2XLlvD09MTly5fx8ccfIzk5GX/++ScAICMjo1LhBKD9PiOj5lFRlixZggULFlRZHhcXV+mycF223BECEKKjrQIxBw/ovV1TEBMTw3UIJsXYfEVMmICDmzaxFE39dXEU4spTIaJ+PoHJHRtu0Hi+fL50886XY1AdvuTLFAi9vLCvhuNYXFysdzsChmEMGjpkxIgRiI2NhUwmQ0BAAADg0qVLKCsrw8B/DV9VUeRqU1ZWhtTUVOTn52PHjh348ccfcfToUW0B1XXkyBEMHDgQd+7cQevWrfHOO+/gwYMHOHjwoHad4uJiWFtbY9++fZUuLeuq7szT29sb6enpcHbWb0xahVKNnsuOolChwq9vd0cPHye9tjN1SqUSMTExCAsLqzS2MakeW/kS29pCVVDAYmT18yCnGIO/OwmlmsH6sYHo164Zq+3z7fOlm3e+HANdfMsXn1Xk6qVRo2o8jnK5HC4uLsjPz4ednV2t7Rl85ung4ICRI0dWWuZtRBduqVSKNm3Ku8IHBQXh/PnzWLVqFdatW1dl3eDgYADQFk93d3ecO3eu0jqZmZkAUON9UqD80nPFWbMuiUSi9wcwNjkbhQoVPOwtENLaFUKheT2iYkiuCDv54kO+27jbY0JvX/xw7B6WHLiFvu3dG2TgBD59vnTj4EtM/8anfJmCmnJlSA4NLp6bGviyhUajqXRWqCspKQkA4OHhAQAICQnB4sWLkZWVBVdXVwDlly/s7OyqPXNl0+5LaQDKh+Mzt8JJOPDKK1xHoDV1QBv8kfAI954UYcOJFEzp15rrkBqObt55dAxI/TEvvww2/sfmdKyt2bNn49ixY7h//z6uXLmC2bNnIz4+HmPGjMHdu3exaNEiJCQk4P79+9i9ezfGjRuHF154Af7+/gCA8PBw+Pn5YezYsbh06RIOHjyIOXPmIDIystozS7YUlCpx+EYWAGBYgGeD7YcQrS1buI5Ay85CgtlDOgIAVsXewsNc/e8TmRzdvPPoGJD6U//8MyvtGFw8c3JyEBkZCT8/P7i4uMDJyanSlyGysrIwbtw4tG/fHgMHDsT58+dx8OBBhIWFQSqV4vDhwwgPD0eHDh3wwQcfYOTIkdizZ492e5FIhL///hsikQghISF44403MG7cuErPhTaEg9cyUabSoHUza3TyrP26OCGs6NuX6wgqGdmtOYJ9nVCq1GDerqswsOuE6dDNO8+OAakfEUtTyxl82Xbs2LG4c+cO3n77bbi5uRk1HN2GDRtqfM/b2xtHjx6ts42WLVti37599Y6hPiou2Q7v2pyG4yON4+xZriOoRCAQYPGILhi86hjikp/gwNUMDO7iwXVY7NPNO8+OAakfwb/6ydSXwcXz+PHjOHHihLanrbl5UqDAyTvZAMrvdxJirtq42mBy39b47sgdzNt9DT1bOcORRtkiZsLgy7YdOnRASUlJQ8RiEg5cTYdawyDAyx4+LtZch0PMRefOXEdQrcj+bdC6mTWeFCjw2Z5rXIfDPt288/QYEMMwndgZHcvg4rl69Wp8+umnOHr0KHJyciCXyyt9NXUHr5U/CjOkKV6iIvx14QLXEVTLQiLC1//tCqEA2JWUhgNX07kOiV26eefpMSCGUZ85w0o7BhdPBwcHyOVyDBgwAK6urnB0dISjoyMcHBzg6OjISlB8lV+sxJl7OQCAiE41P0dKCOsmTeI6ghp19XbA5L7lj6t8uvMqcgqrf9TMJOnmncfHgOhP9K+ZuerL4OI5ZswYSCQSbNmyBbGxsThy5AiOHDmCuLg4HDlyhJWg+OpIciZUGgbt3Wzpki1pXCx1r28o00LbooO7LXKKyjC3KfW+1c07z48B0Y/g119ZacfgDkNXr15FYmIi2rdvz0oApuTg1fJLtuGd3OpYkxDzIhOL8NWrAXg5+iT2XcnAX0mPMSLQi+uwCGkwBp95du/eHQ8fPmyIWHitVKnG0VtPANAlW8KBBp5ejw2dm9vj/QFtAZRfvr37pJDjiFigm3cTOAZEDywdx3pNhj1t2jTMnDkTXbp0qTIWYMXoP03N8dvZKFGq0dzBkgZGII3PRDrjTR3QBqfvZePMvVxE/noRf0X2hoWEjdkTOaKbdxM5BqR2qpwcsDEKsMFnnqNGjcKNGzfw1ltv4bnnnkPXrl0RGBio/bepOnStfIqzMD/jBoYgpF6WL+c6Ar2IhAKsei0QztZS3MwowKK/r3MdknF0824ix4DUTvjVV+y0Y+gGKSkpVb7u3bun/bcpUqk1OHyD7ncSDs2bx3UEenOzs8A3o7pCIAB+PZuKvy+ncR1S/enm3YSOAamZsJq5nOvD4Mu2LVu2ZGXHpuT8/ad4WqyEg5XEbObtJMQYL7Rrhvf6tUZ03F3M+uMKOrjboY2rDddhEcKaes2q8vPPP6N3797w9PTEgwcPAAArV67Erl27WA2OLw5dL79kO7CDG8QiTieiIcRkzAhthx6+TihUqPDO/y4gv1jJdUiEsMbgSrBmzRpERUVhyJAhyMvLg1qtBlA+eMLKlSvZjo9zDMMg9tn0Y3TJlnAmOZnrCAwmFgmxekw3NHewxL3sIry/NREqtYbrsAyjm3cTPAakKtXVq6y0Y3Dx/O6777B+/Xp8+umnEIn+6UXXvXt3XLlyhZWg+ORedhFSc4shFQnxfBsXrsMh5ioxkesI6sXFRoYfxgXBUiLCsVtPsHT/Ta5DMoxu3k30GJDKBElJrLRTrw5D1fWqlclkKCoqYiUoPom7WX7WGdzKCdYyg28RE8KO117jOoJ66+RpjxX/LZ+F6ccTKfjtXCrHERlAN+8mfAzIP0RvvMFKOwYXT19fXyRVU7kPHDiAjh07shETr8Qnlw+M0K+9K8eREGK6BnfxwPTQigEUriDmeibHERFiHL2L58KFC1FcXIyoqChERkZi27ZtYBgG586dw+LFizF79mx89NFHDRlroytSqHA2pXwg+P7tm3EcDSGmbdrAtvhvdy9oGGDqlotIeJDLdUiE1Jve1yEXLFiAyZMnY+LEibC0tMScOXNQXFyM0aNHw9PTE6tWrcJrTeyyxsk72VCqGbR0toIvDQRPuLRnD9cRGE0gEOCLEV2QXViGIzez8NbmC/hjSgjauNpyHVrNdPPeBI4BAdQ7dxr+jGY19D7z1J0lYcyYMbh9+zYKCwuRkZGBR48e4e2332YhHH6Je3bJtn97VxpViHCreXOuI2CFWCRE9OhuCGzhgPwSJcZuOIfUnGKuw6qZbt6byDEwd4ynJyvtGHTP898FxMrKCq6uTfNeIMMwiE8u7yzUjy7ZEq5168Z1BKyxlIqwYfxzaONqg/T8Ury+/gwe5vK0gOrmvQkdA3MmDg5mpR2Dime7du3g5ORU61dTkZxZgPT8UlhIhOjZypnrcAhpUpyspdgyMRitXKzxOK8Er/1wBo+e8rSAElINgy79LliwAPb29qztfM2aNVizZg3u378PAOjUqRPmzZuHwYMHIzc3F/Pnz8ehQ4eQmpqKZs2a4eWXX8aiRYsqxVDd5dTffvvN6PuvcTfLL9n2au1i2rNCEMJTrnYW+O2dnnjthzNIyS7Caz+cwS9vdec6LEL0YlDxfO2111i9TOvl5YWlS5eibdu2YBgGP/30E4YPH47ExEQwDIO0tDR89dVX8PPzw4MHDzB58mSkpaVhx44dldrZtGkTBg0apP3ewcHB6NiO3ap4RIUu2RIe+PprriNoEG52FvhtUk+89sNp3M8pxmvrz2GCL9dR6dDNexM9BuZGs3w52Dgd0rt4NkSHmWHDhlX6fvHixVizZg3OnDmDt99+G3/88Yf2vdatW2Px4sV44403oFKpIBb/E7qDgwPc3dmboLqkTI2EB08BgEYVIvzw7rtcR9Bg3O3Lz0DHbjiHO1mFWHVNhMAeeejRmgd/uOrmvQkfA3OimTSJleJZr962DUGtVmPr1q0oKipCSEhItevk5+fDzs6uUuEEgMjISLi4uKBHjx7YuHGj0bFeeJCLMrUGHvYW9IgK4Qebpj0jiYe9Jba/G4Ku3vYoVgkwbvMFxD3rsMcp3bw38WNgLsSOjuy0o++KGk3DDOh85coVhISEoLS0FDY2Nti5cyf8/PyqrJednY1FixbhnXfeqbR84cKFGDBgAKysrHDo0CG89957KCwsxP/93//VuE+FQgGFQqH9Xv5shnilUgmlUoljz35pQ1o5QaVSsfFjNhlKpbLSv6R2bOVLDEDVxHNuIxXgxzEBGLs2HjfygEk/XcDCl/zwahB3j4jo5p2Px4B+H/Wnm6Oa8mVIHgVMQ59S1qGsrAypqanIz8/Hjh078OOPP+Lo0aOVCqhcLkdYWBicnJywe/duSCSSGtubN28eNm3ahIcPH9a4zmeffYYF1UyIumXLFlhZWeHLyyI8KhJgbBs1ujfjND2EAABefPVV/L19O9dhNAq1BthyV4gL2eUXxvp5aDC8pQZCDh611s27OR2Dpqy241gx8E/FVc7acF48/y00NBStW7fGunXrAAAFBQWIiIiAlZUV/v77b1hYWNS6/d69e/Hiiy+itLQUMpms2nWqO/P09vZGeno6hJa2CF4aD4YBTn7UF6621bdhrpRKJWJiYhAWFlbrHzGkHFv5EkZFQbNiBYuR8VNFvgaGhuKHEw/xbdxdAMALbZ3xzav+sLNs3M+cbt75eAzo91F/FbkacvAgsGpVtevI5XK4uLjoVTx5N02IRqPRFja5XI6IiAjIZDLs3r27zsIJAElJSXB0dKyxcALlM8BU975EIsHZVDkYBmjnZoPmTnSPoyYSiYR+WQ1gdL6++46VTg6mQiaVIiqiA9p72OOD7Uk4djsHr6w7i+jR3dC5OXuPy9VJN+88Pgb0+2iAVatqzJUhOeS0eM6ePRuDBw9GixYtUFBQgC1btiA+Ph4HDx6EXC5HeHg4iouL8csvv0Aul2vvTTZr1gwikQh79uxBZmYmevbsCQsLC8TExOCLL77Ahx9+WO+YTt7JBlD+fCchvOHnB1y/znUUjW6ovwdaOlvh3Z8T8CCnGK+sOYX5w/wwukeLxhkyUzfvZnoMmhqxvz9w44bx7bAQS71lZWVh3LhxSE9Ph729Pfz9/XHw4EGEhYUhPj4eZ8+eBQC0adOm0nYpKSnw8fGBRCJBdHQ0ZsyYAYZh0KZNG6xYsQKTJk2qd0wVxZMeUSG8cu8e1xFwpnNze+z9v+fx4fZLOHwjC5/uvIpzKblY9HJn2Fk08NmWbt7N+Bg0KSkprDTDafHcsGFDje/169evzkdOBg0aVGlwBGOl5Zfgfk4xREIBgls1naEGCTF1DlZSrB/XHeuP38OyA8nYlZSG8ym5+OrVAPSiP3QJBwyeDLspO5tSPjBCgJc9bBv6L1pCDNG/P9cRcE4gEOCdF1rj93d7oqWzFdLySzH6x7P4bPc1lJSpG2anunmnY9AkMP36sdIOFU8d5+6VT87bm/6SJXyzfz/XEfBGUEsn7Pu/PhgT3AIAsPnUfQxadUw7pCardPNOx6BJULM0LysVTx3n7pefeVLxJLzz8stcR8Ar1jIxFo/ogs0TnoO7nQUe5BRj3MZzmLrlIrLkpeztSDfvdAyaBNHIkay0Q8VTR26xEpYSEQJbOHAdCiGVHTjAdQS81K+9Kw5/0Bdv9faFUAD8fTkdA78+io0nUlCmYmFUNN280zFoEgSHDrHSDhXPf3nO1wkyMV+f5iKE/JuNTIx5w/ywe+rz8PeyR4FChYV/X0f4N0dx4Gp6g4/LTcwTFc9/eb4NTXxNeKg5d+O7morOze2x873e+GJEF7jYyHA/pxiTf7mIV9eeRsKD3Po1qpt3OgZNA0vHkYrnv9DgCISX7t7lOgKTIBIKMDq4BeJn9sP/DWgDC4kQFx48xcg1pzF2w1ntVIN60807HYMmQXXzJivtUPHUYWMhQkeP2sczJIQTH33EdQQmxUYmRlR4e8R/2B+juntDLBTg+O1sjFxzCmM3nMXpuzn6Xc7VzTsdgyZBOGsWO+2w0koTEejtABEXUzcQUpdvv+U6ApPkbm+BZf/xx5EP+lUqoq+vP4MXvzuBnYmPau9YpJt3OgZNgjA6mp12WGmliQhqwc4kqYQQfmnhbIVl//FH3If9MCa4BSwkQlxLk2PGtkvos/wIouPu4EmBou6GCHmGiqeOIHpEhZAmzdvJCotHdMHpWQMxM6I9XG1lyJQr8OXBZIQsicW7P19A3M0sqDXUQ5fUjndTknGpgztNQUZ4KieH6wiaFEdrKSL7t8GkPq2w51Iafjn7AImpeTh4LRMHr2XCw94CLwc2R3jibXgXPjsjfZAGFPLr7FSlVKJACeQUKiCWsPBcaxNWkausOw9gW6aCldS48kfFU4dYRCfihKd++w2YOJHrKJocqViIkUFeGBnkheSMAmw7/xB/Jj5Cen4p1sTfRe6lg9gWEAEAGKXzml/EmHPhKNdBmAgxrmxYDM8P3se00LZGtUTVghBTMHUq1xE0ee3dbTFvmB/OfjIQ370eiBf9PbAwZq32fd3XxHSxdRzpzJMQQnTIxCIMC/DEsABP4C0h7i8dWv7GSp3XPKFUKrFv3z4MGTIEEgnNBFWbilxJxUKjzzoBOvMkhBBCDEbFkxBTcPo01xGYJ9280zFoElTHjrHSDhVPQkxBQQHXEZgn3bzTMWgSBIWFrLRDxZMQUxAeznUE5kk373QMmgTRkCGstEPFkxBCCDEQFU9CCCHEQFQ8CTEFP/3EdQTmSTfvdAyaBPWGDay0w2nxXLNmDfz9/WFnZwc7OzuEhIRg//792vdLS0sRGRkJZ2dn2NjYYOTIkcjMzKzURmpqKoYOHQorKyu4urpi5syZUKlUjf2jENKwXniB6wjMk27e6Rg0CUyfPqy0w2nx9PLywtKlS5GQkIALFy5gwIABGD58OK5duwYAmDFjBvbs2YPt27fj6NGjSEtLwyuvvKLdXq1WY+jQoSgrK8OpU6fw008/YfPmzZg3bx5XPxIhDcPXl+sIzJNu3ukYNAnidu3YaYeVVupp2LBhlb5fvHgx1qxZgzNnzsDLywsbNmzAli1bMGDAAADApk2b0LFjR5w5cwY9e/bEoUOHcP36dRw+fBhubm7o2rUrFi1ahI8//hifffYZpFIpFz8WIYSQJo43w/Op1Wps374dRUVFCAkJQUJCApRKJUJDQ7XrdOjQAS1atMDp06fRs2dPnD59Gl26dIGbm5t2nYiICEyZMgXXrl1DYGBgtftSKBRQKP6ZHSE/Px8AkJub20A/XdOhVCpRXFyMnJwcGg5MD2zlS8wwUJnBzCp8+3zp5p2Px4Bv+eKzilzJazmOBc+e5WWYuqek47x4XrlyBSEhISgtLYWNjQ127twJPz8/JCUlQSqVwsHBodL6bm5uyMjIAABkZGRUKpwV71e8V5MlS5ZgwYIFVZa3Y+l0npAG4eLCdQTmSTfvdAyahjqOY0FBAezt7Wtdh/Pi2b59eyQlJSE/Px87duzA+PHjcfRow06vM3v2bERFRWm/z8vLQ8uWLZGamlpnwsydXC6Ht7c3Hj58CDs7O67D4T3Kl2EoX4ahfOlPn1wxDIOCggJ4enrW2R7nxVMqlaJNmzYAgKCgIJw/fx6rVq3CqFGjUFZWhry8vEpnn5mZmXB3dwcAuLu749y5c5Xaq+iNW7FOdWQyGWQyWZXl9vb29AHUU0UPaaIfypdhKF+GoXzpr65c6XsCxbvnPDUaDRQKBYKCgiCRSBAbG6t9Lzk5GampqQgJCQEAhISE4MqVK8jKytKuExMTAzs7O/j5+TV67IQQQswDp2ees2fPxuDBg9GiRQsUFBRgy5YtiI+Px8GDB2Fvb4+3334bUVFRcHJygp2dHd5//32EhISgZ8+eAIDw8HD4+flh7NixWL58OTIyMjBnzhxERkZWe2ZJCCGEsIHT4pmVlYVx48YhPT0d9vb28Pf3x8GDBxEWFgYA+OabbyAUCjFy5EgoFApERERg9erV2u1FIhH+/vtvTJkyBSEhIbC2tsb48eOxcOFCg+KQyWSYP38+FVw9UK4MQ/kyDOXLMJQv/bGdKwGjT59cQgghhGjx7p4nIYQQwndUPAkhhBADUfEkhBBCDETFkxBCCDGQ2RfP6Oho+Pj4wMLCAsHBwVUGXTBXx44dw7Bhw+Dp6QmBQIC//vqr0vsMw2DevHnw8PCApaUlQkNDcfv2bW6C5diSJUvw3HPPwdbWFq6urnj55ZeRnJxcaR19ptczF2xMRWiuli5dCoFAgOnTp2uXUb4q++yzzyAQCCp9dejQQfs+W/ky6+K5bds2REVFYf78+bh48SICAgIQERFRadAFc1VUVISAgABER0dX+/7y5cvx7bffYu3atTh79iysra0RERGB0tLSRo6Ue0ePHkVkZCTOnDmDmJgYKJVKhIeHo6ioSLtOXdPrmRNjpyI0V+fPn8e6devg7+9faTnlq6pOnTohPT1d+3XixAnte6zlizFjPXr0YCIjI7Xfq9VqxtPTk1myZAmHUfEPAGbnzp3a7zUaDePu7s58+eWX2mV5eXmMTCZjfvvtNw4i5JesrCwGAHP06FGGYcpzI5FImO3bt2vXuXHjBgOAOX36NFdh8oqjoyPz448/Uq5qUFBQwLRt25aJiYlh+vbty0ybNo1hGPpsVWf+/PlMQEBAte+xmS+zPfMsKytDQkJCpSnPhEIhQkNDcfr0aQ4j47+UlBRkZGRUyp29vT2Cg4Mpd/hnijsnJycAqHN6PXOmVquxdetWvaciNFeRkZEYOnRopbwA9Nmqye3bt+Hp6YlWrVphzJgxSE1NBcBuvjgfGJ4r2dnZUKvV1U5pdvPmTY6iMg0V071Vl7vapoIzBxqNBtOnT0fv3r3RuXNnAOX5qmt6PXNjzFSE5mbr1q24ePEizp8/X+U9+mxVFRwcjM2bN6N9+/ZIT0/HggUL0KdPH1y9epXVfJlt8SSkIURGRuLq1auV7rGQqriYitAUPXz4ENOmTUNMTAwsLCy4DsckDB48WPva398fwcHBaNmyJX7//XdYWlqyth+zvWzr4uICkUhUpZeV7pRnpHoV+aHcVTZ16lT8/fffiIuLg5eXl3a5u7u7dno9Xeacr4qpCIOCgrBkyRIEBARg1apVlKt/SUhIQFZWFrp16waxWAyxWIyjR4/i22+/hVgshpubG+WrDg4ODmjXrh3u3LnD6ufLbIunVCpFUFBQpSnPNBoNYmNjtVOeker5+vrC3d29Uu7kcjnOnj1rlrljGAZTp07Fzp07ceTIEfj6+lZ6X5/p9cydIVMRmpOBAwfiypUrSEpK0n51794dY8aM0b6mfNWusLAQd+/ehYeHB7ufLyM6NZm8rVu3MjKZjNm8eTNz/fp15p133mEcHByYjIwMrkPjXEFBAZOYmMgkJiYyAJgVK1YwiYmJzIMHDxiGYZilS5cyDg4OzK5du5jLly8zw4cPZ3x9fZmSkhKOI298U6ZMYezt7Zn4+HgmPT1d+1VcXKxdZ/LkyUyLFi2YI0eOMBcuXGBCQkKYkJAQDqPmzqxZs5ijR48yKSkpzOXLl5lZs2YxAoGAOXToEMMwlKu66Pa2ZRjK17998MEHTHx8PJOSksKcPHmSCQ0NZVxcXJisrCyGYdjLl1kXT4ZhmO+++45p0aIFI5VKmR49ejBnzpzhOiReiIuLYwBU+Ro/fjzDMOWPq8ydO5dxc3NjZDIZM3DgQCY5OZnboDlSXZ4AMJs2bdKuU1JSwrz33nuMo6MjY2VlxYwYMYJJT0/nLmgOvfXWW0zLli0ZqVTKNGvWjBk4cKC2cDIM5aou/y6elK/KRo0axXh4eDBSqZRp3rw5M2rUKObOnTva99nKF01JRgghhBjIbO95EkIIIfVFxZMQQggxEBVPQgghxEBUPAkhhBADUfEkhBBCDETFkxBCCDEQFU9CCCHEQFQ8CSGEEANR8SSEEEIMRMWTEEIIMRAVT0IIIcRAVDwJIYQQA1HxJIQQQgwk5joAPtBoNEhLS4OtrS0EAgHX4RBCCOEAwzAoKCiAp6cnhMLazy2peAJIS0uDt7c312EQQgjhgYcPH8LLy6vWdah4ArC1tQUApKSkwMnJieNo+E2pVOLQoUMIDw+HRCLhOhzeYy1fd+4AbdqwFxhP8e7zpZt3Hh4D3uWLx7S5atUKko4dq11HLpfD29tbWxNqQ8UT0F6qtbW1hZ2dHcfR8JtSqYSVlRXs7Ozol1UPrOUrMxPo1o29wHiKd58v3bzz8BjwLl88VpEr+6wsiIODa11Xn9t31GGIEFMwYgTXEZgn3bzTMWgSRK++yko7VDwJIYQQA/GqeB47dgzDhg2Dp6cnBAIB/vrrrzq3iY+PR7du3SCTydCmTRts3ry5weMkhBBi3nhVPIuKihAQEIDo6Gi91k9JScHQoUPRv39/JCUlYfr06Zg4cSIOHjzYwJES0sh27OA6AvOkm3c6Bk2CeutWVtrhVYehwYMHY/DgwXqvv3btWvj6+uLrr78GAHTs2BEnTpzAN998g4iICIP3f/JuDuyy1QZvZ07UajVuPBXA5nY2RCIR1+HwHhv5EggE6ObbBnX3/yOse9Yr896TQmTJXFGanMVxQJXR76P+KnLVzN0VntlF8HGxNqo9XhVPQ50+fRqhoaGVlkVERGD69Om1bqdQKKBQKLTfy+VyAMDU3y5BKLNiPc6mR4S1Ny9yHYQJMT5ft75+BcriQpbi4S+lUlnpX66JO3VC6sMsDFxxHDe/HIH2H+7kOqRq0O+j/kSYMbEvovddxvv9W1d515DPnUkXz4yMDLi5uVVa5ubmBrlcjpKSElhaWla73ZIlS7BgwYIqyz2tGIgtmAaJlZD6UGmAjBIBGIbB/n37uA6n0cTExHAdAgDgRY0GOw/GgWHK/6v0sqb/H0yeAMi8fwv79iVXeau4uFjvZky6eNbX7NmzERUVpf2+4sHYv95/Ac7OzhxGxn9KpRIxMTEICwuj58r0YGy+sgsVCFl2FAAwaNBgCIVNe/hIvn2+hEIhQkJ6YeXVc4AAiJtl+O2ghsS3fPFZRa6kIiE+n1D97cGKq5D6MOni6e7ujszMzErLMjMzYWdnV+NZJwDIZDLIZLIqyyUSCX0A9US5Mkx98+VsW34fa/kL4/B/agHsZeaRc958vr74AmJx+TH4cdBERPIhpmrwJl8mQLNoUY25MiSHvOpta6iQkBDExsZWWhYTE4OQkBCOIiKEXVKxEFZSETb0GIG8kjKuwzE/Oleotr/AzsP1hFuaOvrE6ItXxbOwsBBJSUlISkoCUP4oSlJSElJTUwGUX24dN26cdv3Jkyfj3r17+Oijj3Dz5k2sXr0av//+O2bMmMFF+IQ0CAdLCa6vGIm8Yn50ojEr1v/0yNz/6RAOAyFsETs4sNIOr4rnhQsXEBgYiMDAQABAVFQUAgMDMW/ePABAenq6tpACgK+vL/bu3YuYmBgEBATg66+/xo8//livx1QI4Ss7SwlEGg3yS6h4Njr1P4+uiRh6jK1JULNzHHl1z7Nfv35gmJp7s1U3elC/fv2QmJjYgFERwi0Hq/L7MHlUPAnhDV6deRJCqnKwlGJHl4HIL6Z7no3uzTe1Lw8EDeIuDsIajc6tP2NQ8SSE5+wtJfg0YipdtuXC2rXalytGUl+KpkCj5/CvdaHiSQjPOVhJsHfT/1GHIS48638BAOtXvsNhIIQt4ueeY6UdKp6E8Jy9lQRtch7SPU8u3Lihfdky6wGHgRDW3LzJSjNUPAnhOXvL8g5DdNmWEP6g4kkIzzlYSpHQvCPy6bJt4+vVS/vyastOHAZC2MKwNIgOFU9CeM7BSoLRr3+Bp9TbtvEdOaJ9GfXuCg4DIWxRHzrESjtUPAnhOQcrCb7ftQxP6cyz8Y0apX0575eFHAZC2CIaPZqVdqh4EsJzTtZShN0+g7zisloHESENYNcu7cvnr5/kMBDCFsGePay0Q8WTEJ5ztJICAFQaBgUKFcfREEIAKp6E8J6FRISnVnYAgLwiunTbqFxctC/zre05DISwRueYGoOKJyEm4JXZ2wCAOg01tkePtC9f/fR3DgMhbFGlpLDSDhVPQkzA+/H/AwDkUvFsXHPnal++dXAjh4EQtgjnz2enHVZaIYQ0qJFHtgIA8qh4Nq4vv9S+fO3oNg4DIWwRrmDnkSMqnoSYAIGg/N9cuudJCC9Q8STEhNCZJyH8QMWTEBOw/rfjAIDcIiqejSotTfty5JztHAZC2KJ6wM4A/1Q8CTEBnZNOAABNS9bY9u7Vvux54wyHgRC2CPbtY6UdKp6EmIDeyz8BQGeejW7SJO3LmX98zWEghC2iKVNYaYeKJyEm4Fl/IXrOkxCeoOJJiCl4Vj2peBLCD1Q8CTEB2bsPAACeFilpcPjGFB+vfTn93W+4i4OwRn34MCvtUPEkxATYW0kAAGVqDeSlNDg8IVzjZfGMjo6Gj48PLCwsEBwcjHPnztW6/sqVK9G+fXtYWlrC29sbM2bMQGlpaSNFS0jDk4UOhI1MDADILlRwHI0Z6ddP+3LluhncxUFYIwoNZaUd3hXPbdu2ISoqCvPnz8fFixcREBCAiIgIZGVlVbv+li1bMGvWLMyfPx83btzAhg0bsG3bNnzyySeNHDkhDcvFpnxqspxCuu9JCNd4VzxXrFiBSZMmYcKECfDz88PatWthZWWFjRurH5T51KlT6N27N0aPHg0fHx+Eh4fj9ddfr/NslRBT42wjA0BnnoTwgZjrAHSVlZUhISEBs2fP1i4TCoUIDQ3F6dOnq92mV69e+OWXX3Du3Dn06NED9+7dw759+zB27Nga96NQKKBQ/PMfkFwuBwAolUoolfQQem0q8kN50g9b+RKsWQMnYfl9z8z84iabf759vgRr1kClUgMAvhz5AT7iSVwV+JYvPqvIUdn330NYQ74MySOvimd2djbUajXc3NwqLXdzc8PNmzer3Wb06NHIzs7G888/D4ZhoFKpMHny5Fov2y5ZsgQLFiyosjwuLg5WVlbG/RBmIiYmhusQTIqx+ZJIJCh+kgFAiDNJ1+GUc5WdwHiKL58viUSCW6dPARAjtqU/OrM0Og3b+JIvUxBrYQFlDcexuLhY73bqVTyjoqIM3mbOnDlwcnKqz+5qFR8fjy+++AKrV69GcHAw7ty5g2nTpmHRokWYqzMXn67Zs2dX+hnkcjm8vb3Rv39/ODs7sx5jU6JUKhETE4OwsDBIJBKuw+E9tvIltrXFjV2JOJl5D44eLTBkiB+LUfIH3z5fYltbOF97iJVXz2H/ivEQfl7EdUiV8C1ffFaRq8ETJ0JVUFDtOhVXIfVRr+K5cuVKhISEQCqV6rX+iRMnMHXq1DqLp4uLC0QiETIzMystz8zMhLu7e7XbzJ07F2PHjsXEiRMBAF26dEFRURHeeecdfPrppxAKq97WlclkkMlkVZZLJBL6AOqJcmUYNvLlamcJoHxasqaeez59vsRiEYDycSr4EtO/8SlfpqCmXBmSw3pftt25cydcXV31WtfW1lav9aRSKYKCghAbG4uXX34ZAKDRaBAbG4upU6dWu01xcXGVAikSlX/Y6WFy0pS4POswlEPj2xLCuXoVz02bNsHe3l7v9detW1flPmZNoqKiMH78eHTv3h09evTAypUrUVRUhAkTJgAAxo0bh+bNm2PJkiUAgGHDhmHFihUIDAzUXradO3cuhg0bpi2ihJi8mTPhYku9bRvdzJnal1v7jsI4DkMh7NBERYGNylCv4jl+/HgAgFqtxsmTJ+Hv7w8HB4ca1x89erTebY8aNQpPnjzBvHnzkJGRga5du+LAgQPa4puamlrpTHPOnDkQCASYM2cOHj9+jGbNmmHYsGFYvHhxfX40Qvhp0SI4PykEAGQXUPFsNIsWAQ9yAQAbI96i4tkEaBYs4K54VhCJRAgPD8eNGzdqLZ6Gmjp1ao2XaeN1xpoEALFYjPnz52P+/Pms7Z8Q3vHygsudFABAUZkaJWVqWErpykqD8/ICTl4GAGxf/F9g5hOOAyLGEvv6Ao8eGd2O0YMkdO7cGffu3TM6EEJILbKzYSsTQyou/5WlS7eNJDtb+9K+KJ/DQAhrdI6pMYwunp9//jk+/PBD/P3330hPT4dcLq/0RQhhh0AggIt1eQ93Kp6EcMvoQRKGDBkCAHjppZcgEAi0yxmGgUAggFqtNnYXhJDhwwEALrYypOWX0vi2jeVZ3gHghF9vDOAwFMIOZtgwCOperU5GF8+4uDgWwiCE1GrbNgD/PK5CZ56NZNs2bYehhW/Mo+LZBKi3bGFlUHeji2ffvn1ZCIMQUqsBA4AjR7Qzq1DxbCQDBgCbdgAAVqyLAmYmchwQMZYoPBxg4aSPtbFti4uLkZqairKyypeT/P392doFIebr1CkAujOr0GXbRvEs7wDQ+cE1DgMhbBHUMMmIoYwunk+ePMGECROwf//+at+ne56EsIcu2xLCD0Zf+p0+fTry8vJw9uxZWFpa4sCBA/jpp5/Qtm1b7N69m40YCSEdOwIAXbZtbM/yDgAPXFtyGAhhTYcOrDRj9JnnkSNHsGvXLnTv3h1CoRAtW7ZEWFgY7OzssGTJEgwdOpSNOAkxb4nl99pc6LJt40pM1HYYmjT9B8RzGw1hger8ebAxhL7RZ55FRUXaAeIdHR3x5En5CBxdunTBxYsXjW2eEAIAkycD0Bkcns48G8ezvANA1B/fcBgIYYswMpKddoxtoH379khOTgYABAQEYN26dXj8+DHWrl0LDw8PowMkhADYvBnAP5dtnxYroVRrOAzITDzLOwAMSjjAXRyENcL//Y+Vdoy+bDtt2jSkp6cDAObPn49Bgwbh119/hVQqxWadDx4hxHgOVlIIBYCGAXKLyuBmZ8F1SISYJaOL5xtvvKF9HRQUhAcPHuDmzZto0aIFXFxcjG2eEAIAz6bXEwkFcLGRIatAgSy5gopnQ9OZ1lAtoIH4mwSWpqpkY6AFLYZhYGlpiW7dulHhJIRNRUXalxUFM1NeylU05kMn74MX7+MwEMIWVV4eK+2wUjw3bNiAzp07w8LCAhYWFujcuTN+/PFHNpomhADAihXalxXFM4OKZ8PTyfurx7ZzGAhhi3DlSnbaMbaBefPmYdq0aRg2bBi2b9+O7du3Y9iwYZgxYwbmzZvHRoyEkE8+0b50ty/vcUtnno1AJ++TDtAJQVMgnDuXlXaMvue5Zs0arF+/Hq+//rp22UsvvQR/f3+8//77WLhwobG7IITocK8488yn4kkIV4w+81QqlejevXuV5UFBQVCpVMY2Twj5F7psSwj3jC6eY8eOxZo1a6os/+GHHzBmzBhjmyeEAMC1fwYld7enDkONRifvb36wkcNACFtUSUmstFOvy7ZRUVHa1wKBAD/++CMOHTqEnj17AgDOnj2L1NRUjBs3jpUgCTF7N24ArVsDoMu2jerGDaBLLwBAy8xUjoMhbBDcvMnK+Lb1Kp6JiZXntAsKCgIA3L17FwDg4uICFxcXXLtGU/gQwor//AcoLS+Wrs+Kp7xUhZIyNSyl9Pxhg/nPf4DkNADAgl8+AzZ9Uvv6hPdEr72m/V0yRr2KZxwLE4kSQurHzkIMS4kIJUo1MuWl8HGx5jokQswOq4MkEEIankAg0N73pE5DhHCjXsXzlVdegVwu13v9MWPGICsrqz67IoQAwM6dlb51s6NnPRuFTt7njKPH7poC9XZ2BruoV/HctWsXnjx5ArlcXudXfn4+9uzZg8LCQr3bj46Oho+PDywsLBAcHIxz587Vun5eXh4iIyPh4eEBmUyGdu3aYd8+GkqLNCHPOgtVoE5DjUQn72nOnhwGQtjCtGrFSjv1uufJMAzatWvHSgD/tm3bNkRFRWHt2rUIDg7GypUrERERgeTkZO28obrKysoQFhYGV1dX7NixA82bN8eDBw/g4ODQIPERwgl//0qdHNyeXbZNp+LZsPz9tR2GNn4zEVhOTxCYOnFQkGl1GGrevLle661YsQKTJk3ChAkTAABr167F3r17sXHjRsyaNavK+hs3bkRubi5OnToFiaR8fnAfHx+D4yPElDR3sAQApOeXcBwJIeapXsWzb9++bMcBoPwsMiEhAbNnz9YuEwqFCA0NxenTp6vdZvfu3QgJCUFkZCR27dqFZs2aYfTo0fj4448hqmHqGYVCAYVCof2+4v6tUqmEUqlk8SdqeiryQ3nSD1v5EgNQ6bThalP+h+Kjp8VN6ljw7fMlBqBSqQEADPgTVwW+5YvPdHNUU74MyaPRY9uyKTs7G2q1Gm5ubpWWu7m54ebNm9Vuc+/ePRw5cgRjxozBvn37cOfOHbz33ntQKpWYP39+tdssWbIECxYsqLI8Li4OVlZWxv8gZiAmJobrEEyKsflq9cYbuKdzH/9xEQCIcT9L3iTv7/Pl89XqjTdw+vQpAGJ8N/BNtOVprvmSL1Nw9V+/S7qKi4v1bkfAMAzDVlDGSktLQ/PmzXHq1CmEhIRol3/00Uc4evQozp49W2Wbdu3aobS0FCkpKdozzRUrVuDLL79Eenp6tfup7szT29sb6enpcHZ2ZvmnalqUSiViYmIQFhamvUxOatZQ+ZKXKBH0Rfntk8tzBzaZgRL4+Pm6mJqHUevPoaWTFQ7PeJ7rcCrhY774Sp9cyeVyuLi4ID8/H3Z2drW2x6szTxcXF4hEImRmZlZanpmZCXd392q38fDwgEQiqXSJtmPHjsjIyEBZWRmkUmmVbWQyGWQyWZXlEomEPoB6olwZxuh8WVhU6uTgJBbDRiZGoUKFJ8UqtLa2YCFK/uDN58vCAuJnHYZiPo2A5KMyjgOqHm/yZQIsnZwgqKHDkCE55NUgCVKpFEFBQYiNjdUu02g0iI2NrXQmqqt37964c+cONBqNdtmtW7fg4eFRbeEkpCkQCATwdCgvmGl51GmIkMbGSvFUqVQ4fPgw1q1bh4KCAgDll2ANebazQlRUFNavX4+ffvoJN27cwJQpU1BUVKTtfTtu3LhKHYqmTJmC3NxcTJs2Dbdu3cLevXvxxRdfIDIyko0fjRDe8nzW4/bxUyqehDQ2oy/bPnjwAIMGDUJqaioUCgXCwsJga2uLZcuWQaFQYO3atQa1N2rUKDx58gTz5s1DRkYGunbtigMHDmg7EaWmpkIo/Kfme3t74+DBg5gxYwb8/f3RvHlzTJs2DR9//LGxPxoh/PH221UWVTyuQmeeDUgn73ufG4IRHIZC2KGZMAFs9BAwunhOmzYN3bt3x6VLlyp1thkxYgQmTZpUrzanTp2KqVOnVvtefHx8lWUhISE4c+ZMvfZFiEmIjq6yqOLM8xEVz4YTHQ08yAUArBoxjYpnE6D59ltWiqfRl22PHz+OOXPmVLm/6OPjg8ePHxvbPCEEALp0qbLIy/FZ8aTLtg1HJ+8bV1Q9+yemRxwYyEo7RhdPjUYDtVpdZfmjR49ga2trbPOEEAC4fbvKohZO5c8kP8gpauxozIdO3r2yH3EYCGHNnTusNGN08QwPD8fKlSu13wsEAhQWFmL+/PkYMmSIsc0TQmrg41w+j2emXIFSZdU/YAkhDcfo4vnVV1/h5MmT8PPzQ2lpKUaPHq29ZLts2TI2YiSEvPBClUUOVhLYWpR3W0jN1X9kFGIAnbxf8vXnMBDCFqZPH1baMbrDkLe3Ny5duoRt27bh0qVLKCwsxNtvv40xY8bA0tKSjRgJIYcOVVkkEAjQ0tkKVx/L8SCnGO3c6DYJ6w4d0nYYmjnpS8RzGw1hgXrfPlae0TSqDaVSidatW+P27dsYM2YMli9fjtWrV2PixIlUOAlh08iR1S5u6VR+6ZbuezYQnbwv+F/1Y2UT0yL6739Zaceo4imRSFDKwrxohJA67N1b7eIWzhWdhuiybYPQyXvITXocrikQ7N/PSjtGn71GRkZi2bJlUKlUbMRDCDFAy4oet3TPk5BGZfQ9z/PnzyM2NhaHDh1Cly5dYG1tXen9P//809hdEEJqmBih5bMet6l02bZh6OQ919YJ1R8FYlJq+F0ylNHF08HBASNruB9DCGHJ/fvVLm757LLto6clUKk1EIt4NdeD6bt/X9th6LXZv1GHoSZAdfs22Jh/xujiuWnTJhbCIITUavZsYMmSKovd7SwgFQtRptIgPb8U3k40mTurZs8GJs8EAEzavx6Y2Z/jgIixhJ9+Cixfbnw7LMRCCGlo33xT7WKhUADvZ8P03adLt+zTyfurx3dwGAhhi/Dbb1lpx+gzT19fXwgEghrfv3fvnrG7IITUoqWzNe4+KcKDnGL0act1NISYB6OL5/Tp0yt9r1QqkZiYiAMHDmDmzJnGNk8IqUPFfU8aZYiQxsPKlGTViY6OxoULF4xtnhACAFlZNb7VkgaIbzhZWcDT8sfwXp73J/ZxHA4xnurxY1Y6DDXYPc/Bgwfjjz/+aKjmCTEvtfwuVTyuQgMlNACdvL9w5RiHgRC2CHbuZKWdBiueO3bsgJOTU0M1T4h5mTKlxrd8XMqLZ0p2EdQaprEiMg86eY/auZK7OAhrRFOnstKO0ZdtAwMDK3UYYhgGGRkZePLkCVavXm1s84SQOng7WkIqFkKh0uDx0xLtkH2EkIZjdPF8+eWXK30vFArRrFkz9OvXDx06dDC2eUJIHcQiIVq5WONmRgFuZxVQ8SSkERhdPOfPp5kGCGlwJ07U+nYbVxvczCjAnaxCDOzo1khBmQGdvL8/5Vus4zAUwg51fLzxhQ8s3PO8ePEirly5ov1+165dePnll/HJJ5+grKzM2OYJIQCgUNT6dlvX8rk8b2cVNkY05kMn7xK1ksNACGvq+F3Sl9HF891338WtW7cAlA+IMGrUKFhZWWH79u346KOPjA6QEAJg4MBa327rZgMAuEPFk106eV/xwwccBkLYIoqIYKUdo4vnrVu30LVrVwDA9u3b0bdvX2zZsgWbN2+mR1UIaSRtXP8pngxDPW4JaWhGF0+GYaDRaAAAhw8fxpAhQwAA3t7eyM7Orleb0dHR8PHxgYWFBYKDg3Hu3Dm9ttu6dSsEAkGVTkyENHU+ztYQCQUoVKiQKWfnshQhpGZGF8/u3bvj888/x88//4yjR49i6NChAICUlBS4uRnecWHbtm2IiorC/PnzcfHiRQQEBCAiIgJZtYywAgD379/Hhx9+iD59+tTr5yCE1zZurPVtqVgIn2e9bG9lFjRGROZBJ+/LXqXbUE2B+ocfWGnH6OK5cuVKXLx4EVOnTsWnn36KNm3aACgfJKFXr14Gt7dixQpMmjQJEyZMgJ+fH9auXQsrKytsrOU/D7VajTFjxmDBggVo1apVvX8WQngrLKzOVdq7l3caupkhb+hozIdO3i+0DeIwEMIWJjSUlXaM7rHr7+9fqbdthS+//BIikcigtsrKypCQkIDZs2drlwmFQoSGhuL06dM1brdw4UK4urri7bffxvHjx+vcj0KhgEKnx5VcXv6fjVKphFJJPepqU5EfypN+2MqX2NsbqoLazyjbudpgH4Brj/NN9vjw7fMl9vaG6tpDAMDvX4yCcg6/xg/mW774rCJH4latoKzhd8mQPBpdPB8+fAiBQAAvLy8AwLlz57Blyxb4+fnhnXfeMait7OxsqNXqKpd73dzccPPmzWq3OXHiBDZs2ICkpCS997NkyRIsWLCgyvK4uDhYWdED5vqIiYnhOgSTYmy+XtRosG9f7cOSF+UKAIhw/nYa9u17aNT+uMaXz9eLGg1Onz4FQAwwqPMYcIUv+TIFmlp+l4qL9R8f2ujiOXr0aLzzzjsYO3YsMjIyEBYWhk6dOuHXX39FRkYG5s2bZ+wualRQUICxY8di/fr1cHFx0Xu72bNnIyoqSvu9XC6Ht7c3+vfvD2dn54YItclQKpWIiYlBWFgYJBI25iZo2tjKl1Ao1HbGq0lAXgnWJx/HE4UQoeFhkIpNb657vn2+hEIhQkJ6YeXVc4AAdR6Dxsa3fPFZRa5q+12quAqpD6OL59WrV9GjRw8AwO+//47OnTvj5MmTOHToECZPnmxQ8XRxcYFIJEJmZmal5ZmZmXB3d6+y/t27d3H//n0MGzZMu6yi569YLEZycjJat25dZTuZTAaZTFZluUQioQ+gnihXhjE6X7Nm1bl9SxcxbC3EKChV4cFTBfw87eq/P47x5vM1axbE4vLbT7/1ex1v8iGmavAmXyZAM3NmjbkyJIdG/2mqVCq1hejw4cN46aWXAAAdOnRAenq6QW1JpVIEBQUhNjZWu0yj0SA2NhYhISFV1u/QoQOuXLmCpKQk7ddLL72E/v37IykpCd7e3kb8ZITwyGef1bmKQCBAR/fygnkjnToNsUIn75vD3+QsDMIeDUtXQ40unp06dcLatWtx/PhxxMTEYNCgQQCAtLS0el0CjYqKwvr16/HTTz/hxo0bmDJlCoqKijBhwgQAwLhx47QdiiwsLNC5c+dKXw4ODrC1tUXnzp0hlUqN/fEI4QcPD71W69S8vHheeZzfkNGYD528/7HoPxwGQtgibtGCnXaMbWDZsmUYMWIEvvzyS4wfPx4BAQEAgN27d2sv5xpi1KhRePLkCebNm4eMjAx07doVBw4c0HYiSk1NhVBoevdyCDHK06d6rdbV2wEAkPQwr+FiMSc6ebctoednmwQ9f5fqYnTx7NevH7KzsyGXy+Ho6Khd/s4779S75+rUqVMxtYYJS+Pj42vddvPmzfXaJyFNQUXxvJ4mR5lKY5KdhggxBaz8ZjEMg4SEBKxbtw4Fz56fkUql9NgHIWx55RW9VmvhZAUHKwnK1Bq678kGnbwf60yjlzUFDEvDtxpdPB88eIAuXbpg+PDhiIyMxJMnTwCUX8798MMPjQ6QEAJgyxa9VhMIBAjwcgAAXHqU13DxmAudvH8+eg6HgRC2qH/+mZV2jC6e06ZNQ/fu3fH06VNYWlpql48YMaJSr1lCiBH69tV71QC678kenbyvXDOduzgIa0R1TO+nL6PveR4/fhynTp2q0rPVx8cHjx8/NrZ5QggAnD2r96pdve0BAJeoeBpPJ+9+D29wGAhhi0DPWbrqYvSZp0ajgVqtrrL80aNHsLW1NbZ5QoiBKi7b3n1SBHkpjXlKSEMwuniGh4dj5cqV2u8FAgEKCwsxf/583g1lRYjJ6txZ71WdbWTwdiq/hXLlET3vaRSdvKe4+XIYCGEL06kTK+0YXTy/+uornDx5En5+figtLcXo0aO1l2yXLVvGRoyEkAsXDFq94uyT7nsaSSfv705by2EghC3qM2dYacfo4unt7Y1Lly7h008/xYwZMxAYGIilS5ciMTERrq6ubMRICJk0yaDVA1uUP3N94X5uQ0RjPnTy/uGOrzgMhLBFNHkyK+0YVTyVSiVat26N27dvY8yYMVi+fDlWr16NiRMnVup5SwgxkoHd64N9nQAAF+4/hUqtaYiIzINO3sMv0rRfTYHg119Zaceo4imRSFBaWspKIIQQ9nT0sCufYUWhwnUaLIEQ1hl92TYyMhLLli2DSqViIx5CSHUMnORAJBRozz7P3MtpiIjMg07elSKa8qtJYGnCEKOf8zx//jxiY2Nx6NAhdOnSBdbW1pXe//PPP43dBSHEgEl6KwT7OuPwjSycvZeLd16oOq8t0YNcDjwov288dNHfiOc2GsICVU4O2PgzyOgzTwcHB4wcORIRERHw9PSEvb19pS9CCAuWLzd4k56tyqcEPJeSS/c960sn76/Fb+UwEMIW4VfsdPwy+sxz06ZNbMRBCKnNvHnARx8ZtImfpx3sLSXIL1Hi0qN8BLV0rHsjUtm8ecCoiQCAtw5tArCO23iI0YQLFgDP5oQ2qp36bqjRaLBs2TL07t0bzz33HGbNmoWSkhKjAyKEsEMkFOD5Ni4AgKO3nnAcDSFNS72L5+LFi/HJJ5/AxsYGzZs3x6pVqxAZGclmbIQQI73Qrrx4HqPiSQir6l08//e//2H16tU4ePAg/vrrL+zZswe//vorNBq6t0II65KT67XZC+2aAQAuP8rD06IyNiMyDzp5HzvzJw4DIWxRXb3KSjv1Lp6pqamVxq4NDQ2FQCBAWloaK4ERQnQkJtZrMw97S3Rwt4WGAWJvZrEclBnQyXvbx3c4DISwRZCUxEo79S6eKpUKFhYWlZZJJBIolTSLAyGse+21em86qLM7AODA1XS2ojEfOnmft2URh4EQtojeeIOVdurd25ZhGLz55puQyWTaZaWlpZg8eXKlZz3pOU9CuDWosztWHr6NY7ezUahQwUZmdCd7QsxevX+Lxo8fX2XZGyxVdEIIe9q72cLXxRop2UWIu5mFYQGeXIdEiMmrd/Gk5zsJaUR79tR7U4FAgIhO7lh79C4OXMug4mkInbzPfnMxvuYwFMIO9c6dxg9wABZGGCKENILmzY3avOK+Z9zNLJQq1WxEZB508p5t78JhIIQtjCc7fzxS8STEFHTrZtTmAV728LC3QHGZGvHJ9Myn3nTyvn7VuxwGQtgiDg5mpR1eFs/o6Gj4+PjAwsICwcHBOHfuXI3rrl+/Hn369IGjoyMcHR0RGhpa6/qEmCOBQKC9XPvnxUccR0OI6eNd8dy2bRuioqIwf/58XLx4EQEBAYiIiEBWVvXPqMXHx+P1119HXFwcTp8+DW9vb4SHh+Px48eNHDkh/PafIC8AwJGbWcguVHAcDSGmjXfFc8WKFZg0aRImTJgAPz8/rF27FlZWVti4cWO16//6669477330LVrV3To0AE//vgjNBoNYmNjGzlyQhrQ18Z3VWnnZosAL3uoNAz+SqQ/LvWik/fVL07hMBDCFk09ZiiqDq8e+CorK0NCQgJm64x4LxQKERoaitOnT+vVRnFxMZRKJZycnGpcR6FQQKH45y9v+bO5EpVKJQ3yUIeK/FCe9MNavt56C2Ah5yO6euDSo3xsOZuKsT28IBQKjG6TTbz7fL31FlRphQCA3T2GIZIvcT3Du3zxWEWOFG++CUkN+TIkj7wqntnZ2VCr1XBzc6u03M3NDTdv3tSrjY8//hienp4IDQ2tcZ0lS5ZgwYIFVZbHxcXBysrKsKDNVExMDNchmBRj8/Xiq6/i7+3bjY7DUgXIRCLcyy7Cit8OwM+RMbrNhsCXz9eLr76K0xu3AxBj/9wh2Odn/DFoCHzJlymQubjU+LtUXFysdzu8Kp7GWrp0KbZu3Yr4+PgqQwfqmj17NqKiorTfy+VyeHt7o3///nB2dm6MUE2WUqlETEwMwsLCIJGwMR9708ZWvoRCYaWxpI1xU5KMTace4KrSFR8OCWKlTbbw7fMlFAoREtILK6+eAwRg7RiwhW/54rOKXNX2u1RxFVIfvCqeLi4uEIlEyMzMrLQ8MzMT7u7utW771VdfYenSpTh8+DD8/f1rXVcmk1UaVrCCRCKhD6CeKFeGYSNfbOX7redb4afTD3Dybg7u5ZSivbstK+2yiU+fL7FYBAAQgL1jwDY+5csU1JQrQ3LIqw5DUqkUQUFBlTr7VHT+CQkJqXG75cuXY9GiRThw4AC6d+/eGKES0rjeZe8ZQ28nK4T7lf8xuvFECmvtNkk6ed8dPIzDQAhbNJMmsdIOr4onAERFRWH9+vX46aefcOPGDUyZMgVFRUWYMGECAGDcuHGVOhQtW7YMc+fOxcaNG+Hj44OMjAxkZGSgsLCQqx+BEPatWsVqc2/38QUA7Ex6jCx5KattNyk6ef9++FQOAyFs0axYwUo7vCueo0aNwldffYV58+aha9euSEpKwoEDB7SdiFJTU5Ge/s/USmvWrEFZWRn+85//wMPDQ/v11VdfcfUjEMI+Pz9Wm+ve0hFBLR1RptLg+ziap7JGOnnf/NUEDgMhbBHXcVtP73ZYaYVlU6dOxdSp1f+VFx8fX+n7+/fvN3xAhHDt3j1WmxMIBPgwvD1eX38Gv51LxaQ+reDtRD3Nq9DJu2duGoeBENaksHOrgndnnoSQxhHS2hl92rpAqWawIuYW1+EQYlKoeBJiCvr3b5BmZ0a0h0AA7Ex8jHMpuQ2yD5Omk/fE1oEcBkLYwvTrx0o7VDwJMQX79zdIs/5eDnjtuRYAgLl/XYVSrWmQ/Zgsnbx//PZSDgMhbFEbMTeuLiqehJiCl19usKY/imgPRysJkjML6NGVf9PJ++c/zeUuDsIa0ciRrLRDxZMQU3DgQIM17WgtxezBHQEAXx+6hetp+o+y0uTp5L1HMk112BQIDh1ipR0qnoQQvNrdC6Ed3VCm1mDa1kSUKtVch0QIr1HxJMQUNG/eoM0LBAIsG9kFzWxluJ1ViEV/X2/Q/ZkMnbw/sXPhMBDCGpZ+l6h4EmIK7t5t8F0428jw9asBEAiAX8+m4tezDxp8n7ynk/cxs37lMBDCFpWeM3TVhYonIabgo48aZTcvtGuGD8PbAwDm77qGIzcz69iiidPJ+7t713EYCGGLcNYsdtphpRVCSMP69ttG29V7/VpjRGBzqDQMJv9yEafuZDfavnlHJ+8jT/7JYSCELcLoaHbaYaUVQkiTIRAIsPw//gjzc0OZSoOJ/7tAAygQ8i9UPAkhVUhEQnw/OhB92rqguEyNNzacxd7L6XVvSIiZoOJJiCnIyWn0XcrEIvwwtjvCn52BRm65iNXxd6DRMI0eC2d08v7SZ39xFwdhjSojg5V2qHgSYgp++42T3VpKRVjzRhDe7OUDAFh+IBlv/3QeOYUKTuJpdDp5H5h4hMNACFsE27ax0g4VT0JMQQ1T9DUGkVCAz17qhC9GdIFMLERc8hMMWnUc+66kg2Ga+FmoTt6n7Wq8Tluk4YimTWOlHSqehBC9jA5ugV1Te6ONqw2eFCjw3q8XMWHzedx7Ush1aIQ0OiqehBC9dXC3w9/vP4//G9AGEpEA8clPEPbNMcz64zIe55VwHR4hjYaKJyGm4PRpriPQspCIEBXeHgemv4D+7ZtBrWGw9fxD9F0eh//7LRFJD/OazuVcnby/F/k9h4EQtqiOHWOlHTErrRBCGlZBAdcRVNG6mQ02TeiBhAe5+PrQLZy6m4Pdl9Kw+1Ia2rvZ4pVuzTG8a3O421twHWr9FRQATuUvrRTF3MZCWCEoZOc2A515EmIKwsO5jqBGQS2dsGVST/z9/vN4pVtzSMVCJGcWYMn+mwhZGotX157C2qN3cSuzwPTOSHXy/tWPjTNEImlYoiFDWGmHzjwJIazo3NweK/7bFfOHdcK+K+nYefExzt3Pxfn7T3H+/lMs3X8TLjZSBPs6o2crJwS2cEQ7N1tIxfQ3PDE9VDwJIayyt5Tg9R4t8HqPFnicV4IjNzJx+EYWztzLQXZhGfZeScfeK+WjFUlEArRzs0UnTzt08rSHj5MFnipgXgMxEJNExZMQU/DTT1xHUC/NHSwxNsQHY0N8oFCpcelhPs7ey8HZlFxcfpQHeakK19LkuJYmB/Do2VZiLL0SCx9na7R0toKHvSU8HSzgbm8JD3sLuNtZwNVOBplY1PA/gE7el/x3FuY3/B5JA1Nv2MBK4eNl8YyOjsaXX36JjIwMBAQE4LvvvkOPHj1qXH/79u2YO3cu7t+/j7Zt22LZsmUYwtJ1bUJ44YUXuI7AaDKxCD18ndDD1wnvA2AYBo+eljwrnvm4kS7HvSeFuJ9ThFKlBjczCnAzo+aOUjYyMRytJXCyksLRWvrPv9ZS2FqIYSMTw1omhu2zf22eLbORiWElFUEgENQd9AsvAGXlLy+18mcnEYRTTJ8+rLTDu+K5bds2REVFYe3atQgODsbKlSsRERGB5ORkuLq6Vln/1KlTeP3117FkyRK8+OKL2LJlC15++WVcvHgRnTt35uAnIKQB+PoCpaVcR8EqgUAAbycreDtZYVBndwCAUqnEnr374N+zHx7mKZCaW4z0/FJk5JeU/ysvRXp+KcpUGhQqVChUqPAw1/DnSwUCwEoigkwigkwsfPYlgrTitaT8+3XvPI9pi/YDALYuHQ0s+g+rOSCNT9yuHSu/S7wrnitWrMCkSZMwYcIEAMDatWuxd+9ebNy4EbOqmcR01apVGDRoEGbOnAkAWLRoEWJiYvD9999j7dq1jRo7IcR4IgHQ0tkKbdztq32fYRjklyjxtFiJ3KIyPC0qQ25RGXKL/3ldUKpCUZmq/F9F+VfBs381DMAwQFGZGkVl6lpj0WjKz47L6XGmSswGr4pnWVkZEhISMHv2bO0yoVCI0NBQnK7hIfHTp08jKiqq0rKIiAj89ddfNe5HoVBAofhnYOv8/HwAQG4uzVlYF6VSieLiYuTk5EAikXAdDu+xlS8xw0DFwcwqjc2QfNkJADsbwMdGjPL/yqzqbJ9hGJQqNShSqFCsVEOp0kChYlCmUkOh1kCh0qDs2ZdCrUHxCmB6H08wAIq/AQp4dgzo91F/FbmS1/K7VPDseWp9HqniVfHMzs6GWq2Gm5tbpeVubm64efNmtdtkZGRUu35GLdPOLFmyBAsWLKiyvF27dvWImpBG4uLCdQRmZxIAvNgNABAF0DFoKuo4jgUFBbC3r/7KRwVeFc/GMnv27Epnq3l5eWjZsiVSU1PrTJi5k8vl8Pb2xsOHD2FnZ8d1OLxH+TIM5cswlC/96ZMrhmFQUFAAT0/POtvjVfF0cXGBSCRCZmZmpeWZmZlwd3evdht3d3eD1gcAmUwGmUxWZbm9vT19APVkZ2dHuTIA5cswlC/DUL70V1eu9D2B4tXQHlKpFEFBQYiNjdUu02g0iI2NRUhISLXbhISEVFofAGJiYmpcnxBCCDEWr848ASAqKgrjx49H9+7d0aNHD6xcuRJFRUXa3rfjxo1D8+bNsWTJEgDAtGnT0LdvX3z99dcYOnQotm7digsXLuCHH37g8scghBDShPGueI4aNQpPnjzBvHnzkJGRga5du+LAgQPaTkGpqakQCv85Ye7Vqxe2bNmCOXPm4JNPPkHbtm3x119/GfSMp0wmw/z586u9lEsqo1wZhvJlGMqXYShf+mM7VwLG5KY5IIQQQrjFq3uehBBCiCmg4kkIIYQYiIonIYQQYiAqnoQQQoiBzL54RkdHw8fHBxYWFggODsa5c+e4DokXjh07hmHDhsHT0xMCgaDKWMEMw2DevHnw8PCApaUlQkNDcfv2bW6C5diSJUvw3HPPwdbWFq6urnj55ZeRnJxcaZ3S0lJERkbC2dkZNjY2GDlyZJXBPczFmjVr4O/vr31YPSQkBPv379e+T7mq2dKlSyEQCDB9+nTtMspXZZ999hkEAkGlrw4dOmjfZytfZl08K6Y/mz9/Pi5evIiAgABEREQgKyuL69A4V1RUhICAAERHR1f7/vLly/Htt99i7dq1OHv2LKytrREREYHSJjZtlj6OHj2KyMhInDlzBjExMVAqlQgPD0dRUZF2nRkzZmDPnj3Yvn07jh49irS0NLzyyiscRs0dLy8vLF26FAkJCbhw4QIGDBiA4cOH49q1awAoVzU5f/481q1bB3//yvOKUr6q6tSpE9LT07VfJ06c0L7HWr4YM9ajRw8mMjJS+71arWY8PT2ZJUuWcBgV/wBgdu7cqf1eo9Ew7u7uzJdffqldlpeXx8hkMua3337jIEJ+ycrKYgAwR48eZRimPDcSiYTZvn27dp0bN24wAJjTp09zFSavODo6Mj/++CPlqgYFBQVM27ZtmZiYGKZv377MtGnTGIahz1Z15s+fzwQEBFT7Hpv5Mtszz4rpz0JDQ7XL6pr+jJRLSUlBRkZGpdzZ29sjODiYcod/prhzcnICACQkJECpVFbKV4cOHdCiRQuzz5darcbWrVtRVFSEkJAQylUNIiMjMXTo0Ep5AeizVZPbt2/D09MTrVq1wpgxY5CamgqA3XzxboShxlKf6c9IuYrp3gydCs4caDQaTJ8+Hb1799aOcpWRkQGpVAoHB4dK65pzvq5cuYKQkBCUlpbCxsYGO3fuhJ+fH5KSkihX/7J161ZcvHgR58+fr/IefbaqCg4OxubNm9G+fXukp6djwYIF6NOnD65evcpqvsy2eBLSECIjI3H16tVK91hIVe3bt0dSUhLy8/OxY8cOjB8/HkePHuU6LN55+PAhpk2bhpiYGFhYWHAdjkkYPHiw9rW/vz+Cg4PRsmVL/P7777C0tGRtP2Z72bY+05+RchX5odxVNnXqVPz999+Ii4uDl5eXdrm7uzvKysqQl5dXaX1zzpdUKkWbNm0QFBSEJUuWICAgAKtWraJc/UtCQgKysrLQrVs3iMViiMViHD16FN9++y3EYjHc3NwoX3VwcHBAu3btcOfOHVY/X2ZbPOsz/Rkp5+vrC3d390q5k8vlOHv2rFnmjmEYTJ06FTt37sSRI0fg6+tb6f2goCBIJJJK+UpOTkZqaqpZ5qs6Go0GCoWCcvUvAwcOxJUrV5CUlKT96t69O8aMGaN9TfmqXWFhIe7evQsPDw92P19GdGoyeVu3bmVkMhmzefNm5vr168w777zDODg4MBkZGVyHxrmCggImMTGRSUxMZAAwK1asYBITE5kHDx4wDMMwS5cuZRwcHJhdu3Yxly9fZoYPH874+voyJSUlHEfe+KZMmcLY29sz8fHxTHp6uvaruLhYu87kyZOZFi1aMEeOHGEuXLjAhISEMCEhIRxGzZ1Zs2YxR48eZVJSUpjLly8zs2bNYgQCAXPo0CGGYShXddHtbcswlK9/++CDD5j4+HgmJSWFOXnyJBMaGsq4uLgwWVlZDMOwly+zLp4MwzDfffcd06JFC0YqlTI9evRgzpw5w3VIvBAXF8cAqPI1fvx4hmHKH1eZO3cu4+bmxshkMmbgwIFMcnIyt0FzpLo8AWA2bdqkXaekpIR57733GEdHR8bKyooZMWIEk56ezl3QHHrrrbeYli1bMlKplGnWrBkzcOBAbeFkGMpVXf5dPClflY0aNYrx8PBgpFIp07x5c2bUqFHMnTt3tO+zlS+akowQQggxkNne8ySEEELqi4onIYQQYiAqnoQQQoiBqHgSQgghBqLiSQghhBiIiichhBBiICqehBBCiIGoeBJCCCEGouJJCCGEGIiKJyGEEGIgKp6EEEKIgah4EkIIIQai4kkIIYQYiIonIYQQYiAx1wHwgUajQVpaGmxtbSEQCLgOhxBCCAcYhkFBQQE8PT0hFNZ+bknFE0BaWhq8vb25DoMQQggPPHz4EF5eXrWuQ8UTgK2tLQAgJSUFTk5OHEfDb0qlEocOHUJ4eDgkEgnX4fAea/m6cwdo04a9wHiKd58v3bzz8BjwLl88ps1Vq1aQdOxY7TpyuRze3t7amlAbKp6A9lKtra0t7OzsOI6G35RKJaysrGBnZ0e/rHpgLV+ZmUC3buwFxlO8+3zp5p2Hx4B3+eKxilzZZ2VBHBxc67r63L6jDkOEmIIRI7iOwDzp5p2OQZMgevVVVtrhVfE8duwYhg0bBk9PTwgEAvz11191bhMfH49u3bpBJpOhTZs22Lx5c4PHSQghxLzxqngWFRUhICAA0dHReq2fkpKCoUOHon///khKSsL06dMxceJEHDx4sIEjJYQQYs54dc9z8ODBGDx4sN7rr127Fr6+vvj6668BAB07dsSJEyfwzTffICIioqHCJKTx7djBdQTmSTfvdAyaBPXWrawUPl4VT0OdPn0aoaGhlZZFRERg+vTptW6nUCigUCi038vlcgDlN5SVSiXrcbKBYRikPi3B/ewiZMgVyMgvRXZRGUrK1ChRqlGqVKNEqYFCqYaGATQMAw1Tvt0/ryu+L3+/npGguFiEr24eA2D8M7H1jaKx1fST1tSvQPBsC+ZZvr5OPq5dVvM2Ne/DMzsPaTfj9NqiPu3XRMDSPmra4N9LGTAokIuwNuVUjZ026sq5/uvXQOcN9yeFyLh/HEKBABPdbRHBs/8fKv6/4uv/W3yizVWbNmBqyJcheTTp4pmRkQE3N7dKy9zc3CCXy1FSUgJLS8tqt1uyZAkWLFhQZXlcXBysrKwaJNb6UGuAxBwBrj0V4K5cgHwlXwZwECBHUcp1ECZEAJSWGNXC/q/eQvsPd7IUD98J8Li4kOsgAADbvxqnzXvYtBHY98d2jiOqXkxMDNchmAxpt274e3v1x7G4uFjvdky6eNbX7NmzERUVpf2+4tme/v37w9nZmcPIymk0DH499xDrT9xHev4/RUoiEqC1izXc7S3gYW+BZjYyWMlEsJCIYCkRwlIiglQshEgogFAggEAACAUCCJ/9+8/3z/5Gr0ctVqtUOHfuHHr06AGRmJ2PD1/+JKhJjWfHNbyhu1ilUuH8+XN47rkeEIlEhrWP8qsFACD5Rogtbz+ns031Wxl6QaGm9Q1tv6bd1hZPdftQq9RIuHgR3QIDIf7X56vmfdQQq4ExVbdY/I0QM8Pb4stDtwEBMGTIkBpa5YZSqURMTAzCwsLoUZU6VORKKBTWeBwrrkLqw+D//Xbv3m3oJggLC6vxLNAY7u7uyMzMrLQsMzMTdnZ2te5PJpNBJpNVWS6RSDj/AOYWlWH6tiQcu/UEAOBiI8PrPbzRq7ULAls4wEJS/X/AjUWpVCLrBtDd14XzXJkCpVKJ7JtAj1ZG5ksA9Grryl5gPKVUKlF8j0H/ju78+HwJgJ6tXQDchgDgR0zV4MP/XaakplwZkkODi+fLL79s0PoCgQC3b99Gq1atDN1VnUJCQrBv375Ky2JiYhASEsL6vhrDo6fFGLXuDB7nlcBCIsSsQR3wWo8WnBdMwgNffMF1BOZJJ+/rB01EJIehEHZoFi0CG/+j1utRlYyMDGg0Gr2+DLmHWFhYiKSkJCQlJQEofxQlKSkJqampAMovt44bN067/uTJk3Hv3j189NFHuHnzJlavXo3ff/8dM2bMqM+Pxam84jKM33gOj/NK4ONshZ3v9cabvX2pcJJyOrcZSCPSyfv2F9h5uJ5wS1NHh1J9GVw8x48fb9Al2DfeeEPvIe8uXLiAwMBABAYGAgCioqIQGBiIefPmAQDS09O1hRQAfH19sXfvXsTExCAgIABff/01fvzxR5N7TIVhGHz8x2XcfVIED3sL/PZOT3T0oGECiQ5ra64jME86ed//Kb/ud5L6ETs4sNOOoRts2rTJoPXXrFmj97r9+vWr8eY/gGpHD+rXrx8SExMNiolvdiWl4eC1TEhEAqwf1x0e9uzfHyYmTq3mOgLzpJN3EUPHoElg6XeJtRGGTp48WenZSaKfUqUaS/ffBAD834C26NzcnuOICCGE1IW14jl48GA8fvyYrebMxpazqciQl8LD3gKTXmC/UxVpIt58k+sIzJNO3g8EDeIuDsIajU6/GWOwVjxru9xKqldcpsLq+LsAgPcHtKXOQaRma9dyHYF50sn7ipGm1xGRVKXRc+z0uvBqYHhzs/3CI2QXKuDtZIlXu9c+azkxc8860ZFGppP39Svf4TAQwhbxc8/VvZIeWCue69atqzJUHqndjoRHAIAJvXwhEdHfMaQWN25wHYF50sl7y6wHHAZCWHPzJivNsDY83+jRo9lqyizcyizAlcf5EAsFGN7Vk+twCCGEGMDg053Lly9Do9Hovf61a9egUqkM3U2T98ezs87+HVzhbFN1qEBCKunVi+sIzJNO3q+27MRhIIQtDEsj0BlcPAMDA5GTk6P3+iEhIZUGNiCASq3BzsTynskju9G9TqKHI0e4jsA86eQ96t0VHAZC2KI+dIiVdgy+bMswDObOnav3sHtlZWUGB9XUnbiTjawCBRytJBjQoekP9k1YMGoUsG0b11GYn1GjgOXlA73M+2UhMLM/xwERY4lGjwZqmJLMEAYXzxdeeAHJycl6rx8SEtIgM6qYsr8vpwMAXgrwhFRMHYWIHnbt4joC87Rrl7Z4Pn/9JMfBEDYI9uxhpR2Di2d8fDwrOzZXGg2D+OTy6cYiOrlzHA0hhJD6oNOeRnYjQ47sQgWspCIE+ThyHQ4xFS4uXEdgnnTynm9NQ2c2CSz9LlHxbGQVZ529WjtDJqYRhYieHj3iOgLzpJP3Vz/9ncNACFtUKSmstEPFs5EdvVVePPu2p45CxABz53IdgXnSyftbBzdyGAhhi3D+fHbaYaUVohd5qRIXHzwFAPRt24zjaIhJ+fJLriMwTzp5f+0o9XZuCoQr2HnkiIpnIzp1JxsqDYNWLtZo4azfoz6EEEL4h7XiWVJSUu2UZNeuXWNrFybv2O1sAMAL7eiskxBCTBkrxXPHjh1o27Ythg4dCn9/f5w9e1b73tixY9nYRZNwLiUXQHlnIUIMkpbGdQTmSSfvI+cY/2A94Z7qATsD/LNSPD///HMkJCQgKSkJmzZtwttvv40tW7YAoHk+K+QUKnAnqxAA8JyPE8fREJOzdy/XEZgnnbz3vHGGw0AIWwT79rHSDivFU6lUaqcjCwoKwrFjx7Bu3TosXLgQAoGAjV2YvPP3yzsKtXOzgaO1lONoiMmZNInrCMyTTt5n/vE1h4EQtoimTGGlHVaKp6urKy5fvqz93snJCTExMbhx40al5ebs/P3yS7Y9fOmskxBCTB0rxfPnn3+Gq2vl5xalUil+++03HD16lI1dmLyK+510yZYQQkwfK8XTwsICYnH1w+T27t2bjV2YtJIyNa6nywFQ8ST1RGNKc0Mn79Pf/Ya7OAhr1IcPs9JOvYtnXl4eIiMj4eLiAjc3N7i5ucHFxQVTp05FXl6eUUFFR0fDx8cHFhYWCA4Oxrlz52pdf+XKlWjfvj0sLS3h7e2NGTNmoLS01KgY2HQ9PR9qDYNmtjJ42FtwHQ4hhBAjGTyrCgDk5uYiJCQEjx8/xpgxY9CxY0cAwPXr17F582bExsbi1KlTcHQ0fODzbdu2ISoqCmvXrkVwcDBWrlyJiIgIJCcnV7k0DABbtmzBrFmzsHHjRvTq1Qu3bt3Cm2++CYFAgBUsjSRhrEsP8wEAAV721IGK1E+/fgCP/iA0G/36Acnlj6usXDcD+D6S23iI0UShoaz8LtWreC5cuBBSqRR3797V9rLVfS88PBwLFy7EN98YfpljxYoVmDRpEiZMmAAAWLt2Lfbu3YuNGzdi1qxZVdY/deoUevfujdGjRwMAfHx88Prrr1d61pRrlx/lAQC6NHfgNA5CCCHsqNdl27/++gtfffVVlcIJAO7u7li+fDl27txpcLtlZWVISEhAaGjoPwEKhQgNDcXp06er3aZXr15ISEjQXtq9d+8e9u3bhyFDhhi8/4Zy+XH5mae/N01pRAghTUG9zjzT09PRqVOnGt/v3LkzMjIyDG43OzsbarW6SlF2c3PDzZs3q91m9OjRyM7OxvPPPw+GYaBSqTB58mR88sknNe5HoVBAoVBov5fLyzvzKJVKKJVKg+OuTUGpEveeFAEA/NysWW+/sVXEb+o/R2NhK1+CNWvAmEHO+fb5EqxZA5VKDQD4cuQH+IgncVXgW774rCJHZd9/D2EN+TIkj/Uqni4uLrh//z68vLyqfT8lJQVOTo3TqzQ+Ph5ffPEFVq9ejeDgYNy5cwfTpk3DokWLMLeGaZyWLFmCBQsWVFkeFxcHKyt2B2y/lS8AIIKTjMGZo+z08uKDmJgYrkMwKcbmSyKRQMnSyCimgC+fL4lEglunTwEQI7alPzrz9BjwJV+mINbCosbfpeLiYr3bETD1GD/vrbfewt27dxETEwOptPJoOQqFAhEREWjVqhU2bjRs/ruysjJYWVlhx44dePnll7XLx48fj7y8POzatavKNn369EHPnj3xpc7UQb/88gveeecdFBYWQiisemW6ujNPb29vpKenw9mZ3XFn1x1LwVcxtzG4kxu+fS2A1ba5oFQqERMTg7CwMEgkEq7D4T228iW2tYWqoIDFyPiJb58vsa0tzl17iFHrzyH56xEQFhdxHVIlfMsXn1Xk6qVRo2r8XZLL5XBxcUF+fj7s7Oxqba/eHYa6d++Otm3bIjIyEh06dADDMLhx4wZWr14NhUKBn3/+2eB2pVIpgoKCEBsbqy2eGo0GsbGxmDp1arXbFBcXVymQIpEIQM3j6spkMshksirLJRIJ6x/Aa+nlB6lrC8cm9eFuiFw1ZWzky5zyzafPl1hc/v+JAPw9BnzKlymoKVeG5LBexdPLywunT5/Ge++9h9mzZ2uLlEAgQFhYGL7//nt4e3vXp2lERUVh/Pjx6N69O3r06IGVK1eiqKhI2/t23LhxaN68OZYsWQIAGDZsGFasWIHAwEDtZdu5c+di2LBh2iLKpcuPnnUW8nLgNhBCCCGsqVfxBABfX1/s378fT58+xe3btwEAbdq0Mfpe56hRo/DkyRPMmzcPGRkZ6Nq1Kw4cOKDtRJSamlrpTHPOnDkQCASYM2cOHj9+jGbNmmHYsGFYvHixUXGwIbtQgcd5JRAIgM7Na78EQEitZs7kOgLzpJP3rX1HYRyHoRB2aKKiwMZpVb2LZwVHR0f06NGDhVD+MXXq1Bov08b/a5gysViM+fPnY/78+azGwIaK5ztbuVjD1oIuqRAjLFrEdQTmadEi4EH5uNQbI96i4tkEaBYsYKV41us5zyNHjsDPz0/7iIeu/Px8dOrUCcePHzc6OFP3z8hCDtwGQkxfDT3bSQPTyfv2xf/lMBDCFrGvLyvt1Kt4rly5EpMmTaq2N5K9vT3effdd3gyNx6WKM09/LxocgRgpO5vrCMyTTt7ti/I5DISwhqXfpXoVz0uXLmHQoEE1vh8eHo6EhIR6B9VUXE0rPzPvQmeehBDSpNSreGZmZtbapVcsFuPJkyf1DqopeFKgwJMCBQQCoKOHLdfhEFM3fDjXEZgnnbyf8KPpFZsCZtgwVtqpV/Fs3rw5rl69WuP7ly9fhoeHR72DagpuPJu/08fZGlZSo/tlEXO3bRvXEZgnnbwvfGMeh4EQtqi3bGGlnXoVzyFDhmDu3LnVzplZUlKC+fPn48UXXzQ6OFNWUTz9POgRFcKCAQO4jsA86eR9xbooDgMhbBGFh7PSTr1OiebMmYM///wT7dq1w9SpU9G+fXsAwM2bNxEdHQ21Wo1PP/2UlQBNVUXxpEu2hBWnTnEdgXnSyXvnB9c4DISwRVDDDF2GqlfxdHNzw6lTpzBlypQqIwxFREQgOjq62unKzMmNZ8PydaQzT0IIaXLqfTOuZcuW2LdvH54+fYo7d+6AYRi0/f/27j0uqjr/H/hrhmFABEFFuYmCpBEqqKAsueqWKJuZmWbkqigqmwoFktfWULMNNENx9RdpIa2/Vdzy0s0sQqDVSOXiLRVFMSgFRERuCsPM+f6BjDMBysw58Dlw3s/Hg8dDDmc+58WbmT6dcz7n8xkwAN27dxcyX4d0X6VG3q0qANR5EoE89RTrBNKkU/dfe/fDAIZRiEDc3QVpRpAZhkaMGCFElk4jr6QKag0HGwtTOFibs45DOoOcHNYJpCknRzvDUEjEDqSxTUMEUH/qFISY782oAUPk0S403u+07waZTMY4DekUFi5knUCadOoeuX8zwyBEKPLQUGHaEaQVoufhYCG6ZEsEkpjIOoE06dT9r1lH2OUggpH/+9/CtGPoC86ePQuNRiPIwTurCw9mFvJwpM6TEEI6I4M7z2HDhqH0wdyA/fv3x+3btwUP1ZFxHIdLRY0jbekxFSIQEaxNK0k6dVfL6G/QKQj0WTK487SxsUF+fj4A4Pr163QW+gdFFfdx954KJnIZnuhtyToO6Syqq1knkCaduj/3z8MMgxCh1JeXC9KOwZ3ntGnTMHbsWLi6ukImk8HHxwf9+/dv9kuKGs86+9t2hZmC/k+VCIRWKWJDp+7Tf/yMYRAiFPmWLYK0Y/CjKjt27MDUqVORl5eHN954AyEhIbCyosuTjXIfdJ5P2lNNiIDeeguIpOnh2t1bbwHT5gIAQo58DOD/MY1D+JO//TawbBnvdox6zrNxObKsrCyEh4dT56mjsfN0p86TEEI6LV6TJOzatQvl5eX44IMPcPHiRQDAoEGDMG/ePFhbS3MB6EvaM08aaUsIIZ0Vr+c8MzMz4ebmhs2bN6OsrAxlZWWIjY2Fm5sbsrOzhcrYYajUGlwtaZiW70k7OvMkAvqFJiVnQqfuc99MYBiECKX+9GlB2uHVeS5ZsgSTJ0/G9evXceDAARw4cAD5+fmYNGkSIiIiBAnYkfx6uxp1ag0slCbo070L6zikM3lwZYe0M5269ysuYBiECEV26ZIg7fA+81yxYgUUiodXfxUKBZYvX47MzEze4Tqaxku2A+2sIJfTtHxEQC+/zDqBNOnUfd3/X8suBxGMyauvCtIOr86zW7duKCho+n9jhYWFkhxERIOFCCFEGnh1noGBgZg/fz727duHwsJCFBYWIikpCQsWLMCMGTOEythhXKLHVAghRBJ4dZ6bNm3C1KlTERQUBBcXF7i4uGDu3Ll4+eWXsWHDBqPb3b59O1xcXGBubg5fX1+cPHnykfuXl5cjNDQUDg4OMDMzw8CBA3H4cPvPBqJ9xpMGCxGhHTzIOoE06dR9ddA7DIMQoag/E2ayC16PqiiVSsTFxSE6OhpXr14FALi5ucHCwsLoNvft24fIyEjEx8fD19cXW7ZsQUBAAHJzc9G7d+8m+9fV1WH8+PHo3bs3Pv/8czg5OeHXX3+FjY2N0RmMUVNXj4KyGgB05knagJsb6wTSpFP3Gz0dGQYhQuEEmv1OkCXJLCwsMGTIEAwZMoRXxwkAsbGxCAkJQXBwMDw8PBAfHw8LCwskJDQ/TDwhIQFlZWU4dOgQRo0aBRcXF4wdOxZeXl68chjqcnHDIyq2lmboaWnWrscmEuDpyTqBNOnUPWHzAoZBiFAU3t7CtCNIKwKpq6tDVlYWVq1apd0ml8vh7++PjIyMZl/z5Zdfws/PD6Ghofjiiy/Qq1cv/O1vf8OKFStg0sLs+bW1taitrdV+X1HRsISYSqWCSqUyKvuF3+8AAAbadTW6jY6g8XfrzL+jkISqlwJAvQRqLrb3lwJAfb0aAMBBPLkaia1eYqZbo5bqZUgdRdV5lpaWQq1Ww87OTm+7nZ0dLrXwbM61a9dw9OhRzJw5E4cPH0ZeXh4WL14MlUqFNWvWNPua6OhorFu3rsn21NRUo8+cv8uXA5BDWVPK5H5re0tOTmYdoUPhW69JGo0k3leNxPL+mqTRICPjJwAKgINo/wZiqVdHoHnEZ6mmpqbV7Yiq8zSGRqNB7969sWPHDpiYmMDb2xu///473n///RY7z1WrViFSZ5LtiooKODs745lnnkHPnj2NypG0KxNAGQL+NAQThzsZ1UZHoFKpkJycjPHjx8PU1JR1HNETrF4xMZg4caJwwURKdO+vmBj4+T2NLedP4qOJf8cikf0NRFcvEWuslfqf/2zxs9R4FbI1RNV52trawsTEBMXFxXrbi4uLYW9v3+xrHBwcYGpqqneJ9qmnnkJRURHq6uqgVCqbvMbMzAxmZk3vS5qamhr9BrzyYFo+D0cbSbyJ+dRKinjXKzISUlrgTjTvr8hIKH4tAwAcGD0Nb4ghUzNEU68OQBYR0WKtDKmhIAOGhKJUKuHt7Y2UlBTtNo1Gg5SUFPj5+TX7mlGjRiEvL09vUe7Lly/DwcGh2Y6zLZRW1aK0qg4yWcPsQoQIztycdQJp0qn7928FMAxChKIQaAIf3meeKSkpSElJQUlJiV4HBqDFEbKPEhkZiTlz5sDHxwcjR47Eli1bUF1djeDgYABAUFAQnJycEB0dDQBYtGgRtm3bhvDwcLz++uu4cuUK3nvvPbzxxht8f7VWa3y+s18PC3RRSun8gBBCpIlX57lu3Tq888478PHxgYODA2Qy/vO5BgYG4tatW4iKikJRURGGDh2KI0eOaAcRFRQUQC5/eMLs7OyM7777DkuWLIGnpyecnJwQHh6OFStW8M7SWjSzECGESAuvzjM+Ph6JiYmYPXu2UHkAAGFhYQgLC2v2Z2lpaU22+fn54eeffxY0gyFyixpuMtManqTNzJ/POoE06dT9mxET8RLDKEQYmuBgQcYP8LrnWVdXh6efflqAGB0bTQhP2tz27awTSJNO3eNeCmcYhAhFs3WrIO3w6jwXLFiAPXv2CBKko1JrOO3sQtR5kjYzZAjrBNKkU/eEWDr77wwUw4YJ0w6fF9+/fx87duzADz/8AE9PzybDfGNjY3mF6wgKympwT6WGuakc/Xp2ZR2HdFZXrrBOIE06de9T+hvDIEQweXmCNMOr8zx79iyGDh0KADh//rzez4QYPNQRXLrZcL9zoJ0VTGgBbEIIkQRenWdqaqpQOTqsS3S/k7SHMWNYJ5AmnbqfcfXECIZRiDC40aMhxGkO7+c8y8vL8cknn+DixYsAgEGDBmHevHmwtrbmHa4juEQjbUl7+P571gmk6fvvgQczDC0LeR9pbNMQAagPHxZkdiBebWRmZsLNzQ2bN29GWVkZysrKEBsbCzc3N2RnZwsQT/wazzyfojNP0pamTWOdQJp06r7u383PlU06FpNXXhGkHV6d55IlSzB58mRcv34dBw4cwIEDB5Cfn49JkyYhIiJCkIBiVl1LC2CTdvLNN6wTSJNO3f0usXuWnAhH9u23grTD67JtZmYmdu7cCYXiYTMKhQLLly+Hj48P73Bid7m4EhwH9LKiBbAJIURKeJ15duvWDQUFBU22FxYWwkqgyXfFjAYLkXbTwqpCpI3p1L3MqgfDIEQwAn2WeHWegYGBmD9/Pvbt24fCwkIUFhYiKSkJCxYswIwZMwQJKGaNMws95UCDhUgbu36ddQJp0qn7q6v2sstBBFMv0DPTvDrPTZs2YerUqQgKCoKLiwtcXFwwd+5cvPzyy9iwYYMgAcXs4oNnPJ+kZchIW1u1inUCadKpe8i3OxkGIUKR/+MfwrTD58VKpRJxcXG4c+cOTp8+jdOnT6OsrAybN29udrHpzoTjuIeXbR2o8yRtbPNm1gmkSafu0//3OcMgRChygea25f2cJwBYWFhgiMTm3iyuqMXdeyqYyGV4orcl6ziEEELakcGdZ2RkJNavX4+uXbsiMjLykft25rltLz6YHKG/bVeYKWgBbEIIkRKDO8+cnByoVCrtv1vS2ee2vXSz8ZItDRYi7aCkhHUCaSopAe7UAwCmRB3AYcZxCH/1v/8O08fv9lgGd56689l++umn6NOnD+Ry/VunHMehsLCQfzoRa1wAmx5TIe1i/34gOJh1CunZvx949kUAwJhzPwKYxDYP4U128CCwYAHvdngNGHJ1dUVpaWmT7WVlZXB1deXTtOjRM56kXS1axDqBNOnUPfLgFnY5iGBMwsIEaYdX58lxXLPbq6qqYG5uzqdpUaur1yCv5MEC2HTZlhBCJMeo0baNA4VkMhmioqJgYWGh/ZlarcaJEye063x2RtdKq1Cv4WBlroCjdef9nwRCCCHNM6rzbBwoxHEczp07B6VSqf2ZUqmEl5cXli5dKkxCEdIOFrK36vQDo4hIHDvGOoE06dT99UVb8RHDKEQY6rQ0QZ7RNKqNxkFDwcHBiIuLQ7du0rp0eVE7WEhavzdhqLaWdQJp0qm7qVrFMAgRjECfJV73PHft2iW5jhN4OKctzSxE2s24cawTSJNO3WN3vMkwCBGKSUCAIO3w6jyjo6ORkJDQZHtCQgKvuW23b98OFxcXmJubw9fXFydPnmzV65KSkiCTyTBlyhSjj90aupdtCSGESA+vzvOjjz6Cu7t7k+2DBg1CfHy8UW3u27cPkZGRWLNmDbKzs+Hl5YWAgACUPOYh8evXr2Pp0qUYPXq0UcdtrfKaOhRV3AcADKQJ4QkhRJJ4dZ5FRUVwcHBosr1Xr164efOmUW3GxsYiJCQEwcHB8PDwQHx8PCwsLJo9w22kVqsxc+ZMrFu3Dv379zfquK3V+Hync48usDIXYp4KQlrhEe9/0oZ06r5h+nKGQYhQ1Dt2CNIOr87T2dkZx48fb7L9+PHjcHR0NLi9uro6ZGVlwd/f/2FAuRz+/v7IyMho8XXvvPMOevfujfnz5xt8TEM9XIZMevd6CUPjx7NOIE06dc8c4M0wCBEKp9O/8MFrxG5ISAgiIiKgUqnw7LPPAgBSUlKwfPlyvPmm4TfXS0tLoVarYWdnp7fdzs4Oly5davY1x44dwyeffILTp0+3+ji1tbWo1RlxVVHR0CGqVCrtvL0tOfdbOQDgKfuuj923M2r8naX4uxtDqHopnJ1RX1kpRCRRE9v7S+HsjPpfGqYa/e97gVCtrmacSJ/Y6iVmjTVS9O8PVQufJUPqyKvzXLZsGW7fvo3Fixejrq4OAGBubo4VK1ZgVTss3ltZWYnZs2dj586dsLW1bfXroqOjsW7duibbU1NT9SZ8aM6JXBMAMty7cQWHD182NHKnkZyczDpCh8K3XpM0Ghw+LJ1pycXy/pqk0SAj4ycACoCDaP8GYqlXR6B5xGeppqam1e3IuJbm2DNAVVUVLl68iC5dumDAgAFGL4RdV1cHCwsLfP7553ojZufMmYPy8nJ88cUXevufPn0aw4YNg4nJwyXBNBoNgIbLvbm5uXBzc2tynObOPJ2dnXHz5k307NmzxXy19RoMXZ+Ceg2H9DdHw9Gmi1G/Z0emUqmQnJyM8ePHw9SU7vk+jlD1UlhZSebMU0zvL4WVFU7+UojAnSeR+8FLkNeI78xTTPUSs8ZaTQ4MbPGzVFFRAVtbW9y9e/exj2EKshi2paUlRowYwbsdpVIJb29vpKSkaDtPjUaDlJQUhDUzma+7uzvOnTunt2316tWorKxEXFwcnJ2dmz2OmZlZsx28qanpI9+Al4rvol7DobuFKfraSnt2ocfViujjXa+VKyVVb9G8v1auhOLBer17/zIDc8WQqRmiqVcHoFm2rMVaGVJDQTrPCxcuoKCgQHvpttHkyZMNbisyMhJz5syBj48PRo4ciS1btqC6uhrBD5ZjCgoKgpOTE6Kjo2Fubo7Bgwfrvd7GxgYAmmwXwi837gIABjlaS7rjJAysXcs6gTStXQv8WgYASJwwF3OZhiFC0ERFweTxuz0Wr87z2rVreOmll3Du3DnIZDLtKiuNHYtarTa4zcDAQNy6dQtRUVEoKirC0KFDceTIEe0gooKCgibrh7aX89rOk0baknbm4AAY+fgX4cHBAfj5FwDA/vUvA8tuMw5E+FL07SvIZ4lX5xkeHg5XV1ekpKTA1dUVJ0+exO3bt/Hmm29i06ZNRrcbFhbW7GVaAEhLS3vkaxMTE40+7uP8cqNhVO4gJ+s2OwYhzbpzh3UCadKpu9W9zn/PWRIE+izx6jwzMjJw9OhR2NraQi6XQy6X489//jOio6PxxhtvaFdf6QzUGk77jCedeRJCiLTxuv6pVqthZdUwRZ2trS1u3LgBAOjXrx9yc3P5pxORa7eqcF+lgYXSBK49u7KOQ6Rm6lTWCaRJp+4/Dm7bqT9J++AEmvuc15nn4MGDcebMGbi6usLX1xcbN26EUqnEjh072nyavPbWeMnWw6Eb5HIaLETa2Z49rBNI05492gFD7/5tNYSZm4awpN69m99Z4wO82li9erV2kNA777yD/Px8jB49GocPH8bWrVsFiCceZ39rGCw0mO53EhbGjmWdQJp06r7lwwh2OYhgTARa3s/oM0+VSoWNGzdqV0954okncOnSJZSVlaF79+6d7lGOc7+XAwA8+1DnSRg4cYJ1AmnSqbtH4UWGQYhQZK1c4vJxjO48TU1Ncfbs2Sbbe/TowSuQGNWrNTj/e8NlW+o8CSGE8LpsO2vWLHzyySdCZRGtq7eqcU+lRlelCfrbWrKOQ6SoDSb9IK2gU/d8O1eGQYhQuEGDBGmH14Ch+vp6JCQk4IcffoC3tze6dtUfhRobG8srnFicebCSymAnaxosRNjIzGSdQJoyM7UDhl4Lj0ca2zREAOqff2Y/YOj8+fMYPnw4rKyscPnyZeTk5Gi/DFkiTOzOPug8vZxtmOYgEhYSwjqBNOnUfennxk/8QsTDZOFCQdrhdeaZmpoqSAixO1PYMNJ2CI20Jazs3g3s3Mk6hfTs3g2s3gAAmJBNy351BrL//AcQ4HajUWee165dgwArmXUINXX1uPBgZqHh/bozTkMIIUQMjOo8BwwYgFu3bmm/DwwMRHFxsWChxOTsb3eh1nCw72YOR2tz1nGIVCmVrBNIk07dVSa05FenINBnyajO849nnYcPH0Z1tbgWiRVK1q8Nkwh79+t8z66SDqSignUCadKp+/Prv2YYhAil/rYwK+OwWdurA8l+0HnSJVvC1MaNrBNIk07dX01LYhiECEXOY8UvvXaMeZFMJmtyFtYZz8o4jkNWwcMzT0KYiYpinUCadOo+7/tdDIMQocjXrROkHaNG23Ich7lz58LMzAwAcP/+fSxcuLDJc54HDhzgn5Cha6XVKK9RwUwhh4cDLUNGCCGkgVGd55w5c/S+nzVrliBhxKbxfqdXHxsoFXSFmxBCSAOjOs9du6Rx+YLudxLR6GTr43YYOnWfvexT7GMYhQij/vx5CDFumk6nHkF3pC0hTOXksE4gTTp1H/B7HsMgRCgygWa/o86zBXdrVLhSUgUAGN7Xhm0YQl59lXUCadKpe9Se9QyDEKGYCHSbkTrPFmQXNpx1utp2RU9LM8ZpCCGEiAl1ni3Q3u/sS5dsCSGE6KPOswUn8huWIaL7nUQUvvqKdQJp0qn7qrn/ZBiECEV98KAg7fDuPP/3v/9h1qxZ8PPzw++//w4A2L17N44dO8Y7HCs1dfXIeTA5wtNuPRmnIQSAkxPrBNKkU/dSa1uGQYhQOEdHQdrh1Xnu378fAQEB6NKlC3JyclBbWwsAuHv3Lt577z2j292+fTtcXFxgbm4OX19fnDx5ssV9d+7cidGjR6N79+7o3r07/P39H7l/a5y6fgcqNQcnmy7o19OCV1uECGL4cNYJpEmn7jvjXmMYhAhF4esrSDu8Os93330X8fHx2LlzJ0xNHz45M2rUKGRnZxvV5r59+xAZGYk1a9YgOzsbXl5eCAgIQElJSbP7p6WlYcaMGUhNTUVGRgacnZ0xYcIE7VmwMX7KKwXQcNbZGacdJIQQwg+vzjM3Nxdjxoxpst3a2hrl5eVGtRkbG4uQkBAEBwfDw8MD8fHxsLCwQEJCQrP7/+c//8HixYsxdOhQuLu74+OPP4ZGo0FKSopRxweA41cbOs9RT9BlGkIIIU0ZNcNQI3t7e+Tl5cHFxUVv+7Fjx9C/f3+D26urq0NWVhZWrVql3SaXy+Hv74+MjIxWtVFTUwOVSoUePXq0uE9tba32EjMAVDxYdkilUuHW3Rr8cqPh+xH9rKFSqQz+PTqzxnpQXVpHqHrJN26ERgI1F9v7S75xI+rr1QCA7c8vQphIcjUSW73ETFur6GjIWqiXIXXk1XmGhIQgPDwcCQkJkMlkuHHjBjIyMrB06VK8/fbbBrdXWloKtVoNOzs7ve12dna4dOlSq9pYsWIFHB0d4e/v3+I+0dHRWNfMzPqpqam4cq8rOM4E9l04ZP7P+LPXzi45OZl1hA6Fb71kffqAO3xYoDTiJ5b3l6xPH1zL+AmAAkmez6K/SP8GYqlXR3CkX78WP0s1NTWtbodX57ly5UpoNBqMGzcONTU1GDNmDMzMzLB06VK8/vrrfJo2SkxMDJKSkpCWlgZzc/MW91u1ahUiIyO131dUVMDZ2RnPPPMMzv9UAqAQ4736YeJE93ZI3bGoVCokJydj/Pjxeve5SfOEqpfCygr1lZUCJhMnsb2/FFZWOPlLIbacP4kfo6dDXlPNOpIesdVLzBpr9cLf/tbiZ6nCgEXneXWeMpkM//jHP7Bs2TLk5eWhqqoKHh4esLS0NKo9W1tbmJiYoLi4WG97cXEx7O3tH/naTZs2ISYmBj/88AM8PT0fua+ZmZl2OTVdCoUCx682rDL+5wG96M34CKamplQfAwhRLynVW0zvL4XCBAAgg3j/BmKqV0fQUq0MqaEgkyQolUp4eHhg5MiRRnecje14e3vrDfZpHPzj5+fX4us2btyI9evX48iRI/Dx8TH6+Ndv1+D67RooTeQ0WIgQQkiLDD7z1L3c+TixsbGGNo/IyEjMmTMHPj4+GDlyJLZs2YLq6moEBwcDAIKCguDk5ITo6GgAwIYNGxAVFYU9e/bAxcUFRUVFAABLS0uDO/L0Kw2jbP/k1hOWZrxOygkR1mv0jCETOnX/0vcFvMwwChGGJiQEJgK0Y3APkdPKpZGMfT4yMDAQt27dQlRUFIqKijB06FAcOXJEO4iooKAAcvnDE+YPP/wQdXV1ePll/bf1mjVrsHbtWoOO/ePlhs7T/6neRmUnpM3ExbFOIE1xccCvDVN1bnsxjDrPTkATG8um80xNTRXgsI8WFhaGsLCwZn+Wlpam9/3169cFO+6Z3+4CSgs8606dJxEZDw/gwgXWKaTHwwP4tmGq0cRNwcCy62zzEN4Unp7AxYu826GJ4XVoOOAph27o052m5CMic+0a6wTSpFN3x7IbDIMQweTnC9IM7xt75eXl+OSTT3DxQU/u4eGB+fPnw9ramnc4FuiSLSGEkMfhdeaZmZkJNzc3bN68GWVlZSgrK8PmzZvh5uZm9Ny2rPk/Zff4nQhpb888wzqBNOnUPcdtGMMgRCjcX/4iSDu8Os8lS5Zg8uTJuH79Og4cOIADBw4gPz8fkyZNQkREhCAB21Of7ubw7NMxz5hJJ/ftt6wTSJNO3VfMj2EYhAhFLdDauLzPPFesWAGF4uHVX4VCgeXLlyMzM5N3uPb210H2tIoKEacpU1gnkCadur/7qeFTjhLxMZk2TZB2eHWe3bp1Q0FBQZPthYWFsLKy4tM0E38dRPc7iUgdOcI6gTTp1H1kLr91ggl7ag0g+/57qDUc77Z4dZ6BgYGYP38+9u3bh8LCQhQWFiIpKQkLFizAjBkzeIdrb269jJ8diRBCiLjtvy5HXb0G/zp6hXdbvEbbbtq0CTKZDEFBQaivrwfHcVAqlVi0aBFiYuj+ACGCcXJinUCadOp+q5st6K/QsXEAiqx6Qi7A7TleZ55KpRJxcXG4c+cOTp8+jTNnzmhH3DY38TohxEhXr7JOIE06dZ+58j8MgxAhcBww9rWPIcTIFqPOPOfNm9eq/RISEoxpnhDyR8uXAxs3sk4hPcuXA6ErAQCvffMRsIweGeroVqYmQB2wgXc7Rp15JiYmIjU1FeXl5bhz506LX4QQgWzdyjqBNOnUfdrxAwyDECFoOCA46ysI8VCFUWeeixYtwt69e5Gfn4/g4GDMmjULPXr04J+GEEIIaSONY2xlAly4NerMc/v27bh58yaWL1+Or776Cs7OznjllVfw3XffgeP4DwEmhBBC2opcgDNPowcMmZmZYcaMGUhOTsaFCxcwaNAgLF68GC4uLqiqquKfjBDy0O3brBNIk07dJ689xC4HEQTHAUPf2CvIZVtBVlWRy+WQyWTgOA5qtVqIJgkhuvbuZZ1AmnTqPi7nKMMgRAgaAJMvprN9VKW2thZ79+7F+PHjMXDgQJw7dw7btm1DQUEBLC1psgFCBNXC+rakjenUPfwLGrTVGbyTHC/INKxGDRhavHgxkpKS4OzsjHnz5mHv3r2wtbXlHYYQQghpK41Dcpg95xkfH4++ffuif//+SE9PR3p6erP7HThAQ7sJIYSIQ+NwViEGDBnVeQYFBdHqI4S0p4wM1gmkSafui0O34WOGUQh/HICpszfhFVaXbRMTE3kfmBBigMpK1gmkqbISePAIu0VtDdsshDeOA7rW3WP7qAohpB1NmMA6gTTp1H3Tx8sZBiFC4ADs3ve2IFdOqfMkhBAiCdoBQ3TmSQghhLTOwwFDnfTMc/v27XBxcYG5uTl8fX1x8uSjV3D/7LPP4O7uDnNzcwwZMgSHDx9up6SEtJNPP2WdQJp06h79ykqGQYhQ3nx+CbtHVdrSvn37EBkZifj4ePj6+mLLli0ICAhAbm4uevfu3WT/n376CTNmzEB0dDQmTZqEPXv2YMqUKcjOzsbgwYMZ/AaEtIExY1gnkKYxY4C6hn+m9HJH4aen2Ob5A42GQ0mJHF+U5UAuxCiYTkyj4XC9SoZi58EYw2q0bVuKjY1FSEgIgoODATQ8U/rNN98gISEBK1c2/T+/uLg4/PWvf8WyZcsAAOvXr0dycjK2bduG+Pj4ds1OSJtxdQXu32edQnpcXdHzt4b5bZO3zcWTSw8yDtQcOXDnFusQHYQMWfHz8VPYb7xbElXnWVdXh6ysLKxatUq7TS6Xw9/fHxktPOeWkZGByMhIvW0BAQE4dOhQW0YlhEiEi21XJP39T1BslmPDtCGs4+hRq9U4e/YcPD2HwMTEhHUcUWuslcJEjjEDe/FuT1SdZ2lpKdRqNezs7PS229nZ4dKlS82+pqioqNn9i4qKWjxObW0tamtrtd/fvXsXAFBWVmZsdMlQqVSoqanB7du3YWpqyjqO6AlVLwXHoV4CK6uI7f3VWPcB1kAVOPj378o6kh6VSgVZfjWecekiinqJWWOtqsCh/k7z/62vfPA8dWuW1hRV59leoqOjsW7duibbBw4cyCANIa1E80ezoVt3+ht0Do/5O1ZWVsLa2vqR+4iq87S1tYWJiQmKi4v1thcXF8Pe3r7Z19jb2xu0PwCsWrVK71JveXk5+vXrh4KCgscWTOoqKirg7OyMwsJCdOvWjXUc0aN6GYbqZRiqV+u1plYcx6GyshKOjo6PbU9UnadSqYS3tzdSUlIwZcoUAIBGo0FKSgrCWliSyc/PDykpKYiIiNBuS05Ohp+fX4vHMTMzg5mZWZPt1tbW9AZspW7dulGtDED1MgzVyzBUr9Z7XK1aewIlqs4TACIjIzFnzhz4+Phg5MiR2LJlC6qrq7Wjb4OCguDk5ITo6GgAQHh4OMaOHYsPPvgAzz//PJKSkpCZmYkdO3aw/DUIIYR0YqLrPAMDA3Hr1i1ERUWhqKgIQ4cOxZEjR7SDggoKCiCXP5zb4emnn8aePXuwevVqvPXWWxgwYAAOHTpEz3gSQghpM6LrPAEgLCysxcu0aWlpTbZNnz4d06dPN/p4ZmZmWLNmTbOXcok+qpVhqF6GoXoZhurVekLXSsa1ZkwuIYQQQrREObctIYQQImbUeRJCCCEGos6TEEIIMRB1noQQQoiBJN95Grp2qFT8+OOPeOGFF+Do6AiZTNZkon2O4xAVFQUHBwd06dIF/v7+uHLlCpuwjEVHR2PEiBGwsrJC7969MWXKFOTm5urtc//+fYSGhqJnz56wtLTEtGnTmsyMJRUffvghPD09tQ+r+/n54dtvv9X+nGrVspiYGMhkMr1JYahe+tauXQuZTKb35e7urv25UPWSdOfZuHbomjVrkJ2dDS8vLwQEBKCkpIR1NOaqq6vh5eWF7du3N/vzjRs3YuvWrYiPj8eJEyfQtWtXBAQE4L4El81KT09HaGgofv75ZyQnJ0OlUmHChAmorq7W7rNkyRJ89dVX+Oyzz5Ceno4bN25g6tSpDFOz06dPH8TExCArKwuZmZl49tln8eKLL+KXX34BQLVqyalTp/DRRx/B09NTbzvVq6lBgwbh5s2b2q9jx45pfyZYvTgJGzlyJBcaGqr9Xq1Wc46Ojlx0dDTDVOIDgDt48KD2e41Gw9nb23Pvv/++dlt5eTlnZmbG7d27l0FCcSkpKeEAcOnp6RzHNdTG1NSU++yzz7T7XLx4kQPAZWRksIopKt27d+c+/vhjqlULKisruQEDBnDJycnc2LFjufDwcI7j6L3VnDVr1nBeXl7N/kzIekn2zLNx7VB/f3/ttsetHUoa5Ofno6ioSK921tbW8PX1pdrh4RJ3PXr0AABkZWVBpVLp1cvd3R19+/aVfL3UajWSkpJQXV0NPz8/qlULQkND8fzzz+vVBaD3VkuuXLkCR0dH9O/fHzNnzkRBQQEAYeslyhmG2oMxa4eSBo1rpRq6jqoUaDQaREREYNSoUdopIouKiqBUKmFjY6O3r5Trde7cOfj5+eH+/fuwtLTEwYMH4eHhgdOnT1Ot/iApKQnZ2dk4depUk5/Re6spX19fJCYm4sknn8TNmzexbt06jB49GufPnxe0XpLtPAlpC6GhoTh//rzePRbS1JNPPonTp0/j7t27+PzzzzFnzhykp6ezjiU6hYWFCA8PR3JyMszNzVnH6RCee+457b89PT3h6+uLfv364b///S+6dOki2HEke9nWmLVDSYPG+lDt9IWFheHrr79Gamoq+vTpo91ub2+Puro6lJeX6+0v5XoplUo88cQT8Pb2RnR0NLy8vBAXF0e1+oOsrCyUlJRg+PDhUCgUUCgUSE9Px9atW6FQKGBnZ0f1egwbGxsMHDgQeXl5gr6/JNt56q4d2qhx7dBHrQVKAFdXV9jb2+vVrqKiAidOnJBk7TiOQ1hYGA4ePIijR4/C1dVV7+fe3t4wNTXVq1dubi4KCgokWa/maDQa1NbWUq3+YNy4cTh37hxOnz6t/fLx8cHMmTO1/6Z6PVpVVRWuXr0KBwcHYd9fPAY1dXhJSUmcmZkZl5iYyF24cIH7+9//ztnY2HBFRUWsozFXWVnJ5eTkcDk5ORwALjY2lsvJyeF+/fVXjuM4LiYmhrOxseG++OIL7uzZs9yLL77Iubq6cvfu3WOcvP0tWrSIs7a25tLS0ribN29qv2pqarT7LFy4kOvbty939OhRLjMzk/Pz8+P8/PwYpmZn5cqVXHp6Opefn8+dPXuWW7lyJSeTybjvv/+e4ziq1ePojrblOKrXH7355ptcWloal5+fzx0/fpzz9/fnbG1tuZKSEo7jhKuXpDtPjuO4f/3rX1zfvn05pVLJjRw5kvv5559ZRxKF1NRUDkCTrzlz5nAc1/C4yttvv83Z2dlxZmZm3Lhx47jc3Fy2oRlprk4AuF27dmn3uXfvHrd48WKue/funIWFBffSSy9xN2/eZBeaoXnz5nH9+vXjlEol16tXL27cuHHajpPjqFaP88fOk+qlLzAwkHNwcOCUSiXn5OTEBQYGcnl5edqfC1UvWpKMEEIIMZBk73kSQgghxqLOkxBCCDEQdZ6EEEKIgajzJIQQQgxEnSchhBBiIOo8CSGEEANR50kIIYQYiDpPQkRq7ty5mDJlSrsfNzExETKZDDKZDBEREbzb+uMKFo8zd+5c7fEPHTrE6/iEtBVaVYUQBmQy2SN/vmbNGsTFxYHVHCbdunVDbm4uunbtyqudwMBATJw40aDXxMXFISYmBg4ODryOTUhbos6TEAZu3ryp/fe+ffsQFRWF3Nxc7TZLS0tYWlqyiAagoXMXYlWOLl26GLwMlLW1NaytrXkfm5C2RJdtCWHA3t5e+2Vtba3trBq/LC0tm1y2/ctf/oLXX38dERER6N69O+zs7LBz505UV1cjODgYVlZWeOKJJ/Dtt9/qHev8+fN47rnnYGlpCTs7O8yePRulpaUGZ3ZxccG7776LoKAgWFpaol+/fvjyyy9x69YtvPjii7C0tISnpycyMzO1r/njZdu1a9di6NCh2L17N1xcXGBtbY1XX30VlZWVBuchhCXqPAnpQD799FPY2tri5MmTeP3117Fo0SJMnz4dTz/9NLKzszFhwgTMnj0bNTU1AIDy8nI8++yzGDZsGDIzM3HkyBEUFxfjlVdeMer4mzdvxqhRo5CTk4Pnn38es2fPRlBQEGbNmoXs7Gy4ubkhKCjokZebr169ikOHDuHrr7/G119/jfT0dMTExBiVhxBWqPMkpAPx8vLC6tWrMWDAAKxatQrm5uawtbVFSEgIBgwYgKioKNy+fRtnz54FAGzbtg3Dhg3De++9B3d3dwwbNgwJCQlITU3F5cuXDT7+xIkT8dprr2mPVVFRgREjRmD69OkYOHAgVqxYgYsXLzZZKF2XRqNBYmIiBg8ejNGjR2P27Nl66ysS0hHQPU9COhBPT0/tv01MTNCzZ08MGTJEu83Ozg4AUFJSAgA4c+YMUlNTm71/evXqVQwcONDo4zceq6Xjt3TP1MXFBVZWVtrvHRwctHkJ6Sio8ySkAzE1NdX7XiaT6W1rHMWr0WgAAFVVVXjhhRewYcOGJm0ZM5q1uWM96viPa6PxNY/anxAxos6TkE5s+PDh2L9/P1xcXKBQ0MedEKHQPU9COrHQ0FCUlZVhxowZOHXqFK5evYrvvvsOwcHBUKvVrOMR0mFR50lIJ+bo6Ijjx49DrVZjwoQJGDJkCCIiImBjYwO5nD7+hBhLxrGawoQQIkqJiYmIiIhAeXk50xwymQwHDx5kMkUhIY9D/+tJCGni7t27sLS0xIoVK9r92AsXLmQ6uxIhrUFnnoQQPZWVldrnNG1sbGBra9uuxy8pKUFFRQWAhhHBfOfXJaQtUOdJCCGEGIgu2xJCCCEGos6TEEIIMRB1noQQQoiBqPMkhBBCDESdJyGEEGIg6jwJIYQQA1HnSQghhBiIOk9CCCHEQNR5EkIIIQb6P/ZUCsZgztkwAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAKnCAYAAADgN8aBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAvgtJREFUeJzs3XlcFPX/B/DX3ty3XIKCt6ggYiKaeXF4ZGZ++1qamqWlYT+VsrQ8UjOPyrTCI/PoW5mmZWqeiOB9IniLF4rKJSAs57LH/P5AtiWuXXZgZtn38/Hg4TI785k371l8MzOf+XwEDMMwIIQQQojehFwHQAghhJgaKp6EEEKIgah4EkIIIQai4kkIIYQYiIonIYQQYiAqnoQQQoiBqHgSQgghBqLiSQghhBhIzHUAfKDRaJCWlgZbW1sIBAKuwyGEEMIBhmFQUFAAT09PCIW1n1tS8QSQlpYGb29vrsMghBDCAw8fPoSXl1et61DxBGBrawsASElJgZOTE8fR8JtSqcShQ4cQHh4OiUTCdTi8x1q+7twB2rRhLzCe4t3nSzfvPDwGvMsXj2lz1aoVJB07VruOXC6Ht7e3tibUhoonoL1Ua2trCzs7O46j4TelUgkrKyvY2dnRL6seWMtXZibQrRt7gfEU7z5funnn4THgXb54rCJX9llZEAcH17quPrfvqMMQIaZgxAiuIzBPunmnY9AkiF59lZV2qHgSQgghBqLiSQghhBiIiichpmDHDq4jME+6eadj0CSot25lpR0qnoSYghp6B5IGppt3OgZNAtOhAyvtUPEkxBR06sR1BOZJN+90DJoEcdeurLRDxZMQQggxEBVPQgghxEA0SAIhPKXRMHiQW4zbmQUInrsA9lwHZI6++KL618RkaRYtgoiFdqh4EsIDag2Du08KcelhHq4+zse1NDlupMtRVKYGALR3C8FBjmM0S1FR1b8mJkszfToVT0JMEcMweJxXgsuP8nHpYR6SnhXMikKpSyYWQqHSYOfH4ch6Ow+udhYcRGzGrK2BoqKqr4nJEjs4sHIcqXgS0sCUGuDCg6dIfCRHwv2nuPQoD9mFZVXWs5KK0Lm5Pfyb26NTczt08rRHKxdrDPv+JEQaDS48eIohXTw4+AnMmFpd/Wtiulg6jrwpnkuXLsXs2bMxbdo0rFy5Erm5uZg/fz4OHTqE1NRUNGvWDC+//DIWLVoEe/t/7v5UN4Dvb7/9htdee60xwydE62lRGRIePMX5B7m4kJKLpIciqM+er7SOWChABw9bBHg5lH95O6CNqw1Ewqqf5+4tHQEACVQ8CeENXhTP8+fPY926dfD399cuS0tLQ1paGr766iv4+fnhwYMHmDx5MtLS0rDjXyN9bNq0CYMGDdJ+7+Dg0FihE4K84jKcvpuDk3ezcfZeLm5nFf5rDQFcbKR4zscJQS0d0a2lI/w87GAh0e/OS1BLR+zoMhAXHjxlP3hSuzffrP41MVmaceOaxj3PwsJCjBkzBuvXr8fnn3+uXd65c2f88ccf2u9bt26NxYsX44033oBKpYJY/E/oDg4OcHd3b9S4ifkqKVPj3P1cnLqTjZN3s3EtTQ6GqbxO62bWeM7HCYHedihMuYSxI8IglUrrtb+glo7oEzEV4sf5KClTw1LKxq8+0cvatdW/JiZLEx3dNIpnZGQkhg4ditDQ0ErFszr5+fmws7OrVDgr2pg4cSJatWqFyZMnY8KECbXOx6ZQKKBQKLTfy+VyAOXzvSmVSiN+mqavIj/mlCeGYXA9vQDxt7Jx8m4Okh7mQamuXC1bN7NGr1ZO6Nmq/OzS2bq8UCqVSsSkAyqVSq85AqvjZiPGwf9NQ8S4VUi4n41g36Y7YTvfPl/i556D6vz5Kq/5gm/54rOKHIm6d4fywoVa19EHp8Vz69atuHjxIs7r8YHMzs7GokWL8M4771RavnDhQgwYMABWVlY4dOgQ3nvvPRQWFuL//u//amxryZIlWLBgQZXlcXFxsLKyMvwHMUMxMTFch9CgStVAcp4A1/MEuP5UALmycuFzkDJoZ//Pl700H0A+VPdTcPZ+1faMzdfgJ6kAgN9iziLHi6ljbdPHl8/Xi9evY9++fVVe8w1f8mUKmBs3ajyOxcXFercjYJh/X3BqHA8fPkT37t0RExOjvdfZr18/dO3aFStXrqy0rlwuR1hYGJycnLB79+5aZ0yfN28eNm3ahIcPH9a4TnVnnt7e3khPT4ezs7NxP1gTp1QqERMTg7CwsCY3c/39nCLEJWcj/tYTnL//tNLZpZVUhF6tnNCnrQt6tXZCSycrvc4k2cqXwNoGbaL+RL92Llg/tlu92+E7vn2+xLa2UBUUVHnNF3zLF59V5OqlUaNqPI5yuRwuLi7aq5y14ezMMyEhAVlZWejW7Z//CNRqNY4dO4bvv/8eCoUCIpEIBQUFGDRoEGxtbbFz5846PyDBwcFYtGgRFAoFZDJZtevIZLJq35NIJPQB1FNTyBXDMEjOLMC+KxnYfyW9Skefls5W6N/eFQM6uCK4lRNk4vrfKTE2XwXPBQMAEh/mQyQSQ1hNr9ymhDefr169/olD9zXP8CZfJoAJCakxV4bkkLPiOXDgQFy5cqXSsgkTJqBDhw74+OOPIRKJIJfLERERAZlMht27d8PCou4HxJOSkuDo6Fhj4STmjWEYXH0sx/6r6dh/NQMp2f88LC0WCtDD1wkDOriifwdXtHKxrvd9SrZZHIuH1YJDyC9R4mZGAfw8a/+rmLDkyJHqXxOTpT50iJVB3Tkrnra2tujcuXOlZdbW1nB2dkbnzp0hl8sRHh6O4uJi/PLLL5DL5dqOPc2aNYNIJMKePXuQmZmJnj17wsLCAjExMfjiiy/w4YcfcvEjEZ5iGAaXHuVj35V07LuSjkdPS7TvScVCvNC2GYZ0ccfAjm6wt+TnX++S0a8jKDwKx29n42xKDhXPxjJqFLBtW9XXxGSJRo8Gtm83uh3Oe9vW5OLFizh79iwAoE2bNpXeS0lJgY+PDyQSCaKjozFjxgwwDIM2bdpgxYoVmDRpEhchE555kFOEvxLT8FfS40pnmBYSIfq3d8XgLh4Y0MEVNjLe/hr8Y9cu9Jy8uLx43svFhN6+XEdkHnbtqv41MVmCPXtYaYdX/2vEx8drX/fr1w919WUaNGhQpcERCMktKsPey2nYmfgYF1PztMstJEKEdnTD0C4e6Nu+GaykvPro66Vnq/JHVM7dzwXDMLy5pEyIOTK9/0EI+Re1hsHx20/w+4WHiLmeqe0lKxQAvdu4YERgc4R3cjeNM8yauLigS3MHWEiEyC0qw+2sQrRzs+U6qqbPxaX618R0sXQcTfh/E2LuHj0txvYLj7D9wkOk5Zdql3dubocRgV4YFuABV9smMgvJo0eQony0oZN3cnDmXg4Vz8bw6FH1r4nJUqWkgI2eDWx0OiKk0ajUGuy/ko6xG86iz/I4rIq9jbT8UjhYSfBmLx/sn9YHf7/fB28/79t0CicAzJ0LAOjpW/4c8tl7uVxGYz6e5b3Ka2KyhPPns9MOK60Q0sByChWIjruDPsvjMOXXizh+OxsMA/Ru44xvXw/EmdkD8dlLndDRo4n2Qv3ySwBAcKtnxTMlp84+AYQFz/Je5TUxWcIVK1hphy7bEl67+jgfm0/dx+5LaShTaQAAztZSjHrOG6891wItnM1rOMUAb3vIxEJkF5bh7pMitHG14TokQswSFU/COyq1BvuvZmDzqftI0JmGy9/LHuNDfDDU30Pv6byaGplYhMAWDjhzLxdnU3KoeBLCESqehDdKytTYnvAQ64/fw8Pc8oEMJCIBhnTxwPhePgj0djDfxzPS0rQve7ZyLi+e93IxJrglh0GZAZ28V3pNTJbqwQPqMESahrziMnwbexu9lx3BvF3X8DC3BE7WUkwb2BYnZw3AqtcC0a2Fo/kWTgDYu1f7MvhZp6Ez9+i+Z4PTyXul18RkCViaGYeKJ+FMWl4JFu65jl5Lj2BFzC3kFpXBy9ESC4d3wsmPB2BGWLum1WPWGDqjZgW2cIBUJERWgQL3c/SfQonUg+5oZTRyWZMgmjKFlXbosi1pdI/zShAddwfbLzzUDmjQ0cMOk/u2wtAuHhCL6G+62lhIROjq7YBz93Nx9l4OfF2suQ6JELOjV/HcvXu3wQ2HhYXB0tLS4O1I05WeX140t53/p2j2bOWEKf3a4IW2LuZ9WdZAPVs54dz9XJy6m4PXerTgOhxCzI5exfPll182qFGBQIDbt2+jVatW9YmJNDGZ8lKsjruD3849RJm6/HGTkFbOmBHWDj18nTiOzkTojPsMlA87+O2ROzh5JxsaDdPk5/fkjG7e/3UMiGlSHz7MyiVXvdvIyMiAq6urXuva2tKwYaS8I1B03B38dPqB9hnNHr5OmBHaDiGtnTmOzrQFtnCElVSEnKIy3MiQo5OnPdchEWJW9Cqe48ePN+gS7BtvvAE7uyY60gupU6lSjZ9O3Ud03B3IS1UAgO4tHREVVl406fJsPfTrB5T+M36vVCxEz1bOOHIzCyduZ1PxbCi6ef/XMSCmSRQayspx1Kt4btq0Sa/GCgsLYWNjgzVr1hgVFDFNGg2Dv5Ie4+tDt/A4r/w5zQ7utvh4cAf0a9eMiibLnm/jgiM3s3D8djbe7dua63AIMSt6d2v85ptvan2/oKAAERERRgdETNOJ29kY+t0JRP1+CY/zSuBhb4Ev/+OPvf/XB/3bu1LhbAB92pZPrXTufi5KlWqOoyHEvOh9z/OTTz6Bs7Mzxo0bV+W9oqIiDBo0CDk5OawGR/gvNacYn++9jkPXMwEAthZivNevDSb09jHbIfQaxPr1VRa1cbWBm50MmXIFzt/PRZ+2zTgIrInTzXs1x4CYHvWaNY3bYejnn3/G2LFj4eDggJdeekm7vKioCBEREXjy5AmOHj3KQkjEFJSUqfFd3D2sPXYPZSoNREIBxvZsiWkD28LRWsp1eE3P0KFVFgkEAjzfphn+uPgIJ25nU/FsCLp5r+YYENPDDBnCSjt6F8///Oc/yMvLw+uvv469e/eiX79+2jPOzMxMHD16FB4eHqwERfiLYRgkZguw9NuTSH82AXXvNs6YP6wTTc7ckDw9q+3k0KetC/64+AjHb2djNgdhNXm6ea/hGBDTIm7ZsvE6DFWYOHEicnNzMXz4cOzatQvz5s1DWloajh49Ck9PT6ODIfx2P7sIn/x5GafuiQCUormDJea+2BERndzpniZHercpv+95PV2O7EIFXGxkHEdEiHkw+NLvRx99hNzcXAwcOBA+Pj6Ij4+Hl5dXQ8RGeEKp1uCHY/fwbextKFQaSAQMpvRrg/cGtKX7mhxrZitDB3db3MwowMk72RjetTnXIRFiFvTubfvKK69ov27dugWJRAIXFxdMmzat0nv1tXTpUggEAkyfPl27rLS0FJGRkXB2doaNjQ1GjhyJzMzMStulpqZi6NChsLKygqurK2bOnAmVSlXvOEhlialPMey7E/jyYDIUKg16tXbCrK5qvD+gNRXOxjRzZo1vVfS6PXE7u7GiMR+6ea/lGBDToYmKYqUdvc887e0rP4T9+uuvsxIAAJw/fx7r1q2Dv79/peUzZszA3r17sX37dtjb22Pq1Kl45ZVXcPLkSQCAWq3G0KFD4e7ujlOnTiE9PR3jxo2DRCLBF198wVp85qigVImvDibjf2cegGEAJ2sp5gztiBc7u2L//v1ch2d+Fi2q8a3n2zbD+uMpOH47GwzD0CV0NunmvZZjQEyHZsECsPFnv97FU9+BEgxVWFiIMWPGYP369fj888+1y/Pz87FhwwZs2bIFAwYM0MbQsWNHnDlzBj179sShQ4dw/fp1HD58GG5ubujatSsWLVqEjz/+GJ999hmkUur1WR9xyVmY/ccVZMjLb6q/0q055gz1g5O1FEqlkuPozJSXF/DoUbVvBfs6wUIiRIa8FDczCtDRg0b3Yo1u3ms5BsR0iH19WTmOnE9JFhkZiaFDhyI0NLRS8UxISIBSqURoaKh2WYcOHdCiRQucPn0aPXv2xOnTp9GlSxe4ublp14mIiMCUKVNw7do1BAYGVrtPhUIBhUKh/V4ulwMAlEqlWReHQoUKSw8kY9uFxwAAb0dLLBruh97PxqHVzY8558kQbOVLnJ0NVQ1tiACEtHJCXHI2Dl9LRxsX053NiG+fL92813YMuMK3fPGZNkfZ2TXmy5A86lU8X3nlFWzevFnv8WrHjBmDb775ps6B5Ldu3YqLFy/i/PnzVd7LyMiAVCqFg4NDpeVubm7IyMjQrqNbOCver3ivJkuWLMGCBQuqLI+Li4OVlVWtMTdVd+TAljsi5CjKL/n19dDgRe8C5Cefxb7kquvHxMQ0coSmzdh8vajRYN++fTW+71ImACDCzrO30aLoplH74gO+fL50817XMeASX/JlCjS1HMfiYv0nl9ereO7atQtPnjzRq0GGYbBnzx4sWrSo1uL58OFDTJs2DTExMbCwsNAvWpbMnj0bUTo3jeVyOby9vdG/f384O5vXbB8KpRorDt/Bpuvl9zabO1hg2SudEVzDVGFKpRIxMTEICwuDRCJp5GhND1v5EgwfjiG1PNwdkFeC7V8fx/1CAXr1C4ODlWkeG759vnTzXtcx4ALf8sVnFbliXnqpxuNYcRVSH3oVT4Zh0K5dO70b1UdCQgKysrLQrVs37TK1Wo1jx47h+++/x8GDB1FWVoa8vLxKZ5+ZmZlwd3cHALi7u+PcuXOV2q3ojVuxTnVkMhlksqrPw0kkErP6AF55lI8ZvyfhTlYhAGBUd2/MebEjbC3qzoG55cpYRudr+/Zau8b7NJOgnZsNbmUW4vT9PLwUYNrPXfPm86Wb9zqOAZd4ky8TwPz2W425MiSHehXPuLg4vRus0Lx57c+bDRw4EFeuXKm0bMKECejQoQM+/vhjeHt7QyKRIDY2FiNHjgQAJCcnIzU1FSEhIQCAkJAQLF68GFlZWdqz3JiYGNjZ2cHPz8/gmM0FwzDYcCIFyw7chFLNwMVGhmUju2BgR7e6NybcGDAAOHKk1lX6d3DFrcxCxN3MMvniyRu6edfjGBD+E4WHA/Woaf+mV/Hs27ev0Tv6N1tbW3Tu3LnSMmtrazg7O2uXv/3224iKioKTkxPs7Ozw/vvvIyQkBD179gQAhIeHw8/PD2PHjsXy5cuRkZGBOXPmIDIystozSwLkFpXhw+2XcORmFgBgUCd3fPFKFzjReLT8dupUnav0b++KdUfv4eitJ1BrGIiE9MiK0XTzrscxIPwnOH2alXY4721bm2+++QZCoRAjR46EQqFAREQEVq9erX1fJBLh77//xpQpUxASEgJra2uMHz8eCxcu5DBq/jpzLwfTtiYiU66AVCzE3Bf98EZwC3ousIkIaukIWwsxcovKcOlRHrq1cOQ6JEKaLF4Vz/j4+ErfW1hYIDo6GtHR0TVu07JlS972gOMLtYbBd0du49vY29AwQOtm1vh+dDd6HtCUdOxY5yoSkRAvtGuGvZfTcfh6JhVPNujmXY9jQExAhw6sNMPX+9+EJVkFpRjz4xmsPFxeOF8N8sKe95+nwmlqEhP1Wi3cr/y+dcX8qsRIunnX8xgQflNV82hkfVDxbMISHpSPS3vmXi6spSKsHNUVX74aACspry44EH1MnqzXav07uEIiEuBOViHuPils4KDMgG7e9TwGhN+EkZHstFOfjVQqFQ4fPox169ahoKAAAJCWlobCQvpl5QOGYfDr2Qd47YfTyJQr0MbVBrvffx4vB9KMGyZr82a9VrOzkCCkdflA8Qev1TxQCNGTbt71PAaE34T/+x8r7Rh8CvLgwQMMGjQIqampUCgUCAsLg62tLZYtWwaFQoG1a9eyEhipn1KlGvN2XcXvF8rHbhzc2R1fvhoAGxmdbZqLiE5uOHbrCQ5dy8R7/dpwHQ4hTZLBZ57Tpk1D9+7d8fTpU1ha/jOG5ogRIxAbG8tqcMQwaXkl+O+60/j9wiMIBcCswR2wekw3KpxNgUj/eSDCOrpBIACSHuYhI7+0AYMyA7p5N+AYEB5j6Tga/L/q8ePHcerUqSozlvj4+ODx48esBEUMl5j6FJP+l4DsQgUcrCT47vVA9GnbjOuwCFuKivRe1dXOAoHeDriYmoeY6xkYG+LTcHE1dbp5N+AYEP5S5eWBjbGYDD7z1Gg0UKvVVZY/evQItra2LIREDLXnUhpe++EMsgsV6OBuiz1Tn6fC2dSsWGHQ6hGdyoenpF63RtLNu4HHgPCTcOVKdtoxdIPw8HCs1Nm5QCBAYWEh5s+fz7tBk5s6hmGw6vBtvP9bIhQqDQZ2cMWOKb3g7WSeM8M0aZ98YtDqFcXz9N0c5BfTdFX1ppt3A48B4Sfh3LnstGPoBl999RVOnjwJPz8/lJaWYvTo0dpLtsuWLWMlKFK3UqUa07cl4ZvDtwAAE5/3xQ/jutP9TQIA8HGxRns3W6g0DI4k09knIWwz+H9ab29vXLp0Cdu2bcOlS5dQWFiIt99+G2PGjKnUgYg0nPxiJSb+7zzO338KsVCAhcM7Y3RwC67DIjwT3skNyZkFOHg1EyMCvbgOh5AmxaDiqVQq0aFDB/z9998YM2YMxowZ01BxkRqk5ZVg/MZzuJ1VCFsLMda+EYTebVy4Dos0tGvXDN4kopM7vjtyB0dvPUFxmYoGx6gP3bzX4xgQ/lElJTV+hyGJRILSUur6zpVbmQV4ZfUp3M4qhLudBbZPDqHCaS5u3DB4k06edmjhZIUSpVo7iw4xkG7e63EMCP8Ibt5kpR2D73lGRkZi2bJlUKlUrARA9JPw4Cn+s+YUMuSlaN3MGn+81wsd3Gl8WrPxn/8YvIlAIMCwAA8AwO6kNLYjMg+6ea/HMSD8I3rtNVbaMfg6zvnz5xEbG4tDhw6hS5cusLa2rvT+n3/+yUpg5B/nUnIxYdM5FJWp0a2FAzaMfw6ONP8m0cOwAE9Ex91FfPITyEuVsLNg44IVIcTg4ung4ICRI0c2RCykGqfuZuPtzRdQolSjdxtnrB/Xne5dEb11cLdDOzcb3MosxMGrGXi1uzfXIRHSJBj8v/CmTZsaIg5SjWO3nmDS/y5AodLghXbN8MPYIFhIaIgws7RzZ703Hebvia9jbmHP5XQqnobSzbsRx4Dwh3r7dlYmsqYpyXjqyM1MTPzpgnbwAyqcZq5163pvOizAEwBw8k42cgoVbEVkHnTzbsQxIPzBtGrFSjsGF2BfX18IBIIa3793755RAZHy/+Te/TkBSjWDiE5u+O71bpCK6e8cs+bvD9Szp7uPizX8vexx+VE+9l3NwNieLVkOrgnTzbsRx4DwhzgoiJXjaHDxnD59eqXvlUolEhMTceDAAcycOdPogMzd1cf5eOd/F6BUMxjc2R3fvh4IiYgKJzHOMH9PXH6Ujz1JaVQ8CWGBwcVz2rRp1S6Pjo7GhQsXjA7InN3PLsKbz3rV9mrtjJWvdaXCSVjxYoAHFu+7gXP3c5GeXwIPexoNjBBjsPY/8+DBg/HHH3+w1ZzZySooxdiNZ5FdWIZOnnZYNzYIMjHd4yTPGDlutIe9JXr4OAEA/kqkZz71ppt3Gru7SdB88QUr7bBWPHfs2AEnJye2mjMrZSoNpvxyEQ9zS9DS2QqbJ/SALT2PR3TVcMXHEK90aw4A+OPiIzAMY3R7ZkE37ywcA8I9zfvvs9KOwcUzMDAQ3bp1034FBgbCw8MDn3zyCT4xcMqeNWvWwN/fH3Z2drCzs0NISAj2798PALh//z4EAkG1X9u3b9e2Ud37W7duNfTH4tSiv68j4cFT2FqIsXlCDzSzlXEdEuEbCwujmxji7wELiRB3sgpx+VE+C0GZAd28s3AMCPfELM07bfA9z+HDh1fqbSsUCtGsWTP069cPHTp0MKgtLy8vLF26FG3btgXDMPjpp58wfPhwJCYmokOHDkhPT6+0/g8//IAvv/wSgwcPrrR806ZNGDRokPZ7BwcHQ38szmy/8BA/n3kAAFg5qit8Xazr2IKQ+rGzkCCikzt2JaVhR8IjBHg7cB0SISbL4OL52WefsbbzYcOGVfp+8eLFWLNmDc6cOYNOnTrB3d290vs7d+7Ef//7X9jY2FRa7uDgUGVdU3AtLR+f/nUVADA9tC0GdnTjOCLS1P0nyAu7ktKw+1IaPh3akZ4dJqSeDC6eIpEI6enpcHV1rbQ8JycHrq6uUKvV9QpErVZj+/btKCoqQkhISJX3ExISkJSUhOjo6CrvRUZGYuLEiWjVqhUmT56MCRMm1PosqkKhgELxz8PicrkcQPljN0qlsl7xG0qhVGPab4koU2nQv70LpvTxabR9G6MiRlOIlQ/YypdwwgRoWMj5cy3s4W4nQ4ZcgUNX0zC4M7/+6OTb50s372wdAzbxLV98VpEj1fjxQA35MiSPAsbAngNCoRAZGRlVimdaWhpat26NkpISQ5rDlStXEBISgtLSUtjY2GDLli0YMmRIlfXee+89xMfH4/r165WWL1q0CAMGDICVlRUOHTqE+fPnY/ny5fi///u/Gvf52WefYcGCBVWWb9myBVZWVgbFX1877wsRny6ErYTBrAA1bKh/EGkkf6cKEfNYCD8HDd7tqOE6HEJ4o7i4GKNHj0Z+fj7s7GqftUrv4vntt98CAGbMmIFFixZVunSqVqtx7Ngx3L9/H4mJiQYFW1ZWhtTUVOTn52PHjh348ccfcfToUfj5+WnXKSkpgYeHB+bOnYsPPvig1vbmzZuHTZs24eHDhzWuU92Zp7e3N9LT0+Hs7GxQ/PVxNiUXb2wsfyb2hzcC0b99swbfJ1uUSiViYmIQFhYGiYQqfl3Yypc4MBAqA3+3apKSXYTwVSchFABxUX3g6cCfZz759vnSzTubx4AtfMsXn1Xkatgnn0CdlFTtOnK5HC4uLnoVT70v237zzTcAAIZhsHbtWohE/9wrkUql8PHxwdq1a/VtrtK2bdq0AQAEBQXh/PnzWLVqFdatW6ddZ8eOHSguLsa4cePqbC84OBiLFi2CQqGATFZ9r1WZTFbtexKJpME/gKVKNebuLp9U9/UeLRDe2bNB99dQGiNXTYnR+bpzh7V8t/NwQEgrZ5y+l4M/EtMRFd6elXbZxJvPl27eWTwGbONNvkyA4O7dGnNlSA71Lp4pKSkAgP79++PPP/+Eo6Oj3jsxhEajqXRWCAAbNmzASy+9hGbN6j5DS0pKgqOjY42Fk2ur4+8iJbsIrrYyfDLEsN7JhLBlTM8WOH0vB1vPP8T7A9vSSFaEGMjgDkNxcXGs7Xz27NkYPHgwWrRogYKCAmzZsgXx8fE4ePCgdp07d+7g2LFj2LdvX5Xt9+zZg8zMTPTs2RMWFhaIiYnBF198gQ8//JC1GNl090kh1sbfBQDMH9aJBkIg+nvhBVabC/dzh4uNFFkFCsTeyMIgnnUc4g3dvLN8DAg3mD59UHN3Uv3Va1qzR48eYffu3UhNTUVZWVml91asWKF3O1lZWRg3bhzS09Nhb28Pf39/HDx4EGFhYdp1Nm7cCC8vL4SHh1fZXiKRIDo6GjNmzADDMGjTpg1WrFiBSZMm1efHanAL9lxHmVqDfu2bYUgX+s+KGODQIVabk4qFeLW7N9bE38WvZx9Q8ayJbt5ZPgaEG+p9+1gZWs/g4hkbG4uXXnoJrVq1ws2bN9G5c2fcv38fDMOgW7duBrW1YcOGOtf54osv8EUNYxEOGjSo0uAIfBaXnIVjt55AIhLgs2Gdan2UhpAqRo4EWB47+vXnWmDt0bs4fjsbD3KK0NKZBuioQjfvDXAMSOMT/fe/rExsbnABnj17Nj788ENcuXIFFhYW+OOPP/Dw4UP07dsXr776qtEBNUVqDYMv9pZ3Enqzlw98aBQhYqi9e1lvsoWzFV5oW96P4LdzNfdON2u6eW+AY0Aan+DZELDGMrh43rhxQ9vrVSwWo6SkBDY2Nli4cCGW0awD1dpzKQ23swphbynB1AFtuQ6HEK3RwS0AlA8TqVDVb4ATQsyRwcXT2tpae5/Tw8MDd+/e1b6XnZ3NXmRNhEqtwarY2wCAd15oBXtL6iRE6qGBhp8c2MEVbnYy5BSV4cDVjAbZh0nTzbsJDgFKqsHScTS4ePbs2RMnTpwAAAwZMgQffPABFi9ejLfeegs9e/ZkJaim5M/Ex0jJLoKTtRRv9vLhOhxiqu7fb5BmxSIhRvdoCQDYePI+TVX2b7p5b6BjQBqX6vZtVtoxuHiuWLECwcHBAIAFCxZg4MCB2LZtG3x8fPTqAGROylQafPvsrHNy31awltWrczMhwOzZDdb0mJ4tIBULcelhHi6mPm2w/Zgk3bw34DEgjUf46afstGPIymq1Go8ePUKLFuX3SaytrbF27VpcvnwZf/zxB1q2bMlKUE3F9oSHePS0BM1sZRjb04frcIgpezbCV0NwsZFhRNfyibJ/PJ7SYPsxSbp5b8BjQBqP8NlQs0a3Y8jKIpEI4eHhePqU/jqti1Ktweq48vvB7/VrDUspTf1E+OvtPr4AgIPXMpCaU8xxNITwn8GXbTt37ox79+41RCxNyr4r6XicVwJnayle79GC63AIqVU7N1v0aesCDQNsOkVnn4TUxeDi+fnnn+PDDz/E33//jfT0dMjl8kpfpHzw/HVHy//AGN/LhyYcJsbLymrwXUzs0woA8Pv5h5CX0vyQACrnvRGOAWl4qsePWWnH4OI5ZMgQXLp0CS+99BK8vLzg6OgIR0dHODg4NNhg8abm5J0cXE+Xw1IiwtiedB+YsKARRrZ5oa0L2rraoKhMjW00aEI53bzT6EJNgoCF0YUAjgeGb6rWHSu/1/nf7l5wtJZyHA1pEqZMASZMaNBdCAQCTOzji4//uIINJ1IwrldLyMRmftVEN++NcAxIwxNNnQpMnGh0OwYXz759+xq906bsdmYBjt/OhlAAvP18K67DIcQgw7s2x9eHbiFDXoo/Lz6m+/WE1KBeg8sfP34cb7zxBnr16oXHz64f//zzz9rBE8zZ/04/AACEdnRDC2crjqMhxDAWEhHeeaH8j7418XehUms4jogQfjK4eP7xxx+IiIiApaUlLl68qJ24Oj8/v8bZT8yFvFSJPy4+AlDeUYgQ1jTiH6ajg1vA0UqC1Nxi/H05vdH2y0u6eaeTgyZBHR/PSjv16m27du1arF+/HhLJP+O09u7dGxcvXmQlKFP1Z8IjFJep0bqZNXq1duY6HNKUPPsjtTFYScV4+/ny5z6j4+5AozHjIft0896Ix4A0IJaOo8HFMzk5GS9UM6O6vb098vLy2IjJJDEMg/+dKb9kO76XD83XSdg1cGCj7m5siA9sZWLczirEgWtmPGC8bt4b+RiQhiGKiGClHYOLp7u7O+7cuVNl+YkTJ9Cqlfl2kDmXkot7T4pgJRVhRGBzrsMhxCj2lhJM6O0DAFgRcwtqcz77JKQaBhfPSZMmYdq0aTh79iwEAgHS0tLw66+/4sMPP8SUKVMaIkaTsO18+XNxLwV4wtaCph0jpm/isyn07mQV4q9Edh4sJ6SpMPhRlVmzZkGj0WDgwIEoLi7GCy+8AJlMhg8//BDvv/9+Q8TIe/klSuy9Ut6x4r/PeXMcDWmSNm5s9F3aWUgwuW9rLDtwEytjb2FYgCek4np10Dddunnn4BgQ9ql/+MHwwlcNg38TBAIBPv30U+Tm5uLq1as4c+YMnjx5gkWLFrEQjmnafSkNCpUG7dxsEOjtwHU4pCkKC+Nkt+N7tUQzWxke5pZg2wUzHHVIN+8cHQPCLiY0lJV26v1npFQqha2tLTw8PGBjY8NKMKZq2/lUAMCo51pQRyHSMLy5uaJhJRXj/QFtAADfxd5GSZmakzg4o5t3jo4BYZeYpb45BhdPlUqFuXPnwt7eHj4+PvDx8YG9vT3mzJkDpdKwwaTXrFkDf39/2NnZwc7ODiEhIdi/f7/2/X79+kEgEFT6mjx5cqU2UlNTMXToUFhZWcHV1RUzZ86ESqUy9Meqt6uP83H1sRwSkYA6CpEm6bXnWsDL0RJZBQr8fOY+1+EQwgsGX/p9//338eeff2L58uUICQkBAJw+fRqfffYZcnJysGbNGr3b8vLywtKlS9G2bVswDIOffvoJw4cPR2JiIjp16gSgvIPSwoULtdtYWf0zao9arcbQoUPh7u6OU6dOIT09HePGjYNEImm0ARt2JJQPihDu5w4nGseWNEFSsRDTQ9vhw+2XsDr+Lv7b3RsOVvRZJ+bN4OK5ZcsWbN26FYMHD9Yu8/f3h7e3N15//XWDiuewYcMqfb948WKsWbMGZ86c0RZPKysruLu7V7v9oUOHcP36dRw+fBhubm7o2rUrFi1ahI8//hifffYZpNKG/QVXqTXaEVhGBtFZJ2lAs2ZxuvsRgc3x4/F7uJlRgJWHb+OzlzpxGk+j0c07x8eAsEMzcybYmO7A4OIpk8ng4+NTZbmvr69RxUqtVmP79u0oKirSntECwK+//opffvkF7u7uGDZsGObOnas9+zx9+jS6dOkCNzc37foRERGYMmUKrl27hsDAwGr3pVAotMMKAtDOQ6pUKg269Hzybg6yCxVwtJKgp4+DwZetTVHFz2gOPysbWMvXp58CHOd89qB2GL85AT+feYBRQZ5o48p+Xwfefb50886DY/BvvMsXj1XkSDF7NiQ15MuQPBpcPKdOnYpFixZh06ZNkMlk5cEoFFi8eDGmTp1qaHO4cuUKQkJCUFpaChsbG+zcuRN+fn4AgNGjR6Nly5bw9PTE5cuX8fHHHyM5ORl//vknACAjI6NS4QSg/T4jo+ZRUZYsWYIFCxZUWR4XF1fpsnBdttwRAhCio60CMQcP6L1dUxATE8N1CCbF2HxFTJiAg5s2sRRN/XVxFOLKUyGifj6ByR0bbtB4vny+dPPOl2NQHb7kyxQIvbywr4bjWFxcrHc7AoZhDBo6ZMSIEYiNjYVMJkNAQAAA4NKlSygrK8PAfw1fVVHkalNWVobU1FTk5+djx44d+PHHH3H06FFtAdV15MgRDBw4EHfu3EHr1q3xzjvv4MGDBzh48KB2neLiYlhbW2Pfvn2VLi3rqu7M09vbG+np6XB21m9MWoVSjZ7LjqJQocKvb3dHDx8nvbYzdUqlEjExMQgLC6s0tjGpHlv5EtvaQlVQwGJk9fMgpxiDvzsJpZrB+rGB6NeuGavt8+3zpZt3vhwDXXzLF59V5OqlUaNqPI5yuRwuLi7Iz8+HnZ1dre0ZfObp4OCAkSNHVlrmbUQXbqlUijZtyrvCBwUF4fz581i1ahXWrVtXZd3g4GAA0BZPd3d3nDt3rtI6mZmZAFDjfVKg/NJzxVmzLolEovcHMDY5G4UKFTzsLRDS2hVCoXk9omJIrgg7+eJDvtu422NCb1/8cOwelhy4hb7t3Rtk4AQ+fb504+BLTP/Gp3yZgppyZUgODS6emxr4soVGo6l0VqgrKSkJAODh4QEACAkJweLFi5GVlQVXV1cA5Zcv7Ozsqj1zZdPuS2kAyofjM7fCSTjwyitcR6A1dUAb/JHwCPeeFGHDiRRM6dea65Aajm7eeXQMSP0xL78MNv7H5nSsrdmzZ+PYsWO4f/8+rly5gtmzZyM+Ph5jxozB3bt3sWjRIiQkJOD+/fvYvXs3xo0bhxdeeAH+/v4AgPDwcPj5+WHs2LG4dOkSDh48iDlz5iAyMrLaM0u2FJQqcfhGFgBgWIBng+2HEK0tW7iOQMvOQoLZQzoCAFbF3sLDXP3vE5kc3bzz6BiQ+lP//DMr7RhcPHNychAZGQk/Pz+4uLjAycmp0pchsrKyMG7cOLRv3x4DBw7E+fPncfDgQYSFhUEqleLw4cMIDw9Hhw4d8MEHH2DkyJHYs2ePdnuRSIS///4bIpEIISEheOONNzBu3LhKz4U2hIPXMlGm0qB1M2t08qz9ujghrOjbl+sIKhnZrTmCfZ1QqtRg3q6rMLDrhOnQzTvPjgGpHxFLU8sZfNl27NixuHPnDt5++224ubkZNRzdhg0banzP29sbR48erbONli1bYt++ffWOoT4qLtkO79qchuMjjePsWa4jqEQgEGDxiC4YvOoY4pKf4MDVDAzu4sF1WOzTzTvPjgGpH8G/+snUl8HF8/jx4zhx4oS2p625eVKgwMk72QDK73cSYq7auNpgct/W+O7IHczbfQ09WznDkUbZImbC4Mu2HTp0QElJSUPEYhIOXE2HWsMgwMsePi7WXIdDzEXnzlxHUK3I/m3Qupk1nhQo8Nmea1yHwz7dvPP0GBDDMJ3YGR3L4OK5evVqfPrppzh69ChycnIgl8srfTV1B6+VPwozpCleoiL8deEC1xFUy0Iiwtf/7QqhANiVlIYDV9O5Doldunnn6TEghlGfOcNKOwYXTwcHB8jlcgwYMACurq5wdHSEo6MjHBwc4OjoyEpQfJVfrMSZezkAgIhONT9HSgjrJk3iOoIadfV2wOS+5Y+rfLrzKnIKq3/UzCTp5p3Hx4DoT/Svmbnqy+DiOWbMGEgkEmzZsgWxsbE4cuQIjhw5gri4OBw5coSVoPjqSHImVBoG7d1s6ZItaVwsda9vKNNC26KDuy1yisowtyn1vtXNO8+PAdGP4NdfWWnH4A5DV69eRWJiItq3b89KAKbk4NXyS7bhndzqWJMQ8yITi/DVqwF4Ofok9l3JwF9JjzEi0IvrsAhpMAafeXbv3h0PHz5siFh4rVSpxtFbTwDQJVvCgQaeXo8NnZvb4/0BbQGUX769+6SQ44hYoJt3EzgGRA8sHcd6TYY9bdo0zJw5E126dKkyFmDF6D9NzfHb2ShRqtHcwZIGRiCNz0Q6400d0Aan72XjzL1cRP56EX9F9oaFhI3ZEzmim3cTOQakdqqcHLAxCrDBZ56jRo3CjRs38NZbb+G5555D165dERgYqP23qTp0rXyKszA/4waGIKReli/nOgK9iIQCrHotEM7WUtzMKMCiv69zHZJxdPNuIseA1E741VfstGPoBikpKVW+7t27p/23KVKpNTh8g+53Eg7Nm8d1BHpzs7PAN6O6QiAAfj2bir8vp3EdUv3p5t2EjgGpmbCauZzrw+DLti1btmRlx6bk/P2neFqshIOVxGzm7STEGC+0a4b3+rVGdNxdzPrjCjq426GNqw3XYRHCmnrNqvLzzz+jd+/e8PT0xIMHDwAAK1euxK5du1gNji8OXS+/ZDuwgxvEIk4noiHEZMwIbYcevk4oVKjwzv8uIL9YyXVIhLDG4EqwZs0aREVFYciQIcjLy4NarQZQPnjCypUr2Y6PcwzDIPbZ9GN0yZZwJjmZ6wgMJhYJsXpMNzR3sMS97CK8vzURKrWG67AMo5t3EzwGpCrV1austGNw8fzuu++wfv16fPrppxCJ/ulF1717d1y5coWVoPjkXnYRUnOLIRUJ8XwbF67DIeYqMZHrCOrFxUaGH8YFwVIiwrFbT7B0/02uQzKMbt5N9BiQygRJSay0U68OQ9X1qpXJZCgqKmIlKD6Ju1l+1hncygnWMoNvERPCjtde4zqCeuvkaY8V/y2fhenHEyn47VwqxxEZQDfvJnwMyD9Eb7zBSjsGF09fX18kVVO5Dxw4gI4dO7IRE6/EJ5cPjNCvvSvHkRBiugZ38cD00IoBFK4g5nomxxERYhy9i+fChQtRXFyMqKgoREZGYtu2bWAYBufOncPixYsxe/ZsfPTRRw0Za6MrUqhwNqV8IPj+7ZtxHA0hpm3awLb4b3cvaBhg6paLSHiQy3VIhNSb3tchFyxYgMmTJ2PixImwtLTEnDlzUFxcjNGjR8PT0xOrVq3Ca03sssbJO9lQqhm0dLaCLw0ET7i0Zw/XERhNIBDgixFdkF1YhiM3s/DW5gv4Y0oI2rjach1azXTz3gSOAQHUO3ca/oxmNfQ+89SdJWHMmDG4ffs2CgsLkZGRgUePHuHtt99mIRx+iXt2ybZ/e1caVYhwq3lzriNghVgkRPTobghs4YD8EiXGbjiH1JxirsOqmW7em8gxMHeMpycr7Rh0z/PfBcTKygqurk3zXiDDMIhPLu8s1I8u2RKudevGdQSssZSKsGH8c2jjaoP0/FK8vv4MHubytIDq5r0JHQNzJg4OZqUdg4pnu3bt4OTkVOtXU5GcWYD0/FJYSITo2cqZ63AIaVKcrKXYMjEYrVys8TivBK/9cAaPnvK0gBJSDYMu/S5YsAD29vas7XzNmjVYs2YN7t+/DwDo1KkT5s2bh8GDByM3Nxfz58/HoUOHkJqaimbNmuHll1/GokWLKsVQ3eXU3377zej7r3E3yy/Z9mrtYtqzQhDCU652FvjtnZ547YczSMkuwms/nMEvb3XnOixC9GJQ8XzttddYvUzr5eWFpUuXom3btmAYBj/99BOGDx+OxMREMAyDtLQ0fPXVV/Dz88ODBw8wefJkpKWlYceOHZXa2bRpEwYNGqT93sHBwejYjt2qeESFLtkSHvj6a64jaBBudhb4bVJPvPbDadzPKcZr689hgi/XUenQzXsTPQbmRrN8Odg4HdK7eDZEh5lhw4ZV+n7x4sVYs2YNzpw5g7fffht//PGH9r3WrVtj8eLFeOONN6BSqSAW/xO6g4MD3N3Zm6C6pEyNhAdPAYBGFSL88O67XEfQYNzty89Ax244hztZhVh1TYTAHnno0ZoHf7jq5r0JHwNzopk0iZXiWa/etg1BrVZj69atKCoqQkhISLXr5Ofnw87OrlLhBIDIyEi4uLigR48e2Lhxo9GxXniQizK1Bh72FvSICuEHm6Y9I4mHvSW2vxuCrt72KFYJMG7zBcQ967DHKd28N/FjYC7Ejo7stKPvihpNwwzofOXKFYSEhKC0tBQ2NjbYuXMn/Pz8qqyXnZ2NRYsW4Z133qm0fOHChRgwYACsrKxw6NAhvPfeeygsLMT//d//1bhPhUIBhUKh/V7+bIZ4pVIJpVKJY89+aUNaOUGlUrHxYzYZSqWy0r+kdmzlSwxA1cRzbiMV4McxARi7Nh438oBJP13Awpf88GoQd4+I6Oadj8eAfh/1p5ujmvJlSB4FTEOfUtahrKwMqampyM/Px44dO/Djjz/i6NGjlQqoXC5HWFgYnJycsHv3bkgkkhrbmzdvHjZt2oSHDx/WuM5nn32GBdVMiLplyxZYWVnhy8siPCoSYGwbNbo34zQ9hAAAXnz1Vfy9fTvXYTQKtQbYcleIC9nlF8b6eWgwvKUGQg4etdbNuzkdg6astuNYMfBPxVXO2nBePP8tNDQUrVu3xrp16wAABQUFiIiIgJWVFf7++29YWFjUuv3evXvx4osvorS0FDKZrNp1qjvz9Pb2Rnp6OoSWtgheGg+GAU5+1BeuttW3Ya6USiViYmIQFhZW6x8xpBxb+RJGRUGzYgWLkfFTRb4GhobihxMP8W3cXQDAC22d8c2r/rCzbNzPnG7e+XgM6PdRfxW5GnLwILBqVbXryOVyuLi46FU8eTdNiEaj0RY2uVyOiIgIyGQy7N69u87CCQBJSUlwdHSssXAC5TPAVPe+RCLB2VQ5GAZo52aD5k50j6MmEomEflkNYHS+vvuOlU4OpkImlSIqogPae9jjg+1JOHY7B6+sO4vo0d3QuTl7j8vVSTfvPD4G9PtogFWrasyVITnktHjOnj0bgwcPRosWLVBQUIAtW7YgPj4eBw8ehFwuR3h4OIqLi/HLL79ALpdr7002a9YMIpEIe/bsQWZmJnr27AkLCwvExMTgiy++wIcffljvmE7eyQZQ/nwnIbzh5wdcv851FI1uqL8HWjpb4d2fE/AgpxivrDmF+cP8MLpHi8YZMlM372Z6DJoasb8/cOOG8e2wEEu9ZWVlYdy4cUhPT4e9vT38/f1x8OBBhIWFIT4+HmfPngUAtGnTptJ2KSkp8PHxgUQiQXR0NGbMmAGGYdCmTRusWLECkyZNqndMFcWTHlEhvHLvHtcRcKZzc3vs/b/n8eH2Szh8Iwuf7ryKcym5WPRyZ9hZNPDZlm7ezfgYNCkpKaw0w2nx3LBhQ43v9evXr85HTgYNGlRpcARjpeWX4H5OMURCAYJbNZ2hBgkxdQ5WUqwf1x3rj9/DsgPJ2JWUhvMpufjq1QD0oj90CQcMngy7KTubUj4wQoCXPWwb+i9aQgzRvz/XEXBOIBDgnRda4/d3e6KlsxXS8ksx+sez+Gz3NZSUqRtmp7p5p2PQJDD9+rHSDhVPHefulU/O25v+kiV8s38/1xHwRlBLJ+z7vz4YE9wCALD51H0MWnVMO6Qmq3TzTsegSVCzNC8rFU8d5+6Xn3lS8SS88/LLXEfAK9YyMRaP6ILNE56Du50FHuQUY9zGc5i65SKy5KXs7Ug373QMmgTRyJGstEPFU0dusRKWEhECWzhwHQohlR04wHUEvNSvvSsOf9AXb/X2hVAA/H05HQO/PoqNJ1JQpmJhVDTdvNMxaBIEhw6x0g4Vz395ztcJMjFfn+YihPybjUyMecP8sHvq8/D3skeBQoWFf19H+DdHceBqeoOPy03MExXPf3m+DU18TXioOXfju5qKzs3tsfO93vhiRBe42MhwP6cYk3+5iFfXnkbCg9z6NaqbdzoGTQNLx5GK57/Q4AiEl+7e5ToCkyASCjA6uAXiZ/bD/w1oAwuJEBcePMXINacxdsNZ7VSDetPNOx2DJkF18yYr7VDx1GFjIUJHj9rHMySEEx99xHUEJsVGJkZUeHvEf9gfo7p7QywU4PjtbIxccwpjN5zF6bs5+l3O1c07HYMmQThrFjvtsNJKExHo7QARF1M3EFKXb7/lOgKT5G5vgWX/8ceRD/pVKqKvrz+DF787gZ2Jj2rvWKSbdzoGTYIwOpqddlhppYkIasHOJKmEEH5p4WyFZf/xR9yH/TAmuAUsJEJcS5NjxrZL6LP8CKLj7uBJgaLuhgh5hoqnjiB6RIWQJs3byQqLR3TB6VkDMTOiPVxtZciUK/DlwWSELInFuz9fQNzNLKg11EOX1I53U5JxqYM7TUFGeConh+sImhRHayki+7fBpD6tsOdSGn45+wCJqXk4eC0TB69lwsPeAi8HNkd44m14Fz47I32QBhTy6+xUpVSiQAnkFCoglrDwXGsTVpGrrDsPYFumgpXUuPJHxVOHWEQn4oSnfvsNmDiR6yiaHKlYiJFBXhgZ5IXkjAJsO/8QfyY+Qnp+KdbE30XupYPYFhABABil85pfxJhz4SjXQZgIMa5sWAzPD97HtNC2RrVE1YIQUzB1KtcRNHnt3W0xb5gfzn4yEN+9HogX/T2wMGat9n3d18R0sXUc6cyTEEJ0yMQiDAvwxLAAT+AtIe4vHVr+xkqd1zyhVCqxb98+DBkyBBIJzQRVm4pcScVCo886ATrzJIQQQgxGxZMQU3D6NNcRmCfdvNMxaBJUx46x0g4VT0JMQUEB1xGYJ9280zFoEgSFhay0Q8WTEFMQHs51BOZJN+90DJoE0ZAhrLRDxZMQQggxEBVPQgghxEBUPAkxBT/9xHUE5kk373QMmgT1hg2stMNp8VyzZg38/f1hZ2cHOzs7hISEYP/+/dr3S0tLERkZCWdnZ9jY2GDkyJHIzMys1EZqaiqGDh0KKysruLq6YubMmVCpVI39oxDSsF54gesIzJNu3ukYNAlMnz6stMNp8fTy8sLSpUuRkJCACxcuYMCAARg+fDiuXbsGAJgxYwb27NmD7du34+jRo0hLS8Mrr7yi3V6tVmPo0KEoKyvDqVOn8NNPP2Hz5s2YN28eVz8SIQ3D15frCMyTbt7pGDQJ4nbt2GmHlVbqadiwYZW+X7x4MdasWYMzZ87Ay8sLGzZswJYtWzBgwAAAwKZNm9CxY0ecOXMGPXv2xKFDh3D9+nUcPnwYbm5u6Nq1KxYtWoSPP/4Yn332GaRSKRc/FiGEkCaON8PzqdVqbN++HUVFRQgJCUFCQgKUSiVCQ0O163To0AEtWrTA6dOn0bNnT5w+fRpdunSBm5ubdp2IiAhMmTIF165dQ2BgYLX7UigUUCj+mR0hPz8fAJCbm9tAP13ToVQqUVxcjJycHBoOTA9s5UvMMFCZwcwqfPt86eadj8eAb/nis4pcyWs5jgXPnuVlmLqnpOO8eF65cgUhISEoLS2FjY0Ndu7cCT8/PyQlJUEqlcLBwaHS+m5ubsjIyAAAZGRkVCqcFe9XvFeTJUuWYMGCBVWWt2PpdJ6QBuHiwnUE5kk373QMmoY6jmNBQQHs7e1rXYfz4tm+fXskJSUhPz8fO3bswPjx43H0aMNOrzN79mxERUVpv8/Ly0PLli2RmppaZ8LMnVwuh7e3Nx4+fAg7Ozuuw+E9ypdhKF+GoXzpT59cMQyDgoICeHp61tke58VTKpWiTZs2AICgoCCcP38eq1atwqhRo1BWVoa8vLxKZ5+ZmZlwd3cHALi7u+PcuXOV2qvojVuxTnVkMhlkMlmV5fb29vQB1FNFD2miH8qXYShfhqF86a+uXOl7AsW75zw1Gg0UCgWCgoIgkUgQGxurfS85ORmpqakICQkBAISEhODKlSvIysrSrhMTEwM7Ozv4+fk1euyEEELMA6dnnrNnz8bgwYPRokULFBQUYMuWLYiPj8fBgwdhb2+Pt99+G1FRUXBycoKdnR3ef/99hISEoGfPngCA8PBw+Pn5YezYsVi+fDkyMjIwZ84cREZGVntmSQghhLCB0+KZlZWFcePGIT09Hfb29vD398fBgwcRFhYGAPjmm28gFAoxcuRIKBQKREREYPXq1drtRSIR/v77b0yZMgUhISGwtrbG+PHjsXDhQoPikMlkmD9/PhVcPVCuDEP5MgzlyzCUL/2xnSsBo0+fXEIIIYRo8e6eJyGEEMJ3VDwJIYQQA1HxJIQQQgxExZMQQggxkNkXz+joaPj4+MDCwgLBwcFVBl0wV8eOHcOwYcPg6ekJgUCAv/76q9L7DMNg3rx58PDwgKWlJUJDQ3H79m1uguXYkiVL8Nxzz8HW1haurq54+eWXkZycXGkdfabXMxdsTEVorpYuXQqBQIDp06drl1G+Kvvss88gEAgqfXXo0EH7Plv5MuviuW3bNkRFRWH+/Pm4ePEiAgICEBERUWnQBXNVVFSEgIAAREdHV/v+8uXL8e2332Lt2rU4e/YsrK2tERERgdLS0kaOlHtHjx5FZGQkzpw5g5iYGCiVSoSHh6OoqEi7Tl3T65kTY6ciNFfnz5/HunXr4O/vX2k55auqTp06IT09Xft14sQJ7Xus5YsxYz169GAiIyO136vVasbT05NZsmQJh1HxDwBm586d2u81Gg3j7u7OfPnll9pleXl5jEwmY3777TcOIuSXrKwsBgBz9OhRhmHKcyORSJjt27dr17lx4wYDgDl9+jRXYfKKo6Mj8+OPP1KualBQUMC0bduWiYmJYfr27ctMmzaNYRj6bFVn/vz5TEBAQLXvsZkvsz3zLCsrQ0JCQqUpz4RCIUJDQ3H69GkOI+O/lJQUZGRkVMqdvb09goODKXf4Z4o7JycnAKhzej1zplarsXXrVr2nIjRXkZGRGDp0aKW8APTZqsnt27fh6emJVq1aYcyYMUhNTQXAbr44HxieK9nZ2VCr1dVOaXbz5k2OojINFdO9VZe72qaCMwcajQbTp09H79690blzZwDl+aprej1zY8xUhOZm69atuHjxIs6fP1/lPfpsVRUcHIzNmzejffv2SE9Px4IFC9CnTx9cvXqV1XyZbfEkpCFERkbi6tWrle6xkKq4mIrQFD18+BDTpk1DTEwMLCwsuA7HJAwePFj72t/fH8HBwWjZsiV+//13WFpasrYfs71s6+LiApFIVKWXle6UZ6R6Ffmh3FU2depU/P3334iLi4OXl5d2ubu7u3Z6PV3mnK+KqQiDgoKwZMkSBAQEYNWqVZSrf0lISEBWVha6desGsVgMsViMo0eP4ttvv4VYLIabmxvlqw4ODg5o164d7ty5w+rny2yLp1QqRVBQUKUpzzQaDWJjY7VTnpHq+fr6wt3dvVLu5HI5zp49a5a5YxgGU6dOxc6dO3HkyBH4+vpWel+f6fXMnSFTEZqTgQMH4sqVK0hKStJ+de/eHWPGjNG+pnzVrrCwEHfv3oWHhwe7ny8jOjWZvK1btzIymYzZvHkzc/36deadd95hHBwcmIyMDK5D41xBQQGTmJjIJCYmMgCYFStWMImJicyDBw8YhmGYpUuXMg4ODsyuXbuYy5cvM8OHD2d8fX2ZkpISjiNvfFOmTGHs7e2Z+Ph4Jj09XftVXFysXWfy5MlMixYtmCNHjjAXLlxgQkJCmJCQEA6j5s6sWbOYo0ePMikpKczly5eZWbNmMQKBgDl06BDDMJSruuj2tmUYyte/ffDBB0x8fDyTkpLCnDx5kgkNDWVcXFyYrKwshmHYy5dZF0+GYZjvvvuOadGiBSOVSpkePXowZ86c4TokXoiLi2MAVPkaP348wzDlj6vMnTuXcXNzY2QyGTNw4EAmOTmZ26A5Ul2eADCbNm3SrlNSUsK89957jKOjI2NlZcWMGDGCSU9P5y5oDr311ltMy5YtGalUyjRr1owZOHCgtnAyDOWqLv8unpSvykaNGsV4eHgwUqmUad68OTNq1Cjmzp072vfZyhdNSUYIIYQYyGzveRJCCCH1RcWTEEIIMRAVT0IIIcRAVDwJIYQQA1HxJIQQQgxExZMQQggxEBVPQgghxEBUPAkhhBADUfEkhBBCDETFkxBCCDEQFU9CCCHEQFQ8CSGEEANR8SSEEEIMJOY6AD7QaDRIS0uDra0tBAIB1+EQQgjhAMMwKCgogKenJ4TC2s8tqXgCSEtLg7e3N9dhEEII4YGHDx/Cy8ur1nWoeAKwtbUFAKSkpMDJyYnjaPhNqVTi0KFDCA8Ph0Qi4Toc3mMtX3fuAG3asBcYT/Hu86Wbdx4eA97li8e0uWrVCpKOHatdRy6Xw9vbW1sTakPFE9BeqrW1tYWdnR3H0fCbUqmElZUV7Ozs6JdVD6zlKzMT6NaNvcB4inefL9288/AY8C5fPFaRK/usLIiDg2tdV5/bd9RhiBBTMGIE1xGYJ9280zFoEkSvvspKO1Q8CSGEEAPxqngeO3YMw4YNg6enJwQCAf766686t4mPj0e3bt0gk8nQpk0bbN68ucHjJIQQYt54VTyLiooQEBCA6OhovdZPSUnB0KFD0b9/fyQlJWH69OmYOHEiDh482MCREtLIduzgOgLzpJt3OgZNgnrrVlba4VWHocGDB2Pw4MF6r7927Vr4+vri66+/BgB07NgRJ06cwDfffIOIiAiD93/ybg7sstUGb2dO1Go1bjwVwOZ2NkQiEdfh8B4b+RIIBOjm2wZ19/8jrHvWK/Pek0JkyVxRmpzFcUCV0e+j/ipy1czdFZ7ZRfBxsTaqPV4VT0OdPn0aoaGhlZZFRERg+vTptW6nUCigUCi038vlcgDA1N8uQSizYj3OpkeEtTcvch2ECTE+X7e+fgXK4kKW4uEvpVJZ6V+uiTt1QurDLAxccRw3vxyB9h/u5DqkatDvo/5EmDGxL6L3Xcb7/VtXedeQz51JF8+MjAy4ublVWubm5ga5XI6SkhJYWlpWu92SJUuwYMGCKss9rRiILZgGiZWQ+lBpgIwSARiGwf59+7gOp9HExMRwHQIA4EWNBjsPxoFhyv+r9LKm/x9MngDIvH8L+/YlV3mruLhY72ZMunjW1+zZsxEVFaX9vuLB2L/efwHOzs4cRsZ/SqUSMTExCAsLo+fK9GBsvrILFQhZdhQAMGjQYAiFTXv4SL59voRCIUJCemHl1XOAAIibZfjtoIbEt3zxWUWupCIhPp9Q/e3BiquQ+jDp4unu7o7MzMxKyzIzM2FnZ1fjWScAyGQyyGSyKsslEgl9APVEuTJMffPlbFt+H2v5C+Pwf2oB7GXmkXPefL6++AJicfkx+HHQRETyIaZq8CZfJkCzaFGNuTIkh7zqbWuokJAQxMbGVloWExODkJAQjiIihF1SsRBWUhE29BiBvJIyrsMxPzpXqLa/wM7D9YRbmjr6xOiLV8WzsLAQSUlJSEpKAlD+KEpSUhJSU1MBlF9uHTdunHb9yZMn4969e/joo49w8+ZNrF69Gr///jtmzJjBRfiENAgHSwmurxiJvGJ+dKIxK9b/9Mjc/+kQDgMhbBE7OLDSDq+K54ULFxAYGIjAwEAAQFRUFAIDAzFv3jwAQHp6uraQAoCvry/27t2LmJgYBAQE4Ouvv8aPP/5Yr8dUCOErO0sJRBoN8kuoeDY69T+ProkYeoytSVCzcxx5dc+zX79+YJiae7NVN3pQv379kJiY2IBREcItB6vy+zB5VDwJ4Q1enXkSQqpysJRiR5eByC+me56N7s03tS8PBA3iLg7CGo3OrT9jUPEkhOfsLSX4NGIqXbblwtq12pcrRlJfiqZAo+fwr3Wh4kkIzzlYSbB30/9RhyEuPOt/AQDrV77DYSCELeLnnmOlHSqehPCcvZUEbXIe0j1PLty4oX3ZMusBh4EQ1ty8yUozVDwJ4Tl7y/IOQ3TZlhD+oOJJCM85WEqR0Lwj8umybePr1Uv78mrLThwGQtjCsDSIDhVPQnjOwUqC0a9/gafU27bxHTmifRn17goOAyFsUR86xEo7VDwJ4TkHKwm+37UMT+nMs/GNGqV9Oe+XhRwGQtgiGj2alXaoeBLCc07WUoTdPoO84rJaBxEhDWDXLu3L56+f5DAQwhbBnj2stEPFkxCec7SSAgBUGgYFChXH0RBCACqehPCehUSEp1Z2AIC8Irp026hcXLQv863tOQyEsEbnmBqDiichJuCV2dsAgDoNNbZHj7QvX/30dw4DIWxRpaSw0g4VT0JMwPvx/wMA5FLxbFxz52pfvnVwI4eBELYI589npx1WWiGENKiRR7YCAPKoeDauL7/Uvnzt6DYOAyFsEa5g55EjKp6EmACBoPzfXLrnSQgvUPEkxITQmSch/EDFkxATsP634wCA3CIqno0qLU37cuSc7RwGQtiiesDOAP9UPAkxAZ2TTgAATUvW2Pbu1b7seeMMh4EQtgj27WOlHSqehJiA3ss/AUBnno1u0iTty5l/fM1hIIQtoilTWGmHiichJuBZfyF6zpMQnqDiSYgpeFY9qXgSwg9UPAkxAdm7DwAAnhYpaXD4xhQfr305/d1vuIuDsEZ9+DAr7VDxJMQE2FtJAABlag3kpTQ4PCFc42XxjI6Oho+PDywsLBAcHIxz587Vuv7KlSvRvn17WFpawtvbGzNmzEBpaWkjRUtIw5OFDoSNTAwAyC5UcByNGenXT/ty5boZ3MVBWCMKDWWlHd4Vz23btiEqKgrz58/HxYsXERAQgIiICGRlZVW7/pYtWzBr1izMnz8fN27cwIYNG7Bt2zZ88sknjRw5IQ3LxaZ8arKcQrrvSQjXeFc8V6xYgUmTJmHChAnw8/PD2rVrYWVlhY0bqx+U+dSpU+jduzdGjx4NHx8fhIeH4/XXX6/zbJUQU+NsIwNAZ56E8IGY6wB0lZWVISEhAbNnz9YuEwqFCA0NxenTp6vdplevXvjll19w7tw59OjRA/fu3cO+ffswduzYGvejUCigUPzzH5BcLgcAKJVKKJX0EHptKvJDedIPW/kSrFkDJ2H5fc/M/OImm3++fb4Ea9ZApVIDAL4c+QE+4klcFfiWLz6ryFHZ999DWEO+DMkjr4pndnY21Go13NzcKi13c3PDzZs3q91m9OjRyM7OxvPPPw+GYaBSqTB58uRaL9suWbIECxYsqLI8Li4OVlZWxv0QZiImJobrEEyKsfmSSCQofpIBQIgzSdfhlHOVncB4ii+fL4lEglunTwEQI7alPzqzNDoN2/iSL1MQa2EBZQ3Hsbi4WO926lU8o6KiDN5mzpw5cHJyqs/uahUfH48vvvgCq1evRnBwMO7cuYNp06Zh0aJFmKszF5+u2bNnV/oZ5HI5vL290b9/fzg7O7MeY1OiVCoRExODsLAwSCQSrsPhPbbyJba1xY1diTiZeQ+OHi0wZIgfi1HyB98+X2JbWzhfe4iVV89h/4rxEH5exHVIlfAtX3xWkavBEydCVVBQ7ToVVyH1Ua/iuXLlSoSEhEAqleq1/okTJzB16tQ6i6eLiwtEIhEyMzMrLc/MzIS7u3u128ydOxdjx47FxIkTAQBdunRBUVER3nnnHXz66acQCqve1pXJZJDJZFWWSyQS+gDqiXJlGDby5WpnCaB8WrKmnns+fb7EYhGA8nEq+BLTv/EpX6agplwZksN6X7bduXMnXF1d9VrX1tZWr/WkUimCgoIQGxuLl19+GQCg0WgQGxuLqVOnVrtNcXFxlQIpEpV/2OlhctKUuDzrMJRD49sSwrl6Fc9NmzbB3t5e7/XXrVtX5T5mTaKiojB+/Hh0794dPXr0wMqVK1FUVIQJEyYAAMaNG4fmzZtjyZIlAIBhw4ZhxYoVCAwM1F62nTt3LoYNG6YtooSYvJkz4WJLvW0b3cyZ2pdb+47COA5DIezQREWBjcpQr+I5fvx4AIBarcbJkyfh7+8PBweHGtcfPXq03m2PGjUKT548wbx585CRkYGuXbviwIED2uKbmppa6Uxzzpw5EAgEmDNnDh4/foxmzZph2LBhWLx4cX1+NEL4adEiOD8pBABkF1DxbDSLFgEPcgEAGyPeouLZBGgWLOCueFYQiUQIDw/HjRs3ai2ehpo6dWqNl2njdcaaBACxWIz58+dj/vz5rO2fEN7x8oLLnRQAQFGZGiVlalhK6cpKg/PyAk5eBgBsX/xfYOYTjgMixhL7+gKPHhndjtGDJHTu3Bn37t0zOhBCSC2ys2ErE0MqLv+VpUu3jSQ7W/vSviifw0AIa3SOqTGMLp6ff/45PvzwQ/z9999IT0+HXC6v9EUIYYdAIICLdXkPdyqehHDL6EEShgwZAgB46aWXIBAItMsZhoFAIIBarTZ2F4SQ4cMBAC62MqTll9L4to3lWd4B4IRfbwzgMBTCDmbYMAjqXq1ORhfPuLg4FsIghNRq2zYA/zyuQmeejWTbNm2HoYVvzKPi2QSot2xhZVB3o4tn3759WQiDEFKrAQOAI0e0M6tQ8WwkAwYAm3YAAFasiwJmJnIcEDGWKDwcYOGkj7WxbYuLi5GamoqyssqXk/z9/dnaBSHm69QpALozq9Bl20bxLO8A0PnBNQ4DIWwR1DDJiKGMLp5PnjzBhAkTsH///mrfp3uehLCHLtsSwg9GX/qdPn068vLycPbsWVhaWuLAgQP46aef0LZtW+zevZuNGAkhHTsCAF22bWzP8g4AD1xbchgIYU2HDqw0Y/SZ55EjR7Br1y50794dQqEQLVu2RFhYGOzs7LBkyRIMHTqUjTgJMW+J5ffaXOiybeNKTNR2GJo0/QfEcxsNYYHq/HmwMYS+0WeeRUVF2gHiHR0d8eRJ+QgcXbp0wcWLF41tnhACAJMnA9AZHJ7OPBvHs7wDQNQf33AYCGGLMDKSnXaMbaB9+/ZITk4GAAQEBGDdunV4/Pgx1q5dCw8PD6MDJIQA2LwZwD+XbZ8WK6FUazgMyEw8yzsADEo4wF0chDXC//2PlXaMvmw7bdo0pKenAwDmz5+PQYMG4ddff4VUKsVmnQ8eIcR4DlZSCAWAhgFyi8rgZmfBdUiEmCWji+cbb7yhfR0UFIQHDx7g5s2baNGiBVxcXIxtnhACAM+m1xMJBXCxkSGrQIEsuYKKZ0PTmdZQLaCB+JsElqaqZGOgBS2GYWBpaYlu3bpR4SSETUVF2pcVBTNTXspVNOZDJ++DF+/jMBDCFlVeHivtsFI8N2zYgM6dO8PCwgIWFhbo3LkzfvzxRzaaJoQAwIoV2pcVxTODimfD08n7q8e2cxgIYYtw5Up22jG2gXnz5mHatGkYNmwYtm/fju3bt2PYsGGYMWMG5s2bx0aMhJBPPtG+dLcv73FLZ56NQCfvkw7QCUFTIJw7l5V2jL7nuWbNGqxfvx6vv/66dtlLL70Ef39/vP/++1i4cKGxuyCE6HCvOPPMp+JJCFeMPvNUKpXo3r17leVBQUFQqVTGNk8I+Re6bEsI94wunmPHjsWaNWuqLP/hhx8wZswYY5snhADAtX8GJXe3pw5DjUYn729+sJHDQAhbVElJrLRTr8u2UVFR2tcCgQA//vgjDh06hJ49ewIAzp49i9TUVIwbN46VIAkxezduAK1bA6DLto3qxg2gSy8AQMvMVI6DIWwQ3LzJyvi29SqeiYmV57QLCgoCANy9excA4OLiAhcXF1y7RlP4EMKK//wHKC0vlq7Piqe8VIWSMjUspfT8YYP5z3+A5DQAwIJfPgM2fVL7+oT3RK+9pv1dMka9imccCxOJEkLqx85CDEuJCCVKNTLlpfBxseY6JELMDquDJBBCGp5AINDe96ROQ4Rwo17F85VXXoFcLtd7/TFjxiArK6s+uyKEAMDOnZW+dbOjZz0bhU7e54yjx+6aAvV2dga7qFfx3LVrF548eQK5XF7nV35+Pvbs2YPCwkK924+OjoaPjw8sLCwQHByMc+fO1bp+Xl4eIiMj4eHhAZlMhnbt2mHfPhpKizQhzzoLVaBOQ41EJ+9pzp4cBkLYwrRqxUo79brnyTAM2rVrx0oA/7Zt2zZERUVh7dq1CA4OxsqVKxEREYHk5GTtvKG6ysrKEBYWBldXV+zYsQPNmzfHgwcP4ODg0CDxEcIJf/9KnRzcnl22Tafi2bD8/bUdhjZ+MxFYTk8QmDpxUJBpdRhq3ry5XuutWLECkyZNwoQJEwAAa9euxd69e7Fx40bMmjWryvobN25Ebm4uTp06BYmkfH5wHx8fg+MjxJQ0d7AEAKTnl3AcCSHmqV7Fs2/fvmzHAaD8LDIhIQGzZ8/WLhMKhQgNDcXp06er3Wb37t0ICQlBZGQkdu3ahWbNmmH06NH4+OOPIaph6hmFQgGFQqH9vuL+rVKphFKpZPEnanoq8kN50g9b+RIDUOm04WpT/ofio6fFTepY8O3zJQagUqkBAAz4E1cFvuWLz3RzVFO+DMmj0WPbsik7OxtqtRpubm6Vlru5ueHmzZvVbnPv3j0cOXIEY8aMwb59+3Dnzh289957UCqVmD9/frXbLFmyBAsWLKiyPC4uDlZWVsb/IGYgJiaG6xBMirH5avXGG7incx//cREAiHE/S94k7+/z5fPV6o03cPr0KQBifDfwTbTlaa75ki9TcPVfv0u6iouL9W5HwDAMw1ZQxkpLS0Pz5s1x6tQphISEaJd/9NFHOHr0KM6ePVtlm3bt2qG0tBQpKSnaM80VK1bgyy+/RHp6erX7qe7M09vbG+np6XB2dmb5p2palEolYmJiEBYWpr1MTmrWUPmSlygR9EX57ZPLcwc2mYES+Pj5upiah1Hrz6GlkxUOz3ie63Aq4WO++EqfXMnlcri4uCA/Px92dna1tserM08XFxeIRCJkZmZWWp6ZmQl3d/dqt/Hw8IBEIql0ibZjx47IyMhAWVkZpFJplW1kMhlkMlmV5RKJhD6AeqJcGcbofFlYVOrk4CQWw0YmRqFChSfFKrS2tmAhSv7gzefLwgLiZx2GYj6NgOSjMo4Dqh5v8mUCLJ2cIKihw5AhOeTVIAlSqRRBQUGIjY3VLtNoNIiNja10Jqqrd+/euHPnDjQajXbZrVu34OHhUW3hJKQpEAgE8HQoL5hpedRpiJDGxkrxVKlUOHz4MNatW4eCggIA5ZdgDXm2s0JUVBTWr1+Pn376CTdu3MCUKVNQVFSk7X07bty4Sh2KpkyZgtzcXEybNg23bt3C3r178cUXXyAyMpKNH40Q3vJ81uP28VMqnoQ0NqMv2z548ACDBg1CamoqFAoFwsLCYGtri2XLlkGhUGDt2rUGtTdq1Cg8efIE8+bNQ0ZGBrp27YoDBw5oOxGlpqZCKPyn5nt7e+PgwYOYMWMG/P390bx5c0ybNg0ff/yxsT8aIfzx9ttVFlU8rkJnng1IJ+97nxuCERyGQtihmTABbPQQMLp4Tps2Dd27d8elS5cqdbYZMWIEJk2aVK82p06diqlTp1b7Xnx8fJVlISEhOHPmTL32RYhJiI6usqjizPMRFc+GEx0NPMgFAKwaMY2KZxOg+fZbVoqn0Zdtjx8/jjlz5lS5v+jj44PHjx8b2zwhBAC6dKmyyMvxWfGky7YNRyfvG1dUPfsnpkccGMhKO0YXT41GA7VaXWX5o0ePYGtra2zzhBAAuH27yqIWTuXPJD/IKWrsaMyHTt69sh9xGAhhzZ07rDRjdPEMDw/HypUrtd8LBAIUFhZi/vz5GDJkiLHNE0Jq4ONcPo9nplyBUmXVP2AJIQ3H6OL51Vdf4eTJk/Dz80NpaSlGjx6tvWS7bNkyNmIkhLzwQpVFDlYS2FqUd1tIzdV/ZBRiAJ28X/L15zAQwhamTx9W2jG6w5C3tzcuXbqEbdu24dKlSygsLMTbb7+NMWPGwNLSko0YCSGHDlVZJBAI0NLZClcfy/Egpxjt3Og2CesOHdJ2GJo56UvEcxsNYYF63z5WntE0qg2lUonWrVvj9u3bGDNmDJYvX47Vq1dj4sSJVDgJYdPIkdUubulUfumW7ns2EJ28L/hf9WNlE9Mi+u9/WWnHqOIpkUhQysK8aISQOuzdW+3iFs4VnYbosm2D0Ml7yE16HK4pEOzfz0o7Rp+9RkZGYtmyZVCpVGzEQwgxQMuKHrd0z5OQRmX0Pc/z588jNjYWhw4dQpcuXWBtbV3p/T///NPYXRBCapgYoeWzHrepdNm2YejkPdfWCdUfBWJSavhdMpTRxdPBwQEja7gfQwhhyf371S5u+eyy7aOnJVCpNRCLeDXXg+m7f1/bYei12b9Rh6EmQHX7NtiYf8bo4rlp0yYWwiCE1Gr2bGDJkiqL3e0sIBULUabSID2/FN5ONJk7q2bPBibPBABM2r8emNmf44CIsYSffgosX258OyzEQghpaN98U+1ioVAA72fD9N2nS7fs08n7q8d3cBgIYYvw229ZacfoM09fX18IBIIa3793756xuyCE1KKlszXuPinCg5xi9GnLdTSEmAeji+f06dMrfa9UKpGYmIgDBw5g5syZxjZPCKlDxX1PGmWIkMbDypRk1YmOjsaFCxeMbZ4QAgBZWTW+1ZIGiG84WVnA0/LH8F6e9yf2cRwOMZ7q8WNWOgw12D3PwYMH448//mio5gkxL7X8LlU8rkIDJTQAnby/cOUYh4EQtgh27mSlnQYrnjt27ICTk1NDNU+IeZkypca3fFzKi2dKdhHUGqaxIjIPOnmP2rmSuzgIa0RTp7LSjtGXbQMDAyt1GGIYBhkZGXjy5AlWr15tbPOEkDp4O1pCKhZCodLg8dMS7ZB9hJCGY3TxfPnllyt9LxQK0axZM/Tr1w8dOnQwtnlCSB3EIiFauVjjZkYBbmcVUPEkpBEYXTznz6eZBghpcCdO1Pp2G1cb3MwowJ2sQgzs6NZIQZkBnby/P+VbrOMwFMIOdXy88YUPLNzzvHjxIq5cuaL9fteuXXj55ZfxySefoKyszNjmCSEAoFDU+nZb1/K5PG9nFTZGNOZDJ+8StZLDQAhr6vhd0pfRxfPdd9/FrVu3AJQPiDBq1ChYWVlh+/bt+Oijj4wOkBACYODAWt9u62YDALhDxZNdOnlf8cMHHAZC2CKKiGClHaOL561bt9C1a1cAwPbt29G3b19s2bIFmzdvpkdVCGkkbVz/KZ4MQz1uCWloRhdPhmGg0WgAAIcPH8aQIUMAAN7e3sjOzq5Xm9HR0fDx8YGFhQWCg4Nx7tw5vbbbunUrBAJBlU5MhDR1Ps7WEAkFKFSokCln57IUIaRmRhfP7t274/PPP8fPP/+Mo0ePYujQoQCAlJQUuLkZ3nFh27ZtiIqKwvz583Hx4kUEBAQgIiICWbWMsAIA9+/fx4cffog+ffrU6+cghNc2bqz1balYCJ9nvWxvZRY0RkTmQSfvy16l21BNgfqHH1hpx+jiuXLlSly8eBFTp07Fp59+ijZt2gAoHyShV69eBre3YsUKTJo0CRMmTICfnx/Wrl0LKysrbKzlPw+1Wo0xY8ZgwYIFaNWqVb1/FkJ4KyyszlXau5d3GrqZIW/oaMyHTt4vtA3iMBDCFiY0lJV2jO6x6+/vX6m3bYUvv/wSIpHIoLbKysqQkJCA2bNna5cJhUKEhobi9OnTNW63cOFCuLq64u2338bx48fr3I9CoYBCp8eVXF7+n41SqYRSST3qalORH8qTftjKl9jbG6qC2s8o27naYB+Aa4/zTfb48O3zJfb2huraQwDA71+MgnIOv8YP5lu++KwiR+JWraCs4XfJkDwaXTwfPnwIgUAALy8vAMC5c+ewZcsW+Pn54Z133jGorezsbKjV6iqXe93c3HDz5s1qtzlx4gQ2bNiApKQkvfezZMkSLFiwoMryuLg4WFnRA+b6iImJ4ToEk2Jsvl7UaLBvX+3DkhflCgCIcP52Gvbte2jU/rjGl8/XixoNTp8+BUAMMKjzGHCFL/kyBZpafpeKi/UfH9ro4jl69Gi88847GDt2LDIyMhAWFoZOnTrh119/RUZGBubNm2fsLmpUUFCAsWPHYv369XBxcdF7u9mzZyMqKkr7vVwuh7e3N/r37w9nZ+eGCLXJUCqViImJQVhYGCQSNuYmaNrYypdQKNR2xqtJQF4J1icfxxOFEKHhYZCKTW+ue759voRCIUJCemHl1XOAAHUeg8bGt3zxWUWuavtdqrgKqQ+ji+fVq1fRo0cPAMDvv/+Ozp074+TJkzh06BAmT55sUPF0cXGBSCRCZmZmpeWZmZlwd3evsv7du3dx//59DBs2TLusouevWCxGcnIyWrduXWU7mUwGmUxWZblEIqEPoJ4oV4YxOl+zZtW5fUsXMWwtxCgoVeHBUwX8PO3qvz+O8ebzNWsWxOLy20+/9Xsdb/IhpmrwJl8mQDNzZo25MiSHRv9pqlQqtYXo8OHDeOmllwAAHTp0QHp6ukFtSaVSBAUFITY2VrtMo9EgNjYWISEhVdbv0KEDrly5gqSkJO3XSy+9hP79+yMpKQne3t5G/GSE8Mhnn9W5ikAgQEf38oJ5I506DbFCJ++bw9/kLAzCHg1LV0ONLp6dOnXC2rVrcfz4ccTExGDQoEEAgLS0tHpdAo2KisL69evx008/4caNG5gyZQqKioowYcIEAMC4ceO0HYosLCzQuXPnSl8ODg6wtbVF586dIZVKjf3xCOEHDw+9VuvUvLx4Xnmc35DRmA+dvP+x6D8cBkLYIm7Rgp12jG1g2bJlGDFiBL788kuMHz8eAQEBAIDdu3drL+caYtSoUXjy5AnmzZuHjIwMdO3aFQcOHNB2IkpNTYVQaHr3cggxytOneq3W1dsBAJD0MK/hYjEnOnm3LaHnZ5sEPX+X6mJ08ezXrx+ys7Mhl8vh6OioXf7OO+/Uu+fq1KlTMbWGCUvj4+Nr3Xbz5s312ichTUFF8byeJkeZSmOSnYYIMQWs/GYxDIOEhASsW7cOBc+en5FKpfTYByFseeUVvVZr4WQFBysJytQauu/JBp28H+tMo5c1BQxLw7caXTwfPHiALl26YPjw4YiMjMSTJ08AlF/O/fDDD40OkBACYMsWvVYTCAQI8HIAAFx6lNdw8ZgLnbx/PnoOh4EQtqh//pmVdowuntOmTUP37t3x9OlTWFpaapePGDGiUq9ZQogR+vbVe9UAuu/JHp28r1wznbs4CGtEdUzvpy+j73keP34cp06dqtKz1cfHB48fPza2eUIIAJw9q/eqXb3tAQCXqHgaTyfvfg9vcBgIYYtAz1m66mL0madGo4Fara6y/NGjR7C1tTW2eUKIgSou2959UgR5KY15SkhDMLp4hoeHY+XKldrvBQIBCgsLMX/+fN4NZUWIyercWe9VnW1k8HYqv4Vy5RE972kUnbynuPlyGAhhC9OpEyvtGF08v/rqK5w8eRJ+fn4oLS3F6NGjtZdsly1bxkaMhJALFwxaveLsk+57Gkkn7+9OW8thIIQt6jNnWGnH6OLp7e2NS5cu4dNPP8WMGTMQGBiIpUuXIjExEa6urmzESAiZNMmg1QNblD9zfeF+bkNEYz508v7hjq84DISwRTR5MivtGFU8lUolWrdujdu3b2PMmDFYvnw5Vq9ejYkTJ1bqeUsIMZKB3euDfZ0AABfuP4VKrWmIiMyDTt7DL9K0X02B4NdfWWnHqOIpkUhQWlrKSiCEEPZ09LArn2FFocJ1GiyBENYZfdk2MjISy5Ytg0qlYiMeQkh1DJzkQCQUaM8+z9zLaYiIzINO3pUimvKrSWBpwhCjn/M8f/48YmNjcejQIXTp0gXW1taV3v/zzz+N3QUhxIBJeisE+zrj8I0snL2Xi3deqDqvLdGDXA48KL9vPHTR34jnNhrCAlVODtj4M8joM08HBweMHDkSERER8PT0hL29faUvQggLli83eJOercqnBDyXkkv3PetLJ++vxW/lMBDCFuFX7HT8MvrMc9OmTWzEQQipzbx5wEcfGbSJn6cd7C0lyC9R4tKjfAS1dKx7I1LZvHnAqIkAgLcObQKwjtt4iNGECxYAz+aENqqd+m6o0WiwbNky9O7dG8899xxmzZqFkpISowMihLBDJBTg+TYuAICjt55wHA0hTUu9i+fixYvxySefwMbGBs2bN8eqVasQGRnJZmyEECO90K68eB6j4kkIq+pdPP/3v/9h9erVOHjwIP766y/s2bMHv/76KzQaurdCCOuSk+u12QvtmgEALj/Kw9OiMjYjMg86eR878ycOAyFsUV29yko79S6eqamplcauDQ0NhUAgQFpaGiuBEUJ0JCbWazMPe0t0cLeFhgFib2axHJQZ0Ml728d3OAyEsEWQlMRKO/UuniqVChYWFpWWSSQSKJU0iwMhrHvttXpvOqizOwDgwNV0tqIxHzp5n7dlEYeBELaI3niDlXbq3duWYRi8+eabkMlk2mWlpaWYPHlypWc96TlPQrg1qLM7Vh6+jWO3s1GoUMFGZnQne0LMXr1/i8aPH19l2RssVXRCCHvau9nC18UaKdlFiLuZhWEBnlyHRIjJq3fxpOc7CWlEe/bUe1OBQICITu5Ye/QuDlzLoOJpCJ28z35zMb7mMBTCDvXOncYPcAAWRhgihDSC5s2N2rzivmfczSyUKtVsRGQedPKebe/CYSCELYwnO388UvEkxBR062bU5gFe9vCwt0BxmRrxyfTMp9508r5+1bscBkLYIg4OZqUdXhbP6Oho+Pj4wMLCAsHBwTh37lyN665fvx59+vSBo6MjHB0dERoaWuv6hJgjgUCgvVz758VHHEdDiOnjXfHctm0boqKiMH/+fFy8eBEBAQGIiIhAVlb1z6jFx8fj9ddfR1xcHE6fPg1vb2+Eh4fj8ePHjRw5Ifz2nyAvAMCRm1nILlRwHA0hpo13xXPFihWYNGkSJkyYAD8/P6xduxZWVlbYuHFjtev/+uuveO+999C1a1d06NABP/74IzQaDWJjYxs5ckIa0NfGd1Vp52aLAC97qDQM/kqkPy71opP31S9O4TAQwhZNPWYoqg6vHvgqKytDQkICZuuMeC8UChEaGorTp0/r1UZxcTGUSiWcnJxqXEehUECh+Ocvb/mzuRKVSiUN8lCHivxQnvTDWr7eegtgIecjunrg0qN8bDmbirE9vCAUCoxuk028+3y99RZUaYUAgN09hiGSL3E9w7t88VhFjhRvvglJDfkyJI+8Kp7Z2dlQq9Vwc3OrtNzNzQ03b97Uq42PP/4Ynp6eCA0NrXGdJUuWYMGCBVWWx8XFwcrKyrCgzVRMTAzXIZgUY/P14quv4u/t242Ow1IFyEQi3MsuworfDsDPkTG6zYbAl8/Xi6++itMbtwMQY//cIdjnZ/wxaAh8yZcpkLm41Pi7VFxcrHc7vCqexlq6dCm2bt2K+Pj4KkMH6po9ezaioqK038vlcnh7e6N///5wdnZujFBNllKpRExMDMLCwiCRsDEfe9PGVr6EQmGlsaSNcVOSjE2nHuCq0hUfDglipU228O3zJRQKERLSCyuvngMEYO0YsIVv+eKzilzV9rtUcRVSH7wqni4uLhCJRMjMzKy0PDMzE+7u7rVu+9VXX2Hp0qU4fPgw/P39a11XJpNVGlawgkQioQ+gnihXhmEjX2zl+63nW+Gn0w9w8m4O7uWUor27LSvtsolPny+xWAQAEIC9Y8A2PuXLFNSUK0NyyKsOQ1KpFEFBQZU6+1R0/gkJCalxu+XLl2PRokU4cOAAunfv3hihEtK43mXvGUNvJyuE+5X/MbrxRApr7TZJOnnfHTyMw0AIWzSTJrHSDq+KJwBERUVh/fr1+Omnn3Djxg1MmTIFRUVFmDBhAgBg3LhxlToULVu2DHPnzsXGjRvh4+ODjIwMZGRkoLCwkKsfgRD2rVrFanNv9/EFAOxMeowseSmrbTcpOnn/fvhUDgMhbNGsWMFKO7wrnqNGjcJXX32FefPmoWvXrkhKSsKBAwe0nYhSU1ORnv7P1Epr1qxBWVkZ/vOf/8DDw0P79dVXX3H1IxDCPj8/Vpvr3tIRQS0dUabS4Ps4mqeyRjp53/zVBA4DIWwR13FbT+92WGmFZVOnTsXUqdX/lRcfH1/p+/v37zd8QIRw7d49VpsTCAT4MLw9Xl9/Br+dS8WkPq3g7UQ9zavQybtnbhqHgRDWpLBzq4J3Z56EkMYR0toZfdq6QKlmsCLmFtfhEGJSqHgSYgr692+QZmdGtIdAAOxMfIxzKbkNsg+TppP3xNaBHAZC2ML068dKO1Q8CTEF+/c3SLP+Xg547bkWAIC5f12FUq1pkP2YLJ28f/z2Ug4DIWxRGzE3ri4qnoSYgpdfbrCmP4poD0crCZIzC+jRlX/TyfvnP83lLg7CGtHIkay0Q8WTEFNw4ECDNe1oLcXswR0BAF8fuoXrafqPstLk6eS9RzJNddgUCA4dYqUdKp6EELza3QuhHd1QptZg2tZElCrVXIdECK9R8STEFDRv3qDNCwQCLBvZBc1sZbidVYhFf19v0P2ZDJ28P7Fz4TAQwhqWfpeoeBJiCu7ebfBdONvI8PWrARAIgF/PpuLXsw8afJ+8p5P3MbN+5TAQwhaVnjN01YWKJyGm4KOPGmU3L7Rrhg/D2wMA5u+6hiM3M+vYoonTyfu7e9dxGAhhi3DWLHbaYaUVQkjD+vbbRtvVe/1aY0Rgc6g0DCb/chGn7mQ32r55RyfvI0/+yWEghC3C6Gh22mGlFUJIkyEQCLD8P/4I83NDmUqDif+7QAMoEPIvVDwJIVVIREJ8PzoQfdq6oLhMjTc2nMXey+l1b0iImaDiSYgpyMlp9F3KxCL8MLY7wp+dgUZuuYjV8Xeg0TCNHgtndPL+0md/cRcHYY0qI4OVdqh4EmIKfvuNk91aSkVY80YQ3uzlAwBYfiAZb/90HjmFCk7iaXQ6eR+YeITDQAhbBNu2sdIOFU9CTEENU/Q1BpFQgM9e6oQvRnSBTCxEXPITDFp1HPuupINhmvhZqE7ep+1qvE5bpOGIpk1jpR0qnoQQvYwOboFdU3ujjasNnhQo8N6vFzFh83nce1LIdWiENDoqnoQQvXVwt8Pf7z+P/xvQBhKRAPHJTxD2zTHM+uMyHueVcB0eIY2GiichpuD0aa4j0LKQiBAV3h4Hpr+A/u2bQa1hsPX8Q/RdHof/+y0RSQ/zms7lXJ28vxf5PYeBELaojh1jpR0xK60QQhpWQQHXEVTRupkNNk3ogYQHufj60C2cupuD3ZfSsPtSGtq72eKVbs0xvGtzuNtbcB1q/RUUAE7lL60UxdzGQlghKGTnNgOdeRJiCsLDuY6gRkEtnbBlUk/8/f7zeKVbc0jFQiRnFmDJ/psIWRqLV9eewtqjd3Ers8D0zkh18v7Vj40zRCJpWKIhQ1hph848CSGs6NzcHiv+2xXzh3XCvivp2HnxMc7dz8X5+09x/v5TLN1/Ey42UgT7OqNnKycEtnBEOzdbSMX0NzwxPVQ8CSGssreU4PUeLfB6jxZ4nFeCIzcycfhGFs7cy0F2YRn2XknH3ivloxVJRAK0c7NFJ087dPK0h4+TBZ4qYF4DMRCTRMWTEFPw009cR1AvzR0sMTbEB2NDfKBQqXHpYT7O3svB2ZRcXH6UB3mpCtfS5LiWJgfw6NlWYiy9EgsfZ2u0dLaCh70lPB0s4G5vCQ97C7jbWcDVTgaZWNTwP4BO3pf8dxbmN/weSQNTb9jASuHjZfGMjo7Gl19+iYyMDAQEBOC7775Djx49alx/+/btmDt3Lu7fv4+2bdti2bJlGMLSdW1CeOGFF7iOwGgysQg9fJ3Qw9cJ7wNgGAaPnpY8K575uJEux70nhbifU4RSpQY3MwpwM6PmjlI2MjEcrSVwspLC0Vr6z7/WUthaiGEjE8NaJobts39tni2zkYlhJRVBIBDUHfQLLwBl5S8vtfJnJxGEU0yfPqy0w7viuW3bNkRFRWHt2rUIDg7GypUrERERgeTkZLi6ulZZ/9SpU3j99dexZMkSvPjii9iyZQtefvllXLx4EZ07d+bgJyCkAfj6AqWlXEfBKoFAAG8nK3g7WWFQZ3cAgFKpxJ69++Dfsx8e5imQmluM9PxSZOSXlP8rL0V6finKVBoUKlQoVKjwMNfw50sFAsBKIoJMIoJMLHz2JYK04rWk/Pt17zyPaYv2AwC2Lh0NLPoPqzkgjU/crh0rv0u8K54rVqzApEmTMGHCBADA2rVrsXfvXmzcuBGzqpnEdNWqVRg0aBBmzpwJAFi0aBFiYmLw/fffY+3atY0aOyHEeCIB0NLZCm3c7at9n2EY5Jco8bRYidyiMjwtKkNuURlyi/95XVCqQlGZqvxfRflXwbN/NQzAMEBRmRpFZepaY9Foys+Oy+lxpkrMBq+KZ1lZGRISEjB79mztMqFQiNDQUJyu4SHx06dPIyoqqtKyiIgI/PXXXzXuR6FQQKH4Z2Dr/Px8AEBuLs1ZWBelUoni4mLk5ORAIpFwHQ7vsZUvMcNAxcHMKo3NkHzZCQA7G8DHRozy/8qs6myfYRiUKjUoUqhQrFRDqdJAoWJQplJDodZAodKg7NmXQq1B8Qpgeh9PMACKvwEKeHYM6PdRfxW5ktfyu1Tw7HlqfR6p4lXxzM7OhlqthpubW6Xlbm5uuHnzZrXbZGRkVLt+Ri3TzixZsgQLFiyosrxdu3b1iJqQRuLiwnUEZmcSALzYDQAQBdAxaCrqOI4FBQWwt6/+ykcFXhXPxjJ79uxKZ6t5eXlo2bIlUlNT60yYuZPL5fD29sbDhw9hZ2fHdTi8R/kyDOXLMJQv/emTK4ZhUFBQAE9Pzzrb41XxdHFxgUgkQmZmZqXlmZmZcHd3r3Ybd3d3g9YHAJlMBplMVmW5vb09fQD1ZGdnR7kyAOXLMJQvw1C+9FdXrvQ9geLV0B5SqRRBQUGIjY3VLtNoNIiNjUVISEi124SEhFRaHwBiYmJqXJ8QQggxFq/OPAEgKioK48ePR/fu3dGjRw+sXLkSRUVF2t6348aNQ/PmzbFkyRIAwLRp09C3b198/fXXGDp0KLZu3YoLFy7ghx9+4PLHIIQQ0oTxrniOGjUKT548wbx585CRkYGuXbviwIED2k5BqampEAr/OWHu1asXtmzZgjlz5uCTTz5B27Zt8ddffxn0jKdMJsP8+fOrvZRLKqNcGYbyZRjKl2EoX/pjO1cCxuSmOSCEEEK4xat7noQQQogpoOJJCCGEGIiKJyGEEGIgKp6EEEKIgcy+eEZHR8PHxwcWFhYIDg7GuXPnuA6JF44dO4Zhw4bB09MTAoGgyljBDMNg3rx58PDwgKWlJUJDQ3H79m1uguXYkiVL8Nxzz8HW1haurq54+eWXkZycXGmd0tJSREZGwtnZGTY2Nhg5cmSVwT3MxZo1a+Dv7699WD0kJAT79+/Xvk+5qtnSpUshEAgwffp07TLKV2WfffYZBAJBpa8OHTpo32crX2ZdPCumP5s/fz4uXryIgIAAREREICsri+vQOFdUVISAgABER0dX+/7y5cvx7bffYu3atTh79iysra0RERGB0iY2bZY+jh49isjISJw5cwYxMTFQKpUIDw9HUVGRdp0ZM2Zgz5492L59O44ePYq0tDS88sorHEbNHS8vLyxduhQJCQm4cOECBgwYgOHDh+PatWsAKFc1OX/+PNatWwd//8rzilK+qurUqRPS09O1XydOnNC+x1q+GDPWo0cPJjIyUvu9Wq1mPD09mSVLlnAYFf8AYHbu3Kn9XqPRMO7u7syXX36pXZaXl8fIZDLmt99+4yBCfsnKymIAMEePHmUYpjw3EomE2b59u3adGzduMACY06dPcxUmrzg6OjI//vgj5aoGBQUFTNu2bZmYmBimb9++zLRp0xiGoc9WdebPn88EBARU+x6b+TLbM8+K6c9CQ0O1y+qa/oyUS0lJQUZGRqXc2dvbIzg4mHKHf6a4c3JyAgAkJCRAqVRWyleHDh3QokULs8+XWq3G1q1bUVRUhJCQEMpVDSIjIzF06NBKeQHos1WT27dvw9PTE61atcKYMWOQmpoKgN188W6EocZSn+nPSLmK6d4MnQrOHGg0GkyfPh29e/fWjnKVkZEBqVQKBweHSuuac76uXLmCkJAQlJaWwsbGBjt37oSfnx+SkpIoV/+ydetWXLx4EefPn6/yHn22qgoODsbmzZvRvn17pKenY8GCBejTpw+uXr3Kar7MtngS0hAiIyNx9erVSvdYSFXt27dHUlIS8vPzsWPHDowfPx5Hjx7lOizeefjwIaZNm4aYmBhYWFhwHY5JGDx4sPa1v78/goOD0bJlS/z++++wtLRkbT9me9m2PtOfkXIV+aHcVTZ16lT8/fffiIuLg5eXl3a5u7s7ysrKkJeXV2l9c86XVCpFmzZtEBQUhCVLliAgIACrVq2iXP1LQkICsrKy0K1bN4jFYojFYhw9ehTffvstxGIx3NzcKF91cHBwQLt27XDnzh1WP19mWzzrM/0ZKefr6wt3d/dKuZPL5Th79qxZ5o5hGEydOhU7d+7EkSNH4OvrW+n9oKAgSCSSSvlKTk5GamqqWearOhqNBgqFgnL1LwMHDsSVK1eQlJSk/erevTvGjBmjfU35ql1hYSHu3r0LDw8Pdj9fRnRqMnlbt25lZDIZs3nzZub69evMO++8wzg4ODAZGRlch8a5goICJjExkUlMTGQAMCtWrGASExOZBw8eMAzDMEuXLmUcHByYXbt2MZcvX2aGDx/O+Pr6MiUlJRxH3vimTJnC2NvbM/Hx8Ux6err2q7i4WLvO5MmTmRYtWjBHjhxhLly4wISEhDAhISEcRs2dWbNmMUePHmVSUlKYy5cvM7NmzWIEAgFz6NAhhmEoV3XR7W3LMJSvf/vggw+Y+Ph4JiUlhTl58iQTGhrKuLi4MFlZWQzDsJcvsy6eDMMw3333HdOiRQtGKpUyPXr0YM6cOcN1SLwQFxfHAKjyNX78eIZhyh9XmTt3LuPm5sbIZDJm4MCBTHJyMrdBc6S6PAFgNm3apF2npKSEee+99xhHR0fGysqKGTFiBJOens5d0Bx66623mJYtWzJSqZRp1qwZM3DgQG3hZBjKVV3+XTwpX5WNGjWK8fDwYKRSKdO8eXNm1KhRzJ07d7Tvs5UvmpKMEEIIMZDZ3vMkhBBC6ouKJyGEEGIgKp6EEEKIgah4EkIIIQai4kkIIYQYiIonIYQQYiAqnoQQQoiBqHgSQgghBqLiSQghhBiIiichhBBiICqehBBCiIGoeBJCCCEGouJJCCGEGIiKJyGEEGIgMdcB8IFGo0FaWhpsbW0hEAi4DocQQggHGIZBQUEBPD09IRTWfm5JxRNAWloavL29uQ6DEEIIDzx8+BBeXl61rkPFE4CtrS0AICUlBU5OThxHw29KpRKHDh1CeHg4JBIJ1+HwHmv5unMHaNOGvcB4inefL9288/AY8C5fPKbNVatWkHTsWO06crkc3t7e2ppQGyqegPZSra2tLezs7DiOht+USiWsrKxgZ2dHv6x6YC1fmZlAt27sBcZTvPt86eadh8eAd/nisYpc2WdlQRwcXOu6+ty+ow5DhJiCESO4jsA86eadjkGTIHr1VVba4VXxPHbsGIYNGwZPT08IBAL89ddfdW4THx+Pbt26QSaToU2bNti8eXODx0kIIcS88ap4FhUVISAgANHR0Xqtn5KSgqFDh6J///5ISkrC9OnTMXHiRBw8eLCBIyWEEGLOeHXPc/DgwRg8eLDe669duxa+vr74+uuvAQAdO3bEiRMn8M033yAiIqKhwiSk8e3YwXUE5kk373QMmgT11q2sFD5eFU9DnT59GqGhoZWWRUREYPr06bVup1AooFAotN/L5XIA5TeUlUol63GygWEYpD4twf3sImTIFcjIL0V2URlKytQoUapRqlSjRKmBQqmGhgE0DAMNU77dP68rvi9/v56RoLhYhK9uHgNg/DOx9Y2isdX0k9bUr0DwbAvmWb6+Tj6uXVbzNjXvwzM7D2k34/Taoj7t10TA0j5q2uDfSxkwKJCLsDblVI2dNurKuf7r10DnDfcnhci4fxxCgQAT3W0RwbP/Hyr+v+Lr/1t8os1VmzZgasiXIXk06eKZkZEBNze3Ssvc3Nwgl8tRUlICS0vLardbsmQJFixYUGV5XFwcrKysGiTW+lBrgMQcAa49FeCuXIB8JV8GcBAgR1HKdRAmRACUlhjVwv6v3kL7D3eyFA/fCfC4uJDrIAAA278ap8172LQR2PfHdo4jql5MTAzXIZgMabdu+Ht79cexuLhY73ZMunjW1+zZsxEVFaX9vuLZnv79+8PZ2ZnDyMppNAx+PfcQ60/cR3r+P0VKIhKgtYs13O0t4GFvgWY2MljJRLCQiGApEcJSIoJULIRIKIBQIIBAAAgFAgif/fvP98/+Rq9HLVarVDh37hx69OgBkZidjw9f/iSoSY1nxzW8obtYpVLh/PlzeO65HhCJRIa1j/KrBQAg+UaILW8/p7NN9VsZekGhpvUNbb+m3dYWT3X7UKvUSLh4Ed0CAyH+1+er5n3UEKuBMVW3WPyNEDPD2+LLQ7cBATBkyJAaWuWGUqlETEwMwsLC6FGVOlTkSigU1ngcK65C6sPg//12795t6CYICwur8SzQGO7u7sjMzKy0LDMzE3Z2drXuTyaTQSaTVVkukUg4/wDmFpVh+rYkHLv1BADgYiPD6z280au1CwJbOMBCUv1/wI1FqVQi6wbQ3deF81yZAqVSieybQI9WRuZLAPRq68peYDylVCpRfI9B/47u/Ph8CYCerV0A3IYA4EdM1eDD/12mpKZcGZJDg4vnyy+/bND6AoEAt2/fRqtWrQzdVZ1CQkKwb9++SstiYmIQEhLC+r4aw6OnxRi17gwe55XAQiLErEEd8FqPFpwXTMIDX3zBdQTmSSfv6wdNRCSHoRB2aBYtAhv/o9brUZWMjAxoNBq9vgy5h1hYWIikpCQkJSUBKH8UJSkpCampqQDKL7eOGzdOu/7kyZNx7949fPTRR7h58yZWr16N33//HTNmzKjPj8WpvOIyjN94Do/zSuDjbIWd7/XGm719qXCScjq3GUgj0sn79hfYebiecEtTR4dSfRlcPMePH2/QJdg33nhD7yHvLly4gMDAQAQGBgIAoqKiEBgYiHnz5gEA0tPTtYUUAHx9fbF3717ExMQgICAAX3/9NX788UeTe0yFYRh8/Mdl3H1SBA97C/z2Tk909KBhAokOa2uuIzBPOnnf/ym/7neS+hE7OLDTjqEbbNq0yaD116xZo/e6/fr1q/HmP4BqRw/q168fEhMTDYqJb3YlpeHgtUxIRAKsH9cdHvbs3x8mJk6t5joC86STdxFDx6BJYOl3ibURhk6ePFnp2Umin1KlGkv33wQA/N+Atujc3J7jiAghhNSFteI5ePBgPH78mK3mzMaWs6nIkJfCw94Ck15gv1MVaSLefJPrCMyTTt4PBA3iLg7CGo1OvxljsFY8a7vcSqpXXKbC6vi7AID3B7SlzkGkZmvXch2BedLJ+4qRptcRkVSl0XPs9LrwamB4c7P9wiNkFyrg7WSJV7vXPms5MXPPOtGRRqaT9/Ur3+EwEMIW8XPP1b2SHlgrnuvWrasyVB6p3Y6ERwCACb18IRHR3zGkFjducB2BedLJe8usBxwGQlhz8yYrzbA2PN/o0aPZasos3MoswJXH+RALBRje1ZPrcAghhBjA4NOdy5cvQ6PR6L3+tWvXoFKpDN1Nk/fHs7PO/h1c4WxTdahAQirp1YvrCMyTTt6vtuzEYSCELQxLI9AZXDwDAwORk5Oj9/ohISGVBjYggEqtwc7E8p7JI7vRvU6ihyNHuI7APOnkPerdFRwGQtiiPnSIlXYMvmzLMAzmzp2r97B7ZWVlBgfV1J24k42sAgUcrSQY0KHpD/ZNWDBqFLBtG9dRmJ9Ro4Dl5QO9zPtlITCzP8cBEWOJRo8GapiSzBAGF88XXngBycnJeq8fEhLSIDOqmLK/L6cDAF4K8IRUTB2FiB527eI6AvO0a5e2eD5//STHwRA2CPbsYaUdg4tnfHw8Kzs2VxoNg/jk8unGIjq5cxwNIYSQ+qDTnkZ2I0OO7EIFrKQiBPk4ch0OMRUuLlxHYJ508p5vTUNnNgks/S5R8WxkFWedvVo7QyamEYWInh494joC86ST91c//Z3DQAhbVCkprLRDxbORHb1VXjz7tqeOQsQAc+dyHYF50sn7Wwc3chgIYYtw/nx22mGlFaIXeakSFx88BQD0bduM42iISfnyS64jME86eX/tKPV2bgqEK9h55IiKZyM6dScbKg2DVi7WaOGs36M+hBBC+Ie14llSUlLtlGTXrl1jaxcm79jtbADAC+3orJMQQkwZK8Vzx44daNu2LYYOHQp/f3+cPXtW+97YsWPZ2EWTcC4lF0B5ZyFCDJKWxnUE5kkn7yPnGP9gPeGe6gE7A/yzUjw///xzJCQkICkpCZs2bcLbb7+NLVu2AKB5PivkFCpwJ6sQAPCcjxPH0RCTs3cv1xGYJ52897xxhsNACFsE+/ax0g4rxVOpVGqnIwsKCsKxY8ewbt06LFy4EAKBgI1dmLzz98s7CrVzs4GjtZTjaIjJmTSJ6wjMk07eZ/7xNYeBELaIpkxhpR1WiqerqysuX76s/d7JyQkxMTG4ceNGpeXm7Pz98ku2PXzprJMQQkwdK8Xz559/hqtr5ecWpVIpfvvtNxw9epSNXZi8ivuddMmWEEJMHyvF08LCAmJx9cPk9u7dm41dmLSSMjWup8sBUPEk9URjSnNDJ+/T3/2GuzgIa9SHD7PSTr2LZ15eHiIjI+Hi4gI3Nze4ubnBxcUFU6dORV5enlFBRUdHw8fHBxYWFggODsa5c+dqXX/lypVo3749LC0t4e3tjRkzZqC0tNSoGNh0PT0fag2DZrYyeNhbcB0OIYQQIxk8qwoA5ObmIiQkBI8fP8aYMWPQsWNHAMD169exefNmxMbG4tSpU3B0NHzg823btiEqKgpr165FcHAwVq5ciYiICCQnJ1e5NAwAW7ZswaxZs7Bx40b06tULt27dwptvvgmBQIAVLI0kYaxLD/MBAAFe9tSBitRPv34Aj/4gNBv9+gHJ5Y+rrFw3A/g+ktt4iNFEoaGs/C7Vq3guXLgQUqkUd+/e1fay1X0vPDwcCxcuxDffGH6ZY8WKFZg0aRImTJgAAFi7di327t2LjRs3YtasWVXWP3XqFHr37o3Ro0cDAHx8fPD6669XetaUa5cf5QEAujR34DQOQggh7KjXZdu//voLX331VZXCCQDu7u5Yvnw5du7caXC7ZWVlSEhIQGho6D8BCoUIDQ3F6dOnq92mV69eSEhI0F7avXfvHvbt24chQ4YYvP+Gcvlx+ZmnvzdNaUQIIU1Bvc4809PT0alTpxrf79y5MzIyMgxuNzs7G2q1ukpRdnNzw82bN6vdZvTo0cjOzsbzzz8PhmGgUqkwefJkfPLJJzXuR6FQQKFQaL+Xy8s78yiVSiiVSoPjrk1BqRL3nhQBAPzcrFlvv7FVxG/qP0djYStfgjVrwJhBzvn2+RKsWQOVSg0A+HLkB/iIJ3FV4Fu++KwiR2Xffw9hDfkyJI/1Kp4uLi64f/8+vLy8qn0/JSUFTk6N06s0Pj4eX3zxBVavXo3g4GDcuXMH06ZNw6JFizC3hmmclixZggULFlRZHhcXBysrdgdsv5UvACCCk4zBmaPs9PLig5iYGK5DMCnG5ksikUDJ0sgopoAvny+JRIJbp08BECO2pT868/QY8CVfpiDWwqLG36Xi4mK92xEw9Rg/76233sLdu3cRExMDqbTyaDkKhQIRERFo1aoVNm40bP67srIyWFlZYceOHXj55Ze1y8ePH4+8vDzs2rWryjZ9+vRBz5498aXO1EG//PIL3nnnHRQWFkIorHplurozT29vb6Snp8PZmd1xZ9cdS8FXMbcxuJMbvn0tgNW2uaBUKhETE4OwsDBIJBKuw+E9tvIltrWFqqCAxcj4iW+fL7GtLc5de4hR688h+esREBYXcR1SJXzLF59V5OqlUaNq/F2Sy+VwcXFBfn4+7Ozsam2v3h2GunfvjrZt2yIyMhIdOnQAwzC4ceMGVq9eDYVCgZ9//tngdqVSKYKCghAbG6stnhqNBrGxsZg6dWq12xQXF1cpkCKRCEDN4+rKZDLIZLIqyyUSCesfwGvp5QepawvHJvXhbohcNWVs5Muc8s2nz5dYXP7/iQD8PQZ8ypcpqClXhuSwXsXTy8sLp0+fxnvvvYfZs2dri5RAIEBYWBi+//57eHt716dpREVFYfz48ejevTt69OiBlStXoqioSNv7dty4cWjevDmWLFkCABg2bBhWrFiBwMBA7WXbuXPnYtiwYdoiyqXLj551FvJy4DYQQgghrKlX8QQAX19f7N+/H0+fPsXt27cBAG3atDH6XueoUaPw5MkTzJs3DxkZGejatSsOHDig7USUmppa6Uxzzpw5EAgEmDNnDh4/foxmzZph2LBhWLx4sVFxsCG7UIHHeSUQCIDOzWu/BEBIrWbO5DoC86ST9619R2Ech6EQdmiiosDGaVW9i2cFR0dH9OjRg4VQ/jF16tQaL9PG/2uYMrFYjPnz52P+/PmsxsCGiuc7W7lYw9aCLqkQIyxaxHUE5mnRIuBB+bjUGyPeouLZBGgWLGCleNbrOc8jR47Az89P+4iHrvz8fHTq1AnHjx83OjhT98/IQg7cBkJMXw0920kD08n79sX/5TAQwhaxry8r7dSreK5cuRKTJk2qtjeSvb093n33Xd4MjcelijNPfy8aHIEYKTub6wjMk07e7YvyOQyEsIal36V6Fc9Lly5h0KBBNb4fHh6OhISEegfVVFxNKz8z70JnnoQQ0qTUq3hmZmbW2qVXLBbjyZMn9Q6qKXhSoMCTAgUEAqCjhy3X4RBTN3w41xGYJ528n/Cj6RWbAmbYMFbaqVfxbN68Oa5evVrj+5cvX4aHh0e9g2oKbjybv9PH2RpWUqP7ZRFzt20b1xGYJ528L3xjHoeBELaot2xhpZ16Fc8hQ4Zg7ty51c6ZWVJSgvnz5+PFF180OjhTVlE8/TzoERXCggEDuI7APOnkfcW6KA4DIWwRhYez0k69TonmzJmDP//8E+3atcPUqVPRvn17AMDNmzcRHR0NtVqNTz/9lJUATVVF8aRLtoQVp05xHYF50sl75wfXOAyEsEVQwwxdhqpX8XRzc8OpU6cwZcqUKiMMRUREIDo6utrpyszJjWfD8nWkM09CCGly6n0zrmXLlti3bx+ePn2KO3fugGEYtP3/9u49Lqo6/x/4a4ZhQARBRbmJgqQRKqigLLnqliibmZlm5KooKpsKBZLX1lCzDTRDcfUXaSGtv1Xc8tLNLEKg1Ujl4i0VRTEoBUREbgrDzPn+gYwzAcrMOfA5cN7Px4PHQw5nPufFm5k+nXM+5/MZMADdu3cXMl+HdF+lRt6tKgDUeRKBPPUU6wTSpFP3X3v3wwCGUYhA3N0FaUaQGYZGjBghRJZOI6+kCmoNBxsLUzhYm7OOQzqDnBzWCaQpJ0c7w1BIxA6ksU1DBFB/6hSEmO/NqAFD5NEuNN7vtO8GmUzGOA3pFBYuZJ1AmnTqHrl/M8MgRCjy0FBh2hGkFaLn4WAhumRLBJKYyDqBNOnU/a9ZR9jlIIKR//vfwrRj6AvOnj0LjUYjyME7qwsPZhbycKTOkxBCOiODO89hw4ah9MHcgP3798ft27cFD9WRcRyHS0WNI23pMRUiEBGsTStJOnVXy+hv0CkI9FkyuPO0sbFBfn4+AOD69et0FvoHRRX3cfeeCiZyGZ7obck6DuksqqtZJ5Amnbo/98/DDIMQodSXlwvSjsGd57Rp0zB27Fi4urpCJpPBx8cH/fv3b/ZLihrPOvvbdoWZgv5PlQiEViliQ6fu03/8jGEQIhT5li2CtGPwoyo7duzA1KlTkZeXhzfeeAMhISGwsqLLk41yH3SeT9pTTYiA3noLiKTp4drdW28B0+YCAEKOfAzg/zGNQ/iTv/02sGwZ73aMes6zcTmyrKwshIeHU+epo7HzdKfOkxBCOi1ekyTs2rUL5eXl+OCDD3Dx4kUAwKBBgzBv3jxYW0tzAehL2jNPGmlLCCGdFa/nPDMzM+Hm5obNmzejrKwMZWVliI2NhZubG7Kzs4XK2GGo1BpcLWmYlu9JOzrzJAL6hSYlZ0Kn7nPfTGAYhAil/vRpQdrh1XkuWbIEkydPxvXr13HgwAEcOHAA+fn5mDRpEiIiIgQJ2JH8ersadWoNLJQm6NO9C+s4pDN5cGWHtDOduvcrLmAYhAhFdumSIO3wPvNcsWIFFIqHV38VCgWWL1+OzMxM3uE6msZLtgPtrCCX07R8REAvv8w6gTTp1H3d/1/LLgcRjMmrrwrSDq/Os1u3bigoaPp/Y4WFhZIcRESDhQghRBp4dZ6BgYGYP38+9u3bh8LCQhQWFiIpKQkLFizAjBkzhMrYYVyix1QIIUQSeHWemzZtwtSpUxEUFAQXFxe4uLhg7ty5ePnll7Fhwwaj292+fTtcXFxgbm4OX19fnDx58pH7l5eXIzQ0FA4ODjAzM8PAgQNx+HD7zwaifcaTBgsRoR08yDqBNOnUfXXQOwyDEKGoPxNmsgtej6oolUrExcUhOjoaV69eBQC4ubnBwsLC6Db37duHyMhIxMfHw9fXF1u2bEFAQAByc3PRu3fvJvvX1dVh/Pjx6N27Nz7//HM4OTnh119/hY2NjdEZjFFTV4+CshoAdOZJ2oCbG+sE0qRT9xs9HRkGIULhBJr9TpAlySwsLDBkyBAMGTKEV8cJALGxsQgJCUFwcDA8PDwQHx8PCwsLJCQ0P0w8ISEBZWVlOHToEEaNGgUXFxeMHTsWXl5evHIY6nJxwyMqtpZm6Glp1q7HJhLg6ck6gTTp1D1h8wKGQYhQFN7ewrQjSCsCqaurQ1ZWFlatWqXdJpfL4e/vj4yMjGZf8+WXX8LPzw+hoaH44osv0KtXL/ztb3/DihUrYNLC7Pm1tbWora3Vfl9R0bCEmEqlgkqlMir7hd/vAAAG2nU1uo2OoPF368y/o5CEqpcCQL0Eai6295cCQH29GgDAQTy5GomtXmKmW6OW6mVIHUXVeZaWlkKtVsPOzk5vu52dHS618GzOtWvXcPToUcycOROHDx9GXl4eFi9eDJVKhTVr1jT7mujoaKxbt67J9tTUVKPPnL/LlwOQQ1lTyuR+a3tLTk5mHaFD4VuvSRqNJN5XjcTy/pqk0SAj4ycACoCDaP8GYqlXR6B5xGeppqam1e2IqvM0hkajQe/evbFjxw6YmJjA29sbv//+O95///0WO89Vq1YhUmeS7YqKCjg7O+OZZ55Bz549jcqRtCsTQBkC/jQEE4c7GdVGR6BSqZCcnIzx48fD1NSUdRzRE6xeMTGYOHGicMFESnTvr5gY+Pk9jS3nT+KjiX/HIpH9DURXLxFrrJX6n/9s8bPUeBWyNUTVedra2sLExATFxcV624uLi2Fvb9/saxwcHGBqaqp3ifapp55CUVER6urqoFQqm7zGzMwMZmZN70uampoa/Qa88mBaPg9HG0m8ifnUSop41ysyElJa4E4076/ISCh+LQMAHBg9DW+IIVMzRFOvDkAWEdFirQypoSADhoSiVCrh7e2NlJQU7TaNRoOUlBT4+fk1+5pRo0YhLy9Pb1Huy5cvw8HBodmOsy2UVtWitKoOMlnD7EKECM7cnHUCadKp+/dvBTAMQoSiEGgCH95nnikpKUhJSUFJSYleBwagxRGyjxIZGYk5c+bAx8cHI0eOxJYtW1BdXY3g4GAAQFBQEJycnBAdHQ0AWLRoEbZt24bw8HC8/vrruHLlCt577z288cYbfH+1Vmt8vrNfDwt0UUrp/IAQQqSJV+e5bt06vPPOO/Dx8YGDgwNkMv7zuQYGBuLWrVuIiopCUVERhg4diiNHjmgHERUUFEAuf3jC7OzsjO+++w5LliyBp6cnnJycEB4ejhUrVvDO0lo0sxAhhEgLr84zPj4eiYmJmD17tlB5AABhYWEICwtr9mdpaWlNtvn5+eHnn38WNIMhcosabjLTGp6kzcyfzzqBNOnU/ZsRE/ESwyhEGJrgYEHGD/C651lXV4enn35agBgdG00IT9rc9u2sE0iTTt3jXgpnGIQIRbN1qyDt8Oo8FyxYgD179ggSpKNSazjt7ELUeZI2M2QI6wTSpFP3hFg6++8MFMOGCdMOnxffv38fO3bswA8//ABPT88mw3xjY2N5hesICspqcE+lhrmpHP16dmUdh3RWV66wTiBNOnXvU/obwyBEMHl5gjTDq/M8e/Yshg4dCgA4f/683s+EGDzUEVy62XC/c6CdFUxoAWxCCJEEXp1namqqUDk6rEt0v5O0hzFjWCeQJp26n3H1xAiGUYgwuNGjIcRpDu/nPMvLy/HJJ5/g4sWLAIBBgwZh3rx5sLa25h2uI7hEI21Je/j+e9YJpOn774EHMwwtC3kfaWzTEAGoDx8WZHYgXm1kZmbCzc0NmzdvRllZGcrKyhAbGws3NzdkZ2cLEE/8Gs88n6IzT9KWpk1jnUCadOq+7t/Nz5VNOhaTV14RpB1eneeSJUswefJkXL9+HQcOHMCBAweQn5+PSZMmISIiQpCAYlZdSwtgk3byzTesE0iTTt39LrF7lpwIR/btt4K0w+uybWZmJnbu3AmF4mEzCoUCy5cvh4+PD+9wYne5uBIcB/SyogWwCSFESnideXbr1g0FBQVNthcWFsJKoMl3xYwGC5F208KqQqSN6dS9zKoHwyBEMAJ9lnh1noGBgZg/fz727duHwsJCFBYWIikpCQsWLMCMGTMECShmjTMLPeVAg4VIG7t+nXUCadKp+6ur9rLLQQRTL9Az07w6z02bNmHq1KkICgqCi4sLXFxcMHfuXLz88svYsGGDIAHF7OKDZzyfpGXISFtbtYp1AmnSqXvItzsZBiFCkf/jH8K0w+fFSqUScXFxuHPnDk6fPo3Tp0+jrKwMmzdvbnax6c6E47iHl20dqPMkbWzzZtYJpEmn7tP/9znDIEQocoHmtuX9nCcAWFhYYIjE5t4srqjF3XsqmMhleKK3Jes4hBBC2pHBnWdkZCTWr1+Prl27IjIy8pH7dua5bS8+mByhv21XmCloAWxCCJESgzvPnJwcqFQq7b9b0tnntr10s/GSLQ0WIu2gpIR1AmkqKQHu1AMApkQdwGHGcQh/9b//DtPH7/ZYBneeuvPZfvrpp+jTpw/kcv1bpxzHobCwkH86EWtcAJseUyHtYv9+IDiYdQrp2b8fePZFAMCYcz8CmMQ2D+FNdvAgsGAB73Z4DRhydXVFaWlpk+1lZWVwdXXl07To0TOepF0tWsQ6gTTp1D3y4BZ2OYhgTMLCBGmHV+fJcVyz26uqqmBubs6naVGrq9cgr+TBAth02ZYQQiTHqNG2jQOFZDIZoqKiYGFhof2ZWq3GiRMntOt8dkbXSqtQr+FgZa6Ao3Xn/Z8EQgghzTOq82wcKMRxHM6dOwelUqn9mVKphJeXF5YuXSpMQhHSDhayt+r0A6OISBw7xjqBNOnU/fVFW/ERwyhEGOq0NEGe0TSqjcZBQ8HBwYiLi0O3btK6dHlRO1hIWr83Yai2lnUCadKpu6laxTAIEYxAnyVe9zx37doluY4TeDinLc0sRNrNuHGsE0iTTt1jd7zJMAgRiklAgCDt8Oo8o6OjkZCQ0GR7QkICr7ltt2/fDhcXF5ibm8PX1xcnT55s1euSkpIgk8kwZcoUo4/dGrqXbQkhhEgPr87zo48+gru7e5PtgwYNQnx8vFFt7tu3D5GRkVizZg2ys7Ph5eWFgIAAlDzmIfHr169j6dKlGD16tFHHba3ymjoUVdwHAAykCeEJIUSSeHWeRUVFcHBwaLK9V69euHnzplFtxsbGIiQkBMHBwfDw8EB8fDwsLCyaPcNtpFarMXPmTKxbtw79+/c36rit1fh8p3OPLrAyF2KeCkJa4RHvf9KGdOq+YfpyhkGIUNQ7dgjSDq/O09nZGcePH2+y/fjx43B0dDS4vbq6OmRlZcHf3/9hQLkc/v7+yMjIaPF177zzDnr37o358+cbfExDPVyGTHr3eglD48ezTiBNOnXPHODNMAgRCqfTv/DBa8RuSEgIIiIioFKp8OyzzwIAUlJSsHz5crz5puE310tLS6FWq2FnZ6e33c7ODpcuXWr2NceOHcMnn3yC06dPt/o4tbW1qNUZcVVR0dAhqlQq7by9LTn3WzkA4Cn7ro/dtzNq/J2l+LsbQ6h6KZydUV9ZKUQkURPb+0vh7Iz6XxqmGv3ve4FQra5mnEif2OolZo01UvTvD1ULnyVD6sir81y2bBlu376NxYsXo66uDgBgbm6OFStWYFU7LN5bWVmJ2bNnY+fOnbC1tW3166Kjo7Fu3bom21NTU/UmfGjOiVwTADLcu3EFhw9fNjRyp5GcnMw6QofCt16TNBocPiydacnF8v6apNEgI+MnAAqAg2j/BmKpV0egecRnqaamptXtyLiW5tgzQFVVFS5evIguXbpgwIABRi+EXVdXBwsLC3z++ed6I2bnzJmD8vJyfPHFF3r7nz59GsOGDYOJycMlwTQaDYCGy725ublwc3NrcpzmzjydnZ1x8+ZN9OzZs8V8tfUaDF2fgnoNh/Q3R8PRpotRv2dHplKpkJycjPHjx8PUlO75Po5Q9VJYWUnmzFNM7y+FlRVO/lKIwJ0nkfvBS5DXiO/MU0z1ErPGWk0ODGzxs1RRUQFbW1vcvXv3sY9hCrIYtqWlJUaMGMG7HaVSCW9vb6SkpGg7T41Gg5SUFIQ1M5mvu7s7zp07p7dt9erVqKysRFxcHJydnZs9jpmZWbMdvKmp6SPfgJeK76Jew6G7hSn62kp7dqHH1Yro412vlSslVW/RvL9WroTiwXq9e/8yA3PFkKkZoqlXB6BZtqzFWhlSQ0E6zwsXLqCgoEB76bbR5MmTDW4rMjISc+bMgY+PD0aOHIktW7aguroawQ+WYwoKCoKTkxOio6Nhbm6OwYMH673exsYGAJpsF8IvN+4CAAY5Wku64yQMrF3LOoE0rV0L/FoGAEicMBdzmYYhQtBERcHk8bs9Fq/O89q1a3jppZdw7tw5yGQy7SorjR2LWq02uM3AwEDcunULUVFRKCoqwtChQ3HkyBHtIKKCgoIm64e2l/PazpNG2pJ25uAAGPn4F+HBwQH4+RcAwP71LwPLbjMORPhS9O0ryGeJV+cZHh4OV1dXpKSkwNXVFSdPnsTt27fx5ptvYtOmTUa3GxYW1uxlWgBIS0t75GsTExONPu7j/HKjYVTuICfrNjsGIc26c4d1AmnSqbvVvc5/z1kSBPos8eo8MzIycPToUdja2kIul0Mul+PPf/4zoqOj8cYbb2hXX+kM1BpO+4wnnXkSQoi08br+qVarYWXVMEWdra0tbty4AQDo168fcnNz+acTkWu3qnBfpYGF0gSuPbuyjkOkZupU1gmkSafuPw5u26k/SfvgBJr7nNeZ5+DBg3HmzBm4urrC19cXGzduhFKpxI4dO9p8mrz21njJ1sOhG+RyGixE2tmePawTSNOePdoBQ+/+bTWEmZuGsKTevZvfWeMDvNpYvXq1dpDQO++8g/z8fIwePRqHDx/G1q1bBYgnHmd/axgsNJjudxIWxo5lnUCadOq+5cMIdjmIYEwEWt7P6DNPlUqFjRs3aldPeeKJJ3Dp0iWUlZWhe/fune5RjnO/lwMAPPtQ50kYOHGCdQJp0qm7R+FFhkGIUGStXOLycYzuPE1NTXH27Nkm23v06MErkBjVqzU4/3vDZVvqPAkhhPC6bDtr1ix88sknQmURrau3qnFPpUZXpQn621qyjkOkqA0m/SCtoFP3fDtXhkGIULhBgwRph9eAofr6eiQkJOCHH36At7c3unbVH4UaGxvLK5xYnHmwkspgJ2saLETYyMxknUCaMjO1A4ZeC49HGts0RADqn39mP2Do/PnzGD58OKysrHD58mXk5ORovwxZIkzszj7oPL2cbZjmIBIWEsI6gTTp1H3p58ZP/ELEw2ThQkHa4XXmmZqaKkgIsTtT2DDSdgiNtCWs7N4N7NzJOoX07N4NrN4AAJiQTct+dQay//wHEOB2o1FnnteuXYMAK5l1CDV19bjwYGah4f26M05DCCFEDIzqPAcMGIBbt25pvw8MDERxcbFgocTk7G93odZwsO9mDkdrc9ZxiFQplawTSJNO3VUmtORXpyDQZ8mozvOPZ52HDx9GdbW4FokVStavDZMIe/frfM+ukg6kooJ1AmnSqfvz679mGIQIpf62MCvjsFnbqwPJftB50iVbwtTGjawTSJNO3V9NS2IYhAhFzmPFL712jHmRTCZrchbWGc/KOI5DVsHDM09CmImKYp1AmnTqPu/7XQyDEKHI160TpB2jRttyHIe5c+fCzMwMAHD//n0sXLiwyXOeBw4c4J+QoWul1SivUcFMIYeHAy1DRgghpIFRneecOXP0vp81a5YgYcSm8X6nVx8bKBV0hZsQQkgDozrPXbukcfmC7ncS0ehk6+N2GDp1n73sU+xjGIUIo/78eQgxbppOpx5Bd6QtIUzl5LBOIE06dR/wex7DIEQoMoFmv6POswV3a1S4UlIFABje14ZtGEJefZV1AmnSqXvUnvUMgxChmAh0m5E6zxZkFzacdbradkVPSzPGaQghhIgJdZ4t0N7v7EuXbAkhhOijzrMFJ/IbliGi+51EFL76inUCadKp+6q5/2QYhAhFffCgIO3w7jz/97//YdasWfDz88Pvv/8OANi9ezeOHTvGOxwrNXX1yHkwOcLTbj0ZpyEEgJMT6wTSpFP3UmtbhkGIUDhHR0Ha4dV57t+/HwEBAejSpQtycnJQW1sLALh79y7ee+89o9vdvn07XFxcYG5uDl9fX5w8ebLFfXfu3InRo0eje/fu6N69O/z9/R+5f2ucun4HKjUHJ5su6NfTgldbhAhi+HDWCaRJp+47415jGIQIReHrK0g7vDrPd999F/Hx8di5cydMTR8+OTNq1ChkZ2cb1ea+ffsQGRmJNWvWIDs7G15eXggICEBJSUmz+6elpWHGjBlITU1FRkYGnJ2dMWHCBO1ZsDF+yisF0HDW2RmnHSSEEMIPr84zNzcXY8aMabLd2toa5eXlRrUZGxuLkJAQBAcHw8PDA/Hx8bCwsEBCQkKz+//nP//B4sWLMXToULi7u+Pjjz+GRqNBSkqKUccHgONXGzrPUU/QZRpCCCFNGTXDUCN7e3vk5eXBxcVFb/uxY8fQv39/g9urq6tDVlYWVq1apd0ml8vh7++PjIyMVrVRU1MDlUqFHj16tLhPbW2t9hIzAFQ8WHZIpVLh1t0a/HKj4fsR/ayhUqkM/j06s8Z6UF1aR6h6yTduhEYCNRfb+0u+cSPq69UAgO3PL0KYSHI1Elu9xExbq+hoyFqolyF15NV5hoSEIDw8HAkJCZDJZLhx4wYyMjKwdOlSvP322wa3V1paCrVaDTs7O73tdnZ2uHTpUqvaWLFiBRwdHeHv79/iPtHR0VjXzMz6qampuHKvKzjOBPZdOGT+z/iz184uOTmZdYQOhW+9ZH36gDt8WKA04ieW95esTx9cy/gJgAJJns+iv0j/BmKpV0dwpF+/Fj9LNTU1rW6HV+e5cuVKaDQajBs3DjU1NRgzZgzMzMywdOlSvP7663yaNkpMTAySkpKQlpYGc3PzFvdbtWoVIiMjtd9XVFTA2dkZzzzzDM7/VAKgEOO9+mHiRPd2SN2xqFQqJCcnY/z48Xr3uUnzhKqXwsoK9ZWVAiYTJ7G9vxRWVjj5SyG2nD+JH6OnQ15TzTqSHrHVS8waa/XC3/7W4mepwoBF53l1njKZDP/4xz+wbNky5OXloaqqCh4eHrC0tDSqPVtbW5iYmKC4uFhve3FxMezt7R/52k2bNiEmJgY//PADPD09H7mvmZmZdjk1XQqFAsevNqwy/ucBvejN+AimpqZUHwMIUS8p1VtM7y+FwgQAIIN4/wZiqldH0FKtDKmhIJMkKJVKeHh4YOTIkUZ3nI3teHt76w32aRz84+fn1+LrNm7ciPXr1+PIkSPw8fEx+vjXb9fg+u0aKE3kNFiIEEJIiww+89S93Pk4sbGxhjaPyMhIzJkzBz4+Phg5ciS2bNmC6upqBAcHAwCCgoLg5OSE6OhoAMCGDRsQFRWFPXv2wMXFBUVFRQAAS0tLgzvy9CsNo2z/5NYTlma8TsoJEdZr9IwhEzp1/9L3BbzMMAoRhiYkBCYCtGNwD5HTyqWRjH0+MjAwELdu3UJUVBSKioowdOhQHDlyRDuIqKCgAHL5wxPmDz/8EHV1dXj5Zf239Zo1a7B27VqDjv3j5YbO0/+p3kZlJ6TNxMWxTiBNcXHArw1TdW57MYw6z05AExvLpvNMTU0V4LCPFhYWhrCwsGZ/lpaWpvf99evXBTvumd/uAkoLPOtOnScRGQ8P4MIF1imkx8MD+LZhqtHETcHAsuts8xDeFJ6ewMWLvNuhieF1aDjgKYdu6NOdpuQjInPtGusE0qRTd8eyGwyDEMHk5wvSDO8be+Xl5fjkk09w8UFP7uHhgfnz58Pa2pp3OBboki0hhJDH4XXmmZmZCTc3N2zevBllZWUoKyvD5s2b4ebmZvTctqz5P2X3+J0IaW/PPMM6gTTp1D3HbRjDIEQo3F/+Ikg7vDrPJUuWYPLkybh+/ToOHDiAAwcOID8/H5MmTUJERIQgAdtTn+7m8OzTMc+YSSf37besE0iTTt1XzI9hGIQIRS3Q2ri8zzxXrFgBheLh1V+FQoHly5cjMzOTd7j29tdB9rSKChGnKVNYJ5Amnbq/+6nhU44S8TGZNk2Qdnh1nt26dUNBQUGT7YWFhbCysuLTNBN/HUT3O4lIHTnCOoE06dR9ZC6/dYIJe2oNIPv+e6g1HO+2eHWegYGBmD9/Pvbt24fCwkIUFhYiKSkJCxYswIwZM3iHa29uvYyfHYkQQoi47b8uR129Bv86eoV3W7xG227atAkymQxBQUGor68Hx3FQKpVYtGgRYmLo/gAhgnFyYp1AmnTqfqubLeiv0LFxAIqsekIuwO05XmeeSqUScXFxuHPnDk6fPo0zZ85oR9w2N/E6IcRIV6+yTiBNOnWfufI/DIMQIXAcMPa1jyHEyBajzjznzZvXqv0SEhKMaZ4Q8kfLlwMbN7JOIT3LlwOhKwEAr33zEbCMHhnq6FamJkAdsIF3O0adeSYmJiI1NRXl5eW4c+dOi1+EEIFs3co6gTTp1H3a8QMMgxAhaDggOOsrCPFQhVFnnosWLcLevXuRn5+P4OBgzJo1Cz169OCfhhBCCGkjjWNsZQJcuDXqzHP79u24efMmli9fjq+++grOzs545ZVX8N1334Hj+A8BJoQQQtqKXIAzT6MHDJmZmWHGjBlITk7GhQsXMGjQICxevBguLi6oqqrin4wQ8tDt26wTSJNO3SevPcQuBxEExwFD39gryGVbQVZVkcvlkMlk4DgOarVaiCYJIbr27mWdQJp06j4u5yjDIEQIGgCTL6azfVSltrYWe/fuxfjx4zFw4ECcO3cO27ZtQ0FBASwtabIBQgTVwvq2pI3p1D38Cxq01Rm8kxwvyDSsRg0YWrx4MZKSkuDs7Ix58+Zh7969sLW15R2GEEIIaSuNQ3KYPecZHx+Pvn37on///khPT0d6enqz+x04QEO7CSGEiEPjcFYhBgwZ1XkGBQXR6iOEtKeMDNYJpEmn7otDt+FjhlEIfxyAqbM34RVWl20TExN5H5gQYoDKStYJpKmyEnjwCLtFbQ3bLIQ3jgO61t1j+6gKIaQdTZjAOoE06dR908fLGQYhQuAA7N73tiBXTqnzJIQQIgnaAUN05kkIIYS0zsMBQ530zHP79u1wcXGBubk5fH19cfLko1dw/+yzz+Du7g5zc3MMGTIEhw8fbqekhLSTTz9lnUCadOoe/cpKhkGIUN58fgm7R1Xa0r59+xAZGYn4+Hj4+vpiy5YtCAgIQG5uLnr37t1k/59++gkzZsxAdHQ0Jk2ahD179mDKlCnIzs7G4MGDGfwGhLSBMWNYJ5CmMWOAuoZ/pvRyR+Gnp9jm+QONhkNJiRxflOVALsQomE5Mo+FwvUqGYufBGMNqtG1bio2NRUhICIKDgwE0PFP6zTffICEhAStXNv0/v7i4OPz1r3/FsmXLAADr169HcnIytm3bhvj4+HbNTkibcXUF7t9nnUJ6XF3R87eG+W2Tt83Fk0sPMg7UHDlw5xbrEB2EDFnx8/FT2G+8WxJV51lXV4esrCysWrVKu00ul8Pf3x8ZLTznlpGRgcjISL1tAQEBOHToUFtGJYRIhIttVyT9/U9QbJZjw7QhrOPoUavVOHv2HDw9h8DExIR1HFFrrJXCRI4xA3vxbk9UnWdpaSnUajXs7Oz0ttvZ2eHSpUvNvqaoqKjZ/YuKilo8Tm1tLWpra7Xf3717FwBQVlZmbHTJUKlUqKmpwe3bt2Fqaso6jugJVS8Fx6FeAiuriO391Vj3AdZAFTj49+/KOpIelUoFWX41nnHpIop6iVljrarAof5O8/+tr3zwPHVrltYUVefZXqKjo7Fu3bom2wcOHMggDSGtRPNHs6Fbd/obdA6P+TtWVlbC2tr6kfuIqvO0tbWFiYkJiouL9bYXFxfD3t6+2dfY29sbtD8ArFq1Su9Sb3l5Ofr164eCgoLHFkzqKioq4OzsjMLCQnTr1o11HNGjehmG6mUYqlfrtaZWHMehsrISjo6Oj21PVJ2nUqmEt7c3UlJSMGXKFACARqNBSkoKwlpYksnPzw8pKSmIiIjQbktOToafn1+LxzEzM4OZmVmT7dbW1vQGbKVu3bpRrQxA9TIM1cswVK/We1ytWnsCJarOEwAiIyMxZ84c+Pj4YOTIkdiyZQuqq6u1o2+DgoLg5OSE6OhoAEB4eDjGjh2LDz74AM8//zySkpKQmZmJHTt2sPw1CCGEdGKi6zwDAwNx69YtREVFoaioCEOHDsWRI0e0g4IKCgoglz+c2+Hpp5/Gnj17sHr1arz11lsYMGAADh06RM94EkIIaTOi6zwBICwsrMXLtGlpaU22TZ8+HdOnTzf6eGZmZlizZk2zl3KJPqqVYahehqF6GYbq1XpC10rGtWZMLiGEEEK0RDm3LSGEECJm1HkSQgghBqLOkxBCCDEQdZ6EEEKIgSTfeRq6dqhU/Pjjj3jhhRfg6OgImUzWZKJ9juMQFRUFBwcHdOnSBf7+/rhy5QqbsIxFR0djxIgRsLKyQu/evTFlyhTk5ubq7XP//n2EhoaiZ8+esLS0xLRp05rMjCUVH374ITw9PbUPq/v5+eHbb7/V/pxq1bKYmBjIZDK9SWGoXvrWrl0LmUym9+Xu7q79uVD1knTn2bh26Jo1a5CdnQ0vLy8EBASgpKSEdTTmqqur4eXlhe3btzf7840bN2Lr1q2Ij4/HiRMn0LVrVwQEBOC+BJfNSk9PR2hoKH7++WckJydDpVJhwoQJqK6u1u6zZMkSfPXVV/jss8+Qnp6OGzduYOrUqQxTs9OnTx/ExMQgKysLmZmZePbZZ/Hiiy/il19+AUC1asmpU6fw0UcfwdPTU2871aupQYMG4ebNm9qvY8eOaX8mWL04CRs5ciQXGhqq/V6tVnOOjo5cdHQ0w1TiA4A7ePCg9nuNRsPZ29tz77//vnZbeXk5Z2Zmxu3du5dBQnEpKSnhAHDp6ekcxzXUxtTUlPvss8+0+1y8eJEDwGVkZLCKKSrdu3fnPv74Y6pVCyorK7kBAwZwycnJ3NixY7nw8HCO4+i91Zw1a9ZwXl5ezf5MyHpJ9syzce1Qf39/7bbHrR1KGuTn56OoqEivdtbW1vD19aXa4eESdz169AAAZGVlQaVS6dXL3d0dffv2lXy91Go1kpKSUF1dDT8/P6pVC0JDQ/H888/r1QWg91ZLrly5AkdHR/Tv3x8zZ85EQUEBAGHrJcoZhtqDMWuHkgaNa6Uauo6qFGg0GkRERGDUqFHaKSKLioqgVCphY2Ojt6+U63Xu3Dn4+fnh/v37sLS0xMGDB+Hh4YHTp09Trf4gKSkJ2dnZOHXqVJOf0XurKV9fXyQmJuLJJ5/EzZs3sW7dOowePRrnz58XtF6S7TwJaQuhoaE4f/683j0W0tSTTz6J06dP4+7du/j8888xZ84cpKens44lOoWFhQgPD0dycjLMzc1Zx+kQnnvuOe2/PT094evri379+uG///0vunTpIthxJHvZ1pi1Q0mDxvpQ7fSFhYXh66+/RmpqKvr06aPdbm9vj7q6OpSXl+vtL+V6KZVKPPHEE/D29kZ0dDS8vLwQFxdHtfqDrKwslJSUYPjw4VAoFFAoFEhPT8fWrVuhUChgZ2dH9XoMGxsbDBw4EHl5eYK+vyTbeequHdqoce3QR60FSgBXV1fY29vr1a6iogInTpyQZO04jkNYWBgOHjyIo0ePwtXVVe/n3t7eMDU11atXbm4uCgoKJFmv5mg0GtTW1lKt/mDcuHE4d+4cTp8+rf3y8fHBzJkztf+mej1aVVUVrl69CgcHB2HfXzwGNXV4SUlJnJmZGZeYmMhduHCB+/vf/87Z2NhwRUVFrKMxV1lZyeXk5HA5OTkcAC42NpbLycnhfv31V47jOC4mJoazsbHhvvjiC+7s2bPciy++yLm6unL37t1jnLz9LVq0iLO2tubS0tK4mzdvar9qamq0+yxcuJDr27cvd/ToUS4zM5Pz8/Pj/Pz8GKZmZ+XKlVx6ejqXn5/PnT17llu5ciUnk8m477//nuM4qtXj6I625Tiq1x+9+eabXFpaGpefn88dP36c8/f352xtbbmSkhKO44Srl6Q7T47juH/9619c3759OaVSyY0cOZL7+eefWUcShdTUVA5Ak685c+ZwHNfwuMrbb7/N2dnZcWZmZty4ceO43NxctqEZaa5OALhdu3Zp97l37x63ePFirnv37pyFhQX30ksvcTdv3mQXmqF58+Zx/fr145RKJderVy9u3Lhx2o6T46hWj/PHzpPqpS8wMJBzcHDglEol5+TkxAUGBnJ5eXnanwtVL1qSjBBCCDGQZO95EkIIIcaizpMQQggxEHWehBBCiIGo8ySEEEIMRJ0nIYQQYiDqPAkhhBADUedJCCGEGIg6T0JEau7cuZgyZUq7HzcxMREymQwymQwRERG82/rjChaPM3fuXO3xDx06xOv4hLQVWlWFEAZkMtkjf75mzRrExcWB1Rwm3bp1Q25uLrp27cqrncDAQEycONGg18TFxSEmJgYODg68jk1IW6LOkxAGbt68qf33vn37EBUVhdzcXO02S0tLWFpasogGoKFzF2JVji5duhi8DJS1tTWsra15H5uQtkSXbQlhwN7eXvtlbW2t7awavywtLZtctv3LX/6C119/HREREejevTvs7Oywc+dOVFdXIzg4GFZWVnjiiSfw7bff6h3r/PnzeO6552BpaQk7OzvMnj0bpaWlBmd2cXHBu+++i6CgIFhaWqJfv3748ssvcevWLbz44ouwtLSEp6cnMjMzta/542XbtWvXYujQodi9ezdcXFxgbW2NV199FZWVlQbnIYQl6jwJ6UA+/fRT2Nra4uTJk3j99dexaNEiTJ8+HU8//TSys7MxYcIEzJ49GzU1NQCA8vJyPPvssxg2bBgyMzNx5MgRFBcX45VXXjHq+Js3b8aoUaOQk5OD559/HrNnz0ZQUBBmzZqF7OxsuLm5ISgo6JGXm69evYpDhw7h66+/xtdff4309HTExMQYlYcQVqjzJKQD8fLywurVqzFgwACsWrUK5ubmsLW1RUhICAYMGICoqCjcvn0bZ8+eBQBs27YNw4YNw3vvvQd3d3cMGzYMCQkJSE1NxeXLlw0+/sSJE/Haa69pj1VRUYERI0Zg+vTpGDhwIFasWIGLFy82WShdl0ajQWJiIgYPHozRo0dj9uzZeusrEtIR0D1PQjoQT09P7b9NTEzQs2dPDBkyRLvNzs4OAFBSUgIAOHPmDFJTU5u9f3r16lUMHDjQ6OM3Hqul47d0z9TFxQVWVlba7x0cHLR5CekoqPMkpAMxNTXV+14mk+ltaxzFq9FoAABVVVV44YUXsGHDhiZtGTOatbljPer4j2uj8TWP2p8QMaLOk5BObPjw4di/fz9cXFygUNDHnRCh0D1PQjqx0NBQlJWVYcaMGTh16hSuXr2K7777DsHBwVCr1azjEdJhUedJSCfm6OiI48ePQ61WY8KECRgyZAgiIiJgY2MDuZw+/oQYS8axmsKEECJKiYmJiIiIQHl5OdMcMpkMBw8eZDJFISGPQ//rSQhp4u7du7C0tMSKFSva/dgLFy5kOrsSIa1BZ56EED2VlZXa5zRtbGxga2vbrscvKSlBRUUFgIYRwXzn1yWkLVDnSQghhBiILtsSQgghBqLOkxBCCDEQdZ6EEEKIgajzJIQQQgxEnSchhBBiIOo8CSGEEANR50kIIYQYiDpPQgghxEDUeRJCCCEG+j/2VArGYM7ZMAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -605,9 +864,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption_test.ipynb b/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption_test.ipynb index 022ff95a..d6c9b797 100644 --- a/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption_test.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption_test.ipynb @@ -1,646 +1,647 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# TSA Adsorption Cycle for Carbon Capture\n", - "\n", - "\n", - "Maintainer: Daison Yancy Caballero and Alexander Noring \n", - "Author: Daison Yancy Caballero and Alexander Noring \n", - "Updated: 2023-11-13 \n", - "\n", - "## Learning outcomes\n", - "\n", - "\n", - "- Demonstrate the use of the IDAES fixed bed temperature swing adsorption (TSA) 0D unit model\n", - "- Initialize the IDAES fixed bed TSA 0D unit model\n", - "- Simulate the IDAES fixed bed TSA 0D unit model by solving a square problem\n", - "- Generate and analyze results\n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "This Jupyter notebook shows the simulation of a fixed bed TSA cycle for carbon capture by using the fixed bed TSA 0D unit model in IDAES. The fixed bed TSA model consists of a 0D equilibrium-based shortcut model composed of four steps a) heating, b) cooling, c) pressurization, and d) adsorption. Note that the equations in the IDAES fixed bed TSA 0D unit model and the input specifications used in this tutorial for the feed stream have been taken from Joss et al. 2015.\n", - "\n", - "\n", - "#### A diagram of the TSA adsorption cycle is given below: \n", - "\n", - "![](tsa_cycle.svg)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 1: Import Libraries" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import Pyomo packages \n", - "\n", - "We will need the following components from the pyomo libraries.\n", - "\n", - "- ConcreteModel (to create the Pyomo model that will contain the IDAES flowsheet)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- SolverFactory (to set up the solver that will solve the problem)\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- Objective (to declare an objective function)\n", - "- minimize (to minimize an objective function)\n", - "- value (to return the numerical value of an Pyomo objects such as variables, constraints or expressions)\n", - "- units (to handle units in Pyomo and IDAES)\n", - "- check_optimal_termination (this method returns the solution status from solver)\n", - "\n", - "For further details on these components, please refer to the Pyomo documentation:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# python libraries\n", - "import os\n", - "\n", - "# pyomo libraries\n", - "from pyomo.environ import (\n", - " ConcreteModel,\n", - " TransformationFactory,\n", - " SolverFactory,\n", - " Constraint,\n", - " Var,\n", - " Objective,\n", - " minimize,\n", - " value,\n", - " units,\n", - " check_optimal_termination,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import IDAES core components\n", - "\n", - "To build, initialize, and solve IDAES flowsheets we will need the following core components/utilities:\n", - "\n", - "- FlowsheetBlock (the flowsheet block contains idaes properties, time, and unit models)\n", - "- degrees_of_freedom (useful for debugging, this method returns the DOF of the model)\n", - "- FixedBedTSA0D (fixed bed TSA model unit model)\n", - "- util (some utility functions in IDAES)\n", - "- idaeslog (it's used to set output messages like warnings or errors)\n", - "\n", - "For further details on these components, please refer to the IDAES documentation:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# import IDAES core libraries\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "import idaes.core.util as iutil\n", - "import idaes.logger as idaeslog\n", - "\n", - "# import tsa unit model\n", - "from idaes.models_extra.temperature_swing_adsorption import (\n", - " FixedBedTSA0D,\n", - " FixedBedTSA0DInitializer,\n", - " Adsorbent,\n", - ")\n", - "from idaes.models_extra.temperature_swing_adsorption.util import (\n", - " tsa_summary,\n", - " plot_tsa_profiles,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 2: Constructing the Flowsheet\n", - "\n", - "First, let's create a ConcreteModel and attach the flowsheet block to it." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# create concrete model\n", - "m = ConcreteModel()\n", - "\n", - "# create flowsheet\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.1: Adding the TSA Unit Model\n", - "\n", - "Now, we will be adding the fixed bed temperature swing adsorption (TSA) cycle model (assigned a name tsa).\n", - "\n", - "The TSA unit model builds variables, constraints and expressions for a solid sorbent based TSA capture system. This IDAES model can take up to 11 config arguments:\n", - "\n", - "1. `dynamic`: to set up the model as steady state. The IDAES fixed bed TSA 0D\n", - " unit model only supports steady state as the dynamic nature of the adsorption\n", - " cycle is handled in internal blocks for each cycle step of the unit. This\n", - " config argument is used to enable the TSA unit model to connect with other\n", - " IDAES unit models.\n", - "2. `adsorbent`: to set up the adsorbent to be used in the fixed bed TSA system. \n", - " Supported values currently are `Adsorbent.zeolite_13x`, `Adsorbent.mmen_mg_mof_74`, and `Adsorbent.polystyrene_amine`.\n", - "3. `number_of_beds`: to set up the number of beds to be used in the unit model.\n", - " This config argument accepts either an `int` (model assumes a fixed number of beds) or `None` (model calculates the number of beds).\n", - "4. `compressor`: indicates whether a compressor unit should be added to the\n", - " fixed bed TSA system to calculate the energy required to overcome\n", - " the pressure drop in the system. Supported values are `True` and `False`.\n", - "5. `compressor_properties`: indicates a property package to use in the compressor unit model.\n", - "6. `steam_calculation`: indicates whether a method to estimate the steam flow rate\n", - " required in the desorption step should be included. Supported values are: `SteamCalculationType.none`,\n", - " steam calculation method is not included. `SteamCalculationType.simplified`, a surrogate model is used\n", - " to estimate the mass flow rate of steam. `SteamCalculationType.rigorous`, a heater unit model is\n", - " included in the TSA system assuming total saturation.\n", - "7. `steam_properties`: indicates a property package to use for rigorous steam calculations. Currently, only the iapws95 property package is supported.\n", - "8. `transformation_method`: to set up the discretization method to be use for the time\n", - " domain. The discretization method must be a method recognized by the\n", - " Pyomo `TransformationFactory`. Supported values are `dae.finite_difference` and\n", - " `dae.collocation`.\n", - "9. `transformation_scheme`: to set up the scheme to use when discretizing the time domain.\n", - " Supported values are: `TransformationScheme.backward` and `TransformationScheme.forward` for finite difference transformation\n", - " method. `TransformationScheme.lagrangeRadau` for collocation transformation method.\n", - "10. `finite_elements`: to set up the number of finite elements to use when discretizing\n", - " the time domain.\n", - "11. `collocation_points`: to set up the number of collocation points to use per finite element\n", - " when the discretization method is `dae.collocation`.\n", - " \n", - "
\n", - "Note: a default value defined in the IDAES unit class is used for\n", - " a config argument when no value is passed in the time the unit model\n", - " is called.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# add tsa unit\n", - "m.fs.tsa = FixedBedTSA0D(adsorbent=Adsorbent.zeolite_13x, number_of_beds=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.2: Fix Specifications of Feed Stream in TSA Unit\n", - "\n", - "The inlet specifications of the TSA unit are fixed to match the exhaust gas stream (stream 8) of case B31B in the NETL baseline report, which is a exhaust gas stream after 90% carbon capture by means of a solvent-based capture system." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# fix inlet conditions of tsa unit - baseline case from Joss et al. 2015\n", - "flue_gas = {\n", - " \"flow_mol_comp\": {\n", - " \"H2O\": 0.0,\n", - " \"CO2\": 0.00960 * 0.12,\n", - " \"N2\": 0.00960 * 0.88,\n", - " \"O2\": 0.0,\n", - " },\n", - " \"temperature\": 300.0,\n", - " \"pressure\": 1.0e5,\n", - "}\n", - "for i in m.fs.tsa.component_list:\n", - " m.fs.tsa.inlet.flow_mol_comp[:, i].fix(flue_gas[\"flow_mol_comp\"][i])\n", - "m.fs.tsa.inlet.temperature.fix(flue_gas[\"temperature\"])\n", - "m.fs.tsa.inlet.pressure.fix(flue_gas[\"pressure\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.3: Fix DOF of TSA unit\n", - "\n", - "The degrees of freedom of the TSA unit model are: adsorption and desorption temperatures, temperatures of heating and cooling fluids, column diameter, and column height. These variables must be fixed to solve a square problem." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ + "cells": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "The DOF of the TSA unit is 0\n" - ] - } - ], - "source": [ - "# fix design and operating variables of tsa unit - baseline case from Joss et al. 2015\n", - "m.fs.tsa.temperature_desorption.fix(430)\n", - "m.fs.tsa.temperature_adsorption.fix(310)\n", - "m.fs.tsa.temperature_heating.fix(440)\n", - "m.fs.tsa.temperature_cooling.fix(300)\n", - "m.fs.tsa.bed_diameter.fix(3 / 100)\n", - "m.fs.tsa.bed_height.fix(1.2)\n", - "\n", - "\n", - "# check the degrees of freedom\n", - "DOF = degrees_of_freedom(m)\n", - "print(f\"The DOF of the TSA unit is {DOF}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.4: Scaling Unit Models\n", - "\n", - "Creating well scaled models is important for increasing the efficiency and reliability of solvers. Depending on unit models, variables and constraints are often badly scaled. IDAES unit models contain a method to scale variables and constraints to improve solver convergence. To apply the scaled factors defined in each unit model, we need to call the IDAES method `calculate_scaling_factors` in `idaes.core.util.scaling`." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# scaling factors\n", - "iutil.scaling.calculate_scaling_factors(m.fs.tsa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.5: Define Solver and Solver Options\n", - "\n", - "We select the solver that we will be using to initialize and solve the flowsheet." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# define solver options\n", - "solver_options = {\n", - " \"nlp_scaling_method\": \"user-scaling\",\n", - " \"tol\": 1e-6,\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.6: Initialization of Unit Models\n", - "\n", - "IDAES includes pre-written initialization routines for all unit models. To initialize the TSA unit model, call the method `m.fs.tsa.initialize()`.\n", - "\n", - "
\n", - "Note: initialize methods in IDAES unit models solve a square problem,\n", - " so the user needs to be sure that the degrees of freedom of the unit being\n", - " initialized are zero.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-10-26 15:28:28 [INFO] idaes.init.fs.tsa: Starting fixed bed TSA initialization\n", - "2023-10-26 15:28:45 [INFO] idaes.init.fs.tsa.heating: Starting initialization of heating step.\n", - "2023-10-26 15:28:47 [INFO] idaes.init.fs.tsa.heating: Initialization of heating step completed optimal - Optimal Solution Found.\n", - "2023-10-26 15:29:01 [INFO] idaes.init.fs.tsa.cooling: Starting initialization of cooling step.\n", - "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.cooling: Initialization of cooling step completed optimal - Optimal Solution Found.\n", - "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.pressurization: Starting initialization of pressurization step.\n", - "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.pressurization: Initialization of pressurization step completed optimal - Optimal Solution Found.\n", - "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.adsorption: Starting initialization of adsorption step.\n", - "2023-10-26 15:29:04 [INFO] idaes.init.fs.tsa.adsorption: Initialization of adsorption step completed optimal - Optimal Solution Found.\n", - "2023-10-26 15:29:13 [INFO] idaes.init.fs.tsa: Initialization of fixed bed TSA model completed optimal - Optimal Solution Found.\n" - ] - } - ], - "source": [ - "# initialize tsa unit\n", - "initializer = FixedBedTSA0DInitializer(\n", - " output_level=idaeslog.INFO, solver_options=solver_options\n", - ")\n", - "initializer.initialize(m.fs.tsa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 3: Solve the TSA Unit Model\n", - "\n", - "Now, we can simulate the TSA unit model by solving a square problem. For this, we need to set up the solver by using the Pyomo component `SolverFactory`. We will be using the solver and solver options defined during the initialization." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# TSA Adsorption Cycle for Carbon Capture\n", + "\n", + "\n", + "Maintainer: Daison Yancy Caballero and Alexander Noring \n", + "Author: Daison Yancy Caballero and Alexander Noring \n", + "Updated: 2023-11-13 \n", + "\n", + "## Learning outcomes\n", + "\n", + "\n", + "- Demonstrate the use of the IDAES fixed bed temperature swing adsorption (TSA) 0D unit model\n", + "- Initialize the IDAES fixed bed TSA 0D unit model\n", + "- Simulate the IDAES fixed bed TSA 0D unit model by solving a square problem\n", + "- Generate and analyze results\n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "This Jupyter notebook shows the simulation of a fixed bed TSA cycle for carbon capture by using the fixed bed TSA 0D unit model in IDAES. The fixed bed TSA model consists of a 0D equilibrium-based shortcut model composed of four steps a) heating, b) cooling, c) pressurization, and d) adsorption. Note that the equations in the IDAES fixed bed TSA 0D unit model and the input specifications used in this tutorial for the feed stream have been taken from Joss et al. 2015.\n", + "\n", + "\n", + "#### A diagram of the TSA adsorption cycle is given below: \n", + "\n", + "![](tsa_cycle.svg)\n" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.tsa.cooling.scaling_factor' that\n", - "contains 4 component keys that are not exported as part of the NL file.\n", - "Skipping.\n", - "WARNING: model contains export suffix 'fs.tsa.heating.scaling_factor' that\n", - "contains 2 component keys that are not exported as part of the NL file.\n", - "Skipping.\n", - "WARNING: model contains export suffix 'fs.tsa.scaling_factor' that contains 12\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "Ipopt 3.13.2: nlp_scaling_method=user-scaling\n", - "tol=1e-06\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 19132\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 70375\n", - "\n", - "Total number of variables............................: 2815\n", - " variables with only lower bounds: 5\n", - " variables with lower and upper bounds: 605\n", - " variables with only upper bounds: 1\n", - "Total number of equality constraints.................: 2815\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 3.63e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 1.06e+00 3.00e+03 -1.0 4.96e+00 - 9.90e-01 9.90e-01h 1\n", - " 2 0.0000000e+00 4.90e-03 4.83e+03 -1.0 4.91e+00 - 9.90e-01 9.96e-01h 1\n", - " 3 0.0000000e+00 2.44e-07 4.53e+00 -1.0 2.25e-02 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 1.0710209608078003e-07 2.4400780240796394e-07\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 1.0710209608078003e-07 2.4400780240796394e-07\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 3.208\n", - "Total CPU secs in NLP function evaluations = 0.089\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "# set up solver to solve flowsheet\n", - "solver = SolverFactory(\"ipopt\")\n", - "solver.options = solver_options\n", - "\n", - "# solve flowsheet\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check solver solve status\n", - "from pyomo.environ import TerminationCondition\n", - "\n", - "assert results.solver.termination_condition == TerminationCondition.optimal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 4: Viewing the Simulation Results\n", - "\n", - "We will call some utility methods defined in the TSA unit model to get displayed some key variables." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Import Libraries" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Summary - tsa\n", - "------------------------------------------------------------------------------------ Value \n", - " Adsorption temperature [K] 310.00\n", - " Desorption temperature [K] 430.00\n", - " Heating temperature [K] 440.00\n", - " Cooling temperature [K] 300.00\n", - " Column diameter [m] 0.030000\n", - " Column length [m] 1.2000\n", - " Column volume [m3] 0.00084823\n", - " CO2 mole fraction at feed [%] 12.000\n", - " Feed flow rate [mol/s] 0.0096000\n", - " Feed velocity [m/s] 0.50008\n", - " Minimum fluidization velocity [m/s] 1.5207\n", - " Time of heating step [h] 0.37030\n", - " Time of cooling step [h] 0.20826\n", - " Time of pressurization step [h] 0.0051098\n", - " Time of adsorption step [h] 0.25221\n", - " Cycle time [h] 0.83588\n", - " Purity [-] 0.90219\n", - " Recovery [-] 0.89873\n", - " Productivity [kg CO2/ton/h] 84.085\n", - " Specific energy [MJ/kg CO2] 3.6532\n", - " Heat duty per bed [MW] 5.1244e-05\n", - " Heat duty total [MW] 0.00016646\n", - " Pressure drop [Pa] 5263.6\n", - " Number of beds 3.2484\n", - " CO2 captured in one cycle per bed [kg/cycle] 0.042210\n", - " Cycles per year 10480.\n", - " Total CO2 captured per year [tonne/year] 1.4369\n", - " Amount of flue gas processed per year [Gmol/year] 0.00030275\n", - " Amount of flue gas processed per year (target) [Gmol/year] 0.00030275\n", - " Amount of CO2 to atmosphere [mol/s] 0.00011667\n", - " Concentration of CO2 emitted to atmosphere [ppm] 13803.\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "# summary tsa\n", - "tsa_summary(m.fs.tsa)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "import pytest\n", - "\n", - "assert value(m.fs.tsa.purity) == pytest.approx(0.90219, abs=1e-5)\n", - "assert value(m.fs.tsa.recovery) == pytest.approx(0.89873, abs=1e-5)\n", - "assert value(m.fs.tsa.specific_energy) == pytest.approx(3.6532, abs=1e-4)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 5: Plotting Profiles\n", - "\n", - "Call plots method in the FixedBedTSA0D model to generate profiles of temperature, pressure and $\\mathrm{CO_{2}}$ concentration at the outlet of the column." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import Pyomo packages \n", + "\n", + "We will need the following components from the pyomo libraries.\n", + "\n", + "- ConcreteModel (to create the Pyomo model that will contain the IDAES flowsheet)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- SolverFactory (to set up the solver that will solve the problem)\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- Objective (to declare an objective function)\n", + "- minimize (to minimize an objective function)\n", + "- value (to return the numerical value of an Pyomo objects such as variables, constraints or expressions)\n", + "- units (to handle units in Pyomo and IDAES)\n", + "- check_optimal_termination (this method returns the solution status from solver)\n", + "\n", + "For further details on these components, please refer to the Pyomo documentation:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# python libraries\n", + "import os\n", + "\n", + "# pyomo libraries\n", + "from pyomo.environ import (\n", + " ConcreteModel,\n", + " TransformationFactory,\n", + " SolverFactory,\n", + " Constraint,\n", + " Var,\n", + " Objective,\n", + " minimize,\n", + " value,\n", + " units,\n", + " check_optimal_termination,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import IDAES core components\n", + "\n", + "To build, initialize, and solve IDAES flowsheets we will need the following core components/utilities:\n", + "\n", + "- FlowsheetBlock (the flowsheet block contains idaes properties, time, and unit models)\n", + "- degrees_of_freedom (useful for debugging, this method returns the DOF of the model)\n", + "- FixedBedTSA0D (fixed bed TSA model unit model)\n", + "- util (some utility functions in IDAES)\n", + "- idaeslog (it's used to set output messages like warnings or errors)\n", + "\n", + "For further details on these components, please refer to the IDAES documentation:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# import IDAES core libraries\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "import idaes.core.util as iutil\n", + "import idaes.logger as idaeslog\n", + "\n", + "# import tsa unit model\n", + "from idaes.models_extra.temperature_swing_adsorption import (\n", + " FixedBedTSA0D,\n", + " FixedBedTSA0DInitializer,\n", + " Adsorbent,\n", + ")\n", + "from idaes.models_extra.temperature_swing_adsorption.util import (\n", + " tsa_summary,\n", + " plot_tsa_profiles,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 2: Constructing the Flowsheet\n", + "\n", + "First, let's create a ConcreteModel and attach the flowsheet block to it." + ] + }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAKnCAYAAADgN8aBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+C0lEQVR4nOzdeVwU9f8H8Nfe3LdcgoK3qCBiIpp5cXhkZn77WpqapaVhP5WytDxSM4/KtMIj8+hbmaZlap6I4H0ieIsXisolICznssf8/kC2Ja5ddmBm2ffz8eDhMjvzmTfvWXwzM5/5fAQMwzAghBBCiN6EXAdACCGEmBoqnoQQQoiBqHgSQgghBqLiSQghhBiIiichhBBiICqehBBCiIGoeBJCCCEGouJJCCGEGEjMdQB8oNFokJaWBltbWwgEAq7DIYQQwgGGYVBQUABPT08IhbWfW1LxBJCWlgZvb2+uwyCEEMIDDx8+hJeXV63rUPEEYGtrCwBISUmBk5MTx9Hwm1KpxKFDhxAeHg6JRMJ1OLzHWr7u3AHatGEvMJ7i3edLN+88PAa8yxePaXPVqhUkHTtWu45cLoe3t7e2JtSGiiegvVRra2sLOzs7jqPhN6VSCSsrK9jZ2dEvqx5Yy1dmJtCtG3uB8RTvPl+6eefhMeBdvnisIlf2WVkQBwfXuq4+t++owxAhpmDECK4jME+6eadj0CSIXn2VlXaoeBJCCCEGouJJCCGEGIiKJyGmYMcOriMwT7p5p2PQJKi3bmWlHSqehJiCGnoHkgamm3c6Bk0C06EDK+1Q8STEFHTqxHUE5kk373QMmgRx166stEPFkxBCCDEQFU9CCCHEQDRIAiE8pdEweJBbjNuZBQieuwD2XAdkjr74ovrXxGRpFi2CiIV2qHgSwgNqDYO7Twpx6WEerj7Ox7U0OW6ky1FUpgYAtHcLwUGOYzRLUVHVvyYmSzN9OhVPQkwRwzB4nFeCy4/ycelhHpKeFcyKQqlLJhZCodJg58fhyHo7D652FhxEbMasrYGioqqvickSOziwchypeBLSwJQa4MKDp0h8JEfC/ae49CgP2YVlVdazkorQubk9/Jvbo1NzO3TytEcrF2sM+/4kRBoNLjx4iiFdPDj4CcyYWl39a2K6WDqOvCmeS5cuxezZszFt2jSsXLkSubm5mD9/Pg4dOoTU1FQ0a9YML7/8MhYtWgR7+3/u/lQ3gO9vv/2G1157rTHDJ0TraVEZEh48xfkHubiQkoukhyKoz56vtI5YKEAHD1sEeDmUf3k7oI2rDUTCqp/n7i0dAQAJVDwJ4Q1eFM/z589j3bp18Pf31y5LS0tDWloavvrqK/j5+eHBgweYPHky0tLSsONfI31s2rQJgwYN0n7v4ODQWKETgrziMpy+m4OTd7Nx9l4ubmcV/msNAVxspHjOxwlBLR3RraUj/DzsYCHR785LUEtH7OgyEBcePGU/eFK7N9+s/jUxWZpx45rGPc/CwkKMGTMG69evx+eff65d3rlzZ/zxxx/a71u3bo3FixfjjTfegEqlglj8T+gODg5wd3dv1LiJ+SopU+Pc/VycupONk3ezcS1NDoapvE7rZtZ4zscJgd52KEy5hLEjwiCVSuu1v6CWjugTMRXix/koKVPDUsrGrz7Ry9q11b8mJksTHd00imdkZCSGDh2K0NDQSsWzOvn5+bCzs6tUOCvamDhxIlq1aoXJkydjwoQJtc7HplAooFAotN/L5XIA5fO9KZVKI36apq8iP+aUJ4ZhcD29APG3snHybg6SHuZBqa5cLVs3s0avVk7o2ar87NLZurxQKpVKxKQDKpVKrzkCq+NmI8bB/01DxLhVSLifjWDfpjthO98+X+LnnoPq/Pkqr/mCb/nis4ocibp3h/LChVrX0QenxXPr1q24ePEizuvxgczOzsaiRYvwzjvvVFq+cOFCDBgwAFZWVjh06BDee+89FBYW4v/+7/9qbGvJkiVYsGBBleVxcXGwsrIy/AcxQzExMVyH0KBK1UByngDX8wS4/lQAubJy4XOQMmhn/8+XvTQfQD5U91Nw9n7V9ozN1+AnqQCA32LOIseLqWNt08eXz9eL169j3759VV7zDV/yZQqYGzdqPI7FxcV6tyNgmH9fcGocDx8+RPfu3RETE6O919mvXz907doVK1eurLSuXC5HWFgYnJycsHv37lpnTJ83bx42bdqEhw8f1rhOdWee3t7eSE9Ph7Ozs3E/WBOnVCoRExODsLCwJjdz/f2cIsQlZyP+1hOcv/+00tmllVSEXq2c0KetC3q1dkJLJyu9ziTZypfA2gZtov5Ev3YuWD+2W73b4Tu+fb7EtrZQFRRUec0XfMsXn1Xk6qVRo2o8jnK5HC4uLtqrnLXh7MwzISEBWVlZ6Nbtn/8I1Go1jh07hu+//x4KhQIikQgFBQUYNGgQbG1tsXPnzjo/IMHBwVi0aBEUCgVkMlm168hksmrfk0gk9AHUU1PIFcMwSM4swL4rGdh/Jb1KR5+Wzlbo394VAzq4IriVE2Ti+t8pMTZfBc8FAwASH+ZDJBJDWE2v3KaEN5+vXr3+iUP3Nc/wJl8mgAkJqTFXhuSQs+I5cOBAXLlypdKyCRMmoEOHDvj4448hEokgl8sREREBmUyG3bt3w8Ki7gfEk5KS4OjoWGPhJOaNYRhcfSzH/qvp2H81AynZ/zwsLRYK0MPXCQM6uKJ/B1e0crGu931Ktlkci4fVgkPIL1HiZkYB/Dxr/6uYsOTIkepfE5OlPnSIlUHdOSuetra26Ny5c6Vl1tbWcHZ2RufOnSGXyxEeHo7i4mL88ssvkMvl2o49zZo1g0gkwp49e5CZmYmePXvCwsICMTEx+OKLL/Dhhx9y8SMRnmIYBpce5WPflXTsu5KOR09LtO9JxUK80LYZhnRxx8CObrC35Odf75LRryMoPArHb2fjbEoOFc/GMmoUsG1b1dfEZIlGjwa2bze6Hc5729bk4sWLOHv2LACgTZs2ld5LSUmBj48PJBIJoqOjMWPGDDAMgzZt2mDFihWYNGkSFyETnnmQU4S/EtPwV9LjSmeYFhIh+rd3xeAuHhjQwRU2Mt7+Gvxj1y70nLy4vHjey8WE3r5cR2Qedu2q/jUxWYI9e1hph1f/a8THx2tf9+vXD3X1ZRo0aFClwREIyS0qw97LadiZ+BgXU/O0yy0kQoR2dMPQLh7o274ZrKS8+ujrpWer8kdUzt3PBcMwvLmkTIg5Mr3/QQj5F7WGwfHbT/D7hYeIuZ6p7SUrFAC927hgRGBzhHdyN40zzJq4uKBLcwdYSITILSrD7axCtHOz5Tqqps/FpfrXxHSxdBxN+H8TYu4ePS3G9guPsP3CQ6Tll2qXd25uhxGBXhgW4AFX2yYyC8mjR5CifLShk3dycOZeDhXPxvDoUfWviclSpaSAjZ4NbHQ6IqTRqNQa7L+SjrEbzqLP8jisir2NtPxSOFhJ8GYvH+yf1gd/v98Hbz/v23QKJwDMnQsA6Olb/hzy2Xu5XEZjPp7lvcprYrKE8+ez0w4rrRDSwHIKFYiOu4M+y+Mw5deLOH47GwwD9G7jjG9fD8SZ2QPx2Uud0NGjifZC/fJLAEBwq2fFMyWnzj4BhAXP8l7lNTFZwhUrWGmHLtsSXrv6OB+bT93H7ktpKFNpAADO1lKMes4brz3XAi2czWs4xQBve8jEQmQXluHukyK0cbXhOiRCzBIVT8I7KrUG+69mYPOp+0jQmYbL38se40N8MNTfQ+/pvJoamViEwBYOOHMvF2dTcqh4EsIRKp6EN0rK1Nie8BDrj9/Dw9zygQwkIgGGdPHA+F4+CPR2MN/HM9LStC97tnIuL573cjEmuCWHQZkBnbxXek1MlurBA+owRJqGvOIyfBt7G72XHcG8XdfwMLcETtZSTBvYFidnDcCq1wLRrYWj+RZOANi7V/sy+FmnoTP36L5ng9PJe6XXxGQJWJoZh4on4UxaXgkW7rmOXkuPYEXMLeQWlcHL0RILh3fCyY8HYEZYu6bVY9YYOqNmBbZwgFQkRFaBAvdz9J9CidSD7mhlNHJZkyCaMoWVduiyLWl0j/NKEB13B9svPNQOaNDRww6T+7bC0C4eEIvob7raWEhE6OrtgHP3c3H2Xg58Xay5DokQs6NX8dy9e7fBDYeFhcHS0tLg7UjTlZ5fXjS3nf+naPZs5YQp/drghbYu5n1Z1kA9Wznh3P1cnLqbg9d6tOA6HELMjl7F8+WXXzaoUYFAgNu3b6NVq1b1iYk0MZnyUqyOu4Pfzj1Embr8cZOQVs6YEdYOPXydOI7OROiM+wyUDzv47ZE7OHknGxoN0+Tn9+SMbt7/dQyIaVIfPszKJVe928jIyICrq6te69ra0rBhpLwjUHTcHfx0+oH2Gc0evk6YEdoOIa2dOY7OtAW2cISVVIScojLcyJCjk6c91yERYlb0Kp7jx4836BLsG2+8ATu7JjrSC6lTqVKNn07dR3TcHchLVQCA7i0dERVWXjTp8mw99OsHlP4zfq9ULETPVs44cjMLJ25nU/FsKLp5/9cxIKZJFBrKynHUq3hu2rRJr8YKCwthY2ODNWvWGBUUMU0aDYO/kh7j60O38Div/DnNDu62+HhwB/Rr14yKJsueb+OCIzezcPx2Nt7t25rrcAgxK3p3a/zmm29qfb+goAARERFGB0RM04nb2Rj63QlE/X4Jj/NK4GFvgS//44+9/9cH/du7UuFsAH3alk+tdO5+LkqVao6jIcS86H3P85NPPoGzszPGjRtX5b2ioiIMGjQIOTk5rAZH+C81pxif772OQ9czAQC2FmK8168NJvT2Mdsh9BrE+vVVFrVxtYGbnQyZcgXO389Fn7bNOAisidPNezXHgJge9Zo1jdth6Oeff8bYsWPh4OCAl156Sbu8qKgIERERePLkCY4ePcpCSMQUlJSp8V3cPaw9dg9lKg1EQgHG9myJaQPbwtFaynV4Tc/QoVUWCQQCPN+mGf64+AgnbmdT8WwIunmv5hgQ08MMGcJKO3oXz//85z/Iy8vD66+/jr1796Jfv37aM87MzEwcPXoUHh4erARF+IthGCRmC7D025NIfzYBde82zpg/rBNNztyQPD2r7eTQp60L/rj4CMdvZ2M2B2E1ebp5r+EYENMibtmy8ToMVZg4cSJyc3MxfPhw7Nq1C/PmzUNaWhqOHj0KT09Po4Mh/HY/uwif/HkZp+6JAJSiuYMl5r7YERGd3OmeJkd6tym/73k9XY7sQgVcbGQcR0SIeTD40u9HH32E3NxcDBw4ED4+PoiPj4eXl1dDxEZ4QqnW4Idj9/Bt7G0oVBpIBAym9GuD9wa0pfuaHGtmK0MHd1vczCjAyTvZGN61OdchEWIW9O5t+8orr2i/bt26BYlEAhcXF0ybNq3Se/W1dOlSCAQCTJ8+XbustLQUkZGRcHZ2ho2NDUaOHInMzMxK26WmpmLo0KGwsrKCq6srZs6cCZVKVe84SGWJqU8x7LsT+PJgMhQqDXq1dsKsrmq8P6A1Fc7GNHNmjW9V9Lo9cTu7saIxH7p5r+UYENOhiYpipR29zzzt7Ss/hP3666+zEgAAnD9/HuvWrYO/v3+l5TNmzMDevXuxfft22NvbY+rUqXjllVdw8uRJAIBarcbQoUPh7u6OU6dOIT09HePGjYNEIsEXX3zBWnzmqKBUia8OJuN/Zx6AYQAnaynmDO2IFzu7Yv/+/VyHZ34WLarxrefbNsP64yk4fjsbDMPQJXQ26ea9lmNATIdmwQKw8We/3sVT34ESDFVYWIgxY8Zg/fr1+Pzzz7XL8/PzsWHDBmzZsgUDBgzQxtCxY0ecOXMGPXv2xKFDh3D9+nUcPnwYbm5u6Nq1KxYtWoSPP/4Yn332GaRS6vVZH3HJWZj9xxVkyMtvqr/SrTnmDPWDk7UUSqWS4+jMlJcX8OhRtW8F+zrBQiJEhrwUNzMK0NGDRvdijW7eazkGxHSIfX1ZOY6cT0kWGRmJoUOHIjQ0tFLxTEhIgFKpRGhoqHZZhw4d0KJFC5w+fRo9e/bE6dOn0aVLF7i5uWnXiYiIwJQpU3Dt2jUEBgZWu0+FQgGFQqH9Xi6XAwCUSqVZF4dChQpLDyRj24XHAABvR0ssGu6H3s/GodXNjznnyRBs5UucnQ1VDW2IAIS0ckJccjYOX0tHGxfTnc2Ib58v3bzXdgy4wrd88Zk2R9nZNebLkDzqVTxfeeUVbN68We/xaseMGYNvvvmmzoHkt27diosXL+L8+fNV3svIyIBUKoWDg0Ol5W5ubsjIyNCuo1s4K96veK8mS5YswYIFC6osj4uLg5WVVa0xN1V35MCWOyLkKMov+fX10OBF7wLkJ5/FvuSq68fExDRyhKbN2Hy9qNFg3759Nb7vUiYAIMLOs7fRouimUfviA758vnTzXtcx4BJf8mUKNLUcx+Ji/SeX16t47tq1C0+ePNGrQYZhsGfPHixatKjW4vnw4UNMmzYNMTExsLCw0C9alsyePRtROjeN5XI5vL290b9/fzg7m9dsHwqlGisO38Gm6+X3Nps7WGDZK50RXMNUYUqlEjExMQgLC4NEImnkaE0PW/kSDB+OIbU83B2QV4LtXx/H/UIBevULg4OVaR4bvn2+dPNe1zHgAt/yxWcVuWJeeqnG41hxFVIfehVPhmHQrl07vRvVR0JCArKystCtWzftMrVajWPHjuH777/HwYMHUVZWhry8vEpnn5mZmXB3dwcAuLu749y5c5XareiNW7FOdWQyGWSyqs/DSSQSs/oAXnmUjxm/J+FOViEAYFR3b8x5sSNsLerOgbnlylhG52v79lq7xvs0k6Cdmw1uZRbi9P08vBRg2s9d8+bzpZv3Oo4Bl3iTLxPA/PZbjbkyJId6Fc+4uDi9G6zQvHntz5sNHDgQV65cqbRswoQJ6NChAz7++GN4e3tDIpEgNjYWI0eOBAAkJycjNTUVISEhAICQkBAsXrwYWVlZ2rPcmJgY2NnZwc/Pz+CYzQXDMNhwIgXLDtyEUs3AxUaGZSO7YGBHt7o3JtwYMAA4cqTWVfp3cMWtzELE3cwy+eLJG7p51+MYEP4ThYcD9ahp/6ZX8ezbt6/RO/o3W1tbdO7cudIya2trODs7a5e//fbbiIqKgpOTE+zs7PD+++8jJCQEPXv2BACEh4fDz88PY8eOxfLly5GRkYE5c+YgMjKy2jNLAuQWleHD7Zdw5GYWAGBQJ3d88UoXONF4tPx26lSdq/Rv74p1R+/h6K0nUGsYiIT0yIrRdPOuxzEg/Cc4fZqVdjjvbVubb775BkKhECNHjoRCoUBERARWr16tfV8kEuHvv//GlClTEBISAmtra4wfPx4LFy7kMGr+OnMvB9O2JiJTroBULMTcF/3wRnALei6wiQhq6QhbCzFyi8pw6VEeurVw5DokQposXhXP+Pj4St9bWFggOjoa0dHRNW7TsmVL3vaA4wu1hsF3R27j29jb0DBA62bW+H50N3oe0JR07FjnKhKREC+0a4a9l9Nx+HomFU826OZdj2NATECHDqw0w9f734QlWQWlGPPjGaw8XF44Xw3ywp73n6fCaWoSE/VaLdyv/L51xfyqxEi6edfzGBB+U1XzaGR9UPFswhIelI9Le+ZeLqylIqwc1RVfvhoAKymvLjgQfUyerNdq/Tu4QiIS4E5WIe4+KWzgoMyAbt71PAaE34SRkey0U5+NVCoVDh8+jHXr1qGgoAAAkJaWhsJC+mXlA4Zh8OvZB3jth9PIlCvQxtUGu99/Hi8H0owbJmvzZr1Ws7OQIKR1+UDxB6/VPFAI0ZNu3vU8BoTfhP/7HyvtGHwK8uDBAwwaNAipqalQKBQICwuDra0tli1bBoVCgbVr17ISGKmfUqUa83Zdxe8XysduHNzZHV++GgAbGZ1tmouITm44dusJDl3LxHv92nAdDiFNksFnntOmTUP37t3x9OlTWFr+M4bmiBEjEBsby2pwxDBpeSX477rT+P3CIwgFwKzBHbB6TDcqnE2BSP95IMI6ukEgAJIe5iEjv7QBgzIDunk34BgQHmPpOBr8v+rx48dx6tSpKjOW+Pj44PHjx6wERQyXmPoUk/6XgOxCBRysJPju9UD0aduM67AIW4qK9F7V1c4Cgd4OuJiah5jrGRgb4tNwcTV1unk34BgQ/lLl5YGNsZgMPvPUaDRQq9VVlj969Ai2trYshEQMtedSGl774QyyCxXo4G6LPVOfp8LZ1KxYYdDqEZ3Kh6ekXrdG0s27gceA8JNw5Up22jF0g/DwcKzU2blAIEBhYSHmz5/Pu0GTmzqGYbDq8G28/1siFCoNBnZwxY4pveDtZJ4zwzRpn3xi0OoVxfP03RzkF9N0VfWmm3cDjwHhJ+Hcuey0Y+gGX331FU6ePAk/Pz+UlpZi9OjR2ku2y5YtYyUoUrdSpRrTtyXhm8O3AAATn/fFD+O60/1NAgDwcbFGezdbqDQMjiTT2SchbDP4f1pvb29cunQJ27Ztw6VLl1BYWIi3334bY8aMqdSBiDSc/GIlJv7vPM7ffwqxUICFwztjdHALrsMiPBPeyQ3JmQU4eDUTIwK9uA6HkCbFoOKpVCrRoUMH/P333xgzZgzGjBnTUHGRGqTllWD8xnO4nVUIWwsx1r4RhN5tXLgOizS0a9cM3iSikzu+O3IHR289QXGZigbHqA/dvNfjGBD+USUlNX6HIYlEgtJS6vrOlVuZBXhl9SncziqEu50Ftk8OocJpLm7cMHiTTp52aOFkhRKlWjuLDjGQbt7rcQwI/whu3mSlHYPveUZGRmLZsmVQqVSsBED0k/DgKf6z5hQy5KVo3cwaf7zXCx3caXxas/Gf/xi8iUAgwLAADwDA7qQ0tiMyD7p5r8cxIPwjeu01Vtox+DrO+fPnERsbi0OHDqFLly6wtrau9P6ff/7JSmDkH+dScjFh0zkUlanRrYUDNox/Do40/ybRw7AAT0TH3UV88hPIS5Wws2DjghUhxODi6eDggJEjRzZELKQap+5m4+3NF1CiVKN3G2esH9ed7l0RvXVwt0M7NxvcyizEwasZeLW7N9chEdIkGPy/8KZNmxoiDlKNY7eeYNL/LkCh0uCFds3ww9ggWEhoiDCztHNnvTcd5u+Jr2NuYc/ldCqehtLNuxHHgPCHevt2ViaypinJeOrIzUxM/OmCdvADKpxmrnXrem86LMATAHDyTjZyChVsRWQedPNuxDEg/MG0asVKOwYXYF9fXwgEghrfv3fvnlEBkfL/5N79OQFKNYOITm747vVukIrp7xyz5u8P1LOnu4+LNfy97HH5UT72Xc3A2J4tWQ6uCdPNuxHHgPCHOCiIleNocPGcPn16pe+VSiUSExNx4MABzJw50+iAzN3Vx/l4538XoFQzGNzZHd++HgiJiAonMc4wf09cfpSPPUlpVDwJYYHBxXPatGnVLo+OjsaFCxeMDsic3c8uwpvPetX2au2Mla91pcJJWPFigAcW77uBc/dzkZ5fAg97Gg2MEGOw9j/z4MGD8ccff7DVnNnJKijF2I1nkV1Yhk6edlg3NggyMd3jJM8YOW60h70levg4AQD+SqRnPvWmm3cau7tJ0HzxBSvtsFY8d+zYAScnJ7aaMytlKg2m/HIRD3NL0NLZCpsn9IAtPY9HdNVwxccQr3RrDgD44+IjMAxjdHtmQTfvLBwDwj3N+++z0o7BxTMwMBDdunXTfgUGBsLDwwOffPIJPjFwyp41a9bA398fdnZ2sLOzQ0hICPbv3w8AuH//PgQCQbVf27dv17ZR3ftbt2419Mfi1KK/ryPhwVPYWoixeUIPNLOVcR0S4RsLC6ObGOLvAQuJEHeyCnH5UT4LQZkB3byzcAwI98QszTtt8D3P4cOHV+ptKxQK0axZM/Tr1w8dOnQwqC0vLy8sXboUbdu2BcMw+OmnnzB8+HAkJiaiQ4cOSE9Pr7T+Dz/8gC+//BKDBw+utHzTpk0YNGiQ9nsHBwdDfyzObL/wED+feQAAWDmqK3xdrOvYgpD6sbOQIKKTO3YlpWFHwiMEeDtwHRIhJsvg4vnZZ5+xtvNhw4ZV+n7x4sVYs2YNzpw5g06dOsHd3b3S+zt37sR///tf2NjYVFru4OBQZV1TcC0tH5/+dRUAMD20LQZ2dOM4ItLU/SfIC7uS0rD7Uho+HdqRnh0mpJ4MLp4ikQjp6elwdXWttDwnJweurq5Qq9X1CkStVmP79u0oKipCSEhIlfcTEhKQlJSE6OjoKu9FRkZi4sSJaNWqFSZPnowJEybU+iyqQqGAQvHPw+JyuRxA+WM3SqWyXvEbSqFUY9pviShTadC/vQum9PFptH0boyJGU4iVD9jKl3DCBGhYyPlzLezhbidDhlyBQ1fTMLgzv/7o5NvnSzfvbB0DNvEtX3xWkSPV+PFADfkyJI8CxsCeA0KhEBkZGVWKZ1paGlq3bo2SkhJDmsOVK1cQEhKC0tJS2NjYYMuWLRgyZEiV9d577z3Ex8fj+vXrlZYvWrQIAwYMgJWVFQ4dOoT58+dj+fLl+L//+78a9/nZZ59hwYIFVZZv2bIFVlZWBsVfXzvvCxGfLoSthMGsADVsqH8QaSR/pwoR81gIPwcN3u2o4TocQnijuLgYo0ePRn5+Puzsap+1Su/i+e233wIAZsyYgUWLFlW6dKpWq3Hs2DHcv38fiYmJBgVbVlaG1NRU5OfnY8eOHfjxxx9x9OhR+Pn5adcpKSmBh4cH5s6diw8++KDW9ubNm4dNmzbh4cOHNa5T3Zmnt7c30tPT4ezsbFD89XE2JRdvbCx/JvaHNwLRv32zBt8nW5RKJWJiYhAWFgaJhCp+XdjKlzgwECoDf7dqkpJdhPBVJyEUAHFRfeDpwJ9nPvn2+dLNO5vHgC18yxefVeRq2CefQJ2UVO06crkcLi4uehVPvS/bfvPNNwAAhmGwdu1aiET/3CuRSqXw8fHB2rVr9W2u0rZt2rQBAAQFBeH8+fNYtWoV1q1bp11nx44dKC4uxrhx4+psLzg4GIsWLYJCoYBMVn2vVZlMVu17EomkwT+ApUo15u4un1T39R4tEN7Zs0H311AaI1dNidH5unOHtXy383BASCtnnL6Xgz8S0xEV3p6VdtnEm8+Xbt5ZPAZs402+TIDg7t0ac2VIDvUunikpKQCA/v37488//4Sjo6PeOzGERqOpdFYIABs2bMBLL72EZs3qPkNLSkqCo6NjjYWTa6vj7yIluwiutjJ8MsSw3smEsGVMzxY4fS8HW88/xPsD29JIVoQYyOAOQ3FxcaztfPbs2Rg8eDBatGiBgoICbNmyBfHx8Th48KB2nTt37uDYsWPYt29fle337NmDzMxM9OzZExYWFoiJicEXX3yBDz/8kLUY2XT3SSHWxt8FAMwf1okGQiD6e+EFVpsL93OHi40UWQUKxN7IwiCedRziDd28s3wMCDeYPn1Qc3dS/dVrWrNHjx5h9+7dSE1NRVlZWaX3VqxYoXc7WVlZGDduHNLT02Fvbw9/f38cPHgQYWFh2nU2btwILy8vhIeHV9leIpEgOjoaM2bMAMMwaNOmDVasWIFJkybV58dqcAv2XEeZWoN+7ZthSBf6z4oY4NAhVpuTioV4tbs31sTfxa9nH1DxrIlu3lk+BoQb6n37WBlaz+DiGRsbi5deegmtWrXCzZs30blzZ9y/fx8Mw6Bbt24GtbVhw4Y61/niiy/wRQ1jEQ4aNKjS4Ah8FpechWO3nkAiEuCzYZ1qfZSGkCpGjgRYHjv69edaYO3Ruzh+OxsPcorQ0pkG6KhCN+8NcAxI4xP997+sTGxucAGePXs2PvzwQ1y5cgUWFhb4448/8PDhQ/Tt2xevvvqq0QE1RWoNgy/2lncSerOXD3xoFCFiqL17WW+yhbMVXmhb3o/gt3M19043a7p5b4BjQBqf4NkQsMYyuHjeuHFD2+tVLBajpKQENjY2WLhwIZbRrAPV2nMpDbezCmFvKcHUAW25DocQrdHBLQCUDxOpUNVvgBNCzJHBxdPa2lp7n9PDwwN3797Vvpednc1eZE2ESq3BqtjbAIB3XmgFe0vqJETqoYGGnxzYwRVudjLkFJXhwNWMBtmHSdPNuwkOAUqqwdJxNLh49uzZEydOnAAADBkyBB988AEWL16Mt956Cz179mQlqKbkz8THSMkugpO1FG/28uE6HGKq7t9vkGbFIiFG92gJANh48j5NVfZvunlvoGNAGpfq9m1W2jG4eK5YsQLBwcEAgAULFmDgwIHYtm0bfHx89OoAZE7KVBp8++ysc3LfVrCW1atzMyHA7NkN1vSYni0gFQtx6WEeLqY+bbD9mCTdvDfgMSCNR/jpp+y0Y8jKarUajx49QosW5fdJrK2tsXbtWly+fBl//PEHWrZsyUpQTcX2hId49LQEzWxlGNvTh+twiCl7NsJXQ3CxkWFE1/KJsn88ntJg+zFJunlvwGNAGo/w2VCzRrdjyMoikQjh4eF4+pT+Oq2LUq3B6rjy+8Hv9WsNSylN/UT46+0+vgCAg9cykJpTzHE0hPCfwZdtO3fujHv37jVELE3KvivpeJxXAmdrKV7v0YLrcAipVTs3W/Rp6wINA2w6RWefhNTF4OL5+eef48MPP8Tff/+N9PR0yOXySl+kfPD8dUfL/8AY38uHJhwmxsvKavBdTOzTCgDw+/mHkJfS/JAAKue9EY4BaXiqx49Zacfg4jlkyBBcunQJL730Ery8vODo6AhHR0c4ODg02GDxpubknRxcT5fDUiLC2J50H5iwoBFGtnmhrQvautqgqEyNbTRoQjndvNPoQk2CgIXRhQCOB4ZvqtYdK7/X+d/uXnC0lnIcDWkSpkwBJkxo0F0IBAJM7OOLj/+4gg0nUjCuV0vIxGZ+1UQ3741wDEjDE02dCkycaHQ7BhfPvn37Gr3Tpux2ZgGO386GUAC8/XwrrsMhxCDDuzbH14duIUNeij8vPqb79YTUoF6Dyx8/fhxvvPEGevXqhcfPrh///PPP2sETzNn/Tj8AAIR2dEMLZyuOoyHEMBYSEd55ofyPvjXxd6FSaziOiBB+Mrh4/vHHH4iIiIClpSUuXryonbg6Pz+/xtlPzIW8VIk/Lj4CUN5RiBDWNOIfpqODW8DRSoLU3GL8fTm90fbLS7p5p5ODJkEdH89KO/Xqbbt27VqsX78eEsk/47T27t0bFy9eZCUoU/VnwiMUl6nRupk1erV25joc0pQ8+yO1MVhJxXj7+fLnPqPj7kCjMeMh+3Tz3ojHgDQglo6jwcUzOTkZL1Qzo7q9vT3y8vLYiMkkMQyD/50pv2Q7vpcPzddJ2DVwYKPubmyID2xlYtzOKsSBa2Y8YLxu3hv5GJCGIYqIYKUdg4unu7s77ty5U2X5iRMn0KqV+XaQOZeSi3tPimAlFWFEYHOuwyHEKPaWEkzo7QMAWBFzC2pzPvskpBoGF89JkyZh2rRpOHv2LAQCAdLS0vDrr7/iww8/xJQpUxoiRpOw7Xz5c3EvBXjC1oKmHSOmb+KzKfTuZBXir0R2HiwnpKkw+FGVWbNmQaPRYODAgSguLsYLL7wAmUyGDz/8EO+//35DxMh7+SVK7L1S3rHiv895cxwNaZI2bmz0XdpZSDC5b2ssO3ATK2NvYViAJ6TienXQN126eefgGBD2qX/4wfDCVw2DfxMEAgE+/fRT5Obm4urVqzhz5gyePHmCRYsWsRCOadp9KQ0KlQbt3GwQ6O3AdTikKQoL42S343u1RDNbGR7mlmDbBTMcdUg37xwdA8IuJjSUlXbq/WekVCqFra0tPDw8YGNjw0owpmrb+VQAwKjnWlBHIdIwvLm5omElFeP9AW0AAN/F3kZJmZqTODijm3eOjgFhl5ilvjkGF0+VSoW5c+fC3t4ePj4+8PHxgb29PebMmQOl0rDBpNesWQN/f3/Y2dnBzs4OISEh2L9/v/b9fv36QSAQVPqaPHlypTZSU1MxdOhQWFlZwdXVFTNnzoRKpTL0x6q3q4/zcfWxHBKRgDoKkSbptedawMvRElkFCvx85j7X4RDCCwZf+n3//ffx559/Yvny5QgJCQEAnD59Gp999hlycnKwZs0avdvy8vLC0qVL0bZtWzAMg59++gnDhw9HYmIiOnXqBKC8g9LChQu121hZ/TNqj1qtxtChQ+Hu7o5Tp04hPT0d48aNg0QiabQBG3YklA+KEO7nDicax5Y0QVKxENND2+HD7ZewOv4u/tvdGw5W9Fkn5s3g4rllyxZs3boVgwcP1i7z9/eHt7c3Xn/9dYOK57Bhwyp9v3jxYqxZswZnzpzRFk8rKyu4u7tXu/2hQ4dw/fp1HD58GG5ubujatSsWLVqEjz/+GJ999hmk0ob9BVepNdoRWEYG0VknaUCzZnG6+xGBzfHj8Xu4mVGAlYdv47OXOnEaT6PRzTvHx4CwQzNzJtiY7sDg4imTyeDj41Nlua+vr1HFSq1WY/v27SgqKtKe0QLAr7/+il9++QXu7u4YNmwY5s6dqz37PH36NLp06QI3Nzft+hEREZgyZQquXbuGwMDAavelUCi0wwoC0M5DqlQqDbr0fPJuDrILFXC0kqCnj4PBl61NUcXPaA4/KxtYy9ennwIc53z2oHYYvzkBP595gFFBnmjjyn5fB959vnTzzoNj8G+8yxePVeRIMXs2JDXky5A8Glw8p06dikWLFmHTpk2QyWTlwSgUWLx4MaZOnWpoc7hy5QpCQkJQWloKGxsb7Ny5E35+fgCA0aNHo2XLlvD09MTly5fx8ccfIzk5GX/++ScAICMjo1LhBKD9PiOj5lFRlixZggULFlRZHhcXV+mycF223BECEKKjrQIxBw/ovV1TEBMTw3UIJsXYfEVMmICDmzaxFE39dXEU4spTIaJ+PoHJHRtu0Hi+fL50886XY1AdvuTLFAi9vLCvhuNYXFysdzsChmEMGjpkxIgRiI2NhUwmQ0BAAADg0qVLKCsrw8B/DV9VUeRqU1ZWhtTUVOTn52PHjh348ccfcfToUW0B1XXkyBEMHDgQd+7cQevWrfHOO+/gwYMHOHjwoHad4uJiWFtbY9++fZUuLeuq7szT29sb6enpcHbWb0xahVKNnsuOolChwq9vd0cPHye9tjN1SqUSMTExCAsLqzS2MakeW/kS29pCVVDAYmT18yCnGIO/OwmlmsH6sYHo164Zq+3z7fOlm3e+HANdfMsXn1Xk6qVRo2o8jnK5HC4uLsjPz4ednV2t7Rl85ung4ICRI0dWWuZtRBduqVSKNm3Ku8IHBQXh/PnzWLVqFdatW1dl3eDgYADQFk93d3ecO3eu0jqZmZkAUON9UqD80nPFWbMuiUSi9wcwNjkbhQoVPOwtENLaFUKheT2iYkiuCDv54kO+27jbY0JvX/xw7B6WHLiFvu3dG2TgBD59vnTj4EtM/8anfJmCmnJlSA4NLp6bGviyhUajqXRWqCspKQkA4OHhAQAICQnB4sWLkZWVBVdXVwDlly/s7OyqPXNl0+5LaQDKh+Mzt8JJOPDKK1xHoDV1QBv8kfAI954UYcOJFEzp15rrkBqObt55dAxI/TEvvww2/sfmdKyt2bNn49ixY7h//z6uXLmC2bNnIz4+HmPGjMHdu3exaNEiJCQk4P79+9i9ezfGjRuHF154Af7+/gCA8PBw+Pn5YezYsbh06RIOHjyIOXPmIDIystozS7YUlCpx+EYWAGBYgGeD7YcQrS1buI5Ay85CgtlDOgIAVsXewsNc/e8TmRzdvPPoGJD6U//8MyvtGFw8c3JyEBkZCT8/P7i4uMDJyanSlyGysrIwbtw4tG/fHgMHDsT58+dx8OBBhIWFQSqV4vDhwwgPD0eHDh3wwQcfYOTIkdizZ492e5FIhL///hsikQghISF44403MG7cuErPhTaEg9cyUabSoHUza3TyrP26OCGs6NuX6wgqGdmtOYJ9nVCq1GDerqswsOuE6dDNO8+OAakfEUtTyxl82Xbs2LG4c+cO3n77bbi5uRk1HN2GDRtqfM/b2xtHjx6ts42WLVti37599Y6hPiou2Q7v2pyG4yON4+xZriOoRCAQYPGILhi86hjikp/gwNUMDO7iwXVY7NPNO8+OAakfwb/6ydSXwcXz+PHjOHHihLanrbl5UqDAyTvZAMrvdxJirtq42mBy39b47sgdzNt9DT1bOcORRtkiZsLgy7YdOnRASUlJQ8RiEg5cTYdawyDAyx4+LtZch0PMRefOXEdQrcj+bdC6mTWeFCjw2Z5rXIfDPt288/QYEMMwndgZHcvg4rl69Wp8+umnOHr0KHJyciCXyyt9NXUHr5U/CjOkKV6iIvx14QLXEVTLQiLC1//tCqEA2JWUhgNX07kOiV26eefpMSCGUZ85w0o7BhdPBwcHyOVyDBgwAK6urnB0dISjoyMcHBzg6OjISlB8lV+sxJl7OQCAiE41P0dKCOsmTeI6ghp19XbA5L7lj6t8uvMqcgqrf9TMJOnmncfHgOhP9K+ZuerL4OI5ZswYSCQSbNmyBbGxsThy5AiOHDmCuLg4HDlyhJWg+OpIciZUGgbt3Wzpki1pXCx1r28o00LbooO7LXKKyjC3KfW+1c07z48B0Y/g119ZacfgDkNXr15FYmIi2rdvz0oApuTg1fJLtuGd3OpYkxDzIhOL8NWrAXg5+iT2XcnAX0mPMSLQi+uwCGkwBp95du/eHQ8fPmyIWHitVKnG0VtPANAlW8KBBp5ejw2dm9vj/QFtAZRfvr37pJDjiFigm3cTOAZEDywdx3pNhj1t2jTMnDkTXbp0qTIWYMXoP03N8dvZKFGq0dzBkgZGII3PRDrjTR3QBqfvZePMvVxE/noRf0X2hoWEjdkTOaKbdxM5BqR2qpwcsDEKsMFnnqNGjcKNGzfw1ltv4bnnnkPXrl0RGBio/bepOnStfIqzMD/jBoYgpF6WL+c6Ar2IhAKsei0QztZS3MwowKK/r3MdknF0824ix4DUTvjVV+y0Y+gGKSkpVb7u3bun/bcpUqk1OHyD7ncSDs2bx3UEenOzs8A3o7pCIAB+PZuKvy+ncR1S/enm3YSOAamZsJq5nOvD4Mu2LVu2ZGXHpuT8/ad4WqyEg5XEbObtJMQYL7Rrhvf6tUZ03F3M+uMKOrjboY2rDddhEcKaes2q8vPPP6N3797w9PTEgwcPAAArV67Erl27WA2OLw5dL79kO7CDG8QiTieiIcRkzAhthx6+TihUqPDO/y4gv1jJdUiEsMbgSrBmzRpERUVhyJAhyMvLg1qtBlA+eMLKlSvZjo9zDMMg9tn0Y3TJlnAmOZnrCAwmFgmxekw3NHewxL3sIry/NREqtYbrsAyjm3cTPAakKtXVq6y0Y3Dx/O6777B+/Xp8+umnEIn+6UXXvXt3XLlyhZWg+ORedhFSc4shFQnxfBsXrsMh5ioxkesI6sXFRoYfxgXBUiLCsVtPsHT/Ta5DMoxu3k30GJDKBElJrLRTrw5D1fWqlclkKCoqYiUoPom7WX7WGdzKCdYyg28RE8KO117jOoJ66+RpjxX/LZ+F6ccTKfjtXCrHERlAN+8mfAzIP0RvvMFKOwYXT19fXyRVU7kPHDiAjh07shETr8Qnlw+M0K+9K8eREGK6BnfxwPTQigEUriDmeibHERFiHL2L58KFC1FcXIyoqChERkZi27ZtYBgG586dw+LFizF79mx89NFHDRlroytSqHA2pXwg+P7tm3EcDSGmbdrAtvhvdy9oGGDqlotIeJDLdUiE1Jve1yEXLFiAyZMnY+LEibC0tMScOXNQXFyM0aNHw9PTE6tWrcJrTeyyxsk72VCqGbR0toIvDQRPuLRnD9cRGE0gEOCLEV2QXViGIzez8NbmC/hjSgjauNpyHVrNdPPeBI4BAdQ7dxr+jGY19D7z1J0lYcyYMbh9+zYKCwuRkZGBR48e4e2332YhHH6Je3bJtn97VxpViHCreXOuI2CFWCRE9OhuCGzhgPwSJcZuOIfUnGKuw6qZbt6byDEwd4ynJyvtGHTP898FxMrKCq6uTfNeIMMwiE8u7yzUjy7ZEq5168Z1BKyxlIqwYfxzaONqg/T8Ury+/gwe5vK0gOrmvQkdA3MmDg5mpR2Dime7du3g5ORU61dTkZxZgPT8UlhIhOjZypnrcAhpUpyspdgyMRitXKzxOK8Er/1wBo+e8rSAElINgy79LliwAPb29qztfM2aNVizZg3u378PAOjUqRPmzZuHwYMHIzc3F/Pnz8ehQ4eQmpqKZs2a4eWXX8aiRYsqxVDd5dTffvvN6PuvcTfLL9n2au1i2rNCEMJTrnYW+O2dnnjthzNIyS7Caz+cwS9vdec6LEL0YlDxfO2111i9TOvl5YWlS5eibdu2YBgGP/30E4YPH47ExEQwDIO0tDR89dVX8PPzw4MHDzB58mSkpaVhx44dldrZtGkTBg0apP3ewcHB6NiO3ap4RIUu2RIe+PprriNoEG52FvhtUk+89sNp3M8pxmvrz2GCL9dR6dDNexM9BuZGs3w52Dgd0rt4NkSHmWHDhlX6fvHixVizZg3OnDmDt99+G3/88Yf2vdatW2Px4sV44403oFKpIBb/E7qDgwPc3dmboLqkTI2EB08BgEYVIvzw7rtcR9Bg3O3Lz0DHbjiHO1mFWHVNhMAeeejRmgd/uOrmvQkfA3OimTSJleJZr962DUGtVmPr1q0oKipCSEhItevk5+fDzs6uUuEEgMjISLi4uKBHjx7YuHGj0bFeeJCLMrUGHvYW9IgK4Qebpj0jiYe9Jba/G4Ku3vYoVgkwbvMFxD3rsMcp3bw38WNgLsSOjuy0o++KGk3DDOh85coVhISEoLS0FDY2Nti5cyf8/PyqrJednY1FixbhnXfeqbR84cKFGDBgAKysrHDo0CG89957KCwsxP/93//VuE+FQgGFQqH9Xv5shnilUgmlUoljz35pQ1o5QaVSsfFjNhlKpbLSv6R2bOVLDEDVxHNuIxXgxzEBGLs2HjfygEk/XcDCl/zwahB3j4jo5p2Px4B+H/Wnm6Oa8mVIHgVMQ59S1qGsrAypqanIz8/Hjh078OOPP+Lo0aOVCqhcLkdYWBicnJywe/duSCSSGtubN28eNm3ahIcPH9a4zmeffYYF1UyIumXLFlhZWeHLyyI8KhJgbBs1ujfjND2EAABefPVV/L19O9dhNAq1BthyV4gL2eUXxvp5aDC8pQZCDh611s27OR2Dpqy241gx8E/FVc7acF48/y00NBStW7fGunXrAAAFBQWIiIiAlZUV/v77b1hYWNS6/d69e/Hiiy+itLQUMpms2nWqO/P09vZGeno6hJa2CF4aD4YBTn7UF6621bdhrpRKJWJiYhAWFlbrHzGkHFv5EkZFQbNiBYuR8VNFvgaGhuKHEw/xbdxdAMALbZ3xzav+sLNs3M+cbt75eAzo91F/FbkacvAgsGpVtevI5XK4uLjoVTx5N02IRqPRFja5XI6IiAjIZDLs3r27zsIJAElJSXB0dKyxcALlM8BU975EIsHZVDkYBmjnZoPmTnSPoyYSiYR+WQ1gdL6++46VTg6mQiaVIiqiA9p72OOD7Uk4djsHr6w7i+jR3dC5OXuPy9VJN+88Pgb0+2iAVatqzJUhOeS0eM6ePRuDBw9GixYtUFBQgC1btiA+Ph4HDx6EXC5HeHg4iouL8csvv0Aul2vvTTZr1gwikQh79uxBZmYmevbsCQsLC8TExOCLL77Ahx9+WO+YTt7JBlD+fCchvOHnB1y/znUUjW6ovwdaOlvh3Z8T8CCnGK+sOYX5w/wwukeLxhkyUzfvZnoMmhqxvz9w44bx7bAQS71lZWVh3LhxSE9Ph729Pfz9/XHw4EGEhYUhPj4eZ8+eBQC0adOm0nYpKSnw8fGBRCJBdHQ0ZsyYAYZh0KZNG6xYsQKTJk2qd0wVxZMeUSG8cu8e1xFwpnNze+z9v+fx4fZLOHwjC5/uvIpzKblY9HJn2Fk08NmWbt7N+Bg0KSkprDTDafHcsGFDje/169evzkdOBg0aVGlwBGOl5Zfgfk4xREIBgls1naEGCTF1DlZSrB/XHeuP38OyA8nYlZSG8ym5+OrVAPSiP3QJBwyeDLspO5tSPjBCgJc9bBv6L1pCDNG/P9cRcE4gEOCdF1rj93d7oqWzFdLySzH6x7P4bPc1lJSpG2anunmnY9AkMP36sdIOFU8d5+6VT87bm/6SJXyzfz/XEfBGUEsn7Pu/PhgT3AIAsPnUfQxadUw7pCardPNOx6BJULM0LysVTx3n7pefeVLxJLzz8stcR8Ar1jIxFo/ogs0TnoO7nQUe5BRj3MZzmLrlIrLkpeztSDfvdAyaBNHIkay0Q8VTR26xEpYSEQJbOHAdCiGVHTjAdQS81K+9Kw5/0Bdv9faFUAD8fTkdA78+io0nUlCmYmFUNN280zFoEgSHDrHSDhXPf3nO1wkyMV+f5iKE/JuNTIx5w/ywe+rz8PeyR4FChYV/X0f4N0dx4Gp6g4/LTcwTFc9/eb4NTXxNeKg5d+O7morOze2x873e+GJEF7jYyHA/pxiTf7mIV9eeRsKD3Po1qpt3OgZNA0vHkYrnv9DgCISX7t7lOgKTIBIKMDq4BeJn9sP/DWgDC4kQFx48xcg1pzF2w1ntVIN60807HYMmQXXzJivtUPHUYWMhQkeP2sczJIQTH33EdQQmxUYmRlR4e8R/2B+juntDLBTg+O1sjFxzCmM3nMXpuzn6Xc7VzTsdgyZBOGsWO+2w0koTEejtABEXUzcQUpdvv+U6ApPkbm+BZf/xx5EP+lUqoq+vP4MXvzuBnYmPau9YpJt3OgZNgjA6mp12WGmliQhqwc4kqYQQfmnhbIVl//FH3If9MCa4BSwkQlxLk2PGtkvos/wIouPu4EmBou6GCHmGiqeOIHpEhZAmzdvJCotHdMHpWQMxM6I9XG1lyJQr8OXBZIQsicW7P19A3M0sqDXUQ5fUjndTknGpgztNQUZ4KieH6wiaFEdrKSL7t8GkPq2w51Iafjn7AImpeTh4LRMHr2XCw94CLwc2R3jibXgXPjsjfZAGFPLr7FSlVKJACeQUKiCWsPBcaxNWkausOw9gW6aCldS48kfFU4dYRCfihKd++w2YOJHrKJocqViIkUFeGBnkheSMAmw7/xB/Jj5Cen4p1sTfRe6lg9gWEAEAGKXzml/EmHPhKNdBmAgxrmxYDM8P3se00LZGtUTVghBTMHUq1xE0ee3dbTFvmB/OfjIQ370eiBf9PbAwZq32fd3XxHSxdRzpzJMQQnTIxCIMC/DEsABP4C0h7i8dWv7GSp3XPKFUKrFv3z4MGTIEEgnNBFWbilxJxUKjzzoBOvMkhBBCDEbFkxBTcPo01xGYJ9280zFoElTHjrHSDhVPQkxBQQHXEZgn3bzTMWgSBIWFrLRDxZMQUxAeznUE5kk373QMmgTRkCGstEPFkxBCCDEQFU9CCCHEQFQ8CTEFP/3EdQTmSTfvdAyaBPWGDay0w2nxXLNmDfz9/WFnZwc7OzuEhIRg//792vdLS0sRGRkJZ2dn2NjYYOTIkcjMzKzURmpqKoYOHQorKyu4urpi5syZUKlUjf2jENKwXniB6wjMk27e6Rg0CUyfPqy0w2nx9PLywtKlS5GQkIALFy5gwIABGD58OK5duwYAmDFjBvbs2YPt27fj6NGjSEtLwyuvvKLdXq1WY+jQoSgrK8OpU6fw008/YfPmzZg3bx5XPxIhDcPXl+sIzJNu3ukYNAnidu3YaYeVVupp2LBhlb5fvHgx1qxZgzNnzsDLywsbNmzAli1bMGDAAADApk2b0LFjR5w5cwY9e/bEoUOHcP36dRw+fBhubm7o2rUrFi1ahI8//hifffYZpFIpFz8WIYSQJo43w/Op1Wps374dRUVFCAkJQUJCApRKJUJDQ7XrdOjQAS1atMDp06fRs2dPnD59Gl26dIGbm5t2nYiICEyZMgXXrl1DYGBgtftSKBRQKP6ZHSE/Px8AkJub20A/XdOhVCpRXFyMnJwcGg5MD2zlS8wwUJnBzCp8+3zp5p2Px4Bv+eKzilzJazmOBc+e5WWYuqek47x4XrlyBSEhISgtLYWNjQ127twJPz8/JCUlQSqVwsHBodL6bm5uyMjIAABkZGRUKpwV71e8V5MlS5ZgwYIFVZa3Y+l0npAG4eLCdQTmSTfvdAyahjqOY0FBAezt7Wtdh/Pi2b59eyQlJSE/Px87duzA+PHjcfRow06vM3v2bERFRWm/z8vLQ8uWLZGamlpnwsydXC6Ht7c3Hj58CDs7O67D4T3Kl2EoX4ahfOlPn1wxDIOCggJ4enrW2R7nxVMqlaJNmzYAgKCgIJw/fx6rVq3CqFGjUFZWhry8vEpnn5mZmXB3dwcAuLu749y5c5Xaq+iNW7FOdWQyGWQyWZXl9vb29AHUU0UPaaIfypdhKF+GoXzpr65c6XsCxbvnPDUaDRQKBYKCgiCRSBAbG6t9Lzk5GampqQgJCQEAhISE4MqVK8jKytKuExMTAzs7O/j5+TV67IQQQswDp2ees2fPxuDBg9GiRQsUFBRgy5YtiI+Px8GDB2Fvb4+3334bUVFRcHJygp2dHd5//32EhISgZ8+eAIDw8HD4+flh7NixWL58OTIyMjBnzhxERkZWe2ZJCCGEsIHT4pmVlYVx48YhPT0d9vb28Pf3x8GDBxEWFgYA+OabbyAUCjFy5EgoFApERERg9erV2u1FIhH+/vtvTJkyBSEhIbC2tsb48eOxcOFCg+KQyWSYP38+FVw9UK4MQ/kyDOXLMJQv/bGdKwGjT59cQgghhGjx7p4nIYQQwndUPAkhhBADUfEkhBBCDETFkxBCCDGQ2RfP6Oho+Pj4wMLCAsHBwVUGXTBXx44dw7Bhw+Dp6QmBQIC//vqr0vsMw2DevHnw8PCApaUlQkNDcfv2bW6C5diSJUvw3HPPwdbWFq6urnj55ZeRnJxcaR19ptczF2xMRWiuli5dCoFAgOnTp2uXUb4q++yzzyAQCCp9dejQQfs+W/ky6+K5bds2REVFYf78+bh48SICAgIQERFRadAFc1VUVISAgABER0dX+/7y5cvx7bffYu3atTh79iysra0RERGB0tLSRo6Ue0ePHkVkZCTOnDmDmJgYKJVKhIeHo6ioSLtOXdPrmRNjpyI0V+fPn8e6devg7+9faTnlq6pOnTohPT1d+3XixAnte6zlizFjPXr0YCIjI7Xfq9VqxtPTk1myZAmHUfEPAGbnzp3a7zUaDePu7s58+eWX2mV5eXmMTCZjfvvtNw4i5JesrCwGAHP06FGGYcpzI5FImO3bt2vXuXHjBgOAOX36NFdh8oqjoyPz448/Uq5qUFBQwLRt25aJiYlh+vbty0ybNo1hGPpsVWf+/PlMQEBAte+xmS+zPfMsKytDQkJCpSnPhEIhQkNDcfr0aQ4j47+UlBRkZGRUyp29vT2Cg4Mpd/hnijsnJycAqHN6PXOmVquxdetWvaciNFeRkZEYOnRopbwA9Nmqye3bt+Hp6YlWrVphzJgxSE1NBcBuvjgfGJ4r2dnZUKvV1U5pdvPmTY6iMg0V071Vl7vapoIzBxqNBtOnT0fv3r3RuXNnAOX5qmt6PXNjzFSE5mbr1q24ePEizp8/X+U9+mxVFRwcjM2bN6N9+/ZIT0/HggUL0KdPH1y9epXVfJlt8SSkIURGRuLq1auV7rGQqriYitAUPXz4ENOmTUNMTAwsLCy4DsckDB48WPva398fwcHBaNmyJX7//XdYWlqyth+zvWzr4uICkUhUpZeV7pRnpHoV+aHcVTZ16lT8/fffiIuLg5eXl3a5u7u7dno9Xeacr4qpCIOCgrBkyRIEBARg1apVlKt/SUhIQFZWFrp16waxWAyxWIyjR4/i22+/hVgshpubG+WrDg4ODmjXrh3u3LnD6ufLbIunVCpFUFBQpSnPNBoNYmNjtVOeker5+vrC3d29Uu7kcjnOnj1rlrljGAZTp07Fzp07ceTIEfj6+lZ6X5/p9cydIVMRmpOBAwfiypUrSEpK0n51794dY8aM0b6mfNWusLAQd+/ehYeHB7ufLyM6NZm8rVu3MjKZjNm8eTNz/fp15p133mEcHByYjIwMrkPjXEFBAZOYmMgkJiYyAJgVK1YwiYmJzIMHDxiGYZilS5cyDg4OzK5du5jLly8zw4cPZ3x9fZmSkhKOI298U6ZMYezt7Zn4+HgmPT1d+1VcXKxdZ/LkyUyLFi2YI0eOMBcuXGBCQkKYkJAQDqPmzqxZs5ijR48yKSkpzOXLl5lZs2YxAoGAOXToEMMwlKu66Pa2ZRjK17998MEHTHx8PJOSksKcPHmSCQ0NZVxcXJisrCyGYdjLl1kXT4ZhmO+++45p0aIFI5VKmR49ejBnzpzhOiReiIuLYwBU+Ro/fjzDMOWPq8ydO5dxc3NjZDIZM3DgQCY5OZnboDlSXZ4AMJs2bdKuU1JSwrz33nuMo6MjY2VlxYwYMYJJT0/nLmgOvfXWW0zLli0ZqVTKNGvWjBk4cKC2cDIM5aou/y6elK/KRo0axXh4eDBSqZRp3rw5M2rUKObOnTva99nKF01JRgghhBjIbO95EkIIIfVFxZMQQggxEBVPQgghxEBUPAkhhBADUfEkhBBCDETFkxBCCDEQFU9CCCHEQFQ8CSGEEANR8SSEEEIMRMWTEEIIMRAVT0IIIcRAVDwJIYQQA1HxJIQQQgwk5joAPtBoNEhLS4OtrS0EAgHX4RBCCOEAwzAoKCiAp6cnhMLazy2peAJIS0uDt7c312EQQgjhgYcPH8LLy6vWdah4ArC1tQUApKSkwMnJieNo+E2pVOLQoUMIDw+HRCLhOhzeYy1fd+4AbdqwFxhP8e7zpZt3Hh4D3uWLx7S5atUKko4dq11HLpfD29tbWxNqQ8UT0F6qtbW1hZ2dHcfR8JtSqYSVlRXs7Ozol1UPrOUrMxPo1o29wHiKd58v3bzz8BjwLl88VpEr+6wsiIODa11Xn9t31GGIEFMwYgTXEZgn3bzTMWgSRK++yko7VDwJIYQQA/GqeB47dgzDhg2Dp6cnBAIB/vrrrzq3iY+PR7du3SCTydCmTRts3ry5weMkhBBi3nhVPIuKihAQEIDo6Gi91k9JScHQoUPRv39/JCUlYfr06Zg4cSIOHjzYwJES0sh27OA6AvOkm3c6Bk2CeutWVtrhVYehwYMHY/DgwXqvv3btWvj6+uLrr78GAHTs2BEnTpzAN998g4iICIP3f/JuDuyy1QZvZ07UajVuPBXA5nY2RCIR1+HwHhv5EggE6ObbBnX3/yOse9Yr896TQmTJXFGanMVxQJXR76P+KnLVzN0VntlF8HGxNqo9XhVPQ50+fRqhoaGVlkVERGD69Om1bqdQKKBQKLTfy+VyAMDU3y5BKLNiPc6mR4S1Ny9yHYQJMT5ft75+BcriQpbi4S+lUlnpX66JO3VC6sMsDFxxHDe/HIH2H+7kOqRq0O+j/kSYMbEvovddxvv9W1d515DPnUkXz4yMDLi5uVVa5ubmBrlcjpKSElhaWla73ZIlS7BgwYIqyz2tGIgtmAaJlZD6UGmAjBIBGIbB/n37uA6n0cTExHAdAgDgRY0GOw/GgWHK/6v0sqb/H0yeAMi8fwv79iVXeau4uFjvZky6eNbX7NmzERUVpf2+4sHYv95/Ac7OzhxGxn9KpRIxMTEICwuj58r0YGy+sgsVCFl2FAAwaNBgCIVNe/hIvn2+hEIhQkJ6YeXVc4AAiJtl+O2ghsS3fPFZRa6kIiE+n1D97cGKq5D6MOni6e7ujszMzErLMjMzYWdnV+NZJwDIZDLIZLIqyyUSCX0A9US5Mkx98+VsW34fa/kL4/B/agHsZeaRc958vr74AmJx+TH4cdBERPIhpmrwJl8mQLNoUY25MiSHvOpta6iQkBDExsZWWhYTE4OQkBCOIiKEXVKxEFZSETb0GIG8kjKuwzE/Oleotr/AzsP1hFuaOvrE6ItXxbOwsBBJSUlISkoCUP4oSlJSElJTUwGUX24dN26cdv3Jkyfj3r17+Oijj3Dz5k2sXr0av//+O2bMmMFF+IQ0CAdLCa6vGIm8Yn50ojEr1v/0yNz/6RAOAyFsETs4sNIOr4rnhQsXEBgYiMDAQABAVFQUAgMDMW/ePABAenq6tpACgK+vL/bu3YuYmBgEBATg66+/xo8//livx1QI4Ss7SwlEGg3yS6h4Njr1P4+uiRh6jK1JULNzHHl1z7Nfv35gmJp7s1U3elC/fv2QmJjYgFERwi0Hq/L7MHlUPAnhDV6deRJCqnKwlGJHl4HIL6Z7no3uzTe1Lw8EDeIuDsIajc6tP2NQ8SSE5+wtJfg0YipdtuXC2rXalytGUl+KpkCj5/CvdaHiSQjPOVhJsHfT/1GHIS48638BAOtXvsNhIIQt4ueeY6UdKp6E8Jy9lQRtch7SPU8u3Lihfdky6wGHgRDW3LzJSjNUPAnhOXvL8g5DdNmWEP6g4kkIzzlYSpHQvCPy6bJt4+vVS/vyastOHAZC2MKwNIgOFU9CeM7BSoLRr3+Bp9TbtvEdOaJ9GfXuCg4DIWxRHzrESjtUPAnhOQcrCb7ftQxP6cyz8Y0apX0575eFHAZC2CIaPZqVdqh4EsJzTtZShN0+g7zisloHESENYNcu7cvnr5/kMBDCFsGePay0Q8WTEJ5ztJICAFQaBgUKFcfREEIAKp6E8J6FRISnVnYAgLwiunTbqFxctC/zre05DISwRueYGoOKJyEm4JXZ2wCAOg01tkePtC9f/fR3DgMhbFGlpLDSDhVPQkzA+/H/AwDkUvFsXHPnal++dXAjh4EQtgjnz2enHVZaIYQ0qJFHtgIA8qh4Nq4vv9S+fO3oNg4DIWwRrmDnkSMqnoSYAIGg/N9cuudJCC9Q8STEhNCZJyH8QMWTEBOw/rfjAIDcIiqejSotTfty5JztHAZC2KJ6wM4A/1Q8CTEBnZNOAABNS9bY9u7Vvux54wyHgRC2CPbtY6UdKp6EmIDeyz8BQGeejW7SJO3LmX98zWEghC2iKVNYaYeKJyEm4Fl/IXrOkxCeoOJJiCl4Vj2peBLCD1Q8CTEB2bsPAACeFilpcPjGFB+vfTn93W+4i4OwRn34MCvtUPEkxATYW0kAAGVqDeSlNDg8IVzjZfGMjo6Gj48PLCwsEBwcjHPnztW6/sqVK9G+fXtYWlrC29sbM2bMQGlpaSNFS0jDk4UOhI1MDADILlRwHI0Z6ddP+3LluhncxUFYIwoNZaUd3hXPbdu2ISoqCvPnz8fFixcREBCAiIgIZGVlVbv+li1bMGvWLMyfPx83btzAhg0bsG3bNnzyySeNHDkhDcvFpnxqspxCuu9JCNd4VzxXrFiBSZMmYcKECfDz88PatWthZWWFjRurH5T51KlT6N27N0aPHg0fHx+Eh4fj9ddfr/NslRBT42wjA0BnnoTwgZjrAHSVlZUhISEBs2fP1i4TCoUIDQ3F6dOnq92mV69e+OWXX3Du3Dn06NED9+7dw759+zB27Nga96NQKKBQ/PMfkFwuBwAolUoolfQQem0q8kN50g9b+RKsWQMnYfl9z8z84iabf759vgRr1kClUgMAvhz5AT7iSVwV+JYvPqvIUdn330NYQ74MySOvimd2djbUajXc3NwqLXdzc8PNmzer3Wb06NHIzs7G888/D4ZhoFKpMHny5Fov2y5ZsgQLFiyosjwuLg5WVlbG/RBmIiYmhusQTIqx+ZJIJCh+kgFAiDNJ1+GUc5WdwHiKL58viUSCW6dPARAjtqU/OrM0Og3b+JIvUxBrYQFlDcexuLhY73bqVTyjoqIM3mbOnDlwcnKqz+5qFR8fjy+++AKrV69GcHAw7ty5g2nTpmHRokWYqzMXn67Zs2dX+hnkcjm8vb3Rv39/ODs7sx5jU6JUKhETE4OwsDBIJBKuw+E9tvIltrXFjV2JOJl5D44eLTBkiB+LUfIH3z5fYltbOF97iJVXz2H/ivEQfl7EdUiV8C1ffFaRq8ETJ0JVUFDtOhVXIfVRr+K5cuVKhISEQCqV6rX+iRMnMHXq1DqLp4uLC0QiETIzMystz8zMhLu7e7XbzJ07F2PHjsXEiRMBAF26dEFRURHeeecdfPrppxAKq97WlclkkMlkVZZLJBL6AOqJcmUYNvLlamcJoHxasqaeez59vsRiEYDycSr4EtO/8SlfpqCmXBmSw3pftt25cydcXV31WtfW1lav9aRSKYKCghAbG4uXX34ZAKDRaBAbG4upU6dWu01xcXGVAikSlX/Y6WFy0pS4POswlEPj2xLCuXoVz02bNsHe3l7v9detW1flPmZNoqKiMH78eHTv3h09evTAypUrUVRUhAkTJgAAxo0bh+bNm2PJkiUAgGHDhmHFihUIDAzUXradO3cuhg0bpi2ihJi8mTPhYku9bRvdzJnal1v7jsI4DkMh7NBERYGNylCv4jl+/HgAgFqtxsmTJ+Hv7w8HB4ca1x89erTebY8aNQpPnjzBvHnzkJGRga5du+LAgQPa4puamlrpTHPOnDkQCASYM2cOHj9+jGbNmmHYsGFYvHhxfX40Qvhp0SI4PykEAGQXUPFsNIsWAQ9yAQAbI96i4tkEaBYs4K54VhCJRAgPD8eNGzdqLZ6Gmjp1ao2XaeN1xpoEALFYjPnz52P+/Pms7Z8Q3vHygsudFABAUZkaJWVqWErpykqD8/ICTl4GAGxf/F9g5hOOAyLGEvv6Ao8eGd2O0YMkdO7cGffu3TM6EEJILbKzYSsTQyou/5WlS7eNJDtb+9K+KJ/DQAhrdI6pMYwunp9//jk+/PBD/P3330hPT4dcLq/0RQhhh0AggIt1eQ93Kp6EcMvoQRKGDBkCAHjppZcgEAi0yxmGgUAggFqtNnYXhJDhwwEALrYypOWX0vi2jeVZ3gHghF9vDOAwFMIOZtgwCOperU5GF8+4uDgWwiCE1GrbNgD/PK5CZ56NZNs2bYehhW/Mo+LZBKi3bGFlUHeji2ffvn1ZCIMQUqsBA4AjR7Qzq1DxbCQDBgCbdgAAVqyLAmYmchwQMZYoPBxg4aSPtbFti4uLkZqairKyypeT/P392doFIebr1CkAujOr0GXbRvEs7wDQ+cE1DgMhbBHUMMmIoYwunk+ePMGECROwf//+at+ne56EsIcu2xLCD0Zf+p0+fTry8vJw9uxZWFpa4sCBA/jpp5/Qtm1b7N69m40YCSEdOwIAXbZtbM/yDgAPXFtyGAhhTYcOrDRj9JnnkSNHsGvXLnTv3h1CoRAtW7ZEWFgY7OzssGTJEgwdOpSNOAkxb4nl99pc6LJt40pM1HYYmjT9B8RzGw1hger8ebAxhL7RZ55FRUXaAeIdHR3x5En5CBxdunTBxYsXjW2eEAIAkycD0Bkcns48G8ezvANA1B/fcBgIYYswMpKddoxtoH379khOTgYABAQEYN26dXj8+DHWrl0LDw8PowMkhADYvBnAP5dtnxYroVRrOAzITDzLOwAMSjjAXRyENcL//Y+Vdoy+bDtt2jSkp6cDAObPn49Bgwbh119/hVQqxWadDx4hxHgOVlIIBYCGAXKLyuBmZ8F1SISYJaOL5xtvvKF9HRQUhAcPHuDmzZto0aIFXFxcjG2eEAIAz6bXEwkFcLGRIatAgSy5gopnQ9OZ1lAtoIH4mwSWpqpkY6AFLYZhYGlpiW7dulHhJIRNRUXalxUFM1NeylU05kMn74MX7+MwEMIWVV4eK+2wUjw3bNiAzp07w8LCAhYWFujcuTN+/PFHNpomhADAihXalxXFM4OKZ8PTyfurx7ZzGAhhi3DlSnbaMbaBefPmYdq0aRg2bBi2b9+O7du3Y9iwYZgxYwbmzZvHRoyEkE8+0b50ty/vcUtnno1AJ++TDtAJQVMgnDuXlXaMvue5Zs0arF+/Hq+//rp22UsvvQR/f3+8//77WLhwobG7IITocK8488yn4kkIV4w+81QqlejevXuV5UFBQVCpVMY2Twj5F7psSwj3jC6eY8eOxZo1a6os/+GHHzBmzBhjmyeEAMC1fwYld7enDkONRifvb36wkcNACFtUSUmstFOvy7ZRUVHa1wKBAD/++CMOHTqEnj17AgDOnj2L1NRUjBs3jpUgCTF7N24ArVsDoMu2jerGDaBLLwBAy8xUjoMhbBDcvMnK+Lb1Kp6JiZXntAsKCgIA3L17FwDg4uICFxcXXLtGU/gQwor//AcoLS+Wrs+Kp7xUhZIyNSyl9Pxhg/nPf4DkNADAgl8+AzZ9Uvv6hPdEr72m/V0yRr2KZxwLE4kSQurHzkIMS4kIJUo1MuWl8HGx5jokQswOq4MkEEIankAg0N73pE5DhHCjXsXzlVdegVwu13v9MWPGICsrqz67IoQAwM6dlb51s6NnPRuFTt7njKPH7poC9XZ2BruoV/HctWsXnjx5ArlcXudXfn4+9uzZg8LCQr3bj46Oho+PDywsLBAcHIxz587Vun5eXh4iIyPh4eEBmUyGdu3aYd8+GkqLNCHPOgtVoE5DjUQn72nOnhwGQtjCtGrFSjv1uufJMAzatWvHSgD/tm3bNkRFRWHt2rUIDg7GypUrERERgeTkZO28obrKysoQFhYGV1dX7NixA82bN8eDBw/g4ODQIPERwgl//0qdHNyeXbZNp+LZsPz9tR2GNn4zEVhOTxCYOnFQkGl1GGrevLle661YsQKTJk3ChAkTAABr167F3r17sXHjRsyaNavK+hs3bkRubi5OnToFiaR8fnAfHx+D4yPElDR3sAQApOeXcBwJIeapXsWzb9++bMcBoPwsMiEhAbNnz9YuEwqFCA0NxenTp6vdZvfu3QgJCUFkZCR27dqFZs2aYfTo0fj4448hqmHqGYVCAYVCof2+4v6tUqmEUqlk8SdqeiryQ3nSD1v5EgNQ6bThalP+h+Kjp8VN6ljw7fMlBqBSqQEADPgTVwW+5YvPdHNUU74MyaPRY9uyKTs7G2q1Gm5ubpWWu7m54ebNm9Vuc+/ePRw5cgRjxozBvn37cOfOHbz33ntQKpWYP39+tdssWbIECxYsqLI8Li4OVlZWxv8gZiAmJobrEEyKsflq9cYbuKdzH/9xEQCIcT9L3iTv7/Pl89XqjTdw+vQpAGJ8N/BNtOVprvmSL1Nw9V+/S7qKi4v1bkfAMAzDVlDGSktLQ/PmzXHq1CmEhIRol3/00Uc4evQozp49W2Wbdu3aobS0FCkpKdozzRUrVuDLL79Eenp6tfup7szT29sb6enpcHZ2ZvmnalqUSiViYmIQFhamvUxOatZQ+ZKXKBH0Rfntk8tzBzaZgRL4+Pm6mJqHUevPoaWTFQ7PeJ7rcCrhY774Sp9cyeVyuLi4ID8/H3Z2drW2x6szTxcXF4hEImRmZlZanpmZCXd392q38fDwgEQiqXSJtmPHjsjIyEBZWRmkUmmVbWQyGWQyWZXlEomEPoB6olwZxuh8WVhU6uTgJBbDRiZGoUKFJ8UqtLa2YCFK/uDN58vCAuJnHYZiPo2A5KMyjgOqHm/yZQIsnZwgqKHDkCE55NUgCVKpFEFBQYiNjdUu02g0iI2NrXQmqqt37964c+cONBqNdtmtW7fg4eFRbeEkpCkQCATwdCgvmGl51GmIkMbGSvFUqVQ4fPgw1q1bh4KCAgDll2ANebazQlRUFNavX4+ffvoJN27cwJQpU1BUVKTtfTtu3LhKHYqmTJmC3NxcTJs2Dbdu3cLevXvxxRdfIDIyko0fjRDe8nzW4/bxUyqehDQ2oy/bPnjwAIMGDUJqaioUCgXCwsJga2uLZcuWQaFQYO3atQa1N2rUKDx58gTz5s1DRkYGunbtigMHDmg7EaWmpkIo/Kfme3t74+DBg5gxYwb8/f3RvHlzTJs2DR9//LGxPxoh/PH221UWVTyuQmeeDUgn73ufG4IRHIZC2KGZMAFs9BAwunhOmzYN3bt3x6VLlyp1thkxYgQmTZpUrzanTp2KqVOnVvtefHx8lWUhISE4c+ZMvfZFiEmIjq6yqOLM8xEVz4YTHQ08yAUArBoxjYpnE6D59ltWiqfRl22PHz+OOXPmVLm/6OPjg8ePHxvbPCEEALp0qbLIy/FZ8aTLtg1HJ+8bV1Q9+yemRxwYyEo7RhdPjUYDtVpdZfmjR49ga2trbPOEEAC4fbvKohZO5c8kP8gpauxozIdO3r2yH3EYCGHNnTusNGN08QwPD8fKlSu13wsEAhQWFmL+/PkYMmSIsc0TQmrg41w+j2emXIFSZdU/YAkhDcfo4vnVV1/h5MmT8PPzQ2lpKUaPHq29ZLts2TI2YiSEvPBClUUOVhLYWpR3W0jN1X9kFGIAnbxf8vXnMBDCFqZPH1baMbrDkLe3Ny5duoRt27bh0qVLKCwsxNtvv40xY8bA0tKSjRgJIYcOVVkkEAjQ0tkKVx/L8SCnGO3c6DYJ6w4d0nYYmjnpS8RzGw1hgXrfPlae0TSqDaVSidatW+P27dsYM2YMli9fjtWrV2PixIlUOAlh08iR1S5u6VR+6ZbuezYQnbwv+F/1Y2UT0yL6739Zaceo4imRSFDKwrxohJA67N1b7eIWzhWdhuiybYPQyXvITXocrikQ7N/PSjtGn71GRkZi2bJlUKlUbMRDCDFAy4oet3TPk5BGZfQ9z/PnzyM2NhaHDh1Cly5dYG1tXen9P//809hdEEJqmBih5bMet6l02bZh6OQ919YJ1R8FYlJq+F0ylNHF08HBASNruB9DCGHJ/fvVLm757LLto6clUKk1EIt4NdeD6bt/X9th6LXZv1GHoSZAdfs22Jh/xujiuWnTJhbCIITUavZsYMmSKovd7SwgFQtRptIgPb8U3k40mTurZs8GJs8EAEzavx6Y2Z/jgIixhJ9+Cixfbnw7LMRCCGlo33xT7WKhUADvZ8P03adLt+zTyfurx3dwGAhhi/Dbb1lpx+gzT19fXwgEghrfv3fvnrG7IITUoqWzNe4+KcKDnGL0act1NISYB6OL5/Tp0yt9r1QqkZiYiAMHDmDmzJnGNk8IqUPFfU8aZYiQxsPKlGTViY6OxoULF4xtnhACAFlZNb7VkgaIbzhZWcDT8sfwXp73J/ZxHA4xnurxY1Y6DDXYPc/Bgwfjjz/+aKjmCTEvtfwuVTyuQgMlNACdvL9w5RiHgRC2CHbuZKWdBiueO3bsgJOTU0M1T4h5mTKlxrd8XMqLZ0p2EdQaprEiMg86eY/auZK7OAhrRFOnstKO0ZdtAwMDK3UYYhgGGRkZePLkCVavXm1s84SQOng7WkIqFkKh0uDx0xLtkH2EkIZjdPF8+eWXK30vFArRrFkz9OvXDx06dDC2eUJIHcQiIVq5WONmRgFuZxVQ8SSkERhdPOfPp5kGCGlwJ07U+nYbVxvczCjAnaxCDOzo1khBmQGdvL8/5Vus4zAUwg51fLzxhQ8s3PO8ePEirly5ov1+165dePnll/HJJ5+grKzM2OYJIQCgUNT6dlvX8rk8b2cVNkY05kMn7xK1ksNACGvq+F3Sl9HF891338WtW7cAlA+IMGrUKFhZWWH79u346KOPjA6QEAJg4MBa327rZgMAuEPFk106eV/xwwccBkLYIoqIYKUdo4vnrVu30LVrVwDA9u3b0bdvX2zZsgWbN2+mR1UIaSRtXP8pngxDPW4JaWhGF0+GYaDRaAAAhw8fxpAhQwAA3t7eyM7Orleb0dHR8PHxgYWFBYKDg3Hu3Dm9ttu6dSsEAkGVTkyENHU+ztYQCQUoVKiQKWfnshQhpGZGF8/u3bvj888/x88//4yjR49i6NChAICUlBS4uRnecWHbtm2IiorC/PnzcfHiRQQEBCAiIgJZtYywAgD379/Hhx9+iD59+tTr5yCE1zZurPVtqVgIn2e9bG9lFjRGROZBJ+/LXqXbUE2B+ocfWGnH6OK5cuVKXLx4EVOnTsWnn36KNm3aACgfJKFXr14Gt7dixQpMmjQJEyZMgJ+fH9auXQsrKytsrOU/D7VajTFjxmDBggVo1apVvX8WQngrLKzOVdq7l3caupkhb+hozIdO3i+0DeIwEMIWJjSUlXaM7rHr7+9fqbdthS+//BIikcigtsrKypCQkIDZs2drlwmFQoSGhuL06dM1brdw4UK4urri7bffxvHjx+vcj0KhgEKnx5VcXv6fjVKphFJJPepqU5EfypN+2MqX2NsbqoLazyjbudpgH4Brj/NN9vjw7fMl9vaG6tpDAMDvX4yCcg6/xg/mW774rCJH4latoKzhd8mQPBpdPB8+fAiBQAAvLy8AwLlz57Blyxb4+fnhnXfeMait7OxsqNXqKpd73dzccPPmzWq3OXHiBDZs2ICkpCS997NkyRIsWLCgyvK4uDhYWdED5vqIiYnhOgSTYmy+XtRosG9f7cOSF+UKAIhw/nYa9u17aNT+uMaXz9eLGg1Onz4FQAwwqPMYcIUv+TIFmlp+l4qL9R8f2ujiOXr0aLzzzjsYO3YsMjIyEBYWhk6dOuHXX39FRkYG5s2bZ+wualRQUICxY8di/fr1cHFx0Xu72bNnIyoqSvu9XC6Ht7c3+vfvD2dn54YItclQKpWIiYlBWFgYJBI25iZo2tjKl1Ao1HbGq0lAXgnWJx/HE4UQoeFhkIpNb657vn2+hEIhQkJ6YeXVc4AAdR6Dxsa3fPFZRa5q+12quAqpD6OL59WrV9GjRw8AwO+//47OnTvj5MmTOHToECZPnmxQ8XRxcYFIJEJmZmal5ZmZmXB3d6+y/t27d3H//n0MGzZMu6yi569YLEZycjJat25dZTuZTAaZTFZluUQioQ+gnihXhjE6X7Nm1bl9SxcxbC3EKChV4cFTBfw87eq/P47x5vM1axbE4vLbT7/1ex1v8iGmavAmXyZAM3NmjbkyJIdG/2mqVCq1hejw4cN46aWXAAAdOnRAenq6QW1JpVIEBQUhNjZWu0yj0SA2NhYhISFV1u/QoQOuXLmCpKQk7ddLL72E/v37IykpCd7e3kb8ZITwyGef1bmKQCBAR/fygnkjnToNsUIn75vD3+QsDMIeDUtXQ40unp06dcLatWtx/PhxxMTEYNCgQQCAtLS0el0CjYqKwvr16/HTTz/hxo0bmDJlCoqKijBhwgQAwLhx47QdiiwsLNC5c+dKXw4ODrC1tUXnzp0hlUqN/fEI4QcPD71W69S8vHheeZzfkNGYD528/7HoPxwGQtgibtGCnXaMbWDZsmUYMWIEvvzyS4wfPx4BAQEAgN27d2sv5xpi1KhRePLkCebNm4eMjAx07doVBw4c0HYiSk1NhVBoevdyCDHK06d6rdbV2wEAkPQwr+FiMSc6ebctoednmwQ9f5fqYnTx7NevH7KzsyGXy+Ho6Khd/s4779S75+rUqVMxtYYJS+Pj42vddvPmzfXaJyFNQUXxvJ4mR5lKY5KdhggxBaz8ZjEMg4SEBKxbtw4Fz56fkUql9NgHIWx55RW9VmvhZAUHKwnK1Bq678kGnbwf60yjlzUFDEvDtxpdPB88eIAuXbpg+PDhiIyMxJMnTwCUX8798MMPjQ6QEAJgyxa9VhMIBAjwcgAAXHqU13DxmAudvH8+eg6HgRC2qH/+mZV2jC6e06ZNQ/fu3fH06VNYWlpql48YMaJSr1lCiBH69tV71QC678kenbyvXDOduzgIa0R1TO+nL6PveR4/fhynTp2q0rPVx8cHjx8/NrZ5QggAnD2r96pdve0BAJeoeBpPJ+9+D29wGAhhi0DPWbrqYvSZp0ajgVqtrrL80aNHsLW1NbZ5QoiBKi7b3n1SBHkpjXlKSEMwuniGh4dj5cqV2u8FAgEKCwsxf/583g1lRYjJ6txZ71WdbWTwdiq/hXLlET3vaRSdvKe4+XIYCGEL06kTK+0YXTy/+uornDx5En5+figtLcXo0aO1l2yXLVvGRoyEkAsXDFq94uyT7nsaSSfv705by2EghC3qM2dYacfo4unt7Y1Lly7h008/xYwZMxAYGIilS5ciMTERrq6ubMRICJk0yaDVA1uUP3N94X5uQ0RjPnTy/uGOrzgMhLBFNHkyK+0YVTyVSiVat26N27dvY8yYMVi+fDlWr16NiRMnVup5SwgxkoHd64N9nQAAF+4/hUqtaYiIzINO3sMv0rRfTYHg119Zaceo4imRSFBaWspKIIQQ9nT0sCufYUWhwnUaLIEQ1hl92TYyMhLLli2DSqViIx5CSHUMnORAJBRozz7P3MtpiIjMg07elSKa8qtJYGnCEKOf8zx//jxiY2Nx6NAhdOnSBdbW1pXe//PPP43dBSHEgEl6KwT7OuPwjSycvZeLd16oOq8t0YNcDjwov288dNHfiOc2GsICVU4O2PgzyOgzTwcHB4wcORIRERHw9PSEvb19pS9CCAuWLzd4k56tyqcEPJeSS/c960sn76/Fb+UwEMIW4VfsdPwy+sxz06ZNbMRBCKnNvHnARx8ZtImfpx3sLSXIL1Hi0qN8BLV0rHsjUtm8ecCoiQCAtw5tArCO23iI0YQLFgDP5oQ2qp36bqjRaLBs2TL07t0bzz33HGbNmoWSkhKjAyKEsEMkFOD5Ni4AgKO3nnAcDSFNS72L5+LFi/HJJ5/AxsYGzZs3x6pVqxAZGclmbIQQI73Qrrx4HqPiSQir6l08//e//2H16tU4ePAg/vrrL+zZswe//vorNBq6t0II65KT67XZC+2aAQAuP8rD06IyNiMyDzp5HzvzJw4DIWxRXb3KSjv1Lp6pqamVxq4NDQ2FQCBAWloaK4ERQnQkJtZrMw97S3Rwt4WGAWJvZrEclBnQyXvbx3c4DISwRZCUxEo79S6eKpUKFhYWlZZJJBIolTSLAyGse+21em86qLM7AODA1XS2ojEfOnmft2URh4EQtojeeIOVdurd25ZhGLz55puQyWTaZaWlpZg8eXKlZz3pOU9CuDWosztWHr6NY7ezUahQwUZmdCd7QsxevX+Lxo8fX2XZGyxVdEIIe9q72cLXxRop2UWIu5mFYQGeXIdEiMmrd/Gk5zsJaUR79tR7U4FAgIhO7lh79C4OXMug4mkInbzPfnMxvuYwFMIO9c6dxg9wABZGGCKENILmzY3avOK+Z9zNLJQq1WxEZB508p5t78JhIIQtjCc7fzxS8STEFHTrZtTmAV728LC3QHGZGvHJ9Myn3nTyvn7VuxwGQtgiDg5mpR1eFs/o6Gj4+PjAwsICwcHBOHfuXI3rrl+/Hn369IGjoyMcHR0RGhpa6/qEmCOBQKC9XPvnxUccR0OI6eNd8dy2bRuioqIwf/58XLx4EQEBAYiIiEBWVvXPqMXHx+P1119HXFwcTp8+DW9vb4SHh+Px48eNHDkh/PafIC8AwJGbWcguVHAcDSGmjXfFc8WKFZg0aRImTJgAPz8/rF27FlZWVti4cWO16//6669477330LVrV3To0AE//vgjNBoNYmNjGzlyQhrQ18Z3VWnnZosAL3uoNAz+SqQ/LvWik/fVL07hMBDCFk09ZiiqDq8e+CorK0NCQgJm64x4LxQKERoaitOnT+vVRnFxMZRKJZycnGpcR6FQQKH45y9v+bO5EpVKJQ3yUIeK/FCe9MNavt56C2Ah5yO6euDSo3xsOZuKsT28IBQKjG6TTbz7fL31FlRphQCA3T2GIZIvcT3Du3zxWEWOFG++CUkN+TIkj7wqntnZ2VCr1XBzc6u03M3NDTdv3tSrjY8//hienp4IDQ2tcZ0lS5ZgwYIFVZbHxcXBysrKsKDNVExMDNchmBRj8/Xiq6/i7+3bjY7DUgXIRCLcyy7Cit8OwM+RMbrNhsCXz9eLr76K0xu3AxBj/9wh2Odn/DFoCHzJlymQubjU+LtUXFysdzu8Kp7GWrp0KbZu3Yr4+PgqQwfqmj17NqKiorTfy+VyeHt7o3///nB2dm6MUE2WUqlETEwMwsLCIJGwMR9708ZWvoRCYaWxpI1xU5KMTace4KrSFR8OCWKlTbbw7fMlFAoREtILK6+eAwRg7RiwhW/54rOKXNX2u1RxFVIfvCqeLi4uEIlEyMzMrLQ8MzMT7u7utW771VdfYenSpTh8+DD8/f1rXVcmk1UaVrCCRCKhD6CeKFeGYSNfbOX7redb4afTD3Dybg7u5ZSivbstK+2yiU+fL7FYBAAQgL1jwDY+5csU1JQrQ3LIqw5DUqkUQUFBlTr7VHT+CQkJqXG75cuXY9GiRThw4AC6d+/eGKES0rjeZe8ZQ28nK4T7lf8xuvFECmvtNkk6ed8dPIzDQAhbNJMmsdIOr4onAERFRWH9+vX46aefcOPGDUyZMgVFRUWYMGECAGDcuHGVOhQtW7YMc+fOxcaNG+Hj44OMjAxkZGSgsLCQqx+BEPatWsVqc2/38QUA7Ex6jCx5KattNyk6ef9++FQOAyFs0axYwUo7vCueo0aNwldffYV58+aha9euSEpKwoEDB7SdiFJTU5Ge/s/USmvWrEFZWRn+85//wMPDQ/v11VdfcfUjEMI+Pz9Wm+ve0hFBLR1RptLg+ziap7JGOnnf/NUEDgMhbBHXcVtP73ZYaYVlU6dOxdSp1f+VFx8fX+n7+/fvN3xAhHDt3j1WmxMIBPgwvD1eX38Gv51LxaQ+reDtRD3Nq9DJu2duGoeBENaksHOrgndnnoSQxhHS2hl92rpAqWawIuYW1+EQYlKoeBJiCvr3b5BmZ0a0h0AA7Ex8jHMpuQ2yD5Omk/fE1oEcBkLYwvTrx0o7VDwJMQX79zdIs/5eDnjtuRYAgLl/XYVSrWmQ/Zgsnbx//PZSDgMhbFEbMTeuLiqehJiCl19usKY/imgPRysJkjML6NGVf9PJ++c/zeUuDsIa0ciRrLRDxZMQU3DgQIM17WgtxezBHQEAXx+6hetp+o+y0uTp5L1HMk112BQIDh1ipR0qnoQQvNrdC6Ed3VCm1mDa1kSUKtVch0QIr1HxJMQUNG/eoM0LBAIsG9kFzWxluJ1ViEV/X2/Q/ZkMnbw/sXPhMBDCGpZ+l6h4EmIK7t5t8F0428jw9asBEAiAX8+m4tezDxp8n7ynk/cxs37lMBDCFpWeM3TVhYonIabgo48aZTcvtGuGD8PbAwDm77qGIzcz69iiidPJ+7t713EYCGGLcNYsdtphpRVCSMP69ttG29V7/VpjRGBzqDQMJv9yEafuZDfavnlHJ+8jT/7JYSCELcLoaHbaYaUVQkiTIRAIsPw//gjzc0OZSoOJ/7tAAygQ8i9UPAkhVUhEQnw/OhB92rqguEyNNzacxd7L6XVvSIiZoOJJiCnIyWn0XcrEIvwwtjvCn52BRm65iNXxd6DRMI0eC2d08v7SZ39xFwdhjSojg5V2qHgSYgp++42T3VpKRVjzRhDe7OUDAFh+IBlv/3QeOYUKTuJpdDp5H5h4hMNACFsE27ax0g4VT0JMQQ1T9DUGkVCAz17qhC9GdIFMLERc8hMMWnUc+66kg2Ga+FmoTt6n7Wq8Tluk4YimTWOlHSqehBC9jA5ugV1Te6ONqw2eFCjw3q8XMWHzedx7Ush1aIQ0OiqehBC9dXC3w9/vP4//G9AGEpEA8clPEPbNMcz64zIe55VwHR4hjYaKJyGm4PRpriPQspCIEBXeHgemv4D+7ZtBrWGw9fxD9F0eh//7LRFJD/OazuVcnby/F/k9h4EQtqiOHWOlHTErrRBCGlZBAdcRVNG6mQ02TeiBhAe5+PrQLZy6m4Pdl9Kw+1Ia2rvZ4pVuzTG8a3O421twHWr9FRQATuUvrRTF3MZCWCEoZOc2A515EmIKwsO5jqBGQS2dsGVST/z9/vN4pVtzSMVCJGcWYMn+mwhZGotX157C2qN3cSuzwPTOSHXy/tWPjTNEImlYoiFDWGmHzjwJIazo3NweK/7bFfOHdcK+K+nYefExzt3Pxfn7T3H+/lMs3X8TLjZSBPs6o2crJwS2cEQ7N1tIxfQ3PDE9VDwJIayyt5Tg9R4t8HqPFnicV4IjNzJx+EYWztzLQXZhGfZeScfeK+WjFUlEArRzs0UnTzt08rSHj5MFnipgXgMxEJNExZMQU/DTT1xHUC/NHSwxNsQHY0N8oFCpcelhPs7ey8HZlFxcfpQHeakK19LkuJYmB/Do2VZiLL0SCx9na7R0toKHvSU8HSzgbm8JD3sLuNtZwNVOBplY1PA/gE7el/x3FuY3/B5JA1Nv2MBK4eNl8YyOjsaXX36JjIwMBAQE4LvvvkOPHj1qXH/79u2YO3cu7t+/j7Zt22LZsmUYwtJ1bUJ44YUXuI7AaDKxCD18ndDD1wnvA2AYBo+eljwrnvm4kS7HvSeFuJ9ThFKlBjczCnAzo+aOUjYyMRytJXCyksLRWvrPv9ZS2FqIYSMTw1omhu2zf22eLbORiWElFUEgENQd9AsvAGXlLy+18mcnEYRTTJ8+rLTDu+K5bds2REVFYe3atQgODsbKlSsRERGB5ORkuLq6Vln/1KlTeP3117FkyRK8+OKL2LJlC15++WVcvHgRnTt35uAnIKQB+PoCpaVcR8EqgUAAbycreDtZYVBndwCAUqnEnr374N+zHx7mKZCaW4z0/FJk5JeU/ysvRXp+KcpUGhQqVChUqPAw1/DnSwUCwEoigkwigkwsfPYlgrTitaT8+3XvPI9pi/YDALYuHQ0s+g+rOSCNT9yuHSu/S7wrnitWrMCkSZMwYcIEAMDatWuxd+9ebNy4EbOqmcR01apVGDRoEGbOnAkAWLRoEWJiYvD9999j7dq1jRo7IcR4IgHQ0tkKbdztq32fYRjklyjxtFiJ3KIyPC0qQ25RGXKL/3ldUKpCUZmq/F9F+VfBs381DMAwQFGZGkVl6lpj0WjKz47L6XGmSswGr4pnWVkZEhISMHv2bO0yoVCI0NBQnK7hIfHTp08jKiqq0rKIiAj89ddfNe5HoVBAofhnYOv8/HwAQG4uzVlYF6VSieLiYuTk5EAikXAdDu+xlS8xw0DFwcwqjc2QfNkJADsbwMdGjPL/yqzqbJ9hGJQqNShSqFCsVEOp0kChYlCmUkOh1kCh0qDs2ZdCrUHxCmB6H08wAIq/AQp4dgzo91F/FbmS1/K7VPDseWp9HqniVfHMzs6GWq2Gm5tbpeVubm64efNmtdtkZGRUu35GLdPOLFmyBAsWLKiyvF27dvWImpBG4uLCdQRmZxIAvNgNABAF0DFoKuo4jgUFBbC3r/7KRwVeFc/GMnv27Epnq3l5eWjZsiVSU1PrTJi5k8vl8Pb2xsOHD2FnZ8d1OLxH+TIM5cswlC/96ZMrhmFQUFAAT0/POtvjVfF0cXGBSCRCZmZmpeWZmZlwd3evdht3d3eD1gcAmUwGmUxWZbm9vT19APVkZ2dHuTIA5cswlC/DUL70V1eu9D2B4tXQHlKpFEFBQYiNjdUu02g0iI2NRUhISLXbhISEVFofAGJiYmpcnxBCCDEWr848ASAqKgrjx49H9+7d0aNHD6xcuRJFRUXa3rfjxo1D8+bNsWTJEgDAtGnT0LdvX3z99dcYOnQotm7digsXLuCHH37g8scghBDShPGueI4aNQpPnjzBvHnzkJGRga5du+LAgQPaTkGpqakQCv85Ye7Vqxe2bNmCOXPm4JNPPkHbtm3x119/GfSMp0wmw/z586u9lEsqo1wZhvJlGMqXYShf+mM7VwLG5KY5IIQQQrjFq3uehBBCiCmg4kkIIYQYiIonIYQQYiAqnoQQQoiBzL54RkdHw8fHBxYWFggODsa5c+e4DokXjh07hmHDhsHT0xMCgaDKWMEMw2DevHnw8PCApaUlQkNDcfv2bW6C5diSJUvw3HPPwdbWFq6urnj55ZeRnJxcaZ3S0lJERkbC2dkZNjY2GDlyZJXBPczFmjVr4O/vr31YPSQkBPv379e+T7mq2dKlSyEQCDB9+nTtMspXZZ999hkEAkGlrw4dOmjfZytfZl08K6Y/mz9/Pi5evIiAgABEREQgKyuL69A4V1RUhICAAERHR1f7/vLly/Htt99i7dq1OHv2LKytrREREYHSJjZtlj6OHj2KyMhInDlzBjExMVAqlQgPD0dRUZF2nRkzZmDPnj3Yvn07jh49irS0NLzyyiscRs0dLy8vLF26FAkJCbhw4QIGDBiA4cOH49q1awAoVzU5f/481q1bB3//yvOKUr6q6tSpE9LT07VfJ06c0L7HWr4YM9ajRw8mMjJS+71arWY8PT2ZJUuWcBgV/wBgdu7cqf1eo9Ew7u7uzJdffqldlpeXx8hkMua3337jIEJ+ycrKYgAwR48eZRimPDcSiYTZvn27dp0bN24wAJjTp09zFSavODo6Mj/++CPlqgYFBQVM27ZtmZiYGKZv377MtGnTGIahz1Z15s+fzwQEBFT7Hpv5Mtszz4rpz0JDQ7XL6pr+jJRLSUlBRkZGpdzZ29sjODiYcod/prhzcnICACQkJECpVFbKV4cOHdCiRQuzz5darcbWrVtRVFSEkJAQylUNIiMjMXTo0Ep5AeizVZPbt2/D09MTrVq1wpgxY5CamgqA3XzxboShxlKf6c9IuYrp3gydCs4caDQaTJ8+Hb1799aOcpWRkQGpVAoHB4dK65pzvq5cuYKQkBCUlpbCxsYGO3fuhJ+fH5KSkihX/7J161ZcvHgR58+fr/IefbaqCg4OxubNm9G+fXukp6djwYIF6NOnD65evcpqvsy2eBLSECIjI3H16tVK91hIVe3bt0dSUhLy8/OxY8cOjB8/HkePHuU6LN55+PAhpk2bhpiYGFhYWHAdjkkYPHiw9rW/vz+Cg4PRsmVL/P7777C0tGRtP2Z72bY+05+RchX5odxVNnXqVPz999+Ii4uDl5eXdrm7uzvKysqQl5dXaX1zzpdUKkWbNm0QFBSEJUuWICAgAKtWraJc/UtCQgKysrLQrVs3iMViiMViHD16FN9++y3EYjHc3NwoX3VwcHBAu3btcOfOHVY/X2ZbPOsz/Rkp5+vrC3d390q5k8vlOHv2rFnmjmEYTJ06FTt37sSRI0fg6+tb6f2goCBIJJJK+UpOTkZqaqpZ5qs6Go0GCoWCcvUvAwcOxJUrV5CUlKT96t69O8aMGaN9TfmqXWFhIe7evQsPDw92P19GdGoyeVu3bmVkMhmzefNm5vr168w777zDODg4MBkZGVyHxrmCggImMTGRSUxMZAAwK1asYBITE5kHDx4wDMMwS5cuZRwcHJhdu3Yxly9fZoYPH874+voyJSUlHEfe+KZMmcLY29sz8fHxTHp6uvaruLhYu87kyZOZFi1aMEeOHGEuXLjAhISEMCEhIRxGzZ1Zs2YxR48eZVJSUpjLly8zs2bNYgQCAXPo0CGGYShXddHtbcswlK9/++CDD5j4+HgmJSWFOXnyJBMaGsq4uLgwWVlZDMOwly+zLp4MwzDfffcd06JFC0YqlTI9evRgzpw5w3VIvBAXF8cAqPI1fvx4hmHKH1eZO3cu4+bmxshkMmbgwIFMcnIyt0FzpLo8AWA2bdqkXaekpIR57733GEdHR8bKyooZMWIEk56ezl3QHHrrrbeYli1bMlKplGnWrBkzcOBAbeFkGMpVXf5dPClflY0aNYrx8PBgpFIp07x5c2bUqFHMnTt3tO+zlS+akowQQggxkNne8ySEEELqi4onIYQQYiAqnoQQQoiBqHgSQgghBqLiSQghhBiIiichhBBiICqehBBCiIGoeBJCCCEGouJJCCGEGIiKJyGEEGIgKp6EEEKIgah4EkIIIQai4kkIIYQYiIonIYQQYiAx1wHwgUajQVpaGmxtbSEQCLgOhxBCCAcYhkFBQQE8PT0hFNZ+bknFE0BaWhq8vb25DoMQQggPPHz4EF5eXrWuQ8UTgK2tLQAgJSUFTk5OHEfDb0qlEocOHUJ4eDgkEgnX4fAea/m6cwdo04a9wHiKd58v3bzz8BjwLl88ps1Vq1aQdOxY7TpyuRze3t7amlAbKp6A9lKtra0t7OzsOI6G35RKJaysrGBnZ0e/rHpgLV+ZmUC3buwFxlO8+3zp5p2Hx4B3+eKxilzZZ2VBHBxc67r63L6jDkOEmIIRI7iOwDzp5p2OQZMgevVVVtrhVfE8duwYhg0bBk9PTwgEAvz11191bhMfH49u3bpBJpOhTZs22Lx5c4PHSQghxLzxqngWFRUhICAA0dHReq2fkpKCoUOHon///khKSsL06dMxceJEHDx4sIEjJYQQYs54dc9z8ODBGDx4sN7rr127Fr6+vvj6668BAB07dsSJEyfwzTffICIioqHCJKTx7djBdQTmSTfvdAyaBPXWrawUPl4VT0OdPn0aoaGhlZZFRERg+vTptW6nUCigUCi038vlcgDlN5SVSiXrcbKBYRikPi3B/ewiZMgVyMgvRXZRGUrK1ChRqlGqVKNEqYFCqYaGATQMAw1Tvt0/ryu+L3+/npGguFiEr24eA2D8M7H1jaKx1fST1tSvQPBsC+ZZvr5OPq5dVvM2Ne/DMzsPaTfj9NqiPu3XRMDSPmra4N9LGTAokIuwNuVUjZ026sq5/uvXQOcN9yeFyLh/HEKBABPdbRHBs/8fKv6/4uv/W3yizVWbNmBqyJcheTTp4pmRkQE3N7dKy9zc3CCXy1FSUgJLS8tqt1uyZAkWLFhQZXlcXBysrKwaJNb6UGuAxBwBrj0V4K5cgHwlXwZwECBHUcp1ECZEAJSWGNXC/q/eQvsPd7IUD98J8Li4kOsgAADbvxqnzXvYtBHY98d2jiOqXkxMDNchmAxpt274e3v1x7G4uFjvdky6eNbX7NmzERUVpf2+4tme/v37w9nZmcPIymk0DH499xDrT9xHev4/RUoiEqC1izXc7S3gYW+BZjYyWMlEsJCIYCkRwlIiglQshEgogFAggEAACAUCCJ/9+8/3z/5Gr0ctVqtUOHfuHHr06AGRmJ2PD1/+JKhJjWfHNbyhu1ilUuH8+XN47rkeEIlEhrWP8qsFACD5Rogtbz+ns031Wxl6QaGm9Q1tv6bd1hZPdftQq9RIuHgR3QIDIf7X56vmfdQQq4ExVbdY/I0QM8Pb4stDtwEBMGTIkBpa5YZSqURMTAzCwsLoUZU6VORKKBTWeBwrrkLqw+D//Xbv3m3oJggLC6vxLNAY7u7uyMzMrLQsMzMTdnZ2te5PJpNBJpNVWS6RSDj/AOYWlWH6tiQcu/UEAOBiI8PrPbzRq7ULAls4wEJS/X/AjUWpVCLrBtDd14XzXJkCpVKJ7JtAj1ZG5ksA9Grryl5gPKVUKlF8j0H/ju78+HwJgJ6tXQDchgDgR0zV4MP/XaakplwZkkODi+fLL79s0PoCgQC3b99Gq1atDN1VnUJCQrBv375Ky2JiYhASEsL6vhrDo6fFGLXuDB7nlcBCIsSsQR3wWo8WnBdMwgNffMF1BOZJJ+/rB01EJIehEHZoFi0CG/+j1utRlYyMDGg0Gr2+DLmHWFhYiKSkJCQlJQEofxQlKSkJqampAMovt44bN067/uTJk3Hv3j189NFHuHnzJlavXo3ff/8dM2bMqM+Pxam84jKM33gOj/NK4ONshZ3v9cabvX2pcJJyOrcZSCPSyfv2F9h5uJ5wS1NHh1J9GVw8x48fb9Al2DfeeEPvIe8uXLiAwMBABAYGAgCioqIQGBiIefPmAQDS09O1hRQAfH19sXfvXsTExCAgIABff/01fvzxR5N7TIVhGHz8x2XcfVIED3sL/PZOT3T0oGECiQ5ra64jME86ed//Kb/ud5L6ETs4sNOOoRts2rTJoPXXrFmj97r9+vWr8eY/gGpHD+rXrx8SExMNiolvdiWl4eC1TEhEAqwf1x0e9uzfHyYmTq3mOgLzpJN3EUPHoElg6XeJtRGGTp48WenZSaKfUqUaS/ffBAD834C26NzcnuOICCGE1IW14jl48GA8fvyYrebMxpazqciQl8LD3gKTXmC/UxVpIt58k+sIzJNO3g8EDeIuDsIajU6/GWOwVjxru9xKqldcpsLq+LsAgPcHtKXOQaRma9dyHYF50sn7ipGm1xGRVKXRc+z0uvBqYHhzs/3CI2QXKuDtZIlXu9c+azkxc8860ZFGppP39Svf4TAQwhbxc8/VvZIeWCue69atqzJUHqndjoRHAIAJvXwhEdHfMaQWN25wHYF50sl7y6wHHAZCWHPzJivNsDY83+jRo9lqyizcyizAlcf5EAsFGN7Vk+twCCGEGMDg053Lly9Do9Hovf61a9egUqkM3U2T98ezs87+HVzhbFN1qEBCKunVi+sIzJNO3q+27MRhIIQtDEsj0BlcPAMDA5GTk6P3+iEhIZUGNiCASq3BzsTynskju9G9TqKHI0e4jsA86eQ96t0VHAZC2KI+dIiVdgy+bMswDObOnav3sHtlZWUGB9XUnbiTjawCBRytJBjQoekP9k1YMGoUsG0b11GYn1GjgOXlA73M+2UhMLM/xwERY4lGjwZqmJLMEAYXzxdeeAHJycl6rx8SEtIgM6qYsr8vpwMAXgrwhFRMHYWIHnbt4joC87Rrl7Z4Pn/9JMfBEDYI9uxhpR2Di2d8fDwrOzZXGg2D+OTy6cYiOrlzHA0hhJD6oNOeRnYjQ47sQgWspCIE+ThyHQ4xFS4uXEdgnnTynm9NQ2c2CSz9LlHxbGQVZ529WjtDJqYRhYieHj3iOgLzpJP3Vz/9ncNACFtUKSmstEPFs5EdvVVePPu2p45CxABz53IdgXnSyftbBzdyGAhhi3D+fHbaYaUVohd5qRIXHzwFAPRt24zjaIhJ+fJLriMwTzp5f+0o9XZuCoQr2HnkiIpnIzp1JxsqDYNWLtZo4azfoz6EEEL4h7XiWVJSUu2UZNeuXWNrFybv2O1sAMAL7eiskxBCTBkrxXPHjh1o27Ythg4dCn9/f5w9e1b73tixY9nYRZNwLiUXQHlnIUIMkpbGdQTmSSfvI+cY/2A94Z7qATsD/LNSPD///HMkJCQgKSkJmzZtwttvv40tW7YAoHk+K+QUKnAnqxAA8JyPE8fREJOzdy/XEZgnnbz3vHGGw0AIWwT79rHSDivFU6lUaqcjCwoKwrFjx7Bu3TosXLgQAoGAjV2YvPP3yzsKtXOzgaO1lONoiMmZNInrCMyTTt5n/vE1h4EQtoimTGGlHVaKp6urKy5fvqz93snJCTExMbhx40al5ebs/P3yS7Y9fOmskxBCTB0rxfPnn3+Gq2vl5xalUil+++03HD16lI1dmLyK+510yZYQQkwfK8XTwsICYnH1w+T27t2bjV2YtJIyNa6nywFQ8ST1RGNKc0Mn79Pf/Ya7OAhr1IcPs9JOvYtnXl4eIiMj4eLiAjc3N7i5ucHFxQVTp05FXl6eUUFFR0fDx8cHFhYWCA4Oxrlz52pdf+XKlWjfvj0sLS3h7e2NGTNmoLS01KgY2HQ9PR9qDYNmtjJ42FtwHQ4hhBAjGTyrCgDk5uYiJCQEjx8/xpgxY9CxY0cAwPXr17F582bExsbi1KlTcHQ0fODzbdu2ISoqCmvXrkVwcDBWrlyJiIgIJCcnV7k0DABbtmzBrFmzsHHjRvTq1Qu3bt3Cm2++CYFAgBUsjSRhrEsP8wEAAV721IGK1E+/fgCP/iA0G/36Acnlj6usXDcD+D6S23iI0UShoaz8LtWreC5cuBBSqRR3797V9rLVfS88PBwLFy7EN98YfpljxYoVmDRpEiZMmAAAWLt2Lfbu3YuNGzdi1qxZVdY/deoUevfujdGjRwMAfHx88Prrr1d61pRrlx/lAQC6NHfgNA5CCCHsqNdl27/++gtfffVVlcIJAO7u7li+fDl27txpcLtlZWVISEhAaGjoPwEKhQgNDcXp06er3aZXr15ISEjQXtq9d+8e9u3bhyFDhhi8/4Zy+XH5mae/N01pRAghTUG9zjzT09PRqVOnGt/v3LkzMjIyDG43OzsbarW6SlF2c3PDzZs3q91m9OjRyM7OxvPPPw+GYaBSqTB58mR88sknNe5HoVBAoVBov5fLyzvzKJVKKJVKg+OuTUGpEveeFAEA/NysWW+/sVXEb+o/R2NhK1+CNWvAmEHO+fb5EqxZA5VKDQD4cuQH+IgncVXgW774rCJHZd9/D2EN+TIkj/Uqni4uLrh//z68vLyqfT8lJQVOTo3TqzQ+Ph5ffPEFVq9ejeDgYNy5cwfTpk3DokWLMLeGaZyWLFmCBQsWVFkeFxcHKyt2B2y/lS8AIIKTjMGZo+z08uKDmJgYrkMwKcbmSyKRQMnSyCimgC+fL4lEglunTwEQI7alPzrz9BjwJV+mINbCosbfpeLiYr3bETD1GD/vrbfewt27dxETEwOptPJoOQqFAhEREWjVqhU2bjRs/ruysjJYWVlhx44dePnll7XLx48fj7y8POzatavKNn369EHPnj3xpc7UQb/88gveeecdFBYWQiisemW6ujNPb29vpKenw9mZ3XFn1x1LwVcxtzG4kxu+fS2A1ba5oFQqERMTg7CwMEgkEq7D4T228iW2tYWqoIDFyPiJb58vsa0tzl17iFHrzyH56xEQFhdxHVIlfMsXn1Xk6qVRo2r8XZLL5XBxcUF+fj7s7Oxqba/eHYa6d++Otm3bIjIyEh06dADDMLhx4wZWr14NhUKBn3/+2eB2pVIpgoKCEBsbqy2eGo0GsbGxmDp1arXbFBcXVymQIpEIQM3j6spkMshksirLJRIJ6x/Aa+nlB6lrC8cm9eFuiFw1ZWzky5zyzafPl1hc/v+JAPw9BnzKlymoKVeG5LBexdPLywunT5/Ge++9h9mzZ2uLlEAgQFhYGL7//nt4e3vXp2lERUVh/Pjx6N69O3r06IGVK1eiqKhI2/t23LhxaN68OZYsWQIAGDZsGFasWIHAwEDtZdu5c+di2LBh2iLKpcuPnnUW8nLgNhBCCCGsqVfxBABfX1/s378fT58+xe3btwEAbdq0Mfpe56hRo/DkyRPMmzcPGRkZ6Nq1Kw4cOKDtRJSamlrpTHPOnDkQCASYM2cOHj9+jGbNmmHYsGFYvHixUXGwIbtQgcd5JRAIgM7Na78EQEitZs7kOgLzpJP3rX1HYRyHoRB2aKKiwMZpVb2LZwVHR0f06NGDhVD+MXXq1Bov08b/a5gysViM+fPnY/78+azGwIaK5ztbuVjD1oIuqRAjLFrEdQTmadEi4EH5uNQbI96i4tkEaBYsYKV41us5zyNHjsDPz0/7iIeu/Px8dOrUCcePHzc6OFP3z8hCDtwGQkxfDT3bSQPTyfv2xf/lMBDCFrGvLyvt1Kt4rly5EpMmTaq2N5K9vT3effdd3gyNx6WKM09/LxocgRgpO5vrCMyTTt7ti/I5DISwhqXfpXoVz0uXLmHQoEE1vh8eHo6EhIR6B9VUXE0rPzPvQmeehBDSpNSreGZmZtbapVcsFuPJkyf1DqopeFKgwJMCBQQCoKOHLdfhEFM3fDjXEZgnnbyf8KPpFZsCZtgwVtqpV/Fs3rw5rl69WuP7ly9fhoeHR72DagpuPJu/08fZGlZSo/tlEXO3bRvXEZgnnbwvfGMeh4EQtqi3bGGlnXoVzyFDhmDu3LnVzplZUlKC+fPn48UXXzQ6OFNWUTz9POgRFcKCAQO4jsA86eR9xbooDgMhbBGFh7PSTr1OiebMmYM///wT7dq1w9SpU9G+fXsAwM2bNxEdHQ21Wo1PP/2UlQBNVUXxpEu2hBWnTnEdgXnSyXvnB9c4DISwRVDDDF2GqlfxdHNzw6lTpzBlypQqIwxFREQgOjq62unKzMmNZ8PydaQzT0IIaXLqfTOuZcuW2LdvH54+fYo7d+6AYRi0/f/27j0uqjr/H/hrhmFABEFFuYmCpBEqqKAsueqWKJuZmWbkqigqmwoFktfWULMNNENx9RdpIa2/Vdzy0s0sQqDVSOXiLRVFMSgFRERuCsPM+f6BjDMBysw58Dlw3s/Hg8dDDmc+58WbmT6dcz7n8xkwAN27dxcyX4d0X6VG3q0qANR5EoE89RTrBNKkU/dfe/fDAIZRiEDc3QVpRpAZhkaMGCFElk4jr6QKag0HGwtTOFibs45DOoOcHNYJpCknRzvDUEjEDqSxTUMEUH/qFISY782oAUPk0S403u+07waZTMY4DekUFi5knUCadOoeuX8zwyBEKPLQUGHaEaQVoufhYCG6ZEsEkpjIOoE06dT9r1lH2OUggpH/+9/CtGPoC86ePQuNRiPIwTurCw9mFvJwpM6TEEI6I4M7z2HDhqH0wdyA/fv3x+3btwUP1ZFxHIdLRY0jbekxFSIQEaxNK0k6dVfL6G/QKQj0WTK487SxsUF+fj4A4Pr163QW+gdFFfdx954KJnIZnuhtyToO6Syqq1knkCaduj/3z8MMgxCh1JeXC9KOwZ3ntGnTMHbsWLi6ukImk8HHxwf9+/dv9kuKGs86+9t2hZmC/k+VCIRWKWJDp+7Tf/yMYRAiFPmWLYK0Y/CjKjt27MDUqVORl5eHN954AyEhIbCyosuTjXIfdJ5P2lNNiIDeeguIpOnh2t1bbwHT5gIAQo58DOD/MY1D+JO//TawbBnvdox6zrNxObKsrCyEh4dT56mjsfN0p86TEEI6LV6TJOzatQvl5eX44IMPcPHiRQDAoEGDMG/ePFhbS3MB6EvaM08aaUsIIZ0Vr+c8MzMz4ebmhs2bN6OsrAxlZWWIjY2Fm5sbsrOzhcrYYajUGlwtaZiW70k7OvMkAvqFJiVnQqfuc99MYBiECKX+9GlB2uHVeS5ZsgSTJ0/G9evXceDAARw4cAD5+fmYNGkSIiIiBAnYkfx6uxp1ag0slCbo070L6zikM3lwZYe0M5269ysuYBiECEV26ZIg7fA+81yxYgUUiodXfxUKBZYvX47MzEze4Tqaxku2A+2sIJfTtHxEQC+/zDqBNOnUfd3/X8suBxGMyauvCtIOr86zW7duKCho+n9jhYWFkhxERIOFCCFEGnh1noGBgZg/fz727duHwsJCFBYWIikpCQsWLMCMGTOEythhXKLHVAghRBJ4dZ6bNm3C1KlTERQUBBcXF7i4uGDu3Ll4+eWXsWHDBqPb3b59O1xcXGBubg5fX1+cPHnykfuXl5cjNDQUDg4OMDMzw8CBA3H4cPvPBqJ9xpMGCxGhHTzIOoE06dR9ddA7DIMQoag/E2ayC16PqiiVSsTFxSE6OhpXr14FALi5ucHCwsLoNvft24fIyEjEx8fD19cXW7ZsQUBAAHJzc9G7d+8m+9fV1WH8+PHo3bs3Pv/8czg5OeHXX3+FjY2N0RmMUVNXj4KyGgB05knagJsb6wTSpFP3Gz0dGQYhQuEEmv1OkCXJLCwsMGTIEAwZMoRXxwkAsbGxCAkJQXBwMDw8PBAfHw8LCwskJDQ/TDwhIQFlZWU4dOgQRo0aBRcXF4wdOxZeXl68chjqcnHDIyq2lmboaWnWrscmEuDpyTqBNOnUPWHzAoZBiFAU3t7CtCNIKwKpq6tDVlYWVq1apd0ml8vh7++PjIyMZl/z5Zdfws/PD6Ghofjiiy/Qq1cv/O1vf8OKFStg0sLs+bW1taitrdV+X1HRsISYSqWCSqUyKvuF3+8AAAbadTW6jY6g8XfrzL+jkISqlwJAvQRqLrb3lwJAfb0aAMBBPLkaia1eYqZbo5bqZUgdRdV5lpaWQq1Ww87OTm+7nZ0dLrXwbM61a9dw9OhRzJw5E4cPH0ZeXh4WL14MlUqFNWvWNPua6OhorFu3rsn21NRUo8+cv8uXA5BDWVPK5H5re0tOTmYdoUPhW69JGo0k3leNxPL+mqTRICPjJwAKgINo/wZiqVdHoHnEZ6mmpqbV7Yiq8zSGRqNB7969sWPHDpiYmMDb2xu///473n///RY7z1WrViFSZ5LtiooKODs745lnnkHPnj2NypG0KxNAGQL+NAQThzsZ1UZHoFKpkJycjPHjx8PU1JR1HNETrF4xMZg4caJwwURKdO+vmBj4+T2NLedP4qOJf8cikf0NRFcvEWuslfqf/2zxs9R4FbI1RNV52trawsTEBMXFxXrbi4uLYW9v3+xrHBwcYGpqqneJ9qmnnkJRURHq6uqgVCqbvMbMzAxmZk3vS5qamhr9BrzyYFo+D0cbSbyJ+dRKinjXKzISUlrgTjTvr8hIKH4tAwAcGD0Nb4ghUzNEU68OQBYR0WKtDKmhIAOGhKJUKuHt7Y2UlBTtNo1Gg5SUFPj5+TX7mlGjRiEvL09vUe7Lly/DwcGh2Y6zLZRW1aK0qg4yWcPsQoQIztycdQJp0qn7928FMAxChKIQaAIf3meeKSkpSElJQUlJiV4HBqDFEbKPEhkZiTlz5sDHxwcjR47Eli1bUF1djeDgYABAUFAQnJycEB0dDQBYtGgRtm3bhvDwcLz++uu4cuUK3nvvPbzxxht8f7VWa3y+s18PC3RRSun8gBBCpIlX57lu3Tq888478PHxgYODA2Qy/vO5BgYG4tatW4iKikJRURGGDh2KI0eOaAcRFRQUQC5/eMLs7OyM7777DkuWLIGnpyecnJwQHh6OFStW8M7SWjSzECGESAuvzjM+Ph6JiYmYPXu2UHkAAGFhYQgLC2v2Z2lpaU22+fn54eeffxY0gyFyixpuMtManqTNzJ/POoE06dT9mxET8RLDKEQYmuBgQcYP8LrnWVdXh6efflqAGB0bTQhP2tz27awTSJNO3eNeCmcYhAhFs3WrIO3w6jwXLFiAPXv2CBKko1JrOO3sQtR5kjYzZAjrBNKkU/eEWDr77wwUw4YJ0w6fF9+/fx87duzADz/8AE9PzybDfGNjY3mF6wgKympwT6WGuakc/Xp2ZR2HdFZXrrBOIE06de9T+hvDIEQweXmCNMOr8zx79iyGDh0KADh//rzez4QYPNQRXLrZcL9zoJ0VTGgBbEIIkQRenWdqaqpQOTqsS3S/k7SHMWNYJ5AmnbqfcfXECIZRiDC40aMhxGkO7+c8y8vL8cknn+DixYsAgEGDBmHevHmwtrbmHa4juEQjbUl7+P571gmk6fvvgQczDC0LeR9pbNMQAagPHxZkdiBebWRmZsLNzQ2bN29GWVkZysrKEBsbCzc3N2RnZwsQT/wazzyfojNP0pamTWOdQJp06r7u383PlU06FpNXXhGkHV6d55IlSzB58mRcv34dBw4cwIEDB5Cfn49JkyYhIiJCkIBiVl1LC2CTdvLNN6wTSJNO3f0usXuWnAhH9u23grTD67JtZmYmdu7cCYXiYTMKhQLLly+Hj48P73Bid7m4EhwH9LKiBbAJIURKeJ15duvWDQUFBU22FxYWwkqgyXfFjAYLkXbTwqpCpI3p1L3MqgfDIEQwAn2WeHWegYGBmD9/Pvbt24fCwkIUFhYiKSkJCxYswIwZMwQJKGaNMws95UCDhUgbu36ddQJp0qn7q6v2sstBBFMv0DPTvDrPTZs2YerUqQgKCoKLiwtcXFwwd+5cvPzyy9iwYYMgAcXs4oNnPJ+kZchIW1u1inUCadKpe8i3OxkGIUKR/+MfwrTD58VKpRJxcXG4c+cOTp8+jdOnT6OsrAybN29udrHpzoTjuIeXbR2o8yRtbPNm1gmkSafu0//3OcMgRChygea25f2cJwBYWFhgiMTm3iyuqMXdeyqYyGV4orcl6ziEEELakcGdZ2RkJNavX4+uXbsiMjLykft25rltLz6YHKG/bVeYKWgBbEIIkRKDO8+cnByoVCrtv1vS2ee2vXSz8ZItDRYi7aCkhHUCaSopAe7UAwCmRB3AYcZxCH/1v/8O08fv9lgGd56689l++umn6NOnD+Ry/VunHMehsLCQfzoRa1wAmx5TIe1i/34gOJh1CunZvx949kUAwJhzPwKYxDYP4U128CCwYAHvdngNGHJ1dUVpaWmT7WVlZXB1deXTtOjRM56kXS1axDqBNOnUPfLgFnY5iGBMwsIEaYdX58lxXLPbq6qqYG5uzqdpUaur1yCv5MEC2HTZlhBCJMeo0baNA4VkMhmioqJgYWGh/ZlarcaJEye063x2RtdKq1Cv4WBlroCjdef9nwRCCCHNM6rzbBwoxHEczp07B6VSqf2ZUqmEl5cXli5dKkxCEdIOFrK36vQDo4hIHDvGOoE06dT99UVb8RHDKEQY6rQ0QZ7RNKqNxkFDwcHBiIuLQ7du0rp0eVE7WEhavzdhqLaWdQJp0qm7qVrFMAgRjECfJV73PHft2iW5jhN4OKctzSxE2s24cawTSJNO3WN3vMkwCBGKSUCAIO3w6jyjo6ORkJDQZHtCQgKvuW23b98OFxcXmJubw9fXFydPnmzV65KSkiCTyTBlyhSjj90aupdtCSGESA+vzvOjjz6Cu7t7k+2DBg1CfHy8UW3u27cPkZGRWLNmDbKzs+Hl5YWAgACUPOYh8evXr2Pp0qUYPXq0UcdtrfKaOhRV3AcADKQJ4QkhRJJ4dZ5FRUVwcHBosr1Xr164efOmUW3GxsYiJCQEwcHB8PDwQHx8PCwsLJo9w22kVqsxc+ZMrFu3Dv379zfquK3V+Hync48usDIXYp4KQlrhEe9/0oZ06r5h+nKGQYhQ1Dt2CNIOr87T2dkZx48fb7L9+PHjcHR0NLi9uro6ZGVlwd/f/2FAuRz+/v7IyMho8XXvvPMOevfujfnz5xt8TEM9XIZMevd6CUPjx7NOIE06dc8c4M0wCBEKp9O/8MFrxG5ISAgiIiKgUqnw7LPPAgBSUlKwfPlyvPmm4TfXS0tLoVarYWdnp7fdzs4Oly5davY1x44dwyeffILTp0+3+ji1tbWo1RlxVVHR0CGqVCrtvL0tOfdbOQDgKfuuj923M2r8naX4uxtDqHopnJ1RX1kpRCRRE9v7S+HsjPpfGqYa/e97gVCtrmacSJ/Y6iVmjTVS9O8PVQufJUPqyKvzXLZsGW7fvo3Fixejrq4OAGBubo4VK1ZgVTss3ltZWYnZs2dj586dsLW1bfXroqOjsW7duibbU1NT9SZ8aM6JXBMAMty7cQWHD182NHKnkZyczDpCh8K3XpM0Ghw+LJ1pycXy/pqk0SAj4ycACoCDaP8GYqlXR6B5xGeppqam1e3IuJbm2DNAVVUVLl68iC5dumDAgAFGL4RdV1cHCwsLfP7553ojZufMmYPy8nJ88cUXevufPn0aw4YNg4nJwyXBNBoNgIbLvbm5uXBzc2tynObOPJ2dnXHz5k307NmzxXy19RoMXZ+Ceg2H9DdHw9Gmi1G/Z0emUqmQnJyM8ePHw9SU7vk+jlD1UlhZSebMU0zvL4WVFU7+UojAnSeR+8FLkNeI78xTTPUSs8ZaTQ4MbPGzVFFRAVtbW9y9e/exj2EKshi2paUlRowYwbsdpVIJb29vpKSkaDtPjUaDlJQUhDUzma+7uzvOnTunt2316tWorKxEXFwcnJ2dmz2OmZlZsx28qanpI9+Al4rvol7DobuFKfraSnt2ocfViujjXa+VKyVVb9G8v1auhOLBer17/zIDc8WQqRmiqVcHoFm2rMVaGVJDQTrPCxcuoKCgQHvpttHkyZMNbisyMhJz5syBj48PRo4ciS1btqC6uhrBD5ZjCgoKgpOTE6Kjo2Fubo7Bgwfrvd7GxgYAmmwXwi837gIABjlaS7rjJAysXcs6gTStXQv8WgYASJwwF3OZhiFC0ERFweTxuz0Wr87z2rVreOmll3Du3DnIZDLtKiuNHYtarTa4zcDAQNy6dQtRUVEoKirC0KFDceTIEe0gooKCgibrh7aX89rOk0baknbm4AAY+fgX4cHBAfj5FwDA/vUvA8tuMw5E+FL07SvIZ4lX5xkeHg5XV1ekpKTA1dUVJ0+exO3bt/Hmm29i06ZNRrcbFhbW7GVaAEhLS3vkaxMTE40+7uP8cqNhVO4gJ+s2OwYhzbpzh3UCadKpu9W9zn/PWRIE+izx6jwzMjJw9OhR2NraQi6XQy6X489//jOio6PxxhtvaFdf6QzUGk77jCedeRJCiLTxuv6pVqthZdUwRZ2trS1u3LgBAOjXrx9yc3P5pxORa7eqcF+lgYXSBK49u7KOQ6Rm6lTWCaRJp+4/Dm7bqT9J++AEmvuc15nn4MGDcebMGbi6usLX1xcbN26EUqnEjh072nyavPbWeMnWw6Eb5HIaLETa2Z49rBNI05492gFD7/5tNYSZm4awpN69m99Z4wO82li9erV2kNA777yD/Px8jB49GocPH8bWrVsFiCceZ39rGCw0mO53EhbGjmWdQJp06r7lwwh2OYhgTARa3s/oM0+VSoWNGzdqV0954okncOnSJZSVlaF79+6d7lGOc7+XAwA8+1DnSRg4cYJ1AmnSqbtH4UWGQYhQZK1c4vJxjO48TU1Ncfbs2Sbbe/TowSuQGNWrNTj/e8NlW+o8CSGE8LpsO2vWLHzyySdCZRGtq7eqcU+lRlelCfrbWrKOQ6SoDSb9IK2gU/d8O1eGQYhQuEGDBGmH14Ch+vp6JCQk4IcffoC3tze6dtUfhRobG8srnFicebCSymAnaxosRNjIzGSdQJoyM7UDhl4Lj0ca2zREAOqff2Y/YOj8+fMYPnw4rKyscPnyZeTk5Gi/DFkiTOzOPug8vZxtmOYgEhYSwjqBNOnUfennxk/8QsTDZOFCQdrhdeaZmpoqSAixO1PYMNJ2CI20Jazs3g3s3Mk6hfTs3g2s3gAAmJBNy351BrL//AcQ4HajUWee165dgwArmXUINXX1uPBgZqHh/bozTkMIIUQMjOo8BwwYgFu3bmm/DwwMRHFxsWChxOTsb3eh1nCw72YOR2tz1nGIVCmVrBNIk07dVSa05FenINBnyajO849nnYcPH0Z1tbgWiRVK1q8Nkwh79+t8z66SDqSignUCadKp+/Prv2YYhAil/rYwK+OwWdurA8l+0HnSJVvC1MaNrBNIk07dX01LYhiECEXOY8UvvXaMeZFMJmtyFtYZz8o4jkNWwcMzT0KYiYpinUCadOo+7/tdDIMQocjXrROkHaNG23Ich7lz58LMzAwAcP/+fSxcuLDJc54HDhzgn5Cha6XVKK9RwUwhh4cDLUNGCCGkgVGd55w5c/S+nzVrliBhxKbxfqdXHxsoFXSFmxBCSAOjOs9du6Rx+YLudxLR6GTr43YYOnWfvexT7GMYhQij/vx5CDFumk6nHkF3pC0hTOXksE4gTTp1H/B7HsMgRCgygWa/o86zBXdrVLhSUgUAGN7Xhm0YQl59lXUCadKpe9Se9QyDEKGYCHSbkTrPFmQXNpx1utp2RU9LM8ZpCCGEiAl1ni3Q3u/sS5dsCSGE6KPOswUn8huWIaL7nUQUvvqKdQJp0qn7qrn/ZBiECEV98KAg7fDuPP/3v/9h1qxZ8PPzw++//w4A2L17N44dO8Y7HCs1dfXIeTA5wtNuPRmnIQSAkxPrBNKkU/dSa1uGQYhQOEdHQdrh1Xnu378fAQEB6NKlC3JyclBbWwsAuHv3Lt577z2j292+fTtcXFxgbm4OX19fnDx5ssV9d+7cidGjR6N79+7o3r07/P39H7l/a5y6fgcqNQcnmy7o19OCV1uECGL4cNYJpEmn7jvjXmMYhAhF4esrSDu8Os93330X8fHx2LlzJ0xNHz45M2rUKGRnZxvV5r59+xAZGYk1a9YgOzsbXl5eCAgIQElJSbP7p6WlYcaMGUhNTUVGRgacnZ0xYcIE7VmwMX7KKwXQcNbZGacdJIQQwg+vzjM3Nxdjxoxpst3a2hrl5eVGtRkbG4uQkBAEBwfDw8MD8fHxsLCwQEJCQrP7/+c//8HixYsxdOhQuLu74+OPP4ZGo0FKSopRxweA41cbOs9RT9BlGkIIIU0ZNcNQI3t7e+Tl5cHFxUVv+7Fjx9C/f3+D26urq0NWVhZWrVql3SaXy+Hv74+MjIxWtVFTUwOVSoUePXq0uE9tba32EjMAVDxYdkilUuHW3Rr8cqPh+xH9rKFSqQz+PTqzxnpQXVpHqHrJN26ERgI1F9v7S75xI+rr1QCA7c8vQphIcjUSW73ETFur6GjIWqiXIXXk1XmGhIQgPDwcCQkJkMlkuHHjBjIyMrB06VK8/fbbBrdXWloKtVoNOzs7ve12dna4dOlSq9pYsWIFHB0d4e/v3+I+0dHRWNfMzPqpqam4cq8rOM4E9l04ZP7P+LPXzi45OZl1hA6Fb71kffqAO3xYoDTiJ5b3l6xPH1zL+AmAAkmez6K/SP8GYqlXR3CkX78WP0s1NTWtbodX57ly5UpoNBqMGzcONTU1GDNmDMzMzLB06VK8/vrrfJo2SkxMDJKSkpCWlgZzc/MW91u1ahUiIyO131dUVMDZ2RnPPPMMzv9UAqAQ4736YeJE93ZI3bGoVCokJydj/Pjxeve5SfOEqpfCygr1lZUCJhMnsb2/FFZWOPlLIbacP4kfo6dDXlPNOpIesdVLzBpr9cLf/tbiZ6nCgEXneXWeMpkM//jHP7Bs2TLk5eWhqqoKHh4esLS0NKo9W1tbmJiYoLi4WG97cXEx7O3tH/naTZs2ISYmBj/88AM8PT0fua+ZmZl2OTVdCoUCx682rDL+5wG96M34CKamplQfAwhRLynVW0zvL4XCBAAgg3j/BmKqV0fQUq0MqaEgkyQolUp4eHhg5MiRRnecje14e3vrDfZpHPzj5+fX4us2btyI9evX48iRI/Dx8TH6+Ndv1+D67RooTeQ0WIgQQkiLDD7z1L3c+TixsbGGNo/IyEjMmTMHPj4+GDlyJLZs2YLq6moEBwcDAIKCguDk5ITo6GgAwIYNGxAVFYU9e/bAxcUFRUVFAABLS0uDO/L0Kw2jbP/k1hOWZrxOygkR1mv0jCETOnX/0vcFvMwwChGGJiQEJgK0Y3APkdPKpZGMfT4yMDAQt27dQlRUFIqKijB06FAcOXJEO4iooKAAcvnDE+YPP/wQdXV1ePll/bf1mjVrsHbtWoOO/ePlhs7T/6neRmUnpM3ExbFOIE1xccCvDVN1bnsxjDrPTkATG8um80xNTRXgsI8WFhaGsLCwZn+Wlpam9/3169cFO+6Z3+4CSgs8606dJxEZDw/gwgXWKaTHwwP4tmGq0cRNwcCy62zzEN4Unp7AxYu826GJ4XVoOOAph27o052m5CMic+0a6wTSpFN3x7IbDIMQweTnC9IM7xt75eXl+OSTT3DxQU/u4eGB+fPnw9ramnc4FuiSLSGEkMfhdeaZmZkJNzc3bN68GWVlZSgrK8PmzZvh5uZm9Ny2rPk/Zff4nQhpb888wzqBNOnUPcdtGMMgRCjcX/4iSDu8Os8lS5Zg8uTJuH79Og4cOIADBw4gPz8fkyZNQkREhCAB21Of7ubw7NMxz5hJJ/ftt6wTSJNO3VfMj2EYhAhFLdDauLzPPFesWAGF4uHVX4VCgeXLlyMzM5N3uPb210H2tIoKEacpU1gnkCadur/7qeFTjhLxMZk2TZB2eHWe3bp1Q0FBQZPthYWFsLKy4tM0E38dRPc7iUgdOcI6gTTp1H1kLr91ggl7ag0g+/57qDUc77Z4dZ6BgYGYP38+9u3bh8LCQhQWFiIpKQkLFizAjBkzeIdrb269jJ8diRBCiLjtvy5HXb0G/zp6hXdbvEbbbtq0CTKZDEFBQaivrwfHcVAqlVi0aBFiYuj+ACGCcXJinUCadOp+q5st6K/QsXEAiqx6Qi7A7TleZ55KpRJxcXG4c+cOTp8+jTNnzmhH3DY38TohxEhXr7JOIE06dZ+58j8MgxAhcBww9rWPIcTIFqPOPOfNm9eq/RISEoxpnhDyR8uXAxs3sk4hPcuXA6ErAQCvffMRsIweGeroVqYmQB2wgXc7Rp15JiYmIjU1FeXl5bhz506LX4QQgWzdyjqBNOnUfdrxAwyDECFoOCA46ysI8VCFUWeeixYtwt69e5Gfn4/g4GDMmjULPXr04J+GEEIIaSONY2xlAly4NerMc/v27bh58yaWL1+Or776Cs7OznjllVfw3XffgeP4DwEmhBBC2opcgDNPowcMmZmZYcaMGUhOTsaFCxcwaNAgLF68GC4uLqiqquKfjBDy0O3brBNIk07dJ689xC4HEQTHAUPf2CvIZVtBVlWRy+WQyWTgOA5qtVqIJgkhuvbuZZ1AmnTqPi7nKMMgRAgaAJMvprN9VKW2thZ79+7F+PHjMXDgQJw7dw7btm1DQUEBLC1psgFCBNXC+rakjenUPfwLGrTVGbyTHC/INKxGDRhavHgxkpKS4OzsjHnz5mHv3r2wtbXlHYYQQghpK41Dcpg95xkfH4++ffuif//+SE9PR3p6erP7HThAQ7sJIYSIQ+NwViEGDBnVeQYFBdHqI4S0p4wM1gmkSafui0O34WOGUQh/HICpszfhFVaXbRMTE3kfmBBigMpK1gmkqbISePAIu0VtDdsshDeOA7rW3WP7qAohpB1NmMA6gTTp1H3Tx8sZBiFC4ADs3ve2IFdOqfMkhBAiCdoBQ3TmSQghhLTOwwFDnfTMc/v27XBxcYG5uTl8fX1x8uSjV3D/7LPP4O7uDnNzcwwZMgSHDx9up6SEtJNPP2WdQJp06h79ykqGQYhQ3nx+CbtHVdrSvn37EBkZifj4ePj6+mLLli0ICAhAbm4uevfu3WT/n376CTNmzEB0dDQmTZqEPXv2YMqUKcjOzsbgwYMZ/AaEtIExY1gnkKYxY4C6hn+m9HJH4aen2Ob5A42GQ0mJHF+U5UAuxCiYTkyj4XC9SoZi58EYw2q0bVuKjY1FSEgIgoODATQ8U/rNN98gISEBK1c2/T+/uLg4/PWvf8WyZcsAAOvXr0dycjK2bduG+Pj4ds1OSJtxdQXu32edQnpcXdHzt4b5bZO3zcWTSw8yDtQcOXDnFusQHYQMWfHz8VPYb7xbElXnWVdXh6ysLKxatUq7TS6Xw9/fHxktPOeWkZGByMhIvW0BAQE4dOhQW0YlhEiEi21XJP39T1BslmPDtCGs4+hRq9U4e/YcPD2HwMTEhHUcUWuslcJEjjEDe/FuT1SdZ2lpKdRqNezs7PS229nZ4dKlS82+pqioqNn9i4qKWjxObW0tamtrtd/fvXsXAFBWVmZsdMlQqVSoqanB7du3YWpqyjqO6AlVLwXHoV4CK6uI7f3VWPcB1kAVOPj378o6kh6VSgVZfjWecekiinqJWWOtqsCh/k7z/62vfPA8dWuW1hRV59leoqOjsW7duibbBw4cyCANIa1E80ezoVt3+ht0Do/5O1ZWVsLa2vqR+4iq87S1tYWJiQmKi4v1thcXF8Pe3r7Z19jb2xu0PwCsWrVK71JveXk5+vXrh4KCgscWTOoqKirg7OyMwsJCdOvWjXUc0aN6GYbqZRiqV+u1plYcx6GyshKOjo6PbU9UnadSqYS3tzdSUlIwZcoUAIBGo0FKSgrCWliSyc/PDykpKYiIiNBuS05Ohp+fX4vHMTMzg5mZWZPt1tbW9AZspW7dulGtDED1MgzVyzBUr9Z7XK1aewIlqs4TACIjIzFnzhz4+Phg5MiR2LJlC6qrq7Wjb4OCguDk5ITo6GgAQHh4OMaOHYsPPvgAzz//PJKSkpCZmYkdO3aw/DUIIYR0YqLrPAMDA3Hr1i1ERUWhqKgIQ4cOxZEjR7SDggoKCiCXP5zb4emnn8aePXuwevVqvPXWWxgwYAAOHTpEz3gSQghpM6LrPAEgLCysxcu0aWlpTbZNnz4d06dPN/p4ZmZmWLNmTbOXcok+qpVhqF6GoXoZhurVekLXSsa1ZkwuIYQQQrREObctIYQQImbUeRJCCCEGos6TEEIIMRB1noQQQoiBJN95Grp2qFT8+OOPeOGFF+Do6AiZTNZkon2O4xAVFQUHBwd06dIF/v7+uHLlCpuwjEVHR2PEiBGwsrJC7969MWXKFOTm5urtc//+fYSGhqJnz56wtLTEtGnTmsyMJRUffvghPD09tQ+r+/n54dtvv9X+nGrVspiYGMhkMr1JYahe+tauXQuZTKb35e7urv25UPWSdOfZuHbomjVrkJ2dDS8vLwQEBKCkpIR1NOaqq6vh5eWF7du3N/vzjRs3YuvWrYiPj8eJEyfQtWtXBAQE4L4El81KT09HaGgofv75ZyQnJ0OlUmHChAmorq7W7rNkyRJ89dVX+Oyzz5Ceno4bN25g6tSpDFOz06dPH8TExCArKwuZmZl49tln8eKLL+KXX34BQLVqyalTp/DRRx/B09NTbzvVq6lBgwbh5s2b2q9jx45pfyZYvTgJGzlyJBcaGqr9Xq1Wc46Ojlx0dDTDVOIDgDt48KD2e41Gw9nb23Pvv/++dlt5eTlnZmbG7d27l0FCcSkpKeEAcOnp6RzHNdTG1NSU++yzz7T7XLx4kQPAZWRksIopKt27d+c+/vhjqlULKisruQEDBnDJycnc2LFjufDwcI7j6L3VnDVr1nBeXl7N/kzIekn2zLNx7VB/f3/ttsetHUoa5Ofno6ioSK921tbW8PX1pdrh4RJ3PXr0AABkZWVBpVLp1cvd3R19+/aVfL3UajWSkpJQXV0NPz8/qlULQkND8fzzz+vVBaD3VkuuXLkCR0dH9O/fHzNnzkRBQQEAYeslyhmG2oMxa4eSBo1rpRq6jqoUaDQaREREYNSoUdopIouKiqBUKmFjY6O3r5Trde7cOfj5+eH+/fuwtLTEwYMH4eHhgdOnT1Ot/iApKQnZ2dk4depUk5/Re6spX19fJCYm4sknn8TNmzexbt06jB49GufPnxe0XpLtPAlpC6GhoTh//rzePRbS1JNPPonTp0/j7t27+PzzzzFnzhykp6ezjiU6hYWFCA8PR3JyMszNzVnH6RCee+457b89PT3h6+uLfv364b///S+6dOki2HEke9nWmLVDSYPG+lDt9IWFheHrr79Gamoq+vTpo91ub2+Puro6lJeX6+0v5XoplUo88cQT8Pb2RnR0NLy8vBAXF0e1+oOsrCyUlJRg+PDhUCgUUCgUSE9Px9atW6FQKGBnZ0f1egwbGxsMHDgQeXl5gr6/JNt56q4d2qhx7dBHrQVKAFdXV9jb2+vVrqKiAidOnJBk7TiOQ1hYGA4ePIijR4/C1dVV7+fe3t4wNTXVq1dubi4KCgokWa/maDQa1NbWUq3+YNy4cTh37hxOnz6t/fLx8cHMmTO1/6Z6PVpVVRWuXr0KBwcHYd9fPAY1dXhJSUmcmZkZl5iYyF24cIH7+9//ztnY2HBFRUWsozFXWVnJ5eTkcDk5ORwALjY2lsvJyeF+/fVXjuM4LiYmhrOxseG++OIL7uzZs9yLL77Iubq6cvfu3WOcvP0tWrSIs7a25tLS0ribN29qv2pqarT7LFy4kOvbty939OhRLjMzk/Pz8+P8/PwYpmZn5cqVXHp6Opefn8+dPXuWW7lyJSeTybjvv/+e4ziq1ePojrblOKrXH7355ptcWloal5+fzx0/fpzz9/fnbG1tuZKSEo7jhKuXpDtPjuO4f/3rX1zfvn05pVLJjRw5kvv5559ZRxKF1NRUDkCTrzlz5nAc1/C4yttvv83Z2dlxZmZm3Lhx47jc3Fy2oRlprk4AuF27dmn3uXfvHrd48WKue/funIWFBffSSy9xN2/eZBeaoXnz5nH9+vXjlEol16tXL27cuHHajpPjqFaP88fOk+qlLzAwkHNwcOCUSiXn5OTEBQYGcnl5edqfC1UvWpKMEEIIMZBk73kSQgghxqLOkxBCCDEQdZ6EEEKIgajzJIQQQgxEnSchhBBiIOo8CSGEEANR50kIIYQYiDpPQkRq7ty5mDJlSrsfNzExETKZDDKZDBEREbzb+uMKFo8zd+5c7fEPHTrE6/iEtBVaVYUQBmQy2SN/vmbNGsTFxYHVHCbdunVDbm4uunbtyqudwMBATJw40aDXxMXFISYmBg4ODryOTUhbos6TEAZu3ryp/fe+ffsQFRWF3Nxc7TZLS0tYWlqyiAagoXMXYlWOLl26GLwMlLW1NaytrXkfm5C2RJdtCWHA3t5e+2Vtba3trBq/LC0tm1y2/ctf/oLXX38dERER6N69O+zs7LBz505UV1cjODgYVlZWeOKJJ/Dtt9/qHev8+fN47rnnYGlpCTs7O8yePRulpaUGZ3ZxccG7776LoKAgWFpaol+/fvjyyy9x69YtvPjii7C0tISnpycyMzO1r/njZdu1a9di6NCh2L17N1xcXGBtbY1XX30VlZWVBuchhCXqPAnpQD799FPY2tri5MmTeP3117Fo0SJMnz4dTz/9NLKzszFhwgTMnj0bNTU1AIDy8nI8++yzGDZsGDIzM3HkyBEUFxfjlVdeMer4mzdvxqhRo5CTk4Pnn38es2fPRlBQEGbNmoXs7Gy4ubkhKCjokZebr169ikOHDuHrr7/G119/jfT0dMTExBiVhxBWqPMkpAPx8vLC6tWrMWDAAKxatQrm5uawtbVFSEgIBgwYgKioKNy+fRtnz54FAGzbtg3Dhg3De++9B3d3dwwbNgwJCQlITU3F5cuXDT7+xIkT8dprr2mPVVFRgREjRmD69OkYOHAgVqxYgYsXLzZZKF2XRqNBYmIiBg8ejNGjR2P27Nl66ysS0hHQPU9COhBPT0/tv01MTNCzZ08MGTJEu83Ozg4AUFJSAgA4c+YMUlNTm71/evXqVQwcONDo4zceq6Xjt3TP1MXFBVZWVtrvHRwctHkJ6Sio8ySkAzE1NdX7XiaT6W1rHMWr0WgAAFVVVXjhhRewYcOGJm0ZM5q1uWM96viPa6PxNY/anxAxos6TkE5s+PDh2L9/P1xcXKBQ0MedEKHQPU9COrHQ0FCUlZVhxowZOHXqFK5evYrvvvsOwcHBUKvVrOMR0mFR50lIJ+bo6Ijjx49DrVZjwoQJGDJkCCIiImBjYwO5nD7+hBhLxrGawoQQIkqJiYmIiIhAeXk50xwymQwHDx5kMkUhIY9D/+tJCGni7t27sLS0xIoVK9r92AsXLmQ6uxIhrUFnnoQQPZWVldrnNG1sbGBra9uuxy8pKUFFRQWAhhHBfOfXJaQtUOdJCCGEGIgu2xJCCCEGos6TEEIIMRB1noQQQoiBqPMkhBBCDESdJyGEEGIg6jwJIYQQA1HnSQghhBiIOk9CCCHEQNR5EkIIIQb6P/ZUCsZgztkwAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# create concrete model\n", + "m = ConcreteModel()\n", + "\n", + "# create flowsheet\n", + "m.fs = FlowsheetBlock(dynamic=False)" ] - }, - "metadata": {}, - "output_type": "display_data" + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.1: Adding the TSA Unit Model\n", + "\n", + "Now, we will be adding the fixed bed temperature swing adsorption (TSA) cycle model (assigned a name tsa).\n", + "\n", + "The TSA unit model builds variables, constraints and expressions for a solid sorbent based TSA capture system. This IDAES model can take up to 11 config arguments:\n", + "\n", + "1. `dynamic`: to set up the model as steady state. The IDAES fixed bed TSA 0D\n", + " unit model only supports steady state as the dynamic nature of the adsorption\n", + " cycle is handled in internal blocks for each cycle step of the unit. This\n", + " config argument is used to enable the TSA unit model to connect with other\n", + " IDAES unit models.\n", + "2. `adsorbent`: to set up the adsorbent to be used in the fixed bed TSA system. \n", + " Supported values currently are `Adsorbent.zeolite_13x`, `Adsorbent.mmen_mg_mof_74`, and `Adsorbent.polystyrene_amine`.\n", + "3. `number_of_beds`: to set up the number of beds to be used in the unit model.\n", + " This config argument accepts either an `int` (model assumes a fixed number of beds) or `None` (model calculates the number of beds).\n", + "4. `compressor`: indicates whether a compressor unit should be added to the\n", + " fixed bed TSA system to calculate the energy required to overcome\n", + " the pressure drop in the system. Supported values are `True` and `False`.\n", + "5. `compressor_properties`: indicates a property package to use in the compressor unit model.\n", + "6. `steam_calculation`: indicates whether a method to estimate the steam flow rate\n", + " required in the desorption step should be included. Supported values are: `SteamCalculationType.none`,\n", + " steam calculation method is not included. `SteamCalculationType.simplified`, a surrogate model is used\n", + " to estimate the mass flow rate of steam. `SteamCalculationType.rigorous`, a heater unit model is\n", + " included in the TSA system assuming total saturation.\n", + "7. `steam_properties`: indicates a property package to use for rigorous steam calculations. Currently, only the iapws95 property package is supported.\n", + "8. `transformation_method`: to set up the discretization method to be use for the time\n", + " domain. The discretization method must be a method recognized by the\n", + " Pyomo `TransformationFactory`. Supported values are `dae.finite_difference` and\n", + " `dae.collocation`.\n", + "9. `transformation_scheme`: to set up the scheme to use when discretizing the time domain.\n", + " Supported values are: `TransformationScheme.backward` and `TransformationScheme.forward` for finite difference transformation\n", + " method. `TransformationScheme.lagrangeRadau` for collocation transformation method.\n", + "10. `finite_elements`: to set up the number of finite elements to use when discretizing\n", + " the time domain.\n", + "11. `collocation_points`: to set up the number of collocation points to use per finite element\n", + " when the discretization method is `dae.collocation`.\n", + " \n", + "
\n", + "Note: a default value defined in the IDAES unit class is used for\n", + " a config argument when no value is passed in the time the unit model\n", + " is called.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# add tsa unit\n", + "m.fs.tsa = FixedBedTSA0D(adsorbent=Adsorbent.zeolite_13x, number_of_beds=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2: Fix Specifications of Feed Stream in TSA Unit\n", + "\n", + "The inlet specifications of the TSA unit are fixed to match the exhaust gas stream (stream 8) of case B31B in the NETL baseline report, which is a exhaust gas stream after 90% carbon capture by means of a solvent-based capture system." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# fix inlet conditions of tsa unit - baseline case from Joss et al. 2015\n", + "flue_gas = {\n", + " \"flow_mol_comp\": {\n", + " \"H2O\": 0.0,\n", + " \"CO2\": 0.00960 * 0.12,\n", + " \"N2\": 0.00960 * 0.88,\n", + " \"O2\": 0.0,\n", + " },\n", + " \"temperature\": 300.0,\n", + " \"pressure\": 1.0e5,\n", + "}\n", + "for i in m.fs.tsa.component_list:\n", + " m.fs.tsa.inlet.flow_mol_comp[:, i].fix(flue_gas[\"flow_mol_comp\"][i])\n", + "m.fs.tsa.inlet.temperature.fix(flue_gas[\"temperature\"])\n", + "m.fs.tsa.inlet.pressure.fix(flue_gas[\"pressure\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.3: Fix DOF of TSA unit\n", + "\n", + "The degrees of freedom of the TSA unit model are: adsorption and desorption temperatures, temperatures of heating and cooling fluids, column diameter, and column height. These variables must be fixed to solve a square problem." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The DOF of the TSA unit is 0\n" + ] + } + ], + "source": [ + "# fix design and operating variables of tsa unit - baseline case from Joss et al. 2015\n", + "m.fs.tsa.temperature_desorption.fix(430)\n", + "m.fs.tsa.temperature_adsorption.fix(310)\n", + "m.fs.tsa.temperature_heating.fix(440)\n", + "m.fs.tsa.temperature_cooling.fix(300)\n", + "m.fs.tsa.bed_diameter.fix(3 / 100)\n", + "m.fs.tsa.bed_height.fix(1.2)\n", + "\n", + "\n", + "# check the degrees of freedom\n", + "DOF = degrees_of_freedom(m)\n", + "print(f\"The DOF of the TSA unit is {DOF}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.4: Scaling Unit Models\n", + "\n", + "Creating well scaled models is important for increasing the efficiency and reliability of solvers. Depending on unit models, variables and constraints are often badly scaled. IDAES unit models contain a method to scale variables and constraints to improve solver convergence. To apply the scaled factors defined in each unit model, we need to call the IDAES method `calculate_scaling_factors` in `idaes.core.util.scaling`." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# scaling factors\n", + "iutil.scaling.calculate_scaling_factors(m.fs.tsa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.5: Define Solver and Solver Options\n", + "\n", + "We select the solver that we will be using to initialize and solve the flowsheet." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# define solver options\n", + "solver_options = {\n", + " \"nlp_scaling_method\": \"user-scaling\",\n", + " \"tol\": 1e-6,\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.6: Initialization of Unit Models\n", + "\n", + "IDAES includes pre-written initialization routines for all unit models. To initialize the TSA unit model, call the method `m.fs.tsa.initialize()`.\n", + "\n", + "
\n", + "Note: initialize methods in IDAES unit models solve a square problem,\n", + " so the user needs to be sure that the degrees of freedom of the unit being\n", + " initialized are zero.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2023-10-26 15:28:28 [INFO] idaes.init.fs.tsa: Starting fixed bed TSA initialization\n", + "2023-10-26 15:28:45 [INFO] idaes.init.fs.tsa.heating: Starting initialization of heating step.\n", + "2023-10-26 15:28:47 [INFO] idaes.init.fs.tsa.heating: Initialization of heating step completed optimal - Optimal Solution Found.\n", + "2023-10-26 15:29:01 [INFO] idaes.init.fs.tsa.cooling: Starting initialization of cooling step.\n", + "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.cooling: Initialization of cooling step completed optimal - Optimal Solution Found.\n", + "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.pressurization: Starting initialization of pressurization step.\n", + "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.pressurization: Initialization of pressurization step completed optimal - Optimal Solution Found.\n", + "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.adsorption: Starting initialization of adsorption step.\n", + "2023-10-26 15:29:04 [INFO] idaes.init.fs.tsa.adsorption: Initialization of adsorption step completed optimal - Optimal Solution Found.\n", + "2023-10-26 15:29:13 [INFO] idaes.init.fs.tsa: Initialization of fixed bed TSA model completed optimal - Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# initialize tsa unit\n", + "initializer = FixedBedTSA0DInitializer(\n", + " output_level=idaeslog.INFO, solver_options=solver_options\n", + ")\n", + "initializer.initialize(m.fs.tsa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3: Solve the TSA Unit Model\n", + "\n", + "Now, we can simulate the TSA unit model by solving a square problem. For this, we need to set up the solver by using the Pyomo component `SolverFactory`. We will be using the solver and solver options defined during the initialization." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'fs.tsa.cooling.scaling_factor' that\n", + "contains 4 component keys that are not exported as part of the NL file.\n", + "Skipping.\n", + "WARNING: model contains export suffix 'fs.tsa.heating.scaling_factor' that\n", + "contains 2 component keys that are not exported as part of the NL file.\n", + "Skipping.\n", + "WARNING: model contains export suffix 'fs.tsa.scaling_factor' that contains 12\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "Ipopt 3.13.2: nlp_scaling_method=user-scaling\n", + "tol=1e-06\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 19132\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 70375\n", + "\n", + "Total number of variables............................: 2815\n", + " variables with only lower bounds: 5\n", + " variables with lower and upper bounds: 605\n", + " variables with only upper bounds: 1\n", + "Total number of equality constraints.................: 2815\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 3.63e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.06e+00 3.00e+03 -1.0 4.96e+00 - 9.90e-01 9.90e-01h 1\n", + " 2 0.0000000e+00 4.90e-03 4.83e+03 -1.0 4.91e+00 - 9.90e-01 9.96e-01h 1\n", + " 3 0.0000000e+00 2.44e-07 4.53e+00 -1.0 2.25e-02 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.0710209608078003e-07 2.4400780240796394e-07\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.0710209608078003e-07 2.4400780240796394e-07\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 3.208\n", + "Total CPU secs in NLP function evaluations = 0.089\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# set up solver to solve flowsheet\n", + "solver = SolverFactory(\"ipopt\")\n", + "solver.options = solver_options\n", + "\n", + "# solve flowsheet\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check solver solve status\n", + "from pyomo.environ import TerminationCondition\n", + "\n", + "assert results.solver.termination_condition == TerminationCondition.optimal" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 4: Viewing the Simulation Results\n", + "\n", + "We will call some utility methods defined in the TSA unit model to get displayed some key variables." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Summary - tsa\n", + "------------------------------------------------------------------------------------ Value \n", + " Adsorption temperature [K] 310.00\n", + " Desorption temperature [K] 430.00\n", + " Heating temperature [K] 440.00\n", + " Cooling temperature [K] 300.00\n", + " Column diameter [m] 0.030000\n", + " Column length [m] 1.2000\n", + " Column volume [m3] 0.00084823\n", + " CO2 mole fraction at feed [%] 12.000\n", + " Feed flow rate [mol/s] 0.0096000\n", + " Feed velocity [m/s] 0.50008\n", + " Minimum fluidization velocity [m/s] 1.5207\n", + " Time of heating step [h] 0.37030\n", + " Time of cooling step [h] 0.20826\n", + " Time of pressurization step [h] 0.0051098\n", + " Time of adsorption step [h] 0.25221\n", + " Cycle time [h] 0.83588\n", + " Purity [-] 0.90219\n", + " Recovery [-] 0.89873\n", + " Productivity [kg CO2/ton/h] 84.085\n", + " Specific energy [MJ/kg CO2] 3.6532\n", + " Heat duty per bed [MW] 5.1244e-05\n", + " Heat duty total [MW] 0.00016646\n", + " Pressure drop [Pa] 5263.6\n", + " Number of beds 3.2484\n", + " CO2 captured in one cycle per bed [kg/cycle] 0.042210\n", + " Cycles per year 10480.\n", + " Total CO2 captured per year [tonne/year] 1.4369\n", + " Amount of flue gas processed per year [Gmol/year] 0.00030275\n", + " Amount of flue gas processed per year (target) [Gmol/year] 0.00030275\n", + " Amount of CO2 to atmosphere [mol/s] 0.00011667\n", + " Concentration of CO2 emitted to atmosphere [ppm] 13803.\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "# summary tsa\n", + "tsa_summary(m.fs.tsa)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "import pytest\n", + "\n", + "assert value(m.fs.tsa.purity) == pytest.approx(0.90219, abs=1e-5)\n", + "assert value(m.fs.tsa.recovery) == pytest.approx(0.89873, abs=1e-5)\n", + "assert value(m.fs.tsa.specific_energy) == pytest.approx(3.6532, abs=1e-4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 5: Plotting Profiles\n", + "\n", + "Call plots method in the FixedBedTSA0D model to generate profiles of temperature, pressure and $\\mathrm{CO_{2}}$ concentration at the outlet of the column." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAKnCAYAAADgN8aBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+C0lEQVR4nOzdeVwU9f8H8Nfe3LdcgoK3qCBiIpp5cXhkZn77WpqapaVhP5WytDxSM4/KtMIj8+hbmaZlap6I4H0ieIsXisolICznssf8/kC2Ja5ddmBm2ffz8eDhMjvzmTfvWXwzM5/5fAQMwzAghBBCiN6EXAdACCGEmBoqnoQQQoiBqHgSQgghBqLiSQghhBiIiichhBBiICqehBBCiIGoeBJCCCEGouJJCCGEGEjMdQB8oNFokJaWBltbWwgEAq7DIYQQwgGGYVBQUABPT08IhbWfW1LxBJCWlgZvb2+uwyCEEMIDDx8+hJeXV63rUPEEYGtrCwBISUmBk5MTx9Hwm1KpxKFDhxAeHg6JRMJ1OLzHWr7u3AHatGEvMJ7i3edLN+88PAa8yxePaXPVqhUkHTtWu45cLoe3t7e2JtSGiiegvVRra2sLOzs7jqPhN6VSCSsrK9jZ2dEvqx5Yy1dmJtCtG3uB8RTvPl+6eefhMeBdvnisIlf2WVkQBwfXuq4+t++owxAhpmDECK4jME+6eadj0CSIXn2VlXaoeBJCCCEGouJJCCGEGIiKJyGmYMcOriMwT7p5p2PQJKi3bmWlHSqehJiCGnoHkgamm3c6Bk0C06EDK+1Q8STEFHTqxHUE5kk373QMmgRx166stEPFkxBCCDEQFU9CCCHEQDRIAiE8pdEweJBbjNuZBQieuwD2XAdkjr74ovrXxGRpFi2CiIV2qHgSwgNqDYO7Twpx6WEerj7Ox7U0OW6ky1FUpgYAtHcLwUGOYzRLUVHVvyYmSzN9OhVPQkwRwzB4nFeCy4/ycelhHpKeFcyKQqlLJhZCodJg58fhyHo7D652FhxEbMasrYGioqqvickSOziwchypeBLSwJQa4MKDp0h8JEfC/ae49CgP2YVlVdazkorQubk9/Jvbo1NzO3TytEcrF2sM+/4kRBoNLjx4iiFdPDj4CcyYWl39a2K6WDqOvCmeS5cuxezZszFt2jSsXLkSubm5mD9/Pg4dOoTU1FQ0a9YML7/8MhYtWgR7+3/u/lQ3gO9vv/2G1157rTHDJ0TraVEZEh48xfkHubiQkoukhyKoz56vtI5YKEAHD1sEeDmUf3k7oI2rDUTCqp/n7i0dAQAJVDwJ4Q1eFM/z589j3bp18Pf31y5LS0tDWloavvrqK/j5+eHBgweYPHky0tLSsONfI31s2rQJgwYN0n7v4ODQWKETgrziMpy+m4OTd7Nx9l4ubmcV/msNAVxspHjOxwlBLR3RraUj/DzsYCHR785LUEtH7OgyEBcePGU/eFK7N9+s/jUxWZpx45rGPc/CwkKMGTMG69evx+eff65d3rlzZ/zxxx/a71u3bo3FixfjjTfegEqlglj8T+gODg5wd3dv1LiJ+SopU+Pc/VycupONk3ezcS1NDoapvE7rZtZ4zscJgd52KEy5hLEjwiCVSuu1v6CWjugTMRXix/koKVPDUsrGrz7Ry9q11b8mJksTHd00imdkZCSGDh2K0NDQSsWzOvn5+bCzs6tUOCvamDhxIlq1aoXJkydjwoQJtc7HplAooFAotN/L5XIA5fO9KZVKI36apq8iP+aUJ4ZhcD29APG3snHybg6SHuZBqa5cLVs3s0avVk7o2ar87NLZurxQKpVKxKQDKpVKrzkCq+NmI8bB/01DxLhVSLifjWDfpjthO98+X+LnnoPq/Pkqr/mCb/nis4ocibp3h/LChVrX0QenxXPr1q24ePEizuvxgczOzsaiRYvwzjvvVFq+cOFCDBgwAFZWVjh06BDee+89FBYW4v/+7/9qbGvJkiVYsGBBleVxcXGwsrIy/AcxQzExMVyH0KBK1UByngDX8wS4/lQAubJy4XOQMmhn/8+XvTQfQD5U91Nw9n7V9ozN1+AnqQCA32LOIseLqWNt08eXz9eL169j3759VV7zDV/yZQqYGzdqPI7FxcV6tyNgmH9fcGocDx8+RPfu3RETE6O919mvXz907doVK1eurLSuXC5HWFgYnJycsHv37lpnTJ83bx42bdqEhw8f1rhOdWee3t7eSE9Ph7Ozs3E/WBOnVCoRExODsLCwJjdz/f2cIsQlZyP+1hOcv/+00tmllVSEXq2c0KetC3q1dkJLJyu9ziTZypfA2gZtov5Ev3YuWD+2W73b4Tu+fb7EtrZQFRRUec0XfMsXn1Xk6qVRo2o8jnK5HC4uLtqrnLXh7MwzISEBWVlZ6Nbtn/8I1Go1jh07hu+//x4KhQIikQgFBQUYNGgQbG1tsXPnzjo/IMHBwVi0aBEUCgVkMlm168hksmrfk0gk9AHUU1PIFcMwSM4swL4rGdh/Jb1KR5+Wzlbo394VAzq4IriVE2Ti+t8pMTZfBc8FAwASH+ZDJBJDWE2v3KaEN5+vXr3+iUP3Nc/wJl8mgAkJqTFXhuSQs+I5cOBAXLlypdKyCRMmoEOHDvj4448hEokgl8sREREBmUyG3bt3w8Ki7gfEk5KS4OjoWGPhJOaNYRhcfSzH/qvp2H81AynZ/zwsLRYK0MPXCQM6uKJ/B1e0crGu931Ktlkci4fVgkPIL1HiZkYB/Dxr/6uYsOTIkepfE5OlPnSIlUHdOSuetra26Ny5c6Vl1tbWcHZ2RufOnSGXyxEeHo7i4mL88ssvkMvl2o49zZo1g0gkwp49e5CZmYmePXvCwsICMTEx+OKLL/Dhhx9y8SMRnmIYBpce5WPflXTsu5KOR09LtO9JxUK80LYZhnRxx8CObrC35Odf75LRryMoPArHb2fjbEoOFc/GMmoUsG1b1dfEZIlGjwa2bze6Hc5729bk4sWLOHv2LACgTZs2ld5LSUmBj48PJBIJoqOjMWPGDDAMgzZt2mDFihWYNGkSFyETnnmQU4S/EtPwV9LjSmeYFhIh+rd3xeAuHhjQwRU2Mt7+Gvxj1y70nLy4vHjey8WE3r5cR2Qedu2q/jUxWYI9e1hph1f/a8THx2tf9+vXD3X1ZRo0aFClwREIyS0qw97LadiZ+BgXU/O0yy0kQoR2dMPQLh7o274ZrKS8+ujrpWer8kdUzt3PBcMwvLmkTIg5Mr3/QQj5F7WGwfHbT/D7hYeIuZ6p7SUrFAC927hgRGBzhHdyN40zzJq4uKBLcwdYSITILSrD7axCtHOz5Tqqps/FpfrXxHSxdBxN+H8TYu4ePS3G9guPsP3CQ6Tll2qXd25uhxGBXhgW4AFX2yYyC8mjR5CifLShk3dycOZeDhXPxvDoUfWviclSpaSAjZ4NbHQ6IqTRqNQa7L+SjrEbzqLP8jisir2NtPxSOFhJ8GYvH+yf1gd/v98Hbz/v23QKJwDMnQsA6Olb/hzy2Xu5XEZjPp7lvcprYrKE8+ez0w4rrRDSwHIKFYiOu4M+y+Mw5deLOH47GwwD9G7jjG9fD8SZ2QPx2Uud0NGjifZC/fJLAEBwq2fFMyWnzj4BhAXP8l7lNTFZwhUrWGmHLtsSXrv6OB+bT93H7ktpKFNpAADO1lKMes4brz3XAi2czWs4xQBve8jEQmQXluHukyK0cbXhOiRCzBIVT8I7KrUG+69mYPOp+0jQmYbL38se40N8MNTfQ+/pvJoamViEwBYOOHMvF2dTcqh4EsIRKp6EN0rK1Nie8BDrj9/Dw9zygQwkIgGGdPHA+F4+CPR2MN/HM9LStC97tnIuL573cjEmuCWHQZkBnbxXek1MlurBA+owRJqGvOIyfBt7G72XHcG8XdfwMLcETtZSTBvYFidnDcCq1wLRrYWj+RZOANi7V/sy+FmnoTP36L5ng9PJe6XXxGQJWJoZh4on4UxaXgkW7rmOXkuPYEXMLeQWlcHL0RILh3fCyY8HYEZYu6bVY9YYOqNmBbZwgFQkRFaBAvdz9J9CidSD7mhlNHJZkyCaMoWVduiyLWl0j/NKEB13B9svPNQOaNDRww6T+7bC0C4eEIvob7raWEhE6OrtgHP3c3H2Xg58Xay5DokQs6NX8dy9e7fBDYeFhcHS0tLg7UjTlZ5fXjS3nf+naPZs5YQp/drghbYu5n1Z1kA9Wznh3P1cnLqbg9d6tOA6HELMjl7F8+WXXzaoUYFAgNu3b6NVq1b1iYk0MZnyUqyOu4Pfzj1Embr8cZOQVs6YEdYOPXydOI7OROiM+wyUDzv47ZE7OHknGxoN0+Tn9+SMbt7/dQyIaVIfPszKJVe928jIyICrq6te69ra0rBhpLwjUHTcHfx0+oH2Gc0evk6YEdoOIa2dOY7OtAW2cISVVIScojLcyJCjk6c91yERYlb0Kp7jx4836BLsG2+8ATu7JjrSC6lTqVKNn07dR3TcHchLVQCA7i0dERVWXjTp8mw99OsHlP4zfq9ULETPVs44cjMLJ25nU/FsKLp5/9cxIKZJFBrKynHUq3hu2rRJr8YKCwthY2ODNWvWGBUUMU0aDYO/kh7j60O38Div/DnNDu62+HhwB/Rr14yKJsueb+OCIzezcPx2Nt7t25rrcAgxK3p3a/zmm29qfb+goAARERFGB0RM04nb2Rj63QlE/X4Jj/NK4GFvgS//44+9/9cH/du7UuFsAH3alk+tdO5+LkqVao6jIcS86H3P85NPPoGzszPGjRtX5b2ioiIMGjQIOTk5rAZH+C81pxif772OQ9czAQC2FmK8168NJvT2Mdsh9BrE+vVVFrVxtYGbnQyZcgXO389Fn7bNOAisidPNezXHgJge9Zo1jdth6Oeff8bYsWPh4OCAl156Sbu8qKgIERERePLkCY4ePcpCSMQUlJSp8V3cPaw9dg9lKg1EQgHG9myJaQPbwtFaynV4Tc/QoVUWCQQCPN+mGf64+AgnbmdT8WwIunmv5hgQ08MMGcJKO3oXz//85z/Iy8vD66+/jr1796Jfv37aM87MzEwcPXoUHh4erARF+IthGCRmC7D025NIfzYBde82zpg/rBNNztyQPD2r7eTQp60L/rj4CMdvZ2M2B2E1ebp5r+EYENMibtmy8ToMVZg4cSJyc3MxfPhw7Nq1C/PmzUNaWhqOHj0KT09Po4Mh/HY/uwif/HkZp+6JAJSiuYMl5r7YERGd3OmeJkd6tym/73k9XY7sQgVcbGQcR0SIeTD40u9HH32E3NxcDBw4ED4+PoiPj4eXl1dDxEZ4QqnW4Idj9/Bt7G0oVBpIBAym9GuD9wa0pfuaHGtmK0MHd1vczCjAyTvZGN61OdchEWIW9O5t+8orr2i/bt26BYlEAhcXF0ybNq3Se/W1dOlSCAQCTJ8+XbustLQUkZGRcHZ2ho2NDUaOHInMzMxK26WmpmLo0KGwsrKCq6srZs6cCZVKVe84SGWJqU8x7LsT+PJgMhQqDXq1dsKsrmq8P6A1Fc7GNHNmjW9V9Lo9cTu7saIxH7p5r+UYENOhiYpipR29zzzt7Ss/hP3666+zEgAAnD9/HuvWrYO/v3+l5TNmzMDevXuxfft22NvbY+rUqXjllVdw8uRJAIBarcbQoUPh7u6OU6dOIT09HePGjYNEIsEXX3zBWnzmqKBUia8OJuN/Zx6AYQAnaynmDO2IFzu7Yv/+/VyHZ34WLarxrefbNsP64yk4fjsbDMPQJXQ26ea9lmNATIdmwQKw8We/3sVT34ESDFVYWIgxY8Zg/fr1+Pzzz7XL8/PzsWHDBmzZsgUDBgzQxtCxY0ecOXMGPXv2xKFDh3D9+nUcPnwYbm5u6Nq1KxYtWoSPP/4Yn332GaRS6vVZH3HJWZj9xxVkyMtvqr/SrTnmDPWDk7UUSqWS4+jMlJcX8OhRtW8F+zrBQiJEhrwUNzMK0NGDRvdijW7eazkGxHSIfX1ZOY6cT0kWGRmJoUOHIjQ0tFLxTEhIgFKpRGhoqHZZhw4d0KJFC5w+fRo9e/bE6dOn0aVLF7i5uWnXiYiIwJQpU3Dt2jUEBgZWu0+FQgGFQqH9Xi6XAwCUSqVZF4dChQpLDyRj24XHAABvR0ssGu6H3s/GodXNjznnyRBs5UucnQ1VDW2IAIS0ckJccjYOX0tHGxfTnc2Ib58v3bzXdgy4wrd88Zk2R9nZNebLkDzqVTxfeeUVbN68We/xaseMGYNvvvmmzoHkt27diosXL+L8+fNV3svIyIBUKoWDg0Ol5W5ubsjIyNCuo1s4K96veK8mS5YswYIFC6osj4uLg5WVVa0xN1V35MCWOyLkKMov+fX10OBF7wLkJ5/FvuSq68fExDRyhKbN2Hy9qNFg3759Nb7vUiYAIMLOs7fRouimUfviA758vnTzXtcx4BJf8mUKNLUcx+Ji/SeX16t47tq1C0+ePNGrQYZhsGfPHixatKjW4vnw4UNMmzYNMTExsLCw0C9alsyePRtROjeN5XI5vL290b9/fzg7m9dsHwqlGisO38Gm6+X3Nps7WGDZK50RXMNUYUqlEjExMQgLC4NEImnkaE0PW/kSDB+OIbU83B2QV4LtXx/H/UIBevULg4OVaR4bvn2+dPNe1zHgAt/yxWcVuWJeeqnG41hxFVIfehVPhmHQrl07vRvVR0JCArKystCtWzftMrVajWPHjuH777/HwYMHUVZWhry8vEpnn5mZmXB3dwcAuLu749y5c5XareiNW7FOdWQyGWSyqs/DSSQSs/oAXnmUjxm/J+FOViEAYFR3b8x5sSNsLerOgbnlylhG52v79lq7xvs0k6Cdmw1uZRbi9P08vBRg2s9d8+bzpZv3Oo4Bl3iTLxPA/PZbjbkyJId6Fc+4uDi9G6zQvHntz5sNHDgQV65cqbRswoQJ6NChAz7++GN4e3tDIpEgNjYWI0eOBAAkJycjNTUVISEhAICQkBAsXrwYWVlZ2rPcmJgY2NnZwc/Pz+CYzQXDMNhwIgXLDtyEUs3AxUaGZSO7YGBHt7o3JtwYMAA4cqTWVfp3cMWtzELE3cwy+eLJG7p51+MYEP4ThYcD9ahp/6ZX8ezbt6/RO/o3W1tbdO7cudIya2trODs7a5e//fbbiIqKgpOTE+zs7PD+++8jJCQEPXv2BACEh4fDz88PY8eOxfLly5GRkYE5c+YgMjKy2jNLAuQWleHD7Zdw5GYWAGBQJ3d88UoXONF4tPx26lSdq/Rv74p1R+/h6K0nUGsYiIT0yIrRdPOuxzEg/Cc4fZqVdjjvbVubb775BkKhECNHjoRCoUBERARWr16tfV8kEuHvv//GlClTEBISAmtra4wfPx4LFy7kMGr+OnMvB9O2JiJTroBULMTcF/3wRnALei6wiQhq6QhbCzFyi8pw6VEeurVw5DokQposXhXP+Pj4St9bWFggOjoa0dHRNW7TsmVL3vaA4wu1hsF3R27j29jb0DBA62bW+H50N3oe0JR07FjnKhKREC+0a4a9l9Nx+HomFU826OZdj2NATECHDqw0w9f734QlWQWlGPPjGaw8XF44Xw3ywp73n6fCaWoSE/VaLdyv/L51xfyqxEi6edfzGBB+U1XzaGR9UPFswhIelI9Le+ZeLqylIqwc1RVfvhoAKymvLjgQfUyerNdq/Tu4QiIS4E5WIe4+KWzgoMyAbt71PAaE34SRkey0U5+NVCoVDh8+jHXr1qGgoAAAkJaWhsJC+mXlA4Zh8OvZB3jth9PIlCvQxtUGu99/Hi8H0owbJmvzZr1Ws7OQIKR1+UDxB6/VPFAI0ZNu3vU8BoTfhP/7HyvtGHwK8uDBAwwaNAipqalQKBQICwuDra0tli1bBoVCgbVr17ISGKmfUqUa83Zdxe8XysduHNzZHV++GgAbGZ1tmouITm44dusJDl3LxHv92nAdDiFNksFnntOmTUP37t3x9OlTWFr+M4bmiBEjEBsby2pwxDBpeSX477rT+P3CIwgFwKzBHbB6TDcqnE2BSP95IMI6ukEgAJIe5iEjv7QBgzIDunk34BgQHmPpOBr8v+rx48dx6tSpKjOW+Pj44PHjx6wERQyXmPoUk/6XgOxCBRysJPju9UD0aduM67AIW4qK9F7V1c4Cgd4OuJiah5jrGRgb4tNwcTV1unk34BgQ/lLl5YGNsZgMPvPUaDRQq9VVlj969Ai2trYshEQMtedSGl774QyyCxXo4G6LPVOfp8LZ1KxYYdDqEZ3Kh6ekXrdG0s27gceA8JNw5Up22jF0g/DwcKzU2blAIEBhYSHmz5/Pu0GTmzqGYbDq8G28/1siFCoNBnZwxY4pveDtZJ4zwzRpn3xi0OoVxfP03RzkF9N0VfWmm3cDjwHhJ+Hcuey0Y+gGX331FU6ePAk/Pz+UlpZi9OjR2ku2y5YtYyUoUrdSpRrTtyXhm8O3AAATn/fFD+O60/1NAgDwcbFGezdbqDQMjiTT2SchbDP4f1pvb29cunQJ27Ztw6VLl1BYWIi3334bY8aMqdSBiDSc/GIlJv7vPM7ffwqxUICFwztjdHALrsMiPBPeyQ3JmQU4eDUTIwK9uA6HkCbFoOKpVCrRoUMH/P333xgzZgzGjBnTUHGRGqTllWD8xnO4nVUIWwsx1r4RhN5tXLgOizS0a9cM3iSikzu+O3IHR289QXGZigbHqA/dvNfjGBD+USUlNX6HIYlEgtJS6vrOlVuZBXhl9SncziqEu50Ftk8OocJpLm7cMHiTTp52aOFkhRKlWjuLDjGQbt7rcQwI/whu3mSlHYPveUZGRmLZsmVQqVSsBED0k/DgKf6z5hQy5KVo3cwaf7zXCx3caXxas/Gf/xi8iUAgwLAADwDA7qQ0tiMyD7p5r8cxIPwjeu01Vtox+DrO+fPnERsbi0OHDqFLly6wtrau9P6ff/7JSmDkH+dScjFh0zkUlanRrYUDNox/Do40/ybRw7AAT0TH3UV88hPIS5Wws2DjghUhxODi6eDggJEjRzZELKQap+5m4+3NF1CiVKN3G2esH9ed7l0RvXVwt0M7NxvcyizEwasZeLW7N9chEdIkGPy/8KZNmxoiDlKNY7eeYNL/LkCh0uCFds3ww9ggWEhoiDCztHNnvTcd5u+Jr2NuYc/ldCqehtLNuxHHgPCHevt2ViaypinJeOrIzUxM/OmCdvADKpxmrnXrem86LMATAHDyTjZyChVsRWQedPNuxDEg/MG0asVKOwYXYF9fXwgEghrfv3fvnlEBkfL/5N79OQFKNYOITm747vVukIrp7xyz5u8P1LOnu4+LNfy97HH5UT72Xc3A2J4tWQ6uCdPNuxHHgPCHOCiIleNocPGcPn16pe+VSiUSExNx4MABzJw50+iAzN3Vx/l4538XoFQzGNzZHd++HgiJiAonMc4wf09cfpSPPUlpVDwJYYHBxXPatGnVLo+OjsaFCxeMDsic3c8uwpvPetX2au2Mla91pcJJWPFigAcW77uBc/dzkZ5fAg97Gg2MEGOw9j/z4MGD8ccff7DVnNnJKijF2I1nkV1Yhk6edlg3NggyMd3jJM8YOW60h70levg4AQD+SqRnPvWmm3cau7tJ0HzxBSvtsFY8d+zYAScnJ7aaMytlKg2m/HIRD3NL0NLZCpsn9IAtPY9HdNVwxccQr3RrDgD44+IjMAxjdHtmQTfvLBwDwj3N+++z0o7BxTMwMBDdunXTfgUGBsLDwwOffPIJPjFwyp41a9bA398fdnZ2sLOzQ0hICPbv3w8AuH//PgQCQbVf27dv17ZR3ftbt2419Mfi1KK/ryPhwVPYWoixeUIPNLOVcR0S4RsLC6ObGOLvAQuJEHeyCnH5UT4LQZkB3byzcAwI98QszTtt8D3P4cOHV+ptKxQK0axZM/Tr1w8dOnQwqC0vLy8sXboUbdu2BcMw+OmnnzB8+HAkJiaiQ4cOSE9Pr7T+Dz/8gC+//BKDBw+utHzTpk0YNGiQ9nsHBwdDfyzObL/wED+feQAAWDmqK3xdrOvYgpD6sbOQIKKTO3YlpWFHwiMEeDtwHRIhJsvg4vnZZ5+xtvNhw4ZV+n7x4sVYs2YNzpw5g06dOsHd3b3S+zt37sR///tf2NjYVFru4OBQZV1TcC0tH5/+dRUAMD20LQZ2dOM4ItLU/SfIC7uS0rD7Uho+HdqRnh0mpJ4MLp4ikQjp6elwdXWttDwnJweurq5Qq9X1CkStVmP79u0oKipCSEhIlfcTEhKQlJSE6OjoKu9FRkZi4sSJaNWqFSZPnowJEybU+iyqQqGAQvHPw+JyuRxA+WM3SqWyXvEbSqFUY9pviShTadC/vQum9PFptH0boyJGU4iVD9jKl3DCBGhYyPlzLezhbidDhlyBQ1fTMLgzv/7o5NvnSzfvbB0DNvEtX3xWkSPV+PFADfkyJI8CxsCeA0KhEBkZGVWKZ1paGlq3bo2SkhJDmsOVK1cQEhKC0tJS2NjYYMuWLRgyZEiV9d577z3Ex8fj+vXrlZYvWrQIAwYMgJWVFQ4dOoT58+dj+fLl+L//+78a9/nZZ59hwYIFVZZv2bIFVlZWBsVfXzvvCxGfLoSthMGsADVsqH8QaSR/pwoR81gIPwcN3u2o4TocQnijuLgYo0ePRn5+Puzsap+1Su/i+e233wIAZsyYgUWLFlW6dKpWq3Hs2DHcv38fiYmJBgVbVlaG1NRU5OfnY8eOHfjxxx9x9OhR+Pn5adcpKSmBh4cH5s6diw8++KDW9ubNm4dNmzbh4cOHNa5T3Zmnt7c30tPT4ezsbFD89XE2JRdvbCx/JvaHNwLRv32zBt8nW5RKJWJiYhAWFgaJhCp+XdjKlzgwECoDf7dqkpJdhPBVJyEUAHFRfeDpwJ9nPvn2+dLNO5vHgC18yxefVeRq2CefQJ2UVO06crkcLi4uehVPvS/bfvPNNwAAhmGwdu1aiET/3CuRSqXw8fHB2rVr9W2u0rZt2rQBAAQFBeH8+fNYtWoV1q1bp11nx44dKC4uxrhx4+psLzg4GIsWLYJCoYBMVn2vVZlMVu17EomkwT+ApUo15u4un1T39R4tEN7Zs0H311AaI1dNidH5unOHtXy383BASCtnnL6Xgz8S0xEV3p6VdtnEm8+Xbt5ZPAZs402+TIDg7t0ac2VIDvUunikpKQCA/v37488//4Sjo6PeOzGERqOpdFYIABs2bMBLL72EZs3qPkNLSkqCo6NjjYWTa6vj7yIluwiutjJ8MsSw3smEsGVMzxY4fS8HW88/xPsD29JIVoQYyOAOQ3FxcaztfPbs2Rg8eDBatGiBgoICbNmyBfHx8Th48KB2nTt37uDYsWPYt29fle337NmDzMxM9OzZExYWFoiJicEXX3yBDz/8kLUY2XT3SSHWxt8FAMwf1okGQiD6e+EFVpsL93OHi40UWQUKxN7IwiCedRziDd28s3wMCDeYPn1Qc3dS/dVrWrNHjx5h9+7dSE1NRVlZWaX3VqxYoXc7WVlZGDduHNLT02Fvbw9/f38cPHgQYWFh2nU2btwILy8vhIeHV9leIpEgOjoaM2bMAMMwaNOmDVasWIFJkybV58dqcAv2XEeZWoN+7ZthSBf6z4oY4NAhVpuTioV4tbs31sTfxa9nH1DxrIlu3lk+BoQb6n37WBlaz+DiGRsbi5deegmtWrXCzZs30blzZ9y/fx8Mw6Bbt24GtbVhw4Y61/niiy/wRQ1jEQ4aNKjS4Ah8FpechWO3nkAiEuCzYZ1qfZSGkCpGjgRYHjv69edaYO3Ruzh+OxsPcorQ0pkG6KhCN+8NcAxI4xP997+sTGxucAGePXs2PvzwQ1y5cgUWFhb4448/8PDhQ/Tt2xevvvqq0QE1RWoNgy/2lncSerOXD3xoFCFiqL17WW+yhbMVXmhb3o/gt3M19043a7p5b4BjQBqf4NkQsMYyuHjeuHFD2+tVLBajpKQENjY2WLhwIZbRrAPV2nMpDbezCmFvKcHUAW25DocQrdHBLQCUDxOpUNVvgBNCzJHBxdPa2lp7n9PDwwN3797Vvpednc1eZE2ESq3BqtjbAIB3XmgFe0vqJETqoYGGnxzYwRVudjLkFJXhwNWMBtmHSdPNuwkOAUqqwdJxNLh49uzZEydOnAAADBkyBB988AEWL16Mt956Cz179mQlqKbkz8THSMkugpO1FG/28uE6HGKq7t9vkGbFIiFG92gJANh48j5NVfZvunlvoGNAGpfq9m1W2jG4eK5YsQLBwcEAgAULFmDgwIHYtm0bfHx89OoAZE7KVBp8++ysc3LfVrCW1atzMyHA7NkN1vSYni0gFQtx6WEeLqY+bbD9mCTdvDfgMSCNR/jpp+y0Y8jKarUajx49QosW5fdJrK2tsXbtWly+fBl//PEHWrZsyUpQTcX2hId49LQEzWxlGNvTh+twiCl7NsJXQ3CxkWFE1/KJsn88ntJg+zFJunlvwGNAGo/w2VCzRrdjyMoikQjh4eF4+pT+Oq2LUq3B6rjy+8Hv9WsNSylN/UT46+0+vgCAg9cykJpTzHE0hPCfwZdtO3fujHv37jVELE3KvivpeJxXAmdrKV7v0YLrcAipVTs3W/Rp6wINA2w6RWefhNTF4OL5+eef48MPP8Tff/+N9PR0yOXySl+kfPD8dUfL/8AY38uHJhwmxsvKavBdTOzTCgDw+/mHkJfS/JAAKue9EY4BaXiqx49Zacfg4jlkyBBcunQJL730Ery8vODo6AhHR0c4ODg02GDxpubknRxcT5fDUiLC2J50H5iwoBFGtnmhrQvautqgqEyNbTRoQjndvNPoQk2CgIXRhQCOB4ZvqtYdK7/X+d/uXnC0lnIcDWkSpkwBJkxo0F0IBAJM7OOLj/+4gg0nUjCuV0vIxGZ+1UQ3741wDEjDE02dCkycaHQ7BhfPvn37Gr3Tpux2ZgGO386GUAC8/XwrrsMhxCDDuzbH14duIUNeij8vPqb79YTUoF6Dyx8/fhxvvPEGevXqhcfPrh///PPP2sETzNn/Tj8AAIR2dEMLZyuOoyHEMBYSEd55ofyPvjXxd6FSaziOiBB+Mrh4/vHHH4iIiIClpSUuXryonbg6Pz+/xtlPzIW8VIk/Lj4CUN5RiBDWNOIfpqODW8DRSoLU3GL8fTm90fbLS7p5p5ODJkEdH89KO/Xqbbt27VqsX78eEsk/47T27t0bFy9eZCUoU/VnwiMUl6nRupk1erV25joc0pQ8+yO1MVhJxXj7+fLnPqPj7kCjMeMh+3Tz3ojHgDQglo6jwcUzOTkZL1Qzo7q9vT3y8vLYiMkkMQyD/50pv2Q7vpcPzddJ2DVwYKPubmyID2xlYtzOKsSBa2Y8YLxu3hv5GJCGIYqIYKUdg4unu7s77ty5U2X5iRMn0KqV+XaQOZeSi3tPimAlFWFEYHOuwyHEKPaWEkzo7QMAWBFzC2pzPvskpBoGF89JkyZh2rRpOHv2LAQCAdLS0vDrr7/iww8/xJQpUxoiRpOw7Xz5c3EvBXjC1oKmHSOmb+KzKfTuZBXir0R2HiwnpKkw+FGVWbNmQaPRYODAgSguLsYLL7wAmUyGDz/8EO+//35DxMh7+SVK7L1S3rHiv895cxwNaZI2bmz0XdpZSDC5b2ssO3ATK2NvYViAJ6TienXQN126eefgGBD2qX/4wfDCVw2DfxMEAgE+/fRT5Obm4urVqzhz5gyePHmCRYsWsRCOadp9KQ0KlQbt3GwQ6O3AdTikKQoL42S343u1RDNbGR7mlmDbBTMcdUg37xwdA8IuJjSUlXbq/WekVCqFra0tPDw8YGNjw0owpmrb+VQAwKjnWlBHIdIwvLm5omElFeP9AW0AAN/F3kZJmZqTODijm3eOjgFhl5ilvjkGF0+VSoW5c+fC3t4ePj4+8PHxgb29PebMmQOl0rDBpNesWQN/f3/Y2dnBzs4OISEh2L9/v/b9fv36QSAQVPqaPHlypTZSU1MxdOhQWFlZwdXVFTNnzoRKpTL0x6q3q4/zcfWxHBKRgDoKkSbptedawMvRElkFCvx85j7X4RDCCwZf+n3//ffx559/Yvny5QgJCQEAnD59Gp999hlycnKwZs0avdvy8vLC0qVL0bZtWzAMg59++gnDhw9HYmIiOnXqBKC8g9LChQu121hZ/TNqj1qtxtChQ+Hu7o5Tp04hPT0d48aNg0QiabQBG3YklA+KEO7nDicax5Y0QVKxENND2+HD7ZewOv4u/tvdGw5W9Fkn5s3g4rllyxZs3boVgwcP1i7z9/eHt7c3Xn/9dYOK57Bhwyp9v3jxYqxZswZnzpzRFk8rKyu4u7tXu/2hQ4dw/fp1HD58GG5ubujatSsWLVqEjz/+GJ999hmk0ob9BVepNdoRWEYG0VknaUCzZnG6+xGBzfHj8Xu4mVGAlYdv47OXOnEaT6PRzTvHx4CwQzNzJtiY7sDg4imTyeDj41Nlua+vr1HFSq1WY/v27SgqKtKe0QLAr7/+il9++QXu7u4YNmwY5s6dqz37PH36NLp06QI3Nzft+hEREZgyZQquXbuGwMDAavelUCi0wwoC0M5DqlQqDbr0fPJuDrILFXC0kqCnj4PBl61NUcXPaA4/KxtYy9ennwIc53z2oHYYvzkBP595gFFBnmjjyn5fB959vnTzzoNj8G+8yxePVeRIMXs2JDXky5A8Glw8p06dikWLFmHTpk2QyWTlwSgUWLx4MaZOnWpoc7hy5QpCQkJQWloKGxsb7Ny5E35+fgCA0aNHo2XLlvD09MTly5fx8ccfIzk5GX/++ScAICMjo1LhBKD9PiOj5lFRlixZggULFlRZHhcXV+mycF223BECEKKjrQIxBw/ovV1TEBMTw3UIJsXYfEVMmICDmzaxFE39dXEU4spTIaJ+PoHJHRtu0Hi+fL50886XY1AdvuTLFAi9vLCvhuNYXFysdzsChmEMGjpkxIgRiI2NhUwmQ0BAAADg0qVLKCsrw8B/DV9VUeRqU1ZWhtTUVOTn52PHjh348ccfcfToUW0B1XXkyBEMHDgQd+7cQevWrfHOO+/gwYMHOHjwoHad4uJiWFtbY9++fZUuLeuq7szT29sb6enpcHbWb0xahVKNnsuOolChwq9vd0cPHye9tjN1SqUSMTExCAsLqzS2MakeW/kS29pCVVDAYmT18yCnGIO/OwmlmsH6sYHo164Zq+3z7fOlm3e+HANdfMsXn1Xk6qVRo2o8jnK5HC4uLsjPz4ednV2t7Rl85ung4ICRI0dWWuZtRBduqVSKNm3Ku8IHBQXh/PnzWLVqFdatW1dl3eDgYADQFk93d3ecO3eu0jqZmZkAUON9UqD80nPFWbMuiUSi9wcwNjkbhQoVPOwtENLaFUKheT2iYkiuCDv54kO+27jbY0JvX/xw7B6WHLiFvu3dG2TgBD59vnTj4EtM/8anfJmCmnJlSA4NLp6bGviyhUajqXRWqCspKQkA4OHhAQAICQnB4sWLkZWVBVdXVwDlly/s7OyqPXNl0+5LaQDKh+Mzt8JJOPDKK1xHoDV1QBv8kfAI954UYcOJFEzp15rrkBqObt55dAxI/TEvvww2/sfmdKyt2bNn49ixY7h//z6uXLmC2bNnIz4+HmPGjMHdu3exaNEiJCQk4P79+9i9ezfGjRuHF154Af7+/gCA8PBw+Pn5YezYsbh06RIOHjyIOXPmIDIystozS7YUlCpx+EYWAGBYgGeD7YcQrS1buI5Ay85CgtlDOgIAVsXewsNc/e8TmRzdvPPoGJD6U//8MyvtGFw8c3JyEBkZCT8/P7i4uMDJyanSlyGysrIwbtw4tG/fHgMHDsT58+dx8OBBhIWFQSqV4vDhwwgPD0eHDh3wwQcfYOTIkdizZ492e5FIhL///hsikQghISF44403MG7cuErPhTaEg9cyUabSoHUza3TyrP26OCGs6NuX6wgqGdmtOYJ9nVCq1GDerqswsOuE6dDNO8+OAakfEUtTyxl82Xbs2LG4c+cO3n77bbi5uRk1HN2GDRtqfM/b2xtHjx6ts42WLVti37599Y6hPiou2Q7v2pyG4yON4+xZriOoRCAQYPGILhi86hjikp/gwNUMDO7iwXVY7NPNO8+OAakfwb/6ydSXwcXz+PHjOHHihLanrbl5UqDAyTvZAMrvdxJirtq42mBy39b47sgdzNt9DT1bOcORRtkiZsLgy7YdOnRASUlJQ8RiEg5cTYdawyDAyx4+LtZch0PMRefOXEdQrcj+bdC6mTWeFCjw2Z5rXIfDPt288/QYEMMwndgZHcvg4rl69Wp8+umnOHr0KHJyciCXyyt9NXUHr5U/CjOkKV6iIvx14QLXEVTLQiLC1//tCqEA2JWUhgNX07kOiV26eefpMSCGUZ85w0o7BhdPBwcHyOVyDBgwAK6urnB0dISjoyMcHBzg6OjISlB8lV+sxJl7OQCAiE41P0dKCOsmTeI6ghp19XbA5L7lj6t8uvMqcgqrf9TMJOnmncfHgOhP9K+ZuerL4OI5ZswYSCQSbNmyBbGxsThy5AiOHDmCuLg4HDlyhJWg+OpIciZUGgbt3Wzpki1pXCx1r28o00LbooO7LXKKyjC3KfW+1c07z48B0Y/g119ZacfgDkNXr15FYmIi2rdvz0oApuTg1fJLtuGd3OpYkxDzIhOL8NWrAXg5+iT2XcnAX0mPMSLQi+uwCGkwBp95du/eHQ8fPmyIWHitVKnG0VtPANAlW8KBBp5ejw2dm9vj/QFtAZRfvr37pJDjiFigm3cTOAZEDywdx3pNhj1t2jTMnDkTXbp0qTIWYMXoP03N8dvZKFGq0dzBkgZGII3PRDrjTR3QBqfvZePMvVxE/noRf0X2hoWEjdkTOaKbdxM5BqR2qpwcsDEKsMFnnqNGjcKNGzfw1ltv4bnnnkPXrl0RGBio/bepOnStfIqzMD/jBoYgpF6WL+c6Ar2IhAKsei0QztZS3MwowKK/r3MdknF0824ix4DUTvjVV+y0Y+gGKSkpVb7u3bun/bcpUqk1OHyD7ncSDs2bx3UEenOzs8A3o7pCIAB+PZuKvy+ncR1S/enm3YSOAamZsJq5nOvD4Mu2LVu2ZGXHpuT8/ad4WqyEg5XEbObtJMQYL7Rrhvf6tUZ03F3M+uMKOrjboY2rDddhEcKaes2q8vPPP6N3797w9PTEgwcPAAArV67Erl27WA2OLw5dL79kO7CDG8QiTieiIcRkzAhthx6+TihUqPDO/y4gv1jJdUiEsMbgSrBmzRpERUVhyJAhyMvLg1qtBlA+eMLKlSvZjo9zDMMg9tn0Y3TJlnAmOZnrCAwmFgmxekw3NHewxL3sIry/NREqtYbrsAyjm3cTPAakKtXVq6y0Y3Dx/O6777B+/Xp8+umnEIn+6UXXvXt3XLlyhZWg+ORedhFSc4shFQnxfBsXrsMh5ioxkesI6sXFRoYfxgXBUiLCsVtPsHT/Ta5DMoxu3k30GJDKBElJrLRTrw5D1fWqlclkKCoqYiUoPom7WX7WGdzKCdYyg28RE8KO117jOoJ66+RpjxX/LZ+F6ccTKfjtXCrHERlAN+8mfAzIP0RvvMFKOwYXT19fXyRVU7kPHDiAjh07shETr8Qnlw+M0K+9K8eREGK6BnfxwPTQigEUriDmeibHERFiHL2L58KFC1FcXIyoqChERkZi27ZtYBgG586dw+LFizF79mx89NFHDRlroytSqHA2pXwg+P7tm3EcDSGmbdrAtvhvdy9oGGDqlotIeJDLdUiE1Jve1yEXLFiAyZMnY+LEibC0tMScOXNQXFyM0aNHw9PTE6tWrcJrTeyyxsk72VCqGbR0toIvDQRPuLRnD9cRGE0gEOCLEV2QXViGIzez8NbmC/hjSgjauNpyHVrNdPPeBI4BAdQ7dxr+jGY19D7z1J0lYcyYMbh9+zYKCwuRkZGBR48e4e2332YhHH6Je3bJtn97VxpViHCreXOuI2CFWCRE9OhuCGzhgPwSJcZuOIfUnGKuw6qZbt6byDEwd4ynJyvtGHTP898FxMrKCq6uTfNeIMMwiE8u7yzUjy7ZEq5168Z1BKyxlIqwYfxzaONqg/T8Ury+/gwe5vK0gOrmvQkdA3MmDg5mpR2Dime7du3g5ORU61dTkZxZgPT8UlhIhOjZypnrcAhpUpyspdgyMRitXKzxOK8Er/1wBo+e8rSAElINgy79LliwAPb29qztfM2aNVizZg3u378PAOjUqRPmzZuHwYMHIzc3F/Pnz8ehQ4eQmpqKZs2a4eWXX8aiRYsqxVDd5dTffvvN6PuvcTfLL9n2au1i2rNCEMJTrnYW+O2dnnjthzNIyS7Caz+cwS9vdec6LEL0YlDxfO2111i9TOvl5YWlS5eibdu2YBgGP/30E4YPH47ExEQwDIO0tDR89dVX8PPzw4MHDzB58mSkpaVhx44dldrZtGkTBg0apP3ewcHB6NiO3ap4RIUu2RIe+PprriNoEG52FvhtUk+89sNp3M8pxmvrz2GCL9dR6dDNexM9BuZGs3w52Dgd0rt4NkSHmWHDhlX6fvHixVizZg3OnDmDt99+G3/88Yf2vdatW2Px4sV44403oFKpIBb/E7qDgwPc3dmboLqkTI2EB08BgEYVIvzw7rtcR9Bg3O3Lz0DHbjiHO1mFWHVNhMAeeejRmgd/uOrmvQkfA3OimTSJleJZr962DUGtVmPr1q0oKipCSEhItevk5+fDzs6uUuEEgMjISLi4uKBHjx7YuHGj0bFeeJCLMrUGHvYW9IgK4Qebpj0jiYe9Jba/G4Ku3vYoVgkwbvMFxD3rsMcp3bw38WNgLsSOjuy0o++KGk3DDOh85coVhISEoLS0FDY2Nti5cyf8/PyqrJednY1FixbhnXfeqbR84cKFGDBgAKysrHDo0CG89957KCwsxP/93//VuE+FQgGFQqH9Xv5shnilUgmlUoljz35pQ1o5QaVSsfFjNhlKpbLSv6R2bOVLDEDVxHNuIxXgxzEBGLs2HjfygEk/XcDCl/zwahB3j4jo5p2Px4B+H/Wnm6Oa8mVIHgVMQ59S1qGsrAypqanIz8/Hjh078OOPP+Lo0aOVCqhcLkdYWBicnJywe/duSCSSGtubN28eNm3ahIcPH9a4zmeffYYF1UyIumXLFlhZWeHLyyI8KhJgbBs1ujfjND2EAABefPVV/L19O9dhNAq1BthyV4gL2eUXxvp5aDC8pQZCDh611s27OR2Dpqy241gx8E/FVc7acF48/y00NBStW7fGunXrAAAFBQWIiIiAlZUV/v77b1hYWNS6/d69e/Hiiy+itLQUMpms2nWqO/P09vZGeno6hJa2CF4aD4YBTn7UF6621bdhrpRKJWJiYhAWFlbrHzGkHFv5EkZFQbNiBYuR8VNFvgaGhuKHEw/xbdxdAMALbZ3xzav+sLNs3M+cbt75eAzo91F/FbkacvAgsGpVtevI5XK4uLjoVTx5N02IRqPRFja5XI6IiAjIZDLs3r27zsIJAElJSXB0dKyxcALlM8BU975EIsHZVDkYBmjnZoPmTnSPoyYSiYR+WQ1gdL6++46VTg6mQiaVIiqiA9p72OOD7Uk4djsHr6w7i+jR3dC5OXuPy9VJN+88Pgb0+2iAVatqzJUhOeS0eM6ePRuDBw9GixYtUFBQgC1btiA+Ph4HDx6EXC5HeHg4iouL8csvv0Aul2vvTTZr1gwikQh79uxBZmYmevbsCQsLC8TExOCLL77Ahx9+WO+YTt7JBlD+fCchvOHnB1y/znUUjW6ovwdaOlvh3Z8T8CCnGK+sOYX5w/wwukeLxhkyUzfvZnoMmhqxvz9w44bx7bAQS71lZWVh3LhxSE9Ph729Pfz9/XHw4EGEhYUhPj4eZ8+eBQC0adOm0nYpKSnw8fGBRCJBdHQ0ZsyYAYZh0KZNG6xYsQKTJk2qd0wVxZMeUSG8cu8e1xFwpnNze+z9v+fx4fZLOHwjC5/uvIpzKblY9HJn2Fk08NmWbt7N+Bg0KSkprDTDafHcsGFDje/169evzkdOBg0aVGlwBGOl5Zfgfk4xREIBgls1naEGCTF1DlZSrB/XHeuP38OyA8nYlZSG8ym5+OrVAPSiP3QJBwyeDLspO5tSPjBCgJc9bBv6L1pCDNG/P9cRcE4gEOCdF1rj93d7oqWzFdLySzH6x7P4bPc1lJSpG2anunmnY9AkMP36sdIOFU8d5+6VT87bm/6SJXyzfz/XEfBGUEsn7Pu/PhgT3AIAsPnUfQxadUw7pCardPNOx6BJULM0LysVTx3n7pefeVLxJLzz8stcR8Ar1jIxFo/ogs0TnoO7nQUe5BRj3MZzmLrlIrLkpeztSDfvdAyaBNHIkay0Q8VTR26xEpYSEQJbOHAdCiGVHTjAdQS81K+9Kw5/0Bdv9faFUAD8fTkdA78+io0nUlCmYmFUNN280zFoEgSHDrHSDhXPf3nO1wkyMV+f5iKE/JuNTIx5w/ywe+rz8PeyR4FChYV/X0f4N0dx4Gp6g4/LTcwTFc9/eb4NTXxNeKg5d+O7morOze2x873e+GJEF7jYyHA/pxiTf7mIV9eeRsKD3Po1qpt3OgZNA0vHkYrnv9DgCISX7t7lOgKTIBIKMDq4BeJn9sP/DWgDC4kQFx48xcg1pzF2w1ntVIN60807HYMmQXXzJivtUPHUYWMhQkeP2sczJIQTH33EdQQmxUYmRlR4e8R/2B+juntDLBTg+O1sjFxzCmM3nMXpuzn6Xc7VzTsdgyZBOGsWO+2w0koTEejtABEXUzcQUpdvv+U6ApPkbm+BZf/xx5EP+lUqoq+vP4MXvzuBnYmPau9YpJt3OgZNgjA6mp12WGmliQhqwc4kqYQQfmnhbIVl//FH3If9MCa4BSwkQlxLk2PGtkvos/wIouPu4EmBou6GCHmGiqeOIHpEhZAmzdvJCotHdMHpWQMxM6I9XG1lyJQr8OXBZIQsicW7P19A3M0sqDXUQ5fUjndTknGpgztNQUZ4KieH6wiaFEdrKSL7t8GkPq2w51Iafjn7AImpeTh4LRMHr2XCw94CLwc2R3jibXgXPjsjfZAGFPLr7FSlVKJACeQUKiCWsPBcaxNWkausOw9gW6aCldS48kfFU4dYRCfihKd++w2YOJHrKJocqViIkUFeGBnkheSMAmw7/xB/Jj5Cen4p1sTfRe6lg9gWEAEAGKXzml/EmHPhKNdBmAgxrmxYDM8P3se00LZGtUTVghBTMHUq1xE0ee3dbTFvmB/OfjIQ370eiBf9PbAwZq32fd3XxHSxdRzpzJMQQnTIxCIMC/DEsABP4C0h7i8dWv7GSp3XPKFUKrFv3z4MGTIEEgnNBFWbilxJxUKjzzoBOvMkhBBCDEbFkxBTcPo01xGYJ9280zFoElTHjrHSDhVPQkxBQQHXEZgn3bzTMWgSBIWFrLRDxZMQUxAeznUE5kk373QMmgTRkCGstEPFkxBCCDEQFU9CCCHEQFQ8CTEFP/3EdQTmSTfvdAyaBPWGDay0w2nxXLNmDfz9/WFnZwc7OzuEhIRg//792vdLS0sRGRkJZ2dn2NjYYOTIkcjMzKzURmpqKoYOHQorKyu4urpi5syZUKlUjf2jENKwXniB6wjMk27e6Rg0CUyfPqy0w2nx9PLywtKlS5GQkIALFy5gwIABGD58OK5duwYAmDFjBvbs2YPt27fj6NGjSEtLwyuvvKLdXq1WY+jQoSgrK8OpU6fw008/YfPmzZg3bx5XPxIhDcPXl+sIzJNu3ukYNAnidu3YaYeVVupp2LBhlb5fvHgx1qxZgzNnzsDLywsbNmzAli1bMGDAAADApk2b0LFjR5w5cwY9e/bEoUOHcP36dRw+fBhubm7o2rUrFi1ahI8//hifffYZpFIpFz8WIYSQJo43w/Op1Wps374dRUVFCAkJQUJCApRKJUJDQ7XrdOjQAS1atMDp06fRs2dPnD59Gl26dIGbm5t2nYiICEyZMgXXrl1DYGBgtftSKBRQKP6ZHSE/Px8AkJub20A/XdOhVCpRXFyMnJwcGg5MD2zlS8wwUJnBzCp8+3zp5p2Px4Bv+eKzilzJazmOBc+e5WWYuqek47x4XrlyBSEhISgtLYWNjQ127twJPz8/JCUlQSqVwsHBodL6bm5uyMjIAABkZGRUKpwV71e8V5MlS5ZgwYIFVZa3Y+l0npAG4eLCdQTmSTfvdAyahjqOY0FBAezt7Wtdh/Pi2b59eyQlJSE/Px87duzA+PHjcfRow06vM3v2bERFRWm/z8vLQ8uWLZGamlpnwsydXC6Ht7c3Hj58CDs7O67D4T3Kl2EoX4ahfOlPn1wxDIOCggJ4enrW2R7nxVMqlaJNmzYAgKCgIJw/fx6rVq3CqFGjUFZWhry8vEpnn5mZmXB3dwcAuLu749y5c5Xaq+iNW7FOdWQyGWQyWZXl9vb29AHUU0UPaaIfypdhKF+GoXzpr65c6XsCxbvnPDUaDRQKBYKCgiCRSBAbG6t9Lzk5GampqQgJCQEAhISE4MqVK8jKytKuExMTAzs7O/j5+TV67IQQQswDp2ees2fPxuDBg9GiRQsUFBRgy5YtiI+Px8GDB2Fvb4+3334bUVFRcHJygp2dHd5//32EhISgZ8+eAIDw8HD4+flh7NixWL58OTIyMjBnzhxERkZWe2ZJCCGEsIHT4pmVlYVx48YhPT0d9vb28Pf3x8GDBxEWFgYA+OabbyAUCjFy5EgoFApERERg9erV2u1FIhH+/vtvTJkyBSEhIbC2tsb48eOxcOFCg+KQyWSYP38+FVw9UK4MQ/kyDOXLMJQv/bGdKwGjT59cQgghhGjx7p4nIYQQwndUPAkhhBADUfEkhBBCDETFkxBCCDGQ2RfP6Oho+Pj4wMLCAsHBwVUGXTBXx44dw7Bhw+Dp6QmBQIC//vqr0vsMw2DevHnw8PCApaUlQkNDcfv2bW6C5diSJUvw3HPPwdbWFq6urnj55ZeRnJxcaR19ptczF2xMRWiuli5dCoFAgOnTp2uXUb4q++yzzyAQCCp9dejQQfs+W/ky6+K5bds2REVFYf78+bh48SICAgIQERFRadAFc1VUVISAgABER0dX+/7y5cvx7bffYu3atTh79iysra0RERGB0tLSRo6Ue0ePHkVkZCTOnDmDmJgYKJVKhIeHo6ioSLtOXdPrmRNjpyI0V+fPn8e6devg7+9faTnlq6pOnTohPT1d+3XixAnte6zlizFjPXr0YCIjI7Xfq9VqxtPTk1myZAmHUfEPAGbnzp3a7zUaDePu7s58+eWX2mV5eXmMTCZjfvvtNw4i5JesrCwGAHP06FGGYcpzI5FImO3bt2vXuXHjBgOAOX36NFdh8oqjoyPz448/Uq5qUFBQwLRt25aJiYlh+vbty0ybNo1hGPpsVWf+/PlMQEBAte+xmS+zPfMsKytDQkJCpSnPhEIhQkNDcfr0aQ4j47+UlBRkZGRUyp29vT2Cg4Mpd/hnijsnJycAqHN6PXOmVquxdetWvaciNFeRkZEYOnRopbwA9Nmqye3bt+Hp6YlWrVphzJgxSE1NBcBuvjgfGJ4r2dnZUKvV1U5pdvPmTY6iMg0V071Vl7vapoIzBxqNBtOnT0fv3r3RuXNnAOX5qmt6PXNjzFSE5mbr1q24ePEizp8/X+U9+mxVFRwcjM2bN6N9+/ZIT0/HggUL0KdPH1y9epXVfJlt8SSkIURGRuLq1auV7rGQqriYitAUPXz4ENOmTUNMTAwsLCy4DsckDB48WPva398fwcHBaNmyJX7//XdYWlqyth+zvWzr4uICkUhUpZeV7pRnpHoV+aHcVTZ16lT8/fffiIuLg5eXl3a5u7u7dno9Xeacr4qpCIOCgrBkyRIEBARg1apVlKt/SUhIQFZWFrp16waxWAyxWIyjR4/i22+/hVgshpubG+WrDg4ODmjXrh3u3LnD6ufLbIunVCpFUFBQpSnPNBoNYmNjtVOeker5+vrC3d29Uu7kcjnOnj1rlrljGAZTp07Fzp07ceTIEfj6+lZ6X5/p9cydIVMRmpOBAwfiypUrSEpK0n51794dY8aM0b6mfNWusLAQd+/ehYeHB7ufLyM6NZm8rVu3MjKZjNm8eTNz/fp15p133mEcHByYjIwMrkPjXEFBAZOYmMgkJiYyAJgVK1YwiYmJzIMHDxiGYZilS5cyDg4OzK5du5jLly8zw4cPZ3x9fZmSkhKOI298U6ZMYezt7Zn4+HgmPT1d+1VcXKxdZ/LkyUyLFi2YI0eOMBcuXGBCQkKYkJAQDqPmzqxZs5ijR48yKSkpzOXLl5lZs2YxAoGAOXToEMMwlKu66Pa2ZRjK17998MEHTHx8PJOSksKcPHmSCQ0NZVxcXJisrCyGYdjLl1kXT4ZhmO+++45p0aIFI5VKmR49ejBnzpzhOiReiIuLYwBU+Ro/fjzDMOWPq8ydO5dxc3NjZDIZM3DgQCY5OZnboDlSXZ4AMJs2bdKuU1JSwrz33nuMo6MjY2VlxYwYMYJJT0/nLmgOvfXWW0zLli0ZqVTKNGvWjBk4cKC2cDIM5aou/y6elK/KRo0axXh4eDBSqZRp3rw5M2rUKObOnTva99nKF01JRgghhBjIbO95EkIIIfVFxZMQQggxEBVPQgghxEBUPAkhhBADUfEkhBBCDETFkxBCCDEQFU9CCCHEQFQ8CSGEEANR8SSEEEIMRMWTEEIIMRAVT0IIIcRAVDwJIYQQA1HxJIQQQgwk5joAPtBoNEhLS4OtrS0EAgHX4RBCCOEAwzAoKCiAp6cnhMLazy2peAJIS0uDt7c312EQQgjhgYcPH8LLy6vWdah4ArC1tQUApKSkwMnJieNo+E2pVOLQoUMIDw+HRCLhOhzeYy1fd+4AbdqwFxhP8e7zpZt3Hh4D3uWLx7S5atUKko4dq11HLpfD29tbWxNqQ8UT0F6qtbW1hZ2dHcfR8JtSqYSVlRXs7Ozol1UPrOUrMxPo1o29wHiKd58v3bzz8BjwLl88VpEr+6wsiIODa11Xn9t31GGIEFMwYgTXEZgn3bzTMWgSRK++yko7VDwJIYQQA/GqeB47dgzDhg2Dp6cnBAIB/vrrrzq3iY+PR7du3SCTydCmTRts3ry5weMkhBBi3nhVPIuKihAQEIDo6Gi91k9JScHQoUPRv39/JCUlYfr06Zg4cSIOHjzYwJES0sh27OA6AvOkm3c6Bk2CeutWVtrhVYehwYMHY/DgwXqvv3btWvj6+uLrr78GAHTs2BEnTpzAN998g4iICIP3f/JuDuyy1QZvZ07UajVuPBXA5nY2RCIR1+HwHhv5EggE6ObbBnX3/yOse9Yr896TQmTJXFGanMVxQJXR76P+KnLVzN0VntlF8HGxNqo9XhVPQ50+fRqhoaGVlkVERGD69Om1bqdQKKBQKLTfy+VyAMDU3y5BKLNiPc6mR4S1Ny9yHYQJMT5ft75+BcriQpbi4S+lUlnpX66JO3VC6sMsDFxxHDe/HIH2H+7kOqRq0O+j/kSYMbEvovddxvv9W1d515DPnUkXz4yMDLi5uVVa5ubmBrlcjpKSElhaWla73ZIlS7BgwYIqyz2tGIgtmAaJlZD6UGmAjBIBGIbB/n37uA6n0cTExHAdAgDgRY0GOw/GgWHK/6v0sqb/H0yeAMi8fwv79iVXeau4uFjvZky6eNbX7NmzERUVpf2+4sHYv95/Ac7OzhxGxn9KpRIxMTEICwuj58r0YGy+sgsVCFl2FAAwaNBgCIVNe/hIvn2+hEIhQkJ6YeXVc4AAiJtl+O2ghsS3fPFZRa6kIiE+n1D97cGKq5D6MOni6e7ujszMzErLMjMzYWdnV+NZJwDIZDLIZLIqyyUSCX0A9US5Mkx98+VsW34fa/kL4/B/agHsZeaRc958vr74AmJx+TH4cdBERPIhpmrwJl8mQLNoUY25MiSHvOpta6iQkBDExsZWWhYTE4OQkBCOIiKEXVKxEFZSETb0GIG8kjKuwzE/Oleotr/AzsP1hFuaOvrE6ItXxbOwsBBJSUlISkoCUP4oSlJSElJTUwGUX24dN26cdv3Jkyfj3r17+Oijj3Dz5k2sXr0av//+O2bMmMFF+IQ0CAdLCa6vGIm8Yn50ojEr1v/0yNz/6RAOAyFsETs4sNIOr4rnhQsXEBgYiMDAQABAVFQUAgMDMW/ePABAenq6tpACgK+vL/bu3YuYmBgEBATg66+/xo8//livx1QI4Ss7SwlEGg3yS6h4Njr1P4+uiRh6jK1JULNzHHl1z7Nfv35gmJp7s1U3elC/fv2QmJjYgFERwi0Hq/L7MHlUPAnhDV6deRJCqnKwlGJHl4HIL6Z7no3uzTe1Lw8EDeIuDsIajc6tP2NQ8SSE5+wtJfg0YipdtuXC2rXalytGUl+KpkCj5/CvdaHiSQjPOVhJsHfT/1GHIS48638BAOtXvsNhIIQt4ueeY6UdKp6E8Jy9lQRtch7SPU8u3Lihfdky6wGHgRDW3LzJSjNUPAnhOXvL8g5DdNmWEP6g4kkIzzlYSpHQvCPy6bJt4+vVS/vyastOHAZC2MKwNIgOFU9CeM7BSoLRr3+Bp9TbtvEdOaJ9GfXuCg4DIWxRHzrESjtUPAnhOQcrCb7ftQxP6cyz8Y0apX0575eFHAZC2CIaPZqVdqh4EsJzTtZShN0+g7zisloHESENYNcu7cvnr5/kMBDCFsGePay0Q8WTEJ5ztJICAFQaBgUKFcfREEIAKp6E8J6FRISnVnYAgLwiunTbqFxctC/zre05DISwRueYGoOKJyEm4JXZ2wCAOg01tkePtC9f/fR3DgMhbFGlpLDSDhVPQkzA+/H/AwDkUvFsXHPnal++dXAjh4EQtgjnz2enHVZaIYQ0qJFHtgIA8qh4Nq4vv9S+fO3oNg4DIWwRrmDnkSMqnoSYAIGg/N9cuudJCC9Q8STEhNCZJyH8QMWTEBOw/rfjAIDcIiqejSotTfty5JztHAZC2KJ6wM4A/1Q8CTEBnZNOAABNS9bY9u7Vvux54wyHgRC2CPbtY6UdKp6EmIDeyz8BQGeejW7SJO3LmX98zWEghC2iKVNYaYeKJyEm4Fl/IXrOkxCeoOJJiCl4Vj2peBLCD1Q8CTEB2bsPAACeFilpcPjGFB+vfTn93W+4i4OwRn34MCvtUPEkxATYW0kAAGVqDeSlNDg8IVzjZfGMjo6Gj48PLCwsEBwcjHPnztW6/sqVK9G+fXtYWlrC29sbM2bMQGlpaSNFS0jDk4UOhI1MDADILlRwHI0Z6ddP+3LluhncxUFYIwoNZaUd3hXPbdu2ISoqCvPnz8fFixcREBCAiIgIZGVlVbv+li1bMGvWLMyfPx83btzAhg0bsG3bNnzyySeNHDkhDcvFpnxqspxCuu9JCNd4VzxXrFiBSZMmYcKECfDz88PatWthZWWFjRurH5T51KlT6N27N0aPHg0fHx+Eh4fj9ddfr/NslRBT42wjA0BnnoTwgZjrAHSVlZUhISEBs2fP1i4TCoUIDQ3F6dOnq92mV69e+OWXX3Du3Dn06NED9+7dw759+zB27Nga96NQKKBQ/PMfkFwuBwAolUoolfQQem0q8kN50g9b+RKsWQMnYfl9z8z84iabf759vgRr1kClUgMAvhz5AT7iSVwV+JYvPqvIUdn330NYQ74MySOvimd2djbUajXc3NwqLXdzc8PNmzer3Wb06NHIzs7G888/D4ZhoFKpMHny5Fov2y5ZsgQLFiyosjwuLg5WVlbG/RBmIiYmhusQTIqx+ZJIJCh+kgFAiDNJ1+GUc5WdwHiKL58viUSCW6dPARAjtqU/OrM0Og3b+JIvUxBrYQFlDcexuLhY73bqVTyjoqIM3mbOnDlwcnKqz+5qFR8fjy+++AKrV69GcHAw7ty5g2nTpmHRokWYqzMXn67Zs2dX+hnkcjm8vb3Rv39/ODs7sx5jU6JUKhETE4OwsDBIJBKuw+E9tvIltrXFjV2JOJl5D44eLTBkiB+LUfIH3z5fYltbOF97iJVXz2H/ivEQfl7EdUiV8C1ffFaRq8ETJ0JVUFDtOhVXIfVRr+K5cuVKhISEQCqV6rX+iRMnMHXq1DqLp4uLC0QiETIzMystz8zMhLu7e7XbzJ07F2PHjsXEiRMBAF26dEFRURHeeecdfPrppxAKq97WlclkkMlkVZZLJBL6AOqJcmUYNvLlamcJoHxasqaeez59vsRiEYDycSr4EtO/8SlfpqCmXBmSw3pftt25cydcXV31WtfW1lav9aRSKYKCghAbG4uXX34ZAKDRaBAbG4upU6dWu01xcXGVAikSlX/Y6WFy0pS4POswlEPj2xLCuXoVz02bNsHe3l7v9detW1flPmZNoqKiMH78eHTv3h09evTAypUrUVRUhAkTJgAAxo0bh+bNm2PJkiUAgGHDhmHFihUIDAzUXradO3cuhg0bpi2ihJi8mTPhYku9bRvdzJnal1v7jsI4DkMh7NBERYGNylCv4jl+/HgAgFqtxsmTJ+Hv7w8HB4ca1x89erTebY8aNQpPnjzBvHnzkJGRga5du+LAgQPa4puamlrpTHPOnDkQCASYM2cOHj9+jGbNmmHYsGFYvHhxfX40Qvhp0SI4PykEAGQXUPFsNIsWAQ9yAQAbI96i4tkEaBYs4K54VhCJRAgPD8eNGzdqLZ6Gmjp1ao2XaeN1xpoEALFYjPnz52P+/Pms7Z8Q3vHygsudFABAUZkaJWVqWErpykqD8/ICTl4GAGxf/F9g5hOOAyLGEvv6Ao8eGd2O0YMkdO7cGffu3TM6EEJILbKzYSsTQyou/5WlS7eNJDtb+9K+KJ/DQAhrdI6pMYwunp9//jk+/PBD/P3330hPT4dcLq/0RQhhh0AggIt1eQ93Kp6EcMvoQRKGDBkCAHjppZcgEAi0yxmGgUAggFqtNnYXhJDhwwEALrYypOWX0vi2jeVZ3gHghF9vDOAwFMIOZtgwCOperU5GF8+4uDgWwiCE1GrbNgD/PK5CZ56NZNs2bYehhW/Mo+LZBKi3bGFlUHeji2ffvn1ZCIMQUqsBA4AjR7Qzq1DxbCQDBgCbdgAAVqyLAmYmchwQMZYoPBxg4aSPtbFti4uLkZqairKyypeT/P392doFIebr1CkAujOr0GXbRvEs7wDQ+cE1DgMhbBHUMMmIoYwunk+ePMGECROwf//+at+ne56EsIcu2xLCD0Zf+p0+fTry8vJw9uxZWFpa4sCBA/jpp5/Qtm1b7N69m40YCSEdOwIAXbZtbM/yDgAPXFtyGAhhTYcOrDRj9JnnkSNHsGvXLnTv3h1CoRAtW7ZEWFgY7OzssGTJEgwdOpSNOAkxb4nl99pc6LJt40pM1HYYmjT9B8RzGw1hger8ebAxhL7RZ55FRUXaAeIdHR3x5En5CBxdunTBxYsXjW2eEAIAkycD0Bkcns48G8ezvANA1B/fcBgIYYswMpKddoxtoH379khOTgYABAQEYN26dXj8+DHWrl0LDw8PowMkhADYvBnAP5dtnxYroVRrOAzITDzLOwAMSjjAXRyENcL//Y+Vdoy+bDtt2jSkp6cDAObPn49Bgwbh119/hVQqxWadDx4hxHgOVlIIBYCGAXKLyuBmZ8F1SISYJaOL5xtvvKF9HRQUhAcPHuDmzZto0aIFXFxcjG2eEAIAz6bXEwkFcLGRIatAgSy5gopnQ9OZ1lAtoIH4mwSWpqpkY6AFLYZhYGlpiW7dulHhJIRNRUXalxUFM1NeylU05kMn74MX7+MwEMIWVV4eK+2wUjw3bNiAzp07w8LCAhYWFujcuTN+/PFHNpomhADAihXalxXFM4OKZ8PTyfurx7ZzGAhhi3DlSnbaMbaBefPmYdq0aRg2bBi2b9+O7du3Y9iwYZgxYwbmzZvHRoyEkE8+0b50ty/vcUtnno1AJ++TDtAJQVMgnDuXlXaMvue5Zs0arF+/Hq+//rp22UsvvQR/f3+8//77WLhwobG7IITocK8488yn4kkIV4w+81QqlejevXuV5UFBQVCpVMY2Twj5F7psSwj3jC6eY8eOxZo1a6os/+GHHzBmzBhjmyeEAMC1fwYld7enDkONRifvb36wkcNACFtUSUmstFOvy7ZRUVHa1wKBAD/++CMOHTqEnj17AgDOnj2L1NRUjBs3jpUgCTF7N24ArVsDoMu2jerGDaBLLwBAy8xUjoMhbBDcvMnK+Lb1Kp6JiZXntAsKCgIA3L17FwDg4uICFxcXXLtGU/gQwor//AcoLS+Wrs+Kp7xUhZIyNSyl9Pxhg/nPf4DkNADAgl8+AzZ9Uvv6hPdEr72m/V0yRr2KZxwLE4kSQurHzkIMS4kIJUo1MuWl8HGx5jokQswOq4MkEEIankAg0N73pE5DhHCjXsXzlVdegVwu13v9MWPGICsrqz67IoQAwM6dlb51s6NnPRuFTt7njKPH7poC9XZ2BruoV/HctWsXnjx5ArlcXudXfn4+9uzZg8LCQr3bj46Oho+PDywsLBAcHIxz587Vun5eXh4iIyPh4eEBmUyGdu3aYd8+GkqLNCHPOgtVoE5DjUQn72nOnhwGQtjCtGrFSjv1uufJMAzatWvHSgD/tm3bNkRFRWHt2rUIDg7GypUrERERgeTkZO28obrKysoQFhYGV1dX7NixA82bN8eDBw/g4ODQIPERwgl//0qdHNyeXbZNp+LZsPz9tR2GNn4zEVhOTxCYOnFQkGl1GGrevLle661YsQKTJk3ChAkTAABr167F3r17sXHjRsyaNavK+hs3bkRubi5OnToFiaR8fnAfHx+D4yPElDR3sAQApOeXcBwJIeapXsWzb9++bMcBoPwsMiEhAbNnz9YuEwqFCA0NxenTp6vdZvfu3QgJCUFkZCR27dqFZs2aYfTo0fj4448hqmHqGYVCAYVCof2+4v6tUqmEUqlk8SdqeiryQ3nSD1v5EgNQ6bThalP+h+Kjp8VN6ljw7fMlBqBSqQEADPgTVwW+5YvPdHNUU74MyaPRY9uyKTs7G2q1Gm5ubpWWu7m54ebNm9Vuc+/ePRw5cgRjxozBvn37cOfOHbz33ntQKpWYP39+tdssWbIECxYsqLI8Li4OVlZWxv8gZiAmJobrEEyKsflq9cYbuKdzH/9xEQCIcT9L3iTv7/Pl89XqjTdw+vQpAGJ8N/BNtOVprvmSL1Nw9V+/S7qKi4v1bkfAMAzDVlDGSktLQ/PmzXHq1CmEhIRol3/00Uc4evQozp49W2Wbdu3aobS0FCkpKdozzRUrVuDLL79Eenp6tfup7szT29sb6enpcHZ2ZvmnalqUSiViYmIQFhamvUxOatZQ+ZKXKBH0Rfntk8tzBzaZgRL4+Pm6mJqHUevPoaWTFQ7PeJ7rcCrhY774Sp9cyeVyuLi4ID8/H3Z2drW2x6szTxcXF4hEImRmZlZanpmZCXd392q38fDwgEQiqXSJtmPHjsjIyEBZWRmkUmmVbWQyGWQyWZXlEomEPoB6olwZxuh8WVhU6uTgJBbDRiZGoUKFJ8UqtLa2YCFK/uDN58vCAuJnHYZiPo2A5KMyjgOqHm/yZQIsnZwgqKHDkCE55NUgCVKpFEFBQYiNjdUu02g0iI2NrXQmqqt37964c+cONBqNdtmtW7fg4eFRbeEkpCkQCATwdCgvmGl51GmIkMbGSvFUqVQ4fPgw1q1bh4KCAgDll2ANebazQlRUFNavX4+ffvoJN27cwJQpU1BUVKTtfTtu3LhKHYqmTJmC3NxcTJs2Dbdu3cLevXvxxRdfIDIyko0fjRDe8nzW4/bxUyqehDQ2oy/bPnjwAIMGDUJqaioUCgXCwsJga2uLZcuWQaFQYO3atQa1N2rUKDx58gTz5s1DRkYGunbtigMHDmg7EaWmpkIo/Kfme3t74+DBg5gxYwb8/f3RvHlzTJs2DR9//LGxPxoh/PH221UWVTyuQmeeDUgn73ufG4IRHIZC2KGZMAFs9BAwunhOmzYN3bt3x6VLlyp1thkxYgQmTZpUrzanTp2KqVOnVvtefHx8lWUhISE4c+ZMvfZFiEmIjq6yqOLM8xEVz4YTHQ08yAUArBoxjYpnE6D59ltWiqfRl22PHz+OOXPmVLm/6OPjg8ePHxvbPCEEALp0qbLIy/FZ8aTLtg1HJ+8bV1Q9+yemRxwYyEo7RhdPjUYDtVpdZfmjR49ga2trbPOEEAC4fbvKohZO5c8kP8gpauxozIdO3r2yH3EYCGHNnTusNGN08QwPD8fKlSu13wsEAhQWFmL+/PkYMmSIsc0TQmrg41w+j2emXIFSZdU/YAkhDcfo4vnVV1/h5MmT8PPzQ2lpKUaPHq29ZLts2TI2YiSEvPBClUUOVhLYWpR3W0jN1X9kFGIAnbxf8vXnMBDCFqZPH1baMbrDkLe3Ny5duoRt27bh0qVLKCwsxNtvv40xY8bA0tKSjRgJIYcOVVkkEAjQ0tkKVx/L8SCnGO3c6DYJ6w4d0nYYmjnpS8RzGw1hgXrfPlae0TSqDaVSidatW+P27dsYM2YMli9fjtWrV2PixIlUOAlh08iR1S5u6VR+6ZbuezYQnbwv+F/1Y2UT0yL6739Zaceo4imRSFDKwrxohJA67N1b7eIWzhWdhuiybYPQyXvITXocrikQ7N/PSjtGn71GRkZi2bJlUKlUbMRDCDFAy4oet3TPk5BGZfQ9z/PnzyM2NhaHDh1Cly5dYG1tXen9P//809hdEEJqmBih5bMet6l02bZh6OQ919YJ1R8FYlJq+F0ylNHF08HBASNruB9DCGHJ/fvVLm757LLto6clUKk1EIt4NdeD6bt/X9th6LXZv1GHoSZAdfs22Jh/xujiuWnTJhbCIITUavZsYMmSKovd7SwgFQtRptIgPb8U3k40mTurZs8GJs8EAEzavx6Y2Z/jgIixhJ9+Cixfbnw7LMRCCGlo33xT7WKhUADvZ8P03adLt+zTyfurx3dwGAhhi/Dbb1lpx+gzT19fXwgEghrfv3fvnrG7IITUoqWzNe4+KcKDnGL0act1NISYB6OL5/Tp0yt9r1QqkZiYiAMHDmDmzJnGNk8IqUPFfU8aZYiQxsPKlGTViY6OxoULF4xtnhACAFlZNb7VkgaIbzhZWcDT8sfwXp73J/ZxHA4xnurxY1Y6DDXYPc/Bgwfjjz/+aKjmCTEvtfwuVTyuQgMlNACdvL9w5RiHgRC2CHbuZKWdBiueO3bsgJOTU0M1T4h5mTKlxrd8XMqLZ0p2EdQaprEiMg86eY/auZK7OAhrRFOnstKO0ZdtAwMDK3UYYhgGGRkZePLkCVavXm1s84SQOng7WkIqFkKh0uDx0xLtkH2EkIZjdPF8+eWXK30vFArRrFkz9OvXDx06dDC2eUJIHcQiIVq5WONmRgFuZxVQ8SSkERhdPOfPp5kGCGlwJ07U+nYbVxvczCjAnaxCDOzo1khBmQGdvL8/5Vus4zAUwg51fLzxhQ8s3PO8ePEirly5ov1+165dePnll/HJJ5+grKzM2OYJIQCgUNT6dlvX8rk8b2cVNkY05kMn7xK1ksNACGvq+F3Sl9HF891338WtW7cAlA+IMGrUKFhZWWH79u346KOPjA6QEAJg4MBa327rZgMAuEPFk106eV/xwwccBkLYIoqIYKUdo4vnrVu30LVrVwDA9u3b0bdvX2zZsgWbN2+mR1UIaSRtXP8pngxDPW4JaWhGF0+GYaDRaAAAhw8fxpAhQwAA3t7eyM7Orleb0dHR8PHxgYWFBYKDg3Hu3Dm9ttu6dSsEAkGVTkyENHU+ztYQCQUoVKiQKWfnshQhpGZGF8/u3bvj888/x88//4yjR49i6NChAICUlBS4uRnecWHbtm2IiorC/PnzcfHiRQQEBCAiIgJZtYywAgD379/Hhx9+iD59+tTr5yCE1zZurPVtqVgIn2e9bG9lFjRGROZBJ+/LXqXbUE2B+ocfWGnH6OK5cuVKXLx4EVOnTsWnn36KNm3aACgfJKFXr14Gt7dixQpMmjQJEyZMgJ+fH9auXQsrKytsrOU/D7VajTFjxmDBggVo1apVvX8WQngrLKzOVdq7l3caupkhb+hozIdO3i+0DeIwEMIWJjSUlXaM7rHr7+9fqbdthS+//BIikcigtsrKypCQkIDZs2drlwmFQoSGhuL06dM1brdw4UK4urri7bffxvHjx+vcj0KhgEKnx5VcXv6fjVKphFJJPepqU5EfypN+2MqX2NsbqoLazyjbudpgH4Brj/NN9vjw7fMl9vaG6tpDAMDvX4yCcg6/xg/mW774rCJH4latoKzhd8mQPBpdPB8+fAiBQAAvLy8AwLlz57Blyxb4+fnhnXfeMait7OxsqNXqKpd73dzccPPmzWq3OXHiBDZs2ICkpCS997NkyRIsWLCgyvK4uDhYWdED5vqIiYnhOgSTYmy+XtRosG9f7cOSF+UKAIhw/nYa9u17aNT+uMaXz9eLGg1Onz4FQAwwqPMYcIUv+TIFmlp+l4qL9R8f2ujiOXr0aLzzzjsYO3YsMjIyEBYWhk6dOuHXX39FRkYG5s2bZ+wualRQUICxY8di/fr1cHFx0Xu72bNnIyoqSvu9XC6Ht7c3+vfvD2dn54YItclQKpWIiYlBWFgYJBI25iZo2tjKl1Ao1HbGq0lAXgnWJx/HE4UQoeFhkIpNb657vn2+hEIhQkJ6YeXVc4AAdR6Dxsa3fPFZRa5q+12quAqpD6OL59WrV9GjRw8AwO+//47OnTvj5MmTOHToECZPnmxQ8XRxcYFIJEJmZmal5ZmZmXB3d6+y/t27d3H//n0MGzZMu6yi569YLEZycjJat25dZTuZTAaZTFZluUQioQ+gnihXhjE6X7Nm1bl9SxcxbC3EKChV4cFTBfw87eq/P47x5vM1axbE4vLbT7/1ex1v8iGmavAmXyZAM3NmjbkyJIdG/2mqVCq1hejw4cN46aWXAAAdOnRAenq6QW1JpVIEBQUhNjZWu0yj0SA2NhYhISFV1u/QoQOuXLmCpKQk7ddLL72E/v37IykpCd7e3kb8ZITwyGef1bmKQCBAR/fygnkjnToNsUIn75vD3+QsDMIeDUtXQ40unp06dcLatWtx/PhxxMTEYNCgQQCAtLS0el0CjYqKwvr16/HTTz/hxo0bmDJlCoqKijBhwgQAwLhx47QdiiwsLNC5c+dKXw4ODrC1tUXnzp0hlUqN/fEI4QcPD71W69S8vHheeZzfkNGYD528/7HoPxwGQtgibtGCnXaMbWDZsmUYMWIEvvzyS4wfPx4BAQEAgN27d2sv5xpi1KhRePLkCebNm4eMjAx07doVBw4c0HYiSk1NhVBoevdyCDHK06d6rdbV2wEAkPQwr+FiMSc6ebctoednmwQ9f5fqYnTx7NevH7KzsyGXy+Ho6Khd/s4779S75+rUqVMxtYYJS+Pj42vddvPmzfXaJyFNQUXxvJ4mR5lKY5KdhggxBaz8ZjEMg4SEBKxbtw4Fz56fkUql9NgHIWx55RW9VmvhZAUHKwnK1Bq678kGnbwf60yjlzUFDEvDtxpdPB88eIAuXbpg+PDhiIyMxJMnTwCUX8798MMPjQ6QEAJgyxa9VhMIBAjwcgAAXHqU13DxmAudvH8+eg6HgRC2qH/+mZV2jC6e06ZNQ/fu3fH06VNYWlpql48YMaJSr1lCiBH69tV71QC678kenbyvXDOduzgIa0R1TO+nL6PveR4/fhynTp2q0rPVx8cHjx8/NrZ5QggAnD2r96pdve0BAJeoeBpPJ+9+D29wGAhhi0DPWbrqYvSZp0ajgVqtrrL80aNHsLW1NbZ5QoiBKi7b3n1SBHkpjXlKSEMwuniGh4dj5cqV2u8FAgEKCwsxf/583g1lRYjJ6txZ71WdbWTwdiq/hXLlET3vaRSdvKe4+XIYCGEL06kTK+0YXTy/+uornDx5En5+figtLcXo0aO1l2yXLVvGRoyEkAsXDFq94uyT7nsaSSfv705by2EghC3qM2dYacfo4unt7Y1Lly7h008/xYwZMxAYGIilS5ciMTERrq6ubMRICJk0yaDVA1uUP3N94X5uQ0RjPnTy/uGOrzgMhLBFNHkyK+0YVTyVSiVat26N27dvY8yYMVi+fDlWr16NiRMnVup5SwgxkoHd64N9nQAAF+4/hUqtaYiIzINO3sMv0rRfTYHg119Zaceo4imRSFBaWspKIIQQ9nT0sCufYUWhwnUaLIEQ1hl92TYyMhLLli2DSqViIx5CSHUMnORAJBRozz7P3MtpiIjMg07elSKa8qtJYGnCEKOf8zx//jxiY2Nx6NAhdOnSBdbW1pXe//PPP43dBSHEgEl6KwT7OuPwjSycvZeLd16oOq8t0YNcDjwov288dNHfiOc2GsICVU4O2PgzyOgzTwcHB4wcORIRERHw9PSEvb19pS9CCAuWLzd4k56tyqcEPJeSS/c960sn76/Fb+UwEMIW4VfsdPwy+sxz06ZNbMRBCKnNvHnARx8ZtImfpx3sLSXIL1Hi0qN8BLV0rHsjUtm8ecCoiQCAtw5tArCO23iI0YQLFgDP5oQ2qp36bqjRaLBs2TL07t0bzz33HGbNmoWSkhKjAyKEsEMkFOD5Ni4AgKO3nnAcDSFNS72L5+LFi/HJJ5/AxsYGzZs3x6pVqxAZGclmbIQQI73Qrrx4HqPiSQir6l08//e//2H16tU4ePAg/vrrL+zZswe//vorNBq6t0II65KT67XZC+2aAQAuP8rD06IyNiMyDzp5HzvzJw4DIWxRXb3KSjv1Lp6pqamVxq4NDQ2FQCBAWloaK4ERQnQkJtZrMw97S3Rwt4WGAWJvZrEclBnQyXvbx3c4DISwRZCUxEo79S6eKpUKFhYWlZZJJBIolTSLAyGse+21em86qLM7AODA1XS2ojEfOnmft2URh4EQtojeeIOVdurd25ZhGLz55puQyWTaZaWlpZg8eXKlZz3pOU9CuDWosztWHr6NY7ezUahQwUZmdCd7QsxevX+Lxo8fX2XZGyxVdEIIe9q72cLXxRop2UWIu5mFYQGeXIdEiMmrd/Gk5zsJaUR79tR7U4FAgIhO7lh79C4OXMug4mkInbzPfnMxvuYwFMIO9c6dxg9wABZGGCKENILmzY3avOK+Z9zNLJQq1WxEZB508p5t78JhIIQtjCc7fzxS8STEFHTrZtTmAV728LC3QHGZGvHJ9Myn3nTyvn7VuxwGQtgiDg5mpR1eFs/o6Gj4+PjAwsICwcHBOHfuXI3rrl+/Hn369IGjoyMcHR0RGhpa6/qEmCOBQKC9XPvnxUccR0OI6eNd8dy2bRuioqIwf/58XLx4EQEBAYiIiEBWVvXPqMXHx+P1119HXFwcTp8+DW9vb4SHh+Px48eNHDkh/PafIC8AwJGbWcguVHAcDSGmjXfFc8WKFZg0aRImTJgAPz8/rF27FlZWVti4cWO16//6669477330LVrV3To0AE//vgjNBoNYmNjGzlyQhrQ18Z3VWnnZosAL3uoNAz+SqQ/LvWik/fVL07hMBDCFk09ZiiqDq8e+CorK0NCQgJm64x4LxQKERoaitOnT+vVRnFxMZRKJZycnGpcR6FQQKH45y9v+bO5EpVKJQ3yUIeK/FCe9MNavt56C2Ah5yO6euDSo3xsOZuKsT28IBQKjG6TTbz7fL31FlRphQCA3T2GIZIvcT3Du3zxWEWOFG++CUkN+TIkj7wqntnZ2VCr1XBzc6u03M3NDTdv3tSrjY8//hienp4IDQ2tcZ0lS5ZgwYIFVZbHxcXBysrKsKDNVExMDNchmBRj8/Xiq6/i7+3bjY7DUgXIRCLcyy7Cit8OwM+RMbrNhsCXz9eLr76K0xu3AxBj/9wh2Odn/DFoCHzJlymQubjU+LtUXFysdzu8Kp7GWrp0KbZu3Yr4+PgqQwfqmj17NqKiorTfy+VyeHt7o3///nB2dm6MUE2WUqlETEwMwsLCIJGwMR9708ZWvoRCYaWxpI1xU5KMTace4KrSFR8OCWKlTbbw7fMlFAoREtILK6+eAwRg7RiwhW/54rOKXNX2u1RxFVIfvCqeLi4uEIlEyMzMrLQ8MzMT7u7utW771VdfYenSpTh8+DD8/f1rXVcmk1UaVrCCRCKhD6CeKFeGYSNfbOX7redb4afTD3Dybg7u5ZSivbstK+2yiU+fL7FYBAAQgL1jwDY+5csU1JQrQ3LIqw5DUqkUQUFBlTr7VHT+CQkJqXG75cuXY9GiRThw4AC6d+/eGKES0rjeZe8ZQ28nK4T7lf8xuvFECmvtNkk6ed8dPIzDQAhbNJMmsdIOr4onAERFRWH9+vX46aefcOPGDUyZMgVFRUWYMGECAGDcuHGVOhQtW7YMc+fOxcaNG+Hj44OMjAxkZGSgsLCQqx+BEPatWsVqc2/38QUA7Ex6jCx5KattNyk6ef9++FQOAyFs0axYwUo7vCueo0aNwldffYV58+aha9euSEpKwoEDB7SdiFJTU5Ge/s/USmvWrEFZWRn+85//wMPDQ/v11VdfcfUjEMI+Pz9Wm+ve0hFBLR1RptLg+ziap7JGOnnf/NUEDgMhbBHXcVtP73ZYaYVlU6dOxdSp1f+VFx8fX+n7+/fvN3xAhHDt3j1WmxMIBPgwvD1eX38Gv51LxaQ+reDtRD3Nq9DJu2duGoeBENaksHOrgndnnoSQxhHS2hl92rpAqWawIuYW1+EQYlKoeBJiCvr3b5BmZ0a0h0AA7Ex8jHMpuQ2yD5Omk/fE1oEcBkLYwvTrx0o7VDwJMQX79zdIs/5eDnjtuRYAgLl/XYVSrWmQ/Zgsnbx//PZSDgMhbFEbMTeuLiqehJiCl19usKY/imgPRysJkjML6NGVf9PJ++c/zeUuDsIa0ciRrLRDxZMQU3DgQIM17WgtxezBHQEAXx+6hetp+o+y0uTp5L1HMk112BQIDh1ipR0qnoQQvNrdC6Ed3VCm1mDa1kSUKtVch0QIr1HxJMQUNG/eoM0LBAIsG9kFzWxluJ1ViEV/X2/Q/ZkMnbw/sXPhMBDCGpZ+l6h4EmIK7t5t8F0428jw9asBEAiAX8+m4tezDxp8n7ynk/cxs37lMBDCFpWeM3TVhYonIabgo48aZTcvtGuGD8PbAwDm77qGIzcz69iiidPJ+7t713EYCGGLcNYsdtphpRVCSMP69ttG29V7/VpjRGBzqDQMJv9yEafuZDfavnlHJ+8jT/7JYSCELcLoaHbaYaUVQkiTIRAIsPw//gjzc0OZSoOJ/7tAAygQ8i9UPAkhVUhEQnw/OhB92rqguEyNNzacxd7L6XVvSIiZoOJJiCnIyWn0XcrEIvwwtjvCn52BRm65iNXxd6DRMI0eC2d08v7SZ39xFwdhjSojg5V2qHgSYgp++42T3VpKRVjzRhDe7OUDAFh+IBlv/3QeOYUKTuJpdDp5H5h4hMNACFsE27ax0g4VT0JMQQ1T9DUGkVCAz17qhC9GdIFMLERc8hMMWnUc+66kg2Ga+FmoTt6n7Wq8Tluk4YimTWOlHSqehBC9jA5ugV1Te6ONqw2eFCjw3q8XMWHzedx7Ush1aIQ0OiqehBC9dXC3w9/vP4//G9AGEpEA8clPEPbNMcz64zIe55VwHR4hjYaKJyGm4PRpriPQspCIEBXeHgemv4D+7ZtBrWGw9fxD9F0eh//7LRFJD/OazuVcnby/F/k9h4EQtqiOHWOlHTErrRBCGlZBAdcRVNG6mQ02TeiBhAe5+PrQLZy6m4Pdl9Kw+1Ia2rvZ4pVuzTG8a3O421twHWr9FRQATuUvrRTF3MZCWCEoZOc2A515EmIKwsO5jqBGQS2dsGVST/z9/vN4pVtzSMVCJGcWYMn+mwhZGotX157C2qN3cSuzwPTOSHXy/tWPjTNEImlYoiFDWGmHzjwJIazo3NweK/7bFfOHdcK+K+nYefExzt3Pxfn7T3H+/lMs3X8TLjZSBPs6o2crJwS2cEQ7N1tIxfQ3PDE9VDwJIayyt5Tg9R4t8HqPFnicV4IjNzJx+EYWztzLQXZhGfZeScfeK+WjFUlEArRzs0UnTzt08rSHj5MFnipgXgMxEJNExZMQU/DTT1xHUC/NHSwxNsQHY0N8oFCpcelhPs7ey8HZlFxcfpQHeakK19LkuJYmB/Do2VZiLL0SCx9na7R0toKHvSU8HSzgbm8JD3sLuNtZwNVOBplY1PA/gE7el/x3FuY3/B5JA1Nv2MBK4eNl8YyOjsaXX36JjIwMBAQE4LvvvkOPHj1qXH/79u2YO3cu7t+/j7Zt22LZsmUYwtJ1bUJ44YUXuI7AaDKxCD18ndDD1wnvA2AYBo+eljwrnvm4kS7HvSeFuJ9ThFKlBjczCnAzo+aOUjYyMRytJXCyksLRWvrPv9ZS2FqIYSMTw1omhu2zf22eLbORiWElFUEgENQd9AsvAGXlLy+18mcnEYRTTJ8+rLTDu+K5bds2REVFYe3atQgODsbKlSsRERGB5ORkuLq6Vln/1KlTeP3117FkyRK8+OKL2LJlC15++WVcvHgRnTt35uAnIKQB+PoCpaVcR8EqgUAAbycreDtZYVBndwCAUqnEnr374N+zHx7mKZCaW4z0/FJk5JeU/ysvRXp+KcpUGhQqVChUqPAw1/DnSwUCwEoigkwigkwsfPYlgrTitaT8+3XvPI9pi/YDALYuHQ0s+g+rOSCNT9yuHSu/S7wrnitWrMCkSZMwYcIEAMDatWuxd+9ebNy4EbOqmcR01apVGDRoEGbOnAkAWLRoEWJiYvD9999j7dq1jRo7IcR4IgHQ0tkKbdztq32fYRjklyjxtFiJ3KIyPC0qQ25RGXKL/3ldUKpCUZmq/F9F+VfBs381DMAwQFGZGkVl6lpj0WjKz47L6XGmSswGr4pnWVkZEhISMHv2bO0yoVCI0NBQnK7hIfHTp08jKiqq0rKIiAj89ddfNe5HoVBAofhnYOv8/HwAQG4uzVlYF6VSieLiYuTk5EAikXAdDu+xlS8xw0DFwcwqjc2QfNkJADsbwMdGjPL/yqzqbJ9hGJQqNShSqFCsVEOp0kChYlCmUkOh1kCh0qDs2ZdCrUHxCmB6H08wAIq/AQp4dgzo91F/FbmS1/K7VPDseWp9HqniVfHMzs6GWq2Gm5tbpeVubm64efNmtdtkZGRUu35GLdPOLFmyBAsWLKiyvF27dvWImpBG4uLCdQRmZxIAvNgNABAF0DFoKuo4jgUFBbC3r/7KRwVeFc/GMnv27Epnq3l5eWjZsiVSU1PrTJi5k8vl8Pb2xsOHD2FnZ8d1OLxH+TIM5cswlC/96ZMrhmFQUFAAT0/POtvjVfF0cXGBSCRCZmZmpeWZmZlwd3evdht3d3eD1gcAmUwGmUxWZbm9vT19APVkZ2dHuTIA5cswlC/DUL70V1eu9D2B4tXQHlKpFEFBQYiNjdUu02g0iI2NRUhISLXbhISEVFofAGJiYmpcnxBCCDEWr848ASAqKgrjx49H9+7d0aNHD6xcuRJFRUXa3rfjxo1D8+bNsWTJEgDAtGnT0LdvX3z99dcYOnQotm7digsXLuCHH37g8scghBDShPGueI4aNQpPnjzBvHnzkJGRga5du+LAgQPaTkGpqakQCv85Ye7Vqxe2bNmCOXPm4JNPPkHbtm3x119/GfSMp0wmw/z586u9lEsqo1wZhvJlGMqXYShf+mM7VwLG5KY5IIQQQrjFq3uehBBCiCmg4kkIIYQYiIonIYQQYiAqnoQQQoiBzL54RkdHw8fHBxYWFggODsa5c+e4DokXjh07hmHDhsHT0xMCgaDKWMEMw2DevHnw8PCApaUlQkNDcfv2bW6C5diSJUvw3HPPwdbWFq6urnj55ZeRnJxcaZ3S0lJERkbC2dkZNjY2GDlyZJXBPczFmjVr4O/vr31YPSQkBPv379e+T7mq2dKlSyEQCDB9+nTtMspXZZ999hkEAkGlrw4dOmjfZytfZl08K6Y/mz9/Pi5evIiAgABEREQgKyuL69A4V1RUhICAAERHR1f7/vLly/Htt99i7dq1OHv2LKytrREREYHSJjZtlj6OHj2KyMhInDlzBjExMVAqlQgPD0dRUZF2nRkzZmDPnj3Yvn07jh49irS0NLzyyiscRs0dLy8vLF26FAkJCbhw4QIGDBiA4cOH49q1awAoVzU5f/481q1bB3//yvOKUr6q6tSpE9LT07VfJ06c0L7HWr4YM9ajRw8mMjJS+71arWY8PT2ZJUuWcBgV/wBgdu7cqf1eo9Ew7u7uzJdffqldlpeXx8hkMua3337jIEJ+ycrKYgAwR48eZRimPDcSiYTZvn27dp0bN24wAJjTp09zFSavODo6Mj/++CPlqgYFBQVM27ZtmZiYGKZv377MtGnTGIahz1Z15s+fzwQEBFT7Hpv5Mtszz4rpz0JDQ7XL6pr+jJRLSUlBRkZGpdzZ29sjODiYcod/prhzcnICACQkJECpVFbKV4cOHdCiRQuzz5darcbWrVtRVFSEkJAQylUNIiMjMXTo0Ep5AeizVZPbt2/D09MTrVq1wpgxY5CamgqA3XzxboShxlKf6c9IuYrp3gydCs4caDQaTJ8+Hb1799aOcpWRkQGpVAoHB4dK65pzvq5cuYKQkBCUlpbCxsYGO3fuhJ+fH5KSkihX/7J161ZcvHgR58+fr/IefbaqCg4OxubNm9G+fXukp6djwYIF6NOnD65evcpqvsy2eBLSECIjI3H16tVK91hIVe3bt0dSUhLy8/OxY8cOjB8/HkePHuU6LN55+PAhpk2bhpiYGFhYWHAdjkkYPHiw9rW/vz+Cg4PRsmVL/P7777C0tGRtP2Z72bY+05+RchX5odxVNnXqVPz999+Ii4uDl5eXdrm7uzvKysqQl5dXaX1zzpdUKkWbNm0QFBSEJUuWICAgAKtWraJc/UtCQgKysrLQrVs3iMViiMViHD16FN9++y3EYjHc3NwoX3VwcHBAu3btcOfOHVY/X2ZbPOsz/Rkp5+vrC3d390q5k8vlOHv2rFnmjmEYTJ06FTt37sSRI0fg6+tb6f2goCBIJJJK+UpOTkZqaqpZ5qs6Go0GCoWCcvUvAwcOxJUrV5CUlKT96t69O8aMGaN9TfmqXWFhIe7evQsPDw92P19GdGoyeVu3bmVkMhmzefNm5vr168w777zDODg4MBkZGVyHxrmCggImMTGRSUxMZAAwK1asYBITE5kHDx4wDMMwS5cuZRwcHJhdu3Yxly9fZoYPH874+voyJSUlHEfe+KZMmcLY29sz8fHxTHp6uvaruLhYu87kyZOZFi1aMEeOHGEuXLjAhISEMCEhIRxGzZ1Zs2YxR48eZVJSUpjLly8zs2bNYgQCAXPo0CGGYShXddHtbcswlK9/++CDD5j4+HgmJSWFOXnyJBMaGsq4uLgwWVlZDMOwly+zLp4MwzDfffcd06JFC0YqlTI9evRgzpw5w3VIvBAXF8cAqPI1fvx4hmHKH1eZO3cu4+bmxshkMmbgwIFMcnIyt0FzpLo8AWA2bdqkXaekpIR57733GEdHR8bKyooZMWIEk56ezl3QHHrrrbeYli1bMlKplGnWrBkzcOBAbeFkGMpVXf5dPClflY0aNYrx8PBgpFIp07x5c2bUqFHMnTt3tO+zlS+akowQQggxkNne8ySEEELqi4onIYQQYiAqnoQQQoiBqHgSQgghBqLiSQghhBiIiichhBBiICqehBBCiIGoeBJCCCEGouJJCCGEGIiKJyGEEGIgKp6EEEKIgah4EkIIIQai4kkIIYQYiIonIYQQYiAx1wHwgUajQVpaGmxtbSEQCLgOhxBCCAcYhkFBQQE8PT0hFNZ+bknFE0BaWhq8vb25DoMQQggPPHz4EF5eXrWuQ8UTgK2tLQAgJSUFTk5OHEfDb0qlEocOHUJ4eDgkEgnX4fAea/m6cwdo04a9wHiKd58v3bzz8BjwLl88ps1Vq1aQdOxY7TpyuRze3t7amlAbKp6A9lKtra0t7OzsOI6G35RKJaysrGBnZ0e/rHpgLV+ZmUC3buwFxlO8+3zp5p2Hx4B3+eKxilzZZ2VBHBxc67r63L6jDkOEmIIRI7iOwDzp5p2OQZMgevVVVtrhVfE8duwYhg0bBk9PTwgEAvz11191bhMfH49u3bpBJpOhTZs22Lx5c4PHSQghxLzxqngWFRUhICAA0dHReq2fkpKCoUOHon///khKSsL06dMxceJEHDx4sIEjJYQQYs54dc9z8ODBGDx4sN7rr127Fr6+vvj6668BAB07dsSJEyfwzTffICIioqHCJKTx7djBdQTmSTfvdAyaBPXWrawUPl4VT0OdPn0aoaGhlZZFRERg+vTptW6nUCigUCi038vlcgDlN5SVSiXrcbKBYRikPi3B/ewiZMgVyMgvRXZRGUrK1ChRqlGqVKNEqYFCqYaGATQMAw1Tvt0/ryu+L3+/npGguFiEr24eA2D8M7H1jaKx1fST1tSvQPBsC+ZZvr5OPq5dVvM2Ne/DMzsPaTfj9NqiPu3XRMDSPmra4N9LGTAokIuwNuVUjZ026sq5/uvXQOcN9yeFyLh/HEKBABPdbRHBs/8fKv6/4uv/W3yizVWbNmBqyJcheTTp4pmRkQE3N7dKy9zc3CCXy1FSUgJLS8tqt1uyZAkWLFhQZXlcXBysrKwaJNb6UGuAxBwBrj0V4K5cgHwlXwZwECBHUcp1ECZEAJSWGNXC/q/eQvsPd7IUD98J8Li4kOsgAADbvxqnzXvYtBHY98d2jiOqXkxMDNchmAxpt274e3v1x7G4uFjvdky6eNbX7NmzERUVpf2+4tme/v37w9nZmcPIymk0DH499xDrT9xHev4/RUoiEqC1izXc7S3gYW+BZjYyWMlEsJCIYCkRwlIiglQshEgogFAggEAACAUCCJ/9+8/3z/5Gr0ctVqtUOHfuHHr06AGRmJ2PD1/+JKhJjWfHNbyhu1ilUuH8+XN47rkeEIlEhrWP8qsFACD5Rogtbz+ns031Wxl6QaGm9Q1tv6bd1hZPdftQq9RIuHgR3QIDIf7X56vmfdQQq4ExVbdY/I0QM8Pb4stDtwEBMGTIkBpa5YZSqURMTAzCwsLoUZU6VORKKBTWeBwrrkLqw+D//Xbv3m3oJggLC6vxLNAY7u7uyMzMrLQsMzMTdnZ2te5PJpNBJpNVWS6RSDj/AOYWlWH6tiQcu/UEAOBiI8PrPbzRq7ULAls4wEJS/X/AjUWpVCLrBtDd14XzXJkCpVKJ7JtAj1ZG5ksA9Grryl5gPKVUKlF8j0H/ju78+HwJgJ6tXQDchgDgR0zV4MP/XaakplwZkkODi+fLL79s0PoCgQC3b99Gq1atDN1VnUJCQrBv375Ky2JiYhASEsL6vhrDo6fFGLXuDB7nlcBCIsSsQR3wWo8WnBdMwgNffMF1BOZJJ+/rB01EJIehEHZoFi0CG/+j1utRlYyMDGg0Gr2+DLmHWFhYiKSkJCQlJQEofxQlKSkJqampAMovt44bN067/uTJk3Hv3j189NFHuHnzJlavXo3ff/8dM2bMqM+Pxam84jKM33gOj/NK4ONshZ3v9cabvX2pcJJyOrcZSCPSyfv2F9h5uJ5wS1NHh1J9GVw8x48fb9Al2DfeeEPvIe8uXLiAwMBABAYGAgCioqIQGBiIefPmAQDS09O1hRQAfH19sXfvXsTExCAgIABff/01fvzxR5N7TIVhGHz8x2XcfVIED3sL/PZOT3T0oGECiQ5ra64jME86ed//Kb/ud5L6ETs4sNOOoRts2rTJoPXXrFmj97r9+vWr8eY/gGpHD+rXrx8SExMNiolvdiWl4eC1TEhEAqwf1x0e9uzfHyYmTq3mOgLzpJN3EUPHoElg6XeJtRGGTp48WenZSaKfUqUaS/ffBAD834C26NzcnuOICCGE1IW14jl48GA8fvyYrebMxpazqciQl8LD3gKTXmC/UxVpIt58k+sIzJNO3g8EDeIuDsIajU6/GWOwVjxru9xKqldcpsLq+LsAgPcHtKXOQaRma9dyHYF50sn7ipGm1xGRVKXRc+z0uvBqYHhzs/3CI2QXKuDtZIlXu9c+azkxc8860ZFGppP39Svf4TAQwhbxc8/VvZIeWCue69atqzJUHqndjoRHAIAJvXwhEdHfMaQWN25wHYF50sl7y6wHHAZCWHPzJivNsDY83+jRo9lqyizcyizAlcf5EAsFGN7Vk+twCCGEGMDg053Lly9Do9Hovf61a9egUqkM3U2T98ezs87+HVzhbFN1qEBCKunVi+sIzJNO3q+27MRhIIQtDEsj0BlcPAMDA5GTk6P3+iEhIZUGNiCASq3BzsTynskju9G9TqKHI0e4jsA86eQ96t0VHAZC2KI+dIiVdgy+bMswDObOnav3sHtlZWUGB9XUnbiTjawCBRytJBjQoekP9k1YMGoUsG0b11GYn1GjgOXlA73M+2UhMLM/xwERY4lGjwZqmJLMEAYXzxdeeAHJycl6rx8SEtIgM6qYsr8vpwMAXgrwhFRMHYWIHnbt4joC87Rrl7Z4Pn/9JMfBEDYI9uxhpR2Di2d8fDwrOzZXGg2D+OTy6cYiOrlzHA0hhJD6oNOeRnYjQ47sQgWspCIE+ThyHQ4xFS4uXEdgnnTynm9NQ2c2CSz9LlHxbGQVZ529WjtDJqYRhYieHj3iOgLzpJP3Vz/9ncNACFtUKSmstEPFs5EdvVVePPu2p45CxABz53IdgXnSyftbBzdyGAhhi3D+fHbaYaUVohd5qRIXHzwFAPRt24zjaIhJ+fJLriMwTzp5f+0o9XZuCoQr2HnkiIpnIzp1JxsqDYNWLtZo4azfoz6EEEL4h7XiWVJSUu2UZNeuXWNrFybv2O1sAMAL7eiskxBCTBkrxXPHjh1o27Ythg4dCn9/f5w9e1b73tixY9nYRZNwLiUXQHlnIUIMkpbGdQTmSSfvI+cY/2A94Z7qATsD/LNSPD///HMkJCQgKSkJmzZtwttvv40tW7YAoHk+K+QUKnAnqxAA8JyPE8fREJOzdy/XEZgnnbz3vHGGw0AIWwT79rHSDivFU6lUaqcjCwoKwrFjx7Bu3TosXLgQAoGAjV2YvPP3yzsKtXOzgaO1lONoiMmZNInrCMyTTt5n/vE1h4EQtoimTGGlHVaKp6urKy5fvqz93snJCTExMbhx40al5ebs/P3yS7Y9fOmskxBCTB0rxfPnn3+Gq2vl5xalUil+++03HD16lI1dmLyK+510yZYQQkwfK8XTwsICYnH1w+T27t2bjV2YtJIyNa6nywFQ8ST1RGNKc0Mn79Pf/Ya7OAhr1IcPs9JOvYtnXl4eIiMj4eLiAjc3N7i5ucHFxQVTp05FXl6eUUFFR0fDx8cHFhYWCA4Oxrlz52pdf+XKlWjfvj0sLS3h7e2NGTNmoLS01KgY2HQ9PR9qDYNmtjJ42FtwHQ4hhBAjGTyrCgDk5uYiJCQEjx8/xpgxY9CxY0cAwPXr17F582bExsbi1KlTcHQ0fODzbdu2ISoqCmvXrkVwcDBWrlyJiIgIJCcnV7k0DABbtmzBrFmzsHHjRvTq1Qu3bt3Cm2++CYFAgBUsjSRhrEsP8wEAAV721IGK1E+/fgCP/iA0G/36Acnlj6usXDcD+D6S23iI0UShoaz8LtWreC5cuBBSqRR3797V9rLVfS88PBwLFy7EN98YfpljxYoVmDRpEiZMmAAAWLt2Lfbu3YuNGzdi1qxZVdY/deoUevfujdGjRwMAfHx88Prrr1d61pRrlx/lAQC6NHfgNA5CCCHsqNdl27/++gtfffVVlcIJAO7u7li+fDl27txpcLtlZWVISEhAaGjoPwEKhQgNDcXp06er3aZXr15ISEjQXtq9d+8e9u3bhyFDhhi8/4Zy+XH5mae/N01pRAghTUG9zjzT09PRqVOnGt/v3LkzMjIyDG43OzsbarW6SlF2c3PDzZs3q91m9OjRyM7OxvPPPw+GYaBSqTB58mR88sknNe5HoVBAoVBov5fLyzvzKJVKKJVKg+OuTUGpEveeFAEA/NysWW+/sVXEb+o/R2NhK1+CNWvAmEHO+fb5EqxZA5VKDQD4cuQH+IgncVXgW774rCJHZd9/D2EN+TIkj/Uqni4uLrh//z68vLyqfT8lJQVOTo3TqzQ+Ph5ffPEFVq9ejeDgYNy5cwfTpk3DokWLMLeGaZyWLFmCBQsWVFkeFxcHKyt2B2y/lS8AIIKTjMGZo+z08uKDmJgYrkMwKcbmSyKRQMnSyCimgC+fL4lEglunTwEQI7alPzrz9BjwJV+mINbCosbfpeLiYr3bETD1GD/vrbfewt27dxETEwOptPJoOQqFAhEREWjVqhU2bjRs/ruysjJYWVlhx44dePnll7XLx48fj7y8POzatavKNn369EHPnj3xpc7UQb/88gveeecdFBYWQiisemW6ujNPb29vpKenw9mZ3XFn1x1LwVcxtzG4kxu+fS2A1ba5oFQqERMTg7CwMEgkEq7D4T228iW2tYWqoIDFyPiJb58vsa0tzl17iFHrzyH56xEQFhdxHVIlfMsXn1Xk6qVRo2r8XZLL5XBxcUF+fj7s7Oxqba/eHYa6d++Otm3bIjIyEh06dADDMLhx4wZWr14NhUKBn3/+2eB2pVIpgoKCEBsbqy2eGo0GsbGxmDp1arXbFBcXVymQIpEIQM3j6spkMshksirLJRIJ6x/Aa+nlB6lrC8cm9eFuiFw1ZWzky5zyzafPl1hc/v+JAPw9BnzKlymoKVeG5LBexdPLywunT5/Ge++9h9mzZ2uLlEAgQFhYGL7//nt4e3vXp2lERUVh/Pjx6N69O3r06IGVK1eiqKhI2/t23LhxaN68OZYsWQIAGDZsGFasWIHAwEDtZdu5c+di2LBh2iLKpcuPnnUW8nLgNhBCCCGsqVfxBABfX1/s378fT58+xe3btwEAbdq0Mfpe56hRo/DkyRPMmzcPGRkZ6Nq1Kw4cOKDtRJSamlrpTHPOnDkQCASYM2cOHj9+jGbNmmHYsGFYvHixUXGwIbtQgcd5JRAIgM7Na78EQEitZs7kOgLzpJP3rX1HYRyHoRB2aKKiwMZpVb2LZwVHR0f06NGDhVD+MXXq1Bov08b/a5gysViM+fPnY/78+azGwIaK5ztbuVjD1oIuqRAjLFrEdQTmadEi4EH5uNQbI96i4tkEaBYsYKV41us5zyNHjsDPz0/7iIeu/Px8dOrUCcePHzc6OFP3z8hCDtwGQkxfDT3bSQPTyfv2xf/lMBDCFrGvLyvt1Kt4rly5EpMmTaq2N5K9vT3effdd3gyNx6WKM09/LxocgRgpO5vrCMyTTt7ti/I5DISwhqXfpXoVz0uXLmHQoEE1vh8eHo6EhIR6B9VUXE0rPzPvQmeehBDSpNSreGZmZtbapVcsFuPJkyf1DqopeFKgwJMCBQQCoKOHLdfhEFM3fDjXEZgnnbyf8KPpFZsCZtgwVtqpV/Fs3rw5rl69WuP7ly9fhoeHR72DagpuPJu/08fZGlZSo/tlEXO3bRvXEZgnnbwvfGMeh4EQtqi3bGGlnXoVzyFDhmDu3LnVzplZUlKC+fPn48UXXzQ6OFNWUTz9POgRFcKCAQO4jsA86eR9xbooDgMhbBGFh7PSTr1OiebMmYM///wT7dq1w9SpU9G+fXsAwM2bNxEdHQ21Wo1PP/2UlQBNVUXxpEu2hBWnTnEdgXnSyXvnB9c4DISwRVDDDF2GqlfxdHNzw6lTpzBlypQqIwxFREQgOjq62unKzMmNZ8PydaQzT0IIaXLqfTOuZcuW2LdvH54+fYo7d+6AYRi0/f/27j0uqjr/H/hrhmFABEFFuYmCpBEqqKAsueqWKJuZmWbkqigqmwoFktfWULMNNENx9RdpIa2/Vdzy0s0sQqDVSOXiLRVFMSgFRERuCsPM+f6BjDMBysw58Dlw3s/Hg8dDDmc+58WbmT6dcz7n8xkwAN27dxcyX4d0X6VG3q0qANR5EoE89RTrBNKkU/dfe/fDAIZRiEDc3QVpRpAZhkaMGCFElk4jr6QKag0HGwtTOFibs45DOoOcHNYJpCknRzvDUEjEDqSxTUMEUH/qFISY782oAUPk0S403u+07waZTMY4DekUFi5knUCadOoeuX8zwyBEKPLQUGHaEaQVoufhYCG6ZEsEkpjIOoE06dT9r1lH2OUggpH/+9/CtGPoC86ePQuNRiPIwTurCw9mFvJwpM6TEEI6I4M7z2HDhqH0wdyA/fv3x+3btwUP1ZFxHIdLRY0jbekxFSIQEaxNK0k6dVfL6G/QKQj0WTK487SxsUF+fj4A4Pr163QW+gdFFfdx954KJnIZnuhtyToO6Syqq1knkCaduj/3z8MMgxCh1JeXC9KOwZ3ntGnTMHbsWLi6ukImk8HHxwf9+/dv9kuKGs86+9t2hZmC/k+VCIRWKWJDp+7Tf/yMYRAiFPmWLYK0Y/CjKjt27MDUqVORl5eHN954AyEhIbCyosuTjXIfdJ5P2lNNiIDeeguIpOnh2t1bbwHT5gIAQo58DOD/MY1D+JO//TawbBnvdox6zrNxObKsrCyEh4dT56mjsfN0p86TEEI6LV6TJOzatQvl5eX44IMPcPHiRQDAoEGDMG/ePFhbS3MB6EvaM08aaUsIIZ0Vr+c8MzMz4ebmhs2bN6OsrAxlZWWIjY2Fm5sbsrOzhcrYYajUGlwtaZiW70k7OvMkAvqFJiVnQqfuc99MYBiECKX+9GlB2uHVeS5ZsgSTJ0/G9evXceDAARw4cAD5+fmYNGkSIiIiBAnYkfx6uxp1ag0slCbo070L6zikM3lwZYe0M5269ysuYBiECEV26ZIg7fA+81yxYgUUiodXfxUKBZYvX47MzEze4Tqaxku2A+2sIJfTtHxEQC+/zDqBNOnUfd3/X8suBxGMyauvCtIOr86zW7duKCho+n9jhYWFkhxERIOFCCFEGnh1noGBgZg/fz727duHwsJCFBYWIikpCQsWLMCMGTOEythhXKLHVAghRBJ4dZ6bNm3C1KlTERQUBBcXF7i4uGDu3Ll4+eWXsWHDBqPb3b59O1xcXGBubg5fX1+cPHnykfuXl5cjNDQUDg4OMDMzw8CBA3H4cPvPBqJ9xpMGCxGhHTzIOoE06dR9ddA7DIMQoag/E2ayC16PqiiVSsTFxSE6OhpXr14FALi5ucHCwsLoNvft24fIyEjEx8fD19cXW7ZsQUBAAHJzc9G7d+8m+9fV1WH8+PHo3bs3Pv/8czg5OeHXX3+FjY2N0RmMUVNXj4KyGgB05knagJsb6wTSpFP3Gz0dGQYhQuEEmv1OkCXJLCwsMGTIEAwZMoRXxwkAsbGxCAkJQXBwMDw8PBAfHw8LCwskJDQ/TDwhIQFlZWU4dOgQRo0aBRcXF4wdOxZeXl68chjqcnHDIyq2lmboaWnWrscmEuDpyTqBNOnUPWHzAoZBiFAU3t7CtCNIKwKpq6tDVlYWVq1apd0ml8vh7++PjIyMZl/z5Zdfws/PD6Ghofjiiy/Qq1cv/O1vf8OKFStg0sLs+bW1taitrdV+X1HRsISYSqWCSqUyKvuF3+8AAAbadTW6jY6g8XfrzL+jkISqlwJAvQRqLrb3lwJAfb0aAMBBPLkaia1eYqZbo5bqZUgdRdV5lpaWQq1Ww87OTm+7nZ0dLrXwbM61a9dw9OhRzJw5E4cPH0ZeXh4WL14MlUqFNWvWNPua6OhorFu3rsn21NRUo8+cv8uXA5BDWVPK5H5re0tOTmYdoUPhW69JGo0k3leNxPL+mqTRICPjJwAKgINo/wZiqVdHoHnEZ6mmpqbV7Yiq8zSGRqNB7969sWPHDpiYmMDb2xu///473n///RY7z1WrViFSZ5LtiooKODs745lnnkHPnj2NypG0KxNAGQL+NAQThzsZ1UZHoFKpkJycjPHjx8PU1JR1HNETrF4xMZg4caJwwURKdO+vmBj4+T2NLedP4qOJf8cikf0NRFcvEWuslfqf/2zxs9R4FbI1RNV52trawsTEBMXFxXrbi4uLYW9v3+xrHBwcYGpqqneJ9qmnnkJRURHq6uqgVCqbvMbMzAxmZk3vS5qamhr9BrzyYFo+D0cbSbyJ+dRKinjXKzISUlrgTjTvr8hIKH4tAwAcGD0Nb4ghUzNEU68OQBYR0WKtDKmhIAOGhKJUKuHt7Y2UlBTtNo1Gg5SUFPj5+TX7mlGjRiEvL09vUe7Lly/DwcGh2Y6zLZRW1aK0qg4yWcPsQoQIztycdQJp0qn7928FMAxChKIQaAIf3meeKSkpSElJQUlJiV4HBqDFEbKPEhkZiTlz5sDHxwcjR47Eli1bUF1djeDgYABAUFAQnJycEB0dDQBYtGgRtm3bhvDwcLz++uu4cuUK3nvvPbzxxht8f7VWa3y+s18PC3RRSun8gBBCpIlX57lu3Tq888478PHxgYODA2Qy/vO5BgYG4tatW4iKikJRURGGDh2KI0eOaAcRFRQUQC5/eMLs7OyM7777DkuWLIGnpyecnJwQHh6OFStW8M7SWjSzECGESAuvzjM+Ph6JiYmYPXu2UHkAAGFhYQgLC2v2Z2lpaU22+fn54eeffxY0gyFyixpuMtManqTNzJ/POoE06dT9mxET8RLDKEQYmuBgQcYP8LrnWVdXh6efflqAGB0bTQhP2tz27awTSJNO3eNeCmcYhAhFs3WrIO3w6jwXLFiAPXv2CBKko1JrOO3sQtR5kjYzZAjrBNKkU/eEWDr77wwUw4YJ0w6fF9+/fx87duzADz/8AE9PzybDfGNjY3mF6wgKympwT6WGuakc/Xp2ZR2HdFZXrrBOIE06de9T+hvDIEQweXmCNMOr8zx79iyGDh0KADh//rzez4QYPNQRXLrZcL9zoJ0VTGgBbEIIkQRenWdqaqpQOTqsS3S/k7SHMWNYJ5AmnbqfcfXECIZRiDC40aMhxGkO7+c8y8vL8cknn+DixYsAgEGDBmHevHmwtrbmHa4juEQjbUl7+P571gmk6fvvgQczDC0LeR9pbNMQAagPHxZkdiBebWRmZsLNzQ2bN29GWVkZysrKEBsbCzc3N2RnZwsQT/wazzyfojNP0pamTWOdQJp06r7u383PlU06FpNXXhGkHV6d55IlSzB58mRcv34dBw4cwIEDB5Cfn49JkyYhIiJCkIBiVl1LC2CTdvLNN6wTSJNO3f0usXuWnAhH9u23grTD67JtZmYmdu7cCYXiYTMKhQLLly+Hj48P73Bid7m4EhwH9LKiBbAJIURKeJ15duvWDQUFBU22FxYWwkqgyXfFjAYLkXbTwqpCpI3p1L3MqgfDIEQwAn2WeHWegYGBmD9/Pvbt24fCwkIUFhYiKSkJCxYswIwZMwQJKGaNMws95UCDhUgbu36ddQJp0qn7q6v2sstBBFMv0DPTvDrPTZs2YerUqQgKCoKLiwtcXFwwd+5cvPzyy9iwYYMgAcXs4oNnPJ+kZchIW1u1inUCadKpe8i3OxkGIUKR/+MfwrTD58VKpRJxcXG4c+cOTp8+jdOnT6OsrAybN29udrHpzoTjuIeXbR2o8yRtbPNm1gmkSafu0//3OcMgRChygea25f2cJwBYWFhgiMTm3iyuqMXdeyqYyGV4orcl6ziEEELakcGdZ2RkJNavX4+uXbsiMjLykft25rltLz6YHKG/bVeYKWgBbEIIkRKDO8+cnByoVCrtv1vS2ee2vXSz8ZItDRYi7aCkhHUCaSopAe7UAwCmRB3AYcZxCH/1v/8O08fv9lgGd56689l++umn6NOnD+Ry/VunHMehsLCQfzoRa1wAmx5TIe1i/34gOJh1CunZvx949kUAwJhzPwKYxDYP4U128CCwYAHvdngNGHJ1dUVpaWmT7WVlZXB1deXTtOjRM56kXS1axDqBNOnUPfLgFnY5iGBMwsIEaYdX58lxXLPbq6qqYG5uzqdpUaur1yCv5MEC2HTZlhBCJMeo0baNA4VkMhmioqJgYWGh/ZlarcaJEye063x2RtdKq1Cv4WBlroCjdef9nwRCCCHNM6rzbBwoxHEczp07B6VSqf2ZUqmEl5cXli5dKkxCEdIOFrK36vQDo4hIHDvGOoE06dT99UVb8RHDKEQY6rQ0QZ7RNKqNxkFDwcHBiIuLQ7du0rp0eVE7WEhavzdhqLaWdQJp0qm7qVrFMAgRjECfJV73PHft2iW5jhN4OKctzSxE2s24cawTSJNO3WN3vMkwCBGKSUCAIO3w6jyjo6ORkJDQZHtCQgKvuW23b98OFxcXmJubw9fXFydPnmzV65KSkiCTyTBlyhSjj90aupdtCSGESA+vzvOjjz6Cu7t7k+2DBg1CfHy8UW3u27cPkZGRWLNmDbKzs+Hl5YWAgACUPOYh8evXr2Pp0qUYPXq0UcdtrfKaOhRV3AcADKQJ4QkhRJJ4dZ5FRUVwcHBosr1Xr164efOmUW3GxsYiJCQEwcHB8PDwQHx8PCwsLJo9w22kVqsxc+ZMrFu3Dv379zfquK3V+Hync48usDIXYp4KQlrhEe9/0oZ06r5h+nKGQYhQ1Dt2CNIOr87T2dkZx48fb7L9+PHjcHR0NLi9uro6ZGVlwd/f/2FAuRz+/v7IyMho8XXvvPMOevfujfnz5xt8TEM9XIZMevd6CUPjx7NOIE06dc8c4M0wCBEKp9O/8MFrxG5ISAgiIiKgUqnw7LPPAgBSUlKwfPlyvPmm4TfXS0tLoVarYWdnp7fdzs4Oly5davY1x44dwyeffILTp0+3+ji1tbWo1RlxVVHR0CGqVCrtvL0tOfdbOQDgKfuuj923M2r8naX4uxtDqHopnJ1RX1kpRCRRE9v7S+HsjPpfGqYa/e97gVCtrmacSJ/Y6iVmjTVS9O8PVQufJUPqyKvzXLZsGW7fvo3Fixejrq4OAGBubo4VK1ZgVTss3ltZWYnZs2dj586dsLW1bfXroqOjsW7duibbU1NT9SZ8aM6JXBMAMty7cQWHD182NHKnkZyczDpCh8K3XpM0Ghw+LJ1pycXy/pqk0SAj4ycACoCDaP8GYqlXR6B5xGeppqam1e3IuJbm2DNAVVUVLl68iC5dumDAgAFGL4RdV1cHCwsLfP7553ojZufMmYPy8nJ88cUXevufPn0aw4YNg4nJwyXBNBoNgIbLvbm5uXBzc2tynObOPJ2dnXHz5k307NmzxXy19RoMXZ+Ceg2H9DdHw9Gmi1G/Z0emUqmQnJyM8ePHw9SU7vk+jlD1UlhZSebMU0zvL4WVFU7+UojAnSeR+8FLkNeI78xTTPUSs8ZaTQ4MbPGzVFFRAVtbW9y9e/exj2EKshi2paUlRowYwbsdpVIJb29vpKSkaDtPjUaDlJQUhDUzma+7uzvOnTunt2316tWorKxEXFwcnJ2dmz2OmZlZsx28qanpI9+Al4rvol7DobuFKfraSnt2ocfViujjXa+VKyVVb9G8v1auhOLBer17/zIDc8WQqRmiqVcHoFm2rMVaGVJDQTrPCxcuoKCgQHvpttHkyZMNbisyMhJz5syBj48PRo4ciS1btqC6uhrBD5ZjCgoKgpOTE6Kjo2Fubo7Bgwfrvd7GxgYAmmwXwi837gIABjlaS7rjJAysXcs6gTStXQv8WgYASJwwF3OZhiFC0ERFweTxuz0Wr87z2rVreOmll3Du3DnIZDLtKiuNHYtarTa4zcDAQNy6dQtRUVEoKirC0KFDceTIEe0gooKCgibrh7aX89rOk0baknbm4AAY+fgX4cHBAfj5FwDA/vUvA8tuMw5E+FL07SvIZ4lX5xkeHg5XV1ekpKTA1dUVJ0+exO3bt/Hmm29i06ZNRrcbFhbW7GVaAEhLS3vkaxMTE40+7uP8cqNhVO4gJ+s2OwYhzbpzh3UCadKpu9W9zn/PWRIE+izx6jwzMjJw9OhR2NraQi6XQy6X489//jOio6PxxhtvaFdf6QzUGk77jCedeRJCiLTxuv6pVqthZdUwRZ2trS1u3LgBAOjXrx9yc3P5pxORa7eqcF+lgYXSBK49u7KOQ6Rm6lTWCaRJp+4/Dm7bqT9J++AEmvuc15nn4MGDcebMGbi6usLX1xcbN26EUqnEjh072nyavPbWeMnWw6Eb5HIaLETa2Z49rBNI05492gFD7/5tNYSZm4awpN69m99Z4wO82li9erV2kNA777yD/Px8jB49GocPH8bWrVsFiCceZ39rGCw0mO53EhbGjmWdQJp06r7lwwh2OYhgTARa3s/oM0+VSoWNGzdqV0954okncOnSJZSVlaF79+6d7lGOc7+XAwA8+1DnSRg4cYJ1AmnSqbtH4UWGQYhQZK1c4vJxjO48TU1Ncfbs2Sbbe/TowSuQGNWrNTj/e8NlW+o8CSGE8LpsO2vWLHzyySdCZRGtq7eqcU+lRlelCfrbWrKOQ6SoDSb9IK2gU/d8O1eGQYhQuEGDBGmH14Ch+vp6JCQk4IcffoC3tze6dtUfhRobG8srnFicebCSymAnaxosRNjIzGSdQJoyM7UDhl4Lj0ca2zREAOqff2Y/YOj8+fMYPnw4rKyscPnyZeTk5Gi/DFkiTOzOPug8vZxtmOYgEhYSwjqBNOnUfennxk/8QsTDZOFCQdrhdeaZmpoqSAixO1PYMNJ2CI20Jazs3g3s3Mk6hfTs3g2s3gAAmJBNy351BrL//AcQ4HajUWee165dgwArmXUINXX1uPBgZqHh/bozTkMIIUQMjOo8BwwYgFu3bmm/DwwMRHFxsWChxOTsb3eh1nCw72YOR2tz1nGIVCmVrBNIk07dVSa05FenINBnyajO849nnYcPH0Z1tbgWiRVK1q8Nkwh79+t8z66SDqSignUCadKp+/Prv2YYhAil/rYwK+OwWdurA8l+0HnSJVvC1MaNrBNIk07dX01LYhiECEXOY8UvvXaMeZFMJmtyFtYZz8o4jkNWwcMzT0KYiYpinUCadOo+7/tdDIMQocjXrROkHaNG23Ich7lz58LMzAwAcP/+fSxcuLDJc54HDhzgn5Cha6XVKK9RwUwhh4cDLUNGCCGkgVGd55w5c/S+nzVrliBhxKbxfqdXHxsoFXSFmxBCSAOjOs9du6Rx+YLudxLR6GTr43YYOnWfvexT7GMYhQij/vx5CDFumk6nHkF3pC0hTOXksE4gTTp1H/B7HsMgRCgygWa/o86zBXdrVLhSUgUAGN7Xhm0YQl59lXUCadKpe9Se9QyDEKGYCHSbkTrPFmQXNpx1utp2RU9LM8ZpCCGEiAl1ni3Q3u/sS5dsCSGE6KPOswUn8huWIaL7nUQUvvqKdQJp0qn7qrn/ZBiECEV98KAg7fDuPP/3v/9h1qxZ8PPzw++//w4A2L17N44dO8Y7HCs1dfXIeTA5wtNuPRmnIQSAkxPrBNKkU/dSa1uGQYhQOEdHQdrh1Xnu378fAQEB6NKlC3JyclBbWwsAuHv3Lt577z2j292+fTtcXFxgbm4OX19fnDx5ssV9d+7cidGjR6N79+7o3r07/P39H7l/a5y6fgcqNQcnmy7o19OCV1uECGL4cNYJpEmn7jvjXmMYhAhF4esrSDu8Os93330X8fHx2LlzJ0xNHz45M2rUKGRnZxvV5r59+xAZGYk1a9YgOzsbXl5eCAgIQElJSbP7p6WlYcaMGUhNTUVGRgacnZ0xYcIE7VmwMX7KKwXQcNbZGacdJIQQwg+vzjM3Nxdjxoxpst3a2hrl5eVGtRkbG4uQkBAEBwfDw8MD8fHxsLCwQEJCQrP7/+c//8HixYsxdOhQuLu74+OPP4ZGo0FKSopRxweA41cbOs9RT9BlGkIIIU0ZNcNQI3t7e+Tl5cHFxUVv+7Fjx9C/f3+D26urq0NWVhZWrVql3SaXy+Hv74+MjIxWtVFTUwOVSoUePXq0uE9tba32EjMAVDxYdkilUuHW3Rr8cqPh+xH9rKFSqQz+PTqzxnpQXVpHqHrJN26ERgI1F9v7S75xI+rr1QCA7c8vQphIcjUSW73ETFur6GjIWqiXIXXk1XmGhIQgPDwcCQkJkMlkuHHjBjIyMrB06VK8/fbbBrdXWloKtVoNOzs7ve12dna4dOlSq9pYsWIFHB0d4e/v3+I+0dHRWNfMzPqpqam4cq8rOM4E9l04ZP7P+LPXzi45OZl1hA6Fb71kffqAO3xYoDTiJ5b3l6xPH1zL+AmAAkmez6K/SP8GYqlXR3CkX78WP0s1NTWtbodX57ly5UpoNBqMGzcONTU1GDNmDMzMzLB06VK8/vrrfJo2SkxMDJKSkpCWlgZzc/MW91u1ahUiIyO131dUVMDZ2RnPPPMMzv9UAqAQ4736YeJE93ZI3bGoVCokJydj/Pjxeve5SfOEqpfCygr1lZUCJhMnsb2/FFZWOPlLIbacP4kfo6dDXlPNOpIesdVLzBpr9cLf/tbiZ6nCgEXneXWeMpkM//jHP7Bs2TLk5eWhqqoKHh4esLS0NKo9W1tbmJiYoLi4WG97cXEx7O3tH/naTZs2ISYmBj/88AM8PT0fua+ZmZl2OTVdCoUCx682rDL+5wG96M34CKamplQfAwhRLynVW0zvL4XCBAAgg3j/BmKqV0fQUq0MqaEgkyQolUp4eHhg5MiRRnecje14e3vrDfZpHPzj5+fX4us2btyI9evX48iRI/Dx8TH6+Ndv1+D67RooTeQ0WIgQQkiLDD7z1L3c+TixsbGGNo/IyEjMmTMHPj4+GDlyJLZs2YLq6moEBwcDAIKCguDk5ITo6GgAwIYNGxAVFYU9e/bAxcUFRUVFAABLS0uDO/L0Kw2jbP/k1hOWZrxOygkR1mv0jCETOnX/0vcFvMwwChGGJiQEJgK0Y3APkdPKpZGMfT4yMDAQt27dQlRUFIqKijB06FAcOXJEO4iooKAAcvnDE+YPP/wQdXV1ePll/bf1mjVrsHbtWoOO/ePlhs7T/6neRmUnpM3ExbFOIE1xccCvDVN1bnsxjDrPTkATG8um80xNTRXgsI8WFhaGsLCwZn+Wlpam9/3169cFO+6Z3+4CSgs8606dJxEZDw/gwgXWKaTHwwP4tmGq0cRNwcCy62zzEN4Unp7AxYu826GJ4XVoOOAph27o052m5CMic+0a6wTSpFN3x7IbDIMQweTnC9IM7xt75eXl+OSTT3DxQU/u4eGB+fPnw9ramnc4FuiSLSGEkMfhdeaZmZkJNzc3bN68GWVlZSgrK8PmzZvh5uZm9Ny2rPk/Zff4nQhpb888wzqBNOnUPcdtGMMgRCjcX/4iSDu8Os8lS5Zg8uTJuH79Og4cOIADBw4gPz8fkyZNQkREhCAB21Of7ubw7NMxz5hJJ/ftt6wTSJNO3VfMj2EYhAhFLdDauLzPPFesWAGF4uHVX4VCgeXLlyMzM5N3uPb210H2tIoKEacpU1gnkCadur/7qeFTjhLxMZk2TZB2eHWe3bp1Q0FBQZPthYWFsLKy4tM0E38dRPc7iUgdOcI6gTTp1H1kLr91ggl7ag0g+/57qDUc77Z4dZ6BgYGYP38+9u3bh8LCQhQWFiIpKQkLFizAjBkzeIdrb269jJ8diRBCiLjtvy5HXb0G/zp6hXdbvEbbbtq0CTKZDEFBQaivrwfHcVAqlVi0aBFiYuj+ACGCcXJinUCadOp+q5st6K/QsXEAiqx6Qi7A7TleZ55KpRJxcXG4c+cOTp8+jTNnzmhH3DY38TohxEhXr7JOIE06dZ+58j8MgxAhcBww9rWPIcTIFqPOPOfNm9eq/RISEoxpnhDyR8uXAxs3sk4hPcuXA6ErAQCvffMRsIweGeroVqYmQB2wgXc7Rp15JiYmIjU1FeXl5bhz506LX4QQgWzdyjqBNOnUfdrxAwyDECFoOCA46ysI8VCFUWeeixYtwt69e5Gfn4/g4GDMmjULPXr04J+GEEIIaSONY2xlAly4NerMc/v27bh58yaWL1+Or776Cs7OznjllVfw3XffgeP4DwEmhBBC2opcgDNPowcMmZmZYcaMGUhOTsaFCxcwaNAgLF68GC4uLqiqquKfjBDy0O3brBNIk07dJ689xC4HEQTHAUPf2CvIZVtBVlWRy+WQyWTgOA5qtVqIJgkhuvbuZZ1AmnTqPi7nKMMgRAgaAJMvprN9VKW2thZ79+7F+PHjMXDgQJw7dw7btm1DQUEBLC1psgFCBNXC+rakjenUPfwLGrTVGbyTHC/INKxGDRhavHgxkpKS4OzsjHnz5mHv3r2wtbXlHYYQQghpK41Dcpg95xkfH4++ffuif//+SE9PR3p6erP7HThAQ7sJIYSIQ+NwViEGDBnVeQYFBdHqI4S0p4wM1gmkSafui0O34WOGUQh/HICpszfhFVaXbRMTE3kfmBBigMpK1gmkqbISePAIu0VtDdsshDeOA7rW3WP7qAohpB1NmMA6gTTp1H3Tx8sZBiFC4ADs3ve2IFdOqfMkhBAiCdoBQ3TmSQghhLTOwwFDnfTMc/v27XBxcYG5uTl8fX1x8uSjV3D/7LPP4O7uDnNzcwwZMgSHDx9up6SEtJNPP2WdQJp06h79ykqGQYhQ3nx+CbtHVdrSvn37EBkZifj4ePj6+mLLli0ICAhAbm4uevfu3WT/n376CTNmzEB0dDQmTZqEPXv2YMqUKcjOzsbgwYMZ/AaEtIExY1gnkKYxY4C6hn+m9HJH4aen2Ob5A42GQ0mJHF+U5UAuxCiYTkyj4XC9SoZi58EYw2q0bVuKjY1FSEgIgoODATQ8U/rNN98gISEBK1c2/T+/uLg4/PWvf8WyZcsAAOvXr0dycjK2bduG+Pj4ds1OSJtxdQXu32edQnpcXdHzt4b5bZO3zcWTSw8yDtQcOXDnFusQHYQMWfHz8VPYb7xbElXnWVdXh6ysLKxatUq7TS6Xw9/fHxktPOeWkZGByMhIvW0BAQE4dOhQW0YlhEiEi21XJP39T1BslmPDtCGs4+hRq9U4e/YcPD2HwMTEhHUcUWuslcJEjjEDe/FuT1SdZ2lpKdRqNezs7PS229nZ4dKlS82+pqioqNn9i4qKWjxObW0tamtrtd/fvXsXAFBWVmZsdMlQqVSoqanB7du3YWpqyjqO6AlVLwXHoV4CK6uI7f3VWPcB1kAVOPj378o6kh6VSgVZfjWecekiinqJWWOtqsCh/k7z/62vfPA8dWuW1hRV59leoqOjsW7duibbBw4cyCANIa1E80ezoVt3+ht0Do/5O1ZWVsLa2vqR+4iq87S1tYWJiQmKi4v1thcXF8Pe3r7Z19jb2xu0PwCsWrVK71JveXk5+vXrh4KCgscWTOoqKirg7OyMwsJCdOvWjXUc0aN6GYbqZRiqV+u1plYcx6GyshKOjo6PbU9UnadSqYS3tzdSUlIwZcoUAIBGo0FKSgrCWliSyc/PDykpKYiIiNBuS05Ohp+fX4vHMTMzg5mZWZPt1tbW9AZspW7dulGtDED1MgzVyzBUr9Z7XK1aewIlqs4TACIjIzFnzhz4+Phg5MiR2LJlC6qrq7Wjb4OCguDk5ITo6GgAQHh4OMaOHYsPPvgAzz//PJKSkpCZmYkdO3aw/DUIIYR0YqLrPAMDA3Hr1i1ERUWhqKgIQ4cOxZEjR7SDggoKCiCXP5zb4emnn8aePXuwevVqvPXWWxgwYAAOHTpEz3gSQghpM6LrPAEgLCysxcu0aWlpTbZNnz4d06dPN/p4ZmZmWLNmTbOXcok+qpVhqF6GoXoZhurVekLXSsa1ZkwuIYQQQrREObctIYQQImbUeRJCCCEGos6TEEIIMRB1noQQQoiBJN95Grp2qFT8+OOPeOGFF+Do6AiZTNZkon2O4xAVFQUHBwd06dIF/v7+uHLlCpuwjEVHR2PEiBGwsrJC7969MWXKFOTm5urtc//+fYSGhqJnz56wtLTEtGnTmsyMJRUffvghPD09tQ+r+/n54dtvv9X+nGrVspiYGMhkMr1JYahe+tauXQuZTKb35e7urv25UPWSdOfZuHbomjVrkJ2dDS8vLwQEBKCkpIR1NOaqq6vh5eWF7du3N/vzjRs3YuvWrYiPj8eJEyfQtWtXBAQE4L4El81KT09HaGgofv75ZyQnJ0OlUmHChAmorq7W7rNkyRJ89dVX+Oyzz5Ceno4bN25g6tSpDFOz06dPH8TExCArKwuZmZl49tln8eKLL+KXX34BQLVqyalTp/DRRx/B09NTbzvVq6lBgwbh5s2b2q9jx45pfyZYvTgJGzlyJBcaGqr9Xq1Wc46Ojlx0dDTDVOIDgDt48KD2e41Gw9nb23Pvv/++dlt5eTlnZmbG7d27l0FCcSkpKeEAcOnp6RzHNdTG1NSU++yzz7T7XLx4kQPAZWRksIopKt27d+c+/vhjqlULKisruQEDBnDJycnc2LFjufDwcI7j6L3VnDVr1nBeXl7N/kzIekn2zLNx7VB/f3/ttsetHUoa5Ofno6ioSK921tbW8PX1pdrh4RJ3PXr0AABkZWVBpVLp1cvd3R19+/aVfL3UajWSkpJQXV0NPz8/qlULQkND8fzzz+vVBaD3VkuuXLkCR0dH9O/fHzNnzkRBQQEAYeslyhmG2oMxa4eSBo1rpRq6jqoUaDQaREREYNSoUdopIouKiqBUKmFjY6O3r5Trde7cOfj5+eH+/fuwtLTEwYMH4eHhgdOnT1Ot/iApKQnZ2dk4depUk5/Re6spX19fJCYm4sknn8TNmzexbt06jB49GufPnxe0XpLtPAlpC6GhoTh//rzePRbS1JNPPonTp0/j7t27+PzzzzFnzhykp6ezjiU6hYWFCA8PR3JyMszNzVnH6RCee+457b89PT3h6+uLfv364b///S+6dOki2HEke9nWmLVDSYPG+lDt9IWFheHrr79Gamoq+vTpo91ub2+Puro6lJeX6+0v5XoplUo88cQT8Pb2RnR0NLy8vBAXF0e1+oOsrCyUlJRg+PDhUCgUUCgUSE9Px9atW6FQKGBnZ0f1egwbGxsMHDgQeXl5gr6/JNt56q4d2qhx7dBHrQVKAFdXV9jb2+vVrqKiAidOnJBk7TiOQ1hYGA4ePIijR4/C1dVV7+fe3t4wNTXVq1dubi4KCgokWa/maDQa1NbWUq3+YNy4cTh37hxOnz6t/fLx8cHMmTO1/6Z6PVpVVRWuXr0KBwcHYd9fPAY1dXhJSUmcmZkZl5iYyF24cIH7+9//ztnY2HBFRUWsozFXWVnJ5eTkcDk5ORwALjY2lsvJyeF+/fVXjuM4LiYmhrOxseG++OIL7uzZs9yLL77Iubq6cvfu3WOcvP0tWrSIs7a25tLS0ribN29qv2pqarT7LFy4kOvbty939OhRLjMzk/Pz8+P8/PwYpmZn5cqVXHp6Opefn8+dPXuWW7lyJSeTybjvv/+e4ziq1ePojrblOKrXH7355ptcWloal5+fzx0/fpzz9/fnbG1tuZKSEo7jhKuXpDtPjuO4f/3rX1zfvn05pVLJjRw5kvv5559ZRxKF1NRUDkCTrzlz5nAc1/C4yttvv83Z2dlxZmZm3Lhx47jc3Fy2oRlprk4AuF27dmn3uXfvHrd48WKue/funIWFBffSSy9xN2/eZBeaoXnz5nH9+vXjlEol16tXL27cuHHajpPjqFaP88fOk+qlLzAwkHNwcOCUSiXn5OTEBQYGcnl5edqfC1UvWpKMEEIIMZBk73kSQgghxqLOkxBCCDEQdZ6EEEKIgajzJIQQQgxEnSchhBBiIOo8CSGEEANR50kIIYQYiDpPQkRq7ty5mDJlSrsfNzExETKZDDKZDBEREbzb+uMKFo8zd+5c7fEPHTrE6/iEtBVaVYUQBmQy2SN/vmbNGsTFxYHVHCbdunVDbm4uunbtyqudwMBATJw40aDXxMXFISYmBg4ODryOTUhbos6TEAZu3ryp/fe+ffsQFRWF3Nxc7TZLS0tYWlqyiAagoXMXYlWOLl26GLwMlLW1NaytrXkfm5C2RJdtCWHA3t5e+2Vtba3trBq/LC0tm1y2/ctf/oLXX38dERER6N69O+zs7LBz505UV1cjODgYVlZWeOKJJ/Dtt9/qHev8+fN47rnnYGlpCTs7O8yePRulpaUGZ3ZxccG7776LoKAgWFpaol+/fvjyyy9x69YtvPjii7C0tISnpycyMzO1r/njZdu1a9di6NCh2L17N1xcXGBtbY1XX30VlZWVBuchhCXqPAnpQD799FPY2tri5MmTeP3117Fo0SJMnz4dTz/9NLKzszFhwgTMnj0bNTU1AIDy8nI8++yzGDZsGDIzM3HkyBEUFxfjlVdeMer4mzdvxqhRo5CTk4Pnn38es2fPRlBQEGbNmoXs7Gy4ubkhKCjokZebr169ikOHDuHrr7/G119/jfT0dMTExBiVhxBWqPMkpAPx8vLC6tWrMWDAAKxatQrm5uawtbVFSEgIBgwYgKioKNy+fRtnz54FAGzbtg3Dhg3De++9B3d3dwwbNgwJCQlITU3F5cuXDT7+xIkT8dprr2mPVVFRgREjRmD69OkYOHAgVqxYgYsXLzZZKF2XRqNBYmIiBg8ejNGjR2P27Nl66ysS0hHQPU9COhBPT0/tv01MTNCzZ08MGTJEu83Ozg4AUFJSAgA4c+YMUlNTm71/evXqVQwcONDo4zceq6Xjt3TP1MXFBVZWVtrvHRwctHkJ6Sio8ySkAzE1NdX7XiaT6W1rHMWr0WgAAFVVVXjhhRewYcOGJm0ZM5q1uWM96viPa6PxNY/anxAxos6TkE5s+PDh2L9/P1xcXKBQ0MedEKHQPU9COrHQ0FCUlZVhxowZOHXqFK5evYrvvvsOwcHBUKvVrOMR0mFR50lIJ+bo6Ijjx49DrVZjwoQJGDJkCCIiImBjYwO5nD7+hBhLxrGawoQQIkqJiYmIiIhAeXk50xwymQwHDx5kMkUhIY9D/+tJCGni7t27sLS0xIoVK9r92AsXLmQ6uxIhrUFnnoQQPZWVldrnNG1sbGBra9uuxy8pKUFFRQWAhhHBfOfXJaQtUOdJCCGEGIgu2xJCCCEGos6TEEIIMRB1noQQQoiBqPMkhBBCDESdJyGEEGIg6jwJIYQQA1HnSQghhBiIOk9CCCHEQNR5EkIIIQb6P/ZUCsZgztkwAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# profiles\n", + "plot_tsa_profiles(m.fs.tsa)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" } - ], - "source": [ - "# profiles\n", - "plot_tsa_profiles(m.fs.tsa)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" - } - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption_usr.ipynb b/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption_usr.ipynb index 31202935..a2ad2989 100644 --- a/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption_usr.ipynb +++ b/idaes_examples/notebooks/docs/flowsheets/temperature_swing_adsorption/temperature_swing_adsorption_usr.ipynb @@ -1,613 +1,614 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# TSA Adsorption Cycle for Carbon Capture\n", - "\n", - "\n", - "Maintainer: Daison Yancy Caballero and Alexander Noring \n", - "Author: Daison Yancy Caballero and Alexander Noring \n", - "Updated: 2023-11-13 \n", - "\n", - "## Learning outcomes\n", - "\n", - "\n", - "- Demonstrate the use of the IDAES fixed bed temperature swing adsorption (TSA) 0D unit model\n", - "- Initialize the IDAES fixed bed TSA 0D unit model\n", - "- Simulate the IDAES fixed bed TSA 0D unit model by solving a square problem\n", - "- Generate and analyze results\n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "This Jupyter notebook shows the simulation of a fixed bed TSA cycle for carbon capture by using the fixed bed TSA 0D unit model in IDAES. The fixed bed TSA model consists of a 0D equilibrium-based shortcut model composed of four steps a) heating, b) cooling, c) pressurization, and d) adsorption. Note that the equations in the IDAES fixed bed TSA 0D unit model and the input specifications used in this tutorial for the feed stream have been taken from Joss et al. 2015.\n", - "\n", - "\n", - "#### A diagram of the TSA adsorption cycle is given below: \n", - "\n", - "![](tsa_cycle.svg)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 1: Import Libraries" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import Pyomo packages \n", - "\n", - "We will need the following components from the pyomo libraries.\n", - "\n", - "- ConcreteModel (to create the Pyomo model that will contain the IDAES flowsheet)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- SolverFactory (to set up the solver that will solve the problem)\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- Objective (to declare an objective function)\n", - "- minimize (to minimize an objective function)\n", - "- value (to return the numerical value of an Pyomo objects such as variables, constraints or expressions)\n", - "- units (to handle units in Pyomo and IDAES)\n", - "- check_optimal_termination (this method returns the solution status from solver)\n", - "\n", - "For further details on these components, please refer to the Pyomo documentation:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# python libraries\n", - "import os\n", - "\n", - "# pyomo libraries\n", - "from pyomo.environ import (\n", - " ConcreteModel,\n", - " TransformationFactory,\n", - " SolverFactory,\n", - " Constraint,\n", - " Var,\n", - " Objective,\n", - " minimize,\n", - " value,\n", - " units,\n", - " check_optimal_termination,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import IDAES core components\n", - "\n", - "To build, initialize, and solve IDAES flowsheets we will need the following core components/utilities:\n", - "\n", - "- FlowsheetBlock (the flowsheet block contains idaes properties, time, and unit models)\n", - "- degrees_of_freedom (useful for debugging, this method returns the DOF of the model)\n", - "- FixedBedTSA0D (fixed bed TSA model unit model)\n", - "- util (some utility functions in IDAES)\n", - "- idaeslog (it's used to set output messages like warnings or errors)\n", - "\n", - "For further details on these components, please refer to the IDAES documentation:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# import IDAES core libraries\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "import idaes.core.util as iutil\n", - "import idaes.logger as idaeslog\n", - "\n", - "# import tsa unit model\n", - "from idaes.models_extra.temperature_swing_adsorption import (\n", - " FixedBedTSA0D,\n", - " FixedBedTSA0DInitializer,\n", - " Adsorbent,\n", - ")\n", - "from idaes.models_extra.temperature_swing_adsorption.util import (\n", - " tsa_summary,\n", - " plot_tsa_profiles,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 2: Constructing the Flowsheet\n", - "\n", - "First, let's create a ConcreteModel and attach the flowsheet block to it." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# create concrete model\n", - "m = ConcreteModel()\n", - "\n", - "# create flowsheet\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.1: Adding the TSA Unit Model\n", - "\n", - "Now, we will be adding the fixed bed temperature swing adsorption (TSA) cycle model (assigned a name tsa).\n", - "\n", - "The TSA unit model builds variables, constraints and expressions for a solid sorbent based TSA capture system. This IDAES model can take up to 11 config arguments:\n", - "\n", - "1. `dynamic`: to set up the model as steady state. The IDAES fixed bed TSA 0D\n", - " unit model only supports steady state as the dynamic nature of the adsorption\n", - " cycle is handled in internal blocks for each cycle step of the unit. This\n", - " config argument is used to enable the TSA unit model to connect with other\n", - " IDAES unit models.\n", - "2. `adsorbent`: to set up the adsorbent to be used in the fixed bed TSA system. \n", - " Supported values currently are `Adsorbent.zeolite_13x`, `Adsorbent.mmen_mg_mof_74`, and `Adsorbent.polystyrene_amine`.\n", - "3. `number_of_beds`: to set up the number of beds to be used in the unit model.\n", - " This config argument accepts either an `int` (model assumes a fixed number of beds) or `None` (model calculates the number of beds).\n", - "4. `compressor`: indicates whether a compressor unit should be added to the\n", - " fixed bed TSA system to calculate the energy required to overcome\n", - " the pressure drop in the system. Supported values are `True` and `False`.\n", - "5. `compressor_properties`: indicates a property package to use in the compressor unit model.\n", - "6. `steam_calculation`: indicates whether a method to estimate the steam flow rate\n", - " required in the desorption step should be included. Supported values are: `SteamCalculationType.none`,\n", - " steam calculation method is not included. `SteamCalculationType.simplified`, a surrogate model is used\n", - " to estimate the mass flow rate of steam. `SteamCalculationType.rigorous`, a heater unit model is\n", - " included in the TSA system assuming total saturation.\n", - "7. `steam_properties`: indicates a property package to use for rigorous steam calculations. Currently, only the iapws95 property package is supported.\n", - "8. `transformation_method`: to set up the discretization method to be use for the time\n", - " domain. The discretization method must be a method recognized by the\n", - " Pyomo `TransformationFactory`. Supported values are `dae.finite_difference` and\n", - " `dae.collocation`.\n", - "9. `transformation_scheme`: to set up the scheme to use when discretizing the time domain.\n", - " Supported values are: `TransformationScheme.backward` and `TransformationScheme.forward` for finite difference transformation\n", - " method. `TransformationScheme.lagrangeRadau` for collocation transformation method.\n", - "10. `finite_elements`: to set up the number of finite elements to use when discretizing\n", - " the time domain.\n", - "11. `collocation_points`: to set up the number of collocation points to use per finite element\n", - " when the discretization method is `dae.collocation`.\n", - " \n", - "
\n", - "Note: a default value defined in the IDAES unit class is used for\n", - " a config argument when no value is passed in the time the unit model\n", - " is called.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# add tsa unit\n", - "m.fs.tsa = FixedBedTSA0D(adsorbent=Adsorbent.zeolite_13x, number_of_beds=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.2: Fix Specifications of Feed Stream in TSA Unit\n", - "\n", - "The inlet specifications of the TSA unit are fixed to match the exhaust gas stream (stream 8) of case B31B in the NETL baseline report, which is a exhaust gas stream after 90% carbon capture by means of a solvent-based capture system." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# fix inlet conditions of tsa unit - baseline case from Joss et al. 2015\n", - "flue_gas = {\n", - " \"flow_mol_comp\": {\n", - " \"H2O\": 0.0,\n", - " \"CO2\": 0.00960 * 0.12,\n", - " \"N2\": 0.00960 * 0.88,\n", - " \"O2\": 0.0,\n", - " },\n", - " \"temperature\": 300.0,\n", - " \"pressure\": 1.0e5,\n", - "}\n", - "for i in m.fs.tsa.component_list:\n", - " m.fs.tsa.inlet.flow_mol_comp[:, i].fix(flue_gas[\"flow_mol_comp\"][i])\n", - "m.fs.tsa.inlet.temperature.fix(flue_gas[\"temperature\"])\n", - "m.fs.tsa.inlet.pressure.fix(flue_gas[\"pressure\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.3: Fix DOF of TSA unit\n", - "\n", - "The degrees of freedom of the TSA unit model are: adsorption and desorption temperatures, temperatures of heating and cooling fluids, column diameter, and column height. These variables must be fixed to solve a square problem." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ + "cells": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "The DOF of the TSA unit is 0\n" - ] - } - ], - "source": [ - "# fix design and operating variables of tsa unit - baseline case from Joss et al. 2015\n", - "m.fs.tsa.temperature_desorption.fix(430)\n", - "m.fs.tsa.temperature_adsorption.fix(310)\n", - "m.fs.tsa.temperature_heating.fix(440)\n", - "m.fs.tsa.temperature_cooling.fix(300)\n", - "m.fs.tsa.bed_diameter.fix(3 / 100)\n", - "m.fs.tsa.bed_height.fix(1.2)\n", - "\n", - "\n", - "# check the degrees of freedom\n", - "DOF = degrees_of_freedom(m)\n", - "print(f\"The DOF of the TSA unit is {DOF}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.4: Scaling Unit Models\n", - "\n", - "Creating well scaled models is important for increasing the efficiency and reliability of solvers. Depending on unit models, variables and constraints are often badly scaled. IDAES unit models contain a method to scale variables and constraints to improve solver convergence. To apply the scaled factors defined in each unit model, we need to call the IDAES method `calculate_scaling_factors` in `idaes.core.util.scaling`." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# scaling factors\n", - "iutil.scaling.calculate_scaling_factors(m.fs.tsa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.5: Define Solver and Solver Options\n", - "\n", - "We select the solver that we will be using to initialize and solve the flowsheet." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# define solver options\n", - "solver_options = {\n", - " \"nlp_scaling_method\": \"user-scaling\",\n", - " \"tol\": 1e-6,\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.6: Initialization of Unit Models\n", - "\n", - "IDAES includes pre-written initialization routines for all unit models. To initialize the TSA unit model, call the method `m.fs.tsa.initialize()`.\n", - "\n", - "
\n", - "Note: initialize methods in IDAES unit models solve a square problem,\n", - " so the user needs to be sure that the degrees of freedom of the unit being\n", - " initialized are zero.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-10-26 15:28:28 [INFO] idaes.init.fs.tsa: Starting fixed bed TSA initialization\n", - "2023-10-26 15:28:45 [INFO] idaes.init.fs.tsa.heating: Starting initialization of heating step.\n", - "2023-10-26 15:28:47 [INFO] idaes.init.fs.tsa.heating: Initialization of heating step completed optimal - Optimal Solution Found.\n", - "2023-10-26 15:29:01 [INFO] idaes.init.fs.tsa.cooling: Starting initialization of cooling step.\n", - "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.cooling: Initialization of cooling step completed optimal - Optimal Solution Found.\n", - "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.pressurization: Starting initialization of pressurization step.\n", - "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.pressurization: Initialization of pressurization step completed optimal - Optimal Solution Found.\n", - "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.adsorption: Starting initialization of adsorption step.\n", - "2023-10-26 15:29:04 [INFO] idaes.init.fs.tsa.adsorption: Initialization of adsorption step completed optimal - Optimal Solution Found.\n", - "2023-10-26 15:29:13 [INFO] idaes.init.fs.tsa: Initialization of fixed bed TSA model completed optimal - Optimal Solution Found.\n" - ] - } - ], - "source": [ - "# initialize tsa unit\n", - "initializer = FixedBedTSA0DInitializer(\n", - " output_level=idaeslog.INFO, solver_options=solver_options\n", - ")\n", - "initializer.initialize(m.fs.tsa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 3: Solve the TSA Unit Model\n", - "\n", - "Now, we can simulate the TSA unit model by solving a square problem. For this, we need to set up the solver by using the Pyomo component `SolverFactory`. We will be using the solver and solver options defined during the initialization." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# TSA Adsorption Cycle for Carbon Capture\n", + "\n", + "\n", + "Maintainer: Daison Yancy Caballero and Alexander Noring \n", + "Author: Daison Yancy Caballero and Alexander Noring \n", + "Updated: 2023-11-13 \n", + "\n", + "## Learning outcomes\n", + "\n", + "\n", + "- Demonstrate the use of the IDAES fixed bed temperature swing adsorption (TSA) 0D unit model\n", + "- Initialize the IDAES fixed bed TSA 0D unit model\n", + "- Simulate the IDAES fixed bed TSA 0D unit model by solving a square problem\n", + "- Generate and analyze results\n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "This Jupyter notebook shows the simulation of a fixed bed TSA cycle for carbon capture by using the fixed bed TSA 0D unit model in IDAES. The fixed bed TSA model consists of a 0D equilibrium-based shortcut model composed of four steps a) heating, b) cooling, c) pressurization, and d) adsorption. Note that the equations in the IDAES fixed bed TSA 0D unit model and the input specifications used in this tutorial for the feed stream have been taken from Joss et al. 2015.\n", + "\n", + "\n", + "#### A diagram of the TSA adsorption cycle is given below: \n", + "\n", + "![](tsa_cycle.svg)\n" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.tsa.cooling.scaling_factor' that\n", - "contains 4 component keys that are not exported as part of the NL file.\n", - "Skipping.\n", - "WARNING: model contains export suffix 'fs.tsa.heating.scaling_factor' that\n", - "contains 2 component keys that are not exported as part of the NL file.\n", - "Skipping.\n", - "WARNING: model contains export suffix 'fs.tsa.scaling_factor' that contains 12\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "Ipopt 3.13.2: nlp_scaling_method=user-scaling\n", - "tol=1e-06\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 19132\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 70375\n", - "\n", - "Total number of variables............................: 2815\n", - " variables with only lower bounds: 5\n", - " variables with lower and upper bounds: 605\n", - " variables with only upper bounds: 1\n", - "Total number of equality constraints.................: 2815\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 3.63e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 1.06e+00 3.00e+03 -1.0 4.96e+00 - 9.90e-01 9.90e-01h 1\n", - " 2 0.0000000e+00 4.90e-03 4.83e+03 -1.0 4.91e+00 - 9.90e-01 9.96e-01h 1\n", - " 3 0.0000000e+00 2.44e-07 4.53e+00 -1.0 2.25e-02 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 1.0710209608078003e-07 2.4400780240796394e-07\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 1.0710209608078003e-07 2.4400780240796394e-07\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 3.208\n", - "Total CPU secs in NLP function evaluations = 0.089\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "# set up solver to solve flowsheet\n", - "solver = SolverFactory(\"ipopt\")\n", - "solver.options = solver_options\n", - "\n", - "# solve flowsheet\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 4: Viewing the Simulation Results\n", - "\n", - "We will call some utility methods defined in the TSA unit model to get displayed some key variables." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Import Libraries" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Summary - tsa\n", - "------------------------------------------------------------------------------------ Value \n", - " Adsorption temperature [K] 310.00\n", - " Desorption temperature [K] 430.00\n", - " Heating temperature [K] 440.00\n", - " Cooling temperature [K] 300.00\n", - " Column diameter [m] 0.030000\n", - " Column length [m] 1.2000\n", - " Column volume [m3] 0.00084823\n", - " CO2 mole fraction at feed [%] 12.000\n", - " Feed flow rate [mol/s] 0.0096000\n", - " Feed velocity [m/s] 0.50008\n", - " Minimum fluidization velocity [m/s] 1.5207\n", - " Time of heating step [h] 0.37030\n", - " Time of cooling step [h] 0.20826\n", - " Time of pressurization step [h] 0.0051098\n", - " Time of adsorption step [h] 0.25221\n", - " Cycle time [h] 0.83588\n", - " Purity [-] 0.90219\n", - " Recovery [-] 0.89873\n", - " Productivity [kg CO2/ton/h] 84.085\n", - " Specific energy [MJ/kg CO2] 3.6532\n", - " Heat duty per bed [MW] 5.1244e-05\n", - " Heat duty total [MW] 0.00016646\n", - " Pressure drop [Pa] 5263.6\n", - " Number of beds 3.2484\n", - " CO2 captured in one cycle per bed [kg/cycle] 0.042210\n", - " Cycles per year 10480.\n", - " Total CO2 captured per year [tonne/year] 1.4369\n", - " Amount of flue gas processed per year [Gmol/year] 0.00030275\n", - " Amount of flue gas processed per year (target) [Gmol/year] 0.00030275\n", - " Amount of CO2 to atmosphere [mol/s] 0.00011667\n", - " Concentration of CO2 emitted to atmosphere [ppm] 13803.\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "# summary tsa\n", - "tsa_summary(m.fs.tsa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 5: Plotting Profiles\n", - "\n", - "Call plots method in the FixedBedTSA0D model to generate profiles of temperature, pressure and $\\mathrm{CO_{2}}$ concentration at the outlet of the column." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import Pyomo packages \n", + "\n", + "We will need the following components from the pyomo libraries.\n", + "\n", + "- ConcreteModel (to create the Pyomo model that will contain the IDAES flowsheet)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- SolverFactory (to set up the solver that will solve the problem)\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- Objective (to declare an objective function)\n", + "- minimize (to minimize an objective function)\n", + "- value (to return the numerical value of an Pyomo objects such as variables, constraints or expressions)\n", + "- units (to handle units in Pyomo and IDAES)\n", + "- check_optimal_termination (this method returns the solution status from solver)\n", + "\n", + "For further details on these components, please refer to the Pyomo documentation:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# python libraries\n", + "import os\n", + "\n", + "# pyomo libraries\n", + "from pyomo.environ import (\n", + " ConcreteModel,\n", + " TransformationFactory,\n", + " SolverFactory,\n", + " Constraint,\n", + " Var,\n", + " Objective,\n", + " minimize,\n", + " value,\n", + " units,\n", + " check_optimal_termination,\n", + ")" + ] + }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAKnCAYAAADgN8aBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+C0lEQVR4nOzdeVwU9f8H8Nfe3LdcgoK3qCBiIpp5cXhkZn77WpqapaVhP5WytDxSM4/KtMIj8+hbmaZlap6I4H0ieIsXisolICznssf8/kC2Ja5ddmBm2ffz8eDhMjvzmTfvWXwzM5/5fAQMwzAghBBCiN6EXAdACCGEmBoqnoQQQoiBqHgSQgghBqLiSQghhBiIiichhBBiICqehBBCiIGoeBJCCCEGouJJCCGEGEjMdQB8oNFokJaWBltbWwgEAq7DIYQQwgGGYVBQUABPT08IhbWfW1LxBJCWlgZvb2+uwyCEEMIDDx8+hJeXV63rUPEEYGtrCwBISUmBk5MTx9Hwm1KpxKFDhxAeHg6JRMJ1OLzHWr7u3AHatGEvMJ7i3edLN+88PAa8yxePaXPVqhUkHTtWu45cLoe3t7e2JtSGiiegvVRra2sLOzs7jqPhN6VSCSsrK9jZ2dEvqx5Yy1dmJtCtG3uB8RTvPl+6eefhMeBdvnisIlf2WVkQBwfXuq4+t++owxAhpmDECK4jME+6eadj0CSIXn2VlXaoeBJCCCEGouJJCCGEGIiKJyGmYMcOriMwT7p5p2PQJKi3bmWlHSqehJiCGnoHkgamm3c6Bk0C06EDK+1Q8STEFHTqxHUE5kk373QMmgRx166stEPFkxBCCDEQFU9CCCHEQDRIAiE8pdEweJBbjNuZBQieuwD2XAdkjr74ovrXxGRpFi2CiIV2qHgSwgNqDYO7Twpx6WEerj7Ox7U0OW6ky1FUpgYAtHcLwUGOYzRLUVHVvyYmSzN9OhVPQkwRwzB4nFeCy4/ycelhHpKeFcyKQqlLJhZCodJg58fhyHo7D652FhxEbMasrYGioqqvickSOziwchypeBLSwJQa4MKDp0h8JEfC/ae49CgP2YVlVdazkorQubk9/Jvbo1NzO3TytEcrF2sM+/4kRBoNLjx4iiFdPDj4CcyYWl39a2K6WDqOvCmeS5cuxezZszFt2jSsXLkSubm5mD9/Pg4dOoTU1FQ0a9YML7/8MhYtWgR7+3/u/lQ3gO9vv/2G1157rTHDJ0TraVEZEh48xfkHubiQkoukhyKoz56vtI5YKEAHD1sEeDmUf3k7oI2rDUTCqp/n7i0dAQAJVDwJ4Q1eFM/z589j3bp18Pf31y5LS0tDWloavvrqK/j5+eHBgweYPHky0tLSsONfI31s2rQJgwYN0n7v4ODQWKETgrziMpy+m4OTd7Nx9l4ubmcV/msNAVxspHjOxwlBLR3RraUj/DzsYCHR785LUEtH7OgyEBcePGU/eFK7N9+s/jUxWZpx45rGPc/CwkKMGTMG69evx+eff65d3rlzZ/zxxx/a71u3bo3FixfjjTfegEqlglj8T+gODg5wd3dv1LiJ+SopU+Pc/VycupONk3ezcS1NDoapvE7rZtZ4zscJgd52KEy5hLEjwiCVSuu1v6CWjugTMRXix/koKVPDUsrGrz7Ry9q11b8mJksTHd00imdkZCSGDh2K0NDQSsWzOvn5+bCzs6tUOCvamDhxIlq1aoXJkydjwoQJtc7HplAooFAotN/L5XIA5fO9KZVKI36apq8iP+aUJ4ZhcD29APG3snHybg6SHuZBqa5cLVs3s0avVk7o2ar87NLZurxQKpVKxKQDKpVKrzkCq+NmI8bB/01DxLhVSLifjWDfpjthO98+X+LnnoPq/Pkqr/mCb/nis4ocibp3h/LChVrX0QenxXPr1q24ePEizuvxgczOzsaiRYvwzjvvVFq+cOFCDBgwAFZWVjh06BDee+89FBYW4v/+7/9qbGvJkiVYsGBBleVxcXGwsrIy/AcxQzExMVyH0KBK1UByngDX8wS4/lQAubJy4XOQMmhn/8+XvTQfQD5U91Nw9n7V9ozN1+AnqQCA32LOIseLqWNt08eXz9eL169j3759VV7zDV/yZQqYGzdqPI7FxcV6tyNgmH9fcGocDx8+RPfu3RETE6O919mvXz907doVK1eurLSuXC5HWFgYnJycsHv37lpnTJ83bx42bdqEhw8f1rhOdWee3t7eSE9Ph7Ozs3E/WBOnVCoRExODsLCwJjdz/f2cIsQlZyP+1hOcv/+00tmllVSEXq2c0KetC3q1dkJLJyu9ziTZypfA2gZtov5Ev3YuWD+2W73b4Tu+fb7EtrZQFRRUec0XfMsXn1Xk6qVRo2o8jnK5HC4uLtqrnLXh7MwzISEBWVlZ6Nbtn/8I1Go1jh07hu+//x4KhQIikQgFBQUYNGgQbG1tsXPnzjo/IMHBwVi0aBEUCgVkMlm168hksmrfk0gk9AHUU1PIFcMwSM4swL4rGdh/Jb1KR5+Wzlbo394VAzq4IriVE2Ti+t8pMTZfBc8FAwASH+ZDJBJDWE2v3KaEN5+vXr3+iUP3Nc/wJl8mgAkJqTFXhuSQs+I5cOBAXLlypdKyCRMmoEOHDvj4448hEokgl8sREREBmUyG3bt3w8Ki7gfEk5KS4OjoWGPhJOaNYRhcfSzH/qvp2H81AynZ/zwsLRYK0MPXCQM6uKJ/B1e0crGu931Ktlkci4fVgkPIL1HiZkYB/Dxr/6uYsOTIkepfE5OlPnSIlUHdOSuetra26Ny5c6Vl1tbWcHZ2RufOnSGXyxEeHo7i4mL88ssvkMvl2o49zZo1g0gkwp49e5CZmYmePXvCwsICMTEx+OKLL/Dhhx9y8SMRnmIYBpce5WPflXTsu5KOR09LtO9JxUK80LYZhnRxx8CObrC35Odf75LRryMoPArHb2fjbEoOFc/GMmoUsG1b1dfEZIlGjwa2bze6Hc5729bk4sWLOHv2LACgTZs2ld5LSUmBj48PJBIJoqOjMWPGDDAMgzZt2mDFihWYNGkSFyETnnmQU4S/EtPwV9LjSmeYFhIh+rd3xeAuHhjQwRU2Mt7+Gvxj1y70nLy4vHjey8WE3r5cR2Qedu2q/jUxWYI9e1hph1f/a8THx2tf9+vXD3X1ZRo0aFClwREIyS0qw97LadiZ+BgXU/O0yy0kQoR2dMPQLh7o274ZrKS8+ujrpWer8kdUzt3PBcMwvLmkTIg5Mr3/QQj5F7WGwfHbT/D7hYeIuZ6p7SUrFAC927hgRGBzhHdyN40zzJq4uKBLcwdYSITILSrD7axCtHOz5Tqqps/FpfrXxHSxdBxN+H8TYu4ePS3G9guPsP3CQ6Tll2qXd25uhxGBXhgW4AFX2yYyC8mjR5CifLShk3dycOZeDhXPxvDoUfWviclSpaSAjZ4NbHQ6IqTRqNQa7L+SjrEbzqLP8jisir2NtPxSOFhJ8GYvH+yf1gd/v98Hbz/v23QKJwDMnQsA6Olb/hzy2Xu5XEZjPp7lvcprYrKE8+ez0w4rrRDSwHIKFYiOu4M+y+Mw5deLOH47GwwD9G7jjG9fD8SZ2QPx2Uud0NGjifZC/fJLAEBwq2fFMyWnzj4BhAXP8l7lNTFZwhUrWGmHLtsSXrv6OB+bT93H7ktpKFNpAADO1lKMes4brz3XAi2czWs4xQBve8jEQmQXluHukyK0cbXhOiRCzBIVT8I7KrUG+69mYPOp+0jQmYbL38se40N8MNTfQ+/pvJoamViEwBYOOHMvF2dTcqh4EsIRKp6EN0rK1Nie8BDrj9/Dw9zygQwkIgGGdPHA+F4+CPR2MN/HM9LStC97tnIuL573cjEmuCWHQZkBnbxXek1MlurBA+owRJqGvOIyfBt7G72XHcG8XdfwMLcETtZSTBvYFidnDcCq1wLRrYWj+RZOANi7V/sy+FmnoTP36L5ng9PJe6XXxGQJWJoZh4on4UxaXgkW7rmOXkuPYEXMLeQWlcHL0RILh3fCyY8HYEZYu6bVY9YYOqNmBbZwgFQkRFaBAvdz9J9CidSD7mhlNHJZkyCaMoWVduiyLWl0j/NKEB13B9svPNQOaNDRww6T+7bC0C4eEIvob7raWEhE6OrtgHP3c3H2Xg58Xay5DokQs6NX8dy9e7fBDYeFhcHS0tLg7UjTlZ5fXjS3nf+naPZs5YQp/drghbYu5n1Z1kA9Wznh3P1cnLqbg9d6tOA6HELMjl7F8+WXXzaoUYFAgNu3b6NVq1b1iYk0MZnyUqyOu4Pfzj1Embr8cZOQVs6YEdYOPXydOI7OROiM+wyUDzv47ZE7OHknGxoN0+Tn9+SMbt7/dQyIaVIfPszKJVe928jIyICrq6te69ra0rBhpLwjUHTcHfx0+oH2Gc0evk6YEdoOIa2dOY7OtAW2cISVVIScojLcyJCjk6c91yERYlb0Kp7jx4836BLsG2+8ATu7JjrSC6lTqVKNn07dR3TcHchLVQCA7i0dERVWXjTp8mw99OsHlP4zfq9ULETPVs44cjMLJ25nU/FsKLp5/9cxIKZJFBrKynHUq3hu2rRJr8YKCwthY2ODNWvWGBUUMU0aDYO/kh7j60O38Div/DnNDu62+HhwB/Rr14yKJsueb+OCIzezcPx2Nt7t25rrcAgxK3p3a/zmm29qfb+goAARERFGB0RM04nb2Rj63QlE/X4Jj/NK4GFvgS//44+9/9cH/du7UuFsAH3alk+tdO5+LkqVao6jIcS86H3P85NPPoGzszPGjRtX5b2ioiIMGjQIOTk5rAZH+C81pxif772OQ9czAQC2FmK8168NJvT2Mdsh9BrE+vVVFrVxtYGbnQyZcgXO389Fn7bNOAisidPNezXHgJge9Zo1jdth6Oeff8bYsWPh4OCAl156Sbu8qKgIERERePLkCY4ePcpCSMQUlJSp8V3cPaw9dg9lKg1EQgHG9myJaQPbwtFaynV4Tc/QoVUWCQQCPN+mGf64+AgnbmdT8WwIunmv5hgQ08MMGcJKO3oXz//85z/Iy8vD66+/jr1796Jfv37aM87MzEwcPXoUHh4erARF+IthGCRmC7D025NIfzYBde82zpg/rBNNztyQPD2r7eTQp60L/rj4CMdvZ2M2B2E1ebp5r+EYENMibtmy8ToMVZg4cSJyc3MxfPhw7Nq1C/PmzUNaWhqOHj0KT09Po4Mh/HY/uwif/HkZp+6JAJSiuYMl5r7YERGd3OmeJkd6tym/73k9XY7sQgVcbGQcR0SIeTD40u9HH32E3NxcDBw4ED4+PoiPj4eXl1dDxEZ4QqnW4Idj9/Bt7G0oVBpIBAym9GuD9wa0pfuaHGtmK0MHd1vczCjAyTvZGN61OdchEWIW9O5t+8orr2i/bt26BYlEAhcXF0ybNq3Se/W1dOlSCAQCTJ8+XbustLQUkZGRcHZ2ho2NDUaOHInMzMxK26WmpmLo0KGwsrKCq6srZs6cCZVKVe84SGWJqU8x7LsT+PJgMhQqDXq1dsKsrmq8P6A1Fc7GNHNmjW9V9Lo9cTu7saIxH7p5r+UYENOhiYpipR29zzzt7Ss/hP3666+zEgAAnD9/HuvWrYO/v3+l5TNmzMDevXuxfft22NvbY+rUqXjllVdw8uRJAIBarcbQoUPh7u6OU6dOIT09HePGjYNEIsEXX3zBWnzmqKBUia8OJuN/Zx6AYQAnaynmDO2IFzu7Yv/+/VyHZ34WLarxrefbNsP64yk4fjsbDMPQJXQ26ea9lmNATIdmwQKw8We/3sVT34ESDFVYWIgxY8Zg/fr1+Pzzz7XL8/PzsWHDBmzZsgUDBgzQxtCxY0ecOXMGPXv2xKFDh3D9+nUcPnwYbm5u6Nq1KxYtWoSPP/4Yn332GaRS6vVZH3HJWZj9xxVkyMtvqr/SrTnmDPWDk7UUSqWS4+jMlJcX8OhRtW8F+zrBQiJEhrwUNzMK0NGDRvdijW7eazkGxHSIfX1ZOY6cT0kWGRmJoUOHIjQ0tFLxTEhIgFKpRGhoqHZZhw4d0KJFC5w+fRo9e/bE6dOn0aVLF7i5uWnXiYiIwJQpU3Dt2jUEBgZWu0+FQgGFQqH9Xi6XAwCUSqVZF4dChQpLDyRj24XHAABvR0ssGu6H3s/GodXNjznnyRBs5UucnQ1VDW2IAIS0ckJccjYOX0tHGxfTnc2Ib58v3bzXdgy4wrd88Zk2R9nZNebLkDzqVTxfeeUVbN68We/xaseMGYNvvvmmzoHkt27diosXL+L8+fNV3svIyIBUKoWDg0Ol5W5ubsjIyNCuo1s4K96veK8mS5YswYIFC6osj4uLg5WVVa0xN1V35MCWOyLkKMov+fX10OBF7wLkJ5/FvuSq68fExDRyhKbN2Hy9qNFg3759Nb7vUiYAIMLOs7fRouimUfviA758vnTzXtcx4BJf8mUKNLUcx+Ji/SeX16t47tq1C0+ePNGrQYZhsGfPHixatKjW4vnw4UNMmzYNMTExsLCw0C9alsyePRtROjeN5XI5vL290b9/fzg7m9dsHwqlGisO38Gm6+X3Nps7WGDZK50RXMNUYUqlEjExMQgLC4NEImnkaE0PW/kSDB+OIbU83B2QV4LtXx/H/UIBevULg4OVaR4bvn2+dPNe1zHgAt/yxWcVuWJeeqnG41hxFVIfehVPhmHQrl07vRvVR0JCArKystCtWzftMrVajWPHjuH777/HwYMHUVZWhry8vEpnn5mZmXB3dwcAuLu749y5c5XareiNW7FOdWQyGWSyqs/DSSQSs/oAXnmUjxm/J+FOViEAYFR3b8x5sSNsLerOgbnlylhG52v79lq7xvs0k6Cdmw1uZRbi9P08vBRg2s9d8+bzpZv3Oo4Bl3iTLxPA/PZbjbkyJId6Fc+4uDi9G6zQvHntz5sNHDgQV65cqbRswoQJ6NChAz7++GN4e3tDIpEgNjYWI0eOBAAkJycjNTUVISEhAICQkBAsXrwYWVlZ2rPcmJgY2NnZwc/Pz+CYzQXDMNhwIgXLDtyEUs3AxUaGZSO7YGBHt7o3JtwYMAA4cqTWVfp3cMWtzELE3cwy+eLJG7p51+MYEP4ThYcD9ahp/6ZX8ezbt6/RO/o3W1tbdO7cudIya2trODs7a5e//fbbiIqKgpOTE+zs7PD+++8jJCQEPXv2BACEh4fDz88PY8eOxfLly5GRkYE5c+YgMjKy2jNLAuQWleHD7Zdw5GYWAGBQJ3d88UoXONF4tPx26lSdq/Rv74p1R+/h6K0nUGsYiIT0yIrRdPOuxzEg/Cc4fZqVdjjvbVubb775BkKhECNHjoRCoUBERARWr16tfV8kEuHvv//GlClTEBISAmtra4wfPx4LFy7kMGr+OnMvB9O2JiJTroBULMTcF/3wRnALei6wiQhq6QhbCzFyi8pw6VEeurVw5DokQposXhXP+Pj4St9bWFggOjoa0dHRNW7TsmVL3vaA4wu1hsF3R27j29jb0DBA62bW+H50N3oe0JR07FjnKhKREC+0a4a9l9Nx+HomFU826OZdj2NATECHDqw0w9f734QlWQWlGPPjGaw8XF44Xw3ywp73n6fCaWoSE/VaLdyv/L51xfyqxEi6edfzGBB+U1XzaGR9UPFswhIelI9Le+ZeLqylIqwc1RVfvhoAKymvLjgQfUyerNdq/Tu4QiIS4E5WIe4+KWzgoMyAbt71PAaE34SRkey0U5+NVCoVDh8+jHXr1qGgoAAAkJaWhsJC+mXlA4Zh8OvZB3jth9PIlCvQxtUGu99/Hi8H0owbJmvzZr1Ws7OQIKR1+UDxB6/VPFAI0ZNu3vU8BoTfhP/7HyvtGHwK8uDBAwwaNAipqalQKBQICwuDra0tli1bBoVCgbVr17ISGKmfUqUa83Zdxe8XysduHNzZHV++GgAbGZ1tmouITm44dusJDl3LxHv92nAdDiFNksFnntOmTUP37t3x9OlTWFr+M4bmiBEjEBsby2pwxDBpeSX477rT+P3CIwgFwKzBHbB6TDcqnE2BSP95IMI6ukEgAJIe5iEjv7QBgzIDunk34BgQHmPpOBr8v+rx48dx6tSpKjOW+Pj44PHjx6wERQyXmPoUk/6XgOxCBRysJPju9UD0aduM67AIW4qK9F7V1c4Cgd4OuJiah5jrGRgb4tNwcTV1unk34BgQ/lLl5YGNsZgMPvPUaDRQq9VVlj969Ai2trYshEQMtedSGl774QyyCxXo4G6LPVOfp8LZ1KxYYdDqEZ3Kh6ekXrdG0s27gceA8JNw5Up22jF0g/DwcKzU2blAIEBhYSHmz5/Pu0GTmzqGYbDq8G28/1siFCoNBnZwxY4pveDtZJ4zwzRpn3xi0OoVxfP03RzkF9N0VfWmm3cDjwHhJ+Hcuey0Y+gGX331FU6ePAk/Pz+UlpZi9OjR2ku2y5YtYyUoUrdSpRrTtyXhm8O3AAATn/fFD+O60/1NAgDwcbFGezdbqDQMjiTT2SchbDP4f1pvb29cunQJ27Ztw6VLl1BYWIi3334bY8aMqdSBiDSc/GIlJv7vPM7ffwqxUICFwztjdHALrsMiPBPeyQ3JmQU4eDUTIwK9uA6HkCbFoOKpVCrRoUMH/P333xgzZgzGjBnTUHGRGqTllWD8xnO4nVUIWwsx1r4RhN5tXLgOizS0a9cM3iSikzu+O3IHR289QXGZigbHqA/dvNfjGBD+USUlNX6HIYlEgtJS6vrOlVuZBXhl9SncziqEu50Ftk8OocJpLm7cMHiTTp52aOFkhRKlWjuLDjGQbt7rcQwI/whu3mSlHYPveUZGRmLZsmVQqVSsBED0k/DgKf6z5hQy5KVo3cwaf7zXCx3caXxas/Gf/xi8iUAgwLAADwDA7qQ0tiMyD7p5r8cxIPwjeu01Vtox+DrO+fPnERsbi0OHDqFLly6wtrau9P6ff/7JSmDkH+dScjFh0zkUlanRrYUDNox/Do40/ybRw7AAT0TH3UV88hPIS5Wws2DjghUhxODi6eDggJEjRzZELKQap+5m4+3NF1CiVKN3G2esH9ed7l0RvXVwt0M7NxvcyizEwasZeLW7N9chEdIkGPy/8KZNmxoiDlKNY7eeYNL/LkCh0uCFds3ww9ggWEhoiDCztHNnvTcd5u+Jr2NuYc/ldCqehtLNuxHHgPCHevt2ViaypinJeOrIzUxM/OmCdvADKpxmrnXrem86LMATAHDyTjZyChVsRWQedPNuxDEg/MG0asVKOwYXYF9fXwgEghrfv3fvnlEBkfL/5N79OQFKNYOITm747vVukIrp7xyz5u8P1LOnu4+LNfy97HH5UT72Xc3A2J4tWQ6uCdPNuxHHgPCHOCiIleNocPGcPn16pe+VSiUSExNx4MABzJw50+iAzN3Vx/l4538XoFQzGNzZHd++HgiJiAonMc4wf09cfpSPPUlpVDwJYYHBxXPatGnVLo+OjsaFCxeMDsic3c8uwpvPetX2au2Mla91pcJJWPFigAcW77uBc/dzkZ5fAg97Gg2MEGOw9j/z4MGD8ccff7DVnNnJKijF2I1nkV1Yhk6edlg3NggyMd3jJM8YOW60h70levg4AQD+SqRnPvWmm3cau7tJ0HzxBSvtsFY8d+zYAScnJ7aaMytlKg2m/HIRD3NL0NLZCpsn9IAtPY9HdNVwxccQr3RrDgD44+IjMAxjdHtmQTfvLBwDwj3N+++z0o7BxTMwMBDdunXTfgUGBsLDwwOffPIJPjFwyp41a9bA398fdnZ2sLOzQ0hICPbv3w8AuH//PgQCQbVf27dv17ZR3ftbt2419Mfi1KK/ryPhwVPYWoixeUIPNLOVcR0S4RsLC6ObGOLvAQuJEHeyCnH5UT4LQZkB3byzcAwI98QszTtt8D3P4cOHV+ptKxQK0axZM/Tr1w8dOnQwqC0vLy8sXboUbdu2BcMw+OmnnzB8+HAkJiaiQ4cOSE9Pr7T+Dz/8gC+//BKDBw+utHzTpk0YNGiQ9nsHBwdDfyzObL/wED+feQAAWDmqK3xdrOvYgpD6sbOQIKKTO3YlpWFHwiMEeDtwHRIhJsvg4vnZZ5+xtvNhw4ZV+n7x4sVYs2YNzpw5g06dOsHd3b3S+zt37sR///tf2NjYVFru4OBQZV1TcC0tH5/+dRUAMD20LQZ2dOM4ItLU/SfIC7uS0rD7Uho+HdqRnh0mpJ4MLp4ikQjp6elwdXWttDwnJweurq5Qq9X1CkStVmP79u0oKipCSEhIlfcTEhKQlJSE6OjoKu9FRkZi4sSJaNWqFSZPnowJEybU+iyqQqGAQvHPw+JyuRxA+WM3SqWyXvEbSqFUY9pviShTadC/vQum9PFptH0boyJGU4iVD9jKl3DCBGhYyPlzLezhbidDhlyBQ1fTMLgzv/7o5NvnSzfvbB0DNvEtX3xWkSPV+PFADfkyJI8CxsCeA0KhEBkZGVWKZ1paGlq3bo2SkhJDmsOVK1cQEhKC0tJS2NjYYMuWLRgyZEiV9d577z3Ex8fj+vXrlZYvWrQIAwYMgJWVFQ4dOoT58+dj+fLl+L//+78a9/nZZ59hwYIFVZZv2bIFVlZWBsVfXzvvCxGfLoSthMGsADVsqH8QaSR/pwoR81gIPwcN3u2o4TocQnijuLgYo0ePRn5+Puzsap+1Su/i+e233wIAZsyYgUWLFlW6dKpWq3Hs2DHcv38fiYmJBgVbVlaG1NRU5OfnY8eOHfjxxx9x9OhR+Pn5adcpKSmBh4cH5s6diw8++KDW9ubNm4dNmzbh4cOHNa5T3Zmnt7c30tPT4ezsbFD89XE2JRdvbCx/JvaHNwLRv32zBt8nW5RKJWJiYhAWFgaJhCp+XdjKlzgwECoDf7dqkpJdhPBVJyEUAHFRfeDpwJ9nPvn2+dLNO5vHgC18yxefVeRq2CefQJ2UVO06crkcLi4uehVPvS/bfvPNNwAAhmGwdu1aiET/3CuRSqXw8fHB2rVr9W2u0rZt2rQBAAQFBeH8+fNYtWoV1q1bp11nx44dKC4uxrhx4+psLzg4GIsWLYJCoYBMVn2vVZlMVu17EomkwT+ApUo15u4un1T39R4tEN7Zs0H311AaI1dNidH5unOHtXy383BASCtnnL6Xgz8S0xEV3p6VdtnEm8+Xbt5ZPAZs402+TIDg7t0ac2VIDvUunikpKQCA/v37488//4Sjo6PeOzGERqOpdFYIABs2bMBLL72EZs3qPkNLSkqCo6NjjYWTa6vj7yIluwiutjJ8MsSw3smEsGVMzxY4fS8HW88/xPsD29JIVoQYyOAOQ3FxcaztfPbs2Rg8eDBatGiBgoICbNmyBfHx8Th48KB2nTt37uDYsWPYt29fle337NmDzMxM9OzZExYWFoiJicEXX3yBDz/8kLUY2XT3SSHWxt8FAMwf1okGQiD6e+EFVpsL93OHi40UWQUKxN7IwiCedRziDd28s3wMCDeYPn1Qc3dS/dVrWrNHjx5h9+7dSE1NRVlZWaX3VqxYoXc7WVlZGDduHNLT02Fvbw9/f38cPHgQYWFh2nU2btwILy8vhIeHV9leIpEgOjoaM2bMAMMwaNOmDVasWIFJkybV58dqcAv2XEeZWoN+7ZthSBf6z4oY4NAhVpuTioV4tbs31sTfxa9nH1DxrIlu3lk+BoQb6n37WBlaz+DiGRsbi5deegmtWrXCzZs30blzZ9y/fx8Mw6Bbt24GtbVhw4Y61/niiy/wRQ1jEQ4aNKjS4Ah8FpechWO3nkAiEuCzYZ1qfZSGkCpGjgRYHjv69edaYO3Ruzh+OxsPcorQ0pkG6KhCN+8NcAxI4xP997+sTGxucAGePXs2PvzwQ1y5cgUWFhb4448/8PDhQ/Tt2xevvvqq0QE1RWoNgy/2lncSerOXD3xoFCFiqL17WW+yhbMVXmhb3o/gt3M19043a7p5b4BjQBqf4NkQsMYyuHjeuHFD2+tVLBajpKQENjY2WLhwIZbRrAPV2nMpDbezCmFvKcHUAW25DocQrdHBLQCUDxOpUNVvgBNCzJHBxdPa2lp7n9PDwwN3797Vvpednc1eZE2ESq3BqtjbAIB3XmgFe0vqJETqoYGGnxzYwRVudjLkFJXhwNWMBtmHSdPNuwkOAUqqwdJxNLh49uzZEydOnAAADBkyBB988AEWL16Mt956Cz179mQlqKbkz8THSMkugpO1FG/28uE6HGKq7t9vkGbFIiFG92gJANh48j5NVfZvunlvoGNAGpfq9m1W2jG4eK5YsQLBwcEAgAULFmDgwIHYtm0bfHx89OoAZE7KVBp8++ysc3LfVrCW1atzMyHA7NkN1vSYni0gFQtx6WEeLqY+bbD9mCTdvDfgMSCNR/jpp+y0Y8jKarUajx49QosW5fdJrK2tsXbtWly+fBl//PEHWrZsyUpQTcX2hId49LQEzWxlGNvTh+twiCl7NsJXQ3CxkWFE1/KJsn88ntJg+zFJunlvwGNAGo/w2VCzRrdjyMoikQjh4eF4+pT+Oq2LUq3B6rjy+8Hv9WsNSylN/UT46+0+vgCAg9cykJpTzHE0hPCfwZdtO3fujHv37jVELE3KvivpeJxXAmdrKV7v0YLrcAipVTs3W/Rp6wINA2w6RWefhNTF4OL5+eef48MPP8Tff/+N9PR0yOXySl+kfPD8dUfL/8AY38uHJhwmxsvKavBdTOzTCgDw+/mHkJfS/JAAKue9EY4BaXiqx49Zacfg4jlkyBBcunQJL730Ery8vODo6AhHR0c4ODg02GDxpubknRxcT5fDUiLC2J50H5iwoBFGtnmhrQvautqgqEyNbTRoQjndvNPoQk2CgIXRhQCOB4ZvqtYdK7/X+d/uXnC0lnIcDWkSpkwBJkxo0F0IBAJM7OOLj/+4gg0nUjCuV0vIxGZ+1UQ3741wDEjDE02dCkycaHQ7BhfPvn37Gr3Tpux2ZgGO386GUAC8/XwrrsMhxCDDuzbH14duIUNeij8vPqb79YTUoF6Dyx8/fhxvvPEGevXqhcfPrh///PPP2sETzNn/Tj8AAIR2dEMLZyuOoyHEMBYSEd55ofyPvjXxd6FSaziOiBB+Mrh4/vHHH4iIiIClpSUuXryonbg6Pz+/xtlPzIW8VIk/Lj4CUN5RiBDWNOIfpqODW8DRSoLU3GL8fTm90fbLS7p5p5ODJkEdH89KO/Xqbbt27VqsX78eEsk/47T27t0bFy9eZCUoU/VnwiMUl6nRupk1erV25joc0pQ8+yO1MVhJxXj7+fLnPqPj7kCjMeMh+3Tz3ojHgDQglo6jwcUzOTkZL1Qzo7q9vT3y8vLYiMkkMQyD/50pv2Q7vpcPzddJ2DVwYKPubmyID2xlYtzOKsSBa2Y8YLxu3hv5GJCGIYqIYKUdg4unu7s77ty5U2X5iRMn0KqV+XaQOZeSi3tPimAlFWFEYHOuwyHEKPaWEkzo7QMAWBFzC2pzPvskpBoGF89JkyZh2rRpOHv2LAQCAdLS0vDrr7/iww8/xJQpUxoiRpOw7Xz5c3EvBXjC1oKmHSOmb+KzKfTuZBXir0R2HiwnpKkw+FGVWbNmQaPRYODAgSguLsYLL7wAmUyGDz/8EO+//35DxMh7+SVK7L1S3rHiv895cxwNaZI2bmz0XdpZSDC5b2ssO3ATK2NvYViAJ6TienXQN126eefgGBD2qX/4wfDCVw2DfxMEAgE+/fRT5Obm4urVqzhz5gyePHmCRYsWsRCOadp9KQ0KlQbt3GwQ6O3AdTikKQoL42S343u1RDNbGR7mlmDbBTMcdUg37xwdA8IuJjSUlXbq/WekVCqFra0tPDw8YGNjw0owpmrb+VQAwKjnWlBHIdIwvLm5omElFeP9AW0AAN/F3kZJmZqTODijm3eOjgFhl5ilvjkGF0+VSoW5c+fC3t4ePj4+8PHxgb29PebMmQOl0rDBpNesWQN/f3/Y2dnBzs4OISEh2L9/v/b9fv36QSAQVPqaPHlypTZSU1MxdOhQWFlZwdXVFTNnzoRKpTL0x6q3q4/zcfWxHBKRgDoKkSbptedawMvRElkFCvx85j7X4RDCCwZf+n3//ffx559/Yvny5QgJCQEAnD59Gp999hlycnKwZs0avdvy8vLC0qVL0bZtWzAMg59++gnDhw9HYmIiOnXqBKC8g9LChQu121hZ/TNqj1qtxtChQ+Hu7o5Tp04hPT0d48aNg0QiabQBG3YklA+KEO7nDicax5Y0QVKxENND2+HD7ZewOv4u/tvdGw5W9Fkn5s3g4rllyxZs3boVgwcP1i7z9/eHt7c3Xn/9dYOK57Bhwyp9v3jxYqxZswZnzpzRFk8rKyu4u7tXu/2hQ4dw/fp1HD58GG5ubujatSsWLVqEjz/+GJ999hmk0ob9BVepNdoRWEYG0VknaUCzZnG6+xGBzfHj8Xu4mVGAlYdv47OXOnEaT6PRzTvHx4CwQzNzJtiY7sDg4imTyeDj41Nlua+vr1HFSq1WY/v27SgqKtKe0QLAr7/+il9++QXu7u4YNmwY5s6dqz37PH36NLp06QI3Nzft+hEREZgyZQquXbuGwMDAavelUCi0wwoC0M5DqlQqDbr0fPJuDrILFXC0kqCnj4PBl61NUcXPaA4/KxtYy9ennwIc53z2oHYYvzkBP595gFFBnmjjyn5fB959vnTzzoNj8G+8yxePVeRIMXs2JDXky5A8Glw8p06dikWLFmHTpk2QyWTlwSgUWLx4MaZOnWpoc7hy5QpCQkJQWloKGxsb7Ny5E35+fgCA0aNHo2XLlvD09MTly5fx8ccfIzk5GX/++ScAICMjo1LhBKD9PiOj5lFRlixZggULFlRZHhcXV+mycF223BECEKKjrQIxBw/ovV1TEBMTw3UIJsXYfEVMmICDmzaxFE39dXEU4spTIaJ+PoHJHRtu0Hi+fL50886XY1AdvuTLFAi9vLCvhuNYXFysdzsChmEMGjpkxIgRiI2NhUwmQ0BAAADg0qVLKCsrw8B/DV9VUeRqU1ZWhtTUVOTn52PHjh348ccfcfToUW0B1XXkyBEMHDgQd+7cQevWrfHOO+/gwYMHOHjwoHad4uJiWFtbY9++fZUuLeuq7szT29sb6enpcHbWb0xahVKNnsuOolChwq9vd0cPHye9tjN1SqUSMTExCAsLqzS2MakeW/kS29pCVVDAYmT18yCnGIO/OwmlmsH6sYHo164Zq+3z7fOlm3e+HANdfMsXn1Xk6qVRo2o8jnK5HC4uLsjPz4ednV2t7Rl85ung4ICRI0dWWuZtRBduqVSKNm3Ku8IHBQXh/PnzWLVqFdatW1dl3eDgYADQFk93d3ecO3eu0jqZmZkAUON9UqD80nPFWbMuiUSi9wcwNjkbhQoVPOwtENLaFUKheT2iYkiuCDv54kO+27jbY0JvX/xw7B6WHLiFvu3dG2TgBD59vnTj4EtM/8anfJmCmnJlSA4NLp6bGviyhUajqXRWqCspKQkA4OHhAQAICQnB4sWLkZWVBVdXVwDlly/s7OyqPXNl0+5LaQDKh+Mzt8JJOPDKK1xHoDV1QBv8kfAI954UYcOJFEzp15rrkBqObt55dAxI/TEvvww2/sfmdKyt2bNn49ixY7h//z6uXLmC2bNnIz4+HmPGjMHdu3exaNEiJCQk4P79+9i9ezfGjRuHF154Af7+/gCA8PBw+Pn5YezYsbh06RIOHjyIOXPmIDIystozS7YUlCpx+EYWAGBYgGeD7YcQrS1buI5Ay85CgtlDOgIAVsXewsNc/e8TmRzdvPPoGJD6U//8MyvtGFw8c3JyEBkZCT8/P7i4uMDJyanSlyGysrIwbtw4tG/fHgMHDsT58+dx8OBBhIWFQSqV4vDhwwgPD0eHDh3wwQcfYOTIkdizZ492e5FIhL///hsikQghISF44403MG7cuErPhTaEg9cyUabSoHUza3TyrP26OCGs6NuX6wgqGdmtOYJ9nVCq1GDerqswsOuE6dDNO8+OAakfEUtTyxl82Xbs2LG4c+cO3n77bbi5uRk1HN2GDRtqfM/b2xtHjx6ts42WLVti37599Y6hPiou2Q7v2pyG4yON4+xZriOoRCAQYPGILhi86hjikp/gwNUMDO7iwXVY7NPNO8+OAakfwb/6ydSXwcXz+PHjOHHihLanrbl5UqDAyTvZAMrvdxJirtq42mBy39b47sgdzNt9DT1bOcORRtkiZsLgy7YdOnRASUlJQ8RiEg5cTYdawyDAyx4+LtZch0PMRefOXEdQrcj+bdC6mTWeFCjw2Z5rXIfDPt288/QYEMMwndgZHcvg4rl69Wp8+umnOHr0KHJyciCXyyt9NXUHr5U/CjOkKV6iIvx14QLXEVTLQiLC1//tCqEA2JWUhgNX07kOiV26eefpMSCGUZ85w0o7BhdPBwcHyOVyDBgwAK6urnB0dISjoyMcHBzg6OjISlB8lV+sxJl7OQCAiE41P0dKCOsmTeI6ghp19XbA5L7lj6t8uvMqcgqrf9TMJOnmncfHgOhP9K+ZuerL4OI5ZswYSCQSbNmyBbGxsThy5AiOHDmCuLg4HDlyhJWg+OpIciZUGgbt3Wzpki1pXCx1r28o00LbooO7LXKKyjC3KfW+1c07z48B0Y/g119ZacfgDkNXr15FYmIi2rdvz0oApuTg1fJLtuGd3OpYkxDzIhOL8NWrAXg5+iT2XcnAX0mPMSLQi+uwCGkwBp95du/eHQ8fPmyIWHitVKnG0VtPANAlW8KBBp5ejw2dm9vj/QFtAZRfvr37pJDjiFigm3cTOAZEDywdx3pNhj1t2jTMnDkTXbp0qTIWYMXoP03N8dvZKFGq0dzBkgZGII3PRDrjTR3QBqfvZePMvVxE/noRf0X2hoWEjdkTOaKbdxM5BqR2qpwcsDEKsMFnnqNGjcKNGzfw1ltv4bnnnkPXrl0RGBio/bepOnStfIqzMD/jBoYgpF6WL+c6Ar2IhAKsei0QztZS3MwowKK/r3MdknF0824ix4DUTvjVV+y0Y+gGKSkpVb7u3bun/bcpUqk1OHyD7ncSDs2bx3UEenOzs8A3o7pCIAB+PZuKvy+ncR1S/enm3YSOAamZsJq5nOvD4Mu2LVu2ZGXHpuT8/ad4WqyEg5XEbObtJMQYL7Rrhvf6tUZ03F3M+uMKOrjboY2rDddhEcKaes2q8vPPP6N3797w9PTEgwcPAAArV67Erl27WA2OLw5dL79kO7CDG8QiTieiIcRkzAhthx6+TihUqPDO/y4gv1jJdUiEsMbgSrBmzRpERUVhyJAhyMvLg1qtBlA+eMLKlSvZjo9zDMMg9tn0Y3TJlnAmOZnrCAwmFgmxekw3NHewxL3sIry/NREqtYbrsAyjm3cTPAakKtXVq6y0Y3Dx/O6777B+/Xp8+umnEIn+6UXXvXt3XLlyhZWg+ORedhFSc4shFQnxfBsXrsMh5ioxkesI6sXFRoYfxgXBUiLCsVtPsHT/Ta5DMoxu3k30GJDKBElJrLRTrw5D1fWqlclkKCoqYiUoPom7WX7WGdzKCdYyg28RE8KO117jOoJ66+RpjxX/LZ+F6ccTKfjtXCrHERlAN+8mfAzIP0RvvMFKOwYXT19fXyRVU7kPHDiAjh07shETr8Qnlw+M0K+9K8eREGK6BnfxwPTQigEUriDmeibHERFiHL2L58KFC1FcXIyoqChERkZi27ZtYBgG586dw+LFizF79mx89NFHDRlroytSqHA2pXwg+P7tm3EcDSGmbdrAtvhvdy9oGGDqlotIeJDLdUiE1Jve1yEXLFiAyZMnY+LEibC0tMScOXNQXFyM0aNHw9PTE6tWrcJrTeyyxsk72VCqGbR0toIvDQRPuLRnD9cRGE0gEOCLEV2QXViGIzez8NbmC/hjSgjauNpyHVrNdPPeBI4BAdQ7dxr+jGY19D7z1J0lYcyYMbh9+zYKCwuRkZGBR48e4e2332YhHH6Je3bJtn97VxpViHCreXOuI2CFWCRE9OhuCGzhgPwSJcZuOIfUnGKuw6qZbt6byDEwd4ynJyvtGHTP898FxMrKCq6uTfNeIMMwiE8u7yzUjy7ZEq5168Z1BKyxlIqwYfxzaONqg/T8Ury+/gwe5vK0gOrmvQkdA3MmDg5mpR2Dime7du3g5ORU61dTkZxZgPT8UlhIhOjZypnrcAhpUpyspdgyMRitXKzxOK8Er/1wBo+e8rSAElINgy79LliwAPb29qztfM2aNVizZg3u378PAOjUqRPmzZuHwYMHIzc3F/Pnz8ehQ4eQmpqKZs2a4eWXX8aiRYsqxVDd5dTffvvN6PuvcTfLL9n2au1i2rNCEMJTrnYW+O2dnnjthzNIyS7Caz+cwS9vdec6LEL0YlDxfO2111i9TOvl5YWlS5eibdu2YBgGP/30E4YPH47ExEQwDIO0tDR89dVX8PPzw4MHDzB58mSkpaVhx44dldrZtGkTBg0apP3ewcHB6NiO3ap4RIUu2RIe+PprriNoEG52FvhtUk+89sNp3M8pxmvrz2GCL9dR6dDNexM9BuZGs3w52Dgd0rt4NkSHmWHDhlX6fvHixVizZg3OnDmDt99+G3/88Yf2vdatW2Px4sV44403oFKpIBb/E7qDgwPc3dmboLqkTI2EB08BgEYVIvzw7rtcR9Bg3O3Lz0DHbjiHO1mFWHVNhMAeeejRmgd/uOrmvQkfA3OimTSJleJZr962DUGtVmPr1q0oKipCSEhItevk5+fDzs6uUuEEgMjISLi4uKBHjx7YuHGj0bFeeJCLMrUGHvYW9IgK4Qebpj0jiYe9Jba/G4Ku3vYoVgkwbvMFxD3rsMcp3bw38WNgLsSOjuy0o++KGk3DDOh85coVhISEoLS0FDY2Nti5cyf8/PyqrJednY1FixbhnXfeqbR84cKFGDBgAKysrHDo0CG89957KCwsxP/93//VuE+FQgGFQqH9Xv5shnilUgmlUoljz35pQ1o5QaVSsfFjNhlKpbLSv6R2bOVLDEDVxHNuIxXgxzEBGLs2HjfygEk/XcDCl/zwahB3j4jo5p2Px4B+H/Wnm6Oa8mVIHgVMQ59S1qGsrAypqanIz8/Hjh078OOPP+Lo0aOVCqhcLkdYWBicnJywe/duSCSSGtubN28eNm3ahIcPH9a4zmeffYYF1UyIumXLFlhZWeHLyyI8KhJgbBs1ujfjND2EAABefPVV/L19O9dhNAq1BthyV4gL2eUXxvp5aDC8pQZCDh611s27OR2Dpqy241gx8E/FVc7acF48/y00NBStW7fGunXrAAAFBQWIiIiAlZUV/v77b1hYWNS6/d69e/Hiiy+itLQUMpms2nWqO/P09vZGeno6hJa2CF4aD4YBTn7UF6621bdhrpRKJWJiYhAWFlbrHzGkHFv5EkZFQbNiBYuR8VNFvgaGhuKHEw/xbdxdAMALbZ3xzav+sLNs3M+cbt75eAzo91F/FbkacvAgsGpVtevI5XK4uLjoVTx5N02IRqPRFja5XI6IiAjIZDLs3r27zsIJAElJSXB0dKyxcALlM8BU975EIsHZVDkYBmjnZoPmTnSPoyYSiYR+WQ1gdL6++46VTg6mQiaVIiqiA9p72OOD7Uk4djsHr6w7i+jR3dC5OXuPy9VJN+88Pgb0+2iAVatqzJUhOeS0eM6ePRuDBw9GixYtUFBQgC1btiA+Ph4HDx6EXC5HeHg4iouL8csvv0Aul2vvTTZr1gwikQh79uxBZmYmevbsCQsLC8TExOCLL77Ahx9+WO+YTt7JBlD+fCchvOHnB1y/znUUjW6ovwdaOlvh3Z8T8CCnGK+sOYX5w/wwukeLxhkyUzfvZnoMmhqxvz9w44bx7bAQS71lZWVh3LhxSE9Ph729Pfz9/XHw4EGEhYUhPj4eZ8+eBQC0adOm0nYpKSnw8fGBRCJBdHQ0ZsyYAYZh0KZNG6xYsQKTJk2qd0wVxZMeUSG8cu8e1xFwpnNze+z9v+fx4fZLOHwjC5/uvIpzKblY9HJn2Fk08NmWbt7N+Bg0KSkprDTDafHcsGFDje/169evzkdOBg0aVGlwBGOl5Zfgfk4xREIBgls1naEGCTF1DlZSrB/XHeuP38OyA8nYlZSG8ym5+OrVAPSiP3QJBwyeDLspO5tSPjBCgJc9bBv6L1pCDNG/P9cRcE4gEOCdF1rj93d7oqWzFdLySzH6x7P4bPc1lJSpG2anunmnY9AkMP36sdIOFU8d5+6VT87bm/6SJXyzfz/XEfBGUEsn7Pu/PhgT3AIAsPnUfQxadUw7pCardPNOx6BJULM0LysVTx3n7pefeVLxJLzz8stcR8Ar1jIxFo/ogs0TnoO7nQUe5BRj3MZzmLrlIrLkpeztSDfvdAyaBNHIkay0Q8VTR26xEpYSEQJbOHAdCiGVHTjAdQS81K+9Kw5/0Bdv9faFUAD8fTkdA78+io0nUlCmYmFUNN280zFoEgSHDrHSDhXPf3nO1wkyMV+f5iKE/JuNTIx5w/ywe+rz8PeyR4FChYV/X0f4N0dx4Gp6g4/LTcwTFc9/eb4NTXxNeKg5d+O7morOze2x873e+GJEF7jYyHA/pxiTf7mIV9eeRsKD3Po1qpt3OgZNA0vHkYrnv9DgCISX7t7lOgKTIBIKMDq4BeJn9sP/DWgDC4kQFx48xcg1pzF2w1ntVIN60807HYMmQXXzJivtUPHUYWMhQkeP2sczJIQTH33EdQQmxUYmRlR4e8R/2B+juntDLBTg+O1sjFxzCmM3nMXpuzn6Xc7VzTsdgyZBOGsWO+2w0koTEejtABEXUzcQUpdvv+U6ApPkbm+BZf/xx5EP+lUqoq+vP4MXvzuBnYmPau9YpJt3OgZNgjA6mp12WGmliQhqwc4kqYQQfmnhbIVl//FH3If9MCa4BSwkQlxLk2PGtkvos/wIouPu4EmBou6GCHmGiqeOIHpEhZAmzdvJCotHdMHpWQMxM6I9XG1lyJQr8OXBZIQsicW7P19A3M0sqDXUQ5fUjndTknGpgztNQUZ4KieH6wiaFEdrKSL7t8GkPq2w51Iafjn7AImpeTh4LRMHr2XCw94CLwc2R3jibXgXPjsjfZAGFPLr7FSlVKJACeQUKiCWsPBcaxNWkausOw9gW6aCldS48kfFU4dYRCfihKd++w2YOJHrKJocqViIkUFeGBnkheSMAmw7/xB/Jj5Cen4p1sTfRe6lg9gWEAEAGKXzml/EmHPhKNdBmAgxrmxYDM8P3se00LZGtUTVghBTMHUq1xE0ee3dbTFvmB/OfjIQ370eiBf9PbAwZq32fd3XxHSxdRzpzJMQQnTIxCIMC/DEsABP4C0h7i8dWv7GSp3XPKFUKrFv3z4MGTIEEgnNBFWbilxJxUKjzzoBOvMkhBBCDEbFkxBTcPo01xGYJ9280zFoElTHjrHSDhVPQkxBQQHXEZgn3bzTMWgSBIWFrLRDxZMQUxAeznUE5kk373QMmgTRkCGstEPFkxBCCDEQFU9CCCHEQFQ8CTEFP/3EdQTmSTfvdAyaBPWGDay0w2nxXLNmDfz9/WFnZwc7OzuEhIRg//792vdLS0sRGRkJZ2dn2NjYYOTIkcjMzKzURmpqKoYOHQorKyu4urpi5syZUKlUjf2jENKwXniB6wjMk27e6Rg0CUyfPqy0w2nx9PLywtKlS5GQkIALFy5gwIABGD58OK5duwYAmDFjBvbs2YPt27fj6NGjSEtLwyuvvKLdXq1WY+jQoSgrK8OpU6fw008/YfPmzZg3bx5XPxIhDcPXl+sIzJNu3ukYNAnidu3YaYeVVupp2LBhlb5fvHgx1qxZgzNnzsDLywsbNmzAli1bMGDAAADApk2b0LFjR5w5cwY9e/bEoUOHcP36dRw+fBhubm7o2rUrFi1ahI8//hifffYZpFIpFz8WIYSQJo43w/Op1Wps374dRUVFCAkJQUJCApRKJUJDQ7XrdOjQAS1atMDp06fRs2dPnD59Gl26dIGbm5t2nYiICEyZMgXXrl1DYGBgtftSKBRQKP6ZHSE/Px8AkJub20A/XdOhVCpRXFyMnJwcGg5MD2zlS8wwUJnBzCp8+3zp5p2Px4Bv+eKzilzJazmOBc+e5WWYuqek47x4XrlyBSEhISgtLYWNjQ127twJPz8/JCUlQSqVwsHBodL6bm5uyMjIAABkZGRUKpwV71e8V5MlS5ZgwYIFVZa3Y+l0npAG4eLCdQTmSTfvdAyahjqOY0FBAezt7Wtdh/Pi2b59eyQlJSE/Px87duzA+PHjcfRow06vM3v2bERFRWm/z8vLQ8uWLZGamlpnwsydXC6Ht7c3Hj58CDs7O67D4T3Kl2EoX4ahfOlPn1wxDIOCggJ4enrW2R7nxVMqlaJNmzYAgKCgIJw/fx6rVq3CqFGjUFZWhry8vEpnn5mZmXB3dwcAuLu749y5c5Xaq+iNW7FOdWQyGWQyWZXl9vb29AHUU0UPaaIfypdhKF+GoXzpr65c6XsCxbvnPDUaDRQKBYKCgiCRSBAbG6t9Lzk5GampqQgJCQEAhISE4MqVK8jKytKuExMTAzs7O/j5+TV67IQQQswDp2ees2fPxuDBg9GiRQsUFBRgy5YtiI+Px8GDB2Fvb4+3334bUVFRcHJygp2dHd5//32EhISgZ8+eAIDw8HD4+flh7NixWL58OTIyMjBnzhxERkZWe2ZJCCGEsIHT4pmVlYVx48YhPT0d9vb28Pf3x8GDBxEWFgYA+OabbyAUCjFy5EgoFApERERg9erV2u1FIhH+/vtvTJkyBSEhIbC2tsb48eOxcOFCg+KQyWSYP38+FVw9UK4MQ/kyDOXLMJQv/bGdKwGjT59cQgghhGjx7p4nIYQQwndUPAkhhBADUfEkhBBCDETFkxBCCDGQ2RfP6Oho+Pj4wMLCAsHBwVUGXTBXx44dw7Bhw+Dp6QmBQIC//vqr0vsMw2DevHnw8PCApaUlQkNDcfv2bW6C5diSJUvw3HPPwdbWFq6urnj55ZeRnJxcaR19ptczF2xMRWiuli5dCoFAgOnTp2uXUb4q++yzzyAQCCp9dejQQfs+W/ky6+K5bds2REVFYf78+bh48SICAgIQERFRadAFc1VUVISAgABER0dX+/7y5cvx7bffYu3atTh79iysra0RERGB0tLSRo6Ue0ePHkVkZCTOnDmDmJgYKJVKhIeHo6ioSLtOXdPrmRNjpyI0V+fPn8e6devg7+9faTnlq6pOnTohPT1d+3XixAnte6zlizFjPXr0YCIjI7Xfq9VqxtPTk1myZAmHUfEPAGbnzp3a7zUaDePu7s58+eWX2mV5eXmMTCZjfvvtNw4i5JesrCwGAHP06FGGYcpzI5FImO3bt2vXuXHjBgOAOX36NFdh8oqjoyPz448/Uq5qUFBQwLRt25aJiYlh+vbty0ybNo1hGPpsVWf+/PlMQEBAte+xmS+zPfMsKytDQkJCpSnPhEIhQkNDcfr0aQ4j47+UlBRkZGRUyp29vT2Cg4Mpd/hnijsnJycAqHN6PXOmVquxdetWvaciNFeRkZEYOnRopbwA9Nmqye3bt+Hp6YlWrVphzJgxSE1NBcBuvjgfGJ4r2dnZUKvV1U5pdvPmTY6iMg0V071Vl7vapoIzBxqNBtOnT0fv3r3RuXNnAOX5qmt6PXNjzFSE5mbr1q24ePEizp8/X+U9+mxVFRwcjM2bN6N9+/ZIT0/HggUL0KdPH1y9epXVfJlt8SSkIURGRuLq1auV7rGQqriYitAUPXz4ENOmTUNMTAwsLCy4DsckDB48WPva398fwcHBaNmyJX7//XdYWlqyth+zvWzr4uICkUhUpZeV7pRnpHoV+aHcVTZ16lT8/fffiIuLg5eXl3a5u7u7dno9Xeacr4qpCIOCgrBkyRIEBARg1apVlKt/SUhIQFZWFrp16waxWAyxWIyjR4/i22+/hVgshpubG+WrDg4ODmjXrh3u3LnD6ufLbIunVCpFUFBQpSnPNBoNYmNjtVOeker5+vrC3d29Uu7kcjnOnj1rlrljGAZTp07Fzp07ceTIEfj6+lZ6X5/p9cydIVMRmpOBAwfiypUrSEpK0n51794dY8aM0b6mfNWusLAQd+/ehYeHB7ufLyM6NZm8rVu3MjKZjNm8eTNz/fp15p133mEcHByYjIwMrkPjXEFBAZOYmMgkJiYyAJgVK1YwiYmJzIMHDxiGYZilS5cyDg4OzK5du5jLly8zw4cPZ3x9fZmSkhKOI298U6ZMYezt7Zn4+HgmPT1d+1VcXKxdZ/LkyUyLFi2YI0eOMBcuXGBCQkKYkJAQDqPmzqxZs5ijR48yKSkpzOXLl5lZs2YxAoGAOXToEMMwlKu66Pa2ZRjK17998MEHTHx8PJOSksKcPHmSCQ0NZVxcXJisrCyGYdjLl1kXT4ZhmO+++45p0aIFI5VKmR49ejBnzpzhOiReiIuLYwBU+Ro/fjzDMOWPq8ydO5dxc3NjZDIZM3DgQCY5OZnboDlSXZ4AMJs2bdKuU1JSwrz33nuMo6MjY2VlxYwYMYJJT0/nLmgOvfXWW0zLli0ZqVTKNGvWjBk4cKC2cDIM5aou/y6elK/KRo0axXh4eDBSqZRp3rw5M2rUKObOnTva99nKF01JRgghhBjIbO95EkIIIfVFxZMQQggxEBVPQgghxEBUPAkhhBADUfEkhBBCDETFkxBCCDEQFU9CCCHEQFQ8CSGEEANR8SSEEEIMRMWTEEIIMRAVT0IIIcRAVDwJIYQQA1HxJIQQQgwk5joAPtBoNEhLS4OtrS0EAgHX4RBCCOEAwzAoKCiAp6cnhMLazy2peAJIS0uDt7c312EQQgjhgYcPH8LLy6vWdah4ArC1tQUApKSkwMnJieNo+E2pVOLQoUMIDw+HRCLhOhzeYy1fd+4AbdqwFxhP8e7zpZt3Hh4D3uWLx7S5atUKko4dq11HLpfD29tbWxNqQ8UT0F6qtbW1hZ2dHcfR8JtSqYSVlRXs7Ozol1UPrOUrMxPo1o29wHiKd58v3bzz8BjwLl88VpEr+6wsiIODa11Xn9t31GGIEFMwYgTXEZgn3bzTMWgSRK++yko7VDwJIYQQA/GqeB47dgzDhg2Dp6cnBAIB/vrrrzq3iY+PR7du3SCTydCmTRts3ry5weMkhBBi3nhVPIuKihAQEIDo6Gi91k9JScHQoUPRv39/JCUlYfr06Zg4cSIOHjzYwJES0sh27OA6AvOkm3c6Bk2CeutWVtrhVYehwYMHY/DgwXqvv3btWvj6+uLrr78GAHTs2BEnTpzAN998g4iICIP3f/JuDuyy1QZvZ07UajVuPBXA5nY2RCIR1+HwHhv5EggE6ObbBnX3/yOse9Yr896TQmTJXFGanMVxQJXR76P+KnLVzN0VntlF8HGxNqo9XhVPQ50+fRqhoaGVlkVERGD69Om1bqdQKKBQKLTfy+VyAMDU3y5BKLNiPc6mR4S1Ny9yHYQJMT5ft75+BcriQpbi4S+lUlnpX66JO3VC6sMsDFxxHDe/HIH2H+7kOqRq0O+j/kSYMbEvovddxvv9W1d515DPnUkXz4yMDLi5uVVa5ubmBrlcjpKSElhaWla73ZIlS7BgwYIqyz2tGIgtmAaJlZD6UGmAjBIBGIbB/n37uA6n0cTExHAdAgDgRY0GOw/GgWHK/6v0sqb/H0yeAMi8fwv79iVXeau4uFjvZky6eNbX7NmzERUVpf2+4sHYv95/Ac7OzhxGxn9KpRIxMTEICwuj58r0YGy+sgsVCFl2FAAwaNBgCIVNe/hIvn2+hEIhQkJ6YeXVc4AAiJtl+O2ghsS3fPFZRa6kIiE+n1D97cGKq5D6MOni6e7ujszMzErLMjMzYWdnV+NZJwDIZDLIZLIqyyUSCX0A9US5Mkx98+VsW34fa/kL4/B/agHsZeaRc958vr74AmJx+TH4cdBERPIhpmrwJl8mQLNoUY25MiSHvOpta6iQkBDExsZWWhYTE4OQkBCOIiKEXVKxEFZSETb0GIG8kjKuwzE/Oleotr/AzsP1hFuaOvrE6ItXxbOwsBBJSUlISkoCUP4oSlJSElJTUwGUX24dN26cdv3Jkyfj3r17+Oijj3Dz5k2sXr0av//+O2bMmMFF+IQ0CAdLCa6vGIm8Yn50ojEr1v/0yNz/6RAOAyFsETs4sNIOr4rnhQsXEBgYiMDAQABAVFQUAgMDMW/ePABAenq6tpACgK+vL/bu3YuYmBgEBATg66+/xo8//livx1QI4Ss7SwlEGg3yS6h4Njr1P4+uiRh6jK1JULNzHHl1z7Nfv35gmJp7s1U3elC/fv2QmJjYgFERwi0Hq/L7MHlUPAnhDV6deRJCqnKwlGJHl4HIL6Z7no3uzTe1Lw8EDeIuDsIajc6tP2NQ8SSE5+wtJfg0YipdtuXC2rXalytGUl+KpkCj5/CvdaHiSQjPOVhJsHfT/1GHIS48638BAOtXvsNhIIQt4ueeY6UdKp6E8Jy9lQRtch7SPU8u3Lihfdky6wGHgRDW3LzJSjNUPAnhOXvL8g5DdNmWEP6g4kkIzzlYSpHQvCPy6bJt4+vVS/vyastOHAZC2MKwNIgOFU9CeM7BSoLRr3+Bp9TbtvEdOaJ9GfXuCg4DIWxRHzrESjtUPAnhOQcrCb7ftQxP6cyz8Y0apX0575eFHAZC2CIaPZqVdqh4EsJzTtZShN0+g7zisloHESENYNcu7cvnr5/kMBDCFsGePay0Q8WTEJ5ztJICAFQaBgUKFcfREEIAKp6E8J6FRISnVnYAgLwiunTbqFxctC/zre05DISwRueYGoOKJyEm4JXZ2wCAOg01tkePtC9f/fR3DgMhbFGlpLDSDhVPQkzA+/H/AwDkUvFsXHPnal++dXAjh4EQtgjnz2enHVZaIYQ0qJFHtgIA8qh4Nq4vv9S+fO3oNg4DIWwRrmDnkSMqnoSYAIGg/N9cuudJCC9Q8STEhNCZJyH8QMWTEBOw/rfjAIDcIiqejSotTfty5JztHAZC2KJ6wM4A/1Q8CTEBnZNOAABNS9bY9u7Vvux54wyHgRC2CPbtY6UdKp6EmIDeyz8BQGeejW7SJO3LmX98zWEghC2iKVNYaYeKJyEm4Fl/IXrOkxCeoOJJiCl4Vj2peBLCD1Q8CTEB2bsPAACeFilpcPjGFB+vfTn93W+4i4OwRn34MCvtUPEkxATYW0kAAGVqDeSlNDg8IVzjZfGMjo6Gj48PLCwsEBwcjHPnztW6/sqVK9G+fXtYWlrC29sbM2bMQGlpaSNFS0jDk4UOhI1MDADILlRwHI0Z6ddP+3LluhncxUFYIwoNZaUd3hXPbdu2ISoqCvPnz8fFixcREBCAiIgIZGVlVbv+li1bMGvWLMyfPx83btzAhg0bsG3bNnzyySeNHDkhDcvFpnxqspxCuu9JCNd4VzxXrFiBSZMmYcKECfDz88PatWthZWWFjRurH5T51KlT6N27N0aPHg0fHx+Eh4fj9ddfr/NslRBT42wjA0BnnoTwgZjrAHSVlZUhISEBs2fP1i4TCoUIDQ3F6dOnq92mV69e+OWXX3Du3Dn06NED9+7dw759+zB27Nga96NQKKBQ/PMfkFwuBwAolUoolfQQem0q8kN50g9b+RKsWQMnYfl9z8z84iabf759vgRr1kClUgMAvhz5AT7iSVwV+JYvPqvIUdn330NYQ74MySOvimd2djbUajXc3NwqLXdzc8PNmzer3Wb06NHIzs7G888/D4ZhoFKpMHny5Fov2y5ZsgQLFiyosjwuLg5WVlbG/RBmIiYmhusQTIqx+ZJIJCh+kgFAiDNJ1+GUc5WdwHiKL58viUSCW6dPARAjtqU/OrM0Og3b+JIvUxBrYQFlDcexuLhY73bqVTyjoqIM3mbOnDlwcnKqz+5qFR8fjy+++AKrV69GcHAw7ty5g2nTpmHRokWYqzMXn67Zs2dX+hnkcjm8vb3Rv39/ODs7sx5jU6JUKhETE4OwsDBIJBKuw+E9tvIltrXFjV2JOJl5D44eLTBkiB+LUfIH3z5fYltbOF97iJVXz2H/ivEQfl7EdUiV8C1ffFaRq8ETJ0JVUFDtOhVXIfVRr+K5cuVKhISEQCqV6rX+iRMnMHXq1DqLp4uLC0QiETIzMystz8zMhLu7e7XbzJ07F2PHjsXEiRMBAF26dEFRURHeeecdfPrppxAKq97WlclkkMlkVZZLJBL6AOqJcmUYNvLlamcJoHxasqaeez59vsRiEYDycSr4EtO/8SlfpqCmXBmSw3pftt25cydcXV31WtfW1lav9aRSKYKCghAbG4uXX34ZAKDRaBAbG4upU6dWu01xcXGVAikSlX/Y6WFy0pS4POswlEPj2xLCuXoVz02bNsHe3l7v9detW1flPmZNoqKiMH78eHTv3h09evTAypUrUVRUhAkTJgAAxo0bh+bNm2PJkiUAgGHDhmHFihUIDAzUXradO3cuhg0bpi2ihJi8mTPhYku9bRvdzJnal1v7jsI4DkMh7NBERYGNylCv4jl+/HgAgFqtxsmTJ+Hv7w8HB4ca1x89erTebY8aNQpPnjzBvHnzkJGRga5du+LAgQPa4puamlrpTHPOnDkQCASYM2cOHj9+jGbNmmHYsGFYvHhxfX40Qvhp0SI4PykEAGQXUPFsNIsWAQ9yAQAbI96i4tkEaBYs4K54VhCJRAgPD8eNGzdqLZ6Gmjp1ao2XaeN1xpoEALFYjPnz52P+/Pms7Z8Q3vHygsudFABAUZkaJWVqWErpykqD8/ICTl4GAGxf/F9g5hOOAyLGEvv6Ao8eGd2O0YMkdO7cGffu3TM6EEJILbKzYSsTQyou/5WlS7eNJDtb+9K+KJ/DQAhrdI6pMYwunp9//jk+/PBD/P3330hPT4dcLq/0RQhhh0AggIt1eQ93Kp6EcMvoQRKGDBkCAHjppZcgEAi0yxmGgUAggFqtNnYXhJDhwwEALrYypOWX0vi2jeVZ3gHghF9vDOAwFMIOZtgwCOperU5GF8+4uDgWwiCE1GrbNgD/PK5CZ56NZNs2bYehhW/Mo+LZBKi3bGFlUHeji2ffvn1ZCIMQUqsBA4AjR7Qzq1DxbCQDBgCbdgAAVqyLAmYmchwQMZYoPBxg4aSPtbFti4uLkZqairKyypeT/P392doFIebr1CkAujOr0GXbRvEs7wDQ+cE1DgMhbBHUMMmIoYwunk+ePMGECROwf//+at+ne56EsIcu2xLCD0Zf+p0+fTry8vJw9uxZWFpa4sCBA/jpp5/Qtm1b7N69m40YCSEdOwIAXbZtbM/yDgAPXFtyGAhhTYcOrDRj9JnnkSNHsGvXLnTv3h1CoRAtW7ZEWFgY7OzssGTJEgwdOpSNOAkxb4nl99pc6LJt40pM1HYYmjT9B8RzGw1hger8ebAxhL7RZ55FRUXaAeIdHR3x5En5CBxdunTBxYsXjW2eEAIAkycD0Bkcns48G8ezvANA1B/fcBgIYYswMpKddoxtoH379khOTgYABAQEYN26dXj8+DHWrl0LDw8PowMkhADYvBnAP5dtnxYroVRrOAzITDzLOwAMSjjAXRyENcL//Y+Vdoy+bDtt2jSkp6cDAObPn49Bgwbh119/hVQqxWadDx4hxHgOVlIIBYCGAXKLyuBmZ8F1SISYJaOL5xtvvKF9HRQUhAcPHuDmzZto0aIFXFxcjG2eEAIAz6bXEwkFcLGRIatAgSy5gopnQ9OZ1lAtoIH4mwSWpqpkY6AFLYZhYGlpiW7dulHhJIRNRUXalxUFM1NeylU05kMn74MX7+MwEMIWVV4eK+2wUjw3bNiAzp07w8LCAhYWFujcuTN+/PFHNpomhADAihXalxXFM4OKZ8PTyfurx7ZzGAhhi3DlSnbaMbaBefPmYdq0aRg2bBi2b9+O7du3Y9iwYZgxYwbmzZvHRoyEkE8+0b50ty/vcUtnno1AJ++TDtAJQVMgnDuXlXaMvue5Zs0arF+/Hq+//rp22UsvvQR/f3+8//77WLhwobG7IITocK8488yn4kkIV4w+81QqlejevXuV5UFBQVCpVMY2Twj5F7psSwj3jC6eY8eOxZo1a6os/+GHHzBmzBhjmyeEAMC1fwYld7enDkONRifvb36wkcNACFtUSUmstFOvy7ZRUVHa1wKBAD/++CMOHTqEnj17AgDOnj2L1NRUjBs3jpUgCTF7N24ArVsDoMu2jerGDaBLLwBAy8xUjoMhbBDcvMnK+Lb1Kp6JiZXntAsKCgIA3L17FwDg4uICFxcXXLtGU/gQwor//AcoLS+Wrs+Kp7xUhZIyNSyl9Pxhg/nPf4DkNADAgl8+AzZ9Uvv6hPdEr72m/V0yRr2KZxwLE4kSQurHzkIMS4kIJUo1MuWl8HGx5jokQswOq4MkEEIankAg0N73pE5DhHCjXsXzlVdegVwu13v9MWPGICsrqz67IoQAwM6dlb51s6NnPRuFTt7njKPH7poC9XZ2BruoV/HctWsXnjx5ArlcXudXfn4+9uzZg8LCQr3bj46Oho+PDywsLBAcHIxz587Vun5eXh4iIyPh4eEBmUyGdu3aYd8+GkqLNCHPOgtVoE5DjUQn72nOnhwGQtjCtGrFSjv1uufJMAzatWvHSgD/tm3bNkRFRWHt2rUIDg7GypUrERERgeTkZO28obrKysoQFhYGV1dX7NixA82bN8eDBw/g4ODQIPERwgl//0qdHNyeXbZNp+LZsPz9tR2GNn4zEVhOTxCYOnFQkGl1GGrevLle661YsQKTJk3ChAkTAABr167F3r17sXHjRsyaNavK+hs3bkRubi5OnToFiaR8fnAfHx+D4yPElDR3sAQApOeXcBwJIeapXsWzb9++bMcBoPwsMiEhAbNnz9YuEwqFCA0NxenTp6vdZvfu3QgJCUFkZCR27dqFZs2aYfTo0fj4448hqmHqGYVCAYVCof2+4v6tUqmEUqlk8SdqeiryQ3nSD1v5EgNQ6bThalP+h+Kjp8VN6ljw7fMlBqBSqQEADPgTVwW+5YvPdHNUU74MyaPRY9uyKTs7G2q1Gm5ubpWWu7m54ebNm9Vuc+/ePRw5cgRjxozBvn37cOfOHbz33ntQKpWYP39+tdssWbIECxYsqLI8Li4OVlZWxv8gZiAmJobrEEyKsflq9cYbuKdzH/9xEQCIcT9L3iTv7/Pl89XqjTdw+vQpAGJ8N/BNtOVprvmSL1Nw9V+/S7qKi4v1bkfAMAzDVlDGSktLQ/PmzXHq1CmEhIRol3/00Uc4evQozp49W2Wbdu3aobS0FCkpKdozzRUrVuDLL79Eenp6tfup7szT29sb6enpcHZ2ZvmnalqUSiViYmIQFhamvUxOatZQ+ZKXKBH0Rfntk8tzBzaZgRL4+Pm6mJqHUevPoaWTFQ7PeJ7rcCrhY774Sp9cyeVyuLi4ID8/H3Z2drW2x6szTxcXF4hEImRmZlZanpmZCXd392q38fDwgEQiqXSJtmPHjsjIyEBZWRmkUmmVbWQyGWQyWZXlEomEPoB6olwZxuh8WVhU6uTgJBbDRiZGoUKFJ8UqtLa2YCFK/uDN58vCAuJnHYZiPo2A5KMyjgOqHm/yZQIsnZwgqKHDkCE55NUgCVKpFEFBQYiNjdUu02g0iI2NrXQmqqt37964c+cONBqNdtmtW7fg4eFRbeEkpCkQCATwdCgvmGl51GmIkMbGSvFUqVQ4fPgw1q1bh4KCAgDll2ANebazQlRUFNavX4+ffvoJN27cwJQpU1BUVKTtfTtu3LhKHYqmTJmC3NxcTJs2Dbdu3cLevXvxxRdfIDIyko0fjRDe8nzW4/bxUyqehDQ2oy/bPnjwAIMGDUJqaioUCgXCwsJga2uLZcuWQaFQYO3atQa1N2rUKDx58gTz5s1DRkYGunbtigMHDmg7EaWmpkIo/Kfme3t74+DBg5gxYwb8/f3RvHlzTJs2DR9//LGxPxoh/PH221UWVTyuQmeeDUgn73ufG4IRHIZC2KGZMAFs9BAwunhOmzYN3bt3x6VLlyp1thkxYgQmTZpUrzanTp2KqVOnVvtefHx8lWUhISE4c+ZMvfZFiEmIjq6yqOLM8xEVz4YTHQ08yAUArBoxjYpnE6D59ltWiqfRl22PHz+OOXPmVLm/6OPjg8ePHxvbPCEEALp0qbLIy/FZ8aTLtg1HJ+8bV1Q9+yemRxwYyEo7RhdPjUYDtVpdZfmjR49ga2trbPOEEAC4fbvKohZO5c8kP8gpauxozIdO3r2yH3EYCGHNnTusNGN08QwPD8fKlSu13wsEAhQWFmL+/PkYMmSIsc0TQmrg41w+j2emXIFSZdU/YAkhDcfo4vnVV1/h5MmT8PPzQ2lpKUaPHq29ZLts2TI2YiSEvPBClUUOVhLYWpR3W0jN1X9kFGIAnbxf8vXnMBDCFqZPH1baMbrDkLe3Ny5duoRt27bh0qVLKCwsxNtvv40xY8bA0tKSjRgJIYcOVVkkEAjQ0tkKVx/L8SCnGO3c6DYJ6w4d0nYYmjnpS8RzGw1hgXrfPlae0TSqDaVSidatW+P27dsYM2YMli9fjtWrV2PixIlUOAlh08iR1S5u6VR+6ZbuezYQnbwv+F/1Y2UT0yL6739Zaceo4imRSFDKwrxohJA67N1b7eIWzhWdhuiybYPQyXvITXocrikQ7N/PSjtGn71GRkZi2bJlUKlUbMRDCDFAy4oet3TPk5BGZfQ9z/PnzyM2NhaHDh1Cly5dYG1tXen9P//809hdEEJqmBih5bMet6l02bZh6OQ919YJ1R8FYlJq+F0ylNHF08HBASNruB9DCGHJ/fvVLm757LLto6clUKk1EIt4NdeD6bt/X9th6LXZv1GHoSZAdfs22Jh/xujiuWnTJhbCIITUavZsYMmSKovd7SwgFQtRptIgPb8U3k40mTurZs8GJs8EAEzavx6Y2Z/jgIixhJ9+Cixfbnw7LMRCCGlo33xT7WKhUADvZ8P03adLt+zTyfurx3dwGAhhi/Dbb1lpx+gzT19fXwgEghrfv3fvnrG7IITUoqWzNe4+KcKDnGL0act1NISYB6OL5/Tp0yt9r1QqkZiYiAMHDmDmzJnGNk8IqUPFfU8aZYiQxsPKlGTViY6OxoULF4xtnhACAFlZNb7VkgaIbzhZWcDT8sfwXp73J/ZxHA4xnurxY1Y6DDXYPc/Bgwfjjz/+aKjmCTEvtfwuVTyuQgMlNACdvL9w5RiHgRC2CHbuZKWdBiueO3bsgJOTU0M1T4h5mTKlxrd8XMqLZ0p2EdQaprEiMg86eY/auZK7OAhrRFOnstKO0ZdtAwMDK3UYYhgGGRkZePLkCVavXm1s84SQOng7WkIqFkKh0uDx0xLtkH2EkIZjdPF8+eWXK30vFArRrFkz9OvXDx06dDC2eUJIHcQiIVq5WONmRgFuZxVQ8SSkERhdPOfPp5kGCGlwJ07U+nYbVxvczCjAnaxCDOzo1khBmQGdvL8/5Vus4zAUwg51fLzxhQ8s3PO8ePEirly5ov1+165dePnll/HJJ5+grKzM2OYJIQCgUNT6dlvX8rk8b2cVNkY05kMn7xK1ksNACGvq+F3Sl9HF891338WtW7cAlA+IMGrUKFhZWWH79u346KOPjA6QEAJg4MBa327rZgMAuEPFk106eV/xwwccBkLYIoqIYKUdo4vnrVu30LVrVwDA9u3b0bdvX2zZsgWbN2+mR1UIaSRtXP8pngxDPW4JaWhGF0+GYaDRaAAAhw8fxpAhQwAA3t7eyM7Orleb0dHR8PHxgYWFBYKDg3Hu3Dm9ttu6dSsEAkGVTkyENHU+ztYQCQUoVKiQKWfnshQhpGZGF8/u3bvj888/x88//4yjR49i6NChAICUlBS4uRnecWHbtm2IiorC/PnzcfHiRQQEBCAiIgJZtYywAgD379/Hhx9+iD59+tTr5yCE1zZurPVtqVgIn2e9bG9lFjRGROZBJ+/LXqXbUE2B+ocfWGnH6OK5cuVKXLx4EVOnTsWnn36KNm3aACgfJKFXr14Gt7dixQpMmjQJEyZMgJ+fH9auXQsrKytsrOU/D7VajTFjxmDBggVo1apVvX8WQngrLKzOVdq7l3caupkhb+hozIdO3i+0DeIwEMIWJjSUlXaM7rHr7+9fqbdthS+//BIikcigtsrKypCQkIDZs2drlwmFQoSGhuL06dM1brdw4UK4urri7bffxvHjx+vcj0KhgEKnx5VcXv6fjVKphFJJPepqU5EfypN+2MqX2NsbqoLazyjbudpgH4Brj/NN9vjw7fMl9vaG6tpDAMDvX4yCcg6/xg/mW774rCJH4latoKzhd8mQPBpdPB8+fAiBQAAvLy8AwLlz57Blyxb4+fnhnXfeMait7OxsqNXqKpd73dzccPPmzWq3OXHiBDZs2ICkpCS997NkyRIsWLCgyvK4uDhYWdED5vqIiYnhOgSTYmy+XtRosG9f7cOSF+UKAIhw/nYa9u17aNT+uMaXz9eLGg1Onz4FQAwwqPMYcIUv+TIFmlp+l4qL9R8f2ujiOXr0aLzzzjsYO3YsMjIyEBYWhk6dOuHXX39FRkYG5s2bZ+wualRQUICxY8di/fr1cHFx0Xu72bNnIyoqSvu9XC6Ht7c3+vfvD2dn54YItclQKpWIiYlBWFgYJBI25iZo2tjKl1Ao1HbGq0lAXgnWJx/HE4UQoeFhkIpNb657vn2+hEIhQkJ6YeXVc4AAdR6Dxsa3fPFZRa5q+12quAqpD6OL59WrV9GjRw8AwO+//47OnTvj5MmTOHToECZPnmxQ8XRxcYFIJEJmZmal5ZmZmXB3d6+y/t27d3H//n0MGzZMu6yi569YLEZycjJat25dZTuZTAaZTFZluUQioQ+gnihXhjE6X7Nm1bl9SxcxbC3EKChV4cFTBfw87eq/P47x5vM1axbE4vLbT7/1ex1v8iGmavAmXyZAM3NmjbkyJIdG/2mqVCq1hejw4cN46aWXAAAdOnRAenq6QW1JpVIEBQUhNjZWu0yj0SA2NhYhISFV1u/QoQOuXLmCpKQk7ddLL72E/v37IykpCd7e3kb8ZITwyGef1bmKQCBAR/fygnkjnToNsUIn75vD3+QsDMIeDUtXQ40unp06dcLatWtx/PhxxMTEYNCgQQCAtLS0el0CjYqKwvr16/HTTz/hxo0bmDJlCoqKijBhwgQAwLhx47QdiiwsLNC5c+dKXw4ODrC1tUXnzp0hlUqN/fEI4QcPD71W69S8vHheeZzfkNGYD528/7HoPxwGQtgibtGCnXaMbWDZsmUYMWIEvvzyS4wfPx4BAQEAgN27d2sv5xpi1KhRePLkCebNm4eMjAx07doVBw4c0HYiSk1NhVBoevdyCDHK06d6rdbV2wEAkPQwr+FiMSc6ebctoednmwQ9f5fqYnTx7NevH7KzsyGXy+Ho6Khd/s4779S75+rUqVMxtYYJS+Pj42vddvPmzfXaJyFNQUXxvJ4mR5lKY5KdhggxBaz8ZjEMg4SEBKxbtw4Fz56fkUql9NgHIWx55RW9VmvhZAUHKwnK1Bq678kGnbwf60yjlzUFDEvDtxpdPB88eIAuXbpg+PDhiIyMxJMnTwCUX8798MMPjQ6QEAJgyxa9VhMIBAjwcgAAXHqU13DxmAudvH8+eg6HgRC2qH/+mZV2jC6e06ZNQ/fu3fH06VNYWlpql48YMaJSr1lCiBH69tV71QC678kenbyvXDOduzgIa0R1TO+nL6PveR4/fhynTp2q0rPVx8cHjx8/NrZ5QggAnD2r96pdve0BAJeoeBpPJ+9+D29wGAhhi0DPWbrqYvSZp0ajgVqtrrL80aNHsLW1NbZ5QoiBKi7b3n1SBHkpjXlKSEMwuniGh4dj5cqV2u8FAgEKCwsxf/583g1lRYjJ6txZ71WdbWTwdiq/hXLlET3vaRSdvKe4+XIYCGEL06kTK+0YXTy/+uornDx5En5+figtLcXo0aO1l2yXLVvGRoyEkAsXDFq94uyT7nsaSSfv705by2EghC3qM2dYacfo4unt7Y1Lly7h008/xYwZMxAYGIilS5ciMTERrq6ubMRICJk0yaDVA1uUP3N94X5uQ0RjPnTy/uGOrzgMhLBFNHkyK+0YVTyVSiVat26N27dvY8yYMVi+fDlWr16NiRMnVup5SwgxkoHd64N9nQAAF+4/hUqtaYiIzINO3sMv0rRfTYHg119Zaceo4imRSFBaWspKIIQQ9nT0sCufYUWhwnUaLIEQ1hl92TYyMhLLli2DSqViIx5CSHUMnORAJBRozz7P3MtpiIjMg07elSKa8qtJYGnCEKOf8zx//jxiY2Nx6NAhdOnSBdbW1pXe//PPP43dBSHEgEl6KwT7OuPwjSycvZeLd16oOq8t0YNcDjwov288dNHfiOc2GsICVU4O2PgzyOgzTwcHB4wcORIRERHw9PSEvb19pS9CCAuWLzd4k56tyqcEPJeSS/c960sn76/Fb+UwEMIW4VfsdPwy+sxz06ZNbMRBCKnNvHnARx8ZtImfpx3sLSXIL1Hi0qN8BLV0rHsjUtm8ecCoiQCAtw5tArCO23iI0YQLFgDP5oQ2qp36bqjRaLBs2TL07t0bzz33HGbNmoWSkhKjAyKEsEMkFOD5Ni4AgKO3nnAcDSFNS72L5+LFi/HJJ5/AxsYGzZs3x6pVqxAZGclmbIQQI73Qrrx4HqPiSQir6l08//e//2H16tU4ePAg/vrrL+zZswe//vorNBq6t0II65KT67XZC+2aAQAuP8rD06IyNiMyDzp5HzvzJw4DIWxRXb3KSjv1Lp6pqamVxq4NDQ2FQCBAWloaK4ERQnQkJtZrMw97S3Rwt4WGAWJvZrEclBnQyXvbx3c4DISwRZCUxEo79S6eKpUKFhYWlZZJJBIolTSLAyGse+21em86qLM7AODA1XS2ojEfOnmft2URh4EQtojeeIOVdurd25ZhGLz55puQyWTaZaWlpZg8eXKlZz3pOU9CuDWosztWHr6NY7ezUahQwUZmdCd7QsxevX+Lxo8fX2XZGyxVdEIIe9q72cLXxRop2UWIu5mFYQGeXIdEiMmrd/Gk5zsJaUR79tR7U4FAgIhO7lh79C4OXMug4mkInbzPfnMxvuYwFMIO9c6dxg9wABZGGCKENILmzY3avOK+Z9zNLJQq1WxEZB508p5t78JhIIQtjCc7fzxS8STEFHTrZtTmAV728LC3QHGZGvHJ9Myn3nTyvn7VuxwGQtgiDg5mpR1eFs/o6Gj4+PjAwsICwcHBOHfuXI3rrl+/Hn369IGjoyMcHR0RGhpa6/qEmCOBQKC9XPvnxUccR0OI6eNd8dy2bRuioqIwf/58XLx4EQEBAYiIiEBWVvXPqMXHx+P1119HXFwcTp8+DW9vb4SHh+Px48eNHDkh/PafIC8AwJGbWcguVHAcDSGmjXfFc8WKFZg0aRImTJgAPz8/rF27FlZWVti4cWO16//6669477330LVrV3To0AE//vgjNBoNYmNjGzlyQhrQ18Z3VWnnZosAL3uoNAz+SqQ/LvWik/fVL07hMBDCFk09ZiiqDq8e+CorK0NCQgJm64x4LxQKERoaitOnT+vVRnFxMZRKJZycnGpcR6FQQKH45y9v+bO5EpVKJQ3yUIeK/FCe9MNavt56C2Ah5yO6euDSo3xsOZuKsT28IBQKjG6TTbz7fL31FlRphQCA3T2GIZIvcT3Du3zxWEWOFG++CUkN+TIkj7wqntnZ2VCr1XBzc6u03M3NDTdv3tSrjY8//hienp4IDQ2tcZ0lS5ZgwYIFVZbHxcXBysrKsKDNVExMDNchmBRj8/Xiq6/i7+3bjY7DUgXIRCLcyy7Cit8OwM+RMbrNhsCXz9eLr76K0xu3AxBj/9wh2Odn/DFoCHzJlymQubjU+LtUXFysdzu8Kp7GWrp0KbZu3Yr4+PgqQwfqmj17NqKiorTfy+VyeHt7o3///nB2dm6MUE2WUqlETEwMwsLCIJGwMR9708ZWvoRCYaWxpI1xU5KMTace4KrSFR8OCWKlTbbw7fMlFAoREtILK6+eAwRg7RiwhW/54rOKXNX2u1RxFVIfvCqeLi4uEIlEyMzMrLQ8MzMT7u7utW771VdfYenSpTh8+DD8/f1rXVcmk1UaVrCCRCKhD6CeKFeGYSNfbOX7redb4afTD3Dybg7u5ZSivbstK+2yiU+fL7FYBAAQgL1jwDY+5csU1JQrQ3LIqw5DUqkUQUFBlTr7VHT+CQkJqXG75cuXY9GiRThw4AC6d+/eGKES0rjeZe8ZQ28nK4T7lf8xuvFECmvtNkk6ed8dPIzDQAhbNJMmsdIOr4onAERFRWH9+vX46aefcOPGDUyZMgVFRUWYMGECAGDcuHGVOhQtW7YMc+fOxcaNG+Hj44OMjAxkZGSgsLCQqx+BEPatWsVqc2/38QUA7Ex6jCx5KattNyk6ef9++FQOAyFs0axYwUo7vCueo0aNwldffYV58+aha9euSEpKwoEDB7SdiFJTU5Ge/s/USmvWrEFZWRn+85//wMPDQ/v11VdfcfUjEMI+Pz9Wm+ve0hFBLR1RptLg+ziap7JGOnnf/NUEDgMhbBHXcVtP73ZYaYVlU6dOxdSp1f+VFx8fX+n7+/fvN3xAhHDt3j1WmxMIBPgwvD1eX38Gv51LxaQ+reDtRD3Nq9DJu2duGoeBENaksHOrgndnnoSQxhHS2hl92rpAqWawIuYW1+EQYlKoeBJiCvr3b5BmZ0a0h0AA7Ex8jHMpuQ2yD5Omk/fE1oEcBkLYwvTrx0o7VDwJMQX79zdIs/5eDnjtuRYAgLl/XYVSrWmQ/Zgsnbx//PZSDgMhbFEbMTeuLiqehJiCl19usKY/imgPRysJkjML6NGVf9PJ++c/zeUuDsIa0ciRrLRDxZMQU3DgQIM17WgtxezBHQEAXx+6hetp+o+y0uTp5L1HMk112BQIDh1ipR0qnoQQvNrdC6Ed3VCm1mDa1kSUKtVch0QIr1HxJMQUNG/eoM0LBAIsG9kFzWxluJ1ViEV/X2/Q/ZkMnbw/sXPhMBDCGpZ+l6h4EmIK7t5t8F0428jw9asBEAiAX8+m4tezDxp8n7ynk/cxs37lMBDCFpWeM3TVhYonIabgo48aZTcvtGuGD8PbAwDm77qGIzcz69iiidPJ+7t713EYCGGLcNYsdtphpRVCSMP69ttG29V7/VpjRGBzqDQMJv9yEafuZDfavnlHJ+8jT/7JYSCELcLoaHbaYaUVQkiTIRAIsPw//gjzc0OZSoOJ/7tAAygQ8i9UPAkhVUhEQnw/OhB92rqguEyNNzacxd7L6XVvSIiZoOJJiCnIyWn0XcrEIvwwtjvCn52BRm65iNXxd6DRMI0eC2d08v7SZ39xFwdhjSojg5V2qHgSYgp++42T3VpKRVjzRhDe7OUDAFh+IBlv/3QeOYUKTuJpdDp5H5h4hMNACFsE27ax0g4VT0JMQQ1T9DUGkVCAz17qhC9GdIFMLERc8hMMWnUc+66kg2Ga+FmoTt6n7Wq8Tluk4YimTWOlHSqehBC9jA5ugV1Te6ONqw2eFCjw3q8XMWHzedx7Ush1aIQ0OiqehBC9dXC3w9/vP4//G9AGEpEA8clPEPbNMcz64zIe55VwHR4hjYaKJyGm4PRpriPQspCIEBXeHgemv4D+7ZtBrWGw9fxD9F0eh//7LRFJD/OazuVcnby/F/k9h4EQtqiOHWOlHTErrRBCGlZBAdcRVNG6mQ02TeiBhAe5+PrQLZy6m4Pdl9Kw+1Ia2rvZ4pVuzTG8a3O421twHWr9FRQATuUvrRTF3MZCWCEoZOc2A515EmIKwsO5jqBGQS2dsGVST/z9/vN4pVtzSMVCJGcWYMn+mwhZGotX157C2qN3cSuzwPTOSHXy/tWPjTNEImlYoiFDWGmHzjwJIazo3NweK/7bFfOHdcK+K+nYefExzt3Pxfn7T3H+/lMs3X8TLjZSBPs6o2crJwS2cEQ7N1tIxfQ3PDE9VDwJIayyt5Tg9R4t8HqPFnicV4IjNzJx+EYWztzLQXZhGfZeScfeK+WjFUlEArRzs0UnTzt08rSHj5MFnipgXgMxEJNExZMQU/DTT1xHUC/NHSwxNsQHY0N8oFCpcelhPs7ey8HZlFxcfpQHeakK19LkuJYmB/Do2VZiLL0SCx9na7R0toKHvSU8HSzgbm8JD3sLuNtZwNVOBplY1PA/gE7el/x3FuY3/B5JA1Nv2MBK4eNl8YyOjsaXX36JjIwMBAQE4LvvvkOPHj1qXH/79u2YO3cu7t+/j7Zt22LZsmUYwtJ1bUJ44YUXuI7AaDKxCD18ndDD1wnvA2AYBo+eljwrnvm4kS7HvSeFuJ9ThFKlBjczCnAzo+aOUjYyMRytJXCyksLRWvrPv9ZS2FqIYSMTw1omhu2zf22eLbORiWElFUEgENQd9AsvAGXlLy+18mcnEYRTTJ8+rLTDu+K5bds2REVFYe3atQgODsbKlSsRERGB5ORkuLq6Vln/1KlTeP3117FkyRK8+OKL2LJlC15++WVcvHgRnTt35uAnIKQB+PoCpaVcR8EqgUAAbycreDtZYVBndwCAUqnEnr374N+zHx7mKZCaW4z0/FJk5JeU/ysvRXp+KcpUGhQqVChUqPAw1/DnSwUCwEoigkwigkwsfPYlgrTitaT8+3XvPI9pi/YDALYuHQ0s+g+rOSCNT9yuHSu/S7wrnitWrMCkSZMwYcIEAMDatWuxd+9ebNy4EbOqmcR01apVGDRoEGbOnAkAWLRoEWJiYvD9999j7dq1jRo7IcR4IgHQ0tkKbdztq32fYRjklyjxtFiJ3KIyPC0qQ25RGXKL/3ldUKpCUZmq/F9F+VfBs381DMAwQFGZGkVl6lpj0WjKz47L6XGmSswGr4pnWVkZEhISMHv2bO0yoVCI0NBQnK7hIfHTp08jKiqq0rKIiAj89ddfNe5HoVBAofhnYOv8/HwAQG4uzVlYF6VSieLiYuTk5EAikXAdDu+xlS8xw0DFwcwqjc2QfNkJADsbwMdGjPL/yqzqbJ9hGJQqNShSqFCsVEOp0kChYlCmUkOh1kCh0qDs2ZdCrUHxCmB6H08wAIq/AQp4dgzo91F/FbmS1/K7VPDseWp9HqniVfHMzs6GWq2Gm5tbpeVubm64efNmtdtkZGRUu35GLdPOLFmyBAsWLKiyvF27dvWImpBG4uLCdQRmZxIAvNgNABAF0DFoKuo4jgUFBbC3r/7KRwVeFc/GMnv27Epnq3l5eWjZsiVSU1PrTJi5k8vl8Pb2xsOHD2FnZ8d1OLxH+TIM5cswlC/96ZMrhmFQUFAAT0/POtvjVfF0cXGBSCRCZmZmpeWZmZlwd3evdht3d3eD1gcAmUwGmUxWZbm9vT19APVkZ2dHuTIA5cswlC/DUL70V1eu9D2B4tXQHlKpFEFBQYiNjdUu02g0iI2NRUhISLXbhISEVFofAGJiYmpcnxBCCDEWr848ASAqKgrjx49H9+7d0aNHD6xcuRJFRUXa3rfjxo1D8+bNsWTJEgDAtGnT0LdvX3z99dcYOnQotm7digsXLuCHH37g8scghBDShPGueI4aNQpPnjzBvHnzkJGRga5du+LAgQPaTkGpqakQCv85Ye7Vqxe2bNmCOXPm4JNPPkHbtm3x119/GfSMp0wmw/z586u9lEsqo1wZhvJlGMqXYShf+mM7VwLG5KY5IIQQQrjFq3uehBBCiCmg4kkIIYQYiIonIYQQYiAqnoQQQoiBzL54RkdHw8fHBxYWFggODsa5c+e4DokXjh07hmHDhsHT0xMCgaDKWMEMw2DevHnw8PCApaUlQkNDcfv2bW6C5diSJUvw3HPPwdbWFq6urnj55ZeRnJxcaZ3S0lJERkbC2dkZNjY2GDlyZJXBPczFmjVr4O/vr31YPSQkBPv379e+T7mq2dKlSyEQCDB9+nTtMspXZZ999hkEAkGlrw4dOmjfZytfZl08K6Y/mz9/Pi5evIiAgABEREQgKyuL69A4V1RUhICAAERHR1f7/vLly/Htt99i7dq1OHv2LKytrREREYHSJjZtlj6OHj2KyMhInDlzBjExMVAqlQgPD0dRUZF2nRkzZmDPnj3Yvn07jh49irS0NLzyyiscRs0dLy8vLF26FAkJCbhw4QIGDBiA4cOH49q1awAoVzU5f/481q1bB3//yvOKUr6q6tSpE9LT07VfJ06c0L7HWr4YM9ajRw8mMjJS+71arWY8PT2ZJUuWcBgV/wBgdu7cqf1eo9Ew7u7uzJdffqldlpeXx8hkMua3337jIEJ+ycrKYgAwR48eZRimPDcSiYTZvn27dp0bN24wAJjTp09zFSavODo6Mj/++CPlqgYFBQVM27ZtmZiYGKZv377MtGnTGIahz1Z15s+fzwQEBFT7Hpv5Mtszz4rpz0JDQ7XL6pr+jJRLSUlBRkZGpdzZ29sjODiYcod/prhzcnICACQkJECpVFbKV4cOHdCiRQuzz5darcbWrVtRVFSEkJAQylUNIiMjMXTo0Ep5AeizVZPbt2/D09MTrVq1wpgxY5CamgqA3XzxboShxlKf6c9IuYrp3gydCs4caDQaTJ8+Hb1799aOcpWRkQGpVAoHB4dK65pzvq5cuYKQkBCUlpbCxsYGO3fuhJ+fH5KSkihX/7J161ZcvHgR58+fr/IefbaqCg4OxubNm9G+fXukp6djwYIF6NOnD65evcpqvsy2eBLSECIjI3H16tVK91hIVe3bt0dSUhLy8/OxY8cOjB8/HkePHuU6LN55+PAhpk2bhpiYGFhYWHAdjkkYPHiw9rW/vz+Cg4PRsmVL/P7777C0tGRtP2Z72bY+05+RchX5odxVNnXqVPz999+Ii4uDl5eXdrm7uzvKysqQl5dXaX1zzpdUKkWbNm0QFBSEJUuWICAgAKtWraJc/UtCQgKysrLQrVs3iMViiMViHD16FN9++y3EYjHc3NwoX3VwcHBAu3btcOfOHVY/X2ZbPOsz/Rkp5+vrC3d390q5k8vlOHv2rFnmjmEYTJ06FTt37sSRI0fg6+tb6f2goCBIJJJK+UpOTkZqaqpZ5qs6Go0GCoWCcvUvAwcOxJUrV5CUlKT96t69O8aMGaN9TfmqXWFhIe7evQsPDw92P19GdGoyeVu3bmVkMhmzefNm5vr168w777zDODg4MBkZGVyHxrmCggImMTGRSUxMZAAwK1asYBITE5kHDx4wDMMwS5cuZRwcHJhdu3Yxly9fZoYPH874+voyJSUlHEfe+KZMmcLY29sz8fHxTHp6uvaruLhYu87kyZOZFi1aMEeOHGEuXLjAhISEMCEhIRxGzZ1Zs2YxR48eZVJSUpjLly8zs2bNYgQCAXPo0CGGYShXddHtbcswlK9/++CDD5j4+HgmJSWFOXnyJBMaGsq4uLgwWVlZDMOwly+zLp4MwzDfffcd06JFC0YqlTI9evRgzpw5w3VIvBAXF8cAqPI1fvx4hmHKH1eZO3cu4+bmxshkMmbgwIFMcnIyt0FzpLo8AWA2bdqkXaekpIR57733GEdHR8bKyooZMWIEk56ezl3QHHrrrbeYli1bMlKplGnWrBkzcOBAbeFkGMpVXf5dPClflY0aNYrx8PBgpFIp07x5c2bUqFHMnTt3tO+zlS+akowQQggxkNne8ySEEELqi4onIYQQYiAqnoQQQoiBqHgSQgghBqLiSQghhBiIiichhBBiICqehBBCiIGoeBJCCCEGouJJCCGEGIiKJyGEEGIgKp6EEEKIgah4EkIIIQai4kkIIYQYiIonIYQQYiAx1wHwgUajQVpaGmxtbSEQCLgOhxBCCAcYhkFBQQE8PT0hFNZ+bknFE0BaWhq8vb25DoMQQggPPHz4EF5eXrWuQ8UTgK2tLQAgJSUFTk5OHEfDb0qlEocOHUJ4eDgkEgnX4fAea/m6cwdo04a9wHiKd58v3bzz8BjwLl88ps1Vq1aQdOxY7TpyuRze3t7amlAbKp6A9lKtra0t7OzsOI6G35RKJaysrGBnZ0e/rHpgLV+ZmUC3buwFxlO8+3zp5p2Hx4B3+eKxilzZZ2VBHBxc67r63L6jDkOEmIIRI7iOwDzp5p2OQZMgevVVVtrhVfE8duwYhg0bBk9PTwgEAvz11191bhMfH49u3bpBJpOhTZs22Lx5c4PHSQghxLzxqngWFRUhICAA0dHReq2fkpKCoUOHon///khKSsL06dMxceJEHDx4sIEjJYQQYs54dc9z8ODBGDx4sN7rr127Fr6+vvj6668BAB07dsSJEyfwzTffICIioqHCJKTx7djBdQTmSTfvdAyaBPXWrawUPl4VT0OdPn0aoaGhlZZFRERg+vTptW6nUCigUCi038vlcgDlN5SVSiXrcbKBYRikPi3B/ewiZMgVyMgvRXZRGUrK1ChRqlGqVKNEqYFCqYaGATQMAw1Tvt0/ryu+L3+/npGguFiEr24eA2D8M7H1jaKx1fST1tSvQPBsC+ZZvr5OPq5dVvM2Ne/DMzsPaTfj9NqiPu3XRMDSPmra4N9LGTAokIuwNuVUjZ026sq5/uvXQOcN9yeFyLh/HEKBABPdbRHBs/8fKv6/4uv/W3yizVWbNmBqyJcheTTp4pmRkQE3N7dKy9zc3CCXy1FSUgJLS8tqt1uyZAkWLFhQZXlcXBysrKwaJNb6UGuAxBwBrj0V4K5cgHwlXwZwECBHUcp1ECZEAJSWGNXC/q/eQvsPd7IUD98J8Li4kOsgAADbvxqnzXvYtBHY98d2jiOqXkxMDNchmAxpt274e3v1x7G4uFjvdky6eNbX7NmzERUVpf2+4tme/v37w9nZmcPIymk0DH499xDrT9xHev4/RUoiEqC1izXc7S3gYW+BZjYyWMlEsJCIYCkRwlIiglQshEgogFAggEAACAUCCJ/9+8/3z/5Gr0ctVqtUOHfuHHr06AGRmJ2PD1/+JKhJjWfHNbyhu1ilUuH8+XN47rkeEIlEhrWP8qsFACD5Rogtbz+ns031Wxl6QaGm9Q1tv6bd1hZPdftQq9RIuHgR3QIDIf7X56vmfdQQq4ExVbdY/I0QM8Pb4stDtwEBMGTIkBpa5YZSqURMTAzCwsLoUZU6VORKKBTWeBwrrkLqw+D//Xbv3m3oJggLC6vxLNAY7u7uyMzMrLQsMzMTdnZ2te5PJpNBJpNVWS6RSDj/AOYWlWH6tiQcu/UEAOBiI8PrPbzRq7ULAls4wEJS/X/AjUWpVCLrBtDd14XzXJkCpVKJ7JtAj1ZG5ksA9Grryl5gPKVUKlF8j0H/ju78+HwJgJ6tXQDchgDgR0zV4MP/XaakplwZkkODi+fLL79s0PoCgQC3b99Gq1atDN1VnUJCQrBv375Ky2JiYhASEsL6vhrDo6fFGLXuDB7nlcBCIsSsQR3wWo8WnBdMwgNffMF1BOZJJ+/rB01EJIehEHZoFi0CG/+j1utRlYyMDGg0Gr2+DLmHWFhYiKSkJCQlJQEofxQlKSkJqampAMovt44bN067/uTJk3Hv3j189NFHuHnzJlavXo3ff/8dM2bMqM+Pxam84jKM33gOj/NK4ONshZ3v9cabvX2pcJJyOrcZSCPSyfv2F9h5uJ5wS1NHh1J9GVw8x48fb9Al2DfeeEPvIe8uXLiAwMBABAYGAgCioqIQGBiIefPmAQDS09O1hRQAfH19sXfvXsTExCAgIABff/01fvzxR5N7TIVhGHz8x2XcfVIED3sL/PZOT3T0oGECiQ5ra64jME86ed//Kb/ud5L6ETs4sNOOoRts2rTJoPXXrFmj97r9+vWr8eY/gGpHD+rXrx8SExMNiolvdiWl4eC1TEhEAqwf1x0e9uzfHyYmTq3mOgLzpJN3EUPHoElg6XeJtRGGTp48WenZSaKfUqUaS/ffBAD834C26NzcnuOICCGE1IW14jl48GA8fvyYrebMxpazqciQl8LD3gKTXmC/UxVpIt58k+sIzJNO3g8EDeIuDsIajU6/GWOwVjxru9xKqldcpsLq+LsAgPcHtKXOQaRma9dyHYF50sn7ipGm1xGRVKXRc+z0uvBqYHhzs/3CI2QXKuDtZIlXu9c+azkxc8860ZFGppP39Svf4TAQwhbxc8/VvZIeWCue69atqzJUHqndjoRHAIAJvXwhEdHfMaQWN25wHYF50sl7y6wHHAZCWHPzJivNsDY83+jRo9lqyizcyizAlcf5EAsFGN7Vk+twCCGEGMDg053Lly9Do9Hovf61a9egUqkM3U2T98ezs87+HVzhbFN1qEBCKunVi+sIzJNO3q+27MRhIIQtDEsj0BlcPAMDA5GTk6P3+iEhIZUGNiCASq3BzsTynskju9G9TqKHI0e4jsA86eQ96t0VHAZC2KI+dIiVdgy+bMswDObOnav3sHtlZWUGB9XUnbiTjawCBRytJBjQoekP9k1YMGoUsG0b11GYn1GjgOXlA73M+2UhMLM/xwERY4lGjwZqmJLMEAYXzxdeeAHJycl6rx8SEtIgM6qYsr8vpwMAXgrwhFRMHYWIHnbt4joC87Rrl7Z4Pn/9JMfBEDYI9uxhpR2Di2d8fDwrOzZXGg2D+OTy6cYiOrlzHA0hhJD6oNOeRnYjQ47sQgWspCIE+ThyHQ4xFS4uXEdgnnTynm9NQ2c2CSz9LlHxbGQVZ529WjtDJqYRhYieHj3iOgLzpJP3Vz/9ncNACFtUKSmstEPFs5EdvVVePPu2p45CxABz53IdgXnSyftbBzdyGAhhi3D+fHbaYaUVohd5qRIXHzwFAPRt24zjaIhJ+fJLriMwTzp5f+0o9XZuCoQr2HnkiIpnIzp1JxsqDYNWLtZo4azfoz6EEEL4h7XiWVJSUu2UZNeuXWNrFybv2O1sAMAL7eiskxBCTBkrxXPHjh1o27Ythg4dCn9/f5w9e1b73tixY9nYRZNwLiUXQHlnIUIMkpbGdQTmSSfvI+cY/2A94Z7qATsD/LNSPD///HMkJCQgKSkJmzZtwttvv40tW7YAoHk+K+QUKnAnqxAA8JyPE8fREJOzdy/XEZgnnbz3vHGGw0AIWwT79rHSDivFU6lUaqcjCwoKwrFjx7Bu3TosXLgQAoGAjV2YvPP3yzsKtXOzgaO1lONoiMmZNInrCMyTTt5n/vE1h4EQtoimTGGlHVaKp6urKy5fvqz93snJCTExMbhx40al5ebs/P3yS7Y9fOmskxBCTB0rxfPnn3+Gq2vl5xalUil+++03HD16lI1dmLyK+510yZYQQkwfK8XTwsICYnH1w+T27t2bjV2YtJIyNa6nywFQ8ST1RGNKc0Mn79Pf/Ya7OAhr1IcPs9JOvYtnXl4eIiMj4eLiAjc3N7i5ucHFxQVTp05FXl6eUUFFR0fDx8cHFhYWCA4Oxrlz52pdf+XKlWjfvj0sLS3h7e2NGTNmoLS01KgY2HQ9PR9qDYNmtjJ42FtwHQ4hhBAjGTyrCgDk5uYiJCQEjx8/xpgxY9CxY0cAwPXr17F582bExsbi1KlTcHQ0fODzbdu2ISoqCmvXrkVwcDBWrlyJiIgIJCcnV7k0DABbtmzBrFmzsHHjRvTq1Qu3bt3Cm2++CYFAgBUsjSRhrEsP8wEAAV721IGK1E+/fgCP/iA0G/36Acnlj6usXDcD+D6S23iI0UShoaz8LtWreC5cuBBSqRR3797V9rLVfS88PBwLFy7EN98YfpljxYoVmDRpEiZMmAAAWLt2Lfbu3YuNGzdi1qxZVdY/deoUevfujdGjRwMAfHx88Prrr1d61pRrlx/lAQC6NHfgNA5CCCHsqNdl27/++gtfffVVlcIJAO7u7li+fDl27txpcLtlZWVISEhAaGjoPwEKhQgNDcXp06er3aZXr15ISEjQXtq9d+8e9u3bhyFDhhi8/4Zy+XH5mae/N01pRAghTUG9zjzT09PRqVOnGt/v3LkzMjIyDG43OzsbarW6SlF2c3PDzZs3q91m9OjRyM7OxvPPPw+GYaBSqTB58mR88sknNe5HoVBAoVBov5fLyzvzKJVKKJVKg+OuTUGpEveeFAEA/NysWW+/sVXEb+o/R2NhK1+CNWvAmEHO+fb5EqxZA5VKDQD4cuQH+IgncVXgW774rCJHZd9/D2EN+TIkj/Uqni4uLrh//z68vLyqfT8lJQVOTo3TqzQ+Ph5ffPEFVq9ejeDgYNy5cwfTpk3DokWLMLeGaZyWLFmCBQsWVFkeFxcHKyt2B2y/lS8AIIKTjMGZo+z08uKDmJgYrkMwKcbmSyKRQMnSyCimgC+fL4lEglunTwEQI7alPzrz9BjwJV+mINbCosbfpeLiYr3bETD1GD/vrbfewt27dxETEwOptPJoOQqFAhEREWjVqhU2bjRs/ruysjJYWVlhx44dePnll7XLx48fj7y8POzatavKNn369EHPnj3xpc7UQb/88gveeecdFBYWQiisemW6ujNPb29vpKenw9mZ3XFn1x1LwVcxtzG4kxu+fS2A1ba5oFQqERMTg7CwMEgkEq7D4T228iW2tYWqoIDFyPiJb58vsa0tzl17iFHrzyH56xEQFhdxHVIlfMsXn1Xk6qVRo2r8XZLL5XBxcUF+fj7s7Oxqba/eHYa6d++Otm3bIjIyEh06dADDMLhx4wZWr14NhUKBn3/+2eB2pVIpgoKCEBsbqy2eGo0GsbGxmDp1arXbFBcXVymQIpEIQM3j6spkMshksirLJRIJ6x/Aa+nlB6lrC8cm9eFuiFw1ZWzky5zyzafPl1hc/v+JAPw9BnzKlymoKVeG5LBexdPLywunT5/Ge++9h9mzZ2uLlEAgQFhYGL7//nt4e3vXp2lERUVh/Pjx6N69O3r06IGVK1eiqKhI2/t23LhxaN68OZYsWQIAGDZsGFasWIHAwEDtZdu5c+di2LBh2iLKpcuPnnUW8nLgNhBCCCGsqVfxBABfX1/s378fT58+xe3btwEAbdq0Mfpe56hRo/DkyRPMmzcPGRkZ6Nq1Kw4cOKDtRJSamlrpTHPOnDkQCASYM2cOHj9+jGbNmmHYsGFYvHixUXGwIbtQgcd5JRAIgM7Na78EQEitZs7kOgLzpJP3rX1HYRyHoRB2aKKiwMZpVb2LZwVHR0f06NGDhVD+MXXq1Bov08b/a5gysViM+fPnY/78+azGwIaK5ztbuVjD1oIuqRAjLFrEdQTmadEi4EH5uNQbI96i4tkEaBYsYKV41us5zyNHjsDPz0/7iIeu/Px8dOrUCcePHzc6OFP3z8hCDtwGQkxfDT3bSQPTyfv2xf/lMBDCFrGvLyvt1Kt4rly5EpMmTaq2N5K9vT3effdd3gyNx6WKM09/LxocgRgpO5vrCMyTTt7ti/I5DISwhqXfpXoVz0uXLmHQoEE1vh8eHo6EhIR6B9VUXE0rPzPvQmeehBDSpNSreGZmZtbapVcsFuPJkyf1DqopeFKgwJMCBQQCoKOHLdfhEFM3fDjXEZgnnbyf8KPpFZsCZtgwVtqpV/Fs3rw5rl69WuP7ly9fhoeHR72DagpuPJu/08fZGlZSo/tlEXO3bRvXEZgnnbwvfGMeh4EQtqi3bGGlnXoVzyFDhmDu3LnVzplZUlKC+fPn48UXXzQ6OFNWUTz9POgRFcKCAQO4jsA86eR9xbooDgMhbBGFh7PSTr1OiebMmYM///wT7dq1w9SpU9G+fXsAwM2bNxEdHQ21Wo1PP/2UlQBNVUXxpEu2hBWnTnEdgXnSyXvnB9c4DISwRVDDDF2GqlfxdHNzw6lTpzBlypQqIwxFREQgOjq62unKzMmNZ8PydaQzT0IIaXLqfTOuZcuW2LdvH54+fYo7d+6AYRi0/f/27j0uqjr/H/hrhmFABEFFuYmCpBEqqKAsueqWKJuZmWbkqigqmwoFktfWULMNNENx9RdpIa2/Vdzy0s0sQqDVSOXiLRVFMSgFRERuCsPM+f6BjDMBysw58Dlw3s/Hg8dDDmc+58WbmT6dcz7n8xkwAN27dxcyX4d0X6VG3q0qANR5EoE89RTrBNKkU/dfe/fDAIZRiEDc3QVpRpAZhkaMGCFElk4jr6QKag0HGwtTOFibs45DOoOcHNYJpCknRzvDUEjEDqSxTUMEUH/qFISY782oAUPk0S403u+07waZTMY4DekUFi5knUCadOoeuX8zwyBEKPLQUGHaEaQVoufhYCG6ZEsEkpjIOoE06dT9r1lH2OUggpH/+9/CtGPoC86ePQuNRiPIwTurCw9mFvJwpM6TEEI6I4M7z2HDhqH0wdyA/fv3x+3btwUP1ZFxHIdLRY0jbekxFSIQEaxNK0k6dVfL6G/QKQj0WTK487SxsUF+fj4A4Pr163QW+gdFFfdx954KJnIZnuhtyToO6Syqq1knkCaduj/3z8MMgxCh1JeXC9KOwZ3ntGnTMHbsWLi6ukImk8HHxwf9+/dv9kuKGs86+9t2hZmC/k+VCIRWKWJDp+7Tf/yMYRAiFPmWLYK0Y/CjKjt27MDUqVORl5eHN954AyEhIbCyosuTjXIfdJ5P2lNNiIDeeguIpOnh2t1bbwHT5gIAQo58DOD/MY1D+JO//TawbBnvdox6zrNxObKsrCyEh4dT56mjsfN0p86TEEI6LV6TJOzatQvl5eX44IMPcPHiRQDAoEGDMG/ePFhbS3MB6EvaM08aaUsIIZ0Vr+c8MzMz4ebmhs2bN6OsrAxlZWWIjY2Fm5sbsrOzhcrYYajUGlwtaZiW70k7OvMkAvqFJiVnQqfuc99MYBiECKX+9GlB2uHVeS5ZsgSTJ0/G9evXceDAARw4cAD5+fmYNGkSIiIiBAnYkfx6uxp1ag0slCbo070L6zikM3lwZYe0M5269ysuYBiECEV26ZIg7fA+81yxYgUUiodXfxUKBZYvX47MzEze4Tqaxku2A+2sIJfTtHxEQC+/zDqBNOnUfd3/X8suBxGMyauvCtIOr86zW7duKCho+n9jhYWFkhxERIOFCCFEGnh1noGBgZg/fz727duHwsJCFBYWIikpCQsWLMCMGTOEythhXKLHVAghRBJ4dZ6bNm3C1KlTERQUBBcXF7i4uGDu3Ll4+eWXsWHDBqPb3b59O1xcXGBubg5fX1+cPHnykfuXl5cjNDQUDg4OMDMzw8CBA3H4cPvPBqJ9xpMGCxGhHTzIOoE06dR9ddA7DIMQoag/E2ayC16PqiiVSsTFxSE6OhpXr14FALi5ucHCwsLoNvft24fIyEjEx8fD19cXW7ZsQUBAAHJzc9G7d+8m+9fV1WH8+PHo3bs3Pv/8czg5OeHXX3+FjY2N0RmMUVNXj4KyGgB05knagJsb6wTSpFP3Gz0dGQYhQuEEmv1OkCXJLCwsMGTIEAwZMoRXxwkAsbGxCAkJQXBwMDw8PBAfHw8LCwskJDQ/TDwhIQFlZWU4dOgQRo0aBRcXF4wdOxZeXl68chjqcnHDIyq2lmboaWnWrscmEuDpyTqBNOnUPWHzAoZBiFAU3t7CtCNIKwKpq6tDVlYWVq1apd0ml8vh7++PjIyMZl/z5Zdfws/PD6Ghofjiiy/Qq1cv/O1vf8OKFStg0sLs+bW1taitrdV+X1HRsISYSqWCSqUyKvuF3+8AAAbadTW6jY6g8XfrzL+jkISqlwJAvQRqLrb3lwJAfb0aAMBBPLkaia1eYqZbo5bqZUgdRdV5lpaWQq1Ww87OTm+7nZ0dLrXwbM61a9dw9OhRzJw5E4cPH0ZeXh4WL14MlUqFNWvWNPua6OhorFu3rsn21NRUo8+cv8uXA5BDWVPK5H5re0tOTmYdoUPhW69JGo0k3leNxPL+mqTRICPjJwAKgINo/wZiqVdHoHnEZ6mmpqbV7Yiq8zSGRqNB7969sWPHDpiYmMDb2xu///473n///RY7z1WrViFSZ5LtiooKODs745lnnkHPnj2NypG0KxNAGQL+NAQThzsZ1UZHoFKpkJycjPHjx8PU1JR1HNETrF4xMZg4caJwwURKdO+vmBj4+T2NLedP4qOJf8cikf0NRFcvEWuslfqf/2zxs9R4FbI1RNV52trawsTEBMXFxXrbi4uLYW9v3+xrHBwcYGpqqneJ9qmnnkJRURHq6uqgVCqbvMbMzAxmZk3vS5qamhr9BrzyYFo+D0cbSbyJ+dRKinjXKzISUlrgTjTvr8hIKH4tAwAcGD0Nb4ghUzNEU68OQBYR0WKtDKmhIAOGhKJUKuHt7Y2UlBTtNo1Gg5SUFPj5+TX7mlGjRiEvL09vUe7Lly/DwcGh2Y6zLZRW1aK0qg4yWcPsQoQIztycdQJp0qn7928FMAxChKIQaAIf3meeKSkpSElJQUlJiV4HBqDFEbKPEhkZiTlz5sDHxwcjR47Eli1bUF1djeDgYABAUFAQnJycEB0dDQBYtGgRtm3bhvDwcLz++uu4cuUK3nvvPbzxxht8f7VWa3y+s18PC3RRSun8gBBCpIlX57lu3Tq888478PHxgYODA2Qy/vO5BgYG4tatW4iKikJRURGGDh2KI0eOaAcRFRQUQC5/eMLs7OyM7777DkuWLIGnpyecnJwQHh6OFStW8M7SWjSzECGESAuvzjM+Ph6JiYmYPXu2UHkAAGFhYQgLC2v2Z2lpaU22+fn54eeffxY0gyFyixpuMtManqTNzJ/POoE06dT9mxET8RLDKEQYmuBgQcYP8LrnWVdXh6efflqAGB0bTQhP2tz27awTSJNO3eNeCmcYhAhFs3WrIO3w6jwXLFiAPXv2CBKko1JrOO3sQtR5kjYzZAjrBNKkU/eEWDr77wwUw4YJ0w6fF9+/fx87duzADz/8AE9PzybDfGNjY3mF6wgKympwT6WGuakc/Xp2ZR2HdFZXrrBOIE06de9T+hvDIEQweXmCNMOr8zx79iyGDh0KADh//rzez4QYPNQRXLrZcL9zoJ0VTGgBbEIIkQRenWdqaqpQOTqsS3S/k7SHMWNYJ5AmnbqfcfXECIZRiDC40aMhxGkO7+c8y8vL8cknn+DixYsAgEGDBmHevHmwtrbmHa4juEQjbUl7+P571gmk6fvvgQczDC0LeR9pbNMQAagPHxZkdiBebWRmZsLNzQ2bN29GWVkZysrKEBsbCzc3N2RnZwsQT/wazzyfojNP0pamTWOdQJp06r7u383PlU06FpNXXhGkHV6d55IlSzB58mRcv34dBw4cwIEDB5Cfn49JkyYhIiJCkIBiVl1LC2CTdvLNN6wTSJNO3f0usXuWnAhH9u23grTD67JtZmYmdu7cCYXiYTMKhQLLly+Hj48P73Bid7m4EhwH9LKiBbAJIURKeJ15duvWDQUFBU22FxYWwkqgyXfFjAYLkXbTwqpCpI3p1L3MqgfDIEQwAn2WeHWegYGBmD9/Pvbt24fCwkIUFhYiKSkJCxYswIwZMwQJKGaNMws95UCDhUgbu36ddQJp0qn7q6v2sstBBFMv0DPTvDrPTZs2YerUqQgKCoKLiwtcXFwwd+5cvPzyy9iwYYMgAcXs4oNnPJ+kZchIW1u1inUCadKpe8i3OxkGIUKR/+MfwrTD58VKpRJxcXG4c+cOTp8+jdOnT6OsrAybN29udrHpzoTjuIeXbR2o8yRtbPNm1gmkSafu0//3OcMgRChygea25f2cJwBYWFhgiMTm3iyuqMXdeyqYyGV4orcl6ziEEELakcGdZ2RkJNavX4+uXbsiMjLykft25rltLz6YHKG/bVeYKWgBbEIIkRKDO8+cnByoVCrtv1vS2ee2vXSz8ZItDRYi7aCkhHUCaSopAe7UAwCmRB3AYcZxCH/1v/8O08fv9lgGd56689l++umn6NOnD+Ry/VunHMehsLCQfzoRa1wAmx5TIe1i/34gOJh1CunZvx949kUAwJhzPwKYxDYP4U128CCwYAHvdngNGHJ1dUVpaWmT7WVlZXB1deXTtOjRM56kXS1axDqBNOnUPfLgFnY5iGBMwsIEaYdX58lxXLPbq6qqYG5uzqdpUaur1yCv5MEC2HTZlhBCJMeo0baNA4VkMhmioqJgYWGh/ZlarcaJEye063x2RtdKq1Cv4WBlroCjdef9nwRCCCHNM6rzbBwoxHEczp07B6VSqf2ZUqmEl5cXli5dKkxCEdIOFrK36vQDo4hIHDvGOoE06dT99UVb8RHDKEQY6rQ0QZ7RNKqNxkFDwcHBiIuLQ7du0rp0eVE7WEhavzdhqLaWdQJp0qm7qVrFMAgRjECfJV73PHft2iW5jhN4OKctzSxE2s24cawTSJNO3WN3vMkwCBGKSUCAIO3w6jyjo6ORkJDQZHtCQgKvuW23b98OFxcXmJubw9fXFydPnmzV65KSkiCTyTBlyhSjj90aupdtCSGESA+vzvOjjz6Cu7t7k+2DBg1CfHy8UW3u27cPkZGRWLNmDbKzs+Hl5YWAgACUPOYh8evXr2Pp0qUYPXq0UcdtrfKaOhRV3AcADKQJ4QkhRJJ4dZ5FRUVwcHBosr1Xr164efOmUW3GxsYiJCQEwcHB8PDwQHx8PCwsLJo9w22kVqsxc+ZMrFu3Dv379zfquK3V+Hync48usDIXYp4KQlrhEe9/0oZ06r5h+nKGQYhQ1Dt2CNIOr87T2dkZx48fb7L9+PHjcHR0NLi9uro6ZGVlwd/f/2FAuRz+/v7IyMho8XXvvPMOevfujfnz5xt8TEM9XIZMevd6CUPjx7NOIE06dc8c4M0wCBEKp9O/8MFrxG5ISAgiIiKgUqnw7LPPAgBSUlKwfPlyvPmm4TfXS0tLoVarYWdnp7fdzs4Oly5davY1x44dwyeffILTp0+3+ji1tbWo1RlxVVHR0CGqVCrtvL0tOfdbOQDgKfuuj923M2r8naX4uxtDqHopnJ1RX1kpRCRRE9v7S+HsjPpfGqYa/e97gVCtrmacSJ/Y6iVmjTVS9O8PVQufJUPqyKvzXLZsGW7fvo3Fixejrq4OAGBubo4VK1ZgVTss3ltZWYnZs2dj586dsLW1bfXroqOjsW7duibbU1NT9SZ8aM6JXBMAMty7cQWHD182NHKnkZyczDpCh8K3XpM0Ghw+LJ1pycXy/pqk0SAj4ycACoCDaP8GYqlXR6B5xGeppqam1e3IuJbm2DNAVVUVLl68iC5dumDAgAFGL4RdV1cHCwsLfP7553ojZufMmYPy8nJ88cUXevufPn0aw4YNg4nJwyXBNBoNgIbLvbm5uXBzc2tynObOPJ2dnXHz5k307NmzxXy19RoMXZ+Ceg2H9DdHw9Gmi1G/Z0emUqmQnJyM8ePHw9SU7vk+jlD1UlhZSebMU0zvL4WVFU7+UojAnSeR+8FLkNeI78xTTPUSs8ZaTQ4MbPGzVFFRAVtbW9y9e/exj2EKshi2paUlRowYwbsdpVIJb29vpKSkaDtPjUaDlJQUhDUzma+7uzvOnTunt2316tWorKxEXFwcnJ2dmz2OmZlZsx28qanpI9+Al4rvol7DobuFKfraSnt2ocfViujjXa+VKyVVb9G8v1auhOLBer17/zIDc8WQqRmiqVcHoFm2rMVaGVJDQTrPCxcuoKCgQHvpttHkyZMNbisyMhJz5syBj48PRo4ciS1btqC6uhrBD5ZjCgoKgpOTE6Kjo2Fubo7Bgwfrvd7GxgYAmmwXwi837gIABjlaS7rjJAysXcs6gTStXQv8WgYASJwwF3OZhiFC0ERFweTxuz0Wr87z2rVreOmll3Du3DnIZDLtKiuNHYtarTa4zcDAQNy6dQtRUVEoKirC0KFDceTIEe0gooKCgibrh7aX89rOk0baknbm4AAY+fgX4cHBAfj5FwDA/vUvA8tuMw5E+FL07SvIZ4lX5xkeHg5XV1ekpKTA1dUVJ0+exO3bt/Hmm29i06ZNRrcbFhbW7GVaAEhLS3vkaxMTE40+7uP8cqNhVO4gJ+s2OwYhzbpzh3UCadKpu9W9zn/PWRIE+izx6jwzMjJw9OhR2NraQi6XQy6X489//jOio6PxxhtvaFdf6QzUGk77jCedeRJCiLTxuv6pVqthZdUwRZ2trS1u3LgBAOjXrx9yc3P5pxORa7eqcF+lgYXSBK49u7KOQ6Rm6lTWCaRJp+4/Dm7bqT9J++AEmvuc15nn4MGDcebMGbi6usLX1xcbN26EUqnEjh072nyavPbWeMnWw6Eb5HIaLETa2Z49rBNI05492gFD7/5tNYSZm4awpN69m99Z4wO82li9erV2kNA777yD/Px8jB49GocPH8bWrVsFiCceZ39rGCw0mO53EhbGjmWdQJp06r7lwwh2OYhgTARa3s/oM0+VSoWNGzdqV0954okncOnSJZSVlaF79+6d7lGOc7+XAwA8+1DnSRg4cYJ1AmnSqbtH4UWGQYhQZK1c4vJxjO48TU1Ncfbs2Sbbe/TowSuQGNWrNTj/e8NlW+o8CSGE8LpsO2vWLHzyySdCZRGtq7eqcU+lRlelCfrbWrKOQ6SoDSb9IK2gU/d8O1eGQYhQuEGDBGmH14Ch+vp6JCQk4IcffoC3tze6dtUfhRobG8srnFicebCSymAnaxosRNjIzGSdQJoyM7UDhl4Lj0ca2zREAOqff2Y/YOj8+fMYPnw4rKyscPnyZeTk5Gi/DFkiTOzOPug8vZxtmOYgEhYSwjqBNOnUfennxk/8QsTDZOFCQdrhdeaZmpoqSAixO1PYMNJ2CI20Jazs3g3s3Mk6hfTs3g2s3gAAmJBNy351BrL//AcQ4HajUWee165dgwArmXUINXX1uPBgZqHh/bozTkMIIUQMjOo8BwwYgFu3bmm/DwwMRHFxsWChxOTsb3eh1nCw72YOR2tz1nGIVCmVrBNIk07dVSa05FenINBnyajO849nnYcPH0Z1tbgWiRVK1q8Nkwh79+t8z66SDqSignUCadKp+/Prv2YYhAil/rYwK+OwWdurA8l+0HnSJVvC1MaNrBNIk07dX01LYhiECEXOY8UvvXaMeZFMJmtyFtYZz8o4jkNWwcMzT0KYiYpinUCadOo+7/tdDIMQocjXrROkHaNG23Ich7lz58LMzAwAcP/+fSxcuLDJc54HDhzgn5Cha6XVKK9RwUwhh4cDLUNGCCGkgVGd55w5c/S+nzVrliBhxKbxfqdXHxsoFXSFmxBCSAOjOs9du6Rx+YLudxLR6GTr43YYOnWfvexT7GMYhQij/vx5CDFumk6nHkF3pC0hTOXksE4gTTp1H/B7HsMgRCgygWa/o86zBXdrVLhSUgUAGN7Xhm0YQl59lXUCadKpe9Se9QyDEKGYCHSbkTrPFmQXNpx1utp2RU9LM8ZpCCGEiAl1ni3Q3u/sS5dsCSGE6KPOswUn8huWIaL7nUQUvvqKdQJp0qn7qrn/ZBiECEV98KAg7fDuPP/3v/9h1qxZ8PPzw++//w4A2L17N44dO8Y7HCs1dfXIeTA5wtNuPRmnIQSAkxPrBNKkU/dSa1uGQYhQOEdHQdrh1Xnu378fAQEB6NKlC3JyclBbWwsAuHv3Lt577z2j292+fTtcXFxgbm4OX19fnDx5ssV9d+7cidGjR6N79+7o3r07/P39H7l/a5y6fgcqNQcnmy7o19OCV1uECGL4cNYJpEmn7jvjXmMYhAhF4esrSDu8Os93330X8fHx2LlzJ0xNHz45M2rUKGRnZxvV5r59+xAZGYk1a9YgOzsbXl5eCAgIQElJSbP7p6WlYcaMGUhNTUVGRgacnZ0xYcIE7VmwMX7KKwXQcNbZGacdJIQQwg+vzjM3Nxdjxoxpst3a2hrl5eVGtRkbG4uQkBAEBwfDw8MD8fHxsLCwQEJCQrP7/+c//8HixYsxdOhQuLu74+OPP4ZGo0FKSopRxweA41cbOs9RT9BlGkIIIU0ZNcNQI3t7e+Tl5cHFxUVv+7Fjx9C/f3+D26urq0NWVhZWrVql3SaXy+Hv74+MjIxWtVFTUwOVSoUePXq0uE9tba32EjMAVDxYdkilUuHW3Rr8cqPh+xH9rKFSqQz+PTqzxnpQXVpHqHrJN26ERgI1F9v7S75xI+rr1QCA7c8vQphIcjUSW73ETFur6GjIWqiXIXXk1XmGhIQgPDwcCQkJkMlkuHHjBjIyMrB06VK8/fbbBrdXWloKtVoNOzs7ve12dna4dOlSq9pYsWIFHB0d4e/v3+I+0dHRWNfMzPqpqam4cq8rOM4E9l04ZP7P+LPXzi45OZl1hA6Fb71kffqAO3xYoDTiJ5b3l6xPH1zL+AmAAkmez6K/SP8GYqlXR3CkX78WP0s1NTWtbodX57ly5UpoNBqMGzcONTU1GDNmDMzMzLB06VK8/vrrfJo2SkxMDJKSkpCWlgZzc/MW91u1ahUiIyO131dUVMDZ2RnPPPMMzv9UAqAQ4736YeJE93ZI3bGoVCokJydj/Pjxeve5SfOEqpfCygr1lZUCJhMnsb2/FFZWOPlLIbacP4kfo6dDXlPNOpIesdVLzBpr9cLf/tbiZ6nCgEXneXWeMpkM//jHP7Bs2TLk5eWhqqoKHh4esLS0NKo9W1tbmJiYoLi4WG97cXEx7O3tH/naTZs2ISYmBj/88AM8PT0fua+ZmZl2OTVdCoUCx682rDL+5wG96M34CKamplQfAwhRLynVW0zvL4XCBAAgg3j/BmKqV0fQUq0MqaEgkyQolUp4eHhg5MiRRnecje14e3vrDfZpHPzj5+fX4us2btyI9evX48iRI/Dx8TH6+Ndv1+D67RooTeQ0WIgQQkiLDD7z1L3c+TixsbGGNo/IyEjMmTMHPj4+GDlyJLZs2YLq6moEBwcDAIKCguDk5ITo6GgAwIYNGxAVFYU9e/bAxcUFRUVFAABLS0uDO/L0Kw2jbP/k1hOWZrxOygkR1mv0jCETOnX/0vcFvMwwChGGJiQEJgK0Y3APkdPKpZGMfT4yMDAQt27dQlRUFIqKijB06FAcOXJEO4iooKAAcvnDE+YPP/wQdXV1ePll/bf1mjVrsHbtWoOO/ePlhs7T/6neRmUnpM3ExbFOIE1xccCvDVN1bnsxjDrPTkATG8um80xNTRXgsI8WFhaGsLCwZn+Wlpam9/3169cFO+6Z3+4CSgs8606dJxEZDw/gwgXWKaTHwwP4tmGq0cRNwcCy62zzEN4Unp7AxYu826GJ4XVoOOAph27o052m5CMic+0a6wTSpFN3x7IbDIMQweTnC9IM7xt75eXl+OSTT3DxQU/u4eGB+fPnw9ramnc4FuiSLSGEkMfhdeaZmZkJNzc3bN68GWVlZSgrK8PmzZvh5uZm9Ny2rPk/Zff4nQhpb888wzqBNOnUPcdtGMMgRCjcX/4iSDu8Os8lS5Zg8uTJuH79Og4cOIADBw4gPz8fkyZNQkREhCAB21Of7ubw7NMxz5hJJ/ftt6wTSJNO3VfMj2EYhAhFLdDauLzPPFesWAGF4uHVX4VCgeXLlyMzM5N3uPb210H2tIoKEacpU1gnkCadur/7qeFTjhLxMZk2TZB2eHWe3bp1Q0FBQZPthYWFsLKy4tM0E38dRPc7iUgdOcI6gTTp1H1kLr91ggl7ag0g+/57qDUc77Z4dZ6BgYGYP38+9u3bh8LCQhQWFiIpKQkLFizAjBkzeIdrb269jJ8diRBCiLjtvy5HXb0G/zp6hXdbvEbbbtq0CTKZDEFBQaivrwfHcVAqlVi0aBFiYuj+ACGCcXJinUCadOp+q5st6K/QsXEAiqx6Qi7A7TleZ55KpRJxcXG4c+cOTp8+jTNnzmhH3DY38TohxEhXr7JOIE06dZ+58j8MgxAhcBww9rWPIcTIFqPOPOfNm9eq/RISEoxpnhDyR8uXAxs3sk4hPcuXA6ErAQCvffMRsIweGeroVqYmQB2wgXc7Rp15JiYmIjU1FeXl5bhz506LX4QQgWzdyjqBNOnUfdrxAwyDECFoOCA46ysI8VCFUWeeixYtwt69e5Gfn4/g4GDMmjULPXr04J+GEEIIaSONY2xlAly4NerMc/v27bh58yaWL1+Or776Cs7OznjllVfw3XffgeP4DwEmhBBC2opcgDNPowcMmZmZYcaMGUhOTsaFCxcwaNAgLF68GC4uLqiqquKfjBDy0O3brBNIk07dJ689xC4HEQTHAUPf2CvIZVtBVlWRy+WQyWTgOA5qtVqIJgkhuvbuZZ1AmnTqPi7nKMMgRAgaAJMvprN9VKW2thZ79+7F+PHjMXDgQJw7dw7btm1DQUEBLC1psgFCBNXC+rakjenUPfwLGrTVGbyTHC/INKxGDRhavHgxkpKS4OzsjHnz5mHv3r2wtbXlHYYQQghpK41Dcpg95xkfH4++ffuif//+SE9PR3p6erP7HThAQ7sJIYSIQ+NwViEGDBnVeQYFBdHqI4S0p4wM1gmkSafui0O34WOGUQh/HICpszfhFVaXbRMTE3kfmBBigMpK1gmkqbISePAIu0VtDdsshDeOA7rW3WP7qAohpB1NmMA6gTTp1H3Tx8sZBiFC4ADs3ve2IFdOqfMkhBAiCdoBQ3TmSQghhLTOwwFDnfTMc/v27XBxcYG5uTl8fX1x8uSjV3D/7LPP4O7uDnNzcwwZMgSHDx9up6SEtJNPP2WdQJp06h79ykqGQYhQ3nx+CbtHVdrSvn37EBkZifj4ePj6+mLLli0ICAhAbm4uevfu3WT/n376CTNmzEB0dDQmTZqEPXv2YMqUKcjOzsbgwYMZ/AaEtIExY1gnkKYxY4C6hn+m9HJH4aen2Ob5A42GQ0mJHF+U5UAuxCiYTkyj4XC9SoZi58EYw2q0bVuKjY1FSEgIgoODATQ8U/rNN98gISEBK1c2/T+/uLg4/PWvf8WyZcsAAOvXr0dycjK2bduG+Pj4ds1OSJtxdQXu32edQnpcXdHzt4b5bZO3zcWTSw8yDtQcOXDnFusQHYQMWfHz8VPYb7xbElXnWVdXh6ysLKxatUq7TS6Xw9/fHxktPOeWkZGByMhIvW0BAQE4dOhQW0YlhEiEi21XJP39T1BslmPDtCGs4+hRq9U4e/YcPD2HwMTEhHUcUWuslcJEjjEDe/FuT1SdZ2lpKdRqNezs7PS229nZ4dKlS82+pqioqNn9i4qKWjxObW0tamtrtd/fvXsXAFBWVmZsdMlQqVSoqanB7du3YWpqyjqO6AlVLwXHoV4CK6uI7f3VWPcB1kAVOPj378o6kh6VSgVZfjWecekiinqJWWOtqsCh/k7z/62vfPA8dWuW1hRV59leoqOjsW7duibbBw4cyCANIa1E80ezoVt3+ht0Do/5O1ZWVsLa2vqR+4iq87S1tYWJiQmKi4v1thcXF8Pe3r7Z19jb2xu0PwCsWrVK71JveXk5+vXrh4KCgscWTOoqKirg7OyMwsJCdOvWjXUc0aN6GYbqZRiqV+u1plYcx6GyshKOjo6PbU9UnadSqYS3tzdSUlIwZcoUAIBGo0FKSgrCWliSyc/PDykpKYiIiNBuS05Ohp+fX4vHMTMzg5mZWZPt1tbW9AZspW7dulGtDED1MgzVyzBUr9Z7XK1aewIlqs4TACIjIzFnzhz4+Phg5MiR2LJlC6qrq7Wjb4OCguDk5ITo6GgAQHh4OMaOHYsPPvgAzz//PJKSkpCZmYkdO3aw/DUIIYR0YqLrPAMDA3Hr1i1ERUWhqKgIQ4cOxZEjR7SDggoKCiCXP5zb4emnn8aePXuwevVqvPXWWxgwYAAOHTpEz3gSQghpM6LrPAEgLCysxcu0aWlpTbZNnz4d06dPN/p4ZmZmWLNmTbOXcok+qpVhqF6GoXoZhurVekLXSsa1ZkwuIYQQQrREObctIYQQImbUeRJCCCEGos6TEEIIMRB1noQQQoiBJN95Grp2qFT8+OOPeOGFF+Do6AiZTNZkon2O4xAVFQUHBwd06dIF/v7+uHLlCpuwjEVHR2PEiBGwsrJC7969MWXKFOTm5urtc//+fYSGhqJnz56wtLTEtGnTmsyMJRUffvghPD09tQ+r+/n54dtvv9X+nGrVspiYGMhkMr1JYahe+tauXQuZTKb35e7urv25UPWSdOfZuHbomjVrkJ2dDS8vLwQEBKCkpIR1NOaqq6vh5eWF7du3N/vzjRs3YuvWrYiPj8eJEyfQtWtXBAQE4L4El81KT09HaGgofv75ZyQnJ0OlUmHChAmorq7W7rNkyRJ89dVX+Oyzz5Ceno4bN25g6tSpDFOz06dPH8TExCArKwuZmZl49tln8eKLL+KXX34BQLVqyalTp/DRRx/B09NTbzvVq6lBgwbh5s2b2q9jx45pfyZYvTgJGzlyJBcaGqr9Xq1Wc46Ojlx0dDTDVOIDgDt48KD2e41Gw9nb23Pvv/++dlt5eTlnZmbG7d27l0FCcSkpKeEAcOnp6RzHNdTG1NSU++yzz7T7XLx4kQPAZWRksIopKt27d+c+/vhjqlULKisruQEDBnDJycnc2LFjufDwcI7j6L3VnDVr1nBeXl7N/kzIekn2zLNx7VB/f3/ttsetHUoa5Ofno6ioSK921tbW8PX1pdrh4RJ3PXr0AABkZWVBpVLp1cvd3R19+/aVfL3UajWSkpJQXV0NPz8/qlULQkND8fzzz+vVBaD3VkuuXLkCR0dH9O/fHzNnzkRBQQEAYeslyhmG2oMxa4eSBo1rpRq6jqoUaDQaREREYNSoUdopIouKiqBUKmFjY6O3r5Trde7cOfj5+eH+/fuwtLTEwYMH4eHhgdOnT1Ot/iApKQnZ2dk4depUk5/Re6spX19fJCYm4sknn8TNmzexbt06jB49GufPnxe0XpLtPAlpC6GhoTh//rzePRbS1JNPPonTp0/j7t27+PzzzzFnzhykp6ezjiU6hYWFCA8PR3JyMszNzVnH6RCee+457b89PT3h6+uLfv364b///S+6dOki2HEke9nWmLVDSYPG+lDt9IWFheHrr79Gamoq+vTpo91ub2+Puro6lJeX6+0v5XoplUo88cQT8Pb2RnR0NLy8vBAXF0e1+oOsrCyUlJRg+PDhUCgUUCgUSE9Px9atW6FQKGBnZ0f1egwbGxsMHDgQeXl5gr6/JNt56q4d2qhx7dBHrQVKAFdXV9jb2+vVrqKiAidOnJBk7TiOQ1hYGA4ePIijR4/C1dVV7+fe3t4wNTXVq1dubi4KCgokWa/maDQa1NbWUq3+YNy4cTh37hxOnz6t/fLx8cHMmTO1/6Z6PVpVVRWuXr0KBwcHYd9fPAY1dXhJSUmcmZkZl5iYyF24cIH7+9//ztnY2HBFRUWsozFXWVnJ5eTkcDk5ORwALjY2lsvJyeF+/fVXjuM4LiYmhrOxseG++OIL7uzZs9yLL77Iubq6cvfu3WOcvP0tWrSIs7a25tLS0ribN29qv2pqarT7LFy4kOvbty939OhRLjMzk/Pz8+P8/PwYpmZn5cqVXHp6Opefn8+dPXuWW7lyJSeTybjvv/+e4ziq1ePojrblOKrXH7355ptcWloal5+fzx0/fpzz9/fnbG1tuZKSEo7jhKuXpDtPjuO4f/3rX1zfvn05pVLJjRw5kvv5559ZRxKF1NRUDkCTrzlz5nAc1/C4yttvv83Z2dlxZmZm3Lhx47jc3Fy2oRlprk4AuF27dmn3uXfvHrd48WKue/funIWFBffSSy9xN2/eZBeaoXnz5nH9+vXjlEol16tXL27cuHHajpPjqFaP88fOk+qlLzAwkHNwcOCUSiXn5OTEBQYGcnl5edqfC1UvWpKMEEIIMZBk73kSQgghxqLOkxBCCDEQdZ6EEEKIgajzJIQQQgxEnSchhBBiIOo8CSGEEANR50kIIYQYiDpPQkRq7ty5mDJlSrsfNzExETKZDDKZDBEREbzb+uMKFo8zd+5c7fEPHTrE6/iEtBVaVYUQBmQy2SN/vmbNGsTFxYHVHCbdunVDbm4uunbtyqudwMBATJw40aDXxMXFISYmBg4ODryOTUhbos6TEAZu3ryp/fe+ffsQFRWF3Nxc7TZLS0tYWlqyiAagoXMXYlWOLl26GLwMlLW1NaytrXkfm5C2RJdtCWHA3t5e+2Vtba3trBq/LC0tm1y2/ctf/oLXX38dERER6N69O+zs7LBz505UV1cjODgYVlZWeOKJJ/Dtt9/qHev8+fN47rnnYGlpCTs7O8yePRulpaUGZ3ZxccG7776LoKAgWFpaol+/fvjyyy9x69YtvPjii7C0tISnpycyMzO1r/njZdu1a9di6NCh2L17N1xcXGBtbY1XX30VlZWVBuchhCXqPAnpQD799FPY2tri5MmTeP3117Fo0SJMnz4dTz/9NLKzszFhwgTMnj0bNTU1AIDy8nI8++yzGDZsGDIzM3HkyBEUFxfjlVdeMer4mzdvxqhRo5CTk4Pnn38es2fPRlBQEGbNmoXs7Gy4ubkhKCjokZebr169ikOHDuHrr7/G119/jfT0dMTExBiVhxBWqPMkpAPx8vLC6tWrMWDAAKxatQrm5uawtbVFSEgIBgwYgKioKNy+fRtnz54FAGzbtg3Dhg3De++9B3d3dwwbNgwJCQlITU3F5cuXDT7+xIkT8dprr2mPVVFRgREjRmD69OkYOHAgVqxYgYsXLzZZKF2XRqNBYmIiBg8ejNGjR2P27Nl66ysS0hHQPU9COhBPT0/tv01MTNCzZ08MGTJEu83Ozg4AUFJSAgA4c+YMUlNTm71/evXqVQwcONDo4zceq6Xjt3TP1MXFBVZWVtrvHRwctHkJ6Sio8ySkAzE1NdX7XiaT6W1rHMWr0WgAAFVVVXjhhRewYcOGJm0ZM5q1uWM96viPa6PxNY/anxAxos6TkE5s+PDh2L9/P1xcXKBQ0MedEKHQPU9COrHQ0FCUlZVhxowZOHXqFK5evYrvvvsOwcHBUKvVrOMR0mFR50lIJ+bo6Ijjx49DrVZjwoQJGDJkCCIiImBjYwO5nD7+hBhLxrGawoQQIkqJiYmIiIhAeXk50xwymQwHDx5kMkUhIY9D/+tJCGni7t27sLS0xIoVK9r92AsXLmQ6uxIhrUFnnoQQPZWVldrnNG1sbGBra9uuxy8pKUFFRQWAhhHBfOfXJaQtUOdJCCGEGIgu2xJCCCEGos6TEEIIMRB1noQQQoiBqPMkhBBCDESdJyGEEGIg6jwJIYQQA1HnSQghhBiIOk9CCCHEQNR5EkIIIQb6P/ZUCsZgztkwAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import IDAES core components\n", + "\n", + "To build, initialize, and solve IDAES flowsheets we will need the following core components/utilities:\n", + "\n", + "- FlowsheetBlock (the flowsheet block contains idaes properties, time, and unit models)\n", + "- degrees_of_freedom (useful for debugging, this method returns the DOF of the model)\n", + "- FixedBedTSA0D (fixed bed TSA model unit model)\n", + "- util (some utility functions in IDAES)\n", + "- idaeslog (it's used to set output messages like warnings or errors)\n", + "\n", + "For further details on these components, please refer to the IDAES documentation:" ] - }, - "metadata": {}, - "output_type": "display_data" + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# import IDAES core libraries\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "import idaes.core.util as iutil\n", + "import idaes.logger as idaeslog\n", + "\n", + "# import tsa unit model\n", + "from idaes.models_extra.temperature_swing_adsorption import (\n", + " FixedBedTSA0D,\n", + " FixedBedTSA0DInitializer,\n", + " Adsorbent,\n", + ")\n", + "from idaes.models_extra.temperature_swing_adsorption.util import (\n", + " tsa_summary,\n", + " plot_tsa_profiles,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 2: Constructing the Flowsheet\n", + "\n", + "First, let's create a ConcreteModel and attach the flowsheet block to it." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# create concrete model\n", + "m = ConcreteModel()\n", + "\n", + "# create flowsheet\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.1: Adding the TSA Unit Model\n", + "\n", + "Now, we will be adding the fixed bed temperature swing adsorption (TSA) cycle model (assigned a name tsa).\n", + "\n", + "The TSA unit model builds variables, constraints and expressions for a solid sorbent based TSA capture system. This IDAES model can take up to 11 config arguments:\n", + "\n", + "1. `dynamic`: to set up the model as steady state. The IDAES fixed bed TSA 0D\n", + " unit model only supports steady state as the dynamic nature of the adsorption\n", + " cycle is handled in internal blocks for each cycle step of the unit. This\n", + " config argument is used to enable the TSA unit model to connect with other\n", + " IDAES unit models.\n", + "2. `adsorbent`: to set up the adsorbent to be used in the fixed bed TSA system. \n", + " Supported values currently are `Adsorbent.zeolite_13x`, `Adsorbent.mmen_mg_mof_74`, and `Adsorbent.polystyrene_amine`.\n", + "3. `number_of_beds`: to set up the number of beds to be used in the unit model.\n", + " This config argument accepts either an `int` (model assumes a fixed number of beds) or `None` (model calculates the number of beds).\n", + "4. `compressor`: indicates whether a compressor unit should be added to the\n", + " fixed bed TSA system to calculate the energy required to overcome\n", + " the pressure drop in the system. Supported values are `True` and `False`.\n", + "5. `compressor_properties`: indicates a property package to use in the compressor unit model.\n", + "6. `steam_calculation`: indicates whether a method to estimate the steam flow rate\n", + " required in the desorption step should be included. Supported values are: `SteamCalculationType.none`,\n", + " steam calculation method is not included. `SteamCalculationType.simplified`, a surrogate model is used\n", + " to estimate the mass flow rate of steam. `SteamCalculationType.rigorous`, a heater unit model is\n", + " included in the TSA system assuming total saturation.\n", + "7. `steam_properties`: indicates a property package to use for rigorous steam calculations. Currently, only the iapws95 property package is supported.\n", + "8. `transformation_method`: to set up the discretization method to be use for the time\n", + " domain. The discretization method must be a method recognized by the\n", + " Pyomo `TransformationFactory`. Supported values are `dae.finite_difference` and\n", + " `dae.collocation`.\n", + "9. `transformation_scheme`: to set up the scheme to use when discretizing the time domain.\n", + " Supported values are: `TransformationScheme.backward` and `TransformationScheme.forward` for finite difference transformation\n", + " method. `TransformationScheme.lagrangeRadau` for collocation transformation method.\n", + "10. `finite_elements`: to set up the number of finite elements to use when discretizing\n", + " the time domain.\n", + "11. `collocation_points`: to set up the number of collocation points to use per finite element\n", + " when the discretization method is `dae.collocation`.\n", + " \n", + "
\n", + "Note: a default value defined in the IDAES unit class is used for\n", + " a config argument when no value is passed in the time the unit model\n", + " is called.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# add tsa unit\n", + "m.fs.tsa = FixedBedTSA0D(adsorbent=Adsorbent.zeolite_13x, number_of_beds=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2: Fix Specifications of Feed Stream in TSA Unit\n", + "\n", + "The inlet specifications of the TSA unit are fixed to match the exhaust gas stream (stream 8) of case B31B in the NETL baseline report, which is a exhaust gas stream after 90% carbon capture by means of a solvent-based capture system." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# fix inlet conditions of tsa unit - baseline case from Joss et al. 2015\n", + "flue_gas = {\n", + " \"flow_mol_comp\": {\n", + " \"H2O\": 0.0,\n", + " \"CO2\": 0.00960 * 0.12,\n", + " \"N2\": 0.00960 * 0.88,\n", + " \"O2\": 0.0,\n", + " },\n", + " \"temperature\": 300.0,\n", + " \"pressure\": 1.0e5,\n", + "}\n", + "for i in m.fs.tsa.component_list:\n", + " m.fs.tsa.inlet.flow_mol_comp[:, i].fix(flue_gas[\"flow_mol_comp\"][i])\n", + "m.fs.tsa.inlet.temperature.fix(flue_gas[\"temperature\"])\n", + "m.fs.tsa.inlet.pressure.fix(flue_gas[\"pressure\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.3: Fix DOF of TSA unit\n", + "\n", + "The degrees of freedom of the TSA unit model are: adsorption and desorption temperatures, temperatures of heating and cooling fluids, column diameter, and column height. These variables must be fixed to solve a square problem." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The DOF of the TSA unit is 0\n" + ] + } + ], + "source": [ + "# fix design and operating variables of tsa unit - baseline case from Joss et al. 2015\n", + "m.fs.tsa.temperature_desorption.fix(430)\n", + "m.fs.tsa.temperature_adsorption.fix(310)\n", + "m.fs.tsa.temperature_heating.fix(440)\n", + "m.fs.tsa.temperature_cooling.fix(300)\n", + "m.fs.tsa.bed_diameter.fix(3 / 100)\n", + "m.fs.tsa.bed_height.fix(1.2)\n", + "\n", + "\n", + "# check the degrees of freedom\n", + "DOF = degrees_of_freedom(m)\n", + "print(f\"The DOF of the TSA unit is {DOF}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.4: Scaling Unit Models\n", + "\n", + "Creating well scaled models is important for increasing the efficiency and reliability of solvers. Depending on unit models, variables and constraints are often badly scaled. IDAES unit models contain a method to scale variables and constraints to improve solver convergence. To apply the scaled factors defined in each unit model, we need to call the IDAES method `calculate_scaling_factors` in `idaes.core.util.scaling`." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# scaling factors\n", + "iutil.scaling.calculate_scaling_factors(m.fs.tsa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.5: Define Solver and Solver Options\n", + "\n", + "We select the solver that we will be using to initialize and solve the flowsheet." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# define solver options\n", + "solver_options = {\n", + " \"nlp_scaling_method\": \"user-scaling\",\n", + " \"tol\": 1e-6,\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.6: Initialization of Unit Models\n", + "\n", + "IDAES includes pre-written initialization routines for all unit models. To initialize the TSA unit model, call the method `m.fs.tsa.initialize()`.\n", + "\n", + "
\n", + "Note: initialize methods in IDAES unit models solve a square problem,\n", + " so the user needs to be sure that the degrees of freedom of the unit being\n", + " initialized are zero.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2023-10-26 15:28:28 [INFO] idaes.init.fs.tsa: Starting fixed bed TSA initialization\n", + "2023-10-26 15:28:45 [INFO] idaes.init.fs.tsa.heating: Starting initialization of heating step.\n", + "2023-10-26 15:28:47 [INFO] idaes.init.fs.tsa.heating: Initialization of heating step completed optimal - Optimal Solution Found.\n", + "2023-10-26 15:29:01 [INFO] idaes.init.fs.tsa.cooling: Starting initialization of cooling step.\n", + "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.cooling: Initialization of cooling step completed optimal - Optimal Solution Found.\n", + "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.pressurization: Starting initialization of pressurization step.\n", + "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.pressurization: Initialization of pressurization step completed optimal - Optimal Solution Found.\n", + "2023-10-26 15:29:03 [INFO] idaes.init.fs.tsa.adsorption: Starting initialization of adsorption step.\n", + "2023-10-26 15:29:04 [INFO] idaes.init.fs.tsa.adsorption: Initialization of adsorption step completed optimal - Optimal Solution Found.\n", + "2023-10-26 15:29:13 [INFO] idaes.init.fs.tsa: Initialization of fixed bed TSA model completed optimal - Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# initialize tsa unit\n", + "initializer = FixedBedTSA0DInitializer(\n", + " output_level=idaeslog.INFO, solver_options=solver_options\n", + ")\n", + "initializer.initialize(m.fs.tsa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3: Solve the TSA Unit Model\n", + "\n", + "Now, we can simulate the TSA unit model by solving a square problem. For this, we need to set up the solver by using the Pyomo component `SolverFactory`. We will be using the solver and solver options defined during the initialization." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'fs.tsa.cooling.scaling_factor' that\n", + "contains 4 component keys that are not exported as part of the NL file.\n", + "Skipping.\n", + "WARNING: model contains export suffix 'fs.tsa.heating.scaling_factor' that\n", + "contains 2 component keys that are not exported as part of the NL file.\n", + "Skipping.\n", + "WARNING: model contains export suffix 'fs.tsa.scaling_factor' that contains 12\n", + "component keys that are not exported as part of the NL file. Skipping.\n", + "Ipopt 3.13.2: nlp_scaling_method=user-scaling\n", + "tol=1e-06\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 19132\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 70375\n", + "\n", + "Total number of variables............................: 2815\n", + " variables with only lower bounds: 5\n", + " variables with lower and upper bounds: 605\n", + " variables with only upper bounds: 1\n", + "Total number of equality constraints.................: 2815\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 3.63e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.06e+00 3.00e+03 -1.0 4.96e+00 - 9.90e-01 9.90e-01h 1\n", + " 2 0.0000000e+00 4.90e-03 4.83e+03 -1.0 4.91e+00 - 9.90e-01 9.96e-01h 1\n", + " 3 0.0000000e+00 2.44e-07 4.53e+00 -1.0 2.25e-02 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.0710209608078003e-07 2.4400780240796394e-07\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.0710209608078003e-07 2.4400780240796394e-07\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 3.208\n", + "Total CPU secs in NLP function evaluations = 0.089\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# set up solver to solve flowsheet\n", + "solver = SolverFactory(\"ipopt\")\n", + "solver.options = solver_options\n", + "\n", + "# solve flowsheet\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 4: Viewing the Simulation Results\n", + "\n", + "We will call some utility methods defined in the TSA unit model to get displayed some key variables." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Summary - tsa\n", + "------------------------------------------------------------------------------------ Value \n", + " Adsorption temperature [K] 310.00\n", + " Desorption temperature [K] 430.00\n", + " Heating temperature [K] 440.00\n", + " Cooling temperature [K] 300.00\n", + " Column diameter [m] 0.030000\n", + " Column length [m] 1.2000\n", + " Column volume [m3] 0.00084823\n", + " CO2 mole fraction at feed [%] 12.000\n", + " Feed flow rate [mol/s] 0.0096000\n", + " Feed velocity [m/s] 0.50008\n", + " Minimum fluidization velocity [m/s] 1.5207\n", + " Time of heating step [h] 0.37030\n", + " Time of cooling step [h] 0.20826\n", + " Time of pressurization step [h] 0.0051098\n", + " Time of adsorption step [h] 0.25221\n", + " Cycle time [h] 0.83588\n", + " Purity [-] 0.90219\n", + " Recovery [-] 0.89873\n", + " Productivity [kg CO2/ton/h] 84.085\n", + " Specific energy [MJ/kg CO2] 3.6532\n", + " Heat duty per bed [MW] 5.1244e-05\n", + " Heat duty total [MW] 0.00016646\n", + " Pressure drop [Pa] 5263.6\n", + " Number of beds 3.2484\n", + " CO2 captured in one cycle per bed [kg/cycle] 0.042210\n", + " Cycles per year 10480.\n", + " Total CO2 captured per year [tonne/year] 1.4369\n", + " Amount of flue gas processed per year [Gmol/year] 0.00030275\n", + " Amount of flue gas processed per year (target) [Gmol/year] 0.00030275\n", + " Amount of CO2 to atmosphere [mol/s] 0.00011667\n", + " Concentration of CO2 emitted to atmosphere [ppm] 13803.\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "# summary tsa\n", + "tsa_summary(m.fs.tsa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 5: Plotting Profiles\n", + "\n", + "Call plots method in the FixedBedTSA0D model to generate profiles of temperature, pressure and $\\mathrm{CO_{2}}$ concentration at the outlet of the column." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAKnCAYAAADgN8aBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+C0lEQVR4nOzdeVwU9f8H8Nfe3LdcgoK3qCBiIpp5cXhkZn77WpqapaVhP5WytDxSM4/KtMIj8+hbmaZlap6I4H0ieIsXisolICznssf8/kC2Ja5ddmBm2ffz8eDhMjvzmTfvWXwzM5/5fAQMwzAghBBCiN6EXAdACCGEmBoqnoQQQoiBqHgSQgghBqLiSQghhBiIiichhBBiICqehBBCiIGoeBJCCCEGouJJCCGEGEjMdQB8oNFokJaWBltbWwgEAq7DIYQQwgGGYVBQUABPT08IhbWfW1LxBJCWlgZvb2+uwyCEEMIDDx8+hJeXV63rUPEEYGtrCwBISUmBk5MTx9Hwm1KpxKFDhxAeHg6JRMJ1OLzHWr7u3AHatGEvMJ7i3edLN+88PAa8yxePaXPVqhUkHTtWu45cLoe3t7e2JtSGiiegvVRra2sLOzs7jqPhN6VSCSsrK9jZ2dEvqx5Yy1dmJtCtG3uB8RTvPl+6eefhMeBdvnisIlf2WVkQBwfXuq4+t++owxAhpmDECK4jME+6eadj0CSIXn2VlXaoeBJCCCEGouJJCCGEGIiKJyGmYMcOriMwT7p5p2PQJKi3bmWlHSqehJiCGnoHkgamm3c6Bk0C06EDK+1Q8STEFHTqxHUE5kk373QMmgRx166stEPFkxBCCDEQFU9CCCHEQDRIAiE8pdEweJBbjNuZBQieuwD2XAdkjr74ovrXxGRpFi2CiIV2qHgSwgNqDYO7Twpx6WEerj7Ox7U0OW6ky1FUpgYAtHcLwUGOYzRLUVHVvyYmSzN9OhVPQkwRwzB4nFeCy4/ycelhHpKeFcyKQqlLJhZCodJg58fhyHo7D652FhxEbMasrYGioqqvickSOziwchypeBLSwJQa4MKDp0h8JEfC/ae49CgP2YVlVdazkorQubk9/Jvbo1NzO3TytEcrF2sM+/4kRBoNLjx4iiFdPDj4CcyYWl39a2K6WDqOvCmeS5cuxezZszFt2jSsXLkSubm5mD9/Pg4dOoTU1FQ0a9YML7/8MhYtWgR7+3/u/lQ3gO9vv/2G1157rTHDJ0TraVEZEh48xfkHubiQkoukhyKoz56vtI5YKEAHD1sEeDmUf3k7oI2rDUTCqp/n7i0dAQAJVDwJ4Q1eFM/z589j3bp18Pf31y5LS0tDWloavvrqK/j5+eHBgweYPHky0tLSsONfI31s2rQJgwYN0n7v4ODQWKETgrziMpy+m4OTd7Nx9l4ubmcV/msNAVxspHjOxwlBLR3RraUj/DzsYCHR785LUEtH7OgyEBcePGU/eFK7N9+s/jUxWZpx45rGPc/CwkKMGTMG69evx+eff65d3rlzZ/zxxx/a71u3bo3FixfjjTfegEqlglj8T+gODg5wd3dv1LiJ+SopU+Pc/VycupONk3ezcS1NDoapvE7rZtZ4zscJgd52KEy5hLEjwiCVSuu1v6CWjugTMRXix/koKVPDUsrGrz7Ry9q11b8mJksTHd00imdkZCSGDh2K0NDQSsWzOvn5+bCzs6tUOCvamDhxIlq1aoXJkydjwoQJtc7HplAooFAotN/L5XIA5fO9KZVKI36apq8iP+aUJ4ZhcD29APG3snHybg6SHuZBqa5cLVs3s0avVk7o2ar87NLZurxQKpVKxKQDKpVKrzkCq+NmI8bB/01DxLhVSLifjWDfpjthO98+X+LnnoPq/Pkqr/mCb/nis4ocibp3h/LChVrX0QenxXPr1q24ePEizuvxgczOzsaiRYvwzjvvVFq+cOFCDBgwAFZWVjh06BDee+89FBYW4v/+7/9qbGvJkiVYsGBBleVxcXGwsrIy/AcxQzExMVyH0KBK1UByngDX8wS4/lQAubJy4XOQMmhn/8+XvTQfQD5U91Nw9n7V9ozN1+AnqQCA32LOIseLqWNt08eXz9eL169j3759VV7zDV/yZQqYGzdqPI7FxcV6tyNgmH9fcGocDx8+RPfu3RETE6O919mvXz907doVK1eurLSuXC5HWFgYnJycsHv37lpnTJ83bx42bdqEhw8f1rhOdWee3t7eSE9Ph7Ozs3E/WBOnVCoRExODsLCwJjdz/f2cIsQlZyP+1hOcv/+00tmllVSEXq2c0KetC3q1dkJLJyu9ziTZypfA2gZtov5Ev3YuWD+2W73b4Tu+fb7EtrZQFRRUec0XfMsXn1Xk6qVRo2o8jnK5HC4uLtqrnLXh7MwzISEBWVlZ6Nbtn/8I1Go1jh07hu+//x4KhQIikQgFBQUYNGgQbG1tsXPnzjo/IMHBwVi0aBEUCgVkMlm168hksmrfk0gk9AHUU1PIFcMwSM4swL4rGdh/Jb1KR5+Wzlbo394VAzq4IriVE2Ti+t8pMTZfBc8FAwASH+ZDJBJDWE2v3KaEN5+vXr3+iUP3Nc/wJl8mgAkJqTFXhuSQs+I5cOBAXLlypdKyCRMmoEOHDvj4448hEokgl8sREREBmUyG3bt3w8Ki7gfEk5KS4OjoWGPhJOaNYRhcfSzH/qvp2H81AynZ/zwsLRYK0MPXCQM6uKJ/B1e0crGu931Ktlkci4fVgkPIL1HiZkYB/Dxr/6uYsOTIkepfE5OlPnSIlUHdOSuetra26Ny5c6Vl1tbWcHZ2RufOnSGXyxEeHo7i4mL88ssvkMvl2o49zZo1g0gkwp49e5CZmYmePXvCwsICMTEx+OKLL/Dhhx9y8SMRnmIYBpce5WPflXTsu5KOR09LtO9JxUK80LYZhnRxx8CObrC35Odf75LRryMoPArHb2fjbEoOFc/GMmoUsG1b1dfEZIlGjwa2bze6Hc5729bk4sWLOHv2LACgTZs2ld5LSUmBj48PJBIJoqOjMWPGDDAMgzZt2mDFihWYNGkSFyETnnmQU4S/EtPwV9LjSmeYFhIh+rd3xeAuHhjQwRU2Mt7+Gvxj1y70nLy4vHjey8WE3r5cR2Qedu2q/jUxWYI9e1hph1f/a8THx2tf9+vXD3X1ZRo0aFClwREIyS0qw97LadiZ+BgXU/O0yy0kQoR2dMPQLh7o274ZrKS8+ujrpWer8kdUzt3PBcMwvLmkTIg5Mr3/QQj5F7WGwfHbT/D7hYeIuZ6p7SUrFAC927hgRGBzhHdyN40zzJq4uKBLcwdYSITILSrD7axCtHOz5Tqqps/FpfrXxHSxdBxN+H8TYu4ePS3G9guPsP3CQ6Tll2qXd25uhxGBXhgW4AFX2yYyC8mjR5CifLShk3dycOZeDhXPxvDoUfWviclSpaSAjZ4NbHQ6IqTRqNQa7L+SjrEbzqLP8jisir2NtPxSOFhJ8GYvH+yf1gd/v98Hbz/v23QKJwDMnQsA6Olb/hzy2Xu5XEZjPp7lvcprYrKE8+ez0w4rrRDSwHIKFYiOu4M+y+Mw5deLOH47GwwD9G7jjG9fD8SZ2QPx2Uud0NGjifZC/fJLAEBwq2fFMyWnzj4BhAXP8l7lNTFZwhUrWGmHLtsSXrv6OB+bT93H7ktpKFNpAADO1lKMes4brz3XAi2czWs4xQBve8jEQmQXluHukyK0cbXhOiRCzBIVT8I7KrUG+69mYPOp+0jQmYbL38se40N8MNTfQ+/pvJoamViEwBYOOHMvF2dTcqh4EsIRKp6EN0rK1Nie8BDrj9/Dw9zygQwkIgGGdPHA+F4+CPR2MN/HM9LStC97tnIuL573cjEmuCWHQZkBnbxXek1MlurBA+owRJqGvOIyfBt7G72XHcG8XdfwMLcETtZSTBvYFidnDcCq1wLRrYWj+RZOANi7V/sy+FmnoTP36L5ng9PJe6XXxGQJWJoZh4on4UxaXgkW7rmOXkuPYEXMLeQWlcHL0RILh3fCyY8HYEZYu6bVY9YYOqNmBbZwgFQkRFaBAvdz9J9CidSD7mhlNHJZkyCaMoWVduiyLWl0j/NKEB13B9svPNQOaNDRww6T+7bC0C4eEIvob7raWEhE6OrtgHP3c3H2Xg58Xay5DokQs6NX8dy9e7fBDYeFhcHS0tLg7UjTlZ5fXjS3nf+naPZs5YQp/drghbYu5n1Z1kA9Wznh3P1cnLqbg9d6tOA6HELMjl7F8+WXXzaoUYFAgNu3b6NVq1b1iYk0MZnyUqyOu4Pfzj1Embr8cZOQVs6YEdYOPXydOI7OROiM+wyUDzv47ZE7OHknGxoN0+Tn9+SMbt7/dQyIaVIfPszKJVe928jIyICrq6te69ra0rBhpLwjUHTcHfx0+oH2Gc0evk6YEdoOIa2dOY7OtAW2cISVVIScojLcyJCjk6c91yERYlb0Kp7jx4836BLsG2+8ATu7JjrSC6lTqVKNn07dR3TcHchLVQCA7i0dERVWXjTp8mw99OsHlP4zfq9ULETPVs44cjMLJ25nU/FsKLp5/9cxIKZJFBrKynHUq3hu2rRJr8YKCwthY2ODNWvWGBUUMU0aDYO/kh7j60O38Div/DnNDu62+HhwB/Rr14yKJsueb+OCIzezcPx2Nt7t25rrcAgxK3p3a/zmm29qfb+goAARERFGB0RM04nb2Rj63QlE/X4Jj/NK4GFvgS//44+9/9cH/du7UuFsAH3alk+tdO5+LkqVao6jIcS86H3P85NPPoGzszPGjRtX5b2ioiIMGjQIOTk5rAZH+C81pxif772OQ9czAQC2FmK8168NJvT2Mdsh9BrE+vVVFrVxtYGbnQyZcgXO389Fn7bNOAisidPNezXHgJge9Zo1jdth6Oeff8bYsWPh4OCAl156Sbu8qKgIERERePLkCY4ePcpCSMQUlJSp8V3cPaw9dg9lKg1EQgHG9myJaQPbwtFaynV4Tc/QoVUWCQQCPN+mGf64+AgnbmdT8WwIunmv5hgQ08MMGcJKO3oXz//85z/Iy8vD66+/jr1796Jfv37aM87MzEwcPXoUHh4erARF+IthGCRmC7D025NIfzYBde82zpg/rBNNztyQPD2r7eTQp60L/rj4CMdvZ2M2B2E1ebp5r+EYENMibtmy8ToMVZg4cSJyc3MxfPhw7Nq1C/PmzUNaWhqOHj0KT09Po4Mh/HY/uwif/HkZp+6JAJSiuYMl5r7YERGd3OmeJkd6tym/73k9XY7sQgVcbGQcR0SIeTD40u9HH32E3NxcDBw4ED4+PoiPj4eXl1dDxEZ4QqnW4Idj9/Bt7G0oVBpIBAym9GuD9wa0pfuaHGtmK0MHd1vczCjAyTvZGN61OdchEWIW9O5t+8orr2i/bt26BYlEAhcXF0ybNq3Se/W1dOlSCAQCTJ8+XbustLQUkZGRcHZ2ho2NDUaOHInMzMxK26WmpmLo0KGwsrKCq6srZs6cCZVKVe84SGWJqU8x7LsT+PJgMhQqDXq1dsKsrmq8P6A1Fc7GNHNmjW9V9Lo9cTu7saIxH7p5r+UYENOhiYpipR29zzzt7Ss/hP3666+zEgAAnD9/HuvWrYO/v3+l5TNmzMDevXuxfft22NvbY+rUqXjllVdw8uRJAIBarcbQoUPh7u6OU6dOIT09HePGjYNEIsEXX3zBWnzmqKBUia8OJuN/Zx6AYQAnaynmDO2IFzu7Yv/+/VyHZ34WLarxrefbNsP64yk4fjsbDMPQJXQ26ea9lmNATIdmwQKw8We/3sVT34ESDFVYWIgxY8Zg/fr1+Pzzz7XL8/PzsWHDBmzZsgUDBgzQxtCxY0ecOXMGPXv2xKFDh3D9+nUcPnwYbm5u6Nq1KxYtWoSPP/4Yn332GaRS6vVZH3HJWZj9xxVkyMtvqr/SrTnmDPWDk7UUSqWS4+jMlJcX8OhRtW8F+zrBQiJEhrwUNzMK0NGDRvdijW7eazkGxHSIfX1ZOY6cT0kWGRmJoUOHIjQ0tFLxTEhIgFKpRGhoqHZZhw4d0KJFC5w+fRo9e/bE6dOn0aVLF7i5uWnXiYiIwJQpU3Dt2jUEBgZWu0+FQgGFQqH9Xi6XAwCUSqVZF4dChQpLDyRj24XHAABvR0ssGu6H3s/GodXNjznnyRBs5UucnQ1VDW2IAIS0ckJccjYOX0tHGxfTnc2Ib58v3bzXdgy4wrd88Zk2R9nZNebLkDzqVTxfeeUVbN68We/xaseMGYNvvvmmzoHkt27diosXL+L8+fNV3svIyIBUKoWDg0Ol5W5ubsjIyNCuo1s4K96veK8mS5YswYIFC6osj4uLg5WVVa0xN1V35MCWOyLkKMov+fX10OBF7wLkJ5/FvuSq68fExDRyhKbN2Hy9qNFg3759Nb7vUiYAIMLOs7fRouimUfviA758vnTzXtcx4BJf8mUKNLUcx+Ji/SeX16t47tq1C0+ePNGrQYZhsGfPHixatKjW4vnw4UNMmzYNMTExsLCw0C9alsyePRtROjeN5XI5vL290b9/fzg7m9dsHwqlGisO38Gm6+X3Nps7WGDZK50RXMNUYUqlEjExMQgLC4NEImnkaE0PW/kSDB+OIbU83B2QV4LtXx/H/UIBevULg4OVaR4bvn2+dPNe1zHgAt/yxWcVuWJeeqnG41hxFVIfehVPhmHQrl07vRvVR0JCArKystCtWzftMrVajWPHjuH777/HwYMHUVZWhry8vEpnn5mZmXB3dwcAuLu749y5c5XareiNW7FOdWQyGWSyqs/DSSQSs/oAXnmUjxm/J+FOViEAYFR3b8x5sSNsLerOgbnlylhG52v79lq7xvs0k6Cdmw1uZRbi9P08vBRg2s9d8+bzpZv3Oo4Bl3iTLxPA/PZbjbkyJId6Fc+4uDi9G6zQvHntz5sNHDgQV65cqbRswoQJ6NChAz7++GN4e3tDIpEgNjYWI0eOBAAkJycjNTUVISEhAICQkBAsXrwYWVlZ2rPcmJgY2NnZwc/Pz+CYzQXDMNhwIgXLDtyEUs3AxUaGZSO7YGBHt7o3JtwYMAA4cqTWVfp3cMWtzELE3cwy+eLJG7p51+MYEP4ThYcD9ahp/6ZX8ezbt6/RO/o3W1tbdO7cudIya2trODs7a5e//fbbiIqKgpOTE+zs7PD+++8jJCQEPXv2BACEh4fDz88PY8eOxfLly5GRkYE5c+YgMjKy2jNLAuQWleHD7Zdw5GYWAGBQJ3d88UoXONF4tPx26lSdq/Rv74p1R+/h6K0nUGsYiIT0yIrRdPOuxzEg/Cc4fZqVdjjvbVubb775BkKhECNHjoRCoUBERARWr16tfV8kEuHvv//GlClTEBISAmtra4wfPx4LFy7kMGr+OnMvB9O2JiJTroBULMTcF/3wRnALei6wiQhq6QhbCzFyi8pw6VEeurVw5DokQposXhXP+Pj4St9bWFggOjoa0dHRNW7TsmVL3vaA4wu1hsF3R27j29jb0DBA62bW+H50N3oe0JR07FjnKhKREC+0a4a9l9Nx+HomFU826OZdj2NATECHDqw0w9f734QlWQWlGPPjGaw8XF44Xw3ywp73n6fCaWoSE/VaLdyv/L51xfyqxEi6edfzGBB+U1XzaGR9UPFswhIelI9Le+ZeLqylIqwc1RVfvhoAKymvLjgQfUyerNdq/Tu4QiIS4E5WIe4+KWzgoMyAbt71PAaE34SRkey0U5+NVCoVDh8+jHXr1qGgoAAAkJaWhsJC+mXlA4Zh8OvZB3jth9PIlCvQxtUGu99/Hi8H0owbJmvzZr1Ws7OQIKR1+UDxB6/VPFAI0ZNu3vU8BoTfhP/7HyvtGHwK8uDBAwwaNAipqalQKBQICwuDra0tli1bBoVCgbVr17ISGKmfUqUa83Zdxe8XysduHNzZHV++GgAbGZ1tmouITm44dusJDl3LxHv92nAdDiFNksFnntOmTUP37t3x9OlTWFr+M4bmiBEjEBsby2pwxDBpeSX477rT+P3CIwgFwKzBHbB6TDcqnE2BSP95IMI6ukEgAJIe5iEjv7QBgzIDunk34BgQHmPpOBr8v+rx48dx6tSpKjOW+Pj44PHjx6wERQyXmPoUk/6XgOxCBRysJPju9UD0aduM67AIW4qK9F7V1c4Cgd4OuJiah5jrGRgb4tNwcTV1unk34BgQ/lLl5YGNsZgMPvPUaDRQq9VVlj969Ai2trYshEQMtedSGl774QyyCxXo4G6LPVOfp8LZ1KxYYdDqEZ3Kh6ekXrdG0s27gceA8JNw5Up22jF0g/DwcKzU2blAIEBhYSHmz5/Pu0GTmzqGYbDq8G28/1siFCoNBnZwxY4pveDtZJ4zwzRpn3xi0OoVxfP03RzkF9N0VfWmm3cDjwHhJ+Hcuey0Y+gGX331FU6ePAk/Pz+UlpZi9OjR2ku2y5YtYyUoUrdSpRrTtyXhm8O3AAATn/fFD+O60/1NAgDwcbFGezdbqDQMjiTT2SchbDP4f1pvb29cunQJ27Ztw6VLl1BYWIi3334bY8aMqdSBiDSc/GIlJv7vPM7ffwqxUICFwztjdHALrsMiPBPeyQ3JmQU4eDUTIwK9uA6HkCbFoOKpVCrRoUMH/P333xgzZgzGjBnTUHGRGqTllWD8xnO4nVUIWwsx1r4RhN5tXLgOizS0a9cM3iSikzu+O3IHR289QXGZigbHqA/dvNfjGBD+USUlNX6HIYlEgtJS6vrOlVuZBXhl9SncziqEu50Ftk8OocJpLm7cMHiTTp52aOFkhRKlWjuLDjGQbt7rcQwI/whu3mSlHYPveUZGRmLZsmVQqVSsBED0k/DgKf6z5hQy5KVo3cwaf7zXCx3caXxas/Gf/xi8iUAgwLAADwDA7qQ0tiMyD7p5r8cxIPwjeu01Vtox+DrO+fPnERsbi0OHDqFLly6wtrau9P6ff/7JSmDkH+dScjFh0zkUlanRrYUDNox/Do40/ybRw7AAT0TH3UV88hPIS5Wws2DjghUhxODi6eDggJEjRzZELKQap+5m4+3NF1CiVKN3G2esH9ed7l0RvXVwt0M7NxvcyizEwasZeLW7N9chEdIkGPy/8KZNmxoiDlKNY7eeYNL/LkCh0uCFds3ww9ggWEhoiDCztHNnvTcd5u+Jr2NuYc/ldCqehtLNuxHHgPCHevt2ViaypinJeOrIzUxM/OmCdvADKpxmrnXrem86LMATAHDyTjZyChVsRWQedPNuxDEg/MG0asVKOwYXYF9fXwgEghrfv3fvnlEBkfL/5N79OQFKNYOITm747vVukIrp7xyz5u8P1LOnu4+LNfy97HH5UT72Xc3A2J4tWQ6uCdPNuxHHgPCHOCiIleNocPGcPn16pe+VSiUSExNx4MABzJw50+iAzN3Vx/l4538XoFQzGNzZHd++HgiJiAonMc4wf09cfpSPPUlpVDwJYYHBxXPatGnVLo+OjsaFCxeMDsic3c8uwpvPetX2au2Mla91pcJJWPFigAcW77uBc/dzkZ5fAg97Gg2MEGOw9j/z4MGD8ccff7DVnNnJKijF2I1nkV1Yhk6edlg3NggyMd3jJM8YOW60h70levg4AQD+SqRnPvWmm3cau7tJ0HzxBSvtsFY8d+zYAScnJ7aaMytlKg2m/HIRD3NL0NLZCpsn9IAtPY9HdNVwxccQr3RrDgD44+IjMAxjdHtmQTfvLBwDwj3N+++z0o7BxTMwMBDdunXTfgUGBsLDwwOffPIJPjFwyp41a9bA398fdnZ2sLOzQ0hICPbv3w8AuH//PgQCQbVf27dv17ZR3ftbt2419Mfi1KK/ryPhwVPYWoixeUIPNLOVcR0S4RsLC6ObGOLvAQuJEHeyCnH5UT4LQZkB3byzcAwI98QszTtt8D3P4cOHV+ptKxQK0axZM/Tr1w8dOnQwqC0vLy8sXboUbdu2BcMw+OmnnzB8+HAkJiaiQ4cOSE9Pr7T+Dz/8gC+//BKDBw+utHzTpk0YNGiQ9nsHBwdDfyzObL/wED+feQAAWDmqK3xdrOvYgpD6sbOQIKKTO3YlpWFHwiMEeDtwHRIhJsvg4vnZZ5+xtvNhw4ZV+n7x4sVYs2YNzpw5g06dOsHd3b3S+zt37sR///tf2NjYVFru4OBQZV1TcC0tH5/+dRUAMD20LQZ2dOM4ItLU/SfIC7uS0rD7Uho+HdqRnh0mpJ4MLp4ikQjp6elwdXWttDwnJweurq5Qq9X1CkStVmP79u0oKipCSEhIlfcTEhKQlJSE6OjoKu9FRkZi4sSJaNWqFSZPnowJEybU+iyqQqGAQvHPw+JyuRxA+WM3SqWyXvEbSqFUY9pviShTadC/vQum9PFptH0boyJGU4iVD9jKl3DCBGhYyPlzLezhbidDhlyBQ1fTMLgzv/7o5NvnSzfvbB0DNvEtX3xWkSPV+PFADfkyJI8CxsCeA0KhEBkZGVWKZ1paGlq3bo2SkhJDmsOVK1cQEhKC0tJS2NjYYMuWLRgyZEiV9d577z3Ex8fj+vXrlZYvWrQIAwYMgJWVFQ4dOoT58+dj+fLl+L//+78a9/nZZ59hwYIFVZZv2bIFVlZWBsVfXzvvCxGfLoSthMGsADVsqH8QaSR/pwoR81gIPwcN3u2o4TocQnijuLgYo0ePRn5+Puzsap+1Su/i+e233wIAZsyYgUWLFlW6dKpWq3Hs2DHcv38fiYmJBgVbVlaG1NRU5OfnY8eOHfjxxx9x9OhR+Pn5adcpKSmBh4cH5s6diw8++KDW9ubNm4dNmzbh4cOHNa5T3Zmnt7c30tPT4ezsbFD89XE2JRdvbCx/JvaHNwLRv32zBt8nW5RKJWJiYhAWFgaJhCp+XdjKlzgwECoDf7dqkpJdhPBVJyEUAHFRfeDpwJ9nPvn2+dLNO5vHgC18yxefVeRq2CefQJ2UVO06crkcLi4uehVPvS/bfvPNNwAAhmGwdu1aiET/3CuRSqXw8fHB2rVr9W2u0rZt2rQBAAQFBeH8+fNYtWoV1q1bp11nx44dKC4uxrhx4+psLzg4GIsWLYJCoYBMVn2vVZlMVu17EomkwT+ApUo15u4un1T39R4tEN7Zs0H311AaI1dNidH5unOHtXy383BASCtnnL6Xgz8S0xEV3p6VdtnEm8+Xbt5ZPAZs402+TIDg7t0ac2VIDvUunikpKQCA/v37488//4Sjo6PeOzGERqOpdFYIABs2bMBLL72EZs3qPkNLSkqCo6NjjYWTa6vj7yIluwiutjJ8MsSw3smEsGVMzxY4fS8HW88/xPsD29JIVoQYyOAOQ3FxcaztfPbs2Rg8eDBatGiBgoICbNmyBfHx8Th48KB2nTt37uDYsWPYt29fle337NmDzMxM9OzZExYWFoiJicEXX3yBDz/8kLUY2XT3SSHWxt8FAMwf1okGQiD6e+EFVpsL93OHi40UWQUKxN7IwiCedRziDd28s3wMCDeYPn1Qc3dS/dVrWrNHjx5h9+7dSE1NRVlZWaX3VqxYoXc7WVlZGDduHNLT02Fvbw9/f38cPHgQYWFh2nU2btwILy8vhIeHV9leIpEgOjoaM2bMAMMwaNOmDVasWIFJkybV58dqcAv2XEeZWoN+7ZthSBf6z4oY4NAhVpuTioV4tbs31sTfxa9nH1DxrIlu3lk+BoQb6n37WBlaz+DiGRsbi5deegmtWrXCzZs30blzZ9y/fx8Mw6Bbt24GtbVhw4Y61/niiy/wRQ1jEQ4aNKjS4Ah8FpechWO3nkAiEuCzYZ1qfZSGkCpGjgRYHjv69edaYO3Ruzh+OxsPcorQ0pkG6KhCN+8NcAxI4xP997+sTGxucAGePXs2PvzwQ1y5cgUWFhb4448/8PDhQ/Tt2xevvvqq0QE1RWoNgy/2lncSerOXD3xoFCFiqL17WW+yhbMVXmhb3o/gt3M19043a7p5b4BjQBqf4NkQsMYyuHjeuHFD2+tVLBajpKQENjY2WLhwIZbRrAPV2nMpDbezCmFvKcHUAW25DocQrdHBLQCUDxOpUNVvgBNCzJHBxdPa2lp7n9PDwwN3797Vvpednc1eZE2ESq3BqtjbAIB3XmgFe0vqJETqoYGGnxzYwRVudjLkFJXhwNWMBtmHSdPNuwkOAUqqwdJxNLh49uzZEydOnAAADBkyBB988AEWL16Mt956Cz179mQlqKbkz8THSMkugpO1FG/28uE6HGKq7t9vkGbFIiFG92gJANh48j5NVfZvunlvoGNAGpfq9m1W2jG4eK5YsQLBwcEAgAULFmDgwIHYtm0bfHx89OoAZE7KVBp8++ysc3LfVrCW1atzMyHA7NkN1vSYni0gFQtx6WEeLqY+bbD9mCTdvDfgMSCNR/jpp+y0Y8jKarUajx49QosW5fdJrK2tsXbtWly+fBl//PEHWrZsyUpQTcX2hId49LQEzWxlGNvTh+twiCl7NsJXQ3CxkWFE1/KJsn88ntJg+zFJunlvwGNAGo/w2VCzRrdjyMoikQjh4eF4+pT+Oq2LUq3B6rjy+8Hv9WsNSylN/UT46+0+vgCAg9cykJpTzHE0hPCfwZdtO3fujHv37jVELE3KvivpeJxXAmdrKV7v0YLrcAipVTs3W/Rp6wINA2w6RWefhNTF4OL5+eef48MPP8Tff/+N9PR0yOXySl+kfPD8dUfL/8AY38uHJhwmxsvKavBdTOzTCgDw+/mHkJfS/JAAKue9EY4BaXiqx49Zacfg4jlkyBBcunQJL730Ery8vODo6AhHR0c4ODg02GDxpubknRxcT5fDUiLC2J50H5iwoBFGtnmhrQvautqgqEyNbTRoQjndvNPoQk2CgIXRhQCOB4ZvqtYdK7/X+d/uXnC0lnIcDWkSpkwBJkxo0F0IBAJM7OOLj/+4gg0nUjCuV0vIxGZ+1UQ3741wDEjDE02dCkycaHQ7BhfPvn37Gr3Tpux2ZgGO386GUAC8/XwrrsMhxCDDuzbH14duIUNeij8vPqb79YTUoF6Dyx8/fhxvvPEGevXqhcfPrh///PPP2sETzNn/Tj8AAIR2dEMLZyuOoyHEMBYSEd55ofyPvjXxd6FSaziOiBB+Mrh4/vHHH4iIiIClpSUuXryonbg6Pz+/xtlPzIW8VIk/Lj4CUN5RiBDWNOIfpqODW8DRSoLU3GL8fTm90fbLS7p5p5ODJkEdH89KO/Xqbbt27VqsX78eEsk/47T27t0bFy9eZCUoU/VnwiMUl6nRupk1erV25joc0pQ8+yO1MVhJxXj7+fLnPqPj7kCjMeMh+3Tz3ojHgDQglo6jwcUzOTkZL1Qzo7q9vT3y8vLYiMkkMQyD/50pv2Q7vpcPzddJ2DVwYKPubmyID2xlYtzOKsSBa2Y8YLxu3hv5GJCGIYqIYKUdg4unu7s77ty5U2X5iRMn0KqV+XaQOZeSi3tPimAlFWFEYHOuwyHEKPaWEkzo7QMAWBFzC2pzPvskpBoGF89JkyZh2rRpOHv2LAQCAdLS0vDrr7/iww8/xJQpUxoiRpOw7Xz5c3EvBXjC1oKmHSOmb+KzKfTuZBXir0R2HiwnpKkw+FGVWbNmQaPRYODAgSguLsYLL7wAmUyGDz/8EO+//35DxMh7+SVK7L1S3rHiv895cxwNaZI2bmz0XdpZSDC5b2ssO3ATK2NvYViAJ6TienXQN126eefgGBD2qX/4wfDCVw2DfxMEAgE+/fRT5Obm4urVqzhz5gyePHmCRYsWsRCOadp9KQ0KlQbt3GwQ6O3AdTikKQoL42S343u1RDNbGR7mlmDbBTMcdUg37xwdA8IuJjSUlXbq/WekVCqFra0tPDw8YGNjw0owpmrb+VQAwKjnWlBHIdIwvLm5omElFeP9AW0AAN/F3kZJmZqTODijm3eOjgFhl5ilvjkGF0+VSoW5c+fC3t4ePj4+8PHxgb29PebMmQOl0rDBpNesWQN/f3/Y2dnBzs4OISEh2L9/v/b9fv36QSAQVPqaPHlypTZSU1MxdOhQWFlZwdXVFTNnzoRKpTL0x6q3q4/zcfWxHBKRgDoKkSbptedawMvRElkFCvx85j7X4RDCCwZf+n3//ffx559/Yvny5QgJCQEAnD59Gp999hlycnKwZs0avdvy8vLC0qVL0bZtWzAMg59++gnDhw9HYmIiOnXqBKC8g9LChQu121hZ/TNqj1qtxtChQ+Hu7o5Tp04hPT0d48aNg0QiabQBG3YklA+KEO7nDicax5Y0QVKxENND2+HD7ZewOv4u/tvdGw5W9Fkn5s3g4rllyxZs3boVgwcP1i7z9/eHt7c3Xn/9dYOK57Bhwyp9v3jxYqxZswZnzpzRFk8rKyu4u7tXu/2hQ4dw/fp1HD58GG5ubujatSsWLVqEjz/+GJ999hmk0ob9BVepNdoRWEYG0VknaUCzZnG6+xGBzfHj8Xu4mVGAlYdv47OXOnEaT6PRzTvHx4CwQzNzJtiY7sDg4imTyeDj41Nlua+vr1HFSq1WY/v27SgqKtKe0QLAr7/+il9++QXu7u4YNmwY5s6dqz37PH36NLp06QI3Nzft+hEREZgyZQquXbuGwMDAavelUCi0wwoC0M5DqlQqDbr0fPJuDrILFXC0kqCnj4PBl61NUcXPaA4/KxtYy9ennwIc53z2oHYYvzkBP595gFFBnmjjyn5fB959vnTzzoNj8G+8yxePVeRIMXs2JDXky5A8Glw8p06dikWLFmHTpk2QyWTlwSgUWLx4MaZOnWpoc7hy5QpCQkJQWloKGxsb7Ny5E35+fgCA0aNHo2XLlvD09MTly5fx8ccfIzk5GX/++ScAICMjo1LhBKD9PiOj5lFRlixZggULFlRZHhcXV+mycF223BECEKKjrQIxBw/ovV1TEBMTw3UIJsXYfEVMmICDmzaxFE39dXEU4spTIaJ+PoHJHRtu0Hi+fL50886XY1AdvuTLFAi9vLCvhuNYXFysdzsChmEMGjpkxIgRiI2NhUwmQ0BAAADg0qVLKCsrw8B/DV9VUeRqU1ZWhtTUVOTn52PHjh348ccfcfToUW0B1XXkyBEMHDgQd+7cQevWrfHOO+/gwYMHOHjwoHad4uJiWFtbY9++fZUuLeuq7szT29sb6enpcHbWb0xahVKNnsuOolChwq9vd0cPHye9tjN1SqUSMTExCAsLqzS2MakeW/kS29pCVVDAYmT18yCnGIO/OwmlmsH6sYHo164Zq+3z7fOlm3e+HANdfMsXn1Xk6qVRo2o8jnK5HC4uLsjPz4ednV2t7Rl85ung4ICRI0dWWuZtRBduqVSKNm3Ku8IHBQXh/PnzWLVqFdatW1dl3eDgYADQFk93d3ecO3eu0jqZmZkAUON9UqD80nPFWbMuiUSi9wcwNjkbhQoVPOwtENLaFUKheT2iYkiuCDv54kO+27jbY0JvX/xw7B6WHLiFvu3dG2TgBD59vnTj4EtM/8anfJmCmnJlSA4NLp6bGviyhUajqXRWqCspKQkA4OHhAQAICQnB4sWLkZWVBVdXVwDlly/s7OyqPXNl0+5LaQDKh+Mzt8JJOPDKK1xHoDV1QBv8kfAI954UYcOJFEzp15rrkBqObt55dAxI/TEvvww2/sfmdKyt2bNn49ixY7h//z6uXLmC2bNnIz4+HmPGjMHdu3exaNEiJCQk4P79+9i9ezfGjRuHF154Af7+/gCA8PBw+Pn5YezYsbh06RIOHjyIOXPmIDIystozS7YUlCpx+EYWAGBYgGeD7YcQrS1buI5Ay85CgtlDOgIAVsXewsNc/e8TmRzdvPPoGJD6U//8MyvtGFw8c3JyEBkZCT8/P7i4uMDJyanSlyGysrIwbtw4tG/fHgMHDsT58+dx8OBBhIWFQSqV4vDhwwgPD0eHDh3wwQcfYOTIkdizZ492e5FIhL///hsikQghISF44403MG7cuErPhTaEg9cyUabSoHUza3TyrP26OCGs6NuX6wgqGdmtOYJ9nVCq1GDerqswsOuE6dDNO8+OAakfEUtTyxl82Xbs2LG4c+cO3n77bbi5uRk1HN2GDRtqfM/b2xtHjx6ts42WLVti37599Y6hPiou2Q7v2pyG4yON4+xZriOoRCAQYPGILhi86hjikp/gwNUMDO7iwXVY7NPNO8+OAakfwb/6ydSXwcXz+PHjOHHihLanrbl5UqDAyTvZAMrvdxJirtq42mBy39b47sgdzNt9DT1bOcORRtkiZsLgy7YdOnRASUlJQ8RiEg5cTYdawyDAyx4+LtZch0PMRefOXEdQrcj+bdC6mTWeFCjw2Z5rXIfDPt288/QYEMMwndgZHcvg4rl69Wp8+umnOHr0KHJyciCXyyt9NXUHr5U/CjOkKV6iIvx14QLXEVTLQiLC1//tCqEA2JWUhgNX07kOiV26eefpMSCGUZ85w0o7BhdPBwcHyOVyDBgwAK6urnB0dISjoyMcHBzg6OjISlB8lV+sxJl7OQCAiE41P0dKCOsmTeI6ghp19XbA5L7lj6t8uvMqcgqrf9TMJOnmncfHgOhP9K+ZuerL4OI5ZswYSCQSbNmyBbGxsThy5AiOHDmCuLg4HDlyhJWg+OpIciZUGgbt3Wzpki1pXCx1r28o00LbooO7LXKKyjC3KfW+1c07z48B0Y/g119ZacfgDkNXr15FYmIi2rdvz0oApuTg1fJLtuGd3OpYkxDzIhOL8NWrAXg5+iT2XcnAX0mPMSLQi+uwCGkwBp95du/eHQ8fPmyIWHitVKnG0VtPANAlW8KBBp5ejw2dm9vj/QFtAZRfvr37pJDjiFigm3cTOAZEDywdx3pNhj1t2jTMnDkTXbp0qTIWYMXoP03N8dvZKFGq0dzBkgZGII3PRDrjTR3QBqfvZePMvVxE/noRf0X2hoWEjdkTOaKbdxM5BqR2qpwcsDEKsMFnnqNGjcKNGzfw1ltv4bnnnkPXrl0RGBio/bepOnStfIqzMD/jBoYgpF6WL+c6Ar2IhAKsei0QztZS3MwowKK/r3MdknF0824ix4DUTvjVV+y0Y+gGKSkpVb7u3bun/bcpUqk1OHyD7ncSDs2bx3UEenOzs8A3o7pCIAB+PZuKvy+ncR1S/enm3YSOAamZsJq5nOvD4Mu2LVu2ZGXHpuT8/ad4WqyEg5XEbObtJMQYL7Rrhvf6tUZ03F3M+uMKOrjboY2rDddhEcKaes2q8vPPP6N3797w9PTEgwcPAAArV67Erl27WA2OLw5dL79kO7CDG8QiTieiIcRkzAhthx6+TihUqPDO/y4gv1jJdUiEsMbgSrBmzRpERUVhyJAhyMvLg1qtBlA+eMLKlSvZjo9zDMMg9tn0Y3TJlnAmOZnrCAwmFgmxekw3NHewxL3sIry/NREqtYbrsAyjm3cTPAakKtXVq6y0Y3Dx/O6777B+/Xp8+umnEIn+6UXXvXt3XLlyhZWg+ORedhFSc4shFQnxfBsXrsMh5ioxkesI6sXFRoYfxgXBUiLCsVtPsHT/Ta5DMoxu3k30GJDKBElJrLRTrw5D1fWqlclkKCoqYiUoPom7WX7WGdzKCdYyg28RE8KO117jOoJ66+RpjxX/LZ+F6ccTKfjtXCrHERlAN+8mfAzIP0RvvMFKOwYXT19fXyRVU7kPHDiAjh07shETr8Qnlw+M0K+9K8eREGK6BnfxwPTQigEUriDmeibHERFiHL2L58KFC1FcXIyoqChERkZi27ZtYBgG586dw+LFizF79mx89NFHDRlroytSqHA2pXwg+P7tm3EcDSGmbdrAtvhvdy9oGGDqlotIeJDLdUiE1Jve1yEXLFiAyZMnY+LEibC0tMScOXNQXFyM0aNHw9PTE6tWrcJrTeyyxsk72VCqGbR0toIvDQRPuLRnD9cRGE0gEOCLEV2QXViGIzez8NbmC/hjSgjauNpyHVrNdPPeBI4BAdQ7dxr+jGY19D7z1J0lYcyYMbh9+zYKCwuRkZGBR48e4e2332YhHH6Je3bJtn97VxpViHCreXOuI2CFWCRE9OhuCGzhgPwSJcZuOIfUnGKuw6qZbt6byDEwd4ynJyvtGHTP898FxMrKCq6uTfNeIMMwiE8u7yzUjy7ZEq5168Z1BKyxlIqwYfxzaONqg/T8Ury+/gwe5vK0gOrmvQkdA3MmDg5mpR2Dime7du3g5ORU61dTkZxZgPT8UlhIhOjZypnrcAhpUpyspdgyMRitXKzxOK8Er/1wBo+e8rSAElINgy79LliwAPb29qztfM2aNVizZg3u378PAOjUqRPmzZuHwYMHIzc3F/Pnz8ehQ4eQmpqKZs2a4eWXX8aiRYsqxVDd5dTffvvN6PuvcTfLL9n2au1i2rNCEMJTrnYW+O2dnnjthzNIyS7Caz+cwS9vdec6LEL0YlDxfO2111i9TOvl5YWlS5eibdu2YBgGP/30E4YPH47ExEQwDIO0tDR89dVX8PPzw4MHDzB58mSkpaVhx44dldrZtGkTBg0apP3ewcHB6NiO3ap4RIUu2RIe+PprriNoEG52FvhtUk+89sNp3M8pxmvrz2GCL9dR6dDNexM9BuZGs3w52Dgd0rt4NkSHmWHDhlX6fvHixVizZg3OnDmDt99+G3/88Yf2vdatW2Px4sV44403oFKpIBb/E7qDgwPc3dmboLqkTI2EB08BgEYVIvzw7rtcR9Bg3O3Lz0DHbjiHO1mFWHVNhMAeeejRmgd/uOrmvQkfA3OimTSJleJZr962DUGtVmPr1q0oKipCSEhItevk5+fDzs6uUuEEgMjISLi4uKBHjx7YuHGj0bFeeJCLMrUGHvYW9IgK4Qebpj0jiYe9Jba/G4Ku3vYoVgkwbvMFxD3rsMcp3bw38WNgLsSOjuy0o++KGk3DDOh85coVhISEoLS0FDY2Nti5cyf8/PyqrJednY1FixbhnXfeqbR84cKFGDBgAKysrHDo0CG89957KCwsxP/93//VuE+FQgGFQqH9Xv5shnilUgmlUoljz35pQ1o5QaVSsfFjNhlKpbLSv6R2bOVLDEDVxHNuIxXgxzEBGLs2HjfygEk/XcDCl/zwahB3j4jo5p2Px4B+H/Wnm6Oa8mVIHgVMQ59S1qGsrAypqanIz8/Hjh078OOPP+Lo0aOVCqhcLkdYWBicnJywe/duSCSSGtubN28eNm3ahIcPH9a4zmeffYYF1UyIumXLFlhZWeHLyyI8KhJgbBs1ujfjND2EAABefPVV/L19O9dhNAq1BthyV4gL2eUXxvp5aDC8pQZCDh611s27OR2Dpqy241gx8E/FVc7acF48/y00NBStW7fGunXrAAAFBQWIiIiAlZUV/v77b1hYWNS6/d69e/Hiiy+itLQUMpms2nWqO/P09vZGeno6hJa2CF4aD4YBTn7UF6621bdhrpRKJWJiYhAWFlbrHzGkHFv5EkZFQbNiBYuR8VNFvgaGhuKHEw/xbdxdAMALbZ3xzav+sLNs3M+cbt75eAzo91F/FbkacvAgsGpVtevI5XK4uLjoVTx5N02IRqPRFja5XI6IiAjIZDLs3r27zsIJAElJSXB0dKyxcALlM8BU975EIsHZVDkYBmjnZoPmTnSPoyYSiYR+WQ1gdL6++46VTg6mQiaVIiqiA9p72OOD7Uk4djsHr6w7i+jR3dC5OXuPy9VJN+88Pgb0+2iAVatqzJUhOeS0eM6ePRuDBw9GixYtUFBQgC1btiA+Ph4HDx6EXC5HeHg4iouL8csvv0Aul2vvTTZr1gwikQh79uxBZmYmevbsCQsLC8TExOCLL77Ahx9+WO+YTt7JBlD+fCchvOHnB1y/znUUjW6ovwdaOlvh3Z8T8CCnGK+sOYX5w/wwukeLxhkyUzfvZnoMmhqxvz9w44bx7bAQS71lZWVh3LhxSE9Ph729Pfz9/XHw4EGEhYUhPj4eZ8+eBQC0adOm0nYpKSnw8fGBRCJBdHQ0ZsyYAYZh0KZNG6xYsQKTJk2qd0wVxZMeUSG8cu8e1xFwpnNze+z9v+fx4fZLOHwjC5/uvIpzKblY9HJn2Fk08NmWbt7N+Bg0KSkprDTDafHcsGFDje/169evzkdOBg0aVGlwBGOl5Zfgfk4xREIBgls1naEGCTF1DlZSrB/XHeuP38OyA8nYlZSG8ym5+OrVAPSiP3QJBwyeDLspO5tSPjBCgJc9bBv6L1pCDNG/P9cRcE4gEOCdF1rj93d7oqWzFdLySzH6x7P4bPc1lJSpG2anunmnY9AkMP36sdIOFU8d5+6VT87bm/6SJXyzfz/XEfBGUEsn7Pu/PhgT3AIAsPnUfQxadUw7pCardPNOx6BJULM0LysVTx3n7pefeVLxJLzz8stcR8Ar1jIxFo/ogs0TnoO7nQUe5BRj3MZzmLrlIrLkpeztSDfvdAyaBNHIkay0Q8VTR26xEpYSEQJbOHAdCiGVHTjAdQS81K+9Kw5/0Bdv9faFUAD8fTkdA78+io0nUlCmYmFUNN280zFoEgSHDrHSDhXPf3nO1wkyMV+f5iKE/JuNTIx5w/ywe+rz8PeyR4FChYV/X0f4N0dx4Gp6g4/LTcwTFc9/eb4NTXxNeKg5d+O7morOze2x873e+GJEF7jYyHA/pxiTf7mIV9eeRsKD3Po1qpt3OgZNA0vHkYrnv9DgCISX7t7lOgKTIBIKMDq4BeJn9sP/DWgDC4kQFx48xcg1pzF2w1ntVIN60807HYMmQXXzJivtUPHUYWMhQkeP2sczJIQTH33EdQQmxUYmRlR4e8R/2B+juntDLBTg+O1sjFxzCmM3nMXpuzn6Xc7VzTsdgyZBOGsWO+2w0koTEejtABEXUzcQUpdvv+U6ApPkbm+BZf/xx5EP+lUqoq+vP4MXvzuBnYmPau9YpJt3OgZNgjA6mp12WGmliQhqwc4kqYQQfmnhbIVl//FH3If9MCa4BSwkQlxLk2PGtkvos/wIouPu4EmBou6GCHmGiqeOIHpEhZAmzdvJCotHdMHpWQMxM6I9XG1lyJQr8OXBZIQsicW7P19A3M0sqDXUQ5fUjndTknGpgztNQUZ4KieH6wiaFEdrKSL7t8GkPq2w51Iafjn7AImpeTh4LRMHr2XCw94CLwc2R3jibXgXPjsjfZAGFPLr7FSlVKJACeQUKiCWsPBcaxNWkausOw9gW6aCldS48kfFU4dYRCfihKd++w2YOJHrKJocqViIkUFeGBnkheSMAmw7/xB/Jj5Cen4p1sTfRe6lg9gWEAEAGKXzml/EmHPhKNdBmAgxrmxYDM8P3se00LZGtUTVghBTMHUq1xE0ee3dbTFvmB/OfjIQ370eiBf9PbAwZq32fd3XxHSxdRzpzJMQQnTIxCIMC/DEsABP4C0h7i8dWv7GSp3XPKFUKrFv3z4MGTIEEgnNBFWbilxJxUKjzzoBOvMkhBBCDEbFkxBTcPo01xGYJ9280zFoElTHjrHSDhVPQkxBQQHXEZgn3bzTMWgSBIWFrLRDxZMQUxAeznUE5kk373QMmgTRkCGstEPFkxBCCDEQFU9CCCHEQFQ8CTEFP/3EdQTmSTfvdAyaBPWGDay0w2nxXLNmDfz9/WFnZwc7OzuEhIRg//792vdLS0sRGRkJZ2dn2NjYYOTIkcjMzKzURmpqKoYOHQorKyu4urpi5syZUKlUjf2jENKwXniB6wjMk27e6Rg0CUyfPqy0w2nx9PLywtKlS5GQkIALFy5gwIABGD58OK5duwYAmDFjBvbs2YPt27fj6NGjSEtLwyuvvKLdXq1WY+jQoSgrK8OpU6fw008/YfPmzZg3bx5XPxIhDcPXl+sIzJNu3ukYNAnidu3YaYeVVupp2LBhlb5fvHgx1qxZgzNnzsDLywsbNmzAli1bMGDAAADApk2b0LFjR5w5cwY9e/bEoUOHcP36dRw+fBhubm7o2rUrFi1ahI8//hifffYZpFIpFz8WIYSQJo43w/Op1Wps374dRUVFCAkJQUJCApRKJUJDQ7XrdOjQAS1atMDp06fRs2dPnD59Gl26dIGbm5t2nYiICEyZMgXXrl1DYGBgtftSKBRQKP6ZHSE/Px8AkJub20A/XdOhVCpRXFyMnJwcGg5MD2zlS8wwUJnBzCp8+3zp5p2Px4Bv+eKzilzJazmOBc+e5WWYuqek47x4XrlyBSEhISgtLYWNjQ127twJPz8/JCUlQSqVwsHBodL6bm5uyMjIAABkZGRUKpwV71e8V5MlS5ZgwYIFVZa3Y+l0npAG4eLCdQTmSTfvdAyahjqOY0FBAezt7Wtdh/Pi2b59eyQlJSE/Px87duzA+PHjcfRow06vM3v2bERFRWm/z8vLQ8uWLZGamlpnwsydXC6Ht7c3Hj58CDs7O67D4T3Kl2EoX4ahfOlPn1wxDIOCggJ4enrW2R7nxVMqlaJNmzYAgKCgIJw/fx6rVq3CqFGjUFZWhry8vEpnn5mZmXB3dwcAuLu749y5c5Xaq+iNW7FOdWQyGWQyWZXl9vb29AHUU0UPaaIfypdhKF+GoXzpr65c6XsCxbvnPDUaDRQKBYKCgiCRSBAbG6t9Lzk5GampqQgJCQEAhISE4MqVK8jKytKuExMTAzs7O/j5+TV67IQQQswDp2ees2fPxuDBg9GiRQsUFBRgy5YtiI+Px8GDB2Fvb4+3334bUVFRcHJygp2dHd5//32EhISgZ8+eAIDw8HD4+flh7NixWL58OTIyMjBnzhxERkZWe2ZJCCGEsIHT4pmVlYVx48YhPT0d9vb28Pf3x8GDBxEWFgYA+OabbyAUCjFy5EgoFApERERg9erV2u1FIhH+/vtvTJkyBSEhIbC2tsb48eOxcOFCg+KQyWSYP38+FVw9UK4MQ/kyDOXLMJQv/bGdKwGjT59cQgghhGjx7p4nIYQQwndUPAkhhBADUfEkhBBCDETFkxBCCDGQ2RfP6Oho+Pj4wMLCAsHBwVUGXTBXx44dw7Bhw+Dp6QmBQIC//vqr0vsMw2DevHnw8PCApaUlQkNDcfv2bW6C5diSJUvw3HPPwdbWFq6urnj55ZeRnJxcaR19ptczF2xMRWiuli5dCoFAgOnTp2uXUb4q++yzzyAQCCp9dejQQfs+W/ky6+K5bds2REVFYf78+bh48SICAgIQERFRadAFc1VUVISAgABER0dX+/7y5cvx7bffYu3atTh79iysra0RERGB0tLSRo6Ue0ePHkVkZCTOnDmDmJgYKJVKhIeHo6ioSLtOXdPrmRNjpyI0V+fPn8e6devg7+9faTnlq6pOnTohPT1d+3XixAnte6zlizFjPXr0YCIjI7Xfq9VqxtPTk1myZAmHUfEPAGbnzp3a7zUaDePu7s58+eWX2mV5eXmMTCZjfvvtNw4i5JesrCwGAHP06FGGYcpzI5FImO3bt2vXuXHjBgOAOX36NFdh8oqjoyPz448/Uq5qUFBQwLRt25aJiYlh+vbty0ybNo1hGPpsVWf+/PlMQEBAte+xmS+zPfMsKytDQkJCpSnPhEIhQkNDcfr0aQ4j47+UlBRkZGRUyp29vT2Cg4Mpd/hnijsnJycAqHN6PXOmVquxdetWvaciNFeRkZEYOnRopbwA9Nmqye3bt+Hp6YlWrVphzJgxSE1NBcBuvjgfGJ4r2dnZUKvV1U5pdvPmTY6iMg0V071Vl7vapoIzBxqNBtOnT0fv3r3RuXNnAOX5qmt6PXNjzFSE5mbr1q24ePEizp8/X+U9+mxVFRwcjM2bN6N9+/ZIT0/HggUL0KdPH1y9epXVfJlt8SSkIURGRuLq1auV7rGQqriYitAUPXz4ENOmTUNMTAwsLCy4DsckDB48WPva398fwcHBaNmyJX7//XdYWlqyth+zvWzr4uICkUhUpZeV7pRnpHoV+aHcVTZ16lT8/fffiIuLg5eXl3a5u7u7dno9Xeacr4qpCIOCgrBkyRIEBARg1apVlKt/SUhIQFZWFrp16waxWAyxWIyjR4/i22+/hVgshpubG+WrDg4ODmjXrh3u3LnD6ufLbIunVCpFUFBQpSnPNBoNYmNjtVOeker5+vrC3d29Uu7kcjnOnj1rlrljGAZTp07Fzp07ceTIEfj6+lZ6X5/p9cydIVMRmpOBAwfiypUrSEpK0n51794dY8aM0b6mfNWusLAQd+/ehYeHB7ufLyM6NZm8rVu3MjKZjNm8eTNz/fp15p133mEcHByYjIwMrkPjXEFBAZOYmMgkJiYyAJgVK1YwiYmJzIMHDxiGYZilS5cyDg4OzK5du5jLly8zw4cPZ3x9fZmSkhKOI298U6ZMYezt7Zn4+HgmPT1d+1VcXKxdZ/LkyUyLFi2YI0eOMBcuXGBCQkKYkJAQDqPmzqxZs5ijR48yKSkpzOXLl5lZs2YxAoGAOXToEMMwlKu66Pa2ZRjK17998MEHTHx8PJOSksKcPHmSCQ0NZVxcXJisrCyGYdjLl1kXT4ZhmO+++45p0aIFI5VKmR49ejBnzpzhOiReiIuLYwBU+Ro/fjzDMOWPq8ydO5dxc3NjZDIZM3DgQCY5OZnboDlSXZ4AMJs2bdKuU1JSwrz33nuMo6MjY2VlxYwYMYJJT0/nLmgOvfXWW0zLli0ZqVTKNGvWjBk4cKC2cDIM5aou/y6elK/KRo0axXh4eDBSqZRp3rw5M2rUKObOnTva99nKF01JRgghhBjIbO95EkIIIfVFxZMQQggxEBVPQgghxEBUPAkhhBADUfEkhBBCDETFkxBCCDEQFU9CCCHEQFQ8CSGEEANR8SSEEEIMRMWTEEIIMRAVT0IIIcRAVDwJIYQQA1HxJIQQQgwk5joAPtBoNEhLS4OtrS0EAgHX4RBCCOEAwzAoKCiAp6cnhMLazy2peAJIS0uDt7c312EQQgjhgYcPH8LLy6vWdah4ArC1tQUApKSkwMnJieNo+E2pVOLQoUMIDw+HRCLhOhzeYy1fd+4AbdqwFxhP8e7zpZt3Hh4D3uWLx7S5atUKko4dq11HLpfD29tbWxNqQ8UT0F6qtbW1hZ2dHcfR8JtSqYSVlRXs7Ozol1UPrOUrMxPo1o29wHiKd58v3bzz8BjwLl88VpEr+6wsiIODa11Xn9t31GGIEFMwYgTXEZgn3bzTMWgSRK++yko7VDwJIYQQA/GqeB47dgzDhg2Dp6cnBAIB/vrrrzq3iY+PR7du3SCTydCmTRts3ry5weMkhBBi3nhVPIuKihAQEIDo6Gi91k9JScHQoUPRv39/JCUlYfr06Zg4cSIOHjzYwJES0sh27OA6AvOkm3c6Bk2CeutWVtrhVYehwYMHY/DgwXqvv3btWvj6+uLrr78GAHTs2BEnTpzAN998g4iICIP3f/JuDuyy1QZvZ07UajVuPBXA5nY2RCIR1+HwHhv5EggE6ObbBnX3/yOse9Yr896TQmTJXFGanMVxQJXR76P+KnLVzN0VntlF8HGxNqo9XhVPQ50+fRqhoaGVlkVERGD69Om1bqdQKKBQKLTfy+VyAMDU3y5BKLNiPc6mR4S1Ny9yHYQJMT5ft75+BcriQpbi4S+lUlnpX66JO3VC6sMsDFxxHDe/HIH2H+7kOqRq0O+j/kSYMbEvovddxvv9W1d515DPnUkXz4yMDLi5uVVa5ubmBrlcjpKSElhaWla73ZIlS7BgwYIqyz2tGIgtmAaJlZD6UGmAjBIBGIbB/n37uA6n0cTExHAdAgDgRY0GOw/GgWHK/6v0sqb/H0yeAMi8fwv79iVXeau4uFjvZky6eNbX7NmzERUVpf2+4sHYv95/Ac7OzhxGxn9KpRIxMTEICwuj58r0YGy+sgsVCFl2FAAwaNBgCIVNe/hIvn2+hEIhQkJ6YeXVc4AAiJtl+O2ghsS3fPFZRa6kIiE+n1D97cGKq5D6MOni6e7ujszMzErLMjMzYWdnV+NZJwDIZDLIZLIqyyUSCX0A9US5Mkx98+VsW34fa/kL4/B/agHsZeaRc958vr74AmJx+TH4cdBERPIhpmrwJl8mQLNoUY25MiSHvOpta6iQkBDExsZWWhYTE4OQkBCOIiKEXVKxEFZSETb0GIG8kjKuwzE/Oleotr/AzsP1hFuaOvrE6ItXxbOwsBBJSUlISkoCUP4oSlJSElJTUwGUX24dN26cdv3Jkyfj3r17+Oijj3Dz5k2sXr0av//+O2bMmMFF+IQ0CAdLCa6vGIm8Yn50ojEr1v/0yNz/6RAOAyFsETs4sNIOr4rnhQsXEBgYiMDAQABAVFQUAgMDMW/ePABAenq6tpACgK+vL/bu3YuYmBgEBATg66+/xo8//livx1QI4Ss7SwlEGg3yS6h4Njr1P4+uiRh6jK1JULNzHHl1z7Nfv35gmJp7s1U3elC/fv2QmJjYgFERwi0Hq/L7MHlUPAnhDV6deRJCqnKwlGJHl4HIL6Z7no3uzTe1Lw8EDeIuDsIajc6tP2NQ8SSE5+wtJfg0YipdtuXC2rXalytGUl+KpkCj5/CvdaHiSQjPOVhJsHfT/1GHIS48638BAOtXvsNhIIQt4ueeY6UdKp6E8Jy9lQRtch7SPU8u3Lihfdky6wGHgRDW3LzJSjNUPAnhOXvL8g5DdNmWEP6g4kkIzzlYSpHQvCPy6bJt4+vVS/vyastOHAZC2MKwNIgOFU9CeM7BSoLRr3+Bp9TbtvEdOaJ9GfXuCg4DIWxRHzrESjtUPAnhOQcrCb7ftQxP6cyz8Y0apX0575eFHAZC2CIaPZqVdqh4EsJzTtZShN0+g7zisloHESENYNcu7cvnr5/kMBDCFsGePay0Q8WTEJ5ztJICAFQaBgUKFcfREEIAKp6E8J6FRISnVnYAgLwiunTbqFxctC/zre05DISwRueYGoOKJyEm4JXZ2wCAOg01tkePtC9f/fR3DgMhbFGlpLDSDhVPQkzA+/H/AwDkUvFsXHPnal++dXAjh4EQtgjnz2enHVZaIYQ0qJFHtgIA8qh4Nq4vv9S+fO3oNg4DIWwRrmDnkSMqnoSYAIGg/N9cuudJCC9Q8STEhNCZJyH8QMWTEBOw/rfjAIDcIiqejSotTfty5JztHAZC2KJ6wM4A/1Q8CTEBnZNOAABNS9bY9u7Vvux54wyHgRC2CPbtY6UdKp6EmIDeyz8BQGeejW7SJO3LmX98zWEghC2iKVNYaYeKJyEm4Fl/IXrOkxCeoOJJiCl4Vj2peBLCD1Q8CTEB2bsPAACeFilpcPjGFB+vfTn93W+4i4OwRn34MCvtUPEkxATYW0kAAGVqDeSlNDg8IVzjZfGMjo6Gj48PLCwsEBwcjHPnztW6/sqVK9G+fXtYWlrC29sbM2bMQGlpaSNFS0jDk4UOhI1MDADILlRwHI0Z6ddP+3LluhncxUFYIwoNZaUd3hXPbdu2ISoqCvPnz8fFixcREBCAiIgIZGVlVbv+li1bMGvWLMyfPx83btzAhg0bsG3bNnzyySeNHDkhDcvFpnxqspxCuu9JCNd4VzxXrFiBSZMmYcKECfDz88PatWthZWWFjRurH5T51KlT6N27N0aPHg0fHx+Eh4fj9ddfr/NslRBT42wjA0BnnoTwgZjrAHSVlZUhISEBs2fP1i4TCoUIDQ3F6dOnq92mV69e+OWXX3Du3Dn06NED9+7dw759+zB27Nga96NQKKBQ/PMfkFwuBwAolUoolfQQem0q8kN50g9b+RKsWQMnYfl9z8z84iabf759vgRr1kClUgMAvhz5AT7iSVwV+JYvPqvIUdn330NYQ74MySOvimd2djbUajXc3NwqLXdzc8PNmzer3Wb06NHIzs7G888/D4ZhoFKpMHny5Fov2y5ZsgQLFiyosjwuLg5WVlbG/RBmIiYmhusQTIqx+ZJIJCh+kgFAiDNJ1+GUc5WdwHiKL58viUSCW6dPARAjtqU/OrM0Og3b+JIvUxBrYQFlDcexuLhY73bqVTyjoqIM3mbOnDlwcnKqz+5qFR8fjy+++AKrV69GcHAw7ty5g2nTpmHRokWYqzMXn67Zs2dX+hnkcjm8vb3Rv39/ODs7sx5jU6JUKhETE4OwsDBIJBKuw+E9tvIltrXFjV2JOJl5D44eLTBkiB+LUfIH3z5fYltbOF97iJVXz2H/ivEQfl7EdUiV8C1ffFaRq8ETJ0JVUFDtOhVXIfVRr+K5cuVKhISEQCqV6rX+iRMnMHXq1DqLp4uLC0QiETIzMystz8zMhLu7e7XbzJ07F2PHjsXEiRMBAF26dEFRURHeeecdfPrppxAKq97WlclkkMlkVZZLJBL6AOqJcmUYNvLlamcJoHxasqaeez59vsRiEYDycSr4EtO/8SlfpqCmXBmSw3pftt25cydcXV31WtfW1lav9aRSKYKCghAbG4uXX34ZAKDRaBAbG4upU6dWu01xcXGVAikSlX/Y6WFy0pS4POswlEPj2xLCuXoVz02bNsHe3l7v9detW1flPmZNoqKiMH78eHTv3h09evTAypUrUVRUhAkTJgAAxo0bh+bNm2PJkiUAgGHDhmHFihUIDAzUXradO3cuhg0bpi2ihJi8mTPhYku9bRvdzJnal1v7jsI4DkMh7NBERYGNylCv4jl+/HgAgFqtxsmTJ+Hv7w8HB4ca1x89erTebY8aNQpPnjzBvHnzkJGRga5du+LAgQPa4puamlrpTHPOnDkQCASYM2cOHj9+jGbNmmHYsGFYvHhxfX40Qvhp0SI4PykEAGQXUPFsNIsWAQ9yAQAbI96i4tkEaBYs4K54VhCJRAgPD8eNGzdqLZ6Gmjp1ao2XaeN1xpoEALFYjPnz52P+/Pms7Z8Q3vHygsudFABAUZkaJWVqWErpykqD8/ICTl4GAGxf/F9g5hOOAyLGEvv6Ao8eGd2O0YMkdO7cGffu3TM6EEJILbKzYSsTQyou/5WlS7eNJDtb+9K+KJ/DQAhrdI6pMYwunp9//jk+/PBD/P3330hPT4dcLq/0RQhhh0AggIt1eQ93Kp6EcMvoQRKGDBkCAHjppZcgEAi0yxmGgUAggFqtNnYXhJDhwwEALrYypOWX0vi2jeVZ3gHghF9vDOAwFMIOZtgwCOperU5GF8+4uDgWwiCE1GrbNgD/PK5CZ56NZNs2bYehhW/Mo+LZBKi3bGFlUHeji2ffvn1ZCIMQUqsBA4AjR7Qzq1DxbCQDBgCbdgAAVqyLAmYmchwQMZYoPBxg4aSPtbFti4uLkZqairKyypeT/P392doFIebr1CkAujOr0GXbRvEs7wDQ+cE1DgMhbBHUMMmIoYwunk+ePMGECROwf//+at+ne56EsIcu2xLCD0Zf+p0+fTry8vJw9uxZWFpa4sCBA/jpp5/Qtm1b7N69m40YCSEdOwIAXbZtbM/yDgAPXFtyGAhhTYcOrDRj9JnnkSNHsGvXLnTv3h1CoRAtW7ZEWFgY7OzssGTJEgwdOpSNOAkxb4nl99pc6LJt40pM1HYYmjT9B8RzGw1hger8ebAxhL7RZ55FRUXaAeIdHR3x5En5CBxdunTBxYsXjW2eEAIAkycD0Bkcns48G8ezvANA1B/fcBgIYYswMpKddoxtoH379khOTgYABAQEYN26dXj8+DHWrl0LDw8PowMkhADYvBnAP5dtnxYroVRrOAzITDzLOwAMSjjAXRyENcL//Y+Vdoy+bDtt2jSkp6cDAObPn49Bgwbh119/hVQqxWadDx4hxHgOVlIIBYCGAXKLyuBmZ8F1SISYJaOL5xtvvKF9HRQUhAcPHuDmzZto0aIFXFxcjG2eEAIAz6bXEwkFcLGRIatAgSy5gopnQ9OZ1lAtoIH4mwSWpqpkY6AFLYZhYGlpiW7dulHhJIRNRUXalxUFM1NeylU05kMn74MX7+MwEMIWVV4eK+2wUjw3bNiAzp07w8LCAhYWFujcuTN+/PFHNpomhADAihXalxXFM4OKZ8PTyfurx7ZzGAhhi3DlSnbaMbaBefPmYdq0aRg2bBi2b9+O7du3Y9iwYZgxYwbmzZvHRoyEkE8+0b50ty/vcUtnno1AJ++TDtAJQVMgnDuXlXaMvue5Zs0arF+/Hq+//rp22UsvvQR/f3+8//77WLhwobG7IITocK8488yn4kkIV4w+81QqlejevXuV5UFBQVCpVMY2Twj5F7psSwj3jC6eY8eOxZo1a6os/+GHHzBmzBhjmyeEAMC1fwYld7enDkONRifvb36wkcNACFtUSUmstFOvy7ZRUVHa1wKBAD/++CMOHTqEnj17AgDOnj2L1NRUjBs3jpUgCTF7N24ArVsDoMu2jerGDaBLLwBAy8xUjoMhbBDcvMnK+Lb1Kp6JiZXntAsKCgIA3L17FwDg4uICFxcXXLtGU/gQwor//AcoLS+Wrs+Kp7xUhZIyNSyl9Pxhg/nPf4DkNADAgl8+AzZ9Uvv6hPdEr72m/V0yRr2KZxwLE4kSQurHzkIMS4kIJUo1MuWl8HGx5jokQswOq4MkEEIankAg0N73pE5DhHCjXsXzlVdegVwu13v9MWPGICsrqz67IoQAwM6dlb51s6NnPRuFTt7njKPH7poC9XZ2BruoV/HctWsXnjx5ArlcXudXfn4+9uzZg8LCQr3bj46Oho+PDywsLBAcHIxz587Vun5eXh4iIyPh4eEBmUyGdu3aYd8+GkqLNCHPOgtVoE5DjUQn72nOnhwGQtjCtGrFSjv1uufJMAzatWvHSgD/tm3bNkRFRWHt2rUIDg7GypUrERERgeTkZO28obrKysoQFhYGV1dX7NixA82bN8eDBw/g4ODQIPERwgl//0qdHNyeXbZNp+LZsPz9tR2GNn4zEVhOTxCYOnFQkGl1GGrevLle661YsQKTJk3ChAkTAABr167F3r17sXHjRsyaNavK+hs3bkRubi5OnToFiaR8fnAfHx+D4yPElDR3sAQApOeXcBwJIeapXsWzb9++bMcBoPwsMiEhAbNnz9YuEwqFCA0NxenTp6vdZvfu3QgJCUFkZCR27dqFZs2aYfTo0fj4448hqmHqGYVCAYVCof2+4v6tUqmEUqlk8SdqeiryQ3nSD1v5EgNQ6bThalP+h+Kjp8VN6ljw7fMlBqBSqQEADPgTVwW+5YvPdHNUU74MyaPRY9uyKTs7G2q1Gm5ubpWWu7m54ebNm9Vuc+/ePRw5cgRjxozBvn37cOfOHbz33ntQKpWYP39+tdssWbIECxYsqLI8Li4OVlZWxv8gZiAmJobrEEyKsflq9cYbuKdzH/9xEQCIcT9L3iTv7/Pl89XqjTdw+vQpAGJ8N/BNtOVprvmSL1Nw9V+/S7qKi4v1bkfAMAzDVlDGSktLQ/PmzXHq1CmEhIRol3/00Uc4evQozp49W2Wbdu3aobS0FCkpKdozzRUrVuDLL79Eenp6tfup7szT29sb6enpcHZ2ZvmnalqUSiViYmIQFhamvUxOatZQ+ZKXKBH0Rfntk8tzBzaZgRL4+Pm6mJqHUevPoaWTFQ7PeJ7rcCrhY774Sp9cyeVyuLi4ID8/H3Z2drW2x6szTxcXF4hEImRmZlZanpmZCXd392q38fDwgEQiqXSJtmPHjsjIyEBZWRmkUmmVbWQyGWQyWZXlEomEPoB6olwZxuh8WVhU6uTgJBbDRiZGoUKFJ8UqtLa2YCFK/uDN58vCAuJnHYZiPo2A5KMyjgOqHm/yZQIsnZwgqKHDkCE55NUgCVKpFEFBQYiNjdUu02g0iI2NrXQmqqt37964c+cONBqNdtmtW7fg4eFRbeEkpCkQCATwdCgvmGl51GmIkMbGSvFUqVQ4fPgw1q1bh4KCAgDll2ANebazQlRUFNavX4+ffvoJN27cwJQpU1BUVKTtfTtu3LhKHYqmTJmC3NxcTJs2Dbdu3cLevXvxxRdfIDIyko0fjRDe8nzW4/bxUyqehDQ2oy/bPnjwAIMGDUJqaioUCgXCwsJga2uLZcuWQaFQYO3atQa1N2rUKDx58gTz5s1DRkYGunbtigMHDmg7EaWmpkIo/Kfme3t74+DBg5gxYwb8/f3RvHlzTJs2DR9//LGxPxoh/PH221UWVTyuQmeeDUgn73ufG4IRHIZC2KGZMAFs9BAwunhOmzYN3bt3x6VLlyp1thkxYgQmTZpUrzanTp2KqVOnVvtefHx8lWUhISE4c+ZMvfZFiEmIjq6yqOLM8xEVz4YTHQ08yAUArBoxjYpnE6D59ltWiqfRl22PHz+OOXPmVLm/6OPjg8ePHxvbPCEEALp0qbLIy/FZ8aTLtg1HJ+8bV1Q9+yemRxwYyEo7RhdPjUYDtVpdZfmjR49ga2trbPOEEAC4fbvKohZO5c8kP8gpauxozIdO3r2yH3EYCGHNnTusNGN08QwPD8fKlSu13wsEAhQWFmL+/PkYMmSIsc0TQmrg41w+j2emXIFSZdU/YAkhDcfo4vnVV1/h5MmT8PPzQ2lpKUaPHq29ZLts2TI2YiSEvPBClUUOVhLYWpR3W0jN1X9kFGIAnbxf8vXnMBDCFqZPH1baMbrDkLe3Ny5duoRt27bh0qVLKCwsxNtvv40xY8bA0tKSjRgJIYcOVVkkEAjQ0tkKVx/L8SCnGO3c6DYJ6w4d0nYYmjnpS8RzGw1hgXrfPlae0TSqDaVSidatW+P27dsYM2YMli9fjtWrV2PixIlUOAlh08iR1S5u6VR+6ZbuezYQnbwv+F/1Y2UT0yL6739Zaceo4imRSFDKwrxohJA67N1b7eIWzhWdhuiybYPQyXvITXocrikQ7N/PSjtGn71GRkZi2bJlUKlUbMRDCDFAy4oet3TPk5BGZfQ9z/PnzyM2NhaHDh1Cly5dYG1tXen9P//809hdEEJqmBih5bMet6l02bZh6OQ919YJ1R8FYlJq+F0ylNHF08HBASNruB9DCGHJ/fvVLm757LLto6clUKk1EIt4NdeD6bt/X9th6LXZv1GHoSZAdfs22Jh/xujiuWnTJhbCIITUavZsYMmSKovd7SwgFQtRptIgPb8U3k40mTurZs8GJs8EAEzavx6Y2Z/jgIixhJ9+Cixfbnw7LMRCCGlo33xT7WKhUADvZ8P03adLt+zTyfurx3dwGAhhi/Dbb1lpx+gzT19fXwgEghrfv3fvnrG7IITUoqWzNe4+KcKDnGL0act1NISYB6OL5/Tp0yt9r1QqkZiYiAMHDmDmzJnGNk8IqUPFfU8aZYiQxsPKlGTViY6OxoULF4xtnhACAFlZNb7VkgaIbzhZWcDT8sfwXp73J/ZxHA4xnurxY1Y6DDXYPc/Bgwfjjz/+aKjmCTEvtfwuVTyuQgMlNACdvL9w5RiHgRC2CHbuZKWdBiueO3bsgJOTU0M1T4h5mTKlxrd8XMqLZ0p2EdQaprEiMg86eY/auZK7OAhrRFOnstKO0ZdtAwMDK3UYYhgGGRkZePLkCVavXm1s84SQOng7WkIqFkKh0uDx0xLtkH2EkIZjdPF8+eWXK30vFArRrFkz9OvXDx06dDC2eUJIHcQiIVq5WONmRgFuZxVQ8SSkERhdPOfPp5kGCGlwJ07U+nYbVxvczCjAnaxCDOzo1khBmQGdvL8/5Vus4zAUwg51fLzxhQ8s3PO8ePEirly5ov1+165dePnll/HJJ5+grKzM2OYJIQCgUNT6dlvX8rk8b2cVNkY05kMn7xK1ksNACGvq+F3Sl9HF891338WtW7cAlA+IMGrUKFhZWWH79u346KOPjA6QEAJg4MBa327rZgMAuEPFk106eV/xwwccBkLYIoqIYKUdo4vnrVu30LVrVwDA9u3b0bdvX2zZsgWbN2+mR1UIaSRtXP8pngxDPW4JaWhGF0+GYaDRaAAAhw8fxpAhQwAA3t7eyM7Orleb0dHR8PHxgYWFBYKDg3Hu3Dm9ttu6dSsEAkGVTkyENHU+ztYQCQUoVKiQKWfnshQhpGZGF8/u3bvj888/x88//4yjR49i6NChAICUlBS4uRnecWHbtm2IiorC/PnzcfHiRQQEBCAiIgJZtYywAgD379/Hhx9+iD59+tTr5yCE1zZurPVtqVgIn2e9bG9lFjRGROZBJ+/LXqXbUE2B+ocfWGnH6OK5cuVKXLx4EVOnTsWnn36KNm3aACgfJKFXr14Gt7dixQpMmjQJEyZMgJ+fH9auXQsrKytsrOU/D7VajTFjxmDBggVo1apVvX8WQngrLKzOVdq7l3caupkhb+hozIdO3i+0DeIwEMIWJjSUlXaM7rHr7+9fqbdthS+//BIikcigtsrKypCQkIDZs2drlwmFQoSGhuL06dM1brdw4UK4urri7bffxvHjx+vcj0KhgEKnx5VcXv6fjVKphFJJPepqU5EfypN+2MqX2NsbqoLazyjbudpgH4Brj/NN9vjw7fMl9vaG6tpDAMDvX4yCcg6/xg/mW774rCJH4latoKzhd8mQPBpdPB8+fAiBQAAvLy8AwLlz57Blyxb4+fnhnXfeMait7OxsqNXqKpd73dzccPPmzWq3OXHiBDZs2ICkpCS997NkyRIsWLCgyvK4uDhYWdED5vqIiYnhOgSTYmy+XtRosG9f7cOSF+UKAIhw/nYa9u17aNT+uMaXz9eLGg1Onz4FQAwwqPMYcIUv+TIFmlp+l4qL9R8f2ujiOXr0aLzzzjsYO3YsMjIyEBYWhk6dOuHXX39FRkYG5s2bZ+wualRQUICxY8di/fr1cHFx0Xu72bNnIyoqSvu9XC6Ht7c3+vfvD2dn54YItclQKpWIiYlBWFgYJBI25iZo2tjKl1Ao1HbGq0lAXgnWJx/HE4UQoeFhkIpNb657vn2+hEIhQkJ6YeXVc4AAdR6Dxsa3fPFZRa5q+12quAqpD6OL59WrV9GjRw8AwO+//47OnTvj5MmTOHToECZPnmxQ8XRxcYFIJEJmZmal5ZmZmXB3d6+y/t27d3H//n0MGzZMu6yi569YLEZycjJat25dZTuZTAaZTFZluUQioQ+gnihXhjE6X7Nm1bl9SxcxbC3EKChV4cFTBfw87eq/P47x5vM1axbE4vLbT7/1ex1v8iGmavAmXyZAM3NmjbkyJIdG/2mqVCq1hejw4cN46aWXAAAdOnRAenq6QW1JpVIEBQUhNjZWu0yj0SA2NhYhISFV1u/QoQOuXLmCpKQk7ddLL72E/v37IykpCd7e3kb8ZITwyGef1bmKQCBAR/fygnkjnToNsUIn75vD3+QsDMIeDUtXQ40unp06dcLatWtx/PhxxMTEYNCgQQCAtLS0el0CjYqKwvr16/HTTz/hxo0bmDJlCoqKijBhwgQAwLhx47QdiiwsLNC5c+dKXw4ODrC1tUXnzp0hlUqN/fEI4QcPD71W69S8vHheeZzfkNGYD528/7HoPxwGQtgibtGCnXaMbWDZsmUYMWIEvvzyS4wfPx4BAQEAgN27d2sv5xpi1KhRePLkCebNm4eMjAx07doVBw4c0HYiSk1NhVBoevdyCDHK06d6rdbV2wEAkPQwr+FiMSc6ebctoednmwQ9f5fqYnTx7NevH7KzsyGXy+Ho6Khd/s4779S75+rUqVMxtYYJS+Pj42vddvPmzfXaJyFNQUXxvJ4mR5lKY5KdhggxBaz8ZjEMg4SEBKxbtw4Fz56fkUql9NgHIWx55RW9VmvhZAUHKwnK1Bq678kGnbwf60yjlzUFDEvDtxpdPB88eIAuXbpg+PDhiIyMxJMnTwCUX8798MMPjQ6QEAJgyxa9VhMIBAjwcgAAXHqU13DxmAudvH8+eg6HgRC2qH/+mZV2jC6e06ZNQ/fu3fH06VNYWlpql48YMaJSr1lCiBH69tV71QC678kenbyvXDOduzgIa0R1TO+nL6PveR4/fhynTp2q0rPVx8cHjx8/NrZ5QggAnD2r96pdve0BAJeoeBpPJ+9+D29wGAhhi0DPWbrqYvSZp0ajgVqtrrL80aNHsLW1NbZ5QoiBKi7b3n1SBHkpjXlKSEMwuniGh4dj5cqV2u8FAgEKCwsxf/583g1lRYjJ6txZ71WdbWTwdiq/hXLlET3vaRSdvKe4+XIYCGEL06kTK+0YXTy/+uornDx5En5+figtLcXo0aO1l2yXLVvGRoyEkAsXDFq94uyT7nsaSSfv705by2EghC3qM2dYacfo4unt7Y1Lly7h008/xYwZMxAYGIilS5ciMTERrq6ubMRICJk0yaDVA1uUP3N94X5uQ0RjPnTy/uGOrzgMhLBFNHkyK+0YVTyVSiVat26N27dvY8yYMVi+fDlWr16NiRMnVup5SwgxkoHd64N9nQAAF+4/hUqtaYiIzINO3sMv0rRfTYHg119Zaceo4imRSFBaWspKIIQQ9nT0sCufYUWhwnUaLIEQ1hl92TYyMhLLli2DSqViIx5CSHUMnORAJBRozz7P3MtpiIjMg07elSKa8qtJYGnCEKOf8zx//jxiY2Nx6NAhdOnSBdbW1pXe//PPP43dBSHEgEl6KwT7OuPwjSycvZeLd16oOq8t0YNcDjwov288dNHfiOc2GsICVU4O2PgzyOgzTwcHB4wcORIRERHw9PSEvb19pS9CCAuWLzd4k56tyqcEPJeSS/c960sn76/Fb+UwEMIW4VfsdPwy+sxz06ZNbMRBCKnNvHnARx8ZtImfpx3sLSXIL1Hi0qN8BLV0rHsjUtm8ecCoiQCAtw5tArCO23iI0YQLFgDP5oQ2qp36bqjRaLBs2TL07t0bzz33HGbNmoWSkhKjAyKEsEMkFOD5Ni4AgKO3nnAcDSFNS72L5+LFi/HJJ5/AxsYGzZs3x6pVqxAZGclmbIQQI73Qrrx4HqPiSQir6l08//e//2H16tU4ePAg/vrrL+zZswe//vorNBq6t0II65KT67XZC+2aAQAuP8rD06IyNiMyDzp5HzvzJw4DIWxRXb3KSjv1Lp6pqamVxq4NDQ2FQCBAWloaK4ERQnQkJtZrMw97S3Rwt4WGAWJvZrEclBnQyXvbx3c4DISwRZCUxEo79S6eKpUKFhYWlZZJJBIolTSLAyGse+21em86qLM7AODA1XS2ojEfOnmft2URh4EQtojeeIOVdurd25ZhGLz55puQyWTaZaWlpZg8eXKlZz3pOU9CuDWosztWHr6NY7ezUahQwUZmdCd7QsxevX+Lxo8fX2XZGyxVdEIIe9q72cLXxRop2UWIu5mFYQGeXIdEiMmrd/Gk5zsJaUR79tR7U4FAgIhO7lh79C4OXMug4mkInbzPfnMxvuYwFMIO9c6dxg9wABZGGCKENILmzY3avOK+Z9zNLJQq1WxEZB508p5t78JhIIQtjCc7fzxS8STEFHTrZtTmAV728LC3QHGZGvHJ9Myn3nTyvn7VuxwGQtgiDg5mpR1eFs/o6Gj4+PjAwsICwcHBOHfuXI3rrl+/Hn369IGjoyMcHR0RGhpa6/qEmCOBQKC9XPvnxUccR0OI6eNd8dy2bRuioqIwf/58XLx4EQEBAYiIiEBWVvXPqMXHx+P1119HXFwcTp8+DW9vb4SHh+Px48eNHDkh/PafIC8AwJGbWcguVHAcDSGmjXfFc8WKFZg0aRImTJgAPz8/rF27FlZWVti4cWO16//6669477330LVrV3To0AE//vgjNBoNYmNjGzlyQhrQ18Z3VWnnZosAL3uoNAz+SqQ/LvWik/fVL07hMBDCFk09ZiiqDq8e+CorK0NCQgJm64x4LxQKERoaitOnT+vVRnFxMZRKJZycnGpcR6FQQKH45y9v+bO5EpVKJQ3yUIeK/FCe9MNavt56C2Ah5yO6euDSo3xsOZuKsT28IBQKjG6TTbz7fL31FlRphQCA3T2GIZIvcT3Du3zxWEWOFG++CUkN+TIkj7wqntnZ2VCr1XBzc6u03M3NDTdv3tSrjY8//hienp4IDQ2tcZ0lS5ZgwYIFVZbHxcXBysrKsKDNVExMDNchmBRj8/Xiq6/i7+3bjY7DUgXIRCLcyy7Cit8OwM+RMbrNhsCXz9eLr76K0xu3AxBj/9wh2Odn/DFoCHzJlymQubjU+LtUXFysdzu8Kp7GWrp0KbZu3Yr4+PgqQwfqmj17NqKiorTfy+VyeHt7o3///nB2dm6MUE2WUqlETEwMwsLCIJGwMR9708ZWvoRCYaWxpI1xU5KMTace4KrSFR8OCWKlTbbw7fMlFAoREtILK6+eAwRg7RiwhW/54rOKXNX2u1RxFVIfvCqeLi4uEIlEyMzMrLQ8MzMT7u7utW771VdfYenSpTh8+DD8/f1rXVcmk1UaVrCCRCKhD6CeKFeGYSNfbOX7redb4afTD3Dybg7u5ZSivbstK+2yiU+fL7FYBAAQgL1jwDY+5csU1JQrQ3LIqw5DUqkUQUFBlTr7VHT+CQkJqXG75cuXY9GiRThw4AC6d+/eGKES0rjeZe8ZQ28nK4T7lf8xuvFECmvtNkk6ed8dPIzDQAhbNJMmsdIOr4onAERFRWH9+vX46aefcOPGDUyZMgVFRUWYMGECAGDcuHGVOhQtW7YMc+fOxcaNG+Hj44OMjAxkZGSgsLCQqx+BEPatWsVqc2/38QUA7Ex6jCx5KattNyk6ef9++FQOAyFs0axYwUo7vCueo0aNwldffYV58+aha9euSEpKwoEDB7SdiFJTU5Ge/s/USmvWrEFZWRn+85//wMPDQ/v11VdfcfUjEMI+Pz9Wm+ve0hFBLR1RptLg+ziap7JGOnnf/NUEDgMhbBHXcVtP73ZYaYVlU6dOxdSp1f+VFx8fX+n7+/fvN3xAhHDt3j1WmxMIBPgwvD1eX38Gv51LxaQ+reDtRD3Nq9DJu2duGoeBENaksHOrgndnnoSQxhHS2hl92rpAqWawIuYW1+EQYlKoeBJiCvr3b5BmZ0a0h0AA7Ex8jHMpuQ2yD5Omk/fE1oEcBkLYwvTrx0o7VDwJMQX79zdIs/5eDnjtuRYAgLl/XYVSrWmQ/Zgsnbx//PZSDgMhbFEbMTeuLiqehJiCl19usKY/imgPRysJkjML6NGVf9PJ++c/zeUuDsIa0ciRrLRDxZMQU3DgQIM17WgtxezBHQEAXx+6hetp+o+y0uTp5L1HMk112BQIDh1ipR0qnoQQvNrdC6Ed3VCm1mDa1kSUKtVch0QIr1HxJMQUNG/eoM0LBAIsG9kFzWxluJ1ViEV/X2/Q/ZkMnbw/sXPhMBDCGpZ+l6h4EmIK7t5t8F0428jw9asBEAiAX8+m4tezDxp8n7ynk/cxs37lMBDCFpWeM3TVhYonIabgo48aZTcvtGuGD8PbAwDm77qGIzcz69iiidPJ+7t713EYCGGLcNYsdtphpRVCSMP69ttG29V7/VpjRGBzqDQMJv9yEafuZDfavnlHJ+8jT/7JYSCELcLoaHbaYaUVQkiTIRAIsPw//gjzc0OZSoOJ/7tAAygQ8i9UPAkhVUhEQnw/OhB92rqguEyNNzacxd7L6XVvSIiZoOJJiCnIyWn0XcrEIvwwtjvCn52BRm65iNXxd6DRMI0eC2d08v7SZ39xFwdhjSojg5V2qHgSYgp++42T3VpKRVjzRhDe7OUDAFh+IBlv/3QeOYUKTuJpdDp5H5h4hMNACFsE27ax0g4VT0JMQQ1T9DUGkVCAz17qhC9GdIFMLERc8hMMWnUc+66kg2Ga+FmoTt6n7Wq8Tluk4YimTWOlHSqehBC9jA5ugV1Te6ONqw2eFCjw3q8XMWHzedx7Ush1aIQ0OiqehBC9dXC3w9/vP4//G9AGEpEA8clPEPbNMcz64zIe55VwHR4hjYaKJyGm4PRpriPQspCIEBXeHgemv4D+7ZtBrWGw9fxD9F0eh//7LRFJD/OazuVcnby/F/k9h4EQtqiOHWOlHTErrRBCGlZBAdcRVNG6mQ02TeiBhAe5+PrQLZy6m4Pdl9Kw+1Ia2rvZ4pVuzTG8a3O421twHWr9FRQATuUvrRTF3MZCWCEoZOc2A515EmIKwsO5jqBGQS2dsGVST/z9/vN4pVtzSMVCJGcWYMn+mwhZGotX157C2qN3cSuzwPTOSHXy/tWPjTNEImlYoiFDWGmHzjwJIazo3NweK/7bFfOHdcK+K+nYefExzt3Pxfn7T3H+/lMs3X8TLjZSBPs6o2crJwS2cEQ7N1tIxfQ3PDE9VDwJIayyt5Tg9R4t8HqPFnicV4IjNzJx+EYWztzLQXZhGfZeScfeK+WjFUlEArRzs0UnTzt08rSHj5MFnipgXgMxEJNExZMQU/DTT1xHUC/NHSwxNsQHY0N8oFCpcelhPs7ey8HZlFxcfpQHeakK19LkuJYmB/Do2VZiLL0SCx9na7R0toKHvSU8HSzgbm8JD3sLuNtZwNVOBplY1PA/gE7el/x3FuY3/B5JA1Nv2MBK4eNl8YyOjsaXX36JjIwMBAQE4LvvvkOPHj1qXH/79u2YO3cu7t+/j7Zt22LZsmUYwtJ1bUJ44YUXuI7AaDKxCD18ndDD1wnvA2AYBo+eljwrnvm4kS7HvSeFuJ9ThFKlBjczCnAzo+aOUjYyMRytJXCyksLRWvrPv9ZS2FqIYSMTw1omhu2zf22eLbORiWElFUEgENQd9AsvAGXlLy+18mcnEYRTTJ8+rLTDu+K5bds2REVFYe3atQgODsbKlSsRERGB5ORkuLq6Vln/1KlTeP3117FkyRK8+OKL2LJlC15++WVcvHgRnTt35uAnIKQB+PoCpaVcR8EqgUAAbycreDtZYVBndwCAUqnEnr374N+zHx7mKZCaW4z0/FJk5JeU/ysvRXp+KcpUGhQqVChUqPAw1/DnSwUCwEoigkwigkwsfPYlgrTitaT8+3XvPI9pi/YDALYuHQ0s+g+rOSCNT9yuHSu/S7wrnitWrMCkSZMwYcIEAMDatWuxd+9ebNy4EbOqmcR01apVGDRoEGbOnAkAWLRoEWJiYvD9999j7dq1jRo7IcR4IgHQ0tkKbdztq32fYRjklyjxtFiJ3KIyPC0qQ25RGXKL/3ldUKpCUZmq/F9F+VfBs381DMAwQFGZGkVl6lpj0WjKz47L6XGmSswGr4pnWVkZEhISMHv2bO0yoVCI0NBQnK7hIfHTp08jKiqq0rKIiAj89ddfNe5HoVBAofhnYOv8/HwAQG4uzVlYF6VSieLiYuTk5EAikXAdDu+xlS8xw0DFwcwqjc2QfNkJADsbwMdGjPL/yqzqbJ9hGJQqNShSqFCsVEOp0kChYlCmUkOh1kCh0qDs2ZdCrUHxCmB6H08wAIq/AQp4dgzo91F/FbmS1/K7VPDseWp9HqniVfHMzs6GWq2Gm5tbpeVubm64efNmtdtkZGRUu35GLdPOLFmyBAsWLKiyvF27dvWImpBG4uLCdQRmZxIAvNgNABAF0DFoKuo4jgUFBbC3r/7KRwVeFc/GMnv27Epnq3l5eWjZsiVSU1PrTJi5k8vl8Pb2xsOHD2FnZ8d1OLxH+TIM5cswlC/96ZMrhmFQUFAAT0/POtvjVfF0cXGBSCRCZmZmpeWZmZlwd3evdht3d3eD1gcAmUwGmUxWZbm9vT19APVkZ2dHuTIA5cswlC/DUL70V1eu9D2B4tXQHlKpFEFBQYiNjdUu02g0iI2NRUhISLXbhISEVFofAGJiYmpcnxBCCDEWr848ASAqKgrjx49H9+7d0aNHD6xcuRJFRUXa3rfjxo1D8+bNsWTJEgDAtGnT0LdvX3z99dcYOnQotm7digsXLuCHH37g8scghBDShPGueI4aNQpPnjzBvHnzkJGRga5du+LAgQPaTkGpqakQCv85Ye7Vqxe2bNmCOXPm4JNPPkHbtm3x119/GfSMp0wmw/z586u9lEsqo1wZhvJlGMqXYShf+mM7VwLG5KY5IIQQQrjFq3uehBBCiCmg4kkIIYQYiIonIYQQYiAqnoQQQoiBzL54RkdHw8fHBxYWFggODsa5c+e4DokXjh07hmHDhsHT0xMCgaDKWMEMw2DevHnw8PCApaUlQkNDcfv2bW6C5diSJUvw3HPPwdbWFq6urnj55ZeRnJxcaZ3S0lJERkbC2dkZNjY2GDlyZJXBPczFmjVr4O/vr31YPSQkBPv379e+T7mq2dKlSyEQCDB9+nTtMspXZZ999hkEAkGlrw4dOmjfZytfZl08K6Y/mz9/Pi5evIiAgABEREQgKyuL69A4V1RUhICAAERHR1f7/vLly/Htt99i7dq1OHv2LKytrREREYHSJjZtlj6OHj2KyMhInDlzBjExMVAqlQgPD0dRUZF2nRkzZmDPnj3Yvn07jh49irS0NLzyyiscRs0dLy8vLF26FAkJCbhw4QIGDBiA4cOH49q1awAoVzU5f/481q1bB3//yvOKUr6q6tSpE9LT07VfJ06c0L7HWr4YM9ajRw8mMjJS+71arWY8PT2ZJUuWcBgV/wBgdu7cqf1eo9Ew7u7uzJdffqldlpeXx8hkMua3337jIEJ+ycrKYgAwR48eZRimPDcSiYTZvn27dp0bN24wAJjTp09zFSavODo6Mj/++CPlqgYFBQVM27ZtmZiYGKZv377MtGnTGIahz1Z15s+fzwQEBFT7Hpv5Mtszz4rpz0JDQ7XL6pr+jJRLSUlBRkZGpdzZ29sjODiYcod/prhzcnICACQkJECpVFbKV4cOHdCiRQuzz5darcbWrVtRVFSEkJAQylUNIiMjMXTo0Ep5AeizVZPbt2/D09MTrVq1wpgxY5CamgqA3XzxboShxlKf6c9IuYrp3gydCs4caDQaTJ8+Hb1799aOcpWRkQGpVAoHB4dK65pzvq5cuYKQkBCUlpbCxsYGO3fuhJ+fH5KSkihX/7J161ZcvHgR58+fr/IefbaqCg4OxubNm9G+fXukp6djwYIF6NOnD65evcpqvsy2eBLSECIjI3H16tVK91hIVe3bt0dSUhLy8/OxY8cOjB8/HkePHuU6LN55+PAhpk2bhpiYGFhYWHAdjkkYPHiw9rW/vz+Cg4PRsmVL/P7777C0tGRtP2Z72bY+05+RchX5odxVNnXqVPz999+Ii4uDl5eXdrm7uzvKysqQl5dXaX1zzpdUKkWbNm0QFBSEJUuWICAgAKtWraJc/UtCQgKysrLQrVs3iMViiMViHD16FN9++y3EYjHc3NwoX3VwcHBAu3btcOfOHVY/X2ZbPOsz/Rkp5+vrC3d390q5k8vlOHv2rFnmjmEYTJ06FTt37sSRI0fg6+tb6f2goCBIJJJK+UpOTkZqaqpZ5qs6Go0GCoWCcvUvAwcOxJUrV5CUlKT96t69O8aMGaN9TfmqXWFhIe7evQsPDw92P19GdGoyeVu3bmVkMhmzefNm5vr168w777zDODg4MBkZGVyHxrmCggImMTGRSUxMZAAwK1asYBITE5kHDx4wDMMwS5cuZRwcHJhdu3Yxly9fZoYPH874+voyJSUlHEfe+KZMmcLY29sz8fHxTHp6uvaruLhYu87kyZOZFi1aMEeOHGEuXLjAhISEMCEhIRxGzZ1Zs2YxR48eZVJSUpjLly8zs2bNYgQCAXPo0CGGYShXddHtbcswlK9/++CDD5j4+HgmJSWFOXnyJBMaGsq4uLgwWVlZDMOwly+zLp4MwzDfffcd06JFC0YqlTI9evRgzpw5w3VIvBAXF8cAqPI1fvx4hmHKH1eZO3cu4+bmxshkMmbgwIFMcnIyt0FzpLo8AWA2bdqkXaekpIR57733GEdHR8bKyooZMWIEk56ezl3QHHrrrbeYli1bMlKplGnWrBkzcOBAbeFkGMpVXf5dPClflY0aNYrx8PBgpFIp07x5c2bUqFHMnTt3tO+zlS+akowQQggxkNne8ySEEELqi4onIYQQYiAqnoQQQoiBqHgSQgghBqLiSQghhBiIiichhBBiICqehBBCiIGoeBJCCCEGouJJCCGEGIiKJyGEEGIgKp6EEEKIgah4EkIIIQai4kkIIYQYiIonIYQQYiAx1wHwgUajQVpaGmxtbSEQCLgOhxBCCAcYhkFBQQE8PT0hFNZ+bknFE0BaWhq8vb25DoMQQggPPHz4EF5eXrWuQ8UTgK2tLQAgJSUFTk5OHEfDb0qlEocOHUJ4eDgkEgnX4fAea/m6cwdo04a9wHiKd58v3bzz8BjwLl88ps1Vq1aQdOxY7TpyuRze3t7amlAbKp6A9lKtra0t7OzsOI6G35RKJaysrGBnZ0e/rHpgLV+ZmUC3buwFxlO8+3zp5p2Hx4B3+eKxilzZZ2VBHBxc67r63L6jDkOEmIIRI7iOwDzp5p2OQZMgevVVVtrhVfE8duwYhg0bBk9PTwgEAvz11191bhMfH49u3bpBJpOhTZs22Lx5c4PHSQghxLzxqngWFRUhICAA0dHReq2fkpKCoUOHon///khKSsL06dMxceJEHDx4sIEjJYQQYs54dc9z8ODBGDx4sN7rr127Fr6+vvj6668BAB07dsSJEyfwzTffICIioqHCJKTx7djBdQTmSTfvdAyaBPXWrawUPl4VT0OdPn0aoaGhlZZFRERg+vTptW6nUCigUCi038vlcgDlN5SVSiXrcbKBYRikPi3B/ewiZMgVyMgvRXZRGUrK1ChRqlGqVKNEqYFCqYaGATQMAw1Tvt0/ryu+L3+/npGguFiEr24eA2D8M7H1jaKx1fST1tSvQPBsC+ZZvr5OPq5dVvM2Ne/DMzsPaTfj9NqiPu3XRMDSPmra4N9LGTAokIuwNuVUjZ026sq5/uvXQOcN9yeFyLh/HEKBABPdbRHBs/8fKv6/4uv/W3yizVWbNmBqyJcheTTp4pmRkQE3N7dKy9zc3CCXy1FSUgJLS8tqt1uyZAkWLFhQZXlcXBysrKwaJNb6UGuAxBwBrj0V4K5cgHwlXwZwECBHUcp1ECZEAJSWGNXC/q/eQvsPd7IUD98J8Li4kOsgAADbvxqnzXvYtBHY98d2jiOqXkxMDNchmAxpt274e3v1x7G4uFjvdky6eNbX7NmzERUVpf2+4tme/v37w9nZmcPIymk0DH499xDrT9xHev4/RUoiEqC1izXc7S3gYW+BZjYyWMlEsJCIYCkRwlIiglQshEgogFAggEAACAUCCJ/9+8/3z/5Gr0ctVqtUOHfuHHr06AGRmJ2PD1/+JKhJjWfHNbyhu1ilUuH8+XN47rkeEIlEhrWP8qsFACD5Rogtbz+ns031Wxl6QaGm9Q1tv6bd1hZPdftQq9RIuHgR3QIDIf7X56vmfdQQq4ExVbdY/I0QM8Pb4stDtwEBMGTIkBpa5YZSqURMTAzCwsLoUZU6VORKKBTWeBwrrkLqw+D//Xbv3m3oJggLC6vxLNAY7u7uyMzMrLQsMzMTdnZ2te5PJpNBJpNVWS6RSDj/AOYWlWH6tiQcu/UEAOBiI8PrPbzRq7ULAls4wEJS/X/AjUWpVCLrBtDd14XzXJkCpVKJ7JtAj1ZG5ksA9Grryl5gPKVUKlF8j0H/ju78+HwJgJ6tXQDchgDgR0zV4MP/XaakplwZkkODi+fLL79s0PoCgQC3b99Gq1atDN1VnUJCQrBv375Ky2JiYhASEsL6vhrDo6fFGLXuDB7nlcBCIsSsQR3wWo8WnBdMwgNffMF1BOZJJ+/rB01EJIehEHZoFi0CG/+j1utRlYyMDGg0Gr2+DLmHWFhYiKSkJCQlJQEofxQlKSkJqampAMovt44bN067/uTJk3Hv3j189NFHuHnzJlavXo3ff/8dM2bMqM+Pxam84jKM33gOj/NK4ONshZ3v9cabvX2pcJJyOrcZSCPSyfv2F9h5uJ5wS1NHh1J9GVw8x48fb9Al2DfeeEPvIe8uXLiAwMBABAYGAgCioqIQGBiIefPmAQDS09O1hRQAfH19sXfvXsTExCAgIABff/01fvzxR5N7TIVhGHz8x2XcfVIED3sL/PZOT3T0oGECiQ5ra64jME86ed//Kb/ud5L6ETs4sNOOoRts2rTJoPXXrFmj97r9+vWr8eY/gGpHD+rXrx8SExMNiolvdiWl4eC1TEhEAqwf1x0e9uzfHyYmTq3mOgLzpJN3EUPHoElg6XeJtRGGTp48WenZSaKfUqUaS/ffBAD834C26NzcnuOICCGE1IW14jl48GA8fvyYrebMxpazqciQl8LD3gKTXmC/UxVpIt58k+sIzJNO3g8EDeIuDsIajU6/GWOwVjxru9xKqldcpsLq+LsAgPcHtKXOQaRma9dyHYF50sn7ipGm1xGRVKXRc+z0uvBqYHhzs/3CI2QXKuDtZIlXu9c+azkxc8860ZFGppP39Svf4TAQwhbxc8/VvZIeWCue69atqzJUHqndjoRHAIAJvXwhEdHfMaQWN25wHYF50sl7y6wHHAZCWHPzJivNsDY83+jRo9lqyizcyizAlcf5EAsFGN7Vk+twCCGEGMDg053Lly9Do9Hovf61a9egUqkM3U2T98ezs87+HVzhbFN1qEBCKunVi+sIzJNO3q+27MRhIIQtDEsj0BlcPAMDA5GTk6P3+iEhIZUGNiCASq3BzsTynskju9G9TqKHI0e4jsA86eQ96t0VHAZC2KI+dIiVdgy+bMswDObOnav3sHtlZWUGB9XUnbiTjawCBRytJBjQoekP9k1YMGoUsG0b11GYn1GjgOXlA73M+2UhMLM/xwERY4lGjwZqmJLMEAYXzxdeeAHJycl6rx8SEtIgM6qYsr8vpwMAXgrwhFRMHYWIHnbt4joC87Rrl7Z4Pn/9JMfBEDYI9uxhpR2Di2d8fDwrOzZXGg2D+OTy6cYiOrlzHA0hhJD6oNOeRnYjQ47sQgWspCIE+ThyHQ4xFS4uXEdgnnTynm9NQ2c2CSz9LlHxbGQVZ529WjtDJqYRhYieHj3iOgLzpJP3Vz/9ncNACFtUKSmstEPFs5EdvVVePPu2p45CxABz53IdgXnSyftbBzdyGAhhi3D+fHbaYaUVohd5qRIXHzwFAPRt24zjaIhJ+fJLriMwTzp5f+0o9XZuCoQr2HnkiIpnIzp1JxsqDYNWLtZo4azfoz6EEEL4h7XiWVJSUu2UZNeuXWNrFybv2O1sAMAL7eiskxBCTBkrxXPHjh1o27Ythg4dCn9/f5w9e1b73tixY9nYRZNwLiUXQHlnIUIMkpbGdQTmSSfvI+cY/2A94Z7qATsD/LNSPD///HMkJCQgKSkJmzZtwttvv40tW7YAoHk+K+QUKnAnqxAA8JyPE8fREJOzdy/XEZgnnbz3vHGGw0AIWwT79rHSDivFU6lUaqcjCwoKwrFjx7Bu3TosXLgQAoGAjV2YvPP3yzsKtXOzgaO1lONoiMmZNInrCMyTTt5n/vE1h4EQtoimTGGlHVaKp6urKy5fvqz93snJCTExMbhx40al5ebs/P3yS7Y9fOmskxBCTB0rxfPnn3+Gq2vl5xalUil+++03HD16lI1dmLyK+510yZYQQkwfK8XTwsICYnH1w+T27t2bjV2YtJIyNa6nywFQ8ST1RGNKc0Mn79Pf/Ya7OAhr1IcPs9JOvYtnXl4eIiMj4eLiAjc3N7i5ucHFxQVTp05FXl6eUUFFR0fDx8cHFhYWCA4Oxrlz52pdf+XKlWjfvj0sLS3h7e2NGTNmoLS01KgY2HQ9PR9qDYNmtjJ42FtwHQ4hhBAjGTyrCgDk5uYiJCQEjx8/xpgxY9CxY0cAwPXr17F582bExsbi1KlTcHQ0fODzbdu2ISoqCmvXrkVwcDBWrlyJiIgIJCcnV7k0DABbtmzBrFmzsHHjRvTq1Qu3bt3Cm2++CYFAgBUsjSRhrEsP8wEAAV721IGK1E+/fgCP/iA0G/36Acnlj6usXDcD+D6S23iI0UShoaz8LtWreC5cuBBSqRR3797V9rLVfS88PBwLFy7EN98YfpljxYoVmDRpEiZMmAAAWLt2Lfbu3YuNGzdi1qxZVdY/deoUevfujdGjRwMAfHx88Prrr1d61pRrlx/lAQC6NHfgNA5CCCHsqNdl27/++gtfffVVlcIJAO7u7li+fDl27txpcLtlZWVISEhAaGjoPwEKhQgNDcXp06er3aZXr15ISEjQXtq9d+8e9u3bhyFDhhi8/4Zy+XH5mae/N01pRAghTUG9zjzT09PRqVOnGt/v3LkzMjIyDG43OzsbarW6SlF2c3PDzZs3q91m9OjRyM7OxvPPPw+GYaBSqTB58mR88sknNe5HoVBAoVBov5fLyzvzKJVKKJVKg+OuTUGpEveeFAEA/NysWW+/sVXEb+o/R2NhK1+CNWvAmEHO+fb5EqxZA5VKDQD4cuQH+IgncVXgW774rCJHZd9/D2EN+TIkj/Uqni4uLrh//z68vLyqfT8lJQVOTo3TqzQ+Ph5ffPEFVq9ejeDgYNy5cwfTpk3DokWLMLeGaZyWLFmCBQsWVFkeFxcHKyt2B2y/lS8AIIKTjMGZo+z08uKDmJgYrkMwKcbmSyKRQMnSyCimgC+fL4lEglunTwEQI7alPzrz9BjwJV+mINbCosbfpeLiYr3bETD1GD/vrbfewt27dxETEwOptPJoOQqFAhEREWjVqhU2bjRs/ruysjJYWVlhx44dePnll7XLx48fj7y8POzatavKNn369EHPnj3xpc7UQb/88gveeecdFBYWQiisemW6ujNPb29vpKenw9mZ3XFn1x1LwVcxtzG4kxu+fS2A1ba5oFQqERMTg7CwMEgkEq7D4T228iW2tYWqoIDFyPiJb58vsa0tzl17iFHrzyH56xEQFhdxHVIlfMsXn1Xk6qVRo2r8XZLL5XBxcUF+fj7s7Oxqba/eHYa6d++Otm3bIjIyEh06dADDMLhx4wZWr14NhUKBn3/+2eB2pVIpgoKCEBsbqy2eGo0GsbGxmDp1arXbFBcXVymQIpEIQM3j6spkMshksirLJRIJ6x/Aa+nlB6lrC8cm9eFuiFw1ZWzky5zyzafPl1hc/v+JAPw9BnzKlymoKVeG5LBexdPLywunT5/Ge++9h9mzZ2uLlEAgQFhYGL7//nt4e3vXp2lERUVh/Pjx6N69O3r06IGVK1eiqKhI2/t23LhxaN68OZYsWQIAGDZsGFasWIHAwEDtZdu5c+di2LBh2iLKpcuPnnUW8nLgNhBCCCGsqVfxBABfX1/s378fT58+xe3btwEAbdq0Mfpe56hRo/DkyRPMmzcPGRkZ6Nq1Kw4cOKDtRJSamlrpTHPOnDkQCASYM2cOHj9+jGbNmmHYsGFYvHixUXGwIbtQgcd5JRAIgM7Na78EQEitZs7kOgLzpJP3rX1HYRyHoRB2aKKiwMZpVb2LZwVHR0f06NGDhVD+MXXq1Bov08b/a5gysViM+fPnY/78+azGwIaK5ztbuVjD1oIuqRAjLFrEdQTmadEi4EH5uNQbI96i4tkEaBYsYKV41us5zyNHjsDPz0/7iIeu/Px8dOrUCcePHzc6OFP3z8hCDtwGQkxfDT3bSQPTyfv2xf/lMBDCFrGvLyvt1Kt4rly5EpMmTaq2N5K9vT3effdd3gyNx6WKM09/LxocgRgpO5vrCMyTTt7ti/I5DISwhqXfpXoVz0uXLmHQoEE1vh8eHo6EhIR6B9VUXE0rPzPvQmeehBDSpNSreGZmZtbapVcsFuPJkyf1DqopeFKgwJMCBQQCoKOHLdfhEFM3fDjXEZgnnbyf8KPpFZsCZtgwVtqpV/Fs3rw5rl69WuP7ly9fhoeHR72DagpuPJu/08fZGlZSo/tlEXO3bRvXEZgnnbwvfGMeh4EQtqi3bGGlnXoVzyFDhmDu3LnVzplZUlKC+fPn48UXXzQ6OFNWUTz9POgRFcKCAQO4jsA86eR9xbooDgMhbBGFh7PSTr1OiebMmYM///wT7dq1w9SpU9G+fXsAwM2bNxEdHQ21Wo1PP/2UlQBNVUXxpEu2hBWnTnEdgXnSyXvnB9c4DISwRVDDDF2GqlfxdHNzw6lTpzBlypQqIwxFREQgOjq62unKzMmNZ8PydaQzT0IIaXLqfTOuZcuW2LdvH54+fYo7d+6AYRi0/f/27j0uqjr/H/hrhmFABEFFuYmCpBEqqKAsueqWKJuZmWbkqigqmwoFktfWULMNNENx9RdpIa2/Vdzy0s0sQqDVSOXiLRVFMSgFRERuCsPM+f6BjDMBysw58Dlw3s/Hg8dDDmc+58WbmT6dcz7n8xkwAN27dxcyX4d0X6VG3q0qANR5EoE89RTrBNKkU/dfe/fDAIZRiEDc3QVpRpAZhkaMGCFElk4jr6QKag0HGwtTOFibs45DOoOcHNYJpCknRzvDUEjEDqSxTUMEUH/qFISY782oAUPk0S403u+07waZTMY4DekUFi5knUCadOoeuX8zwyBEKPLQUGHaEaQVoufhYCG6ZEsEkpjIOoE06dT9r1lH2OUggpH/+9/CtGPoC86ePQuNRiPIwTurCw9mFvJwpM6TEEI6I4M7z2HDhqH0wdyA/fv3x+3btwUP1ZFxHIdLRY0jbekxFSIQEaxNK0k6dVfL6G/QKQj0WTK487SxsUF+fj4A4Pr163QW+gdFFfdx954KJnIZnuhtyToO6Syqq1knkCaduj/3z8MMgxCh1JeXC9KOwZ3ntGnTMHbsWLi6ukImk8HHxwf9+/dv9kuKGs86+9t2hZmC/k+VCIRWKWJDp+7Tf/yMYRAiFPmWLYK0Y/CjKjt27MDUqVORl5eHN954AyEhIbCyosuTjXIfdJ5P2lNNiIDeeguIpOnh2t1bbwHT5gIAQo58DOD/MY1D+JO//TawbBnvdox6zrNxObKsrCyEh4dT56mjsfN0p86TEEI6LV6TJOzatQvl5eX44IMPcPHiRQDAoEGDMG/ePFhbS3MB6EvaM08aaUsIIZ0Vr+c8MzMz4ebmhs2bN6OsrAxlZWWIjY2Fm5sbsrOzhcrYYajUGlwtaZiW70k7OvMkAvqFJiVnQqfuc99MYBiECKX+9GlB2uHVeS5ZsgSTJ0/G9evXceDAARw4cAD5+fmYNGkSIiIiBAnYkfx6uxp1ag0slCbo070L6zikM3lwZYe0M5269ysuYBiECEV26ZIg7fA+81yxYgUUiodXfxUKBZYvX47MzEze4Tqaxku2A+2sIJfTtHxEQC+/zDqBNOnUfd3/X8suBxGMyauvCtIOr86zW7duKCho+n9jhYWFkhxERIOFCCFEGnh1noGBgZg/fz727duHwsJCFBYWIikpCQsWLMCMGTOEythhXKLHVAghRBJ4dZ6bNm3C1KlTERQUBBcXF7i4uGDu3Ll4+eWXsWHDBqPb3b59O1xcXGBubg5fX1+cPHnykfuXl5cjNDQUDg4OMDMzw8CBA3H4cPvPBqJ9xpMGCxGhHTzIOoE06dR9ddA7DIMQoag/E2ayC16PqiiVSsTFxSE6OhpXr14FALi5ucHCwsLoNvft24fIyEjEx8fD19cXW7ZsQUBAAHJzc9G7d+8m+9fV1WH8+PHo3bs3Pv/8czg5OeHXX3+FjY2N0RmMUVNXj4KyGgB05knagJsb6wTSpFP3Gz0dGQYhQuEEmv1OkCXJLCwsMGTIEAwZMoRXxwkAsbGxCAkJQXBwMDw8PBAfHw8LCwskJDQ/TDwhIQFlZWU4dOgQRo0aBRcXF4wdOxZeXl68chjqcnHDIyq2lmboaWnWrscmEuDpyTqBNOnUPWHzAoZBiFAU3t7CtCNIKwKpq6tDVlYWVq1apd0ml8vh7++PjIyMZl/z5Zdfws/PD6Ghofjiiy/Qq1cv/O1vf8OKFStg0sLs+bW1taitrdV+X1HRsISYSqWCSqUyKvuF3+8AAAbadTW6jY6g8XfrzL+jkISqlwJAvQRqLrb3lwJAfb0aAMBBPLkaia1eYqZbo5bqZUgdRdV5lpaWQq1Ww87OTm+7nZ0dLrXwbM61a9dw9OhRzJw5E4cPH0ZeXh4WL14MlUqFNWvWNPua6OhorFu3rsn21NRUo8+cv8uXA5BDWVPK5H5re0tOTmYdoUPhW69JGo0k3leNxPL+mqTRICPjJwAKgINo/wZiqVdHoHnEZ6mmpqbV7Yiq8zSGRqNB7969sWPHDpiYmMDb2xu///473n///RY7z1WrViFSZ5LtiooKODs745lnnkHPnj2NypG0KxNAGQL+NAQThzsZ1UZHoFKpkJycjPHjx8PU1JR1HNETrF4xMZg4caJwwURKdO+vmBj4+T2NLedP4qOJf8cikf0NRFcvEWuslfqf/2zxs9R4FbI1RNV52trawsTEBMXFxXrbi4uLYW9v3+xrHBwcYGpqqneJ9qmnnkJRURHq6uqgVCqbvMbMzAxmZk3vS5qamhr9BrzyYFo+D0cbSbyJ+dRKinjXKzISUlrgTjTvr8hIKH4tAwAcGD0Nb4ghUzNEU68OQBYR0WKtDKmhIAOGhKJUKuHt7Y2UlBTtNo1Gg5SUFPj5+TX7mlGjRiEvL09vUe7Lly/DwcGh2Y6zLZRW1aK0qg4yWcPsQoQIztycdQJp0qn7928FMAxChKIQaAIf3meeKSkpSElJQUlJiV4HBqDFEbKPEhkZiTlz5sDHxwcjR47Eli1bUF1djeDgYABAUFAQnJycEB0dDQBYtGgRtm3bhvDwcLz++uu4cuUK3nvvPbzxxht8f7VWa3y+s18PC3RRSun8gBBCpIlX57lu3Tq888478PHxgYODA2Qy/vO5BgYG4tatW4iKikJRURGGDh2KI0eOaAcRFRQUQC5/eMLs7OyM7777DkuWLIGnpyecnJwQHh6OFStW8M7SWjSzECGESAuvzjM+Ph6JiYmYPXu2UHkAAGFhYQgLC2v2Z2lpaU22+fn54eeffxY0gyFyixpuMtManqTNzJ/POoE06dT9mxET8RLDKEQYmuBgQcYP8LrnWVdXh6efflqAGB0bTQhP2tz27awTSJNO3eNeCmcYhAhFs3WrIO3w6jwXLFiAPXv2CBKko1JrOO3sQtR5kjYzZAjrBNKkU/eEWDr77wwUw4YJ0w6fF9+/fx87duzADz/8AE9PzybDfGNjY3mF6wgKympwT6WGuakc/Xp2ZR2HdFZXrrBOIE06de9T+hvDIEQweXmCNMOr8zx79iyGDh0KADh//rzez4QYPNQRXLrZcL9zoJ0VTGgBbEIIkQRenWdqaqpQOTqsS3S/k7SHMWNYJ5AmnbqfcfXECIZRiDC40aMhxGkO7+c8y8vL8cknn+DixYsAgEGDBmHevHmwtrbmHa4juEQjbUl7+P571gmk6fvvgQczDC0LeR9pbNMQAagPHxZkdiBebWRmZsLNzQ2bN29GWVkZysrKEBsbCzc3N2RnZwsQT/wazzyfojNP0pamTWOdQJp06r7u383PlU06FpNXXhGkHV6d55IlSzB58mRcv34dBw4cwIEDB5Cfn49JkyYhIiJCkIBiVl1LC2CTdvLNN6wTSJNO3f0usXuWnAhH9u23grTD67JtZmYmdu7cCYXiYTMKhQLLly+Hj48P73Bid7m4EhwH9LKiBbAJIURKeJ15duvWDQUFBU22FxYWwkqgyXfFjAYLkXbTwqpCpI3p1L3MqgfDIEQwAn2WeHWegYGBmD9/Pvbt24fCwkIUFhYiKSkJCxYswIwZMwQJKGaNMws95UCDhUgbu36ddQJp0qn7q6v2sstBBFMv0DPTvDrPTZs2YerUqQgKCoKLiwtcXFwwd+5cvPzyy9iwYYMgAcXs4oNnPJ+kZchIW1u1inUCadKpe8i3OxkGIUKR/+MfwrTD58VKpRJxcXG4c+cOTp8+jdOnT6OsrAybN29udrHpzoTjuIeXbR2o8yRtbPNm1gmkSafu0//3OcMgRChygea25f2cJwBYWFhgiMTm3iyuqMXdeyqYyGV4orcl6ziEEELakcGdZ2RkJNavX4+uXbsiMjLykft25rltLz6YHKG/bVeYKWgBbEIIkRKDO8+cnByoVCrtv1vS2ee2vXSz8ZItDRYi7aCkhHUCaSopAe7UAwCmRB3AYcZxCH/1v/8O08fv9lgGd56689l++umn6NOnD+Ry/VunHMehsLCQfzoRa1wAmx5TIe1i/34gOJh1CunZvx949kUAwJhzPwKYxDYP4U128CCwYAHvdngNGHJ1dUVpaWmT7WVlZXB1deXTtOjRM56kXS1axDqBNOnUPfLgFnY5iGBMwsIEaYdX58lxXLPbq6qqYG5uzqdpUaur1yCv5MEC2HTZlhBCJMeo0baNA4VkMhmioqJgYWGh/ZlarcaJEye063x2RtdKq1Cv4WBlroCjdef9nwRCCCHNM6rzbBwoxHEczp07B6VSqf2ZUqmEl5cXli5dKkxCEdIOFrK36vQDo4hIHDvGOoE06dT99UVb8RHDKEQY6rQ0QZ7RNKqNxkFDwcHBiIuLQ7du0rp0eVE7WEhavzdhqLaWdQJp0qm7qVrFMAgRjECfJV73PHft2iW5jhN4OKctzSxE2s24cawTSJNO3WN3vMkwCBGKSUCAIO3w6jyjo6ORkJDQZHtCQgKvuW23b98OFxcXmJubw9fXFydPnmzV65KSkiCTyTBlyhSjj90aupdtCSGESA+vzvOjjz6Cu7t7k+2DBg1CfHy8UW3u27cPkZGRWLNmDbKzs+Hl5YWAgACUPOYh8evXr2Pp0qUYPXq0UcdtrfKaOhRV3AcADKQJ4QkhRJJ4dZ5FRUVwcHBosr1Xr164efOmUW3GxsYiJCQEwcHB8PDwQHx8PCwsLJo9w22kVqsxc+ZMrFu3Dv379zfquK3V+Hync48usDIXYp4KQlrhEe9/0oZ06r5h+nKGQYhQ1Dt2CNIOr87T2dkZx48fb7L9+PHjcHR0NLi9uro6ZGVlwd/f/2FAuRz+/v7IyMho8XXvvPMOevfujfnz5xt8TEM9XIZMevd6CUPjx7NOIE06dc8c4M0wCBEKp9O/8MFrxG5ISAgiIiKgUqnw7LPPAgBSUlKwfPlyvPmm4TfXS0tLoVarYWdnp7fdzs4Oly5davY1x44dwyeffILTp0+3+ji1tbWo1RlxVVHR0CGqVCrtvL0tOfdbOQDgKfuuj923M2r8naX4uxtDqHopnJ1RX1kpRCRRE9v7S+HsjPpfGqYa/e97gVCtrmacSJ/Y6iVmjTVS9O8PVQufJUPqyKvzXLZsGW7fvo3Fixejrq4OAGBubo4VK1ZgVTss3ltZWYnZs2dj586dsLW1bfXroqOjsW7duibbU1NT9SZ8aM6JXBMAMty7cQWHD182NHKnkZyczDpCh8K3XpM0Ghw+LJ1pycXy/pqk0SAj4ycACoCDaP8GYqlXR6B5xGeppqam1e3IuJbm2DNAVVUVLl68iC5dumDAgAFGL4RdV1cHCwsLfP7553ojZufMmYPy8nJ88cUXevufPn0aw4YNg4nJwyXBNBoNgIbLvbm5uXBzc2tynObOPJ2dnXHz5k307NmzxXy19RoMXZ+Ceg2H9DdHw9Gmi1G/Z0emUqmQnJyM8ePHw9SU7vk+jlD1UlhZSebMU0zvL4WVFU7+UojAnSeR+8FLkNeI78xTTPUSs8ZaTQ4MbPGzVFFRAVtbW9y9e/exj2EKshi2paUlRowYwbsdpVIJb29vpKSkaDtPjUaDlJQUhDUzma+7uzvOnTunt2316tWorKxEXFwcnJ2dmz2OmZlZsx28qanpI9+Al4rvol7DobuFKfraSnt2ocfViujjXa+VKyVVb9G8v1auhOLBer17/zIDc8WQqRmiqVcHoFm2rMVaGVJDQTrPCxcuoKCgQHvpttHkyZMNbisyMhJz5syBj48PRo4ciS1btqC6uhrBD5ZjCgoKgpOTE6Kjo2Fubo7Bgwfrvd7GxgYAmmwXwi837gIABjlaS7rjJAysXcs6gTStXQv8WgYASJwwF3OZhiFC0ERFweTxuz0Wr87z2rVreOmll3Du3DnIZDLtKiuNHYtarTa4zcDAQNy6dQtRUVEoKirC0KFDceTIEe0gooKCgibrh7aX89rOk0baknbm4AAY+fgX4cHBAfj5FwDA/vUvA8tuMw5E+FL07SvIZ4lX5xkeHg5XV1ekpKTA1dUVJ0+exO3bt/Hmm29i06ZNRrcbFhbW7GVaAEhLS3vkaxMTE40+7uP8cqNhVO4gJ+s2OwYhzbpzh3UCadKpu9W9zn/PWRIE+izx6jwzMjJw9OhR2NraQi6XQy6X489//jOio6PxxhtvaFdf6QzUGk77jCedeRJCiLTxuv6pVqthZdUwRZ2trS1u3LgBAOjXrx9yc3P5pxORa7eqcF+lgYXSBK49u7KOQ6Rm6lTWCaRJp+4/Dm7bqT9J++AEmvuc15nn4MGDcebMGbi6usLX1xcbN26EUqnEjh072nyavPbWeMnWw6Eb5HIaLETa2Z49rBNI05492gFD7/5tNYSZm4awpN69m99Z4wO82li9erV2kNA777yD/Px8jB49GocPH8bWrVsFiCceZ39rGCw0mO53EhbGjmWdQJp06r7lwwh2OYhgTARa3s/oM0+VSoWNGzdqV0954okncOnSJZSVlaF79+6d7lGOc7+XAwA8+1DnSRg4cYJ1AmnSqbtH4UWGQYhQZK1c4vJxjO48TU1Ncfbs2Sbbe/TowSuQGNWrNTj/e8NlW+o8CSGE8LpsO2vWLHzyySdCZRGtq7eqcU+lRlelCfrbWrKOQ6SoDSb9IK2gU/d8O1eGQYhQuEGDBGmH14Ch+vp6JCQk4IcffoC3tze6dtUfhRobG8srnFicebCSymAnaxosRNjIzGSdQJoyM7UDhl4Lj0ca2zREAOqff2Y/YOj8+fMYPnw4rKyscPnyZeTk5Gi/DFkiTOzOPug8vZxtmOYgEhYSwjqBNOnUfennxk/8QsTDZOFCQdrhdeaZmpoqSAixO1PYMNJ2CI20Jazs3g3s3Mk6hfTs3g2s3gAAmJBNy351BrL//AcQ4HajUWee165dgwArmXUINXX1uPBgZqHh/bozTkMIIUQMjOo8BwwYgFu3bmm/DwwMRHFxsWChxOTsb3eh1nCw72YOR2tz1nGIVCmVrBNIk07dVSa05FenINBnyajO849nnYcPH0Z1tbgWiRVK1q8Nkwh79+t8z66SDqSignUCadKp+/Prv2YYhAil/rYwK+OwWdurA8l+0HnSJVvC1MaNrBNIk07dX01LYhiECEXOY8UvvXaMeZFMJmtyFtYZz8o4jkNWwcMzT0KYiYpinUCadOo+7/tdDIMQocjXrROkHaNG23Ich7lz58LMzAwAcP/+fSxcuLDJc54HDhzgn5Cha6XVKK9RwUwhh4cDLUNGCCGkgVGd55w5c/S+nzVrliBhxKbxfqdXHxsoFXSFmxBCSAOjOs9du6Rx+YLudxLR6GTr43YYOnWfvexT7GMYhQij/vx5CDFumk6nHkF3pC0hTOXksE4gTTp1H/B7HsMgRCgygWa/o86zBXdrVLhSUgUAGN7Xhm0YQl59lXUCadKpe9Se9QyDEKGYCHSbkTrPFmQXNpx1utp2RU9LM8ZpCCGEiAl1ni3Q3u/sS5dsCSGE6KPOswUn8huWIaL7nUQUvvqKdQJp0qn7qrn/ZBiECEV98KAg7fDuPP/3v/9h1qxZ8PPzw++//w4A2L17N44dO8Y7HCs1dfXIeTA5wtNuPRmnIQSAkxPrBNKkU/dSa1uGQYhQOEdHQdrh1Xnu378fAQEB6NKlC3JyclBbWwsAuHv3Lt577z2j292+fTtcXFxgbm4OX19fnDx5ssV9d+7cidGjR6N79+7o3r07/P39H7l/a5y6fgcqNQcnmy7o19OCV1uECGL4cNYJpEmn7jvjXmMYhAhF4esrSDu8Os93330X8fHx2LlzJ0xNHz45M2rUKGRnZxvV5r59+xAZGYk1a9YgOzsbXl5eCAgIQElJSbP7p6WlYcaMGUhNTUVGRgacnZ0xYcIE7VmwMX7KKwXQcNbZGacdJIQQwg+vzjM3Nxdjxoxpst3a2hrl5eVGtRkbG4uQkBAEBwfDw8MD8fHxsLCwQEJCQrP7/+c//8HixYsxdOhQuLu74+OPP4ZGo0FKSopRxweA41cbOs9RT9BlGkIIIU0ZNcNQI3t7e+Tl5cHFxUVv+7Fjx9C/f3+D26urq0NWVhZWrVql3SaXy+Hv74+MjIxWtVFTUwOVSoUePXq0uE9tba32EjMAVDxYdkilUuHW3Rr8cqPh+xH9rKFSqQz+PTqzxnpQXVpHqHrJN26ERgI1F9v7S75xI+rr1QCA7c8vQphIcjUSW73ETFur6GjIWqiXIXXk1XmGhIQgPDwcCQkJkMlkuHHjBjIyMrB06VK8/fbbBrdXWloKtVoNOzs7ve12dna4dOlSq9pYsWIFHB0d4e/v3+I+0dHRWNfMzPqpqam4cq8rOM4E9l04ZP7P+LPXzi45OZl1hA6Fb71kffqAO3xYoDTiJ5b3l6xPH1zL+AmAAkmez6K/SP8GYqlXR3CkX78WP0s1NTWtbodX57ly5UpoNBqMGzcONTU1GDNmDMzMzLB06VK8/vrrfJo2SkxMDJKSkpCWlgZzc/MW91u1ahUiIyO131dUVMDZ2RnPPPMMzv9UAqAQ4736YeJE93ZI3bGoVCokJydj/Pjxeve5SfOEqpfCygr1lZUCJhMnsb2/FFZWOPlLIbacP4kfo6dDXlPNOpIesdVLzBpr9cLf/tbiZ6nCgEXneXWeMpkM//jHP7Bs2TLk5eWhqqoKHh4esLS0NKo9W1tbmJiYoLi4WG97cXEx7O3tH/naTZs2ISYmBj/88AM8PT0fua+ZmZl2OTVdCoUCx682rDL+5wG96M34CKamplQfAwhRLynVW0zvL4XCBAAgg3j/BmKqV0fQUq0MqaEgkyQolUp4eHhg5MiRRnecje14e3vrDfZpHPzj5+fX4us2btyI9evX48iRI/Dx8TH6+Ndv1+D67RooTeQ0WIgQQkiLDD7z1L3c+TixsbGGNo/IyEjMmTMHPj4+GDlyJLZs2YLq6moEBwcDAIKCguDk5ITo6GgAwIYNGxAVFYU9e/bAxcUFRUVFAABLS0uDO/L0Kw2jbP/k1hOWZrxOygkR1mv0jCETOnX/0vcFvMwwChGGJiQEJgK0Y3APkdPKpZGMfT4yMDAQt27dQlRUFIqKijB06FAcOXJEO4iooKAAcvnDE+YPP/wQdXV1ePll/bf1mjVrsHbtWoOO/ePlhs7T/6neRmUnpM3ExbFOIE1xccCvDVN1bnsxjDrPTkATG8um80xNTRXgsI8WFhaGsLCwZn+Wlpam9/3169cFO+6Z3+4CSgs8606dJxEZDw/gwgXWKaTHwwP4tmGq0cRNwcCy62zzEN4Unp7AxYu826GJ4XVoOOAph27o052m5CMic+0a6wTSpFN3x7IbDIMQweTnC9IM7xt75eXl+OSTT3DxQU/u4eGB+fPnw9ramnc4FuiSLSGEkMfhdeaZmZkJNzc3bN68GWVlZSgrK8PmzZvh5uZm9Ny2rPk/Zff4nQhpb888wzqBNOnUPcdtGMMgRCjcX/4iSDu8Os8lS5Zg8uTJuH79Og4cOIADBw4gPz8fkyZNQkREhCAB21Of7ubw7NMxz5hJJ/ftt6wTSJNO3VfMj2EYhAhFLdDauLzPPFesWAGF4uHVX4VCgeXLlyMzM5N3uPb210H2tIoKEacpU1gnkCadur/7qeFTjhLxMZk2TZB2eHWe3bp1Q0FBQZPthYWFsLKy4tM0E38dRPc7iUgdOcI6gTTp1H1kLr91ggl7ag0g+/57qDUc77Z4dZ6BgYGYP38+9u3bh8LCQhQWFiIpKQkLFizAjBkzeIdrb269jJ8diRBCiLjtvy5HXb0G/zp6hXdbvEbbbtq0CTKZDEFBQaivrwfHcVAqlVi0aBFiYuj+ACGCcXJinUCadOp+q5st6K/QsXEAiqx6Qi7A7TleZ55KpRJxcXG4c+cOTp8+jTNnzmhH3DY38TohxEhXr7JOIE06dZ+58j8MgxAhcBww9rWPIcTIFqPOPOfNm9eq/RISEoxpnhDyR8uXAxs3sk4hPcuXA6ErAQCvffMRsIweGeroVqYmQB2wgXc7Rp15JiYmIjU1FeXl5bhz506LX4QQgWzdyjqBNOnUfdrxAwyDECFoOCA46ysI8VCFUWeeixYtwt69e5Gfn4/g4GDMmjULPXr04J+GEEIIaSONY2xlAly4NerMc/v27bh58yaWL1+Or776Cs7OznjllVfw3XffgeP4DwEmhBBC2opcgDNPowcMmZmZYcaMGUhOTsaFCxcwaNAgLF68GC4uLqiqquKfjBDy0O3brBNIk07dJ689xC4HEQTHAUPf2CvIZVtBVlWRy+WQyWTgOA5qtVqIJgkhuvbuZZ1AmnTqPi7nKMMgRAgaAJMvprN9VKW2thZ79+7F+PHjMXDgQJw7dw7btm1DQUEBLC1psgFCBNXC+rakjenUPfwLGrTVGbyTHC/INKxGDRhavHgxkpKS4OzsjHnz5mHv3r2wtbXlHYYQQghpK41Dcpg95xkfH4++ffuif//+SE9PR3p6erP7HThAQ7sJIYSIQ+NwViEGDBnVeQYFBdHqI4S0p4wM1gmkSafui0O34WOGUQh/HICpszfhFVaXbRMTE3kfmBBigMpK1gmkqbISePAIu0VtDdsshDeOA7rW3WP7qAohpB1NmMA6gTTp1H3Tx8sZBiFC4ADs3ve2IFdOqfMkhBAiCdoBQ3TmSQghhLTOwwFDnfTMc/v27XBxcYG5uTl8fX1x8uSjV3D/7LPP4O7uDnNzcwwZMgSHDx9up6SEtJNPP2WdQJp06h79ykqGQYhQ3nx+CbtHVdrSvn37EBkZifj4ePj6+mLLli0ICAhAbm4uevfu3WT/n376CTNmzEB0dDQmTZqEPXv2YMqUKcjOzsbgwYMZ/AaEtIExY1gnkKYxY4C6hn+m9HJH4aen2Ob5A42GQ0mJHF+U5UAuxCiYTkyj4XC9SoZi58EYw2q0bVuKjY1FSEgIgoODATQ8U/rNN98gISEBK1c2/T+/uLg4/PWvf8WyZcsAAOvXr0dycjK2bduG+Pj4ds1OSJtxdQXu32edQnpcXdHzt4b5bZO3zcWTSw8yDtQcOXDnFusQHYQMWfHz8VPYb7xbElXnWVdXh6ysLKxatUq7TS6Xw9/fHxktPOeWkZGByMhIvW0BAQE4dOhQW0YlhEiEi21XJP39T1BslmPDtCGs4+hRq9U4e/YcPD2HwMTEhHUcUWuslcJEjjEDe/FuT1SdZ2lpKdRqNezs7PS229nZ4dKlS82+pqioqNn9i4qKWjxObW0tamtrtd/fvXsXAFBWVmZsdMlQqVSoqanB7du3YWpqyjqO6AlVLwXHoV4CK6uI7f3VWPcB1kAVOPj378o6kh6VSgVZfjWecekiinqJWWOtqsCh/k7z/62vfPA8dWuW1hRV59leoqOjsW7duibbBw4cyCANIa1E80ezoVt3+ht0Do/5O1ZWVsLa2vqR+4iq87S1tYWJiQmKi4v1thcXF8Pe3r7Z19jb2xu0PwCsWrVK71JveXk5+vXrh4KCgscWTOoqKirg7OyMwsJCdOvWjXUc0aN6GYbqZRiqV+u1plYcx6GyshKOjo6PbU9UnadSqYS3tzdSUlIwZcoUAIBGo0FKSgrCWliSyc/PDykpKYiIiNBuS05Ohp+fX4vHMTMzg5mZWZPt1tbW9AZspW7dulGtDED1MgzVyzBUr9Z7XK1aewIlqs4TACIjIzFnzhz4+Phg5MiR2LJlC6qrq7Wjb4OCguDk5ITo6GgAQHh4OMaOHYsPPvgAzz//PJKSkpCZmYkdO3aw/DUIIYR0YqLrPAMDA3Hr1i1ERUWhqKgIQ4cOxZEjR7SDggoKCiCXP5zb4emnn8aePXuwevVqvPXWWxgwYAAOHTpEz3gSQghpM6LrPAEgLCysxcu0aWlpTbZNnz4d06dPN/p4ZmZmWLNmTbOXcok+qpVhqF6GoXoZhurVekLXSsa1ZkwuIYQQQrREObctIYQQImbUeRJCCCEGos6TEEIIMRB1noQQQoiBJN95Grp2qFT8+OOPeOGFF+Do6AiZTNZkon2O4xAVFQUHBwd06dIF/v7+uHLlCpuwjEVHR2PEiBGwsrJC7969MWXKFOTm5urtc//+fYSGhqJnz56wtLTEtGnTmsyMJRUffvghPD09tQ+r+/n54dtvv9X+nGrVspiYGMhkMr1JYahe+tauXQuZTKb35e7urv25UPWSdOfZuHbomjVrkJ2dDS8vLwQEBKCkpIR1NOaqq6vh5eWF7du3N/vzjRs3YuvWrYiPj8eJEyfQtWtXBAQE4L4El81KT09HaGgofv75ZyQnJ0OlUmHChAmorq7W7rNkyRJ89dVX+Oyzz5Ceno4bN25g6tSpDFOz06dPH8TExCArKwuZmZl49tln8eKLL+KXX34BQLVqyalTp/DRRx/B09NTbzvVq6lBgwbh5s2b2q9jx45pfyZYvTgJGzlyJBcaGqr9Xq1Wc46Ojlx0dDTDVOIDgDt48KD2e41Gw9nb23Pvv/++dlt5eTlnZmbG7d27l0FCcSkpKeEAcOnp6RzHNdTG1NSU++yzz7T7XLx4kQPAZWRksIopKt27d+c+/vhjqlULKisruQEDBnDJycnc2LFjufDwcI7j6L3VnDVr1nBeXl7N/kzIekn2zLNx7VB/f3/ttsetHUoa5Ofno6ioSK921tbW8PX1pdrh4RJ3PXr0AABkZWVBpVLp1cvd3R19+/aVfL3UajWSkpJQXV0NPz8/qlULQkND8fzzz+vVBaD3VkuuXLkCR0dH9O/fHzNnzkRBQQEAYeslyhmG2oMxa4eSBo1rpRq6jqoUaDQaREREYNSoUdopIouKiqBUKmFjY6O3r5Trde7cOfj5+eH+/fuwtLTEwYMH4eHhgdOnT1Ot/iApKQnZ2dk4depUk5/Re6spX19fJCYm4sknn8TNmzexbt06jB49GufPnxe0XpLtPAlpC6GhoTh//rzePRbS1JNPPonTp0/j7t27+PzzzzFnzhykp6ezjiU6hYWFCA8PR3JyMszNzVnH6RCee+457b89PT3h6+uLfv364b///S+6dOki2HEke9nWmLVDSYPG+lDt9IWFheHrr79Gamoq+vTpo91ub2+Puro6lJeX6+0v5XoplUo88cQT8Pb2RnR0NLy8vBAXF0e1+oOsrCyUlJRg+PDhUCgUUCgUSE9Px9atW6FQKGBnZ0f1egwbGxsMHDgQeXl5gr6/JNt56q4d2qhx7dBHrQVKAFdXV9jb2+vVrqKiAidOnJBk7TiOQ1hYGA4ePIijR4/C1dVV7+fe3t4wNTXVq1dubi4KCgokWa/maDQa1NbWUq3+YNy4cTh37hxOnz6t/fLx8cHMmTO1/6Z6PVpVVRWuXr0KBwcHYd9fPAY1dXhJSUmcmZkZl5iYyF24cIH7+9//ztnY2HBFRUWsozFXWVnJ5eTkcDk5ORwALjY2lsvJyeF+/fVXjuM4LiYmhrOxseG++OIL7uzZs9yLL77Iubq6cvfu3WOcvP0tWrSIs7a25tLS0ribN29qv2pqarT7LFy4kOvbty939OhRLjMzk/Pz8+P8/PwYpmZn5cqVXHp6Opefn8+dPXuWW7lyJSeTybjvv/+e4ziq1ePojrblOKrXH7355ptcWloal5+fzx0/fpzz9/fnbG1tuZKSEo7jhKuXpDtPjuO4f/3rX1zfvn05pVLJjRw5kvv5559ZRxKF1NRUDkCTrzlz5nAc1/C4yttvv83Z2dlxZmZm3Lhx47jc3Fy2oRlprk4AuF27dmn3uXfvHrd48WKue/funIWFBffSSy9xN2/eZBeaoXnz5nH9+vXjlEol16tXL27cuHHajpPjqFaP88fOk+qlLzAwkHNwcOCUSiXn5OTEBQYGcnl5edqfC1UvWpKMEEIIMZBk73kSQgghxqLOkxBCCDEQdZ6EEEKIgajzJIQQQgxEnSchhBBiIOo8CSGEEANR50kIIYQYiDpPQkRq7ty5mDJlSrsfNzExETKZDDKZDBEREbzb+uMKFo8zd+5c7fEPHTrE6/iEtBVaVYUQBmQy2SN/vmbNGsTFxYHVHCbdunVDbm4uunbtyqudwMBATJw40aDXxMXFISYmBg4ODryOTUhbos6TEAZu3ryp/fe+ffsQFRWF3Nxc7TZLS0tYWlqyiAagoXMXYlWOLl26GLwMlLW1NaytrXkfm5C2RJdtCWHA3t5e+2Vtba3trBq/LC0tm1y2/ctf/oLXX38dERER6N69O+zs7LBz505UV1cjODgYVlZWeOKJJ/Dtt9/qHev8+fN47rnnYGlpCTs7O8yePRulpaUGZ3ZxccG7776LoKAgWFpaol+/fvjyyy9x69YtvPjii7C0tISnpycyMzO1r/njZdu1a9di6NCh2L17N1xcXGBtbY1XX30VlZWVBuchhCXqPAnpQD799FPY2tri5MmTeP3117Fo0SJMnz4dTz/9NLKzszFhwgTMnj0bNTU1AIDy8nI8++yzGDZsGDIzM3HkyBEUFxfjlVdeMer4mzdvxqhRo5CTk4Pnn38es2fPRlBQEGbNmoXs7Gy4ubkhKCjokZebr169ikOHDuHrr7/G119/jfT0dMTExBiVhxBWqPMkpAPx8vLC6tWrMWDAAKxatQrm5uawtbVFSEgIBgwYgKioKNy+fRtnz54FAGzbtg3Dhg3De++9B3d3dwwbNgwJCQlITU3F5cuXDT7+xIkT8dprr2mPVVFRgREjRmD69OkYOHAgVqxYgYsXLzZZKF2XRqNBYmIiBg8ejNGjR2P27Nl66ysS0hHQPU9COhBPT0/tv01MTNCzZ08MGTJEu83Ozg4AUFJSAgA4c+YMUlNTm71/evXqVQwcONDo4zceq6Xjt3TP1MXFBVZWVtrvHRwctHkJ6Sio8ySkAzE1NdX7XiaT6W1rHMWr0WgAAFVVVXjhhRewYcOGJm0ZM5q1uWM96viPa6PxNY/anxAxos6TkE5s+PDh2L9/P1xcXKBQ0MedEKHQPU9COrHQ0FCUlZVhxowZOHXqFK5evYrvvvsOwcHBUKvVrOMR0mFR50lIJ+bo6Ijjx49DrVZjwoQJGDJkCCIiImBjYwO5nD7+hBhLxrGawoQQIkqJiYmIiIhAeXk50xwymQwHDx5kMkUhIY9D/+tJCGni7t27sLS0xIoVK9r92AsXLmQ6uxIhrUFnnoQQPZWVldrnNG1sbGBra9uuxy8pKUFFRQWAhhHBfOfXJaQtUOdJCCGEGIgu2xJCCCEGos6TEEIIMRB1noQQQoiBqPMkhBBCDESdJyGEEGIg6jwJIYQQA1HnSQghhBiIOk9CCCHEQNR5EkIIIQb6P/ZUCsZgztkwAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# profiles\n", + "plot_tsa_profiles(m.fs.tsa)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" } - ], - "source": [ - "# profiles\n", - "plot_tsa_profiles(m.fs.tsa)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" - } - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block.ipynb b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block.ipynb index a9b7b17b..d926bdd0 100644 --- a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block.ipynb +++ b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_doc.ipynb b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_doc.ipynb index 863667af..9d534d71 100644 --- a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_doc.ipynb +++ b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -727,15 +728,26 @@ "execution_count": 9, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: DEPRECATED: You're using the deprecated parmest interface\n", + "(model_function, data, theta_names). This interface will be removed in a\n", + "future release, please update to the new parmest interface using experiment\n", + "lists. (deprecated in 6.7.2) (called from /home/dang/miniforge3/envs/idaes_ex\n", + "amples_py3.11/lib/python3.11/functools.py:946)\n" + ] + }, { "name": "stderr", "output_type": "stream", "text": [ - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_11124\\1110609025.py:44: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", + "/tmp/ipykernel_291399/1110609025.py:44: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_11124\\426137296.py:7: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", + "/tmp/ipykernel_291399/426137296.py:7: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", " float(data[\"vap_benzene\"])\n", - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_11124\\426137296.py:10: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", + "/tmp/ipykernel_291399/426137296.py:10: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", " float(data[\"liq_benzene\"])\n" ] }, @@ -797,11 +809,11 @@ "Number of Iterations....: 11\n", "\n", " (scaled) (unscaled)\n", - "Objective...............: 5.0749685783046434e+00 5.0749685783046434e+00\n", - "Dual infeasibility......: 2.1827409324437497e-10 2.1827409324437497e-10\n", + "Objective...............: 5.0749685783046621e+00 5.0749685783046621e+00\n", + "Dual infeasibility......: 2.1827345486613581e-10 2.1827345486613581e-10\n", "Constraint violation....: 1.6625508263665860e-10 4.7832145355641842e-08\n", - "Complementarity.........: 2.5076274461651402e-09 2.5076274461651402e-09\n", - "Overall NLP error.......: 2.5076274461651402e-09 4.7832145355641842e-08\n", + "Complementarity.........: 2.5076274461738773e-09 2.5076274461738773e-09\n", + "Overall NLP error.......: 2.5076274461738773e-09 4.7832145355641842e-08\n", "\n", "\n", "Number of objective function evaluations = 12\n", @@ -811,8 +823,8 @@ "Number of equality constraint Jacobian evaluations = 12\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 11\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n", - "Total CPU secs in NLP function evaluations = 0.010\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.014\n", + "Total CPU secs in NLP function evaluations = 0.006\n", "\n", "EXIT: Optimal Solution Found.\n", "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" @@ -849,8 +861,8 @@ "The SSE at the optimal solution is 0.000507\n", "\n", "The values for the parameters are as follows:\n", - "fs.properties.tau[benzene,toluene] = -0.8987624036283798\n", - "fs.properties.tau[toluene,benzene] = 1.4104861099366137\n" + "fs.properties.tau[benzene,toluene] = -0.8987624036283826\n", + "fs.properties.tau[toluene,benzene] = 1.4104861099366197\n" ] } ], @@ -918,7 +930,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_exercise.ipynb b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_exercise.ipynb index 23756bea..8fd0a5e7 100644 --- a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_exercise.ipynb +++ b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_exercise.ipynb @@ -1,417 +1,417 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Parameter Estimation Using the NRTL State Block\n", - "\n", - "Author: Jaffer Ghouse \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-06-01 \n", - "\n", - "In this module, we use Pyomo's `parmest` tool in conjunction with IDAES models for parameter estimation. We demonstrate these tools by estimating the parameters associated with the NRTL property model for a benzene-toluene mixture. The NRTL model has 2 sets of parameters: the non-randomness parameter (`alpha_ij`) and the binary interaction parameter (`tau_ij`), where `i` and `j` are the pure component species. In this example, we only estimate the binary interaction parameter (`tau_ij`) for a given dataset. When estimating parameters associated with the property package, IDAES provides the flexibility of doing the parameter estimation by just using the state block or by using a unit model with a specified property package. This module will demonstrate parameter estimation by using only the state block. \n", - "\n", - "We will complete the following tasks:\n", - "* Set up a method to return an initialized model\n", - "* Set up the parameter estimation problem using `parmest`\n", - "* Analyze the results\n", - "* Demonstrate advanced features using `parmest`\n", - "\n", - "## Key links to documentation:\n", - "* NRTL Model - https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", - "* parmest - https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/index.html\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "import `ConcreteModel` from Pyomo and `FlowsheetBlock` from IDAES. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: import ConcreteModel from pyomo.environ\n", - "\n", - "# Todo: import FlowsheetBlock from idaes.core" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next cell, we import the parameter block used in this module and the idaes logger. " - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", - " BTXParameterBlock,\n", - ")\n", - "import idaes.logger as idaeslog" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next cell, we import `parmest` from Pyomo and the `pandas` package. We need `pandas` as `parmest` uses `pandas.dataframe` for handling the input data and the results." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "import pyomo.contrib.parmest.parmest as parmest\n", - "import pandas as pd" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setting up an initialized model\n", - "\n", - "We need to provide a method that returns an initialized model to the `parmest` tool in Pyomo." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Using what you have learned from previous modules, fill in the missing code below to return an initialized IDAES model. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "def NRTL_model(data):\n", - "\n", - " # Todo: Create a ConcreteModel object\n", - "\n", - " # Todo: Create FlowsheetBlock object\n", - "\n", - " # Todo: Create a properties parameter object with the following options:\n", - " # \"valid_phase\": ('Liq', 'Vap')\n", - " # \"activity_coeff_model\": 'NRTL'\n", - "\n", - " m.fs.state_block = m.fs.properties.build_state_block(defined_state=True)\n", - "\n", - " # Fix the state variables on the state block\n", - " # hint: state variables exist on the state block i.e. on m.fs.state_block\n", - " m.fs.state_block.flow_mol.fix(1)\n", - " m.fs.state_block.temperature.fix(368)\n", - " m.fs.state_block.pressure.fix(101325)\n", - " m.fs.state_block.mole_frac_comp[\"benzene\"].fix(0.5)\n", - " m.fs.state_block.mole_frac_comp[\"toluene\"].fix(0.5)\n", - "\n", - " # Fix NRTL specific parameters.\n", - "\n", - " # non-randomness parameter - alpha_ij (set at 0.3, 0 if i=j)\n", - " m.fs.properties.alpha[\"benzene\", \"benzene\"].fix(0)\n", - " m.fs.properties.alpha[\"benzene\", \"toluene\"].fix(0.3)\n", - " m.fs.properties.alpha[\"toluene\", \"toluene\"].fix(0)\n", - " m.fs.properties.alpha[\"toluene\", \"benzene\"].fix(0.3)\n", - "\n", - " # binary interaction parameter - tau_ij (0 if i=j, else to be estimated later but fixing to initialize)\n", - " m.fs.properties.tau[\"benzene\", \"benzene\"].fix(0)\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].fix(-0.9)\n", - " m.fs.properties.tau[\"toluene\", \"toluene\"].fix(0)\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].fix(1.4)\n", - "\n", - " # Initialize the flash unit\n", - " m.fs.state_block.initialize(outlvl=idaeslog.INFO)\n", - "\n", - " # Fix at actual temperature\n", - " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", - "\n", - " # Set bounds on variables to be estimated\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].setub(5)\n", - "\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].setlb(-5)\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].setub(5)\n", - "\n", - " # Return initialized flash model\n", - " return m" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Parameter estimation using parmest" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In addition to providing a method to return an initialized model, the `parmest` tool needs the following:\n", - "\n", - "* List of variable names to be estimated\n", - "* Dataset\n", - "* Expression to compute the sum of squared errors\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this example, we only estimate the binary interaction parameter (`tau_ij`). Given that this variable is usually indexed as `tau_ij = Var(component_list, component_list)`, there are 2*2=4 degrees of freedom. However, when i=j, the binary interaction parameter is 0. Therefore, in this problem, we estimate the binary interaction parameter for the following variables only:\n", - "\n", - "* fs.properties.tau['benzene', 'toluene']\n", - "* fs.properties.tau['toluene', 'benzene']\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Create a list called `variable_name` with the above-mentioned variables declared as strings.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Create a list of vars to estimate" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Pyomo's `parmest` tool supports the following data formats:\n", - "- pandas dataframe\n", - "- list of dictionaries\n", - "- list of json file names.\n", - "\n", - "Please see the documentation for more details. \n", - "\n", - "For this example, we load data from the csv file `BT_NRTL_dataset.csv`. The dataset consists of fifty data points which provide the mole fraction of benzene in the vapor and liquid phase as a function of temperature. " - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# Load data from csv\n", - "data = pd.read_csv(\"BT_NRTL_dataset.csv\")\n", - "\n", - "# Display the dataset\n", - "display(data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We need to provide a method to return an expression to compute the sum of squared errors that will be used as the objective in solving the parameter estimation problem. For this problem, the error will be computed for the mole fraction of benzene in the vapor and liquid phase between the model prediction and data. \n", - "\n", - "
\n", - "Inline Exercise:\n", - "Complete the following cell by adding an expression to compute the sum of square errors. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create method to return an expression that computes the sum of squared error\n", - "def SSE(m, data):\n", - " # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid\n", - " # and vapor phase. For example, the squared error for the vapor phase is:\n", - " # (float(data[\"vap_benzene\"]) - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"])**2\n", - "\n", - " return expr * 1e4" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Note:\n", - "Notice that we have scaled the expression up by a factor of 10000 as the SSE computed here will be an extremely small number given that we are using the difference in mole fraction in our expression. This will help in using a well-scaled objective to improve solve robustness when using IPOPT. \n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are now ready to set up the parameter estimation problem. We will create a parameter estimation object called `pest`. As shown below, we pass the method that returns an initialized model, data, variable_name, and the SSE expression to the Estimator method. `tee=True` will print the solver output after solving the parameter estimation problem. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import logging\n", - "\n", - "idaeslog.getIdaesLogger(\"core.property_meta\").setLevel(logging.ERROR)\n", - "# Initialize a parameter estimation object\n", - "pest = parmest.Estimator(NRTL_model, data, variable_name, SSE, tee=True)\n", - "\n", - "# Run parameter estimation using all data\n", - "obj_value, parameters = pest.theta_est()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You will notice that the resulting parameter estimation problem will have 1102 variables and 1100 constraints. Let us display the results by running the next cell. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"The SSE at the optimal solution is %0.6f\" % (obj_value * 1e-4))\n", - "print()\n", - "print(\"The values for the parameters are as follows:\")\n", - "for k, v in parameters.items():\n", - " print(k, \"=\", v)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Using the data that was provided, we have estimated the binary interaction parameters in the NRTL model for a benzene-toluene mixture. Although the dataset that was provided was temperature dependent, in this example we have estimated a single value that fits best for all temperatures." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Advanced options for parmest: bootstrapping\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Pyomo's `parmest` tool allows for bootstrapping where the parameter estimation is repeated over `n` samples with resampling from the original data set. Parameter estimation with bootstrap resampling can be used to identify confidence regions around each parameter estimate. This analysis can be slow given the increased number of model instances that need to be solved. Please refer to https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/driver.html for more details. \n", - "\n", - "For the example above, the bootstrapping can be run by uncommenting the code in the following cell:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Run parameter estimation using bootstrap resample of the data (10 samples),\n", - "# plot results along with confidence regions\n", - "\n", - "# Uncomment the following code:\n", - "# bootstrap_theta = pest.theta_est_bootstrap(4)\n", - "# display(bootstrap_theta)" - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.9" - } + "cells": [ + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Parameter Estimation Using the NRTL State Block\n", + "\n", + "Author: Jaffer Ghouse \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-06-01 \n", + "\n", + "In this module, we use Pyomo's `parmest` tool in conjunction with IDAES models for parameter estimation. We demonstrate these tools by estimating the parameters associated with the NRTL property model for a benzene-toluene mixture. The NRTL model has 2 sets of parameters: the non-randomness parameter (`alpha_ij`) and the binary interaction parameter (`tau_ij`), where `i` and `j` are the pure component species. In this example, we only estimate the binary interaction parameter (`tau_ij`) for a given dataset. When estimating parameters associated with the property package, IDAES provides the flexibility of doing the parameter estimation by just using the state block or by using a unit model with a specified property package. This module will demonstrate parameter estimation by using only the state block. \n", + "\n", + "We will complete the following tasks:\n", + "* Set up a method to return an initialized model\n", + "* Set up the parameter estimation problem using `parmest`\n", + "* Analyze the results\n", + "* Demonstrate advanced features using `parmest`\n", + "\n", + "## Key links to documentation:\n", + "* NRTL Model - https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", + "* parmest - https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/index.html\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "import `ConcreteModel` from Pyomo and `FlowsheetBlock` from IDAES. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: import ConcreteModel from pyomo.environ\n", + "\n", + "# Todo: import FlowsheetBlock from idaes.core" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the next cell, we import the parameter block used in this module and the idaes logger. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", + " BTXParameterBlock,\n", + ")\n", + "import idaes.logger as idaeslog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the next cell, we import `parmest` from Pyomo and the `pandas` package. We need `pandas` as `parmest` uses `pandas.dataframe` for handling the input data and the results." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import pyomo.contrib.parmest.parmest as parmest\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting up an initialized model\n", + "\n", + "We need to provide a method that returns an initialized model to the `parmest` tool in Pyomo." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Using what you have learned from previous modules, fill in the missing code below to return an initialized IDAES model. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "def NRTL_model(data):\n", + "\n", + " # Todo: Create a ConcreteModel object\n", + "\n", + " # Todo: Create FlowsheetBlock object\n", + "\n", + " # Todo: Create a properties parameter object with the following options:\n", + " # \"valid_phase\": ('Liq', 'Vap')\n", + " # \"activity_coeff_model\": 'NRTL'\n", + "\n", + " m.fs.state_block = m.fs.properties.build_state_block(defined_state=True)\n", + "\n", + " # Fix the state variables on the state block\n", + " # hint: state variables exist on the state block i.e. on m.fs.state_block\n", + " m.fs.state_block.flow_mol.fix(1)\n", + " m.fs.state_block.temperature.fix(368)\n", + " m.fs.state_block.pressure.fix(101325)\n", + " m.fs.state_block.mole_frac_comp[\"benzene\"].fix(0.5)\n", + " m.fs.state_block.mole_frac_comp[\"toluene\"].fix(0.5)\n", + "\n", + " # Fix NRTL specific parameters.\n", + "\n", + " # non-randomness parameter - alpha_ij (set at 0.3, 0 if i=j)\n", + " m.fs.properties.alpha[\"benzene\", \"benzene\"].fix(0)\n", + " m.fs.properties.alpha[\"benzene\", \"toluene\"].fix(0.3)\n", + " m.fs.properties.alpha[\"toluene\", \"toluene\"].fix(0)\n", + " m.fs.properties.alpha[\"toluene\", \"benzene\"].fix(0.3)\n", + "\n", + " # binary interaction parameter - tau_ij (0 if i=j, else to be estimated later but fixing to initialize)\n", + " m.fs.properties.tau[\"benzene\", \"benzene\"].fix(0)\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].fix(-0.9)\n", + " m.fs.properties.tau[\"toluene\", \"toluene\"].fix(0)\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].fix(1.4)\n", + "\n", + " # Initialize the flash unit\n", + " m.fs.state_block.initialize(outlvl=idaeslog.INFO)\n", + "\n", + " # Fix at actual temperature\n", + " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", + "\n", + " # Set bounds on variables to be estimated\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].setub(5)\n", + "\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].setlb(-5)\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].setub(5)\n", + "\n", + " # Return initialized flash model\n", + " return m" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parameter estimation using parmest" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In addition to providing a method to return an initialized model, the `parmest` tool needs the following:\n", + "\n", + "* List of variable names to be estimated\n", + "* Dataset\n", + "* Expression to compute the sum of squared errors\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, we only estimate the binary interaction parameter (`tau_ij`). Given that this variable is usually indexed as `tau_ij = Var(component_list, component_list)`, there are 2*2=4 degrees of freedom. However, when i=j, the binary interaction parameter is 0. Therefore, in this problem, we estimate the binary interaction parameter for the following variables only:\n", + "\n", + "* fs.properties.tau['benzene', 'toluene']\n", + "* fs.properties.tau['toluene', 'benzene']\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Create a list called `variable_name` with the above-mentioned variables declared as strings.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Create a list of vars to estimate" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pyomo's `parmest` tool supports the following data formats:\n", + "- pandas dataframe\n", + "- list of dictionaries\n", + "- list of json file names.\n", + "\n", + "Please see the documentation for more details. \n", + "\n", + "For this example, we load data from the csv file `BT_NRTL_dataset.csv`. The dataset consists of fifty data points which provide the mole fraction of benzene in the vapor and liquid phase as a function of temperature. " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Load data from csv\n", + "data = pd.read_csv(\"BT_NRTL_dataset.csv\")\n", + "\n", + "# Display the dataset\n", + "display(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need to provide a method to return an expression to compute the sum of squared errors that will be used as the objective in solving the parameter estimation problem. For this problem, the error will be computed for the mole fraction of benzene in the vapor and liquid phase between the model prediction and data. \n", + "\n", + "
\n", + "Inline Exercise:\n", + "Complete the following cell by adding an expression to compute the sum of square errors. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create method to return an expression that computes the sum of squared error\n", + "def SSE(m, data):\n", + " # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid\n", + " # and vapor phase. For example, the squared error for the vapor phase is:\n", + " # (float(data[\"vap_benzene\"]) - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"])**2\n", + "\n", + " return expr * 1e4" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Note:\n", + "Notice that we have scaled the expression up by a factor of 10000 as the SSE computed here will be an extremely small number given that we are using the difference in mole fraction in our expression. This will help in using a well-scaled objective to improve solve robustness when using IPOPT. \n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are now ready to set up the parameter estimation problem. We will create a parameter estimation object called `pest`. As shown below, we pass the method that returns an initialized model, data, variable_name, and the SSE expression to the Estimator method. `tee=True` will print the solver output after solving the parameter estimation problem. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import logging\n", + "\n", + "idaeslog.getIdaesLogger(\"core.property_meta\").setLevel(logging.ERROR)\n", + "# Initialize a parameter estimation object\n", + "pest = parmest.Estimator(NRTL_model, data, variable_name, SSE, tee=True)\n", + "\n", + "# Run parameter estimation using all data\n", + "obj_value, parameters = pest.theta_est()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You will notice that the resulting parameter estimation problem will have 1102 variables and 1100 constraints. Let us display the results by running the next cell. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The SSE at the optimal solution is %0.6f\" % (obj_value * 1e-4))\n", + "print()\n", + "print(\"The values for the parameters are as follows:\")\n", + "for k, v in parameters.items():\n", + " print(k, \"=\", v)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using the data that was provided, we have estimated the binary interaction parameters in the NRTL model for a benzene-toluene mixture. Although the dataset that was provided was temperature dependent, in this example we have estimated a single value that fits best for all temperatures." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Advanced options for parmest: bootstrapping\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pyomo's `parmest` tool allows for bootstrapping where the parameter estimation is repeated over `n` samples with resampling from the original data set. Parameter estimation with bootstrap resampling can be used to identify confidence regions around each parameter estimate. This analysis can be slow given the increased number of model instances that need to be solved. Please refer to https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/driver.html for more details. \n", + "\n", + "For the example above, the bootstrapping can be run by uncommenting the code in the following cell:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Run parameter estimation using bootstrap resample of the data (10 samples),\n", + "# plot results along with confidence regions\n", + "\n", + "# Uncomment the following code:\n", + "# bootstrap_theta = pest.theta_est_bootstrap(4)\n", + "# display(bootstrap_theta)" + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_solution.ipynb b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_solution.ipynb index 5bdce840..5895980e 100644 --- a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_solution.ipynb +++ b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_solution.ipynb @@ -1,542 +1,542 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Parameter Estimation Using the NRTL State Block\n", - "\n", - "Author: Jaffer Ghouse \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-06-01 \n", - "\n", - "In this module, we use Pyomo's `parmest` tool in conjunction with IDAES models for parameter estimation. We demonstrate these tools by estimating the parameters associated with the NRTL property model for a benzene-toluene mixture. The NRTL model has 2 sets of parameters: the non-randomness parameter (`alpha_ij`) and the binary interaction parameter (`tau_ij`), where `i` and `j` are the pure component species. In this example, we only estimate the binary interaction parameter (`tau_ij`) for a given dataset. When estimating parameters associated with the property package, IDAES provides the flexibility of doing the parameter estimation by just using the state block or by using a unit model with a specified property package. This module will demonstrate parameter estimation by using only the state block. \n", - "\n", - "We will complete the following tasks:\n", - "* Set up a method to return an initialized model\n", - "* Set up the parameter estimation problem using `parmest`\n", - "* Analyze the results\n", - "* Demonstrate advanced features using `parmest`\n", - "\n", - "## Key links to documentation:\n", - "* NRTL Model - https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", - "* parmest - https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/index.html\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "import `ConcreteModel` from Pyomo and `FlowsheetBlock` from IDAES. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: import ConcreteModel from pyomo.environ\n", - "\n", - "# Todo: import FlowsheetBlock from idaes.core" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: import ConcreteModel from pyomo.environ\n", - "from pyomo.environ import ConcreteModel, value\n", - "\n", - "# Todo: import FlowsheetBlock from idaes.core\n", - "from idaes.core import FlowsheetBlock" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next cell, we import the parameter block used in this module and the idaes logger. " - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", - " BTXParameterBlock,\n", - ")\n", - "import idaes.logger as idaeslog" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next cell, we import `parmest` from Pyomo and the `pandas` package. We need `pandas` as `parmest` uses `pandas.dataframe` for handling the input data and the results." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "import pyomo.contrib.parmest.parmest as parmest\n", - "import pandas as pd" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setting up an initialized model\n", - "\n", - "We need to provide a method that returns an initialized model to the `parmest` tool in Pyomo." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Using what you have learned from previous modules, fill in the missing code below to return an initialized IDAES model. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "def NRTL_model(data):\n", - "\n", - " # Todo: Create a ConcreteModel object\n", - "\n", - " # Todo: Create FlowsheetBlock object\n", - "\n", - " # Todo: Create a properties parameter object with the following options:\n", - " # \"valid_phase\": ('Liq', 'Vap')\n", - " # \"activity_coeff_model\": 'NRTL'\n", - "\n", - " m.fs.state_block = m.fs.properties.build_state_block(defined_state=True)\n", - "\n", - " # Fix the state variables on the state block\n", - " # hint: state variables exist on the state block i.e. on m.fs.state_block\n", - " m.fs.state_block.flow_mol.fix(1)\n", - " m.fs.state_block.temperature.fix(368)\n", - " m.fs.state_block.pressure.fix(101325)\n", - " m.fs.state_block.mole_frac_comp[\"benzene\"].fix(0.5)\n", - " m.fs.state_block.mole_frac_comp[\"toluene\"].fix(0.5)\n", - "\n", - " # Fix NRTL specific parameters.\n", - "\n", - " # non-randomness parameter - alpha_ij (set at 0.3, 0 if i=j)\n", - " m.fs.properties.alpha[\"benzene\", \"benzene\"].fix(0)\n", - " m.fs.properties.alpha[\"benzene\", \"toluene\"].fix(0.3)\n", - " m.fs.properties.alpha[\"toluene\", \"toluene\"].fix(0)\n", - " m.fs.properties.alpha[\"toluene\", \"benzene\"].fix(0.3)\n", - "\n", - " # binary interaction parameter - tau_ij (0 if i=j, else to be estimated later but fixing to initialize)\n", - " m.fs.properties.tau[\"benzene\", \"benzene\"].fix(0)\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].fix(-0.9)\n", - " m.fs.properties.tau[\"toluene\", \"toluene\"].fix(0)\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].fix(1.4)\n", - "\n", - " # Initialize the flash unit\n", - " m.fs.state_block.initialize(outlvl=idaeslog.INFO)\n", - "\n", - " # Fix at actual temperature\n", - " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", - "\n", - " # Set bounds on variables to be estimated\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].setub(5)\n", - "\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].setlb(-5)\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].setub(5)\n", - "\n", - " # Return initialized flash model\n", - " return m" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "def NRTL_model(data):\n", - "\n", - " # Todo: Create a ConcreteModel object\n", - " m = ConcreteModel()\n", - "\n", - " # Todo: Create FlowsheetBlock object\n", - " m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - " # Todo: Create a properties parameter object with the following options:\n", - " # \"valid_phase\": ('Liq', 'Vap')\n", - " # \"activity_coeff_model\": 'NRTL'\n", - " m.fs.properties = BTXParameterBlock(\n", - " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"NRTL\"\n", - " )\n", - " m.fs.state_block = m.fs.properties.build_state_block(defined_state=True)\n", - "\n", - " # Fix the state variables on the state block\n", - " # hint: state variables exist on the state block i.e. on m.fs.state_block\n", - "\n", - " m.fs.state_block.flow_mol.fix(1)\n", - " m.fs.state_block.temperature.fix(368)\n", - " m.fs.state_block.pressure.fix(101325)\n", - " m.fs.state_block.mole_frac_comp[\"benzene\"].fix(0.5)\n", - " m.fs.state_block.mole_frac_comp[\"toluene\"].fix(0.5)\n", - "\n", - " # Fix NRTL specific parameters.\n", - "\n", - " # non-randomness parameter - alpha_ij (set at 0.3, 0 if i=j)\n", - " m.fs.properties.alpha[\"benzene\", \"benzene\"].fix(0)\n", - " m.fs.properties.alpha[\"benzene\", \"toluene\"].fix(0.3)\n", - " m.fs.properties.alpha[\"toluene\", \"toluene\"].fix(0)\n", - " m.fs.properties.alpha[\"toluene\", \"benzene\"].fix(0.3)\n", - "\n", - " # binary interaction parameter - tau_ij (0 if i=j, else to be estimated later but fixing to initialize)\n", - " m.fs.properties.tau[\"benzene\", \"benzene\"].fix(0)\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].fix(-0.9)\n", - " m.fs.properties.tau[\"toluene\", \"toluene\"].fix(0)\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].fix(1.4)\n", - "\n", - " # Initialize the flash unit\n", - " m.fs.state_block.initialize(outlvl=idaeslog.INFO_LOW)\n", - "\n", - " # Fix at actual temperature\n", - " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", - "\n", - " # Set bounds on variables to be estimated\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].setub(5)\n", - "\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].setlb(-5)\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].setub(5)\n", - "\n", - " # Return initialized flash model\n", - " return m" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Parameter estimation using parmest" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In addition to providing a method to return an initialized model, the `parmest` tool needs the following:\n", - "\n", - "* List of variable names to be estimated\n", - "* Dataset\n", - "* Expression to compute the sum of squared errors\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this example, we only estimate the binary interaction parameter (`tau_ij`). Given that this variable is usually indexed as `tau_ij = Var(component_list, component_list)`, there are 2*2=4 degrees of freedom. However, when i=j, the binary interaction parameter is 0. Therefore, in this problem, we estimate the binary interaction parameter for the following variables only:\n", - "\n", - "* fs.properties.tau['benzene', 'toluene']\n", - "* fs.properties.tau['toluene', 'benzene']\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Create a list called `variable_name` with the above-mentioned variables declared as strings.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Create a list of vars to estimate" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Create a list of vars to estimate\n", - "variable_name = [\n", - " \"fs.properties.tau['benzene', 'toluene']\",\n", - " \"fs.properties.tau['toluene', 'benzene']\",\n", - "]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Pyomo's `parmest` tool supports the following data formats:\n", - "- pandas dataframe\n", - "- list of dictionaries\n", - "- list of json file names.\n", - "\n", - "Please see the documentation for more details. \n", - "\n", - "For this example, we load data from the csv file `BT_NRTL_dataset.csv`. The dataset consists of fifty data points which provide the mole fraction of benzene in the vapor and liquid phase as a function of temperature. " - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# Load data from csv\n", - "data = pd.read_csv(\"BT_NRTL_dataset.csv\")\n", - "\n", - "# Display the dataset\n", - "display(data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We need to provide a method to return an expression to compute the sum of squared errors that will be used as the objective in solving the parameter estimation problem. For this problem, the error will be computed for the mole fraction of benzene in the vapor and liquid phase between the model prediction and data. \n", - "\n", - "
\n", - "Inline Exercise:\n", - "Complete the following cell by adding an expression to compute the sum of square errors. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create method to return an expression that computes the sum of squared error\n", - "def SSE(m, data):\n", - " # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid\n", - " # and vapor phase. For example, the squared error for the vapor phase is:\n", - " # (float(data[\"vap_benzene\"]) - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"])**2\n", - "\n", - " return expr * 1e4" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Create method to return an expression that computes the sum of squared error\n", - "def SSE(m, data):\n", - " # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid\n", - " # and vapor phase. For example, the squared error for the vapor phase is:\n", - " # (float(data[\"vap_benzene\"]) - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"])**2\n", - " expr = (\n", - " float(data[\"vap_benzene\"])\n", - " - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"]\n", - " ) ** 2 + (\n", - " float(data[\"liq_benzene\"])\n", - " - m.fs.state_block.mole_frac_phase_comp[\"Liq\", \"benzene\"]\n", - " ) ** 2\n", - " return expr * 1e4" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Note:\n", - "Notice that we have scaled the expression up by a factor of 10000 as the SSE computed here will be an extremely small number given that we are using the difference in mole fraction in our expression. This will help in using a well-scaled objective to improve solve robustness when using IPOPT. \n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are now ready to set up the parameter estimation problem. We will create a parameter estimation object called `pest`. As shown below, we pass the method that returns an initialized model, data, variable_name, and the SSE expression to the Estimator method. `tee=True` will print the solver output after solving the parameter estimation problem. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import logging\n", - "\n", - "idaeslog.getIdaesLogger(\"core.property_meta\").setLevel(logging.ERROR)\n", - "# Initialize a parameter estimation object\n", - "pest = parmest.Estimator(NRTL_model, data, variable_name, SSE, tee=True)\n", - "\n", - "# Run parameter estimation using all data\n", - "obj_value, parameters = pest.theta_est()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You will notice that the resulting parameter estimation problem will have 1102 variables and 1100 constraints. Let us display the results by running the next cell. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"The SSE at the optimal solution is %0.6f\" % (obj_value * 1e-4))\n", - "print()\n", - "print(\"The values for the parameters are as follows:\")\n", - "for k, v in parameters.items():\n", - " print(k, \"=\", v)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Using the data that was provided, we have estimated the binary interaction parameters in the NRTL model for a benzene-toluene mixture. Although the dataset that was provided was temperature dependent, in this example we have estimated a single value that fits best for all temperatures." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Advanced options for parmest: bootstrapping\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Pyomo's `parmest` tool allows for bootstrapping where the parameter estimation is repeated over `n` samples with resampling from the original data set. Parameter estimation with bootstrap resampling can be used to identify confidence regions around each parameter estimate. This analysis can be slow given the increased number of model instances that need to be solved. Please refer to https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/driver.html for more details. \n", - "\n", - "For the example above, the bootstrapping can be run by uncommenting the code in the following cell:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Run parameter estimation using bootstrap resample of the data (10 samples),\n", - "# plot results along with confidence regions\n", - "\n", - "# Uncomment the following code:\n", - "# bootstrap_theta = pest.theta_est_bootstrap(4)\n", - "# display(bootstrap_theta)" - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.9" - } - }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + "cells": [ + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Parameter Estimation Using the NRTL State Block\n", + "\n", + "Author: Jaffer Ghouse \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-06-01 \n", + "\n", + "In this module, we use Pyomo's `parmest` tool in conjunction with IDAES models for parameter estimation. We demonstrate these tools by estimating the parameters associated with the NRTL property model for a benzene-toluene mixture. The NRTL model has 2 sets of parameters: the non-randomness parameter (`alpha_ij`) and the binary interaction parameter (`tau_ij`), where `i` and `j` are the pure component species. In this example, we only estimate the binary interaction parameter (`tau_ij`) for a given dataset. When estimating parameters associated with the property package, IDAES provides the flexibility of doing the parameter estimation by just using the state block or by using a unit model with a specified property package. This module will demonstrate parameter estimation by using only the state block. \n", + "\n", + "We will complete the following tasks:\n", + "* Set up a method to return an initialized model\n", + "* Set up the parameter estimation problem using `parmest`\n", + "* Analyze the results\n", + "* Demonstrate advanced features using `parmest`\n", + "\n", + "## Key links to documentation:\n", + "* NRTL Model - https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", + "* parmest - https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/index.html\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "import `ConcreteModel` from Pyomo and `FlowsheetBlock` from IDAES. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: import ConcreteModel from pyomo.environ\n", + "\n", + "# Todo: import FlowsheetBlock from idaes.core" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: import ConcreteModel from pyomo.environ\n", + "from pyomo.environ import ConcreteModel, value\n", + "\n", + "# Todo: import FlowsheetBlock from idaes.core\n", + "from idaes.core import FlowsheetBlock" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the next cell, we import the parameter block used in this module and the idaes logger. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", + " BTXParameterBlock,\n", + ")\n", + "import idaes.logger as idaeslog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the next cell, we import `parmest` from Pyomo and the `pandas` package. We need `pandas` as `parmest` uses `pandas.dataframe` for handling the input data and the results." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import pyomo.contrib.parmest.parmest as parmest\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting up an initialized model\n", + "\n", + "We need to provide a method that returns an initialized model to the `parmest` tool in Pyomo." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Using what you have learned from previous modules, fill in the missing code below to return an initialized IDAES model. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "def NRTL_model(data):\n", + "\n", + " # Todo: Create a ConcreteModel object\n", + "\n", + " # Todo: Create FlowsheetBlock object\n", + "\n", + " # Todo: Create a properties parameter object with the following options:\n", + " # \"valid_phase\": ('Liq', 'Vap')\n", + " # \"activity_coeff_model\": 'NRTL'\n", + "\n", + " m.fs.state_block = m.fs.properties.build_state_block(defined_state=True)\n", + "\n", + " # Fix the state variables on the state block\n", + " # hint: state variables exist on the state block i.e. on m.fs.state_block\n", + " m.fs.state_block.flow_mol.fix(1)\n", + " m.fs.state_block.temperature.fix(368)\n", + " m.fs.state_block.pressure.fix(101325)\n", + " m.fs.state_block.mole_frac_comp[\"benzene\"].fix(0.5)\n", + " m.fs.state_block.mole_frac_comp[\"toluene\"].fix(0.5)\n", + "\n", + " # Fix NRTL specific parameters.\n", + "\n", + " # non-randomness parameter - alpha_ij (set at 0.3, 0 if i=j)\n", + " m.fs.properties.alpha[\"benzene\", \"benzene\"].fix(0)\n", + " m.fs.properties.alpha[\"benzene\", \"toluene\"].fix(0.3)\n", + " m.fs.properties.alpha[\"toluene\", \"toluene\"].fix(0)\n", + " m.fs.properties.alpha[\"toluene\", \"benzene\"].fix(0.3)\n", + "\n", + " # binary interaction parameter - tau_ij (0 if i=j, else to be estimated later but fixing to initialize)\n", + " m.fs.properties.tau[\"benzene\", \"benzene\"].fix(0)\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].fix(-0.9)\n", + " m.fs.properties.tau[\"toluene\", \"toluene\"].fix(0)\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].fix(1.4)\n", + "\n", + " # Initialize the flash unit\n", + " m.fs.state_block.initialize(outlvl=idaeslog.INFO)\n", + "\n", + " # Fix at actual temperature\n", + " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", + "\n", + " # Set bounds on variables to be estimated\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].setub(5)\n", + "\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].setlb(-5)\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].setub(5)\n", + "\n", + " # Return initialized flash model\n", + " return m" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "def NRTL_model(data):\n", + "\n", + " # Todo: Create a ConcreteModel object\n", + " m = ConcreteModel()\n", + "\n", + " # Todo: Create FlowsheetBlock object\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + " # Todo: Create a properties parameter object with the following options:\n", + " # \"valid_phase\": ('Liq', 'Vap')\n", + " # \"activity_coeff_model\": 'NRTL'\n", + " m.fs.properties = BTXParameterBlock(\n", + " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"NRTL\"\n", + " )\n", + " m.fs.state_block = m.fs.properties.build_state_block(defined_state=True)\n", + "\n", + " # Fix the state variables on the state block\n", + " # hint: state variables exist on the state block i.e. on m.fs.state_block\n", + "\n", + " m.fs.state_block.flow_mol.fix(1)\n", + " m.fs.state_block.temperature.fix(368)\n", + " m.fs.state_block.pressure.fix(101325)\n", + " m.fs.state_block.mole_frac_comp[\"benzene\"].fix(0.5)\n", + " m.fs.state_block.mole_frac_comp[\"toluene\"].fix(0.5)\n", + "\n", + " # Fix NRTL specific parameters.\n", + "\n", + " # non-randomness parameter - alpha_ij (set at 0.3, 0 if i=j)\n", + " m.fs.properties.alpha[\"benzene\", \"benzene\"].fix(0)\n", + " m.fs.properties.alpha[\"benzene\", \"toluene\"].fix(0.3)\n", + " m.fs.properties.alpha[\"toluene\", \"toluene\"].fix(0)\n", + " m.fs.properties.alpha[\"toluene\", \"benzene\"].fix(0.3)\n", + "\n", + " # binary interaction parameter - tau_ij (0 if i=j, else to be estimated later but fixing to initialize)\n", + " m.fs.properties.tau[\"benzene\", \"benzene\"].fix(0)\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].fix(-0.9)\n", + " m.fs.properties.tau[\"toluene\", \"toluene\"].fix(0)\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].fix(1.4)\n", + "\n", + " # Initialize the flash unit\n", + " m.fs.state_block.initialize(outlvl=idaeslog.INFO_LOW)\n", + "\n", + " # Fix at actual temperature\n", + " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", + "\n", + " # Set bounds on variables to be estimated\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].setub(5)\n", + "\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].setlb(-5)\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].setub(5)\n", + "\n", + " # Return initialized flash model\n", + " return m" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parameter estimation using parmest" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In addition to providing a method to return an initialized model, the `parmest` tool needs the following:\n", + "\n", + "* List of variable names to be estimated\n", + "* Dataset\n", + "* Expression to compute the sum of squared errors\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, we only estimate the binary interaction parameter (`tau_ij`). Given that this variable is usually indexed as `tau_ij = Var(component_list, component_list)`, there are 2*2=4 degrees of freedom. However, when i=j, the binary interaction parameter is 0. Therefore, in this problem, we estimate the binary interaction parameter for the following variables only:\n", + "\n", + "* fs.properties.tau['benzene', 'toluene']\n", + "* fs.properties.tau['toluene', 'benzene']\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Create a list called `variable_name` with the above-mentioned variables declared as strings.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Create a list of vars to estimate" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Create a list of vars to estimate\n", + "variable_name = [\n", + " \"fs.properties.tau['benzene', 'toluene']\",\n", + " \"fs.properties.tau['toluene', 'benzene']\",\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pyomo's `parmest` tool supports the following data formats:\n", + "- pandas dataframe\n", + "- list of dictionaries\n", + "- list of json file names.\n", + "\n", + "Please see the documentation for more details. \n", + "\n", + "For this example, we load data from the csv file `BT_NRTL_dataset.csv`. The dataset consists of fifty data points which provide the mole fraction of benzene in the vapor and liquid phase as a function of temperature. " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Load data from csv\n", + "data = pd.read_csv(\"BT_NRTL_dataset.csv\")\n", + "\n", + "# Display the dataset\n", + "display(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need to provide a method to return an expression to compute the sum of squared errors that will be used as the objective in solving the parameter estimation problem. For this problem, the error will be computed for the mole fraction of benzene in the vapor and liquid phase between the model prediction and data. \n", + "\n", + "
\n", + "Inline Exercise:\n", + "Complete the following cell by adding an expression to compute the sum of square errors. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create method to return an expression that computes the sum of squared error\n", + "def SSE(m, data):\n", + " # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid\n", + " # and vapor phase. For example, the squared error for the vapor phase is:\n", + " # (float(data[\"vap_benzene\"]) - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"])**2\n", + "\n", + " return expr * 1e4" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Create method to return an expression that computes the sum of squared error\n", + "def SSE(m, data):\n", + " # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid\n", + " # and vapor phase. For example, the squared error for the vapor phase is:\n", + " # (float(data[\"vap_benzene\"]) - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"])**2\n", + " expr = (\n", + " float(data[\"vap_benzene\"])\n", + " - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"]\n", + " ) ** 2 + (\n", + " float(data[\"liq_benzene\"])\n", + " - m.fs.state_block.mole_frac_phase_comp[\"Liq\", \"benzene\"]\n", + " ) ** 2\n", + " return expr * 1e4" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Note:\n", + "Notice that we have scaled the expression up by a factor of 10000 as the SSE computed here will be an extremely small number given that we are using the difference in mole fraction in our expression. This will help in using a well-scaled objective to improve solve robustness when using IPOPT. \n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are now ready to set up the parameter estimation problem. We will create a parameter estimation object called `pest`. As shown below, we pass the method that returns an initialized model, data, variable_name, and the SSE expression to the Estimator method. `tee=True` will print the solver output after solving the parameter estimation problem. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import logging\n", + "\n", + "idaeslog.getIdaesLogger(\"core.property_meta\").setLevel(logging.ERROR)\n", + "# Initialize a parameter estimation object\n", + "pest = parmest.Estimator(NRTL_model, data, variable_name, SSE, tee=True)\n", + "\n", + "# Run parameter estimation using all data\n", + "obj_value, parameters = pest.theta_est()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You will notice that the resulting parameter estimation problem will have 1102 variables and 1100 constraints. Let us display the results by running the next cell. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The SSE at the optimal solution is %0.6f\" % (obj_value * 1e-4))\n", + "print()\n", + "print(\"The values for the parameters are as follows:\")\n", + "for k, v in parameters.items():\n", + " print(k, \"=\", v)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using the data that was provided, we have estimated the binary interaction parameters in the NRTL model for a benzene-toluene mixture. Although the dataset that was provided was temperature dependent, in this example we have estimated a single value that fits best for all temperatures." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Advanced options for parmest: bootstrapping\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pyomo's `parmest` tool allows for bootstrapping where the parameter estimation is repeated over `n` samples with resampling from the original data set. Parameter estimation with bootstrap resampling can be used to identify confidence regions around each parameter estimate. This analysis can be slow given the increased number of model instances that need to be solved. Please refer to https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/driver.html for more details. \n", + "\n", + "For the example above, the bootstrapping can be run by uncommenting the code in the following cell:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Run parameter estimation using bootstrap resample of the data (10 samples),\n", + "# plot results along with confidence regions\n", + "\n", + "# Uncomment the following code:\n", + "# bootstrap_theta = pest.theta_est_bootstrap(4)\n", + "# display(bootstrap_theta)" + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_test.ipynb b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_test.ipynb index 7d253335..3de45dd6 100644 --- a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_test.ipynb +++ b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_test.ipynb @@ -1,487 +1,487 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Parameter Estimation Using the NRTL State Block\n", - "\n", - "Author: Jaffer Ghouse \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-06-01 \n", - "\n", - "In this module, we use Pyomo's `parmest` tool in conjunction with IDAES models for parameter estimation. We demonstrate these tools by estimating the parameters associated with the NRTL property model for a benzene-toluene mixture. The NRTL model has 2 sets of parameters: the non-randomness parameter (`alpha_ij`) and the binary interaction parameter (`tau_ij`), where `i` and `j` are the pure component species. In this example, we only estimate the binary interaction parameter (`tau_ij`) for a given dataset. When estimating parameters associated with the property package, IDAES provides the flexibility of doing the parameter estimation by just using the state block or by using a unit model with a specified property package. This module will demonstrate parameter estimation by using only the state block. \n", - "\n", - "We will complete the following tasks:\n", - "* Set up a method to return an initialized model\n", - "* Set up the parameter estimation problem using `parmest`\n", - "* Analyze the results\n", - "* Demonstrate advanced features using `parmest`\n", - "\n", - "## Key links to documentation:\n", - "* NRTL Model - https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", - "* parmest - https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/index.html\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "import `ConcreteModel` from Pyomo and `FlowsheetBlock` from IDAES. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: import ConcreteModel from pyomo.environ\n", - "from pyomo.environ import ConcreteModel, value\n", - "\n", - "# Todo: import FlowsheetBlock from idaes.core\n", - "from idaes.core import FlowsheetBlock" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next cell, we import the parameter block used in this module and the idaes logger. " - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", - " BTXParameterBlock,\n", - ")\n", - "import idaes.logger as idaeslog" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next cell, we import `parmest` from Pyomo and the `pandas` package. We need `pandas` as `parmest` uses `pandas.dataframe` for handling the input data and the results." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "import pyomo.contrib.parmest.parmest as parmest\n", - "import pandas as pd" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setting up an initialized model\n", - "\n", - "We need to provide a method that returns an initialized model to the `parmest` tool in Pyomo." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Using what you have learned from previous modules, fill in the missing code below to return an initialized IDAES model. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "def NRTL_model(data):\n", - "\n", - " # Todo: Create a ConcreteModel object\n", - " m = ConcreteModel()\n", - "\n", - " # Todo: Create FlowsheetBlock object\n", - " m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - " # Todo: Create a properties parameter object with the following options:\n", - " # \"valid_phase\": ('Liq', 'Vap')\n", - " # \"activity_coeff_model\": 'NRTL'\n", - " m.fs.properties = BTXParameterBlock(\n", - " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"NRTL\"\n", - " )\n", - " m.fs.state_block = m.fs.properties.build_state_block(defined_state=True)\n", - "\n", - " # Fix the state variables on the state block\n", - " # hint: state variables exist on the state block i.e. on m.fs.state_block\n", - "\n", - " m.fs.state_block.flow_mol.fix(1)\n", - " m.fs.state_block.temperature.fix(368)\n", - " m.fs.state_block.pressure.fix(101325)\n", - " m.fs.state_block.mole_frac_comp[\"benzene\"].fix(0.5)\n", - " m.fs.state_block.mole_frac_comp[\"toluene\"].fix(0.5)\n", - "\n", - " # Fix NRTL specific parameters.\n", - "\n", - " # non-randomness parameter - alpha_ij (set at 0.3, 0 if i=j)\n", - " m.fs.properties.alpha[\"benzene\", \"benzene\"].fix(0)\n", - " m.fs.properties.alpha[\"benzene\", \"toluene\"].fix(0.3)\n", - " m.fs.properties.alpha[\"toluene\", \"toluene\"].fix(0)\n", - " m.fs.properties.alpha[\"toluene\", \"benzene\"].fix(0.3)\n", - "\n", - " # binary interaction parameter - tau_ij (0 if i=j, else to be estimated later but fixing to initialize)\n", - " m.fs.properties.tau[\"benzene\", \"benzene\"].fix(0)\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].fix(-0.9)\n", - " m.fs.properties.tau[\"toluene\", \"toluene\"].fix(0)\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].fix(1.4)\n", - "\n", - " # Initialize the flash unit\n", - " m.fs.state_block.initialize(outlvl=idaeslog.INFO_LOW)\n", - "\n", - " # Fix at actual temperature\n", - " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", - "\n", - " # Set bounds on variables to be estimated\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].setub(5)\n", - "\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].setlb(-5)\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].setub(5)\n", - "\n", - " # Return initialized flash model\n", - " return m" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "import pytest\n", - "\n", - "# Testing the initialized model\n", - "test_data = {\"temperature\": 368}\n", - "\n", - "m = NRTL_model(test_data)\n", - "\n", - "# Check that degrees of freedom is 0\n", - "assert degrees_of_freedom(m) == 0\n", - "\n", - "# Check for output values\n", - "assert value(m.fs.state_block.mole_frac_phase_comp[\"Liq\", \"benzene\"]) == pytest.approx(\n", - " 0.389, abs=1e-2\n", - ")\n", - "assert value(m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"]) == pytest.approx(\n", - " 0.610, abs=1e-2\n", - ")\n", - "\n", - "assert value(m.fs.state_block.mole_frac_phase_comp[\"Liq\", \"toluene\"]) == pytest.approx(\n", - " 0.610, abs=1e-2\n", - ")\n", - "assert value(m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"toluene\"]) == pytest.approx(\n", - " 0.394, abs=1e-2\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Parameter estimation using parmest" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In addition to providing a method to return an initialized model, the `parmest` tool needs the following:\n", - "\n", - "* List of variable names to be estimated\n", - "* Dataset\n", - "* Expression to compute the sum of squared errors\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this example, we only estimate the binary interaction parameter (`tau_ij`). Given that this variable is usually indexed as `tau_ij = Var(component_list, component_list)`, there are 2*2=4 degrees of freedom. However, when i=j, the binary interaction parameter is 0. Therefore, in this problem, we estimate the binary interaction parameter for the following variables only:\n", - "\n", - "* fs.properties.tau['benzene', 'toluene']\n", - "* fs.properties.tau['toluene', 'benzene']\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Create a list called `variable_name` with the above-mentioned variables declared as strings.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Create a list of vars to estimate\n", - "variable_name = [\n", - " \"fs.properties.tau['benzene', 'toluene']\",\n", - " \"fs.properties.tau['toluene', 'benzene']\",\n", - "]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Pyomo's `parmest` tool supports the following data formats:\n", - "- pandas dataframe\n", - "- list of dictionaries\n", - "- list of json file names.\n", - "\n", - "Please see the documentation for more details. \n", - "\n", - "For this example, we load data from the csv file `BT_NRTL_dataset.csv`. The dataset consists of fifty data points which provide the mole fraction of benzene in the vapor and liquid phase as a function of temperature. " - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# Load data from csv\n", - "data = pd.read_csv(\"BT_NRTL_dataset.csv\")\n", - "\n", - "# Display the dataset\n", - "display(data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We need to provide a method to return an expression to compute the sum of squared errors that will be used as the objective in solving the parameter estimation problem. For this problem, the error will be computed for the mole fraction of benzene in the vapor and liquid phase between the model prediction and data. \n", - "\n", - "
\n", - "Inline Exercise:\n", - "Complete the following cell by adding an expression to compute the sum of square errors. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Create method to return an expression that computes the sum of squared error\n", - "def SSE(m, data):\n", - " # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid\n", - " # and vapor phase. For example, the squared error for the vapor phase is:\n", - " # (float(data[\"vap_benzene\"]) - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"])**2\n", - " expr = (\n", - " float(data[\"vap_benzene\"])\n", - " - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"]\n", - " ) ** 2 + (\n", - " float(data[\"liq_benzene\"])\n", - " - m.fs.state_block.mole_frac_phase_comp[\"Liq\", \"benzene\"]\n", - " ) ** 2\n", - " return expr * 1e4" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Note:\n", - "Notice that we have scaled the expression up by a factor of 10000 as the SSE computed here will be an extremely small number given that we are using the difference in mole fraction in our expression. This will help in using a well-scaled objective to improve solve robustness when using IPOPT. \n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are now ready to set up the parameter estimation problem. We will create a parameter estimation object called `pest`. As shown below, we pass the method that returns an initialized model, data, variable_name, and the SSE expression to the Estimator method. `tee=True` will print the solver output after solving the parameter estimation problem. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import logging\n", - "\n", - "idaeslog.getIdaesLogger(\"core.property_meta\").setLevel(logging.ERROR)\n", - "# Initialize a parameter estimation object\n", - "pest = parmest.Estimator(NRTL_model, data, variable_name, SSE, tee=True)\n", - "\n", - "# Run parameter estimation using all data\n", - "obj_value, parameters = pest.theta_est()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check for values of the parameter estimation problem\n", - "assert obj_value == pytest.approx(5.07496, 1e-3)\n", - "assert parameters[\"fs.properties.tau[benzene,toluene]\"] == pytest.approx(-0.89876, 1e-3)\n", - "assert parameters[\"fs.properties.tau[toluene,benzene]\"] == pytest.approx(1.41048, 1e-3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You will notice that the resulting parameter estimation problem will have 1102 variables and 1100 constraints. Let us display the results by running the next cell. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"The SSE at the optimal solution is %0.6f\" % (obj_value * 1e-4))\n", - "print()\n", - "print(\"The values for the parameters are as follows:\")\n", - "for k, v in parameters.items():\n", - " print(k, \"=\", v)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Using the data that was provided, we have estimated the binary interaction parameters in the NRTL model for a benzene-toluene mixture. Although the dataset that was provided was temperature dependent, in this example we have estimated a single value that fits best for all temperatures." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Advanced options for parmest: bootstrapping\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Pyomo's `parmest` tool allows for bootstrapping where the parameter estimation is repeated over `n` samples with resampling from the original data set. Parameter estimation with bootstrap resampling can be used to identify confidence regions around each parameter estimate. This analysis can be slow given the increased number of model instances that need to be solved. Please refer to https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/driver.html for more details. \n", - "\n", - "For the example above, the bootstrapping can be run by uncommenting the code in the following cell:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Run parameter estimation using bootstrap resample of the data (10 samples),\n", - "# plot results along with confidence regions\n", - "\n", - "# Uncomment the following code:\n", - "# bootstrap_theta = pest.theta_est_bootstrap(4)\n", - "# display(bootstrap_theta)" - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.9" - } + "cells": [ + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Parameter Estimation Using the NRTL State Block\n", + "\n", + "Author: Jaffer Ghouse \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-06-01 \n", + "\n", + "In this module, we use Pyomo's `parmest` tool in conjunction with IDAES models for parameter estimation. We demonstrate these tools by estimating the parameters associated with the NRTL property model for a benzene-toluene mixture. The NRTL model has 2 sets of parameters: the non-randomness parameter (`alpha_ij`) and the binary interaction parameter (`tau_ij`), where `i` and `j` are the pure component species. In this example, we only estimate the binary interaction parameter (`tau_ij`) for a given dataset. When estimating parameters associated with the property package, IDAES provides the flexibility of doing the parameter estimation by just using the state block or by using a unit model with a specified property package. This module will demonstrate parameter estimation by using only the state block. \n", + "\n", + "We will complete the following tasks:\n", + "* Set up a method to return an initialized model\n", + "* Set up the parameter estimation problem using `parmest`\n", + "* Analyze the results\n", + "* Demonstrate advanced features using `parmest`\n", + "\n", + "## Key links to documentation:\n", + "* NRTL Model - https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", + "* parmest - https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/index.html\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "import `ConcreteModel` from Pyomo and `FlowsheetBlock` from IDAES. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: import ConcreteModel from pyomo.environ\n", + "from pyomo.environ import ConcreteModel, value\n", + "\n", + "# Todo: import FlowsheetBlock from idaes.core\n", + "from idaes.core import FlowsheetBlock" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the next cell, we import the parameter block used in this module and the idaes logger. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", + " BTXParameterBlock,\n", + ")\n", + "import idaes.logger as idaeslog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the next cell, we import `parmest` from Pyomo and the `pandas` package. We need `pandas` as `parmest` uses `pandas.dataframe` for handling the input data and the results." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import pyomo.contrib.parmest.parmest as parmest\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting up an initialized model\n", + "\n", + "We need to provide a method that returns an initialized model to the `parmest` tool in Pyomo." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Using what you have learned from previous modules, fill in the missing code below to return an initialized IDAES model. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "def NRTL_model(data):\n", + "\n", + " # Todo: Create a ConcreteModel object\n", + " m = ConcreteModel()\n", + "\n", + " # Todo: Create FlowsheetBlock object\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + " # Todo: Create a properties parameter object with the following options:\n", + " # \"valid_phase\": ('Liq', 'Vap')\n", + " # \"activity_coeff_model\": 'NRTL'\n", + " m.fs.properties = BTXParameterBlock(\n", + " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"NRTL\"\n", + " )\n", + " m.fs.state_block = m.fs.properties.build_state_block(defined_state=True)\n", + "\n", + " # Fix the state variables on the state block\n", + " # hint: state variables exist on the state block i.e. on m.fs.state_block\n", + "\n", + " m.fs.state_block.flow_mol.fix(1)\n", + " m.fs.state_block.temperature.fix(368)\n", + " m.fs.state_block.pressure.fix(101325)\n", + " m.fs.state_block.mole_frac_comp[\"benzene\"].fix(0.5)\n", + " m.fs.state_block.mole_frac_comp[\"toluene\"].fix(0.5)\n", + "\n", + " # Fix NRTL specific parameters.\n", + "\n", + " # non-randomness parameter - alpha_ij (set at 0.3, 0 if i=j)\n", + " m.fs.properties.alpha[\"benzene\", \"benzene\"].fix(0)\n", + " m.fs.properties.alpha[\"benzene\", \"toluene\"].fix(0.3)\n", + " m.fs.properties.alpha[\"toluene\", \"toluene\"].fix(0)\n", + " m.fs.properties.alpha[\"toluene\", \"benzene\"].fix(0.3)\n", + "\n", + " # binary interaction parameter - tau_ij (0 if i=j, else to be estimated later but fixing to initialize)\n", + " m.fs.properties.tau[\"benzene\", \"benzene\"].fix(0)\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].fix(-0.9)\n", + " m.fs.properties.tau[\"toluene\", \"toluene\"].fix(0)\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].fix(1.4)\n", + "\n", + " # Initialize the flash unit\n", + " m.fs.state_block.initialize(outlvl=idaeslog.INFO_LOW)\n", + "\n", + " # Fix at actual temperature\n", + " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", + "\n", + " # Set bounds on variables to be estimated\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].setub(5)\n", + "\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].setlb(-5)\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].setub(5)\n", + "\n", + " # Return initialized flash model\n", + " return m" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "import pytest\n", + "\n", + "# Testing the initialized model\n", + "test_data = {\"temperature\": 368}\n", + "\n", + "m = NRTL_model(test_data)\n", + "\n", + "# Check that degrees of freedom is 0\n", + "assert degrees_of_freedom(m) == 0\n", + "\n", + "# Check for output values\n", + "assert value(m.fs.state_block.mole_frac_phase_comp[\"Liq\", \"benzene\"]) == pytest.approx(\n", + " 0.389, abs=1e-2\n", + ")\n", + "assert value(m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"]) == pytest.approx(\n", + " 0.610, abs=1e-2\n", + ")\n", + "\n", + "assert value(m.fs.state_block.mole_frac_phase_comp[\"Liq\", \"toluene\"]) == pytest.approx(\n", + " 0.610, abs=1e-2\n", + ")\n", + "assert value(m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"toluene\"]) == pytest.approx(\n", + " 0.394, abs=1e-2\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parameter estimation using parmest" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In addition to providing a method to return an initialized model, the `parmest` tool needs the following:\n", + "\n", + "* List of variable names to be estimated\n", + "* Dataset\n", + "* Expression to compute the sum of squared errors\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, we only estimate the binary interaction parameter (`tau_ij`). Given that this variable is usually indexed as `tau_ij = Var(component_list, component_list)`, there are 2*2=4 degrees of freedom. However, when i=j, the binary interaction parameter is 0. Therefore, in this problem, we estimate the binary interaction parameter for the following variables only:\n", + "\n", + "* fs.properties.tau['benzene', 'toluene']\n", + "* fs.properties.tau['toluene', 'benzene']\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Create a list called `variable_name` with the above-mentioned variables declared as strings.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Create a list of vars to estimate\n", + "variable_name = [\n", + " \"fs.properties.tau['benzene', 'toluene']\",\n", + " \"fs.properties.tau['toluene', 'benzene']\",\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pyomo's `parmest` tool supports the following data formats:\n", + "- pandas dataframe\n", + "- list of dictionaries\n", + "- list of json file names.\n", + "\n", + "Please see the documentation for more details. \n", + "\n", + "For this example, we load data from the csv file `BT_NRTL_dataset.csv`. The dataset consists of fifty data points which provide the mole fraction of benzene in the vapor and liquid phase as a function of temperature. " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Load data from csv\n", + "data = pd.read_csv(\"BT_NRTL_dataset.csv\")\n", + "\n", + "# Display the dataset\n", + "display(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need to provide a method to return an expression to compute the sum of squared errors that will be used as the objective in solving the parameter estimation problem. For this problem, the error will be computed for the mole fraction of benzene in the vapor and liquid phase between the model prediction and data. \n", + "\n", + "
\n", + "Inline Exercise:\n", + "Complete the following cell by adding an expression to compute the sum of square errors. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Create method to return an expression that computes the sum of squared error\n", + "def SSE(m, data):\n", + " # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid\n", + " # and vapor phase. For example, the squared error for the vapor phase is:\n", + " # (float(data[\"vap_benzene\"]) - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"])**2\n", + " expr = (\n", + " float(data[\"vap_benzene\"])\n", + " - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"]\n", + " ) ** 2 + (\n", + " float(data[\"liq_benzene\"])\n", + " - m.fs.state_block.mole_frac_phase_comp[\"Liq\", \"benzene\"]\n", + " ) ** 2\n", + " return expr * 1e4" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Note:\n", + "Notice that we have scaled the expression up by a factor of 10000 as the SSE computed here will be an extremely small number given that we are using the difference in mole fraction in our expression. This will help in using a well-scaled objective to improve solve robustness when using IPOPT. \n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are now ready to set up the parameter estimation problem. We will create a parameter estimation object called `pest`. As shown below, we pass the method that returns an initialized model, data, variable_name, and the SSE expression to the Estimator method. `tee=True` will print the solver output after solving the parameter estimation problem. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import logging\n", + "\n", + "idaeslog.getIdaesLogger(\"core.property_meta\").setLevel(logging.ERROR)\n", + "# Initialize a parameter estimation object\n", + "pest = parmest.Estimator(NRTL_model, data, variable_name, SSE, tee=True)\n", + "\n", + "# Run parameter estimation using all data\n", + "obj_value, parameters = pest.theta_est()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check for values of the parameter estimation problem\n", + "assert obj_value == pytest.approx(5.07496, 1e-3)\n", + "assert parameters[\"fs.properties.tau[benzene,toluene]\"] == pytest.approx(-0.89876, 1e-3)\n", + "assert parameters[\"fs.properties.tau[toluene,benzene]\"] == pytest.approx(1.41048, 1e-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You will notice that the resulting parameter estimation problem will have 1102 variables and 1100 constraints. Let us display the results by running the next cell. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The SSE at the optimal solution is %0.6f\" % (obj_value * 1e-4))\n", + "print()\n", + "print(\"The values for the parameters are as follows:\")\n", + "for k, v in parameters.items():\n", + " print(k, \"=\", v)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using the data that was provided, we have estimated the binary interaction parameters in the NRTL model for a benzene-toluene mixture. Although the dataset that was provided was temperature dependent, in this example we have estimated a single value that fits best for all temperatures." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Advanced options for parmest: bootstrapping\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pyomo's `parmest` tool allows for bootstrapping where the parameter estimation is repeated over `n` samples with resampling from the original data set. Parameter estimation with bootstrap resampling can be used to identify confidence regions around each parameter estimate. This analysis can be slow given the increased number of model instances that need to be solved. Please refer to https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/driver.html for more details. \n", + "\n", + "For the example above, the bootstrapping can be run by uncommenting the code in the following cell:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Run parameter estimation using bootstrap resample of the data (10 samples),\n", + "# plot results along with confidence regions\n", + "\n", + "# Uncomment the following code:\n", + "# bootstrap_theta = pest.theta_est_bootstrap(4)\n", + "# display(bootstrap_theta)" + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_usr.ipynb b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_usr.ipynb index 5bdce840..5895980e 100644 --- a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_usr.ipynb +++ b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_state_block_usr.ipynb @@ -1,542 +1,542 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Parameter Estimation Using the NRTL State Block\n", - "\n", - "Author: Jaffer Ghouse \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-06-01 \n", - "\n", - "In this module, we use Pyomo's `parmest` tool in conjunction with IDAES models for parameter estimation. We demonstrate these tools by estimating the parameters associated with the NRTL property model for a benzene-toluene mixture. The NRTL model has 2 sets of parameters: the non-randomness parameter (`alpha_ij`) and the binary interaction parameter (`tau_ij`), where `i` and `j` are the pure component species. In this example, we only estimate the binary interaction parameter (`tau_ij`) for a given dataset. When estimating parameters associated with the property package, IDAES provides the flexibility of doing the parameter estimation by just using the state block or by using a unit model with a specified property package. This module will demonstrate parameter estimation by using only the state block. \n", - "\n", - "We will complete the following tasks:\n", - "* Set up a method to return an initialized model\n", - "* Set up the parameter estimation problem using `parmest`\n", - "* Analyze the results\n", - "* Demonstrate advanced features using `parmest`\n", - "\n", - "## Key links to documentation:\n", - "* NRTL Model - https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", - "* parmest - https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/index.html\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "import `ConcreteModel` from Pyomo and `FlowsheetBlock` from IDAES. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: import ConcreteModel from pyomo.environ\n", - "\n", - "# Todo: import FlowsheetBlock from idaes.core" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: import ConcreteModel from pyomo.environ\n", - "from pyomo.environ import ConcreteModel, value\n", - "\n", - "# Todo: import FlowsheetBlock from idaes.core\n", - "from idaes.core import FlowsheetBlock" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next cell, we import the parameter block used in this module and the idaes logger. " - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", - " BTXParameterBlock,\n", - ")\n", - "import idaes.logger as idaeslog" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next cell, we import `parmest` from Pyomo and the `pandas` package. We need `pandas` as `parmest` uses `pandas.dataframe` for handling the input data and the results." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "import pyomo.contrib.parmest.parmest as parmest\n", - "import pandas as pd" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setting up an initialized model\n", - "\n", - "We need to provide a method that returns an initialized model to the `parmest` tool in Pyomo." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Using what you have learned from previous modules, fill in the missing code below to return an initialized IDAES model. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "def NRTL_model(data):\n", - "\n", - " # Todo: Create a ConcreteModel object\n", - "\n", - " # Todo: Create FlowsheetBlock object\n", - "\n", - " # Todo: Create a properties parameter object with the following options:\n", - " # \"valid_phase\": ('Liq', 'Vap')\n", - " # \"activity_coeff_model\": 'NRTL'\n", - "\n", - " m.fs.state_block = m.fs.properties.build_state_block(defined_state=True)\n", - "\n", - " # Fix the state variables on the state block\n", - " # hint: state variables exist on the state block i.e. on m.fs.state_block\n", - " m.fs.state_block.flow_mol.fix(1)\n", - " m.fs.state_block.temperature.fix(368)\n", - " m.fs.state_block.pressure.fix(101325)\n", - " m.fs.state_block.mole_frac_comp[\"benzene\"].fix(0.5)\n", - " m.fs.state_block.mole_frac_comp[\"toluene\"].fix(0.5)\n", - "\n", - " # Fix NRTL specific parameters.\n", - "\n", - " # non-randomness parameter - alpha_ij (set at 0.3, 0 if i=j)\n", - " m.fs.properties.alpha[\"benzene\", \"benzene\"].fix(0)\n", - " m.fs.properties.alpha[\"benzene\", \"toluene\"].fix(0.3)\n", - " m.fs.properties.alpha[\"toluene\", \"toluene\"].fix(0)\n", - " m.fs.properties.alpha[\"toluene\", \"benzene\"].fix(0.3)\n", - "\n", - " # binary interaction parameter - tau_ij (0 if i=j, else to be estimated later but fixing to initialize)\n", - " m.fs.properties.tau[\"benzene\", \"benzene\"].fix(0)\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].fix(-0.9)\n", - " m.fs.properties.tau[\"toluene\", \"toluene\"].fix(0)\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].fix(1.4)\n", - "\n", - " # Initialize the flash unit\n", - " m.fs.state_block.initialize(outlvl=idaeslog.INFO)\n", - "\n", - " # Fix at actual temperature\n", - " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", - "\n", - " # Set bounds on variables to be estimated\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].setub(5)\n", - "\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].setlb(-5)\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].setub(5)\n", - "\n", - " # Return initialized flash model\n", - " return m" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "def NRTL_model(data):\n", - "\n", - " # Todo: Create a ConcreteModel object\n", - " m = ConcreteModel()\n", - "\n", - " # Todo: Create FlowsheetBlock object\n", - " m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - " # Todo: Create a properties parameter object with the following options:\n", - " # \"valid_phase\": ('Liq', 'Vap')\n", - " # \"activity_coeff_model\": 'NRTL'\n", - " m.fs.properties = BTXParameterBlock(\n", - " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"NRTL\"\n", - " )\n", - " m.fs.state_block = m.fs.properties.build_state_block(defined_state=True)\n", - "\n", - " # Fix the state variables on the state block\n", - " # hint: state variables exist on the state block i.e. on m.fs.state_block\n", - "\n", - " m.fs.state_block.flow_mol.fix(1)\n", - " m.fs.state_block.temperature.fix(368)\n", - " m.fs.state_block.pressure.fix(101325)\n", - " m.fs.state_block.mole_frac_comp[\"benzene\"].fix(0.5)\n", - " m.fs.state_block.mole_frac_comp[\"toluene\"].fix(0.5)\n", - "\n", - " # Fix NRTL specific parameters.\n", - "\n", - " # non-randomness parameter - alpha_ij (set at 0.3, 0 if i=j)\n", - " m.fs.properties.alpha[\"benzene\", \"benzene\"].fix(0)\n", - " m.fs.properties.alpha[\"benzene\", \"toluene\"].fix(0.3)\n", - " m.fs.properties.alpha[\"toluene\", \"toluene\"].fix(0)\n", - " m.fs.properties.alpha[\"toluene\", \"benzene\"].fix(0.3)\n", - "\n", - " # binary interaction parameter - tau_ij (0 if i=j, else to be estimated later but fixing to initialize)\n", - " m.fs.properties.tau[\"benzene\", \"benzene\"].fix(0)\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].fix(-0.9)\n", - " m.fs.properties.tau[\"toluene\", \"toluene\"].fix(0)\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].fix(1.4)\n", - "\n", - " # Initialize the flash unit\n", - " m.fs.state_block.initialize(outlvl=idaeslog.INFO_LOW)\n", - "\n", - " # Fix at actual temperature\n", - " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", - "\n", - " # Set bounds on variables to be estimated\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", - " m.fs.properties.tau[\"benzene\", \"toluene\"].setub(5)\n", - "\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].setlb(-5)\n", - " m.fs.properties.tau[\"toluene\", \"benzene\"].setub(5)\n", - "\n", - " # Return initialized flash model\n", - " return m" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Parameter estimation using parmest" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In addition to providing a method to return an initialized model, the `parmest` tool needs the following:\n", - "\n", - "* List of variable names to be estimated\n", - "* Dataset\n", - "* Expression to compute the sum of squared errors\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this example, we only estimate the binary interaction parameter (`tau_ij`). Given that this variable is usually indexed as `tau_ij = Var(component_list, component_list)`, there are 2*2=4 degrees of freedom. However, when i=j, the binary interaction parameter is 0. Therefore, in this problem, we estimate the binary interaction parameter for the following variables only:\n", - "\n", - "* fs.properties.tau['benzene', 'toluene']\n", - "* fs.properties.tau['toluene', 'benzene']\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Create a list called `variable_name` with the above-mentioned variables declared as strings.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Create a list of vars to estimate" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Create a list of vars to estimate\n", - "variable_name = [\n", - " \"fs.properties.tau['benzene', 'toluene']\",\n", - " \"fs.properties.tau['toluene', 'benzene']\",\n", - "]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Pyomo's `parmest` tool supports the following data formats:\n", - "- pandas dataframe\n", - "- list of dictionaries\n", - "- list of json file names.\n", - "\n", - "Please see the documentation for more details. \n", - "\n", - "For this example, we load data from the csv file `BT_NRTL_dataset.csv`. The dataset consists of fifty data points which provide the mole fraction of benzene in the vapor and liquid phase as a function of temperature. " - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# Load data from csv\n", - "data = pd.read_csv(\"BT_NRTL_dataset.csv\")\n", - "\n", - "# Display the dataset\n", - "display(data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We need to provide a method to return an expression to compute the sum of squared errors that will be used as the objective in solving the parameter estimation problem. For this problem, the error will be computed for the mole fraction of benzene in the vapor and liquid phase between the model prediction and data. \n", - "\n", - "
\n", - "Inline Exercise:\n", - "Complete the following cell by adding an expression to compute the sum of square errors. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create method to return an expression that computes the sum of squared error\n", - "def SSE(m, data):\n", - " # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid\n", - " # and vapor phase. For example, the squared error for the vapor phase is:\n", - " # (float(data[\"vap_benzene\"]) - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"])**2\n", - "\n", - " return expr * 1e4" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Create method to return an expression that computes the sum of squared error\n", - "def SSE(m, data):\n", - " # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid\n", - " # and vapor phase. For example, the squared error for the vapor phase is:\n", - " # (float(data[\"vap_benzene\"]) - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"])**2\n", - " expr = (\n", - " float(data[\"vap_benzene\"])\n", - " - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"]\n", - " ) ** 2 + (\n", - " float(data[\"liq_benzene\"])\n", - " - m.fs.state_block.mole_frac_phase_comp[\"Liq\", \"benzene\"]\n", - " ) ** 2\n", - " return expr * 1e4" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Note:\n", - "Notice that we have scaled the expression up by a factor of 10000 as the SSE computed here will be an extremely small number given that we are using the difference in mole fraction in our expression. This will help in using a well-scaled objective to improve solve robustness when using IPOPT. \n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are now ready to set up the parameter estimation problem. We will create a parameter estimation object called `pest`. As shown below, we pass the method that returns an initialized model, data, variable_name, and the SSE expression to the Estimator method. `tee=True` will print the solver output after solving the parameter estimation problem. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import logging\n", - "\n", - "idaeslog.getIdaesLogger(\"core.property_meta\").setLevel(logging.ERROR)\n", - "# Initialize a parameter estimation object\n", - "pest = parmest.Estimator(NRTL_model, data, variable_name, SSE, tee=True)\n", - "\n", - "# Run parameter estimation using all data\n", - "obj_value, parameters = pest.theta_est()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You will notice that the resulting parameter estimation problem will have 1102 variables and 1100 constraints. Let us display the results by running the next cell. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"The SSE at the optimal solution is %0.6f\" % (obj_value * 1e-4))\n", - "print()\n", - "print(\"The values for the parameters are as follows:\")\n", - "for k, v in parameters.items():\n", - " print(k, \"=\", v)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Using the data that was provided, we have estimated the binary interaction parameters in the NRTL model for a benzene-toluene mixture. Although the dataset that was provided was temperature dependent, in this example we have estimated a single value that fits best for all temperatures." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Advanced options for parmest: bootstrapping\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Pyomo's `parmest` tool allows for bootstrapping where the parameter estimation is repeated over `n` samples with resampling from the original data set. Parameter estimation with bootstrap resampling can be used to identify confidence regions around each parameter estimate. This analysis can be slow given the increased number of model instances that need to be solved. Please refer to https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/driver.html for more details. \n", - "\n", - "For the example above, the bootstrapping can be run by uncommenting the code in the following cell:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Run parameter estimation using bootstrap resample of the data (10 samples),\n", - "# plot results along with confidence regions\n", - "\n", - "# Uncomment the following code:\n", - "# bootstrap_theta = pest.theta_est_bootstrap(4)\n", - "# display(bootstrap_theta)" - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.9" - } - }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + "cells": [ + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Parameter Estimation Using the NRTL State Block\n", + "\n", + "Author: Jaffer Ghouse \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-06-01 \n", + "\n", + "In this module, we use Pyomo's `parmest` tool in conjunction with IDAES models for parameter estimation. We demonstrate these tools by estimating the parameters associated with the NRTL property model for a benzene-toluene mixture. The NRTL model has 2 sets of parameters: the non-randomness parameter (`alpha_ij`) and the binary interaction parameter (`tau_ij`), where `i` and `j` are the pure component species. In this example, we only estimate the binary interaction parameter (`tau_ij`) for a given dataset. When estimating parameters associated with the property package, IDAES provides the flexibility of doing the parameter estimation by just using the state block or by using a unit model with a specified property package. This module will demonstrate parameter estimation by using only the state block. \n", + "\n", + "We will complete the following tasks:\n", + "* Set up a method to return an initialized model\n", + "* Set up the parameter estimation problem using `parmest`\n", + "* Analyze the results\n", + "* Demonstrate advanced features using `parmest`\n", + "\n", + "## Key links to documentation:\n", + "* NRTL Model - https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", + "* parmest - https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/index.html\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "import `ConcreteModel` from Pyomo and `FlowsheetBlock` from IDAES. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: import ConcreteModel from pyomo.environ\n", + "\n", + "# Todo: import FlowsheetBlock from idaes.core" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: import ConcreteModel from pyomo.environ\n", + "from pyomo.environ import ConcreteModel, value\n", + "\n", + "# Todo: import FlowsheetBlock from idaes.core\n", + "from idaes.core import FlowsheetBlock" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the next cell, we import the parameter block used in this module and the idaes logger. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", + " BTXParameterBlock,\n", + ")\n", + "import idaes.logger as idaeslog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the next cell, we import `parmest` from Pyomo and the `pandas` package. We need `pandas` as `parmest` uses `pandas.dataframe` for handling the input data and the results." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import pyomo.contrib.parmest.parmest as parmest\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting up an initialized model\n", + "\n", + "We need to provide a method that returns an initialized model to the `parmest` tool in Pyomo." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Using what you have learned from previous modules, fill in the missing code below to return an initialized IDAES model. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "def NRTL_model(data):\n", + "\n", + " # Todo: Create a ConcreteModel object\n", + "\n", + " # Todo: Create FlowsheetBlock object\n", + "\n", + " # Todo: Create a properties parameter object with the following options:\n", + " # \"valid_phase\": ('Liq', 'Vap')\n", + " # \"activity_coeff_model\": 'NRTL'\n", + "\n", + " m.fs.state_block = m.fs.properties.build_state_block(defined_state=True)\n", + "\n", + " # Fix the state variables on the state block\n", + " # hint: state variables exist on the state block i.e. on m.fs.state_block\n", + " m.fs.state_block.flow_mol.fix(1)\n", + " m.fs.state_block.temperature.fix(368)\n", + " m.fs.state_block.pressure.fix(101325)\n", + " m.fs.state_block.mole_frac_comp[\"benzene\"].fix(0.5)\n", + " m.fs.state_block.mole_frac_comp[\"toluene\"].fix(0.5)\n", + "\n", + " # Fix NRTL specific parameters.\n", + "\n", + " # non-randomness parameter - alpha_ij (set at 0.3, 0 if i=j)\n", + " m.fs.properties.alpha[\"benzene\", \"benzene\"].fix(0)\n", + " m.fs.properties.alpha[\"benzene\", \"toluene\"].fix(0.3)\n", + " m.fs.properties.alpha[\"toluene\", \"toluene\"].fix(0)\n", + " m.fs.properties.alpha[\"toluene\", \"benzene\"].fix(0.3)\n", + "\n", + " # binary interaction parameter - tau_ij (0 if i=j, else to be estimated later but fixing to initialize)\n", + " m.fs.properties.tau[\"benzene\", \"benzene\"].fix(0)\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].fix(-0.9)\n", + " m.fs.properties.tau[\"toluene\", \"toluene\"].fix(0)\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].fix(1.4)\n", + "\n", + " # Initialize the flash unit\n", + " m.fs.state_block.initialize(outlvl=idaeslog.INFO)\n", + "\n", + " # Fix at actual temperature\n", + " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", + "\n", + " # Set bounds on variables to be estimated\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].setub(5)\n", + "\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].setlb(-5)\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].setub(5)\n", + "\n", + " # Return initialized flash model\n", + " return m" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "def NRTL_model(data):\n", + "\n", + " # Todo: Create a ConcreteModel object\n", + " m = ConcreteModel()\n", + "\n", + " # Todo: Create FlowsheetBlock object\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + " # Todo: Create a properties parameter object with the following options:\n", + " # \"valid_phase\": ('Liq', 'Vap')\n", + " # \"activity_coeff_model\": 'NRTL'\n", + " m.fs.properties = BTXParameterBlock(\n", + " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"NRTL\"\n", + " )\n", + " m.fs.state_block = m.fs.properties.build_state_block(defined_state=True)\n", + "\n", + " # Fix the state variables on the state block\n", + " # hint: state variables exist on the state block i.e. on m.fs.state_block\n", + "\n", + " m.fs.state_block.flow_mol.fix(1)\n", + " m.fs.state_block.temperature.fix(368)\n", + " m.fs.state_block.pressure.fix(101325)\n", + " m.fs.state_block.mole_frac_comp[\"benzene\"].fix(0.5)\n", + " m.fs.state_block.mole_frac_comp[\"toluene\"].fix(0.5)\n", + "\n", + " # Fix NRTL specific parameters.\n", + "\n", + " # non-randomness parameter - alpha_ij (set at 0.3, 0 if i=j)\n", + " m.fs.properties.alpha[\"benzene\", \"benzene\"].fix(0)\n", + " m.fs.properties.alpha[\"benzene\", \"toluene\"].fix(0.3)\n", + " m.fs.properties.alpha[\"toluene\", \"toluene\"].fix(0)\n", + " m.fs.properties.alpha[\"toluene\", \"benzene\"].fix(0.3)\n", + "\n", + " # binary interaction parameter - tau_ij (0 if i=j, else to be estimated later but fixing to initialize)\n", + " m.fs.properties.tau[\"benzene\", \"benzene\"].fix(0)\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].fix(-0.9)\n", + " m.fs.properties.tau[\"toluene\", \"toluene\"].fix(0)\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].fix(1.4)\n", + "\n", + " # Initialize the flash unit\n", + " m.fs.state_block.initialize(outlvl=idaeslog.INFO_LOW)\n", + "\n", + " # Fix at actual temperature\n", + " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", + "\n", + " # Set bounds on variables to be estimated\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", + " m.fs.properties.tau[\"benzene\", \"toluene\"].setub(5)\n", + "\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].setlb(-5)\n", + " m.fs.properties.tau[\"toluene\", \"benzene\"].setub(5)\n", + "\n", + " # Return initialized flash model\n", + " return m" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parameter estimation using parmest" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In addition to providing a method to return an initialized model, the `parmest` tool needs the following:\n", + "\n", + "* List of variable names to be estimated\n", + "* Dataset\n", + "* Expression to compute the sum of squared errors\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, we only estimate the binary interaction parameter (`tau_ij`). Given that this variable is usually indexed as `tau_ij = Var(component_list, component_list)`, there are 2*2=4 degrees of freedom. However, when i=j, the binary interaction parameter is 0. Therefore, in this problem, we estimate the binary interaction parameter for the following variables only:\n", + "\n", + "* fs.properties.tau['benzene', 'toluene']\n", + "* fs.properties.tau['toluene', 'benzene']\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Create a list called `variable_name` with the above-mentioned variables declared as strings.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Create a list of vars to estimate" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Create a list of vars to estimate\n", + "variable_name = [\n", + " \"fs.properties.tau['benzene', 'toluene']\",\n", + " \"fs.properties.tau['toluene', 'benzene']\",\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pyomo's `parmest` tool supports the following data formats:\n", + "- pandas dataframe\n", + "- list of dictionaries\n", + "- list of json file names.\n", + "\n", + "Please see the documentation for more details. \n", + "\n", + "For this example, we load data from the csv file `BT_NRTL_dataset.csv`. The dataset consists of fifty data points which provide the mole fraction of benzene in the vapor and liquid phase as a function of temperature. " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Load data from csv\n", + "data = pd.read_csv(\"BT_NRTL_dataset.csv\")\n", + "\n", + "# Display the dataset\n", + "display(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need to provide a method to return an expression to compute the sum of squared errors that will be used as the objective in solving the parameter estimation problem. For this problem, the error will be computed for the mole fraction of benzene in the vapor and liquid phase between the model prediction and data. \n", + "\n", + "
\n", + "Inline Exercise:\n", + "Complete the following cell by adding an expression to compute the sum of square errors. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create method to return an expression that computes the sum of squared error\n", + "def SSE(m, data):\n", + " # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid\n", + " # and vapor phase. For example, the squared error for the vapor phase is:\n", + " # (float(data[\"vap_benzene\"]) - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"])**2\n", + "\n", + " return expr * 1e4" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Create method to return an expression that computes the sum of squared error\n", + "def SSE(m, data):\n", + " # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid\n", + " # and vapor phase. For example, the squared error for the vapor phase is:\n", + " # (float(data[\"vap_benzene\"]) - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"])**2\n", + " expr = (\n", + " float(data[\"vap_benzene\"])\n", + " - m.fs.state_block.mole_frac_phase_comp[\"Vap\", \"benzene\"]\n", + " ) ** 2 + (\n", + " float(data[\"liq_benzene\"])\n", + " - m.fs.state_block.mole_frac_phase_comp[\"Liq\", \"benzene\"]\n", + " ) ** 2\n", + " return expr * 1e4" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Note:\n", + "Notice that we have scaled the expression up by a factor of 10000 as the SSE computed here will be an extremely small number given that we are using the difference in mole fraction in our expression. This will help in using a well-scaled objective to improve solve robustness when using IPOPT. \n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are now ready to set up the parameter estimation problem. We will create a parameter estimation object called `pest`. As shown below, we pass the method that returns an initialized model, data, variable_name, and the SSE expression to the Estimator method. `tee=True` will print the solver output after solving the parameter estimation problem. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import logging\n", + "\n", + "idaeslog.getIdaesLogger(\"core.property_meta\").setLevel(logging.ERROR)\n", + "# Initialize a parameter estimation object\n", + "pest = parmest.Estimator(NRTL_model, data, variable_name, SSE, tee=True)\n", + "\n", + "# Run parameter estimation using all data\n", + "obj_value, parameters = pest.theta_est()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You will notice that the resulting parameter estimation problem will have 1102 variables and 1100 constraints. Let us display the results by running the next cell. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The SSE at the optimal solution is %0.6f\" % (obj_value * 1e-4))\n", + "print()\n", + "print(\"The values for the parameters are as follows:\")\n", + "for k, v in parameters.items():\n", + " print(k, \"=\", v)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using the data that was provided, we have estimated the binary interaction parameters in the NRTL model for a benzene-toluene mixture. Although the dataset that was provided was temperature dependent, in this example we have estimated a single value that fits best for all temperatures." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Advanced options for parmest: bootstrapping\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pyomo's `parmest` tool allows for bootstrapping where the parameter estimation is repeated over `n` samples with resampling from the original data set. Parameter estimation with bootstrap resampling can be used to identify confidence regions around each parameter estimate. This analysis can be slow given the increased number of model instances that need to be solved. Please refer to https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/driver.html for more details. \n", + "\n", + "For the example above, the bootstrapping can be run by uncommenting the code in the following cell:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Run parameter estimation using bootstrap resample of the data (10 samples),\n", + "# plot results along with confidence regions\n", + "\n", + "# Uncomment the following code:\n", + "# bootstrap_theta = pest.theta_est_bootstrap(4)\n", + "# display(bootstrap_theta)" + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model.ipynb b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model.ipynb index 495b6540..4cd9f8c5 100644 --- a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model.ipynb +++ b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_doc.ipynb b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_doc.ipynb index edb05ee6..294ed3ea 100644 --- a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_doc.ipynb +++ b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -187,7 +188,12 @@ " m.fs.flash.initialize(outlvl=idaeslog.INFO_LOW)\n", "\n", " # Fix at actual temperature\n", - " m.fs.flash.inlet.temperature.fix(float(data[\"temperature\"]))\n", + " if isinstance(data, dict) or isinstance(data, pd.Series):\n", + " m.fs.flash.inlet.temperature.fix(float(data[\"temperature\"]))\n", + " elif isinstance(data, pd.DataFrame):\n", + " m.fs.flash.inlet.temperature.fix(float(data.iloc[0][\"temperature\"]))\n", + " else:\n", + " raise ValueError(\"Unrecognized data type.\")\n", "\n", " # Set bounds on variables to be estimated\n", " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", @@ -695,9 +701,11 @@ " # and vapor phase. For example, the squared error for the vapor phase is:\n", " # (float(data[\"vap_benzene\"]) - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"])**2\n", " expr = (\n", - " float(data[\"vap_benzene\"]) - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]\n", + " float(data.iloc[0][\"vap_benzene\"])\n", + " - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]\n", " ) ** 2 + (\n", - " float(data[\"liq_benzene\"]) - m.fs.flash.liq_outlet.mole_frac_comp[0, \"benzene\"]\n", + " float(data.iloc[0][\"liq_benzene\"])\n", + " - m.fs.flash.liq_outlet.mole_frac_comp[0, \"benzene\"]\n", " ) ** 2\n", " return expr * 1e4" ] @@ -725,15 +733,14 @@ "metadata": {}, "outputs": [ { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_36352\\1862275024.py:45: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", - " m.fs.flash.inlet.temperature.fix(float(data[\"temperature\"]))\n", - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_36352\\2860104238.py:7: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", - " float(data[\"vap_benzene\"]) - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]\n", - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_36352\\2860104238.py:9: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", - " float(data[\"liq_benzene\"]) - m.fs.flash.liq_outlet.mole_frac_comp[0, \"benzene\"]\n" + "WARNING: DEPRECATED: You're using the deprecated parmest interface\n", + "(model_function, data, theta_names). This interface will be removed in a\n", + "future release, please update to the new parmest interface using experiment\n", + "lists. (deprecated in 6.7.2) (called from /home/dang/miniforge3/envs/idaes_ex\n", + "amples_py3.11/lib/python3.11/functools.py:946)\n" ] }, { @@ -789,16 +796,16 @@ " 9 5.0749679e+00 5.85e-02 7.21e-04 -3.8 8.43e+00 - 1.00e+00 1.00e+00h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", " 10 5.0749686e+00 5.59e-04 1.05e-05 -5.7 9.63e-01 - 1.00e+00 1.00e+00h 1\n", - " 11 5.0749686e+00 3.98e-08 1.56e-09 -8.6 7.56e-03 - 1.00e+00 1.00e+00h 1\n", + " 11 5.0749686e+00 3.99e-08 1.56e-09 -8.6 7.56e-03 - 1.00e+00 1.00e+00h 1\n", "\n", "Number of Iterations....: 11\n", "\n", " (scaled) (unscaled)\n", - "Objective...............: 5.0749685783045084e+00 5.0749685783045084e+00\n", - "Dual infeasibility......: 1.5648775501801708e-09 1.5648775501801708e-09\n", - "Constraint violation....: 1.3843631310512158e-10 3.9843143895268440e-08\n", - "Complementarity.........: 2.5074825419922871e-09 2.5074825419922871e-09\n", - "Overall NLP error.......: 2.5074825419922871e-09 3.9843143895268440e-08\n", + "Objective...............: 5.0749685783045351e+00 5.0749685783045351e+00\n", + "Dual infeasibility......: 1.5648777722895738e-09 1.5648777722895738e-09\n", + "Constraint violation....: 1.3853747226705444e-10 3.9872247725725174e-08\n", + "Complementarity.........: 2.5074825420127933e-09 2.5074825420127933e-09\n", + "Overall NLP error.......: 2.5074825420127933e-09 3.9872247725725174e-08\n", "\n", "\n", "Number of objective function evaluations = 12\n", @@ -808,8 +815,8 @@ "Number of equality constraint Jacobian evaluations = 12\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 11\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.053\n", - "Total CPU secs in NLP function evaluations = 0.010\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.047\n", + "Total CPU secs in NLP function evaluations = 0.017\n", "\n", "EXIT: Optimal Solution Found.\n", "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" @@ -845,8 +852,8 @@ "The SSE at the optimal solution is 0.000507\n", "\n", "The values for the parameters are as follows:\n", - "fs.properties.tau[benzene,toluene] = -0.8987624039723903\n", - "fs.properties.tau[toluene,benzene] = 1.410486110660486\n" + "fs.properties.tau[benzene,toluene] = -0.8987624039724009\n", + "fs.properties.tau[toluene,benzene] = 1.41048611066051\n" ] } ], @@ -915,9 +922,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_exercise.ipynb b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_exercise.ipynb index 9ebb2bbd..8edb8894 100644 --- a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_exercise.ipynb +++ b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_exercise.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -180,7 +181,12 @@ " m.fs.flash.initialize(outlvl=idaeslog.INFO_LOW)\n", "\n", " # Fix at actual temperature\n", - " m.fs.flash.inlet.temperature.fix(float(data[\"temperature\"]))\n", + " if isinstance(data, dict) or isinstance(data, pd.Series):\n", + " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", + " elif isinstance(data, pd.DataFrame):\n", + " m.fs.state_block.temperature.fix(float(data.iloc[0][\"temperature\"]))\n", + " else:\n", + " raise ValueError(\"Unrecognized data type.\")\n", "\n", " # Set bounds on variables to be estimated\n", " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", @@ -293,7 +299,7 @@ "def SSE(m, data):\n", " # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid\n", " # and vapor phase. For example, the squared error for the vapor phase is:\n", - " # (float(data[\"vap_benzene\"]) - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"])**2\n", + " # (float(data.iloc[0][\"vap_benzene\"]) - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"])**2\n", "\n", " return expr * 1e4" ] @@ -407,9 +413,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.8.19" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_solution.ipynb b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_solution.ipynb index d70ff27d..6864c791 100644 --- a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_solution.ipynb +++ b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_solution.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -200,7 +201,12 @@ " m.fs.flash.initialize(outlvl=idaeslog.INFO_LOW)\n", "\n", " # Fix at actual temperature\n", - " m.fs.flash.inlet.temperature.fix(float(data[\"temperature\"]))\n", + " if isinstance(data, dict) or isinstance(data, pd.Series):\n", + " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", + " elif isinstance(data, pd.DataFrame):\n", + " m.fs.state_block.temperature.fix(float(data.iloc[0][\"temperature\"]))\n", + " else:\n", + " raise ValueError(\"Unrecognized data type.\")\n", "\n", " # Set bounds on variables to be estimated\n", " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", @@ -267,7 +273,12 @@ " m.fs.flash.initialize(outlvl=idaeslog.INFO_LOW)\n", "\n", " # Fix at actual temperature\n", - " m.fs.flash.inlet.temperature.fix(float(data[\"temperature\"]))\n", + " if isinstance(data, dict) or isinstance(data, pd.Series):\n", + " m.fs.flash.inlet.temperature.fix(float(data[\"temperature\"]))\n", + " elif isinstance(data, pd.DataFrame):\n", + " m.fs.flash.inlet.temperature.fix(float(data.iloc[0][\"temperature\"]))\n", + " else:\n", + " raise ValueError(\"Unrecognized data type.\")\n", "\n", " # Set bounds on variables to be estimated\n", " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", @@ -397,7 +408,7 @@ "def SSE(m, data):\n", " # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid\n", " # and vapor phase. For example, the squared error for the vapor phase is:\n", - " # (float(data[\"vap_benzene\"]) - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"])**2\n", + " # (float(data.iloc[0][\"vap_benzene\"]) - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"])**2\n", "\n", " return expr * 1e4" ] @@ -418,9 +429,11 @@ " # and vapor phase. For example, the squared error for the vapor phase is:\n", " # (float(data[\"vap_benzene\"]) - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"])**2\n", " expr = (\n", - " float(data[\"vap_benzene\"]) - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]\n", + " float(data.iloc[0][\"vap_benzene\"])\n", + " - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]\n", " ) ** 2 + (\n", - " float(data[\"liq_benzene\"]) - m.fs.flash.liq_outlet.mole_frac_comp[0, \"benzene\"]\n", + " float(data.iloc[0][\"liq_benzene\"])\n", + " - m.fs.flash.liq_outlet.mole_frac_comp[0, \"benzene\"]\n", " ) ** 2\n", " return expr * 1e4" ] @@ -534,9 +547,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.8.19" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_test.ipynb b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_test.ipynb index 7add77ff..6a00b230 100644 --- a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_test.ipynb +++ b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -187,7 +188,12 @@ " m.fs.flash.initialize(outlvl=idaeslog.INFO_LOW)\n", "\n", " # Fix at actual temperature\n", - " m.fs.flash.inlet.temperature.fix(float(data[\"temperature\"]))\n", + " if isinstance(data, dict) or isinstance(data, pd.Series):\n", + " m.fs.flash.inlet.temperature.fix(float(data[\"temperature\"]))\n", + " elif isinstance(data, pd.DataFrame):\n", + " m.fs.flash.inlet.temperature.fix(float(data.iloc[0][\"temperature\"]))\n", + " else:\n", + " raise ValueError(\"Unrecognized data type.\")\n", "\n", " # Set bounds on variables to be estimated\n", " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", @@ -343,9 +349,11 @@ " # and vapor phase. For example, the squared error for the vapor phase is:\n", " # (float(data[\"vap_benzene\"]) - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"])**2\n", " expr = (\n", - " float(data[\"vap_benzene\"]) - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]\n", + " float(data.iloc[0][\"vap_benzene\"])\n", + " - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]\n", " ) ** 2 + (\n", - " float(data[\"liq_benzene\"]) - m.fs.flash.liq_outlet.mole_frac_comp[0, \"benzene\"]\n", + " float(data.iloc[0][\"liq_benzene\"])\n", + " - m.fs.flash.liq_outlet.mole_frac_comp[0, \"benzene\"]\n", " ) ** 2\n", " return expr * 1e4" ] @@ -475,9 +483,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.8.19" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_usr.ipynb b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_usr.ipynb index d70ff27d..6864c791 100644 --- a/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_usr.ipynb +++ b/idaes_examples/notebooks/docs/param_est/parameter_estimation_nrtl_using_unit_model_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -200,7 +201,12 @@ " m.fs.flash.initialize(outlvl=idaeslog.INFO_LOW)\n", "\n", " # Fix at actual temperature\n", - " m.fs.flash.inlet.temperature.fix(float(data[\"temperature\"]))\n", + " if isinstance(data, dict) or isinstance(data, pd.Series):\n", + " m.fs.state_block.temperature.fix(float(data[\"temperature\"]))\n", + " elif isinstance(data, pd.DataFrame):\n", + " m.fs.state_block.temperature.fix(float(data.iloc[0][\"temperature\"]))\n", + " else:\n", + " raise ValueError(\"Unrecognized data type.\")\n", "\n", " # Set bounds on variables to be estimated\n", " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", @@ -267,7 +273,12 @@ " m.fs.flash.initialize(outlvl=idaeslog.INFO_LOW)\n", "\n", " # Fix at actual temperature\n", - " m.fs.flash.inlet.temperature.fix(float(data[\"temperature\"]))\n", + " if isinstance(data, dict) or isinstance(data, pd.Series):\n", + " m.fs.flash.inlet.temperature.fix(float(data[\"temperature\"]))\n", + " elif isinstance(data, pd.DataFrame):\n", + " m.fs.flash.inlet.temperature.fix(float(data.iloc[0][\"temperature\"]))\n", + " else:\n", + " raise ValueError(\"Unrecognized data type.\")\n", "\n", " # Set bounds on variables to be estimated\n", " m.fs.properties.tau[\"benzene\", \"toluene\"].setlb(-5)\n", @@ -397,7 +408,7 @@ "def SSE(m, data):\n", " # Todo: Add expression for computing the sum of squared errors in mole fraction of benzene in the liquid\n", " # and vapor phase. For example, the squared error for the vapor phase is:\n", - " # (float(data[\"vap_benzene\"]) - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"])**2\n", + " # (float(data.iloc[0][\"vap_benzene\"]) - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"])**2\n", "\n", " return expr * 1e4" ] @@ -418,9 +429,11 @@ " # and vapor phase. For example, the squared error for the vapor phase is:\n", " # (float(data[\"vap_benzene\"]) - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"])**2\n", " expr = (\n", - " float(data[\"vap_benzene\"]) - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]\n", + " float(data.iloc[0][\"vap_benzene\"])\n", + " - m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]\n", " ) ** 2 + (\n", - " float(data[\"liq_benzene\"]) - m.fs.flash.liq_outlet.mole_frac_comp[0, \"benzene\"]\n", + " float(data.iloc[0][\"liq_benzene\"])\n", + " - m.fs.flash.liq_outlet.mole_frac_comp[0, \"benzene\"]\n", " ) ** 2\n", " return expr * 1e4" ] @@ -534,9 +547,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.8.19" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc.ipynb b/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc.ipynb index 20fa0c26..f4fd666f 100644 --- a/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc.ipynb @@ -17,12 +17,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc_doc.ipynb b/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc_doc.ipynb index 7127641c..60561b67 100644 --- a/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc_doc.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -139,16 +140,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "2024-07-25 03:12:25 [INFO] idaes.init.fs: NGCC load initial from ngcc_init.json.gz\n", + "2025-03-17 17:34:04 [INFO] idaes.init.fs: NGCC load initial from ngcc_init.json.gz\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Ipopt 3.13.2: nlp_scaling_method=user-scaling\n", "tol=1e-06\n", "max_iter=200\n", "linear_solver=ma57\n", "ma57_pivtol=1e-05\n", "ma57_pivtolmax=0.1\n", - "option_file_name=C:\\Users\\javal\\AppData\\Local\\Temp\\tmpa9m4gkwo_ipopt.opt\n", + "option_file_name=/tmp/tmp00x0xxe1_ipopt.opt\n", "\n", - "Using option file \"C:\\Users\\javal\\AppData\\Local\\Temp\\tmpa9m4gkwo_ipopt.opt\".\n", + "Using option file \"/tmp/tmp00x0xxe1_ipopt.opt\".\n", "\n", "\n", "******************************************************************************\n", @@ -186,10 +193,22 @@ " inequality constraints with only upper bounds: 0\n", "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 3.50e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 0 0.0000000e+00 3.50e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Reallocating memory for MA57: lfact (111709)\n", " 1 0.0000000e+00 3.49e-01 1.12e+04 -1.0 3.06e+03 - 9.90e-01 9.90e-01h 1\n", - " 2 0.0000000e+00 3.15e-03 5.15e+02 -1.0 3.02e+03 - 9.89e-01 9.91e-01h 1\n", + " 2 0.0000000e+00 3.15e-03 5.15e+02 -1.0 3.02e+03 - 9.89e-01 9.91e-01h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " 3 0.0000000e+00 2.95e-07 9.98e+02 -1.0 3.74e+01 - 9.90e-01 1.00e+00h 1\n", "\n", "Number of Iterations....: 3\n", @@ -197,9 +216,9 @@ " (scaled) (unscaled)\n", "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 2.9462398742907681e-07 2.9462398742907681e-07\n", + "Constraint violation....: 2.9462262318702415e-07 2.9462262318702415e-07\n", "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9462398742907681e-07 2.9462398742907681e-07\n", + "Overall NLP error.......: 2.9462262318702415e-07 2.9462262318702415e-07\n", "\n", "\n", "Number of objective function evaluations = 4\n", @@ -209,8 +228,8 @@ "Number of equality constraint Jacobian evaluations = 4\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.085\n", - "Total CPU secs in NLP function evaluations = 1.396\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.056\n", + "Total CPU secs in NLP function evaluations = 0.537\n", "\n", "EXIT: Optimal Solution Found.\n" ] @@ -2819,7 +2838,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 8, @@ -2828,7 +2847,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABF2UlEQVR4nO3deVhU9f4H8PcAw+4Mi8CAIuBSQKGYC4xwBRVFU9OkMkPFckkvZmiaoV4jMzXT3C5q1wXqpu1qhfuGehUQcUMhXEIxdcBSQFQW4fv7w4fza8IFEBg8vV/Pc57Hc77fc87nDEfmzTnfM6MQQggQERERyZSRoQsgIiIiqk8MO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrJoYuoDGoqKjAlStX0KRJEygUCkOXQ0RERNUghMDNmzfh4uICI6MHX79h2AFw5coVuLq6GroMIiIiqoVLly6hefPmD2xn2AHQpEkTAPdeLJVKZeBqiIiIqDoKCwvh6uoqvY8/CMMOIN26UqlUDDtERERPmEcNQeEAZSIiIpI1hh0iIiKSNYYdIiIikjWO2SEioirKy8tRVlZm6DLob87Y2BgmJiaP/bEwDDtERKSnqKgIv/32G4QQhi6FCJaWlnB2doapqWmtt2HQsOPu7o6LFy9WWf7Pf/4TsbGxKC4uxjvvvIOvv/4aJSUlCA0NxfLly+Hk5CT1zcnJwbhx47B3715YW1sjIiICc+fOhYkJcxwRUU2Vl5fjt99+g6WlJRwcHPhBq2QwQgiUlpbi2rVryM7ORps2bR76wYEPY9BEkJqaivLycmn+1KlT6NmzJ15++WUAwMSJE7F582Z89913UKvVGD9+PAYNGoSDBw8CuPefsm/fvtBoNDh06BCuXr2K4cOHQ6lUYs6cOQY5JiKiJ1lZWRmEEHBwcICFhYWhy6G/OQsLCyiVSly8eBGlpaUwNzev1XYUohFdp4yKikJCQgLOnj2LwsJCODg4YP369XjppZcAAL/88gu8vLyQlJQEf39/bN26Ff369cOVK1ekqz0rV67E1KlTce3atWpf8iosLIRarUZBQQE/Z4eI/taKi4uRnZ0NDw+PWr+xENWlh52T1X3/bjRPY5WWluLLL7/EG2+8AYVCgbS0NJSVlSEkJETq4+npiRYtWiApKQkAkJSUBB8fH73bWqGhoSgsLMTp06cfuK+SkhIUFhbqTURERCRPjSbsbNq0Cfn5+RgxYgQAQKfTwdTUFDY2Nnr9nJycoNPppD5/DjqV7ZVtDzJ37lyo1Wpp4vdiERERyVejGcW7Zs0a9OnTBy4uLvW+r+joaEyaNEmar/xuDSIiuj/39zY36P4uzOvboPv7O7hw4QI8PDxw7Ngx+Pr6IjExEd26dcONGzeqXFiQm0ZxZefixYvYtWsXRo0aJS3TaDQoLS1Ffn6+Xt/c3FxoNBqpT25ubpX2yrYHMTMzk74Hi9+HRUT05BsxYgQUCgXmzZunt3zTpk16T5QlJiZCoVDcd9LpdHB3d39gu0KhkO4+KBQKbNq0qdr1/Xm7xsbGcHFxwciRI3Hjxo26OPxa6dKlC65evQq1Wm2wGhpKowg7cXFxcHR0RN++/5/kO3ToAKVSid27d0vLsrKykJOTA61WCwDQarVIT09HXl6e1Gfnzp1QqVTw9vZuuAMgIiKDMzc3x8cff1ytAJGVlYWrV6/qTY6OjkhNTZXmf/jhhyp9lyxZUuv6Zs2ahatXryInJwfr1q3D/v37MWHChFpv73GZmppCo9H8LT5ewOBhp6KiAnFxcYiIiND7bBy1Wo2RI0di0qRJ2Lt3L9LS0vD6669Dq9XC398fANCrVy94e3tj2LBhOHHiBLZv344ZM2YgMjISZmZmhjokIiIygJCQEGg0GsydO/eRfR0dHaHRaPQmIyMjODg4SPN2dnZV+j7OVZAmTZpAo9GgWbNm6NatGyIiInD06FGp/Y8//sCQIUPQrFkzWFpawsfHB1999ZXeNr7//nv4+PjAwsIC9vb2CAkJwa1bt6T21atXw8vLC+bm5vD09MTy5csfWE/lVa7KOyjx8fGwsbHB9u3b4eXlBWtra/Tu3RtXr17VW68m+2gsDD5mZ9euXcjJycEbb7xRpW3RokUwMjJCWFiY3ocKVjI2NkZCQgLGjRsHrVYLKysrREREYNasWQ15CESNWkOPtWiMLpi/ZugSDCumwNAVNAhjY2PMmTMHr732GiZMmIDmzZsbuqQHunz5Mn7++Wf4+flJy4qLi9GhQwdMnToVKpUKmzdvxrBhw9CqVSt07twZV69exZAhQzB//ny8+OKLuHnzJg4cOCB90vW6deswc+ZM/Pvf/0b79u1x7NgxjB49WnpvrI7bt29jwYIF+O9//wsjIyMMHToUkydPxrp16+psH4Zg8LDTq1evB34kubm5OWJjYxEbG/vA9d3c3LBly5b6Ko+IiJ4gL774Inx9ffH+++9jzZo1D+z31yDk5ub20I8sqQtTp07FjBkzUF5ejuLiYvj5+eHTTz+V2ps1a4bJkydL82+99Ra2b9+Ob7/9Vgo7d+/exaBBg+Dm5gYA8PHxkfq///77WLhwIQYNGgQA8PDwQEZGBj777LNqB5GysjKsXLkSrVq1AgCMHz9e7wJCXezDEAwedoiIiOrSxx9/jO7du+sFh786cOAAmjRpIs0rlcp6r2vKlCkYMWIEhBC4dOkSpk2bhr59+2L//v0wNjZGeXk55syZg2+//RaXL19GaWkpSkpKYGlpCQBo164devToAR8fH4SGhqJXr1546aWXYGtri1u3buH8+fMYOXIkRo8eLe3z7t27Nbr1ZmlpKQUdAHB2dpbGxdbVPgyBYYeIiGSla9euCA0NRXR0tPT01F95eHg0+OPWTZs2RevWrQEAbdq0weLFi6HVarF3716EhITgk08+wZIlS7B48WL4+PjAysoKUVFRKC0tBXDvNt3OnTtx6NAh7NixA8uWLcP06dORkpIiBaJVq1bp3RqrXK+6/hr6FAqFdPelqKioTvZhCAw7REQkO/PmzYOvry+efvppQ5fyQJUB4c6dOwCAgwcPYsCAARg6dCiAew/wnDlzRu/pYoVCgYCAAAQEBGDmzJlwc3PDxo0bMWnSJLi4uODXX39FeHh4vdTr5ORU7/uoLww7REQkOz4+PggPD8fSpUvv256Xl4fi4mK9Zfb29jW6nZWdnY3jx4/rLWvTpg2srKzu2//mzZvQ6XTSbax3330XDg4O6NKli7Tu999/j0OHDsHW1haffvopcnNzpbCTkpKC3bt3o1evXnB0dERKSgquXbsGLy8vAMAHH3yACRMmQK1Wo3fv3igpKcGRI0dw48YNvQ/SfRwNsY/6wLBDRESP9CR+ovGsWbPwzTff3Lftfld8Kr9kurru9+Z+4MABBAYG3rf/zJkzMXPmTACAg4MDOnXqhB07dsDe3h4AMGPGDPz6668IDQ2FpaUlxowZg4EDB6Kg4N7TdCqVCvv378fixYtRWFgINzc3LFy4EH369AEAjBo1CpaWlvjkk08wZcoUWFlZwcfHB1FRUdU+pkdpiH3Uh0b1reeGwm89Jznjo+d89Lwmj57zW8+psZHVt54TERER1QeGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIqK/geDgYL1POnZ3d8fixYsfa5t1sY2GwK+LICKiR4tRN/D+qv+pzwAwYsQI5OfnY9OmTdL8559/DgAwMTGBnZ0d2rZtiyFDhmDEiBEwMqr6t35oaCh27dqF5ORkdOrUqcr2K7f313W2bdsGADhx4gT+9a9/ITk5GYWFhdBoNPDz88OyZcvg6Oh437qDg4Oxb98+AICZmRlatmyJ8ePH45///GeNjr82UlNTH/g9Xn8VHx+PqKgo5Ofn13obhsQrO0REJEu9e/fG1atXceHCBWzduhXdunXD22+/jX79+uHu3bt6fXNycnDo0CGMHz8ea9eufej2/jx99dVXAIBr166hR48esLOzw/bt25GZmYm4uDi4uLjg1q1bD61z9OjRuHr1KjIyMvDKK68gMjJS2u5flZaW1uKVuD8HBwdYWloafBsNgWGHiIhkyczMDBqNBs2aNcNzzz2HadOm4ccff8TWrVsRHx+v1zcuLg79+vXDuHHj8NVXX+HOnTsP3N6fJ1tbWwDAwYMHUVBQgNWrV6N9+/bw8PBAt27dsGjRInh4eDy0TktLS2g0GrRs2RIxMTFo06YNfvrpJwD3rvyMHz8eUVFRaNq0KUJDQwEAp06dQp8+fWBtbQ0nJycMGzYMv//+u7TNW7duYfjw4bC2toazszMWLlxYZb9/vQWVn5+PN998E05OTjA3N8ezzz6LhIQEJCYm4vXXX0dBQQEUCgUUCgViYmLuu42cnBwMGDAA1tbWUKlUeOWVV5Cbmyu1x8TEwNfXF//973/h7u4OtVqNV199FTdv3nzoa/S4GHaIiOhvo3v37mjXrh02bNggLRNCIC4uDkOHDoWnpydat26N77//vkbb1Wg0uHv3LjZu3IjH/X5tCwsLvSs4n3/+OUxNTXHw4EGsXLkS+fn56N69O9q3b48jR45g27ZtyM3NxSuvvCKtM2XKFOzbtw8//vgjduzYgcTERBw9evSB+6yoqECfPn1w8OBBfPnll8jIyMC8efNgbGyMLl26YPHixVCpVNIVrcmTJ993GwMGDMD169exb98+7Ny5E7/++isGDx6s1+/8+fPYtGkTEhISkJCQgH379mHevHmP9Zo9CsfsEBHR34qnpydOnjwpze/atQu3b9+WrpoMHToUa9aswbBhw/TWS0hIgLW1td6yadOmYdq0afD398e0adPw2muvYezYsejcuTO6d++O4cOHw8nJqVp1lZeX46uvvsLJkycxZswYaXmbNm0wf/58aX727Nlo37495syZIy1bu3YtXF1dcebMGbi4uGDNmjX48ssv0aNHDwD3AlPz5s0fuO9du3bh8OHDyMzMxFNPPQUAaNmypdSuVquhUCig0WgeuI3du3cjPT0d2dnZcHV1BQB88cUXeOaZZ5CamiqNg6qoqEB8fDyaNGkCABg2bBh2796Njz76qFqvU23wyg4REf2tCCGgUCik+bVr12Lw4MEwMbn39/+QIUNw8OBBnD9/Xm+9bt264fjx43rT2LFjpfaPPvoIOp0OK1euxDPPPIOVK1fC09MT6enpD61n+fLlsLa2hoWFBUaPHo2JEydi3LhxUnuHDh30+p84cQJ79+6FtbW1NHl6egK4d9Xk/PnzKC0thZ+fn7SOnZ0dnn766QfWcPz4cTRv3lwKOrWRmZkJV1dXKegAgLe3N2xsbJCZmSktc3d3l4IOADg7OyMvL6/W+60OXtmpZ+7vbTZ0CQZ3wfw1Q5dgWDV8qoSI6ldmZqY0jub69evYuHEjysrKsGLFCqlPeXk51q5dq3e1wcrKCq1bt37otu3t7fHyyy/j5Zdfxpw5c9C+fXssWLDgvk9yVQoPD8f06dNhYWEBZ2fnKk+K/fVpp6KiIvTv3x8ff/xxlW05Ozvj3LlzD63xfiwsLGq8Tm0plUq9eYVCgYqKinrdJ6/sEBHR38aePXuQnp6OsLAwAMC6devQvHlznDhxQu+KzcKFCxEfH4/y8vJa78vU1BStWrV65NNYarUarVu3RrNmze77SPxfPffcczh9+jTc3d3RunVrvcnKygqtWrWCUqlESkqKtM6NGzdw5syZB26zbdu2+O233x7Yx9TU9JGvhZeXFy5duoRLly5JyzIyMpCfnw9vb+9HHld9YtghIiJZKikpgU6nw+XLl3H06FHMmTMHAwYMQL9+/TB8+HAAwJo1a/DSSy/h2Wef1ZtGjhyJ33//XfoMnT9v789T5RNQCQkJGDp0KBISEnDmzBlkZWVhwYIF2LJlCwYMGFCnxxUZGYnr169jyJAhSE1Nxfnz57F9+3a8/vrrKC8vh7W1NUaOHIkpU6Zgz549OHXq1AM/W6hSUFAQunbtirCwMOzcuRPZ2dnYunWrdPzu7u4oKirC7t278fvvv+P27dtVthESEgIfHx+Eh4fj6NGjOHz4MIYPH46goCB07NixTl+DmmLYISIiWdq2bRucnZ3h7u6O3r17Y+/evVi6dCl+/PFHGBsbIy0tDSdOnJCu8vyZWq1Gjx49sGbNmirb+/MUGBgI4N7YFEtLS7zzzjvw9fWFv78/vv32W6xevbrKQOfH5eLigoMHD6K8vBy9evWCj48PoqKiYGNjIwWaTz75BP/4xz/Qv39/hISEIDAwsMrYn7/64Ycf0KlTJwwZMgTe3t549913pas5Xbp0wdixYzF48GA4ODjoDZiupFAo8OOPP8LW1hZdu3ZFSEgIWrZsiW+++aZOj782FOJxn5GTgcLCQqjVahQUFEClUtXptjlmh2N2DD1mh+cgz8GanIPFxcXIzs6Gh4cHzM3N67Eooup52DlZ3fdvXtkhIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEioir4oC41FnVxLjLsEBGRxNjYGAD0vnWbyJAqP8Dwr18zURP8biwiIpKYmJjA0tIS165dg1KprNbXFxDVByEEbt++jby8PNjY2EhBvDYYdoiISKJQKODs7Izs7GxcvHjR0OUQwcbGBhqN5rG2wbBDRER6TE1N0aZNG97KIoNTKpWPdUWnEsMOERFVYWRkxK+LINngzVgiIiKSNYYdIiIikjWGHSIiIpI1g4edy5cvY+jQobC3t4eFhQV8fHxw5MgRqV0IgZkzZ8LZ2RkWFhYICQnB2bNn9bZx/fp1hIeHQ6VSwcbGBiNHjkRRUVFDHwoRERE1QgYNOzdu3EBAQACUSiW2bt2KjIwMLFy4ELa2tlKf+fPnY+nSpVi5ciVSUlJgZWWF0NBQFBcXS33Cw8Nx+vRp7Ny5EwkJCdi/fz/GjBljiEMiIiKiRsagT2N9/PHHcHV1RVxcnLTMw8ND+rcQAosXL8aMGTMwYMAAAMAXX3wBJycnbNq0Ca+++ioyMzOxbds2pKamomPHjgCAZcuW4fnnn8eCBQvg4uLSsAdFREREjYpBr+z89NNP6NixI15++WU4Ojqiffv2WLVqldSenZ0NnU6HkJAQaZlarYafnx+SkpIAAElJSbCxsZGCDgCEhITAyMgIKSkp991vSUkJCgsL9SYiIiKSJ4OGnV9//RUrVqxAmzZtsH37dowbNw4TJkzA559/DgDQ6XQAACcnJ731nJycpDadTgdHR0e9dhMTE9jZ2Ul9/mru3LlQq9XS5OrqWteHRkRERI2EQcNORUUFnnvuOcyZMwft27fHmDFjMHr0aKxcubJe9xsdHY2CggJpunTpUr3uj4iIiAzHoGHH2dkZ3t7eesu8vLyQk5MDANJ3YeTm5ur1yc3Nldo0Gg3y8vL02u/evYvr168/8Ls0zMzMoFKp9CYiIiKSJ4OGnYCAAGRlZektO3PmDNzc3ADcG6ys0Wiwe/duqb2wsBApKSnQarUAAK1Wi/z8fKSlpUl99uzZg4qKCvj5+TXAURAREVFjZtCnsSZOnIguXbpgzpw5eOWVV3D48GH85z//wX/+8x8A9759NyoqCrNnz0abNm3g4eGBf/3rX3BxccHAgQMB3LsS1Lt3b+n2V1lZGcaPH49XX32VT2IRERGRYcNOp06dsHHjRkRHR2PWrFnw8PDA4sWLER4eLvV59913cevWLYwZMwb5+fkIDAzEtm3b9L6gbt26dRg/fjx69OgBIyMjhIWFYenSpYY4JCIiImpkFEIIYegiDK2wsBBqtRoFBQV1Pn7H/b3Ndbq9J9EF89cMXYJhxRQYdPc8B3kOGvocJKov1X3/NvjXRRARERHVJ4YdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYOGnZiYGCgUCr3J09NTai8uLkZkZCTs7e1hbW2NsLAw5Obm6m0jJycHffv2haWlJRwdHTFlyhTcvXu3oQ+FiIiIGikTQxfwzDPPYNeuXdK8icn/lzRx4kRs3rwZ3333HdRqNcaPH49Bgwbh4MGDAIDy8nL07dsXGo0Ghw4dwtWrVzF8+HAolUrMmTOnwY+FiIiIGh+Dhx0TExNoNJoqywsKCrBmzRqsX78e3bt3BwDExcXBy8sLycnJ8Pf3x44dO5CRkYFdu3bByckJvr6++PDDDzF16lTExMTA1NS0oQ+HiIiIGhmDj9k5e/YsXFxc0LJlS4SHhyMnJwcAkJaWhrKyMoSEhEh9PT090aJFCyQlJQEAkpKS4OPjAycnJ6lPaGgoCgsLcfr06Qfus6SkBIWFhXoTERERyZNBw46fnx/i4+Oxbds2rFixAtnZ2fjHP/6BmzdvQqfTwdTUFDY2NnrrODk5QafTAQB0Op1e0Klsr2x7kLlz50KtVkuTq6tr3R4YERERNRoGvY3Vp08f6d9t27aFn58f3Nzc8O2338LCwqLe9hsdHY1JkyZJ84WFhQw8REREMmXw21h/ZmNjg6eeegrnzp2DRqNBaWkp8vPz9frk5uZKY3w0Gk2Vp7Mq5+83DqiSmZkZVCqV3kRERETy1KjCTlFREc6fPw9nZ2d06NABSqUSu3fvltqzsrKQk5MDrVYLANBqtUhPT0deXp7UZ+fOnVCpVPD29m7w+omIiKjxMehtrMmTJ6N///5wc3PDlStX8P7778PY2BhDhgyBWq3GyJEjMWnSJNjZ2UGlUuGtt96CVquFv78/AKBXr17w9vbGsGHDMH/+fOh0OsyYMQORkZEwMzMz5KERERFRI2HQsPPbb79hyJAh+OOPP+Dg4IDAwEAkJyfDwcEBALBo0SIYGRkhLCwMJSUlCA0NxfLly6X1jY2NkZCQgHHjxkGr1cLKygoRERGYNWuWoQ6JiIiIGhmDhp2vv/76oe3m5uaIjY1FbGzsA/u4ublhy5YtdV0aERERyUSjGrNDREREVNcYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWDP6t50REJG/u7202dAkGd8H8NUOXYFgxBQbdPa/sEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrJnUdIX8/Hxs3LgRBw4cwMWLF3H79m04ODigffv2CA0NRZcuXeqjTiIiIqJaqfaVnStXrmDUqFFwdnbG7NmzcefOHfj6+qJHjx5o3rw59u7di549e8Lb2xvffPNNfdZMREREVG3VvrLTvn17REREIC0tDd7e3vftc+fOHWzatAmLFy/GpUuXMHny5DorlIiIiKg2qh12MjIyYG9v/9A+FhYWGDJkCIYMGYI//vjjsYsjIiIielzVvo1lb2+PkpKSam/4UcGIiIiIqCHUaICyWq2GVqtFt27d0K1bN/j7+0OpVNZXbURERESPrUaPnq9cuRJubm5Yu3YtgoKCYGNjg549e2Lu3LlITk5GeXl5fdVJREREVCs1CjsjRoxAfHw8Lly4gHPnzmHZsmVwcXHBypUrERAQAFtbW/Tt27e+aiUiIiKqsRp/zk6lli1bomXLlnjjjTeQnZ2NNWvWYNmyZdi2bVtd1kdERET0WGoVdnJycrB3714kJiYiMTERv//+O/z9/TF58mQEBQXVdY1EREREtVajsPPGG28gMTER169fR0BAAP7xj39gzJgx6NSpE0xMan2RiIiIiKje1CihxMfHo0WLFpg+fTp69OiB9u3bQ6FQ1FdtRERERI+tRmEnMzNTun21cOFClJSUIDAwEEFBQQgODsZzzz0HIyN+tygRERE1HjVKJk8//TTGjh2Lr7/+GjqdDgcPHsTzzz+Pw4cPo1+/frCzs0O/fv3qq1YiIiKiGnusgTbe3t6wt7eHra0tbG1t8fXXX2Pr1q11VRsRERHRY6tx2MnLy0NiYqJ0O+vMmTMwNTVF586dMXHiRHTr1q0+6iQiIiKqlRrdxvLy8oKzszOGDRuG9PR0vPTSS9ixYwdu3LiBffv2ISYmptaPns+bNw8KhQJRUVHSsuLiYkRGRsLe3h7W1tYICwtDbm6u3no5OTno27cvLC0t4ejoiClTpuDu3bu1qoGIiIjkp0ZXdgYOHIhu3bohMDAQlpaWdVZEamoqPvvsM7Rt21Zv+cSJE7F582Z89913UKvVGD9+PAYNGoSDBw8CAMrLy9G3b19oNBocOnQIV69exfDhw6FUKjFnzpw6q4+IiIieXDW6sjN37lz06tWrToNOUVERwsPDsWrVKtja2krLCwoKsGbNGnz66afo3r07OnTogLi4OBw6dAjJyckAgB07diAjIwNffvklfH190adPH3z44YeIjY1FaWlpndVIRERET64aXdmZNWtWtfrNnDmz2tuMjIxE3759ERISgtmzZ0vL09LSUFZWhpCQEGmZp6cnWrRogaSkJPj7+yMpKQk+Pj5wcnKS+oSGhmLcuHE4ffo02rdvf999lpSUoKSkRJovLCysdr1ERET0ZKlR2ImJiYGLiwscHR0hhLhvH4VCUe2w8/XXX+Po0aNITU2t0qbT6WBqagobGxu95U5OTtDpdFKfPwedyvbKtgeZO3cuPvjgg2rVSERERE+2GoWdPn36YM+ePejYsSPeeOMN9OvXr9YfInjp0iW8/fbb2LlzJ8zNzWu1jdqKjo7GpEmTpPnCwkK4uro2aA1ERETUMGqUVDZv3ozz58/Dz88PU6ZMQbNmzTB16lRkZWXVeMdpaWnIy8vDc889BxMTE5iYmGDfvn1YunQpTExM4OTkhNLSUuTn5+utl5ubC41GAwDQaDRVns6qnK/scz9mZmZQqVR6ExEREclTjS/LuLi4IDo6GllZWfjmm2+Ql5eHTp06ISAgAHfu3Kn2dnr06IH09HQcP35cmjp27Ijw8HDp30qlErt375bWycrKQk5ODrRaLQBAq9UiPT0deXl5Up+dO3dCpVLB29u7podGREREMvRYn6DcqVMnXLhwARkZGTh27BjKyspgYWFRrXWbNGmCZ599Vm+ZlZUV7O3tpeUjR47EpEmTYGdnB5VKhbfeegtarRb+/v4AgF69esHb2xvDhg3D/PnzodPpMGPGDERGRsLMzOxxDo2IiIhkolYDbpKSkjB69GhoNBosW7YMERERuHLlSp3fDlq0aBH69euHsLAwdO3aFRqNBhs2bJDajY2NkZCQAGNjY2i1WgwdOhTDhw+v9lNjREREJH81urIzf/58xMfH4/fff0d4eDgOHDhQ5YMAH0diYqLevLm5OWJjYxEbG/vAddzc3LBly5Y6q4GIiIjkpUZh57333kOLFi3wyiuvQKFQID4+/r79Pv3007qojYiIiOix1SjsdO3aFQqFAqdPn35gH4VC8dhFEREREdWVGoWdv95mIiIiImrsaveJgERERERPiGqHnXnz5uH27dvV6puSkoLNmzfXuigiIiKiulLtsJORkQE3Nzf885//xNatW3Ht2jWp7e7duzh58iSWL1+OLl26YPDgwWjSpEm9FExERERUE9Ues/PFF1/gxIkT+Pe//43XXnsNhYWFMDY2hpmZmXTFp3379hg1ahRGjBjR4N93RURERHQ/NRqg3K5dO6xatQqfffYZTp48iYsXL+LOnTto2rQpfH190bRp0/qqk4iIiKhWavV1EUZGRvD19YWvr28dl0NERERUt/g0FhEREckaww4RERHJGsMOERERyRrDDhEREclajcNOWVkZTExMcOrUqfqoh4iIiKhO1TjsKJVKtGjRAuXl5fVRDxEREVGdqtVtrOnTp2PatGm4fv16XddDREREVKdq9Tk7//73v3Hu3Dm4uLjAzc0NVlZWeu1Hjx6tk+KIiIiIHletws7AgQPruAwiIiKi+lGrsPP+++/XdR1ERERE9aLWj57n5+dj9erViI6OlsbuHD16FJcvX66z4oiIiIgeV62u7Jw8eRIhISFQq9W4cOECRo8eDTs7O2zYsAE5OTn44osv6rpOIiIiolqp1ZWdSZMmYcSIETh79izMzc2l5c8//zz2799fZ8URERERPa5ahZ3U1FS8+eabVZY3a9YMOp3usYsiIiIiqiu1CjtmZmYoLCyssvzMmTNwcHB47KKIiIiI6kqtws4LL7yAWbNmoaysDACgUCiQk5ODqVOnIiwsrE4LJCIiInoctQo7CxcuRFFRERwdHXHnzh0EBQWhdevWaNKkCT766KO6rpGIiIio1mr1NJZarcbOnTvxv//9DydPnkRRURGee+45hISE1HV9RERERI+lVmGnuLgY5ubmCAwMRGBgYF3XRERERFRnahV2bGxs0LlzZwQFBaFbt27QarWwsLCo69qIiIiIHlutxuzs2rULvXv3RkpKCl544QXY2toiMDAQ06dPx86dO+u6RiIiIqJaq1XYCQwMxLRp07Bjxw7k5+dj7969aN26NebPn4/evXvXdY1EREREtVar21jAvc/USUxMlKaSkhL069cPwcHBdVgeERER0eOpVdhp1qwZ7ty5g+DgYAQHB2Pq1Klo27YtFApFXddHRERE9FhqdRvLwcEBt2/fhk6ng06nQ25uLu7cuVPXtRERERE9tlqFnePHj0On0+G9995DSUkJpk2bhqZNm6JLly6YPn16XddIREREVGu1HrNjY2ODF154AQEBAejSpQt+/PFHfPXVV0hJSeGnKBMREVGjUauws2HDBmlgckZGBuzs7BAYGIiFCxciKCiormskIiIiqrVahZ2xY8eia9euGDNmDIKCguDj41PXdRERERHViVqFnby8vLqug4iIiKhe1HrMTnl5OTZt2oTMzEwAgLe3NwYMGABjY+M6K46IiIjocdXqaaxz587By8sLw4cPx4YNG7BhwwYMGzYMzzzzDM6fP1/t7axYsQJt27aFSqWCSqWCVqvF1q1bpfbi4mJERkbC3t4e1tbWCAsLQ25urt42cnJy0LdvX1haWsLR0RFTpkzB3bt3a3NYREREJEO1CjsTJkxAq1atcOnSJRw9ehRHjx5FTk4OPDw8MGHChGpvp3nz5pg3bx7S0tJw5MgRdO/eHQMGDMDp06cBABMnTsTPP/+M7777Dvv27cOVK1cwaNAgaf3y8nL07dsXpaWlOHToED7//HPEx8dj5syZtTksIiIikqFa3cbat28fkpOTYWdnJy2zt7fHvHnzEBAQUO3t9O/fX2/+o48+wooVK5CcnIzmzZtjzZo1WL9+Pbp37w4AiIuLg5eXF5KTk+Hv748dO3YgIyMDu3btgpOTE3x9ffHhhx9i6tSpiImJgampaW0Oj4iIiGSkVld2zMzMcPPmzSrLi4qKah0wysvL8fXXX+PWrVvQarVIS0tDWVkZQkJCpD6enp5o0aIFkpKSAABJSUnw8fGBk5OT1Cc0NBSFhYXS1aH7KSkpQWFhod5ERERE8lSrsNOvXz+MGTMGKSkpEEJACIHk5GSMHTsWL7zwQo22lZ6eDmtra5iZmWHs2LHYuHEjvL29odPpYGpqChsbG73+Tk5O0Ol0AACdTqcXdCrbK9seZO7cuVCr1dLk6upao5qJiIjoyVGrsLN06VK0atUKWq0W5ubmMDc3R0BAAFq3bo0lS5bUaFtPP/00jh8/jpSUFIwbNw4RERHIyMioTVnVFh0djYKCAmm6dOlSve6PiIiIDKdWY3ZsbGzw448/4ty5c9Kj515eXmjdunWNt2Vqaiqt16FDB6SmpmLJkiUYPHgwSktLkZ+fr3d1Jzc3FxqNBgCg0Whw+PBhve1VPq1V2ed+zMzMYGZmVuNaiYiI6MlToys7FRUV+PjjjxEQEIBOnTph9erVCAkJQf/+/WsVdB60j5KSEnTo0AFKpRK7d++W2rKyspCTkwOtVgsA0Gq1SE9P1/uQw507d0KlUsHb27tO6iEiIqInW42u7Hz00UeIiYlBSEgILCwssGTJEuTl5WHt2rW12nl0dDT69OmDFi1a4ObNm1i/fj0SExOxfft2qNVqjBw5EpMmTYKdnR1UKhXeeustaLVa+Pv7AwB69eoFb29vDBs2DPPnz4dOp8OMGTMQGRnJKzdEREQEoIZh54svvsDy5cvx5ptvAgB27dqFvn37YvXq1TAyqvnwn7y8PAwfPhxXr16FWq1G27ZtsX37dvTs2RMAsGjRIhgZGSEsLAwlJSUIDQ3F8uXLpfWNjY2RkJCAcePGQavVwsrKChEREZg1a1aNayEiIiJ5qlHYycnJwfPPPy/Nh4SEQKFQ4MqVK2jevHmNd75mzZqHtpubmyM2NhaxsbEP7OPm5oYtW7bUeN9ERET091CjyzF3796Fubm53jKlUomysrI6LYqIiIiortToyo4QAiNGjNAbD1NcXIyxY8fCyspKWrZhw4a6q5CIiIjoMdQo7ERERFRZNnTo0DorhoiIiKiu1SjsxMXF1VcdRERERPWiVp+gTERERPSkYNghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIlkzaNiZO3cuOnXqhCZNmsDR0REDBw5EVlaWXp/i4mJERkbC3t4e1tbWCAsLQ25url6fnJwc9O3bF5aWlnB0dMSUKVNw9+7dhjwUIiIiaqQMGnb27duHyMhIJCcnY+fOnSgrK0OvXr1w69Ytqc/EiRPx888/47vvvsO+fftw5coVDBo0SGovLy9H3759UVpaikOHDuHzzz9HfHw8Zs6caYhDIiIiokbGxJA737Ztm958fHw8HB0dkZaWhq5du6KgoABr1qzB+vXr0b17dwBAXFwcvLy8kJycDH9/f+zYsQMZGRnYtWsXnJyc4Ovriw8//BBTp05FTEwMTE1NDXFoRERE1Eg0qjE7BQUFAAA7OzsAQFpaGsrKyhASEiL18fT0RIsWLZCUlAQASEpKgo+PD5ycnKQ+oaGhKCwsxOnTp++7n5KSEhQWFupNREREJE+NJuxUVFQgKioKAQEBePbZZwEAOp0OpqamsLGx0evr5OQEnU4n9flz0Klsr2y7n7lz50KtVkuTq6trHR8NERERNRaNJuxERkbi1KlT+Prrr+t9X9HR0SgoKJCmS5cu1fs+iYiIyDAMOman0vjx45GQkID9+/ejefPm0nKNRoPS0lLk5+frXd3Jzc2FRqOR+hw+fFhve5VPa1X2+SszMzOYmZnV8VEQERFRY2TQKztCCIwfPx4bN27Enj174OHhodfeoUMHKJVK7N69W1qWlZWFnJwcaLVaAIBWq0V6ejry8vKkPjt37oRKpYK3t3fDHAgRERE1Wga9shMZGYn169fjxx9/RJMmTaQxNmq1GhYWFlCr1Rg5ciQmTZoEOzs7qFQqvPXWW9BqtfD39wcA9OrVC97e3hg2bBjmz58PnU6HGTNmIDIykldviIiIyLBhZ8WKFQCA4OBgveVxcXEYMWIEAGDRokUwMjJCWFgYSkpKEBoaiuXLl0t9jY2NkZCQgHHjxkGr1cLKygoRERGYNWtWQx0GERERNWIGDTtCiEf2MTc3R2xsLGJjYx/Yx83NDVu2bKnL0oiIiEgmGs3TWERERET1gWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkzaBhZ//+/ejfvz9cXFygUCiwadMmvXYhBGbOnAlnZ2dYWFggJCQEZ8+e1etz/fp1hIeHQ6VSwcbGBiNHjkRRUVEDHgURERE1ZgYNO7du3UK7du0QGxt73/b58+dj6dKlWLlyJVJSUmBlZYXQ0FAUFxdLfcLDw3H69Gns3LkTCQkJ2L9/P8aMGdNQh0BERESNnIkhd96nTx/06dPnvm1CCCxevBgzZszAgAEDAABffPEFnJycsGnTJrz66qvIzMzEtm3bkJqaio4dOwIAli1bhueffx4LFiyAi4tLgx0LERERNU6NdsxOdnY2dDodQkJCpGVqtRp+fn5ISkoCACQlJcHGxkYKOgAQEhICIyMjpKSkPHDbJSUlKCws1JuIiIhInhpt2NHpdAAAJycnveVOTk5Sm06ng6Ojo167iYkJ7OzspD73M3fuXKjVamlydXWt4+qJiIiosWi0Yac+RUdHo6CgQJouXbpk6JKIiIionjTasKPRaAAAubm5estzc3OlNo1Gg7y8PL32u3fv4vr161Kf+zEzM4NKpdKbiIiISJ4abdjx8PCARqPB7t27pWWFhYVISUmBVqsFAGi1WuTn5yMtLU3qs2fPHlRUVMDPz6/BayYiIqLGx6BPYxUVFeHcuXPSfHZ2No4fPw47Ozu0aNECUVFRmD17Ntq0aQMPDw/861//gouLCwYOHAgA8PLyQu/evTF69GisXLkSZWVlGD9+PF599VU+iUVEREQADBx2jhw5gm7duknzkyZNAgBEREQgPj4e7777Lm7duoUxY8YgPz8fgYGB2LZtG8zNzaV11q1bh/Hjx6NHjx4wMjJCWFgYli5d2uDHQkRERI2TQcNOcHAwhBAPbFcoFJg1axZmzZr1wD52dnZYv359fZRHREREMtBox+wQERER1QWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjXZhJ3Y2Fi4u7vD3Nwcfn5+OHz4sKFLIiIiokZAFmHnm2++waRJk/D+++/j6NGjaNeuHUJDQ5GXl2fo0oiIiMjAZBF2Pv30U4wePRqvv/46vL29sXLlSlhaWmLt2rWGLo2IiIgMzMTQBTyu0tJSpKWlITo6WlpmZGSEkJAQJCUl3XedkpISlJSUSPMFBQUAgMLCwjqvr6Lkdp1v80lTqBCGLsGw6uG8qgmegzwHeQ4aHs/B+jkHK9+3hXj46/vEh53ff/8d5eXlcHJy0lvu5OSEX3755b7rzJ07Fx988EGV5a6urvVS49+d2tAFGNq8v/0rYHB/+58Az0GD+9v/BOr5HLx58ybU6gfv44kPO7URHR2NSZMmSfMVFRW4fv067O3toVAoDFiZ/BQWFsLV1RWXLl2CSqUydDn0N8RzkAyN52D9EULg5s2bcHFxeWi/Jz7sNG3aFMbGxsjNzdVbnpubC41Gc991zMzMYGZmprfMxsamvkokACqViv/JyaB4DpKh8RysHw+7olPpiR+gbGpqig4dOmD37t3SsoqKCuzevRtardaAlREREVFj8MRf2QGASZMmISIiAh07dkTnzp2xePFi3Lp1C6+//rqhSyMiIiIDk0XYGTx4MK5du4aZM2dCp9PB19cX27ZtqzJomRqemZkZ3n///Sq3DYkaCs9BMjSeg4anEI96XouIiIjoCfbEj9khIiIiehiGHSIiIpI1hh0iIiKSNYYdIiIikjWGHaoiJiYGvr6+hi6DiKhBubu7Y/HixYYug+oBww79bZSWlhq6hL89/gwerry8HBUVFYYug2SmrKzM0CUYHMOODAUHB2PChAl49913YWdnB41Gg5iYGKk9Pz8fo0aNgoODA1QqFbp3744TJ04AAOLj4/HBBx/gxIkTUCgUUCgUiI+Pf+Q+FQoFVqxYgT59+sDCwgItW7bE999/r9cnPT0d3bt3h4WFBezt7TFmzBgUFRUBAE6dOgUjIyNcu3YNAHD9+nUYGRnh1VdfldafPXs2AgMDpflTp06hT58+sLa2hpOTE4YNG4bff/9d73UYP348oqKi0LRpU4SGhtb4taSHu3nzJsLDw2FlZQVnZ2csWrQIwcHBiIqKAnDvL+UPP/wQw4cPh0qlwpgxYwAAP/zwA5555hmYmZnB3d0dCxcu1Nvu8uXL0aZNG5ibm8PJyQkvvfSS1Pb999/Dx8dHOo9CQkJw69atR9Y6YsQIDBw4EB988IF07o8dO1YvgJWUlGDChAlwdHSEubk5AgMDkZqaKrV37NgRCxYskOYHDhwIpVIpnce//fYbFAoFzp07J21v8uTJaNasGaysrODn54fExERp/fj4eNjY2OCnn36Ct7c3zMzMkJOTU81Xn2rqYedrcHAwLl68iIkTJ0q/+x6l8ue3adMm6XwNDQ3FpUuX9PqtWLECrVq1gqmpKZ5++mn897//ldomT56Mfv36SfOLFy+GQqHAtm3bpGWtW7fG6tWrpfnVq1fDy8sL5ubm8PT0xPLly6W2CxcuQKFQ4JtvvkFQUBDMzc2xbt26Wr1esiJIdoKCgoRKpRIxMTHizJkz4vPPPxcKhULs2LFDCCFESEiI6N+/v0hNTRVnzpwR77zzjrC3txd//PGHuH37tnjnnXfEM888I65evSquXr0qbt++/ch9AhD29vZi1apVIisrS8yYMUMYGxuLjIwMIYQQRUVFwtnZWQwaNEikp6eL3bt3Cw8PDxERESGEEKKiokI0bdpUfPfdd0IIITZt2iSaNm0qNBqNtI+QkBAxffp0IYQQN27cEA4ODiI6OlpkZmaKo0ePip49e4pu3brpvQ7W1tZiypQp4pdffhG//PJLnby+9P9GjRol3NzcxK5du0R6erp48cUXRZMmTcTbb78thBDCzc1NqFQqsWDBAnHu3Dlx7tw5ceTIEWFkZCRmzZolsrKyRFxcnLCwsBBxcXFCCCFSU1OFsbGxWL9+vbhw4YI4evSoWLJkiRBCiCtXrggTExPx6aefiuzsbHHy5EkRGxsrbt68+chaIyIihLW1tRg8eLA4deqUSEhIEA4ODmLatGlSnwkTJggXFxexZcsWcfr0aRERESFsbW3FH3/8IYQQYtKkSaJv375CiHvnrJ2dnWjatKnYunWrEEKIL7/8UjRr1kzv9enSpYvYv3+/OHfunPjkk0+EmZmZOHPmjBBCiLi4OKFUKkWXLl3EwYMHxS+//CJu3br1eD8UeqCHna9//PGHaN68uZg1a5b0u+9RKn9+HTt2FIcOHRJHjhwRnTt3Fl26dJH6bNiwQSiVShEbGyuysrLEwoULhbGxsdizZ48QQoiffvpJqNVqcffuXSGEEAMHDhRNmzYVU6dOFUII8dtvvwkA4uzZs0KIe+eYs7Oz+OGHH8Svv/4qfvjhB2FnZyfi4+OFEEJkZ2cLAMLd3V3qc+XKlTp9HZ9EDDsyFBQUJAIDA/WWderUSUydOlUcOHBAqFQqUVxcrNfeqlUr8dlnnwkhhHj//fdFu3btarRPAGLs2LF6y/z8/MS4ceOEEEL85z//Eba2tqKoqEhq37x5szAyMhI6nU4IIcSgQYNEZGSkEEKIqKgoMWXKFGFraysyMzNFaWmpsLS0lALbhx9+KHr16qW3v0uXLgkAIisrS3od2rdvX6PjoOorLCwUSqVSCqhCCJGfny8sLS31ws7AgQP11nvttddEz5499ZZNmTJFeHt7CyGE+OGHH4RKpRKFhYVV9pmWliYAiAsXLtS43oiICGFnZ6cXJlasWCGsra1FeXm5KCoqEkqlUqxbt05qLy0tFS4uLmL+/PlCCP03puPHjwuNRiPefvtt6Y1p1KhR4rXXXhNCCHHx4kVhbGwsLl++rFdHjx49RHR0tBDi3pslAHH8+PEaHw/VTHXP10WLFlV7m5U/v+TkZGlZZmamACBSUlKEEEJ06dJFjB49Wm+9l19+WTz//PNCiHt/uBkZGYnU1FQpQM+dO1f4+fkJIaoG6FatWon169frbe/DDz8UWq1WCPH/YWfx4sXVPo6/A97Gkqm2bdvqzTs7OyMvLw8nTpxAUVER7O3tYW1tLU3Z2dk4f/78Y+3zr1+8qtVqkZmZCQDIzMxEu3btYGVlJbUHBASgoqICWVlZAICgoCDpEv++ffvQvXt3dO3aFYmJiUhNTUVZWRkCAgIAACdOnMDevXv1jsHT0xMA9I6jQ4cOj3VM9GC//vorysrK0LlzZ2mZWq3G008/rdevY8eOevOZmZnSz7FSQEAAzp49i/LycvTs2RNubm5o2bIlhg0bhnXr1uH27dsAgHbt2qFHjx7w8fHByy+/jFWrVuHGjRvVrrldu3awtLSU5rVaLYqKinDp0iWcP39e7xwDAKVSic6dO0vn8T/+8Q/cvHkTx44dw759+xAUFITg4GC98zY4OBjAvdu25eXleOqpp/TO03379umdo6amplX+v1Ldq+75WlMmJibo1KmTNO/p6QkbGxu93333O98r221sbNCuXTskJiYiPT0dpqamGDNmDI4dO4aioiLpPAOAW7du4fz58xg5cqTeOTV79uwqv7//+v/u704W341FVSmVSr15hUKBiooKFBUVwdnZWW/cQCUbG5uGKe4BKu+dnz17FhkZGQgMDMQvv/yCxMRE3LhxAx07dpTeqIqKitC/f398/PHHVbbj7Ows/fvP4YoMo6Y/gyZNmuDo0aNITEzEjh07MHPmTMTExCA1NRU2NjbYuXMnDh06hB07dmDZsmWYPn06UlJS4OHhUU9H8P/+/MaUlJSEnj17omvXrhg8eDDOnDmDs2fPSm9MRUVFMDY2RlpaGoyNjfW2Y21tLf3bwsKiWuNDSL4qA7OZmRmCgoJgZ2cHLy8v/O9//8O+ffvwzjvvAIA0NmzVqlXw8/PT28ZfzzH+7tPHKzt/M8899xx0Oh1MTEzQunVrvalp06YA7v2lWV5eXuNtJycnV5n38vICAHh5eeHEiRN6A0kPHjwIIyMj6S8rHx8f2NraYvbs2fD19YW1tTWCg4Oxb98+JCYmSn8xVx7H6dOn4e7uXuU4+J+8YbRs2RJKpVJvAG9BQQHOnDnz0PW8vLxw8OBBvWUHDx7EU089Jf3CNjExQUhICObPn4+TJ0/iwoUL2LNnD4B7wT0gIAAffPABjh07BlNTU2zcuLFaNZ84cQJ37tyR5pOTk2FtbQ1XV1dpAOmfaysrK0Nqaiq8vb2lZUFBQdi7dy/279+P4OBg6Y3po48+grOzM5566ikAQPv27VFeXo68vLwq56hGo6lWvVR3qnO+1uZ33927d3HkyBFpPisrC/n5+Xq/++53vv/1nPrf//6H3bt3S7/ngoOD8dVXX+HMmTPSMicnJ7i4uODXX3+tck41RNh/ohn6PhrVvaCgIOkedKUBAwaIiIgIUVFRIQIDA0W7du3E9u3bRXZ2tjh48KCYNm2aSE1NFUIIsW7dOmFlZSWOHTsmrl27VmV8z/0AEE2bNhVr1qwRWVlZYubMmcLIyEicPn1aCCHErVu3hLOzswgLCxPp6eliz549omXLltIA5UoDBw4UxsbG0hiI8vJyYWtrK4yNjcW2bdukfpcvXxYODg7ipZdeEocPHxbnzp0T27ZtEyNGjJAG+t3vdaC6NWrUKOHh4SH27NkjTp06JcLCwkSTJk1EVFSUEOL+YyDS0tL0BijHx8frDVD++eefxZIlS8SxY8fEhQsXxPLly4WRkZE4deqUSE5OFh999JFITU0VFy9eFN9++60wNTUVW7ZseWStlQOUhwwZIk6fPi02b94snJycxHvvvSf1efvtt4WLi4vYunWr3gDl69evS302bdokjI2N9QbPv/3228LY2Fi8+uqrevsMDw/XGyiakpIi5syZIxISEoQQ98Z8qNXqmrzk9Bgedb727NlTvPDCC+K3334T165de+T2Kgcod+7cWSQnJ4sjR44If39/4e/vL/XZuHGjUCqVYvny5eLMmTPSAOW9e/dKfa5fvy6MjIyEsbGxyMzMlNYzNjYWzs7OevtctWqVsLCwEEuWLBFZWVni5MmTYu3atWLhwoVCiP8fs3Ps2LHHfLXkhWFHhh4WdoS4N1DvrbfeEi4uLkKpVApXV1cRHh4ucnJyhBBCFBcXi7CwMGFjYyMASG9CDwNAxMbGip49ewozMzPh7u4uvvnmG70+J0+eFN26dRPm5ubCzs5OjB49uspTNIsWLRIApKdbKms3MTGp0vfMmTPixRdfFDY2NsLCwkJ4enqKqKgoUVFR8cDXgepWYWGheO2114SlpaXQaDTi008/FZ07d5YCxIMGfH7//ffC29tbKJVK0aJFC/HJJ59IbQcOHBBBQUHC1tZWWFhYiLZt20rnUkZGhggNDRUODg7CzMxMPPXUU2LZsmXVqjUiIkIMGDBAzJw5U9jb2wtra2sxevRovTB/584d8dZbb4mmTZsKMzMzERAQIA4fPqy3nT/++EMoFAoxePBgadnGjRsFALFy5Uq9vqWlpWLmzJnC3d1dKJVK4ezsLF588UVx8uRJIQTDTkN71PmalJQk2rZtK8zMzER1rgVU/vx++OEH0bJlS2FmZiZCQkLExYsX9fotX75ctGzZUiiVSvHUU0+JL774osq22rVrpxegK8+zvwZoIe79Qerr6ytMTU2Fra2t6Nq1q9iwYYMQgmHnQRRCCGG460okFwqFAhs3bsTAgQMNXQoZ0K1bt9CsWTMsXLgQI0eONHQ5ekaMGIH8/Hxs2rTJ0KVQI/G452t8fDyioqKQn59f98VRneIAZSKqtWPHjuGXX35B586dUVBQgFmzZgEABgwYYODKiKri+fr3xbBDj7Ru3Tq8+eab921zc3PD6dOnG7giakwWLFiArKwsmJqaokOHDjhw4IA02L0h/fkJp7/aunVrA1ZCjVlNztc+ffrgwIED922bNm0aXFxc6rNUqkO8jUWPdPPmTeTm5t63TalUws3NrYErIqqq8isa7qdZs2awsLBowGpIDi5fvqz39N6f2dnZwc7OroErotpi2CEiIiJZ4+fsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGs/R8sVPMaSvX2DQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARdlJREFUeJzt3XlYVPX+B/D3AMPuDIvAgCLgUkChmAuMcAUVRVPTpDJDxXJJL2ZomqFeIzM109wuatcF6qbtaoX7hnoVEHFDIVxCMXXAUkBUFuH7+8OH82vCBRAYPL1fz3Oex3O+33PO5wxH5s053zOjEEIIEBEREcmUkaELICIiIqpPDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkayaGLqAxqKiowJUrV9CkSRMoFApDl0NERETVIITAzZs34eLiAiOjB1+/YdgBcOXKFbi6uhq6DCIiIqqFS5cuoXnz5g9sZ9gB0KRJEwD3XiyVSmXgaoiIiKg6CgsL4erqKr2PPwjDDiDdulKpVAw7RERET5hHDUHhAGUiIiKSNYYdIiIikjWGHSIiIpI1jtkhIqIqysvLUVZWZugy6G/O2NgYJiYmj/2xMAw7RESkp6ioCL/99huEEIYuhQiWlpZwdnaGqalprbdh0LDj7u6OixcvVln+z3/+E7GxsSguLsY777yDr7/+GiUlJQgNDcXy5cvh5OQk9c3JycG4ceOwd+9eWFtbIyIiAnPnzoWJCXMcEVFNlZeX47fffoOlpSUcHBz4QatkMEIIlJaW4tq1a8jOzkabNm0e+sGBD2PQRJCamory8nJp/tSpU+jZsydefvllAMDEiROxefNmfPfdd1Cr1Rg/fjwGDRqEgwcPArj3n7Jv377QaDQ4dOgQrl69iuHDh0OpVGLOnDkGOSYioidZWVkZhBBwcHCAhYWFocuhvzkLCwsolUpcvHgRpaWlMDc3r9V2FKIRXaeMiopCQkICzp49i8LCQjg4OGD9+vV46aWXAAC//PILvLy8kJSUBH9/f2zduhX9+vXDlStXpKs9K1euxNSpU3Ht2rVqX/IqLCyEWq1GQUEBP2eHiP7WiouLkZ2dDQ8Pj1q/sRDVpYedk9V9/240T2OVlpbiyy+/xBtvvAGFQoG0tDSUlZUhJCRE6uPp6YkWLVogKSkJAJCUlAQfHx+921qhoaEoLCzE6dOnH7ivkpISFBYW6k1EREQkT40m7GzatAn5+fkYMWIEAECn08HU1BQ2NjZ6/ZycnKDT6aQ+fw46le2VbQ8yd+5cqNVqaeL3YhEREclXoxnFu2bNGvTp0wcuLi71vq/o6GhMmjRJmq/8bg0iIro/9/c2N+j+Lszr26D7+zu4cOECPDw8cOzYMfj6+iIxMRHdunXDjRs3qlxYkJtGcWXn4sWL2LVrF0aNGiUt02g0KC0tRX5+vl7f3NxcaDQaqU9ubm6V9sq2BzEzM5O+B4vfh0VE9OQbMWIEFAoF5s2bp7d806ZNek+UJSYmQqFQ3HfS6XRwd3d/YLtCoZDuPigUCmzatKna9f15u8bGxnBxccHIkSNx48aNujj8WunSpQuuXr0KtVptsBoaSqMIO3FxcXB0dETfvv+f5Dt06AClUondu3dLy7KyspCTkwOtVgsA0Gq1SE9PR15entRn586dUKlU8Pb2brgDICIigzM3N8fHH39crQCRlZWFq1ev6k2Ojo5ITU2V5n/44YcqfZcsWVLr+mbNmoWrV68iJycH69atw/79+zFhwoRab+9xmZqaQqPR/C0+XsDgYaeiogJxcXGIiIjQ+2wctVqNkSNHYtKkSdi7dy/S0tLw+uuvQ6vVwt/fHwDQq1cveHt7Y9iwYThx4gS2b9+OGTNmIDIyEmZmZoY6JCIiMoCQkBBoNBrMnTv3kX0dHR2h0Wj0JiMjIzg4OEjzdnZ2Vfo+zlWQJk2aQKPRoFmzZujWrRsiIiJw9OhRqf2PP/7AkCFD0KxZM1haWsLHxwdfffWV3ja+//57+Pj4wMLCAvb29ggJCcGtW7ek9tWrV8PLywvm5ubw9PTE8uXLH1hP5VWuyjso8fHxsLGxwfbt2+Hl5QVra2v07t0bV69e1VuvJvtoLAw+ZmfXrl3IycnBG2+8UaVt0aJFMDIyQlhYmN6HClYyNjZGQkICxo0bB61WCysrK0RERGDWrFkNeQhEjVpDj7VojC6Yv2boEgwrpsDQFTQIY2NjzJkzB6+99homTJiA5s2bG7qkB7p8+TJ+/vln+Pn5ScuKi4vRoUMHTJ06FSqVCps3b8awYcPQqlUrdO7cGVevXsWQIUMwf/58vPjii7h58yYOHDggfdL1unXrMHPmTPz73/9G+/btcezYMYwePVp6b6yO27dvY8GCBfjvf/8LIyMjDB06FJMnT8a6devqbB+GYPCw06tXrwd+JLm5uTliY2MRGxv7wPXd3NywZcuW+iqPiIieIC+++CJ8fX3x/vvvY82aNQ/s99cg5Obm9tCPLKkLU6dOxYwZM1BeXo7i4mL4+fnh008/ldqbNWuGyZMnS/NvvfUWtm/fjm+//VYKO3fv3sWgQYPg5uYGAPDx8ZH6v//++1i4cCEGDRoEAPDw8EBGRgY+++yzageRsrIyrFy5Eq1atQIAjB8/Xu8CQl3swxAMHnaIiIjq0scff4zu3bvrBYe/OnDgAJo0aSLNK5XKeq9rypQpGDFiBIQQuHTpEqZNm4a+ffti//79MDY2Rnl5OebMmYNvv/0Wly9fRmlpKUpKSmBpaQkAaNeuHXr06AEfHx+EhoaiV69eeOmll2Bra4tbt27h/PnzGDlyJEaPHi3t8+7duzW69WZpaSkFHQBwdnaWxsXW1T4MgWGHiIhkpWvXrggNDUV0dLT09NRfeXh4NPjj1k2bNkXr1q0BAG3atMHixYuh1Wqxd+9ehISE4JNPPsGSJUuwePFi+Pj4wMrKClFRUSgtLQVw7zbdzp07cejQIezYsQPLli3D9OnTkZKSIgWiVatW6d0aq1yvuv4a+hQKhXT3paioqE72YQgMO0REJDvz5s2Dr68vnn76aUOX8kCVAeHOnTsAgIMHD2LAgAEYOnQogHsP8Jw5c0bv6WKFQoGAgAAEBARg5syZcHNzw8aNGzFp0iS4uLjg119/RXh4eL3U6+TkVO/7qC8MO0REJDs+Pj4IDw/H0qVL79uel5eH4uJivWX29vY1up2VnZ2N48eP6y1r06YNrKys7tv/5s2b0Ol00m2sd999Fw4ODujSpYu07vfff49Dhw7B1tYWn376KXJzc6Wwk5KSgt27d6NXr15wdHRESkoKrl27Bi8vLwDABx98gAkTJkCtVqN3794oKSnBkSNHcOPGDb0P0n0cDbGP+sCwQ0REj/QkfqLxrFmz8M0339y37X5XfCq/ZLq67vfmfuDAAQQGBt63/8yZMzFz5kwAgIODAzp16oQdO3bA3t4eADBjxgz8+uuvCA0NhaWlJcaMGYOBAweioODe03QqlQr79+/H4sWLUVhYCDc3NyxcuBB9+vQBAIwaNQqWlpb45JNPMGXKFFhZWcHHxwdRUVHVPqZHaYh91IdG9a3nhsJvPSc546PnfPS8Jo+e81vPqbGR1beeExEREdUHhh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiKiv4Hg4GC9Tzp2d3fH4sWLH2ubdbGNhsCviyAiokeLUTfw/qr/qc8AMGLECOTn52PTpk3S/Oeffw4AMDExgZ2dHdq2bYshQ4ZgxIgRMDKq+rd+aGgodu3aheTkZHTq1KnK9iu399d1tm3bBgA4ceIE/vWvfyE5ORmFhYXQaDTw8/PDsmXL4OjoeN+6g4ODsW/fPgCAmZkZWrZsifHjx+Of//xnjY6/NlJTUx/4PV5/FR8fj6ioKOTn59d6G4bEKztERCRLvXv3xtWrV3HhwgVs3boV3bp1w9tvv41+/frh7t27en1zcnJw6NAhjB8/HmvXrn3o9v48ffXVVwCAa9euoUePHrCzs8P27duRmZmJuLg4uLi44NatWw+tc/To0bh69SoyMjLwyiuvIDIyUtruX5WWltbilbg/BwcHWFpaGnwbDYFhh4iIZMnMzAwajQbNmjXDc889h2nTpuHHH3/E1q1bER8fr9c3Li4O/fr1w7hx4/DVV1/hzp07D9zenydbW1sAwMGDB1FQUIDVq1ejffv28PDwQLdu3bBo0SJ4eHg8tE5LS0toNBq0bNkSMTExaNOmDX766ScA9678jB8/HlFRUWjatClCQ0MBAKdOnUKfPn1gbW0NJycnDBs2DL///ru0zVu3bmH48OGwtraGs7MzFi5cWGW/f70FlZ+fjzfffBNOTk4wNzfHs88+i4SEBCQmJuL1119HQUEBFAoFFAoFYmJi7ruNnJwcDBgwANbW1lCpVHjllVeQm5srtcfExMDX1xf//e9/4e7uDrVajVdffRU3b9586Gv0uBh2iIjob6N79+5o164dNmzYIC0TQiAuLg5Dhw6Fp6cnWrduje+//75G29VoNLh79y42btyIx/1+bQsLC70rOJ9//jlMTU1x8OBBrFy5Evn5+ejevTvat2+PI0eOYNu2bcjNzcUrr7wirTNlyhTs27cPP/74I3bs2IHExEQcPXr0gfusqKhAnz59cPDgQXz55ZfIyMjAvHnzYGxsjC5dumDx4sVQqVTSFa3JkyffdxsDBgzA9evXsW/fPuzcuRO//vorBg8erNfv/Pnz2LRpExISEpCQkIB9+/Zh3rx5j/WaPQrH7BAR0d+Kp6cnTp48Kc3v2rULt2/flq6aDB06FGvWrMGwYcP01ktISIC1tbXesmnTpmHatGnw9/fHtGnT8Nprr2Hs2LHo3LkzunfvjuHDh8PJyaladZWXl+Orr77CyZMnMWbMGGl5mzZtMH/+fGl+9uzZaN++PebMmSMtW7t2LVxdXXHmzBm4uLhgzZo1+PLLL9GjRw8A9wJT8+bNH7jvXbt24fDhw8jMzMRTTz0FAGjZsqXUrlaroVAooNFoHriN3bt3Iz09HdnZ2XB1dQUAfPHFF3jmmWeQmpoqjYOqqKhAfHw8mjRpAgAYNmwYdu/ejY8++qhar1Nt8MoOERH9rQghoFAopPm1a9di8ODBMDG59/f/kCFDcPDgQZw/f15vvW7duuH48eN609ixY6X2jz76CDqdDitXrsQzzzyDlStXwtPTE+np6Q+tZ/ny5bC2toaFhQVGjx6NiRMnYty4cVJ7hw4d9PqfOHECe/fuhbW1tTR5enoCuHfV5Pz58ygtLYWfn5+0jp2dHZ5++ukH1nD8+HE0b95cCjq1kZmZCVdXVynoAIC3tzdsbGyQmZkpLXN3d5eCDgA4OzsjLy+v1vutDl7ZqWfu7202dAkGd8H8NUOXYFg1fKqEiOpXZmamNI7m+vXr2LhxI8rKyrBixQqpT3l5OdauXat3tcHKygqtW7d+6Lbt7e3x8ssv4+WXX8acOXPQvn17LFiw4L5PclUKDw/H9OnTYWFhAWdn5ypPiv31aaeioiL0798fH3/8cZVtOTs749y5cw+t8X4sLCxqvE5tKZVKvXmFQoGKiop63Sev7BAR0d/Gnj17kJ6ejrCwMADAunXr0Lx5c5w4cULvis3ChQsRHx+P8vLyWu/L1NQUrVq1euTTWGq1Gq1bt0azZs3u+0j8Xz333HM4ffo03N3d0bp1a73JysoKrVq1glKpREpKirTOjRs3cObMmQdus23btvjtt98e2MfU1PSRr4WXlxcuXbqES5cuScsyMjKQn58Pb2/vRx5XfWLYISIiWSopKYFOp8Ply5dx9OhRzJkzBwMGDEC/fv0wfPhwAMCaNWvw0ksv4dlnn9WbRo4cid9//136DJ0/b+/PU+UTUAkJCRg6dCgSEhJw5swZZGVlYcGCBdiyZQsGDBhQp8cVGRmJ69evY8iQIUhNTcX58+exfft2vP766ygvL4e1tTVGjhyJKVOmYM+ePTh16tQDP1uoUlBQELp27YqwsDDs3LkT2dnZ2Lp1q3T87u7uKCoqwu7du/H777/j9u3bVbYREhICHx8fhIeH4+jRozh8+DCGDx+OoKAgdOzYsU5fg5pi2CEiIlnatm0bnJ2d4e7ujt69e2Pv3r1YunQpfvzxRxgbGyMtLQ0nTpyQrvL8mVqtRo8ePbBmzZoq2/vzFBgYCODe2BRLS0u888478PX1hb+/P7799lusXr26ykDnx+Xi4oKDBw+ivLwcvXr1go+PD6KiomBjYyMFmk8++QT/+Mc/0L9/f4SEhCAwMLDK2J+/+uGHH9CpUycMGTIE3t7eePfdd6WrOV26dMHYsWMxePBgODg46A2YrqRQKPDjjz/C1tYWXbt2RUhICFq2bIlvvvmmTo+/NhTicZ+Rk4HCwkKo1WoUFBRApVLV6bY5Zodjdgw9ZofnIM/BmpyDxcXFyM7OhoeHB8zNzeuxKKLqedg5Wd33b17ZISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIqIq+KAuNRZ1cS4y7BARkcTY2BgA9L51m8iQKj/A8K9fM1ET/G4sIiKSmJiYwNLSEteuXYNSqazW1xcQ1QchBG7fvo28vDzY2NhIQbw2GHaIiEiiUCjg7OyM7OxsXLx40dDlEMHGxgYajeaxtsGwQ0REekxNTdGmTRveyiKDUyqVj3VFpxLDDhERVWFkZMSviyDZ4M1YIiIikjWGHSIiIpI1hh0iIiKSNYOHncuXL2Po0KGwt7eHhYUFfHx8cOTIEaldCIGZM2fC2dkZFhYWCAkJwdmzZ/W2cf36dYSHh0OlUsHGxgYjR45EUVFRQx8KERERNUIGDTs3btxAQEAAlEoltm7dioyMDCxcuBC2trZSn/nz52Pp0qVYuXIlUlJSYGVlhdDQUBQXF0t9wsPDcfr0aezcuRMJCQnYv38/xowZY4hDIiIiokbGoE9jffzxx3B1dUVcXJy0zMPDQ/q3EAKLFy/GjBkzMGDAAADAF198AScnJ2zatAmvvvoqMjMzsW3bNqSmpqJjx44AgGXLluH555/HggUL4OLi0rAHRURERI2KQa/s/PTTT+jYsSNefvllODo6on379li1apXUnp2dDZ1Oh5CQEGmZWq2Gn58fkpKSAABJSUmwsbGRgg4AhISEwMjICCkpKffdb0lJCQoLC/UmIiIikieDhp1ff/0VK1asQJs2bbB9+3aMGzcOEyZMwOeffw4A0Ol0AAAnJye99ZycnKQ2nU4HR0dHvXYTExPY2dlJff5q7ty5UKvV0uTq6lrXh0ZERESNhEHDTkVFBZ577jnMmTMH7du3x5gxYzB69GisXLmyXvcbHR2NgoICabp06VK97o+IiIgMx6Bhx9nZGd7e3nrLvLy8kJOTAwDSd2Hk5ubq9cnNzZXaNBoN8vLy9Nrv3r2L69evP/C7NMzMzKBSqfQmIiIikieDhp2AgABkZWXpLTtz5gzc3NwA3BusrNFosHv3bqm9sLAQKSkp0Gq1AACtVov8/HykpaVJffbs2YOKigr4+fk1wFEQERFRY2bQp7EmTpyILl26YM6cOXjllVdw+PBh/Oc//8F//vMfAPe+fTcqKgqzZ89GmzZt4OHhgX/9619wcXHBwIEDAdy7EtS7d2/p9ldZWRnGjx+PV199lU9iERERkWHDTqdOnbBx40ZER0dj1qxZ8PDwwOLFixEeHi71effdd3Hr1i2MGTMG+fn5CAwMxLZt2/S+oG7dunUYP348evToASMjI4SFhWHp0qWGOCQiIiJqZBRCCGHoIgytsLAQarUaBQUFdT5+x/29zXW6vSfRBfPXDF2CYcUUGHT3PAd5Dhr6HCSqL9V9/zb410UQERER1SeGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWDhp2YmBgoFAq9ydPTU2ovLi5GZGQk7O3tYW1tjbCwMOTm5uptIycnB3379oWlpSUcHR0xZcoU3L17t6EPhYiIiBopE0MX8Mwzz2DXrl3SvInJ/5c0ceJEbN68Gd999x3UajXGjx+PQYMG4eDBgwCA8vJy9O3bFxqNBocOHcLVq1cxfPhwKJVKzJkzp8GPhYiIiBofg4cdExMTaDSaKssLCgqwZs0arF+/Ht27dwcAxMXFwcvLC8nJyfD398eOHTuQkZGBXbt2wcnJCb6+vvjwww8xdepUxMTEwNTUtKEPh4iIiBoZg4/ZOXv2LFxcXNCyZUuEh4cjJycHAJCWloaysjKEhIRIfT09PdGiRQskJSUBAJKSkuDj4wMnJyepT2hoKAoLC3H69OkH7rOkpASFhYV6ExEREcmTQcOOn58f4uPjsW3bNqxYsQLZ2dn4xz/+gZs3b0Kn08HU1BQ2NjZ66zg5OUGn0wEAdDqdXtCpbK9se5C5c+dCrVZLk6ura90eGBERETUaBr2N1adPH+nfbdu2hZ+fH9zc3PDtt9/CwsKi3vYbHR2NSZMmSfOFhYUMPERERDJl8NtYf2ZjY4OnnnoK586dg0ajQWlpKfLz8/X65ObmSmN8NBpNlaezKufvNw6okpmZGVQqld5ERERE8tSowk5RURHOnz8PZ2dndOjQAUqlErt375bas7KykJOTA61WCwDQarVIT09HXl6e1Gfnzp1QqVTw9vZu8PqJiIio8THobazJkyejf//+cHNzw5UrV/D+++/D2NgYQ4YMgVqtxsiRIzFp0iTY2dlBpVLhrbfeglarhb+/PwCgV69e8Pb2xrBhwzB//nzodDrMmDEDkZGRMDMzM+ShERERUSNh0LDz22+/YciQIfjjjz/g4OCAwMBAJCcnw8HBAQCwaNEiGBkZISwsDCUlJQgNDcXy5cul9Y2NjZGQkIBx48ZBq9XCysoKERERmDVrlqEOiYiIiBoZg4adr7/++qHt5ubmiI2NRWxs7AP7uLm5YcuWLXVdGhEREclEoxqzQ0RERFTXGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1gz+redERCRv7u9tNnQJBnfB/DVDl2BYMQUG3T2v7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkayZ1HSF/Px8bNy4EQcOHMDFixdx+/ZtODg4oH379ggNDUWXLl3qo04iIiKiWqn2lZ0rV65g1KhRcHZ2xuzZs3Hnzh34+vqiR48eaN68Ofbu3YuePXvC29sb33zzTX3WTERERFRt1b6y0759e0RERCAtLQ3e3t737XPnzh1s2rQJixcvxqVLlzB58uQ6K5SIiIioNqoddjIyMmBvb//QPhYWFhgyZAiGDBmCP/7447GLIyIiInpc1b6NZW9vj5KSkmpv+FHBiIiIiKgh1GiAslqthlarRbdu3dCtWzf4+/tDqVTWV21EREREj61Gj56vXLkSbm5uWLt2LYKCgmBjY4OePXti7ty5SE5ORnl5eX3VSURERFQrNQo7I0aMQHx8PC5cuIBz585h2bJlcHFxwcqVKxEQEABbW1v07du3vmolIiIiqrEaf85OpZYtW6Jly5Z44403kJ2djTVr1mDZsmXYtm1bXdZHRERE9FhqFXZycnKwd+9eJCYmIjExEb///jv8/f0xefJkBAUF1XWNRERERLVWo7DzxhtvIDExEdevX0dAQAD+8Y9/YMyYMejUqRNMTGp9kYiIiIio3tQoocTHx6NFixaYPn06evTogfbt20OhUNRXbURERESPrUZhJzMzU7p9tXDhQpSUlCAwMBBBQUEIDg7Gc889ByMjfrcoERERNR41SiZPP/00xo4di6+//ho6nQ4HDx7E888/j8OHD6Nfv36ws7NDv3796qtWIiIiohp7rIE23t7esLe3h62tLWxtbfH1119j69atdVUbERER0WOrcdjJy8tDYmKidDvrzJkzMDU1RefOnTFx4kR069atPuokIiIiqpUa3cby8vKCs7Mzhg0bhvT0dLz00kvYsWMHbty4gX379iEmJqbWj57PmzcPCoUCUVFR0rLi4mJERkbC3t4e1tbWCAsLQ25urt56OTk56Nu3LywtLeHo6IgpU6bg7t27taqBiIiI5KdGV3YGDhyIbt26ITAwEJaWlnVWRGpqKj777DO0bdtWb/nEiROxefNmfPfdd1Cr1Rg/fjwGDRqEgwcPAgDKy8vRt29faDQaHDp0CFevXsXw4cOhVCoxZ86cOquPiIiInlw1urIzd+5c9OrVq06DTlFREcLDw7Fq1SrY2tpKywsKCrBmzRp8+umn6N69Ozp06IC4uDgcOnQIycnJAIAdO3YgIyMDX375JXx9fdGnTx98+OGHiI2NRWlpaZ3VSERERE+uGl3ZmTVrVrX6zZw5s9rbjIyMRN++fRESEoLZs2dLy9PS0lBWVoaQkBBpmaenJ1q0aIGkpCT4+/sjKSkJPj4+cHJykvqEhoZi3LhxOH36NNq3b3/ffZaUlKCkpESaLywsrHa9RERE9GSpUdiJiYmBi4sLHB0dIYS4bx+FQlHtsPP111/j6NGjSE1NrdKm0+lgamoKGxsbveVOTk7Q6XRSnz8Hncr2yrYHmTt3Lj744INq1UhERERPthqFnT59+mDPnj3o2LEj3njjDfTr16/WHyJ46dIlvP3229i5cyfMzc1rtY3aio6OxqRJk6T5wsJCuLq6NmgNRERE1DBqlFQ2b96M8+fPw8/PD1OmTEGzZs0wdepUZGVl1XjHaWlpyMvLw3PPPQcTExOYmJhg3759WLp0KUxMTODk5ITS0lLk5+frrZebmwuNRgMA0Gg0VZ7Oqpyv7HM/ZmZmUKlUehMRERHJU40vy7i4uCA6OhpZWVn45ptvkJeXh06dOiEgIAB37typ9nZ69OiB9PR0HD9+XJo6duyI8PBw6d9KpRK7d++W1snKykJOTg60Wi0AQKvVIj09HXl5eVKfnTt3QqVSwdvbu6aHRkRERDL0WJ+g3KlTJ1y4cAEZGRk4duwYysrKYGFhUa11mzRpgmeffVZvmZWVFezt7aXlI0eOxKRJk2BnZweVSoW33noLWq0W/v7+AIBevXrB29sbw4YNw/z586HT6TBjxgxERkbCzMzscQ6NiIiIZKJWA26SkpIwevRoaDQaLFu2DBEREbhy5Uqd3w5atGgR+vXrh7CwMHTt2hUajQYbNmyQ2o2NjZGQkABjY2NotVoMHToUw4cPr/ZTY0RERCR/NbqyM3/+fMTHx+P3339HeHg4Dhw4UOWDAB9HYmKi3ry5uTliY2MRGxv7wHXc3NywZcuWOquBiIiI5KVGYee9995DixYt8Morr0ChUCA+Pv6+/T799NO6qI2IiIjosdUo7HTt2hUKhQKnT59+YB+FQvHYRRERERHVlRqFnb/eZiIiIiJq7Gr3iYBERERET4hqh5158+bh9u3b1eqbkpKCzZs317ooIiIiorpS7bCTkZEBNzc3/POf/8TWrVtx7do1qe3u3bs4efIkli9fji5dumDw4MFo0qRJvRRMREREVBPVHrPzxRdf4MSJE/j3v/+N1157DYWFhTA2NoaZmZl0xad9+/YYNWoURowY0eDfd0VERER0PzUaoNyuXTusWrUKn332GU6ePImLFy/izp07aNq0KXx9fdG0adP6qpOIiIioVmr1dRFGRkbw9fWFr69vHZdDREREVLf4NBYRERHJGsMOERERyRrDDhEREckaww4RERHJWo3DTllZGUxMTHDq1Kn6qIeIiIioTtU47CiVSrRo0QLl5eX1UQ8RERFRnarVbazp06dj2rRpuH79el3XQ0RERFSnavU5O//+979x7tw5uLi4wM3NDVZWVnrtR48erZPiiIiIiB5XrcLOwIED67gMIiIiovpRq7Dz/vvv13UdRERERPWi1o+e5+fnY/Xq1YiOjpbG7hw9ehSXL1+us+KIiIiIHletruycPHkSISEhUKvVuHDhAkaPHg07Ozts2LABOTk5+OKLL+q6TiIiIqJaqdWVnUmTJmHEiBE4e/YszM3NpeXPP/889u/fX2fFERERET2uWoWd1NRUvPnmm1WWN2vWDDqd7rGLIiIiIqortQo7ZmZmKCwsrLL8zJkzcHBweOyiiIiIiOpKrcLOCy+8gFmzZqGsrAwAoFAokJOTg6lTpyIsLKxOCyQiIiJ6HLUKOwsXLkRRUREcHR1x584dBAUFoXXr1mjSpAk++uijuq6RiIiIqNZq9TSWWq3Gzp078b///Q8nT55EUVERnnvuOYSEhNR1fURERESPpVZhp7i4GObm5ggMDERgYGBd10RERERUZ2oVdmxsbNC5c2cEBQWhW7du0Gq1sLCwqOvaiIiIiB5brcbs7Nq1C71790ZKSgpeeOEF2NraIjAwENOnT8fOnTvrukYiIiKiWqtV2AkMDMS0adOwY8cO5OfnY+/evWjdujXmz5+P3r1713WNRERERLVWq9tYwL3P1ElMTJSmkpIS9OvXD8HBwXVYHhEREdHjqVXYadasGe7cuYPg4GAEBwdj6tSpaNu2LRQKRV3XR0RERPRYanUby8HBAbdv34ZOp4NOp0Nubi7u3LlT17URERERPbZahZ3jx49Dp9PhvffeQ0lJCaZNm4amTZuiS5cumD59el3XSERERFRrtR6zY2NjgxdeeAEBAQHo0qULfvzxR3z11VdISUnhpygTERFRo1GrsLNhwwZpYHJGRgbs7OwQGBiIhQsXIigoqK5rJCIiIqq1WoWdsWPHomvXrhgzZgyCgoLg4+NT13URERER1YlahZ28vLy6roOIiIioXtR6zE55eTk2bdqEzMxMAIC3tzcGDBgAY2PjOiuOiIiI6HHV6mmsc+fOwcvLC8OHD8eGDRuwYcMGDBs2DM888wzOnz9f7e2sWLECbdu2hUqlgkqlglarxdatW6X24uJiREZGwt7eHtbW1ggLC0Nubq7eNnJyctC3b19YWlrC0dERU6ZMwd27d2tzWERERCRDtQo7EyZMQKtWrXDp0iUcPXoUR48eRU5ODjw8PDBhwoRqb6d58+aYN28e0tLScOTIEXTv3h0DBgzA6dOnAQATJ07Ezz//jO+++w779u3DlStXMGjQIGn98vJy9O3bF6WlpTh06BA+//xzxMfHY+bMmbU5LCIiIpKhWt3G2rdvH5KTk2FnZycts7e3x7x58xAQEFDt7fTv319v/qOPPsKKFSuQnJyM5s2bY82aNVi/fj26d+8OAIiLi4OXlxeSk5Ph7++PHTt2ICMjA7t27YKTkxN8fX3x4YcfYurUqYiJiYGpqWltDo+IiIhkpFZXdszMzHDz5s0qy4uKimodMMrLy/H111/j1q1b0Gq1SEtLQ1lZGUJCQqQ+np6eaNGiBZKSkgAASUlJ8PHxgZOTk9QnNDQUhYWF0tWh+ykpKUFhYaHeRERERPJUq7DTr18/jBkzBikpKRBCQAiB5ORkjB07Fi+88EKNtpWeng5ra2uYmZlh7Nix2LhxI7y9vaHT6WBqagobGxu9/k5OTtDpdAAAnU6nF3Qq2yvbHmTu3LlQq9XS5OrqWqOaiYiI6MlRq7CzdOlStGrVClqtFubm5jA3N0dAQABat26NJUuW1GhbTz/9NI4fP46UlBSMGzcOERERyMjIqE1Z1RYdHY2CggJpunTpUr3uj4iIiAynVmN2bGxs8OOPP+LcuXPSo+deXl5o3bp1jbdlamoqrdehQwekpqZiyZIlGDx4MEpLS5Gfn693dSc3NxcajQYAoNFocPjwYb3tVT6tVdnnfszMzGBmZlbjWomIiOjJU6MrOxUVFfj4448REBCATp06YfXq1QgJCUH//v1rFXQetI+SkhJ06NABSqUSu3fvltqysrKQk5MDrVYLANBqtUhPT9f7kMOdO3dCpVLB29u7TuohIiKiJ1uNrux89NFHiImJQUhICCwsLLBkyRLk5eVh7dq1tdp5dHQ0+vTpgxYtWuDmzZtYv349EhMTsX37dqjVaowcORKTJk2CnZ0dVCoV3nrrLWi1Wvj7+wMAevXqBW9vbwwbNgzz58+HTqfDjBkzEBkZySs3REREBKCGYeeLL77A8uXL8eabbwIAdu3ahb59+2L16tUwMqr58J+8vDwMHz4cV69ehVqtRtu2bbF9+3b07NkTALBo0SIYGRkhLCwMJSUlCA0NxfLly6X1jY2NkZCQgHHjxkGr1cLKygoRERGYNWtWjWshIiIieapR2MnJycHzzz8vzYeEhEChUODKlSto3rx5jXe+Zs2ah7abm5sjNjYWsbGxD+zj5uaGLVu21HjfRERE9PdQo8sxd+/ehbm5ud4ypVKJsrKyOi2KiIiIqK7U6MqOEAIjRozQGw9TXFyMsWPHwsrKSlq2YcOGuquQiIiI6DHUKOxERERUWTZ06NA6K4aIiIiortUo7MTFxdVXHURERET1olafoExERET0pGDYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZM2jYmTt3Ljp16oQmTZrA0dERAwcORFZWll6f4uJiREZGwt7eHtbW1ggLC0Nubq5en5ycHPTt2xeWlpZwdHTElClTcPfu3YY8FCIiImqkDBp29u3bh8jISCQnJ2Pnzp0oKytDr169cOvWLanPxIkT8fPPP+O7777Dvn37cOXKFQwaNEhqLy8vR9++fVFaWopDhw7h888/R3x8PGbOnGmIQyIiIqJGxsSQO9+2bZvefHx8PBwdHZGWloauXbuioKAAa9aswfr169G9e3cAQFxcHLy8vJCcnAx/f3/s2LEDGRkZ2LVrF5ycnODr64sPP/wQU6dORUxMDExNTQ1xaERERNRINKoxOwUFBQAAOzs7AEBaWhrKysoQEhIi9fH09ESLFi2QlJQEAEhKSoKPjw+cnJykPqGhoSgsLMTp06fvu5+SkhIUFhbqTURERCRPjSbsVFRUICoqCgEBAXj22WcBADqdDqamprCxsdHr6+TkBJ1OJ/X5c9CpbK9su5+5c+dCrVZLk6urax0fDRERETUWjSbsREZG4tSpU/j666/rfV/R0dEoKCiQpkuXLtX7PomIiMgwDDpmp9L48eORkJCA/fv3o3nz5tJyjUaD0tJS5Ofn613dyc3NhUajkfocPnxYb3uVT2tV9vkrMzMzmJmZ1fFREBERUWNk0Cs7QgiMHz8eGzduxJ49e+Dh4aHX3qFDByiVSuzevVtalpWVhZycHGi1WgCAVqtFeno68vLypD47d+6ESqWCt7d3wxwIERERNVoGvbITGRmJ9evX48cff0STJk2kMTZqtRoWFhZQq9UYOXIkJk2aBDs7O6hUKrz11lvQarXw9/cHAPTq1Qve3t4YNmwY5s+fD51OhxkzZiAyMpJXb4iIiMiwYWfFihUAgODgYL3lcXFxGDFiBABg0aJFMDIyQlhYGEpKShAaGorly5dLfY2NjZGQkIBx48ZBq9XCysoKERERmDVrVkMdBhERETViBg07QohH9jE3N0dsbCxiY2Mf2MfNzQ1btmypy9KIiIhIJhrN01hERERE9YFhh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZM2gYWf//v3o378/XFxcoFAosGnTJr12IQRmzpwJZ2dnWFhYICQkBGfPntXrc/36dYSHh0OlUsHGxgYjR45EUVFRAx4FERERNWYGDTu3bt1Cu3btEBsbe9/2+fPnY+nSpVi5ciVSUlJgZWWF0NBQFBcXS33Cw8Nx+vRp7Ny5EwkJCdi/fz/GjBnTUIdAREREjZyJIXfep08f9OnT575tQggsXrwYM2bMwIABAwAAX3zxBZycnLBp0ya8+uqryMzMxLZt25CamoqOHTsCAJYtW4bnn38eCxYsgIuLS4MdCxERETVOjXbMTnZ2NnQ6HUJCQqRlarUafn5+SEpKAgAkJSXBxsZGCjoAEBISAiMjI6SkpDxw2yUlJSgsLNSbiIiISJ4abdjR6XQAACcnJ73lTk5OUptOp4Ojo6Neu4mJCezs7KQ+9zN37lyo1WppcnV1rePqiYiIqLFotGGnPkVHR6OgoECaLl26ZOiSiIiIqJ402rCj0WgAALm5uXrLc3NzpTaNRoO8vDy99rt37+L69etSn/sxMzODSqXSm4iIiEieGm3Y8fDwgEajwe7du6VlhYWFSElJgVarBQBotVrk5+cjLS1N6rNnzx5UVFTAz8+vwWsmIiKixsegT2MVFRXh3Llz0nx2djaOHz8OOzs7tGjRAlFRUZg9ezbatGkDDw8P/Otf/4KLiwsGDhwIAPDy8kLv3r0xevRorFy5EmVlZRg/fjxeffVVPolFREREAAwcdo4cOYJu3bpJ85MmTQIAREREID4+Hu+++y5u3bqFMWPGID8/H4GBgdi2bRvMzc2lddatW4fx48ejR48eMDIyQlhYGJYuXdrgx0JERESNk0HDTnBwMIQQD2xXKBSYNWsWZs2a9cA+dnZ2WL9+fX2UR0RERDLQaMfsEBEREdUFhh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI12YSd2NhYuLu7w9zcHH5+fjh8+LChSyIiIqJGQBZh55tvvsGkSZPw/vvv4+jRo2jXrh1CQ0ORl5dn6NKIiIjIwGQRdj799FOMHj0ar7/+Ory9vbFy5UpYWlpi7dq1hi6NiIiIDMzE0AU8rtLSUqSlpSE6OlpaZmRkhJCQECQlJd13nZKSEpSUlEjzBQUFAIDCwsI6r6+i5Hadb/NJU6gQhi7BsOrhvKoJnoM8B3kOGh7Pwfo5Byvft4V4+Ov7xIed33//HeXl5XByctJb7uTkhF9++eW+68ydOxcffPBBleWurq71UuPfndrQBRjavL/9K2Bwf/ufAM9Bg/vb/wTq+Ry8efMm1OoH7+OJDzu1ER0djUmTJknzFRUVuH79Ouzt7aFQKAxYmfwUFhbC1dUVly5dgkqlMnQ59DfEc5AMjedg/RFC4ObNm3BxcXlovyc+7DRt2hTGxsbIzc3VW56bmwuNRnPfdczMzGBmZqa3zMbGpr5KJAAqlYr/ycmgeA6SofEcrB8Pu6JT6YkfoGxqaooOHTpg9+7d0rKKigrs3r0bWq3WgJURERFRY/DEX9kBgEmTJiEiIgIdO3ZE586dsXjxYty6dQuvv/66oUsjIiIiA5NF2Bk8eDCuXbuGmTNnQqfTwdfXF9u2basyaJkanpmZGd5///0qtw2JGgrPQTI0noOGpxCPel6LiIiI6An2xI/ZISIiInoYhh0iIiKSNYYdIiIikjWGHSIiIpI1hh2qIiYmBr6+voYug4ioQbm7u2Px4sWGLoPqAcMO/W2UlpYauoS/Pf4MHq68vBwVFRWGLoNkpqyszNAlGBzDjgwFBwdjwoQJePfdd2FnZweNRoOYmBipPT8/H6NGjYKDgwNUKhW6d++OEydOAADi4+PxwQcf4MSJE1AoFFAoFIiPj3/kPhUKBVasWIE+ffrAwsICLVu2xPfff6/XJz09Hd27d4eFhQXs7e0xZswYFBUVAQBOnToFIyMjXLt2DQBw/fp1GBkZ4dVXX5XWnz17NgIDA6X5U6dOoU+fPrC2toaTkxOGDRuG33//Xe91GD9+PKKiotC0aVOEhobW+LWkh7t58ybCw8NhZWUFZ2dnLFq0CMHBwYiKigJw7y/lDz/8EMOHD4dKpcKYMWMAAD/88AOeeeYZmJmZwd3dHQsXLtTb7vLly9GmTRuYm5vDyckJL730ktT2/fffw8fHRzqPQkJCcOvWrUfWOmLECAwcOBAffPCBdO6PHTtWL4CVlJRgwoQJcHR0hLm5OQIDA5Gamiq1d+zYEQsWLJDmBw4cCKVSKZ3Hv/32GxQKBc6dOydtb/LkyWjWrBmsrKzg5+eHxMREaf34+HjY2Njgp59+gre3N8zMzJCTk1PNV59q6mHna3BwMC5evIiJEydKv/sepfLnt2nTJul8DQ0NxaVLl/T6rVixAq1atYKpqSmefvpp/Pe//5XaJk+ejH79+knzixcvhkKhwLZt26RlrVu3xurVq6X51atXw8vLC+bm5vD09MTy5cultgsXLkChUOCbb75BUFAQzM3NsW7dulq9XrIiSHaCgoKESqUSMTEx4syZM+Lzzz8XCoVC7NixQwghREhIiOjfv79ITU0VZ86cEe+8846wt7cXf/zxh7h9+7Z45513xDPPPCOuXr0qrl69Km7fvv3IfQIQ9vb2YtWqVSIrK0vMmDFDGBsbi4yMDCGEEEVFRcLZ2VkMGjRIpKeni927dwsPDw8REREhhBCioqJCNG3aVHz33XdCCCE2bdokmjZtKjQajbSPkJAQMX36dCGEEDdu3BAODg4iOjpaZGZmiqNHj4qePXuKbt266b0O1tbWYsqUKeKXX34Rv/zyS528vvT/Ro0aJdzc3MSuXbtEenq6ePHFF0WTJk3E22+/LYQQws3NTahUKrFgwQJx7tw5ce7cOXHkyBFhZGQkZs2aJbKyskRcXJywsLAQcXFxQgghUlNThbGxsVi/fr24cOGCOHr0qFiyZIkQQogrV64IExMT8emnn4rs7Gxx8uRJERsbK27evPnIWiMiIoS1tbUYPHiwOHXqlEhISBAODg5i2rRpUp8JEyYIFxcXsWXLFnH69GkREREhbG1txR9//CGEEGLSpEmib9++Qoh756ydnZ1o2rSp2Lp1qxBCiC+//FI0a9ZM7/Xp0qWL2L9/vzh37pz45JNPhJmZmThz5owQQoi4uDihVCpFly5dxMGDB8Uvv/wibt269Xg/FHqgh52vf/zxh2jevLmYNWuW9LvvUSp/fh07dhSHDh0SR44cEZ07dxZdunSR+mzYsEEolUoRGxsrsrKyxMKFC4WxsbHYs2ePEEKIn376SajVanH37l0hhBADBw4UTZs2FVOnThVCCPHbb78JAOLs2bNCiHvnmLOzs/jhhx/Er7/+Kn744QdhZ2cn4uPjhRBCZGdnCwDC3d1d6nPlypU6fR2fRAw7MhQUFCQCAwP1lnXq1ElMnTpVHDhwQKhUKlFcXKzX3qpVK/HZZ58JIYR4//33Rbt27Wq0TwBi7Nixesv8/PzEuHHjhBBC/Oc//xG2traiqKhIat+8ebMwMjISOp1OCCHEoEGDRGRkpBBCiKioKDFlyhRha2srMjMzRWlpqbC0tJQC24cffih69eqlt79Lly4JACIrK0t6Hdq3b1+j46DqKywsFEqlUgqoQgiRn58vLC0t9cLOwIED9dZ77bXXRM+ePfWWTZkyRXh7ewshhPjhhx+ESqUShYWFVfaZlpYmAIgLFy7UuN6IiAhhZ2enFyZWrFghrK2tRXl5uSgqKhJKpVKsW7dOai8tLRUuLi5i/vz5Qgj9N6bjx48LjUYj3n77bemNadSoUeK1114TQghx8eJFYWxsLC5fvqxXR48ePUR0dLQQ4t6bJQBx/PjxGh8P1Ux1z9dFixZVe5uVP7/k5GRpWWZmpgAgUlJShBBCdOnSRYwePVpvvZdfflk8//zzQoh7f7gZGRmJ1NRUKUDPnTtX+Pn5CSGqBuhWrVqJ9evX623vww8/FFqtVgjx/2Fn8eLF1T6OvwPexpKptm3b6s07OzsjLy8PJ06cQFFREezt7WFtbS1N2dnZOH/+/GPt869fvKrVapGZmQkAyMzMRLt27WBlZSW1BwQEoKKiAllZWQCAoKAg6RL/vn370L17d3Tt2hWJiYlITU1FWVkZAgICAAAnTpzA3r179Y7B09MTAPSOo0OHDo91TPRgv/76K8rKytC5c2dpmVqtxtNPP63Xr2PHjnrzmZmZ0s+xUkBAAM6ePYvy8nL07NkTbm5uaNmyJYYNG4Z169bh9u3bAIB27dqhR48e8PHxwcsvv4xVq1bhxo0b1a65Xbt2sLS0lOa1Wi2Kiopw6dIlnD9/Xu8cAwClUonOnTtL5/E//vEP3Lx5E8eOHcO+ffsQFBSE4OBgvfM2ODgYwL3btuXl5Xjqqaf0ztN9+/bpnaOmpqZV/r9S3avu+VpTJiYm6NSpkzTv6ekJGxsbvd999zvfK9ttbGzQrl07JCYmIj09HaamphgzZgyOHTuGoqIi6TwDgFu3buH8+fMYOXKk3jk1e/bsKr+///r/7u9OFt+NRVUplUq9eYVCgYqKChQVFcHZ2Vlv3EAlGxubhinuASrvnZ89exYZGRkIDAzEL7/8gsTERNy4cQMdO3aU3qiKiorQv39/fPzxx1W24+zsLP37z+GKDKOmP4MmTZrg6NGjSExMxI4dOzBz5kzExMQgNTUVNjY22LlzJw4dOoQdO3Zg2bJlmD59OlJSUuDh4VFPR/D//vzGlJSUhJ49e6Jr164YPHgwzpw5g7Nnz0pvTEVFRTA2NkZaWhqMjY31tmNtbS3928LColrjQ0i+KgOzmZkZgoKCYGdnBy8vL/zvf//Dvn378M477wCANDZs1apV8PPz09vGX88x/u7Txys7fzPPPfccdDodTExM0Lp1a72padOmAO79pVleXl7jbScnJ1eZ9/LyAgB4eXnhxIkTegNJDx48CCMjI+kvKx8fH9ja2mL27Nnw9fWFtbU1goODsW/fPiQmJkp/MVcex+nTp+Hu7l7lOPifvGG0bNkSSqVSbwBvQUEBzpw589D1vLy8cPDgQb1lBw8exFNPPSX9wjYxMUFISAjmz5+PkydP4sKFC9izZw+Ae8E9ICAAH3zwAY4dOwZTU1Ns3LixWjWfOHECd+7ckeaTk5NhbW0NV1dXaQDpn2srKytDamoqvL29pWVBQUHYu3cv9u/fj+DgYOmN6aOPPoKzszOeeuopAED79u1RXl6OvLy8KueoRqOpVr1Ud6pzvtbmd9/du3dx5MgRaT4rKwv5+fl6v/vud77/9Zz63//+h927d0u/54KDg/HVV1/hzJkz0jInJye4uLjg119/rXJONUTYf6IZ+j4a1b2goCDpHnSlAQMGiIiICFFRUSECAwNFu3btxPbt20V2drY4ePCgmDZtmkhNTRVCCLFu3TphZWUljh07Jq5du1ZlfM/9ABBNmzYVa9asEVlZWWLmzJnCyMhInD59WgghxK1bt4Szs7MICwsT6enpYs+ePaJly5bSAOVKAwcOFMbGxtIYiPLycmFrayuMjY3Ftm3bpH6XL18WDg4O4qWXXhKHDx8W586dE9u2bRMjRoyQBvrd73WgujVq1Cjh4eEh9uzZI06dOiXCwsJEkyZNRFRUlBDi/mMg0tLS9AYox8fH6w1Q/vnnn8WSJUvEsWPHxIULF8Ty5cuFkZGROHXqlEhOThYfffSRSE1NFRcvXhTffvutMDU1FVu2bHlkrZUDlIcMGSJOnz4tNm/eLJycnMR7770n9Xn77beFi4uL2Lp1q94A5evXr0t9Nm3aJIyNjfUGz7/99tvC2NhYvPrqq3r7DA8P1xsompKSIubMmSMSEhKEEPfGfKjV6pq85PQYHnW+9uzZU7zwwgvit99+E9euXXvk9ioHKHfu3FkkJyeLI0eOCH9/f+Hv7y/12bhxo1AqlWL58uXizJkz0gDlvXv3Sn2uX78ujIyMhLGxscjMzJTWMzY2Fs7Oznr7XLVqlbCwsBBLliwRWVlZ4uTJk2Lt2rVi4cKFQoj/H7Nz7Nixx3y15IVhR4YeFnaEuDdQ76233hIuLi5CqVQKV1dXER4eLnJycoQQQhQXF4uwsDBhY2MjAEhvQg8DQMTGxoqePXsKMzMz4e7uLr755hu9PidPnhTdunUT5ubmws7OTowePbrKUzSLFi0SAKSnWyprNzExqdL3zJkz4sUXXxQ2NjbCwsJCeHp6iqioKFFRUfHA14HqVmFhoXjttdeEpaWl0Gg04tNPPxWdO3eWAsSDBnx+//33wtvbWyiVStGiRQvxySefSG0HDhwQQUFBwtbWVlhYWIi2bdtK51JGRoYIDQ0VDg4OwszMTDz11FNi2bJl1ao1IiJCDBgwQMycOVPY29sLa2trMXr0aL0wf+fOHfHWW2+Jpk2bCjMzMxEQECAOHz6st50//vhDKBQKMXjwYGnZxo0bBQCxcuVKvb6lpaVi5syZwt3dXSiVSuHs7CxefPFFcfLkSSEEw05De9T5mpSUJNq2bSvMzMxEda4FVP78fvjhB9GyZUthZmYmQkJCxMWLF/X6LV++XLRs2VIolUrx1FNPiS+++KLKttq1a6cXoCvPs78GaCHu/UHq6+srTE1Nha2trejatavYsGGDEIJh50EUQghhuOtKJBcKhQIbN27EwIEDDV0KGdCtW7fQrFkzLFy4ECNHjjR0OXpGjBiB/Px8bNq0ydClUCPxuOdrfHw8oqKikJ+fX/fFUZ3iAGUiqrVjx47hl19+QefOnVFQUIBZs2YBAAYMGGDgyoiq4vn698WwQ4+0bt06vPnmm/dtc3Nzw+nTpxu4ImpMFixYgKysLJiamqJDhw44cOCANNi9If35Cae/2rp1awNWQo1ZTc7XPn364MCBA/dtmzZtGlxcXOqzVKpDvI1Fj3Tz5k3k5ubet02pVMLNza2BKyKqqvIrGu6nWbNmsLCwaMBqSA4uX76s9/Ten9nZ2cHOzq6BK6LaYtghIiIiWePn7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrP0fLFTzGkr19g0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2956,9 +2975,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc_test.ipynb b/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc_test.ipynb index 7127641c..32fa7cf7 100644 --- a/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc_test.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc_test.ipynb @@ -1,2964 +1,2965 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# NGCC Baseline and Turndown\n", - "Maintainer: Javal Vyas \n", - "Author: John Eslick \n", - "Updated: 2024-07-25 \n", - "\n", - "This notebook runs a series of net electric power outputs from 650 MW to 160 MW (about 100% to 25%) for an NGCC with 97% CO2 capture. The NGCC model is based on the NETL report \"Cost and Performance Baseline for Fossil Energy Plants Volume 1, Bituminous Coal and Natural Gas to Electricity.\" Sept 2019, Case B31B [resource](https://www.osti.gov/servlets/purl/1893822). Another valuable resource for gaining a deeper understanding of the mathematical model would be the publication referenced [here](https://www.sciencedirect.com/science/article/pii/S1750583617302414). " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Imports\n", - "\n", - "Import the modules that will be used." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import numpy as np\n", - "import pandas as pd\n", - "from IPython.core.display import SVG\n", - "import pyomo.environ as pyo\n", - "import idaes\n", - "from idaes.core.solvers import use_idaes_solver_configuration_defaults\n", - "import idaes.core.util.scaling as iscale\n", - "import idaes.core.util as iutil\n", - "from idaes_examples.mod.power_gen import ngcc\n", - "import idaes.logger as idaeslog\n", - "import pytest\n", - "import logging\n", - "\n", - "logging.getLogger(\"pyomo\").setLevel(logging.ERROR)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Make Output Directories\n", - "\n", - "This notebook can produce a large number of output files. To make it easier to manage, some subdirectories are used to organize output. This ensures that the directories exist." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "def make_directory(path):\n", - " \"\"\"Make a directory if it doesn't exist\"\"\"\n", - " try:\n", - " os.mkdir(path)\n", - " except FileExistsError:\n", - " pass\n", - "\n", - "\n", - "make_directory(\"data\")\n", - "make_directory(\"data_pfds\")\n", - "make_directory(\"data_tabulated\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Global Solver Settings\n", - "\n", - "Use the IDAES configuration system for solver settings. These will apply to all Ipopt instances created, including the ones created in initialization methods." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "use_idaes_solver_configuration_defaults()\n", - "idaes.cfg.ipopt.options.nlp_scaling_method = \"user-scaling\"\n", - "idaes.cfg.ipopt.options.linear_solver = \"ma57\"\n", - "idaes.cfg.ipopt.options.OF_ma57_automatic_scaling = \"yes\"\n", - "idaes.cfg.ipopt.options.ma57_pivtol = 1e-5\n", - "idaes.cfg.ipopt.options.ma57_pivtolmax = 0.1\n", - "solver = pyo.SolverFactory(\"ipopt\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create the NGCC model\n", - "\n", - "Create the NGCC model and initialize it or read the saved initialization if available. The base initialized NGCC model is configured to match the baseline report with 90% capture using a Cansolv system." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ + "cells": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-07-25 03:12:25 [INFO] idaes.init.fs: NGCC load initial from ngcc_init.json.gz\n", - "Ipopt 3.13.2: nlp_scaling_method=user-scaling\n", - "tol=1e-06\n", - "max_iter=200\n", - "linear_solver=ma57\n", - "ma57_pivtol=1e-05\n", - "ma57_pivtolmax=0.1\n", - "option_file_name=C:\\Users\\javal\\AppData\\Local\\Temp\\tmpa9m4gkwo_ipopt.opt\n", - "\n", - "Using option file \"C:\\Users\\javal\\AppData\\Local\\Temp\\tmpa9m4gkwo_ipopt.opt\".\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma57.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 7661\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 5948\n", - "\n", - "Total number of variables............................: 2404\n", - " variables with only lower bounds: 87\n", - " variables with lower and upper bounds: 1447\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 2404\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 3.50e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - "Reallocating memory for MA57: lfact (111709)\n", - " 1 0.0000000e+00 3.49e-01 1.12e+04 -1.0 3.06e+03 - 9.90e-01 9.90e-01h 1\n", - " 2 0.0000000e+00 3.15e-03 5.15e+02 -1.0 3.02e+03 - 9.89e-01 9.91e-01h 1\n", - " 3 0.0000000e+00 2.95e-07 9.98e+02 -1.0 3.74e+01 - 9.90e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 2.9462398742907681e-07 2.9462398742907681e-07\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9462398742907681e-07 2.9462398742907681e-07\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.085\n", - "Total CPU secs in NLP function evaluations = 1.396\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "m = pyo.ConcreteModel()\n", - "m.fs = ngcc.NgccFlowsheet(dynamic=False)\n", - "iscale.calculate_scaling_factors(m)\n", - "m.fs.initialize(\n", - " load_from=\"ngcc_init.json.gz\",\n", - " save_to=\"ngcc_init.json.gz\",\n", - " outlvl=idaeslog.INFO_HIGH,\n", - ")\n", - "res = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Show PFDs with baseline results\n", - "\n", - "This displays PFDs in the notebook, and saves them to files. The full NGCC model is too big to show well in a single PFD, so it is broken into the three main sections, gas turbine, heat recovery steam generator (HRSG), and steam turbine." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# NGCC Baseline and Turndown\n", + "Maintainer: Javal Vyas \n", + "Author: John Eslick \n", + "Updated: 2024-07-25 \n", + "\n", + "This notebook runs a series of net electric power outputs from 650 MW to 160 MW (about 100% to 25%) for an NGCC with 97% CO2 capture. The NGCC model is based on the NETL report \"Cost and Performance Baseline for Fossil Energy Plants Volume 1, Bituminous Coal and Natural Gas to Electricity.\" Sept 2019, Case B31B [resource](https://www.osti.gov/servlets/purl/1893822). Another valuable resource for gaining a deeper understanding of the mathematical model would be the publication referenced [here](https://www.sciencedirect.com/science/article/pii/S1750583617302414). " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Imports\n", + "\n", + "Import the modules that will be used." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "from IPython.core.display import SVG\n", + "import pyomo.environ as pyo\n", + "import idaes\n", + "from idaes.core.solvers import use_idaes_solver_configuration_defaults\n", + "import idaes.core.util.scaling as iscale\n", + "import idaes.core.util as iutil\n", + "from idaes_examples.mod.power_gen import ngcc\n", + "import idaes.logger as idaeslog\n", + "import pytest\n", + "import logging\n", + "\n", + "logging.getLogger(\"pyomo\").setLevel(logging.ERROR)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Make Output Directories\n", + "\n", + "This notebook can produce a large number of output files. To make it easier to manage, some subdirectories are used to organize output. This ensures that the directories exist." + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Gas Turbine Section\n", - "\n" - ] + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def make_directory(path):\n", + " \"\"\"Make a directory if it doesn't exist\"\"\"\n", + " try:\n", + " os.mkdir(path)\n", + " except FileExistsError:\n", + " pass\n", + "\n", + "\n", + "make_directory(\"data\")\n", + "make_directory(\"data_pfds\")\n", + "make_directory(\"data_tabulated\")" + ] }, { - "data": { - "image/svg+xml": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " image/svg+xml\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " cmp1\n", - " cmb1\n", - " gts1\n", - " inject1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " gts2\n", - " \n", - " \n", - " gts3\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " splt1\n", - " mx1\n", - " mx2\n", - " mx3\n", - " Blade Cooling Air\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " NGPreheater\n", - " \n", - " To HRSG\n", - " \n", - " \n", - " \n", - " \n", - " air01\n", - " \n", - " \n", - " air03\n", - " \n", - " \n", - " air02\n", - " \n", - " \n", - " air04\n", - " \n", - " \n", - " fuel01\n", - " \n", - " \n", - " fuel02\n", - " \n", - " \n", - " \n", - " \n", - " st02\n", - " st01\n", - " \n", - " \n", - " air05\n", - " \n", - " \n", - " air06\n", - " \n", - " \n", - " g02\n", - " \n", - " \n", - " g01\n", - " \n", - " \n", - " air09\n", - " \n", - " \n", - " air10\n", - " \n", - " \n", - " air07\n", - " \n", - " \n", - " g03\n", - " \n", - " \n", - " g04\n", - " \n", - " \n", - " g05\n", - " \n", - " \n", - " g06\n", - " \n", - " \n", - " g07\n", - " \n", - " \n", - " g08\n", - " \n", - " \n", - " air08\n", - " \n", - " \n", - " Summary\n", - " total GT power:\n", - " 476.99 MW\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " air01\n", - " \n", - " \n", - " \n", - " air02\n", - " \n", - " \n", - " \n", - " air03\n", - " \n", - " \n", - " \n", - " air04\n", - " \n", - " \n", - " \n", - " fuel01\n", - " \n", - " \n", - " \n", - " fuel02\n", - " \n", - " \n", - " feed_air1\n", - " \n", - " \n", - " st02\n", - " \n", - " \n", - " \n", - " st01\n", - " \n", - " \n", - " \n", - " air05\n", - " \n", - " \n", - " \n", - " air06\n", - " \n", - " \n", - " exhaust_1\n", - " \n", - " \n", - " g01\n", - " \n", - " \n", - " \n", - " g02\n", - " \n", - " \n", - " \n", - " air09\n", - " \n", - " \n", - " \n", - " air10\n", - " \n", - " \n", - " \n", - " air07\n", - " \n", - " \n", - " \n", - " g03\n", - " \n", - " \n", - " \n", - " g04\n", - " \n", - " \n", - " \n", - " g05\n", - " \n", - " \n", - " \n", - " g07\n", - " \n", - " \n", - " \n", - " g06\n", - " \n", - " \n", - " \n", - " g08\n", - " \n", - " \n", - " \n", - " air08\n", - " \n", - " \n", - " \n", - " \n", - " 299.82 K\n", - " 25.946 kg/s\n", - " 31.026 bar\n", - " 1.000%\n", - " 93.100%\n", - " 0.000%\n", - " 1.600%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yCH4:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " 3.200%\n", - " yC2H6:\n", - " 0.700%\n", - " yC3H8:\n", - " 0.400%\n", - " yC4H10:\n", - " \n", - " \n", - " \n", - " 335.99 K\n", - " 18.526 kg/s\n", - " 43.355 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 457.27 K\n", - " 18.526 kg/s\n", - " 43.355 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " NG PreharerUses Hot WaterFrom HRSG\n", - " \n", - " \n", - " 448.75 K\n", - " 25.946 kg/s\n", - " 31.026 bar\n", - " 1.000%\n", - " 93.100%\n", - " 0.000%\n", - " 1.600%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yCH4:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " 3.200%\n", - " yC2H6:\n", - " 0.700%\n", - " yC3H8:\n", - " 0.400%\n", - " yC4H10:\n", - " \n", - " \n", - " power:\n", - " 481.28 MW\n", - " \n", - " \n", - " isentr. efficiency:\n", - " 84.02%\n", - " isentr. head:\n", - " 367.27 kJ/kg\n", - " inlet vol. flow:\n", - " 883.2 m**3/s\n", - " \n", - " 288.15 K\n", - " 1100.984 kg/s\n", - " 1.034 bar\n", - " 0.030%\n", - " 0.990%\n", - " 0.920%\n", - " 20.740%\n", - " 77.320%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yAr:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 288.17 K\n", - " 1100.984 kg/s\n", - " 1.099 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 709.64 K\n", - " 1100.984 kg/s\n", - " 19.226 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 709.64 K\n", - " 1008.614 kg/s\n", - " 19.226 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 691.89 K\n", - " 1034.561 kg/s\n", - " 19.226 bar\n", - " 0.070%\n", - " 3.842%\n", - " 19.884%\n", - " 74.195%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yCH4:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " 0.132%\n", - " yC2H6:\n", - " 0.029%\n", - " yC3H8:\n", - " 0.017%\n", - " yC4H10:\n", - " \n", - " \n", - " \n", - " 1641.38 K\n", - " 1034.691 kg/s\n", - " 18.265 bar\n", - " 4.324%\n", - " 9.217%\n", - " 0.000%\n", - " 11.471%\n", - " 74.106%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yCH4:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " 0.000%\n", - " yC2H6:\n", - " 0.000%\n", - " yC3H8:\n", - " 0.000%\n", - " yC4H10:\n", - " 0.881%\n", - " yAr:\n", - " \n", - " \n", - " \n", - " power:\n", - " -374.58 MW\n", - " \n", - " \n", - " isentr. efficiency:\n", - " 88.53%\n", - " isentr. head:\n", - " -408.95 kJ/kg\n", - " inlet vol. flow:\n", - " 273.6 m**3/s\n", - " \n", - " \n", - " \n", - " 898.00 K\n", - " 1127.060 kg/s\n", - " 1.100 bar\n", - " 3.978%\n", - " 8.554%\n", - " 0.884%\n", - " 12.219%\n", - " 74.365%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yAr:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " \n", - " \n", - " 899.61 K\n", - " 1116.809 kg/s\n", - " 1.100 bar\n", - " 4.014%\n", - " 8.622%\n", - " 0.884%\n", - " 12.142%\n", - " 74.339%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yAr:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 1094.58 K\n", - " 1116.809 kg/s\n", - " 2.799 bar\n", - " 4.014%\n", - " 8.622%\n", - " 0.884%\n", - " 12.142%\n", - " 74.339%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yAr:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 709.76 K\n", - " 14.769 kg/s\n", - " 2.799 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 1099.28 K\n", - " 1102.041 kg/s\n", - " 2.799 bar\n", - " 4.066%\n", - " 8.723%\n", - " 0.883%\n", - " 12.028%\n", - " 74.299%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yAr:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 1329.41 K\n", - " 1102.041 kg/s\n", - " 7.137 bar\n", - " 4.066%\n", - " 8.723%\n", - " 0.883%\n", - " 12.028%\n", - " 74.299%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yAr:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 1365.44 K\n", - " 1034.691 kg/s\n", - " 7.137 bar\n", - " 4.324%\n", - " 9.217%\n", - " 0.881%\n", - " 11.471%\n", - " 74.106%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yAr:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " \n", - " \n", - " power:\n", - " -264.25 MW\n", - " \n", - " \n", - " isentr. efficiency:\n", - " 88.19%\n", - " isentr. head:\n", - " -268.31 kJ/kg\n", - " inlet vol. flow:\n", - " 1280.2 m**3/s\n", - " \n", - " \n", - " \n", - " 709.77 K\n", - " 10.250 kg/s\n", - " 1.100 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 85.0%\n", - " opening:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 85.0%\n", - " opening:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 85.0%\n", - " opening:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 709.73 K\n", - " 67.350 kg/s\n", - " 7.137 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " power:\n", - " -319.43 MW\n", - " \n", - " \n", - " isentr. efficiency:\n", - " 88.35%\n", - " isentr. head:\n", - " -328.07 kJ/kg\n", - " inlet vol. flow:\n", - " 602.3 m**3/s\n", - " \n", - " \n", - "" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Global Solver Settings\n", + "\n", + "Use the IDAES configuration system for solver settings. These will apply to all Ipopt instances created, including the ones created in initialization methods." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "use_idaes_solver_configuration_defaults()\n", + "idaes.cfg.ipopt.options.nlp_scaling_method = \"user-scaling\"\n", + "idaes.cfg.ipopt.options.linear_solver = \"ma57\"\n", + "idaes.cfg.ipopt.options.OF_ma57_automatic_scaling = \"yes\"\n", + "idaes.cfg.ipopt.options.ma57_pivtol = 1e-5\n", + "idaes.cfg.ipopt.options.ma57_pivtolmax = 0.1\n", + "solver = pyo.SolverFactory(\"ipopt\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create the NGCC model\n", + "\n", + "Create the NGCC model and initialize it or read the saved initialization if available. The base initialized NGCC model is configured to match the baseline report with 90% capture using a Cansolv system." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-07-25 03:12:25 [INFO] idaes.init.fs: NGCC load initial from ngcc_init.json.gz\n", + "Ipopt 3.13.2: nlp_scaling_method=user-scaling\n", + "tol=1e-06\n", + "max_iter=200\n", + "linear_solver=ma57\n", + "ma57_pivtol=1e-05\n", + "ma57_pivtolmax=0.1\n", + "option_file_name=C:\\Users\\javal\\AppData\\Local\\Temp\\tmpa9m4gkwo_ipopt.opt\n", + "\n", + "Using option file \"C:\\Users\\javal\\AppData\\Local\\Temp\\tmpa9m4gkwo_ipopt.opt\".\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma57.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 7661\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 5948\n", + "\n", + "Total number of variables............................: 2404\n", + " variables with only lower bounds: 87\n", + " variables with lower and upper bounds: 1447\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 2404\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 3.50e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + "Reallocating memory for MA57: lfact (111709)\n", + " 1 0.0000000e+00 3.49e-01 1.12e+04 -1.0 3.06e+03 - 9.90e-01 9.90e-01h 1\n", + " 2 0.0000000e+00 3.15e-03 5.15e+02 -1.0 3.02e+03 - 9.89e-01 9.91e-01h 1\n", + " 3 0.0000000e+00 2.95e-07 9.98e+02 -1.0 3.74e+01 - 9.90e-01 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 2.9462398742907681e-07 2.9462398742907681e-07\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 2.9462398742907681e-07 2.9462398742907681e-07\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.085\n", + "Total CPU secs in NLP function evaluations = 1.396\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } ], - "text/plain": [ - "" + "source": [ + "m = pyo.ConcreteModel()\n", + "m.fs = ngcc.NgccFlowsheet(dynamic=False)\n", + "iscale.calculate_scaling_factors(m)\n", + "m.fs.initialize(\n", + " load_from=\"ngcc_init.json.gz\",\n", + " save_to=\"ngcc_init.json.gz\",\n", + " outlvl=idaeslog.INFO_HIGH,\n", + ")\n", + "res = solver.solve(m, tee=True)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "HRSG Section\n", - "\n" - ] + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Show PFDs with baseline results\n", + "\n", + "This displays PFDs in the notebook, and saves them to files. The full NGCC model is too big to show well in a single PFD, so it is broken into the three main sections, gas turbine, heat recovery steam generator (HRSG), and steam turbine." + ] }, { - "data": { - "image/svg+xml": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " image/svg+xml\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " IPSH1\n", - " IPSH2\n", - " IPSH3\n", - " HPSH3\n", - " HPSH2\n", - " HPSH1\n", - " HPEVAP\n", - " HPECON5\n", - " LPECON\n", - " LPEVAP\n", - " LPDRUM\n", - " HPSH4\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " HPECON4\n", - " HPECON3\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " LPSH1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Gas Turbine Exhaust\n", - " HP Steam\n", - " IP Steam\n", - " \n", - " Feedwater\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " HPECON1\n", - " \n", - " \n", - " \n", - " \n", - " HPECON2\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " IPECON1\n", - " IPECON2\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " IPEVAP\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Cold Reheat\n", - " \n", - " \n", - " \n", - " \n", - " From HP ECON2\n", - " To HP ECON3\n", - " \n", - " \n", - " LP Steam\n", - " \n", - " \n", - " \n", - " Mixer1\n", - " \n", - " LP_FGsplit\n", - " \n", - " \n", - " \n", - " \n", - " LP_Mixer2\n", - " IPPump\n", - " HPPump\n", - " IP_Mixer1\n", - " IP_Splitter2\n", - " To Ejector\n", - " To Reclaimer\n", - " To Dryer\n", - " To NG Preheater\n", - " From NG Preheater\n", - " To Stack or Capture\n", - " IP_Splitter1\n", - " Splitter1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " SOEC Makeup\n", - " \n", - " \n", - " \n", - " \n", - " lp01\n", - " \n", - " \n", - " \n", - " lp02\n", - " \n", - " \n", - " \n", - " lp03\n", - " \n", - " \n", - " \n", - " lp04\n", - " \n", - " \n", - " \n", - " lp12\n", - " \n", - " \n", - " \n", - " lp05\n", - " \n", - " \n", - " \n", - " lp13\n", - " \n", - " \n", - " \n", - " g30\n", - " \n", - " \n", - " \n", - " g19\n", - " \n", - " \n", - " \n", - " hp03\n", - " \n", - " \n", - " \n", - " hp04\n", - " \n", - " \n", - " \n", - " hp05\n", - " \n", - " \n", - " \n", - " g18\n", - " \n", - " \n", - " \n", - " hp06\n", - " \n", - " \n", - " \n", - " hp06b\n", - " \n", - " \n", - " \n", - " g15\n", - " \n", - " \n", - " \n", - " ip06\n", - " \n", - " \n", - " \n", - " g14\n", - " \n", - " \n", - " \n", - " g17\n", - " \n", - " \n", - " \n", - " g16\n", - " \n", - " \n", - " \n", - " hp07\n", - " \n", - " \n", - " \n", - " hp08\n", - " \n", - " \n", - " \n", - " hp09\n", - " \n", - " \n", - " \n", - " hp10\n", - " \n", - " \n", - " \n", - " hp11\n", - " \n", - " \n", - " \n", - " g13\n", - " \n", - " \n", - " \n", - " g12\n", - " \n", - " \n", - " \n", - " g11\n", - " \n", - " \n", - " \n", - " g08\n", - " \n", - " \n", - " \n", - " g09\n", - " \n", - " \n", - " \n", - " ip10\n", - " \n", - " \n", - " \n", - " ip09\n", - " \n", - " \n", - " \n", - " ip08\n", - " \n", - " \n", - " \n", - " ip07\n", - " \n", - " \n", - " \n", - " g10\n", - " \n", - " \n", - " \n", - " g28\n", - " \n", - " \n", - " \n", - " ip11\n", - " \n", - " \n", - " \n", - " ip012\n", - " \n", - " \n", - " \n", - " ip013\n", - " \n", - " \n", - " \n", - " ip14\n", - " \n", - " \n", - " \n", - " ip015\n", - " \n", - " \n", - " \n", - " lp09\n", - " \n", - " \n", - " \n", - " lp08\n", - " \n", - " \n", - " \n", - " lp06\n", - " \n", - " \n", - " \n", - " hp01\n", - " \n", - " \n", - " \n", - " hp02\n", - " \n", - " \n", - " \n", - " hp03\n", - " \n", - " \n", - " \n", - " ip01\n", - " \n", - " \n", - " \n", - " ip02\n", - " \n", - " \n", - " \n", - " ip03\n", - " \n", - " \n", - " \n", - " g25\n", - " \n", - " \n", - " \n", - " g26\n", - " \n", - " \n", - " \n", - " g27\n", - " \n", - " \n", - " \n", - " ip05\n", - " \n", - " \n", - " \n", - " ip04\n", - " \n", - " \n", - " \n", - " g24\n", - " \n", - " \n", - " \n", - " g23\n", - " \n", - " \n", - " \n", - " g29\n", - " \n", - " \n", - " \n", - " lp10\n", - " \n", - " \n", - " \n", - " lp11\n", - " \n", - " \n", - " \n", - " g21\n", - " \n", - " \n", - " \n", - " g20\n", - " \n", - " \n", - " \n", - " g22\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " lp01\n", - " \n", - " \n", - " lp02\n", - " \n", - " \n", - " lp03\n", - " \n", - " \n", - " lp04\n", - " \n", - " \n", - " lp12\n", - " \n", - " \n", - " \n", - " lp05\n", - " \n", - " lp13\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " g30\n", - " \n", - " g29\n", - " g28\n", - " \n", - " \n", - " ip11\n", - " \n", - " ip06\n", - " g17\n", - " \n", - " \n", - " g16\n", - " g15\n", - " \n", - " \n", - " g14\n", - " hp07\n", - " \n", - " \n", - " hp08\n", - " hp06b\n", - " \n", - " hp06\n", - " \n", - " g19\n", - " \n", - " hp03\n", - " \n", - " g18\n", - " hp04\n", - " hp05\n", - " hp09\n", - " hp10\n", - " hp11\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " g12\n", - " g13\n", - " g11\n", - " g08\n", - " g09\n", - " ip08\n", - " ip09\n", - " ip10\n", - " ip07\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " g10\n", - " \n", - " ip14\n", - " ip13\n", - " ip12\n", - " ip15\n", - " \n", - " \n", - " \n", - " \n", - " ip06\n", - " \n", - " ip08\n", - " ip09\n", - " \n", - " \n", - " \n", - " hp01\n", - " hp02\n", - " hp03\n", - " \n", - " \n", - " \n", - " g27\n", - " g26\n", - " ip02\n", - " ip01\n", - " ip03\n", - " \n", - " \n", - " \n", - " \n", - " g25\n", - " \n", - " g24\n", - " \n", - " ip05\n", - " \n", - " ip04\n", - " \n", - " g23\n", - " \n", - " \n", - " g22\n", - " \n", - " lp11\n", - " lp10\n", - " g21\n", - " g20\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 382.51 K\n", - " 1.010 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 180.904 kg/s\n", - " 356.59 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 410.40 K\n", - " 1.010 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 0.000 kg/s\n", - " 443.56 K\n", - " 8.000 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 18.526 kg/s\n", - " 335.99 K\n", - " 43.355 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 199.430 kg/s\n", - " 435.43 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 22.669 kg/s\n", - " 435.43 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 199.430 kg/s\n", - " 394.15 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 556.520 kg/s\n", - " 547.38 K\n", - " 1.046 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 199.430 kg/s\n", - " 435.43 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 180.904 kg/s\n", - " 399.98 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 40.345 kg/s\n", - " 435.43 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 40.345 kg/s\n", - " 436.13 K\n", - " 43.850 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 40.345 kg/s\n", - " 457.27 K\n", - " 43.355 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 22.669 kg/s\n", - " 557.10 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 556.520 kg/s\n", - " 557.25 K\n", - " 1.046 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 556.520 kg/s\n", - " 557.25 K\n", - " 1.046 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 552.32 K\n", - " 1.046 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 21.818 kg/s\n", - " 510.22 K\n", - " 42.352 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 176.761 kg/s\n", - " 435.43 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 18.526 kg/s\n", - " 457.27 K\n", - " 43.355 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 435.43 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 479.13 K\n", - " 1.010 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 439.77 K\n", - " 244.000 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 21.818 kg/s\n", - " 457.27 K\n", - " 43.355 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 520.59 K\n", - " 1.046 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 516.28 K\n", - " 1.012 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 514.35 K\n", - " 1.011 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 511.29 K\n", - " 1.010 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 504.84 K\n", - " 243.913 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 508.62 K\n", - " 243.829 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 157.430 kg/s\n", - " 855.94 K\n", - " 30.909 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 157.430 kg/s\n", - " 710.16 K\n", - " 33.408 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 157.430 kg/s\n", - " 600.93 K\n", - " 34.177 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 21.818 kg/s\n", - " 556.91 K\n", - " 42.146 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 135.612 kg/s\n", - " 610.47 K\n", - " 34.177 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 21.818 kg/s\n", - " 527.32 K\n", - " 42.352 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 610.47 K\n", - " 34.177 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 858.53 K\n", - " 172.428 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 898.00 K\n", - " 1.100 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 880.11 K\n", - " 1.098 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 735.19 K\n", - " 173.171 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 796.53 K\n", - " 172.830 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " T:P:\n", - " 786.52 K\n", - " 1.092 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 576.08 K\n", - " 1.047 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 577.92 K\n", - " 1.081 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " T:P:\n", - " 755.13 K\n", - " 1.083 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " T:P:\n", - " 840.55 K\n", - " 1.096 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 557.25 K\n", - " 1.046 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 568.07 K\n", - " 1.046 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 529.72 K\n", - " 243.746 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 544.93 K\n", - " 243.667 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 557.78 K\n", - " 243.589 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 627.24 K\n", - " 173.589 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 659.11 K\n", - " 173.415 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " T:P:\n", - " 584.88 K\n", - " 1.081 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " T:P:\n", - " 723.83 K\n", - " 1.081 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 557.34 K\n", - " 173.589 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " T:P:\n", - " 820.55 K\n", - " 1.094 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "" + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Gas Turbine Section\n", + "\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " image/svg+xml\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " cmp1\n", + " cmb1\n", + " gts1\n", + " inject1\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " gts2\n", + " \n", + " \n", + " gts3\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " splt1\n", + " mx1\n", + " mx2\n", + " mx3\n", + " Blade Cooling Air\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " NGPreheater\n", + " \n", + " To HRSG\n", + " \n", + " \n", + " \n", + " \n", + " air01\n", + " \n", + " \n", + " air03\n", + " \n", + " \n", + " air02\n", + " \n", + " \n", + " air04\n", + " \n", + " \n", + " fuel01\n", + " \n", + " \n", + " fuel02\n", + " \n", + " \n", + " \n", + " \n", + " st02\n", + " st01\n", + " \n", + " \n", + " air05\n", + " \n", + " \n", + " air06\n", + " \n", + " \n", + " g02\n", + " \n", + " \n", + " g01\n", + " \n", + " \n", + " air09\n", + " \n", + " \n", + " air10\n", + " \n", + " \n", + " air07\n", + " \n", + " \n", + " g03\n", + " \n", + " \n", + " g04\n", + " \n", + " \n", + " g05\n", + " \n", + " \n", + " g06\n", + " \n", + " \n", + " g07\n", + " \n", + " \n", + " g08\n", + " \n", + " \n", + " air08\n", + " \n", + " \n", + " Summary\n", + " total GT power:\n", + " 476.99 MW\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " air01\n", + " \n", + " \n", + " \n", + " air02\n", + " \n", + " \n", + " \n", + " air03\n", + " \n", + " \n", + " \n", + " air04\n", + " \n", + " \n", + " \n", + " fuel01\n", + " \n", + " \n", + " \n", + " fuel02\n", + " \n", + " \n", + " feed_air1\n", + " \n", + " \n", + " st02\n", + " \n", + " \n", + " \n", + " st01\n", + " \n", + " \n", + " \n", + " air05\n", + " \n", + " \n", + " \n", + " air06\n", + " \n", + " \n", + " exhaust_1\n", + " \n", + " \n", + " g01\n", + " \n", + " \n", + " \n", + " g02\n", + " \n", + " \n", + " \n", + " air09\n", + " \n", + " \n", + " \n", + " air10\n", + " \n", + " \n", + " \n", + " air07\n", + " \n", + " \n", + " \n", + " g03\n", + " \n", + " \n", + " \n", + " g04\n", + " \n", + " \n", + " \n", + " g05\n", + " \n", + " \n", + " \n", + " g07\n", + " \n", + " \n", + " \n", + " g06\n", + " \n", + " \n", + " \n", + " g08\n", + " \n", + " \n", + " \n", + " air08\n", + " \n", + " \n", + " \n", + " \n", + " 299.82 K\n", + " 25.946 kg/s\n", + " 31.026 bar\n", + " 1.000%\n", + " 93.100%\n", + " 0.000%\n", + " 1.600%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yCH4:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " 3.200%\n", + " yC2H6:\n", + " 0.700%\n", + " yC3H8:\n", + " 0.400%\n", + " yC4H10:\n", + " \n", + " \n", + " \n", + " 335.99 K\n", + " 18.526 kg/s\n", + " 43.355 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 457.27 K\n", + " 18.526 kg/s\n", + " 43.355 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " NG PreharerUses Hot WaterFrom HRSG\n", + " \n", + " \n", + " 448.75 K\n", + " 25.946 kg/s\n", + " 31.026 bar\n", + " 1.000%\n", + " 93.100%\n", + " 0.000%\n", + " 1.600%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yCH4:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " 3.200%\n", + " yC2H6:\n", + " 0.700%\n", + " yC3H8:\n", + " 0.400%\n", + " yC4H10:\n", + " \n", + " \n", + " power:\n", + " 481.28 MW\n", + " \n", + " \n", + " isentr. efficiency:\n", + " 84.02%\n", + " isentr. head:\n", + " 367.27 kJ/kg\n", + " inlet vol. flow:\n", + " 883.2 m**3/s\n", + " \n", + " 288.15 K\n", + " 1100.984 kg/s\n", + " 1.034 bar\n", + " 0.030%\n", + " 0.990%\n", + " 0.920%\n", + " 20.740%\n", + " 77.320%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yAr:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 288.17 K\n", + " 1100.984 kg/s\n", + " 1.099 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 709.64 K\n", + " 1100.984 kg/s\n", + " 19.226 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 709.64 K\n", + " 1008.614 kg/s\n", + " 19.226 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 691.89 K\n", + " 1034.561 kg/s\n", + " 19.226 bar\n", + " 0.070%\n", + " 3.842%\n", + " 19.884%\n", + " 74.195%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yCH4:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " 0.132%\n", + " yC2H6:\n", + " 0.029%\n", + " yC3H8:\n", + " 0.017%\n", + " yC4H10:\n", + " \n", + " \n", + " \n", + " 1641.38 K\n", + " 1034.691 kg/s\n", + " 18.265 bar\n", + " 4.324%\n", + " 9.217%\n", + " 0.000%\n", + " 11.471%\n", + " 74.106%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yCH4:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " 0.000%\n", + " yC2H6:\n", + " 0.000%\n", + " yC3H8:\n", + " 0.000%\n", + " yC4H10:\n", + " 0.881%\n", + " yAr:\n", + " \n", + " \n", + " \n", + " power:\n", + " -374.58 MW\n", + " \n", + " \n", + " isentr. efficiency:\n", + " 88.53%\n", + " isentr. head:\n", + " -408.95 kJ/kg\n", + " inlet vol. flow:\n", + " 273.6 m**3/s\n", + " \n", + " \n", + " \n", + " 898.00 K\n", + " 1127.060 kg/s\n", + " 1.100 bar\n", + " 3.978%\n", + " 8.554%\n", + " 0.884%\n", + " 12.219%\n", + " 74.365%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yAr:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " \n", + " \n", + " 899.61 K\n", + " 1116.809 kg/s\n", + " 1.100 bar\n", + " 4.014%\n", + " 8.622%\n", + " 0.884%\n", + " 12.142%\n", + " 74.339%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yAr:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 1094.58 K\n", + " 1116.809 kg/s\n", + " 2.799 bar\n", + " 4.014%\n", + " 8.622%\n", + " 0.884%\n", + " 12.142%\n", + " 74.339%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yAr:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 709.76 K\n", + " 14.769 kg/s\n", + " 2.799 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 1099.28 K\n", + " 1102.041 kg/s\n", + " 2.799 bar\n", + " 4.066%\n", + " 8.723%\n", + " 0.883%\n", + " 12.028%\n", + " 74.299%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yAr:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 1329.41 K\n", + " 1102.041 kg/s\n", + " 7.137 bar\n", + " 4.066%\n", + " 8.723%\n", + " 0.883%\n", + " 12.028%\n", + " 74.299%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yAr:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 1365.44 K\n", + " 1034.691 kg/s\n", + " 7.137 bar\n", + " 4.324%\n", + " 9.217%\n", + " 0.881%\n", + " 11.471%\n", + " 74.106%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yAr:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " \n", + " \n", + " power:\n", + " -264.25 MW\n", + " \n", + " \n", + " isentr. efficiency:\n", + " 88.19%\n", + " isentr. head:\n", + " -268.31 kJ/kg\n", + " inlet vol. flow:\n", + " 1280.2 m**3/s\n", + " \n", + " \n", + " \n", + " 709.77 K\n", + " 10.250 kg/s\n", + " 1.100 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 85.0%\n", + " opening:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 85.0%\n", + " opening:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 85.0%\n", + " opening:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 709.73 K\n", + " 67.350 kg/s\n", + " 7.137 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " power:\n", + " -319.43 MW\n", + " \n", + " \n", + " isentr. efficiency:\n", + " 88.35%\n", + " isentr. head:\n", + " -328.07 kJ/kg\n", + " inlet vol. flow:\n", + " 602.3 m**3/s\n", + " \n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "HRSG Section\n", + "\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " image/svg+xml\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " IPSH1\n", + " IPSH2\n", + " IPSH3\n", + " HPSH3\n", + " HPSH2\n", + " HPSH1\n", + " HPEVAP\n", + " HPECON5\n", + " LPECON\n", + " LPEVAP\n", + " LPDRUM\n", + " HPSH4\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " HPECON4\n", + " HPECON3\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " LPSH1\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Gas Turbine Exhaust\n", + " HP Steam\n", + " IP Steam\n", + " \n", + " Feedwater\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " HPECON1\n", + " \n", + " \n", + " \n", + " \n", + " HPECON2\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " IPECON1\n", + " IPECON2\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " IPEVAP\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Cold Reheat\n", + " \n", + " \n", + " \n", + " \n", + " From HP ECON2\n", + " To HP ECON3\n", + " \n", + " \n", + " LP Steam\n", + " \n", + " \n", + " \n", + " Mixer1\n", + " \n", + " LP_FGsplit\n", + " \n", + " \n", + " \n", + " \n", + " LP_Mixer2\n", + " IPPump\n", + " HPPump\n", + " IP_Mixer1\n", + " IP_Splitter2\n", + " To Ejector\n", + " To Reclaimer\n", + " To Dryer\n", + " To NG Preheater\n", + " From NG Preheater\n", + " To Stack or Capture\n", + " IP_Splitter1\n", + " Splitter1\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " SOEC Makeup\n", + " \n", + " \n", + " \n", + " \n", + " lp01\n", + " \n", + " \n", + " \n", + " lp02\n", + " \n", + " \n", + " \n", + " lp03\n", + " \n", + " \n", + " \n", + " lp04\n", + " \n", + " \n", + " \n", + " lp12\n", + " \n", + " \n", + " \n", + " lp05\n", + " \n", + " \n", + " \n", + " lp13\n", + " \n", + " \n", + " \n", + " g30\n", + " \n", + " \n", + " \n", + " g19\n", + " \n", + " \n", + " \n", + " hp03\n", + " \n", + " \n", + " \n", + " hp04\n", + " \n", + " \n", + " \n", + " hp05\n", + " \n", + " \n", + " \n", + " g18\n", + " \n", + " \n", + " \n", + " hp06\n", + " \n", + " \n", + " \n", + " hp06b\n", + " \n", + " \n", + " \n", + " g15\n", + " \n", + " \n", + " \n", + " ip06\n", + " \n", + " \n", + " \n", + " g14\n", + " \n", + " \n", + " \n", + " g17\n", + " \n", + " \n", + " \n", + " g16\n", + " \n", + " \n", + " \n", + " hp07\n", + " \n", + " \n", + " \n", + " hp08\n", + " \n", + " \n", + " \n", + " hp09\n", + " \n", + " \n", + " \n", + " hp10\n", + " \n", + " \n", + " \n", + " hp11\n", + " \n", + " \n", + " \n", + " g13\n", + " \n", + " \n", + " \n", + " g12\n", + " \n", + " \n", + " \n", + " g11\n", + " \n", + " \n", + " \n", + " g08\n", + " \n", + " \n", + " \n", + " g09\n", + " \n", + " \n", + " \n", + " ip10\n", + " \n", + " \n", + " \n", + " ip09\n", + " \n", + " \n", + " \n", + " ip08\n", + " \n", + " \n", + " \n", + " ip07\n", + " \n", + " \n", + " \n", + " g10\n", + " \n", + " \n", + " \n", + " g28\n", + " \n", + " \n", + " \n", + " ip11\n", + " \n", + " \n", + " \n", + " ip012\n", + " \n", + " \n", + " \n", + " ip013\n", + " \n", + " \n", + " \n", + " ip14\n", + " \n", + " \n", + " \n", + " ip015\n", + " \n", + " \n", + " \n", + " lp09\n", + " \n", + " \n", + " \n", + " lp08\n", + " \n", + " \n", + " \n", + " lp06\n", + " \n", + " \n", + " \n", + " hp01\n", + " \n", + " \n", + " \n", + " hp02\n", + " \n", + " \n", + " \n", + " hp03\n", + " \n", + " \n", + " \n", + " ip01\n", + " \n", + " \n", + " \n", + " ip02\n", + " \n", + " \n", + " \n", + " ip03\n", + " \n", + " \n", + " \n", + " g25\n", + " \n", + " \n", + " \n", + " g26\n", + " \n", + " \n", + " \n", + " g27\n", + " \n", + " \n", + " \n", + " ip05\n", + " \n", + " \n", + " \n", + " ip04\n", + " \n", + " \n", + " \n", + " g24\n", + " \n", + " \n", + " \n", + " g23\n", + " \n", + " \n", + " \n", + " g29\n", + " \n", + " \n", + " \n", + " lp10\n", + " \n", + " \n", + " \n", + " lp11\n", + " \n", + " \n", + " \n", + " g21\n", + " \n", + " \n", + " \n", + " g20\n", + " \n", + " \n", + " \n", + " g22\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " lp01\n", + " \n", + " \n", + " lp02\n", + " \n", + " \n", + " lp03\n", + " \n", + " \n", + " lp04\n", + " \n", + " \n", + " lp12\n", + " \n", + " \n", + " \n", + " lp05\n", + " \n", + " lp13\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " g30\n", + " \n", + " g29\n", + " g28\n", + " \n", + " \n", + " ip11\n", + " \n", + " ip06\n", + " g17\n", + " \n", + " \n", + " g16\n", + " g15\n", + " \n", + " \n", + " g14\n", + " hp07\n", + " \n", + " \n", + " hp08\n", + " hp06b\n", + " \n", + " hp06\n", + " \n", + " g19\n", + " \n", + " hp03\n", + " \n", + " g18\n", + " hp04\n", + " hp05\n", + " hp09\n", + " hp10\n", + " hp11\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " g12\n", + " g13\n", + " g11\n", + " g08\n", + " g09\n", + " ip08\n", + " ip09\n", + " ip10\n", + " ip07\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " g10\n", + " \n", + " ip14\n", + " ip13\n", + " ip12\n", + " ip15\n", + " \n", + " \n", + " \n", + " \n", + " ip06\n", + " \n", + " ip08\n", + " ip09\n", + " \n", + " \n", + " \n", + " hp01\n", + " hp02\n", + " hp03\n", + " \n", + " \n", + " \n", + " g27\n", + " g26\n", + " ip02\n", + " ip01\n", + " ip03\n", + " \n", + " \n", + " \n", + " \n", + " g25\n", + " \n", + " g24\n", + " \n", + " ip05\n", + " \n", + " ip04\n", + " \n", + " g23\n", + " \n", + " \n", + " g22\n", + " \n", + " lp11\n", + " lp10\n", + " g21\n", + " g20\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 382.51 K\n", + " 1.010 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 180.904 kg/s\n", + " 356.59 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 410.40 K\n", + " 1.010 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 0.000 kg/s\n", + " 443.56 K\n", + " 8.000 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 18.526 kg/s\n", + " 335.99 K\n", + " 43.355 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 199.430 kg/s\n", + " 435.43 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 22.669 kg/s\n", + " 435.43 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 199.430 kg/s\n", + " 394.15 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 556.520 kg/s\n", + " 547.38 K\n", + " 1.046 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 199.430 kg/s\n", + " 435.43 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 180.904 kg/s\n", + " 399.98 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 40.345 kg/s\n", + " 435.43 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 40.345 kg/s\n", + " 436.13 K\n", + " 43.850 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 40.345 kg/s\n", + " 457.27 K\n", + " 43.355 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 22.669 kg/s\n", + " 557.10 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 556.520 kg/s\n", + " 557.25 K\n", + " 1.046 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 556.520 kg/s\n", + " 557.25 K\n", + " 1.046 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 552.32 K\n", + " 1.046 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 21.818 kg/s\n", + " 510.22 K\n", + " 42.352 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 176.761 kg/s\n", + " 435.43 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 18.526 kg/s\n", + " 457.27 K\n", + " 43.355 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 435.43 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 479.13 K\n", + " 1.010 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 439.77 K\n", + " 244.000 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 21.818 kg/s\n", + " 457.27 K\n", + " 43.355 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 520.59 K\n", + " 1.046 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 516.28 K\n", + " 1.012 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 514.35 K\n", + " 1.011 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 511.29 K\n", + " 1.010 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 504.84 K\n", + " 243.913 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 508.62 K\n", + " 243.829 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 157.430 kg/s\n", + " 855.94 K\n", + " 30.909 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 157.430 kg/s\n", + " 710.16 K\n", + " 33.408 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 157.430 kg/s\n", + " 600.93 K\n", + " 34.177 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 21.818 kg/s\n", + " 556.91 K\n", + " 42.146 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 135.612 kg/s\n", + " 610.47 K\n", + " 34.177 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 21.818 kg/s\n", + " 527.32 K\n", + " 42.352 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 610.47 K\n", + " 34.177 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 858.53 K\n", + " 172.428 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 898.00 K\n", + " 1.100 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 880.11 K\n", + " 1.098 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 735.19 K\n", + " 173.171 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 796.53 K\n", + " 172.830 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " T:P:\n", + " 786.52 K\n", + " 1.092 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 576.08 K\n", + " 1.047 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 577.92 K\n", + " 1.081 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " T:P:\n", + " 755.13 K\n", + " 1.083 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " T:P:\n", + " 840.55 K\n", + " 1.096 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 557.25 K\n", + " 1.046 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 568.07 K\n", + " 1.046 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 529.72 K\n", + " 243.746 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 544.93 K\n", + " 243.667 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 557.78 K\n", + " 243.589 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 627.24 K\n", + " 173.589 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 659.11 K\n", + " 173.415 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " T:P:\n", + " 584.88 K\n", + " 1.081 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " T:P:\n", + " 723.83 K\n", + " 1.081 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 557.34 K\n", + " 173.589 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " T:P:\n", + " 820.55 K\n", + " 1.094 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Steam Turbine Section\n", + "\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " image/svg+xml\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " HRSG\n", + " Cold Flue Gas\n", + " Gas Turbine Exhaust\n", + " Makeup Water\n", + " HP\n", + " IP\n", + " LP\n", + " Condensate Pump\n", + " Condenser\n", + " \n", + " \n", + " Cold Reheat\n", + " Hot Reheat\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " From Dryer\n", + " From Reclaimer\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " To Reclaimer\n", + " To Dryer\n", + " To Ejector\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " From NG Preheater\n", + " To NG Preheater\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " CaptureReboiler\n", + " \n", + " \n", + " \n", + " \n", + " To SOEC\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " t01\n", + " \n", + " \n", + " \n", + " t02\n", + " \n", + " \n", + " \n", + " t11\n", + " \n", + " \n", + " \n", + " t15\n", + " \n", + " \n", + " \n", + " t14\n", + " \n", + " \n", + " \n", + " t13\n", + " \n", + " \n", + " \n", + " t10\n", + " \n", + " \n", + " \n", + " t09\n", + " \n", + " \n", + " \n", + " t13\n", + " \n", + " \n", + " \n", + " t04\n", + " \n", + " \n", + " \n", + " t05\n", + " \n", + " \n", + " \n", + " t03\n", + " \n", + " \n", + " \n", + " t06\n", + " \n", + " \n", + " \n", + " t07\n", + " \n", + " \n", + " \n", + " t08\n", + " \n", + " \n", + " \n", + " t12\n", + " \n", + " \n", + " \n", + " cw01\n", + " \n", + " \n", + " \n", + " cw02\n", + " \n", + " \n", + " \n", + " t18\n", + " \n", + " \n", + " \n", + " t17\n", + " \n", + " \n", + " \n", + " t16\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " t01\n", + " \n", + " t02\n", + " \n", + " \n", + " t11\n", + " \n", + " \n", + " t15\n", + " \n", + " \n", + " t14\n", + " \n", + " \n", + " t10\n", + " \n", + " \n", + " t09\n", + " \n", + " \n", + " t13\n", + " \n", + " \n", + " t04\n", + " \n", + " \n", + " t05\n", + " \n", + " \n", + " t08\n", + " \n", + " \n", + " t12\n", + " \n", + " \n", + " cw01\n", + " \n", + " \n", + " cw02\n", + " \n", + " \n", + " t16\n", + " \n", + " \n", + " t18\n", + " \n", + " \n", + " t17\n", + " \n", + " t03\n", + " \n", + " t06\n", + " \n", + " t07\n", + " \n", + " \n", + " \n", + " 136.416 kg/s\n", + " 858.53 K\n", + " 172.428 bar\n", + " 63.487 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 157.430 kg/s\n", + " 855.94 K\n", + " 30.909 bar\n", + " 65.630 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 0.806 kg/s\n", + " 306.25 K\n", + " 1.013 bar\n", + " 2.500 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 3603.054 kg/s\n", + " 289.70 K\n", + " 5.000 bar\n", + " 1.260 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 111.286 kg/s\n", + " 316.88 K\n", + " 0.090 bar\n", + " 45.114 kJ/mol\n", + " 0.968\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " 22.669 kg/s\n", + " 557.10 K\n", + " 6.550 bar\n", + " 54.533 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 0.002 kg/s\n", + " 577.72 K\n", + " 4.592 bar\n", + " 55.397 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 68.812 kg/s\n", + " 577.72 K\n", + " 4.592 bar\n", + " 55.397 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 157.430 kg/s\n", + " 581.07 K\n", + " 4.592 bar\n", + " 55.522 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 136.416 kg/s\n", + " 610.47 K\n", + " 34.177 bar\n", + " 55.412 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " 111.286 kg/s\n", + " 577.72 K\n", + " 4.592 bar\n", + " 55.397 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 180.904 kg/s\n", + " 356.59 K\n", + " 6.550 bar\n", + " 6.304 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " 0.001 kg/s\n", + " 487.00 K\n", + " 20.000 bar\n", + " 50.496 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 0.000 kg/s\n", + " 476.00 K\n", + " 16.000 bar\n", + " 50.393 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 111.286 kg/s\n", + " 316.88 K\n", + " 0.090 bar\n", + " 3.299 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 3603.054 kg/s\n", + " 306.85 K\n", + " 5.000 bar\n", + " 2.552 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " 68.812 kg/s\n", + " 420.51 K\n", + " 4.592 bar\n", + " 11.184 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " 112.092 kg/s\n", + " 316.80 K\n", + " 0.090 bar\n", + " 3.293 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " 112.092 kg/s\n", + " 316.86 K\n", + " 6.550 bar\n", + " 3.308 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "text/plain": [ - "" + "source": [ + "def display_pfd():\n", + " print(\"\\n\\nGas Turbine Section\\n\")\n", + " display(SVG(m.fs.gt.write_pfd()))\n", + " print(\"\\n\\nHRSG Section\\n\")\n", + " display(SVG(m.fs.hrsg.write_pfd()))\n", + " print(\"\\n\\nSteam Turbine Section\\n\")\n", + " display(SVG(m.fs.st.write_pfd()))\n", + "\n", + "\n", + "display_pfd()\n", + "\n", + "m.fs.gt.write_pfd(fname=\"data_pfds/gt_baseline.svg\")\n", + "m.fs.hrsg.write_pfd(fname=\"data_pfds/hrsg_baseline.svg\")\n", + "m.fs.st.write_pfd(fname=\"data_pfds/st_baseline.svg\")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Steam Turbine Section\n", - "\n" - ] + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test key model outputs against NETL baseline" + ] }, { - "data": { - "image/svg+xml": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " image/svg+xml\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " HRSG\n", - " Cold Flue Gas\n", - " Gas Turbine Exhaust\n", - " Makeup Water\n", - " HP\n", - " IP\n", - " LP\n", - " Condensate Pump\n", - " Condenser\n", - " \n", - " \n", - " Cold Reheat\n", - " Hot Reheat\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " From Dryer\n", - " From Reclaimer\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " To Reclaimer\n", - " To Dryer\n", - " To Ejector\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " From NG Preheater\n", - " To NG Preheater\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " CaptureReboiler\n", - " \n", - " \n", - " \n", - " \n", - " To SOEC\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " t01\n", - " \n", - " \n", - " \n", - " t02\n", - " \n", - " \n", - " \n", - " t11\n", - " \n", - " \n", - " \n", - " t15\n", - " \n", - " \n", - " \n", - " t14\n", - " \n", - " \n", - " \n", - " t13\n", - " \n", - " \n", - " \n", - " t10\n", - " \n", - " \n", - " \n", - " t09\n", - " \n", - " \n", - " \n", - " t13\n", - " \n", - " \n", - " \n", - " t04\n", - " \n", - " \n", - " \n", - " t05\n", - " \n", - " \n", - " \n", - " t03\n", - " \n", - " \n", - " \n", - " t06\n", - " \n", - " \n", - " \n", - " t07\n", - " \n", - " \n", - " \n", - " t08\n", - " \n", - " \n", - " \n", - " t12\n", - " \n", - " \n", - " \n", - " cw01\n", - " \n", - " \n", - " \n", - " cw02\n", - " \n", - " \n", - " \n", - " t18\n", - " \n", - " \n", - " \n", - " t17\n", - " \n", - " \n", - " \n", - " t16\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " t01\n", - " \n", - " t02\n", - " \n", - " \n", - " t11\n", - " \n", - " \n", - " t15\n", - " \n", - " \n", - " t14\n", - " \n", - " \n", - " t10\n", - " \n", - " \n", - " t09\n", - " \n", - " \n", - " t13\n", - " \n", - " \n", - " t04\n", - " \n", - " \n", - " t05\n", - " \n", - " \n", - " t08\n", - " \n", - " \n", - " t12\n", - " \n", - " \n", - " cw01\n", - " \n", - " \n", - " cw02\n", - " \n", - " \n", - " t16\n", - " \n", - " \n", - " t18\n", - " \n", - " \n", - " t17\n", - " \n", - " t03\n", - " \n", - " t06\n", - " \n", - " t07\n", - " \n", - " \n", - " \n", - " 136.416 kg/s\n", - " 858.53 K\n", - " 172.428 bar\n", - " 63.487 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 157.430 kg/s\n", - " 855.94 K\n", - " 30.909 bar\n", - " 65.630 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 0.806 kg/s\n", - " 306.25 K\n", - " 1.013 bar\n", - " 2.500 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 3603.054 kg/s\n", - " 289.70 K\n", - " 5.000 bar\n", - " 1.260 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 111.286 kg/s\n", - " 316.88 K\n", - " 0.090 bar\n", - " 45.114 kJ/mol\n", - " 0.968\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " 22.669 kg/s\n", - " 557.10 K\n", - " 6.550 bar\n", - " 54.533 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 0.002 kg/s\n", - " 577.72 K\n", - " 4.592 bar\n", - " 55.397 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 68.812 kg/s\n", - " 577.72 K\n", - " 4.592 bar\n", - " 55.397 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 157.430 kg/s\n", - " 581.07 K\n", - " 4.592 bar\n", - " 55.522 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 136.416 kg/s\n", - " 610.47 K\n", - " 34.177 bar\n", - " 55.412 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " 111.286 kg/s\n", - " 577.72 K\n", - " 4.592 bar\n", - " 55.397 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 180.904 kg/s\n", - " 356.59 K\n", - " 6.550 bar\n", - " 6.304 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " 0.001 kg/s\n", - " 487.00 K\n", - " 20.000 bar\n", - " 50.496 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 0.000 kg/s\n", - " 476.00 K\n", - " 16.000 bar\n", - " 50.393 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 111.286 kg/s\n", - " 316.88 K\n", - " 0.090 bar\n", - " 3.299 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 3603.054 kg/s\n", - " 306.85 K\n", - " 5.000 bar\n", - " 2.552 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " 68.812 kg/s\n", - " 420.51 K\n", - " 4.592 bar\n", - " 11.184 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " 112.092 kg/s\n", - " 316.80 K\n", - " 0.090 bar\n", - " 3.293 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " 112.092 kg/s\n", - " 316.86 K\n", - " 6.550 bar\n", - " 3.308 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - "" + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Assert results approximately agree with baseline reoprt\n", + "assert pyo.value(m.fs.net_power_mw[0]) == pytest.approx(646)\n", + "assert pyo.value(m.fs.gross_power[0]) == pytest.approx(-690e6, rel=0.001)\n", + "assert pyo.value(100 * m.fs.lhv_efficiency[0]) == pytest.approx(52.8, abs=0.1)\n", + "assert pyo.value(\n", + " m.fs.total_variable_cost_rate[0] / m.fs.net_power_mw[0]\n", + ") == pytest.approx(37.2799, rel=0.01)\n", + "assert pyo.value(m.fs.fuel_cost_rate[0] / m.fs.net_power_mw[0]) == pytest.approx(\n", + " 31.6462, rel=0.01\n", + ")\n", + "assert pyo.value(\n", + " m.fs.other_variable_cost_rate[0] / m.fs.net_power_mw[0]\n", + ") == pytest.approx(5.63373, rel=0.01)\n", + "assert pyo.value(m.fs.gt.gt_power[0]) == pytest.approx(-477e6, rel=0.001)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABF2UlEQVR4nO3deVhU9f4H8PcAw+4Mi8CAIuBSQKGYC4xwBRVFU9OkMkPFckkvZmiaoV4jMzXT3C5q1wXqpu1qhfuGehUQcUMhXEIxdcBSQFQW4fv7w4fza8IFEBg8vV/Pc57Hc77fc87nDEfmzTnfM6MQQggQERERyZSRoQsgIiIiqk8MO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrJoYuoDGoqKjAlStX0KRJEygUCkOXQ0RERNUghMDNmzfh4uICI6MHX79h2AFw5coVuLq6GroMIiIiqoVLly6hefPmD2xn2AHQpEkTAPdeLJVKZeBqiIiIqDoKCwvh6uoqvY8/CMMOIN26UqlUDDtERERPmEcNQeEAZSIiIpI1hh0iIiKSNYYdIiIikjWO2SEioirKy8tRVlZm6DLob87Y2BgmJiaP/bEwDDtERKSnqKgIv/32G4QQhi6FCJaWlnB2doapqWmtt2HQsOPu7o6LFy9WWf7Pf/4TsbGxKC4uxjvvvIOvv/4aJSUlCA0NxfLly+Hk5CT1zcnJwbhx47B3715YW1sjIiICc+fOhYkJcxwRUU2Vl5fjt99+g6WlJRwcHPhBq2QwQgiUlpbi2rVryM7ORps2bR76wYEPY9BEkJqaivLycmn+1KlT6NmzJ15++WUAwMSJE7F582Z89913UKvVGD9+PAYNGoSDBw8CuPefsm/fvtBoNDh06BCuXr2K4cOHQ6lUYs6cOQY5JiKiJ1lZWRmEEHBwcICFhYWhy6G/OQsLCyiVSly8eBGlpaUwNzev1XYUohFdp4yKikJCQgLOnj2LwsJCODg4YP369XjppZcAAL/88gu8vLyQlJQEf39/bN26Ff369cOVK1ekqz0rV67E1KlTce3atWpf8iosLIRarUZBQQE/Z4eI/taKi4uRnZ0NDw+PWr+xENWlh52T1X3/bjRPY5WWluLLL7/EG2+8AYVCgbS0NJSVlSEkJETq4+npiRYtWiApKQkAkJSUBB8fH73bWqGhoSgsLMTp06cfuK+SkhIUFhbqTURERCRPjSbsbNq0Cfn5+RgxYgQAQKfTwdTUFDY2Nnr9nJycoNPppD5/DjqV7ZVtDzJ37lyo1Wpp4vdiERERyVejGcW7Zs0a9OnTBy4uLvW+r+joaEyaNEmar/xuDSIiuj/39zY36P4uzOvboPv7O7hw4QI8PDxw7Ngx+Pr6IjExEd26dcONGzeqXFiQm0ZxZefixYvYtWsXRo0aJS3TaDQoLS1Ffn6+Xt/c3FxoNBqpT25ubpX2yrYHMTMzk74Hi9+HRUT05BsxYgQUCgXmzZunt3zTpk16T5QlJiZCoVDcd9LpdHB3d39gu0KhkO4+KBQKbNq0qdr1/Xm7xsbGcHFxwciRI3Hjxo26OPxa6dKlC65evQq1Wm2wGhpKowg7cXFxcHR0RN++/5/kO3ToAKVSid27d0vLsrKykJOTA61WCwDQarVIT09HXl6e1Gfnzp1QqVTw9vZuuAMgIiKDMzc3x8cff1ytAJGVlYWrV6/qTY6OjkhNTZXmf/jhhyp9lyxZUuv6Zs2ahatXryInJwfr1q3D/v37MWHChFpv73GZmppCo9H8LT5ewOBhp6KiAnFxcYiIiND7bBy1Wo2RI0di0qRJ2Lt3L9LS0vD6669Dq9XC398fANCrVy94e3tj2LBhOHHiBLZv344ZM2YgMjISZmZmhjokIiIygJCQEGg0GsydO/eRfR0dHaHRaPQmIyMjODg4SPN2dnZV+j7OVZAmTZpAo9GgWbNm6NatGyIiInD06FGp/Y8//sCQIUPQrFkzWFpawsfHB1999ZXeNr7//nv4+PjAwsIC9vb2CAkJwa1bt6T21atXw8vLC+bm5vD09MTy5csfWE/lVa7KOyjx8fGwsbHB9u3b4eXlBWtra/Tu3RtXr17VW68m+2gsDD5mZ9euXcjJycEbb7xRpW3RokUwMjJCWFiY3ocKVjI2NkZCQgLGjRsHrVYLKysrREREYNasWQ15CESNWkOPtWiMLpi/ZugSDCumwNAVNAhjY2PMmTMHr732GiZMmIDmzZsbuqQHunz5Mn7++Wf4+flJy4qLi9GhQwdMnToVKpUKmzdvxrBhw9CqVSt07twZV69exZAhQzB//ny8+OKLuHnzJg4cOCB90vW6deswc+ZM/Pvf/0b79u1x7NgxjB49WnpvrI7bt29jwYIF+O9//wsjIyMMHToUkydPxrp16+psH4Zg8LDTq1evB34kubm5OWJjYxEbG/vA9d3c3LBly5b6Ko+IiJ4gL774Inx9ffH+++9jzZo1D+z31yDk5ub20I8sqQtTp07FjBkzUF5ejuLiYvj5+eHTTz+V2ps1a4bJkydL82+99Ra2b9+Ob7/9Vgo7d+/exaBBg+Dm5gYA8PHxkfq///77WLhwIQYNGgQA8PDwQEZGBj777LNqB5GysjKsXLkSrVq1AgCMHz9e7wJCXezDEAwedoiIiOrSxx9/jO7du+sFh786cOAAmjRpIs0rlcp6r2vKlCkYMWIEhBC4dOkSpk2bhr59+2L//v0wNjZGeXk55syZg2+//RaXL19GaWkpSkpKYGlpCQBo164devToAR8fH4SGhqJXr1546aWXYGtri1u3buH8+fMYOXIkRo8eLe3z7t27Nbr1ZmlpKQUdAHB2dpbGxdbVPgyBYYeIiGSla9euCA0NRXR0tPT01F95eHg0+OPWTZs2RevWrQEAbdq0weLFi6HVarF3716EhITgk08+wZIlS7B48WL4+PjAysoKUVFRKC0tBXDvNt3OnTtx6NAh7NixA8uWLcP06dORkpIiBaJVq1bp3RqrXK+6/hr6FAqFdPelqKioTvZhCAw7REQkO/PmzYOvry+efvppQ5fyQJUB4c6dOwCAgwcPYsCAARg6dCiAew/wnDlzRu/pYoVCgYCAAAQEBGDmzJlwc3PDxo0bMWnSJLi4uODXX39FeHh4vdTr5ORU7/uoLww7REQkOz4+PggPD8fSpUvv256Xl4fi4mK9Zfb29jW6nZWdnY3jx4/rLWvTpg2srKzu2//mzZvQ6XTSbax3330XDg4O6NKli7Tu999/j0OHDsHW1haffvopcnNzpbCTkpKC3bt3o1evXnB0dERKSgquXbsGLy8vAMAHH3yACRMmQK1Wo3fv3igpKcGRI0dw48YNvQ/SfRwNsY/6wLBDRESP9CR+ovGsWbPwzTff3Lftfld8Kr9kurru9+Z+4MABBAYG3rf/zJkzMXPmTACAg4MDOnXqhB07dsDe3h4AMGPGDPz6668IDQ2FpaUlxowZg4EDB6Kg4N7TdCqVCvv378fixYtRWFgINzc3LFy4EH369AEAjBo1CpaWlvjkk08wZcoUWFlZwcfHB1FRUdU+pkdpiH3Uh0b1reeGwm89Jznjo+d89Lwmj57zW8+psZHVt54TERER1QeGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIqK/geDgYL1POnZ3d8fixYsfa5t1sY2GwK+LICKiR4tRN/D+qv+pzwAwYsQI5OfnY9OmTdL8559/DgAwMTGBnZ0d2rZtiyFDhmDEiBEwMqr6t35oaCh27dqF5ORkdOrUqcr2K7f313W2bdsGADhx4gT+9a9/ITk5GYWFhdBoNPDz88OyZcvg6Oh437qDg4Oxb98+AICZmRlatmyJ8ePH45///GeNjr82UlNTH/g9Xn8VHx+PqKgo5Ofn13obhsQrO0REJEu9e/fG1atXceHCBWzduhXdunXD22+/jX79+uHu3bt6fXNycnDo0CGMHz8ea9eufej2/jx99dVXAIBr166hR48esLOzw/bt25GZmYm4uDi4uLjg1q1bD61z9OjRuHr1KjIyMvDKK68gMjJS2u5flZaW1uKVuD8HBwdYWloafBsNgWGHiIhkyczMDBqNBs2aNcNzzz2HadOm4ccff8TWrVsRHx+v1zcuLg79+vXDuHHj8NVXX+HOnTsP3N6fJ1tbWwDAwYMHUVBQgNWrV6N9+/bw8PBAt27dsGjRInh4eDy0TktLS2g0GrRs2RIxMTFo06YNfvrpJwD3rvyMHz8eUVFRaNq0KUJDQwEAp06dQp8+fWBtbQ0nJycMGzYMv//+u7TNW7duYfjw4bC2toazszMWLlxYZb9/vQWVn5+PN998E05OTjA3N8ezzz6LhIQEJCYm4vXXX0dBQQEUCgUUCgViYmLuu42cnBwMGDAA1tbWUKlUeOWVV5Cbmyu1x8TEwNfXF//973/h7u4OtVqNV199FTdv3nzoa/S4GHaIiOhvo3v37mjXrh02bNggLRNCIC4uDkOHDoWnpydat26N77//vkbb1Wg0uHv3LjZu3IjH/X5tCwsLvSs4n3/+OUxNTXHw4EGsXLkS+fn56N69O9q3b48jR45g27ZtyM3NxSuvvCKtM2XKFOzbtw8//vgjduzYgcTERBw9evSB+6yoqECfPn1w8OBBfPnll8jIyMC8efNgbGyMLl26YPHixVCpVNIVrcmTJ993GwMGDMD169exb98+7Ny5E7/++isGDx6s1+/8+fPYtGkTEhISkJCQgH379mHevHmP9Zo9CsfsEBHR34qnpydOnjwpze/atQu3b9+WrpoMHToUa9aswbBhw/TWS0hIgLW1td6yadOmYdq0afD398e0adPw2muvYezYsejcuTO6d++O4cOHw8nJqVp1lZeX46uvvsLJkycxZswYaXmbNm0wf/58aX727Nlo37495syZIy1bu3YtXF1dcebMGbi4uGDNmjX48ssv0aNHDwD3AlPz5s0fuO9du3bh8OHDyMzMxFNPPQUAaNmypdSuVquhUCig0WgeuI3du3cjPT0d2dnZcHV1BQB88cUXeOaZZ5CamiqNg6qoqEB8fDyaNGkCABg2bBh2796Njz76qFqvU23wyg4REf2tCCGgUCik+bVr12Lw4MEwMbn39/+QIUNw8OBBnD9/Xm+9bt264fjx43rT2LFjpfaPPvoIOp0OK1euxDPPPIOVK1fC09MT6enpD61n+fLlsLa2hoWFBUaPHo2JEydi3LhxUnuHDh30+p84cQJ79+6FtbW1NHl6egK4d9Xk/PnzKC0thZ+fn7SOnZ0dnn766QfWcPz4cTRv3lwKOrWRmZkJV1dXKegAgLe3N2xsbJCZmSktc3d3l4IOADg7OyMvL6/W+60OXtmpZ+7vbTZ0CQZ3wfw1Q5dgWDV8qoSI6ldmZqY0jub69evYuHEjysrKsGLFCqlPeXk51q5dq3e1wcrKCq1bt37otu3t7fHyyy/j5Zdfxpw5c9C+fXssWLDgvk9yVQoPD8f06dNhYWEBZ2fnKk+K/fVpp6KiIvTv3x8ff/xxlW05Ozvj3LlzD63xfiwsLGq8Tm0plUq9eYVCgYqKinrdJ6/sEBHR38aePXuQnp6OsLAwAMC6devQvHlznDhxQu+KzcKFCxEfH4/y8vJa78vU1BStWrV65NNYarUarVu3RrNmze77SPxfPffcczh9+jTc3d3RunVrvcnKygqtWrWCUqlESkqKtM6NGzdw5syZB26zbdu2+O233x7Yx9TU9JGvhZeXFy5duoRLly5JyzIyMpCfnw9vb+9HHld9YtghIiJZKikpgU6nw+XLl3H06FHMmTMHAwYMQL9+/TB8+HAAwJo1a/DSSy/h2Wef1ZtGjhyJ33//XfoMnT9v789T5RNQCQkJGDp0KBISEnDmzBlkZWVhwYIF2LJlCwYMGFCnxxUZGYnr169jyJAhSE1Nxfnz57F9+3a8/vrrKC8vh7W1NUaOHIkpU6Zgz549OHXq1AM/W6hSUFAQunbtirCwMOzcuRPZ2dnYunWrdPzu7u4oKirC7t278fvvv+P27dtVthESEgIfHx+Eh4fj6NGjOHz4MIYPH46goCB07NixTl+DmmLYISIiWdq2bRucnZ3h7u6O3r17Y+/evVi6dCl+/PFHGBsbIy0tDSdOnJCu8vyZWq1Gjx49sGbNmirb+/MUGBgI4N7YFEtLS7zzzjvw9fWFv78/vv32W6xevbrKQOfH5eLigoMHD6K8vBy9evWCj48PoqKiYGNjIwWaTz75BP/4xz/Qv39/hISEIDAwsMrYn7/64Ycf0KlTJwwZMgTe3t549913pas5Xbp0wdixYzF48GA4ODjoDZiupFAo8OOPP8LW1hZdu3ZFSEgIWrZsiW+++aZOj782FOJxn5GTgcLCQqjVahQUFEClUtXptjlmh2N2DD1mh+cgz8GanIPFxcXIzs6Gh4cHzM3N67Eooup52DlZ3fdvXtkhIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEioir4oC41FnVxLjLsEBGRxNjYGAD0vnWbyJAqP8Dwr18zURP8biwiIpKYmJjA0tIS165dg1KprNbXFxDVByEEbt++jby8PNjY2EhBvDYYdoiISKJQKODs7Izs7GxcvHjR0OUQwcbGBhqN5rG2wbBDRER6TE1N0aZNG97KIoNTKpWPdUWnEsMOERFVYWRkxK+LINngzVgiIiKSNYYdIiIikjWGHSIiIpI1g4edy5cvY+jQobC3t4eFhQV8fHxw5MgRqV0IgZkzZ8LZ2RkWFhYICQnB2bNn9bZx/fp1hIeHQ6VSwcbGBiNHjkRRUVFDHwoRERE1QgYNOzdu3EBAQACUSiW2bt2KjIwMLFy4ELa2tlKf+fPnY+nSpVi5ciVSUlJgZWWF0NBQFBcXS33Cw8Nx+vRp7Ny5EwkJCdi/fz/GjBljiEMiIiKiRsagT2N9/PHHcHV1RVxcnLTMw8ND+rcQAosXL8aMGTMwYMAAAMAXX3wBJycnbNq0Ca+++ioyMzOxbds2pKamomPHjgCAZcuW4fnnn8eCBQvg4uLSsAdFREREjYpBr+z89NNP6NixI15++WU4Ojqiffv2WLVqldSenZ0NnU6HkJAQaZlarYafnx+SkpIAAElJSbCxsZGCDgCEhITAyMgIKSkp991vSUkJCgsL9SYiIiKSJ4OGnV9//RUrVqxAmzZtsH37dowbNw4TJkzA559/DgDQ6XQAACcnJ731nJycpDadTgdHR0e9dhMTE9jZ2Ul9/mru3LlQq9XS5OrqWteHRkRERI2EQcNORUUFnnvuOcyZMwft27fHmDFjMHr0aKxcubJe9xsdHY2CggJpunTpUr3uj4iIiAzHoGHH2dkZ3t7eesu8vLyQk5MDANJ3YeTm5ur1yc3Nldo0Gg3y8vL02u/evYvr168/8Ls0zMzMoFKp9CYiIiKSJ4OGnYCAAGRlZektO3PmDNzc3ADcG6ys0Wiwe/duqb2wsBApKSnQarUAAK1Wi/z8fKSlpUl99uzZg4qKCvj5+TXAURAREVFjZtCnsSZOnIguXbpgzpw5eOWVV3D48GH85z//wX/+8x8A9759NyoqCrNnz0abNm3g4eGBf/3rX3BxccHAgQMB3LsS1Lt3b+n2V1lZGcaPH49XX32VT2IRERGRYcNOp06dsHHjRkRHR2PWrFnw8PDA4sWLER4eLvV59913cevWLYwZMwb5+fkIDAzEtm3b9L6gbt26dRg/fjx69OgBIyMjhIWFYenSpYY4JCIiImpkFEIIYegiDK2wsBBqtRoFBQV1Pn7H/b3Ndbq9J9EF89cMXYJhxRQYdPc8B3kOGvocJKov1X3/NvjXRRARERHVJ4YdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYOGnZiYGCgUCr3J09NTai8uLkZkZCTs7e1hbW2NsLAw5Obm6m0jJycHffv2haWlJRwdHTFlyhTcvXu3oQ+FiIiIGikTQxfwzDPPYNeuXdK8icn/lzRx4kRs3rwZ3333HdRqNcaPH49Bgwbh4MGDAIDy8nL07dsXGo0Ghw4dwtWrVzF8+HAolUrMmTOnwY+FiIiIGh+Dhx0TExNoNJoqywsKCrBmzRqsX78e3bt3BwDExcXBy8sLycnJ8Pf3x44dO5CRkYFdu3bByckJvr6++PDDDzF16lTExMTA1NS0oQ+HiIiIGhmDj9k5e/YsXFxc0LJlS4SHhyMnJwcAkJaWhrKyMoSEhEh9PT090aJFCyQlJQEAkpKS4OPjAycnJ6lPaGgoCgsLcfr06Qfus6SkBIWFhXoTERERyZNBw46fnx/i4+Oxbds2rFixAtnZ2fjHP/6BmzdvQqfTwdTUFDY2NnrrODk5QafTAQB0Op1e0Klsr2x7kLlz50KtVkuTq6tr3R4YERERNRoGvY3Vp08f6d9t27aFn58f3Nzc8O2338LCwqLe9hsdHY1JkyZJ84WFhQw8REREMmXw21h/ZmNjg6eeegrnzp2DRqNBaWkp8vPz9frk5uZKY3w0Gk2Vp7Mq5+83DqiSmZkZVCqV3kRERETy1KjCTlFREc6fPw9nZ2d06NABSqUSu3fvltqzsrKQk5MDrVYLANBqtUhPT0deXp7UZ+fOnVCpVPD29m7w+omIiKjxMehtrMmTJ6N///5wc3PDlStX8P7778PY2BhDhgyBWq3GyJEjMWnSJNjZ2UGlUuGtt96CVquFv78/AKBXr17w9vbGsGHDMH/+fOh0OsyYMQORkZEwMzMz5KERERFRI2HQsPPbb79hyJAh+OOPP+Dg4IDAwEAkJyfDwcEBALBo0SIYGRkhLCwMJSUlCA0NxfLly6X1jY2NkZCQgHHjxkGr1cLKygoRERGYNWuWoQ6JiIiIGhmDhp2vv/76oe3m5uaIjY1FbGzsA/u4ublhy5YtdV0aERERyUSjGrNDREREVNcYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWDP6t50REJG/u7202dAkGd8H8NUOXYFgxBQbdPa/sEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrJnUdIX8/Hxs3LgRBw4cwMWLF3H79m04ODigffv2CA0NRZcuXeqjTiIiIqJaqfaVnStXrmDUqFFwdnbG7NmzcefOHfj6+qJHjx5o3rw59u7di549e8Lb2xvffPNNfdZMREREVG3VvrLTvn17REREIC0tDd7e3vftc+fOHWzatAmLFy/GpUuXMHny5DorlIiIiKg2qh12MjIyYG9v/9A+FhYWGDJkCIYMGYI//vjjsYsjIiIielzVvo1lb2+PkpKSam/4UcGIiIiIqCHUaICyWq2GVqtFt27d0K1bN/j7+0OpVNZXbURERESPrUaPnq9cuRJubm5Yu3YtgoKCYGNjg549e2Lu3LlITk5GeXl5fdVJREREVCs1CjsjRoxAfHw8Lly4gHPnzmHZsmVwcXHBypUrERAQAFtbW/Tt27e+aiUiIiKqsRp/zk6lli1bomXLlnjjjTeQnZ2NNWvWYNmyZdi2bVtd1kdERET0WGoVdnJycrB3714kJiYiMTERv//+O/z9/TF58mQEBQXVdY1EREREtVajsPPGG28gMTER169fR0BAAP7xj39gzJgx6NSpE0xMan2RiIiIiKje1CihxMfHo0WLFpg+fTp69OiB9u3bQ6FQ1FdtRERERI+tRmEnMzNTun21cOFClJSUIDAwEEFBQQgODsZzzz0HIyN+tygRERE1HjVKJk8//TTGjh2Lr7/+GjqdDgcPHsTzzz+Pw4cPo1+/frCzs0O/fv3qq1YiIiKiGnusgTbe3t6wt7eHra0tbG1t8fXXX2Pr1q11VRsRERHRY6tx2MnLy0NiYqJ0O+vMmTMwNTVF586dMXHiRHTr1q0+6iQiIiKqlRrdxvLy8oKzszOGDRuG9PR0vPTSS9ixYwdu3LiBffv2ISYmptaPns+bNw8KhQJRUVHSsuLiYkRGRsLe3h7W1tYICwtDbm6u3no5OTno27cvLC0t4ejoiClTpuDu3bu1qoGIiIjkp0ZXdgYOHIhu3bohMDAQlpaWdVZEamoqPvvsM7Rt21Zv+cSJE7F582Z89913UKvVGD9+PAYNGoSDBw8CAMrLy9G3b19oNBocOnQIV69exfDhw6FUKjFnzpw6q4+IiIieXDW6sjN37lz06tWrToNOUVERwsPDsWrVKtja2krLCwoKsGbNGnz66afo3r07OnTogLi4OBw6dAjJyckAgB07diAjIwNffvklfH190adPH3z44YeIjY1FaWlpndVIRERET64aXdmZNWtWtfrNnDmz2tuMjIxE3759ERISgtmzZ0vL09LSUFZWhpCQEGmZp6cnWrRogaSkJPj7+yMpKQk+Pj5wcnKS+oSGhmLcuHE4ffo02rdvf999lpSUoKSkRJovLCysdr1ERET0ZKlR2ImJiYGLiwscHR0hhLhvH4VCUe2w8/XXX+Po0aNITU2t0qbT6WBqagobGxu95U5OTtDpdFKfPwedyvbKtgeZO3cuPvjgg2rVSERERE+2GoWdPn36YM+ePejYsSPeeOMN9OvXr9YfInjp0iW8/fbb2LlzJ8zNzWu1jdqKjo7GpEmTpPnCwkK4uro2aA1ERETUMGqUVDZv3ozz58/Dz88PU6ZMQbNmzTB16lRkZWXVeMdpaWnIy8vDc889BxMTE5iYmGDfvn1YunQpTExM4OTkhNLSUuTn5+utl5ubC41GAwDQaDRVns6qnK/scz9mZmZQqVR6ExEREclTjS/LuLi4IDo6GllZWfjmm2+Ql5eHTp06ISAgAHfu3Kn2dnr06IH09HQcP35cmjp27Ijw8HDp30qlErt375bWycrKQk5ODrRaLQBAq9UiPT0deXl5Up+dO3dCpVLB29u7podGREREMvRYn6DcqVMnXLhwARkZGTh27BjKyspgYWFRrXWbNGmCZ599Vm+ZlZUV7O3tpeUjR47EpEmTYGdnB5VKhbfeegtarRb+/v4AgF69esHb2xvDhg3D/PnzodPpMGPGDERGRsLMzOxxDo2IiIhkolYDbpKSkjB69GhoNBosW7YMERERuHLlSp3fDlq0aBH69euHsLAwdO3aFRqNBhs2bJDajY2NkZCQAGNjY2i1WgwdOhTDhw+v9lNjREREJH81urIzf/58xMfH4/fff0d4eDgOHDhQ5YMAH0diYqLevLm5OWJjYxEbG/vAddzc3LBly5Y6q4GIiIjkpUZh57333kOLFi3wyiuvQKFQID4+/r79Pv3007qojYiIiOix1SjsdO3aFQqFAqdPn35gH4VC8dhFEREREdWVGoWdv95mIiIiImrsaveJgERERERPiGqHnXnz5uH27dvV6puSkoLNmzfXuigiIiKiulLtsJORkQE3Nzf885//xNatW3Ht2jWp7e7duzh58iSWL1+OLl26YPDgwWjSpEm9FExERERUE9Ues/PFF1/gxIkT+Pe//43XXnsNhYWFMDY2hpmZmXTFp3379hg1ahRGjBjR4N93RURERHQ/NRqg3K5dO6xatQqfffYZTp48iYsXL+LOnTto2rQpfH190bRp0/qqk4iIiKhWavV1EUZGRvD19YWvr28dl0NERERUt/g0FhEREckaww4RERHJGsMOERERyRrDDhEREclajcNOWVkZTExMcOrUqfqoh4iIiKhO1TjsKJVKtGjRAuXl5fVRDxEREVGdqtVtrOnTp2PatGm4fv16XddDREREVKdq9Tk7//73v3Hu3Dm4uLjAzc0NVlZWeu1Hjx6tk+KIiIiIHletws7AgQPruAwiIiKi+lGrsPP+++/XdR1ERERE9aLWj57n5+dj9erViI6OlsbuHD16FJcvX66z4oiIiIgeV62u7Jw8eRIhISFQq9W4cOECRo8eDTs7O2zYsAE5OTn44osv6rpOIiIiolqp1ZWdSZMmYcSIETh79izMzc2l5c8//zz2799fZ8URERERPa5ahZ3U1FS8+eabVZY3a9YMOp3usYsiIiIiqiu1CjtmZmYoLCyssvzMmTNwcHB47KKIiIiI6kqtws4LL7yAWbNmoaysDACgUCiQk5ODqVOnIiwsrE4LJCIiInoctQo7CxcuRFFRERwdHXHnzh0EBQWhdevWaNKkCT766KO6rpGIiIio1mr1NJZarcbOnTvxv//9DydPnkRRURGee+45hISE1HV9RERERI+lVmGnuLgY5ubmCAwMRGBgYF3XRERERFRnahV2bGxs0LlzZwQFBaFbt27QarWwsLCo69qIiIiIHlutxuzs2rULvXv3RkpKCl544QXY2toiMDAQ06dPx86dO+u6RiIiIqJaq1XYCQwMxLRp07Bjxw7k5+dj7969aN26NebPn4/evXvXdY1EREREtVar21jAvc/USUxMlKaSkhL069cPwcHBdVgeERER0eOpVdhp1qwZ7ty5g+DgYAQHB2Pq1Klo27YtFApFXddHRERE9FhqdRvLwcEBt2/fhk6ng06nQ25uLu7cuVPXtRERERE9tlqFnePHj0On0+G9995DSUkJpk2bhqZNm6JLly6YPn16XddIREREVGu1HrNjY2ODF154AQEBAejSpQt+/PFHfPXVV0hJSeGnKBMREVGjUauws2HDBmlgckZGBuzs7BAYGIiFCxciKCiormskIiIiqrVahZ2xY8eia9euGDNmDIKCguDj41PXdRERERHViVqFnby8vLqug4iIiKhe1HrMTnl5OTZt2oTMzEwAgLe3NwYMGABjY+M6K46IiIjocdXqaaxz587By8sLw4cPx4YNG7BhwwYMGzYMzzzzDM6fP1/t7axYsQJt27aFSqWCSqWCVqvF1q1bpfbi4mJERkbC3t4e1tbWCAsLQ25urt42cnJy0LdvX1haWsLR0RFTpkzB3bt3a3NYREREJEO1CjsTJkxAq1atcOnSJRw9ehRHjx5FTk4OPDw8MGHChGpvp3nz5pg3bx7S0tJw5MgRdO/eHQMGDMDp06cBABMnTsTPP/+M7777Dvv27cOVK1cwaNAgaf3y8nL07dsXpaWlOHToED7//HPEx8dj5syZtTksIiIikqFa3cbat28fkpOTYWdnJy2zt7fHvHnzEBAQUO3t9O/fX2/+o48+wooVK5CcnIzmzZtjzZo1WL9+Pbp37w4AiIuLg5eXF5KTk+Hv748dO3YgIyMDu3btgpOTE3x9ffHhhx9i6tSpiImJgampaW0Oj4iIiGSkVld2zMzMcPPmzSrLi4qKah0wysvL8fXXX+PWrVvQarVIS0tDWVkZQkJCpD6enp5o0aIFkpKSAABJSUnw8fGBk5OT1Cc0NBSFhYXS1aH7KSkpQWFhod5ERERE8lSrsNOvXz+MGTMGKSkpEEJACIHk5GSMHTsWL7zwQo22lZ6eDmtra5iZmWHs2LHYuHEjvL29odPpYGpqChsbG73+Tk5O0Ol0AACdTqcXdCrbK9seZO7cuVCr1dLk6upao5qJiIjoyVGrsLN06VK0atUKWq0W5ubmMDc3R0BAAFq3bo0lS5bUaFtPP/00jh8/jpSUFIwbNw4RERHIyMioTVnVFh0djYKCAmm6dOlSve6PiIiIDKdWY3ZsbGzw448/4ty5c9Kj515eXmjdunWNt2Vqaiqt16FDB6SmpmLJkiUYPHgwSktLkZ+fr3d1Jzc3FxqNBgCg0Whw+PBhve1VPq1V2ed+zMzMYGZmVuNaiYiI6MlToys7FRUV+PjjjxEQEIBOnTph9erVCAkJQf/+/WsVdB60j5KSEnTo0AFKpRK7d++W2rKyspCTkwOtVgsA0Gq1SE9P1/uQw507d0KlUsHb27tO6iEiIqInW42u7Hz00UeIiYlBSEgILCwssGTJEuTl5WHt2rW12nl0dDT69OmDFi1a4ObNm1i/fj0SExOxfft2qNVqjBw5EpMmTYKdnR1UKhXeeustaLVa+Pv7AwB69eoFb29vDBs2DPPnz4dOp8OMGTMQGRnJKzdEREQEoIZh54svvsDy5cvx5ptvAgB27dqFvn37YvXq1TAyqvnwn7y8PAwfPhxXr16FWq1G27ZtsX37dvTs2RMAsGjRIhgZGSEsLAwlJSUIDQ3F8uXLpfWNjY2RkJCAcePGQavVwsrKChEREZg1a1aNayEiIiJ5qlHYycnJwfPPPy/Nh4SEQKFQ4MqVK2jevHmNd75mzZqHtpubmyM2NhaxsbEP7OPm5oYtW7bUeN9ERET091CjyzF3796Fubm53jKlUomysrI6LYqIiIiortToyo4QAiNGjNAbD1NcXIyxY8fCyspKWrZhw4a6q5CIiIjoMdQo7ERERFRZNnTo0DorhoiIiKiu1SjsxMXF1VcdRERERPWiVp+gTERERPSkYNghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIlkzaNiZO3cuOnXqhCZNmsDR0REDBw5EVlaWXp/i4mJERkbC3t4e1tbWCAsLQ25url6fnJwc9O3bF5aWlnB0dMSUKVNw9+7dhjwUIiIiaqQMGnb27duHyMhIJCcnY+fOnSgrK0OvXr1w69Ytqc/EiRPx888/47vvvsO+fftw5coVDBo0SGovLy9H3759UVpaikOHDuHzzz9HfHw8Zs6caYhDIiIiokbGxJA737Ztm958fHw8HB0dkZaWhq5du6KgoABr1qzB+vXr0b17dwBAXFwcvLy8kJycDH9/f+zYsQMZGRnYtWsXnJyc4Ovriw8//BBTp05FTEwMTE1NDXFoRERE1Eg0qjE7BQUFAAA7OzsAQFpaGsrKyhASEiL18fT0RIsWLZCUlAQASEpKgo+PD5ycnKQ+oaGhKCwsxOnTp++7n5KSEhQWFupNREREJE+NJuxUVFQgKioKAQEBePbZZwEAOp0OpqamsLGx0evr5OQEnU4n9flz0Klsr2y7n7lz50KtVkuTq6trHR8NERERNRaNJuxERkbi1KlT+Prrr+t9X9HR0SgoKJCmS5cu1fs+iYiIyDAMOman0vjx45GQkID9+/ejefPm0nKNRoPS0lLk5+frXd3Jzc2FRqOR+hw+fFhve5VPa1X2+SszMzOYmZnV8VEQERFRY2TQKztCCIwfPx4bN27Enj174OHhodfeoUMHKJVK7N69W1qWlZWFnJwcaLVaAIBWq0V6ejry8vKkPjt37oRKpYK3t3fDHAgRERE1Wga9shMZGYn169fjxx9/RJMmTaQxNmq1GhYWFlCr1Rg5ciQmTZoEOzs7qFQqvPXWW9BqtfD39wcA9OrVC97e3hg2bBjmz58PnU6HGTNmIDIykldviIiIyLBhZ8WKFQCA4OBgveVxcXEYMWIEAGDRokUwMjJCWFgYSkpKEBoaiuXLl0t9jY2NkZCQgHHjxkGr1cLKygoRERGYNWtWQx0GERERNWIGDTtCiEf2MTc3R2xsLGJjYx/Yx83NDVu2bKnL0oiIiEgmGs3TWERERET1gWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkzaBhZ//+/ejfvz9cXFygUCiwadMmvXYhBGbOnAlnZ2dYWFggJCQEZ8+e1etz/fp1hIeHQ6VSwcbGBiNHjkRRUVEDHgURERE1ZgYNO7du3UK7du0QGxt73/b58+dj6dKlWLlyJVJSUmBlZYXQ0FAUFxdLfcLDw3H69Gns3LkTCQkJ2L9/P8aMGdNQh0BERESNnIkhd96nTx/06dPnvm1CCCxevBgzZszAgAEDAABffPEFnJycsGnTJrz66qvIzMzEtm3bkJqaio4dOwIAli1bhueffx4LFiyAi4tLgx0LERERNU6NdsxOdnY2dDodQkJCpGVqtRp+fn5ISkoCACQlJcHGxkYKOgAQEhICIyMjpKSkPHDbJSUlKCws1JuIiIhInhpt2NHpdAAAJycnveVOTk5Sm06ng6Ojo167iYkJ7OzspD73M3fuXKjVamlydXWt4+qJiIiosWi0Yac+RUdHo6CgQJouXbpk6JKIiIionjTasKPRaAAAubm5estzc3OlNo1Gg7y8PL32u3fv4vr161Kf+zEzM4NKpdKbiIiISJ4abdjx8PCARqPB7t27pWWFhYVISUmBVqsFAGi1WuTn5yMtLU3qs2fPHlRUVMDPz6/BayYiIqLGx6BPYxUVFeHcuXPSfHZ2No4fPw47Ozu0aNECUVFRmD17Ntq0aQMPDw/861//gouLCwYOHAgA8PLyQu/evTF69GisXLkSZWVlGD9+PF599VU+iUVEREQADBx2jhw5gm7duknzkyZNAgBEREQgPj4e7777Lm7duoUxY8YgPz8fgYGB2LZtG8zNzaV11q1bh/Hjx6NHjx4wMjJCWFgYli5d2uDHQkRERI2TQcNOcHAwhBAPbFcoFJg1axZmzZr1wD52dnZYv359fZRHREREMtBox+wQERER1QWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjXZhJ3Y2Fi4u7vD3Nwcfn5+OHz4sKFLIiIiokZAFmHnm2++waRJk/D+++/j6NGjaNeuHUJDQ5GXl2fo0oiIiMjAZBF2Pv30U4wePRqvv/46vL29sXLlSlhaWmLt2rWGLo2IiIgMzMTQBTyu0tJSpKWlITo6WlpmZGSEkJAQJCUl3XedkpISlJSUSPMFBQUAgMLCwjqvr6Lkdp1v80lTqBCGLsGw6uG8qgmegzwHeQ4aHs/B+jkHK9+3hXj46/vEh53ff/8d5eXlcHJy0lvu5OSEX3755b7rzJ07Fx988EGV5a6urvVS49+d2tAFGNq8v/0rYHB/+58Az0GD+9v/BOr5HLx58ybU6gfv44kPO7URHR2NSZMmSfMVFRW4fv067O3toVAoDFiZ/BQWFsLV1RWXLl2CSqUydDn0N8RzkAyN52D9EULg5s2bcHFxeWi/Jz7sNG3aFMbGxsjNzdVbnpubC41Gc991zMzMYGZmprfMxsamvkokACqViv/JyaB4DpKh8RysHw+7olPpiR+gbGpqig4dOmD37t3SsoqKCuzevRtardaAlREREVFj8MRf2QGASZMmISIiAh07dkTnzp2xePFi3Lp1C6+//rqhSyMiIiIDk0XYGTx4MK5du4aZM2dCp9PB19cX27ZtqzJomRqemZkZ3n///Sq3DYkaCs9BMjSeg4anEI96XouIiIjoCfbEj9khIiIiehiGHSIiIpI1hh0iIiKSNYYdIiIikjWGHaoiJiYGvr6+hi6DiKhBubu7Y/HixYYug+oBww79bZSWlhq6hL89/gwerry8HBUVFYYug2SmrKzM0CUYHMOODAUHB2PChAl49913YWdnB41Gg5iYGKk9Pz8fo0aNgoODA1QqFbp3744TJ04AAOLj4/HBBx/gxIkTUCgUUCgUiI+Pf+Q+FQoFVqxYgT59+sDCwgItW7bE999/r9cnPT0d3bt3h4WFBezt7TFmzBgUFRUBAE6dOgUjIyNcu3YNAHD9+nUYGRnh1VdfldafPXs2AgMDpflTp06hT58+sLa2hpOTE4YNG4bff/9d73UYP348oqKi0LRpU4SGhtb4taSHu3nzJsLDw2FlZQVnZ2csWrQIwcHBiIqKAnDvL+UPP/wQw4cPh0qlwpgxYwAAP/zwA5555hmYmZnB3d0dCxcu1Nvu8uXL0aZNG5ibm8PJyQkvvfSS1Pb999/Dx8dHOo9CQkJw69atR9Y6YsQIDBw4EB988IF07o8dO1YvgJWUlGDChAlwdHSEubk5AgMDkZqaKrV37NgRCxYskOYHDhwIpVIpnce//fYbFAoFzp07J21v8uTJaNasGaysrODn54fExERp/fj4eNjY2OCnn36Ct7c3zMzMkJOTU81Xn2rqYedrcHAwLl68iIkTJ0q/+x6l8ue3adMm6XwNDQ3FpUuX9PqtWLECrVq1gqmpKZ5++mn897//ldomT56Mfv36SfOLFy+GQqHAtm3bpGWtW7fG6tWrpfnVq1fDy8sL5ubm8PT0xPLly6W2CxcuQKFQ4JtvvkFQUBDMzc2xbt26Wr1esiJIdoKCgoRKpRIxMTHizJkz4vPPPxcKhULs2LFDCCFESEiI6N+/v0hNTRVnzpwR77zzjrC3txd//PGHuH37tnjnnXfEM888I65evSquXr0qbt++/ch9AhD29vZi1apVIisrS8yYMUMYGxuLjIwMIYQQRUVFwtnZWQwaNEikp6eL3bt3Cw8PDxERESGEEKKiokI0bdpUfPfdd0IIITZt2iSaNm0qNBqNtI+QkBAxffp0IYQQN27cEA4ODiI6OlpkZmaKo0ePip49e4pu3brpvQ7W1tZiypQp4pdffhG//PJLnby+9P9GjRol3NzcxK5du0R6erp48cUXRZMmTcTbb78thBDCzc1NqFQqsWDBAnHu3Dlx7tw5ceTIEWFkZCRmzZolsrKyRFxcnLCwsBBxcXFCCCFSU1OFsbGxWL9+vbhw4YI4evSoWLJkiRBCiCtXrggTExPx6aefiuzsbHHy5EkRGxsrbt68+chaIyIihLW1tRg8eLA4deqUSEhIEA4ODmLatGlSnwkTJggXFxexZcsWcfr0aRERESFsbW3FH3/8IYQQYtKkSaJv375CiHvnrJ2dnWjatKnYunWrEEKIL7/8UjRr1kzv9enSpYvYv3+/OHfunPjkk0+EmZmZOHPmjBBCiLi4OKFUKkWXLl3EwYMHxS+//CJu3br1eD8UeqCHna9//PGHaN68uZg1a5b0u+9RKn9+HTt2FIcOHRJHjhwRnTt3Fl26dJH6bNiwQSiVShEbGyuysrLEwoULhbGxsdizZ48QQoiffvpJqNVqcffuXSGEEAMHDhRNmzYVU6dOFUII8dtvvwkA4uzZs0KIe+eYs7Oz+OGHH8Svv/4qfvjhB2FnZyfi4+OFEEJkZ2cLAMLd3V3qc+XKlTp9HZ9EDDsyFBQUJAIDA/WWderUSUydOlUcOHBAqFQqUVxcrNfeqlUr8dlnnwkhhHj//fdFu3btarRPAGLs2LF6y/z8/MS4ceOEEEL85z//Eba2tqKoqEhq37x5szAyMhI6nU4IIcSgQYNEZGSkEEKIqKgoMWXKFGFraysyMzNFaWmpsLS0lALbhx9+KHr16qW3v0uXLgkAIisrS3od2rdvX6PjoOorLCwUSqVSCqhCCJGfny8sLS31ws7AgQP11nvttddEz5499ZZNmTJFeHt7CyGE+OGHH4RKpRKFhYVV9pmWliYAiAsXLtS43oiICGFnZ6cXJlasWCGsra1FeXm5KCoqEkqlUqxbt05qLy0tFS4uLmL+/PlCCP03puPHjwuNRiPefvtt6Y1p1KhR4rXXXhNCCHHx4kVhbGwsLl++rFdHjx49RHR0tBDi3pslAHH8+PEaHw/VTHXP10WLFlV7m5U/v+TkZGlZZmamACBSUlKEEEJ06dJFjB49Wm+9l19+WTz//PNCiHt/uBkZGYnU1FQpQM+dO1f4+fkJIaoG6FatWon169frbe/DDz8UWq1WCPH/YWfx4sXVPo6/A97Gkqm2bdvqzTs7OyMvLw8nTpxAUVER7O3tYW1tLU3Z2dk4f/78Y+3zr1+8qtVqkZmZCQDIzMxEu3btYGVlJbUHBASgoqICWVlZAICgoCDpEv++ffvQvXt3dO3aFYmJiUhNTUVZWRkCAgIAACdOnMDevXv1jsHT0xMA9I6jQ4cOj3VM9GC//vorysrK0LlzZ2mZWq3G008/rdevY8eOevOZmZnSz7FSQEAAzp49i/LycvTs2RNubm5o2bIlhg0bhnXr1uH27dsAgHbt2qFHjx7w8fHByy+/jFWrVuHGjRvVrrldu3awtLSU5rVaLYqKinDp0iWcP39e7xwDAKVSic6dO0vn8T/+8Q/cvHkTx44dw759+xAUFITg4GC98zY4OBjAvdu25eXleOqpp/TO03379umdo6amplX+v1Ldq+75WlMmJibo1KmTNO/p6QkbGxu93333O98r221sbNCuXTskJiYiPT0dpqamGDNmDI4dO4aioiLpPAOAW7du4fz58xg5cqTeOTV79uwqv7//+v/u704W341FVSmVSr15hUKBiooKFBUVwdnZWW/cQCUbG5uGKe4BKu+dnz17FhkZGQgMDMQvv/yCxMRE3LhxAx07dpTeqIqKitC/f398/PHHVbbj7Ows/fvP4YoMo6Y/gyZNmuDo0aNITEzEjh07MHPmTMTExCA1NRU2NjbYuXMnDh06hB07dmDZsmWYPn06UlJS4OHhUU9H8P/+/MaUlJSEnj17omvXrhg8eDDOnDmDs2fPSm9MRUVFMDY2RlpaGoyNjfW2Y21tLf3bwsKiWuNDSL4qA7OZmRmCgoJgZ2cHLy8v/O9//8O+ffvwzjvvAIA0NmzVqlXw8/PT28ZfzzH+7tPHKzt/M8899xx0Oh1MTEzQunVrvalp06YA7v2lWV5eXuNtJycnV5n38vICAHh5eeHEiRN6A0kPHjwIIyMj6S8rHx8f2NraYvbs2fD19YW1tTWCg4Oxb98+JCYmSn8xVx7H6dOn4e7uXuU4+J+8YbRs2RJKpVJvAG9BQQHOnDnz0PW8vLxw8OBBvWUHDx7EU089Jf3CNjExQUhICObPn4+TJ0/iwoUL2LNnD4B7wT0gIAAffPABjh07BlNTU2zcuLFaNZ84cQJ37tyR5pOTk2FtbQ1XV1dpAOmfaysrK0Nqaiq8vb2lZUFBQdi7dy/279+P4OBg6Y3po48+grOzM5566ikAQPv27VFeXo68vLwq56hGo6lWvVR3qnO+1uZ33927d3HkyBFpPisrC/n5+Xq/++53vv/1nPrf//6H3bt3S7/ngoOD8dVXX+HMmTPSMicnJ7i4uODXX3+tck41RNh/ohn6PhrVvaCgIOkedKUBAwaIiIgIUVFRIQIDA0W7du3E9u3bRXZ2tjh48KCYNm2aSE1NFUIIsW7dOmFlZSWOHTsmrl27VmV8z/0AEE2bNhVr1qwRWVlZYubMmcLIyEicPn1aCCHErVu3hLOzswgLCxPp6eliz549omXLltIA5UoDBw4UxsbG0hiI8vJyYWtrK4yNjcW2bdukfpcvXxYODg7ipZdeEocPHxbnzp0T27ZtEyNGjJAG+t3vdaC6NWrUKOHh4SH27NkjTp06JcLCwkSTJk1EVFSUEOL+YyDS0tL0BijHx8frDVD++eefxZIlS8SxY8fEhQsXxPLly4WRkZE4deqUSE5OFh999JFITU0VFy9eFN9++60wNTUVW7ZseWStlQOUhwwZIk6fPi02b94snJycxHvvvSf1efvtt4WLi4vYunWr3gDl69evS302bdokjI2N9QbPv/3228LY2Fi8+uqrevsMDw/XGyiakpIi5syZIxISEoQQ98Z8qNXqmrzk9Bgedb727NlTvPDCC+K3334T165de+T2Kgcod+7cWSQnJ4sjR44If39/4e/vL/XZuHGjUCqVYvny5eLMmTPSAOW9e/dKfa5fvy6MjIyEsbGxyMzMlNYzNjYWzs7OevtctWqVsLCwEEuWLBFZWVni5MmTYu3atWLhwoVCiP8fs3Ps2LHHfLXkhWFHhh4WdoS4N1DvrbfeEi4uLkKpVApXV1cRHh4ucnJyhBBCFBcXi7CwMGFjYyMASG9CDwNAxMbGip49ewozMzPh7u4uvvnmG70+J0+eFN26dRPm5ubCzs5OjB49uspTNIsWLRIApKdbKms3MTGp0vfMmTPixRdfFDY2NsLCwkJ4enqKqKgoUVFR8cDXgepWYWGheO2114SlpaXQaDTi008/FZ07d5YCxIMGfH7//ffC29tbKJVK0aJFC/HJJ59IbQcOHBBBQUHC1tZWWFhYiLZt20rnUkZGhggNDRUODg7CzMxMPPXUU2LZsmXVqjUiIkIMGDBAzJw5U9jb2wtra2sxevRovTB/584d8dZbb4mmTZsKMzMzERAQIA4fPqy3nT/++EMoFAoxePBgadnGjRsFALFy5Uq9vqWlpWLmzJnC3d1dKJVK4ezsLF588UVx8uRJIQTDTkN71PmalJQk2rZtK8zMzER1rgVU/vx++OEH0bJlS2FmZiZCQkLExYsX9fotX75ctGzZUiiVSvHUU0+JL774osq22rVrpxegK8+zvwZoIe79Qerr6ytMTU2Fra2t6Nq1q9iwYYMQgmHnQRRCCGG460okFwqFAhs3bsTAgQMNXQoZ0K1bt9CsWTMsXLgQI0eONHQ5ekaMGIH8/Hxs2rTJ0KVQI/G452t8fDyioqKQn59f98VRneIAZSKqtWPHjuGXX35B586dUVBQgFmzZgEABgwYYODKiKri+fr3xbBDj7Ru3Tq8+eab921zc3PD6dOnG7giakwWLFiArKwsmJqaokOHDjhw4IA02L0h/fkJp7/aunVrA1ZCjVlNztc+ffrgwIED922bNm0aXFxc6rNUqkO8jUWPdPPmTeTm5t63TalUws3NrYErIqqq8isa7qdZs2awsLBowGpIDi5fvqz39N6f2dnZwc7OroErotpi2CEiIiJZ4+fsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGs/R8sVPMaSvX2DQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "text/plain": [ - "" + "source": [ + "from matplotlib import pyplot as plt\n", + "\n", + "\n", + "variables = [\"net_power\", \"gross_power\", \"gt_power\"]\n", + "netl_baseline = [646, 690, 477]\n", + "idaes_prediction = [\n", + " pyo.value(m.fs.net_power_mw[0]),\n", + " -pyo.value(m.fs.gross_power[0]) * 1e-6,\n", + " -pyo.value(m.fs.gt.gt_power[0]) * 1e-6,\n", + "]\n", + "\n", + "label_location = np.arange(len(variables))\n", + "\n", + "width = 0.4\n", + "\n", + "fig, ax = plt.subplots()\n", + "netl_data = ax.bar(variables, netl_baseline, label=\"NETL Baseline\")\n", + "idaes_sim = ax.bar(\n", + " label_location + (width / 2), idaes_prediction, width, label=\"IDAES Prediction\"\n", + ")\n", + "\n", + "ax.set_ylabel(\"Power (MW)\")\n", + "ax.set_xticks(label_location)\n", + "ax.set_xticklabels(variables)\n", + "ax.legend()" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "def display_pfd():\n", - " print(\"\\n\\nGas Turbine Section\\n\")\n", - " display(SVG(m.fs.gt.write_pfd()))\n", - " print(\"\\n\\nHRSG Section\\n\")\n", - " display(SVG(m.fs.hrsg.write_pfd()))\n", - " print(\"\\n\\nSteam Turbine Section\\n\")\n", - " display(SVG(m.fs.st.write_pfd()))\n", - "\n", - "\n", - "display_pfd()\n", - "\n", - "m.fs.gt.write_pfd(fname=\"data_pfds/gt_baseline.svg\")\n", - "m.fs.hrsg.write_pfd(fname=\"data_pfds/hrsg_baseline.svg\")\n", - "m.fs.st.write_pfd(fname=\"data_pfds/st_baseline.svg\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Test key model outputs against NETL baseline" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Assert results approximately agree with baseline reoprt\n", - "assert pyo.value(m.fs.net_power_mw[0]) == pytest.approx(646)\n", - "assert pyo.value(m.fs.gross_power[0]) == pytest.approx(-690e6, rel=0.001)\n", - "assert pyo.value(100 * m.fs.lhv_efficiency[0]) == pytest.approx(52.8, abs=0.1)\n", - "assert pyo.value(\n", - " m.fs.total_variable_cost_rate[0] / m.fs.net_power_mw[0]\n", - ") == pytest.approx(37.2799, rel=0.01)\n", - "assert pyo.value(m.fs.fuel_cost_rate[0] / m.fs.net_power_mw[0]) == pytest.approx(\n", - " 31.6462, rel=0.01\n", - ")\n", - "assert pyo.value(\n", - " m.fs.other_variable_cost_rate[0] / m.fs.net_power_mw[0]\n", - ") == pytest.approx(5.63373, rel=0.01)\n", - "assert pyo.value(m.fs.gt.gt_power[0]) == pytest.approx(-477e6, rel=0.001)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Run turndown cases 5 MW interval\n", + "\n", + "Here we set the CO2 capture rate to 97% and set the specific reboiler duty to PZ advanced solvent system. The minimum power is 160 MW net, which corresponds to a bit under 25%. This is roughly the minimum load for the NGCC modeled. Results are tabulated for tags in the tags_output tag group in a Pandas data frame. \n", + "\n", + "To run the series, change run_series to True. Running the turndown series takes a while, unless previous saved results are available. " ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABF2UlEQVR4nO3deVhU9f4H8PcAw+4Mi8CAIuBSQKGYC4xwBRVFU9OkMkPFckkvZmiaoV4jMzXT3C5q1wXqpu1qhfuGehUQcUMhXEIxdcBSQFQW4fv7w4fza8IFEBg8vV/Pc57Hc77fc87nDEfmzTnfM6MQQggQERERyZSRoQsgIiIiqk8MO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrJoYuoDGoqKjAlStX0KRJEygUCkOXQ0RERNUghMDNmzfh4uICI6MHX79h2AFw5coVuLq6GroMIiIiqoVLly6hefPmD2xn2AHQpEkTAPdeLJVKZeBqiIiIqDoKCwvh6uoqvY8/CMMOIN26UqlUDDtERERPmEcNQeEAZSIiIpI1hh0iIiKSNYYdIiIikjWO2SEioirKy8tRVlZm6DLob87Y2BgmJiaP/bEwDDtERKSnqKgIv/32G4QQhi6FCJaWlnB2doapqWmtt2HQsOPu7o6LFy9WWf7Pf/4TsbGxKC4uxjvvvIOvv/4aJSUlCA0NxfLly+Hk5CT1zcnJwbhx47B3715YW1sjIiICc+fOhYkJcxwRUU2Vl5fjt99+g6WlJRwcHPhBq2QwQgiUlpbi2rVryM7ORps2bR76wYEPY9BEkJqaivLycmn+1KlT6NmzJ15++WUAwMSJE7F582Z89913UKvVGD9+PAYNGoSDBw8CuPefsm/fvtBoNDh06BCuXr2K4cOHQ6lUYs6cOQY5JiKiJ1lZWRmEEHBwcICFhYWhy6G/OQsLCyiVSly8eBGlpaUwNzev1XYUohFdp4yKikJCQgLOnj2LwsJCODg4YP369XjppZcAAL/88gu8vLyQlJQEf39/bN26Ff369cOVK1ekqz0rV67E1KlTce3atWpf8iosLIRarUZBQQE/Z4eI/taKi4uRnZ0NDw+PWr+xENWlh52T1X3/bjRPY5WWluLLL7/EG2+8AYVCgbS0NJSVlSEkJETq4+npiRYtWiApKQkAkJSUBB8fH73bWqGhoSgsLMTp06cfuK+SkhIUFhbqTURERCRPjSbsbNq0Cfn5+RgxYgQAQKfTwdTUFDY2Nnr9nJycoNPppD5/DjqV7ZVtDzJ37lyo1Wpp4vdiERERyVejGcW7Zs0a9OnTBy4uLvW+r+joaEyaNEmar/xuDSIiuj/39zY36P4uzOvboPv7O7hw4QI8PDxw7Ngx+Pr6IjExEd26dcONGzeqXFiQm0ZxZefixYvYtWsXRo0aJS3TaDQoLS1Ffn6+Xt/c3FxoNBqpT25ubpX2yrYHMTMzk74Hi9+HRUT05BsxYgQUCgXmzZunt3zTpk16T5QlJiZCoVDcd9LpdHB3d39gu0KhkO4+KBQKbNq0qdr1/Xm7xsbGcHFxwciRI3Hjxo26OPxa6dKlC65evQq1Wm2wGhpKowg7cXFxcHR0RN++/5/kO3ToAKVSid27d0vLsrKykJOTA61WCwDQarVIT09HXl6e1Gfnzp1QqVTw9vZuuAMgIiKDMzc3x8cff1ytAJGVlYWrV6/qTY6OjkhNTZXmf/jhhyp9lyxZUuv6Zs2ahatXryInJwfr1q3D/v37MWHChFpv73GZmppCo9H8LT5ewOBhp6KiAnFxcYiIiND7bBy1Wo2RI0di0qRJ2Lt3L9LS0vD6669Dq9XC398fANCrVy94e3tj2LBhOHHiBLZv344ZM2YgMjISZmZmhjokIiIygJCQEGg0GsydO/eRfR0dHaHRaPQmIyMjODg4SPN2dnZV+j7OVZAmTZpAo9GgWbNm6NatGyIiInD06FGp/Y8//sCQIUPQrFkzWFpawsfHB1999ZXeNr7//nv4+PjAwsIC9vb2CAkJwa1bt6T21atXw8vLC+bm5vD09MTy5csfWE/lVa7KOyjx8fGwsbHB9u3b4eXlBWtra/Tu3RtXr17VW68m+2gsDD5mZ9euXcjJycEbb7xRpW3RokUwMjJCWFiY3ocKVjI2NkZCQgLGjRsHrVYLKysrREREYNasWQ15CESNWkOPtWiMLpi/ZugSDCumwNAVNAhjY2PMmTMHr732GiZMmIDmzZsbuqQHunz5Mn7++Wf4+flJy4qLi9GhQwdMnToVKpUKmzdvxrBhw9CqVSt07twZV69exZAhQzB//ny8+OKLuHnzJg4cOCB90vW6deswc+ZM/Pvf/0b79u1x7NgxjB49WnpvrI7bt29jwYIF+O9//wsjIyMMHToUkydPxrp16+psH4Zg8LDTq1evB34kubm5OWJjYxEbG/vA9d3c3LBly5b6Ko+IiJ4gL774Inx9ffH+++9jzZo1D+z31yDk5ub20I8sqQtTp07FjBkzUF5ejuLiYvj5+eHTTz+V2ps1a4bJkydL82+99Ra2b9+Ob7/9Vgo7d+/exaBBg+Dm5gYA8PHxkfq///77WLhwIQYNGgQA8PDwQEZGBj777LNqB5GysjKsXLkSrVq1AgCMHz9e7wJCXezDEAwedoiIiOrSxx9/jO7du+sFh786cOAAmjRpIs0rlcp6r2vKlCkYMWIEhBC4dOkSpk2bhr59+2L//v0wNjZGeXk55syZg2+//RaXL19GaWkpSkpKYGlpCQBo164devToAR8fH4SGhqJXr1546aWXYGtri1u3buH8+fMYOXIkRo8eLe3z7t27Nbr1ZmlpKQUdAHB2dpbGxdbVPgyBYYeIiGSla9euCA0NRXR0tPT01F95eHg0+OPWTZs2RevWrQEAbdq0weLFi6HVarF3716EhITgk08+wZIlS7B48WL4+PjAysoKUVFRKC0tBXDvNt3OnTtx6NAh7NixA8uWLcP06dORkpIiBaJVq1bp3RqrXK+6/hr6FAqFdPelqKioTvZhCAw7REQkO/PmzYOvry+efvppQ5fyQJUB4c6dOwCAgwcPYsCAARg6dCiAew/wnDlzRu/pYoVCgYCAAAQEBGDmzJlwc3PDxo0bMWnSJLi4uODXX39FeHh4vdTr5ORU7/uoLww7REQkOz4+PggPD8fSpUvv256Xl4fi4mK9Zfb29jW6nZWdnY3jx4/rLWvTpg2srKzu2//mzZvQ6XTSbax3330XDg4O6NKli7Tu999/j0OHDsHW1haffvopcnNzpbCTkpKC3bt3o1evXnB0dERKSgquXbsGLy8vAMAHH3yACRMmQK1Wo3fv3igpKcGRI0dw48YNvQ/SfRwNsY/6wLBDRESP9CR+ovGsWbPwzTff3Lftfld8Kr9kurru9+Z+4MABBAYG3rf/zJkzMXPmTACAg4MDOnXqhB07dsDe3h4AMGPGDPz6668IDQ2FpaUlxowZg4EDB6Kg4N7TdCqVCvv378fixYtRWFgINzc3LFy4EH369AEAjBo1CpaWlvjkk08wZcoUWFlZwcfHB1FRUdU+pkdpiH3Uh0b1reeGwm89Jznjo+d89Lwmj57zW8+psZHVt54TERER1QeGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIqK/geDgYL1POnZ3d8fixYsfa5t1sY2GwK+LICKiR4tRN/D+qv+pzwAwYsQI5OfnY9OmTdL8559/DgAwMTGBnZ0d2rZtiyFDhmDEiBEwMqr6t35oaCh27dqF5ORkdOrUqcr2K7f313W2bdsGADhx4gT+9a9/ITk5GYWFhdBoNPDz88OyZcvg6Oh437qDg4Oxb98+AICZmRlatmyJ8ePH45///GeNjr82UlNTH/g9Xn8VHx+PqKgo5Ofn13obhsQrO0REJEu9e/fG1atXceHCBWzduhXdunXD22+/jX79+uHu3bt6fXNycnDo0CGMHz8ea9eufej2/jx99dVXAIBr166hR48esLOzw/bt25GZmYm4uDi4uLjg1q1bD61z9OjRuHr1KjIyMvDKK68gMjJS2u5flZaW1uKVuD8HBwdYWloafBsNgWGHiIhkyczMDBqNBs2aNcNzzz2HadOm4ccff8TWrVsRHx+v1zcuLg79+vXDuHHj8NVXX+HOnTsP3N6fJ1tbWwDAwYMHUVBQgNWrV6N9+/bw8PBAt27dsGjRInh4eDy0TktLS2g0GrRs2RIxMTFo06YNfvrpJwD3rvyMHz8eUVFRaNq0KUJDQwEAp06dQp8+fWBtbQ0nJycMGzYMv//+u7TNW7duYfjw4bC2toazszMWLlxYZb9/vQWVn5+PN998E05OTjA3N8ezzz6LhIQEJCYm4vXXX0dBQQEUCgUUCgViYmLuu42cnBwMGDAA1tbWUKlUeOWVV5Cbmyu1x8TEwNfXF//973/h7u4OtVqNV199FTdv3nzoa/S4GHaIiOhvo3v37mjXrh02bNggLRNCIC4uDkOHDoWnpydat26N77//vkbb1Wg0uHv3LjZu3IjH/X5tCwsLvSs4n3/+OUxNTXHw4EGsXLkS+fn56N69O9q3b48jR45g27ZtyM3NxSuvvCKtM2XKFOzbtw8//vgjduzYgcTERBw9evSB+6yoqECfPn1w8OBBfPnll8jIyMC8efNgbGyMLl26YPHixVCpVNIVrcmTJ993GwMGDMD169exb98+7Ny5E7/++isGDx6s1+/8+fPYtGkTEhISkJCQgH379mHevHmP9Zo9CsfsEBHR34qnpydOnjwpze/atQu3b9+WrpoMHToUa9aswbBhw/TWS0hIgLW1td6yadOmYdq0afD398e0adPw2muvYezYsejcuTO6d++O4cOHw8nJqVp1lZeX46uvvsLJkycxZswYaXmbNm0wf/58aX727Nlo37495syZIy1bu3YtXF1dcebMGbi4uGDNmjX48ssv0aNHDwD3AlPz5s0fuO9du3bh8OHDyMzMxFNPPQUAaNmypdSuVquhUCig0WgeuI3du3cjPT0d2dnZcHV1BQB88cUXeOaZZ5CamiqNg6qoqEB8fDyaNGkCABg2bBh2796Njz76qFqvU23wyg4REf2tCCGgUCik+bVr12Lw4MEwMbn39/+QIUNw8OBBnD9/Xm+9bt264fjx43rT2LFjpfaPPvoIOp0OK1euxDPPPIOVK1fC09MT6enpD61n+fLlsLa2hoWFBUaPHo2JEydi3LhxUnuHDh30+p84cQJ79+6FtbW1NHl6egK4d9Xk/PnzKC0thZ+fn7SOnZ0dnn766QfWcPz4cTRv3lwKOrWRmZkJV1dXKegAgLe3N2xsbJCZmSktc3d3l4IOADg7OyMvL6/W+60OXtmpZ+7vbTZ0CQZ3wfw1Q5dgWDV8qoSI6ldmZqY0jub69evYuHEjysrKsGLFCqlPeXk51q5dq3e1wcrKCq1bt37otu3t7fHyyy/j5Zdfxpw5c9C+fXssWLDgvk9yVQoPD8f06dNhYWEBZ2fnKk+K/fVpp6KiIvTv3x8ff/xxlW05Ozvj3LlzD63xfiwsLGq8Tm0plUq9eYVCgYqKinrdJ6/sEBHR38aePXuQnp6OsLAwAMC6devQvHlznDhxQu+KzcKFCxEfH4/y8vJa78vU1BStWrV65NNYarUarVu3RrNmze77SPxfPffcczh9+jTc3d3RunVrvcnKygqtWrWCUqlESkqKtM6NGzdw5syZB26zbdu2+O233x7Yx9TU9JGvhZeXFy5duoRLly5JyzIyMpCfnw9vb+9HHld9YtghIiJZKikpgU6nw+XLl3H06FHMmTMHAwYMQL9+/TB8+HAAwJo1a/DSSy/h2Wef1ZtGjhyJ33//XfoMnT9v789T5RNQCQkJGDp0KBISEnDmzBlkZWVhwYIF2LJlCwYMGFCnxxUZGYnr169jyJAhSE1Nxfnz57F9+3a8/vrrKC8vh7W1NUaOHIkpU6Zgz549OHXq1AM/W6hSUFAQunbtirCwMOzcuRPZ2dnYunWrdPzu7u4oKirC7t278fvvv+P27dtVthESEgIfHx+Eh4fj6NGjOHz4MIYPH46goCB07NixTl+DmmLYISIiWdq2bRucnZ3h7u6O3r17Y+/evVi6dCl+/PFHGBsbIy0tDSdOnJCu8vyZWq1Gjx49sGbNmirb+/MUGBgI4N7YFEtLS7zzzjvw9fWFv78/vv32W6xevbrKQOfH5eLigoMHD6K8vBy9evWCj48PoqKiYGNjIwWaTz75BP/4xz/Qv39/hISEIDAwsMrYn7/64Ycf0KlTJwwZMgTe3t549913pas5Xbp0wdixYzF48GA4ODjoDZiupFAo8OOPP8LW1hZdu3ZFSEgIWrZsiW+++aZOj782FOJxn5GTgcLCQqjVahQUFEClUtXptjlmh2N2DD1mh+cgz8GanIPFxcXIzs6Gh4cHzM3N67Eooup52DlZ3fdvXtkhIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEioir4oC41FnVxLjLsEBGRxNjYGAD0vnWbyJAqP8Dwr18zURP8biwiIpKYmJjA0tIS165dg1KprNbXFxDVByEEbt++jby8PNjY2EhBvDYYdoiISKJQKODs7Izs7GxcvHjR0OUQwcbGBhqN5rG2wbBDRER6TE1N0aZNG97KIoNTKpWPdUWnEsMOERFVYWRkxK+LINngzVgiIiKSNYYdIiIikjWGHSIiIpI1g4edy5cvY+jQobC3t4eFhQV8fHxw5MgRqV0IgZkzZ8LZ2RkWFhYICQnB2bNn9bZx/fp1hIeHQ6VSwcbGBiNHjkRRUVFDHwoRERE1QgYNOzdu3EBAQACUSiW2bt2KjIwMLFy4ELa2tlKf+fPnY+nSpVi5ciVSUlJgZWWF0NBQFBcXS33Cw8Nx+vRp7Ny5EwkJCdi/fz/GjBljiEMiIiKiRsagT2N9/PHHcHV1RVxcnLTMw8ND+rcQAosXL8aMGTMwYMAAAMAXX3wBJycnbNq0Ca+++ioyMzOxbds2pKamomPHjgCAZcuW4fnnn8eCBQvg4uLSsAdFREREjYpBr+z89NNP6NixI15++WU4Ojqiffv2WLVqldSenZ0NnU6HkJAQaZlarYafnx+SkpIAAElJSbCxsZGCDgCEhITAyMgIKSkp991vSUkJCgsL9SYiIiKSJ4OGnV9//RUrVqxAmzZtsH37dowbNw4TJkzA559/DgDQ6XQAACcnJ731nJycpDadTgdHR0e9dhMTE9jZ2Ul9/mru3LlQq9XS5OrqWteHRkRERI2EQcNORUUFnnvuOcyZMwft27fHmDFjMHr0aKxcubJe9xsdHY2CggJpunTpUr3uj4iIiAzHoGHH2dkZ3t7eesu8vLyQk5MDANJ3YeTm5ur1yc3Nldo0Gg3y8vL02u/evYvr168/8Ls0zMzMoFKp9CYiIiKSJ4OGnYCAAGRlZektO3PmDNzc3ADcG6ys0Wiwe/duqb2wsBApKSnQarUAAK1Wi/z8fKSlpUl99uzZg4qKCvj5+TXAURAREVFjZtCnsSZOnIguXbpgzpw5eOWVV3D48GH85z//wX/+8x8A9759NyoqCrNnz0abNm3g4eGBf/3rX3BxccHAgQMB3LsS1Lt3b+n2V1lZGcaPH49XX32VT2IRERGRYcNOp06dsHHjRkRHR2PWrFnw8PDA4sWLER4eLvV59913cevWLYwZMwb5+fkIDAzEtm3b9L6gbt26dRg/fjx69OgBIyMjhIWFYenSpYY4JCIiImpkFEIIYegiDK2wsBBqtRoFBQV1Pn7H/b3Ndbq9J9EF89cMXYJhxRQYdPc8B3kOGvocJKov1X3/NvjXRRARERHVJ4YdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYOGnZiYGCgUCr3J09NTai8uLkZkZCTs7e1hbW2NsLAw5Obm6m0jJycHffv2haWlJRwdHTFlyhTcvXu3oQ+FiIiIGikTQxfwzDPPYNeuXdK8icn/lzRx4kRs3rwZ3333HdRqNcaPH49Bgwbh4MGDAIDy8nL07dsXGo0Ghw4dwtWrVzF8+HAolUrMmTOnwY+FiIiIGh+Dhx0TExNoNJoqywsKCrBmzRqsX78e3bt3BwDExcXBy8sLycnJ8Pf3x44dO5CRkYFdu3bByckJvr6++PDDDzF16lTExMTA1NS0oQ+HiIiIGhmDj9k5e/YsXFxc0LJlS4SHhyMnJwcAkJaWhrKyMoSEhEh9PT090aJFCyQlJQEAkpKS4OPjAycnJ6lPaGgoCgsLcfr06Qfus6SkBIWFhXoTERERyZNBw46fnx/i4+Oxbds2rFixAtnZ2fjHP/6BmzdvQqfTwdTUFDY2NnrrODk5QafTAQB0Op1e0Klsr2x7kLlz50KtVkuTq6tr3R4YERERNRoGvY3Vp08f6d9t27aFn58f3Nzc8O2338LCwqLe9hsdHY1JkyZJ84WFhQw8REREMmXw21h/ZmNjg6eeegrnzp2DRqNBaWkp8vPz9frk5uZKY3w0Gk2Vp7Mq5+83DqiSmZkZVCqV3kRERETy1KjCTlFREc6fPw9nZ2d06NABSqUSu3fvltqzsrKQk5MDrVYLANBqtUhPT0deXp7UZ+fOnVCpVPD29m7w+omIiKjxMehtrMmTJ6N///5wc3PDlStX8P7778PY2BhDhgyBWq3GyJEjMWnSJNjZ2UGlUuGtt96CVquFv78/AKBXr17w9vbGsGHDMH/+fOh0OsyYMQORkZEwMzMz5KERERFRI2HQsPPbb79hyJAh+OOPP+Dg4IDAwEAkJyfDwcEBALBo0SIYGRkhLCwMJSUlCA0NxfLly6X1jY2NkZCQgHHjxkGr1cLKygoRERGYNWuWoQ6JiIiIGhmDhp2vv/76oe3m5uaIjY1FbGzsA/u4ublhy5YtdV0aERERyUSjGrNDREREVNcYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWDP6t50REJG/u7202dAkGd8H8NUOXYFgxBQbdPa/sEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrJnUdIX8/Hxs3LgRBw4cwMWLF3H79m04ODigffv2CA0NRZcuXeqjTiIiIqJaqfaVnStXrmDUqFFwdnbG7NmzcefOHfj6+qJHjx5o3rw59u7di549e8Lb2xvffPNNfdZMREREVG3VvrLTvn17REREIC0tDd7e3vftc+fOHWzatAmLFy/GpUuXMHny5DorlIiIiKg2qh12MjIyYG9v/9A+FhYWGDJkCIYMGYI//vjjsYsjIiIielzVvo1lb2+PkpKSam/4UcGIiIiIqCHUaICyWq2GVqtFt27d0K1bN/j7+0OpVNZXbURERESPrUaPnq9cuRJubm5Yu3YtgoKCYGNjg549e2Lu3LlITk5GeXl5fdVJREREVCs1CjsjRoxAfHw8Lly4gHPnzmHZsmVwcXHBypUrERAQAFtbW/Tt27e+aiUiIiKqsRp/zk6lli1bomXLlnjjjTeQnZ2NNWvWYNmyZdi2bVtd1kdERET0WGoVdnJycrB3714kJiYiMTERv//+O/z9/TF58mQEBQXVdY1EREREtVajsPPGG28gMTER169fR0BAAP7xj39gzJgx6NSpE0xMan2RiIiIiKje1CihxMfHo0WLFpg+fTp69OiB9u3bQ6FQ1FdtRERERI+tRmEnMzNTun21cOFClJSUIDAwEEFBQQgODsZzzz0HIyN+tygRERE1HjVKJk8//TTGjh2Lr7/+GjqdDgcPHsTzzz+Pw4cPo1+/frCzs0O/fv3qq1YiIiKiGnusgTbe3t6wt7eHra0tbG1t8fXXX2Pr1q11VRsRERHRY6tx2MnLy0NiYqJ0O+vMmTMwNTVF586dMXHiRHTr1q0+6iQiIiKqlRrdxvLy8oKzszOGDRuG9PR0vPTSS9ixYwdu3LiBffv2ISYmptaPns+bNw8KhQJRUVHSsuLiYkRGRsLe3h7W1tYICwtDbm6u3no5OTno27cvLC0t4ejoiClTpuDu3bu1qoGIiIjkp0ZXdgYOHIhu3bohMDAQlpaWdVZEamoqPvvsM7Rt21Zv+cSJE7F582Z89913UKvVGD9+PAYNGoSDBw8CAMrLy9G3b19oNBocOnQIV69exfDhw6FUKjFnzpw6q4+IiIieXDW6sjN37lz06tWrToNOUVERwsPDsWrVKtja2krLCwoKsGbNGnz66afo3r07OnTogLi4OBw6dAjJyckAgB07diAjIwNffvklfH190adPH3z44YeIjY1FaWlpndVIRERET64aXdmZNWtWtfrNnDmz2tuMjIxE3759ERISgtmzZ0vL09LSUFZWhpCQEGmZp6cnWrRogaSkJPj7+yMpKQk+Pj5wcnKS+oSGhmLcuHE4ffo02rdvf999lpSUoKSkRJovLCysdr1ERET0ZKlR2ImJiYGLiwscHR0hhLhvH4VCUe2w8/XXX+Po0aNITU2t0qbT6WBqagobGxu95U5OTtDpdFKfPwedyvbKtgeZO3cuPvjgg2rVSERERE+2GoWdPn36YM+ePejYsSPeeOMN9OvXr9YfInjp0iW8/fbb2LlzJ8zNzWu1jdqKjo7GpEmTpPnCwkK4uro2aA1ERETUMGqUVDZv3ozz58/Dz88PU6ZMQbNmzTB16lRkZWXVeMdpaWnIy8vDc889BxMTE5iYmGDfvn1YunQpTExM4OTkhNLSUuTn5+utl5ubC41GAwDQaDRVns6qnK/scz9mZmZQqVR6ExEREclTjS/LuLi4IDo6GllZWfjmm2+Ql5eHTp06ISAgAHfu3Kn2dnr06IH09HQcP35cmjp27Ijw8HDp30qlErt375bWycrKQk5ODrRaLQBAq9UiPT0deXl5Up+dO3dCpVLB29u7podGREREMvRYn6DcqVMnXLhwARkZGTh27BjKyspgYWFRrXWbNGmCZ599Vm+ZlZUV7O3tpeUjR47EpEmTYGdnB5VKhbfeegtarRb+/v4AgF69esHb2xvDhg3D/PnzodPpMGPGDERGRsLMzOxxDo2IiIhkolYDbpKSkjB69GhoNBosW7YMERERuHLlSp3fDlq0aBH69euHsLAwdO3aFRqNBhs2bJDajY2NkZCQAGNjY2i1WgwdOhTDhw+v9lNjREREJH81urIzf/58xMfH4/fff0d4eDgOHDhQ5YMAH0diYqLevLm5OWJjYxEbG/vAddzc3LBly5Y6q4GIiIjkpUZh57333kOLFi3wyiuvQKFQID4+/r79Pv3007qojYiIiOix1SjsdO3aFQqFAqdPn35gH4VC8dhFEREREdWVGoWdv95mIiIiImrsaveJgERERERPiGqHnXnz5uH27dvV6puSkoLNmzfXuigiIiKiulLtsJORkQE3Nzf885//xNatW3Ht2jWp7e7duzh58iSWL1+OLl26YPDgwWjSpEm9FExERERUE9Ues/PFF1/gxIkT+Pe//43XXnsNhYWFMDY2hpmZmXTFp3379hg1ahRGjBjR4N93RURERHQ/NRqg3K5dO6xatQqfffYZTp48iYsXL+LOnTto2rQpfH190bRp0/qqk4iIiKhWavV1EUZGRvD19YWvr28dl0NERERUt/g0FhEREckaww4RERHJGsMOERERyRrDDhEREclajcNOWVkZTExMcOrUqfqoh4iIiKhO1TjsKJVKtGjRAuXl5fVRDxEREVGdqtVtrOnTp2PatGm4fv16XddDREREVKdq9Tk7//73v3Hu3Dm4uLjAzc0NVlZWeu1Hjx6tk+KIiIiIHletws7AgQPruAwiIiKi+lGrsPP+++/XdR1ERERE9aLWj57n5+dj9erViI6OlsbuHD16FJcvX66z4oiIiIgeV62u7Jw8eRIhISFQq9W4cOECRo8eDTs7O2zYsAE5OTn44osv6rpOIiIiolqp1ZWdSZMmYcSIETh79izMzc2l5c8//zz2799fZ8URERERPa5ahZ3U1FS8+eabVZY3a9YMOp3usYsiIiIiqiu1CjtmZmYoLCyssvzMmTNwcHB47KKIiIiI6kqtws4LL7yAWbNmoaysDACgUCiQk5ODqVOnIiwsrE4LJCIiInoctQo7CxcuRFFRERwdHXHnzh0EBQWhdevWaNKkCT766KO6rpGIiIio1mr1NJZarcbOnTvxv//9DydPnkRRURGee+45hISE1HV9RERERI+lVmGnuLgY5ubmCAwMRGBgYF3XRERERFRnahV2bGxs0LlzZwQFBaFbt27QarWwsLCo69qIiIiIHlutxuzs2rULvXv3RkpKCl544QXY2toiMDAQ06dPx86dO+u6RiIiIqJaq1XYCQwMxLRp07Bjxw7k5+dj7969aN26NebPn4/evXvXdY1EREREtVar21jAvc/USUxMlKaSkhL069cPwcHBdVgeERER0eOpVdhp1qwZ7ty5g+DgYAQHB2Pq1Klo27YtFApFXddHRERE9FhqdRvLwcEBt2/fhk6ng06nQ25uLu7cuVPXtRERERE9tlqFnePHj0On0+G9995DSUkJpk2bhqZNm6JLly6YPn16XddIREREVGu1HrNjY2ODF154AQEBAejSpQt+/PFHfPXVV0hJSeGnKBMREVGjUauws2HDBmlgckZGBuzs7BAYGIiFCxciKCiormskIiIiqrVahZ2xY8eia9euGDNmDIKCguDj41PXdRERERHViVqFnby8vLqug4iIiKhe1HrMTnl5OTZt2oTMzEwAgLe3NwYMGABjY+M6K46IiIjocdXqaaxz587By8sLw4cPx4YNG7BhwwYMGzYMzzzzDM6fP1/t7axYsQJt27aFSqWCSqWCVqvF1q1bpfbi4mJERkbC3t4e1tbWCAsLQ25urt42cnJy0LdvX1haWsLR0RFTpkzB3bt3a3NYREREJEO1CjsTJkxAq1atcOnSJRw9ehRHjx5FTk4OPDw8MGHChGpvp3nz5pg3bx7S0tJw5MgRdO/eHQMGDMDp06cBABMnTsTPP/+M7777Dvv27cOVK1cwaNAgaf3y8nL07dsXpaWlOHToED7//HPEx8dj5syZtTksIiIikqFa3cbat28fkpOTYWdnJy2zt7fHvHnzEBAQUO3t9O/fX2/+o48+wooVK5CcnIzmzZtjzZo1WL9+Pbp37w4AiIuLg5eXF5KTk+Hv748dO3YgIyMDu3btgpOTE3x9ffHhhx9i6tSpiImJgampaW0Oj4iIiGSkVld2zMzMcPPmzSrLi4qKah0wysvL8fXXX+PWrVvQarVIS0tDWVkZQkJCpD6enp5o0aIFkpKSAABJSUnw8fGBk5OT1Cc0NBSFhYXS1aH7KSkpQWFhod5ERERE8lSrsNOvXz+MGTMGKSkpEEJACIHk5GSMHTsWL7zwQo22lZ6eDmtra5iZmWHs2LHYuHEjvL29odPpYGpqChsbG73+Tk5O0Ol0AACdTqcXdCrbK9seZO7cuVCr1dLk6upao5qJiIjoyVGrsLN06VK0atUKWq0W5ubmMDc3R0BAAFq3bo0lS5bUaFtPP/00jh8/jpSUFIwbNw4RERHIyMioTVnVFh0djYKCAmm6dOlSve6PiIiIDKdWY3ZsbGzw448/4ty5c9Kj515eXmjdunWNt2Vqaiqt16FDB6SmpmLJkiUYPHgwSktLkZ+fr3d1Jzc3FxqNBgCg0Whw+PBhve1VPq1V2ed+zMzMYGZmVuNaiYiI6MlToys7FRUV+PjjjxEQEIBOnTph9erVCAkJQf/+/WsVdB60j5KSEnTo0AFKpRK7d++W2rKyspCTkwOtVgsA0Gq1SE9P1/uQw507d0KlUsHb27tO6iEiIqInW42u7Hz00UeIiYlBSEgILCwssGTJEuTl5WHt2rW12nl0dDT69OmDFi1a4ObNm1i/fj0SExOxfft2qNVqjBw5EpMmTYKdnR1UKhXeeustaLVa+Pv7AwB69eoFb29vDBs2DPPnz4dOp8OMGTMQGRnJKzdEREQEoIZh54svvsDy5cvx5ptvAgB27dqFvn37YvXq1TAyqvnwn7y8PAwfPhxXr16FWq1G27ZtsX37dvTs2RMAsGjRIhgZGSEsLAwlJSUIDQ3F8uXLpfWNjY2RkJCAcePGQavVwsrKChEREZg1a1aNayEiIiJ5qlHYycnJwfPPPy/Nh4SEQKFQ4MqVK2jevHmNd75mzZqHtpubmyM2NhaxsbEP7OPm5oYtW7bUeN9ERET091CjyzF3796Fubm53jKlUomysrI6LYqIiIiortToyo4QAiNGjNAbD1NcXIyxY8fCyspKWrZhw4a6q5CIiIjoMdQo7ERERFRZNnTo0DorhoiIiKiu1SjsxMXF1VcdRERERPWiVp+gTERERPSkYNghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIlkzaNiZO3cuOnXqhCZNmsDR0REDBw5EVlaWXp/i4mJERkbC3t4e1tbWCAsLQ25url6fnJwc9O3bF5aWlnB0dMSUKVNw9+7dhjwUIiIiaqQMGnb27duHyMhIJCcnY+fOnSgrK0OvXr1w69Ytqc/EiRPx888/47vvvsO+fftw5coVDBo0SGovLy9H3759UVpaikOHDuHzzz9HfHw8Zs6caYhDIiIiokbGxJA737Ztm958fHw8HB0dkZaWhq5du6KgoABr1qzB+vXr0b17dwBAXFwcvLy8kJycDH9/f+zYsQMZGRnYtWsXnJyc4Ovriw8//BBTp05FTEwMTE1NDXFoRERE1Eg0qjE7BQUFAAA7OzsAQFpaGsrKyhASEiL18fT0RIsWLZCUlAQASEpKgo+PD5ycnKQ+oaGhKCwsxOnTp++7n5KSEhQWFupNREREJE+NJuxUVFQgKioKAQEBePbZZwEAOp0OpqamsLGx0evr5OQEnU4n9flz0Klsr2y7n7lz50KtVkuTq6trHR8NERERNRaNJuxERkbi1KlT+Prrr+t9X9HR0SgoKJCmS5cu1fs+iYiIyDAMOman0vjx45GQkID9+/ejefPm0nKNRoPS0lLk5+frXd3Jzc2FRqOR+hw+fFhve5VPa1X2+SszMzOYmZnV8VEQERFRY2TQKztCCIwfPx4bN27Enj174OHhodfeoUMHKJVK7N69W1qWlZWFnJwcaLVaAIBWq0V6ejry8vKkPjt37oRKpYK3t3fDHAgRERE1Wga9shMZGYn169fjxx9/RJMmTaQxNmq1GhYWFlCr1Rg5ciQmTZoEOzs7qFQqvPXWW9BqtfD39wcA9OrVC97e3hg2bBjmz58PnU6HGTNmIDIykldviIiIyLBhZ8WKFQCA4OBgveVxcXEYMWIEAGDRokUwMjJCWFgYSkpKEBoaiuXLl0t9jY2NkZCQgHHjxkGr1cLKygoRERGYNWtWQx0GERERNWIGDTtCiEf2MTc3R2xsLGJjYx/Yx83NDVu2bKnL0oiIiEgmGs3TWERERET1gWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkzaBhZ//+/ejfvz9cXFygUCiwadMmvXYhBGbOnAlnZ2dYWFggJCQEZ8+e1etz/fp1hIeHQ6VSwcbGBiNHjkRRUVEDHgURERE1ZgYNO7du3UK7du0QGxt73/b58+dj6dKlWLlyJVJSUmBlZYXQ0FAUFxdLfcLDw3H69Gns3LkTCQkJ2L9/P8aMGdNQh0BERESNnIkhd96nTx/06dPnvm1CCCxevBgzZszAgAEDAABffPEFnJycsGnTJrz66qvIzMzEtm3bkJqaio4dOwIAli1bhueffx4LFiyAi4tLgx0LERERNU6NdsxOdnY2dDodQkJCpGVqtRp+fn5ISkoCACQlJcHGxkYKOgAQEhICIyMjpKSkPHDbJSUlKCws1JuIiIhInhpt2NHpdAAAJycnveVOTk5Sm06ng6Ojo167iYkJ7OzspD73M3fuXKjVamlydXWt4+qJiIiosWi0Yac+RUdHo6CgQJouXbpk6JKIiIionjTasKPRaAAAubm5estzc3OlNo1Gg7y8PL32u3fv4vr161Kf+zEzM4NKpdKbiIiISJ4abdjx8PCARqPB7t27pWWFhYVISUmBVqsFAGi1WuTn5yMtLU3qs2fPHlRUVMDPz6/BayYiIqLGx6BPYxUVFeHcuXPSfHZ2No4fPw47Ozu0aNECUVFRmD17Ntq0aQMPDw/861//gouLCwYOHAgA8PLyQu/evTF69GisXLkSZWVlGD9+PF599VU+iUVEREQADBx2jhw5gm7duknzkyZNAgBEREQgPj4e7777Lm7duoUxY8YgPz8fgYGB2LZtG8zNzaV11q1bh/Hjx6NHjx4wMjJCWFgYli5d2uDHQkRERI2TQcNOcHAwhBAPbFcoFJg1axZmzZr1wD52dnZYv359fZRHREREMtBox+wQERER1QWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjXZhJ3Y2Fi4u7vD3Nwcfn5+OHz4sKFLIiIiokZAFmHnm2++waRJk/D+++/j6NGjaNeuHUJDQ5GXl2fo0oiIiMjAZBF2Pv30U4wePRqvv/46vL29sXLlSlhaWmLt2rWGLo2IiIgMzMTQBTyu0tJSpKWlITo6WlpmZGSEkJAQJCUl3XedkpISlJSUSPMFBQUAgMLCwjqvr6Lkdp1v80lTqBCGLsGw6uG8qgmegzwHeQ4aHs/B+jkHK9+3hXj46/vEh53ff/8d5eXlcHJy0lvu5OSEX3755b7rzJ07Fx988EGV5a6urvVS49+d2tAFGNq8v/0rYHB/+58Az0GD+9v/BOr5HLx58ybU6gfv44kPO7URHR2NSZMmSfMVFRW4fv067O3toVAoDFiZ/BQWFsLV1RWXLl2CSqUydDn0N8RzkAyN52D9EULg5s2bcHFxeWi/Jz7sNG3aFMbGxsjNzdVbnpubC41Gc991zMzMYGZmprfMxsamvkokACqViv/JyaB4DpKh8RysHw+7olPpiR+gbGpqig4dOmD37t3SsoqKCuzevRtardaAlREREVFj8MRf2QGASZMmISIiAh07dkTnzp2xePFi3Lp1C6+//rqhSyMiIiIDk0XYGTx4MK5du4aZM2dCp9PB19cX27ZtqzJomRqemZkZ3n///Sq3DYkaCs9BMjSeg4anEI96XouIiIjoCfbEj9khIiIiehiGHSIiIpI1hh0iIiKSNYYdIiIikjWGHaoiJiYGvr6+hi6DiKhBubu7Y/HixYYug+oBww79bZSWlhq6hL89/gwerry8HBUVFYYug2SmrKzM0CUYHMOODAUHB2PChAl49913YWdnB41Gg5iYGKk9Pz8fo0aNgoODA1QqFbp3744TJ04AAOLj4/HBBx/gxIkTUCgUUCgUiI+Pf+Q+FQoFVqxYgT59+sDCwgItW7bE999/r9cnPT0d3bt3h4WFBezt7TFmzBgUFRUBAE6dOgUjIyNcu3YNAHD9+nUYGRnh1VdfldafPXs2AgMDpflTp06hT58+sLa2hpOTE4YNG4bff/9d73UYP348oqKi0LRpU4SGhtb4taSHu3nzJsLDw2FlZQVnZ2csWrQIwcHBiIqKAnDvL+UPP/wQw4cPh0qlwpgxYwAAP/zwA5555hmYmZnB3d0dCxcu1Nvu8uXL0aZNG5ibm8PJyQkvvfSS1Pb999/Dx8dHOo9CQkJw69atR9Y6YsQIDBw4EB988IF07o8dO1YvgJWUlGDChAlwdHSEubk5AgMDkZqaKrV37NgRCxYskOYHDhwIpVIpnce//fYbFAoFzp07J21v8uTJaNasGaysrODn54fExERp/fj4eNjY2OCnn36Ct7c3zMzMkJOTU81Xn2rqYedrcHAwLl68iIkTJ0q/+x6l8ue3adMm6XwNDQ3FpUuX9PqtWLECrVq1gqmpKZ5++mn897//ldomT56Mfv36SfOLFy+GQqHAtm3bpGWtW7fG6tWrpfnVq1fDy8sL5ubm8PT0xPLly6W2CxcuQKFQ4JtvvkFQUBDMzc2xbt26Wr1esiJIdoKCgoRKpRIxMTHizJkz4vPPPxcKhULs2LFDCCFESEiI6N+/v0hNTRVnzpwR77zzjrC3txd//PGHuH37tnjnnXfEM888I65evSquXr0qbt++/ch9AhD29vZi1apVIisrS8yYMUMYGxuLjIwMIYQQRUVFwtnZWQwaNEikp6eL3bt3Cw8PDxERESGEEKKiokI0bdpUfPfdd0IIITZt2iSaNm0qNBqNtI+QkBAxffp0IYQQN27cEA4ODiI6OlpkZmaKo0ePip49e4pu3brpvQ7W1tZiypQp4pdffhG//PJLnby+9P9GjRol3NzcxK5du0R6erp48cUXRZMmTcTbb78thBDCzc1NqFQqsWDBAnHu3Dlx7tw5ceTIEWFkZCRmzZolsrKyRFxcnLCwsBBxcXFCCCFSU1OFsbGxWL9+vbhw4YI4evSoWLJkiRBCiCtXrggTExPx6aefiuzsbHHy5EkRGxsrbt68+chaIyIihLW1tRg8eLA4deqUSEhIEA4ODmLatGlSnwkTJggXFxexZcsWcfr0aRERESFsbW3FH3/8IYQQYtKkSaJv375CiHvnrJ2dnWjatKnYunWrEEKIL7/8UjRr1kzv9enSpYvYv3+/OHfunPjkk0+EmZmZOHPmjBBCiLi4OKFUKkWXLl3EwYMHxS+//CJu3br1eD8UeqCHna9//PGHaN68uZg1a5b0u+9RKn9+HTt2FIcOHRJHjhwRnTt3Fl26dJH6bNiwQSiVShEbGyuysrLEwoULhbGxsdizZ48QQoiffvpJqNVqcffuXSGEEAMHDhRNmzYVU6dOFUII8dtvvwkA4uzZs0KIe+eYs7Oz+OGHH8Svv/4qfvjhB2FnZyfi4+OFEEJkZ2cLAMLd3V3qc+XKlTp9HZ9EDDsyFBQUJAIDA/WWderUSUydOlUcOHBAqFQqUVxcrNfeqlUr8dlnnwkhhHj//fdFu3btarRPAGLs2LF6y/z8/MS4ceOEEEL85z//Eba2tqKoqEhq37x5szAyMhI6nU4IIcSgQYNEZGSkEEKIqKgoMWXKFGFraysyMzNFaWmpsLS0lALbhx9+KHr16qW3v0uXLgkAIisrS3od2rdvX6PjoOorLCwUSqVSCqhCCJGfny8sLS31ws7AgQP11nvttddEz5499ZZNmTJFeHt7CyGE+OGHH4RKpRKFhYVV9pmWliYAiAsXLtS43oiICGFnZ6cXJlasWCGsra1FeXm5KCoqEkqlUqxbt05qLy0tFS4uLmL+/PlCCP03puPHjwuNRiPefvtt6Y1p1KhR4rXXXhNCCHHx4kVhbGwsLl++rFdHjx49RHR0tBDi3pslAHH8+PEaHw/VTHXP10WLFlV7m5U/v+TkZGlZZmamACBSUlKEEEJ06dJFjB49Wm+9l19+WTz//PNCiHt/uBkZGYnU1FQpQM+dO1f4+fkJIaoG6FatWon169frbe/DDz8UWq1WCPH/YWfx4sXVPo6/A97Gkqm2bdvqzTs7OyMvLw8nTpxAUVER7O3tYW1tLU3Z2dk4f/78Y+3zr1+8qtVqkZmZCQDIzMxEu3btYGVlJbUHBASgoqICWVlZAICgoCDpEv++ffvQvXt3dO3aFYmJiUhNTUVZWRkCAgIAACdOnMDevXv1jsHT0xMA9I6jQ4cOj3VM9GC//vorysrK0LlzZ2mZWq3G008/rdevY8eOevOZmZnSz7FSQEAAzp49i/LycvTs2RNubm5o2bIlhg0bhnXr1uH27dsAgHbt2qFHjx7w8fHByy+/jFWrVuHGjRvVrrldu3awtLSU5rVaLYqKinDp0iWcP39e7xwDAKVSic6dO0vn8T/+8Q/cvHkTx44dw759+xAUFITg4GC98zY4OBjAvdu25eXleOqpp/TO03379umdo6amplX+v1Ldq+75WlMmJibo1KmTNO/p6QkbGxu93333O98r221sbNCuXTskJiYiPT0dpqamGDNmDI4dO4aioiLpPAOAW7du4fz58xg5cqTeOTV79uwqv7//+v/u704W341FVSmVSr15hUKBiooKFBUVwdnZWW/cQCUbG5uGKe4BKu+dnz17FhkZGQgMDMQvv/yCxMRE3LhxAx07dpTeqIqKitC/f398/PHHVbbj7Ows/fvP4YoMo6Y/gyZNmuDo0aNITEzEjh07MHPmTMTExCA1NRU2NjbYuXMnDh06hB07dmDZsmWYPn06UlJS4OHhUU9H8P/+/MaUlJSEnj17omvXrhg8eDDOnDmDs2fPSm9MRUVFMDY2RlpaGoyNjfW2Y21tLf3bwsKiWuNDSL4qA7OZmRmCgoJgZ2cHLy8v/O9//8O+ffvwzjvvAIA0NmzVqlXw8/PT28ZfzzH+7tPHKzt/M8899xx0Oh1MTEzQunVrvalp06YA7v2lWV5eXuNtJycnV5n38vICAHh5eeHEiRN6A0kPHjwIIyMj6S8rHx8f2NraYvbs2fD19YW1tTWCg4Oxb98+JCYmSn8xVx7H6dOn4e7uXuU4+J+8YbRs2RJKpVJvAG9BQQHOnDnz0PW8vLxw8OBBvWUHDx7EU089Jf3CNjExQUhICObPn4+TJ0/iwoUL2LNnD4B7wT0gIAAffPABjh07BlNTU2zcuLFaNZ84cQJ37tyR5pOTk2FtbQ1XV1dpAOmfaysrK0Nqaiq8vb2lZUFBQdi7dy/279+P4OBg6Y3po48+grOzM5566ikAQPv27VFeXo68vLwq56hGo6lWvVR3qnO+1uZ33927d3HkyBFpPisrC/n5+Xq/++53vv/1nPrf//6H3bt3S7/ngoOD8dVXX+HMmTPSMicnJ7i4uODXX3+tck41RNh/ohn6PhrVvaCgIOkedKUBAwaIiIgIUVFRIQIDA0W7du3E9u3bRXZ2tjh48KCYNm2aSE1NFUIIsW7dOmFlZSWOHTsmrl27VmV8z/0AEE2bNhVr1qwRWVlZYubMmcLIyEicPn1aCCHErVu3hLOzswgLCxPp6eliz549omXLltIA5UoDBw4UxsbG0hiI8vJyYWtrK4yNjcW2bdukfpcvXxYODg7ipZdeEocPHxbnzp0T27ZtEyNGjJAG+t3vdaC6NWrUKOHh4SH27NkjTp06JcLCwkSTJk1EVFSUEOL+YyDS0tL0BijHx8frDVD++eefxZIlS8SxY8fEhQsXxPLly4WRkZE4deqUSE5OFh999JFITU0VFy9eFN9++60wNTUVW7ZseWStlQOUhwwZIk6fPi02b94snJycxHvvvSf1efvtt4WLi4vYunWr3gDl69evS302bdokjI2N9QbPv/3228LY2Fi8+uqrevsMDw/XGyiakpIi5syZIxISEoQQ98Z8qNXqmrzk9Bgedb727NlTvPDCC+K3334T165de+T2Kgcod+7cWSQnJ4sjR44If39/4e/vL/XZuHGjUCqVYvny5eLMmTPSAOW9e/dKfa5fvy6MjIyEsbGxyMzMlNYzNjYWzs7OevtctWqVsLCwEEuWLBFZWVni5MmTYu3atWLhwoVCiP8fs3Ps2LHHfLXkhWFHhh4WdoS4N1DvrbfeEi4uLkKpVApXV1cRHh4ucnJyhBBCFBcXi7CwMGFjYyMASG9CDwNAxMbGip49ewozMzPh7u4uvvnmG70+J0+eFN26dRPm5ubCzs5OjB49uspTNIsWLRIApKdbKms3MTGp0vfMmTPixRdfFDY2NsLCwkJ4enqKqKgoUVFR8cDXgepWYWGheO2114SlpaXQaDTi008/FZ07d5YCxIMGfH7//ffC29tbKJVK0aJFC/HJJ59IbQcOHBBBQUHC1tZWWFhYiLZt20rnUkZGhggNDRUODg7CzMxMPPXUU2LZsmXVqjUiIkIMGDBAzJw5U9jb2wtra2sxevRovTB/584d8dZbb4mmTZsKMzMzERAQIA4fPqy3nT/++EMoFAoxePBgadnGjRsFALFy5Uq9vqWlpWLmzJnC3d1dKJVK4ezsLF588UVx8uRJIQTDTkN71PmalJQk2rZtK8zMzER1rgVU/vx++OEH0bJlS2FmZiZCQkLExYsX9fotX75ctGzZUiiVSvHUU0+JL774osq22rVrpxegK8+zvwZoIe79Qerr6ytMTU2Fra2t6Nq1q9iwYYMQgmHnQRRCCGG460okFwqFAhs3bsTAgQMNXQoZ0K1bt9CsWTMsXLgQI0eONHQ5ekaMGIH8/Hxs2rTJ0KVQI/G452t8fDyioqKQn59f98VRneIAZSKqtWPHjuGXX35B586dUVBQgFmzZgEABgwYYODKiKri+fr3xbBDj7Ru3Tq8+eab921zc3PD6dOnG7giakwWLFiArKwsmJqaokOHDjhw4IA02L0h/fkJp7/aunVrA1ZCjVlNztc+ffrgwIED922bNm0aXFxc6rNUqkO8jUWPdPPmTeTm5t63TalUws3NrYErIqqq8isa7qdZs2awsLBowGpIDi5fvqz39N6f2dnZwc7OroErotpi2CEiIiJZ4+fsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGs/R8sVPMaSvX2DQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "run_series = False\n", + "if run_series:\n", + " idaes.cfg.ipopt.options.tol = 1e-6\n", + " idaes.cfg.ipopt.options.max_iter = 50\n", + " solver = pyo.SolverFactory(\"ipopt\")\n", + "\n", + " m.fs.cap_specific_reboiler_duty.fix(2.4e6)\n", + " m.fs.cap_fraction.fix(0.97)\n", + " powers = np.linspace(650, 160, int((650 - 160) / 5) + 1)\n", + " powers = list(powers)\n", + " powers.insert(1, 646)\n", + "\n", + " df = pd.DataFrame(columns=m.fs.tags_output.table_heading())\n", + "\n", + " for p in powers:\n", + " print(\"Simulation for net power = \", p)\n", + " fname = f\"data/ngcc_{int(p)}.json.gz\"\n", + " if os.path.exists(fname):\n", + " iutil.from_json(m, fname=fname, wts=iutil.StoreSpec(suffix=False))\n", + " else:\n", + " m.fs.net_power_mw.fix(p)\n", + " res = solver.solve(m, tee=False, symbolic_solver_labels=True)\n", + " if not pyo.check_optimal_termination(res):\n", + " break\n", + " iutil.to_json(m, fname=fname)\n", + " df.loc[m.fs.tags_output[\"net_power\"].value] = m.fs.tags_output.table_row(\n", + " numeric=True\n", + " )\n", + " if abs(p - 650) < 0.1:\n", + " m.fs.gt.streams_dataframe().to_csv(\n", + " \"data_tabulated/ngcc_stream_650mw_gt.csv\"\n", + " )\n", + " m.fs.st.steam_streams_dataframe().to_csv(\n", + " \"data_tabulated/ngcc_stream_650mw_st.csv\"\n", + " )\n", + " m.fs.hrsg.steam_streams_dataframe().to_csv(\n", + " \"data_tabulated/ngcc_stream_650mw_hrsg_steam.csv\"\n", + " )\n", + " m.fs.hrsg.flue_gas_streams_dataframe().to_csv(\n", + " \"data_tabulated/ngcc_stream_650mw_hrsg_gas.csv\"\n", + " )\n", + " df.to_csv(\"data_tabulated/ngcc.csv\")\n", + "\n", + " # Display the results from the run stored in a pandas dataframe\n", + " pd.set_option(\"display.max_rows\", None)\n", + " pd.set_option(\"display.max_columns\", None)\n", + " display(df)\n", + "\n", + " # Plot results\n", + " plt.plot(df[\"net_power (MW)\"], df[\"lhv_efficiency (%)\"])\n", + " plt.grid()\n", + " plt.xlabel(\"Net Power (MW)\")\n", + " plt.ylabel(\"LHV Efficiency (%)\")\n", + " plt.title(\"Net Power vs. Efficiency\")\n", + " plt.show()" ] - }, - "metadata": {}, - "output_type": "display_data" } - ], - "source": [ - "from matplotlib import pyplot as plt\n", - "\n", - "\n", - "variables = [\"net_power\", \"gross_power\", \"gt_power\"]\n", - "netl_baseline = [646, 690, 477]\n", - "idaes_prediction = [\n", - " pyo.value(m.fs.net_power_mw[0]),\n", - " -pyo.value(m.fs.gross_power[0]) * 1e-6,\n", - " -pyo.value(m.fs.gt.gt_power[0]) * 1e-6,\n", - "]\n", - "\n", - "label_location = np.arange(len(variables))\n", - "\n", - "width = 0.4\n", - "\n", - "fig, ax = plt.subplots()\n", - "netl_data = ax.bar(variables, netl_baseline, label=\"NETL Baseline\")\n", - "idaes_sim = ax.bar(\n", - " label_location + (width / 2), idaes_prediction, width, label=\"IDAES Prediction\"\n", - ")\n", - "\n", - "ax.set_ylabel(\"Power (MW)\")\n", - "ax.set_xticks(label_location)\n", - "ax.set_xticklabels(variables)\n", - "ax.legend()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run turndown cases 5 MW interval\n", - "\n", - "Here we set the CO2 capture rate to 97% and set the specific reboiler duty to PZ advanced solvent system. The minimum power is 160 MW net, which corresponds to a bit under 25%. This is roughly the minimum load for the NGCC modeled. Results are tabulated for tags in the tags_output tag group in a Pandas data frame. \n", - "\n", - "To run the series, change run_series to True. Running the turndown series takes a while, unless previous saved results are available. " - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "run_series = False\n", - "if run_series:\n", - " idaes.cfg.ipopt.options.tol = 1e-6\n", - " idaes.cfg.ipopt.options.max_iter = 50\n", - " solver = pyo.SolverFactory(\"ipopt\")\n", - "\n", - " m.fs.cap_specific_reboiler_duty.fix(2.4e6)\n", - " m.fs.cap_fraction.fix(0.97)\n", - " powers = np.linspace(650, 160, int((650 - 160) / 5) + 1)\n", - " powers = list(powers)\n", - " powers.insert(1, 646)\n", - "\n", - " df = pd.DataFrame(columns=m.fs.tags_output.table_heading())\n", - "\n", - " for p in powers:\n", - " print(\"Simulation for net power = \", p)\n", - " fname = f\"data/ngcc_{int(p)}.json.gz\"\n", - " if os.path.exists(fname):\n", - " iutil.from_json(m, fname=fname, wts=iutil.StoreSpec(suffix=False))\n", - " else:\n", - " m.fs.net_power_mw.fix(p)\n", - " res = solver.solve(m, tee=False, symbolic_solver_labels=True)\n", - " if not pyo.check_optimal_termination(res):\n", - " break\n", - " iutil.to_json(m, fname=fname)\n", - " df.loc[m.fs.tags_output[\"net_power\"].value] = m.fs.tags_output.table_row(\n", - " numeric=True\n", - " )\n", - " if abs(p - 650) < 0.1:\n", - " m.fs.gt.streams_dataframe().to_csv(\n", - " \"data_tabulated/ngcc_stream_650mw_gt.csv\"\n", - " )\n", - " m.fs.st.steam_streams_dataframe().to_csv(\n", - " \"data_tabulated/ngcc_stream_650mw_st.csv\"\n", - " )\n", - " m.fs.hrsg.steam_streams_dataframe().to_csv(\n", - " \"data_tabulated/ngcc_stream_650mw_hrsg_steam.csv\"\n", - " )\n", - " m.fs.hrsg.flue_gas_streams_dataframe().to_csv(\n", - " \"data_tabulated/ngcc_stream_650mw_hrsg_gas.csv\"\n", - " )\n", - " df.to_csv(\"data_tabulated/ngcc.csv\")\n", - "\n", - " # Display the results from the run stored in a pandas dataframe\n", - " pd.set_option(\"display.max_rows\", None)\n", - " pd.set_option(\"display.max_columns\", None)\n", - " display(df)\n", - "\n", - " # Plot results\n", - " plt.plot(df[\"net_power (MW)\"], df[\"lhv_efficiency (%)\"])\n", - " plt.grid()\n", - " plt.xlabel(\"Net Power (MW)\")\n", - " plt.ylabel(\"LHV Efficiency (%)\")\n", - " plt.title(\"Net Power vs. Efficiency\")\n", - " plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc_usr.ipynb b/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc_usr.ipynb index 7127641c..32fa7cf7 100644 --- a/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc_usr.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/ngcc/ngcc_usr.ipynb @@ -1,2964 +1,2965 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# NGCC Baseline and Turndown\n", - "Maintainer: Javal Vyas \n", - "Author: John Eslick \n", - "Updated: 2024-07-25 \n", - "\n", - "This notebook runs a series of net electric power outputs from 650 MW to 160 MW (about 100% to 25%) for an NGCC with 97% CO2 capture. The NGCC model is based on the NETL report \"Cost and Performance Baseline for Fossil Energy Plants Volume 1, Bituminous Coal and Natural Gas to Electricity.\" Sept 2019, Case B31B [resource](https://www.osti.gov/servlets/purl/1893822). Another valuable resource for gaining a deeper understanding of the mathematical model would be the publication referenced [here](https://www.sciencedirect.com/science/article/pii/S1750583617302414). " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Imports\n", - "\n", - "Import the modules that will be used." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import numpy as np\n", - "import pandas as pd\n", - "from IPython.core.display import SVG\n", - "import pyomo.environ as pyo\n", - "import idaes\n", - "from idaes.core.solvers import use_idaes_solver_configuration_defaults\n", - "import idaes.core.util.scaling as iscale\n", - "import idaes.core.util as iutil\n", - "from idaes_examples.mod.power_gen import ngcc\n", - "import idaes.logger as idaeslog\n", - "import pytest\n", - "import logging\n", - "\n", - "logging.getLogger(\"pyomo\").setLevel(logging.ERROR)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Make Output Directories\n", - "\n", - "This notebook can produce a large number of output files. To make it easier to manage, some subdirectories are used to organize output. This ensures that the directories exist." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "def make_directory(path):\n", - " \"\"\"Make a directory if it doesn't exist\"\"\"\n", - " try:\n", - " os.mkdir(path)\n", - " except FileExistsError:\n", - " pass\n", - "\n", - "\n", - "make_directory(\"data\")\n", - "make_directory(\"data_pfds\")\n", - "make_directory(\"data_tabulated\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Global Solver Settings\n", - "\n", - "Use the IDAES configuration system for solver settings. These will apply to all Ipopt instances created, including the ones created in initialization methods." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "use_idaes_solver_configuration_defaults()\n", - "idaes.cfg.ipopt.options.nlp_scaling_method = \"user-scaling\"\n", - "idaes.cfg.ipopt.options.linear_solver = \"ma57\"\n", - "idaes.cfg.ipopt.options.OF_ma57_automatic_scaling = \"yes\"\n", - "idaes.cfg.ipopt.options.ma57_pivtol = 1e-5\n", - "idaes.cfg.ipopt.options.ma57_pivtolmax = 0.1\n", - "solver = pyo.SolverFactory(\"ipopt\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create the NGCC model\n", - "\n", - "Create the NGCC model and initialize it or read the saved initialization if available. The base initialized NGCC model is configured to match the baseline report with 90% capture using a Cansolv system." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ + "cells": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-07-25 03:12:25 [INFO] idaes.init.fs: NGCC load initial from ngcc_init.json.gz\n", - "Ipopt 3.13.2: nlp_scaling_method=user-scaling\n", - "tol=1e-06\n", - "max_iter=200\n", - "linear_solver=ma57\n", - "ma57_pivtol=1e-05\n", - "ma57_pivtolmax=0.1\n", - "option_file_name=C:\\Users\\javal\\AppData\\Local\\Temp\\tmpa9m4gkwo_ipopt.opt\n", - "\n", - "Using option file \"C:\\Users\\javal\\AppData\\Local\\Temp\\tmpa9m4gkwo_ipopt.opt\".\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma57.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 7661\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 5948\n", - "\n", - "Total number of variables............................: 2404\n", - " variables with only lower bounds: 87\n", - " variables with lower and upper bounds: 1447\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 2404\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 3.50e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - "Reallocating memory for MA57: lfact (111709)\n", - " 1 0.0000000e+00 3.49e-01 1.12e+04 -1.0 3.06e+03 - 9.90e-01 9.90e-01h 1\n", - " 2 0.0000000e+00 3.15e-03 5.15e+02 -1.0 3.02e+03 - 9.89e-01 9.91e-01h 1\n", - " 3 0.0000000e+00 2.95e-07 9.98e+02 -1.0 3.74e+01 - 9.90e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 2.9462398742907681e-07 2.9462398742907681e-07\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9462398742907681e-07 2.9462398742907681e-07\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.085\n", - "Total CPU secs in NLP function evaluations = 1.396\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "m = pyo.ConcreteModel()\n", - "m.fs = ngcc.NgccFlowsheet(dynamic=False)\n", - "iscale.calculate_scaling_factors(m)\n", - "m.fs.initialize(\n", - " load_from=\"ngcc_init.json.gz\",\n", - " save_to=\"ngcc_init.json.gz\",\n", - " outlvl=idaeslog.INFO_HIGH,\n", - ")\n", - "res = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Show PFDs with baseline results\n", - "\n", - "This displays PFDs in the notebook, and saves them to files. The full NGCC model is too big to show well in a single PFD, so it is broken into the three main sections, gas turbine, heat recovery steam generator (HRSG), and steam turbine." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# NGCC Baseline and Turndown\n", + "Maintainer: Javal Vyas \n", + "Author: John Eslick \n", + "Updated: 2024-07-25 \n", + "\n", + "This notebook runs a series of net electric power outputs from 650 MW to 160 MW (about 100% to 25%) for an NGCC with 97% CO2 capture. The NGCC model is based on the NETL report \"Cost and Performance Baseline for Fossil Energy Plants Volume 1, Bituminous Coal and Natural Gas to Electricity.\" Sept 2019, Case B31B [resource](https://www.osti.gov/servlets/purl/1893822). Another valuable resource for gaining a deeper understanding of the mathematical model would be the publication referenced [here](https://www.sciencedirect.com/science/article/pii/S1750583617302414). " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Imports\n", + "\n", + "Import the modules that will be used." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "from IPython.core.display import SVG\n", + "import pyomo.environ as pyo\n", + "import idaes\n", + "from idaes.core.solvers import use_idaes_solver_configuration_defaults\n", + "import idaes.core.util.scaling as iscale\n", + "import idaes.core.util as iutil\n", + "from idaes_examples.mod.power_gen import ngcc\n", + "import idaes.logger as idaeslog\n", + "import pytest\n", + "import logging\n", + "\n", + "logging.getLogger(\"pyomo\").setLevel(logging.ERROR)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Make Output Directories\n", + "\n", + "This notebook can produce a large number of output files. To make it easier to manage, some subdirectories are used to organize output. This ensures that the directories exist." + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Gas Turbine Section\n", - "\n" - ] + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def make_directory(path):\n", + " \"\"\"Make a directory if it doesn't exist\"\"\"\n", + " try:\n", + " os.mkdir(path)\n", + " except FileExistsError:\n", + " pass\n", + "\n", + "\n", + "make_directory(\"data\")\n", + "make_directory(\"data_pfds\")\n", + "make_directory(\"data_tabulated\")" + ] }, { - "data": { - "image/svg+xml": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " image/svg+xml\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " cmp1\n", - " cmb1\n", - " gts1\n", - " inject1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " gts2\n", - " \n", - " \n", - " gts3\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " splt1\n", - " mx1\n", - " mx2\n", - " mx3\n", - " Blade Cooling Air\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " NGPreheater\n", - " \n", - " To HRSG\n", - " \n", - " \n", - " \n", - " \n", - " air01\n", - " \n", - " \n", - " air03\n", - " \n", - " \n", - " air02\n", - " \n", - " \n", - " air04\n", - " \n", - " \n", - " fuel01\n", - " \n", - " \n", - " fuel02\n", - " \n", - " \n", - " \n", - " \n", - " st02\n", - " st01\n", - " \n", - " \n", - " air05\n", - " \n", - " \n", - " air06\n", - " \n", - " \n", - " g02\n", - " \n", - " \n", - " g01\n", - " \n", - " \n", - " air09\n", - " \n", - " \n", - " air10\n", - " \n", - " \n", - " air07\n", - " \n", - " \n", - " g03\n", - " \n", - " \n", - " g04\n", - " \n", - " \n", - " g05\n", - " \n", - " \n", - " g06\n", - " \n", - " \n", - " g07\n", - " \n", - " \n", - " g08\n", - " \n", - " \n", - " air08\n", - " \n", - " \n", - " Summary\n", - " total GT power:\n", - " 476.99 MW\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " air01\n", - " \n", - " \n", - " \n", - " air02\n", - " \n", - " \n", - " \n", - " air03\n", - " \n", - " \n", - " \n", - " air04\n", - " \n", - " \n", - " \n", - " fuel01\n", - " \n", - " \n", - " \n", - " fuel02\n", - " \n", - " \n", - " feed_air1\n", - " \n", - " \n", - " st02\n", - " \n", - " \n", - " \n", - " st01\n", - " \n", - " \n", - " \n", - " air05\n", - " \n", - " \n", - " \n", - " air06\n", - " \n", - " \n", - " exhaust_1\n", - " \n", - " \n", - " g01\n", - " \n", - " \n", - " \n", - " g02\n", - " \n", - " \n", - " \n", - " air09\n", - " \n", - " \n", - " \n", - " air10\n", - " \n", - " \n", - " \n", - " air07\n", - " \n", - " \n", - " \n", - " g03\n", - " \n", - " \n", - " \n", - " g04\n", - " \n", - " \n", - " \n", - " g05\n", - " \n", - " \n", - " \n", - " g07\n", - " \n", - " \n", - " \n", - " g06\n", - " \n", - " \n", - " \n", - " g08\n", - " \n", - " \n", - " \n", - " air08\n", - " \n", - " \n", - " \n", - " \n", - " 299.82 K\n", - " 25.946 kg/s\n", - " 31.026 bar\n", - " 1.000%\n", - " 93.100%\n", - " 0.000%\n", - " 1.600%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yCH4:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " 3.200%\n", - " yC2H6:\n", - " 0.700%\n", - " yC3H8:\n", - " 0.400%\n", - " yC4H10:\n", - " \n", - " \n", - " \n", - " 335.99 K\n", - " 18.526 kg/s\n", - " 43.355 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 457.27 K\n", - " 18.526 kg/s\n", - " 43.355 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " NG PreharerUses Hot WaterFrom HRSG\n", - " \n", - " \n", - " 448.75 K\n", - " 25.946 kg/s\n", - " 31.026 bar\n", - " 1.000%\n", - " 93.100%\n", - " 0.000%\n", - " 1.600%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yCH4:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " 3.200%\n", - " yC2H6:\n", - " 0.700%\n", - " yC3H8:\n", - " 0.400%\n", - " yC4H10:\n", - " \n", - " \n", - " power:\n", - " 481.28 MW\n", - " \n", - " \n", - " isentr. efficiency:\n", - " 84.02%\n", - " isentr. head:\n", - " 367.27 kJ/kg\n", - " inlet vol. flow:\n", - " 883.2 m**3/s\n", - " \n", - " 288.15 K\n", - " 1100.984 kg/s\n", - " 1.034 bar\n", - " 0.030%\n", - " 0.990%\n", - " 0.920%\n", - " 20.740%\n", - " 77.320%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yAr:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 288.17 K\n", - " 1100.984 kg/s\n", - " 1.099 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 709.64 K\n", - " 1100.984 kg/s\n", - " 19.226 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 709.64 K\n", - " 1008.614 kg/s\n", - " 19.226 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 691.89 K\n", - " 1034.561 kg/s\n", - " 19.226 bar\n", - " 0.070%\n", - " 3.842%\n", - " 19.884%\n", - " 74.195%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yCH4:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " 0.132%\n", - " yC2H6:\n", - " 0.029%\n", - " yC3H8:\n", - " 0.017%\n", - " yC4H10:\n", - " \n", - " \n", - " \n", - " 1641.38 K\n", - " 1034.691 kg/s\n", - " 18.265 bar\n", - " 4.324%\n", - " 9.217%\n", - " 0.000%\n", - " 11.471%\n", - " 74.106%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yCH4:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " 0.000%\n", - " yC2H6:\n", - " 0.000%\n", - " yC3H8:\n", - " 0.000%\n", - " yC4H10:\n", - " 0.881%\n", - " yAr:\n", - " \n", - " \n", - " \n", - " power:\n", - " -374.58 MW\n", - " \n", - " \n", - " isentr. efficiency:\n", - " 88.53%\n", - " isentr. head:\n", - " -408.95 kJ/kg\n", - " inlet vol. flow:\n", - " 273.6 m**3/s\n", - " \n", - " \n", - " \n", - " 898.00 K\n", - " 1127.060 kg/s\n", - " 1.100 bar\n", - " 3.978%\n", - " 8.554%\n", - " 0.884%\n", - " 12.219%\n", - " 74.365%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yAr:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " \n", - " \n", - " 899.61 K\n", - " 1116.809 kg/s\n", - " 1.100 bar\n", - " 4.014%\n", - " 8.622%\n", - " 0.884%\n", - " 12.142%\n", - " 74.339%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yAr:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 1094.58 K\n", - " 1116.809 kg/s\n", - " 2.799 bar\n", - " 4.014%\n", - " 8.622%\n", - " 0.884%\n", - " 12.142%\n", - " 74.339%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yAr:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 709.76 K\n", - " 14.769 kg/s\n", - " 2.799 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 1099.28 K\n", - " 1102.041 kg/s\n", - " 2.799 bar\n", - " 4.066%\n", - " 8.723%\n", - " 0.883%\n", - " 12.028%\n", - " 74.299%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yAr:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 1329.41 K\n", - " 1102.041 kg/s\n", - " 7.137 bar\n", - " 4.066%\n", - " 8.723%\n", - " 0.883%\n", - " 12.028%\n", - " 74.299%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yAr:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 1365.44 K\n", - " 1034.691 kg/s\n", - " 7.137 bar\n", - " 4.324%\n", - " 9.217%\n", - " 0.881%\n", - " 11.471%\n", - " 74.106%\n", - " T:\n", - " F:\n", - " P:\n", - " yCO2:\n", - " yH2O:\n", - " yAr:\n", - " yO2:\n", - " yN2:\n", - " \n", - " \n", - " \n", - " \n", - " power:\n", - " -264.25 MW\n", - " \n", - " \n", - " isentr. efficiency:\n", - " 88.19%\n", - " isentr. head:\n", - " -268.31 kJ/kg\n", - " inlet vol. flow:\n", - " 1280.2 m**3/s\n", - " \n", - " \n", - " \n", - " 709.77 K\n", - " 10.250 kg/s\n", - " 1.100 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 85.0%\n", - " opening:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 85.0%\n", - " opening:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 85.0%\n", - " opening:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 709.73 K\n", - " 67.350 kg/s\n", - " 7.137 bar\n", - " T:\n", - " F:\n", - " P:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " power:\n", - " -319.43 MW\n", - " \n", - " \n", - " isentr. efficiency:\n", - " 88.35%\n", - " isentr. head:\n", - " -328.07 kJ/kg\n", - " inlet vol. flow:\n", - " 602.3 m**3/s\n", - " \n", - " \n", - "" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Global Solver Settings\n", + "\n", + "Use the IDAES configuration system for solver settings. These will apply to all Ipopt instances created, including the ones created in initialization methods." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "use_idaes_solver_configuration_defaults()\n", + "idaes.cfg.ipopt.options.nlp_scaling_method = \"user-scaling\"\n", + "idaes.cfg.ipopt.options.linear_solver = \"ma57\"\n", + "idaes.cfg.ipopt.options.OF_ma57_automatic_scaling = \"yes\"\n", + "idaes.cfg.ipopt.options.ma57_pivtol = 1e-5\n", + "idaes.cfg.ipopt.options.ma57_pivtolmax = 0.1\n", + "solver = pyo.SolverFactory(\"ipopt\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create the NGCC model\n", + "\n", + "Create the NGCC model and initialize it or read the saved initialization if available. The base initialized NGCC model is configured to match the baseline report with 90% capture using a Cansolv system." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-07-25 03:12:25 [INFO] idaes.init.fs: NGCC load initial from ngcc_init.json.gz\n", + "Ipopt 3.13.2: nlp_scaling_method=user-scaling\n", + "tol=1e-06\n", + "max_iter=200\n", + "linear_solver=ma57\n", + "ma57_pivtol=1e-05\n", + "ma57_pivtolmax=0.1\n", + "option_file_name=C:\\Users\\javal\\AppData\\Local\\Temp\\tmpa9m4gkwo_ipopt.opt\n", + "\n", + "Using option file \"C:\\Users\\javal\\AppData\\Local\\Temp\\tmpa9m4gkwo_ipopt.opt\".\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma57.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 7661\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 5948\n", + "\n", + "Total number of variables............................: 2404\n", + " variables with only lower bounds: 87\n", + " variables with lower and upper bounds: 1447\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 2404\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 3.50e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + "Reallocating memory for MA57: lfact (111709)\n", + " 1 0.0000000e+00 3.49e-01 1.12e+04 -1.0 3.06e+03 - 9.90e-01 9.90e-01h 1\n", + " 2 0.0000000e+00 3.15e-03 5.15e+02 -1.0 3.02e+03 - 9.89e-01 9.91e-01h 1\n", + " 3 0.0000000e+00 2.95e-07 9.98e+02 -1.0 3.74e+01 - 9.90e-01 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 2.9462398742907681e-07 2.9462398742907681e-07\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 2.9462398742907681e-07 2.9462398742907681e-07\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.085\n", + "Total CPU secs in NLP function evaluations = 1.396\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } ], - "text/plain": [ - "" + "source": [ + "m = pyo.ConcreteModel()\n", + "m.fs = ngcc.NgccFlowsheet(dynamic=False)\n", + "iscale.calculate_scaling_factors(m)\n", + "m.fs.initialize(\n", + " load_from=\"ngcc_init.json.gz\",\n", + " save_to=\"ngcc_init.json.gz\",\n", + " outlvl=idaeslog.INFO_HIGH,\n", + ")\n", + "res = solver.solve(m, tee=True)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "HRSG Section\n", - "\n" - ] + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Show PFDs with baseline results\n", + "\n", + "This displays PFDs in the notebook, and saves them to files. The full NGCC model is too big to show well in a single PFD, so it is broken into the three main sections, gas turbine, heat recovery steam generator (HRSG), and steam turbine." + ] }, { - "data": { - "image/svg+xml": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " image/svg+xml\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " IPSH1\n", - " IPSH2\n", - " IPSH3\n", - " HPSH3\n", - " HPSH2\n", - " HPSH1\n", - " HPEVAP\n", - " HPECON5\n", - " LPECON\n", - " LPEVAP\n", - " LPDRUM\n", - " HPSH4\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " HPECON4\n", - " HPECON3\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " LPSH1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Gas Turbine Exhaust\n", - " HP Steam\n", - " IP Steam\n", - " \n", - " Feedwater\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " HPECON1\n", - " \n", - " \n", - " \n", - " \n", - " HPECON2\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " IPECON1\n", - " IPECON2\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " IPEVAP\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Cold Reheat\n", - " \n", - " \n", - " \n", - " \n", - " From HP ECON2\n", - " To HP ECON3\n", - " \n", - " \n", - " LP Steam\n", - " \n", - " \n", - " \n", - " Mixer1\n", - " \n", - " LP_FGsplit\n", - " \n", - " \n", - " \n", - " \n", - " LP_Mixer2\n", - " IPPump\n", - " HPPump\n", - " IP_Mixer1\n", - " IP_Splitter2\n", - " To Ejector\n", - " To Reclaimer\n", - " To Dryer\n", - " To NG Preheater\n", - " From NG Preheater\n", - " To Stack or Capture\n", - " IP_Splitter1\n", - " Splitter1\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " SOEC Makeup\n", - " \n", - " \n", - " \n", - " \n", - " lp01\n", - " \n", - " \n", - " \n", - " lp02\n", - " \n", - " \n", - " \n", - " lp03\n", - " \n", - " \n", - " \n", - " lp04\n", - " \n", - " \n", - " \n", - " lp12\n", - " \n", - " \n", - " \n", - " lp05\n", - " \n", - " \n", - " \n", - " lp13\n", - " \n", - " \n", - " \n", - " g30\n", - " \n", - " \n", - " \n", - " g19\n", - " \n", - " \n", - " \n", - " hp03\n", - " \n", - " \n", - " \n", - " hp04\n", - " \n", - " \n", - " \n", - " hp05\n", - " \n", - " \n", - " \n", - " g18\n", - " \n", - " \n", - " \n", - " hp06\n", - " \n", - " \n", - " \n", - " hp06b\n", - " \n", - " \n", - " \n", - " g15\n", - " \n", - " \n", - " \n", - " ip06\n", - " \n", - " \n", - " \n", - " g14\n", - " \n", - " \n", - " \n", - " g17\n", - " \n", - " \n", - " \n", - " g16\n", - " \n", - " \n", - " \n", - " hp07\n", - " \n", - " \n", - " \n", - " hp08\n", - " \n", - " \n", - " \n", - " hp09\n", - " \n", - " \n", - " \n", - " hp10\n", - " \n", - " \n", - " \n", - " hp11\n", - " \n", - " \n", - " \n", - " g13\n", - " \n", - " \n", - " \n", - " g12\n", - " \n", - " \n", - " \n", - " g11\n", - " \n", - " \n", - " \n", - " g08\n", - " \n", - " \n", - " \n", - " g09\n", - " \n", - " \n", - " \n", - " ip10\n", - " \n", - " \n", - " \n", - " ip09\n", - " \n", - " \n", - " \n", - " ip08\n", - " \n", - " \n", - " \n", - " ip07\n", - " \n", - " \n", - " \n", - " g10\n", - " \n", - " \n", - " \n", - " g28\n", - " \n", - " \n", - " \n", - " ip11\n", - " \n", - " \n", - " \n", - " ip012\n", - " \n", - " \n", - " \n", - " ip013\n", - " \n", - " \n", - " \n", - " ip14\n", - " \n", - " \n", - " \n", - " ip015\n", - " \n", - " \n", - " \n", - " lp09\n", - " \n", - " \n", - " \n", - " lp08\n", - " \n", - " \n", - " \n", - " lp06\n", - " \n", - " \n", - " \n", - " hp01\n", - " \n", - " \n", - " \n", - " hp02\n", - " \n", - " \n", - " \n", - " hp03\n", - " \n", - " \n", - " \n", - " ip01\n", - " \n", - " \n", - " \n", - " ip02\n", - " \n", - " \n", - " \n", - " ip03\n", - " \n", - " \n", - " \n", - " g25\n", - " \n", - " \n", - " \n", - " g26\n", - " \n", - " \n", - " \n", - " g27\n", - " \n", - " \n", - " \n", - " ip05\n", - " \n", - " \n", - " \n", - " ip04\n", - " \n", - " \n", - " \n", - " g24\n", - " \n", - " \n", - " \n", - " g23\n", - " \n", - " \n", - " \n", - " g29\n", - " \n", - " \n", - " \n", - " lp10\n", - " \n", - " \n", - " \n", - " lp11\n", - " \n", - " \n", - " \n", - " g21\n", - " \n", - " \n", - " \n", - " g20\n", - " \n", - " \n", - " \n", - " g22\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " lp01\n", - " \n", - " \n", - " lp02\n", - " \n", - " \n", - " lp03\n", - " \n", - " \n", - " lp04\n", - " \n", - " \n", - " lp12\n", - " \n", - " \n", - " \n", - " lp05\n", - " \n", - " lp13\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " g30\n", - " \n", - " g29\n", - " g28\n", - " \n", - " \n", - " ip11\n", - " \n", - " ip06\n", - " g17\n", - " \n", - " \n", - " g16\n", - " g15\n", - " \n", - " \n", - " g14\n", - " hp07\n", - " \n", - " \n", - " hp08\n", - " hp06b\n", - " \n", - " hp06\n", - " \n", - " g19\n", - " \n", - " hp03\n", - " \n", - " g18\n", - " hp04\n", - " hp05\n", - " hp09\n", - " hp10\n", - " hp11\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " g12\n", - " g13\n", - " g11\n", - " g08\n", - " g09\n", - " ip08\n", - " ip09\n", - " ip10\n", - " ip07\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " g10\n", - " \n", - " ip14\n", - " ip13\n", - " ip12\n", - " ip15\n", - " \n", - " \n", - " \n", - " \n", - " ip06\n", - " \n", - " ip08\n", - " ip09\n", - " \n", - " \n", - " \n", - " hp01\n", - " hp02\n", - " hp03\n", - " \n", - " \n", - " \n", - " g27\n", - " g26\n", - " ip02\n", - " ip01\n", - " ip03\n", - " \n", - " \n", - " \n", - " \n", - " g25\n", - " \n", - " g24\n", - " \n", - " ip05\n", - " \n", - " ip04\n", - " \n", - " g23\n", - " \n", - " \n", - " g22\n", - " \n", - " lp11\n", - " lp10\n", - " g21\n", - " g20\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 382.51 K\n", - " 1.010 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 180.904 kg/s\n", - " 356.59 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 410.40 K\n", - " 1.010 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 0.000 kg/s\n", - " 443.56 K\n", - " 8.000 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 18.526 kg/s\n", - " 335.99 K\n", - " 43.355 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 199.430 kg/s\n", - " 435.43 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 22.669 kg/s\n", - " 435.43 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 199.430 kg/s\n", - " 394.15 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 556.520 kg/s\n", - " 547.38 K\n", - " 1.046 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 199.430 kg/s\n", - " 435.43 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 180.904 kg/s\n", - " 399.98 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 40.345 kg/s\n", - " 435.43 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 40.345 kg/s\n", - " 436.13 K\n", - " 43.850 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 40.345 kg/s\n", - " 457.27 K\n", - " 43.355 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 22.669 kg/s\n", - " 557.10 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 556.520 kg/s\n", - " 557.25 K\n", - " 1.046 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 556.520 kg/s\n", - " 557.25 K\n", - " 1.046 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 552.32 K\n", - " 1.046 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 21.818 kg/s\n", - " 510.22 K\n", - " 42.352 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 176.761 kg/s\n", - " 435.43 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 18.526 kg/s\n", - " 457.27 K\n", - " 43.355 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 435.43 K\n", - " 6.550 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 479.13 K\n", - " 1.010 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 439.77 K\n", - " 244.000 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 21.818 kg/s\n", - " 457.27 K\n", - " 43.355 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 520.59 K\n", - " 1.046 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 516.28 K\n", - " 1.012 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 514.35 K\n", - " 1.011 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 511.29 K\n", - " 1.010 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 504.84 K\n", - " 243.913 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 508.62 K\n", - " 243.829 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 157.430 kg/s\n", - " 855.94 K\n", - " 30.909 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 157.430 kg/s\n", - " 710.16 K\n", - " 33.408 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 157.430 kg/s\n", - " 600.93 K\n", - " 34.177 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 21.818 kg/s\n", - " 556.91 K\n", - " 42.146 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 135.612 kg/s\n", - " 610.47 K\n", - " 34.177 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 21.818 kg/s\n", - " 527.32 K\n", - " 42.352 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 610.47 K\n", - " 34.177 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 858.53 K\n", - " 172.428 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 898.00 K\n", - " 1.100 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 880.11 K\n", - " 1.098 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 735.19 K\n", - " 173.171 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 796.53 K\n", - " 172.830 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " T:P:\n", - " 786.52 K\n", - " 1.092 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 576.08 K\n", - " 1.047 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 577.92 K\n", - " 1.081 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " T:P:\n", - " 755.13 K\n", - " 1.083 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " T:P:\n", - " 840.55 K\n", - " 1.096 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 557.25 K\n", - " 1.046 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:\n", - " 1113.040 kg/s\n", - " 568.07 K\n", - " 1.046 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 529.72 K\n", - " 243.746 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 544.93 K\n", - " 243.667 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 557.78 K\n", - " 243.589 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 627.24 K\n", - " 173.589 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 659.11 K\n", - " 173.415 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " T:P:\n", - " 584.88 K\n", - " 1.081 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " T:P:\n", - " 723.83 K\n", - " 1.081 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " F:T:P:x:\n", - " 136.416 kg/s\n", - " 557.34 K\n", - " 173.589 bar\n", - " ?\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " T:P:\n", - " 820.55 K\n", - " 1.094 bar\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "" + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Gas Turbine Section\n", + "\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " image/svg+xml\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " cmp1\n", + " cmb1\n", + " gts1\n", + " inject1\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " gts2\n", + " \n", + " \n", + " gts3\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " splt1\n", + " mx1\n", + " mx2\n", + " mx3\n", + " Blade Cooling Air\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " NGPreheater\n", + " \n", + " To HRSG\n", + " \n", + " \n", + " \n", + " \n", + " air01\n", + " \n", + " \n", + " air03\n", + " \n", + " \n", + " air02\n", + " \n", + " \n", + " air04\n", + " \n", + " \n", + " fuel01\n", + " \n", + " \n", + " fuel02\n", + " \n", + " \n", + " \n", + " \n", + " st02\n", + " st01\n", + " \n", + " \n", + " air05\n", + " \n", + " \n", + " air06\n", + " \n", + " \n", + " g02\n", + " \n", + " \n", + " g01\n", + " \n", + " \n", + " air09\n", + " \n", + " \n", + " air10\n", + " \n", + " \n", + " air07\n", + " \n", + " \n", + " g03\n", + " \n", + " \n", + " g04\n", + " \n", + " \n", + " g05\n", + " \n", + " \n", + " g06\n", + " \n", + " \n", + " g07\n", + " \n", + " \n", + " g08\n", + " \n", + " \n", + " air08\n", + " \n", + " \n", + " Summary\n", + " total GT power:\n", + " 476.99 MW\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " air01\n", + " \n", + " \n", + " \n", + " air02\n", + " \n", + " \n", + " \n", + " air03\n", + " \n", + " \n", + " \n", + " air04\n", + " \n", + " \n", + " \n", + " fuel01\n", + " \n", + " \n", + " \n", + " fuel02\n", + " \n", + " \n", + " feed_air1\n", + " \n", + " \n", + " st02\n", + " \n", + " \n", + " \n", + " st01\n", + " \n", + " \n", + " \n", + " air05\n", + " \n", + " \n", + " \n", + " air06\n", + " \n", + " \n", + " exhaust_1\n", + " \n", + " \n", + " g01\n", + " \n", + " \n", + " \n", + " g02\n", + " \n", + " \n", + " \n", + " air09\n", + " \n", + " \n", + " \n", + " air10\n", + " \n", + " \n", + " \n", + " air07\n", + " \n", + " \n", + " \n", + " g03\n", + " \n", + " \n", + " \n", + " g04\n", + " \n", + " \n", + " \n", + " g05\n", + " \n", + " \n", + " \n", + " g07\n", + " \n", + " \n", + " \n", + " g06\n", + " \n", + " \n", + " \n", + " g08\n", + " \n", + " \n", + " \n", + " air08\n", + " \n", + " \n", + " \n", + " \n", + " 299.82 K\n", + " 25.946 kg/s\n", + " 31.026 bar\n", + " 1.000%\n", + " 93.100%\n", + " 0.000%\n", + " 1.600%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yCH4:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " 3.200%\n", + " yC2H6:\n", + " 0.700%\n", + " yC3H8:\n", + " 0.400%\n", + " yC4H10:\n", + " \n", + " \n", + " \n", + " 335.99 K\n", + " 18.526 kg/s\n", + " 43.355 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 457.27 K\n", + " 18.526 kg/s\n", + " 43.355 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " NG PreharerUses Hot WaterFrom HRSG\n", + " \n", + " \n", + " 448.75 K\n", + " 25.946 kg/s\n", + " 31.026 bar\n", + " 1.000%\n", + " 93.100%\n", + " 0.000%\n", + " 1.600%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yCH4:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " 3.200%\n", + " yC2H6:\n", + " 0.700%\n", + " yC3H8:\n", + " 0.400%\n", + " yC4H10:\n", + " \n", + " \n", + " power:\n", + " 481.28 MW\n", + " \n", + " \n", + " isentr. efficiency:\n", + " 84.02%\n", + " isentr. head:\n", + " 367.27 kJ/kg\n", + " inlet vol. flow:\n", + " 883.2 m**3/s\n", + " \n", + " 288.15 K\n", + " 1100.984 kg/s\n", + " 1.034 bar\n", + " 0.030%\n", + " 0.990%\n", + " 0.920%\n", + " 20.740%\n", + " 77.320%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yAr:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 288.17 K\n", + " 1100.984 kg/s\n", + " 1.099 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 709.64 K\n", + " 1100.984 kg/s\n", + " 19.226 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 709.64 K\n", + " 1008.614 kg/s\n", + " 19.226 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 691.89 K\n", + " 1034.561 kg/s\n", + " 19.226 bar\n", + " 0.070%\n", + " 3.842%\n", + " 19.884%\n", + " 74.195%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yCH4:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " 0.132%\n", + " yC2H6:\n", + " 0.029%\n", + " yC3H8:\n", + " 0.017%\n", + " yC4H10:\n", + " \n", + " \n", + " \n", + " 1641.38 K\n", + " 1034.691 kg/s\n", + " 18.265 bar\n", + " 4.324%\n", + " 9.217%\n", + " 0.000%\n", + " 11.471%\n", + " 74.106%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yCH4:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " 0.000%\n", + " yC2H6:\n", + " 0.000%\n", + " yC3H8:\n", + " 0.000%\n", + " yC4H10:\n", + " 0.881%\n", + " yAr:\n", + " \n", + " \n", + " \n", + " power:\n", + " -374.58 MW\n", + " \n", + " \n", + " isentr. efficiency:\n", + " 88.53%\n", + " isentr. head:\n", + " -408.95 kJ/kg\n", + " inlet vol. flow:\n", + " 273.6 m**3/s\n", + " \n", + " \n", + " \n", + " 898.00 K\n", + " 1127.060 kg/s\n", + " 1.100 bar\n", + " 3.978%\n", + " 8.554%\n", + " 0.884%\n", + " 12.219%\n", + " 74.365%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yAr:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " \n", + " \n", + " 899.61 K\n", + " 1116.809 kg/s\n", + " 1.100 bar\n", + " 4.014%\n", + " 8.622%\n", + " 0.884%\n", + " 12.142%\n", + " 74.339%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yAr:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 1094.58 K\n", + " 1116.809 kg/s\n", + " 2.799 bar\n", + " 4.014%\n", + " 8.622%\n", + " 0.884%\n", + " 12.142%\n", + " 74.339%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yAr:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 709.76 K\n", + " 14.769 kg/s\n", + " 2.799 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 1099.28 K\n", + " 1102.041 kg/s\n", + " 2.799 bar\n", + " 4.066%\n", + " 8.723%\n", + " 0.883%\n", + " 12.028%\n", + " 74.299%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yAr:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 1329.41 K\n", + " 1102.041 kg/s\n", + " 7.137 bar\n", + " 4.066%\n", + " 8.723%\n", + " 0.883%\n", + " 12.028%\n", + " 74.299%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yAr:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 1365.44 K\n", + " 1034.691 kg/s\n", + " 7.137 bar\n", + " 4.324%\n", + " 9.217%\n", + " 0.881%\n", + " 11.471%\n", + " 74.106%\n", + " T:\n", + " F:\n", + " P:\n", + " yCO2:\n", + " yH2O:\n", + " yAr:\n", + " yO2:\n", + " yN2:\n", + " \n", + " \n", + " \n", + " \n", + " power:\n", + " -264.25 MW\n", + " \n", + " \n", + " isentr. efficiency:\n", + " 88.19%\n", + " isentr. head:\n", + " -268.31 kJ/kg\n", + " inlet vol. flow:\n", + " 1280.2 m**3/s\n", + " \n", + " \n", + " \n", + " 709.77 K\n", + " 10.250 kg/s\n", + " 1.100 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 85.0%\n", + " opening:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 85.0%\n", + " opening:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 85.0%\n", + " opening:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 709.73 K\n", + " 67.350 kg/s\n", + " 7.137 bar\n", + " T:\n", + " F:\n", + " P:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " power:\n", + " -319.43 MW\n", + " \n", + " \n", + " isentr. efficiency:\n", + " 88.35%\n", + " isentr. head:\n", + " -328.07 kJ/kg\n", + " inlet vol. flow:\n", + " 602.3 m**3/s\n", + " \n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "HRSG Section\n", + "\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " image/svg+xml\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " IPSH1\n", + " IPSH2\n", + " IPSH3\n", + " HPSH3\n", + " HPSH2\n", + " HPSH1\n", + " HPEVAP\n", + " HPECON5\n", + " LPECON\n", + " LPEVAP\n", + " LPDRUM\n", + " HPSH4\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " HPECON4\n", + " HPECON3\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " LPSH1\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Gas Turbine Exhaust\n", + " HP Steam\n", + " IP Steam\n", + " \n", + " Feedwater\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " HPECON1\n", + " \n", + " \n", + " \n", + " \n", + " HPECON2\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " IPECON1\n", + " IPECON2\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " IPEVAP\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Cold Reheat\n", + " \n", + " \n", + " \n", + " \n", + " From HP ECON2\n", + " To HP ECON3\n", + " \n", + " \n", + " LP Steam\n", + " \n", + " \n", + " \n", + " Mixer1\n", + " \n", + " LP_FGsplit\n", + " \n", + " \n", + " \n", + " \n", + " LP_Mixer2\n", + " IPPump\n", + " HPPump\n", + " IP_Mixer1\n", + " IP_Splitter2\n", + " To Ejector\n", + " To Reclaimer\n", + " To Dryer\n", + " To NG Preheater\n", + " From NG Preheater\n", + " To Stack or Capture\n", + " IP_Splitter1\n", + " Splitter1\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " SOEC Makeup\n", + " \n", + " \n", + " \n", + " \n", + " lp01\n", + " \n", + " \n", + " \n", + " lp02\n", + " \n", + " \n", + " \n", + " lp03\n", + " \n", + " \n", + " \n", + " lp04\n", + " \n", + " \n", + " \n", + " lp12\n", + " \n", + " \n", + " \n", + " lp05\n", + " \n", + " \n", + " \n", + " lp13\n", + " \n", + " \n", + " \n", + " g30\n", + " \n", + " \n", + " \n", + " g19\n", + " \n", + " \n", + " \n", + " hp03\n", + " \n", + " \n", + " \n", + " hp04\n", + " \n", + " \n", + " \n", + " hp05\n", + " \n", + " \n", + " \n", + " g18\n", + " \n", + " \n", + " \n", + " hp06\n", + " \n", + " \n", + " \n", + " hp06b\n", + " \n", + " \n", + " \n", + " g15\n", + " \n", + " \n", + " \n", + " ip06\n", + " \n", + " \n", + " \n", + " g14\n", + " \n", + " \n", + " \n", + " g17\n", + " \n", + " \n", + " \n", + " g16\n", + " \n", + " \n", + " \n", + " hp07\n", + " \n", + " \n", + " \n", + " hp08\n", + " \n", + " \n", + " \n", + " hp09\n", + " \n", + " \n", + " \n", + " hp10\n", + " \n", + " \n", + " \n", + " hp11\n", + " \n", + " \n", + " \n", + " g13\n", + " \n", + " \n", + " \n", + " g12\n", + " \n", + " \n", + " \n", + " g11\n", + " \n", + " \n", + " \n", + " g08\n", + " \n", + " \n", + " \n", + " g09\n", + " \n", + " \n", + " \n", + " ip10\n", + " \n", + " \n", + " \n", + " ip09\n", + " \n", + " \n", + " \n", + " ip08\n", + " \n", + " \n", + " \n", + " ip07\n", + " \n", + " \n", + " \n", + " g10\n", + " \n", + " \n", + " \n", + " g28\n", + " \n", + " \n", + " \n", + " ip11\n", + " \n", + " \n", + " \n", + " ip012\n", + " \n", + " \n", + " \n", + " ip013\n", + " \n", + " \n", + " \n", + " ip14\n", + " \n", + " \n", + " \n", + " ip015\n", + " \n", + " \n", + " \n", + " lp09\n", + " \n", + " \n", + " \n", + " lp08\n", + " \n", + " \n", + " \n", + " lp06\n", + " \n", + " \n", + " \n", + " hp01\n", + " \n", + " \n", + " \n", + " hp02\n", + " \n", + " \n", + " \n", + " hp03\n", + " \n", + " \n", + " \n", + " ip01\n", + " \n", + " \n", + " \n", + " ip02\n", + " \n", + " \n", + " \n", + " ip03\n", + " \n", + " \n", + " \n", + " g25\n", + " \n", + " \n", + " \n", + " g26\n", + " \n", + " \n", + " \n", + " g27\n", + " \n", + " \n", + " \n", + " ip05\n", + " \n", + " \n", + " \n", + " ip04\n", + " \n", + " \n", + " \n", + " g24\n", + " \n", + " \n", + " \n", + " g23\n", + " \n", + " \n", + " \n", + " g29\n", + " \n", + " \n", + " \n", + " lp10\n", + " \n", + " \n", + " \n", + " lp11\n", + " \n", + " \n", + " \n", + " g21\n", + " \n", + " \n", + " \n", + " g20\n", + " \n", + " \n", + " \n", + " g22\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " lp01\n", + " \n", + " \n", + " lp02\n", + " \n", + " \n", + " lp03\n", + " \n", + " \n", + " lp04\n", + " \n", + " \n", + " lp12\n", + " \n", + " \n", + " \n", + " lp05\n", + " \n", + " lp13\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " g30\n", + " \n", + " g29\n", + " g28\n", + " \n", + " \n", + " ip11\n", + " \n", + " ip06\n", + " g17\n", + " \n", + " \n", + " g16\n", + " g15\n", + " \n", + " \n", + " g14\n", + " hp07\n", + " \n", + " \n", + " hp08\n", + " hp06b\n", + " \n", + " hp06\n", + " \n", + " g19\n", + " \n", + " hp03\n", + " \n", + " g18\n", + " hp04\n", + " hp05\n", + " hp09\n", + " hp10\n", + " hp11\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " g12\n", + " g13\n", + " g11\n", + " g08\n", + " g09\n", + " ip08\n", + " ip09\n", + " ip10\n", + " ip07\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " g10\n", + " \n", + " ip14\n", + " ip13\n", + " ip12\n", + " ip15\n", + " \n", + " \n", + " \n", + " \n", + " ip06\n", + " \n", + " ip08\n", + " ip09\n", + " \n", + " \n", + " \n", + " hp01\n", + " hp02\n", + " hp03\n", + " \n", + " \n", + " \n", + " g27\n", + " g26\n", + " ip02\n", + " ip01\n", + " ip03\n", + " \n", + " \n", + " \n", + " \n", + " g25\n", + " \n", + " g24\n", + " \n", + " ip05\n", + " \n", + " ip04\n", + " \n", + " g23\n", + " \n", + " \n", + " g22\n", + " \n", + " lp11\n", + " lp10\n", + " g21\n", + " g20\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 382.51 K\n", + " 1.010 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 180.904 kg/s\n", + " 356.59 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 410.40 K\n", + " 1.010 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 0.000 kg/s\n", + " 443.56 K\n", + " 8.000 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 18.526 kg/s\n", + " 335.99 K\n", + " 43.355 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 199.430 kg/s\n", + " 435.43 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 22.669 kg/s\n", + " 435.43 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 199.430 kg/s\n", + " 394.15 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 556.520 kg/s\n", + " 547.38 K\n", + " 1.046 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 199.430 kg/s\n", + " 435.43 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 180.904 kg/s\n", + " 399.98 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 40.345 kg/s\n", + " 435.43 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 40.345 kg/s\n", + " 436.13 K\n", + " 43.850 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 40.345 kg/s\n", + " 457.27 K\n", + " 43.355 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 22.669 kg/s\n", + " 557.10 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 556.520 kg/s\n", + " 557.25 K\n", + " 1.046 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 556.520 kg/s\n", + " 557.25 K\n", + " 1.046 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 552.32 K\n", + " 1.046 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 21.818 kg/s\n", + " 510.22 K\n", + " 42.352 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 176.761 kg/s\n", + " 435.43 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 18.526 kg/s\n", + " 457.27 K\n", + " 43.355 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 435.43 K\n", + " 6.550 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 479.13 K\n", + " 1.010 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 439.77 K\n", + " 244.000 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 21.818 kg/s\n", + " 457.27 K\n", + " 43.355 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 520.59 K\n", + " 1.046 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 516.28 K\n", + " 1.012 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 514.35 K\n", + " 1.011 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 511.29 K\n", + " 1.010 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 504.84 K\n", + " 243.913 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 508.62 K\n", + " 243.829 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 157.430 kg/s\n", + " 855.94 K\n", + " 30.909 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 157.430 kg/s\n", + " 710.16 K\n", + " 33.408 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 157.430 kg/s\n", + " 600.93 K\n", + " 34.177 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 21.818 kg/s\n", + " 556.91 K\n", + " 42.146 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 135.612 kg/s\n", + " 610.47 K\n", + " 34.177 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 21.818 kg/s\n", + " 527.32 K\n", + " 42.352 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 610.47 K\n", + " 34.177 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 858.53 K\n", + " 172.428 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 898.00 K\n", + " 1.100 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 880.11 K\n", + " 1.098 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 735.19 K\n", + " 173.171 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 796.53 K\n", + " 172.830 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " T:P:\n", + " 786.52 K\n", + " 1.092 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 576.08 K\n", + " 1.047 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 577.92 K\n", + " 1.081 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " T:P:\n", + " 755.13 K\n", + " 1.083 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " T:P:\n", + " 840.55 K\n", + " 1.096 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 557.25 K\n", + " 1.046 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:\n", + " 1113.040 kg/s\n", + " 568.07 K\n", + " 1.046 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 529.72 K\n", + " 243.746 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 544.93 K\n", + " 243.667 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 557.78 K\n", + " 243.589 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 627.24 K\n", + " 173.589 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 659.11 K\n", + " 173.415 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " T:P:\n", + " 584.88 K\n", + " 1.081 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " T:P:\n", + " 723.83 K\n", + " 1.081 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " F:T:P:x:\n", + " 136.416 kg/s\n", + " 557.34 K\n", + " 173.589 bar\n", + " ?\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " T:P:\n", + " 820.55 K\n", + " 1.094 bar\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Steam Turbine Section\n", + "\n" + ] + }, + { + "data": { + "image/svg+xml": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " image/svg+xml\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " HRSG\n", + " Cold Flue Gas\n", + " Gas Turbine Exhaust\n", + " Makeup Water\n", + " HP\n", + " IP\n", + " LP\n", + " Condensate Pump\n", + " Condenser\n", + " \n", + " \n", + " Cold Reheat\n", + " Hot Reheat\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " From Dryer\n", + " From Reclaimer\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " To Reclaimer\n", + " To Dryer\n", + " To Ejector\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " From NG Preheater\n", + " To NG Preheater\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " CaptureReboiler\n", + " \n", + " \n", + " \n", + " \n", + " To SOEC\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " t01\n", + " \n", + " \n", + " \n", + " t02\n", + " \n", + " \n", + " \n", + " t11\n", + " \n", + " \n", + " \n", + " t15\n", + " \n", + " \n", + " \n", + " t14\n", + " \n", + " \n", + " \n", + " t13\n", + " \n", + " \n", + " \n", + " t10\n", + " \n", + " \n", + " \n", + " t09\n", + " \n", + " \n", + " \n", + " t13\n", + " \n", + " \n", + " \n", + " t04\n", + " \n", + " \n", + " \n", + " t05\n", + " \n", + " \n", + " \n", + " t03\n", + " \n", + " \n", + " \n", + " t06\n", + " \n", + " \n", + " \n", + " t07\n", + " \n", + " \n", + " \n", + " t08\n", + " \n", + " \n", + " \n", + " t12\n", + " \n", + " \n", + " \n", + " cw01\n", + " \n", + " \n", + " \n", + " cw02\n", + " \n", + " \n", + " \n", + " t18\n", + " \n", + " \n", + " \n", + " t17\n", + " \n", + " \n", + " \n", + " t16\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " t01\n", + " \n", + " t02\n", + " \n", + " \n", + " t11\n", + " \n", + " \n", + " t15\n", + " \n", + " \n", + " t14\n", + " \n", + " \n", + " t10\n", + " \n", + " \n", + " t09\n", + " \n", + " \n", + " t13\n", + " \n", + " \n", + " t04\n", + " \n", + " \n", + " t05\n", + " \n", + " \n", + " t08\n", + " \n", + " \n", + " t12\n", + " \n", + " \n", + " cw01\n", + " \n", + " \n", + " cw02\n", + " \n", + " \n", + " t16\n", + " \n", + " \n", + " t18\n", + " \n", + " \n", + " t17\n", + " \n", + " t03\n", + " \n", + " t06\n", + " \n", + " t07\n", + " \n", + " \n", + " \n", + " 136.416 kg/s\n", + " 858.53 K\n", + " 172.428 bar\n", + " 63.487 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 157.430 kg/s\n", + " 855.94 K\n", + " 30.909 bar\n", + " 65.630 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 0.806 kg/s\n", + " 306.25 K\n", + " 1.013 bar\n", + " 2.500 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 3603.054 kg/s\n", + " 289.70 K\n", + " 5.000 bar\n", + " 1.260 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 111.286 kg/s\n", + " 316.88 K\n", + " 0.090 bar\n", + " 45.114 kJ/mol\n", + " 0.968\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " 22.669 kg/s\n", + " 557.10 K\n", + " 6.550 bar\n", + " 54.533 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 0.002 kg/s\n", + " 577.72 K\n", + " 4.592 bar\n", + " 55.397 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 68.812 kg/s\n", + " 577.72 K\n", + " 4.592 bar\n", + " 55.397 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 157.430 kg/s\n", + " 581.07 K\n", + " 4.592 bar\n", + " 55.522 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 136.416 kg/s\n", + " 610.47 K\n", + " 34.177 bar\n", + " 55.412 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " 111.286 kg/s\n", + " 577.72 K\n", + " 4.592 bar\n", + " 55.397 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " 180.904 kg/s\n", + " 356.59 K\n", + " 6.550 bar\n", + " 6.304 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " 0.001 kg/s\n", + " 487.00 K\n", + " 20.000 bar\n", + " 50.496 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 0.000 kg/s\n", + " 476.00 K\n", + " 16.000 bar\n", + " 50.393 kJ/mol\n", + " 1.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 111.286 kg/s\n", + " 316.88 K\n", + " 0.090 bar\n", + " 3.299 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " 3603.054 kg/s\n", + " 306.85 K\n", + " 5.000 bar\n", + " 2.552 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " 68.812 kg/s\n", + " 420.51 K\n", + " 4.592 bar\n", + " 11.184 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " 112.092 kg/s\n", + " 316.80 K\n", + " 0.090 bar\n", + " 3.293 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + " \n", + " 112.092 kg/s\n", + " 316.86 K\n", + " 6.550 bar\n", + " 3.308 kJ/mol\n", + " 0.000\n", + " \n", + " \n", + " F:T:P:H:X:\n", + " \n", + " \n", + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "text/plain": [ - "" + "source": [ + "def display_pfd():\n", + " print(\"\\n\\nGas Turbine Section\\n\")\n", + " display(SVG(m.fs.gt.write_pfd()))\n", + " print(\"\\n\\nHRSG Section\\n\")\n", + " display(SVG(m.fs.hrsg.write_pfd()))\n", + " print(\"\\n\\nSteam Turbine Section\\n\")\n", + " display(SVG(m.fs.st.write_pfd()))\n", + "\n", + "\n", + "display_pfd()\n", + "\n", + "m.fs.gt.write_pfd(fname=\"data_pfds/gt_baseline.svg\")\n", + "m.fs.hrsg.write_pfd(fname=\"data_pfds/hrsg_baseline.svg\")\n", + "m.fs.st.write_pfd(fname=\"data_pfds/st_baseline.svg\")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "Steam Turbine Section\n", - "\n" - ] + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test key model outputs against NETL baseline" + ] }, { - "data": { - "image/svg+xml": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " image/svg+xml\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " HRSG\n", - " Cold Flue Gas\n", - " Gas Turbine Exhaust\n", - " Makeup Water\n", - " HP\n", - " IP\n", - " LP\n", - " Condensate Pump\n", - " Condenser\n", - " \n", - " \n", - " Cold Reheat\n", - " Hot Reheat\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " From Dryer\n", - " From Reclaimer\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " To Reclaimer\n", - " To Dryer\n", - " To Ejector\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " From NG Preheater\n", - " To NG Preheater\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " CaptureReboiler\n", - " \n", - " \n", - " \n", - " \n", - " To SOEC\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " t01\n", - " \n", - " \n", - " \n", - " t02\n", - " \n", - " \n", - " \n", - " t11\n", - " \n", - " \n", - " \n", - " t15\n", - " \n", - " \n", - " \n", - " t14\n", - " \n", - " \n", - " \n", - " t13\n", - " \n", - " \n", - " \n", - " t10\n", - " \n", - " \n", - " \n", - " t09\n", - " \n", - " \n", - " \n", - " t13\n", - " \n", - " \n", - " \n", - " t04\n", - " \n", - " \n", - " \n", - " t05\n", - " \n", - " \n", - " \n", - " t03\n", - " \n", - " \n", - " \n", - " t06\n", - " \n", - " \n", - " \n", - " t07\n", - " \n", - " \n", - " \n", - " t08\n", - " \n", - " \n", - " \n", - " t12\n", - " \n", - " \n", - " \n", - " cw01\n", - " \n", - " \n", - " \n", - " cw02\n", - " \n", - " \n", - " \n", - " t18\n", - " \n", - " \n", - " \n", - " t17\n", - " \n", - " \n", - " \n", - " t16\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " t01\n", - " \n", - " t02\n", - " \n", - " \n", - " t11\n", - " \n", - " \n", - " t15\n", - " \n", - " \n", - " t14\n", - " \n", - " \n", - " t10\n", - " \n", - " \n", - " t09\n", - " \n", - " \n", - " t13\n", - " \n", - " \n", - " t04\n", - " \n", - " \n", - " t05\n", - " \n", - " \n", - " t08\n", - " \n", - " \n", - " t12\n", - " \n", - " \n", - " cw01\n", - " \n", - " \n", - " cw02\n", - " \n", - " \n", - " t16\n", - " \n", - " \n", - " t18\n", - " \n", - " \n", - " t17\n", - " \n", - " t03\n", - " \n", - " t06\n", - " \n", - " t07\n", - " \n", - " \n", - " \n", - " 136.416 kg/s\n", - " 858.53 K\n", - " 172.428 bar\n", - " 63.487 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 157.430 kg/s\n", - " 855.94 K\n", - " 30.909 bar\n", - " 65.630 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 0.806 kg/s\n", - " 306.25 K\n", - " 1.013 bar\n", - " 2.500 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 3603.054 kg/s\n", - " 289.70 K\n", - " 5.000 bar\n", - " 1.260 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 111.286 kg/s\n", - " 316.88 K\n", - " 0.090 bar\n", - " 45.114 kJ/mol\n", - " 0.968\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " 22.669 kg/s\n", - " 557.10 K\n", - " 6.550 bar\n", - " 54.533 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 0.002 kg/s\n", - " 577.72 K\n", - " 4.592 bar\n", - " 55.397 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 68.812 kg/s\n", - " 577.72 K\n", - " 4.592 bar\n", - " 55.397 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 157.430 kg/s\n", - " 581.07 K\n", - " 4.592 bar\n", - " 55.522 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 136.416 kg/s\n", - " 610.47 K\n", - " 34.177 bar\n", - " 55.412 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " 111.286 kg/s\n", - " 577.72 K\n", - " 4.592 bar\n", - " 55.397 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " 180.904 kg/s\n", - " 356.59 K\n", - " 6.550 bar\n", - " 6.304 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " 0.001 kg/s\n", - " 487.00 K\n", - " 20.000 bar\n", - " 50.496 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 0.000 kg/s\n", - " 476.00 K\n", - " 16.000 bar\n", - " 50.393 kJ/mol\n", - " 1.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 111.286 kg/s\n", - " 316.88 K\n", - " 0.090 bar\n", - " 3.299 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " 3603.054 kg/s\n", - " 306.85 K\n", - " 5.000 bar\n", - " 2.552 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " 68.812 kg/s\n", - " 420.51 K\n", - " 4.592 bar\n", - " 11.184 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " 112.092 kg/s\n", - " 316.80 K\n", - " 0.090 bar\n", - " 3.293 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - " \n", - " 112.092 kg/s\n", - " 316.86 K\n", - " 6.550 bar\n", - " 3.308 kJ/mol\n", - " 0.000\n", - " \n", - " \n", - " F:T:P:H:X:\n", - " \n", - " \n", - "" + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Assert results approximately agree with baseline reoprt\n", + "assert pyo.value(m.fs.net_power_mw[0]) == pytest.approx(646)\n", + "assert pyo.value(m.fs.gross_power[0]) == pytest.approx(-690e6, rel=0.001)\n", + "assert pyo.value(100 * m.fs.lhv_efficiency[0]) == pytest.approx(52.8, abs=0.1)\n", + "assert pyo.value(\n", + " m.fs.total_variable_cost_rate[0] / m.fs.net_power_mw[0]\n", + ") == pytest.approx(37.2799, rel=0.01)\n", + "assert pyo.value(m.fs.fuel_cost_rate[0] / m.fs.net_power_mw[0]) == pytest.approx(\n", + " 31.6462, rel=0.01\n", + ")\n", + "assert pyo.value(\n", + " m.fs.other_variable_cost_rate[0] / m.fs.net_power_mw[0]\n", + ") == pytest.approx(5.63373, rel=0.01)\n", + "assert pyo.value(m.fs.gt.gt_power[0]) == pytest.approx(-477e6, rel=0.001)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABF2UlEQVR4nO3deVhU9f4H8PcAw+4Mi8CAIuBSQKGYC4xwBRVFU9OkMkPFckkvZmiaoV4jMzXT3C5q1wXqpu1qhfuGehUQcUMhXEIxdcBSQFQW4fv7w4fza8IFEBg8vV/Pc57Hc77fc87nDEfmzTnfM6MQQggQERERyZSRoQsgIiIiqk8MO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrJoYuoDGoqKjAlStX0KRJEygUCkOXQ0RERNUghMDNmzfh4uICI6MHX79h2AFw5coVuLq6GroMIiIiqoVLly6hefPmD2xn2AHQpEkTAPdeLJVKZeBqiIiIqDoKCwvh6uoqvY8/CMMOIN26UqlUDDtERERPmEcNQeEAZSIiIpI1hh0iIiKSNYYdIiIikjWO2SEioirKy8tRVlZm6DLob87Y2BgmJiaP/bEwDDtERKSnqKgIv/32G4QQhi6FCJaWlnB2doapqWmtt2HQsOPu7o6LFy9WWf7Pf/4TsbGxKC4uxjvvvIOvv/4aJSUlCA0NxfLly+Hk5CT1zcnJwbhx47B3715YW1sjIiICc+fOhYkJcxwRUU2Vl5fjt99+g6WlJRwcHPhBq2QwQgiUlpbi2rVryM7ORps2bR76wYEPY9BEkJqaivLycmn+1KlT6NmzJ15++WUAwMSJE7F582Z89913UKvVGD9+PAYNGoSDBw8CuPefsm/fvtBoNDh06BCuXr2K4cOHQ6lUYs6cOQY5JiKiJ1lZWRmEEHBwcICFhYWhy6G/OQsLCyiVSly8eBGlpaUwNzev1XYUohFdp4yKikJCQgLOnj2LwsJCODg4YP369XjppZcAAL/88gu8vLyQlJQEf39/bN26Ff369cOVK1ekqz0rV67E1KlTce3atWpf8iosLIRarUZBQQE/Z4eI/taKi4uRnZ0NDw+PWr+xENWlh52T1X3/bjRPY5WWluLLL7/EG2+8AYVCgbS0NJSVlSEkJETq4+npiRYtWiApKQkAkJSUBB8fH73bWqGhoSgsLMTp06cfuK+SkhIUFhbqTURERCRPjSbsbNq0Cfn5+RgxYgQAQKfTwdTUFDY2Nnr9nJycoNPppD5/DjqV7ZVtDzJ37lyo1Wpp4vdiERERyVejGcW7Zs0a9OnTBy4uLvW+r+joaEyaNEmar/xuDSIiuj/39zY36P4uzOvboPv7O7hw4QI8PDxw7Ngx+Pr6IjExEd26dcONGzeqXFiQm0ZxZefixYvYtWsXRo0aJS3TaDQoLS1Ffn6+Xt/c3FxoNBqpT25ubpX2yrYHMTMzk74Hi9+HRUT05BsxYgQUCgXmzZunt3zTpk16T5QlJiZCoVDcd9LpdHB3d39gu0KhkO4+KBQKbNq0qdr1/Xm7xsbGcHFxwciRI3Hjxo26OPxa6dKlC65evQq1Wm2wGhpKowg7cXFxcHR0RN++/5/kO3ToAKVSid27d0vLsrKykJOTA61WCwDQarVIT09HXl6e1Gfnzp1QqVTw9vZuuAMgIiKDMzc3x8cff1ytAJGVlYWrV6/qTY6OjkhNTZXmf/jhhyp9lyxZUuv6Zs2ahatXryInJwfr1q3D/v37MWHChFpv73GZmppCo9H8LT5ewOBhp6KiAnFxcYiIiND7bBy1Wo2RI0di0qRJ2Lt3L9LS0vD6669Dq9XC398fANCrVy94e3tj2LBhOHHiBLZv344ZM2YgMjISZmZmhjokIiIygJCQEGg0GsydO/eRfR0dHaHRaPQmIyMjODg4SPN2dnZV+j7OVZAmTZpAo9GgWbNm6NatGyIiInD06FGp/Y8//sCQIUPQrFkzWFpawsfHB1999ZXeNr7//nv4+PjAwsIC9vb2CAkJwa1bt6T21atXw8vLC+bm5vD09MTy5csfWE/lVa7KOyjx8fGwsbHB9u3b4eXlBWtra/Tu3RtXr17VW68m+2gsDD5mZ9euXcjJycEbb7xRpW3RokUwMjJCWFiY3ocKVjI2NkZCQgLGjRsHrVYLKysrREREYNasWQ15CESNWkOPtWiMLpi/ZugSDCumwNAVNAhjY2PMmTMHr732GiZMmIDmzZsbuqQHunz5Mn7++Wf4+flJy4qLi9GhQwdMnToVKpUKmzdvxrBhw9CqVSt07twZV69exZAhQzB//ny8+OKLuHnzJg4cOCB90vW6deswc+ZM/Pvf/0b79u1x7NgxjB49WnpvrI7bt29jwYIF+O9//wsjIyMMHToUkydPxrp16+psH4Zg8LDTq1evB34kubm5OWJjYxEbG/vA9d3c3LBly5b6Ko+IiJ4gL774Inx9ffH+++9jzZo1D+z31yDk5ub20I8sqQtTp07FjBkzUF5ejuLiYvj5+eHTTz+V2ps1a4bJkydL82+99Ra2b9+Ob7/9Vgo7d+/exaBBg+Dm5gYA8PHxkfq///77WLhwIQYNGgQA8PDwQEZGBj777LNqB5GysjKsXLkSrVq1AgCMHz9e7wJCXezDEAwedoiIiOrSxx9/jO7du+sFh786cOAAmjRpIs0rlcp6r2vKlCkYMWIEhBC4dOkSpk2bhr59+2L//v0wNjZGeXk55syZg2+//RaXL19GaWkpSkpKYGlpCQBo164devToAR8fH4SGhqJXr1546aWXYGtri1u3buH8+fMYOXIkRo8eLe3z7t27Nbr1ZmlpKQUdAHB2dpbGxdbVPgyBYYeIiGSla9euCA0NRXR0tPT01F95eHg0+OPWTZs2RevWrQEAbdq0weLFi6HVarF3716EhITgk08+wZIlS7B48WL4+PjAysoKUVFRKC0tBXDvNt3OnTtx6NAh7NixA8uWLcP06dORkpIiBaJVq1bp3RqrXK+6/hr6FAqFdPelqKioTvZhCAw7REQkO/PmzYOvry+efvppQ5fyQJUB4c6dOwCAgwcPYsCAARg6dCiAew/wnDlzRu/pYoVCgYCAAAQEBGDmzJlwc3PDxo0bMWnSJLi4uODXX39FeHh4vdTr5ORU7/uoLww7REQkOz4+PggPD8fSpUvv256Xl4fi4mK9Zfb29jW6nZWdnY3jx4/rLWvTpg2srKzu2//mzZvQ6XTSbax3330XDg4O6NKli7Tu999/j0OHDsHW1haffvopcnNzpbCTkpKC3bt3o1evXnB0dERKSgquXbsGLy8vAMAHH3yACRMmQK1Wo3fv3igpKcGRI0dw48YNvQ/SfRwNsY/6wLBDRESP9CR+ovGsWbPwzTff3Lftfld8Kr9kurru9+Z+4MABBAYG3rf/zJkzMXPmTACAg4MDOnXqhB07dsDe3h4AMGPGDPz6668IDQ2FpaUlxowZg4EDB6Kg4N7TdCqVCvv378fixYtRWFgINzc3LFy4EH369AEAjBo1CpaWlvjkk08wZcoUWFlZwcfHB1FRUdU+pkdpiH3Uh0b1reeGwm89Jznjo+d89Lwmj57zW8+psZHVt54TERER1QeGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIqK/geDgYL1POnZ3d8fixYsfa5t1sY2GwK+LICKiR4tRN/D+qv+pzwAwYsQI5OfnY9OmTdL8559/DgAwMTGBnZ0d2rZtiyFDhmDEiBEwMqr6t35oaCh27dqF5ORkdOrUqcr2K7f313W2bdsGADhx4gT+9a9/ITk5GYWFhdBoNPDz88OyZcvg6Oh437qDg4Oxb98+AICZmRlatmyJ8ePH45///GeNjr82UlNTH/g9Xn8VHx+PqKgo5Ofn13obhsQrO0REJEu9e/fG1atXceHCBWzduhXdunXD22+/jX79+uHu3bt6fXNycnDo0CGMHz8ea9eufej2/jx99dVXAIBr166hR48esLOzw/bt25GZmYm4uDi4uLjg1q1bD61z9OjRuHr1KjIyMvDKK68gMjJS2u5flZaW1uKVuD8HBwdYWloafBsNgWGHiIhkyczMDBqNBs2aNcNzzz2HadOm4ccff8TWrVsRHx+v1zcuLg79+vXDuHHj8NVXX+HOnTsP3N6fJ1tbWwDAwYMHUVBQgNWrV6N9+/bw8PBAt27dsGjRInh4eDy0TktLS2g0GrRs2RIxMTFo06YNfvrpJwD3rvyMHz8eUVFRaNq0KUJDQwEAp06dQp8+fWBtbQ0nJycMGzYMv//+u7TNW7duYfjw4bC2toazszMWLlxYZb9/vQWVn5+PN998E05OTjA3N8ezzz6LhIQEJCYm4vXXX0dBQQEUCgUUCgViYmLuu42cnBwMGDAA1tbWUKlUeOWVV5Cbmyu1x8TEwNfXF//973/h7u4OtVqNV199FTdv3nzoa/S4GHaIiOhvo3v37mjXrh02bNggLRNCIC4uDkOHDoWnpydat26N77//vkbb1Wg0uHv3LjZu3IjH/X5tCwsLvSs4n3/+OUxNTXHw4EGsXLkS+fn56N69O9q3b48jR45g27ZtyM3NxSuvvCKtM2XKFOzbtw8//vgjduzYgcTERBw9evSB+6yoqECfPn1w8OBBfPnll8jIyMC8efNgbGyMLl26YPHixVCpVNIVrcmTJ993GwMGDMD169exb98+7Ny5E7/++isGDx6s1+/8+fPYtGkTEhISkJCQgH379mHevHmP9Zo9CsfsEBHR34qnpydOnjwpze/atQu3b9+WrpoMHToUa9aswbBhw/TWS0hIgLW1td6yadOmYdq0afD398e0adPw2muvYezYsejcuTO6d++O4cOHw8nJqVp1lZeX46uvvsLJkycxZswYaXmbNm0wf/58aX727Nlo37495syZIy1bu3YtXF1dcebMGbi4uGDNmjX48ssv0aNHDwD3AlPz5s0fuO9du3bh8OHDyMzMxFNPPQUAaNmypdSuVquhUCig0WgeuI3du3cjPT0d2dnZcHV1BQB88cUXeOaZZ5CamiqNg6qoqEB8fDyaNGkCABg2bBh2796Njz76qFqvU23wyg4REf2tCCGgUCik+bVr12Lw4MEwMbn39/+QIUNw8OBBnD9/Xm+9bt264fjx43rT2LFjpfaPPvoIOp0OK1euxDPPPIOVK1fC09MT6enpD61n+fLlsLa2hoWFBUaPHo2JEydi3LhxUnuHDh30+p84cQJ79+6FtbW1NHl6egK4d9Xk/PnzKC0thZ+fn7SOnZ0dnn766QfWcPz4cTRv3lwKOrWRmZkJV1dXKegAgLe3N2xsbJCZmSktc3d3l4IOADg7OyMvL6/W+60OXtmpZ+7vbTZ0CQZ3wfw1Q5dgWDV8qoSI6ldmZqY0jub69evYuHEjysrKsGLFCqlPeXk51q5dq3e1wcrKCq1bt37otu3t7fHyyy/j5Zdfxpw5c9C+fXssWLDgvk9yVQoPD8f06dNhYWEBZ2fnKk+K/fVpp6KiIvTv3x8ff/xxlW05Ozvj3LlzD63xfiwsLGq8Tm0plUq9eYVCgYqKinrdJ6/sEBHR38aePXuQnp6OsLAwAMC6devQvHlznDhxQu+KzcKFCxEfH4/y8vJa78vU1BStWrV65NNYarUarVu3RrNmze77SPxfPffcczh9+jTc3d3RunVrvcnKygqtWrWCUqlESkqKtM6NGzdw5syZB26zbdu2+O233x7Yx9TU9JGvhZeXFy5duoRLly5JyzIyMpCfnw9vb+9HHld9YtghIiJZKikpgU6nw+XLl3H06FHMmTMHAwYMQL9+/TB8+HAAwJo1a/DSSy/h2Wef1ZtGjhyJ33//XfoMnT9v789T5RNQCQkJGDp0KBISEnDmzBlkZWVhwYIF2LJlCwYMGFCnxxUZGYnr169jyJAhSE1Nxfnz57F9+3a8/vrrKC8vh7W1NUaOHIkpU6Zgz549OHXq1AM/W6hSUFAQunbtirCwMOzcuRPZ2dnYunWrdPzu7u4oKirC7t278fvvv+P27dtVthESEgIfHx+Eh4fj6NGjOHz4MIYPH46goCB07NixTl+DmmLYISIiWdq2bRucnZ3h7u6O3r17Y+/evVi6dCl+/PFHGBsbIy0tDSdOnJCu8vyZWq1Gjx49sGbNmirb+/MUGBgI4N7YFEtLS7zzzjvw9fWFv78/vv32W6xevbrKQOfH5eLigoMHD6K8vBy9evWCj48PoqKiYGNjIwWaTz75BP/4xz/Qv39/hISEIDAwsMrYn7/64Ycf0KlTJwwZMgTe3t549913pas5Xbp0wdixYzF48GA4ODjoDZiupFAo8OOPP8LW1hZdu3ZFSEgIWrZsiW+++aZOj782FOJxn5GTgcLCQqjVahQUFEClUtXptjlmh2N2DD1mh+cgz8GanIPFxcXIzs6Gh4cHzM3N67Eooup52DlZ3fdvXtkhIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEioir4oC41FnVxLjLsEBGRxNjYGAD0vnWbyJAqP8Dwr18zURP8biwiIpKYmJjA0tIS165dg1KprNbXFxDVByEEbt++jby8PNjY2EhBvDYYdoiISKJQKODs7Izs7GxcvHjR0OUQwcbGBhqN5rG2wbBDRER6TE1N0aZNG97KIoNTKpWPdUWnEsMOERFVYWRkxK+LINngzVgiIiKSNYYdIiIikjWGHSIiIpI1g4edy5cvY+jQobC3t4eFhQV8fHxw5MgRqV0IgZkzZ8LZ2RkWFhYICQnB2bNn9bZx/fp1hIeHQ6VSwcbGBiNHjkRRUVFDHwoRERE1QgYNOzdu3EBAQACUSiW2bt2KjIwMLFy4ELa2tlKf+fPnY+nSpVi5ciVSUlJgZWWF0NBQFBcXS33Cw8Nx+vRp7Ny5EwkJCdi/fz/GjBljiEMiIiKiRsagT2N9/PHHcHV1RVxcnLTMw8ND+rcQAosXL8aMGTMwYMAAAMAXX3wBJycnbNq0Ca+++ioyMzOxbds2pKamomPHjgCAZcuW4fnnn8eCBQvg4uLSsAdFREREjYpBr+z89NNP6NixI15++WU4Ojqiffv2WLVqldSenZ0NnU6HkJAQaZlarYafnx+SkpIAAElJSbCxsZGCDgCEhITAyMgIKSkp991vSUkJCgsL9SYiIiKSJ4OGnV9//RUrVqxAmzZtsH37dowbNw4TJkzA559/DgDQ6XQAACcnJ731nJycpDadTgdHR0e9dhMTE9jZ2Ul9/mru3LlQq9XS5OrqWteHRkRERI2EQcNORUUFnnvuOcyZMwft27fHmDFjMHr0aKxcubJe9xsdHY2CggJpunTpUr3uj4iIiAzHoGHH2dkZ3t7eesu8vLyQk5MDANJ3YeTm5ur1yc3Nldo0Gg3y8vL02u/evYvr168/8Ls0zMzMoFKp9CYiIiKSJ4OGnYCAAGRlZektO3PmDNzc3ADcG6ys0Wiwe/duqb2wsBApKSnQarUAAK1Wi/z8fKSlpUl99uzZg4qKCvj5+TXAURAREVFjZtCnsSZOnIguXbpgzpw5eOWVV3D48GH85z//wX/+8x8A9759NyoqCrNnz0abNm3g4eGBf/3rX3BxccHAgQMB3LsS1Lt3b+n2V1lZGcaPH49XX32VT2IRERGRYcNOp06dsHHjRkRHR2PWrFnw8PDA4sWLER4eLvV59913cevWLYwZMwb5+fkIDAzEtm3b9L6gbt26dRg/fjx69OgBIyMjhIWFYenSpYY4JCIiImpkFEIIYegiDK2wsBBqtRoFBQV1Pn7H/b3Ndbq9J9EF89cMXYJhxRQYdPc8B3kOGvocJKov1X3/NvjXRRARERHVJ4YdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYOGnZiYGCgUCr3J09NTai8uLkZkZCTs7e1hbW2NsLAw5Obm6m0jJycHffv2haWlJRwdHTFlyhTcvXu3oQ+FiIiIGikTQxfwzDPPYNeuXdK8icn/lzRx4kRs3rwZ3333HdRqNcaPH49Bgwbh4MGDAIDy8nL07dsXGo0Ghw4dwtWrVzF8+HAolUrMmTOnwY+FiIiIGh+Dhx0TExNoNJoqywsKCrBmzRqsX78e3bt3BwDExcXBy8sLycnJ8Pf3x44dO5CRkYFdu3bByckJvr6++PDDDzF16lTExMTA1NS0oQ+HiIiIGhmDj9k5e/YsXFxc0LJlS4SHhyMnJwcAkJaWhrKyMoSEhEh9PT090aJFCyQlJQEAkpKS4OPjAycnJ6lPaGgoCgsLcfr06Qfus6SkBIWFhXoTERERyZNBw46fnx/i4+Oxbds2rFixAtnZ2fjHP/6BmzdvQqfTwdTUFDY2NnrrODk5QafTAQB0Op1e0Klsr2x7kLlz50KtVkuTq6tr3R4YERERNRoGvY3Vp08f6d9t27aFn58f3Nzc8O2338LCwqLe9hsdHY1JkyZJ84WFhQw8REREMmXw21h/ZmNjg6eeegrnzp2DRqNBaWkp8vPz9frk5uZKY3w0Gk2Vp7Mq5+83DqiSmZkZVCqV3kRERETy1KjCTlFREc6fPw9nZ2d06NABSqUSu3fvltqzsrKQk5MDrVYLANBqtUhPT0deXp7UZ+fOnVCpVPD29m7w+omIiKjxMehtrMmTJ6N///5wc3PDlStX8P7778PY2BhDhgyBWq3GyJEjMWnSJNjZ2UGlUuGtt96CVquFv78/AKBXr17w9vbGsGHDMH/+fOh0OsyYMQORkZEwMzMz5KERERFRI2HQsPPbb79hyJAh+OOPP+Dg4IDAwEAkJyfDwcEBALBo0SIYGRkhLCwMJSUlCA0NxfLly6X1jY2NkZCQgHHjxkGr1cLKygoRERGYNWuWoQ6JiIiIGhmDhp2vv/76oe3m5uaIjY1FbGzsA/u4ublhy5YtdV0aERERyUSjGrNDREREVNcYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWDP6t50REJG/u7202dAkGd8H8NUOXYFgxBQbdPa/sEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrJnUdIX8/Hxs3LgRBw4cwMWLF3H79m04ODigffv2CA0NRZcuXeqjTiIiIqJaqfaVnStXrmDUqFFwdnbG7NmzcefOHfj6+qJHjx5o3rw59u7di549e8Lb2xvffPNNfdZMREREVG3VvrLTvn17REREIC0tDd7e3vftc+fOHWzatAmLFy/GpUuXMHny5DorlIiIiKg2qh12MjIyYG9v/9A+FhYWGDJkCIYMGYI//vjjsYsjIiIielzVvo1lb2+PkpKSam/4UcGIiIiIqCHUaICyWq2GVqtFt27d0K1bN/j7+0OpVNZXbURERESPrUaPnq9cuRJubm5Yu3YtgoKCYGNjg549e2Lu3LlITk5GeXl5fdVJREREVCs1CjsjRoxAfHw8Lly4gHPnzmHZsmVwcXHBypUrERAQAFtbW/Tt27e+aiUiIiKqsRp/zk6lli1bomXLlnjjjTeQnZ2NNWvWYNmyZdi2bVtd1kdERET0WGoVdnJycrB3714kJiYiMTERv//+O/z9/TF58mQEBQXVdY1EREREtVajsPPGG28gMTER169fR0BAAP7xj39gzJgx6NSpE0xMan2RiIiIiKje1CihxMfHo0WLFpg+fTp69OiB9u3bQ6FQ1FdtRERERI+tRmEnMzNTun21cOFClJSUIDAwEEFBQQgODsZzzz0HIyN+tygRERE1HjVKJk8//TTGjh2Lr7/+GjqdDgcPHsTzzz+Pw4cPo1+/frCzs0O/fv3qq1YiIiKiGnusgTbe3t6wt7eHra0tbG1t8fXXX2Pr1q11VRsRERHRY6tx2MnLy0NiYqJ0O+vMmTMwNTVF586dMXHiRHTr1q0+6iQiIiKqlRrdxvLy8oKzszOGDRuG9PR0vPTSS9ixYwdu3LiBffv2ISYmptaPns+bNw8KhQJRUVHSsuLiYkRGRsLe3h7W1tYICwtDbm6u3no5OTno27cvLC0t4ejoiClTpuDu3bu1qoGIiIjkp0ZXdgYOHIhu3bohMDAQlpaWdVZEamoqPvvsM7Rt21Zv+cSJE7F582Z89913UKvVGD9+PAYNGoSDBw8CAMrLy9G3b19oNBocOnQIV69exfDhw6FUKjFnzpw6q4+IiIieXDW6sjN37lz06tWrToNOUVERwsPDsWrVKtja2krLCwoKsGbNGnz66afo3r07OnTogLi4OBw6dAjJyckAgB07diAjIwNffvklfH190adPH3z44YeIjY1FaWlpndVIRERET64aXdmZNWtWtfrNnDmz2tuMjIxE3759ERISgtmzZ0vL09LSUFZWhpCQEGmZp6cnWrRogaSkJPj7+yMpKQk+Pj5wcnKS+oSGhmLcuHE4ffo02rdvf999lpSUoKSkRJovLCysdr1ERET0ZKlR2ImJiYGLiwscHR0hhLhvH4VCUe2w8/XXX+Po0aNITU2t0qbT6WBqagobGxu95U5OTtDpdFKfPwedyvbKtgeZO3cuPvjgg2rVSERERE+2GoWdPn36YM+ePejYsSPeeOMN9OvXr9YfInjp0iW8/fbb2LlzJ8zNzWu1jdqKjo7GpEmTpPnCwkK4uro2aA1ERETUMGqUVDZv3ozz58/Dz88PU6ZMQbNmzTB16lRkZWXVeMdpaWnIy8vDc889BxMTE5iYmGDfvn1YunQpTExM4OTkhNLSUuTn5+utl5ubC41GAwDQaDRVns6qnK/scz9mZmZQqVR6ExEREclTjS/LuLi4IDo6GllZWfjmm2+Ql5eHTp06ISAgAHfu3Kn2dnr06IH09HQcP35cmjp27Ijw8HDp30qlErt375bWycrKQk5ODrRaLQBAq9UiPT0deXl5Up+dO3dCpVLB29u7podGREREMvRYn6DcqVMnXLhwARkZGTh27BjKyspgYWFRrXWbNGmCZ599Vm+ZlZUV7O3tpeUjR47EpEmTYGdnB5VKhbfeegtarRb+/v4AgF69esHb2xvDhg3D/PnzodPpMGPGDERGRsLMzOxxDo2IiIhkolYDbpKSkjB69GhoNBosW7YMERERuHLlSp3fDlq0aBH69euHsLAwdO3aFRqNBhs2bJDajY2NkZCQAGNjY2i1WgwdOhTDhw+v9lNjREREJH81urIzf/58xMfH4/fff0d4eDgOHDhQ5YMAH0diYqLevLm5OWJjYxEbG/vAddzc3LBly5Y6q4GIiIjkpUZh57333kOLFi3wyiuvQKFQID4+/r79Pv3007qojYiIiOix1SjsdO3aFQqFAqdPn35gH4VC8dhFEREREdWVGoWdv95mIiIiImrsaveJgERERERPiGqHnXnz5uH27dvV6puSkoLNmzfXuigiIiKiulLtsJORkQE3Nzf885//xNatW3Ht2jWp7e7duzh58iSWL1+OLl26YPDgwWjSpEm9FExERERUE9Ues/PFF1/gxIkT+Pe//43XXnsNhYWFMDY2hpmZmXTFp3379hg1ahRGjBjR4N93RURERHQ/NRqg3K5dO6xatQqfffYZTp48iYsXL+LOnTto2rQpfH190bRp0/qqk4iIiKhWavV1EUZGRvD19YWvr28dl0NERERUt/g0FhEREckaww4RERHJGsMOERERyRrDDhEREclajcNOWVkZTExMcOrUqfqoh4iIiKhO1TjsKJVKtGjRAuXl5fVRDxEREVGdqtVtrOnTp2PatGm4fv16XddDREREVKdq9Tk7//73v3Hu3Dm4uLjAzc0NVlZWeu1Hjx6tk+KIiIiIHletws7AgQPruAwiIiKi+lGrsPP+++/XdR1ERERE9aLWj57n5+dj9erViI6OlsbuHD16FJcvX66z4oiIiIgeV62u7Jw8eRIhISFQq9W4cOECRo8eDTs7O2zYsAE5OTn44osv6rpOIiIiolqp1ZWdSZMmYcSIETh79izMzc2l5c8//zz2799fZ8URERERPa5ahZ3U1FS8+eabVZY3a9YMOp3usYsiIiIiqiu1CjtmZmYoLCyssvzMmTNwcHB47KKIiIiI6kqtws4LL7yAWbNmoaysDACgUCiQk5ODqVOnIiwsrE4LJCIiInoctQo7CxcuRFFRERwdHXHnzh0EBQWhdevWaNKkCT766KO6rpGIiIio1mr1NJZarcbOnTvxv//9DydPnkRRURGee+45hISE1HV9RERERI+lVmGnuLgY5ubmCAwMRGBgYF3XRERERFRnahV2bGxs0LlzZwQFBaFbt27QarWwsLCo69qIiIiIHlutxuzs2rULvXv3RkpKCl544QXY2toiMDAQ06dPx86dO+u6RiIiIqJaq1XYCQwMxLRp07Bjxw7k5+dj7969aN26NebPn4/evXvXdY1EREREtVar21jAvc/USUxMlKaSkhL069cPwcHBdVgeERER0eOpVdhp1qwZ7ty5g+DgYAQHB2Pq1Klo27YtFApFXddHRERE9FhqdRvLwcEBt2/fhk6ng06nQ25uLu7cuVPXtRERERE9tlqFnePHj0On0+G9995DSUkJpk2bhqZNm6JLly6YPn16XddIREREVGu1HrNjY2ODF154AQEBAejSpQt+/PFHfPXVV0hJSeGnKBMREVGjUauws2HDBmlgckZGBuzs7BAYGIiFCxciKCiormskIiIiqrVahZ2xY8eia9euGDNmDIKCguDj41PXdRERERHViVqFnby8vLqug4iIiKhe1HrMTnl5OTZt2oTMzEwAgLe3NwYMGABjY+M6K46IiIjocdXqaaxz587By8sLw4cPx4YNG7BhwwYMGzYMzzzzDM6fP1/t7axYsQJt27aFSqWCSqWCVqvF1q1bpfbi4mJERkbC3t4e1tbWCAsLQ25urt42cnJy0LdvX1haWsLR0RFTpkzB3bt3a3NYREREJEO1CjsTJkxAq1atcOnSJRw9ehRHjx5FTk4OPDw8MGHChGpvp3nz5pg3bx7S0tJw5MgRdO/eHQMGDMDp06cBABMnTsTPP/+M7777Dvv27cOVK1cwaNAgaf3y8nL07dsXpaWlOHToED7//HPEx8dj5syZtTksIiIikqFa3cbat28fkpOTYWdnJy2zt7fHvHnzEBAQUO3t9O/fX2/+o48+wooVK5CcnIzmzZtjzZo1WL9+Pbp37w4AiIuLg5eXF5KTk+Hv748dO3YgIyMDu3btgpOTE3x9ffHhhx9i6tSpiImJgampaW0Oj4iIiGSkVld2zMzMcPPmzSrLi4qKah0wysvL8fXXX+PWrVvQarVIS0tDWVkZQkJCpD6enp5o0aIFkpKSAABJSUnw8fGBk5OT1Cc0NBSFhYXS1aH7KSkpQWFhod5ERERE8lSrsNOvXz+MGTMGKSkpEEJACIHk5GSMHTsWL7zwQo22lZ6eDmtra5iZmWHs2LHYuHEjvL29odPpYGpqChsbG73+Tk5O0Ol0AACdTqcXdCrbK9seZO7cuVCr1dLk6upao5qJiIjoyVGrsLN06VK0atUKWq0W5ubmMDc3R0BAAFq3bo0lS5bUaFtPP/00jh8/jpSUFIwbNw4RERHIyMioTVnVFh0djYKCAmm6dOlSve6PiIiIDKdWY3ZsbGzw448/4ty5c9Kj515eXmjdunWNt2Vqaiqt16FDB6SmpmLJkiUYPHgwSktLkZ+fr3d1Jzc3FxqNBgCg0Whw+PBhve1VPq1V2ed+zMzMYGZmVuNaiYiI6MlToys7FRUV+PjjjxEQEIBOnTph9erVCAkJQf/+/WsVdB60j5KSEnTo0AFKpRK7d++W2rKyspCTkwOtVgsA0Gq1SE9P1/uQw507d0KlUsHb27tO6iEiIqInW42u7Hz00UeIiYlBSEgILCwssGTJEuTl5WHt2rW12nl0dDT69OmDFi1a4ObNm1i/fj0SExOxfft2qNVqjBw5EpMmTYKdnR1UKhXeeustaLVa+Pv7AwB69eoFb29vDBs2DPPnz4dOp8OMGTMQGRnJKzdEREQEoIZh54svvsDy5cvx5ptvAgB27dqFvn37YvXq1TAyqvnwn7y8PAwfPhxXr16FWq1G27ZtsX37dvTs2RMAsGjRIhgZGSEsLAwlJSUIDQ3F8uXLpfWNjY2RkJCAcePGQavVwsrKChEREZg1a1aNayEiIiJ5qlHYycnJwfPPPy/Nh4SEQKFQ4MqVK2jevHmNd75mzZqHtpubmyM2NhaxsbEP7OPm5oYtW7bUeN9ERET091CjyzF3796Fubm53jKlUomysrI6LYqIiIiortToyo4QAiNGjNAbD1NcXIyxY8fCyspKWrZhw4a6q5CIiIjoMdQo7ERERFRZNnTo0DorhoiIiKiu1SjsxMXF1VcdRERERPWiVp+gTERERPSkYNghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIlkzaNiZO3cuOnXqhCZNmsDR0REDBw5EVlaWXp/i4mJERkbC3t4e1tbWCAsLQ25url6fnJwc9O3bF5aWlnB0dMSUKVNw9+7dhjwUIiIiaqQMGnb27duHyMhIJCcnY+fOnSgrK0OvXr1w69Ytqc/EiRPx888/47vvvsO+fftw5coVDBo0SGovLy9H3759UVpaikOHDuHzzz9HfHw8Zs6caYhDIiIiokbGxJA737Ztm958fHw8HB0dkZaWhq5du6KgoABr1qzB+vXr0b17dwBAXFwcvLy8kJycDH9/f+zYsQMZGRnYtWsXnJyc4Ovriw8//BBTp05FTEwMTE1NDXFoRERE1Eg0qjE7BQUFAAA7OzsAQFpaGsrKyhASEiL18fT0RIsWLZCUlAQASEpKgo+PD5ycnKQ+oaGhKCwsxOnTp++7n5KSEhQWFupNREREJE+NJuxUVFQgKioKAQEBePbZZwEAOp0OpqamsLGx0evr5OQEnU4n9flz0Klsr2y7n7lz50KtVkuTq6trHR8NERERNRaNJuxERkbi1KlT+Prrr+t9X9HR0SgoKJCmS5cu1fs+iYiIyDAMOman0vjx45GQkID9+/ejefPm0nKNRoPS0lLk5+frXd3Jzc2FRqOR+hw+fFhve5VPa1X2+SszMzOYmZnV8VEQERFRY2TQKztCCIwfPx4bN27Enj174OHhodfeoUMHKJVK7N69W1qWlZWFnJwcaLVaAIBWq0V6ejry8vKkPjt37oRKpYK3t3fDHAgRERE1Wga9shMZGYn169fjxx9/RJMmTaQxNmq1GhYWFlCr1Rg5ciQmTZoEOzs7qFQqvPXWW9BqtfD39wcA9OrVC97e3hg2bBjmz58PnU6HGTNmIDIykldviIiIyLBhZ8WKFQCA4OBgveVxcXEYMWIEAGDRokUwMjJCWFgYSkpKEBoaiuXLl0t9jY2NkZCQgHHjxkGr1cLKygoRERGYNWtWQx0GERERNWIGDTtCiEf2MTc3R2xsLGJjYx/Yx83NDVu2bKnL0oiIiEgmGs3TWERERET1gWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkzaBhZ//+/ejfvz9cXFygUCiwadMmvXYhBGbOnAlnZ2dYWFggJCQEZ8+e1etz/fp1hIeHQ6VSwcbGBiNHjkRRUVEDHgURERE1ZgYNO7du3UK7du0QGxt73/b58+dj6dKlWLlyJVJSUmBlZYXQ0FAUFxdLfcLDw3H69Gns3LkTCQkJ2L9/P8aMGdNQh0BERESNnIkhd96nTx/06dPnvm1CCCxevBgzZszAgAEDAABffPEFnJycsGnTJrz66qvIzMzEtm3bkJqaio4dOwIAli1bhueffx4LFiyAi4tLgx0LERERNU6NdsxOdnY2dDodQkJCpGVqtRp+fn5ISkoCACQlJcHGxkYKOgAQEhICIyMjpKSkPHDbJSUlKCws1JuIiIhInhpt2NHpdAAAJycnveVOTk5Sm06ng6Ojo167iYkJ7OzspD73M3fuXKjVamlydXWt4+qJiIiosWi0Yac+RUdHo6CgQJouXbpk6JKIiIionjTasKPRaAAAubm5estzc3OlNo1Gg7y8PL32u3fv4vr161Kf+zEzM4NKpdKbiIiISJ4abdjx8PCARqPB7t27pWWFhYVISUmBVqsFAGi1WuTn5yMtLU3qs2fPHlRUVMDPz6/BayYiIqLGx6BPYxUVFeHcuXPSfHZ2No4fPw47Ozu0aNECUVFRmD17Ntq0aQMPDw/861//gouLCwYOHAgA8PLyQu/evTF69GisXLkSZWVlGD9+PF599VU+iUVEREQADBx2jhw5gm7duknzkyZNAgBEREQgPj4e7777Lm7duoUxY8YgPz8fgYGB2LZtG8zNzaV11q1bh/Hjx6NHjx4wMjJCWFgYli5d2uDHQkRERI2TQcNOcHAwhBAPbFcoFJg1axZmzZr1wD52dnZYv359fZRHREREMtBox+wQERER1QWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjXZhJ3Y2Fi4u7vD3Nwcfn5+OHz4sKFLIiIiokZAFmHnm2++waRJk/D+++/j6NGjaNeuHUJDQ5GXl2fo0oiIiMjAZBF2Pv30U4wePRqvv/46vL29sXLlSlhaWmLt2rWGLo2IiIgMzMTQBTyu0tJSpKWlITo6WlpmZGSEkJAQJCUl3XedkpISlJSUSPMFBQUAgMLCwjqvr6Lkdp1v80lTqBCGLsGw6uG8qgmegzwHeQ4aHs/B+jkHK9+3hXj46/vEh53ff/8d5eXlcHJy0lvu5OSEX3755b7rzJ07Fx988EGV5a6urvVS49+d2tAFGNq8v/0rYHB/+58Az0GD+9v/BOr5HLx58ybU6gfv44kPO7URHR2NSZMmSfMVFRW4fv067O3toVAoDFiZ/BQWFsLV1RWXLl2CSqUydDn0N8RzkAyN52D9EULg5s2bcHFxeWi/Jz7sNG3aFMbGxsjNzdVbnpubC41Gc991zMzMYGZmprfMxsamvkokACqViv/JyaB4DpKh8RysHw+7olPpiR+gbGpqig4dOmD37t3SsoqKCuzevRtardaAlREREVFj8MRf2QGASZMmISIiAh07dkTnzp2xePFi3Lp1C6+//rqhSyMiIiIDk0XYGTx4MK5du4aZM2dCp9PB19cX27ZtqzJomRqemZkZ3n///Sq3DYkaCs9BMjSeg4anEI96XouIiIjoCfbEj9khIiIiehiGHSIiIpI1hh0iIiKSNYYdIiIikjWGHaoiJiYGvr6+hi6DiKhBubu7Y/HixYYug+oBww79bZSWlhq6hL89/gwerry8HBUVFYYug2SmrKzM0CUYHMOODAUHB2PChAl49913YWdnB41Gg5iYGKk9Pz8fo0aNgoODA1QqFbp3744TJ04AAOLj4/HBBx/gxIkTUCgUUCgUiI+Pf+Q+FQoFVqxYgT59+sDCwgItW7bE999/r9cnPT0d3bt3h4WFBezt7TFmzBgUFRUBAE6dOgUjIyNcu3YNAHD9+nUYGRnh1VdfldafPXs2AgMDpflTp06hT58+sLa2hpOTE4YNG4bff/9d73UYP348oqKi0LRpU4SGhtb4taSHu3nzJsLDw2FlZQVnZ2csWrQIwcHBiIqKAnDvL+UPP/wQw4cPh0qlwpgxYwAAP/zwA5555hmYmZnB3d0dCxcu1Nvu8uXL0aZNG5ibm8PJyQkvvfSS1Pb999/Dx8dHOo9CQkJw69atR9Y6YsQIDBw4EB988IF07o8dO1YvgJWUlGDChAlwdHSEubk5AgMDkZqaKrV37NgRCxYskOYHDhwIpVIpnce//fYbFAoFzp07J21v8uTJaNasGaysrODn54fExERp/fj4eNjY2OCnn36Ct7c3zMzMkJOTU81Xn2rqYedrcHAwLl68iIkTJ0q/+x6l8ue3adMm6XwNDQ3FpUuX9PqtWLECrVq1gqmpKZ5++mn897//ldomT56Mfv36SfOLFy+GQqHAtm3bpGWtW7fG6tWrpfnVq1fDy8sL5ubm8PT0xPLly6W2CxcuQKFQ4JtvvkFQUBDMzc2xbt26Wr1esiJIdoKCgoRKpRIxMTHizJkz4vPPPxcKhULs2LFDCCFESEiI6N+/v0hNTRVnzpwR77zzjrC3txd//PGHuH37tnjnnXfEM888I65evSquXr0qbt++/ch9AhD29vZi1apVIisrS8yYMUMYGxuLjIwMIYQQRUVFwtnZWQwaNEikp6eL3bt3Cw8PDxERESGEEKKiokI0bdpUfPfdd0IIITZt2iSaNm0qNBqNtI+QkBAxffp0IYQQN27cEA4ODiI6OlpkZmaKo0ePip49e4pu3brpvQ7W1tZiypQp4pdffhG//PJLnby+9P9GjRol3NzcxK5du0R6erp48cUXRZMmTcTbb78thBDCzc1NqFQqsWDBAnHu3Dlx7tw5ceTIEWFkZCRmzZolsrKyRFxcnLCwsBBxcXFCCCFSU1OFsbGxWL9+vbhw4YI4evSoWLJkiRBCiCtXrggTExPx6aefiuzsbHHy5EkRGxsrbt68+chaIyIihLW1tRg8eLA4deqUSEhIEA4ODmLatGlSnwkTJggXFxexZcsWcfr0aRERESFsbW3FH3/8IYQQYtKkSaJv375CiHvnrJ2dnWjatKnYunWrEEKIL7/8UjRr1kzv9enSpYvYv3+/OHfunPjkk0+EmZmZOHPmjBBCiLi4OKFUKkWXLl3EwYMHxS+//CJu3br1eD8UeqCHna9//PGHaN68uZg1a5b0u+9RKn9+HTt2FIcOHRJHjhwRnTt3Fl26dJH6bNiwQSiVShEbGyuysrLEwoULhbGxsdizZ48QQoiffvpJqNVqcffuXSGEEAMHDhRNmzYVU6dOFUII8dtvvwkA4uzZs0KIe+eYs7Oz+OGHH8Svv/4qfvjhB2FnZyfi4+OFEEJkZ2cLAMLd3V3qc+XKlTp9HZ9EDDsyFBQUJAIDA/WWderUSUydOlUcOHBAqFQqUVxcrNfeqlUr8dlnnwkhhHj//fdFu3btarRPAGLs2LF6y/z8/MS4ceOEEEL85z//Eba2tqKoqEhq37x5szAyMhI6nU4IIcSgQYNEZGSkEEKIqKgoMWXKFGFraysyMzNFaWmpsLS0lALbhx9+KHr16qW3v0uXLgkAIisrS3od2rdvX6PjoOorLCwUSqVSCqhCCJGfny8sLS31ws7AgQP11nvttddEz5499ZZNmTJFeHt7CyGE+OGHH4RKpRKFhYVV9pmWliYAiAsXLtS43oiICGFnZ6cXJlasWCGsra1FeXm5KCoqEkqlUqxbt05qLy0tFS4uLmL+/PlCCP03puPHjwuNRiPefvtt6Y1p1KhR4rXXXhNCCHHx4kVhbGwsLl++rFdHjx49RHR0tBDi3pslAHH8+PEaHw/VTHXP10WLFlV7m5U/v+TkZGlZZmamACBSUlKEEEJ06dJFjB49Wm+9l19+WTz//PNCiHt/uBkZGYnU1FQpQM+dO1f4+fkJIaoG6FatWon169frbe/DDz8UWq1WCPH/YWfx4sXVPo6/A97Gkqm2bdvqzTs7OyMvLw8nTpxAUVER7O3tYW1tLU3Z2dk4f/78Y+3zr1+8qtVqkZmZCQDIzMxEu3btYGVlJbUHBASgoqICWVlZAICgoCDpEv++ffvQvXt3dO3aFYmJiUhNTUVZWRkCAgIAACdOnMDevXv1jsHT0xMA9I6jQ4cOj3VM9GC//vorysrK0LlzZ2mZWq3G008/rdevY8eOevOZmZnSz7FSQEAAzp49i/LycvTs2RNubm5o2bIlhg0bhnXr1uH27dsAgHbt2qFHjx7w8fHByy+/jFWrVuHGjRvVrrldu3awtLSU5rVaLYqKinDp0iWcP39e7xwDAKVSic6dO0vn8T/+8Q/cvHkTx44dw759+xAUFITg4GC98zY4OBjAvdu25eXleOqpp/TO03379umdo6amplX+v1Ldq+75WlMmJibo1KmTNO/p6QkbGxu93333O98r221sbNCuXTskJiYiPT0dpqamGDNmDI4dO4aioiLpPAOAW7du4fz58xg5cqTeOTV79uwqv7//+v/u704W341FVSmVSr15hUKBiooKFBUVwdnZWW/cQCUbG5uGKe4BKu+dnz17FhkZGQgMDMQvv/yCxMRE3LhxAx07dpTeqIqKitC/f398/PHHVbbj7Ows/fvP4YoMo6Y/gyZNmuDo0aNITEzEjh07MHPmTMTExCA1NRU2NjbYuXMnDh06hB07dmDZsmWYPn06UlJS4OHhUU9H8P/+/MaUlJSEnj17omvXrhg8eDDOnDmDs2fPSm9MRUVFMDY2RlpaGoyNjfW2Y21tLf3bwsKiWuNDSL4qA7OZmRmCgoJgZ2cHLy8v/O9//8O+ffvwzjvvAIA0NmzVqlXw8/PT28ZfzzH+7tPHKzt/M8899xx0Oh1MTEzQunVrvalp06YA7v2lWV5eXuNtJycnV5n38vICAHh5eeHEiRN6A0kPHjwIIyMj6S8rHx8f2NraYvbs2fD19YW1tTWCg4Oxb98+JCYmSn8xVx7H6dOn4e7uXuU4+J+8YbRs2RJKpVJvAG9BQQHOnDnz0PW8vLxw8OBBvWUHDx7EU089Jf3CNjExQUhICObPn4+TJ0/iwoUL2LNnD4B7wT0gIAAffPABjh07BlNTU2zcuLFaNZ84cQJ37tyR5pOTk2FtbQ1XV1dpAOmfaysrK0Nqaiq8vb2lZUFBQdi7dy/279+P4OBg6Y3po48+grOzM5566ikAQPv27VFeXo68vLwq56hGo6lWvVR3qnO+1uZ33927d3HkyBFpPisrC/n5+Xq/++53vv/1nPrf//6H3bt3S7/ngoOD8dVXX+HMmTPSMicnJ7i4uODXX3+tck41RNh/ohn6PhrVvaCgIOkedKUBAwaIiIgIUVFRIQIDA0W7du3E9u3bRXZ2tjh48KCYNm2aSE1NFUIIsW7dOmFlZSWOHTsmrl27VmV8z/0AEE2bNhVr1qwRWVlZYubMmcLIyEicPn1aCCHErVu3hLOzswgLCxPp6eliz549omXLltIA5UoDBw4UxsbG0hiI8vJyYWtrK4yNjcW2bdukfpcvXxYODg7ipZdeEocPHxbnzp0T27ZtEyNGjJAG+t3vdaC6NWrUKOHh4SH27NkjTp06JcLCwkSTJk1EVFSUEOL+YyDS0tL0BijHx8frDVD++eefxZIlS8SxY8fEhQsXxPLly4WRkZE4deqUSE5OFh999JFITU0VFy9eFN9++60wNTUVW7ZseWStlQOUhwwZIk6fPi02b94snJycxHvvvSf1efvtt4WLi4vYunWr3gDl69evS302bdokjI2N9QbPv/3228LY2Fi8+uqrevsMDw/XGyiakpIi5syZIxISEoQQ98Z8qNXqmrzk9Bgedb727NlTvPDCC+K3334T165de+T2Kgcod+7cWSQnJ4sjR44If39/4e/vL/XZuHGjUCqVYvny5eLMmTPSAOW9e/dKfa5fvy6MjIyEsbGxyMzMlNYzNjYWzs7OevtctWqVsLCwEEuWLBFZWVni5MmTYu3atWLhwoVCiP8fs3Ps2LHHfLXkhWFHhh4WdoS4N1DvrbfeEi4uLkKpVApXV1cRHh4ucnJyhBBCFBcXi7CwMGFjYyMASG9CDwNAxMbGip49ewozMzPh7u4uvvnmG70+J0+eFN26dRPm5ubCzs5OjB49uspTNIsWLRIApKdbKms3MTGp0vfMmTPixRdfFDY2NsLCwkJ4enqKqKgoUVFR8cDXgepWYWGheO2114SlpaXQaDTi008/FZ07d5YCxIMGfH7//ffC29tbKJVK0aJFC/HJJ59IbQcOHBBBQUHC1tZWWFhYiLZt20rnUkZGhggNDRUODg7CzMxMPPXUU2LZsmXVqjUiIkIMGDBAzJw5U9jb2wtra2sxevRovTB/584d8dZbb4mmTZsKMzMzERAQIA4fPqy3nT/++EMoFAoxePBgadnGjRsFALFy5Uq9vqWlpWLmzJnC3d1dKJVK4ezsLF588UVx8uRJIQTDTkN71PmalJQk2rZtK8zMzER1rgVU/vx++OEH0bJlS2FmZiZCQkLExYsX9fotX75ctGzZUiiVSvHUU0+JL774osq22rVrpxegK8+zvwZoIe79Qerr6ytMTU2Fra2t6Nq1q9iwYYMQgmHnQRRCCGG460okFwqFAhs3bsTAgQMNXQoZ0K1bt9CsWTMsXLgQI0eONHQ5ekaMGIH8/Hxs2rTJ0KVQI/G452t8fDyioqKQn59f98VRneIAZSKqtWPHjuGXX35B586dUVBQgFmzZgEABgwYYODKiKri+fr3xbBDj7Ru3Tq8+eab921zc3PD6dOnG7giakwWLFiArKwsmJqaokOHDjhw4IA02L0h/fkJp7/aunVrA1ZCjVlNztc+ffrgwIED922bNm0aXFxc6rNUqkO8jUWPdPPmTeTm5t63TalUws3NrYErIqqq8isa7qdZs2awsLBowGpIDi5fvqz39N6f2dnZwc7OroErotpi2CEiIiJZ4+fsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGs/R8sVPMaSvX2DQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "text/plain": [ - "" + "source": [ + "from matplotlib import pyplot as plt\n", + "\n", + "\n", + "variables = [\"net_power\", \"gross_power\", \"gt_power\"]\n", + "netl_baseline = [646, 690, 477]\n", + "idaes_prediction = [\n", + " pyo.value(m.fs.net_power_mw[0]),\n", + " -pyo.value(m.fs.gross_power[0]) * 1e-6,\n", + " -pyo.value(m.fs.gt.gt_power[0]) * 1e-6,\n", + "]\n", + "\n", + "label_location = np.arange(len(variables))\n", + "\n", + "width = 0.4\n", + "\n", + "fig, ax = plt.subplots()\n", + "netl_data = ax.bar(variables, netl_baseline, label=\"NETL Baseline\")\n", + "idaes_sim = ax.bar(\n", + " label_location + (width / 2), idaes_prediction, width, label=\"IDAES Prediction\"\n", + ")\n", + "\n", + "ax.set_ylabel(\"Power (MW)\")\n", + "ax.set_xticks(label_location)\n", + "ax.set_xticklabels(variables)\n", + "ax.legend()" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "def display_pfd():\n", - " print(\"\\n\\nGas Turbine Section\\n\")\n", - " display(SVG(m.fs.gt.write_pfd()))\n", - " print(\"\\n\\nHRSG Section\\n\")\n", - " display(SVG(m.fs.hrsg.write_pfd()))\n", - " print(\"\\n\\nSteam Turbine Section\\n\")\n", - " display(SVG(m.fs.st.write_pfd()))\n", - "\n", - "\n", - "display_pfd()\n", - "\n", - "m.fs.gt.write_pfd(fname=\"data_pfds/gt_baseline.svg\")\n", - "m.fs.hrsg.write_pfd(fname=\"data_pfds/hrsg_baseline.svg\")\n", - "m.fs.st.write_pfd(fname=\"data_pfds/st_baseline.svg\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Test key model outputs against NETL baseline" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Assert results approximately agree with baseline reoprt\n", - "assert pyo.value(m.fs.net_power_mw[0]) == pytest.approx(646)\n", - "assert pyo.value(m.fs.gross_power[0]) == pytest.approx(-690e6, rel=0.001)\n", - "assert pyo.value(100 * m.fs.lhv_efficiency[0]) == pytest.approx(52.8, abs=0.1)\n", - "assert pyo.value(\n", - " m.fs.total_variable_cost_rate[0] / m.fs.net_power_mw[0]\n", - ") == pytest.approx(37.2799, rel=0.01)\n", - "assert pyo.value(m.fs.fuel_cost_rate[0] / m.fs.net_power_mw[0]) == pytest.approx(\n", - " 31.6462, rel=0.01\n", - ")\n", - "assert pyo.value(\n", - " m.fs.other_variable_cost_rate[0] / m.fs.net_power_mw[0]\n", - ") == pytest.approx(5.63373, rel=0.01)\n", - "assert pyo.value(m.fs.gt.gt_power[0]) == pytest.approx(-477e6, rel=0.001)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Run turndown cases 5 MW interval\n", + "\n", + "Here we set the CO2 capture rate to 97% and set the specific reboiler duty to PZ advanced solvent system. The minimum power is 160 MW net, which corresponds to a bit under 25%. This is roughly the minimum load for the NGCC modeled. Results are tabulated for tags in the tags_output tag group in a Pandas data frame. \n", + "\n", + "To run the series, change run_series to True. Running the turndown series takes a while, unless previous saved results are available. " ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABF2UlEQVR4nO3deVhU9f4H8PcAw+4Mi8CAIuBSQKGYC4xwBRVFU9OkMkPFckkvZmiaoV4jMzXT3C5q1wXqpu1qhfuGehUQcUMhXEIxdcBSQFQW4fv7w4fza8IFEBg8vV/Pc57Hc77fc87nDEfmzTnfM6MQQggQERERyZSRoQsgIiIiqk8MO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrJoYuoDGoqKjAlStX0KRJEygUCkOXQ0RERNUghMDNmzfh4uICI6MHX79h2AFw5coVuLq6GroMIiIiqoVLly6hefPmD2xn2AHQpEkTAPdeLJVKZeBqiIiIqDoKCwvh6uoqvY8/CMMOIN26UqlUDDtERERPmEcNQeEAZSIiIpI1hh0iIiKSNYYdIiIikjWO2SEioirKy8tRVlZm6DLob87Y2BgmJiaP/bEwDDtERKSnqKgIv/32G4QQhi6FCJaWlnB2doapqWmtt2HQsOPu7o6LFy9WWf7Pf/4TsbGxKC4uxjvvvIOvv/4aJSUlCA0NxfLly+Hk5CT1zcnJwbhx47B3715YW1sjIiICc+fOhYkJcxwRUU2Vl5fjt99+g6WlJRwcHPhBq2QwQgiUlpbi2rVryM7ORps2bR76wYEPY9BEkJqaivLycmn+1KlT6NmzJ15++WUAwMSJE7F582Z89913UKvVGD9+PAYNGoSDBw8CuPefsm/fvtBoNDh06BCuXr2K4cOHQ6lUYs6cOQY5JiKiJ1lZWRmEEHBwcICFhYWhy6G/OQsLCyiVSly8eBGlpaUwNzev1XYUohFdp4yKikJCQgLOnj2LwsJCODg4YP369XjppZcAAL/88gu8vLyQlJQEf39/bN26Ff369cOVK1ekqz0rV67E1KlTce3atWpf8iosLIRarUZBQQE/Z4eI/taKi4uRnZ0NDw+PWr+xENWlh52T1X3/bjRPY5WWluLLL7/EG2+8AYVCgbS0NJSVlSEkJETq4+npiRYtWiApKQkAkJSUBB8fH73bWqGhoSgsLMTp06cfuK+SkhIUFhbqTURERCRPjSbsbNq0Cfn5+RgxYgQAQKfTwdTUFDY2Nnr9nJycoNPppD5/DjqV7ZVtDzJ37lyo1Wpp4vdiERERyVejGcW7Zs0a9OnTBy4uLvW+r+joaEyaNEmar/xuDSIiuj/39zY36P4uzOvboPv7O7hw4QI8PDxw7Ngx+Pr6IjExEd26dcONGzeqXFiQm0ZxZefixYvYtWsXRo0aJS3TaDQoLS1Ffn6+Xt/c3FxoNBqpT25ubpX2yrYHMTMzk74Hi9+HRUT05BsxYgQUCgXmzZunt3zTpk16T5QlJiZCoVDcd9LpdHB3d39gu0KhkO4+KBQKbNq0qdr1/Xm7xsbGcHFxwciRI3Hjxo26OPxa6dKlC65evQq1Wm2wGhpKowg7cXFxcHR0RN++/5/kO3ToAKVSid27d0vLsrKykJOTA61WCwDQarVIT09HXl6e1Gfnzp1QqVTw9vZuuAMgIiKDMzc3x8cff1ytAJGVlYWrV6/qTY6OjkhNTZXmf/jhhyp9lyxZUuv6Zs2ahatXryInJwfr1q3D/v37MWHChFpv73GZmppCo9H8LT5ewOBhp6KiAnFxcYiIiND7bBy1Wo2RI0di0qRJ2Lt3L9LS0vD6669Dq9XC398fANCrVy94e3tj2LBhOHHiBLZv344ZM2YgMjISZmZmhjokIiIygJCQEGg0GsydO/eRfR0dHaHRaPQmIyMjODg4SPN2dnZV+j7OVZAmTZpAo9GgWbNm6NatGyIiInD06FGp/Y8//sCQIUPQrFkzWFpawsfHB1999ZXeNr7//nv4+PjAwsIC9vb2CAkJwa1bt6T21atXw8vLC+bm5vD09MTy5csfWE/lVa7KOyjx8fGwsbHB9u3b4eXlBWtra/Tu3RtXr17VW68m+2gsDD5mZ9euXcjJycEbb7xRpW3RokUwMjJCWFiY3ocKVjI2NkZCQgLGjRsHrVYLKysrREREYNasWQ15CESNWkOPtWiMLpi/ZugSDCumwNAVNAhjY2PMmTMHr732GiZMmIDmzZsbuqQHunz5Mn7++Wf4+flJy4qLi9GhQwdMnToVKpUKmzdvxrBhw9CqVSt07twZV69exZAhQzB//ny8+OKLuHnzJg4cOCB90vW6deswc+ZM/Pvf/0b79u1x7NgxjB49WnpvrI7bt29jwYIF+O9//wsjIyMMHToUkydPxrp16+psH4Zg8LDTq1evB34kubm5OWJjYxEbG/vA9d3c3LBly5b6Ko+IiJ4gL774Inx9ffH+++9jzZo1D+z31yDk5ub20I8sqQtTp07FjBkzUF5ejuLiYvj5+eHTTz+V2ps1a4bJkydL82+99Ra2b9+Ob7/9Vgo7d+/exaBBg+Dm5gYA8PHxkfq///77WLhwIQYNGgQA8PDwQEZGBj777LNqB5GysjKsXLkSrVq1AgCMHz9e7wJCXezDEAwedoiIiOrSxx9/jO7du+sFh786cOAAmjRpIs0rlcp6r2vKlCkYMWIEhBC4dOkSpk2bhr59+2L//v0wNjZGeXk55syZg2+//RaXL19GaWkpSkpKYGlpCQBo164devToAR8fH4SGhqJXr1546aWXYGtri1u3buH8+fMYOXIkRo8eLe3z7t27Nbr1ZmlpKQUdAHB2dpbGxdbVPgyBYYeIiGSla9euCA0NRXR0tPT01F95eHg0+OPWTZs2RevWrQEAbdq0weLFi6HVarF3716EhITgk08+wZIlS7B48WL4+PjAysoKUVFRKC0tBXDvNt3OnTtx6NAh7NixA8uWLcP06dORkpIiBaJVq1bp3RqrXK+6/hr6FAqFdPelqKioTvZhCAw7REQkO/PmzYOvry+efvppQ5fyQJUB4c6dOwCAgwcPYsCAARg6dCiAew/wnDlzRu/pYoVCgYCAAAQEBGDmzJlwc3PDxo0bMWnSJLi4uODXX39FeHh4vdTr5ORU7/uoLww7REQkOz4+PggPD8fSpUvv256Xl4fi4mK9Zfb29jW6nZWdnY3jx4/rLWvTpg2srKzu2//mzZvQ6XTSbax3330XDg4O6NKli7Tu999/j0OHDsHW1haffvopcnNzpbCTkpKC3bt3o1evXnB0dERKSgquXbsGLy8vAMAHH3yACRMmQK1Wo3fv3igpKcGRI0dw48YNvQ/SfRwNsY/6wLBDRESP9CR+ovGsWbPwzTff3Lftfld8Kr9kurru9+Z+4MABBAYG3rf/zJkzMXPmTACAg4MDOnXqhB07dsDe3h4AMGPGDPz6668IDQ2FpaUlxowZg4EDB6Kg4N7TdCqVCvv378fixYtRWFgINzc3LFy4EH369AEAjBo1CpaWlvjkk08wZcoUWFlZwcfHB1FRUdU+pkdpiH3Uh0b1reeGwm89Jznjo+d89Lwmj57zW8+psZHVt54TERER1QeGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIqK/geDgYL1POnZ3d8fixYsfa5t1sY2GwK+LICKiR4tRN/D+qv+pzwAwYsQI5OfnY9OmTdL8559/DgAwMTGBnZ0d2rZtiyFDhmDEiBEwMqr6t35oaCh27dqF5ORkdOrUqcr2K7f313W2bdsGADhx4gT+9a9/ITk5GYWFhdBoNPDz88OyZcvg6Oh437qDg4Oxb98+AICZmRlatmyJ8ePH45///GeNjr82UlNTH/g9Xn8VHx+PqKgo5Ofn13obhsQrO0REJEu9e/fG1atXceHCBWzduhXdunXD22+/jX79+uHu3bt6fXNycnDo0CGMHz8ea9eufej2/jx99dVXAIBr166hR48esLOzw/bt25GZmYm4uDi4uLjg1q1bD61z9OjRuHr1KjIyMvDKK68gMjJS2u5flZaW1uKVuD8HBwdYWloafBsNgWGHiIhkyczMDBqNBs2aNcNzzz2HadOm4ccff8TWrVsRHx+v1zcuLg79+vXDuHHj8NVXX+HOnTsP3N6fJ1tbWwDAwYMHUVBQgNWrV6N9+/bw8PBAt27dsGjRInh4eDy0TktLS2g0GrRs2RIxMTFo06YNfvrpJwD3rvyMHz8eUVFRaNq0KUJDQwEAp06dQp8+fWBtbQ0nJycMGzYMv//+u7TNW7duYfjw4bC2toazszMWLlxYZb9/vQWVn5+PN998E05OTjA3N8ezzz6LhIQEJCYm4vXXX0dBQQEUCgUUCgViYmLuu42cnBwMGDAA1tbWUKlUeOWVV5Cbmyu1x8TEwNfXF//973/h7u4OtVqNV199FTdv3nzoa/S4GHaIiOhvo3v37mjXrh02bNggLRNCIC4uDkOHDoWnpydat26N77//vkbb1Wg0uHv3LjZu3IjH/X5tCwsLvSs4n3/+OUxNTXHw4EGsXLkS+fn56N69O9q3b48jR45g27ZtyM3NxSuvvCKtM2XKFOzbtw8//vgjduzYgcTERBw9evSB+6yoqECfPn1w8OBBfPnll8jIyMC8efNgbGyMLl26YPHixVCpVNIVrcmTJ993GwMGDMD169exb98+7Ny5E7/++isGDx6s1+/8+fPYtGkTEhISkJCQgH379mHevHmP9Zo9CsfsEBHR34qnpydOnjwpze/atQu3b9+WrpoMHToUa9aswbBhw/TWS0hIgLW1td6yadOmYdq0afD398e0adPw2muvYezYsejcuTO6d++O4cOHw8nJqVp1lZeX46uvvsLJkycxZswYaXmbNm0wf/58aX727Nlo37495syZIy1bu3YtXF1dcebMGbi4uGDNmjX48ssv0aNHDwD3AlPz5s0fuO9du3bh8OHDyMzMxFNPPQUAaNmypdSuVquhUCig0WgeuI3du3cjPT0d2dnZcHV1BQB88cUXeOaZZ5CamiqNg6qoqEB8fDyaNGkCABg2bBh2796Njz76qFqvU23wyg4REf2tCCGgUCik+bVr12Lw4MEwMbn39/+QIUNw8OBBnD9/Xm+9bt264fjx43rT2LFjpfaPPvoIOp0OK1euxDPPPIOVK1fC09MT6enpD61n+fLlsLa2hoWFBUaPHo2JEydi3LhxUnuHDh30+p84cQJ79+6FtbW1NHl6egK4d9Xk/PnzKC0thZ+fn7SOnZ0dnn766QfWcPz4cTRv3lwKOrWRmZkJV1dXKegAgLe3N2xsbJCZmSktc3d3l4IOADg7OyMvL6/W+60OXtmpZ+7vbTZ0CQZ3wfw1Q5dgWDV8qoSI6ldmZqY0jub69evYuHEjysrKsGLFCqlPeXk51q5dq3e1wcrKCq1bt37otu3t7fHyyy/j5Zdfxpw5c9C+fXssWLDgvk9yVQoPD8f06dNhYWEBZ2fnKk+K/fVpp6KiIvTv3x8ff/xxlW05Ozvj3LlzD63xfiwsLGq8Tm0plUq9eYVCgYqKinrdJ6/sEBHR38aePXuQnp6OsLAwAMC6devQvHlznDhxQu+KzcKFCxEfH4/y8vJa78vU1BStWrV65NNYarUarVu3RrNmze77SPxfPffcczh9+jTc3d3RunVrvcnKygqtWrWCUqlESkqKtM6NGzdw5syZB26zbdu2+O233x7Yx9TU9JGvhZeXFy5duoRLly5JyzIyMpCfnw9vb+9HHld9YtghIiJZKikpgU6nw+XLl3H06FHMmTMHAwYMQL9+/TB8+HAAwJo1a/DSSy/h2Wef1ZtGjhyJ33//XfoMnT9v789T5RNQCQkJGDp0KBISEnDmzBlkZWVhwYIF2LJlCwYMGFCnxxUZGYnr169jyJAhSE1Nxfnz57F9+3a8/vrrKC8vh7W1NUaOHIkpU6Zgz549OHXq1AM/W6hSUFAQunbtirCwMOzcuRPZ2dnYunWrdPzu7u4oKirC7t278fvvv+P27dtVthESEgIfHx+Eh4fj6NGjOHz4MIYPH46goCB07NixTl+DmmLYISIiWdq2bRucnZ3h7u6O3r17Y+/evVi6dCl+/PFHGBsbIy0tDSdOnJCu8vyZWq1Gjx49sGbNmirb+/MUGBgI4N7YFEtLS7zzzjvw9fWFv78/vv32W6xevbrKQOfH5eLigoMHD6K8vBy9evWCj48PoqKiYGNjIwWaTz75BP/4xz/Qv39/hISEIDAwsMrYn7/64Ycf0KlTJwwZMgTe3t549913pas5Xbp0wdixYzF48GA4ODjoDZiupFAo8OOPP8LW1hZdu3ZFSEgIWrZsiW+++aZOj782FOJxn5GTgcLCQqjVahQUFEClUtXptjlmh2N2DD1mh+cgz8GanIPFxcXIzs6Gh4cHzM3N67Eooup52DlZ3fdvXtkhIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEioir4oC41FnVxLjLsEBGRxNjYGAD0vnWbyJAqP8Dwr18zURP8biwiIpKYmJjA0tIS165dg1KprNbXFxDVByEEbt++jby8PNjY2EhBvDYYdoiISKJQKODs7Izs7GxcvHjR0OUQwcbGBhqN5rG2wbBDRER6TE1N0aZNG97KIoNTKpWPdUWnEsMOERFVYWRkxK+LINngzVgiIiKSNYYdIiIikjWGHSIiIpI1g4edy5cvY+jQobC3t4eFhQV8fHxw5MgRqV0IgZkzZ8LZ2RkWFhYICQnB2bNn9bZx/fp1hIeHQ6VSwcbGBiNHjkRRUVFDHwoRERE1QgYNOzdu3EBAQACUSiW2bt2KjIwMLFy4ELa2tlKf+fPnY+nSpVi5ciVSUlJgZWWF0NBQFBcXS33Cw8Nx+vRp7Ny5EwkJCdi/fz/GjBljiEMiIiKiRsagT2N9/PHHcHV1RVxcnLTMw8ND+rcQAosXL8aMGTMwYMAAAMAXX3wBJycnbNq0Ca+++ioyMzOxbds2pKamomPHjgCAZcuW4fnnn8eCBQvg4uLSsAdFREREjYpBr+z89NNP6NixI15++WU4Ojqiffv2WLVqldSenZ0NnU6HkJAQaZlarYafnx+SkpIAAElJSbCxsZGCDgCEhITAyMgIKSkp991vSUkJCgsL9SYiIiKSJ4OGnV9//RUrVqxAmzZtsH37dowbNw4TJkzA559/DgDQ6XQAACcnJ731nJycpDadTgdHR0e9dhMTE9jZ2Ul9/mru3LlQq9XS5OrqWteHRkRERI2EQcNORUUFnnvuOcyZMwft27fHmDFjMHr0aKxcubJe9xsdHY2CggJpunTpUr3uj4iIiAzHoGHH2dkZ3t7eesu8vLyQk5MDANJ3YeTm5ur1yc3Nldo0Gg3y8vL02u/evYvr168/8Ls0zMzMoFKp9CYiIiKSJ4OGnYCAAGRlZektO3PmDNzc3ADcG6ys0Wiwe/duqb2wsBApKSnQarUAAK1Wi/z8fKSlpUl99uzZg4qKCvj5+TXAURAREVFjZtCnsSZOnIguXbpgzpw5eOWVV3D48GH85z//wX/+8x8A9759NyoqCrNnz0abNm3g4eGBf/3rX3BxccHAgQMB3LsS1Lt3b+n2V1lZGcaPH49XX32VT2IRERGRYcNOp06dsHHjRkRHR2PWrFnw8PDA4sWLER4eLvV59913cevWLYwZMwb5+fkIDAzEtm3b9L6gbt26dRg/fjx69OgBIyMjhIWFYenSpYY4JCIiImpkFEIIYegiDK2wsBBqtRoFBQV1Pn7H/b3Ndbq9J9EF89cMXYJhxRQYdPc8B3kOGvocJKov1X3/NvjXRRARERHVJ4YdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYOGnZiYGCgUCr3J09NTai8uLkZkZCTs7e1hbW2NsLAw5Obm6m0jJycHffv2haWlJRwdHTFlyhTcvXu3oQ+FiIiIGikTQxfwzDPPYNeuXdK8icn/lzRx4kRs3rwZ3333HdRqNcaPH49Bgwbh4MGDAIDy8nL07dsXGo0Ghw4dwtWrVzF8+HAolUrMmTOnwY+FiIiIGh+Dhx0TExNoNJoqywsKCrBmzRqsX78e3bt3BwDExcXBy8sLycnJ8Pf3x44dO5CRkYFdu3bByckJvr6++PDDDzF16lTExMTA1NS0oQ+HiIiIGhmDj9k5e/YsXFxc0LJlS4SHhyMnJwcAkJaWhrKyMoSEhEh9PT090aJFCyQlJQEAkpKS4OPjAycnJ6lPaGgoCgsLcfr06Qfus6SkBIWFhXoTERERyZNBw46fnx/i4+Oxbds2rFixAtnZ2fjHP/6BmzdvQqfTwdTUFDY2NnrrODk5QafTAQB0Op1e0Klsr2x7kLlz50KtVkuTq6tr3R4YERERNRoGvY3Vp08f6d9t27aFn58f3Nzc8O2338LCwqLe9hsdHY1JkyZJ84WFhQw8REREMmXw21h/ZmNjg6eeegrnzp2DRqNBaWkp8vPz9frk5uZKY3w0Gk2Vp7Mq5+83DqiSmZkZVCqV3kRERETy1KjCTlFREc6fPw9nZ2d06NABSqUSu3fvltqzsrKQk5MDrVYLANBqtUhPT0deXp7UZ+fOnVCpVPD29m7w+omIiKjxMehtrMmTJ6N///5wc3PDlStX8P7778PY2BhDhgyBWq3GyJEjMWnSJNjZ2UGlUuGtt96CVquFv78/AKBXr17w9vbGsGHDMH/+fOh0OsyYMQORkZEwMzMz5KERERFRI2HQsPPbb79hyJAh+OOPP+Dg4IDAwEAkJyfDwcEBALBo0SIYGRkhLCwMJSUlCA0NxfLly6X1jY2NkZCQgHHjxkGr1cLKygoRERGYNWuWoQ6JiIiIGhmDhp2vv/76oe3m5uaIjY1FbGzsA/u4ublhy5YtdV0aERERyUSjGrNDREREVNcYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWDP6t50REJG/u7202dAkGd8H8NUOXYFgxBQbdPa/sEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrJnUdIX8/Hxs3LgRBw4cwMWLF3H79m04ODigffv2CA0NRZcuXeqjTiIiIqJaqfaVnStXrmDUqFFwdnbG7NmzcefOHfj6+qJHjx5o3rw59u7di549e8Lb2xvffPNNfdZMREREVG3VvrLTvn17REREIC0tDd7e3vftc+fOHWzatAmLFy/GpUuXMHny5DorlIiIiKg2qh12MjIyYG9v/9A+FhYWGDJkCIYMGYI//vjjsYsjIiIielzVvo1lb2+PkpKSam/4UcGIiIiIqCHUaICyWq2GVqtFt27d0K1bN/j7+0OpVNZXbURERESPrUaPnq9cuRJubm5Yu3YtgoKCYGNjg549e2Lu3LlITk5GeXl5fdVJREREVCs1CjsjRoxAfHw8Lly4gHPnzmHZsmVwcXHBypUrERAQAFtbW/Tt27e+aiUiIiKqsRp/zk6lli1bomXLlnjjjTeQnZ2NNWvWYNmyZdi2bVtd1kdERET0WGoVdnJycrB3714kJiYiMTERv//+O/z9/TF58mQEBQXVdY1EREREtVajsPPGG28gMTER169fR0BAAP7xj39gzJgx6NSpE0xMan2RiIiIiKje1CihxMfHo0WLFpg+fTp69OiB9u3bQ6FQ1FdtRERERI+tRmEnMzNTun21cOFClJSUIDAwEEFBQQgODsZzzz0HIyN+tygRERE1HjVKJk8//TTGjh2Lr7/+GjqdDgcPHsTzzz+Pw4cPo1+/frCzs0O/fv3qq1YiIiKiGnusgTbe3t6wt7eHra0tbG1t8fXXX2Pr1q11VRsRERHRY6tx2MnLy0NiYqJ0O+vMmTMwNTVF586dMXHiRHTr1q0+6iQiIiKqlRrdxvLy8oKzszOGDRuG9PR0vPTSS9ixYwdu3LiBffv2ISYmptaPns+bNw8KhQJRUVHSsuLiYkRGRsLe3h7W1tYICwtDbm6u3no5OTno27cvLC0t4ejoiClTpuDu3bu1qoGIiIjkp0ZXdgYOHIhu3bohMDAQlpaWdVZEamoqPvvsM7Rt21Zv+cSJE7F582Z89913UKvVGD9+PAYNGoSDBw8CAMrLy9G3b19oNBocOnQIV69exfDhw6FUKjFnzpw6q4+IiIieXDW6sjN37lz06tWrToNOUVERwsPDsWrVKtja2krLCwoKsGbNGnz66afo3r07OnTogLi4OBw6dAjJyckAgB07diAjIwNffvklfH190adPH3z44YeIjY1FaWlpndVIRERET64aXdmZNWtWtfrNnDmz2tuMjIxE3759ERISgtmzZ0vL09LSUFZWhpCQEGmZp6cnWrRogaSkJPj7+yMpKQk+Pj5wcnKS+oSGhmLcuHE4ffo02rdvf999lpSUoKSkRJovLCysdr1ERET0ZKlR2ImJiYGLiwscHR0hhLhvH4VCUe2w8/XXX+Po0aNITU2t0qbT6WBqagobGxu95U5OTtDpdFKfPwedyvbKtgeZO3cuPvjgg2rVSERERE+2GoWdPn36YM+ePejYsSPeeOMN9OvXr9YfInjp0iW8/fbb2LlzJ8zNzWu1jdqKjo7GpEmTpPnCwkK4uro2aA1ERETUMGqUVDZv3ozz58/Dz88PU6ZMQbNmzTB16lRkZWXVeMdpaWnIy8vDc889BxMTE5iYmGDfvn1YunQpTExM4OTkhNLSUuTn5+utl5ubC41GAwDQaDRVns6qnK/scz9mZmZQqVR6ExEREclTjS/LuLi4IDo6GllZWfjmm2+Ql5eHTp06ISAgAHfu3Kn2dnr06IH09HQcP35cmjp27Ijw8HDp30qlErt375bWycrKQk5ODrRaLQBAq9UiPT0deXl5Up+dO3dCpVLB29u7podGREREMvRYn6DcqVMnXLhwARkZGTh27BjKyspgYWFRrXWbNGmCZ599Vm+ZlZUV7O3tpeUjR47EpEmTYGdnB5VKhbfeegtarRb+/v4AgF69esHb2xvDhg3D/PnzodPpMGPGDERGRsLMzOxxDo2IiIhkolYDbpKSkjB69GhoNBosW7YMERERuHLlSp3fDlq0aBH69euHsLAwdO3aFRqNBhs2bJDajY2NkZCQAGNjY2i1WgwdOhTDhw+v9lNjREREJH81urIzf/58xMfH4/fff0d4eDgOHDhQ5YMAH0diYqLevLm5OWJjYxEbG/vAddzc3LBly5Y6q4GIiIjkpUZh57333kOLFi3wyiuvQKFQID4+/r79Pv3007qojYiIiOix1SjsdO3aFQqFAqdPn35gH4VC8dhFEREREdWVGoWdv95mIiIiImrsaveJgERERERPiGqHnXnz5uH27dvV6puSkoLNmzfXuigiIiKiulLtsJORkQE3Nzf885//xNatW3Ht2jWp7e7duzh58iSWL1+OLl26YPDgwWjSpEm9FExERERUE9Ues/PFF1/gxIkT+Pe//43XXnsNhYWFMDY2hpmZmXTFp3379hg1ahRGjBjR4N93RURERHQ/NRqg3K5dO6xatQqfffYZTp48iYsXL+LOnTto2rQpfH190bRp0/qqk4iIiKhWavV1EUZGRvD19YWvr28dl0NERERUt/g0FhEREckaww4RERHJGsMOERERyRrDDhEREclajcNOWVkZTExMcOrUqfqoh4iIiKhO1TjsKJVKtGjRAuXl5fVRDxEREVGdqtVtrOnTp2PatGm4fv16XddDREREVKdq9Tk7//73v3Hu3Dm4uLjAzc0NVlZWeu1Hjx6tk+KIiIiIHletws7AgQPruAwiIiKi+lGrsPP+++/XdR1ERERE9aLWj57n5+dj9erViI6OlsbuHD16FJcvX66z4oiIiIgeV62u7Jw8eRIhISFQq9W4cOECRo8eDTs7O2zYsAE5OTn44osv6rpOIiIiolqp1ZWdSZMmYcSIETh79izMzc2l5c8//zz2799fZ8URERERPa5ahZ3U1FS8+eabVZY3a9YMOp3usYsiIiIiqiu1CjtmZmYoLCyssvzMmTNwcHB47KKIiIiI6kqtws4LL7yAWbNmoaysDACgUCiQk5ODqVOnIiwsrE4LJCIiInoctQo7CxcuRFFRERwdHXHnzh0EBQWhdevWaNKkCT766KO6rpGIiIio1mr1NJZarcbOnTvxv//9DydPnkRRURGee+45hISE1HV9RERERI+lVmGnuLgY5ubmCAwMRGBgYF3XRERERFRnahV2bGxs0LlzZwQFBaFbt27QarWwsLCo69qIiIiIHlutxuzs2rULvXv3RkpKCl544QXY2toiMDAQ06dPx86dO+u6RiIiIqJaq1XYCQwMxLRp07Bjxw7k5+dj7969aN26NebPn4/evXvXdY1EREREtVar21jAvc/USUxMlKaSkhL069cPwcHBdVgeERER0eOpVdhp1qwZ7ty5g+DgYAQHB2Pq1Klo27YtFApFXddHRERE9FhqdRvLwcEBt2/fhk6ng06nQ25uLu7cuVPXtRERERE9tlqFnePHj0On0+G9995DSUkJpk2bhqZNm6JLly6YPn16XddIREREVGu1HrNjY2ODF154AQEBAejSpQt+/PFHfPXVV0hJSeGnKBMREVGjUauws2HDBmlgckZGBuzs7BAYGIiFCxciKCiormskIiIiqrVahZ2xY8eia9euGDNmDIKCguDj41PXdRERERHViVqFnby8vLqug4iIiKhe1HrMTnl5OTZt2oTMzEwAgLe3NwYMGABjY+M6K46IiIjocdXqaaxz587By8sLw4cPx4YNG7BhwwYMGzYMzzzzDM6fP1/t7axYsQJt27aFSqWCSqWCVqvF1q1bpfbi4mJERkbC3t4e1tbWCAsLQ25urt42cnJy0LdvX1haWsLR0RFTpkzB3bt3a3NYREREJEO1CjsTJkxAq1atcOnSJRw9ehRHjx5FTk4OPDw8MGHChGpvp3nz5pg3bx7S0tJw5MgRdO/eHQMGDMDp06cBABMnTsTPP/+M7777Dvv27cOVK1cwaNAgaf3y8nL07dsXpaWlOHToED7//HPEx8dj5syZtTksIiIikqFa3cbat28fkpOTYWdnJy2zt7fHvHnzEBAQUO3t9O/fX2/+o48+wooVK5CcnIzmzZtjzZo1WL9+Pbp37w4AiIuLg5eXF5KTk+Hv748dO3YgIyMDu3btgpOTE3x9ffHhhx9i6tSpiImJgampaW0Oj4iIiGSkVld2zMzMcPPmzSrLi4qKah0wysvL8fXXX+PWrVvQarVIS0tDWVkZQkJCpD6enp5o0aIFkpKSAABJSUnw8fGBk5OT1Cc0NBSFhYXS1aH7KSkpQWFhod5ERERE8lSrsNOvXz+MGTMGKSkpEEJACIHk5GSMHTsWL7zwQo22lZ6eDmtra5iZmWHs2LHYuHEjvL29odPpYGpqChsbG73+Tk5O0Ol0AACdTqcXdCrbK9seZO7cuVCr1dLk6upao5qJiIjoyVGrsLN06VK0atUKWq0W5ubmMDc3R0BAAFq3bo0lS5bUaFtPP/00jh8/jpSUFIwbNw4RERHIyMioTVnVFh0djYKCAmm6dOlSve6PiIiIDKdWY3ZsbGzw448/4ty5c9Kj515eXmjdunWNt2Vqaiqt16FDB6SmpmLJkiUYPHgwSktLkZ+fr3d1Jzc3FxqNBgCg0Whw+PBhve1VPq1V2ed+zMzMYGZmVuNaiYiI6MlToys7FRUV+PjjjxEQEIBOnTph9erVCAkJQf/+/WsVdB60j5KSEnTo0AFKpRK7d++W2rKyspCTkwOtVgsA0Gq1SE9P1/uQw507d0KlUsHb27tO6iEiIqInW42u7Hz00UeIiYlBSEgILCwssGTJEuTl5WHt2rW12nl0dDT69OmDFi1a4ObNm1i/fj0SExOxfft2qNVqjBw5EpMmTYKdnR1UKhXeeustaLVa+Pv7AwB69eoFb29vDBs2DPPnz4dOp8OMGTMQGRnJKzdEREQEoIZh54svvsDy5cvx5ptvAgB27dqFvn37YvXq1TAyqvnwn7y8PAwfPhxXr16FWq1G27ZtsX37dvTs2RMAsGjRIhgZGSEsLAwlJSUIDQ3F8uXLpfWNjY2RkJCAcePGQavVwsrKChEREZg1a1aNayEiIiJ5qlHYycnJwfPPPy/Nh4SEQKFQ4MqVK2jevHmNd75mzZqHtpubmyM2NhaxsbEP7OPm5oYtW7bUeN9ERET091CjyzF3796Fubm53jKlUomysrI6LYqIiIiortToyo4QAiNGjNAbD1NcXIyxY8fCyspKWrZhw4a6q5CIiIjoMdQo7ERERFRZNnTo0DorhoiIiKiu1SjsxMXF1VcdRERERPWiVp+gTERERPSkYNghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIlkzaNiZO3cuOnXqhCZNmsDR0REDBw5EVlaWXp/i4mJERkbC3t4e1tbWCAsLQ25url6fnJwc9O3bF5aWlnB0dMSUKVNw9+7dhjwUIiIiaqQMGnb27duHyMhIJCcnY+fOnSgrK0OvXr1w69Ytqc/EiRPx888/47vvvsO+fftw5coVDBo0SGovLy9H3759UVpaikOHDuHzzz9HfHw8Zs6caYhDIiIiokbGxJA737Ztm958fHw8HB0dkZaWhq5du6KgoABr1qzB+vXr0b17dwBAXFwcvLy8kJycDH9/f+zYsQMZGRnYtWsXnJyc4Ovriw8//BBTp05FTEwMTE1NDXFoRERE1Eg0qjE7BQUFAAA7OzsAQFpaGsrKyhASEiL18fT0RIsWLZCUlAQASEpKgo+PD5ycnKQ+oaGhKCwsxOnTp++7n5KSEhQWFupNREREJE+NJuxUVFQgKioKAQEBePbZZwEAOp0OpqamsLGx0evr5OQEnU4n9flz0Klsr2y7n7lz50KtVkuTq6trHR8NERERNRaNJuxERkbi1KlT+Prrr+t9X9HR0SgoKJCmS5cu1fs+iYiIyDAMOman0vjx45GQkID9+/ejefPm0nKNRoPS0lLk5+frXd3Jzc2FRqOR+hw+fFhve5VPa1X2+SszMzOYmZnV8VEQERFRY2TQKztCCIwfPx4bN27Enj174OHhodfeoUMHKJVK7N69W1qWlZWFnJwcaLVaAIBWq0V6ejry8vKkPjt37oRKpYK3t3fDHAgRERE1Wga9shMZGYn169fjxx9/RJMmTaQxNmq1GhYWFlCr1Rg5ciQmTZoEOzs7qFQqvPXWW9BqtfD39wcA9OrVC97e3hg2bBjmz58PnU6HGTNmIDIykldviIiIyLBhZ8WKFQCA4OBgveVxcXEYMWIEAGDRokUwMjJCWFgYSkpKEBoaiuXLl0t9jY2NkZCQgHHjxkGr1cLKygoRERGYNWtWQx0GERERNWIGDTtCiEf2MTc3R2xsLGJjYx/Yx83NDVu2bKnL0oiIiEgmGs3TWERERET1gWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkzaBhZ//+/ejfvz9cXFygUCiwadMmvXYhBGbOnAlnZ2dYWFggJCQEZ8+e1etz/fp1hIeHQ6VSwcbGBiNHjkRRUVEDHgURERE1ZgYNO7du3UK7du0QGxt73/b58+dj6dKlWLlyJVJSUmBlZYXQ0FAUFxdLfcLDw3H69Gns3LkTCQkJ2L9/P8aMGdNQh0BERESNnIkhd96nTx/06dPnvm1CCCxevBgzZszAgAEDAABffPEFnJycsGnTJrz66qvIzMzEtm3bkJqaio4dOwIAli1bhueffx4LFiyAi4tLgx0LERERNU6NdsxOdnY2dDodQkJCpGVqtRp+fn5ISkoCACQlJcHGxkYKOgAQEhICIyMjpKSkPHDbJSUlKCws1JuIiIhInhpt2NHpdAAAJycnveVOTk5Sm06ng6Ojo167iYkJ7OzspD73M3fuXKjVamlydXWt4+qJiIiosWi0Yac+RUdHo6CgQJouXbpk6JKIiIionjTasKPRaAAAubm5estzc3OlNo1Gg7y8PL32u3fv4vr161Kf+zEzM4NKpdKbiIiISJ4abdjx8PCARqPB7t27pWWFhYVISUmBVqsFAGi1WuTn5yMtLU3qs2fPHlRUVMDPz6/BayYiIqLGx6BPYxUVFeHcuXPSfHZ2No4fPw47Ozu0aNECUVFRmD17Ntq0aQMPDw/861//gouLCwYOHAgA8PLyQu/evTF69GisXLkSZWVlGD9+PF599VU+iUVEREQADBx2jhw5gm7duknzkyZNAgBEREQgPj4e7777Lm7duoUxY8YgPz8fgYGB2LZtG8zNzaV11q1bh/Hjx6NHjx4wMjJCWFgYli5d2uDHQkRERI2TQcNOcHAwhBAPbFcoFJg1axZmzZr1wD52dnZYv359fZRHREREMtBox+wQERER1QWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjXZhJ3Y2Fi4u7vD3Nwcfn5+OHz4sKFLIiIiokZAFmHnm2++waRJk/D+++/j6NGjaNeuHUJDQ5GXl2fo0oiIiMjAZBF2Pv30U4wePRqvv/46vL29sXLlSlhaWmLt2rWGLo2IiIgMzMTQBTyu0tJSpKWlITo6WlpmZGSEkJAQJCUl3XedkpISlJSUSPMFBQUAgMLCwjqvr6Lkdp1v80lTqBCGLsGw6uG8qgmegzwHeQ4aHs/B+jkHK9+3hXj46/vEh53ff/8d5eXlcHJy0lvu5OSEX3755b7rzJ07Fx988EGV5a6urvVS49+d2tAFGNq8v/0rYHB/+58Az0GD+9v/BOr5HLx58ybU6gfv44kPO7URHR2NSZMmSfMVFRW4fv067O3toVAoDFiZ/BQWFsLV1RWXLl2CSqUydDn0N8RzkAyN52D9EULg5s2bcHFxeWi/Jz7sNG3aFMbGxsjNzdVbnpubC41Gc991zMzMYGZmprfMxsamvkokACqViv/JyaB4DpKh8RysHw+7olPpiR+gbGpqig4dOmD37t3SsoqKCuzevRtardaAlREREVFj8MRf2QGASZMmISIiAh07dkTnzp2xePFi3Lp1C6+//rqhSyMiIiIDk0XYGTx4MK5du4aZM2dCp9PB19cX27ZtqzJomRqemZkZ3n///Sq3DYkaCs9BMjSeg4anEI96XouIiIjoCfbEj9khIiIiehiGHSIiIpI1hh0iIiKSNYYdIiIikjWGHaoiJiYGvr6+hi6DiKhBubu7Y/HixYYug+oBww79bZSWlhq6hL89/gwerry8HBUVFYYug2SmrKzM0CUYHMOODAUHB2PChAl49913YWdnB41Gg5iYGKk9Pz8fo0aNgoODA1QqFbp3744TJ04AAOLj4/HBBx/gxIkTUCgUUCgUiI+Pf+Q+FQoFVqxYgT59+sDCwgItW7bE999/r9cnPT0d3bt3h4WFBezt7TFmzBgUFRUBAE6dOgUjIyNcu3YNAHD9+nUYGRnh1VdfldafPXs2AgMDpflTp06hT58+sLa2hpOTE4YNG4bff/9d73UYP348oqKi0LRpU4SGhtb4taSHu3nzJsLDw2FlZQVnZ2csWrQIwcHBiIqKAnDvL+UPP/wQw4cPh0qlwpgxYwAAP/zwA5555hmYmZnB3d0dCxcu1Nvu8uXL0aZNG5ibm8PJyQkvvfSS1Pb999/Dx8dHOo9CQkJw69atR9Y6YsQIDBw4EB988IF07o8dO1YvgJWUlGDChAlwdHSEubk5AgMDkZqaKrV37NgRCxYskOYHDhwIpVIpnce//fYbFAoFzp07J21v8uTJaNasGaysrODn54fExERp/fj4eNjY2OCnn36Ct7c3zMzMkJOTU81Xn2rqYedrcHAwLl68iIkTJ0q/+x6l8ue3adMm6XwNDQ3FpUuX9PqtWLECrVq1gqmpKZ5++mn897//ldomT56Mfv36SfOLFy+GQqHAtm3bpGWtW7fG6tWrpfnVq1fDy8sL5ubm8PT0xPLly6W2CxcuQKFQ4JtvvkFQUBDMzc2xbt26Wr1esiJIdoKCgoRKpRIxMTHizJkz4vPPPxcKhULs2LFDCCFESEiI6N+/v0hNTRVnzpwR77zzjrC3txd//PGHuH37tnjnnXfEM888I65evSquXr0qbt++/ch9AhD29vZi1apVIisrS8yYMUMYGxuLjIwMIYQQRUVFwtnZWQwaNEikp6eL3bt3Cw8PDxERESGEEKKiokI0bdpUfPfdd0IIITZt2iSaNm0qNBqNtI+QkBAxffp0IYQQN27cEA4ODiI6OlpkZmaKo0ePip49e4pu3brpvQ7W1tZiypQp4pdffhG//PJLnby+9P9GjRol3NzcxK5du0R6erp48cUXRZMmTcTbb78thBDCzc1NqFQqsWDBAnHu3Dlx7tw5ceTIEWFkZCRmzZolsrKyRFxcnLCwsBBxcXFCCCFSU1OFsbGxWL9+vbhw4YI4evSoWLJkiRBCiCtXrggTExPx6aefiuzsbHHy5EkRGxsrbt68+chaIyIihLW1tRg8eLA4deqUSEhIEA4ODmLatGlSnwkTJggXFxexZcsWcfr0aRERESFsbW3FH3/8IYQQYtKkSaJv375CiHvnrJ2dnWjatKnYunWrEEKIL7/8UjRr1kzv9enSpYvYv3+/OHfunPjkk0+EmZmZOHPmjBBCiLi4OKFUKkWXLl3EwYMHxS+//CJu3br1eD8UeqCHna9//PGHaN68uZg1a5b0u+9RKn9+HTt2FIcOHRJHjhwRnTt3Fl26dJH6bNiwQSiVShEbGyuysrLEwoULhbGxsdizZ48QQoiffvpJqNVqcffuXSGEEAMHDhRNmzYVU6dOFUII8dtvvwkA4uzZs0KIe+eYs7Oz+OGHH8Svv/4qfvjhB2FnZyfi4+OFEEJkZ2cLAMLd3V3qc+XKlTp9HZ9EDDsyFBQUJAIDA/WWderUSUydOlUcOHBAqFQqUVxcrNfeqlUr8dlnnwkhhHj//fdFu3btarRPAGLs2LF6y/z8/MS4ceOEEEL85z//Eba2tqKoqEhq37x5szAyMhI6nU4IIcSgQYNEZGSkEEKIqKgoMWXKFGFraysyMzNFaWmpsLS0lALbhx9+KHr16qW3v0uXLgkAIisrS3od2rdvX6PjoOorLCwUSqVSCqhCCJGfny8sLS31ws7AgQP11nvttddEz5499ZZNmTJFeHt7CyGE+OGHH4RKpRKFhYVV9pmWliYAiAsXLtS43oiICGFnZ6cXJlasWCGsra1FeXm5KCoqEkqlUqxbt05qLy0tFS4uLmL+/PlCCP03puPHjwuNRiPefvtt6Y1p1KhR4rXXXhNCCHHx4kVhbGwsLl++rFdHjx49RHR0tBDi3pslAHH8+PEaHw/VTHXP10WLFlV7m5U/v+TkZGlZZmamACBSUlKEEEJ06dJFjB49Wm+9l19+WTz//PNCiHt/uBkZGYnU1FQpQM+dO1f4+fkJIaoG6FatWon169frbe/DDz8UWq1WCPH/YWfx4sXVPo6/A97Gkqm2bdvqzTs7OyMvLw8nTpxAUVER7O3tYW1tLU3Z2dk4f/78Y+3zr1+8qtVqkZmZCQDIzMxEu3btYGVlJbUHBASgoqICWVlZAICgoCDpEv++ffvQvXt3dO3aFYmJiUhNTUVZWRkCAgIAACdOnMDevXv1jsHT0xMA9I6jQ4cOj3VM9GC//vorysrK0LlzZ2mZWq3G008/rdevY8eOevOZmZnSz7FSQEAAzp49i/LycvTs2RNubm5o2bIlhg0bhnXr1uH27dsAgHbt2qFHjx7w8fHByy+/jFWrVuHGjRvVrrldu3awtLSU5rVaLYqKinDp0iWcP39e7xwDAKVSic6dO0vn8T/+8Q/cvHkTx44dw759+xAUFITg4GC98zY4OBjAvdu25eXleOqpp/TO03379umdo6amplX+v1Ldq+75WlMmJibo1KmTNO/p6QkbGxu93333O98r221sbNCuXTskJiYiPT0dpqamGDNmDI4dO4aioiLpPAOAW7du4fz58xg5cqTeOTV79uwqv7//+v/u704W341FVSmVSr15hUKBiooKFBUVwdnZWW/cQCUbG5uGKe4BKu+dnz17FhkZGQgMDMQvv/yCxMRE3LhxAx07dpTeqIqKitC/f398/PHHVbbj7Ows/fvP4YoMo6Y/gyZNmuDo0aNITEzEjh07MHPmTMTExCA1NRU2NjbYuXMnDh06hB07dmDZsmWYPn06UlJS4OHhUU9H8P/+/MaUlJSEnj17omvXrhg8eDDOnDmDs2fPSm9MRUVFMDY2RlpaGoyNjfW2Y21tLf3bwsKiWuNDSL4qA7OZmRmCgoJgZ2cHLy8v/O9//8O+ffvwzjvvAIA0NmzVqlXw8/PT28ZfzzH+7tPHKzt/M8899xx0Oh1MTEzQunVrvalp06YA7v2lWV5eXuNtJycnV5n38vICAHh5eeHEiRN6A0kPHjwIIyMj6S8rHx8f2NraYvbs2fD19YW1tTWCg4Oxb98+JCYmSn8xVx7H6dOn4e7uXuU4+J+8YbRs2RJKpVJvAG9BQQHOnDnz0PW8vLxw8OBBvWUHDx7EU089Jf3CNjExQUhICObPn4+TJ0/iwoUL2LNnD4B7wT0gIAAffPABjh07BlNTU2zcuLFaNZ84cQJ37tyR5pOTk2FtbQ1XV1dpAOmfaysrK0Nqaiq8vb2lZUFBQdi7dy/279+P4OBg6Y3po48+grOzM5566ikAQPv27VFeXo68vLwq56hGo6lWvVR3qnO+1uZ33927d3HkyBFpPisrC/n5+Xq/++53vv/1nPrf//6H3bt3S7/ngoOD8dVXX+HMmTPSMicnJ7i4uODXX3+tck41RNh/ohn6PhrVvaCgIOkedKUBAwaIiIgIUVFRIQIDA0W7du3E9u3bRXZ2tjh48KCYNm2aSE1NFUIIsW7dOmFlZSWOHTsmrl27VmV8z/0AEE2bNhVr1qwRWVlZYubMmcLIyEicPn1aCCHErVu3hLOzswgLCxPp6eliz549omXLltIA5UoDBw4UxsbG0hiI8vJyYWtrK4yNjcW2bdukfpcvXxYODg7ipZdeEocPHxbnzp0T27ZtEyNGjJAG+t3vdaC6NWrUKOHh4SH27NkjTp06JcLCwkSTJk1EVFSUEOL+YyDS0tL0BijHx8frDVD++eefxZIlS8SxY8fEhQsXxPLly4WRkZE4deqUSE5OFh999JFITU0VFy9eFN9++60wNTUVW7ZseWStlQOUhwwZIk6fPi02b94snJycxHvvvSf1efvtt4WLi4vYunWr3gDl69evS302bdokjI2N9QbPv/3228LY2Fi8+uqrevsMDw/XGyiakpIi5syZIxISEoQQ98Z8qNXqmrzk9Bgedb727NlTvPDCC+K3334T165de+T2Kgcod+7cWSQnJ4sjR44If39/4e/vL/XZuHGjUCqVYvny5eLMmTPSAOW9e/dKfa5fvy6MjIyEsbGxyMzMlNYzNjYWzs7OevtctWqVsLCwEEuWLBFZWVni5MmTYu3atWLhwoVCiP8fs3Ps2LHHfLXkhWFHhh4WdoS4N1DvrbfeEi4uLkKpVApXV1cRHh4ucnJyhBBCFBcXi7CwMGFjYyMASG9CDwNAxMbGip49ewozMzPh7u4uvvnmG70+J0+eFN26dRPm5ubCzs5OjB49uspTNIsWLRIApKdbKms3MTGp0vfMmTPixRdfFDY2NsLCwkJ4enqKqKgoUVFR8cDXgepWYWGheO2114SlpaXQaDTi008/FZ07d5YCxIMGfH7//ffC29tbKJVK0aJFC/HJJ59IbQcOHBBBQUHC1tZWWFhYiLZt20rnUkZGhggNDRUODg7CzMxMPPXUU2LZsmXVqjUiIkIMGDBAzJw5U9jb2wtra2sxevRovTB/584d8dZbb4mmTZsKMzMzERAQIA4fPqy3nT/++EMoFAoxePBgadnGjRsFALFy5Uq9vqWlpWLmzJnC3d1dKJVK4ezsLF588UVx8uRJIQTDTkN71PmalJQk2rZtK8zMzER1rgVU/vx++OEH0bJlS2FmZiZCQkLExYsX9fotX75ctGzZUiiVSvHUU0+JL774osq22rVrpxegK8+zvwZoIe79Qerr6ytMTU2Fra2t6Nq1q9iwYYMQgmHnQRRCCGG460okFwqFAhs3bsTAgQMNXQoZ0K1bt9CsWTMsXLgQI0eONHQ5ekaMGIH8/Hxs2rTJ0KVQI/G452t8fDyioqKQn59f98VRneIAZSKqtWPHjuGXX35B586dUVBQgFmzZgEABgwYYODKiKri+fr3xbBDj7Ru3Tq8+eab921zc3PD6dOnG7giakwWLFiArKwsmJqaokOHDjhw4IA02L0h/fkJp7/aunVrA1ZCjVlNztc+ffrgwIED922bNm0aXFxc6rNUqkO8jUWPdPPmTeTm5t63TalUws3NrYErIqqq8isa7qdZs2awsLBowGpIDi5fvqz39N6f2dnZwc7OroErotpi2CEiIiJZ4+fsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGs/R8sVPMaSvX2DQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "run_series = False\n", + "if run_series:\n", + " idaes.cfg.ipopt.options.tol = 1e-6\n", + " idaes.cfg.ipopt.options.max_iter = 50\n", + " solver = pyo.SolverFactory(\"ipopt\")\n", + "\n", + " m.fs.cap_specific_reboiler_duty.fix(2.4e6)\n", + " m.fs.cap_fraction.fix(0.97)\n", + " powers = np.linspace(650, 160, int((650 - 160) / 5) + 1)\n", + " powers = list(powers)\n", + " powers.insert(1, 646)\n", + "\n", + " df = pd.DataFrame(columns=m.fs.tags_output.table_heading())\n", + "\n", + " for p in powers:\n", + " print(\"Simulation for net power = \", p)\n", + " fname = f\"data/ngcc_{int(p)}.json.gz\"\n", + " if os.path.exists(fname):\n", + " iutil.from_json(m, fname=fname, wts=iutil.StoreSpec(suffix=False))\n", + " else:\n", + " m.fs.net_power_mw.fix(p)\n", + " res = solver.solve(m, tee=False, symbolic_solver_labels=True)\n", + " if not pyo.check_optimal_termination(res):\n", + " break\n", + " iutil.to_json(m, fname=fname)\n", + " df.loc[m.fs.tags_output[\"net_power\"].value] = m.fs.tags_output.table_row(\n", + " numeric=True\n", + " )\n", + " if abs(p - 650) < 0.1:\n", + " m.fs.gt.streams_dataframe().to_csv(\n", + " \"data_tabulated/ngcc_stream_650mw_gt.csv\"\n", + " )\n", + " m.fs.st.steam_streams_dataframe().to_csv(\n", + " \"data_tabulated/ngcc_stream_650mw_st.csv\"\n", + " )\n", + " m.fs.hrsg.steam_streams_dataframe().to_csv(\n", + " \"data_tabulated/ngcc_stream_650mw_hrsg_steam.csv\"\n", + " )\n", + " m.fs.hrsg.flue_gas_streams_dataframe().to_csv(\n", + " \"data_tabulated/ngcc_stream_650mw_hrsg_gas.csv\"\n", + " )\n", + " df.to_csv(\"data_tabulated/ngcc.csv\")\n", + "\n", + " # Display the results from the run stored in a pandas dataframe\n", + " pd.set_option(\"display.max_rows\", None)\n", + " pd.set_option(\"display.max_columns\", None)\n", + " display(df)\n", + "\n", + " # Plot results\n", + " plt.plot(df[\"net_power (MW)\"], df[\"lhv_efficiency (%)\"])\n", + " plt.grid()\n", + " plt.xlabel(\"Net Power (MW)\")\n", + " plt.ylabel(\"LHV Efficiency (%)\")\n", + " plt.title(\"Net Power vs. Efficiency\")\n", + " plt.show()" ] - }, - "metadata": {}, - "output_type": "display_data" } - ], - "source": [ - "from matplotlib import pyplot as plt\n", - "\n", - "\n", - "variables = [\"net_power\", \"gross_power\", \"gt_power\"]\n", - "netl_baseline = [646, 690, 477]\n", - "idaes_prediction = [\n", - " pyo.value(m.fs.net_power_mw[0]),\n", - " -pyo.value(m.fs.gross_power[0]) * 1e-6,\n", - " -pyo.value(m.fs.gt.gt_power[0]) * 1e-6,\n", - "]\n", - "\n", - "label_location = np.arange(len(variables))\n", - "\n", - "width = 0.4\n", - "\n", - "fig, ax = plt.subplots()\n", - "netl_data = ax.bar(variables, netl_baseline, label=\"NETL Baseline\")\n", - "idaes_sim = ax.bar(\n", - " label_location + (width / 2), idaes_prediction, width, label=\"IDAES Prediction\"\n", - ")\n", - "\n", - "ax.set_ylabel(\"Power (MW)\")\n", - "ax.set_xticks(label_location)\n", - "ax.set_xticklabels(variables)\n", - "ax.legend()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run turndown cases 5 MW interval\n", - "\n", - "Here we set the CO2 capture rate to 97% and set the specific reboiler duty to PZ advanced solvent system. The minimum power is 160 MW net, which corresponds to a bit under 25%. This is roughly the minimum load for the NGCC modeled. Results are tabulated for tags in the tags_output tag group in a Pandas data frame. \n", - "\n", - "To run the series, change run_series to True. Running the turndown series takes a while, unless previous saved results are available. " - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "run_series = False\n", - "if run_series:\n", - " idaes.cfg.ipopt.options.tol = 1e-6\n", - " idaes.cfg.ipopt.options.max_iter = 50\n", - " solver = pyo.SolverFactory(\"ipopt\")\n", - "\n", - " m.fs.cap_specific_reboiler_duty.fix(2.4e6)\n", - " m.fs.cap_fraction.fix(0.97)\n", - " powers = np.linspace(650, 160, int((650 - 160) / 5) + 1)\n", - " powers = list(powers)\n", - " powers.insert(1, 646)\n", - "\n", - " df = pd.DataFrame(columns=m.fs.tags_output.table_heading())\n", - "\n", - " for p in powers:\n", - " print(\"Simulation for net power = \", p)\n", - " fname = f\"data/ngcc_{int(p)}.json.gz\"\n", - " if os.path.exists(fname):\n", - " iutil.from_json(m, fname=fname, wts=iutil.StoreSpec(suffix=False))\n", - " else:\n", - " m.fs.net_power_mw.fix(p)\n", - " res = solver.solve(m, tee=False, symbolic_solver_labels=True)\n", - " if not pyo.check_optimal_termination(res):\n", - " break\n", - " iutil.to_json(m, fname=fname)\n", - " df.loc[m.fs.tags_output[\"net_power\"].value] = m.fs.tags_output.table_row(\n", - " numeric=True\n", - " )\n", - " if abs(p - 650) < 0.1:\n", - " m.fs.gt.streams_dataframe().to_csv(\n", - " \"data_tabulated/ngcc_stream_650mw_gt.csv\"\n", - " )\n", - " m.fs.st.steam_streams_dataframe().to_csv(\n", - " \"data_tabulated/ngcc_stream_650mw_st.csv\"\n", - " )\n", - " m.fs.hrsg.steam_streams_dataframe().to_csv(\n", - " \"data_tabulated/ngcc_stream_650mw_hrsg_steam.csv\"\n", - " )\n", - " m.fs.hrsg.flue_gas_streams_dataframe().to_csv(\n", - " \"data_tabulated/ngcc_stream_650mw_hrsg_gas.csv\"\n", - " )\n", - " df.to_csv(\"data_tabulated/ngcc.csv\")\n", - "\n", - " # Display the results from the run stored in a pandas dataframe\n", - " pd.set_option(\"display.max_rows\", None)\n", - " pd.set_option(\"display.max_columns\", None)\n", - " display(df)\n", - "\n", - " # Plot results\n", - " plt.plot(df[\"net_power (MW)\"], df[\"lhv_efficiency (%)\"])\n", - " plt.grid()\n", - " plt.xlabel(\"Net Power (MW)\")\n", - " plt.ylabel(\"LHV Efficiency (%)\")\n", - " plt.title(\"Net Power vs. Efficiency\")\n", - " plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control.ipynb b/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control.ipynb index 978d3c90..a52f87de 100644 --- a/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "77b107c3", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": 1, diff --git a/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control_doc.ipynb b/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control_doc.ipynb index b22f6611..544e193e 100644 --- a/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control_doc.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control_doc.ipynb @@ -3,6 +3,33 @@ { "cell_type": "code", "execution_count": 1, + "id": "1529f66a", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -73,7 +100,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -129,15 +156,42 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2024-04-24 16:44:46 [WARNING] idaes.models.properties.modular_properties.transport_properties.no_method: Skipping construction of thermal conductivity for phase Liq\n", - "2024-04-24 16:44:46 [WARNING] idaes.models.properties.modular_properties.transport_properties.no_method: Skipping construction of dynamic viscosity for phase Liq\n" + "2025-03-17 17:34:10 [WARNING] idaes.models.properties.modular_properties.transport_properties.no_method: Skipping construction of thermal conductivity for phase Liq\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:10 [WARNING] idaes.models.properties.modular_properties.transport_properties.no_method: Skipping construction of dynamic viscosity for phase Liq\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:11 [INFO] idaes.models.unit_models.heat_exchanger_1D: For cold_side, a BACKWARD scheme was chosen to discretize the length domain. However, this scheme is not an upwind scheme for countercurrent flow, and as a result may run into numerical stability issues. To avoid this, use a FORWARD scheme (which may result in energy conservation issues for coarse discretizations) or use a high-order collocation method.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:12 [INFO] idaes.models.unit_models.heat_exchanger_1D: For cold_side, a BACKWARD scheme was chosen to discretize the length domain. However, this scheme is not an upwind scheme for countercurrent flow, and as a result may run into numerical stability issues. To avoid this, use a FORWARD scheme (which may result in energy conservation issues for coarse discretizations) or use a high-order collocation method.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:13 [INFO] idaes.models.unit_models.heat_exchanger_1D: For cold_side, a BACKWARD scheme was chosen to discretize the length domain. However, this scheme is not an upwind scheme for countercurrent flow, and as a result may run into numerical stability issues. To avoid this, use a FORWARD scheme (which may result in energy conservation issues for coarse discretizations) or use a high-order collocation method.\n" ] } ], @@ -200,7 +254,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -244,7 +298,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -316,7 +370,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -384,7 +438,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -410,7 +464,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -428,7 +482,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -450,7 +504,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -471,7 +525,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -915,7 +969,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -963,7 +1017,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -998,7 +1052,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -1030,607 +1084,549 @@ "name": "stdout", "output_type": "stream", "text": [ - "2024-04-24 16:45:08 [INFO] idaes.solve.petsc-dae: WARNING: model contains export suffix 'scaling_factor' that contains 243\n", - "2024-04-24 16:45:08 [INFO] idaes.solve.petsc-dae: component keys that are not exported as part of the NL file. Skipping.\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Ipopt 3.13.2: constr_viol_tol=1e-08\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: nlp_scaling_method=user-scaling\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: linear_solver=ma57\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: max_iter=300\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: tol=1e-08\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: halt_on_ampl_error=no\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: option_file_name=C:\\Users\\dallan\\AppData\\Local\\Temp\\tmphl5vnriw_ipopt.opt\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: \n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Using option file \"C:\\Users\\dallan\\AppData\\Local\\Temp\\tmphl5vnriw_ipopt.opt\".\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: \n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: \n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: ******************************************************************************\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: For more information visit http://projects.coin-or.org/Ipopt\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: \n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: This version of Ipopt was compiled from source code available at\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: \n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: for large-scale scientific computation. All technical papers, sales and\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: publicity material resulting from use of the HSL codes within IPOPT must\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: contain the following acknowledgement:\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: HSL, a collection of Fortran codes for large-scale scientific\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: computation. See http://www.hsl.rl.ac.uk.\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: ******************************************************************************\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: \n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: This is Ipopt version 3.13.2, running with linear solver ma57.\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: \n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Number of nonzeros in equality constraint Jacobian...: 15011\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Number of nonzeros in inequality constraint Jacobian.: 0\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Number of nonzeros in Lagrangian Hessian.............: 9356\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: \n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Total number of variables............................: 3864\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: variables with only lower bounds: 667\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: variables with lower and upper bounds: 1495\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: variables with only upper bounds: 31\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Total number of equality constraints.................: 3864\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Total number of inequality constraints...............: 0\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: inequality constraints with only lower bounds: 0\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: inequality constraints with lower and upper bounds: 0\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: inequality constraints with only upper bounds: 0\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: \n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: 0 0.0000000e+00 6.79e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Reallocating memory for MA57: lfact (331665)\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: 1 0.0000000e+00 9.77e-01 1.41e+02 -1.0 5.95e+00 - 8.13e-01 9.85e-01h 1\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: 2 0.0000000e+00 9.25e-03 1.71e+02 -1.0 8.74e-02 - 9.90e-01 9.90e-01h 1\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: 3 0.0000000e+00 3.08e-05 2.80e+04 -1.0 6.27e-03 - 9.91e-01 9.97e-01h 1\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: 4 0.0000000e+00 3.05e-11 4.27e+03 -1.0 7.30e-04 - 1.00e+00 1.00e+00h 1\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: \n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Number of Iterations....: 4\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: \n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: (scaled) (unscaled)\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Constraint violation....: 3.0518305330767825e-11 3.0518305330767825e-11\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Overall NLP error.......: 3.0518305330767825e-11 3.0518305330767825e-11\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: \n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: \n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Number of objective function evaluations = 5\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Number of objective gradient evaluations = 5\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Number of equality constraint evaluations = 5\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Number of inequality constraint evaluations = 0\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Number of equality constraint Jacobian evaluations = 5\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Number of inequality constraint Jacobian evaluations = 0\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Number of Lagrangian Hessian evaluations = 4\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Total CPU secs in IPOPT (w/o function evaluations) = 0.260\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: Total CPU secs in NLP function evaluations = 0.041\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: \n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: EXIT: Optimal Solution Found.\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l_nan\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h_nan\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l_ext\n", - "2024-04-24 16:45:14 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h_ext\n", - "2024-04-24 16:45:22 [INFO] idaes.solve.petsc-dae: WARNING: model contains export suffix 'scaling_factor' that contains 93\n", - "2024-04-24 16:45:22 [INFO] idaes.solve.petsc-dae: component keys that are not exported as part of the NL file. Skipping.\n", - "2024-04-24 16:45:22 [INFO] idaes.solve.petsc-dae: Solver log file: 'C:\\Users\\dallan\\AppData\\Local\\Temp\\tmp69gau4jt_petsc_ts.log'\n", - "2024-04-24 16:45:22 [INFO] idaes.solve.petsc-dae: Solver solution file: 'C:\\Users\\dallan\\AppData\\Local\\Temp\\tmpva9yq47l.pyomo.sol'\n", - "2024-04-24 16:45:22 [INFO] idaes.solve.petsc-dae: Solver problem files: ('C:\\\\Users\\\\dallan\\\\AppData\\\\Local\\\\Temp\\\\tmpva9yq47l.pyomo.nl',)\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Called fg_read, err: 0 (0 is good)\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: DAE: 1\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Reading nl file: C:\\Users\\dallan\\AppData\\Local\\Temp\\tmpva9yq47l.pyomo.nl\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Number of constraints: 3920\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Number of nonlinear constraints: 1795\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Number of linear constraints: 2125\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Number of inequalities: 0\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Number of variables: 4007\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Number of integers: 0\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Number of binary: 0\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Number of objectives: 0 (Ignoring)\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Number of non-zeros in Jacobian: 15554 \n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Explicit time variable: 0\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Number of derivatives: 87\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Number of differential vars: 87\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Number of algebraic vars: 3833\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Number of state vars: 3920\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: Number of degrees of freedom: 0\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 0 TS dt 0.1 time 0.\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 1 TS dt 0.1 time 0.1\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 2 TS dt 0.100412 time 0.2\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 3 TS dt 1.00412 time 0.300412\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 4 TS dt 10.0412 time 1.30453\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 5 TS dt 21.1594 time 11.3457\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 6 TS dt 34.1485 time 32.5051\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 7 TS dt 56.7094 time 66.6536\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 8 TS dt 103.25 time 123.363\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 9 TS dt 205.123 time 226.612\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 10 TS dt 309.964 time 431.736\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 11 TS dt 432.696 time 741.7\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 12 TS dt 621.577 time 1174.4\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 13 TS dt 902.014 time 1795.97\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 14 TS dt 902.014 time 2697.99\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: 15 TS dt 2466.59 time 3600.\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: TSConvergedReason = TS_CONVERGED_TIME\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: TS_CONVERGED_TIME\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l_nan\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h_nan\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l_ext\n", - "2024-04-24 16:45:23 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h_ext\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: WARNING: model contains export suffix 'scaling_factor' that contains 170\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: component keys that are not exported as part of the NL file. Skipping.\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Solver log file: 'C:\\Users\\dallan\\AppData\\Local\\Temp\\tmpn0tqghes_petsc_ts.log'\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Solver solution file: 'C:\\Users\\dallan\\AppData\\Local\\Temp\\tmpk0c1pdqp.pyomo.sol'\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Solver problem files: ('C:\\\\Users\\\\dallan\\\\AppData\\\\Local\\\\Temp\\\\tmpk0c1pdqp.pyomo.nl',)\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Called fg_read, err: 0 (0 is good)\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: DAE: 1\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Reading nl file: C:\\Users\\dallan\\AppData\\Local\\Temp\\tmpk0c1pdqp.pyomo.nl\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Number of constraints: 3920\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Number of nonlinear constraints: 1795\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Number of linear constraints: 2125\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Number of inequalities: 0\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Number of variables: 4007\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Number of integers: 0\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Number of binary: 0\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Number of objectives: 0 (Ignoring)\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Number of non-zeros in Jacobian: 15554 \n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Explicit time variable: 0\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Number of derivatives: 87\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Number of differential vars: 87\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Number of algebraic vars: 3833\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Number of state vars: 3920\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: Number of degrees of freedom: 0\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: 0 TS dt 0.1 time 3600.\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: 1 TS dt 0.1 time 3600.1\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: 2 TS dt 0.00199239 time 3600.1\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: 3 TS dt 0.0199239 time 3600.1\n", - "2024-04-24 16:45:28 [INFO] idaes.solve.petsc-dae: 4 TS dt 0.199239 time 3600.12\n", - "2024-04-24 16:45:29 [INFO] idaes.solve.petsc-dae: 5 TS dt 0.697133 time 3600.32\n", - "2024-04-24 16:45:29 [INFO] idaes.solve.petsc-dae: 6 TS dt 0.866231 time 3601.02\n", - "2024-04-24 16:45:29 [INFO] idaes.solve.petsc-dae: 7 TS dt 1.13013 time 3601.89\n", - "2024-04-24 16:45:29 [INFO] idaes.solve.petsc-dae: 8 TS dt 1.179 time 3603.02\n", - "2024-04-24 16:45:29 [INFO] idaes.solve.petsc-dae: 9 TS dt 1.3192 time 3604.19\n", - "2024-04-24 16:45:29 [INFO] idaes.solve.petsc-dae: 10 TS dt 1.33644 time 3605.51\n", - "2024-04-24 16:45:29 [INFO] idaes.solve.petsc-dae: 11 TS dt 1.45894 time 3606.85\n", - "2024-04-24 16:45:29 [INFO] idaes.solve.petsc-dae: 12 TS dt 1.46098 time 3608.31\n", - "2024-04-24 16:45:29 [INFO] idaes.solve.petsc-dae: 13 TS dt 1.37246 time 3609.77\n", - "2024-04-24 16:45:30 [INFO] idaes.solve.petsc-dae: 14 TS dt 1.48172 time 3611.14\n", - "2024-04-24 16:45:30 [INFO] idaes.solve.petsc-dae: 15 TS dt 1.2735 time 3612.35\n", - "2024-04-24 16:45:30 [INFO] idaes.solve.petsc-dae: 16 TS dt 1.52602 time 3613.63\n", - "2024-04-24 16:45:30 [INFO] idaes.solve.petsc-dae: 17 TS dt 1.64143 time 3615.15\n", - "2024-04-24 16:45:30 [INFO] idaes.solve.petsc-dae: 18 TS dt 1.5531 time 3616.8\n", - "2024-04-24 16:45:30 [INFO] idaes.solve.petsc-dae: 19 TS dt 1.61899 time 3618.35\n", - "2024-04-24 16:45:30 [INFO] idaes.solve.petsc-dae: 20 TS dt 1.8938 time 3619.97\n", - "2024-04-24 16:45:30 [INFO] idaes.solve.petsc-dae: 21 TS dt 2.14371 time 3621.86\n", - "2024-04-24 16:45:30 [INFO] idaes.solve.petsc-dae: 22 TS dt 1.95341 time 3624.01\n", - "2024-04-24 16:45:31 [INFO] idaes.solve.petsc-dae: 23 TS dt 0.593203 time 3624.34\n", - "2024-04-24 16:45:31 [INFO] idaes.solve.petsc-dae: 24 TS dt 2.07741 time 3624.94\n", - "2024-04-24 16:45:31 [INFO] idaes.solve.petsc-dae: 25 TS dt 1.8343 time 3626.78\n", - "2024-04-24 16:45:31 [INFO] idaes.solve.petsc-dae: 26 TS dt 2.34236 time 3628.62\n", - "2024-04-24 16:45:31 [INFO] idaes.solve.petsc-dae: 27 TS dt 2.70968 time 3630.96\n", - "2024-04-24 16:45:31 [INFO] idaes.solve.petsc-dae: 28 TS dt 3.17793 time 3633.67\n", - "2024-04-24 16:45:31 [INFO] idaes.solve.petsc-dae: 29 TS dt 2.08994 time 3635.54\n", - "2024-04-24 16:45:31 [INFO] idaes.solve.petsc-dae: 30 TS dt 1.32652 time 3637.01\n", - "2024-04-24 16:45:32 [INFO] idaes.solve.petsc-dae: 31 TS dt 3.93769 time 3638.34\n", - "2024-04-24 16:45:32 [INFO] idaes.solve.petsc-dae: 32 TS dt 3.47399 time 3641.79\n", - "2024-04-24 16:45:32 [INFO] idaes.solve.petsc-dae: 33 TS dt 4.44515 time 3645.27\n", - "2024-04-24 16:45:32 [INFO] idaes.solve.petsc-dae: 34 TS dt 4.54859 time 3649.71\n", - "2024-04-24 16:45:32 [INFO] idaes.solve.petsc-dae: 35 TS dt 5.11148 time 3654.26\n", - "2024-04-24 16:45:32 [INFO] idaes.solve.petsc-dae: 36 TS dt 5.37965 time 3659.37\n", - "2024-04-24 16:45:32 [INFO] idaes.solve.petsc-dae: 37 TS dt 5.84736 time 3664.75\n", - "2024-04-24 16:45:32 [INFO] idaes.solve.petsc-dae: 38 TS dt 6.21996 time 3670.6\n", - "2024-04-24 16:45:32 [INFO] idaes.solve.petsc-dae: 39 TS dt 6.69274 time 3676.82\n", - "2024-04-24 16:45:32 [INFO] idaes.solve.petsc-dae: 40 TS dt 7.14526 time 3683.51\n", - "2024-04-24 16:45:33 [INFO] idaes.solve.petsc-dae: 41 TS dt 7.65699 time 3690.66\n", - "2024-04-24 16:45:33 [INFO] idaes.solve.petsc-dae: 42 TS dt 8.18317 time 3698.31\n", - "2024-04-24 16:45:33 [INFO] idaes.solve.petsc-dae: 43 TS dt 8.74315 time 3706.5\n", - "2024-04-24 16:45:33 [INFO] idaes.solve.petsc-dae: 44 TS dt 9.27856 time 3715.24\n", - "2024-04-24 16:45:33 [INFO] idaes.solve.petsc-dae: 45 TS dt 9.68853 time 3724.52\n", - "2024-04-24 16:45:33 [INFO] idaes.solve.petsc-dae: 46 TS dt 9.77885 time 3734.21\n", - "2024-04-24 16:45:33 [INFO] idaes.solve.petsc-dae: 47 TS dt 9.92111 time 3743.99\n", - "2024-04-24 16:45:33 [INFO] idaes.solve.petsc-dae: 48 TS dt 8.33461 time 3752.18\n", - "2024-04-24 16:45:33 [INFO] idaes.solve.petsc-dae: 49 TS dt 8.96337 time 3760.51\n", - "2024-04-24 16:45:33 [INFO] idaes.solve.petsc-dae: 50 TS dt 9.29772 time 3769.48\n", - "2024-04-24 16:45:33 [INFO] idaes.solve.petsc-dae: 51 TS dt 9.60548 time 3778.77\n", - "2024-04-24 16:45:34 [INFO] idaes.solve.petsc-dae: 52 TS dt 11.0593 time 3788.38\n", - "2024-04-24 16:45:34 [INFO] idaes.solve.petsc-dae: 53 TS dt 9.88706 time 3797.26\n", - "2024-04-24 16:45:34 [INFO] idaes.solve.petsc-dae: 54 TS dt 9.88436 time 3807.15\n", - "2024-04-24 16:45:34 [INFO] idaes.solve.petsc-dae: 55 TS dt 7.55235 time 3814.54\n", - "2024-04-24 16:45:34 [INFO] idaes.solve.petsc-dae: 56 TS dt 9.65705 time 3822.09\n", - "2024-04-24 16:45:34 [INFO] idaes.solve.petsc-dae: 57 TS dt 11.0499 time 3831.75\n", - "2024-04-24 16:45:34 [INFO] idaes.solve.petsc-dae: 58 TS dt 12.2975 time 3842.8\n", - "2024-04-24 16:45:34 [INFO] idaes.solve.petsc-dae: 59 TS dt 12.6609 time 3855.1\n", - "2024-04-24 16:45:35 [INFO] idaes.solve.petsc-dae: 60 TS dt 13.9163 time 3859.75\n", - "2024-04-24 16:45:35 [INFO] idaes.solve.petsc-dae: 61 TS dt 10.4683 time 3870.54\n", - "2024-04-24 16:45:35 [INFO] idaes.solve.petsc-dae: 62 TS dt 9.49383 time 3881.01\n", - "2024-04-24 16:45:35 [INFO] idaes.solve.petsc-dae: 63 TS dt 9.49383 time 3890.51\n", - "2024-04-24 16:45:35 [INFO] idaes.solve.petsc-dae: 64 TS dt 14.0081 time 3900.\n", - "2024-04-24 16:45:35 [INFO] idaes.solve.petsc-dae: TSConvergedReason = TS_CONVERGED_TIME\n", - "2024-04-24 16:45:35 [INFO] idaes.solve.petsc-dae: TS_CONVERGED_TIME\n", - "2024-04-24 16:45:35 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l\n", - "2024-04-24 16:45:35 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h\n", - "2024-04-24 16:45:35 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l_nan\n", - "2024-04-24 16:45:35 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h_nan\n", - "2024-04-24 16:45:35 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l_ext\n", - "2024-04-24 16:45:35 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h_ext\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: WARNING: model contains export suffix 'scaling_factor' that contains 170\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: component keys that are not exported as part of the NL file. Skipping.\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Solver log file: 'C:\\Users\\dallan\\AppData\\Local\\Temp\\tmp3wnf4q2o_petsc_ts.log'\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Solver solution file: 'C:\\Users\\dallan\\AppData\\Local\\Temp\\tmpcy91h9f0.pyomo.sol'\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Solver problem files: ('C:\\\\Users\\\\dallan\\\\AppData\\\\Local\\\\Temp\\\\tmpcy91h9f0.pyomo.nl',)\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Called fg_read, err: 0 (0 is good)\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: DAE: 1\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Reading nl file: C:\\Users\\dallan\\AppData\\Local\\Temp\\tmpcy91h9f0.pyomo.nl\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Number of constraints: 3920\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Number of nonlinear constraints: 1795\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Number of linear constraints: 2125\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Number of inequalities: 0\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Number of variables: 4007\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Number of integers: 0\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Number of binary: 0\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Number of objectives: 0 (Ignoring)\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Number of non-zeros in Jacobian: 15554 \n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Explicit time variable: 0\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Number of derivatives: 87\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Number of differential vars: 87\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Number of algebraic vars: 3833\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Number of state vars: 3920\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: Number of degrees of freedom: 0\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: 0 TS dt 0.1 time 3900.\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: 1 TS dt 0.1 time 3900.1\n", - "2024-04-24 16:45:40 [INFO] idaes.solve.petsc-dae: 2 TS dt 1. time 3900.2\n", - "2024-04-24 16:45:41 [INFO] idaes.solve.petsc-dae: 3 TS dt 2.86361 time 3901.2\n", - "2024-04-24 16:45:41 [INFO] idaes.solve.petsc-dae: 4 TS dt 3.11474 time 3904.06\n", - "2024-04-24 16:45:41 [INFO] idaes.solve.petsc-dae: 5 TS dt 3.95219 time 3907.18\n", - "2024-04-24 16:45:41 [INFO] idaes.solve.petsc-dae: 6 TS dt 4.26539 time 3911.13\n", - "2024-04-24 16:45:41 [INFO] idaes.solve.petsc-dae: 7 TS dt 4.68321 time 3915.4\n", - "2024-04-24 16:45:41 [INFO] idaes.solve.petsc-dae: 8 TS dt 4.75843 time 3920.08\n", - "2024-04-24 16:45:41 [INFO] idaes.solve.petsc-dae: 9 TS dt 4.77214 time 3924.84\n", - "2024-04-24 16:45:41 [INFO] idaes.solve.petsc-dae: 10 TS dt 4.57975 time 3929.61\n", - "2024-04-24 16:45:41 [INFO] idaes.solve.petsc-dae: 11 TS dt 5.10332 time 3934.19\n", - "2024-04-24 16:45:41 [INFO] idaes.solve.petsc-dae: 12 TS dt 5.83254 time 3939.29\n", - "2024-04-24 16:45:41 [INFO] idaes.solve.petsc-dae: 13 TS dt 6.72867 time 3945.13\n", - "2024-04-24 16:45:41 [INFO] idaes.solve.petsc-dae: 14 TS dt 7.50262 time 3951.85\n", - "2024-04-24 16:45:41 [INFO] idaes.solve.petsc-dae: 15 TS dt 8.77609 time 3959.36\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 16 TS dt 9.95946 time 3968.13\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 17 TS dt 11.4862 time 3978.09\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 18 TS dt 13.2173 time 3989.58\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 19 TS dt 15.4588 time 4002.8\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 20 TS dt 18.2767 time 4018.25\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 21 TS dt 21.855 time 4036.53\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 22 TS dt 25.9265 time 4058.39\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 23 TS dt 29.7008 time 4084.31\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 24 TS dt 32.3941 time 4114.01\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 25 TS dt 34.1498 time 4146.41\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 26 TS dt 34.3963 time 4180.56\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 27 TS dt 37.1487 time 4214.95\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 28 TS dt 37.9342 time 4252.1\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 29 TS dt 40.3768 time 4290.04\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 30 TS dt 42.4218 time 4330.41\n", - "2024-04-24 16:45:42 [INFO] idaes.solve.petsc-dae: 31 TS dt 45.0908 time 4372.84\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 32 TS dt 47.3702 time 4417.93\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 33 TS dt 49.135 time 4465.3\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 34 TS dt 49.6503 time 4514.43\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 35 TS dt 51.6702 time 4564.08\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 36 TS dt 53.1554 time 4615.75\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 37 TS dt 54.6803 time 4668.91\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 38 TS dt 61.8766 time 4723.59\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 39 TS dt 62.3182 time 4785.46\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 40 TS dt 78.6399 time 4847.78\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 41 TS dt 82.7293 time 4926.42\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 42 TS dt 90.4869 time 5009.15\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 43 TS dt 89.7949 time 5099.64\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 44 TS dt 85.7202 time 5189.43\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 45 TS dt 88.4188 time 5275.15\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 46 TS dt 91.9337 time 5363.57\n", - "2024-04-24 16:45:43 [INFO] idaes.solve.petsc-dae: 47 TS dt 90.9639 time 5455.51\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 48 TS dt 99.5246 time 5546.47\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 49 TS dt 108.67 time 5645.99\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 50 TS dt 120.748 time 5754.66\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 51 TS dt 132.47 time 5875.41\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 52 TS dt 145.985 time 6007.88\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 53 TS dt 160.665 time 6153.87\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 54 TS dt 177.438 time 6314.53\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 55 TS dt 192.168 time 6491.97\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 56 TS dt 221.56 time 6684.14\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 57 TS dt 250.729 time 6905.7\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 58 TS dt 292.659 time 7156.43\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 59 TS dt 342.344 time 7449.09\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 60 TS dt 396.307 time 7791.43\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 61 TS dt 387.849 time 8187.74\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 62 TS dt 347.808 time 8474.05\n", - "2024-04-24 16:45:44 [INFO] idaes.solve.petsc-dae: 63 TS dt 289.931 time 8626.27\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: 64 TS dt 219.289 time 8708.2\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: 65 TS dt 202.344 time 8927.49\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: 66 TS dt 211.265 time 9055.82\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: 67 TS dt 43.6911 time 9087.46\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: 68 TS dt 97.1116 time 9131.15\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: 69 TS dt 116.121 time 9228.26\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: 70 TS dt 163.226 time 9344.39\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: 71 TS dt 202.871 time 9507.61\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: 72 TS dt 262.974 time 9710.48\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: 73 TS dt 295.993 time 9973.46\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: 74 TS dt 275.494 time 10269.4\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: 75 TS dt 277.528 time 10544.9\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: 76 TS dt 277.528 time 10822.5\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: 77 TS dt 405.82 time 11100.\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: TSConvergedReason = TS_CONVERGED_TIME\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: TS_CONVERGED_TIME\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l_nan\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h_nan\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l_ext\n", - "2024-04-24 16:45:45 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h_ext\n", - "2024-04-24 16:45:50 [INFO] idaes.solve.petsc-dae: WARNING: model contains export suffix 'scaling_factor' that contains 170\n", - "2024-04-24 16:45:50 [INFO] idaes.solve.petsc-dae: component keys that are not exported as part of the NL file. Skipping.\n", - "2024-04-24 16:45:50 [INFO] idaes.solve.petsc-dae: Solver log file: 'C:\\Users\\dallan\\AppData\\Local\\Temp\\tmp89d3otha_petsc_ts.log'\n", - "2024-04-24 16:45:50 [INFO] idaes.solve.petsc-dae: Solver solution file: 'C:\\Users\\dallan\\AppData\\Local\\Temp\\tmpumhqgnkw.pyomo.sol'\n", - "2024-04-24 16:45:50 [INFO] idaes.solve.petsc-dae: Solver problem files: ('C:\\\\Users\\\\dallan\\\\AppData\\\\Local\\\\Temp\\\\tmpumhqgnkw.pyomo.nl',)\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Called fg_read, err: 0 (0 is good)\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: DAE: 1\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Reading nl file: C:\\Users\\dallan\\AppData\\Local\\Temp\\tmpumhqgnkw.pyomo.nl\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Number of constraints: 3920\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Number of nonlinear constraints: 1795\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Number of linear constraints: 2125\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Number of inequalities: 0\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Number of variables: 4007\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Number of integers: 0\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Number of binary: 0\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Number of objectives: 0 (Ignoring)\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Number of non-zeros in Jacobian: 15554 \n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Explicit time variable: 0\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Number of derivatives: 87\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Number of differential vars: 87\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Number of algebraic vars: 3833\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Number of state vars: 3920\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: Number of degrees of freedom: 0\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: 0 TS dt 0.1 time 11100.\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: 1 TS dt 0.1 time 11100.1\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: 2 TS dt 0.00392524 time 11100.1\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: 3 TS dt 0.0392524 time 11100.1\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: 4 TS dt 0.392524 time 11100.1\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: 5 TS dt 0.760703 time 11100.5\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: 6 TS dt 1.01241 time 11101.3\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: 7 TS dt 0.967184 time 11102.2\n", - "2024-04-24 16:45:51 [INFO] idaes.solve.petsc-dae: 8 TS dt 0.999746 time 11103.2\n", - "2024-04-24 16:45:52 [INFO] idaes.solve.petsc-dae: 9 TS dt 0.924929 time 11104.\n", - "2024-04-24 16:45:52 [INFO] idaes.solve.petsc-dae: 10 TS dt 0.866639 time 11104.9\n", - "2024-04-24 16:45:52 [INFO] idaes.solve.petsc-dae: 11 TS dt 0.915231 time 11105.8\n", - "2024-04-24 16:45:52 [INFO] idaes.solve.petsc-dae: 12 TS dt 0.858768 time 11106.7\n", - "2024-04-24 16:45:52 [INFO] idaes.solve.petsc-dae: 13 TS dt 1.16546 time 11107.6\n", - "2024-04-24 16:45:52 [INFO] idaes.solve.petsc-dae: 14 TS dt 1.0729 time 11108.7\n", - "2024-04-24 16:45:52 [INFO] idaes.solve.petsc-dae: 15 TS dt 1.40736 time 11109.8\n", - "2024-04-24 16:45:52 [INFO] idaes.solve.petsc-dae: 16 TS dt 1.47697 time 11111.2\n", - "2024-04-24 16:45:52 [INFO] idaes.solve.petsc-dae: 17 TS dt 1.55373 time 11112.7\n", - "2024-04-24 16:45:53 [INFO] idaes.solve.petsc-dae: 18 TS dt 1.4277 time 11114.\n", - "2024-04-24 16:45:53 [INFO] idaes.solve.petsc-dae: 19 TS dt 1.07175 time 11115.\n", - "2024-04-24 16:45:53 [INFO] idaes.solve.petsc-dae: 20 TS dt 1.32123 time 11116.1\n", - "2024-04-24 16:45:53 [INFO] idaes.solve.petsc-dae: 21 TS dt 1.26966 time 11117.4\n", - "2024-04-24 16:45:53 [INFO] idaes.solve.petsc-dae: 22 TS dt 0.929849 time 11118.2\n", - "2024-04-24 16:45:53 [INFO] idaes.solve.petsc-dae: 23 TS dt 0.37561 time 11118.5\n", - "2024-04-24 16:45:53 [INFO] idaes.solve.petsc-dae: 24 TS dt 1.3944 time 11118.9\n", - "2024-04-24 16:45:53 [INFO] idaes.solve.petsc-dae: 25 TS dt 1.43845 time 11120.3\n", - "2024-04-24 16:45:53 [INFO] idaes.solve.petsc-dae: 26 TS dt 1.90206 time 11121.7\n", - "2024-04-24 16:45:54 [INFO] idaes.solve.petsc-dae: 27 TS dt 1.81077 time 11123.6\n", - "2024-04-24 16:45:54 [INFO] idaes.solve.petsc-dae: 28 TS dt 1.79649 time 11125.4\n", - "2024-04-24 16:45:54 [INFO] idaes.solve.petsc-dae: 29 TS dt 1.70313 time 11127.2\n", - "2024-04-24 16:45:54 [INFO] idaes.solve.petsc-dae: 30 TS dt 1.8855 time 11128.9\n", - "2024-04-24 16:45:54 [INFO] idaes.solve.petsc-dae: 31 TS dt 1.85638 time 11130.8\n", - "2024-04-24 16:45:54 [INFO] idaes.solve.petsc-dae: 32 TS dt 1.85523 time 11132.7\n", - "2024-04-24 16:45:54 [INFO] idaes.solve.petsc-dae: 33 TS dt 1.73671 time 11134.5\n", - "2024-04-24 16:45:54 [INFO] idaes.solve.petsc-dae: 34 TS dt 1.64306 time 11136.2\n", - "2024-04-24 16:45:54 [INFO] idaes.solve.petsc-dae: 35 TS dt 1.52316 time 11137.9\n", - "2024-04-24 16:45:54 [INFO] idaes.solve.petsc-dae: 36 TS dt 1.41285 time 11139.2\n", - "2024-04-24 16:45:55 [INFO] idaes.solve.petsc-dae: 37 TS dt 1.57227 time 11139.7\n", - "2024-04-24 16:45:55 [INFO] idaes.solve.petsc-dae: 38 TS dt 0.96963 time 11140.2\n", - "2024-04-24 16:45:55 [INFO] idaes.solve.petsc-dae: 39 TS dt 0.78644 time 11140.8\n", - "2024-04-24 16:45:55 [INFO] idaes.solve.petsc-dae: 40 TS dt 0.705073 time 11141.5\n", - "2024-04-24 16:45:55 [INFO] idaes.solve.petsc-dae: 41 TS dt 0.621216 time 11142.\n", - "2024-04-24 16:45:55 [INFO] idaes.solve.petsc-dae: 42 TS dt 0.62459 time 11142.6\n", - "2024-04-24 16:45:55 [INFO] idaes.solve.petsc-dae: 43 TS dt 0.63664 time 11143.2\n", - "2024-04-24 16:45:55 [INFO] idaes.solve.petsc-dae: 44 TS dt 0.690959 time 11143.5\n", - "2024-04-24 16:45:56 [INFO] idaes.solve.petsc-dae: 45 TS dt 0.430777 time 11144.\n", - "2024-04-24 16:45:56 [INFO] idaes.solve.petsc-dae: 46 TS dt 0.410148 time 11144.4\n", - "2024-04-24 16:45:56 [INFO] idaes.solve.petsc-dae: 47 TS dt 0.856631 time 11144.9\n", - "2024-04-24 16:45:56 [INFO] idaes.solve.petsc-dae: 48 TS dt 0.949106 time 11145.1\n", - "2024-04-24 16:45:56 [INFO] idaes.solve.petsc-dae: 49 TS dt 0.570639 time 11145.5\n", - "2024-04-24 16:45:56 [INFO] idaes.solve.petsc-dae: 50 TS dt 0.657937 time 11146.1\n", - "2024-04-24 16:45:56 [INFO] idaes.solve.petsc-dae: 51 TS dt 0.756228 time 11146.8\n", - "2024-04-24 16:45:56 [INFO] idaes.solve.petsc-dae: 52 TS dt 0.960609 time 11147.5\n", - "2024-04-24 16:45:56 [INFO] idaes.solve.petsc-dae: 53 TS dt 1.03942 time 11148.2\n", - "2024-04-24 16:45:57 [INFO] idaes.solve.petsc-dae: 54 TS dt 0.73841 time 11148.8\n", - "2024-04-24 16:45:57 [INFO] idaes.solve.petsc-dae: 55 TS dt 0.723736 time 11149.6\n", - "2024-04-24 16:45:57 [INFO] idaes.solve.petsc-dae: 56 TS dt 1.3136 time 11150.3\n", - "2024-04-24 16:45:57 [INFO] idaes.solve.petsc-dae: 57 TS dt 1.44703 time 11151.6\n", - "2024-04-24 16:45:57 [INFO] idaes.solve.petsc-dae: 58 TS dt 1.78016 time 11153.1\n", - "2024-04-24 16:45:57 [INFO] idaes.solve.petsc-dae: 59 TS dt 1.79591 time 11154.8\n", - "2024-04-24 16:45:57 [INFO] idaes.solve.petsc-dae: 60 TS dt 1.70487 time 11156.6\n", - "2024-04-24 16:45:57 [INFO] idaes.solve.petsc-dae: 61 TS dt 1.63852 time 11157.6\n", - "2024-04-24 16:45:57 [INFO] idaes.solve.petsc-dae: 62 TS dt 0.894779 time 11158.4\n", - "2024-04-24 16:45:57 [INFO] idaes.solve.petsc-dae: 63 TS dt 0.904928 time 11159.3\n", - "2024-04-24 16:45:57 [INFO] idaes.solve.petsc-dae: 64 TS dt 1.51786 time 11160.2\n", - "2024-04-24 16:45:57 [INFO] idaes.solve.petsc-dae: 65 TS dt 1.79934 time 11161.7\n", - "2024-04-24 16:45:57 [INFO] idaes.solve.petsc-dae: 66 TS dt 2.19124 time 11163.5\n", - "2024-04-24 16:45:58 [INFO] idaes.solve.petsc-dae: 67 TS dt 2.39088 time 11165.7\n", - "2024-04-24 16:45:58 [INFO] idaes.solve.petsc-dae: 68 TS dt 2.77663 time 11168.1\n", - "2024-04-24 16:45:58 [INFO] idaes.solve.petsc-dae: 69 TS dt 2.98602 time 11170.9\n", - "2024-04-24 16:45:58 [INFO] idaes.solve.petsc-dae: 70 TS dt 3.19428 time 11173.9\n", - "2024-04-24 16:45:58 [INFO] idaes.solve.petsc-dae: 71 TS dt 3.17037 time 11177.1\n", - "2024-04-24 16:45:58 [INFO] idaes.solve.petsc-dae: 72 TS dt 3.2767 time 11180.2\n", - "2024-04-24 16:45:58 [INFO] idaes.solve.petsc-dae: 73 TS dt 3.70518 time 11183.5\n", - "2024-04-24 16:45:58 [INFO] idaes.solve.petsc-dae: 74 TS dt 3.9439 time 11187.2\n", - "2024-04-24 16:45:58 [INFO] idaes.solve.petsc-dae: 75 TS dt 4.1184 time 11191.1\n", - "2024-04-24 16:45:58 [INFO] idaes.solve.petsc-dae: 76 TS dt 4.51077 time 11195.3\n", - "2024-04-24 16:45:58 [INFO] idaes.solve.petsc-dae: 77 TS dt 4.73 time 11199.8\n", - "2024-04-24 16:45:58 [INFO] idaes.solve.petsc-dae: 78 TS dt 4.95553 time 11204.5\n", - "2024-04-24 16:45:58 [INFO] idaes.solve.petsc-dae: 79 TS dt 5.05272 time 11209.5\n", - "2024-04-24 16:45:58 [INFO] idaes.solve.petsc-dae: 80 TS dt 5.07776 time 11214.5\n", - "2024-04-24 16:45:59 [INFO] idaes.solve.petsc-dae: 81 TS dt 5.05502 time 11219.6\n", - "2024-04-24 16:45:59 [INFO] idaes.solve.petsc-dae: 82 TS dt 5.05021 time 11224.6\n", - "2024-04-24 16:45:59 [INFO] idaes.solve.petsc-dae: 83 TS dt 5.29358 time 11229.7\n", - "2024-04-24 16:45:59 [INFO] idaes.solve.petsc-dae: 84 TS dt 5.52422 time 11235.\n", - "2024-04-24 16:45:59 [INFO] idaes.solve.petsc-dae: 85 TS dt 5.70998 time 11240.5\n", - "2024-04-24 16:45:59 [INFO] idaes.solve.petsc-dae: 86 TS dt 5.77308 time 11246.2\n", - "2024-04-24 16:45:59 [INFO] idaes.solve.petsc-dae: 87 TS dt 5.68832 time 11252.\n", - "2024-04-24 16:45:59 [INFO] idaes.solve.petsc-dae: 88 TS dt 5.21191 time 11257.7\n", - "2024-04-24 16:45:59 [INFO] idaes.solve.petsc-dae: 89 TS dt 5.52452 time 11262.9\n", - "2024-04-24 16:45:59 [INFO] idaes.solve.petsc-dae: 90 TS dt 5.08208 time 11267.8\n", - "2024-04-24 16:45:59 [INFO] idaes.solve.petsc-dae: 91 TS dt 6.0966 time 11269.7\n", - "2024-04-24 16:46:00 [INFO] idaes.solve.petsc-dae: 92 TS dt 4.47115 time 11271.1\n", - "2024-04-24 16:46:00 [INFO] idaes.solve.petsc-dae: 93 TS dt 4.46473 time 11271.8\n", - "2024-04-24 16:46:00 [INFO] idaes.solve.petsc-dae: 94 TS dt 1.64611 time 11273.5\n", - "2024-04-24 16:46:00 [INFO] idaes.solve.petsc-dae: 95 TS dt 3.11947 time 11275.2\n", - "2024-04-24 16:46:00 [INFO] idaes.solve.petsc-dae: 96 TS dt 3.69342 time 11278.3\n", - "2024-04-24 16:46:00 [INFO] idaes.solve.petsc-dae: 97 TS dt 4.85562 time 11282.\n", - "2024-04-24 16:46:00 [INFO] idaes.solve.petsc-dae: 98 TS dt 4.86391 time 11286.8\n", - "2024-04-24 16:46:00 [INFO] idaes.solve.petsc-dae: 99 TS dt 4.74083 time 11290.1\n", - "2024-04-24 16:46:00 [INFO] idaes.solve.petsc-dae: 100 TS dt 3.88706 time 11291.9\n", - "2024-04-24 16:46:01 [INFO] idaes.solve.petsc-dae: 101 TS dt 2.36784 time 11293.1\n", - "2024-04-24 16:46:01 [INFO] idaes.solve.petsc-dae: 102 TS dt 3.04988 time 11295.5\n", - "2024-04-24 16:46:01 [INFO] idaes.solve.petsc-dae: 103 TS dt 3.79675 time 11297.4\n", - "2024-04-24 16:46:01 [INFO] idaes.solve.petsc-dae: 104 TS dt 3.41211 time 11299.4\n", - "2024-04-24 16:46:01 [INFO] idaes.solve.petsc-dae: 105 TS dt 5.09485 time 11302.8\n", - "2024-04-24 16:46:01 [INFO] idaes.solve.petsc-dae: 106 TS dt 6.30524 time 11307.9\n", - "2024-04-24 16:46:01 [INFO] idaes.solve.petsc-dae: 107 TS dt 7.14277 time 11314.2\n", - "2024-04-24 16:46:01 [INFO] idaes.solve.petsc-dae: 108 TS dt 6.97261 time 11321.4\n", - "2024-04-24 16:46:02 [INFO] idaes.solve.petsc-dae: 109 TS dt 6.92383 time 11328.4\n", - "2024-04-24 16:46:02 [INFO] idaes.solve.petsc-dae: 110 TS dt 6.31828 time 11335.3\n", - "2024-04-24 16:46:02 [INFO] idaes.solve.petsc-dae: 111 TS dt 5.49724 time 11340.5\n", - "2024-04-24 16:46:02 [INFO] idaes.solve.petsc-dae: 112 TS dt 4.90343 time 11345.5\n", - "2024-04-24 16:46:02 [INFO] idaes.solve.petsc-dae: 113 TS dt 5.24546 time 11350.4\n", - "2024-04-24 16:46:02 [INFO] idaes.solve.petsc-dae: 114 TS dt 5.37157 time 11355.6\n", - "2024-04-24 16:46:02 [INFO] idaes.solve.petsc-dae: 115 TS dt 5.08981 time 11361.\n", - "2024-04-24 16:46:02 [INFO] idaes.solve.petsc-dae: 116 TS dt 5.15951 time 11366.1\n", - "2024-04-24 16:46:02 [INFO] idaes.solve.petsc-dae: 117 TS dt 4.68969 time 11371.2\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: 118 TS dt 4.69922 time 11375.9\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: 119 TS dt 4.35928 time 11380.6\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: 120 TS dt 4.01346 time 11385.\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: 121 TS dt 3.60641 time 11388.5\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: 122 TS dt 3.18203 time 11391.7\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: 123 TS dt 2.78627 time 11394.4\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: 124 TS dt 1.58852 time 11396.8\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: 125 TS dt 1.58852 time 11398.4\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: 126 TS dt 1.90429 time 11400.\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: TSConvergedReason = TS_CONVERGED_TIME\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: TS_CONVERGED_TIME\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l_nan\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h_nan\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l_ext\n", - "2024-04-24 16:46:03 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h_ext\n", - "2024-04-24 16:46:08 [INFO] idaes.solve.petsc-dae: WARNING: model contains export suffix 'scaling_factor' that contains 170\n", - "2024-04-24 16:46:08 [INFO] idaes.solve.petsc-dae: component keys that are not exported as part of the NL file. Skipping.\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Solver log file: 'C:\\Users\\dallan\\AppData\\Local\\Temp\\tmpendl44cj_petsc_ts.log'\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Solver solution file: 'C:\\Users\\dallan\\AppData\\Local\\Temp\\tmpson30_9f.pyomo.sol'\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Solver problem files: ('C:\\\\Users\\\\dallan\\\\AppData\\\\Local\\\\Temp\\\\tmpson30_9f.pyomo.nl',)\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Called fg_read, err: 0 (0 is good)\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: DAE: 1\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Reading nl file: C:\\Users\\dallan\\AppData\\Local\\Temp\\tmpson30_9f.pyomo.nl\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Number of constraints: 3920\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Number of nonlinear constraints: 1795\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Number of linear constraints: 2125\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Number of inequalities: 0\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Number of variables: 4007\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Number of integers: 0\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Number of binary: 0\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Number of objectives: 0 (Ignoring)\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Number of non-zeros in Jacobian: 15554 \n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Explicit time variable: 0\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Number of derivatives: 87\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Number of differential vars: 87\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Number of algebraic vars: 3833\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Number of state vars: 3920\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: Number of degrees of freedom: 0\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: ---------------------------------------------------\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: 0 TS dt 0.1 time 11400.\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: 1 TS dt 0.1 time 11400.1\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: 2 TS dt 1. time 11400.2\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: 3 TS dt 1.73678 time 11401.2\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: 4 TS dt 2.23341 time 11402.9\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: 5 TS dt 2.51853 time 11405.2\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: 6 TS dt 2.72979 time 11407.7\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: 7 TS dt 2.94331 time 11410.4\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: 8 TS dt 3.1084 time 11413.4\n", - "2024-04-24 16:46:09 [INFO] idaes.solve.petsc-dae: 9 TS dt 3.33766 time 11416.5\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 10 TS dt 3.65145 time 11419.8\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 11 TS dt 3.92962 time 11423.5\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 12 TS dt 4.4225 time 11427.4\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 13 TS dt 4.87494 time 11431.8\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 14 TS dt 5.42871 time 11436.7\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 15 TS dt 5.98195 time 11442.1\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 16 TS dt 6.92855 time 11448.1\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 17 TS dt 8.07333 time 11455.\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 18 TS dt 9.63979 time 11463.1\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 19 TS dt 11.702 time 11472.7\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 20 TS dt 14.5291 time 11484.4\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 21 TS dt 18.1896 time 11499.\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 22 TS dt 22.203 time 11517.2\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 23 TS dt 25.5942 time 11539.4\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 24 TS dt 28.4541 time 11565.\n", - "2024-04-24 16:46:10 [INFO] idaes.solve.petsc-dae: 25 TS dt 30.7952 time 11593.4\n", - "2024-04-24 16:46:11 [INFO] idaes.solve.petsc-dae: 26 TS dt 32.9926 time 11624.2\n", - "2024-04-24 16:46:11 [INFO] idaes.solve.petsc-dae: 27 TS dt 34.8988 time 11657.2\n", - "2024-04-24 16:46:11 [INFO] idaes.solve.petsc-dae: 28 TS dt 37.5398 time 11692.1\n", - "2024-04-24 16:46:11 [INFO] idaes.solve.petsc-dae: 29 TS dt 41.8031 time 11729.6\n", - "2024-04-24 16:46:11 [INFO] idaes.solve.petsc-dae: 30 TS dt 47.4503 time 11771.4\n", - "2024-04-24 16:46:11 [INFO] idaes.solve.petsc-dae: 31 TS dt 53.673 time 11818.9\n", - "2024-04-24 16:46:11 [INFO] idaes.solve.petsc-dae: 32 TS dt 60.8933 time 11872.6\n", - "2024-04-24 16:46:11 [INFO] idaes.solve.petsc-dae: 33 TS dt 69.4519 time 11933.5\n", - "2024-04-24 16:46:11 [INFO] idaes.solve.petsc-dae: 34 TS dt 77.8654 time 12002.9\n", - "2024-04-24 16:46:11 [INFO] idaes.solve.petsc-dae: 35 TS dt 85.3528 time 12080.8\n", - "2024-04-24 16:46:11 [INFO] idaes.solve.petsc-dae: 36 TS dt 92.584 time 12166.1\n", - "2024-04-24 16:46:11 [INFO] idaes.solve.petsc-dae: 37 TS dt 99.6879 time 12258.7\n", - "2024-04-24 16:46:11 [INFO] idaes.solve.petsc-dae: 38 TS dt 107.395 time 12358.4\n", - "2024-04-24 16:46:11 [INFO] idaes.solve.petsc-dae: 39 TS dt 115.883 time 12465.8\n", - "2024-04-24 16:46:11 [INFO] idaes.solve.petsc-dae: 40 TS dt 125.805 time 12581.7\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 41 TS dt 136.484 time 12707.5\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 42 TS dt 146.675 time 12844.\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 43 TS dt 154.432 time 12990.6\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 44 TS dt 158.051 time 13145.1\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 45 TS dt 156.722 time 13303.1\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 46 TS dt 161.592 time 13459.8\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 47 TS dt 169.876 time 13621.4\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 48 TS dt 175.501 time 13791.3\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 49 TS dt 177.773 time 13966.8\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 50 TS dt 195.829 time 14144.6\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 51 TS dt 209.215 time 14340.4\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 52 TS dt 228.235 time 14549.6\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 53 TS dt 245.428 time 14777.9\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 54 TS dt 265.796 time 15023.3\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 55 TS dt 286.41 time 15289.1\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 56 TS dt 309.614 time 15575.5\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 57 TS dt 336.559 time 15885.1\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 58 TS dt 370.237 time 16221.7\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 59 TS dt 418.152 time 16591.9\n", - "2024-04-24 16:46:12 [INFO] idaes.solve.petsc-dae: 60 TS dt 475.299 time 17010.1\n", - "2024-04-24 16:46:13 [INFO] idaes.solve.petsc-dae: 61 TS dt 548.284 time 17485.4\n", - "2024-04-24 16:46:13 [INFO] idaes.solve.petsc-dae: 62 TS dt 640.182 time 18033.6\n", - "2024-04-24 16:46:13 [INFO] idaes.solve.petsc-dae: 63 TS dt 756.084 time 18673.8\n", - "2024-04-24 16:46:13 [INFO] idaes.solve.petsc-dae: 64 TS dt 900.068 time 19429.9\n", - "2024-04-24 16:46:13 [INFO] idaes.solve.petsc-dae: 65 TS dt 935.01 time 20330.\n", - "2024-04-24 16:46:13 [INFO] idaes.solve.petsc-dae: 66 TS dt 935.01 time 21265.\n", - "2024-04-24 16:46:13 [INFO] idaes.solve.petsc-dae: 67 TS dt 1415.01 time 22200.\n", - "2024-04-24 16:46:13 [INFO] idaes.solve.petsc-dae: TSConvergedReason = TS_CONVERGED_TIME\n", - "2024-04-24 16:46:13 [INFO] idaes.solve.petsc-dae: TS_CONVERGED_TIME\n", - "2024-04-24 16:46:13 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l\n", - "2024-04-24 16:46:13 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h\n", - "2024-04-24 16:46:13 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l_nan\n", - "2024-04-24 16:46:13 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h_nan\n", - "2024-04-24 16:46:13 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_l_ext\n", - "2024-04-24 16:46:13 [INFO] idaes.solve.petsc-dae: addfunc: duplicate function cubic_root_h_ext\n" + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: WARNING: model contains export suffix 'scaling_factor' that contains 243\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Ipopt 3.13.2: constr_viol_tol=1e-08\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: nlp_scaling_method=user-scaling\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: linear_solver=ma57\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: max_iter=300\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: tol=1e-08\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: halt_on_ampl_error=no\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: option_file_name=/tmp/tmpm77l7ma2_ipopt.opt\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Using option file \"/tmp/tmpm77l7ma2_ipopt.opt\".\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: ******************************************************************************\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: For more information visit http://projects.coin-or.org/Ipopt\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: This version of Ipopt was compiled from source code available at\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: for large-scale scientific computation. All technical papers, sales and\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: publicity material resulting from use of the HSL codes within IPOPT must\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: contain the following acknowledgement:\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: HSL, a collection of Fortran codes for large-scale scientific\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: computation. See http://www.hsl.rl.ac.uk.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: ******************************************************************************\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: This is Ipopt version 3.13.2, running with linear solver ma57.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Number of nonzeros in equality constraint Jacobian...: 15011\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Number of nonzeros in inequality constraint Jacobian.: 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Number of nonzeros in Lagrangian Hessian.............: 9356\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Total number of variables............................: 3864\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: variables with only lower bounds: 667\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: variables with lower and upper bounds: 1495\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: variables with only upper bounds: 31\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Total number of equality constraints.................: 3864\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Total number of inequality constraints...............: 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: inequality constraints with only lower bounds: 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: inequality constraints with lower and upper bounds: 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: inequality constraints with only upper bounds: 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: 0 0.0000000e+00 6.79e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Reallocating memory for MA57: lfact (331665)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: 1 0.0000000e+00 9.77e-01 1.41e+02 -1.0 5.95e+00 - 8.13e-01 9.85e-01h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: 2 0.0000000e+00 9.25e-03 1.71e+02 -1.0 8.74e-02 - 9.90e-01 9.90e-01h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: 3 0.0000000e+00 3.08e-05 2.80e+04 -1.0 6.27e-03 - 9.91e-01 9.97e-01h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: 4 0.0000000e+00 3.05e-11 4.27e+03 -1.0 7.30e-04 - 1.00e+00 1.00e+00h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Number of Iterations....: 4\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: (scaled) (unscaled)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Constraint violation....: 3.0518305330767825e-11 3.0518305330767825e-11\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Overall NLP error.......: 3.0518305330767825e-11 3.0518305330767825e-11\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Number of objective function evaluations = 5\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Number of objective gradient evaluations = 5\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Number of equality constraint evaluations = 5\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Number of inequality constraint evaluations = 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Number of equality constraint Jacobian evaluations = 5\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Number of inequality constraint Jacobian evaluations = 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Number of Lagrangian Hessian evaluations = 4\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Total CPU secs in IPOPT (w/o function evaluations) = 0.205\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: Total CPU secs in NLP function evaluations = 0.030\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:34:20 [INFO] idaes.solve.petsc-dae: EXIT: Optimal Solution Found.\n" + ] + }, + { + "ename": "RuntimeError", + "evalue": "No PETSc executable found.", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mRuntimeError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[16]\u001b[39m\u001b[32m, line 2\u001b[39m\n\u001b[32m 1\u001b[39m idaeslog.solver_log.tee = \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[32m----> \u001b[39m\u001b[32m2\u001b[39m results = \u001b[43mpetsc\u001b[49m\u001b[43m.\u001b[49m\u001b[43mpetsc_dae_by_time_element\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 3\u001b[39m \u001b[43m \u001b[49m\u001b[43mm\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 4\u001b[39m \u001b[43m \u001b[49m\u001b[43mtime\u001b[49m\u001b[43m=\u001b[49m\u001b[43mm\u001b[49m\u001b[43m.\u001b[49m\u001b[43mfs\u001b[49m\u001b[43m.\u001b[49m\u001b[43mtime\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 5\u001b[39m \u001b[43m \u001b[49m\u001b[43mkeepfiles\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m 6\u001b[39m \u001b[43m \u001b[49m\u001b[43msymbolic_solver_labels\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m 7\u001b[39m \u001b[43m \u001b[49m\u001b[43mts_options\u001b[49m\u001b[43m=\u001b[49m\u001b[43m{\u001b[49m\n\u001b[32m 8\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_type\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mbeuler\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 9\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_dt\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m0.1\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 10\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_rtol\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m1e-3\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 11\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;66;43;03m# \"--ts_adapt_clip\":\"0.001,3600\",\u001b[39;49;00m\n\u001b[32m 12\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;66;43;03m# \"--ksp_monitor\":\"\",\u001b[39;49;00m\n\u001b[32m 13\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_adapt_dt_min\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m1e-3\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 14\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_adapt_dt_max\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m3600\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 15\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--snes_type\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mnewtontr\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 16\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;66;43;03m# \"--ts_max_reject\": 200,\u001b[39;49;00m\n\u001b[32m 17\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;66;43;03m# \"--snes_monitor\":\"\",\u001b[39;49;00m\n\u001b[32m 18\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_monitor\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 19\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_save_trajectory\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m1\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 20\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_trajectory_type\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mvisualization\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 21\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_max_snes_failures\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m25\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 22\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;66;43;03m# \"--show_cl\":\"\",\u001b[39;49;00m\n\u001b[32m 23\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m-snes_max_it\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m50\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 24\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m-snes_rtol\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m0\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 25\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m-snes_stol\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m0\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 26\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m-snes_atol\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m1e-6\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 27\u001b[39m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 28\u001b[39m \u001b[43m \u001b[49m\u001b[43mskip_initial\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m 29\u001b[39m \u001b[43m \u001b[49m\u001b[43minitial_solver\u001b[49m\u001b[43m=\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mipopt\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 30\u001b[39m \u001b[43m \u001b[49m\u001b[43minitial_solver_options\u001b[49m\u001b[43m=\u001b[49m\u001b[43m{\u001b[49m\n\u001b[32m 31\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mconstr_viol_tol\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m1e-8\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 32\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mnlp_scaling_method\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43muser-scaling\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 33\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mlinear_solver\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mma57\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 34\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mOF_ma57_automatic_scaling\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43myes\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 35\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmax_iter\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m300\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 36\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtol\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m1e-8\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 37\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mhalt_on_ampl_error\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mno\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 38\u001b[39m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 39\u001b[39m \u001b[43m)\u001b[49m\n\u001b[32m 40\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m result \u001b[38;5;129;01min\u001b[39;00m results.results:\n\u001b[32m 41\u001b[39m pyo.assert_optimal_termination(result)\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/idaes/core/solvers/petsc.py:640\u001b[39m, in \u001b[36mpetsc_dae_by_time_element\u001b[39m\u001b[34m(m, time, timevar, initial_constraints, initial_variables, detect_initial, skip_initial, initial_solver, initial_solver_options, ts_options, keepfiles, symbolic_solver_labels, between, interpolate, calculate_derivatives, previous_trajectory, representative_time, snes_options)\u001b[39m\n\u001b[32m 638\u001b[39m _copy_time(time_vars, tprev, t)\n\u001b[32m 639\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m idaeslog.solver_log(solve_log, idaeslog.INFO) \u001b[38;5;28;01mas\u001b[39;00m slc:\n\u001b[32m--> \u001b[39m\u001b[32m640\u001b[39m res = \u001b[43msolver_dae\u001b[49m\u001b[43m.\u001b[49m\u001b[43msolve\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 641\u001b[39m \u001b[43m \u001b[49m\u001b[43mt_block\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 642\u001b[39m \u001b[43m \u001b[49m\u001b[43mtee\u001b[49m\u001b[43m=\u001b[49m\u001b[43mslc\u001b[49m\u001b[43m.\u001b[49m\u001b[43mtee\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 643\u001b[39m \u001b[43m \u001b[49m\u001b[43mkeepfiles\u001b[49m\u001b[43m=\u001b[49m\u001b[43mkeepfiles\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 644\u001b[39m \u001b[43m \u001b[49m\u001b[43msymbolic_solver_labels\u001b[49m\u001b[43m=\u001b[49m\u001b[43msymbolic_solver_labels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 645\u001b[39m \u001b[43m \u001b[49m\u001b[43mexport_nonlinear_variables\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdifferential_vars\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 646\u001b[39m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[43m=\u001b[49m\u001b[43m{\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_init_time\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtprev\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m--ts_max_time\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mt\u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 647\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 648\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m save_trajectory:\n\u001b[32m 649\u001b[39m tj_prev = tj\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/pyomo/opt/base/solvers.py:534\u001b[39m, in \u001b[36mOptSolver.solve\u001b[39m\u001b[34m(self, *args, **kwds)\u001b[39m\n\u001b[32m 531\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34msolve\u001b[39m(\u001b[38;5;28mself\u001b[39m, *args, **kwds):\n\u001b[32m 532\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"Solve the problem\"\"\"\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m534\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mavailable\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexception_flag\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[32m 535\u001b[39m \u001b[38;5;66;03m#\u001b[39;00m\n\u001b[32m 536\u001b[39m \u001b[38;5;66;03m# If the inputs are models, then validate that they have been\u001b[39;00m\n\u001b[32m 537\u001b[39m \u001b[38;5;66;03m# constructed! Collect suffix names to try and import from solution.\u001b[39;00m\n\u001b[32m 538\u001b[39m \u001b[38;5;66;03m#\u001b[39;00m\n\u001b[32m 539\u001b[39m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mpyomo\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mcore\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mbase\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mblock\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m BlockData\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/pyomo/solvers/plugins/solvers/ASL.py:119\u001b[39m, in \u001b[36mASL.available\u001b[39m\u001b[34m(self, exception_flag)\u001b[39m\n\u001b[32m 118\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mavailable\u001b[39m(\u001b[38;5;28mself\u001b[39m, exception_flag=\u001b[38;5;28;01mTrue\u001b[39;00m):\n\u001b[32m--> \u001b[39m\u001b[32m119\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m.\u001b[49m\u001b[43mavailable\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexception_flag\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[32m 120\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[32m 121\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m.version() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/pyomo/opt/solver/shellcmd.py:134\u001b[39m, in \u001b[36mSystemCallSolver.available\u001b[39m\u001b[34m(self, exception_flag)\u001b[39m\n\u001b[32m 132\u001b[39m cm = nullcontext() \u001b[38;5;28;01mif\u001b[39;00m exception_flag \u001b[38;5;28;01melse\u001b[39;00m LoggingIntercept()\n\u001b[32m 133\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m cm:\n\u001b[32m--> \u001b[39m\u001b[32m134\u001b[39m ans = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mexecutable\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 135\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m:\n\u001b[32m 136\u001b[39m ans = \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/pyomo/opt/solver/shellcmd.py:205\u001b[39m, in \u001b[36mSystemCallSolver.executable\u001b[39m\u001b[34m(self)\u001b[39m\n\u001b[32m 198\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mexecutable\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[32m 199\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"\u001b[39;00m\n\u001b[32m 200\u001b[39m \u001b[33;03m Returns the executable used by this solver.\u001b[39;00m\n\u001b[32m 201\u001b[39m \u001b[33;03m \"\"\"\u001b[39;00m\n\u001b[32m 202\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m (\n\u001b[32m 203\u001b[39m \u001b[38;5;28mself\u001b[39m._user_executable\n\u001b[32m 204\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m (\u001b[38;5;28mself\u001b[39m._user_executable \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[32m--> \u001b[39m\u001b[32m205\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_default_executable\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 206\u001b[39m )\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/idaes/core/solvers/petsc.py:124\u001b[39m, in \u001b[36mPetsc._default_executable\u001b[39m\u001b[34m(self)\u001b[39m\n\u001b[32m 122\u001b[39m executable = Executable(\u001b[33m\"\u001b[39m\u001b[33mpetsc\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m 123\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m executable:\n\u001b[32m--> \u001b[39m\u001b[32m124\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[33m\"\u001b[39m\u001b[33mNo PETSc executable found.\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m 125\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m executable.path()\n", + "\u001b[31mRuntimeError\u001b[39m: No PETSc executable found." ] } ], @@ -2588,7 +2584,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.14" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control_test.ipynb b/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control_test.ipynb index cf20e2f6..95d4fa31 100644 --- a/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control_test.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control_test.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "bcfb2e3e", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": 1, @@ -2643,4 +2670,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} \ No newline at end of file +} diff --git a/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control_usr.ipynb b/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control_usr.ipynb index b22f6611..ac5f39a2 100644 --- a/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control_usr.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/solid_oxide_cell/soc_pid_control_usr.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "812d65fc", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": 1, @@ -2593,4 +2620,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} \ No newline at end of file +} diff --git a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant.ipynb b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant.ipynb index 93ab7f29..a239c59b 100644 --- a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant.ipynb @@ -1,160 +1,187 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical Power Plant Flowsheet Example\n", - "Maintainer: Andrew Lee \n", - "Author: John Eslick \n", - "\n", - "\n", - "## 1. Introduction\n", - "\n", - "\n", - "This example is to demonstrate a supercritical pulverized coal power plant model. The power plant consists of two major sub-systems (or flowsheets), a boiler heat exchanger network and a steam cycle. This jupyter notebook provides the workflow to import the steam cycle flowsheet, import the boiler heat exchanger network, connect and run both the flowsheets, and display the main results." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Model Description\n", - "\n", - "The case study demonstrated here is for a ~620MW gross power output. The process flow diagram is shown in section 3 of this jupyter notebook. Figure 1 shows the boiler heat exchanger network, while, figure 2 shows the steam cycle system. \n", - "\n", - "The streams connecting both the flowsheets are: \n", - "  a) The main steam: that connects the boiler attemperator to the throttle valves of the high pressure turbine \n", - "  b) The cold reheat: that connects the final stage of the high pressure turbine to the boiler reheater \n", - "  c) The hot reheat: that connects the boiler reheater to the intermediate pressure turbine \n", - "  d) The main feed water: that connects the last feed water heater to the boiler economizer \n", - " \n", - "To get a more detailed description of the power plant flowsheet, review the ```SCPC_full_plant.py``` file. For details in terms of specific power plant units (for example dimensions, parameters, and variables), more information can be found at ```supercritical_steam_cycle.py``` and ```boiler_subflowsheet.py```.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Process Flow Diagram (PFD)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from IPython.display import SVG, display\n", - "\n", - "display(\n", - " \"Boiler subsystem PFD\",\n", - " SVG(filename=\"Boiler_scpc_PFD.svg\"),\n", - " \"Steam Cycle subsystem PFD\",\n", - " SVG(filename=\"supercritical_steam_cycle.svg\"),\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4. Run power plant model example\n", - "\n", - "This example runs the main ``SCPC_full_plant.py`` script, which, imports two flowsheets (steam cycle and boiler heat exchanger network), builds arcs to connect both flowsheets, and run the full power plant model." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# import SCPC power plant\n", - "# initialize steam cycle, initialize boiler heat exchanger network, connect both flowsheets,\n", - "# and run SCPC plant.\n", - "from idaes.models_extra.power_generation.flowsheets.supercritical_power_plant.SCPC_full_plant import (\n", - " main,\n", - ")\n", - "\n", - "m, res = main()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 5. Creating a PFD with results and a stream table\n", - "\n", - "The steam cycle results can be displayed on the PFD and as a stream table, by running the following cells." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import pkg_resources\n", - "import pyomo.environ as pyo\n", - "from idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle import (\n", - " pfd_result,\n", - ")\n", - "from idaes.core.util.tables import create_stream_table_dataframe\n", - "\n", - "# Create stream results as Pandas dataframe\n", - "df = create_stream_table_dataframe(streams=m._streams, orient=\"index\")\n", - "# Create a new PFD with simulation results\n", - "init_pfd = pkg_resources.resource_string(\n", - " \"idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle\",\n", - " \"supercritical_steam_cycle.svg\",\n", - ")\n", - "res_pfd = pfd_result(m, df, svg=init_pfd)\n", - "# Display PFD with results.\n", - "display(SVG(res_pfd))" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# Display the stream table.\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "3ef393f7", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical Power Plant Flowsheet Example\n", + "Maintainer: Andrew Lee \n", + "Author: John Eslick \n", + "\n", + "\n", + "## 1. Introduction\n", + "\n", + "\n", + "This example is to demonstrate a supercritical pulverized coal power plant model. The power plant consists of two major sub-systems (or flowsheets), a boiler heat exchanger network and a steam cycle. This jupyter notebook provides the workflow to import the steam cycle flowsheet, import the boiler heat exchanger network, connect and run both the flowsheets, and display the main results." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Model Description\n", + "\n", + "The case study demonstrated here is for a ~620MW gross power output. The process flow diagram is shown in section 3 of this jupyter notebook. Figure 1 shows the boiler heat exchanger network, while, figure 2 shows the steam cycle system. \n", + "\n", + "The streams connecting both the flowsheets are: \n", + "  a) The main steam: that connects the boiler attemperator to the throttle valves of the high pressure turbine \n", + "  b) The cold reheat: that connects the final stage of the high pressure turbine to the boiler reheater \n", + "  c) The hot reheat: that connects the boiler reheater to the intermediate pressure turbine \n", + "  d) The main feed water: that connects the last feed water heater to the boiler economizer \n", + " \n", + "To get a more detailed description of the power plant flowsheet, review the ```SCPC_full_plant.py``` file. For details in terms of specific power plant units (for example dimensions, parameters, and variables), more information can be found at ```supercritical_steam_cycle.py``` and ```boiler_subflowsheet.py```.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Process Flow Diagram (PFD)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import SVG, display\n", + "\n", + "display(\n", + " \"Boiler subsystem PFD\",\n", + " SVG(filename=\"Boiler_scpc_PFD.svg\"),\n", + " \"Steam Cycle subsystem PFD\",\n", + " SVG(filename=\"supercritical_steam_cycle.svg\"),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Run power plant model example\n", + "\n", + "This example runs the main ``SCPC_full_plant.py`` script, which, imports two flowsheets (steam cycle and boiler heat exchanger network), builds arcs to connect both flowsheets, and run the full power plant model." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# import SCPC power plant\n", + "# initialize steam cycle, initialize boiler heat exchanger network, connect both flowsheets,\n", + "# and run SCPC plant.\n", + "from idaes.models_extra.power_generation.flowsheets.supercritical_power_plant.SCPC_full_plant import (\n", + " main,\n", + ")\n", + "\n", + "m, res = main()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Creating a PFD with results and a stream table\n", + "\n", + "The steam cycle results can be displayed on the PFD and as a stream table, by running the following cells." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import pkg_resources\n", + "import pyomo.environ as pyo\n", + "from idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle import (\n", + " pfd_result,\n", + ")\n", + "from idaes.core.util.tables import create_stream_table_dataframe\n", + "\n", + "# Create stream results as Pandas dataframe\n", + "df = create_stream_table_dataframe(streams=m._streams, orient=\"index\")\n", + "# Create a new PFD with simulation results\n", + "init_pfd = pkg_resources.resource_string(\n", + " \"idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle\",\n", + " \"supercritical_steam_cycle.svg\",\n", + ")\n", + "res_pfd = pfd_result(m, df, svg=init_pfd)\n", + "# Display PFD with results.\n", + "display(SVG(res_pfd))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# Display the stream table.\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant_doc.ipynb b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant_doc.ipynb index 81222d52..88acf944 100644 --- a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant_doc.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant_doc.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "6eb5978e", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -41,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -2128,11 +2155,7 @@ "" ] }, - "metadata": { - "filenames": { - "image/svg+xml": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\power_gen\\supercritical\\supercritical_power_plant_doc_3_1.svg" - } - }, + "metadata": {}, "output_type": "display_data" }, { @@ -3095,11 +3118,7 @@ "" ] }, - "metadata": { - "filenames": { - "image/svg+xml": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\power_gen\\supercritical\\supercritical_power_plant_doc_3_3.svg" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -3125,7 +3144,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": { "scrolled": true }, @@ -3134,3534 +3153,3476 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:39 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:25:39 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:25:40 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:25:40 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:30 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:40 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:30 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:40 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:30 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:42 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:30 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:42 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:30 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:42 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:30 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:42 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:32 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:42 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:32 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:42 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:32 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:42 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:32 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:42 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:32 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:43 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:32 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:43 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:32 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:43 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:32 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:43 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:32 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:43 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:32 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:43 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:32 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:43 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:33 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:43 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:33 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:43 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:33 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:45 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:33 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:45 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:33 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:45 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:33 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:45 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:34 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[1].control_volume.work\n" + "2025-03-17 17:34:34 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[2].control_volume.work\n" + "2025-03-17 17:34:34 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[3].control_volume.work\n" + "2025-03-17 17:34:34 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[4].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[1].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[1].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[2].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[2].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[3].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[3].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[4].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[4].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[1].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[5].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[2].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[6].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[3].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[7].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[4].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[1].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[5].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[2].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[6].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[3].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[7].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[4].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[1].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[5].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[2].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[6].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[3].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[7].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[4].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[8].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[5].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[9].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[6].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[10].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[7].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[1].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[8].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[2].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[9].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[3].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[10].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[4].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[1].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[5].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[2].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[6].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[3].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[7].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[4].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[8].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[5].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[9].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[6].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[10].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[7].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[11].control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[8].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.outlet_stage.control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[9].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.cond_pump.control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[10].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh1.condense.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[11].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh1.condense.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.outlet_stage.control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh1_pump.control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.cond_pump.control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.condense.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh1.condense.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.condense.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh1.condense.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.hot_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh1_pump.control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.cold_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.condense.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.condense.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.hot_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.cold_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.condense.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.condense.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.hot_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.cold_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.condense.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.condense.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.hot_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.cold_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.condense.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.condense.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.hot_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.cold_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.condense.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.condense.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.hot_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.cold_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.bfp.control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:47 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.bfpt.control_volume.work\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.condense.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.condense.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.bfp.control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.hot_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.bfpt.control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.cold_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.condense.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.condense.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.hot_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.cold_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.condense.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.condense.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.hot_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.cold_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.condense.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.condense.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.hot_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.cold_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.condense.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.condense.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.hot_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.cold_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.condense.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.condense.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.hot_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.cold_side.heat\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.area\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [INFO] idaes.init.Steam Cycle Model: Starting initialization\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [INFO] idaes.init.fs.turb.inlet_split: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization started\n" + "2025-03-17 17:34:35 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization complete\n" + "2025-03-17 17:34:36 [INFO] idaes.init.Steam Cycle Model: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization started\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.inlet_split: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization complete\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization started\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization complete\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization started\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization complete\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [INFO] idaes.init.fs.turb.inlet_stage[1]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:48 [INFO] idaes.init.fs.turb.inlet_stage[2]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:49 [INFO] idaes.init.fs.turb.inlet_stage[3]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:49 [INFO] idaes.init.fs.turb.inlet_stage[4]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.inlet_stage[1]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:49 [INFO] idaes.init.fs.turb.inlet_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.inlet_stage[2]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:49 [INFO] idaes.init.fs.turb.hp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.inlet_stage[3]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:49 [INFO] idaes.init.fs.turb.hp_split[7]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.inlet_stage[4]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:50 [INFO] idaes.init.fs.turb.ip_split[5]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.inlet_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:50 [INFO] idaes.init.fs.turb.ip_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.hp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:51 [INFO] idaes.init.fs.turb.lp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.hp_split[7]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:51 [INFO] idaes.init.fs.turb.lp_split[8]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.ip_split[5]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:52 [INFO] idaes.init.fs.turb.lp_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:36 [INFO] idaes.init.fs.turb.ip_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:52 [INFO] idaes.init.fs.turb.lp_split[11]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.lp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:52 [INFO] idaes.init.fs.turb.outlet_stage: Initialization Complete (Outlet Stage): optimal - Optimal Solution Found\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.lp_split[8]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:52 [INFO] idaes.init.fs.turb.inlet_split: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.lp_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:52 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization started\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.lp_split[11]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:52 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization complete\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.outlet_stage: Initialization Complete (Outlet Stage): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:52 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization started\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.inlet_split: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:52 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization complete\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:52 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization started\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:52 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization complete\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:52 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization started\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:52 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization complete\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:53 [INFO] idaes.init.fs.turb.inlet_stage[1]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:53 [INFO] idaes.init.fs.turb.inlet_stage[2]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:53 [INFO] idaes.init.fs.turb.inlet_stage[3]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:53 [INFO] idaes.init.fs.turb.inlet_stage[4]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.inlet_stage[1]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:53 [INFO] idaes.init.fs.turb.inlet_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.inlet_stage[2]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:54 [INFO] idaes.init.fs.turb.hp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.inlet_stage[3]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:54 [INFO] idaes.init.fs.turb.hp_split[7]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.inlet_stage[4]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:55 [INFO] idaes.init.fs.turb.ip_split[5]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.inlet_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:55 [INFO] idaes.init.fs.turb.ip_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.hp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:56 [INFO] idaes.init.fs.turb.lp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.hp_split[7]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:57 [INFO] idaes.init.fs.turb.lp_split[8]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:37 [INFO] idaes.init.fs.turb.ip_split[5]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:57 [INFO] idaes.init.fs.turb.lp_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:38 [INFO] idaes.init.fs.turb.ip_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:57 [INFO] idaes.init.fs.turb.lp_split[11]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:38 [INFO] idaes.init.fs.turb.lp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:57 [INFO] idaes.init.fs.turb.outlet_stage: Initialization Complete (Outlet Stage): optimal - Optimal Solution Found\n" + "2025-03-17 17:34:38 [INFO] idaes.init.fs.turb.lp_split[8]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:58 [INFO] idaes.init.Steam Cycle Model: Full turbine solve complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:38 [INFO] idaes.init.fs.turb.lp_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: WARNING: model contains export suffix\n" + "2025-03-17 17:34:38 [INFO] idaes.init.fs.turb.lp_split[11]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: 'fs.bfpt.control_volume.properties_out[0.0].scaling_factor' that contains 60\n" + "2025-03-17 17:34:38 [INFO] idaes.init.fs.turb.outlet_stage: Initialization Complete (Outlet Stage): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:38 [INFO] idaes.init.Steam Cycle Model: Full turbine solve complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: WARNING: model contains export suffix\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: WARNING: model contains export suffix 'scaling_factor' that contains 3\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: 'fs.bfpt.control_volume.properties_in[0.0].scaling_factor' that contains 63\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: WARNING: model contains export suffix 'scaling_factor' that contains 120 keys\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: tol=1e-06\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: max_iter=200\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: tol=1e-06\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: max_iter=200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: ******************************************************************************\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: ******************************************************************************\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: For more information visit http://projects.coin-or.org/Ipopt\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: For more information visit http://projects.coin-or.org/Ipopt\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: This version of Ipopt was compiled from source code available at\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: This version of Ipopt was compiled from source code available at\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: for large-scale scientific computation. All technical papers, sales and\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: publicity material resulting from use of the HSL codes within IPOPT must\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: for large-scale scientific computation. All technical papers, sales and\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: contain the following acknowledgement:\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: publicity material resulting from use of the HSL codes within IPOPT must\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: HSL, a collection of Fortran codes for large-scale scientific\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: contain the following acknowledgement:\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: computation. See http://www.hsl.rl.ac.uk.\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: HSL, a collection of Fortran codes for large-scale scientific\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: ******************************************************************************\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: computation. See http://www.hsl.rl.ac.uk.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: ******************************************************************************\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: This is Ipopt version 3.13.2, running with linear solver ma27.\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: This is Ipopt version 3.13.2, running with linear solver ma27.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Number of nonzeros in equality constraint Jacobian...: 9\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Number of nonzeros in inequality constraint Jacobian.: 0\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Number of nonzeros in equality constraint Jacobian...: 9\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Number of nonzeros in Lagrangian Hessian.............: 4\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Number of nonzeros in inequality constraint Jacobian.: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Number of nonzeros in Lagrangian Hessian.............: 4\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Total number of variables............................: 5\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: variables with only lower bounds: 0\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Total number of variables............................: 5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: variables with lower and upper bounds: 2\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: variables with only lower bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: variables with only upper bounds: 0\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: variables with lower and upper bounds: 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Total number of equality constraints.................: 5\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: variables with only upper bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Total number of inequality constraints...............: 0\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Total number of equality constraints.................: 5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: inequality constraints with only lower bounds: 0\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Total number of inequality constraints...............: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: inequality constraints with lower and upper bounds: 0\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: inequality constraints with only lower bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: inequality constraints with only upper bounds: 0\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: inequality constraints with lower and upper bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: inequality constraints with only upper bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: 0 0.0000000e+00 5.46e+00 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: 1 0.0000000e+00 5.55e-17 1.00e-07 -1.0 5.46e+07 - 9.90e-01 1.00e+00h 1\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: 0 0.0000000e+00 5.46e+00 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: 1 0.0000000e+00 5.55e-17 1.00e-07 -1.0 5.46e+07 - 9.90e-01 1.00e+00h 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Number of Iterations....: 1\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Number of Iterations....: 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: (scaled) (unscaled)\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: (scaled) (unscaled)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Constraint violation....: 5.5511151231257827e-17 5.5511151231257827e-17\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Constraint violation....: 5.5511151231257827e-17 5.5511151231257827e-17\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Overall NLP error.......: 5.5511151231257827e-17 5.5511151231257827e-17\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Overall NLP error.......: 5.5511151231257827e-17 5.5511151231257827e-17\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Number of objective function evaluations = 2\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Number of objective gradient evaluations = 2\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Number of objective function evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Number of equality constraint evaluations = 2\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Number of objective gradient evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Number of inequality constraint evaluations = 0\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Number of equality constraint evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Number of equality constraint Jacobian evaluations = 2\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Number of inequality constraint evaluations = 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Number of inequality constraint Jacobian evaluations = 0\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Number of equality constraint Jacobian evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Number of Lagrangian Hessian evaluations = 1\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Number of inequality constraint Jacobian evaluations = 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Total CPU secs in IPOPT (w/o function evaluations) = 0.007\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Number of Lagrangian Hessian evaluations = 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: Total CPU secs in NLP function evaluations = 0.000\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Total CPU secs in IPOPT (w/o function evaluations) = 0.006\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: Total CPU secs in NLP function evaluations = 0.000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [DEBUG] idaes.solve.fs.bfpt: EXIT: Optimal Solution Found.\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [INFO] idaes.init.fs.condenser_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:38 [DEBUG] idaes.solve.fs.bfpt: EXIT: Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [INFO] idaes.init.fs.condenser.hot_side: Initialization Complete\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.condenser_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [INFO] idaes.init.fs.condenser.cold_side: Initialization Complete\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.condenser.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [INFO] idaes.init.fs.hotwell: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.condenser.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [INFO] idaes.init.fs.fwh1.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.hotwell: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [WARNING] idaes.init.fs.fwh1: The steam sat. temperature (329.33327413754273) is near the feedwater inlet temperature (299.90239563835314)\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh1.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [INFO] idaes.init.fs.fwh1.condense.hot_side: Initialization Complete\n" + "2025-03-17 17:34:39 [WARNING] idaes.init.fs.fwh1: The steam sat. temperature (329.33327413754296) is near the feedwater inlet temperature (299.9023956383419)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [INFO] idaes.init.fs.fwh1.condense.cold_side: Initialization Complete\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh1.condense.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:59 [INFO] idaes.init.fs.fwh1.condense: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh1.condense.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [INFO] idaes.init.fs.fwh1.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh1.condense: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [INFO] idaes.init.fs.fwh1: Condensing hot side inlet delta T = 12.513326095276463\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh1.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [INFO] idaes.init.fs.fwh1: Condensing hot side outlet delta T = 29.430878499189813\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh1: Condensing hot side inlet delta T = 12.513326095291399\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [INFO] idaes.init.fs.fwh1: Steam Flow = 1345.0635216258854\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh1: Condensing hot side outlet delta T = 29.430878499201064\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [INFO] idaes.init.fs.fwh1: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh1: Steam Flow = 1345.0635216261717\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: WARNING: model contains export suffix\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh1: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: 'fs.fwh1_pump.control_volume.properties_out[0.0].scaling_factor' that contains\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: WARNING: model contains export suffix 'scaling_factor' that contains 3\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: 60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: WARNING: model contains export suffix\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: WARNING: model contains export suffix 'scaling_factor' that contains 120 keys\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: 'fs.fwh1_pump.control_volume.properties_in[0.0].scaling_factor' that contains\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: 63 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: tol=1e-06\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: tol=1e-06\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: max_iter=200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: max_iter=200\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: ******************************************************************************\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: ******************************************************************************\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: For more information visit http://projects.coin-or.org/Ipopt\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: For more information visit http://projects.coin-or.org/Ipopt\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: This version of Ipopt was compiled from source code available at\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: This version of Ipopt was compiled from source code available at\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: for large-scale scientific computation. All technical papers, sales and\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: for large-scale scientific computation. All technical papers, sales and\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: publicity material resulting from use of the HSL codes within IPOPT must\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: publicity material resulting from use of the HSL codes within IPOPT must\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: contain the following acknowledgement:\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: contain the following acknowledgement:\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: HSL, a collection of Fortran codes for large-scale scientific\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: HSL, a collection of Fortran codes for large-scale scientific\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: computation. See http://www.hsl.rl.ac.uk.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: computation. See http://www.hsl.rl.ac.uk.\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: ******************************************************************************\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: ******************************************************************************\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: This is Ipopt version 3.13.2, running with linear solver ma27.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: This is Ipopt version 3.13.2, running with linear solver ma27.\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Number of nonzeros in equality constraint Jacobian...: 9\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Number of nonzeros in equality constraint Jacobian...: 9\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Number of nonzeros in inequality constraint Jacobian.: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Number of nonzeros in inequality constraint Jacobian.: 0\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Number of nonzeros in Lagrangian Hessian.............: 4\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Number of nonzeros in Lagrangian Hessian.............: 4\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Total number of variables............................: 5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Total number of variables............................: 5\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: variables with only lower bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: variables with only lower bounds: 0\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: variables with lower and upper bounds: 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: variables with lower and upper bounds: 2\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: variables with only upper bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: variables with only upper bounds: 0\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Total number of equality constraints.................: 5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Total number of equality constraints.................: 5\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Total number of inequality constraints...............: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Total number of inequality constraints...............: 0\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: inequality constraints with only lower bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: inequality constraints with only lower bounds: 0\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: inequality constraints with lower and upper bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: inequality constraints with lower and upper bounds: 0\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: inequality constraints with only upper bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: inequality constraints with only upper bounds: 0\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: 0 0.0000000e+00 5.66e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: 0 0.0000000e+00 5.66e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: 1 0.0000000e+00 1.11e-16 2.21e-07 -1.0 5.66e+06 - 9.90e-01 1.00e+00h 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: 1 0.0000000e+00 1.11e-16 2.21e-07 -1.0 5.66e+06 - 9.90e-01 1.00e+00h 1\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Number of Iterations....: 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Number of Iterations....: 1\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: (scaled) (unscaled)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: (scaled) (unscaled)\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Constraint violation....: 1.1102230246251565e-16 1.1102230246251565e-16\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Constraint violation....: 1.1102230246251565e-16 1.1102230246251565e-16\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Overall NLP error.......: 1.1102230246251565e-16 1.1102230246251565e-16\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Overall NLP error.......: 1.1102230246251565e-16 1.1102230246251565e-16\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Number of objective function evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Number of objective function evaluations = 2\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Number of objective gradient evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Number of objective gradient evaluations = 2\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Number of equality constraint evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Number of equality constraint evaluations = 2\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Number of inequality constraint evaluations = 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Number of inequality constraint evaluations = 0\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Number of equality constraint Jacobian evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Number of equality constraint Jacobian evaluations = 2\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Number of inequality constraint Jacobian evaluations = 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Number of inequality constraint Jacobian evaluations = 0\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Number of Lagrangian Hessian evaluations = 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Number of Lagrangian Hessian evaluations = 1\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Total CPU secs in IPOPT (w/o function evaluations) = 0.009\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: Total CPU secs in NLP function evaluations = 0.000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: Total CPU secs in NLP function evaluations = 0.000\n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:39 [DEBUG] idaes.solve.fs.fwh1_pump: EXIT: Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [DEBUG] idaes.solve.fs.fwh1_pump: EXIT: Optimal Solution Found.\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh1_return: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [INFO] idaes.init.fs.fwh1_return: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh2.desuperheat.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [INFO] idaes.init.fs.fwh2.desuperheat.hot_side: Initialization Complete\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh2.desuperheat.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [INFO] idaes.init.fs.fwh2.desuperheat.cold_side: Initialization Complete\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh2.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [INFO] idaes.init.fs.fwh2.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh2.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [INFO] idaes.init.fs.fwh2.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [WARNING] idaes.init.fs.fwh2: The steam sat. temperature (335.2272258893377) is near the feedwater inlet temperature (318.02261253782166)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [WARNING] idaes.init.fs.fwh2: The steam sat. temperature (335.227225889338) is near the feedwater inlet temperature (318.02261253783706)\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh2.condense.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [INFO] idaes.init.fs.fwh2.condense.hot_side: Initialization Complete\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh2.condense.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [INFO] idaes.init.fs.fwh2.condense.cold_side: Initialization Complete\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh2.condense: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:00 [INFO] idaes.init.fs.fwh2.condense: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh2.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:01 [INFO] idaes.init.fs.fwh2.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh2.cooling.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:01 [INFO] idaes.init.fs.fwh2.cooling.hot_side: Initialization Complete\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh2.cooling.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:01 [INFO] idaes.init.fs.fwh2.cooling.cold_side: Initialization Complete\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh2.cooling: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:01 [INFO] idaes.init.fs.fwh2.cooling: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh2: Condensing hot side inlet delta T = 12.73124007739836\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:01 [INFO] idaes.init.fs.fwh2: Condensing hot side inlet delta T = 12.731240077383344\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh2: Condensing hot side outlet delta T = 17.002372103630485\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:01 [INFO] idaes.init.fs.fwh2: Condensing hot side outlet delta T = 17.00237210361631\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh2: Steam Flow = 217.13965467977735\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:01 [INFO] idaes.init.fs.fwh2: Steam Flow = 217.13965467965426\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh2: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:01 [INFO] idaes.init.fs.fwh2: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh3.desuperheat.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:02 [INFO] idaes.init.fs.fwh3.desuperheat.hot_side: Initialization Complete\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh3.desuperheat.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:02 [INFO] idaes.init.fs.fwh3.desuperheat.cold_side: Initialization Complete\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh3.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:02 [INFO] idaes.init.fs.fwh3.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh3.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:02 [INFO] idaes.init.fs.fwh3.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [WARNING] idaes.init.fs.fwh3: The steam sat. temperature (347.7738554943195) is near the feedwater inlet temperature (323.03655083894466)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:02 [WARNING] idaes.init.fs.fwh3: The steam sat. temperature (347.7738554943195) is near the feedwater inlet temperature (323.03655083895876)\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh3.condense.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:02 [INFO] idaes.init.fs.fwh3.condense.hot_side: Initialization Complete\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh3.condense.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:02 [INFO] idaes.init.fs.fwh3.condense.cold_side: Initialization Complete\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh3.condense: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:02 [INFO] idaes.init.fs.fwh3.condense: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh3.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:02 [INFO] idaes.init.fs.fwh3.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh3.cooling.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:02 [INFO] idaes.init.fs.fwh3.cooling.hot_side: Initialization Complete\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh3.cooling.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:02 [INFO] idaes.init.fs.fwh3.cooling.cold_side: Initialization Complete\n" + "2025-03-17 17:34:39 [INFO] idaes.init.fs.fwh3.cooling: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:02 [INFO] idaes.init.fs.fwh3.cooling: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh3: Condensing hot side inlet delta T = 20.206912020999226\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:04 [INFO] idaes.init.fs.fwh3: Condensing hot side inlet delta T = 20.206912020985854\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh3: Condensing hot side outlet delta T = 24.5035955629366\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:04 [INFO] idaes.init.fs.fwh3: Condensing hot side outlet delta T = 24.503595562923753\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh3: Steam Flow = 217.4462771554057\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:04 [INFO] idaes.init.fs.fwh3: Steam Flow = 217.44627715533093\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh3: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:04 [INFO] idaes.init.fs.fwh3: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh4.desuperheat.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:04 [INFO] idaes.init.fs.fwh4.desuperheat.hot_side: Initialization Complete\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh4.desuperheat.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:04 [INFO] idaes.init.fs.fwh4.desuperheat.cold_side: Initialization Complete\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh4.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:04 [INFO] idaes.init.fs.fwh4.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh4.condense.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:04 [INFO] idaes.init.fs.fwh4.condense.hot_side: Initialization Complete\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh4.condense.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:04 [INFO] idaes.init.fs.fwh4.condense.cold_side: Initialization Complete\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh4.condense: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:04 [INFO] idaes.init.fs.fwh4.condense: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh4.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:04 [INFO] idaes.init.fs.fwh4.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh4.cooling.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:04 [INFO] idaes.init.fs.fwh4.cooling.hot_side: Initialization Complete\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh4.cooling.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:04 [INFO] idaes.init.fs.fwh4.cooling.cold_side: Initialization Complete\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh4.cooling: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:05 [INFO] idaes.init.fs.fwh4.cooling: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh4: Condensing hot side inlet delta T = 39.43016001679878\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:05 [INFO] idaes.init.fs.fwh4: Condensing hot side inlet delta T = 39.4301600167788\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh4: Condensing hot side outlet delta T = 47.80805362178066\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:05 [INFO] idaes.init.fs.fwh4: Condensing hot side outlet delta T = 47.808053621766945\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh4: Steam Flow = 247.42787053680715\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:05 [INFO] idaes.init.fs.fwh4: Steam Flow = 247.42787053670986\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh4: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:05 [INFO] idaes.init.fs.fwh4: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh5_da: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:05 [INFO] idaes.init.fs.fwh5_da: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh6.desuperheat.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:05 [INFO] idaes.init.fs.fwh6.desuperheat.hot_side: Initialization Complete\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh6.desuperheat.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:05 [INFO] idaes.init.fs.fwh6.desuperheat.cold_side: Initialization Complete\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh6.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:05 [INFO] idaes.init.fs.fwh6.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh6.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:06 [INFO] idaes.init.fs.fwh6.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh6.condense.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:06 [INFO] idaes.init.fs.fwh6.condense.hot_side: Initialization Complete\n" + "2025-03-17 17:34:40 [INFO] idaes.init.fs.fwh6.condense.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:06 [INFO] idaes.init.fs.fwh6.condense.cold_side: Initialization Complete\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh6.condense: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:06 [INFO] idaes.init.fs.fwh6.condense: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh6.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:06 [INFO] idaes.init.fs.fwh6.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh6.cooling.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:06 [INFO] idaes.init.fs.fwh6.cooling.hot_side: Initialization Complete\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh6.cooling.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:06 [INFO] idaes.init.fs.fwh6.cooling.cold_side: Initialization Complete\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh6.cooling: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:06 [INFO] idaes.init.fs.fwh6.cooling: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh6: Condensing hot side inlet delta T = 45.08557769763464\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:06 [INFO] idaes.init.fs.fwh6: Condensing hot side inlet delta T = 45.08557769758456\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh6: Condensing hot side outlet delta T = 72.43686375400229\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:06 [INFO] idaes.init.fs.fwh6: Condensing hot side outlet delta T = 72.43686375394775\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh6: Steam Flow = 2128.5569356298247\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:06 [INFO] idaes.init.fs.fwh6: Steam Flow = 2128.5569356289825\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh6: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:06 [INFO] idaes.init.fs.fwh6: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh7.desuperheat.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:06 [INFO] idaes.init.fs.fwh7.desuperheat.hot_side: Initialization Complete\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh7.desuperheat.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:06 [INFO] idaes.init.fs.fwh7.desuperheat.cold_side: Initialization Complete\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh7.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:06 [INFO] idaes.init.fs.fwh7.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh7.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:07 [INFO] idaes.init.fs.fwh7.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh7.condense.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:07 [INFO] idaes.init.fs.fwh7.condense.hot_side: Initialization Complete\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh7.condense.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:07 [INFO] idaes.init.fs.fwh7.condense.cold_side: Initialization Complete\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh7.condense: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:07 [INFO] idaes.init.fs.fwh7.condense: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh7.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:07 [INFO] idaes.init.fs.fwh7.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh7.cooling.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:07 [INFO] idaes.init.fs.fwh7.cooling.hot_side: Initialization Complete\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh7.cooling.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:07 [INFO] idaes.init.fs.fwh7.cooling.cold_side: Initialization Complete\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh7.cooling: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:07 [INFO] idaes.init.fs.fwh7.cooling: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh7: Condensing hot side inlet delta T = 72.40778629498362\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:07 [INFO] idaes.init.fs.fwh7: Condensing hot side inlet delta T = 72.40778629492878\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh7: Condensing hot side outlet delta T = 98.78550984878194\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:07 [INFO] idaes.init.fs.fwh7: Condensing hot side outlet delta T = 98.78550984873016\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh7: Steam Flow = 3749.0680255320203\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:07 [INFO] idaes.init.fs.fwh7: Steam Flow = 3749.068025531304\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh7: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:07 [INFO] idaes.init.fs.fwh7: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh8.desuperheat.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:07 [INFO] idaes.init.fs.fwh8.desuperheat.hot_side: Initialization Complete\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh8.desuperheat.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:07 [INFO] idaes.init.fs.fwh8.desuperheat.cold_side: Initialization Complete\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh8.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:08 [INFO] idaes.init.fs.fwh8.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh8.condense.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:08 [INFO] idaes.init.fs.fwh8.condense.hot_side: Initialization Complete\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh8.condense.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:08 [INFO] idaes.init.fs.fwh8.condense.cold_side: Initialization Complete\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh8.condense: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:08 [INFO] idaes.init.fs.fwh8.condense: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh8.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:08 [INFO] idaes.init.fs.fwh8.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh8.cooling.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:08 [INFO] idaes.init.fs.fwh8.cooling.hot_side: Initialization Complete\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh8.cooling.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:08 [INFO] idaes.init.fs.fwh8.cooling.cold_side: Initialization Complete\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh8.cooling: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:08 [INFO] idaes.init.fs.fwh8.cooling: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh8: Condensing hot side inlet delta T = 99.32852730884954\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:08 [INFO] idaes.init.fs.fwh8: Condensing hot side inlet delta T = 99.32852730878224\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh8: Condensing hot side outlet delta T = 108.51918961637729\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:08 [INFO] idaes.init.fs.fwh8: Condensing hot side outlet delta T = 108.51918961631927\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh8: Steam Flow = 1487.8775467645535\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:08 [INFO] idaes.init.fs.fwh8: Steam Flow = 1487.8775467636813\n" + "2025-03-17 17:34:41 [INFO] idaes.init.fs.fwh8: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:08 [INFO] idaes.init.fs.fwh8: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:43 [INFO] idaes.init.Steam Cycle Model: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:12 [INFO] idaes.init.Steam Cycle Model: Initialization Complete: optimal - Optimal Solution Found\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", + "component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 13500\n", + "keys that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 2341\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 1021\n", + "\n", + "Total number of variables............................: 858\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 444\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 858\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 3.73e-09 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + "\n", + "Number of Iterations....: 0\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 5.9117155615240335e-11 3.7252902984619141e-09\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 5.9117155615240335e-11 3.7252902984619141e-09\n", + "\n", + "\n", + "Number of objective function evaluations = 1\n", + "Number of objective gradient evaluations = 1\n", + "Number of equality constraint evaluations = 1\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 1\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 0\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.154\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "57072.525483603706\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:34:43 [INFO] idaes.init.fs.ECON.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:34:43 [INFO] idaes.init.fs.ECON.hot_side.properties_in: Initialisation Complete, optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.ECON.hot_side.properties_out: Initialisation Complete, optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.ECON.hot_side.properties_out: fs.ECON.hot_side.properties_out State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.ECON.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.ECON: fs.ECON Initialisation Step 1 Complete.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.ECON.hot_side.properties_in: fs.ECON.hot_side.properties_in State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.ECON: fs.ECON Initialisation Complete.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.PrSH.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.PrSH.hot_side.properties_in: Initialisation Complete, optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.PrSH.hot_side.properties_out: Initialisation Complete, optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.PrSH.hot_side.properties_out: fs.PrSH.hot_side.properties_out State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.PrSH.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.PrSH: fs.PrSH Initialisation Step 1 Complete.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.PrSH.hot_side.properties_in: fs.PrSH.hot_side.properties_in State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.PrSH: fs.PrSH Initialisation Complete.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.FSH.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.FSH.hot_side.properties_in: Initialisation Complete, optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.FSH.hot_side.properties_out: Initialisation Complete, optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.FSH.hot_side.properties_out: fs.FSH.hot_side.properties_out State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.FSH.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.FSH: fs.FSH Initialisation Step 1 Complete.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.FSH.hot_side.properties_in: fs.FSH.hot_side.properties_in State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.FSH: fs.FSH Initialisation Complete.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.RH.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.RH.hot_side.properties_in: Initialisation Complete, optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.RH.hot_side.properties_out: Initialisation Complete, optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.RH.hot_side.properties_out: fs.RH.hot_side.properties_out State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.RH.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.RH: fs.RH Initialisation Step 1 Complete.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.RH.hot_side.properties_in: fs.RH.hot_side.properties_in State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.RH: fs.RH Initialisation Complete.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.PlSH.control_volume: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.PlSH: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.Water_wall.control_volume: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.Water_wall: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.Spl1.mixed_state: Initialisation Complete, skipped.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfpt.control_volume.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.Spl1.outlet_1_state: Initialisation Complete, skipped.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfpt.control_volume.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.Spl1.outlet_1_state: fs.Spl1.outlet_1_state State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfp.control_volume.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.Spl1.outlet_2_state: Initialisation Complete, skipped.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfp.control_volume.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.Spl1.outlet_2_state: fs.Spl1.outlet_2_state State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.mixed_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.Spl1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.feedwater_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.Spl1.mixed_state: fs.Spl1.mixed_state State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.drain_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.mix1.Reheat_out_state: Initialisation Complete, optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.steam_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.mix1.PrSH_out_state: Initialisation Complete, optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.mix1.mixed_state: Initialisation Complete, optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.mix1.mixed_state: fs.mix1.mixed_state State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.mix1: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.mix1.Reheat_out_state: fs.mix1.Reheat_out_state State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.mix1.PrSH_out_state: fs.mix1.PrSH_out_state State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "2025-03-17 17:34:44 [INFO] idaes.init.fs.ATMP1: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "initialization done\n", + "solving square problem disconnected\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", + "component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 13500\n", + "keys that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 3045\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 1592\n", + "\n", + "Exception of type: TOO_FEW_DOF in file \"IpIpoptApplication.cpp\" at line 926:\n", + " Exception message: status != TOO_FEW_DEGREES_OF_FREEDOM evaluated false: Too few degrees of freedom (rethrown)!\n", + "\n", + "EXIT: Problem has too few degrees of freedom.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"Steam Cycle Model\";\n", + " - termination condition: other\n", + " - message from solver: Too few degrees of freedom (rethrown)!\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "unfix inlet conditions, degreeso of freedom = 0\n", + "connecting flowsheets, degrees of freedom = 0\n", + "solving full plant model\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 10\n", "component keys that are not exported as part of the NL file. Skipping.\n" ] }, @@ -6669,6500 +6630,127 @@ "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 13500\n", + "keys that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "Ipopt 3.13.2: tol=1e-06\n", + "linear_solver=ma27\n", + "max_iter=40\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 3579\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 2246\n", + "\n", + "Total number of variables............................: 1195\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 1195\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 8.59e+06 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + " 1 0.0000000e+00 5.94e+06 0.00e+00 -1.0 8.21e+07 - 1.00e+00 1.00e+00h 1\n", + " 2 0.0000000e+00 9.93e+04 0.00e+00 -1.0 4.31e+06 - 1.00e+00 1.00e+00h 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + " 3 0.0000000e+00 7.63e+01 0.00e+00 -1.0 1.34e+05 - 1.00e+00 1.00e+00h 1\n", + " 4 0.0000000e+00 3.91e-05 0.00e+00 -3.8 1.80e+01 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 4\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 7.8780398382605199e-07 3.9115548133850098e-05\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 7.8780398382605199e-07 3.9115548133850098e-05\n", + "\n", + "\n", + "Number of objective function evaluations = 5\n", + "Number of objective gradient evaluations = 5\n", + "Number of equality constraint evaluations = 5\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 5\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 4\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.163\n", + "Total CPU secs in NLP function evaluations = 0.588\n", + "\n", + "EXIT: Optimal Solution Found.\n" ] - }, + } + ], + "source": [ + "# import SCPC power plant\n", + "# initialize steam cycle, initialize boiler heat exchanger network, connect both flowsheets,\n", + "# and run SCPC plant.\n", + "from idaes.models_extra.power_generation.flowsheets.supercritical_power_plant.SCPC_full_plant import (\n", + " main,\n", + ")\n", + "\n", + "m, res = main()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Creating a PFD with results and a stream table\n", + "\n", + "The steam cycle results can be displayed on the PFD and as a stream table, by running the following cells." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_return.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_return.fwh1_drain_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_return.feedwater_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_pump.control_volume.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_pump.control_volume.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_pump.control_volume.scaling_factor' that contains 1 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.cond_pump.control_volume.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.cond_pump.control_volume.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.cond_pump.control_volume.scaling_factor' that contains 1 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.hotwell.mixed_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.hotwell.makeup_state[0.0].scaling_factor' that contains 62 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.hotwell.condensate_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.cold_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.cold_side.properties_in[0.0].scaling_factor' that contains 63\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.condenser.scaling_factor' that\n", - "contains 2 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser_mix.bfpt_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser_mix.main_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[11].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[11].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[11].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[10].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[10].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[10].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[8].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[8].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[8].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[4].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[4].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[4].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].outlet_3_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[5].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[5].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[5].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[7].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[7].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[7].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[4].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[4].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[4].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.outlet_stage.control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.outlet_stage.control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[11].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[11].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[10].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[10].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[9].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[9].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[8].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[8].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[7].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[7].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[6].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[6].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[5].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[5].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[4].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[3].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[2].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[1].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[10].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[10].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[9].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[9].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[8].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[8].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[7].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[7].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[6].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[6].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[5].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[5].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[4].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[3].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[2].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[1].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[7].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[7].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[6].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[6].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[5].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[5].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[4].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[3].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[2].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[1].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_4_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_3_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[4].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[3].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[2].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[1].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[4].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[4].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[3].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[3].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[2].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[2].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[1].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[1].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_4_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_3_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.mixed_state[0.0].scaling_factor' that contains 62\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 2341\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 1021\n", - "\n", - "Total number of variables............................: 858\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 444\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 858\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 2.79e-09 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - "\n", - "Number of Iterations....: 0\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 9.9134922493249178e-11 2.7939677238464351e-09\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 9.9134922493249178e-11 2.7939677238464351e-09\n", - "\n", - "\n", - "Number of objective function evaluations = 1\n", - "Number of objective gradient evaluations = 1\n", - "Number of equality constraint evaluations = 1\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 1\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.307\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "57072.525483603706\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:15 [INFO] idaes.init.fs.ECON.cold_side: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:15 [INFO] idaes.init.fs.ECON.hot_side.properties_in: Initialisation Complete, optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:15 [INFO] idaes.init.fs.ECON.hot_side.properties_out: Initialisation Complete, optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:15 [INFO] idaes.init.fs.ECON.hot_side.properties_out: fs.ECON.hot_side.properties_out State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:15 [INFO] idaes.init.fs.ECON.hot_side: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:15 [INFO] idaes.init.fs.ECON: fs.ECON Initialisation Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:15 [INFO] idaes.init.fs.ECON.hot_side.properties_in: fs.ECON.hot_side.properties_in State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:15 [INFO] idaes.init.fs.ECON: fs.ECON Initialisation Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:15 [INFO] idaes.init.fs.PrSH.cold_side: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.PrSH.hot_side.properties_in: Initialisation Complete, optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.PrSH.hot_side.properties_out: Initialisation Complete, optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.PrSH.hot_side.properties_out: fs.PrSH.hot_side.properties_out State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.PrSH.hot_side: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.PrSH: fs.PrSH Initialisation Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.PrSH.hot_side.properties_in: fs.PrSH.hot_side.properties_in State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.PrSH: fs.PrSH Initialisation Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.FSH.cold_side: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.FSH.hot_side.properties_in: Initialisation Complete, optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.FSH.hot_side.properties_out: Initialisation Complete, optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.FSH.hot_side.properties_out: fs.FSH.hot_side.properties_out State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.FSH.hot_side: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.FSH: fs.FSH Initialisation Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.FSH.hot_side.properties_in: fs.FSH.hot_side.properties_in State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.FSH: fs.FSH Initialisation Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:16 [INFO] idaes.init.fs.RH.cold_side: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.RH.hot_side.properties_in: Initialisation Complete, optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.RH.hot_side.properties_out: Initialisation Complete, optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.RH.hot_side.properties_out: fs.RH.hot_side.properties_out State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.RH.hot_side: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.RH: fs.RH Initialisation Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.RH.hot_side.properties_in: fs.RH.hot_side.properties_in State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.RH: fs.RH Initialisation Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.PlSH.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.PlSH: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.Water_wall.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.Water_wall: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.Spl1.mixed_state: Initialisation Complete, skipped.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.Spl1.outlet_1_state: Initialisation Complete, skipped.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.Spl1.outlet_1_state: fs.Spl1.outlet_1_state State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.Spl1.outlet_2_state: Initialisation Complete, skipped.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.Spl1.outlet_2_state: fs.Spl1.outlet_2_state State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.Spl1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.Spl1.mixed_state: fs.Spl1.mixed_state State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.mix1.Reheat_out_state: Initialisation Complete, optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.mix1.PrSH_out_state: Initialisation Complete, optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.mix1.mixed_state: Initialisation Complete, optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.mix1.mixed_state: fs.mix1.mixed_state State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.mix1: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.mix1.Reheat_out_state: fs.mix1.Reheat_out_state State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.mix1.PrSH_out_state: fs.mix1.PrSH_out_state State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:26:17 [INFO] idaes.init.fs.ATMP1: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "initialization done\n", - "solving square problem disconnected\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfpt.control_volume.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfpt.control_volume.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfp.control_volume.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfp.control_volume.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.mixed_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.feedwater_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.drain_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.steam_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_return.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_return.fwh1_drain_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_return.feedwater_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_pump.control_volume.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_pump.control_volume.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_pump.control_volume.scaling_factor' that contains 1 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.cond_pump.control_volume.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.cond_pump.control_volume.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.cond_pump.control_volume.scaling_factor' that contains 1 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.hotwell.mixed_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.hotwell.makeup_state[0.0].scaling_factor' that contains 62 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.hotwell.condensate_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.cold_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.cold_side.properties_in[0.0].scaling_factor' that contains 63\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.condenser.scaling_factor' that\n", - "contains 2 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser_mix.bfpt_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser_mix.main_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[11].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[11].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[11].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[10].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[10].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[10].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[8].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[8].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[8].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[4].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[4].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[4].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].outlet_3_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[5].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[5].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[5].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[7].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[7].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[7].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[4].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[4].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[4].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.outlet_stage.control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.outlet_stage.control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[11].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[11].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[10].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[10].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[9].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[9].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[8].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[8].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[7].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[7].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[6].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[6].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[5].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[5].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[4].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[3].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[2].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[1].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[10].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[10].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[9].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[9].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[8].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[8].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[7].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[7].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[6].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[6].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[5].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[5].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[4].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[3].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[2].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[1].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[7].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[7].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[6].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[6].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[5].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[5].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[4].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[3].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[2].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[1].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_4_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_3_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[4].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[3].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[2].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[1].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[4].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[4].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[3].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[3].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[2].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[2].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[1].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[1].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_4_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_3_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.mixed_state[0.0].scaling_factor' that contains 62\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 3045\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 1592\n", - "\n", - "Exception of type: TOO_FEW_DOF in file \"IpIpoptApplication.cpp\" at line 926:\n", - " Exception message: status != TOO_FEW_DEGREES_OF_FREEDOM evaluated false: Too few degrees of freedom (rethrown)!\n", - "\n", - "EXIT: Problem has too few degrees of freedom.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"Steam Cycle Model\";\n", - " - termination condition: other\n", - " - message from solver: Too few degrees of freedom (rethrown)!\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "unfix inlet conditions, degreeso of freedom = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connecting flowsheets, degrees of freedom = 0\n", - "solving full plant model\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfpt.control_volume.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfpt.control_volume.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfp.control_volume.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfp.control_volume.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.mixed_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.feedwater_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.drain_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.steam_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_return.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_return.fwh1_drain_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_return.feedwater_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_pump.control_volume.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_pump.control_volume.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_pump.control_volume.scaling_factor' that contains 1 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.cond_pump.control_volume.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.cond_pump.control_volume.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.cond_pump.control_volume.scaling_factor' that contains 1 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.hotwell.mixed_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.hotwell.makeup_state[0.0].scaling_factor' that contains 62 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.hotwell.condensate_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.cold_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.cold_side.properties_in[0.0].scaling_factor' that contains 63\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.condenser.scaling_factor' that\n", - "contains 2 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser_mix.bfpt_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser_mix.main_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[11].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[11].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[11].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[10].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[10].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[10].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[8].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[8].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[8].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[4].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[4].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[4].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].outlet_3_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[5].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[5].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[5].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[7].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[7].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[7].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[4].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[4].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[4].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.outlet_stage.control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.outlet_stage.control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[11].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[11].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[10].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[10].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[9].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[9].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[8].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[8].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[7].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[7].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[6].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[6].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[5].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[5].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[4].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[3].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[2].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[1].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[10].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[10].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[9].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[9].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[8].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[8].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[7].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[7].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[6].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[6].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[5].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[5].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[4].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[3].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[2].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[1].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[7].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[7].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[6].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[6].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[5].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[5].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[4].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[3].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[2].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[1].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_4_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_3_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[4].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[3].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[2].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[1].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[4].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[4].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[3].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[3].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[2].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[2].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[1].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[1].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_4_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_3_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.mixed_state[0.0].scaling_factor' that contains 61\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: tol=1e-06\n", - "linear_solver=ma27\n", - "max_iter=40\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 3579\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 2246\n", - "\n", - "Total number of variables............................: 1195\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 1195\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 8.59e+06 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 1 0.0000000e+00 5.94e+06 0.00e+00 -1.0 8.21e+07 - 1.00e+00 1.00e+00h 1\n", - " 2 0.0000000e+00 9.93e+04 0.00e+00 -1.0 4.31e+06 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 3 0.0000000e+00 7.63e+01 0.00e+00 -1.0 1.34e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 4 0.0000000e+00 3.91e-05 0.00e+00 -3.8 1.80e+01 - 1.00e+00 1.00e+00h 1\n", - "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", - "\n", - "Number of Iterations....: 4\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 2.9103830456733704e-09 3.9085745811462402e-05\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.9103830456733704e-09 3.9085745811462402e-05\n", - "\n", - "\n", - "Number of objective function evaluations = 5\n", - "Number of objective gradient evaluations = 5\n", - "Number of equality constraint evaluations = 5\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 5\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 4\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.342\n", - "Total CPU secs in NLP function evaluations = 1.169\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "# import SCPC power plant\n", - "# initialize steam cycle, initialize boiler heat exchanger network, connect both flowsheets,\n", - "# and run SCPC plant.\n", - "from idaes.models_extra.power_generation.flowsheets.supercritical_power_plant.SCPC_full_plant import (\n", - " main,\n", - ")\n", - "\n", - "m, res = main()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 5. Creating a PFD with results and a stream table\n", - "\n", - "The steam cycle results can be displayed on the PFD and as a stream table, by running the following cells." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_35844\\2286906919.py:1: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html\n", - " import pkg_resources\n" + "/tmp/ipykernel_294031/2286906919.py:1: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html\n", + " import pkg_resources\n" ] }, { @@ -14116,11 +7704,7 @@ "" ] }, - "metadata": { - "filenames": { - "image/svg+xml": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\power_gen\\supercritical\\supercritical_power_plant_doc_7_1.svg" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -14146,7 +7730,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": { "scrolled": true }, @@ -14519,7 +8103,7 @@ " 19911.433775\n", " 358.709816\n", " 896.029914\n", - " 4059473.408394\n", + " 4059473.408393\n", " 1.0\n", " 67143.632291\n", " \n", @@ -14676,7 +8260,7 @@ "FWH8_DRN 8629988.197215 0.0 22326.428163 \n", "MAKEUP_01 101325 0.0 2500 \n", "RHT_COLD 4418553.956974 1.0 54662.948278 \n", - "RHT_HOT 4059473.408394 1.0 67143.632291 \n", + "RHT_HOT 4059473.408393 1.0 67143.632291 \n", "STEAM_LP 338388.603252 1.0 54195.400951 \n", "STEAM_MAIN 24230000.0 0.0 62710.01 \n", "THRTL1 23161159.682041 0.0 62710.01 \n", @@ -14686,7 +8270,7 @@ "condenser_mix_to_condenser 3878.882993 0.968709 44615.952422 " ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -14720,7 +8304,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant_test.ipynb b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant_test.ipynb index c9851e9c..8553676d 100644 --- a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant_test.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant_test.ipynb @@ -1,160 +1,187 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical Power Plant Flowsheet Example\n", - "Maintainer: Andrew Lee \n", - "Author: John Eslick \n", - "\n", - "\n", - "## 1. Introduction\n", - "\n", - "\n", - "This example is to demonstrate a supercritical pulverized coal power plant model. The power plant consists of two major sub-systems (or flowsheets), a boiler heat exchanger network and a steam cycle. This jupyter notebook provides the workflow to import the steam cycle flowsheet, import the boiler heat exchanger network, connect and run both the flowsheets, and display the main results." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Model Description\n", - "\n", - "The case study demonstrated here is for a ~620MW gross power output. The process flow diagram is shown in section 3 of this jupyter notebook. Figure 1 shows the boiler heat exchanger network, while, figure 2 shows the steam cycle system. \n", - "\n", - "The streams connecting both the flowsheets are: \n", - "  a) The main steam: that connects the boiler attemperator to the throttle valves of the high pressure turbine \n", - "  b) The cold reheat: that connects the final stage of the high pressure turbine to the boiler reheater \n", - "  c) The hot reheat: that connects the boiler reheater to the intermediate pressure turbine \n", - "  d) The main feed water: that connects the last feed water heater to the boiler economizer \n", - " \n", - "To get a more detailed description of the power plant flowsheet, review the ```SCPC_full_plant.py``` file. For details in terms of specific power plant units (for example dimensions, parameters, and variables), more information can be found at ```supercritical_steam_cycle.py``` and ```boiler_subflowsheet.py```.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Process Flow Diagram (PFD)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from IPython.display import SVG, display\n", - "\n", - "display(\n", - " \"Boiler subsystem PFD\",\n", - " SVG(filename=\"Boiler_scpc_PFD.svg\"),\n", - " \"Steam Cycle subsystem PFD\",\n", - " SVG(filename=\"supercritical_steam_cycle.svg\"),\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4. Run power plant model example\n", - "\n", - "This example runs the main ``SCPC_full_plant.py`` script, which, imports two flowsheets (steam cycle and boiler heat exchanger network), builds arcs to connect both flowsheets, and run the full power plant model." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# import SCPC power plant\n", - "# initialize steam cycle, initialize boiler heat exchanger network, connect both flowsheets,\n", - "# and run SCPC plant.\n", - "from idaes.models_extra.power_generation.flowsheets.supercritical_power_plant.SCPC_full_plant import (\n", - " main,\n", - ")\n", - "\n", - "m, res = main()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 5. Creating a PFD with results and a stream table\n", - "\n", - "The steam cycle results can be displayed on the PFD and as a stream table, by running the following cells." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import pkg_resources\n", - "import pyomo.environ as pyo\n", - "from idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle import (\n", - " pfd_result,\n", - ")\n", - "from idaes.core.util.tables import create_stream_table_dataframe\n", - "\n", - "# Create stream results as Pandas dataframe\n", - "df = create_stream_table_dataframe(streams=m._streams, orient=\"index\")\n", - "# Create a new PFD with simulation results\n", - "init_pfd = pkg_resources.resource_string(\n", - " \"idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle\",\n", - " \"supercritical_steam_cycle.svg\",\n", - ")\n", - "res_pfd = pfd_result(m, df, svg=init_pfd)\n", - "# Display PFD with results.\n", - "display(SVG(res_pfd))" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# Display the stream table.\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "c40351ff", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical Power Plant Flowsheet Example\n", + "Maintainer: Andrew Lee \n", + "Author: John Eslick \n", + "\n", + "\n", + "## 1. Introduction\n", + "\n", + "\n", + "This example is to demonstrate a supercritical pulverized coal power plant model. The power plant consists of two major sub-systems (or flowsheets), a boiler heat exchanger network and a steam cycle. This jupyter notebook provides the workflow to import the steam cycle flowsheet, import the boiler heat exchanger network, connect and run both the flowsheets, and display the main results." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Model Description\n", + "\n", + "The case study demonstrated here is for a ~620MW gross power output. The process flow diagram is shown in section 3 of this jupyter notebook. Figure 1 shows the boiler heat exchanger network, while, figure 2 shows the steam cycle system. \n", + "\n", + "The streams connecting both the flowsheets are: \n", + "  a) The main steam: that connects the boiler attemperator to the throttle valves of the high pressure turbine \n", + "  b) The cold reheat: that connects the final stage of the high pressure turbine to the boiler reheater \n", + "  c) The hot reheat: that connects the boiler reheater to the intermediate pressure turbine \n", + "  d) The main feed water: that connects the last feed water heater to the boiler economizer \n", + " \n", + "To get a more detailed description of the power plant flowsheet, review the ```SCPC_full_plant.py``` file. For details in terms of specific power plant units (for example dimensions, parameters, and variables), more information can be found at ```supercritical_steam_cycle.py``` and ```boiler_subflowsheet.py```.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Process Flow Diagram (PFD)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import SVG, display\n", + "\n", + "display(\n", + " \"Boiler subsystem PFD\",\n", + " SVG(filename=\"Boiler_scpc_PFD.svg\"),\n", + " \"Steam Cycle subsystem PFD\",\n", + " SVG(filename=\"supercritical_steam_cycle.svg\"),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Run power plant model example\n", + "\n", + "This example runs the main ``SCPC_full_plant.py`` script, which, imports two flowsheets (steam cycle and boiler heat exchanger network), builds arcs to connect both flowsheets, and run the full power plant model." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# import SCPC power plant\n", + "# initialize steam cycle, initialize boiler heat exchanger network, connect both flowsheets,\n", + "# and run SCPC plant.\n", + "from idaes.models_extra.power_generation.flowsheets.supercritical_power_plant.SCPC_full_plant import (\n", + " main,\n", + ")\n", + "\n", + "m, res = main()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Creating a PFD with results and a stream table\n", + "\n", + "The steam cycle results can be displayed on the PFD and as a stream table, by running the following cells." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import pkg_resources\n", + "import pyomo.environ as pyo\n", + "from idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle import (\n", + " pfd_result,\n", + ")\n", + "from idaes.core.util.tables import create_stream_table_dataframe\n", + "\n", + "# Create stream results as Pandas dataframe\n", + "df = create_stream_table_dataframe(streams=m._streams, orient=\"index\")\n", + "# Create a new PFD with simulation results\n", + "init_pfd = pkg_resources.resource_string(\n", + " \"idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle\",\n", + " \"supercritical_steam_cycle.svg\",\n", + ")\n", + "res_pfd = pfd_result(m, df, svg=init_pfd)\n", + "# Display PFD with results.\n", + "display(SVG(res_pfd))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# Display the stream table.\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant_usr.ipynb b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant_usr.ipynb index c9851e9c..968d5a64 100644 --- a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant_usr.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_power_plant_usr.ipynb @@ -1,160 +1,187 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical Power Plant Flowsheet Example\n", - "Maintainer: Andrew Lee \n", - "Author: John Eslick \n", - "\n", - "\n", - "## 1. Introduction\n", - "\n", - "\n", - "This example is to demonstrate a supercritical pulverized coal power plant model. The power plant consists of two major sub-systems (or flowsheets), a boiler heat exchanger network and a steam cycle. This jupyter notebook provides the workflow to import the steam cycle flowsheet, import the boiler heat exchanger network, connect and run both the flowsheets, and display the main results." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Model Description\n", - "\n", - "The case study demonstrated here is for a ~620MW gross power output. The process flow diagram is shown in section 3 of this jupyter notebook. Figure 1 shows the boiler heat exchanger network, while, figure 2 shows the steam cycle system. \n", - "\n", - "The streams connecting both the flowsheets are: \n", - "  a) The main steam: that connects the boiler attemperator to the throttle valves of the high pressure turbine \n", - "  b) The cold reheat: that connects the final stage of the high pressure turbine to the boiler reheater \n", - "  c) The hot reheat: that connects the boiler reheater to the intermediate pressure turbine \n", - "  d) The main feed water: that connects the last feed water heater to the boiler economizer \n", - " \n", - "To get a more detailed description of the power plant flowsheet, review the ```SCPC_full_plant.py``` file. For details in terms of specific power plant units (for example dimensions, parameters, and variables), more information can be found at ```supercritical_steam_cycle.py``` and ```boiler_subflowsheet.py```.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Process Flow Diagram (PFD)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from IPython.display import SVG, display\n", - "\n", - "display(\n", - " \"Boiler subsystem PFD\",\n", - " SVG(filename=\"Boiler_scpc_PFD.svg\"),\n", - " \"Steam Cycle subsystem PFD\",\n", - " SVG(filename=\"supercritical_steam_cycle.svg\"),\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4. Run power plant model example\n", - "\n", - "This example runs the main ``SCPC_full_plant.py`` script, which, imports two flowsheets (steam cycle and boiler heat exchanger network), builds arcs to connect both flowsheets, and run the full power plant model." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# import SCPC power plant\n", - "# initialize steam cycle, initialize boiler heat exchanger network, connect both flowsheets,\n", - "# and run SCPC plant.\n", - "from idaes.models_extra.power_generation.flowsheets.supercritical_power_plant.SCPC_full_plant import (\n", - " main,\n", - ")\n", - "\n", - "m, res = main()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 5. Creating a PFD with results and a stream table\n", - "\n", - "The steam cycle results can be displayed on the PFD and as a stream table, by running the following cells." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import pkg_resources\n", - "import pyomo.environ as pyo\n", - "from idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle import (\n", - " pfd_result,\n", - ")\n", - "from idaes.core.util.tables import create_stream_table_dataframe\n", - "\n", - "# Create stream results as Pandas dataframe\n", - "df = create_stream_table_dataframe(streams=m._streams, orient=\"index\")\n", - "# Create a new PFD with simulation results\n", - "init_pfd = pkg_resources.resource_string(\n", - " \"idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle\",\n", - " \"supercritical_steam_cycle.svg\",\n", - ")\n", - "res_pfd = pfd_result(m, df, svg=init_pfd)\n", - "# Display PFD with results.\n", - "display(SVG(res_pfd))" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# Display the stream table.\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "2fa4a417", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical Power Plant Flowsheet Example\n", + "Maintainer: Andrew Lee \n", + "Author: John Eslick \n", + "\n", + "\n", + "## 1. Introduction\n", + "\n", + "\n", + "This example is to demonstrate a supercritical pulverized coal power plant model. The power plant consists of two major sub-systems (or flowsheets), a boiler heat exchanger network and a steam cycle. This jupyter notebook provides the workflow to import the steam cycle flowsheet, import the boiler heat exchanger network, connect and run both the flowsheets, and display the main results." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Model Description\n", + "\n", + "The case study demonstrated here is for a ~620MW gross power output. The process flow diagram is shown in section 3 of this jupyter notebook. Figure 1 shows the boiler heat exchanger network, while, figure 2 shows the steam cycle system. \n", + "\n", + "The streams connecting both the flowsheets are: \n", + "  a) The main steam: that connects the boiler attemperator to the throttle valves of the high pressure turbine \n", + "  b) The cold reheat: that connects the final stage of the high pressure turbine to the boiler reheater \n", + "  c) The hot reheat: that connects the boiler reheater to the intermediate pressure turbine \n", + "  d) The main feed water: that connects the last feed water heater to the boiler economizer \n", + " \n", + "To get a more detailed description of the power plant flowsheet, review the ```SCPC_full_plant.py``` file. For details in terms of specific power plant units (for example dimensions, parameters, and variables), more information can be found at ```supercritical_steam_cycle.py``` and ```boiler_subflowsheet.py```.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Process Flow Diagram (PFD)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import SVG, display\n", + "\n", + "display(\n", + " \"Boiler subsystem PFD\",\n", + " SVG(filename=\"Boiler_scpc_PFD.svg\"),\n", + " \"Steam Cycle subsystem PFD\",\n", + " SVG(filename=\"supercritical_steam_cycle.svg\"),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Run power plant model example\n", + "\n", + "This example runs the main ``SCPC_full_plant.py`` script, which, imports two flowsheets (steam cycle and boiler heat exchanger network), builds arcs to connect both flowsheets, and run the full power plant model." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# import SCPC power plant\n", + "# initialize steam cycle, initialize boiler heat exchanger network, connect both flowsheets,\n", + "# and run SCPC plant.\n", + "from idaes.models_extra.power_generation.flowsheets.supercritical_power_plant.SCPC_full_plant import (\n", + " main,\n", + ")\n", + "\n", + "m, res = main()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Creating a PFD with results and a stream table\n", + "\n", + "The steam cycle results can be displayed on the PFD and as a stream table, by running the following cells." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import pkg_resources\n", + "import pyomo.environ as pyo\n", + "from idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle import (\n", + " pfd_result,\n", + ")\n", + "from idaes.core.util.tables import create_stream_table_dataframe\n", + "\n", + "# Create stream results as Pandas dataframe\n", + "df = create_stream_table_dataframe(streams=m._streams, orient=\"index\")\n", + "# Create a new PFD with simulation results\n", + "init_pfd = pkg_resources.resource_string(\n", + " \"idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle\",\n", + " \"supercritical_steam_cycle.svg\",\n", + ")\n", + "res_pfd = pfd_result(m, df, svg=init_pfd)\n", + "# Display PFD with results.\n", + "display(SVG(res_pfd))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# Display the stream table.\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle.ipynb b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle.ipynb index 56bbd4ee..fdec1d64 100644 --- a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle.ipynb @@ -1,224 +1,251 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical Steam Cycle Example\n", - "Maintainer: Andrew Lee \n", - "Author: Andrew Lee \n", - "\n", - "This example uses Jupyter Lab or Jupyter notebook, and demonstrates a supercritical pulverized coal (SCPC) steam cycle model. See the ```supercritical_steam_cycle.py``` to see more information on how to assemble a power plant model flowsheet. Code comments in that file will guide you through the process." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Model Description\n", - "\n", - "The example model doesn't represent any particular power plant, but should be a reasonable approximation of a typical plant. The gross power output is about 620 MW. The process flow diagram (PFD) can be shown using the code below. The initial PFD contains spaces for model results, to be filled in later.\n", - "\n", - "To get a more detailed look at the model structure, you may find it useful to review ```supercritical_steam_cycle.py``` first. Although there is no detailed boiler model, there are constraints in the model to complete the steam loop through the boiler and calculate boiler heat input to the steam cycle. The efficiency calculation for the steam cycle doesn't account for heat loss in the boiler, which would be a result of a more detailed boiler model." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# pkg_resources is used here to get the svg information from the\n", - "# installed IDAES package\n", - "\n", - "import pkg_resources\n", - "from IPython.display import SVG, display\n", - "\n", - "# Get the contents of the PFD (which is an svg file)\n", - "init_pfd = pkg_resources.resource_string(\n", - " \"idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle\",\n", - " \"supercritical_steam_cycle.svg\",\n", - ")\n", - "\n", - "# Make the svg contents into an SVG object and display it.\n", - "display(SVG(init_pfd))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Initialize the steam cycle flowsheet\n", - "\n", - "This example is part of the ```idaes``` package, which you should have installed. To run the example, the example flowsheet is imported from the ```idaes``` package. When you write your own model, you can import and run it in whatever way is appropriate for you. The Pyomo environment is also imported as ```pyo```, providing easy access to Pyomo functions and classes.\n", - "\n", - "The supercritical flowsheet example main function returns a Pyomo concrete mode (m) and a solver object (solver). The model is also initialized by the ```main()``` function." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import pyomo.environ as pyo\n", - "from idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle import (\n", - " main,\n", - " pfd_result,\n", - ")\n", - "from idaes.core.util.tables import create_stream_table_dataframe\n", - "\n", - "m, solver = main()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Inside the model, there is a subblock ```fs```. This is an IDAES flowsheet model, which contains the supercritical steam cycle model. In the flowsheet, the model called ```turb``` is a multistage turbine model. The turbine model contains an expression for total power, ```power```. In this case the model is steady-state, but all IDAES models allow for dynamic simulation, and contain time indexes. Power is indexed by time, and only the \"0\" time point exists. By convention, in the IDAES framework, power going into a model is positive, so power produced by the turbine is negative. \n", - "\n", - "The property package used for this model uses SI (mks) units of measure, so the power is in Watts. Here a function is defined which can be used to report power output in MW." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Define a function to report gross power output in MW\n", - "def gross_power_mw(model):\n", - " # pyo.value(m.fs.turb.power[0]) is the power consumed in Watts\n", - " return -pyo.value(model.fs.turb.power[0]) / 1e6\n", - "\n", - "\n", - "# Show the gross power\n", - "gross_power_mw(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Change the model inputs\n", - "\n", - "The turbine in this example simulates partial arc admission with four arcs, so there are four throttle valves. For this example, we will close one of the valves to 25% open, and observe the result." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.turb.throttle_valve[1].valve_opening[:].value = 0.25" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we re-solve the model using the solver created by the ```supercritical_steam_cycle.py``` script." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we can check the gross power output again." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "gross_power_mw(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Creating a PFD with results and a stream table\n", - "\n", - "A more detailed look at the model results can be obtained by creating a stream table and putting key results on the PFD. Of course, any unit model or stream result can be obtained from the model." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Create a Pandas dataframe with stream results\n", - "df = create_stream_table_dataframe(streams=m._streams, orient=\"index\")\n", - "\n", - "# Create a new PFD with simulation results\n", - "res_pfd = pfd_result(m, df, svg=init_pfd)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# Display PFD with results.\n", - "display(SVG(res_pfd))" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# Display the stream table.\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.11" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "fa5b8340", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical Steam Cycle Example\n", + "Maintainer: Andrew Lee \n", + "Author: Andrew Lee \n", + "\n", + "This example uses Jupyter Lab or Jupyter notebook, and demonstrates a supercritical pulverized coal (SCPC) steam cycle model. See the ```supercritical_steam_cycle.py``` to see more information on how to assemble a power plant model flowsheet. Code comments in that file will guide you through the process." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model Description\n", + "\n", + "The example model doesn't represent any particular power plant, but should be a reasonable approximation of a typical plant. The gross power output is about 620 MW. The process flow diagram (PFD) can be shown using the code below. The initial PFD contains spaces for model results, to be filled in later.\n", + "\n", + "To get a more detailed look at the model structure, you may find it useful to review ```supercritical_steam_cycle.py``` first. Although there is no detailed boiler model, there are constraints in the model to complete the steam loop through the boiler and calculate boiler heat input to the steam cycle. The efficiency calculation for the steam cycle doesn't account for heat loss in the boiler, which would be a result of a more detailed boiler model." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# pkg_resources is used here to get the svg information from the\n", + "# installed IDAES package\n", + "\n", + "import pkg_resources\n", + "from IPython.display import SVG, display\n", + "\n", + "# Get the contents of the PFD (which is an svg file)\n", + "init_pfd = pkg_resources.resource_string(\n", + " \"idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle\",\n", + " \"supercritical_steam_cycle.svg\",\n", + ")\n", + "\n", + "# Make the svg contents into an SVG object and display it.\n", + "display(SVG(init_pfd))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initialize the steam cycle flowsheet\n", + "\n", + "This example is part of the ```idaes``` package, which you should have installed. To run the example, the example flowsheet is imported from the ```idaes``` package. When you write your own model, you can import and run it in whatever way is appropriate for you. The Pyomo environment is also imported as ```pyo```, providing easy access to Pyomo functions and classes.\n", + "\n", + "The supercritical flowsheet example main function returns a Pyomo concrete mode (m) and a solver object (solver). The model is also initialized by the ```main()``` function." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pyomo.environ as pyo\n", + "from idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle import (\n", + " main,\n", + " pfd_result,\n", + ")\n", + "from idaes.core.util.tables import create_stream_table_dataframe\n", + "\n", + "m, solver = main()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Inside the model, there is a subblock ```fs```. This is an IDAES flowsheet model, which contains the supercritical steam cycle model. In the flowsheet, the model called ```turb``` is a multistage turbine model. The turbine model contains an expression for total power, ```power```. In this case the model is steady-state, but all IDAES models allow for dynamic simulation, and contain time indexes. Power is indexed by time, and only the \"0\" time point exists. By convention, in the IDAES framework, power going into a model is positive, so power produced by the turbine is negative. \n", + "\n", + "The property package used for this model uses SI (mks) units of measure, so the power is in Watts. Here a function is defined which can be used to report power output in MW." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Define a function to report gross power output in MW\n", + "def gross_power_mw(model):\n", + " # pyo.value(m.fs.turb.power[0]) is the power consumed in Watts\n", + " return -pyo.value(model.fs.turb.power[0]) / 1e6\n", + "\n", + "\n", + "# Show the gross power\n", + "gross_power_mw(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Change the model inputs\n", + "\n", + "The turbine in this example simulates partial arc admission with four arcs, so there are four throttle valves. For this example, we will close one of the valves to 25% open, and observe the result." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.turb.throttle_valve[1].valve_opening[:].value = 0.25" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we re-solve the model using the solver created by the ```supercritical_steam_cycle.py``` script." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can check the gross power output again." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "gross_power_mw(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Creating a PFD with results and a stream table\n", + "\n", + "A more detailed look at the model results can be obtained by creating a stream table and putting key results on the PFD. Of course, any unit model or stream result can be obtained from the model." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a Pandas dataframe with stream results\n", + "df = create_stream_table_dataframe(streams=m._streams, orient=\"index\")\n", + "\n", + "# Create a new PFD with simulation results\n", + "res_pfd = pfd_result(m, df, svg=init_pfd)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Display PFD with results.\n", + "display(SVG(res_pfd))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# Display the stream table.\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle_doc.ipynb b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle_doc.ipynb index 75428839..aa9cd93a 100644 --- a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle_doc.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle_doc.ipynb @@ -1,5 +1,31 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -24,14 +50,14 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_36220\\1084714406.py:4: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html\n", + "/tmp/ipykernel_294708/1084714406.py:4: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html\n", " import pkg_resources\n" ] }, @@ -986,11 +1012,7 @@ "" ] }, - "metadata": { - "filenames": { - "image/svg+xml": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\power_gen\\supercritical\\supercritical_steam_cycle_doc_2_1.svg" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -1024,2980 +1046,3104 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:19 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:20 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:50 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:20 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:51 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:20 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:51 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:20 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:51 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:20 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:51 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:22 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:51 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:22 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:52 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:22 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:52 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:22 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:52 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:22 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:52 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:22 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:52 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:22 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:52 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:22 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:52 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:22 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:52 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:22 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:53 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:22 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:53 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:23 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:53 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:23 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:53 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:23 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:53 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:23 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:53 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:23 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:53 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:23 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:53 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:24 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:53 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:24 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:54 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:24 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:54 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:24 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" + "2025-03-17 17:34:54 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:26 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[1].control_volume.work\n" + "2025-03-17 17:34:54 [WARNING] idaes.models.properties.general_helmholtz.helmholtz_state: Helmholtz EoS packages using Mixed phase representation ignore the 'has_phase_equilibrium' configuration argument. However, setting this to True can result in errors when constructing material balances due to only having a single phase (thus phase transfer terms cannot be constructed).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:26 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[2].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[1].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:26 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[3].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[2].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:26 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[4].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[3].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:26 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[1].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.inlet_stage[4].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:26 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[2].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[1].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:26 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[3].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[2].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:26 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[4].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[3].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:26 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[5].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[4].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[6].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[5].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[7].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[6].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[1].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.hp_stages[7].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[2].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[1].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[3].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[2].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[4].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[3].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[5].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[4].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[6].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[5].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[7].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[6].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[8].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[7].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[9].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[8].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[10].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[9].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[1].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.ip_stages[10].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[2].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[1].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[3].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[2].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[4].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[3].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[5].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[4].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[6].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[5].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[7].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[6].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[8].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[7].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[9].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[8].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[10].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[9].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[11].control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[10].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.outlet_stage.control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.lp_stages[11].control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.cond_pump.control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.turb.outlet_stage.control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh1.condense.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.cond_pump.control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh1.condense.area\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh1.condense.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh1_pump.control_volume.work\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh1.condense.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.condense.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:55 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh1_pump.control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.condense.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.condense.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.hot_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.condense.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.cold_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.hot_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.desuperheat.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.cold_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.condense.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh2.cooling.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.condense.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.condense.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.hot_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.condense.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.cold_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.hot_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.desuperheat.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.cold_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.condense.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh3.cooling.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.condense.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.condense.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.hot_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.condense.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.cold_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.hot_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.desuperheat.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.cold_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.bfp.control_volume.work\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh4.cooling.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.bfpt.control_volume.work\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.bfp.control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.condense.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.bfpt.control_volume.work\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.condense.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.condense.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.hot_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.condense.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.cold_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.hot_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.desuperheat.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.cold_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.condense.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh6.cooling.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.condense.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.condense.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.hot_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.condense.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.cold_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.hot_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.desuperheat.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.cold_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.condense.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh7.cooling.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.condense.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.condense.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.hot_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.condense.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.cold_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.hot_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.desuperheat.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.cold_side.heat\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.hot_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.overall_heat_transfer_coefficient[0.0]\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.cold_side.heat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:27 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.area\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.overall_heat_transfer_coefficient[0.0]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:28 [INFO] idaes.init.Steam Cycle Model: Starting initialization\n" + "2025-03-17 17:34:56 [WARNING] idaes.core.util.scaling: Missing scaling factor for fs.fwh8.cooling.area\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:28 [INFO] idaes.init.fs.turb.inlet_split: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:56 [INFO] idaes.init.Steam Cycle Model: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:28 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization started\n" + "2025-03-17 17:34:56 [INFO] idaes.init.fs.turb.inlet_split: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:28 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization complete\n" + "2025-03-17 17:34:56 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:28 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization started\n" + "2025-03-17 17:34:56 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:28 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization complete\n" + "2025-03-17 17:34:56 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:28 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization started\n" + "2025-03-17 17:34:56 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:28 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization complete\n" + "2025-03-17 17:34:56 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:28 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization started\n" + "2025-03-17 17:34:56 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:28 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization complete\n" + "2025-03-17 17:34:56 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:28 [INFO] idaes.init.fs.turb.inlet_stage[1]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:56 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:28 [INFO] idaes.init.fs.turb.inlet_stage[2]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:56 [INFO] idaes.init.fs.turb.inlet_stage[1]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:28 [INFO] idaes.init.fs.turb.inlet_stage[3]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:56 [INFO] idaes.init.fs.turb.inlet_stage[2]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:28 [INFO] idaes.init.fs.turb.inlet_stage[4]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:56 [INFO] idaes.init.fs.turb.inlet_stage[3]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:28 [INFO] idaes.init.fs.turb.inlet_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:56 [INFO] idaes.init.fs.turb.inlet_stage[4]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:29 [INFO] idaes.init.fs.turb.hp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:56 [INFO] idaes.init.fs.turb.inlet_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:29 [INFO] idaes.init.fs.turb.hp_split[7]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:56 [INFO] idaes.init.fs.turb.hp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:30 [INFO] idaes.init.fs.turb.ip_split[5]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:57 [INFO] idaes.init.fs.turb.hp_split[7]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:30 [INFO] idaes.init.fs.turb.ip_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:57 [INFO] idaes.init.fs.turb.ip_split[5]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:30 [INFO] idaes.init.fs.turb.lp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:57 [INFO] idaes.init.fs.turb.ip_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:31 [INFO] idaes.init.fs.turb.lp_split[8]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:57 [INFO] idaes.init.fs.turb.lp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:31 [INFO] idaes.init.fs.turb.lp_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:57 [INFO] idaes.init.fs.turb.lp_split[8]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:31 [INFO] idaes.init.fs.turb.lp_split[11]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:57 [INFO] idaes.init.fs.turb.lp_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:31 [INFO] idaes.init.fs.turb.outlet_stage: Initialization Complete (Outlet Stage): optimal - Optimal Solution Found\n" + "2025-03-17 17:34:57 [INFO] idaes.init.fs.turb.lp_split[11]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:31 [INFO] idaes.init.fs.turb.inlet_split: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.outlet_stage: Initialization Complete (Outlet Stage): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:31 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization started\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.inlet_split: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:31 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization complete\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:31 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization started\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.throttle_valve[1]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:31 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization complete\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:31 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization started\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.throttle_valve[2]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:31 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization complete\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:31 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization started\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.throttle_valve[3]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:31 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization complete\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization started\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:31 [INFO] idaes.init.fs.turb.inlet_stage[1]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.throttle_valve[4]: Steam valve initialization complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:32 [INFO] idaes.init.fs.turb.inlet_stage[2]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.inlet_stage[1]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:32 [INFO] idaes.init.fs.turb.inlet_stage[3]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.inlet_stage[2]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:32 [INFO] idaes.init.fs.turb.inlet_stage[4]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.inlet_stage[3]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:32 [INFO] idaes.init.fs.turb.inlet_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.inlet_stage[4]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:32 [INFO] idaes.init.fs.turb.hp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.inlet_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:32 [INFO] idaes.init.fs.turb.hp_split[7]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.hp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:33 [INFO] idaes.init.fs.turb.ip_split[5]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.hp_split[7]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:33 [INFO] idaes.init.fs.turb.ip_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.ip_split[5]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:34 [INFO] idaes.init.fs.turb.lp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.ip_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:34 [INFO] idaes.init.fs.turb.lp_split[8]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.lp_split[4]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:34 [INFO] idaes.init.fs.turb.lp_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:58 [INFO] idaes.init.fs.turb.lp_split[8]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:34 [INFO] idaes.init.fs.turb.lp_split[11]: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.turb.lp_split[10]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:34 [INFO] idaes.init.fs.turb.outlet_stage: Initialization Complete (Outlet Stage): optimal - Optimal Solution Found\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.turb.lp_split[11]: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [INFO] idaes.init.Steam Cycle Model: Full turbine solve complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.turb.outlet_stage: Initialization Complete (Outlet Stage): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: WARNING: model contains export suffix\n" + "2025-03-17 17:34:59 [INFO] idaes.init.Steam Cycle Model: Full turbine solve complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: 'fs.bfpt.control_volume.properties_out[0.0].scaling_factor' that contains 60\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: WARNING: model contains export suffix 'scaling_factor' that contains 3\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: WARNING: model contains export suffix\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: WARNING: model contains export suffix 'scaling_factor' that contains 120 keys\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: 'fs.bfpt.control_volume.properties_in[0.0].scaling_factor' that contains 63\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: tol=1e-06\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: tol=1e-06\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: max_iter=200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: max_iter=200\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: ******************************************************************************\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: ******************************************************************************\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: For more information visit http://projects.coin-or.org/Ipopt\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: For more information visit http://projects.coin-or.org/Ipopt\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: This version of Ipopt was compiled from source code available at\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: This version of Ipopt was compiled from source code available at\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: for large-scale scientific computation. All technical papers, sales and\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: for large-scale scientific computation. All technical papers, sales and\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: publicity material resulting from use of the HSL codes within IPOPT must\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: publicity material resulting from use of the HSL codes within IPOPT must\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: contain the following acknowledgement:\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: contain the following acknowledgement:\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: HSL, a collection of Fortran codes for large-scale scientific\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: HSL, a collection of Fortran codes for large-scale scientific\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: computation. See http://www.hsl.rl.ac.uk.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: computation. See http://www.hsl.rl.ac.uk.\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: ******************************************************************************\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: ******************************************************************************\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: This is Ipopt version 3.13.2, running with linear solver ma27.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: This is Ipopt version 3.13.2, running with linear solver ma27.\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Number of nonzeros in equality constraint Jacobian...: 9\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Number of nonzeros in equality constraint Jacobian...: 9\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Number of nonzeros in inequality constraint Jacobian.: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Number of nonzeros in inequality constraint Jacobian.: 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Number of nonzeros in Lagrangian Hessian.............: 4\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Number of nonzeros in Lagrangian Hessian.............: 4\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Total number of variables............................: 5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Total number of variables............................: 5\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: variables with only lower bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: variables with only lower bounds: 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: variables with lower and upper bounds: 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: variables with lower and upper bounds: 2\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: variables with only upper bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: variables with only upper bounds: 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Total number of equality constraints.................: 5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Total number of equality constraints.................: 5\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Total number of inequality constraints...............: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Total number of inequality constraints...............: 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: inequality constraints with only lower bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: inequality constraints with only lower bounds: 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: inequality constraints with lower and upper bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: inequality constraints with lower and upper bounds: 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: inequality constraints with only upper bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: inequality constraints with only upper bounds: 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: 0 0.0000000e+00 5.46e+00 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: 0 0.0000000e+00 5.46e+00 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: 1 0.0000000e+00 5.55e-17 1.00e-07 -1.0 5.46e+07 - 9.90e-01 1.00e+00h 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: 1 0.0000000e+00 5.55e-17 1.00e-07 -1.0 5.46e+07 - 9.90e-01 1.00e+00h 1\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Number of Iterations....: 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Number of Iterations....: 1\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: (scaled) (unscaled)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: (scaled) (unscaled)\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Constraint violation....: 5.5511151231257827e-17 5.5511151231257827e-17\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Constraint violation....: 5.5511151231257827e-17 5.5511151231257827e-17\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Overall NLP error.......: 5.5511151231257827e-17 5.5511151231257827e-17\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Overall NLP error.......: 5.5511151231257827e-17 5.5511151231257827e-17\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Number of objective function evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Number of objective function evaluations = 2\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Number of objective gradient evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Number of objective gradient evaluations = 2\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Number of equality constraint evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Number of equality constraint evaluations = 2\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Number of inequality constraint evaluations = 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Number of inequality constraint evaluations = 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Number of equality constraint Jacobian evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Number of equality constraint Jacobian evaluations = 2\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Number of inequality constraint Jacobian evaluations = 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Number of inequality constraint Jacobian evaluations = 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Number of Lagrangian Hessian evaluations = 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Number of Lagrangian Hessian evaluations = 1\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Total CPU secs in IPOPT (w/o function evaluations) = 0.007\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Total CPU secs in IPOPT (w/o function evaluations) = 0.005\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: Total CPU secs in NLP function evaluations = 0.000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: Total CPU secs in NLP function evaluations = 0.000\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.bfpt: EXIT: Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:35 [DEBUG] idaes.solve.fs.bfpt: EXIT: Optimal Solution Found.\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.condenser_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.condenser_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.condenser.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.condenser.hot_side: Initialization Complete\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.condenser.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.condenser.cold_side: Initialization Complete\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.hotwell: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.hotwell: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.fwh1.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh1.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:59 [WARNING] idaes.init.fs.fwh1: The steam sat. temperature (329.33327413754296) is near the feedwater inlet temperature (299.9023956383419)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [WARNING] idaes.init.fs.fwh1: The steam sat. temperature (329.33327413754273) is near the feedwater inlet temperature (299.90239563835314)\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.fwh1.condense.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh1.condense.hot_side: Initialization Complete\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.fwh1.condense.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh1.condense.cold_side: Initialization Complete\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.fwh1.condense: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh1.condense: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.fwh1.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh1.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.fwh1: Condensing hot side inlet delta T = 12.513326095291399\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh1: Condensing hot side inlet delta T = 12.513326095276463\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.fwh1: Condensing hot side outlet delta T = 29.430878499201064\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh1: Condensing hot side outlet delta T = 29.430878499189813\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.fwh1: Steam Flow = 1345.0635216261717\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh1: Steam Flow = 1345.0635216258854\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.fwh1: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh1: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: WARNING: model contains export suffix 'scaling_factor' that contains 3\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: WARNING: model contains export suffix\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: 'fs.fwh1_pump.control_volume.properties_out[0.0].scaling_factor' that contains\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: WARNING: model contains export suffix 'scaling_factor' that contains 120 keys\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: 60 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: WARNING: model contains export suffix\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: 'fs.fwh1_pump.control_volume.properties_in[0.0].scaling_factor' that contains\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: tol=1e-06\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: 63 component keys that are not exported as part of the NL file. Skipping.\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: max_iter=200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: tol=1e-06\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: max_iter=200\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: ******************************************************************************\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: ******************************************************************************\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: For more information visit http://projects.coin-or.org/Ipopt\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: This version of Ipopt was compiled from source code available at\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: For more information visit http://projects.coin-or.org/Ipopt\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: This version of Ipopt was compiled from source code available at\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: for large-scale scientific computation. All technical papers, sales and\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: publicity material resulting from use of the HSL codes within IPOPT must\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: contain the following acknowledgement:\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: for large-scale scientific computation. All technical papers, sales and\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: HSL, a collection of Fortran codes for large-scale scientific\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: publicity material resulting from use of the HSL codes within IPOPT must\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: computation. See http://www.hsl.rl.ac.uk.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: contain the following acknowledgement:\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: ******************************************************************************\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: HSL, a collection of Fortran codes for large-scale scientific\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: computation. See http://www.hsl.rl.ac.uk.\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: This is Ipopt version 3.13.2, running with linear solver ma27.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: ******************************************************************************\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Number of nonzeros in equality constraint Jacobian...: 9\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: This is Ipopt version 3.13.2, running with linear solver ma27.\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Number of nonzeros in inequality constraint Jacobian.: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Number of nonzeros in Lagrangian Hessian.............: 4\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Number of nonzeros in equality constraint Jacobian...: 9\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Number of nonzeros in inequality constraint Jacobian.: 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Total number of variables............................: 5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Number of nonzeros in Lagrangian Hessian.............: 4\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: variables with only lower bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: variables with lower and upper bounds: 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Total number of variables............................: 5\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: variables with only upper bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: variables with only lower bounds: 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Total number of equality constraints.................: 5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: variables with lower and upper bounds: 2\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Total number of inequality constraints...............: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: variables with only upper bounds: 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: inequality constraints with only lower bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Total number of equality constraints.................: 5\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: inequality constraints with lower and upper bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Total number of inequality constraints...............: 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: inequality constraints with only upper bounds: 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: inequality constraints with only lower bounds: 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: inequality constraints with lower and upper bounds: 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: inequality constraints with only upper bounds: 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: 0 0.0000000e+00 5.66e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: 1 0.0000000e+00 1.11e-16 2.21e-07 -1.0 5.66e+06 - 9.90e-01 1.00e+00h 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: 0 0.0000000e+00 5.66e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Number of Iterations....: 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: 1 0.0000000e+00 1.11e-16 2.21e-07 -1.0 5.66e+06 - 9.90e-01 1.00e+00h 1\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: (scaled) (unscaled)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Number of Iterations....: 1\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: (scaled) (unscaled)\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Constraint violation....: 1.1102230246251565e-16 1.1102230246251565e-16\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Overall NLP error.......: 1.1102230246251565e-16 1.1102230246251565e-16\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Constraint violation....: 1.1102230246251565e-16 1.1102230246251565e-16\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Overall NLP error.......: 1.1102230246251565e-16 1.1102230246251565e-16\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Number of objective function evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Number of objective gradient evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Number of equality constraint evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Number of objective function evaluations = 2\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Number of inequality constraint evaluations = 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Number of objective gradient evaluations = 2\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Number of equality constraint Jacobian evaluations = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Number of equality constraint evaluations = 2\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Number of inequality constraint Jacobian evaluations = 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Number of inequality constraint evaluations = 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Number of Lagrangian Hessian evaluations = 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Number of equality constraint Jacobian evaluations = 2\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Total CPU secs in IPOPT (w/o function evaluations) = 0.009\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Number of inequality constraint Jacobian evaluations = 0\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: Total CPU secs in NLP function evaluations = 0.000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Number of Lagrangian Hessian evaluations = 1\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Total CPU secs in IPOPT (w/o function evaluations) = 0.006\n" + "2025-03-17 17:34:59 [DEBUG] idaes.solve.fs.fwh1_pump: EXIT: Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: Total CPU secs in NLP function evaluations = 0.000\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.fwh1_return: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: \n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.fwh2.desuperheat.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [DEBUG] idaes.solve.fs.fwh1_pump: EXIT: Optimal Solution Found.\n" + "2025-03-17 17:34:59 [INFO] idaes.init.fs.fwh2.desuperheat.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh1_return: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh2.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh2.desuperheat.hot_side: Initialization Complete\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh2.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh2.desuperheat.cold_side: Initialization Complete\n" + "2025-03-17 17:35:00 [WARNING] idaes.init.fs.fwh2: The steam sat. temperature (335.2272258893377) is near the feedwater inlet temperature (318.02261253782166)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh2.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh2.condense.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh2.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh2.condense.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [WARNING] idaes.init.fs.fwh2: The steam sat. temperature (335.227225889338) is near the feedwater inlet temperature (318.02261253783706)\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh2.condense: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh2.condense.hot_side: Initialization Complete\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh2.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:36 [INFO] idaes.init.fs.fwh2.condense.cold_side: Initialization Complete\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh2.cooling.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:37 [INFO] idaes.init.fs.fwh2.condense: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh2.cooling.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:37 [INFO] idaes.init.fs.fwh2.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh2.cooling: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:37 [INFO] idaes.init.fs.fwh2.cooling.hot_side: Initialization Complete\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh2: Condensing hot side inlet delta T = 12.73124007739836\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:37 [INFO] idaes.init.fs.fwh2.cooling.cold_side: Initialization Complete\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh2: Condensing hot side outlet delta T = 17.002372103630485\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:37 [INFO] idaes.init.fs.fwh2.cooling: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh2: Steam Flow = 217.13965467977735\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:37 [INFO] idaes.init.fs.fwh2: Condensing hot side inlet delta T = 12.731240077383344\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh2: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:37 [INFO] idaes.init.fs.fwh2: Condensing hot side outlet delta T = 17.00237210361631\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh3.desuperheat.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:37 [INFO] idaes.init.fs.fwh2: Steam Flow = 217.13965467965426\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh3.desuperheat.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:37 [INFO] idaes.init.fs.fwh2: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh3.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:37 [INFO] idaes.init.fs.fwh3.desuperheat.hot_side: Initialization Complete\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh3.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:37 [INFO] idaes.init.fs.fwh3.desuperheat.cold_side: Initialization Complete\n" + "2025-03-17 17:35:00 [WARNING] idaes.init.fs.fwh3: The steam sat. temperature (347.7738554943195) is near the feedwater inlet temperature (323.03655083894466)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:38 [INFO] idaes.init.fs.fwh3.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh3.condense.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:38 [INFO] idaes.init.fs.fwh3.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh3.condense.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:38 [WARNING] idaes.init.fs.fwh3: The steam sat. temperature (347.7738554943195) is near the feedwater inlet temperature (323.03655083895876)\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh3.condense: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:38 [INFO] idaes.init.fs.fwh3.condense.hot_side: Initialization Complete\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh3.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:38 [INFO] idaes.init.fs.fwh3.condense.cold_side: Initialization Complete\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh3.cooling.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:38 [INFO] idaes.init.fs.fwh3.condense: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh3.cooling.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:38 [INFO] idaes.init.fs.fwh3.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" + "2025-03-17 17:35:00 [INFO] idaes.init.fs.fwh3.cooling: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:38 [INFO] idaes.init.fs.fwh3.cooling.hot_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh3: Condensing hot side inlet delta T = 20.206912020999226\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:38 [INFO] idaes.init.fs.fwh3.cooling.cold_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh3: Condensing hot side outlet delta T = 24.5035955629366\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:38 [INFO] idaes.init.fs.fwh3.cooling: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh3: Steam Flow = 217.4462771554057\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:39 [INFO] idaes.init.fs.fwh3: Condensing hot side inlet delta T = 20.206912020985854\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh3: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:39 [INFO] idaes.init.fs.fwh3: Condensing hot side outlet delta T = 24.503595562923753\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh4.desuperheat.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:39 [INFO] idaes.init.fs.fwh3: Steam Flow = 217.44627715533093\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh4.desuperheat.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:39 [INFO] idaes.init.fs.fwh3: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh4.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:39 [INFO] idaes.init.fs.fwh4.desuperheat.hot_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh4.condense.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:39 [INFO] idaes.init.fs.fwh4.desuperheat.cold_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh4.condense.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:40 [INFO] idaes.init.fs.fwh4.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh4.condense: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:40 [INFO] idaes.init.fs.fwh4.condense.hot_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh4.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:40 [INFO] idaes.init.fs.fwh4.condense.cold_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh4.cooling.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:40 [INFO] idaes.init.fs.fwh4.condense: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh4.cooling.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:40 [INFO] idaes.init.fs.fwh4.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh4.cooling: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:40 [INFO] idaes.init.fs.fwh4.cooling.hot_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh4: Condensing hot side inlet delta T = 39.43016001679878\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:40 [INFO] idaes.init.fs.fwh4.cooling.cold_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh4: Condensing hot side outlet delta T = 47.80805362178066\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:40 [INFO] idaes.init.fs.fwh4.cooling: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh4: Steam Flow = 247.42787053680715\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:40 [INFO] idaes.init.fs.fwh4: Condensing hot side inlet delta T = 39.4301600167788\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh4: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:40 [INFO] idaes.init.fs.fwh4: Condensing hot side outlet delta T = 47.808053621766945\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh5_da: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:40 [INFO] idaes.init.fs.fwh4: Steam Flow = 247.42787053670986\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh6.desuperheat.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:40 [INFO] idaes.init.fs.fwh4: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh6.desuperheat.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:40 [INFO] idaes.init.fs.fwh5_da: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh6.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:40 [INFO] idaes.init.fs.fwh6.desuperheat.hot_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh6.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:40 [INFO] idaes.init.fs.fwh6.desuperheat.cold_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh6.condense.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh6.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh6.condense.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh6.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh6.condense: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh6.condense.hot_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh6.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh6.condense.cold_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh6.cooling.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh6.condense: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh6.cooling.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh6.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh6.cooling: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh6.cooling.hot_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh6: Condensing hot side inlet delta T = 45.08557769763464\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh6.cooling.cold_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh6: Condensing hot side outlet delta T = 72.43686375400229\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh6.cooling: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh6: Steam Flow = 2128.5569356298247\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh6: Condensing hot side inlet delta T = 45.08557769758456\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh6: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh6: Condensing hot side outlet delta T = 72.43686375394775\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh7.desuperheat.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh6: Steam Flow = 2128.5569356289825\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh7.desuperheat.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh6: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh7.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh7.desuperheat.hot_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh7.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh7.desuperheat.cold_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh7.condense.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh7.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh7.condense.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh7.drain_mix: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh7.condense: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh7.condense.hot_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh7.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh7.condense.cold_side: Initialization Complete\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh7.cooling.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:41 [INFO] idaes.init.fs.fwh7.condense: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:01 [INFO] idaes.init.fs.fwh7.cooling.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh7.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh7.cooling: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh7.cooling.hot_side: Initialization Complete\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh7: Condensing hot side inlet delta T = 72.40778629498362\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh7.cooling.cold_side: Initialization Complete\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh7: Condensing hot side outlet delta T = 98.78550984878194\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh7.cooling: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh7: Steam Flow = 3749.0680255320203\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh7: Condensing hot side inlet delta T = 72.40778629492878\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh7: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh7: Condensing hot side outlet delta T = 98.78550984873016\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh8.desuperheat.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh7: Steam Flow = 3749.068025531304\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh8.desuperheat.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh7: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh8.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh8.desuperheat.hot_side: Initialization Complete\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh8.condense.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh8.desuperheat.cold_side: Initialization Complete\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh8.condense.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh8.desuperheat: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh8.condense: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh8.condense.hot_side: Initialization Complete\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh8.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh8.condense.cold_side: Initialization Complete\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh8.cooling.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh8.condense: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh8.cooling.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh8.condense: Initialization Complete (w/ extraction calc): optimal - Optimal Solution Found\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh8.cooling: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh8.cooling.hot_side: Initialization Complete\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh8: Condensing hot side inlet delta T = 99.32852730884954\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh8.cooling.cold_side: Initialization Complete\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh8: Condensing hot side outlet delta T = 108.51918961637729\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh8.cooling: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh8: Steam Flow = 1487.8775467645535\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh8: Condensing hot side inlet delta T = 99.32852730878224\n" + "2025-03-17 17:35:02 [INFO] idaes.init.fs.fwh8: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh8: Condensing hot side outlet delta T = 108.51918961631927\n" + "2025-03-17 17:35:03 [INFO] idaes.init.Steam Cycle Model: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh8: Steam Flow = 1487.8775467636813\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", + "component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:42 [INFO] idaes.init.fs.fwh8: Initialization Complete: optimal - Optimal Solution Found\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 13500\n", + "keys that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:45 [INFO] idaes.init.Steam Cycle Model: Initialization Complete: optimal - Optimal Solution Found\n" + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 2341\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 1021\n", + "\n", + "Total number of variables............................: 858\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 444\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 858\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 3.73e-09 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + "\n", + "Number of Iterations....: 0\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 5.9117155615240335e-11 3.7252902984619141e-09\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 5.9117155615240335e-11 3.7252902984619141e-09\n", + "\n", + "\n", + "Number of objective function evaluations = 1\n", + "Number of objective gradient evaluations = 1\n", + "Number of equality constraint evaluations = 1\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 1\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 0\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.163\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" ] - }, + } + ], + "source": [ + "import pyomo.environ as pyo\n", + "from idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle import (\n", + " main,\n", + " pfd_result,\n", + ")\n", + "from idaes.core.util.tables import create_stream_table_dataframe\n", + "\n", + "m, solver = main()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Inside the model, there is a subblock ```fs```. This is an IDAES flowsheet model, which contains the supercritical steam cycle model. In the flowsheet, the model called ```turb``` is a multistage turbine model. The turbine model contains an expression for total power, ```power```. In this case the model is steady-state, but all IDAES models allow for dynamic simulation, and contain time indexes. Power is indexed by time, and only the \"0\" time point exists. By convention, in the IDAES framework, power going into a model is positive, so power produced by the turbine is negative. \n", + "\n", + "The property package used for this model uses SI (mks) units of measure, so the power is in Watts. Here a function is defined which can be used to report power output in MW." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, + "data": { + "text/plain": [ + "622.3884026414312" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Define a function to report gross power output in MW\n", + "def gross_power_mw(model):\n", + " # pyo.value(m.fs.turb.power[0]) is the power consumed in Watts\n", + " return -pyo.value(model.fs.turb.power[0]) / 1e6\n", + "\n", + "\n", + "# Show the gross power\n", + "gross_power_mw(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Change the model inputs\n", + "\n", + "The turbine in this example simulates partial arc admission with four arcs, so there are four throttle valves. For this example, we will close one of the valves to 25% open, and observe the result." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.turb.throttle_valve[1].valve_opening[:].value = 0.25" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we re-solve the model using the solver created by the ```supercritical_steam_cycle.py``` script." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 11\n", "component keys that are not exported as part of the NL file. Skipping.\n" ] }, @@ -4005,4650 +4151,236 @@ "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 13500\n", + "keys that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 2341\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 1021\n", + "\n", + "Total number of variables............................: 858\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 444\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 858\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 3.51e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + " 1 0.0000000e+00 3.46e-01 8.48e+01 -1.0 2.63e+07 - 9.82e-01 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + " 2 0.0000000e+00 3.41e-01 8.75e+01 -1.0 2.61e+07 - 9.83e-01 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + " 3 0.0000000e+00 3.35e-01 8.51e+01 -1.0 2.59e+07 - 9.88e-01 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + " 4 0.0000000e+00 3.30e-01 8.25e+01 -1.0 2.56e+07 - 9.88e-01 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + " 5 0.0000000e+00 3.25e-01 7.99e+01 -1.0 2.54e+07 - 9.92e-01 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + " 6 0.0000000e+00 3.20e-01 7.74e+01 -1.0 2.52e+07 - 1.00e+00 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + " 7 0.0000000e+00 3.15e-01 7.50e+01 -1.0 2.50e+07 - 1.00e+00 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + " 8 0.0000000e+00 3.10e-01 7.26e+01 -1.0 2.48e+07 - 1.00e+00 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + " 9 0.0000000e+00 3.05e-01 7.03e+01 -1.7 2.46e+07 - 1.00e+00 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 0.0000000e+00 3.00e-01 6.80e+01 -1.7 2.44e+07 - 1.00e+00 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + " 11 0.0000000e+00 2.96e-01 6.58e+01 -1.7 2.42e+07 - 1.00e+00 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + " 12 0.0000000e+00 2.91e-01 6.37e+01 -1.7 2.40e+07 - 1.00e+00 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" + " 13 0.0000000e+00 2.87e-01 6.17e+01 -1.7 2.37e+07 - 1.00e+00 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + " 14 0.0000000e+00 2.82e-01 5.96e+01 -1.7 2.35e+07 - 1.00e+00 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" + " 15 0.0000000e+00 2.78e-01 5.77e+01 -1.7 2.33e+07 - 1.00e+00 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" + " 16 0.0000000e+00 2.73e-01 5.58e+01 -1.7 2.31e+07 - 1.00e+00 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" + " 17 0.0000000e+00 2.69e-01 5.39e+01 -1.7 2.29e+07 - 1.00e+00 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + " 18 0.0000000e+00 2.65e-01 5.22e+01 -1.7 2.27e+07 - 1.00e+00 1.56e-02h 7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" + " 19 0.0000000e+00 5.87e+01 3.75e+03 -1.7 2.25e+07 - 1.00e+00 1.00e+00w 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 20 0.0000000e+00 2.58e+01 8.26e+01 -1.7 7.28e+06 - 1.00e+00 1.00e+00w 1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfpt.control_volume.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfpt.control_volume.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfp.control_volume.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfp.control_volume.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.mixed_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.feedwater_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.drain_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.steam_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_return.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_return.fwh1_drain_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_return.feedwater_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_pump.control_volume.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_pump.control_volume.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_pump.control_volume.scaling_factor' that contains 1 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.cond_pump.control_volume.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.cond_pump.control_volume.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.cond_pump.control_volume.scaling_factor' that contains 1 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.hotwell.mixed_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.hotwell.makeup_state[0.0].scaling_factor' that contains 62 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.hotwell.condensate_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.cold_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.cold_side.properties_in[0.0].scaling_factor' that contains 63\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.condenser.scaling_factor' that\n", - "contains 2 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser_mix.bfpt_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser_mix.main_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[11].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[11].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[11].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[10].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[10].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[10].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[8].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[8].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[8].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[4].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[4].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[4].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].outlet_3_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[5].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[5].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[5].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[7].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[7].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[7].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[4].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[4].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[4].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.outlet_stage.control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.outlet_stage.control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[11].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[11].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[10].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[10].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[9].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[9].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[8].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[8].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[7].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[7].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[6].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[6].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[5].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[5].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[4].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[3].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[2].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[1].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[10].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[10].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[9].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[9].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[8].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[8].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[7].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[7].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[6].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[6].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[5].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[5].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[4].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[3].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[2].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[1].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[7].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[7].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[6].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[6].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[5].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[5].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[4].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[3].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[2].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[1].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_4_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_3_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[4].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[3].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[2].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[1].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[4].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[4].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[3].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[3].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[2].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[2].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[1].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[1].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_4_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_3_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.mixed_state[0.0].scaling_factor' that contains 62\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 2341\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 1021\n", - "\n", - "Total number of variables............................: 858\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 444\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 858\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 2.79e-09 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - "\n", - "Number of Iterations....: 0\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 9.9134922493249178e-11 2.7939677238464351e-09\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 9.9134922493249178e-11 2.7939677238464351e-09\n", - "\n", - "\n", - "Number of objective function evaluations = 1\n", - "Number of objective gradient evaluations = 1\n", - "Number of equality constraint evaluations = 1\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 1\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.297\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "import pyomo.environ as pyo\n", - "from idaes.models_extra.power_generation.flowsheets.supercritical_steam_cycle import (\n", - " main,\n", - " pfd_result,\n", - ")\n", - "from idaes.core.util.tables import create_stream_table_dataframe\n", - "\n", - "m, solver = main()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Inside the model, there is a subblock ```fs```. This is an IDAES flowsheet model, which contains the supercritical steam cycle model. In the flowsheet, the model called ```turb``` is a multistage turbine model. The turbine model contains an expression for total power, ```power```. In this case the model is steady-state, but all IDAES models allow for dynamic simulation, and contain time indexes. Power is indexed by time, and only the \"0\" time point exists. By convention, in the IDAES framework, power going into a model is positive, so power produced by the turbine is negative. \n", - "\n", - "The property package used for this model uses SI (mks) units of measure, so the power is in Watts. Here a function is defined which can be used to report power output in MW." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "622.3884026414165" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Define a function to report gross power output in MW\n", - "def gross_power_mw(model):\n", - " # pyo.value(m.fs.turb.power[0]) is the power consumed in Watts\n", - " return -pyo.value(model.fs.turb.power[0]) / 1e6\n", - "\n", - "\n", - "# Show the gross power\n", - "gross_power_mw(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Change the model inputs\n", - "\n", - "The turbine in this example simulates partial arc admission with four arcs, so there are four throttle valves. For this example, we will close one of the valves to 25% open, and observe the result." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.turb.throttle_valve[1].valve_opening[:].value = 0.25" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we re-solve the model using the solver created by the ```supercritical_steam_cycle.py``` script." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh8.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh7.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh6.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfpt.control_volume.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfpt.control_volume.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfp.control_volume.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.bfp.control_volume.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.mixed_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.feedwater_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.drain_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh5_da.steam_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh4.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh3.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.cold_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.cooling.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.cold_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.cold_side.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.hot_side.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.desuperheat.hot_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh2.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_return.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_return.fwh1_drain_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_return.feedwater_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_pump.control_volume.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_pump.control_volume.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1_pump.control_volume.scaling_factor' that contains 1 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.drain_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.drain_mix.drain_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.drain_mix.steam_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.cold_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.cold_side.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.hot_side.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.fwh1.condense.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.cond_pump.control_volume.properties_out[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.cond_pump.control_volume.properties_in[0.0].scaling_factor' that contains\n", - "60 component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.cond_pump.control_volume.scaling_factor' that contains 1 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.hotwell.mixed_state[0.0].scaling_factor' that contains 60 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.hotwell.makeup_state[0.0].scaling_factor' that contains 62 component keys\n", - "that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.hotwell.condensate_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.cold_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.cold_side.properties_in[0.0].scaling_factor' that contains 63\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.hot_side.properties_out[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser.hot_side.properties_in[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'fs.condenser.scaling_factor' that\n", - "contains 2 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser_mix.bfpt_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.condenser_mix.main_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[11].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[11].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[11].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[10].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[10].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[10].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[8].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[8].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[8].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[4].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[4].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_split[4].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].outlet_3_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[10].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[5].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[5].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_split[5].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[7].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[7].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[7].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[4].outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[4].outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_split[4].mixed_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.outlet_stage.control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.outlet_stage.control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[11].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[11].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[10].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[10].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[9].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[9].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[8].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[8].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[7].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[7].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[6].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[6].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[5].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[5].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[4].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[3].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[2].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[1].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.lp_stages[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[10].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[10].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[9].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[9].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[8].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[8].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[7].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[7].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[6].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[6].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[5].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[5].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[4].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[3].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[2].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[1].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.ip_stages[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[7].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[7].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[6].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[6].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[5].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[5].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[4].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[3].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[2].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[1].control_volume.properties_out[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.hp_stages[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.mixed_state[0.0].scaling_factor' that contains 60 component\n", - "keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_4_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_3_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_mix.inlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[4].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[4].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[3].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[3].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[2].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[2].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[1].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_stage[1].control_volume.properties_in[0.0].scaling_factor' that\n", - "contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[4].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[4].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[3].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[3].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[2].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[2].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[1].control_volume.properties_out[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.throttle_valve[1].control_volume.properties_in[0.0].scaling_factor'\n", - "that contains 60 component keys that are not exported as part of the NL file.\n", - "Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_4_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_3_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_2_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.outlet_1_state[0.0].scaling_factor' that contains 60\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix\n", - "'fs.turb.inlet_split.mixed_state[0.0].scaling_factor' that contains 62\n", - "component keys that are not exported as part of the NL file. Skipping.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 2341\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 1021\n", - "\n", - "Total number of variables............................: 858\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 444\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 858\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 3.51e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 1 0.0000000e+00 3.46e-01 8.48e+01 -1.0 2.63e+07 - 9.82e-01 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 2 0.0000000e+00 3.41e-01 8.75e+01 -1.0 2.61e+07 - 9.83e-01 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 3 0.0000000e+00 3.35e-01 8.51e+01 -1.0 2.59e+07 - 9.88e-01 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 4 0.0000000e+00 3.30e-01 8.25e+01 -1.0 2.56e+07 - 9.88e-01 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 5 0.0000000e+00 3.25e-01 7.99e+01 -1.0 2.54e+07 - 9.92e-01 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 6 0.0000000e+00 3.20e-01 7.74e+01 -1.0 2.52e+07 - 1.00e+00 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 7 0.0000000e+00 3.15e-01 7.50e+01 -1.0 2.50e+07 - 1.00e+00 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 8 0.0000000e+00 3.10e-01 7.26e+01 -1.0 2.48e+07 - 1.00e+00 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 9 0.0000000e+00 3.05e-01 7.03e+01 -1.7 2.46e+07 - 1.00e+00 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 0.0000000e+00 3.00e-01 6.80e+01 -1.7 2.44e+07 - 1.00e+00 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 11 0.0000000e+00 2.96e-01 6.58e+01 -1.7 2.42e+07 - 1.00e+00 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 12 0.0000000e+00 2.91e-01 6.37e+01 -1.7 2.40e+07 - 1.00e+00 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 13 0.0000000e+00 2.87e-01 6.17e+01 -1.7 2.37e+07 - 1.00e+00 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 14 0.0000000e+00 2.82e-01 5.96e+01 -1.7 2.35e+07 - 1.00e+00 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 15 0.0000000e+00 2.78e-01 5.77e+01 -1.7 2.33e+07 - 1.00e+00 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 16 0.0000000e+00 2.73e-01 5.58e+01 -1.7 2.31e+07 - 1.00e+00 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 17 0.0000000e+00 2.69e-01 5.39e+01 -1.7 2.29e+07 - 1.00e+00 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 18 0.0000000e+00 2.65e-01 5.22e+01 -1.7 2.27e+07 - 1.00e+00 1.56e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 19 0.0000000e+00 5.87e+01 3.75e+03 -1.7 2.25e+07 - 1.00e+00 1.00e+00w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 0.0000000e+00 2.58e+01 8.24e+01 -1.7 7.28e+06 - 1.00e+00 1.00e+00w 1\n", - " 21 0.0000000e+00 1.46e-01 5.49e-01 -1.7 5.67e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 22 0.0000000e+00 4.29e-06 4.85e-05 -1.7 3.35e+03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 22\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 3.6219717003405094e-08 4.2896717786788940e-06\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 3.6219717003405094e-08 4.2896717786788940e-06\n", - "\n", - "\n", - "Number of objective function evaluations = 203\n", - "Number of objective gradient evaluations = 23\n", - "Number of equality constraint evaluations = 203\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 23\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 22\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.413\n", - "Total CPU secs in NLP function evaluations = 58.164\n", - "\n", - "EXIT: Optimal Solution Found.\n" + " 21 0.0000000e+00 1.46e-01 5.49e-01 -1.7 5.67e+05 - 1.00e+00 1.00e+00h 1\n", + " 22 0.0000000e+00 4.29e-06 4.86e-05 -1.7 3.35e+03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 22\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 3.6219717003405094e-08 4.2943283915519714e-06\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 3.6219717003405094e-08 4.2943283915519714e-06\n", + "\n", + "\n", + "Number of objective function evaluations = 203\n", + "Number of objective gradient evaluations = 23\n", + "Number of equality constraint evaluations = 203\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 23\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 22\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.221\n", + "Total CPU secs in NLP function evaluations = 32.398\n", + "\n", + "EXIT: Optimal Solution Found.\n" ] }, { "data": { "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 858, 'Number of variables': 858, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 58.77723503112793}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 858, 'Number of variables': 858, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 32.85140347480774}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -8666,16 +4398,16 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "594.6634894062614" + "594.6634894062742" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -8695,7 +4427,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -8708,7 +4440,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -9262,7 +4994,7 @@ " T:\n", " P:\n", " x:\n", - " 0.000\n", + " -0.000\n", " F:\n", " \n", " \n", @@ -9662,11 +5394,7 @@ "" ] }, - "metadata": { - "filenames": { - "image/svg+xml": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\power_gen\\supercritical\\supercritical_steam_cycle_doc_15_0.svg" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -9677,7 +5405,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": { "scrolled": true }, @@ -10029,8 +5757,8 @@ " \n", " \n", " MAKEUP_01\n", - " 0.0\n", - " 0.0\n", + " -0.0\n", + " -0.0\n", " 306.248085\n", " 101325\n", " 0.0\n", @@ -10158,7 +5886,7 @@ "FWH6_DRN 3913.89602 70.509886 449.769309 \n", "FWH7_DRN 3041.163589 54.787377 512.845012 \n", "FWH8_DRN 1785.002753 32.157303 547.774255 \n", - "MAKEUP_01 0.0 0.0 306.248085 \n", + "MAKEUP_01 -0.0 -0.0 306.248085 \n", "RHT_COLD 20490.063288 369.133981 597.344823 \n", "RHT_HOT 20490.063288 369.133981 866.0 \n", "STEAM_LP 16866.348 303.851779 523.019743 \n", @@ -10217,7 +5945,7 @@ "condenser_mix_to_condenser 3903.244367 0.95998 44236.940998 " ] }, - "execution_count": 9, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -10251,7 +5979,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle_test.ipynb b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle_test.ipynb index afb2be97..9bafa66f 100644 --- a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle_test.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle_test.ipynb @@ -1,5 +1,31 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle_usr.ipynb b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle_usr.ipynb index afb2be97..9bafa66f 100644 --- a/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle_usr.ipynb +++ b/idaes_examples/notebooks/docs/power_gen/supercritical/supercritical_steam_cycle_usr.ipynb @@ -1,5 +1,31 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages.ipynb b/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages.ipynb index 70fc2e64..87d4b8a1 100644 --- a/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages.ipynb +++ b/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages_doc.ipynb b/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages_doc.ipynb index fa2a58ca..81606c90 100644 --- a/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages_doc.ipynb +++ b/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -146,7 +147,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "c:\\users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\mod\\properties\\thermophysical_property_example.py\n" + "/home/dang/src/dangunter/examples/idaes_examples/mod/properties/thermophysical_property_example.py\n" ] } ], @@ -1072,7 +1073,16 @@ "cell_type": "code", "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: Params with units must be mutable. Converting Param\n", + "'fs.thermo_props.mw_comp' to mutable.\n" + ] + } + ], "source": [ "m = ConcreteModel()\n", "\n", @@ -1236,14 +1246,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:26 [INFO] idaes.init.fs.state: Properties Initialized optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:41 [INFO] idaes.init.fs.state: Properties Initialized optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:26 [INFO] idaes.init.fs.state: Initialization Complete\n" + "2025-03-17 17:35:41 [INFO] idaes.init.fs.state: Initialization Complete\n" ] }, { @@ -1460,9 +1470,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages_test.ipynb b/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages_test.ipynb index 41a3b535..b72cf89b 100644 --- a/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages_test.ipynb +++ b/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -34,7 +35,7 @@ "Maintainer: Andrew Lee \n", "Updated: 2023-06-01 \n", "\n", - "Calculation of thermophysical, transport and reaction properties form a key part of any process model, and it is important that these calculations are both accurate and tractable in order for the overall problem to be solved correctly. One of the features of the IDAES Integrated Platform is the ability for modelers to create their own property “packages” to calculate these properties, allowing them to customize the level of complexity and rigor to suit each application. This tutorial will introduce you to the basics of creating property packages for calculating thermophysical and transport properties within the IDAES Core Modeling Framework.\n", + "Calculation of thermophysical, transport and reaction properties form a key part of any process model, and it is important that these calculations are both accurate and tractable in order for the overall problem to be solved correctly. One of the features of the IDAES Integrated Platform is the ability for modelers to create their own property \u201cpackages\u201d to calculate these properties, allowing them to customize the level of complexity and rigor to suit each application. This tutorial will introduce you to the basics of creating property packages for calculating thermophysical and transport properties within the IDAES Core Modeling Framework.\n", "\n", "## What is a Property?\n", "\n", @@ -50,7 +51,7 @@ "* transport properties such as viscosity and thermal conductivity\n", "* rates of reaction and chemical equilibria\n", "\n", - "The definition and calculation of all of these is defined via “property packages”, which contain all the variables and constraints associated with calculating these properties.\n", + "The definition and calculation of all of these is defined via \u201cproperty packages\u201d, which contain all the variables and constraints associated with calculating these properties.\n", "\n", "
\n", "Note:\n", @@ -67,19 +68,19 @@ "\n", "## What Properties do I Need?\n", "\n", - "An important aspect of the IDAES Core Modeling Framework is that a modeler only needs to provide calculations for those properties that they will use within their process. Put another way, modelers do not need to include calculations for a property that they are not going to use in their model – this allows modelers to avoid introducing unnecessary complexity into their models to calculate a property they do not actually need. When combined with flexibility elsewhere in the modeling framework to control which equations are written in the unit models, this can even allow users to avoid calculating properties that would normally be considered mandatory – for example, a property package for a conceptual design flowsheet which does not include energy or momentum balances would not need to define specific enthalpy or even temperature and pressure as these will not be required by the unit models.\n", + "An important aspect of the IDAES Core Modeling Framework is that a modeler only needs to provide calculations for those properties that they will use within their process. Put another way, modelers do not need to include calculations for a property that they are not going to use in their model \u2013 this allows modelers to avoid introducing unnecessary complexity into their models to calculate a property they do not actually need. When combined with flexibility elsewhere in the modeling framework to control which equations are written in the unit models, this can even allow users to avoid calculating properties that would normally be considered mandatory \u2013 for example, a property package for a conceptual design flowsheet which does not include energy or momentum balances would not need to define specific enthalpy or even temperature and pressure as these will not be required by the unit models.\n", "\n", "This then raises the question of how do you know what properties you will need, especially if you are using models from a library you did not write yourself. To answer this, you should refer to the model documentation, and you can also use the [IDAES Properties Interrogator tool](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/interrogator.html) to analyze your flowsheet and determine what properties are required.\n", "\n", "## Thermophysical Properties and Reaction Properties\n", "\n", - "Within the IDAES Core Modeling Framework, properties are divided into two classifications; thermophysical properties and reaction properties. Reaction properties are those properties related to chemical reactions (both equilibrium and rate-based, but not phase equilibrium) that occur within the system , whilst thermophysical properties include those properties related to thermodynamic relationships (including phase equilibrium) and transport properties. The reason for this separation is that thermophysical properties are required by all unit operations in a process (and need to be consistent with each other), whilst reaction properties are generally only required in specific unit operations identified as “reactors” (and each reactor may have a different set of chemical reactions occurring in it). Thus, reaction properties are separated from the thermophysical property calculations to allow for modular implementation in only specific reactor units. This tutorial only deals with thermophysical properties, and reaction properties will be dealt with in a later tutorial.\n", + "Within the IDAES Core Modeling Framework, properties are divided into two classifications; thermophysical properties and reaction properties. Reaction properties are those properties related to chemical reactions (both equilibrium and rate-based, but not phase equilibrium) that occur within the system , whilst thermophysical properties include those properties related to thermodynamic relationships (including phase equilibrium) and transport properties. The reason for this separation is that thermophysical properties are required by all unit operations in a process (and need to be consistent with each other), whilst reaction properties are generally only required in specific unit operations identified as \u201creactors\u201d (and each reactor may have a different set of chemical reactions occurring in it). Thus, reaction properties are separated from the thermophysical property calculations to allow for modular implementation in only specific reactor units. This tutorial only deals with thermophysical properties, and reaction properties will be dealt with in a later tutorial.\n", "\n", - "## What is a Property “Package”?\n", + "## What is a Property \u201cPackage\u201d?\n", "\n", - "Generally, properties (both thermophysical and reaction) are calculated using correlations that depend on some set of parameters (be they physical constants or empirical parameters). These parameters are constant across all instances of a property calculation in a flowsheet (i.e. each StateBlock uses the same parameters), it makes sense to store these parameters in a single, central location that all StateBlocks can refer to as necessary. Thus, the IDAES modeling framework has “Parameter Blocks” which are attached to the flowsheet to contain all the global parameters associated with a given set of property calculations.\n", + "Generally, properties (both thermophysical and reaction) are calculated using correlations that depend on some set of parameters (be they physical constants or empirical parameters). These parameters are constant across all instances of a property calculation in a flowsheet (i.e. each StateBlock uses the same parameters), it makes sense to store these parameters in a single, central location that all StateBlocks can refer to as necessary. Thus, the IDAES modeling framework has \u201cParameter Blocks\u201d which are attached to the flowsheet to contain all the global parameters associated with a given set of property calculations.\n", "\n", - "Thus, the calculations of thermophysical properties within the IDAES modeling framework is achieved using a “package” of three related modeling components (or classes); the Physical Parameter Block, the State Block and the State Block Data classes. Each of these will be discussed further in the next section as we develop an example property package.\n", + "Thus, the calculations of thermophysical properties within the IDAES modeling framework is achieved using a \u201cpackage\u201d of three related modeling components (or classes); the Physical Parameter Block, the State Block and the State Block Data classes. Each of these will be discussed further in the next section as we develop an example property package.\n", "\n", "At a deeper level, the calculation for many thermophysical properties is a self-contained correlation that is more or less independent of the other properties around it. Thus, each set of thermophysical property calculations is a package of user-chosen sub-models for each property of interest to the user.\n", "\n", @@ -232,7 +233,7 @@ "\n", "The first step is to define the units of measurement for the property package, which will in turn be inherited by any unit model using this property package. Units of measurement for the property package are defined by setting units for the 7 base measurement quantities; time, length, mass, amount, temperature, current and luminous intensity (as current and luminous intensity are generally of lesser importance in process systems engineering, specifying units for these base quantities is optional). Within IDAES, units are specified using Pyomo's units of measurement features, which can be imported from `pyomo.environ`. For this example, the units of measurement features were given the name `pyunits` for clarity.\n", "\n", - "The units of measurement for all other quantities in the model can then be derived from these base quantities; for example the units of energy are `mass*length^2/time^2`. The framework expects all quantities in the property package to use these base units – the Pyomo units of measurement conversion tools can be used if conversion between different sets of units are required.\n", + "The units of measurement for all other quantities in the model can then be derived from these base quantities; for example the units of energy are `mass*length^2/time^2`. The framework expects all quantities in the property package to use these base units \u2013 the Pyomo units of measurement conversion tools can be used if conversion between different sets of units are required.\n", "\n", "In order to set the base units, we need to create a dictionary which has each of the base quantities as a key, and provide a Pyomo recognized unit as the value as shown below." ] @@ -258,7 +259,7 @@ "source": [ "## Step 2: Define Supported Properties\n", "\n", - "The next step is to provide some metadata defining what properties are supported by the property package (including state variables). The first purpose of this metadata is to record a summary of what properties are supported to help user identify whether a given property package is suitable for their needs. The second purpose of the metadata is to allow us to simplify our property calculations by only construction those properties that are actually required by a given unit operation – a property package needs to support all the properties required by a process flowsheet, but not all of those properties are required in every unit operation. Thus, the IDAES modeling framework supports a “build-on-demand” approach for properties, such that only those properties that are required are constructed at any given point.\n", + "The next step is to provide some metadata defining what properties are supported by the property package (including state variables). The first purpose of this metadata is to record a summary of what properties are supported to help user identify whether a given property package is suitable for their needs. The second purpose of the metadata is to allow us to simplify our property calculations by only construction those properties that are actually required by a given unit operation \u2013 a property package needs to support all the properties required by a process flowsheet, but not all of those properties are required in every unit operation. Thus, the IDAES modeling framework supports a \u201cbuild-on-demand\u201d approach for properties, such that only those properties that are required are constructed at any given point.\n", "\n", "This is achieved through the use of the properties metadata, where for each property supported by the property package the user needs to define a `method` argument. This argument can take one of two forms:\n", "\n", @@ -327,9 +328,9 @@ "
\n", "Param or Var:\n", "\n", - "The most obvious way to declare a \"parameter\" in a model would appear to be to use the Pyomo `Param` object. However, modelers should be aware the `Param` objects are never seen by the solver (they are converted to fixed floating point numbers by the solver writer). This means that it is not possible to use a solver to find the value for a parameter – i.e., it is not possible to use `Param` objects in a parameter estimation problem.\n", + "The most obvious way to declare a \"parameter\" in a model would appear to be to use the Pyomo `Param` object. However, modelers should be aware the `Param` objects are never seen by the solver (they are converted to fixed floating point numbers by the solver writer). This means that it is not possible to use a solver to find the value for a parameter \u2013 i.e., it is not possible to use `Param` objects in a parameter estimation problem.\n", "\n", - "Instead, modelers should use fixed `Var` objects for any parameter that may need to be estimated at some point. Within IDAES, this means that most “parameters” are in fact declared as `Var` objects, with `Param` objects used only for parameters with well-known values (for example critical pressures and temperatures or molecular weights).\n", + "Instead, modelers should use fixed `Var` objects for any parameter that may need to be estimated at some point. Within IDAES, this means that most \u201cparameters\u201d are in fact declared as `Var` objects, with `Param` objects used only for parameters with well-known values (for example critical pressures and temperatures or molecular weights).\n", "
\n", "\n", "For this example, the first parameters we need to define are the reference state for our property calculations along with the molecular weights of each of the components of interest. These are fixed parameters that should not be estimated by parameter estimation, so we create Pyomo `Param` objects to represent each of these, as shown below. When we declare a `Param`, we also need to define a default value and the units of measurement for each parameter. Note that the units of measurement for these parameters does not necessarily need to match those defined in the properties metadata, but if they are not consistent then a unit conversion will be required at some point when calculating property values.\n", @@ -371,15 +372,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "For this example, we also need to define the parameter associated with calculating the specific enthalpy of each component. As mentioned before, we will use the correlation proposed in “The Properties of Gases and Liquids, 4th Edition” by Reid, Prausnitz and Polling (1987), which has the form:\n", + "For this example, we also need to define the parameter associated with calculating the specific enthalpy of each component. As mentioned before, we will use the correlation proposed in \u201cThe Properties of Gases and Liquids, 4th Edition\u201d by Reid, Prausnitz and Polling (1987), which has the form:\n", "\n", "\\begin{equation*}\n", - "h_j – h_{j, ref}= A_j \\times (T-T_{ref}) + \\frac{B_j}{2}\\times (T^2-T_{ref}^2) + \\frac{C_j}{3}\\times (T^3-T_{ref}^3) + \\frac{D_j}{4}\\times (T^4-T_{ref}^4)\n", + "h_j \u2013 h_{j, ref}= A_j \\times (T-T_{ref}) + \\frac{B_j}{2}\\times (T^2-T_{ref}^2) + \\frac{C_j}{3}\\times (T^3-T_{ref}^3) + \\frac{D_j}{4}\\times (T^4-T_{ref}^4)\n", "\\end{equation*}\n", "\n", - "where $h_{j, ref}$ is the standard heat of formation of component $j$ in the vapor phase, and $A_j$, $B_j$, $C_j$, and $D_j$ are component-specific parameters in the correlation. At first glance, one might ask if we could declare a single object indexed by the list `[“A”, “B”, “C”, “D”]` and component to represent all the parameters as a single object; however it must be noted that the parameters $A$, $B$, $C$, and $D$ all have different units. Thus, we need to declare separate objects for each of $A$, $B$, $C$, and $D$ (along with $h_{ref}$) which are indexed by component so that we can assign the correct units to each.\n", + "where $h_{j, ref}$ is the standard heat of formation of component $j$ in the vapor phase, and $A_j$, $B_j$, $C_j$, and $D_j$ are component-specific parameters in the correlation. At first glance, one might ask if we could declare a single object indexed by the list `[\u201cA\u201d, \u201cB\u201d, \u201cC\u201d, \u201cD\u201d]` and component to represent all the parameters as a single object; however it must be noted that the parameters $A$, $B$, $C$, and $D$ all have different units. Thus, we need to declare separate objects for each of $A$, $B$, $C$, and $D$ (along with $h_{ref}$) which are indexed by component so that we can assign the correct units to each.\n", "\n", - "However, these parameters are mostly empirical and are values that we may wish to estimate at some point, thus we will declare these as Pyomo `Var` objects rather than `Param` objects, which also means that we must `fix` the value of these parameters when we construct the property package. This is shown in the code below – note that each parameters (`Var` object is fixed immediately after it is declared)." + "However, these parameters are mostly empirical and are values that we may wish to estimate at some point, thus we will declare these as Pyomo `Var` objects rather than `Param` objects, which also means that we must `fix` the value of these parameters when we construct the property package. This is shown in the code below \u2013 note that each parameters (`Var` object is fixed immediately after it is declared)." ] }, { @@ -478,9 +479,9 @@ "\n", "First, we need to declare our new class and give it a unique name. In this example, we will call our new class `HDAParameterBlock`. The first two lines of the example below show how we declare our new class using the `declare_process_block_decorator` and inheriting from the `PhysicalParameterBlock` base class from the IDAES Core model libraries. Inheriting from the `PhysicalParameterBlock` brings us access to all the necessary features required by the IDAES modeling framework, whilst the `declare_process_block_class` decorator performs some boilerplate operations to replicate the expected object structure of Pyomo. Further details on these components can be found in the IDAES documentation.\n", "\n", - "Next, we need to set up any configuration arguments we need for the property package. This is done using Pyomo “Config Blocks” which provide a convenient way of declaring, organizing and documenting configuration arguments. To begin with, we can inherit from the `CONFIG` block declared in the `PhysicalParameterBlock` base class, which provides all the arguments that the IDAES modeling framework expects to be present. Modelers can then add additional configuration arguments to provide users with options when constructing their property packages, however we will not cover that in this tutorial.\n", + "Next, we need to set up any configuration arguments we need for the property package. This is done using Pyomo \u201cConfig Blocks\u201d which provide a convenient way of declaring, organizing and documenting configuration arguments. To begin with, we can inherit from the `CONFIG` block declared in the `PhysicalParameterBlock` base class, which provides all the arguments that the IDAES modeling framework expects to be present. Modelers can then add additional configuration arguments to provide users with options when constructing their property packages, however we will not cover that in this tutorial.\n", "\n", - "The most significant part of any IDAES model class is the `build` method, which contains the instructions on how to construct an instance of the desired model and all IDAES models are expected to have a `build` method. The first step in any `build` method is to call `super().build()`, which will trigger the `build` method of the base class that the current class inherits from – this is important since this is how we automate construction of any underlying components required by the modeling framework and ensure that everything integrates smoothly. Next, a `PhysicalParameterBlock` needs to contain a pointer to the related `StateBlock` (which we will look at next) – this is used to allow us to build instances of the `StateBlock` by only knowing the `PhysicalParameterBlock` we wish to use. To do this, we create an attribute named `_state_block_class` attached to our class with a pointer to the `StateBlock` class; in this case `self._state_block_class = HDAStateBlock`, where `HDAStateBlock` is the name of the yet to be declared `StateBlock`. Finally, the `build` method needs to construct the actual parameters required for the property package, which we do here by calling the sub-methods written previously.\n", + "The most significant part of any IDAES model class is the `build` method, which contains the instructions on how to construct an instance of the desired model and all IDAES models are expected to have a `build` method. The first step in any `build` method is to call `super().build()`, which will trigger the `build` method of the base class that the current class inherits from \u2013 this is important since this is how we automate construction of any underlying components required by the modeling framework and ensure that everything integrates smoothly. Next, a `PhysicalParameterBlock` needs to contain a pointer to the related `StateBlock` (which we will look at next) \u2013 this is used to allow us to build instances of the `StateBlock` by only knowing the `PhysicalParameterBlock` we wish to use. To do this, we create an attribute named `_state_block_class` attached to our class with a pointer to the `StateBlock` class; in this case `self._state_block_class = HDAStateBlock`, where `HDAStateBlock` is the name of the yet to be declared `StateBlock`. Finally, the `build` method needs to construct the actual parameters required for the property package, which we do here by calling the sub-methods written previously.\n", "\n", "The final step in creating the `PhysicalParameterBlock` class is to declare a `classmethod` named `define_metadata` which takes two arguments; a class (`cls`) and an instance of that class (`obj`). This method in turn needs to call two pre-defined methods (inherited from the underlying base classes):\n", "\n", @@ -526,13 +527,13 @@ "\n", "After the `Physical Parameter Block` class has been created, the next step is to write the code necessary to create the State Blocks that will be used through out the flowsheet. Unlike other models however, creating a `State Block` actually required us to write two `classes`. In short, indexed Pyomo object components (e.g. `Vars` and `Blocks`) actually consist of two objects: an `IndexedComponent` object which serves as a container for multiple `ComponentData` objects which represent the component at each point in the indexing set. For example, a `Var` indexed by the `Set` `[1, 2, 3, 4]` actually consists of a single `IndexedVar` object which contains 4 `VarData` objects. Normally this behavior is hidden behind the `declare_process_block_data` decorator which handles the details of this structure (as a side note, unindexed components similarly involve two classes but this is hidden by the use of multiple inheritance.)\n", "\n", - "Normally, when we write models in IDAES, we are concerned only with the `ComponentData` object – i.e., the instructions on how to build an instance of the model at each indexed point (hence the naming convention used when declaring classes). However, State Blocks are slightly different in that we always expect State Blocks to be indexed (they will always be indexed by time, at a minimum). Due to this, we often want to perform actions on all the elements of the indexed `State Block` at once (rather than element by element), such as during initialization. Thus, we have a need to write methods that are attached to the `IndexedStateBlock` in addition to the normal methods for the `StateBlockData` object. Fortunately, the `declare_process_block_data` decorator facilitates this for us, but it does mean we need to declare two classes when creating State Blocks.\n", + "Normally, when we write models in IDAES, we are concerned only with the `ComponentData` object \u2013 i.e., the instructions on how to build an instance of the model at each indexed point (hence the naming convention used when declaring classes). However, State Blocks are slightly different in that we always expect State Blocks to be indexed (they will always be indexed by time, at a minimum). Due to this, we often want to perform actions on all the elements of the indexed `State Block` at once (rather than element by element), such as during initialization. Thus, we have a need to write methods that are attached to the `IndexedStateBlock` in addition to the normal methods for the `StateBlockData` object. Fortunately, the `declare_process_block_data` decorator facilitates this for us, but it does mean we need to declare two classes when creating State Blocks.\n", "\n", "For this example, we will begin by describing the content of the `StateBlockData` objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. After that, we will discuss how to create the class that contains methods to be applied to the `IndexedStateBlock` as a whole.\n", "\n", "## Step 5: Declare State Variables\n", "\n", - "The first step in defining a `State Block` is to create the “state variables” which will be used to define the “state” of the material at any given point. The concept of a “state variable” in IDAES is much the same as the concept in thermodynamics, with the exception that we include extensive flow information in the state definition in IDAES. In short, the “state variables” should be sufficient to fully define the state of the material (both extensive and intensive), and should result in a `State Block` with zero degrees of freedom if all the state variables are fixed.\n", + "The first step in defining a `State Block` is to create the \u201cstate variables\u201d which will be used to define the \u201cstate\u201d of the material at any given point. The concept of a \u201cstate variable\u201d in IDAES is much the same as the concept in thermodynamics, with the exception that we include extensive flow information in the state definition in IDAES. In short, the \u201cstate variables\u201d should be sufficient to fully define the state of the material (both extensive and intensive), and should result in a `State Block` with zero degrees of freedom if all the state variables are fixed.\n", "\n", "For this example, our state variables will be:\n", "\n", @@ -614,7 +615,7 @@ "2. by using an `Expression`, or,\n", "3. by using a `Reference`.\n", "\n", - "The different between the first two options is that an `Expression` does not appear in the problem passed to the solver – the `Expression` can be evaluated by the user and included in constraints in the same way as a variable, but when the problem is passed to the solver the `Expression` object is substituted for the expression it represents wherever it appears in the model. This means that there are fewer variables and constraints in the problem the solver sees, but that the constraints that do appear are more complex. There is no simple answer to which approach is best, and different applications may see better results with one form or the other. The third option, using a `Reference` is for cases where a property already exists elsewhere in the model, and we just want to create a local copy of the same object. In terms of properties, this most often occurs with fixed quantities which are declared in the Physical Parameter Block such as molecular weights. For the purposes of this example, we will demonstrate all of these approaches. \n", + "The different between the first two options is that an `Expression` does not appear in the problem passed to the solver \u2013 the `Expression` can be evaluated by the user and included in constraints in the same way as a variable, but when the problem is passed to the solver the `Expression` object is substituted for the expression it represents wherever it appears in the model. This means that there are fewer variables and constraints in the problem the solver sees, but that the constraints that do appear are more complex. There is no simple answer to which approach is best, and different applications may see better results with one form or the other. The third option, using a `Reference` is for cases where a property already exists elsewhere in the model, and we just want to create a local copy of the same object. In terms of properties, this most often occurs with fixed quantities which are declared in the Physical Parameter Block such as molecular weights. For the purposes of this example, we will demonstrate all of these approaches. \n", "\n", "You may recall from the initial problem statement that we have three properties of interest in this example:\n", "\n", @@ -658,7 +659,7 @@ "where $x_j$ is the mole fraction of component $j$. Recall that for this example we are using the following correlation for the component specific enthalpies.\n", "\n", "\\begin{equation*}\n", - "h_j – h_{j, ref}= A_j \\times (T-T_{ref}) + \\frac{B_j}{2}\\times (T^2-T_{ref}^2) + \\frac{C_j}{3}\\times (T^3-T_{ref}^3) + \\frac{D_j}{4}\\times (T^4-T_{ref}^4)\n", + "h_j \u2013 h_{j, ref}= A_j \\times (T-T_{ref}) + \\frac{B_j}{2}\\times (T^2-T_{ref}^2) + \\frac{C_j}{3}\\times (T^3-T_{ref}^3) + \\frac{D_j}{4}\\times (T^4-T_{ref}^4)\n", "\\end{equation*}\n", "\n", "For the specific enthalpy, we will create a Pyomo `Expression` rather than a `Var` and `Constraint`. In practice, this is much like creating a `Constraint`. However, rather than returning an equality between two expressions, an `Expression` requires a single numerical expression that can be used to compute the quantity of interest.\n", @@ -736,16 +737,16 @@ "\n", "### Writing the Initialization Routine\n", "\n", - "For initializing State Blocks, the first step is to get our model to a state where it has no degrees of freedom. As mentioned earlier, fixing all of the state variables should be sufficient to fully define the state of the material – i.e. no degrees of freedom. Additionally, we want to initialize our State Block at a set of conditions that are good initial guesses for the final state of the model once it is finally solved. Of course, the State Block has no way of knowing what these initial values should be, so we depend on the unit model (or the end-user) to provide us with a set of initial values to use – this is done through a `dict` which we generally call `state_args` where the keys are the names of the state variables and the values are the initial guesses.\n", + "For initializing State Blocks, the first step is to get our model to a state where it has no degrees of freedom. As mentioned earlier, fixing all of the state variables should be sufficient to fully define the state of the material \u2013 i.e. no degrees of freedom. Additionally, we want to initialize our State Block at a set of conditions that are good initial guesses for the final state of the model once it is finally solved. Of course, the State Block has no way of knowing what these initial values should be, so we depend on the unit model (or the end-user) to provide us with a set of initial values to use \u2013 this is done through a `dict` which we generally call `state_args` where the keys are the names of the state variables and the values are the initial guesses.\n", "\n", - "Before we start fixing the state variables, there is the possibility that all the state variables have already been fixed (e.g. by a the unit model during its own initialization routine). To allow us to save some time, we include a `state_vars_fixed` argument in our State Block initialization methods that lets the unit model tell us if the state variables are already fixed – if this is `True` then we know we can skip the step of checking the state variables ourselves. If `state_vars_fixed is False` however, then we need to go and fix all the state variables as part of our initialization routine. To save us the effort of having to code all of this ourselves, the IDAES toolkit contains a utility method named `fix_state_vars` (which we imported earlier), which takes the `state_args` `dict` and then iterates through all the state variables as defined by the State Block (using the `dict` we declared earlier in the `return_state_var_dict` sub-method). This method iterates through all the defined state variables and does the following:\n", + "Before we start fixing the state variables, there is the possibility that all the state variables have already been fixed (e.g. by a the unit model during its own initialization routine). To allow us to save some time, we include a `state_vars_fixed` argument in our State Block initialization methods that lets the unit model tell us if the state variables are already fixed \u2013 if this is `True` then we know we can skip the step of checking the state variables ourselves. If `state_vars_fixed is False` however, then we need to go and fix all the state variables as part of our initialization routine. To save us the effort of having to code all of this ourselves, the IDAES toolkit contains a utility method named `fix_state_vars` (which we imported earlier), which takes the `state_args` `dict` and then iterates through all the state variables as defined by the State Block (using the `dict` we declared earlier in the `return_state_var_dict` sub-method). This method iterates through all the defined state variables and does the following:\n", "\n", "1. If the variable is already fixed, it records this and does nothing. If a variable is already fixed, we assume it was fixed for a reason and that we should not change its value.\n", "2. If the variable is not fixed, this is recorded and the method then checks the `state_args` dict for an initial guess for the variable. If a value is found, the variable is fixed to this value; otherwise, the variable is fixed to its current value.\n", "\n", "Finally, the `fix_state_vars` method returns a `dict` that records which variables were fixed by the method, so that we can later reverse these changes. In the example below, we refer to this `dict` as `flags`.\n", "\n", - "At this point, all the state variables should now be fixed, but once again we have a small catch – if we fix all the state variables then we have a situation similar to the inlet of a unit where we cannot write a constraint on the sum of mole fractions and still solve the model. Thus we need to deactivate this constraint if it exists (remembering that this constraint will not exist in all State Blocks). We know that this constraint will only exist if `defined_state is False`, so we start by writing an `IF` statement to check for this and then use the Pyomo `deactivate()` method to deactivate the constraint (remembering that we will need to reactivate it later).\n", + "At this point, all the state variables should now be fixed, but once again we have a small catch \u2013 if we fix all the state variables then we have a situation similar to the inlet of a unit where we cannot write a constraint on the sum of mole fractions and still solve the model. Thus we need to deactivate this constraint if it exists (remembering that this constraint will not exist in all State Blocks). We know that this constraint will only exist if `defined_state is False`, so we start by writing an `IF` statement to check for this and then use the Pyomo `deactivate()` method to deactivate the constraint (remembering that we will need to reactivate it later).\n", "\n", "Before we move on however, it is probably a good idea to check the degrees of freedom to be sure that they are zero (as expected). There are a number of ways things could go wrong (e.g., the unit model said the state variables were fixed when not all of them were, or we missed a constraint we need to deactivate), so a quick check now might save someone a lot of pain in the future. We can use the IDAES `degrees_of_freedom` method to check the degrees of freedom of our State Block, and if this is not zero raise an `Exception` to let the user know something went wrong." ] @@ -788,7 +789,7 @@ "\n", "Before we call the solver, we first need to make sure there is actually something to solve; depending on how the State Block is written (e.g. build-on-demand properties and use of `Expressions`), it is sometimes possible that there are actually no `Constraints` to be solved in the model. If we try to send a problem like that to a solver, we will likely get back an error message which is not what we want to see. Whilst we know that our State Block will always contain at least one constraint (for mixture density), we will add a check here anyway to show how it is done. First ,we create a counter to keep track of the number of unfixed variables in the system, `free_vars`. Then we iterate over all the elements of the `blk` (the `IndexedStateBlock`) and check how many free variables are in each. We use the `number_unfixed_variables()` method from the `idaes.core.util.model_statistics` module to do this, and add the result `free_vars` for each element. If the final value of `free_vars` is not zero, then we know there is something to solve for and we can proceed to call a solver; otherwise we know that we can skip this step.\n", "\n", - "In order to solve the entire `IndexedStateBlock`, we need to do things slightly differently than normal. The standard Pyomo `SolverFactory` cannot be applied to indexed blocks, so instead we use the IDAES `solve_indexed_block` method (imported from `idaes.core.initialization`) which puts a wrapper around the indexed block so that we can use Pyomo’s solver interface. In order to use this method, we need to provide a Pyomo `SolverFactory` object (called `solver` here, which also includes any attached solver options) along with the `blk` we wish to solve and where to send the solver results (the `tee` argument). Additionally, we want the user to have the ability to control the output from the solver through the IDAES logger interface, which we do by wrapping the solver call with the following line of code:\n", + "In order to solve the entire `IndexedStateBlock`, we need to do things slightly differently than normal. The standard Pyomo `SolverFactory` cannot be applied to indexed blocks, so instead we use the IDAES `solve_indexed_block` method (imported from `idaes.core.initialization`) which puts a wrapper around the indexed block so that we can use Pyomo\u2019s solver interface. In order to use this method, we need to provide a Pyomo `SolverFactory` object (called `solver` here, which also includes any attached solver options) along with the `blk` we wish to solve and where to send the solver results (the `tee` argument). Additionally, we want the user to have the ability to control the output from the solver through the IDAES logger interface, which we do by wrapping the solver call with the following line of code:\n", "\n", "```\n", "with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:\n", @@ -796,7 +797,7 @@ "\n", "where `idaeslog` is an instance of the IDAES logger. Note that we send the solver output to this logger by setting `tee=slc`. In this way, all the output from the solver is passed into the logger allowing users to easily control the output level without needing to send additional arguments to the initialization methods.\n", "\n", - "If all goes well, the solver will successfully initialize our model and we can move on. However, sometimes the solver will fail catastrophically, in which case we need to make sure that our initialization routine can attempt to recover. In order to do this, we wrap the solver call within a Python `try/except` statement. This way, if the solver fails badly and returns an `Exception`, we can capture this and decide how to process – otherwise the execution of our model would terminate with the exception from the solver. In the case we encounter an `Exception` here, we will record `results=None` and try to continue with initializing our model in the hope that we can recover.\n", + "If all goes well, the solver will successfully initialize our model and we can move on. However, sometimes the solver will fail catastrophically, in which case we need to make sure that our initialization routine can attempt to recover. In order to do this, we wrap the solver call within a Python `try/except` statement. This way, if the solver fails badly and returns an `Exception`, we can capture this and decide how to process \u2013 otherwise the execution of our model would terminate with the exception from the solver. In the case we encounter an `Exception` here, we will record `results=None` and try to continue with initializing our model in the hope that we can recover.\n", "\n", "Finally, it is useful to provide the user with some feedback on how the initialization is proceeding. In the last lines below, we send a message to the IDAES logger with a message saying that the initialization step has been completed and append the final solver status." ] @@ -900,7 +901,7 @@ "As the name suggests, the `initialize` method is used to run the initialization routine for the State Block, and this is where we will use the `prepare_state`, `initialize_state` and `restore_state` methods we wrote previously. The `initialize` method requires the following arguments to be declared:\n", "\n", "* `blk`: this will be a pointer to an instance of the State Block to be initialized.\n", - "* `state_args`: this is used to pass the ‘dict’ of initial guesses to the initialization routine. This should default to `None` if not provided. The `fix_state_vars` method will interpret a value of `None` as no guesses provided as use the current values instead.\n", + "* `state_args`: this is used to pass the \u2018dict\u2019 of initial guesses to the initialization routine. This should default to `None` if not provided. The `fix_state_vars` method will interpret a value of `None` as no guesses provided as use the current values instead.\n", "* `solver`: this argument is used to allow tell the State Block to use a specific solver during initialization, and should be a string recognized by the Pyomo `SolverFactory`. We generally set this to `None` in order to signify that IDAES Should use the default solver (which is IPOPT).\n", "* `optarg`: this argument is used to set any solver options the user desires. Again this is generally set to `None` to indicate that the default solver settings should be used.\n", "* `state_vars_fixed`: argument to allow the unit model to inform the State Block that the state variables are already fixed. This should default to `False`.\n", @@ -959,13 +960,13 @@ "source": [ "### The StateBlockData class\n", "\n", - "Finally, we can build the `StateBlockData` class, which we will call `HDAStateBlockData`. First, we use the `declare_process_block_class` decorator but this time we provide two arguments. The first argument is the name of the class that will be automatically constructed for us (`HDAStateBlock`) whilst the second argument is a reference to the class we wish to use as the base when building the `IndexedHDAStateBlock` class – i.e. the `_HDAStateBlock` class we just declared. Then, we declare our new `HDAStateBlockData` class and inherit from the IDAES `StateBlockData` base class.\n", + "Finally, we can build the `StateBlockData` class, which we will call `HDAStateBlockData`. First, we use the `declare_process_block_class` decorator but this time we provide two arguments. The first argument is the name of the class that will be automatically constructed for us (`HDAStateBlock`) whilst the second argument is a reference to the class we wish to use as the base when building the `IndexedHDAStateBlock` class \u2013 i.e. the `_HDAStateBlock` class we just declared. Then, we declare our new `HDAStateBlockData` class and inherit from the IDAES `StateBlockData` base class.\n", "\n", "As usual, the first thing we need to define in our new class is a `build` method, where we will provide the instructions for constructing our property model, and once again the first thing we should do is call `super().build()` to construct all the underlying components defined by the parent class. After this, we can call the methods we wrote earlier to construct the state variables and the add the calculations for the properties of interest.\n", "\n", - "However, if you recall from when we defined the properties metadata at the beginning of the example, we decided that the specific molar enthalpy of the mixture would be a “build-on-demand” property (i.e., we provided a specific method in the properties metadata rather than `None`). Thus, we do not want to call the method to construct the specific molar enthalpy as part of the `build` method, meaning that we only call the `add_state_variables`, `add_mole_fraction_constraint` and `add_molecular_weight_and_density` as in the `build` method.\n", + "However, if you recall from when we defined the properties metadata at the beginning of the example, we decided that the specific molar enthalpy of the mixture would be a \u201cbuild-on-demand\u201d property (i.e., we provided a specific method in the properties metadata rather than `None`). Thus, we do not want to call the method to construct the specific molar enthalpy as part of the `build` method, meaning that we only call the `add_state_variables`, `add_mole_fraction_constraint` and `add_molecular_weight_and_density` as in the `build` method.\n", "\n", - "To add the specific molar enthalpy calculation as a “build-on-demand” property, we instead declare a separate method with the name we provided in the properties metadata. Whenever the specific molar enthalpy is required by a unit model it will check to see if the property already exists, and if not it will look up the properties metadata and call the method listed there; i.e. `_enth_mol` in this case. Thus, we declare another method on our `HDAStateBlockData` class named `enth_mol` which takes only the class instance as an argument (`self`), and then call the `add_enth_mol` method we created earlier to construct the required `Expression`.\n", + "To add the specific molar enthalpy calculation as a \u201cbuild-on-demand\u201d property, we instead declare a separate method with the name we provided in the properties metadata. Whenever the specific molar enthalpy is required by a unit model it will check to see if the property already exists, and if not it will look up the properties metadata and call the method listed there; i.e. `_enth_mol` in this case. Thus, we declare another method on our `HDAStateBlockData` class named `enth_mol` which takes only the class instance as an argument (`self`), and then call the `add_enth_mol` method we created earlier to construct the required `Expression`.\n", "\n", "That is all we need to do in order to construct the variables and constraints we need for the property calculations. However, there are a number of other things we need to define in our State Block Data class. In order to provide much of the flexibility present in the IDAES modeling framework, we defer making decisions on much of the form of the overall model for as long as possible. However, these decisions need to be made at some point, and the State Block Data is where this finally occurs.\n", "\n", @@ -983,7 +984,7 @@ "* `default_material_balance_type` should return an instance of the IDAES `MaterialBalanceType` `Enum` (imported from `idaes.core`).\n", "* `default_energy_balance_type` should return an instance of the IDAES `EnergyBalanceType` `Enum` (imported from `idaes.core`).\n", "\n", - "Finally, we need to specify the basis of the material flow terms (mass, mole or other). This is used to automatically convert between different bases as required (e.g. a user can define a custom mass transfer term on a molar basis whilst using a mass basis for the actual material balance). Note that automatic conversion only works for mass and molar basis; the “other” basis is used to indicate forms which cannot be easily converted (i.e., the modeler needs to handle this manually). To define the material flow term basis we define a final method named `get_material_flow_basis` which returns an instance of the IDAES `MaterialFlowBasis` `Enum` (again imported from `idaes.core`)." + "Finally, we need to specify the basis of the material flow terms (mass, mole or other). This is used to automatically convert between different bases as required (e.g. a user can define a custom mass transfer term on a molar basis whilst using a mass basis for the actual material balance). Note that automatic conversion only works for mass and molar basis; the \u201cother\u201d basis is used to indicate forms which cannot be easily converted (i.e., the modeler needs to handle this manually). To define the material flow term basis we define a final method named `get_material_flow_basis` which returns an instance of the IDAES `MaterialFlowBasis` `Enum` (again imported from `idaes.core`)." ] }, { @@ -1079,7 +1080,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We now have an instance of our new State Block in our flowsheet, so let’s display it and see what it contains." + "We now have an instance of our new State Block in our flowsheet, so let\u2019s display it and see what it contains." ] }, { @@ -1095,7 +1096,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We can see that our State Block contains a single point in time, which in turn contains the five variables. These are our four state variables (molar flow rate, component mole fraction, temperature and pressure) as well as the mixture density. We also have a single constraint, which is the ideal gas equation used to calculate density. Note that we don’t see the component molecular weights as they are `Params` (`References` take on the appearance of the component being referenced) or the molar enthalpy as it is an `Expression`, not a variable (plus it hasn’t been constructed yet as we haven’t asked for it).\n", + "We can see that our State Block contains a single point in time, which in turn contains the five variables. These are our four state variables (molar flow rate, component mole fraction, temperature and pressure) as well as the mixture density. We also have a single constraint, which is the ideal gas equation used to calculate density. Note that we don\u2019t see the component molecular weights as they are `Params` (`References` take on the appearance of the component being referenced) or the molar enthalpy as it is an `Expression`, not a variable (plus it hasn\u2019t been constructed yet as we haven\u2019t asked for it).\n", "\n", "Next, let us check the degrees of freedom in our State Block." ] @@ -1131,7 +1132,7 @@ "source": [ "This is unexpected: the `degrees_of_freedom` method is saying there are only 2 degrees of freedom in our State Block, but there are 8 state variables.\n", "\n", - "However, if we think about the constraints we have written, we are only actually using 2 of the state variables in any constraint (temperature and pressure appear in the ideal gas equation). The molar flowrate and component mole fractions are not actually used anywhere in our model, so they have been excluded from the degrees of freedom calculation. In Pyomo terminology, these variables are “Stale”, and they will not be sent to the solver when it is called. Thus, the two degrees of freedom is in fact correct.\n", + "However, if we think about the constraints we have written, we are only actually using 2 of the state variables in any constraint (temperature and pressure appear in the ideal gas equation). The molar flowrate and component mole fractions are not actually used anywhere in our model, so they have been excluded from the degrees of freedom calculation. In Pyomo terminology, these variables are \u201cStale\u201d, and they will not be sent to the solver when it is called. Thus, the two degrees of freedom is in fact correct.\n", "\n", "Note that this is only the case because our property package is so simple. Also, the specific enthalpy calculation depends on the component mole fractions, so whilst we could solve the State Block by only specifying temperature and pressure, the value of the specific molar enthalpy would be meaningless.\n", "\n", @@ -1158,7 +1159,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now that we have fixed the values for all the state variables, we would expect that the degrees of freedom should be zero (even though we fixed all 8 variables, only temperature and pressure actually contribute to the degrees of freedom). Let’s check this to be sure." + "Now that we have fixed the values for all the state variables, we would expect that the degrees of freedom should be zero (even though we fixed all 8 variables, only temperature and pressure actually contribute to the degrees of freedom). Let\u2019s check this to be sure." ] }, { @@ -1406,4 +1407,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages_usr.ipynb b/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages_usr.ipynb index 9196bb04..710b7f16 100644 --- a/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages_usr.ipynb +++ b/idaes_examples/notebooks/docs/properties/custom/custom_physical_property_packages_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -34,7 +35,7 @@ "Maintainer: Andrew Lee \n", "Updated: 2023-06-01 \n", "\n", - "Calculation of thermophysical, transport and reaction properties form a key part of any process model, and it is important that these calculations are both accurate and tractable in order for the overall problem to be solved correctly. One of the features of the IDAES Integrated Platform is the ability for modelers to create their own property “packages” to calculate these properties, allowing them to customize the level of complexity and rigor to suit each application. This tutorial will introduce you to the basics of creating property packages for calculating thermophysical and transport properties within the IDAES Core Modeling Framework.\n", + "Calculation of thermophysical, transport and reaction properties form a key part of any process model, and it is important that these calculations are both accurate and tractable in order for the overall problem to be solved correctly. One of the features of the IDAES Integrated Platform is the ability for modelers to create their own property \u201cpackages\u201d to calculate these properties, allowing them to customize the level of complexity and rigor to suit each application. This tutorial will introduce you to the basics of creating property packages for calculating thermophysical and transport properties within the IDAES Core Modeling Framework.\n", "\n", "## What is a Property?\n", "\n", @@ -50,7 +51,7 @@ "* transport properties such as viscosity and thermal conductivity\n", "* rates of reaction and chemical equilibria\n", "\n", - "The definition and calculation of all of these is defined via “property packages”, which contain all the variables and constraints associated with calculating these properties.\n", + "The definition and calculation of all of these is defined via \u201cproperty packages\u201d, which contain all the variables and constraints associated with calculating these properties.\n", "\n", "
\n", "Note:\n", @@ -67,19 +68,19 @@ "\n", "## What Properties do I Need?\n", "\n", - "An important aspect of the IDAES Core Modeling Framework is that a modeler only needs to provide calculations for those properties that they will use within their process. Put another way, modelers do not need to include calculations for a property that they are not going to use in their model – this allows modelers to avoid introducing unnecessary complexity into their models to calculate a property they do not actually need. When combined with flexibility elsewhere in the modeling framework to control which equations are written in the unit models, this can even allow users to avoid calculating properties that would normally be considered mandatory – for example, a property package for a conceptual design flowsheet which does not include energy or momentum balances would not need to define specific enthalpy or even temperature and pressure as these will not be required by the unit models.\n", + "An important aspect of the IDAES Core Modeling Framework is that a modeler only needs to provide calculations for those properties that they will use within their process. Put another way, modelers do not need to include calculations for a property that they are not going to use in their model \u2013 this allows modelers to avoid introducing unnecessary complexity into their models to calculate a property they do not actually need. When combined with flexibility elsewhere in the modeling framework to control which equations are written in the unit models, this can even allow users to avoid calculating properties that would normally be considered mandatory \u2013 for example, a property package for a conceptual design flowsheet which does not include energy or momentum balances would not need to define specific enthalpy or even temperature and pressure as these will not be required by the unit models.\n", "\n", "This then raises the question of how do you know what properties you will need, especially if you are using models from a library you did not write yourself. To answer this, you should refer to the model documentation, and you can also use the [IDAES Properties Interrogator tool](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/interrogator.html) to analyze your flowsheet and determine what properties are required.\n", "\n", "## Thermophysical Properties and Reaction Properties\n", "\n", - "Within the IDAES Core Modeling Framework, properties are divided into two classifications; thermophysical properties and reaction properties. Reaction properties are those properties related to chemical reactions (both equilibrium and rate-based, but not phase equilibrium) that occur within the system , whilst thermophysical properties include those properties related to thermodynamic relationships (including phase equilibrium) and transport properties. The reason for this separation is that thermophysical properties are required by all unit operations in a process (and need to be consistent with each other), whilst reaction properties are generally only required in specific unit operations identified as “reactors” (and each reactor may have a different set of chemical reactions occurring in it). Thus, reaction properties are separated from the thermophysical property calculations to allow for modular implementation in only specific reactor units. This tutorial only deals with thermophysical properties, and reaction properties will be dealt with in a later tutorial.\n", + "Within the IDAES Core Modeling Framework, properties are divided into two classifications; thermophysical properties and reaction properties. Reaction properties are those properties related to chemical reactions (both equilibrium and rate-based, but not phase equilibrium) that occur within the system , whilst thermophysical properties include those properties related to thermodynamic relationships (including phase equilibrium) and transport properties. The reason for this separation is that thermophysical properties are required by all unit operations in a process (and need to be consistent with each other), whilst reaction properties are generally only required in specific unit operations identified as \u201creactors\u201d (and each reactor may have a different set of chemical reactions occurring in it). Thus, reaction properties are separated from the thermophysical property calculations to allow for modular implementation in only specific reactor units. This tutorial only deals with thermophysical properties, and reaction properties will be dealt with in a later tutorial.\n", "\n", - "## What is a Property “Package”?\n", + "## What is a Property \u201cPackage\u201d?\n", "\n", - "Generally, properties (both thermophysical and reaction) are calculated using correlations that depend on some set of parameters (be they physical constants or empirical parameters). These parameters are constant across all instances of a property calculation in a flowsheet (i.e. each StateBlock uses the same parameters), it makes sense to store these parameters in a single, central location that all StateBlocks can refer to as necessary. Thus, the IDAES modeling framework has “Parameter Blocks” which are attached to the flowsheet to contain all the global parameters associated with a given set of property calculations.\n", + "Generally, properties (both thermophysical and reaction) are calculated using correlations that depend on some set of parameters (be they physical constants or empirical parameters). These parameters are constant across all instances of a property calculation in a flowsheet (i.e. each StateBlock uses the same parameters), it makes sense to store these parameters in a single, central location that all StateBlocks can refer to as necessary. Thus, the IDAES modeling framework has \u201cParameter Blocks\u201d which are attached to the flowsheet to contain all the global parameters associated with a given set of property calculations.\n", "\n", - "Thus, the calculations of thermophysical properties within the IDAES modeling framework is achieved using a “package” of three related modeling components (or classes); the Physical Parameter Block, the State Block and the State Block Data classes. Each of these will be discussed further in the next section as we develop an example property package.\n", + "Thus, the calculations of thermophysical properties within the IDAES modeling framework is achieved using a \u201cpackage\u201d of three related modeling components (or classes); the Physical Parameter Block, the State Block and the State Block Data classes. Each of these will be discussed further in the next section as we develop an example property package.\n", "\n", "At a deeper level, the calculation for many thermophysical properties is a self-contained correlation that is more or less independent of the other properties around it. Thus, each set of thermophysical property calculations is a package of user-chosen sub-models for each property of interest to the user.\n", "\n", @@ -232,7 +233,7 @@ "\n", "The first step is to define the units of measurement for the property package, which will in turn be inherited by any unit model using this property package. Units of measurement for the property package are defined by setting units for the 7 base measurement quantities; time, length, mass, amount, temperature, current and luminous intensity (as current and luminous intensity are generally of lesser importance in process systems engineering, specifying units for these base quantities is optional). Within IDAES, units are specified using Pyomo's units of measurement features, which can be imported from `pyomo.environ`. For this example, the units of measurement features were given the name `pyunits` for clarity.\n", "\n", - "The units of measurement for all other quantities in the model can then be derived from these base quantities; for example the units of energy are `mass*length^2/time^2`. The framework expects all quantities in the property package to use these base units – the Pyomo units of measurement conversion tools can be used if conversion between different sets of units are required.\n", + "The units of measurement for all other quantities in the model can then be derived from these base quantities; for example the units of energy are `mass*length^2/time^2`. The framework expects all quantities in the property package to use these base units \u2013 the Pyomo units of measurement conversion tools can be used if conversion between different sets of units are required.\n", "\n", "In order to set the base units, we need to create a dictionary which has each of the base quantities as a key, and provide a Pyomo recognized unit as the value as shown below." ] @@ -258,7 +259,7 @@ "source": [ "## Step 2: Define Supported Properties\n", "\n", - "The next step is to provide some metadata defining what properties are supported by the property package (including state variables). The first purpose of this metadata is to record a summary of what properties are supported to help user identify whether a given property package is suitable for their needs. The second purpose of the metadata is to allow us to simplify our property calculations by only construction those properties that are actually required by a given unit operation – a property package needs to support all the properties required by a process flowsheet, but not all of those properties are required in every unit operation. Thus, the IDAES modeling framework supports a “build-on-demand” approach for properties, such that only those properties that are required are constructed at any given point.\n", + "The next step is to provide some metadata defining what properties are supported by the property package (including state variables). The first purpose of this metadata is to record a summary of what properties are supported to help user identify whether a given property package is suitable for their needs. The second purpose of the metadata is to allow us to simplify our property calculations by only construction those properties that are actually required by a given unit operation \u2013 a property package needs to support all the properties required by a process flowsheet, but not all of those properties are required in every unit operation. Thus, the IDAES modeling framework supports a \u201cbuild-on-demand\u201d approach for properties, such that only those properties that are required are constructed at any given point.\n", "\n", "This is achieved through the use of the properties metadata, where for each property supported by the property package the user needs to define a `method` argument. This argument can take one of two forms:\n", "\n", @@ -327,9 +328,9 @@ "
\n", "Param or Var:\n", "\n", - "The most obvious way to declare a \"parameter\" in a model would appear to be to use the Pyomo `Param` object. However, modelers should be aware the `Param` objects are never seen by the solver (they are converted to fixed floating point numbers by the solver writer). This means that it is not possible to use a solver to find the value for a parameter – i.e., it is not possible to use `Param` objects in a parameter estimation problem.\n", + "The most obvious way to declare a \"parameter\" in a model would appear to be to use the Pyomo `Param` object. However, modelers should be aware the `Param` objects are never seen by the solver (they are converted to fixed floating point numbers by the solver writer). This means that it is not possible to use a solver to find the value for a parameter \u2013 i.e., it is not possible to use `Param` objects in a parameter estimation problem.\n", "\n", - "Instead, modelers should use fixed `Var` objects for any parameter that may need to be estimated at some point. Within IDAES, this means that most “parameters” are in fact declared as `Var` objects, with `Param` objects used only for parameters with well-known values (for example critical pressures and temperatures or molecular weights).\n", + "Instead, modelers should use fixed `Var` objects for any parameter that may need to be estimated at some point. Within IDAES, this means that most \u201cparameters\u201d are in fact declared as `Var` objects, with `Param` objects used only for parameters with well-known values (for example critical pressures and temperatures or molecular weights).\n", "
\n", "\n", "For this example, the first parameters we need to define are the reference state for our property calculations along with the molecular weights of each of the components of interest. These are fixed parameters that should not be estimated by parameter estimation, so we create Pyomo `Param` objects to represent each of these, as shown below. When we declare a `Param`, we also need to define a default value and the units of measurement for each parameter. Note that the units of measurement for these parameters does not necessarily need to match those defined in the properties metadata, but if they are not consistent then a unit conversion will be required at some point when calculating property values.\n", @@ -371,15 +372,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "For this example, we also need to define the parameter associated with calculating the specific enthalpy of each component. As mentioned before, we will use the correlation proposed in “The Properties of Gases and Liquids, 4th Edition” by Reid, Prausnitz and Polling (1987), which has the form:\n", + "For this example, we also need to define the parameter associated with calculating the specific enthalpy of each component. As mentioned before, we will use the correlation proposed in \u201cThe Properties of Gases and Liquids, 4th Edition\u201d by Reid, Prausnitz and Polling (1987), which has the form:\n", "\n", "\\begin{equation*}\n", - "h_j – h_{j, ref}= A_j \\times (T-T_{ref}) + \\frac{B_j}{2}\\times (T^2-T_{ref}^2) + \\frac{C_j}{3}\\times (T^3-T_{ref}^3) + \\frac{D_j}{4}\\times (T^4-T_{ref}^4)\n", + "h_j \u2013 h_{j, ref}= A_j \\times (T-T_{ref}) + \\frac{B_j}{2}\\times (T^2-T_{ref}^2) + \\frac{C_j}{3}\\times (T^3-T_{ref}^3) + \\frac{D_j}{4}\\times (T^4-T_{ref}^4)\n", "\\end{equation*}\n", "\n", - "where $h_{j, ref}$ is the standard heat of formation of component $j$ in the vapor phase, and $A_j$, $B_j$, $C_j$, and $D_j$ are component-specific parameters in the correlation. At first glance, one might ask if we could declare a single object indexed by the list `[“A”, “B”, “C”, “D”]` and component to represent all the parameters as a single object; however it must be noted that the parameters $A$, $B$, $C$, and $D$ all have different units. Thus, we need to declare separate objects for each of $A$, $B$, $C$, and $D$ (along with $h_{ref}$) which are indexed by component so that we can assign the correct units to each.\n", + "where $h_{j, ref}$ is the standard heat of formation of component $j$ in the vapor phase, and $A_j$, $B_j$, $C_j$, and $D_j$ are component-specific parameters in the correlation. At first glance, one might ask if we could declare a single object indexed by the list `[\u201cA\u201d, \u201cB\u201d, \u201cC\u201d, \u201cD\u201d]` and component to represent all the parameters as a single object; however it must be noted that the parameters $A$, $B$, $C$, and $D$ all have different units. Thus, we need to declare separate objects for each of $A$, $B$, $C$, and $D$ (along with $h_{ref}$) which are indexed by component so that we can assign the correct units to each.\n", "\n", - "However, these parameters are mostly empirical and are values that we may wish to estimate at some point, thus we will declare these as Pyomo `Var` objects rather than `Param` objects, which also means that we must `fix` the value of these parameters when we construct the property package. This is shown in the code below – note that each parameters (`Var` object is fixed immediately after it is declared)." + "However, these parameters are mostly empirical and are values that we may wish to estimate at some point, thus we will declare these as Pyomo `Var` objects rather than `Param` objects, which also means that we must `fix` the value of these parameters when we construct the property package. This is shown in the code below \u2013 note that each parameters (`Var` object is fixed immediately after it is declared)." ] }, { @@ -478,9 +479,9 @@ "\n", "First, we need to declare our new class and give it a unique name. In this example, we will call our new class `HDAParameterBlock`. The first two lines of the example below show how we declare our new class using the `declare_process_block_decorator` and inheriting from the `PhysicalParameterBlock` base class from the IDAES Core model libraries. Inheriting from the `PhysicalParameterBlock` brings us access to all the necessary features required by the IDAES modeling framework, whilst the `declare_process_block_class` decorator performs some boilerplate operations to replicate the expected object structure of Pyomo. Further details on these components can be found in the IDAES documentation.\n", "\n", - "Next, we need to set up any configuration arguments we need for the property package. This is done using Pyomo “Config Blocks” which provide a convenient way of declaring, organizing and documenting configuration arguments. To begin with, we can inherit from the `CONFIG` block declared in the `PhysicalParameterBlock` base class, which provides all the arguments that the IDAES modeling framework expects to be present. Modelers can then add additional configuration arguments to provide users with options when constructing their property packages, however we will not cover that in this tutorial.\n", + "Next, we need to set up any configuration arguments we need for the property package. This is done using Pyomo \u201cConfig Blocks\u201d which provide a convenient way of declaring, organizing and documenting configuration arguments. To begin with, we can inherit from the `CONFIG` block declared in the `PhysicalParameterBlock` base class, which provides all the arguments that the IDAES modeling framework expects to be present. Modelers can then add additional configuration arguments to provide users with options when constructing their property packages, however we will not cover that in this tutorial.\n", "\n", - "The most significant part of any IDAES model class is the `build` method, which contains the instructions on how to construct an instance of the desired model and all IDAES models are expected to have a `build` method. The first step in any `build` method is to call `super().build()`, which will trigger the `build` method of the base class that the current class inherits from – this is important since this is how we automate construction of any underlying components required by the modeling framework and ensure that everything integrates smoothly. Next, a `PhysicalParameterBlock` needs to contain a pointer to the related `StateBlock` (which we will look at next) – this is used to allow us to build instances of the `StateBlock` by only knowing the `PhysicalParameterBlock` we wish to use. To do this, we create an attribute named `_state_block_class` attached to our class with a pointer to the `StateBlock` class; in this case `self._state_block_class = HDAStateBlock`, where `HDAStateBlock` is the name of the yet to be declared `StateBlock`. Finally, the `build` method needs to construct the actual parameters required for the property package, which we do here by calling the sub-methods written previously.\n", + "The most significant part of any IDAES model class is the `build` method, which contains the instructions on how to construct an instance of the desired model and all IDAES models are expected to have a `build` method. The first step in any `build` method is to call `super().build()`, which will trigger the `build` method of the base class that the current class inherits from \u2013 this is important since this is how we automate construction of any underlying components required by the modeling framework and ensure that everything integrates smoothly. Next, a `PhysicalParameterBlock` needs to contain a pointer to the related `StateBlock` (which we will look at next) \u2013 this is used to allow us to build instances of the `StateBlock` by only knowing the `PhysicalParameterBlock` we wish to use. To do this, we create an attribute named `_state_block_class` attached to our class with a pointer to the `StateBlock` class; in this case `self._state_block_class = HDAStateBlock`, where `HDAStateBlock` is the name of the yet to be declared `StateBlock`. Finally, the `build` method needs to construct the actual parameters required for the property package, which we do here by calling the sub-methods written previously.\n", "\n", "The final step in creating the `PhysicalParameterBlock` class is to declare a `classmethod` named `define_metadata` which takes two arguments; a class (`cls`) and an instance of that class (`obj`). This method in turn needs to call two pre-defined methods (inherited from the underlying base classes):\n", "\n", @@ -526,13 +527,13 @@ "\n", "After the `Physical Parameter Block` class has been created, the next step is to write the code necessary to create the State Blocks that will be used through out the flowsheet. Unlike other models however, creating a `State Block` actually required us to write two `classes`. In short, indexed Pyomo object components (e.g. `Vars` and `Blocks`) actually consist of two objects: an `IndexedComponent` object which serves as a container for multiple `ComponentData` objects which represent the component at each point in the indexing set. For example, a `Var` indexed by the `Set` `[1, 2, 3, 4]` actually consists of a single `IndexedVar` object which contains 4 `VarData` objects. Normally this behavior is hidden behind the `declare_process_block_data` decorator which handles the details of this structure (as a side note, unindexed components similarly involve two classes but this is hidden by the use of multiple inheritance.)\n", "\n", - "Normally, when we write models in IDAES, we are concerned only with the `ComponentData` object – i.e., the instructions on how to build an instance of the model at each indexed point (hence the naming convention used when declaring classes). However, State Blocks are slightly different in that we always expect State Blocks to be indexed (they will always be indexed by time, at a minimum). Due to this, we often want to perform actions on all the elements of the indexed `State Block` at once (rather than element by element), such as during initialization. Thus, we have a need to write methods that are attached to the `IndexedStateBlock` in addition to the normal methods for the `StateBlockData` object. Fortunately, the `declare_process_block_data` decorator facilitates this for us, but it does mean we need to declare two classes when creating State Blocks.\n", + "Normally, when we write models in IDAES, we are concerned only with the `ComponentData` object \u2013 i.e., the instructions on how to build an instance of the model at each indexed point (hence the naming convention used when declaring classes). However, State Blocks are slightly different in that we always expect State Blocks to be indexed (they will always be indexed by time, at a minimum). Due to this, we often want to perform actions on all the elements of the indexed `State Block` at once (rather than element by element), such as during initialization. Thus, we have a need to write methods that are attached to the `IndexedStateBlock` in addition to the normal methods for the `StateBlockData` object. Fortunately, the `declare_process_block_data` decorator facilitates this for us, but it does mean we need to declare two classes when creating State Blocks.\n", "\n", "For this example, we will begin by describing the content of the `StateBlockData` objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. After that, we will discuss how to create the class that contains methods to be applied to the `IndexedStateBlock` as a whole.\n", "\n", "## Step 5: Declare State Variables\n", "\n", - "The first step in defining a `State Block` is to create the “state variables” which will be used to define the “state” of the material at any given point. The concept of a “state variable” in IDAES is much the same as the concept in thermodynamics, with the exception that we include extensive flow information in the state definition in IDAES. In short, the “state variables” should be sufficient to fully define the state of the material (both extensive and intensive), and should result in a `State Block` with zero degrees of freedom if all the state variables are fixed.\n", + "The first step in defining a `State Block` is to create the \u201cstate variables\u201d which will be used to define the \u201cstate\u201d of the material at any given point. The concept of a \u201cstate variable\u201d in IDAES is much the same as the concept in thermodynamics, with the exception that we include extensive flow information in the state definition in IDAES. In short, the \u201cstate variables\u201d should be sufficient to fully define the state of the material (both extensive and intensive), and should result in a `State Block` with zero degrees of freedom if all the state variables are fixed.\n", "\n", "For this example, our state variables will be:\n", "\n", @@ -614,7 +615,7 @@ "2. by using an `Expression`, or,\n", "3. by using a `Reference`.\n", "\n", - "The different between the first two options is that an `Expression` does not appear in the problem passed to the solver – the `Expression` can be evaluated by the user and included in constraints in the same way as a variable, but when the problem is passed to the solver the `Expression` object is substituted for the expression it represents wherever it appears in the model. This means that there are fewer variables and constraints in the problem the solver sees, but that the constraints that do appear are more complex. There is no simple answer to which approach is best, and different applications may see better results with one form or the other. The third option, using a `Reference` is for cases where a property already exists elsewhere in the model, and we just want to create a local copy of the same object. In terms of properties, this most often occurs with fixed quantities which are declared in the Physical Parameter Block such as molecular weights. For the purposes of this example, we will demonstrate all of these approaches. \n", + "The different between the first two options is that an `Expression` does not appear in the problem passed to the solver \u2013 the `Expression` can be evaluated by the user and included in constraints in the same way as a variable, but when the problem is passed to the solver the `Expression` object is substituted for the expression it represents wherever it appears in the model. This means that there are fewer variables and constraints in the problem the solver sees, but that the constraints that do appear are more complex. There is no simple answer to which approach is best, and different applications may see better results with one form or the other. The third option, using a `Reference` is for cases where a property already exists elsewhere in the model, and we just want to create a local copy of the same object. In terms of properties, this most often occurs with fixed quantities which are declared in the Physical Parameter Block such as molecular weights. For the purposes of this example, we will demonstrate all of these approaches. \n", "\n", "You may recall from the initial problem statement that we have three properties of interest in this example:\n", "\n", @@ -658,7 +659,7 @@ "where $x_j$ is the mole fraction of component $j$. Recall that for this example we are using the following correlation for the component specific enthalpies.\n", "\n", "\\begin{equation*}\n", - "h_j – h_{j, ref}= A_j \\times (T-T_{ref}) + \\frac{B_j}{2}\\times (T^2-T_{ref}^2) + \\frac{C_j}{3}\\times (T^3-T_{ref}^3) + \\frac{D_j}{4}\\times (T^4-T_{ref}^4)\n", + "h_j \u2013 h_{j, ref}= A_j \\times (T-T_{ref}) + \\frac{B_j}{2}\\times (T^2-T_{ref}^2) + \\frac{C_j}{3}\\times (T^3-T_{ref}^3) + \\frac{D_j}{4}\\times (T^4-T_{ref}^4)\n", "\\end{equation*}\n", "\n", "For the specific enthalpy, we will create a Pyomo `Expression` rather than a `Var` and `Constraint`. In practice, this is much like creating a `Constraint`. However, rather than returning an equality between two expressions, an `Expression` requires a single numerical expression that can be used to compute the quantity of interest.\n", @@ -736,16 +737,16 @@ "\n", "### Writing the Initialization Routine\n", "\n", - "For initializing State Blocks, the first step is to get our model to a state where it has no degrees of freedom. As mentioned earlier, fixing all of the state variables should be sufficient to fully define the state of the material – i.e. no degrees of freedom. Additionally, we want to initialize our State Block at a set of conditions that are good initial guesses for the final state of the model once it is finally solved. Of course, the State Block has no way of knowing what these initial values should be, so we depend on the unit model (or the end-user) to provide us with a set of initial values to use – this is done through a `dict` which we generally call `state_args` where the keys are the names of the state variables and the values are the initial guesses.\n", + "For initializing State Blocks, the first step is to get our model to a state where it has no degrees of freedom. As mentioned earlier, fixing all of the state variables should be sufficient to fully define the state of the material \u2013 i.e. no degrees of freedom. Additionally, we want to initialize our State Block at a set of conditions that are good initial guesses for the final state of the model once it is finally solved. Of course, the State Block has no way of knowing what these initial values should be, so we depend on the unit model (or the end-user) to provide us with a set of initial values to use \u2013 this is done through a `dict` which we generally call `state_args` where the keys are the names of the state variables and the values are the initial guesses.\n", "\n", - "Before we start fixing the state variables, there is the possibility that all the state variables have already been fixed (e.g. by a the unit model during its own initialization routine). To allow us to save some time, we include a `state_vars_fixed` argument in our State Block initialization methods that lets the unit model tell us if the state variables are already fixed – if this is `True` then we know we can skip the step of checking the state variables ourselves. If `state_vars_fixed is False` however, then we need to go and fix all the state variables as part of our initialization routine. To save us the effort of having to code all of this ourselves, the IDAES toolkit contains a utility method named `fix_state_vars` (which we imported earlier), which takes the `state_args` `dict` and then iterates through all the state variables as defined by the State Block (using the `dict` we declared earlier in the `return_state_var_dict` sub-method). This method iterates through all the defined state variables and does the following:\n", + "Before we start fixing the state variables, there is the possibility that all the state variables have already been fixed (e.g. by a the unit model during its own initialization routine). To allow us to save some time, we include a `state_vars_fixed` argument in our State Block initialization methods that lets the unit model tell us if the state variables are already fixed \u2013 if this is `True` then we know we can skip the step of checking the state variables ourselves. If `state_vars_fixed is False` however, then we need to go and fix all the state variables as part of our initialization routine. To save us the effort of having to code all of this ourselves, the IDAES toolkit contains a utility method named `fix_state_vars` (which we imported earlier), which takes the `state_args` `dict` and then iterates through all the state variables as defined by the State Block (using the `dict` we declared earlier in the `return_state_var_dict` sub-method). This method iterates through all the defined state variables and does the following:\n", "\n", "1. If the variable is already fixed, it records this and does nothing. If a variable is already fixed, we assume it was fixed for a reason and that we should not change its value.\n", "2. If the variable is not fixed, this is recorded and the method then checks the `state_args` dict for an initial guess for the variable. If a value is found, the variable is fixed to this value; otherwise, the variable is fixed to its current value.\n", "\n", "Finally, the `fix_state_vars` method returns a `dict` that records which variables were fixed by the method, so that we can later reverse these changes. In the example below, we refer to this `dict` as `flags`.\n", "\n", - "At this point, all the state variables should now be fixed, but once again we have a small catch – if we fix all the state variables then we have a situation similar to the inlet of a unit where we cannot write a constraint on the sum of mole fractions and still solve the model. Thus we need to deactivate this constraint if it exists (remembering that this constraint will not exist in all State Blocks). We know that this constraint will only exist if `defined_state is False`, so we start by writing an `IF` statement to check for this and then use the Pyomo `deactivate()` method to deactivate the constraint (remembering that we will need to reactivate it later).\n", + "At this point, all the state variables should now be fixed, but once again we have a small catch \u2013 if we fix all the state variables then we have a situation similar to the inlet of a unit where we cannot write a constraint on the sum of mole fractions and still solve the model. Thus we need to deactivate this constraint if it exists (remembering that this constraint will not exist in all State Blocks). We know that this constraint will only exist if `defined_state is False`, so we start by writing an `IF` statement to check for this and then use the Pyomo `deactivate()` method to deactivate the constraint (remembering that we will need to reactivate it later).\n", "\n", "Before we move on however, it is probably a good idea to check the degrees of freedom to be sure that they are zero (as expected). There are a number of ways things could go wrong (e.g., the unit model said the state variables were fixed when not all of them were, or we missed a constraint we need to deactivate), so a quick check now might save someone a lot of pain in the future. We can use the IDAES `degrees_of_freedom` method to check the degrees of freedom of our State Block, and if this is not zero raise an `Exception` to let the user know something went wrong." ] @@ -788,7 +789,7 @@ "\n", "Before we call the solver, we first need to make sure there is actually something to solve; depending on how the State Block is written (e.g. build-on-demand properties and use of `Expressions`), it is sometimes possible that there are actually no `Constraints` to be solved in the model. If we try to send a problem like that to a solver, we will likely get back an error message which is not what we want to see. Whilst we know that our State Block will always contain at least one constraint (for mixture density), we will add a check here anyway to show how it is done. First ,we create a counter to keep track of the number of unfixed variables in the system, `free_vars`. Then we iterate over all the elements of the `blk` (the `IndexedStateBlock`) and check how many free variables are in each. We use the `number_unfixed_variables()` method from the `idaes.core.util.model_statistics` module to do this, and add the result `free_vars` for each element. If the final value of `free_vars` is not zero, then we know there is something to solve for and we can proceed to call a solver; otherwise we know that we can skip this step.\n", "\n", - "In order to solve the entire `IndexedStateBlock`, we need to do things slightly differently than normal. The standard Pyomo `SolverFactory` cannot be applied to indexed blocks, so instead we use the IDAES `solve_indexed_block` method (imported from `idaes.core.initialization`) which puts a wrapper around the indexed block so that we can use Pyomo’s solver interface. In order to use this method, we need to provide a Pyomo `SolverFactory` object (called `solver` here, which also includes any attached solver options) along with the `blk` we wish to solve and where to send the solver results (the `tee` argument). Additionally, we want the user to have the ability to control the output from the solver through the IDAES logger interface, which we do by wrapping the solver call with the following line of code:\n", + "In order to solve the entire `IndexedStateBlock`, we need to do things slightly differently than normal. The standard Pyomo `SolverFactory` cannot be applied to indexed blocks, so instead we use the IDAES `solve_indexed_block` method (imported from `idaes.core.initialization`) which puts a wrapper around the indexed block so that we can use Pyomo\u2019s solver interface. In order to use this method, we need to provide a Pyomo `SolverFactory` object (called `solver` here, which also includes any attached solver options) along with the `blk` we wish to solve and where to send the solver results (the `tee` argument). Additionally, we want the user to have the ability to control the output from the solver through the IDAES logger interface, which we do by wrapping the solver call with the following line of code:\n", "\n", "```\n", "with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:\n", @@ -796,7 +797,7 @@ "\n", "where `idaeslog` is an instance of the IDAES logger. Note that we send the solver output to this logger by setting `tee=slc`. In this way, all the output from the solver is passed into the logger allowing users to easily control the output level without needing to send additional arguments to the initialization methods.\n", "\n", - "If all goes well, the solver will successfully initialize our model and we can move on. However, sometimes the solver will fail catastrophically, in which case we need to make sure that our initialization routine can attempt to recover. In order to do this, we wrap the solver call within a Python `try/except` statement. This way, if the solver fails badly and returns an `Exception`, we can capture this and decide how to process – otherwise the execution of our model would terminate with the exception from the solver. In the case we encounter an `Exception` here, we will record `results=None` and try to continue with initializing our model in the hope that we can recover.\n", + "If all goes well, the solver will successfully initialize our model and we can move on. However, sometimes the solver will fail catastrophically, in which case we need to make sure that our initialization routine can attempt to recover. In order to do this, we wrap the solver call within a Python `try/except` statement. This way, if the solver fails badly and returns an `Exception`, we can capture this and decide how to process \u2013 otherwise the execution of our model would terminate with the exception from the solver. In the case we encounter an `Exception` here, we will record `results=None` and try to continue with initializing our model in the hope that we can recover.\n", "\n", "Finally, it is useful to provide the user with some feedback on how the initialization is proceeding. In the last lines below, we send a message to the IDAES logger with a message saying that the initialization step has been completed and append the final solver status." ] @@ -900,7 +901,7 @@ "As the name suggests, the `initialize` method is used to run the initialization routine for the State Block, and this is where we will use the `prepare_state`, `initialize_state` and `restore_state` methods we wrote previously. The `initialize` method requires the following arguments to be declared:\n", "\n", "* `blk`: this will be a pointer to an instance of the State Block to be initialized.\n", - "* `state_args`: this is used to pass the ‘dict’ of initial guesses to the initialization routine. This should default to `None` if not provided. The `fix_state_vars` method will interpret a value of `None` as no guesses provided as use the current values instead.\n", + "* `state_args`: this is used to pass the \u2018dict\u2019 of initial guesses to the initialization routine. This should default to `None` if not provided. The `fix_state_vars` method will interpret a value of `None` as no guesses provided as use the current values instead.\n", "* `solver`: this argument is used to allow tell the State Block to use a specific solver during initialization, and should be a string recognized by the Pyomo `SolverFactory`. We generally set this to `None` in order to signify that IDAES Should use the default solver (which is IPOPT).\n", "* `optarg`: this argument is used to set any solver options the user desires. Again this is generally set to `None` to indicate that the default solver settings should be used.\n", "* `state_vars_fixed`: argument to allow the unit model to inform the State Block that the state variables are already fixed. This should default to `False`.\n", @@ -959,13 +960,13 @@ "source": [ "### The StateBlockData class\n", "\n", - "Finally, we can build the `StateBlockData` class, which we will call `HDAStateBlockData`. First, we use the `declare_process_block_class` decorator but this time we provide two arguments. The first argument is the name of the class that will be automatically constructed for us (`HDAStateBlock`) whilst the second argument is a reference to the class we wish to use as the base when building the `IndexedHDAStateBlock` class – i.e. the `_HDAStateBlock` class we just declared. Then, we declare our new `HDAStateBlockData` class and inherit from the IDAES `StateBlockData` base class.\n", + "Finally, we can build the `StateBlockData` class, which we will call `HDAStateBlockData`. First, we use the `declare_process_block_class` decorator but this time we provide two arguments. The first argument is the name of the class that will be automatically constructed for us (`HDAStateBlock`) whilst the second argument is a reference to the class we wish to use as the base when building the `IndexedHDAStateBlock` class \u2013 i.e. the `_HDAStateBlock` class we just declared. Then, we declare our new `HDAStateBlockData` class and inherit from the IDAES `StateBlockData` base class.\n", "\n", "As usual, the first thing we need to define in our new class is a `build` method, where we will provide the instructions for constructing our property model, and once again the first thing we should do is call `super().build()` to construct all the underlying components defined by the parent class. After this, we can call the methods we wrote earlier to construct the state variables and the add the calculations for the properties of interest.\n", "\n", - "However, if you recall from when we defined the properties metadata at the beginning of the example, we decided that the specific molar enthalpy of the mixture would be a “build-on-demand” property (i.e., we provided a specific method in the properties metadata rather than `None`). Thus, we do not want to call the method to construct the specific molar enthalpy as part of the `build` method, meaning that we only call the `add_state_variables`, `add_mole_fraction_constraint` and `add_molecular_weight_and_density` as in the `build` method.\n", + "However, if you recall from when we defined the properties metadata at the beginning of the example, we decided that the specific molar enthalpy of the mixture would be a \u201cbuild-on-demand\u201d property (i.e., we provided a specific method in the properties metadata rather than `None`). Thus, we do not want to call the method to construct the specific molar enthalpy as part of the `build` method, meaning that we only call the `add_state_variables`, `add_mole_fraction_constraint` and `add_molecular_weight_and_density` as in the `build` method.\n", "\n", - "To add the specific molar enthalpy calculation as a “build-on-demand” property, we instead declare a separate method with the name we provided in the properties metadata. Whenever the specific molar enthalpy is required by a unit model it will check to see if the property already exists, and if not it will look up the properties metadata and call the method listed there; i.e. `_enth_mol` in this case. Thus, we declare another method on our `HDAStateBlockData` class named `enth_mol` which takes only the class instance as an argument (`self`), and then call the `add_enth_mol` method we created earlier to construct the required `Expression`.\n", + "To add the specific molar enthalpy calculation as a \u201cbuild-on-demand\u201d property, we instead declare a separate method with the name we provided in the properties metadata. Whenever the specific molar enthalpy is required by a unit model it will check to see if the property already exists, and if not it will look up the properties metadata and call the method listed there; i.e. `_enth_mol` in this case. Thus, we declare another method on our `HDAStateBlockData` class named `enth_mol` which takes only the class instance as an argument (`self`), and then call the `add_enth_mol` method we created earlier to construct the required `Expression`.\n", "\n", "That is all we need to do in order to construct the variables and constraints we need for the property calculations. However, there are a number of other things we need to define in our State Block Data class. In order to provide much of the flexibility present in the IDAES modeling framework, we defer making decisions on much of the form of the overall model for as long as possible. However, these decisions need to be made at some point, and the State Block Data is where this finally occurs.\n", "\n", @@ -983,7 +984,7 @@ "* `default_material_balance_type` should return an instance of the IDAES `MaterialBalanceType` `Enum` (imported from `idaes.core`).\n", "* `default_energy_balance_type` should return an instance of the IDAES `EnergyBalanceType` `Enum` (imported from `idaes.core`).\n", "\n", - "Finally, we need to specify the basis of the material flow terms (mass, mole or other). This is used to automatically convert between different bases as required (e.g. a user can define a custom mass transfer term on a molar basis whilst using a mass basis for the actual material balance). Note that automatic conversion only works for mass and molar basis; the “other” basis is used to indicate forms which cannot be easily converted (i.e., the modeler needs to handle this manually). To define the material flow term basis we define a final method named `get_material_flow_basis` which returns an instance of the IDAES `MaterialFlowBasis` `Enum` (again imported from `idaes.core`)." + "Finally, we need to specify the basis of the material flow terms (mass, mole or other). This is used to automatically convert between different bases as required (e.g. a user can define a custom mass transfer term on a molar basis whilst using a mass basis for the actual material balance). Note that automatic conversion only works for mass and molar basis; the \u201cother\u201d basis is used to indicate forms which cannot be easily converted (i.e., the modeler needs to handle this manually). To define the material flow term basis we define a final method named `get_material_flow_basis` which returns an instance of the IDAES `MaterialFlowBasis` `Enum` (again imported from `idaes.core`)." ] }, { @@ -1079,7 +1080,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We now have an instance of our new State Block in our flowsheet, so let’s display it and see what it contains." + "We now have an instance of our new State Block in our flowsheet, so let\u2019s display it and see what it contains." ] }, { @@ -1095,7 +1096,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We can see that our State Block contains a single point in time, which in turn contains the five variables. These are our four state variables (molar flow rate, component mole fraction, temperature and pressure) as well as the mixture density. We also have a single constraint, which is the ideal gas equation used to calculate density. Note that we don’t see the component molecular weights as they are `Params` (`References` take on the appearance of the component being referenced) or the molar enthalpy as it is an `Expression`, not a variable (plus it hasn’t been constructed yet as we haven’t asked for it).\n", + "We can see that our State Block contains a single point in time, which in turn contains the five variables. These are our four state variables (molar flow rate, component mole fraction, temperature and pressure) as well as the mixture density. We also have a single constraint, which is the ideal gas equation used to calculate density. Note that we don\u2019t see the component molecular weights as they are `Params` (`References` take on the appearance of the component being referenced) or the molar enthalpy as it is an `Expression`, not a variable (plus it hasn\u2019t been constructed yet as we haven\u2019t asked for it).\n", "\n", "Next, let us check the degrees of freedom in our State Block." ] @@ -1115,7 +1116,7 @@ "source": [ "This is unexpected: the `degrees_of_freedom` method is saying there are only 2 degrees of freedom in our State Block, but there are 8 state variables.\n", "\n", - "However, if we think about the constraints we have written, we are only actually using 2 of the state variables in any constraint (temperature and pressure appear in the ideal gas equation). The molar flowrate and component mole fractions are not actually used anywhere in our model, so they have been excluded from the degrees of freedom calculation. In Pyomo terminology, these variables are “Stale”, and they will not be sent to the solver when it is called. Thus, the two degrees of freedom is in fact correct.\n", + "However, if we think about the constraints we have written, we are only actually using 2 of the state variables in any constraint (temperature and pressure appear in the ideal gas equation). The molar flowrate and component mole fractions are not actually used anywhere in our model, so they have been excluded from the degrees of freedom calculation. In Pyomo terminology, these variables are \u201cStale\u201d, and they will not be sent to the solver when it is called. Thus, the two degrees of freedom is in fact correct.\n", "\n", "Note that this is only the case because our property package is so simple. Also, the specific enthalpy calculation depends on the component mole fractions, so whilst we could solve the State Block by only specifying temperature and pressure, the value of the specific molar enthalpy would be meaningless.\n", "\n", @@ -1142,7 +1143,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now that we have fixed the values for all the state variables, we would expect that the degrees of freedom should be zero (even though we fixed all 8 variables, only temperature and pressure actually contribute to the degrees of freedom). Let’s check this to be sure." + "Now that we have fixed the values for all the state variables, we would expect that the degrees of freedom should be zero (even though we fixed all 8 variables, only temperature and pressure actually contribute to the degrees of freedom). Let\u2019s check this to be sure." ] }, { @@ -1364,4 +1365,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages.ipynb b/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages.ipynb index 5a825d3e..80414f05 100644 --- a/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages.ipynb +++ b/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages_doc.ipynb b/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages_doc.ipynb index de3ceedd..50f8ca36 100644 --- a/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages_doc.ipynb +++ b/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -116,7 +117,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "c:\\users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\mod\\properties\\reaction_property_example.py\n" + "/home/dang/src/dangunter/examples/idaes_examples/mod/properties/reaction_property_example.py\n" ] } ], @@ -577,7 +578,16 @@ "cell_type": "code", "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: Params with units must be mutable. Converting Param\n", + "'fs.thermo_params.mw_comp' to mutable.\n" + ] + } + ], "source": [ "m = ConcreteModel()\n", "\n", @@ -668,35 +678,35 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:12 [INFO] idaes.init.fs.reactor.control_volume.properties_in: Properties Initialized optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:43 [INFO] idaes.init.fs.reactor.control_volume.properties_in: Properties Initialized optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:12 [INFO] idaes.init.fs.reactor.control_volume.properties_out: Properties Initialized optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:43 [INFO] idaes.init.fs.reactor.control_volume.properties_out: Properties Initialized optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:12 [INFO] idaes.init.fs.reactor.control_volume.reactions: Initialization Complete.\n" + "2025-03-17 17:35:43 [INFO] idaes.init.fs.reactor.control_volume.reactions: Initialization Complete.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:12 [INFO] idaes.init.fs.reactor.control_volume: Initialization Complete\n" + "2025-03-17 17:35:43 [INFO] idaes.init.fs.reactor.control_volume: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:12 [INFO] idaes.init.fs.reactor: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:35:43 [INFO] idaes.init.fs.reactor: Initialization Complete: optimal - Optimal Solution Found\n" ] }, { @@ -762,7 +772,7 @@ "Number of equality constraint Jacobian evaluations = 1\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", "Total CPU secs in NLP function evaluations = 0.000\n", "\n", "EXIT: Optimal Solution Found.\n" @@ -880,7 +890,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages_test.ipynb b/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages_test.ipynb index e9f5b157..864875ba 100644 --- a/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages_test.ipynb +++ b/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages_test.ipynb @@ -1,791 +1,792 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Reaction Property Packages in IDAES\n", - "Author: Andrew Lee \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-06-01 \n", - "\n", - "
\n", - "Note:\n", - "Reaction property packages are closely related to, and dependent on, thermophysical property packages and it is advised the readers start with understanding these.\n", - "
\n", - "\n", - "Similar to thermophysical property packages, reaction property packages in IDAES are used to define the set of parameters, variables and constraints associated with a specific set of chemical reactions that a user wishes to model. One of the features of the IDAES Integrated Platform is the ability for modelers to create their own property \u201cpackages\u201d to calculate these properties, allowing them to customize the level of complexity and rigor to suit each application. This tutorial will introduce you to the basics of creating property packages for calculating reaction properties within the IDAES Core Modeling Framework.\n", - "\n", - "## Relationship with Thermophysical Property Packages\n", - "\n", - "Reaction properties depend on the state of the system, such as the temperature, pressure and composition of the material. All of these properties are defined in the thermophysical property package, thus reaction property packages are closely tied to thermophysical property packages; indeed, a given reaction package is often tied to a single specific thermophysical property package. Reaction packages need to be used with a thermophysical property package which defines the expected set of components and the expected forms and units for the state variables.\n", - "\n", - "As such, developers of reaction packages should have a specific thermophysical property package in mind when developing a reaction property package, and to tailor the reaction package to the thermophysical property package.\n", - "\n", - "## Types of Reactions\n", - "\n", - "Within the IDAES Core Modeling Framework, chemical reactions are divided into two categories:\n", - "\n", - "1. Equilibrium based reactions, where extent of reaction is determined by satisfying a constraint relating the concentration of species within the system, and\n", - "2. Rate based reactions, where extent of reaction depends on some characteristic of the reactor unit. Despite the name, this category is also used to represent stoichiometric and yield based reactions.\n", - "\n", - "## Steps in Creating a Reaction Property Package\n", - "\n", - "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", - "\n", - "1. Defining the **units of measurement** for the property package.\n", - "2. Defining the **properties supported** by the property package and the associated metadata.\n", - "3. Defining the **equilibrium reactions** of interest.\n", - "4. Defining the **equilibrium reactions** of interest.\n", - "5. Defining the **parameters** related to the reactions of interest.\n", - "6. Creating **variables and constraints** to describe the reactions of interest.\n", - "7. Creating an **initialization routine** for the reaction property package.\n", - "8. Defining **interface methods** used to couple the property package with unit models." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Tutorial Example\n", - "\n", - "For this tutorial, we will be building a upon the property package from the thermophysical property example. In that example, we constructed a thermophysical property package that could be used to model a process for the hydrodealkylation of toluene to form benzene. This process involves five key chemical species:\n", - "\n", - "* toluene\n", - "* benzene\n", - "* hydrogen\n", - "* methane\n", - "* diphenyl\n", - "\n", - "In this tutorial, we will write a reaction property package to define the reactions associated with the HDA process:\n", - "\n", - "$$\n", - "\\text{Toluene} + \\text{Hydrogen} \\rightarrow \\text{Benzene} + \\text{Methane}\n", - "$$\n", - "$$\n", - "2 \\text{Benzene} \\rightleftharpoons \\text{Hydrogen} + \\text{Diphenyl}\n", - "$$\n", - "\n", - "## A Note on this Tutorial\n", - "\n", - "The `build` methods in the reaction property package classes are generally written as a single, long method. However, to break the code into manageable pieces for discussion, in this tutorial we will create a number of smaller sub-methods that will then be called as part of the `build` method. This is done entirely for presentation purposes, and model developers should not feel compelled to write their models this way." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "An example of how the example in this tutorial would be written without sub-methods can be found in the module `idaes_examples.mod.properties.reaction_property_example`. To locate this file on your system, you can use the following code snippet:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "from idaes_examples.mod.properties import reaction_property_example as example\n", - "import inspect\n", - "\n", - "print(inspect.getabsfile(example))\n", - "# To print the file contents, uncomment the following line\n", - "# print(''.join(inspect.getsourcelines(example)[0]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Components of a Reaction Property Package\n", - "\n", - "Similar to thermophysical property packages, reaction property packages consist of three parts, which are written as Python `classes`. These components are:\n", - "\n", - "* The `Reaction Parameter Block` class, which contains all the global parameters associated with the reaction property package,\n", - "* The `Reaction Block Data` class, which contains the instructions on how to calculate all the properties at a given state, and,\n", - "* The `Reaction Block` class, which is used to construct indexed sets of `Reaction Block Data` objects and contains methods for acting on all multiple `Reaction Block Data` objects at once (such as initialization).\n", - "\n", - "It is not necessary to understand the reason for the distinction between the `Reaction Block` and `Reaction Block Data` classes. Suffice to say that this is due to the need to replicate the underlying component structure of Pyomo, and that the `Reaction Block` represents the indexed `Block` representing a set of states across a given indexing set (most often time), and the `Reaction Block Data` represents the individual elements of the indexed `Block`.\n", - "\n", - "## Importing Libraries\n", - "\n", - "Before we begin writing the actual `classes` however, we need to import all the necessary components from the Pyomo and IDAES modeling libraries. To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries.\n", - "\n", - "Rather than describe the purpose of all of these here, we shall just import all of them here and discuss their use as they arise in the example." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Pyomo libraries\n", - "from pyomo.environ import Constraint, exp, Param, Set, units as pyunits, Var\n", - "\n", - "# Import IDAES cores\n", - "from idaes.core import (\n", - " declare_process_block_class,\n", - " MaterialFlowBasis,\n", - " ReactionParameterBlock,\n", - " ReactionBlockDataBase,\n", - " ReactionBlockBase,\n", - ")\n", - "from idaes.core.util.constants import Constants as const\n", - "import idaes.logger as idaeslog" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Reaction Parameter Block\n", - "\n", - "We will begin by constructing the `Reaction Parameter Block` for our example. This serves as the central point of reference for all aspects of the reaction property package, and needs to define a number of things about the package. These are summarized below:\n", - "\n", - "* Units of measurement\n", - "* What reaction properties are supported and how they are implemented\n", - "* All the global parameters necessary for calculating properties\n", - "* A reference to the associated `Reaction Block` class, so that construction of the `Reaction Block` components can be automated from the `Reaction Parameter Block`\n", - "\n", - "## Step 1: Define Units of Measurement and Property Metadata\n", - "\n", - "The first step is to define the units of measurement for the property package, which will in turn be inherited by any unit model using this property package. The IDAES Core Modeling Framework requires that the units of measurement defined for a reaction property package be identical to those used in the thermophysical property package it is associated with (this is to avoid any chance of confusion regarding units when setting up the balance equations).\n", - "\n", - "In order to set the base units, we use the same approach as for thermophysical property packages; we create a dictionary which has each of the base quantities as a key, and provide a Pyomo recognized unit as the value as shown in the cell below.\n", - "\n", - "Much like thermophysical property packages, we also need to define metadata regarding the reaction properties supported by our package. For this example, we have three supported properties:\n", - "\n", - "* a rate constant (`k_rxn`),\n", - "* an equilibrium constant (`k_eq`), and\n", - "* a reaction rate term (`rate_reaction`).\n", - "\n", - "The cell below shows how to define the units of measurement and properties metadata for this example." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "units_metadata = {\n", - " \"time\": pyunits.s,\n", - " \"length\": pyunits.m,\n", - " \"mass\": pyunits.kg,\n", - " \"amount\": pyunits.mol,\n", - " \"temperature\": pyunits.K,\n", - "}\n", - "\n", - "properties_metadata = {\n", - " \"k_rxn\": {\"method\": None},\n", - " \"k_eq\": {\"method\": None},\n", - " \"reaction_rate\": {\"method\": None},\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to define the rate-based reactions of interest and the associated stoichiometry. For this, we need to define two things:\n", - "\n", - "* a `Set` of names for the rate-based reaction, and\n", - "* a `dict` containing the stoichiometric coefficients for all the rate-based reactions.\n", - "\n", - "In this example, we have only one rate-based reaction, which is the conversion of toluene to benzene; we will call this reaction `R1`. Thus, we create a Pyomo `Set` component and initialize it with the list of rate-based reactions (`[\u201cR1\u201d]`) as shown in the following cell.\n", - "\n", - "Next, we create a `dict` object for the stoichiometric coefficients. This `dict` needs to provide coefficients for all combinations of reaction, phase and component present in the system, even for those components which do not take part in a reaction. This is required as `ControlVolumes` create generation terms for all reaction-phase-component combinations, and need a stoichiometric coefficient for each of these. In this `dict`, the keys need to have the form of a tuple with three parts:\n", - "\n", - "1. the reaction name,\n", - "2. the phase name, and\n", - "3. the component name,\n", - "\n", - "whilst the value is the stoichiometric coefficient for that key combination. See the example in the cell below; in this example we have 1 reaction (`R1`), 1 phase (`Vap`, as defined in the thermophysical property package) and 5 components (`benzene`, `toluene`, `hydrogen`, `methane` and `diphenyl`), thus the resulting dict has `1x1x5` entries." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "def define_kinetic_reactions(self):\n", - " # Rate Reaction Index\n", - " self.rate_reaction_idx = Set(initialize=[\"R1\"])\n", - "\n", - " # Rate Reaction Stoichiometry\n", - " self.rate_reaction_stoichiometry = {\n", - " (\"R1\", \"Vap\", \"benzene\"): 1,\n", - " (\"R1\", \"Vap\", \"toluene\"): -1,\n", - " (\"R1\", \"Vap\", \"hydrogen\"): -1,\n", - " (\"R1\", \"Vap\", \"methane\"): 1,\n", - " (\"R1\", \"Vap\", \"diphenyl\"): 0,\n", - " }" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to do the same thing for the equilibrium-based reactions. The format is the same as for rate-based reactions, as shown in the cell below." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "def define_equilibrium_reactions(self):\n", - " # Equilibrium Reaction Index\n", - " self.equilibrium_reaction_idx = Set(initialize=[\"E1\"])\n", - "\n", - " # Equilibrium Reaction Stoichiometry\n", - " self.equilibrium_reaction_stoichiometry = {\n", - " (\"E1\", \"Vap\", \"benzene\"): -2,\n", - " (\"E1\", \"Vap\", \"toluene\"): 0,\n", - " (\"E1\", \"Vap\", \"hydrogen\"): 1,\n", - " (\"E1\", \"Vap\", \"methane\"): 0,\n", - " (\"E1\", \"Vap\", \"diphenyl\"): 1,\n", - " }" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we need to define any global parameters related to the reactions of interest. For this example, we will assume that the rate-based reactions follow the Arrhenius equation, thus we need to declare a pre-exponential factor ($A=1.25\\times10^{-9} \\text{ mol}/\\text{m}^3/\\text{s}/\\text{Pa}^2$) and an activation energy parameter ($E_a=3800 \\text{ J}/\\text{mol}$). We will not declare any parameters for the equilibrium-based reactions at this point; this will be done in the individual `ReactionBlocks`." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "def define_parameters(self):\n", - " # Arrhenius Constant\n", - " self.arrhenius = Param(\n", - " default=1.25e-9,\n", - " doc=\"Arrhenius constant\",\n", - " units=pyunits.mol / pyunits.m**3 / pyunits.s / pyunits.Pa**2,\n", - " )\n", - "\n", - " # Activation Energy\n", - " self.energy_activation = Param(\n", - " default=3800, doc=\"Activation energy\", units=pyunits.J / pyunits.mol\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Declaring the Reaction Parameter Block\n", - "\n", - "Now that the various parts of the Reaction Parameter Block have been declared, we can assemble the actual `class` that will assemble these components in a flowsheet. The steps for declaring a new `ReactionParameterBlock` class which are:\n", - "\n", - "1. Declaring the new class and inheriting from the `ReactionParameterBlock` base class\n", - "3. Writing the `build` method for our `class`\n", - "4. Creating a `define_metadata` method for the class.\n", - "\n", - "Each of these steps are shown in the code example below.\n", - "\n", - "First, we need to declare our new class and give it a unique name. In this example, we will call our new class `HDAReactionParameterBlock`. The first two lines of the example below show how we declare our new class using the `declare_process_block_decorator` and inheriting from the `ReactionParameterBlock` base class from the IDAES Core model libraries. Inheriting from the `ReactionParameterBlock` brings us access to all the necessary features required by the IDAES modeling framework, whilst the `declare_process_block_class` decorator performs some boilerplate operations to replicate the expected object structure of Pyomo. Further details on these components can be found in the IDAES documentation.\n", - "\n", - "Next, we need to declare the `build` method that will be used to construct our Reaction Parameter Block. The first step in any `build` method is to call `super().build()`, which will trigger the `build` method of the base class that the current class inherits from \u2013 this is important since this is how we automate construction of any underlying components required by the modeling framework and ensure that everything integrates smoothly. Next, a `ReactionParameterBlock` needs to contain a pointer to the related `ReactionBlock` (which we will look at next) \u2013 this is used to allow us to build instances of the `ReactionBlock` by only knowing the `ReactionParameterBlock` we wish to use. To do this, we create an attribute named `_reaction_block_class` attached to our class with a pointer to the `ReactionBlock` class; in this case `self._reaction_block_class = HDAReactionBlock`, where `HDAReactionBlock` is the name of the yet to be declared `ReactionBlock`. Finally, the `build` method needs to construct the actual parameters required for the property package, which we do here by calling the sub-methods written previously.\n", - "\n", - "The final step in creating the `ReactionParameterBlock` class is to declare a `classmethod` named `define_metadata` which takes two arguments; a class (`cls`) and an instance of that class (`obj`). This method in turn needs to call two pre-defined methods (inherited from the underlying base classes):\n", - "\n", - "* `obj.add_properties()` is used to set the metadata regarding the supported reaction properties, and here we pass the `properties_metadata` dict we created earlier as an argument.\n", - "* `obj.add_default_units()` sets the default units metadata for the reaction property package, and here we pass the `units_metadata` `dict ` we created earlier as an argument." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"HDAReactionParameterBlock\")\n", - "class HDAReactionParameterData(ReactionParameterBlock):\n", - " \"\"\"\n", - " Reaction Parameter Block Class\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction.\n", - " \"\"\"\n", - " super(HDAReactionParameterData, self).build()\n", - "\n", - " self._reaction_block_class = HDAReactionBlock\n", - "\n", - " define_kinetic_reactions(self)\n", - " define_equilibrium_reactions(self)\n", - " define_parameters(self)\n", - "\n", - " @classmethod\n", - " def define_metadata(cls, obj):\n", - " obj.add_properties(properties_metadata)\n", - " obj.add_default_units(units_metadata)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Reaction Block\n", - "\n", - "After the Reaction Parameter Block class has been created, the next step is to write the code necessary to create the Reaction Blocks that will be used through out the flowsheet. Similar to State Blocks for thermophysical properties, Reaction Blocks also require two Python `classes` to construct (for a discussion on why, see the related example for creating custom thermophysical property packages).\n", - "\n", - "For this example, we will begin by describing the content of the `ReactionBlockData` objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. After that, we will discuss how to create the class that contains methods to be applied to the `IndexedReactionBlock` as a whole.\n", - "\n", - "## State Variables\n", - "\n", - "Like thermophysical property calculations, reaction properties also depend on the material state variables such as temperature and pressure. However, the state variables are declared as a part of the State Block, and it does not make sense to duplicate them here. Due to this, Reaction Blocks are always associated with a State Block representing the material at the same point in space and time, and the Reaction Block contains a pointer to the equivalent State Block. This allows the Reaction Block to access the state variables, and any other thermophysical property the State Block supports, in order to perform reaction property calculations. The State Block can be accessed using the `state_ref` property of the Reaction Block.\n", - "\n", - "\n", - "## Step 1. Define Property Variables\n", - "\n", - "The first thing we need to do when creating our Reaction Block is create Pyomo components to represent the properties of interest. In this example, we have three properties we need to define:\n", - "\n", - "1. the rate constant for the rate-based reaction: `k_rxn`,\n", - "2. a variable for the rate of reaction at the current state, `rate_reaction`, and\n", - "3. the equilibrium constant for the equilibrium-based reaction, `k_eq`.\n", - "\n", - "The declaration of these is shown in the cell below. Note that for this example we are assuming the equilibrium constant does not vary, and have thus declared it as a Pyomo `Param`." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "def define_variables_and_parameters(self):\n", - " self.k_rxn = Var(\n", - " initialize=7e-10,\n", - " doc=\"Rate constant\",\n", - " units=pyunits.mol / pyunits.m**3 / pyunits.s / pyunits.Pa**2,\n", - " )\n", - "\n", - " self.reaction_rate = Var(\n", - " self.params.rate_reaction_idx,\n", - " initialize=0,\n", - " doc=\"Rate of reaction\",\n", - " units=pyunits.mol / pyunits.m**3 / pyunits.s,\n", - " )\n", - "\n", - " self.k_eq = Param(initialize=10000, doc=\"Equlibrium constant\", units=pyunits.Pa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 2. Define Constraints for the Rate-Based Reactions\n", - "\n", - "Next, we need to define the `Constraints` which describe the rate-based reaction. First, we use the Arrhenius equation to calculate the rate constant, $k_{rxn} = A \\times e^{-E_a/(RT)}$. For this calculation, $A$ and $E_a$ come from the associated Reaction Parameter Block (`self.params`), $T$ comes from the associated State Block (`self.state_ref.temperature`) and the gas constant $R$ can be found in the IDAES `Constants` class.\n", - "\n", - "After the rate constant, we need to declare the form of the rate expression as well. In this case, we are dealing with a gas phase reaction so $r = k_{rxn} \\times x_{toluene} \\times x_{hydrogen} \\times P^2$, where $P$ is the system pressure. $x_{toluene}$, $x_{hydrogen}$ and $P$ are all state variables, and can be accessed from the associated State Block.\n", - "\n", - "The cell below shows how we declare these two constraints." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "def define_rate_expression(self):\n", - " self.arrhenius_equation = Constraint(\n", - " expr=self.k_rxn\n", - " == self.params.arrhenius\n", - " * exp(\n", - " -self.params.energy_activation\n", - " / (const.gas_constant * self.state_ref.temperature)\n", - " )\n", - " )\n", - "\n", - " def rate_rule(b, r):\n", - " return b.reaction_rate[r] == (\n", - " b.k_rxn\n", - " * b.state_ref.mole_frac_comp[\"toluene\"]\n", - " * b.state_ref.mole_frac_comp[\"hydrogen\"]\n", - " * b.state_ref.pressure**2\n", - " )\n", - "\n", - " self.rate_expression = Constraint(self.params.rate_reaction_idx, rule=rate_rule)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 3. Define Constraints for the Equilibrium-Based Reactions\n", - "\n", - "Similar to those for the rate-based reactions, we also need to define constraints for the equilibrium-based reactions in the system. In this case, the constraint will take the form of an equality that will force the compositions in the system to satisfy the given equilibrium constant. For this example, we have the following equilibrium constraint:\n", - "\n", - "$$\n", - "k_{eq} = \\frac{x_{diphenyl} \\times x_{hydrogen} \\times P^2}{x_{benzene} \\times P}\n", - "$$\n", - "\n", - "Note that $P$ appears in both the numerator and denominator to make it clear that this is a ratio of partial pressures, and because we will rearrange this constraint when creating the actual Pyomo component in order to avoid potential singularities. This is shown in the cell below." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "def define_equilibrium_expression(self):\n", - " self.equilibrium_constraint = Constraint(\n", - " expr=self.k_eq\n", - " * self.state_ref.mole_frac_comp[\"benzene\"]\n", - " * self.state_ref.pressure\n", - " == self.state_ref.mole_frac_comp[\"diphenyl\"]\n", - " * self.state_ref.mole_frac_comp[\"hydrogen\"]\n", - " * self.state_ref.pressure**2\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Creating the Reaction Block class\n", - "\n", - "These are all the variables and constraints that need to be declared for this example. All that remains is to declare the `_ReactionBlock` and `ReactionBlock` classes to complete our reaction property package. This process is much the same as for the thermophysical property package example, and will only be covered briefly here.\n", - "\n", - "## The `_ReactionBlock` class\n", - "\n", - "For this example, the `_ReactionBlock` class is very simple, and contains only a placeholder `initialize` method. As all the state variables are held separately in the associated State Block and the constraints within the reaction package are fairly simple, it is sufficient to not initialize the reaction properties before solving. However, a placeholder method still needs to be created, as the IDAES framework assumes all components will have an `initialize` method; however, this method need only consist of a `pass` statement.\n", - "\n", - "
\n", - "Note:\n", - "In more complex reaction systems, it is likely that a proper initialization routine would need to be implemented. Developers of these should be aware that equilibrium constraints will need to be deactivated during initialization, as the state variables (i.e. compositions) will be fixed in the State Block. Thus, trying to solve for the system with equilibrium constraints present will result in an over-specified problem.\n", - "
\n", - "\n", - "## The `ReactionBlock` class\n", - "\n", - "Once the `_ReactionBlock` class has been declared, the overall `ReactionBlock` class can be declared as shown below. Once again, we define a `build` method which calls the sub-methods we created earlier in order to construct an instance of the Reaction Block. The `ReactionBlock` class also needs to define a `get_reaction_rate_basis` method, which should return an instance of the `MaterialFlowBasis` `Enum`; this is used by the IDAES framework to determine if conversion between mass and mole basis is required." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "class _HDAReactionBlock(ReactionBlockBase):\n", - " def initialize(blk, outlvl=idaeslog.NOTSET, **kwargs):\n", - " init_log = idaeslog.getInitLogger(blk.name, outlvl, tag=\"properties\")\n", - " init_log.info(\"Initialization Complete.\")\n", - "\n", - "\n", - "@declare_process_block_class(\"HDAReactionBlock\", block_class=_HDAReactionBlock)\n", - "class HDAReactionBlockData(ReactionBlockDataBase):\n", - " def build(self):\n", - "\n", - " super(HDAReactionBlockData, self).build()\n", - "\n", - " define_variables_and_parameters(self)\n", - " define_rate_expression(self)\n", - " define_equilibrium_expression(self)\n", - "\n", - " def get_reaction_rate_basis(b):\n", - " return MaterialFlowBasis.molar" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Demonstration\n", - "\n", - "In order to demonstrate our new Reaction Property package in practice, we will now use it to build and solve a CSTR. First, we will need to import some more components from Pyomo and IDAES to use when building the flowsheet." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import ConcreteModel\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.models.unit_models import CSTR\n", - "\n", - "from idaes_examples.mod.properties.thermophysical_property_example import (\n", - " HDAParameterBlock,\n", - ")\n", - "\n", - "from idaes.core.util.model_statistics import degrees_of_freedom" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we can construct a Pyomo `ConcreteModel` and IDAES `FlowsheetBlock` as usual. We then attach an instance of the associated thermophysical property package (imported as `HDAParameterBlock`) and our new reaction property package to the flowsheet, and then construct a CSTR using these property packages." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "\n", - "m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - "m.fs.thermo_params = HDAParameterBlock()\n", - "m.fs.reaction_params = HDAReactionParameterBlock(property_package=m.fs.thermo_params)\n", - "\n", - "m.fs.reactor = CSTR(\n", - " property_package=m.fs.thermo_params,\n", - " reaction_package=m.fs.reaction_params,\n", - " has_equilibrium_reactions=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If all went well, we should see no errors when constructing the flowsheet above. To be sure, let us print the degrees of freedom in our flowsheet model as shown below; we should see 9 degrees of freedom." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Degrees of Freedom: \", degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert degrees_of_freedom(m) == 9" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The 9 degrees of freedom are the flowrate, temperature, pressure and mole fractions (5) of the inlet stream, as well as the reactor volume. We will fix them to some default values as shown below. Once we are done, we will also print the degrees of freedom again to ensure we have fixed enough variables." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.reactor.inlet.flow_mol.fix(100)\n", - "m.fs.reactor.inlet.temperature.fix(500)\n", - "m.fs.reactor.inlet.pressure.fix(350000)\n", - "m.fs.reactor.inlet.mole_frac_comp[0, \"benzene\"].fix(0.1)\n", - "m.fs.reactor.inlet.mole_frac_comp[0, \"toluene\"].fix(0.4)\n", - "m.fs.reactor.inlet.mole_frac_comp[0, \"hydrogen\"].fix(0.4)\n", - "m.fs.reactor.inlet.mole_frac_comp[0, \"methane\"].fix(0.1)\n", - "m.fs.reactor.inlet.mole_frac_comp[0, \"diphenyl\"].fix(0.0)\n", - "\n", - "m.fs.reactor.volume.fix(1)\n", - "\n", - "print(\"Degrees of Freedom: \", degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert degrees_of_freedom(m) == 0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that we have defined our example problem, we can initialize and solve the flowsheet. This is done in the cell below, which should result in an optimal solution." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.reactor.initialize(\n", - " state_args={\n", - " \"flow_mol\": 100,\n", - " \"mole_frac_comp\": {\n", - " \"benzene\": 0.15,\n", - " \"toluene\": 0.35,\n", - " \"hydrogen\": 0.35,\n", - " \"methane\": 0.15,\n", - " \"diphenyl\": 0.01,\n", - " },\n", - " \"temperature\": 600,\n", - " \"pressure\": 350000,\n", - " }\n", - ")\n", - "\n", - "solver = get_solver()\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "from pyomo.environ import TerminationCondition, SolverStatus\n", - "\n", - "assert results.solver.termination_condition == TerminationCondition.optimal\n", - "assert results.solver.status == SolverStatus.ok" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that our model has solved, let us use the `report()` method for the CSRT to have a look at what happened in the reactor. We should see that the outlet mole fraction of benzene is now around 0.160 and the mole fraction of diphenyl is 0.014; thus, our reactor has successfully generated benzene from toluene. In the process, the reaction has also generated a lot of heat, which has raised the temperature of the gas from 500 K to 790.2 K." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.reactor.report()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "import pytest\n", - "from pyomo.environ import value\n", - "\n", - "assert value(m.fs.reactor.outlet.flow_mol[0]) == pytest.approx(100, abs=1e-3)\n", - "assert value(m.fs.reactor.outlet.temperature[0]) == pytest.approx(790.212, abs=1e-3)\n", - "assert value(m.fs.reactor.outlet.mole_frac_comp[0, \"benzene\"]) == pytest.approx(\n", - " 0.159626, abs=1e-6\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, as a quick check of model consistency, let us assert that the units of measurement in our model are consistent (the units of the rate constant and pre-exponential factor are rather complex)." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "assert_units_consistent(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Concluding Remarks\n", - "\n", - "The above example has hopefully introduced you to the basic requirements for creating your own custom reaction property packages. However, it is probably clear that it requires a significant amount of effort to write your own property packages, thus users are encouraged to look into the IDAES Modular Reactions Framework if they are not already familiar with this.\n", - "\n", - "The IDAES Modular Reactions Framework is designed to automatically generate user-defined reaction property packages for common reaction forms based on a single configuration file. Users provide a list of reactions of interest (both rate- and equilibrium-based), and select from a library of common reaction forms, and the Modular Reaction Framework then does the hard work of assembling the necessary code to construct the desired model." - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Reaction Property Packages in IDAES\n", + "Author: Andrew Lee \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-06-01 \n", + "\n", + "
\n", + "Note:\n", + "Reaction property packages are closely related to, and dependent on, thermophysical property packages and it is advised the readers start with understanding these.\n", + "
\n", + "\n", + "Similar to thermophysical property packages, reaction property packages in IDAES are used to define the set of parameters, variables and constraints associated with a specific set of chemical reactions that a user wishes to model. One of the features of the IDAES Integrated Platform is the ability for modelers to create their own property “packages” to calculate these properties, allowing them to customize the level of complexity and rigor to suit each application. This tutorial will introduce you to the basics of creating property packages for calculating reaction properties within the IDAES Core Modeling Framework.\n", + "\n", + "## Relationship with Thermophysical Property Packages\n", + "\n", + "Reaction properties depend on the state of the system, such as the temperature, pressure and composition of the material. All of these properties are defined in the thermophysical property package, thus reaction property packages are closely tied to thermophysical property packages; indeed, a given reaction package is often tied to a single specific thermophysical property package. Reaction packages need to be used with a thermophysical property package which defines the expected set of components and the expected forms and units for the state variables.\n", + "\n", + "As such, developers of reaction packages should have a specific thermophysical property package in mind when developing a reaction property package, and to tailor the reaction package to the thermophysical property package.\n", + "\n", + "## Types of Reactions\n", + "\n", + "Within the IDAES Core Modeling Framework, chemical reactions are divided into two categories:\n", + "\n", + "1. Equilibrium based reactions, where extent of reaction is determined by satisfying a constraint relating the concentration of species within the system, and\n", + "2. Rate based reactions, where extent of reaction depends on some characteristic of the reactor unit. Despite the name, this category is also used to represent stoichiometric and yield based reactions.\n", + "\n", + "## Steps in Creating a Reaction Property Package\n", + "\n", + "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", + "\n", + "1. Defining the **units of measurement** for the property package.\n", + "2. Defining the **properties supported** by the property package and the associated metadata.\n", + "3. Defining the **equilibrium reactions** of interest.\n", + "4. Defining the **equilibrium reactions** of interest.\n", + "5. Defining the **parameters** related to the reactions of interest.\n", + "6. Creating **variables and constraints** to describe the reactions of interest.\n", + "7. Creating an **initialization routine** for the reaction property package.\n", + "8. Defining **interface methods** used to couple the property package with unit models." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tutorial Example\n", + "\n", + "For this tutorial, we will be building a upon the property package from the thermophysical property example. In that example, we constructed a thermophysical property package that could be used to model a process for the hydrodealkylation of toluene to form benzene. This process involves five key chemical species:\n", + "\n", + "* toluene\n", + "* benzene\n", + "* hydrogen\n", + "* methane\n", + "* diphenyl\n", + "\n", + "In this tutorial, we will write a reaction property package to define the reactions associated with the HDA process:\n", + "\n", + "$$\n", + "\\text{Toluene} + \\text{Hydrogen} \\rightarrow \\text{Benzene} + \\text{Methane}\n", + "$$\n", + "$$\n", + "2 \\text{Benzene} \\rightleftharpoons \\text{Hydrogen} + \\text{Diphenyl}\n", + "$$\n", + "\n", + "## A Note on this Tutorial\n", + "\n", + "The `build` methods in the reaction property package classes are generally written as a single, long method. However, to break the code into manageable pieces for discussion, in this tutorial we will create a number of smaller sub-methods that will then be called as part of the `build` method. This is done entirely for presentation purposes, and model developers should not feel compelled to write their models this way." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "An example of how the example in this tutorial would be written without sub-methods can be found in the module `idaes_examples.mod.properties.reaction_property_example`. To locate this file on your system, you can use the following code snippet:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from idaes_examples.mod.properties import reaction_property_example as example\n", + "import inspect\n", + "\n", + "print(inspect.getabsfile(example))\n", + "# To print the file contents, uncomment the following line\n", + "# print(''.join(inspect.getsourcelines(example)[0]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Components of a Reaction Property Package\n", + "\n", + "Similar to thermophysical property packages, reaction property packages consist of three parts, which are written as Python `classes`. These components are:\n", + "\n", + "* The `Reaction Parameter Block` class, which contains all the global parameters associated with the reaction property package,\n", + "* The `Reaction Block Data` class, which contains the instructions on how to calculate all the properties at a given state, and,\n", + "* The `Reaction Block` class, which is used to construct indexed sets of `Reaction Block Data` objects and contains methods for acting on all multiple `Reaction Block Data` objects at once (such as initialization).\n", + "\n", + "It is not necessary to understand the reason for the distinction between the `Reaction Block` and `Reaction Block Data` classes. Suffice to say that this is due to the need to replicate the underlying component structure of Pyomo, and that the `Reaction Block` represents the indexed `Block` representing a set of states across a given indexing set (most often time), and the `Reaction Block Data` represents the individual elements of the indexed `Block`.\n", + "\n", + "## Importing Libraries\n", + "\n", + "Before we begin writing the actual `classes` however, we need to import all the necessary components from the Pyomo and IDAES modeling libraries. To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries.\n", + "\n", + "Rather than describe the purpose of all of these here, we shall just import all of them here and discuss their use as they arise in the example." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Pyomo libraries\n", + "from pyomo.environ import Constraint, exp, Param, Set, units as pyunits, Var\n", + "\n", + "# Import IDAES cores\n", + "from idaes.core import (\n", + " declare_process_block_class,\n", + " MaterialFlowBasis,\n", + " ReactionParameterBlock,\n", + " ReactionBlockDataBase,\n", + " ReactionBlockBase,\n", + ")\n", + "from idaes.core.util.constants import Constants as const\n", + "import idaes.logger as idaeslog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# The Reaction Parameter Block\n", + "\n", + "We will begin by constructing the `Reaction Parameter Block` for our example. This serves as the central point of reference for all aspects of the reaction property package, and needs to define a number of things about the package. These are summarized below:\n", + "\n", + "* Units of measurement\n", + "* What reaction properties are supported and how they are implemented\n", + "* All the global parameters necessary for calculating properties\n", + "* A reference to the associated `Reaction Block` class, so that construction of the `Reaction Block` components can be automated from the `Reaction Parameter Block`\n", + "\n", + "## Step 1: Define Units of Measurement and Property Metadata\n", + "\n", + "The first step is to define the units of measurement for the property package, which will in turn be inherited by any unit model using this property package. The IDAES Core Modeling Framework requires that the units of measurement defined for a reaction property package be identical to those used in the thermophysical property package it is associated with (this is to avoid any chance of confusion regarding units when setting up the balance equations).\n", + "\n", + "In order to set the base units, we use the same approach as for thermophysical property packages; we create a dictionary which has each of the base quantities as a key, and provide a Pyomo recognized unit as the value as shown in the cell below.\n", + "\n", + "Much like thermophysical property packages, we also need to define metadata regarding the reaction properties supported by our package. For this example, we have three supported properties:\n", + "\n", + "* a rate constant (`k_rxn`),\n", + "* an equilibrium constant (`k_eq`), and\n", + "* a reaction rate term (`rate_reaction`).\n", + "\n", + "The cell below shows how to define the units of measurement and properties metadata for this example." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "units_metadata = {\n", + " \"time\": pyunits.s,\n", + " \"length\": pyunits.m,\n", + " \"mass\": pyunits.kg,\n", + " \"amount\": pyunits.mol,\n", + " \"temperature\": pyunits.K,\n", + "}\n", + "\n", + "properties_metadata = {\n", + " \"k_rxn\": {\"method\": None},\n", + " \"k_eq\": {\"method\": None},\n", + " \"reaction_rate\": {\"method\": None},\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to define the rate-based reactions of interest and the associated stoichiometry. For this, we need to define two things:\n", + "\n", + "* a `Set` of names for the rate-based reaction, and\n", + "* a `dict` containing the stoichiometric coefficients for all the rate-based reactions.\n", + "\n", + "In this example, we have only one rate-based reaction, which is the conversion of toluene to benzene; we will call this reaction `R1`. Thus, we create a Pyomo `Set` component and initialize it with the list of rate-based reactions (`[“R1”]`) as shown in the following cell.\n", + "\n", + "Next, we create a `dict` object for the stoichiometric coefficients. This `dict` needs to provide coefficients for all combinations of reaction, phase and component present in the system, even for those components which do not take part in a reaction. This is required as `ControlVolumes` create generation terms for all reaction-phase-component combinations, and need a stoichiometric coefficient for each of these. In this `dict`, the keys need to have the form of a tuple with three parts:\n", + "\n", + "1. the reaction name,\n", + "2. the phase name, and\n", + "3. the component name,\n", + "\n", + "whilst the value is the stoichiometric coefficient for that key combination. See the example in the cell below; in this example we have 1 reaction (`R1`), 1 phase (`Vap`, as defined in the thermophysical property package) and 5 components (`benzene`, `toluene`, `hydrogen`, `methane` and `diphenyl`), thus the resulting dict has `1x1x5` entries." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def define_kinetic_reactions(self):\n", + " # Rate Reaction Index\n", + " self.rate_reaction_idx = Set(initialize=[\"R1\"])\n", + "\n", + " # Rate Reaction Stoichiometry\n", + " self.rate_reaction_stoichiometry = {\n", + " (\"R1\", \"Vap\", \"benzene\"): 1,\n", + " (\"R1\", \"Vap\", \"toluene\"): -1,\n", + " (\"R1\", \"Vap\", \"hydrogen\"): -1,\n", + " (\"R1\", \"Vap\", \"methane\"): 1,\n", + " (\"R1\", \"Vap\", \"diphenyl\"): 0,\n", + " }" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to do the same thing for the equilibrium-based reactions. The format is the same as for rate-based reactions, as shown in the cell below." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def define_equilibrium_reactions(self):\n", + " # Equilibrium Reaction Index\n", + " self.equilibrium_reaction_idx = Set(initialize=[\"E1\"])\n", + "\n", + " # Equilibrium Reaction Stoichiometry\n", + " self.equilibrium_reaction_stoichiometry = {\n", + " (\"E1\", \"Vap\", \"benzene\"): -2,\n", + " (\"E1\", \"Vap\", \"toluene\"): 0,\n", + " (\"E1\", \"Vap\", \"hydrogen\"): 1,\n", + " (\"E1\", \"Vap\", \"methane\"): 0,\n", + " (\"E1\", \"Vap\", \"diphenyl\"): 1,\n", + " }" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we need to define any global parameters related to the reactions of interest. For this example, we will assume that the rate-based reactions follow the Arrhenius equation, thus we need to declare a pre-exponential factor ($A=1.25\\times10^{-9} \\text{ mol}/\\text{m}^3/\\text{s}/\\text{Pa}^2$) and an activation energy parameter ($E_a=3800 \\text{ J}/\\text{mol}$). We will not declare any parameters for the equilibrium-based reactions at this point; this will be done in the individual `ReactionBlocks`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def define_parameters(self):\n", + " # Arrhenius Constant\n", + " self.arrhenius = Param(\n", + " default=1.25e-9,\n", + " doc=\"Arrhenius constant\",\n", + " units=pyunits.mol / pyunits.m**3 / pyunits.s / pyunits.Pa**2,\n", + " )\n", + "\n", + " # Activation Energy\n", + " self.energy_activation = Param(\n", + " default=3800, doc=\"Activation energy\", units=pyunits.J / pyunits.mol\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Declaring the Reaction Parameter Block\n", + "\n", + "Now that the various parts of the Reaction Parameter Block have been declared, we can assemble the actual `class` that will assemble these components in a flowsheet. The steps for declaring a new `ReactionParameterBlock` class which are:\n", + "\n", + "1. Declaring the new class and inheriting from the `ReactionParameterBlock` base class\n", + "3. Writing the `build` method for our `class`\n", + "4. Creating a `define_metadata` method for the class.\n", + "\n", + "Each of these steps are shown in the code example below.\n", + "\n", + "First, we need to declare our new class and give it a unique name. In this example, we will call our new class `HDAReactionParameterBlock`. The first two lines of the example below show how we declare our new class using the `declare_process_block_decorator` and inheriting from the `ReactionParameterBlock` base class from the IDAES Core model libraries. Inheriting from the `ReactionParameterBlock` brings us access to all the necessary features required by the IDAES modeling framework, whilst the `declare_process_block_class` decorator performs some boilerplate operations to replicate the expected object structure of Pyomo. Further details on these components can be found in the IDAES documentation.\n", + "\n", + "Next, we need to declare the `build` method that will be used to construct our Reaction Parameter Block. The first step in any `build` method is to call `super().build()`, which will trigger the `build` method of the base class that the current class inherits from – this is important since this is how we automate construction of any underlying components required by the modeling framework and ensure that everything integrates smoothly. Next, a `ReactionParameterBlock` needs to contain a pointer to the related `ReactionBlock` (which we will look at next) – this is used to allow us to build instances of the `ReactionBlock` by only knowing the `ReactionParameterBlock` we wish to use. To do this, we create an attribute named `_reaction_block_class` attached to our class with a pointer to the `ReactionBlock` class; in this case `self._reaction_block_class = HDAReactionBlock`, where `HDAReactionBlock` is the name of the yet to be declared `ReactionBlock`. Finally, the `build` method needs to construct the actual parameters required for the property package, which we do here by calling the sub-methods written previously.\n", + "\n", + "The final step in creating the `ReactionParameterBlock` class is to declare a `classmethod` named `define_metadata` which takes two arguments; a class (`cls`) and an instance of that class (`obj`). This method in turn needs to call two pre-defined methods (inherited from the underlying base classes):\n", + "\n", + "* `obj.add_properties()` is used to set the metadata regarding the supported reaction properties, and here we pass the `properties_metadata` dict we created earlier as an argument.\n", + "* `obj.add_default_units()` sets the default units metadata for the reaction property package, and here we pass the `units_metadata` `dict ` we created earlier as an argument." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"HDAReactionParameterBlock\")\n", + "class HDAReactionParameterData(ReactionParameterBlock):\n", + " \"\"\"\n", + " Reaction Parameter Block Class\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction.\n", + " \"\"\"\n", + " super(HDAReactionParameterData, self).build()\n", + "\n", + " self._reaction_block_class = HDAReactionBlock\n", + "\n", + " define_kinetic_reactions(self)\n", + " define_equilibrium_reactions(self)\n", + " define_parameters(self)\n", + "\n", + " @classmethod\n", + " def define_metadata(cls, obj):\n", + " obj.add_properties(properties_metadata)\n", + " obj.add_default_units(units_metadata)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Reaction Block\n", + "\n", + "After the Reaction Parameter Block class has been created, the next step is to write the code necessary to create the Reaction Blocks that will be used through out the flowsheet. Similar to State Blocks for thermophysical properties, Reaction Blocks also require two Python `classes` to construct (for a discussion on why, see the related example for creating custom thermophysical property packages).\n", + "\n", + "For this example, we will begin by describing the content of the `ReactionBlockData` objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. After that, we will discuss how to create the class that contains methods to be applied to the `IndexedReactionBlock` as a whole.\n", + "\n", + "## State Variables\n", + "\n", + "Like thermophysical property calculations, reaction properties also depend on the material state variables such as temperature and pressure. However, the state variables are declared as a part of the State Block, and it does not make sense to duplicate them here. Due to this, Reaction Blocks are always associated with a State Block representing the material at the same point in space and time, and the Reaction Block contains a pointer to the equivalent State Block. This allows the Reaction Block to access the state variables, and any other thermophysical property the State Block supports, in order to perform reaction property calculations. The State Block can be accessed using the `state_ref` property of the Reaction Block.\n", + "\n", + "\n", + "## Step 1. Define Property Variables\n", + "\n", + "The first thing we need to do when creating our Reaction Block is create Pyomo components to represent the properties of interest. In this example, we have three properties we need to define:\n", + "\n", + "1. the rate constant for the rate-based reaction: `k_rxn`,\n", + "2. a variable for the rate of reaction at the current state, `rate_reaction`, and\n", + "3. the equilibrium constant for the equilibrium-based reaction, `k_eq`.\n", + "\n", + "The declaration of these is shown in the cell below. Note that for this example we are assuming the equilibrium constant does not vary, and have thus declared it as a Pyomo `Param`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def define_variables_and_parameters(self):\n", + " self.k_rxn = Var(\n", + " initialize=7e-10,\n", + " doc=\"Rate constant\",\n", + " units=pyunits.mol / pyunits.m**3 / pyunits.s / pyunits.Pa**2,\n", + " )\n", + "\n", + " self.reaction_rate = Var(\n", + " self.params.rate_reaction_idx,\n", + " initialize=0,\n", + " doc=\"Rate of reaction\",\n", + " units=pyunits.mol / pyunits.m**3 / pyunits.s,\n", + " )\n", + "\n", + " self.k_eq = Param(initialize=10000, doc=\"Equlibrium constant\", units=pyunits.Pa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 2. Define Constraints for the Rate-Based Reactions\n", + "\n", + "Next, we need to define the `Constraints` which describe the rate-based reaction. First, we use the Arrhenius equation to calculate the rate constant, $k_{rxn} = A \\times e^{-E_a/(RT)}$. For this calculation, $A$ and $E_a$ come from the associated Reaction Parameter Block (`self.params`), $T$ comes from the associated State Block (`self.state_ref.temperature`) and the gas constant $R$ can be found in the IDAES `Constants` class.\n", + "\n", + "After the rate constant, we need to declare the form of the rate expression as well. In this case, we are dealing with a gas phase reaction so $r = k_{rxn} \\times x_{toluene} \\times x_{hydrogen} \\times P^2$, where $P$ is the system pressure. $x_{toluene}$, $x_{hydrogen}$ and $P$ are all state variables, and can be accessed from the associated State Block.\n", + "\n", + "The cell below shows how we declare these two constraints." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def define_rate_expression(self):\n", + " self.arrhenius_equation = Constraint(\n", + " expr=self.k_rxn\n", + " == self.params.arrhenius\n", + " * exp(\n", + " -self.params.energy_activation\n", + " / (const.gas_constant * self.state_ref.temperature)\n", + " )\n", + " )\n", + "\n", + " def rate_rule(b, r):\n", + " return b.reaction_rate[r] == (\n", + " b.k_rxn\n", + " * b.state_ref.mole_frac_comp[\"toluene\"]\n", + " * b.state_ref.mole_frac_comp[\"hydrogen\"]\n", + " * b.state_ref.pressure**2\n", + " )\n", + "\n", + " self.rate_expression = Constraint(self.params.rate_reaction_idx, rule=rate_rule)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3. Define Constraints for the Equilibrium-Based Reactions\n", + "\n", + "Similar to those for the rate-based reactions, we also need to define constraints for the equilibrium-based reactions in the system. In this case, the constraint will take the form of an equality that will force the compositions in the system to satisfy the given equilibrium constant. For this example, we have the following equilibrium constraint:\n", + "\n", + "$$\n", + "k_{eq} = \\frac{x_{diphenyl} \\times x_{hydrogen} \\times P^2}{x_{benzene} \\times P}\n", + "$$\n", + "\n", + "Note that $P$ appears in both the numerator and denominator to make it clear that this is a ratio of partial pressures, and because we will rearrange this constraint when creating the actual Pyomo component in order to avoid potential singularities. This is shown in the cell below." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def define_equilibrium_expression(self):\n", + " self.equilibrium_constraint = Constraint(\n", + " expr=self.k_eq\n", + " * self.state_ref.mole_frac_comp[\"benzene\"]\n", + " * self.state_ref.pressure\n", + " == self.state_ref.mole_frac_comp[\"diphenyl\"]\n", + " * self.state_ref.mole_frac_comp[\"hydrogen\"]\n", + " * self.state_ref.pressure**2\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating the Reaction Block class\n", + "\n", + "These are all the variables and constraints that need to be declared for this example. All that remains is to declare the `_ReactionBlock` and `ReactionBlock` classes to complete our reaction property package. This process is much the same as for the thermophysical property package example, and will only be covered briefly here.\n", + "\n", + "## The `_ReactionBlock` class\n", + "\n", + "For this example, the `_ReactionBlock` class is very simple, and contains only a placeholder `initialize` method. As all the state variables are held separately in the associated State Block and the constraints within the reaction package are fairly simple, it is sufficient to not initialize the reaction properties before solving. However, a placeholder method still needs to be created, as the IDAES framework assumes all components will have an `initialize` method; however, this method need only consist of a `pass` statement.\n", + "\n", + "
\n", + "Note:\n", + "In more complex reaction systems, it is likely that a proper initialization routine would need to be implemented. Developers of these should be aware that equilibrium constraints will need to be deactivated during initialization, as the state variables (i.e. compositions) will be fixed in the State Block. Thus, trying to solve for the system with equilibrium constraints present will result in an over-specified problem.\n", + "
\n", + "\n", + "## The `ReactionBlock` class\n", + "\n", + "Once the `_ReactionBlock` class has been declared, the overall `ReactionBlock` class can be declared as shown below. Once again, we define a `build` method which calls the sub-methods we created earlier in order to construct an instance of the Reaction Block. The `ReactionBlock` class also needs to define a `get_reaction_rate_basis` method, which should return an instance of the `MaterialFlowBasis` `Enum`; this is used by the IDAES framework to determine if conversion between mass and mole basis is required." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "class _HDAReactionBlock(ReactionBlockBase):\n", + " def initialize(blk, outlvl=idaeslog.NOTSET, **kwargs):\n", + " init_log = idaeslog.getInitLogger(blk.name, outlvl, tag=\"properties\")\n", + " init_log.info(\"Initialization Complete.\")\n", + "\n", + "\n", + "@declare_process_block_class(\"HDAReactionBlock\", block_class=_HDAReactionBlock)\n", + "class HDAReactionBlockData(ReactionBlockDataBase):\n", + " def build(self):\n", + "\n", + " super(HDAReactionBlockData, self).build()\n", + "\n", + " define_variables_and_parameters(self)\n", + " define_rate_expression(self)\n", + " define_equilibrium_expression(self)\n", + "\n", + " def get_reaction_rate_basis(b):\n", + " return MaterialFlowBasis.molar" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Demonstration\n", + "\n", + "In order to demonstrate our new Reaction Property package in practice, we will now use it to build and solve a CSTR. First, we will need to import some more components from Pyomo and IDAES to use when building the flowsheet." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import ConcreteModel\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.models.unit_models import CSTR\n", + "\n", + "from idaes_examples.mod.properties.thermophysical_property_example import (\n", + " HDAParameterBlock,\n", + ")\n", + "\n", + "from idaes.core.util.model_statistics import degrees_of_freedom" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we can construct a Pyomo `ConcreteModel` and IDAES `FlowsheetBlock` as usual. We then attach an instance of the associated thermophysical property package (imported as `HDAParameterBlock`) and our new reaction property package to the flowsheet, and then construct a CSTR using these property packages." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "\n", + "m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + "m.fs.thermo_params = HDAParameterBlock()\n", + "m.fs.reaction_params = HDAReactionParameterBlock(property_package=m.fs.thermo_params)\n", + "\n", + "m.fs.reactor = CSTR(\n", + " property_package=m.fs.thermo_params,\n", + " reaction_package=m.fs.reaction_params,\n", + " has_equilibrium_reactions=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If all went well, we should see no errors when constructing the flowsheet above. To be sure, let us print the degrees of freedom in our flowsheet model as shown below; we should see 9 degrees of freedom." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Degrees of Freedom: \", degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert degrees_of_freedom(m) == 9" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The 9 degrees of freedom are the flowrate, temperature, pressure and mole fractions (5) of the inlet stream, as well as the reactor volume. We will fix them to some default values as shown below. Once we are done, we will also print the degrees of freedom again to ensure we have fixed enough variables." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.reactor.inlet.flow_mol.fix(100)\n", + "m.fs.reactor.inlet.temperature.fix(500)\n", + "m.fs.reactor.inlet.pressure.fix(350000)\n", + "m.fs.reactor.inlet.mole_frac_comp[0, \"benzene\"].fix(0.1)\n", + "m.fs.reactor.inlet.mole_frac_comp[0, \"toluene\"].fix(0.4)\n", + "m.fs.reactor.inlet.mole_frac_comp[0, \"hydrogen\"].fix(0.4)\n", + "m.fs.reactor.inlet.mole_frac_comp[0, \"methane\"].fix(0.1)\n", + "m.fs.reactor.inlet.mole_frac_comp[0, \"diphenyl\"].fix(0.0)\n", + "\n", + "m.fs.reactor.volume.fix(1)\n", + "\n", + "print(\"Degrees of Freedom: \", degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert degrees_of_freedom(m) == 0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have defined our example problem, we can initialize and solve the flowsheet. This is done in the cell below, which should result in an optimal solution." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.reactor.initialize(\n", + " state_args={\n", + " \"flow_mol\": 100,\n", + " \"mole_frac_comp\": {\n", + " \"benzene\": 0.15,\n", + " \"toluene\": 0.35,\n", + " \"hydrogen\": 0.35,\n", + " \"methane\": 0.15,\n", + " \"diphenyl\": 0.01,\n", + " },\n", + " \"temperature\": 600,\n", + " \"pressure\": 350000,\n", + " }\n", + ")\n", + "\n", + "solver = get_solver()\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "from pyomo.environ import TerminationCondition, SolverStatus\n", + "\n", + "assert results.solver.termination_condition == TerminationCondition.optimal\n", + "assert results.solver.status == SolverStatus.ok" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that our model has solved, let us use the `report()` method for the CSRT to have a look at what happened in the reactor. We should see that the outlet mole fraction of benzene is now around 0.160 and the mole fraction of diphenyl is 0.014; thus, our reactor has successfully generated benzene from toluene. In the process, the reaction has also generated a lot of heat, which has raised the temperature of the gas from 500 K to 790.2 K." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.reactor.report()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "import pytest\n", + "from pyomo.environ import value\n", + "\n", + "assert value(m.fs.reactor.outlet.flow_mol[0]) == pytest.approx(100, abs=1e-3)\n", + "assert value(m.fs.reactor.outlet.temperature[0]) == pytest.approx(790.212, abs=1e-3)\n", + "assert value(m.fs.reactor.outlet.mole_frac_comp[0, \"benzene\"]) == pytest.approx(\n", + " 0.159626, abs=1e-6\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, as a quick check of model consistency, let us assert that the units of measurement in our model are consistent (the units of the rate constant and pre-exponential factor are rather complex)." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "assert_units_consistent(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Concluding Remarks\n", + "\n", + "The above example has hopefully introduced you to the basic requirements for creating your own custom reaction property packages. However, it is probably clear that it requires a significant amount of effort to write your own property packages, thus users are encouraged to look into the IDAES Modular Reactions Framework if they are not already familiar with this.\n", + "\n", + "The IDAES Modular Reactions Framework is designed to automatically generate user-defined reaction property packages for common reaction forms based on a single configuration file. Users provide a list of reactions of interest (both rate- and equilibrium-based), and select from a library of common reaction forms, and the Modular Reaction Framework then does the hard work of assembling the necessary code to construct the desired model." + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages_usr.ipynb b/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages_usr.ipynb index 00d5caa2..0ea48296 100644 --- a/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages_usr.ipynb +++ b/idaes_examples/notebooks/docs/properties/custom/custom_reaction_property_packages_usr.ipynb @@ -1,729 +1,730 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Reaction Property Packages in IDAES\n", - "Author: Andrew Lee \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-06-01 \n", - "\n", - "
\n", - "Note:\n", - "Reaction property packages are closely related to, and dependent on, thermophysical property packages and it is advised the readers start with understanding these.\n", - "
\n", - "\n", - "Similar to thermophysical property packages, reaction property packages in IDAES are used to define the set of parameters, variables and constraints associated with a specific set of chemical reactions that a user wishes to model. One of the features of the IDAES Integrated Platform is the ability for modelers to create their own property \u201cpackages\u201d to calculate these properties, allowing them to customize the level of complexity and rigor to suit each application. This tutorial will introduce you to the basics of creating property packages for calculating reaction properties within the IDAES Core Modeling Framework.\n", - "\n", - "## Relationship with Thermophysical Property Packages\n", - "\n", - "Reaction properties depend on the state of the system, such as the temperature, pressure and composition of the material. All of these properties are defined in the thermophysical property package, thus reaction property packages are closely tied to thermophysical property packages; indeed, a given reaction package is often tied to a single specific thermophysical property package. Reaction packages need to be used with a thermophysical property package which defines the expected set of components and the expected forms and units for the state variables.\n", - "\n", - "As such, developers of reaction packages should have a specific thermophysical property package in mind when developing a reaction property package, and to tailor the reaction package to the thermophysical property package.\n", - "\n", - "## Types of Reactions\n", - "\n", - "Within the IDAES Core Modeling Framework, chemical reactions are divided into two categories:\n", - "\n", - "1. Equilibrium based reactions, where extent of reaction is determined by satisfying a constraint relating the concentration of species within the system, and\n", - "2. Rate based reactions, where extent of reaction depends on some characteristic of the reactor unit. Despite the name, this category is also used to represent stoichiometric and yield based reactions.\n", - "\n", - "## Steps in Creating a Reaction Property Package\n", - "\n", - "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", - "\n", - "1. Defining the **units of measurement** for the property package.\n", - "2. Defining the **properties supported** by the property package and the associated metadata.\n", - "3. Defining the **equilibrium reactions** of interest.\n", - "4. Defining the **equilibrium reactions** of interest.\n", - "5. Defining the **parameters** related to the reactions of interest.\n", - "6. Creating **variables and constraints** to describe the reactions of interest.\n", - "7. Creating an **initialization routine** for the reaction property package.\n", - "8. Defining **interface methods** used to couple the property package with unit models." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Tutorial Example\n", - "\n", - "For this tutorial, we will be building a upon the property package from the thermophysical property example. In that example, we constructed a thermophysical property package that could be used to model a process for the hydrodealkylation of toluene to form benzene. This process involves five key chemical species:\n", - "\n", - "* toluene\n", - "* benzene\n", - "* hydrogen\n", - "* methane\n", - "* diphenyl\n", - "\n", - "In this tutorial, we will write a reaction property package to define the reactions associated with the HDA process:\n", - "\n", - "$$\n", - "\\text{Toluene} + \\text{Hydrogen} \\rightarrow \\text{Benzene} + \\text{Methane}\n", - "$$\n", - "$$\n", - "2 \\text{Benzene} \\rightleftharpoons \\text{Hydrogen} + \\text{Diphenyl}\n", - "$$\n", - "\n", - "## A Note on this Tutorial\n", - "\n", - "The `build` methods in the reaction property package classes are generally written as a single, long method. However, to break the code into manageable pieces for discussion, in this tutorial we will create a number of smaller sub-methods that will then be called as part of the `build` method. This is done entirely for presentation purposes, and model developers should not feel compelled to write their models this way." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "An example of how the example in this tutorial would be written without sub-methods can be found in the module `idaes_examples.mod.properties.reaction_property_example`. To locate this file on your system, you can use the following code snippet:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "from idaes_examples.mod.properties import reaction_property_example as example\n", - "import inspect\n", - "\n", - "print(inspect.getabsfile(example))\n", - "# To print the file contents, uncomment the following line\n", - "# print(''.join(inspect.getsourcelines(example)[0]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Components of a Reaction Property Package\n", - "\n", - "Similar to thermophysical property packages, reaction property packages consist of three parts, which are written as Python `classes`. These components are:\n", - "\n", - "* The `Reaction Parameter Block` class, which contains all the global parameters associated with the reaction property package,\n", - "* The `Reaction Block Data` class, which contains the instructions on how to calculate all the properties at a given state, and,\n", - "* The `Reaction Block` class, which is used to construct indexed sets of `Reaction Block Data` objects and contains methods for acting on all multiple `Reaction Block Data` objects at once (such as initialization).\n", - "\n", - "It is not necessary to understand the reason for the distinction between the `Reaction Block` and `Reaction Block Data` classes. Suffice to say that this is due to the need to replicate the underlying component structure of Pyomo, and that the `Reaction Block` represents the indexed `Block` representing a set of states across a given indexing set (most often time), and the `Reaction Block Data` represents the individual elements of the indexed `Block`.\n", - "\n", - "## Importing Libraries\n", - "\n", - "Before we begin writing the actual `classes` however, we need to import all the necessary components from the Pyomo and IDAES modeling libraries. To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries.\n", - "\n", - "Rather than describe the purpose of all of these here, we shall just import all of them here and discuss their use as they arise in the example." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Pyomo libraries\n", - "from pyomo.environ import Constraint, exp, Param, Set, units as pyunits, Var\n", - "\n", - "# Import IDAES cores\n", - "from idaes.core import (\n", - " declare_process_block_class,\n", - " MaterialFlowBasis,\n", - " ReactionParameterBlock,\n", - " ReactionBlockDataBase,\n", - " ReactionBlockBase,\n", - ")\n", - "from idaes.core.util.constants import Constants as const\n", - "import idaes.logger as idaeslog" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The Reaction Parameter Block\n", - "\n", - "We will begin by constructing the `Reaction Parameter Block` for our example. This serves as the central point of reference for all aspects of the reaction property package, and needs to define a number of things about the package. These are summarized below:\n", - "\n", - "* Units of measurement\n", - "* What reaction properties are supported and how they are implemented\n", - "* All the global parameters necessary for calculating properties\n", - "* A reference to the associated `Reaction Block` class, so that construction of the `Reaction Block` components can be automated from the `Reaction Parameter Block`\n", - "\n", - "## Step 1: Define Units of Measurement and Property Metadata\n", - "\n", - "The first step is to define the units of measurement for the property package, which will in turn be inherited by any unit model using this property package. The IDAES Core Modeling Framework requires that the units of measurement defined for a reaction property package be identical to those used in the thermophysical property package it is associated with (this is to avoid any chance of confusion regarding units when setting up the balance equations).\n", - "\n", - "In order to set the base units, we use the same approach as for thermophysical property packages; we create a dictionary which has each of the base quantities as a key, and provide a Pyomo recognized unit as the value as shown in the cell below.\n", - "\n", - "Much like thermophysical property packages, we also need to define metadata regarding the reaction properties supported by our package. For this example, we have three supported properties:\n", - "\n", - "* a rate constant (`k_rxn`),\n", - "* an equilibrium constant (`k_eq`), and\n", - "* a reaction rate term (`rate_reaction`).\n", - "\n", - "The cell below shows how to define the units of measurement and properties metadata for this example." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "units_metadata = {\n", - " \"time\": pyunits.s,\n", - " \"length\": pyunits.m,\n", - " \"mass\": pyunits.kg,\n", - " \"amount\": pyunits.mol,\n", - " \"temperature\": pyunits.K,\n", - "}\n", - "\n", - "properties_metadata = {\n", - " \"k_rxn\": {\"method\": None},\n", - " \"k_eq\": {\"method\": None},\n", - " \"reaction_rate\": {\"method\": None},\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to define the rate-based reactions of interest and the associated stoichiometry. For this, we need to define two things:\n", - "\n", - "* a `Set` of names for the rate-based reaction, and\n", - "* a `dict` containing the stoichiometric coefficients for all the rate-based reactions.\n", - "\n", - "In this example, we have only one rate-based reaction, which is the conversion of toluene to benzene; we will call this reaction `R1`. Thus, we create a Pyomo `Set` component and initialize it with the list of rate-based reactions (`[\u201cR1\u201d]`) as shown in the following cell.\n", - "\n", - "Next, we create a `dict` object for the stoichiometric coefficients. This `dict` needs to provide coefficients for all combinations of reaction, phase and component present in the system, even for those components which do not take part in a reaction. This is required as `ControlVolumes` create generation terms for all reaction-phase-component combinations, and need a stoichiometric coefficient for each of these. In this `dict`, the keys need to have the form of a tuple with three parts:\n", - "\n", - "1. the reaction name,\n", - "2. the phase name, and\n", - "3. the component name,\n", - "\n", - "whilst the value is the stoichiometric coefficient for that key combination. See the example in the cell below; in this example we have 1 reaction (`R1`), 1 phase (`Vap`, as defined in the thermophysical property package) and 5 components (`benzene`, `toluene`, `hydrogen`, `methane` and `diphenyl`), thus the resulting dict has `1x1x5` entries." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "def define_kinetic_reactions(self):\n", - " # Rate Reaction Index\n", - " self.rate_reaction_idx = Set(initialize=[\"R1\"])\n", - "\n", - " # Rate Reaction Stoichiometry\n", - " self.rate_reaction_stoichiometry = {\n", - " (\"R1\", \"Vap\", \"benzene\"): 1,\n", - " (\"R1\", \"Vap\", \"toluene\"): -1,\n", - " (\"R1\", \"Vap\", \"hydrogen\"): -1,\n", - " (\"R1\", \"Vap\", \"methane\"): 1,\n", - " (\"R1\", \"Vap\", \"diphenyl\"): 0,\n", - " }" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to do the same thing for the equilibrium-based reactions. The format is the same as for rate-based reactions, as shown in the cell below." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "def define_equilibrium_reactions(self):\n", - " # Equilibrium Reaction Index\n", - " self.equilibrium_reaction_idx = Set(initialize=[\"E1\"])\n", - "\n", - " # Equilibrium Reaction Stoichiometry\n", - " self.equilibrium_reaction_stoichiometry = {\n", - " (\"E1\", \"Vap\", \"benzene\"): -2,\n", - " (\"E1\", \"Vap\", \"toluene\"): 0,\n", - " (\"E1\", \"Vap\", \"hydrogen\"): 1,\n", - " (\"E1\", \"Vap\", \"methane\"): 0,\n", - " (\"E1\", \"Vap\", \"diphenyl\"): 1,\n", - " }" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we need to define any global parameters related to the reactions of interest. For this example, we will assume that the rate-based reactions follow the Arrhenius equation, thus we need to declare a pre-exponential factor ($A=1.25\\times10^{-9} \\text{ mol}/\\text{m}^3/\\text{s}/\\text{Pa}^2$) and an activation energy parameter ($E_a=3800 \\text{ J}/\\text{mol}$). We will not declare any parameters for the equilibrium-based reactions at this point; this will be done in the individual `ReactionBlocks`." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "def define_parameters(self):\n", - " # Arrhenius Constant\n", - " self.arrhenius = Param(\n", - " default=1.25e-9,\n", - " doc=\"Arrhenius constant\",\n", - " units=pyunits.mol / pyunits.m**3 / pyunits.s / pyunits.Pa**2,\n", - " )\n", - "\n", - " # Activation Energy\n", - " self.energy_activation = Param(\n", - " default=3800, doc=\"Activation energy\", units=pyunits.J / pyunits.mol\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Declaring the Reaction Parameter Block\n", - "\n", - "Now that the various parts of the Reaction Parameter Block have been declared, we can assemble the actual `class` that will assemble these components in a flowsheet. The steps for declaring a new `ReactionParameterBlock` class which are:\n", - "\n", - "1. Declaring the new class and inheriting from the `ReactionParameterBlock` base class\n", - "3. Writing the `build` method for our `class`\n", - "4. Creating a `define_metadata` method for the class.\n", - "\n", - "Each of these steps are shown in the code example below.\n", - "\n", - "First, we need to declare our new class and give it a unique name. In this example, we will call our new class `HDAReactionParameterBlock`. The first two lines of the example below show how we declare our new class using the `declare_process_block_decorator` and inheriting from the `ReactionParameterBlock` base class from the IDAES Core model libraries. Inheriting from the `ReactionParameterBlock` brings us access to all the necessary features required by the IDAES modeling framework, whilst the `declare_process_block_class` decorator performs some boilerplate operations to replicate the expected object structure of Pyomo. Further details on these components can be found in the IDAES documentation.\n", - "\n", - "Next, we need to declare the `build` method that will be used to construct our Reaction Parameter Block. The first step in any `build` method is to call `super().build()`, which will trigger the `build` method of the base class that the current class inherits from \u2013 this is important since this is how we automate construction of any underlying components required by the modeling framework and ensure that everything integrates smoothly. Next, a `ReactionParameterBlock` needs to contain a pointer to the related `ReactionBlock` (which we will look at next) \u2013 this is used to allow us to build instances of the `ReactionBlock` by only knowing the `ReactionParameterBlock` we wish to use. To do this, we create an attribute named `_reaction_block_class` attached to our class with a pointer to the `ReactionBlock` class; in this case `self._reaction_block_class = HDAReactionBlock`, where `HDAReactionBlock` is the name of the yet to be declared `ReactionBlock`. Finally, the `build` method needs to construct the actual parameters required for the property package, which we do here by calling the sub-methods written previously.\n", - "\n", - "The final step in creating the `ReactionParameterBlock` class is to declare a `classmethod` named `define_metadata` which takes two arguments; a class (`cls`) and an instance of that class (`obj`). This method in turn needs to call two pre-defined methods (inherited from the underlying base classes):\n", - "\n", - "* `obj.add_properties()` is used to set the metadata regarding the supported reaction properties, and here we pass the `properties_metadata` dict we created earlier as an argument.\n", - "* `obj.add_default_units()` sets the default units metadata for the reaction property package, and here we pass the `units_metadata` `dict ` we created earlier as an argument." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"HDAReactionParameterBlock\")\n", - "class HDAReactionParameterData(ReactionParameterBlock):\n", - " \"\"\"\n", - " Reaction Parameter Block Class\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction.\n", - " \"\"\"\n", - " super(HDAReactionParameterData, self).build()\n", - "\n", - " self._reaction_block_class = HDAReactionBlock\n", - "\n", - " define_kinetic_reactions(self)\n", - " define_equilibrium_reactions(self)\n", - " define_parameters(self)\n", - "\n", - " @classmethod\n", - " def define_metadata(cls, obj):\n", - " obj.add_properties(properties_metadata)\n", - " obj.add_default_units(units_metadata)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Reaction Block\n", - "\n", - "After the Reaction Parameter Block class has been created, the next step is to write the code necessary to create the Reaction Blocks that will be used through out the flowsheet. Similar to State Blocks for thermophysical properties, Reaction Blocks also require two Python `classes` to construct (for a discussion on why, see the related example for creating custom thermophysical property packages).\n", - "\n", - "For this example, we will begin by describing the content of the `ReactionBlockData` objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. After that, we will discuss how to create the class that contains methods to be applied to the `IndexedReactionBlock` as a whole.\n", - "\n", - "## State Variables\n", - "\n", - "Like thermophysical property calculations, reaction properties also depend on the material state variables such as temperature and pressure. However, the state variables are declared as a part of the State Block, and it does not make sense to duplicate them here. Due to this, Reaction Blocks are always associated with a State Block representing the material at the same point in space and time, and the Reaction Block contains a pointer to the equivalent State Block. This allows the Reaction Block to access the state variables, and any other thermophysical property the State Block supports, in order to perform reaction property calculations. The State Block can be accessed using the `state_ref` property of the Reaction Block.\n", - "\n", - "\n", - "## Step 1. Define Property Variables\n", - "\n", - "The first thing we need to do when creating our Reaction Block is create Pyomo components to represent the properties of interest. In this example, we have three properties we need to define:\n", - "\n", - "1. the rate constant for the rate-based reaction: `k_rxn`,\n", - "2. a variable for the rate of reaction at the current state, `rate_reaction`, and\n", - "3. the equilibrium constant for the equilibrium-based reaction, `k_eq`.\n", - "\n", - "The declaration of these is shown in the cell below. Note that for this example we are assuming the equilibrium constant does not vary, and have thus declared it as a Pyomo `Param`." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "def define_variables_and_parameters(self):\n", - " self.k_rxn = Var(\n", - " initialize=7e-10,\n", - " doc=\"Rate constant\",\n", - " units=pyunits.mol / pyunits.m**3 / pyunits.s / pyunits.Pa**2,\n", - " )\n", - "\n", - " self.reaction_rate = Var(\n", - " self.params.rate_reaction_idx,\n", - " initialize=0,\n", - " doc=\"Rate of reaction\",\n", - " units=pyunits.mol / pyunits.m**3 / pyunits.s,\n", - " )\n", - "\n", - " self.k_eq = Param(initialize=10000, doc=\"Equlibrium constant\", units=pyunits.Pa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 2. Define Constraints for the Rate-Based Reactions\n", - "\n", - "Next, we need to define the `Constraints` which describe the rate-based reaction. First, we use the Arrhenius equation to calculate the rate constant, $k_{rxn} = A \\times e^{-E_a/(RT)}$. For this calculation, $A$ and $E_a$ come from the associated Reaction Parameter Block (`self.params`), $T$ comes from the associated State Block (`self.state_ref.temperature`) and the gas constant $R$ can be found in the IDAES `Constants` class.\n", - "\n", - "After the rate constant, we need to declare the form of the rate expression as well. In this case, we are dealing with a gas phase reaction so $r = k_{rxn} \\times x_{toluene} \\times x_{hydrogen} \\times P^2$, where $P$ is the system pressure. $x_{toluene}$, $x_{hydrogen}$ and $P$ are all state variables, and can be accessed from the associated State Block.\n", - "\n", - "The cell below shows how we declare these two constraints." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "def define_rate_expression(self):\n", - " self.arrhenius_equation = Constraint(\n", - " expr=self.k_rxn\n", - " == self.params.arrhenius\n", - " * exp(\n", - " -self.params.energy_activation\n", - " / (const.gas_constant * self.state_ref.temperature)\n", - " )\n", - " )\n", - "\n", - " def rate_rule(b, r):\n", - " return b.reaction_rate[r] == (\n", - " b.k_rxn\n", - " * b.state_ref.mole_frac_comp[\"toluene\"]\n", - " * b.state_ref.mole_frac_comp[\"hydrogen\"]\n", - " * b.state_ref.pressure**2\n", - " )\n", - "\n", - " self.rate_expression = Constraint(self.params.rate_reaction_idx, rule=rate_rule)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 3. Define Constraints for the Equilibrium-Based Reactions\n", - "\n", - "Similar to those for the rate-based reactions, we also need to define constraints for the equilibrium-based reactions in the system. In this case, the constraint will take the form of an equality that will force the compositions in the system to satisfy the given equilibrium constant. For this example, we have the following equilibrium constraint:\n", - "\n", - "$$\n", - "k_{eq} = \\frac{x_{diphenyl} \\times x_{hydrogen} \\times P^2}{x_{benzene} \\times P}\n", - "$$\n", - "\n", - "Note that $P$ appears in both the numerator and denominator to make it clear that this is a ratio of partial pressures, and because we will rearrange this constraint when creating the actual Pyomo component in order to avoid potential singularities. This is shown in the cell below." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "def define_equilibrium_expression(self):\n", - " self.equilibrium_constraint = Constraint(\n", - " expr=self.k_eq\n", - " * self.state_ref.mole_frac_comp[\"benzene\"]\n", - " * self.state_ref.pressure\n", - " == self.state_ref.mole_frac_comp[\"diphenyl\"]\n", - " * self.state_ref.mole_frac_comp[\"hydrogen\"]\n", - " * self.state_ref.pressure**2\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Creating the Reaction Block class\n", - "\n", - "These are all the variables and constraints that need to be declared for this example. All that remains is to declare the `_ReactionBlock` and `ReactionBlock` classes to complete our reaction property package. This process is much the same as for the thermophysical property package example, and will only be covered briefly here.\n", - "\n", - "## The `_ReactionBlock` class\n", - "\n", - "For this example, the `_ReactionBlock` class is very simple, and contains only a placeholder `initialize` method. As all the state variables are held separately in the associated State Block and the constraints within the reaction package are fairly simple, it is sufficient to not initialize the reaction properties before solving. However, a placeholder method still needs to be created, as the IDAES framework assumes all components will have an `initialize` method; however, this method need only consist of a `pass` statement.\n", - "\n", - "
\n", - "Note:\n", - "In more complex reaction systems, it is likely that a proper initialization routine would need to be implemented. Developers of these should be aware that equilibrium constraints will need to be deactivated during initialization, as the state variables (i.e. compositions) will be fixed in the State Block. Thus, trying to solve for the system with equilibrium constraints present will result in an over-specified problem.\n", - "
\n", - "\n", - "## The `ReactionBlock` class\n", - "\n", - "Once the `_ReactionBlock` class has been declared, the overall `ReactionBlock` class can be declared as shown below. Once again, we define a `build` method which calls the sub-methods we created earlier in order to construct an instance of the Reaction Block. The `ReactionBlock` class also needs to define a `get_reaction_rate_basis` method, which should return an instance of the `MaterialFlowBasis` `Enum`; this is used by the IDAES framework to determine if conversion between mass and mole basis is required." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "class _HDAReactionBlock(ReactionBlockBase):\n", - " def initialize(blk, outlvl=idaeslog.NOTSET, **kwargs):\n", - " init_log = idaeslog.getInitLogger(blk.name, outlvl, tag=\"properties\")\n", - " init_log.info(\"Initialization Complete.\")\n", - "\n", - "\n", - "@declare_process_block_class(\"HDAReactionBlock\", block_class=_HDAReactionBlock)\n", - "class HDAReactionBlockData(ReactionBlockDataBase):\n", - " def build(self):\n", - "\n", - " super(HDAReactionBlockData, self).build()\n", - "\n", - " define_variables_and_parameters(self)\n", - " define_rate_expression(self)\n", - " define_equilibrium_expression(self)\n", - "\n", - " def get_reaction_rate_basis(b):\n", - " return MaterialFlowBasis.molar" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Demonstration\n", - "\n", - "In order to demonstrate our new Reaction Property package in practice, we will now use it to build and solve a CSTR. First, we will need to import some more components from Pyomo and IDAES to use when building the flowsheet." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import ConcreteModel\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.models.unit_models import CSTR\n", - "\n", - "from idaes_examples.mod.properties.thermophysical_property_example import (\n", - " HDAParameterBlock,\n", - ")\n", - "\n", - "from idaes.core.util.model_statistics import degrees_of_freedom" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we can construct a Pyomo `ConcreteModel` and IDAES `FlowsheetBlock` as usual. We then attach an instance of the associated thermophysical property package (imported as `HDAParameterBlock`) and our new reaction property package to the flowsheet, and then construct a CSTR using these property packages." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "\n", - "m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - "m.fs.thermo_params = HDAParameterBlock()\n", - "m.fs.reaction_params = HDAReactionParameterBlock(property_package=m.fs.thermo_params)\n", - "\n", - "m.fs.reactor = CSTR(\n", - " property_package=m.fs.thermo_params,\n", - " reaction_package=m.fs.reaction_params,\n", - " has_equilibrium_reactions=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If all went well, we should see no errors when constructing the flowsheet above. To be sure, let us print the degrees of freedom in our flowsheet model as shown below; we should see 9 degrees of freedom." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Degrees of Freedom: \", degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The 9 degrees of freedom are the flowrate, temperature, pressure and mole fractions (5) of the inlet stream, as well as the reactor volume. We will fix them to some default values as shown below. Once we are done, we will also print the degrees of freedom again to ensure we have fixed enough variables." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.reactor.inlet.flow_mol.fix(100)\n", - "m.fs.reactor.inlet.temperature.fix(500)\n", - "m.fs.reactor.inlet.pressure.fix(350000)\n", - "m.fs.reactor.inlet.mole_frac_comp[0, \"benzene\"].fix(0.1)\n", - "m.fs.reactor.inlet.mole_frac_comp[0, \"toluene\"].fix(0.4)\n", - "m.fs.reactor.inlet.mole_frac_comp[0, \"hydrogen\"].fix(0.4)\n", - "m.fs.reactor.inlet.mole_frac_comp[0, \"methane\"].fix(0.1)\n", - "m.fs.reactor.inlet.mole_frac_comp[0, \"diphenyl\"].fix(0.0)\n", - "\n", - "m.fs.reactor.volume.fix(1)\n", - "\n", - "print(\"Degrees of Freedom: \", degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that we have defined our example problem, we can initialize and solve the flowsheet. This is done in the cell below, which should result in an optimal solution." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.reactor.initialize(\n", - " state_args={\n", - " \"flow_mol\": 100,\n", - " \"mole_frac_comp\": {\n", - " \"benzene\": 0.15,\n", - " \"toluene\": 0.35,\n", - " \"hydrogen\": 0.35,\n", - " \"methane\": 0.15,\n", - " \"diphenyl\": 0.01,\n", - " },\n", - " \"temperature\": 600,\n", - " \"pressure\": 350000,\n", - " }\n", - ")\n", - "\n", - "solver = get_solver()\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that our model has solved, let us use the `report()` method for the CSRT to have a look at what happened in the reactor. We should see that the outlet mole fraction of benzene is now around 0.160 and the mole fraction of diphenyl is 0.014; thus, our reactor has successfully generated benzene from toluene. In the process, the reaction has also generated a lot of heat, which has raised the temperature of the gas from 500 K to 790.2 K." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.reactor.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, as a quick check of model consistency, let us assert that the units of measurement in our model are consistent (the units of the rate constant and pre-exponential factor are rather complex)." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "assert_units_consistent(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Concluding Remarks\n", - "\n", - "The above example has hopefully introduced you to the basic requirements for creating your own custom reaction property packages. However, it is probably clear that it requires a significant amount of effort to write your own property packages, thus users are encouraged to look into the IDAES Modular Reactions Framework if they are not already familiar with this.\n", - "\n", - "The IDAES Modular Reactions Framework is designed to automatically generate user-defined reaction property packages for common reaction forms based on a single configuration file. Users provide a list of reactions of interest (both rate- and equilibrium-based), and select from a library of common reaction forms, and the Modular Reaction Framework then does the hard work of assembling the necessary code to construct the desired model." - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Reaction Property Packages in IDAES\n", + "Author: Andrew Lee \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-06-01 \n", + "\n", + "
\n", + "Note:\n", + "Reaction property packages are closely related to, and dependent on, thermophysical property packages and it is advised the readers start with understanding these.\n", + "
\n", + "\n", + "Similar to thermophysical property packages, reaction property packages in IDAES are used to define the set of parameters, variables and constraints associated with a specific set of chemical reactions that a user wishes to model. One of the features of the IDAES Integrated Platform is the ability for modelers to create their own property “packages” to calculate these properties, allowing them to customize the level of complexity and rigor to suit each application. This tutorial will introduce you to the basics of creating property packages for calculating reaction properties within the IDAES Core Modeling Framework.\n", + "\n", + "## Relationship with Thermophysical Property Packages\n", + "\n", + "Reaction properties depend on the state of the system, such as the temperature, pressure and composition of the material. All of these properties are defined in the thermophysical property package, thus reaction property packages are closely tied to thermophysical property packages; indeed, a given reaction package is often tied to a single specific thermophysical property package. Reaction packages need to be used with a thermophysical property package which defines the expected set of components and the expected forms and units for the state variables.\n", + "\n", + "As such, developers of reaction packages should have a specific thermophysical property package in mind when developing a reaction property package, and to tailor the reaction package to the thermophysical property package.\n", + "\n", + "## Types of Reactions\n", + "\n", + "Within the IDAES Core Modeling Framework, chemical reactions are divided into two categories:\n", + "\n", + "1. Equilibrium based reactions, where extent of reaction is determined by satisfying a constraint relating the concentration of species within the system, and\n", + "2. Rate based reactions, where extent of reaction depends on some characteristic of the reactor unit. Despite the name, this category is also used to represent stoichiometric and yield based reactions.\n", + "\n", + "## Steps in Creating a Reaction Property Package\n", + "\n", + "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", + "\n", + "1. Defining the **units of measurement** for the property package.\n", + "2. Defining the **properties supported** by the property package and the associated metadata.\n", + "3. Defining the **equilibrium reactions** of interest.\n", + "4. Defining the **equilibrium reactions** of interest.\n", + "5. Defining the **parameters** related to the reactions of interest.\n", + "6. Creating **variables and constraints** to describe the reactions of interest.\n", + "7. Creating an **initialization routine** for the reaction property package.\n", + "8. Defining **interface methods** used to couple the property package with unit models." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tutorial Example\n", + "\n", + "For this tutorial, we will be building a upon the property package from the thermophysical property example. In that example, we constructed a thermophysical property package that could be used to model a process for the hydrodealkylation of toluene to form benzene. This process involves five key chemical species:\n", + "\n", + "* toluene\n", + "* benzene\n", + "* hydrogen\n", + "* methane\n", + "* diphenyl\n", + "\n", + "In this tutorial, we will write a reaction property package to define the reactions associated with the HDA process:\n", + "\n", + "$$\n", + "\\text{Toluene} + \\text{Hydrogen} \\rightarrow \\text{Benzene} + \\text{Methane}\n", + "$$\n", + "$$\n", + "2 \\text{Benzene} \\rightleftharpoons \\text{Hydrogen} + \\text{Diphenyl}\n", + "$$\n", + "\n", + "## A Note on this Tutorial\n", + "\n", + "The `build` methods in the reaction property package classes are generally written as a single, long method. However, to break the code into manageable pieces for discussion, in this tutorial we will create a number of smaller sub-methods that will then be called as part of the `build` method. This is done entirely for presentation purposes, and model developers should not feel compelled to write their models this way." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "An example of how the example in this tutorial would be written without sub-methods can be found in the module `idaes_examples.mod.properties.reaction_property_example`. To locate this file on your system, you can use the following code snippet:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from idaes_examples.mod.properties import reaction_property_example as example\n", + "import inspect\n", + "\n", + "print(inspect.getabsfile(example))\n", + "# To print the file contents, uncomment the following line\n", + "# print(''.join(inspect.getsourcelines(example)[0]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Components of a Reaction Property Package\n", + "\n", + "Similar to thermophysical property packages, reaction property packages consist of three parts, which are written as Python `classes`. These components are:\n", + "\n", + "* The `Reaction Parameter Block` class, which contains all the global parameters associated with the reaction property package,\n", + "* The `Reaction Block Data` class, which contains the instructions on how to calculate all the properties at a given state, and,\n", + "* The `Reaction Block` class, which is used to construct indexed sets of `Reaction Block Data` objects and contains methods for acting on all multiple `Reaction Block Data` objects at once (such as initialization).\n", + "\n", + "It is not necessary to understand the reason for the distinction between the `Reaction Block` and `Reaction Block Data` classes. Suffice to say that this is due to the need to replicate the underlying component structure of Pyomo, and that the `Reaction Block` represents the indexed `Block` representing a set of states across a given indexing set (most often time), and the `Reaction Block Data` represents the individual elements of the indexed `Block`.\n", + "\n", + "## Importing Libraries\n", + "\n", + "Before we begin writing the actual `classes` however, we need to import all the necessary components from the Pyomo and IDAES modeling libraries. To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries.\n", + "\n", + "Rather than describe the purpose of all of these here, we shall just import all of them here and discuss their use as they arise in the example." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Pyomo libraries\n", + "from pyomo.environ import Constraint, exp, Param, Set, units as pyunits, Var\n", + "\n", + "# Import IDAES cores\n", + "from idaes.core import (\n", + " declare_process_block_class,\n", + " MaterialFlowBasis,\n", + " ReactionParameterBlock,\n", + " ReactionBlockDataBase,\n", + " ReactionBlockBase,\n", + ")\n", + "from idaes.core.util.constants import Constants as const\n", + "import idaes.logger as idaeslog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# The Reaction Parameter Block\n", + "\n", + "We will begin by constructing the `Reaction Parameter Block` for our example. This serves as the central point of reference for all aspects of the reaction property package, and needs to define a number of things about the package. These are summarized below:\n", + "\n", + "* Units of measurement\n", + "* What reaction properties are supported and how they are implemented\n", + "* All the global parameters necessary for calculating properties\n", + "* A reference to the associated `Reaction Block` class, so that construction of the `Reaction Block` components can be automated from the `Reaction Parameter Block`\n", + "\n", + "## Step 1: Define Units of Measurement and Property Metadata\n", + "\n", + "The first step is to define the units of measurement for the property package, which will in turn be inherited by any unit model using this property package. The IDAES Core Modeling Framework requires that the units of measurement defined for a reaction property package be identical to those used in the thermophysical property package it is associated with (this is to avoid any chance of confusion regarding units when setting up the balance equations).\n", + "\n", + "In order to set the base units, we use the same approach as for thermophysical property packages; we create a dictionary which has each of the base quantities as a key, and provide a Pyomo recognized unit as the value as shown in the cell below.\n", + "\n", + "Much like thermophysical property packages, we also need to define metadata regarding the reaction properties supported by our package. For this example, we have three supported properties:\n", + "\n", + "* a rate constant (`k_rxn`),\n", + "* an equilibrium constant (`k_eq`), and\n", + "* a reaction rate term (`rate_reaction`).\n", + "\n", + "The cell below shows how to define the units of measurement and properties metadata for this example." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "units_metadata = {\n", + " \"time\": pyunits.s,\n", + " \"length\": pyunits.m,\n", + " \"mass\": pyunits.kg,\n", + " \"amount\": pyunits.mol,\n", + " \"temperature\": pyunits.K,\n", + "}\n", + "\n", + "properties_metadata = {\n", + " \"k_rxn\": {\"method\": None},\n", + " \"k_eq\": {\"method\": None},\n", + " \"reaction_rate\": {\"method\": None},\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to define the rate-based reactions of interest and the associated stoichiometry. For this, we need to define two things:\n", + "\n", + "* a `Set` of names for the rate-based reaction, and\n", + "* a `dict` containing the stoichiometric coefficients for all the rate-based reactions.\n", + "\n", + "In this example, we have only one rate-based reaction, which is the conversion of toluene to benzene; we will call this reaction `R1`. Thus, we create a Pyomo `Set` component and initialize it with the list of rate-based reactions (`[“R1”]`) as shown in the following cell.\n", + "\n", + "Next, we create a `dict` object for the stoichiometric coefficients. This `dict` needs to provide coefficients for all combinations of reaction, phase and component present in the system, even for those components which do not take part in a reaction. This is required as `ControlVolumes` create generation terms for all reaction-phase-component combinations, and need a stoichiometric coefficient for each of these. In this `dict`, the keys need to have the form of a tuple with three parts:\n", + "\n", + "1. the reaction name,\n", + "2. the phase name, and\n", + "3. the component name,\n", + "\n", + "whilst the value is the stoichiometric coefficient for that key combination. See the example in the cell below; in this example we have 1 reaction (`R1`), 1 phase (`Vap`, as defined in the thermophysical property package) and 5 components (`benzene`, `toluene`, `hydrogen`, `methane` and `diphenyl`), thus the resulting dict has `1x1x5` entries." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def define_kinetic_reactions(self):\n", + " # Rate Reaction Index\n", + " self.rate_reaction_idx = Set(initialize=[\"R1\"])\n", + "\n", + " # Rate Reaction Stoichiometry\n", + " self.rate_reaction_stoichiometry = {\n", + " (\"R1\", \"Vap\", \"benzene\"): 1,\n", + " (\"R1\", \"Vap\", \"toluene\"): -1,\n", + " (\"R1\", \"Vap\", \"hydrogen\"): -1,\n", + " (\"R1\", \"Vap\", \"methane\"): 1,\n", + " (\"R1\", \"Vap\", \"diphenyl\"): 0,\n", + " }" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to do the same thing for the equilibrium-based reactions. The format is the same as for rate-based reactions, as shown in the cell below." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def define_equilibrium_reactions(self):\n", + " # Equilibrium Reaction Index\n", + " self.equilibrium_reaction_idx = Set(initialize=[\"E1\"])\n", + "\n", + " # Equilibrium Reaction Stoichiometry\n", + " self.equilibrium_reaction_stoichiometry = {\n", + " (\"E1\", \"Vap\", \"benzene\"): -2,\n", + " (\"E1\", \"Vap\", \"toluene\"): 0,\n", + " (\"E1\", \"Vap\", \"hydrogen\"): 1,\n", + " (\"E1\", \"Vap\", \"methane\"): 0,\n", + " (\"E1\", \"Vap\", \"diphenyl\"): 1,\n", + " }" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we need to define any global parameters related to the reactions of interest. For this example, we will assume that the rate-based reactions follow the Arrhenius equation, thus we need to declare a pre-exponential factor ($A=1.25\\times10^{-9} \\text{ mol}/\\text{m}^3/\\text{s}/\\text{Pa}^2$) and an activation energy parameter ($E_a=3800 \\text{ J}/\\text{mol}$). We will not declare any parameters for the equilibrium-based reactions at this point; this will be done in the individual `ReactionBlocks`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def define_parameters(self):\n", + " # Arrhenius Constant\n", + " self.arrhenius = Param(\n", + " default=1.25e-9,\n", + " doc=\"Arrhenius constant\",\n", + " units=pyunits.mol / pyunits.m**3 / pyunits.s / pyunits.Pa**2,\n", + " )\n", + "\n", + " # Activation Energy\n", + " self.energy_activation = Param(\n", + " default=3800, doc=\"Activation energy\", units=pyunits.J / pyunits.mol\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Declaring the Reaction Parameter Block\n", + "\n", + "Now that the various parts of the Reaction Parameter Block have been declared, we can assemble the actual `class` that will assemble these components in a flowsheet. The steps for declaring a new `ReactionParameterBlock` class which are:\n", + "\n", + "1. Declaring the new class and inheriting from the `ReactionParameterBlock` base class\n", + "3. Writing the `build` method for our `class`\n", + "4. Creating a `define_metadata` method for the class.\n", + "\n", + "Each of these steps are shown in the code example below.\n", + "\n", + "First, we need to declare our new class and give it a unique name. In this example, we will call our new class `HDAReactionParameterBlock`. The first two lines of the example below show how we declare our new class using the `declare_process_block_decorator` and inheriting from the `ReactionParameterBlock` base class from the IDAES Core model libraries. Inheriting from the `ReactionParameterBlock` brings us access to all the necessary features required by the IDAES modeling framework, whilst the `declare_process_block_class` decorator performs some boilerplate operations to replicate the expected object structure of Pyomo. Further details on these components can be found in the IDAES documentation.\n", + "\n", + "Next, we need to declare the `build` method that will be used to construct our Reaction Parameter Block. The first step in any `build` method is to call `super().build()`, which will trigger the `build` method of the base class that the current class inherits from – this is important since this is how we automate construction of any underlying components required by the modeling framework and ensure that everything integrates smoothly. Next, a `ReactionParameterBlock` needs to contain a pointer to the related `ReactionBlock` (which we will look at next) – this is used to allow us to build instances of the `ReactionBlock` by only knowing the `ReactionParameterBlock` we wish to use. To do this, we create an attribute named `_reaction_block_class` attached to our class with a pointer to the `ReactionBlock` class; in this case `self._reaction_block_class = HDAReactionBlock`, where `HDAReactionBlock` is the name of the yet to be declared `ReactionBlock`. Finally, the `build` method needs to construct the actual parameters required for the property package, which we do here by calling the sub-methods written previously.\n", + "\n", + "The final step in creating the `ReactionParameterBlock` class is to declare a `classmethod` named `define_metadata` which takes two arguments; a class (`cls`) and an instance of that class (`obj`). This method in turn needs to call two pre-defined methods (inherited from the underlying base classes):\n", + "\n", + "* `obj.add_properties()` is used to set the metadata regarding the supported reaction properties, and here we pass the `properties_metadata` dict we created earlier as an argument.\n", + "* `obj.add_default_units()` sets the default units metadata for the reaction property package, and here we pass the `units_metadata` `dict ` we created earlier as an argument." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"HDAReactionParameterBlock\")\n", + "class HDAReactionParameterData(ReactionParameterBlock):\n", + " \"\"\"\n", + " Reaction Parameter Block Class\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction.\n", + " \"\"\"\n", + " super(HDAReactionParameterData, self).build()\n", + "\n", + " self._reaction_block_class = HDAReactionBlock\n", + "\n", + " define_kinetic_reactions(self)\n", + " define_equilibrium_reactions(self)\n", + " define_parameters(self)\n", + "\n", + " @classmethod\n", + " def define_metadata(cls, obj):\n", + " obj.add_properties(properties_metadata)\n", + " obj.add_default_units(units_metadata)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Reaction Block\n", + "\n", + "After the Reaction Parameter Block class has been created, the next step is to write the code necessary to create the Reaction Blocks that will be used through out the flowsheet. Similar to State Blocks for thermophysical properties, Reaction Blocks also require two Python `classes` to construct (for a discussion on why, see the related example for creating custom thermophysical property packages).\n", + "\n", + "For this example, we will begin by describing the content of the `ReactionBlockData` objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. After that, we will discuss how to create the class that contains methods to be applied to the `IndexedReactionBlock` as a whole.\n", + "\n", + "## State Variables\n", + "\n", + "Like thermophysical property calculations, reaction properties also depend on the material state variables such as temperature and pressure. However, the state variables are declared as a part of the State Block, and it does not make sense to duplicate them here. Due to this, Reaction Blocks are always associated with a State Block representing the material at the same point in space and time, and the Reaction Block contains a pointer to the equivalent State Block. This allows the Reaction Block to access the state variables, and any other thermophysical property the State Block supports, in order to perform reaction property calculations. The State Block can be accessed using the `state_ref` property of the Reaction Block.\n", + "\n", + "\n", + "## Step 1. Define Property Variables\n", + "\n", + "The first thing we need to do when creating our Reaction Block is create Pyomo components to represent the properties of interest. In this example, we have three properties we need to define:\n", + "\n", + "1. the rate constant for the rate-based reaction: `k_rxn`,\n", + "2. a variable for the rate of reaction at the current state, `rate_reaction`, and\n", + "3. the equilibrium constant for the equilibrium-based reaction, `k_eq`.\n", + "\n", + "The declaration of these is shown in the cell below. Note that for this example we are assuming the equilibrium constant does not vary, and have thus declared it as a Pyomo `Param`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def define_variables_and_parameters(self):\n", + " self.k_rxn = Var(\n", + " initialize=7e-10,\n", + " doc=\"Rate constant\",\n", + " units=pyunits.mol / pyunits.m**3 / pyunits.s / pyunits.Pa**2,\n", + " )\n", + "\n", + " self.reaction_rate = Var(\n", + " self.params.rate_reaction_idx,\n", + " initialize=0,\n", + " doc=\"Rate of reaction\",\n", + " units=pyunits.mol / pyunits.m**3 / pyunits.s,\n", + " )\n", + "\n", + " self.k_eq = Param(initialize=10000, doc=\"Equlibrium constant\", units=pyunits.Pa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 2. Define Constraints for the Rate-Based Reactions\n", + "\n", + "Next, we need to define the `Constraints` which describe the rate-based reaction. First, we use the Arrhenius equation to calculate the rate constant, $k_{rxn} = A \\times e^{-E_a/(RT)}$. For this calculation, $A$ and $E_a$ come from the associated Reaction Parameter Block (`self.params`), $T$ comes from the associated State Block (`self.state_ref.temperature`) and the gas constant $R$ can be found in the IDAES `Constants` class.\n", + "\n", + "After the rate constant, we need to declare the form of the rate expression as well. In this case, we are dealing with a gas phase reaction so $r = k_{rxn} \\times x_{toluene} \\times x_{hydrogen} \\times P^2$, where $P$ is the system pressure. $x_{toluene}$, $x_{hydrogen}$ and $P$ are all state variables, and can be accessed from the associated State Block.\n", + "\n", + "The cell below shows how we declare these two constraints." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def define_rate_expression(self):\n", + " self.arrhenius_equation = Constraint(\n", + " expr=self.k_rxn\n", + " == self.params.arrhenius\n", + " * exp(\n", + " -self.params.energy_activation\n", + " / (const.gas_constant * self.state_ref.temperature)\n", + " )\n", + " )\n", + "\n", + " def rate_rule(b, r):\n", + " return b.reaction_rate[r] == (\n", + " b.k_rxn\n", + " * b.state_ref.mole_frac_comp[\"toluene\"]\n", + " * b.state_ref.mole_frac_comp[\"hydrogen\"]\n", + " * b.state_ref.pressure**2\n", + " )\n", + "\n", + " self.rate_expression = Constraint(self.params.rate_reaction_idx, rule=rate_rule)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3. Define Constraints for the Equilibrium-Based Reactions\n", + "\n", + "Similar to those for the rate-based reactions, we also need to define constraints for the equilibrium-based reactions in the system. In this case, the constraint will take the form of an equality that will force the compositions in the system to satisfy the given equilibrium constant. For this example, we have the following equilibrium constraint:\n", + "\n", + "$$\n", + "k_{eq} = \\frac{x_{diphenyl} \\times x_{hydrogen} \\times P^2}{x_{benzene} \\times P}\n", + "$$\n", + "\n", + "Note that $P$ appears in both the numerator and denominator to make it clear that this is a ratio of partial pressures, and because we will rearrange this constraint when creating the actual Pyomo component in order to avoid potential singularities. This is shown in the cell below." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def define_equilibrium_expression(self):\n", + " self.equilibrium_constraint = Constraint(\n", + " expr=self.k_eq\n", + " * self.state_ref.mole_frac_comp[\"benzene\"]\n", + " * self.state_ref.pressure\n", + " == self.state_ref.mole_frac_comp[\"diphenyl\"]\n", + " * self.state_ref.mole_frac_comp[\"hydrogen\"]\n", + " * self.state_ref.pressure**2\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating the Reaction Block class\n", + "\n", + "These are all the variables and constraints that need to be declared for this example. All that remains is to declare the `_ReactionBlock` and `ReactionBlock` classes to complete our reaction property package. This process is much the same as for the thermophysical property package example, and will only be covered briefly here.\n", + "\n", + "## The `_ReactionBlock` class\n", + "\n", + "For this example, the `_ReactionBlock` class is very simple, and contains only a placeholder `initialize` method. As all the state variables are held separately in the associated State Block and the constraints within the reaction package are fairly simple, it is sufficient to not initialize the reaction properties before solving. However, a placeholder method still needs to be created, as the IDAES framework assumes all components will have an `initialize` method; however, this method need only consist of a `pass` statement.\n", + "\n", + "
\n", + "Note:\n", + "In more complex reaction systems, it is likely that a proper initialization routine would need to be implemented. Developers of these should be aware that equilibrium constraints will need to be deactivated during initialization, as the state variables (i.e. compositions) will be fixed in the State Block. Thus, trying to solve for the system with equilibrium constraints present will result in an over-specified problem.\n", + "
\n", + "\n", + "## The `ReactionBlock` class\n", + "\n", + "Once the `_ReactionBlock` class has been declared, the overall `ReactionBlock` class can be declared as shown below. Once again, we define a `build` method which calls the sub-methods we created earlier in order to construct an instance of the Reaction Block. The `ReactionBlock` class also needs to define a `get_reaction_rate_basis` method, which should return an instance of the `MaterialFlowBasis` `Enum`; this is used by the IDAES framework to determine if conversion between mass and mole basis is required." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "class _HDAReactionBlock(ReactionBlockBase):\n", + " def initialize(blk, outlvl=idaeslog.NOTSET, **kwargs):\n", + " init_log = idaeslog.getInitLogger(blk.name, outlvl, tag=\"properties\")\n", + " init_log.info(\"Initialization Complete.\")\n", + "\n", + "\n", + "@declare_process_block_class(\"HDAReactionBlock\", block_class=_HDAReactionBlock)\n", + "class HDAReactionBlockData(ReactionBlockDataBase):\n", + " def build(self):\n", + "\n", + " super(HDAReactionBlockData, self).build()\n", + "\n", + " define_variables_and_parameters(self)\n", + " define_rate_expression(self)\n", + " define_equilibrium_expression(self)\n", + "\n", + " def get_reaction_rate_basis(b):\n", + " return MaterialFlowBasis.molar" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Demonstration\n", + "\n", + "In order to demonstrate our new Reaction Property package in practice, we will now use it to build and solve a CSTR. First, we will need to import some more components from Pyomo and IDAES to use when building the flowsheet." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import ConcreteModel\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.models.unit_models import CSTR\n", + "\n", + "from idaes_examples.mod.properties.thermophysical_property_example import (\n", + " HDAParameterBlock,\n", + ")\n", + "\n", + "from idaes.core.util.model_statistics import degrees_of_freedom" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we can construct a Pyomo `ConcreteModel` and IDAES `FlowsheetBlock` as usual. We then attach an instance of the associated thermophysical property package (imported as `HDAParameterBlock`) and our new reaction property package to the flowsheet, and then construct a CSTR using these property packages." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "\n", + "m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + "m.fs.thermo_params = HDAParameterBlock()\n", + "m.fs.reaction_params = HDAReactionParameterBlock(property_package=m.fs.thermo_params)\n", + "\n", + "m.fs.reactor = CSTR(\n", + " property_package=m.fs.thermo_params,\n", + " reaction_package=m.fs.reaction_params,\n", + " has_equilibrium_reactions=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If all went well, we should see no errors when constructing the flowsheet above. To be sure, let us print the degrees of freedom in our flowsheet model as shown below; we should see 9 degrees of freedom." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Degrees of Freedom: \", degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The 9 degrees of freedom are the flowrate, temperature, pressure and mole fractions (5) of the inlet stream, as well as the reactor volume. We will fix them to some default values as shown below. Once we are done, we will also print the degrees of freedom again to ensure we have fixed enough variables." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.reactor.inlet.flow_mol.fix(100)\n", + "m.fs.reactor.inlet.temperature.fix(500)\n", + "m.fs.reactor.inlet.pressure.fix(350000)\n", + "m.fs.reactor.inlet.mole_frac_comp[0, \"benzene\"].fix(0.1)\n", + "m.fs.reactor.inlet.mole_frac_comp[0, \"toluene\"].fix(0.4)\n", + "m.fs.reactor.inlet.mole_frac_comp[0, \"hydrogen\"].fix(0.4)\n", + "m.fs.reactor.inlet.mole_frac_comp[0, \"methane\"].fix(0.1)\n", + "m.fs.reactor.inlet.mole_frac_comp[0, \"diphenyl\"].fix(0.0)\n", + "\n", + "m.fs.reactor.volume.fix(1)\n", + "\n", + "print(\"Degrees of Freedom: \", degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have defined our example problem, we can initialize and solve the flowsheet. This is done in the cell below, which should result in an optimal solution." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.reactor.initialize(\n", + " state_args={\n", + " \"flow_mol\": 100,\n", + " \"mole_frac_comp\": {\n", + " \"benzene\": 0.15,\n", + " \"toluene\": 0.35,\n", + " \"hydrogen\": 0.35,\n", + " \"methane\": 0.15,\n", + " \"diphenyl\": 0.01,\n", + " },\n", + " \"temperature\": 600,\n", + " \"pressure\": 350000,\n", + " }\n", + ")\n", + "\n", + "solver = get_solver()\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that our model has solved, let us use the `report()` method for the CSRT to have a look at what happened in the reactor. We should see that the outlet mole fraction of benzene is now around 0.160 and the mole fraction of diphenyl is 0.014; thus, our reactor has successfully generated benzene from toluene. In the process, the reaction has also generated a lot of heat, which has raised the temperature of the gas from 500 K to 790.2 K." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.reactor.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, as a quick check of model consistency, let us assert that the units of measurement in our model are consistent (the units of the rate constant and pre-exponential factor are rather complex)." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "assert_units_consistent(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Concluding Remarks\n", + "\n", + "The above example has hopefully introduced you to the basic requirements for creating your own custom reaction property packages. However, it is probably clear that it requires a significant amount of effort to write your own property packages, thus users are encouraged to look into the IDAES Modular Reactions Framework if they are not already familiar with this.\n", + "\n", + "The IDAES Modular Reactions Framework is designed to automatically generate user-defined reaction property packages for common reaction forms based on a single configuration file. Users provide a list of reactions of interest (both rate- and equilibrium-based), and select from a library of common reaction forms, and the Modular Reaction Framework then does the hard work of assembling the necessary code to construct the desired model." + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams.ipynb b/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams.ipynb index b7e1a3cb..d526fb88 100644 --- a/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams.ipynb +++ b/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams_doc.ipynb b/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams_doc.ipynb index 91726cfe..31196d2d 100644 --- a/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams_doc.ipynb +++ b/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -307,29 +308,37 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:15 [WARNING] idaes.core.util.scaling: Missing scaling factor for props[1].mole_frac_comp\n" + "2025-03-17 17:35:46 [WARNING] idaes.core.util.scaling: Missing scaling factor for props[1].mole_frac_comp\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:35:46 [WARNING] idaes.core.util.scaling: Missing scaling factor for props[1].mole_frac_comp\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:15 [WARNING] idaes.core.util.scaling: Missing scaling factor for props[1].mole_frac_comp\n" + "2025-03-17 17:35:46 [INFO] idaes.init.props: Property package initialization: optimal - Solved To Acceptable Level..\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:15 [INFO] idaes.init.props: Property package initialization: optimal - Optimal Solution Found.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -337,8 +346,16 @@ "output_type": "stream", "text": [ "Case: 1 Optimal. benzene x = 0.99\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -346,8 +363,16 @@ "output_type": "stream", "text": [ "Case: 2 Optimal. benzene x = 0.95\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -355,8 +380,16 @@ "output_type": "stream", "text": [ "Case: 3 Optimal. benzene x = 0.91\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -364,8 +397,16 @@ "output_type": "stream", "text": [ "Case: 4 Optimal. benzene x = 0.87\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -373,8 +414,16 @@ "output_type": "stream", "text": [ "Case: 5 Optimal. benzene x = 0.83\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -382,24 +431,33 @@ "output_type": "stream", "text": [ "Case: 6 Optimal. benzene x = 0.79\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Case: 7 Optimal. benzene x = 0.74" + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "Case: 7 Optimal. benzene x = 0.74\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -407,8 +465,16 @@ "output_type": "stream", "text": [ "Case: 8 Optimal. benzene x = 0.70\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -416,8 +482,16 @@ "output_type": "stream", "text": [ "Case: 9 Optimal. benzene x = 0.66\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -425,8 +499,16 @@ "output_type": "stream", "text": [ "Case: 10 Optimal. benzene x = 0.62\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -434,8 +516,16 @@ "output_type": "stream", "text": [ "Case: 11 Optimal. benzene x = 0.58\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -443,8 +533,16 @@ "output_type": "stream", "text": [ "Case: 12 Optimal. benzene x = 0.54\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -452,17 +550,40 @@ "output_type": "stream", "text": [ "Case: 13 Optimal. benzene x = 0.50\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Case: 14 Optimal. benzene x = 0.46\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "Case: 14 Optimal. benzene x = 0.46" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -470,8 +591,16 @@ "output_type": "stream", "text": [ "Case: 15 Optimal. benzene x = 0.42\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -479,17 +608,40 @@ "output_type": "stream", "text": [ "Case: 16 Optimal. benzene x = 0.38\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Case: 17 Optimal. benzene x = 0.34\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Case: 17 Optimal. benzene x = 0.34" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -497,8 +649,16 @@ "output_type": "stream", "text": [ "Case: 18 Optimal. benzene x = 0.30\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -506,8 +666,16 @@ "output_type": "stream", "text": [ "Case: 19 Optimal. benzene x = 0.26\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -515,8 +683,16 @@ "output_type": "stream", "text": [ "Case: 20 Optimal. benzene x = 0.21\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -524,8 +700,16 @@ "output_type": "stream", "text": [ "Case: 21 Optimal. benzene x = 0.17\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -533,39 +717,50 @@ "output_type": "stream", "text": [ "Case: 22 Optimal. benzene x = 0.13\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Case: 23 Optimal. benzene x = 0.09\n" + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "Case: 23 Optimal. benzene x = 0.09\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Case: 24 Optimal. benzene x = 0.05" + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\n", - "WARNING: model contains export suffix 'props[1].scaling_factor' that contains\n", - "9 component keys that are not exported as part of the NL file. Skipping.\n" + "Case: 24 Optimal. benzene x = 0.05\n", + "WARNING: model contains export suffix 'scaling_factor' that contains 5\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 4 keys\n", + "that are not Var, Constraint, Objective, or the model. Skipping.\n" ] }, { @@ -577,16 +772,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABAYAAALXCAYAAAAe6EJpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZyN9fvH8deZxZgxM/Z938LYl+zL2LMmihRS9oqIipIlFQmlSHZKkj1ZQjHIvm/JlrGEMMJYZj+/Pz5f52cYs5jlnuX9fDzOo7Pcy3WfuWdyX/fnc102u91uR0RERERERETSJCerAxARERERERER6ygxICIiIiIiIpKGKTEgIiIiIiIikoYpMSAiIiIiIiKShikxICIiIiIiIpKGKTEgIiIiIiIikoYpMSAiIiIiIiKShikxICIiIiIiIpKGKTEgIiIiIiIikoYpMSAiIpHYbDbH43EKFSrkWMbf3z/pgpNkwdfX1/Hz9/PzszockUSl811E0gIlBkQkyfj7+0e66EyIx4gRI6w+LBERERGRFE2JARERERFJdvz8/BxJYF9fX6vDERFJ1VysDkBE0g5vb2/eeOONaJfZtWsXu3fvBiBPnjw899xz0S5ftWrVBItPRERERCQtUmJARJJMlixZmDRpUrTLjBgxwpEYKF68eIzLizVUV0BEREQk9dBUAhEREREREZE0TIkBERERERERkTRMiQERSfVCQkKoVKmSo4hV8+bNY1xnyZIljuVdXV3ZsWPHE+37iy++cGynadOmsV5v48aNjvVy5cpFaGjoE+3/QTdv3mT06NE8/fTTZM6cGU9PT0qUKEGPHj3Yu3dvnLYV23aFN2/e5Mcff6RXr15Uq1aNbNmykS5dOry9vSlatCgdO3Zk4cKFRERExGn/Fy5cYPDgwZQtWxZvb2+8vb0pXbo0AwYM4K+//gIid8EoVKhQlNt53DJ//PEH3bt3p2TJkmTMmBGbzUb//v0jrRsREcGWLVsYNmwYTZo0oUCBAnh4eODm5kbu3Llp0KABn3zyCdeuXYvVMUXVJvLAgQP06dOHEiVK4OnpiaenJ9WqVeObb74hLCzskW3s2bOHrl27UqpUKTJkyEDWrFmpX78+P/zwQ6xiiI/z588zdOhQypcvT5YsWciQIQMlS5ZkwIABnDp1Ks7b+/333+nduzelS5cmS5YsuLm5kSdPHpo2bcqkSZO4d+9ejNuI6js9fvw4/fv3p1SpUnh6euLt7U358uUZMmRItD+r+HRViWnqTXI71qjcuXOHKVOm0KpVKwoWLIiHhwdeXl4UL16c1157jQ0bNsRpe9EZMWIENpuN+vXrO97btGlTlN/t4363AUJDQ5k9ezZt2rShYMGCuLu74+3tTYkSJejWrRvr169PsJjj2tLw/jHGpbuOzhMRSVR2EZFkZPjw4XbADtjr1auXYNs9duyY3cPDw7Htr7766rHLnj9/3p45c2bHsiNHjnzi/V67ds3u5uZmB+xOTk72c+fOxWq9l19+2bH/d95554n3f9+WLVvsefLkcWzz4YeTk5PjOB98/3EKFizoWObMmTNRLrNkyRLHscf0KF++vP3vv/+O1bH8+OOPdi8vr8duy83NzT59+nT7mTNnHO8VLFgwym09vExwcLC9V69eUW73rbfecqwXEhJiz5s3b6yOLUOGDPbvv/8+xuN6+Hv/7LPP7M7Ozo/dbtOmTe1BQUF2u91uDwsLs/fp0yfaOF588UV7WFhYrL7jmNSrV8+x3Y0bN9p//vlne8aMGR+7b3d3d/vUqVNjte1z587ZfX19Y/xe8+TJY9+8eXO023r4O50yZUq052TWrFntu3fvjnJbD54rcX087nckuR7rwxYuXGjPlStXjHG2bNnSfuPGjVhtMzoP/n8gpsfjfrd37NhhL1q0aIzrN27c2H716tVo43n4fH/SZR53jMOHD492WZ0nIpIUVHxQRNKEkiVL8sUXX9CrVy8A3n33XerXr0+ZMmUiLRcREUHnzp3577//AKhVqxYffPDBE+83a9astG3blh9//JGIiAhmz57NsGHDol3nxo0bLFmyxPG6e/fuT7x/gL1799KsWTNu377teK9KlSqULVuWkJAQduzYwenTpxk+fDiZM2eO174edOXKFYKDgwHIly8fPj4+5MqVCw8PD27fvs2xY8fYt28fdrudgwcPUrduXQ4cOEDWrFkfu81ly5bRqVMnwsPDAXB2dqZWrVoUL16c27dvs3XrVi5cuECPHj34+uuv4xzzgAEDmDp1KgBly5alfPnyuLq6cuLECZyc/n+QXXh4OP/88w8Anp6elC5dmiJFiuDt7U1oaCgXLlxgx44d3Lp1izt37tC5c2dcXV3p0KFDrOKYOnUq7733HgDlypWjQoUKODs7s3PnTv78808A1q5dS79+/Zg6dSqvv/4606ZNw8nJiaeffppSpUo5RjScOXMGgAULFlC+fHkGDx4c5+8lOnv27OGDDz4gJCSErFmz4uvrS+bMmfH392fTpk2EhoZy7949evXqhbOzM926dXvsto4dO0bDhg25dOkSYO5uVqpUCR8fH9zd3fnnn3/YvHkzgYGBXLx4kcaNG7NmzZpId5YfZ86cOfTp0weAEiVKUKVKFdzd3fnrr7/YunUrdrudgIAAWrduzbFjx8iYMWOk9WPTVeW+Q4cOsWXLFsfrB+/OpoRjfdAXX3zBwIEDsdvtju+hRo0a5MuXj/DwcI4ePcqePXuw2+2sXLkSX19ftm7dioeHR6y+q6hUrVqVN954g3/++Yfly5cDj+9SE9Xfi82bN9OsWTPu3r0LmO+2atWq+Pj4RPqbB7B+/Xpq1arFH3/8Qfbs2Z845sSi80REkox1OQkRkUcl1oiB+9q0aePYftmyZR13XO/75JNPHJ9nzJjxsXf64mLjxo2ObRYqVMgeERER7fKTJ092LF+nTp147Ts4ONheqlQpx/by589v37Zt2yPLzZ071+7m5mZPly7dI3eUohKbEQMrVqywjx492n7y5MnHbufvv/+2N23a1LGtbt26PXbZK1eu2LNmzepYtmLFivYTJ05EWiYiIsL+1Vdf2Z2dnSPdBYvNiIH7d+fz588f5V23B8+V4OBg+6uvvmrfuHGjPSQkJMptBwUF2ceOHWt3cXGxA/ZMmTLZAwMDH3t8D37vbm5u9ly5ckV553HcuHGO5VxcXOwTJkywA/ZSpUrZDxw4EGnZsLAwe//+/R3Le3p62m/fvv3YGGLrwbuj98+ZQYMGPfL7dP78eXudOnUcy3p4eNhPnToV5TZv374d6Vxt1qxZlMvevHkz0uiI3LlzP/bu48Pfafbs2e1r1qx5ZLlNmzbZvb29HcvGZ5TQuXPnIt017dixY4o91t9++83u5OTk+DmPGTPGfufOnUeW279/v93Hx8exzT59+kT3FcXag387Y/v/g+vXr0cazVO8eHH7nj17Hllu3rx5dnd3d8dyrVq1euw2rRoxoPNERJKSEgMikqwkdmLg2rVrkYbU9+vXz/HZzp07HRdxgP2HH35IsP0+9dRTju2uX78+2mUrVarkWHbu3Lnx2u+0adMc20qfPr392LFjj1123rx5jwz5fJzYJAZiKyQkxF6uXDlHjNevX49yuffee8+xzzx58tivXbv22G3ev1iOS2Lg/oXr8ePH43U8DxszZoxj+998881jl3swjvTp09uPHDny2GUbNWoUafkcOXLY//333yiXDQsLs5coUcKx7E8//RTvY3rwIgiw9+7d+7HLBgYG2kuWLOlYtnPnzlEu99FHHzmWee655+zh4eHRxvDKK684lh8zZkyUyzx8EXTw4MHHbm/SpEmOZUuWLBntvh/n9u3b9goVKji2U61aNfu9e/ceWS4lHGt4eLi9ePHijuWWLl0abYyXLl2y58yZ0w7YXV1d7efPn492+dh4ksTAsGHDHOtkzpw52ulbS5cujfS9bdq0KcrlrEoM6DwRkaSkxICIJCuJnRiw283dDZvNZgfsNpvNvnr1antgYKC9WLFijn2//PLLCbrPsWPHOrb94osvPna5/fv3O5bLmDGj/e7du/Hab9WqVR3bi02tgpo1ayZ5YsBuN/Pp729vxYoVj3weHh5uz5Ejh2OZadOmRbu9sLCwSD/P2CYG3n333Xgfy8P+/fdfx/bbtm372OUejOPBegZRmTlzZqTlv/zyy2iX//DDDx3LDhw48EkOI5IHL4K8vLxinC+8YsWKSEmPh5cPCQlx/Hzd3Nwem+R40D///OP4PS5btmyUyzz4HfXt2zfa7d26dcuRGLTZbPabN2/GGMODIiIi7M8995xjf/nz57dfunTpkeVSyrEuX77csb02bdrEGKPdbrePHj3asc748eNjtU504poYiIiIiDRaY8KECTGu06xZsxj/NluRGNB5IiJJTTUGRCTNadiwIe+88w5jx47Fbrfz6quvUqdOHUfl9EKFCvHNN98k6D67du3K0KFDCQkJYdmyZVy/fp0sWbI8stzMmTMdz1966SXc3d2feJ+BgYHs2bPH8bpLly4xrvPKK6+wbdu2J97n49y4cYMdO3Zw9OhRAgICuH37dqROBPc7CYCpxN+qVatI6x87dowrV64A4OLiEuNcfWdnZzp27MioUaPiFOeLL74Yp+XB1KXYu3cvBw4c4MKFC9y6deuxXSQOHDgQq20+//zz0X5etmzZOC3/YC2N+zUHEkrr1q2jnXsM0Lx5c7Jnz87Vq1cJCgpi+/btPPPMM47P9+zZ4/j5NmzYkBw5csS43zx58lCyZEmOHTvGkSNHuHnzZrRxvPDCC9Fuz8vLi6JFi3L8+HHsdjtnz5595HuOzgcffMCyZcsAyJAhAytWrCBXrlyPLJdSjnX16tWO5y+99FKMMQI0aNDA8fyPP/7g7bffjtV6CeXYsWNcvnwZMH8DYvM3r3v37qxZswYgVt0EkorOExFJakoMiEia9PHHH/P777+zd+9e/v33XxYvXgyYf0z+8MMPeHt7J+j+smfPTps2bVi4cCHBwcH88MMP9O3bN9IyQUFBkdrKxbfo4KFDhxwX315eXpQuXTrGdWrUqBGvfT7sflvBxYsXOwoRxiSq9lgPXlCXKlUqVj+fatWqxTpOAFdX1zhdCIaFhfHVV1/xxRdfcOHChVitE9vWXw8XxXzYg0UiM2bMSN68eaNd/sEk1K1bt2IVQ2zF5pxxdnbm6aefdlxE7N+/P1JiYPv27Y7nFy5c4M0334zVvm/cuAGA3W7nwoUL0V4ExeZn+2Ahu7h8T/PmzWP06NGAKQ43b948KlSoEOWyKeVYH4xzyZIlbNq0KcZt3rx50/H8/PnzMS6f0Pbv3+94XqJEiWgLmd5Xq1Ytx/PLly9z8eJF8uTJkyjxxYXOExFJakoMiEiKc/369Rgr+1evXp1OnTo99nNXV1fmz59PpUqVuHPnjuP9oUOHUrNmzWi3vXPnTr7//vtol+ncufMjF6Y9e/Zk4cKFgBkZ8HBiYNmyZY5uCBUrVqRSpUrR7iMmV69edTzPnz9/lJXRH1agQIF47fNB+/fvp2HDho5jiq3AwMBH3nv4WGIjX758cdpv5syZcXGJ3f8Wg4ODad26NevWrYvTPqI6tqjEdAf+wThjWvbh5R83muFJxfaceXC5B3+eABcvXnQ8P3ToEIcOHYpzHDGdZ7H5nlxdXR3PY/s97dixI1IS79NPP6VNmzaPXT6lHOuDcf70009xiM54OMaJEydy8uTJaNeZNGlSnPfzoAfPq4IFC8ZqnZw5c5I+fXqCgoIAk7xLDomBtHqeiIh1lBgQkRTn1q1bTJ48Odplbt++HW1iAEw7JXd390iJgej+QX/fsWPHYtx/lSpVHkkMNGjQgKJFi3L69GkOHjzI3r17qVy5suPzB6cRxHe0ABCpPWFsW0JlyJAh3vsFc+Hcrl07xz/6smfPTq9evWjYsCHFihUjS5YsuLu7O5IVc+bM4dVXXwWINMXgvic5Fk9PzzjFHJdpGyNHjnQkBWw2G+3bt6ddu3aULVuWPHny4O7uHukf1PeP0/6/Vl4xiU0S50mWTQxPcm49nCB58A7ikwoLC4v288T4ns6dO0ebNm0co2G6dOkSYzvIlHKs8Y3z4RiXLVsW493k+CYGHvw7EZe/ZRkyZHAkBmKbvEtsafU8ERHrOMW8iIhI6mO32+natesjQ7u7dOkS6yHvcWWz2SJd8D+YCDhz5gwbNmwAzAXqyy+/HO/9PXhhfL+fd0weTJLEx5IlSxxz2fPmzcvBgwcZNWoUvr6+5MuXDw8Pj0j/KI3pH+NWHsvDgoOD+frrrx2v58yZw4IFC3jhhRcoWbIk3t7ekZICyeVCI7E8yc/Dy8sr0mcPXsT169cPuymOHKeHr69vghxPbN25c4fWrVvz77//AmZI+rRp02JcL6Uc64Nx7tu3L84x+vv7J3qMD3vw70Rcfv+jOzcTS1QJ0AfpPBGRpKbEgIikOIUKFYrxHxtz5syJdhtffvkla9euBcw/BO8PHT18+DDvvvtutOt27do1xv137do1ynVfffVVx0Xj/PnzuXfvHgCzZ8923E1+/vnnYzXEMybZs2d3PL9w4UKs7lYn1HzP33//3fG8f//+5M6dO9rlz549G+3n2bJlczyP7Xz+2C4XV7t27XLcmSxdunSMBc5iOraU7ty5c7Fa7sFz68GfJ5jh3PfdLx6XnNntdjp16sTBgwcBM2x96dKluLm5xbhuSjnWhI7Tz88vxr+b8fXg37zYnpdXrlxxjBaAR8/N2HowGRibu+Ax3WlPq+eJiFhHiQERSXMOHTrEkCFDHK+//vprvv/+e8cd7K+//ppff/01UfadM2dOWrduDZh/GC5ZsoSIiIhIiYxu3bolyL7KlSuHk5P5M3/r1i3+/PPPGNd5sJBUfDw47zQ2Ba42b94c7ecPFnI7duxYrO7C79q1K8ZlnkRCH1tKt2PHjhiXCQ8PZ/fu3Y7XD9fPeHDazbZt2xLkIjExvf/++yxfvhwwicVffvklVlXjIeUc64Nxbt261ZIY4jrUvWLFio7nf/31F9evX49xnQePLVeuXE9cX+DBgqgBAQExLn/48OFoP9d5IiJJTYkBEUlTgoKCeOmllxzTBdq3b88rr7xCgwYNGDRoEPD/0wweLpCWUHr27Ol4PnPmTNatW+e4m1q8eHHq1auXIPvx8vKiSpUqjtcxFUwE+O677xJk3/cTEhDzUPO9e/dGumiMio+Pj+PCKzQ01FHE8XEiIiL48ccfYxlt3MTl2CIiImI1vDwlW7FiRYwV/H/99VdH67X06dM/0smgVq1aZMqUCTAjPX755ZdEiTUhfP/994wZMwYw58KPP/4Yp24WKeVYW7Zs6Xg+a9asSHfVk0r69Okdz2NTDLJUqVKOFpHh4eHMmzcvxnUenNJVv379J4jSKFSokON5TG1JL168yB9//BHtMjpPRCSpKTEgImnKoEGDOHr0KGCq20+dOtXx2ccff+y44/Tvv//y2muvJUoMjRs3pnDhwgBs2rSJ4cOHOz5LqNEC9z1Y0+Crr77ixIkTj112wYIFMf5jNbaKFCnieL5ixYrHLnf37t1IiZLHcXJy4pVXXnG8HjFiRLR3AydNmhTtscbHg8e2adOmaIcEf/75547h5qnVrVu3eP/99x/7+Z07dyJNz4lqqoybmxv9+/d3vH799df5559/Yh3D/Xn+iW3btm306NHD8Xrs2LG0aNEiTttIKcfarl07ihUrBsClS5d4/fXXY33X+vbt2wlS4+PBVnmx+Y5sNlukvycfffRRtOutWLGCVatWOV737t37CSONfOf8xx9/jLZWzYABA2JMdOg8EZEkZxcRSUaGDx9uB+yAvV69egm67VWrVjm27eTkZPfz83tkmWPHjtk9PDwcy02ePDlBY7jv448/duzj/sPFxcV++fLlBN1PUFCQvUSJEo59FChQwL5jx45Hlps3b549ffr09nTp0kWK6XEKFizoWObMmTOPfL527VrH5zabzT5u3Dh7WFhYpGVOnjxpr1Wrlh2wZ8iQwbH8K6+8EuU+L1++bM+SJYtjuSpVqthPnjwZaZmIiAj75MmT7c7OznY3NzfHsgULFoxym2fOnIlxmYeFh4fb8+bN61ivcePG9n/++SfSMkFBQfYPP/zwkWOL7juNzTJPGvfGjRsT9PeqXr16ju3dP2fee+89e3BwcKTlLly4EGlZd3f3R35m9wUGBtpLly7tWDZXrlz2hQsX2sPDw6Nc/urVq/apU6faK1asaB84cGCUy8TlO334uDZu3Bjps7Nnz9pz5Mjh+Py1116L1TajktyP9b7169fbnZ2dHcs1a9bM/ueffz52m/v377e/++679kyZMtkPHz4cqziiExYWFunv8a5du2Jc5/r165F+P0uUKGHfv3//I8v9+OOPkbbdqlWrx24zNt/VnTt37F5eXo7lOnXqZL97926kZQICAuydO3e2A5H+Pg0fPjzKbeo8EZGkpHaFIpIm/Pvvv452eADvvvtulEP2S5Ysyfjx4+nTpw9gRhjUr1+fUqVKJWg8r732GiNGjIhUpKply5aRCjklBDc3N77//nvq16/PnTt3OHfuHNWrV6dq1aqUKVOGkJAQduzYwalTpwAzqqBfv37x3m+TJk2oW7cumzdvxm63M2jQICZPnkylSpXImDEjJ0+eZNu2bYSHh5M3b17eeuutGIs+5syZk6lTp9KhQwciIiLYs2cPJUuWpE6dOhQrVow7d+7wxx9/OKZlfPnll/Tt2xeIPPw/vpycnBg1apRjRMn69et56qmnqFmzJgULFiQgIAA/Pz9Hq8Zp06YlSJeJ5Orjjz/mgw8+4LPPPmPmzJn4+vqSOXNmzp49i5+fHyEhIY5lv/zyS8fdxYd5enqyYsUKGjVqxJkzZ7h8+TLt27cnW7ZsVK9enVy5cmG327l+/Tp//vknJ0+edFR2b9CgQaIf5+zZsx3TIZydnXFxceHNN9+M1bofffQRWbJkcbxO7sd6X6NGjZgyZQp9+vQhPDycNWvW8Ouvv+Lj40O5cuXw9vbm7t27XLp0iYMHDyb49CtnZ2fatGnD/PnzAfD19eWZZ56hQIECODs7A5AlS5ZII1YyZ87M/PnzadasGXfv3uX48eNUqlSJatWq4ePj88jfPDBTuB6cUvAkPDw8+PDDDx1/x+bNm8e6deuoX78+3t7enD9/ns2bN3P37l3KlClD06ZNGT9+fLTb1HkiIknK2ryEiEhkiTVioFmzZpHuNIeEhES7fOvWrR3LV6hQ4ZE7oQmhTZs2ke7erFy5MsH3cd+mTZvsuXLlemSUwv2Hk5OT464VsbijFNOIAbvd3OGvVKnSY/cJ2H18fOxHjx61z549O8YRA/f98MMPdk9Pz8du083NzT5t2jT7iRMnHO+VL18+ym09yYiB+95///1ojy19+vT2b7/91m63x+47jc0yTxp3Yo4Y2Lhxo3358uV2b2/vaL+Lb775JlbbDggIsL/wwgt2m80W7fd7/5EpUyb7nDlzotxWXL7TqI7rQQ/+bYrr43G/I8n1WB+2YcMGe/HixWN9vKVLl35kFM2T8vf3j/Zv1+PO/+3bt9uLFCkSY6yNGjWyX7lyJdoYYvtdhYeH27t37x7t/qpXr26/cOFCpPPpcSMG7tN5IiJJQSMGRCTV+/rrr1mzZg1gei7/8MMPkVpLRWXmzJmUK1eOS5cuceDAAd5//33GjRuXoHG1bdvWUdk8X758PPPMMwm6/QfVrVuXY8eOMXnyZJYuXcrp06cJDQ0lT5481K1bl169elG1atUE3WfOnDnZtm0bM2bMYMGCBRw5coS7d++SI0cOSpQoQYcOHXj55Zfx8PCIUweBl156iTp16vD111+zatUqzp07h81mI1++fDRp0oTevXtTsmRJdu7c6VjnfhGvhPTJJ5/QrFkzJk2axB9//MHVq1fx8vJy/Cy7detG8eLFE3y/ydGzzz7LoUOH+Pbbbx0/k5CQEPLnz88zzzzDm2++GevvIkuWLCxcuJAjR47w448/4ufnx5kzZwgICMDJyYlMmTJRrFgxKlWqRKNGjWjcuHGkInUpSUo51vr163Ps2DGWL1/OqlWr2LFjB5cvX+bWrVt4eHiQM2dOSpYsSc2aNWnWrFmkLiLxVbBgQQ4ePMikSZNYt24dJ06cIDAwMMaWgNWrV+fYsWPMmzeP5cuXc+DAAa5cuYKrqyu5cuWidu3adOzYkSZNmiRYrE5OTkyfPp3nnnuOadOmsXPnTgICAsiaNSulSpWiU6dOdO7cOcb//zxM54mIJAWb3Z5M+5+IiKRyr776qqNN4dChQxk1apS1AaUy06dPdxQi6927N1OmTLE4IhEREZHkSV0JREQsEBgYyKJFiwBzlymxOiCkZT/99JPj+dNPP21hJCIiIiLJmxIDIiIWmDlzpqNNU9OmTR3tCyVhLF26lN9//x0wvdCfe+45iyMSERERSb6UGBARSWL+/v58/PHHjtcDBgywMJqU5X4f+QMHDkT5eXBwMF9++SUdO3Z0vNezZ08yZ86cRBGKiIiIpDyqMSAikgT69+8PwMWLF1m1ahV3794FTEup+3e2JWZ+fn7Ur18fgPz581OhQgVy5syJ3W7nn3/+Yfv27dy8edOxvI+PD7t27SJDhgxWhSwiIiKS7CkxICKSBGw22yPv5ciRgx07dmgaQRw8mBiISdOmTZk/f36k/vEiIiIi8iglBkREksD9xICzszM5c+bkmWeeYcSIEeTPn9/iyFKWiIgINm3axOrVq9m9ezeXLl3i2rVr3Lp1C29vb/LkyUPt2rV58cUXqVevntXhioiIiKQIKTIxMGXKFKZMmYK/vz8ApUuXZtiwYTRr1gyAy5cv884777B+/XoCAwMpUaIEH3zwAe3atXNso1ChQpw9ezbSdkePHs3gwYNjHUdERAQXL17Ey8sryruBIiIiIiIiIgnJbrcTGBhInjx5cHJKmLKBLgmylSSWL18+xowZQ/HixbHb7cydO5dnn32W/fv3U7p0abp06cKNGzdYsWIF2bJlY/78+bRv3549e/ZQsWJFx3Y++ugjevTo4Xjt5eUVpzguXryou30iIiIiIiKS5M6fP0++fPkSZFspcsRAVLJkycLnn39Ot27d8PT0ZMqUKXTu3NnxedasWfnss8/o3r07YEYM9O/f31EQ7EncvHmTTJkycebMGc1hlVQrNDSUdevW0aRJE1xdXa0ORyRR6DyXtEDnuaQFOs8lLbh+/TqFCxfmxo0bZMyYMUG2mSJHDDwoPDycRYsWcefOHWrUqAFAzZo1+emnn2jRogWZMmVi4cKFBAUF4evrG2ndMWPGMGrUKAoUKMBLL73EgAEDcHF5/FcSHBxMcHCw43VgYCBgemS7u7sn/MGJJAMuLi54eHjg7u6u/8FKqqXzXNICneeSFug8l7Qgffr0QNTFrZ9Uik0MHD58mBo1ahAUFISnpyfLli3Dx8cHgIULF9KhQweyZs3q+OOwbNkyihUr5li/X79+VKpUiSxZsrBt2zaGDBnCpUuXmDBhwmP3OXr0aEaOHPnI+xs3bsTDwyPhD1IkGVm/fr3VIYgkOp3nkhboPJe0QOe5pGb3214npBQ7lSAkJIRz585x8+ZNFi9ezIwZM9i0aRM+Pj707duXXbt28emnn5ItWzaWL1/OF198wZYtWyhbtmyU25s1axa9evXi9u3buLm5RbnMwyMGbt26Rf78+bl06RJZs2ZNlOMUsVpoaCjr16+ncePGyrxLqqXzXNICneeSFug8l7QgICCA3Llzc/PmTby9vRNkmyl2xEC6dOkcIwAqV67M7t27mThxIu+++y6TJk3iyJEjlC5dGoDy5cuzZcsWJk+ezLfffhvl9qpVq0ZYWBj+/v6UKFEiymXc3NyiTBq4urrqD4+kejrPJS3QeS5pgc5zSQt0nktqlhjndsL0NkgGIiIiCA4OdgyreLhtg7OzMxEREY9d/8CBAzg5OZEjR45EjVNEREREREQkOUmRIwaGDBlCs2bNKFCgAIGBgcyfPx8/Pz/Wrl1LyZIlKVasGL169WLcuHFkzZqV5cuXs379elauXAnA9u3b2blzJ/Xr18fLy4vt27czYMAAOnXqRObMmS0+OhEREREREZGkkyITA1euXKFLly5cunSJjBkzUq5cOdauXUvjxo0BWL16NYMHD6ZVq1bcvn2bYsWKMXfuXJo3bw6YKQELFixgxIgRBAcHU7hwYQYMGMDbb79t5WGJiIiIiIiIJLkUmRiYOXNmtJ8XL16cJUuWPPbzSpUqsWPHjoQOS0RERERERCTFSZGJARERERERiR+73U5oaGi0dbhSmtDQUFxcXAgKCiI8PNzqcESi5eTkhKurKzabzepQlBgQEREREUlLQkJCuHLlCnfv3k11F892u51cuXJx/vz5ZHGxJRITZ2dnPDw8yJEjB+nSpbMsDiUGRERERETSiLt373L+/HmcnZ3JnDkz7u7uODs7p5qL6IiICG7fvo2np+cjXcpEkhO73U54eDj37t3j5s2b+Pv7ky9fPjw8PCyJR4kBEREREZE04tq1a7i6ulKwYEGcnZ2tDifBRUREEBISQvr06ZUYkBTB09OTLFmycPbsWa5du0aBAgUsiUO/LSIiIiIiaUBYWBh37twhS5YsqTIpIJJSOTs7kyVLFu7cuUNYWJglMSgxICIiIiKSBty/4HBzc7M4EhF52P3fSyUGREREREQk0aWWegIiqYnVv5dKDIiIiIiIiIikYUoMiIiIiIiIiKRhSgyIiIiIiIiIpGFKDIiIiIiIiDygUKFC2Gy2Rx6enp6UL1+eIUOGEBAQkKD77Nq1KzabjTlz5sRpvREjRmCz2RgxYkSc1vPz88Nms+Hr6xun9eJizpw5UX6PMT3i+h1I/LlYHYCIiIiIiEhyVKtWLYoVKwZAREQEFy9eZNu2bYwZM4bvvvuOLVu2UKRIEYujTL6KFSvGK6+88sj7f/zxB6dPn6Zo0aLUrl07yvUkaSkxICIiIiIiEoXu3bvTtWvXSO9dvnyZevXqceLECd59910WL15sTXApQO3ataO88O/atSunT5+mdu3aGh2QTGgqgYiIiIiISCzlypWLd955B4Dff//d4mhEEoYSAyIiIiIiInGQK1cuAMLCwh757H59An9//yjXjU0tgYMHD9K2bVuyZ8+Ou7s75cqVY+LEiYSHh0cb19mzZ+nSpQu5c+cmffr0PPXUU4wYMYJ79+7F+tju+++//xg+fDgVKlTAy8sLDw8PypYty8cff8zdu3fjvL24OHHiBL169aJo0aKkT5+ejBkzUrduXebNmxfl8r6+vthsNvz8/NixYwctWrQga9aseHl5Ua9ePbZs2eJY9tdff6Vhw4ZkzpwZT09PGjduzL59+x7Zpr+/PzabjUKFChEWFsbYsWMpXbo07u7uZMuWjfbt2/PXX38l2neQ1JQYEBERERERiYNdu3YBULp06UTZdvXq1dm/fz8NGzakbt26HD9+nP79+/Piiy9it9ujXO/MmTNUrlyZdevWUadOHRo3bszFixcZOXIkjRs3JigoKNYx/Pnnn5QvX56PPvqIK1euULt2bRo1asTVq1f58MMPqVWrFjdv3kyoQ45k0aJFlC9fnmnTppEuXTqaN29OlSpV2LdvH507d+a111577LqrVq2iTp06XLp0icaNG1OsWDE2b95M48aN2bZtG5MnT6ZFixYEBQXRpEkT8ubNy2+//Ua9evU4derUY7fboUMHhg4dSp48eWjTpg0ZM2Zk0aJFPP3002zfvj0xvoYkpxoDiWzaNKhWDcqXtzoSEREREZFo2O2QyHeCE5WHR6JuPiIigkuXLrFs2TLGjh2Ls7MzQ4cOTfD9TJkyhddff52JEyfi4mIu144ePUr9+vVZvHgx06ZNo1evXo+s99133/Hss8/y448/4u7uDsCFCxdo2LAhW7duZeTIkYwePTrG/d+7d4/WrVtz/vx5hg4dyocffki6dOkAuHv3Lt27d+fHH39kwIABzJo1KwGPHA4fPkznzp2x2WwsWbKEtm3bOj47e/YsrVq1Yvbs2fj6+tKlS5dH1h8/fjzfffcdnTp1crw3cOBAJkyYwGuvvcY///zDunXraNiwIQDh4eF06NCBJUuW8NlnnzF9+vRHtnn27Fnu3LnDnj17KFeunGO9AQMG8PXXX9OxY0eOHz+Om5tbgn4XSU0jBhLRP//A669DhQpQsyZ8/z3EIVEnIiIiIpJ07t4FT8+U+0iEpMarr77qaKHn7OxMvnz56Nu3L+XKlWPTpk20bNkywfeZO3duxo8f70gKgBmZMGzYMMBc/EbF3d2db7/91pEUAMiXL59j+W+++SZWowbmzp3L6dOnadmyJaNGjXIkBQA8PDyYNm0aOXLk4Pvvv+e///57omN8nE8++YTg4GA+/vjjSEkBgIIFCzJz5kwAvvrqqyjXf/755yMlBQA++OADAI4fP06fPn0cSQEAZ2dn3n//fSD6ehFDhw51JAXur/f555+TN29ezp49y5IlS+JwlMmTEgOJKCgI2rUDFxfYvh26dIF8+eDdd+H0aaujExERERGR6NSqVYtXXnnF8WjRogX58+dn9+7dDBgwgJMnTyb4Ptu3b0/69Okfef9+27+TJ09y8eLFRz5v0qSJo/bBg1q2bEnWrFm5detWlHPpH7Zq1SrADJ+PiqenJ1WqVCEsLIzdu3fHuL3YioiIYM2aNdHuu0qVKnh6erJ///4okxzNmzd/5L0sWbKQNWvWx35evHhxgCi/0/uiarno5ubmiNPPz++x66YUmkqQiIoWhZ9+gsuXYcYMM63g/Hn4/HPzaNoU+vSBFi1M8kBERERExDIeHnD7ttVRPDkPDzMdIgFF1a4wLCyMYcOGMXr0aOrVq8fx48fx8vJKsH0WLlw4yve9vLzImjUrAQEBXLhwgTx58sRqPTAFEe+vF5O///4bgM6dO9O5c+dol7169WqM24utgIAAbt26BUD+/PljtXzevHkjvVegQIEol/X09CQgICDKz+//7IKDg6NcN1OmTGTKlCnKz+5/57H5XpM7XY4mgVy5YOhQGDwYVq+GKVNg7dr/f+TLBz17QvfukDu31dGKiIiISJpks0GGDFZHET8JnBiIiouLCx9//DHTp0/n0qVLfPfdd7zxxhuxXj8iIiLeMTyuAGFCrHc/vmeeeYacOXNGu2zBggWfKI7o9gtR36F/WFRz+p2coh8QH9PnT+pJfx7JiRIDiW3hQsibF2rVwsUFWrc2j7//hqlTYdYsuHABhg2Djz6CNm1MXQJfX/O3WUREREREkhcnJycKFSrEtWvXOHbsWKTP7s/JDwwMjHLds2fPRrvtM2fORPl+YGAgAQEBgKkdENv1AEfrxKjWe1j+/Pn566+/6NatG88//3yMyyeUbNmy4e7uzr179xg3bhzZsmVLsn1H58aNG9y4cSPKUQNx+V6TO9UYSEx//AEvvwyNG8P/5urcV6QIfPaZmVrw/femOGFYGCxeDA0agI8PTJwIN25YE7qIiIiIiEQtIiLCcVHo6ekZ6bP7w9sfThgAXL58OcZ5/osWLYpyWPv3338PQLFixR4ZQg+wbt06rly58sj7q1evJiAgAC8vLypXrhztvgGaNWsGwMKFC2NcNiE5OzvTuHFjS/Ydk/vf/YNCQkL46aefAPD19U3iiBKeEgOJqVIlaNIE7t2DZ5+FefMeWSR9eujUCbZuhYMHoXdvU1T1r7+gf3/Ikwe6dYM9e5I+fBERERERiSwsLIyhQ4dy7do1AFq3bh3p80aNGgHw2WefceOBu3xXr16lS5cu3I6hjsPFixcZNGgQ4eHhjveOHTvGRx99BMCAAQOiXO/evXv06dOHe/fuRdrWwIEDAejdu3eURQ0f1rNnTwoWLMiiRYt47733ohz5cPny5Shb+8XX8OHDSZcuHe+88w5z586NctrFkSNHWLp0aYLvOzqjRo3iyJEjjtcRERG89957XLhwgfz589OuXbskjScxaCpBYvLwgOXL4bXXTFKgc2e4ds1c8UehXDlTf2DsWLP4lClw+LCZbjBrFlSpYooVvvhiordpFRERERFJ82bMmBGp4nxAQAAHDx7k/PnzgGmFV7NmzUjrvPHGG0yfPp19+/ZRokQJatSowZ07d9i9ezcFChSgTZs2LF++/LH77N27NzNmzGDVqlVUq1aN//77j40bNxISEsJzzz1Hnz59olyvS5curFy5kiJFilCnTh2CgoLYsGEDd+7coUaNGowcOTJWx5whQwZWrVpFy5YtGTt2LNOmTaNcuXLky5ePu3fvcuLECY4dO0aOHDno0aNHrLYZW5UqVWLevHl07dqVrl27MnToUHx8fMiePTvXr1/n8OHDXLhwgQ4dOjzSzjCxFChQgMqVK1OpUiV8fX3JmjUru3fv5vTp02TIkIH58+fHKuGS3GnEQGJzdYW5c/8/GTBgALz/frSFUby8TALg4EEzG+GllyBdOjNqoFs3U7JgwAA4fjxpDkFEREREJC3aunUrc+fOdTzWrVuHk5MTHTp0YOPGjXz88cePrJMpUya2bt1Kly5dAFizZg2nT5+mZ8+ebNu2jYwZM0a7z2rVqrFt2zbKlCnD+vXr8fPzo3jx4kyYMIGFCxdie0whssKFC7Nnzx7q16/P5s2bWbt2Lblz52bYsGH89ttvuLu7x/q4S5cuzaFDhxg7diylSpXi0KFDLFq0iJ07d5IhQwYGDRrEsmXLYr29uHjhhRc4evQoAwYMcHyXS5Ys4c8//6RYsWKMGTOGTz75JFH2HRWbzcbChQsZMWIE58+fZ9myZfz333+0a9eOXbt2Ubt27SSLJTHZ7KmhhKJFbt26RcaMGbl27ZqjN+Zj2e0wZoxJCgD06GGGBDg7x2pfV6+aUQNTp8KDdUUaNDBJhGefNTkIkYQWGhrK6tWrad68Oa46ySSV0nkuaYHOcwkKCuLMmTMULlw4VdzhjEpERAS3bt3C29s70SrQS9rg7+9P4cKFKViwoKOeRGKKy+9nQEAA2bJl4+bNm3h7eyfI/vXbklRsNhgyBKZNAycnmD4d2reHoKBYrZ49O7z3Hpw6ZVoetmplNrNhA7zwAhQsaDobpIIWmiIiIiIiIpKElBhIaj16wKJFZm7A0qXQvDncuhXr1Z2coFkzWLHCtDx8/33IkQMuXYJRo0yCoE0bWLsWEqBFqoiIiIiIiKRySgxYoW1b+PVXU0xg40aoXx+iaC0Sk4IF4ZNPTMvDBQugXj2TDPj5Z3jmGXjqKRg3Dv7X7lRERERERETkEUoMWKV+ffDzM3ME9u2DWrXgCeeupEsHHTqYzR09Cn37grc3nD4N77xjihV26QLbt0db81BERERERESAQoUKYbfbk6S+QHKgxICVKlUybQcKFjTFA2rWNP0J48HHB776Ci5eNOUMKlaE4GD4/nuz+YoVTQHDGNqnioiIiIiISBqhxIDVnnoKtm2DMmVMoYC6dWHr1nhvNkMGU85g717YsQNeeQXSpzctEHv3hjx54M034dixBDgGERERERERSbGUGEgO8uSBzZvNLf0bN6BxY1i1KkE2bbNBtWowZw788w+MHw/Fi0NgIEyebEYYNGwIy5ZBWFiC7FJERERERERSECUGkovMmWH9etOl4N49ePZZmDcvQXeRJQu8/Tb89ResW2e6F9xvedi2LRQpAp9++kR1EEVERERERCSFUmIgOfHwgOXLoVMnCA+Hzp3hyy8TfDdOTmZQwrJlpuXh4MGQLZvpbvDBB5A/v9n1zp0qVigiIiIiIpLaKTGQ3Li6wty50L+/eT1gALz/fqJdoRcsCKNHm6TA3LlQtSqEhJjBCtWrw9NPm2kI9+4lyu5FRERERETEYkoMJEdOTjBhghnXD+bKvVcvM4ogkaRPb1oa7twJu3aZYoVubqZ44auvQr588N57T9xRUURERERERJIpJQaSK5sNhgwxPQednGD6dGjfHoKCEn3X90cJXLgAY8ZAgQJw/TqMHWvqELRubWoUREQkeigiIiIiIiKSyJQYSO569IBFiyBdOli61BQnvHUrSXadLZsZJfD33/Dzz6Yugd0Ov/wCTZtCyZIwcaJppCAiIiIiIiIpkxIDKUHbtvDrr+DlBRs3Qv36Sdo6wNn5/0cJ/PUX9OsH3t5w8qQphZA3L/TuDYcPJ1lIIiIiIiIikkCUGEgp6tcHPz/Inh327YNatSyZ8F+ihBkl8M8/MGUKlC4Nd+/C1KlQrhzUq2cGOISGJnloIiIiIiIJolChQthsNsfDyckJLy8v8uXLR/369Rk0aBC7du2yOsw4e/i4YvMoVKiQ1WFLEnCxOgCJg0qVYOtWaNIETp2CmjXNbfwyZZI8FE9PM0qgVy/YvBkmTTLtDzdvNo88ecxnPXtCrlxJHp6IiIiISLzVqlWLYsWKAXDv3j2uXbvG/v378fPzY/z48dSrV49Zs2ZRpEgRiyONneeff55r165Feu/27dssWbIEgHbt2uHp6Rnp82zZsiVZfGIdJQZSmuLFTXKgaVM4cgTq1IGVK80IAgvYbGaUQL16pljhtGnmcfEiDB8OH38M7drBm2+aPIbNZkmYIiIiIiJx1r17d7p27RrpPbvdzpo1a+jfvz+bNm2iZs2abN++ncKFC1sTZByMGzfukff8/f0diYFx48ZphEAapakEKVGePOa2fM2apvJf48awapXVUZEvH3z0EZw7B/Pnm1xFaCgsWAC1a0PFijBjhpl6ICIiIiKSEtlsNpo3b86uXbsoXrw4//77L927d7c6LJF4UWIgpcqcGdavhxYt4N49ePZZmDfP6qgA00ChY0f44w/Yvx+6dwd3dzh40DRZyJsXBg40syFERERERFKiTJky8eWXXwKwYcMG9u7d+8gyYWFhzJgxA19fX7JkyYKbmxuFCxemT58+nD9/PtKyhw4dwmazUa5cuUe2M3bsWMec/z///DPSZ+fOncNms1GgQIGEO7gnPAYAPz8/bDYbvr6+BAcHM3LkSJ566inSp09PgQIFeO+99wj6Xwv2mzdvMmjQIIoUKUL69OkpVKgQI0aMICws7JHtdu3aFZvNxpw5czh48CBt27Yle/bsuLu7U65cOSZOnEh4eHiifAdpgRIDKZmHh5nY37kzhIeb//7vj1NyUaECTJ9uihWOHw9FiphBDhMmwFNPme6Lq1dDRITVkYqIiIiIxE2zZs3IkiULAOvXr4/0WWBgII0bN6ZHjx7s3buXcuXK0bp1a9zc3Pj222+pWLEi+/fvdyxftmxZcuTIwZEjR7jyUAey3377LcrnD75u1KhRgh7bkxzDg0JCQmjatCkTJkygVKlSNG7cmFu3bjF27FheeOEFrl+/TrVq1fjuu++oVKkS9erV499//2XkyJH07dv3sTHt2rWL6tWrs3//fho2bEjdunU5fvw4/fv358UXX8Rutyf495AWKDGQ0rm6wpw5MGCAeT1gAHzwASSzX4jMmeHtt02Lw1WrTEIAYM0aM+iheHGTOLh+3do4RURERNIqux3u3Em5Dyv++Wuz2ahUqRIAR48ejfRZ79698fPzo2XLlpw+fRo/Pz8WLVrEX3/9xRdffEFAQAAdOnRw3OW22Ww0bNgQu90e6eI/ODiYP/74g9KlS+Pk5JSkiYG4HsODtm/fzr179/j777/5+eef+eWXXzh48CCZM2dm5cqV+Pr68tRTT+Hv78/ixYtZu3YtW7ZswcXFhWnTpnHu3LkoY5oyZQqvvfYaJ0+eZMGCBaxdu5Z9+/aRPXt2Fi9ezLRp0xL8e0gLlBhIDZyczFX16NHm9aefmpYAyXAojZOTSQqsWmWSBAMHQqZM8PffMGiQqVPQowccOmR1pCIiIiJpy927pvNUSn1YVcfqftX+gIAAx3vHjh3jxx9/JE+ePMyfP58cOXJEWqd///40b96ckydPsmbNGsf79y/uHxx9sHXrVu7du8fzzz9P5cqV8fPzcwy1t9vtbNiwwZFUSEhPegz32Ww2Zs6cSdasWR3vFSxYkM6dOwNw5swZZsyYgYeHh+PzKlWq0KxZMyIiIvDz84syrty5czN+/HhcXP6/jn7p0qUZNmwYAOPHj3/iY07LlBhILWw2GDzYjNt3cjL/bd8e/jd/JzkqWhTGjTPTDGbMMNMO7t0zz8uXh/r1zUyJZJjfEBEREREBIOJ/c2JtD7TfWr16NXa7nWbNmuHl5RXler6+vgBs27bN8d79xMDvv//ueO/+iIDGjRvTqFEjAgMD2blzJwCHDx/m33//pUyZMuTMmTPhDioex3BfgQIFKBNFW/XixYsDULly5UeSDQ9+fvHixSj32b59e9KnT//I+6+88goAJ0+efOy68nhKDKQ23bvDokWmAuDSpeb2/K1bVkcVLQ8P6NYN9u0zBQs7dABnZ/Dzg7ZtTQLh8881zUBEREQkMXl4wO3bKffxwI3nJHXt2jUAR60BgL///huAmTNnOooGPvx49913Abh69apjvQIFClC8eHHOnz/P8ePHAZMY8Pb2plq1ao7Ewf1kQWJOI3jSY3jwWKLi6ekZ7ef3kxBBj7nB+bi2kF5eXo7RCRcuXHjcYcljuMS8iKQ4bdvCr7+aTgUbN5pb72vWQBQZueTEZjMtDmvVggsXYMoUmDoVzp6Fd9+F4cOhSxfo2xdKl7Y6WhEREZHUxWaDDBmsjiJ+krrOgN1udxTfK1u2rOP9+6MIKlSoQPny5aPdRrVq1SK9btSoESdPnmT9+vXkzJmTvXv30rJlS1xcXKhVqxbu7u6sX7+e4cOHJ2piID7HAODkFP096Jg+jw8VIIw7JQZSq/r1zS33Z54xt+Jr1TLtDQsVsjqyWMmXDz75BIYOhQULYOJE0+5w6lTzaNgQ+vUzhQudna2OVkRERETSotWrV/Pff/8B0KRJE8f7+fPnB6BWrVpMmjQpTtts1KgRU6ZM4bfffiNPnjxEREQ4Lvzd3NyoXbs2GzduJCAggM2bN+Pq6kq9evUS6Ij+X3yOITGdOXMmyvcDAwMddR7y5cuXlCGlCppKkJpVqgRbt5pkwKlTULMmHDlidVRx4u4Or74K+/fD5s3Qrp0pofD772ZARPHipvXhjRtWRyoiIiIiacnNmzcZ8L/OYI0bN6ZChQqOz5o1awbAihUrHjsk/nEaNGiAk5MTGzduZO3atY7t39eoUSPCwsIYM2YMd+7coXr16mRIhKEe8TmGxLRo0SKCg4Mfef/7778HoFixYuTNmzepw0rxlBhI7YoXN8mBMmXg0iWoU8e8TmFsNhP64sVw5gy89x5kyWKeDxxoRhi88QYcO2Z1pCIiIiKSmtntdtasWUPVqlU5efIkuXPnZvr06ZGWqVixIu3ateP8+fO0bdsWf3//R7Zz584dfvjhB/79999I72fKlInKlStz69YtvvvuO/Lly0fJkiUdn98fPXD/Ln5iTCOI7zEkposXLzJo0KBILRKPHTvGRx99BOBI1kjcaCpBWpAnj7nd3qqVSQo0bmwKFLZoYXVkT6RAARgzBoYNg/nzzTSDI0fgm2/Mo0kTM82gWTMzukBERERE5EnMmDHD0TYvODiYa9eusW/fPq7/ryq2r68vs2bNomDBgo+sO3v2bG7cuMGaNWsoUaIE5cuXp3Dhwtjtdvz9/Tl48CAhISEcO3bskY4CjRo1Yvfu3QQFBUUaLQDmgj1r1qyOYfOJlRiI7zEklt69ezNjxgxWrVpFtWrV+O+//9i4cSMhISE899xz9OnTJ0niSG102ZRWZM4M69aZZMC9e2Yc/v+G26RUHh6mCcOhQ7BhA7RpYxIB69ZBy5ZQooRJGty8aXWkIiIiIpISbd26lblz5zJ37lx++eUX/vzzT8qWLcvAgQPZtWsXGzdujLZK/rp165g/fz6NGjXi3LlzLFu2jA0bNnDv3j1efvllli1bRtGiRR9Z98GL/Ycv/G02Gw0aNADA29ubqlWrJuARJ9wxJJZq1aqxbds2ypQpw/r16/Hz86N48eJMmDCBhQsXRmobKbFns6tk4xO7desWGTNm5Nq1a47WGMleaKjpDXg/KfDppzB4sBmrnwqcOWNGDcyY8f91Bzw9oWtXePNNkyyQuAkNDWX16tU0b94cV1dXq8MRSRQ6zyUt0HkuQUFBnDlzhsKFC0fZBz41iIiI4NatW3h7eydq1XtJel27dmXu3LnMnj2brl27Wh1OgovL72dAQADZsmXj5s2beHt7J8j+9duS1ri6wpw5MGiQef3++9C7N4SFWRpWQilcGD7/3LQ7/PZb8PExfW0nTYKSJc30gl9/hf91XxEREREREUnzlBhIi5yczNXzpEnm+bRpZmrB7dtWR5ZgMmSAXr1M7YH16015BZvNJAWaNYNSpczhBwZaHamIiIiIiIi1lBhIy954A5YuNT0BV6+GevXg8mWro0pQNhs0agQrVsDJkzBgAHh7w4kT0Lcv5M0L/fubbo4iIiIiIiJpkRIDad2zz8LGjZA9O+zbB9Wrp9qef0WLwoQJ8M8/MHmyqTcQGGgKFD71lClYuH49qOqGiIiIiEjyMmfOHOx2e6qsL5AcKDEgUK0abN8OxYvD2bNQs6Zpb5hKeXrC66/Dn3+aqQXNm5tkwKpVptVh6dIwZUqqmlkhIiIiIiLyWEoMiFG0KGzbZpICN25A48bw449WR5WonJygaVOTEDhxAvr1Ay8vM2Di9dchXz4YOBD+/tvqSEVERERERBKPEgPy/7Jlg99+g3btICQEXnoJPvssTYytL17cTCm4cAG++sq8vnnTTD0oVszMuNiwIU18FSIiIiIiksYoMSCRubvDwoXw9tvm9eDBpkhhKmlnGBNvb1OU8K+/zEiCpk1NMmDFCmjYECpUgNmzITjY6khFREREnoxddzpEkh2rfy+VGJBHOTnB+PHmFrrNZibcP/cc3LljdWRJxsnJ1B749df/n1rg4QGHDsFrr0GBAjByJFy5YnWkIiIiIrHj5GT+6R8eHm5xJCLysPu/l/d/T5OaEgPyeP36wZIlkD49rFwJvr7w779WR5XkSpY0XQwuXDAzK/LlMwmBESNMgqBbNzh82OooRURERKLn6uqKq6srt1VhWSTZCQwMdPyOWkGJAYnec8+ZdobZssGePaad4V9/WR2VJTJnhnffNcUIf/wRqlY1UwpmzYJy5Uy9xtWrISLC6khFREREHmWz2fDy8uLmzZvcu3fP6nBE5H/u3bvHrVu38PLywmazWRKDiyV7lZSlenXTzrBZMzh1ynQu+PlnqFPH6sgs4eoKL74IHTqYr+XLL83Ait9+M48SJeCtt6BLF8iQwepoRURERP5ftmzZuHfvHufOncPb2xsvLy+cnZ0tuxhJaBEREYSEhBAUFGTZkGyR2LDb7YSHhxMYGMitW7dwc3MjW7ZslsWjxIDETrFipp1h69awYwc0agTffWeujtMom83kSGrWhLNn4euvYfp0OH7c1CT44APo1QvefBPy5rU6WhERERFwdnYmf/78XLt2jcDAQG7cuGF1SAnKbrdz79493N3dU02yQ1I3V1dXMmXKRLZs2XB2drYsDiUGJPayZzc9+15+GZYtM7fNz5+HgQPNVXIaVrAgjBsHw4ebrgUTJ5opB2PGmPfbt4cBA6BKFasjFRERkbTO2dmZnDlzkiNHDkJDQ4lIRfMgQ0ND2bx5M3Xr1rVsrrZIbDk5OeHq6posklhKDEjcuLvDokUmGTBxIrzzDvj7m+cWZriSCy8vU7PxjTfgl1/MNINNm2D+fPOoVcskCNq00dclIiIi1rLZbKRLl87qMBKUs7MzYWFhpE+fXokBkTjQxBuJO2dnc8X7xRdmpMDkyWmunWFMnJ3Nxb+fH+zdC507m9oEW7fC88+bmRlffAG3blkdqYiIiIiIpHVKDMiT69/fjB5In97cHq9fP022M4xJpUqmHIO/v6k7kDWref7226b14YABcOaM1VGKiIiIiEhapcSAxE+7dvD77+Zqd/duqFHDVN+TR+TJAx9/DOfOwdSpUKoUBAaawRfFikHbtrBlC9jtVkcqIiIiIiJpiRIDEn81a5qOBUWKmFvfNWuaMfMSJQ8P6NkTjh6FX3+Fpk0hIsLUc6xbF55+Gn74AUJCrI5URERERETSAiUGJGE89RRs3w7VqsH169CwoZlmII9ls5mkwK+/miRBjx5mVsbevdCpExQuDKNHQ0CA1ZGKiIiIiEhqpsSAJJwcOUw7w2efheBg06Nv/HiNjY8FHx+YNs1MMxg1CnLlgosX4f33IX9+6N0b/vrL6ihFRERERCQ1UmJAEpaHByxZAm++aV4PGgRvvQXh4dbGlUJkzw5Dh5rihN99BxUrwr17/1+ToHlzWL9euRYREREREUk4SgxIwnN2hq++gnHjzOuvvzY9+u7etTauFMTNzbQ43LvXtDx89lkz9WDNGmjSBMqVg5kzISjI6khFRERERCSlU2JAEofNBgMHwsKF5ip3+XJo0ACuXrU6shTFZoN69czXd+IE9O0LGTLAkSPQvTsUKADDh8OVK1ZHKiIiIiIiKVWKTAxMmTKFcuXK4e3tjbe3NzVq1GDNmjWOzy9fvkznzp3JlSsXGTJkoFKlSixZsiTSNq5fv87LL7+Mt7c3mTJlolu3bty+fTupDyX1e+EF+O03yJIFdu407QxPnLA6qhSpWDEzEOPCBTMYo0ABk2f56CPzvFcvdYoUEREREZG4S5GJgXz58jFmzBj27t3Lnj17aNCgAc8++yxHjx4FoEuXLhw/fpwVK1Zw+PBh2rZtS/v27dm/f79jGy+//DJHjx5l/fr1rFy5ks2bN9OzZ0+rDil1q13btDMsXBhOn/7/9obyRDJlMoMxTp+Gn34y7Q2Dg03xwpIloXVr2LxZdQhERERERCR2UmRioFWrVjRv3pzixYvz1FNP8cknn+Dp6cmOHTsA2LZtG3379qVq1aoUKVKEoUOHkilTJvbu3QvAsWPH+PXXX5kxYwbVqlWjdu3afP311yxYsICLFy9aeWipV4kSpp3h00+b/nsNG5oihfLEXFxM44edO00i4H4dgl9+MdMPqlUziYOwMKsjFRERERGR5MzF6gDiKzw8nEWLFnHnzh1q1KgBQM2aNfnpp59o0aIFmTJlYuHChQQFBeHr6wvA9u3byZQpE1WqVHFsp1GjRjg5ObFz506ee+65KPcVHBxMcHCw4/WtW7cACA0NJTQ0NJGOMBXJkgXWrcO5UyecVq3C/sILRHz+ORH9+lkdWYpXvTosWmSmEnz1lRPff+/E7t02XnwRCha0069fBF27RuDlFfdt3z+3dY5LaqbzXNICneeSFug8l7QgMc7vFJsYOHz4MDVq1CAoKAhPT0+WLVuGj48PAAsXLqRDhw5kzZoVFxcXPDw8WLZsGcWKFQNMDYIcOXJE2p6LiwtZsmTh8uXLj93n6NGjGTly5CPvb9y4EQ8PjwQ8ulTutdcoFxFB4TVrcB40CH8/P468+qrpZiDx1qIF1K6djjVrCrN6dWHOnnVj4EBnhg0Lp2nTs7Ro8TdZs8a9ncH69esTIVqR5EXnuaQFOs8lLdB5LqnZ3UTo9pZiEwMlSpTgwIED3Lx5k8WLF/PKK6+wadMmfHx8+PDDD7lx4wa//fYb2bJlY/ny5bRv354tW7ZQtmzZJ97nkCFDePvttx2vb926Rf78+alfvz5Zs2ZNiMNKO1q2JHzCBJyHDKHoypUUdnEhfO5ccHe3OrJUo2NHuHcP5s0L54svnDh1Kh1Llxbnl1+K8eKLdvr3Dyc2vw6hoaGsX7+exo0b4+rqmviBi1hA57mkBTrPJS3QeS5pQUBAQIJvM8UmBtKlS+cYAVC5cmV2797NxIkTeffdd5k0aRJHjhyhdOnSAJQvX54tW7YwefJkvv32W3LlysWVh/q7hYWFcf36dXLlyvXYfbq5ueHm5vbI+66urvrD8yQGDzYFCbt0wWn5cpyaNoUVKyB7dqsjSzVcXeH116F3b1i50nQz2LLFxvff2/j+eyeaNIFBg6BRI1OfIPpt6TyX1E/nuaQFOs8lLdB5LqlZYpzbKbL4YFQiIiIIDg52DKtwcop8aM7OzkRERABQo0YNbty44ShGCLBhwwYiIiKoVq1a0gUt0KGDaWeYOTPs2GE6Fpw6ZXVUqY6T0/93K9i50xQtdHKCdeugSROoUAG+/x5CQqyOVEREREREklqKTAwMGTKEzZs34+/vz+HDhxkyZAh+fn68/PLLlCxZkmLFitGrVy927drF6dOnGT9+POvXr6dNmzYAlCpVimeeeYYePXqwa9cutm7dyptvvsmLL75Injx5rD24tKhOHdi6FQoVMkmB6tXNFawkiqpVTbeCU6egXz/IkAEOHYIuXcwAjrFj4cYNq6MUEREREZGkkiITA1euXKFLly6UKFGChg0bsnv3btauXeuYS7R69WqyZ89Oq1atKFeuHN999x1z586lefPmjm388MMPlCxZkoYNG9K8eXNq167NtGnTLDyqNK5UKdPOsEoV086wUSOYPdvqqFK1woVh4kQ4fx5Gj4bcueHiRXjvPcifHwYMgLNnrY5SREREREQSW4qsMTBz5sxoPy9evDhLliyJdpksWbIwf/78hAxL4itXLti0Cbp2Nb33XnsNjh0zV63qWJBoMmc25R4GDIAff4Tx4+HIEfjyS/j6a2jXzpmqVTNZHaaIiIiIiCSSFDliQFIxDw9YsACGDTOvP/8c2raF27etjSsNcHMzOZlDh+DXX82gjfBwWLjQiUGD6tG4sTMrV8L/SnWIiIiIiEgqocSAJD9OTjByJMyfb65WV6yAWrXg3DmrI0sTbDZo2hTWr4f9++HllyNwdo5g0yYnWrWC0qVhxgwICrI6UhERERERSQhKDEjy1bGjmVqQM6e5jV21qulcIEmmQgWYPTucqVPX8/bb4Xh7w19/QY8eULAgjBoF165ZHaWIiIiIiMSHEgOSvFWrBrt2Qfny8O+/4OtrRhJIksqWLYgxYyI4fx4mTIACBeDKFTPjo0ABeOMNdZkUEREREUmplBiQ5K9AAfjjD2jdGoKD4eWXzRWpJrsnOW9vU6Tw1CmTn6lUCe7dg2++gaeeMuUgtm2zOkoREREREYkLJQYkZfD0hKVL4d13zetRo+DFF+HuXWvjSqNcXc1Mjz17YONGaNEC7HZYtsyUg6hRw/y4wsOtjlRERERERGKixICkHM7O8NlnMHu2uTJdtAjq1YOLF62OLM2y2czsjpUr4ehR6NYN0qUzpSDatQMfH5g+3Qz0EBERERGR5EmJAUl5unaF33+HrFnNLeunn4Z9+6yOKs3z8THdCs6ehQ8+gMyZ4cQJ6NkTChUyOZ2bN62OUkREREREHqbEgKRMdeqYooQ+PmbEQO3aZuy6WC5XLvj4Y5MgmDAB8uWDy5dh8GDIn9/MBtEgDxERERGR5EOJAUm5ihQxle6eecZUwGvXDj791Ex2F8t5eZlChadPw5w5JocTGAiffw6FC0P37nD8uNVRioiIiIiIEgOSsmXMCL/8Av36mdcffABdukBQkLVxiUO6dPDKK3D4sPlR1a4NISEwcyaUKmU6GezcaXWUIiIiIiJplxIDkvK5uMDEiTBliilQOG8eNGwIV65YHZk8wMkJWraELVtg61bTffJ+J4Pq1U0Rw9WrNeBDRERERCSpKTEgqUfv3vDrr5Apk5liULWquU0tyU7NmvDzz6aTwauvmiYTmzaZtofly5vcTmio1VGKiIiIiKQNSgxI6tKokemVV7y4qX5Xs6bppSfJko8PzJoFf/8NAweCp6fJ5XTuDMWKmYEgd+5YHaWIiIiISOqmxICkPiVKmORA/fpw+7YZsz5hgsaoJ2P58sG4cXDuHHzyCeTIYZ737w8FCsDw4XDtmtVRioiIiIikTkoMSOqUJQusXQs9epiEwMCB0LOnqXonyVbmzPD+++DvD99+C0WLwvXr8NFHJkHQt6/5TEREREREEo4SA5J6ubrC1KnwxRem8t2MGdC0KQQEWB2ZxMDdHXr1Mu0MFy6EypVNR8pJk8wUg5dfhoMHrY5SRERERCR1UGJAUjebzYxH/+UX8PICPz+oVg3++svqyCQWnJ3hhRdg9274/Xdo0gTCw2H+fKhQAZ55BjZu1CwREREREZH4UGJA0obmzU2ngkKF4PRp0x9v/Xqro5JYstmgQQMzO2TfPnjxRTMIZO1a8361arB4sUkaiIiIiIhI3CgxIGlHmTKwaxfUqgU3b0KzZvDNN1ZHJXFUsSL8+COcPAlvvAHp05sRBS+8AKVKwbRpEBRkdZQiIiIiIimHEgOStmTPbsakd+libi+/8Qa8+SaEhVkdmcRRkSKm5sC5c/Dhh6Zw4cmTpjZBoUIwZgzcuGF1lCIiIiIiyZ8SA5L2uLnBnDnmytFmg8mToUULXUWmUNmzm64F587Bl19C/vzw778wZIjpZPDOO/DPP1ZHKSIiIiKSfCkxIGmTzQbvvQdLl4KHB6xbBzVqmPoDkiJ5esJbb5kf4XffmZkjgYEwbhwULgzduqnmpIiIiIhIVJQYkLStTRv44w/Il89cNVatCps2WR2VxIOrK3TuDIcOwcqVULcuhIbCrFmmBsFzz5maBCIiIiIiYigxIFKxoilKWLUqXL8OjRubq0hJ0Ww2M0Nk0ybYvt3kgACWLzc/6iZNTPdKtToUERERkbROiQERgNy5zVVihw7m9nK3bmZyuvrfpQrVq8OyZfDnn/DKK+DsbLpV1q9vmlSsXKkEgYiIiIikXUoMiNzn7m764A0fbl6PG2fGnQcGWhuXJJhSpUzdyVOnTEMKNzczmqBVK6hQARYsUC5IRERERNIeJQZEHmSzwYgRJkGQPj388ou5pXz2rNWRSQIqVMi0OvT3NzUovbxMTYKOHaFkSZgxA4KDrY5SRERERCRpKDEgEpUXXzST03PlgsOHzaT07dutjkoSWK5cpmvl2bMwahRkzWpGE/ToAUWLmvaHd+5YHaWIiIiISOJSYkDkcapWNUUJK1SAK1fA1xdmzrQ6KkkEmTPD0KEmQTBhAuTJA//8AwMGQMGC8PHHcOOG1VGKiIiIiCQOJQZEopM/P2zZAm3bQkgIdO9uJqeHhFgdmSSCDBlMMuDvv2HaNDNqICAAPvwQChSAIUPg33+tjlJEREREJGEpMSASE09PWLTIjDW32eCbb6BRI10hpmJubmY6wV9/wfz5UKaMqUE5ZoypT9C3r8pOiIiIiEjqocSASGw4OZmx5itWgLe3GUVQpQrs3m11ZJKIXFxMQcKDB82Pvlo1CAoyhQuLFYNXXzXJAxERERGRlEyJAZG4aNnS1B0oWRIuXIA6dWDuXKujkkTm5GRaGm7fDhs2mAEjYWGm9aGPD7zwAuzbZ3WUIiIiIiJPRokBkbgqUQJ27oTWrU1Pu65d4a23IDTU6sgkkdlsUL8+rF9vToE2bcBuh8WLoXJlaNbMDCYREREREUlJlBgQeRLe3rBsGQwfbl5/9RU0aQJXr1oblySZqlXNKXDkCHTqBM7O8OuvULeuGUiyZo1JGoiIiIiIJHdKDIg8KScnGDHCXB16eoKfn6k7oDHlaUrp0vD993DiBPTqBenSwR9/QPPmUKmSqVsZHm51lCIiIiIij6fEgEh8tWljxpUXLw7nzkGtWvDDD1ZHJUmsSBH49ls4cwYGDjStDw8cgPbtTR2C2bPV5VJEREREkiclBkQSgo+PKUrYvLkpW9+pEwwaZCrUSZqSJw+MG2faGQ4fDpkzm9EEr71mOhl8/TXcvWt1lCIiIiIi/0+JAZGEkimT6Wn3wQfm9fjx8MwzEBBgaVhijaxZzUyTs2fh888hVy44fx769YNChWD0aLh50+ooRURERESUGBBJWM7O8PHHZmJ5hgzw+++m7sDBg1ZHJhbx8jKDR86cgSlTTFLg6lV4/30oUMDkkVSzUkRERESspMSASGJ4/nnYscNMPPf3h5o1YeFCq6MSC6VPD717w8mTplihjw/cugWffgoFC0L//nDxotVRioiIiEhapMSASGIpUwZ27zZtDO/ehQ4dYPBglahP41xcTAmKw4dNQ4sqVeDePZg40eSR3njD1LAUEREREUkqSgyIJKYsWWD1anjvPfP6s8+gRQv47z9r4xLLOTmZhha7dsG6dVC7NgQHwzffmCKFPXua6QciIiIiIolNiQGRxObsDGPGwI8/grs7rF0LTz8NR45YHZkkAzYbNG4MmzfDxo1Qvz6EhsL06aYD5quvmukHIiIiIiKJRYkBkaTy4ouwfbupPnf6NFSvDkuWWB2VJBM2G/j6woYNsGWLmYESHg5z5kDJkmb6wbFjVkcpIiIiIqmREgMiSal8eVN3oEEDuHPHFCkcOhQiIqyOTJKR2rXNwJIdO8zMk4gI+OEHKF3a5Jc02EREREREEpISAyJJLVs2c9X39tvm9SefQOvWcOOGpWFJ8lOtGqxcCXv2mHoEdjv89BOULQvt2sH+/VZHKCIiIiKpgRIDIlZwcYHx403fuvTpYdUqqFpVY8UlSpUrmw4GBw/CCy+YaQdLl0KlSiantHu31RGKiIiISEqmxICIlTp1gq1bIX9+U2GuWjX4+Wero5Jkqlw5WLjQTCV46SXT2eCXX0xOqVkz2LbN6ghFREREJCVSYkDEapUqmbHi9epBYKAZMz5ihOoOyGP5+JiaA8eOwSuvmMYXv/4KtWpBo0awaZPVEYqIiIhISqLEgEhykCMHrF8P/fqZ1yNHwnPPwa1b1sYlydpTT5muBSdOQPfuZobK77+b7gb16pnndrvVUYqIiIhIcqfEgEhy4eoKEyfC7Nng5gYrVpipBSdOWB2ZJHNFisD06XDqFPTpA+nSwebNZvRArVqwZo0SBCIiIiLyeEoMiCQ3XbuaRvZ588Jff8HTT5vihCIxKFgQvvkG/v7bDD5Jnx62b4fmzU0dghUrlCAQERERkUcpMSCSHD39NOzdaxra37oFrVrBxx+r7oDESt68ZvDJmTMwcCB4eJgyFs8+a0paLFmiU0lERERE/p8SAyLJVc6cZpJ4nz7mNu+HH5pedYGBVkcmKUSuXDBuHPj7w+DB4OkJBw7A88+bDgcLFkB4uNVRioiIiIjVlBgQSc7SpTNjw6dPN8+XLoUaNcxkcpFYyp4dRo+Gs2dNfiljRjh6FDp2hNKlYd48CAuzOkoRERERsYoSAyIpQffu4OcHuXObK7qnnzb96UTiIEsW+OgjM4Lgo48gc2Y4fhw6d4aSJU3dy9BQq6MUERERkaSmxIBISlGjhpkoXqMG3LhhKsp99pmqyUmcZcpkRg74+5uRBNmywenT8NprpgXitGkQHGx1lCIiIiKSVJQYEElJ8uSBjRuhRw+TEBg8GDp0UN0BeSLe3uYU8vc3tQhy5jTPe/WCYsVg8mQICrI6ShERERFJbEoMiKQ0bm7mlu6334KrKyxaZKYWHD1qdWSSQmXIYLoXnDljuhnkyQMXLsCbb0LRoiZBoBEEIiIiIqmXEgMiKVWvXrBpk+lNd/y4aVT/ww9WRyUpmLs79OtnphV88w3kzw8XL5oEQbFiMGWKEgQiIiIiqZESAyIpWY0asH8/NGoEd+9Cp07wxhu6epN4SZ/edMk8edIkA/LlMyMIXn8diheHqVMhJMTqKEVEREQkoSgxIJLSZc9uOhQMHWpef/MN1K0L585ZG5ekeG5u0Lu36Y45aZKZYnD+vHnvqadgxgx1MRARERFJDZQYEEkNnJ1h1ChYtcr0oNu1CypVgrVrrY5MUgE3NzMQ5fRp+OoryJULzp41NTBLlIBZs5QgEBEREUnJlBgQSU2aN4d9+6ByZQgIgGbNYMQICA+3OjJJBdKnh7594e+/4YsvTBeDM2egWzcoVQrmzoWwMKujFBEREZG4UmJAJLUpVAj++MOM97bbYeRIkzC4ds3qyCSVcHeH/v1NgmD8eDOb5fRp6NoVfHzg+++VixIRERFJSZQYEEmN0qc3VeO++85cxa1bZ6YW7NxpdWSSinh4wNtvm1EDY8dCtmymYGGXLiZBMH++EgQiIiIiKYESAyKpWefOJhlQvLipGlenjmlKb7dbHZmkIhkywDvvmATBmDGQNSucOAEvvwxly8KCBUoQiIiIiCRnSgyIpHZly8KePdCunakQ9+ab5ort9m2rI5NUxtMT3nvPJAg++cTUwTx2DDp2hHLlYOFCiIiwOkoREREReZgSAyJpgbc3LFoEEyaYDgY//gjVqpmrNpEE5uUF778P/v6mWUamTPDnn9ChA5QvD0uWKEEgIiIikpwoMSCSVthsMGAA+PlB7tzmSu3pp+Gnn6yOTFIpb28YOtQkCEaMgIwZ4cgReP55qFgRli3TrBYRERGR5ECJAZG0pnZt2L8f6teHO3fgxRfhrbcgJMTqyCSVypgRhg83CYJhw0zC4NAhaNvWdNZcsUIJAhERERErKTEgkhblzGk6FQwZYl5/9RX4+sKFC5aGJalbpkyme+aZM/DBB6Ymwf798OyzZvDKypVKEIiIiIhYQYkBkbTKxQU+/dTcrs2YEbZvN+O7f/vN6sgklcuSBT7+2IwgGDLEdDXYuxdatTKlL9asUYJAREREJCkpMSCS1rVqBfv2maTAtWvQpIm5alN1OElkWbOa3NSZM/Duu+DhAbt3Q/PmUKMGrF2rBIGIiIhIUlBiQESgSBHYtg26dzdXYh9+aBIG169bHZmkAdmzw2efmQTBoEHg7g47d8Izz0CtWrB+vRIEIiIiIolJiQERMdKnh+nTYdYs83z1aqhUCdvevVZHJmlEjhzw+ecmQfD22+Y03L7dDGKpWxc2bFCCQERERCQxKDEgIpG9+qq5GitaFM6exblePQpqTLckoZw5Yfx4+Ptv0zDDzQ3++AMaNjQ1MjdtsjpCERERkdRFiQEReVSFCrBnD7Rpgy0khApTpuD82mumvaFIEsmdG7780iQI+vaFdOlg82aTHGjYEHbssDpCERERkdRBiQERiVqmTLB0KeGjRxPh5ITTDz9A9epw4oTVkUkakyeP6ah5+jS8/rpJEGzYYAoUtmoFBw9aHaGIiIhIyqbEgIg8ns1GxMCBbPvoI+y5csGRI1ClCixZYnVkkgblyweTJ8PJk9CtGzg7w8qVZoDLiy/C8eNWRygiIiKSMqXIxMCUKVMoV64c3t7eeHt7U6NGDdasWQOAv78/NpstyseiRYsc24jq8wULFlh1SCLJWkCZMoTt3GkqwAUGwvPPm+pwoaFWhyZpUIECMGMG/PkndOxo3vvpJ/Dxgddeg7NnrY1PREREJKVJkYmBfPnyMWbMGPbu3cuePXto0KABzz77LEePHiV//vxcunQp0mPkyJF4enrSrFmzSNuZPXt2pOXatGljzQGJpAS5c8Pvv8M775jXX3wB9evDP/9YG5ekWU89BfPnm6kErVtDRATMng3Fi8Obb8KlS1ZHKCIiIpIypMjEQKtWrWjevDnFixfnqaee4pNPPsHT05MdO3bg7OxMrly5Ij2WLVtG+/bt8fT0jLSdTJkyRVouffr0Fh2RSArh4gJjx8KyZeDtDVu3QqVKsHGj1ZFJGlauHPz8sylG2KiRGcgyebJprPHeexAQYHWEIiIiIsmbi9UBxFd4eDiLFi3izp071KhR45HP9+7dy4EDB5g8efIjn73xxht0796dIkWK0Lt3b1599VVsNttj9xUcHExwcLDj9a1btwAIDQ0lVEOqJZW6f25HOsdbtIAdO3Dp0AHb4cPYGzUiYuRIIt55B5xSZL5RUoFKlWD1avDzszFsmBM7djgxdix8+62dt96K4K23IvD2jnrdKM9zkVRG57mkBTrPJS1IjPPbZrenzObkhw8fpkaNGgQFBeHp6cn8+fNp3rz5I8u9/vrr+Pn58eeff0Z6f9SoUTRo0AAPDw/WrVvH8OHDGTt2LP369XvsPkeMGMHIkSMfeX/+/Pl4eHjE/6BEUhjn4GDKTZ1KgQ0bALhcpQr7+vcn9KHROSJJzW6HvXtzMm9eKfz9MwLg5RVM27anaN78DG5u4RZHKCIiIvJk7t69y0svvcTNmzfxftxdjzhKsYmBkJAQzp07x82bN1m8eDEzZsxg06ZN+Pj4OJa5d+8euXPn5sMPP2TgwIHRbm/YsGHMnj2b8+fPP3aZqEYM3K9pkDVr1vgflEgyFBoayvr162ncuDGurq6PLmC3Y5s9G+e33sIWHIy9cGHCFiyAihWTPliRh0REwJIlNkaOdObECTMiLHduO4MHR9CtWwTp0pnlYjzPRVIBneeSFug8l7QgICCA3LlzJ2hiIMVOJUiXLh3FihUDoHLlyuzevZuJEycydepUxzKLFy/m7t27dOnSJcbtVatWjVGjRhEcHIybm1uUy7i5uUX5maurq/7wSKoX7Xneqxc8/TQ8/zy2M2dwrVsXvv4auneHaKbniCSFl16C9u1h3jwYMQLOnrXx1lvOfPGFM8OHQ6dOcP/U1t9zSQt0nktaoPNcUrPEOLdTzWTgiIiISHfzAWbOnEnr1q3Jnj17jOsfOHCAzJkzPzYpICIxqFQJ9u6FVq0gOBh69jRXZP+rxSFiJRcX6NoVjh+HSZMgVy7w94dXX4UyZWDRIhsREVZHKSIiImKNFDliYMiQITRr1owCBQoQGBjI/Pnz8fPzY+3atY5lTp06xebNm1m9evUj6//yyy/8+++/VK9enfTp07N+/Xo+/fRTBg0alJSHIZL6ZM4My5fDuHHw/vuwYAHs3m2azFeubHV0Iri5wRtvmITA5MkwZoxJFrz8sguFC9fDyclG69Ya6CIiIiJpS4ocMXDlyhW6dOlCiRIlaNiwIbt372bt2rU0btzYscysWbPIly8fTZo0eWR9V1dXJk+eTI0aNahQoQJTp05lwoQJDB8+PCkPQyR1cnKCd9+FLVugQAE4fRpq1ICJE01FOJFkwMMD3nkHzpwx0wu8vOycOZOJNm1cqFVLHThFREQkbUmxxQeTg1u3bpExY0auXbum4oOSaoWGhrJ69WqaN28e9/lM//0H3brBsmXmdevWMHs2ZMmS8IGKxMPly6H06ePP2rXFuHfPDBdo2BA++QSqVbM4OJEEEq+/5yIphM5zSQsCAgLIli1bghYfTJEjBkQkhcicGZYsMYUI06WDFSugQgXYutXqyEQiyZoVunb9k7/+CuONN0wxwt9/h+rV4dln4dAhqyMUERERSTxKDIhI4rLZ4M03YccOKF4czp+HevXg009RtTdJbnLnNsUJT5wwxQqdnP4/n9Wxo3lfREREJLVRYkBEkkbFiqZrwcsvQ3g4fPABNG0Kly9bHZnIIwoVMrNejh41rQ7tdlNL08fHzI45e9bqCEVEREQSTqy6EmzevDmx4wCgbt26SbIfEbGIlxd8/72ZvP3mm/Dbb+ZW7Lx50KiR1dGJPKJkSdNUY8gQ+PBDWLkSZs0yp2zPnia/lSuX1VGKiIiIxE+sEgO+vr7YErl3k81mIywsLFH3ISLJgM1mesVVqwYdOsCRI9CkiWlvOGKEaTgvksxUqAC//ALbt5tkwMaNZsrBzJnQr59pxKGamiIiIpJSxWkqgd1uT9SHiKQhPj6wa5e57Wq3m/Lv9eubGgQiyVSNGrBhgxnsUq0a3LsHn30GhQvDRx9BYKDVEYqIiIjEXZxuzc2aNYvChQsnaABnzpzhtddeS9BtikgK4e4OU6dCgwYmQfDHH+bW7Jw50KqV1dGJPFbDhua0XbkShg41XQuGDzejCIYOhV69wM3N6ihFREREYidOiYGqVavi4+OToAFky5YtQbcnIilQhw7w9NPmv3v2QOvW0L8/jBmjqytJtmw2k79q0QIWLoRhw+DkSXjrLfjySxg1ynQycFKZXxEREUnm9M8VEUkeihSBrVthwADz+ssvoVYtOH3a0rBEYuLkBC++aDoYTJliihGeOQOdOkGlSvDrr2a2jIiIiEhyFavEwPDhwxk2bBg5cuRI8ABy5Mjh2L6IpHHp0sGECaZxfJYspr1hxYqmT5xIMufqCr17w6lT8PHH4O0NBw9Cs2Zm6sGuXVZHKCIiIhK1WCcGhg8fnijD/rNnz+7YvogIYMZnHzgAtWubam4dO5oaBHfvWh2ZSIwyZDCdC06fhrffNvmujRtNscIXXoATJ6yOUERERCQyy6YS3NU/8EUkOvnzm6upoUPNZO7p06FqVfjzT6sjE4mVbNlg/HiTCHjlFXMaL15sGnL06gUXL1odoYiIiIgR68TAkSNHEmynN2/epHHjxgm2PRFJpVxcTAW3desgZ04zibtKFZg1S5O2JcUoWNA02jh4EFq2hPBwmDYNihWD99+HGzesjlBERETSulgnBho1asTx48fjvcPr16/ToEEDduzYEe9tiUga0aiRuapq3Ng0ju/WzVR2U9N4SUHKloVffoHNm6FGDXMqjx4NRYuakQVBQVZHKCIiImlVrBMDV65coWHDhpyOR4XwK1eu4Ovry/79+594GyKSRuXMacq7jx4Nzs4wf74p+b5vn9WRicRJnTqmAceyZVCqFFy/DoMGwVNPmZEF4eFWRygiIiJpTZxqDFy6dIkGDRrg7+8f5x39888/1K1bl6NHjwJmBIKISJw4OcHgwbBpk6lBcOqUufX69deaWiApis0GbdrAoUMwYwbkzQvnz8Orr0L58mZkgU5pERERSSqxTgx88cUX2O12Lly4QIMGDbhw4UKsd+Lv70+dOnU4ceIEdrudli1bsmLFiicKWESEWrVM14LWrSEkBPr1g7Zt4b//rI5MJE5cXMzMmJMnYexYyJTJlNJo3fr/RxaIiIiIJLZYJwbeeustPvvsM+x2O2fPnqV+/fpcunQpxvWOHz9OnTp1HKMMnn/+eZYuXYqbm9sTBy0iQpYssHw5TJxo+sEtXw4VKsD27RYHJhJ37u7wzjvw99/w3nuQPr1JCtSuDc8+q2YcIiIikrjiNJXgnXfeYdSoUdjtdv7++28aNGjAv//++9jljxw5gq+vL//88w8AnTp1YsGCBbi4uMQvahERMOOx+/WDbdtMBbdz58xt1s8+g4gIq6MTibPMmWHMGDOCoHt3M3tmxQpTuPC118x0AxEREZGEFqfEAMAHH3zAsGHDsNvtnDhxgoYNG3L16tVHltuzZw++vr6OxEHPnj2ZO3cuTk5x3qWISPQqVzZFCF980VRuGzwYmjeHK1esjkzkieTLB9Onw5Ej8NxzJs81ezYUL25GFly/bnWEIiIikpo80VX6iBEjGDx4MHa7nWPHjtG4cWOuP/CvlK1bt0Z676233uLbb7/FZrMlTNQiIg/z9jadCqZPN+Oy1641Vdw2bLA6MpEnVqoULF1qBsXUrQvBwTBuHBQpYkYW3L1rdYQiIiKSGjzx7ftPP/2Ut99+G7vdzuHDh2nSpAk3b95kw4YNPPPMM9y8eROAwYMH88UXXyRYwCIij2WzmfHXu3eDjw9cvgyNGsGwYRAWZnV0Ik+sRg3w84NVq8y0gps3YcgQM4Jg+nSd3iIiIhI/8RrXP27cOPr27Yvdbmf//v3UqlWLVq1acefOHQA++ugjPv300wQJVEQk1kqXNsmB7t1Nz7dRo6BBA4hDNxWR5MZmMzNk9u+H776DggXh4kXo2RPKlDEjC9TiUERERJ5EvCf8T5w4kd69ezumFdy7dw+Azz//nKFDh8Y7QBGRJ+LhYW6lzp8Pnp6wZYvpWrBypdWRicSLszN07gzHj8MXX0DWrOZ5u3ZmZMGmTVZHKCIiIilNglQC/Oabb+jevTt2ux0nJycmT57MwIEDE2LTIiLx07GjucVaqRIEBECrVvDmm/C/JKZISuXmBv37w+nTMHSoyYXt3Am+vmZkwcGDVkcoIiIiKUWsEwPOzs7RPmbOnInNZsNut/Pmm2/GuLxaFopIkilWzFRvGzDAvJ482XQyOHDA0rBEEkLGjGa2zKlT0KcPuLjAmjVQsaIZWeDvb3WEIiIiktzFOjFgt9sT/CEikmTc3GDCBNOtIFcuOHYMqlaF8eNNLziRFC53bvjmG/jzT2jf3tQbmDcPnnoK3n5bLQ5FRETk8WJ9275u3bpqNygiKV+TJnD4sClM+PPPMGiQub06dy7kzWt1dCLxVrw4/PQTvPMODB4Mv/9uahHMng0ffghvvGHyZCIiIiL3xTox4Ofnl4hhiIgkoWzZYNkyU5xwwABz5VSuHMyYAc89Z3V0IgmiShX47TczSOadd0w+bOBAmDQJxoyBF14wnQ5EREREEqT4oIhIimOzmT5v+/aZegPXr0PbttCjB9y+bXV0IgmmaVNTf3PmTDPd4MwZ6NABataErVutjk5ERESSAyUGRCRtK1HCFCYcPNgkC2bMMB0Mdu+2OjKRBOPsDK+9BidPwsiRkCED7NgBtWvD88+bwoUiIiKSdikxICKSLh2MHg0bNkC+fObqqWZN8154uNXRiSSYDBlg2DBzinfvDk5OsGQJ+PiY1ocBAVZHKCIiIlZQYkBE5D5fXzh0yEy+DguD99+HBg3g3DmrIxNJULlzmxIbBw9Cs2YQGgoTJ0LRojBuHAQFWR2hiIiIJKVYJQYaNGhAw4YNOXv2bIIH4O/v79i+iIjlMmc2Jd3nzAFPT9i82RQmXLDA6shEElyZMrB6NaxbZ07zmzdNocJSpcwpr87CIiIiaUOsEgN+fn74+flx586dBA/gzp07ju2LiCQLNhu88gocOADVqpmrpY4doUsXuHXL6uhEElzjxqYO56xZkCcP+PubU756dfjjD6ujExERkcSmqQQiIo9TtChs2WImZTs5wfffQ4UKplihSCrj7AyvvgonTsBHH5l6BLt2QZ060K6dqUsgIiIiqZNLXBb+5ptvyJEjR4IGcOXKlQTdnohIgnJ1NWXcmzSBTp1Mr7c6deDDD2HoUHCJ059RkWQvQwZzevfoAcOHm0YdS5fCihXQp4/Jk2XLZnWUIiIikpDi9C/aKVOmJFYcIiLJW61aZmpB375m5MDIkWZi9rx5UKSI1dGJJLhcuWDqVOjXD95919Qi+Ppr+O47+OAD86uQPr3VUYqIiEhCiPVUArvdnmgPEZEUIWNGc1U0f755vn27mVrw3Xeq0iapVunSsGoV/PabOd1v3jSJgpIl4ccfISLC6ghFREQkvmKVGIiIiEj0R7h6hYtIStGxo+nzVqcOBAaaQoUdO8J//1kdmUiiadgQ9u41DTvy5oWzZ+Gll0yBws2brY5ORERE4kPFB0VEnkTBgrBxI3zyiakz8NNPUL48bNpkdWQiicbJyeTBTpyAjz82HT1374Z69eC558z7IiIikvIoMSAi8qScneH992HrVihWDM6fh/r1zXshIVZHJ5JoPDxMnYFTp6B3b/OrsHy5mXbQty9cvWp1hCIiIhIXSgyIiMRX1aqwfz9062ZqDYweDTVrwvHjVkcmkqhy5oQpU+DQIWjZEsLCYNIkkyf77DMICrI6QhEREYkNJQZERBKCp6fp67Z4MWTObCZjV6oE06erMKGkej4+8Msv8PvvULEi3LoFgwdDiRLwww8qUCgiIpLcKTEgIpKQ2rWDw4dNpba7d6FnT2jbFq5dszoykUTXoAHs2WMadeTLB+fOQadOZlCNym+IiIgkX0oMiIgktLx5Yd06GDcOXF3N5Oty5WD9eqsjE0l0Tk7QubMpRPjpp+DlZQbQ+PrCs8/CX39ZHaGIiIg8TIkBEZHE4OQEAwfCzp1QqhRcugRNmpj3goOtjk4k0bm7w5AhpkDh66+bAoUrVkCZMvDGG3DlitURioiIyH1KDIiIJKaKFc3Y6tdfN68nTDDjqo8etTYukSSSIwdMngxHjkDr1hAeDt988/8FCpUnExERsZ4SAyIiic3Dw1wZ/fILZM9uSrhXqWLeU2FCSSNKloSff4aNG6FyZQgMNAUKfXxg2TL9KoiIiFhJiQERkaTSsqVJCjzzjOnj9uab5r1//7U6MpEk4+sLu3aZAoV58sDff5v6nA0bml8PERERSXpKDIiIJKVcuWD1avjqK3BzM8/LlYNVq6yOTCTJ3C9QePw4DB0K6dObkQQVK0KvXnD1qtURioiIpC0Jnhi4cOECe/bsYfPmzdy7dy+hNy8ikvLZbNC3r6k9ULasqcLWsiV0724awIukEZ6eMGqU6VTQvj1ERMC0aVC8uCnHERJidYQiIiJpQ4IkBgIDA/nwww/Jnz8/BQsWpFq1atSvX58zZ85EWm7BggW0b9+eHj16JMRuRURStjJlzJjqgQNNsmDmTDN6wM/P6shEklTBgvDTT7B5M1SqBDdvml+LsmVh5UrVHxAREUls8U4MnDx5kkqVKvHpp5/yzz//YLfbsT/m/+DVq1dn6dKlzJo1iz/++CO+uxYRSfnSp4dx40wyoFAhOHsW6teHAQNAo64kjalTx+TKZs6EnDnhxAlo1cqU5fjzT6ujExERSb3ilRgICgqiRYsWnD59Gg8PD959911Wrlz52OULFSpE/fr1AVixYkV8di0ikrrUrWsqr/XsaV5/+aW5dbp7t6VhiSQ1Z2d47TWTFHjvPUiXDtatM4Np+vaFgACrIxQREUl94pUYmDJlCqdOnSJDhgxs2bKFMWPG0Lx582jXadasGXa7ne3bt8dn1yIiqY+XF0ydagoR5s5tJl7XqAHDhmmytaQ53t4wZowZKfDccxAeDpMmmfoDX38NoaFWRygiIpJ6xCsxsHTpUmw2G2+99RYVKlSI1Trly5cHzBQEERGJQvPmcOQIdOxoroZGjYLq1c17ImlM0aKwdCls2GBGDfz3H/TrB+XLw6+/Wh2diIhI6hCvxMCxY8cAaNKkSazXyZo1KwA3btyIz65FRFK3LFlg/nxTkS1LFti/HypXhs8/N8kCkTSmfn3Ytw++/RayZYNjx6BZM2jRwrQ9FBERkScXr8TA7du3AfD09Iz1OsHBwQC4urrGZ9ciImlD+/ZmpECLFmY6wbvvgq8vnD5tdWQiSc7ZGXr1gpMn4e23wcUFVq82DT7efht0z0FEROTJxCsxcP/uv7+/f6zXOXr0KAC5cuWKz65FRNKO3Lnhl19MqXZPT/jjDzOO+ttv1cdN0qRMmWD8eDh6FFq2hLAw+OILU3/g22/NaxEREYm9eCUGKlWqBMDmzZtjvc53332HzWajRo0a8dm1iEjaYrOZUu2HD5sRA3fuQJ8+Ziz1P/9YHZ2IJZ56yuTM1q4FHx+4ds38WlSqZGoSiIiISOzEKzHw/PPPY7fbmTZtGufOnYtx+S+//NKRROjYsWN8di0ikjYVKgS//27aGaZPb66IypSBH37Q6AFJs5o0gYMHTbeCLFlM/qxhQ9PN4NQpq6MTERFJ/uKVGOjcuTPlypUjKCgIX19f1qxZg/2Bf5jabDbsdju7d+/m5ZdfZuDAgdhsNurUqUOzZs3iHbyISJrk5ARvvWUKEj79tJlY3akTvPACXL1qdXQilnBxgTffNPUH+vY19QiWL4fSpU1pjlu3rI5QREQk+YpXYsDJyYkVK1aQL18+/P39admyJd7e3thsNgB8fX3JkCED1atXZ8GCBdjtdooUKcLChQsTJHgRkTStZEnYts20M3RxgSVLzOiBFSusjkzEMlmywFdfwaFD0LSpqdn5+eem/sCMGWrqISIiEpV4JQYAChQowIEDB+jYsSNOTk7cuXMHu92O3W7n6tWrBAUFOUYRtG/fnl27dpEjR454By4iIpiEwNChsGuXSQpcuQLPPguvvgo3b1odnYhlfHxgzRpYudLUIrhyBXr0MINs4lAaSUREJE2Id2IAIEuWLPzwww+cOnWKSZMm0bVrV5o3b07Tpk156aWX+Pzzzzl27BgLFiwgc+bMCbFLERF5UMWKsGePGTNts8GcOVC2rKlHIJJG2Wym0+fhwzBhAmTMaGbg1KtnOoHGoamSiIhIquYSn5XvFxLMnTs3xYsXp2DBgrz++usJEpiIiMSRmxt89hm0bg2vvAKnT0OjRmbi9WefgYeH1RGKWCJdOhgwwJTiGDYMpk2DRYvMrJtBg2DwYNMJVEREJK2K14gBX19f6tevz9atWxMqHhERia9ateDAAdO3DWDSJKhQAXbssDIqEctlzw5TpphRAw0aQHAwfPKJmWowdy5ERFgdoYiIiDXilRjw/F96vWzZsgkSjIiIJBBPT/jmG9POMG9eU6q9Vi14/31TjU0kDStXDn77DZYtg6JF4dIl6NoVqlc39TxFRETSmnglBgoUKADA3bt3EyQYERFJYE2amAnWnTqZ26GjR5vqa4cOWR2ZiKVsNmjTBo4eNTNtvLxg926TP+vUySQLRERE0op4JQZatGgBwG+//ZYgwYiISCLInBm+/960M8yWzSQFqlQxSYKwMKujE7GUm5up2XnyJHTrZhIGP/wAJUrA+PEQGmp1hCIiIokvXomBAQMGkCVLFr788kuOHDmSUDGJiEhiaNsWjhwx7QxDQ820gjp1zBWRSBqXMyfMmGE6f1arBoGBpjBh+fJq7iEiIqlfvBIDuXLlYuXKlXh5eVGrVi0+/fRT/NX7R0Qk+cqZ00ysnjMHvL1NQcLy5U2BQlVeE6FKFVNnYNYsU6zw2DHT3KN9ezh/3uroREREEke8EgNFihShY8eOhISEEBgYyIcffkjRokXJmDEjBQsWpEiRIo99FC1aNKGOQURE4sJmM+0MDx+Ghg3h3j3o29fUI9CVjwhOTvDqq3D8uPnVcHIy7Q1LljQzcIKDrY5QREQkYcUrMeDv74+/vz/Xrl0DwG63Y7fbCQwM5Pz5847PH/cQERELFSgA69bB11+Du7sZL12mjOnbZrdbHZ2I5TJnhq++gn37oHZtuHvXzMApWxZ+/dXq6ERERBKOS3xWfuWVVxIqDhERsYKTE7z5phkt8MorZmpB165musG0aZAjh9URiliufHnYvBnmzzd1B06ehGbNTLmOL76AwoWtjlBERCR+4pUYmD17dkLFISIiVnrqKdiyBT7/HIYPh59/hq1b4dtvoV07q6MTsZzNBi+/DK1awUcfwcSJ5tdk7Vp47z3zcHe3OkoREZEnE6+pBCIikoq4uMCQIaaZe7lycO0aPP88vPACXLlidXQiyYK3N4wbBwcPQoMGEBQEI0eCj49JFGgWjoiIpERKDIiISGTly5uebUOHgrMzLF5srnrmz9dVj8j/+PjAb7/BwoWQLx/4+0ObNtCihTqAiohIyqPEgIiIPMrNDUaNMqMHypeHgAAzjrpNG7h40eroRJIFm80MqPnrLzPYxtUV1qwxNTw/+ADu3LE6QhERkdiJV42B7777Ll4779KlS7zWFxGRRFaxokkOjBljEgUrVpgqbF98YYoV2mxWRyhiuQwZ4NNPTd3Ot94yHQs+/RS++w4mTDAzcvSrIiIiyVm8EgNdu3bF9oT/p7PZbEoMiIikBK6u8OGH8Nxzprn7nj3mvz/9BFOnmraHIsJTT8Hq1SZ/1r+/mV7Qvj00bGjaHvr4WB2hiIhI1OI9lcButz/x40lNmTKFcuXK4e3tjbe3NzVq1GDNmjUA+Pv7Y7PZonwsWrTIsY1z587RokULPDw8yJEjB++88w5hYWHx/TpERFKvMmVg+3b47DMz1eDXX817U6eq9oDI/9hspo3hn3+aBh9ubvD772ZGzqBBcOuW1RGKiIg8Kl6JgTNnzsT4OHLkCEuXLuX5558HoFatWhw9epS///77ifebL18+xowZw969e9mzZw8NGjTg2Wef5ejRo+TPn59Lly5FeowcORJPT0+aNWsGQHh4OC1atCAkJIRt27Yxd+5c5syZw7Bhw+LzdYiIpH4uLvDuu3DgANSoAYGB0Ls3NGoE8fi7LpLauLvDiBEmQdC6NYSFwfjxULIk/PCDcmkiIpK82OzxuXUfRwsXLuSll17C19eX9evXP/E0hKhkyZKFzz//nG7duj3yWcWKFalUqRIzZ84EYM2aNbRs2ZKLFy+SM2dOAL799lvee+89rl69Srp06WK1z1u3bpExY0auXbtG1qxZE+xYRJKT0NBQVq9eTfPmzXF1dbU6HElOwsPh66/h/ffh3j3w8DC1CN54A5xSVm1bneeS2FavNvUHTp0yr+vUgUmTTGfQpKLzXNICneeSFgQEBJAtWzZu3ryJt7d3gmwzXjUG4qp9+/asXbuWOXPmMHXqVHr37h3vbYaHh7No0SLu3LlDjRo1Hvl87969HDhwgMmTJzve2759O2XLlnUkBQCaNm1Knz59OHr0KBUrVoxyX8HBwQQHBzte3/rfeMDQ0FBCQ0PjfSwiydH9c1vnuETpjTfgmWdw7tULp82boV8/In76ifCpU82E6xRC57kktsaNYf9++OILJ0aPdmLLFhsVK9rp0yeC4cMjyJQp8WPQeS5pgc5zSQsS4/xO0hEDAGvXrqVZs2ZUrVqVHTt2PPF2Dh8+TI0aNQgKCsLT05P58+fTvHnzR5Z7/fXX8fPz488//3S817NnT86ePcvatWsd7929e5cMGTKwevVqx5SDh40YMYKRI0c+8v78+fPx8PB44mMREUnxIiIotHYtpefOxSUoiPB06Tj20kucbtUKnJ2tjk4kWbl61Z3Zs0uzbVteADJmDKZLlz+pX/9cShtsIyIiFrh79y4vvfRSgo4YSPLEwIEDB6hUqRIZM2bkv//+e+LthISEcO7cOW7evMnixYuZMWMGmzZtwueBkr/37t0jd+7cfPjhhwwcONDx/pMmBqIaMXC/poGmEkhqFRoayvr162ncuLGG5EnMzp7FuU8fnH77DYCIp58mfPr0ZF+OXee5WGHDBhv9+zvz119mamXVqhFMnBhB5cqJ808zneeSFug8l7QgICCA3Llzp9ypBGC6AUD8hz+kS5eOYsWKAVC5cmV2797NxIkTmTp1qmOZxYsXc/fu3UfaIubKlYtdu3ZFeu/ff/91fPY4bm5uuLm5PfK+q6ur/vBIqqfzXGKlWDFYtw5mz4a338Zp926cqlY15dnfece0PkzGdJ5LUmraFA4eNKU6RoyAXbucqFnTiR494NNPIbHuOeg8l7RA57mkZolxbifpgLXQ0FDGjh0L4LioTygRERGR7uYDzJw5k9atW5M9e/ZI79eoUYPDhw9z5coVx3vr16/H29s70ogDERF5AjYbvPYaHD0KLVpASAh88AFUq2augkTEIV06GDgQjh+Hl1823QqmTTMlOr791tT4FBERSWzxGjFw/+5/dCIiIvjvv//Ys2cPkyZN4siRI9hsNl588cUn3u+QIUNo1qwZBQoUIDAwkPnz5+Pn5xdpasCpU6fYvHkzq1evfmT9Jk2a4OPjQ+fOnRk7diyXL19m6NChvPHGG1GOCBARkSeQNy/88gvMnw/9+pnKa1WqmC4GH3xgrohEBIA8eWDePOjZE958Ew4fhj59YPp0070givrKIiIiCSZeiYHChQvHeR273U6NGjUYMGDAE+/3ypUrdOnShUuXLpExY0bKlSvH2rVrady4sWOZWbNmkS9fPpo0afLI+s7OzqxcuZI+ffpQo0YNMmTIwCuvvMJHH330xDGJiEgUbDZzG7RhQ9PBYOlS+Ogj899Zs+Dpp62OUCRZqVsX9u2DKVPgww/N85o1oWtX+OwzyJHD6ghFRCQ1itdUArvdHqdH5syZGTJkCL/99lu87szPnDkTf39/goODuXLlCr/99lukpADAp59+yrlz53B6THnfggULsnr1au7evcvVq1cZN24cLi5JXnJBRCRtyJULliyBhQshe3Y4cgSqV4fBgyEoyOroRJIVFxfo29dML3j1VfPenDlQooSZZhARYWl4IiKSCsXrSnj27NkxLuPk5ISXlxeFCxemTJkyOKttlYhI2vXCC1C/vpla8OOP5hbo8uVm9EDNmlZHJ5Ks5MxpfjV69jTTCg4cgF69TJLg22+hXDmrIxQR+b/27js8iur74/h70wkk9N4JvffeS0QQQfQnIALSVKogWEBpIohiA0V6E0WaoKD0Lr036U0EKQrSSxIyvz/uNzFAEhI2ySTZz+t59pHdndk5s7kbM2fvPUeSC6cSA+3atYurOERExFVkyGDqDrRoYa52jhyB6tXhjTdg2DDw9bU7QpFEpXJl2L7d1BoYMAA2b4ayZaF3b9PwI1UquyMUEZGkLkG7EoiIiIRr2tR0LnjlFVOK/csvzVega9faHJhI4uPhAb16waFD8PzzplvBp59C0aLw8892RyciIkmdU4mBDh060LFjR86fPx/jff7+++/w/URExMWlTQtTp8KSJZAjB5w4YZYadOsGN27YHZ1IopMjB8ybB7/8AnnywJ9/QrNm5haDZlEiIiKRcioxMG3aNKZNm8a///4b432uX78evp+IiAgADRua2QOvvWbuf/MNFC8Oy5fbG5dIItW4sfnI9OtnZhP8/DMUKWJmEQQH2x2diIgkNVpKICIiiYO/v6motnKl+Sr0zBl46ino1AmuXrU7OpFEx9cXhg83RQmrV4fbt+Gtt6BcOdi0ye7oREQkKUnwxMDd/7WlcqZdoYiIJGP16sH+/aZfG8DkyWb2wK+/2huXSCJVrBisW2c6GKRPbz4+1aqZCThXrtgdnYiIJAUJnhjYuHEjAJkzZ07oQ4uISFKRKhWMHg3r10OBAnDuHDzzDLRpoysdkUi4uUH79nD4MHToYB6bMAEKF4YZM0x9TxERkajEql3hBx98EOnj33zzDZkyZYp233v37nHixAkWLlyIw+GgWrVqsTm0iIi4oho1zDzpQYPg88/hu+9gxQoYMwaaNweHw+4IRRKVDBnMJJt27Uw30IMHoW1bU+Nz9Gi7oxMRkcQqVomBwYMH43jojzDLshg7dmyMX8OyLHx8fHjrrbdic2gREXFVvr4wciS88IL5SvTQIfPvpk1NY/ccOeyOUCTRqVkTdu82+bQPPoA1a6BcOQ+aNStMnTrg6Wl3hCIikpjEeimBZVnhN4fDgcPheOCxqG7e3t7kyZOH1q1bs3nzZkqVKhUf5yMiIslVpUrmSuf99/8rw160qEkO3L9vd3QiiY6XF7z7rule8PTTEBTkYM6cQpQt66GGHyIi8oBYJQZCQ0MfuFn/W7B24MCBR557+Hb79m1OnDjBjBkzlBQQEZEn4+0NQ4eaBEGVKnDjhilSWL26qbgmIo/Im9fU7pw1K4R06e5w4oSDp56Cli3h/Hm7oxMRkcTAqeKDuXLlIleuXHh5ecVVPCIiIo9XvDhs2ADffAN+frBlC5QtC++9B3fu2B2dSKLjcEDz5hZjxqymZ8/7uLnB7NmmOOGYMZp0IyLi6pxKDJw+fZpTp06RP3/+uIpHREQkZtzcTHW1Q4fguecgJMQ0dS9Z0iyoFpFHpEgRwqefhrJjB1SoANevQ/fuZgLOrl12RyciInZJ8HaFIiIicSp7dpg/39yyZYPjx6FuXdOz7fJlu6MTSZTKlIHNm81sAX9/2L7dJAp69TLJAhERcS1KDIiISPLw3HOmN1vXrmbe9NSpUKQI/PCDmriLRMLd3XxcDh+GVq0gNBRGjTIfm3nz9LEREXElsWpXGJ01a9bw008/sXfvXv755x/u3LkTXpwwMg6HgxMnTsTV4UVERCB1avMVaOvW8Oqrphz7Sy/Bt9/C2LGQJ4/dEYokOlmzwsyZphto165m0s3//Z/pZPD115Avn90RiohIfHM6MXDp0iVatmzJunXrAKJMBoS1NYx4X0REJF5UrWoWTH/yielisHQpFCtmGrq/8YZpdygiD2jQwDT3+OgjGDECliwxH5uBA6FPH9P+UEREkienlhIEBwfz9NNPs27dOizLolSpUjRu3BgwF/5t2rShcePGZM2aFcuycDgclCtXjnbt2tG2bds4OQEREZFIeXnB++/Dvn1Qqxbcvg19+0KlSqqyJhIFHx8YMsR8bOrWhbt3oX9/KF0a1q+3OzoREYkvTiUGpk2bxu7duwGYOnUqu3btYsSIEeHPT58+nUWLFnHu3Dnmz59P1qxZOXjwIM888wxTp051LnIREZGYKFQIVq+GSZMgTRqTFKhYEd56C27dsjs6kUSpUCFYuRJmzICMGU3zj1q1TE3Pf/6xOzoREYlrTiUGfvzxRwAaNmxIu3btot22WbNmrFu3Di8vL1555RWOHTvmzKFFRERizs0NOnY0VzctWpim7Z9+CsWLw7Jldkcnkig5HPDyy3DkCLz2mnls6lSTNJgyxRQrFBGR5MGpxMDevXtxOBy8/PLLkT7/cL2BgIAA3njjDW7dusWoUaOcObSIiEjsZckCs2bBL79Arlxw+jQ0bIh727Z4Xb1qd3QiiVLatDBuHGzaBCVLwpUrJs9Wu7ap7ykiIkmfU4mBK1euAJA3b97wx7wiVKa5ffv2I/vUq1cPgBUrVjhzaBERkSfXuLG5oundG9zccJs1i3o9euD49lv1aBOJQpUqsHOnmWyTMiX89pupPfDee6YWgYiIJF1OJQbCkgARkwH+/v7h/z537twj+/j4+ET5nIiISIJJlQo+/xy2bMEqWRKvGzfw6NQJ6tc3/dpE5BEeHqZDwcGD0KwZhITA8OFQqpSKE4qIJGVOJQZy5coFwMWLF8Mfy5w5M35+fgBs3br1kX0OHDgAqF2hiIgkEhUqELJ5M7+3a4eVIoUpVFiihOnZFhxsd3QiiVKuXLBgAcyfD1mzwtGjpjhhly5w7Zrd0YmISGw5lRgoW7YsQHhngjA1a9bEsixGjRrFvXv3wh+/evUqH3/8MQ6Hg6JFizpzaBERkbjj6cnx554jZNcu08w9rEdbuXIQSZJbRIznnjOzBzp3NvfHjYNixWDhQnvjEhGR2HEqMVCvXj0sy+LXX3994PHXX38dMAmDkiVL8tZbb9G1a1dKlCjB0aNHAWjbtq0zhxYREYl7AQGmS8GMGZAhA+zfbxZW9+wJN27YHZ1IopQmDUyYAGvWQP78cO4cNG1qGoBEmFQqIiKJmFOJgWbNmpErVy7Onj3LiRMnwh9v3LgxHTp0wLIsjh07xueff8748ePD6woEBgbSpUsX5yIXERGJD2E92g4dgrZtTTHCr76CokX1NahINGrXhn374J13wN0d5syBIkVg2jTV9BQRSeycSgykSZOG06dP88cffxAQEPDAc5MmTWLixIlUqlSJlClT4u3tTYkSJRg5ciSLFi3Czc2pQ4uIiMSvDBlg+nRYsQLy5YOzZ83XoC+8AOfP2x2dSKKUIgWMGAHbt0PZsvDvv9C+PQQGwsmTdkcnIiJRider844dO7J582auX7/O7du32bt3L3369MHDwyM+DysiIhJ36tc3SwrCvgb98UfzNej48RAaand0IolSmTKmPMfHH4OPD6xcCcWLw2efmU4GIiKSuDiVGFi/fj3r16/n2LFjcRWPiIhI4uPra74G3bkTKlQwZddff92UYT90yO7oRBIlDw94+22TV6tTB+7cgb59TdmOffvsjk5ERCJyKjFQu3Zt6tSpw8aNG+MqHhERkcSrVCnYvBm+/BJSpoQNG8xjgwdDhC48IvKf/Plh1SqYOBFSp4YdO0zDj/feMw1ARETEfk4lBlKlSgVAiRIl4iQYERGRRM/dHd54w/Roa9wYgoNhyBAoXRrWr7c7OpFEyeGATp3MBJvnnzfLCYYPN3k1fWxEROznVGIgV65cANy+fTtOghEREUkycuWCRYtg9mzInBkOHzZLC155BS5dsjs6kUQpa1aYNw/mzzf/PnrUfGy6dDErdERExB5OJQYaN24MwMqVK+MkGBERkSTF4YAXXzRfg776qrk/fToULqzihCLReO45M+mmc2dzf9w4KFZMHUFFROziVGKgd+/epEuXji+//JIDBw7EVUwiIiJJS9q0JhGwaZNZUvDvv6Y4YZUqsHu33dGJJEpp0sCECbB6talDcO6c6QjaogVcvGh3dCIirsWpxECWLFn45Zdf8PPzo1q1agwfPpzTp0/HUWgiIiJJTOXKpoH7qFHg5wfbtkH58tCzp+ZJi0ShTh3TpSCsI+icOaYj6LRpYFl2Ryci4hqcSgzky5ePVq1aERQUxI0bNxgwYAABAQGkTp2a3Llzky9fvihvAQEBcXUOIiIiiYeHh0kEHD4MLVua5QRffWWWF/zwg650RCKRIoXpCLptG5QpYybdtG8PgYFw8qTd0YmIJH8ezuz88OwA639/7Ny4cYMbN25Eu6/D4XDm0CIiIolbtmwmEdChA3TrBseOwUsvweTJMGYMFCpkd4QiiU7ZsiY58PnnMGgQrFwJJUrA0KEm3+bh1F+uIiISFad+vbZr1y6u4hAREUmeGjSA/fvhk09g2DDT0L1kSXj7bejf33xVKiLhPDzMx+O550xNz7VroU8fk2ebPNl8fEREJG45lRiYOnVqXMUhIiKSfHl7w4ABZsZAjx6wZAl8+CF8/z18/TU0amR3hCKJToECpjDh5MnQty/s2AHlypmkwYAB4ONjd4QiIsmHUzUGREREJBYCAuDXX+HHHyFHDjh1Cho3hubN4c8/7Y5OJNFxOKBTJ9MRtHlzCAmB4cNN84/ffrM7OhGR5EOJARERkYTkcJgrnEOHzNeg7u6wYIEpwz5yJAQH2x2hSKKTNavJp/34I2TJAkeOQM2a0KULXL9ud3QiIklfnCYG7ty5w4YNG5g3bx7ffvst1/WbWkREJHKpUplEwO7dUK0a3Lpl5kiXLQsbNtgdnUiiFJZT69TJ3B83DooWhYUL7Y1LRCSpi5PEwJ9//kmbNm1ImzYttWrVokWLFrRv356zZ88+sN3kyZOpWLEiDRo0CO9gICIi4tJKlID162HKFEifHg4cgBo1TK+2v/+2OzqRRCdNGpg40dQfCAiAc+egaVNo0QIuXrQ7OhGRpMnpxMDWrVspU6YMM2fOJCgoCMuyorzob9KkCfv27WP16tUsX77c2UOLiIgkD25uJhFw5Ah07mwemzbNtDScMAFCQ20NTyQxqlPHNPx4+22zImfOHLMiZ9o00PdPIiKx41Ri4OrVqzRt2pQrV66QJUsWvvnmG/bv3x/l9pkyZeLpp58G4Ndff3Xm0CIiIslP+vQmEbB5M5QqBf/+C6+9BlWrmiUHIvKAFCng449h2zYoU8Z8ZNq3h8BAU9tTRERixqnEwOjRo7l06RIZMmRg8+bNvP766xQrVizaferXr49lWWzbts2ZQ4uIiCRflSub3mxffGFqEWzdCuXLQ69eqrQmEomyZU1y4OOPTRvDlSvNKp2xYzXhRkQkJpxKDCxatAiHw8Gbb75Jrly5YrRPWOLgxIkTzhxaREQkefPwMImAw4fN4unQUBg1CgoXhtmzNVda5CEeHmZZwb59pkzHrVvQtauZPfDHH3ZHJyKSuDmVGDh+/DgANWvWjPE+adOmBVDHAhERkZjInh1mzYJlyyB/fjh/Hlq2hKeegqNH7Y5OJNEpUADWroUvvzRLDVatMrMHJk5UPk1EJCpOJQbu3r0LgKenZ4z3uXXrFgApUqRw5tAiIiKuJTDQVFobMgS8vWHFCnO1M3Ag3Lljd3QiiYqbG7zxBuzda7qB3rgBr74KDRvCn3/aHZ2ISOLjVGIgU6ZMAJyKRXWXPXv2AJAtWzZnDi0iIuJ6fHxMIuDAATNjICgIhg6F4sVhyRK7oxNJdAoUgHXr4LPPzMdn+XLzcZk8WbMHREQicioxUKlSJQCWxPCPEcuymDhxIg6Hgxo1ajhzaBEREdeVP79JBMybZ5YanDwJjRrBCy/A2bN2RyeSqLi7w5tvwp49pq7n9evQqZP5yOjjIiJiOJUYaN26NZZl8f3334fPBIhOnz592Lt3LwDt2rVz5tAiIiKuzeGA55+HQ4fMVY+7O/z4oylO+NlnEBxsd4QiiUqhQrBhA3zyiVmNs3SpmT0wfbpmD4iIOJUYaNq0KXXq1CEkJIR69eoxduxYLl26FP58SEgIf/31F3PnzqVGjRqMGjUKh8NB8+bNqVq1qtPBi4iIuDw/P5MI2LULqlY1pdj79oVy5WDjRrujE0lU3N3hrbdg926oWBGuXYNXXoEmTeCvv+yOTkTEPk4lBgB+/PFHypQpw7///kv37t3JmjUrDocDgDJlypAzZ05atmzJpk2bsCyLSpUqMW3aNGcPKyIiIhGVLAm//WYWT6dPbwoVVq8OHTvCP//YHZ1IolKkiMmbffQReHnBr79CsWIwY4ZmD4iIa3I6MZAmTRo2b95Mv3798Pf3x7KsSG8pUqTg7bffZu3ataRMmTIuYhcREZGI3NygQwc4csQsogaYMsVUYPv6awgJsTc+kUTEwwPefddMtilXDq5ehbZtoVkzuHDB7uhERBKWR1y8iJeXF8OGDaN///6sW7eOHTt2cOnSJe7fv0/69OkpU6YM9evXJ3Xq1HFxOBEREYlO+vSmaXv79tC1q+nZ1qOHeeyrr6BmTbsjFEk0ihWDLVtM7YHBg2HhQlOL4OuvoWVLU85DRCS5i5PEQJiUKVPSqFEjGjVqFJcvKyIiIk+ialXYuRPGj4f334d9+6BWLWjVCkaONB0NRAQPD+jf39QaaNfO1CB46SWYOxfGjoXMme2OUEQkfjm9lEBEREQSMXd3M2vg6FF47TXz9ecPP5gS7SNGwL17dkcokmiUKAFbt8KQISZZsGCBmVEwZ47dkYmIxK84TwxcunSJVatWMXfuXObOncuqVau4ePFiXB9GREREYiNDBhg3Dnbs+K97Qb9+5kpo8WK7oxNJNDw9YeBA2L4dSpWCy5ehRQt48UX4+2+7oxMRiR9xkhiwLItx48ZRsmRJsmbNSmBgIC1btqRly5YEBgaSLVs2SpQowdixYwkNDY2LQ4qIiMiTKFvWLKD+9lvIkgWOHYPGjc0c6uPH7Y5OJNEoXRq2bYNBg8zsgblzzeyBH3+0OzIRkbjndGLg0qVLVK5cmW7duvH7779H2ZXg4MGDdO/enUqVKnFBpV5FRETs43BAmzame0Hfvuaq55dfzFXPe++Z2QQigpeXKUi4dauZXPP33/DCC6YoobqAikhy4lRi4N69e9StW5cdO3ZgWRYZMmSgW7duTJ8+naVLl7J06VKmT59O9+7dyZgxI5ZlsXPnTurXr889rWkUERGxl7+/KUK4fz8EBkJQEAwfDoULw+zZaugu8j9ly5pVOO+/b8p2zJ5t8mgLFtgdmYhI3HAqMfDFF19w8OBBADp27MjJkyf56quvaNOmDYGBgQQGBtKmTRtGjx7NyZMn6dy5MwCHDh3iiy++cD56ERERcV7hwrB0qbnKyZMHzp41X4nWrWuSBiKClxcMHWpaGxYtCpcuQfPm8PLLcOWK3dGJiDjHqcTArFmzcDgcNGjQgIkTJ5IyZcoot/X19WX8+PEEBgZiWRazZs1y5tAiIiISlxwOaNYMDh40Jdl9fGDtWihTBnr2hKtXbQ5QJHEoXx527TK1O93c4PvvzeyBhQvtjkxE5Mk5lRg4/r8iRV27do3xPmHbnjhxwplDi4iISHxIkcKUZD90yHwdev8+fPUVFCwIkyeDigiL4O1tVt1s3mwm3Fy4AE2bQtu28O+/dkcnIhJ7TiUGvL29AciZM2eM9wnb1svLy5lDi4iISHzKk8eUX1+xAooUMVXXOnWCypVNqXYRoWJF2L0b3n7bzB6YMQOKF4dff7U7MhGR2HEqMVC4cGEA/vzzzxjvE7Zt2L4iIiKSiNWvD3v3wmefgZ+fae5eqRJ06AAXL9odnYjtfHzg449h40YoVAj++gueeQbat9cKHBFJOpxKDLzyyitYlsW4ceNivM+4ceNwOBy0bdvWmUOLiIhIQvH0hDffhKNHoV0789jUqWZ5wZdfQnCwreGJJAaVK5vZA336mJId06aZ2QNLl9odmYjI4zmVGOjUqRNPPfUUy5Yto2vXrty9ezfKbe/du0f37t1ZunQpgYGBvPrqq84cWkRERBJalizmamfTJihXDq5fh969TYHC1avtjk7EdilSwKefwm+/Qf78cO4cPP20WYVz7Zrd0YmIRM3DmZ1/++033nzzTa5cucL48eP56aefePHFF6lQoQKZMmXC4XBw8eJFtm/fzty5c7lw4QIVKlSgT58+/Pbbb1G+bs2aNZ0JS0REROJTlSqwdStMmWJKs//+O9SrBy+8YJYc5Mpld4QitqpWzazAee89GDXK1O1cvtz8t0EDu6MTEXmUU4mB2rVr43A4wu9fvHiRr776Ktp9duzYwVNPPRXl8w6Hg5CQEGfCEhERkfjm7g6dO5tkwMCB8M03MG+eqbrWvz/07WsWX4u4KF9f+OIL09yjfXs4cQICA6FLFzOrwNfX7ghFRP7j1FICAMuy4vwmIiIiSUTatKad4e7dULMm3LkDAwb819hd/18XF1ejhpk90KOHuT92rFl9s2OHvXGJiETk1IyBNWvWxFUcIiIikpSVLAlr18Ls2Wa2wMmTprF7w4ZmLnXBgnZHKGKblClh9Gh49ll45RVTx7NKFRg8GN55Bzyc+otcRMR5Tv0aqlWrVlzFISIiIkmdwwEtW5pebcOGmXoDS5ea0uy9e8P775uWhyIuqn592LfPLCeYM8d8JBYvhhkzIF8+u6MTEVfm9FICERERkQekSgUffWSKEjZqZNoZfvKJafL+/fdaXiAuLV06mDXLJAP8/U2Tj1KlTAdQfTRExC5KDIiIiEj8KFDAFCNctAgCAuD8eXj5ZVOLYM8eu6MTsY3DYT4K+/aZj8PNm9ChAzz/PPzzj93RiYgrUmJARERE4tczz8CBA2Z5ga8vbNgA5cqZ+dR//213dCK2yZ0bVq+Gjz8GT09YsABKlDArcEREElKcJAb++ecfRo0axQsvvEDZsmUpUKAA+fLli/YWEBAQF4cWERGRpMDHx7QxPHwYWrSA0FAYNw7y5ze1CIKC7I5QxBbu7vD227B1KxQtChcuwNNPQ/fucPu23dGJiKtwugbqDz/8QJcuXbhx4wZAjNsNOhwOZw8tIiIiSU3OnGaBddeu0KuXaXPYt69JEnz6qSnbrr8RxAWFtTB8913TwWDMGFi1ypTlKFvW7uhEJLlzKjGwevVqXn755fBkQO7cuSlZsiRp0qTBzU2rFERERCQKNWvC9u3w7bdmJsHx49CsGdStC198YdofiriYFClMd8/GjU1bw8OHoVIl+OADM6vA3d3uCEUkuXIqMTBixAgsyyJNmjR8//33PP3003EVV7TGjh3L2LFjOX36NADFihVj4MCBDxx/8+bNvPfee2zduhV3d3dKly7NsmXLSJEiBQB58uThjz/+eOB1P/roI959990EOQcRERGX5+4O7dvDCy/AiBFmScHq1ear006dYOhQyJTJ7ihFElxgIOzfD6+/DvPmmdzZ4sUmj5Y3r93RiUhy5NTX+tu3b8fhcDBkyJAESwoA5MiRgxEjRrBz50527NhB3bp1adq0Kb///jtgkgINGzYkMDCQbdu2sX37drp37/7ILIYPPviA8+fPh9969OiRYOcgIiIi/+PnZwoTHj4ML75o6g9MmGDqD4wcCffu2R2hSIJLnx7mzIHp081HZMMG09Zw+nS1NRSRuOdUYiA0NBSAatWqxUkwMdWkSRMaNWpEgQIFKFiwIMOGDSNVqlRs2bIFgN69e9OzZ0/effddihUrRqFChXjxxRfx9vZ+4HX8/PzIkiVL+C1lypQJeh4iIiISQZ48MHs2/PYblC8PN26Y+dNFi5py7boaEhfjcEDbtrB3L1Svbj4Sr7wC//d/cPmy3dGJSHLi1FKCgIAA9u7dy61bt+Iqnli7f/8+c+fO5datW1SpUoVLly6xdetWWrduTdWqVTlx4gSFCxdm2LBhVK9e/YF9R4wYwdChQ8mVKxcvvfQSvXv3xsMj6rfk3r173IvwrcX169cBCA4OJjg4OH5OUMRmYWNbY1ySM43zRKZSJdiwAcf33+P+/vs4Tp6E5s0JrVmT+yNHmqUGEmsa50lXjhywYgV89pkbgwe78eOPDjZtspg06T4NGihhFpHGubiC+BjfDiumbQQi8cknn/Duu+/Sv39/Pvzww7iM67H2799PlSpVuHv3LqlSpWLmzJk0atSILVu2UKVKFdKlS8enn35K6dKl+fbbb/nmm284cOAABQoUAODzzz+nbNmypEuXjk2bNtGvXz/at2/P559/HuUxBw8ezJAhQx55fObMmfj6+sbbuYqIiLgq9zt3KLBgAfl/+gn3oCAsh4Mz9epxqHVr7qVNa3d4IgnuxInUfPFFOc6e9QOgceOTtG37O97eoTZHJiIJ5fbt27z00ktcu3YNf3//OHlNpxIDN2/epHLlypw+fZq1a9dSvnz5OAkqJoKCgjhz5gzXrl1j3rx5TJo0iXXr1nH16lWqVatGv379GD58ePj2JUuWpHHjxnz00UeRvt6UKVN47bXXuHnz5iNLDsJENmMgZ86cnD9/nvTp08ftCYokEsHBwaxYsYIGDRrg6elpdzgi8ULjPAk4cwb3997DbfZsAKxUqQh9911Ce/YEHx+bg0saNM6Tj9u3oX9/N775xrQpKFzYYvr0EE2mQeNcXMPly5fJmjVrnCYGnFpKkCpVKhYvXkzz5s2pWbMmvXv3pkWLFhQsWBCfeP6ftJeXF/nz5wegXLlybN++nVGjRoV3FShatOgD2xcpUoQzZ85E+XqVKlUiJCSE06dPU6hQoUi38fb2jjRp4OnpqV88kuxpnIsr0DhPxAICYNYs6NkTevfGsW0b7u+/j/ukSaZA4fPPmwXZ8lga50lf6tQwZgw0aWIaexw+7KB6dU+GDoW+fdXWEDTOJXmLj7HtVPFBgFy5cjF9+nT8/PwYMWIEZcqUIWXKlLi7u0d7i24t/5MIDQ3l3r175MmTh2zZsnHkyJEHnj969Ci5c+eOcv89e/bg5uZGJrVFEhERSbyqVoXNm2HGDMieHU6fNpXYatWCnTvtjk4kQTVsaNoaNm8OwcHw7rtQp475WIiIxIbTiYFRo0ZRunRp/vnnHyzLitXtSfXr14/169dz+vRp9u/fT79+/Vi7di2tW7fG4XDw1ltvMXr0aObNm8fx48cZMGAAhw8fpmPHjoBpZ/jll1+yd+9eTp48yffff0/v3r15+eWXSav1iiIiIombmxu8/DIcOQKDBkGKFKaTQYUK0KEDnD9vd4QiCSZDBpg3D6ZMgVSpzEehZEmTO1MjDxGJKae+tl+8eDG9e/cGwM3NjRo1alCqVCnSpEmDm5vTOYcoXbp0ibZt23L+/HlSp05NyZIlWbZsGQ0aNACgV69e3L17l969e3PlyhVKlSrFihUrCAgIAMySgFmzZjF48GDu3btH3rx56d27N2+++Wa8xSwiIiJxLGVKGDwYOnaEfv3g++9h6lTT/L1fP3jzTZM0EEnmHA6zpKBWLWjTBjZtMm0OFy2CceMgXTq7IxSRxM6p4oN16tRh3bp1ZM+encWLF1OiRIm4jC3Ru379OqlTp+aff/5R8UFJtoKDg1m8eDGNGjXSWj1JtjTOk4ktW6BXL9i61dzPlQs++QRefFH1B9A4dxUhIfDxxyZnFhIC2bLB9OlQv77dkSUMjXNxBZcvXyZDhgxxWnzQqa/19+3bh8Ph4IMPPnC5pICIiIgkMpUrm/oD339vGr+fOQMtW0KNGrB9u93RiSQIDw947z3zUShUCP76Cxo0MDmzO3fsjk5EEiunEgP3798HoHTp0nERi4iIiIhzHA546SVTf2DIEPD1hY0boWJFaNcOzp2zO0KRBFG+POzaBV27mvujRpkyHHv32huXiCROTiUGChQoAMC///4bJ8GIiIiIxAlfXxg4EI4eNYutAb79FgoWhKFDTSN4kWTO19e0Nfz1V8icGX7/3SQHRo6E/32/JyICOJkYaNWqFZZl8dNPP8VROCIiIiJxKHt2s8B661bT6vD2bZMwKFwYfvhBZdvFJTRqZNoaNmtm2hq+/TbUqwd//GF3ZCKSWDiVGOjRowcVK1Zk/PjxLFq0KK5iEhEREYlbFSvChg0wa5YpSvjnn2bJQbVq/xUrFEnGMmaE+fNh0iTT0GPdOtPW8PvvlR8TEScTA+fPn2fixImULVuW5557jtatW7Nw4UIOHz7MmTNnHnsTERERSTAOB7RoAYcPw4cfmqujzZtN0cI2beDsWbsjFIlXDofp7rl3rxn216/Dyy9Dq1aglcEirs3DmZ3z5MmD43/tfyzLYtasWcyaNStG+zocDkJCQpw5vIiIiEjspUhhyra3b2/+O20afPcd/PgjvPMO9O1rkgYiyVRAAPz2G3z0kanROXu26fb5ww9QpYrd0YmIHZyaMQAmIWD9b/5R2L9jehMRERGxTbZsMHWqaWVYvbrp5TZ4sClQOGWKqrNJsubhAQMGwKZNJlHwxx+ms+dHH0FoqN3RiUhCc2rGwNSpU+MqDhERERF7lC8P69ebGQNvvQWnT5v51l9+CZ98Ak89ZeZgiyRDFSuatoavv25mDPTvD6tXw4wZkCWL3dGJSEJxKjHQrl27uIpDRERExD4OB7zwAjRpYvq7ffihKeP+9NNQv77p71a6tN1RisQLf39ThLBBA+jeHVauhFKlTIfPp56yOzoRSQhOLyUQERERSTa8veHNN+H4cejTB7y8zFVS2bLQrp3pZiCSDDkcpuzGjh1QogRcugQNG5qyG8HBdkcnIvFNiQERERGRh6VLB59+ajoYtGxp+rl9+62pP9CvH1y7ZneEIvGiSBHTwbNrV3P/k09M7YFTp+yNS0TiV5wlBkJDQ1m1ahUffvgh3bt3p0OHDpw/f/6BbYKCgrh9+zb37t2Lq8OKiIiIxJ+8ec3C623boGZNuHsXRoyA/Pnhq68gKMjuCEXiXIoUZkXNjz9CmjQmUVC6NMyda3dkIhJf4iQx8Msvv5A/f34CAwMZNGgQY8eOZfr06fz7UEPUSZMm4efnR6ZMmbh161ZcHFpEREQk/lWoAGvXws8/Q+HC8M8/0LMnFCtmrp7UbUmSoebNYc8e08Lw+nV48UVTpPDOHbsjE5G45nRiYOLEiTRt2pTTp09jWRbp06ePshVhp06dSJ06NTdv3mTBggXOHlpEREQk4Tgc8Oyzpijh2LGQKZOpRfDCC6bd4ebNdkcoEudy54Z168wKGocDxo83ebLff7c7MhGJS04lBo4dO0a3bt0AqFu3LgcPHuTSpUtRbu/l5cXzzz+PZVksX77cmUOLiIiI2MPDw3xtevy4aQSfIoVpBl+1Kvzf/5nHRZIRT08YPhyWL4fMmU1SoEIFmDRJk2VEkgunEgNffPEFISEhFCtWjMWLF1O4cOHH7lOjRg0Adu/e7cyhRUREROzl5wcffGASAR07gpsbzJsHRYvCG2+Y5QYiyUj9+rB3LwQGmuUEnTtDq1aqxSmSHDiVGFi9ejUOh4NevXrh5eUVo33y588PwJ9q9yMiIiLJQbZs5qvTPXvg6adNb7fRoyEgAD7+WAuyJVnJnBmWLDFD28MDZs+GMmVMfU4RSbqcSgycPXsWgFKlSsV4n5QpUwJw+/ZtZw4tIiIikriUKAGLF8PKlaaE+/Xr8O67UKgQzJgBoaF2RygSJ9zc4O234bffIE8e08qwWjXT4VPDXCRpciox4HA4gNhd5F++fBmA1KlTO3NoERERkcSpXj3YuROmT4ecOeHPP6FtWyhfHlatsjs6kThTuTLs3m1Ka4SEwFtvQePGEE3JMRFJpJxKDGTPnh2AkydPxnifDRs2AJAvXz5nDi0iIiKSeLm5mWTAkSPw0Ufg72+uoOrXh0aN4MABuyMUiRNp0pjlBOPHg48PLF0KpUopByaS1DiVGKhduzaWZTF9+vQYbX/t2jXGjRuHw+Ggbt26zhxaREREJPFLkcIsJzh+HHr0MIuylywxV06dOsFff9kdoYjTHA549VXYvt3U3rxwARo0gPffNzMJRCTxi3FiwM3NDQ8PDw4ePBj+2GuvvYbD4WDdunVMmzYt2v0vX75Ms2bNuHDhAh4eHrz++utPHLSIiIhIkpIxoylIePAgPP+8WYg9eTIUKACDBsHNm3ZHKOK04sVNcqBzZ9PGcNgwqF0bzpyxOzIReZxYzRiwHmpUWqZMGd544w0sy6Jjx460aNGCOXPmhD+/adMmZs6cSbdu3cifPz/r16/H4XAwYMAAcufOHTdnICIiIpJUFChgWhpu3AhVqsDt26blYf78Zi62vl6VJM7XFyZMgFmzzAqajRtNLc4FC+yOTESi49RSAoDPPvuMLl26YFkW8+bNo1WrVuFFCV977TXatGnDuHHjuHbtGpZl8cYbb/D+++87HbiIiIhIklW1qrlimjfPJAUuXoTXX4eSJWHRIvN1q0gS1qKFKatRoQL8+y80bw7du8Pdu3ZHJiKRcTox4HA4GDNmDMuWLaN27do4HA4sy3rgBlClShV+/fVXPv/8c6eDFhEREUnyHA6zrOD3380yg/Tp4dAhePZZqFMHduywO0IRp+TLBxs2mG4FAGPGmE4Ghw/bG5eIPMojrl6oQYMGNGjQgBs3brB7924uXbrE/fv3SZ8+PaVLlyZDhgxxdSgRERGR5MPLyxQmbNsWRoyAL7+EdevMV62tWsHw4aZZvEgS5OUFn3wCdeuaIb53L5QrZ5IE7dqZ/JiI2M/pGQMP8/Pzo2bNmrzwwgu0aNGC+vXrKykgIiIi8jipU5vWhkeOQJs25orphx+gUCHo2xeuXLE7QpEn1rChSQrUrWtKa7RvbxIFN27YHZmIQDwkBkRERETECblywbffws6dUK8eBAXBZ59BQICZUXD7tt0RijyRrFlh+XL48ENwd4fvvoOyZWHXLrsjE5FYLyVo3749KVOmdPrADoeDVatWOf06IiIiIslSmTKwYgUsXQrvvAP790O/fqYewaBB0KEDeHraHaVIrLi7w3vvmTaGrVrB8eOm7sDIkdCzp5YWiNgl1omBHXFQCMeyrPDOBSIiIiISBYcDnn4aAgNh5kwYOBBOnzYdDD77zHz1+sIL4KZJoJK0VKsGe/ZAx47w00/QqxesXAlTp4JWIYskvFj/X+ThjgNPchMRERGRWHB3N3UHDh82MwYyZoRjx0xPuIoVzcwC/Y0lSUy6dDB/Pnz9NXh7wy+/QOnSpvamiCSsWCcGDhw4QGhoqNO3+/fvx8f5iIiIiCRf3t6mg8GJEzBkCKRKZWoRBAZC/fqwfbvdEYrEisMB3brBli2mzua5c6ZA4ZAhoMsFkYSjeWciIiIiSY2fn1lWcPKkmYPt5QWrV5vZAy+8YDobiCQhpUvDjh3wyisQGgqDB5vam+fO2RyYiItQYkBEREQkqcqYEb74wiQCwprC//gjFCsGnTvD2bN2RygSY6lSmRoDM2aYf69bZ7oWrFljd2QiyZ8SAyIiIiJJXZ48MG0a7NsHzz5r5mBPmgQFCsDbb8OVK3ZHKBJjL79sWhiWLAmXLplVMiNGmJkEIhI/lBgQERERSS6KF4eff4YNG6B6dbh71/SBy5cPt48/xv3uXbsjFImRAgVg82YzESY01HTqfO45uHrV7shEkiclBkRERESSm2rVYP16U+a9RAm4dg33AQOo36ULbhMmQHCw3RGKPJavr1laMGGCqbu5cCGUK2faHIpI3FJiQERERCQ5cjigcWNzFTVjBlaePPj8+y/u3btD0aIwe7bmZkui53CYchkbN5oVMydPQpUqJmEgInEnxomBU6dOcfLkSQoWLBif8YiIiIhIXHJzg5dfJuTAAfZ16oSVMSMcPw4tW0KFCrB8OViW3VGKRKtcOdOZs1Ejs0KmQweTMNDqGJG4EePEQO7cucmdOzceHh7xGY+IiIiIxAcvL0498wwhhw+bJvF+fqbC21NPmb5w27bZHaFItNKlg0WL4MMPzUyCSZOgalUzi0BEnKOlBCIiIiKuxM8PBg6EEyegVy/w8jL94CpVguefh8OH7Y5QJEpubvDee7BsGWTIALt3m9kEv/xid2QiSZsSAyIiIiKuKGNG+OILOHrUlH53OGD+fChWDDp1grNn7Y5QJEoNGpgJL5Urm04FTZqYhMH9+3ZHJpI0KTEgIiIi4spy54Zp02DfPnj2WVOQcPJkyJ8f3noLrlyxO0KRSOXMCevWQY8e5v7w4dC4sTtXr3rZG5hIEqTEgIiIiIhA8eLw88+m/HuNGnDvHnz6KeTLZ664bt2yO0KRR3h5wejRMHOmaW+4erUbffrUZssWh92hiSQpSgyIiIiIyH+qVjVfw/76K5QsCdeumTna+fPD2LEQHGx3hCKPaNXK1M8sWNDi8uUU1K3rzujRarghElNKDIiIiIjIgxwO0xdu92747jvImxcuXICuXaFIEZg1yyw5EElEihWDzZtDqFbtHCEhDt54wyQMbt60OzKRxE+JARERERGJnJsbtG5tOhV89RVkymS6GbRqBeXLm9Lw+kpWEhE/P+jbdweffXYfDw+YPRsqVoRDh+yOTCRxU2JARERERKLn5QXdu5ukwAcfmKuv3buhYUOoXRt++83uCEXCORzQo0coa9dCtmwmKVChgpnoIiKRU2JARERERGImVSoYMABOnoTevU3CYP16qFnTJAm2b7c7QpFw1aqZ/FWdOqZ2ZqtW8MYbEBRkd2QiiY8SAyIiIiISOxkywOefw/Hj8Oqr4OFhlhVUrAjNmpnWhyKJQKZMsHw59Otn7o8ebSa5nD1ra1giiY4SAyIiIiLyZHLmhPHjTQ2Ctm1NTYKff4ZSpaBlS/O4iM08PEzHzYULIXVq2LwZypSBVavsjkwk8VBiQEREREScExAA06fDgQPw4ovmsdmzTZn4V16BU6dsDU8EoEkT2LkTSpeGf/6BwEAYNkwNNkRAiQERERERiStFipiEwJ498Oyz5opr+nQoWBC6dNH8bbFdQABs2gQdOpjh+f77Zqj++6/dkYnYS4kBEREREYlbpUqZJQVbt5qvZUNCYNw4yJ/fFC28eNHuCMWFpUgBkyfDpEng7Q2//grlysGuXXZHJmIfJQZEREREJH5UrGiKEq5bBzVqwL178OWXkC+fqQZ35YrdEYoL69jR1BvIm9esdqla1SQMRFyREgMiIiIiEr9q1jTJgWXLTEP527dhxAhzRfbBB3D9ut0RiosqU8bUHXjmGZO36tTJLDO4c8fuyEQSlhIDIiIiIhL/HA6zrGDrVrPMoGRJkxAYNMgkCD75xDSbF0lgadOaITlsmGmsMXUqVKkCJ07YHZlIwlFiQEREREQSjsNhqr3t3m0KFRYqZJYUvPOOqQw3ejTcvWt3lOJi3Nygf39YvhwyZoS9e03dgYUL7Y5MJGEoMSAiIiIiCc/NzbQ2PHAApk0zswYuXoQ33oACBWDCBAgOtjtKcTH16pkihFWqwLVr0LSpKYcREmJ3ZCLxS4kBEREREbGPhwe0aweHD5vOBdmzm7aGr70GhQvDjBlw/77dUYoLyZED1q41OSow5TACA9VMQ5I3JQZERERExH5eXiYZcPy46VyQKROcPAlt20Lx4jB3rmk8L5IAvLzMMJw1C1KmhDVroGxZ2LjR7shE4ocSAyIiIiKSePj4mK9qT540X9WmTWtmE7z4orkyW7QILMvuKMVFtGgB27dDkSLw119Qu7ZJGGgISnKjxICIiIiIJD4pU5qChKdOmc4Ffn6mItyzz5oF4CtX6upMEkSRIrBtG7RsaWoN9O4NrVubrpsiyYUSAyIiIiKSeKVODYMHmwTBO+9AihSm5WGDBlCnDmzYYHeE4gJSpYKZM2HUKFMW44cfoEYN+PNPuyMTiRtKDIiIiIhI4pc+vVlacPKkWWrg5QXr1pmrs4YNzXxvkXjkcEDPnrBihRmOu3ZBhQqqOyDJgxIDIiIiIpJ0ZMliFnkfP26KFXp4wLJlULEiNGsG+/fbHaEkc7Vrw44dULKk6VRQpw5MmmR3VCLOUWJARERERJKenDlNe8MjR0znAjc3+PlnKFXKLAY/fNjuCCUZy5MHNm2CF16A4GDo3Bl69DD/FkmKlBgQERERkaQrXz6YPh0OHDCdCywLZs+GokVNhTglCCSepEwJc+bABx+Y+19/DU89Bf/8Y29cIk9CiQERERERSfqKFDEJgT17oGlTkyCYOVMJAolXDgcMGAA//WQKFK5ZY+oOaEWLJDVKDIiIiIhI8lGqlLlK27XL1BxQgkASQNOmsHmzmcBy+rTpqDl/vt1RicScEgMiIiIikvyUKQMLFihBIAmmeHHYtg3q1YNbt+D5502nzdBQuyMTeTwlBkREREQk+VKCQBJQ+vSwdKnpqAkwZIgpUHjzpr1xiTyOEgMiIiIikvwpQSAJxMPDdNScMgW8vMywq1IFTp60OzKRqCkxICIiIiKuQwkCSSDt28PatZAli2maUaECrF5td1QikVNiQERERERcjxIEkgCqVIEdO0xS4MoVCAyEr74yw00kMVFiQERERERclxIEEs+yZ4d16+Dll+H+fejZEzp3hnv37I5M5D9KDIiIiIiIKEEg8ShFCvj2Wxg5EtzcYPJkqFsXLlywOzIRQ4kBEREREZEwShBIPHE4oG9f+PVXSJ0aNm0ySwx27LA7MhElBkREREREHqUEgcSThg1h2zYoVAjOnoUaNczQErGTEgMiIiIiIlFRgkDiQcGCsHUrNGoEd++aofTOO6YGgYgdlBgQEREREXkcJQgkjqVODQsXwrvvmvuffAJNmsDVq7aGJS4qSSYGxo4dS8mSJfH398ff358qVaqwZMmSB7bZvHkzdevWJWXKlPj7+1OzZk3u3LkT/vyVK1do3bo1/v7+pEmTho4dO3Lz5s2EPhURERERSUqUIJA45O4OH31khlCKFLBkCVSuDEeO2B2ZuJokmRjIkSMHI0aMYOfOnezYsYO6devStGlTfv/9d8AkBRo2bEhgYCDbtm1j+/btdO/eHTe3/063devW/P7776xYsYJffvmF9evX8+qrr9p1SiIiIiKSlChBIHGoVSvYsAFy5DBJgYoVYfFiu6MSV+KwLMuyO4i4kC5dOkaOHEnHjh2pXLkyDRo0YOjQoZFue+jQIYoWLcr27dspX748AEuXLqVRo0acPXuWbNmyRbrfvXv3uBeh4ej169fJmTMn58+fJ3369HF/UiKJQHBwMCtWrKBBgwZ4enraHY5IvNA4F1egcR7Pdu/Gfdgw3BYuBMByOLBatOB+//5QuLDNwbmOpD7OL16EFi3c2bTJDYfDYtiwUPr0CcXhsDsySUwuX75M1qxZuXbtGv7+/nHymkk+MXD//n3mzp1Lu3bt2L17NxkyZCBz5syMHj2aH374gRMnTlC4cGGGDRtG9erVAZgyZQp9+vTh33//DX+dkJAQfHx8mDt3Ls8991ykxxo8eDBDhgx55PGZM2fi6+sbPycoIiIiIklG6pMnKTR7Nlm3bgVMguBsjRocffFFbubIYXN0khQEBzuYMKEkK1bkAaBmzT/p1m0P3t6h9gYmicbt27d56aWXlBgA2L9/P1WqVOHu3bukSpWKmTNn0qhRI7Zs2UKVKlVIly4dn376KaVLl+bbb7/lm2++4cCBAxQoUIDhw4czffp0jjy0eCdTpkwMGTKELl26RHpMzRgQV5TUM+8iMaFxLq5A4zyBRTWDoF8/KFLE5uCSr+Qyzi0Lxo1z48033bh/30HZsqHMm3cf5ZYE4mfGgEecvIoNChUqxJ49e7h27Rrz5s2jXbt2rFu3jtBQk0l77bXXaN++PQBlypRh1apVTJkyhY8++uiJj+nt7Y23t/cjj3t6eibpXzwiMaFxLq5A41xcgcZ5AqlYEX7+GXbvhg8+wPHTTzhmzcJt9mx4/nl47z0oXdruKJOt5DDOe/aEkiXhhRdg1y43qlRxY/58qFrV7sjEbvExtpNk8UEALy8v8ufPT7ly5fjoo48oVaoUo0aNImvWrAAULVr0ge2LFCnCmTNnAMiSJQuXLl164PmQkBCuXLlClixZEuYERERERCT5i1ik8LnnzFfB8+aZx5991jSzF4lC7dqwfTuUKGHqD9SuDZMn2x2VJEdJNjHwsNDQUO7du0eePHnIli3bI8sEjh49Su7cuQGoUqUKV69eZefOneHPr169mtDQUCpVqpSgcYuIiIiICyhTBubPh/37TQl6NzdYtMj0pgsMhPXr7Y5QEqm8eWHTJjPRJDgYOnUyswmCg+2OTJKTJJkY6NevH+vXr+f06dPs37+ffv36sXbtWlq3bo3D4eCtt95i9OjRzJs3j+PHjzNgwAAOHz5Mx44dATN7oGHDhnTu3Jlt27axceNGunfvTsuWLaPsSCAiIiIi4rTixU1bw0OHoH178PCAFSugVi2oWROWLzezCkQiSJUK5syBDz4w97/6Cho2hMuX7Y1Lko8kmRi4dOkSbdu2pVChQtSrV4/t27ezbNkyGjRoAECvXr3o168fvXv3plSpUqxatYoVK1YQEBAQ/hrff/89hQsXpl69ejRq1Ijq1aszYcIEu05JRERERFxJwYIwZQocOwZduoCXF/z2Gzz1FFSqBAsXKkEgD3BzgwEDzMqUVKlg9WqoUMFMQhFxVpLtSpAYXL9+ndSpU/PPP/+oK4EkW8HBwSxevJhGjRol+SI+IlHROBdXoHGeyJ07B599BuPGwZ075rGSJU2RwuefB3d3e+NLIlxlnB84YEpUnDoFKVPCjBmmhIW4hsuXL5MhQ4Y47UqQJGcMiIiIiIgkK9mzw+efw+nT0K8f+PnBvn3QogUUKwbffgshIXZHKYlE8eKmKGHdunDrFjRvDkOGwP8atInEmhIDIiIiIiKJRaZMMHw4/PEHDB4MadPCkSPQrp1ZfjBxIty7Z3eUkgikTw/LlplChGCGy0svwd27toYlSZQSAyIiIiIiiU3atDBokJlBMGIEZMxo5o2/+irkz2+qz4UtORCX5eEBo0aZFoYeHjB7NtSrB//8Y3dkktQoMSAiIiIiklj5+8M775gEwZdfQrZscPas+Zo4b14YORJu3LA7SrFZhw5m9kDq1Ka1YZUqpq6lSEwpMSAiIiIiktj5+sIbb8DJk6ZAYZ48cPEivP22+ffQoXD1qs1Bip3q1oXNm81wOH4cKlc2jS5EYkKJARERERGRpMLbG157DY4ehalToUABuHIFBg6E3LlNF4O//7Y7SrFJkSKwZQtUrGiGRf36MHOm3VFJUqDEgIiIiIhIUuPpCa+8AocOwQ8/mDL116+bwoV58kCfPnD+vN1Rig0yZ4Y1a0z7wqAgaN0ahg0DNamX6CgxICIiIiKSVLm7Q8uWsHcvLFgA5crB7dum9WHevNC9O5w5Y3eUksB8fWHuXJMfAnj/fejYEYKD7Y1LEi8lBkREREREkjo3N2jWzDS3X7IEqlY1bQ3HjIGAAOjUySw8F5fh7g6ffmqGgJubWXny9NMqRSGRU2JARERERCS5cDigYUPYsMHMJ69XD0JCTD+7QoXg5Zfh4EG7o5QE1LUrLFwIKVPCqlVQrRr88YfdUUlio8SAiIiIiEhy43BA7dqwcqXpX9e4MYSGwvffm3oEL7wAu3fbHaUkkMaNTYeCbNlMXqhSJTO5RCSMEgMiIiIiIslZlSrwyy+wcyc0b26q0P34I5QtC02amDL2kuyVKQNbt0LJkqbTZa1a8PPPdkcliYUSAyIiIiIirqBsWZMQOHAAXnrJLDz/5ReTOKhbF1asUOn6ZC5HDjNzoGFDuHPHdC4YNcruqCQxUGJARERERMSVFCtmlhQcPgwdOoCHh6lHEBgIFSrAvHlw/77dUUo88feHRYvgtddMHqhXL+jZUz9yV6fEgIiIiIiIKypQwBQlPHEC3njD9LjbuRP+7/+gSBGYNMl0NpBkx8MDxo6FTz4x97/6yjS1uHnT1rDERkoMiIiIiIi4sly54MsvTan6gQMhbVo4dgw6d4Z8+eCzz+DGDbujlDjmcMBbb8HcueDjY1aV1KoFf/1ld2RiByUGREREREQEMmSAIUPgzBmTDMiWzVwl9u0LuXObpMHff9sdpcSxF14wK0kyZoRdu6ByZdi/3+6oJKEpMSAiIiIiIv9JlQrefBNOnjRLDQoWhH//haFDTYLgjTdM8kCSjcqVTXOKQoXgzz+hWjVYvtzuqCQhKTEgIiIiIiKP8vY2xQkPHjQFCcuVM6XsR4+GgABo1848J8lCvnywaZNZTnDjBjRqBBMn2h2VJBQlBkREREREJGru7vD887B9u2lpWK8ehITAt9+aDgfNmsHWrXZHKXEgXTpYtgzatDFdCl59Ffr1g9BQuyOT+KbEgIiIiIiIPJ7DAfXrw8qVJhHQvLl57OefzVz0OnXMVaVl2R2pOMHbG6ZPh0GDzP0RI6BVK7h71964JH4pMSAiIiIiIrFTsSL8+KNZStC+vel/t3YtNGxolhzMmWO+cpYkyeGAwYNNgsDT0/w469VT7cnkTIkBERERERF5MoULw5QpplBh797g6wu7d0OLFua5iRPh3j27o5Qn1LatKUKYJo2pP1ClChw9andUEh+UGBAREREREefkzAmff266FQwebBarHz9uFqnnzQuffmoq2kmSU7u2SQrkzQsnTpjkwG+/2R2VxDUlBkREREREJG6kT28Wp//xB3zxBeTIAefPw1tvQa5c8P77mo+eBBUpYtoZVqoEV66YUhMzZ9odlcQlJQZERERERCRupUoFvXqZr5inTIFCheDqVRg2DHLnhh49TPJAkoxMmWD1alNzMigIWreGDz9UrcnkQokBERERERGJH15epjjhwYOmWGH58nDnDnz9NQQEmEXsv/9ud5QSQ76+MHcu9O1r7g8YAB06mESBJG1KDIiIiIiISPxyczNfNW/bZtod1q9vuhbMmAHFi0PTprB5s91RSgy4ucHIkfDNN+bf06bB00+bCSGSdCkxICIiIiIiCcPhMH3vVqyA7dvh+efNYwsXQtWqptLd0qWan54EdOkCixaZVSOrV0O1anD6tN1RyZNSYkBERERERBJe+fIwbx4cOgQdO4KnJ6xbZ75+LlsWZs+GkBC7o5RoNGpkOhRky2ZWi1SubPI9kvQoMSAiIiIiIvYpVAgmTYKTJ+HNNyFlStizB1q2hIIFTT2CW7fsjlKiULo0bN0KpUrBxYtQqxb89JPdUUlsKTEgIiIiIiL2y5EDPvvMdCsYMsS0Pjx1ynQwyJXLVLq7dMnuKCUSOXKYmQMNG5raks2bw5dfakVIUqLEgIiIiIiIJB7p08PAgXDmDIwZY7oXXLlieuPlygWvvQZHj9odpTzEz8/UHHj9dZMQ6N0bevbUapCkQokBERERERFJfHx9oWtXOHLE1CKoVAnu3YMJE6BwYXjuOdi0ye4oJQIPD9OtYORIc//rr6FZM7h509awJAaUGBARERERkcTL3d10L9i8GdavhyZNzFfSP/1kSuFXrQoLFpj2h2I7hwP69jW5HB8f+PVX053y8mW7I5PoKDEgIiIiIiKJn8MBNWqY1oYHD5pOBl5eJmHQvDkUKYLbxIm43btnd6SCyeWsWQPp0pnihDVqwNmzdkclUVFiQEREREREkpYiRUwng9OnoV8/SJMGjh3DvVs3Al99Fbdhw/QVdSJQubIpSpg9u+lKWa2aWRkiiY8SAyIiIiIikjRlzQrDh8Off8KXX2Llzo33tWu4DxkCOXNC9+6mDaLYpmhR2LjRdJ48cwaqV4cdO+yOSh6mxICIiIiIiCRtqVLBG28QcugQO958E6t0adM3b8wYKFAAXnwRtm+3O0qXlTs3bNgA5crBP/9AnTqwerXdUUlESgyIiIiIiEjy4OHBuZo1Cdm6FVauhIYNITQU5s6FihWhdm1TDS801O5IXU7GjKbmQN26pkvB00/Djz/aHZWEUWJARERERESSF4cD6tWDJUtg3z5o29b00lu3Dp55BkqUgClTTPtDSTB+frB4sakVGRRkJnJMnGh3VAJKDIiIiIiISHJWogRMnw6nTpk+en5+/3U1yJsXRoyAq1ftjtJleHvDnDnQubOZuPHqq/DRR6YDpdhHiQEREREREUn+cuSAkSNNocJPPjGl8s+fN10NcuaEN9801fEk3rm7w/jx0L+/ud+/P/TpoxUedlJiQEREREREXEfq1PDWW6ZbwfTpULy4WfT+xReQLx+0bg179tgdZbLncMCwYfD55+b+F19A+/YQHGxvXK5KiQEREREREXE9Xl6m9sC+faYWQd26cP8+zJwJZcpAgwawfLnmuMez3r1NfsbdHb791tQfuHPH7qhcjxIDIiIiIiLiuhwO071g1SrYuRNatTJXqStXwlNPQenSMGOGvsqOR23bwoIF4OMDv/wCgYEq+5DQlBgQEREREREBKFvWzBg4fhzeeANSpvyvq0G+fPDZZ3D9ut1RJktNmpgJGqlTw4YNUKsWXLhgd1SuQ4kBERERERGRiPLkgS+/NMUIhw2DzJnh7FnT1SBnTlOjQIUK41yNGqajZJYsJh9TrRqcOGF3VK5BiQEREREREZHIpEtnSuafPg0TJ0KhQmbGwKefmhkELVvCtm12R5mslCplZgzky2fqQ1arBnv32h1V8qfEgIiIiIiISHR8fKBTJzh4EBYt+q9Q4ezZUKmSuXqdNw9CQuyONFkICDDJgZIl4eJFs6zgt9/sjip5U2JAREREREQkJtzc4JlnTKHC3buhXTvw9IRNm+D//g8KFDB991SHwGlZs5plBdWrw7VrpiDhL7/YHVXypcSAiIiIiIhIbJUuDdOmwR9/wPvvQ/r0ZsnBm29Cjhzmv6dP2xtjEpcmDSxbZnIxd+9Cs2ampaHEPSUGREREREREnlTWrDB0qClGOH48FC4MN26YmQMBAWYmwebNdkeZZPn6wvz5pjHE/ftmksYXX9gdVfKjxICIiIiIiIizfH3h1Vfh999h8WJo0ABCQ03tgapVoUoVmDNHdQiegKcnTJ0KvXub+2++aWpCWpa9cSUnSgyIiIiIiIjEFTc3ePppWL7c9Nzr0AG8vGDLFmjRwswi+Owzs3BeYszNzbxtw4eb+x99BK+9ZmYRiPOUGBAREREREYkPJUrA5MlmmcGgQZAxo/l3376mDkGvXqYnn8SIwwH9+sGECSZRMHGiybXcu2d3ZEmfEgMiIiIiIiLxKXNmGDzYFCqcOBGKFoWbN2HUKNPJ4PnnTX8+zY2Pkc6dzaoMLy/48Udo1MiUdZAnp8SAiIiIiIhIQkiRAjp1ggMHYOlSeOopU4dg/nyoUQMqVYIffoDgYLsjTfSefx6WLIFUqWD1aqhTB/7+2+6oki4lBkRERERERBKSw2GSAkuXmiRBp07g7Q3bt8NLL0G+fDByJFy9anekiVrdurBmDWTIADt3QvXqZqWGxJ4SAyIiIiIiInYpVswsLzhzBoYMgUyZ4OxZePttU4egRw84ftzuKBOt8uXNKoycOeHoUdMA4uBBu6NKepQYEBERERERsVumTDBwoKlDMGWKKVx46xZ8/TUULAjNmsH69apDEIlChWDTJihSBM6dM6sytm61O6qkRYkBERERERGRxMLHB9q3h717YcUKU1nPsuDnn6FWLfMV+fffQ1CQ3ZEmKjlywG+/mTINV65AvXqmY6TEjBIDIiIiIiIiiY3DAfXrw6+/mrnxr71mkga7dsHLL0PevDBihLkKFgDSp4eVKyEw0Ey2eOYZmD3b7qiSBiUGREREREREErMiRWDcOPjzT/jwQ8iSBf76C/r1M4vru3UzC+yFVKlg0SJo0cI0d2jVCr75xu6oEj8lBkRERERERJKCDBngvffg9GmYNg1KlYLbt82Vb+HC5ivy5ctdvg6Bl5dZbdGli3krunWDDz5w+bclWkoMiIiIiIiIJCXe3tCuHezeDatXm4SAZZllB089ZTodjB0LN2/aHalt3N1hzBhTzxFg0CDo2RNCQ+2NK7FSYkBERERERCQpcjigTh0zd/7oUXPl6+cHhw5B166mIl/fvnDqlN2R2sLhMB0gR48297/+2pRnUN3GRykxICIiIiIiktQVKACjRsHZs+a/+fPDtWvw2WcQEGDaHa5e7ZLz6Xv0MEsLPDzghx+gaVNTnFD+o8SAiIiIiIhIcuHvb2YOHDlilhYEBv7X7rBePShZEiZONLUJXMhLL8HChZAiBSxdCg0awL//2h1V4qHEgIiIiIiISHLj5gaNGsGyZabdYdeukDIlHDgAr75quhm8+y6cOWN3pAnm6adNO8M0aWDzZpMnuXzZ7qgSByUGREREREREkrMiRUwlvrNnzdKCvHnhyhX4+GPz7xdegN9+c4llBlWrwvr1kDGjqd1Yty78/bfdUdlPiQERERERERFXkCYNvPkmHDsGP/1kropDQ+HHH6FmTShbFqZOhbt37Y40XpUoAWvXQubMsG+feRsuXbI7KnspMSAiIiIiIuJK3N1NBb5Vq2D/fujc2Sy+37MHOnQwywzefx/OnbM70nhTtKhJDmTNalZX1KkDFy7YHZV9lBgQERERERFxVcWLw4QJ8OefZmlBrlzwzz8wbBjkyQOtWpkF+clwmUHhwrBuHWTPbsow1K4Nf/1ld1T2UGJARERERETE1aVPD2+/DSdO/Le0ICQEZs0yC/MrVoTvvoN79+yONE4VKGCSAzlzmkYOtWsn64kSUVJiQERERERERAwPD2je3Fwt795tlhZ4e8OOHdCmDeTODYMHJ6t59wEB5nRz5zblF2rVMhMoXIkSAyIiIiIiIvKo0qVh8mRzlTxsmJlzf/EiDBlilhy0aQPbt9sdZZzIm9fUHMib10yaqFUL/vjD7qgSjhIDIiIiIiIiErWMGaF/fzh16r+lBcHBZmlBxYrm/qxZ5rEkLE8ekxwICDCnWquW+a8rUGJAREREREREHs/TE1q0gI0bzUyBNm3MY5s3myKFefLAhx8m6d5/uXKZ5ECBAmbGQK1aZgZBcqfEgIiIiIiIiMRO+fLw7bdw5oxZWpAliynpP2CAubpu397UKEiCcuQwyYFChcwqilq1TO2B5EyJAREREREREXkyWbLAwIHm6/XvvoMKFUzngmnToGxZqFED5sxJcssMsmUzyYEiRUyXglq1TNeC5CpJJgbGjh1LyZIl8ff3x9/fnypVqrBkyZLw52vXro3D4Xjg9vrrrz/wGg8/73A4mDVrVkKfioiIiIiISNLn5QWtW8O2bf8tLfDwgA0bzPKDsG4Gf/1ld6QxliWLSQ4ULw7nz5vkwMGDdkcVP5JkYiBHjhyMGDGCnTt3smPHDurWrUvTpk35/fffw7fp3Lkz58+fD7998sknj7zO1KlTH9imWbNmCXgWIiIiIiIiyVDlyjBzpplFMHCgucI+f94sOcidG158EdavB8uyO9LHypQJVq+GkiVNQ4Y6deDAAbujintJMjHQpEkTGjVqRIECBShYsCDDhg0jVapUbNmyJXwbX19fsmTJEn7z9/d/5HXSpEnzwDY+Pj4JeRoiIiIiIiLJV7ZsJhnwxx+ma0H16hASAnPnmq/fS5aEcePg5k27I41WxowmOVC6tKmrWKcO7Ntnd1Rxy8PuAJx1//595s6dy61bt6hSpUr4499//z3fffcdWbJkoUmTJgwYMABfX98H9u3WrRudOnUiX758vP7667Rv3x6HwxHlse7du8e9e/fC71+/fh2A4OBggpPYmhmRmAob2xrjkpxpnIsr0DgXV6Bxnkg5HNC8ubnt3Yvb+PG4zZyJ48AB6NIF6513CG3bltDXXjMV/xIhf39YuhQaNXJn1y436tSxWLIkhDJlEj6W+BjfDstKAvM3IrF//36qVKnC3bt3SZUqFTNnzqRRo0YATJgwgdy5c5MtWzb27dvHO++8Q8WKFZk/f374/kOHDqVu3br4+vqyfPlyBg0axCeffELPnj2jPObgwYMZMmTII4/PnDnzkaSDiIiIiIiIRM7j5k1yrV5N3qVLSRWh7sClUqU49fTTXKxQAcvd3cYII3fzpgdDhlTl2LG0pEoVxODBm8if/1qCxnD79m1eeuklrl27FunM+CeRZBMDQUFBnDlzhmvXrjFv3jwmTZrEunXrKFq06CPbrl69mnr16nH8+HECAgIifb2BAwcydepU/vzzzyiPGdmMgZw5c3L+/HnSp0/v/EmJJELBwcGsWLGCBg0a4OnpaXc4IvFC41xcgca5uAKN8yQoNBTHqlW4ffMNjsWLcfzv8tTKlYvQzp0J7dDBzOVPRK5dgyZN3NmyxY3UqS0WL75PhQoJd1l9+fJlsmbNGqeJgSS7lMDLy4v8+fMDUK5cObZv386oUaMYP378I9tWqlQJINrEQKVKlRg6dCj37t3D29s70m28vb0jfc7T01O/eCTZ0zgXV6BxLq5A41xcgcZ5EtOokbmdPm1qDkyahOPMGdwHDMB96FBTrLB7d6hY0SxLsFmGDLB8uQl5wwYHTz/twbJlpuZiQoiPsZ0kiw9GJjQ09IFv8yPas2cPAFmzZo1y/z179pA2bdookwIiIiIiIiISj/LkgREj4OxZmDYNKlSAoCD47jtz1V2hAkydCnfu2B0pfn6wZAnUrAnXr0NgIGzcaHdUTy5JJgb69evH+vXrOX36NPv376dfv36sXbuW1q1bc+LECYYOHcrOnTs5ffo0CxcupG3bttSsWZOSJUsCsGjRIiZNmsSBAwc4fvw4Y8eOZfjw4fTo0cPmMxMREREREXFxPj7Qrh1s22Zu7dqBtzfs3AkdOkCOHPD223DqlK1hpkoFixebLgU3bsBTT5kujElRkkwMXLp0ibZt21KoUCHq1avH9u3bWbZsGQ0aNMDLy4uVK1cSGBhI4cKF6dOnD88//zyLFi0K39/T05MxY8ZQpUoVSpcuzfjx4/n8888ZNGiQjWclIiIiIiIiD6hQwcweOHvWzCbInRuuXIGRIyEgAJ55xnx1HxpqS3gpU8Ivv0D9+nDrFjz9NKxda0soTkmSNQYmT54c5XM5c+Zk3bp10e7fsGFDGjZsGNdhiYiIiIiISHzIkAHeeQf69jVf03/9tVno/+uv5pY/P3TpAu3bQ9q0CRqary8sXAjPPQfLlpnaA4sWQb16CRqGU5LkjAERERERERFxQe7u0KSJuQI/cgR69YLUqeH4cejTB7Jnh86d4X915hJKihTw008mKXDnjpnIsGxZgobgFCUGREREREREJOkpWBC++ALOnYPx46FkSXNVPmkSlCkD1arBzJmmgGEC8PGB+fNN3uLuXWja1ExuSAqUGBAREREREZGkK2VKePVVM0vgt9+gZUvw8IBNm6B1a8iZEwYMMHUK4pm3N8ybB82awb17ZnlBhHJ3iZYSAyIiIiIiIpL0ORxQvTr88AOcOQNDhkC2bHDpEnz4oWmH+PzzsHo1WFa8heHlBXPmmEMFBZn//vRTvB0uTigxICIiIiIiIslL1qwwcCCcPm2u0mvVgvv3zVz/evWgWDH46iu4ejVeDu/pafITLVpAcDD83//Bjz/Gy6HihBIDIiIiIiIikjx5epqr8rVrYf9+07kgZUo4dAh69jTFCjt1gh074uXQ330HL70EISEmSTBnTpwfJk4oMSAiIiIiIiLJX/Hi8M03pljh11+bWQO3b8PkyVChApQvb/5961acHdLDA779Ftq0MRMWWrUy9RATGyUGRERERERExHWkTg3dupkZBL/9ZgoUennBzp1m9kC2bNCjB/z+e5wczt0dpk6F9u0hNNQkCWbMiJOXjjNKDIiIiIiIiIjrCStW+N13ZhbBJ59AQABcv25mFBQvDjVrmq/4791z6lDu7qaLYufOJjnQrh1MmxY3pxEXlBgQERERERER15YhA7z1Fhw9CsuXmz6D7u7/zSjIkQPeeQdOnnziQ7i5wbhxpsyBZUGHDiZZkBgoMSAiIiIiIiIC5uq9QQPTveCPP0zLw+zZ4Z9//ptR0LCh6T8YEvJELz9mjFmpYFlmBsH48XF/GrGOy+4ARERERERERBKd7Nn/a3n4008mIeBwwLJlZkZBnjwmcXDuXKxe1uGAUaOgVy9z//XXTbLATkoMiIiIiIiIiETFwwOaNoUlS+D4cbOkIGNGkxAYPBhy54bmzc0ShNDQGL2kwwGffw59+5r73bubZIFdlBgQERERERERiYl8+WDECPjzT1OUsGZN04dwwQJ46ikoWBBGjoS//37sSzkcZnXCu++a+716mWSBHZQYEBEREREREYkNb29o1QrWrTNtDXv0MG0QT5yAt982xQpbt4YNG0wxgSg4HDB8OLz/vrnfpw988UUCnUMESgyIiIiIiIiIPKmiRWH0aLO0YPJkKF8egoLMjIIaNaBkSVNE4Nq1SHd3OGDoULMqwdfX7J7QlBgQERERERERcVbKlKYH4fbt5tapk7nSP3DAFBHIls20Idi1K9LdBw2CgwdNLiGhKTEgIiIiIiIiEpfKl4eJE80sgq++gmLF4PZtmDQJypWDihVhyhTzWAS5c9sTrhIDIiIiIiIiIvEhTRozW2D/fvjtN3jpJfDyMjMKOnY0swjeeMNMFbCREgMiIiIiIiIi8cnhgOrV4fvv4exZ044gXz5Td2D0aDOjoHZtmDUL7t1L8PCUGBARERERERFJKBkzwltvwbFjsGwZNGsG7u6mw0GrVjBwYIKHpMSAiIiIiIiISEJzc4PAQFiwAE6fNm0JsmeHdu0SPpQEP6KIiIiIiIiI/CdHDtOW4I8/TPvDBKbEgIiIiIiIiEhi4O5uy2GVGBARERERERFxYUoMiIiIiIiIiLgwJQZEREREREREXJgSAyIiIiIiIiIuTIkBERERERERERemxICIiIiIiIiIC1NiQERERERERMSFKTEgIiIiIiIi4sKUGBARERERERFxYUoMiIiIiIiIiLgwJQZEREREREREXJgSAyIiIiIiIiIuTIkBERERERERERemxICIiIiIiIiIC1NiQERERERERMSFKTEgIiIiIiIi4sKUGBARERERERFxYUoMiIiIiIiIiLgwJQZEREREREREXJgSAyIiIiIiIiIuTIkBERERERERERemxICIiIiIiIiIC1NiQERERERERMSFKTEgIiIiIiIi4sI87A4gKbMsC4AbN27g6elpczQi8SM4OJjbt29z/fp1jXNJtjTOxRVonIsr0DgXV3Djxg3gv+vRuKDEgBMuX74MQN68eW2ORERERERERFzJ5cuXSZ06dZy8lhIDTkiXLh0AZ86cibMfiEhic/36dXLmzMmff/6Jv7+/3eGIxAuNc3EFGufiCjTOxRVcu3aNXLlyhV+PxgUlBpzg5mZKNKROnVq/eCTZ8/f31ziXZE/jXFyBxrm4Ao1zcQVh16Nx8lpx9koiIiIiIiIikuQoMSAiIiIiIiLiwpQYcIK3tzeDBg3C29vb7lBE4o3GubgCjXNxBRrn4go0zsUVxMc4d1hx2eNARERERERERJIUzRgQERERERERcWFKDIiIiIiIiIi4MCUGRERERERERFyYEgMiIiIiIiIiLkyJgccYM2YMefLkwcfHh0qVKrFt27Zot587dy6FCxfGx8eHEiVKsHjx4gSKVOTJxWacT5w4kRo1apA2bVrSpk1L/fr1H/u5EEkMYvv7PMysWbNwOBw0a9YsfgMUiQOxHedXr16lW7duZM2aFW9vbwoWLKi/XSTRi+04//LLLylUqBApUqQgZ86c9O7dm7t37yZQtCKxs379epo0aUK2bNlwOBz89NNPj91n7dq1lC1bFm9vb/Lnz8+0adNifVwlBqIxe/Zs3nzzTQYNGsSuXbsoVaoUTz31FJcuXYp0+02bNtGqVSs6duzI7t27adasGc2aNePAgQMJHLlIzMV2nK9du5ZWrVqxZs0aNm/eTM6cOQkMDOTcuXMJHLlIzMV2nIc5ffo0ffv2pUaNGgkUqciTi+04DwoKokGDBpw+fZp58+Zx5MgRJk6cSPbs2RM4cpGYi+04nzlzJu+++y6DBg3i0KFDTJ48mdmzZ9O/f/8EjlwkZm7dukWpUqUYM2ZMjLY/deoUjRs3pk6dOuzZs4devXrRqVMnli1bFrsDWxKlihUrWt26dQu/f//+fStbtmzWRx99FOn2L774otW4ceMHHqtUqZL12muvxWucIs6I7Th/WEhIiOXn52dNnz49vkIUcdqTjPOQkBCratWq1qRJk6x27dpZTZs2TYBIRZ5cbMf52LFjrXz58llBQUEJFaKI02I7zrt162bVrVv3gcfefPNNq1q1avEap0hcAKwFCxZEu83bb79tFStW7IHHWrRoYT311FOxOpZmDEQhKCiInTt3Ur9+/fDH3NzcqF+/Pps3b450n82bNz+wPcBTTz0V5fYidnuScf6w27dvExwcTLp06eIrTBGnPOk4/+CDD8iUKRMdO3ZMiDBFnPIk43zhwoVUqVKFbt26kTlzZooXL87w4cO5f/9+QoUtEitPMs6rVq3Kzp07w5cbnDx5ksWLF9OoUaMEiVkkvsXVNahHXAaVnPzzzz/cv3+fzJkzP/B45syZOXz4cKT7XLhwIdLtL1y4EG9xijjjScb5w9555x2yZcv2yC8kkcTiScb5hg0bmDx5Mnv27EmACEWc9yTj/OTJk6xevZrWrVuzePFijh8/TteuXQkODmbQoEEJEbZIrDzJOH/ppZf4559/qF69OpZlERISwuuvv66lBJJsRHUNev36de7cuUOKFCli9DqaMSAiT2zEiBHMmjWLBQsW4OPjY3c4InHixo0btGnThokTJ5IhQwa7wxGJN6GhoWTKlIkJEyZQrlw5WrRowXvvvce4cePsDk0kzqxdu5bhw4fzzTffsGvXLubPn8+vv/7K0KFD7Q5NJFHRjIEoZMiQAXd3dy5evPjA4xcvXiRLliyR7pMlS5ZYbS9itycZ52E+/fRTRowYwcqVKylZsmR8hinilNiO8xMnTnD69GmaNGkS/lhoaCgAHh4eHDlyhICAgPgNWiSWnuT3edasWfH09MTd3T38sSJFinDhwgWCgoLw8vKK15hFYutJxvmAAQNo06YNnTp1AqBEiRLcunWLV199lffeew83N31PKklbVNeg/v7+MZ4tAJoxECUvLy/KlSvHqlWrwh8LDQ1l1apVVKlSJdJ9qlSp8sD2ACtWrIhyexG7Pck4B/jkk08YOnQoS5cupXz58gkRqsgTi+04L1y4MPv372fPnj3ht2effTa82m/OnDkTMnyRGHmS3+fVqlXj+PHj4YkvgKNHj5I1a1YlBSRRepJxfvv27Ucu/sOSYaa2m0jSFmfXoLGri+haZs2aZXl7e1vTpk2zDh48aL366qtWmjRprAsXLliWZVlt2rSx3n333fDtN27caHl4eFiffvqpdejQIWvQoEGWp6entX//frtOQeSxYjvOR4wYYXl5eVnz5s2zzp8/H367ceOGXacg8lixHecPU1cCSQpiO87PnDlj+fn5Wd27d7eOHDli/fLLL1amTJmsDz/80K5TEHms2I7zQYMGWX5+ftYPP/xgnTx50lq+fLkVEBBgvfjii3adgki0bty4Ye3evdvavXu3BViff/65tXv3buuPP/6wLMuy3n33XatNmzbh2588edLy9fW13nrrLevQoUPWmDFjLHd3d2vp0qWxOq4SA4/x1VdfWbly5bK8vLysihUrWlu2bAl/rlatWla7du0e2H7OnDlWwYIFLS8vL6tYsWLWr7/+msARi8RebMZ57ty5LeCR26BBgxI+cJFYiO3v84iUGJCkIrbjfNOmTValSpUsb29vK1++fNawYcOskJCQBI5aJHZiM86Dg4OtwYMHWwEBAZaPj4+VM2dOq2vXrta///6b8IGLxMCaNWsi/Vs7bFy3a9fOqlWr1iP7lC5d2vLy8rLy5ctnTZ06NdbHdViW5tCIiIiIiIiIuCrVGBARERERERFxYUoMiIiIiIiIiLgwJQZEREREREREXJgSAyIiIiIiIiIuTIkBERERERERERemxICIiIiIiIiIC1NiQERERERERMSFKTEgIiIiIiIi4sKUGBARlzB48GAcDgcOh8PuUEQkmQj7nTJ48GC7Q4lTU6ZMweFwUKJECSzLsjscp5w+fTr85zRt2jS7w0kw0Y3NkSNH4nA4qF27doLHJSKJlxIDIiIiIgLAzZs36d+/PwADBw50uWTquXPnwi+qd+/ebXc48aJLly6kT5+edevWMX/+fLvDEZFEQokBERERSTBr164Nv/Bau3at3eE8Ik+ePDgcDl555RW7Q7HF6NGjuXjxIkWLFuWFF16wO5wE98svvwCQI0cOypQpY3M08SNVqlS8+eabgEn+hIaG2hyRiCQGSgyIiIiIPAHLsrAsK9ksJbhz5w6ff/45AL1793a52QIAixYtAuCZZ56xOZL41a1bN3x8fPj999/56aef7A5HRBIBJQZEREREhO+++47Lly/j7e3tkrMFbt++zapVqwBo0qSJzdHEr9SpU9OoUSPAzBIREVFiQERERESYPHkyAI0bNyZNmjT2BmODlStXcvfuXXx9falbt67d4cS71q1bA7Bu3TpOnDhhczQiYjclBkTEJV29epVBgwZRrFgxUqVKRbp06ahTpw4//PBDjPa/e/cuX3/9NfXq1SNLlix4eXmRKVMm6tevz+TJkwkJCYly34fXMB85coTOnTuTJ08evL29yZw5M8899xxbtmyJdP+IVbZjcouu8vSaNWto164d+fLlw9fXF39/f0qUKMFbb73FX3/9FeV+D3d5uHv3LiNHjqRs2bL4+fnh5+dHxYoV+frrr6N9L+Li/YyNGzdu8Nlnn1G3bt3w4/j7+1OmTBl69OjBxo0bo9z377//5v3336dMmTKkSZMGHx8f8uTJQ5s2bdiwYUO0x3X2Z/6w06dP884771CuXDnSp0+Pp6cnGTJkoEaNGgwePJiTJ09Gue+1a9f46KOPqFatGhkzZsTLy4usWbPSpEkT5s2bF20V+ocrnW/fvp1WrVqRI0cOvL29yZ49O23atOHQoUORxuxwOKhTp074Y3Xq1HlkvEasHP/wOLt27RpDhw4N/xk8vP2tW7eYPXs2nTp1onTp0qROnRpPT08yZsxIrVq1+PTTT7l582ak51a7dm0cDgd//PEHANOnT3/sZykmXQlCQ0P57rvvaNSoUfiYy5gxI3Xq1OGbb74hKCgoyn3j+nMWnT/++IOtW7cC8Pzzz0e53cM1IizLYvLkyVSvXp306dPj7+9PxYoVmTFjxgP7BQUFMW7cOCpXrky6dOnw8/OjWrVqzJkzJ0bxbdiwgTZt2pAnTx58fHxIkyYNZcqU4f333+fvv/9+8hOPIKy+QP369fHx8Ql/PLLOBvPnzycwMJBMmTKRMmVKSpUqxVdffUVwcHD4fpZlMXPmTGrXrk2mTJnw9fWlbNmyjBs3LkbdHvbv38+rr75KgQIF8PX1xc/Pj2LFitG7d29Onz7t9Pk2btw4/Dxj+v8+EUnGLBERFzBo0CALsADr5MmTVkBAQPj9h28vvviiFRwcHOVr7dmzx8qdO3eU+wNWhQoVrAsXLkS6f9i+7dq1s+bPn2/5+vpG+hru7u7WrFmzHtn/1KlT0R774VutWrUeeY07d+5YLVu2jHa/lClTWgsXLnzs+3nhwgWrdOnSUb5OkyZNrPv378fb+xlTK1assDJkyPDY9ysyy5Yts/z9/aPdr1u3blGep7M/84hGjhxpeXp6xvpnblmWtXLlSit9+vTR7tuoUSPrxo0bke4fts2gQYOsMWPGWB4eHpG+hq+vr7Vu3boH9o3puJ06dWr4PhHH2dGjR608efJEu32tWrUe+/p58+a1Dh069Mi5xWTfh9/XiO9HZC5fvmxVq1Yt2tcsUqSIdfr06Uj3j8vP2eNMmzYt/LVOnDgR5XZr1qwJ32758uVWkyZNooypZ8+elmVZ1pUrV6yaNWtGud2wYcOiPN79+/etbt26Rfsepk6d2lq+fHmk+0ccdxHHysNCQ0OtrFmzWoA1ceLEaF+jS5cuUcbSvHlzKyQkxLp79671wgsvRLld586do/lpWNbw4cMtNze3KPf39va2pk+fHuX+jxubYSpXrmwBVtWqVaPdTkSSPyUGRMQlRPwDu0KFCpabm5v1+uuvWytXrrS2b99uTZ482SpYsGD4Nr169Yr0dY4dO2alTp3aAix/f3+rX79+1oIFC6wdO3ZYy5Yts7p16xZ+sVSpUiUrKCjokdcIu0gsW7as5ePjY+XNm9f6+uuvrS1btlibN2+2Bg8ebPn4+IQf49KlSw/sHxQUZO3fvz/a24ABA8LPpW3btg/sHxoaajVu3PiBC4oZM2ZYGzdutDZv3myNGjXKypUrlwVYXl5e1vbt26N9P6tWrWp5eXlZPXv2tFasWGHt3LnTmjlzplWkSJHwbcaNGxdv72dMrF69Ovx13N3drVdeecVasGCBtXPnTmvjxo3WxIkTrebNm1uenp6P7Lt7927Ly8vLAixPT0+rd+/e1po1a6xt27ZZ48ePt/LmzRt+nm+//Xakx3f2Zx7mgw8+CD9WmjRprP79+1srVqywdu3aZa1evdr69NNPrapVq1q1a9d+ZN8NGzaEJxQyZ85sffjhh9aiRYusnTt3WosWLbJefvnlBy5uIhP2fOXKlS03NzerVKlS1pQpU6zt27db69evt3r37h1+MZMrVy7r3r174fuGjdspU6aEv86UKVMeGbv//vtv+D4Rx1nJkiUtT09Pq0ePHtaKFSusHTt2WD/88IO1adOm8O2rVatmlShRwnrvvfesBQsWWFu3brW2bNlizZ4922rZsmV4bIUKFbLu3LnzwLmdPHnS2r9/v5UtWzYLsJo2bfpIbCdPnoz0/Yjs4iskJMSqUqXKA0mFuXPnWjt27LAWLlxoNWvWLPy5gICASJMxcfU5i4mOHTtagJU+ffpot4uYGKhUqZIFWK1bt7Z+/fVXa+fOndYPP/xgFSpUKHybFStWWM8++6zl4eFhdenSxVq+fLm1c+dOa/LkyeHvtbu7u3XgwIFIj/fWW2+Fv1bevHmtcePGWdu2bbPWrFlj9e7dO3xMe3l5WXv27Hlk/5gmBrZv324BlsPhsP76668oXyPsnBs1amTNnz/f2rlzp/XTTz+FPx6WWOjRo4cFWC+99JL1yy+/WDt37rRmzZplFS5cOHy7JUuWRBrLmDFjwrfJmDGj9emnn1qbN2+2NmzYYA0ePNhKmTJleKy//vprpK8R08RAz549LcDy8PB45DMhIq5FiQERcQkR/8AGrJkzZz6yzfXr161SpUpZgOXm5mbt37//kW2qVq1qAVaZMmWsv//+O9JjLVmyJPwCZMKECY88H/Hb8XLlylnXrl17ZJvvvvsufJvPP/88Vue6fft2K0WKFBaYbyMffv0JEyaEX+RG9YfplStXrGLFilmAVa1atUeej/h+enp6WmvWrHlkm8uXL1uZM2cOv6iLTFy8n49z586d8AsQX1/fSGMNc+bMmUceq1ChQvjFy7Jlyx55/sqVK1bRokXDx01kFzhx8TPftWtX+PtQsGBB688//4zxeQQFBYV/296wYUPr1q1bke4XNjaASL+BjfgZatSo0QMX/mE+/PDD8G3mz5//yPMRLyyj+1lY1oPjzM3NLdL3P6KjR49G+/yKFSvC38NJkyZFuk3E2R2PE93F19dff/1Aci40NPSRbfr37x9tUimuPmcxEZZgqFevXrTbRfz5AdaXX375yDbnz5+3/Pz8wi9sHQ6HtWDBgke227t3b/jPI2x2QUT79u0Lf7548eIPJI3CRPz9ULFixUeej2liYODAgRZglS9fPtrXgMgTx7du3QofO+nTp7ccDsdj35tnn332kecvXboUPqMoW7Zskf5O2rVrV3hyIHv27JEmTGOaGJg+fXr4tlu2bIl2WxFJ3pQYEBGXEPEP7GeeeSbK7bZu3Rq+Xbdu3R54bv369eHP7du3L9rjvfjii+Hf8j0s4kXi3r17I90/NDQ0/GL2ueeei8EZGufOnQvfL126dNbx48cfed2wZRR9+vSJ9rUWL14cHufDF1wR388333wzytd49913w7/Zunr16gPPxdX7+Tjjx4+P9iImOhHHw+uvvx7ldhs2bAjfrmvXro88Hxc/81atWoW/l7t27YrVeXz77bcWYPn4+EQ5GyFMxYoVw7/pfFjYOfj4+FgXL16MdP/r16+Hz7Do3bv3I88/aWKgQ4cO0W4bU2Hf1Ef1eyCuEgNhF9oZM2a0rl+/Hun+wcHB4d8gp02b1rp79+4Dz8fF5yymwi5WW7VqFe12D88YiErbtm3Dt2vRokWU24UtMShTpswjz0Wcsh/dRWunTp3Ct9u2bdsDz8U0MVC2bFkLsIYMGfLIcxFfI2fOnFHOXApLLoCZVROVsPcmbdq0jzz38ccfh79GdMuKIibg5syZ88jzMU0MLFmyJHzbyBLmIuI6VHxQRFxO+/bto3yuYsWKFCtWDDAVqiNauHAhAIUKFaJEiRLRHqNmzZqAKc4WVVGwEiVKULJkyUifczgclClTBiDaQnIR3blzh2bNmvHXX3/h4eHBvHnzCAgIeGCbgwcPhlefflw7srBzANi8eXOU24VVto5MuXLlALAsi1OnTj3wXFy/n1EJKyiWMmVKOnfuHKt9I46Bjh07RrldtWrVKFKkyCP7POxJf+ahoaEsWbIEMEXywraLqbD3ulatWmTMmDHabcPe6+h+5g0aNCBTpkyRPufn50eBAgWAmI/dmIhunEXl77//5tixYxw4cCD8Fnb+e/fujbPYHvbXX3+FF2B88cUX8fPzi3Q7Dw+P8N9H//77L7t27YryNZ/0cxYT9+7d48aNGwCkTZs2xvu1bNkyyudKlSoVq+0iGythn6VixYpRqVKlKF8j4uc6us9fVM6dOxf+3j+uTWHz5s3x9PSM9LmI59yiRYsoXyNsu3///ZerV68+8FxY/GnSpKF58+ZRvkanTp0e2edJpEuXLvzfFy5ceOLXEZGkz8PuAEREElqFChWifb5ixYr8/vvvHD16lKCgILy8vADYsWMHYCrKh1UJf5zg4GCuXLkS6UVU4cKFo9037A+2sD/YH6dDhw5s374dMH2pI1Z/DxN2DgBVqlSJ0etC9H8wRnceEf/ofPg84vr9jMru3bsBc/Hk6+sb4/0ADhw4AICXlxelS5eOdttKlSpx6NAhjh079sC4iehJf+anTp0Kv4CoUaNGDKP/T9h7vWzZshi/10/6M4fYj92YiCqh8rCNGzcyevRoVq5cyZUrV6Lc7p9//omr0B4RNm6AaC9oH37+wIEDUX4un/RzFhMR36fYJAYKFiwY5XMR2x3GZLuH47537x7Hjh0DHv8elilTBk9PT4KDgx9472MqLHmYI0eOxybd4vKcwZx3xPth8ZctWzbKBARA5syZyZMnD6dPn36icw4T8ed969atJ34dEUn6NGNARFzO4y4qM2fODJhv3/7999/wxy9duvREx7t9+3akjz/uItXNzfyKvn///mOPMXToUGbNmgVA165d6dKlS6TbxfU5QPTnEXYO8Oh5xEcskQm7AMyaNWusjxV2wZQuXTo8PKLPpWfJkgV4dNxE9KQ/84gXsU9yHk/yXt+5cyfK5+Jy7MZUTC5YBw8eTPXq1ZkzZ060SQGI/vycFfHYj/t9EzZuHt7vYU/6OYuJiK35YvO+xDSmmGwXGhr6wOMRP0OPew89PT1Jnz49EP17GJVFixYBpn3f48TlOcOjP6+w+GOS/AwbO09yzmEi/ryjS0SISPKnGQMi4nJi+o3pw8L+gCtVqhTfffddjPfLnj37Ex0vpn788UcGDRoEQL169Rg1alSU20b8I3TRokXkyZMnRseIzTf0MZVY38/IPOmYSSzC3uunn36aTz75xOZonoy7u3u0z69atYohQ4YAkC9fPvr27Uv16tXJlSsXKVOmDE/sDBw4kKFDh8Z7vGGSwthJkyYNHh4ehISEOHWRGV/i8z28c+cOq1evBh6/jCAhJdS4ifjzjjhzQURcjxIDIuJyLl68SM6cOaN9HswfZhG/pQz7RurmzZsUL148foOMod27d9O2bVssyyJ//vzMmTMn2m+2w84BzB+Bdp5HQr2fGTJk4OzZs5w/fz7W+4ZN0b58+TIhISHRvrdhU+8fHjdxIUOGDOH/fpLzSJ8+PX/99RdBQUGJZuzGtYkTJwJmZsGWLVuirKWQEBe+Eaf2h/0+iUrEJRsR90tIDoeDDBkycOHChShnuyS0iJ+hx72HISEhXL58GYj9e7hy5Uru3LmDr68v9erVi32gcSxdunScP3/+secM/40dZ8ZNxJ93rly5nvh1RCTp01ICEXE5YevwH/d8gQIFHlgnHrEwXGIo0nThwgWaNm3K7du3SZ06NYsWLXrsH4gR189u3LgxvkOMVkK9n2XLlgXMOvvYLkMIu4gOCgpiz5490W67bds24NFxExfy5s0b/m3e+vXrY71/2Hu9Y8cOgoKC4jK0WIuvb0J///13AOrUqRNtgcWIdTYiExfxRUy+bN26Ndptw8bNw/sltLACoEePHrUthoi8vb3Di1g+7j3cvXs3wcHBQOzfw7BlBPXr139gSYVdwuLftWtXtIVWL126xB9//PHAPk8i4s87rPCuiLgmJQZExOVMnz49yue2b98eXsipfv36Dzz37LPPAmYNeXTT9RPC3bt3adasGX/++Sfu7u7MmjXrsQXhwFwk58iRA4AJEyZw9+7d+A41Sgn1foZND759+zYTJkyI1b4Rx8CUKVOi3G7z5s0cPHjwkX3iipubW/j653Xr1oUXVIypsPf62rVrTJ06Nc7ji42IF1/37t2Ls9cNu4iKroDa7t27H3uRGRafM7Fly5YtvEvFnDlzuHnzZqTb3b9/n2nTpgHmG/KwJJYdwopaHjlyJE6LRjoj7LP0+++/P5BAedikSZMe2ScmLMsKLzyYWJYRhMV/9epV5s+fH+V2kydPxrKsB/Z5EmGJ8KxZs2rGgIiLU2JARFzOwoULmTNnziOP37x5k9deew0wF2Jh/w4TGBhIxYoVARg5cmSkrxHR/v37w7+NimudOnUKv8AZOXIkDRs2jNF+bm5u9O/fHzDf1Ldt2zbaC6Dr16/z9ddfOx9wJBLq/Xz55ZfD6xK89957rFu3Lsptz549+8D9ihUrUr58ecBMVV+1atUj+1y7du2BcRNV4Udn9e3bFzc3NyzLomXLlo/EGtHDz7Vr1y58+Uzfvn0fO+tgw4YN0b5PzohYPDGsdWZcCPt2ecOGDRw/fvyR5//++2/atGkT4/icja1bt27hx+3Zs2ek2wwZMiQ8odS5c2e8vb2dOqYzwhIDoaGhj51VkVC6dOkSXqjv1Vdf5fr1649ss3z5ciZPngyYz+vjus5EtHPnTs6fP4/D4YhR4cGE0L59+/DChX369OHcuXOPbLN3716GDx8OmJorzZo1e+LjhSVcGjRo8MSvISLJg2oMiIjLKV++PC+99BLr1q3jhRdewN/fn3379vHxxx9z5MgRwPxRH1l7tJkzZ1KxYkWuXLlCixYt+O6772jRogUFChTA3d2dS5cusXv3bhYtWsSWLVvo06dPnH8TNWXKFL7//nsA6tatS4MGDaJtV5UyZUry5s0bfv/1119nxYoVLFiwgLlz57Jr1y5ee+01KlasSOrUqbl+/TqHDx9m7dq1LFy4EB8fH7p37x6n5xAmId5PHx8fZsyYQWBgILdv36Z+/fq0adOGZs2akSNHDu7du8fhw4dZvHgxCxcufCRRMnHiRCpVqkRQUBCNGjWiR48eNGnShJQpU7J7bjLP8AAABpRJREFU925GjBgR3oO9b9++8TYdvHTp0gwZMoQBAwZw9OhRSpQoQbdu3ahTpw7p06fn6tWr7Nmzh/nz5+Pu7s6aNWvC9/X29mbOnDnUrl2bmzdvUrduXVq2bEmzZs3ImzcvoaGhnD9/np07d7JgwQL279/PV199Ra1ateL8PHLlykWOHDk4e/Ysn376KTly5KBQoULhxQUzZ86Mn59frF+3bdu2LFq0iFu3blGrVi3effddypUrB8CmTZv4/PPPuXDhAlWqVGHz5s1Rvk7VqlVZs2YN27dvZ8SIETz99NOkTJkSgBQpUsS4+OXrr7/O999/z+bNm5k6dSp//PEHXbt2JW/evJw/f54pU6aEfyMcEBDAgAEDYn3Ocalq1apkzJiRv//+m1WrVkXa7jShlShRgj59+jBy5Ej27t1L2bJleeeddyhTpgy3bt1i0aJFjB49mvv37+Pl5cX48eNj9fphswXKlSv3RN0+4kPGjBkZOXIk3bp14+zZs5QrV453332XqlWrEhISwsqVKxk5ciQ3b97E4XAwYcKEJ+4mcOzYMf78808Annvuubg8DRFJiiwRERcwaNAgC7AA6+TJk1bevHnD7z98e/75563g4OAoX+vIkSNW8eLFo9w/4m3IkCGP7J87d24LsNq1axdtzO3atbMAK3fu3FGeS0xutWrVeuS1g4KCrC5dulgOh+Ox++fNmzfa9zM6a9asCd9uzZo1kW7j7PsZU0uXLrXSpk372GNEZtmyZZa/v3+0+3Xr1s26f/9+pPs7+zOPaNiwYZaHh0esf+aWZVmbN2+2cubMGaP3evr06Y/sH/bcoEGDoj2PWrVqRRvHN998E+Vxp06dGr5dTMdZmPbt20f5uu7u7taXX3752Nc8e/aslS5duhi9r497Py5fvmxVq1Yt2ve5SJEi1unTpyPdPy4/ZzHRp08fC7Dy5cvn9LGmTp0avt2pU6ei3O5x53j//n2ra9eu0b6HqVOntpYtWxbp/qdOnYp0bFmWZZUtWzZGv1eie42I4vK9GTZsmOXm5hblOXt7e0f6GQ0Tk8/q4MGDLcBKly6dde/evSi3ExHXoKUEIuJy8ubNy86dO+nfvz9FihTB19eX1KlTU7NmTb777jvmzZsXbfX5ggULsmfPHmbOnMnzzz9Prly5SJEiBV5eXmTNmpXatWvz/vvvs3PnTgYOHJiAZxZznp6efPPNN+zdu5cePXpQokQJUqdOjbu7O6lTp6Z06dJ07NiRefPmcejQoXiNJaHez6eeeoqTJ08yfPhwqlatSvr06XF3d8ff35+yZcvSq1evKNcxBwYGcvz4cfr370/p0qXx9/fH29ubXLly0bp1a3777Te+/vrrB/qTx5f+/ftz8OBBevXqRfHixfH398fDw4OMGTNSq1YtPvzwQ2bMmBHpvpUrV+bYsWOMGzeOxo0bky1bNry8vPDx8SFnzpwEBgYybNgwDh8+TNu2bePtHLp06cKPP/5IYGAgmTJlivbzFhtTpkxhxowZ1KhRAz8/P7y9vcmdOzdt2rRh06ZNvPHGG499jezZs7Nt2zY6duxI/vz5nSpIly5dOtavX8+3335Lw4YNyZw5M56enqRPn57atWvz9ddfs2fPHnLnzv3Ex4hLnTt3Bswyoy1bttgcjeHm5saYMWNYv349rVu3JleuXHh7e+Pv70/p0qXp378/x44dIzAwMFave+7cOXbt2gUknvoCEfXv35/du3fTuXNnAgICSJEiBSlTpqRIkSK88cYbcfIZnTlzJgAdO3aM84KpIpL0OCzrf5VLRERERMSlNWrUiCVLltCpU6fwFpDJ0fjx43n99dfJnj17tPU6kqsNGzZQo0YNvLy8OHbsmAoPioiKD4qIiIiI8dFHH+Hm5sa3334bvv48OQqrL/DMM8/YHIk9hg4dCkCHDh2UFBARQIkBEREREfmfUqVK8dJLLxEUFMRHH31kdzjxpkaNGgwaNCjeuogkZlu3bmX58uX4+fkxaNAgu8MRkURCXQlEREREJNzw4cMJCAjAx8cHy7JwOBx2hxTn3n77bbtDsM3ly5cZNGgQZcuWJUuWLHaHIyKJhGoMiIiIiIiIiLgwLSUQERERERERcWFKDIiIiIiIiIi4MCUGRERERERERFyYEgMiIiIiIiIiLkyJAREREREREREXpsSAiIiIiIiIiAtTYkBERERERETEhSkxICIiIiIiIuLClBgQERERERERcWFKDIiIiIiIiIi4sP8HXOu/tDzRhNAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAYAAALXCAYAAAAe6EJpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XmcjfX7x/HXmcWYMTP2fd/C2Jfsy9izJooUUvaKiIqSJRUJpUh2SpI9WUIxyL5vyZaxhDDCWGY/vz8+X+dnGLOY5Z7l/Xw8zqOz3Mt1n7lncl/353NdNrvdbkdERERERERE0iQnqwMQEREREREREesoMSAiIiIiIiKShikxICIiIiIiIpKGKTEgIiIiIiIikoYpMSAiIiIiIiKShikxICIiIiIiIpKGKTEgIiIiIiIikoYpMSAiIiIiIiKShikxICIiIiIiIpKGKTEgIiKR2Gw2x+NxChUq5FjG398/6YKTZMHX19fx8/fz87M6HJFEpfNdRNICJQZEJMn4+/tHuuhMiMeIESOsPiwRERERkRRNiQERERERSXb8/PwcSWBfX1+rwxERSdVcrA5ARNIOb29v3njjjWiX2bVrF7t37wYgT548PPfcc9EuX7Vq1QSLT0REREQkLVJiQESSTJYsWZg0aVK0y4wYMcKRGChevHiMy4s1VFdAREREJPXQVAIRERERERGRNEyJAREREREREZE0TIkBEUn1QkJCqFSpkqOIVfPmzWNcZ8mSJY7lXV1d2bFjxxPt+4svvnBsp2nTprFeb+PGjY71cuXKRWho6BPt/0E3b95k9OjRPP3002TOnBlPT09KlChBjx492Lt3b5y2Fdt2hTdv3uTHH3+kV69eVKtWjWzZspEuXTq8vb0pWrQoHTt2ZOHChURERMRp/xcuXGDw4MGULVsWb29vvL29KV26NAMGDOCvv/4CInfBKFSoUJTbedwyf/zxB927d6dkyZJkzJgRm81G//79I60bERHBli1bGDZsGE2aNKFAgQJ4eHjg5uZG7ty5adCgAZ988gnXrl2L1TFF1SbywIED9OnThxIlSuDp6YmnpyfVqlXjm2++ISws7JFt7Nmzh65du1KqVCkyZMhA1qxZqV+/Pj/88EOsYoiP8+fPM3ToUMqXL0+WLFnIkCEDJUuWZMCAAZw6dSrO2/v999/p3bs3pUuXJkuWLLi5uZEnTx6aNm3KpEmTuHfvXozbiOo7PX78OP3796dUqVJ4enri7e1N+fLlGTJkSLQ/q/h0VYlp6k1yO9ao3LlzhylTptCqVSsKFiyIh4cHXl5eFC9enNdee40NGzbEaXvRGTFiBDabjfr16zve27RpU5Tf7eN+twFCQ0OZPXs2bdq0oWDBgri7u+Pt7U2JEiXo1q0b69evT7CY49rS8P4xxqW7js4TEUlUdhGRZGT48OF2wA7Y69Wrl2DbPXbsmN3Dw8Ox7a+++uqxy54/f96eOXNmx7IjR4584v1eu3bN7ubmZgfsTk5O9nPnzsVqvZdfftmx/3feeeeJ93/fli1b7Hny5HFs8+GHk5OT4zgffP9xChYs6FjmzJkzUS6zZMkSx7HH9Chfvrz977//jtWx/Pjjj3YvL6/HbsvNzc0+ffp0+5kzZxzvFSxYMMptPbxMcHCwvVevXlFu96233nKsFxISYs+bN2+sji1Dhgz277//Psbjevh7/+yzz+zOzs6P3W7Tpk3tQUFBdrvdbg8LC7P36dMn2jhefPFFe1hYWKy+45jUq1fPsd2NGzfaf/75Z3vGjBkfu293d3f71KlTY7Xtc+fO2X19fWP8XvPkyWPfvHlztNt6+DudMmVKtOdk1qxZ7bt3745yWw+eK3F9PO53JLke68MWLlxoz5UrV4xxtmzZ0n7jxo1YbTM6D/5/IKbH4363d+zYYS9atGiM6zdu3Nh+9erVaON5+Hx/0mUed4zDhw+PdlmdJyKSFFR8UETShJIlS/LFF1/Qq1cvAN59913q169PmTJlIi0XERFB586d+e+//wCoVasWH3zwwRPvN2vWrLRt25Yff/yRiIgIZs+ezbBhw6Jd58aNGyxZssTxunv37k+8f4C9e/fSrFkzbt++7XivSpUqlC1blpCQEHbs2MHp06cZPnw4mTNnjte+HnTlyhWCg4MByJcvHz4+PuTKlQsPDw9u377NsWPH2LdvH3a7nYMHD1K3bl0OHDhA1qxZH7vNZcuW0alTJ8LDwwFwdnamVq1aFC9enNu3b7N161YuXLhAjx49+Prrr+Mc84ABA5g6dSoAZcuWpXz58ri6unLixAmcnP5/kF14eDj//PMPAJ6enpQuXZoiRYrg7e1NaGgoFy5cYMeOHdy6dYs7d+7QuXNnXF1d6dChQ6zimDp1Ku+99x4A5cqVo0KFCjg7O7Nz507+/PNPANauXUu/fv2YOnUqr7/+OtOmTcPJyYmnn36aUqVKOUY0nDlzBoAFCxZQvnx5Bg8eHOfvJTp79uzhgw8+ICQkhKxZs+Lr60vmzJnx9/dn06ZNhIaGcu/ePXr16oWzszPdunV77LaOHTtGw4YNuXTpEmDublaqVAkfHx/c3d35559/2Lx5M4GBgVy8eJHGjRuzZs2aSHeWH2fOnDn06dMHgBIlSlClShXc3d3566+/2Lp1K3a7nYCAAFq3bs2xY8fImDFjpPVj01XlvkOHDrFlyxbH6wfvzqaEY33QF198wcCBA7Hb7Y7voUaNGuTLl4/w8HCOHj3Knj17sNvtrFy5El9fX7Zu3YqHh0esvquoVK1alTfeeIN//vmH5cuXA4/vUhPV34vNmzfTrFkz7t69C5jvtmrVqvj4+ET6mwewfv16atWqxR9//EH27NmfOObEovNERJKMdTkJEZFHJdaIgfvatGnj2H7ZsmUdd1zv++STTxyfZ8yY8bF3+uJi48aNjm0WKlTIHhEREe3ykydPdixfp06deO07ODjYXqpUKcf28ufPb9+2bdsjy82dO9fu5uZmT5cu3SN3lKISmxEDK1assI8ePdp+8uTJx27n77//tjdt2tSxrW7duj122StXrtizZs3qWLZixYr2EydORFomIiLC/tVXX9mdnZ0j3QWLzYiB+3fn8+fPH+VdtwfPleDgYPurr75q37hxoz0kJCTKbQcFBdnHjh1rd3FxsQP2TJky2QMDAx97fA9+725ubvZcuXJFeedx3LhxjuVcXFzsEyZMsAP2UqVK2Q8cOBBp2bCwMHv//v0dy3t6etpv37792Bhi68G7o/fPmUGDBj3y+3T+/Hl7nTp1HMt6eHjYT506FeU2b9++HelcbdasWZTL3rx5M9LoiNy5cz/27uPD32n27Nnta9aseWS5TZs22b29vR3LxmeU0Llz5yLdNe3YsWOKPdbffvvN7uTk5Pg5jxkzxn7nzp1Hltu/f7/dx8fHsc0+ffpE9xXF2oN/O2P7/4Pr169HGs1TvHhx+549ex5Zbt68eXZ3d3fHcq1atXrsNq0aMaDzRESSkhIDIpKsJHZi4Nq1a5GG1Pfr18/x2c6dOx0XcYD9hx9+SLD9PvXUU47trl+/PtplK1Wq5Fh27ty58drvtGnTHNtKnz69/dixY49ddt68eY8M+Xyc2CQGYiskJMRerlw5R4zXr1+Pcrn33nvPsc88efLYr1279tht3r9Yjkti4P6F6/Hjx+N1PA8bM2aMY/vffPPNY5d7MI706dPbjxw58thlGzVqFGn5HDly2P/9998olw0LC7OXKFHCsexPP/0U72N68CIIsPfu3fuxywYGBtpLlizpWLZz585RLvfRRx85lnnuuefs4eHh0cbwyiuvOJYfM2ZMlMs8fBF08ODBx25v0qRJjmVLliwZ7b4f5/bt2/YKFSo4tlOtWjX7vXv3HlkuJRxreHi4vXjx4o7lli5dGm2Mly5dsufMmdMO2F1dXe3nz5+PdvnYeJLEwLBhwxzrZM6cOdrpW0uXLo30vW3atCnK5axKDOg8EZGkpMSAiCQriZ0YsNvN3Q2bzWYH7Dabzb569Wp7YGCgvVixYo59v/zyywm6z7Fjxzq2/eKLLz52uf379zuWy5gxo/3u3bvx2m/VqlUd24tNrYKaNWsmeWLAbjfz6e9vb8WKFY98Hh4ebs+RI4djmWnTpkW7vbCwsEg/z9gmBt599914H8vD/v33X8f227Zt+9jlHozjwXoGUZk5c2ak5b/88stol//www8dyw4cOPBJDiOSBy+CvLy8YpwvvGLFikhJj4eXDwkJcfx83dzcHpvkeNA///zj+D0uW7ZslMs8+B317ds32u3dunXLkRi02Wz2mzdvxhjDgyIiIuzPPfecY3/58+e3X7p06ZHlUsqxLl++3LG9Nm3axBij3W63jx492rHO+PHjY7VOdOKaGIiIiIg0WmPChAkxrtOsWbMY/zZbkRjQeSIiSU01BkQkzWnYsCHvvPMOY8eOxW638+qrr1KnTh1H5fRChQrxzTffJOg+u3btytChQwkJCWHZsmVcv36dLFmyPLLczJkzHc9feukl3N3dn3ifgYGB7Nmzx/G6S5cuMa7zyiuvsG3btife5+PcuHGDHTt2cPToUQICArh9+3akTgT3OwmAqcTfqlWrSOsfO3aMK1euAODi4hLjXH1nZ2c6duzIqFGj4hTniy++GKflwdSl2Lt3LwcOHODChQvcunXrsV0kDhw4EKttPv/889F+XrZs2Tgt/2Atjfs1BxJK69ato517DNC8eXOyZ8/O1atXCQoKYvv27TzzzDOOz/fs2eP4+TZs2JAcOXLEuN88efJQsmRJjh07xpEjR7h582a0cbzwwgvRbs/Ly4uiRYty/Phx7HY7Z8+efeR7js4HH3zAsmXLAMiQIQMrVqwgV65cjyyXUo519erVjucvvfRSjDECNGjQwPH8jz/+4O23347Vegnl2LFjXL58GTB/A2LzN6979+6sWbMGIFbdBJKKzhMRSWpKDIhImvTxxx/z+++/s3fvXv79918WL14MmH9M/vDDD3h7eyfo/rJnz06bNm1YuHAhwcHB/PDDD/Tt2zfSMkFBQZHaysW36OChQ4ccF99eXl6ULl06xnVq1KgRr30+7H5bwcWLFzsKEcYkqvZYD15QlypVKlY/n2rVqsU6TgBXV9c4XQiGhYXx1Vdf8cUXX3DhwoVYrRPb1l8PF8V82INFIjNmzEjevHmjXf7BJNStW7diFUNsxeaccXZ25umnn3ZcROzfvz9SYmD79u2O5xcuXODNN9+M1b5v3LgBgN1u58KFC9FeBMXmZ/tgIbu4fE/z5s1j9OjRgCkON2/ePCpUqBDlsinlWB+Mc8mSJWzatCnGbd68edPx/Pz58zEun9D279/veF6iRIloC5neV6tWLcfzy5cvc/HiRfLkyZMo8cWFzhMRSWpKDIhIinP9+vUYK/tXr16dTp06PfZzV1dX5s+fT6VKlbhz547j/aFDh1KzZs1ot71z506+//77aJfp3LnzIxemPXv2ZOHChYAZGfBwYmDZsmWObggVK1akUqVK0e4jJlevXnU8z58/f5SV0R9WoECBeO3zQfv376dhw4aOY4qtwMDAR957+FhiI1++fHHab+bMmXFxid3/FoODg2ndujXr1q2L0z6iOraoxHQH/sE4Y1r24eUfN5rhScX2nHlwuQd/ngAXL150PD906BCHDh2KcxwxnWex+Z5cXV0dz2P7Pe3YsSNSEu/TTz+lTZs2j10+pRzrg3H+9NNPcYjOeDjGiRMncvLkyWjXmTRpUpz386AHz6uCBQvGap2cOXOSPn16goKCAJO8Sw6JgbR6noiIdZQYEJEU59atW0yePDnaZW7fvh1tYgBMOyV3d/dIiYHo/kF/37Fjx2Lcf5UqVR5JDDRo0ICiRYty+vRpDh48yN69e6lcubLj8wenEcR3tAAQqT1hbFtCZciQId77BXPh3K5dO8c/+rJnz06vXr1o2LAhxYoVI0uWLLi7uzuSFXPmzOHVV18FiDTF4L4nORZPT884xRyXaRsjR450JAVsNhvt27enXbt2lC1bljx58uDu7h7pH9T3j9P+v1ZeMYlNEudJlk0MT3JuPZwgefAO4pMKCwuL9vPE+J7OnTtHmzZtHKNhunTpEmM7yJRyrPGN8+EYly1bFuPd5PgmBh78OxGXv2UZMmRwJAZim7xLbGn1PBER6zjFvIiISOpjt9vp2rXrI0O7u3TpEush73Fls9kiXfA/mAg4c+YMGzZsAMwF6ssvvxzv/T14YXy/n3dMHkySxMeSJUscc9nz5s3LwYMHGTVqFL6+vuTLlw8PD49I/yiN6R/jVh7Lw4KDg/n6668dr+fMmcOCBQt44YUXKFmyJN7e3pGSAsnlQiOxPMnPw8vLK9JnD17E9evXD7spjhynh6+vb4IcT2zduXOH1q1b8++//wJmSPq0adNiXC+lHOuDce7bty/OMfr7+yd6jA978O9EXH7/ozs3E0tUCdAH6TwRkaSmxICIpDiFChWK8R8bc+bMiXYbX375JWvXrgXMPwTvDx09fPgw7777brTrdu3aNcb9d+3aNcp1X331VcdF4/z587l37x4As2fPdtxNfv7552M1xDMm2bNndzy/cOFCrO5WJ9R8z99//93xvH///uTOnTva5c+ePRvt59myZXM8j+18/tguF1e7du1y3JksXbp0jAXOYjq2lO7cuXOxWu7Bc+vBnyeY4dz33S8el5zZ7XY6derEwYMHATNsfenSpbi5ucW4bko51oSO08/PL8a/m/H14N+82J6XV65ccYwWgEfPzdh6MBkYm7vgMd1pT6vniYhYR4kBEUlzDh06xJAhQxyvv/76a77//nvHHeyvv/6aX3/9NVH2nTNnTlq3bg2YfxguWbKEiIiISImMbt26Jci+ypUrh5OT+TN/69Yt/vzzzxjXebCQVHw8OO80NgWuNm/eHO3nDxZyO3bsWKzuwu/atSvGZZ5EQh9bSrdjx44YlwkPD2f37t2O1w/Xz3hw2s22bdsS5CIxMb3//vssX74cMInFX375JVZV4yHlHOuDcW7dutWSGOI61L1ixYqO53/99RfXr1+PcZ0Hjy1XrlxPXF/gwYKoAQEBMS5/+PDhaD/XeSIiSU2JARFJU4KCgnjppZcc0wXat2/PK6+8QoMGDRg0aBDw/9MMHi6QllB69uzpeD5z5kzWrVvnuJtavHhx6tWrlyD78fLyokqVKo7XMRVMBPjuu+8SZN/3ExIQ81DzvXv3RrpojIqPj4/jwis0NNRRxPFxIiIi+PHHH2MZbdzE5dgiIiJiNbw8JVuxYkWMFfx//fVXR+u19OnTP9LJoFatWmTKlAkwIz1++eWXRIk1IXz//feMGTMGMOfCjz/+GKduFinlWFu2bOl4PmvWrEh31ZNK+vTpHc9jUwyyVKlSjhaR4eHhzJs3L8Z1HpzSVb9+/SeI0ihUqJDjeUxtSS9evMgff/wR7TI6T0QkqSkxICJpyqBBgzh69ChgqttPnTrV8dnHH3/suOP077//8tprryVKDI0bN6Zw4cIAbNq0ieHDhzs+S6jRAvc9WNPgq6++4sSJE49ddsGCBTH+YzW2ihQp4ni+YsWKxy539+7dSImSx3FycuKVV15xvB4xYkS0dwMnTZoU7bHGx4PHtmnTpmiHBH/++eeO4eap1a1bt3j//fcf+/mdO3ciTc+JaqqMm5sb/fv3d7x+/fXX+eeff2Idw/15/olt27Zt9OjRw/F67NixtGjRIk7bSCnH2q5dO4oVKwbApUuXeP3112N91/r27dsJUuPjwVZ5sfmObDZbpL8nH330UbTrrVixglWrVjle9+7d+wkjjXzn/Mcff4y2Vs2AAQNiTHToPBGRJGcXEUlGhg8fbgfsgL1evXoJuu1Vq1Y5tu3k5GT38/N7ZJljx47ZPTw8HMtNnjw5QWO47+OPP3bs4/7DxcXFfvny5QTdT1BQkL1EiRKOfRQoUMC+Y8eOR5abN2+ePX369PZ06dJFiulxChYs6FjmzJkzj3y+du1ax+c2m80+btw4e1hYWKRlTp48aa9Vq5YdsGfIkMGx/CuvvBLlPi9fvmzPkiWLY7kqVarYT548GWmZiIgI++TJk+3Ozs52Nzc3x7IFCxaMcptnzpyJcZmHhYeH2/PmzetYr3HjxvZ//vkn0jJBQUH2Dz/88JFji+47jc0yTxr3xo0bE/T3ql69eo7t3T9n3nvvPXtwcHCk5S5cuBBpWXd390d+ZvcFBgbaS5cu7Vg2V65c9oULF9rDw8OjXP7q1av2qVOn2itWrGgfOHBglMvE5Tt9+Lg2btwY6bOzZ8/ac+TI4fj8tddei9U2o5Lcj/W+9evX252dnR3LNWvWzP7nn38+dpv79++3v/vuu/ZMmTLZDx8+HKs4ohMWFhbp7/GuXbtiXOf69euRfj9LlChh379//yPL/fjjj5G23apVq8duMzbf1Z07d+xeXl6O5Tp16mS/e/dupGUCAgLsnTt3tgOR/j4NHz48ym3qPBGRpKR2hSKSJvz777+OdngA7777bpRD9kuWLMn48ePp06cPYEYY1K9fn1KlSiVoPK+99hojRoyIVKSqZcuWkQo5JQQ3Nze+//576tevz507dzh37hzVq1enatWqlClThpCQEHbs2MGpU6cAM6qgX79+8d5vkyZNqFu3Lps3b8ZutzNo0CAmT55MpUqVyJgxIydPnmTbtm2Eh4eTN29e3nrrrRiLPubMmZOpU6fSoUMHIiIi2LNnDyVLlqROnToUK1aMO3fu8McffzimZXz55Zf07dsXiDz8P76cnJwYNWqUY0TJ+vXreeqpp6hZsyYFCxYkICAAPz8/R6vGadOmJUiXieTq448/5oMPPuCzzz5j5syZ+Pr6kjlzZs6ePYufnx8hISGOZb/88kvH3cWHeXp6smLFCho1asSZM2e4fPky7du3J1u2bFSvXp1cuXJht9u5fv06f/75JydPnnRUdm/QoEGiH+fs2bMd0yGcnZ1xcXHhzTffjNW6H330EVmyZHG8Tu7Hel+jRo2YMmUKffr0ITw8nDVr1vDrr7/i4+NDuXLl8Pb25u7du1y6dImDBw8m+PQrZ2dn2rRpw/z58wHw9fXlmWeeoUCBAjg7OwOQJUuWSCNWMmfOzPz582nWrBl3797l+PHjVKpUiWrVquHj4/PI3zwwU7genFLwJDw8PPjwww8df8fmzZvHunXrqF+/Pt7e3pw/f57Nmzdz9+5dypQpQ9OmTRk/fny029R5IiJJytq8hIhIZIk1YqBZs2aR7jSHhIREu3zr1q0dy1eoUOGRO6EJoU2bNpHu3qxcuTLB93Hfpk2b7Lly5XpklML9h5OTk+OuFbG4oxTTiAG73dzhr1Sp0mP3Cdh9fHzsR48etc+ePTvGEQP3/fDDD3ZPT8/HbtPNzc0+bdo0+4kTJxzvlS9fPsptPcmIgfvef//9aI8tffr09m+//dZut8fuO43NMk8ad2KOGNi4caN9+fLldm9v72i/i2+++SZW2w4ICLC/8MILdpvNFu33e/+RKVMm+5w5c6LcVly+06iO60EP/m2K6+NxvyPJ9VgftmHDBnvx4sVjfbylS5d+ZBTNk/L394/2b9fjzv/t27fbixQpEmOsjRo1sl+5ciXaGGL7XYWHh9u7d+8e7f6qV69uv3DhQqTz6XEjBu7TeSIiSUEjBkQk1fv6669Zs2YNYHou//DDD5FaS0Vl5syZlCtXjkuXLnHgwAHef/99xo0bl6BxtW3b1lHZPF++fDzzzDMJuv0H1a1bl2PHjjF58mSWLl3K6dOnCQ0NJU+ePNStW5devXpRtWrVBN1nzpw52bZtGzNmzGDBggUcOXKEu3fvkiNHDkqUKEGHDh14+eWX8fDwiFMHgZdeeok6derw9ddfs2rVKs6dO4fNZiNfvnw0adKE3r17U7JkSXbu3OlY534Rr4T0ySef0KxZMyZNmsQff/zB1atX8fLycvwsu3XrRvHixRN8v8nRs88+y6FDh/j2228dP5OQkBDy58/PM888w5tvvhnr7yJLliwsXLiQI0eO8OOPP+Ln58eZM2cICAjAycmJTJkyUaxYMSpVqkSjRo1o3LhxpCJ1KUlKOdb69etz7Ngxli9fzqpVq9ixYweXL1/m1q1beHh4kDNnTkqWLEnNmjVp1qxZpC4i8VWwYEEOHjzIpEmTWLduHSdOnCAwMDDGloDVq1fn2LFjzJs3j+XLl3PgwAGuXLmCq6sruXLlonbt2nTs2JEmTZokWKxOTk5Mnz6d5557jmnTprFz504CAgLImjUrpUqVolOnTnTu3DnG//88TOeJiCQFm92eTPufiIikcq+++qqjTeHQoUMZNWqUtQGlMtOnT3cUIuvduzdTpkyxOCIRERGR5EldCURELBAYGMiiRYsAc5cpsTogpGU//fST4/nTTz9tYSQiIiIiyZsSAyIiFpg5c6ajTVPTpk0d7QslYSxdupTff/8dML3Qn3vuOYsjEhEREUm+lBgQEUli/v7+fPzxx47XAwYMsDCalOV+H/kDBw5E+XlwcDBffvklHTt2dLzXs2dPMmfOnEQRioiIiKQ8qjEgIpIE+vfvD8DFixdZtWoVd+/eBUxLqft3tiVmfn5+1K9fH4D8+fNToUIFcubMid1u559//mH79u3cvHnTsbyPjw+7du0iQ4YMVoUsIiIikuwpMSAikgRsNtsj7+XIkYMdO3ZoGkEcPJgYiEnTpk2ZP39+pP7xIiIiIvIoJQZERJLA/cSAs7MzOXPm5JlnnmHEiBHkz5/f4shSloiICDZt2sTq1avZvXs3ly5d4tq1a9y6dQtvb2/y5MlD7dq1efHFF6lXr57V4YqIiIikCCkyMTBlyhSmTJmCv78/AKVLl2bYsGE0a9YMgMuXL/POO++wfv16AgMDKVGiBB988AHt2rVzbKNQoUKcPXs20nZHjx7N4MGDYx1HREQEFy9exMvLK8q7gSIiIiIiIiIJyW63ExgYSJ48eXBySpiygS4JspUkli9fPsaMGUPx4sWx2+3MnTuXZ599lv3791O6dGm6dOnCjRs3WLFiBdmyZWP+/Pm0b9+ePXv2ULFiRcd2PvroI3r06OF47eXlFac4Ll68qLt9IiIiIiIikuTOnz9Pvnz5EmRbKXLEQFSyZMnC559/Trdu3fD09GTKlCl07tzZ8XnWrFn57LPP6N69O2BGDPTv399REOxJ3Lx5k0yZMnHmzBnNYZVUKzQ0lHXr1tGkSRNcXV2tDkckUeg8l7RA57mkBTrPJS24fv06hQsX5saNG2TMmDFBtpkiRww8KDw8nEWLFnHnzh1q1KgBQM2aNfnpp59o0aIFmTJlYuHChQQFBeHr6xtp3TFjxjBq1CgKFCjASy+9xIABA3BxefxXEhwcTHBwsON1YGAgYHpku7u7J/zBiSQDLi4ueHh44O7urv/BSqql81zSAp3nkhboPJe0IH369EDUxa2fVIpNDBw+fJgaNWoQFBSEp6cny5Ytw8fHB4CFCxfSoUMHsmbN6vjjsGzZMooVK+ZYv1+/flSqVIksWbKwbds2hgwZwqVLl5gwYcJj9zl69GhGjhz5yPsbN27Ew8Mj4Q9SJBlZv3691SGIJDqd55IW6DyXtEDnuaRm99teJ6QUO5UgJCSEc+fOcfPmTRYvXsyMGTPYtGkTPj4+9O3bl127dvHpp5+SLVs2li9fzhdffMGWLVsoW7ZslNubNWsWvXr14vbt27i5uUW5zMMjBm7dukX+/Pm5dOkSWbNmTZTjFLFaaGgo69evp3Hjxsq8S6ql81zSAp3nkhboPJe0ICAggNy5c3Pz5k28vb0TZJspdsRAunTpHCMAKleuzO7du5k4cSLvvvsukyZN4siRI5QuXRqA8uXLs2XLFiZPnsy3334b5faqVatGWFgY/v7+lChRIspl3NzcokwauLq66g+PpHo6zyUt0HkuaYHOc0kLdJ5LapYY53bC9DZIBiIiIggODnYMq3i4bYOzszMRERGPXf/AgQM4OTmRI0eORI1TREREREREJDlJkSMGhgwZQrNmzShQoACBgYHMnz8fPz8/1q5dS8mSJSlWrBi9evVi3LhxZM2aleXLl7N+/XpWrlwJwPbt29m5cyf169fHy8uL7du3M2DAADp16kTmzJktPjoRERERERGRpJMiEwNXrlyhS5cuXLp0iYwZM1KuXDnWrl1L48aNAVi9ejWDBw+mVatW3L59m2LFijF37lyaN28OmCkBCxYsYMSIEQQHB1O4cGEGDBjA22+/beVhiYiIiIiIiCS5FJkYmDlzZrSfFy9enCVLljz280qVKrFjx46EDktEREREREQkxUmRiQEREREREYkfu91OaGhotHW4UprQ0FBcXFwICgoiPDzc6nBEouXk5ISrqys2m83qUJQYEBERERFJS0JCQrhy5Qp3795NdRfPdrudXLlycf78+WRxsSUSE2dnZzw8PMiRIwfp0qWzLA4lBkRERERE0oi7d+9y/vx5nJ2dyZw5M+7u7jg7O6eai+iIiAhu376Np6fnI13KRJITu91OeHg49+7d4+bNm/j7+5MvXz48PDwsiUeJARERERGRNOLatWu4urpSsGBBnJ2drQ4nwUVERBASEkL69OmVGJAUwdPTkyxZsnD27FmuXbtGgQIFLIlDvy0iIiIiImlAWFgYd+7cIUuWLKkyKSCSUjk7O5MlSxbu3LlDWFiYJTEoMSAiIiIikgbcv+Bwc3OzOBIRedj930slBkREREREJNGllnoCIqmJ1b+XSgyIiIiIiIiIpGFKDIiIiIiIiIikYUoMiIiIiIiIiKRhSgyIiIiIiIg8oFChQthstkcenp6elC9fniFDhhAQEJCg++zatSs2m405c+bEab0RI0Zgs9kYMWJEnNbz8/PDZrPh6+sbp/XiYs6cOVF+jzE94vodSPy5WB2AiIiIiIhIclSrVi2KFSsGQEREBBcvXmTbtm2MGTOG7777ji1btlCkSBGLo0y+ihUrxiuvvPLI+3/88QenT5+maNGi1K5dO8r1JGkpMSAiIiIiIhKF7t2707Vr10jvXb58mXr16nHixAneffddFi9ebE1wKUDt2rWjvPDv2rUrp0+fpnbt2hodkExoKoGIiIiIiEgs5cqVi3feeQeA33//3eJoRBKGEgMiIiIiIiJxkCtXLgDCwsIe+ex+fQJ/f/8o141NLYGDBw/Stm1bsmfPjru7O+XKlWPixImEh4dHG9fZs2fp0qULuXPnJn369Dz11FOMGDGCe/fuxfrY7vvvv/8YPnw4FSpUwMvLCw8PD8qWLcvHH3/M3bt347y9uDhx4gS9evWiaNGipE+fnowZM1K3bl3mzZsX5fK+vr7YbDb8/PzYsWMHLVq0IGvWrHh5eVGvXj22bNniWPbXX3+lYcOGZM6cGU9PTxo3bsy+ffse2aa/vz82m41ChQoRFhbG2LFjKV26NO7u7mTLlo327dvz119/Jdp3kNSUGBAREREREYmDXbt2AVC6dOlE2Xb16tXZv38/DRs2pG7duhw/fpz+/fvz4osvYrfbo1zvzJkzVK5cmXXr1lGnTh0aN27MxYsXGTlyJI0bNyYoKCjWMfz555+UL1+ejz76iCtXrlC7dm0aNWrE1atX+fDDD6lVqxY3b95MqEOOZNGiRZQvX55p06aRLl06mjdvTpUqVdi3bx+dO3fmtddee+y6q1atok6dOly6dInGjRtTrFgxNm/eTOPGjdm2bRuTJ0+mRYsWBAUF0aRJE/Lmzctvv/1GvXr1OHXq1GO326FDB4YOHUqePHlo06YNGTNmZNGiRTz99NNs3749Mb6GJKcaA4ls2jSoVg3Kl7c6EhERERGRaNjtkMh3ghOVh0eibj4iIoJLly6xbNkyxo4di7OzM0OHDk3w/UyZMoXXX3+diRMn4uJiLteOHj1K/fr1Wbx4MdOmTaNXr16PrPfdd9/x7LPP8uOPP+Lu7g7AhQsXaNiwIVu3bmXkyJGMHj06xv3fu3eP1q1bc/78eYYOHcqHH35IunTpALh79y7du3fnxx9/ZMCAAcyaNSsBjxwOHz5M586dsdlsLFmyhLZt2zo+O3v2LK1atWL27Nn4+vrSpUuXR9YfP3483333HZ06dXK8N3DgQCZMmMBrr73GP//8w7p162jYsCEA4eHhdOjQgSVLlvDZZ58xffr0R7Z59uxZ7ty5w549eyhXrpxjvQEDBvD111/TsWNHjh8/jpubW4J+F0lNIwYS0T//wOuvQ4UKULMmfP89xCFRJyIiIiKSdO7eBU/PlPtIhKTGq6++6mih5+zsTL58+ejbty/lypVj06ZNtGzZMsH3mTt3bsaPH+9ICoAZmTBs2DDAXPxGxd3dnW+//daRFADIly+fY/lvvvkmVqMG5s6dy+nTp2nZsiWjRo1yJAUAPDw8mDZtGjly5OD777/nv//+e6JjfJxPPvmE4OBgPv7440hJAYCCBQsyc+ZMAL766qso13/++ecjJQUAPvjgAwCOHz9Onz59HEkBAGdnZ95//30g+noRQ4cOdSQF7q/3+eefkzdvXs6ePcuSJUvicJTJkxIDiSgoCNq1AxcX2L4dunSBfPng3Xfh9GmroxMRERERkejUqlWLV155xfFo0aIF+fPnZ/fu3QwYMICTJ08m+D7bt29P+vTpH3n/ftu/kydPcvHixUc+b9KkiaP2wYNatmxJ1qxZuXXrVpRz6R+2atUqwAyfj4qnpydVqlQhLCyM3bt3x7i92IqIiGDNmjXR7rtKlSp4enqyf//+KJMczZs3f+S9LFmykDVr1sd+Xrx4cYAov9P7omq56Obm5ojTz8/vseumFJpKkIiKFoWffoLLl2HGDDOt4Px5+Pxz82jaFPr0gRYtTPJARERERMQyHh5w+7bVUTw5Dw8zHSIBRdWuMCwsjGHDhjF69Gjq1avH8ePH8fLySrB9Fi5cOMr3vby8yJo1KwEBAVy4cIE8efLEaj0wBRHvrxeTv//+G4DOnTvTuXPnaJe9evVqjNuLrYCAAG7dugVA/vz5Y7V83rx5I71XoECBKJf19PQkICAgys/v/+yCg4OjXDdTpkxkypQpys/uf+ex+V6TO12OJoFcuWDoUBg8GFavhilTYO3a/3/kywc9e0L37pA7t9XRioiIiEiaZLNBhgxWRxE/CZwYiIqLiwsff/wx06dP59KlS3z33Xe88cYbsV4/IiIi3jE8rgBhQqx3P75nnnmGnDlzRrtswYIFnyiO6PYLUd+hf1hUc/qdnKIfEB/T50/qSX8eyYkSA4lt4ULImxdq1cLFBVq3No+//4apU2HWLLhwAYYNg48+gjZtTF0CX1/zt1lERERERJIXJycnChUqxLVr1zh27Fikz+7PyQ8MDIxy3bNnz0a77TNnzkT5fmBgIAEBAYCpHRDb9QBH68So1ntY/vz5+euvv+jWrRvPP/98jMsnlGzZsuHu7s69e/cYN24c2bJlS7J9R+fGjRvcuHEjylEDcflekzvVGEhMf/wBL78MjRvD/+bq3FekCHz2mZla8P33pjhhWBgsXgwNGoCPD0ycCDduWBO6iIiIiIhELSIiwnFR6OnpGemz+8PbH04YAFy+fDnGef6LFi2Kclj7999/D0CxYsUeGUIPsG7dOq5cufLI+6tXryYgIAAvLy8qV64c7b4BmjVrBsDChQtjXDYhOTs707hxY0v2HZP73/2DQkJC+OmnnwDw9fVN4ogSnhIDialSJWjSBO7dg2efhXnzHlkkfXro1Am2boWDB6F3b1NU9a+/oH9/yJMHunWDPXuSPnwREREREYksLCyMoUOHcu3aNQBat24d6fNGjRoB8Nlnn3Hjgbt8V69epUuXLtyOoY7DxYsXGTRoEOHh4Y73jh07xkcffQTAgAEDolzv3r179OnTh3v37kXa1sCBAwHo3bt3lEUNH9azZ08KFizIokWLeO+996Ic+XD58uUoW/vF1/Dhw0mXLh3vvPMOc+fOjXLaxZEjR1i6dGmC7zs6o0aN4siRI47XERERvPfee1y4cIH8+fPTrl27JI0nMWgqQWLy8IDly+G110xSoHNnuHbNXPFHoVw5U39g7Fiz+JQpcPiwmW4waxZUqWKKFb74YqK3aRURERERSfNmzJgRqeJ8QEAABw8e5Pz584BphVezZs1I67zxxhtMnz6dffv2UaJECWrUqMGdO3fYvXs3BQoUoE2bNixfvvyx++zduzczZsxg1apVVKtWjf/++4+NGzcSEhLCc889R58+faJcr0uXLqxcuZIiRYpQp04dgoKC2LBhA3fu3KFGjRqMHDkyVsecIUMGVq1aRcuWLRk7dizTpk2jXLly5MuXj7t373LixAmOHTtGjhw56NGjR6y2GVuVKlVi3rx5dO3ala5duzJ06FB8fHzInj07169f5/Dhw1y4cIEOHTo80s4wsRQoUIDKlStTqVIlfH19yZo1K7t37+b06dNkyJCB+fPnxyrhktxpxEBic3WFuXP/PxkwYAC8/360hVG8vEwC4OBBMxvhpZcgXTozaqBbN1OyYMAAOH48aQ5BRERERCQt2rp1K3PnznU81q1bh5OTEx06dGDjxo18/PHHj6yTKVMmtm7dSpcuXQBYs2YNp0+fpmfPnmzbto2MGTNGu89q1aqxbds2ypQpw/r16/Hz86N48eJMmDCBhQsXYntMIbLChQuzZ88e6tevz+bNm1m7di25c+dm2LBh/Pbbb7i7u8f6uEuXLs2hQ4cYO3YspUqV4tChQyxatIidO3eSIUMGBg0axLJly2K9vbh44YUXOHr0KAMGDHB8l0uWLOHPP/+kWLFijBkzhk8++SRR9h0Vm83GwoULGTFiBOfPn2fZsmX8999/tGvXjl27dlG7du0kiyUx2eypoYSiRW7dukXGjBm5du2aozfmY9ntMGaMSQoA9OhhhgQ4O8dqX1evmlEDU6fCg3VFGjQwSYRnnzU5CJGEFhoayurVq2nevDmuOskkldJ5LmmBznMJCgrizJkzFC5cOFXc4YxKREQEt27dwtvbO9Eq0Eva4O/vT+HChSlYsKCjnkRiisvvZ0BAANmyZePmzZt4e3snyP7125JUbDYYMgSmTQMnJ5g+Hdq3h6CgWK2ePTu89x6cOmVaHrZqZTazYQO88AIULGg6G6SCFpoiIiIiIiKShJQYSGo9esCiRWZuwNKl0Lw53LoV69WdnKBZM1ixwrQ8fP99yJEDLl2CUaNMgqBNG1i7FhKgRaqIiIiIiIikckoMWKFtW/j1V1NMYONGqF8fomgtEpOCBeGTT0zLwwULoF49kwz4+Wd45hl46ikYNw7+1+5URERERERE5BFKDFilfn3w8zNzBPbtg1q14AnnrqRLBx06mM0dPQp9+4K3N5w+De+8Y4oVdukC27dHW/NQREREREREgEKFCmG325OkvkByoMSAlSpVMm0HChY0xQNq1jT9CePBxwe++gouXjTlDCpWhOBg+P57s/mKFU0Bwxjap4qIiIiIiEgaocSA1Z56CrZtgzJlTKGAunVh69Z4bzZDBlPOYO9e2LEDXnkF0qc3LRB794Y8eeDNN+HYsQQ4BhEREREREUmxlBhIDvLkgc2bzS39GzegcWNYtSpBNm2zQbVqMGcO/PMPjB8PxYtDYCBMnmxGGDRsCMuWQVhYguxSREREREREUhAlBpKLzJlh/XrTpeDePXj2WZg3L0F3kSULvP02/PUXrFtnuhfcb3nYti0UKQKffvpEdRBFREREREQkhVJiIDnx8IDly6FTJwgPh86d4csvE3w3Tk5mUMKyZabl4eDBkC2b6W7wwQeQP7/Z9c6dKlYoIiIiIiKS2ikxkNy4usLcudC/v3k9YAC8/36iXaEXLAijR5ukwNy5ULUqhISYwQrVq8PTT5tpCPfuJcruRURERERExGJKDCRHTk4wYYIZ1w/myr1XLzOKIJGkT29aGu7cCbt2mWKFbm6meOGrr0K+fPDee0/cUVFERERERESSKSUGkiubDYYMMT0HnZxg+nRo3x6CghJ91/dHCVy4AGPGQIECcP06jB1r6hC0bm1qFEREJHooIiIiIiIiksiUGEjuevSARYsgXTpYutQUJ7x1K0l2nS2bGSXw99/w88+mLoHdDr/8Ak2bQsmSMHGiaaQgIiIiIiIiKZMSAylB27bw66/g5QUbN0L9+knaOsDZ+f9HCfz1F/TrB97ecPKkKYWQNy/07g2HDydZSCIiIiIiIpJAlBhIKerXBz8/yJ4d9u2DWrUsmfBfooQZJfDPPzBlCpQuDXfvwtSpUK4c1KtnBjiEhiZ5aCIiIiIiCaJQoULYbDbHw8nJCS8vL/Lly0f9+vUZNGgQu3btsjrMOHv4uGLzKFSokNVhSxJwsToAiYNKlWDrVmjSBE6dgpo1zW38MmWSPBRPTzNKoFcv2LwZJk0y7Q83bzaPPHnMZz17Qq5cSR6eiIiIiEi81apVi2LFigFw7949rl27xv79+/Hz82P8+PHUq1ePWbNmUaRIEYsjjZ3nn3+ea9euRXrv9u3bLFmyBIB27drh6ekZ6fNs2bIlWXxiHSUGUprixU1yoGlTOHIE6tSBlSvNCAIL2GxmlEC9eqZY4bRp5nHxIgwfDh9/DO3awZtvmjyGzWZJmCIiIiIicda9e3e6du0a6T273c6aNWvo378/mzZtombNmmzfvp3ChQtbE2QcjBs37pH3/P39HYmBcePGaYRAGqWpBClRnjzmtnzNmqbyX+PGsGqV1VGRLx989BGcOwfz55tcRWgoLFgAtWtDxYowY4aZeiAiIiIikhLZbDaaN2/Orl27KF68OP/++y/du3e3OiyReFFiIKXKnBnWr4cWLeDePXj2WZg3z+qoANNAoWNH+OMP2L8funcHd3c4eNA0WcibFwYONLMhRERERERSokyZMvHll18CsGHDBvbu3fvIMmFhYcyYMQNfX1+yZMmCm5sbhQsXpk+fPpw/fz7SsocOHcJms1GuXLlHtjN27FjHnP8///wz0mfnzp3DZrNRoECBhDu4JzwGAD8/P2w2G76+vgQHBzNy5Eieeuop0qdPT4ECBXjvvfcI+l8L9ps3bzJo0CCKFClC+vTpKVSoECNGjCAsLOyR7Xbt2hWbzcacOXM4ePAgbdu2JXv27Li7u1OuXDkmTpxIeHh4onwHaYESAymZh4eZ2N+5M4SHm//+749TclGhAkyfbooVjh8PRYqYQQ4TJsBTT5nui6tXQ0SE1ZGKiIiIiMRNs2bNyJIlCwDr16+P9FlgYCCNGzemR48e7N27l3LlytG6dWvc3Nz49ttvqVixIvv373csX7ZsWXLkyMGRI0e48lAHst9++y3K5w++btSoUYIe25Mcw4NCQkJo2rQpEyZMoFSpUjRu3Jhbt24xduxYXnjhBa5fv061atX47rvvqFSpEvXq1ePff/9l5MiR9O3b97Ex7dq1i+rVq7N//34aNmxI3bp1OX78OP379+fFF1/Ebrcn+PeQFigxkNK5usKcOTBggHk9YAB88AEks1+IzJnh7bdNi8NVq0xCAGDNGjPooXhxkzi4ft3aOEVERETSKrsd7txJuQ8r/vlrs9moVKkSAEePHo30We/evfHz86Nly5acPn0aPz8/Fi1axF9//cUXX3xBQEAAHTp0cNzlttlsNGzYELvdHuniPzg4mD/++IPSpUvj5OSUpImBuB7Dg7Zv3869e/f4+++/+fnnn/nll184ePAgmTNnZuXKlfj6+vLUU0/h7+/P4sWLWbt2LVu2bMHFxYVp06Zx7ty5KGOaMmUKr732GidPnmTBggWsXbuWffv2kT17dhYvXsy0adMS/HtIC5QYSA2cnMxV9ejR5vWnn5qWAMlwKI2Tk0kKrFplkgQDB0KmTPD33zBokKlT0KMHHDpkdaQiIiIiacvdu6bzVEp9WFXH6n7V/oCAAMd7x44d48cffyRPnjzMnz+fHDlyRFqnf//+NG/enJMnT7JmzRrH+/cv7h8cfbB161bu3bvH888/T+XKlfHz83MMtbfb7WzYsMGRVEhIT3oM99lsNmbOnEnWrFkd7xUsWJDOnTsDcObMGWbMmIGHh4fj8ypVqtCsWTMiIiLw8/OLMq7cuXMzfvx4XFz+v45+6dKlGTZsGADjx49/4mNOy5QYSC1sNhg82Izbd3Iy/23fHv43fyc5KloUxo0z0wxmzDDTDu7dM8/Ll4f69c1MiWSY3xARERERASDif3NibQ+031q9ejV2u51mzZrh5eUV5Xq+vr4AbNu2zfHe/cTA77//7njv/oiAxo0b06hRIwIDA9m5cycAhw8f5t9//6VMmTLkzJkz4Q4qHsdwX4ECBSgTRVv14sWLA1C5cuVHkg0Pfn7x4sUo99m+fXvSp0//yPuvvPIKACdPnnzsuvJ4SgykNt27w6JFpgLg0qXm9vytW1ZHFS0PD+jWDfbtMwULO3QAZ2fw84O2bU0C4fPPNc1AREREJDF5eMDt2yn38cCN5yR17do1AEetAYC///4bgJkzZzqKBj78ePfddwG4evWqY70CBQpQvHhxzp8/z/HjxwGTGPD29qZatWqOxMH9ZEFiTiN40mN48Fii4unpGe3n95MQQY+5wfm4tpBeXl6O0QkXLlx43GHJY7jEvIikOG3bwq+/mk4FGzeaW+9r1kAUGbnkxGYzLQ5r1YILF2DKFJg6Fc6ehXffheHDoUsX6NsXSpe2OloRERGR1MVmgwwZrI4ifpK6zoDdbncU3ytbtqzj/fujCCpUqED58uWj3Ua1atUivW7UqBEnT55k/fr15MyZk71799KyZUtcXFyoVasW7u7urF+/nuHDhydqYiA+xwDg5BT9PeiYPo8PFSCMOyUGUqv69c0t92eeMbfia9Uy7Q0LFbI6sljJlw8++QSGDoUFC2DiRNPucOpU82jYEPr1M4ULnZ2tjlZERERE0qLVq1fz33//AdCkSRPH+/nz5wegVq1aTJo0KU7bbNSoEVOmTOG3334jT548REREOC783dzcqF27Nhs3biQgIIDNmzfj6upKvXr1EuiI/l98jiExnTlzJsr3AwMDHXUe8uXLl5QhpQqaSpCaVaoEW7eaZMCpU1CzJhw5YnVUceLuDq++Cvv3w+bN0K6dKaHw++9mQETx4qb14Y0bVkcqIiIiImnJzZs3GfC/zmCNGzemQoUKjs+aNWsGwIoVKx47JP5xGjRogJOTExs3bmTt2rWO7d/XqFEjwsLCGDNmDHfu3KF69epkSIShHvE5hsS0aNEigoODH3n/+++/B6BYsWLkzZs3qcNK8ZQYSO2KFzfJgTJl4NIlqFPHvE5hbDYT+uLFcOYMvPceZMling8caEYYvPEGHDtmdaQiIiIikprZ7XbWrFlD1apVOXnyJLlz52b69OmRlqlYsSLt2rXj/PnztG3bFn9//0e2c+fOHX744Qf+/fffSO9nypSJypUrc+vWLb777jvy5ctHyZIlHZ/fHz1w/y5+YkwjiO8xJKaLFy8yaNCgSC0Sjx07xkcffQTgSNZI3GgqQVqQJ4+53d6qlUkKNG5sChS2aGF1ZE+kQAEYMwaGDYP58800gyNH4JtvzKNJEzPNoFkzM7pARERERORJzJgxw9E2Lzg4mGvXrrFv3z6u/68qtq+vL7NmzaJgwYKPrDt79mxu3LjBmjVrKFGiBOXLl6dw4cLY7Xb8/f05ePAgISEhHDt27JGOAo0aNWL37t0EBQVFGi0A5oI9a9asjmHziZUYiO8xJJbevXszY8YMVq1aRbVq1fjvv//YuHEjISEhPPfcc/Tp0ydJ4khtdNmUVmTODOvWmWTAvXtmHP7/htukVB4epgnDoUOwYQO0aWMSAevWQcuWUKKESRrcvGl1pCIiIiKSEm3dupW5c+cyd+5cfvnlF/7880/Kli3LwIED2bVrFxs3boy2Sv66deuYP38+jRo14ty5cyxbtowNGzZw7949Xn75ZZYtW0bRokUfWffBi/2HL/xtNhsNGjQAwNvbm6pVqybgESfcMSSWatWqsW3bNsqUKcP69evx8/OjePHiTJgwgYULF0ZqGymxZ7OrZOMTu3XrFhkzZuTatWuO1hjJXmio6Q14Pynw6acweLAZq58KnDljRg3MmPH/dQc8PaFrV3jzTZMskLgJDQ1l9erVNG/eHFdXV6vDEUkUOs8lLdB5LkFBQZw5c4bChQtH2Qc+NYiIiODWrVt4e3snatV7SXpdu3Zl7ty5zJ49m65du1odToKLy+9nQEAA2bJl4+bNm3h7eyfI/vXbkta4usKcOTBokHn9/vvQuzeEhVkaVkIpXBg+/9y0O/z2W/DxMX1tJ02CkiXN9IJff4X/dV8RERERERFJ85QYSIucnMzV86RJ5vm0aWZqwe3bVkeWYDJkgF69TO2B9etNeQWbzSQFmjWDUqXM4QcGWh2piIiIiIiItZQYSMveeAOWLjU9AVevhnr14PJlq6NKUDYbNGoEK1bAyZMwYAB4e8OJE9C3L+TNC/37m26OIiIiIiIiaZESA2nds8/Cxo2QPTvs2wfVq6fann9Fi8KECfDPPzB5sqk3EBhoChQ+9ZQpWLh+PajqhoiIiIhI8jJnzhzsdnuqrC+QHCgxIFCtGmzfDsWLw9mzULOmaW+YSnl6wuuvw59/mqkFzZubZMCqVabVYenSMGVKqppZISIiIiIi8lhKDIhRtChs22aSAjduQOPG8OOPVkeVqJycoGlTkxA4cQL69QMvLzNg4vXXIV8+GDgQ/v7b6khFREREREQSjxID8v+yZYPffoN27SAkBF56CT77LE2MrS9e3EwpuHABvvrKvL5500w9KFbMzLjYsCFNfBUiIiIiIpLGKDEgkbm7w8KF8Pbb5vXgwaZIYSppZxgTb29TlPCvv8xIgqZNTTJgxQpo2BAqVIDZsyE42OpIRURERJ6MXXc6RJIdq38vlRiQRzk5wfjx5ha6zWYm3D/3HNy5Y3VkScbJydQe+PXX/59a4OEBhw7Ba69BgQIwciRcuWJ1pCIiIiKx4+Rk/ukfHh5ucSQi8rD7v5f3f0+TmhID8nj9+sGSJZA+PaxcCb6+8O+/VkeV5EqWNF0MLlwwMyvy5TMJgREjTIKgWzc4fNjqKEVERESi5+rqiqurK7dVYVkk2QkMDHT8jlpBiQGJ3nPPmXaG2bLBnj2mneFff1kdlSUyZ4Z33zXFCH/8EapWNVMKZs2CcuVMvcbVqyEiwupIRURERB5ls9nw8vLi5s2b3Lt3z+pwROR/7t27x61bt/Dy8sJms1kSg4sle5WUpXp1086wWTM4dcp0Lvj5Z6hTx+rILOHqCi++CB06mK/lyy/NwIrffjOPEiXgrbegSxfIkMHqaEVERET+X7Zs2bh37x7nzp3D29sbLy8vnJ2dLbsYSWgRERGEhIQQFBRk2ZBskdiw2+2Eh4cTGBjIrVu3cHNzI1u2bJbFo8SAxE6xYqadYevWsGMHNGoE331nro7TKJvN5Ehq1oSzZ+Hrr2H6dDh+3NQk+OAD6NUL3nwT8ua1OloRERERcHZ2Jn/+/Fy7do3AwEBu3LhhdUgJym63c+/ePdzd3VNNskNSN1dXVzJlykS2bNlwdna2LA4lBiT2smc3PftefhmWLTO3zc+fh4EDzVVyGlawIIwbB8OHm64FEyeaKQdjxpj327eHAQOgShWrIxUREZG0ztnZmZw5c5IjRw5CQ0OJSEXzIENDQ9m8eTN169a1bK62SGw5OTnh6uqaLJJYSgxI3Li7w6JFJhkwcSK88w74+5vnFma4kgsvL1Oz8Y034JdfzDSDTZtg/nzzqFXLJAjatNHXJSIiItay2WykS5fO6jASlLOzM2FhYaRPn16JAZE40MQbiTtnZ3PF+8UXZqTA5Mlprp1hTJydzcW/nx/s3QudO5vaBFu3wvPPm5kZX3wBt25ZHamIiIiIiKR1SgzIk+vf34weSJ/e3B6vXz9NtjOMSaVKphyDv7+pO5A1q3n+9tum9eGAAXDmjNVRioiIiIhIWqXEgMRPu3bw++/manf3bqhRw1Tfk0fkyQMffwznzsHUqVCqFAQGmsEXxYpB27awZQvY7VZHKiIiIiIiaYkSAxJ/NWuajgVFiphb3zVrmjHzEiUPD+jZE44ehV9/haZNISLC1HOsWxeefhp++AFCQqyOVERERERE0gIlBiRhPPUUbN8O1arB9evQsKGZZiCPZbOZpMCvv5okQY8eZlbG3r3QqRMULgyjR0NAgNWRioiIiIhIaqbEgCScHDlMO8Nnn4XgYNOjb/x4jY2PBR8fmDbNTDMYNQpy5YKLF+H99yF/fujdG/76y+ooRUREREQkNVJiQBKWhwcsWQJvvmleDxoEb70F4eHWxpVCZM8OQ4ea4oTffQcVK8K9e/9fk6B5c1i/XrkWERERERFJOEoMSMJzdoavvoJx48zrr782Pfru3rU2rhTEzc20ONy717Q8fPZZM/VgzRpo0gTKlYOZMyEoyOpIRUREREQkpVNiQBKHzQYDB8LCheYqd/lyaNAArl61OrIUxWaDevXM13fiBPTtCxkywJEj0L07FCgAw4fDlStWRyoiIiIiIilVikwMTJkyhXLlyuHt7Y23tzc1atRgzZo1js8vX75M586dyZUrFxkyZKBSpUosWbIk0jauX7/Oyy+/jLe3N5kyZaJbt27cvn07qQ8l9XvhBfjtN8iSBXbuNO0MT5ywOqoUqVgxMxDjwgUzGKNAAZNn+egj87xXL3WKFBERERGRuEuRiYF8+fIxZswY9u7dy549e2jQoAHPPvssR48eBaBLly4cP36cFStWcPjwYdq2bUv79u3Zv3+/Yxsvv/wyR48eZf369axcuZLNmzfTs2dPqw4pdatd27QzLFwYTp/+//aG8kQyZTKDMU6fhp9+Mu0Ng4NN8cKSJaF1a9i8WXUIREREREQkdlJkYqBVq1Y0b96c4sWL89RTT/HJJ5/g6enJjh07ANi2bRt9+/alatWqFClShKFDh5IpUyb27t0LwLFjx/j111+ZMWMG1apVo3bt2nz99dcsWLCAixcvWnloqVeJEqad4dNPm/57DRuaIoXyxFxcTOOHnTtNIuB+HYJffjHTD6pVM4mDsDCrIxURERERkeTMxeoA4is8PJxFixZx584datSoAUDNmjX56aefaNGiBZkyZWLhwoUEBQXh6+sLwPbt28mUKRNVqlRxbKdRo0Y4OTmxc+dOnnvuuSj3FRwcTHBwsOP1rVu3AAgNDSU0NDSRjjAVyZIF1q3DuVMnnFatwv7CC0R8/jkR/fpZHVmKV706LFpkphJ89ZUT33/vxO7dNl58EQoWtNOvXwRdu0bg5RX3bd8/t3WOS2qm81zSAp3nkhboPJe0IDHO7xSbGDh8+DA1atQgKCgIT09Pli1bho+PDwALFy6kQ4cOZM2aFRcXFzw8PFi2bBnFihUDTA2CHDlyRNqei4sLWbJk4fLly4/d5+jRoxk5cuQj72/cuBEPD48EPLpU7rXXKBcRQeE1a3AeNAh/Pz+OvPqq6WYg8daiBdSunY41awqzenVhzp51Y+BAZ4YNC6dp07O0aPE3WbPGvZ3B+vXrEyFakeRF57mkBTrPJS3QeS6p2d1E6PaWYhMDJUqU4MCBA9y8eZPFixfzyiuvsGnTJnx8fPjwww+5ceMGv/32G9myZWP58uW0b9+eLVu2ULZs2Sfe55AhQ3j77bcdr2/dukX+/PmpX78+WbNmTYjDSjtatiR8wgSchwyh6MqVFHZxIXzuXHB3tzqyVKNjR7h3D+bNC+eLL5w4dSodS5cW55dfivHii3b69w8nNr8OoaGhrF+/nsaNG+Pq6pr4gYtYQOe5pAU6zyUt0HkuaUFAQECCbzPFJgbSpUvnGAFQuXJldu/ezcSJE3n33XeZNGkSR44coXTp0gCUL1+eLVu2MHnyZL799lty5crFlYf6u4WFhXH9+nVy5cr12H26ubnh5ub2yPuurq76w/MkBg82BQm7dMFp+XKcmjaFFSsge3arI0s1XF3h9dehd29YudJ0M9iyxcb339v4/nsnmjSBQYOgUSNTnyD6bek8l9RP57mkBTrPJS3QeS6pWWKc2ymy+GBUIiIiCA4OdgyrcHKKfGjOzs5EREQAUKNGDW7cuOEoRgiwYcMGIiIiqFatWtIFLdChg2lnmDkz7NhhOhacOmV1VKmOk9P/dyvYudMULXRygnXroEkTqFABvv8eQkKsjlRERERERJJaikwMDBkyhM2bN+Pv78/hw4cZMmQIfn5+vPzyy5QsWZJixYrRq1cvdu3axenTpxk/fjzr16+nTZs2AJQqVYpnnnmGHj16sGvXLrZu3cqbb77Jiy++SJ48eaw9uLSoTh3YuhUKFTJJgerVzRWsJIqqVU23glOnoF8/yJABDh2CLl3MAI6xY+HGDaujFBERERGRpJIiEwNXrlyhS5culChRgoYNG7J7927Wrl3rmEu0evVqsmfPTqtWrShXrhzfffcdc+fOpXnz5o5t/PDDD5QsWZKGDRvSvHlzateuzbRp0yw8qjSuVCnTzrBKFdPOsFEjmD3b6qhStcKFYeJEOH8eRo+G3Lnh4kV47z3Inx8GDICzZ62OUkREREREEluKrDEwc+bMaD8vXrw4S5YsiXaZLFmyMH/+/IQMS+IrVy7YtAm6djW99157DY4dM1et6liQaDJnNuUeBgyAH3+E8ePhyBH48kv4+mto186ZqlUzWR2miIiIiIgkkhQ5YkBSMQ8PWLAAhg0zrz//HNq2hdu3rY0rDXBzMzmZQ4fg11/NoI3wcFi40IlBg+rRuLEzK1fC/0p1iIiIiIhIKqHEgCQ/Tk4wciTMn2+uVlesgFq14Nw5qyNLE2w2aNoU1q+H/fvh5ZcjcHaOYNMmJ1q1gtKlYcYMCAqyOlIREREREUkISgxI8tWxo5lakDOnuY1dtarpXCBJpkIFmD07nKlT1/P22+F4e8Nff0GPHlCwIIwaBdeuWR2liIiIiIjEhxIDkrxVqwa7dkH58vDvv+Dra0YSSJLKli2IMWMiOH8eJkyAAgXgyhUz46NAAXjjDXWZFBERERFJqZQYkOSvQAH44w9o3RqCg+Hll80VqSa7Jzlvb1Ok8NQpk5+pVAnu3YNvvoGnnjLlILZtszpKERERERGJCyUGJGXw9ISlS+Hdd83rUaPgxRfh7l1r40qjXF3NTI89e2DjRmjRAux2WLbMlIOoUcP8uMLDrY5URERERERiosSApBzOzvDZZzB7trkyXbQI6tWDixetjizNstnM7I6VK+HoUejWDdKlM6Ug2rUDHx+YPt0M9BARERERkeRJiQFJebp2hd9/h6xZzS3rp5+GffusjirN8/Ex3QrOnoUPPoDMmeHECejZEwoVMjmdmzetjlJERERERB6mxICkTHXqmKKEPj5mxEDt2mbsulguVy74+GOTIJgwAfLlg8uXYfBgyJ/fzAbRIA8RERERkeRDiQFJuYoUMZXunnnGVMBr1w4+/dRMdhfLeXmZQoWnT8OcOSaHExgIn38OhQtD9+5w/LjVUYqIiIiIiBIDkrJlzAi//AL9+pnXH3wAXbpAUJC1cYlDunTwyitw+LD5UdWuDSEhMHMmlCplOhns3Gl1lCIiIiIiaZcSA5LyubjAxIkwZYopUDhvHjRsCFeuWB2ZPMDJCVq2hC1bYOtW033yfieD6tVNEcPVqzXgQ0REREQkqSkxIKlH797w66+QKZOZYlC1qrlNLclOzZrw88+mk8Grr5omE5s2mbaH5cub3E5oqNVRioiIiIikDUoMSOrSqJHplVe8uKl+V7Om6aUnyZKPD8yaBX//DQMHgqenyeV07gzFipmBIHfuWB2liIiIiEjqpsSApD4lSpjkQP36cPu2GbM+YYLGqCdj+fLBuHFw7hx88gnkyGGe9+8PBQrA8OFw7ZrVUYqIiIiIpE5KDEjqlCULrF0LPXqYhMDAgdCzp6l6J8lW5szw/vvg7w/ffgtFi8L16/DRRyZB0Lev+UxERERERBKOEgOSerm6wtSp8MUXpvLdjBnQtCkEBFgdmcTA3R169TLtDBcuhMqVTUfKSZPMFIOXX4aDB62OUkREREQkdVBiQFI3m82MR//lF/DyAj8/qFYN/vrL6sgkFpyd4YUXYPdu+P13aNIEwsNh/nyoUAGeeQY2btQsERERERGR+FBiQNKG5s1Np4JCheD0adMfb/16q6OSWLLZoEEDMztk3z548UUzCGTtWvN+tWqweLFJGoiIiIiISNwoMSBpR5kysGsX1KoFN29Cs2bwzTdWRyVxVLEi/PgjnDwJb7wB6dObEQUvvAClSsG0aRAUZHWUIiIiIiIphxIDkrZkz27GpHfpYm4vv/EGvPkmhIVZHZnEUZEipubAuXPw4YemcOHJk6Y2QaFCMGYM3LhhdZQiIiIiIsmfEgOS9ri5wZw55srRZoPJk6FFC11FplDZs5uuBefOwZdfQv788O+/MGSI6WTwzjvwzz9WRykiIiIiknwpMSBpk80G770HS5eChwesWwc1apj6A5IieXrCW2+ZH+F335mZI4GBMG4cFC4M3bqp5qSIiIiISFSUGJC0rU0b+OMPyJfPXDVWrQqbNlkdlcSDqyt07gyHDsHKlVC3LoSGwqxZpgbBc8+ZmgQiIiIiImIoMSBSsaIpSli1Kly/Do0bm6tISdFsNjNDZNMm2L7d5IAAli83P+omTUz3SrU6FBEREZG0TokBEYDcuc1VYocO5vZyt25mcrr636UK1avDsmXw55/wyivg7Gy6Vdavb5pUrFypBIGIiIiIpF1KDIjc5+5u+uANH25ejxtnxp0HBloblySYUqVM3clTp0xDCjc3M5qgVSuoUAEWLFAuSERERETSHiUGRB5ks8GIESZBkD49/PKLuaV89qzVkUkCKlTItDr09zc1KL28TE2Cjh2hZEmYMQOCg62OUkREREQkaSgxIBKVF180k9Nz5YLDh82k9O3brY5KEliuXKZr5dmzMGoUZM1qRhP06AFFi5r2h3fuWB2liIiIiEjiUmJA5HGqVjVFCStUgCtXwNcXZs60OipJBJkzw9ChJkEwYQLkyQP//AMDBkDBgvDxx3DjhtVRioiIiIgkDiUGRKKTPz9s2QJt20JICHTvbianh4RYHZkkggwZTDLg779h2jQzaiAgAD78EAoUgCFD4N9/rY5SRERERCRhKTEgEhNPT1i0yIw1t9ngm2+gUSNdIaZibm5mOsFff8H8+VCmjKlBOWaMqU/Qt6/KToiIiIhI6qHEgEhsODmZseYrVoC3txlFUKUK7N5tdWSSiFxcTEHCgwfNj75aNQgKMoULixWDV181yQMRERERkZRMiQGRuGjZ0tQdKFkSLlyAOnVg7lyro5JE5uRkWhpu3w4bNpgBI2FhpvWhjw+88ALs22d1lCIiIiIiT0aJAZG4KlECdu6E1q1NT7uuXeGttyA01OrIJJHZbFC/Pqxfb06BNm3AbofFi6FyZWjWzAwmERERERFJSZQYEHkS3t6wbBkMH25ef/UVNGkCV69aG5ckmapVzSlw5Ah06gTOzvDrr1C3rhlIsmaNSRqIiIiIiCR3SgyIPCknJxgxwlwdenqCn5+pO6Ax5WlK6dLw/fdw4gT06gXp0sEff0Dz5lCpkqlbGR5udZQiIiIiIo+nxIBIfLVpY8aVFy8O585BrVrwww9WRyVJrEgR+PZbOHMGBg40rQ8PHID27U0dgtmz1eVSRERERJInJQZEEoKPjylK2Ly5KVvfqRMMGmQq1EmakicPjBtn2hkOHw6ZM5vRBK+9ZjoZfP013L1rdZQiIiIiIv9PiQGRhJIpk+lp98EH5vX48fDMMxAQYGlYYo2sWc1Mk7Nn4fPPIVcuOH8e+vWDQoVg9Gi4edPqKEVERERElBgQSVjOzvDxx2ZieYYM8Pvvpu7AwYNWRyYW8fIyg0fOnIEpU0xS4OpVeP99KFDA5JFUs1JERERErKTEgEhieP552LHDTDz394eaNWHhQqujEgulTw+9e8PJk6ZYoY8P3LoFn34KBQtC//5w8aLVUYqIiIhIWqTEgEhiKVMGdu82bQzv3oUOHWDwYJWoT+NcXEwJisOHTUOLKlXg3j2YONHkkd54w9SwFBERERFJKkoMiCSmLFlg9Wp47z3z+rPPoEUL+O8/a+MSyzk5mYYWu3bBunVQuzYEB8M335gihT17mukHIiIiIiKJTYkBkcTm7AxjxsCPP4K7O6xdC08/DUeOWB2ZJAM2GzRuDJs3w8aNUL8+hIbC9OmmA+arr5rpByIiIiIiiUWJAZGk8uKLsH27qT53+jRUrw5LllgdlSQTNhv4+sKGDbBli5mBEh4Oc+ZAyZJm+sGxY1ZHKSIiIiKpkRIDIkmpfHlTd6BBA7hzxxQpHDoUIiKsjkySkdq1zcCSHTvMzJOICPjhByhd2uSXNNhERERERBKSEgMiSS1bNnPV9/bb5vUnn0Dr1nDjhqVhSfJTrRqsXAl79ph6BHY7/PQTlC0L7drB/v1WRygiIiIiqYESAyJWcHGB8eNN37r06WHVKqhaVWPFJUqVK5sOBgcPwgsvmGkHS5dCpUomp7R7t9URioiIiEhKpsSAiJU6dYKtWyF/flNhrlo1+Plnq6OSZKpcOVi40EwleOkl09ngl19MTqlZM9i2zeoIRURERCQlUmJAxGqVKpmx4vXqQWCgGTM+YoTqDshj+fiYmgPHjsErr5jGF7/+CrVqQaNGsGmT1RGKiIiISEqixIBIcpAjB6xfD/36mdcjR8Jzz8GtW9bGJcnaU0+ZrgUnTkD37maGyu+/m+4G9eqZ53a71VGKiIiISHKnxIBIcuHqChMnwuzZ4OYGK1aYqQUnTlgdmSRzRYrA9Olw6hT06QPp0sHmzWb0QK1asGaNEgQiIiIi8nhKDIgkN127mkb2efPCX3/B00+b4oQiMShYEL75Bv7+2ww+SZ8etm+H5s1NHYIVK5QgEBEREZFHKTEgkhw9/TTs3Wsa2t+6Ba1awccfq+6AxErevGbwyZkzMHAgeHiYMhbPPmtKWixZolNJRERERP6fEgMiyVXOnGaSeJ8+5jbvhx+aXnWBgVZHJilErlwwbhz4+8PgweDpCQcOwPPPmw4HCxZAeLjVUYqIiIiI1ZQYEEnO0qUzY8OnTzfPly6FGjXMZHKRWMqeHUaPhrNnTX4pY0Y4ehQ6doTSpWHePAgLszpKEREREbGKEgMiKUH37uDnB7lzmyu6p582/elE4iBLFvjoIzOC4KOPIHNmOH4cOneGkiVN3cvQUKujFBEREZGkpsSASEpRo4aZKF6jBty4YSrKffaZqslJnGXKZEYO+PubkQTZssHp0/Daa6YF4rRpEBxsdZQiIiIiklSUGBBJSfLkgY0boUcPkxAYPBg6dFDdAXki3t7mFPL3N7UIcuY0z3v1gmLFYPJkCAqyOkoRERERSWxKDIikNG5u5pbut9+CqyssWmSmFhw9anVkkkJlyGC6F5w5Y7oZ5MkDFy7Am29C0aImQaARBCIiIiKplxIDIilVr16waZPpTXf8uGlU/8MPVkclKZi7O/TrZ6YVfPMN5M8PFy+aBEGxYjBlihIEIiIiIqmREgMiKVmNGrB/PzRqBHfvQqdO8MYbunqTeEmf3nTJPHnSJAPy5TMjCF5/HYoXh6lTISTE6ihFREREJKEoMSCS0mXPbjoUDB1qXn/zDdStC+fOWRuXpHhubtC7t+mOOWmSmWJw/rx576mnYMYMdTEQERERSQ2UGBBJDZydYdQoWLXK9KDbtQsqVYK1a62OTFIBNzczEOX0afjqK8iVC86eNTUwS5SAWbOUIBARERFJyZQYEElNmjeHffugcmUICIBmzWDECAgPtzoySQXSp4e+feHvv+GLL0wXgzNnoFs3KFUK5s6FsDCroxQRERGRuFJiQCS1KVQI/vjDjPe222HkSJMwuHbN6sgklXB3h/79TYJg/Hgzm+X0aejaFXx84PvvlYsSERERSUmUGBBJjdKnN1XjvvvOXMWtW2emFuzcaXVkkop4eMDbb5tRA2PHQrZspmBhly4mQTB/vhIEIiIiIimBEgMiqVnnziYZULy4qRpXp45pSm+3Wx2ZpCIZMsA775gEwZgxkDUrnDgBL78MZcvCggVKEIiIiIgkZ0oMiKR2ZcvCnj3Qrp2pEPfmm+aK7fZtqyOTVMbTE957zyQIPvnE1ME8dgw6doRy5WDhQoiIsDpKEREREXmYEgMiaYG3NyxaBBMmmA4GP/4I1aqZqzaRBOblBe+/D/7+pllGpkzw55/QoQOULw9LlihBICIiIpKcKDEgklbYbDBgAPj5Qe7c5krt6afhp5+sjkxSKW9vGDrUJAhGjICMGeHIEXj+eahYEZYt06wWERERkeRAiQGRtKZ2bdi/H+rXhzt34MUX4a23ICTE6sgklcqYEYYPNwmCYcNMwuDQIWjb1nTWXLFCCQIRERERKykxIJIW5cxpOhUMGWJef/UV+PrChQuWhiWpW6ZMpnvmmTPwwQemJsH+/fDss2bwysqVShCIiIiIWEGJAZG0ysUFPv3U3K7NmBG2bzfju3/7zerIJJXLkgU+/tiMIBgyxHQ12LsXWrUypS/WrFGCQERERCQpKTEgkta1agX79pmkwLVr0KSJuWpTdThJZFmzmtzUmTPw7rvg4QG7d0Pz5lCjBqxdqwSBiIiISFJQYkBEoEgR2LYNunc3V2IffmgSBtevWx2ZpAHZs8Nnn5kEwaBB4O4OO3fCM89ArVqwfr0SBCIiIiKJSYkBETHSp4fp02HWLPN89WqoVAnb3r1WRyZpRI4c8PnnJkHw9tvmNNy+3QxiqVsXNmxQgkBEREQkMSgxICKRvfqquRorWhTOnsW5Xj0Kaky3JKGcOWH8ePj7b9Mww80N/vgDGjY0NTI3bbI6QhEREZHURYkBEXlUhQqwZw+0aYMtJIQKU6bg/Nprpr2hSBLJnRu+/NIkCPr2hXTpYPNmkxxo2BB27LA6QhEREZHUQYkBEYlapkywdCnho0cT4eSE0w8/QPXqcOKE1ZFJGpMnj+moefo0vP66SRBs2GAKFLZqBQcPWh2hiIiISMqmxICIPJ7NRsTAgWz76CPsuXLBkSNQpQosWWJ1ZJIG5csHkyfDyZPQrRs4O8PKlWaAy4svwvHjVkcoIiIikjKlyMTAlClTKFeuHN7e3nh7e1OjRg3WrFkDgL+/PzabLcrHokWLHNuI6vMFCxZYdUgiyVpAmTKE7dxpKsAFBsLzz5vqcKGhVocmaVCBAjBjBvz5J3TsaN776Sfw8YHXXoOzZ62NT0RERCSlSZGJgXz58jFmzBj27t3Lnj17aNCgAc8++yxHjx4lf/78XLp0KdJj5MiReHp60qxZs0jbmT17dqTl2rRpY80BiaQEuXPD77/DO++Y1198AfXrwz//WBuXpFlPPQXz55upBK1bQ0QEzJ4NxYvDm2/CpUtWRygiIiKSMqTIxECrVq1o3rw5xYsX56mnnuKTTz7B09OTHTt24OzsTK5cuSI9li1bRvv27fH09Iy0nUyZMkVaLn369BYdkUgK4eICY8fCsmXg7Q1bt0KlSrBxo9WRSRpWrhz8/LMpRtiokRnIMnmyaazx3nsQEGB1hCIiIiLJm4vVAcRXeHg4ixYt4s6dO9SoUeORz/fu3cuBAweYPHnyI5+98cYbdO/enSJFitC7d29effVVbDbbY/cVHBxMcHCw4/WtW7cACA0NJVRDqiWVun9uRzrHW7SAHTtw6dAB2+HD2Bs1ImLkSCLeeQecUmS+UVKBSpVg9Wrw87MxbJgTO3Y4MXYsfPutnbfeiuCttyLw9o563SjPc5FURue5pAU6zyUtSIzz22a3p8zm5IcPH6ZGjRoEBQXh6enJ/Pnzad68+SPLvf766/j5+fHnn39Gen/UqFE0aNAADw8P1q1bx/Dhwxk7diz9+vV77D5HjBjByJEjH3l//vz5eHh4xP+gRFIY5+Bgyk2dSoENGwC4XKUK+/r3J/Sh0TkiSc1uh717czJvXin8/TMC4OUVTNu2p2je/AxubuEWRygiIiLyZO7evctLL73EzZs38X7cXY84SrGJgZCQEM6dO8fNmzdZvHgxM2bMYNOmTfj4+DiWuXfvHrlz5+bDDz9k4MCB0W5v2LBhzJ49m/Pnzz92mahGDNyvaZA1a9b4H5RIMhQaGsr69etp3Lgxrq6ujy5gt2ObPRvnt97CFhyMvXBhwhYsgIoVkz5YkYdERMCSJTZGjnTmxAkzIix3bjuDB0fQrVsE6dKZ5WI8z0VSAZ3nkhboPJe0ICAggNy5cydoYiDFTiVIly4dxYoVA6By5crs3r2biRMnMnXqVMcyixcv5u7du3Tp0iXG7VWrVo1Ro0YRHByMm5tblMu4ublF+Zmrq6v+8EiqF+153qsXPP00PP88tjNncK1bF77+Grp3h2im54gkhZdegvbtYd48GDECzp618dZbznzxhTPDh0OnTnD/1Nbfc0kLdJ5LWqDzXFKzxDi3U81k4IiIiEh38wFmzpxJ69atyZ49e4zrHzhwgMyZMz82KSAiMahUCfbuhVatIDgYevY0V2T/q8UhYiUXF+jaFY4fh0mTIFcu8PeHV1+FMmVg0SIbERFWRykiIiJijRQ5YmDIkCE0a9aMAgUKEBgYyPz58/Hz82Pt2rWOZU6dOsXmzZtZvXr1I+v/8ssv/Pvvv1SvXp306dOzfv16Pv30UwYNGpSUhyGS+mTODMuXw7hx8P77sGAB7N5tmsxXrmx1dCK4ucEbb5iEwOTJMGaMSRa8/LILhQvXw8nJRuvWGugiIiIiaUuKHDFw5coVunTpQokSJWjYsCG7d+9m7dq1NG7c2LHMrFmzyJcvH02aNHlkfVdXVyZPnkyNGjWoUKECU6dOZcKECQwfPjwpD0MkdXJygnffhS1boEABOH0aatSAiRNNRTiRZMDDA955B86cMdMLvLzsnDmTiTZtXKhVSx04RUREJG1JscUHk4Nbt26RMWNGrl27puKDkmqFhoayevVqmjdvHvf5TP/9B926wbJl5nXr1jB7NmTJkvCBisTD5cuh9Onjz9q1xbh3zwwXaNgQPvkEqlWzODiRBBKvv+ciKYTOc0kLAgICyJYtW4IWH0yRIwZEJIXInBmWLDGFCNOlgxUroEIF2LrV6shEIsmaFbp2/ZO//grjjTdMMcLff4fq1eHZZ+HQIasjFBEREUk8SgyISOKy2eDNN2HHDiheHM6fh3r14NNPUbU3SW5y5zbFCU+cMMUKnZz+P5/VsaN5X0RERCS1UWJARJJGxYqma8HLL0N4OHzwATRtCpcvWx2ZyCMKFTKzXo4eNa0O7XZTS9PHx8yOOXvW6ghFREREEk6suhJs3rw5seMAoG7dukmyHxGxiJcXfP+9mbz95pvw22/mVuy8edCokdXRiTyiZEnTVGPIEPjwQ1i5EmbNMqdsz54mv5Url9VRioiIiMRPrBIDvr6+2BK5d5PNZiMsLCxR9yEiyYDNZnrFVasGHTrAkSPQpIlpbzhihGk4L5LMVKgAv/wC27ebZMDGjWbKwcyZ0K+facShmpoiIiKSUsVpKoHdbk/Uh4ikIT4+sGuXue1qt5vy7/XrmxoEIslUjRqwYYMZ7FKtGty7B599BoULw0cfQWCg1RGKiIiIxF2cbs3NmjWLwoULJ2gAZ86c4bXXXkvQbYpICuHuDlOnQoMGJkHwxx/m1uycOdCqldXRiTxWw4bmtF25EoYONV0Lhg83owiGDoVevcDNzeooRURERGInTomBqlWr4uPjk6ABZMuWLUG3JyIpUIcO8PTT5r979kDr1tC/P4wZo6srSbZsNpO/atECFi6EYcPg5El46y348ksYNcp0MnBSmV8RERFJ5vTPFRFJHooUga1bYcAA8/rLL6FWLTh92tKwRGLi5AQvvmg6GEyZYooRnjkDnTpBpUrw669mtoyIiIhIchWrxMDw4cMZNmwYOXLkSPAAcuTI4di+iKRx6dLBhAmmcXyWLKa9YcWKpk+cSDLn6gq9e8OpU/Dxx+DtDQcPQrNmZurBrl1WRygiIiIStVgnBoYPH54ow/6zZ8/u2L6ICGDGZx84ALVrm2puHTuaGgR371odmUiMMmQwnQtOn4a33zb5ro0bTbHCF16AEyesjlBEREQkMsumEtzVP/BFJDr585urqaFDzWTu6dOhalX480+rIxOJlWzZYPx4kwh45RVzGi9ebBpy9OoFFy9aHaGIiIiIEevEwJEjRxJspzdv3qRx48YJtj0RSaVcXEwFt3XrIGdOM4m7ShWYNUuTtiXFKFjQNNo4eBBatoTwcJg2DYoVg/ffhxs3rI5QRERE0rpYJwYaNWrE8ePH473D69ev06BBA3bs2BHvbYlIGtGokbmqatzYNI7v1s1UdlPTeElBypaFX36BzZuhRg1zKo8eDUWLmpEFQUFWRygiIiJpVawTA1euXKFhw4acjkeF8CtXruDr68v+/fufeBsikkblzGnKu48eDc7OMH++Kfm+b5/VkYnESZ06pgHHsmVQqhRcvw6DBsFTT5mRBeHhVkcoIiIiaU2cagxcunSJBg0a4O/vH+cd/fPPP9StW5ejR48CZgSCiEicODnB4MGwaZOpQXDqlLn1+vXXmlogKYrNBm3awKFDMGMG5M0L58/Dq69C+fJmZIFOaREREUkqsU4MfPHFF9jtdi5cuECDBg24cOFCrHfi7+9PnTp1OHHiBHa7nZYtW7JixYonClhEhFq1TNeC1q0hJAT69YO2beG//6yOTCROXFzMzJiTJ2HsWMiUyZTSaN36/0cWiIiIiCS2WCcG3nrrLT777DPsdjtnz56lfv36XLp0Kcb1jh8/Tp06dRyjDJ5//nmWLl2Km5vbEwctIkKWLLB8OUycaPrBLV8OFSrA9u0WByYSd+7u8M478Pff8N57kD69SQrUrg3PPqtmHCIiIpK44jSV4J133mHUqFHY7Xb+/vtvGjRowL///vvY5Y8cOYKvry///PMPAJ06dWLBggW4uLjEL2oRETDjsfv1g23bTAW3c+fMbdbPPoOICKujE4mzzJlhzBgzgqB7dzN7ZsUKU7jwtdfMdAMRERGRhBanxADABx98wLBhw7Db7Zw4cYKGDRty9erVR5bbs2cPvr6+jsRBz549mTt3Lk5Ocd6liEj0Klc2RQhffNFUbhs8GJo3hytXrI5M5InkywfTp8ORI/DccybPNXs2FC9uRhZcv251hCIiIpKaPNFV+ogRIxg8eDB2u51jx47RuHFjrj/wr5StW7dGeu+tt97i22+/xWazJUzUIiIP8/Y2nQqmTzfjsteuNVXcNmywOjKRJ1aqFCxdagbF1K0LwcEwbhwUKWJGFty9a3WEIiIikho88e37Tz/9lLfffhu73c7hw4dp0qQJN2/eZMOGDTzzzDPcvHkTgMGDB/PFF18kWMAiIo9ls5nx17t3g48PXL4MjRrBsGEQFmZ1dCJPrEYN8PODVavMtIKbN2HIEDOCYPp0nd4iIiISP/Ea1z9u3Dj69u2L3W5n//791KpVi1atWnHnzh0APvroIz799NMECVREJNZKlzbJge7dTc+3UaOgQQOIQzcVkeTGZjMzZPbvh+++g4IF4eJF6NkTypQxIwvU4lBERESeRLwn/E+cOJHevXs7phXcu3cPgM8//5yhQ4fGO0ARkSfi4WFupc6fD56esGWL6VqwcqXVkYnEi7MzdO4Mx4/DF19A1qzmebt2ZmTBpk1WRygiIiIpTYJUAvzmm2/o3r07drsdJycnJk+ezMCBAxNi0yIi8dOxo7nFWqkSBARAq1bw5pvwvySmSErl5gb9+8Pp0zB0qMmF7dwJvr5mZMHBg1ZHKCIiIilFrBMDzs7O0T5mzpyJzWbDbrfz5ptvxri8WhaKSJIpVsxUbxswwLyePNl0MjhwwNKwRBJCxoxmtsypU9CnD7i4wJo1ULGiGVng7291hCIiIpLcxToxYLfbE/whIpJk3NxgwgTTrSBXLjh2DKpWhfHjTS84kRQud2745hv4809o397UG5g3D556Ct5+Wy0ORURE5PFifdu+bt26ajcoIilfkyZw+LApTPjzzzBokLm9Oncu5M1rdXQi8Va8OPz0E7zzDgweDL//bmoRzJ4NH34Ib7xh8mQiIiIi98U6MeDn55eIYYiIJKFs2WDZMlOccMAAc+VUrhzMmAHPPWd1dCIJokoV+O03M0jmnXdMPmzgQJg0CcaMgRdeMJ0ORERERBKk+KCISIpjs5k+b/v2mXoD169D27bQowfcvm11dCIJpmlTU39z5kwz3eDMGejQAWrWhK1brY5OREREkgMlBkQkbStRwhQmHDzYJAtmzDAdDHbvtjoykQTj7AyvvQYnT8LIkZAhA+zYAbVrw/PPm8KFIiIiknYpMSAiki4djB4NGzZAvnzm6qlmTfNeeLjV0YkkmAwZYNgwc4p37w5OTrBkCfj4mNaHAQFWRygiIiJWUGJAROQ+X184dMhMvg4Lg/ffhwYN4Nw5qyMTSVC5c5sSGwcPQrNmEBoKEydC0aIwbhwEBVkdoYiIiCSlWCUGGjRoQMOGDTl79myCB+Dv7+/YvoiI5TJnNiXd58wBT0/YvNkUJlywwOrIRBJcmTKwejWsW2dO85s3TaHCUqXMKa/OwiIiImlDrBIDfn5++Pn5cefOnQQP4M6dO47ti4gkCzYbvPIKHDgA1aqZq6WOHaFLF7h1y+roRBJc48amDuesWZAnD/j7m1O+enX44w+roxMREZHEpqkEIiKPU7QobNliJmU7OcH330OFCqZYoUgq4+wMr74KJ07ARx+ZegS7dkGdOtCunalLICIiIqmTS1wW/uabb8iRI0eCBnDlypUE3Z6ISIJydTVl3Js0gU6dTK+3OnXgww9h6FBwidOfUZFkL0MGc3r36AHDh5tGHUuXwooV0KePyZNly2Z1lCIiIpKQ4vQv2ilTpiRWHCIiyVutWmZqQd++ZuTAyJFmYva8eVCkiNXRiSS4XLlg6lTo1w/efdfUIvj6a/juO/jgA/OrkD691VGKiIhIQoj1VAK73Z5oDxGRFCFjRnNVNH++eb59u5la8N13qtImqVbp0rBqFfz2mzndb940iYKSJeHHHyEiwuoIRUREJL5ilRiIiIhI9Ee4eoWLSErRsaPp81anDgQGmkKFHTvCf/9ZHZlIomnYEPbuNQ078uaFs2fhpZdMgcLNm62OTkREROJDxQdFRJ5EwYKwcSN88ompM/DTT1C+PGzaZHVkIonGycnkwU6cgI8/Nh09d++GevXguefM+yIiIpLyKDEgIvKknJ3h/fdh61YoVgzOn4f69c17ISFWRyeSaDw8TJ2BU6egd2/zq7B8uZl20LcvXL1qdYQiIiISF0oMiIjEV9WqsH8/dOtmag2MHg01a8Lx41ZHJpKocuaEKVPg0CFo2RLCwmDSJJMn++wzCAqyOkIRERGJDSUGREQSgqen6eu2eDFkzmwmY1eqBNOnqzChpHo+PvDLL/D771CxIty6BYMHQ4kS8MMPKlAoIiKS3CkxICKSkNq1g8OHTaW2u3ehZ09o2xauXbM6MpFE16AB7NljGnXkywfnzkGnTmZQjcpviIiIJF9KDIiIJLS8eWHdOhg3DlxdzeTrcuVg/XqrIxNJdE5O0LmzKUT46afg5WUG0Pj6wrPPwl9/WR2hiIiIPEyJARGRxODkBAMHws6dUKoUXLoETZqY94KDrY5OJNG5u8OQIaZA4euvmwKFK1ZAmTLwxhtw5YrVEYqIiMh9SgyIiCSmihXN2OrXXzevJ0ww46qPHrU2LpEkkiMHTJ4MR45A69YQHg7ffPP/BQqVJxMREbGeEgMiIonNw8NcGf3yC2TPbkq4V6li3lNhQkkjSpaEn3+GjRuhcmUIDDQFCn18YNky/SqIiIhYSYkBEZGk0rKlSQo884zp4/bmm+a9f/+1OjKRJOPrC7t2mQKFefLA33+b+pwNG5pfDxEREUl6SgyIiCSlXLlg9Wr46itwczPPy5WDVausjkwkydwvUHj8OAwdCunTm5EEFStCr15w9arVEYqIiKQtCZ4YuHDhAnv27GHz5s3cu3cvoTcvIpLy2WzQt6+pPVC2rKnC1rIldO9uGsCLpBGenjBqlOlU0L49RETAtGlQvLgpxxESYnWEIiIiaUOCJAYCAwP58MMPyZ8/PwULFqRatWrUr1+fM2fORFpuwYIFtG/fnh49eiTEbkVEUrYyZcyY6oEDTbJg5kwzesDPz+rIRJJUwYLw00+weTNUqgQ3b5pfi7JlYeVK1R8QERFJbPFODJw8eZJKlSrx6aef8s8//2C327E/5v/g1atXZ+nSpcyaNYs//vgjvrsWEUn50qeHceNMMqBQITh7FurXhwEDQKOuJI2pU8fkymbOhJw54cQJaNXKlOX480+roxMREUm94pUYCAoKokWLFpw+fRoPDw/effddVq5c+djlCxUqRP369QFYsWJFfHYtIpK61K1rKq/17Glef/mluXW6e7elYYkkNWdneO01kxR47z1Ilw7WrTODafr2hYAAqyMUERFJfeKVGJgyZQqnTp0iQ4YMbNmyhTFjxtC8efNo12nWrBl2u53t27fHZ9ciIqmPlxdMnWoKEebObSZe16gBw4ZpsrWkOd7eMGaMGSnw3HMQHg6TJpn6A19/DaGhVkcoIiKSesQrMbB06VJsNhtvvfUWFSpUiNU65cuXB8wUBBERiULz5nDkCHTsaK6GRo2C6tXNeyJpTNGisHQpbNhgRg389x/06wfly8Ovv1odnYiISOoQr8TAsWPHAGjSpEms18maNSsAN27ciM+uRURStyxZYP58U5EtSxbYvx8qV4bPPzfJApE0pn592LcPvv0WsmWDY8egWTNo0cK0PRQREZEnF6/EwO3btwHw9PSM9TrBwcEAuLq6xmfXIiJpQ/v2ZqRAixZmOsG774KvL5w+bXVkIknO2Rl69YKTJ+Htt8HFBVavNg0+3n4bdM9BRETkycQrMXD/7r+/v3+s1zl69CgAuXLlis+uRUTSjty54ZdfTKl2T0/44w8zjvrbb9XHTdKkTJlg/Hg4ehRatoSwMPjiC1N/4NtvzWsRERGJvXglBipVqgTA5s2bY73Od999h81mo0aNGvHZtYhI2mKzmVLthw+bEQN37kCfPmYs9T//WB2diCWeesrkzNauBR8fuHbN/FpUqmRqEoiIiEjsxCsx8Pzzz2O325k2bRrnzp2Lcfkvv/zSkUTo2LFjfHYtIpI2FSoEv/9u2hmmT2+uiMqUgR9+0OgBSbOaNIGDB023gixZTP6sYUPTzeDUKaujExERSf7ilRjo3Lkz5cqVIygoCF9fX9asWYP9gX+Y2mw27HY7u3fv5uWXX2bgwIHYbDbq1KlDs2bN4h28iEia5OQEb71lChI+/bSZWN2pE7zwAly9anV0IpZwcYE33zT1B/r2NfUIli+H0qVNaY5bt6yOUEREJPmKV2LAycmJFStWkC9fPvz9/WnZsiXe3t7YbDYAfH19yZAhA9WrV2fBggXY7XaKFCnCwoULEyR4EZE0rWRJ2LbNtDN0cYElS8zogRUrrI5MxDJZssBXX8GhQ9C0qanZ+fnnpv7AjBlq6iEiIhKVeCUGAAoUKMCBAwfo2LEjTk5O3LlzB7vdjt1u5+rVqwQFBTlGEbRv355du3aRI0eOeAcuIiKYhMDQobBrl0kKXLkCzz4Lr74KN29aHZ2IZXx8YM0aWLnS1CK4cgV69DCDbOJQGklERCRNiHdiACBLliz88MMPnDp1ikmTJtG1a1eaN29O06ZNeemll/j88885duwYCxYsIHPmzAmxSxEReVDFirBnjxkzbbPBnDlQtqypRyCSRtlsptPn4cMwYQJkzGhm4NSrZzqBxqGpkoiISKrmEp+V7xcSzJ07N8WLF6dgwYK8/vrrCRKYiIjEkZsbfPYZtG4Nr7wCp09Do0Zm4vVnn4GHh9URilgiXToYMMCU4hg2DKZNg0WLzKybQYNg8GDTCVRERCStiteIAV9fX+rXr8/WrVsTKh4REYmvWrXgwAHTtw1g0iSoUAF27LAyKhHLZc8OU6aYUQMNGkBwMHzyiZlqMHcuRERYHaGIiIg14pUY8Pxfer1s2bIJEoyIiCQQT0/45hvTzjBvXlOqvVYteP99U41NJA0rVw5++w2WLYOiReHSJejaFapXN/U8RURE0pp4JQYKFCgAwN27dxMkGBERSWBNmpgJ1p06mduho0eb6muHDlkdmYilbDZo0waOHjUzbby8YPdukz/r1MkkC0RERNKKeCUGWrRoAcBvv/2WIMGIiEgiyJwZvv/etDPMls0kBapUMUmCsDCroxOxlJubqdl58iR062YSBj/8ACVKwPjxEBpqdYQiIiKJL16JgQEDBpAlSxa+/PJLjhw5klAxiYhIYmjbFo4cMe0MQ0PNtII6dcwVkUgalzMnzJhhOn9WqwaBgaYwYfnyau4hIiKpX7wSA7ly5WLlypV4eXlRq1YtPv30U/zV+0dEJPnKmdNMrJ4zB7y9TUHC8uVNgUJVXhOhShVTZ2DWLFOs8Ngx09yjfXs4f97q6ERERBJHvBIDRYoUoWPHjoSEhBAYGMiHH35I0aJFyZgxIwULFqRIkSKPfRQtWjShjkFEROLCZjPtDA8fhoYN4d496NvX1CPQlY8ITk7w6qtw/Lj51XByMu0NS5Y0M3CCg62OUEREJGHFKzHg7++Pv78/165dA8But2O32wkMDOT8+fOOzx/3EBERCxUoAOvWwddfg7u7GS9dpozp22a3Wx2diOUyZ4avvoJ9+6B2bbh718zAKVsWfv3V6uhEREQSjkt8Vn7llVcSKg4REbGCkxO8+aYZLfDKK2ZqQdeuZrrBtGmQI4fVEYpYrnx52LwZ5s83dQdOnoRmzUy5ji++gMKFrY5QREQkfuKVGJg9e3ZCxSEiIlZ66inYsgU+/xyGD4eff4atW+Hbb6FdO6ujE7GczQYvvwytWsFHH8HEiebXZO1aeO8983B3tzpKERGRJxOvqQQiIpKKuLjAkCGmmXu5cnDtGjz/PLzwAly5YnV0IsmCtzeMGwcHD0KDBhAUBCNHgo+PSRRoFo6IiKRESgyIiEhk5cubnm1Dh4KzMyxebK565s/XVY/I//j4wG+/wcKFkC8f+PtDmzbQooU6gIqISMqjxICIiDzKzQ1GjTKjB8qXh4AAM466TRu4eNHq6ESSBZvNDKj56y8z2MbVFdasMTU8P/gA7tyxOkIREZHYiVeNge+++y5eO+/SpUu81hcRkURWsaJJDowZYxIFK1aYKmxffGGKFdpsVkcoYrkMGeDTT03dzrfeMh0LPv0UvvsOJkwwM3L0qyIiIslZvBIDXbt2xfaE/6ez2WxKDIiIpASurvDhh/Dcc6a5+5495r8//QRTp5q2hyLCU0/B6tUmf9a/v5le0L49NGxo2h76+FgdoYiISNTiPZXAbrc/8eNJTZkyhXLlyuHt7Y23tzc1atRgzZo1APj7+2Oz2aJ8LFq0yLGNc+fO0aJFCzw8PMiRIwfvvPMOYWFh8f06RERSrzJlYPt2+OwzM9Xg11/Ne1OnqvaAyP/YbKaN4Z9/mgYfbm7w++9mRs6gQXDrltURioiIPCpeiYEzZ87E+Dhy5AhLly7l+eefB6BWrVocPXqUv//++4n3my9fPsaMGcPevXvZs2cPDRo04Nlnn+Xo0aPkz5+fS5cuRXqMHDkST09PmjVrBkB4eDgtWrQgJCSEbdu2MXfuXObMmcOwYcPi83WIiKR+Li7w7rtw4ADUqAGBgdC7NzRqBPH4uy6S2ri7w4gRJkHQujWEhcH48VCyJPzwg3JpIiKSvNjs8bl1H0cLFy7kpZdewtfXl/Xr1z/xNISoZMmShc8//5xu3bo98lnFihWpVKkSM2fOBGDNmjW0bNmSixcvkjNnTgC+/fZb3nvvPa5evUq6dOlitc9bt26RMWNGrl27RtasWRPsWESSk9DQUFavXk3z5s1xdXW1OhxJTsLD4euv4f334d498PAwtQjeeAOcUlZtW53nkthWrzb1B06dMq/r1IFJk0xn0KSi81zSAp3nkhYEBASQLVs2bt68ibe3d4JsM141BuKqffv2rF27ljlz5jB16lR69+4d722Gh4ezaNEi7ty5Q40aNR75fO/evRw4cIDJkyc73tu+fTtly5Z1JAUAmjZtSp8+fTh69CgVK1aMcl/BwcEEBwc7Xt/633jA0NBQQkND430sIsnR/XNb57hE6Y034JlncO7VC6fNm6FfPyJ++onwqVPNhOsUQue5JLbGjWH/fvjiCydGj3ZiyxYbFSva6dMnguHDI8iUKfFj0HkuaYHOc0kLEuP8TtIRAwBr166lWbNmVK1alR07djzxdg4fPkyNGjUICgrC09OT+fPn07x580eWe/311/Hz8+PPP/90vNezZ0/Onj3L2rVrHe/dvXuXDBkysHr1aseUg4eNGDGCkSNHPvL+/Pnz8fDweOJjERFJ8SIiKLR2LaXnzsUlKIjwdOk49tJLnG7VCpydrY5OJFm5etWd2bNLs21bXgAyZgymS5c/qV//XEobbCMiIha4e/cuL730UoKOGEjyxMCBAweoVKkSGTNm5L///nvi7YSEhHDu3Dlu3rzJ4sWLmTFjBps2bcLngZK/9+7dI3fu3Hz44YcMHDjQ8f6TJgaiGjFwv6aBphJIahUaGsr69etp3LixhuRJzM6exblPH5x++w2AiKefJnz69GRfjl3nuVhhwwYb/fs789dfZmpl1aoRTJwYQeXKifNPM53nkhboPJe0ICAggNy5c6fcqQRgugFA/Ic/pEuXjmLFigFQuXJldu/ezcSJE5k6dapjmcWLF3P37t1H2iLmypWLXbt2RXrv33//dXz2OG5ubri5uT3yvqurq/7wSKqn81xipVgxWLcOZs+Gt9/GafdunKpWNeXZ33nHtD5MxnSeS1Jq2hQOHjSlOkaMgF27nKhZ04kePeDTTyGx7jnoPJe0QOe5pGaJcW4n6YC10NBQxo4dC+C4qE8oERERke7mA8ycOZPWrVuTPXv2SO/XqFGDw4cPc+XKFcd769evx9vbO9KIAxEReQI2G7z2Ghw9Ci1aQEgIfPABVKtmroJExCFdOhg4EI4fh5dfNt0Kpk0zJTq+/dbU+BQREUls8RoxcP/uf3QiIiL477//2LNnD5MmTeLIkSPYbDZefPHFJ97vkCFDaNasGQUKFCAwMJD58+fj5+cXaWrAqVOn2Lx5M6tXr35k/SZNmuDj40Pnzp0ZO3Ysly9fZujQobzxxhtRjggQEZEnkDcv/PILzJ8P/fqZymtVqpguBh98YK6IRASAPHlg3jzo2RPefBMOH4Y+fWD6dNO9IIr6yiIiIgkmXomBwoULx3kdu91OjRo1GDBgwBPv98qVK3Tp0oVLly6RMWNGypUrx9q1a2ncuLFjmVmzZpEvXz6aNGnyyPrOzs6sXLmSPn36UKNGDTJkyMArr7zCRx999MQxiYhIFGw2cxu0YUPTwWDpUvjoI/PfWbPg6aetjlAkWalbF/btgylT4MMPzfOaNaFrV/jsM8iRw+oIRUQkNYrXVAK73R6nR+bMmRkyZAi//fZbvO7Mz5w5E39/f4KDg7ly5Qq//fZbpKQAwKeffsq5c+dwekx534IFC7J69Wru3r3L1atXGTduHC4uSV5yQUQkbciVC5YsgYULIXt2OHIEqleHwYMhKMjq6ESSFRcX6NvXTC949VXz3pw5UKKEmWYQEWFpeCIikgrF60p49uzZMS7j5OSEl5cXhQsXpkyZMjirbZWISNr1wgtQv76ZWvDjj+YW6PLlZvRAzZpWRyeSrOTMaX41evY00woOHIBevUyS4NtvoVw5qyMUEfm/9u47PIrq++P4e9MJJPTeCb333ktEEEH0JyAC0lSqIFhAaSKIYgNFehNFmqCg9C69N+lNBCkK0ksSMr8/7jcxQBISNskk2c/refaR3Z3ZObO5GzNn7z1HkgunEgPt2rWLqzhERMRVZMhg6g60aGGudo4cgerV4Y03YNgw8PW1O0KRRKVyZdi+3dQaGDAANm+GsmWhd2/T8CNVKrsjFBGRpC5BuxKIiIiEa9rUdC545RVTiv3LL81XoGvX2hyYSOLj4QG9esGhQ/D886ZbwaefQtGi8PPPdkcnIiJJnVOJgQ4dOtCxY0fOnz8f433+/vvv8P1ERMTFpU0LU6fCkiWQIwecOGGWGnTrBjdu2B2dSKKTIwfMmwe//AJ58sCff0KzZuYWg2ZRIiIikXIqMTBt2jSmTZvGv//+G+N9rl+/Hr6fiIgIAA0bmtkDr71m7n/zDRQvDsuX2xuXSCLVuLH5yPTrZ2YT/PwzFCliZhEEB9sdnYiIJDVaSiAiIomDv7+pqLZypfkq9MwZeOop6NQJrl61OzqRRMfXF4YPN0UJq1eH27fhrbegXDnYtMnu6EREJClJ8MTA3f+1pXKmXaGIiCRj9erB/v2mXxvA5Mlm9sCvv9obl0giVawYrFtnOhikT28+PtWqmQk4V67YHZ2IiCQFCZ4Y2LhxIwCZM2dO6EOLiEhSkSoVjB4N69dDgQJw7hw88wy0aaMrHZFIuLlB+/Zw+DB06GAemzABCheGGTNMfU8REZGoxKpd4QcffBDp49988w2ZMmWKdt979+5x4sQJFi5ciMPhoFq1arE5tIiIuKIaNcw86UGD4PPP4bvvYMUKGDMGmjcHh8PuCEUSlQwZzCSbdu1MN9CDB6FtW1Pjc/Rou6MTEZHEKlaJgcGDB+N46I8wy7IYO3ZsjF/Dsix8fHx46623YnNoERFxVb6+MHIkvPCC+Ur00CHz76ZNTWP3HDnsjlAk0alZE3bvNvm0Dz6ANWugXDkPmjUrTJ064Olpd4QiIpKYxHopgWVZ4TeHw4HD4Xjgsahu3t7e5MmTh9atW7N582ZKlSoVH+cjIiLJVaVK5krn/ff/K8NetKhJDty/b3d0IomOlxe8+67pXvD00xAU5GDOnEKULeuhhh8iIvKAWCUGQkNDH7hZ/1uwduDAgUeee/h2+/ZtTpw4wYwZM5QUEBGRJ+PtDUOHmgRBlSpw44YpUli9uqm4JiKPyJvX1O6cNSuEdOnucOKEg6eegpYt4fx5u6MTEZHEwKnig7ly5SJXrlx4eXnFVTwiIiKPV7w4bNgA33wDfn6wZQuULQvvvQd37tgdnUii43BA8+YWY8aspmfP+7i5wezZpjjhmDGadCMi4uqcSgycPn2aU6dOkT9//riKR0REJGbc3Ex1tUOH4LnnICTENHUvWdIsqBaRR6RIEcKnn4ayYwdUqADXr0P37mYCzq5ddkcnIiJ2SfB2hSIiInEqe3aYP9/csmWD48ehbl3Ts+3yZbujE0mUypSBzZvNbAF/f9i+3SQKevUyyQIREXEtSgyIiEjy8Nxzpjdb165m3vTUqVCkCPzwg5q4i0TC3d18XA4fhlatIDQURo0yH5t58/SxERFxJbFqVxidNWvW8NNPP7F3717++ecf7ty5E16cMDIOh4MTJ07E1eFFREQgdWrzFWjr1vDqq6Yc+0svwbffwtixkCeP3RGKJDpZs8LMmaYbaNeuZtLN//2f6WTw9deQL5/dEYqISHxzOjFw6dIlWrZsybp16wCiTAaEtTWMeF9ERCReVK1qFkx/8onpYrB0KRQrZhq6v/GGaXcoIg9o0MA09/joIxgxApYsMR+bgQOhTx/T/lBERJInp5YSBAcH8/TTT7Nu3Tosy6JUqVI0btwYMBf+bdq0oXHjxmTNmhXLsnA4HJQrV4527drRtm3bODkBERGRSHl5wfvvw759UKsW3L4NfftCpUqqsiYSBR8fGDLEfGzq1oW7d6F/fyhdGtavtzs6ERGJL04lBqZNm8bu3bsBmDp1Krt27WLEiBHhz0+fPp1FixZx7tw55s+fT9asWTl48CDPPPMMU6dOdS5yERGRmChUCFavhkmTIE0akxSoWBHeegtu3bI7OpFEqVAhWLkSZsyAjBlN849atUxNz3/+sTs6ERGJa04lBn788UcAGjZsSLt27aLdtlmzZqxbtw4vLy9eeeUVjh075syhRUREYs7NDTp2NFc3LVqYpu2ffgrFi8OyZXZHJ5IoORzw8stw5Ai89pp5bOpUkzSYMsUUKxQRkeTBqcTA3r17cTgcvPzyy5E+/3C9gYCAAN544w1u3brFqFGjnDm0iIhI7GXJArNmwS+/QK5ccPo0NGyIe9u2eF29and0IolS2rQwbhxs2gQlS8KVKybPVru2qe8pIiJJn1OJgStXrgCQN2/e8Me8IlSmuX379iP71KtXD4AVK1Y4c2gREZEn17ixuaLp3Rvc3HCbNYt6PXrg+PZb9WgTiUKVKrBzp5lskzIl/PabqT3w3numFoGIiCRdTiUGwpIAEZMB/v7+4f8+d+7cI/v4+PhE+ZyIiEiCSZUKPv8ctmzBKlkSrxs38OjUCerXN/3aROQRHh6mQ8HBg9CsGYSEwPDhUKqUihOKiCRlTiUGcuXKBcDFixfDH8ucOTN+fn4AbN269ZF9Dhw4AKhdoYiIJBIVKhCyeTO/t2uHlSKFKVRYooTp2RYcbHd0IolSrlywYAHMnw9Zs8LRo6Y4YZcucO2a3dGJiEhsOZUYKFu2LEB4Z4IwNWvWxLIsRo0axb1798Ifv3r1Kh9//DEOh4OiRYs6c2gREZG44+nJ8eeeI2TXLtPMPaxHW7lyEEmSW0SM554zswc6dzb3x42DYsVg4UJ74xIRkdhxKjFQr149LMvi119/feDx119/HTAJg5IlS/LWW2/RtWtXSpQowdGjRwFo27atM4cWERGJewEBpkvBjBmQIQPs328WVvfsCTdu2B2dSKKUJg1MmABr1kD+/HDuHDRtahqARJhUKiIiiZhTiYFmzZqRK1cuzp49y4kTJ8Ifb9y4MR06dMCyLI4dO8bnn3/O+PHjw+sKBAYG0qVLF+ciFxERiQ9hPdoOHYK2bU0xwq++gqJF9TWoSDRq14Z9++Cdd8DdHebMgSJFYNo01fQUEUnsnEoMpEmThtOnT/PHH38QEBDwwHOTJk1i4sSJVKpUiZQpU+Lt7U2JEiUYOXIkixYtws3NqUOLiIjErwwZYPp0WLEC8uWDs2fN16AvvADnz9sdnUiilCIFjBgB27dD2bLw77/Qvj0EBsLJk3ZHJyIiUYnXq/OOHTuyefNmrl+/zu3bt9m7dy99+vTBw8MjPg8rIiISd+rXN0sKwr4G/fFH8zXo+PEQGmp3dCKJUpkypjzHxx+Djw+sXAnFi8Nnn5lOBiIikrg4lRhYv34969ev59ixY3EVj4iISOLj62u+Bt25EypUMGXXX3/dlGE/dMju6EQSJQ8PePttk1erUwfu3IG+fU3Zjn377I5OREQicioxULt2berUqcPGjRvjKh4REZHEq1Qp2LwZvvwSUqaEDRvMY4MHQ4QuPCLyn/z5YdUqmDgRUqeGHTtMw4/33jMNQERExH5OJQZSpUoFQIkSJeIkGBERkUTP3R3eeMP0aGvcGIKDYcgQKF0a1q+3OzqRRMnhgE6dzASb5583ywmGDzd5NX1sRETs51RiIFeuXADcvn07ToIRERFJMnLlgkWLYPZsyJwZDh82SwteeQUuXbI7OpFEKWtWmDcP5s83/z561HxsunQxK3RERMQeTiUGGjduDMDKlSvjJBgREZEkxeGAF180X4O++qq5P306FC6s4oQi0XjuOTPppnNnc3/cOChWTB1BRUTs4lRioHfv3qRLl44vv/ySAwcOxFVMIiIiSUvatCYRsGmTWVLw77+mOGGVKrB7t93RiSRKadLAhAmwerWpQ3DunOkI2qIFXLxod3QiIq7FqcRAlixZ+OWXX/Dz86NatWoMHz6c06dPx1FoIiIiSUzlyqaB+6hR4OcH27ZB+fLQs6fmSYtEoU4d06UgrCPonDmmI+i0aWBZdkcnIuIanEoM5MuXj1atWhEUFMSNGzcYMGAAAQEBpE6dmty5c5MvX74obwEBAXF1DiIiIomHh4dJBBw+DC1bmuUEX31llhf88IOudEQikSKF6Qi6bRuUKWMm3bRvD4GBcPKk3dGJiCR/Hs7s/PDsAOt/f+zcuHGDGzduRLuvw+Fw5tAiIiKJW7ZsJhHQoQN06wbHjsFLL8HkyTBmDBQqZHeEIolO2bImOfD55zBoEKxcCSVKwNChJt/m4dRfriIiEhWnfr22a9curuIQERFJnho0gP374ZNPYNgw09C9ZEl4+23o3998VSoi4Tw8zMfjuedMTc+1a6FPH5NnmzzZfHxERCRuOZUYmDp1alzFISIiknx5e8OAAWbGQI8esGQJfPghfP89fP01NGpkd4QiiU6BAqYw4eTJ0Lcv7NgB5cqZpMGAAeDjY3eEIiLJh1M1BkRERCQWAgLg11/hxx8hRw44dQoaN4bmzeHPP+2OTiTRcTigUyfTEbR5cwgJgeHDTfOP336zOzoRkeRDiQEREZGE5HCYK5xDh8zXoO7usGCBKcM+ciQEB9sdoUiikzWryaf9+CNkyQJHjkDNmtClC1y/bnd0IiJJX5wmBu7cucOGDRuYN28e3377Ldf1m1pERCRyqVKZRMDu3VCtGty6ZeZIly0LGzbYHZ1IohSWU+vUydwfNw6KFoWFC+2NS0QkqYuTxMCff/5JmzZtSJs2LbVq1aJFixa0b9+es2fPPrDd5MmTqVixIg0aNAjvYCAiIuLSSpSA9ethyhRInx4OHIAaNUyvtr//tjs6kUQnTRqYONHUHwgIgHPnoGlTaNECLl60OzoRkaTJ6cTA1q1bKVOmDDNnziQoKAjLsqK86G/SpAn79u1j9erVLF++3NlDi4iIJA9ubiYRcOQIdO5sHps2zbQ0nDABQkNtDU8kMapTxzT8ePttsyJnzhyzImfaNND3TyIiseNUYuDq1as0bdqUK1eukCVLFr755hv2798f5faZMmXi6aefBuDXX3915tAiIiLJT/r0JhGweTOUKgX//guvvQZVq5olByLygBQp4OOPYds2KFPGfGTat4fAQFPbU0REYsapxMDo0aO5dOkSGTJkYPPmzbz++usUK1Ys2n3q16+PZVls27bNmUOLiIgkX5Urm95sX3xhahFs3Qrly0OvXqq0JhKJsmVNcuDjj00bw5UrzSqdsWM14UZEJCacSgwsWrQIh8PBm2++Sa5cuWK0T1ji4MSJE84cWkREJHnz8DCJgMOHzeLp0FAYNQoKF4bZszVXWuQhHh5mWcG+faZMx61b0LWrmT3wxx92Rycikrg5lRg4fvw4ADVr1ozxPmnTpgVQxwIREZGYyJ4dZs2CZcsgf344fx5atoSnnoKjR+2OTiTRKVAA1q6FL780Sw1WrTKzByZOVD5NRCQqTiUG7t69C4Cnp2eM97l16xYAKVKkcObQIiIiriUw0FRaGzIEvL1hxQpztTNwINy5Y3d0IomKmxu88Qbs3Wu6gd64Aa++Cg0bwp9/2h2diEji41RiIFOmTACcikV1lz179gCQLVs2Zw4tIiLienx8TCLgwAEzYyAoCIYOheLFYckSu6MTSXQKFIB16+Czz8zHZ/ly83GZPFmzB0REInIqMVCpUiUAlsTwjxHLspg4cSIOh4MaNWo4c2gRERHXlT+/SQTMm2eWGpw8CY0awQsvwNmzdkcnkqi4u8Obb8KePaau5/Xr0KmT+cjo4yIiYjiVGGjdujWWZfH999+HzwSITp8+fdi7dy8A7dq1c+bQIiIirs3hgOefh0OHzFWPuzv8+KMpTvjZZxAcbHeEIolKoUKwYQN88olZjbN0qZk9MH26Zg+IiDiVGGjatCl16tQhJCSEevXqMXbsWC5duhT+fEhICH/99Rdz586lRo0ajBo1CofDQfPmzalatarTwYuIiLg8Pz+TCNi1C6pWNaXY+/aFcuVg40a7oxNJVNzd4a23YPduqFgRrl2DV16BJk3gr7/sjk5ExD5OJQYAfvzxR8qUKcO///5L9+7dyZo1Kw6HA4AyZcqQM2dOWrZsyaZNm7Asi0qVKjFt2jRnDysiIiIRlSwJv/1mFk+nT28KFVavDh07wj//2B2dSKJSpIjJm330EXh5wa+/QrFiMGOGZg+IiGtyOjGQJk0aNm/eTL9+/fD398eyrEhvKVKk4O2332bt2rWkTJkyLmIXERGRiNzcoEMHOHLELKIGmDLFVGD7+msICbE3PpFExMMD3n3XTLYpVw6uXoW2baFZM7hwwe7oREQSlkdcvIiXlxfDhg2jf//+rFu3jh07dnDp0iXu379P+vTpKVOmDPXr1yd16tRxcTgRERGJTvr0pml7+/bQtavp2dajh3nsq6+gZk27IxRJNIoVgy1bTO2BwYNh4UJTi+Drr6FlS1POQ0QkuYuTxECYlClT0qhRIxo1ahSXLysiIiJPompV2LkTxo+H99+HffugVi1o1QpGjjQdDUQEDw/o39/UGmjXztQgeOklmDsXxo6FzJntjlBEJH45vZRAREREEjF3dzNr4OhReO018/XnDz+YEu0jRsC9e3ZHKJJolCgBW7fCkCEmWbBggZlRMGeO3ZGJiMSvOE8MXLp0iVWrVjF37lzmzp3LqlWruHjxYlwfRkRERGIjQwYYNw527Pive0G/fuZKaPFiu6MTSTQ8PWHgQNi+HUqVgsuXoUULePFF+Ptvu6MTEYkfcZIYsCyLcePGUbJkSbJmzUpgYCAtW7akZcuWBAYGki1bNkqUKMHYsWMJDQ2Ni0OKiIjIkyhb1iyg/vZbyJIFjh2Dxo3NHOrjx+2OTiTRKF0atm2DQYPM7IG5c83sgR9/tDsyEZG453Ri4NKlS1SuXJlu3brx+++/R9mV4ODBg3Tv3p1KlSpxQaVeRURE7ONwQJs2pntB377mqueXX8xVz3vvmdkEIoKXlylIuHWrmVzz99/wwgumKKG6gIpIcuJUYuDevXvUrVuXHTt2YFkWGTJkoFu3bkyfPp2lS5eydOlSpk+fTvfu3cmYMSOWZbFz507q16/PPa1pFBERsZe/vylCuH8/BAZCUBAMHw6FC8Ps2WroLvI/ZcuaVTjvv2/KdsyebfJoCxbYHZmISNxwKjHwxRdfcPDgQQA6duzIyZMn+eqrr2jTpg2BgYEEBgbSpk0bRo8ezcmTJ+ncuTMAhw4d4osvvnA+ehEREXFe4cKwdKm5ysmTB86eNV+J1q1rkgYigpcXDB1qWhsWLQqXLkHz5vDyy3Dlit3RiYg4x6nEwKxZs3A4HDRo0ICJEyeSMmXKKLf19fVl/PjxBAYGYlkWs2bNcubQIiIiEpccDmjWDA4eNCXZfXxg7VooUwZ69oSrV20OUCRxKF8edu0ytTvd3OD7783sgYUL7Y5MROTJOZUYOP6/IkVdu3aN8T5h2544ccKZQ4uIiEh8SJHClGQ/dMh8HXr/Pnz1FRQsCJMng4oIi+DtbVbdbN5sJtxcuABNm0LbtvDvv3ZHJyISe04lBry9vQHImTNnjPcJ29bLy8uZQ4uIiEh8ypPHlF9fsQKKFDFV1zp1gsqVTal2EaFiRdi9G95+28wemDEDiheHX3+1OzIRkdhxKjFQuHBhAP78888Y7xO2bdi+IiIikojVrw9798Jnn4Gfn2nuXqkSdOgAFy/aHZ2I7Xx84OOPYeNGKFQI/voLnnkG2rfXChwRSTqcSgy88sorWJbFuHHjYrzPuHHjcDgctG3b1plDi4iISELx9IQ334SjR6FdO/PY1KlmecGXX0JwsK3hiSQGlSub2QN9+piSHdOmmdkDS5faHZmIyOM5lRjo1KkTTz31FMuWLaNr167cvXs3ym3v3btH9+7dWbp0KYGBgbz66qvOHFpEREQSWpYs5mpn0yYoVw6uX4fevU2BwtWr7Y5OxHYpUsCnn8Jvv0H+/HDuHDz9tFmFc+2a3dGJiETNw5mdf/vtN958802uXLnC+PHj+emnn3jxxRepUKECmTJlwuFwcPHiRbZv387cuXO5cOECFSpUoE+fPvz2229Rvm7NmjWdCUtERETiU5UqsHUrTJliSrP//jvUqwcvvGCWHOTKZXeEIraqVs2swHnvPRg1ytTtXL7c/LdBA7ujExF5lFOJgdq1a+NwOMLvX7x4ka+++irafXbs2MFTTz0V5fMOh4OQkBBnwhIREZH45u4OnTubZMDAgfDNNzBvnqm61r8/9O1rFl+LuChfX/jiC9Pco317OHECAgOhSxczq8DX1+4IRUT+49RSAgDLsuL8JiIiIklE2rSmneHu3VCzJty5AwMG/NfYXf9fFxdXo4aZPdCjh7k/dqxZfbNjh71xiYhE5NSMgTVr1sRVHCIiIpKUlSwJa9fC7NlmtsDJk6axe8OGZi51wYJ2Ryhim5QpYfRoePZZeOUVU8ezShUYPBjeeQc8nPqLXETEeU79GqpVq1ZcxSEiIiJJncMBLVuaXm3Dhpl6A0uXmtLsvXvD+++blociLqp+fdi3zywnmDPHfCQWL4YZMyBfPrujExFX5vRSAhEREZEHpEoFH31kihI2amTaGX7yiWny/v33Wl4gLi1dOpg1yyQD/P1Nk49SpUwHUH00RMQuSgyIiIhI/ChQwBQjXLQIAgLg/Hl4+WVTi2DPHrujE7GNw2E+Cvv2mY/DzZvQoQM8/zz884/d0YmIK1JiQEREROLXM8/AgQNmeYGvL2zYAOXKmfnUf/9td3QitsmdG1avho8/Bk9PWLAASpQwK3BERBJSnCQG/vnnH0aNGsULL7xA2bJlKVCgAPny5Yv2FhAQEBeHFhERkaTAx8e0MTx8GFq0gNBQGDcO8uc3tQiCguyOUMQW7u7w9tuwdSsULQoXLsDTT0P37nD7tt3RiYircLoG6g8//ECXLl24ceMGQIzbDTocDmcPLSIiIklNzpxmgXXXrtCrl2lz2LevSRJ8+qkp266/EcQFhbUwfPdd08FgzBhYtcqU5Shb1u7oRCS5cyoxsHr1al5++eXwZEDu3LkpWbIkadKkwc1NqxREREQkCjVrwvbt8O23ZibB8ePQrBnUrQtffGHaH4q4mBQpTHfPxo1NW8PDh6FSJfjgAzOrwN3d7ghFJLlyKjEwYsQILMsiTZo0fP/99zz99NNxFVe0xo4dy9ixYzl9+jQAxYoVY+DAgQ8cf/Pmzbz33nts3boVd3d3SpcuzbJly0iRIgUAefLk4Y8//njgdT/66CPefffdBDkHERERl+fuDu3bwwsvwIgRZknB6tXmq9NOnWDoUMiUye4oRRJcYCDs3w+vvw7z5pnc2eLFJo+WN6/d0YlIcuTU1/rbt2/H4XAwZMiQBEsKAOTIkYMRI0awc+dOduzYQd26dWnatCm///47YJICDRs2JDAwkG3btrF9+3a6d+/+yCyGDz74gPPnz4ffevTokWDnICIiIv/j52cKEx4+DC++aOoPTJhg6g+MHAn37tkdoUiCS58e5syB6dPNR2TDBtPWcPp0tTUUkbjnVGIgNDQUgGrVqsVJMDHVpEkTGjVqRIECBShYsCDDhg0jVapUbNmyBYDevXvTs2dP3n33XYoVK0ahQoV48cUX8fb2fuB1/Pz8yJIlS/gtZcqUCXoeIiIiEkGePDB7Nvz2G5QvDzdumPnTRYuacu26GhIX43BA27awdy9Ur24+Eq+8Av/3f3D5st3RiUhy4tRSgoCAAPbu3cutW7fiKp5Yu3//PnPnzuXWrVtUqVKFS5cusXXrVlq3bk3VqlU5ceIEhQsXZtiwYVSvXv2BfUeMGMHQoUPJlSsXL730Er1798bDI+q35N69e9yL8K3F9evXAQgODiY4ODh+TlDEZmFjW2NckjON80SmUiXYsAHH99/j/v77OE6ehObNCa1Zk/sjR5qlBhJrGudJV44csGIFfPaZG4MHu/Hjjw42bbKYNOk+DRooYRaRxrm4gvgY3w4rpm0EIvHJJ5/w7rvv0r9/fz788MO4jOux9u/fT5UqVbh79y6pUqVi5syZNGrUiC1btlClShXSpUvHp59+SunSpfn222/55ptvOHDgAAUKFADg888/p2zZsqRLl45NmzbRr18/2rdvz+effx7lMQcPHsyQIUMeeXzmzJn4+vrG27mKiIi4Kvc7dyiwYAH5f/oJ96AgLIeDM/Xqcah1a+6lTWt3eCIJ7sSJ1HzxRTnOnvUDoHHjk7Rt+zve3qE2RyYiCeX27du89NJLXLt2DX9//zh5TacSAzdv3qRy5cqcPn2atWvXUr58+TgJKiaCgoI4c+YM165dY968eUyaNIl169Zx9epVqlWrRr9+/Rg+fHj49iVLlqRx48Z89NFHkb7elClTeO2117h58+YjSw7CRDZjIGfOnJw/f5706dPH7QmKJBLBwcGsWLGCBg0a4OnpaXc4IvFC4zwJOHMG9/few232bACsVKkIffddQnv2BB8fm4NLGjTOk4/bt6F/fze++ca0KShc2GL69BBNpkHjXFzD5cuXyZo1a5wmBpxaSpAqVSoWL15M8+bNqVmzJr1796ZFixYULFgQn3j+n7SXlxf58+cHoFy5cmzfvp1Ro0aFdxUoWrToA9sXKVKEM2fORPl6lSpVIiQkhNOnT1OoUKFIt/H29o40aeDp6alfPJLsaZyLK9A4T8QCAmDWLOjZE3r3xrFtG+7vv4/7pEmmQOHzz5sF2fJYGudJX+rUMGYMNGliGnscPuygenVPhg6Fvn3V1hA0ziV5i4+x7VTxQYBcuXIxffp0/Pz8GDFiBGXKlCFlypS4u7tHe4tuLf+TCA0N5d69e+TJk4ds2bJx5MiRB54/evQouXPnjnL/PXv24ObmRia1RRIREUm8qlaFzZthxgzInh1OnzaV2GrVgp077Y5OJEE1bGjaGjZvDsHB8O67UKeO+ViIiMSG04mBUaNGUbp0af755x8sy4rV7Un169eP9evXc/r0afbv30+/fv1Yu3YtrVu3xuFw8NZbbzF69GjmzZvH8ePHGTBgAIcPH6Zjx46AaWf45ZdfsnfvXk6ePMn3339P7969efnll0mr9YoiIiKJm5sbvPwyHDkCgwZBihSmk0GFCtChA5w/b3eEIgkmQwaYNw+mTIFUqcxHoWRJkztTIw8RiSmnvrZfvHgxvXv3BsDNzY0aNWpQqlQp0qRJg5ub0zmHKF26dIm2bdty/vx5UqdOTcmSJVm2bBkNGjQAoFevXty9e5fevXtz5coVSpUqxYoVKwgICADMkoBZs2YxePBg7t27R968eenduzdvvvlmvMUsIiIicSxlShg8GDp2hH794PvvYepU0/y9Xz94802TNBBJ5hwOs6SgVi1o0wY2bTJtDhctgnHjIF06uyMUkcTOqeKDderUYd26dWTPnp3FixdTokSJuIwt0bt+/TqpU6fmn3/+UfFBSbaCg4NZvHgxjRo10lo9SbY0zpOJLVugVy/YutXcz5ULPvkEXnxR9QfQOHcVISHw8ccmZxYSAtmywfTpUL++3ZElDI1zcQWXL18mQ4YMcVp80Kmv9fft24fD4eCDDz5wuaSAiIiIJDKVK5v6A99/bxq/nzkDLVtCjRqwfbvd0YkkCA8PeO8981EoVAj++gsaNDA5szt37I5ORBIrpxID9+/fB6B06dJxEYuIiIiIcxwOeOklU39gyBDw9YWNG6FiRWjXDs6dsztCkQRRvjzs2gVdu5r7o0aZMhx799obl4gkTk4lBgoUKADAv//+GyfBiIiIiMQJX18YOBCOHjWLrQG+/RYKFoShQ00jeJFkztfXtDX89VfInBl+/90kB0aOhP99vyciAjiZGGjVqhWWZfHTTz/FUTgiIiIicSh7drPAeutW0+rw9m2TMChcGH74QWXbxSU0amTaGjZrZtoavv021KsHf/xhd2Qiklg4lRjo0aMHFStWZPz48SxatCiuYhIRERGJWxUrwoYNMGuWKUr4559myUG1av8VKxRJxjJmhPnzYdIk09Bj3TrT1vD775UfExEnEwPnz59n4sSJlC1blueee47WrVuzcOFCDh8+zJkzZx57ExEREUkwDge0aAGHD8OHH5qro82bTdHCNm3g7Fm7IxSJVw6H6e65d68Z9tevw8svQ6tWoJXBIq7Nw5md8+TJg+N/7X8sy2LWrFnMmjUrRvs6HA5CQkKcObyIiIhI7KVIYcq2t29v/jttGnz3Hfz4I7zzDvTta5IGIslUQAD89ht89JGp0Tl7tun2+cMPUKWK3dGJiB2cmjEAJiFg/W/+Udi/Y3oTERERsU22bDB1qmllWL266eU2eLApUDhliqqzSbLm4QEDBsCmTSZR8McfprPnRx9BaKjd0YlIQnNqxsDUqVPjKg4RERERe5QvD+vXmxkDb70Fp0+b+dZffgmffAJPPWXmYIskQxUrmraGr79uZgz07w+rV8OMGZAli93RiUhCcSox0K5du7iKQ0RERMQ+Dge88AI0aWL6u334oSnj/vTTUL++6e9WurTdUYrEC39/U4SwQQPo3h1WroRSpUyHz6eesjs6EUkITi8lEBEREUk2vL3hzTfh+HHo0we8vMxVUtmy0K6d6WYgkgw5HKbsxo4dUKIEXLoEDRuashvBwXZHJyLxTYkBERERkYelSweffmo6GLRsafq5ffutqT/Qrx9cu2Z3hCLxokgR08Gza1dz/5NPTO2BU6fsjUtE4lecJQZCQ0NZtWoVH374Id27d6dDhw6cP3/+gW2CgoK4ffs29+7di6vDioiIiMSfvHnNwutt26BmTbh7F0aMgPz54auvICjI7ghF4lyKFGZFzY8/Qpo0JlFQujTMnWt3ZCISX+IkMfDLL7+QP39+AgMDGTRoEGPHjmX69On8+1BD1EmTJuHn50emTJm4detWXBxaREREJP5VqABr18LPP0PhwvDPP9CzJxQrZq6e1G1JkqHmzWHPHtPC8Pp1ePFFU6Twzh27IxORuOZ0YmDixIk0bdqU06dPY1kW6dOnj7IVYadOnUidOjU3b95kwYIFzh5aREREJOE4HPDss6Yo4dixkCmTqUXwwgum3eHmzXZHKBLncueGdevMChqHA8aPN3my33+3OzIRiUtOJQaOHTtGt27dAKhbty4HDx7k0qVLUW7v5eXF888/j2VZLF++3JlDi4iIiNjDw8N8bXr8uGkEnyKFaQZftSr83/+Zx0WSEU9PGD4cli+HzJlNUqBCBZg0SZNlRJILpxIDX3zxBSEhIRQrVozFixdTuHDhx+5To0YNAHbv3u3MoUVERETs5ecHH3xgEgEdO4KbG8ybB0WLwhtvmOUGIslI/fqwdy8EBprlBJ07Q6tWqsUpkhw4lRhYvXo1DoeDXr164eXlFaN98ufPD8CfavcjIiIiyUG2bOar0z174OmnTW+30aMhIAA+/lgLsiVZyZwZliwxQ9vDA2bPhjJlTH1OEUm6nEoMnD17FoBSpUrFeJ+UKVMCcPv2bWcOLSIiIpK4lCgBixfDypWmhPv16/Duu1CoEMyYAaGhdkcoEifc3ODtt+G33yBPHtPKsFo10+FTw1wkaXIqMeBwOIDYXeRfvnwZgNSpUztzaBEREZHEqV492LkTpk+HnDnhzz+hbVsoXx5WrbI7OpE4U7ky7N5tSmuEhMBbb0HjxhBNyTERSaScSgxkz54dgJMnT8Z4nw0bNgCQL18+Zw4tIiIikni5uZlkwJEj8NFH4O9vrqDq14dGjeDAAbsjFIkTadKY5QTjx4OPDyxdCqVKKQcmktQ4lRioXbs2lmUxffr0GG1/7do1xo0bh8PhoG7dus4cWkRERCTxS5HCLCc4fhx69DCLspcsMVdOnTrBX3/ZHaGI0xwOePVV2L7d1N68cAEaNID33zczCUQk8YtxYsDNzQ0PDw8OHjwY/thrr72Gw+Fg3bp1TJs2Ldr9L1++TLNmzbhw4QIeHh68/vrrTxy0iIiISJKSMaMpSHjwIDz/vFmIPXkyFCgAgwbBzZt2RyjitOLFTXKgc2fTxnDYMKhdG86csTsyEXmcWM0YsB5qVFqmTBneeOMNLMuiY8eOtGjRgjlz5oQ/v2nTJmbOnEm3bt3Inz8/69evx+FwMGDAAHLnzh03ZyAiIiKSVBQoYFoabtwIVarA7dum5WH+/GYutr5elSTO1xcmTIBZs8wKmo0bTS3OBQvsjkxEouPUUgKAzz77jC5dumBZFvPmzaNVq1bhRQlfe+012rRpw7hx47h27RqWZfHGG2/w/vvvOx24iIiISJJVtaq5Ypo3zyQFLl6E11+HkiVh0SLzdatIEtaihSmrUaEC/PsvNG8O3bvD3bt2RyYikXE6MeBwOBgzZgzLli2jdu3aOBwOLMt64AZQpUoVfv31Vz7//HOngxYRERFJ8hwOs6zg99/NMoP06eHQIXj2WahTB3bssDtCEafkywcbNphuBQBjxphOBocP2xuXiDzKI65eqEGDBjRo0IAbN26we/duLl26xP3790mfPj2lS5cmQ4YMcXUoERERkeTDy8sUJmzbFkaMgC+/hHXrzFetrVrB8OGmWbxIEuTlBZ98AnXrmiG+dy+UK2eSBO3amfyYiNjP6RkDD/Pz86NmzZq88MILtGjRgvr16yspICIiIvI4qVOb1oZHjkCbNuaK6YcfoFAh6NsXrlyxO0KRJ9awoUkK1K1rSmu0b28SBTdu2B2ZiEA8JAZERERExAm5csG338LOnVCvHgQFwWefQUCAmVFw+7bdEYo8kaxZYfly+PBDcHeH776DsmVh1y67IxORWC8laN++PSlTpnT6wA6Hg1WrVjn9OiIiIiLJUpkysGIFLF0K77wD+/dDv36mHsGgQdChA3h62h2lSKy4u8N775k2hq1awfHjpu7AyJHQs6eWFojYJdaJgR1xUAjHsqzwzgUiIiIiEgWHA55+GgIDYeZMGDgQTp82HQw++8x89frCC+CmSaCStFSrBnv2QMeO8NNP0KsXrFwJU6eCViGLJLxY/1/k4Y4DT3ITERERkVhwdzd1Bw4fNjMGMmaEY8dMT7iKFc3MAv2NJUlMunQwfz58/TV4e8Mvv0Dp0qb2pogkrFgnBg4cOEBoaKjTt/v378fH+YiIiIgkX97epoPBiRMwZAikSmVqEQQGQv36sH273RGKxIrDAd26wZYtps7muXOmQOGQIaDLBZGEo3lnIiIiIkmNn59ZVnDypJmD7eUFq1eb2QMvvGA6G4gkIaVLw44d8MorEBoKgweb2pvnztkcmIiLUGJAREREJKnKmBG++MIkAsKawv/4IxQrBp07w9mzdkcoEmOpUpkaAzNmmH+vW2e6FqxZY3dkIsmfEgMiIiIiSV2ePDBtGuzbB88+a+ZgT5oEBQrA22/DlSt2RygSYy+/bFoYliwJly6ZVTIjRpiZBCISP5QYEBEREUkuiheHn3+GDRugenW4e9f0gcuXD7ePP8b97l27IxSJkQIFYPNmMxEmNNR06nzuObh61e7IRJInJQZEREREkptq1WD9elPmvUQJuHYN9wEDqN+lC24TJkBwsN0RijyWr69ZWjBhgqm7uXAhlCtn2hyKSNxSYkBEREQkOXI4oHFjcxU1YwZWnjz4/Psv7t27Q9GiMHu25mZLoudwmHIZGzeaFTMnT0KVKiZhICJxJ8aJgVOnTnHy5EkKFiwYn/GIiIiISFxyc4OXXybkwAH2deqElTEjHD8OLVtChQqwfDlYlt1RikSrXDnTmbNRI7NCpkMHkzDQ6hiRuBHjxEDu3LnJnTs3Hh4e8RmPiIiIiMQHLy9OPfMMIYcPmybxfn6mwttTT5m+cNu22R2hSLTSpYNFi+DDD81MgkmToGpVM4tARJyjpQQiIiIirsTPDwYOhBMnoFcv8PIy/eAqVYLnn4fDh+2OUCRKbm7w3nuwbBlkyAC7d5vZBL/8YndkIkmbEgMiIiIirihjRvjiCzh61JR+dzhg/nwoVgw6dYKzZ+2OUCRKDRqYCS+VK5tOBU2amITB/ft2RyaSNCkxICIiIuLKcueGadNg3z549llTkHDyZMifH956C65csTtCkUjlzAnr1kGPHub+8OHQuLE7V6962RuYSBKkxICIiIiIQPHi8PPPpvx7jRpw7x58+inky2euuG7dsjtCkUd4ecHo0TBzpmlvuHq1G3361GbLFofdoYkkKUoMiIiIiMh/qlY1X8P++iuULAnXrpk52vnzw9ixEBxsd4Qij2jVytTPLFjQ4vLlFNSt687o0Wq4IRJTSgyIiIiIyIMcDtMXbvdu+O47yJsXLlyArl2hSBGYNcssORBJRIoVg82bQ6hW7RwhIQ7eeMMkDG7etDsykcRPiQERERERiZybG7RubToVfPUVZMpkuhm0agXly5vS8PpKVhIRPz/o23cHn312Hw8PmD0bKlaEQ4fsjkwkcVNiQERERESi5+UF3bubpMAHH5irr927oWFDqF0bfvvN7ghFwjkc0KNHKGvXQrZsJilQoYKZ6CIikVNiQERERERiJlUqGDAATp6E3r1NwmD9eqhZ0yQJtm+3O0KRcNWqmfxVnTqmdmarVvDGGxAUZHdkIomPEgMiIiIiEjsZMsDnn8Px4/Dqq+DhYZYVVKwIzZqZ1ociiUCmTLB8OfTrZ+6PHm0muZw9a2tYIomOEgMiIiIi8mRy5oTx400NgrZtTU2Cn3+GUqWgZUvzuIjNPDxMx82FCyF1ati8GcqUgVWr7I5MJPFQYkBEREREnBMQANOnw4ED8OKL5rHZs02Z+FdegVOnbA1PBKBJE9i5E0qXhn/+gcBAGDZMDTZEQIkBEREREYkrRYqYhMCePfDss+aKa/p0KFgQunTR/G2xXUAAbNoEHTqY4fn++2ao/vuv3ZGJ2EuJARERERGJW6VKmSUFW7ear2VDQmDcOMif3xQtvHjR7gjFhaVIAZMnw6RJ4O0Nv/4K5crBrl12RyZiHyUGRERERCR+VKxoihKuWwc1asC9e/Dll5Avn6kGd+WK3RGKC+vY0dQbyJvXrHapWtUkDERckRIDIiIiIhK/atY0yYFly0xD+du3YcQIc0X2wQdw/brdEYqLKlPG1B145hmTt+rUySwzuHPH7shEEpYSAyIiIiIS/xwOs6xg61azzKBkSZMQGDTIJAg++cQ0mxdJYGnTmiE5bJhprDF1KlSpAidO2B2ZSMJRYkBEREREEo7DYaq97d5tChUWKmSWFLzzjqkMN3o03L1rd5TiYtzcoH9/WL4cMmaEvXtN3YGFC+2OTCRhKDEgIiIiIgnPzc20NjxwAKZNM7MGLl6EN96AAgVgwgQIDrY7SnEx9eqZIoRVqsC1a9C0qSmHERJid2Qi8UuJARERERGxj4cHtGsHhw+bzgXZs5u2hq+9BoULw4wZcP++3VGKC8mRA9auNTkqMOUwAgPVTEOSNyUGRERERMR+Xl4mGXD8uOlckCkTnDwJbdtC8eIwd65pPC+SALy8zDCcNQtSpoQ1a6BsWdi40e7IROKHEgMiIiIiknj4+Jivak+eNF/Vpk1rZhO8+KK5Mlu0CCzL7ijFRbRoAdu3Q5Ei8NdfULu2SRhoCEpyo8SAiIiIiCQ+KVOagoSnTpnOBX5+piLcs8+aBeArV+rqTBJEkSKwbRu0bGlqDfTuDa1bm66bIsmFEgMiIiIiknilTg2DB5sEwTvvQIoUpuVhgwZQpw5s2GB3hOICUqWCmTNh1ChTFuOHH6BGDfjzT7sjE4kbSgyIiIiISOKXPr1ZWnDypFlq4OUF69aZq7OGDc18b5F45HBAz56wYoUZjrt2QYUKqjsgyYMSAyIiIiKSdGTJYhZ5Hz9uihV6eMCyZVCxIjRrBvv32x2hJHO1a8OOHVCypOlUUKcOTJpkd1QizlFiQERERESSnpw5TXvDI0dM5wI3N/j5ZyhVyiwGP3zY7gglGcuTBzZtghdegOBg6NwZevQw/xZJipQYEBEREZGkK18+mD4dDhwwnQssC2bPhqJFTYU4JQgknqRMCXPmwAcfmPtffw1PPQX//GNvXCJPQokBEREREUn6ihQxCYE9e6BpU5MgmDlTCQKJVw4HDBgAP/1kChSuWWPqDmhFiyQ1SgyIiIiISPJRqpS5Stu1y9QcUIJAEkDTprB5s5nAcvq06ag5f77dUYnEnBIDIiIiIpL8lCkDCxYoQSAJpnhx2LYN6tWDW7fg+edNp83QULsjE3k8JQZEREREJPlSgkASUPr0sHSp6agJMGSIKVB486a9cYk8jhIDIiIiIpL8KUEgCcTDw3TUnDIFvLzMsKtSBU6etDsykagpMSAiIiIirkMJAkkg7dvD2rWQJYtpmlGhAqxebXdUIpFTYkBEREREXI8SBJIAqlSBHTtMUuDKFQgMhK++MsNNJDFRYkBEREREXJcSBBLPsmeHdevg5Zfh/n3o2RM6d4Z79+yOTOQ/SgyIiIiIiChBIPEoRQr49lsYORLc3GDyZKhbFy5csDsyEUOJARERERGRMEoQSDxxOKBvX/j1V0idGjZtMksMduywOzIRJQZERERERB6lBIHEk4YNYds2KFQIzp6FGjXM0BKxkxIDIiIiIiJRUYJA4kHBgrB1KzRqBHfvmqH0zjumBoGIHZQYEBERERF5HCUIJI6lTg0LF8K775r7n3wCTZrA1au2hiUuKkkmBsaOHUvJkiXx9/fH39+fKlWqsGTJkge22bx5M3Xr1iVlypT4+/tTs2ZN7ty5E/78lStXaN26Nf7+/qRJk4aOHTty8+bNhD4VEREREUlKlCCQOOTuDh99ZIZQihSwZAlUrgxHjtgdmbiaJJkYyJEjByNGjGDnzp3s2LGDunXr0rRpU37//XfAJAUaNmxIYGAg27ZtY/v27XTv3h03t/9Ot3Xr1vz++++sWLGCX375hfXr1/Pqq6/adUoiIiIikpQoQSBxqFUr2LABcuQwSYGKFWHxYrujElfisCzLsjuIuJAuXTpGjhxJx44dqVy5Mg0aNGDo0KGRbnvo0CGKFi3K9u3bKV++PABLly6lUaNGnD17lmzZskW6371797gXoeHo9evXyZkzJ+fPnyd9+vRxf1IiiUBwcDArVqygQYMGeHp62h2OSLzQOBdXoHEez3bvxn3YMNwWLgTAcjiwWrTgfv/+ULiwzcG5jqQ+zi9ehBYt3Nm0yQ2Hw2LYsFD69AnF4bA7MklMLl++TNasWbl27Rr+/v5x8ppJPjFw//595s6dS7t27di9ezcZMmQgc+bMjB49mh9++IETJ05QuHBhhg0bRvXq1QGYMmUKffr04d9//w1/nZCQEHx8fJg7dy7PPfdcpMcaPHgwQ4YMeeTxmTNn4uvrGz8nKCIiIiJJRuqTJyk0ezZZt24FTILgbI0aHH3xRW7myGFzdJIUBAc7mDChJCtW5AGgZs0/6dZtD97eofYGJonG7du3eemll5QYANi/fz9VqlTh7t27pEqVipkzZ9KoUSO2bNlClSpVSJcuHZ9++imlS5fm22+/5ZtvvuHAgQMUKFCA4cOHM336dI48tHgnU6ZMDBkyhC5dukR6TM0YEFeU1DPvIjGhcS6uQOM8gUU1g6BfPyhSxObgkq/kMs4tC8aNc+PNN924f99B2bKhzJt3H+WWBOJnxoBHnLyKDQoVKsSePXu4du0a8+bNo127dqxbt47QUJNJe+2112jfvj0AZcqUYdWqVUyZMoWPPvroiY/p7e2Nt7f3I497enom6V88IjGhcS6uQONcXIHGeQKpWBF+/hl274YPPsDx0084Zs3CbfZseP55eO89KF3a7iiTreQwznv2hJIl4YUXYNcuN6pUcWP+fKha1e7IxG7xMbaTZPFBAC8vL/Lnz0+5cuX46KOPKFWqFKNGjSJr1qwAFC1a9IHtixQpwpkzZwDIkiULly5deuD5kJAQrly5QpYsWRLmBEREREQk+YtYpPC558xXwfPmmceffdY0sxeJQu3asH07lChh6g/Urg2TJ9sdlSRHSTYx8LDQ0FDu3btHnjx5yJYt2yPLBI4ePUru3LkBqFKlClevXmXnzp3hz69evZrQ0FAqVaqUoHGLiIiIiAsoUwbmz4f9+00Jejc3WLTI9KYLDIT16+2OUBKpvHlh0yYz0SQ4GDp1MrMJgoPtjkySkySZGOjXrx/r16/n9OnT7N+/n379+rF27Vpat26Nw+HgrbfeYvTo0cybN4/jx48zYMAADh8+TMeOHQEze6Bhw4Z07tyZbdu2sXHjRrp3707Lli2j7EggIiIiIuK04sVNW8NDh6B9e/DwgBUroFYtqFkTli83swpEIkiVCubMgQ8+MPe/+goaNoTLl+2NS5KPJJkYuHTpEm3btqVQoULUq1eP7du3s2zZMho0aABAr1696NevH71796ZUqVKsWrWKFStWEBAQEP4a33//PYULF6ZevXo0atSI6tWrM2HCBLtOSURERERcScGCMGUKHDsGXbqAlxf89hs89RRUqgQLFypBIA9wc4MBA8zKlFSpYPVqqFDBTEIRcVaS7UqQGFy/fp3UqVPzzz//qCuBJFvBwcEsXryYRo0aJfkiPiJR0TgXV6BxnsidOweffQbjxsGdO+axkiVNkcLnnwd3d3vjSyJcZZwfOGBKVJw6BSlTwowZpoSFuIbLly+TIUOGOO1KkCRnDIiIiIiIJCvZs8Pnn8Pp09CvH/j5wb590KIFFCsG334LISF2RymJRPHipihh3bpw6xY0bw5DhsD/GrSJxJoSAyIiIiIiiUWmTDB8OPzxBwweDGnTwpEj0K6dWX4wcSLcu2d3lJIIpE8Py5aZQoRghstLL8Hdu7aGJUmUEgMiIiIiIolN2rQwaJCZQTBiBGTMaOaNv/oq5M9vqs+FLTkQl+XhAaNGmRaGHh4wezbUqwf//GN3ZJLUKDEgIiIiIpJY+fvDO++YBMGXX0K2bHD2rPmaOG9eGDkSbtywO0qxWYcOZvZA6tSmtWGVKqaupUhMKTEgIiIiIpLY+frCG2/AyZOmQGGePHDxIrz9tvn30KFw9arNQYqd6taFzZvNcDh+HCpXNo0uRGJCiQERERERkaTC2xteew2OHoWpU6FAAbhyBQYOhNy5TReDv/+2O0qxSZEisGULVKxohkX9+jBzpt1RSVKgxICIiIiISFLj6QmvvAKHDsEPP5gy9devm8KFefJAnz5w/rzdUYoNMmeGNWtM+8KgIGjdGoYNAzWpl+goMSAiIiIiklS5u0PLlrB3LyxYAOXKwe3bpvVh3rzQvTucOWN3lJLAfH1h7lyTHwJ4/33o2BGCg+2NSxIvJQZERERERJI6Nzdo1sw0t1+yBKpWNW0Nx4yBgADo1MksPBeX4e4On35qhoCbm1l58vTTKkUhkVNiQEREREQkuXA4oGFD2LDBzCevVw9CQkw/u0KF4OWX4eBBu6OUBNS1KyxcCClTwqpVUK0a/PGH3VFJYqPEgIiIiIhIcuNwQO3asHKl6V/XuDGEhsL335t6BC+8ALt32x2lJJDGjU2HgmzZTF6oUiUzuUQkjBIDIiIiIiLJWZUq8MsvsHMnNG9uqtD9+COULQtNmpgy9pLslSkDW7dCyZKm02WtWvDzz3ZHJYmFEgMiIiIiIq6gbFmTEDhwAF56ySw8/+UXkzioWxdWrFDp+mQuRw4zc6BhQ7hzx3QuGDXK7qgkMVBiQERERETElRQrZpYUHD4MHTqAh4epRxAYCBUqwLx5cP++3VFKPPH3h0WL4LXXTB6oVy/o2VM/clenxICIiIiIiCsqUMAUJTxxAt54w/S427kT/u//oEgRmDTJdDaQZMfDA8aOhU8+Mfe/+so0tbh509awxEZKDIiIiIiIuLJcueDLL02p+oEDIW1aOHYMOneGfPngs8/gxg27o5Q45nDAW2/B3Lng42NWldSqBX/9ZXdkYgclBkREREREBDJkgCFD4MwZkwzIls1cJfbtC7lzm6TB33/bHaXEsRdeMCtJMmaEXbugcmXYv9/uqCShKTEgIiIiIiL/SZUK3nwTTp40Sw0KFoR//4WhQ02C4I03TPJAko3KlU1zikKF4M8/oVo1WL7c7qgkISkxICIiIiIij/L2NsUJDx40BQnLlTOl7EePhoAAaNfOPCfJQr58sGmTWU5w4wY0agQTJ9odlSQUJQZERERERCRq7u7w/POwfbtpaVivHoSEwLffmg4HzZrB1q12RylxIF06WLYM2rQxXQpefRX69YPQULsjk/imxICIiIiIiDyewwH168PKlSYR0Ly5eeznn81c9Dp1zFWlZdkdqTjB2xumT4dBg8z9ESOgVSu4e9feuCR+KTEgIiIiIiKxU7Ei/PijWUrQvr3pf7d2LTRsaJYczJljvnKWJMnhgMGDTYLA09P8OOvVU+3J5EyJAREREREReTKFC8OUKaZQYe/e4OsLu3dDixbmuYkT4d49u6OUJ9S2rSlCmCaNqT9QpQocPWp3VBIflBgQERERERHn5MwJn39uuhUMHmwWqx8/bhap580Ln35qKtpJklO7tkkK5M0LJ06Y5MBvv9kdlcQ1JQZERERERCRupE9vFqf/8Qd88QXkyAHnz8Nbb0GuXPD++5qPngQVKWLaGVaqBFeumFITM2faHZXEJSUGREREREQkbqVKBb16ma+Yp0yBQoXg6lUYNgxy54YePUzyQJKMTJlg9WpTczIoCFq3hg8/VK3J5EKJARERERERiR9eXqY44cGDplhh+fJw5w58/TUEBJhF7L//bneUEkO+vjB3LvTta+4PGAAdOphEgSRtSgyIiIiIiEj8cnMzXzVv22baHdavb7oWzJgBxYtD06awebPdUUoMuLnByJHwzTfm39OmwdNPmwkhknQpMSAiIiIiIgnD4TB971asgO3b4fnnzWMLF0LVqqbS3dKlmp+eBHTpAosWmVUjq1dDtWpw+rTdUcmTUmJAREREREQSXvnyMG8eHDoEHTuCpyesW2e+fi5bFmbPhpAQu6OUaDRqZDoUZMtmVotUrmzyPZL0KDEgIiIiIiL2KVQIJk2CkyfhzTchZUrYswdatoSCBU09glu37I5SolC6NGzdCqVKwcWLUKsW/PST3VFJbCkxICIiIiIi9suRAz77zHQrGDLEtD48dcp0MMiVy1S6u3TJ7iglEjlymJkDDRua2pLNm8OXX2pFSFKixICIiIiIiCQe6dPDwIFw5gyMGWO6F1y5Ynrj5coFr70GR4/aHaU8xM/P1Bx4/XWTEOjdG3r21GqQpEKJARERERERSXx8faFrVzhyxNQiqFQJ7t2DCROgcGF47jnYtMnuKCUCDw/TrWDkSHP/66+hWTO4edPWsCQGlBgQEREREZHEy93ddC/YvBnWr4cmTcxX0j/9ZErhV60KCxaY9odiO4cD+vY1uRwfH/j1V9Od8vJluyOT6CgxICIiIiIiiZ/DATVqmNaGBw+aTgZeXiZh0Lw5FCmC28SJuN27Z3ekgsnlrFkD6dKZ4oQ1asDZs3ZHJVFRYkBERERERJKWIkVMJ4PTp6FfP0iTBo4dw71bNwJffRW3YcP0FXUiULmyKUqYPbvpSlmtmlkZIomPEgMiIiIiIpI0Zc0Kw4fDn3/Cl19i5c6N97VruA8ZAjlzQvfupg2i2KZoUdi40XSePHMGqleHHTvsjkoepsSAiIiIiIgkbalSwRtvEHLoEDvefBOrdGnTN2/MGChQAF58EbZvtztKl5U7N2zYAOXKwT//QJ06sHq13VFJREoMiIiIiIhI8uDhwbmaNQnZuhVWroSGDSE0FObOhYoVoXZtUw0vNNTuSF1Oxoym5kDduqZLwdNPw48/2h2VhFFiQEREREREkheHA+rVgyVLYN8+aNvW9NJbtw6eeQZKlIApU0z7Q0kwfn6weLGpFRkUZCZyTJxod1QCSgyIiIiIiEhyVqIETJ8Op06ZPnp+fv91NcibF0aMgKtX7Y7SZXh7w5w50Lmzmbjx6qvw0UemA6XYR4kBERERERFJ/nLkgJEjTaHCTz4xpfLPnzddDXLmhDffNNXxJN65u8P48dC/v7nfvz/06aMVHnZSYkBERERERFxH6tTw1lumW8H06VC8uFn0/sUXkC8ftG4Ne/bYHWWy53DAsGHw+efm/hdfQPv2EBxsb1yuSokBERERERFxPV5epvbAvn2mFkHdunD/PsycCWXKQIMGsHy55rjHs969TX7G3R2+/dbUH7hzx+6oXI8SAyIiIiIi4rocDtO9YNUq2LkTWrUyV6krV8JTT0Hp0jBjhr7Kjkdt28KCBeDjA7/8AoGBKvuQ0JQYEBERERERAShb1swYOH4c3ngDUqb8r6tBvnzw2Wdw/brdUSZLTZqYCRqpU8OGDVCrFly4YHdUrkOJARERERERkYjy5IEvvzTFCIcNg8yZ4exZ09UgZ05To0CFCuNcjRqmo2SWLCYfU60anDhhd1SuQYkBERERERGRyKRLZ0rmnz4NEydCoUJmxsCnn5oZBC1bwrZtdkeZrJQqZWYM5Mtn6kNWqwZ799odVfKnxICIiIiIiEh0fHygUyc4eBAWLfqvUOHs2VCpkrl6nTcPQkLsjjRZCAgwyYGSJeHiRbOs4Lff7I4qeVNiQEREREREJCbc3OCZZ0yhwt27oV078PSETZvg//4PChQwffdUh8BpWbOaZQXVq8O1a6Yg4S+/2B1V8qXEgIiIiIiISGyVLg3TpsEff8D770P69GbJwZtvQo4c5r+nT9sbYxKXJg0sW2ZyMXfvQrNmpqWhxD0lBkRERERERJ5U1qwwdKgpRjh+PBQuDDdumJkDAQFmJsHmzXZHmWT5+sL8+aYxxP37ZpLGF1/YHVXyo8SAiIiIiIiIs3x94dVX4fffYfFiaNAAQkNN7YGqVaFKFZgzR3UInoCnJ0ydCr17m/tvvmlqQlqWvXElJ0oMiIiIiIiIxBU3N3j6aVi+3PTc69ABvLxgyxZo0cLMIvjsM7NwXmLMzc28bcOHm/sffQSvvWZmEYjzlBgQERERERGJDyVKwOTJZpnBoEGQMaP5d9++pg5Br16mJ5/EiMMB/frBhAkmUTBxosm13Ltnd2RJnxIDIiIiIiIi8SlzZhg82BQqnDgRihaFmzdh1CjTyeD5501/Ps2Nj5HOnc2qDC8v+PFHaNTIlHWQJ6fEgIiIiIiISEJIkQI6dYIDB2DpUnjqKVOHYP58qFEDKlWCH36A4GC7I030nn8eliyBVKlg9WqoUwf+/tvuqJIuJQZEREREREQSksNhkgJLl5okQadO4O0N27fDSy9BvnwwciRcvWp3pIla3bqwZg1kyAA7d0L16malhsSeEgMiIiIiIiJ2KVbMLC84cwaGDIFMmeDsWXj7bVOHoEcPOH7c7igTrfLlzSqMnDnh6FHTAOLgQbujSnqUGBAREREREbFbpkwwcKCpQzBliilceOsWfP01FCwIzZrB+vWqQxCJQoVg0yYoUgTOnTOrMrZutTuqpEWJARERERERkcTCxwfat4e9e2HFClNZz7Lg55+hVi3zFfn330NQkN2RJio5csBvv5kyDVeuQL16pmOkxIwSAyIiIiIiIomNwwH168Ovv5q58a+9ZpIGu3bByy9D3rwwYoS5ChYA0qeHlSshMNBMtnjmGZg92+6okgYlBkRERERERBKzIkVg3Dj480/48EPIkgX++gv69TOL67t1MwvshVSpYNEiaNHCNHdo1Qq++cbuqBI/JQZERERERESSggwZ4L334PRpmDYNSpWC27fNlW/hwuYr8uXLXb4OgZeXWW3RpYt5K7p1gw8+cPm3JVpKDIiIiIiIiCQl3t7Qrh3s3g2rV5uEgGWZZQdPPWU6HYwdCzdv2h2pbdzdYcwYU88RYNAg6NkTQkPtjSuxUmJAREREREQkKXI4oE4dM3f+6FFz5evnB4cOQdeupiJf375w6pTdkdrC4TAdIEePNve//tqUZ1DdxkcpMSAiIiIiIpLUFSgAo0bB2bPmv/nzw7Vr8NlnEBBg2h2uXu2S8+l79DBLCzw84IcfoGlTU5xQ/qPEgIiIiIiISHLh729mDhw5YpYWBAb+1+6wXj0oWRImTjS1CVzISy/BwoWQIgUsXQoNGsC//9odVeKhxICIiIiIiEhy4+YGjRrBsmWm3WHXrpAyJRw4AK++aroZvPsunDljd6QJ5umnTTvDNGlg82aTJ7l82e6oEgclBkRERERERJKzIkVMJb6zZ83Sgrx54coV+Phj8+8XXoDffnOJZQZVq8L69ZAxo6ndWLcu/P233VHZT4kBERERERERV5AmDbz5Jhw7Bj/9ZK6KQ0Phxx+hZk0oWxamToW7d+2ONF6VKAFr10LmzLBvn3kbLl2yOyp7KTEgIiIiIiLiStzdTQW+Vatg/37o3Nksvt+zBzp0MMsM3n8fzp2zO9J4U7SoSQ5kzWpWV9SpAxcu2B2VfZQYEBERERERcVXFi8OECfDnn2ZpQa5c8M8/MGwY5MkDrVqZBfnJcJlB4cKwbh1kz27KMNSuDX/9ZXdU9lBiQERERERExNWlTw9vvw0nTvy3tCAkBGbNMgvzK1aE776De/fsjjROFShgkgM5c5pGDrVrJ+uJElFSYkBEREREREQMDw9o3txcLe/ebZYWeHvDjh3Qpg3kzg2DByerefcBAeZ0c+c25Rdq1TITKFyJEgMiIiIiIiLyqNKlYfJkc5U8bJiZc3/xIgwZYpYctGkD27fbHWWcyJvX1BzIm9dMmqhVC/74w+6oEo4SAyIiIiIiIhK1jBmhf384deq/pQXBwWZpQcWK5v6sWeaxJCxPHpMcCAgwp1qrlvmvK1BiQERERERERB7P0xNatICNG81MgTZtzGObN5sihXnywIcfJunef7lymeRAgQJmxkCtWmYGQXKnxICIiIiIiIjETvny8O23cOaMWVqQJYsp6T9ggLm6bt/e1ChIgnLkMMmBQoXMKopatUztgeRMiQERERERERF5MlmywMCB5uv1776DChVM54Jp06BsWahRA+bMSXLLDLJlM8mBIkVMl4JatUzXguQqSSYGxo4dS8mSJfH398ff358qVaqwZMmS8Odr166Nw+F44Pb6668/8BoPP+9wOJg1a1ZCn4qIiIiIiEjS5+UFrVvDtm3/LS3w8IANG8zyg7BuBn/9ZXekMZYli0kOFC8O58+b5MDBg3ZHFT+SZGIgR44cjBgxgp07d7Jjxw7q1q1L06ZN+f3338O36dy5M+fPnw+/ffLJJ4+8ztSpUx/YplmzZgl4FiIiIiIiIslQ5cowc6aZRTBwoLnCPn/eLDnInRtefBHWrwfLsjvSx8qUCVavhpIlTUOGOnXgwAG7o4p7STIx0KRJExo1akSBAgUoWLAgw4YNI1WqVGzZsiV8G19fX7JkyRJ+8/f3f+R10qRJ88A2Pj4+CXkaIiIiIiIiyVe2bCYZ8McfpmtB9eoQEgJz55qv30uWhHHj4OZNuyONVsaMJjlQurSpq1inDuzbZ3dUccvD7gCcdf/+febOncutW7eoUqVK+OPff/893333HVmyZKFJkyYMGDAAX1/fB/bt1q0bnTp1Il++fLz++uu0b98eh8MR5bHu3bvHvXv3wu9fv34dgODgYIKT2JoZkZgKG9sa45KcaZyLK9A4F1egcZ5IORzQvLm57d2L2/jxuM2ciePAAejSBeuddwht25bQ114zFf8SIX9/WLoUGjVyZ9cuN+rUsViyJIQyZRI+lvgY3w7LSgLzNyKxf/9+qlSpwt27d0mVKhUzZ86kUaNGAEyYMIHcuXOTLVs29u3bxzvvvEPFihWZP39++P5Dhw6lbt26+Pr6snz5cgYNGsQnn3xCz549ozzm4MGDGTJkyCOPz5w585Gkg4iIiIiIiETO4+ZNcq1eTd6lS0kVoe7ApVKlOPX001ysUAHL3d3GCCN386YHQ4ZU5dixtKRKFcTgwZvIn/9agsZw+/ZtXnrpJa5duxbpzPgnkWQTA0FBQZw5c4Zr164xb948Jk2axLp16yhatOgj265evZp69epx/PhxAgICIn29gQMHMnXqVP78888ojxnZjIGcOXNy/vx50qdP7/xJiSRCwcHBrFixggYNGuDp6Wl3OCLxQuNcXIHGubgCjfMkKDQUx6pVuH3zDY7Fi3H87/LUypWL0M6dCe3QwczlT0SuXYMmTdzZssWN1KktFi++T4UKCXdZffnyZbJmzRqniYEku5TAy8uL/PnzA1CuXDm2b9/OqFGjGD9+/CPbVqpUCSDaxEClSpUYOnQo9+7dw9vbO9JtvL29I33O09NTv3gk2dM4F1egcS6uQONcXIHGeRLTqJG5nT5tag5MmoTjzBncBwzAfehQU6ywe3eoWNEsS7BZhgywfLkJecMGB08/7cGyZabmYkKIj7GdJIsPRiY0NPSBb/Mj2rNnDwBZs2aNcv89e/aQNm3aKJMCIiIiIiIiEo/y5IERI+DsWZg2DSpUgKAg+O47c9VdoQJMnQp37tgdKX5+sGQJ1KwJ169DYCBs3Gh3VE8uSSYG+vXrx/r16zl9+jT79++nX79+rF27ltatW3PixAmGDh3Kzp07OX36NAsXLqRt27bUrFmTkiVLArBo0SImTZrEgQMHOH78OGPHjmX48OH06NHD5jMTERERERFxcT4+0K4dbNtmbu3agbc37NwJHTpAjhzw9ttw6pStYaZKBYsXmy4FN27AU0+ZLoxJUZJMDFy6dIm2bdtSqFAh6tWrx/bt21m2bBkNGjTAy8uLlStXEhgYSOHChenTpw/PP/88ixYtCt/f09OTMWPGUKVKFUqXLs348eP5/PPPGTRokI1nJSIiIiIiIg+oUMHMHjh71swmyJ0brlyBkSMhIACeecZ8dR8aakt4KVPCL79A/fpw6xY8/TSsXWtLKE5JkjUGJk+eHOVzOXPmZN26ddHu37BhQxo2bBjXYYmIiIiIiEh8yJAB3nkH+vY1X9N//bVZ6P/rr+aWPz906QLt20PatAkamq8vLFwIzz0Hy5aZ2gOLFkG9egkahlOS5IwBERERERERcUHu7tCkibkCP3IEevWC1Knh+HHo0weyZ4fOneF/deYSSooU8NNPJilw546ZyLBsWYKG4BQlBkRERERERCTpKVgQvvgCzp2D8eOhZElzVT5pEpQpA9WqwcyZpoBhAvDxgfnzTd7i7l1o2tRMbkgKlBgQERERERGRpCtlSnj1VTNL4LffoGVL8PCATZugdWvImRMGDDB1CuKZtzfMmwfNmsG9e2Z5QYRyd4mWEgMiIiIiIiKS9DkcUL06/PADnDkDQ4ZAtmxw6RJ8+KFph/j887B6NVhWvIXh5QVz5phDBQWZ//70U7wdLk4oMSAiIiIiIiLJS9asMHAgnD5trtJr1YL7981c/3r1oFgx+OoruHo1Xg7v6WnyEy1aQHAw/N//wY8/xsuh4oQSAyIiIiIiIpI8eXqaq/K1a2H/ftO5IGVKOHQIevY0xQo7dYIdO+Ll0N99By+9BCEhJkkwZ06cHyZOKDEgIiIiIiIiyV/x4vDNN6ZY4ddfm1kDt2/D5MlQoQKUL2/+fetWnB3SwwO+/RbatDETFlq1MvUQExslBkRERERERMR1pE4N3bqZGQS//WYKFHp5wc6dZvZAtmzQowf8/nucHM7dHaZOhfbtITTUJAlmzIiTl44zSgyIiIiIiIiI6wkrVvjdd2YWwSefQEAAXL9uZhQULw41a5qv+O/dc+pQ7u6mi2LnziY50K4dTJsWN6cRF5QYEBEREREREdeWIQO89RYcPQrLl5s+g+7u/80oyJED3nkHTp584kO4ucG4cabMgWVBhw4mWZAYKDEgIiIiIiIiAubqvUED073gjz9My8Ps2eGff/6bUdCwoek/GBLyRC8/ZoxZqWBZZgbB+PFxfxqxjsvuAEREREREREQSnezZ/2t5+NNPJiHgcMCyZWZGQZ48JnFw7lysXtbhgFGjoFcvc//1102ywE5KDIiIiIiIiIhExcMDmjaFJUvg+HGzpCBjRpMQGDwYcueG5s3NEoTQ0Bi9pMMBn38Offua+927m2SBXZQYEBEREREREYmJfPlgxAj4809TlLBmTdOHcMECeOopKFgQRo6Ev/9+7Es5HGZ1wrvvmvu9eplkgR2UGBARERERERGJDW9vaNUK1q0zbQ179DBtEE+cgLffNsUKW7eGDRtMMYEoOBwwfDi8/76536cPfPFFAp1DBEoMiIiIiIiIiDypokVh9GiztGDyZChfHoKCzIyCGjWgZElTRODatUh3dzhg6FCzKsHX1+ye0JQYEBEREREREXFWypSmB+H27ebWqZO50j9wwBQRyJbNtCHYtSvS3QcNgoMHTS4hoSkxICIiIiIiIhKXypeHiRPNLIKvvoJixeD2bZg0CcqVg4oVYcoU81gEuXPbE64SAyIiIiIiIiLxIU0aM1tg/3747Td46SXw8jIzCjp2NLMI3njDTBWwkRIDIiIiIiIiIvHJ4YDq1eH77+HsWdOOIF8+U3dg9Ggzo6B2bZg1C+7dS/DwlBgQERERERERSSgZM8Jbb8GxY7BsGTRrBu7upsNBq1YwcGCCh6TEgIiIiIiIiEhCc3ODwEBYsABOnzZtCbJnh3btEj6UBD+iiIiIiIiIiPwnRw7TluCPP0z7wwSmxICIiIiIiIhIYuDubsthlRgQERERERERcWFKDIiIiIiIiIi4MCUGRERERERERFyYEgMiIiIiIiIiLkyJAREREREREREXpsSAiIiIiIiIiAtTYkBERERERETEhSkxICIiIiIiIuLClBgQERERERERcWFKDIiIiIiIiIi4MCUGRERERERERFyYEgMiIiIiIiIiLkyJAREREREREREXpsSAiIiIiIiIiAtTYkBERERERETEhSkxICIiIiIiIuLClBgQERERERERcWFKDIiIiIiIiIi4MCUGRERERERERFyYEgMiIiIiIiIiLkyJAREREREREREXpsSAiIiIiIiIiAtTYkBERERERETEhSkxICIiIiIiIuLCPOwOICmzLAuAGzdu4OnpaXM0IvEjODiY27dvc/36dY1zSbY0zsUVaJyLK9A4F1dw48YN4L/r0bigxIATLl++DEDevHltjkRERERERERcyeXLl0mdOnWcvJYSA05Ily4dAGfOnImzH4hIYnP9+nVy5szJn3/+ib+/v93hiMQLjXNxBRrn4go0zsUVXLt2jVy5coVfj8YFJQac4OZmSjSkTp1av3gk2fP399c4l2RP41xcgca5uAKNc3EFYdejcfJacfZKIiIiIiIiIpLkKDEgIiIiIiIi4sKUGHCCt7c3gwYNwtvb2+5QROKNxrm4Ao1zcQUa5+IKNM7FFcTHOHdYcdnjQERERERERESSFM0YEBEREREREXFhSgyIiIiIiIiIuDAlBkRERERERERcmBIDIiIiIiIiIi5MiYHHGDNmDHny5MHHx4dKlSqxbdu2aLefO3cuhQsXxsfHhxIlSrB48eIEilTkycVmnE+cOJEaNWqQNm1a0qZNS/369R/7uRBJDGL7+zzMrFmzcDgcNGvWLH4DFIkDsR3nV69epVu3bmTNmhVvb28KFiyov10k0YvtOP/yyy8pVKgQKVKkIGfOnPTu3Zu7d+8mULQisbN+/XqaNGlCtmzZcDgc/PTTT4/dZ+3atZQtWxZvb2/y58/PtGnTYn1cJQaiMXv2bN58800GDRrErl27KFWqFE899RSXLl2KdPtNmzbRqlUrOnbsyO7du2nWrBnNmjXjwIEDCRy5SMzFdpyvXbuWVq1asWbNGjZv3kzOnDkJDAzk3LlzCRy5SMzFdpyHOX36NH379qVGjRoJFKnIk4vtOA8KCqJBgwacPn2aefPmceTIESZOnEj27NkTOHKRmIvtOJ85cybvvvsugwYN4tChQ0yePJnZs2fTv3//BI5cJGZu3bpFqVKlGDNmTIy2P3XqFI0bN6ZOnTrs2bOHXr160alTJ5YtWxa7A1sSpYoVK1rdunULv3///n0rW7Zs1kcffRTp9i+++KLVuHHjBx6rVKmS9dprr8VrnCLOiO04f1hISIjl5+dnTZ8+Pb5CFHHak4zzkJAQq2rVqtakSZOsdu3aWU2bNk2ASEWeXGzH+dixY618+fJZQUFBCRWiiNNiO867detm1a1b94HH3nzzTatatWrxGqdIXACsBQsWRLvN22+/bRUrVuyBx1q0aGE99dRTsTqWZgxEISgoiJ07d1K/fv3wx9zc3Khfvz6bN2+OdJ/Nmzc/sD3AU089FeX2InZ7knH+sNu3bxMcHEy6dOniK0wRpzzpOP/ggw/IlCkTHTt2TIgwRZzyJON84cKFVKlShW7dupE5c2aKFy/O8OHDuX//fkKFLRIrTzLOq1atys6dO8OXG5w8eZLFixfTqFGjBIlZJL7F1TWoR1wGlZz8888/3L9/n8yZMz/weObMmTl8+HCk+1y4cCHS7S9cuBBvcYo440nG+cPeeecdsmXL9sgvJJHE4knG+YYNG5g8eTJ79uxJgAhFnPck4/zkyZOsXr2a1q1bs3jxYo4fP07Xrl0JDg5m0KBBCRG2SKw8yTh/6aWX+Oeff6hevTqWZRESEsLrr7+upQSSbER1DXr9+nXu3LlDihQpYvQ6mjEgIk9sxIgRzJo1iwULFuDj42N3OCJx4saNG7Rp04aJEyeSIUMGu8MRiTehoaFkypSJCRMmUK5cOVq0aMF7773HuHHj7A5NJM6sXbuW4cOH880337Br1y7mz5/Pr7/+ytChQ+0OTSRR0YyBKGTIkAF3d3cuXrz4wOMXL14kS5Yske6TJUuWWG0vYrcnGedhPv30U0aMGMHKlSspWbJkfIYp4pTYjvMTJ05w+vRpmjRpEv5YaGgoAB4eHhw5coSAgID4DVoklp7k93nWrFnx9PTE3d09/LEiRYpw4cIFgoKC8PLyiteYRWLrScb5gAEDaNOmDZ06dQKgRIkS3Lp1i1dffZX33nsPNzd9TypJW1TXoP7+/jGeLQCaMRAlLy8vypUrx6pVq8IfCw0NZdWqVVSpUiXSfapUqfLA9gArVqyIcnsRuz3JOAf45JNPGDp0KEuXLqV8+fIJEarIE4vtOC9cuDD79+9nz5494bdnn302vNpvzpw5EzJ8kRh5kt/n1apV4/jx4+GJL4CjR4+SNWtWJQUkUXqScX779u1HLv7DkmGmtptI0hZn16Cxq4voWmbNmmV5e3tb06ZNsw4ePGi9+uqrVpo0aawLFy5YlmVZbdq0sd59993w7Tdu3Gh5eHhYn376qXXo0CFr0KBBlqenp7V//367TkHksWI7zkeMGGF5eXlZ8+bNs86fPx9+u3Hjhl2nIPJYsR3nD1NXAkkKYjvOz5w5Y/n5+Vndu3e3jhw5Yv3yyy9WpkyZrA8//NCuUxB5rNiO80GDBll+fn7WDz/8YJ08edJavny5FRAQYL344ot2nYJItG7cuGHt3r3b2r17twVYn3/+ubV7927rjz/+sCzLst59912rTZs24dufPHnS8vX1td566y3r0KFD1pgxYyx3d3dr6dKlsTquEgOP8dVXX1m5cuWyvLy8rIoVK1pbtmwJf65WrVpWu3btHth+zpw5VsGCBS0vLy+rWLFi1q+//prAEYvEXmzGee7cuS3gkdugQYMSPnCRWIjt7/OIlBiQpCK243zTpk1WpUqVLG9vbytfvnzWsGHDrJCQkASOWiR2YjPOg4ODrcGDB1sBAQGWj4+PlTNnTqtr167Wv//+m/CBi8TAmjVrIv1bO2xct2vXzqpVq9Yj+5QuXdry8vKy8uXLZ02dOjXWx3VYlubQiIiIiIiIiLgq1RgQERERERERcWFKDIiIiIiIiIi4MCUGRERERERERFyYEgMiIiIiIiIiLkyJAREREREREREXpsSAiIiIiIiIiAtTYkBERERERETEhSkxICIiIiIiIuLClBgQEZcwePBgHA4HDofD7lBEJJkI+50yePBgu0OJU1OmTMHhcFCiRAksy7I7HKecPn06/Oc0bdo0u8NJMNGNzZEjR+JwOKhdu3aCxyUiiZcSAyIiIiICwM2bN+nfvz8AAwcOdLlk6rlz58Ivqnfv3m13OPGiS5cupE+fnnXr1jF//ny7wxGRREKJAREREUkwa9euDb/wWrt2rd3hPCJPnjw4HA5eeeUVu0OxxejRo7l48SJFixblhRdesDucBPfLL78AkCNHDsqUKWNzNPEjVapUvPnmm4BJ/oSGhtockYgkBkoMiIiIiDwBy7KwLCvZLCW4c+cOn3/+OQC9e/d2udkCAIsWLQLgmWeesTmS+NWtWzd8fHz4/fff+emnn+wOR0QSASUGRERERITvvvuOy5cv4+3t7ZKzBW7fvs2qVasAaNKkic3RxK/UqVPTqFEjwMwSERFRYkBEREREmDx5MgCNGzcmTZo09gZjg5UrV3L37l18fX2pW7eu3eHEu9atWwOwbt06Tpw4YXM0ImI3JQZExCVdvXqVQYMGUaxYMVKlSkW6dOmoU6cOP/zwQ4z2v3v3Ll9//TX16tUjS5YseHl5kSlTJurXr8/kyZMJCQmJct+H1zAfOXKEzp07kydPHry9vcmcOTPPPfccW7ZsiXT/iFW2Y3KLrvL0mjVraNeuHfny5cPX1xd/f39KlCjBW2+9xV9//RXlfg93ebh79y4jR46kbNmy+Pn54efnR8WKFfn666+jfS/i4v2MjRs3bvDZZ59Rt27d8OP4+/tTpkwZevTowcaNG6Pc9++//+b999+nTJkypEmTBh8fH/LkyUObNm3YsGFDtMd19mf+sNOnT/POO+9Qrlw50qdPj6enJxkyZKBGjRoMHjyYkydPRrnvtWvX+Oijj6hWrRoZM2bEy8uLrFmz0qRJE+bNmxdtFfqHK51v376dVq1akSNHDry9vcmePTtt2rTh0KFDkcbscDioU6dO+GN16tR5ZLxGrBz/8Di7du0aQ4cODf8ZPLz9rVu3mD17Np06daJ06dKkTp0aT09PMmbMSK1atfj000+5efNmpOdWu3ZtHA4Hf/zxBwDTp09/7GcpJl0JQkND+e6772jUqFH4mMuYMSN16tThm2++ISgoKMp94/pzFp0//viDrVu3AvD8889Hud3DNSIsy2Ly5MlUr16d9OnT4+/vT8WKFZkxY8YD+wUFBTFu3DgqV65MunTp8PPzo1q1asyZMydG8W3YsIE2bdqQJ08efHx8SJMmDWXKlOH999/n77//fvITjyCsvkD9+vXx8fEJfzyyzgbz588nMDCQTJkykTJlSkqVKsVXX31FcHBw+H6WZTFz5kxq165NpkyZ8PX1pWzZsowbNy5G3R7279/Pq6++SoECBfD19cXPz49ixYrRu3dvTp8+7fT5Nm7cOPw8Y/r/PhFJxiwRERcwaNAgC7AA6+TJk1ZAQED4/YdvL774ohUcHBzla+3Zs8fKnTt3lPsDVoUKFawLFy5Eun/Yvu3atbPmz59v+fr6Rvoa7u7u1qxZsx7Z/9SpU9Ee++FbrVq1HnmNO3fuWC1btox2v5QpU1oLFy587Pt54cIFq3Tp0lG+TpMmTaz79+/H2/sZUytWrLAyZMjw2PcrMsuWLbP8/f2j3a9bt25RnqezP/OIRo4caXl6esb6Z25ZlrVy5Uorffr00e7bqFEj68aNG5HuH7bNoEGDrDFjxlgeHh6Rvoavr6+1bt26B/aN6bidOnVq+D4Rx9nRo0etPHnyRLt9rVq1Hvv6efPmtQ4dOvTIucVk34ff14jvR2QuX75sVatWLdrXLFKkiHX69OlI94/Lz9njTJs2Lfy1Tpw4EeV2a9asCd9u+fLlVpMmTaKMqWfPnpZlWdaVK1esmjVrRrndsGHDojze/fv3rW7dukX7HqZOndpavnx5pPtHHHcRx8rDQkNDraxZs1qANXHixGhfo0uXLlHG0rx5cyskJMS6e/eu9cILL0S5XefOnaP5aVjW8OHDLTc3tyj39/b2tqZPnx7l/o8bm2EqV65sAVbVqlWj3U5Ekj8lBkTEJUT8A7tChQqWm5ub9frrr1srV660tm/fbk2ePNkqWLBg+Da9evWK9HWOHTtmpU6d2gIsf39/q1+/ftaCBQusHTt2WMuWLbO6desWfrFUqVIlKygo6JHXCLtILFu2rOXj42PlzZvX+vrrr60tW7ZYmzdvtgYPHmz5+PiEH+PSpUsP7B8UFGTt378/2tuAAQPCz6Vt27YP7B8aGmo1btz4gQuKGTNmWBs3brQ2b95sjRo1ysqVK5cFWF5eXtb27dujfT+rVq1qeXl5WT179rRWrFhh7dy505o5c6ZVpEiR8G3GjRsXb+9nTKxevTr8ddzd3a1XXnnFWrBggbVz505r48aN1sSJE63mzZtbnp6ej+y7e/duy8vLywIsT09Pq3fv3taaNWusbdu2WePHj7fy5s0bfp5vv/12pMd39mce5oMPPgg/Vpo0aaz+/ftbK1assHbt2mWtXr3a+vTTT62qVatatWvXfmTfDRs2hCcUMmfObH344YfWokWLrJ07d1qLFi2yXn755QcubiIT9nzlypUtNzc3q1SpUtaUKVOs7du3W+vXr7d69+4dfjGTK1cu6969e+H7ho3bKVOmhL/OlClTHhm7//77b/g+EcdZyZIlLU9PT6tHjx7WihUrrB07dlg//PCDtWnTpvDtq1WrZpUoUcJ67733rAULFlhbt261tmzZYs2ePdtq2bJleGyFChWy7ty588C5nTx50tq/f7+VLVs2C7CaNm36SGwnT56M9P2I7OIrJCTEqlKlygNJhblz51o7duywFi5caDVr1iz8uYCAgEiTMXH1OYuJjh07WoCVPn36aLeLmBioVKmSBVitW7e2fv31V2vnzp3WDz/8YBUqVCh8mxUrVljPPvus5eHhYXXp0sVavny5tXPnTmvy5Mnh77W7u7t14MCBSI/31ltvhb9W3rx5rXHjxlnbtm2z1qxZY/Xu3Tt8THt5eVl79ux5ZP+YJga2b99uAZbD4bD++uuvKF8j7JwbNWpkzZ8/39q5c6f1008/hT8elljo0aOHBVgvvfSS9csvv1g7d+60Zs2aZRUuXDh8uyVLlkQay5gxY8K3yZgxo/Xpp59amzdvtjZs2GANHjzYSpkyZXisv/76a6SvEdPEQM+ePS3A8vDweOQzISKuRYkBEXEJEf/ABqyZM2c+ss3169etUqVKWYDl5uZm7d+//5FtqlatagFWmTJlrL///jvSYy1ZsiT8AmTChAmPPB/x2/Fy5cpZ165de2Sb7777Lnybzz//PFbnun37ditFihQWmG8jH379CRMmhF/kRvWH6ZUrV6xixYpZgFWtWrVHno/4fnp6elpr1qx5ZJvLly9bmTNnDr+oi0xcvJ+Pc+fOnfALEF9f30hjDXPmzJlHHqtQoUL4xcuyZcseef7KlStW0aJFw8dNZBc4cfEz37VrV/j7ULBgQevPP/+M8XkEBQWFf9vesGFD69atW5HuFzY2gEi/gY34GWrUqNEDF/5hPvzww/Bt5s+f/8jzES8so/tZWNaD48zNzS3S9z+io0ePRvv8ihUrwt/DSZMmRbpNxNkdjxPdxdfXX3/9QHIuNDT0kW369+8fbVIprj5nMRGWYKhXr16020X8+QHWl19++cg258+ft/z8/MIvbB0Oh7VgwYJHttu7d2/4zyNsdkFE+/btC3++ePHiDySNwkT8/VCxYsVHno9pYmDgwIEWYJUvXz7a14DIE8e3bt0KHzvp06e3HA7HY9+bZ5999pHnL126FD6jKFu2bJH+Ttq1a1d4ciB79uyRJkxjmhiYPn16+LZbtmyJdlsRSd6UGBARlxDxD+xnnnkmyu22bt0avl23bt0eeG79+vXhz+3bty/a47344ovh3/I9LOJF4t69eyPdPzQ0NPxi9rnnnovBGRrnzp0L3y9dunTW8ePHH3ndsGUUffr0ifa1Fi9eHB7nwxdcEd/PN998M8rXePfdd8O/2bp69eoDz8XV+/k448ePj/YiJjoRx8Prr78e5XYbNmwI365r166PPB8XP/NWrVqFv5e7du2K1Xl8++23FmD5+PhEORshTMWKFcO/6XxY2Dn4+PhYFy9ejHT/69evh8+w6N279yPPP2lioEOHDtFuG1Nh39RH9XsgrhIDYRfaGTNmtK5fvx7p/sHBweHfIKdNm9a6e/fuA8/HxecspsIuVlu1ahXtdg/PGIhK27Ztw7dr0aJFlNuFLTEoU6bMI89FnLIf3UVrp06dwrfbtm3bA8/FNDFQtmxZC7CGDBnyyHMRXyNnzpxRzlwKSy6AmVUTlbD3Jm3atI889/HHH4e/RnTLiiIm4ObMmfPI8zFNDCxZsiR828gS5iLiOlR8UERcTvv27aN8rmLFihQrVgwwFaojWrhwIQCFChWiRIkS0R6jZs2agCnOFlVRsBIlSlCyZMlIn3M4HJQpUwYg2kJyEd25c4dmzZrx119/4eHhwbx58wgICHhgm4MHD4ZXn35cO7KwcwDYvHlzlNuFVbaOTLly5QCwLItTp0498Fxcv59RCSsoljJlSjp37hyrfSOOgY4dO0a5XbVq1ShSpMgj+zzsSX/moaGhLFmyBDBF8sK2i6mw97pWrVpkzJgx2m3D3uvofuYNGjQgU6ZMkT7n5+dHgQIFgJiP3ZiIbpxF5e+//+bYsWMcOHAg/BZ2/nv37o2z2B72119/hRdgfPHFF/Hz84t0Ow8Pj/DfR//++y+7du2K8jWf9HMWE/fu3ePGjRsApE2bNsb7tWzZMsrnSpUqFavtIhsrYZ+lYsWKUalSpShfI+LnOrrPX1TOnTsX/t4/rk1h8+bN8fT0jPS5iOfcokWLKF8jbLt///2Xq1evPvBcWPxp0qShefPmUb5Gp06dHtnnSaRLly783xcuXHji1xGRpM/D7gBERBJahQoVon2+YsWK/P777xw9epSgoCC8vLwA2LFjB2AqyodVCX+c4OBgrly5EulFVOHChaPdN+wPtrA/2B+nQ4cObN++HTB9qSNWfw8Tdg4AVapUidHrQvR/MEZ3HhH/6Hz4POL6/YzK7t27AXPx5OvrG+P9AA4cOACAl5cXpUuXjnbbSpUqcejQIY4dO/bAuInoSX/mp06dCr+AqFGjRgyj/0/Ye71s2bIYv9dP+jOH2I/dmIgqofKwjRs3Mnr0aFauXMmVK1ei3O6ff/6Jq9AeETZugGgvaB9+/sCBA1F+Lp/0cxYTEd+n2CQGChYsGOVzEdsdxmS7h+O+d+8ex44dAx7/HpYpUwZPT0+Cg4MfeO9jKix5mCNHjscm3eLynMGcd8T7YfGXLVs2ygQEQObMmcmTJw+nT59+onMOE/HnfevWrSd+HRFJ+jRjQERczuMuKjNnzgyYb9/+/fff8McvXbr0RMe7fft2pI8/7iLVzc38ir5///5jjzF06FBmzZoFQNeuXenSpUuk28X1OUD05xF2DvDoecRHLJEJuwDMmjVrrI8VdsGULl06PDyiz6VnyZIFeHTcRPSkP/OIF7FPch5P8l7fuXMnyuficuzGVEwuWAcPHkz16tWZM2dOtEkBiP78nBXx2I/7fRM2bh7e72FP+jmLiYit+WLzvsQ0pphsFxoa+sDjET9Dj3sPPT09SZ8+PRD9exiVRYsWAaZ93+PE5TnDoz+vsPhjkvwMGztPcs5hIv68o0tEiEjypxkDIuJyYvqN6cPC/oArVaoU3333XYz3y549+xMdL6Z+/PFHBg0aBEC9evUYNWpUlNtG/CN00aJF5MmTJ0bHiM039DGVWN/PyDzpmEkswt7rp59+mk8++cTmaJ6Mu7t7tM+vWrWKIUOGAJAvXz769u1L9erVyZUrFylTpgxP7AwcOJChQ4fGe7xhksLYSZMmDR4eHoSEhDh1kRlf4vM9vHPnDqtXrwYev4wgISXUuIn48444c0FEXI8SAyLici5evEjOnDmjfR7MH2YRv6UM+0bq5s2bFC9ePH6DjKHdu3fTtm1bLMsif/78zJkzJ9pvtsPOAcwfgXaeR0K9nxkyZODs2bOcP38+1vuGTdG+fPkyISEh0b63YVPvHx43cSFDhgzh/36S80ifPj1//fUXQUFBiWbsxrWJEycCZmbBli1boqylkBAXvhGn9of9PolKxCUbEfdLSA6HgwwZMnDhwoUoZ7sktIifoce9hyEhIVy+fBmI/Xu4cuVK7ty5g6+vL/Xq1Yt9oHEsXbp0nD9//rHnDP+NHWfGTcSfd65cuZ74dUQk6dNSAhFxOWHr8B/3fIECBR5YJx6xMFxiKNJ04cIFmjZtyu3bt0mdOjWLFi167B+IEdfPbty4Mb5DjFZCvZ9ly5YFzDr72C5DCLuIDgoKYs+ePdFuu23bNuDRcRMX8ubNG/5t3vr162O9f9h7vWPHDoKCguIytFiLr29Cf//9dwDq1KkTbYHFiHU2IhMX8UVMvmzdujXabcPGzcP7JbSwAqBHjx61LYaIvL29w4tYPu493L17N8HBwUDs38OwZQT169d/YEmFXcLi37VrV7SFVi9dusQff/zxwD5PIuLPO6zwroi4JiUGRMTlTJ8+Pcrntm/fHl7IqX79+g889+yzzwJmDXl00/UTwt27d2nWrBl//vkn7u7uzJo167EF4cBcJOfIkQOACRMmcPfu3fgONUoJ9X6GTQ++ffs2EyZMiNW+EcfAlClTotxu8+bNHDx48JF94oqbm1v4+ud169aFF1SMqbD3+tq1a0ydOjXO44uNiBdf9+7di7PXDbuIiq6A2u7dux97kRkWnzOxZcuWLbxLxZw5c7h582ak292/f59p06YB5hvysCSWHcKKWh45ciROi0Y6I+yz9Pvvvz+QQHnYpEmTHtknJizLCi88mFiWEYTFf/XqVebPnx/ldpMnT8ayrAf2eRJhifCsWbNqxoCIi1NiQERczsKFC5kzZ84jj9+8eZPXXnsNMBdiYf8OExgYSMWKFQEYOXJkpK8R0f79+8O/jYprnTp1Cr/AGTlyJA0bNozRfm5ubvTv3x8w39S3bds22gug69ev8/XXXzsfcCQS6v18+eWXw+sSvPfee6xbty7Kbc+ePfvA/YoVK1K+fHnATFVftWrVI/tcu3btgXETVeFHZ/Xt2xc3Nzcsy6Jly5aPxBrRw8+1a9cufPlM3759HzvrYMOGDdG+T86IWDwxrHVmXAj7dnnDhg0cP378kef//vtv2rRpE+P4nI2tW7du4cft2bNnpNsMGTIkPKHUuXNnvL29nTqmM8ISA6GhoY+dVZFQunTpEl6o79VXX+X69euPbLN8+XImT54MmM/r47rORLRz507Onz+Pw+GIUeHBhNC+ffvwwoV9+vTh3Llzj2yzd+9ehg8fDpiaK82aNXvi44UlXBo0aPDEryEiyYNqDIiIyylfvjwvvfQS69at44UXXsDf3599+/bx8ccfc+TIEcD8UR9Ze7SZM2dSsWJFrly5QosWLfjuu+9o0aIFBQoUwN3dnUuXLrF7924WLVrEli1b6NOnT5x/EzVlyhS+//57AOrWrUuDBg2ibVeVMmVK8ubNG37/9ddfZ8WKFSxYsIC5c+eya9cuXnvtNSpWrEjq1Km5fv06hw8fZu3atSxcuBAfHx+6d+8ep+cQJiHeTx8fH2bMmEFgYCC3b9+mfv36tGnThmbNmpEjRw7u3bvH4cOHWbx4MQsXLnwkUTJx4kQqVapEUFAQjRo1okePHjRp0oSUKVOye24yz/AAAAaUSURBVPduRowYEd6DvW/fvvE2Hbx06dIMGTKEAQMGcPToUUqUKEG3bt2oU6cO6dOn5+rVq+zZs4f58+fj7u7OmjVrwvf19vZmzpw51K5dm5s3b1K3bl1atmxJs2bNyJs3L6GhoZw/f56dO3eyYMEC9u/fz1dffUWtWrXi/Dxy5cpFjhw5OHv2LJ9++ik5cuSgUKFC4cUFM2fOjJ+fX6xft23btixatIhbt25Rq1Yt3n33XcqVKwfApk2b+Pzzz7lw4QJVqlRh8+bNUb5O1apVWbNmDdu3b2fEiBE8/fTTpEyZEoAUKVLEuPjl66+/zvfff8/mzZuZOnUqf/zxB127diVv3rycP3+eKVOmhH8jHBAQwIABA2J9znGpatWqZMyYkb///ptVq1ZF2u40oZUoUYI+ffowcuRI9u7dS9myZXnnnXcoU6YMt27dYtGiRYwePZr79+/j5eXF+PHjY/X6YbMFypUr90TdPuJDxowZGTlyJN26dePs2bOUK1eOd999l6pVqxISEsLKlSsZOXIkN2/exOFwMGHChCfuJnDs2DH+/PNPAJ577rm4PA0RSYosEREXMGjQIAuwAOvkyZNW3rx5w+8/fHv++eet4ODgKF/ryJEjVvHixaPcP+JtyJAhj+yfO3duC7DatWsXbczt2rWzACt37txRnktMbrVq1XrktYOCgqwuXbpYDofjsfvnzZs32vczOmvWrAnfbs2aNZFu4+z7GVNLly610qZN+9hjRGbZsmWWv79/tPt169bNun//fqT7O/szj2jYsGGWh4dHrH/mlmVZmzdvtnLmzBmj93r69OmP7B/23KBBg6I9j1q1akUbxzfffBPlcadOnRq+XUzHWZj27dtH+bru7u7Wl19++djXPHv2rJUuXboYva+Pez8uX75sVatWLdr3uUiRItbp06cj3T8uP2cx0adPHwuw8uXL5/Sxpk6dGr7dqVOnotzuced4//59q2vXrtG+h6lTp7aWLVsW6f6nTp2KdGxZlmWVLVs2Rr9XonuNiOLyvRk2bJjl5uYW5Tl7e3tH+hkNE5PP6uDBgy3ASpcunXXv3r0otxMR16ClBCLicvLmzcvOnTvp378/RYoUwdfXl9SpU1OzZk2+++475s2bF231+YIFC7Jnzx5mzpzJ888/T65cuUiRIgVeXl5kzZqV2rVr8/7777Nz504GDhyYgGcWc56ennzzzTfs3buXHj16UKJECVKnTo27uzupU6emdOnSdOzYkXnz5nHo0KF4jSWh3s+nnnqKkydPMnz4cKpWrUr69Olxd3fH39+fsmXL0qtXryjXMQcGBnL8+HH69+9P6dKl8ff3x9vbm1y5ctG6dWt+++03vv766wf6k8eX/v37c/DgQXr16kXx4sXx9/fHw8ODjBkzUqtWLT788ENmzJgR6b6VK1fm2LFjjBs3jsaNG5MtWza8vLzw8fEhZ86cBAYGMmzYMA4fPkzbtm3j7Ry6dOnCjz/+SGBgIJkyZYr28xYbU6ZMYcaMGdSoUQM/Pz+8vb3JnTs3bdq0YdOmTbzxxhuPfY3s2bOzbds2OnbsSP78+Z0qSJcuXTrWr1/Pt99+S8OGDcmcOTOenp6kT5+e2rVr8/XXX7Nnzx5y5879xMeIS507dwbMMqMtW7bYHI3h5ubGmDFjWL9+Pa1btyZXrlx4e3vj7+9P6dKl6d+/P8eOHSMwMDBWr3vu3Dl27doFJJ76AhH179+f3bt307lzZwICAkiRIgUpU6akSJEivPHGG3HyGZ05cyYAHTt2jPOCqSKS9Dgs63+VS0RERETEpTVq1IglS5bQqVOn8BaQydH48eN5/fXXyZ49e7T1OpKrDRs2UKNGDby8vDh27JgKD4qIig+KiIiIiPHRRx/h5ubGt99+G77+PDkKqy/wzDPP2ByJPYYOHQpAhw4dlBQQEUCJARERERH5n1KlSvHSSy8RFBTERx99ZHc48aZGjRoMGjQo3rqIJGZbt25l+fLl+Pn5MWjQILvDEZFEQl0JRERERCTc8OHDCQgIwMfHB8uycDgcdocU595++227Q7DN5cuXGTRoEGXLliVLlix2hyMiiYRqDIiIiIiIiIi4MC0lEBEREREREXFhSgyIiIiIiIiIuDAlBkRERERERERcmBIDIiIiIiIiIi5MiQERERERERERF6bEgIiIiIiIiIgLU2JARERERERExIUpMSAiIiIiIiLiwpQYEBEREREREXFhSgyIiIiIiIiIuLD/B1zrv7Q80YTQAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\properties\\dictionary_txy_diagrams_doc_14_32.png" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -630,7 +821,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams_test.ipynb b/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams_test.ipynb index 4117f832..c0366e0f 100644 --- a/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams_test.ipynb +++ b/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams_usr.ipynb b/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams_usr.ipynb index 4117f832..c0366e0f 100644 --- a/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams_usr.ipynb +++ b/idaes_examples/notebooks/docs/properties/dictionary_txy_diagrams_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/properties/parameter_estimation_pr.ipynb b/idaes_examples/notebooks/docs/properties/parameter_estimation_pr.ipynb index 1d0fcf3e..e8817fc0 100644 --- a/idaes_examples/notebooks/docs/properties/parameter_estimation_pr.ipynb +++ b/idaes_examples/notebooks/docs/properties/parameter_estimation_pr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/properties/parameter_estimation_pr_doc.ipynb b/idaes_examples/notebooks/docs/properties/parameter_estimation_pr_doc.ipynb index ea87d247..6d0ce6f6 100644 --- a/idaes_examples/notebooks/docs/properties/parameter_estimation_pr_doc.ipynb +++ b/idaes_examples/notebooks/docs/properties/parameter_estimation_pr_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -161,9 +162,16 @@ " m.fs.state_block = m.fs.properties.build_state_block([1], defined_state=True)\n", "\n", " m.fs.state_block[1].flow_mol.fix(1)\n", - " x = float(data[\"x_carbon_dioxide\"]) + 0.5\n", - " m.fs.state_block[1].temperature.fix(float(data[\"temperature\"]))\n", - " m.fs.state_block[1].pressure.fix(float(data[\"pressure\"]))\n", + " if isinstance(data, dict) or isinstance(data, pd.Series):\n", + " x = float(data[\"x_carbon_dioxide\"]) + 0.5\n", + " m.fs.state_block[1].temperature.fix(float(data[\"temperature\"]))\n", + " m.fs.state_block[1].pressure.fix(float(data[\"pressure\"]))\n", + " elif isinstance(data, pd.DataFrame):\n", + " x = float(data.iloc[0][\"x_carbon_dioxide\"]) + 0.5\n", + " m.fs.state_block[1].temperature.fix(float(data.iloc[0][\"temperature\"]))\n", + " m.fs.state_block[1].pressure.fix(float(data.iloc[0][\"pressure\"]))\n", + " else:\n", + " raise ValueError(\"Unrecognized data type.\")\n", " m.fs.state_block[1].mole_frac_comp[\"bmimPF6\"].fix(1 - x)\n", " m.fs.state_block[1].mole_frac_comp[\"carbon_dioxide\"].fix(x)\n", "\n", @@ -177,15 +185,30 @@ " m.fs.state_block.initialize(outlvl=idaeslog.INFO)\n", "\n", " # Fix the state variables on the state block\n", + " if isinstance(data, dict) or isinstance(data, pd.Series):\n", + " m.fs.state_block[1].temperature.fix(float(data[\"temperature\"]))\n", + " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"bmimPF6\"].fix(\n", + " float(data[\"x_bmimPF6\"])\n", + " )\n", + " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"carbon_dioxide\"].fix(\n", + " float(data[\"x_carbon_dioxide\"])\n", + " )\n", + " m.fs.state_block[1].mole_frac_comp[\"bmimPF6\"].fix(float(data[\"x_bmimPF6\"]))\n", + " elif isinstance(data, pd.DataFrame):\n", + " m.fs.state_block[1].temperature.fix(float(data.iloc[0][\"temperature\"]))\n", + " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"bmimPF6\"].fix(\n", + " float(data.iloc[0][\"x_bmimPF6\"])\n", + " )\n", + " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"carbon_dioxide\"].fix(\n", + " float(data.iloc[0][\"x_carbon_dioxide\"])\n", + " )\n", + " m.fs.state_block[1].mole_frac_comp[\"bmimPF6\"].fix(\n", + " float(data.iloc[0][\"x_bmimPF6\"])\n", + " )\n", + " else:\n", + " raise ValueError(\"Unrecognized data type.\")\n", + "\n", " m.fs.state_block[1].pressure.unfix()\n", - " m.fs.state_block[1].temperature.fix(float(data[\"temperature\"]))\n", - " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"bmimPF6\"].fix(\n", - " float(data[\"x_bmimPF6\"])\n", - " )\n", - " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"carbon_dioxide\"].fix(\n", - " float(data[\"x_carbon_dioxide\"])\n", - " )\n", - " m.fs.state_block[1].mole_frac_comp[\"bmimPF6\"].fix(float(data[\"x_bmimPF6\"]))\n", " m.fs.state_block[1].mole_frac_comp[\"carbon_dioxide\"].unfix()\n", " # Set bounds on variables to be estimated\n", " m.fs.properties.PR_kappa[\"bmimPF6\", \"carbon_dioxide\"].setlb(-5)\n", @@ -208,15 +231,13 @@ { "cell_type": "code", "execution_count": 7, - "metadata": { - "scrolled": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:59 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:49 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -233,42 +254,42 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:59 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:49 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:59 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:49 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:29:59 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:49 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:49 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:49 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:49 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] } ], @@ -328,7 +349,7 @@ "outputs": [], "source": [ "def SSE(m, data):\n", - " expr = (float(data[\"pressure\"]) - m.fs.state_block[1].pressure) ** 2\n", + " expr = (float(data.iloc[0][\"pressure\"]) - m.fs.state_block[1].pressure) ** 2\n", " return expr * 1e-7" ] }, @@ -344,86 +365,83 @@ { "cell_type": "code", "execution_count": 10, - "metadata": { - "scrolled": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "WARNING: DEPRECATED: You're using the deprecated parmest interface\n", + "(model_function, data, theta_names). This interface will be removed in a\n", + "future release, please update to the new parmest interface using experiment\n", + "lists. (deprecated in 6.7.2) (called from /home/dang/miniforge3/envs/idaes_ex\n", + "amples_py3.11/lib/python3.11/functools.py:946)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING (W1002): Setting Var\n", - "'fs.state_block[1].log_mole_frac_tbub[Vap,Liq,carbon_dioxide]' to a numeric\n", - "value `4.301303339264284e-06` outside the bounds (None, 0).\n", - " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n" + "2025-03-17 17:35:49 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "WARNING (W1002): Setting Var\n", + "'fs.state_block[1].log_mole_frac_tbub[Vap,Liq,carbon_dioxide]' to a numeric\n", + "value `4.301303339264284e-06` outside the bounds (None, 0).\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1002\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:49 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:49 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:49 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_28652\\3856510393.py:12: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", - " x = float(data[\"x_carbon_dioxide\"]) + 0.5\n", - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_28652\\3856510393.py:13: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", - " m.fs.state_block[1].temperature.fix(float(data[\"temperature\"]))\n", - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_28652\\3856510393.py:14: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", - " m.fs.state_block[1].pressure.fix(float(data[\"pressure\"]))\n" + "2025-03-17 17:35:49 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:49 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:49 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:49 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -440,65 +458,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_28652\\3856510393.py:29: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", - " m.fs.state_block[1].temperature.fix(float(data[\"temperature\"]))\n", - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_28652\\3856510393.py:31: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", - " float(data[\"x_bmimPF6\"])\n", - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_28652\\3856510393.py:34: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", - " float(data[\"x_carbon_dioxide\"])\n", - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_28652\\3856510393.py:36: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", - " m.fs.state_block[1].mole_frac_comp[\"bmimPF6\"].fix(float(data[\"x_bmimPF6\"]))\n", - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_28652\\1809745473.py:2: FutureWarning: Calling float on a single element Series is deprecated and will raise a TypeError in the future. Use float(ser.iloc[0]) instead\n", - " expr = (float(data[\"pressure\"]) - m.fs.state_block[1].pressure) ** 2\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -515,49 +517,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:00 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -574,49 +576,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -633,49 +635,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -692,49 +694,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:01 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:50 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -751,49 +753,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -810,49 +812,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -869,49 +871,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:02 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -928,49 +930,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -987,49 +989,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:51 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -1046,49 +1048,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -1105,49 +1107,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:03 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -1164,49 +1166,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -1223,49 +1225,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:04 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -1282,49 +1284,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:52 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -1341,49 +1343,49 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Starting initialization\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: Starting initialization\n" ] }, { @@ -1400,42 +1402,42 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:05 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:35:53 [INFO] idaes.init.fs.state_block: Property package initialization: optimal - Optimal Solution Found.\n" ] }, { @@ -1479,7 +1481,7 @@ " inequality constraints with only upper bounds: 0\n", "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 5.00e-01 6.99e-14 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 0 0.0000000e+00 5.00e-01 1.22e-15 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", " 1 1.1422488e+01 2.60e-01 2.37e+03 -1.0 3.35e+04 - 3.39e-01 6.89e-01h 1\n", " 2 2.8748813e+01 1.27e-01 1.10e+03 -1.0 1.36e+04 - 8.22e-02 9.88e-01h 1\n", " 3 2.9813930e+01 1.87e-01 5.94e+02 -1.0 5.01e+02 - 8.73e-01 9.90e-01h 1\n", @@ -1488,19 +1490,19 @@ " 6 2.9283589e+01 1.44e-04 9.56e+04 -1.0 3.48e+02 - 9.90e-01 1.00e+00h 1\n", " 7 2.9283603e+01 7.59e-08 9.12e+02 -1.0 5.97e-01 - 9.90e-01 1.00e+00h 1\n", " 8 2.9282891e+01 3.35e-07 1.47e+04 -2.5 1.24e+02 - 9.98e-01 1.00e+00f 1\n", - " 9 2.9282892e+01 2.21e-12 4.97e-08 -2.5 2.39e-01 - 1.00e+00 1.00e+00h 1\n", + " 9 2.9282892e+01 1.75e-12 4.97e-08 -2.5 2.39e-01 - 1.00e+00 1.00e+00h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.9282891e+01 2.85e-10 3.05e+00 -8.6 3.61e+00 - 1.00e+00 1.00e+00h 1\n", - " 11 2.9282891e+01 2.72e-12 3.60e-12 -8.6 2.03e-04 - 1.00e+00 1.00e+00h 1\n", + " 10 2.9282891e+01 2.88e-10 3.05e+00 -8.6 3.61e+00 - 1.00e+00 1.00e+00h 1\n", + " 11 2.9282891e+01 4.31e-12 2.31e-12 -8.6 2.03e-04 - 1.00e+00 1.00e+00h 1\n", "\n", "Number of Iterations....: 11\n", "\n", " (scaled) (unscaled)\n", - "Objective...............: 2.9282891309640156e+01 2.9282891309640156e+01\n", - "Dual infeasibility......: 3.6021722623181066e-12 3.6021722623181066e-12\n", - "Constraint violation....: 2.7191470654339899e-12 2.7191470654339899e-12\n", - "Complementarity.........: 2.5059037693947522e-09 2.5059037693947522e-09\n", - "Overall NLP error.......: 2.5059037693947522e-09 2.5059037693947522e-09\n", + "Objective...............: 2.9282891309644025e+01 2.9282891309644025e+01\n", + "Dual infeasibility......: 2.3095432991869018e-12 2.3095432991869018e-12\n", + "Constraint violation....: 4.3063395653366371e-12 4.3063395653366371e-12\n", + "Complementarity.........: 2.5059037695121854e-09 2.5059037695121854e-09\n", + "Overall NLP error.......: 2.5059037695121854e-09 2.5059037695121854e-09\n", "\n", "\n", "Number of objective function evaluations = 12\n", @@ -1510,8 +1512,8 @@ "Number of equality constraint Jacobian evaluations = 12\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 11\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", - "Total CPU secs in NLP function evaluations = 0.048\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.013\n", + "Total CPU secs in NLP function evaluations = 0.068\n", "\n", "EXIT: Optimal Solution Found.\n", "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" @@ -1545,8 +1547,8 @@ "The SSE at the optimal solution is 29.282891\n", "\n", "The values for the parameters are as follows:\n", - "fs.properties.PR_kappa[bmimPF6,carbon_dioxide] = -0.4071428400296551\n", - "fs.properties.PR_kappa[carbon_dioxide,bmimPF6] = 0.020593684002515204\n" + "fs.properties.PR_kappa[bmimPF6,carbon_dioxide] = -0.40714284002998746\n", + "fs.properties.PR_kappa[carbon_dioxide,bmimPF6] = 0.020593684002508692\n" ] } ], @@ -1589,9 +1591,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/properties/parameter_estimation_pr_test.ipynb b/idaes_examples/notebooks/docs/properties/parameter_estimation_pr_test.ipynb index 4d620a5a..75a53718 100644 --- a/idaes_examples/notebooks/docs/properties/parameter_estimation_pr_test.ipynb +++ b/idaes_examples/notebooks/docs/properties/parameter_estimation_pr_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -57,7 +58,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -83,7 +84,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -99,7 +100,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -121,7 +122,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -146,7 +147,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -161,9 +162,16 @@ " m.fs.state_block = m.fs.properties.build_state_block([1], defined_state=True)\n", "\n", " m.fs.state_block[1].flow_mol.fix(1)\n", - " x = float(data[\"x_carbon_dioxide\"]) + 0.5\n", - " m.fs.state_block[1].temperature.fix(float(data[\"temperature\"]))\n", - " m.fs.state_block[1].pressure.fix(float(data[\"pressure\"]))\n", + " if isinstance(data, dict) or isinstance(data, pd.Series):\n", + " x = float(data[\"x_carbon_dioxide\"]) + 0.5\n", + " m.fs.state_block[1].temperature.fix(float(data[\"temperature\"]))\n", + " m.fs.state_block[1].pressure.fix(float(data[\"pressure\"]))\n", + " elif isinstance(data, pd.DataFrame):\n", + " x = float(data.iloc[0][\"x_carbon_dioxide\"]) + 0.5\n", + " m.fs.state_block[1].temperature.fix(float(data.iloc[0][\"temperature\"]))\n", + " m.fs.state_block[1].pressure.fix(float(data.iloc[0][\"pressure\"]))\n", + " else:\n", + " raise ValueError(\"Unrecognized data type.\")\n", " m.fs.state_block[1].mole_frac_comp[\"bmimPF6\"].fix(1 - x)\n", " m.fs.state_block[1].mole_frac_comp[\"carbon_dioxide\"].fix(x)\n", "\n", @@ -177,15 +185,30 @@ " m.fs.state_block.initialize(outlvl=idaeslog.INFO)\n", "\n", " # Fix the state variables on the state block\n", + " if isinstance(data, dict) or isinstance(data, pd.Series):\n", + " m.fs.state_block[1].temperature.fix(float(data[\"temperature\"]))\n", + " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"bmimPF6\"].fix(\n", + " float(data[\"x_bmimPF6\"])\n", + " )\n", + " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"carbon_dioxide\"].fix(\n", + " float(data[\"x_carbon_dioxide\"])\n", + " )\n", + " m.fs.state_block[1].mole_frac_comp[\"bmimPF6\"].fix(float(data[\"x_bmimPF6\"]))\n", + " elif isinstance(data, pd.DataFrame):\n", + " m.fs.state_block[1].temperature.fix(float(data.iloc[0][\"temperature\"]))\n", + " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"bmimPF6\"].fix(\n", + " float(data.iloc[0][\"x_bmimPF6\"])\n", + " )\n", + " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"carbon_dioxide\"].fix(\n", + " float(data.iloc[0][\"x_carbon_dioxide\"])\n", + " )\n", + " m.fs.state_block[1].mole_frac_comp[\"bmimPF6\"].fix(\n", + " float(data.iloc[0][\"x_bmimPF6\"])\n", + " )\n", + " else:\n", + " raise ValueError(\"Unrecognized data type.\")\n", + "\n", " m.fs.state_block[1].pressure.unfix()\n", - " m.fs.state_block[1].temperature.fix(float(data[\"temperature\"]))\n", - " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"bmimPF6\"].fix(\n", - " float(data[\"x_bmimPF6\"])\n", - " )\n", - " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"carbon_dioxide\"].fix(\n", - " float(data[\"x_carbon_dioxide\"])\n", - " )\n", - " m.fs.state_block[1].mole_frac_comp[\"bmimPF6\"].fix(float(data[\"x_bmimPF6\"]))\n", " m.fs.state_block[1].mole_frac_comp[\"carbon_dioxide\"].unfix()\n", " # Set bounds on variables to be estimated\n", " m.fs.properties.PR_kappa[\"bmimPF6\", \"carbon_dioxide\"].setlb(-5)\n", @@ -207,10 +230,8 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": false - }, + "execution_count": null, + "metadata": {}, "outputs": [], "source": [ "from idaes.core.util.model_statistics import degrees_of_freedom\n", @@ -242,7 +263,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -263,12 +284,12 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def SSE(m, data):\n", - " expr = (float(data[\"pressure\"]) - m.fs.state_block[1].pressure) ** 2\n", + " expr = (float(data.iloc[0][\"pressure\"]) - m.fs.state_block[1].pressure) ** 2\n", " return expr * 1e-7" ] }, @@ -283,10 +304,8 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": { - "scrolled": false - }, + "execution_count": null, + "metadata": {}, "outputs": [], "source": [ "pest = parmest.Estimator(PR_model, data, variable_name, SSE, tee=True)\n", @@ -305,7 +324,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -347,9 +366,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.8.19" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/properties/parameter_estimation_pr_usr.ipynb b/idaes_examples/notebooks/docs/properties/parameter_estimation_pr_usr.ipynb index 4d620a5a..75a53718 100644 --- a/idaes_examples/notebooks/docs/properties/parameter_estimation_pr_usr.ipynb +++ b/idaes_examples/notebooks/docs/properties/parameter_estimation_pr_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -57,7 +58,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -83,7 +84,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -99,7 +100,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -121,7 +122,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -146,7 +147,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -161,9 +162,16 @@ " m.fs.state_block = m.fs.properties.build_state_block([1], defined_state=True)\n", "\n", " m.fs.state_block[1].flow_mol.fix(1)\n", - " x = float(data[\"x_carbon_dioxide\"]) + 0.5\n", - " m.fs.state_block[1].temperature.fix(float(data[\"temperature\"]))\n", - " m.fs.state_block[1].pressure.fix(float(data[\"pressure\"]))\n", + " if isinstance(data, dict) or isinstance(data, pd.Series):\n", + " x = float(data[\"x_carbon_dioxide\"]) + 0.5\n", + " m.fs.state_block[1].temperature.fix(float(data[\"temperature\"]))\n", + " m.fs.state_block[1].pressure.fix(float(data[\"pressure\"]))\n", + " elif isinstance(data, pd.DataFrame):\n", + " x = float(data.iloc[0][\"x_carbon_dioxide\"]) + 0.5\n", + " m.fs.state_block[1].temperature.fix(float(data.iloc[0][\"temperature\"]))\n", + " m.fs.state_block[1].pressure.fix(float(data.iloc[0][\"pressure\"]))\n", + " else:\n", + " raise ValueError(\"Unrecognized data type.\")\n", " m.fs.state_block[1].mole_frac_comp[\"bmimPF6\"].fix(1 - x)\n", " m.fs.state_block[1].mole_frac_comp[\"carbon_dioxide\"].fix(x)\n", "\n", @@ -177,15 +185,30 @@ " m.fs.state_block.initialize(outlvl=idaeslog.INFO)\n", "\n", " # Fix the state variables on the state block\n", + " if isinstance(data, dict) or isinstance(data, pd.Series):\n", + " m.fs.state_block[1].temperature.fix(float(data[\"temperature\"]))\n", + " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"bmimPF6\"].fix(\n", + " float(data[\"x_bmimPF6\"])\n", + " )\n", + " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"carbon_dioxide\"].fix(\n", + " float(data[\"x_carbon_dioxide\"])\n", + " )\n", + " m.fs.state_block[1].mole_frac_comp[\"bmimPF6\"].fix(float(data[\"x_bmimPF6\"]))\n", + " elif isinstance(data, pd.DataFrame):\n", + " m.fs.state_block[1].temperature.fix(float(data.iloc[0][\"temperature\"]))\n", + " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"bmimPF6\"].fix(\n", + " float(data.iloc[0][\"x_bmimPF6\"])\n", + " )\n", + " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"carbon_dioxide\"].fix(\n", + " float(data.iloc[0][\"x_carbon_dioxide\"])\n", + " )\n", + " m.fs.state_block[1].mole_frac_comp[\"bmimPF6\"].fix(\n", + " float(data.iloc[0][\"x_bmimPF6\"])\n", + " )\n", + " else:\n", + " raise ValueError(\"Unrecognized data type.\")\n", + "\n", " m.fs.state_block[1].pressure.unfix()\n", - " m.fs.state_block[1].temperature.fix(float(data[\"temperature\"]))\n", - " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"bmimPF6\"].fix(\n", - " float(data[\"x_bmimPF6\"])\n", - " )\n", - " m.fs.state_block[1].mole_frac_phase_comp[\"Liq\", \"carbon_dioxide\"].fix(\n", - " float(data[\"x_carbon_dioxide\"])\n", - " )\n", - " m.fs.state_block[1].mole_frac_comp[\"bmimPF6\"].fix(float(data[\"x_bmimPF6\"]))\n", " m.fs.state_block[1].mole_frac_comp[\"carbon_dioxide\"].unfix()\n", " # Set bounds on variables to be estimated\n", " m.fs.properties.PR_kappa[\"bmimPF6\", \"carbon_dioxide\"].setlb(-5)\n", @@ -207,10 +230,8 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": false - }, + "execution_count": null, + "metadata": {}, "outputs": [], "source": [ "from idaes.core.util.model_statistics import degrees_of_freedom\n", @@ -242,7 +263,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -263,12 +284,12 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def SSE(m, data):\n", - " expr = (float(data[\"pressure\"]) - m.fs.state_block[1].pressure) ** 2\n", + " expr = (float(data.iloc[0][\"pressure\"]) - m.fs.state_block[1].pressure) ** 2\n", " return expr * 1e-7" ] }, @@ -283,10 +304,8 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": { - "scrolled": false - }, + "execution_count": null, + "metadata": {}, "outputs": [], "source": [ "pest = parmest.Estimator(PR_model, data, variable_name, SSE, tee=True)\n", @@ -305,7 +324,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -347,9 +366,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.8.19" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/scaling/scaler_workshop.ipynb b/idaes_examples/notebooks/docs/scaling/scaler_workshop.ipynb index be3c5350..acdd77e9 100644 --- a/idaes_examples/notebooks/docs/scaling/scaler_workshop.ipynb +++ b/idaes_examples/notebooks/docs/scaling/scaler_workshop.ipynb @@ -17,12 +17,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/scaling/scaler_workshop_doc.ipynb b/idaes_examples/notebooks/docs/scaling/scaler_workshop_doc.ipynb index a7ba87bb..b7198926 100644 --- a/idaes_examples/notebooks/docs/scaling/scaler_workshop_doc.ipynb +++ b/idaes_examples/notebooks/docs/scaling/scaler_workshop_doc.ipynb @@ -1,1912 +1,1937 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# How to Create Scaler Objects in IDAES\n", - "\n", - "Author: Andrew Lee\n", - "Maintainer: Doug Allan\n", - "Updated: 2024-10-24\n", - "\n", - "## Introduction\n", - "\n", - "
\n", - "NOTE All the suggestions in this introduction should be viewed as \"rules-of-thumb\" and not taken as absolute guidance. There are many cases where alternative approaches may give as-good or better results and you should always consider the meaning of the scaling factors you are applying and how they affect the solver's behavior. \n", - "
\n", - "\n", - "Solving general non-linear problems has always been challenging, and is highly dependent on how well scaled the model is. In many cases, as much time (or more) is spent trying to improve the model formulation and scaling as was spent writing the original model. To assist molders with this task, IDAES has implemented a Scaling Toolbox which contains a number of useful tools for common scaling techniques as well as a standard interface and form for how to write scaling routines.\n", - "\n", - "The goal of this workshop is to take you through the process of writing a general-purpose, modular scaling routine for an equilibrium reactor example. By the end of this exercise you should:\n", - "\n", - "* understand the ``CustomScalerBase`` class and how to apply the tools it contains,\n", - "* understand how to use ``CustomScalerBase`` to set up a modular scaling routine for a model,\n", - "* understand how to use the Diagnostics Toolbox to check for scaling issues in a model.\n", - "\n", - "## How to Write a Scaling Routine\n", - "\n", - "
The golden rule when developing a scaling routine to a model is to always think about what you are doing and why. Bad scaling is often worse than no scaling at all, so assigning arbitrary scaling factors should be avoided. Always start by taking the time to look over the model you want to scale and understand what variables and constraints are present. For variables, you should ask yourself what the expected range of magnitudes will be; assigning an arbitrary default value should be avoided. For constraints you should ask yourself what the expected magnitude of each additive term will be, how much these vary from each other, and which term is likely to be most significant in terms of variation (partial derivatives).
\n", - "\n", - "
\n", - "NOTE Different solvers behave in different ways, and you may find cases where tuning scaling for one solver results in worse performance for another.\n", - " \n", - "You should always consider the end-goal when writing a Scaler; if you are writing a routine for a specific application and solver then you may wish to tune the scaling factors for best performance, however if you are writing a general-purpose Scaler then you should aim for scaling that will work for a wide range of conditions and solver.\n", - "
\n", - "\n", - "Below are some general suggestions for developing scaling routines.\n", - " \n", - "* Order of magnitude estimates are generally good enough (and often better than exact values).\n", - "* Start with what you know the most about, and work out from there.\n", - "* If in doubt, start by scaling variables first, and then scale constraints based on the variable scaling.\n", - "* Be judicious when applying scaling factors for things you are uncertain about. If in doubt, leave a component unscaled and see what the model diagnostics have to say.\n", - "* Make use of the modular nature of IDAES when writing scaling routines. A unit model developer might not know the expected magnitude of the thermophysical properties they get from a property package, but there should be a scaling routine for the property package that they can call to provide these.\n", - "\n", - "
\n", - "NOTE When dealing with systems of partial differential algebraic equations (PDAEs), such as dynamic systems or those with spatial variation, it is important to consider how scaling may change across the discretized domain. In many of these types of models, you will find significant changes in scale across a small portion of the domain; for example a dynamic model of a step disturbance will show an initial equilibrium state followed by a rapid change in system conditions until a new equilibrium is established. To complicate things further, the location of this ramp can often move significantly with minor changes in system conditions, thus you should not presume that the ramp will remain in the same place.\n", - " \n", - "As a general rule, for scaling PDAE systems with significant changes, you should focus on finding a set of scaling factors that is suitable for the ramp region as this is the part of the model which will be hardest to solve.\n", - "
\n", - "\n", - "### IDAES Scaling Interface and Toolbox\n", - "\n", - "IDAES uses a class-based interface for defining scaling routines, where model developers can create ``Scaler`` objects which define a scaling routine suitable for a type of model or specific application. All models (both those in the IDAES model libraries and user-developed models) should have one or more ``Scaler`` classes defined for them that can be used to apply scaling routines to the model. To assist end-users in identifying a suitable ``Scaler`` for a model, all IDAES models have a ``default_scaler`` attribute which can be set to point to a ``Scaler`` object suitable for that model. Model developers should endeavor to create a reliable, general-purpose ``Scaler`` for each model they create and assign this as the default ``Scaler``. We will demonstrate how to do this at the end of this workshop.\n", - "\n", - "\n", - "## Step 1: Set Up Test Case(s)\n", - "\n", - "Whilst it is possible to develop a scaling routine by looking only at the model code and the resulting variables and constraints, in order to test it we will need one or more test cases to run. These test cases are important for both checking the that ``Scaler`` code runs as expected, and that it also improves the scaling of the model. The more test cases you can check against, the more confident you can be that the ``Scaler`` you have written is suitable for a wide range of applications.\n", - "\n", - "For this example we will develop a general purpose ``Scaler`` for the ``EquilibriumReactor`` model from the core IDAES model library using the saponification property and reaction packages as a test case. The code below imports the necessary packages and creates a function that will build and initialize our test case." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import ConcreteModel, Constraint, units, Var\n", - "\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.models.unit_models.equilibrium_reactor import (\n", - " EquilibriumReactor,\n", - ")\n", - "from idaes.models.properties.examples.saponification_thermo import (\n", - " SaponificationParameterBlock,\n", - ")\n", - "from idaes.models.properties.examples.saponification_reactions import (\n", - " SaponificationReactionParameterBlock,\n", - ")\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.initialization import BlockTriangularizationInitializer\n", - "from idaes.core.util import DiagnosticsToolbox\n", - "\n", - "\n", - "def build_model():\n", - " m = ConcreteModel()\n", - " m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - " m.fs.properties = SaponificationParameterBlock()\n", - " m.fs.reactions = SaponificationReactionParameterBlock(\n", - " property_package=m.fs.properties\n", - " )\n", - "\n", - " m.fs.equil = EquilibriumReactor(\n", - " property_package=m.fs.properties,\n", - " reaction_package=m.fs.reactions,\n", - " has_equilibrium_reactions=False,\n", - " has_heat_transfer=True,\n", - " has_heat_of_reaction=True,\n", - " has_pressure_change=True,\n", - " )\n", - "\n", - " m.fs.equil.inlet.flow_vol[0].fix(1.0e-03 * units.m**3 / units.s)\n", - " m.fs.equil.inlet.conc_mol_comp[0, \"H2O\"].fix(55388.0 * units.mol / units.m**3)\n", - " m.fs.equil.inlet.conc_mol_comp[0, \"NaOH\"].fix(100.0 * units.mol / units.m**3)\n", - " m.fs.equil.inlet.conc_mol_comp[0, \"EthylAcetate\"].fix(\n", - " 100.0 * units.mol / units.m**3\n", - " )\n", - " m.fs.equil.inlet.conc_mol_comp[0, \"SodiumAcetate\"].fix(0.0 * units.mol / units.m**3)\n", - " m.fs.equil.inlet.conc_mol_comp[0, \"Ethanol\"].fix(0.0 * units.mol / units.m**3)\n", - "\n", - " m.fs.equil.inlet.temperature[0].fix(303.15 * units.K)\n", - " m.fs.equil.inlet.pressure[0].fix(101325.0 * units.Pa)\n", - "\n", - " m.fs.equil.heat_duty.fix(0 * units.W)\n", - " m.fs.equil.deltaP.fix(0 * units.Pa)\n", - "\n", - " initializer = BlockTriangularizationInitializer()\n", - " initializer.initialize(m.fs.equil)\n", - "\n", - " return m" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Before we move on to try to solve the model or develop a ``Scaler``, we should first check to make sure the model is well-posed and that there are not any structural issues that will prevent us from solving the model. The code below creates an instance of the IDAES Diagnostics Toolbox and runs the ``report_structural_issues`` method to ensure there are no warnings." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 5 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 16 (External: 0)\n", - " Free Variables with only lower bounds: 6\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 2\n", - " Fixed Variables in Activated Constraints: 10 (External: 0)\n", - " Activated Equality Constraints: 16 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "0 WARNINGS\n", - "\n", - " No warnings found!\n", - "\n", - "------------------------------------------------------------------------------------\n", - "1 Cautions\n", - "\n", - " Caution: 4 variables fixed to 0\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " Try to initialize/solve your model and then call report_numerical_issues()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m = build_model()\n", - "\n", - "dt = DiagnosticsToolbox(model=m.fs.equil)\n", - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Make sure base model is constructed properly\n", - "dt.assert_no_structural_warnings()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to fully test our new ``Scaler`` it is also useful to test how the model responds to perturbations in the state. In many ways, this is the real test of a scaling routine as it is easy to write something that gets good scaling for a known state (e.g., auto-scalers), but what we really need is a routine that can get good scaling across a range of conditions.\n", - "\n", - "The cell below creates a function that perturbs the state of our model significantly. Note that the volumetric flowrate has been increased by two orders of magnitude, the inlet concentrations have changed significantly, and we have also made a small change to the temperature." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.solvers import get_solver\n", - "\n", - "solver = get_solver(\n", - " \"ipopt_v2\", writer_config={\"scale_model\": True, \"linear_presolve\": True}\n", - ")\n", - "\n", - "\n", - "def perturb_model(m):\n", - " m.fs.equil.inlet.flow_vol.fix(1 * units.m**3 / units.s)\n", - " m.fs.equil.inlet.conc_mol_comp[0, \"NaOH\"].fix(200.0 * units.mol / units.m**3)\n", - " m.fs.equil.inlet.conc_mol_comp[0, \"EthylAcetate\"].fix(\n", - " 100.0 * units.mol / units.m**3\n", - " )\n", - " m.fs.equil.inlet.conc_mol_comp[0, \"SodiumAcetate\"].fix(50 * units.mol / units.m**3)\n", - " m.fs.equil.inlet.conc_mol_comp[0, \"Ethanol\"].fix(1e-8 * units.mol / units.m**3)\n", - "\n", - " m.fs.equil.inlet.temperature.fix(320 * units.K)\n", - " solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Lets apply this perturbation to our example model and see how well it solves." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: linear_solver=ma57\n", - "max_iter=200\n", - "nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma57.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 21\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 9\n", - "\n", - "Total number of variables............................: 8\n", - " variables with only lower bounds: 5\n", - " variables with lower and upper bounds: 1\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 8\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 9.09e+07 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - "Reallocating memory for MA57: lfact (247)\n", - " 1r 0.0000000e+00 9.09e+07 9.99e+02 2.5 0.00e+00 - 0.00e+00 7.73e-09R 9\n", - " 2r 0.0000000e+00 8.42e+07 8.24e+03 2.5 7.20e+02 - 1.64e-02 2.59e-02f 1\n", - " 3r 0.0000000e+00 8.37e+07 7.72e+03 1.8 8.82e+04 - 5.56e-04 3.77e-05f 1\n", - " 4r 0.0000000e+00 3.76e+07 2.65e+04 1.8 1.13e+03 0.0 1.27e-01 1.63e-01f 1\n", - " 5r 0.0000000e+00 3.60e+07 2.30e+04 1.8 6.83e+01 1.3 7.53e-02 1.45e-01f 1\n", - " 6r 0.0000000e+00 4.17e+07 1.77e+04 1.8 2.10e+02 0.9 7.11e-02 1.47e-01f 1\n", - " 7r 0.0000000e+00 4.08e+07 1.75e+04 1.8 3.95e+02 0.4 2.35e-01 8.19e-03f 1\n", - " 8r 0.0000000e+00 3.13e+07 1.75e+04 1.8 1.12e+03 -0.1 3.57e-01 3.16e-02f 1\n", - " 9r 0.0000000e+00 7.77e+06 1.74e+04 1.8 1.00e+04 - 1.43e-02 9.06e-03f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10r 0.0000000e+00 7.36e+06 1.70e+04 1.8 2.14e+02 - 2.20e-01 2.38e-02f 1\n", - " 11r 0.0000000e+00 5.93e+06 1.67e+04 1.8 1.72e+02 - 7.89e-01 1.95e-01f 1\n", - " 12r 0.0000000e+00 1.54e+06 3.54e+04 1.8 1.06e+02 - 8.80e-01 7.41e-01f 1\n", - " 13r 0.0000000e+00 1.21e+06 2.79e+04 1.8 4.60e+00 - 1.00e+00 2.12e-01h 1\n", - " 14r 0.0000000e+00 3.31e+03 4.79e+01 1.8 2.39e+00 - 1.00e+00 1.00e+00f 1\n", - " 15r 0.0000000e+00 2.85e+03 7.72e+02 -0.2 2.01e+00 - 9.81e-01 9.09e-01f 1\n", - " 16r 0.0000000e+00 2.47e+03 6.60e+02 -0.2 9.87e-01 - 1.00e+00 1.48e-01f 1\n", - " 17r 0.0000000e+00 3.18e-01 8.47e+01 -0.2 1.39e-01 - 1.00e+00 1.00e+00f 1\n", - " 18r 0.0000000e+00 3.18e-01 6.25e+01 -0.2 1.96e-01 - 1.00e+00 1.00e+00f 1\n", - " 19r 0.0000000e+00 3.18e-01 5.46e+00 -0.2 3.26e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20r 0.0000000e+00 3.18e-01 1.44e+02 -1.6 2.34e-01 - 1.00e+00 1.00e+00f 1\n", - " 21r 0.0000000e+00 3.18e-01 1.45e+01 -1.6 9.26e-02 - 9.13e-01 1.00e+00f 1\n", - " 22r 0.0000000e+00 3.18e-01 1.46e+01 -1.6 1.71e-01 - 1.00e+00 1.25e-01f 4\n", - " 23r 0.0000000e+00 3.18e-01 1.44e+01 -1.6 1.24e-01 - 1.00e+00 1.56e-02h 7\n", - " 24r 0.0000000e+00 3.18e-01 1.41e+01 -1.6 1.27e-01 - 1.00e+00 1.56e-02h 7\n", - " 25r 0.0000000e+00 3.18e-01 1.39e+01 -1.6 1.24e-01 - 1.00e+00 1.56e-02h 7\n", - " 26r 0.0000000e+00 3.18e-01 1.37e+01 -1.6 1.22e-01 - 1.00e+00 1.56e-02h 7\n", - " 27r 0.0000000e+00 3.18e-01 1.35e+01 -1.6 1.20e-01 - 1.00e+00 1.56e-02h 7\n", - " 28r 0.0000000e+00 3.18e-01 1.33e+01 -1.6 1.18e-01 - 1.00e+00 1.56e-02h 7\n", - " 29r 0.0000000e+00 3.18e-01 1.31e+01 -1.6 1.17e-01 - 1.00e+00 1.56e-02h 7\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30r 0.0000000e+00 3.18e-01 1.29e+01 -1.6 1.15e-01 - 1.00e+00 1.56e-02h 7\n", - " 31r 0.0000000e+00 3.18e-01 1.28e+01 -1.6 1.13e-01 - 1.00e+00 1.56e-02h 7\n", - " 32r 0.0000000e+00 3.18e-01 4.28e+01 -1.6 1.11e-01 - 1.00e+00 1.00e+00w 1\n", - " 33r 0.0000000e+00 3.18e-01 1.43e-03 -1.6 2.09e-05 - 1.00e+00 1.00e+00w 1\n", - " 34r 0.0000000e+00 3.18e-01 1.37e+01 -3.7 6.94e-02 - 1.00e+00 1.00e+00f 1\n", - " 35r 0.0000000e+00 3.17e-01 3.73e+04 -3.7 3.39e+00 - 1.44e-01 1.00e+00f 1\n", - " 36r 0.0000000e+00 3.17e-01 6.78e+03 -3.7 5.99e-01 - 1.00e+00 1.00e+00f 1\n", - " 37r 0.0000000e+00 3.17e-01 7.66e+00 -3.7 4.92e-03 - 1.00e+00 1.00e+00h 1\n", - " 38r 0.0000000e+00 3.17e-01 1.65e-04 -3.7 9.43e-05 - 1.00e+00 1.00e+00h 1\n", - " 39r 0.0000000e+00 3.17e-01 1.30e+00 -5.6 9.94e-04 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40r 0.0000000e+00 3.11e-01 6.82e+04 -5.6 3.21e+01 - 1.41e-01 1.00e+00f 1\n", - " 41r 0.0000000e+00 3.11e-01 1.17e+01 -5.6 4.97e-03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 41\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 2.2783833299154238e-01 2.2783833299154238e-01\n", - "Constraint violation....: 3.1132475345243688e-01 3.1132475345243688e-01\n", - "Complementarity.........: 2.7808801399127131e-06 2.7808801399127131e-06\n", - "Overall NLP error.......: 3.1132475345243688e-01 3.1132475345243688e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 109\n", - "Number of objective gradient evaluations = 3\n", - "Number of equality constraint evaluations = 109\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 44\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 42\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.008\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Converged to a point of local infeasibility. Problem may be infeasible.\n" - ] - } - ], - "source": [ - "perturb_model(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As can be seen from the solver logs, IPOPT was unable to find a feasible solution to this problem, and went into restoration from the first iteration. However, there is no reason the perturbed conditions should not be feasible (you can verify this with the `infeasibility_explainer` in the Diagnostics Toolbox if you desire).\n", - "\n", - "There are a few reasons for this, most of which can be resolved by providing better scaling for the model. One of the reasons is because we have a number of concentrations approaching zero which results in a number of very small numbers appearing in the problem.\n", - "\n", - "A bigger issue however is the fact that in our initial model we are feeding reactants in stoichiometric amounts (1:1) meaning that both reactant concentrations go to zero at equilibrium. This results in the Jacobian for the reaction rate constraint becoming singular; with `rate = K_rxn * [NaOH] * [EthylAcetate]` if both concentrations go to zero then the partial derivative of the reaction rate with respect to each concentration is also 0, and thus our solver has no idea of what direction to move when trying to converge the problem. Whilst scaling can help work around this, this is ultimately an indication that our problem is not well formulated. In practice, an Equilibrium reactor model is not well suited for systems involving irreversible rate-based reactions as it requires concentrations to be driven to zero, and is an especially poor choice for stoichiometric feeds." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 2: Understanding the Model\n", - "\n", - "Now that we have a test case (or multiple test cases), we can start planning out the new scaling routine. As our goal is to estimate scaling factors for as many of the variables and constraints in the model as possible, the first step is to understand what variables and constraints may be present in the model. Note that we need to be careful to check for all variables and constraints that may exist under different configuration options, and not just those that appear in the our test case(s).\n", - "\n", - "Given the modular nature of IDAES, we need to also make a distinction between those variables and constraints we have direct knowledge of, and those that are created via modular sub-models that we do not know the details of. The most common examples of modular sub-models are the ``StateBlocks`` and ``ReactionBlocks`` created by the associated property packages; we know that these exist and we create these in our models, but we do not know what variables and constraints they may construct. On the other hand, we also have variables and constraints that we construct directly in our model. For the purposes of this we include those variables and constraints constructed by ``ControlVolumes`` as being directly construed; whilst the ``ControlVolume`` might automate the details for us, we directly call methods on the ``ControlVolume`` to create these variables and constraints and we know what they will be based on the instructions we give.\n", - "\n", - "For our example of the ``EquilibriumReactor``, let us take a look at the code in the ``build`` method, which has been copied below for convenience:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "def build(self):\n", - " \"\"\"\n", - " Begin building model.\n", - "\n", - " Args:\n", - " None\n", - "\n", - " Returns:\n", - " None\n", - " \"\"\"\n", - " # Call UnitModel.build to setup dynamics\n", - " super(EquilibriumReactorData, self).build()\n", - "\n", - " # Build Control Volume\n", - " self.control_volume = ControlVolume0DBlock(\n", - " dynamic=self.config.dynamic, # Config block forces this to be False\n", - " has_holdup=self.config.has_holdup, # Config block forces this to be False\n", - " property_package=self.config.property_package,\n", - " property_package_args=self.config.property_package_args,\n", - " reaction_package=self.config.reaction_package,\n", - " reaction_package_args=self.config.reaction_package_args,\n", - " )\n", - "\n", - " # No need for control volume geometry\n", - "\n", - " self.control_volume.add_state_blocks(\n", - " has_phase_equilibrium=self.config.has_phase_equilibrium\n", - " )\n", - "\n", - " self.control_volume.add_reaction_blocks(\n", - " has_equilibrium=self.config.has_equilibrium_reactions\n", - " )\n", - "\n", - " self.control_volume.add_material_balances(\n", - " balance_type=self.config.material_balance_type,\n", - " has_rate_reactions=self.config.has_rate_reactions,\n", - " has_equilibrium_reactions=self.config.has_equilibrium_reactions,\n", - " has_phase_equilibrium=self.config.has_phase_equilibrium,\n", - " )\n", - "\n", - " self.control_volume.add_energy_balances(\n", - " balance_type=self.config.energy_balance_type,\n", - " has_heat_of_reaction=self.config.has_heat_of_reaction,\n", - " has_heat_transfer=self.config.has_heat_transfer,\n", - " )\n", - "\n", - " self.control_volume.add_momentum_balances(\n", - " balance_type=self.config.momentum_balance_type,\n", - " has_pressure_change=self.config.has_pressure_change,\n", - " )\n", - "\n", - " # Add Ports\n", - " self.add_inlet_port()\n", - " self.add_outlet_port()\n", - "\n", - " if self.config.has_rate_reactions:\n", - " # Add equilibrium reactor performance equation\n", - " @self.Constraint(\n", - " self.flowsheet().time,\n", - " self.config.reaction_package.rate_reaction_idx,\n", - " doc=\"Rate reaction equilibrium constraint\",\n", - " )\n", - " def rate_reaction_constraint(b, t, r):\n", - " # Set kinetic reaction rates to zero\n", - " return b.control_volume.reactions[t].reaction_rate[r] == 0\n", - "\n", - " # Set references to balance terms at unit level\n", - " if (\n", - " self.config.has_heat_transfer is True\n", - " and self.config.energy_balance_type != EnergyBalanceType.none\n", - " ):\n", - " self.heat_duty = Reference(self.control_volume.heat[:])\n", - "\n", - " if (\n", - " self.config.has_pressure_change is True\n", - " and self.config.momentum_balance_type != MomentumBalanceType.none\n", - " ):\n", - " self.deltaP = Reference(self.control_volume.deltaP[:])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If we look through the code in the ``build`` method, we can see that the model contains a single 0D Control Volume with ``StateBlocks``, a ``ReactionBlock``, material, energy and momentum balances and one additional constraint (``rate_reaction_constraint``). Thus, we have the following components that need to be scaled:\n", - "\n", - "3 Sub-Models:\n", - "\n", - "1. The inlet state sub-model (``model.control_volume.properties_in``)\n", - "2. The outlet state sub-model (``model.control_volume.properties_out``)\n", - "3. The reaction sub-model (``model.control_volume.reactions``)\n", - "\n", - "Unit Model Variables (from control volume options):\n", - "\n", - "1. Rate-based reaction extent and generation terms\n", - "2. Equilibrium-based reaction extent and generation terms\n", - "3. Inherent reaction extent and generation terms (no explicit argument, but determined by properties)\n", - "4. Phase equilibrium generation terms\n", - "5. Energy balance heat term\n", - "6. Energy balance heats of reaction\n", - "7. Pressure drop\n", - "\n", - "Unit Model Constraints (from control volume + 1 in the ``build`` method):\n", - "\n", - "1. Material balance constraints\n", - "2. Reaction stoichiometry constraints\n", - "3. Energy balance constraints\n", - "4. Pressure balance constraints\n", - "5. ``rate_reaction_constraint``\n", - "\n", - "When writing our ``Scaler`` we will need to consider all of these to determine how best to estimate scaling factors. Before starting however, we should check the numerical diagnostics for each case study, both to see what scaling issues currently exist and to establish a baseline for comparison once we have a proposed ``Scaler`` for our model.\n", - "\n", - "The cell below calls the ``report_numerical_issues`` method for the unscaled test case." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Jacobian Condition Number: 1.540E+12\n", - "\n", - "------------------------------------------------------------------------------------\n", - "1 WARNINGS\n", - "\n", - " WARNING: 1 Constraint with large residuals (>1.0E-05)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "7 Cautions\n", - "\n", - " Caution: 1 Variable with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", - " Caution: 6 Variables with value close to zero (tol=1.0E-08)\n", - " Caution: 4 Variables with extreme value (<1.0E-04 or >1.0E+04)\n", - " Caution: 1 Constraint with mismatched terms\n", - " Caution: 3 Variables with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", - " Caution: 2 Constraints with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", - " Caution: 6 extreme Jacobian Entries (<1.0E-04 or >1.0E+04)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_constraints_with_large_residuals()\n", - " compute_infeasibility_explanation()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looking at the results of the diagnostics, we can see that the test case is not particularly well scaled. The Jacobian condition number is rather large (1e12), and the diagnostics are reporting a number of variables with extremely large or small values, and 3 variables and 2 constraints with poorly scaled Jacobians. As we develop our new ``Scaler`` for the ``EquilibriumReactor`` we will hopefully see these improve.\n", - "\n", - "We can also use the Diagnostics Toolbox to further explore these issues to get a better idea of which variables and constraints might be causing issues. For example, lets display the set of variables and constraints with extreme Jacobian norms." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "The following variable(s) are associated with extreme Jacobian values (<1.0E-04 or>1.0E+04):\n", - "\n", - " fs.equil.control_volume.properties_out[0.0].flow_vol: 9.427E+07\n", - " fs.equil.control_volume.properties_out[0.0].temperature: 4.172E+06\n", - " fs.equil.control_volume.rate_reaction_extent[0.0,R1]: 4.900E+04\n", - "\n", - "====================================================================================\n", - "====================================================================================\n", - "The following constraint(s) are associated with extreme Jacobian values (<1.0E-04 or>1.0E+04):\n", - "\n", - " fs.equil.control_volume.enthalpy_balances[0.0]: 9.436E+07\n", - " fs.equil.control_volume.material_balances[0.0,Liq,H2O]: 5.539E+04\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_variables_with_extreme_jacobians()\n", - "dt.display_constraints_with_extreme_jacobians()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "These diagnostics can help give us an idea of what may be causing problems in our model. From the output above, we can see that the variables with large Jacobian norms (i.e., high sensitivities) are the outlet flow rate and temperature, as well as the rate-based extent of reaction. We can also see that the constraints with large Jacobian norms are the enthalpy balance and H20 material balance for the reactor. However, caution must be used when interpreting these in isolation, as understanding what these mean is often complicated and initial impressions may be misleading. To get a better picture of what is contributing to extreme Jacobian values you should make use of the tools in the diagnostics ``SVDToolbox``, however that is a topic for another example.\n", - "\n", - "For example, one might wonder why the volumetric flow rate at the outlet of the reactor is so important as it is effectively determined by the inlet flow rate (due to the water balance effectively conserving volume). However, it is important to remember that the Jacobian does not consider the value of the variable, but rather its partial derivatives. Thus, it is important to compare the list of variables and constraints with large Jacobian norms and think about how those intersect.\n", - "\n", - "Let's start by taking a look at the H2O material balance. The cell below prints the constraint expression in a compact form that only shows top level ``Expressions`` rather than expanding these to show the full expression tree." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fs.equil.control_volume.properties_in[0.0].flow_vol*fs.equil.control_volume.properties_in[0.0].conc_mol_comp[H2O] - fs.equil.control_volume.properties_out[0.0].flow_vol*fs.equil.control_volume.properties_out[0.0].conc_mol_comp[H2O] + fs.equil.control_volume.rate_reaction_generation[0.0,Liq,H2O] == 0" - ] - } - ], - "source": [ - "from idaes.core.util.misc import print_compact_form\n", - "\n", - "print_compact_form(m.fs.equil.control_volume.material_balances[0, \"Liq\", \"H2O\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Looking at how the outlet volumetric flowrate appears in the H2O balance equation above, it can be seen that the volumetric flow term is multiplied by the molar concentration of water, $F \\times C_{H2O}$. Whilst $C_{H2O}$ is assumed to be constant in this model (and equal to the molar density of pure water at ambient conditions), this means that the partial derivative of the constraint term with respect to flow is $\\frac{\\partial F C_{H2O}}{\\partial F} = C_{H2O}$; given that $C_{H2O}$ is equal to 5.5E4 mol/liter, you can quickly see why it is being identified as an issue.\n", - "\n", - "If we look at the energy balance, we will find that it is similar." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "fs.properties.dens_mol*fs.properties.cp_mol*fs.equil.control_volume.properties_in[0.0].flow_vol*(fs.equil.control_volume.properties_in[0.0].temperature - fs.properties.temperature_ref) - fs.properties.dens_mol*fs.properties.cp_mol*fs.equil.control_volume.properties_out[0.0].flow_vol*(fs.equil.control_volume.properties_out[0.0].temperature - fs.properties.temperature_ref) + fs.equil.control_volume.heat[0.0] + fs.equil.control_volume.heat_of_reaction[0.0] == 0" - ] - } - ], - "source": [ - "print_compact_form(m.fs.equil.control_volume.enthalpy_balances[0.0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Whilst a bit harder to read due to the size of the constraint, you can see that it involves the term $\\rho \\times c_p \\times F \\times (T - T_{ref})$, where $c_p$ is the specific molar heat capacity of the solution, $T$ is temperature and $T_{ref}$ is the reference temperature. Given that $\\rho$ is of order 1E4 (a) and $c_p \\times (T-T_{ref})$ is of order 1E3, this means that the partial derivative with respect to the volumetric flowrate is even larger than that for the H2O balance. This also explains the appearance of the outlet temperature as well, as we can see that it is multiplied by a number of large values as well and thus has a large partial derivative.\n", - "\n", - "It is also important to mention that having a large value in the Jacobian does not mean a variable is \"important\" (and conversely a small value is not unimportant). What is important is how sensitive the constraint residual is to that change in variable, which is often difficult to assess from the Jacobian alone (which is where the ``SVDToolbox`` can assist).\n", - "\n", - "\n", - "## Step 3: Creating a New Scaler Class\n", - "\n", - "To create a new scaling routine for the equilibrium reactor, we start by creating a new ``Scaler`` class which inherits from the ``CustomScalerBase`` class in ``idaes.core.scaling``. The ``CustomScalerBase`` class contains a number of useful methods to help us in developing our scaling routine, including some placeholder methods for implementing a standard scaling workflow and helper methods for doing common tasks.\n", - "\n", - "The cell below shows how to create our new class which we will name ``EquilibriumReactorScaler`` as well as two key methods we will fill out as part of this workshop." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.scaling import CustomScalerBase\n", - "\n", - "\n", - "class EquilibriumReactorScaler(CustomScalerBase):\n", - " def variable_scaling_routine(\n", - " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", - " ):\n", - " # Empty method for now\n", - " pass\n", - "\n", - " def constraint_scaling_routine(\n", - " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", - " ):\n", - " # Empty method for now\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The ``variable_scaling_routine`` and ``constraint_scaling_routine`` methods are used to implement subroutines for scaling the variables and constraints in the model respectively. Separately, there is a ``scale_model`` method that will call each of these in sequence in order to scale an entire model by applying the following steps:\n", - "\n", - "1. apply variable scaling routine,\n", - "2. apply first stage scaling fill-in,\n", - "3. apply constraint scaling routine,\n", - "4. apply second stage scaling fill-in.\n", - "\n", - "The second and fourth steps are intended to allow users to provide methods to fill in missing scaling information that was not provided by the first and second steps, or to provide a way to update the scaling factors with more information.\n", - "\n", - "Both the ``variable_scaling_routine`` and ``constraint_scaling_routine`` are user-facing methods and take three arguments.\n", - "\n", - "1. The model to be scaled.\n", - "2. An argument indicating whether to overwrite any existing scaling factors. Generally we assume that any existing scaling factors were provided by the user for a reason, so by default we set this to ``False``. However, there will likely be cases where a user wants to overwrite their existing scaling factors so this argument exists to let us pass on those instructions.\n", - "3. A mapping of user-provided ``Scalers`` to use when scaling submodels.\n", - "\n", - "## Step 4: Apply Scaling to Sub-Models\n", - "\n", - "First, lets look at how to scale the property and reaction sub-models. As these are modular packages, we do not know what variables and constraints may be in them, so we cannot (and should not) scale any of these directly. However, we can (hopefully) assume that there are ``Scalers`` available for these sub-models, either through default ``Scalers`` associated with the property packages or provided by the user. Thus, what we want to do here is to call the variable and constraint scaling routines from the ``Scaler`` associated with each sub-model, which we can do using the ``call_submodel_scaler_method`` method from the ``CustomScalerBase`` class.\n", - "\n", - "The cell below prints the doc-string for the ``call_submodel_scaler_method`` method so we can see what the expected arguments are." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on function call_submodel_scaler_method in module idaes.core.scaling.custom_scaler_base:\n", - "\n", - "call_submodel_scaler_method(self, submodel, method: str, submodel_scalers: pyomo.common.collections.component_map.ComponentMap = None, overwrite: bool = False)\n", - " Call scaling method for submodel.\n", - " \n", - " Scaler for submodel is taken from submodel_scalers if present, otherwise the\n", - " default scaler for the submodel is used.\n", - " \n", - " Args:\n", - " submodel: submodel to be scaled\n", - " submodel_scalers: user provided ComponentMap of Scalers to use for submodels\n", - " method: name of method to call from submodel (as string)\n", - " overwrite: whether to overwrite existing scaling factors\n", - " \n", - " Returns:\n", - " None\n", - "\n" - ] - } - ], - "source": [ - "help(CustomScalerBase.call_submodel_scaler_method)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that ``call_submodel_scaler_method`` takes 4 arguments:\n", - "\n", - "1. ``submodel`` is the submodel we want to scale. \n", - "2. The ``submodel_scalers`` argument should be passed through from the ``variable_scaling_routine`` or ``constraint_scaling_routine`` method.\n", - "3. The name of the method we want to call from the ``Scaler`` when we get it - this will normally be either ``variable_scaling_routine`` (if we are scaling variables) or ``constraint_scaling_routine`` (if we are doing constraints).\n", - "4. The ``overwrite`` argument should also be passed through from the ``variable_scaling_routine`` or ``constraint_scaling_routine`` method.\n", - "\n", - "For the Equilibrium Reactor, we have three submodels to scale; inlet state, outlet state and reactions. As mentioned in the introduction, when developing scaling routines always start with the things you have the most information about. In this case, we likely know the most about the inlet state; either it is a defined feed state (like in our test case) or we have some idea of the state (and scaling) from propagating values from an upstream operation. So, to apply variable scaling to the inlet state we would do the following:\n", - "\n", - "```python\n", - "self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.properties_in,\n", - " method=\"variable_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - ")\n", - "```\n", - "\n", - "Once we have an idea of scaling for the inlet we can use that information to try to estimate scaling for the outlet state. The default assumption is that the scaling of the outlet will be similar to that of the inlet, so the easy path is to copy scaling from the inlet state to the outlet. However, we know that something must change between inlet and outlet (as otherwise this unit operation is doing nothing) so we should always stop and think about whether we can try to estimate these changes. For example, in a pressure changer we know, or be able to estimate, the pressure change across the unit and thus be able to change the scaling of pressure between the inlet and outlet. However, keep in mind that over-scaling can make things worse so be judicious when deciding whether to adjust scaling based on estimates.\n", - "\n", - "In regards to this, Equilibrium Reactors are one of the more challenging units to scale, as it is very hard to know what the outlet flows and concentrations will be without knowing what the reactions are (and even if you know the reactions it is often hard to know the equilibrium state). In most cases, we have no reliable way to estimate the outlet flowrate and concentrations, so this is best left to the user to provide. In the case of temperature and pressure, whilst we may expect these to change but any change will generally be 1-2 orders of magnitude less than the inlet state and thus the overall scale of these will likely remain similar. Thus, for the Equilibrium Reactor it is probably sufficient to just scale the outlet state based on the inlet state.\n", - "\n", - "The ``CustomScalerBase`` class has a method for propagating scaling factors for state variables from one state to another called ``propagate_state_scaling`` as see below." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on function propagate_state_scaling in module idaes.core.scaling.custom_scaler_base:\n", - "\n", - "propagate_state_scaling(self, target_state, source_state, overwrite: bool = False)\n", - " Propagate scaling of state variables from one StateBlock to another.\n", - " \n", - " Indexing of target and source StateBlocks must match.\n", - " \n", - " Args:\n", - " target_state: StateBlock to set scaling factors on\n", - " source_state: StateBlock to use as source for scaling factors\n", - " overwrite: whether to overwrite existing scaling factors\n", - " \n", - " Returns:\n", - " None\n", - "\n" - ] - } - ], - "source": [ - "help(CustomScalerBase.propagate_state_scaling)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here we can see that ``propagate_state_scaling`` takes three arguments; the ``StateBlock`` we want to apply scaling to, the ``StateBlock`` we want to use as the source for the scaling factors, and the ``overwrite`` argument. Thus, we can propagate scaling from the inlet state to the outlet state as shown below.\n", - "\n", - "```python\n", - "self.propagate_state_scaling(\n", - " target_state=model.control_volume.properties_out,\n", - " source_state=model.control_volume.properties_in,\n", - " overwrite=overwrite,\n", - ")\n", - "```\n", - "\n", - "This only propagates scaling factors for the state variables, however, so we should then call the ``Scaler`` for the outlet state block to scale any remaining variables and constraints (which will hopefully make use of the scaling factors for the state variables we just propagated).\n", - "\n", - "We can then move on to scaling the ``ReactionBlock``. ``ReactionBlocks`` are slightly unusual in that they rely heavily on the state variables defined in a separate ``StateBlock`` - in this case the outlet state block. As we just applied a ``Scaler`` to the outlet state block, we can assume that all of the necessary variables have been scaled so all we need to do now is call a ``Scaler`` for the ``ReactionBlock``.\n", - "\n", - "All of this is shown in the cell below." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "class EquilibriumReactorScaler(CustomScalerBase):\n", - " def variable_scaling_routine(\n", - " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", - " ):\n", - " # Call scaling methods for sub-models\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.properties_in,\n", - " method=\"variable_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - " self.propagate_state_scaling(\n", - " target_state=model.control_volume.properties_out,\n", - " source_state=model.control_volume.properties_in,\n", - " overwrite=overwrite,\n", - " )\n", - "\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.properties_out,\n", - " method=\"variable_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.reactions,\n", - " method=\"variable_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - "\n", - " def constraint_scaling_routine(\n", - " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", - " ):\n", - " # Empty method for now\n", - " pass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can then take a similar approach for the constraint scaling routine as shown below. Note that there is no need for a propagation step here as the residual of a constraint is derived from the value of the variables (which we handled in the variable scaling step)." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "class EquilibriumReactorScaler(CustomScalerBase):\n", - " def variable_scaling_routine(\n", - " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", - " ):\n", - " # Call scaling methods for sub-models\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.properties_in,\n", - " method=\"variable_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - " self.propagate_state_scaling(\n", - " target_state=model.control_volume.properties_out,\n", - " source_state=model.control_volume.properties_in,\n", - " overwrite=overwrite,\n", - " )\n", - "\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.properties_out,\n", - " method=\"variable_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.reactions,\n", - " method=\"variable_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - "\n", - " def constraint_scaling_routine(\n", - " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", - " ):\n", - " # Call scaling methods for sub-models\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.properties_in,\n", - " method=\"constraint_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.properties_out,\n", - " method=\"constraint_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.reactions,\n", - " method=\"constraint_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Lets do a quick check to see if our new scaler works and how it has affected the model scaling. The cell below creates a function that builds a new instance of the model (to avoid contamination from previous model runs then creates an instance of our new scaler and applies it to the model. We then solve the scaled model (adding scaling changes constraint residuals so we want to solve to the scaled state). Finally, the function prints a report of the scaling factors in the model and calls the ``report_numerical_issues`` method from the Diagnostics Toolbox." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import check_optimal_termination, TransformationFactory\n", - "\n", - "from idaes.core.scaling import report_scaling_factors\n", - "\n", - "\n", - "def check_scaling(tee=False):\n", - " # Build new instance of model\n", - " m = build_model()\n", - "\n", - " # Apply scaler to model\n", - " scaler = EquilibriumReactorScaler()\n", - " scaler.scale_model(m.fs.equil)\n", - "\n", - " # Solve scaled model\n", - " results = solver.solve(m, tee=tee)\n", - " if check_optimal_termination(results):\n", - " print(\"\\nModel Solved\\n\")\n", - " else:\n", - " print(\"\\nModel Failed to Converge!\\n\")\n", - "\n", - " # Print report of scaling factors\n", - " report_scaling_factors(m.fs.equil, descend_into=True)\n", - "\n", - " # Show numerical issues report\n", - " sm = TransformationFactory(\"core.scale_model\").create_using(m, rename=False)\n", - "\n", - " dt = DiagnosticsToolbox(model=sm.fs.equil)\n", - " dt.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Lets run the ``check_scaling`` function and see how the model scaling has changed." - ] - }, + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# How to Create Scaler Objects in IDAES\n", + "\n", + "Author: Andrew Lee\n", + "Maintainer: Doug Allan\n", + "Updated: 2024-10-24\n", + "\n", + "## Introduction\n", + "\n", + "
\n", + "NOTE All the suggestions in this introduction should be viewed as \"rules-of-thumb\" and not taken as absolute guidance. There are many cases where alternative approaches may give as-good or better results and you should always consider the meaning of the scaling factors you are applying and how they affect the solver's behavior. \n", + "
\n", + "\n", + "Solving general non-linear problems has always been challenging, and is highly dependent on how well scaled the model is. In many cases, as much time (or more) is spent trying to improve the model formulation and scaling as was spent writing the original model. To assist molders with this task, IDAES has implemented a Scaling Toolbox which contains a number of useful tools for common scaling techniques as well as a standard interface and form for how to write scaling routines.\n", + "\n", + "The goal of this workshop is to take you through the process of writing a general-purpose, modular scaling routine for an equilibrium reactor example. By the end of this exercise you should:\n", + "\n", + "* understand the ``CustomScalerBase`` class and how to apply the tools it contains,\n", + "* understand how to use ``CustomScalerBase`` to set up a modular scaling routine for a model,\n", + "* understand how to use the Diagnostics Toolbox to check for scaling issues in a model.\n", + "\n", + "## How to Write a Scaling Routine\n", + "\n", + "
The golden rule when developing a scaling routine to a model is to always think about what you are doing and why. Bad scaling is often worse than no scaling at all, so assigning arbitrary scaling factors should be avoided. Always start by taking the time to look over the model you want to scale and understand what variables and constraints are present. For variables, you should ask yourself what the expected range of magnitudes will be; assigning an arbitrary default value should be avoided. For constraints you should ask yourself what the expected magnitude of each additive term will be, how much these vary from each other, and which term is likely to be most significant in terms of variation (partial derivatives).
\n", + "\n", + "
\n", + "NOTE Different solvers behave in different ways, and you may find cases where tuning scaling for one solver results in worse performance for another.\n", + " \n", + "You should always consider the end-goal when writing a Scaler; if you are writing a routine for a specific application and solver then you may wish to tune the scaling factors for best performance, however if you are writing a general-purpose Scaler then you should aim for scaling that will work for a wide range of conditions and solver.\n", + "
\n", + "\n", + "Below are some general suggestions for developing scaling routines.\n", + " \n", + "* Order of magnitude estimates are generally good enough (and often better than exact values).\n", + "* Start with what you know the most about, and work out from there.\n", + "* If in doubt, start by scaling variables first, and then scale constraints based on the variable scaling.\n", + "* Be judicious when applying scaling factors for things you are uncertain about. If in doubt, leave a component unscaled and see what the model diagnostics have to say.\n", + "* Make use of the modular nature of IDAES when writing scaling routines. A unit model developer might not know the expected magnitude of the thermophysical properties they get from a property package, but there should be a scaling routine for the property package that they can call to provide these.\n", + "\n", + "
\n", + "NOTE When dealing with systems of partial differential algebraic equations (PDAEs), such as dynamic systems or those with spatial variation, it is important to consider how scaling may change across the discretized domain. In many of these types of models, you will find significant changes in scale across a small portion of the domain; for example a dynamic model of a step disturbance will show an initial equilibrium state followed by a rapid change in system conditions until a new equilibrium is established. To complicate things further, the location of this ramp can often move significantly with minor changes in system conditions, thus you should not presume that the ramp will remain in the same place.\n", + " \n", + "As a general rule, for scaling PDAE systems with significant changes, you should focus on finding a set of scaling factors that is suitable for the ramp region as this is the part of the model which will be hardest to solve.\n", + "
\n", + "\n", + "### IDAES Scaling Interface and Toolbox\n", + "\n", + "IDAES uses a class-based interface for defining scaling routines, where model developers can create ``Scaler`` objects which define a scaling routine suitable for a type of model or specific application. All models (both those in the IDAES model libraries and user-developed models) should have one or more ``Scaler`` classes defined for them that can be used to apply scaling routines to the model. To assist end-users in identifying a suitable ``Scaler`` for a model, all IDAES models have a ``default_scaler`` attribute which can be set to point to a ``Scaler`` object suitable for that model. Model developers should endeavor to create a reliable, general-purpose ``Scaler`` for each model they create and assign this as the default ``Scaler``. We will demonstrate how to do this at the end of this workshop.\n", + "\n", + "\n", + "## Step 1: Set Up Test Case(s)\n", + "\n", + "Whilst it is possible to develop a scaling routine by looking only at the model code and the resulting variables and constraints, in order to test it we will need one or more test cases to run. These test cases are important for both checking the that ``Scaler`` code runs as expected, and that it also improves the scaling of the model. The more test cases you can check against, the more confident you can be that the ``Scaler`` you have written is suitable for a wide range of applications.\n", + "\n", + "For this example we will develop a general purpose ``Scaler`` for the ``EquilibriumReactor`` model from the core IDAES model library using the saponification property and reaction packages as a test case. The code below imports the necessary packages and creates a function that will build and initialize our test case." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import ConcreteModel, Constraint, units, Var\n", + "\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.models.unit_models.equilibrium_reactor import (\n", + " EquilibriumReactor,\n", + ")\n", + "from idaes.models.properties.examples.saponification_thermo import (\n", + " SaponificationParameterBlock,\n", + ")\n", + "from idaes.models.properties.examples.saponification_reactions import (\n", + " SaponificationReactionParameterBlock,\n", + ")\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.initialization import BlockTriangularizationInitializer\n", + "from idaes.core.util import DiagnosticsToolbox\n", + "\n", + "\n", + "def build_model():\n", + " m = ConcreteModel()\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + " m.fs.properties = SaponificationParameterBlock()\n", + " m.fs.reactions = SaponificationReactionParameterBlock(\n", + " property_package=m.fs.properties\n", + " )\n", + "\n", + " m.fs.equil = EquilibriumReactor(\n", + " property_package=m.fs.properties,\n", + " reaction_package=m.fs.reactions,\n", + " has_equilibrium_reactions=False,\n", + " has_heat_transfer=True,\n", + " has_heat_of_reaction=True,\n", + " has_pressure_change=True,\n", + " )\n", + "\n", + " m.fs.equil.inlet.flow_vol[0].fix(1.0e-03 * units.m**3 / units.s)\n", + " m.fs.equil.inlet.conc_mol_comp[0, \"H2O\"].fix(55388.0 * units.mol / units.m**3)\n", + " m.fs.equil.inlet.conc_mol_comp[0, \"NaOH\"].fix(100.0 * units.mol / units.m**3)\n", + " m.fs.equil.inlet.conc_mol_comp[0, \"EthylAcetate\"].fix(\n", + " 100.0 * units.mol / units.m**3\n", + " )\n", + " m.fs.equil.inlet.conc_mol_comp[0, \"SodiumAcetate\"].fix(0.0 * units.mol / units.m**3)\n", + " m.fs.equil.inlet.conc_mol_comp[0, \"Ethanol\"].fix(0.0 * units.mol / units.m**3)\n", + "\n", + " m.fs.equil.inlet.temperature[0].fix(303.15 * units.K)\n", + " m.fs.equil.inlet.pressure[0].fix(101325.0 * units.Pa)\n", + "\n", + " m.fs.equil.heat_duty.fix(0 * units.W)\n", + " m.fs.equil.deltaP.fix(0 * units.Pa)\n", + "\n", + " initializer = BlockTriangularizationInitializer()\n", + " initializer.initialize(m.fs.equil)\n", + "\n", + " return m" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before we move on to try to solve the model or develop a ``Scaler``, we should first check to make sure the model is well-posed and that there are not any structural issues that will prevent us from solving the model. The code below creates an instance of the IDAES Diagnostics Toolbox and runs the ``report_structural_issues`` method to ensure there are no warnings." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Model Solved\n", - "\n", - "Scaling Factors for fs.equil\n", - "\n", - "Variable Scaling Factor Value Scaled Value\n", - "fs.equil.control_volume.properties_in[0.0].flow_vol 1.000E+02 1.000E-03 1.000E-01\n", - "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[H2O] 1.000E-04 5.539E+04 5.539E+00\n", - "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[NaOH] 1.000E-02 1.000E+02 1.000E+00\n", - "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[EthylAcetate] 1.000E-02 1.000E+02 1.000E+00\n", - "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[SodiumAcetate] 1.000E-02 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[Ethanol] 1.000E-02 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.properties_in[0.0].temperature 3.219E-03 3.031E+02 9.759E-01\n", - "fs.equil.control_volume.properties_in[0.0].pressure 1.000E-05 1.013E+05 1.013E+00\n", - "fs.equil.control_volume.properties_out[0.0].flow_vol 1.000E+02 1.000E-03 1.000E-01\n", - "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[H2O] 1.000E-04 5.539E+04 5.539E+00\n", - "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[NaOH] 1.000E-02 6.250E-02 6.250E-04\n", - "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[EthylAcetate] 1.000E-02 6.250E-02 6.250E-04\n", - "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[SodiumAcetate] 1.000E-02 9.994E+01 9.994E-01\n", - "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[Ethanol] 1.000E-02 9.994E+01 9.994E-01\n", - "fs.equil.control_volume.properties_out[0.0].temperature 3.219E-03 3.043E+02 9.796E-01\n", - "fs.equil.control_volume.properties_out[0.0].pressure 1.000E-05 1.013E+05 1.013E+00\n", - "fs.equil.control_volume.heat[0.0] None 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.deltaP[0.0] None 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,H2O] None 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,NaOH] None -9.994E-02 -9.994E-02\n", - "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,EthylAcetate] None -9.994E-02 -9.994E-02\n", - "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,SodiumAcetate] None 9.994E-02 9.994E-02\n", - "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,Ethanol] None 9.994E-02 9.994E-02\n", - "fs.equil.control_volume.rate_reaction_extent[0.0,R1] None 9.994E-02 9.994E-02\n", - "fs.equil.control_volume.reactions[0.0].reaction_rate[R1] 1.000E+02 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.reactions[0.0].k_rxn 5.424E+00 1.304E-01 7.075E-01\n", - "\n", - "Constraint Scaling Factor\n", - "fs.equil.rate_reaction_constraint[0.0,R1] None\n", - "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,H2O] None\n", - "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,NaOH] None\n", - "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,EthylAcetate] None\n", - "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,SodiumAcetate] None\n", - "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,Ethanol] None\n", - "fs.equil.control_volume.material_balances[0.0,Liq,H2O] None\n", - "fs.equil.control_volume.material_balances[0.0,Liq,NaOH] None\n", - "fs.equil.control_volume.material_balances[0.0,Liq,EthylAcetate] None\n", - "fs.equil.control_volume.material_balances[0.0,Liq,SodiumAcetate] None\n", - "fs.equil.control_volume.material_balances[0.0,Liq,Ethanol] None\n", - "fs.equil.control_volume.enthalpy_balances[0.0] None\n", - "fs.equil.control_volume.pressure_balance[0.0] None\n", - "fs.equil.control_volume.properties_out[0.0].conc_water_eqn 1.000E-04\n", - "fs.equil.control_volume.reactions[0.0].rate_expression[R1] 5.424E-04\n", - "fs.equil.control_volume.reactions[0.0].arrhenius_eqn 5.424E+00\n", - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Jacobian Condition Number: 3.022E+09\n", - "\n", - "------------------------------------------------------------------------------------\n", - "1 WARNINGS\n", - "\n", - " WARNING: 2 Variables at or outside bounds (tol=0.0E+00)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "5 Cautions\n", - "\n", - " Caution: 2 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", - " Caution: 6 Variables with value close to zero (tol=1.0E-08)\n", - " Caution: 4 Variables with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", - " Caution: 2 Constraints with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", - " Caution: 6 extreme Jacobian Entries (<1.0E-04 or >1.0E+04)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_variables_at_or_outside_bounds()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "check_scaling()" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 5 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 16 (External: 0)\n", + " Free Variables with only lower bounds: 6\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 2\n", + " Fixed Variables in Activated Constraints: 10 (External: 0)\n", + " Activated Equality Constraints: 16 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 Cautions\n", + "\n", + " Caution: 4 variables fixed to 0\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " Try to initialize/solve your model and then call report_numerical_issues()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m = build_model()\n", + "\n", + "dt = DiagnosticsToolbox(model=m.fs.equil)\n", + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Make sure base model is constructed properly\n", + "dt.assert_no_structural_warnings()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to fully test our new ``Scaler`` it is also useful to test how the model responds to perturbations in the state. In many ways, this is the real test of a scaling routine as it is easy to write something that gets good scaling for a known state (e.g., auto-scalers), but what we really need is a routine that can get good scaling across a range of conditions.\n", + "\n", + "The cell below creates a function that perturbs the state of our model significantly. Note that the volumetric flowrate has been increased by two orders of magnitude, the inlet concentrations have changed significantly, and we have also made a small change to the temperature." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.solvers import get_solver\n", + "\n", + "solver = get_solver(\n", + " \"ipopt_v2\", writer_config={\"scale_model\": True, \"linear_presolve\": True}\n", + ")\n", + "\n", + "\n", + "def perturb_model(m):\n", + " m.fs.equil.inlet.flow_vol.fix(1 * units.m**3 / units.s)\n", + " m.fs.equil.inlet.conc_mol_comp[0, \"NaOH\"].fix(200.0 * units.mol / units.m**3)\n", + " m.fs.equil.inlet.conc_mol_comp[0, \"EthylAcetate\"].fix(\n", + " 100.0 * units.mol / units.m**3\n", + " )\n", + " m.fs.equil.inlet.conc_mol_comp[0, \"SodiumAcetate\"].fix(50 * units.mol / units.m**3)\n", + " m.fs.equil.inlet.conc_mol_comp[0, \"Ethanol\"].fix(1e-8 * units.mol / units.m**3)\n", + "\n", + " m.fs.equil.inlet.temperature.fix(320 * units.K)\n", + " solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets apply this perturbation to our example model and see how well it solves." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From the scaling factor report, we can see that by calling the submodel scalers we have already scaled many of the variables in our problem, as well as three of the constraints. If we look at the \"Scaled Value\" column for the variables, we can also see that most of the scaled values are close to 1 (the few outliers might be things we want to look into more later on).\n", - "\n", - "From the numerical diagnostics, we can see that the Jacobian condition number has decreased by a few orders of magnitude, although it is still large, whilst we still have a number of potential issues with individual variables and constraints. All up though, this appears to be a step in the right direction." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: linear_solver=ma57\n", + "max_iter=200\n", + "nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma57.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 21\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 9\n", + "\n", + "Total number of variables............................: 8\n", + " variables with only lower bounds: 5\n", + " variables with lower and upper bounds: 1\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 8\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 9.09e+07 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + "Reallocating memory for MA57: lfact (247)\n", + " 1r 0.0000000e+00 9.09e+07 9.99e+02 2.5 0.00e+00 - 0.00e+00 7.73e-09R 9\n", + " 2r 0.0000000e+00 8.42e+07 8.24e+03 2.5 7.20e+02 - 1.64e-02 2.59e-02f 1\n", + " 3r 0.0000000e+00 8.37e+07 7.72e+03 1.8 8.82e+04 - 5.56e-04 3.77e-05f 1\n", + " 4r 0.0000000e+00 3.76e+07 2.65e+04 1.8 1.13e+03 0.0 1.27e-01 1.63e-01f 1\n", + " 5r 0.0000000e+00 3.60e+07 2.30e+04 1.8 6.83e+01 1.3 7.53e-02 1.45e-01f 1\n", + " 6r 0.0000000e+00 4.17e+07 1.77e+04 1.8 2.10e+02 0.9 7.11e-02 1.47e-01f 1\n", + " 7r 0.0000000e+00 4.08e+07 1.75e+04 1.8 3.95e+02 0.4 2.35e-01 8.19e-03f 1\n", + " 8r 0.0000000e+00 3.13e+07 1.75e+04 1.8 1.12e+03 -0.1 3.57e-01 3.16e-02f 1\n", + " 9r 0.0000000e+00 7.77e+06 1.74e+04 1.8 1.00e+04 - 1.43e-02 9.06e-03f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10r 0.0000000e+00 7.36e+06 1.70e+04 1.8 2.14e+02 - 2.20e-01 2.38e-02f 1\n", + " 11r 0.0000000e+00 5.93e+06 1.67e+04 1.8 1.72e+02 - 7.89e-01 1.95e-01f 1\n", + " 12r 0.0000000e+00 1.54e+06 3.54e+04 1.8 1.06e+02 - 8.80e-01 7.41e-01f 1\n", + " 13r 0.0000000e+00 1.21e+06 2.79e+04 1.8 4.60e+00 - 1.00e+00 2.12e-01h 1\n", + " 14r 0.0000000e+00 3.31e+03 4.79e+01 1.8 2.39e+00 - 1.00e+00 1.00e+00f 1\n", + " 15r 0.0000000e+00 2.85e+03 7.72e+02 -0.2 2.01e+00 - 9.81e-01 9.09e-01f 1\n", + " 16r 0.0000000e+00 2.47e+03 6.60e+02 -0.2 9.87e-01 - 1.00e+00 1.48e-01f 1\n", + " 17r 0.0000000e+00 3.18e-01 8.47e+01 -0.2 1.39e-01 - 1.00e+00 1.00e+00f 1\n", + " 18r 0.0000000e+00 3.18e-01 6.25e+01 -0.2 1.96e-01 - 1.00e+00 1.00e+00f 1\n", + " 19r 0.0000000e+00 3.18e-01 5.46e+00 -0.2 3.26e-02 - 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 20r 0.0000000e+00 3.18e-01 1.44e+02 -1.6 2.34e-01 - 1.00e+00 1.00e+00f 1\n", + " 21r 0.0000000e+00 3.18e-01 1.45e+01 -1.6 9.26e-02 - 9.13e-01 1.00e+00f 1\n", + " 22r 0.0000000e+00 3.18e-01 1.46e+01 -1.6 1.71e-01 - 1.00e+00 1.25e-01f 4\n", + " 23r 0.0000000e+00 3.18e-01 1.44e+01 -1.6 1.24e-01 - 1.00e+00 1.56e-02h 7\n", + " 24r 0.0000000e+00 3.18e-01 1.41e+01 -1.6 1.27e-01 - 1.00e+00 1.56e-02h 7\n", + " 25r 0.0000000e+00 3.18e-01 1.39e+01 -1.6 1.24e-01 - 1.00e+00 1.56e-02h 7\n", + " 26r 0.0000000e+00 3.18e-01 1.37e+01 -1.6 1.22e-01 - 1.00e+00 1.56e-02h 7\n", + " 27r 0.0000000e+00 3.18e-01 1.35e+01 -1.6 1.20e-01 - 1.00e+00 1.56e-02h 7\n", + " 28r 0.0000000e+00 3.18e-01 1.33e+01 -1.6 1.18e-01 - 1.00e+00 1.56e-02h 7\n", + " 29r 0.0000000e+00 3.18e-01 1.31e+01 -1.6 1.17e-01 - 1.00e+00 1.56e-02h 7\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 30r 0.0000000e+00 3.18e-01 1.29e+01 -1.6 1.15e-01 - 1.00e+00 1.56e-02h 7\n", + " 31r 0.0000000e+00 3.18e-01 1.28e+01 -1.6 1.13e-01 - 1.00e+00 1.56e-02h 7\n", + " 32r 0.0000000e+00 3.18e-01 4.28e+01 -1.6 1.11e-01 - 1.00e+00 1.00e+00w 1\n", + " 33r 0.0000000e+00 3.18e-01 1.43e-03 -1.6 2.09e-05 - 1.00e+00 1.00e+00w 1\n", + " 34r 0.0000000e+00 3.18e-01 1.37e+01 -3.7 6.94e-02 - 1.00e+00 1.00e+00f 1\n", + " 35r 0.0000000e+00 3.17e-01 3.73e+04 -3.7 3.39e+00 - 1.44e-01 1.00e+00f 1\n", + " 36r 0.0000000e+00 3.17e-01 6.78e+03 -3.7 5.99e-01 - 1.00e+00 1.00e+00f 1\n", + " 37r 0.0000000e+00 3.17e-01 7.66e+00 -3.7 4.92e-03 - 1.00e+00 1.00e+00h 1\n", + " 38r 0.0000000e+00 3.17e-01 1.65e-04 -3.7 9.43e-05 - 1.00e+00 1.00e+00h 1\n", + " 39r 0.0000000e+00 3.17e-01 1.30e+00 -5.6 9.94e-04 - 1.00e+00 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 40r 0.0000000e+00 3.11e-01 6.82e+04 -5.6 3.21e+01 - 1.41e-01 1.00e+00f 1\n", + " 41r 0.0000000e+00 3.11e-01 1.17e+01 -5.6 4.97e-03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 41\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 2.2783833299154238e-01 2.2783833299154238e-01\n", + "Constraint violation....: 3.1132475345243688e-01 3.1132475345243688e-01\n", + "Complementarity.........: 2.7808801399127131e-06 2.7808801399127131e-06\n", + "Overall NLP error.......: 3.1132475345243688e-01 3.1132475345243688e-01\n", + "\n", + "\n", + "Number of objective function evaluations = 109\n", + "Number of objective gradient evaluations = 3\n", + "Number of equality constraint evaluations = 109\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 44\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 42\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.014\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Converged to a point of local infeasibility. Problem may be infeasible.\n" + ] + } + ], + "source": [ + "perturb_model(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As can be seen from the solver logs, IPOPT was unable to find a feasible solution to this problem, and went into restoration from the first iteration. However, there is no reason the perturbed conditions should not be feasible (you can verify this with the `infeasibility_explainer` in the Diagnostics Toolbox if you desire).\n", + "\n", + "There are a few reasons for this, most of which can be resolved by providing better scaling for the model. One of the reasons is because we have a number of concentrations approaching zero which results in a number of very small numbers appearing in the problem.\n", + "\n", + "A bigger issue however is the fact that in our initial model we are feeding reactants in stoichiometric amounts (1:1) meaning that both reactant concentrations go to zero at equilibrium. This results in the Jacobian for the reaction rate constraint becoming singular; with `rate = K_rxn * [NaOH] * [EthylAcetate]` if both concentrations go to zero then the partial derivative of the reaction rate with respect to each concentration is also 0, and thus our solver has no idea of what direction to move when trying to converge the problem. Whilst scaling can help work around this, this is ultimately an indication that our problem is not well formulated. In practice, an Equilibrium reactor model is not well suited for systems involving irreversible rate-based reactions as it requires concentrations to be driven to zero, and is an especially poor choice for stoichiometric feeds." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 2: Understanding the Model\n", + "\n", + "Now that we have a test case (or multiple test cases), we can start planning out the new scaling routine. As our goal is to estimate scaling factors for as many of the variables and constraints in the model as possible, the first step is to understand what variables and constraints may be present in the model. Note that we need to be careful to check for all variables and constraints that may exist under different configuration options, and not just those that appear in the our test case(s).\n", + "\n", + "Given the modular nature of IDAES, we need to also make a distinction between those variables and constraints we have direct knowledge of, and those that are created via modular sub-models that we do not know the details of. The most common examples of modular sub-models are the ``StateBlocks`` and ``ReactionBlocks`` created by the associated property packages; we know that these exist and we create these in our models, but we do not know what variables and constraints they may construct. On the other hand, we also have variables and constraints that we construct directly in our model. For the purposes of this we include those variables and constraints constructed by ``ControlVolumes`` as being directly construed; whilst the ``ControlVolume`` might automate the details for us, we directly call methods on the ``ControlVolume`` to create these variables and constraints and we know what they will be based on the instructions we give.\n", + "\n", + "For our example of the ``EquilibriumReactor``, let us take a look at the code in the ``build`` method, which has been copied below for convenience:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def build(self):\n", + " \"\"\"\n", + " Begin building model.\n", + "\n", + " Args:\n", + " None\n", + "\n", + " Returns:\n", + " None\n", + " \"\"\"\n", + " # Call UnitModel.build to setup dynamics\n", + " super(EquilibriumReactorData, self).build()\n", + "\n", + " # Build Control Volume\n", + " self.control_volume = ControlVolume0DBlock(\n", + " dynamic=self.config.dynamic, # Config block forces this to be False\n", + " has_holdup=self.config.has_holdup, # Config block forces this to be False\n", + " property_package=self.config.property_package,\n", + " property_package_args=self.config.property_package_args,\n", + " reaction_package=self.config.reaction_package,\n", + " reaction_package_args=self.config.reaction_package_args,\n", + " )\n", + "\n", + " # No need for control volume geometry\n", + "\n", + " self.control_volume.add_state_blocks(\n", + " has_phase_equilibrium=self.config.has_phase_equilibrium\n", + " )\n", + "\n", + " self.control_volume.add_reaction_blocks(\n", + " has_equilibrium=self.config.has_equilibrium_reactions\n", + " )\n", + "\n", + " self.control_volume.add_material_balances(\n", + " balance_type=self.config.material_balance_type,\n", + " has_rate_reactions=self.config.has_rate_reactions,\n", + " has_equilibrium_reactions=self.config.has_equilibrium_reactions,\n", + " has_phase_equilibrium=self.config.has_phase_equilibrium,\n", + " )\n", + "\n", + " self.control_volume.add_energy_balances(\n", + " balance_type=self.config.energy_balance_type,\n", + " has_heat_of_reaction=self.config.has_heat_of_reaction,\n", + " has_heat_transfer=self.config.has_heat_transfer,\n", + " )\n", + "\n", + " self.control_volume.add_momentum_balances(\n", + " balance_type=self.config.momentum_balance_type,\n", + " has_pressure_change=self.config.has_pressure_change,\n", + " )\n", + "\n", + " # Add Ports\n", + " self.add_inlet_port()\n", + " self.add_outlet_port()\n", + "\n", + " if self.config.has_rate_reactions:\n", + " # Add equilibrium reactor performance equation\n", + " @self.Constraint(\n", + " self.flowsheet().time,\n", + " self.config.reaction_package.rate_reaction_idx,\n", + " doc=\"Rate reaction equilibrium constraint\",\n", + " )\n", + " def rate_reaction_constraint(b, t, r):\n", + " # Set kinetic reaction rates to zero\n", + " return b.control_volume.reactions[t].reaction_rate[r] == 0\n", + "\n", + " # Set references to balance terms at unit level\n", + " if (\n", + " self.config.has_heat_transfer is True\n", + " and self.config.energy_balance_type != EnergyBalanceType.none\n", + " ):\n", + " self.heat_duty = Reference(self.control_volume.heat[:])\n", + "\n", + " if (\n", + " self.config.has_pressure_change is True\n", + " and self.config.momentum_balance_type != MomentumBalanceType.none\n", + " ):\n", + " self.deltaP = Reference(self.control_volume.deltaP[:])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we look through the code in the ``build`` method, we can see that the model contains a single 0D Control Volume with ``StateBlocks``, a ``ReactionBlock``, material, energy and momentum balances and one additional constraint (``rate_reaction_constraint``). Thus, we have the following components that need to be scaled:\n", + "\n", + "3 Sub-Models:\n", + "\n", + "1. The inlet state sub-model (``model.control_volume.properties_in``)\n", + "2. The outlet state sub-model (``model.control_volume.properties_out``)\n", + "3. The reaction sub-model (``model.control_volume.reactions``)\n", + "\n", + "Unit Model Variables (from control volume options):\n", + "\n", + "1. Rate-based reaction extent and generation terms\n", + "2. Equilibrium-based reaction extent and generation terms\n", + "3. Inherent reaction extent and generation terms (no explicit argument, but determined by properties)\n", + "4. Phase equilibrium generation terms\n", + "5. Energy balance heat term\n", + "6. Energy balance heats of reaction\n", + "7. Pressure drop\n", + "\n", + "Unit Model Constraints (from control volume + 1 in the ``build`` method):\n", + "\n", + "1. Material balance constraints\n", + "2. Reaction stoichiometry constraints\n", + "3. Energy balance constraints\n", + "4. Pressure balance constraints\n", + "5. ``rate_reaction_constraint``\n", + "\n", + "When writing our ``Scaler`` we will need to consider all of these to determine how best to estimate scaling factors. Before starting however, we should check the numerical diagnostics for each case study, both to see what scaling issues currently exist and to establish a baseline for comparison once we have a proposed ``Scaler`` for our model.\n", + "\n", + "The cell below calls the ``report_numerical_issues`` method for the unscaled test case." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 5: Apply Variable Scaling\n", - "\n", - "Next, we need to look at scaling the variables and constraints that make up the unit model itself. From a conceptual standpoint, it is generally easiest to start with the variables as we generally have at least some idea of the magnitude of these.\n", - "\n", - "For the equilibrium reactor, we have the following variables we need to scale:\n", - "\n", - "1. Rate-based reaction extent and generation terms\n", - "2. Equilibrium-based reaction extent and generation terms\n", - "3. Inherent reaction extent and generation terms\n", - "4. Phase equilibrium generation terms\n", - "5. Energy balance heat term\n", - "6. Energy balance heats of reaction\n", - "7. Pressure drop\n", - "\n", - "Many of these are hard to know a priori - anything related to a reaction is very hard to know without knowing the reaction behavior. Considering that the equilibrium reactor is modular, we have little to no way of knowing these in the general case (and even in the specific test case it is hard enough). We can assume that the reaction package will scale all of its variables (i.e., rate and equilibrium constants, and reaction rates), however it is hard to project these to unit model scaling.\n", - "\n", - "For a CSTR we can say that ``extent = volume*rate`` and thus estimate scaling, but this does not work for equilibrium systems where 1) volume is undefined, 2) reaction rate at the outlet state is being driven to zero to satisfy equilibrium, and 3) extent is solved implicitly to satisfy the need for reaction rate to equal zero.\n", - "\n", - "Considering that a bad guess is often worse than no guess, we will not scale these right now - it is important to remember that our goal is to improve the overall scaling so if we do not know how to scale something it is generally best to leave it unscaled. We might come back to these later if necessary, but for now we will leave these either for the user to provide based on knowledge of their system, or for automated fill-in using some autoscaler.\n", - "\n", - "For the heat and deltaP terms, these are dependent on extensive variables in each case study and we have no way of knowing their exact values. However, we can probably take a good guess at order-of-magnitude using engineering knowledge; heat duties are generally approximately one order of magnitude smaller than the enthalpy flows,\n", - "and pressure drops are generally on the order of 0.1 bar.\n", - "\n", - "To apply scaling for the pressure drop term, we can make use of the ``scale_variable_by_units`` method in ``CustomScalerBase``. This method looks up the units of measurement for the variable, and then loops in the class attribute ``UNIT_SCALING_FACTORS`` dictionary to find an equivalent unit for the quantity of interest and an associated scaling factor. If a scaling factor is found, it is converted as necessary; e.g., in this case pressure is defined in ``Pa`` but we can set the default scaling factor in ``bar`` and it will be converted as appropriate. The code required to do this is below.\n", - "\n", - "```python\n", - "UNIT_SCALING_FACTORS = {\n", - " # \"QuantityName: (reference units, scaling factor)\n", - " \"Pressure Change\": (units.bar, 10),\n", - "}\n", - "\n", - "def variable_scaling_routine(*args, **kwargs):\n", - " if hasattr(model.control_volume, \"deltaP\"):\n", - " for t in model.flowsheet().time:\n", - " self.scale_variable_by_units(\n", - " model.control_volume.deltaP[t],\n", - " overwrite=overwrite\n", - " )\n", - "```\n", - "\n", - "There are a few things to note here:\n", - "\n", - "1. As we expect the pressure drop to be on the order of 0.1 bar, we need to set a scaling factor of 10 for quantities with units of pressure. Also note that the key ``\"Pressure Change\"`` is for documentation purposes only and is not actually used by the code (but must be there). \n", - "\n", - "
\n", - "NOTE We cannot distinguish between different quantities with the same apparent units (e.g., we cannot distinguish between an absolute pressure and a pressure change).\n", - "
\n", - "\n", - "2. Note that scaling is applied to elements of indexed components and not to the indexed component as a whole, and thus we need to use a ``for`` loop to iterate over the time index. This is done to force modelers to consider how the scaling of a variable or constraint will vary over the indexed domain, and try to discourage automatically setting a single scaling factor for all points.\n", - "3. Pressure change is a configuration argument in our unit model, and thus may not be present in all cases. Therefore, we need the ``hasattr`` check to see if we need to scale ``deltaP`` or not.\n", - "\n", - "For the case of the heat duty, we want to scale based on the incoming enthalpy flow which means we first need to get the expected magnitude of the enthalpy flow. For that, we can use the ``get_expression_nominal_values`` method in ``CustomScalerBase`` which uses an expression walker to go through an expression to return a list of the expected magnitude (or nominal value) of all additive terms in the expression based on the scaling factors for the variables involved.\n", - "\n", - "We can get an expression for the enthalpy flow term using the ``get_enthalpy_flow_terms`` method from the associated ``StateBlock``. We should assume this expression might contain multiple terms, so we should sum all the values returned to get the overall magnitude of the enthalpy flow term. Once we have this, we can then get the scaling factor for the heat duty by ``sf = abs(1/(0.1*enthalpy_flow))`` - note that the tools insist on scaling factors being positive (for sanity) and thus we need the absolute value here in case enthalpy flow is negative (which is not uncommon for enthalpy). The code to do this is shown below.\n", - "\n", - "```python\n", - "if hasattr(model.control_volume, \"heat\"):\n", - " for t in model.flowsheet().time:\n", - " h_in = 0\n", - " for p in model.control_volume.properties_in.phase_list:\n", - " # The expression for enthalpy flow might include multiple terms,\n", - " # so we will sum over all the terms provided\n", - " h_in += sum(\n", - " self.get_expression_nominal_values(\n", - " model.control_volume.properties_in[t].get_enthalpy_flow_terms(p)\n", - " )\n", - " )\n", - " # Scale for heat is general one order of magnitude less than enthalpy flow\n", - " self.set_variable_scaling_factor(model.control_volume.heat[t], abs(1 / (0.1 * h_in)))\n", - "```\n", - "\n", - "Putting all of this together results in the code below for our ``EquilibriumReactorScaler`` class." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 1.540E+12\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 WARNINGS\n", + "\n", + " WARNING: 1 Constraint with large residuals (>1.0E-05)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "7 Cautions\n", + "\n", + " Caution: 1 Variable with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 6 Variables with value close to zero (tol=1.0E-08)\n", + " Caution: 4 Variables with extreme value (<1.0E-04 or >1.0E+04)\n", + " Caution: 1 Constraint with mismatched terms\n", + " Caution: 3 Variables with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", + " Caution: 2 Constraints with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", + " Caution: 6 extreme Jacobian Entries (<1.0E-04 or >1.0E+04)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_constraints_with_large_residuals()\n", + " compute_infeasibility_explanation()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looking at the results of the diagnostics, we can see that the test case is not particularly well scaled. The Jacobian condition number is rather large (1e12), and the diagnostics are reporting a number of variables with extremely large or small values, and 3 variables and 2 constraints with poorly scaled Jacobians. As we develop our new ``Scaler`` for the ``EquilibriumReactor`` we will hopefully see these improve.\n", + "\n", + "We can also use the Diagnostics Toolbox to further explore these issues to get a better idea of which variables and constraints might be causing issues. For example, lets display the set of variables and constraints with extreme Jacobian norms." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import units\n", - "\n", - "\n", - "class EquilibriumReactorScaler(CustomScalerBase):\n", - " # =======================================================================================\n", - " # New Code\n", - " UNIT_SCALING_FACTORS = {\n", - " # \"QuantityName: (reference units, scaling factor)\n", - " \"Pressure Change\": (units.bar, 10),\n", - " }\n", - " # =======================================================================================\n", - "\n", - " def variable_scaling_routine(\n", - " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", - " ):\n", - " # Call scaling methods for sub-models\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.properties_in,\n", - " method=\"variable_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - " self.propagate_state_scaling(\n", - " target_state=model.control_volume.properties_out,\n", - " source_state=model.control_volume.properties_in,\n", - " overwrite=overwrite,\n", - " )\n", - "\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.properties_out,\n", - " method=\"variable_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.reactions,\n", - " method=\"variable_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - "\n", - " # =======================================================================================\n", - " # New Code\n", - "\n", - " # Pressure drop - optional\n", - " if hasattr(model.control_volume, \"deltaP\"):\n", - " for t in model.flowsheet().time:\n", - " self.scale_variable_by_units(\n", - " model.control_volume.deltaP[t], overwrite=overwrite\n", - " )\n", - "\n", - " # Heat transfer - optional\n", - " # Scale heat based on enthalpy flow entering reactor\n", - " if hasattr(model.control_volume, \"heat\"):\n", - " for t in model.flowsheet().time:\n", - " h_in = 0\n", - " for p in model.control_volume.properties_in.phase_list:\n", - " # The expression for enthalpy flow might include multiple terms,\n", - " # so we will sum over all the terms provided\n", - " h_in += sum(\n", - " self.get_expression_nominal_values(\n", - " model.control_volume.properties_in[\n", - " t\n", - " ].get_enthalpy_flow_terms(p)\n", - " )\n", - " )\n", - " # Scale for heat is generally one order of magnitude less than enthalpy flow\n", - " self.set_variable_scaling_factor(\n", - " model.control_volume.heat[t], abs(1 / (0.1 * h_in))\n", - " )\n", - " # =======================================================================================\n", - "\n", - " def constraint_scaling_routine(\n", - " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", - " ):\n", - " # Call scaling methods for sub-models\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.properties_in,\n", - " method=\"constraint_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.properties_out,\n", - " method=\"constraint_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.reactions,\n", - " method=\"constraint_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following variable(s) are associated with extreme Jacobian values (<1.0E-04 or>1.0E+04):\n", + "\n", + " fs.equil.control_volume.properties_out[0.0].flow_vol: 9.427E+07\n", + " fs.equil.control_volume.properties_out[0.0].temperature: 4.172E+06\n", + " fs.equil.control_volume.rate_reaction_extent[0.0,R1]: 4.900E+04\n", + "\n", + "====================================================================================\n", + "====================================================================================\n", + "The following constraint(s) are associated with extreme Jacobian values (<1.0E-04 or>1.0E+04):\n", + "\n", + " fs.equil.control_volume.enthalpy_balances[0.0]: 9.436E+07\n", + " fs.equil.control_volume.material_balances[0.0,Liq,H2O]: 5.539E+04\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_variables_with_extreme_jacobians()\n", + "dt.display_constraints_with_extreme_jacobians()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These diagnostics can help give us an idea of what may be causing problems in our model. From the output above, we can see that the variables with large Jacobian norms (i.e., high sensitivities) are the outlet flow rate and temperature, as well as the rate-based extent of reaction. We can also see that the constraints with large Jacobian norms are the enthalpy balance and H20 material balance for the reactor. However, caution must be used when interpreting these in isolation, as understanding what these mean is often complicated and initial impressions may be misleading. To get a better picture of what is contributing to extreme Jacobian values you should make use of the tools in the diagnostics ``SVDToolbox``, however that is a topic for another example.\n", + "\n", + "For example, one might wonder why the volumetric flow rate at the outlet of the reactor is so important as it is effectively determined by the inlet flow rate (due to the water balance effectively conserving volume). However, it is important to remember that the Jacobian does not consider the value of the variable, but rather its partial derivatives. Thus, it is important to compare the list of variables and constraints with large Jacobian norms and think about how those intersect.\n", + "\n", + "Let's start by taking a look at the H2O material balance. The cell below prints the constraint expression in a compact form that only shows top level ``Expressions`` rather than expanding these to show the full expression tree." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Once again, lets run the ``check_scaling`` function and see how we are going." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "fs.equil.control_volume.properties_in[0.0].flow_vol*fs.equil.control_volume.properties_in[0.0].conc_mol_comp[H2O] - fs.equil.control_volume.properties_out[0.0].flow_vol*fs.equil.control_volume.properties_out[0.0].conc_mol_comp[H2O] + fs.equil.control_volume.rate_reaction_generation[0.0,Liq,H2O] == 0" + ] + } + ], + "source": [ + "from idaes.core.util.misc import print_compact_form\n", + "\n", + "print_compact_form(m.fs.equil.control_volume.material_balances[0, \"Liq\", \"H2O\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looking at how the outlet volumetric flowrate appears in the H2O balance equation above, it can be seen that the volumetric flow term is multiplied by the molar concentration of water, $F \\times C_{H2O}$. Whilst $C_{H2O}$ is assumed to be constant in this model (and equal to the molar density of pure water at ambient conditions), this means that the partial derivative of the constraint term with respect to flow is $\\frac{\\partial F C_{H2O}}{\\partial F} = C_{H2O}$; given that $C_{H2O}$ is equal to 5.5E4 mol/liter, you can quickly see why it is being identified as an issue.\n", + "\n", + "If we look at the energy balance, we will find that it is similar." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Model Solved\n", - "\n", - "Scaling Factors for fs.equil\n", - "\n", - "Variable Scaling Factor Value Scaled Value\n", - "fs.equil.control_volume.properties_in[0.0].flow_vol 1.000E+02 1.000E-03 1.000E-01\n", - "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[H2O] 1.000E-04 5.539E+04 5.539E+00\n", - "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[NaOH] 1.000E-02 1.000E+02 1.000E+00\n", - "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[EthylAcetate] 1.000E-02 1.000E+02 1.000E+00\n", - "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[SodiumAcetate] 1.000E-02 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[Ethanol] 1.000E-02 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.properties_in[0.0].temperature 3.219E-03 3.031E+02 9.759E-01\n", - "fs.equil.control_volume.properties_in[0.0].pressure 1.000E-05 1.013E+05 1.013E+00\n", - "fs.equil.control_volume.properties_out[0.0].flow_vol 1.000E+02 1.000E-03 1.000E-01\n", - "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[H2O] 1.000E-04 5.539E+04 5.539E+00\n", - "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[NaOH] 1.000E-02 6.250E-02 6.250E-04\n", - "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[EthylAcetate] 1.000E-02 6.250E-02 6.250E-04\n", - "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[SodiumAcetate] 1.000E-02 9.994E+01 9.994E-01\n", - "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[Ethanol] 1.000E-02 9.994E+01 9.994E-01\n", - "fs.equil.control_volume.properties_out[0.0].temperature 3.219E-03 3.043E+02 9.796E-01\n", - "fs.equil.control_volume.properties_out[0.0].pressure 1.000E-05 1.013E+05 1.013E+00\n", - "fs.equil.control_volume.heat[0.0] 4.794E-04 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.deltaP[0.0] 1.000E-04 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,H2O] None 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,NaOH] None -9.994E-02 -9.994E-02\n", - "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,EthylAcetate] None -9.994E-02 -9.994E-02\n", - "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,SodiumAcetate] None 9.994E-02 9.994E-02\n", - "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,Ethanol] None 9.994E-02 9.994E-02\n", - "fs.equil.control_volume.rate_reaction_extent[0.0,R1] None 9.994E-02 9.994E-02\n", - "fs.equil.control_volume.reactions[0.0].reaction_rate[R1] 1.000E+02 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.reactions[0.0].k_rxn 5.424E+00 1.304E-01 7.075E-01\n", - "\n", - "Constraint Scaling Factor\n", - "fs.equil.rate_reaction_constraint[0.0,R1] None\n", - "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,H2O] None\n", - "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,NaOH] None\n", - "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,EthylAcetate] None\n", - "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,SodiumAcetate] None\n", - "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,Ethanol] None\n", - "fs.equil.control_volume.material_balances[0.0,Liq,H2O] None\n", - "fs.equil.control_volume.material_balances[0.0,Liq,NaOH] None\n", - "fs.equil.control_volume.material_balances[0.0,Liq,EthylAcetate] None\n", - "fs.equil.control_volume.material_balances[0.0,Liq,SodiumAcetate] None\n", - "fs.equil.control_volume.material_balances[0.0,Liq,Ethanol] None\n", - "fs.equil.control_volume.enthalpy_balances[0.0] None\n", - "fs.equil.control_volume.pressure_balance[0.0] None\n", - "fs.equil.control_volume.properties_out[0.0].conc_water_eqn 1.000E-04\n", - "fs.equil.control_volume.reactions[0.0].rate_expression[R1] 5.424E-04\n", - "fs.equil.control_volume.reactions[0.0].arrhenius_eqn 5.424E+00\n", - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Jacobian Condition Number: 3.022E+09\n", - "\n", - "------------------------------------------------------------------------------------\n", - "1 WARNINGS\n", - "\n", - " WARNING: 2 Variables at or outside bounds (tol=0.0E+00)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "5 Cautions\n", - "\n", - " Caution: 2 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", - " Caution: 6 Variables with value close to zero (tol=1.0E-08)\n", - " Caution: 4 Variables with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", - " Caution: 2 Constraints with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", - " Caution: 6 extreme Jacobian Entries (<1.0E-04 or >1.0E+04)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_variables_at_or_outside_bounds()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "check_scaling()" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "fs.properties.dens_mol*fs.properties.cp_mol*fs.equil.control_volume.properties_in[0.0].flow_vol*(fs.equil.control_volume.properties_in[0.0].temperature - fs.properties.temperature_ref) - fs.properties.dens_mol*fs.properties.cp_mol*fs.equil.control_volume.properties_out[0.0].flow_vol*(fs.equil.control_volume.properties_out[0.0].temperature - fs.properties.temperature_ref) + fs.equil.control_volume.heat[0.0] + fs.equil.control_volume.heat_of_reaction[0.0] == 0" + ] + } + ], + "source": [ + "print_compact_form(m.fs.equil.control_volume.enthalpy_balances[0.0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Whilst a bit harder to read due to the size of the constraint, you can see that it involves the term $\\rho \\times c_p \\times F \\times (T - T_{ref})$, where $c_p$ is the specific molar heat capacity of the solution, $T$ is temperature and $T_{ref}$ is the reference temperature. Given that $\\rho$ is of order 1E4 (a) and $c_p \\times (T-T_{ref})$ is of order 1E3, this means that the partial derivative with respect to the volumetric flowrate is even larger than that for the H2O balance. This also explains the appearance of the outlet temperature as well, as we can see that it is multiplied by a number of large values as well and thus has a large partial derivative.\n", + "\n", + "It is also important to mention that having a large value in the Jacobian does not mean a variable is \"important\" (and conversely a small value is not unimportant). What is important is how sensitive the constraint residual is to that change in variable, which is often difficult to assess from the Jacobian alone (which is where the ``SVDToolbox`` can assist).\n", + "\n", + "\n", + "## Step 3: Creating a New Scaler Class\n", + "\n", + "To create a new scaling routine for the equilibrium reactor, we start by creating a new ``Scaler`` class which inherits from the ``CustomScalerBase`` class in ``idaes.core.scaling``. The ``CustomScalerBase`` class contains a number of useful methods to help us in developing our scaling routine, including some placeholder methods for implementing a standard scaling workflow and helper methods for doing common tasks.\n", + "\n", + "The cell below shows how to create our new class which we will name ``EquilibriumReactorScaler`` as well as two key methods we will fill out as part of this workshop." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.scaling import CustomScalerBase\n", + "\n", + "\n", + "class EquilibriumReactorScaler(CustomScalerBase):\n", + " def variable_scaling_routine(\n", + " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", + " ):\n", + " # Empty method for now\n", + " pass\n", + "\n", + " def constraint_scaling_routine(\n", + " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", + " ):\n", + " # Empty method for now\n", + " pass" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The ``variable_scaling_routine`` and ``constraint_scaling_routine`` methods are used to implement subroutines for scaling the variables and constraints in the model respectively. Separately, there is a ``scale_model`` method that will call each of these in sequence in order to scale an entire model by applying the following steps:\n", + "\n", + "1. apply variable scaling routine,\n", + "2. apply first stage scaling fill-in,\n", + "3. apply constraint scaling routine,\n", + "4. apply second stage scaling fill-in.\n", + "\n", + "The second and fourth steps are intended to allow users to provide methods to fill in missing scaling information that was not provided by the first and second steps, or to provide a way to update the scaling factors with more information.\n", + "\n", + "Both the ``variable_scaling_routine`` and ``constraint_scaling_routine`` are user-facing methods and take three arguments.\n", + "\n", + "1. The model to be scaled.\n", + "2. An argument indicating whether to overwrite any existing scaling factors. Generally we assume that any existing scaling factors were provided by the user for a reason, so by default we set this to ``False``. However, there will likely be cases where a user wants to overwrite their existing scaling factors so this argument exists to let us pass on those instructions.\n", + "3. A mapping of user-provided ``Scalers`` to use when scaling submodels.\n", + "\n", + "## Step 4: Apply Scaling to Sub-Models\n", + "\n", + "First, lets look at how to scale the property and reaction sub-models. As these are modular packages, we do not know what variables and constraints may be in them, so we cannot (and should not) scale any of these directly. However, we can (hopefully) assume that there are ``Scalers`` available for these sub-models, either through default ``Scalers`` associated with the property packages or provided by the user. Thus, what we want to do here is to call the variable and constraint scaling routines from the ``Scaler`` associated with each sub-model, which we can do using the ``call_submodel_scaler_method`` method from the ``CustomScalerBase`` class.\n", + "\n", + "The cell below prints the doc-string for the ``call_submodel_scaler_method`` method so we can see what the expected arguments are." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Our updates have resulted in scaling factors for ``heat`` and ``deltaP`` appearing in the scaling report which is good, but comparing the diagnostics from the previous step we can see that the Jacobian condition number has not changed. Does this mean we did something wrong?\n", - "\n", - "The answer is no - when we add a scaling factor to a variable, wherever that variable appears in a constraint it is replaced with ``sf*v_scaled``. Given that ``v_scaled = v/sf``, this means that for variables which only appear linearly in constraints then the partial derivative with respect to the scaled variable does not change either; thus the Jacobian is unaffected by scaling only the linear variables. In the case of this example, it turns out that almost all the variables appear linearly and thus we see no change in the Jacobian condition number.\n", - "\n", - "
\n", - "NOTE It is important to note that partial scaling of a model (e.g., variables only) can often appear worse than that of the unscaled model. Generally, it is best to wait until you have scaled both variables and constraints to make a decision on whether your attempts at scaling have made the problem better or worse, and you should not be discouraged if things look worse while in an intermediate state.\n", - "
\n", - "\n", - "\n", - "## Step 6: Apply Constraint Scaling\n", - "\n", - "Now that we have scaled all the variables that we can (for now at least), we can move on to scaling constraints. The advantage of scaling all the variables first means that now we have an idea of the expected magnitude for all terms in the constraints which we can use to estimate scaling factors. For the Equilibrium reactor model, we need to scale all the constraints in the control volume, as well as the unit level constraint equating all reaction rates to zero.\n", - "\n", - "There are many approaches to estimating scaling for constraints, and different approaches are better suited to certain situations. ``CustomScalerBase`` contains a ``scale_constraint_by_nominal_value`` method which can be used to automatically implement a number of common approaches to save you the effort of having to manually implement these yourself. As of writing, the approaches (or schemes) supported are:\n", - "\n", - "1. ``ConstraintScalingScheme.inverseMaximum`` - scale the constraint based on the term with the largest absolute expected magnitude. This is scheme is useful for cases where most terms have similar magnitudes and is a good initial point to start.\n", - "2. ``ConstraintScalingScheme.inverseMinimum`` - scale the constraint based on the term with the smallest absolute expected magnitude. This scheme is similar to the inverse maximum scheme and is useful for cases where you have a constraint with a number of smaller terms mixed with a few larger terms, or cases where the smaller term is expected to be most significant. This scheme should be used carefully however as it can result in large scaling factors making convergence of larger terms difficult.\n", - "3. ``ConstraintScalingScheme.harmonicMean`` - scale the constraint using the harmonic mean of the absolute expected magnitude of all terms (``sf = sum(1/abs(nominal value))``). This scheme is most useful when you have a constraint with terms with a mix of expected magnitudes where you need to find a balance between the large and small terms.\n", - "4. ``ConstraintScalingScheme.inverseSum`` - scale the constraint using the sum of the absolute expected magnitudes of all terms. Situationally useful for cases with terms of mixed magnitudes.\n", - "5. ``ConstraintScalingScheme.inverseRSS`` - scale the constraint using the root sum of squares of the absolute expected magnitudes of all terms. Situationally useful for cases with terms of mixed magnitudes.\n", - "\n", - "``CustomScalerBase`` also contains a ``scale_constraint_by_nominal_derivative_norm`` method that can scale a constraint based on an estimate of the Jacobian norm associated with that constraint which can be useful for cases where you want to focus on the Jacobian scaling.\n", - "\n", - "
\n", - "NOTE The solver you intend to use may impact which approach provides the best scaling for a given model. For example, IPOPT has very good internal Jacobian scaling (when using the `gradient-based` scaling option), and thus benefits the most from focusing on scaling the constraint residual magnitudes as opposed to the Jacobian.\n", - "
\n", - "\n", - "For this workshop, we will start by just using ``ConstraintScalingScheme.inverseMaximum`` to get a starting point and to see if further scaling is required. We can apply this scheme to scale all the constraints in the control volume using the code below.\n", - "\n", - "```python\n", - "for c in model.control_volume.component_data_objects(\n", - " Constraint, descend_into=False\n", - "):\n", - " self.scale_constraint_by_nominal_value(\n", - " c,\n", - " scheme=ConstraintScalingScheme.inverseMaximum,\n", - " overwrite=overwrite,\n", - " )\n", - "```\n", - "\n", - "Adding this and a similar approach to scale the unit level constraint gives us the code below for our ``EquilibriumreactorScaler`` class." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Help on function call_submodel_scaler_method in module idaes.core.scaling.custom_scaler_base:\n", + "\n", + "call_submodel_scaler_method(self, submodel, method: str, submodel_scalers: pyomo.common.collections.component_map.ComponentMap = None, overwrite: bool = False)\n", + " Call scaling method for submodel.\n", + " \n", + " Scaler for submodel is taken from submodel_scalers if present, otherwise the\n", + " default scaler for the submodel is used.\n", + " \n", + " Args:\n", + " submodel: submodel to be scaled\n", + " submodel_scalers: user provided ComponentMap of Scalers to use for submodels\n", + " method: name of method to call from submodel (as string)\n", + " overwrite: whether to overwrite existing scaling factors\n", + " \n", + " Returns:\n", + " None\n", + "\n" + ] + } + ], + "source": [ + "help(CustomScalerBase.call_submodel_scaler_method)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that ``call_submodel_scaler_method`` takes 4 arguments:\n", + "\n", + "1. ``submodel`` is the submodel we want to scale. \n", + "2. The ``submodel_scalers`` argument should be passed through from the ``variable_scaling_routine`` or ``constraint_scaling_routine`` method.\n", + "3. The name of the method we want to call from the ``Scaler`` when we get it - this will normally be either ``variable_scaling_routine`` (if we are scaling variables) or ``constraint_scaling_routine`` (if we are doing constraints).\n", + "4. The ``overwrite`` argument should also be passed through from the ``variable_scaling_routine`` or ``constraint_scaling_routine`` method.\n", + "\n", + "For the Equilibrium Reactor, we have three submodels to scale; inlet state, outlet state and reactions. As mentioned in the introduction, when developing scaling routines always start with the things you have the most information about. In this case, we likely know the most about the inlet state; either it is a defined feed state (like in our test case) or we have some idea of the state (and scaling) from propagating values from an upstream operation. So, to apply variable scaling to the inlet state we would do the following:\n", + "\n", + "```python\n", + "self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.properties_in,\n", + " method=\"variable_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + ")\n", + "```\n", + "\n", + "Once we have an idea of scaling for the inlet we can use that information to try to estimate scaling for the outlet state. The default assumption is that the scaling of the outlet will be similar to that of the inlet, so the easy path is to copy scaling from the inlet state to the outlet. However, we know that something must change between inlet and outlet (as otherwise this unit operation is doing nothing) so we should always stop and think about whether we can try to estimate these changes. For example, in a pressure changer we know, or be able to estimate, the pressure change across the unit and thus be able to change the scaling of pressure between the inlet and outlet. However, keep in mind that over-scaling can make things worse so be judicious when deciding whether to adjust scaling based on estimates.\n", + "\n", + "In regards to this, Equilibrium Reactors are one of the more challenging units to scale, as it is very hard to know what the outlet flows and concentrations will be without knowing what the reactions are (and even if you know the reactions it is often hard to know the equilibrium state). In most cases, we have no reliable way to estimate the outlet flowrate and concentrations, so this is best left to the user to provide. In the case of temperature and pressure, whilst we may expect these to change but any change will generally be 1-2 orders of magnitude less than the inlet state and thus the overall scale of these will likely remain similar. Thus, for the Equilibrium Reactor it is probably sufficient to just scale the outlet state based on the inlet state.\n", + "\n", + "The ``CustomScalerBase`` class has a method for propagating scaling factors for state variables from one state to another called ``propagate_state_scaling`` as see below." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.scaling import ConstraintScalingScheme\n", - "\n", - "\n", - "class EquilibriumReactorScaler(CustomScalerBase):\n", - " UNIT_SCALING_FACTORS = {\n", - " # \"QuantityName: (reference units, scaling factor)\n", - " \"Pressure Change\": (units.bar, 10),\n", - " }\n", - "\n", - " def variable_scaling_routine(\n", - " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", - " ):\n", - " # Call scaling methods for sub-models\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.properties_in,\n", - " method=\"variable_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - " self.propagate_state_scaling(\n", - " target_state=model.control_volume.properties_out,\n", - " source_state=model.control_volume.properties_in,\n", - " overwrite=overwrite,\n", - " )\n", - "\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.properties_out,\n", - " method=\"variable_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.reactions,\n", - " method=\"variable_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - "\n", - " # Pressure drop - optional\n", - " if hasattr(model.control_volume, \"deltaP\"):\n", - " for t in model.flowsheet().time:\n", - " self.scale_variable_by_units(\n", - " model.control_volume.deltaP[t], overwrite=overwrite\n", - " )\n", - "\n", - " # Heat transfer - optional\n", - " # Scale heat based on enthalpy flow entering reactor\n", - " if hasattr(model.control_volume, \"heat\"):\n", - " for t in model.flowsheet().time:\n", - " h_in = 0\n", - " for p in model.control_volume.properties_in.phase_list:\n", - " # The expression for enthalpy flow might include multiple terms,\n", - " # so we will sum over all the terms provided\n", - " h_in += sum(\n", - " self.get_expression_nominal_values(\n", - " model.control_volume.properties_in[\n", - " t\n", - " ].get_enthalpy_flow_terms(p)\n", - " )\n", - " )\n", - " # Scale for heat is generally one order of magnitude less than enthalpy flow\n", - " self.set_variable_scaling_factor(\n", - " model.control_volume.heat[t], abs(1 / (0.1 * h_in))\n", - " )\n", - "\n", - " def constraint_scaling_routine(\n", - " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", - " ):\n", - " # Call scaling methods for sub-models\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.properties_in,\n", - " method=\"constraint_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.properties_out,\n", - " method=\"constraint_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - " self.call_submodel_scaler_method(\n", - " submodel=model.control_volume.reactions,\n", - " method=\"constraint_scaling_routine\",\n", - " submodel_scalers=submodel_scalers,\n", - " overwrite=overwrite,\n", - " )\n", - "\n", - " # =======================================================================================\n", - " # New Code\n", - " # Scale control volume constraints\n", - " for c in model.control_volume.component_data_objects(\n", - " Constraint, descend_into=False\n", - " ):\n", - " self.scale_constraint_by_nominal_value(\n", - " c,\n", - " scheme=ConstraintScalingScheme.inverseMaximum,\n", - " overwrite=overwrite,\n", - " )\n", - "\n", - " # Scale unit level constraints\n", - " if hasattr(model, \"rate_reaction_constraint\"):\n", - " for c in model.rate_reaction_constraint.values():\n", - " self.scale_constraint_by_nominal_value(\n", - " c,\n", - " scheme=ConstraintScalingScheme.inverseMaximum,\n", - " overwrite=overwrite,\n", - " )\n", - " # =======================================================================================" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Help on function propagate_state_scaling in module idaes.core.scaling.custom_scaler_base:\n", + "\n", + "propagate_state_scaling(self, target_state, source_state, overwrite: bool = False)\n", + " Propagate scaling of state variables from one StateBlock to another.\n", + " \n", + " Indexing of target and source StateBlocks must match.\n", + " \n", + " Args:\n", + " target_state: StateBlock to set scaling factors on\n", + " source_state: StateBlock to use as source for scaling factors\n", + " overwrite: whether to overwrite existing scaling factors\n", + " \n", + " Returns:\n", + " None\n", + "\n" + ] + } + ], + "source": [ + "help(CustomScalerBase.propagate_state_scaling)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we can see that ``propagate_state_scaling`` takes three arguments; the ``StateBlock`` we want to apply scaling to, the ``StateBlock`` we want to use as the source for the scaling factors, and the ``overwrite`` argument. Thus, we can propagate scaling from the inlet state to the outlet state as shown below.\n", + "\n", + "```python\n", + "self.propagate_state_scaling(\n", + " target_state=model.control_volume.properties_out,\n", + " source_state=model.control_volume.properties_in,\n", + " overwrite=overwrite,\n", + ")\n", + "```\n", + "\n", + "This only propagates scaling factors for the state variables, however, so we should then call the ``Scaler`` for the outlet state block to scale any remaining variables and constraints (which will hopefully make use of the scaling factors for the state variables we just propagated).\n", + "\n", + "We can then move on to scaling the ``ReactionBlock``. ``ReactionBlocks`` are slightly unusual in that they rely heavily on the state variables defined in a separate ``StateBlock`` - in this case the outlet state block. As we just applied a ``Scaler`` to the outlet state block, we can assume that all of the necessary variables have been scaled so all we need to do now is call a ``Scaler`` for the ``ReactionBlock``.\n", + "\n", + "All of this is shown in the cell below." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "class EquilibriumReactorScaler(CustomScalerBase):\n", + " def variable_scaling_routine(\n", + " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", + " ):\n", + " # Call scaling methods for sub-models\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.properties_in,\n", + " method=\"variable_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + " self.propagate_state_scaling(\n", + " target_state=model.control_volume.properties_out,\n", + " source_state=model.control_volume.properties_in,\n", + " overwrite=overwrite,\n", + " )\n", + "\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.properties_out,\n", + " method=\"variable_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.reactions,\n", + " method=\"variable_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + "\n", + " def constraint_scaling_routine(\n", + " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", + " ):\n", + " # Empty method for now\n", + " pass" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can then take a similar approach for the constraint scaling routine as shown below. Note that there is no need for a propagation step here as the residual of a constraint is derived from the value of the variables (which we handled in the variable scaling step)." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "class EquilibriumReactorScaler(CustomScalerBase):\n", + " def variable_scaling_routine(\n", + " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", + " ):\n", + " # Call scaling methods for sub-models\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.properties_in,\n", + " method=\"variable_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + " self.propagate_state_scaling(\n", + " target_state=model.control_volume.properties_out,\n", + " source_state=model.control_volume.properties_in,\n", + " overwrite=overwrite,\n", + " )\n", + "\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.properties_out,\n", + " method=\"variable_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.reactions,\n", + " method=\"variable_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + "\n", + " def constraint_scaling_routine(\n", + " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", + " ):\n", + " # Call scaling methods for sub-models\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.properties_in,\n", + " method=\"constraint_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.properties_out,\n", + " method=\"constraint_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.reactions,\n", + " method=\"constraint_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets do a quick check to see if our new scaler works and how it has affected the model scaling. The cell below creates a function that builds a new instance of the model (to avoid contamination from previous model runs then creates an instance of our new scaler and applies it to the model. We then solve the scaled model (adding scaling changes constraint residuals so we want to solve to the scaled state). Finally, the function prints a report of the scaling factors in the model and calls the ``report_numerical_issues`` method from the Diagnostics Toolbox." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import check_optimal_termination, TransformationFactory\n", + "\n", + "from idaes.core.scaling import report_scaling_factors\n", + "\n", + "\n", + "def check_scaling(tee=False):\n", + " # Build new instance of model\n", + " m = build_model()\n", + "\n", + " # Apply scaler to model\n", + " scaler = EquilibriumReactorScaler()\n", + " scaler.scale_model(m.fs.equil)\n", + "\n", + " # Solve scaled model\n", + " results = solver.solve(m, tee=tee)\n", + " if check_optimal_termination(results):\n", + " print(\"\\nModel Solved\\n\")\n", + " else:\n", + " print(\"\\nModel Failed to Converge!\\n\")\n", + "\n", + " # Print report of scaling factors\n", + " report_scaling_factors(m.fs.equil, descend_into=True)\n", + "\n", + " # Show numerical issues report\n", + " sm = TransformationFactory(\"core.scale_model\").create_using(m, rename=False)\n", + "\n", + " dt = DiagnosticsToolbox(model=sm.fs.equil)\n", + " dt.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets run the ``check_scaling`` function and see how the model scaling has changed." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Once again, let us use the ``check_scaling`` function to see how our ``Scaler`` performs." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Model Solved\n", + "\n", + "Scaling Factors for fs.equil\n", + "\n", + "Variable Scaling Factor Value Scaled Value\n", + "fs.equil.control_volume.properties_in[0.0].flow_vol 1.000E+02 1.000E-03 1.000E-01\n", + "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[H2O] 1.000E-04 5.539E+04 5.539E+00\n", + "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[NaOH] 1.000E-02 1.000E+02 1.000E+00\n", + "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[EthylAcetate] 1.000E-02 1.000E+02 1.000E+00\n", + "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[SodiumAcetate] 1.000E-02 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[Ethanol] 1.000E-02 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.properties_in[0.0].temperature 3.219E-03 3.031E+02 9.759E-01\n", + "fs.equil.control_volume.properties_in[0.0].pressure 1.000E-05 1.013E+05 1.013E+00\n", + "fs.equil.control_volume.properties_out[0.0].flow_vol 1.000E+02 1.000E-03 1.000E-01\n", + "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[H2O] 1.000E-04 5.539E+04 5.539E+00\n", + "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[NaOH] 1.000E-02 6.250E-02 6.250E-04\n", + "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[EthylAcetate] 1.000E-02 6.250E-02 6.250E-04\n", + "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[SodiumAcetate] 1.000E-02 9.994E+01 9.994E-01\n", + "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[Ethanol] 1.000E-02 9.994E+01 9.994E-01\n", + "fs.equil.control_volume.properties_out[0.0].temperature 3.219E-03 3.043E+02 9.796E-01\n", + "fs.equil.control_volume.properties_out[0.0].pressure 1.000E-05 1.013E+05 1.013E+00\n", + "fs.equil.control_volume.heat[0.0] None 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.deltaP[0.0] None 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,H2O] None 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,NaOH] None -9.994E-02 -9.994E-02\n", + "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,EthylAcetate] None -9.994E-02 -9.994E-02\n", + "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,SodiumAcetate] None 9.994E-02 9.994E-02\n", + "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,Ethanol] None 9.994E-02 9.994E-02\n", + "fs.equil.control_volume.rate_reaction_extent[0.0,R1] None 9.994E-02 9.994E-02\n", + "fs.equil.control_volume.reactions[0.0].reaction_rate[R1] 1.000E+02 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.reactions[0.0].k_rxn 5.424E+00 1.304E-01 7.075E-01\n", + "\n", + "Constraint Scaling Factor\n", + "fs.equil.rate_reaction_constraint[0.0,R1] None\n", + "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,H2O] None\n", + "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,NaOH] None\n", + "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,EthylAcetate] None\n", + "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,SodiumAcetate] None\n", + "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,Ethanol] None\n", + "fs.equil.control_volume.material_balances[0.0,Liq,H2O] None\n", + "fs.equil.control_volume.material_balances[0.0,Liq,NaOH] None\n", + "fs.equil.control_volume.material_balances[0.0,Liq,EthylAcetate] None\n", + "fs.equil.control_volume.material_balances[0.0,Liq,SodiumAcetate] None\n", + "fs.equil.control_volume.material_balances[0.0,Liq,Ethanol] None\n", + "fs.equil.control_volume.enthalpy_balances[0.0] None\n", + "fs.equil.control_volume.pressure_balance[0.0] None\n", + "fs.equil.control_volume.properties_out[0.0].conc_water_eqn 1.000E-04\n", + "fs.equil.control_volume.reactions[0.0].rate_expression[R1] 5.424E-04\n", + "fs.equil.control_volume.reactions[0.0].arrhenius_eqn 5.424E+00\n", + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 3.022E+09\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 WARNINGS\n", + "\n", + " WARNING: 2 Variables at or outside bounds (tol=0.0E+00)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "5 Cautions\n", + "\n", + " Caution: 2 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 6 Variables with value close to zero (tol=1.0E-08)\n", + " Caution: 4 Variables with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", + " Caution: 2 Constraints with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", + " Caution: 6 extreme Jacobian Entries (<1.0E-04 or >1.0E+04)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_variables_at_or_outside_bounds()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "check_scaling()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the scaling factor report, we can see that by calling the submodel scalers we have already scaled many of the variables in our problem, as well as three of the constraints. If we look at the \"Scaled Value\" column for the variables, we can also see that most of the scaled values are close to 1 (the few outliers might be things we want to look into more later on).\n", + "\n", + "From the numerical diagnostics, we can see that the Jacobian condition number has decreased by a few orders of magnitude, although it is still large, whilst we still have a number of potential issues with individual variables and constraints. All up though, this appears to be a step in the right direction." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 5: Apply Variable Scaling\n", + "\n", + "Next, we need to look at scaling the variables and constraints that make up the unit model itself. From a conceptual standpoint, it is generally easiest to start with the variables as we generally have at least some idea of the magnitude of these.\n", + "\n", + "For the equilibrium reactor, we have the following variables we need to scale:\n", + "\n", + "1. Rate-based reaction extent and generation terms\n", + "2. Equilibrium-based reaction extent and generation terms\n", + "3. Inherent reaction extent and generation terms\n", + "4. Phase equilibrium generation terms\n", + "5. Energy balance heat term\n", + "6. Energy balance heats of reaction\n", + "7. Pressure drop\n", + "\n", + "Many of these are hard to know a priori - anything related to a reaction is very hard to know without knowing the reaction behavior. Considering that the equilibrium reactor is modular, we have little to no way of knowing these in the general case (and even in the specific test case it is hard enough). We can assume that the reaction package will scale all of its variables (i.e., rate and equilibrium constants, and reaction rates), however it is hard to project these to unit model scaling.\n", + "\n", + "For a CSTR we can say that ``extent = volume*rate`` and thus estimate scaling, but this does not work for equilibrium systems where 1) volume is undefined, 2) reaction rate at the outlet state is being driven to zero to satisfy equilibrium, and 3) extent is solved implicitly to satisfy the need for reaction rate to equal zero.\n", + "\n", + "Considering that a bad guess is often worse than no guess, we will not scale these right now - it is important to remember that our goal is to improve the overall scaling so if we do not know how to scale something it is generally best to leave it unscaled. We might come back to these later if necessary, but for now we will leave these either for the user to provide based on knowledge of their system, or for automated fill-in using some autoscaler.\n", + "\n", + "For the heat and deltaP terms, these are dependent on extensive variables in each case study and we have no way of knowing their exact values. However, we can probably take a good guess at order-of-magnitude using engineering knowledge; heat duties are generally approximately one order of magnitude smaller than the enthalpy flows,\n", + "and pressure drops are generally on the order of 0.1 bar.\n", + "\n", + "To apply scaling for the pressure drop term, we can make use of the ``scale_variable_by_units`` method in ``CustomScalerBase``. This method looks up the units of measurement for the variable, and then loops in the class attribute ``UNIT_SCALING_FACTORS`` dictionary to find an equivalent unit for the quantity of interest and an associated scaling factor. If a scaling factor is found, it is converted as necessary; e.g., in this case pressure is defined in ``Pa`` but we can set the default scaling factor in ``bar`` and it will be converted as appropriate. The code required to do this is below.\n", + "\n", + "```python\n", + "UNIT_SCALING_FACTORS = {\n", + " # \"QuantityName: (reference units, scaling factor)\n", + " \"Pressure Change\": (units.bar, 10),\n", + "}\n", + "\n", + "def variable_scaling_routine(*args, **kwargs):\n", + " if hasattr(model.control_volume, \"deltaP\"):\n", + " for t in model.flowsheet().time:\n", + " self.scale_variable_by_units(\n", + " model.control_volume.deltaP[t],\n", + " overwrite=overwrite\n", + " )\n", + "```\n", + "\n", + "There are a few things to note here:\n", + "\n", + "1. As we expect the pressure drop to be on the order of 0.1 bar, we need to set a scaling factor of 10 for quantities with units of pressure. Also note that the key ``\"Pressure Change\"`` is for documentation purposes only and is not actually used by the code (but must be there). \n", + "\n", + "
\n", + "NOTE We cannot distinguish between different quantities with the same apparent units (e.g., we cannot distinguish between an absolute pressure and a pressure change).\n", + "
\n", + "\n", + "2. Note that scaling is applied to elements of indexed components and not to the indexed component as a whole, and thus we need to use a ``for`` loop to iterate over the time index. This is done to force modelers to consider how the scaling of a variable or constraint will vary over the indexed domain, and try to discourage automatically setting a single scaling factor for all points.\n", + "3. Pressure change is a configuration argument in our unit model, and thus may not be present in all cases. Therefore, we need the ``hasattr`` check to see if we need to scale ``deltaP`` or not.\n", + "\n", + "For the case of the heat duty, we want to scale based on the incoming enthalpy flow which means we first need to get the expected magnitude of the enthalpy flow. For that, we can use the ``get_expression_nominal_values`` method in ``CustomScalerBase`` which uses an expression walker to go through an expression to return a list of the expected magnitude (or nominal value) of all additive terms in the expression based on the scaling factors for the variables involved.\n", + "\n", + "We can get an expression for the enthalpy flow term using the ``get_enthalpy_flow_terms`` method from the associated ``StateBlock``. We should assume this expression might contain multiple terms, so we should sum all the values returned to get the overall magnitude of the enthalpy flow term. Once we have this, we can then get the scaling factor for the heat duty by ``sf = abs(1/(0.1*enthalpy_flow))`` - note that the tools insist on scaling factors being positive (for sanity) and thus we need the absolute value here in case enthalpy flow is negative (which is not uncommon for enthalpy). The code to do this is shown below.\n", + "\n", + "```python\n", + "if hasattr(model.control_volume, \"heat\"):\n", + " for t in model.flowsheet().time:\n", + " h_in = 0\n", + " for p in model.control_volume.properties_in.phase_list:\n", + " # The expression for enthalpy flow might include multiple terms,\n", + " # so we will sum over all the terms provided\n", + " h_in += sum(\n", + " self.get_expression_nominal_values(\n", + " model.control_volume.properties_in[t].get_enthalpy_flow_terms(p)\n", + " )\n", + " )\n", + " # Scale for heat is general one order of magnitude less than enthalpy flow\n", + " self.set_variable_scaling_factor(model.control_volume.heat[t], abs(1 / (0.1 * h_in)))\n", + "```\n", + "\n", + "Putting all of this together results in the code below for our ``EquilibriumReactorScaler`` class." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import units\n", + "\n", + "\n", + "class EquilibriumReactorScaler(CustomScalerBase):\n", + " # =======================================================================================\n", + " # New Code\n", + " UNIT_SCALING_FACTORS = {\n", + " # \"QuantityName: (reference units, scaling factor)\n", + " \"Pressure Change\": (units.bar, 10),\n", + " }\n", + " # =======================================================================================\n", + "\n", + " def variable_scaling_routine(\n", + " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", + " ):\n", + " # Call scaling methods for sub-models\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.properties_in,\n", + " method=\"variable_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + " self.propagate_state_scaling(\n", + " target_state=model.control_volume.properties_out,\n", + " source_state=model.control_volume.properties_in,\n", + " overwrite=overwrite,\n", + " )\n", + "\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.properties_out,\n", + " method=\"variable_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.reactions,\n", + " method=\"variable_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + "\n", + " # =======================================================================================\n", + " # New Code\n", + "\n", + " # Pressure drop - optional\n", + " if hasattr(model.control_volume, \"deltaP\"):\n", + " for t in model.flowsheet().time:\n", + " self.scale_variable_by_units(\n", + " model.control_volume.deltaP[t], overwrite=overwrite\n", + " )\n", + "\n", + " # Heat transfer - optional\n", + " # Scale heat based on enthalpy flow entering reactor\n", + " if hasattr(model.control_volume, \"heat\"):\n", + " for t in model.flowsheet().time:\n", + " h_in = 0\n", + " for p in model.control_volume.properties_in.phase_list:\n", + " # The expression for enthalpy flow might include multiple terms,\n", + " # so we will sum over all the terms provided\n", + " h_in += sum(\n", + " self.get_expression_nominal_values(\n", + " model.control_volume.properties_in[\n", + " t\n", + " ].get_enthalpy_flow_terms(p)\n", + " )\n", + " )\n", + " # Scale for heat is generally one order of magnitude less than enthalpy flow\n", + " self.set_variable_scaling_factor(\n", + " model.control_volume.heat[t], abs(1 / (0.1 * h_in))\n", + " )\n", + " # =======================================================================================\n", + "\n", + " def constraint_scaling_routine(\n", + " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", + " ):\n", + " # Call scaling methods for sub-models\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.properties_in,\n", + " method=\"constraint_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.properties_out,\n", + " method=\"constraint_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.reactions,\n", + " method=\"constraint_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Once again, lets run the ``check_scaling`` function and see how we are going." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Model Solved\n", - "\n", - "Scaling Factors for fs.equil\n", - "\n", - "Variable Scaling Factor Value Scaled Value\n", - "fs.equil.control_volume.properties_in[0.0].flow_vol 1.000E+02 1.000E-03 1.000E-01\n", - "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[H2O] 1.000E-04 5.539E+04 5.539E+00\n", - "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[NaOH] 1.000E-02 1.000E+02 1.000E+00\n", - "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[EthylAcetate] 1.000E-02 1.000E+02 1.000E+00\n", - "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[SodiumAcetate] 1.000E-02 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[Ethanol] 1.000E-02 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.properties_in[0.0].temperature 3.219E-03 3.031E+02 9.759E-01\n", - "fs.equil.control_volume.properties_in[0.0].pressure 1.000E-05 1.013E+05 1.013E+00\n", - "fs.equil.control_volume.properties_out[0.0].flow_vol 1.000E+02 1.000E-03 1.000E-01\n", - "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[H2O] 1.000E-04 5.539E+04 5.539E+00\n", - "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[NaOH] 1.000E-02 6.250E-02 6.250E-04\n", - "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[EthylAcetate] 1.000E-02 6.250E-02 6.250E-04\n", - "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[SodiumAcetate] 1.000E-02 9.994E+01 9.994E-01\n", - "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[Ethanol] 1.000E-02 9.994E+01 9.994E-01\n", - "fs.equil.control_volume.properties_out[0.0].temperature 3.219E-03 3.043E+02 9.796E-01\n", - "fs.equil.control_volume.properties_out[0.0].pressure 1.000E-05 1.013E+05 1.013E+00\n", - "fs.equil.control_volume.heat[0.0] 4.794E-04 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.deltaP[0.0] 1.000E-04 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,H2O] None 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,NaOH] None -9.994E-02 -9.994E-02\n", - "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,EthylAcetate] None -9.994E-02 -9.994E-02\n", - "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,SodiumAcetate] None 9.994E-02 9.994E-02\n", - "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,Ethanol] None 9.994E-02 9.994E-02\n", - "fs.equil.control_volume.rate_reaction_extent[0.0,R1] None 9.994E-02 9.994E-02\n", - "fs.equil.control_volume.reactions[0.0].reaction_rate[R1] 1.000E+02 0.000E+00 0.000E+00\n", - "fs.equil.control_volume.reactions[0.0].k_rxn 5.424E+00 1.304E-01 7.075E-01\n", - "\n", - "Constraint Scaling Factor\n", - "fs.equil.rate_reaction_constraint[0.0,R1] 1.000E+02\n", - "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,H2O] 1.000E+00\n", - "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,NaOH] 1.000E+01\n", - "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,EthylAcetate] 1.000E+01\n", - "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,SodiumAcetate] 1.000E+01\n", - "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,Ethanol] 1.000E+01\n", - "fs.equil.control_volume.material_balances[0.0,Liq,H2O] 1.000E-02\n", - "fs.equil.control_volume.material_balances[0.0,Liq,NaOH] 1.000E+00\n", - "fs.equil.control_volume.material_balances[0.0,Liq,EthylAcetate] 1.000E+00\n", - "fs.equil.control_volume.material_balances[0.0,Liq,SodiumAcetate] 1.000E+00\n", - "fs.equil.control_volume.material_balances[0.0,Liq,Ethanol] 1.000E+00\n", - "fs.equil.control_volume.enthalpy_balances[0.0] 7.715E-08\n", - "fs.equil.control_volume.pressure_balance[0.0] 9.869E-06\n", - "fs.equil.control_volume.properties_out[0.0].conc_water_eqn 1.000E-04\n", - "fs.equil.control_volume.reactions[0.0].rate_expression[R1] 5.424E-04\n", - "fs.equil.control_volume.reactions[0.0].arrhenius_eqn 5.424E+00\n", - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Jacobian Condition Number: 7.182E+04\n", - "\n", - "------------------------------------------------------------------------------------\n", - "1 WARNINGS\n", - "\n", - " WARNING: 2 Variables at or outside bounds (tol=0.0E+00)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "3 Cautions\n", - "\n", - " Caution: 2 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", - " Caution: 6 Variables with value close to zero (tol=1.0E-08)\n", - " Caution: 2 extreme Jacobian Entries (<1.0E-04 or >1.0E+04)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_variables_at_or_outside_bounds()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "check_scaling()" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Model Solved\n", + "\n", + "Scaling Factors for fs.equil\n", + "\n", + "Variable Scaling Factor Value Scaled Value\n", + "fs.equil.control_volume.properties_in[0.0].flow_vol 1.000E+02 1.000E-03 1.000E-01\n", + "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[H2O] 1.000E-04 5.539E+04 5.539E+00\n", + "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[NaOH] 1.000E-02 1.000E+02 1.000E+00\n", + "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[EthylAcetate] 1.000E-02 1.000E+02 1.000E+00\n", + "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[SodiumAcetate] 1.000E-02 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[Ethanol] 1.000E-02 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.properties_in[0.0].temperature 3.219E-03 3.031E+02 9.759E-01\n", + "fs.equil.control_volume.properties_in[0.0].pressure 1.000E-05 1.013E+05 1.013E+00\n", + "fs.equil.control_volume.properties_out[0.0].flow_vol 1.000E+02 1.000E-03 1.000E-01\n", + "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[H2O] 1.000E-04 5.539E+04 5.539E+00\n", + "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[NaOH] 1.000E-02 6.250E-02 6.250E-04\n", + "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[EthylAcetate] 1.000E-02 6.250E-02 6.250E-04\n", + "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[SodiumAcetate] 1.000E-02 9.994E+01 9.994E-01\n", + "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[Ethanol] 1.000E-02 9.994E+01 9.994E-01\n", + "fs.equil.control_volume.properties_out[0.0].temperature 3.219E-03 3.043E+02 9.796E-01\n", + "fs.equil.control_volume.properties_out[0.0].pressure 1.000E-05 1.013E+05 1.013E+00\n", + "fs.equil.control_volume.heat[0.0] 4.794E-04 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.deltaP[0.0] 1.000E-04 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,H2O] None 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,NaOH] None -9.994E-02 -9.994E-02\n", + "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,EthylAcetate] None -9.994E-02 -9.994E-02\n", + "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,SodiumAcetate] None 9.994E-02 9.994E-02\n", + "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,Ethanol] None 9.994E-02 9.994E-02\n", + "fs.equil.control_volume.rate_reaction_extent[0.0,R1] None 9.994E-02 9.994E-02\n", + "fs.equil.control_volume.reactions[0.0].reaction_rate[R1] 1.000E+02 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.reactions[0.0].k_rxn 5.424E+00 1.304E-01 7.075E-01\n", + "\n", + "Constraint Scaling Factor\n", + "fs.equil.rate_reaction_constraint[0.0,R1] None\n", + "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,H2O] None\n", + "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,NaOH] None\n", + "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,EthylAcetate] None\n", + "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,SodiumAcetate] None\n", + "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,Ethanol] None\n", + "fs.equil.control_volume.material_balances[0.0,Liq,H2O] None\n", + "fs.equil.control_volume.material_balances[0.0,Liq,NaOH] None\n", + "fs.equil.control_volume.material_balances[0.0,Liq,EthylAcetate] None\n", + "fs.equil.control_volume.material_balances[0.0,Liq,SodiumAcetate] None\n", + "fs.equil.control_volume.material_balances[0.0,Liq,Ethanol] None\n", + "fs.equil.control_volume.enthalpy_balances[0.0] None\n", + "fs.equil.control_volume.pressure_balance[0.0] None\n", + "fs.equil.control_volume.properties_out[0.0].conc_water_eqn 1.000E-04\n", + "fs.equil.control_volume.reactions[0.0].rate_expression[R1] 5.424E-04\n", + "fs.equil.control_volume.reactions[0.0].arrhenius_eqn 5.424E+00\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From the results of ``check_scaling`` we can see that we now have scaling factors for almost all the variables and constraints in the model (the only exceptions being the reaction related variables we left unscaled earlier). More importantly, we can see that the Jacobian condition number is now down to ``7.2E4`` from the original ``1.5E12`` which is an impressive improvement (and for not a lot of effort on our part). We can also see that the numerical diagnostics are no longer reporting any variables or constraints with extreme Jacobians (there are 2 individual entries that are a bit large, but it appears they are not having a big impact on the condition number).\n", - "\n", - "We do see that there are a number of variables with values close to ``0`` which we should be wary of, but in this case it is due to the case study we are using. Here we are using an equilibrium reactor to drive a rate-based reaction to completion, which necessitates that at least one reactant have a concentration of zero as well as the reaction rate for all reactions. Thus, for this case these are unavoidable. As mentioned earlier, we really should be asking whether an Equilibrium Reactor is well suited for the reaction model we have here, and a Stoichiometric Reactor would probably have been a better choice (or a better reaction package which use reversible reactions with equilibrium).\n", - "\n", - "\n", - "## Step 7: Review Scaling Routine\n", - "\n", - "We now have a new ``Scaler`` for an equilibrium reactor that uses the modular nature of IDAES to implement a general purpose scaling routine (or so we hope at least). So, does this mean we are done?\n", - "\n", - "No, or not yet at least.\n", - "\n", - "We should always take a step back and ask ourselves if what we have is good enough and see if we can see any areas where we might be able to do better, or places where edge cases might exist. As a starting point, let us first see how we compare to an autoscaling routine using the model Jacobian. We can use the ``AutoScaler.scale_model`` method for this as shown below." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 3.022E+09\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 WARNINGS\n", + "\n", + " WARNING: 2 Variables at or outside bounds (tol=0.0E+00)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "5 Cautions\n", + "\n", + " Caution: 2 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 6 Variables with value close to zero (tol=1.0E-08)\n", + " Caution: 4 Variables with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", + " Caution: 2 Constraints with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", + " Caution: 6 extreme Jacobian Entries (<1.0E-04 or >1.0E+04)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_variables_at_or_outside_bounds()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "check_scaling()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our updates have resulted in scaling factors for ``heat`` and ``deltaP`` appearing in the scaling report which is good, but comparing the diagnostics from the previous step we can see that the Jacobian condition number has not changed. Does this mean we did something wrong?\n", + "\n", + "The answer is no - when we add a scaling factor to a variable, wherever that variable appears in a constraint it is replaced with ``sf*v_scaled``. Given that ``v_scaled = v/sf``, this means that for variables which only appear linearly in constraints then the partial derivative with respect to the scaled variable does not change either; thus the Jacobian is unaffected by scaling only the linear variables. In the case of this example, it turns out that almost all the variables appear linearly and thus we see no change in the Jacobian condition number.\n", + "\n", + "
\n", + "NOTE It is important to note that partial scaling of a model (e.g., variables only) can often appear worse than that of the unscaled model. Generally, it is best to wait until you have scaled both variables and constraints to make a decision on whether your attempts at scaling have made the problem better or worse, and you should not be discouraged if things look worse while in an intermediate state.\n", + "
\n", + "\n", + "\n", + "## Step 6: Apply Constraint Scaling\n", + "\n", + "Now that we have scaled all the variables that we can (for now at least), we can move on to scaling constraints. The advantage of scaling all the variables first means that now we have an idea of the expected magnitude for all terms in the constraints which we can use to estimate scaling factors. For the Equilibrium reactor model, we need to scale all the constraints in the control volume, as well as the unit level constraint equating all reaction rates to zero.\n", + "\n", + "There are many approaches to estimating scaling for constraints, and different approaches are better suited to certain situations. ``CustomScalerBase`` contains a ``scale_constraint_by_nominal_value`` method which can be used to automatically implement a number of common approaches to save you the effort of having to manually implement these yourself. As of writing, the approaches (or schemes) supported are:\n", + "\n", + "1. ``ConstraintScalingScheme.inverseMaximum`` - scale the constraint based on the term with the largest absolute expected magnitude. This is scheme is useful for cases where most terms have similar magnitudes and is a good initial point to start.\n", + "2. ``ConstraintScalingScheme.inverseMinimum`` - scale the constraint based on the term with the smallest absolute expected magnitude. This scheme is similar to the inverse maximum scheme and is useful for cases where you have a constraint with a number of smaller terms mixed with a few larger terms, or cases where the smaller term is expected to be most significant. This scheme should be used carefully however as it can result in large scaling factors making convergence of larger terms difficult.\n", + "3. ``ConstraintScalingScheme.harmonicMean`` - scale the constraint using the harmonic mean of the absolute expected magnitude of all terms (``sf = sum(1/abs(nominal value))``). This scheme is most useful when you have a constraint with terms with a mix of expected magnitudes where you need to find a balance between the large and small terms.\n", + "4. ``ConstraintScalingScheme.inverseSum`` - scale the constraint using the sum of the absolute expected magnitudes of all terms. Situationally useful for cases with terms of mixed magnitudes.\n", + "5. ``ConstraintScalingScheme.inverseRSS`` - scale the constraint using the root sum of squares of the absolute expected magnitudes of all terms. Situationally useful for cases with terms of mixed magnitudes.\n", + "\n", + "``CustomScalerBase`` also contains a ``scale_constraint_by_nominal_derivative_norm`` method that can scale a constraint based on an estimate of the Jacobian norm associated with that constraint which can be useful for cases where you want to focus on the Jacobian scaling.\n", + "\n", + "
\n", + "NOTE The solver you intend to use may impact which approach provides the best scaling for a given model. For example, IPOPT has very good internal Jacobian scaling (when using the `gradient-based` scaling option), and thus benefits the most from focusing on scaling the constraint residual magnitudes as opposed to the Jacobian.\n", + "
\n", + "\n", + "For this workshop, we will start by just using ``ConstraintScalingScheme.inverseMaximum`` to get a starting point and to see if further scaling is required. We can apply this scheme to scale all the constraints in the control volume using the code below.\n", + "\n", + "```python\n", + "for c in model.control_volume.component_data_objects(\n", + " Constraint, descend_into=False\n", + "):\n", + " self.scale_constraint_by_nominal_value(\n", + " c,\n", + " scheme=ConstraintScalingScheme.inverseMaximum,\n", + " overwrite=overwrite,\n", + " )\n", + "```\n", + "\n", + "Adding this and a similar approach to scale the unit level constraint gives us the code below for our ``EquilibriumreactorScaler`` class." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.scaling import ConstraintScalingScheme\n", + "\n", + "\n", + "class EquilibriumReactorScaler(CustomScalerBase):\n", + " UNIT_SCALING_FACTORS = {\n", + " # \"QuantityName: (reference units, scaling factor)\n", + " \"Pressure Change\": (units.bar, 10),\n", + " }\n", + "\n", + " def variable_scaling_routine(\n", + " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", + " ):\n", + " # Call scaling methods for sub-models\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.properties_in,\n", + " method=\"variable_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + " self.propagate_state_scaling(\n", + " target_state=model.control_volume.properties_out,\n", + " source_state=model.control_volume.properties_in,\n", + " overwrite=overwrite,\n", + " )\n", + "\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.properties_out,\n", + " method=\"variable_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.reactions,\n", + " method=\"variable_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + "\n", + " # Pressure drop - optional\n", + " if hasattr(model.control_volume, \"deltaP\"):\n", + " for t in model.flowsheet().time:\n", + " self.scale_variable_by_units(\n", + " model.control_volume.deltaP[t], overwrite=overwrite\n", + " )\n", + "\n", + " # Heat transfer - optional\n", + " # Scale heat based on enthalpy flow entering reactor\n", + " if hasattr(model.control_volume, \"heat\"):\n", + " for t in model.flowsheet().time:\n", + " h_in = 0\n", + " for p in model.control_volume.properties_in.phase_list:\n", + " # The expression for enthalpy flow might include multiple terms,\n", + " # so we will sum over all the terms provided\n", + " h_in += sum(\n", + " self.get_expression_nominal_values(\n", + " model.control_volume.properties_in[\n", + " t\n", + " ].get_enthalpy_flow_terms(p)\n", + " )\n", + " )\n", + " # Scale for heat is generally one order of magnitude less than enthalpy flow\n", + " self.set_variable_scaling_factor(\n", + " model.control_volume.heat[t], abs(1 / (0.1 * h_in))\n", + " )\n", + "\n", + " def constraint_scaling_routine(\n", + " self, model, overwrite: bool = False, submodel_scalers: dict = None\n", + " ):\n", + " # Call scaling methods for sub-models\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.properties_in,\n", + " method=\"constraint_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.properties_out,\n", + " method=\"constraint_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + " self.call_submodel_scaler_method(\n", + " submodel=model.control_volume.reactions,\n", + " method=\"constraint_scaling_routine\",\n", + " submodel_scalers=submodel_scalers,\n", + " overwrite=overwrite,\n", + " )\n", + "\n", + " # =======================================================================================\n", + " # New Code\n", + " # Scale control volume constraints\n", + " for c in model.control_volume.component_data_objects(\n", + " Constraint, descend_into=False\n", + " ):\n", + " self.scale_constraint_by_nominal_value(\n", + " c,\n", + " scheme=ConstraintScalingScheme.inverseMaximum,\n", + " overwrite=overwrite,\n", + " )\n", + "\n", + " # Scale unit level constraints\n", + " if hasattr(model, \"rate_reaction_constraint\"):\n", + " for c in model.rate_reaction_constraint.values():\n", + " self.scale_constraint_by_nominal_value(\n", + " c,\n", + " scheme=ConstraintScalingScheme.inverseMaximum,\n", + " overwrite=overwrite,\n", + " )\n", + " # =======================================================================================" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Once again, let us use the ``check_scaling`` function to see how our ``Scaler`` performs." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: model contains export suffix 'scaling_factor' that contains 10\n", - "component keys that are not exported as part of the NL file. Skipping.\n", - "\n", - "Model Solved\n", - "\n", - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Jacobian Condition Number: 3.863E+06\n", - "\n", - "------------------------------------------------------------------------------------\n", - "1 WARNINGS\n", - "\n", - " WARNING: 2 Variables at or outside bounds (tol=0.0E+00)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "4 Cautions\n", - "\n", - " Caution: 2 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", - " Caution: 6 Variables with value close to zero (tol=1.0E-08)\n", - " Caution: 2 Variables with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", - " Caution: 7 extreme Jacobian Entries (<1.0E-04 or >1.0E+04)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_variables_at_or_outside_bounds()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "from idaes.core.scaling import AutoScaler\n", - "\n", - "m = build_model()\n", - "\n", - "scaler = EquilibriumReactorScaler()\n", - "autoscaler = AutoScaler()\n", - "\n", - "autoscaler.scale_model(m)\n", - "\n", - "solver = get_solver(\n", - " \"ipopt_v2\", writer_config={\"scale_model\": True, \"linear_presolve\": True}\n", - ")\n", - "results = solver.solve(m)\n", - "\n", - "if check_optimal_termination(results):\n", - " print(\"\\nModel Solved\\n\")\n", - "else:\n", - " print(\"\\nModel Failed to Converge!\\n\")\n", - "\n", - "sm = TransformationFactory(\"core.scale_model\").create_using(m, rename=False)\n", - "\n", - "dt = DiagnosticsToolbox(model=sm.fs.equil)\n", - "dt.report_numerical_issues()" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Model Solved\n", + "\n", + "Scaling Factors for fs.equil\n", + "\n", + "Variable Scaling Factor Value Scaled Value\n", + "fs.equil.control_volume.properties_in[0.0].flow_vol 1.000E+02 1.000E-03 1.000E-01\n", + "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[H2O] 1.000E-04 5.539E+04 5.539E+00\n", + "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[NaOH] 1.000E-02 1.000E+02 1.000E+00\n", + "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[EthylAcetate] 1.000E-02 1.000E+02 1.000E+00\n", + "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[SodiumAcetate] 1.000E-02 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.properties_in[0.0].conc_mol_comp[Ethanol] 1.000E-02 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.properties_in[0.0].temperature 3.219E-03 3.031E+02 9.759E-01\n", + "fs.equil.control_volume.properties_in[0.0].pressure 1.000E-05 1.013E+05 1.013E+00\n", + "fs.equil.control_volume.properties_out[0.0].flow_vol 1.000E+02 1.000E-03 1.000E-01\n", + "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[H2O] 1.000E-04 5.539E+04 5.539E+00\n", + "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[NaOH] 1.000E-02 6.250E-02 6.250E-04\n", + "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[EthylAcetate] 1.000E-02 6.250E-02 6.250E-04\n", + "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[SodiumAcetate] 1.000E-02 9.994E+01 9.994E-01\n", + "fs.equil.control_volume.properties_out[0.0].conc_mol_comp[Ethanol] 1.000E-02 9.994E+01 9.994E-01\n", + "fs.equil.control_volume.properties_out[0.0].temperature 3.219E-03 3.043E+02 9.796E-01\n", + "fs.equil.control_volume.properties_out[0.0].pressure 1.000E-05 1.013E+05 1.013E+00\n", + "fs.equil.control_volume.heat[0.0] 4.794E-04 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.deltaP[0.0] 1.000E-04 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,H2O] None 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,NaOH] None -9.994E-02 -9.994E-02\n", + "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,EthylAcetate] None -9.994E-02 -9.994E-02\n", + "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,SodiumAcetate] None 9.994E-02 9.994E-02\n", + "fs.equil.control_volume.rate_reaction_generation[0.0,Liq,Ethanol] None 9.994E-02 9.994E-02\n", + "fs.equil.control_volume.rate_reaction_extent[0.0,R1] None 9.994E-02 9.994E-02\n", + "fs.equil.control_volume.reactions[0.0].reaction_rate[R1] 1.000E+02 0.000E+00 0.000E+00\n", + "fs.equil.control_volume.reactions[0.0].k_rxn 5.424E+00 1.304E-01 7.075E-01\n", + "\n", + "Constraint Scaling Factor\n", + "fs.equil.rate_reaction_constraint[0.0,R1] 1.000E+02\n", + "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,H2O] 1.000E+00\n", + "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,NaOH] 1.000E+01\n", + "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,EthylAcetate] 1.000E+01\n", + "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,SodiumAcetate] 1.000E+01\n", + "fs.equil.control_volume.rate_reaction_stoichiometry_constraint[0.0,Liq,Ethanol] 1.000E+01\n", + "fs.equil.control_volume.material_balances[0.0,Liq,H2O] 1.000E-02\n", + "fs.equil.control_volume.material_balances[0.0,Liq,NaOH] 1.000E+00\n", + "fs.equil.control_volume.material_balances[0.0,Liq,EthylAcetate] 1.000E+00\n", + "fs.equil.control_volume.material_balances[0.0,Liq,SodiumAcetate] 1.000E+00\n", + "fs.equil.control_volume.material_balances[0.0,Liq,Ethanol] 1.000E+00\n", + "fs.equil.control_volume.enthalpy_balances[0.0] 7.715E-08\n", + "fs.equil.control_volume.pressure_balance[0.0] 9.869E-06\n", + "fs.equil.control_volume.properties_out[0.0].conc_water_eqn 1.000E-04\n", + "fs.equil.control_volume.reactions[0.0].rate_expression[R1] 5.424E-04\n", + "fs.equil.control_volume.reactions[0.0].arrhenius_eqn 5.424E+00\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that our ``EquilibriumReactorScaling`` routine actually results in a lower Jacobian condition number than the ``AutoScaler`` approach, so that is a sign we are doing things right. It is not unusual to see that we can get better scaling with a manual, magnitude based approach than an autoscaler as the autoscaler focuses solely on the Jacobian and thus often over-scales the problem.\n", - "\n", - "However, we might be able to do better by using other constraint scaling schemes, but before we start experimenting we should stop and think about what sort of scaling might make sense for each constraint. We should always also keep in the back of our minds whether additional work is worth the effort, and if we risk over-tuning the scaling for the specific property package we have.\n", - "\n", - "Fortunately, the model in this example is fairly simple and we do not have too many constraints to consider. Firstly, we have the unit-level constraint that says that `rate_reaction == 0` for all rate-based reactions. When considering scaling of a constraint we should ignore any 0 terms, thus this constraint has only 1 term and so we should scale based on this. If we use the ``scale_constraint_by_nominal_value`` method for this it will ignore the zero for us, the scheme used does not actually matter as there is only one term to consider.\n", - "\n", - "Next, we have the balance equations which all have the form `0 == In - Out + Gen` - note the equilibrium reactor does not support dynamics so we don't need to think about that. Generation terms can vary a lot, but we basically have two possible cases:\n", - "\n", - "1. one term is negligible compared to the other 2, so we should scale based on one of the significant\n", - "terms, or\n", - "2. all three terms are of similar significance (e.g., inlet and gen are of similar scale and outlet\n", - "is ~inletx2). Here we could scale based on the harmonic mean, by the maximum term is probably not bad either.\n", - "\n", - "So, in short the maximum magnitude is probably the best general-purpose scale for these constraints.\n", - "\n", - "Finally, we have stoichiometric constraints with the form `G[j, r] == n[j, r]*X[r]` where ``G`` is generation, ``X`` is extent and ``n`` is the stoichiometric coefficient (i.e., a constant) - these are simple ``A=B`` constraints, so scaling by maximum magnitude is equivalent to other methods (as there are only two terms which will take the same value, all schemes will give the same result in the end).\n", - "\n", - "So, for the equilibrium reactor at least, we are probably best leaving things as they are.\n", - "\n", - "However, there is one important test left. The whole purpose of a scaling routine is to allow us to perturb the model and solve it at the new state so we should test to confirm that our new ``Scaler`` has improved the performance of our solver when solving for the perturbed state we tried earlier. This also lets us see how the new ``Scaler`` will look for a user trying to apply the tool, which we can see below." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 7.182E+04\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 WARNINGS\n", + "\n", + " WARNING: 2 Variables at or outside bounds (tol=0.0E+00)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "3 Cautions\n", + "\n", + " Caution: 2 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 6 Variables with value close to zero (tol=1.0E-08)\n", + " Caution: 2 extreme Jacobian Entries (<1.0E-04 or >1.0E+04)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_variables_at_or_outside_bounds()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "check_scaling()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From the results of ``check_scaling`` we can see that we now have scaling factors for almost all the variables and constraints in the model (the only exceptions being the reaction related variables we left unscaled earlier). More importantly, we can see that the Jacobian condition number is now down to ``7.2E4`` from the original ``1.5E12`` which is an impressive improvement (and for not a lot of effort on our part). We can also see that the numerical diagnostics are no longer reporting any variables or constraints with extreme Jacobians (there are 2 individual entries that are a bit large, but it appears they are not having a big impact on the condition number).\n", + "\n", + "We do see that there are a number of variables with values close to ``0`` which we should be wary of, but in this case it is due to the case study we are using. Here we are using an equilibrium reactor to drive a rate-based reaction to completion, which necessitates that at least one reactant have a concentration of zero as well as the reaction rate for all reactions. Thus, for this case these are unavoidable. As mentioned earlier, we really should be asking whether an Equilibrium Reactor is well suited for the reaction model we have here, and a Stoichiometric Reactor would probably have been a better choice (or a better reaction package which use reversible reactions with equilibrium).\n", + "\n", + "\n", + "## Step 7: Review Scaling Routine\n", + "\n", + "We now have a new ``Scaler`` for an equilibrium reactor that uses the modular nature of IDAES to implement a general purpose scaling routine (or so we hope at least). So, does this mean we are done?\n", + "\n", + "No, or not yet at least.\n", + "\n", + "We should always take a step back and ask ourselves if what we have is good enough and see if we can see any areas where we might be able to do better, or places where edge cases might exist. As a starting point, let us first see how we compare to an autoscaling routine using the model Jacobian. We can use the ``AutoScaler.scale_model`` method for this as shown below." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: linear_solver=ma57\n", - "max_iter=200\n", - "nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma57.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 21\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 9\n", - "\n", - "Total number of variables............................: 8\n", - " variables with only lower bounds: 5\n", - " variables with lower and upper bounds: 1\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 8\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 5.53e+02 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - "Reallocating memory for MA57: lfact (247)\n", - " 1 0.0000000e+00 5.53e+02 1.20e+00 -1.0 9.95e+02 - 2.00e-05 1.96e-05h 1\n", - " 2 0.0000000e+00 5.53e+02 1.20e+00 -1.0 9.57e+02 - 2.06e-05 2.00e-05h 1\n", - " 3 0.0000000e+00 5.53e+02 7.36e+01 -1.0 9.25e+02 - 4.36e-04 4.06e-05h 1\n", - " 4 0.0000000e+00 5.53e+02 3.34e+05 -1.0 8.55e+02 - 2.41e-04 1.21e-03f 1\n", - " 5 0.0000000e+00 5.40e+02 6.59e+03 -1.0 9.98e+01 - 2.25e-04 2.34e-02f 1\n", - " 6 0.0000000e+00 5.24e+02 1.11e+08 -1.0 9.74e+01 - 2.54e-02 2.84e-02f 1\n", - " 7 0.0000000e+00 2.36e+02 2.03e+06 -1.0 9.47e+01 - 7.09e-02 5.49e-01h 1\n", - " 8 0.0000000e+00 8.62e+01 6.37e+10 -1.0 4.27e+01 - 8.23e-03 6.35e-01h 1\n", - " 9 0.0000000e+00 1.96e+00 4.93e+10 -1.0 1.56e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 0.0000000e+00 2.05e-04 2.15e+09 -1.0 3.70e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 0.0000000e+00 6.28e-15 2.56e+05 -1.0 2.05e-04 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 11\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 6.2780236478193237e-15 6.2780236478193237e-15\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 6.2780236478193237e-15 6.2780236478193237e-15\n", - "\n", - "\n", - "Number of objective function evaluations = 12\n", - "Number of objective gradient evaluations = 12\n", - "Number of equality constraint evaluations = 12\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 12\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 11\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "m = build_model()\n", - "\n", - "scaler = EquilibriumReactorScaler()\n", - "scaler.scale_model(m.fs.equil)\n", - "\n", - "perturb_model(m)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: model contains export suffix 'scaling_factor' that contains 10\n", + "component keys that are not exported as part of the NL file. Skipping.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can see that by applying our new ``EquilibriumReactorScaler`` we are now able to use IPOPT to solve for the perturbation, and that it reaches an optimal solution in 11 iterations. Looking at the solver logs we can see that the solver step lengths (``alpha_du`` and ``alpha_pr``) are rather small for the first iterations but the number of line searches (``ls``) is 1 for all iterations. This indicates that IPOPT is pushing up against some bound or constraint and cannot make full steps, but in this case it is due to the fact that to achieve equilibrium for an irreversible reaction at least one concentration must be driven to zero (and is why an EquibriumReactor is probably not a good choice for this test case). However, the fact that our ``Scaler`` let us solve for this challenging test case is probably a good sign.\n", - "\n", - "\n", - "## Step 8: Finishing Up\n", - "\n", - "Ideally, we would have more than one test case to apply our ``Scaler`` to put it through its paces and ensure it is robust across a wide range of conditions. However, for the purposes of this workshop we will move on.\n", - "\n", - "Once you are satisfied that your ``Scaler`` is ready, you can start applying it to actual problems of interest. For those modelers developing new unit and property models, you should assign your new ``Scaler`` as the default scaler for that unit model. You can do this by setting the ``default_scaler`` attribute on your model to point to the new ``Scaler`` as shown below.\n", - "\n", - "```python\n", - "@declare_process_block_class(\"EquilibriumReactor\")\n", - "class EquilibriumReactorData(UnitModelBlockData):\n", - " \"\"\"\n", - " Standard Equilibrium Reactor Unit Model Class\n", - " \"\"\"\n", - "\n", - " # Setting the default_scaler attribute\n", - " default_scaler = EquilibriumReactorScaler\n", - "```\n", - "\n", - "With that, we have finished this workshop on developing ``Scaler`` classes. Hopefully you now know enough to begin writing ``Scalers`` for your own models, and have gained some insight into how to think about developing scaling routines and the tools available to help you." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Model Solved\n", + "\n" + ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 3.863E+06\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 WARNINGS\n", + "\n", + " WARNING: 2 Variables at or outside bounds (tol=0.0E+00)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "4 Cautions\n", + "\n", + " Caution: 2 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 6 Variables with value close to zero (tol=1.0E-08)\n", + " Caution: 2 Variables with extreme Jacobian values (<1.0E-04 or >1.0E+04)\n", + " Caution: 7 extreme Jacobian Entries (<1.0E-04 or >1.0E+04)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_variables_at_or_outside_bounds()\n", + "\n", + "====================================================================================\n" + ] } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.5" + ], + "source": [ + "from idaes.core.scaling import AutoScaler\n", + "\n", + "m = build_model()\n", + "\n", + "scaler = EquilibriumReactorScaler()\n", + "autoscaler = AutoScaler()\n", + "\n", + "autoscaler.scale_model(m)\n", + "\n", + "solver = get_solver(\n", + " \"ipopt_v2\", writer_config={\"scale_model\": True, \"linear_presolve\": True}\n", + ")\n", + "results = solver.solve(m)\n", + "\n", + "if check_optimal_termination(results):\n", + " print(\"\\nModel Solved\\n\")\n", + "else:\n", + " print(\"\\nModel Failed to Converge!\\n\")\n", + "\n", + "sm = TransformationFactory(\"core.scale_model\").create_using(m, rename=False)\n", + "\n", + "dt = DiagnosticsToolbox(model=sm.fs.equil)\n", + "dt.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that our ``EquilibriumReactorScaling`` routine actually results in a lower Jacobian condition number than the ``AutoScaler`` approach, so that is a sign we are doing things right. It is not unusual to see that we can get better scaling with a manual, magnitude based approach than an autoscaler as the autoscaler focuses solely on the Jacobian and thus often over-scales the problem.\n", + "\n", + "However, we might be able to do better by using other constraint scaling schemes, but before we start experimenting we should stop and think about what sort of scaling might make sense for each constraint. We should always also keep in the back of our minds whether additional work is worth the effort, and if we risk over-tuning the scaling for the specific property package we have.\n", + "\n", + "Fortunately, the model in this example is fairly simple and we do not have too many constraints to consider. Firstly, we have the unit-level constraint that says that `rate_reaction == 0` for all rate-based reactions. When considering scaling of a constraint we should ignore any 0 terms, thus this constraint has only 1 term and so we should scale based on this. If we use the ``scale_constraint_by_nominal_value`` method for this it will ignore the zero for us, the scheme used does not actually matter as there is only one term to consider.\n", + "\n", + "Next, we have the balance equations which all have the form `0 == In - Out + Gen` - note the equilibrium reactor does not support dynamics so we don't need to think about that. Generation terms can vary a lot, but we basically have two possible cases:\n", + "\n", + "1. one term is negligible compared to the other 2, so we should scale based on one of the significant\n", + "terms, or\n", + "2. all three terms are of similar significance (e.g., inlet and gen are of similar scale and outlet\n", + "is ~inletx2). Here we could scale based on the harmonic mean, by the maximum term is probably not bad either.\n", + "\n", + "So, in short the maximum magnitude is probably the best general-purpose scale for these constraints.\n", + "\n", + "Finally, we have stoichiometric constraints with the form `G[j, r] == n[j, r]*X[r]` where ``G`` is generation, ``X`` is extent and ``n`` is the stoichiometric coefficient (i.e., a constant) - these are simple ``A=B`` constraints, so scaling by maximum magnitude is equivalent to other methods (as there are only two terms which will take the same value, all schemes will give the same result in the end).\n", + "\n", + "So, for the equilibrium reactor at least, we are probably best leaving things as they are.\n", + "\n", + "However, there is one important test left. The whole purpose of a scaling routine is to allow us to perturb the model and solve it at the new state so we should test to confirm that our new ``Scaler`` has improved the performance of our solver when solving for the perturbed state we tried earlier. This also lets us see how the new ``Scaler`` will look for a user trying to apply the tool, which we can see below." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: linear_solver=ma57\n", + "max_iter=200\n", + "nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma57.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 21\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 9\n", + "\n", + "Total number of variables............................: 8\n", + " variables with only lower bounds: 5\n", + " variables with lower and upper bounds: 1\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 8\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 5.53e+02 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + "Reallocating memory for MA57: lfact (247)\n", + " 1 0.0000000e+00 5.53e+02 1.20e+00 -1.0 9.95e+02 - 2.00e-05 1.96e-05h 1\n", + " 2 0.0000000e+00 5.53e+02 1.20e+00 -1.0 9.57e+02 - 2.06e-05 2.00e-05h 1\n", + " 3 0.0000000e+00 5.53e+02 7.36e+01 -1.0 9.25e+02 - 4.36e-04 4.06e-05h 1\n", + " 4 0.0000000e+00 5.53e+02 3.34e+05 -1.0 8.55e+02 - 2.41e-04 1.21e-03f 1\n", + " 5 0.0000000e+00 5.40e+02 6.59e+03 -1.0 9.98e+01 - 2.25e-04 2.34e-02f 1\n", + " 6 0.0000000e+00 5.24e+02 1.11e+08 -1.0 9.74e+01 - 2.54e-02 2.84e-02f 1\n", + " 7 0.0000000e+00 2.36e+02 2.03e+06 -1.0 9.47e+01 - 7.09e-02 5.49e-01h 1\n", + " 8 0.0000000e+00 8.62e+01 6.37e+10 -1.0 4.27e+01 - 8.23e-03 6.35e-01h 1\n", + " 9 0.0000000e+00 1.96e+00 4.93e+10 -1.0 1.56e+01 - 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 0.0000000e+00 2.05e-04 2.15e+09 -1.0 3.70e-02 - 1.00e+00 1.00e+00h 1\n", + " 11 0.0000000e+00 6.28e-15 2.56e+05 -1.0 2.05e-04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 11\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 6.2780236478193237e-15 6.2780236478193237e-15\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 6.2780236478193237e-15 6.2780236478193237e-15\n", + "\n", + "\n", + "Number of objective function evaluations = 12\n", + "Number of objective gradient evaluations = 12\n", + "Number of equality constraint evaluations = 12\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 12\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 11\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] } + ], + "source": [ + "m = build_model()\n", + "\n", + "scaler = EquilibriumReactorScaler()\n", + "scaler.scale_model(m.fs.equil)\n", + "\n", + "perturb_model(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that by applying our new ``EquilibriumReactorScaler`` we are now able to use IPOPT to solve for the perturbation, and that it reaches an optimal solution in 11 iterations. Looking at the solver logs we can see that the solver step lengths (``alpha_du`` and ``alpha_pr``) are rather small for the first iterations but the number of line searches (``ls``) is 1 for all iterations. This indicates that IPOPT is pushing up against some bound or constraint and cannot make full steps, but in this case it is due to the fact that to achieve equilibrium for an irreversible reaction at least one concentration must be driven to zero (and is why an EquibriumReactor is probably not a good choice for this test case). However, the fact that our ``Scaler`` let us solve for this challenging test case is probably a good sign.\n", + "\n", + "\n", + "## Step 8: Finishing Up\n", + "\n", + "Ideally, we would have more than one test case to apply our ``Scaler`` to put it through its paces and ensure it is robust across a wide range of conditions. However, for the purposes of this workshop we will move on.\n", + "\n", + "Once you are satisfied that your ``Scaler`` is ready, you can start applying it to actual problems of interest. For those modelers developing new unit and property models, you should assign your new ``Scaler`` as the default scaler for that unit model. You can do this by setting the ``default_scaler`` attribute on your model to point to the new ``Scaler`` as shown below.\n", + "\n", + "```python\n", + "@declare_process_block_class(\"EquilibriumReactor\")\n", + "class EquilibriumReactorData(UnitModelBlockData):\n", + " \"\"\"\n", + " Standard Equilibrium Reactor Unit Model Class\n", + " \"\"\"\n", + "\n", + " # Setting the default_scaler attribute\n", + " default_scaler = EquilibriumReactorScaler\n", + "```\n", + "\n", + "With that, we have finished this workshop on developing ``Scaler`` classes. Hopefully you now know enough to begin writing ``Scalers`` for your own models, and have gained some insight into how to think about developing scaling routines and the tools available to help you." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 3 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/scaling/scaler_workshop_test.ipynb b/idaes_examples/notebooks/docs/scaling/scaler_workshop_test.ipynb index fddb4930..91f656bf 100644 --- a/idaes_examples/notebooks/docs/scaling/scaler_workshop_test.ipynb +++ b/idaes_examples/notebooks/docs/scaling/scaler_workshop_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/scaling/scaler_workshop_usr.ipynb b/idaes_examples/notebooks/docs/scaling/scaler_workshop_usr.ipynb index a7ba87bb..71ae61db 100644 --- a/idaes_examples/notebooks/docs/scaling/scaler_workshop_usr.ipynb +++ b/idaes_examples/notebooks/docs/scaling/scaler_workshop_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization.ipynb b/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization.ipynb index 24ac1767..5c38b15e 100644 --- a/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization.ipynb @@ -1,496 +1,497 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Autothermal Reformer Flowsheet Optimization with ALAMO Surrogate Object\n", - "Author: Brandon Paul \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "## 1. Introduction\n", - "\n", - "This example demonstrates autothermal reformer optimization leveraging the ALAMO surrogate trainer and IDAES Python wrapper. In this notebook, sampled simulation data will be used to train and validate a surrogate model. IDAES surrogate plotting tools will be utilized to visualize the surrogates on training and validation data. Once validated, integration of the surrogate into an IDAES flowsheet will be demonstrated." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Problem Statement \n", - "\n", - "Within the context of a larger NGFC system, the autothermal reformer generates syngas from air, steam and natural gas for use in a solid-oxide fuel cell (SOFC).\n", - "\n", - "## 2.1. Main Inputs: \n", - "- Bypass fraction (dimensionless) - split fraction of natural gas to bypass AR unit and feed directly to the power island\n", - "- NG-Steam Ratio (dimensionless) - proportion of natural relative to steam fed into AR unit operation\n", - "\n", - "## 2.2. Main Outputs:\n", - "- Steam flowrate (kg/s) - inlet steam fed to AR unit\n", - "- Reformer duty (kW) - required energy input to AR unit\n", - "- Composition (dimensionless) - outlet mole fractions of components (Ar, C2H6, C3H8, C4H10, CH4, CO, CO2, H2, H2O, N2, O2)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"AR_PFD.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Training and Validating Surrogates" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First, let's import the required Python, Pyomo and IDAES modules:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Import statements\n", - "import os\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "# Import Pyomo libraries\n", - "from pyomo.environ import (\n", - " ConcreteModel,\n", - " SolverFactory,\n", - " value,\n", - " Var,\n", - " Constraint,\n", - " Set,\n", - " Objective,\n", - " maximize,\n", - ")\n", - "from pyomo.common.timing import TicTocTimer\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", - "from idaes.core.surrogate.alamopy import AlamoTrainer, AlamoSurrogate\n", - "from idaes.core.surrogate.plotting.sm_plotter import (\n", - " surrogate_scatter2D,\n", - " surrogate_parity,\n", - " surrogate_residual,\n", - ")\n", - "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", - "from idaes.core import FlowsheetBlock" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.1 Importing Training and Validation Datasets" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this section, we read the dataset from the CSV file located in this directory. 2800 data points were simulated from a rigorous IDAES NGFC flowsheet using a grid sampling method. For simplicity and to reduce training runtime, this example randomly selects 100 data points to use for training/validation. The data is separated using an 80/20 split into training and validation data using the IDAES `split_training_validation()` method." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Auto-reformer training data\n", - "np.set_printoptions(precision=6, suppress=True)\n", - "\n", - "csv_data = pd.read_csv(datafile_path(\"reformer-data.csv\")) # 2800 data points\n", - "data = csv_data.sample(n=100) # randomly sample points for training/validation\n", - "\n", - "input_data = data.iloc[:, :2]\n", - "output_data = data.iloc[:, 2:]\n", - "\n", - "# Define labels, and split training and validation data\n", - "input_labels = input_data.columns\n", - "output_labels = output_data.columns\n", - "\n", - "n_data = data[input_labels[0]].size\n", - "data_training, data_validation = split_training_validation(\n", - " data, 0.8, seed=n_data\n", - ") # seed=100" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.2 Training Surrogates with ALAMO" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "IDAES provides a Python wrapper for the ALAMO machine learning tool via an imported AlamoTrainer class. Regression settings can be directly set as config attributes, as shown below. In this example, allowed basis term forms include constant and linear functions, monomial power order 2 and 3, variable product power order 1 and 2, and variable ratio power order 1 and 2. ALAMO naturally seeks to minimize the number of basis terms; here, we restrict each surrogate expression to a maximum of 10 basis terms.\n", - "\n", - "Finally, after training the model we save the results and model expressions to a JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "# capture long output (not required to use surrogate API)\n", - "from io import StringIO\n", - "import sys\n", - "\n", - "stream = StringIO()\n", - "oldstdout = sys.stdout\n", - "sys.stdout = stream\n", - "\n", - "# Create ALAMO trainer object\n", - "trainer = AlamoTrainer(\n", - " input_labels=input_labels,\n", - " output_labels=output_labels,\n", - " training_dataframe=data_training,\n", - ")\n", - "\n", - "# Set ALAMO options\n", - "trainer.config.constant = True\n", - "trainer.config.linfcns = True\n", - "trainer.config.multi2power = [1, 2]\n", - "trainer.config.monomialpower = [2, 3]\n", - "trainer.config.ratiopower = [1, 2]\n", - "trainer.config.maxterms = [10] * len(output_labels) # max for each surrogate\n", - "trainer.config.filename = os.path.join(os.getcwd(), \"alamo_run.alm\")\n", - "trainer.config.overwrite_files = True\n", - "\n", - "# Train surrogate (calls ALAMO through IDAES ALAMOPy wrapper)\n", - "has_alamo = True\n", - "try:\n", - " success, alm_surr, msg = trainer.train_surrogate()\n", - "except FileNotFoundError as err:\n", - " if \"Could not find ALAMO\" in str(err):\n", - " print(\"ALAMO not found. You must install ALAMO to use this notebook\")\n", - " has_alamo = False\n", - " else:\n", - " raise\n", - "\n", - "if has_alamo:\n", - " # save model to JSON\n", - " model = alm_surr.save_to_file(\"alamo_surrogate.json\", overwrite=True)\n", - "\n", - " # create callable surrogate object\n", - "\n", - " surrogate_expressions = trainer._results[\"Model\"]\n", - " input_labels = trainer._input_labels\n", - " output_labels = trainer._output_labels\n", - " xmin, xmax = [0.1, 0.8], [0.8, 1.2]\n", - " input_bounds = {\n", - " input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))\n", - " }\n", - "\n", - " alm_surr = AlamoSurrogate(\n", - " surrogate_expressions, input_labels, output_labels, input_bounds\n", - " )\n", - "\n", - " # revert back to normal output capture\n", - " sys.stdout = oldstdout\n", - "\n", - " # display first 50 lines and last 50 lines of output\n", - " celloutput = stream.getvalue().split(\"\\n\")\n", - " for line in celloutput[:50]:\n", - " print(line)\n", - " print(\".\")\n", - " print(\".\")\n", - " print(\".\")\n", - " for line in celloutput[-50:]:\n", - " print(line)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.3 Visualizing surrogates" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "if has_alamo:\n", - " # visualize with IDAES surrogate plotting tools\n", - " surrogate_scatter2D(alm_surr, data_training, filename=\"alamo_train_scatter2D.pdf\")\n", - " surrogate_parity(alm_surr, data_training, filename=\"alamo_train_parity.pdf\")\n", - " surrogate_residual(alm_surr, data_training, filename=\"alamo_train_residual.pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.4 Model Validation" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "if has_alamo:\n", - " # visualize with IDAES surrogate plotting tools\n", - " surrogate_scatter2D(alm_surr, data_validation, filename=\"alamo_val_scatter2D.pdf\")\n", - " surrogate_parity(alm_surr, data_validation, filename=\"alamo_val_parity.pdf\")\n", - " surrogate_residual(alm_surr, data_validation, filename=\"alamo_val_residual.pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4. IDAES Flowsheet Integration" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4.1 Build and Run IDAES Flowsheet" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we will build an IDAES flowsheet and import the surrogate model object. A single ALAMO model accounts for all input and output variables, and the JSON model serialized earlier may be imported into a single SurrogateBlock() component." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "if has_alamo:\n", - " # create the IDAES model and flowsheet\n", - " m = ConcreteModel()\n", - " m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - " # create flowsheet input variables\n", - " m.fs.bypass_frac = Var(\n", - " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", - " )\n", - " m.fs.ng_steam_ratio = Var(\n", - " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", - " )\n", - "\n", - " # create flowsheet output variables\n", - " m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", - " m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", - " m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", - " m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", - " m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", - " m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", - " m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", - " m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", - " m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", - " m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", - " m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", - " m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", - " m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", - "\n", - " # create input and output variable object lists for flowsheet\n", - " inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", - " outputs = [\n", - " m.fs.steam_flowrate,\n", - " m.fs.reformer_duty,\n", - " m.fs.AR,\n", - " m.fs.C2H6,\n", - " m.fs.C4H10,\n", - " m.fs.C3H8,\n", - " m.fs.CH4,\n", - " m.fs.CO,\n", - " m.fs.CO2,\n", - " m.fs.H2,\n", - " m.fs.H2O,\n", - " m.fs.N2,\n", - " m.fs.O2,\n", - " ]\n", - "\n", - " # create the Pyomo/IDAES block that corresponds to the surrogate\n", - " # ALAMO\n", - " surrogate = AlamoSurrogate.load_from_file(\"alamo_surrogate.json\")\n", - " m.fs.surrogate = SurrogateBlock()\n", - " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", - "\n", - " # fix input values and solve flowsheet\n", - " m.fs.bypass_frac.fix(0.5)\n", - " m.fs.ng_steam_ratio.fix(1)\n", - "\n", - " solver = SolverFactory(\"ipopt\")\n", - " results = solver.solve(m, tee=True)\n", - "else:\n", - " status_obj = None" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's print some model results:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "if has_alamo:\n", - " print(\"Steam flowrate = \", value(m.fs.steam_flowrate))\n", - " print(\"Reformer duty = \", value(m.fs.reformer_duty))\n", - " print(\"Mole Fraction Ar = \", value(m.fs.AR))\n", - " print(\"Mole Fraction C2H6 = \", value(m.fs.C2H6))\n", - " print(\"Mole Fraction C3H8 = \", value(m.fs.C3H8))\n", - " print(\"Mole Fraction C4H10 = \", value(m.fs.C4H10))\n", - " print(\"Mole Fraction CH4 = \", value(m.fs.CH4))\n", - " print(\"Mole Fraction CO = \", value(m.fs.CO))\n", - " print(\"Mole Fraction CO2 = \", value(m.fs.CO2))\n", - " print(\"Mole Fraction H2 = \", value(m.fs.H2))\n", - " print(\"Mole Fraction H2O = \", value(m.fs.H2O))\n", - " print(\"Mole Fraction N2 = \", value(m.fs.N2))\n", - " print(\"Mole Fraction O2 = \", value(m.fs.O2))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4.2 Optimizing the Autothermal Reformer\n", - "Extending this example, we will unfix the input variables and optimize hydrogen production. We will restrict nitrogen below 34 mol% of the product stream and leave all other variables unfixed.\n", - "\n", - "Above, variable values are called in reference to actual objects names; however, as shown below this may be done much more compactly by calling the list objects we created earlier." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "if has_alamo:\n", - " # unfix input values and add the objective/constraint to the model\n", - " m.fs.bypass_frac.unfix()\n", - " m.fs.ng_steam_ratio.unfix()\n", - " m.fs.obj = Objective(expr=m.fs.H2, sense=maximize)\n", - " m.fs.con = Constraint(expr=m.fs.N2 <= 0.34)\n", - "\n", - " # solve the model\n", - " tmr = TicTocTimer()\n", - " status = solver.solve(m, tee=True)\n", - " solve_time = tmr.toc(\"solve\")\n", - "\n", - " # print and check results\n", - " assert abs(value(m.fs.H2) - 0.33) <= 0.01\n", - " assert value(m.fs.N2 <= 0.4 + 1e-8)\n", - " print(\"Model status: \", status)\n", - " print(\"Solve time: \", solve_time)\n", - " for var in inputs:\n", - " print(var.name, \": \", value(var))\n", - " for var in outputs:\n", - " print(var.name, \": \", value(var))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.16" - } + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Autothermal Reformer Flowsheet Optimization with ALAMO Surrogate Object\n", + "Author: Brandon Paul \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "## 1. Introduction\n", + "\n", + "This example demonstrates autothermal reformer optimization leveraging the ALAMO surrogate trainer and IDAES Python wrapper. In this notebook, sampled simulation data will be used to train and validate a surrogate model. IDAES surrogate plotting tools will be utilized to visualize the surrogates on training and validation data. Once validated, integration of the surrogate into an IDAES flowsheet will be demonstrated." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Problem Statement \n", + "\n", + "Within the context of a larger NGFC system, the autothermal reformer generates syngas from air, steam and natural gas for use in a solid-oxide fuel cell (SOFC).\n", + "\n", + "## 2.1. Main Inputs: \n", + "- Bypass fraction (dimensionless) - split fraction of natural gas to bypass AR unit and feed directly to the power island\n", + "- NG-Steam Ratio (dimensionless) - proportion of natural relative to steam fed into AR unit operation\n", + "\n", + "## 2.2. Main Outputs:\n", + "- Steam flowrate (kg/s) - inlet steam fed to AR unit\n", + "- Reformer duty (kW) - required energy input to AR unit\n", + "- Composition (dimensionless) - outlet mole fractions of components (Ar, C2H6, C3H8, C4H10, CH4, CO, CO2, H2, H2O, N2, O2)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"AR_PFD.png\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Training and Validating Surrogates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, let's import the required Python, Pyomo and IDAES modules:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Import statements\n", + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "# Import Pyomo libraries\n", + "from pyomo.environ import (\n", + " ConcreteModel,\n", + " SolverFactory,\n", + " value,\n", + " Var,\n", + " Constraint,\n", + " Set,\n", + " Objective,\n", + " maximize,\n", + ")\n", + "from pyomo.common.timing import TicTocTimer\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", + "from idaes.core.surrogate.alamopy import AlamoTrainer, AlamoSurrogate\n", + "from idaes.core.surrogate.plotting.sm_plotter import (\n", + " surrogate_scatter2D,\n", + " surrogate_parity,\n", + " surrogate_residual,\n", + ")\n", + "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", + "from idaes.core import FlowsheetBlock" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.1 Importing Training and Validation Datasets" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this section, we read the dataset from the CSV file located in this directory. 2800 data points were simulated from a rigorous IDAES NGFC flowsheet using a grid sampling method. For simplicity and to reduce training runtime, this example randomly selects 100 data points to use for training/validation. The data is separated using an 80/20 split into training and validation data using the IDAES `split_training_validation()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Auto-reformer training data\n", + "np.set_printoptions(precision=6, suppress=True)\n", + "\n", + "csv_data = pd.read_csv(datafile_path(\"reformer-data.csv\")) # 2800 data points\n", + "data = csv_data.sample(n=100) # randomly sample points for training/validation\n", + "\n", + "input_data = data.iloc[:, :2]\n", + "output_data = data.iloc[:, 2:]\n", + "\n", + "# Define labels, and split training and validation data\n", + "input_labels = input_data.columns\n", + "output_labels = output_data.columns\n", + "\n", + "n_data = data[input_labels[0]].size\n", + "data_training, data_validation = split_training_validation(\n", + " data, 0.8, seed=n_data\n", + ") # seed=100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.2 Training Surrogates with ALAMO" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "IDAES provides a Python wrapper for the ALAMO machine learning tool via an imported AlamoTrainer class. Regression settings can be directly set as config attributes, as shown below. In this example, allowed basis term forms include constant and linear functions, monomial power order 2 and 3, variable product power order 1 and 2, and variable ratio power order 1 and 2. ALAMO naturally seeks to minimize the number of basis terms; here, we restrict each surrogate expression to a maximum of 10 basis terms.\n", + "\n", + "Finally, after training the model we save the results and model expressions to a JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# capture long output (not required to use surrogate API)\n", + "from io import StringIO\n", + "import sys\n", + "\n", + "stream = StringIO()\n", + "oldstdout = sys.stdout\n", + "sys.stdout = stream\n", + "\n", + "# Create ALAMO trainer object\n", + "trainer = AlamoTrainer(\n", + " input_labels=input_labels,\n", + " output_labels=output_labels,\n", + " training_dataframe=data_training,\n", + ")\n", + "\n", + "# Set ALAMO options\n", + "trainer.config.constant = True\n", + "trainer.config.linfcns = True\n", + "trainer.config.multi2power = [1, 2]\n", + "trainer.config.monomialpower = [2, 3]\n", + "trainer.config.ratiopower = [1, 2]\n", + "trainer.config.maxterms = [10] * len(output_labels) # max for each surrogate\n", + "trainer.config.filename = os.path.join(os.getcwd(), \"alamo_run.alm\")\n", + "trainer.config.overwrite_files = True\n", + "\n", + "# Train surrogate (calls ALAMO through IDAES ALAMOPy wrapper)\n", + "has_alamo = True\n", + "try:\n", + " success, alm_surr, msg = trainer.train_surrogate()\n", + "except FileNotFoundError as err:\n", + " if \"Could not find ALAMO\" in str(err):\n", + " print(\"ALAMO not found. You must install ALAMO to use this notebook\")\n", + " has_alamo = False\n", + " else:\n", + " raise\n", + "\n", + "if has_alamo:\n", + " # save model to JSON\n", + " model = alm_surr.save_to_file(\"alamo_surrogate.json\", overwrite=True)\n", + "\n", + " # create callable surrogate object\n", + "\n", + " surrogate_expressions = trainer._results[\"Model\"]\n", + " input_labels = trainer._input_labels\n", + " output_labels = trainer._output_labels\n", + " xmin, xmax = [0.1, 0.8], [0.8, 1.2]\n", + " input_bounds = {\n", + " input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))\n", + " }\n", + "\n", + " alm_surr = AlamoSurrogate(\n", + " surrogate_expressions, input_labels, output_labels, input_bounds\n", + " )\n", + "\n", + " # revert back to normal output capture\n", + " sys.stdout = oldstdout\n", + "\n", + " # display first 50 lines and last 50 lines of output\n", + " celloutput = stream.getvalue().split(\"\\n\")\n", + " for line in celloutput[:50]:\n", + " print(line)\n", + " print(\".\")\n", + " print(\".\")\n", + " print(\".\")\n", + " for line in celloutput[-50:]:\n", + " print(line)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.3 Visualizing surrogates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "if has_alamo:\n", + " # visualize with IDAES surrogate plotting tools\n", + " surrogate_scatter2D(alm_surr, data_training, filename=\"alamo_train_scatter2D.pdf\")\n", + " surrogate_parity(alm_surr, data_training, filename=\"alamo_train_parity.pdf\")\n", + " surrogate_residual(alm_surr, data_training, filename=\"alamo_train_residual.pdf\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.4 Model Validation" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "if has_alamo:\n", + " # visualize with IDAES surrogate plotting tools\n", + " surrogate_scatter2D(alm_surr, data_validation, filename=\"alamo_val_scatter2D.pdf\")\n", + " surrogate_parity(alm_surr, data_validation, filename=\"alamo_val_parity.pdf\")\n", + " surrogate_residual(alm_surr, data_validation, filename=\"alamo_val_residual.pdf\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4. IDAES Flowsheet Integration" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.1 Build and Run IDAES Flowsheet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we will build an IDAES flowsheet and import the surrogate model object. A single ALAMO model accounts for all input and output variables, and the JSON model serialized earlier may be imported into a single SurrogateBlock() component." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "if has_alamo:\n", + " # create the IDAES model and flowsheet\n", + " m = ConcreteModel()\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + " # create flowsheet input variables\n", + " m.fs.bypass_frac = Var(\n", + " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", + " )\n", + " m.fs.ng_steam_ratio = Var(\n", + " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", + " )\n", + "\n", + " # create flowsheet output variables\n", + " m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", + " m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", + " m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", + " m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", + " m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", + " m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", + " m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", + " m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", + " m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", + " m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", + " m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", + " m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", + " m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", + "\n", + " # create input and output variable object lists for flowsheet\n", + " inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", + " outputs = [\n", + " m.fs.steam_flowrate,\n", + " m.fs.reformer_duty,\n", + " m.fs.AR,\n", + " m.fs.C2H6,\n", + " m.fs.C4H10,\n", + " m.fs.C3H8,\n", + " m.fs.CH4,\n", + " m.fs.CO,\n", + " m.fs.CO2,\n", + " m.fs.H2,\n", + " m.fs.H2O,\n", + " m.fs.N2,\n", + " m.fs.O2,\n", + " ]\n", + "\n", + " # create the Pyomo/IDAES block that corresponds to the surrogate\n", + " # ALAMO\n", + " surrogate = AlamoSurrogate.load_from_file(\"alamo_surrogate.json\")\n", + " m.fs.surrogate = SurrogateBlock()\n", + " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", + "\n", + " # fix input values and solve flowsheet\n", + " m.fs.bypass_frac.fix(0.5)\n", + " m.fs.ng_steam_ratio.fix(1)\n", + "\n", + " solver = SolverFactory(\"ipopt\")\n", + " results = solver.solve(m, tee=True)\n", + "else:\n", + " status_obj = None" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's print some model results:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "if has_alamo:\n", + " print(\"Steam flowrate = \", value(m.fs.steam_flowrate))\n", + " print(\"Reformer duty = \", value(m.fs.reformer_duty))\n", + " print(\"Mole Fraction Ar = \", value(m.fs.AR))\n", + " print(\"Mole Fraction C2H6 = \", value(m.fs.C2H6))\n", + " print(\"Mole Fraction C3H8 = \", value(m.fs.C3H8))\n", + " print(\"Mole Fraction C4H10 = \", value(m.fs.C4H10))\n", + " print(\"Mole Fraction CH4 = \", value(m.fs.CH4))\n", + " print(\"Mole Fraction CO = \", value(m.fs.CO))\n", + " print(\"Mole Fraction CO2 = \", value(m.fs.CO2))\n", + " print(\"Mole Fraction H2 = \", value(m.fs.H2))\n", + " print(\"Mole Fraction H2O = \", value(m.fs.H2O))\n", + " print(\"Mole Fraction N2 = \", value(m.fs.N2))\n", + " print(\"Mole Fraction O2 = \", value(m.fs.O2))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.2 Optimizing the Autothermal Reformer\n", + "Extending this example, we will unfix the input variables and optimize hydrogen production. We will restrict nitrogen below 34 mol% of the product stream and leave all other variables unfixed.\n", + "\n", + "Above, variable values are called in reference to actual objects names; however, as shown below this may be done much more compactly by calling the list objects we created earlier." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "if has_alamo:\n", + " # unfix input values and add the objective/constraint to the model\n", + " m.fs.bypass_frac.unfix()\n", + " m.fs.ng_steam_ratio.unfix()\n", + " m.fs.obj = Objective(expr=m.fs.H2, sense=maximize)\n", + " m.fs.con = Constraint(expr=m.fs.N2 <= 0.34)\n", + "\n", + " # solve the model\n", + " tmr = TicTocTimer()\n", + " status = solver.solve(m, tee=True)\n", + " solve_time = tmr.toc(\"solve\")\n", + "\n", + " # print and check results\n", + " assert abs(value(m.fs.H2) - 0.33) <= 0.01\n", + " assert value(m.fs.N2 <= 0.4 + 1e-8)\n", + " print(\"Model status: \", status)\n", + " print(\"Solve time: \", solve_time)\n", + " for var in inputs:\n", + " print(var.name, \": \", value(var))\n", + " for var in outputs:\n", + " print(var.name, \": \", value(var))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization_doc.ipynb b/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization_doc.ipynb index f2ffdcad..a76f214b 100644 --- a/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization_doc.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -69,11 +70,7 @@ ] }, "execution_count": 2, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\alamo\\alamo_flowsheet_optimization_doc_3_0.png" - } - }, + "metadata": {}, "output_type": "execute_result" } ], @@ -162,7 +159,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "C:\\Users\\dkgun\\miniconda3\\envs\\idaes-examples-py311\\Lib\\site-packages\\numpy\\core\\fromnumeric.py:59: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be removed in a future version. Please use 'DataFrame.transpose' instead.\n", + "/home/dang/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be removed in a future version. Please use 'DataFrame.transpose' instead.\n", " return bound(*args, **kwds)\n" ] } @@ -513,7 +510,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization_test.ipynb b/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization_test.ipynb index f8fda916..a12cc805 100644 --- a/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization_test.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization_usr.ipynb b/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization_usr.ipynb index f8fda916..a12cc805 100644 --- a/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization_usr.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/alamo/alamo_flowsheet_optimization_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/surrogates/best_practices_optimization.ipynb b/idaes_examples/notebooks/docs/surrogates/best_practices_optimization.ipynb index 0344ee98..0fa61fe2 100644 --- a/idaes_examples/notebooks/docs/surrogates/best_practices_optimization.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/best_practices_optimization.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/surrogates/best_practices_optimization_doc.ipynb b/idaes_examples/notebooks/docs/surrogates/best_practices_optimization_doc.ipynb index 4f5ec2c3..57a2505e 100644 --- a/idaes_examples/notebooks/docs/surrogates/best_practices_optimization_doc.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/best_practices_optimization_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -70,7 +71,19 @@ "cell_type": "code", "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABYUAAALDCAYAAABKE28mAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+lSURBVHhe7N0PnCP3Xd9/FSj/C6UFOgX6o9seLVeu4IVCV4ADVnDCCUyIwpF6Hz3gEEe4iBAc5RKc7TVko4cDG+Ugl60dnGVNnGixnWgTX9DZONEWc44u+IKuiZ09kgs6EmM24QKiPhzFPcPn9/2M5qsdSTPSSPtP2n098/jmVtrvzHy/35nVWu/96jsxAQAAAAAAAADsGYTCAAAAAAAAALCHEAoDAAAAAAAAwB5CKAwAAAAAAAAAewihMAAAAAAAAADsIYTCAAAAAAAAALCHEAoDAAAAAAAAwB5CKAwAAAAAAAAAewihMAAAAAAAAADsIYTCAAAAAAAAALCHEAoDAAAAAAAAwB5CKAwAAAAAAAAAewihMAAAAAAAAADsIYTCAAAAAAAAALCHEAoDwG71sYdk8nt+R2I9yztk4dNe/bH0tKzeX5T5j3oPR9nnHpf8mx+VNe9hoM8+IqnA87Qkhc96dbA3bcu1cUUKLws6xmAlfvguSby0KDN3PCzFj31GGs96ux9RjScvSuGOoqRuXhDH14+JF5l+vPK9Mn9/VaqfHfFOYDRdeF/bz8Zml9T9V7wDYfe7KLmAa0BL7oJXBQCAAREKA8AuVXlz8JuHzpK450lvizHz2ccl/9JmH0b6DdGzT7nBdeJ609aXPUIojOGMUSjcVa6/S7L316Q+arnqs3Upv+mutiA4rEwu1ryNgAEQCmPTEAoDADYfoTAA7EbPfERmNIQMePPQVW56SKreZmNBQ9Z33SsTvj6M7Buiz1Zl5mbfWBMKY1jjHAp7Jf66R6U2MsHw01J5812B7Qwqmfc/5W0HDIBQGJuGUBgAsPkIhQFgF2p88L2BbxyCy4LkP+ZtOOLqH39Esv6Q1Ssj94bo2StSfttSW3DtFkJhDGsXhMJa4m++KA3vaDvq0w9LMqB9weUuWbjsbQcMglAYm4ZQGACw+QiFAWDXeUpKrwl+4xBWJt92ydt2lI3PG6K1+5cC20kojKHtklBYA9b8x73D7aD6++8NaFtYea+Un/E2BAZBKIxNQygMANh8hMIAsNvUH5V0wJuG2PfcK7k3vyPgeVOuf59URv4+SoTC2MN2OhR+80WvTm+Np67I6sMPSLLH8jXO3Ed2fLZwdXEhsG2x65dk4WO+pSKeeVrqn74ide8hMJDQUJjXdAyKUBgAsPkIhQFgl6k/GDID7tWPSr3HR6ZnPjTqU+EIhbGHjUko3PLkIzIdGgzv/Mzb0BtxvulxrwawCQiFsWkIhQEAm49QGAB2lfBQJ/2gznV7UhZ+Lvj7sTfs/Oy93giFsYeNWyhsVN8WMhtX1zHf4SUkQkPhIfoJhCIUxqYhFAYAbD5CYQDYTUJnAt8rRe/zz7V3hSwhYeqURvoG+1vwhqj+KSnfX5bsK++SxMH2fcYPv0Myb3pYih/7jDQGXFpjy0PhZz4jlfvfJ+nDC+s3s7t+QRIvLUr+/ouyNvRSIM9K/XJVFt5wryRuXhDH14aNjEdPz9al8vaiJL3xdw7eJek3PCzlJwecSvrsU1J98AHJvNQ3Js81Y/LK90nhQo82m2ugZI6f8vVX25A68UDv7Xp59hlZu/CIzOs4+s+Rb/+Jw/dK9u2PSPlyxB+6MQyF5Xz4eqrRf2a35prc9FB4i15L+ml88lHJvXL9Govra8CDNakPeJzGk483x9jX9v03m3a/vSqrYTvzrvOc6XP8uf7+mmv7XT2262uMX4c67aVQWF9L3/U+8xrc/TOgJX5YX1ffJwvm+lzbzE8K1GtSvMO8hr9o/VgTLzLn782PSCX0/DWvsfkT7+i+5u/otd0wnnV/TvLmWEE/J7XI/921Of8N1HjyohR0vDp+N+2/Wa/5shQ+9KmBXz8AAOOLUBgAdpHQwFeXjvDq9LrrfnM2cUQbCqmivrkJr9ez9At2Pvu4zL/mrrawoWd57pLkP9T7hj6hQXDP0jFWfcf0Wak9WJREj/Va3XL9XZJ98El3l1E1PvmIZG8O2FdAcW6+VxY+Gu2dbHD45vXn2c9I4Zag72u5S+Y/GWEfRv2jZUn53mwHlYmXlqXqb7KGyG9f6gpsO4tz8/uk/Dlvmwjq5x/o25bO4txclMInn/b2EGIcQ+EeN9mKEmJs7jU55GtJv/HdgteSlrBz7p2LhhnfeND3tbyu2vzkR599yLNPSjHXp/1BryeffjTSuUm/61MDfQJllF+HhrLNoXDN/B4KPZc/97DUeoR91cW7grczxXmN778hOj39KSn0u4YCSuptj/cJH0N+Zu0fVyO+hqfefqn9OE9dkvmXBtf1l8SbPtI3HA37vd96fYt4rK42BtpgKPy5xyUfoS1uMa9TuYcH+28IAMB4IhQGgF2jJvmbAv7j3pT2sLfHEhL+8LifMQ2Fa++PEKqGlIlXPyyrIdndlofCTz4llTsGe+M9ff9nvB33pmMSGi71KMnFS30Dn/Aw5mnzvfAQInbTQ1Ltuw/T9tK9fUOBVnnR+6Si5+/Zz0jx1QHfDyt2u56eltV7egQyfctd5trvcZAxDIUbH3xv8L5M6RdibP41ufmh8Fa9lrT0CnR7rtn8O5J5vxeW9trH02ZMIgawWuzrSePCAwP1e7e8Dg1l22cK16X0mqDjNUvynpCg73L4H4tjN/V4/fvcR2TGN0N30OLc8kiPoDrkZ1ZD4QFfw+PmenevkSfPSXqAP9q1tgvRMxQe8FgTrz7XM7TfSCjc+NhDPW/+GVbir3u0T5sAAOOOUBgAdgvzH/2TAf9R7186wgpfQmKAN6pjGAr3nEUVsTg3PxD4BnlrQ+G7ZPqWHsFFaHmHLFz29h1io2OSfHut55vmsDBm/p739jxu8l3r4UXoPu7vMVMypMTv+IiUe4VAIcWZ673mduP8+0J+/gYo179XymHhy9iFws9IeS5gP25ZkmKP2ddbc00O+VoSMr5b+VrSEnbO3/Rw+B/2tOh1ZD/9HrqPR3rMjg0p15uxON87jA4u5nXo0157QozD69BQdmL5iKcfl5mQPxC7x+3sks6UDvu57/XHqp7bRS+hQXVoKFyWwsCv4aYfH/yI5IYIsHvdhDc0FH7YtH2IYw0VkpvSKxTu+YmCCCX+umrvZa8AAGONUBgAdonQmzoFzf4NDZgGeBO8oZAq6pubIYOcgABro2+M/CXojdvWhsLDl55h5pObcTzzZvuj4W+ag8OYfqX9DxnD7WOzS/cfV1qevRQ6S3/Q0prh2WlDP29RbV4o3PPnTT/G7tXrsmXX5JCvJQHju9WvJS1Dvh5Mvu2StwNjC15Thiltbeo0Jq9DQwkNhTdehg4CX9Z+zdWWw393xe8In4Vdf/DewG0GLqGzsYf9md3k0uMTVGG/950hP0GgZboUtrzMEKFwzz8QRC/hbQIAjDtCYQDYDZ41bxZC3oQErxPcI/w53COw8RunUPgZs58eb4ziryxL6XJ9/cZFT1+R1Yd7rw2bWm7/SPR2hcKJ3MNS+fTTvrZ+Rsp3vCN8ttv1D4S84a6Hf/xW1xB910WpPe0d5NmnpXbhYcmEzXzqEfINFcZ0vAnvtw9dk3fBd1O4xudqshBlFuSL/Ns9K41PV2Wmx8fpsx8MDp3q7w8JR65/h+Q+5L8hljnGZz8lpV7nKyx8HflQ2PSt/pTUP12T4tvv7bm8QOb9YRHLVl6TQ76WdI7vNryWtAwV6C5I/mPe9irCPlJvq8rq57xrW8f14fdGCr2Td/i2e6Yu1Xf1WMol9PfK+LwODWWHQmGdqV+9I3w2beua++y58JnfPdcgDl+uKv66R6Rqrwv1TJ/zFvoa1v9n1v4+dD37jNQ/9nCkmezx1/m302v+fT1es3wz7ztE+b3f9vPl/p55XOZf2WOms3+mf5vw8Qi7FkInC5jS/nNvxu5yVXLp4LrhbQIAjDtCYQDYBRofCvsI7L1SCpl4GP5mZkHyH/cq9bItobDfMNs09XrjNr3cY2b0U4+HfwS0x5uk0OPZG+SE6RPg9Gpr+E2CQs7Hx8OWG+nxcWFdgzRkPMLOQb8wxg0Q/HfYeeZpqXeMa899hK33W39U0kH1bRliu9T9QbOlngpZw3NBZs6HjGOvICzsGtnpUHiTSs+Zsdt0TarQa6pP+L2tryX9At2gPzrUO8ap32tKyHq/vcIkLYNvZ37evDptxuh1aCg7Fgobz/a4f4AuBfJkj/WH3e97+wkSdt46ZiG3CV3iKqwv4b/ztYSt99tvBvPg24W/xvYOhXtcw9J7LevgP+YP+N9ATz0qmYC6WkLX+e5x08Xg338AgHFHKAwAY6/H2p297hjeIyzo+VFfa0Mh1YBvblzDbKPCZzRNvunxnutQunrc0Cn4jdsWhcI9Z20ZoR/BDg75q4vB4U2/cx/2BwgnJEzrGcb0ChB8wvfRMSuyTV2KPWYLZz8Y9mbdvCl+SfA2oYHhs09L/bOfksrDj8j8He+V9OG7ZH+vnz2jthyyrvduDoX73LBvu65JNVwovM2vJT0D3V5/dPDptY9eM2E/+kD4bPZer0XnB1tDd5xeh4ayk6Gw6nHNOc81JeB5LVFuDth46impfexxKb7rAZk58Q5JvOiuHq/HxrOPy0zAsbQMHArrkhNh5+xz52Q6aBst+geYsB+bHsuYhI11r1A4fK1kT6/QPvD3x2D/DRT6CZZ+M+A/HXLTwX7//QIAGEuEwgAw7p75iGSD/gPelND1SV09AqBeb7iscQmFLz8siYBtotz8yAqd/RYS/G1FKNx/ls4g4xMWfEaYJR72xj5kXcheYUzP8+YTuo/r3yeVHtdp+LGH3K5nYDiYga+RMQ+FE7lHZLVnhrl916Qa6hxv92tJr0A3akAz7GtKr+3ClrtQA12n4/U6NJSdDoWNQW/i59xybovCv0F/h4fX7/UHn17bxd70uFcnyOD/jREeCkdbbiE0uA38HTVY+ypvCq7b+78LVdjPZfgnzwAA44tQGADGXPhHHvv/B3yvWS5933BuKKQa/M3XcNuYPpZC+viSR0LXn+xi3tgHv6kO/kj05ofCEUKSQcYndMZWlHM32BvGYYNZv9B99BnPTd9uo6Gwri974VFZeMO9Eg9bY3Y3hcLPXZD0mx+RypMR0pFtvCbVMOd4219Lhg1m/Xrso+dr/KZvF3Aex+x1aCihofBm/tz202OZiM7SaybtMHSt2k/XpHT/A5JJL4SG08HXVPjvtN5/JN387cKu+dDf9VGD9dBZzUHXxyDtC/v56PPz6wkOlKP8dwgAYNwQCgPAWOuxNmmfj6+7erzxd+Y+0vvj0IO8+e8y+Juv4bYRqd4RvM1AAd+Afd38UHiTx7THeR++3CULl739+wwbzPoNG9KGbtdzttjwx2ujN1fyPlqdfeVd4SFwZ9kVofBdkn3wyf7LKfht4zWphjnH2/5a0mNMogQ7rmGvm9Dt3tF7rdlN6t/wZeteh4YyEqGw8fTjMtPjBonN0msN3CiaN9J0l9F5U1FSN4eHwJ0l+Hoe7nd+r+1mzntVAg1+vNDf9ZFfE3oc86NelZZB2hdedyMl7GarAIDxRSgMAOOsx5vq/h8RVL1CoD4ffxw2bHAN/uZruG02KeALPXZwX/dmKBx8HkLHP8ofLTzDnsPt3k6evSKVPjPi+pZRDYXb+q43NLsiqw8/IKkeYffEqx/us2SEzzZek2qYczz0ddFmgNeS0DEZYMbesNfNdmy3jec89NwN8Do0lFEJhY2GaUs8sC3NEnYDtn7ql6u9P/0QoQT/nA73O387t9vSULjrmJtTdyOFm80BwO5DKAwAY6z2rpCbVW1S6RksDxsauIZ50zbMNjsQ5BiEwus2Y/yH3cd2blc/3zsgjVzGIhT2efpTstDjhn6xF71Xyp/z6vayjdekGuYcb8a1PNBryWac82H3sR3bbeM535xzN4QRCoWl/qhkQm46p2XgtYTNz34hd9fwfwDzleCf0+F+52/ndoTCAIBxRygMAGOrx52rN6v0ukv1hgKLYd60DbONSO2euwK3GSgM6NHXYkDgRSi8bjPCmGH3sV3b9ZuBp2X/zXdJ+g0PyMKDj0v1009LbXnAa2RD10ZUQ4TC6mlz7b0oYBtbXvQ+qfSbMbyN16Qa5trY9teSzTjnw+5jO7YLrbuxslWvQ0MZmVD4ihR7/fHGK9P3R1yr+tnPSKHf/p67IImXFmXm7Y9I6cKnZO3pxwf8HT7c7/zt3C70d/0b+iy/1RJ2zKBPAwzSvvC6GymEwgCw+xAKA8C4Cr0T/maWe6UYlgpvJLB45iOSDdy215u24d7obenNoa5/IPBO9yMfCoeO/+bfdGkzwpjtCnetgbYzYzkTMvsu/sqylC5fkUbAmA58jWzo2ohqyFBYmdejZNB2Xuk7C3Ebr0k1zLWx7a8lm3HOh93Hdmw3Zq9DQxmRULhmXm+izeg17eq1ZrQn9FNK179DZu6/KLWngtaeGvR3+HC/87dzu9DX8cMPR3tN2LIbzT0pC4eD6vZZExwAsOcQCgPAmKouLgT8B//ml+S7Qt5BhL75j/Cmo0egHf6mrSb5kBvl9Hyj9/GHZDJgG23nwqe9On1U3xYy1iHrUdbff29w/VEJhUPfMIbfmGtYmxHGbEu46zPIdqHnutcse6O2HBKqjGsobPQLnnrPQty+a1INdW1s92vJZpzzYfexLduN1+vQUEYhFH4y7JyElBc9JNWeoXzY7+IFyX/MqxLk2cdlpmubZgn+HT7GoXDE14TGB98bsK0pgX9wHqR9z0j5DcF1uVkcAMCPUBgAxtGzl0ID0k0vPxcy4yX0zX+/O3ybt5T3hK+FHP6mLTyw6vlGr8dYTb7p8f4f8TRvqKdDZoKGrrkcFgSMTCgcHpLEFyPPeYxkM8KYYfexHduF1e39MdvwN+zjHAqL1KX0moBtbbnetLXHH4zCxnKzr0k11LWx3a8lm3HOh93HNm23Xed8qPO9GXY6FH52uGWm4ndcCr+eQ8/x+6TiVQk08B+DxzkUjvKaUJfiq4O3DV5+YrD2hbXN2eqbKwIAxgqhMACMo7CPIJvS8+ZwoXqEVKGztsLfoDi3PCK1kJlGjY89JMkeN7sJf9MWHlj1C6GriyFrgZoyvdwjpXrq8fC1Um8yb4DDJtyEBQH9Pma+oRBosDeMjQ+9N+QausvUD18AVgP9iRfdJYlXvlfyulbkhy7K6mefClwiQW1GGDPsPrZju9C6Lwv/Gaif77EG8ViHwsbTH5Fsz5tZ9Xht2KZrUg17bWzra8lmnPNh97FN243T69BQdjQUfkaqd4Rdrzq+nwr/ee81/qHneMH8Lg7Z5tkne65BHPx7f/vC3abBt+sVCmsJ/3TEs+668oP9d9yA7ft0+JI+vT61obOXJw6any1dD/qOh6X4IV0H/ympM8EYAHYlQmEAGDvPSHku+D/0dQ3g0jCZsBH6MUZTJgNnbX1GCi8Jrq8l/rqHpfLp9TeIjc99SkpvW5KJgLr+Ev6mLTywagVNzz4j9U/XpPzJjnkwfe663lz7tb4eKDx9RVYffkBSzw2uryXz/h5zbUKDAPNG+7x3gvQYH7rUHpBtKAQa8A1jnxlkqbdVZfVz6+8C3fN3xztC38Q6ITfW2YwwZth9bMd21TsC6nkl/rpHpGrH0L02L8pCv7v1j3sobOhrSa8+TpdCZlFv0zWphr4ut/O1ZDPO+bD72K7txuh1aCg7GAr3ugFmaxZrr6Ul9I8VQRlv6Dq4plz/Dsl96DMDXf9agn/vj38orCWR8/+30LPS6Pd7IPQPzoO272kJ/2N/Z7uMpz8jlXcVw/9gqZ8a8//3CgBgVyAUBoBx0+PGVmFr3EbSa783Ba8xuBXrGoe/aXuq90fT/SXgjb7eJKpnGDdA6fvxy9C1RztLRzCwoRBo8De0jfPvi9jOfuUdoWuAbkYYsx3hrt8g2/X6Y8pQJewGRZsREPa1OaFwvzAidv29Ugr5AdqOa1Jt5LrctteSzTjn2xXuWkNsNy6vQ0MJDYU3q4SM69Pm90HYzPTr3ytlXxbYay3w4JA9bC3o4UvwOrfbF+42Db5dlFB40BL+B+ch+jXoetI9SvaDQX8hAACMO0JhABgzvUKo4ZaOsHrNQA65gUxoANC/OCEBdK83bbV7wj+63VYCg5anpXJHn1maEUqvj7+3hN5Vv7OYcf24t43aUAg0zBthMyZvjjimPUqvj6JuRhizHeGu30DbPVuTfFj40qcE/wy8TypB19eGro2oNisUNvotIxEahm79Nak2dl1u02vJZpzzYfexrduNx+vQUHYkFO79R5mu0PHZz/Rc2iFoZr/eYHOo69+8JgRtl1oOOndjHAqH9LNfiZvrMezTDcP2q98NQKOU3u0CAIwzQmEAGCu9ZssOv3SE1Qhd39G8wZkL/ljuMG844q97VCrLwW+mer5p67FGXlsJvaHb07J6f4+PR/Yp2u5oH5/sFbC3l7b+bigEGvKN8LNPbSjgmr7nUz3fLG5GGLMt4a7PoNs1LjwgiR4BaHe5SzLv/4w747T7e4P+ASbKtRHVJobCRr9lJEJnnm3xNak2fl1uw2vJZpzzbQ13jWG3G4PXoaHsQCjcK7AN/WNMj5sgBt4g8tnPhN8kLaQ46Yek+vQlyQUd59VB7RrjUNj8N8jq+cF+L/R/TRi2X8+a/067t+/SXWElbv7brx7pv3sAAOOIUBgAxkn9UUkH/Ee7W/otaRBFryUk9COngevcmWZ98H3R3vxcf5dk76+5bzDC3kz1fnMjUitFeXPzvt53Qf/sRVl4wzsiv0lyDi5J/kMh66CG0Y/v3hy8P39J3e/b74ZCoGHfMKpnZe1DD8j0weDtg4pzc1EKH+//V4jNCGO2K9y1htmu8clHJBNhxrA7bp/0wtCQZUYm33ap+X2/zQgI+9rcULjfjMXOj7G327prUm1aSLiVryWbcc63O9zdUJtH+3VoKNsdCvcJd4s9zkHPP/AG3Tjz2bpUeqzv7C+ptz3uBYthf9i+V4pd/wGzfeFu0+Db9QqF3T9Mf/pRyfb77wDffxf1tpHf8ea/0z7+iGR7rN/dVZ47xH/3AADGDqEwAIyR+oP3Bv/HuykbWzpiXeibZ1OC1/3zPHtFKvc/IJmX3iVx301l9A7xqRPvk4WHP9X2pmfYUNj12YtSuKMoKX8Id/2CJA6/QzJ3PCLlyxHH4pnPSPXBh2XmxDsk0RHoxXVfb3q4/aZRg3r2Kak9/LBkX3mX7Pe9Ubd3zV94sCZr/iHdUKCysTeMrmefkbWPPSoLbzJje7i9zc3xvVeybx9gfI3NCGOG3cd2b+c/3wlfsOUc1J+BB6RwoeMN9rPmnAUGOAEByWYEhH1tdihs9FlGonXDqzBbcE2qzbgu22zFa8lmnPPtDnc3o80j+jo0lO0MhfssAxG8RIPfFSn22D55T+d0YY/9fXx4oe2PI3E9T++qSq3jNIX97u/+Y9j2hbtNg2/XNxRWIf8doOOTu//xrvEJtwm/4+VZqV9+XApvf6+kzc+W/7/VtNjXquLHfDcLBADsaoTCAAAAAAAMIFIoDADACCMUBgAAAABgAITCAIBxRygMAAAAAMAACIUBAOOOUBgAAAAAgAEQCgMAxh2hMAAAAAAAAyAUBgCMO0JhAAAAAAAGQCgMABh3hMIAAAAAAAyAUBgAMO4IhQEAAAAAGAChMABg3BEKAwAAAAAwAEJhAMC4IxQGAAAAAAAAgD2EUBgAAAAAAAAA9hBCYQAAAAAAAADYQwiFAQAAAAAAAGAPIRQGAAAAAAAAgD2EUBgAAAAAAAAA9hBCYQAAAAAAAADYQwiFAQAAAAAAAGAPIRQGAAAAAAAAgD2EUBgAAAAAAAAA9hBCYQAAAAAAAADYQwiFAQAAAAAAAGAPIRQGAAAAAAAAgD2EUBgAAAAAAAAA9hBCYQAAAAAAAADYQwiFAQAAAAAAAGAPIRQGAAAAAAAAgD2EUBgAAAAAAAAA9hBCYQAAAAAAAADYQwiFAQAAAAAAAGAPIRQGAAAAAAAAgD2EUBgAAAAAAAAA9hBCYQAAAAAAAADYQwiFAQAAAAAAAGAPIRQGAAAAAAAAgD2EUBgAAAAAAAAA9hBCYQAAAAAAAADYQwiFAQAAsLXO5SQWiwWUCYkfysj8mZo0vKqDq8vqUlbmz3sP0cfmj9faUsqcy5xUvMcAAAAYfYTCAAAA2FpeKDx5eEbyc/n1cjwtiQOO+734rWWpe9UH8kRBUmb73DnvMXrbgvEiFAYAABg/hMIAAADYWl4onFpa857wq0tlNm6+78j0fUHf74NQeDCEwgAAADAIhQEAALC1eobCqir562ISuy5vvlrXuFiU3JGE7He85Sb2xSV1vCCrV70KXctSrAeTfbft5UpF5o8lZUK3c/bL9FxF6mf1WCkpPOHVUdfWpDyXlvi+5jEmptKSW15tWwqjFZiafeaPxFv7TAa1ZYD9lc7lJan1TL9mHmrW2Mh4RTm2y9+PfUnJnq5JjVAYAABg7BAKAwAAYGv1DYVFancmTJ2UFC57T1xakKSGk4dyUjhTlvJKURZuSYpjnnOOlZpLTVxZlfJ9M5Iwz6Vv1zqrzeejbBvmakVyUxp4piS3VJLy8rykb3AkPqWzmX2hcKMqefN8q95KSQqzKTcsjc9WWmFqM8SNm+0nJDVbkJKvnnNreT10HWh/jjj7kpJbLktpqSCVK+YbGxmviMeWKyXJaOBs6uXNsZtjk5Dpw3ru/KGwGUOzbexQQYaY+w0AAIBtQCgMAACArRUhFK6fzrh17LIG1dsTsn8qJ5W2qaoNKd+qaxD7AsiA5RAibxugOjcpMWd6PZxWNij2hcK1xaSpl5VSR8LceCgrTiwpC5eaj5shrun73bXmE57KbHtbBt1f5kxb5zY0XlGPHTY2MzrLm1AYAABgrBAKAwAAYGtFCIVtnX5r3TZD0ayUbfg5wBq5Xdt28ZaxOO6bweup3a3b2lC4JoUXauiZl9KKzrj1FW8mru1r85i+GdCe1vPD7s+/jEUP/ccr6rFrsnBjyNi4s7x7h+0AAAAYLYTCAAAA2FoRQuG1+6bdOp3hbqO+JqvndJmEeZk5lvTWy/WFoj1C4b7bdqnIjLazY1avy+2D3dabCdujOLc1V0cOC3Hbn9/4/qzBxyvqsZv1End2j01zljehMAAAwDghFAYAAMDWihAKV09Omjq+8PJySbK6zq0bTE5I/MaEpI/PS/64t/ZwaMhpRN22U6MsWW1n1FB4tn8MOlAovIH9DT9eUY8dHgrrMhOEwgAAAOOFUBgAAABbq28o7C3bcHBBmpFjXYpHzOPrslJ6on2xgtYN6UJDzgG27RK+fER7GOstpXCjbW+4aKHwRve3kfGKemyWjwAAANhNCIUBAACwtXqGwnWpzMbN9x3JnLZ3OvNmr57oiBmvrcr8QfN8z5BzgG0DBN5MTQPRjm3dm7PFJmXmbHtE2jg7I5POfpl5qPl8tFB4o/vbyHhFP/bqKT1PZl+BN+EjFAYAABgnhMIAAADYWl4oPHl4RvJz+fVyPC3xfRooxiQ+W/HNQK1L6ZguhTAhqbmie9Oz0lJOpg84MrFvohlM2pCzXpKM7vvYgpRWVs2WA2wb5GpZZrRN+1KSWypJ+cyCuyyD4+g+fdu2wlB7nJIU5tKScGLiHC60Zt1GDYU3tr+NjJcR8diteh1j01yywh8Km3r63KGChC8YAgAAgJ1EKAwAAICt5YXCXcXZL4kjWVlYCYgOr65K4bi9UZoj+29IS/5MTeoX8jJpHs+s2Ai5IdVT0169aSnqriJvG+JKRfJH4jLhtXF6riLVuwPCWHOc4ux6sO0cSEh6rixr17zvG5FDYbWB/W1ovFSEY7vqvuOYsUkeL0jpdm0ToTAAAMA4IRQGAAAA+qi5ofAMSyQAAABgVyAUBgAAAFy6DMOExI8VO2a41qRwiJmvAAAA2D0IhQEAAABP/XRGnJgjiaPzUlwpS/lMQXKHdF3euOTO9Vl2AgAAABgThMIAAACAz9pKXtI37BdH18WNTUj8SE6Kj7m3ZAMAAAB2BUJhAAAAAAAAANhDCIUBAAAAAAAAYA8hFAYAAAAAAACAPYRQGAAAAAAAAAD2EEJhAAAAAAAAANhDCIUBAAAwPi4tSDIWk8mTVe+JYLXFpMRiKSk84T2xrdakcCgmsUMF89VeU5PS8aTsd0z/zXlK3V3znt9i9VUp3DIv/qtibSm1g9dAp7pU5tIS36fj4sj+mzKycL7ufS+6xrmcxGM5qXiPo9nAsa+acfWdz4mptORX9t5VDQDAbkQoDAAAgDFSk4WDMYldl28LANtVJX+dqXOkKIPHbpthD4fCZ2fc4DF5W1HKK2WpPtHwvrG1mgFwe1g6OqFwXUrHHIk5CUmfMuNypiC5QxOmbXHJnY8+PvXzeUm64ewgofBGjm1+jqbM8ey2K0WZP5oQx5zf6fsIhgEAGHeEwgAAABgr9eW0xGKTkr/gPdHpQl4mY47MrGxPINlt74bCOxXEBoXCI8O7HrMP+a/HWvMaObhgvuqjsSbluZRMxDQQHjAU3sixz+fcALh927oUj5hte/5RBgAAjANCYQAAAIyXRlmysZg4s8HRWGVWZ0ba4Kwhq8s5Sd+wXxwvVJuYSkl2adV8x/JC3NmSVOaSbvg2MTUjhTvClqCoycKN4cf3h8LVs3mZPmDaE9OP7Wel8Nj63OXwJS78+7dtq0i9x76aovTVcJcESHnLCazXadtblDptvHZ6x20WPQfBY1u+qttEbK/RuFiU3JG4F4xOSPxITooXm7Uqs/Z4XvHOS1BAXX8sfD9WK2C+UpG8revsl+Txgqy67R5M9eSk73pcVz+d6WpfkGb/HEncYsbw7sHC7w0d+1zO1EnIwiXvsafZnuhtAAAAo4lQGAAAAGOmIeVbNfidkXJXeliWGScmk3PNeYy1OzV4nZDUbEFKK2UpLy9I9qZmsJo5bSNOL7h0HJm4KSfFlZIU7q5I/YmCpGIxSS11zPe9tCCJXjOVfftznIRkF0vux/Zn3OP6PrYfaf/evqbiEu+1L2OgvurasEtmX9rXW5NuKJtctPNGo9Tp1JC182UpnkiY4yVk5j5z/BUNkUPG1mwRrb1mz+46ujFxbkjL/LLWm5f0DaaeMy3FJ0TqF+1xzfd1Pxeb23aGwq393DQjhTO+/eg4nlsfx+Z2ZrynbNtMm2ebM3WdW8u+wLoiOfNc7xnha1I8HFLHPc8xmTnrPQ5RPTndWsd3sBnRGzz2VfOztM/0+fCCrHqno35hQabNz1f8tmpXcA8AAMYLoTAAAAC21tWqzN+ss0Ed2X/zvFSHmG3ZJWSJiMZDWYnFkt7sRnPcG/dLfLbSHmB5wbGdUarhmRtcxjJSamub91H5jlCtdmeiz8fn7f5sOyxvPeTW/qLs3+6rPbhs7au1BEDEvnpBdHsY2JDSy8y5OVJo7itKnRDds3PDxjbquensp+dqWbL79ktqcdV9GBSWtrfFW2fajHXbfq6tynzH/pvbdd8kz52B3naMaKGw2/8T/pZ5wv4o0MOgofCGj62zpW8y+9B+eiV5stpjxjgAABgXhMIAAADYUu5H2H2hUviyC4PwQr7j/pmbXsjad51WLyxrbes9Dgj3musX+0PO5nHtTORg3v4CbnRXcz/+Py1F70D99x/etmZAuL6vYB199UJX56aclC7W2wNZK0qdEO1BrApvf7CO9q4VZdpcM/3Cy6CwtK0t7h8RYh3r4zY1z8H6Mgmt7S43H1vdfYvCC7WDrvktD4U3eOyrFcnpTOp9Kcm5M8btjeYmJH13baDrAgAAjB5CYQAAAGyprQmFxVuTNyMlm7xeKUra7D+93BnFNqS+tioVXQbg1IxkbvLWsG0FlT2CS2+frfDMDRd7LR2hvP0F9dNdp9W3fd/999tXTHLnvMeufn0143Y6KwmdjavPO/slcSQnhZVaW4AdpU6Q7uC0Xyjcp73uzc46+9gtKCxta0vI+riujnEMC3/Dnu/N6/8YzhSuzul6xNNd4XjzDxtxmX/MewIAAIwlQmEAAABsra1YPkJ1hMBuYNaxznBbuLkvLokb05I9lZfsjb7g0YZngcFlXUrHzPe8Wb9uwN1z6Qjl7S80yPWHk/32329fjuTONx9G66vnWl1WVwqSP7Z+MznncOfSChHqdOgOTsPHNlJ7A4PvbkFhaVtbdjAU3uiawn5B/bQBrzuOtrjH28ixa+7NDttn4nvqJcmYbQcJswEAwOghFAYAAMCY8paLcAPV5kfl224E5oXGk8dLstaWbHmBVyss6xUKi7dOcVqKV5pLOyTu7L04RWt/x0pu0OvXnGXpm91s9N5/+L6aAaG3r8h9DdKQ2qLuq9cM6Ch1bJsihMJR2xu6fIQGnhMSP9E830FhaVtb+i4fYep5M2K7+9AU9nw/btDvdM/urZ/OtB03iqB+hofCGzk2oTAAALsdoTAAAADGVmNlRhwNVM/qzMeOwNKbAdo1G/LivCR9wZmY/+8VCts1djOzOXOMzpvHBfH21xm66RqtU+b5zrWGe+4/ZF/XqpL37ytqX8/lJXEg3hXsNs5oSOiNX5Q6IbqD05CxjXxummF/1zrRl9uXPwgKS9vb0gzcdb/ts6G9G81NzUvzlnVBfWgKe74v76aI7YF0rTkufde/bhfUz542cGx3+YjO685o/mGj93UAAABGH6EwAAAAxlhFck5M4lNxid3YEXJdKUlGlyfYl5L8clnKum7t7LTsdyZkQpdDaAWPfUJhaUj5Vkccx4kY4nn7M22K25t0Lc9LWm/aFbBGa+/921C42Q93X2cWJNu5r6h9bVSbwbSpl10smnplKS5mJWm2dQ4Xo9cJ0R2choxt5HNjmnMuJ3HTf+emGSmcMXWX85LSOlM5qXpZZ3Pm66Rk7jTjc7EZuXe2pXs/3jmJxSV3bj00jR4Km2uvLcAOo7Oam8dJnzLjeaYguUMTXceNsr+BQ+GNHPtKWbJt14Geo5RMmHrx2Ur3DGIAADBWCIUBAAAw1pozGmOSXOyOaxsXC5K1Ny9zb5iWl9Kluvexerv+cL9Q2OzHnZEcfIxu3v5mK+66uckDGsrpeso5KXUFwk3h+19vW6W1rwmJm36UOxobra9GvSoLvnWCdT3f9FxZ1q5531dR6gSIHAobkdtrNC4WJXck7gaSWjd5vCCr/rWpW+tWm+97wXVQuFt/zLcfbxxLl9vjzc0PhY1ra1KeS3vjaa6FmzKycL5zQZCtCIWNjRy7viqF40nZrwG++f7EVFpyy6tdS5kAAIDxQygMAAAA9HMuJ05AULhpQvffP7AGAAAABkUoDAAAAPTUkPJxp3st4E3Ta/+EwgAAANh8hMIAAABAoJqU5vIyczQhTmyyYw3WzRBl/4TCAAAA2HyEwgAAAECgVZl3b+i2X9KLq1twY60o+ycUBgAAwOYjFAYAAAAAAACAPYRQGAAAAAAAAAD2EEJhAAAAAAAAANhDCIUBAAAAAAAAYA8hFAYAAAAAAACAPYRQGAAAAOPj0oIkYzGZPFn1nghWW0xKLJaSwhPeEzvhak1KpzKSmpowbYmZ4sj+G9KSW16Vulelpb4qhVvmpXevdtBG2ncu5/bfOVyUNe+pdmtSOGTG51Ah8Pv1SyWZP5aS+D4dQy0TEj+UkXzQOG5YXVaXsjJ/3ntorC2lzDG3+lqqS2Uu7fXRXCc3ZWThfMTeXTXn5nhS9jvN8ZmYSkt+JXik+2mYcxWP5aTiPe5Lr4vj6+fGOZCU7NJWnBcAALDZCIUBAAAwRmqycDAmsevyPQLKquSvM3WOFHcunLpakdyUBmUTEj+Slfxc3pSspL2AeMK0reZVVc3gcYAwbpttqH1eKKxh5/R9QWFlWChcl8ptCXF0vA5mZGaxKOWVspTPFCR/LCkTGkLeZK6Dq171zfBEQVJmv7lz3mNj60PhupSOORJzEpI+Zfpo+pc7pNdJXHLnG16dMOZa1+vMbrtSlPmjOmZhYx2ufj4vSTdYjnie7TW+LyW5pZI5dkkKtybd8xWfrUi/lgMAgJ1FKAwAAICxUl9OSyw2KfkL3hOdLuRlMubIzMrOxVLNmcpxyZ3rbkNtUUPG9vbtjVBYw8uMlK54z7cEh8K1O3UMHZm+czUwYGzOao1JvM+s8YEEhMJbzrtesw/5e1lrjsnBhbY/HnQ5n3MD4PZt61I8Yrbt+YcTn8aalOdSbsjePE/RznNrNv5l7wlP87wlZeGS9wQAABhJhMIAAAAYL42yZGMxcWaDo6vKrM66tMFWQ1aXc5K+Yb87g9GdpTuVcj/i7otkmwHcbEkqc80ZqBNTM1K4I2wJipos3Bh+fFWZ7RGuee3f74WZzbq+4t/vWlnyR+JeYKezjnNSvNgZkUbpoy/YvVKR/M1e3X3Nj/trvdpyVpIHzNjFHNl/c97Ua27Xq331x4qS69c+LxSeubsZuDrHSh0zuANC4SslyThBdf0aUj4Rl+TL1mdd2z6WzuUlqUsa7IvLjBeYNi5qWxOtZRb0e6njBVm1M4394bVbmucvcKZwfVWKs3a5Bx3v5rIgnWcmiurJSd/1uq5+OtN93E5umxNdAWzP669Ds64jiVvM9X931PC/LqVbzDX0wkJ3aH1x3g3rtzVYBwAAAyMUBgAAwJhpSPlWDX5npNyZwjXKMuPEZHKuGbg2Zy1OSGq2ICVdemB5QbI3NYPPzGkbN3qhpOPIxE05KerH4O+uSN2bNZpa6vgY/qUFSfSaqWw0ZzPHZeZM/4/w1y+WpXgiYeqnZV7beLHZrsb5vCRMXyYO5aRwprlsQmtZAd8M5Gh9tOFmXOJTtm5R5o/EzXOTknnZtEzckJUFc5zS0kxzGQFvlmpo+7yZus5NM832Lc9L+gY9bscMaS9s1ZCw5oaO7e0KCoWbgagzcLDY7KMjzr6k5Ja1L4VmuO2tRd0aS9P3hVuaSx20gucrq1K+b8ac25ikb9c6zbVxu0Jhu2yCk5QZd9kEu2RD57IJpp55Lmyt5KY1KR4OqeNeZzGZOes9DnLVXO/7TB8OL8iqN6T1Cwsybc5f/LZqpJC6enK6tQaxDdWjhMlh+s7kBwAAI4FQGAAAAFvralXm3ZmpOgN1fnPWgA1ZIqLxUFbWP7pujnvj/u71Tb3geH3GqxdKxjJSamub9zH8rmUNEhE+ml+T0ss0cDXb74tL+vi8FM5UZPVKcEzXHcY11052jnfOlG1I+bjjW1Ygah/tMWKSuts3t9ObtRy7bkYqvr67fYxNS9HreHf7vHWbzdi0zRS9tirzuuazf9kDXyis/WoG8P5lJLpD4eptGi6vHz8q28fMmfZxrt6ekP1Tpv3tg9T844K/XxHWFK7OTTYfdyybsHp757IJ0UJht+8n1ke2JeyPEp105vdNZh96LK8kT1Y7rptous/zgGxg3m/ZCwAAsOMIhQEAALCl3I/H+wKrXssuROeFksfLvjDUC3H7BlJeENfatjuUtJqzHv0f4W8e185E7qd+sSQLx9OScJdl8Pp/YH1mptUVxl32AsE5nYmqs1bXS3PWbp9lBbr6aI/RGWZ6wWVnKHl2pu0YXe1zQ/lYx1q2Tc0x8y1p0BYKG17f1peG6B7/0OUPvKDUjmWzdLaz39isa9bPrs847xsKB113nitFSZttE3cOEod6N04M+pmIEgprCKuzs1s3e7OzlickfXetu419dJ3nQVxdlYXDpi3OdFdgDgAARg+hMAAAALbU1oTC4t3oKiMlOyXSC+XSy51zJBtSX1uVii4LcWpGMjd56+m2QsjwUNjusxXMuWHokB+Nv7omqyt2CQhHppfWw8OuMM4LUsOLI7nzXl1Xvz52hpuWFwp3nhP3+D1CYff73WvZujpD4M7HRvsyEmGhcMBM4XpFFubykvfKzGFv1m7EULhRN+fgnC4rMS8zx5Le+sK++n1D4eZ4BQe/IWPZk9f3IWcKu7OWA0LY5vjGZf4x74mIus5zVOa8uOG0actC15rXAABgFBEKAwAAYGttxfIRqiMEdgOtjnWGa6ez7rq8bpC6Ly6JG9OSPZWX7I3mcZRQWOpSOma+d6Tozmp1A+6+S0f0s9ac0ezkWvsJDl3bw8kw0fpoj9EZmO5MKGxa3RxzdxmJ7vGPuqZwZ5+C+2hcLknWXe/YHEdviHdjwl3SI3+8Y9b1DoTCw68p3LzhYeCs5XpJMmZbN1D2+tTsu1cCr/WA8xzF5YKk9YZ7U+ZcMkMYAICxQSgMAACAMeUtF+EGtt4avLf6AjIvNJ48XpK1ttTMC9NawVivUFi8dYrTUrzSXDqg7/IAa+a4Tu961bn9beFbVxjnBYJ9jxW5j/YYnYHpkKFw3+UjzLY2IAwMhY3WMhJ5yXeOv9cvJyjw9OnsU3AfvevkuqyUnmjfW3PtZF/9vqFw/+Uj2tZsjsD9Q4PTHcQ2g3HfOHbZ+VC4Ya4DvSmhc1N+8/7YAwAAtgWhMAAAAMZWY2VGHA1sz2qI2rGsgxdGds20vDgvybZgrHcobG/alpnNmWP4byQWphlQux+lf6xzKQvjSkmyGix6s49Vdxjn7aPjBnCmMVI5MSnOgRkp6/OR+xgWmA4ZCttw1Oy/LQK1N5qbmpdV76nQUNhoLnNg6ne0VdWWpt3Z5dN3rrbGqc1aSWbc2b+d7QzpY+cSDbat/vp9Q2EN9L0lKzrC2uaN5gZfssHeNLE9YPdmUvdZHzusLc1xHXyZk+7z3MPlgkxrIHy44xoAAABjgVAYAAAAY6wiOScm8am4xG7sCNCulCRjvqc34cov603aSlKYnZb9zoRM6Mfdo4bC0pDyrY44jhPhJnYeLzDTsHNiKi1Zbw3c7JG4TGhA2bEObHNW6KRk7ixJ+WIzAm2cy0lc69r2nylI3r2JmG894sh97BOY9gmFe7XPuWlGCmfMsZfnJe2GtHHJnfMFnD1C4Vb4qW3oGv+GVE8m3bWR9eZ82VMFKenN9pYXZMYdB7ONk5Ds0mprpmxwH3UJEG3XhKTmiu7N+kpLOZk+4Jgx0vWdffW9GbaTxxbMsZphdNc+9eZuU3rspMy03dzNXIdmHNd77o1t6HVl6RISzXFLnzLtM+e5ue50xzgG7e9KWbLaFnP+s4vaNz3/Kfcaa29LNOGhcOex7Zjul9Tx9TWe/aXU948nAABgJxEKAwAAYKw1Z0vGJLnYHdc2LhYka2+65uyXxBENq+reR/bt+sP9QmGzH3dGcvAxQtVXpTiXkdQN3vFNcQ4kJD1blNXOqa+tdZdNvcPFVjsaF4uSs0Gyrsl8Q1ryK+2tjNbHsMA0Wigc1r76Y/72TUhcj325I4rsGQoblxa6ZjX7NZ6oSGE2LYkDGkLqcZrjkF0sSa1jHIP7aFxdlcJxe2M5bxzP1KTuzdKdWbFtbkj1lIbqWq95o7vAfeq5NW2Ka/Bu2qTBv+6vvedRQ2Hj2pqU5+z+TPtuysjC+c6LJGR/pi3rfWu2JbccMru6j8ihsBeeN89HcAk93wAAYCQQCgMAAAD9nMuJExQ2AgAAAGOIUBgAAADoqSHl407bGsB9LSyI/Pqvew88X/M13hce6ngPPLulzu/8jvcAAABgdBEKAwB2tQ984APux1i/4iu+wnsGAKKqSWku761fO9mxvmsPDz4okk43A8S3va353Hd8h8j//b/rISJ1dm8dQmEAADAGCIUBALsaoTCA4a3KvN44zdkv6cX1m5n19OEPizz/+d4D4xd+wfwXt/lP7scfbz7WEFEfU6dpt9YBAAAYcea/XgAA2L0IhQEAAAAAaEcoDADY1TYeCteleKR5J/X0cshqov3urA8AAAAAwAghFAYA7GobDoWvFCUdm5T4lCOxgwtS855uQygMAAAAABgjhMIAgF1to6FwbTFpts9K8fSMe6Op/AXvGwAAAAAAjClCYQDArraxULgmCzfGJHasJPVGWWacmDi3lrtvNtU5U9h9nJLC2aKkDzRvUpVaXPW+CWBTXFuT8lxaEvozZn7+Yvvikp4ry9o17/stdamYevF9zWVgnANJyS6tmmc7NWR1KStJb38TU2nJnQn6bEDUehHZ14snvMcDWFvJS255zXs0YjbwCYrN7NdG9jX0ths4pwAAANuFUBgAsKttKBS+kJdJs23mdDM+qsxqCJSW4hX34brAUNgRx4lLZrEk5eUFKV30vgdgE9SkcFj/4JKQ9KmilFfKUjyVlrj5OXQOF3zLvNSldEx/bickNVuQ0kpJCrMpmTD14rdV2/7AUz0Z99UryvzRhDjm53j6vvZQMGq9yIYOECuSM/1ILW1OeLrphg6FN7NfG9nXBrYlFAYAAGOAUBgAsKttJBRuhsBZKdvkyLzRd8y+um441xl+eI8TtzM7GNgKjZXmci4zZ9vn7TceyroB7cyK9/xaUabNz2LyzvaZvNW5SfMzmpGS/VF21w7vrNeQyglTz5lZfw2IWm8QQweIIx4KD41QGAAAYDsQCgMAdrWhQ+HA5SKqkr8u1n3DuZBQeJiPTQPor3p7QiZiM1LxHrdcLUnGH+Q9UZCUeZx9qD2tXVtKtYV29dOZ4BDP/bSA0/pZjlov1NVVKRxPyn7z2qLLykyfqkojKEC8UpH5Y6nWkhdaN3EkLxX7KQWvX+733OLbvt+2YWw7LjbbqLOpQ5fk0KU7TmVaS2jokhyZU5X2JTkCXxfX9++OQWxC4hH7VT+bl/QN+90/zNk+lXvltb3GqF/7Nzq+QecUAABgxBAKAwB2tWFD4fpy2mznm3Hoac4w7LjhXGD4QSgMbLuOJV/cdcFf6EhsakZKXoDYeKIkM1O6zERRbKZYvU3DwVx3yNwoS9bsL3V3889AUesFq0reHFeXvMjqsjJnCpI7tF+mD7cH1HLV7Ev/IHVDWuaXy1LWJS90TWSz/9hU3uzFaKxJdWXenbWcOKHLZ1RlTV+qomwbxn3dmpT4lCMTh/JSbFuSY32sWkt3xOLe0h3rS3K0Ld0R+Lqo+5+QxNH51v4TGg7bP7SF9EuDcw3dk7csuNuVl00ddyx7zM4OG6Mo7d/o+Lp9JRQGAACjjVAYALCrDRcK16V4xLzJ1zf6IaVtBnFg+EEoDLRcrcr8zTrL05H9N89L9ar3/Kay6wx3BIXXzPNH97f9/O4/Vmyb/VqZNc+/0L8WsdVcQiA224yBo9YL0vxDU9y8LvgbZ9p2SNu0HiDWT2clvq87UKwtJtvqBS1vEH3bAN7rVvuazNK1JEezH91Ld9TPdCzdEfK6OHmi0raWc+es7aB+BY77xXlJ7ItLvufrbMAYRW3/RsbX7Wuf8QYAANhhhMIAgF1tqFD40oIkzTbOsQXRG1i1l6LkDmqI47vhXEj4QSgMNFVP6gx7/blpFqdHeDqcupRv1RvAdYeuxSMT7uzc9lmhjiROlL3lAhpSPm7adajgmw1r+cPeqPWCeNve2LH0jKGha6QA0X1dScjCJe9xQGgZqmvbAG6doCUwzHF0duxtOg9Wb9wX3A93JrQur3Pc+4NZyOvizFnvsdVZL6BfzdBVb9xZkdpAf1Do3NcA7d/I+LqPCYUBAMBoIxQGAOxqw4TCtTsTZpuOJSJ8mjPNYpJc9GKFkPCDUBho2tJQWGcCa/Abi8vMQ22r2obMzhVpnJ1xlyPInGnW3/qZwmvNGcGtwNHHXfIiIEC8WpfahbKUlxckfzzdWsO2V3ja0nfbAKFBptd2Nwzv0Y+2ekbU18Wu5wP6pTPND+k5bvZjYiolmVNFqfbNazv3NUD7NzK+oWMJAAAwOgiFAQC72uChcMjN5Py8m9DFrvPWkIwafgB71VYtH1GvSO4GXTIiKfkLnTFf+Ozc1s+5F+Ju/ZrCPcLISwuS8AeIbQGoGa8bEpI6NiMLs80/RkUPT3ttGyA0yPTa7q4rPECoGvV1sev58DC28URViovZ9RvOBQT+7TY5FI46vqFjCQAAMDoIhQEAu9qgoXBjZcYNG9LL7TMOO7XdcC5q+AFg81wuSUZvNjaVkdJl77k20UPh+ulMcIjn3bjOLnkQtV636MtHNF9bUjJ/of01qFmvd3gafdsA7utW0CckzHGcmEyejLh8xAkvMo/6utj1fHgo3OZKWWb0eMdK3jIgQTr3NUD7NzK+bp8IhQEAwGgjFAYA7GrD3WgOwEi7WpGcGwjnpNJj1nHYTcWay0f4/vhzpShp8zh5pz8qbEjlxGT7jeui1gtQP5MRp6st3s3xWgGiN1u1a4mKupSOa71e4ekg2wbwwtmuG8EtN9ttw+J+N2qzS3JsXiisNwqMy8SRYkf4uyrzN5r+DhQKD9D+jYwvoTAAABgDhMIAgF2NUBjYfaon9aZyMUkczUl+Lt9VFs7ZYG9VFm5ymjeamytIaaUsxVNpSeiN0w77w72GVG/TfTqSvFXrFWX+aMINCaeX2gPgaPWCeAFw66Z3Rcm3liLwzRR2++ZI4pYFt73l5XnJHJwQZ58p/uDRzmw9mJPiSlXWGoNsG8ALZ93tj86bfZqxmtOb8sUkPusPim2QHe+4eV/HmA4dCnf3a+2+aXeME0fzUjhj+nWmIPkj2te45M63h7vtuvcVuf0bGV9CYQAAMAYIhQEAuxqhMLDbeGGd+bkOK/6ZoXJtTcpz6zcDcw4kJXOqLGvXvO+31GV1KSvJA81ZnxNTacmdCQp6o9YL0NaWCYkfyUvlvhnztT9ArEvF1169qVp2sSJrayXJmMetG1watdOmHW49R3Ln9Zno23ax4eyZqswfiTdDUjNW2aVVs9cO2o9TmdYYuPUWq+31hg6Fg/plnjuT860l7Mj+m7JSeCx8jrAVtK9I7TeGHl9CYQAAMAYIhQEAuxqhMABEEBbaAgAAYFciFAYA7GqEwgAQAaEwAADAnkIoDADY1QiFASACQmEAAIA9hVAY2HbNu1nrG6/QMlvx6m4x3gCin8sFmXYiros47PXkbjfc2otrK3nJLfvWDg1AKAwAEfDfBAAAAHsKoTCw7bxQ+GAm8I7pbjkd8YY1G8UbQPRyuSiZKf1DxaiGws2fpbYbSgUgFAYAAAAAoB2hMLDtvFB4u2YDA4O6VpfqUlYSjjdzfavvoE4oDAAAAADAtiIUBrbdYKFw/Wxe0jfsF0e3cfZL4kheyr0zsKYrFZk/lpL4Pi/Y87atXPG+rzpndtpw7mxR0gccd5vU4qr3zajqUjmVkaRub/btHEhK5lTFPOtzbU3K/erYtlxclcLxpEx4fZiea9arn5+X9NSEu/3Ewayp12hup4K23ReX9FxZ1q55dVTP/tZldSnbu41GlPMT6RwOMiYbOD9R2rK2lHLbMHFoXqpnvGMOM1O44zzsd0PmCYkHXoedx+gz/k8UJKV9aJXwNhIKAwAAAADQjlAY2HbRQ+HGuZxMxhxJ3rIgxZWylJc1CDXbOjNS9mWgXa6WJevExLkhLfPLZruVkhTm0hLX407lpepVCw7xHHGcuGQWS+Z4C1K66H0vkpoUDmuINyGp2YKU9LizKTeUjd9WlWaTbZ24pE8Vm23z6jiHC+a7HrctkxKfmpDE0XnTf1Pv1qQbZqZelpH4vpTktW9BY9La1pGJQ3l37Iqnmv13DhellYGG9ndNikcmzD4TXhub2+vMWX8bo5yfaOdwkDEZ/vxEvZ7WlrOSXVptBrDuMTcSCvvP4fo4xg4udPTLf4wI499Yk+qKab85XuKE1qnKmq8PfoTCAAAAAAC0IxQGtl30ULgya+q90BcKqovzktgXl3yPdVvrp7NuaNoZ5NUWk+3hW2CIF5PE7YPODm5qrMyIE3Mk+1B7Ole7MykTUzNSvmratpw2x5iUmbPtdepnsu62Myve815bJk9UvDBZ1WThRjMm2ofL3lNG46Gsec6R3HnvCW/btkDV0HpBx+jsb7MfSZnvDFwvLUjSt32U8xOlzqBjMuz5Gep6co+5kVC48xzamcid1+H646jjb3+WWD4CAAAAAIDBEAoD284LhcOKLyxuhrg6K7Qitavekxvhhm8JWbjkf9wd4rUeD6h6my5pkDM9DFOX0jHTxxt9s0RbqpK/znzveLkZIHptmTnrftOzJoVDpk5nsHm5uZRAez+cgH6YsdfZprd5c6VD+ls5YY7x7VlZ0Nm0baU5M9Weoyjnp3+dwcdk2PMz1PXkHnNjoXD7OTQC660fI+r4EwoDe5n3++BQYf3THztobSUvueVRaAkAAAAQDaEwsO28UPhgRvJz+e5y2hcNXq3K/KHmurlaJqZSkjlVlGrU951X61K7UHaXGcgfT7fWF+4M7UIfD2RNiof7vUH33sTbkLNNxxv8wLaEhADe+rJhIeO6AY5hng8tdgmKKOenb52NjskAhrmeQscyQGf7wtobWM8eY4DxJxQG9rCO18cdFe21CAAAABglhMLAtvNC4QjLR1iNJ6pSXMyu3yAsFpfcue4IsaUt/HNk/w0JSR2bkYVZXaagR2gXFuJFEuUN+kYD0JBjDBoK21BxkGP0EOX8hNfZ6JgMbqDrKXQsA3S2L6y9gfU6QuFI408oDOxdg79Wbx1CYQAAAIwfQmFg2w0eCre5UpYZXVLgWKl5I7AA1blJN2Sbv9Beo7n2bo/QLizEiyh0+YjzOZk4kJKFixGWSjjhbR3YlpAQIDAUnpT8Be9xixl7JyaTJ3stH9GQ8nFzjFi29838wkQ4P+11NjomG9Svve4xtzMUHmT8CYWBvSvg94F9Lbm4KoXjSdmvN7WMTUj8SF4qV7w6qqOe3tQzti8u6bmyrF3z6qi21yYf//Pe7x99jWmW9fr1s/n1P745+yVh2lEmNwYAAMCIIBQGtl3UULgmhaNxmThS7AjrVmVeb7YWGjp6b5Q7193V8PG4475pDQ3tOh8PKPhGcw2pnJhshcX9bqqWOeP1KrAtg4TCATc4W86YY/jC4pD+NvsRk9TdHTGtu3bxhCQX9UZvUc5PtHO4sTGJasjryT1mQCgSpLN9Ye0NrLd+jGjjrwiFgb0rLBSelPjUhCSOzktxpSzFU2lJaDh80PeHt1Y9RyYO5Vv14uZ1wmktT2N0vDa1+J9vrEnVW+88caIo5ZWqrJmX8oapM2lev5O3LLj7Ly+bOlOmHc6M7w9eXh9ivdbiBwAAALYGoTCw7aLPFF67b9oNBRNH81I4Y95UnilI/kjcvIGMS+68fVfZ/aayelLrmO3Mm9GS92Y0c3BCnH2mmGOHhnadjwdWk8JhDZ7jkj6lb45LsnBLwu3D9H32bXZ3ncJsyp2p5Rz2BdmBbRksFHbHwAYDc81jxM24t96Ph/bXtnF9DHW5hZSuyTxlxtm7SVuU8xPtHG5kTKKL1pYO7jGDQuGAMKOzfWHtDaznP0a08W/NpD6YM+e4GcQEIRQGRoAua3Szzpp1ZP/N81KNerPLUGGhcMAfBJdS7a8xXr2211dDP02j7ZtZ8bbuem3ydD3f/QeqyqxpW+cfZy/OS2JfXPKt10RCYQAAAOwcQmFg20UPhVXtTM639qt5M31TVgqP+ed0Br2prEtlbv3GcnpDsexiRdbWSpIxj5OL3ttU741x3xBvIObYpzKSPKChnh47LfmzHXNQr61J2VfHOZA07au2z1QNbMtgoXDuTFXmj8Sb4aoeY2k1wjGs9n7oR4tTxwuy2tGV/ucnWp3hx2Qwkdri5x5zu0NhFXH8T2cl6V7njuTOe092IBQGdl71pC5rpD+rzeIMu4RSS3goPHPWe2wFvuaY14yu11Lz+9kxbbvNv8TQcKFwbTFp6sQlY3731jYcgAMAAACbj1AYwO7TGQBgTyMUBnbedobCw/0hSnXsM6xe1/PdoXD7DV+bf5zNnCpK1VcFAAAA2EmEwgB2n7BgAHsSoTAwArZx+YgNh8J2XeGwel3PB4TCnsYTVXf5m/VPaMRNO0LWugEAAAC2EaEwgB68N8juG9k+ZcOzvjZRWDCw64zp+dlmhMLAbrTRUNh309GW5vIRkyf9y0d019P12aOGwm2ulGVG10EPvVEsAAAAsH0IhQH01KjXpR6ljNKaiXsmFB7T87PNCIWB3WijoXDADemWM+L4Q+ALeZk09dLL/gi35v0xrlcobOocjcvEkWJH+Lsq8zcSCgMAAGA0EAoDAHY1QmFgN9p4KKw3m0scnZfiSlmKcyn3pqTxWX9QXJX8lKnnJGVmqSTlMwXJHZqQ+OFpSbSFwqaezgA+mDP7qsqa2YHOJtalMhJH81I4U3a3zR+Jm2PGJXfeHsF+2sN/o1gAAABgexAKAwB2NUJhYDfaeCicO1OV+SNxNwx2DiQlu7TaPYP3SsUNc7VObF9c0nMVqV8uSKpjreHa6awk92nA60juvPfcmZxvLWFH9t+UlcJj/iMQCgMAAGDnEAoDAHY1QmEAbcLCYwAAAGAPIRQGAOxqhMIA2hAKAwAAAITCAIDdjVAYQBtCYQAAAIBQGACwuxEKA2hDKAwAAAAQCgMAdjdCYQAAAAAA2hEKAwB2NUJhAAAAAADaEQoDAHY1QmEAAAAAANoRCgMAdjVCYQAAAAAA2hEKAwB2nUceeURe+9rXuuVnfuZn3FD4S77kS1rPafnrv/5rrzYAjIgnCpIyr1f6mtVeJiR+KCPzZ+texd2qIrnA/vvKbMWruz3WVvKSW17zHhncqBAAAOwShMIAgF1nbW1NvvRLv7Q7TPDKd33Xd3k1AWCEeKHw5OEZyc/l18uJjCQPOOb1y5HM6d0cDHuh8MFMe//95XTNq7sdmu1JLREKAwCA3YdQGACwK2UymbYg2F8efPBBrxYAjBAvFG4LIa2rFZm5zryGHS5KwHd3CS8U3ubZwOECQmEAAIBdglAYALArhc0W/r7v+z6vBgCMmF6hsKxJ4ZB5HXthQdy5so2yzDgxcQIC1MZDWfN6l5LCE+aBO7PVfH1xVQrHkzKhr4X74pKeK8vatWb9lisVmT+Wkvg+7zXT2S+JI3mpXPG+76mfzUv6hv3i+OqUO5ocpU63AUJh26+zRUnrLGpzjNTiavN7EfthWimVU3YWthnLA0nJnKqYZ42upTz849kxU/jampTD9mN1nIf95ty5y4IEtgsAAGDrEQoDAHatl7/85e4bdH8pl8vedwFgxISGwg1ZW8lJMubI9H3r36vMahiak/YItSHl4+b17kixGUq6YeSkxKccmTiUl+JKWYqn0hI3x3H8s46vliWrIfMNaZlfLkt5pSSFuWa92FReql61htnfpGlH8pYFd1/l5XlJT5k6zoyUG9HrBBs0FHbEceKSWSyZYyxI6aJ5PmI/RGpSOKwh7oSkZgtS0nqzKTc0j99WlUZjTaorpt3mceJE0eynKmvadve4/lDY7icu6VNab30/zmEvwFet8zAhiaPzrfOQ0HD44MJ6PQAAgG1CKAwA2LU+97nPyZd/+Ze7b+C1POc5z/G+AwCb4GpV5m/W2bCO7L95XqpXveeH1TU7tb1ML9akLVO9kHfD17ZZq42yZE3d9LI3T9ULMdsCSkNnE2u7Z1aae6yfzkp8nzcb1qe2mDTbrz9fmTVtsbOVrYvzktgXl7zXjih1gg0aCsckcbs3O9gTtR+NlRm3/9mH2lPq2p1JmZiakbJ7LgOWj+gIhevLafN4UmbOtu+nfqZ9fO12kycqbedwbSnV1i4AAIDtQigMANjVXvGKV7hvxLX8yZ/8ifcsAGxc9eRk6/VFS9BSDgPxQuFeN5pLnqz6QsWq5K9rP279tK6nnpaiXZLADSM7gmNXRXI6o/a29bmzgdztE7JwqfmwGa7q7NyK1EJC8Ch1gnmhcFjxj29HONtXRz+qtwXNsu7ULxSuS+mYadeNQTN9m+cmdrzcPF/edjNn3W+uG7QfAAAAm4RQGACwq9nZws997nO9ZwBgc2xVKBy8pnBdyif0eHGZf8x7yqjOmeda4aYXUh4rNZeOUG7oGDQT1Vuj+FCh/cZ1V+tSu6BLPixI/ni6tS5vK7TU2dGHJlp9nphKSeZUUar+nUSpE8gLhQ9m2kNxW077otd+YWrPfqxJ8bB53Nn3Lv1CYW8MbfDbpmN8w9pLKAwAAHYIoTAAYFPM3nlGpg7PjWT5pu/4ITlw8GWB3xulomMIYIxs0fIRwaGw4S4X0fF997lJyV8wX9dLkjHfz5z23eKsXyhs1xVuC3JNf25ISOrYjCzM6vII3aFl44mqFBez6zeTi8VNnfZoNEqddl4oPMDyEV1haqR+hATiXQiFAQDA7kUoDADYFH92+TOBQecolO+bvi3w+VErOoYA9rBhQmGpycKNMZmcq3pLR2Tbb+bmho5eaNym4i4fMXmyuXyEO+M4lpL5C75A2dC1h/uGllfKMqNLJfhnKHeKUmcTQuGo/QhdPuJ8TiYOpGRBb1rXNxSOsHzECe8IhMIAAGDEEAoDADbNa95yf2DYSelfdOwA7HE9Q+GGVNzlI7oDXncN3+tykjseE+fWjlmrXujYdYOz5Yw4rX15s1o7bw6noedxXcvYhpY1KRyNy8SRYkewuyrzN9rAN0qdMBsNhaP2w4xm4I3mvDFuhcX9QmGz5z43msuc8XpLKAwAAEYMoTAAYNP8n48/0RZ0/thMSV7wujIloOjY+MdKxw7AHhd2o7m5rKSnmksiOEGh6qUFScYccRxHZlbaw0kbOupSComj81JcKUtxLiUT5rn47HpQXD0Zb9a5ZUFKpk55eV4yByfE2WeKL7Rcu2/aDTsTR/NSOGPqnSlI/ohuG5fc+ebeotQJtgkzhSP2ww24D2tQHJf0qaKUV0qycEvCbff0fTYE9mb7HsyZcavKmja967jd+ynMNsfXOewLpwmFAQDAiCEUBgBsqlfk390KOhO/fFdgIEopu2Njx0nHDABsKNwMcf1F18ZNS255NWSWbU0WDpp6zkz70hHKho5nqjJ/JN4MKw8kJbvUua+6VObWb8imN4fLLlZkba25TnFycX3ube1MzrdOsGnbTVkpPNa+tyh1um08FB6kH27dUxlJHmjOIp6YSkv+bEc/Tmcl6e7Lkdx580TQca+tSdm3H3d8F6vt40soDAAARgyhMABgU33oo5dbYaeWHz/xQGAoupeLjol/jHTMAGB4zWUTnKAwldARAAAAAQiFAQCb7qW33dMKPBMve3tgMLqXi46JHR8dKwDYEHf5iKCbyRmEwgAAAAhAKAwA2HR/9OFPtELP+M+8UW76n38YGI7uxaJjoWNix0fHCgCGUT+34K43nNLlDQ4VJOj2dITCAAAACEIoDADYEj//2ne0gs/nvvwdgQHpXiw6FnZcdIwAYFj1M1l3jeCJgzkpX/Ge7EQoDAAAgACEwgCALfHgBz/WCj/jP/sm+Ylff39gSLqXio6BjoUdFx0jAAAAAAC2G6EwAGDLTN+62ApAf+RXC4FB6V4qOgZ2PHRsAAAAAADYCYTCAIAt896V/9MKQb//yG8FBqV7qegY2PHQsQEAAAAAYCcQCgMAtlTqFb/TCkJvfMXvB4ale6Fo3+046JgAAAAAALBTCIUBAFvqngc/3ApDf+Dn3xwYmO6Fon2346BjAgAAAADATiEUBgBsqX/4x3+U5C/PtwLR52XvDQxNd3PRPtv+61jomABAlycKkorFJDaVk2rDe65DZdZ8P5aTive4zVpFCrNpSRxwTB2t58j+G9KSXSzL2jWvTgT18wXJHUnIfkf3Ycq+uKSOzUt5zavgs7aSl9xywDdGVkVy7tgEleZ45ZZXpe7VHlTXeJzLufvOnfMeAwAAjAhCYQDAlrvr/nOtUPQHf2E+MDjdzUX7bPuvYwEAgWwobEr8tqoE5cJhoXBtKS0TZjvnwLRkTxWktFKW8kpRFo5PN8PdqYyULnuVe6gtTYvj7icpmRN5yc/lZeZYsrkPJyG5c/5WNQPW1NIYhsJH58346Bj5yvKCZA9NNMf/ZNWrP4iA8SAUBgAAI4pQGACw5Z5uPCOJo7/dCkaff/zdgeHpbizaV9tvHQMdCwAI5AuFY7G45C94z/sEhcKNh7JukBu/tRw8w/VyQaadmDjHSr1nwDbKMqP1Dhek5j3VUjffu84c++CC73tjHArPBs61NmpSOKRjnJVyyGztcOM4HgAAYK8iFAYAbIs73vXHrXD0+qO3Bwaou7FoX22/dQwAIJQXCqduLzQD2Km8dM5X7Q6Fq5KfCq7rV1tMSfzIvFSvek8EsccPCTVrdyYk5qSldMU8aAuwtaSk8ESznkhdVpeykvSWsXBnHZ+qdAfSVyoyf8y0a5+3D2e/JI7kpaL7t9yZtmbfF1elcDzpzobWetNzzf3Vz89Leqo5u3fiYNbU65fk9guFTT/vTnX0x+jX1rDxCJopfG1Nyqcy/ccHAABgCxEKAwC2xd/83d/L9//MG1sB6Y++ajkwRN1NRfto+6t91zEAgFC+ULZxdkYmzdedyxh0hcIX8m69zZmdWpX8dTpTeEFW+yWUjTWprsxL2hw7caIo5ZWqrLl57JoUj0y4S02kT+nzZSmeSkuicwby1bJk9bkb0jK/rMs3lKQwl5a42V9bwO2GqpMSn5qQxNF5KWq9W5PuzOjUyzIS35eSvG6/rOGw2daZ6TPDt18o3JDycR3jjJTsGERpa9h4dIXCNSkc1jA47o2P2ddsqrn0R9AMbQAAgC1CKAwA2Da/9c5yKyR9zkveGhik7qaifbT91b4D2GWuVmX+5v3i6A3Kbu4zCzeKtpm6DamcmHTDQ/8yEp2h8Np90+axI7nz3hMb1LiQl6SjxzB9uikjM4tFKV+oSSPwRnXdyyU0VmbMeCRl/qL3hHVpQZJmnzMrzcS2fjrrBrpts3GN2mLSHNv3vBeqTp6o+NZYrsnCjdpGU8+3TrIuo9F/LHqEwo26VJcybtjrHC+3jhe5rQHj0RkK15fT5vGkzJxtT67rZ3QJkPXxAQAA2GqEwgCAbfPkX/9dKyTVcvDX3hsYpu6Gon3z91X7DmB3qZ7U0FbDyWZxeixJEEnn8g1XK13LSHSFwksBSx24vPCzo0S64VljTSpLeckcijeXa3DLhCSPFzpmEHeHoJUTpu63Z2Wh8yZu3izaXss2uNwQNSELl/yPYzJz1nvsWmuu+/vCjpm1l5vj17uPweOyXrSfRakFhuAdOtvaNxSuS+mYOcaN/nWZreYs7ZgvjAYAANhKhMIAgG31ht/9w1ZQ+kO/dGdgoLobivbN9lP7DGD32fJQ2OhcRiI4FA6aHVuT0lxe8rYc01mtEUPhNg2pX662loCITZljt2ZEd4agXlhrngsth4umls/VutQulKW8vCD54+nWmr2tdnbMtG3yjnOo0L4vb/wihcJH59cDa1164gbH9C0rxUs9Itl+be0bCnvtDgx+Q/oEAACwRQiFAQDb6s+fuNIKS7Ukbz0dGKqOc9E++fuofQawC23p8hFW+zISQ68pHBiuDuh8zj3W9H32WCGhcJRgU8fuUPMGce5SFTckJHVsRhZmdXkFXzu3KhTuDPCvmufdNYmn25akcEVtK6EwAAAYI4TCAIBt99o7/qAVmP7wSxcCg9VxLton2z/tKwBEEhgKG75lJPK6PIM/FLbLDhwMWpLAJ0IoXJ3T4DMbfqO2K0V3CYj19nWGoPYmbT324anOadCdkvkL7Xe0a64L7GvndoXC6nJBprtmQw/Q1r6hcITlI04EtAsAAGALEAoDALbdx/78r1qhqZYfm/mDwHB1HIv2xd837SsARBIWCht2GQkNGNtDYfO9czn35mjxW0uyFrQWbn1VFo40Z7r2CkybN4kL209DVm/XpSomfTe+6w5B7T5Sd3fEnu56vxOSXFw1D7xQt3NNYA1Njzvt7dzOUNioLU03x+C2qjebd4C29g2FzVZ9bjSXOdMePAMAAGwVQmEAwI549W+/pxWc3pBZDAxYx7FoX2y/tI8AEFmPUFhD2eYyEt2hsKqdzrjBcGxfUjInFqSoa+WeKcj88ZR3s7gJSc1VpHfkaI4xG28ew9kvyWMzzfWIT2QkeaAZgMZnK15Yquws5Zw5XlXW3G/UpHBY6zqSuGVBSqYdxcWspHT9Xd8M3OpJPc56HV3XN3NwQpx9ppjj7FQo7LZf9x2LS+58s6eR2xo0Hl3tt+MTl/SpopRXSlKYbZ4j53Bn8AwAALB1CIUBADviT1c/1QpPtfz4/zgTGLKOU9E++PukfQSAyHqGwsbVsmR1eYOAUNh1ZVVKpzKSmrLr38ZkYiolmbmCVEJ2GWRtZUGyRxKtG6lpoBw/lJH5le6d1E5nJenW89/sri4V0w4bJMf2xSV1vCCrbYm0qTO3frM2bWd2sSJrayXJmMfJRS8e3fZQ2HBnNZs6U3lp3t4vYluNrvEIav+1NSn7xsc5kDT7q/YJ7AEAADYXoTAAYMe8fO6+VoCa+OXfCwxax6kkXvZ7rf5o3wAAAAAAGEWEwgCAHfPBC3/eClG13HTiwcCwdRyKtt3fF+0bAAAAAACjiFAYALCjXvL6pVaQ+txfuTswcB2Hom23/dA+AQAAAAAwqgiFAQA76gN/8metMDX+M3n5idc+FBi6jnLRNmvbbT+0TwAAAAAAjCpCYQDAjvvZE29vBao/8vJ3Bgavo1y0zbb92hcAAAAAAEYZoTAAYMf9wR8/1gpVv//nTsoLfv0DgeHrSBbTVm2zbb/2BQAAAACAUUYoDAAYCS9+1UIrWL3xlqXgAHYEi7bVtlv7AAAAAADAqCMUBgCMhHd/oNoKV3/gyG8HBrCjWLSttt3aBwAAAAAARh2hMABgZLzg5Xe0AtbnveKewBB2lIq20bZX2w4AAAAAwDggFAYAjIx3lh5thaw/mD4VGMSOUtE22vZq2wFsv/qlkswfS0l8X0xiMVP2xSV1LC/Fx+pejeGsreQlt7zmPdoa23EMAAAAIAihMABgZPy/a8/K8469pRW0Pv+V9wWGsaNQtG22ndpmbTuA7dSQ6smkOLGYODekJb9UkvJKWUpLeckcnJBYzJHEbRUZLhquSM7sN7W0lYHtdhwDAAAACEYoDAAYKQvv+WArbL3+F+YDA9lRKNo2205tM4DttXbftDgxR6bvXA0Ifhuyeqd+PybJO2vec4MgFAYAAMDuRigMABgpT/19Q57z8ydbgeuPHn93YCi7k0XbZNunbdU2A9hGjbLMODFxjpV6zASuS+mYIzEnI6Ur3lPnchKLpaTwhPfY8j//REFSMW8pCrd4z9s6F1elcDwpE/q9fXFJz5Vl7Zq7l6aNHMOon81L+ob9bqAdc/ZL4kheyuTGAAAA2GSEwgCAkTN/zx+th66/eHtgMLuTRdtk26dtBbC9Gg9l3TA1+1CfP8icy7nhaua0Fx1HCWwba1JdmZe02S5xoijllaqs6WHcOpMSn3Jk4lBeiitlKZ5KS9zUcw4XpZXbbuAYDVNnMuZI8pYFd//lZVNnSsPhGSm3uromhUMaJOek4j0DAAAADIpQGAAwcv76b59qha5afvTVy4Hh7E6UH331e9rapm0F0MfVqszfrLNfHdl/87xUr3rPD6l2dyo4eO3kzch1bqs2H0cJbF0BSzu4dTQALoh/QQoNqLVfMytearuBY1RmYxJ7Yfv+5eK8JPbFJX/Oe0woDAAAgE1AKAwAGEn5t7+/Fbz+0EveGhjQ7kTRtth2aRsB9Fc9OekGqrY4sxuLM93wNEoo7AWvMXu8DYfCjuRa4axl6upSFpsQPNcWk6ZOXDKLFaltMDgHAAAAeiEUBgCMpE+v/W0rfNVy8NfuDwxpt7NoG/xt0jYC6G+zQ+HanYmOgDXEWlGm9XibNlM46JjezN1DheYSEhs5hs6oPjRh6jXHaWIqJZlTRan6qgAAAACbgVAYADCycm97oC2EHaWibQMQ0SYvH7Glawq7hgiF7brCGzmGp/FEVYqL2fUbzsXikjvXp68AAADAAAiFAQAj6+N/8dnAQHYUirYNwA5plGXG8c3ODdSQ8nFHYrG0FK94T7nB7KTkL3iPPWv3TfcPbEO2deuatkye9M9GHvIYQa6Yvl5n+nqsJF60DQAAAGwYoTAAYKT9j/nTgaHsThZtE4CdpSGrzjxOnqwGhKUNWb1Tvx+T5J2+27ZdyMukeS697N+i5t24LUooHJPJExWz93VryxlzHF8IPPQxTJ2jcZk4Uuzoz6rM30goDAAAgM1FKAwA2NUqlYob5Gj5whe+4D0LYPw1pHoy6Qa/zg1pyS+VpLxSltJSXjIHdV1eRxK3VTqC1Krkp8zrgZOUGa1/piC5QxMSPzwtibbA1tTT2bkHc1JcqcqapsBeKOzu9+i8eb4sxbmUTJjn4rP+oHj4Y9igO3E0L4UzZXfb/JG4OWZccuftEbzlKmI52djKzAAAANjLCIUBALvahz70IS/IicnnP/9571kAu0X9Uknmj6Ukvq/5cx7bF5fUsXkpXQqZV3ul4gatGuZq3fRcReqXC5JqC2xFaqezknT36UjuvHnCC4VzZ6oy723vHEhKdmm1ewbvsMfQ587kfGsJO7L/pqwUHvMfgVAYAAAAG0coDADY1R599FE3yNHy93//996zADAgGwqf8x4DAAAAY4xQGACwq334wx9uhcJPPfWU9ywADIhQGAAAALsIoTAAYFerVqutUPjv/u7vvGcBYECEwgAAANhFCIUBALvahQsXWqFwvc69+wEMiVAYAAAAuwihMABgV/vIRz7SCoX/5m/+xnsWAAAAAIC9i1AYALCrPfbYY61Q+MqVK96zAAAAAADsXYTCAIBd7WMf+1grFP7sZz/rPQsAAAAAwN5FKAwA2NUuXrzYCoXX1ta8ZwEAAAAA2LsIhQEAu9rHP/7xVij85JNPes8CwOiqny9I7khC9jvN167Yvrikjs1LOeDvWmsrecktj9MfvCqS816TQ8tspVnVvblfSgpPNB8CAABg8xAKAwB2tUuXLrWChr/8y7/0ngWA0VRbmhbHvF45B5KSOZGX/FxeZo4lmwGxk5DcuYZXUzUD1tTSGIbCBzNu3wLL6VqzKqEwAADAliEUBgDsap/85CdbofCnP/1p71kAGEGNssw4MXEOF8SLRdfVzfeu0zB1wfe9MQ6F7WzgXgiFAQAAtgyhMABgV6vVaq1Q+C/+4i+8ZwFgBD1RkFSPkLd2Z0JiTlpKV8wDr659fWsPT+uyupSV5AHH/Z476/hUxTzb4UpF5o+lJL7P24ezXxJH8lLR/Vs2mL24KoXjSZnw6k3PNfdXPz8v6akJd/uJg1lTzz+TOcgGQ+Fra1I+lQnv24W8TMYcyZ3zHruqktdA3cmZr3zcuglZuOQ9BgAA2EMIhQEAu85jn3hEHnzkLvlfv/9yedNdL5H//vLvkVt+84fckr8r7T6vRetoXQAYDc3w0jm8IKtdCW6HxppUV+YlHYtJ4kRRyitVWXPz2DUpHplwl5pIn9Lny1I8lZZE5wzkq2XJ6nM3pGV+uWzqlaQwl5a4BrZT+fXw1A1mJyU+NSGJo/NS1Hq3Jt0lLlIvy0h8X0ryuv2yhsMavM5IuWcuvJFQuCaFwxoGx72+mbbMptyger1vZv+mX5MnffFvK0BvD4CrJycldp2vrwAAAHsIoTAAYOx9/gtX5eEPv0sWl2da4e+gRbfVfei+ACCSq1WZv3m/ODFH9t88L9VNePloXMhLUtcP1n3elJGZxaKUL9Skcc2r0KZ7+YjGyoxpT1LmL3pPWJcWJGn2ObPSTGzrp7NuoNu5NENtMdkexLrBbEwmT1RkPeutycKN2kZT77L3lNF4KOu2O3feeyLQ8KFwfTltHk/KzNn21Ll+Juueg2bfGlI+bvZ/qCB2VOqnMxK7Li5xM66Z0zZtb/Zhco5IGAAA7E2EwgCAsfboYw/Ia377xwKD3mGK7kv3CQD9uDNN3RmozeJECTqjaKxJZSkvmUPx5nINbpmQ5PFCxwzi7lC4csLU/fasLKzo7F9/ac4q7hvGukGsb0atFwrPnPUeu9akcMjs64Udax9fbs7IbV+6oZMXCocVf/vaQuG6lI6Z79/oX1PZ8paHOF52g2s3BI5lpOSNVWXWkdiJohTN9q1z5M4e7lxmAgAAYO8gFAYAjKWPfuKsvP6tLw4Mdm899SNy290/Lr+9nHLLW07/lLzt/Te7Rb+2z7/+rqRbN2gfum89BgCE2bJQuE1D6perrSUgYlM5qbRmJHeGwl5Y62tTVzlcbM2gdV2tS+2CLv+wIPnj6db6wq2w1AuF28NT7zi+2bgub5mGSKHwwYzk5/Ld5bQv8m0Lhb1jesFvu472eO3IPqQ1mzOCdYZw7e5UK1RuBsfZPktdAAAA7F6EwgCAsbNUekNXiPuq30rIG+95gdxe+ulWABy16Da6re6jc7/vKb/FOyoAdNiC5SN6Op+TyVhMpu+zUWxIKNwZ1gbRth9q3iDOXarihoSkjs3Iwqwu0bANoXCUAH3YUNgLgt2Qfq0o03aZC/fGctNSXPOWmDhW6r75HgAAwB5BKAwAGBu63q/eIM4f2mbzN7izgoPC3mGK7kv36T+GrjfMWsMAtlp1TkPaHrNXrxTdJSDWQ+DOUNgLOyPMgK3O6SznlMxfaI9Fm+sCj2IoHGH5iBPr+3RncZu6Ve2PvZlcoyxZc+yZFdOGtvWFAQAA9h5CYQDAWPjLz16S/F3ptrD2dQsH5a0Pvjgw3N1I0X3qvv3H0mNrGwBgqzRvEheT+K0lWeu6sVxDVm9Pid5oLX/Be6orFF7fR+rujujUXe93QpKLq+aBF+p2rgmswetxZ0RDYdO6Pjeay5zxhbxmWyc2Lekjpj+t2cVrUjwck8mDSZn07RcAAGAvIhQGAIw8naXbGQhv5uzgsKLH8B9T28CMYQBbpyGV2bgbwsac/ZI8NtNcZ/dERpIHmmFtfLbiWz7BmyF7MCfFlaqsud+oSeGw1nUkccuClFbKUlzMSkrXCvatR1w9qcdZr1NenpfMwQlx9pniD3ZHKBRe71tc0qeKUl4pSWE25d6MzzncEXB7s4K17evLbXgziPX5g0EzjgEAAPYOQmEAwMjzLxmhSzvo+r9BIe5WFD2WfzkJXUoCALbS2sqCZI8kWjd9i8UmJH4oI/MrbRGsq3Y6K0m3niO5896TUpfKqfUgObYvLqnjBVltWy3B1Jlbv7HcxFRKsosVWVsrScY8Ti56kelIhcLGtTUp+/rmHEiadlcD1gb2lpuIJWTB/yGPszPudok7iYQBAMDeRigMABhpnTeV285A2BY9pr8N7/kAN58DAAAAAIwvQmEAwMj66CfOtoWx27FkRFjpXEpC2wYAAAAAwDgiFAYAjKzXv/XFrRBWb/wWFNZuZ/HffE7bBgAAAADAOCIUBgCMpEcfe6AVwOqavm998MWBQe12Fm2Df31hbSMAAAAAAOOGUBgAMHI+/4Wr8prf/rFW+LqTy0Z0Fv8yEtpGbSsAAAAAAOOEUBgAMHIePv+uVvD6qt9KBIazO1m0TbZ9zBYGAAAAAIwbQmEAwMj53eXXtELXN97zgsBgdieLtsm2T9sKAAAAAMA4IRQGAIwcG7hqub3004HB7E4WbZO/jQAAAAAAjBNCYQDASPnoJ862wtZbT/1IYCg7CkXbZtupbQYAAAAAYFwQCgMARsp7PvCWVtg6SjeY6yyvvyvZaueDj9zltR4ANqIiuVhMYoHFkf03pCW3vCp1r/agGhfmJT010dyfMyOVa943dosnCpLqGjct3tgtVYceO7W2kjfjv+Y9AgAAGG+EwgCAkTK/9CutsPW3l1OBgewoFG2bbae2GQA2zguFj85LeaXcXpYXJHuoGejGT1a9+oOoSeGFZt9TGVk4o/scPlweWTYUPpiR/Fx+vZzISMoLw53DC7J61as/kOa5SS0RCgMAgN2BUBgAMFIIhQHsXV4oPFvxHneqSeGQznzNSrnhPRVZv33vAjYUDulj7e5pccz347dVZeDhIxQGAAC7DKEwAGCkvP6tL26FraN4kzlb3nL6p1rtzN+V9loPABvRP7it3Z2SWCwlhSe8J1x1WV3KSvKA05wNeyApmVOV9ZnA53Lu8/7SCjevrUn5VCZ8W+Vub455tihprefsl9Ti6vrzF1elcDwpE7pv873pueb29fPry1VMHMyaep1RbJ92q7BjB+kTCuvxike0/xkp2YPY/beNp+F/vmtZCvP8J8sy45g2Bxyr8VA2eJ8AAAAjhFAYADBSbNCqJSiMHaXibysAbFy/ULgh5eMdoaasSfHIhMSchKRPFd2lJoqn0pLQwPJwQWpa5cqqeX5e0rpvb2mK6hMa0NakcFgD2bi3bUkKsyk33G1tq9yA1BHHiUtmseQuZVG6aJ+flPjUhCTMfou6/a1JdzZu6mUZie9LSX5Zl77QcNgc25nxzXCO0G4VduwgfUNhG9jGZMbeHzRKKNxYk6o3fokT2taqrJl+VGY1pM6Zs+bnnaMjxfZwGwAAYMQQCgMARoo/aA0KYkep+NsKYA+6WpX5m/eLozcyu3leqkOtVevXIxRu1KW6lJG4+b5zvNxa/qCxMmOOn5T5zqD00oIkTbtmVmzN7n3Xl9NuqDtztpXUuupnsm6fWtu6AWlMErd3zND1np88UfEtx1CThRvNcTRQvew9ZTTDWEdy573HUdsdduwgEUJhuZCXSVOnNVM6SijsClg+wt2X6dM577FqlCVr6qWXiYQBAMBoIxQGAIyU2Tt+uhW0jsvyEW+86+e91gPYS6onJ93A0pagpQQG4wW3oWVCkseLUrvmVTcqJ8zz356VBXtDulbxZga32tQZCteldMw8vnFhfVZuS1Xy15nv2fDZC2bbwk/lPd+adetaa657/ELfbF91uRnY2n1EbnfYsYNECYW9OpsSCnvj5D/v9dMZs11aile8JwAAAEYUoTAAYKRwozkA42LLQmFviQe36NILNzgSm8pK8VL7jN5WAOtrQ1c5XDS1VGco7G3rm3W8zvveoUJz2z6hcPvzHdtaXhjbrDtAuzc7FD6fay5vsSmhsLkG5sw10FpCwgvaj5VYOgIAAIw8QmEAwEghFAYwNrZr+Yir5nl3Td7ptiUZQgPYQCMYCkdp9yaHws2ZvL4lHzYYCjeXkJiU/AXzdb0kGVMnc5pIGAAAjD5CYQDASHnPB97SCltff1cyMJAdhaJts+188JG7vNYDwEaEhMLqckGmHfO9qZxUWuGzvfFc1ncDtzCd+46wfMQJr+6mh8IDtHtTQ+G6FI+Y7/tveOfu3wt1fdbumzbPRwiFvTWUJ+eqXuAc5VwAAADsPEJhAMBI+egnzrbC1ltP/UhgIDsKRdtm26ltBoCN6xEKG7WlaXfpg/ht1dbs3uYN22KSursj2nXX8J2Q5KK9QVv3vvvdaC5zxpvxuumh8ADt3sRQuHa3N34nq94zhnfjufYbw9WafYgUCpvai0mJXZeT3PGYOLcGzbwGAAAYPYTCAICR8vkvXG2FrVpG8WZz2iZ/GwFgc/QOhdfDyrjkztvo0Tx32DHPOZK4ZUFKK2UpLmYltc/Ua5tVHLRvu21c0qeKUl4pSWE2JROmnnPYd6O4LQiFI7d7mFD4YEbyc/n1ciIjyQN6rI5+uaqSd5fmSMrMUknKZwqSOzQh8cPTkmgLhb3Z0wdzUlypypo/+b20IEnTD8dxZGaFSBgAAIwHQmEAwMj53eXXtALXN97zgsBgdifLbxZ+otU+bSsAbI5+obDhzqTV4DQv6/Nd61I5tR58xvbFJXW8IKttS9uG7PvampR92zoHkpJdrLbfKG1LQmEVod3DhMJdZULihzKSX15t75d1pSL5I3E3DNc2pOcqUnfHuX2t4drprCQ1tNY1ic97T7pqsnDQPO9flgIAAGDEEQoDAEbOw+ff1QpdX/VbicBgdieLtsm279HHHvBaDQDYm5pBuNMrzAcAABgxhMIAgJGjS0jc+tvrN3K77e4fDwxnd6JoW2y7tI3aVgDAHuYuH9F9szoAAIBRRigMABhJOgPXhq+vzN8gb33wxYEh7XYWbYO2xbaLWcIAsHfVzy1Ifs5bB7lzuQwAAIARRygMABhZs3es39DtdQsHA4Pa7SzaBtsebRsAYO+qn8m66xBPHMxJ+Yr3JAAAwJggFAYAjKyPfuJsK4TVspPLSPiXjdCibQMAAAAAYBwRCgMARtp7PvCWtjD2jfe8IDC03cqix/S3QdsEAAAAAMC4IhQGAIy8+aVfaQWyuqbvdgbDeiz/OsK/u/war1UAAAAAAIwnQmEAwMj7/Beuyhvv+vlWMKtlO5aS6FwyQtugbQEAAAAAYJwRCgMAxsJffvZSVzCsN35764MvDgx0N1J0n/6bymnRY//N33FveQDbo/5YUfLHUhLfF5NYzJR9cUkdm5fyXnkZOpdz+5075z021lbyklv2DUBAnZ1Vl+KR5vlKL9e95zpVJKfnM7A4sv+GtOnjqtnTxgx0/Vxbk/JcWhIHnFbd9FxZ1q5533d57Z6teI+7VWb1WDlTs1397Lxkbtovjm7v7Jfk8YKsbrCDg/181KVyKiNJr+7EVFryK50Vh+2f2bcZO9sO50BSskvbfP7a1KV0zJzHQwVprzr8+Wu5XJBpJyWFJ7zHbRqyupSVpHcN6RjnztS87w0v+jhsQv9Cx25ww5y/+qWSzHdtk5fiYxu9mpq2pU2RXkuiGvKcjmEbtuTcP1GQlO5rKifVhvdch60fv3U7ey2hF0JhAMDY0Fm6/qUktOjSDps5a1j35V8uQosuGcEMYQDboy6V2xJugDZxKCsLy2Upr5SluJiVlPtmKi65cyHv8HaTrsC3+eY8teRLMEYtFL5SlHRsUuJT5k3swQUJjsS8kOHovHte28rygmQPTbh9ip+sevUHNej1U5PCYdNeJyHpU8Vm3VNpiZvtncMFXx+GC0dqS9OmLY4kTH+LZt+lpRlJOqbeVF6G6+Gg/WuYdsXd55v9K8r8Ud3ekekl/xkapn9eiBibkNRsQUorJSnMpmTC7Cd+W9UceRgb+/lvjrept9mh8OWiZKb0+8GhcPWkjrEdB98Y3zdsvDroOGywf0b42A1imPPXMOOXdLdxbkhLfqnkblNaykvmoL4emJ+f2ypmz8ParjZFfS2JaphzOm5t2MJzb0NhU8Jej7Z+/NQoXEvohVAYADB2lkpvaAtttbzqtxLu+r+3l346MOztVXSb3yz8hLuPzv1yUzkA26l2d8p9kzR9d8DbnqurMn/IvIlzMlK64j23ZzTfnLeFwiOmtpg05y4rxdMz5g3wpOQveN9o0y9kMG+G9Ryb/ZTDs79Qg14/jZVmW2fOth+s8VDWPO/IzIp9fohwpFGWGScmcbNN294v5GXS7GtmxXs8gIF/PrxjtV83DSkf18Ah5wumh+jfWlGmzTbJO9vbUp2bNPVMG4ZIcjb0839ZQ6C4xDW83axQ+FpdqktZSWiQr9sHhcLuH0M6x6EhlRNmHJyZbbmOh+6f1XPsohvm/K3d1/zDyfSdQTPMG7J6ZzOs7rzOotquNkV/LYlq8HM6bm3Y0nPvC4U1+A/6fbT14zcq1xJ6IRQGAIylj37irMze8dNdIa6WW0/9iLz+rqS8+T0vcstbTv9UKwDWr+3zWkfrBu1D963HAIBt44VosSPFgDdPngt5SUylJO9/s6Qfs9SPx3sfs9SPsGdOdcy8cWfVpqRwcVUKx5PubEb9KP/0XLNe/fy8pKeas1QnDmZNPd/+g7YN+yhnlLYY9bN5Sd+wvqRA4ki+/WPM/lnAbW9utXjBVNBM4SHGYr8beE1I3LShEhS2RVKThRvNfo6VpO6dR+fWsnnL26l/yNAMcQLCt36GuH6qtyfM+ZxphQItV0uSMe1cD1MHD0fqpzPm8XDhdqAh+rd2OiuJA90BbfWkBrf+gHCIUNG7LrMPtXdwbWn7zl/LVdP+KXO+7q4127lJoXCzLzrDdF6qZ7yfm45+Nc9zQH/dQN5p//mMYqhxGK5/rr5jF9Ew7fa2cfR1o/lMAG9GetgfA3rZxjZFfy2JavBzOlZt2Opz770+pW4vyMx1po0Bn87Y8vEbmWsJvRAKAwDG2qOPPSC3/nYyMNgdpui+dJ8AsN10FowGMJ0hU2/exyxj9uPx6x9hb/uYpRuE6tIGE95H+U29W5sf6Uy9LCPxfSnJ68eKlzUcNm8U/TP8Wts6MnEo7y4DsP5RzqIvQInWlobZn4ZFyVsW3H2FH9MLfBtrUl0xdczjxAndb1XWtJ6/jmvYsWj2x50N2bbsw5o3azcgSOrkBmAxyZxuvvWtzGo70lLseiPfL2TQWax6zO4gs5/hrp8QHf0ZJhyxAVvtSkXmj/X5Y0IEm9K/aw2preTcJSzaP1I9eP/cPwS80JznqRkp2ZzniZLMmGu5/ecimuH711wiw17jdtzbjz9M/8xPwHJ2fY1k9+emO/yt3qbXesDPSKMsWXNMDVsHMdw4DNe/aGMXzTDtjryNGXt9rV7/eYxmJNrU9VoS1bDnNMAItmGrz30rFF5ak8bZGffYncsSbfX4jc61hF4IhQEAY0/X+9UgV9f+DQp6oxTdVvfB2sEAIrtalfmbdbarI/tvnpfqBl8+WjNEL3tPRFBfTpttuj9mWT/T8TFLN9CJyeQJ/0f5vdmtHcdsvpFzJHfee8Lbti1YNbSe/xhR2+K+EX1h+77k4rwk9sUlbwNe75jrgW/zzXnbDKGOOhsbi6AZntFD4WYI7JsVa46hb3K7bzjXI2Ro6Ef1M82w/XjQLOPehrl+gtn1HP0f/ffa3bfYsVqT4mHz+LqEOa+OJG/VtWbLUpyzIf3goelG+2dnvWrZf0upI5getH+ea2asju5vq7P/mOnbEKH3sP3TmbqOb5ZdcLA5ZP/83J8b/89HU+DPs6vHtd7DcOMwXP+ijV00w7S7tU3nLOtOXsDn3DbYStw736ag15KoNuGadY1mG7b63PtDYfPLpbmcS8cyEtFC4eHHb3SuJfRCKAwA2HV02YcHH7nLvSmdll+89fpW+PvGu36+9bzWYYkIAMNqfgR9/Y2hM2D40an5Bi3CG6gW/dil2ebGoJuaVSWvHxm14aIXhM60veR5oWdnoOOur+kLZN1tgz4Gbt4w60dD3Tdy0dvSXHs3LpnFitTCgnSvvdFD4Y2OhdF1zIjsR2Tblovwjtl1w7l+IcOEJI8XpTZEqDj49ROkLuVbmzdmC7yR18GM5OfygSVzUI9vAwYbqHfPFF1bzrSH9BFttH+183qDo5IU5oJuWDRo/1RNikcmZP1mSHZmuiOJE+Xm7NoBDNU/87M67bSfK3c/YaHwQP3r4P58dLbPm9keGKR6xxzwdXG48zxE/yKPXTTDtDv6Nts3lpvXprDXkqg24Zod4TZs9blvD4WNq5WuZSSabdi68Rudawm9EAoDAHa97/3e7zX/IRGTubk57xkA2LjNDoVbM1Ujz+rygrfAWaXe92zAERh4dtSxvDeTrbqBYZDybz9AW3SG9aHm+sVaJqZSkjlVlKq/EV3tbb5pDA+FBzh+4FgYYc/30Zyh3B1yNm841nnDOe/N79F50Tuqu0WXz7jBMW/Ws1K8NPwb3sGvnw4661VDTvPGe+ahAWY4e9oDBm/MA5fBqMiM2degM9823D+f5ix3/0zuQftnz3t3SNH8qLYjmTODxcKD968mCwe7b+TntrPzZ3qI/nUJeR1wt9vEmcLDnedB+zfI2EUzTLtrdyYCx7SLd1PD7fiZ2ZQ29XwtiWqD1+yIt2Grz31XKGx0LiOx1eM3OtcSeiEUBgDset/3fd9n/mMiJr/xG7/hPQMAm2CTl4/Q0EWDqp7r7+ms1AMJSd+5Kg0bvO10KOwuBTBAWzyNJ6pSXMyu33DOvOlrBWxd7W2+OR+9ULguxSPa9vDSPoM4JGTwbnYVc6aHDz1N+we7fnzq5vgaTDtJyV8I2n7QcMSujRwUOPTfV6CN9K9LM5heb8OQ/es1M32r++ddrz3L0P0L4B6v+3Vgs9cUHu48D9i/gcYuoiHaveXryu5Em/q+lkS1gWt2DNqw5ec+IBQ2R21bRmKrx290riX0QigMANj1pqam3P8oue2227xnAGAE6ZtzvdlZjzvFt89wjLBkwgnv7Z5506Wvg+2BZ3BYGxwKd854VeYNm2nvpDvraIC2BLli+q517F3Ku9rbfHMeHgpvdCyMsOd7ubQgSbONc2xhfeZvqxQl53602H/DuWY/AkMG9+Ps5ntT5k36MH9gGPj68VwuSUYD6amMlEID6R7t9nQGDKGzxEw7NSxM3DlgWDhE/6qn4jJxXfdd920b1memDdq/LQiFB+3fldWAa64s80e1XTPNmzhetHsa/Px1cX8+us+nrssbeJ69m0J1LdPSz1DX8YD9G2jsIhqm3XabztfgNnqtOabtQTeu7GO72xTptSSqIa/ZcWnDVp/7wFDY8C0jkT8xZNujGplrCb0QCgMAdr3v//7vN/+xYd7o53LeMwAwmmp36nq7jkwHza7T4NR9k5STqjdppt/N1VofYQ8MPAcJhQNuzOauDbseFkdrS00KR+My0RVSrMq83vRu6FB4o2NhhD3fQzP4DArMm5ptikly0Z7P3iFDbWnaDWjit1XbxjqqQa+f1gzlvkH0EOGIF5h3fkS/efOh8DHrZeCfDzewdLpmqjXH2b/kx+D9C7ve7Ee01wPL6AY+fwHcdnaFMEOcv07uz0dA+HulKGmz72RbyO/NSBzyplCDj8Mm9M8IHrvohjl/a/c1r8XkyWpAcNuQ1Tubrwnt4xvdtrUp8mtJVEOc0zFrw5ae+7BQ2LCvUfq7aWvHb1SuJfRCKAwA2PV+8Ad/0P0Pn9nZWe8ZABhVNSm9TG+oEpOJQ1lZWNYZbM2bYyV0xk3X8gK15h25Y/GOm13F2m+kFRh4DhYKa7CQODrvzqIrzjWP0R74RWuLfZOYOJqXwhnTvzMFyR/xbiJz3ttbV3u92ZcHc+b4VVnTal11NjIWRtfz3viEBkm2TUGzRT12plRrtmq/kMH0wT2mbyzCzlOgwa6f6slm3cTRXOBNlBbO2bfxQ4Qj5sqozOr++103W9e/1jXRdTO4zjYM079VWbjJ2/dcQUrav1PNdrTfxG4r+9ctONgcpn8d3J+PgFDYjGL1tuZ5Tt6q41CU+aMJ92d8esn/k7GV47AJ/TOCx26rz58Zv5NJNxhzbkhLfklviFiW0pLexEzXUjU/P7dVOgK10WtT9NeSqG0f/JyOVxvUFp77HqGw+9rsLiOx1eOntvJawmYgFAYA7HrPec5z3P+4eN3rXuc9AwCjbW1lXjKHErJf37Trmyld83G2KKtB74WurUn5VEaSBzQQ1bpJyS52zMoJDEJD3tiFhMK5M1WZPxJvhqx6jKXVjjerRpS2GLUzOd9awo7svykrhcd8tQLaWzudleS+Zv3cefNEUJ+GHguj63lvfEKCpMbKjNv+fjNC22841z9k0GUkdPzX7xI/yBvwpmjXjxdq67FCynqgMGzo1pDVZXOup/TNf/N8ZLquh63qn0evibm0xN1rJyYTU2nJLXdeu0P2r2Pfbv9OlWXtmvd91xb3r0NwsDns+fNxfz6CQmFVl9Ul8/Pp/dy5Y3ym808lWzkOm9A/I3jstuf81S+VZP5YqnUtxfbFJXVsXkqXgjYatTYN8loSte2DntNxa8O6LTn3PUNh42pZsu61sJXjt25rriVsBkJhAMCu98M//MPuf0S89rWv9Z4BAEQWFqJiG1VkZoA34OOH/u0N4zoOo9jucb6mRqHtjN/GjPP4wY9QGACw6yUSuuZjTE6cOOE9AwCIjFB4x+m6yBO3lmV9uYPdhf7tDeM6DqPY7nG+pkah7Yzfxozz+KEdoTAAYNd77nOf6wYaMzMz3jMAgMgIhXdYXYrHd/Md2Onf3jCu4zCK7R7na2oU2s74bcw4jx86EQoDAHa9G2+80Q00br31Vu8ZAEBkhMIAAAC7DqEwAGDXe/7zn+8GGq9+9au9ZwAAAAAA2LsIhQEAu97BgwfdUPhVr3qV9wwAAAAAAHsXoTAAYNf7sR/7MTcUfuUrX+k9AwAAAADA3kUoDADY9W666SY3FH7FK17hPQMAAAAAwN5FKAwA2PVe8IIXuKHwr/7qr3rPAAAAAACwdxEKAwA2xeydZ2Tq8BxlA0XHEAAAAACArUYoDADYFH92+TOBQScletExBAAAAABgqxEKAwA2zWvecn9g2EnpX3TsAAAAAADYDoTCAIBN838+/kRb0PljMyV5wevKlICiY+MfKx07AAAAAAC2A6EwAGBTvSL/7lbQmfjluwIDUUrZHRs7TjpmAAAAAABsF0JhAMCm+tBHL7fCTi0/fuKBwFB0LxcdE/8Y6ZgBAAAAALBdCIUBAJvupbfd0wo8Ey97e2AwupeLjokdHx0rAAAAAAC2E6EwAGDT/dGHP9EKPeM/80a56X/+YWA4uheLjoWOiR0fHSsAAAAAALYToTAAYEv8/Gvf0Qo+n/vydwQGpHux6FjYcdExAgAAAABguxEKAwC2xIMf/Fgr/Iz/7JvkJ379/YEh6V4qOgY6FnZcdIwAAAAAANhuhMIAgC0zfetiKwD9kV8tBAale6noGNjx0LEBAAAAAGAnEAoDALbMe1f+TysE/f4jvxUYlO6lomNgx0PHBgAAAACAnUAoDADYUqlX/E4rCL3xFb8fGJbuhaJ9t+OgYwIAAAAAwE4hFAYAbKl7HvxwKwz9gZ9/c2BguheK9t2Og44JAAAAAAA7hVAYALCl/uEf/1GSv/y/WoHo87L3Boamu7lon23/dSx0TAAAAAAA2CmEwgCALfd7959rhaI/+AtvCQxOd3P5wV+Yb/VfxwIAAAAAgJ1EKAwA2HJPN56RxNHfbgWjzz/+7sDwdDcW7avtt46BjgUAAAAAADuJUBgAsC3ueNcft8LR64/eHhig7saifbX91jEAAAAAAGCnEQoDALbF3/zd38v3/8wbWwHpj75qOTBE3U1F+2j7q33XMQAAAAAAYKcRCgMAts1vvbPcCkmf85K3Bgapu6loH21/te8AAAAAAIwCQmEAwLZ58q//rhWSajn4a+8NDFN3Q9G++fuqfQcAAAAAYBQQCgMAttUbFv+wFZT+0C/dGRio7oaifbP91D4DAAAAADAqCIUBANvqz5+40gpLtSRvPR0Yqo5z0T75+6h9BgAAAABgVBAKAwC23Wvv+INWYPrDL10IDFbHuWifbP+0rwAAAAAAjBJCYQDAtvvYn/9VKzTV8mMzfxAYro5j0b74+6Z9BQAAAABglBAKAwB2xKt/+z2t4PSGzGJgwDqORfti+6V9BAAAAABg1BAKAwB2xJ+ufqoVnmr58f9xJjBkHaeiffD3SfsIAAAAAMCoIRQGAOyYl8/d1wpQE7/8e4FB6zgV7YPtj/YNAAAAAIBRRCgMANgxH/w/f94KUbXcdOLBwLB1HIq23d8X7RsAAAAAAKOIUBgAsKNe8vqlVpD63F+5OzBwHYeibbf90D4BAAAAADCqCIUBADuq/Cd/1gpT4z+Tl5947UOBoesoF22ztt32Q/sEAAAAAMCoIhQGAOy4nz3x9lag+iMvf2dg8DrKRdts2699AQAAAABglBEKAwB2XOmPH2uFqt//cyflBb/+gcDwdSSLaau22bZf+wIAAAAAwCgjFAYAjIQXv2qhFazeeMtScAA7gkXbatutfQAAAAAAYNQRCgMARsK7P1Bthas/cOS3AwPYUSzaVttu7QMAAAAAAKOOUBgAMDJe8PI7WgHr815xT2AIO0pF22jbq20HAAAAAGAcEAoDAEbGO0uPtkLWH0yfCgxiR6loG217te0AAAAAAIwDQmEAwMj4f9eelecfe0sraH3+K+8LDGNHoWjbWu00bda2AwAAAAAwDgiFAQAjZeE9H2yFrdf/wnxgIDsKRdtm26ltBgAAAABgXBAKAwBGylN/35Af+vmTrcD1+cffHRjK7mT5UdMm2z5tq7YZAAAAAIBxQSgMABg58/f8USt0fc4v3h4YzO5k0TbZ9mlbAQAAAAAYJ4TCAICR89d/e7UVumr50VcvB4azO1G0Lf62aVsBAAAAABgnhMIAgJGUf/v7W8HrD73krYEB7U4UbYttl7YRAAAAAIBxQygMABhJn17721b4OqpF2wgAAAAAwLghFAYAjKzc2x4IDGNHoWjbdsq1a9fkqaeekr/6q7+Sv/3bv5XPfvaz8jd/8zfuv//4j/8on//85916//AP/yDPPvus+7Vu02g05MqVK2493e6v//qv3a+1nq1jfeELX3D3pfW13tWrV+Vzn/uc1Ot191/9nu77mWee8bZo0ue1bU888YTbJi2f+tSn5P/+3//rfs/Sr7XY42g7bNv+7u/+zj2m9k+/52+XHlOLPr+2ttZqn9bVr3VbS+sou73288knn5Snn37ara9t1K91u062X7rNX/zFX8jf//3fu8fTY2mf9F/lb5v/OLpve250zD796U+7fe30//7f/3OLbmPHQMtnPvMZt632XGpf7Lm0dDvd5i//8i/d9uhxtF/+4/i/1j7pedRt9F/dRr/Wdur+/deN0v7o83o+tZ6eQ22Xnn9tW9D42vOp42r3rf3R+jpu2mY/3daeT92/tl/H2o6BttO2R9mv9V/bNj0vdqx1O3ut2br6te2bHkv3b9ujRc+V7sfS+sq2VfejbdH967/2Z0D/tez1Ys+R/qvj6x8zfaz90f1r/c7j6FhofW2P/mt/brS9ytbXf+02ehytZ39mtI16DO2PHVvLjoceW8dM69mx0zbaa0XradFt9Vj6vB5P6+j4ar/1X73u/P2w9LEWfb3R617ra/u0bToO9vzo9/3b6tf2urT90fr2urF9ttvYduq1pvV0GzvO2latp0W303/916mOj702ta4dO399bZ+l22g/tK4eR7fTY+m/9jj+sdavdRt7XerxdFv9Wturx9Cx0zpKt1f6WPfvf/3Ua9VeA0rral/0X92HHkvr2TZpO+1jS+vqMbWuLdoera//6s+dHUPL9kH/tY91nOw46P71fNnjaF0teiz7OqDttD9f2nfdv15zlu7T1gcAANuPUBgAMLI+8anPBgayo1C0bTtB32R/4hOfkJ/7uZ+T7/3e75X/9J/+k3z7t3+7fNu3fZv84A/+oPzqr/5qK+Cyb7T1Tfejjz4qhw4dkuuuu86tq9vs27dP/ut//a8yOzvrhjeWHkPf3P/hH/6h/PRP/7S7zb/9t//Wrf/v/t2/kx/5kR+R//W//pcb7tj6So/3vve9T174whfKd33Xd8l//I//Ub7jO75Dvvu7v1ue97znye233+6GCn4aCiwvL8tP/uRPyoEDB9y26TZ6rB//8R+XQqHgHscGDkoDvjvuuEN+7Md+rNWP//yf/7O7vW7z+7//+61wwwYaus1b3vIWtx3//t//e7cfWl/Lz/zMz8gDDzRDfn+woSHJqVOn3G20L3ocLTruP/uzP+v2VekxdP+6jY7ja17zGrnhhhvcNul2+/fvd8fj53/+5+X8+fNuOKOBkw2fdJv/8T/+hztOWlePoWP+wz/8w/KLv/iL8vjjj7f6YYOk1dVV+ZVf+RX5gR/4Afme7/ke+f/+v//PHYvnPOc58tKXvlQ+9rGPufWVHkfPzUc+8hHJZDLyX/7Lf3GPodeOFt3+ta99rRs+KRvU6HV04cIFOXr0qNse7Yv2Q8fs+c9/vhw/ftzdxp4XpdtqH/X61P5rf/Scat/0+rztttvckF3pMZT26V3vepf8t//239xtvvVbv1X+w3/4D24bdQz0utFzYWl9LXqedRvbD71uvvM7v1N+9Ed/VH7nd36nK4DV62hpaUl+4id+wm2P9kePo306ePCgLCwsuNso2ycdg/n5eXnBC17g9tv2Scdbfzbe8573uPXsmGnR0OzkyZPuz4m2yV47ehzdRvtq+670aw3Z3vSmN8mNN97oHkO3s9fni1/84tb1qfR8avt0HGdmZtzrU/et7dJx0H/1utHzoGzbdBsN5G699Va5/vrr3WNo//VfvQb0+vzgBz/obmP7oteNvt78z//5P93XCvvzpuOs194v//Ivy4c//OG2bfT1QK81bcPU1JRbV3/mdFs9jrZZA2W7jYak+vOg1/kv/MIvuNea/nxqP3Qsvu/7vs99jdIx8l9rel7PnTsnv/RLv+T22/ZFx0x//vTn0B7H0m3+9//+3/KiF73IPY5uo/X1enjuc58rb3jDG9zrxL6mafv0GiiVSvJTP/VTbj0993ocbZ/+HLztbW9rBaNaX8+Pvh7oedZtdP86ZnosvRb0NerOO+90+63s+dF9/N7v/Z7bDt2/jpv2X7e/6aabpFgstoW2uo0+1uNrO3TM9GdN26XbHD582L0+tY4ew26jx9HrU39O9JzoNnqcyclJ93eEvh7bP6IoHXMNmX/jN37DfX2ZmJhojbW2Ua8BPQ+6b6XHstfnr//6r7vXmh5H26fH0XbpMXRcbbuU/2sAALA9CIUBALueBkGxWEy+6Zu+yXtmfOkbeg2otD9avvzLv1y+4iu+wv36n/yTf+J+/Zu/+ZtuXQ0nlG6jb8z/6T/9p269L/uyL5Ov/MqvlC/5ki9xn/uar/ka9w2/pW/odRt946917bG+6qu+yt3Gfq3BhtIARUMEnRGmgZ6t/0Vf9EXyxV/8xe7X2rZ/9a/+lRs0KxvYffzjHxfHcVrb2D7odvq1fm9lZcXdxoZhf/zHfyz/8l/+y7ZtbN+++qu/2g0tNKjS/dvg4cEHH3T7qW3SetqPL/3SL3W/1uc08NIgS2lwpH269957W8fQOtouu722T8MbG3AqbZ8GNHYbW+yxdBsNsm2wo/X1WPl83q3n77vdVrf77//9v7fNFNSg7pWvfGWrz7aePVf6r4a/2n/7hwENujSks9/XY2nR68A+p8GfnR2p22oQpCGmbY+/XVp0PLW/Wlf7of2p1WpuGGrr6HjpNerf5q1vfau7jV4zuo0Gy3p96vftGOh2Om76WM/1u9/9brddSq+BT37yk27wZffbWXSbP/qjP3LPvR5Dj6Who17Tto7dvxZ9/I3f+I3uNaDb2LbpdaOvG3YbravXmI69fq3Xpw1FlY5DuVx26+j3dVx13HQM9LH2S//AoufFFj3Oe9/73tY4ab3Oa00DO/2DitbVsdPzpD9/to4t9udT//3+7/9+tx9aX+k1ZK+1zm30GHoN6WuLHkPpz4D+/GiIbPtrrx27rbZTA1al58VeNxru6vd1v1pf+6b716//+T//524wqPu3x9Ig/eabb3a/r/W0X/q1vs7ofnQ8T5w44da19A8F+kcDewz/z4M+1nOj22i7lLbt8uXLbrDrH1stdht9jdI/QtiAUre9dOmSO/52/1rPbqPlX/yLf+H+gcKOs/bpz/7sz+Tf/Jt/09pGx1j7oF/ba0CDUd2/jrFeN3/6p38qX/d1X+fu355H2y89noa3+lqo2+hriI7fI4884o6nv6691nQf2lf9g6DSPun1puHyP/tn/8zdRovu24659kX/aKR9tteZtk/7p/vW/WrRY9g26tcadD/22GNu37UvGnjra4Ptv+7bHlOPp3/E+NCHPuQeQ+vrv/ZaAAAA24dQGACw691zzz3um1ENCcadvqnX2VbaH/um3H6tb8D1Xw0RbUChdIadDXT929jttOisOg0ZdDstOqPQvqHXN/EaBNhtNBjSMOh1r3tdW4ios1c1XLD1OosGkDrz1tLjnT17trWNPZ4WDRG0XbqNhvo2MNCw4cyZM24btJ7/eDbo0WDloYceagWpehydgWf7brfVPtnwToNkDWU0oFAahGhbNfDQvtpjaNHjaNFgQwNBu43+q7MgbR3/v1q0fxou6TgpO852G3/QZLfT5xKJhBuA2THQQF1nddq6/vr6r4YvOvPVfkxbj6Phtc6Q7Tw/NuDRMdFZtzpm2g8NkPQPAzbg7Wyb7ke306DZhtx6HA3ddPag7tcGzvY4Oo66jV5r/lmSOjv1m7/5m93zo/Xs8WyfdDv9Q4cNUPXc6B8GdPal1rPnVb+2jzUUvuuuu9xjKO2Tztz8+q//+labbLHH1XHTa01pX7Rf73znO93QTb9v22OLPqff0/BZ6yv9efit3/ot+dqv/dq269kWbZ8GbzoD226jY64zxbUd/v7o8fRa1ue+4Ru+wZ1RbrfRtukMd3s+tY4eT7fRY+tzGnDqObTnU/8woGGttlu3023s9vqcnht9bdFxtudHA14N/Pztstvb4+rMeQ0q9Rha9FrVWeHaFq1rf95s0XbqNW1pn3QJDP3DTNAY6/ZadMa01tXzr+Osr2salGode63526aveceOHWu9ruk46/Wpf5jQetpfexw9rm6n27ziFa9otUvHQv9wZV8ntO36r16TOh7aLh3vN77xja3wWf/VgFTr2f3bouOlRbfR2braNqXnSP8AYcfYX3Q/WvSPFm9/+9vd+krbpjOB7XE6x04f6wzt97///W6btD+6nIXuw+7Xf260XbqN/uFEZ/7aa0Bfb7StWl/r2PHVujou+py+rtlPJ9jj6Kxrexytq//q+OkxtS8aiuv1QhgMAMDOIRQGAOx6dsanvhEddxoEaAChb6w1QNA32vbNvb7x1nBTPx6t9M250jfer3/961t1tdiQWLfRjwFryGZpgKBrTOrHgvVNvA1C9BgavmgIoLPJ7Aw0G4ZoEKCBtIYGWke30a81fNHH+tF4DSrtR/S1fTq72M4Q1KJtssfQr/Vj0zorVNlgQ2exaVhpj6H19Dj6r7ZVl3bQ/Srtu26jM1g1qNL62mc9hj2mtk+XXND2W3qsP/mTP3H7abex/2rRYOllL3uZG5pZGm7o2OvHt7WuHTd7PBuk25BK26Zf60fTNdzSetoW7YvdTv+Q4f94utJwS//QoYGP1tFzabfV7TTc1GU3bGCvNHTSGZDaDt2/nkt7LN32W77lW9yQRq8vpe3T8dAwyIaitk26jY69zgrXMdK6djsN7PRa0+9rXXtd6r/6nF5rGjjZa0b7rzOFX/WqV7nnT8fIjpu9BnRGsH85DD2eXkd6nnXfWk/7rF/ba0DPta5has+/nhvdRj8eb9tjx9lePzqLW9uidbVd2kYNBHVfWscWPZZup/vQZU80oNVj6BjrNnp9xuNx9zjaH/1Xix5DH7/kJS9pBWG6nc7m1RBR+6n17NjpsfQ4es70WtOxVbqt9qtarbrBrz3/dhv9V0NHnSVrz4vW1+PoH0v0HOh+bdH62jbdRoM8S8dA+3T69Gl3TLWOXjO2XdpODfPf/OY3u3WV9kdn/eryLtpu2x7dzgapGoq/4x3vcOtq+/QY2jZd8kOPo/u116ftky67oAGobmOPpSG3/jxpXdsP/7Wj4eYf/MEftOor3Sabzbb13b4W6La6vIVen8peo3p+damUzmPYbTTM1pDf0vPz53/+5+716W+b9kPbpf3S1zWduW6vGz0/eu3pH3Ns/3Xfdhtt4/T0tDtb3P8HFd1HMplstUfr6nnUc6XXhf7hwL9Uh46Fvm7r9elvlx5Lt9VrW5cg0p8V2zbdRn/O9Y9gdhvdv/1a/3Dxa7/2a+451DYpfe3R1xP/Nnr+bUisM6X1j3u2PgAA2BmEwgCAXU9nCOqbUZ1tN+70TbQW/RixzmLUcOV3f/d33RmO9913n1y8eNGtZwMkpSGFPtYZjbrN4uKi3H333e4aqrqNDTT0jbyGAJZup4Gl1tWP/OtxtOhH3W3oqtv412HVYEC/r7M0tegMXd1GQ0wNPWw9pWGDBg8arN5///1uu7Q/Gijptnpsu43SutoP/VeDDj2O7l9nvvnbpsGPsuGJ1teisxF1bVYNWXUbHQsdNz2OXbPW9l/bpuOsMwt16QIdK1tfA1cN12wgrH32h28a1Nh62h/tl7ZTZ+zZttkwRI+nRT9urqGXHkf7rm3Uj2zrefYHtXY7/Vc/Oq7nRtul50f7pOdTZ1/rGNtAxwaQ+liDRG2P7l/bZo9j15JVuo09pgbQGnRr27QP9nrTj6DrdaN19RrQf/WY2kYN0T7wgQ+4Y6B90T7pz6D+ccaGu/5x1m10LDXA0z5oOKjH0b5pcKTXtNbRNum/Ot76r7ZNlyPR/WufdP96PG2rnjeto8X2X7/WoFvHSPuiRZdg0O01wNI/hNhrU+l2Os66pq6uH6391vbpGsPaNv150utT92sDeN1G26khvm6j+9bxtW3UgFV/XvznVOlx9frUa03bpMfRMdA26lj662v/tb62TWed6zbaHq2vY6DH0XOm37fnxx5HH+s5sNem//VA/zBkx9Zuo+dJ96PXp9bXduk1o9ebnl8dA39dOw76r4arOma6b9snbZ9eNzpO/p9Pra991Jn3ev51O3td6zZ63Sp7vej2ejzdRn+utG22fdofPcc6819pfa2n14vSY+msXK2vfdB/9TVHz5e9bnQclI6zvubo64P+LNrXND2nOoZ6fep1o7RtWpTuQ69pPd/aHj3/uq22T1+D/Gsd2/OkbdTndRvtu46zbqdf68+GvT7tOdGij/Ua1Ncw+/Op673r+Om42Nc1W1fHQI+lf2jTa17bY19v9Fi6H3sNaD37c6rjrX8g0ddpPY6eU91Ox0GvNf2ZV3oMLUq31230tV//IKWfiNA/pv3rf/2v3Znx9rqx1zMAANh+hMIAgF1PAywNhfUj5buBDVNswKj0Tbu+sbZv5pUNAZSGAkrrWfY5ZUMD3V5pPRvw+N+w2+/bYKKT3cbS+jZYUPb4to3KhgPK/qv0aw1kgo6jdL/+/ijdRvvs34+yoZrSbfT4vYIIu73Ws9tqO3RbPa6//Zb/Obt/f9/9x/O3R+m+ta49rq1rx8BPn7PXgPLvyx7P32Zlt7Ft1Mc2+FK2vfqvbYP/OLa+7butY/dn6fO2vfq1bYf+q3VtUfp9//nz19e26GMt9hr2s+Ol/HX8Y6zsfmyb7LH99fT7yj5n22SfV/Zr/dceV+vbr5X/OrXjpP/6t7X/agnqu/5rt9HH/v376/vp83psu43ts61v++Ufe+Wv49dZx7bLf73odvY4to36tS12v/7v637tvvRr3d4/ZradVlBbO19fbL/1e/qvnz7WAN4eQx/r8e3rg+2Pfm3HXPejx9Wv9Vj+a69zG62nJew1T49t92mft18rf7s6+2r32bmN6tyn/2dUi3+//nPmH1/9nrbRf1ylz+ux/efFPqfsPuz2lj62+7Jf67+6H397dEx0Br/uTx/7+6HnBgAAbC9CYQDArqczBzUU1o+5jjv/G2zV+dj+6w8A7Jt1+29nyKD8b+iVfYPuDwe0jt2vfx82HLDP2W30sf3abuvfzh+46Pf02Hb//tBT2TBJBQWiehwtth/+dtt9+p+zOvtp69r92MdBbF9s/3Ubu52y7VU2VOlsg9a3zwV9zx5f96Xf76zjZ+vaf23fdFs71v422XbrPv3Pa7/0sd1e+cfBft/2SXU+1rb7z7X/a+U/Xme7/WGTv792PGw9faxF2f3rfv3BnX97/Vq3tcfWbey+bL3O7f1tUWF9svvp/FfpfmxdO9b+sM72QdnvB+1b+dus9cKO27lP/2Ol9WxdFfR9ZZ+346PP63Ht19oPfWw/LaBf2+tAt7X70ef1sf7r/7lX+rx//P3XnT72j4U+1nOi+/W3RdljKf92dhtLH9vt/G3sbKuffU7/9bffPtf5tb8ttp3aBrsfpV/b86lf+1+L7Pf8X2s9fxv915DSura+PYa/vv1e5/Vt62tdu52t6+c/vqV1/PvU7ZTWs/tV+rXtj9J//a+J9lwBAIDtRSgMANj19COvGgrrWovjTt9c68eS9SPtGo76AxQAAHaaPyhWNmS2/3YGxPocAADYfoTCAIBdT9eK1FBYb6IzzvSNs94w7ad+6qfku7/7u90bVuljFTSLCwCA7WKDX0sf2xnB+rX+jiIEBgBgdBAKAwB2Pb15jobCejf2caZvpl/xile07n6vd4s/efJk6yO69l8AAHaCDX+V/qu/l/R3l97c7jd/8zfd31nnz59vBcMExAAA7BxCYQDArqd3iNdQ+Cu/8iu9Z8aTvrlOJpNuX77oi77IDYVf/vKXux/F3bxAuCI5s389RmiZrXh1d07jwrykpyaa7XFmpLIX8vBzObe/uXPeYwAYERruBv0e0mD4r/7qr+TIkSPup3W+5mu+Rg4fPix/9md/1trGP7sYAABsH0JhAMCu9+CDD7ph2pd/+Zd7z4wnffP8ohe9SL7kS76k1R8bCm/ejXq8UPhgRvJz+eByurlkxc6pSeGFpo1TGVk4U5byyqrUve/saoTCAEZUWCisge+FCxfkm77pm1q/u77xG7/RvQGs/T4AANgZhMIAgF3voYcect+IfumXfqn3zHjSN9zPe97z3H7oTGEtv/zLv9y68//m8ELhEZgNHG4c2rgFCIUBjLjO2b86U/jixYvyzd/8zW4orH/M/IZv+Ab5/d//fff7hMIAAOwcQmEAwK73gQ98wA3T9A3pONM32j/xEz/h9kWLLh8xMzMjTz/9tPtGXMvGDRa41s/mJX3DfnF0G2e/JI7kpbzmfTOMG26mpHC2KOkDjrtdanHV+2ZdVpeyktTnzT6dA0nJnKqszwT2glF/SS15B7y2JuVTmfBtVdix7fMXV6VwPCkTum/zvem55vb18+vLVUwczJp6zZsnrevTbtWz3xF4fc+d8bVxX1zSc2VZsxP0GmWZcczxA85f46Fs8/hPmAdB/e3cl3WlIvPHUhLf5425d54rV7zve6JcC0NdLwDGgv4O6vzUyjPPPOOuIfy1X/u1rbXwNSAuFotuYGx/bxEOAwCw/QiFAQC73srKihtm6czacaah8E/+5E+6fdHZVvrm+ld/9Vfd721OIKyih8KNczmZjDmSvGVBiitlKS9rcKph34yUOzNTPzeQdMRx4pJZLJntFqR0Ub+xJsUjE2b7hKRPFaVs9lk8lZaEhpyHC+IuWnFl1TxvjqNtPDrv1qk+oQerSeGwBrJxb9uSFGZTbtjZ2laFHdt9flLiUxOSMPst6va3Jt3wMvWyjMT3pSS/HNbHCO1Wof2OyN3e7NNxZOJQ3h1zPU7c7WPRtKKpMquBc86cSb+GlI+bdh8pNoPqVn9770uuliWr/bghLfPafx2XuWa92FReql619WvhbWZfHzB9e4tvnPTa/MdIdQCML/09ZMNd/VeLnSn8Ld/yLfJlX/Zl7muYzhS+55572gLkzfsdBgAAoiIUBgDsSr/+67/eVtwZjqb88A//cKt84hOf8GqPB31zvbi4KF/91V/tBsL6xlpnW6mgtRyHEz0Ursyaei/0hZ7q4rwk9sUl32uJAy/cTNzePku2sTIjTiwp851B6aUFScYcmVmxKWx3G+vLaTfknDnbnkbXz2TNPn3bhhzbPj95oiLre6jJwo163aSkcNl7ymjOuHUkd957HLXdYceOytveOV72tbHZHu1ja1mJC3k3fG1bZqJRlqzZNr3szV22+/KH1obdl21z/XTWDcTd2cU+tUW94eH6881r4Z3y5/Ks/KNca5aLp8y1MCVvPPcP5vE/yAdbdZqP/1HrturoNhomEQwB404DXvs7SYPhxx9/XL7u677OnSlsl4945zvf2QqR9d/NWxcfAABERSgMANiV9A2pzgzW4Cuo/PRP/7RXc7zo+sH33nuvvPWtb5X3ve990mj448HN4AWuYcUXxDaDQZ31WpHaIMsae4Fk59q4lRNm/9+elYUVnZHqL97M4NaxO0PhupSOmcc3LrQH1K6q5K8z37NBasix7fMzZ73HrjUpHDLbdgbflwuS8u0jcrvDjh2Vu/2k5C94j1sqMmP269xm5+02++xfQqJ+OmO2TUvRLvng7qsjOHaZsdWZwa19hXC3T8jCpebD9WvhEfnzq14o7BYNiZsh8J+31fFC4VY9Lf9g9kQoDIwrO0vYP2PYzhS+7rrr3FBYfy9/27d9mzzwwAOt72/eHzUBAMAgCIUBALvWb/zGb4gbZAaUc+eGTeZGwxe+8AXvq/WvN+eNtRe4HsxIfi7fXU774tGrVZk/1FxnV8vEVEoyp4pS7bdGbGA46gWw3r4CS2tZg85Q2Nu2YwZtk/e9Q4XmtmHBbK822W2tJ/yh8ADtDjt2VO723bN2W204VmouDWFU5yZ9S0h4obnv+3331dnnq3WpXSi7S17kj6db6wu3+hJ4Lbxb/nTtH6X1P1PnLaF1iIOBcecPg5WdMfzUU0/JwsKCu4TEt37rt8rc3Jz7B00NhLVovc3/AycAAOiHUBgAsGt9/vOfl6/6qq9qhVC2PO95z/NqjCd9E603l/PzvxHfmM7Atb/GE1UpLmbXbyAWi0vuXI83+IMEsIFGMBSO0u6wY0fVL8j1999dQsKbVVwvScYcN3Pad9u7fvuyQXZb2OvI/hsSkjo2IwuzulxHd18+b66Fd3dcC68314INfbX0qgNgfNkQ2D9j2P/HSv36ypUr7h8y9Xt6Ezr9fQYAAHYGoTAAYFfL5/NeoLVedNmFcaVvpP3FzhK2s642bvBQuM2Vsszocg3+WamdAsNR70ZosWzvm9S5OtsYYfmIE17dsGA28PkoofAA7Q47dlTu9uHLR0ye9C/50FwPeXKu6i0d0dG+HvvS5SPsvtwZx7GUzF9oP5vNdZUD+uJPf9uuBf83tHj+2lfH9zSA8aW/izTw9S8hoV/b31H6u8v/tdYFAADbj1AYALCr6cdWv/7rv94NsLR87/d+r/ed8aRvpNfW1uQjH/mI/OVf/mXrjfXmiRoK16RwNC4TR4od4e+qzOvN2QYOhcW7YVtMUnd3RLvuGr4Tkly0N2jrbmO/G81lznitCQtmA5+PEgoP0O6wY0flbd9+MzxzJpamzfG7A153nd/rcpI7HhPn1o5Z1CH7WlvO+Pbl9b9zTWUN4Y87vr74roW27Nd/LXzS1Jkydd5lvvZds/46hMLAWNOA19IQ2P7xUkNfnSXsv5mcPu9/bvN/lwEAgH4IhQEAu94b3vAGN8DSsri46D07fvRNtIbBL37xi+U7v/M75Zd+6Zfkk5/8pPvmW99Y+z+mO7zoM4XX7tMw0pHE0bwUzpSlfKYg+SNxM85xyZ23UaMXLMbs+rZGaDhak8JhDRvNPm9ZkNJK2V2WIqXr106Z7Vs3swtqo902LulTRSmvlKQwm5IJU8857As1w44d+Hy0UDhyu0P7HZG7/aTEpybMmM9L0dfHuBmL9jjcuLQgSdMmx3FkZqXju15b3Da7+zJtnuveV/Wkns/1fpWX5yVzcEKcfab4+tJ2LZRMvZL/WtClTq6ZOjd7debM9fKB9uvlUXNEQmFgrNmg17KBsP1af1fp9/VfuwSSPq+B8Ob8/gIAAIMgFAYA7Hp/8zd/497gZt++fd4z40nfSN9yyy3yxV/8xW6gp//q8hj6/OaJHgqr2pmcb21YR/bflJXCY/45woOEwqoulVMZSR5ozkSN7YtL6nhBVtumHYe08dqalH3bOgeSkl2sts9YDjt24PNRQ2EVod09+x2Bu31KCherMn8k7ga4sX1JyXT2saUm/z97ZwGgRbW+8dkOdunuEBURUWyxKBUVFANBRKklzHvNv3Et7MQOVO69FnajYgcWUmLR3du7X8fzf58z3/kY9q6Kriyg7w/ePTNnTs3MmS+eeb93HusvZZpf+b+hLexYpm1uyxyvZ36s0pbs122bHyzHh8Nd9MQXWLfOjVN87BObfYirnwvFsoXzk96AYSlznZTZfcsy30mP1rtYUZSdGoq8hO9LFHutGLxkyRJcd911+Mc//oFvvvkmKQbrA+YURVEUZfuhorCiKIryl8MfrMD8hZ/jnc+n4IFnLzB20S1H45+3HmHsjimjk/ksw7I7A/SkOvHEE404l5GRYURhfsGml7D3Z7mK4uKK2s2rE/hrKlD/ApHI5jihrsobRTTmxr0OR+gZGEqssxxFIdn+p97UUBRle0GR117PNuVrwZo1a3DKKacgOzsbWVlZOO6448yvXtQ7WFEURVG2LyoKK4qiKH8JKAR/8u0LeOLlK5Pi7+811mUbbGtHhF+gBw4caMS81NRUIwpfcsklSU+rP+0L9mOPAddem1hJULduYiGBlkmsJNgRy5jwEYn4wFXLVCcK13g8jB8a85Shl2DEzUuUiUQ4V6OeMnH5z9ijUubww0wZRVF2TigAMyyE9RBmSvvxxx/RtGnT5HsXl1944YVELbee3thUFEVRlNpHRWFFURRlp+eb+W/jiknHVSv0/hFjW2xzR4Oi7zHHHIOUlBTz5TozMxOXXnop/H5/osSfwDvvAKNHu4Ld5MluXteuQFnZZvFPy/xJZU7H013dsAy/aSf8n1tvK/oq6dgSd1x/Hk5KlXoMfVHdeDq6As0NdbbFfo1E/Op/VSlTskWZ+MiR0s41W5aplHY0hoSi7LRQ3LU3J7nM9yauL1q0yMQ2pyCcl5eHJk2aYOrUqaZMMBg0wrGiKIqiKLWPisKKoijKTst3Cz/DxIdPq1bYvfzevrjpv8dj0ssnGXvwrcGY/N5QY/e9fkoyf+KUY03Z6tpg2+xjR4Ffrvv374+cnBwj6DGExIQJE0w+vaxq/DP8b78Fjj46sSKMGSOfFOSjwvffu+sU/7iuZVz+hDKBkhKUnHkmSiSv5MsvUcL1lSvd9T593HXaWVvfV8lDI0yM4A79/oUPfqEMnj5fEgc3vP9n71c/IB5CLBKUMqPdvPnfIx6R+buxxKzH+x3lar9x+TNqVKLMHJSVFjLTNKcoys5Fdd6+zOOD5ubMmWOEYHtDkwLx888/r6FjFEVRFGU7I5/CFUVRFGXn45m3bv4fEffSu3vj9qknbCEAb62xDuuyjartvvLBfYlety8Uf08++WTzxZrG8BEXXnih+eJNbKoo2wd6+7kPlDOhI6IyH6n5MJupWJybEnkUihGLSzlbh6ZzWFF2Rvj+Q5GXKd+rKAYTegHPnz8fzZo1M/GE+d7VokULIwqzHLF1FUVRFEWpXVQUVhRFUXYqGO+XD4jzirYX3dHLeAVXJ/b+EWNbbNPbB+MNb+9Yw/xy/fLLLxuPK4aOaNu2Ld7hz/UFemiV0VtTUbYbjB/KmMFhqjwMFZwUgaOSzcsn7AN8pYAJLWxEYRrFoDAi3KiisKLstHhvTFLkpTDMvJ9++sm8b9FL2MYUZvgIlqFp+AhFURRF2T6oKKwoiqLsNKzesAh3TBm9hVh73WP98fA7p1Ur7tbE2Cbb9vbFvjmG7Qm/PD/33HP4z3/+YwRhG7NRvayU7U8MsWgQ8WjI1XY5JcUoBs/46Gc88dAbeOyB19C/zxkYfeY/MWfmArAovYVdhZimorCi7KxQAGaMYC98b/rhhx+w5557Jn/hwuUPPvggUcJFhWFFURRFqX1UFFYURVF2CuilW1UQ/jO9g3/J2Ie3T45he3oM2y/ONnaj/YkuCQTofqko2wtXCY4ZUThqwkfEIsDihRtx2UW3o0uH3mieeyBync7Icpqjc5vuuPaqG7FyxRpTNejn/JUFNmPNEJd/MfPXu8ndnCy0JZsLCLxmKDgn3Ja5wW7fokxim6IofwjrKcyUNyuZ8j2K700vvPACOnbsiM6dO+OOO+4w+dZT2Ps+piiKoihK7aGisKIoirJT4A0ZwdAOjP9bnYi7LYx9ecNJMJTE9sR+8bbCsP78VtkR4KzkLIyZB82VyJwsR0lFKUaPOxfpGU2Q4+yKFk5f1HP2R57TFnWcRmiQ3xzDzxiDcFDmMaczxaRgyOizEWrLpk2Z3wgiwhATkkHpls7F7MsVimWFBY1xObHRFGAmBSfeyCkXY4gKaYHZtowQl/bjoCidyFAU5XfB9yW+F1lB2GLfm5hyG1OWs2W4rqKwoiiKomwfVBRWFEVRdniqPlSuNgVha+zTO4ZX3t8+D5+zX6xt2AgrEHO5omL7xjxW/t5wJrq+tlwKyIIfi5Yvwp49esBxspDtdMZB9S/B/pkXob3TH/WcvVDH6Ype+43Gz1/HAL9UozBMDckovxSapKVwABEETZYxyUuKw9JPTCrG43It0C2ZueyebdC4bBqlIFwqVikmZex2mkBBWK4qWWKriqL8UfiexBuWFH6rwjy+dxFbzmLFY0VRFEVRag8VhRVFUZQdmu8WfraFGFsbISN+yaqGkuDYaht+qV60aBG+/PJLrFq1Sr2slB0GSjqBhN5q/sjygkUr0LZjZ6SlpaKOsyt61b0Ppzadhj5ZD6K7cxU6OxfjqA4P4Pnrgyj7DoiXAb6yADatK0PAF0Nc2qGuGwxHEZFl4yFMQVgsjpBYiWwtFCuSfIq+YbcC+7fGdeMFTC/hhPDrLWNgHFT1FFaUmkKx196sJNZ7uCpWBLbisIrCiqIoilL7qCisKIqi7NBMfPi0pAjLB79VJ9bWpnkfPsex1Sb88jxz5kz069cPbdq0wYABA8wDfCw+H0UvRdk+UNLh7QkTvZdTURZWrNyEPbrugzQnFXWdvdEr7WmMaLgIw+vOwdD6X2FAvQ8xsOGHGLPLfNxx+go8d+9snHLsaJxy/Bl4YNLDWLZ4CWKJn5lTV6JuRFE4jqgYO6EoXCxWJsb1hOchB2PN6FF2dLSEKGzNwHwKwyynKMofge9R3puUXLcPnqPoy+WysrKkhzC3W1FYURRFUZTaR0VhRVEUZYflm/lvJwVYxvR9+J3TqhVqa9M4Bm98YY6xtqDH1fnnn2+e3u44jklvv/12FYOVHYKY/AvLvwiiCFZGjSi8fn0ZBhx7GrKdRmjs9MGAtA8wKrMIo1ILMTa3BGdkr8KZdVbjFGcxTq37Gfavd6mU7SrWFI1zm2DoSSfglReekskfQDhUiVjMevRyzvvAsA+xGENHyKoRi/lAOopNYpKXNMlz/yZCTFjcDQJFKVoyQ1GU3wkFXusZTBHYLlMM/uyzz3DxxRfjwgsvxPTp0802CsgsxzLeOMSKoiiKotQOKgoriqIoOyT+YAWumHRcUny99emB1Yq028O8YSQ4Ro61NuCXZnoHp6SkIDs724jCEyZMMPn0tNIv1cr2JIYI/CinJCyTNW60Vz5A7s2XvsCJh12EvdMvw9Ds7zAuLYgCJ4yzU+MYmVKKc/OiOC8TGFlnLY7IfhqtnZHGqzjPaYo6TgZ2a90G3331ravlGoWX89z1Sab4S+9hky3LrgcxRSY3P2msaoyNsL7NsXC9ap6iKL8HCr3EirxWFF69ejUGDx5sbmbyvWvgwIH48ccftyhvPYoVRVEURak9VBRWFEVRdkg+mflCUni99O7e1Yqz29M4Jju+2vIW5pfs/v37my/WFIbr1KmDc88912yzX64VZXtBUdgXK5bUByPchuNGyI2VAa/c68PxzV7HiDrL8I/sOCY4cZwrn0LHOMViJThHlkc6IZxWZz2OSH8duzvj0dI5EA2dZuiQ2x5v/ftdxIukE+pGYnQYjoQkpeDLbtyupG/GGaa5+Ukz2yj50pOYojCNNWQjC1tTFOUPQWG3ahgI5vG9ac6cOWjatCkyMjKQmpqKJk2a4Kmnnkq+b2k8YUVRFEXZPqgorCiKouyQPP7yFUnR9fapJ1QrzG5P45js+DjW2oCi8KBBg4wobMNHnHfeecmnuesXa2V7Qi/cKAIIhstlMkaN7hqqiJtwv5/8BxjU4gucnrYUF2TGMU4+gZ5Pyw5ijFOK82R5vNiobODkjFU4rdF09Ey5Hrs6Z2CfjFG4cfh0rPpUOlkLVK4CNqyoQNFGHwIUhyXbBn+ISf8MKWHDSPCKoOxkjSEuKArHTWnWlFK2oF4+ilJjrJewFYlpP/30kxGFeTOTojCXX3rppUQNt46iKIqiKLWPisKKoijKDgfDMVjBlfbgW4OrFWa3p3FM3jHWBvyizfARVhS2nsKVlZWJEr+N9eSy8R6J/dku1+2XeW73PjCIcJui/Bpxyq1BmWNWqZWpFS0Cpj0InNjiK5yRuQrjU6M4Wz6BTqAQnOHD2FSfEYTpLTxabGQqMCJ7I86ssxzD8pfhtHqLcXLDnzG4/Qw8eVURLh3+BPbf/VCcPW4sPvzkfZT6K4wDcSDG3rnkQyhcIctRo/OGojLXmcYY7Zh5FIXd8BMGqxwzVW1KUf4wXnGXyzS+j8ydO9cIwTYePpeff/75LX7hojc1FUVRFKX2kY/eiqIoirJj8d3Cz5Ji6+X39q1WlN0RjGOz4+SYtzUUZYcNG2a8rdLT041dffXVyS/iVUXcX6I6cZfexvxSzrb4dHiLzdvatpW/N0bXMUqsGKNIBIAPXvsZQw5/FPumPIRT0xegIDViBOGxYmMyghiTFjDLzKMHMW1sSkTyIxiRBgzPAIZmASfXXYGDMx5DS+dUNHR2QbaTiY7tW+Hq6y7Hmo1rjeAbZRBjE3OYijTDSIQlNwx/2G/kYBpFYT4Szw0jIVhRmKaisKL8Yfh+QbNiL987AoEAFi5ciNatW5v3rpycHDRv3hxTp05NlvGKw4qiKIqi1B7ysVtRFEVRdixeef++pNjKh7pVJ8juCDZxyrHJcb7z+ZTE6Lcd/LL99ttvo2XLluZhPV26dMG0adPg8/l+lxdvRcWWD8bjl3LrQWzFX+sxzHXriayewspvInPGiKx02A3GUVK4EUNOPgNZTmu0dIbg+JQvMDItjPGprlfwCFkelRHB6BQ3pMTZThznOCGcnVIhZXwokPxRUvbMdOD0OkUY0nwm2jrnoolzKPIcuQ6cdORlOjjvnOFA1Gecf2N+sVAYQT9vbvgRFwuEK2RYrp+w+4/ewgkVWEVhRakxVtz1irz2puKCBQuQl5eX/JWL9RS2qCisKIqiKNsHFYUVRVGUHY77nzk/KbZOevmkagXZHcE4NjtOjrk24Jfs9957D48//jg+//xz44Vl4Zfv3wvrlJeXm2XvF3OGlPC2TdH4j7Sv/J3g/IjJRIqIMQ1h+YrvsfvubZHpOGjs9MRRzrs4K82P8RnAKPkUeiZF4cwoxqRGMdYJ42wnhHOcgJjfLFMoLkiRshSGM/wYlP4DhjT9BIfn3Iy2zglo4HRHQ6czTu87wcQuNsZpy3sccq1QFAYqEY5WGhGYOa4x1ASXZMwcNqd+YlVRlD8G358I3yt4E9GKwsuWLcOhhx5qwkfwYXM9evTA9OnTk2X5XqPvL4qiKIpS+6gorCiKouxwqCj8y1ih1sYBtl+8ydbEFq7qEWyhIMy2mdLoTcw+uMwv678nbrHy94QyK0M1GDfhuA/xSDFWrJmL3bo2RYO6Duo73XCU8wZGpJdhfGYEo1KCOCstiDGyPDaVAnAQE5ywWGxzzGExhpYoEBudCozKCmNE/gacmPEFBua9hUOc+7CHczVObPUUXr85ivLvpfuNQMUaPoxuEypKN0gGPeODZnQJ2dqkrgQlazbTblAU5Q9jby7yfYPG9yiGJ+KvXPr06YN99tkHTzzxRFIMJnwP0/cYRVEURal95CO2oiiKouxYTHz4tKTYuiM+ZM7afa+fkhznHVNGJ0a/7anqUWW9sbYGKwYz5ARhPQrFX3/9NebNm4dNmzbhq6++wtChQ3HxxRcbb2SWtV/uFeWX4Ax0HW6jiEVKZakMK9b9iN26tkeak4IGzsE4Lv19jMwoxfhMP8akVGJUWhAFaVGMd6KY4ESMMDxWlm1sYa9RHB7LsBNS/sz0IgzPXo2CxisxJPd7jGi0Aqc2nYFLB8zAuOMno3n6vmjXcDfcd+ftWLZ4PiorixCJMo6wO05r7ojFNmcoivIH4XuR/VWJfb/gsn1/omBsxV/m2ZuO9ianoiiKoii1i3y8VhRFUZQdCyu00qoTY3ck8461tuCXbn7htgIvv1hz3X7x3hqsdzEFXz7w56STTsLIkSMxc+ZMHH/88SbuIx8K1LhxY0ycOBFLly79Xe0rfz84o+gnHJZpEon4EEcAaws3YMKEK5CX2h0tndE4KXs2RmdUYHxaBcalVGJsWhhjU+LGM/gcsYLUCoxO82FMiusdTCF4XEoM41OCGO+4D6g7PwOYkMbwE36My/LjDKcYY9LjGJa3Cie0fhVtnbNQx9kH2U4z1EnNxAnH9sXHH76buHlCMcqrAVMUpnhFU1dhRakJfI+wNynt+5PNo/Br33eYZ4VgLttfsCiKoiiKUrvIR2tFURRF2bHwCq3VCbE7knnHWht6Er88//DDD3j55ZdNaj2tiP3Z7q9hv7Db5cLCQvOTXorAjPX41FNP4YorrkBWVlYy/mNqaiqOO+44bNjAn+IrSvVQ7gmEXZnVFVnD8AfDWL00jrEnTcH+2ffjtNzlGJMeSYi8QUxIjZsQERSFz00BxqT6MIqicKobS5iC8bgUPpjOL3XcGMPWa/iCTKZxnGdSYHhaBQbVnYWDMx5GO+csNHAORH2nHeo6jXHUQQOw+Lu1rmpNx2C5BIxHM4LyN2SWXLlqM7xKrG0pHnPZbuGyXFOJNUX5O8P3Fu97ElOKv951mhWB7Xa7rCiKoihK7SIfoRVFURRlx+L6hwYnhdadJXzE7U+MclWxbfi9ll+aGeZht912Q6tWrXDQQQdhxowZyW1bAz2KrbcWv5ivWbPGtEevYArAU6ZMwffff49rrrkGbdq0MeIwRWE+OZ5PkCesb38azGUrNHvzqsNuV/66xBN6aSxq1dcYwoXAzOeBU1p/iiGZJSY2MIVg2rli9BA2wrDkj02JoiBVzAjC1mIYJ/n0GPaGkzDiMLczFWO7Z2WEcXruKpxa9z3s5VyGds5AtHQORa82Z+GbV1a7D6ILyVwMB+ELb5LFMgTgl79x80g6cwlzTpt/7npU9icUZUU+kJHxiaUkd9TsrF9qUlhO1BVTlL879v3Avj/wFykUi5nyRqT3vcD+0kVRFEVRlNpHPkIriqIoyg5EfCd+0Nw2VoX4xZkhHijUUsRleuWVVyZFWPvQnt/ClmdKUbhFixaoU6eOMYrCzJs/fz6mTZuGs846C/vvvz/+8Y9/YOXKlcmfAPPBQaWlpSalAMBlC8dJwZlf9pnqF/6/EZz/8Zj8jyAaCctkiBot9ZMpMRzb8HUMySrG6LTNojAFYXoJFzCOsBGF/7gx3MQYsbOcCMbWXYfBmZ/iuLSncJhzJ3rl3omJp87A7BeA4Apg1YINmD37S2wsW4ZKyDyWYdNfMW4u4oikMn9lPzaLvUGZyyWy5JOVkOda3ywK01QUVv7O2PcWi11nKInPPvvMvH8NGTIEr776qnl/oFlPYUVRFEVRah/56KwoiqIoOxA7tSgsg9+GqhDF1YEDB5pQDzbcwwUXXGAe3LO1nsLeclxev349unbtatrLzMzEf/7zHyxfvhxz587FihUr8N133+GDDz4wKYXi1atXG4/hYcOGoUuXLrj00kvNw+ko/lIAqCoKWJiv4vBfn3g8hooK+t26nrb8EywEpt45Cye0fQKn5izDqAwkvXsnGC/gCEY7MSPoVif2brVJ/fH0FmY7WWEU1KnAiNxNGFZnDU7KXoKTG87D8C6f46Lj38UeDfujVb126NfnYLz7/vOoDBUiAj4AyyfztFQu5XLZhwhCMmV9gcRlzWuHO0X1l1OZqRWQE6vb8PJXlJ0Cvq9Q7GXK13wu833jmGOOSd7MPProo/Htt9+a8nxv2Nr3L0VRFEVR/lzkY7OiKIqi7EDId8NX3r8vKbbe9N/jqxVkdwSbOOXY5Djf+ewJGTsVo2335dYrCjOkA2P+XnTRRUlPq60RXfkF3cIv42VlZbj66qtRt25dIw6/8MILWLVqFRYtWmSEYC4vXrwYP/30UzJlPGP2zXHwC3737t3x4osvGmHYC8dFD7FfEoqVvxpxRKJhIwdHEEW5P4CKihjuuOFRdMjbBx2coTgxZxZGZEZQkErP3jjGpQYwNi2EUfKJdLTYlmEjfp8xnMR4SdnuKMeHUSl+jEgNY2SmtJ0HDMmpwOCGC9Ez/TE0dI5BPWcX1HXqoEluDi47/xyUb1onFwXnMB+QRQ/gqLnPw+lL85VLvhWEE9ExZAv32iyqKKwo7nuM9zWfgi/fNxo1amRE4fT0dPMAU96AJCzLsBKKoiiKotQ+KgoriqIoOxZx4LsFnyXF1svv7VutILsjGMdmx/ndwk9l8NteFOYD36yXsBWF7RfqqqLsb8Ev7zSKvZMmTcLjjz9ulukJTGNs4YULF5qUAjHzli5ditdffx377ruvGYONOUwvY4rFHANFgKpCsFeMVv6axOWfzCgEY0Ejk3I2rlxVit6HDUCOk4kWzqE4LvsDnJFVjjFpFG7DKEirwNiMIEalAqMo6HpE3t9r45woCpxKnJ8VkPWNGJtWiHEZPpzlBDBCtp+ZEcMgZznObDYPuzsXoZ1zLJo4u6Ch0widstvizSmvunpwRK6loN/MYV5SvOdiHBk5pasRhblCaXjbXv2KsnPB13z7XvDjjz+aMEX2ZmbTpk3x3HPPmZuGiqIoiqJsP1QUVhRFUXY4/IGKpNhK2xEfNscxecdIUYiS2LYWhY899tikp3Bubq4JH1FeXv67RNfqxGPWp+D7888/G/GXX+KXLFli1ikIM6QE8+fMmWPynn76aRMbsmHDhkYcrl+/Pv7v//4v+TNgjpXGdZrGjfzrY3XTiPxlQIWgZCxcvA67duiGHCcFjZ0eOCbzLQxjXOH0KEY5QYxJK/8TReEYxjoB/CM7gnEphZiQVowLciMY44QxXD7xjqF3crakdQtxcvaH2N+5Efs449Ha6YddnKPx4D/eBDbJDvhkPxhkWC4pOv/z/gantZnadid5uZlLjgpxSLLccBncrCh/d/iab28Q8n1g5syZRgjmexeNAvGbb75pttkbiPa9Q1EURVGU2kNFYUVRFGUHw1VeHn/5iqTgevvUE6oVZren3fr0wOT4HpOxUh/iY6koDW8r+AWaD37jT3Ctt/BVV12VFIS31lPYW85+eae38Q8//GDMxhLmMsNIUCxmOnv2bJMuW7YMa9euNes33XQTTj75ZCMQf/zxxygpKTHjYcqfDLOcFQe2dnzKzgvlncpAACbSrpzz7+YvQvcu+6FJRgM0dg7C0elv4oysIhRkMI5wAAWp9BQOG0GYISRqGj6CD63jw+vGOSHjNXxuegwTZBtDU0wQYx9nMM2qwIQmGzEo7RMc47yCvs5UTNjrQzx62UKsniPXSLHsSwCIhoCAn17AcYQibsxhhpYwarEJF8OHOwZlK0soyt8bKwLb9ySuU/Tlr02aNWuWDDtkPYVtGX1vUBRFUZTtg3wsVhRFUZQdCVcU/mTmC0nR9dK7e1crzG5P45js+L6a/7bxF+RP57elKMwvzxRe27Rpg7y8PBPL96OPPjL5v8dT2H5xZ0qjIDx9+nR8+OGHxjuYYi69gRlKgg+Xo4cwBWJu45d7bmM+BeKVK1ea8l9++aXZTmP5iRMnYo899kDv3r3xzDPPoKio6HeNUdk54SnmFRCK8WqIYdmy5Th8/96o4zRBM6c/jk3/AGdllmBcBkM9BDHW8WNcatSItiPFaioKn5Mqy0zTuB6RPiJGKGYet5tt6bKcCQxzCjEqZyPG5G8wdmrdr3B8h3/jxANuxJknXIw3XngPcbmw5RJBKOqT/aIoXCJWJkbPdwpZFIVD5rpXUVhRXPhaz/eWQCAAv99v3iNatmxpfuHCm5qtW7fGs88+a8ooiqIoirL9kI/GiqIoirIjwS+JcfiDFbh80uYHue1ID5zjWOy4OMYKGWttiMKEXldfffWVievLEA+VlZVG4OUXb6b0uKLxS7lX+LWeWFxmWVuOy1dccQV22WUX9OzZE++9954JFcG2Ke4yprANJ2HF4l8z1n3//fexzz77mDjDFADq1auHoUOHYtasWabPqkJA1XXuI43jt6igvBPA08jTFIPMq4CsRlBRvgn33vwQmjsHYlfnAgzO/Q4jMyoxLiWMCU4M56TEMdaJG1F4fELQrU7w3TqLS7sMHRFOWAzj2W7Cxllj2bQKFGQUYUzmJozOLMSojDKcnv8z+jSYgkbOcajrtMegY07GquUrEY4GZJdo5bJzRWIUhikKc37yutK5qSgWvp57X7u5zpuHBx54oHnIXE5Ojlnm+xi3VfeeoCiKoihK7SAfjRVFURRlR4FfDPmTbFoc38x/Oym+XnxHLzz8zmnVirS1aRwDx2LH9fV3bxtJyNXCtr0obL9A8wE9/OJNz9y33noLTz31FF588UVMnToVr732mvnCzTi+XjGV5SkC08uX8RzpqfXAAw+gW7du5ie9/MJOr156CFuPYArCFIOZ0qqKwFWNISUoDJ977rnIz89PeobxZ8MMM8FxW1Ga+2HH92uigLecsgMjl22YzrQ8VXI643EKpxXwr4/gP9fOwYCmT2No7mKMyQhivBPF2U4c5yYE2wKmFGslrV7w3RqLoSA1bGxsakTW45uFYK+lhDA2rQxj04tRkF6KMemVGJMWxhl1luHIOk+gvnMU6jotcWC3Hpg/d5bsVhDhuMxZ2Ze48RJO7CSnrNcURUnCG3t83abxdf+LL77AgAED0LdvX7z00kvmdd2KxyyrKIqiKErtIx+NFUVRFGVHgcoKvxxSVXKF4esf2vxAt+se61+tUFubxjHY8XBsHKU7Uv5LqGHbEH6R5k9ymX7++efYb7/9kg/voWcu4wxzuXHjxrjvvvuMJzGx3rfvvvtu8inwLEex1sZ5ZN3JkyebmMLWS5hGgdiKw9UJwV5jOcYgnjt3Lm6++WYTQqJJkybGW7hPnz5GcObYaRUVFUYw4HJZGcU2FwoFzCNMVRDeSeApi8h/n1iQHrQhMTmvpcDMZ4FTWkzDsNzVKMiIGS9hKwrb8A4Uh2siCjP0xJiEcdmEorBtio0zFjNexGNT/Rib5kdBWhAFqVFTZ3jOSvSu8ziaO0ejidMM+3bZBXNnzTD7wYjB7sMkKWLJFe99mXJfALb1pa8oOzx8veYNP2KFXubZB416X9f5Ou/Nt/UURVEURak95OOxoiiKouwo8AsjlZbNovB3Cz9LirC07RlGwhs2gjZPxmZH6o7dqkPbHn6BvvTSS42YSw9f+/A5Gpcp+p500knYuHFj0huL3lp8IJwVjr11aHXq1DGi8Jo1a5KCMI2exUwZV7g6IdhrFIVZnmXpMcxYw3wYXv/+/fH4449j06ZNKC4uNt7CM2bMMDGSmWfHaMUC77qKwjsJ9vJNXgZhxCKldBbG18/EMbDJS0YUHptJATiOCVVE4aRRzP0DZkRhqU9LisIpMTF6DTOsBC0qxrx4so4xqTM8ex16Zz6JRs7RqO80wsHd9sC8WV/IfkQQlv2KyD4ld40L3FdrtXfpK8oODV+zrSDsFYbtDcCqr+f6Gq8oiqIo2w/5CKwoiqIoOwpWVdpSZXnl/fu2EGNvn3pCtaLttjT26R3DyzImjjLhN8hvtmLbXhmyYRcomt54443Izs42RhGYRsGXIjHzhg8fnvQUZj0KxIwfzIfU0Ts4NzfX1OGyjfXIMBT0FKaoa0VgegjTw3drPIVpjD9s61IkZr9r167FsmXLTBtM+fNh60V8xhlnmHAW9BrziggWKxiocLCDI6csSudgOYU8f/SqjceCWPVTEW4793UclnM3TstZhDFZcRMqYnzCW3hCQpSlVRV6f5cl2tjcVhTjUn0Yl1YhVi7LflcU5raEecuflVWC43LfQ0tnOFo5u2PckLOwdvky2Yc45D9CcrFzBpqZyWnKFRqXt/2lryg7Bbz2qxOFuUzjzcmq2HKKoiiKotQu8hFYURRFUXYUqKp4lZbNKsv9z5yfFGQZ07c2hWH25Y0j/PhLV5gR8seuNPN1liImlaNtLAzxyzXFU6Z8eM/48ePRtWtX7LXXXsZ23XVX9OjRA2eddVbyQT7W65ZfvBnzd8SIETjggAPMw+UozLZt2xb169fHiSeeiA8//DD5oDkKuDTrMby1ovCiRYtMynaYMpQERWKmFIm/++47XHjhhUaIzsrKMinHcuutt2LDhg3JsXLsdpmoKLwTIKcsLPPNF/DJdRFHcVEp/u/8iWidvh/aOSNwYtYcjMwMY1waRdkoJqSGMC41kvTurVbs3VqTNqyNM0bxOSwWEPOLhYwQ7W5zy3lF4RGZlRhc72f0rjcZ559wB76dPjd514eXtvvKxDASksGpyWlpzdwQYolt/AKgKDswfM22YSDs67XN4/sQQwaVl5cbYZjbrUDsracoiqIoSu0hH4EVRVEUZUeBgoorvSSUFjEXf6ACt08ZlRRmabURSqJqyIjbnxhlxsKvr4yG6DpGyjipGm055G2C/eJshVKfz2c8b+fNm5cM80Axlt65JBze7JXFkA388l1SUmLEWtZjeYq1FIvff/99Iwbz4XUUdplynV7C1vN3a4zlOR7GIuYyhWC2xVjDbI/je+WVV3DwwQcbb2WGsaA4zDjIs2bNMvtGwcCK2SoG7xy4UbUjCeNfyPlfj577HYVcpx4aO71xTPrHOCPDh7EZFIGjGJtWibHpAYxOBcaI1UwYjrshIpyYiU9sbUIVY944mgkhwYfTRc3D6UZk+nBqTjGGtpuF1+5c4z5PTi7yuOwIvYTDcm1H4ZfLnBt4Xcm8pBgc5/zkevIWkaL8LbE38pjydduKwRR/P/30UxxzzDE4/PDDzQNNmc9yVhC2dRVFURRFqT3kI7GiKIqi7CjwSyFFFWtbfklcvX4RbntiS2GYD357+J3TqhV0a2Js0/tQOdrtj49EUfE6MywKXpSB5GutjFQy7NC3HPI2gV+grShsH9Rj173eVvZLN7HbvV+8bbgG5lEoXrVqlRGDKS5bIdcKuzatTgT2mvUoZjt22QrKTG0eheGPPvoI//rXv9C8eXMTuqJhw4b47LPPkmPl+Lk/3n1SdlzcSyAOfzhgJGGKqIsXb8Ju7fdFnpOLxs5B6Js6DcMyShOicAwFaZUoSA8aUbggraaiMB8iFzLCsFcU9grD7jrFY8YWjmBsKh86F0JBahAjMgIYWieAwa3n4+0HfCYWsr9M9kn2g7IvvYRl78Rkm3kFcPfYiMJUjk2pzdeXF15jFMl4zdFTkh6Tf5QdSTz7rbH8ke070v4pvw+eO1rVG3mMU89fpzBcEW8Adu/e3bzWs6y9+acoiqIoSu0jH40VRVEUZUeCgsAviwL+YMUWoSRoDO3wZ3oNsy1vuAja4y9fYTyE7dCYULrcYrS/POwdBiuw8su4XeYXeHoWU6ylGMyUwjCFXYZ64DrNhoWoidFTmO1QZKZAzOWXX34Zt99+u3nIHfPWrVuHQCBgvIZff/11U4/rHK8VECgc22UrftOIV1S2y944lsz7Je9j5ts6Fm/b3F6diME6tpwdjzefMPWuW1i+uvGwnLesHRfz7Dhp1dVlvnccxJ5v247FtuctS1jOm2fLVe3PrrMoLSKrRhSOxrDwp3XYb48jjCjc1DkI/VJexfDMQozPjJvwEWNTgmJRjJZPpLSaegq7D5aLJ0NEVGvJsra8axSFT80pxKBWX2HydYvhK3Jv/PgRln8hhGN+WZMc7q/sJ8XisEwFs/s8pFseVnP8KAJz7nJOcz4/9NBD6Nu3L4YNG5Yo5Zaz2Llgj7Vl8zGOG49/L/YceVM7R7lsz7udD1xnas32XzUl3u2E694xct+8+ZZf285lm/KXDhZbx97o4jLz7Liri0Wr7FjYc2vPJecaja/3DRo0MKIwfxnSokUL4y3MMvY8K4qiKIpS+8hHY0VRFEXZ+XjmrZu3EG1pl97d28T/ffCtwdWKvb9mrHPr0wNNG1Xb5YPu/krYL+uEggtjE0+aNAlTpkzBnDlzkrGAGe6B3r3e+MJegfePmFcUZnvsmynDV7A/28fXX3+Nbt26GRGBMY/vvPNOI1hbgchrhClFIwpYVsTiPnoFLeJd57JXyGIb3u22feaxbXp3UiQvLS0121m3an2b2mUrjlSF+VXHRqor68XbX1W4v78lrnjHRrjsrcf2OS5bzpZlWnW8dhvhtnBI9kmGF4lIWci5iEewekURTjl6JOo7bdDGGYgBGR9iRGYJxqdTuI1jvMMHv8WMIDw21Svw1r6NzCzD4Pyf0NW5HYfudj7uvXsqigI++OVfZYTnPCQ7LeczJPsn+2k9iM1R4B8eHkl5DPmAR3reM643b3acfPLJxhPecRxkZmbipJNOMsesumPKPK8w6j0Hdrtdt6n3vHOZxvyqArKF2zlGe81YWIfjt+155wa3WWGWyzS7zDpMvWXtGLitqjhM82LLcr+Zsl8a4boKwjsPnE88d3ZeMeXrfcuWLY0gzPnftGlTczOQ2+y59c5DRVEURVFqBxWFFUVRlJ2W7xZ+husfGvw/Ii7t8nv7YuKUY3HPKycbu+/1U5ICMJdtPsuwbHVtsG328VfCijaWoqIinHnmmcjOzkbdunXxxhtvYMWKFUacpXjL1Bv2oarI+0fMhqGgNzJTtk3Bl/kUjSkUM+YwPcuskEZx+Mgjj8Qnn3xixAMrIFkRySsaWUHNwvJW3LKCk1eUYl7VdZahFyPDalDQeOKJJ3DuuefiqKOOMt7LVUUtYoUQbmMbxKaEy951ux8Wjo95XrN5VWEe+/H2VRXmc7vdd0vVcfwW7MuWt2Nimzzm3nYpiIYDYUnlOKMSkWglooEY3nxqBo7a/Tz0cK7Fqdk/YVQ6H/7mhnM4h567TgQFTgDj0yNwvXarF223tY3MWo3js15AE2cg8pz2OOSQnvhuyVwE4UMwRo9WOQ88FRSEZbdD0TgCkk8BPBoOoqK0FEWFhSYsyi233GKE31atWpn5a42iGK+z0047zQilPIb22DLlcWXqPa72+LMstxNblufXe35svoXrdp6wPstWhWWs2X6Z2jzClHXtfPKOyS7bOtxOs9uJHadt35azyyznFcJtecI69jpXdmx4juw5tvDc8uYIhWA+VJTXAT2FX3rpJXOjzc6RqvUURVEURdn2qCisKIqi7PR8M/9tXD7p2GqF3T9ibItt/hWxAo4VbdavX4/OnTsb0bVOnTpG/KQobOMAU6ylUMv4wn+GKGzbtSKzXafRC9d6JTO96KKLjHhAzzIKCRQUKKZZ0YhwmR6PhHlc90LBwYoO3noWW95uoxBMT2CO68knn8TYsWPRo0cP1KtXzwh6PEb//e9/k/UoZNhjWh3cZsUtjoNCoF1nHW/d32rDbuc4vQIK1737xbK/JbDYcVu4bueEbY/LNG+56khu5/Ck26CP8XJ5TigK+4Ay4KPJIQxq/gbOqLMOY9LdMA4UhM9LYYzfKAqcCkzIcENJVCfY1oaNzF6K43MeRgvnMDRwGqNbt874+rvPEIJfdiuKeFTOAZ84F5Udlf+hWAjloUJsKluNjz56FzffOBHHH38c2rdvj7S0NDNfmFoxmPOX11lGRgYGDBjwP+fQu87jbs8H5wxTYueBPd82nzDP1iFsj8Z12zaX7XamLE+r2jf7sUIsl+01xGXv/GC+Pf92bHYMtOrGbssQ9uvdF+bbtmnc7q2n7PhUPXc0vqa3bt3aXAu8Bvi6/uyzzybnAcuznKIoiqIotYuKwopSQy688ELzIVdNTe2vb38VvF/EGbJhzz33NPtHseqxxx7D6tWrjRhsxVsb8sEr4P5Rs+15l5lyHOyD3sJz5841+WvXrjU/MT7llFOMKEvP4auvvto8qMuKSfQ0o3jFde6P9+fyVpiweMVh5lujEEyPaf7c/4EHHkBBQQG6du1qHohEMY/HhkIG1+nt9uKLLyaFKtb3ihnMs+tV++e6xbtMbFmeGyuMebHtVq1HmO8dQ3XYdqtrw7teXfvMs/tJs6KdhXlmPyUrHpQ/DLRrHsZW5qaSfPIIcFzd93BmnSIUpLsPe6MofL7Y2WJjnUqcvb1F4ZyFOD7nLjRzeqCBUw8H7NsVc3+ayejIss9yfHkqZd/CvkqZLxvx3kfTcNGVE3Bo7x5o1aoJMtLTkJJ4rbBiMM0KwnadNzk4p73HkMePc5dzkTc5eGOC85znjOW4zZ5jlqXxPLAst9m6tLKyMrPdCrKc90zteWMZbrPluUzjdcQyzGN9C+vQWMbG+2Z/7Ns7V1nGzi/bHrcXFxcnx0jjeJjacrauffge27P7TeM627L7r+z4eM8VzyFf7/mrD76O5uXloVmzZiamMGFZPbeKoiiKsn1QUVhRagh/zmy/6Kmpqf11jd5/f0X4Zb1Lly5GtKLoSS/YZcuWmXwKsxSHrTGvpladKEyxmWbjDFMgZmgJu/zFF18YIfbxxx/HvHnzzPgoLG3atAl33XWXidlKQZcCEwUIYoWwqjCPghNFJopQVng+66yz0KlTJ9SvXz8pBDNlWA2vtyd/+j916tSkEEZsP7btqoIaoehBsY3rHBvHaoUvyy8ts65d57jtMvvxiinecoTr3vFwW9WxcTvHw/3hNi5XN34vth7rePu3nsImxAICsr1I0nLECoFPJgNDWn+K03NWoiAzhAlOxIjB54lRHB7rhDA+bfuGjxiVtQzHZ0xGW+co1Hda4cB9DsS3c2cjLDvk94dQXlSKH2X91huuRc9DD0DTVg2Q08BBRh16saci1UlNegh75xCvLd5w4TpFMYrCJ554YnKOcl58++23+M9//oObb74Z9957r0n5ULpp06aZGxYWHm8rkHL+v/vuu7jxxhtx7bXXmmvhuuuuM9cKHxxpxVRbnv1RyP3yyy/NNcM+WIehLu6//35z/Vmxltjzy3PNkC7PPfecie3NOtdff715OCTDzfBXBCzDfpgS1qM4/fHHH5tfH3CMrEOjhyj3l9cA55r3WuIyxXCK4nbspLp5qOx4eF87CM8bja/j/fr1M6+nubm55mGLfPAi5wnnv6IoiqIo2wcVhRWlhlhRmF/IFEVRdjYYM5c/ZecXdXpwvfrqq1vEEmZq15lWFXl/r1mxlyIzRWG2SeO67dOK0RSAmXI7H35HMZhexBSoGGpi6NChRnSjmN2zZ0+89dZbRiij0EBxyQpUFMO4TNuwYYMRgt9++22MGDHC/IyZQp0V8OyyXfcuU9Bo3LixiYVpRSrbLtcpuFHEothFo9jBPI6lOlGLedzGMhTCWIdp1Tpsn+uEeVy3fdh+mFKQ4TYLjwOxdSjSUfRjedtPVRHHwrosy/lB8dz2VbWOdzkcAipL5HhXQsqWo6x8DfyVa/H52zMxrOcd6O7chJOzZmF0djEmpPsxPiEM0wpo1Qi1tWmjMzdhcPYn6OxcgC65A3DFeXdgwcJ1+HHBMtx5xyT069UbDfMykZnmID3DQWYdmSvpMj9SZX44zK+DjHQ31AmNQrDXQ9ibz2uO8Jj++9//Rvfu3c02O5/tXGzTpo35RZIV63n8eW4osh1xxBFmTlJkZpu2Ltf32GMP89BIwvI83zyfDz74IJo0aWLapuc9++Qyr33axIkTTR+2HucNxbv+/fsn94X9sD8aXzco9jFmLOcZx8iUojS9+hluhe3TWJbj5TJvstErn32wDlNeOx9++CGGDBli+qNI7t1mrwdl54DnjvOWMOXNPb5mDxo0CG+++aY5rxaeW/sapyiKoihK7aGisKLUEBWFFUXZmeEXdwqkFJjGjx+Pzz77zIiv9P6zQi5FWXoRUsT1Crx/xCj42gfNUdilCEzh1xr7YF8sQ5GY5SkIU0xmWdbj+GbOnGni/VJ0okhlvTGvvPJK4zVMKDJQjKAYyjYpeJ9zzjnGM5qv2zSKVHaZgppd/iWjpzDFKuvBaKHQ+vnnnxuhy3pf3nrrrXj44YfNg8cKCwu3EM2scDZ9+nQj1N12222YNGmSqTdlyhTMmDHDeEt6YR16jdJ7lP2wPOvddNNNRlj85ptvjMhoyxIKL/zJP+vQA/Xuu+8246KXJ73C6bFpvUOtEM0x8hjzeN1333244447kh6i3HeKjVZ8ZlnCftas2ojnn30Xd97+CG6/41bcNelGXHfdZeh7yDHIc7qgvTMKA7I+wMjcdRifWek+XE4+iU5IBcZIOlqsOrG2tmx0RgVG5C/HKU3fws2jP8CT932MAcePQHpWvpx7mWNy/jPFmDopYqliabRUpKfmIcXJkXKbw0Z4zXqbUxDlnDv++OPNseZNjJEjRybLUNC14i7LMp8hSxjSxZ4fzjXemKCoyzIsT2Nd219OTo6JyW3PK+Ec3GuvvbYoR7OCMut069bNlLPn1YrWLMcyTO24bJqfn2/mlXdO8MYLhWlbz/bJfWQ9rlMY57XKucNxUujef//9k0Iyr1O+JnB+KjsP9nxauM45a/G+ZrAc5413niqKoiiKUnuoKKwoNURFYUVRdmb4ZZxGb1AKsBRiaRRl7TqFGYqxNt2WZoVhpuzfhpSweTSKRxSq+dP1E044AY0aNTLCFgUnPjSPwjb3Z/bs2SbUw3nnnYe9997bCE0sx9dsK1bZlNuYWvHOGtdtORqFM4rnFJt53ChwUMx44YUXTOgJlrHlKVRzmd7FjzzySFLcYnkuM8/bvhWoORbG3OTP9a2Awjrsk+Ks9SSlsGb3h3W47zwmHJcVrSks8/2JZazozbrsl0bhjSEIrGjDuvSm5jFjOe6DPTbsj3UOPPBA4/Xn7YcexWedOVraz0dGphyHhGCanin9OJnIdRqiidMLR2e+jDNylqMgqxxjHD/GOhHjITxSPpGOEtue3sKj00IYllGEM1vPw5P/Wo1Hbnkfw4aei7322Rf5+dmok52CbNkvIwo7ct7S5XzRezZFzrOTi4xUisdbzhcaj5n1suUyj+NJJ51kjhtvWIwePdqcRx5nlmMZe465zrAmFOkJhTQKta+88ooRi+25qVqXgjHFfyu08VzxhkKvXr2S55TjYGpFYa4fcMABRqimUMe5x/PL2K+cm2zbjpPLvEHClON49NFHkyIf5ym9+Q866CCzvWpfNHoNH3fccUaAJqzLa53l6bHMY8UYtPQoVXYuvK8LXLY3C7wiMLHLnC+KoiiKomwfVBRWlBqiorCiKDsz/EJOo0hpxWArzjL1CrR/hqfwbxm9gekVbD2TvV7LzONYrIcxx0qvVcYr7dOnD9q2bYvBgwebmKmMY0qvSIq4FKEoNlmRjmZFMCvgWQHObrcCm12nWYGLYhfFNiu48ef29Hq09Zhaoc7WO+yww4wIQiMUrQ855BBTxivWsj4FM6aMO2uhQMcHdlHUYzmvhzP3jyn3hw/J84ou9BLefffdk/tpy9k22Pfll1+eLM+6PK58sJ/dF47f9sF6HB+9ju2+8DjQS7lJk+ZIScuFkyLHjWEVMtlfBtKdOmiY1hCNnANxdNbLOD17FUZnVmJ0SgBjU4MoSItiZAowSmy7isLpIYzKL8MZrWfitbuK5MQydAcw/+fv8MSUB3H2uLNwwN57omWTZsjOaoCU1Dw4aXJcjCicJSbHNSEK87xWN4donJPHHnusOXa89ijwHn300UbUb926tRGBGTaC85kiLW8E2GNNKK7xvF5xxRXGG5flWKddu3YmLEPHjh0xfPhwc50Qzh3WZwgJCry9e/c27bMsjfVZl3OU1413/rAv3oShhz3Hx37YZ4cOHYzRs/iCCy4wrw9e+HpCr3KOn32xLMfVqlUr09cxxxxjbnoQjo998nq3x4jHkGEu6Elvx6/sPHDe0Cw8f95fV3Cb90YUz799PVUURVEUpfZQUVhRaoiKwoqi7OxQmKLHnhV9mVoRmB65Vqy127elWW9g9kWjEMw4wuyf4hSFa4aT4DaGPrjnnntw2mmnmbimTz75pNlGwYzewhQuTznlFLRs2dL8xJ1iphVqq9ov5dO8giqFPgrANu4qoQDGn+pT7ON2a/R4pJjKdNSoUcbDk2UpclEQ4cPtWIfCLMsxtXXphXn++edvIZSwzqmnnmrEXJa3xp/bU+ildyhDSVBkobEf/jyfAiTbs+2zDsvbOgwLQVHGim+sQ+Gb/bA8y9l943GkqMdjzXnDOhR4OE967NcDaVlpSMmW45TvIKtuJlLS6iPdaYgcpw4aOz1xTNbbOD2zEKPSwhjthFGQ5kNBhg8j04IYnR5DQUq8WsG2Nmx0RjmG1VmIE5u+gCvPfBrLfypCBCEEUCJHvxLhQCnmfzsLrz7/Ov5x3tXYe58jULdRE2TnyfHPoCi8pYewNe/84TKPIcNHWNGM55jz/NNPPzVhQ+iFTfv6669NrF6KuVY4Y8o5xJQ3CfggN8b8ZTgVu8y5z3AThOUoxjHl/GMbvJFi+2IfNIY+4c0Y2wexc4LjpPfwe++9Z+pxTJ988okxLtu+LKzDujR66/MmDftgymuW+8b9Zbs0ziMeA17/VkznnOYvABjChOOh2eOl7NjY+WOxryucD/xFAc0b5obmFYwVRVEURak9VBRWlBqiorCiKDsz/MLO8AH0EqSXKQUbCnw2ZIMVaikSM/UKuNvC2C8FYK8oTbNiMbfRA5KiJL0r6eVIoY2hGxgbmVhRginDJ7AO46JSzKVATMHJCqMUoOjNaT062ZY1rjPfiqlcp8DLGMBVH8a1Zs0aI+Lyqfo0Hk++PzBWMwVhjt0ranGZD9Ljg5ds2cMPP9yUp8B98cUXbyHsWeGE7dAL9OCDDzb7Q4/L/fbbz9S97LLLjCDOshQOCc8vzynFcYZ9OFLap+DLfuh1fN111yVFR1uedRmG4uSTTzbjYjm2z2U+0I9xjG2MZCscMn3jzddx/MBj0Lf/YTi0bw8ccOj+OOzQ47FHh8PQ0OmANs5JGJD9Bc7I8GG0iSMcw7j0AArSKzEqrRJj0sMoSI1VK9jWho3M3IgTMz7AHs4/0TJtf1x0/iXYULYSYZQiRrdhWUJUzl0AKCsGlizdhJdefx1nnz8Be+21BxrUy0dOQki384fL3vlDo9jO8BE8n1YwoyjKOeE9d/acELvM1M4jLlNQtXWY8jzYGwlMuZ1wG832SWxZ5ts877LFjtGLdwy2vHcfvP3afmwdprZN73XE65TXpT1ODB/xuhxfYvdJ2bGx88HOCa7z3HF+vvbaa+Y1iK9vDz300BbCsJ0biqIoiqLULioKK0oNUVFYUZSdGcaPpbhI0YoiKX/KThGWgiwFSHoPWlGWgm11Qu6faRSDmVpx2ArE9CykGMzQBozfS3HXCm/0vGRcUz7QjQIDoRBBsyIFl+lpu2LFCvOANgqdXoGYHorWW5gp86r+9J/9UXzmMfJC0Yv9UCilCM0HyFEU4zK9Odmvd1xecYxiCctQmKVxnfXoTUdYz+tFx3XGhrUed1ymuMI+WN+OxQvHQvGNIStYntttH6zL9q2o6BVz2J7ti7FvbTm73ZbdnIalXCFKytahpHI1iss2wlcGfPvhKpxz4l04IPManJz9E0aku97A4+RT6ISUKMal+jEqpRxj0gKSH91CqK1NG5m1Cv3Tn0ZrZxDynZY48IB9MPvnGZAzhAgCstNy3hhZISKLssuBEBCMh2TVj1WrFuP96dMwetRIdO/e3YTfoBjMa8reZKBxTnFuMRY2zz+Nx6/qOeO6Pdbe48zzS2xdwrI8j9W1YVPOj6rY+mzXistWqCN2O1PWZ2r7JyzPut5xWDGY2HETlrHjsXjXWZavNfb48PXIKworOwd2Lthzz5Tnma/bDJdjb8TxgYL0Tud88r6+KYqiKIpSu6gorCg1REVhRVF2ZigKM0YoBSuKMFOmTDFf4K0oTG9Wu24F221p7IfGPhlLmKkVqa1dddVVRjii8EbPXXqv2p+ZE6/YxGW7TvHBilYULyhC3XzzzSa8AuOlsj2KFl4xmAIx1ylksM/mzZsbr+OqWDGW5hXDbH9WdLVwmSKtrVNVlLXiik2J3cZyXvGFy97y3E9vWZtakZzmFXdtGW63dZnafItd53avOJgsy80yjFiE+8z2pQwdPEuBDyaXYkiHNzAkZzXGpAPjKQiLnSM23olijOMD4wuPTdl+nsIjspfj6IzJaOQciTynKfbqvge+nP85grIvEUTh9wVk52WvfFEEZPd4xOWISepHLCoWCSIgG3hN0Sty5MiRJp4zY+PyxgXnkBU9Bw4caI6ZPW/23HiPq4X59tjbZdazeYTLVtjl+WHKNmkWW495dn4Qm0dYxrZBvOUstoyFy6xvr4Fw2J3zXLbz3y7bcTO1c5DLNHrG77rrrkZM53XH+MoMhWGPSXVjUXYs7PnlfGDKc8Y83tRjCBt7c43XBB8CarFzQlEURVGU2kVFYUWpISoKK4qyM/Poo4+aL+tW9Hz88cdN7F4KtBRjrXcuBeLaEIXpIUyxlin7ZExSxjFlzFSKxHzwHGOhMvwBH5h1ww03mDwr+FJYsD9Jp9DAfJqFIgXzaRbm0WvtmmuuMR6c1tOzqkBMMYMeyQxdYQUwC5fpZWkFLCuKWLGNWNHDOwbr4WnLW2z7duy2vG3PenRWFcpYxuZx2Xope4+BHSPH4/UMteOyKevY/ljWjpFmj7WFeTE2y25YJSZ/olKmUtovAj5/DDil6UcYlrUJBanA2QlB+PxEOtaJYkIaPYi3X0zhETnLcHzeFDR2eqGO0xJ77b0PPpv9FcrjIeMgLLso+yb7LP+5HI6F4IsWyyq9cOWYc7ts4HHiMebxYXxm3kRgyA/+dJ4xnCkQc56xXNVjTrwp2+Gx5rngOpe9Zblsz4PdbrH1mdrlqufM2xapWs6Wsf1w3Y7Hzg3m2fJM7Ri57L0WbVt23dYnLEtvdL4e8SZPly5dzM0fetHbOsrOgZ0vdl5wmb/4oMjP11C+rjZr1gxPP/20KUPs/FEURVEUpXZRUVhRaoiKwoqi7MxYwZPiJx/E9tRTTxmRlV/iKQYzpXeuFWyrirg1NQq/3pR9UJSmGE3RYMSIESZuLsVfCmxWRGVIAz5Uzv4svqqoQCHC+5N5Cl0Wr8hEYcorTlHEokB86623mgfYdevWLRkKgKI5j9Gbb75p+vMKqt42LHY7t9k+7TgpnFlBxC5bz0nC8t4xs54VWYjd5t1vbvfum12uKgZ6yxCu27FwrFbUI1XLesdkYRlTTpqIc7MsxgLSX1gsGkdgHfDibStxfOPnMSx7lRGF6SlshWEuj+V6mptWJ9huncUxLiWGcU7MtDneiYtFMD4lLPkhMTc0RYHXUiUvNSL5MYzMXItjUl5Ce2cU6jvd0PfwE7B45Wqjc5fJ/pgjyBAS0aAkzA3LLsu5Myo4d37L42OPqz23vK4mT56Ms88+GzfeeKM51tzmFey5zuNPvG3Z82PngS1j8+38q26d7dh1i3c+EFuOcNy2n6p487xtcJn1bD9ctu2xDvfRlrftE26j2XrcLz5Y8ptvvjF5dj8J620VHCLjexgpn8a23XHzr92yOdeFu7Z5XbayjUQGR2sW+ccsyPEx/2yetBiX82m2/G95uQzc+UPYEfdfUo7F3Sv25S65VeRal5TjNLkmkzkypxI1DG7hzf2ZpYj8pbl1mSaPRaK8bd+uuyalY3K8ZVyJ0ltuFnP/2t42m12y8Jza88yUN/f4Kwt6gFMYbtGiBZ5//vnkzQ7vXFIURVEUpfaQj8yKotQEFYUVRdmZ4esXvYTpvdWpUye88847RgS2XsH0FuZPfynUUiC2Yu4vWVXhmGKvFXy962yT67ZdpszjMkXZcePGoWPHjsnwDfxZOb0GtzVWxKBQwf44Fj5Y7vTTTzeebvQUth5u1ogKG640FE4IY0bjCgL+ijCe/fer6LnHIOzmjMbJWTMxKi1g4gnTCtKBkU4MoyjiUtiV9H/F3q0zCsITnBDOdiIJwTkm5sc5KWWYkFpqYhez/TFio6X86NQ4xqRJXppP6oYxOr0Cp6UtxYHOYzis6fl48ZGP4auIISQ7RIEsZLQ4ipQ+2Tm/WCSpj3ET5TqvMFYdnCe8WcCbD17Bk9i59Hej6nVkhUKL3e4Vz38JVosZb26en3LJKZd1SaOuIMrzxFsvpWL0YbbCMPXWiGxkVdNzXLZGfTKHKQ67Z51lzfmOybUeD8lizNQxeeEySSsRDEdMWXPLQMrJBWE6LQ8k6rNxitthKSEpb1uZW0ecTwxBwr5kc1RKsx2O02xn5TD79CEQrXDHyH6lbCjEICZmUfJkKVYOX7jI5HFfmcYg4+PxYDtSkJKx2SdObLNPzJeeQkWyHGZpOXKyneMJczSJ9s0SjaK4OwCmdo3j4rmioG/PIV8X+esPhoygIMz3HL6Ovvzyy+a11nvzQ1EURVGU2kU+FiuKUhNUFFYUZWeGX9IpujIcA72EZ82aZTwavTF8KdRSHP4zwkfYsBBslyIwYxbTuM2Kx4y3mp2dbbxzOT7GOi4oKDAPPasNvIIUxQ2KeHx4HI/NM888Y44F87xixlZ7Mf6FoSxEKSvEOBI8HJIsWbwafY48GplOJho5B+OEzHcxKqMY49NixlN3VHocI1LjGC2fSMdR3JW0OsF3a4yewONTgpjghJNeyOc6IUl9mJBSaYTfAsljX6Ok/KhUYEx6AAUUqVNiGJMaxpmZxRjVZi6evnwRsF72QfYjGEkIaNxJs1QpO+sDYkZdM4KaK5VRGvttOFc4r9Q78n+x1549PtZbeGuFQ1M9GkO4ZBWKVs/HxvULUFS4AkUb1mHThiKs3VCB5ZsqGdEEFSyakDKjcgIpyNKjN0RhN0iR1y8DiSIu55/CqhkBVVJpn7c+6Cce53rAB9/aRajctAoVgRBKglGUR8PufAnKdumC9TlzzARhzGVj4aQ4HadwHZfXFBkALx16n7M/bi/lAr3uI0HZ5hOTutJOPCQ9hAPSfgxlklURiiEWohjuky7LUR4KoFQao/Bc7udklp4SO8K5SjnX7L6Uics+ISIly1ejcPUKLJKON8omaZK7a8YSCHNk3CuuuWKwTTnzuRSObPZKt+IwzyNf6xs1amRez62nMEVh72utd1lRFEVRlNpBPhYrilITVBRWFGVnplWrVujQoQPOPPNME57BCrZWwLXmza+J0WPMehwzPAU9hClCc539MK9Hjx5J72V6515++eUoLCysFRGNfVDwpZhhRQ0Lt1nzisBW5Pu744rCQYTjIVdsCgMLF6xCh3adkCXvk42drjgu/TmMzlyDszN9KHDCGJkQZxn6YbyJJ1yTmMIMBUGBN2LCR/BBdta4Pk7MeAmLjRRjv6MpTqcy5IRsS41iRJ0NOKvNZ3j7znVJV1LqfpTB3DPMJQpvYhSFOQ0onElCgfG3fYX/l9qY1zsivL6qCoFcpwBM8x6XrT1GFHbLCjfg1ismoFvHumjZMg9t2zZDh1Yt0bJpS3TaZU+M++cV+HD+IhTKSQtTCI2HjacwHbejcrLZE7VTzmiEKaT6jLeuyYvKuIJ89GBC5A2W4+evP8LwE/ph3732wJRnXkAF25JWgnTDlWW27RPzcwIxRAO9hMMRRIJh441rPIE5r2QcrsetFI6whbgRdDnjGLKEnrxhXl+cbVSv+UDHUBHWrVqCp1+ahh+WrJPjJFm+csQC/FUFH4HoisJGajYhLsyKVOdg3D45JqmGsK8U7099FAfu3Q2HnVSAj75fZ+a88V5mHVl2rwKO6H9FYa6xeQvPJQV9pnxvOeWUU0woHsaw58M9v/32W+Mxz9dPltHXUEVRFEWpfeQjsKIoNUFFYUVRdmbKy8vNF3Om9Ni1cYQp0DKldzAFYa7TQ9Yr8FZnLGs9fqszCsv2wXVz5szB66+/jg8++MDk09auXYtHHnnEPERu0KBBpgwFA2vbAwpSVrT4NXFqe41vR4GyEEUrejlSIWL4iJUrNqD7nj1QNz0TLZweODb1GYzJWolzsygKh4w4yxAS4yjMpjC27x8XhSnujkkLYYyk9DgeJ+bGFnaXk6EjxEamAqPSKAqHTVxhbh+TFsCwvAU4q9PbeOPORTC/oZf9oOwVlJSRAFxRLCA753poGqUsUSZq/v6+OcA5Y0Wxvxv2urLwOKxZswbTpk3De++9Z15vrKhIfksYZikKmJXF63HRyGORJ5/N0rMcZGSno0m9esjPykVOVj04mfWw22HH4INZ86RSBRAqMfq+HUkwGsdGX8S9CWA8hgPmNJt1GQPDKVBopVCKYBGWzPwA/Q7aC00b1sf9TzxjPHujciWYGSFDZj0KyiETj9ovE8kv1wbPuSsIU7jlclwGQf/dcEhaD/oQl3J+aYdXlRGnowEwgnVlOIRQBcddgeXzPsJpg47GHvsdjve/+sF49hrBOCxtRMLwyWKhn6+dPL7SnxwgI+5SFA5LGybEBsVmme6lhXj93/ciPyMVLfbqhXdnrzRj5z5Q0ObNEXdvWNrKwJzzm0XhmOdceb27ucw40RMmTMCFF16It99+O7HFpWp5RVEURVFqB/kIrChKTVBRWFGUnRkKLnzqP2Pnvv/++0mvYAq3FHG5TLHWxgD+LasqCrM97za2y4fIvfvuu5g4cSK6d++Oww47zAhBFRQ6ElhPXI6PD4yrLeGM4oT1EvauW7zCFPOrCh9/ZyiIMvqoEYXpJSmncNWKdTj84H7IcRqgiXMYjk99CQVZa3FuRhAFTsTEEi5IA8anMvQDHwgXq1bw3RobkxrHyPQoRlLsZbtiVhxmynAVY8RGUxBOD4v5MSa93MQU5kPpRmcU4tS8z9C/8X24cNA9mPnufKOE8YwbcczsJddCsrP0hpZlrlJwM/9MQAFTamvgHKuNOb2jwmvJe50xPMwll1xiHujI8DH89cL69evNte8t+0twM2P6+orX4JKRfdAw3UGrDq3Qp/+x6N+nH07o1x+HHng4nIz6cJruimvuug8x32qptB4BfwCV/ggiURlHuQ8lcnor5aSHA+VycisR95ehsrwMhZUhlMjUpsgbDsnfslVY+u0H6HdAVzSuXw/3Pv48ymROlFdsQCBQhnIpYoRfGZt5fFu0VMwv/cVRLlYaDKHI53cdf6W/WFzmUVD6jFRKxWIZU5GULUa4aB1CFaUok/EZD2XGuyhZg/eemYTmdVPRsfsheO+bRSiVziI+2RaUBV+lrAdRGpKeZdUvY6EETGHZeBnLfiG6Ab7ABpTJa1dZWQne+M99aNGwHjoeeBw++G6tEZl51PnK9r+iMDO2FIWjFLY954qp97XcpvYGG42vm96HgiqKoiiKUnvIR2RFUWqCisKKouzMUIidPHky2rVrh6OOOgoffvihEXApBNtYwnbZK/D+lrGsNa5bcXnu3LnmwW0HHnhg8iFyjB188cUXJ0a0JRQMKCLQtuZBU9sCChfV4RU8iBU9/q64EhGPlViUomkUFaXluOnq+7Bni4Ho4BTgpIxPMS6jFOcwZIR8Ch3DNJ3evFFj42rgKcy2RkpbI9JgYgbTK5h9GEsJY2xqyHgSj04PivkwOqMiIQr7jSg8KmstBua9jNbOEBPq4swTRmH18uVG/OJZdmcB9zIiCU2WmSkJxfDfIwrbOe3l7zB/vPvoFQ95HTGUDEML8HWBn6sYg5Y3j+yxqvpgvupga4GSlbiqoBeaZjk4YchgVMjJi1TKa0cwiu+//Q5duh0EJ78DBo+egHj5IiyZ/S4eeehB/PvJqfj+pwV48PH/4L4pz+PTr+fIwCpQuHohPnjzddx7zz2Y9OhkvPHR59hYLmPnuQ9twJJv3kHffXczovBtDz+Lj7/9Hg89cAsefvhuTP98DjYGKAyzsE9e0DZi3cqFePLZ13HzXY/g/oJiLDEAAP/0SURBVEcfxQefzkAZHXtl8GE+EC/mQ2D9Erz9whRMuut63D/pFjz76EOY9fU3WM94xdJUzFeBT15+Ehed3huNcxzUa9cVE666Ay+8Nh3xQBSlS5Zj2vPP4+77J0kfj+Hj975BufRRIqOoYMgIit1l6zF71oeY9NAdeHDKv/HqKy/hyXtuQPMG9dCye1989P16IwHz5W/L8BE0znQebVcO5t7RmGPPKVOKv9bbm6n3tdR7/pnaZUVRFEVRag8VhRWlhqgorCjKzgw98SjQ8uE/+fn5ePrpp414SyGXAi5F4arev79lXkGYZgVhplOnTkX79u2NJyBfO5nus88+eO2118x4vF65ViTw+/215knG/tkvBYuqAgaFK68IbGGd6vL/bvBsRawyFAlKSmE4hFULwph0yQ84PPcZDM1cjHGpcfMgOCPWpsXFwhjnxEzs33FGwP1jZkThtIQoLMv0Ch6bEpH+/BiXRvG3DAXpFIIrXVE4PWBE4rEpbkzhEdkr0a/OQ2jsHIn6Tlsc2r0nfpw/z8Rf5X7Rm9NFFqgIcj0xRRhNmT/zd4WyraOqCPZ3EMV+SRTkzR++PvA1gUZhuEmTJpg+fboRE7f2+mJrgZJluH78kWiS4aDvCYOwpjSCisIyVKzbiO++moXu+xwOp1EXDJ9wASpWfYlHbj4X2RlpyM5rgP17Hob8Zm3QqstB+M+zL2Hjinm4aMJwNGvSCvn1mqBuwzy07tQJ511xK1auKQKC67D06zfRr8cuqJebi337nIpdehyCJvUd5OelYLcDeuPBZ14DAz8EA+uxYN77KBg5BHWbdUZ2w/Zo3KwZuvc4ADfd+QRK5CWOe1myYQVuu+I8dO/QEK2b10HjuplonJWF/fc9CA+9+IaJalK+aSP+ecZJ2DVH+kmRY5bdDBktu+D4E0/GnC+/wtghw9GoTh4at2iAuvXrYbd2e+LW2x/G8lAEfh6lTasxfeq/cfCRh8Cpk4X6zVugc4e2GHTYPqifnYW2+x6Dd2atQEBejkNhzu6EKMyYyP8jCrtewrRo4nXSegLb13OeZ3uu7bnkOuO3c53Lf/dfWiiKoijK9kA+AiuKUhNUFFYUZWeG3nlWpOXD3aZMmWIeCrRkyRITY5gphV2Kuowv7BV/KeJwm132CsIsa435rE+B+aGHHjLegHl5eWjYsCHOOOMM451cnWjgFYhrG47l1/rnGKsKXN71vyvmFNIYF5VxdxlDtQL4/FlgYPMZGJ69AeNTN8f5HZ9BUTiIsU605qKwmI0VPIZic2oE41IC0p9PrBLjJC1IoxAcxui0qJgbSoL1GGpieO4i9My9FvWcvdDAaYF9duuG7+bMlJ1J+j+bXTPY/UxkWFHYU6JavHOEc6zqHPqrU3X/LRR++brBXw7wBhU/V9FT+JVXXjHbf+t6tDCmbfn6n3HjOUegUbqDOs3b4oA+J2HgMQMx4Mg+2L9LN6Sm1UVKk26YeOd9QOG3eO6By5CXnQknIw977n8IHnnqRbz6wUwsXLIct119DupnOdiz+yF49sU38cQT92KX3Tshv1U3PPqfFwH/OiybOQ399m6PTBlzruRfeeu9ePOlyTj5xL5w8lrgqCFjsGT1EpSXLsXFZ5+CnEwH+/cahKdf+wT33HcfGjdtifotumHqqx/DFwzgw3dfw/67t8EBe7TFM/99EC9OnYJTj+2P7Jz6OHTwGPy40YdghR9rvvsSd1xwCurJfjbb6whcfd+TeP+9t3HxOWORm5GLvr374Smp+8ADk7Brm13QrEUnPPrGdFTEY9gw53OceXw/GV9DHHjcKfjv01Px6KQ7sEeTHOSmpqBtj2Pw/ry1Rv5lnGbO7KQobB5SZ0VhN+VZ5fZgwpvb+/rIlOeXAjAfGEpjDHu73TsPFEVRFEWpXeQjsKIoNUFFYUVRdmb4YKfdd9/dCDGM5fn444+bh71R5GXsXxsDmOIw4wpbEZhi7/Lly41wTMGXy9zOelxnuAnGKeZD5JhyG2OGbty4EZMmTcI555yDF1980YgDFAUoGig7N5R2wq5etIUoHC0DPvw3MKDp50YUnpCGpAA8Lj2WFIWTD4TzCL2/xwpS4jjTCWJcFnB2Fh82x7AQfpzthExoCrbPchSBR8jy6HRgpCxTHB7pxHF63bnYxTkDdZ2OyHfqo0/Pw7Dw5/myM4yT7IpjBqZeM0kilrLNUKrFKwB6BWJ6ifJ1haIwP1Px9ahp06Z49dVXzXYKwlsjHsalzWDRYlwz9mA5jw6cjLpwMpsjzclAHVmvl5aO+vVa4MhBZ2Pxqg1Aybd44taz0bRBfdRt3BaTnnjGPESOMYAXLfgZh3ZvhbZN6+CK6yZh+fpyLF08C/+86Bw4eW3Rd+AwBMo34Mcv38KJB++KxrmZGPd/t2ODX8ZRuRJPPHonnAbtsPuhR+PrOV9i6cIvsUfbTDRvnIs7Jr+IheuCmDt3Hk4fNgIZ9Tpj0LCz4QtVorhwFVb+9D3WLlkAf+VGbFi7GPfeOhHZeQ3RpudJ+PinItdht2IDPnn2RjTKddD2oAF4f95KrFg4C3vv1hL5jZrj9vsewpr1y7Dgx1koOGMo8vIb4tiR56HIF8QnT92PLi0aI6vTIXjqw+8RY9SKwrW454rz0DA3By326oPPfi5yZ7Qci4D091uisBGG5fjzPNEY7ocpzx1/6cHX+/322w8HH3ww7rzzTvOaz+3eEEGKoiiKotQu8pFYUZSasC1F4UcffdS0q6amdi2eeuopIyAqfy4bNmxAt27djJdwTk6OOc4Ugin+Usild+/8+fNNStGGxu1W+GU5isZctttnzZqFe++9F4ceeqjxCO7Vq5fxSK6srDRf/OlFRiHAKwoRFQV2bnj2gqEI4lRPGbc0FgJjCxeuAiZdNhvHNHseQ7MWYHxa1ISPMAJwOlCQGsZYJ1JjT+GxqXGMz2QaxhjHJ236pJ8ozpU2z5XtE8T4ALohkj++LnCqU4wzc8swsu5GjKq/AqM7f4TTDr4WLfI6Y7+u++HRBx5ANOxDTPaBUzUc9sxPLlozCR+4RdnMU0b5H7zXuPf6p3DIG0o2njBF4UaNGuKdd975fYKhzD3fxoW4dsKhaJTtwKnbAs12OwSdOu2G7rt2Rs99uuOG62/D1z8XG+9XlM/BlNvOQU5aOtp17oGP5i42D2MLhOL45vOPsFfHeshKcZCZ3wIZ+U3kNdJBVm46nPxWaL3bvigtK8Ky77/Akbs3QscmdXH/U9NQHJH9rFyBZ/5zvxGFux5+LL6e/SU+ef95tKor9dNk/+p3gJPdHLl1cpGWkQ0ntx0O7nMiynwbEIuUoWRdMZYtWIZ///dRnHrqMWjVIAPp2XnYte8ovDW7EAGGVy9fjw+evgqN8x20O3gQ3p+7Et989DIa15H9zslDWsMmyMxOQcP8NNTNdJCRmYV2PXphfWE53p18G1rl56DpAYPxznw+2E7a27QG7/z7PjTIzUGH/Y/Dx99vhE8uYR76ZExhIwq789w9I0w3i8I8p1W9gLnM94k99tjDnFvefGTIIt4wtOXsr0MURVEURald5KOxoig1YVuKwvYnlGpqaq599NFHiatD+bMoKSnBHXfcYYThww8/3HxRpzhjRWCv+Gu9gLlMkdd6EjOPnsRMWf/00083Xn48ZxR5mjVrZoRiCgTWI9gKPV5RQJ9Av3PjikMxhMMBWYkA4RDWr12PKy66CY3T9kZT52ScnPkhCtI34exEHN8Chm8QG+uEMSGlZg+aGyt1J6RLe04Q452QEYIpCFOAppfwKLGR6QGMa1COE1K/wwnZX+K47LdxUqNXcMXhX2LRK0BkPfDeW59g5pczEQ0xLnIUEZPKDrpT1cBVVxSzGElMbMtcZUu84q699glFYb6WMIwNP/vw4ZN8DZk2bVoybIS3fLVI05FAGMGipbhqwmGon+2g36kjsLxMXl9kW9hXDvgrTLlKMZ+URflcPHPPJaiXlYcOux2Er5cUYZOJlRDGku++QccWdZCT4WD3rvugV79j0efo3uhz7DHY/8j+GFZwAVZvKsL82TMwcP92aNcgE3c98SJKpe24fyWe+e8DcOq2wp6HH4s538/GR9OfR6NMB3lZDnbbvx8OOupU9D26Hw7r1Rs9jxmKMRdciuKyJfhh/lcYOfwCZKQ3Rv2mDXHgQV3QtX0e0jMz0bbnWXhjVgXM/YnKTXj/mcvQrL6DFj2Oxyuf/Ih5n7+GxnnyfplfF+16HIAjex2Gkwf0xVFH7ove/fpgzIUTsW59KV665xrUT09Bq0NG4NPF0hYPcel6vP3EPWhaNx9t9+2Pad8sNw+/C0lnG0v8VURhcxjN3y1EYc9rPM8XX9N5zvl+wvcB+17OeNHPPPNM8n2ANwlVGFYURVGU2kc+HiuKUhNqQxT2ekuqqf0dzX6RVFH4z4df3Pkgt9dff93E9rUev1bspRDMdRsaYtmyZfj222+3EIKth/CcOXNw8cUXJ1+76HncsmVLjBkzxoSNsOIOU7tMvEKRsvNCcSiKMHyBcp5UIzStWbUBhx3UB1lOHlo7vTEw/WWMzliFs9P94MPlRqfAGEXhs9NqLgqPcSLG6/i8dOC8ROxiGr2ER6X5cXrOzxhc/xP0dB6Q8YxHC2coCg59CBWzZAf4BC96RlrtkfsQjSHGmBjMS0xTJl5T/hhVBWI+9PKss85CgwYNjPXv39/cfOK23xSECZuLyiksXokrz+mNerkOep00HIuL4q5XsDm5rsBfQUd2Nlk6B4/ceC6a1WuG3fc8AnNWlKFEtkfCAXz90TTs1bEhmtfPwqT7H4QvEkcwEkKRz4+1fmB9AAhIGz/M+QID9m+HVvXScPeUF1ApzQZKF+Pxh29HWoN26HJQP3wzeyZmfTkdrfIddOnUCo89Ow1l7EcGXOKrNCEnSkNR+CqX4NabLkdGWhMceMjxuHfyI1iydB6eeuA65NfJQdtDTsf074MISt24rxjvPf1/RgTu3HMQPpqzErM+eQ27d6iHvPbtcd/TU+UYRxCsKETAvxHF5aUolH4qKyJ47ZFb0Kp+Plr0OBnvzys1hwaFa/Di/TdLe3lot++xmD57DYLUgM04zaGVFdnh/xGF3cuDxvARxIq9VvDlr02aN2+e9ASnQMxwEtxm2apzrCiKoijKn4qKwopSQ2pDFFYhTPm7w+tAr4VtB7+YU6Sl4OuNHcy4wUzp5cVlpl4RmMIxvYWtBzHrXnbZZeYBUfXq1UOfPn3Mg+v4YCFLVQGYQgA9xKwpOy/0F4wiKH9dETUWABYvWoXOHXZDlly/jZ2uOC7tGYzKWI6zMyuMEDwq1X3Ym3nQXFrMCLvVC75bZwVO3DzIjiIwHx5HY1iK8VnAWXnLMaDOc+jijEdT53A0cvZEA6cTxpxyDjYtXYd4IIhIlDJd3HiWGo0qYeFAyA2LYfYzmW2Wt5zRytbifS3gMmPQ8nWE8WZvu+02vP/++0mhcKtFYZl6waLV+GfBkcjLdXD8GeOwLgiUBkMIRijXMuBvDJUyN6VToOIH/HvS5WiY3Rjt2u+PWQs38LmIqIzGULJxJcYMPBRNMh2cNHQoFq9Zj7WrV+Ghx/+Dsyfei/9O+wTRWASL536Ofnu3Qov6GbjjsWeMKBwPrMbzzzyCnCYdscveh+Grmd9g9dLvcdRBu6F+TirOGn8JVpeEsWTVMlxz00Rcdeu9ePXtt7Fx1SyMPP14ZOc0wZAR52Hx+vXyGjwHl4wYhDqpKdj18MH4ZKEP5dS3fWX48JnrTZiMTvv1xrTPv8PKhXNx6EF7IqNRQ5w+djyKCjdhxVI5ppNukX5uwkvTPkdFWQA/f/EODtyrCzKb7IFbH3wBxRuKsWzO1zj/tOOQLddq8z37YsaCUjlmckjFKN36jEIs5yFx18SePabMoUXkNZznku8n9pzxdZ2/FOGDRfk+zs+29AJ/4YUXkuWqvi8oiqIoilI7qCisKDVERWFF2faoKLxt4RdzPnDOxg6myEuzYSOYx5RCML2E6dHHh8dR8H3wwQfNMusznw+cu+eee3D//fdjxYoVRnC2orP94k8RwLvO1AoJys6LKwn7TEoViU6ZSxatQdcu3VA3Ix1Nnb1xXPqLGJWxFmdn+DHGCWMkReE0V9Ad7xF3/5jFUZAaw3gTQiJu4gefLfkFYqc7G3Fyzic4wLkMjZweyHcaIz8lF53adsCzzzyFaKxSxu1HBCEEYkEEwhS3ZKd4n4LaFpftfBWzIpjd5G7ngvJHseKgfR3gMoViu0z7VXgyAnGEitfiknOPRZ08B0cPHomlJTGUx3mrIiiniJJtlA7giDMsSPkPePyuK5GXUh899j4aPy4vNiUqpKtQoAzvPnkvurbIRX69bPTs3QtH9OqHzPotUXfPQ/DQS9MQiwTx8zcf4vCuzdGxVQPc+9/nUSJzJhpYjSefuA9OdhN0O6AvfvjpZwTLN+KlKfegRYM6aNCsEw47+kQc2vcIaa8O2nfbB9Omv4N42XI8cvc1yG/YADmNm+OI4weir/S7S24GGmVkou1+R+CDH1eDmnasogLfvPII9mxdB6n1G6P3iYNx4/VX4+EHJ6Fpm9bIrV8fR/fri169jkRW3Xy0l+vwpTc/MppuxbqFuPqS89C4eXs0aNoOxxx9LI48oAdaZzqok5aOzocwRvE6VEhH1HZ5RswtO56DXxGF7YPmCFN7s4/vHfQO5oMEGVOY4SOefvrpZDl90KiiKIqibB9UFFaUGqKisKJse1QU3nZQiFm7di3uu+8+86T/2bNnG49fmvUItkZhmJ7Bzz//PAYPHowWLVqgfv36uPDCC5PxgO0T5asKvF5BxysasFwgEFAv4b8AjCdMUZWetubn6GFg9apCnDjgVGQ5uWjqHIEB6dMxOqPMxP4d5UQxIi0q665wO1Y+lRpLiry/zwpSGI4iiPGZFIQjxkv43CzgTFkekrEUYzp9ij1TTkUzpx3aNa2PY449GC+/9SIK/eX0HwVncJDhL+IyH7k/nKacxrSY7E6QUpwrfnnNzGb+cae1UgN4A4mvB/amkRWKvWEGfhGeDCkWLtmI664cjrYd6mDAGWOxrDRmzq1f/kaNH7AUMidPznLlAjw+6Vp0aLo7eux1FOb9vMbMBdeROAgUrsBHLz6OoYMOR8vWTdCsQ3fs3/90TH7nM5RKGUSCWPn91zjxiG7ovkc7TH7+NRSFIogE1uCFZx9Dqw57ofcxgzFv3nwg6kdg/WK88dxT6Hn4MWjQqiNadW6Ho08+Hu999ZUMieNZjw1LvsW4C85Ek11aokmnzji6z3F47pZ7cNIRfbD7oQfh6Q/fh59zLRRFeOEPuOnCs9Fxz13RuFN7DD1jODas34jnpk7FgOOORevmzdGh067oM/AUvPrep/DJXDYe75FyrF86Hzdf839o3aIpdu2yBwafdAJuufhs7N6+A7ocdgo+mr/JTH2+XPPo02vYrPyKKGzKyrmyr/H2/PG9g+Ej+D7Oz7Zt27bFa6+9Zspwu33fUBRFURSldlFRWFFqiIrCirLtUVF421FcXGxEXT7gaZdddsHbb79tPINp1lOYxp91c/1f//oX2rRpY16fMjMzjQ0fPtwIORQAiBV0iM2zqVf8ZTnvugrDOzeMLhpB2BWLeCpDco4DwNOPvY5O9Q5HV+ccnJj+JcZk+DAhzfXmHcNwEekJUTcpCMcwNjVsbBwfPiflxsk2r9Gr2C67YnIMY9IDGJFVglH5RTg9YyWGZCzBGfnLcWr+Nzi/xyz89+Ll+Pipn3Dx2Atx+y1XYlPJEiNi03+UIiAtLAMPSy6Hb+5ryLTlM/PcnXLnNP9yNtPcHIELyRXlt/hFAVCyKVpGIvx1Ae8syJkwD/tjvATPMU8s8DxFZYXRrOVFxlUvQ34UbvoJG4qXYV2J35zXCnlt4bmltzBvXVAPlkalzkaEilehdEMligq51Z0H7Nn0H/VLmyUIlC7F6rVLsWy9DyvL5XVTtlNojsdDCJdvQKxkNdatXIxNgYgRlcPBImnAh9WrirBufZkZoWk1Kq3La2VJcRCrNpVgRek6rC7fKCMS+PoXrpRGy2W8hVi8fgnWlhSjbFMZ6L4c3FCEFUWrsD5UbsYXD0ib0hbKirBqw0qsKtmEosoAAmG5EiNxFG3YiI1r12Ddug0oLOXtDhmSHPeyUhmbjBsxH2L+Tdi0fgXWbipERRn7KUTp+g1YXBhDiZTn8eDD5ni4zC4kHjTHRXsNJM9JgurO7YYNG3DKKaegbt265kbicccdZ36ZYn9JQux7hKIoiqIotYd8jFYUpSaoKKwo2x4VhbcdjAu89957m+PLn/U+9thjJhQEPYMZW5jb6TXMmMJffvmliRfMhwXxIXJ5eXk48MADMX36dCMEqKfX3504ohR4EooR9S+jdhUD0+4tx6mtX8cZdRagIKMC4/lgOfkUem6KG/OXou4EegynxsRCGJtWjnFi41MCsj1qypjYwImyF2VTVE4IxGKjHT/G5pbjjAar0D97Bo7Jn4a9nNvQxbkIg3vciblv+twHyVF/MioW/1Dq4mATAxZjXGSK2zqTtx3e1wneCEquyykIVoawdvVaLF+xFD5/KcKRCsR5ZyEak7kVd8VaFqdaKefSL2fKZ4Rev9SXcxyWDdEw/DL5ImyQXrFMxHi2WZ9mRE6zQcrTpB3mBSStjJqa7rRgnAnpPy59ROUf81mO05pTiTcQzJLUYV+2fYMtKJ1HpWXK0skGxJiUyV8GLTH5TKQN3lZh2+zP7GhI9p/tRLjO8CwROgknblrIn7iMQsYZkDxecqauLEdZyPQpZdwGBe6rmJn/nOth+Wt8lBP7K6OPMQyM0aFdgVvMbDNVZLv0x5rsPtkstyfMnk+vyMvzzJBEV155JS699FLzXsLtDA9i3zv0pqCiKIqi1D7yMVpRlJqgorCibHtUFN52UADu2rVrUhR+7rnnjGcwv8AzrATDRdCsMHzYYYehdevW6NKlCy655BITN5hUVlZuIfYof1Oo61iBiMthWdwAzHseGNjwLZyRswYFGRR5YzhHPoWeJ0axl/GFx6VHMSaVwnAUBWmVGCs2LiVsRF+WoYh8nn0onSzTs5ii8LkZsj09hmEZSzGw/nQclH0PWjsFaOj0R32nB07tO36zEmjHVp25f5RtTFWx0L5u+Cr9eOPlN3HigBPRq/cReOSxBxAOV4CibMwfNKJkhZxDP88lVcuIK1r6ZJKF4/SwlTUjIEfgi1A6lSzjDSwVpQuefla1U8E0mBBV2Rj/VRgxOVFFCsXCURlDSPKiCMaMPGraIhRGGSzFSMXyn8YSphTLsJOwLEg9+g8bAdnms21JSmWBQS2M0i2buYnjM2MwJWSfeHdFNsQj0lOkTBbCRqsOSUfBkE/GKjWkOptmPXZpqjKlmzsFazYsea4IHHE3mSx6/bKwWXHLyo5zH9xj647HFGYbFI0TojDLJI+lp0/vL0VIVbGX2xguwnoIW0FYPYUVRVEUpfaRj9KKotQEFYUVZdujovC2g6Jup06dzOsNQ0g88cQTWLZsmRGHr7rqKtx5552YO3eueYgcvbrmzZuHBx54AJ9++qn5Im8fEMQv9hQDlL831ILo0BiJx9yYvNR5ioHPpkRwXMNXMCSzxDxYziv0Utgd5QRRkBbDmBQYK0iNGHGYoSGsNzDtbIrGTth4C5+X5XoLn8nQEVL2rPo/YW/nEtR1DkKesyfqOO3QsfHumHjl9aD3KOUrOyTjQCpmtCuvKdscr/hnl/n6sWrFKhyw7wFIT01Hanoqdu2yC7766jPZKBMqGkc4GDYiZJgaI0VhOaX0jKWo6g/7pDHJDFZIGtkc8sCc5Jg5z3x4IF+haO6plr4ZRoEmy673a8zIphWVPutMa/BIpwbWt+WZmo2S2PYNHACnXYwia0hMMtyKZhsTBpbwcylRNhyOICRjTvYV5x5Ki4n2KdWGgpXyuiurZp1jD8lY2SAtiKhsj/EBfXLM6EFsupOyITG2ljh0pkvX31faoLDMa4QmO85clt3CU5gVzHbu9S+JwmZQBu+55XsD173n3uZrPGFFURRF2X7IR2lFUWqCisKKsu1RUXjbwViPJ510khGEGevxjjvuwGWXXWa8h/ka1LRpU7zwwgvmS7v94l71iz3XrTis/H0xupFMDYpEIQo+FJfCEcz9fAkKjrkdh2bfi5PTN2IkvX0TMYEnUACWdFRKEGPSoxidEIXHMIxEStyNM+yxMU4E4zLCUt6PEY4fo6XO2NwohqdtxKC8d9AtZwjynBao7zRFh2btcdctN6GocBX8oWIZF0MAuDIYzWhcYkbLSpiy7an6+kF4g2nBzz8jVV7n01JSkZkjr0eNGuCVV19JTCopJ2VDcpaMCBuQvCC9bE3gCHMepWEpE5SUQqOUk2IRyQrIaxPreM+1C3MokbqvXcyn3y+9grnMUA6hIEVQaSchrrqhRdwxWDMkEtuHgQucaJK6ISEShZgvbfNfhRhDYJg8s4/SNz1rWVQsEuHexYwDr3vPjWOVBSkfDccQDpbLuuxDPCLLfrneKOWyvrQuZSIR9ziwab/sCoVcmp3/3APTGAvz+PFY89qVXPbEo2O65XhY1Gy3ArorDDN7czMs6GK9f+17RHXLdp03HBVFURRFqX3k47WiKDVBRWFF2faoKLzt4Jfxjz/+GIMHD8aAAQNw0EEHGXHYHvOGDRvikUceMQ+S4xd469nFL/w05ln45V75+8KZYGKdSuqKT1GsWbccE0ZNQJ7TEu2dERiQuhhnmhARifAPxisYGJkewJjMsAkfsdlTOGbK0OgRbMTijAjOTCvDWZklGJ65CWflFuL07OUY13IFbj1xMf4x5GZ033UPDD15EN5/91X4/OsQMz/Sr0BlpEzG5ApZW4pjHCn9NSmo6Rze1nhfM+wyX0t++vEHpMlrTlqKvPakpqFB46Z4590PzCmJ+uTcxBmZN+HrSo/gSNCIlrJkQiZUVAaNiBqTfHMaxXiOWYZ+ugHGG2Z33Ga6pSzKrTILuC4WiYZRUlYkRdzACiZbygekbcJ8bkmGXUjUSyTGDFxgP+wiMQ6ayWBIB/Okuxh8UpB7ZMpTcOX4A/R6NpvleuKNDFmU7fTAD8dkH00cZGbyD8fFYxOS7XzMoyvmGkE3LNsT7Zg+k17RrnEf2La9XrnsluXy5uuEWVvsjyzzKNBfmMKw2c4/tq7nfYHLDBPBdZ/PZ8IVMU59RUWFyfN6CdtUURRFUZTaQ0VhRakhKgoryrbHCpR6Lfz52C/sDBnBGMHp6enIysoynsP0Ev7Xv/5lvsxT8K0uPATr84s/0S/1f2949jkTKDkFZC4wRuvyVT9hz906Id/JRTOnL45L+xLD0wMoSA+hwIkaj+GxacCo9CDGZEoe1+XT6dgUegq7gvBosVEUjjNCGF13A4bkzMOpeTNwVMrL6JP2NIa0fhWvXR5B+TdAxWpg/ZrVKNy0hqNAjGJwuEhGQjkxmBS6aJzNlNGiqBQrkbLlsg//O8eVP4+qrxF23RWFvzeicGZ6GpyUNNRr1ByvvPaOEWXjQYZI4PmjhFoup3YdAkUrsHT9aizZUITi8rjxhjVCZSSAcHklVi5dheUby1Aik9IXowgqDVG45CQ1Hq0Ud91QCGby0mJhhEKVCEgb64sKzU0O40RLz2TznzXoTZyQQ01bbkIzjXCfku25qTvXiLk6JI8zkL7rfISdW9QIxcFyxMqKsWnFOqxZsRa+SMjU4L7Z/TNzlOEegpWSUYlIsAwVpRuxaeM6LFu1GotWrsZiSTcWlSJQKW3K/0hUeqEgnIyhzIfzsTV33KYPMTvezdJ3Ymz8Ywub7RSU+c8Vzs22RF17TpnyfYPnliLwww8/bEIV7b777rj55ptNHHobV5jleONRURRFUZTaRUVhRakhKgoryrZHReFtB7+UU+ylPfTQQ9h3333RokULnH766XjzzTeTYSFKS0tNar/kW7huRYDqRGPl7wNnAWdGIBpBQOYCPXBXr/sJ3XZvjWYZ2Wju7IfjMl/BmVmrMC6zFGOdoBGAKf6OTAtgjJiNNcyU4SXoITxKto/IiGJ47moMrvcRjs1/FPs656Op0xvtnT64YOCNwDp2LCZT0IQ9pTglq+G4GwyAM7OqUdJyI7oysmuhlOIcd0UqZdtQVRTm64dNf/7pe6TL63xWRiqctGw0atoOr73xoQmd4CrDAfijJbJSJC9IP+DWq89BveaN0Kjtrrj+xgcRlHJ+aT4Q9OHVp/6Nerl1sMeBvfDBrB+N8Bo1T46TAvTINeKoJ8Ywh8UugpXwVxbh4xmf4J6HHsSSlWtM1ywUC/AGgvtwOT56zgSkSAQv5quk+0opK8YrV/LZJhMx9sFrw43Sy4fimRHJbGN7iW0sWL4Rr02ZjF2atkGXznviy7lzzbSm069PCvpkcpsaIZmrgWJEA6VY+NM8TLz2CvTr1RPNG9dFTlYqWrZpgUGnDMZjjz2LVWtL2CPKI/TgZUduzxSF7RiTxn2VdEs/YWaIcTGx6orCCUGdeLYRnmd7w5FG7+AePXqYm420XXfdFdOnT0+W1fARiqIoirJ9kI/aiqLUBBWFFWXbo6LwtsOKMvTS4vJnn32GDz74IPkl3W4nVQUdC8Vgbznl7wl9Bim80cuQ/0LRSixeMgsH7b0H6jq5aOH0xPGZz2NkzmKcnV2I8Y4rApsHzaWEMSYlgAlOBGc7MUnjSVF4RBowPLsUp9WbgyMz70FH51Q0cPaUNluhRWZ7jDjpTBjlMCbzMKFjcTpS/+OspOBmRTlrzOdsdiPNUpbziVF+03m8Lan6OmHXmS5a8CNyMhwTV9hxMlG3UVu88fZnMPelKOjGGUG4Uk7gWqB0Fq675Aw4WelwchphwKDRWLCkCD45qRSFX3/qEeSkOdj1oH74YN4yI8WaM04PW4ZfoOdszBWF2TxngZkQgRK888YL2PfgA3DYUUdj2doNbj7nlRRi+YBkBMySZCbipbB94+dqvHGlbXdymXbN3JNl9+WT8myZrLh3MCiusmnzasvtJWvx4XNPoUO9FmjXchfMXrSEpRk+2bTDscbi0lt4k0zZ9fjk/bdxVN9eSE1xkJvpoGG2g/o5DvLys+CkZaBhw7a46PIb8PPGYjPD7bwPS2umZyOSb97A08Htrv9y4i6LOfY0N3Gr8F/C+5oVbMMsk3if4DnlMtP58+ebsET8XGt/hfLSSy9t8d5hU0VRFEVRag8VhRWlhqgorCjbHhWFFWVnIKEKgV6U/GG8DyVFyzHylOFo6XRHO2cwBqa/ijG5i3FBbjHOMSKw6xnsxg4O4WynQtZLMd7xY2xqFKNTgbOyghiavxInNnxX2jgDTZ39kO80RvP8JjjtpNMw4/MvjCZlJCU7hCT0ZbSW2GQXbCWvbVFXqS0oCK5bswp7d+2E3Kx0pGbmo03H7vhi5gKEqIZSzLVetrE1QNnXmHjpUDgZ6XDS6qNJy66496FnURoGfAEfXv73nchOd9DpkP54c+ZSI3HGeeMgXIZI+Tr4C1ehvKgIpRVAObXdxBjK1i3CtVdcgOz8uji8/wD8vHINfD6pHQgjUlqOwspKFMtYfBR0YzKesnKENpZirSya31LEKhEt34jKknKUlwdRKV1uKgujuES6ZicMURLZhED5JlSWFaK0dCPK/H6UydyjNovy9Xh7yiPoVL8V2rfeHZ99/7MRhSkcU1g2TVCsDa/F6h+/wInH9UdqahqatWyGgcf1xaUTzsQ/xg3HGcNPQ5t2HZCT0xjN2nTBvc++xKAbRtDlw+AqIpXYUCTHobgI/qISVBSXgz8A8UsHdH4ORcoQi5bBX1Yk2wpRzrQiAEZ44HaGXWFIFora5uFy8t+aN5yQjT8/b948tGzZ0ryP87Mtf43y/PPPJ3+JQlQUVhRFUZTaR0VhRakhKgoryrbHKwqr/XlG7y1F+VOhYBSmhyH9EisQCZTgh8+X4+KBz6B31oM4I38ORqWvwnhnE852fDhHPonSJqQC48XOywijwCnCBfWCGJVZiNPT12F0s7UY0vxrDNntBRzV+UK0yemOPTp0xU03TMTPixYZwYzem5WMG0EoTpk/FKeYR+GJsiCXY+4mKwKzCEVHGpdNXaW2oYDoryzD1Ccno//RfXB47/649e7JWF9Cj1aBnr3WHze+ASj9Ajddepp5IJ2T3hCp2c1w1IBhmLNgNcoryvDByw8jK91B832PwvTvNsIvpz4a8GP+7E9x7+3/wmXnj8ZVl16KW257GF/MXooimSIbigrx+L3Xod9h+8DJyEVeiw4Y/c+LMPW55+BftRKP3XU3/nnF1Xj1k09QIvMpGq3A2q9n4Lp/XIxLbnkQ3y5dhbh/PT589WlcdclVuP6GOzHt089x+fW34rL/ux3fz1uEoH8Dvvr8Tdx8/VW44tJ/4P8uPgf3P/IQvl64ARWcpuXr8c6UR7BLvdZo13oPfPzDQulrsygcMHOXSvbPeHXKnciQz4nNWrbDvY88ilWrl8tUl9KxSlT4yjHlyafR58hjcMzxp+DVz75GKcXbSBDF61fi9bdfwcQbr8bF50zA5RdchKf++wKWrSwFQydzGD7/Jsz+9iPcct1VuPSf5+NSGevNt92Fz79ahnI5Fb64H/4YY3C715PxIDbu0NJFIoyQ9RJmGIlZs2ahUaNG5nNtWloamjRpgufkuFIwptmyiqIoiqLULioKK0oNUVFYUbY9VhRW+3NNRWHlT4WClRFW44hEimWhAvFgwISA/WAScGqjbzCiTiFGOOUY71TgH6lRnCefRBlCgp7Co8RGOlGMyqjE6WnLMCh1Jk7O+wynNp+Ga0+ci1nPAfM/KMHrz36Ijz74HMXlFa6AJVYaDyEgnRuRygyCMhqFRG7lT/YrEimFRaklY1RRePtBEfB/YCzecDmWLPwJi5auNSIpRVBXYgzJZjmHLBMrBEpm4KaLT0VKWgbqNuuMBi06Iqtec1x9072orCjHtGfvRlaGgzY9B+HN2esQkmk4/5sv0eeIfdGoroP2zfLQvEF95OY2w4FHnIiP5i3Big3rMe70vmhaR14f0/KRUr8NGnbqjPMuOBcbv5+NYw46EFkNmuOKO+/B6mAZgsEizHhqMlplZaNhl5544eMvESpZhGv/MRJZTi4aNumIdt27o26rduja7XB8/sk3+GD6yzjkgN3RIC8LrZvWR+smWciuk40+p52D+Us2AeUb8M4TFIXbom3rbvjgxyW8fMwx4CHjrEakBNgwE+cO7YO8nDycNnwc1pS7D1FEzI94uNIs+8Mx/PTd91izZr2Z/f5oGJHCpXjzmYfQqVNzNG6Uj/ZNGqFFw2ao27ADTh99GVbw0Mpl89qbT6P34XvJcWqINmKNm9ZFbr3GOKTXGZj20Ty51hhVmfG4Y4hIP+Z0WmMiGd6YwgsWLECrVq2QmppqRGGGj3jxxRfNNhWDFUVRFGX7oaKwotQQFYUVZdszYsSIpJCp9ueZisLKnwoFIQqrRuPxyXolYoEgUAx88SgwrMX3GJ5VYYTfc1Oj+EcaQ0fEzMPmTFzhtDCGZq7E4Pxv0cv5L7o6V6G9MwpXDHoZ0SXSJH+fL80ykgC7olBG0ZCyLwXhIIVDMwCr9FIyptcyhWAKwtasMCwDZUNWHGaaELWUbYsVC7eAgi+FXznBFDV55ijrB00xegiL8RxRFC38DLdeMhjpGTno0uMIjDznfNRp3AwHHXE0Zn7zNV5/8m7k5KSg9WGn4dWZq1G6sQR3XHsFOndsgdNPG4Af58zAq889g54H90Zm3db4580PoSgcxqJZb+Dy84Yjo04r7HnoCXjl0xlYuORHFP80Eyf3PhyZ9Vvj6vseQ5FMlFC4CHOen4zmaQ7qdz0Cr309D/7C73DXVROQ6eQhM7cVjjp9KD6eNw/fzl6MVcvW4dzxZ6Lrrq1w3ZWXY/YXH+O5KXeiUZMGcJp2x33/fhMo34R3nngUu9Rtjzatu+O9n5ahUHaZTrjc9yD3H2WIrPgIPXethyaNW+EfV9zmXhrcFi5G5cblWLF6NZavWoNlixbK8jr8tNGHSmmjaMU8DD/xCOyxRyfcO+l2/DxzhhyX65CZ0RAtO+yHF96di6UbyjF2wlA0yHdw8F67Y8aH7+Ld99/AoKFnos3uR+GKmx5FYbBYzhFjPNMTmDdjeE7l1Hi8hG1oCHoCz50714SMSE9PN59t27Zti5dfftmUoXisKIqiKMr2QUVhRakhKgoriqIoihCH8cik1hqO+hCniBeNwb8aeOmmMhxX912cnlVq4gSPdyIY5wQx1okaT+EJacDIOuswsMGr2M05Bw2dw8S6oJnTHldOuBKoiFBdkk4oE4bch12JhaUvV/71wxcpkSEY1SwBpSquewVi6znMNCEOm+0sx/JKbVC9KCznlw9Ri4dRGYoZj1WeoUAsimiED2eTc8VTFZDlTTNwx6VDkZmRh4N7D8C7Mz5B7wHHILd+I0y87hpMm/ooUjPSUH+/E/Hm7LUyWdjYJpSVbEJFRSl8xeux4LvZOPmEE5Ga2xhHjboUhZxe5T/ggZsvQVp2O/Q+6RwsLClHMFaBTfM/wQmHHYDshp1w2V2PYU0sLO2sxqxn7kGbrBQ07XEsXpgxG6Hi2bjl4jNRP6MFdt3jCDz13rsmJrCPU0/aj/iL4S9dD39JKSo2rsK3Hz2H/Q/cB06D7jj7ivtknhfi7SmPolO9Dmjdem+8+/NybJKqnO+s7wuF5TgUI7R4Gg5ol4V69Vrh/KvuxQbZzJkcXj0H553WF43r5aNRoyZo16Yl6rdsj0OGXICfisII+Tci6t+ATSXFCPgqEFizAJ+98izaNmiKVi274I5HX8PijRWYcO4w5KQ72LNdc7zx4jNYvOJHzPp5CRZLR8uLeV6CcjWVIRKLIBAIm6uH12NUrnfCc2sFYnoCr127FiNHjkR+fr4JHTF06FAjFHu9hNVjWFEURVFqHxWFFaWGqCisKIqiKC7U+Xz+MOg7SIHWV1mBt577BH07n419nYk4OWMhRmVEMTYliAIniLNTXC/hM50KnJT5Jdo5I5Hr7Il8pzXqptbHwfvsh+lvvSYtBxGJ0B+SElultM04pLKY0HLjCIvx4XabHyhnbTNccwVitywjETPlOutTFdyyhrJt+B9BmMTk3IQrEPSVoTwYQYWc23Ip5kqODB1hReEAUPQN7r7sDGSk5eGQPgOwsmQtbrnvFtRr3BAtmzbGJeNGICu3PuruexLemLVS6pUgunER5n03H8889yL+76IL0HO/bkb4zKjbCH3HXImN0le8dA7uvvY8pGR2wEHHjMXctRuky0pULPgMA3r2QJ0mXXDJHVOwXoYRjmzEvKl3oV22g6b7nYDnZ8xBtOxb3PiP01DHaYquex+DL1csMV68fDgbx15ZvB5ffvwennvyaVx63ljs1T4T6RkOnEYHoOCy+2U3izBtymR0rNcRrdrsg7d/Xo6NUtUcLpmeRjaNFiKy+E0c3b0Z6tZrg/GX34e1ku2TMrF1czH2hJ6oXycXOTl1TAgNJ7cuDhlyIRabJ80VorJoET75fAYmP/wQxgzqjQ55achzMtC6dTfc8shrWFoUwL+fvAcdWmWiiexbbpqDOg0ycHC/Y3H/kzMwZ5kfJfFyOS8VMh7XS5inxR/iAybdc0uB14q8ViD+8ccfcc011+CGG27Ap59+avK4rdq5oCiKoihKraCisKLUEBWFFUVRFAVGEKIMRGnVR/1OMtasXY5j+/RBvpOLZs7h6J/6NkbmFGNsRiXGOmGcm8FYwnGcmVKIUR2+RHPnSOTnNEXzpi3Rq1dfTJ36CsIRaVcaZtuReIX0Q/MhzgfLsTMjFEYR8VPkjUo5/nPLU28yJitMbT6NJaOef6xFKVupfSgMRsMBbFi5GFMmP4wpTz+Lz2bPM2eawSRisRI5YTKpGGkgJCe9cCbuupSicD4O7nM8VpSswFfzP8URvQ9BTloKdm/RHKkZDdHkkGF4Y9ZSoGwJ3phyB3bdbS/Ubdga3bt2waBjj0T3Ls2RlpeL3mOuMR65KJ+Lh2+5CLn19sK+fQswd90mmV7lKPvxA5x42L7IrL8bLr3rSVcUDm/A3KdvQtsMBw32HoDnZ3yHSMmXuOXCwchzWqDnEafj23WrkqJwRVE57rr5BnRs3QJN6zXCIXt3wZD+e6Jt26ZwGh2M4f+8l6ox3vr3ZHSo1wkt2/TAtAWuKJyYsCZBSHpf/xEuHd4XaRlNcUD/cXj3pzKUcOqWyPG7818YM3oszjhzBLrv2R7pOdk47JRzsWCtlFn5JSZePAz18/PRrkVL9D9gNwzudxga5bdAXsMuuOnRt2RvpZmKZXjikYk4fUA/7NdtVzRoXgdO3YZi+2DYuTdgUeFSBFEmp4I3VdxLkJdijOfRePS759QKwnbZrtvtwWAQfr/fCMhcVxRFURSldlFRWFFqyM4iCr///vuJJUVRFOXvDcWXXzLKTkwTiTUj+VDMSWyrWkb+0Es3zJ/6y1owEkc4Gsaq1QvQuV1jNEh10Njpil6ZT2JYo0UYVvcnDM6Zh6H5P2Bog9m4qMcCTL5gOW6+4jGcfsbpuGbi1Vi4dLFpiz9L58/n3ZHZaLOJ3+Mzk8NitpRxRWFaYlhc8Bh1J7tq2k7UcP+5krC1reWP1FG2hKJg4aYNKBg5DCnyuSctOxd9jjsBi9ashZ9iMM+3iTksi4xBW/gdbrp4BDLTc3F4vwFYsHoJSoObcOft16JxXjpypY30zPpoecAgfPz9Ciz5/hMcundb5OTWw8mnnIlvv/gaS36ci6Gn9kF2w3wcMexSFMqkiJV+h7uvORdZWR2x3xHDsLzchxDKsfqH9zCo38GoU78T/nXb4yiMROD3rcPbj16DFnVS0WzvgXj9i+8RLZuFu68ajTynOQ49YggWl5WiTGZYeaACc2fNQqP8+mjdqAUuPf8ifP/t51j243R02XMXOA33xzlXTkasshyv/+dxtG/QDq3bdMOHPyw2orKdsEY3jZcB5fPx3tQHkJvTCKn57THknCvx6cx5qNiw1MQUXrV6Pb78eiaGDT0RmdlZ6HfyaCxbW4gv33sGdeVa3KV9e9x9221Y8f3X+Pbj6WjcoAUaNNsdNz34khGFSyvXoax4CSoLV2PGJ9Nxx70349hTh8Cpsxua79oTc5csQEXMZ64hCt6VQUb13nwNWPHXir32oXNWIGa+N5awLaMoiqIoSu2iorCi1JCdRRRmO4cccghee40/w1UURVH+ivyqOGk2yp9fMiPruGEUuGayKURRkAJj+TIOr1kRuEESrposIw+5fykEMcJpvBwrlszC3ru1QJ68BzVydsOh9R/BcS0/xKF1H0e39KuxZ+4FKDhmMmZNCyFWLHUD0lMwiFCYcYPZjjTPcbALg7fTxAZr8scVhDmKxDZb1JrgreLKwNzg1rFrW5b5X6pu9zSv/A5siAGmixYtQH5+NpwUB05qBuo3bon3PvxC5oIUMAc5IqdJ5lW0HIHCRbjqkvHIyEjHob2OwsqNZYjKfNm08nsMOupA1M1ykJqWiV33ORKfzf4Rc+d/hc67NEe9/Lq48ZqbsHbxWjz33yex515tkZqXiYFnXYpimXuRskW4Z+LFyMtohiN7nYrvFi/F+vK1WLbyGwwbNhB5uY1x6klnYvHCRZg763Mc03dvpGakon33AXj7k7kIl/2AiZeMQN20Zuh95GlYtrHQxN8tj67HtHdeRf2cZmjXZFf8+8EnsGLx97jz7ouR2ygHTr1uOPuiSQhX+vHif55A+2at0KHNLpg55weEExOM12LMBBeWAxIpwapFczH8tFNRPy8f2RkZOHD//XD6kMEYOnQIjhs4CD32PxD16tVFoyZNMOG8C7Fi1Ro89/S/kZPhYL8e++C9t6dh4fdzcNWlF0obeWjYqCXufugZrNrkx0233YozzjwNDz14F1avXowlyxfi9kn3Ibt+W3Tp0QtzF6w2rwg8NcEoXzEiCEcDiMZ4HclYzeuJm1oxmB7ENF7fzAsEAiblubfzYGfF7uev8VvbFUVRFGV7oKKwotSQnUkUttajRw/897//TWzZzFffLUssKYqiKDsjlB2qlR7sBgoTv2RGGGV83YQoTCEq4qauZ26FmBVvpKytYrK4EEYwkvDSjUcRCVVgzbIf0Oeg/ZDnpKO+szsObHItumRcjSbO6ch2eqKu0w1XXni3qy6xCWmTApFXQNkawYVQ0rU+v6Yh1jEuxgkzbbAUy7mpKcfyZmfdHNZOtJC0qni32fI05bepem4JxcKffv4RTioFYQdpmdlo0KgFXnl1ujv/xCIBP2LBElkoRrB8Da67+mJkZqah91HHYs2mAIKhGELFy/Heq1PQrGE20jMysNd+h+OjL77F0rVLcNLgAaibm4MOLdriwD0PRPfdu6J5qzyk52fjuNPOhU/mYKxyFR6/5wa0bdIRDeu3xUFH9MJVN/8L68oW4677bkSzRs3RqE4jdNulM3oe0B0tWucjPS8PrXfrg7ff/wbBsgW45qJRqJPaCL0OPwkrNxTJFRWSq2cTFsm10L3Lwaib3hxd2u6KvffcBd16tES9FvWRkr8bzr3wdgQrAnjpmSfRuklTdGjdDnNnzXf3ndeHYOZbLIJ41C+ZlVj8w2yMGnoy2jbOR4M62cjIzDKCekZ2HeTk1UP7TrvgoksuxY8//YRQKGRi+bZt2wZ18+qgU4d26NvrcLRs1hj183LQrl1H2ccnsLEkjGtvuAUtW7dE4yb5OPCgvbHfAT3kWLVBiza74qrr78YGOQ2VMqaQDIiewjFzM4mDlGsocU6Z0vvXegmXl5dj+fLl5gFzxcXF5jpn6IjKykqz3Yad2Bnh+O1+K4qiKMrOhIrCilJDaksUrql5RWFrXbp0wX333We+KJCDht+Gqe98a5YVRVGUvxDUK37NDFTf+H7A3+gLXE2KvhSFK+2KIBtYL7mdC3zAnPyVP0EWl9RXXI7Lz7sKHevth3pOdzR1eqOJ0xd1nP2Q43RGp1Zd8fD9kxGh2yHbSY5lS7ZGcGEJir2ufzEzJPUKwqYNd7s1VwZOlHX/S76bWvslvGV+ZehKFbzn0i5TEPzxpx+QlumKwpk5uWjctBVef+N9BDk3zIGWoxzzS1qBQNkq3HLDFdh11044ZcgZWLyq2JxmxErgL1yMs4adjD26dsVxg4bhq7k/wB/345vZM3Dm6UOxe/vO2HvX7rht4g14bMokdNuvOw7odSpWrpP5HS3BxmXf4/ILr0Tnzntjl67dcO1t18vsL8WyVT/htptuwZ67dEHPHj3wj3MK8OjkSdhjnx44ov8oaX8RAqWLcPeNl6LHHgfhzDPOx09LV8gVFUYQJQhGK/DFx7NxXK9B2K1NJxyy/1649Y7LcN2t16ND1944ddg/UbyxEO+8/gp6HnAA+hzRGz/MXwA631ZU8GaNO5WDITkG0mosXCHjrUTx2mV4//WXMGzwydil867o2Hl3dN1rH1xw4cWYPXcefP4AfD7WgRFhX3rpRRxx+KHo2L4tDj34AEx96r+44NwJ6LbnXrjwsuuwqTSECn8YL738IgYOPAodOrRA+w6tccDBB+OhyU/KcaowYjAlYL5SmGue58XkxJIewRaKv6WlpbjtttvQtm1b7LbbbrjyyitNnj3/TOk5vLPC8VdniqIoirKjo6KwotSQ2hCFt7W1adMGEydOxL6nXm2E4VunvJsYgaIoivKX4Tc1ChawUo9ApZPaDlMjCnvDR0jK4lw1WfwTRijGn5HLJq6ymRCwbmEl7vy/l9Gt2YlomtIVeU5rNM/qgo7N9sB1//o/lJasg68y7NaRNv+omLLFcAgz2JbxAna3UArmPzeOcNwUMZiyWy4mt/0K3rJbU16Rs1DFE5xYUTg1XT6XpImlpKFBo+Z4c9qH5hTKyZJCEcSCZXKgK8TKEQ2VIhINIRCOm1AGIcZZkHyENiHoL0EgFEalzEFuC8jfqFgsLBMyKJl+KRuJIBQphj8aMLObHq+ISP1oBaKBqAlb4YvGUeQvh4/9SamwX64BqYeAD/FQJaIxv8x5YJMMKWAcZQsRqViLQHnUFOMtlpDpuQLheAChCumEmQHZl4DsC8rkMoma4VRY8TsWQrCyEhEZJwVhRlagGBxhKpujMXrlSuG4X1ZkPEYclj2IhOR4xEy4CX8oIrsp81yW2SSPL4+5CdMgaVSOQzQcRFj2w/wcQK7bUDBs6sqa25fk+33FCAZKEAzKMZG6MmxThl7VpqwYx8Rr34SM4VWV6Mf0xRxJFy5ciK5duyI1NRXp6enYY4898O677ybDStiyOyvc56pzuuq6oiiKouyIqCisKDVkW4rCI0aM+B8B98+2Vq1aGUF4w4YNRhC2NuHGZ7Fmo3m8iaIoivIXgTLFL5n710hCsijLXE2KwlSs6A2YyE/UMNvMIiXWiPnLLIZ/jUmVKJ2LK4APn9+A84bejRP7nIRunTrh2CP74b23Xkcsul4KlJhadC5kzNTqBJatgTVM32ZNYIbZD+ZwR9x4w/zHkTJIRrLsFhWVbUl1AiDzGD4iLd1Bnfw6SMvIQtPmbfDyq28jKsXDoYQ6GpdJFZNJFSsXo6AZRSAUg5/zzZxvyeO2eMicTr9Uq5BtFGZ9QeZLLpXSQKI9+GQuRBCQLHZhxNUwPYbduUGZkzM/JGXCMdkm7SLI7RxH2LTnC7qiNK8cxOVzU0SM3YhVRFypNCQlInEpL31EyiUnxAGHZHpWIsx9kP4psprxSb67r27C/ZLEDDscjUgaRiBYhkCgRHJlTFE/4gEK5TK/WYZ1EuV9gaBZ5vG1YRzi0keIrvwMUmzCvLjLcalcVunGBWc7EeO+L0YxW9pnXW7jcaIQ7pdhUgiPmTbleMuxY9vElJULmsZfo/3www9o0KCB+dxJYbhJkyaYOnVqsuzO7CVM3OMqB01RFEVRdjJUFFaUGrItReE/E68QTGvYsCFuueUWE9fN4hWFaceecz9mzF2S2KooiqLszFCyMAJRFWP+ZjnDFYqMOGUrmI1WIJKVzYXdZbNOOZhyawzhGEUeyaSCRKUsAGxYCGxcBKxbugbffP4+ijeslCrliMYoCpclvB9/nd8SXbjVu0/mjxkvc9zBxMQoe20hCldfkQtbye8t//fGex7tMtOlS5egWbPG7ueUlDQ0bd4aH378BXwUcM0hlhMUDSDi5+cWv6wHEaV3rGTTSTdANTQeQCxUBr+fnr3urPXJQlhOLs+4cb2NiHEj70LEfSaf4RCCVG8ZvDdOr3VXHPVLkxXSAduP8E6HtG88dCkwmzsf8p91pTDF0niE3r8cm+TJZtbjGCrCfsmSTCnPhuM+n6Tc4orXFFlN/XgEYYrOLC15Adl37h89cun5G5Y+fcEK2crB8nqU42HEbqqzsh+ybxx3mB7DYmybqU/64zHmQ97YNsvGo9wfKSPHkNd8TMqxLvviaYlSFDb7K2lMjnOYR5HHwS1jxWd6+4ZDFVwSkzY8nr/sk2L0jz/+iObNmyc/gzZt2hQvvPCC2f5XgPvxW/vyV9lXRVEU5a+FisKKUkN2NlE4JycHd955Jyoq+AF+S6qKwtaenvZNooSiKIqyY0PhQSyRWLhImYZG4Ydm17coasRgqlM0LifyjAhFwYzrYpbksisKh6IUjigNBxGO+hAOBo1zpfEYNqKbtMKf4BuvY6Y+qRdCICTlZM3bdFV+6yfmrMsSNNOOadDmUgJ25eDNorC75Rcq2pXfwFt2a8r/vakqnlFAJMwrLCzEhf+8AE2aNEaLlq1w/AmDsHTFGplHcmqkSoyCLb1zQzKZKFTKxAqFAua0UXwNUK00k8x9WGIoGjeCMHN8RtCUc87wEZxHdOPlsrTBWwM+6p7MppJL4djMkpipW+rnfJFtHHuMHrnlUtcVhanFcgAmjAJ3i+7xMhruT1D65+ag5AdkmfWNEG2E6RCi/koTzoL9VgYSgqwRil2xNiw7zibp8UvBmNvdGxlRyQsgxLARPA7mupStHJ+sSXPGIjIgrhuTPzzW7vGXqzPgd0VhljTXuRv2wfUudsfv7h/Fa4rc7EOOoGQHQnLFShUjCrMYvZfDnjKyQxSKLeyXD5dr1qwZ0tLSzGdRCsTPPPOMEantHNiZ4fGy+22Pc1Wqy1MURVGU7Y2KwopSQ3YmUfimm25KeIlUj1cIPmTk3Vus3/TYO4lSiqIoyo4JRQcr8mwWIBK5xlxhafO62SZ/TGn+McYMikwUpyhrUeyhPMY8b7mEGdzAEWwzImWjKJP1ckQY89S0JyUSTZlCxn+SPxmPJvs3DpwU6xJQRPEKKb8lqnCr3S+zYszmUuKjF6UrCLvm8RS2ByZZnibL3v4TtplEWR4rbx3lF6Fw5j2PXqE/Golg4/r1mPrss3ju+Rfw488LURlwH14YCruCoxuyITEfGWaBIiS3S5PmFJqQBxGZSzzDRl5NbjM9Sfm4EYYlJyJtM3QCs8XMUCQ74KNXLz14eQPBbYNiqTvUSsQi9FSWeS1tMNoEG+YcDrFdacB4Gcuc4Pyy/TMNBDn5pQMZfzzI60KWpWI0wmvHNGNqRGK8QUKR0W2XWjfHz/ASDDXBeezK1RSUOQBp3Xj9uvtBMZixhblMi8q6Pe6bxVoWdns0qRjFzESOrMqy8RSWMVOoTjwJktvseGje8xKRfYrKOOz5Ne1Jv0znzJmDFi1amGdl0Fq2bLlF+IhfElJ3Frif/HxdWVlpvLL5EL3Vq1djvcxn66Vt9++P7ufOfHwURVGUHRcVhRWlhuwsorD3i9cv4RWBj//X2zh87ENb5I2d+DRWrtscbkJRFEXZkYjLf4pOlGtceYcyApdozKUkZNfNNvnDn3ebshRkbUGKZnH+ZJw/hw8iFKJnr2SxCymTNDaS7IXCB+APlMtyqawVi/mkj0pJ2Y70zgGwaRkjI7GypjWOxbQvf37Jfg1upWBlionFInEx05m8B0bAmK7WS5h+o5XBgKljhs5xUXUzO8U6TOn5JyXl/dMUicaN4GbqCCZ+qljIPKyLddy+fonfHP9vbP+rssW5ZSrGuUAh1pwWipqSUnB0jzHTxLKcDdZkOa5ZmGfqJIzLzEuebFufme4Gl8RyHPRA5s2NRH3JdzfJuQbnNz1jJcc2brALHBPnDP2Vq/bPkVLMZv+Sy0x3g6lDUdg1d79orGvbYAmKwvRBdv2QE3ueOH6e5n4Hthdvffm7xbFmP64o7B3PlmXdcbivJ1ImylJSTq6fn3/+GR07djQPmaMo3L59e7z11ltSPG5iDrOM17t4W8C+2I+da1vMu63E1rEith33ihUrMH36dMyYMcPET37ggQfQuXNn9OvXD5MnTzYCMfeTdVjeOw67bEV0L3bd1lMURVGUPxsVhRWlhuwsovDW4BWAT7juA2O9z52yRf7RE+7Dp7MWJWooiqIoOw4ecSYh2VB24BKNuXaLKzUQKRGj6BNFnKJDYmMg4Ec0RiG4UlYphFEMYXmzuNnMH9uqrHExTvGoAoHQJkSiFIQDiMT5UCzZaAch5V1RmKlUkT/J9n8FiiO/bLJdyvBhde6CJ030FIyFjZxGP1AzatkWoQenGRfLywJNjkmMwo9kMyYrQxGYEAGyboRnFqdgI50mY7KG6U3JLb8Mx6n8Ajy+FPHlnARDIfjFeMx5asK8SWGOLY+5xxK53GpLWONWa1x34RrFNderd/NGLgiy7NanKJx4SBvX3UyB1wTDb9GLVhJ2aqpywRXt3KKuKJyszw0GW05SO2HNRv7hfKMgzJT/3FzbhtsO/3G7FYUTA0gUtnV+P27NzfXlr/c4m2PNPXL3ye72/5aV7R6R016bGzduxNlnn21CSNBjeOTIkfj+++9NbZarrQfN2XF5xVc7xt+CZawwy2W7n2vWrMH48eORl5eHAw44wIjdQ4YMMaEyKILXrVsXAwYMwHvvved52J/bVtVljs3CdVKdWKwoiqIofxYqCitKDfmri8K0fhdO3WIb7ck3v07UUhRFUXYMKM5QbNos2VBW4BKNueGom2f+mnIRSSmKBqRQHKGgSRJinBsGoiK4ydShI7Gpy6oJYylKrBSzTIaUiQajiBiBlO3LcjSEYJgP9JIibIN1TR0KxowpTEGEG8VqBBuIJURa6YgCo1gowLG4x4CSTiAWNZIa5bdKH+PTJspSmIrKsTDHUNqRA0Gd2BeKoCJAL2O3vj9MWc5tz4U7JDkU139jJ6wIpPwCnINyvnx+vznGPEe0QJjzhfBYWzMZJuG5sMZ11/iPrSQzEn8opnJOSGlbyZxZipi2KG9YuJ7s5o9t2NSjMCzlbX6yPmeVrW//VcVWSGyxFUweryXuLVO3rjVbw83lPnEf3DGbLbZgDWDbruybaIgJXwxoiWNuy3CEbtkEyQMn2zwiJue6jRu8aNEiPPLII3jwwQexYMECs80aReHauC5sf1WXtxaW575Y8Zb7NnPmTBx66KHGA5qxkh966CHz7I62bdsiKyvL5DM98MADjYDsl7ltxWFv6oXHz+ZVt11RFEVR/ixUFFaUGvJ3EIVp/f/vVfQcOWmLMhMfnZaoqSiKomx/KMxEXUvISJQ8uGSN68YY95QPh6IYHCpH6foVKC8qQnkFjCDslz+BuB9BFKHEvw5FpZXwsbhsMyaNUfdxPRYZhiEhktmuKZqwj2gYfGBWKCztShbrumOh4EYv5ApJZZl1aTWCLYdk9znQkKxGUVlShrKiUgR8QdDJjzJaRdAVeOl9asJixKSOr8ykrOevrDAPPVu5eg3WFxajuCKAilAcPqlE/1J/oh3uqhl2PCZ9UrRh/zXeib8NVQW5uEyosqISzPrmWyMabizchMqgzEHz8MK4zB0eXxbc0phwuzuvNm9yzxDPmOQmTw2vCXfOJvNpRmT1irqsR5M1ZiTrswwFalNpi/wt61t+OWczXGNDlFo3y6223Jbl3XLuDKQlxrFloT8Ee3SPY6IhJmw+uY+2jBvV2B1lAi5YE6wXrVf4ZB49Yq1XMIVV6yFLqs6HmmD79rbJZdunHZ/N95b7NVjPCsKsw3359ttvsc8++xjxt0mTJiZcxHfffWdCSBx99NFo0KCB8Rbu2bOnEcZtfwwnQYGYbdrQEjQ7Nh43Ltu+7LKiKIqi/JmoKKwoNeTvIgrTBvzrHRw+7uEtyo2+9iksW1OYaEFRFEXZfsTlf9S1hJJDqYNmdR1X+uDfiCQhIwgv/3kObr/uMlxx0YV49LEXUBl2/SErY34s2/g97njgRlx+9Q2Y9u4XrgcxTRqkA2FCJk20J3nUe9h9NIhopBIV5cX49tu5+OH7daCmwXG4EX0pClNMZgXpkG2Z9rYOK6BYc+EYKiUVk76DFaWYdNvt+NdlV+GNV9/mc8WSD8minBaiRzH7DlcgVrER0YpCLFv4E6Y88Tgm3nADLr/qalz8f1fi5jvvxVvvf4r1pX74pSsrFzIEMdti71HzkDF7lP8Ym/fj74EVvyy+ikq88Ozz6HNkbxx22GG49vrrUFReImeIjweMybnj0RZYxZ1IicPtCpUUKbc8AzzLiQmZKM8rgqJwTPJN2US+Paus69anyCt5LGAzxWxPtppblrA8RWH+E5J1WMrOOI4wOZRE/c1L7vYtRWFDsi2usKxtLzH7ttj+x2GP7jFMNMTEOzyzyBHKuRBzR5ogUS7GFwYuyrml+Ep4julRax90bM+5V/xkasv/GbA9a168eXaZ/W5t3yz/S6Iwvws0btwY99xzj7mpsXTpUhNjeOLEiSgoKMDdd9+NxYsXo7y83Nx0+uyzz/Duu+9i3bp15mF0FIZ5LJja9tkXU2L7VRRFUZQ/ExWFFaWG/J1EYWu9z/v3FmX7jrsHH81cmGhFURRF2T5QPKBwQHOVHOZ4zYgMJkQCBa8AEC7FjOmvoEfnFsiS97JOux6Ir+etNlGEfQhj1sJP0b5rS2TUaYR/XXt3Uoqyvyh3RTcKsWxTEikQN+EayhAIrMFjj9+L0047HU889ob0bUfHiL4U0BKSkh2cadA0+gehMMeHgJWZ/dqwahkO2Xd/5Gfm45/nXQpqwElRWLoxR4fHIFKGaPkavDb1CQw87mg0qF8fKalpSMvMgZOSASczD3vsewj+77pb8NOK9WaPuYchqe4eZTEq3jJ+K+BUx69tI7+1/a+Adx+9ojCXVyxfgU7tOiIjNR2pKSlo3bY1PvnyMzmrESNCGrGSxWk88Pbgyx/ru8osg2mX84EPAZRJmbgk3KqUmQNuFvNMJQpxiQcPGjjTOaelFNvihkTC4u489gzBlGfoB9PY5oLmBg3HwRlDGbVqfeZxiXBGulIry5l27UIyg2XdvkxLNn/zQP4wrG57N03Zdj1tcxvLVCsKJ8rwnHoFTJ5bwnyKrxRAuew9/zbdFrBt23dlZWWyX4qvVoAldpy/Butx37xtzJo1C7169UJqairatWuHF1980XgE01t4yZIlWLZsmYmfzJRGYfjJJ5/EEUccgU6dOuHUU0/Fs88+i6KiIvf1OdEHU5oVrL3HVFEURVH+LFQUVpQa8ncUhWlHVRNn+N+vfZloSVEURal9KKxQOKC5Kg1zvGb+xsKIhxgnQixQiK/ffxX7dGhkROHUzJb451X3YG1FBD5E8NO6WejQvQ3SchvhptsmGynKtC7NG5NSMZTJclDakwwWCFM2XYGfF7yN9h3rokHD+nj0kZdBR0HWjSCMcJRxORON0eJxxCJBacf9afcvmVeQsXDZ5Bk35VKxEhlDCSqLN6B/rz5omNsAl/7zKoRkM8VsDtMcnXgM4WAp4oFN+GTaszi0x27ISHXQsGEjtOvQEW07dEKrDp3RuHVHOBl5yG3SBhPvfBCbKiNGQkweC2nTFW/CyfFVxY7dO37vPvxd8B4bexwIPSQX/rwQGU4astIykCJzsWHjBnj3o+lynKMIxcOupzCLswlrprq0I6VkhiTmuGAWKMYyZrScLXOi3CqMKB1BwD1/krFZFPZLNdsC+5ISRhRmIckSc+u7596ef7cGlzwyKRMa2zCCsOtN/7/13ajJFisKJ1aqMY5HyhuTcjbf9JUw98/vwjbB3mnJZpiZaNtb5n9EYW5MmDfsAVMKp0yLi4vx448/4osvvsCGDRuS2/5MqrummMfrrqysDB9++KERbEtLS5MeyoRjoVj9a7Cs16OY6zQ+RO+qq64yAu//s3cdgFUUW/umd0iAkARCkptKhxCqiF1QQbCgiNJb6MWCvbdnb9gbdkHFhgqK0ntv0nsngfTbb77/fLN3wg3q+9+TZ0H2g5OdnTkzc2Z2dnPny7lnu3XrhlWrVmH9+vWKAOZ4SQLzSO9h9k2C+J577kFMTAxCQ0MREhKC5ORkjBs3TunqfihM03ZCz6kJEyZMmDDxv4RJCpswcYo4U0lhioozPOi5avXue2W6fIA1P7iaMGHCxJ8PEhx8/lIMhubkHINIIqHkkMxywFaIZT9MQ6vUONQIsCAoMBTJ2a0x5+cjOC7q23YuQLv26QiqkYB7n3xLecmSFnHaXDi8bx+2bVqHbZtXY+um1di/by8kG3anHSWFK/HjjEmoGWNBzdhYPPTI29i2owQuZxmOFx7Axo07pe3jqBBzFOXhOI59OzZg3dYd2Hu0SBE2FcWF2LttI3Zs3oAjR49i2669WLNpG3bvPwSn3Q57SRGO7JF2Nq7D5o0b8fPmjTh8XMoqScA5ULh/J7q0bYXYkHDcevu/UE5uUCZBewurF8O5S3B0+xpcc9n5CJHxJ1mzcN+/HsfmTetRfOww9u7ZhWeefQ5pWY0QHZ+MS64djE17Cw0yjETTsQJs3/yzzMMmbKI34LYdOF5UpjytSUnC64DHVoz9hw7g5y2bseXn9di+ZQsOHDyOMplMTS6ra3MGwJ/YYpqkF0FycPPPmxAcEKQ8hRUpXDsO076aJteKdK+P8qU6hc3otPzQVKY6JVSCMyuTzPXu02c2gx+QGOYaoDmGCWpV+7XAAn+RrKr6xvpR9Y1sX4oW+ur79A1PYV7l/8RTmFX82iCq2tFCW7RIxsnlClWJ/xisYdhlEL2qBd2mT3hg2Qm9k+bbd6KvKaEJTYZMeOKJJ1CvXj3Ur18fN998syKJNTT56V/XH7+W75+n0yfr8ZxCgpXEbM2aNdG2bVvceeedmD17tnrxW1FRUVVs338H/7b12uWRQpKZnsGUtWvXYp88G9kfyWESwVu3bsXmzZuVMG/GjBno2rWrijVMUpgvomPoCb6Ez58E1rbrcWj4p02YMGHChIlTgUkKmzBxijiTSWHK5ffMxLn5r1arO/Ced7F931FfqyZMmDBh4k8DuQISBj7OgAdN5BhZ8tPLr8X7SGF7IZbP/BRt0mqhlvwuqxNpQVjNGjh30EPYVgoUbvkJnZrUhCU2AROffVcFZyh3ODB3xme49pJzUSs4DPGRUYiLsODq3lfim9Wbsbe8Au+/ej/SalgQIW0GBYYhIDwHrdp0xbZ18/Dco3ciOCABLdtfic1FZbDBjtLdi3F+22xYYhIw8v6n4XS7sGDm52iTGY+kmEDcctutaNLubATXScXQsRNxaN9efPHuG7iiU2vUCbagdkwUomrF44YJt2Hpjv2wyzCP7d+Fnu0bo25wAMbf/SyOeqBCPvDvlnY1ITIP5Qew9MsP0bBBGiJr1sOT733N4BNSJiN1HpY5KkFlxXF8/ukU3P3g41iyo0jNAVwu2A7txptPP4zczAaIj45AzdBwZCSm4KFHnsPaArehV7ofc794B5dc0Q0hNaJQKzIQ9WvVQe8bxuObOZtwTFTKRBQNZFygfzz8CS1NxPG4edMmhAQbXsJ8aVdCYgI+/exTmRbjn/ffEmG/VsY838r3K9btMetEttb1R3UNDZ37y9Jf6p7Q8tnh+3lCdOq/we+p85/hP2lZ6/yaniYx9XXVZCbj65IM5nUNCgpCWloavv3WeFkxdbVoYphH/3zGI2Y+07pNf7JU9+mfR/EnWFevXq361xIZGalCODz22GOYM2eO8uQlQcy+dL9adFu6XZ2n26bQE5nhIkgM0+OXBLD2FN64cWMVKbxJ1jmJ4rlz5+LWW29Fs2bN1MvorFYrXn755aqxMF4xyWrawzxC933y+f8HbbcJEyZMmDBxMkxS2ISJU8SZTgpruWDMO9Xqnz/kGcxautnXsgkTJkyY+FNwEmPDAymDapQUSWGGe/BUAPZjWDHzM7RNq42EEAv6X3suQmuEI7zhJfj4+7Vw7VmK85vFw1IjARNf/FARmD9vWotLOrVERp0oXN/tKvS7+lq0bpyC0JhgnNV3BDYcK8Wi795Fn4sao1aYBTVqxqNJ296YeNfzOLR1AZ68azTCA+uh9TnXY/GhI9JmBex7FqBzu2zpJwVD7nkGTkc5lv7wKTpkxyNKfsfWqJOIs7pcib4jb8GHn36F5Qvnol3jdGSKDX17dMGAa69CWmZDWOIaYPBdj+FouQuO4wW4rn1DJARZMOrOZ1EgttN7l/NQ4amER/rA0S1466HbEB8Vh+TM1lh51Ks8pBlSAuV74CnaLe3sg+34YRwuLMV2mbJCTqa9FLM/eRspMSFonlZf+r8avbpdjuTYuqgVb8V9b3+Jw25gz8pZOKdxoiKEL+h6GUYOuAZntWyBmrUa4vzuI7D2oEOR0E7F6/gu2j8c/uSUJrR4JGFGso6fqUgc1qpVC1999VUVoaWJMBN/X/gTlCRR6fHP68aQCSkp8owIDVXXuG7duvj444+V/slkJfNIsBIs02EedFgKTc7qcorul2kSqexT6/HIcoZ14Lri+goODq6yhbGA6aWrCWKuORK5JIhpB+MQ+5Ow+oV5bJPCMuYVFBSokBEkwEkCk/wl0cwjPYVJEHMeeM40iWGmp02bhocffhiPPvooli9frjyo6VlNXcYaZsgLHe7Cf5xMq7mRoz7n0YQJEyZMmPhvYJLCJkycIkxS+IR0vmlKtTYob36+0Ne6CRMmTJj4w0FOQItfklSCkSU/GTbBy1gKNsB+HMtnTkObtNpIirTgvcnPotu1V8ESnYZ+w27C7mUzcGG7HFhqJmPCc5PhgAd7tq3BC4/di5eeeFS53JYeKcBbkx5FYHgA4jtcgukrNgLO/Sjb/BNS40NRKz4Zr3+yGjYaUL4dz90zEpGBCchqcRmWFpSiGE7Ydi3AxXlZ0q8V+fc+D7hLsWTG+2hhrYmakUG49Kq+OFIBuGQgFaVl2LByER66+2a8+9YrgKMM5Qd3Y8KYsbBEJaJ1197YfaQEFYVHcVXrLCQEWzDaRwo7PMY8qNAO/Fm8G49PGIq4sGi0P687dkv7BVRwFuPA+vl48qGJePCuCXj83ltx7/2P4pbnPsWCzdKSrRA/fvwqXnj4AUx7/304igtwdM9uXN/9GgSH1kbXEbdjT7lD5vZDJIZYkNAgDZNefxPH92/BxhWLcfvdT+HBZ6dgzX6PioJsJ+lEz2XfVfonw5+40iQXjyTJoqOj1WcqEnXx8fH48ccf/6Ov9pv4e0BfJ15jkrEESdOlS5ciISFBkbAkZkkKT506teqlc4QmNfU5j8xjaJFfI4IpJGN1XGKdp9O6Dttgmi+EY/9aaAfJYa43njOEA/MY4qJz587qc/0333yjCGIStVyHug+2SU9e9s/jvHnz8Mgjj+CFF15QnsIkgek1TFKY4SRIFJMA3r17d1UoCX9yeO/evdizZ4/SI3nN+br66qtVaInmzZvj/vvvx4oVK6q9pI/iP1YNbSPFhAkTJkyY+P9gksImTJwiTFK4ulx2+5e/iDN894tfw+kyPXxMmDBh4g8HeQAtfskTWfJTk8JegxReNnMaWqfVQWJ0AL79/kt8v3Ae6jTIQFpKGl566Fa0bdUUllgrbnz+bXi9DKtwBJ7SQhzesw+rlq/DO6+/iZ6Xno2wqBBENb8A36zcChzfjoNLv0BKnTDE1m2AJ96cgxJyniWb8MoDoxBhiUXTNj2wXkwgKVq+bT4uakVP4SwMvutZwFGIdd9/gFbWWoiOCMXdT7+pPGptdmmEXs7lBag4dlCRKYsXLsCkR+5BlwvOhaVmfWR06IIte4+i5Mhh9OrYHElhQRhz59M4INVcMnzOgyKFScIW78bTt45CZEAwcttfjPXHxUQp8hTtw8cvPYKIYAtC5Hc84y0HiI6lXlu8+vl8sU+sdhxF2VGxYcd2LJo7C/feegvOapGLoJBYnHXNKByTjpbN/BBtMmMREBaK7KbNMbxfL9x/+0TMWbgOOwqAg3IZGGbCrQgcEjs8/rPhT1bpNI+8lq1bt1Zf6w8PD0fTpk2xZMmSqnJNgpn4+4LXieLvWUvCkqEbSAprT12Swl988YW6pvR2pQ49cw8fPqzi/PLlbXwZHdP0kmU529Rt6zr0qKUuvXSpy/pMHzt2TJWTtGUfrEeyln9soIcw7fAnh5nPNG3zJ4kZ8uKCCy7AxIkT8eGHH6o1yv7KyvidCWN89A6+8sorERUVpdYviWTmae9geg37ew8zpjBJYe0pzCOJZ+Zr3YULFyIrK0uR1rQlIiJCeTJ/9913alyEvh945Dhpiz94fnKeCRMmTJgwcTJMUtiEiVOESQr/UlSc4eGvVWuv312TsWX3EV9PJkyYMGHiDwE5AC1+yRNZ8lO9aM5HCjuKsHTm58izxqNOTDC+mPU9Ch02DOzXCzWDLDinRUMk1GsAS61s3P7a+1KvABV7V+LdV17GxRdciqbN2yI9zYqc+jURGByAkJzzMH35dmn3CA4u+QpJcSGolWTFM+8tAF//huKNePX+4Yi0RCHv7Ksx70C5CtdQvm0Rzs/NgaVOEwy46xmgaC+2fDMZ7VLjEVsjDh/OXY/DoscXc8F5HMe2rcVT992Fiy++HM2a5yIjKQZ1akXAEl4LjTt1xbZ9BSg6dBDXdspVMYfH3fUUCqSqQbtWqtjC8Niln1347NUnERsWgfrpLTB9xR4VIgO2fZj16WvIbZEHa0o6shNiEBQYAEtKW7z21WKgtAhHNi7DjeOGodN5HdCkURbSk5NQJyoMwWE10aHHOBSSvy7ajjefmYiMxhlISE5GbEgIaoRGIDWrJa4aMA5r9pcpUtylDDOu0D8d/uSuJq145Nf0Z82aheuvvx7du3fH66+/XkUEanLPxN8XvE76eqmwBr5zXjd6zCYmJlYjhd977z2lw/JDhw7h1VdfxZgxY5Cfn48hQ4Zg/PjxGDp0qPLApYct9XSbJEZJvL744osYOXIkRowYoY7jxo3DsGHD8NRTT2H//v1V7VPogUuClQQwyVZ/MphpTcD6E8P6SMI3KSkJ7du3V3GASfySICYBTQKXZLAe1+TJkxUhTA9hkr/0GOY5CV/OA0lg/UI6TQyTENY69BjmH0P4Yr6cnBzExMQoOxl3+Nprr1VzRXAO9JxoORn+Zb9WbsKECRMmTJiksAkTpwiTFP5tuXDsu9XaPGfQ0/h+0c++3kyYMGHCxP8c3Pdr8UueyJKfihQmY2lXHq9Lvv8SudYE1I4Jw+c/zkGxx40fvv4ADROjVDzfwLBYWGrl4KYXXhf9vfhp6guoExGJurUb4IaBI/DRx1Pw4mP3IDo6EontrsBn8+U5bz+GfUu/Q3J8FKLrJOHBl7+C9AaUb8Eztw9AVEAE8s7qjmWHHcpT1rV3HTo1Y5iKhhh85zOA7Qh2/PgxWqUloEZsPN6dtQbqz4peByoOShv33ojoYAviktIwcvxNmPHZZNw1cTQskbXR4bLrsGN/IY7u348rO+aidkggJtz1hM8jF/B4Pb4Xu8kc2A5h/dxvkNe0KQLD49BzxB3YcaRE7D+i+tm5YxfWr9uAT99+CdFRMh8Nz8OrXyxA0f5dGHl9d0RGBCM5rQHuuut2zPz2K/TvdTVCwmri4t4Tcahc+vCI1fbdWLxiKV57azKuvbwrGmdkIDAiBkG1GuDRVz9TJLRXXSB6VxpX6Z8MElka/kQV80l0HTx4UJFtJBYZGsCf+DLx9wWvjyaFeSQ0cUlyND09vYqAJdlJr1eGXqDX7bPPPouaNWuqcn9ylmQo82+++WYVOkF7ydKrmDF4GWJE6+k6rJ+cnKw+l+u1Rnvorazb9m+fwrTOo9BGhm7wL9NCT/batWsjNzcXt912myJvW7VqpXRpzyuvvFJF8JL01SQwCWHmcS7oGUyPYOYxdrAmj0kQU4f1mcf4xvwjSYMGDVRMZpLmmuzmXPAPKZw//UK634J5/5gwYcKEid+CSQqbMHGKMEnhfy+db5parV3Ka58t8PVowoQJEyb+p1Dkok/8kiey5GcVKewAHKVY/P3XaGmth1oxkZg2a57y6K0o2Iq7RvVBbEAQLIE1YYlvhLFPvgBb0WY8dnM/1JT8q3tcj4079mP/kSN46Yn7ERIUiNgmF+LLBVsAWzl2LpuNunFhSEyx4pm3p6NMukTJFrz88FjUiohB4xbn4scN+3CkwoWfPnoTTevXg6VmEwy79Umg/BCWfTsZjTLrITahPqb8sBYVNN9WBvfhbbj28nMQFhWIobfdhYOlZSje8zPGDugNS2hNtDynK7btOYrCQ0dwxTntUCc8FGMmPogijwyZbcgcVJHCzmMo3L4WE0aNQHBEDVgiauPiHtfKnMzAytnfY/GiuXjv3TfRuWM7BAaGIyrjbLz55Tzs3bEWHZqnIULGcc/9j6CkrAjr163EJRecj+CQGFx83SgUOoGygi1YteBrrF2/FQWF5XCVFWL96oXIadkEIXUaYNzdr+O4YsvFokrFIvPkH43fIoU1caVJYMKf1NNEo4m/L/yvoT5nmkT/TTfdpMhaxuzt16+f8rQlsclQDyQ7/YlXTciSgGX6/PPPV20QbI/etAMGDFC6JHDpyavJW4YeoVxxxRWKNKUNXDsM5cByEsMUTQBT2IYW/3wK7fCvo9tgeAmSwyS72R/zSQq//PLLivQlsUsh0UtSmKQvhWnaQkKYHsI8Up9kMIliXUeX0cOZL5yj5/z8+fPVPPAFePSUnjJlCj799FMVL5nksCbhTZgwYcKEif8UJilswsQpwiSF/3+57PavcPbg56u1f8cLX8LmIENgwoQJEyb+Z9Ds7wmu7aQs+cmYwjqEhKMMC2ZOR3NrfcRGR+KTb2cpj16P7TCWz/oCHRo1ld9xUbDEpuO2F16Fx3kAT989CnXDItAkszmeeflNPPHcc2jVKA2hQYGo0/BszFqxB3B6sWfDaiQnxiKyRgyGjL0TM3+cD2fRdsz++h3ERcUgLCoefUZNxBvvfoTuHdsghgR0VDqG3vyw8mBeOmMKGmU0QESNWvjsx1UGKexxoHT/Zgzq3Q1R0cHIzM3Dq++8i0fuHI+GqYkIjKyNFh27YPeBYzheUIjO7VshLjwUo2++R9X3qImohMMlv388Mn5PqfR1HIvm/ohuPa5CaK16CI6MRZj8Xo8JtCAs2IIgOdaRMTRIzUbP/NuxfNsh7NuzFe1aNUJEZCS69rgC7374PsaMHYn42BgEh0ThwqvyUSATOfX9F5EcH4KcnMbyOeERfPbhu3jmyYdRI6EW6jdqgVc+/MnwoCZdXUk6/p9P6PiTVpr81dBl+uhPMp6sa+LvCf9rRzKW5xTG+33jjTfw2muvKUKTXuDUYVzgp59+WpHFsbGxKn4uSV6GTWCacX1vueUW5Q1LkPgkKUpPYcYpJnFMPQrTrEui9uGHH67ynmX/a9asqUb6kuyl6HMtJHeZz6N/PvMYj7hGjRrKa5dE9fDhw5UdF198seo7MzMT77//viJ2SfyS3CWxS69fCvNIADOfae1JzHOWkwgmMcyjLmO+9hzW3sQkge+++25FTnPc7J+kMQljHbrjt6Cvzz8V5nPChAkTJv47mKSwCROnCJMU/s+k+73f/yLO8A23v4Wfdxqx0UyYMGHCxP8AivT0E7+kIV643Q5J0DPVDTgrMG/mN+iY2xTpKcn49qe5qFCxDBxwFh/FXSNHo37dFERYm+Gel16Du7IYqxZ8i+u6XIrkWkmoGZ+MxNQ0DOpzDRrnZCO5UXt8/M1ikHegp+7ggdejXv26iK+bjPbtO2DnlhU4vH8zxo4eg3rJ6aidkIK01HRc3+0yZKSkISq1Gcbc9Rhgt2HZt1/hrKZNkZaSjs9mLVDhHzxwo9JZjO+mvouL2rdG3drxSKhbF40bpeKaXlciydoILTtchDUbt+PwwUPoedlFSK1XF7fe/SBKXfQ49U0K4SYpXK7EXnYcm7duw6gJd6B9p/NRPyEW9WrHIKlWvMxLJnr1uh4vvzEZ2w8dVyRuSakTL774EnLzGiMuPgbx9eujRatcXN71fCTWS0aHiwZgXyFwvGAXXnruHrRt2xx14+ugfp0EJNZNRLN2rfGI1N90oFhmWkCehmS9vmj/YPiTUicTOCT8+GIxvsyLJCDPtYcw0yb+OeA64LXldaXnL+MD0/uXcXP79OmD6667TqUZH5iEKPW4XnikkCB9/PHHVZ1evXqhd+/euOGGG1RdhqMg8UywDvuih64mff3JXv9zTQiTbNVpegSTrCYRfOGFF6pQFoyHTMKWoIcu4wjTBoaTYD8sIxmsCWFNEjP9e4VksI45vHz5ctUXPZW1hzNJdMZV5gv69FzpsfOc4HyTUCd0OeWfAo5Fh5zRosfHI8/94T/2f9I8mDBhwsR/A5MUNmHiFGGSwv+dnBxnuOOAJ/Hdgg0+C0yYMGHCxCmB+1p/8UGferz03CPJRlJYxOPC0X178MFbr+H9yW9h76HDcEqpaMkPF7YuXYopk9/HU299gPmbt0mZXfJLsWPFCkx+4RU8/9LrmDb9Gxw5sAvfffs1nn3lHSxesxP8HghfnrZ712Z88N7rmPzmG3j/nXdQWHBA7HDi8NEj+OIL0X/6OXz12Rc4umcPPpfj8299jO/mLYfX6caezZsx5Z138dYbb2HH/kMolQadXmnZ64C3vAiLf5yJN19+Ea+9PAk//DAdhwuOYPKH0/DSGx9g9/6jiqz55otP8OZrL2P2gsUod5FQ8k0EhWQjQ2gwtnKlEy6XEzanB2vWbcTHH72PSc8+hVefo31fYvvug2pMrE4ht3ysqASzZn2D5yY9iTffexdLV63AoYM78PGUqXhi0lTs45vtSK5XHMHihbNlDl7H6y+9iLfeegMz5v+EfSUlynuZ8+11Susu0sM07J8Nf2LGn4ghmUPyi56XJLymT59e5U1qEjb/DPDaa8KS8CcvGTOYXsMkNRlSgn8cKCwsrPL21Xr+a4IxiVmPYSKoz1jDJD01Ccr+6DnLIz2FSfSeLJoQ9ieD6RFMIthqteKiiy7CxIkT8e677ypyV/dP6CNtpIcvSVuS1TxSdFgIksPa6/f3iiaFSS7zyHjDJMHT0tJU+AoSw6mpqfIs/KFqbrSntvYe9vec1nPPPD2O0x0ch/+a0uPikXPhf845oGg9XWbChAkTZxpMUtiEiVOESQr/99Ll5qlo3++Jav29PHWezwoTJkyYMPG7wX2tv/hQlaU2viKVXhhhJDxy9MBeXKQIYqcIKWMSoKqCy6m8do853MpT1waSCSSGJd/NzTdQ4TRqVFYadUulyCb5ZYrjtKPs+D7pg+QrX/Amm3PJ5tEr53CLHWSPeeR/SZLOIVHK6tR1e+SnxyinOGw21Zehxa+UiybHI32SrK1gV5Ir23z5KXZJK2yTorK0MJYEx+EVUe2J8CjZdJbm1MAr7Usee7L7+mc5td1M+ObTKQUOr/QlbTGrWGxgHWWDmmv5T0LGWybDLYZdWiAhTOvV9DGURSVHzA7+2SARo6HJGOYxvMBVV12lvg7POLLnnHOO+ho9STgSPf71TJy+4HXUpC2PJC/1OjCeT78E8zWpx/r+aYJHkpua/KSwbU14UriW/OMCk/ilFzDT/h7BfKkbieA77rgDX375pSJ26bWu22Ff7IfwzyMprV8exzp8gZz2FCYhTA/ik4ne/0bYFtsnKcw0YzIvXboUL7zwAi699FJFCF922WVYtGiRmh8KCfIDBw5Ui61M0F49d8TJ56creM05Rh51muP2h75mGiefmzBhwsSZBpMUNmHiFGGSwr9PLrvja5w9+IVqfd723Oco427ehAkTJkz8PnBv6y8+VD+thMftgldEsbDcEFMkTU9cg7SVU/IeJD+8bkWCksRk6IQKO0MuOEFPYnKYLqkgLcJT6ZBTpgxCl3VICqOyTPTkKG3ZnF7VPnuxsx2SwVKhrKzcsM8jG3Q5sC++do1tVJJUtUsOCQ1lJjfxtNuBSleJ1KFVhh2GLcosRXAz3IRXfnr5k6SHLqwSacvtVGSu6o1xlmW8Ht+0qHPpyylpF/VJYCty25gjSJuVck6CmL14GJpD0rSbLVKHU6xYZjfnolTyyuWfS42PpDCbJCGvyGll1D8b/uSTJmRI3pBIY7xWTdrVqVMH3333XTU9E6c39DUkYecPXn+SwyRxT14fmrBk2r+ezjsZJ+vp82XLllV5BHN9UUgS69AQLVu2VHF66YFLIlV7GPu34Q/m0W56KpN8pYcwXwpHL14SwvTs1TGA6WHM/F8je/9TYTtr166tdk5ymCTxwoULMXPmTMyePVvl7d+/X/VNwnjw4MEqvMWhQ4eqCHhCzx/lt+bydAOvkfYe918zepyEHq9Os1zrmDBhwsSZCJMUNmHiFGGSwr9fut/7A84b8Xq1fq+79U2s337AZ5EJEyZMmPivwH2tv5wEvfH1eNzwkuTgKb1wJd/uoP8q/WoF3DMzQe/WSoMEtYmO4csqhR5JiT6ZT5dTNtnqnwteEsNsS+o6pZLLSf/iCkPfwz6MZt1S0eN1wGUjCau7Y4kL7kqvIp8NQpg/aB97Nghr6nr4FW4bSWXR9LqUrl10SQpzTF6pw3+khFmLozKIZFb2CRviuQIzpDKJWcWG05eZDUlSDixVqvQk9tAbkX0wwyVTVCZj5RxRWeySFM1wyKlLdOwOKttESuF2Fsv4nGoefT7ORj1eg6pO/tnQhAyh1yPJNRJd+kVgPDJeKj01qUOCTntnmjg9wevI66yhSVbm63WgwXP/dXIyacm0/3pguSb3dJqgHvvkOT2Fua7oEcy1xbAL7dq1Q35+Pr7++msVskKHV9Dt00vdH9omHtku9Riygi/Q6969u/Iu5kvgNHFLwlaTw9pr+PcK69PjmAQz22QePYf1OY+6nPl84V2jRo0UCV6rVi1cffXVapwMq0O7OSd6nDye7uA1YbiRWbNm4aOPPlIkPK8pSWJeR//1osfLo7+YMGHCxJkIkxQ2YeIUYZLCpy4XjnuvWt+U6fPW+6wyYcKECRP/Mbiv9ZeToEkNolLFSAA8bo86uuWcZKyibRzyk7EYGCLCl6eITo9b9FzwOkn0UkcOTvKZpF1d8FRWyAa8QtWhKN9iyTPCNEhSunI6vahwFEs5PfGkrohB3rJ3BxwumyJ4SccwtIJBXjulruQ7HUa7KpyE5NPD1uVUoR3Ull8Kqe8So0i2MqyDXRG1Ir7QEIp8pTKPcs4s0tqK8HUzXAR7JsHt5fB95K9AkdNikAyi0i32Og0KneKRMpuDXzGXHkWc9LqWeuSDGaUCHs7BMUmUS7duNVKDFDbqKyU5KGP+4fAnX/R6JMFGYkt7CfMYHx+vvDapr0k+E6c/9PXnNaXw2vuTsRRNyFZ7Xkk+z7WOJpiZ1ke9TrQO9ZnHI9dXeno6WrdujSFDhmDatGnqhYZaX5Ojug8N/zwtPNc2MixEjx491JpNSkpSf8jQJLAOGUGylt7D/iTv7xWOg0KSm+c6TAU97fWRhChfhtemTRtERkaqe4pkOMf+wQcfqHFxDJrYJvTxdMbBgwfVteVY8/LyVCzoL774Qs0XCWKGAfEnwfX602LChAkTZyJMUtiEiVOESQr/b6TLzZ+gw0lxhid9PMdnmQkTJkyY+I/Ava6//BsozynR8bi9iu/klph+vWprTJdeh+ERS4rU4a0kbSrnLCWZ64RTNtiK3ZQCyYFDTiphg5cEKCt6PdJuubRfDpfDIIXpMGzYxejELoN7ljMHXx6naFKbbNQdqk+DIpZyr1RUHrpyRiJYbPEo29mH9GtzKE5Vka+qbRmPol7dUp/EMMlbtiZ1OAiKMQzpy6jnJdGrXjinxQWGm1CkrqgahLDRt+qXxLHoMOkQW9xkxqVRr5d9keh1qi5KxGRGyFDex94SqXMczsoKFTqCFpG0VqQwY0jYOSbJ/IfDn3wiMUWQnCFxo7/SzyO9G0nosIx1/gmk1ZkOXkP13PGl9TXVaU3qajCPa0SLPtfguX97mvDjUevxnEIC+MMPP1Skqc73J5b9+9Zpne/fp3+a/SxZskSRr1yzdevWxSuvvKLIYBK0JId1OImTyd3fI7xHeNQkM72C2Q+PmiTWpDG9lJ977jm1T2EoFr6Mjsdbbrmlauz+8Zz9x3U6gmNgnOXRo0crj3B6SFMYkubcc89V4/7kk09UHGaSxwwxwTlgPeJ0H78JEyZM/F6YpLAJE6cIkxT+30lXxhkeMqmaHbc8PQ3FZSQKTJgw8ceAGyKKseH2JY2jgs7gJpkEll+hbzNlnIuQODPx18J3KfQl+jXozW/VV6NF1+Wir65Bwqrr7SgDGJ5BykibKGKTR5cDHq8RHkHRJvwhUiEKRgvyvPZWiEhFEbejRPKccPleSqdUROwq5IMR59creuolbWRpK22o9JBeBsQC1Y+x5qQTEqtOsZAvw1PsMvNEpG1quDyVRkxf6YjdO6SI1KxbEdXFki+2M6YFlf3WOqdDcn2kssyJm2EpZAxSyBliT/Qa1l7Cyg6lY1f9sK5qii/ukzqaFGa+TbKoY3hVc0QVomGEu2DbjHrsZbtUUnaJ/G6wsrJEHY1/J3JPlir8SgFb0FKlq+bMOOPPX5b//6KbUKc8qgbETpmfbZs3IzQwBMEBwQiQz1W1a9fCdzO/hVvmR4UC0Z58qrJP1IErhPPOBo18NisrTgnLVE5Vx4bw4CtRwnMFrVMFnWHMqNGf0bYWXnEeq1U748DRcybV3eSbkRMzo0rlhy9ajbolXE4988bdwKS+TOpOkgWiNQzhOuAdSfKX3wDgM8TXLrslpAG3fmAxX+nzfpYjs6nHpeRrWBGikiEtSdqox760qr+wGr9AoapKPbvNhmVLFiOvRXOEBgehbnw8Jk2apIhnErQ6tIMmcnk8VSHZy7Z4pDDOsCaHWc7+dF8kpX/66SfceOON6NKli3oR3dtvv10Vd5ehJEik8iWP/vGG9VHj5HN/sOzX9P9dHX/8mp5/nn9b/65NljGW8vDhw6v+uKTD0fCcLxaMi4tT+zZ6EDO8xvLly9XYdQzif4d/17cJEyZMnM4wSWETJk4RJin8v5Xu9/2A80a+Uc2Wa255HWu37PdZacKEif8lSEhx485NttslG3PZ+TKsqnII5WbMV+al9ySJLkXGGbtpg6SRjRKJuUoPPC6WmRun0xe8rnLx3aUo3bcZx3Zuxt6de7FnzyHs2blH0ruxe/debN97EFsPFaNYLj+JVDrqMXYuyRJFCJNQZVOS7ygrUgmuFMbdNdxygeOSVH/u80q5/agiXIwXrtlQKeuIFE6x2qNLTVl7ivLTjJKbnsQVUke0fGEsGL5B09peMURxxbSNhDCOyXoukL4kzUC/tLOyHE57MQ7tPoRd2wtQJM2US1dOxosgeVRZKku6QlFVZaJPW128KegF7SmXYR4XHR8NTo5YdJzsV2z0SuekmVQ3PjF+Upvt8746uezE4feDDXCmDSKOdJpBXhq9+gstUWAVnviLgK2QuKaoLBIiWnxtsozzw3RVOyd3cpKQd6H4mvHVkwynDYd27UJ6YipCLaEIDghC/eQk/DBnptjigtPLsCGirPuhMC3gSJ3yT/2pwldG+1nDrmobc6IIfa4/2iYHquox8k8S6orp9nmkVGUYJCeJQ/4jme8QsfvEJkKvb+Oqn6nQM0qy1vD896pwKZwh/jOmXj0CRNX4g4CIyuVzwvgjFNcGc/RvJi2GOkv4u8iIVU4N5vP+Y7sGccdnhTr4KvHuPSxyTEyTjBMXXZWTCHZLW67KCvk9x+tstMXwL1zf/K3GHtlKheTxnPaoP2jJs2rFogXomNcS4YEWJCUk4LXXXlNeuyRk/clcTdr+UUIymF7Juh8SxiSLaQc9l+fOnate3MjyPXv2yLN8twolwVjIjKs8Y8YMHDlyRHk/+4fu4JzqPyAyzXxNkDLNzwHa45bnFIYD0X/EYb6/6Dx91Hr0yNY62tNbp3WZ1iX87SB4TlKYnsIkgbWnMNOaGNZCsjhBrhU9iKlPgpjzR29yEsRsV4+FaYr2Hj85j+cEz02YMGHidIRJCpswcYowSeE/Ri4a9341eyhfzl7rs9SECRP/K3Aj43aT9JXNluxpnBWy8eHeR/Y5Xo8bLrdNsrnBp1ckaRZu/owNGmPRVnq8cDnsqJQ2/Hb5Jk5LyLXzulB0eBcevSMfF7ZrhFbNWqBDu7PRsV1btGzWFLm5rZF31kW44IphWL2tUHEuJEEZ+YB8rSLe6EkrJ7aSUiOTa0yE/0joEvSZLeH+3nlM9EsVqczqcNKj16kImDLVuAseRwlcag1KhtRxlJfJwQa7o1DO7SIkDcUG9ksaR9oi98s4w85K9kQCl5690ir7ET2nowDLF8/BZed3xZXdB2DWgk2KiFY2eKRNT7mYWqZIIeZLbZWutBdJWYkoSo60wyHQG5hhMFiXvMBfRw6wc5l/ir6JjVlXKX+pspAJfwVfAcdl+G4bVKgq5P2t7nGSaEYZ6T/2pMCiqm6Nhn1XvZr4qylVtuapQMmxI7jjltuQk5GD7Kws9Ol3PQ4c2SO6Drm+JBhplapwQuQH841AIXL9jQaVfYzXzHjScrUlk+tC6nM9+nR4MFYMa5K0ZI7Av/0qOXHCn9TkGGiRFp6z7MyGnh29Ovg7g0deEWMa1RLiZOlFoH7wPpVrxKSI/xwrNdZTDYioHJLCFP5+khxRVtycbrOa8O49LHXl2eJbCmKWuvj8A5JdniF2ucO5TpzSkG5GC59NJIj1H77scsI++YO//w7u3YPR+UOQWKcWWrZooV50RiJWewmTnKXnMI8nE7n/a2F/7JdpEsQ817GGea7toM6aNWtw0UUXKZKUXrUZGRm4+eabsWLFCuU9zJfV8UghiXzo0KFqZDGPJH95pMfxgQMHsG/fPlWPRwrzjh8/ruoZnzX4+UHmT4RkL9skkcs+du3apY6sp8lptu1PLpOE5Yv9fq0vCsc1cODAaoSwDkfDo/Ye1uQwhfGHSRAzBvHQoUMVUc7rV1BQoMbFMfo/02kTbfMfC/M0aWzChAkTpxtMUtiEiVOESQr/cdLllk/Rof+T1ex67sPZPmtN/DPBXZZsODwuuByahuFm3wGXh96ChhcPN4hu2aHRG1DVUVty2eV5KZKkmw83eJUOHHdwuwcUyJ7zut6bUTtyObIbLMWqdYb3j9r4kRmocv8Rkep2m5tck2GSrz/VlYiNroEqT7rz6WuRvYFsgLhZ8MqpsSl2ucuUeLykukio0khjg+N08uv43EAb1ILxtXg3nC56QdEAFxxObpiZJknrQI8e3dWGp0mTJli2fJkidZ0uuxLaShscdtogvdAeaVLxRL5zHmk3v77Lo85TImmPjNXYiHG+nXB7K+AQ+xV1UumWTTE3eIa+i2yYqiebIz8vHhOnIeQ6VjorUbB3O/r0aI1I+d0WEigSEobwMAsiwmVjHRqOyNh0ZDTriVkL9koVr9wrBbLmZF04jPtCiYekqQ02u2yeZU3ZK0jKSYLhIWQdl8lSsXFNymL1upwoKpf7Q61xkq6y3kSVt5xie+RO9aBU8hifWE4l34g/LPeFS46y/h2yIFlbLX75XyR6pazPZwi93F2S4SLtJ33bj8PrPo5Z33yF2uFJSEvOxfcL1uKYnV5fok/ymO2IvTZ57vCO5B1YofqWtuwFolMEr71MkUXlvJekiM+l34ImD/5QsHnlCesTGqTZNH3D/lvhXHMk9L4k0cp/ho+nQf0awucw8w0xdFlHlfsIafrn0p/bJmKXNOlzarIHCrVJxjK8BzWVp6ZIcXkRfpwzC9/98A127t0mLXG9SAuynjRFzTVniGGrXFgRXiX+vjD651oiUcyXF9JTlc9hYy1Qn3VZm5ZT09Cl1ZwFhZOnRYvRvCF62FqYV9XAmYnfXmoyOZx73/1ZNYdMax2m9TzqfIJH5rHM+DUoefztzdA0xUambpNlWuTcy4ePfA7gH4bc5aJPHplV2Y6Ucx3x6ldIJulrZvO543DLGlLhYCSHIWWY5j3FLC4zX/tOh6ws+X2/fNVKvPDiJEyZOlURsoz3S0L2j/YOPll0nxSSv5qIZjgJEsIkTbVty5Ytw4gRI1C7dm15xocowjQiIgLNmjVD586dccUVV6g9zoUXXqi8iQcNGoR58+ahvJyfqGRK5FqS7OUL3BiSgvqsR7n44otVvSuvvFLFNS4tLVWfd/gMJMlKWbVqleq/W7duqs4ll1yC888/Xx0Z7oKxfzUhrIlYevK+8MILqs7ll1+ujuyH9Xv27ImHHnoIgwcPriKCdfiIkz2Gma/JYZ1HHc4DYxC3bNkS48ePVy8N5NwVFhaql9T5E8H6ec48jseECRMmTleYpLAJE6cIkxT+Y6XrndPR6aQ4wzc++SmOldB3y8Q/D/Ihm95+jBVIzzB+fdtVCpcc3V4nKuw29RVz7v+4t6Rjhkc2ah6PSz6gO2GvkE2fywtHGdcHN/nGC6ts0ixf+DT5HRfqRk/FiAHHcFw2hyQkyJn4eFi4yr2KJHV76J1CoTcLNyM8ilmiS3E6+fVB6skes7QcjJfqkTq6XPFJtMBJopa2k9SwSdomG02P0lf2U89Xx+EkeUy9CjhkzNyeutVXpsUm2VAbRxdsjjK8/8FkBIdY0Pv6a2Czl8PuIEEm/UpD7NfuYJiHStjtLtms0DbJs3NDxg2MKPj6pA0UktgOJ71y2IhRboxB5lbmXb2qiy8Wc8sci65T5oOb4SoymW1UyCQybeL0BReFLMrSwzvQu1tTxARakGnNlo16V5zTqQPOv6Ajzr3wArRsdzFuGPYvrN9KqlTuyYoDKDl2FG5ZE+RgeE85Sg+jouSI3HeyVrhOZN14y0tkHRbDVemAQ+6D0go7ykq40ebdSpJY/RQ7HKLnVvefvaxI1tZxlJQeQYXcT2VyQ5O0cbsKJHEY3mNH4CwpU968pU6544uLYCsvo2+wInKNGMF2OZF25V4udlSgzFUGR/lRfPvZJ0iIro+E2lmYPmep4ooMb1J5Mtj4PLGh8PhhsUsFqlA2Kr9hx1Gg6BBcpaXK25kEdJlUtvEPMUrn1/GnkMKca39hn+pGlYfAr4h6rvj+qQqKvGOZbuDfwdehrqMeauyPTy/SuQbVyxAOJFxVn+rBYvRKkph6JOWYovAfKV2nW559skbsZXIVjeCzUk/b5CfM0/2qvn157Ev16etX6bJckj4wSUuMcuMPc0xpYUmVOhNalaKbViyiiCYK/do/4yBjV0uc83SyMF+tK/4ilYnS18Jfv9rEM8E7Tm4stbYkqeebRbyv1R1OUtj4/afaUmUU+f0kadWM1HPJR4O1c49j82zg2Hppea8II0rwxhYdLh3GIGcXFCOGONecKLjlw4KrXI7SuVZi96JCs2gSLThQcBTbduxQRKwOHUHi8+QwEn+kkOzVxLC/xzBt0nmaHGZICZK8DJ9AIpiEMCU2NraKVCVRyjT3OYzJS9KWL2nTnrGMQ/zDDz+gYcOGSp9CYpX12BbP69WrhylTpsjz/AShSg/h/v37q3J/UpZ1eGRfJHq1hzH7IynLF08mJiYqfdpFXU3u8pwvpzz77LNVmyyjFzCPkZGR1Ujgk4U6PPqXUz8qKgrNmzdXL6mbPn26mkd6D5Og9o/BbMKECROnM0xS2ISJU4RJCv8Jct+sX8QZvurGV7Fqk3yqN/EPA3dZDtkz0hPFJpuAY9i1ezOWLluIVWtWY/3GTdh7oEARw/J5XD6cG0RnSWm5bLy2Y83qVVi3ah02rFmH4qIj0oYLNmclSmXHZpc6P/1UBmvdp3HrmE1YsmILdh5Yi7JSOxz0HvJt6kmw/rxlHVauWYaVq5djxaoV2Ld/v/KCVHtNnxQVF2PDzxuwZt0qbNy0Dus2rsTRwsOKn6BtimyW9BHZKK5euxqLly7G8pUrsXnLdpSW8euItJ+ev7LPFBv37D2gdJatWogly+fi0NH9sDEsg/RFHW4+Dx89gk1bN2DqZ+8jtnYERo0bioJjh+GWTqnncHpkc+vG8eJCrF2/RmxfLvO2Cj9v3oiSslLRo28cqd5KVNgrsO/APlW2bMVS0VuBXXt2KRKZ+2ESXOyzuLQEO3btlPlYi8XLVmL+wuUoLKww9sfcCVNJpIJ/qGHaxGkMWWieEpQf3YgBV7VEfIQF9975BOy8zlzPsrZIm5E8LZFz/rHFaduP6Z+8gk/feReL5qyALG2U2Ssx76fp+PLLKZjyzU8oLJH78OA+zJjyLj6e8gHWb9mIJUsX4u233sSUKZ9jzfqtOFpOn1LpRu5T/mXGXnZI7uM5+Pj9lzH1w7fx2dRPMHf+auwrAsrVmtuP3Rtm4tsP38WXn3yFDXuOYN6K1fjsvTfw+acfYe62XTgqah5+48AmN7hs5Ldt2ITXP5yK96d9jrnff4uvPngfDWolISerBb6Zt0yNq9LhwJE9uzHjmxmY8vEUfPTBO3J/rMFBaYLl9E6sKNiGn8SeKZM/wOqde/Hx93Mw9YuZ+GHWfB/naRAffzbYI6dPi3Fr8m4n+UvCms8wfntBB0zQvr78aWiqSiS9/OVEY4boDk7WIzvme45SzaD4jZ7VA5FsPsupR31Roh7t1gmfFYZDL/V0m7qevy1M63JeHHbob5su45Hn/nX921AivcqDj/PA76ZwllhNV6WqspM/Tq5LBd2+UjpD4T83PuFtoMRXbKxBXizfn1lY6D+XTKtZpxfwMZECERK/1JVCX7uGDh9MJIZLJYvfNCiB01so7ZfIOUUaZJuiVrAZePamg7i60Uo83LsSM54GNk8Hjq+TS3dAdNiFrBV24fK44XSWw0sy2Ct2KOEfJ6Qh/nFCBTA2zOCSK5dTWnFEnjGbt26tiutL8pWxhUnAkqjl+ckk7h8hJC7ZH/vVHsOaGGY58+n9ynANPNIj97HHHlMet4yx27ZtW0WuktwlSaqJUh5J/rK+JkSL5XPQhx9+qLyNSaxSx/8YHh6u2qIHL71ptVctwz507NixikD274NkLPNZzjnTHsb0SH7qqaeUJy/rkAQmecw6Wkj+Wq3Wam3qdplHfbb/W+WaRNb5TJOorlu3rvIefuSRR9QcErTJP2TEX/HMN2HChIn/BUxS2ISJU4RJCv95ctH4D6rZSJn242qf9Sb+GeAGUTZdXm4eyvHll59i4MB+aNuuPVq37Yhzz7sM42+8D5u2HMXxItnHyUbu6FEnXnxxMjp37o727c9BuzZno9ulV+DhB/+FI0eKUFTkQlGxFzt2FWBE/lPIaTARzbNuRruzzse1N3TDB+9PQ6nsPY/uly3o0Up8N/MH9B1wg5S3Q9v27XD2OedhaP4ozJ6zGEUlTmnLiYJj5XjplTfQ5bJuaN/xLLRq2wrnXXQO7nvwQRwtcKDYZ9vWbQdx/wNP4IKLuqJV3lnodE4XXHFlH7z99jQUFLhRKnvNwkIP5s1bi1GjbkX7s87DWeechQsuPl/6HIkZM+eL/dKWSEGBC2++9RG6du+Bth3aIi6+Blq0aoY77roH27bvF7vYZyV27z2ABx5+CGd16oSO55yDcy+4EF0u7Sr2vo7jxeUoPF4ix1IsXrocY8ZPkD47omWrVtLnRbi+T38sX74JBTKnnLPCY3a8/c4U9OzVX/QulPYukXnuidtuexQbN+xD0TE3nSqrNvMeJ5kRE6cvXHIdi1F6cA36dW+JuBALxo66BfsPVODg4WPYe/Ag9hccwa4jx3DEJuvNXonjhzej7xWdUEd0WzfNxeKVm7Bo5c9o2rwZgiMi0bX3EBQcL8OmuV+jtbU2QsIjcPk1vdG6TR4S4+NUHM4LLu6Cz2fNV+EeyLe4K0rxxYevo+v5bVC/bgySZK3XrhEOa1ZjTHz8Axy1y5PCthPvPHMzYuX3b60aCRhy8z3IapmHejWCEFcjBJ36DMbCXQdF0QGUHcPmBQtwVdceCIythxpJaeiQ2xzXXnIREmPikNIgU/qfpyimnZvWY9ywYUiIt6JufH2k1ItFq1Yt8chzH6OggoRRERb8MAVN69ZGzZBIXHrDYNTMbIbE1BzccsudihSmV9tfQRCQpOLtSKKKR4PQJCVMUtgghI0Sg/JkifYR5i2sLNYn/kSnCIdT5YxLRV++v44SdipHZtMOCptUGYy14RAhOSwN6WZUwteOk6FARMr51wXm6YZ4cWg6G6M+jWCa5eyTOjyqMhGdryeCHYk+D76koceEzpQ2SY/Tc9n4Z5DlxhwaPsUU3YWCPqmWeQbDNw8nX54TK4/zy9fyFUs5//grWtWugYhKaC9gCvVYW/LV4qvqxleV16rcJ/rVf6VwksSlghxKtgJPDC1Aj8QduDRqF7pFr8OQnJ/x5DWHMf2BSmz+VHTk46TzgLTLLvV6UnZJwsuHjmTymz78Vo10zuJytxcVlV5s2rcDX8yYjpk/fK/i4q5evVoRs4zFy6MmZP9o0QS0JoZJCvsLdei5vHbtWhU+gh68AwYMUN61PD4on2G6dOmCuLg4JfHx8ahTp47yHk5KSsLVV1+tQinw+UYhOfz9998jNzdXEcPUpy6F9dgGvZDZj34m8vnImMFjxoxROvQkJumq+2Td+vXrq3AVOlQFwb6++eYbpKenqxjA1CPhzD7ZNz2IGVKrffv2VYQvjxQSyBR97l+m0ySL/YlgtpmVlYXLLrsM99xzDz777DN1bekl7P9813PBcZkwYcLE6QiTFDZh4hRhksJ/rlwy8TN06P9UNVuffu9H3whMnP6ohMNmbBQd9gr1whBLAD+ohyIoOE6OlAQMGXofnn1uGl555RvceeeLsklor8oCAmshMKimpGNkc5GNibc8ieeefVf0PsaY0fdKfopIWwRZWssH/xhYAgOQld0Wr7z0NV58fgZefnE62p91MSxBIdJvMAJDokU/UvquhSuvGoxJkz5S8sijryAjs5UqCw2vKXoRUkf0g6Nx112T8Nqr3+KVl7+UTdatiIxkn7EitF3sC0xE8+ZdcNedL2Py2z/gmaenoEvnAVIWr/QCgqUtC/uPRefO/fDipK/x0qRv8PBD7yA5OU/KaFMoQiOipM8wBIfWwugxD4jO13j5pa9w620PIyAoUnTCRdiW2B8Si/i66Xjm2Tfx6msf4Znn3sTlPa4XPZmDgEgEh9VU47AExODii/rg6aem4O23vsPjj7+D5i0vkjZq+0kd2UDVxaCBN+OLabNxrNAGO4Otyh7JQ/dhE6cxSH6UoHjvWgy6ogPigi1oldccfQcNRr9BAzFgaD76DxuNa/qPxHufz0a5ItxKsGfNHJzdpB7iwiwYc+NNGD3xXgREJqJh6wuwfOshuD1OrPvuDVzQpC4Cw2ogtn4j3PfAI3jxuSfQ5dyWco8EoW2Xnli77ziccODw/q0YctXVaJmSjttvvBmvTHoKg/tdjPAaIUho2R3fLtoJ2A7ig2duR2JEmGzmI5Ej9+0TL7+KO8f0QUIdWfdJmbjrtQ9kUZajePNq3NSnLyJkrWe37YJHJr2FJx+4Gy1SEhFtCUR2RmPMXLQMhRVluH1CPupGxaBNXjc8/9xkPP3YzUhJqYWkjHPx4RfLwNi2i36cihZJ0agZGoKw5Ca464X38cZ7U7Fo0RKQK/AnDP5MkL/SPpjacdagfg1S2KCx/FhSZawktQhIa6ikL48q/rwshWn25V/PoHgFvgbYi7ZBlZDtZxwRp9T0GGS0tkZRKb6TwqJCzF2yAD/OX4ADR4rUt0L4jQunlFOPwtoGXUu/YgF/SAHL2J7yTGYejfQNVYUHkCR/u1B8fqrGOAjVEFvQVp3wqCYtzP6qixH44oRQlzOlGjqDYYyfM8lZcshMM14vI0KT5i2XkgpZRXYck1nzefOyCivwGkqa14SrVqdUuRb5YbQtV0rO+XcG42oZ64nLTIWXkX9Ot1xlLmC50K7dwCujj6JnrZ24IdqJ/hGVGBBuQ7+wgxgQvQ03Z+7FM5cfwxf3ebDuM6Bsg9TZLw0Wi02y6N1uucpeaVP6L5NFyW9JcP3w/jp4bD/uuH8C2nVsgSuu6oHly5crcpbELIlYpikM13Ayifu/Fk3+khA+OWwEy/XL5ugdfOuttyoyV5OjJGIZr/fdd9/Fvffei5tuukk+X92J2267Tb2AjmUcA71jKfT6JRFaUVGBb7/9Vu2DWO+uu+5SdViX5wz5QO9g/eI46rM+CVZ6KN99991Kn7okX1lv0qRJystah5zQf2grKSnBRx99pPqgsE/WoX08Mn7x8OHDqwhgffQnfrV3MoXlmghmqAiS1HzhHolgejczNAbtJCFN0AbapD2Eea7H9Vc9902YMGHiVGGSwiZMnCJMUvjPl653foNOQ1+sZu+4x6fi6HFuOUyc9uCOj5s6l1c+lD+O5AY5co/Fygf6JPngbpUP9I2RmtoFWVk9kNeqD3KyuyMkuBGCAjPkA38qLEGJIskICm6CJo17onGjS0TvCiTXOwchAc0RYmmHQEtzaas+QsPrISQ0HS1ze6FhTm80a3oDatfJRWCw9BVUHwGBDaTNdNHNQr2kc6X8akOaXS352ZKfrnQCguohMsoqdRogO6sbGjW8Ck2bXCXpS0UnQ9lN3aDATAQGZCEmOk/6u0J0eopcLW2fJ/nZCA/PRlBIorSXgIiIHMTVbIcWzfqiWeM+aNakN8JCm8o8sL8EBATXQUxNaTM4VTYxXdCqZX/kZF0Nq/UChIVnil0pYqNVjmkiVkRGNkZ2dhexvTuaN++OpKQOCA3NkvFnKF2Og3Ym1j0HLZtfh4z0y9Cw4eWyUZK5Cs4SyYQlwIqwsCw1zxnpHdGlc28sWbxexWE+EcfT3BidtlDxdEkKr0O/bu0QxY10oEXuJxEeg0PVHxECoxLQJ/9WlFTItXaWAEW78N6zdyI+0oLa8bEIr5OM8Hot8ey7MxQBB3cZ9s2fjI7p4QiKqI0b75+EYqnrdZThy3ceR1q9GATVzcHL0+aiXBaTs7wAP8/7Huvn/IBjhw6iqPAAfvj6bUREh8NSvxOee28WYNuLTyfdiXrRUYiOTsTzH05XpFOJ2H5513NhiUvG5WNukb6PY+fCH5BXLx314qx44YNvcUyWaqXtCF5+5B7UCakFa0oTfLtgPjbs3ISs5NpIjquNxx+bjK1bDmHd8pnocflFCIhqiBuG3gObqwgLZ01Be2si4kLDce3o23BQ+lVkJNmo3wAJgz+aNGDrJMsovBONRylz5UzFcfUJPdrIvulblsJKKos0Hakug3ClCotIgJEQJjViEK9GNbZv0M4kT40c1jSIOkNHsbryPGdcabgl18tY73wBHUlD1a1B3BVW4LlnnkDDpllo1KwxJky8FfuPHFcvHWR/Br9LMpgUIF88arwcTpexP+OldqTupGff0EVRHdgX16MmJxnzmMSlYbcoqSC00pq/qDKS6oaeQRBzrBTDDoZDqJTWjJfZSTtnLIwJ59xwBfDqkkZV10aKeHtwGahvA0geZ4o1VMInVb9GqGBc0Op/jfBdEi7fEwSwrz3Woz4Zf70Aec4A41uB14YcQu/oHegX7MZA2QEPFRkZCAwPKsPQoH0YFLUZfWqvxJhmP+NfPQ5jyu2VWDMVKN4gzchN7pGF45S22Y/qX9a12+3AqpWL0a5NMwQFWFCvXiJef/11RcQyPIM/MctQDSeTuP+tkOz9tXwtulx7DJ+sz7AN9BIm8UoPW02UMs2XydFexvEl8Umyk2QuzxnP99+Rn8ynLglfEqjUZR0dE5jnhH4OMp/Eqk6zDuvrl7lRXxPC+qjT7EvrM74vz+lRzLLDhw8rUliTwP7EsD8BrI8MN0EiODs7G127dsWzzz6Ln376ScU81uNgvxr+afZLIZiviWITJkyYON1gksImTJwiTFL4r5PzR71Z3ebxr2D5xt2+0Zg4bcHP3PI5m/FqyR+8+850REVlIiGhA+rXuxhpqVeKXIt06/XISL9ejtchLeUqJNe/DEn1LkRCg05ITLkIDVKvg9XaFxkZV4nelUhPkfMG1yOp7uWol3gZ6tfvjAYpXdAgrStS069GWnp/pGcMQGrqVUhJEZ2kbkhKkGPClWhQ/zqkpw5AlnUIstKHqHRK/d6on3S1tNVddLuq/lMadEdW5g3ITL9B7LoW1jSjreTky0TnEiQlXipjuFz0xJ60XsjMuF6kt6SvkbweYtMlqJvYUcZxrqqXntYbmdaBIoORkSb2pV0n83AREpPORb3kTkhOuUDs7Sb9XKPKM9IGqL6tqdeIbVegbp3LRborO62p0lZ6H2RlyJxY+8Ca0lvGRb2rZAw9ZKwyjoQeMkbREWE7GekyZzKGBg0uR5LYn5BwoWx6L0SD5PPE7vNlPM1xy033Ye+eA/DwZV5q+//LDaOJ0wSVcv08JbAd3oT+3dohRn63xSdEI6NRJrIa5yC7STNkNM5F41bn4KZ7nkKZTW5UdxlgOwDb3pXocUFLRIRZYImIQ/fhD2NLqcHPwF6AvT+9jAuzoxBWsx6m/LAOjMPJNzwe2zgDl3VqCkuNdNz6/OcoIvHjccJ7dC0ObZqF2bM+x8MP3IXczDSEBMfCUv98PPP+DGlzEz54ajTqx9RErdqZ+HrxFkX42Q9txfW9usFSpz4uGjoclfYDmPPRm8iJTkVWvTzMWLZFkYJ0A5w97X00iM5GVlp7fPHTTMxd8RPiwgNQIyhE1nlDpKc3RiNrIhJq15IxZaL1uVehsHg3Fv/0Cdo2SEW8jPOZDz9RUU/JPylS6q+E79mp2DK6xvKtfyRk+UZMutrySKGdNFizabzsJN2kCsk8p5cxWg3KliQoyVD+LHfa4KzUNKobLi/JUJJ/zNd17JLWdKs0TtKkQhonIcyHurccDtcxWRdlcr3oMSqd024pOrJxB6x14xAVakFQINdebcxeME9RjEb4BpcMy6B0GXOWvqcuJQ6pzsABTJVJii/qlAa5nn3kN7kcWiTWidBztRSl3iKpUaHsVhPiFRtVjAw55byQyeR8UnTcDJI//MWkSGNZp3wBmYxXvZBMsZZUPjOh/zzgYCxeFKNSrjWnxMvQRjtEtopsNo7Ht8sUk6zllHOe5b+aOrlkvLzOg3IQvfINsnzWG8cyqes6ZJRTl2S8W55X6rpweReKrrRb/jNQKvq2TfI82ChtMcrYKuDtPoUYELkTQwNdGCk74NEiY9TRgdGBRzAiqABDg+zoF2BH3xAnBsTaMTSlAnee78Rn9wJb5bFTJDbYaYNccpDwLC/FmoWL0al5e4RZQuTzRSKeeeaZKlJ4w4YNihT+X8UTZlv+5+yHxK8mnplHb17dH4/+5dprmZ61NWvWVCEYSIiOHz9e6ZzOIDF74MAB5OfnVyOBNfFNEphHEsEMO5GZmalCZTz++OMqlMbx41yQJkyYMHHmwSSFTZg4RZik8F8rvxZn+JMf5NO/idMX3OzJppzikg3lyhX7kZZ2Lpo0vhpZmSRS+yEzfTCy0ocZkjEEGekDDKIzvRdSsq4UuRZpGcOQnjESGZmD5MM/idURyBJJTxPd9L5IT+8j5X1hzeqLNClPyxwBK/UzBqv20tMGwpo6COmpw5CRNgrZ6ePQMONGZKWNQ2baGMkT3bR8kSFij/SRMVDsG4xs6Tc7I1/sEhvZbyaJaRKsFOkzrR/SrQOkfCiyM0U3c6jSTbcy/3oZQ0+x7VrR7W+MzzpaZKzIKOlnqOj0kfZ6ifSUsRnzwbay0qk3Ro7DRW+YjJd2U/IlLXkcf/oI5GTKWGScPGdZutIZaoxD6mRaxXaKtGHYNtCYL9pmvRbZWb1ErkCd2m3l2ZeA6KgkPPH403DwhV5nOCly+oPsYDFK9q9F70tboG6EBXfecQcOHS1GaYUNx0tLcbzchoIyF0rlMpM7g7NQMTWVBdtx+8j+CJHfhyE14zHy0XewwwlFt8FRiH0/vIJz08NRIyENXy/ZrngdeF1w71yAq87LVaTwLc9/ihIxoeL4Ybz+2C1oXD8U9ZJi0aRRBvKyG8hai0Noemc88fY3orQVHz13MxIiayAlLRdLtxUqnsYhdlx95cWwxCbh0vxRYttBzP/sHdQLrINGKe0we9UOFJHQc+/F0u+nIS6gATJTO2DG4rmYtWQmIgIsiI+MljWeh5Yt26N9q4ZonZeLvHN6od/wO1BmO4x5Mz9Gu7QUJMcl4J1vZqnXYSmOlUTiXwkSa8oNUy4ORcdeIKHJOKgOJ1x2uUepJ0K+VvFpMue+LAEpX3p3OlDhqlAkH6k+5cLJAdIbTh7OfOmg4aUrmh56yRqesyRZGUpB+e+yQc6JJqClrqeS1C1J2QqUiNi1niyUPau3IkLWT6hIsEhi3Xj8MOt7GQopafofsxHab4PHXSr2MygBvYXF1soKKSVBXS7DZlgCB7xiJ802+FuxW7H2YlslieMKZatN0hyrmgjR5VB5JJ9clRax2zkPcio/qOrh/Ko6Mg92Wc1uWX2yniVT5MwEp48zYARyOA71l599wPqpwKtDt+L+Livx8KXb8FC3bXhmwF4sfN8Ljzw+1BLgtLFaCXBwBTD1wWN48OrNuLfLTtxx/nbcdbHU6XcQXzzmRuFa0eMDhLF+GQC4ArDtAZZ+CLw+/BDuuXgN7rxgFe7tvAYPd1uPj0aVYN2zwAfXVWJI+F7kBzoUKTzKT0YGlInYVX6+CL2IhwQCA4KAG8KKcH3NXRiYtg7/unIPZjzhxo4ZBlHtkX6Xf70NnbIvQaQlDgm1k/Diiy9WkbfaY5fnOoTD7xWSuiR5eaRHL8Mr+LfLPHojsz/GDSYhvXLlSsyYMQOffPIJ5s2bp/ILCgqwePFiTJgwQRGojAmsvW9PZ5AU3rdvH0aMGKEIYH/PYL7wjvGKc3JycMEFF6g9G+eGY6aHMb2OTZgwYeJMhfzKM2HCxKnAJIX/emGc4bMGPF3N/iff+cE3KhOnGzyyQVRewrLfoyxZvBfJ9c9DVubVyLDegMyMYchMH4UMRcxSSJaOlPJ8ZGYNgTVnANJyBiMtczRS08chLX0MrFbRs05Qkpk+FhkZo5GRORLWjBGiN1JkFFIyxoq+lEnbbI99ZMl5Vvp4ZFlvFLlZSXrKjchIvRGZ0lZ2BmWcyBhkSxtZbNdnl6ov7WdlDhMZaoiyfYQqy7SOFhE9HlV/kk9CWcZAXZ6znfQUsTv1JkmL7dax0s9I0WGbJJ3ZptST/My0m5QYfYs9tCuT9t2o7My0jpeycWo8TGdax/mEY5R2Zfw5maKTKnMgeqodZRvtlbnNEJsyBilyOyvzGtSIbo3goFQEBdbC0KEj4PbY4KLXqKIGTJyekBuOXpwFGzC4Z2v1orkbx96NgwfdKCqyobi0GEeKjuBISQkOFntgJ0dXeQSw7ca8Lz5BVnwCagYHITQ6DtGNO+L9uWtRzuVQXoB9M99A54a1ERlfD8989A2OkVt0OrB33he4pHVjWGpl4rGPvkOZpwILfvwSKVFhyElIxLixN2LpknlYPf8Twws5qT2eZxx52yFMeeF+1AmPQb3kxli65ZAioO2FW3FNz0tgqdkAlw4aCadtL+Z8/haSw2sjOzkXPy7dgmK3R/reg1mfv4vESCtS6+fhh6WLMH/NPNSpGYys5GS8P/krYyl7j6Gk7Cj2HQeOqedSGebPnII26XWRFFsTH367AAWV0i/5wb966ZNZU17BcmH8vYRpmxTbKz0ocTtQ6nWi2OPAcbcN9JMtl+vOYAwMhkACtKLCiQqpX+ZywybidvChLI3IGiB/Crtce7sTpXY7Sp0u2ETXIXmMu8qY0AzfYCPBRFJVlhS9kO0iZaJTKjYwdEOx6PG1YFJs8M2lwK4N+xEZEINwSwSCLcGoGxuPGV9/i0qS29J9pfTjln6dFXaxSXqxO+Bx8evpblTY6DEqrTkq1C8Rm8uFClclZCiQZWYQ04x9TnK8nG8Ss8PhrcBxqWeTeXKIuU7RsTmNyMC0q8zhVVXK5aRMpETKi2yVaio4vTI1cDkr4SURzwn+yxfAXwte7gpeS0WMy/U4Cmx9D7ijxTYMjZRnimUXBlqOoH/AEfSN3odxbZdjxRcHUVluLFXewGWbgMk3HsK1iUvRLfBn9Ikqww3hNlwbUozrahzBdUnb8fZ4UdQewy7ppwCY8yowvNla3BC9CX1D92FIjRL0DT+MftEHMChuC260bsAzHZwYGnoI+YEVGB7gxnB/AjgAGGapxAiLB+PknDJa0pSxgcAokSEBTvQLKMagmkcxLGUXnryiGDP+BUz7135c0ngkoi2p8izJxPvvv6/CNJCwJUnLI0M2/C/CR2iyme2T4OU5yWBdToKYZCf7+u677xTx27RpU+URzLAKfEmcDnmgj4R/WITTFRzD/v37FdFNj2D9sriGDRuiR48euP322zFnzhxFilOXoSEY7oJpiv98mDBhwsSZBPmVZ8KEiVOBSQr/PaTbXd+i09CXqo1h9KNTcLhQNgwmTitwb0KHNH4+37atELfd9jwS6p6FzMyeyMkhKUnv1tGwpo6FNWWcHMfI+ShkZIxAekY+rJn5yus3JX0kUqyjkZI2Fqlp45CWNh5W6wR1TLNKnpSlWkchNX2M6I5VkmolgTwS6fSilaMho0XYB2WsT0gyi6RLWfoopZ+eNlxsGWHYkzpOzkcb+Vax1zoU1jTKsKo2T7THI/uQMaSLvowvI3245I1UbVlTx0t7ExQpnGGVtOSnW6Vc2qW+YR9J3Bt9OrSJOiLU5dwoUry6KPukzBA9VuqyLfZD26hjzIfRH8lteg73Qo2Y9giwpCE8LAmDBg2Ht9IlG3ubXEFzY3X6wqMYvNIjW9DvylzUCLKgW5eeeObpyXj6qWfwwqSn8fxLz+Hehx/DUy9+go2b9wOOg9j38xxcd+lFSIiIwqXnnoc27TvCUrs+WnftiY27DgDOMuz7/h10SouBJaIGOvcfhdXb9+Hwvr1475E7kVO3FhKbno2fft4Hm7sM7772DGIDLTivbTvMX7AE+/buxKR/3YgwsSc4IQ+vfjwbsB3GO8/ci3qxiUhJbSHtHVWk8PFDG3DVFRfDUjMNPQaNlQfKMexaPxdd2nVAzdDamHjPU9h79Dj27FiO0YOvRaQlGvUScjBz8RJs3r8TrXMboVZkBEbn34jDB49h8+ZVePbFZzHp7S/x/by18LhKseD7T5CbFo/4mCh8M3cF+GV5/Q34vxT64akfoCQ+PEaE4CKHDau3bsL0Od/j+4U/Ys6y2Vi+fhEKinfLHcuvTYt4S2EvLseaVRvw48JF+G7ubCxetRwbV68GCumRSWZUZtnmxPGCo1i4YhlmLpiHOYuXYsGcxTi8e6+sH76ZS2aEXpyiv2/rfsyfsxw/LliG7+YvxNw1y3Gw5IisNDK1okNipqgMyxatwscffimfp6IRGBiNYEsoEmvWwo9ffAGQYHY6UVZQiNXLV2L+3IWYN28RFkh7yjZHmYxZhKEcKmw4snM3fpgzV/pbgBkLFssaWgrbgUKxW+bFRmK7FJ6yw1izbjG+nTMTc5cux4KFa7F+9WZZqrRf+vOKfR4nCo8elfoLMXveAnz/0zwsWLoKm7bvQWFRBfbsO4JNW3aiuKRCOSE7HTKeMxgkhXkPVvCPEgypcRiY/whwfdgqjAw+hjEkWEm2hgDDajpwXb0fMOedbeoPDQ6n1JfLV7weeOTategRswTXRxdgYKQH/UJFwt24NqIAveruwY0XrIFrBzsSKZfregj46l+V6JW0FH3CD6BvQCkGh3vRP8yFAVE29I3cj8G1NuJfecDg0CIMCXJgWKAbQwOAIWLPYJGBkiY5zHAS4yxeOTow2mITex0YL2W0O1+EdfoFl+G6yJ3ok7wMvRtNwYiL38I1Z9+I1tkX4Joreyvicc+ePVUvltOevZq4PRXRBLMmnHXICAr7oNBT+I033sDFF1+sXqrG8AkkSM8991zlGasJUBKihCZIT3dSlOM4ePCgCoWRlZWliGC+LG769OnKg1jrcJw8auG5jltswoQJE2ci5NebCRMmTgUmKfz3kvNHvVVtHN3GvoQl63b5RmjidICHrsIChsAcP+EexNTIRHBINhKTuiA9o48iTdNJalon+GScyGjJHw4rRdJp6SIZw0VGSHqsyHhF/lLS0if4hPljYM0YpyQ9Y6zIaGRkDhdh6ImhJwnzhiEzM1+VZ6hzo8yaPkSER5K10g7JW9pIclbZNUwkH2mKICbJSsKYXsnjRXz2M1/0rSRgSTTLGJifIXZS0pWQtB6tRJezH7ZhiPQpdmVkDpGjtol2is0i+qjSnMeqMRj6qm4G7eYYjPatVtpCoX0khgchLe061KlzgTz7UmXDGY9h+eNQXlEGfoVctl3q+pk4DSGXzmP34vjB3ehzRR4i5XdbcEAgQoIj1EuUAinBgbAE1ERM7bZ4/c1vUXJ0N556YCxigi1olmXF6iWLMeXjj5GUmQ5LzVjc++QLKD9eiENzp+KslBhYQqMRntYUV17XB2OGDcF5TXOQXKs2+o65A0cUR+jCT99+jpzU2qhbOwLdruwu62swmqfVRVxkFGo2aIdnXv8UXts+vPrUnYgNr4WEhMZYu/UI6AxadnwbrrqyCywRyeh6XT68laUoLdiCpx+8HWmJSagVn4GBQ8bghuu6I71+LCIDApCV0QjTZy9GkTTwxmuvIbluHSTWjsOwIYPRq3dvhETHIbVJO3w6fSa8zuNY/OPnyE1vgPiYGpj+41zlsFhBDvEv51QqUek1IvAy2AHvRpJ09M6duWgBrh3UF23ObYemrbLRskUqunfJw+QX7gAKVwPHV8F1YA2+++hjXHLRJWjWoQ0y8xqjUW4Oena9ED9/8zVAYmX/fti2/IzHH7kbrTrmIr1VYzRulYtObc/G+AH9UbBpIXB0M3BkL/asWIHBvaXPth3QpEN7NOrYBh06n437H7wNtoPbpd8D8B7ciy/efRsXX3QeMps1hyU4WtZIDEJDwlC/ZjTmffIBULAfxds24tUnHsU5Hc9Ck+Yt0KhFLjqefTaG3tALe1cskP62AQe2oWj1KtyaPxzN2rRCdvs8ZHVojQ7ndMQL99wD7Nkt9svngT0/Y/kPU2SdnIdm7ZqgYauWaJnbET0uvhTfv/uitLVJbNuO8p1rMElsvahdC3TMa4bWLZqhRfNmuObaXvh46qfoftU1uOiSrvjymxmwuRh248x++nH8pPpJDqv4zAeBef8CBtXehhERZRhscWBUEJAf7sWguELcdNZKbJhRoMhdFZZDKpfJsnh9wlYMylmB/gk7MSj2CAbHFWBYQgH6JW5H38z1eG3CUXjpKcwb3lGkPJLXfibttliFgfH7MSrRjYGxFehXoxSD61ZgSGIBJmQfxcOtgf6hdgwUGwYHigT4CGGRASJM03t4hIUxh8VWi13SpRhmKZF8OQ/3ID/Sjvz4YxjbaB+e6HkQ79+9G0umHcGKHzdg2oefYeZ3M6vCOaxZs0YRtDwnecu0JnB/r5AIpoewjhWsyWZNDrPsxx9/xCWXXKL2JgyhEBMTg2bNmqkX4PFlaPoFb/74pxCifOHcggUL8M033yhvak10awJYj5NHEsH+ZLA+mjBhwsSZBvnVZ8KEiVOBSQr//eTiCR9WGwvl4xkrfKM08feGFx56acEFu9OOxk1byf0VC0tQKmJrnY0mzQYr8tKqSMrxPhkr5yORZh2KtLRhsKbIeSoJ1GFIV+QovYdHIFWOqRnDYc0aI+dSnkkCdbQSevtqj1+GlUjPFL0MaStD2kwfLEdph235CfOMsqFKl3UyMkeJDSRSaZO0R+/lzHwRlpOEHS52Ukj+ktj1Eb3KfqOMaYqqK/rKfmk/zToMqYwBrGwmcWsI+zHqjBDJ99kk85Q5FBlZ+SLShvRtlXbSSE6r9ow2DbspQ0U4LoPY1rYY9rBd2jISGWJPBsed2huJCV0QHtYEcbE5eOGFt2B3OGSzyV26ubE6bcFL5waO7tuJ0QMuRbP0Gsi0psm9kYmGmQ2QnV5f0lakpjdHdtNL8dHU2Vi+cDbaNEtFi0YZePDeu2ErK4atvBijRgxGVuNGaNzhQsyePRv7532Mc7PiYKlZD/1vfgi9rrsejdKSkZudgTtvuwOb9hUpxz96Z5Ye3YsnH70HTZtmIyUrE7mtWuDZB27DwF69YG18Pu7518uwle7F5x++gmY5eWjdugs27TyqvtZ/vGAnhg3rh7TGrTFs3G2wOUrksVKMA9vX4tH77kLDhs2Qld0YV/W4DBMnjESLhtnodPa5+GnJWpTI2IuLS/Hqi8+hU7sWyMpIgTW7IS7ufg0+/maWIrzgLMKSH7/Ehe1ykdesKWb8NFfl809ZJLb+SlTKP+OVcIzqyqi6BjFc5nThjbcnIyoiHGHyeaWGSKJIhkjv7GjMfXgYNjw3DutevBvjz+uIupIfSQm0oFaQBZmSfuby87D58Xux5cn7MOv+CTg/I0a9iDAqxIJoOdYXaSXy2ZirsPHZm7HxuXsx7eYRyJK8OiLhPqkt0jk1Gksfux1bnnsQ6555AMPbZiNB8tmfRfoLlGOcnDeW9Idj+2LDq49g+j2j0SMzXumxX9pHnRbhFnww+nrsfuFO7HzmLnw8uA+a+3T4sroAaYN6F9UOw+w7xmLf8w9i/VO34qn+5yub1RhEqENbhzWshU2TbsPW1+7D3H9NQI/kCFglv54I+6ZeQngQ8hpnI1zarxEdiV7X9pRrTyr0zH72KVJYfhiksKzAAuDnz4HbL1yPvvWXIj9tKx45x423+wEfjANWfCR6dFC3uVUIEZdNZrAM2L0Y+PJfdryRX4KPhgMf5QNvDSrGW6OPYvozbhxmTGH5VVPJWNl8mZ0scvchYM6b0u4ED14baMc7I4H3xgLPXl+CqTcCa18E3r4O6BNRjAHBXgwO8qqQESp0hAgJYaZHB9Mj2IthQXaMjCxDfvQhDIzeisHxGzE6exMevPgAvn0A2CLjKlsvdhwV4UcWeQC4bE7s3bNXEbMka0nUkhBm7F8SuKcaPoJtkGhmmxR6C2timMI8nvN52717d9StW1fF0B08eDBmzZqlCFNNgvoLiVMnX5r3DyBF9Zh0Wh85bn8y/NeOLDdhwoSJMxHy68+ECROnApMU/nvKJbdO+0Wc4cfenukbqYm/LxiNkH535bA5S5BiTYclIFrusUTE1m6Phk36wpoxAGnK63aUCL2C6Q08TGQQrHy5Wsp4kXHIsJJA7iP6fZCW2RepUi81U3SyBsPqIz/TGX5B6mZYhyJTvXCNJKi0S6I1Y6TqRxGoop+mZAjSMgaL8EjCmP2KLRl8Sd1okTFITWN91jWI5bRMxjceZBxVPV8d6TvVKkISVrUh+VVlrCe66gV4/ZSkZvQXEfszqc8xazslTVukzBCfbcpu2sBy6lNoF8U4Z5lVeVQb/WsSXIlqR8Q3RmO+8tGo0UhkZQ1AUuJlyMrsitGjHsbmTQeMy3eGkyKnP7xwuxiTtQwHtizD1tULsXr5CqxasQY/r1mNjSJrV63G6rWbsHFnAQ4WVKCksABrly3Gzq07UHS82KAlbcWwHd6l6izctB/Fdjt2zp6Mc7JrIrh2Jqb8sBaH9+3H5pWLsGnjGuw9dNh4SZzi1eT+95SgtOg4Nm7ajuXrNmHDxvVSeAgFe7Zg3aaj2Lq7WPTKUFF8CCuXbsS6dfsUGVVqd6HS48DWLRuwYt1q7D50QKzhV4WdZJ7gLC3AzxtWYeOGNdi3ZxfKpI9tGzZgzap1OFzqVjZ4KitRUXoMxbR//SosWb0We4+XqRARZQxOK88lOI5h58bl2Cy2lzO+rtjN95jZnXwZ2l8J0sJeNWYXvyLNHJmXSkclls6ahx7tz0Z2YBBayGeWC0QuF7kzwYJPO1nxZYdEfNLRigcaJuNcySex2jrSIHq7BljwbGY4vjs7A990TMd7ndLQt54FeYEWNA02dC4UGSLpj1pEYPZ5iZjRKQWTW9fHtZJ/nkheiIi0w34n1LJg9vmN8X3rBvj+7Cw80ED6CJe2RCchzIJ40WkqcrnoT8qNw5TzUvHuOSkYW9+CsySf/TWXvtvK8Wqp81zDKMw+OxE/nZWMd5un4PogC9pJfpbYkyntnS3jGFbDgk/OsmKWjPWLs5NwX0MLzpf67aWc89FepKvIU6kBmHFhqsxJPUy9MBPjalvQXfI7ibC/FmJTXo1gNKsdgVg5j5M+ul98jvzqknXLdaao0TMTXG/8w4jLI6uw0q7YYXcRsPDLQrx67zpMeeogjqyUvP2ic1iUecNV2uSe5TNH/os4PEY9SD3HNjlStovwC1/HpKgMqLBXgjGwbfzjsXxm4KwzHjTJWdchqSftOw9K0yRs2c8+OV8DvDqgAr1j9qB/aAWGBNnVC+eGBzgwQokTwywe9LdUYoDFi8GRdgypcwT56dtw7yW78NmDdmz8DigRWyrlEcA42S6SwTJe8op8NOzZfRBr166v8gqmNy+JYIaRIIFL0vbXyN7/Rtie9hJmu/QKpgfwe++9p8JKHDp0CKWlpViyZAmeeeYZTJ06FYcPcxIMkADmS9X4jQwSoSSDNRmqCdLTGf4krx6jPqeQHNbgXPgTwVrXhAkTJs40mKSwCROnCJMU/vsK4wyfM+zlauMa8fBHOHCUL5kx8fcEP6BzpyVbPa8d2Q0by/1lkML1kjsjNe06ZChCl96rPg9Zev9m0BuXL0MbhSzrBJFxyEwfgoyM/pLfD9bM/iIkVEl0kjgdLHWlTvpwRQpnMlaunPOlaowprNqWtkiapmdKnvK0NTxrlfBciUG6Gp66JKl1XTlW1WOfJFkHI1VsSs+SOpqs9RHCBvEs9rCMaSVDJI82D5R8kezBctREtOipPtkHxecVLeXpWWyL7fjIZp9uuownPZPEtR6b1Fci9ZUu2/V5NPvEGCPHJ2Kl5CM1ZaDM8wCkp12NLp3HYOWKA2ozr77+ewYTIv8M8Pq55ELKPUjyk3FVmcW9shJ1kVXSLvlqO808ufh0lOQ3ddUaIDnmKAXfFEnv33LZnG+YMxV5GbURUrM+3v3sR1WHzIps0+lkp8K9sl0Vi5R9ywlf5sUyFVKGTIzYRedAvtfL45aWFdlr9GszkmxA/rvFNopXdJkreV5RUKSdE263YqOMir4x0aO2QsbgZh57ZXxaj+gyX8rpDazGq2LNit20UUr5Hje7VFa1DAP+MpASNghhGTuNoT003CUDKC3CordewgMdm+PBnLp4OisWbzaKw8yOqZjVujbmtYrEvPa18VWHFLzdJgkPNQ7BQ82C8FgzCz7sUAMz8mIwv3UsFrarha9Ed+r58XgyNxj3NwnAky2i8FxWJKa3S8SitpFY3CoYC0RnZl5NTGtfF8/khODRZmH4V+MgvJEbiW+ljUW5NbG0RQyWtI7DDx3i8HqrENwnbY1vFo2rIy0YGGzBC1kWzOgQix/aS//ta+KTtrF4oXm02BSD+xtH4YkmUfisUxK+bxeLFW2isLhlBGa3rovPxI4nW0bh3hahuDc3DM/kReLLDnXwY9s4sSsKC86qiemdovFW21A80yoMD+QE49nm8ZjcrA5m5cVhXpsamCV9Tpe+P+0Qj7dbxuGF7Bg8lVNT2qqPe9ul4vKUMKQEWRAbYsG1V3aBs/SYzDdXi8z1mQoOnfcQ/0IiC88j9xs5OIaXLj8uxbzt+EjhkWuz0gGvR0XkVi+VVY8EUeCfNdTNxrVLXV89469G6jWGIgYhXCZ98N5lieL0eAnYttcFj10qsbBMyrcCrw8vwXWx29AnrBQDg1wqtvDQ4BIMDTmEoeG7MDRuK/JTt2J4o59x94X78fFEYPPnYp3UVWG3+TCT9pW3rbLTJv065f53YvWajXjttbfxySefKsJWk7YkiHVoBx3q4T8VtuGf1mQzz+fPn48XXngBl112GUJDQ9G4cWO89dZbigjVZKgmPEl+alL0ZBLUnxCuSotUPcoknxnMoxgzbYRKYUpdRhGl59NQR3kGG3p8Kuk8XX5CU/3iUM9oDXXxqtrVj2+CB5YYnzMo7MN3wZWyIZWqEq+P/JNzPtK9co1oj/GMNGpRXd2zXuafGI8hPGNlX4Y64z+esBOdw7UgeTxXeYQ+qZZpwoQJE39bmKSwCROnCJMU/vvL+aPfrja2y0ZNwsI1fEuJib8lfLsAbmw6nXORbHgS5R6zIimxG7IyhiKdMW6tRsgFeq8aRC0JXuYzDq4c0xmXl3nDoGMBaz0tJIQNYdr/3EeCsu1fiNRV8mtlut5Jdf36/O26vyJV9bTtPvt/TZft/r99+Nt3ko1+YsQO5txSRomMVqLmVs4zM4YjNaWPHK9F586jsW79UfWSIKdsKKs2UiZOY/D66Z0w5dfxW9tdgwKQleA03Oi4IlxuN5bM/wmtmjdGveRUTPn0C18DXiljDFz/tqr3eyLf2LKf0K1e69fOjH8aWkNLdVTPZYo26NHoM+LXc4zUXwtaS4pCURwkhcmDkBQrLwfK9mLPlKfw5fkpWNAxHnNaR2N+mxpY0CYWi/IisLptIJbmWrC4dSgWtI3A3HbhImGY1y4UC9uGYGnrECzLC1ayRNIL2oaqMkMnXNqJkLphWJ4XhBV5gerIOovahGF+W7YVbui1DVN9LM8LwYpWwXLU7YVgTvsw/NghCj+1j1L6C6UPli1pbegsahPqaysCc9pFSnsRWCjts4x9rmCfeaGiZ/Q1p304ZovMExtZl/awv2Wtg+Q8SPXJMmVb20gskjlZ2TIGy0iQtwvBj2eF4vuzIjG7XQ0sy43D8txYsT0GX5xTB0OtFqTKZ7+YGAt697sGlS5ZnyTf/w4L4a8CbwmuOfXXEbusQ7ui5pjlIPfGbN7GSuSEjLHv5lFFavp8GTww01+YpzQ0NVhF0VWJ8cdJihMet8Poi6TwNuCVoSXoVWsrrgsvwfUBQP+QSgyJKUV+/B7c3GgzHuq2Bq/evQKLvymCjV9+IQnMx5gak4ivM/6Rineax+uE0+XA7j17cM0118lnlXA0atRIee9qAleHdKB3rw73oIldTRhr0tg/j+kNGzZUpUkoMywF6/JFdkOGDEF0dDSCgoLUi+Tq16+PV155RQw8NXB2OWV8bHAeDdKUozWGr5h9futCkpwa6ql8vmlRnudeRSJLmm8NrHTALnPF9tTnOvXHPZ74kbIMJE0CmSdK+PvADae0wWXEkCKqAUmzbZf8IxFfyT8oeMslWy4uW/N1axjDJ2CR/HQbtyTzvLSUa9JYj2xWrTW6fMt1pD3Mp5YhPJNynSng5xu+tlMZxL6kQy9og+SpPpjnM0RJVaaICRMmTPx9YfEdTZgw8TthksKnh1w84aNq46N88O0y38hN/J3g4eba9zn67bc/lHusJ2rWaIX0tF5ISR6oCGH1MjdFXuZDvSiNR0UIM84u8zXBa8p/LyTUDWLYEJLsJIQpI5FJ4jmtLzLSe6JD+7749LN5KLcZ23QXv/prboDOaPh7ohH84w6/rsyvPfNN8BMmTFBfbdaeaxonn5v478HHpkGpSIoMHC8FReb/2NYVmH7PYLzfvhYWdIzFsjbhWN4qBEtahooEYE1bC1bmaQk4I2V1bjA2NIvAmpZhWCTzMb+9BQvaBmNp6zCsbhmBdS1Csb5lIBZ3rIHnmwbj4ggLzslNwRtvvwyH3Wk++rgA6dGrHgE2Oa2QZKUie5WjJrk7HikkhQ3XYMUnsipDt5zKFLKualZSJIUrK31knU3+bwGeG7YTl9eeib71tmJ4yjFMaHQMj15UhKlj3dj4DlDGWMUkgsUecnpusZM8pmpYxPC49cItBYqSljSfbwsXLkLLlq0QEBCEhIQEvPnmm4rIJQlMUpcxhfn8o2hS2J8c9hftTaxDT7C+rqtJZZK/JIRJBoeHhyM5ORnXX3+9qndq4LydRArTzdufFGb8jkobbDIXJFapp/IVKayvHtNcCKRwDeJeTajSUf9Vewp8hwSJZ+ZT1HsJ+ATzqOWhmpFiPs6cbhLMLrgr7TLvvFBO0eM6EyvYKDsyjJQDSWHRlXN2rRoTfeaxFptVq42fWehVrkqN8VCM769Iuc6QJD/jsL6aDdUe7WT/PJdTijEIQ4wMn5gwYcLE3xcmKWzCxCnCJIVPH7n01s9x1sBnqo3zkTdm+EZv4m8D+fzsdhof8vn5etq0uaiXdDYyrNehUY72Bib5y5ef0QvYRwprT2FFav4a2WnKfybac5qi8zinhvd1WtpAZGb2RUpKN9Su3RrdewzCj7MXwuV1yAaM20S1KzNxBoPkiQZJE4KEL2NdkjTWBLD+mrMmg/3jPZr478FZNygVkhJ8hnqVs1rx0WN48eEH0SOzLkbUteD9luEqzMOavFBFhK5sZcGKthYszpXjGUwKr20ZhM1Nw7CheTCWt7ZgWRsLVrUKlPkJVt7NS/OCsaq5BctbhmJhmyS8d05TLHv/FZn0ckUq+bijMxdcgLyFFR9WJlKuzu3HZQ3uA8rofUvHTk4UY8B45d5XXsWs4obTY5f5O5UZZF12boR3qFRernIqv5ZKtwFv3LkBQzt8gUeu2YypE91Y/RbgWCnlx0Rol8FjVnF6iteTJvl4ohjPLjbohUfa5h+7nPJZZdWqNcjLa4uQ4DAkJSWpsA4kaEniktylx68mfU8mhSm6THsFkwBm6AmSyZpUZrzgXbt2qfPPP/9ceSQ3aNAAF154oSKJWUc/R38/WN8gcdWTmKeKFCYZKkk599o4WTbOrnrWqG8lUPjM5/NGhHPD68gytqNa9DhlPkmoGpeE7Rn1ZNKVvtGdkWCfFaLk4a2lHIlV/yJuevaSmGVf8o+0s90jbeiG5cie3eoPEtIu87SoEpvk0n9dg62S7vW17xOfunHCAmWcoalIYGMRS9qYAVWBoq5B1YlPTJgwYeLvDZMUNmHiFGGSwqeXdLv7u1/EGR724AfYe4gB40z8LSAfqiu5+ZJNBvcZGzceREJCB2RnXo+sDHoEa/J3uEEIZwwRGSbn2qPVJIV/v8j8aqJdiS/8hiaJJc9q7Y/s7L5yTS6UZ18yQsISMfH2u1BmL5LtD3fV3AyZOJOhiWB/6LiWBMkVLdT9NX0T/z145xlEjUeeoyRPnLC5PVi9egMuPftC1JPPKh1EHmsYhHltorAmNwjr6CWcZ8Hy9hYs5LH1mUsKr2kZiE3NQrCheSBWqnmwYH1Lgxie3y4EC9sFYU0bC5Y2krwWiZh/+XnAqsWA2w6nl19qP7MpIIM4lQQXIj0wZUKc+4AZrx3Cyzdtw0u3bMCO+VLGMMK85ZWeiDrIs4Bxv09pBqUujSATSKKRbsNsX0xxF8qlmnEcK7+04fhqyTskUiRSbpQrV2a3C065beghrAlhOrd6pB3j2SWfTXyxcit9Cna7EwsWLEbz5rkICgxRpPBrr71WRfDqkA/0AKbofMrJhDBDTWhCmPVWrVqFl156Cffcc49qk+UHDx5EUVERZs6ciY8//li1of+wxufpqYFjJNnquywqQYLWIE15qjyFvRUol/lykgBmfAeZC065mwHWVTx345NAuUwVX3ipWlMu4gadSmGuGC0JY7KNniWp1JlnxJBnJi8jaxs2GSQyPbh5zn5INVfyDwz8lpk0RBKakaaN56AoSH22S303yuS0QjKUosqjUI1CS4wZ8GXQHi0C6UWS9EQmIWzMi4JuwLdOTogJEyZM/P1hksImTJwiTFL49JQLTooz3GXEC5i3kq+5NvFXw8M3zqgP017ZcHlk87MU9et3RHraNSdiCisCmCQlCeHBIvQW1qEOTFL494v/nFKY1gQxZTCysgbJsRfi4jrKs68eLEFx6D9oCFyV5XLVSERxi2XiTIb2FNZHEhY2m62KtOD5ySQxz7W+id8Hzh7JE/XVZw9fqGpDeaUH8xevQl6j9qgrn1Vy+HmlZQ3MbV8Tq5tZsK6pBWtaWrCsgwWL253ZpPDq3ACsb0Gi3IJVMg+r8yzY2EKOrQJkvoIwr0MgVrULwLImAVjXPBELunSCd96PgMMGt6xlg/Y6c0G6zK0oOrKBcq8XAhunAGPbrcUVtdbgysT5eD5/J5x8pQPZPB8bx8eA2+cxfEowPjYYrKNmHkXoeEoSmnymukjsm9EH+OuK5WIAgwqQ6qMtiphkWxQfDM9UksFueU65VAgJKrhlnFu2bEf37lchNCRcfj9m4dNPP60ieXnU5C/P/Qlhf1KYQl3K6tWr8eGHH6JXr15ITExEbGwsOnfujOXLl1c9KzUJTFEvvqPhpwy2QVqUI/WdMhYv++OpV65wxXGZ23KZXoMchatUyp0qmoJ6CajLBrvYw6n2Ta9UlDZI8MoZZ63qPqHNPlKY5+yTBLDhGnxEGuPbCQH5GIhSyVd+xvw2Egl8OXfKKfupEPs8LrmoJOoVwWyQ0sr/2BdChO1yGbjBF4TSZsmQYurRHgMG5asqqLrGQQkHqOaYRDDXC9syiqrpmTBhwsRpCJMUNmHiFGGSwqevXHzjx9XGTHlv+lLfbJj4y6B2ZCSI3FixYg369RuL+Pg2qF+vO3Ky8pFu9ZG/yotVk5ckhUkGm6Twqcn/TwpnZg1ESurVqFmzgzz76iMopI4ihe3uEtnU+QIymjhj4U9OkKzQBIa/OJ1O2O32KjKDQuijid8HPjlJVhgecqRL7CiX5+nshcvRqlE71LUEIEs+rzyQWxPzz4rD2haB+LmlBWtbWbCknQUL25zZpDBlRSu+sE7mQeaC3sJrc+kpHICFbYOxoG0gFstc8eV53+fWxtNNkjD17ltQvHuXIp2qSKIzFKTLHLIC+bV9OGVC9gFzHgWuqbEE14QU4IY6ezG+43Ijdi8ZQy5WmTDe9s7/xbcFOPmKnZQjxfgoAb5vTqfVRdJpqUA1W6UHxR6n8SdNyVehb+VIu4znk4ys0g236LjdJDdJPLImOwRKisvw3HOTcNGFnTHxlokq1APDRpD01TGCNSHMkBI6NrAmg/0JYoaaoHdwbm6uihkcEhKi4gd36NABy5YtQ0VFhbLJP/QOn6f/G2KY9Q1fWWN65NxHCrPI6/bg+MFdWLdqEdZsWIt161Zg04o52LhyCVau3YKV6zZh/dqVWLV+PVbvOo5izqXUqyRh66HdbuWUrS+H6k4+55HI5WxyBTA0N9217fuWYdPSb6SPtVixYROW/LwJqzesw+Y1S7F/+06UFgPlUoFO52xPeSKrl9aROvYazt8qn/bLQYSX3gX+8ZqhKVhGQtggeGmK8YOWUZOG8HeXHJRwUTDfeHEe+6SGXAH5yQ7kaPz/hZgwYcLE3x0mKWzCxCnCJIVPb7n0ti/QceCz1cb+4Gvf+mbExF+BSr7ZWzYKLtlIXHXVtXJ/1UBQYDqS63VHWkp/VHkEV5HC9FwdInkmKXzqYoSIMMhgTQj7QkgoGYKMzIFITb0GdeqcI9cmGQFBtTHh5okoLi+QrZHaVhsX0sQZCR0Kwp+g0N5sLNPewJrQIEwv4f8NOIOcfZdyjeS96IRNpnjZqg3o0qmL8hRuLvJYbgzmd4jFmtxgbMoLwbrWFixpY8EiOZ7JpPDS1gFY0C4QC9obXtNL2xrzsSIvECtahWBZXhAWyzz90CkK96db0ErmMjMmAPffcTvsZQb5dCaDlBm/nM+wAspt9AAw/wGgd9gKDAxxo1/0EUw8ayPKV4kinTXJ4YkqiTWP8iStoud+J+R3D2PRqhADJPHkIO3TsVQeQfrvzSpfkYRyZI/8U6bxJxS/315SxueW0+mQZxfpP5bQ99QQj3ohmmErH2MMZ1Bw9BhWr1qtYv/u3LlTkb86ZARJYaY1+ctzhorQ3sSaIF68eDF69uyJwMBAhIWFIS4uDmeffbYKH6GflzySCObR/49utPfUwPbZBidJwP78SOHiY8fw2AN3IjkhDsGhwQgPtqBehAXxkcEIjqoLS1hNhEhefL1k9My/HduOkLhmc5x8mzRh/NmYTybVA3/4GHj2ymtBB/OiA/vwwh03ICPOguAQCyyh4bBERCIoMgx1o0PQ87IeeP+973HgmHHd2J7byQXFAMSMdqwCRMjTT6DGIEdjCNKHQ/ry3auqyPAQV/ZQQQlrsmX3CQdh9Uw1KG3ayvZ5ZgTEEH293uSM5RRfF0r+P/yneiZMmDDxR8AkhU2YOEWYpPDpL5ffPQPn5L9SbfyD73sfuw4U+mbGxJ8K2SDYbeXyQdyDpKQGihS2WFKQlNgVmSSBrSNhpaQPhZWEcOZARVaSDLYqwvjPJ4WtJ0lVWYZPfOfVyv6mYlXEsCaBJe1fLnnZ2cNk/nujXr0usmltiHrJzfHO+1Ngc5XLJoj+M2p7ZeIMhz8B/GuE78lEsCY8TPx+cDZJXdichsccvdtIfB0+XIAHJk5E+zrhuDrGgrfa1MCCdjFY3jwQa3JDsCo3ACvaGC+bO5NfNLe0TSDmtQ/GXMZXFlki87GstUXmJxjrWvClfCFYJuWfd4rA4AYWpMhnv+hwC6646gqDgSI/dAYvYw6/ioxjOIh9wAL5aNwvfA2GhwM3hB7GxPY/o3S5T1FUFFkrCf5B0esLMfC7Ieu90m1Ta7/SyzALVX6cSgyCUn5IguUe+axBm/lbi6GFFblYrXtdmxQfCUKXIoNJbpIoNghZKZWbjI8yegzv3btXhX+gp7AOHUHR5K8WxgwmCbxmzRoVO5iEMYlk1rv77ruRk5ODs846C+PGjcOKFSvU89H/mxcE0yd/2+LUwDY0pSlpMuf05OXg5LT0+HE8/ej9qJ8Qh5qxNZAUFwFrhAVRch9YwuoirHYqatWugbr1k9FzyETsK5KWWNUlbVTaZL4dVaQwn0tVU8uxyYHPLof8KDm0D8/fchXqBlkQFGJBZN0EhCclIrp2TSTVCEVUQCiaNO2MyVPmqmAQXDXGHwMofImcQT7zulZdQhWvmpGGvaofZrNfw9eY+aLCU2WwsSJ4nX3mGXkqTrujap1T5IqoPBVDW+aJ+myLOkyrrkVUf/8GqgsjacKECRN/Oiy+owkTJn4nTFL4nyMXjJlcbQ4uyn8Os5dv9c2OiT8LXsYU5uZOJFGRwrEICEhDndqdkZM1DOnWEUhLE7EOQVr6QIMUzvSRwiq0xF9AClvzTwhJVcnLyBiBjMyRhkha6fnK/s5itfJIe0UyZD4z6JU92jhKXgbJ+LQ+SEu9As2aXYHHn5iMY0XciMmGSG2mzK2NCRN/BXjnKXKDJ2S3NCvhcuPglpV4f2JfvNq+DmZ0qImFbSKwqm0kVuRFYlmLQKxtY8EqRQifyZ7CQZjfLhTz2gcZ3sKKJA/C2hah2Nw0HOtbhGFZuxB81CkcvbMsiJXPfsGxFlxy9RVw0bGQvNMZ/PgjEcZp4BqEQ872AkseBm4IWYHBQV70jyzAbWdtQvlKn6KsTYNv9IrYT50UJvzYNR7YGn83GfQvLeNF4u8pihE8gOEuXCLGK9JYQzfCNG8iikHzMawVP5uob0SIisdjvGyurKwCO3bswvp167F+/fpfeAAzj0QwSV+GiODL5PiiOBLAd9xxB6ZNm4aCggIVHuLQoUP47rvvsHDhQhWLnfhz/mimfLbl6HtwKFKYIn3Lf6fYNn/WDDx8/9248aYJuH/iGPQ9tyFqBVpQJ70tbhh9F2676zbccc89ePezn1BQboSDOFZwHAWHduHQkd04UHQMpTKVdhGZRt+0Gv66vDoki8sP78WkW3ogkZ7IKUkYcuPNGP/A/Rh7y3gM7tUD8VFxiKnZBP3z78f+Eo9B/noq4LUXoeTYIew/tA87Cw7hcKlNeR6r4TgOoejodhwoOIYisYkrrdIr1754J44d3IkDx9zKJuVW7izDkaP7cLjwKCrEKEUWu8vhKC/EkUN7sHv/Yew7BhTIpVGfeLhubcdgO34U+w4X4nBRBYpsHuw/elzaKEKFQ1aX7w8UvwWW/btyEyZMmPgjYZLCJkycIkxS+J8lnX8lzvDkLxf7ZsjEnwJuRNSmy4HMzIYIDq4j91gy4mIvQuOGI5GRPgoZiqSkJ2v18BF/B1JYkcEkgU+Sqvxfqf/3EdrnC88hR6scrdbRfiJznDYUmRkDkJ3VC5d0GYNt28tQXGq8KMbw9zG3NiZM/BXgPejwktgS8FbU4iQLcgC7P3sKX16QhMUda2JhXgiWtYnE8jY1sLRFsIorTFkl8muE6ZkgJICX5YVhSetgLGpnkfmROWkZjI3NwrC5SQTWNQ/H4laB+KRDGIZnWlBPPvsFRlpwYY9uap7pqHgmP/4YWKFMkawyCWT39gNLHgduiFmO6wKOo1/sAYxruwy2daKs+V9RI9/p8sXqPaUJZFW2yY8QviQJXw8JZ+ULTCaaR14o6U+FCeANwt9fOojAyaJZRYqR52WoAKa8fBmuA2Vl5Zg27XP07dtP7QXo/UsimOEhtMcwCWGGk2D+rFmzMH78eDRr1gyhoaEqZnB+fr5qjyEgeCwvL/9FKJ4/mhgmbck5MIhhGasihaVPDltNqPzwOCTNF+2JHN+Hb5+/DWkxwWh0dk+sPUhyXVSkXplMcVEpsG7DATz3/KsYMbw/Ro0egCeffwyLV65CsU2uOZUp0ixXjV3quaSvkoM78OyNXVEv1IJL5d46ZHP6/tjgwp6NK3D5RZciMCwdF3YdhH0FpXB43DhyYA+WLZyDBx+4G4PzB2Lc7RPwyuT3sHl7Edx2L0oOrMJzj9+GG2+5Az8tXosS6ae49Bi+ePdpjBPb7v3XK9h/WNaGqwL7tm3CHfc+iLsefATbdu2E02XD4f278MUnH2PcmDEYmj8adz74FL5fuAYHipxwu5yoPLYDU956AYOGj8Ijz76CD6Z9g/yxN+PO+x7Euo2b1RQqclmBiaoThV/mmDBhwsSfB5MUNmHiFGGSwv88UXGGBz1XbT7ue2W6fFjnxzoTfzT4AZukMI+9rrsBNWqkyD2Whgb1r0BaygDfi+ZICucjPZMhJAaLDPUjM/984rUaKZxJ71qGsqBn8AlRxDDLmP7bConr0Uo4l1arSNroEyLnWTKGzPSBaJDcAxecPxwbNhTKJlD2UtzQqhexmFsbEyb+CvDO4x2oOBxybBRFCkuifAc2vXM3Zp4fj1UdY7CwVTAWt47A0rZxWNIyFGtbWrBOvVTtzCWFV+cGYUPzcKxtEWKEjZC52Nw0GFubhGFj00iZowis7RCFL1oE4r4UC9rIZ7/acQEYODL/BG94Bj/+SCg65Z/6gr6PFF77BjAyZxt6BO9C77pb8HDPrXBuEWU/Dpjco9NhEK2nBN8NQA9UxV+qU8aALRWbjskZpUikTBQcIqJBJXXD+ET9UBTer4p66ZwfKczwDfQK7t69u3oxXFpaGr744ouqsBEkgkkKkyCmh/BPP/2E/v37IzY2VsUNDgoKQr169TBx4kRFCOtQEJoAZh8kh3muSeI/CidIYY5VxqhIYUlS1LTID8ZXlt/zXs5D0T58/cQ4JIdbkHHWtVi632PEC650wVViw1effo8LO8tnuNoNkJqWhMzMukhJqYkeV1+Bb35chXJpiiGLOVS+oJBXil2VH92BpydcirohFnS84CLMXf0zlm78Get/XovpUyejY5sOCK2Rg6v7jEeZzYFjBUfwxssvoUPbNqhRMxo5TbLQID0BydYMDB15Hzas34JDO+Yhv39X1K6VhNvueRyF0vf23VtxzSV5iAq2ILvFeViweB0ZaXw8+U3ExDdEo7xO2LFnI/bv34S7b5+IxtmNkJKcgaycJkhKbYALL++Jj6Yvh93mhX3vMtw45EpYQiMQEZ+K9GZtkNawBTp3vQJrNmxSX9xwy/X1TaRPjGtMMHXizIQJEyb+XJiksAkTpwiTFP5nyuX3zMS5+a9Wm5OB97yL7fuO+mbLxB8H2fw4HbJR8GLt2p+Rn38b4mJzkZXZG1kZw1ToCJKT+qVo1vTBInwhGj2Ixyhi89cJzz9O/ElhRQDrPLFRiaRVnq/s7yv0ama4CJ+nsIrfzDRJ4jEyv5K2DoM1rS9ysnohN/daTP1kHopK3CgpK5UrZ5LCJkz8VSDN4Kz0GB5p5B+0I6Q8T7et+REf39oLLzcOwJy2EVjYOhSLWoVhaesaWJYbqryE15zhpPDalkHY3DQMPzcLVrGVVytSmHkyPy0isCo3DKvygjC/TRQ+bBqDPjUtGNDjfMyc9d0JcvEMBpcduWD1wjPGoi0FipYDk28qxNiO63HzxSux8F1RKBBF9QcLmTBWEnF7SIRK+lTA+r7rwCQvB4MSGJ7CRjxYFWvbKyXU473Bo752Vf0z8WsiP8VIxirWIFG7ZMkSNG7cWJG8devWxSuvvKI8hCkkhRkrmIQwyeNPPvkEjRo1UrpRUVGqHsNH8OV0mgw2XnBnvEhOxxEm9PGPAkfFqThBCkuOHnqVeOFxu+QZI7YV7MTUe/ojLTIAjS4cjBmbK1AsKg5bMY5t3oj86wYiOMKKiy/vg+9++Bpz50zD9T3PQVytKPS4fiw27ixXBL4MUR5VbhFG/PWi/OhWPHVTNxWWIqRGPBo0boP0xk2RnZMOa1JNhAQGo2a9lrjvX6+g8MgBrFw8H62bt0JszVroM2ggFq9YhM8/fw+dzumEuDo5ePChJ1BStAWTX38cibXicXm3q7F+yy4sXbkMOZl1ECT9xNdvgpcmvQ7b/k24efQoWGIaoXf+RJTb9+OjDychuV4iWjRrjQ8/+BKLl6zALbeNR0SturjwqvFynQ/CvXcBbh3WHZaQCEQkpGPgmFuxbP02rNq4FQ6ZTqesdc6ZMYmcXwrTBnSJCRMmTPwVMElhEyZOESYp/M+WC8a8U21ezh/yDGYt3eybMRN/COSDs8vh8HnHAN99txT16p2N7MzrkZnOmMIGQalITBVCgoTwMDDUgUFe/tWk8Im4wSeHjDgtYgqrI23WwpjIo5CRSQ9iksSDkZXZH4kJXRAS0hA1Y7Pw8dSvZAvJf2Sh/tiNqwkTJn4dJBUUB0yWhe77cit6JFlw+AgG39ADWfJZZWC4BR+3CMHC9lFYkhuC5a0isLJVKNa0tsiRhPCZSwqvaxmIbU1CsLlZkIqvTNnYPADrWwRjhczR8lbBWN3SIulwLD4rBV9feS4Kl/0kE14Gp5OE1hkOWXL8soh6pxdf/CW/x8nF2vYB+1cAx36WbBLC6o8VJB1FZNL4e57hG5wMTXBK1BivAL1pKQxmwVZ9nC+bZTFvEK1iqBn5/2G3tJUOtMpmr1fF/OWL4PLy8hAZGYnExERMmjRJhYngC+dmz56NxYsXq5ASe/bsUbojR45E8+bNcc011+Cbb75BWVmZaksTwSdDk8V/NNiDmit1xuvDwUryJCEprubz2B589+gwJIdYkNppIH7aC/D1zB57EdZ89i7apKSjfsY5mDxtjky1Ew7bbiz+4U00b5KGhKyO+OS7deDfD+xOepgzOATJezvKjm7C4zd1R2yQBZbgOFii6yM0Mhox0WGoFR2IBimpuGbwROw9XA778f148fGHUKdGXTRt3hYrNm1Gsa0EZcf3YtLTT6B27VQ0y22HjdtWY+nSWWjdKBOd5FrN+v5HTPvqS4TVCkdU7TgkJGXjtnE348CaOeje5RJEplyAFz+aiSOFG3DbxAGIiYlCt27X4NvvFmLRouWY9NwjSErNQHzDyyRvPrB3Nu4a3hWW8Gg0PfsS/LBknfozhF3mySnCxzGfEcYkcoarLzqmTpyZMGHCxJ8LkxQ2YeIUYZLC/3zpfNOUanNDefPzhb5ZM/G/hldtFmW/5nKrb3euWrUbKSnnIz2tF1IbDERWxjikW8eCL0SzkiRWpDAJ2VFITWV4hr+WFD4RT9hPh+mTCOK/q1itMqfKC5tjkTyf7ZxXzndW1lDk5PRHXOw58uxLRUhYEoYMGw2X1yEbH7p/GVtKEyZM/LkgqUCOyyCFXWRvcKzUhuWr1qFtbi6S5LNKe5Hnm4Zg/lk1saxlMFa1DMHqVkFY2caC5Xl8sdqZ7CkciE3NghURvLK1EVOY87E8LxBLWgdJOgDrWliwoV0kZufG4fPL2gDbVskvq1I18/zy+xlN7PDRr73TYZPlJ/NC4pf/GcpXl9Gd2G2TMhe8Lg88cs6qLh0P+3eDjZOKo5CAo9+pYRZJTMWr8kTsqWI/fR1qvX8L0eVnErbjls8p9OilJy+J3pYtW1R5Cr/22muYMWMG7r//fvTs2RO33HKL8hguLS1V+seOHVPew3ypnGpWGtQhIpSXtYAksU77l/+R4Pg5g8Y8cKDqvxqvkZBcyabXq4NvcCvchRmPDEFquAUNzhmKH/YZwTnsRQcx/V8TkRkaityzrsO89Yfl0ou+5wD2rvkMV1x2NiLq5eHxV79VfxuQj3pwqAASRtzn8sKf8fTt1yI2xIKYxMbo1mskuve4Ej26dcaAPlfh1TffxM8HbOolcKX7N+L2EYNQI6wOLr+yHw7Z2I6MoOIo5nzzORpmN0Zyejamz5+HTds2om/385FVJxrPPvwobpx4G0JTknHxtdchOSkLfS+/At+8/iRaNWmGlPY3YMnOEhw4sBpjRvZEUHAAgkJjEBlTH7E141G3ZiiiatZBvZZX4qOp04E9P+De/MsQHB2Ldl2uwdZDpSiT+eInInoKc06Ny8cfPFM5zFBg6sSZCRMmTPy5MElhEyZOESYpfGbIZbd/+Ys4w3e/+DWc/DRr4n8L+WRcSbcK+V9UZMd7736LpKSzYU29FjlZI1Vs2wYNRqJ+8hCkpBqhIzIySWaOQkoDkpd/ftxef1I4M5MvaBuO1NShYudgJalpDHMxXJX9Wv2/j8gYVCgOzukwJUynWY25bpAyQOQGNGrUD9HR7WWjlI6AoFoYkj8CTm8Fyu2M2cjNjgkTJv5skFQgFebk17udBlFJmmXhqo1o1rgtaspnFXoL39cyBj91iMOK5kHKO5ZhI5a2EWlrwXJ6DJ9Elp4psrqV4S3M+Vgu87GovQVzz7JgXgdJt6WOBT+3YFiJAPzQtiY+v6INjn7/CbwFe2SW6eVIUvMMpnb46OcCVB+L7HB6SmCT3ws6i7/WjXgBNjmRlUmXYikg0fpLmuz3QBriHyYrGSbC+GzG9nTbFKWjLKJXskPKGV6CQSb8gh8pO38pJPVIYPNIkpbErY4p3Pv665CYlKBiCt92223o0qULIiIiVJzhBg0a4Ouvv1b6drusEx/hSyHRy3MthCaH2fYfTQT7g72r66TOOJe+a0ITfKLnUVlasAtf3n29IoVTLxyF6buMyCC2wj348bEJaBYZisZteuKH1YfU3YHKgyj8eRp6dG6LsHpt8MAL02GXJcC2nIoWZvCJIpQcXYdHbr4aNcMs6HRJf2w7IHOtQo3wmpXDLmuoUE6dIqW7VmDioN6im4iLLr0eu8rs0pfMa9EhzJ/+KZo3zERKdkN8MnclDhYV4dl7RqBRnAWDundHpwu6oEbrDnj0nY9x6QVd0aVlLu4b1BONM7Nx/oB7sV/a37tnNYYN6I6IyBA0bJaLYaMm4uabbsfNI4Yif8R4jHroHSxctgbYNQN3D7oYwdFx6Np3FA6UAcUyheUiylNYLDdjCpswYeLvCpMUNmHiFHE6kcK0lV9l+y34E56/Roye6aLiDA+vHme4312TsWX3Ed8M/rNBL5c/BfLJ2Ks8iYCPPvgULfLOQXCYFTnWa5GdOQwJGUPQpP1NaN06H62a9UNmWi/kZA5BBknhlFFIlWMaw0hYxyM9bRwy0keJDEemdajoMHzDaKWTmj4SaYyRmzkGKZKfkj4IjZuNQaPssdImCVySoYOkznBkZY5FahrbHg1rxmhpX+pSh2nrCDkniToAzZoz1MJwlZeRNRq5uTejdSu2SQ/nIaJvEMgMx2CV9qxsL1PsFvvSlHcuvXGlvbR8ZMp5RvowpLI9Es1p0rbo8yVwqexT8tJENyNtBLJljGlpw6QtqS/tpZLgzWSbMgZ6+lJXxlEVEkL1QzuZx5AQYhfjM2fKPEjb6Zlil9TNzhYbrIOl74Fo2HQEWrcZjzYthqNxRk/UiMmTZ19dhEbEYeDQoSg4ViiXjhsdbnx4FOidjr8oMEE9iuDXdE7O85dTwf/XXlUex8AtMt3btIvbr4xLgQlNfehMfyWd549fK+dR0XoiegPpg1/yBHTdk8WHX8kyxsC29fbfN6Yq8Jzy/7XzW9CKup0T7Rn/Tmj8lmgY5/xnvPzot+pXB3N+X79afgu/pmsI/2kbSQwaHqNaNKrrUs8gEU/8o736vuD10ddIXydpwb9higIT9Ir0wO41iC54SQc7UOH1YM7iZWjeLFeRwo1EHs2Nxuy2MVjdPAgbWwZjdQsLlrQ2iGHGFF7VKgBLWwfLOWPrBqi8NbmBWJUbhOWtQ7GsdQiWSv6K1gHKo5ZhJ1bTw1iOy/OCsEyE5LKKy5sbjJW5YVjWKkLaDFHetyRcl0v95XnSRyvJY922JKONOL7sj17Ly0RnWV6o1AvHwjbhWCx9r2wVpOwzwlwYtq5sFSj6fDkcbWa7JHZlXAyPIfnsh3qUFVLGMdFWNS5KrvTbMgRrWoaKsH0fKdzOgjlnWTC3gwWL2wSp/tbLXC2U9Kst62BERi3c0/ty/Lz4R3g8FTL7vute7drwXpbr4Z/H44nl6YNeq/onnwP6mSJlVXqGRhWqTn3rhZ2r86oCP/Cc/Zy0pkSqrz/J09VPqBiiflCHtvEokKyqMYsJfHkYE5UqloQkyQEXSA5fyUBeT6pVyrrkenWrnzwXVQ7hlCCNMGYw+2WDPtAsYxj8SeNohF3OHZJjkMIMNuEb+X8MkrgMH0GZOXMGJkwYjyuvvBIJCQnKa5jhJCgdO3ZUMYW1ty/DRGiwDRLFmgjWeQTz/InhP5ogZuu0wNe7/m/MiS/hFtv41HLL9XMd249pT9yC5OhwZHbsjdnb7SikTnkBFr75OJrXikR6w/b4bNYKFLv5wrxCrPrpbbRqnILkJhfgva9XoUI6NFYSrwA9p0tRXrARj95+DaIjLDira19sPyxK6jaSNerxwiF98NNohcsJx9EtePKuCYiXzyF5bc/Dkp37pS+5poX78MGLTyM5KQEN89pj3vYjKLRXYMGXL6GjNRopkRFIrJ+Jht2ux48bd+C+iTejjjwbrTXCkdwgAxOe/gDHpY+ioztw101DUSs2Br37DsDBIjtcMhbP8QPYt2cf1h70ih1i0N65uGvY5QiNqY2u1w/H9iMV6g9y9FkvdXCF+c2rSlGYNmHChIm/HiYpbMLEKeJ0IoVpJ+W3yGF/svPXSFFTDLlw7LvV5uqcQU/j+0U/+2bxn4v58+fDarXijTfeUBuVPwpqPySflb0VbrRr1Q6W0GBYAmqgfuwFyMkahMyLbsZrP2zHzO9X4JXH30KLjK5omtEHWWnDkZoyGslpo5FivRHpqXchvcHtyMoYj+yM4chM7o/s1CHIyJiA+mnjkZw+FqlZ45CefTPqpQ5D47yRGDnuY3Q570lkJecjJ4desb2QmToczRvdicSk0WhgvQmpmROkfemn/jCxZwIapI5EVqMRuOSyW3HjTe8iVXnVjsal3V7ClKmH8eUnm9Cn571o3nAwMtOGiI1DkJN9IxokjUFaygSk5UxAonWYtDsc6VkkekeiQfIQNMoYJnYPQYNsGVfOOKTUH42G6TcjO+tG1EvJR2rDcWLPSKTXG47cnFtQv95AWHNGiYyX8cl4c4ajQdoAGeNwZDWW8SYPVQS5VcqysscgNT0fKWn5yJD5SkuV9jIGSN3hUncCMrJuRf36A9CiyWhkyLxlWgdg9E0f48vpBzBz6nZ0aNgT9eq2ledJLMJionHz7RNlYyvXTO1pucXzbXp5LZnH5XJiVyRgBjfm1OPFlgPLKdwnaWH+yaLLfKhSlx9K/PNEqqAzfqs9/3IelY3cpPILsfRg4haPZIMcqKPHo3R5wnLqS6bK00rVFH3wb8RX7munEmUiJSIkLU6QTNWEeUpO7sMnWsEvS52rH5xzfqmVtrIP+sidqHLi+rFNgX+hv5xIVINhs6INRNi203ck/eP3de7fENWq/ODRyCN5xLoGfcTWf6HvJ4bd7FsL6/Bf9Xq/JSe35y+/pm+0y3+0j19cNogmXX5yGyRTDL9Ep9LlmfHPDbfyhDMIqxNfg2ea14NrT1o80bESEkXGONmeXVIVki6Vy3hcysvh8TqwfdcWdLmkExIDLOgknwHeaBOFJW2jsb5FCDa2CMWKZhYsa2fB4lyD9FzbKgjzWodhYfsIRfySNN3QIgirRXdZ2xpYKPXntrRgZYdgrGojR0n/zKPUXZoXhsUkjdsapPC65pFY3TwOi1rFq3qL20tfHagXgGWto7CwVTQWtbZg9dkGEbxW2ljXiuUWLGgVgCWtY7GgXTxmtq+liOxVuSFY29IghVdJvTWKFA7Bkjxpq00E5rcLxNLWQdjQLALrm0dhaSuRvHCszhX7cwNVXOAVeUFYITavlXFtpHDMTaKwrkUNrGFIDbYp7ZMkny/zsqBdkNgRpvLWSZ8zz47EkJR4NJC5TAyxYOzw/vBWOlVUBBWmQF8fXnC5l/mV+KprxjxeNx93eUKPJ7xveMpMPk9Ifcka0OQq21Y6xnNB/WA+Ra8XeuLyBvIVKD2CCZXPtaTXmXGfsz2uQK5bY72xDd+By463lK9/NTi1TmVM1FV5UixCT2DyY0qdeeXyQ5ZhwWJg42SRD6RsuxSKmWXStTHCCmlFTjh8NitVTg1s4N81wjI9acagjH//edfqnlNzaYBpt9uFI0eOqJAR0dHRyks4IyMDV199Nb7//ntFHJ8O+O054FwZzxnlXS3PlbKSQrz+wtOIja6Jlq0vxIZth4wV5SrHjhVz0f+KzqgVF4Feffth7sotmLdkBcaPvAF1akWhyxUDsGJLgVpFJIbV2vRIbZcdZUc24ZG7eiIsyoK2V/TCjqOiwF/DXB+yTuh5y9l0SG+OisNY8P1naJ+TKu3WwsDbH8TiDZux6NtpuPaSCxBXOxFDb74LO2Vp20T/0PpvMbhra9SQezcqJgnXjvsX9pW6MfnFB5AQbUFIcARSm7TDd6u3qbvPVXIYH772PBrUTUCTFq0w6b2PsGbDGnz00kMYeN2VuPHeZ7Fz70E49y/DTUOuRnBkLVx27RAckcXN37DqrpSp4/Lm7PGONO5vY+0p8KDFhAkTJv4CmKSwCROniNORFP4tctif6Pw1MtSUE9L5pqnV5ovy2mcLfDP5zwRJYb12+BVJxs37I8hhB1/GYew/kGXNhIUvGwmsieT4zkhJuw7DH/sMm2Vz4BGd/RsLcEO3schKugw5afnIyhyP9IajkJyeLzbeiPSUCchIHYqMlP5Ir98fDfmiNMYdzhwLa/YY1LPmIz55MNqffzfenroaW3YAA695Hg2T+yIx+SpkNB6InKwRaJA0CNnZo5HTaCwS2U7jsWjUcBziE/ogo9k49BowCevXlWDeT7tkI9gXSQ36o+cNL6FUdgT8puzEsY/AWr87sjMGIys7H+nWYbAm5yO1wXAkkZxtNApZDenNy9ANY5CVMQqN0qXPdLG70XAkpA6WdscjM22c2D8cqWnDkSjHzJybYE0ahabp49GkyUikZAxAfRlTasYIaas/MrIGIDV7iMzHMGRnjkNasvTbYBByckRX+s1qeKPMzTg0yibR3BfJYl9a9k2o14Aez0ORQxtEPyWpN15+ezXsck3K9gKXtesj9ndAZEwq2p19DmbNna1iAzoZPE8RC77dPTc5ev9Dqdr0cN1w+0iRAn899UMaY97J9Sk635fw39BXF//Nl6+iLvxFWzyhTX79qnMSJKQuKByT6PnX122oBHVFp6o+f3C3q8W/EsW/THRVHYJz4tv96kweqsoJnvi3wbRW8qX1aTXhD92/ISerVLOJ+IUC6/n360NVOVG9D13o/88gU39xhZRoGBoGwXwyIax1/fWrg/ZxDjUBS6KWbZzo72SpaqtaQo+VdvCfkVu9Lu3SxDWFOYYe5QRYn+X05iUh74Tb61bedy6PtKGNUMI+9b1krK3KSlkbipSTU39dBcM6Rdu4RN8r9bxOadcJu70Yb0x6FFc3j8eYFAumnRWD5W3DsbZFMDbkRWJ1XiiWtw/EstYWbFRetcGY1SoIc9oGYkVbetFasK4ZSdRALJH8pe1DMZ+kaYdALJA6y9sFYn0Hg0ilh7ARgsLwwl0nfaxpGYZleeFGiAopYz9LcgOwpn0cVrerLedBWHOW9NNO+mA9KSepTGJ4dW44lrSOwswOUfipXRjWtGCIB6OPFSLrSe6KLMsLwaLWwVgkNi9rHaj6XdsyWPKDsaRNgOqbpPPypiR2Zbx5QWKD9CV9klhe1YShNCKwMjfE540cqMZAz2bay5fxMWzE+vYWfN4+Br2SklDPEoLYgED0uLQzXI4KeOXa6DWhrou6Nor2OnG91HqUU15GCrPU+uK1lisoGUYenwO87rzmUs5MVXaij2q3s2aZq85FfAdfUsAU9dgmj6IoWcylBcaq5XqjLZIvpzoWL0tUw4olZn2DljOMMLrk3cYXhjG6ssqWoR+YCzx3/UqMb7gYN+bOw9cPH1IxBthDmeiVyj8HqTMa4PfI+zvjZFKYoJcvYwTzpXIkgnv06IHXX38du3btUuX+4SFOTxhXmN7VfHbxShcVF+Kpp55GjZha6NjhImzZulddQrc8f9zFR/Hlh2+gQ5sc1K5bG6mN2yOjSR6S68WhY8d2+ODTGeq3Kv9kcozBgbnQGCLCXYmyw9vxwO3XIDTagjZXXI3tR2Wd6cegdGCXtWKsUobwKEfZ0T14/r6JaJKThYjURkhv0RodGmcgM7E2ul91HX5Yvl6FtWCACvuBpXj6tsGIDwtB3YQs3P3cJzgu3c+f+a585qqF4Kg66NyzP7YWHFd98APc/q2bcPOo0UhMrIeIhETktstFVmI4mmel4O6HnkVhYRFK9soaH9oLoVG1ceX1+dhztELV511M4Xq3e9SdITPJuaTImLmM/MWECRMm/gKYpLAJE6cITQrz+HcXTeidLCwjOexPcP4aEWpKdbns9q9w9uDnq83bHS98CZvD2FD90+BPCmtJTU3FK6+88j8nh138eqW0mVK/gfQTBEtwXdSp2xmpjW7A+z9uUm+4LuJ3+2Qv+ez9k9Es7TI0zRiJ9LRRSMnug+TsXmjYfCSysoYgo0EvNM0ahKxMOc8cjUbZw2FN7Y+0jEFIzR6MBg2HoN+ol3GwFDh4uAL5ve5Ek5QeSGvcF/FZNyCj4WCkW29AZkZPpKV2R2Z6L+Rk9ZO2pW7mAOR0HIfp84+gvBhYMnsdMtJ7oH56T9ww4ilsP+xCRVkx/o+9twCs6tjahg/uUChOkqMxJC5oKbSFCrRocUtICMEpdXdXCsXdaSm0heIOSYgHd7dAAnHP869n9jkh9HLv+7/f+33vbW/3gpW998yaNWtmz56z5znrrHl92qtwt/aEu1uIAmrd3EahpXU43KW8iydDYoyCk/MweLiOhYf7FLhKW1yNQ+BmGaTkm7sMRyvvaXByCkUrt7Fwt4TD5jZF+EW4mqbB0iIcHh5D4eoxGM7mEEmPRGvPELRuNRJNXPrDRdra2mOaLHomoKXYbXQZAidzuOieKmWlPuMU6Y9wmD3GiO2iq/VE6auRStbdeTRs0l9fztyjQOG0c4XoFtgLHtYueKL7cGzdFaMWgtm5BD94Vn4ZRGYamav+BzHzKMcyXEY5/Gt4LfkPXDRxQaWV0RapZJ6Xv9b4ni2sS8rdp4t6WH/5esvJakL/PSrTTeKJo42OdpId18yzC/PAKh1cpsehQ2uvAyDUzkWHwzPQIa/ACso7+tMO3ihZOZDL1XOvKP8x8UHk0EkbWL/DBrZBqLxOTdk9/mP6fW0p144yQZ7/kz4iOfSU6SNRjrpEtnx9qixt5b0l21GFewXtxGvKCqv+owJHWwldsKxdP7P/yIocFQs9MI/6tftXUpol1VCv1CFZDk9M7g1HzM1hiqbO0bZcUZeD4hLh4nyUlBRrmB5l7HURcyoUHerX6dQnnJUv5fm7/LTLiJv5DhZ2boatHeogmiEXvA2ID6iBuKCaiAqopAG+rSsgyqcydrergn0dDEjuaEASgVovAw7LUXnLdjIgKsiAg5K/OaAKdrWrg/3B9BDWvHfp6UvvW3KK7z2gN1n4BIFfyY9qbUCcT03Ee9VAtAfPaYscCQYHGhAtcolyfbqNBvzuaG8QmzRPZnIUQV7hE2LXMWEF4LK83cuXgLGDo0TXLmnHgbZaTOAj3hWxz7cqdgZWx4HOdSW9EmIJLotsDMNQCCf6VlCexLSd7TnsXUmFlogWuQ0dWmBECzOaG6qivqEm+j79nNymYhTl08M/S7qez5x2T9Q95w3mfZI/pUiXv3eEtS8qtF8GcHzx5isRje33tDzzwKyy4eFIKJ9Ylinyku/IpmiZhvLzhePSnqQV5tyZI1kOzpZr+k1yzNrbowpQM2EuescT4r0jrbgtIzZTxrLIpAL7pwOjnFLwfKVTGPbQcbza+SSyj0q1UpQ/sM+VcirydaH0AX9qQr1/AfojKMxrgr4Eh+/cuVO2iRyJ6eVDRvw1ie0tkjGXh0L7roEZmelYvnw5ujz6BMLDJuPixZvKW17NN7yf2bexd+cvGD9pPFoGdEFQpyfw4rTxSDmciDy5/3ekS/jWwNmN73sokPsvj0He7euY//0raNvJA/0mTMap6/JyRaE8+YyScnky8PkbC4LChQVST1E+ilKv4pd1P+PZkZFSVzs891hHfP/ZRzhx5qKq44Yw5UvvHMPP8z/H4+3aonffEfjt4Dlkic6LJw5gyoQRaNu1B97/+gdkiF7K85cdpYVFuH3xIqZ//RWCunSGd5AvenTviDXLF0sfiE6ZdG+di8O3n72NoA5d8PLbn+HctTtqtpfmKOZTpQHCjs9ZMp8h7VDGOumkk07/BtJBYZ10+h/SvwJb/2pct4kFLbtF6KDwf4OffXsrOkfMuQ8Ybmr0RGBwO3Tu3Pk/in18fB44bsjcSGX6dFn9/V8geluVCudkZSLQPxCVDTWkjqao3eQJdHr2VZy4mY9UWZOsWX1COSsd2JKCx4P6w9N5JIwtwmByHwqr11D0HvwZho/8Ft06jIOX62AYbeHwbfsKQkd8hVGDP1IxiZ2sQ9C11yf4ZNZuBf+k3UrD9He+x8h+r6GF5yg0bjka3Xu+jhHDP0DIqI8wdswX6Nv7NZhdnkVrjxB4eofhmdBPEXdBDJE1zbmk0xgd+haCu4zGgIjPcfmOtCe/EG9MfRn9+kzF4OGfoO+Qt9DzuZfR2jIA5uYDYW41FS4tx6FDx0iMGPYRRoz8DqNCpuOp7pPg1bIvbMY+sNmGon23NzA4dAZGD/8Yj3UMx5Bh36D/oBno2fNb9On1OQYNfBU9eo5Dt6dew7AR32HooLcwaNAraOnXBx27jseIoXMQOnQWBj3/Btp49YaHVwhMttGwOIXD0zYOz/X7DP2Hf4GBIV8hfMJM9JE+8HTtizbWUJEZiu9mRyFbOin3KtDVuwdcjV3R/clwJKRcVhu+qGUad5tXIBaXQFwKaWCWxuxhLpPsC/+yRRAXR5RlPuVYxrGcoh6HoIMpzzo0D1CNef7P+I9LM/tiTDHPmUZ9DjmeqwY9mMuo3MUfZcpl3aP/QoBJ5c1xmKrM5R9HHxFsINv7k3kOOQcr9VTCvnTIs31C5eph0Xu34g+gsJZ4jxUx39GXjv4UYj6z/itWuvjH0UgH89pREc/trAwkl8t28D/oE3t47iheVif1s+0OZibLOMihzG6LArwcZRzjl31t1+/QW6bfzg6djusHyaj7KLq5wRYDrzrkWKUk3b4BpKcCWcRAOKVQVGRUqZJi5fXrgBVYVJGcqHsoQsWUF11khiclHswWKJAm6yaurJ2BX57zxPYOdXDQ14AYLwMO+VXDocAaOOCjxe9NDqiDvQF18WvnpljdoT62Pt4Iu7s2wp6OjbCrbV3sbldVbby209uA6LYMr1AT0R0exn7/mogPrqVA2QTRnUgvXAf73WPGL07xZzzfikgIrI2YwIcQFdwIMY+4ILpdfSQGVUQsbRMZgsJHxUaGlFDhKALtoC49g+nBK0yAmXpVnGKRd9TLuMCMG0yAmHkEmQlYn2F+KwMOBNXDtuB6+D2oFrYwBnL7SjgUVEHFLWY/JPlWUGD0EZE/Kkdlh09FVefPwQ0Q0aQeLPLZ16hCZQzq3UuGixYmQgOFCapq90a7QXKQ+6MdMoUz5JZzOyxuv6WByGXPHoXs8op5rg6ahNzWMi6XfU/+vjK81Pzj+a/cqNEyy7EA4lVjAAD4wUlEQVQaQ+qU/+hVnyus+fKSNWCYo0kqKFdOK0F5xlTOkqcmQ85FjrEkrgNb3gcGPnQcQ6vdxNA6F/BCwHncOSTFZEgWSfsZ0Vd5TubZyyidf356kLcwyZFePhYwgeK/jpfwP7sBvM9FKCjUxgHB4ZzcTBQWFqFIprI8ma/4hVReYQkKeMFJrFg+d0qz5bYWI0Om0Fy55yybX5inQkDkCPONgeEVtAlMjpx2GWoj96KMigwV15efXtr4kApEiN7oOVJ/gfJal6QCORJ0l/FDADiPaYWio0BkRK2cqQBQBVSed0Xk5MWsSOwUdaw/U4qjJE3ZSpsoz2ezoCibwxSFdPQQ/QXZmciWuZSjtiBPNMo559kS9es26syU9sucKzpoKdmxyZzGDliYDVaN1uwvzzrppJNO/wbSQWGddPof0po1a1ToiL8CPwjMI+uewv9zLh9n+EF9/HfgRo0aYd26dfYn4/+USpGbz5iY8uJflI933nwXrs1boZLBGTVdnsbED1cjU97yjx69iPCwxbh7C7h9MQch/SNga9IXnuZxaOo8CE/0fg8HDxcjW9YR875YD19bLzh5hCJ82ipkySqjQN7f+/d5FY2cnsOS327jjKwH+AKPYilwOxNJBy7DPfhl9I1YiZ83piBb1vu3U2WNew2Iib6JF6fMgatTfwwY+DlirxcrLxS1esjIwY3rd/HuF0vQc9TnOCMZpbJK2bFuOxISr+CmrEDuyov/tj1JGN77fXhZxqOZ6VW0e+ILrFy9C5lSPjW9BOlSZn/UYUye8B5am5+Bq6UXQl+ei0uyOuKvwvdu3omrNwpw5Tbw7icbsXXnZeV5FRubgg2/xiNN2sd1WXxCMt7++FMsW7sVVy/JYkf0Xrx0DZNefAmWlk/AxdoLrTxHYNiQr7B931XlLX2ZbZU6Tpy7gu++XYmOAWPg3KQ/ZsxJVHGD754Dunr1kb5+Bt27j0dUzAUFPnEBl5EplXCxoxY3XPSoFZ6dywFrzLeviTRZx2qQ+fa0sjz+oTA7mD9fdYC9PL/ne/PHYhrzH2Uc5aiDdTkqtx/Ks4N4TrHyfJ+M/cSR5pBR9Ie8/4oVyQnP1SrUzuXN5Q1WsTy5RKanFhfccs105t9beWqs9FKBo//Zv9IfrIaqyrO9am2xqgpqpCX+IysqO7mXzuLk8nY40h7EjnJ/LP/AfPlTxuXSy8vxvHzdf7ShrJz8UewoUK7TFdAgaWUsMg5k9kFcprMcl8+negc7rsun2+9zgTx78VE3sX3zHRzcV4rjR7X5hvt75sptphMdrVS/sBamSX/sCnUtcmQCw/Ta411nQsmN84id8TaWPe6Cze1qIzqwsgqTEBdQA7HC0b4Ml1ANsa2rIfHpNjj9/iTEfTgNiR9MxZH3puLsuy/hwpvjcf2tUTg5KgixnRibl961NZASWA8HW1ZHnG8jxPg4I4rxg4MqITrIgASRURu5+TIshdTHMm0rKu/jfT4VsCX4YSQPeRS33hiLtAl9cLpDHRxpY0C8T0UkBNUQXVVwyLsSjnlVwYnWlXDCq6ICabkhHT2D9wdXwL7gyjgQXB2HAisowJlxgo8wfIR3ValT0uT6tJcB50TvmdZiUytp+yMtsDXwYWyW+hN6WHFhSCvsa6dtaBdLcFzqJ/jMuo7x6K21IybYgC2d6uA9cxUEy+eeT/O6+OjdqSgp5NzH37AQuLffC7L9XD2mctTiRzPEAmcjnms+jxwS2ixmnye1BJWiAbuOMvZxIMyyJQruIrTFO+3I0b4M02JWE3x21KHgV8XUS9ZIG4jUruVz1qR1BfKXcaoL5PwelKXK0za7fWStjDaclV5eyPjd/C4woG4KhlW/hCG1TuD1DtdwN0ry1MCUdlEZZe3Tv1b4z0//FSjMTeXKX5P+/MAw7fxnN4CjswhFxbkKEC5Rn0W8cZIjzeL3TmymaiFVFMoNzZNxWcxfRZSoOatQmGOKXwPkS9FM6SJ+Mqme4pdkjnHAY+ldkcrGLSnDJ0ILh8Nxzi8qGB04H1kEjylLBbky3vOKkCV2KH0FIk8w3p5NHRzHKJUXHHo6y+RInLnsk7E4Q8RzkC3l+QSxHpZiWXX78lk/rac+6QtlDz3DpbzUDSlPEDwvnwGEREbSOf/mFzFWvPbk8SnWDCbTMntf8+BgnXTSSad/A+mgsE46/Y3ojyCeAwx2kA4K/59zeVDYybsbnIWHhETi7bff/o/hUaNG/cMYIterVw8ffvjh/5WNVLjsyC/KlVdm+Scv0pfOXcdnb87Aww/5oZnvICzachR5BTlYuXAV2ga9iL27pYxUO+PT6Wjt/Cza2Mao8Amdn3kf0cfklV7ezud9slryuqOR2yiMfmWVeh+/e/EaBvd9Ec1c+mBA5Cos2nBJLU6L72Zj05JNeG3ydDwx8BMky6KWHnuHYy7hi8/WY+PvF5Ah64k7svYPH/Au2voOxStf/Iwj10WprALSzp7H5x/PQ8/+r6HPmFk4fVMalSM6ruVjyaK9mD5vG45cuq28Zn5dFoPglqEwt3oFS9anIV/WFXExMfj0s7lY/eNuWfAAZ06kYuRzr8LUrBvC31kAquNOPtmXb2L+3A344rvf0e25d/HTrydkkSKLdlFyYPclzJ65A4ePXFOOV9QbH3cJc76PQmxUJgok8VBiIrp1HwujSz+0DX4Ra3+8ivOXgd+2ncR7Xy7FL9ujkCurvLQ7uRjS7zU4N30a02dHI1vaknmhBN0DnoOryyOw2bpi2ktf4sTpqyhk8GQusbiCUosbLnq4POIyysG8lnTHAsjBiuzpLEYuSyccQaCFMVjpvUbvOsdmXvx3vypH9WRNFcEMgh0aSEJPJU2ftvQrJ/iHeoUcihxcRrwoJ1wuX9PNOpivEv41qwPbWA4MKr92dLCqjjazn7lgJRMgljLU88dy9uqZr/WdFsPW0WflWTOF/1iQy2DWU2ac1qcOtudo7fuHysoL2Fny/vGm/COXyf+R5Y/SwXpoF+2z26gQUOZTzsEiWx7ELW8iWcnwDxMduv7AChimHrn8I99XnvY42FGRsLJLhCnvSLaXV7eQ544i9mOB3M5dWy9g9ozTWDA3FatWpGPjb9k4sL8Ix2Quu3Zd5q0M7XkulDL0IlZzlr2pjipUtWq3L0kRO/MlLSs3G9t+XYPX+nbGS64VsFptNFcTSf7VkOTHOLqVEUdv24DKiPKthXPjegOnk4DsVKn0PHDrlPBF4KacXz4KbFmIG688g/0damgbtnlXVLF64/3r4KB/Y0QF1EdcQEXlmUtQONGvIpJ9Gae3EqL86I3LDeQM2O5bFbueaInCHz4AroreI1tw8unmKmxDrE91JATVQ7RfFcSJ/hNelXC8dQUN7PWpqDyCD4muA2LzvqCq2BtcDQeDKyI+UOpTdUp9/tIuqYvXx8XOU14aOJzcujKSgp2xJciEpHF9gMWvy4fIMOx8tDIO0CPZn5vric1sm/SLCiMhdcZLffsJZneuhbVBdfGKRz3MemOyzNMJ0st35bPrzn1DkffDcW/KswNA1Xxk+UwSgNXKlM2TdiU8MI/DxD5U7KygNcnnHEDmndaA3XtM3ZwzyZwz78FSaqwIa3+pmWNfA9G0fJ7Tj5egsgYW36vbIXNPD5nn1KS+v+I0dRXYKrd24ENHMazmLYQ0vIKX25/B3WjJo7kiWMgjCzk+IjSj/rJEr2AHCPxHcDiP36r+qclxJx90E5jGzym2h59xwjKZsanqfsuA4JHjopSTUoHk52TKhXxeF8v4kXvM/Pxi+vne+6ThMOHtVzGuiaQyUQ2iLJnb8pAhZTgs1BegRXelZAbyS+6KSKGIy5NEWcWsXPtUZ/X8DGDYhyKRYZoCclmr6NQ2tLPbQ1Mpz2dJbKBdqg3IFhU58r4p9TJf9JeKLu1TWhKKc5SHML+sU7e7RJ7BEvmMpRnUm6/1DWvlr9+KSsTeIg52Rw0ipBTbqdypTjrppNP/NumgsE46/Y3IAeL9EQx2kA4K//f5QeEjhry6AMfOyQr+P4z+GFO4Vq1aeP3115GRkWGX+J+T9tour/vycp5vd41L3n8JLZp1QsfnX0X0JXkRL8rEtIiJsJqG45NPopSDSWJUNB717QdP54Fo4RSKTt0/RfQJWSrLu/+sdxbD39ITTdqMw7CXVojOYmScO4Xh/aahuVN/1DaGY0DEEm56jeyruRj+1EtwatgVH85dr366ePlIFqYM/RjNGveAX7sJ2J+QrcDRvev2wM/cBc6uoVi/TSRl0XBoxy64OfdEvQZ90TtiIU5xdxPK/rgHrd1GwNkyDPNWRsmiBjgdexad/XvjqQFf4FIWcPtWHj5++xP4temFZ3tMxYmTd9TCedGnG+Hu/AzGfLgUp7j2F9m9q3bB27UPXExD4eIxHus2XkFRfi6yU2/j+afehrXZECxYGKU8YTJvAuOGfwHX5uF4/cWNuJsNpKYVoN8z78K1xRi0bvUGwsf+hvHjV6F9h4liY2+EjP0QqRl3kJGdgY/fnYUWTdpj5oK9KnxE5uUMPO7fEWbnljIO6qFC5cb4/Iv5yjOxkCsstbjhgudBzMVQ2SrOnibEMmSHiGPNJMRFqBbX0vGza81TSPN806BJVZxV/4GZp6kk6EJwQxZ6Ut7xU2htkVgmpFiVlVOOReZrHsb2RbA6JxNwYZ7DUK0wgVctXijBIYKw/Kfp1E7u8b16CNU4ynHE0RuKS89ytjlYKeLCkp7CfO4oy2U1V9JCzLa3Q5Pnf9bg6MN7Pwd3/CRcA5YcbaIe6uPP2ZnGHr7fBK3PNcDpHthMe2kXl+/aElxrg33AKnt5LXn/qFBLI5edOJiZbAx1Ujfr0OzTmDpZl6PBPGd9ZDkvr6Jcn2gn1OewX+sDrTzrYFkRpJijfFlZXrBe9j3vAZn1sa1ML88i67CBR2GCBjwy1EOZfuEiEd+74xoWzEnDnFkFmP1DlnA65s+7jZUrMrDx1wLslo/tc2eBa1eBO/w1gJiqsBBRwTmzsITjWmwpFdvy0yQjB7lFhTh85iSe7PUk6su8/VhVA2b51cK+wDpI9q6OY941kMxN5AIMOOhvwJ62D2F/+LMovnhalEolN+KAk1uF9wnLecZdaa5MKtvnY28/d0RJGYKnR4MMSGpnwN5gA6Il7UQrjeN9KiCOoKq3QYWVIKi6K6Ay9nesg9+DGuK3R7yROvtLuZ1XpHE7EPO8CfvElj1e1REXUA8JXhWQ7CW6/AxIER0EsGN9qiDWuxLihGO9qiJK0vYEV8DuthWwN7CCtM2AfWLPfuEDcn6QbRMm8H1CjkdbV0SyZwvseKQtrv+4SNoobds8Cb93MyCqrR3Ipue0XxXEBAj7V0WsXw0cCqiKmHYVsIttCKqOLc+3R97hBHX/HKPT8azzQGBV87blDKTdJ95uTYRPkvYc3QcK28cDpbVnVyt3rzzTHXORElSk6SJ4q6UqXeqv45nhOLeDvpLs+DJBI7nQCqg0TYejHv5yh3VpeY5aeHSA2moepAph/lyf30eoai8DOz4CBtY/jT6GuxhU9zKmtEvAXRlGKp8hFuhOSXnH1GG3469KBH8deyzw3MF/DaKdDv5HUqOihHOljNnSPBTKS1MxEVB7ETaT3sD5eXIzmS5zT2FhLgqV167ISBJHEm81v7fjrc+WFwf1lYMCfaXf2HVUQpBVLhzDQqHOMob5DpBTkCbqZOywXhFVugvlMy4/T6qUNwNhNc8Kse8Li7jhpv3znoYyj1UIE4fOziuU10Ipr9ydOX45uvklitTHidmOdrNJtEo9DSUyz4rtnOUJKpfky5xbmI1ihrKgXYqlx7i5nOguJhCtWkKmHTSCQnYqd6qTTjrp9L9NOiisk05/I/pnYLCDygObDwJAdb6f/64bzVWrVg2TJk3CrVtEPP/vEhfBhbIM4HKUcer4C73YvZfRoGFbRLwzH5clLetuKsIHh6BTu8l4+eWfkZlVgsy0NAzvFQ4vc0+YLKPQsfuHiD4pixN5957//nIEmHuhvvt4DH95nayPJfHmTQzsMRnNWgxAY88pGDp+JfcqQc7VbEQ+/zEsLZ7BvpM31U8Xd69LQIDzMzAb+6OxqR/e/WKjWrukH7+GpwN7o6XXVGzbJ7bnlSB+9wG4Nu8Fo3kMekcswclUaZSsx98MfwcuTQbAteV4fPTdRrWIuH7iCh4NeEbqnos0imWX4lTyScQeuI7dO69AYe2y4ti/5gLcW/TFiDeW0PFKrUo+nfg+3Fp0g7PLYLh4TML63+VeSN+cSTgBf9NwWBoPwydfbUaWlM+7DjzuMxJuzcdgdMgi9ZPNu1mFGPHc+2jZYjRamCPRzBqGLo++hP59P8A330Vjx94bauly5+5dfP7hfJhaPIovvtsCrvWyrmSie/AjaNLQScZDTRgq1ceo0CkqtIRa2Cjmgqc8cxFE1hZEhBWYXiYuf7juuk9c0hyApgbo3vsZNMEIh0ZVhOWVvMYPchQla+AMxxeBmHugZ3lz7y/LerhkJajKMlwoOphgCNMciz3qo30EXgnA8p+mT9Wh/mkWq+ty9bAWlrkH1BKIYR2iUy2GhViIBzG2RLlHsR9Zh6ZVS6HAPeZB06+1Q/vpbr6cEVQnc5Gt1cM8bbnOG6ml3bPvnn6NNbBLA7M1T0RtwU7W+pawkYO1PqSl9/45iP1AdpyXr5PJilU+/7B22khEiSAX69KALrLWIxrsoCCrMmRA4z9cauAYj8LaiGS644oFtIM6dbBcavWx3vvHhQYua7bxQeVs5hib5YE4HokdqHSpjl+o5MtzvXtHKubPycK8OcC8ucDcOSWY/UMeZs3MxJwf7mLe7HQsXpCGn3/Kwv69JTh5Qk1lMgdKjaKPVjNep/K6K5Bjodxh0b0/8Qgs3m1Qt5IB3jKHf+1VC3sC6iHJqwaOeVVHCjdza2tQAO++wMY4GDpAJiiZvO7cwMll72HjxG7YNaUXfnstDMf27ZTKZMa6EoWYid2x+dGGiOlhRFR/D/zyZAts6mVD7ICWOPFMCxwIrImtbRtjT1crknp5Ib6vN/YP8MbmJ1pgT6cG2CJ1rW/rjauzvhNbb6LwejR+DmuL3/t6Yme/IET19cK+R2viAOMBB1VQ+jZ3dMHW7j7Y1+8RRPXriJieftjbuQV2BlfCXpHZ71cN24LqYOPTTtg2qA12DgvCzkFB2NXXHztELta/OuK86yImyBOxoaOQHZ8AZF9E1p4vsDXEhMQnqyrwOM63Eg6J7IHAajgYVB0H/asgOqiS2qxOsZxv7uWHkqNH1JDkXSerG6zGGccHn7V8GQVFZeNLDSDFksJA0uoo/x3lOPx4lOdejWH568hiMU2AZSSFCfYMnmol7PWUFaIsx4QGsilZYQeWp40aYYc80x3nShu/ZJCWMV0KaE8zZ1FtTuGvN1QH2MsomIx18jG9Auz6ChhujEefmpcwqNkxvPjkHmRIl6nOKqJ+ftDL/KCQNbn8k9ODAN7y4K9jszkSzx0hIx5U7s9HtNF+Ix9ITOd4kXumWGsnm8Yxw/mM85pSIyelBfJ5w2/tOcHZg+tyZuTQUONQDkqTPAdF/KkExw2rsH+rUFLC8pIkfG/u1uZ99dlHMaaTOecp1q4LpH5t/penwh7DvUT0KhtpkpLR9NL+Yvv9UwIiz3q4qadqL42QuqjNniIXmdK+fORSn7qWAc3nRHUGr+2KVSnawJaypMNo5umkk046/TlIB4V10kmnMioPbj4IBNX5Hnd7Yc19/UWe89N+e0/+Z9LBgwcRGhqKS5cYO/H/DREs4o7PfG3me/OV87n4/rvf0NTlUczfEK188kqKipB6MQ3nTwMXL2pgSIm8yM/4ZDr83LrA2dQHj/Z4B4fOyPJU8ua9uwztXQehlst4hL+xQy1Gc85dw5DnXkHT5gPR0H0SRk5diQJZ22ZfTcOYfu/A6twDSdcKkSbv7b8t3YMA5+7wcB+AJubeeOW9H9VPXu+eTEVIz7GwuI/BjoNiu6TF746Gu9NzaNZiOPqPX4Ujsiimk+Sro94VncNg8RiDT3/4Tf1k8dLh8+jWrg9GTlqs/EPzZXVx9fQ5HE2+gaNHspCcfBNH4zKw6osktGwRglFv/IRLXEtkFWPqoFC0ND8Ki+vzaGYLw4+/3lSrq9OHzqK9NQTWxoPw/jcb1K7aaSez0StwJEySFjFugSzxS3Az/QbG9n0dHo37wDUgEpM/+BXHThTh0jnRcQY4TidBKZuZUYAvPliBFo0ex/ezDyFL2pJ1uQDdg7uiYYMWMFSoCUPVehg5ehxyGPiUJOX481GClw6ArVQWfWQu8riY4086uSRSQJnIcx1Gjx0emaF+bqpkNfiBY4LLqfLMX8jzyBoKpa6CknuAZKEswJiu1X6P6cXGtamjnAJcSotRxPiHks4FIhe1Dt306C4Qowi28OeqBHgIfBaW0tOW4G0u8ovonUlwhACO1C761PJPdLBtxD3kVJUrlnLaz1JFjz2fzL5mGUKMtDy3OEfVlVeSIWOFsRXpucv+oNeTjF8N79O8skQPe54b5HBxqgHuWn+rvpaFKduq6deYfeA414CkYmkHgWyWIagqbeACmrKijt6o3EDnXnnVy3Zr88UOAqByn0pykVeaJ2eEw7R62Oe5Uuhe37MUAX6C4LmSlq9sZF1qYzS2i+eUF2Y7uYh3rNflv8jSYsJTpdrPf1mXcA7LswzThPOKeb80awhWFcrCnfWo/ha9WbLCZ5gWxh7PkCMBVO3es99YB++olqZ0Sj695ck5Uobt4uZJ3NhI6w3Gj2T/sV9yxIaCsvZnsY78QrGxBJliNH/FQH3yX7UrX3Ru33obc+fkYfYsYPZsjecIz5Vr8rxZpZgzswDzfshSHsVLFl3Hup9uYN/eLJySZzb1tjyz8oyqXymTxbZMOe5LOg+zdxBqGAxoI/yxe1XsDmyARK+aSG7F2LsGJAYbcMifcX8tiBs0DDgns9KNG0h+ZyiWd6qLnzo9jLmP27Bt+vvAnbMyOe/HvtcGYkWfYDF8FXAiBqd/XoIrvyyTc5lnt32ODf1aYsvwnrj2zedAXByQcghI3obUmS8iqYcNu/0aY2PbANyeP1c69JrMNyexed67yI5ZL5N7PBC1FGc+fgJbn62BrQEGbO5swu9hI3BywVKZpDhZiR37t+HmR+MR+2QTxARURpJffRx80gdnZ3+M4iNRMtGeErmjomsPTr85FdGdWmG7rzMSRz4naXulLdJJHCxZ8mFy+CeUvNMNUdIfUV4VERNYC3uDqiGqYw1tY732BuyRfjrQwYC9gQas7mLFyfXrkXOb41gbu+xzNVg4rkuy5f7ya04NFFYYkUOGIBI/dDiAOeCJlvFoHxD8qXqJzGNFpfzShVCUMMtwYmF5DngehUulPuoukDwmcU5RJ9RHw/hFQWGmpMnRXn+hPFTas54lCWIHJ2OWoV7aYh8/KL4rRw4q7bqwRJsJc+RzWHtCMtSvdzS9LHwLxUU35FwqlyF08XfgrWcSMMScgpHeUZj1ciJK+WUp9dNOzgMlDAtAsI8Gix06/ZuIfa8GoP383kEjR759MGg3UEsW5hjkMFLjnJMsr/lPfUEl8jL3yUhTw4tFGfJKzZkyGHKzZbAoYFVmX+7tIGmal66cSpUsrs3/VC6f3HKh9p2jHlbKz0gVwkGEmSdJ+So2iYxJeRZL1ZdlYoKwmnelHHHbogL5fJDPukKW4Yc13z0KGAc5U9Tkih4+hyInHw40hfaz5dyUji8M9hqEpKzM9+olgh2gmCUkXTFL8cg0yVN8j/4xRSeddNLpf490UFgnnXQqo/IA54OAUJ01Lh8/mPxIyFfYevCYvRd1+p8QX/i5RFCvzvIO/fqr38BQyQrvdoNw5GIuMmQRwA3U8uV9PCONoKWs5SWNwFXs7mg84v8kmjs/g0d7vImEc6XIFNkln61FB4/n0chtHMa89pt6g8++cBMjn38TTsZBqG8dg+FyT/lz7uzr6Qjv+yosTt2x71SG8uDd8VscglyfgqupL2zuA/Dp12vVuuPsocvo0Wk0XDwjsGmvLGhlzRG36wDcXZ6Es2kg+kTMwUkGAZZ1yutj3oPVOATOtlH4fPYWBSKdTTqPrm17Y/TUpbgl+s6fvo0Xx70CN8tjCPAfiJYtuyGwdR/0DHwR5oYDEfbmz8pTmhtnj+07Bm7GbrC4DkMLq9S/TTpE8o4ePIO25pGwNh2ED3/YhLuy/kg7no1nfYfC3GwgIibNk7rykJaVhlFPTYC/uT+6DfoIR24Dd2Vdv2f7GUyYtASjwr5TwGOe2P7JO8vQpEEnfDd7lwKysq5mKVC4bi0XVK/lipp122DEyLdxSxb6eWJGttjHNR3vn/1XtHJXNXCNizrGRM0ROXLmXbmPcg8ZjiNH7hXDL6oFpSwMNVBZW0bR+Z5g1x2RTRf9abJ+TBemzbRTW2oVoaBE2/mfJbkmpd47UgfLkO/KOcuq2KzsS6mAi02NpJRc0xv6lshwsz6WZZl0GQi3pI/Ur2KVpJQrIdhIUFl0SXu52bqjPfxp/+1bcpRyGXLOX8+yF4plIVlYzMWmlBNFzGN8am4oduMGcE34uoyZmwT3pIxUJ63iZjfcBZ1evrIolfbeFLnLl0ReylH+mtTFTQfTpI/yiKBKCQ2otveftPGWvQ3Xr8tR5Fkfz9MkPYdraREukg4plhUw+4H28R7xvl7lL/vPascrV6Ws1Mn+UR5XIltI1Jh9Qfuk3HXReUFkL1HezvwC55KUzRT7aV0+MoWzlJW8V7wnVyX/4mVpj+g/J/LnLmhlea85NtSvi0VWAdVSF8Hcm5J3WdpxUeQuC1+S8qyXaQRiCfASEM5jv0sZlr0pbbok+k8cB5KTgEThpMPAqXNa3bSHQC7rYG/myB+GXbkgfR4Xl4/DKcAR4ZRk4JjoYFvvSB9Slv3NelhvttzAq9LPR0+I7LEiHDlRhORj+TiUkIWklFJ1v3lvOA7Z19u33sXcOfmYNRuKHwQMz5fzBXOAhXOKhXOxcO5dLJ5/G0sX38DKlVex70AejsvHUZq0nyE9bwnvjrmMwOBuaGAwoK3wD151sb/tw4hpUxVJfjUR51sR+30MOOBbATE+jXF4zHDpUA6U6zi1+APseqE3ol4YjH1vjUdazFbpeOmos5uxa2pvzO/dVSbf/VKZDP470hHH90hDFqBk1Xv4efQTuLJuoXTCGemoeODANul0OV5JABa9hu1PeeDHR/xxfe4MuVnSGYVS/toeFB9cKTfkIJAqDTn/E2Lf7I4f2z2MnQM6I2fbehmAcpOPpqDk4G65aaLrUgxyvxuDPU84I76tCXh7gtyURMlLRNbOnXKzjkqHyE0/m4hzE57FpuAmSBrcBVgn9dyUu5bJQSt17ZmDtMltEd++IuICayDavyr2+hkQI9cMe0FQ+GAnA3a2q4Jl5moYKH35nPkxrJu9H0XyPMhjKoNVmM87v3WQDwX1ZZCMjHxec3DIOFF7wxGLlXujvunkNcsxj4OOP3UnQCUDqbhInkl5ZhQaxTrIlJXbo3RIXhHrlTFE2Ep5/Mu5soF65ZkvK8dz1sl0aXZxgczL3HhLKZKKOYB5ynxHPTwyjUwbRHeBGMSa+IVLIX/Kz0mYedQtx5Ly9ckzc2IdsPbdYqz7MgvX5TmjzdzrS/WHmuUccY+1L7J0+ncRBw5vCpnn9oP9VDvh/XHI2O+VXUZ9Fsq4VeIqW+Z2AqP8skA+HIuzslWMYA4VTUWJvFPws03Ge0muiMmgoLewmj21NG7qUJBZpL6Q5hdxyolYdJTyw4AVyTXDdWhwMwXkTUBeMtRnswzoUga3Vp7y8klDWZoj5fjZpUBgfolXIp+w8sFawomYAsW5MqavyrtmOm7KBzHnf9ZJ4mNFC9W4FXG2mVkaWE19NK4caw21syap8f304FSddNJJp/8d0kFhnXTSqYzKA50PAkP/7tzzrS3oHDH7vn4a/sYinLxw096DOv3PiS/ysqyVN3+Cv56tu8BQyYznQ95Bmiw4+TPpjZsSsH59PH5ak4DVq2Ox99AV5RFccLcAA3qOhLOpB4K7TsX+5GxuSI1fFmzFI959EfT4q1j8y1n1bp527goG9J6Kpk690dA2GiMnLlGbZWffyMKUYW+gtfUpfLpkJy7JW/rJM7cxPuRttDQPxrNPvYrklBMoKizCJqnb6twPtqAX8cs+WViLDTFbt8PHoztsnn3QM/QjnJOFcWl2EV6JeBVu1iGwtYrAZz9sU6DwuSPXEOT9JJ4a8CGOX5OFkrTv+8/WoLXHIHTuNAlTp3yP16bNwtPtJqJp/acw7t2fcZELaemDsf3fgLt5EMyWCDRqGo7NW2RBLQuXo7HnEWQeAXPTgfhwzlakyRok80wJegeEwOI0ACHjflDr/NQ76Zg29G24N3ocE99brTawO3M+B2Ehb6G19wi8/u461Xf0Xvz0vRVwat4Bs5dtRHpuMTKuXcPjgZ0R4NMbjz/+Mp55+jN8+O5BxEUB8QeAQ3tLcfmM1h4C7QpgFP0EYQk+njkNxEaVIlZkE2K4uZ6UiSlBYlKBAhvplcNxwHJcABJwvXgBOLAP2LYZ2LEF2PwbsPX3EuzemYOU5BwFKKs6irJkwUePXOD2bdEfl4XdO/KxZWMpfv8F2Cllt4sO6jovQ4HrSurXVmOyDJXzU6eKsXt3NrZsysHWjSXYtlHqlfK7thUQh1JtoJcRwW3aSm+l86fk3u8txh7Rv1P0s8zmDcC+7UDU7gKcPcmfj7I9hYp5zv6J2VuCnZuAn1YU4OfVxfhpVTHWrQF+/aUQsfGFynuV69E8WdhyIUoA8dgRtr8QP60EVi8DVq0A1vxYjLUbMrF5x3VcvixjUdqj+k/qIRZFEHTL73fw89pcVW79Kim7GFgnZX/5MQPx0flce2trWClHQD9XxllSXCF+W3cXS+fdxvyZd7FoVg7mfn8bq5felX7MxdVLUgfvsZRjfQTYCcb+8lsqli5Jx/zZeZjzPbB4LrBobg7Wrr6JhOS7dudIeoAXKUdGAsI7t6dh9fJbmDcnAwvn52H2D3I+9wqWL7uAHdtTFYDN8UBQl/eXnsspRwqxYtVFzJ17DTO/v6PA0rkzCZrmYu3am4hLvKv6j76NuUU5CgwgyL15YzoWzk4V2zIx+/tczJ2Vj9mzMzFv/nVs+OWa+gJBeSmrvpe+kDoPxadixfJTWDj3lvRHKebPAOZ8VyR1ZWHN6ruISxA5KcA6uPyn1/HpcyX4+edMzJl9C3Pn3MKcOamYP/+2XN/E/Hlp2LKlUIH6xCE43+3cnoM5c3M1UFjaMntOqXCxlCOXKHB4trRv/iyI/dLOH8QG6d/Z04F5TKfM3CzMX3hb2n8He+UZS5bnbefu6xjeawxaGgzoI7zCuy72BtTCvjYVkdD+IcQE18RefwMOtq2MXT4VETuxJ+5cPQYZFWKcdBgBW34jRBQ+7y5wLRGl697HpmEdsKz/s/JAx4mMdNrxPbg8uQs2d6iHLc+2xZYXw1CaJg9HahJiPw7B0n7tsfet1+SBPi4T4FbEvD0Qcx5vhasLvwXSpZ7rybgzdyR+7e+BbeER8gAny+A4iSNLP8bK7oE49f4kuYGJwNmdiHl5EBY82QZJX74g+uOl7l+xfcxT2Na+JfCBpEmZk9OGY03nDtg9eRLyT4iu20nImBeKrY/Xxl6/etj+dBfc3SUPdaoMwPXfYm3nutjduSp2+Upf+FRSHsPRfgYktDMgLsiAqEADdgcb8FtAM3xc34KuBie0MTyN8C5zcV3mlBsHpQkyD+aelwGgAF4CnfSCzZHnS/pO5u+MEyIXLVWK7C25P6n75Shl0qQJRVfUYJWHSQrzoeJ4kucwX8bIHemyK3tFdpfI7pSmyPHOIRmnMjcqMFoewPziuzL2MhT4RWA3V7r+rsyvaXs0+XSxMU3quiblihj9SfSXlhLtJYIrSggwyzOdLrbQtnSx87bI3xRb70i350se8bWiQpaRActGEnST7suWuq6K7BXKsxz7QurMSxIx+XyDDCFlJ+sU+1SIVc43cl4qfwgM8osvHRT+dxL7ngOQA0gmMhIP9lONeMF8crl7JcmOHAWUFpbIO1URcuUDIi/zLhLlQ/uXlSsQdeysGgbFnMAlr7AkT6aVDBRyTBGglXHPLzQLZWwVFd7BnQsnsH7FOqz5KQ7HT8lnu1TAzyc1iEq0z1V+5Zwn8vxCRDNNRlRxvnz+8SHkOCUoLLkyqfOLXc63muX8K89lCQFoeX7EJoVJ80uPtJP49eeVWLhhN+JPydyk6qR6fv3MEatdqxOV7tDJRJ49iJlH1kknnXT6c5EOCuukk05lVB7sfBAo+nfmp1/dgA4h397XR2/O+BUF99wMdfq/QgQDNQ9HAr0PO7VG1Ua+mLF4l/o1auKhq2jj3QfNnJ6AxfIMmjXviueHvae88fhuP+PL1XDzGAwPnwjMXpKswKY7smheOW8r5iyLxWV6QMm7+e0r6Rj4/CtobuwLJ49IPD9qvvIwzJe18c9zt+PNF+ei64A38VvCXaTLCuZY8h388PV2/LL2iPK+O3H0GoY9/z5cjIPRpE0Elm66ROcSpJ65gc8+WIoevV9Gj+Hv4KrI0q6XIt+CyaU/LB7h+GLWXuSIDWePZyLYvx88g8Lx/aLDuCOL9MuysP7um91YveYYckXf+TNFCJOxZnR5Di+8vx7E+3LFxvAhb8Fm6wejbTicjSHYviNLxfQ9kngdbaUO5yYD8N6MbUiTPkw/A3TzDoGx+QBETl2i0m7dKUVYr9dgqv84+oR+jXPSRv6MfsP6OHwj5RKPFWibykl9337+K+rXC8Q38zYgW1Y+uamF6B7cDy9PWYX5cy9j+ZJsLF2QhVnfXsG86VewcMZlrFtxHUeSSpAj6zwuELlgojPZmTPFWLH0FGZNP4O5M25hwQ93MXfmdfww4xTmzk3BbxtPIJsxL+Q/F3uM+XfjGrB9Szbm/nAF83/IFC7EvJn5WDArQ8qew6rlx3D6VK4CQBkXkMwNuBLib4ltx7BwjpSblYlZ3+VKnflynoXF81Ox8ZfbKuyq2lyc9YmRN67nYuWKI1gw9zwWzU3Dwlk5WPxDMZbOKcT8Gdel3GmcPS31iCwBZXrTFsi6c+fv6Vg25yoWTL+Ned9nY+EPRdIX+VgxPw9L5lzAzi3XtF9WS18osFbG8gXRs2zeFSyZnYNZX2tl5n5fKHUCc2ZkYNWqq8ozVUTBcA2cafilyM9rL2PJ3NtYPFvkpgMzvy3CnNkFmDnnFuYtPI6Y6IsKcCFYS+CafXH8OLB44QXM+yEds78txYLvgbnfAivmQuy8jp9WXELqdWkPK5G+oK03pd9/W3dN7tF1zPk2EwsJts7QeP6MPCyel4r4GKlDxg37gX3Cug7F5WD27NOYo+6VVs8iKTvr20IsXXgbP607jnRpB7uDbSNWRg/kNcsvSXtkLLA9Use8H0qwZH6O3PezWLLgCFKSslSbFBAvzNAPm7dcVWNnycJCubdafyyUOn+QuhbMu4YffzqpfskvpqklOb2Nj6bIGFx0GXOnp2Ox9PUCsW0ewdVZcs/mpWOV9MWRIzKGxECWJbjLXxysWJmAebNPYtHsXCwS+fnfae1aKHbOnnEDW7bmKW92fiQQtCaAn5RcgAVzbss9knE0X+qZXSJchIVzpcz3uTJ2M1W4Fjqs0St/86Y0eQ7YfwSERWaO9IWMPY15XqrFG6bXsNTNNiswWOwhSDxf8r77PgfzF8lYl/Z/8/1hLFp5Bru2XcSqb1bghfYd8KG1Nra0b4SogOqI8qmIQ21rY39ANez2M2CvfxXs86+L2IhnkXU2UQarTJhpMngupciEdU4G0lHgVBSKfvkScaGtsbJzI6x+vgcQtR/IuITCzXMR38OIrd418duj/rjIWMEF6ci9FI+rK9/D6e9fxtml0hHnRN+Vnche9Q5md3XHxblfyESdKvXE4nBYK6xvWw+/9BoM7D8sk/UFXNu4FD/1fAyZc7/mt1wyAW/H7UXv4uTn43FzrQyws7sVcnn8w0j81MaC34M9saSLBesGdsTBKSE4MuNLqU/svyP2r38Bvz5qwEG/StjXIwg5+w7JAJTJf+3H2Nq9Pn4PNCCqfQXEBlRBvH8lJAUZkChp3HzuoI9B+qoetgR1xus1+2N4pdfQvcpcPNtwAz588iI+fOY8PuhzAXNfuohL3ExN5hfN85ADXeaXZPksejsDH/U9g7e7peDjnqeEz+C9Hsfw/ejr2L2wAHTcLeKDxDioMoYKbwIbZ2Xjk2GX8H7Pa/jsmdv4oOtlfNnzBj7pfRzL3riM6wRe+dyCYW2yFHB7IUrG0KQzYtNRfPPcTXz82GV8LmXfe/omvhh1BQfXShmpSz0Y8iHFuKuZ0g0bv87Bl0Mu4J0nT+KDp0/h3e7xeLN7Ar4cfBM/f56N1JMiznlC2sSQSfQOPrq9EDPGX8GrT53Fq92v4R2p4+MeV/GB1L1k0lWc+V3k5HOL+DG/1CnghMHJkL9KYP/IuRaUopBvAHKt07+HeC94c8n2+8CDgxXxhHK8h9q9UyQHfrbx3hbx/vJakjlEzp88huGPd4Kx/kOY/M6nyltYFZcPXy0uvPZpoGL+Sh6/WMsqypTP5HQc378Rns5mNGrWHktXR2u/GOHkWiKDvIhfStCNgFo0q/krpeJ8fvGaa//CQz43lFu6Zp/2OUUPeYLPUqo0B4UFrEsUO+wqyseFuM1o0bgeqjr54L3vVqKQ8Znkg4e10S+ZdSlSKLV2rfUaW/3PWCeddNLpz0k6KKyTTjqVUXnA80HA6N+Vu72w+r6+Ic//+YC913T6v0vySl3En7+WILukFHWd3eDi/SR+33MR50/lYdXCffDyGQmjbRDMtoFo1PRptOs8BZs2X8XZ40XY+fsFuLmHorkxFL36TsevG67jymng2vlCbNt9Bus2xuP8hXSkJF9G3/6volHz59DQKRRBnd7HqjVncOkMkHqqFFG7bsDoHYL+kQuwZsMZnDpRhMvni3DxdD62/nICUyLnwGocBKPbKNT3HIZhU+YiLuYqrp3OxQXR8fb7a/B86OdIOF6Ay2fuYurYD2ExD4bZLRzvf7ULJy4A+/emolPHCNRr8RwCOr+ExQsO4+wJ4AxDZV4owf4DpzFp0qfSnp5o6vwUxk5bhONS7uSJTIwc8TJMHk+ghfUpWGz9sHLlYZw8k4W9ey/AyzUERqfhePOLrTh6URbsMUXoFjhR0oZiWMgcHBb7Tp4qwYhn34O3dRg8AyLx3eIkHDlarH7if/hMNhau3oH9Madx4ngmFvxwAGaX5/Dmxz/ilNR/PDoLg7u/h28/PYn5c3KwZEER5v6QLXJZWDE/HwtnpGHWN6exf1cOsjNlqScLLYJrBJlj47Ixd9ZJLJidhuULCGYRUMvCgnnpmDvvPJYtS8btVFl0ycKOIC1DAp4Te9euvIHpX10C8SSCYEvmAsvkfNZ31zB35mEcikrXwF2phyD03TvctOsKZn+fgvkzb2HFQmARQTMpu2B2Eeb9kIrF888gO0Pkub4UpofQhbPZWLHsDBbMScXCH/Iw59tiBf4tpWfmzCyp/yqS44uVV7kCoaUMHSR/WXMDC6Zfx6IZBAxLsYig3bclUiYfc747j983XFVfJhB85tqQoUSPJEDyLmHxD0UKaF06T+yT45I5BFBzsGzRdZw6KX0g/aA8m4SzxN41yy6I3A0FTBIApdfofCk7c3YGZs89i+2bzyJX5JQ3nnC2rIeTkqTNc85gzsw0zKXnLstIu5ZI+R++uobVSy7j+mWph2tk1iXtunUD2PDjdcyZfhPzvy/BMrFrsfQfy84THQtm3UH0ftEv7aJt7Hsu2A8czMYPM8/KfclW/bBY2rRMjrO/KcKiubexetUJFcqCnrgET3nfrl8Cflp+HfOmp0ldUkbuFXnp3ALMnXEByxcex9FkWdyLfmWfvV07tt2U8XMOi+bIGJyu9R/B6znTi7Bk4W389uvVMpCWfcFxdfqY9OESqeu7NJGV+ytlCKrO5pcNc9KwdtUVnDkldklfsN+JP2TL/Vr/8xksnHNebMxQfTfnaykndS6aVSztSsfe3VBfzDhCoLDeY0chY49jQMaE9B/BboL4rI9g9Ia1JbggzzvbwzGxc2s65s2lZ3EpNO9ggsEFduZ5ibrXc9ifUp5gNr2jybNF94zp+Zi3oFg4E0uXpWLdz6nYvvsOLhzPQ9HZ27gkD9C6bh7Y07EBYnwMSPCrqEIk7Ocmam2rYZ9fHbl2xbGwkfIwyIN3+yyw+lPcenskst+cgPRXQnD+hWeQNNSGXW0NWBdowE/PPw4c2gFkpODOz59j1yMu2B9sxm8dA5BKdJu/+c6+LRPbHul84bMEmGOBhGXImTkBCzq64uKcL4FckTkXjYRnnLDTpyF29ouQDjkMTuB3f1mKzb2eBpYvBje/Q9p54NQ+0blX+CBUDOPD63Dpo7HYFtgGhwc/hwuz38DN7TJRXJTP6mty0++my/EI8Osb+P3xSogKNmB3Lw/cPbhV++bw50+w7tEa2NnRgPhOBhzyrYB434pIDDAgTvoq0bcK4n0a4JCXBetsz+ODhosQUvkARtRJw4i6BRhU8TYGVLmFXjVvoq9LAua/flUDXemsKGO1+Cbw46f56NU4Hr256VpNyt/A81WvYmDdCxjU+BjGdTyIizIvKKyKQJZ03c0kYHTbBPSscwl9q93CkOoXMaTqaQyveQ79aydjuGsSNnwtgiwjFTFURd4tGXfvp6O/8zb0qRqPUTVvYETl2xhaJQ39a6aiV6MkvDngFG5xwzcC1xx/cjwtXRXqfQC96yTj+RpXMbRWGobUvI7+1a/gWeGRrQ5j91KpiBibtKtIbhm9ome/cBPPif3P1bqF3jXu4PnqmRhRqwB9Kl1A/wYp+GrkbWSJHL+skv/qyyBuUFdUYJ+o5KEuKGUcbgJ18vDo9G8imfDKwZuKeHCwIp5QTu6bOt6T03K0f45r3u+r52W8PtoWLnVrY9oH36hIJKoKmdBLimVuomcu9wEQlfws4ftCjgz+4sJUnNi7Fl4mFzRo1hazFu1SMmrCLLmL4nwZgDJu8mSiVhu+sc4ys7Lks0UeOjCOf4H6DOC8fC+/EEV0w+c4LMxEPj/IKcTBmZ+Hy/FbYGzeEJVa+OO9739U9paq0EwMb8bAFHbihyZjf0stTHP0yB9ZJ5100unPTDoorJNOOpVRedDzQeDo35G7Tlh8X790Gf01tsecsPeYTv/XSblyFKGwIFctb1s92hWGujY80XMi+veYjJ5dJ8BiHaI2bHOyjITZbTRs7qF4+qn3MGrIVwgdPh0tW42Hi2ksTMZIdOv6EYYN+BgRoZ/gye5j0carFwYPeQshoZ+jjU8onBhqwTYVzZ0j0enRNzBk0JcYN2o6Bvf9BE2tw9DYNhztOk6V9I8xasS7GDzgDXRqOxFNH+4Lq2k03FqOR4s24WjqMQRDBn+M4QPew8jhn6F9x4lwbT0GA4d8j5DBH+LR4DDYLKNg9RiLTt1ex9DRM9C372dw9wiBpXUEmltHIihgIvo8+yEGDfkCI0O+wtNPToKba0+42PrCxW0wfIMmY/jIWRg+/At4+QyBi0c/qWM4LMbBGCC6RoV+gZ693oCHazhcnEeiU/fX0X/YVxjS/yt42UaLXCiC276Cvs+L/pHfI6h1JGxOw2ES+VZ+kzB02NcYHf6tlPkQrQMG4clnxiNk5Cfo+cRbsBqH4hHRN1j6N6TPt3jM+xW8/Uos5s65g0UL72L6t5ewbGEu5ky/gSXzrmPpglM4klKsPCC58RfDBfAn+CfOFGHZslNYOP8Kli7MwcK5OZg/9y4WLUrD0uVX8dumS8gl2MB1lpTlAjA1Fdi27RbmzzsrnIr5c7jJFmOpZmLhnKvY8NMVnD4hizRZkamfrbKuXCAlMQtrV51TnsIL52YI50m9OVgw/yZWrbqGLVuuKeCOi1ACgFzN3bpZgg3rL2HxwmtYMj8Dy+YXYPmCUuE8adMN/PLzVVy+LOtG2sahKkwPz0MHMrF+5XWsWHgDq5bdwfIlGar8qqUZWLf6OuJi7irAsER5wcuSUspfvQhsXH8Xq5dmYZH0wbLFd7FkofTDAql3wU3s2HpHxQ52AK4KJJd2xR7IwI/LL2HJ3OtSxx2xNQOLFqdj/pJrWPvTZZw4motCsYmAtQofIXzxKrD+17NYtvwcli65jTUrpV2Lc+Se3cLqZedxcF8aMu6KrPQDyxF45X2IPpghslewYmm62JaNRfOk7+emY8Wy29i0KR3nzkkZ1kP7pAt5v89dKMFvG69i2ZLLIp8qdmZj1aJ86ctUrFlxEUmJmVq4DymgWMpnpgEHd2Zg/epULJ53CyuWZKvjknmXsXb5BezfeRu3GUNVZNWqW5ie2mdO5+LXXy5If1+W8ZSJtSvlXi3OkPt+C5s3peLkSVnAixz7mx7NLJ8ja//ovXexYc11rFl2E2uW38GPa7KwclU61v54Bfv2XlVAdRlAIWXocc2wJ1s23sCPK25K2Rz8tCJHyqdj/Y+3sXtnpuoLDbDQ+o99knpT28vs5zUFWL3yjow7guK3pL672PwrcDhR2k5cjPWIfQd2Z8j4zlBhIubMZriI8sw04IeZwFw5KnB4dhFmzszED7PuYMGiDCxflYXVP2Vi565inDkO1WfEQhVacScTp5dOx0/PuGNH+1qI9TLgqK8BCV4VEOtbCUkda+BAQB3s8jEiZuRA4MJJ4EoSTr7yLDb41cB2r4bY0voh/OJXDb95S7lgA3YFV8amvk8A8fulsYm4ufJD0d0Ye3wbYvujvkj74TsgI1sGxXEkfTYBmyf3xvpXw7Dj9VFImNAFu3q3wfrOAbhFt+csedBP78bhvs7Y4l0bO/uPBrbHAmmncWPtdGzp2RXFRPDTrqLkWAx2vD8Rm6YNw5ZXQrHn5SE4OPEJbB3QHtuf7QkVg0XswcW9uLRhDqLnfYe8Y2eBmxdRvOJVrO9YEfuCDNjbzxtp+7droPCvH+PXx2tgZ6AWMiK6NcHgqogPrIxDch3vVxFJvrWQ2LoR1rbojvcaLkVolTiE1kjDyCo5GFuzCCOq5mBArSz0aBCNNwfsvgcKy7HoGjBrygX0b3wE/aqmYmT1AoTVKkVIjQIMqZ6KgXVOIzIoFrG/yyBS45xgOnBqF9DL9Bv617uMIdUyMKryTYyrfRchlUVH3ct4vkkiZk6+jBICtXKji+Whz7gEfBV2Fv0b7cPw6hcQVjkDE6uXYlSFLIysnYne9eMxvus+XDok1dA+qTJXyidtBgY678bz1c9gZI0cDKmYhWGV72J0vXz0q5aO551i8PPXopy/gCGYLMdMeR36aOhhdK+ejKH1CzG8trSnYh7CqkJ0ZGLww8fwbt+TSJXnh973fAwZOIZRxYvzOVGVoqSgGLkyCfPx4Tyi07+LZCJSk4UagEzQboiDFfGEefbJzpEhBy2HkKnkyYcW50B+tN64dBajugbDWLcWJr37pQYKc1dGmWgz7qTi7LmTSElJwokTl3DubD7S5LOIPsTFhddxfNcSBLq5oImpE+at2Kc+Ywpy7iI7/RSOH96LY8eScPj4GSSeuKniuvNztrigEHlZV3H+XCzOnE9AWsZNXLmZhqPHzuHY4dO4ee2GfO5wg8MssTEb2ZmpKMq+g8unTuNUymlcPHoMZ2N3yLuUBdWcA/Dml8vVF5JsrgZ50zeZbRRWH5japov0IGaP/JHZL/Ze+hf0X0vopJNOOv2/Ih0U1kknncqoPPj5IID078QqfvCY++MHj3prCc5cloWrTv/viOhXfp6sFTJlHZ2HmRvWoolnJxiqeMDS5FG0NvaBzToKRtfxaGYeD4vnC7BaItC80UAYmw6W4wCYrWGwWCfA1GIyrE4TYWw+GM5NeqClpR9auw2Bi/NQuJhGo7lLKMy2SXB3fx0uLpPRxHk4mrYYCOemQ9G4wQB4eo2Hi3UEzM5D4GYehoYNu8NkGQSbbSwsxvHwsE6Fu9tU1G8+HM2sobDYQuHUYgCaNe0Ns2kUXF1fhdllGpzqD4ab00i4WsbC6haJpsaBaOIyEM1bhAiHw+gxEU5icwspazWPQPPmIWjRbBTMYre7bRSc3ELRxDwaRudxcGk2Vo5j4WwUdp0Iq/tUWJqOhalxqLRhOJqI/WZrBIzmMBitw9GoWR84Ow2Dh9s4WE0RcGomdTYdLufhcJF63CzjYTNPEpkwOEu/NGrSHw2bDRO9Y9FcyppaPA+nBoPQ0jYRlpYT0KjpMLRuFgHPRuHo3uUrvPDSNnz2VTQWLb2ATRuBDevysOm3mziw/6aKlcp1lIrJKkujfDnPkD+xiRnYsu2WcB527gJ2CG/ZUYRd+4tw6qwMAVlFlZbI8kpOZMmlfr5/7nI+9h+6hc07bol8IbZtL8LWrfnYsycfJ08A2bLKLAMZyaKD3sJHDxdj585sbNmai+075Vzkd+5NR1zyHVxJLVT2sY7iEv7clJ5DwBmx4cDBEilXhB1Sz45tRdi9Mw/RUZk4d6FQebhqXkH5ahlIb9L0tFIcP5IlMrdwKPEuouOzEBtXgoSEUpw4XqI2StN+4HpHytyW82IFYnOzM250FhNbiLikHMSnZCFJjinJmQpQ1PpCikmbSkWeXJQr/XEqF4eTc5CYmIfYhDxpTyHijxbh9AVpi71RXByrDXXkkn1/OS0bp65kIOXUXZw4X4BTF0T+fB6uXGPYgxJpR6mwLG7lyMeQ7eJGfucvFeHcJeDYGbk/Yu/py8U4f60A19LykevoC+7ubu8PenndTJMyF/Nx5lwRLohNl+x8RXQReC4DuoVpqxRTYO2Nq5AxkCd1luLMGc2Llh7MGbdFhg1h21hWGql5f5UgO7eUeCduS/lU6Wcyz9PSGUNS5FkHy9j7hcyNKum5zQ0EGW/5mvAV6e+0DBmrUoi6CwrzVFH2v9o8X3RlSRmGM0m7JXeS9ch9T7tThCzpCLZbRLU/yh0tS6qScS9lb0s9N9JKkJpRiFuZhXJerDYjVF9kqAIl4B5Lu7fexII5GQr0dWwsV8Y/aMfZPM4B5s0vwvyFmVi84jZ++u0OdkblI+E41MZyHPvKm5M3nizGZVw8hj0zXsO3HetiS6caSPE14EwbA060MiBZON7fgN2+FbG9bTPsHdtPDBZl6Sm4+EFfbO9QC1G+DRDt3xg72z2MvcHVcDzIINc1sO2px/jASCMvIHX5J9jdviYO+lfBni5uOP3uC5rL+eEDODz5Gax6pBGW9/DCpkFtcaCfB7Z2NmN7p87ImjFP6hK58ztxaFAD/BJUEZv7Pi+Twx4gMxnX1n+OzU8H4tYXb8j1ReSl7MKG0c9hRnsblvcMwo7B7XHgOTN+7OqKDWMnS51yc26l4PyST7DmmS7YP/UllBy7Ljda+MdPsanLwzjQtjZ29m6LtP0MgCuD7PeP8WtnA+LaGpDkY8Bhv9pICmS85RqIDq6IKMYWlvQTwrtad8SbDT7FC40PYHS1JIyvexkvNEzD2AapCG+ejhc7nMGW6TJQCAoTxSLGJiZFLy7CZJ8zGNPkFsbVz8D4etkYWycTY+vfxhRzKj7vexmp0u0c52ojLXnW0w8Dnw5OxljLUYxreA0Ta9/GtLrZmFgjAxOb3MA7nW9hr4wHdb9lKKkvg2R87vwOeCXgEsbUvoyptbPwat18jKt2A2MeuoRpfiex8MVLyD6j1cWBzi/iLkpXfNjtKsY3u44JD+di/EM5mNjgjtRzF2OapuPNrmdxfLMYxbpUzBOp8orM+x+nYlzrixjVMBUR9W9iQr0MTKlTiokNb+NFr2NY+up5pMuzzRjVGdIR/MpXVcq6pd6iLG0+5FPDZ06nfxdxLio30ZLUJGhnRTxhHu8Wj/YMOfCMnur0oy0uKUa+jGFqu37xNEIfC4Kxbk1M/fA79Z0CP9ivnTqJ7775HE89/QTcPdwQFPgYnu/7Mpav3INU+VAvyLuEU3vmI9CtKRo4BWH+6r1qg7iLZw/jh29fwXPPBMHTwwIf/47o+fxk/PhrHDJEeU5WNqL2bkC/Pp3w2JOBmDF3Ot768HN4+bZDp3ad8cn778ln0Un5/OEeBNnIuHsDv61djl6PP462bQIxsv9AfPPhm2jSpBlqO/viw+mr1LuB+pJVTNeCReRIg2VyVd1E/3aGwdA2Sf4jO3qpPN9P/zxHJ5100ul/g3RQWCeddCqj8gDog4DSvws/9cr6f4gf/M6s35QHjk7/j4koEd3tShkdMRe3SoqwcfdhNGvRGW1s/eDhMghurpFoYRwLF9tkNDdGwmYVNoXD0zYBFvMYuFjDYBYZV9NkuDpPgod1ggqn4OE6EkbjIFjdxqBxi5EwWcbDap4Cl6YTYTVOkfRxcLGMgs08Gi09xsHJFIIWcm6yRsBsCZOyw5S3r7t1jMizzimSNgkmt4mwtZwEF2M4TMYwuLmLbS7hkv8aLE4vw+Y8Dq1cadtYqTMCFvdwsXsELG7jhSfDyTweZrHdKnW5WkfDYhsLs7TD5hICT9cxkj9K2hQBD7dpcGk2HianSbDaXkRz80SxdxJaWV+EpVmE2CbsNhY2V9FnkfptI6SvQlS9btaJMDuLbdaxUkckzKaxsFgmwugi584R0qZx0j+RsEq+1VX6xCTnttFwF/akvEuE2BEJk9jq4RSJ1uz/FoPQzKknHus+Drv3X1PeuQTLsrK0W0gvIS6duCgicMhzLqgInjF+MWPJqr2X5JyxWDNkjaXCJEg+40pzKcUfE1OeQCzBYe5zxdjE9Dijtyl3JL8PZGQpVV5LYxxqbgzHEJ30+OQv2RmrmruJs4YCESrkDn20sLRQlSPWkcs6RJagIjefY9tYH9uktYcL33zhAuQXEhCVOmm7MB2gyAozET0sr8BPtTzmcpg/Z9XqojzBELabbeReXpxmWE61R7iIrr48pxD1yMERRoELVfYH66MnNnUoEFmYunmaL88Q+1+L3mi/B8I8p7xdHIXFyjdLzkS/3X6VLn/YV+wzRzlpkhw1nzD2RZEKLkqgVuoqpc+UlKHtUlYtpEUB7VL9wHTJKNU6pcxeMu8Xy5LVRn5yQnyV4VVVIuVUMd4v2sufnNMKpmj94BAjF9r7TrGccvMjdW7Xy/6jHMuwL3jUFvc56sgwNpRXBzLPhdX41rJEVtsckz2hNsmS/1pqlrSfcS3limUklZAB7wb7keV5jwiekIrlPu7dcRvzZ2epmMHzZgvzOKtEuEjS87GA4VoWZWPJ4nSsXp2G7dtzceQYcOO2PBuilB759MxXHstaharvsu9m4fuvP8EjxloY1cyA5YHVEetfGUfaGHDMtxJSfCuAYRL2BVfDL52aYt/kPsDFGODaflx6vye2dKiCfb41EeP/EPb41cahtpqn8cHgOtj+TCdg9ybg9jHcWPwmtneuhZh2tbHNtwkODnwGSIkHrp4ANnyD6Jd6IX3xe8DhjcDWubg2sgd+btUK2TOmywC+DJzdhJh+DUVHHfz6vJTduwXc4ezWhq+xoWtrHBs3EDh5ALh+BBlrZmHvy6G4s/xr0fcb8POHSBz8KHZETABOnQOupODqmu+xa0oYstf/KGVSgVtSx9qvsKFdE+wOaIxdPTogf9sOaed54NBKHIpsi+PP1EestwFxvtUQ7VMV+30MiAmqiBg/A5IDDUiSdkf727CqzWh8bPsAi/rF4sfI21gTeRfLIzOw+pViHFwkfU9AmI875xe6w8v9xXXgxDox9XVgcXg2VkYWYfnYIiyLzMXeL4H0QyIj8wwBWjW4+FjJfHo3Gfjt42ysmHAXayMLsCa8CD9LM9e+UIDklSKTJmyvRpUTHbgKJC8DfpxSiNXhhVg+IhsbJpdi9ZRs7JNxRUdqyqkvm+xfBNHmtH3AxreBpWMLNNsisrF4bAY2vCW3h7GB6ebJAUzXdu5GKu0qugAcnA8sm5qP5eOzsEpsXDG6BOumFSFB+qJAbgfHY15JljxVOTIsOSlKGu0lixrWX8gJVqd/I3Hy4g3h5KEmsgcQ7xHzHHyPtJmQXwFr4CjnVM7SV88cxpjHfGCpWx3j3/6OeyAi4+Z1fPbWK2jSoC4aNWyAoLZBaNXKDw3ru8HL53H8uGWfzN8ZOLZjLoJdm6K5qRN+WLQFaelpWDDrCzSta4CrsT6C23rLO5cnatZsCjfPDti896i8JxRh/9YV8v7UABVqV4enfyCCOzwCH682aFynGlo0aYhPvv5O5OipfA2/rlsNYzNnNKjTCK09/dDB1xeBLvVQzWBA1eaBeG/GevXZr+Z+1VI+oPLyUcovELUecfTbH3vHwQ65e/J/pH+eo5NOOun0/5p0UFgnnXQqo/Ig6IPA0r8Dd5u66r5+IC/aEGXvIZ3+N6iYO9HIIrWgqEhe2kuRcvQmmjTpgNYeI2BxIcg5HmbzRJgt44QJbo4RjtDSJc3ZLQwutlDYTGPgbhwPq3EyrLYpaGEJQ3PXkXD2HAEn2wjRMRbupqlwbToJLY30+p0Ak2Uk3KxDYbMMh4t1HFq4TkEz98lwkjyrOQLuLqPQxjICLS2jYRK9TsYpMFqlDsk3O0fCapqgrk2WibC5TIOry1RYxSaLVWy0io20V/SabWNhFDuNrhEiO0V0ix1iv83KNIZ0GAZXyyi4mUO0sBNSn8USCYtpoiyEJkk9E6WNkSIrdUo5NxNB6jAFLLMvrNJWN8tgKT8crqZJCiB3M4cpnVblST0WJuskBfLazKGqHjfpL1eT1rcEzM3W0WLnKDmGCo+Rvh0vfSz9YIyQPhqFpk0fh8HQDBUr18e773+qgYiypuHCybG8+acsfx7IkqcRz7Qrx1kZy58/8j+jB8nK//tYo3tXDyzj4DJJ/nUs9e6nMhn5Q75HvOCSkqxl/KNejf//0h/LPajsg2T+yBrdf0UqL/PP+L9K+e/SP5R7oLL7E8tfaSn/Pbq/LP8++N7+c7pX+h454ABHruOfnMsffhlQJiJcSFB4Zzrmz8pVYPB8hoiYXYQFc7KxeP4drFp2Cz+vvYmd2+4iObFIbQRID2aC24pFB/USbFZTqPwjREGg/PCJ8+jYpRseMhgQKPxVq5rY1/4hHPKvgij/SjgUUAlJgZWwM7g6lndtir1TegKJ64GTv+DCa13wa8cK2N++Fg76VkOsbw3EB1THAT8DtrarhW29A4D9K4DLW5G2/CVseLQe9rRtgH1tmuNAxwBcevUlYN9W4GYycEc4NR5I2AS8/yL2+nlgs68nMme+L3mHgDPrkPCsETs7NsSq5zug5KDYcC0Bt9dMx/pHW2HrI62Q88FUIPp34OpRyRO+eQQ4tB7pL/XH5kAXbH2sK7B4ieg6LHkngRtHUHI2CqUn9gHnY4CfZmBje1fsCnTF7x19kfrtF8DZY2LXGeDcHuCDvogOMGC/tC8mqBJiCQYHVcbBVgYkBlWTPjMgVvopOsgJG57oDCSf1wDgHDtr34+Ue8zlj+MhZxrxJMoQJHYwrx3lOB5UOfuR13bg9IHlmM58RxlS+TLl5f9YhnLlide04UH1kO+zT/447CvfrvJlec50e18QNHSwIpZ3sE5/Evqf3BAOqhwUlRaqL6h46/n16e2LKRjftSWstapg/Nuz1XcYl88mo9cTwWhQvSr6PPcczlw8i6QjCXhhciRGhkZi1uq96svZEzuWoJ2tOZo174glK3Yh9eZ5fPXhKwgf0B/rli9BTn46tm39GYHuJjRu1Bxvz1yD1JwixPy+EN5uzWCoY8JjfUNx8uRRXDgejVG9O6FRg9roPngSzt3MR9ql0wgbPAg1qjVH9x4jEZVyFnevX8SsSf3QqJIBFZy74PWZW1Rsea1bOJg5sPmwa1/wqdHMZL4A6aSTTjr9BUkHhXXSSacyKg+EPggw/U/nrhMW3dcHj4/5FrtiT9l7R6f/NZL36qIC/py/FLm5xdixIwkuzo/Cah4Ai2m0An8JTiog2BouHCbnBIYJCkfC5DoaZrcQuLlJujkcRtMkmCwvwIkAsfsEGG2j5BgGk2ksbObJaGmZBk/KOIfCZgmBq3mE1BMCJ6mjmXUqmrhPRHO3SNEVATeC0k37oSXDRZimwLPlm8rL1yj12KRuD7dJMFojhcfBapwAm9Rppg2WUJjodWymrWMVyOoiNrq4hiqw1WqeKPWOVeCvi2242Dhc0kLhKu0laGuRciYzPXxFp9hqFdtcCCy7aiCzzTIOrtIHruwPOVrpKWyWtkh5q3EcLMJWk9Qt1/RCNooNztaxcJE2WUzhcDWOgZsxQuRFVoHC42Cyib3SVyZbiNgbXgYKm01j4OQ0APXrt4PB0BgVK9XC6PAwZGXT/8e++tdJJ53sxOeBsEEZmqYO/Jk/k5R3pzw23Ghu1/armDfnOubNzlKxtpcsTMe6tRnYvbMQR1KAyxdFLl8rQyC4TK3j3FGVHOnFTsgit6gE+w8lwrWVrwKFgwgKt6mDncF1cNC3ImKCKyNOOMmvAvb5VsYvHRriwIAglHw5mTuI4dwYb+zsXBn7g6sgWvKTfashyacSkqRMbOcG2N/dE1kfRyBv/jScevEJbA+uiISg6kjxro8DrRpjbycvJEUOwOnZbyJ13Ze4teRtHJnwLA61t2CfewMcCjbh4sRncXXJi7g9KxyHOlRHfMc62NWrFdK+noKsue/gzMtDsLldM+wMaoQ9HVrg3LjnkDbrXWSv/g6p899H4oQe2NXxYWz3qY1NPi2QOLA7bn88DYUrvsbl+e9h24sDsP+FvsifOQ1F74/CgUeN2O3fCBt9GuPQgC64/OFU3Fj4NfIXfICLI3yw18+gYg5HBRpwyNuA5IBK6pgYJG0OMGCnlwG729XH74M6IyNxP1QQb7pkl7nq6qTT35E4/nNkOirSfrUgzEjRty8kY+ITreD+UA1M+WABrsujculcEob27orGtWuiRZPGmDB1AhYtnYMDe37DpWupuCYydEQ/sW0xOrm7oEnzzpi/ZJvMdWmiNBXZ127h4qkzOBS3B998+RbaerRAg4caYPTbM3Fb5siYX2chqJUR1V3a4YuFG+WxzEdh2inM+nAcatWohLa9xyP2xC1cPRaHTl6t0bBhS7z3+RLcoc0ZN3Fzx0L4OjWEweUxvDpzKzLpfa8ebU62hLuZUKzOmKL+kPXHXyeddPoLkg4K66STTmVUHhB9EGj6n8o939yMR8bMuq/9oe8sw/mrDGSp0/86lZaiVP2kugQ7d+3DiBGT8fDD/rCY+8PDjR7BkbAo71sCwqHCIcJ2T1oCxZaRcDEPhtljOJqZh8HFbTIsbq/A7DQVniZ6746FheEdJL1Jc4Kok1R4hNbukXBXXrOSb5oAZ9NUtLBMRjOp08k9DBbbGLiaR6OVbaRwOExOE2B0lvzmI+HZMhImk9RrHAEjwVRrGKyWMbCZ6SHMkBBio2KxV8paKOM2UniUnI+B1RoBV5YRWaMtTJgg91hYpa1kttdsmQCzeZK0X+y1TISzLVKxUfXFOC30gy1C8/AlMEzwmKz6RPQpMJ0A+WS4SBlnsYehNghu24wvSLvHw1X60Gymx/Q/B4U93KV+01C5Jx1QsVILVK5SD6NCQpGbmy3rIX1VpNPfnDj873sEeOFAb2Vuo9cor+SS3r0OcJig8IF9F9VGjD//nIY9ewpx5AjUxoaMP8xQJo6QE3RI41F5oCq9VFKoKbTrc7hpFkoFB6IPwbN1G7SoaoC/wYCvW1XDnqAaiPExID64EhICKyDZi6ERKiPBrwH2tqqPHZ71scu7DnYFGLBHODqgApICq+K4fzUktzTgqLfIe1fBHrfa2OPTGDvaNsHWVgac8DPgrOg6y3jF3tUQ798AOwMbYl3bBlgTXBe/tauNLZKf0KYCTvhWRaKU2edVAZvaVscWqeeI8FGxa7+HpLepht1taqnQFXulvkNtKyGmXRXsC6qJjV618FubOtgeILb6VMZe0RnXrgL2BVfHvvb1sc23Dn7xrIbNXnWlDfWx268WdvtWxoFA0etrwAG2qR37oRa2+j2E3/2a4nfveohpXwv7ReZge2E7KJzoVwEJ/nKUMslB0h9ta2J5sBPeatsS8z54B5fPnbX3vw4K6/R3JjsoLM8BPWjJDCRx61wSxnb1hLlWZYx/6wcVPiIn4wrWLvoWXYIDYHF2Qo061VGtpgEtXZti4tSXsG7/ZRVm6tS2BQgyNUZTYzcsWrkbyLuG84f34fN3P8XY0RHo+liQvNvVRqMqBtSv3wghb/6A1NwSRK/7FsEtnVHV2Amz1x1ESWE2im6fwNyPxqNOrapo238qki9k4XTMNlgb1EbjJq0xa8lmLd5xQQYyolbDq/nDMDTvhJe++xUFZa82PCEUTFd4fvVmn261V1b98ddJJ53+kqSDwjrppFMZlQdFHwSe/ieyih886pv72v7+nE32HtHpf58ICMvCgrs5F+dj0KChqFxFXswNzmjW9Gm4ElRVISPoIUuwlaDqSDkPkTSCnxHw9IiEs2kYLK1D0Ng8CEaPsbC5TYS5WRjcm49GG0sIbM5DVBgFV4/JIkuwdSI8bZFwN4XDjcCraSqMphfgzE3YXMPg4sZN6ag/DB5uI2ByGiALkVB4WMeL7Eh4eIahafOBaNWGgOpoYXoEj4HVTMC3HBO0lXR6ChM45qZ4vNZkNS9fgrxGC0NQ0K77mWkmxkiWep2t0k7rWDhbIuFCD2kVEoLhKOhVLPWYJytmqAiz4knCU0VmsgqN4eJKADpcZKZIG16ATfRblbf1PwOFGRd5onCkyI1Aw4aPyH1pIvenPqa+8BJycnJQojzldNLpb0wEBe4DBnhBtMDBWqbCc4UdHr+MI3v6VDpOnS7CpctA+h2ouMoEghWLrINLpNC9KN2EJQgA58vcKdcOcEKBFrkoKcxHUlwc2gf4o4nBgE7CM1tWQnRwdST6GpAQVAGH5JjoZcBxnyo43qomjrepjxTvhoj3q4PoIAMOkgMMiAuoiGS/ikhqbcAJKXPUqyKO+TRAXKu6SAioj2T/yjgp6SdE12GRSWwjZbyrINqvJg62rYOoDqKvXVUcEn3JwQakiM54kaEdiYFVpD4DjknaCX9N/2GvCkhqI/X5VUK8lGHICoK5ce3osVsdUV5Sxl/aQQ9eyY8RndEdDNgtcgfFzsPt6uJYYD0keVVTIDQ3iosWTuqktSm2vRYmIsq3MqK9a0leTQUux7SviIOiJ0r0JUibEmif1KuAYTnf2f4hvOH6MHylL30sVnz11Vdyj/IVO+6vTjr9/YiTT64KH3EPFC7BrQspiHisNcy1q2DSOxoojNIsIOcGYnbtwNeff4YBQ56X9ygTnJrUQI06D6H7sDdwLTUXl/ctR1sLN5p7DLMWbcHFY/sQOqAbHqrVEK1beiMifBA+ensygjxcUO+hxgh5azbuSMVHfp8tz2Yj1LA9jmVbj0h9BSi4cRTT3wxF/bo14NNzHJIvZuFS4k54NK6Lho088OUPP6qQ2QUZqbgb8xO8nRujsrEz3pljDx+h5lW2kS3js84t9col80R//HXSSae/IOmgsE466VRG5YHRBwGo/2n8xAPiBy/9LcbeGzr9e4hv1LKMKM5DVlY63D08YDDURoWKLni4QRe4EgRWIGqEBgTbRggP18BhFTpBA4xdzKPR+en3EfzYq+j42Bvo0uV1dH/kFTzb9WU82SkC3R6JhIfrEHi2nAAn42TYbK+iReMQtHKdBJt5KiymaTAZp2pgrJWev6HKu9aFYRnch+KJJ15Ct86voOcTb+ORDlPg6joULYxDYSbIStsY6kF53Y4TXYxrPEHFAVahGczjFZt5bSLQytAUYyVfjnJtMk2GkRvgWSYJT5RzliEoTLA4Ei6uwm6RMNJLmN7C1rFwUkeGrYgEN7MzSR8YLQxrQR6vWOmzToLRVc4ZesIWITKUY77oF3sUS50m6vkjKCwy9DR2cZJ+No+EU4vuqFbdClc3fyxbvgYFDGSqk05/d+IUdh8wwAuiBUQNNOSAG9g5PIYd8nTyzcwsRqGIcJM+Bf5KllayVAEt3NCPGxyW2oO28lhSmqtYSxNJllOxLbM1LspD5tXLeP+FSehQvzKG1zVglV9NJAZVwWFfAxICDYiRY7wPQeFKON+qCs56VsMJr9pI8q2G/ZLHUAoH29kB2cAKSPI34JhwgrsBp3xq4Uir6jjqXU1twsa85LYGJLYXWTnGBlZGrH9VxPlWVp7Jh0THfpHZawdw40UuRWw45VMRJyT/KMswZIPwYbmmjfHCsSKvvHylPMFfejcnBlRQQHK05O+nXim7R/JoayJZ8uI9NID6pH9lHJZ62dbEjiIrbYpim2hvewK/lZAcWB3RfhUQ26Giso+gcFJgTQUmExROEk4Rnb8FP4RhzR9SIHvNKrXQo3dfZOZnyL3hZovse510+jsS57c85SnMTebI3Ao09fxhjHnCG+a61TDpre+UN2723Rs4dzQWx+Jjce3SRdy4dQ0HDu5A5OgBqF7nIbh2Goyzl9JwYfcSBJuboG6LLpi/Ygfid61BC5nDWjR3xZy5i3H7xmns27oWHb3dUeehpgoUvpVTgqQN38Hb1BC13Z/C8u0nZB7MR+GNo5j3YSQeqlsDAX2nIO5MOu6cisaTQS1R7yEzpr7+FVKzZa7NTkf08i/QvEYlVDM/grdn/YZcor/8dk61US7U5qrcUk+bo9UfdaKTTjrp9NcjHRTWSSedyqg8OPogEPU/ibuOX3hfe7uPnY698aftPaHTv49KUcLYjPLSXVKSD7PFigoV66FKVQsaPvwYPD00D9x/Bgpz47lmLmF49MmPsXFPOk5fBa7dFL4MXL8kfEHOL2Qj8dBZvP3qDzA5PaP0uXlMg6srQVxtozYVnsI8XsXqdRe9NsYAtkxW4Gu/YZ/iQEwqblwUfeeAFYsTEOA/Fjb3sbC4MgQD4/uKLpE1Md6vSdKM3HhuEixytFgZD3kCXE1T4cbQDSLL8BHckM7KDerMDPkwEUbbeGFuSqfl2wh628Lg5DZamOEswmFVcYUj4ezGcBDjYKQekbERnJbyJis3jGNIiQixn97FotNtDEyuDLtBr+swkYlQdtIm1qs8hR8IChPUngQ32ySYjSPEnt4ICOiNL7+ch9RUWeYRjOJ6SSed/s5ETPA+XJAXDjBB4+KSIgUMK5LsMq9h4YLCUhQVcx4kvMhNuURWgY3kAsnLQUkpweB8NUeWlEi6ClvAreU0HzZyKWNelspzWZAD5GbjdkoiVr0YgW+DmmFrh4eR6GPAEW8D4gkKCxPsVcAwAVkPAxLaVERCYGVEt5P8RwyI6lgBu3zpgSt5ASLjb8AhT4LD1XA0oDqOBFVRHsf0KCZAu1fO94muWN+qOBxYGyl+1RHrJWVYjqEZOmkg7kG5jhe54y0r4USbKkj0roCo1hoQfKRtJSTTk1nsIseKbFxABRXX18FxQWJPuyqIDa6MKOoS3dwoLoaAsF8F0VcZiV5kaV8bsVvyDkubWJa2HBSb6C2tQmkEVpV+kDaLTobMiJJjUkAN1Vf0Ek6WfkqR48a29TGkSW042UHhLt2eRJ7cE/5oXgeFdfr7EuerfM5wZbMdw0dcO5uCkY95w1SvOl7+cCbuSMaxI/EY1OcpeLnZMGXieGzbuQUbN63DoP5Ponb9h/HYwKm4fD0DhzfNg7+xMR42dsGsxRtxYMsKuDaviYcfdsYrr76NPds34KWJo9CwRkXUa9AMYW/Pwl15hUz45Qe09XRBTUtXLPotEYV52Si6dRoz3hmD2jUro23fiUg8l4aimyfw9dvTUL++ER7enfHd3GX4ff1ahDzmhYcqGlDD1A6vfbNKfVFXqkBhssy3pXxP1X6voWZyR5ZOOumk01+QdFBYJ510KqPyIOmDgNT/BO7x5u94JFxeFsu1Nfz95bh0Pd3eCzr9e6kUeblZciDQUQBXV3cYDHWEm+PhBo/B3c0B2jJ8BOPzjhQeIecMHzFGeco2NIaic8/3kXQ2X/3ArzCvCNnpmcRFkJlVhLtZ6aI7D5k3b+GVSe/Dq9VQNGzSD7bWYWhuGQQn8wC4GAfBbBqlNmpraR4Nd3OkpE9Dc7fx2LD7InJlgXD3Vh52/BqFLz9Zi9atRqJp81ApNxFW53BYXELRwkIOg80YAXeX8XBzYYxfev6OgckUAVenyXBzYho3fwu5l24MlzJhcLGOVnF/TdYRsFqGiS3DpI1D0dg6EM1sQ2CzjICb1GF2jYCzW6TIjoWLRXSZBgsPhbNpDJxFp1nkzKLDxSr5IuMkulzMA2ExDZC6h0i9oTBKnzL2sJVgNkNX/BegsIsTbemFp56KQMrhyyiSRR4BrTzpa510+lsTMcH7cEFeEC1wwCT05tWghPs8hkmqrPwhYFxajJLiAhQX5UsSYV6Cwxpr+ijnKCP/JYmeedwTn1sgFfJvcYZcyHyaKXwnHZdXzMWP3VtjT/uHkdSKnsEGxAYacCDIgOj2VTRPYAKh7Ssirn0lHAg2YLdc75D0PQSPJZ2hH+IlPVGYoGpccAUFojpkd7atgP3tqyOuXV0kBtZDik9dJLephSSvGoj3qYKDvlKuXWVEtaugAOTEoOo4EfQQjrcWObeaSPF6SORq46AfQ1xUUnF9Y/0rIdGrGo5JemLLKsqDOb6t6JL69tBTOKgaEgMeQoJ3dWHNWznOryKivCshyre62FkbSbQloDbiPA044lUBhxnzOLAyUkR3QmAVHAqurupkXVFiIwHhQ1J3gk9lBQrTIzmJ15K3pd1DGFG/IpwNBtSuXA1PPfucfNYUoKCUXty8ITrp9HekEpTIexu/nnLMdiUyMd26eBKRvTujlXNjvPz+t7gjU1hWZhp+XLEQj7QNRNNGDVCnXk3UqVsNzZvWQdfuT2H5pjjkyAvc4W3L0b6lBZZW3bF45WbRlYyRA59G02Ym1KpdX8rWRjt/D/h5WNDcyYq+Y9/F3TwgfuMCdPb1RNOW3bFmawqKCwuQf/scZn08Gc2a1EenfpE4cilNXlqu48LhaIwaEYmHGlpQ46EmsLk0x2OeTWBsWBcPWdvi3ekrUcgpl6yeb7ZM++pNtVFYJeuPvk466fQXJR0U1kknncqoPFD6IED1r85Pvfwz2o/6+r52fjRvs731Ov1pSAEiJSgszEev3v1Rt64RBoMRjRs9CXdXhojgxmvC3CRNeQsLM76wCoUwEQ2cx6HDUx8j8Wy++kH10YREbFr7K35ecwCLF+3Ab5sO4OY17mANxO5Ihp/XCDR3GQqj52gYPYbBo80geHkPRevWo+BhGw5P42C4Oo+C0fUleAa/hqRLJciQlcDvG35FgGeAyDwOD4+hCkg1myLh5ToaPq1CYPMOhcUrBGbjACk/CG7GELiJnZ5eoWjlFYaW5jHwtkXC1zscLb1GwuwxAm18xsLHbSRaW4eKXBhaBYSjldhiszwHd5fe8Go1HDa/UXDzD0FL6yC0NA6ByRIKZ9sY4XAFILdyGyT1i92tx8Bd2OjSHxbGVraMgsU9BO5tBqON12CpYwC83YfD22+M1BEhdYTCaqQX9r8GhVXIC5PoMvfC44+H4MiRq8jJYSxo3jt1B3XS6e9N9z0HvODD4YBJ7jFjcJd5DAuV0jvYsZucAocdZTUuVQGINVIbzpElyT5lolDECQqT8xU0LFwoE92du0DabRye+w2WP9ESW4MfQgLjAvtrwOdeOca0q4aDQRW0DdjaGrBP0hiqIa5jRcTIdRRB0baVlQcvmZ6zDD1BkJgbs+0TmQOdKmJvh6rYF1gNMSqcRA0caVMDya2qIrFNJcT5aF6+BJLjeBQ9iT6VJK8yklrXwGGfh5DoVR9JAfURTVBY9NKLOSW4ClLaVMMRkTnlW1fkxSYpy7oJSB8KYPiHOlJW6vLRvHlVyAlfsTewNuIDauOQV3XEta4iba6Fk37VkezJDe0qKnmGq0hsV12BwXG+mmdyfDs5l7rjvWij2Ct59KpOkPp2daiLlx82INBggEvdWggNC0V+cZ7cIQb6uO/m66TT34i0+YrPAGeqQpnLiouLkXP7KhZ+9jpejAzFml93qpmJc1lRXiZSEg7h9VdfREjoCOHheP/91xGXlKyC3+TlAzeOReGDV6Zi4pQPcTDmGIrz03D53FG8+877CA0Nwxuvv4h9uzZj889rMH78VLz19VLcyS3F2bit+ODVFzD+pS8RlXxN5spSFGWnYvdvixERPgLvfbsI1zLo7ctfU2Tg5LEzePfdzxAyZgK++PgDHN/7G16bMgFhL36In3fGq/aUKE9hzsucdPnlnA4K66STTv8ZpIPCOumkUxmVB0sfBKr+lfmJKSvvax95+aZD9pbr9GeiYgbVlJfrwsIixMUdxvP9x6JuXV+YXPrBw20sLIzTax4PLYQEgeHRwgSLGRt3Gho5vYpOT83AoVOFChT+9O1P4GNqB+cGz6LpQ/3h5xWK9asSFF5yOfkuAnwi4GQKg7v3VPQa8DU++Xw9vpv+Kz76ZD1GjfgCHXxHwtKiH7qKzs/nnsL5LC1aZ/KhKHzzwRfo22sKWjj3hpvHePTp9R0+e3sdvv9mkyxOfsHEd5agc5dRcDd3g4e5D4KDwvDa+0vw0Rc/YlzI93hz6gp8//1WvPz2QvQa+i4++3oT3p4yF2MGf4i33/8ZX87cgXc+WITneoxFj85j8OHba/HB9G1476tNGPjMq/AzPw+j8zC4cMM6jzB0fexVvPvycnz/xSZ8/PlGvPLmGrQPjEBL18Gw2IYguOM4vPX+Ynwp9U8a8T3ee3Etvp2+BS+/sRz+XuM1L2fp238NCjOsRijMpucQGNgPc+euRXp6Hoq1NZJOOun0D8QHg9ABmTBCebYDDY6Hp7xo+az/gokfUxt/HUEuUKEMZAbkg5mdjQtxhzArchg+DWiKX9s/jFjfikgmCBpcBfv9KyImoBpiAisrD1kCrTEKbJV8fwMSfSsgxaeCCjdx1EvYuwIOCycReBUZlmEoCALD+4Mria4qSPaugmNtquBEm0pSRpMlkEwwmMcUuT7io4WwSPapiDi/Koj1q4E4n3qI862p6qUcvX6VrFdlHG1TVbEqQ5CaMnZ9CT4M81ANSUx3sJRL9K2MJJ+qYk81pHhXFa4stldU8YpThNkHlE0QZgxiXrO9cf6MV1xBrml7JTmvLP1RUfXN7uDKWO5RARObV0DIk49g86ZfpK+LwA0AddLp70zadKQFvin7goQhwYrvyDGP38Ur1ojPC6/odavNh3yOeMYUVbwkR5LlSuZC9T2ZypU5TbuQ/xSSNG6yKaf8Qkwrm6HqZdgHXnMqVXWVcps7+vU70u0W2edbJcdv2Pgri9LCsi/ZtPIkVipXisuKaemKddJJJ53+eqSDwjrppFMZlQdMHwSs/lW5yx/iBz897nscSDprb7VOfzqyv1vznTsrqxjR0Wfh7NQFLk794OHKTdm44Rnj8jKERLjGBIglzWSeCrPtNXTs/jkOnMqDvNZj7swFeOaRfujgE47H2r+Ent2nYufGw9wPBWeT7qCNTyScXMMx/oWViDqUjTtpwLGjGbhyAzh5qhifvrMYrV17Y3jYKiRdAG6KXRnCBRnZuHj0CiIivkajZj0xcfIqRO3PQ/4t4JIMr6M3geOi66f1+/Fkl8FwdXkSPXu8iBOXCpApa5DLJ4ALKWLDGeCXrSfxxudrcZPrpttA4q7zOHlOZNKB29KIg3tS8PuKQ7gmsidE702xfff6I3gmMBQetlA4W0ej7aMvYduOG7h7Fbh6ughnzwMX5fyn1bF47JFQGM398Fy/91W78rOl7rgsZIjM0aOl2Lj5OgK9I2FsNlT6kbGQ/zko7GoVlrxmzbqhalUbvLwewYoV61As6zLl2KiTTjo9gPhwED7QwI97zDQHc+K7//I+/hekROQPcUniwNoPuAmmFCP95k1MHReBlrUN6CO8wL8mYtrWUN60MQHaRnBJftUR712pLFYvOd6fAGklJPlURopPRQUEH1GAcEUFrib5VlQyDEFBj1569kYHVtTCPXDjNh+CyRroSjCYcvS+VTGJ7QCsyhMdyks5sCqi/Gsjxr+a8mB2yCZKPutK8qmibFFgL4Fg2kg56varptqhPJEdLDLxfmKjnwbqJijmOdO09lHGIU9wmZ7Dql12OQ1YroQ43xoacN6+InZK2b3BNbDqCTec+H21dHo+SosILv0XN0knnf6DiaNfm7ocvsLCKpHzEPcdyFdALPnek2IHZe1zofZP06OEOKHxJxHMlmt+90z9mreuJqtI/WRC+0KM+tW3/gy7IwLcd1P7zprS/EqfYV40lQUqlUJkJSQsf0roz1ykHAvIzFKZapJlPo/qv71YORBcJ5100ukvRjoorJNOOpVReeD0QeDqX417vLHpH+IHj/1wJa6m0lNApz8t2d+yCWwQGI6LuwQX58fgZhsGo3MoLAqcFFZhJMbYQWF6EGvpTi1GoctTb+HQ1WLcFlVnzl9GYtRhHNpzGfu2nsGZo1eQnZaFwjsFmPntjzC1DkNwt3cQn3IH+bIOWLN0B0YOexUffbkSd+T66vm7CB/5Jjy8x2DouMU4ewfIERv3b41BvydD4es3Ck8++x5OnJalRhZw7MANRIz6ABFvLUPsFSAzB1gwYyW83J5Fl0cjkHTmDnKlXZmSN/PDnzFy6HvoPegNjHlpFnK4cpHheXTvSYwZ9xV+WLpLLZfys/JxOeEOpo35Fm9+/QvSuZqRxn0Q+S3czCPgYhuNmQvjwZC+F49dRsSwFzA2cjGOn5IFkqySvv5iLpxNfdCz90c4elwaJWul/Ms5mPX+YoQM/w59+34Dc/M+8HIPVbGF/xUobLNMgNk4HA/V64iKFY2oWrURJkyYhqwsLp100kmnf04OCOGfseRTRDHPHReOfD74DuZkUZ4ljSLyvHN/ORQxNEURcgsLsT/2ELzb+qNeBQO8DQZ86V0Ve9rXQrQPwd+qSPSthmOtq+JYm6pI8qmkvGYJkNJzNtGHacIEZZXXbAUFktIrl164SsYum+BXEXH+BIWFA+xAcZABUcEaRzMOsR3sVUCuPZ9exrvaC7erhH1B1XEgqDIO2uVjyCITE1BBAdhk6oiVNIaPOEQ5OR4MrKKxXJexpEcFVUBUYEXhSnbmeUUFQjNfsV2eeglU03M53q+KAoYdoHCsb21E+ddQsZWj20v7RNeO3m1QcjJKuj4HBZnaZps66fR3pXszFeFRvrnIi4aawmRuKiXIyk3oymYr++NSHhQmlKx5GTty1V/+obewvBBSkuUV4Ct6y/TYQV3HbKjVLWcUkHS5UqdqglSTZLGytcyzmC+c/Gabiap6rYTDOiarDJVXju0H2qzZrZNOOun01yMdFNZJJ53KqDx4+iCQ9a/ET768Du1HfnVfmz5duMXeUp3+1CTv1UUF8notb+G5OaVYuXIbGj7cFq7WIXAv8xQmKOzwFA4r8xS2msfBZg5Bx8emYdepfNwUddx8Sb3121cTJUWSfvU81q9cj8c6j0RT1wgMGbcad7OB9JsZePuFz/HM4yEYMvptnLpSiAJZy3z/9Wo0atEHrYInIul8AfLExvnTV8P54SA0av4cXntvI26nA9m3gch+r8DS5HE87DkUr32/Hbmy/si9XYyuwaPxdPcXEXciXXkKH953HY97D4NTo25wsvTG6GkLkc4ViuiZNvIl1G/0CHoNewuZhQWyPinCD+8uQ0unHmj5SBgu0AX6LrDs09UwOw1GQIfXcU7qzpC6GD+5R5f+6NnrI/zye6r0IXD65HV4tB6O5/p9juOn8lRfHN4Wjw6uj8Po1Ac2tzC4GYfA0zJK+jASJsu4B4DCWr87tRgNT49w1KnTDgZDU1SoWA9hYZHIyeGiTyeddPqvieDBv2JOWuWZcAbZAXk4mBNbOaYov5vhZUkxiorykFdcjB0HD6BNu0DUMBjQWvgz72rYHlQdB70NiA+qigTvSjjiWRGnvKsj2YfetBW0kAzC8b7VEOcn7K/FA2ZICYZROORXHbEETu2AsObJy1ANmjdurMgTFGZoCUdICoKulHewAzgmMLsvmBveVUI0vXEDKpeByTxS5pB/Zc0bWPiQv9QvaQosLsuvonkK+1fSwjwQ/KX3sQJ/CQIzjXm0jd7Rci4co2QpQ9BZA73ZljjJIyf6Sj8QFParoWzbJ3UdaF8ZuwOr48enWuHKvo3S51kaqMRbp5NOf1MqP3NpE5G8aPBCfblFMPYPm9AxS72YCRM4listnfLatXqklGJNhlMbZz5tkisPCmsnzGOaplNkNIXlytnrk/mR5f4pKCx/CPNya08NqLZnMI+nDjl7kgPM5rlOOumk01+NdFBYJ510KqPyAOqDgNa/Cj8xZcV9bSGv2hxnb6VOf3biZktFBYUoKirCxo3bEBz8FB6q5webZSDMJnoKj1cA8D/GFB4Hq3kszE5D8PiTbyL6EnBd9J0+m434gydx6ngqcvNKcSfrMubN+xod/R5FK7e+aOH2Kqa+E61iz9G7riRVlgxpwNkbwC1ZO+RkAyuX7ISbZwh82k3FyStArqwiVi/cDluLJ9DMOhSrN14F9yA5HH0UXd2fha91COrawtFn/GJcuZqrfrE4uMe76NHtLSSczEOurD3Wzd0H/xa90Mo8Es1dhiH0hdUKLC64nI8RT4WgmUsvPNH3DVzPuIPCvDy8FvI5bI17wtYhAmfp7C6rmdVfrlDtfarvdzh1W1vgFNzJQfbNEtxIB25mylJMqr90PguuLUfgmT6f4NgpMUbWZz999yO6tuwtfdkfFvfRsLqMhJtR+pExhR8EClu0fje6hMPdLRT1G3Swg8J1ED5mLPLyCAqXrah00kmn/zZpQIQGQ9zPGrpBWOOPTEjDzgRfNOxFHsUCFBXnIU/mtF0Ho9AmOAg1DQZ4CX/hXQM7g2sgytuAuCBuHlcBh1sZcNynivIMpoes8uQlAOxfTYGhBG4PBGtevfuDGeqhOqICqihvXwK8KsSEdzUc9mLc3ipI8K2svIYPBVRQQDJBZXoS0xOZYSBYT4Iv66qCOD9NlmWog/kOUJmswlH4VEeyd03FCb7VFPDryGeYB8YLPtKmOo62qYEUr+rSpqoKXD4YVAkHgjTvYOqh7sOUFTsPe7Eugt5VpY1VFPCsvKB9abfm8UxAmGEnCCTHUEeHitgqeeuCGuAFc228EzYcybGHNFBJgV866fT3JI7+e28AfB+QyagsQZurSoWZ5JjRStTcJROWHRSmFGc8Td7ue8s/5TyDNUlKcba0k70erTxJ6i8VvVolqhbmaZMj69PK0kqV7gCFNeUqT1NJWJhsr4C2ODLLJTlmap7rpJNOOv3VSAeFddJJpzIqD6I+CGz9K3CXcQvua0ePiTMRnXLe3kKd/vxEQFgWEvLyX1RUgOC2HVChQn0YDE5o2uRpWM0h0MJGjNOAYGuosKQRGLaMVaEPLMaRePSJ1xFtj//7xaeL4eveBYMHv4nohJsKMzl6/CQmhb4MW7PuaGaagilv7UOBvM1n37mNxK3J+H1VHJb9fAQLf07C5t9TMHnct3B2GYH2j76FU5eAjGzgxyU7YWzaBQ3NgzF/7Um1nrh0+Awec+sBb5dBqNR0JHpFLkFauixHskrwQtgPeLLrq4g9nqnCRMz6YCU6WZ+HpclgNGk+DBGvrFeevqXXgcGPMU7wSDzR/2PczitAcUExXh7xNbxMI2FuPxEn0qURWaVY8fkiuLQYgqcHzMCpu2ofbRxPOILtv0Rh8ZpTWPTjKfz6azQWzNuE1n7j8OhT7+L42TwUy0ro6xdmoL35OdhcB8PkHgZ36zi4mTRv4H8FCru5joeL80A0bvwIKlVugeo1GuDlV15BfkEOStRPLvVlkU5/Z/o/H/8sSRiEXmnaPw0iJjPPwffTH3JkzsvL48+0cyUlHwUFBTicchSPdX0CTQ0GdBKe4VULUe3q4JCPHXQV1kJFGBSYGsd4ugRyycozt6qSo+fuwbYaOHwwkGCxBgrTo1iL90uQlcBqRdFHEJhgsKZHxfr1Z1iGykjw1UBhFZaC3sUqNIUWuoExi7mpHXVqnskVFJhLIDhRbSbHWMi0iRu/ad7L9GxOobezFzeiq47DXtXFBgLL9AK+521MW+gJzJjIR70qi7y2IR7tUZ7Iqh5pu38FVS5GdMdLHm1WtjBNeHNwTbxvqQl/6cumVSpjysTJKMrP04AlnXT6mxJnIDtOKsSvqOWZKANOCZlqADDz+aSQNVBYe+cjMU0Dhe1oLk8Va9c8pUpNzk52GR6oTfPqZTgXedGhkGQwXZPnG6BcSRqveaXSGZOY3+zb5e/ppwRjENszWAnVO1glMZce0DoorJNOOv01SQeFddJJpzIqD6Y+CHD9MzPjB3cKm3lfG8Z/vBo3uEuXTn8h4it1EYoKc1Ao7OrmDoOhtnAzNGr0ODzcCf6OEaaXsJzbRgmPtAPDY2CW9OYthqPr0+/g4OkitdHc958vgrf5cbh7jsaA0AU4ewsqVETU78no23UC3DymIPLFX5AtL/hXL53DyKdHwLNJR7h49kczz+fh4z0Qbsa+aNE8DI88+gGOnMxHkawPVszfCIvLY2jkNhRfL4pDgax/7p67gsEdhsPXNAi1TGMR9u4m5BeWIPfWbfTtNhXdu0xD8tlMZMqaZOZ789HFox/cWgyFs2k0xr/1K67fAbLPFWDEU5PQxDkMHZ/9FDdyCpGbU4Q3Rs+DR/MQuHV9EyeJ/qbnYtFHs+Ek5ds++THOyPontagAM76cDm+3Tqjb/Cm0aDkIni0fR+vWz6CJaRie7PcVDp/OQ7HYOuPVpfBv8RxM1iFo5DISrpapsDpPgcU8+V+CwjZrJMzmIXB2fhw1a1vQrkNX/L75d7lzRXLP6HejL4t0+jsTx/+/eAYc2Q9gHogzEH4oz+XwB43LTu5nyhLCyBPpAmTLX3keS0pRfDcP8z+fgR4WCyKbVsdq/0aIDaiFBF+DittLkDe6rXAAvXIJCle+L6YwYwerUBKBkh+kgaMEiuk9S/BYbQTnQ3CV3rlavipvZ4LCKhwEOZBeuARfKyPZp5LavO6wjwEpYgv5sB0cZt30QGZZ5W1MENif4O09AJfex5Qh+MwN67ixHUHeZHoi+2l5BK3JjGNcZqu9DsoTJCaorOqiPoa+kPoYY5g2x/lWV6Awy1PPIannl+CHMPTh6nAyGFCnUk30eKYXSov5ucXe583QSae/H3HkO+YpbUM3zj9agvblFqFWbZM3npG1KMHy3DBemGRoc57DB5hpkqj9F+KJlsvgFAR6VX5ZHZofsOZvnCYnWSrx3kZz1MKSRUqWadSh6lKb2Uk+DZAD9TBf8yXmjGqHfKmChR0s9bO8DgrrpJNOf2XSQWGddNKpjMoDqg8CXv+s/ORLP/1D/OAvFm+zt0qnvxbxpbsIBQXZclaIho2awFChLgyG5mjW9EnYrKM0QFjFE2bYiJB7oLCFoPBYOBtHo/uzH2H/kWw60+LLTxahtevTaO40FK5tpuLjb6OQLWuQYlkvTP9sHWzuw/F0349w7EweGAFhxcz1eCzoeTw/9H3MX5GMubP3o9+z78JiCkFw8DScOicLCVktLJm/DY0bd0Rzj8EYOnYmrt+QFYKU/3neNjzZcQy69fsMm6IzkJldgoO7otBGbHiq2xQcPpODPFl4TP9kBbxNz6C120g0btYfo6csQ7asULKvAsOffQnOzuPQrefXuCu2ZmcXYdroubA0HQVb4Ms4I+sdrlrmf7NU5MJgajUN6/edUyB4UtwxPPf0cDz61AR89v0WLF22E5Mnfw2jbYD0y7s4crIIxG6/eGUl/C2D4OYmfeo2Bq4EfI3aZn0KFLaOERbdBIStY6Vv6UU8Hq62cTCbhsJqfRYdOgzA8hW/IDePSygu+7Sll046/X2J4///7BlwlCyPOTjYkaf4vot7TDwjV57BPJk785Aj5WTyKJSMO3nA+WvY887bWNauJXYENcNBbqYWaEBMewP2ylGBwkHCgYy5S09fDThlKIhkb21DOQK9BGkJoNITV4VaYLowvYsZo5fArwrpQBlJJ1jLfHraMp3xexm7VwsnUUGrg6BwOWCYaaqc6NC8hclaOAflbWwvqzbEs8uxPqZr3sia/WVsz1dAtVwTFNbq1Op32Eebkr2rKRD4gN0jWotVXElrk/DRgErY4F8Pw51roonBgLpVqsm8/jQKGVNd3RiddPp7UrmpSIjgq7wX2BO0OYwzFENIaHOVhr/ynUHY/uzcm+/sBZmu/beTBr2Wgbb2fDLLaW8g1ExPYbHBnn1PJ2FgzZdYs8GeSz1EjzVBpYf5GjxM72bNS1n9Kc/2Ew30Vgk66aSTTn850kFhnXTSqYzKg6oPAl//jPz45OX32U1euy3B3iKd/nokr+0lxSjIz5V39CLYXD1gMNQTdkGTRk/C3ZWbyo0VLhc+wkYvYTlKutkSCSfnUDzx5HuIPZyPHHlH/+DTZbC594TJOgItJK/rEx8j+TCQLeuFqzeBHn2nwb3N8/jwk+24dBFIuw7s33kCh5PuIu2WnO+6jqe7TYWLU0906jQep88A+bKuWLzsEBo3fwxG977w8B2G6XP24eJl0XsXOLD3FGLiruO2nMfGXcCgARPgZnsMjz8xBkdPFCInH/jssw1o6dkfJksfuFj7Y8ILS1VYivRUoH+PabA2jUSvp75BVo4sb7KLMGHMXJhbjIaf3+u4dE1skMXLtzPWonnzcXAxvYxBoV/jyLlMZGQBKSmXsGffCdXGo8fSMWH8p9I/3dC796s4fQrIlfXSR2//ipaWIXC3DIfNNAKe0p9WF/YvN5qzxxW2M72EtY3m6C0coYHz5r7o3i0SJ0+mMxQzSkpkoVWi+d3opJNO//tEX7V8ZCtIOJ/gC38SzV0xb8ukcOMmMn74FnvbeiLKqx72+RpwqIMBB9oZsJ+AZ3sDDgbYvYblmuApvXgZZuGwNwFghlFg/F/tnGlHvCopcJWgKsHgA8KMPRwTqIGzDMVAb+BkH4aHkGs/hoKwg7xSB4FYDWCuoGQI0lIfgVrWzzzKaICtdu3w8r1fjnGLK4nd3FxOA5+V/SJzxLui2Mo4wZp3MpkhK46o8BGSZ7dfeQX7V8LxVrWQ4l0d+9oasEf6RAsjUREHAytL26viRJvq+N23HsLdKmugcGUD+vZ8FiVZMtlqKJdOOunkQFfvI15raQ86+/9H/7rUvVw+jLRBo3uy95/du7qf7uX9KymddNJJp/8M0kFhnXTSqYzKA6sPAmD/bNxl3Pz7bZ48C7FHL9hbo9NflYoK6Jkhr/TFRXj55TfRtGlL1KrVGi7OvWFyGQmLeZwGTjKMhPIWZlxhDcxketOmI/HYE+/hp1/OIi4lG1Neno2W3oPh6j4azs6j4eo2HlOnbUBMQgEOJWfhvU/WoLnxaXR85A2p71cc3JeGI0mZSI7LwoJZB9Cj+yswS91ml74ICozEzp0ZOBRbinc/2IQmLZ6Fa8vhMNoGwztwAl58ZS0OHEhFYnwaDsWkYtHCPRg08A242p6Gm9uz6Np1AjZvvo6o6AK8+PJatGoTiqYt+sLZNAhjxy1HdEwxDu6/geeeegmWJqPxRMd3cfDAeSQmXkP46DkwOYUg0PdV7NqVj5ikVEx7fQFcjBNhNE2Dp/doPD/sXaz/JRkpKXelTDq2bDmFMeGfw9O9F5o3eQy9er6BLRtv4uCeAkydsAreLSPQ0jUcrsYQuJnC4GpmaI6xMFkj77EChTVmH9tsY2A2DYPJ2AuPdQ1HcvI15WSTX5CH4pJ8uXP6Akonnf49RCAkF8WleeAPpAtLJIXf0+TKc3n9Es7P/Ay/tXNHVFATRKnN1AyIDTYgJsiA+LYGRNnBUYKqBGE1r1oCugRUq6h4w2Seqw3jVOgFkRU9KnavsBbaQds4TvPe1Tx0FYusCtXgR2/eSvaj3eP3H+TuMe34Z8z8eMX0JNY2pyPgrMBmSaeNtFWFwLAzAWKH/ZSh/Y42My5xijc3lTOoEBIEuaMCKyM6gGE1qiClTQXsCqqJ160GBFU0oFXDanjvlRdRyG/g9KlPJ5100kknnXT6i5EOCuukk05ldB/A+gAQ9s/Cz7y+EZ3CZtxn76TP1iA1PcveEp3+0sSFdYn8Ly7FrdRMfPDBLDRp0h4uTn3h6U5AWNsMTQshEaYBwwSIlRfrBLi6ToTRPAo+AWEI7hgOq0cfmGz94eEZCRdjOEymCNhcw9Dx0SnwCx6l2OYxGBbbaLi7jUGg3xh0DB6LAK/R8GsdDnOLwXAVfdzAzsM1HAH+L6BlS8kPfAGu7uFwNo2CZ+tJaOESouoI8JXy7SKFx8Gr1QjYzANgNQmbh4h9Q+HjPQHt278Gdw/aP0ZsoXfzaHi2nAJ/vxcQ5B8GN3M/tLSGw9Maio7twxEcNAqulmFiQwhsljC0a/eitC8Enm1Ev7TX5jYZzVwGwdVzGPx8pW3tJ8DPJxT+PmFS/0B42IbB2OJ5uFtHwq/NBDzS7nW0lr50aTYCbtIfbsaxsLlEiJ0MzREBLXSEgyPs4SPooU3QOBQ261BYLb3QqmUPfPbZfFy/ni63rQi5eXe1m6eTTjr97xPjchbmoSQ3R218ya9ouCdlalEudm5dj/cGdsd7trr4PagpEnxrIcWrApL9DYjzozduReEKCiClZ64KJWEHiBnTl6Brgl8lxQR8CSgzzyHDMgRok3yqI9GnmgJYCc4yZjH5kMgxpi9B5hTvajjsVVN55BJwJoDLfCUrR0dMYnoCH/HWmB69DCmhYgxLPoFsHnnNepOZL/IsR1tok4M12yooj2QygWiH/eX10D7ljSz6GNuYug4EVcaBwKqI9asqeRWQIDbSi/jngKp41VwB34b3x/mkGPWxpf10XSeddNJJJ5100umvQzoorJNOOpVReZD1QWDsn4EZP7jdiC/vs/WrpTvsLdDpP4JkVV1cWKI2gybGERNzDk0ad4CrdQhsjCdMQNg8CcozWIWQEFbpGljs5BQGiy0cru6jYLYNgov5eRgtQ5Sc1SplLGPh7DISRvMQuFieh7OpPzxajYbRFCr54TC5EAQeKjwSHrYxcDNHwN06Xq4j4WoZpzZaa958hMhGSJlwtFDex5PRtHkYPDymwOQ8AsYWg2E1Dkcrjwi0dBfbjCEwG0Ph4TYeRpG3ih6jMQJW2yTYbFPknGD2NLFf7DMOk/qGS90iL2wxDpayg+DuKvXY6BEdKvIjYLKMgMU1FGbLGBVH2Uiw1jUcLk7DYXYeCZPTCHi6RsDUYgTcLOGwmcQ+61gtRIRzGNzFBleTBga7m6VdBIbNY9WmciapR3FZTOExignCm6VfbLYhaNb0cRgMRtSo0RxffPmt3DbG3cuTG6iDwjrp9G8huuwzlgsdhoX5m4sbwjFXzqFnvyfR2GDA05UMWOj1EOIDH8Zhr2pI8q+CGB8DYvwqIzGoWpn3LUFTev5qm8MxDjCBYI15zjTmUYag6z2vXM2TmKAwQdeoYI0JvmrgbEWRYZzi6kimLD18WRfrcchKOeXpq8JEEERmCArNq5ebvVEXAWSHTgXkqlAV9hjBcs10Vb/dRgLb9CQm81x5NkseZQgIOzyG97fV9B6VPiEQTS/hmIBqYkNVJFOmvQHbpY79Hetg56C2wOHdQGGGilSaI6zPfjrppJNOOumk01+JdFBYJ510KqPyQOuDANl/Nz8ofvC6HYl263X6j6FihpCQpXUpvYWBgwfPoFnTR9DSYxTMxjANEDZP1kBhFUKCoPBYBQgzz2abAHeP8XAxjdI2l3MbAzf3sTCawmC2RKBlSylLkNMyGs4uI5R3r9EcInJyNIbC3S1CeeO6WuXaaQxcLZNgch4Pq2mSXHOTNTm3ah7JZvM4uNomw8VF6jNOhM06FW5WscEYCbOUtbiIXcZxdp4Ai2kijKKLALDJJOWMots0FU7Ok+R8iuidKnWLTmmTs/Ng0T0aJhcC1WPg4R4psqOkffR2DpMj65d6pB02ttFTdEh9NukDV9FNdpN+cm4aIecT5XwSrC7j4CH2mZ3HwlPstoqdLs1HK8DbjaEhpH/MVqnTFmpnnku/EQxWXtmSZh4m/TkEDRs+gqpVbahYqQHCwseioChTbhlhESJSOumk0/82qTAu+QWay6ocuG/SdTndcjQJLQM88ZDBgDbCn7eugwOBjZDgVRPxATUQ7VcFUX7VkBBQXQNhfTRgmJ7DUYEVcSBI4/3BGjuuuWkcYwQTUCWAypjAib7aZnD0POaGcgo8FqasA5jVwkZorEI+KJDWDjITqBUmqBvnVxnxvtWR4FtDmN7HlTTv43JyvOYGdAxrkehTxW6Hw34NEI4KqoCDYm95ZpoChMvZT11bOhmwu70BR+T6mDd1M3RGVZxsXUV5LEe1NeAgZcS2X5/yBFJ2A7lp6uuwDOlwffbTSSeddNJJJ53+SqSDwjrppFMZlQdbHwTK/tv4ne14NHLeffb1mTobCccv2S3X6T+KSoHC/CJ1vHolDZ99thBNGreHxTQQrn/0FC4DhR2ewhNU3GB6zxqN4XBxGQNX1wnKQ9jFOBo217Fo3mI4XN3Gwd19ogolQT0tnELRstUkKRcmciPh5DwCbm4Ef8fD02MaXJwjYbNOljJTlTcwwz1YrWNF9zipIxzNm4+Gj8+bcHYaC5NLJNysE+DhOlnsnQAzAWHTeCk/SbFV2NWVOsaihbCbx4uKjdIuM2VszJ8g9oeIDaxX0k3jpF6CwOEq3ATbo+mSNGmryUzAm+lS1jIFFqPoIShsnQqrcSKspomSThZ7GCbCPBburmKT6rcwuNkkzTJagc7/FShssY6QvhqBypW9YDA0R5UqDTE6bAyyc9NQXMoQLjosopNO/xaSOVM9fnRbJUop0+htOWxNioWblwUNKxvQ2mDAx961sSOwAaK9qyEuiFwVcYwD7F0R3BiOXrcKgOXmbcIxAYwRzBjAGhMoZRrzKMM0liMorDx1CciKDOPwHgisofhgYHUpQw9ihqHQgFge4xQoXFnyq4lcNTlqG8YpoFf0Mv6vY5M42sg6KXMwqBKi5EivZeokGK1tVscYyNzoTgOhme/QxY3vyDx3eDyr0BgiSy9jgtT7gkVvkBY+IkWYoDLlVL8wHnIHA7ZL2o5OTbC0WxucXL8M+ek3VXczXIfuKayTTjrppJNOOv2VSAeFddJJpzIqD7o+EJz9N/Azr/+GTqO/v8+2qV/8iLQMeiTq9J9IpcWalzD51Vffhrt7e1Sr6oEWzZ6DxRQKR+xgLaYww0dwszkCw9wIbRystjHCBHsJEk+G1UKv4gkwmkbDxTQSbu5avtFIYHWq5E2G0YUxc8NhcwuD1W00bB4MlxAOJ5dQOBuZPhEW2zh1bTSLDQRLLaPkGCr6IuBiDBEbxsLFJQxurrSP+unRyxi8YxWArNjG8Axim6ucu3EjN4ZqGAMXaxiauYyCszlc9EeK3klyHCf2RqoQE+royuNYBUDTG9oo5yaGf7BNVEC10RShrtkuEz2V1WZ8E6SNExT4TXvYRgLImuf0SOERagM+m2uIHEPg0VJkysBgDRDWwkdozL52dhkCT88RqF+/AwwGJ1SoUN/uKZwltyxXbpwOCuuk07+FiEgyZkS2cKZwHpAhj+P+lHj8f+2dB2AVVdbHHwkt9CY+qQmEEnookogKRBGJYoliQUEgWDCW1Szfrpvd1dXYMDZkXQuyu2rQ1Y2urLC2oFICUgKCBhWlKEWKBEh5Sd5L/t85d2ZeXho8NEHB/09vZubOmXvvTPTF/DycGTS0h8kUjpb2wKAmeO+M1lg+pAFWnl4Pa093YcMQF7L7axmG+uaFaiuGShvWAJ9IjGbgftGvPjb3tVpOf31hm5yTmCyJWSnbtXKNSlnNsFWZqlm+K4Y2wdJhrbBkWGssG9oCK4eEGSGrtX9NRq8RyCEyRyMsG9ZcYlti6dBWyBraDKt13sFWjDZTT3hIqIzZVMZqKWO2MVtrzBAjcXVMrVls1j9M5pemL737dFB9fCnr/7qP1TbJ+vXFc/pSPOslcvWt9Q9shM/7N8FnA2Rf5tNSFUtiXfhY2rLhmvEcKvOF4H+DwzB38Cm4rJkLiXEj8b+M/8Arz541hQkhhBByokEpTAjxEyheqxO0x7uNnflvxF6XVmFdT87/0F4tOTmRX6ntYsKlpV706TvQSEeVj+728egZqTV1NUM4yRLBRgirkNWXzemL0FTuap1dzeS9HRHhd6BzJ5WityCyx43oFimxkVPRpetUU/ZBz/XoPtOSzJE3oKvW6e1pZcl2lJju+jK2bjciIvJmdA6XuWUMlabdJSYicoocqxieJvNNM7K4p8SHh1svvtOsZJXPfqGqa9es28jp6BR+ncwh1+hauk9BhM7ZcxrCe1yPzhE6x+0I73YHOna+WeaS9XeXezNyOEnG/Y3MI2vvovOqdL4NXbsmoUPHafK8fiP7Kn1vlbgkdOpkxei6evScIWuUOcOnolfvm9C562Q5vg69om4w9Ym7Rkyy7qW7JYKt5rxoTppmFas4l/V37XolTj31XPnedEOLFhG4+54H4CsrhreUVTUJ+dlwpHCB7GjaqnyUFspn6pfbNuHaK8agTwMX4l0uPN8nDMtjW1mZwEOs+sFaRkFr864ZrCUe6mOlStWhWk+3PrKlfTqwHj7Tppm4g+phVXQ9uVauP72B2a7SrN7BIfgs2mWavtBN5eyqIU3wiWlhWK0lKrR2sZzTF8NpVvF6uW6t9K1UyTw4TFpTiQvDOpXCel6aClrdV6H8SXQjGbO5xLWQOZtKn5aNsOY0L4eLDsHaYQ2xcqiWt1DhXE/GCsUGfWHdgHr4XNb/qezrfVq1kTVjWDOj9R4bYlPfRsgZEGrqEq8aLi3GqUusGccqvhvjg9Pb4redXYiSZ9k+xIVrr7rGksLSKIUJIYQQciJBKUwI8RMoX6uTtMeznXv7yxXWo+2tDz+1V0pOXvRXai0dUQyvtxDdI3vA5WpmyhSc5h6H7pqda0ToTZYIjlQpO8UWwyqJVb5Kn5Y5UNEbfqfVdF/7IidbrYbzEZHXIbzHVHSNTJR2vbQbpd2Ert1vsgSpZs7K+BoXYca6LmB+FdRaYsFp0xFhxnRKMUwz14ZLfHgPbTrXZGmTTOvaU5r0d1U53f0WdO12p7Tf2GtQcXuLtNtMi1D57cypa9eSGvpczBpqanLPNTYrxioTofc6w243y3xatzjJNJXu4eGJ6CH30LXLxWjXdjiuuuo25ORshc+nf2aduXKE/GyoFC6Rf/9KSuH1+eAp86JI/p0sLtmPZf95AfeeOxCPn9YAywa1x9oBjbF+kCWD18S48FG0bM90YeVQFz4ZXA9rhmn9Xs2OleOYelguMfoStqwzZHu6C0skfoWK5OH1jXhdIWNpxu5ncu0XQ0OwYYALGwe6kDPYZSTsp/oSOiOO6xsxnD24gSnlsGFIfWyQc9n9rHi9zgjcoaHIljFXy/46LfEg+9kaJ+c/G9JAYq05Ppd1aLzJFJa1aymI9TGN5B607IOsUdqqM+phqaxZ72GFvf4suS8jfWWrtZPXqvyWMTf2rYccGUOfw1qJz5Hzuq6Ng+rjc3lmm/s2xbsDW+G6Di50cLnQpKEL555/PgqLS/nJRwghhJATDkphQoifQAFbnag9Hu2ie96vUj94wszn8emXO+xVkpMb+bW6TFPdSuDzFcJ92mlw1VMp3BHtTxmDnj2mBUjhREvIGjGrIlilsGbj2pJWyyeE32E13de+SM2GlVbDec3+VfGrErirvmiue5IRtOGyNYLUZM1qtq/KXpWy2lSoytyyJkvWaoxVfsLKulWRrM0pyVCdILZaV7k/SwrL3N1ul3arJYT1eiNob7EErZnDlrlG1gZmTmsLlNPabGFunp3TNPNXm2ZYa/a1yl+rqQi2mty3mdNqOk9U71vRvdt16NzpIpw3JgmrPtmmid0o8aoU1tIRVCOE/Dzo52cpfGVeFKIUBfLvY5GpdnsQyNuO7fPS8M6IflgxuCOyBjbButjG5mVrq2Os2rnrZKuSNntgKNYPa4i1pzfAsmgXPlLhe3Z9LJWYjzWDdkQIPokJwerhmiEcgg3Dw7B+UAOs0/ITKnblGs3e1ZIP61U6y7HW/V07rAFWRYdg3emN8GlMGFYMUIkbgvVDQ7HhdJlzqFwn8dpUBqtkXjtE6xA3wNqhjfDJoBBky5qyh2qNYDkv4+ocOVoCQ6WyHH8+pCHWyDrWavayjndmIyyX7Sdn6LrrYZncg+5r9u/a2Ppyj6FYLWv9bIi+ZE/rIss48hyW6X0Olxg5XjewvtxfMznXAut6NcS7w9pgWmcXOrpcaNHEhQsuuRBFvjJ57vz0I4QQQsiJBaUwIcRPoIitTtjWdbvgD//FmZXqB8987A0czNM6peTXgf5KrdmmxSguycMZI0agQcM2Rgqf2n4MevdSCWoJ2HIprBm7KoJtAepIYRWlEb+xmpGmlaRwNedV9Fry9TaES394xB12k/1uWtJB5aiKU5WpjlhVqapj6YvgNItXM3plDH+2bWCzM467a2kGRxYHNqdkQ+A1TryKZqc5Alju15G8zv3L+ari1y65ofLbySzWl/WZJvdv5Pidsv7fyPpvlfWrDLaEcLgca1+EuS4JnTpOle/D9egReSXGnHMzvt6cb6RwcTGlMCE/J5qrWiz/Dv5Qlo8DKMFhaSVa59t3wEjhrfMexaKzo/FBdGcsjj0Fy0e2xuLBVnawCtlP+7nwea8QfDGgKbIHNsKKgSFYHdMQq08PRVZ/FzbEhGKNxK8eohK5HrK0BMOgUKzVOsN9GmNTP9k6UldalrTlpzfEspgwfDysEZYMtWr4rpLxPpFz+pK3LBkva2gIlsm5JXL88TAXlqrEHd4Qq/TldIMbY0V0Y4lrjJUxTfChxC8/IxRLhkucxKq41bk+HaLlLUKxuX8Ycvo2woahYVgua1aprXN8GlPfyF+VyWt0/NNlTjleObAe1g9ogM+jGuDrIWFYL2OqIP9Y4lbE6DpaYMmAlrKGU7FiUFtsGHEK3pC4pK4u9Ha50LqRC1dfexkKfV4UlZbx048QQgghJxSUwoQQP4EytjppW5dt7G9fR+zkRyqsYc6rH9krI78e9FdqH0p9RfBJe+75FzDs9HPRpElvU66gZ49EW3LqS+ZUAAeUj/DLUc3e1bibbfmppRVk30hkzSqWVsN5U+6hW5IlRyPukKai1Gnap9I3SeJVBFcUwipXHalqxjCtPPu2atOs4spNM4ADM421lYtgp/kzfys3vwjWdWmzZbBm+VaQwbYMt2Ww1ZJl/XLPKoJNVnR1mcI3o1dPua/wSegReQVGnHEd3n/vUxQWAKVqhlk+gpCfDZXCJfLVI/8eFkor0j9xoZnCZYewb/t6LHg0BXcN6IK7I1sgtU9jPDusBf5zZhssPastsoc0w/K+YfhgYFs819WFx6NceLS/C4/1deGNES2xeHAzrNQ6vkNb4Z3oMPw9OhSzervwcB+J6+bCq1FNkTlYXxJXHx8OrYcPRrbC6yNa44n+jXBfdxfuj3Dhr73r4bUB9fH+6U2wZHgYVo5qi//FNMMrQ5rgrwMa4eGeLqT1qYcnernwSnRjvBPTAstkjGUj2uDtwU3w6qAwPCpjPSRx98h4T/YPxZtnt8ai0xthZWwYPo5uiMwhbTEvMhSPyhiPD5S1yfpeHhSKj4c2x6ohLfHJ4OZYfHoL/Puslni8n8wn9/jXvqH4m9uFRfJMsoY0RNbw+vjorDC8dXYrPDu8Le7rGYZZUa3xSKQ8sz4N5Lk1xx/7N8aZYS6c2etUPDvnUfPs+b/ECCGEEHKiQSlMCPETKGSrE7d11c65/aUKc2t7e8lGe1XkV0eZ/FpdqoKxDAcPFmLOnHR07nw2IrtdKW06NFvVSE7NiFW5aySwZsyqAFW5a2fM6r7JjFWZqRJZM2s1NiC+ynnp1+NwlaZ3IEKzZ51mS2FLsqpwteWrGUP6TRkKFckqhVWiOmI4sEm/xJsYs63YrLF1XJW8do1fOTatu1WOoqL8lWaEsN6P0+eIYEcGa1MhXI0UlvX6S2hIi5Bzuk4ro9mpLVwusvV+o3onocNpl8u1l6Jjh7MwceLtWLFiPUrLfPId09If+r0jhBxvNE/VJ/8emn8HvV5pJSgrLUZu3l6kPn43BkZ3QXhLF/o2cyE6zIWL2rrwWExHvHNOP2TH9MZHw3tjRgsXzm7kQremLnSRuEGtXZjY3oX/juiJlSP645MzB+C5fu1wgfT3b+VC5+YynlxzvsTf3b0hFp/bCe+MduPl8yNxR/+WOFviomW8oSESE+rCjbI/V+XzyE54N64r/nVud8zo4EKcXN/X5cIAiTtLWqJc98rojvg4vovEnYr0mNaY2tiF0XJuWAOJayj7Mv+N4Q3w6vnd8X5cG3wgsSm9mmK0jNVT7rNHGxf6yf6VEvdyn3bIkntcfWY/vH5md1wbYT2HbhITJdtRsrZbJfYdube1o3tg0bkRmDXCjbPdMkY7F/rIffaTucc2kbie9fHXsf1x77lDsPiFp3Fw2xagpASlPn72EUIIIeTEglKYEOInUMpWJ29ru1109/sYNeP5CvNe9bsXsPHrnfaKyK8R4zTKAJ+vzJQlWLNmGyLCz0X3iKvQM1IlrC02VVIGClFHfBoxqoJUJaaKVm26rxJZpaojUKs5L617xAxpSdIcmarz6daRwfac/vINKm2TYLKIJU4zgP3CtkLTfm0yl45lms4R2G5Gd11Dt+ulOfJXm+47x854zv4MM6dfHjtzHLE50rhiM/LXX+LCaSqkrbF1DZGR09GhQwI6djgfLldXhIS0w9133w9PUZ5827R+KcUIIT8HPhzA2pd/g6dWy4GpwlMKn6cY27/djismXwVXfRdCQ1xoKdu2Lhf6NXbhsUnj8PkTd2PPI3dj5cxbMED6T5Pz9Ru4ECKtXTMXBrd0Ycldt2P7w/dh24P34smLz0UXHUeur9fQhWay1Zeu3TQ8Cp/PugPbnk7Bxw8n49phPXCKlliQplutwTtE2pOXnIktf70Hnz+eggW/vx4jZPxO0t9GWjtpEaEujGjhwr/vvBabn/4jVj9wK16ZcZkp13CqHdfc3j+/a2tseOYv+CLtFmx8/LeYNryvmauBrD1U7qOJ7PeStb5w6VjsmHWfae/OnIGREU3RVOZp2ESanHdL3HA5Xjjlcnz/hKwt7f/wzE0JOK2RC43lXFNpOm6EtAlR7fHew3/EyhefBw7myoOXH1gl8sB9+sOLEBIMu+cnyH9DuI7QEpD+nR18QrIb6RPkPu7Nso9rm1zkzE/GHP28J4SQnwClMCHET6CcrU7i1maL1/rBiU9VmPP3T76JvIIiezXkV4s6Rfkdu6hQy0gAH3ywEaedOhLduk5Er8hbrCxek5WrAlgFp8pK2ToZsEZwOuJT4k1z+gLEbLXnb0Jkt+sRGaHtRmk3obv0OaLWKkGhdYztMhSmdIWWnbjByFirBITKYokzTfet5oheayx7XCOgbw5ogfPfLE3Od9Nrtd1opLH/PoyY1j6r3q8jdLXUhF8m674R507Taxyh7ayxvOnatVWudVxetuJ69O03A+HhV6BZs+EICYmQ1gZTp12Pw/n75Run//5SChPyc1DyXToucrlwzwo50KR9/X80sj24Lw+PPPgYBg0Ygj59+mJwv744s3cvTLs4Hlkf/Aco3A3k78KeTZ9i8pXXoX+/4egZNQhRfQcieuAg3JKYiLxvvwUOHwYOHcLS/y7Axeefj759+qF3v4Ho3WcwYoefg7+mPYGS3d9I3C4U79qK52Y9jNFDYxHdawAG9OyPQX0G4LxRI/Hxe4tQWpCLkoP7kLvzW/wuKQl9u3ZHq/phGNC9J86IHow7broR3331JYoOHoAnNxefZ6/H2NHnYkBUfwyMGoCBvfrhnJgz8Pg9f5Yb3CttJwp3bsffn/07zjxzjKx9kKyrL/r1icJ5Z43AB/961RK4+YexY+OnSPntnRgcHS1xA9CnXzQG9DsdVyVchW/WrwPyfgByd2Djh//DNRePx5CefXF65ECM6jsU5w2Mxux77sah73cjP79AKzYb/w6vfO4VaqkOFpAgJBgsKRyNiXelIW1WdW0usuRf2ROXOpbC8nmfIJ/3qfp5TwghPwFKYUJOQj788EN779gIFLTVidzaalo/OKZS/eC/vbbEXgX5taNlCErlL29pKTZ//R3uSnkULVsOQvdul6FH96mIVKkaMcNsu3VLRI8e0xARMVnadegWMU3irjfnIrvfiIjw6XKN7quQTZQYub57Irp2vU62N5imMSprrXH1+omyfzUiIyahW/h1cr2Odz16Rl4v409G9+7XoFvkVYjscSUiuk1At+5XS99kOZ4u5xNNbGSkzBF5LSJ66DgT0LvbVegZfi16dZPxZT4zl2b+ytgREhvRbQp6y1xRsq6eukYdJ/x69IrUNU2RWLm3cNnK+qx71K3cg1xrSeYZcm9yj5HTEa71fntIfLdJsn+txMh13afI8XUSZ2179Jgic14r8ZPknKxT77fHNabPqs8sz0SeU/fIaegaoedlnB6TER5xpbQE9OlzBZo1j5Zf6E5FaIM2uG7q9SgpLYJWNKUUJuTnwftdOi52pLCaSv1/NCqHfYDncDHWrd2AJUuXY8mHH2Pdsizs3PyVCShFIUp9h4EyL3IPFWHJ8vVY/NEnWJa1FqtWrcP+fQfM/6iTD2eUeOTfc18ptm/7Dh9/nGViPlq6Btmffg1TPaGsBCUFByXWi6LD+chZn4PlH61A5vtLzFg7du9BoddrlueVQYuKS7Bn9148PutxdGzfEc/+9RnkbMzBrl3fw1PssxKeZe7DhV7s/P4HLFu+CkuXZGHJ4qX44rMc5OfmoqxYZaxE6v9MlI+gdRs2Y/mKbHz08QosW7YS27duN2v3FRfL8iRA9g8dPIwVK1Zj6bJVyFq5Hkuz5D5zC01dYJ9XHlqZtBIPvt/+LVYvWYlPMldg5fvL8FX2BhQd0j8VIael5ck9+6Wwlj2iEyYkKCwpfKJnAx8JSmFCyIkBpTAhJyH33HMPRo0adcxyOFDSVidza6Odc9uLFeYZMSUN/1v2mb0C8mtHX9XjQwGKcBhFZYW4duoUuOq3kF8cTkHHTiPRvdsliIy4Ct26Xo2e3SchvMvl6NH9cpzaPg6nus/GaaeNQXjnK9E9/Dr0ipyGiC4T0TNyssRfha6dL4O7/QWyTUDb1udLjIwh5zp3uEL2J6Nnt2no0ulyGSNO2ih0PG0cTmt/MSLDp6Bblyno1X06una6CuFdE9C1y4Xo3OU8tGt3Fjqcdp71ErzIiRJ3DXp2vUHWNB3tu16E08JlPaeOQI/2ZyOy/Tj06nw1IjpeZ6SwCuQuEZPQoceVOOW0seh1yjj0bhOPiFMvR3ina6RNRFRPvYcr0S38SlnnJTjt1PHo4L4InWS/02mXyjjXyNqvRY9uU9C14zUy72S5x/MREX6xPJPz0L7dWHSPmCDtChlH71Pm73qlxE00z6JjBxnvtHiJHYPu3S+R+7jUPLuIzlPMM+keMRGnyBh6Pjz8Qrjdo9Cjxzh0DR+JtqcMkO9LG/n+tMT1N9+OQ4UF8r3T1y0RUndYIiEVC1ekIT5SfuGOjEXKe5oSK3h3I3NWImK1X35ZjohJROobOSZhtgJ5Oci4t+Y4Z47Kv8pX7vcf78tC2tVRpgSBu188kufnoEqCWxBrO9K9eTZlIHVqHKLc1vV6LmFmOnLyzGlgRarV72+yLv2XUVtuNfebIXObrFZtpXL9fXIuAelLM5DYzw2XOwoJ83Lk3NFxRrFwjuye8hMGPfSVWp8TZis7Bw4cwC1Jt6Bd23Z48IEHTW3eIo/1p4Y0rsTrM3G6Xz16pvxszXE1U3EEJaDH2Q3oUnTXeHBzRAg5FqzPuyClsHxmp89MCPgMS6j+c7YC5VI2d2kaJurnmsuNqPHJSN8YeKUTtxBZs+S/wcz4Kci0P1tzN+pnb6zpd7kiEDs1FRmbqvxUMXMkxkRY6xuXjIVbt1SRwsH+bDEc6edUdZ/35iJCCDl2KIUJOQlRKez8h8KxyOFAWVud0P0p7aK738PIm56rMMc1d81Dzpbd9uyE6C/XPpSgAPru/NyCHxDRMxKu0CaoF9oOYU164tRTR6Bv1AQM6j9J2rXo3HEsmoQNlH/WuyK0fmeEhIajebPhRogOGTwFpw+bil69LkHLlsPRpMlAhIT0QmhoL7PfuPEgRPVOwOBoGWvAtejT+yq0bDFcxugkY3VEg4Y90azJELRtFYc+Pa9B/z6TET1wEjp3ikOrVjpnB9QL0bjuMl4/tD/lTAwZeB2i+0xHP4lt7h6Oes27olnT09DA1QotZbxWjYcgKvJqDOw3Hf37T0W3Xpcj7JThcNXripbyy0ZLV3c0dg1A65YjMaDvRET1ugyDB01Ej8gL0bZNjMzZDSH1eqJ+aBRaNB+GTh3HYGB/Ga//NTLmJHRwn4vmzQeZsg76TBo1ikLTpgPRvds4DOh/BYYOmST3fKm5zwb1+0qMxoWjYcNeaNMmGv36XoIhgxIxoM8URHS5BE3DhqFRw/4mTsds0bIv2p0yAIOHxqNbZAxate2OTuF98MRfn0OB14uSMkphUrdYvzy74Y6Ml1+QM7Fwfjqy9skJTzbSRssv/ZEJSJ2/EJmLFyL93gTzi3ys/FLu/xU+LwupMfLz0R2HxNkZEpeBOdfHwS1jTnzN+nkU7C/u1nEsYmPciLtjLhbqnHfFGzkc+0B2+ZxBrq3Ge9s8F/ESGzEhFemLMs2a595hzeOesdASI/tykPlaCuKkL/FpjbGFif9+45Fi5nbut9JzMZJB5nbHImmexL0h97PJPlfLlJoXiVr4fD58/vnnOOuss+RzqCEuvvhiHDx40JwrKyszzSFwnxByYmN93gUjhW1pG5OINOfz0/6cjZ+3xY6pDuc6+YyWz/tk/VxblI6U8SqHY5G62v/Ja8W53YgYn4oMHf/FLPP56ZHPxVj9nB2fYn32vjEHifpZrtev8H96IndBkllPxIQ0uT4TGbMTETd6IiaOkXF/jBQ+2s+pmj7vCSHkR0ApTMhJSKAUPhY5HChsqxO7P7bF37UAZybOrjD+H556C4X65zwJCaAMWjiixKjhvKI8nH5GLOo3ao6GjdvLP8enoHu3kUj5w1w8lvYW7vnzixg18jrUq9dJzrVF/YbtZNtSWgeMOPNqPPr4a3jgoX/iD396Cqd1GgRX6ClyrrW0Nia+UVgXzEi6V+JeRdqjr2L6DffJGJ3hCmkisWESY2Uod4sYhb/c/SKefOItPPxwOkaOuhwh9XUMiQlpKttm0lphdNyVuP++f+DxWf/B73//DDpGDYGrcQPzcqcGYQ0QIrFhjTrjmivvwsMPZiD1/lcw4/ZZqN8yXMZpiYaupmgi62vg6oRmzfrg7rufxwMP/AOPPPISxo27TmJOQb0QvcfWsrWexznnXoO0tPm4//5/4qEH09GrV5w573I1lxhdYys0atwRkyYn46GH/4FHH52PxOl/RIuWPeVcW7jqyXghum2FU07tgVtu/QvSHvk3Hkj9F6684veoH6rS+FR5xqfKVsar1xY9esbg0cf+jtQH/or/+30qHnvyGWz9bjdKyvS7x6w5UrdYvzy7kLSo/BdyZcu8ePkFOhkLK/1m7HkvWX6RjsfczdaxiQs4tvAgc2YEoibMhebGBvuLu7OWCnJV2PJcxTmCXVtN95b9dByiYmTeCt2y5rtUTgSss5o/Tpw9S8u8JCB9q91hk/N0pedgZ57FPR1cdvBPxRG8RUVFeOWVV9C2bVv5jAxBREQEli9fbs6pPHbiKIQJObmwPu+CkML251rKUvvY4MHCW92ImpqOmrWwLXsrCVz5RMbccdI/bq59rROXhIXOn7wwZCNtkPRPqDSHNwdzKlxvxbknVYzzLE1BtKz7x0jhYH5OsXwEIaS2oBQ+iVDpx8bmNP3lrrqm52qSw4HStjq5+2PaecmvVRhX23MZy+wZCSEnMoVF2kqhdTgLijyUwqTOqV4kbEH6pfIzbkIaFi7WrKmAZmdTJczXLODdyJikcemyVzPB/uJe/VoE+5d1K/M42LUdYbwasOKTken4jiqSwJYaMzMrSGvDvgwkSmzcc7bGsKXw8RIMKny15ebm4rbbbkO9evVMa9OmDWbNmmUyiJ2MYhXCekwIOXmwPr+s302qtoDPQU8mUtyarZuKhZtyq36W1Ygte6v5vLfmnogMc6KGuHVpRuomO+WJAsh9I1Guj7Ok7ea55nO8atwWzP1RmcLB/ZyiFCaE1BaUwicR1f9QZWOr2vSPaX7wwQf2PznlBIrb6gTvsbbK9YPPnvYY3ss6PllIhJC6R5WNr8zaFvtKUEYlTOoY65fnyuI0C6nV/KwLbO4HsiUuG6lakzfgl/TqCO4X95rj/Osx8wS7tprurRxP7m7krNCyEnOQMiPeri8cEF9FElhz+8VvBQLXKBxnKayit7CwEF9++SWGDx/ul8JNmjTBJZdcgh9++MHEaHMEMiHk5MH6vIvGxLvSkDarcpuLrIA/WbFlQTLinHrq7ijETU1F+uItRymZYMve6j7vK3ze1SCFTYwtfisTeH2NcblYOKPi/MH9bAnu5xSlMCGktqAUPonQkgFsbE4z/+FUqQ0aNAhvvfWW/U9MVQIFbnWSN9g2/s/vVqkfPPmP/8CX2/bYMxFCTgZ8pVZmcKmKG33NXJlm81EMk7qjenFaSXDWSHBxwf3iXnOcM48le4NdW033JmxdiGRTx1J/lkcgdkwcEmfOQdpMLRdzYklhpwyEbvPz8/Hvf//blI4IDQ0182sJiZ49e2LVqlUmxuv1VsgYJoScHNT4eVcT3lzkLE5H2ozyF85VLtlQkaNJYTdSV+tBXUlhLfdQcf7gfrYE+TODUpgQUktQChNyElJZCnft2hXp6en22ZoJlLjVyd5gWvxdb2HEtCcrjPWnv/4XxSVeexZCyMmCx1MMn5phlMFXWoySEv3jkxQ3pO6oXiTYf0x3jFPjsSZq/mO5u1+b6H/jvDVHUpUawNkPVKzhW1Oc88t60gI9Eezaarq3XGRMlesHJWPhdxX/ePKW544mhY9ePiLhRXtVx0kKK072r75Q7s4770T9+vWNDHayhVu2bInZs2cbIRxYRoLZwoScPFT/eRcsHmyZp9dHI22d3VUFW/Y6L+MMoOJndw1S+KjlI2TtWqv9mMtHHO1nS3A/pyiFCSG1BaUwISchjhRu3rw5nnvuObv36ASK3OqE79Haecn/qjCGthfetF4YQwg5CSkDiouKrR1TWZiZwqRuqUkkWC/miUbK0oq/mJuX/bijkGL/wl79C3y2VJAC+ib5KrIhLwspKlirSOEAsWqTPStW+hORsc86DnZt1d+bnTX2p0pZY87Ljo4ohXUtR3rRXCzmbLQ7jpMUdoRwcXExvvnmmwrvQFAxrBnDYWFhuPbaa7F//35/vG6ZKUzIyUNNn+VVWJGGuH6xVeSvZ1E1n9MVsGVv5c8/bzbSYqR/aoYti2uQws7/VJP+Cp/wzmdvzBzrhW/ydY6OVynOI5+psfrZFiCFg/3ZEszPKUphQkhtQSlMyEmISuGHHnrIPgqeQJlbnfQ9Uou79Z8Vrh89/XF88MkX9siEkJMSdTTG0+gX/dMA2ihuSN1Ro0iQX6xT9RdzVwQSZmUgc/FCpM9KNHUoK/wRYyfOHY+U+QslLgNpEyLkulikrral7b6FSNKajjGJmPNGJjLfmIPE0RGYOEnnriqFzZz3pmOhzDn3jji4XW5MnB+gB4JcW/X3pnUpNYvMuVZrCqdiYj83IiJ13QHxubJuWU/0jLmylhxLeFRzv3Ou1zW6EHtvVnkG8XGUwto8Hg9ee+01nHrqqSY7WOdWIaxiuGHDhujTpw+WL1/uj6cQJuTkImgp7Mm2PsMiE5A8z/oMzJiXjHjz+ZlRLnLtzzDnxZ1+2St9em2qfv4tmmuV4nFPDBDFNUnhcrHrHp+C9EXOzwL9PJafFyvK/yefExcxIdXELZT1+WsgB5aBCPJnS1A/p6r7vCeEkB8BpTAhxE+g1K1O/FbXTP3gG5+tcO3UP7+Ir7/ba49KCDlpqSCFmSlM6p4jioS8HGTcm1heb7JfHBJnZWJ35epFFeLciBqfjPRN5b/gK55N6UgeH2XkqbtfPJLn55hf/KtKYVnL0oX+2Aj5ZT9tcWW1IASxthrvTa5Nn+m8WE7WO1rmWLQFueaPN7uRsthZuwfZsyfacc6b9YXcinObNcr1Fe74OElhRctCaBZwSkqKv5awNhXCWkpC97WExAsvvOCvKaxlJCiGCTl5CFoKK7nZmBtQS9gVGVv1s70mKTwhHVkLkhHfz/qfa7FT05BZ4SO6Zims5G7MQOrUWESYzynr+oVbK/68UHI3Vv6ZsRBzdNxKtYGD+dliOOrPqRo+7wkh5BihFCaE+AkUu9UJ4Mpt3O//U6V+8D3PvG3XGCWEnPT4pbBCKUx+XRyT1CB+tHTEV199VaF0hJMtrFuVw40bNzYlJPbu3euXwSqICSEkOI4sewkhhFhQChNC/ATK3eokcGA7785XK8Rr+8dbLGxFyK+KClJY/2cQpTD59UApfOyo4FUp/Pbbb6N169Z+KVxdxnCvXr2wevVqf01hSmFCTiLmztV6d/aBTYsW9o7NT4oJkMJ1PlcAP3cMIYQcI5TChBA/gYK3OhHstLhb/1Eh9twbn8SHq7+yRyGE/GqgFCa/YiiFjx0tA3H48GH87ne/8wtgbbqvWcJOxrD2qTTWl+WqENbrCCEnCe+8AyQmWkLz+eetvr59gUOHysXnT45pbknhs36H3XU+188c8+abVh8hhPwIKIUJIX4CRW91Mnj8n97B2Tc+UyEu8Z6XsXXnfnsEQsivCccJW41SmPy6oBQ+djTrd8uWLYiJifFL4EaNGhkR7GQLO5JY+6+++moUFBSwpjAhJwtr1gBjx9oHwvTpkH/hgc8+s45VfOrxT475Culy7HIPKC8fUWdz/cwx991n7xBCyLEjnyiEEGIRKHsrC2FTP3jqExVi7ntukX0lIeTXSGUpXEYpTAg5Alo64j//+Q9atGhhJLBK4YYNG8KRwnrsvGxO5XCPHj2wfv16c60KZUIIIYQQUntQChNC/AQK30AhPKaa+sEvvf2JfRUh5NdKRSmsf6m0oRQm5NfK0bJ58/LycNddd/mlr5MtrMdOX+C5li1b4umnn6YQJoQQQgipAyiFCSF+AqWvI4Tjbvl7hf6xM57CkrWb7SsIIYQQQiwceRtYA9h5UZxuv/32WwwePNgI3wYNGhj5GyiHHUHsZAtrCYnx48ejsLDQHo0QQgghhNQWlMKEED+B8vfCP/0PZ9/wtwp9N9yXjm93H7CjCSGEEEKq4vV6/VnDKoi1eTweLFiwAM2bNzfC1xHD2px9RwoHyuJu3bohJyeHNYUJIYQQQmoZSmFCiJ9AAXzG1McrHD8w9x07ihBCCCGkKpUzhVXkOjL34MGDSEpKMvLXyQZ2JLDWE3aygx1B7NQa1hISDz/8MEtIEEIIIYTUMpTChBA/gRI4sKUvWmVHEEIIIYRUj8rgwIxezRhWVOh++eWXiIqK8svgJk2amK1mBDdu3LiCENZ9J1tY48aMGWPqERNCCCGEkNqDUpgQ4qeyDI5PmoPl67+xzxJCCCGE1IwK4ZKSEv++loxQdPvWW2+hQ4cOaNq0qWkqe5s1a2ayhFUGO9uwsDBTYkJb69atTUyfPn2wevVqMxYhhBBCCKkdKIUJIX4ChfCM+1/Bzr0H7TOEEEIIIUdGRXBxcbG/1INTW1izfN98801MmDABV111Fa688kpcfvnluPTSS434VRmsL5VTMaw1hK+99lpcdtlluPrqq80106dPx/Lly82YhBBCCCGkdqAUJoT4cYTww39/1+4hhBBCCAkOFcAqhHXroPsqh7ds2WJKSGzdutXsf/3111i1apWRvk4ZCc0OvuOOO/DNN9/gq6++wrZt27B582Zs2LAB+/bts0ckhBBCCCG1AaUwIcSPCuF/vbvGPiKEEEIICZ7KL4NTIey8dE7RYy0l4cjjoqIiZGRkYNiwYRg8eDDGjh3rzwh2xtLrK4tmQgghhBDy06EUJoT4Wblhq71HCCGEEFK7OHJXt05pifz8fKxZswaLFy82GcFOv5ahUHTfqVNMCCGEEEJqD0phQgghhBBCSJ3jZA07Wb+O/FVJrE3lryOOCwsL/XGEEEIIIaT2+UVL4d3zE+ByuY7QEpD+nR38s7EFC2fGI8ptrSnhxS12P6me3UifIM9qQrrsHQdyc5B+xxxk24cnJj/2mdnX3ZtlHx8DJ8VzI4QQQsgvEUf8qiR2ykmoENatlpRwzgXGEkIIIYSQ2uUEkMLRmHhXGtJmVdfmIivXDv65WJoia3Qj/oEMZC7ORPZ3HvsEqZ7jK4Wtf4ZS8SO06C+I4y+FT47nRgghhJBfEo7c1a2WidAsYZW/KoLz8vKMGNZ+RwgrThYxIYQQQgipXU4AKfxLyAaumRNhjb9mft1yk1KYEEIIIb8cVAYHimFtP/zwAz788EO8+uqrWLt2rZHDTkygDHb6CCGEEEJI7XDySOG8HKTPTEBspEuucSEiJgHJ83Nw5ERiR5otRNaseESY61KQmeeczkTa1FjT73JFIHZqKjI2OZnA9rXmnNPKJVruxgyk1nitUtPc5SIvd2kaJvZzm7EjxiUjXa/3bkGGU67CHYWJsyTOHtHPEdetHOW+j8pPWaN9rZP1ui4NsXJttIwVuMLsx2JlzFikrg7srcRRvudZ91r9/hYoR4/6jBQPct5IReLoKLjtMZw5yiNr4ft1VCo9s0pzJsZEmDnd/eJrXFsFjnLvR3xuhBBCCCE/EhW7jujVfX3J3CuvvIJzzjkHvXv3xpVXXonMzEz/eecFc7qvGcSEEEIIIaT2OEmksC2/YhKRNn8hMhcvRPpd8Ubkxc87Uo1f+zq3GxHjU5Gh171oSTvP6jTEuV2ImJCK9EWZyFyUjtQJKt9ikbpCBZoHu1dnIuNPcdIXh5TXJGaxJSQ9K1KN6HSPT7GufWMOEkerLHSuVWqa27mXWMRGJiBV70evj5G+QUlImhSBuDvmYmEN93j0dSs133dw/JQ12tf6BacH2Q9YAjhtnenwi+LYx45U0dZZQ83f89xNzvcnEXMWy7PYZN1hcM8I2PJcvPRFIOHedLkX/T7ORfJ4/T66kbTAeVo/7fsVHJWfWTVz+u/BjZTFlb7PAVI3mHuv6bkRQgghhPwUnGxfRw7v3r0bV1xxBerVq4eQkBA0a9YM//d//+c/r1vnGkphQgghhJDa5eSQwt+lI8HlQspS+9jgwcJb3Yiamo6aFZwtzVxJWFghS3YL5o5zwT1zYSVR6kHmTDdc4+b6x6y6xmykDbIEXoV5vTmYI2OWX1vT3E6/jLnV7hI87yVLnwvRfwrMqJV1jpHYSRlylX0c1LprmjtYfsoa7Wv9glPwZCNVJaquzyvPz9m3T1dLkN/zqmUQgn1G2ZgzJgqx91bMYIYnEyma9esXrT/lWQRL5WdW/ZyQu0ytbm3+42DvvbrnRgghhBDy03GEr9YN3rNnD+Li9H9Eu9CgQQM0bdoUkydPNucCJXCgHCaEEEIIIbXDCSCFVX5V1wJErC3q3ONTsXBTbkWJd0SqEZTKVks4JszSDNTMCs3KoCyfu4oUXpeGaLk2+b2qq8h9I1Fi4zB3sx7VMLfTf2klqbwi1dx3RQkKZP0pYIyg113T3MHyE9ZYw9ye1Zpd7UbcaM0ariw7qyHI73kVuXkM39vqsdc/M9Oe86c8i2Cp/MxqmLOmOEcKH/M/15TChBBCCKldnAxg3e7YsQPnnXee+W8mzRYOCwvDlClTjBQOFMHOMSGEEEIIqT1OACkcjYl3pSFtVuU2F1kB6Y5bFiSbPxZvhLE7CnFTU5G+eMtRSiJUlmg2ttCrubmRutoKrSKFzbWO+K2EPW7qCj2oYe6jrMm6thxT/9WJDXrdNc0dLD9hjTXO7ZG4aHN9QpDlFYL5nleRm0E/IwcPcnfnIEvLP8xOQdJ4u77w0e4nqGcRLJXnqOkZ1hDnSOFjuHdKYUIIIYTUNiqCnSxhzQTeu3evyRTW0hEqhTVT+JprrqkQ68DyEYQQQgghtcvJ86I5xZuLnMXpSJtR/vIx96TK2ZSBHJvQq45fohQ++rprmjtYfsIaa5zbKm2g1x+1dEQgR/me1ySFg/neVpDOkbGIG5OI5NlpSNYSEEe7n6CeRbBUnqOmZ1hDXCUpHMy9UwoTQgghpDbRTF/nxXEqhQsLC02m8MiRI9GwYUMjhlu1aoWrr766Qpaws6/XEEIIIYSQ2uPkksIV8GDLPL0+uvwFZlWoQa5tnos4lwtxzx1dTVZZ41HLR0isKY0QrNizCUYyBr3umuYOlp+wxhqutV7qFo85b8xBvIwRH8Szr0rV73kVuRnsM9qXgUSJi565ELsrfCvtusBHuZ9fpBQ+5n+uKYUJIYQQUnuo3NXsXyfrd9++fRg/frzJEtbWpEkT3Hrrrf7zTrawI4gJIYQQQkjtcXJI4RVpiOsXW0X+ehYlVRCEValJrtlZq4NSkFXhRWweZP0pGu5+Kci0+6uu8SgvmouZgxzTEazYswlKMga77prmDpafssZqrt0814jg2MeyzWH2Y1pXOL76bGuHIL/nVeVmkM/IvpfKNYGxyZLWR7wf5ZcohY/5n2tKYUIIIYTUHip7tTk1gvfv34/77rsPbrcbjRs3Rv/+/ZGenu4vG6GxFMKEEEIIIXXDySGFPdlIjXHBFZmA5HkZ1ouz5iUjXl9ENimjXJzZoi5hvtNTk1yTISU2VuWfjJn2RiYyF6Uj7fo4uF1uTJxfrnurW6NzrXt8CtIXybVvzEHiaLfExSJ1hZN2GqzYswlSMga37prvOzh+yhorX2uLyphUZDuPxpOFVBXrgWUk7LH937sgv+e5CyxJnPTcQmRusqoNB/WM9i1EkpaOcGK0pvC9ExHljkCElqmo8X5sgvx+BUflOWr6/tUQ55fCwf7zUf1zI4QQQgj5KQTWCFZUDm/evBl//vOfMWnSJMybNw+7du3yxzlCmGKYEEIIIaT2OXnKR+RmY25AXVmtAZs4KxO7A99JUVks1ijXLDybMpA6NRYROp7LjajRiUhbXEnD1bDG3I2B10YgdmoaFm4NrEMQrNizOQbJePR1H/m+j85PWWPFa7e8qM8vGilLK5bb8LyXbF7olvCiLSqrfO+EYL7nedmYc7X9crgAWRzM99azKR3JzovlzIvs5Hu4ORfZj0XLcQoyzZJ/+vfr6FSeo6bvXw1xAVJYCebea3puhBBCCCE/FifzV1ug+PV4PP46w4qTSawExhJCCCGEkNrjFy2FCSGEEEIIIScXKn0D6war+NWX0Dn7isYE4vQTQgghhJDa4ZcthefOBe65xz6wadHC3rFhjH1gw5hyGGMf2PzYmGeftQ8IIYQQQn48TsZvYMawymBnX0WwtkA57JxzjgkhhBBCSO3wy5XC77wDJCZa0ur5562+vn2BQ4fKxRVjai9mepxVguGobbBVKuNEua9faoxdXuLorQXSN/3Ma6YUJoQQQshPRKVucXGx2Vfp62QGa9/27dvx1VdfmXrCKoX1nJMprDGBkpgQQgghhNQOv0wpvGYNMHasfSBMny4rlaV+9pl1rOJKjxljURsxXg9yJ09GrvTlrliB3Nxc5H77rXV8zjnWsTaJ8RxpHOVEu3flZ4g52nN2vhemdPHPvWZCCCGEkFpCpa9mC2tbt24dfvvb3+Kaa67Bfffdh61bt9pR5SUjmClMCCGEEFL7uOwtIYQQQgghhNQZgZJXOXjwIO688060bt0aISEh6Ny5M2bPnm0ygxVHBqs8dvoIIYQQQkjtQClMCCGEEEIIqXMcGeyUhNi9ezdGjRplhLC2Jk2aYMqUKf6X0CkaF3hMCCGEEEJqB0phQgghhBBCSJ3jZPuq5NWawfv378fZZ5+N+vXro0GDBmjWrBkmTpxoYjTWqSusONcSQgghhJDagVKYEEIIIYQQUqdolrDWEnayhXW7Z88ejB49Gvpy3Xr16iEsLAyTJ0/2l4woKiryx+q1hBBCCCGk9qAUJoQQQgghhBwXnIxf3e7atQvnnXeeEcJaPkIzhVUKOzEqg5khTAghhBBSN1AKE0IIIYQQQuqcQMGrwnfv3r2Ii4szQlhLSGhN4cTERBOn5xWnnjDlMCGEEEJI7UIpTAghhBBCCKlTVPIWFxebrdNyc3Mxbdo0NGrUyAjhdu3a4eGHHzZxWk/YEcO6ZfkIQgghhJDahVKYEEIIIYQQUudotq+TBazSV2sGv/322zj//PMxZMgQXHPNNVi5cqVfBmuWsHMNM4UJIYQQQmoXSmFCCCGEEEJInaPZvpoFrKjkVTGs4nfTpk3IzMzEtm3bzDmVwnpezwU2QgghhBBSe1AKE0IIIYQQQuocpwyEI31VEOs2sF/lr8pibc41TjwhhBBCCKk9KIUJIYQQQgghdY7KXcXJEK4se7W/sLDQ7Gu/Nu3TLTOFCSGEEEJqF0phQgghhBBCSJ3jZACrDHayhDVDWIVvQUFBhZfJaZ+edzKFCSGEEEJI7UIpTAghhBBCCKlzHBnsSF4VxHv37sW7776L+fPn44MPPkBeXp45p2icI5GDIwupLhdcR2r3ZtmxPx7PujlIjImwxnOnIOt4JTGvSJU5E5D+nX18FDwSHztuLrbYx7XO7kyk3ZuB3fbh8cP6PifMP/4zH5lcLJwRgeT3PPYxIYQQ8suGUpgQQgghhBBS52jmr+KIXs0OfvHFF9GjRw906NABw4cPx/vvv+/PENatc01wYtiWwuOSkDYrrfq24Kcq0i1Iv1TmiEnC3EWZyFycg1z7TJ1zLFLYk43UmGikrqg7QZl1rzyHCemUwoFsnot4dzIyy//fBiGEEPKLhVKYEEIIIYQQclxwRK+TJXzZZZehfv36Juu2SZMmuP322/0vnVN06wjio2NL4VrIBq6Z4zFHDRyDFN4yL77OhS2lcHV4kDnTjehZ2fYxIYQQ8suFUpgQQgghhBBS56jc1fIRzr5K4REjRhghHBISgsaNG2PatGl+EaxNUSHs7B+ZYxO2uUvTkDg6Cm69xh2FuKlpyDySZzRSVmIDWrmYzEXO/GTE93Obfne/eCTNzqomizjIuLwcpM+MR5TbWtvE2dmmHERQUtiTiRS5LmlBwKjOtZsCxnVFIFbuOWufHeMnF1mzk5DglMhwuRE1OhFpS53xdiN9Qvkz0GY9h5pkbeV++/jFLGRcr89fxp8wFznm3NHmVoKVwh7kvJGKifazjhiXbN2/rr3CPyPBzCnsy0La1Dj72dkxi6tZgzxrtysRGVWeKyGEEPLLglKYEEIIIYQQUueo2HVeJqf7u3btwjnnnGNEnErhsLAwzJgxw/+SOSc7uC6ksArWaJcb8XfMRcbiTGS+oXWC5Vp3CjJrqriwLweZiyVO57h+juxnIvs7Dd6NjKkRcm0cEmdnmP6M2YmIc7vgnpQeUNM32LhspJm1xCF53kJkLkpH6oQoTJyUIM/q6FLY816yxCVhYaDTNFI4GrExEYiTtes9O3O7KtQdtjJdA9e4cH6a9WxcsUhbZ8XsXp2JOddL35gUM5b1HI5NCrvdbsTeOhcLF2dg7gJVwsHMrQQnhbfMn2iEs3W/C5F+bwIi3LGIHSTj+f8ZCXJOj8wp17nHJ2PuG1o2JANzpsZKjBspiyv/AyOx8lzj59VZNWdCCCGkVqAUJoQQQgghhNQ5Kna1bIQjeVUKn3vuuUYI16tXD02bNsXkyZP9MQ6Vj2vGkoXBSGFT+uDSQBErbJqDuMhYpK2wj6ul6hyexSlwu+IxZ5Pd4aD1ZQOkYbBxuW8kGiFZsR7wFjs792hSWCVnNfdmpLAL0X/Kkohyds+vJJr3LURyTERV4WrWWFHEVi0fUZOsrdxvP8Mxc+zsYJug565pngD2ZRh5HyvfpwpP0YjigO9fsHM6mdZbrUOLHMwZE4HYWZX/edMXzskck36Ol/ARQgghwUMpTAghhBBCCKlzHBnsZAvv378fI0eORIMGDRAaGooWLVrgiiuuMOccCexkCB+TFK6pBYhcU3PXFYukeVnYckwvBbPnCBgr609y3DsZcxdrBmlgs7OK7djg4mypOyYwe9fCygA+mhTegrljyuf0Y0vhlKX2sYPdn3pEEa5Y9x33XPmqfrIUrrzGGqk8d03zlJO7IEnuKw5zN9sdfrKQEtTclea0JbFmNmdtDdTM1ZP9WLTMnyqjEEIIIb9cKIUJIYQQQgghxwWVvI7g1ZrCF154ockSVjHpvGguUBxrKQnFkcNHxpaN45KQNiutalsQoFnzsjFnglND1oWImAQkzc5A9lFTOysLzar1das0kzF6jHEzMytkuBrWpSH6qFLYWl/0Y5VedFaT/K2p3+tB7tZsaJmEubOSkejU2w2QqXUmhY86d03zlLPlRc2ATpHIytjPt/LcR53Tg+zZCYjQPm2RsUiYMQcZ66pfQ5UMbEIIIeQXCKUwIYQQQggh5LjgCGHd5ubm4uGHH0aXLl1MlnC/fv3w5ptvmnMqgbWpFA4UyUfmKLKxGjzfZSNjXnL5C+eqlG2oTOU5bMlYQY5WxzHGVSeFN89FXJBSuIowDVoKV5Sf7n5xiJuQhJR5qRWynpXal8LBzl3TPOVseS5OxghGCgd/vwbPbmS/MRfJ/hfOVS1RoVAKE0IIORGgFCaEEEIIIYQcF7Q+sLPVpnWFH330Udxyyy14/vnnkZdn1XJwRLATV1dSuAL7MpGiLyGbsRCB72irSOU57HIPruSaX1BnOMa4H10+wlrfj84UNtnILiQ8nY1cK0nbwpOJ5Ar3LTPVIIWrzL07AxN1zKNJ4aDntq4/khQ+UvkIfQmcf6xjuN8qeHOR+SctE1HppX4CpTAhhJATAUphQgghhBBCSJ3jiN7ArTaPx2OOA5sjjxWNccpIHJkaZGMVtiD9+lhETM2oJH/1xWFy/TFJYdgvkHMh4cVKGndrOhJcEYifZ71OLdi43EVJEheNlKWB9ljWPMkdhGi0awr/qdIzCFIK+2VmhReq6ZqSK76gTagqhbORplK90nO1SjkEStzqv0/Bz310KVzTi+ZUrAeOFeycW+YnIjYyERn7zKGfnKc1I7mqFGZNYUIIIScClMKEEEIIIYSQOkdFryOEtWawil6nz8kG1n5txcXF5ho959QXPjrBSmFg92sT4Xa5EXd9GtIXZSJzUTrSpsbClI9Y7WhEu9RABblX3RyOsJXx7piLhYszTUmKhEiJi5Fr/S+yO8Y4dxwSZ2eYOrdp/vrHR88+NS+0q5xpfAyZwrFy7B6djLn6XGTuOTPiEeGOkFbxvi3xGY/UNzKR/Z31zLIf02foRvxd6XJ/C5F+bwIiYiZi4pijS+Hg5w5CCgtb5iXY3+M5yNBnPUvW4nZXFMzBzvldBibKsXt0ItLmL5Q4ubdZieba2AeyK5WPyMXCGXLtEf/nAiGEEPLzQylMCCGEEEIIqXOcLGAVvYpKYZW/Tt1gJxvYyRJ2YjWTODiCl8LKlkWpAbWE3Ygan4z0jYEaL1gprOQia3YS4vup9JXz+iKymenIqWIFg4zz7kamSkcVxq4IxE5NQ9ZrKbJ/dClslZmolNUarBQWcpemlb9ozaxvLrJ277ZE57gA2bx1IZLHWXHuB5ySEXJ/lde9b4t5jkeVwkJwcwcnheVJIGd+sv9ZR4yT7++mhVXmPpb7TQ2oJezuF4/k+TlVxa9deuLo6yOEEEJ+XiiFCSGEEEIIIXWOkxnsNOd48+bNWLduHXbs2GH6ioqKqmQIOyKZBIEnC6mDXEh8g3mqVclCigrbyiU8ahGrTEjVUhOEEELILw1KYUIIIYQQQkid44hdzQB2MoTXrl2LpKQkjB07Fvfddx++/PJLE6eyWOMUPXb2j8rcucA999gHNi1a2Ds2J0vMEdgyL75iluuvDS0L0S8OaavtYxvP0hREu9xVM6ZrjVxkTHUhelall+0RQgghv0AohQkhhBBCCCF1jiOFVQbr/sGDB3HDDTegadOmCAkJQbt27ZCWlmYEsGYJO3JYt861R+Sdd4DEREuePv+81de3L3DoULlkPVliJkywtjXhyUZqTDRSVwRbeuNkIxtpMVoOIgGppgZwJjJmJyJO6wJPSq87Wb55LuLdSVjILGFCCCEnAJTChBBCCCGEkDrHyf51JO++ffsQFxdn6rOGhoaiSZMmmDZtWoUMYaeEhF57RNasAcaOtQ+E6dPlNx35Veezz6xjlax6fLLEfPON3VEznhWpiP01Zwvn5iB9ZoJd39iqAZw0OxO7rdLVdYC+YC4CSQtYtoMQQsiJgfwXBSGEEEIIIYTUPSp5VfBq27NnD0aPHm2EnUphzRieOnWqP5NYcWRwUJnChBBCCCEkaCiFCSGEEEIIIXWOkyXs8XjMVqXwOeecY6Rw/fr1TabwLbfcYsSxE6u1h5WjZgoTQgghhJBjglKYEEIIIYQQUqcECl4Vvtq0fMTIkSNRr169CpnCTj1hRwxrKyoqMtcSQgghhJDagVKYEEIIIYQQUueo5HWEr2737t2LUaNGGSHcsGFDtGjRAlOmTLGjy19I58hhQgghhBBSe1AKE0IIIYQQQuocFbv5+flmX8tB5Obm4sYbb0SbNm3QuHFjdOzYEffdd5+J0/OODGaWMCGEEEJI7UMpTAghhBBCCKlznExhRWWv7n/44Ye44YYbMHbsWNx2223Izs42GcKOCNY4PSaEEEIIIbULpTAhhBBCCCGkzgl8WZwjenX71VdfISsrC9u3bzfiWOOc0hGKbp19QgghhBBSO1AKE0IIIYQQcsJTJn+XoLSsFPo6N6NcS6Wph7VdbBk80lUIX5l0qGPVIHvXZ75a+PfKrABnmGI5YYaTrZG0ZhxtEmGanBQ03mra4VytYtds7C4r3pSI8Md4Uer1wlci/XKuSMYu1XM+WYd2mvWYHtPMWKbpF2vXOSezyVd5EmVF0qRHDs2SpVnndT6P7EiM1eFsqh47F9rHXvlq7k0PrG5nU6EveH7URYQQQgghPwlKYUIIIYQQQk54fPJ3AbxlJTgkR4XapZUatAqD+tQylZwH4MV+FJdKpxpPj9VUcBYZSWrh3yuzpKmqWB3msJzQrUe2Rgr7iqVJj9lKlHSp2tRptanSLTNXq5yVCfWkzqtdxizr3ypYVbNKjI5uxrVO6z14NVjH9+pCC6SnxETq+GYsbSqYdSPNnk32dU+eRJm00hKUymGpBHgltFjm8ELH+kHOH7Yukn4d04ykxxprbazxbYmtx6rWizVSjp2NNv9Oda3ibgCVggghhBBCjhOUwoQQQgghhJzwqPXMg+rOw3JUqI6x3M6acgw+HJDzB6ES1hhPlcLqh40kLVeTRowqthRWEWorW+TLgccWoSZ712tLYScbV7p1LG1WjrHulZ83XTqgNhMfKIV1PumUcyqFLQUs15t55JxP7k/WpJHazFjG5MoocoFmF1uz6VV5sndAxss3cSW2b1Yp7JH1Fvukv0xiSmVcGUOXZ4aSZgYp1VX55C/pLZXZtPSFnNRl62Pzzy9Nn16pOSPIHNW2iruVqPkMIYQQQkhdQSlMCCGEEELICY9mw+bKtthIS/Wa5ottOktKCuHDIdnNh5ZO8BX7LLOpArbUKqagjlPVpG4NpvRCsemzZCuQX2Jyd018mdYF1vRbNapqZG23qddb4+mevYjKUli39iUqVMvMQlUKywk5ryHlUliayufSw9IKjZwutMcp1bRlXX9xmVmKymQfDstV++Dz7Zc1ypi6BIk30rhM119kzScdpfIcfMVedcAmTMWxmdxkSOfLrsplFcty1h5Dn6+u1roH1dqFsqu90qHXBzZCCCGEkF8olMKEEEIIIYSc8KjSzEepKbEgqLBUj1ksmxKVrip3D6O0TKVwmVUNwSfNFp2aQWtcqF5rBK4OoGiQpUFVCmvTusW+Us2itaYxctgur6BYPlRLR2iE06RXT+gF5iJp9kblsZWrrBJaTkq4hmj5iBLdMwuUmUsOyH6B0a95Gq5BJRovF9hjWzWKNVf6oDS5X59Hq0eYc14JKyn1wlumxTKKzX2oSNZrzS3IrhlHd/SFd7Imk1WtD0rXYP1tpHS5FNa/9Q7sA0IIIYSQEwRKYUIIIYQQQk541JLmw1dyyJKkjgiVll9kZbKWlR6SVoASXymKpd9TBhRJ8/rKUFxi5eoaraklFcosCayqE74fpB1CvhyoEIWvEGXeYiNtjS4ukkhNtRUsLapWVdejTYW09kpTsSphmo2r0dqr2yq1h+VyjbFUtB3klb3ifXKiAPly7rCEm+FMxrOcs8e2BK5VGqJMYku1frIMpsnGukTL7WphCM0EtrOepd9TpCUsdDZpunzpk1ATb8bVJuf0ZX2ai63ZxubFdxpnT23hBOuFlRshhBBCyC8HSmFCCCGEEEJOeNRkemRzGD9s/wKfrV6JDRu+xI69h43INTVvffuRf+A7ZK3JxuqcbdgrJwrKpNtXasSmClIjNzW1tkyzZBU5YWrvHkZZST6Kigpx4NBho0/zZEiVyiapWLaOCrXyiXVWFa1WDq3BlGCw8of1eiveyin29xqpa06YEXQk3ddU3uK9XyFn3XJ8snEL9smterVfm1pdY3z1ernKV2BaqeznHtqHLd98ibVr1mDduhx8+mkOtm/7GnmFB2XsUhTKjatX1vs3T8AWvaYJzhTWjq5aKxZrlrReZF2oobp63Vp34wzgnCk/azVCCCGEkJ8fSmFCCCGEEEJOeFRGlqCkYC/mP30/rh4fh8uvuBIvzH8Dh+SsCl8UbMeqD9/E+QlX4Kqku7D6m1wc8gElJZrpq9mzlr60kL0yVbKaHVsq+4XAoS1Y89FC/P31t/F9kVXXVzORTbTuy9YSqJppbBV/UN1r5lY0A7lUc3Qt4WtpUkej6swBUljQOG0mu9dTjNXvvYprEsbiqmm3I3vzfhTpJTphia5Vm8ypL5ArKUBZ/kHkfPEZ/vb833DTjKm49NKLcOGFl+OyhKsw887b8cZbr+PrPTtNxWBTlljH0nmtVGJp+kVLbmgRCavLBGnpDNnVZsU4ec4aaZWR0L8sMexEOs2648qY6axdQgghhJDjBqUwIYQQQgghJzxlKPP5UHL4e9x7x1VoGepC4yaNcMk10/HZLi13IOR/iQUvPQpXo+Zo23ck3l27w5SAsIRlsV9bGkPp06xYvcpU1YUMjM1LXsfki0dj1MXXYP3OAisXWC4q85Ual6oCV8fQEg9WCYcS069xRnoWH5R+q+yEnDXlgHV8FaiWapWZTKaunCjzv3rObL2FRfjfS4/j1KYutOk8AB+t+87MZ8ZVM20yhTVLOA84vANrl7yL62+agdO6RsBVz4XQ0HqoFxKCENlv3aQ+Th8+FH94+AlsP1RsymiU6kJNjQm9IR1UF+eR9RfbOc+CT2aUefRldiXaYVKktQSF9YyspnLYuiPttY70DvT+tOk1ZgI/elSxhxBCCCGk7qEUJoQQQggh5ERHraI6zcN7MOuuK9Hc5ULDxvXQvlt/PJn+IQrVS+Z9ikUvPwhX07ZoP+RCLFr9vS2Fi+X6QhSVlKHQ40NJYQGK8g+bl8mp6CyWsfN/2IF/pt6MDmEuDD7nUnyyLQ+HfTKltKK8PHg8RVbWsQ5XmgetQVxScAieYq8pUWEyivP3oOTwPhyQXX0N3KHCQngK81Ba6jXNV1qC4sJ8lHnyzRryigrNtUYMyw28+1IaurVrhDZdBuPjDXv82cbGPJsmRyWHsO+Lj3HTtReiWetT0LxdF5x51rlISLgUl0+4EBfGn4VeXdqgQf0G6BA1Ehkffoo8vU6fQUmBTJYvz8CD/AJZV5HcQ0mhEdgqoM15fVGdPJT8ghJ5RodQ7JF792p9YksKa25xickmLpV7lnsq0/vSq/Vs9WJY98qPCCGEEEKOD5TChBBCCCGEnOioVfTJ5tAePPK7S9C8ngv1GrrgaubG2CvuxOavvgMOb8CCf9wPV1hrtBsyHu+u2Y9Cuc5XfAibv1iL1974L557bh7Sn3kC/3ktHas2bUeujFmYfwjvvP533HjpWWgR6kK3QbG4Z85LWLhsPfYcyEPm22/iny88i6Wf5iBfSyqU5GLP15/ipXnPI+M/b+Pr3XkoKPJi8yfv4YU5s/Dioo+QuWEL5v7j73j5ny9g+9bNKCkqRHb2Grw6/yW8NPdp/OP5p/Hq669h07bdOChrKPL48P5Ls9C9bQO07jwMH27Yb2Sx5uH6pbBmNxfsw0evzUHH5i6c2qU3pt/+R6xZ9xnyCw7DU3QAe3Z+gdn334UhA6MxZMy1eP4/S804Jrv54A6s+fgdzPvnP/D0M88i/YUX8MF7i7H5+wJLnnsPycP4ARs3bMSCBW/h2b89jrlz/4bX3/wvNny5BfneMiOqC0q06rCuTcWwnSWsGdB2b6AU1q8VFTEhhBBCyPGBUpgQQgghhJATHTWL6h8P7sEjM+ONvG3cugmaduiNpqdE44W//RM4sB6L0h+BK6wNOp4xAe+u3o98uSbn0yxMu+4ynBbeAxHh3TDwtDBEnNYGF918N5Z8uQeHv/8Gt18bjw4t6iGsUQhCm7ZC+x6DcFNKGtZt2oorzj8bbZuG4u4n/or9xV7Asw9vv/I82rdqiaj+Q/Hauytw4HAB7v/NJLOulj2jMeqq6egc3gVnxkTj4w/+h1VZS3H5ZQkI79wBkZ3aoKvMH9mzB26+84/44vsyFHhK8cFLD6JH21C07hyDxRtyUSC3qwUa/FnC3kKZehv+OO1itKvvwkVXXo8vdhWYLF9fWZGEyRW+Q/Dt24q3Xv83MpZ8iV0+GOFbmLcLH7/5HC4fG4P2HdzoEt4TnVqdhn69TsfvH5qHnYe88ObvwoaVi3DdpMsRGdkJ3SPaoWt4R5zWqReuTfwNVq7fhAJZRr7XKidhyV5Zm5aZKK0qhR0h7DSKYUIIIYQcTyiFCSGEEEIIOdFRq6hSOHcPHp8Zj9YNXOjYvw/GT7kNrVp1w4SxF+DAxsV49/Xn4Qpriw5DL8SHnx7AIQ8wf94cDB8UibEXXIynnpyNv92bjN4RHeFqF4XfPvZPlHjysOiVZzB5/Flo3siFLn2HIuWxeViwdAO+2boDl40cjNNahOIPjz6FXF1L4R588O9/omXjxujd/3T8d9nn+OFwIR757WQ0dbngat0Jfc69BI/PfgwvvzAH+3dswaMP3Y/oQYNw9RUJeGrWn5Hy2yS0b38qmrePwN/f+gT5haVY/OL96NkmBK06n4HMjYdMWQet52uksHnRXAEO7vwSFwyIwKkN6mP6b+41L9nzyIPxluZh27av8NWnq/DNykx8uWEDlm8+gNXf5eOQ14c9OzbjjzdchfOG98XNv7kN9z/8CG5PTESrpm1wSu8YfLBqAzy53+G+3yWhWaMwdAsPxxOP3YeHZ92Hc8ddhGFnjsGTz72I3CKrgrA2I3rVV/t0bY76dVq5FC7XxIQQQgghxw9KYUIIIYQQQk501CraUvipmRegTSMX+p9/AV54+2Ocd+ZoRDZvghce/CP+/fLf4WpyCtz9R+Hd1d8hzwusXfouFr7+D6xavQYH9u3Dho/exgXnxcHVshsuvDEFeT6g8MBO/P2B3xjZfPoF1+AbD3BQ5vwq53NcdkZvdGnTAH944mn8oGvJ343FGf9E84aN0KvfcCxa+TX2HyrEw7+5ytQ6DusxCE+9+T68ZUVA8QGg4ABWfPQB3sjIwJavv8DB77/C//6Tjn59+6FRy074Teo85EvoRy/ei95t6qFl5zPxwcY85JlblkVolnCZ3vxhfP/1OpzRsR06Nm6O3977jKlfXAQPDubtxAMP3ItrEy7C9AvjMO2qKxA/9Xbc8sBT2HngIHz5B7H83/Ox6t238fV32/D1t9/gPy8/i1bNGqFBpx6Y/dKryNvzLW6+5mo0CWmNXt0H4P133sIHmf/F629lYP6bb+HDTz7FIU2ULrPqMOsL6Yz49TlrtJutgM05aZTChBBCCPk5oBQmhBBCCCHkREetonrRA9/jqTvGGXk74JKrsHZ3Hp594M/o2diFM6L64K6Zf4QrrB16DDsXCz/5ytTTLT6wE1+uWYpFC/+Hxx5+CNdfNhadTm0HV/MIjL7ut9in7jZvP57+0w1o18iFweOuwYYDMFJ255bNuHZUX7ibuJAy+1nsVbPp2YulC+ajTbMW6NFnOBYs34w9uQV4LPlqtJV1dTljDD7eshcmp7b0EFCUi/z932P5smV44/VX8MSDv8dlF4zEKW3boXGrLpj6u9nIM1L4L+jdxoWWnc/C+xsLbCnskzHk5jVTGAXY/fV6jOvTBR3DmmJ68iP4Xk4Vy8P5ft8WXHzJeWjicqG9NJOx3Kwbhl40Bdv2fg94D6Jsxyasee8tvPzvfyHlL3/GhWfHomFIKBp26YeHn3sR3kO78beH7kG3Dt3RPKwF+veNwDnnjsCM23+Dt95bgk3bfzBSOF+WolLYK828w06fiYphTRv2i2FKYUIIIYT8vFAKE0IIIYQQcqKjVtFI4d34623j0Lq+C5HjJyInrxTfZS1AQv/OaFqvGaL6ng1X/Vboc/oovLd+Mw4Ul+HtV/6OK8aORJ9eUYgZEo2rzh2OyK6d4GrRHWOu/6MpwVB4eD9euDcJLUNdGDjuWqzZCxwuA3Z9swmTR/ZGp2YupDz1PHZp6dzCPcjM+CfaNGuJyL6x+O+KLTiQV4LH7rwS7jAXepxzEbJ2HkKZVvst+QHe3F14+fmnMfLssxHVqxvGnjUAF8Sdjnat2qBhy86Y/sdncNADfPziPUYKt+h8Nt7bWIjDMlWxXwqrcPXi4M6vkDxhNE6R+z997BR8ssVj6vweOLQbjzyagkmXj8LUscMwtHcUXM3744zLbsXOA3twaE8O/nH/7TgnOgI9BvRF7MjROD9mBJo3ao0GnQfjfq3J7N2P3G2f4omHH8KF485D3z4d0aZdU7gatkDnHkNx55/SsOOAz4h2j8ypj6JEv6jtNU3XqGvVbxalMCGEEEJ+XiiFCSGEEEIIOdFR3+iTdnAfnkoeb160NvD8K5Gz34vi/dvx2F0zcEpYfTRw1UdIaCv0HBCDxdnr8fXO7bhkzEg0Cw3ByPMuwT9fmo/Ply3AtZeNhyusO0ZP/B2+l7F/yNuLv/5lupGto8dNRM73pTgo036z9QtcGtsdXVppTeFn8YMazsM78ea82WjetCW69j0Try35BnvyS/HAnVegfUMXYs+9EJv25KMIpSgq3IddOaswqFsntGjWEhOuuBL/XfAqln/8Pwzu0xNhzd24LuUF7PUAmS+mIqqdC626DscHGw+aF8SpBy9zZGupF2X5P+Dfz8xCu8b10KJ9BP7vnjSsWbcehw/vww8/fIv9u77Cx2+9gisuukTurwtGXjQJuzRL+aO30b11A4S3bYFb7vwd3v5fJt57MwOntG6PJp2j8chzL8scP6Dk8LfYt3c/Nn3xBea//DTuvOMGxJxxFuo1aoMufWLw+XbrBXhalkNfcKfZwrq8ClI4QAHrV6eHEEIIIeR4QilMCCGEEELICY66WM2ILTici8dmjkf7EBdGnnsZvtxVgoPFJdj46TJcMrIXmrlcaBDSEv0Hn42la5dhQ84qREV0RtMmrXFn6jPI2fY9PnzreZzRrxtC6kdi/KR7sL0M2FtyAHMeTIQ71IXzYsZg/cZd+Dq/BF/u3oaJFw5H+yYuXH39TGz4Ygc2r3wPSVePR2jDZujQbxTmL/0WOwuAv/zfRLgbyvVnjsK3Ow6YDOTD3kNY9/7r6KAvxju1K+Y89yI2frMZL/z9GUS2b4amTdti0p/TsaMIePfFWejZ1oVW4f2xeMMelMi6SoodoSpPwFuMMk8eNn+2FuefcyZaNG2IU9u1wtVXJmD242l48vFHMevBB3H5pQlo16Y92rXviMlTErFj9068Mv9lNAkJxYDeg/D2wuXIydmKRx/8Mxo3qo8m7Xth9gvpyMvbhgULXsKsJ5/BG/99Bzu//RzffbMeD953D5q2aIvwAbFY9dUuU9ZChbVmDGuisFcWaMRwBQVsOixX7D8ihBBCCDl+UAoTQgghhBBygqNSOL9MWv5hPHTHeJwS4sLwmPPw5Q6PEZR5BXvx+vP3omNTFxqGtkDPPsOwdM1SbN/5FeLPHYUWLdqhz4jxmPHbFFx1QQy6t2+O0NCuiLv4Nnwv16sUnv/8XejVzoXeHbojOfk+/O3fC/DdoX14+pHfo2PrRjilS39cN+1WzEy8EgO7toMrpDFO6RmD15ZbUvie309Gm1AXzh8xCjt2/GAyjQvlrx0bliImshOaN2mFc86/BNNvvQ3njY1Dt3ZN0CSsJa7+3XPYehhY9OKj6NrShZZdeiNz3XaThevz2pq1VHe88Mr9ewsP4f1Fb+KicaMRGX4amjUOlXtWGR6CBvUbolnTlugT1R+TJ0/BW28twGG55sPFi9GjSzec0sqNSy+dittunYlzzj4dLVs2RcM2XfHAE09j9/dfIPX+36Nrr/7o2XcgZt5xA/7w25swcsRwdO3WA0m/uwff7Cs0mcKmVrM0lcJFJfrdUVT9VpXC5UeEEEIIIccPSmFCCCGEEEJOcEzVBi/gKSxA+hN3ID4mAtdOvhlb9nitMgu+fHz/5VLMmHghRgwfhUsnTEZ2zqfIL8rFgoxXcemll6PfiPMx9OxzcMvUy5D6+ztxxhmX4sIr78AuGTzXdxhfZL+FmddfipFDzsBZZ12A5NRHkOv1YMfmVUhOmobBsedhxFljMf2ycbj/97dhaMxZiL96Bv6XvRvfyyKefvz3OOf0CCRNvQG7vz+EXJQivzQPOLgD//rbkzh39HkYFjsKZ55zHu688ze484ZJGHl2HCb97ikjlZcueBEJ5w7DOZdcjaycnSgpVRlsSVVvib60TvZKiuRheOTvg1i6eBGeevxBXDp+LM6MPR1nDB+OM2LOwKRrr8OL/0xHzudfwCfXlPhKsHvXTjz+0CM492xZw7DRGDXqPMy6/25MmTIJQ0eej4dmPw1P0X58s+VzzJL9uLHxOOP0ARgxrD/GxI3EH/54N1Z99rWps2yksGy1tIV+X4pNYWHFUcDaymsKl/cQQgghhBw/KIUJIYQQQgg5wVH5aMoVlJRgT04m1nzwL6xe+zny5ES+9Jeqoizcia2fZmHJh8uxdMU6fH/wAIq8clVxIdauXoP/LVmN9z5ejr3bv0TB/r1YtuxzvLvkM/xQpmPL9b5d2PbZcizP/AgffbQKG7buQoEWMvYdwL6dXyPz49VYuXI9tm1cjcPfb8f7i5fgw9WbsO0wcNALfLd1DZa+9y+sWb4KpTKmytN8r5z0HgLyDmD1J6uR+dFyfCBt/759+GHHFixfnoU3l21Crkxz8NsvsOKD/+L9ZWuwT5atUrjEW1ouU7VGg2YMFxegrDhPjgtRcGgv1q3JwvKlH+K9d97Bxx8uwTdfb5PnVIZSGdPr8xkp7PN5cXDvASz/KAuLF2chS9ZYcPAHfP31V1j44TKszdkErzdf4jzYc/AwVmWvw8eZMt77i7Bi2RLs3P299YI5bbKMIlmbZjKr7PV6TeVjaY7+1cYXzRFCCCHk54VSmBBCCCGEkBMcFYuaEezzlQIl3wNFe41oVEmpYrhUs2i9uRL0gwk2QlXOaYxm15YWF8OjIXqsNRkkQN+JpnJT5a1XI31yvWb2+nwolBNF0l+kJrPsMMpKDsOri9Bjr6yktBhaNSFfmlNjF2UHpcmRTKz+Vl80V1wqo3ulSbzivJjNVyzzlZbImF5zfYGO69Ms4BIUyZiFGiNdpRKst2ZuRE2zml5fsYQeln2TsysDFqFM+sx5HccOM1vpK5W/TKaxGVD7ZNcrfYWFshZZo3TLCBIjK5YL9Rl59eIy2ZP1eIskTvr0+akQ1vM6lGYh6ySl+jzNWwDtZhZLKUwIIYSQnxdKYUIIIYQQQk5wVCqqpLWkcC5QfNA40EKfVdvWCMeSPDlQWVpqXn6mwtenErOwwMhKX1kZ9HLHaqoULrav98qBryRfrlXNrLHSr+ObernaJ7PrJNo0W7ekCMUlpWYOFbgeWYzXd1jGLDQxGlZcViLjyHUqhMtUO/tQomZZ16DN50Wxt8iMXqAL1sXJ6SKZ2CPHGm+aLsE0OW/kt66lWG5J1lvmka21Zksay65sNFNY5XNxcYkcyliy5jK9F7kxzRoukX69pEyCiuWBeEpLUFigT1idtk+eh56UA1mHT4Wy9ut41hKtqRzzrLE+NeF6jTlr+vVy3SvvIYQQQgg5flAKE0IIIYQQcoKjUlHVpEpOFOdDs2pVEBd65VD6jezVbFnN4vWVoMRbBo+6SpWXRSpRS4w8LfVJp8Sqzywt03xYrxnHJ4EqUcvKfNIn15ssXpnThKtYlbFVyOo8pWUoKtQMXZlbAvRFa2Z6GavIq/nB1ry+0mIZQ6Wtrlwlb4n0WfOrmC6T8TRGRpAue10aauxpmfTIevWu9VhOm/RnWb+vSPOSNVAlrlyrUtiWuMbJytYsVfa9Xr1HPSdN7rO0pFjuUTOC5Z5kDXrfRSiQCImzrysq1XnlOej1RXK13F+Z3LPjnDX7WDOMrYeoN6JjW+LbWoBGUQoTQggh5OeFUpgQQgghhJATHBWKKhfNjrdYDrymJILKRtWj5l1nxoKqANYD410tIVmswlJbkVyqcld2ZRyfZvVCpa1EmWNLXmrhCJPhK30mTgWpZXHlpHZKn1pfRQK0fIIqUJ1L9bFujfy1R9NsXHORWak1ifGncqTSWMtTmBIQ0l+sntcM7ZU1aLVkXbf87QxnFql3pk3OmSbzGzkrp/RWJEQrOvi0VoVB1m8m1LVqvAp1+/7M2QIZWlYuBzq83rverxlSpzHj+qAlOsrvRZosqky/F7o4p5lF6nnrqx45jRBCCCHkeEIpTAghhBBCyAmOoyLLTaPslFnZqI6KtM6pnFSTaSlYs6eW1EhhFbB2RrD2W6+Cs8aSEN1YY6kstqSpNu0zMxnxac2pzULP6kxWLV5rT2N0Tr3GirXiVchKvFm/tbH6DkrzmJF0DVaw9uv61BILTr9p+sWZ17lLazSDE+fHjCzNuU7LTZgqynaYlXlsP1JB55Yxdd8JMv1Oh938MlhjA+ewcC5zGiGEEELI8YRSmBBCCCGEkJMNYxrli/ztaEqDU9ZA+sulsMapuJQe3bUuE/QVbyqFZaOXSafulhlJKk2D/H36RfZkx+62v+oMKm41n9g6MqUYHKkqzbpeD2wpLLvla9C+Q9I89rWCOaH9mimsWbtWvLUjzXzRyGOVwopuy9dr9VpSuPzYHtMZxzT9omcDml8KO1c6wRb+S+1GCCGEEHI8oRQmhBBCCCHkZMA2i6ogza5JbbX2HSVpvmphXNmoKtVmMELX6q8ohQusi8tPW33a9MAfK9gX2t2CXqgCVTNvnbrC2qsit9gfqP0mc9iIXq0tHHAPJk7Xoa97C1ivGdfKFNY4vca+QNAdHeEIUtiPE1tqd+tXax3lV+n6LSmszRlTI8uH0sgjtfJIQgghhJBfApTChBBCCCGEnAzY3lGVpZGXto/U7nKhKdiOsoJk1aDAZqJVxmpJCdlUcJu2FNYDJ9702/j3dUdnsDJvy/utDF89LhfNGmfJWEflWmdkT8tayHmN0H5dhjWeZisXm2NdrRnHP4f2OnfoP2sRsGsdaEELS0Zb6DUBUtiU1rDm15GcchB6rvwa3dOxKgxOCCGEEPKLhVKYEEIIIYSQEx11kbahtF6DJh1qMNWdyglVmNbr3qw+jfXKjjaD4zNNgA6kIlflrfWCNdOloea8CuFC2TUHfh+qR6anwo7OasleJ86pEWwSmbXPoPLXUr6qgHV2a/GWgNULVcpqhG71GKUqlq0MXu3zT2nQHT2jzT+xRcCuE+dIYXPKns8voPWtdKWWrDZz2yUhnNGtq8oHdY5qaoQQQgghvwQohQkhhBBCCDnRUdtoDGYZ9JVsJdrht5YqML3SZ2fDap/seE1JBlWdgoRXfYlbgRz6rH690FynB5YU9ufW6kaaPaw1hhnHeqGctRrp8F9/QFohfLKrlSysYM3GteK0gq+KYaNgVQrb06i61dXq6szwPjkqtbS2I3C132r6l57xr8rCCfCjB5UyhY2tDshK9slX6dNjI4VN+Q29L2t0Z1Drq3VNTU3PV8W5khBCCCHk+EEpTAghhBBCyImOYyPlS6HRvXKgxtJYTBWnJdJnlTwwfbLjhb68zcrJ1etV0pqsYKNlD5utxpt+s6NNdxwpbNXVNf1mPGvXcpzmjByrTLXnNXH6ZZ+0AnglxAxnMm89cs4aT/OTdQVmRI2XGO3X+VRs64rNeF49p7rbEsU6spnaNEsKW2LYRFs4AX70oLIUlibddn6z/3npse4aKSxN78q6MxNlvups1TUnqsLUBmdBVc8QQgghhNQllMKEEEIIIYScDBivqBJWZaUc+H2lpS/1qwmx7aQWRLCUqnPsqEnVn5qra/KNrX5nx2T6as6snjOD+y80p/VYQ2wprDNWnFe/qPYtNkOZ4cwJGdOuJaGz6wxGp2qfNZRsLAmrK7Yu03OWzLW9rem3mv6l8zq9NaHnrBh/lD2IylzTZw/hyF1zb9Ks0e1g+6uer645UVZkZWo+QwghhBBSV1AKE0IIIYQQchIRvF6sSUY6/TWNdKRzwVDd9eXHRxv9SOcIIYQQQkhwUAoTQgghhBBCCCGEEELIrwhKYUIIIYQQQgghhBBCCPkVQSlMCCGEEEIIIYQQQgghvyIohQkhhBBCCCGEEEIIIeRXBKUwIYQQQgghhBBCCCGE/IqgFCaEEEIIIYQQQgghhJBfDcD/A8HahWaUpSAYAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from IPython.display import Image\n", "from pathlib import Path\n", @@ -107,7 +120,337 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2025-03-17 17:36:02.752208: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2025-03-17 17:36:02.752913: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", + "2025-03-17 17:36:02.756005: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", + "2025-03-17 17:36:02.762878: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", + "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", + "E0000 00:00:1742258162.773996 296077 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1742258162.777031 296077 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "W0000 00:00:1742258162.785759 296077 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "W0000 00:00:1742258162.785777 296077 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "W0000 00:00:1742258162.785778 296077 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "W0000 00:00:1742258162.785779 296077 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "2025-03-17 17:36:02.789997: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading existing surrogate models and training missing models.\n", + "Any training output will print below; otherwise, models will be loaded without any further output.\n", + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "Optimizing kriging parameters using L-BFGS-B algorithm...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dang/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be removed in a future version. Please use 'DataFrame.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Final results\n", + "================\n", + "Theta: [1.133636 0.172046] \n", + "Mean: [[0.712175]] \n", + "Regularization parameter: 1.000000000001e-06\n", + "\n", + "Results saved in solution.pickle\n", + "2025-03-17 17:36:05 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output Steam_Flow trained successfully\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "Optimizing kriging parameters using L-BFGS-B algorithm...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Final results\n", + "================\n", + "Theta: [2.098572 0.044889] \n", + "Mean: [[24489.420238]] \n", + "Regularization parameter: 1.000000000001e-06\n", + "\n", + "Results saved in solution.pickle\n", + "2025-03-17 17:36:05 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output Reformer_Duty trained successfully\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "Optimizing kriging parameters using L-BFGS-B algorithm...\n", + "\n", + "Final results\n", + "================\n", + "Theta: [5.205204 0.045084] \n", + "Mean: [[0.00325]] \n", + "Regularization parameter: 1.000000000001e-06\n", + "\n", + "Results saved in solution.pickle\n", + "2025-03-17 17:36:05 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output AR trained successfully\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "Optimizing kriging parameters using L-BFGS-B algorithm...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Final results\n", + "================\n", + "Theta: [5.721231 0.130094] \n", + "Mean: [[0.007353]] \n", + "Regularization parameter: 1e-06\n", + "\n", + "Results saved in solution.pickle\n", + "2025-03-17 17:36:05 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output C2H6 trained successfully\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "Optimizing kriging parameters using L-BFGS-B algorithm...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Final results\n", + "================\n", + "Theta: [6.24093 0.001815] \n", + "Mean: [[0.001768]] \n", + "Regularization parameter: 1.0000000001536558e-06\n", + "\n", + "Results saved in solution.pickle\n", + "2025-03-17 17:36:06 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output C3H8 trained successfully\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "Optimizing kriging parameters using L-BFGS-B algorithm...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Final results\n", + "================\n", + "Theta: [2.535505 0.898683] \n", + "Mean: [[0.001241]] \n", + "Regularization parameter: 1.000000000001e-06\n", + "\n", + "Results saved in solution.pickle\n", + "2025-03-17 17:36:06 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output C4H10 trained successfully\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "Optimizing kriging parameters using L-BFGS-B algorithm...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Final results\n", + "================\n", + "Theta: [10.72192 0.029391] \n", + "Mean: [[0.19263]] \n", + "Regularization parameter: 1e-06\n", + "\n", + "Results saved in solution.pickle\n", + "2025-03-17 17:36:06 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output CH4 trained successfully\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "Optimizing kriging parameters using L-BFGS-B algorithm...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Final results\n", + "================\n", + "Theta: [4.566243 0.09761 ] \n", + "Mean: [[0.086864]] \n", + "Regularization parameter: 1.000000000001e-06\n", + "\n", + "Results saved in solution.pickle\n", + "2025-03-17 17:36:07 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output CO trained successfully\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "Optimizing kriging parameters using L-BFGS-B algorithm...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Final results\n", + "================\n", + "Theta: [3.42649 0.167599] \n", + "Mean: [[0.036997]] \n", + "Regularization parameter: 1.000000000001e-06\n", + "\n", + "Results saved in solution.pickle\n", + "2025-03-17 17:36:07 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output CO2 trained successfully\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "Optimizing kriging parameters using L-BFGS-B algorithm...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Final results\n", + "================\n", + "Theta: [6.661825 0.01018 ] \n", + "Mean: [[0.239706]] \n", + "Regularization parameter: 1.0000000002854947e-06\n", + "\n", + "Results saved in solution.pickle\n", + "2025-03-17 17:36:07 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output H2 trained successfully\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "Optimizing kriging parameters using L-BFGS-B algorithm...\n", + "\n", + "Final results\n", + "================\n", + "Theta: [0.588033 0.111373] \n", + "Mean: [[0.031395]] \n", + "Regularization parameter: 1.000000000001e-06\n", + "\n", + "Results saved in solution.pickle\n", + "2025-03-17 17:36:08 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output H2O trained successfully\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "Optimizing kriging parameters using L-BFGS-B algorithm...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Final results\n", + "================\n", + "Theta: [5.878418 0.019023] \n", + "Mean: [[0.283429]] \n", + "Regularization parameter: 1.000000000001e-06\n", + "\n", + "Results saved in solution.pickle\n", + "2025-03-17 17:36:08 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output N2 trained successfully\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "Optimizing kriging parameters using L-BFGS-B algorithm...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Final results\n", + "================\n", + "Theta: [0.653803 0.123706] \n", + "Mean: [[0.]] \n", + "Regularization parameter: 1.5856961192994845e-06\n", + "\n", + "Results saved in solution.pickle\n", + "2025-03-17 17:36:08 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output O2 trained successfully\n" + ] + } + ], "source": [ "from idaes_examples.mod.surrogates.AR_training_methods import (\n", " train_load_surrogates,\n", @@ -284,7 +627,2294 @@ "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.221739 1.021053] pysmo_kriging\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:36:08 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=kriging\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 2.21e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 2.21e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.221739 1.021053] pysmo_poly\n", + "2025-03-17 17:36:09 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 2.21e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 2.21e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.221739 1.021053] pysmo_rbf\n", + "2025-03-17 17:36:09 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=rbf\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 2.22e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 2.22e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.302899 1.168421] pysmo_kriging\n", + "2025-03-17 17:36:09 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=kriging\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 2.13e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 2.13e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.302899 1.168421] pysmo_poly\n", + "2025-03-17 17:36:09 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 2.13e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 2.13e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.302899 1.168421] pysmo_rbf\n", + "2025-03-17 17:36:09 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=rbf\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 2.13e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 2.13e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.546377 0.884211] pysmo_kriging\n", + "2025-03-17 17:36:09 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=kriging\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 8.20e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 8.20e+03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.546377 0.884211] pysmo_poly\n", + "2025-03-17 17:36:10 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 8.21e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 8.21e+03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.546377 0.884211] pysmo_rbf\n", + "2025-03-17 17:36:10 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=rbf\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 8.21e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 8.21e+03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.678261 1.084211] pysmo_kriging\n", + "2025-03-17 17:36:10 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=kriging\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 5.19e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 5.19e+03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.678261 1.084211] pysmo_poly\n", + "2025-03-17 17:36:10 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 5.19e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 5.19e+03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.678261 1.084211] pysmo_rbf\n", + "2025-03-17 17:36:10 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=rbf\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 5.19e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 5.19e+03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.657971 1.063158] pysmo_kriging\n", + "2025-03-17 17:36:10 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=kriging\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 5.78e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 5.78e+03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.657971 1.063158] pysmo_poly\n", + "2025-03-17 17:36:10 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 5.78e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 5.78e+03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.657971 1.063158] pysmo_rbf\n", + "2025-03-17 17:36:10 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=rbf\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 5.78e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 5.78e+03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.12029 0.863158] pysmo_kriging\n", + "2025-03-17 17:36:10 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=kriging\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 2.30e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 2.30e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.12029 0.863158] pysmo_poly\n", + "2025-03-17 17:36:11 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 2.30e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 2.30e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.12029 0.863158] pysmo_rbf\n", + "2025-03-17 17:36:11 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=rbf\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 2.30e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 2.30e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.333333 1. ] pysmo_kriging\n", + "2025-03-17 17:36:11 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=kriging\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.74e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 1.74e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.333333 1. ] pysmo_poly\n", + "2025-03-17 17:36:11 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.74e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 1.74e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.333333 1. ] pysmo_rbf\n", + "2025-03-17 17:36:11 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=rbf\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.74e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 1.74e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.373913 0.926316] pysmo_kriging\n", + "2025-03-17 17:36:11 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=kriging\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.49e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 1.49e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.373913 0.926316] pysmo_poly\n", + "2025-03-17 17:36:11 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.49e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 1.49e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.373913 0.926316] pysmo_rbf\n", + "2025-03-17 17:36:11 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=rbf\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.48e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 1.48e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.515942 1.2 ] pysmo_kriging\n", + "2025-03-17 17:36:12 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=kriging\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.26e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 1.26e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.515942 1.2 ] pysmo_poly\n", + "2025-03-17 17:36:12 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.26e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.11e-16 0.00e+00 -1.0 1.26e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.1102230246251565e-16 1.1102230246251565e-16\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.1102230246251565e-16 1.1102230246251565e-16\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.515942 1.2 ] pysmo_rbf\n", + "2025-03-17 17:36:12 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=rbf\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.26e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 1.26e+04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.688406 1.147368] pysmo_kriging\n", + "2025-03-17 17:36:12 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=kriging\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 5.23e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 5.23e+03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.688406 1.147368] pysmo_poly\n", + "2025-03-17 17:36:12 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 5.25e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 5.25e+03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.688406 1.147368] pysmo_rbf\n", + "2025-03-17 17:36:12 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=rbf\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 13\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 13\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 5.24e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 0.00e+00 0.00e+00 -1.0 5.24e+03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + } + ], "source": [ "# Import Auto-reformer training data\n", "import numpy as np\n", @@ -359,7 +2989,77 @@ "metadata": { "scrolled": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAlY5JREFUeJzs3XdcVfUfx/HXHWwQF0sFceHeImruhZpmWpaVibM03C3tZ5ojLa00k9KGYqVlZpqV5krce++JGxEHIJt77/n9ceXqFRDQC5fxeT4e9wH3zO+9jPO+3/MdKkVRFIQQQgghiiC1tQsghBBCCGEtEoSEEEIIUWRJEBJCCCFEkSVBSAghhBBFlgQhIYQQQhRZEoSEEEIIUWRJEBJCCCFEkSVBSAghhBBFlgQhIYQQQhRZEoSEEPmeSqXio48+snYxrM7X15d+/fqZnoeFhaFSqQgLC7PYOeS9FkWNBCEh8qGjR4/y4osvUr58eezt7SlbtiwdOnTgq6++Mttu2rRprFy50jqFtICPPvoIlUqV4WPevHnWLp6Z0NBQs/LZ29vj5+fHsGHDiIyMtHbxcmT16tUSdoS4T2vtAgghzO3YsYM2bdrg4+PD4MGD8fT05MqVK+zatYsvv/yS4cOHm7adNm0aL774Is8//7z1CmwB33zzDc7OzmbLAgICrFSax5s8eTIVKlQgKSmJbdu28c0337B69WqOHTuGo6NjnpalZcuWJCYmYmtrm6P9Vq9eTUhISIZhKDExEa1WLg2i6JDfdiHymY8//hhXV1f27t1L8eLFzdbdvHnTOoXKZS+++CKlS5e2djGypXPnzjRq1AiAQYMGUapUKb744gv+/PNPXnnllQz3iY+Px8nJyeJlUavV2NvbW/SYlj6eEPmd3BoTIp85f/48NWvWTBeCANzd3U3fq1Qq4uPjWbRokel2zcPtR65du8aAAQPw8PDAzs6OmjVrsmDBArPjpaSkMGHCBBo2bIirqytOTk60aNGCTZs2mW138eJFVCoVn332GSEhIVSsWBFHR0c6duzIlStXUBSFKVOmUK5cORwcHOjevTt37tyx6PvyqIMHD9K5c2eKFSuGs7Mz7dq1Y9euXab10dHRaDQa5syZY1p269Yt1Go1pUqVQlEU0/KhQ4fi6en5ROVo27YtAOHh4QD069cPZ2dnzp8/T5cuXXBxceG1114DwGAwMHv2bGrWrIm9vT0eHh68+eab3L171+yYiqIwdepUypUrh6OjI23atOH48ePpzp1ZG6Hdu3fTpUsXSpQogZOTE3Xq1OHLL780lS8kJATA7FZfmozaCGX1XsODW4fbt29nzJgxuLm54eTkRI8ePYiKisrhuypE3pEaISHymfLly7Nz506OHTtGrVq1Mt3up59+YtCgQTRu3Jg33ngDgEqVKgEQGRlJkyZNUKlUDBs2DDc3N9asWcPAgQOJjY1l1KhRAMTGxvL999/zyiuvMHjwYO7du8cPP/xAYGAge/bsoV69embnXLx4MSkpKQwfPpw7d+4wY8YMXnrpJdq2bUtYWBjvv/8+586d46uvvuKdd95JF7wy82ho0mg0lChRItPtjx8/TosWLShWrBjvvfceNjY2zJ8/n9atW7N582YCAgIoXrw4tWrVYsuWLYwYMQKAbdu2oVKpuHPnDidOnKBmzZoAbN26lRYtWmSrrI86f/48AKVKlTIt0+l0BAYG0rx5cz777DPTLbM333yT0NBQ+vfvz4gRIwgPD2fu3LkcPHiQ7du3Y2NjA8CECROYOnUqXbp0oUuXLhw4cICOHTuSkpKSZXnWr19P165d8fLyYuTIkXh6enLy5En+/vtvRo4cyZtvvsn169dZv349P/30U5bHy857/bDhw4dTokQJJk6cyMWLF5k9ezbDhg1j6dKl2X5PhchTihAiX1m3bp2i0WgUjUajNG3aVHnvvfeUtWvXKikpKem2dXJyUoKCgtItHzhwoOLl5aXcunXLbHnv3r0VV1dXJSEhQVEURdHpdEpycrLZNnfv3lU8PDyUAQMGmJaFh4crgOLm5qZER0eblo8bN04BlLp16yqpqamm5a+88opia2urJCUlPfa1Tpw4UQHSPcqXL2+2HaBMnDjR9Pz5559XbG1tlfPnz5uWXb9+XXFxcVFatmxpWhYcHKx4eHiYno8ZM0Zp2bKl4u7urnzzzTeKoijK7du3FZVKpXz55ZePLevChQsVQNmwYYMSFRWlXLlyRfn111+VUqVKKQ4ODsrVq1cVRVGUoKAgBVDGjh1rtv/WrVsVQFm8eLHZ8n///dds+c2bNxVbW1vl2WefVQwGg2m7Dz74QAHMft6bNm1SAGXTpk2Kohh/nhUqVFDKly+v3L171+w8Dx8rODhYyezf/5O+12nvT/v27c3ONXr0aEWj0Zj93giRn8itMSHymQ4dOrBz506ee+45Dh8+zIwZMwgMDKRs2bKsWrUqy/0VRWH58uV069YNRVG4deuW6REYGEhMTAwHDhwAjDUvaQ1tDQYDd+7cQafT0ahRI9M2D+vVqxeurq6m52m1AX369DFrYBsQEEBKSgrXrl3L1mtevnw569evNz0WL16c6bZ6vZ5169bx/PPPU7FiRdNyLy8vXn31VbZt20ZsbCwALVq0IDIyktOnTwPGmp+WLVvSokULtm7dChhriRRFyXaNUPv27XFzc8Pb25vevXvj7OzMihUrKFu2rNl2Q4cONXu+bNkyXF1d6dChg9nPpGHDhjg7O5tuR27YsMFU6/bwLau0WrzHOXjwIOHh4YwaNSrdrdWHj5VdOXmv07zxxhtm52rRogV6vZ5Lly7l+PxC5AW5NSZEPuTv788ff/xBSkoKhw8fZsWKFcyaNYsXX3yRQ4cOUaNGjUz3jYqKIjo6mm+//ZZvv/02w20ebnS9aNEiPv/8c06dOkVqaqppeYUKFdLt5+PjY/Y8LRR5e3tnuPzRti+ZadmyZbYbS0dFRZGQkEDVqlXTratevToGg4ErV65Qs2ZNU7jZunUr5cqV4+DBg0ydOhU3Nzc+++wz07pixYpRt27dbJ0/JCQEPz8/tFotHh4eVK1aFbXa/DOlVqulXLlyZsvOnj1LTEyMWTuvh6X9TNICQ5UqVczWu7m5PfZ2ITy4Tfe4W6o5kZP3Os2jvyNpZc7u74IQeU2CkBD5mK2tLf7+/vj7++Pn50f//v1ZtmwZEydOzHQfg8EAGGtpgoKCMtymTp06APz888/069eP559/nnfffRd3d3c0Gg3Tp083XVQfptFoMjxeZsuVhxokW0OZMmWoUKECW7ZswdfXF0VRaNq0KW5ubowcOZJLly6xdetWmjVrli7MZKZx48amXmOZsbOzS3c8g8GAu7t7prVdbm5u2XtR+Vx+/V0QIjMShIQoINIuvhEREaZlGd3ucHNzw8XFBb1eT/v27R97zN9//52KFSvyxx9/mB3rcUHL2tzc3HB0dDTd7nrYqVOnUKvVZjVULVq0YMuWLVSoUIF69erh4uJC3bp1cXV15d9//+XAgQNMmjQp18tdqVIlNmzYwDPPPIODg0Om25UvXx4w1iA9fDsqKioqy1qVtMbyx44de+zPPru3yXL6XgtREEkbISHymU2bNmX46Xn16tUAZrcpnJyciI6ONttOo9HwwgsvsHz5co4dO5buOA93ZU779P7w+Xbv3s3OnTuf6jXkJo1GQ8eOHfnzzz+5ePGiaXlkZCRLliyhefPmFCtWzLS8RYsWXLx4kaVLl5pulanVapo1a8YXX3xBamrqE/cYy4mXXnoJvV7PlClT0q3T6XSmn2P79u2xsbHhq6++Mvu5zJ49O8tzNGjQgAoVKjB79ux0vxcPHyttTKNHt3lUTt9rIQoiqRESIp8ZPnw4CQkJ9OjRg2rVqpGSksKOHTtYunQpvr6+9O/f37Rtw4YN2bBhA1988YXpNlBAQACffPIJmzZtIiAggMGDB1OjRg3u3LnDgQMH2LBhg6m7eteuXfnjjz/o0aMHzz77LOHh4cybN48aNWoQFxdnrbcgS1OnTmX9+vU0b96ct956C61Wy/z580lOTmbGjBlm26aFnNOnTzNt2jTT8pYtW7JmzRrs7Ozw9/fP9TK3atWKN998k+nTp3Po0CE6duyIjY0NZ8+eZdmyZXz55Ze8+OKLuLm58c477zB9+nS6du1Kly5dOHjwIGvWrMmyHZVareabb76hW7du1KtXj/79++Pl5cWpU6c4fvw4a9euBYy/NwAjRowgMDAQjUZD7969MzxmTt5rIQoka3VXE0JkbM2aNcqAAQOUatWqKc7Ozoqtra1SuXJlZfjw4UpkZKTZtqdOnVJatmypODg4pOtaHRkZqQQHByve3t6KjY2N4unpqbRr10759ttvTdsYDAZl2rRpSvny5RU7Ozulfv36yt9//60EBQWZdWFP6z4/c+ZMs/Ondd9etmyZ2fK0rtR79+597GtN6z4fFRX12O14pEu3oijKgQMHlMDAQMXZ2VlxdHRU2rRpo+zYsSPD/d3d3RXA7P3btm2bAigtWrR47Llz+pqCgoIUJyenTNd/++23SsOGDRUHBwfFxcVFqV27tvLee+8p169fN22j1+uVSZMmKV5eXoqDg4PSunVr5dixY0r58uUf233+4dfWoUMHxcXFRXFyclLq1KmjfPXVV6b1Op1OGT58uOLm5qaoVCqzrvRP+l5n9v5kVkYh8guVokgLNiGEEEIUTdJGSAghhBBFlgQhIYQQQhRZEoSEEEIIUWRJEBJCCCFEkSVBSAghhBBFlgQhIYQQQhRZMqBiFgwGA9evX8fFxeWJZm8WQgghRN5TFIV79+5RpkyZx84lKEEoC9evX5e5dIQQQogC6sqVK5QrVy7T9RKEsuDi4gIY30iZU0cIIYQoGGJjY/H29jZdxzMjQSgTISEhhISEoNfrAShWrJgEISGEEKKAyapZi0yxkYXY2FhcXV2JiYmRICSEEEIUENm9fkuvMSGEEEIUWRKEMhESEkKNGjXw9/e3dlGEEEIIkUvk1lgW5NaYEEIIUfDIrTEhhBBCiCxIEMqE3BoTQgghCj+5NZYFuTUmhBBCFDxya0wIIYQQIgsShIQQQghRZEkQEkIIIUSRJUEoE9JYWgghhCj8pLF0FqSxtBBCCFHwZPf6LZOuClFI6A164nXxJKQmYKuxxUHrgL3GPssJB4UQoiiTICSeyo34G6y9uBZFUYwXXq09DloH0/eOWkfTMtNXuTibKIpCkj6J+NR44lLiiNfFE58ST1xqHPGp8cbl97+PS3mwzGz5/a+JusR0x1ehMv0cHLQOONgYfzam5/cfjjaPPNc64mDzYLuMtrdR28jPUQjxVPaE3+HotRj6N/NFrbbO/xMJQuKJnbh9grc2vMXtpNs53tcUljTmwenRMJVuncbedIFO2/fR7e219qhVudv8LdWQSkJqgnlgSTEPJhl+/0jIiU+NR6/oLVo2rUqLTtEBoKCQqEvMMCQ9LY1Kk2GQyjJkZRS60p7fD2o2ahuLl1cIkb/EJKQy6teDXI9JQlEUBrWoaJVySBDKREhICCEhIej1lr1IFRY7ru1gdNhoEnQJVHStSM1SNY0XXH0iianGC2+SPsn4VWf8mqxPNu2fWxfnNHYauxyFKHutPXYaO5J0SelqWjKqjUnSJ1m0vCpUONk44WTjhLONM062978+vOz+V0cbR5xtnHG2Tb/MycYJW40tBsVAki6JBF0CiamJxq/33/OHv0+3LvWhdbqM16UaUgHQK3riUuOIS40DC/8obdQ2ONs486LfiwyvP1xqnoQoZBRFYdyKI1yPScK3lCO9G/tYrSzSWDoL0lg6vb/O/8WE7RPQKToCPAOY1WYWLrYuWe6nN+hJ1ieToEswhaO0rw+HqLQAlW79I8tMXx/aPq/Za+zNQoizrTNOWiezIGMWXh4KOQ8vy4taLEvRGXTZDk0ZPTcLYo+sy6h27EW/F/mwyYcF5v152I2YJIYtOUBD3xKM61zd2sURIt9Yuvcy7y8/ilat4o+3mlGnXHGLn0MaSwuLUxSFH479wJcHvgSgS4UuTH1mKjaa7N3G0Kg1OKodcbRxzJXyGRQDyfrkLAOU2fcPha9kXTIONg5mNTBmtTG2zjhqHXG2dTYFmaJ4C0er1uJi65Kt8JsTiqKYbjkm6hLZdn0bU3dN5fczv5OiT2FSs0lo1QXnX1Ziip7BP+7j6LUY9l26S8canjQsX8LaxRLC6s5HxfHRqhMAvBNYNVdCUE4UnP8qwqr0Bj2f7PmEX0//CkD/mv0Z1XBUvvqUrlapTbfDRMGjUqmw1dhiq7GlOMXp5dcLFxsXxm4dy6rzq0jWJzO9xfQCET4VReG95Uc4ei3GtGzK3ydY8VYzuc0nirRknZ4RvxwkMVVPs0qleMNK7YIeln+uYiLfStIl8fbmt/n19K+oUPG+//uMaTQmX4UgUTh1qtCJz1t9jlatZe3Ftbwd9jYp+hRrFytLIZvO8dfh62jVKua+Wh9HWw2HrkTz15EIaxdNCKv6fN0Zjl+PpYSjDV+8VM9qPcUeJlcy8VgxyTG8sf4NNl7eiI3ahpmtZtKnRh9rF0sUIe3Kt+PLNl9iq7Zl05VNjNg0giSdZRurW9La4zf4bN0ZACZ3r0XXOmV4q3UlAD5dc4qkVOmAIYqmrWej+HbLBQA+faEOnq72Vi6RkQQhkanrcdfpu6YvB28exMXGhfkd5hPoG2jtYokiqGW5loS0D8FB68D2a9sZtnEYCakJ1i5WOicjYhm99BAA/Zr58mqAsSfMoBYVKeNqz7XoRBZsD7diCYWwjttxyYz57TAArzcpT8eanlYu0QMShDJR1OcaO33nNH1W9+FCzAU8HD1Y1HkR/p5F870Q+UMTryZ80/4bnGyc2H1jN0M2DCEuJc7axTK5FZfMoEX7SEjR07xyacY/+6CXmL2Nhnc7VQXg603nibqXnNlhhCh0FEXh3d+PEHUvmSruzvzv2fzVg1KCUCaCg4M5ceIEe/futXZR8tzuiN0E/RtEVGIUlYtX5ucuP1OlRBVrF0sIGno05NsO3+Ji68LBmwcZvG4wMckxWe+Yy1J0Bt76+QDXohPxLeXI3Ffro9WY/3vtXrcsdcq5EpesY9aGM1YqqRB578edl/jv1E1stWrmvFIfexuNtYtkRoKQMLP6wmqGbBhCfGo8jTwasajzIjyd8k8VphB13OrwQ8cfKG5XnGO3jzFw7UDuJN2xWnkURWHCn8fYc/EOLnZavg/yp7ijbbrt1GoV45+tAcCvey5z+sa9vC6qEHnu1I1YPl59EoAPOlejulf+G49PgpAAjP/MQ4+F8v7W99EZdHQs35F5HeZRzDb//dIKUb1UdRYELqCUfSlO3z3NgH8HEJUQZZWyhO64yK97r6BWwZxX61PZ3TnTbRtXKEnnWp4YFEwXByEKq6RUY1f5FJ2BNlXdCGrma+0iZUiCkMCgGJixdwaf7/8cgD7V+zCz1UzsNHZWLpkQmatSogoLOy3E3dGd8zHn6b+2Pzfib+RpGbaejWLK38aB4cZ1rk6bqu5Z7jO2czVsNCq2nIki7PTN3C6iEFYzbfVJzkTGUdrZjpm96ubbMbQkCBVxyfpk3tvyHj+f/BmAdxq9w/uN35cxgkSBUMG1AqGdQinjVIZLsZfo928/rt67mifnvhAVR/DiAxgUeLFhOQa1qJCt/cqXcqLf/U/G01afRKc35GIphbCO9Sci+XHnJQC+eKkupZ3z7wdrudoVYbEpsQxZP4S1F9eiVWv5tMWnBNUMsnaxhMgRbxdvQjuF4uPiw7W4a/T7tx8XYy7m6jljElMZtGgfsUk6GvgU5+MetXL0aXdY2yqUcLThTGQcS/ddycWSCpH3ImOTeO93Y1f5wS0q0NLPzcolejwJQkXUjfgbBK0JYl/kPpxtnJnXfh5dKnaxdrGEeCJezl4s7LSQCq4ViEyIpP/a/pyPPp8r59LpDQz/5SAXbsVTxtWe+a83wk6bs14wrg42jGrvB8AX685wLyk1N4oqRJ4zGBTG/HaIuwmp1CxTjHcCq1q7SFmSIFQEnb17lj6r+3Au+hxuDm6EdgolwCvA2sUS4qm4O7qzMHAhfiX8uJV4i/7/9ufUnVMWP8/0NafYciYKBxsN3/ZthJvLk1X5vxrgQ0U3J27Hp/B1WO6ENiHy2ndbL7D93G0cbDTMeaV+jj8kWIMEoUwU1gEV997YS9CaICITIqnoWpGfu/xM1ZL5P7ELkR2lHEqxIHABNUrV4G7yXQasHcCxW8csdvzf9l7hh23GkaE/f6kutcq6PvGxbDRqPuhsHFjuh23hXLmT/0bKFiInjlyNZuba0wBM7FaDSm4Z96BUFIXLsZf558I/fLLnE17757U87+jwMJWiKIrVzl4AxMbG4urqSkxMDMWKFeyu5GsvrmXc1nGkGlKp716fr9p+havdk/8jFyK/updyj6EbhnI46jBONk580/4b6rvXf6pj7rt4h1e+20WqXmFkuyqM7uD31OVUFIXXvt/NjvO36Va3DF+98nRlFMJa4pN1dP1qG+G34ulS25OQVxuY2s1FJ0Vz7PYxjkYd5citIxy7dYzo5Giz/T9v9TkdfTtatEzZvX5LEMpCYQlCP5/4mRl7Z6Cg0N6nPdNbTMdemz8mvBMiN8SnxjNs4zD2Re7DQevA3LZzaezV+ImOdS06ke5zt3ErLoXOtYz/5C01a/bx6zF0/WobigJ/vNWMBj4lLHJcIfLSu8sOs2z/VbxctXzxujsX7p3g6K2jHI06yuV7l9Ntb6O2oXqp6tQuXZvapWsT4BVAaYfSFi2TBCELKehByKAYmLV/FqHHQwHoXbU3YxuPRaPO//dthXhaibpERm0axY7rO7DT2DG7zWyal22eo2PEJ+t4cd5OTkbEUsOrGL8PbYqjrdai5Xzv98P8tu8qDXyKs3xos3w33srBmweZe3Aud5Lu4OPig0+x+w8X48PDyUOG3CiCFEXhyr0rLNq/hZ8PbUXjcAU7xxvolPSN/32L+VKrdC1ql65NHbc6VC1RFRuNTa6WT4KQhRTkIJSqT2X89vGsDl8NwMgGIxlYa2C++ycrRG5K1ifzTtg7hF0Nw0Ztw2etPqOtT9ts7WswKLy1+AD/Hr9BaWdb/hzWnLLFHSxexsjYJNp8FkZCip65r9ana50yFj/Hk4iMj2TWgVn8c+Gfx25nq7alnEu5ByHJxQfvYt74uPjg5eQlH7wKieikaGMtz60Ht7gymuuvhF0JY+hxq02d0nWoVbqWVZphSBCykIIahO6l3GN02Gh2R+xGq9Iy+ZnJdKvUzdrFEsIqUvWpvL/1fdZfWo9WpeWTlp8Q6BuY5X5frD/DnI1nsdWo+eWNABqWL5lrZZyz8SxfrD9DuRIObBjTyqoTU6boU/jxxI98e+RbEnWJqFDRs0pP2vq05eq9q1y5d4XL9y5zOfYyV+OuojPoMj2WVq2lnHO5BwHJxdv0vZezFzbq3K0VEE8mRZ/CqTunjKEn6ghHbx3lyr30Y16pFC26xDKUtKnM+607Us+jDuWcy+WLD9wShCykIAahmwk3GbphKGfunsFR68is1rNoVraZtYslhFXpDDo+3P4hf1/4G7VKzdRnpj72w8E/RyIIXnIAgJkv1qFXI+9cLV9iip42n4VxIzaJsZ2rMaRVpVw9X2a2XN3Cp3s+NbXrqOtWl3EB46hZqmaG2+sMOm7E3+DyvctciX0QkC7fu8yVe1dINWQ+RpJWpaWMcxlT7dHDNUplncvm+q0TYaQoCpfvXTYFnqNRRzl191SGAde3mK+xXY9bbY5dcGXxllSc7exZPaIFPqUcrVD6zEkQspCCFoQuRF9gyIYhRMRHUMq+FF+3/5oapWpYu1hC5At6g54pu6aw/OxyVKiY0HQCL/q9mG67Y9dieHHeDpJSDQxqXoHxXfPmb2j5/qu8vewwLnZaNr3bOk+nJbgYc5FP937KtmvbACjtUJoxDcfwbMVnn7j9j96g52bCTS7fu8yl2EvGmqSHQlKyPjnTfdUqNV5OXqZw5O3iTfli5Y0hyaWszIX4FO4m3TXd4jp66+hjb3HVdjM2Zq5Tug41S9c03eLad/EOL83fiUGBL3vXo3u9snn9MrIkQchCClIQOnjzIMM2DiM2JRbfYr580/4byrmUs3axhMhXDIqB6bun8+vpXwEY13gcr1Z/1bT+5r0kus/dTkRMEq383FjQzx+NhXqIZVk2g8JzIds4di2WPk18mPp87Vw/Z3xqPPOPzOenEz+hM+jQqrW8XuN13qzzJk42Trl2XoNiICohKl0NUtr3ibrETPdVocLTydPUFqm8S3lTrVI5l3I4aC3fjqugStYnG29xRT0IPhnd4rJV25p6cdVxM7bryewWV0xiKl2+3Mq16ER61i/LFy/Xy4NXknMShCykoAShjZc28v7W90nWJ1PHrQ5z286lhL10wxUiI4qi8MX+L0y9Kcc0HEP/Wv1JStXzyne7OHg5mopuTqx46xlcHfL29syuC7fp/e0u1Cr4d1RL/DxccuU8BsXAPxf+4Yv9X3Ar8RYAzcs2533/9/F19c2Vc2aXoijcSrxlCklX7l15UKN07zLxqfGP3d/d0R0fFx/KFytv1ibJ28UbR5v8dfvGkhRF4VLsJVO7nmO3jj32Flcdtzqm7ut+JfyydStSURSG/3KQv49E4FPSkX9GNMfFPn/ewpQg9IiEhASqV69Or169+Oyzz7K9X0EIQr+c+oXpu6ejoNDauzUzWs6QT0RCZEFRFEIOhTD/yHwAgusFc/pUACsOXqeYvZY/hzWnQuncqxF5nDd/2sfa45G0rupGaP8nG/vocY7fOs70PdM5HGWcGNPHxYf3G79Py3ItLX4uS1MUhTtJd0yh6FLsJbO2SfdS7z12/9IOpSntUBqNSoNWrTV9Tfteo9agVd1/rtagUWmwUds8WKfWolVpTd8/epwMj5e2T9o298+R7ngPfX34/BmVT6VSmW5xpYWeo7eOEpsSm+41l7QvaQo8tUvXNrvFlVO/77/KO8sOo1Gr+H1IU+rn43Gvsnv9tuxgGPnYxx9/TJMmTaxdDItSFIU5B+fw/dHvAXjR70X+F/A/tOoi82O1iDvxKXy75QJ/Hb4OgJOdBkdb7YOvthqc7LQ42WlxtNXgZKvF0e7+14fWOdlqcEz7aqvFVivjquRnKpWKYfWHYaexY87BOYQcCiH51nE06k6EvNbAaiEIYGzn6vx36iZhp6PYcibKYrN33068zVcHv+KPs3+goOCgdeDNOm/yeo3XsdXYWuQcuU2lUlHKoRSlHEpRz72e2TpFUYhJjuHSvUummqS0RtyX7l0iJjmGW4m3TDVgBZlGpUGv6NMtt9PYUb1kdWqVrmWq8SnrXNYivbgu3opnwp/GKWvGdPDL1yEoJ4rEFfPs2bOcOnWKbt26ceyY5eYdsqZUQyof7fiIVedXATCs3jDeqPNGvuiyWFDciU/hu60XWLTjIgkp6f+hPC0bjQpHWy3O9wPUwyEpLWQ5Pxq6TOHLGLacHwlfthq1/IwtbHCdwVy5ncqKy99gVzqMBpWK0bxyF6uWqUJpJ/o29eWHbeF8/M9Jnqlc+qnaKaUaUll6ailfH/raVGPybMVnGd1gNB5OHpYqttWpVCqK2xenuH1x6rrVTbc+JjmGK/euEJMcg17RozPo0Bl06b7XG/ToFPN1acv0Br35PveX6RU9qYZU0/cPr8vwuA/vk7Yuo30yCDuAaXkF1woPanvc7t/iyoUhCVJ0Bkb8epCEFD1NKpa0Wq/G3GD1ILRlyxZmzpzJ/v37iYiIYMWKFTz//PNm24SEhDBz5kxu3LhB3bp1+eqrr2jcOPvVxe+88w4zZ85kx44dFi69dcSnxjMmbAw7ru9Ao9IwselEelTpYe1iFRh3HwpA8fcDUK2yxRjWpgqervYkJOuIT9GTkKIjPvnB1/gUHfHJOhJS9A++puhISNYTl6wzbpeiJ0VnACBVrxCTmEpMYubdh3NKq1alr4V6JEgVs7ehW90yTzUhaFFy7uY9VoRVIsnheey9VnIgZhVTdtkxvsl4q46WPKJtFZYfuMrpyHv8tu8KrzT2eaLj7IrYxSe7P+F8jHGG++olqzMuYNxTz71WELnauRa4+RUVRXkQxh4JbA5aB1xsc6cN2aO+WH+GI1djcHWwYdbL9fKsA0FesHoQio+Pp27dugwYMICePXumW7906VLGjBnDvHnzCAgIYPbs2QQGBnL69Gnc3d0BqFevHjpd+sZg69atY+/evfj5+eHn51cogtCtxFu8teEtTt45iYPWgc9bfU6Lci2sXawCITohhe+3hhO64yJxycbfl5plijGqvR/tq7tbrKYlVW8g4ZEgFZdsDEzxKemDVPxj1qWFrOT74UpnUIhN0hGblPkAdgDfbwtnUIsKjG7vZ9WB+fK76IQUBi7ax71kHY3LdKFXk3pM2TWJZWeWkaJPYVKzSVYbFdnV0YaR7aow6a8TfL7uNN3qlsHZLvv/sq/FXeOzvZ+x4fIGAIrbFWdEgxH0rNxTRnouQFQqlanNkLVsP3eL+VuMQfrTF2rj5Vq42qDmq8bSKpUqXY1QQEAA/v7+zJ07FwCDwYC3tzfDhw9n7NixWR5z3Lhx/Pzzz2g0GuLi4khNTeXtt99mwoQJGW6fnJxMcvKDsS1iY2Px9vbOF42lL8ZcZMiGIVyLu0ZJ+5KEtAuhVulaVi1TQRCTkMr32y6wcPuDAFTDqxij2lehQw2PAnGrSac3kJCqfxCYTMFJR1yy/kEtVrKOo9diWHciEjDeYpneszZNKpay8ivIf1L1Bvot3MP2c7cpV8KBP4OfoZSzHf9c+If/bfsfekVPZ9/OfNziY6uNfpyiMxA4ewvht+IJblOJdwOrZblPoi6RhccWsuDYApL1yWhUGl6u+jJv1XurwNWGCOu7E59C5y+3EBmbzCuNfZjeM/eHdLCUAtlr7NEglJKSgqOjI7///rtZOAoKCiI6Opo///wzR8cPDQ3l2LFjj+019tFHHzFp0qR0y60dhA5HHWbYxmFEJ0fj7eLN/Pbz8S6WuyPdFnQxian8sC2chdvCuXc/AFXzdGFUez861vCw2Ozh+dH6E5GMX3mUyFhjqH81wIexnatRLJ92c7WGiX8eY9HOSzjaalg+tBnVvR78fa+/tJ73tryHzqCjnU87ZrScYbXGxOuO3+CNn/Zjq1Xz39utKFci4+7fiqKw/tJ6Ptv3GRHxEQD4e/oztvFY/Er45WWRRSGhKApv/LSf9SciqeTmxF/Dm1t8wuHclN0glK+7tdy6dQu9Xo+Hh3ljPg8PD27cuJEr5xw3bhwxMTGmx5Ur6QeeymubLm9i0NpBRCdHU7NUTX7q/JOEoMeITUpl9oYzNP/0P+ZsPMu9ZB1VPVz45rUGrB7Rgk61PAt1CALoUMOD9WNamdqVLNl9mY5fbGHD/Zqiom7x7kss2nkJgFkv1zMLQQAdyndgduvZ2Kht2Hh5I6M2jXrsKMi5qUMND5pULEmKzsDMtacz3Obs3bMMWjeItze/TUR8BF5OXnze6nN+6PiDhCDxxH7efZn1JyKx1aiZ80r9AhWCcqJwvqpM9OvXL8tt7OzssLPLP0O3LzuzjKm7pmJQDLQo24LPWn1WqAcEexqxSaks3HaRH7ZdMLWh8fNwZlR7PzrVLPzh51HF7G2Y3rM2z9Utw7g/jnDxdgKDftxH1zpefPRczTydviE/2Xn+NhP/PA7Au4FVCazpmeF2rbxbMbfdXEb+N5Kt17YSvDGYOW3m5Pnfn0qlYvyzNeg2dxt/HrpOv2a+pm7LMckxfH3oa5aeXope0WOnsWNArQH0r9VfxhLLRNpNkIJwS9yazkTeY+rfJwB4v3M1apYpvLdV83WNUOnSpdFoNERGmn+KjYyMxNMz439elhISEkKNGjXw9/fPleOfvnGPUzdiyezOpKIozD04l8k7J2NQDPSo3IM5bfP+n3BBcC8pla82nqXFp5uYteEMsUk6qrg7M/fV+vw7siVdansVuRD0sKaVSvHvqJa82aoiGrWKv49E0P6Lzfxx4Gqmv3+F1eXbCby1eD86g8JzdcvwVuvHdwFuVqYZX7f/GketI7sjdjN0w1DiUuLyqLQP1CrrygsNjNPlTP3nJDq9jmVnltF1RVeWnFqCXtHT3qc9fz7/J2/Ve0tCUCZuxyXT9atttP4sjM1noqxdnHwrKVXPiF8Okqwz0MrPjf7NfK1dpFyVr9sIgbGxdOPGjfnqq68AY2NpHx8fhg0blq3G0k8rt0aWDl5ygH+ORFDRzYkutbzoXNuTGl7FUKlUpBpSmbJzCivOrQBgSN0hvFX3LfkE84i4ZB2h28P5bmu4qYt6ZXdnRrarQpfaXoWqe6elHL0aw3vLj3Aywjj6bCs/Nz7uUSvTdieFSVyyjhe+3sHpyHvUKefKb282zXaPukM3DxlDUGocdUrX4ZsO31DMNm/bDN6ISaLNZ2GkaM9TpfoGriWeA6CSayXeb/w+Tcs0zdPyFDTxyTpe+W4XR64+mFz05Ube/K9rdWk794iPVh0ndMdFSjvbsmZkS9xcCmbtcYFpLB0XF8e5c8Y/6Pr16/PFF1/Qpk0bSpYsiY+PD0uXLiUoKIj58+fTuHFjZs+ezW+//capU6fStR2ypJCQEEJCQtDr9Zw5c8biQWjELwf599gNUvQG07LypRzpULMEpw0hHLq9C7VKzfgm4+nl18ti5y0M4pJ1LNpxke+2XiA6wRiAKrk5MaJdFbrWKSMBKAupegPfbrnAlxvPkqIz4Gir4f1O1Xi9SflCW3NmMBgbfW44GYm7ix2rhjXH09U+R8c4fvs4b65/k5jkGKqXrM78DvPzdD6/mwk3eePvSZxP3AKAs40zwfWCebnay1br1VZQpOgMDFy0l61nb1HC0YZOtTz5ZY+x/aeXqz3Te9amdVV3K5cyf/jvVCQDQvcBsLCfP22qFdz3pcAEobCwMNq0aZNueVBQEKGhoQDMnTvXNKBivXr1mDNnDgEBAXlSvtyca+xeUir/nbrJ6qMRhJ2OIkWJxcE7FI3DVVBsaFFsNIMbdaWed3GpDcL4iW7Rzot8t+UCd+8HoIpuToyUAPREzkfFMXb5EfZevAtAw/Il+PSF2lR2z5sB2vLSjH9P8XXYeWy1an57syn1vIs/0XFO3znNG+vf4E7SHSoXr8x3Hb+jtENpyxb2ESn6FH468RPzj8w3zsiuqEiJbsTQusGMatMwV89dGBgMCqN/O8Sfh67jYKPhlzeaUM+7OLsv3Oa95Ue4dDsBgJcaleN/z9bI80l285ObsUl0/nIrt+NT6P+MLxO71bR2kZ5KgQlC+V1eTbp66tYF3lw/hDspESh6RxIu98OQZOzxU8bVnk61vOhS25MGPiUK7af2zCSk6Phx5yW+3XKBO/EpgHF8nBHtKvNc3bISgJ6CwaCwePclPllzivgUPbYaNcPbVmZI60rYaPJ1E8JsW3nwGqOWHgJg9sv1eL5+2ac63oXoCwxaN4ioxCh8i/nyfcfvc22aii1Xt/Dpnk+5fO8yAHXc6tDYZQCz/knCxU5L2LutKVVEG71nh6IoTPn7JAu2h6NVq/g+qJFZzU9iip6Za0+zcEc4igKexYy1QwW5FuRJGQwKQQv3sPXsLap7FWNlcDPstAV74E0JQk8pt2+NPezYrWMEbwzmTtIdyjqXZXarr7l4w4F/jt7gv5ORpmkgANxd7Ohcy5POtb3w9y1ZqENAQoqOn3ddYv7mC9y+H4B8Szkyol0VnqtbBm0huVDnB9eiExm/4iibThsbkFbzdGHGi3WoU664dQv2lA5dieal+TtJ0RkY0qoSYztnPSBhdlyOvcygdYOIiI+gnHM5fgj8gTLOZSxybDAOnjpj7wy2XtsKGGdMH9NwDM9WfBYUFd3mbuP49Vj6Ni3P5O4yqGpm5m0+zydrTgEw6+W69KhfLsPt9l68w3u/HyH8VjwALzYsx4ddi1bt0PdbLzD1n5PY26j5a1hzqngU/JphCUIWkts1QluubuGdze+QqEukesnqfN3+a7Oq9qRUPVvORLHm2A02nIg0DQwIUNrZjk61POhSy4vGFUoWmmCQmKI3BqAt57kVZwxA5Us5MrxtFZ6vJwEotyiKwqrD1/lo1XHuJqSiVsGgFhUZ3d4PB9uC98nwRkwSz83dxs17ybSv7s781xtZ9IPD9bjrDFw7kKtxV/F08uSHjj/gU+zJ5gNLE58az/wj8/npxE/oDDq0ai2vV3+dN+u+iZONk2m7Hedv8ep3u9GoVawd1aJQ3s58Wsv2XeHd348AMP7Z6gxqUfGx2yem6Pl83Wl+2G6sHfIoZsf0nrVpW63wTEqbmWPXYujx9XZS9Qof96jFawHlrV0ki5AgZCG5GYRWnF3BpJ2T0Ct6mpVpxhetvzD7Z/eoZJ2e7edusfroDdYdv2E231RJJ1sCa3rQuZYXTSuVKpC3NZJSjQFo3uYL3IozDl7nU9KR4W0r06N+WQlAeeR2XDKT/z7Bn4euA8YQOr1nbZpVyt22MJaUlKrnpfk7OXI1Bj8PZ/5465kczdOVXZHxkQxaN4iLsRdxc3Dj+47fU7H44y+4GVEUhb8v/M2s/bOISjTWyj1T9hne93+fCq4VMtxn8I/7WH8ikrbV3FnQL3eG+Sio/jsVyeAf96M3KLzZsiLjulTP9r77L93h3WVHuHC/duiFBuWY0LUGro6Fs3YoIUVH16+2cSEqno41PJj/esNC0yZVgpCF5EYQUhSF+UfmE3IoBIDnKj3HR00/wkaT/T+0FJ2BnRdus+ZoBGuP3zA1HgZwdbChYw0PutT24pnKpbHV5u8AkZSqZ/Huy8zbfJ6oe8YAVK6EAyPaVqFHg7IFMtQVBv+diuR/K44REZMEQG9/b8Z1qZ7vbxcoisLIXw+x6vB1Sjja8Gdwc3xK5d7wALcSbzF43WDORZ+jpH1Jvu3wLVVLVs32/sdvH2f67ukcjjoMgLeLN+/7v0/Lci0fe0G6EBVHx1lb0BkUfhrYmBZV3J76tRQG+y/d5bXvd5GUaqBng7J89mLdHLerTEo11g59v81YO+TuYse0HrVpX6Pw1Q6N++MIv+y5gkcxO/4d2ZISTtaZSiY3SBB6SrnZRihVn8qgdYM4cPMAg2sPZnj94U+VwHV6A7su3GH1sQjWHrthak8D4GKvpUMN4+2z5lVK56uZyJNS9fyy5zLfhJ3n5v0AVLa4A8PbVuaFhuUkAOUD95JS+fTfU/y8y9hY193FjinP18p0NOb8IGTTOWauPY1WreKngQE0rZT7E87eTbrLm+vf5OSdk7jauTK/w3xqlnp8j5s7SXeYc2AOf5z9AwUFB60Db9R5g741+mZ7XrNJfx1n4faLVPN04Z8RLQp1m8HsOBt5jxfn7SQmMZXWVd34rm+jp/o/sv/SXd79/TAXooy1Qz3rl2VCtxoUdywcYWH10QjeWnwAlQoWDwooULW+2SFByEJy69ZYTHIMW65uoVulbhY7JoDeoLAn/A5rjkWw5tgNUw0LgLOdlnbV3elcy4vWVd2sFoqSUvX8uucy32w+b5oUtGxxB4a1rcwLDcrl+xqsomhP+B3GLn9wu6BLbU8+eq4m7i45G4snt607foM3f96PosDU52vRp0netXWITYll6PqhHLl1BGcbZ75p/w313Oul2y7VkMpvp38j5GAI91LvAfBsxWcZ3WB0jnufRSek0GpmGDGJqXzSsza9Gz9dG6WC7Hp0Ii98s4OImCTqeRdnyeAAi8yNlZSqZ9b6M3y39QIGBdzu1w51KOC1Q9ejE+k0ewuxSTreal2J9zpZpiNBfiJByELyqvt8btAbFA5cvsvqoxGsOXqDG7FJpnWOthraVHOnSy0v2lRzy5PJ9JJ1epbuvcLXm86bylLG1Z7gtpXp1dBbAlA+l5SqZ87Gs8zfcgG9QcHVwYbxz1bnxYbl8kWbglM3Yun59Q4SUvS83qQ8U57P+95U8anxvLXhLQ7cPICD1oGQdiH4ez5ov7MrYhef7vmUc9HGQWSrlazGuMbjaODR4InP+cO2cKb8fQI3Fzs2vdM6V9pC5XfRCSn0mreTszfjqOTmxO9Dmln8Fs+By3d5d9lhzt+vHXq+XhkmdqtZIG8l6Q0Kr3y3iz3hd6hbzpXfhzYrlDXwEoQspCAHoYcZDAqHrkaz+oixpuhadKJpnb2NmjZV3elc24u21dwt/o80Wafnt31X+XrTOVN7Ey9Xe4LbVKZXo3IFfqyKoub49RjeX36EY9eM03S0qFKaaT1q413SetN03I5LpnvIdq7eTaRpxVL8OLCx1f6xJ6QmMHLTSHZF7MJeY8+Xbb6kvGt5Pt/3OesvrQeguF1xhtcfzgtVXkCjfrrf/xSdgY6zNnPxdgLD21bm7Y7Zb59UGCSm6Onzw272X7qLZzF7lr/VjLLFc2eutaRUPbM3nOXbLecxKMaeux/3yN+3ijMy97+zfLbuDE62Gv4Z0QLf0pl30inIJAg9pbwcRyivKYrCkasxrD5mrCm6fCfBtM5Wq6aVnxtdanvSrrrHU83Bk6Iz8Nu+K3y96RzX7wcgz2L2BLepxEv+3hKACjCd3sD328KZtf4MyToDDjYa3g2sSlAz3zxvp5KiM9Dnh93sCb9D+VKOrHzrGat/Sk/WJzN602i2XtuKjdoGtUpNsj4ZtUrNy1VfJrheMK52lpvN+99jNxjy837stGo2vdOaMrkUBPIbnd7Amz/tZ+OpmxSz1/L70Gb45cH4N4euRPPOssOcu2mcgPe5umWY9FzBqB06cPkuvebtRG9Q+LxXXV5omPHYSoWBBCELKSw1QplRFIXj12NZcyyC1UdvmAYUA7DVqGlepTSda3nSsYZntruPpugM/L7/KiGbzplqnjyK2fFW68q87O+drxpsi6cTfiuescuPsDv8DgD1vIsz48U6eXIxAuPv7wcrjvHLnss422lZ8VazfDMQXKo+lXe3vMvGyxsB8Pf0Z2zjsfiV8LP4uRRF4eVvjbc6etQvy6yX61n8HPmNoii89/sRlu2/ip1WzeJBATTyLZln509K1fPlxrPM35xWO2TL1Odr0amWV56VIadik1J5ds5WrtxJ5Lm6Zfiyd718cVs7t0gQspDCHoQepigKp27cY83RCP45GmG6Fw6gVat4pnJputT2pEMNT0pm8MknVW9g+f6rfPXfgwDk7mLHW60r0buxjwSgQspgUPhl72U+WX2Ke8k6bDQqgttU5q3WlXO93deiHReZuOo4KhUsCMp/E0SmNYz2dPKkrXfbXL3oHL0aQ7e52wD4M/gZ6j7hfGoFRdr8cRq1ivl9Glqta/vhK9G8+/thzkQaa4e61vFicvdaGf6PtLZRvx5k5aHrlCvhwOqRLZ6qxr8gkCBkIUUpCD3qbOQ9Vh+9wZpjEZy6cc+0XKNW0bRiKTrX9iSwpieuDjb8ccAYgK7eNQYgNxc7hraqxKsBEoCKioiYRD5ceYwNJ28CUNXDhU9eqE19n9yZoX3b2VsELdyD3qAwrnM13mxVKVfOU5CM+e0Qfxy4hr9vCX57s2mh/bS/YFs4k/8+AcCMF+rwkr+3VcuTrDN2JJi32diRoJSTsXaoc+38Uzu04uBVRi89jEat4rc3m9KwfO78XeYnEoQspCgHoYedj4rj32M3WH00guPXY03L1SrjqNZpU2GUdrZjaOtKvCYBqEhSFIW/j0Tw0arj3I5PQaWCAc9U4O2OfhbtmRh+K57uc7cRm6SjZ/2yfP5S3UJ70c+JiJhE2nwWRlKqgW9ea5CvLsSWsurwdUb8chCAdwOrEtymspVL9MCRq9G8u+wIpyPvD4tQx4vJz9W0+sS4l27H8+ycbcQl6xjTwY8R7apYtTx5RYKQhUgQSu/S7XhTTdGRqzGA8f74kFaVeC2gfIGcl0pY1t34FKb8fYI/Dl4DwLukA9N71KF5lacfsC02KZUeIds5HxVPfZ/i/DK4iYTuh3yx/gxzNp7Fp6Qj68e0LFSdEraejWJA6F5S9Qr9mvkysVuNfBeAk3V65v53jq/DzptqhyZ3r8WzdawTSlP1BnrN28mhK9E09i3JL280KTIDb0oQekqFudeYJV25k8C5qDgCKpTMk7GIRMESdvom/1txzNRmrFfDcox/9snnbdIbFAaE7mXzmSi8XO35c9gz+W5QR2uLT9bR5rMwbt5LztZkowXFkavRvPLtLuJT9HSt48Wc3vVzPHVGXjp2LYZ3lh02NSvoUtuTyd1rUTqPa4dmrj1FyKbzuNhr+XdUy1wbWiA/kiBkIVIjJMTTiUvW8dna0yzaeRHl/si8k5+r+US3bT7+5wTfbQ3H3kbN70OaUaus5bqgFya/7b3Ce8uP4GKvZfO7bfJlw92cCL8Vz4vf7OB2fArNK5fmh36NCkRNV4rOwNxN5/h60zl0BoWSTrZM7l6TZ2t75UlN1s7zt3n1+10oCoS82sBqtVLWkt3rd+EbSlIIka8422n56Lma/D6kKZXcnIi6l8zQxQcY8tN+bj402nlWft9/le+2hgPwWa+6EoIe44WG5ajuVYx7STrmbDxr7eI8lZuxSfRdsJvb8SnULuvKvNcbFogQBMZx2cZ08GNl8DNU83ThTnwKw5Yc5K3FB8ymP8oN0QkpjF56CEWBlxt5F7kQlBMShIQQeaJh+ZKsHtmCEW0ro1Wr+Pf4Ddp/sZnf9l4hq4rp/Zfu8MEfRwEY0bYyXeuUyYsiF1gatYrxz1YH4Kddl0wD/xU0sUmpBC3cy5U7ifiWcmRhf/8COYVIrbKurBrWnJHtqqBVq1hz7AYdZ21m1eHrWf7uPwlFURi7/Cg3YpOoWNqJCd1qWPwchYkEISFEnrHTahjTsSp/DW9OnXKuxCbpeG/5Efr8sJvLtxMy3OdadCJv/rSfFL2BwJoejGpv+QEJC6NnKpemfXV39AaFT9actHZxciwpVc8bP+7jZEQspZ3t+HFAQJ63r7EkW62a0R38+HPYM1T3KsbdhFRG/HKQIT/v5+a97NeMZseve6/w7/Eb2GhUfNm7Pk4FMDzmJQlCQog8V92rGH8Mbcb/ulTH3kbN9nO36Th7M99vNY7DkiYhRcfgRfu4FZdCNU8XvnipXr5uIJvfjOtSHa1axYaTN9l+7pa1i5NteoPC6KWH2HXhDs52WhYN8MenlPXmsrOkmmVcWTXsGUa390OrVrH2eCQdZ23hz0PXLFI7dO5mHJP+Og4YhxeoXU5uIWdFglAmQkJCqFGjBv7+/llvLITIMa1GzeCWFVk7qiVNK5YiKdXA1H9O0vObHZy6EYvBoPDOssOciIillJMt3wc1kk+2OVTJzZk+TcoDMPWfk2YhM79SFIUJfx5jzbEb2GrUfNu3ITXLFK6LuY1Gzcj2VVg1rDk1yxQjOiGVkb8e4o0ctpt7VLJOz4hfDpKUaqBFldIMal44egzmNuk1lgXpNSZE7lMUhd/2XWHqPye5l6RDq1bRpGIptp27hY1GxZLBTfDPw3mkCpO78Sm0mrmJ2CRdvhiFOStfbjjLrA1nUKmMPZ26FMJBIR+WqjcwL+w8c/47S6pewdXBho+eq8Hz9crmuGfZlL9P8MO2cEo62fLvyBa4FyvaQ0tIrzEhRIGhUql42d+HDWNa0bGGBzqDwrb7t3I+fr62hKCnUMLJ1jSS8Mx1p4lP1lm5RJlbvPsSszacAWBy91qFPgSBsXZoeLsq/DW8ObXKFiMmMZXRSw8z+Mec1Q6Fnb7JD9uMvSpnvlinyIegnJAgJITINzyK2TP/9YZ8/VoDqnm68HYHv3xfg1EQvN60PD4lHYm6l8z8LResXZwM/Xssgg9XHgNgRLsqvH7/ll5RUc2zGCveeoZ3A6tio1Gx4WQk7b/YzB8HrmbZdijqXjLvLDsMQFDT8rSrbp0JaAsquTWWBbk1JoQoDNYcjWDo4gPY26jZ9E5rvFzzzwjDuy7cpu+CPaToDLzS2IdpPWrlu6kz8tLpG/d49/fDpimM2lVzZ1rP2nhkUMujKAr9Q/cSdjqKqh4u/DnsGZly5j65NSaEEMKkUy1P/H1LkJRqYOba09YujsmJ67EMXrSPFJ1xeISpzxftEARQ1dOFP4Y2493Aqthq1Gw8dZMOX2zm9/3pa4cWbr9I2OkobLVq5rxSX0LQE5AgJIQQRYBKpWL8s8aB9f44cI0jV6OtWyCMcxUGLdzDvWQdjSuU5Mve9YvMhKBZ0WrUBLepzN8jmlP3/phb7yw7zIDQvdyIMbYdOnE9lk/WnAJg/LPVqerpYs0iF1gShIQQooio612cHvXLAsbu9NZsGXE7Lpm+C/YQdS+Zap4ufNe3kdRmZMDPw4XlQ5vxfqdq2GrUbDodRYdZm1my+zIjfj1Iit5A++ruRa5NlSVJEBJCiCLk3cCq2GnV7Am/w9rjkVYpQ3yyjv6hewm/FU/Z4g4sGtAYVwcbq5SlINBq1AxtXYl/RjSnrndx7iXp+GDFUc7djMPdxY4ZL9Yt8rcTn4YEISGEKELKFHfgjZbGgfamrzlJis6Qp+dP0RkY8vN+jlyNoaSTLT8NbJxhI2CRXhUPF5YPacq4ztWw1apRqeCLl+pR0snW2kUr0CQIZUJGlhZCFFZDWlXCzcWOS7cT+HHnxTw7r8Gg8O7vh9l69haOthoW9POnoptznp2/MNBq1LzZqhKb323N2lEtaV6ltLWLVOBJ9/ksSPd5IURh9Ouey4z94yjF7LVsfrcNJXK5VkFRFKb8fZIF28PRqlX80M+fVn5uuXpOUbRJ93khhBCZ6tXIm2qeLsQm6Zjz39lcP9/8LRdYsN048vFnvepKCBL5hgQhIYQogjTqB93pf9p5iQtRcbl2rmX7rph1837+fs81IfIDCUJCCFFENa9SmrbV3NEZFKbfDyqW9t+pSMb+cRSAN1tVZFALmRFd5C8ShIQQogj7oEs1NGoV609EsuP8LYsee/+lu7y1+AB6g8ILDcoxtlM1ix5fCEuQICSEEEVYZXcXXgvwAWDq3yfRGyzTf+Zs5D0GhO4lKdVAm6pufPJCbRnrRuRLEoSEEKKIG9muCi72Wk5ExPLHgatPfbzr0Yn0XbCHmMRU6vsUJ+S1Btho5HIj8if5zRRCiCKulLMdw9pUBmDm2tMkpOie+FjRCSkELdhDREwSld2dWRDkj6Ot1lJFFcLiJAgJIYQgqJkv3iUduHkvmfmbLzzRMRJT9AxctI+zN+PwcrXnxwGNc318IiGeVpEIQr6+vtSpU4d69erRpk0baxdHCCHyHXsbDWM7VQfg2y0XTDOcZ1eq3kDwkgPsv3QXVwcbFg1oTJniDrlRVCEsqkgEIYAdO3Zw6NAhNm3aZO2iCCFEvtSlticNy5cgMVXPZ+tOZ3s/RVEY98dR/jt1E3sbNQv6NcLPwyUXSyqE5RSZICSEEOLxVCoV45811gotP3CVY9disrXfjLWn+X3/VTRqFXNfaUDD8iVzs5hCWJTVg9CWLVvo1q0bZcqUQaVSsXLlynTbhISE4Ovri729PQEBAezZsydH51CpVLRq1Qp/f38WL15soZILIUThU9+nBN3rlUFRYOo/J8hqOsoftoXzTdh5AKb3rE37Gh55UUwhLMbqQSg+Pp66desSEhKS4fqlS5cyZswYJk6cyIEDB6hbty6BgYHcvHnTtE29evWoVatWusf169cB2LZtG/v372fVqlVMmzaNI0eO5MlrE0KIgui9TtWw06rZdeEO609EZrrdn4euMeXvE/f3qcpLjbzzqohCWEy+mn1epVKxYsUKnn/+edOygIAA/P39mTt3LgAGgwFvb2+GDx/O2LFjc3yOd999l5o1a9KvX78M1ycnJ5OcnGx6Hhsbi7e3t8w+L4QoUmauPUXIpvNUKO3E2lEtsdWaf27eciaKgYv2kqpX6P+MLxO61pABE0W+Uihmn09JSWH//v20b9/etEytVtO+fXt27tyZrWPEx8dz7949AOLi4vjvv/+oWbNmpttPnz4dV1dX08PbWz7hCCGKnqGtK1Pa2ZbwW/H8vOuS2brDV6IZ8vN+UvUKz9Utw4fPSggSBVe+DkK3bt1Cr9fj4WF+z9nDw4MbN25k6xiRkZE0b96cunXr0qRJE/r27Yu/v3+m248bN46YmBjT48qVK0/1GoQQoiByttMypkNVAL7ceJbohBQALkTF0T90LwkpeppXLs1nveqiVksIEgVXoR/us2LFihw+fDjb29vZ2WFnZ0dISAghISHo9fpcLJ0QQuRfLzUqx6IdFzkdeY85G88xpFVF+i7Yw534FGqXdWXe6w3T3TIToqDJ17/BpUuXRqPREBlp3lgvMjIST0/PXD13cHAwJ06cYO/evbl6HiGEyK+0GjX/u9+d/sedF3n1+91cvZuIbylHFvb3x9mu0H+WFkVAvg5Ctra2NGzYkI0bN5qWGQwGNm7cSNOmTa1YMiGEKBpa+rnRuqobOoPCuZtxuLnY8dPAAEo721m7aEJYhNXjfFxcHOfOnTM9Dw8P59ChQ5QsWRIfHx/GjBlDUFAQjRo1onHjxsyePZv4+Hj69++fq+WSW2NCCGH0vy7V2XHuNnZaNaH9/fEu6WjtIglhMVbvPh8WFpbh/F9BQUGEhoYCMHfuXGbOnMmNGzeoV68ec+bMISAgIE/Kl93ud0IIUZidu3kPB1stZWX+MFFAZPf6bfUglN9JEBJCCCEKnkIxjpA1hYSEUKNGjcd2tRdCCCFEwSY1QlmQGiEhhBCi4JEaISGEEEKILEgQEkIIIUSRJUEoE9JGSAghhCj8pI1QFqSNkBBCCFHwSBshIYQQQogsSBASQgghRJElQSgT0kZICCGEKPykjVAWpI2QEEIIUfBIGyEhhBBCiCxIEBJCCCFEkSVBSAghhBBFlgShTEhjaSGEEKLwk8bSWZDG0kIIIUTBI42lhRBCCCGyIEFICCGEEEWWBCEhhBBCFFkShIQQQghRZEkQEkIIIUSRJUEoE9J9XgghhCj8pPt8FqT7vBBCCFHwSPd5IYQQQogsSBASQgghRJElQUgIIYQQRZYEISGEEEIUWTkKQjqdjsmTJ3P16tXcKo8QQgghRJ7JURDSarXMnDkTnU6XW+URQgghhMgzOb411rZtWzZv3pwbZRFCCCGEyFPanO7QuXNnxo4dy9GjR2nYsCFOTk5m65977jmLFc6aQkJCCAkJQa/XW7soQgghhMglOR5QUa3OvBJJpVIVuuAgAyoKIYQQBU92r985rhEyGAxPVTAhhBBCiPxCus8LIYQQosh6oiC0efNmunXrRuXKlalcuTLPPfccW7dutXTZhBBCCCFyVY6D0M8//0z79u1xdHRkxIgRjBgxAgcHB9q1a8eSJUtyo4xCCCGEELkix42lq1evzhtvvMHo0aPNln/xxRd89913nDx50qIFtDZpLC2EEEIUPLk2+/yFCxfo1q1buuXPPfcc4eHhOT2cEEIIIYTV5DgIeXt7s3HjxnTLN2zYgLe3t0UKJYQQQgiRF3Lcff7tt99mxIgRHDp0iGbNmgGwfft2QkND+fLLLy1eQCGEEEZ6vZ7U1FRrF0OIfMHGxgaNRvPUx8lxEBo6dCienp58/vnn/Pbbb4Cx3dDSpUvp3r37UxcoN4SHhzNgwAAiIyPRaDTs2rUr3YjYQgiRXymKwo0bN4iOjrZ2UYTIV4oXL46npycqleqJj5GjIKTT6Zg2bRoDBgxg27ZtT3zSvNavXz+mTp1KixYtuHPnDnZ2dtYukhBCZFtaCHJ3d8fR0fGp/ukLURgoikJCQgI3b94EwMvL64mPlaMgpNVqmTFjBn379n3iE+a148ePY2NjQ4sWLQAoWbKklUskhBDZp9frTSGoVKlS1i6OEPmGg4MDADdv3sTd3f2Jb5PluLF0u3btLDr7/JYtW+jWrRtlypRBpVKxcuXKdNuEhITg6+uLvb09AQEB7NmzJ9vHP3v2LM7OznTr1o0GDRowbdo0i5VdCCFyW1qbIEdHRyuXRIj8J+3v4mnazll99vn4+Hjq1q3LgAED6NmzZ7r1S5cuZcyYMcybN4+AgABmz55NYGAgp0+fxt3dHYB69eqh0+nS7btu3Tp0Oh1bt27l0KFDuLu706lTJ/z9/enQoUOOyimEENYkt8OESM8Sfxf5avZ5lUrFihUreP75503LAgIC8Pf3Z+7cuYBx0ldvb2+GDx/O2LFjszzmzp07+eijj1i7di0AM2fOBODdd9/NcPvk5GSSk5NNz2NjY/H29pYBFYUQVpGUlER4eDgVKlTA3t7e2sURIl953N9Hrg2oaDAYMn08TQjKSEpKCvv376d9+/YPCqxW0759e3bu3JmtY/j7+3Pz5k3u3r2LwWBgy5YtVK9ePdPtp0+fjqurq+khYyMJIYQQhVeOglBqaiparZZjx47lVnnM3Lp1C71ej4eHh9lyDw8Pbty4ka1jaLVapk2bRsuWLalTpw5VqlSha9eumW4/btw4YmJiTI8rV6481WsQQoiiLCoqiqFDh+Lj44OdnR2enp4EBgayfft2i54nLCwMlUr12EdYWJhFz5kdH330ken8Wq0WX19fRo8eTVxcHFOmTMHLy4s7d+6Y7XP48GHs7Oz4+++/AeNE523btqVkyZI4OjpSpUoVgoKCSElJAR689hIlSpCUlGR2rL1795rO/zC9Xs+sWbOoXbs29vb2lChRgs6dO+fo5xIaGkrx4sXNlp08eRJvb2969epFSkoKoaGhpvOr1Wq8vLx4+eWXuXz5crrjnTt3jgEDBph+V8qWLUu7du1YvHhxhs1fLCVHbYRsbGzw8fGxeM1PbuvcuTOdO3fO1rZ2dnbSvV4IISzkhRdeICUlhUWLFlGxYkUiIyPZuHEjt2/ffqLjKYqCXq9HqzW/fDVr1oyIiAjT85EjRxIbG8vChQtNy6zVa7hmzZps2LABnU7H9u3bGTBgAAkJCYSEhPDXX38RHBzML7/8AhgrHIKCgujTpw9du3blxIkTdOrUieHDhzNnzhwcHBw4e/Ysy5cvT3ctdnFxYcWKFbzyyiumZT/88AM+Pj5mwUNRFHr37s2GDRuYOXMm7dq1IzY2lpCQEFq3bs2yZcvMmqhk1969e+ncuTM9evRg/vz5pqY0xYoV4/Tp0yiKQnh4OG+99Ra9evVi9+7dpn337NlD+/btqVmzJiEhIVSrVg2Affv2ERISQq1atahbt26Oy5QtSg59//33SpcuXZTbt2/ndNcsAcqKFStMz5OTkxWNRmO2TFEUpW/fvspzzz1n8fM/bO7cuUr16tUVPz8/BVBiYmJy9XxCCJGRxMRE5cSJE0piYqK1i5Jjd+/eVQAlLCwsw/Xh4eEKoBw8eDDdPps2bVIURVE2bdqkAMrq1auVBg0aKDY2NsqmTZuUVq1aKcHBwcrIkSOVUqVKKa1btzY7dlBQkNK9e3dFURRl8+bNilarVSIiIsy2GTlypNK8eXNFURRl4cKFiqurq7JixQqlcuXKip2dndKxY0fl8uXLZvusXLlSqV+/vmJnZ6dUqFBB+eijj5TU1NRM34OJEycqdevWNVs2ePBgxdPTU1EURTl58qRib2+vLFu2zLR9+fLlTdecWbNmKb6+vpke/+H3aPz48Ur79u1NyxMSEhRXV1flww8/VB6+3P/6668KoKxatSrdsXr27KmUKlVKiYuLe+w5FeXBe6YoirJx40bF2dlZee+99zLdJs2cOXPMrqsGg0GpXr260rBhQ0Wv12d4LoPBkOHyx/19xMTEZOv6neM2QnPnzmXLli2UKVOGqlWr0qBBA7OHJdna2tKwYUOzuc0MBgMbN26kadOmFj3Xo4KDgzlx4gR79+7N1fMIIUROKYpCQorOKg8lB/1rnJ2dcXZ2ZuXKlWadUJ7E2LFj+eSTTzh58iR16tQBYNGiRdja2rJ9+3bmzZuX6b4tW7akYsWK/PTTT6ZlqampLF68mAEDBpiWJSQk8PHHH/Pjjz+yfft2oqOj6d27t2n91q1b6du3LyNHjuTEiRPMnz+f0NBQPv744xy9FgcHB9NtrWrVqjF9+nSGDh3K2rVrmT59OgsXLjQ17vX09CQiIoItW7ZkedzXX3+drVu3mmp/li9fjq+vb7pr85IlS/Dz88twAvW3336b27dvs379+my/nhUrVvDss88yfvx4Pv3008due/PmTVasWIFGozGN+3Po0CFOnjzJO++8k2mHrNzsNZnj7vNPUl32OHFxcZw7d870PDw8nEOHDlGyZEl8fHwYM2YMQUFBNGrUiMaNGzN79mzi4+Pp37+/RcshhBAFRWKqnhoT1lrl3CcmB+Jom71Lh1arJTQ0lMGDBzNv3jwaNGhAq1at6N27tynMZNfkyZPTDXtSpUoVZsyYka39Bw4cyMKFC009hv/66y+SkpJ46aWXTNukpqYyd+5cAgICAGPQql69Onv27KFx48ZMmjSJsWPHEhQUBEDFihWZMmUK7733HhMnTsxWOfbv38+SJUto27atadnIkSP5888/6dKlC8OHD6dNmzamdb169WLt2rW0atUKT09PmjRpQrt27ejbt2+6nlDu7u507tyZ0NBQJkyYwIIFC8yCXpozZ85k2mkobfmZM2ey9Xri4uLo1asXH3zwAe+//36G28TExODs7GwaDRpgxIgRpuF30s5VtWpV0z43b96kYsWKpuczZszgrbfeylaZcirHQSi7P+zs2rdvn9kPfcyYMQAEBQURGhrKyy+/TFRUFBMmTODGjRvUq1ePf//9N10DaksLCQkhJCSkwLWHEkKI/OSFF17g2WefZevWrezatYs1a9YwY8YMvv/+e1q3bp3t4zRq1CjdsoYNG2Z7/379+jF+/Hh27dpFkyZNCA0N5aWXXjIbC0+r1eLv7296Xq1aNYoXL87Jkydp3Lgxhw8fZvv27WY1QHq9nqSkJBISEjId9PLo0aM4Ozuj1+tJSUnh2WefNQ0JA8bajv/973+EhYUxfvx4s301Gg0LFy5k6tSp/Pfff+zevZtp06bx6aefsmfPnnRTSwwYMICRI0fSp08fdu7cybJly9i6dWu6MuWkZu9xHBwcaN68Od999x2vvPJKhgHLxcWFAwcOkJqaypo1a1i8eHGWtWilSpXi0KFDALRu3dpUg5Ybsh2E9uzZQ8OGDTMdwjo5OZk///zTLF1nR+vWrbP8gQwbNoxhw4bl6LhPKzg4mODgYNM4BEIIkV842Gg4MTnQaufOKXt7ezp06ECHDh348MMPGTRoEBMnTjRdoB++BmQ2QnBGE2XnZPJsd3d3unXrxsKFC6lQoQJr1qzJcS+yuLg4Jk2alOHgv48b46lq1aqsWrUKrVZLmTJlsLW1TbdNWuPvRxuBpylbtiyvv/46r7/+OlOmTMHPz4958+YxadIks+06d+7MG2+8wcCBA+nWrVuG07L4+flx8uTJDM+TttzPzy/T1/MwjUbDypUr6dmzJ23atGHTpk3pwpBaraZy5cqAscbp/PnzDB061HSrskqVKgCcPn2a+vXrm46btk9m74mlZLuNUNOmTc1a+RcrVowLFy6YnkdHR5u1VBdCCJE7VCoVjrZaqzws0VajRo0axMfH4+bmBmDW2yutFiA3DBo0iKVLl/Ltt99SqVIlnnnmGbP1Op2Offv2mZ6fPn2a6Oho04W9QYMGnD59msqVK6d7PG6wYVtbWypXroyvr2+GISinSpQogZeXF/Hx8enWabVa+vbtS1hYWIa3xQB69+7N2bNn+euvv9Kt+/zzzylVqlSOZl+ws7Pjjz/+wN/fnzZt2nDixInHbj927FiWLl3KgQMHAKhfvz7VqlXjs88+w2AwZPu8lpLtIPRorU1GtTiWqmrLD0JCQqhRo4ZZNakQQojsu337Nm3btuXnn3/myJEjhIeHs2zZMmbMmEH37t1xcHCgSZMmpkbQmzdvTndryJICAwMpVqwYU6dOzbCdqY2NDcOHD2f37t3s37+ffv360aRJExo3bgzAhAkT+PHHH5k0aRLHjx/n5MmT/Prrr2Zl7tu3L+PGjbNYmefPn8/QoUNZt24d58+f5/jx47z//vscP348w8bOAFOmTCEqKorAwIxrDXv37k2PHj0ICgrihx9+4OLFixw5coQ333yTVatW8f333+eotg2MYWj58uUEBATQpk0bjh8/num23t7e9OjRgwkTJgDGYL9w4UJOnz7NM888w6pVqzh79iwnTpxg3rx5REVFPfGEqtmR415jj1OY5sKRXmNCCPF0nJ2dCQgIYNasWbRs2ZJatWrx4YcfMnjwYFMbmQULFqDT6WjYsCGjRo1i6tSpuVYetVpNv3790Ov19O3bN916R0dH3n//fV599VWeeeYZnJ2dWbp0qWl9YGAgf//9N+vWrcPf358mTZowa9Ysypcvb9rm8uXLZjVcT6tx48bExcUxZMgQatasSatWrdi1axcrV66kVatWGe5ja2tL6dKlM70mq1QqfvvtNz744ANmzZpF1apVadGiBZcuXSIsLOyJO0XZ2try+++/06xZM9q0afPYwZdHjx7NP//8Y5pEvUmTJuzfv5+qVasSHBxMjRo1aNasGb/88guzZs1i6NChT1Sm7Mj2XGNqtZobN26YJjp1cXHh8OHDplbdkZGRlClTptA1Ls7uXCVCCJEbZK4xyxo4cCBRUVGsWrXKbHloaCijRo0iOjraOgUTT8QSc43lqAXSiRMnTFNbKIrCqVOniIuLA4zTYRQm0mtMCCEKj5iYGI4ePcqSJUvShSBRtOUoCLVr186sHVDanF0qlQpFUQrdrTHpNSaEEIVD9+7d2bNnD0OGDMlRQ+CirGbNmly6dCnDdfPnz+e1117L4xLljmwHofDw8NwshxBCCJFrsuoq369fP/r165cnZSkoVq9enelwBrk9ll9eynYQergxmBBCCCEKt6Jy3bdorzEhhBBCiIJEglAmZBwhIYQQovCTIJQJGUdICCGEKPwkCAkhhBCiyHqiIKTT6diwYQPz58/n3r17AFy/ft00ppAQQgghREGQ4yldL126RKdOnbh8+TLJycl06NABFxcXPv30U5KTk5k3b15ulFMIIYQQwuJyXCM0cuRIGjVqxN27d3FwcDAt79GjBxs3brRo4axJGksLIcTTi4qKYujQofj4+GBnZ4enpyeBgYFs377doucJCwtDpVI99pHVWEK54aOPPjKdX6vV4uvry+jRo4mLi2PKlCl4eXlx584ds30OHz6MnZ0df//9NwCbN2+mbdu2lCxZEkdHR6pUqUJQUBApKSnAg9deokQJkpKSzI61d+9e0/kfptfrmTVrFrVr18be3p4SJUrQuXPnHP1cQkNDTcdWq9WUK1eO/v37c/PmTdM2KpWKlStXmp5v3rwZGxsbtm3bZnas+Ph4KlasyDvvvJPt81tKjoPQ1q1bGT9+PLa2tmbLfX19uXbtmsUKZm3SWFoIIZ7eCy+8wMGDB1m0aBFnzpxh1apVtG7dmtu3bz/R8RRFQafTpVverFkzIiIiTI+XXnqJTp06mS1r1qzZ076cJ1KzZk0iIiK4ePEin376Kd9++y1vv/0248aNw9vbm+DgYNO2qampBAUF0adPH7p27cqJEyfo1KkTjRo1YsuWLRw9epSvvvoKW1vbdFNAubi4sGLFCrNlP/zwAz4+PmbLFEWhd+/eTJ48mZEjR3Ly5EnCwsLw9vamdevWZsElK8WKFSMiIoKrV6/y3XffsWbNGl5//fVMt2/VqhXDhw+nX79+xMfHm5a/9957ODg45Oqku5lScqh48eLK8ePHFUVRFGdnZ+X8+fOKoijK1q1bFXd395weLt+LiYlRACUmJsbaRRFCFEGJiYnKiRMnlMTERGsXJcfu3r2rAEpYWFiG68PDwxVAOXjwYLp9Nm3apCiKomzatEkBlNWrVysNGjRQbGxslE2bNimtWrVSgoODlZEjRyqlSpVSWrdubXbsoKAgpXv37oqiKMrmzZsVrVarREREmG0zcuRIpXnz5oqiKMrChQsVV1dXZcWKFUrlypUVOzs7pWPHjsrly5fN9lm5cqVSv359xc7OTqlQoYLy0UcfKampqZm+BxMnTlTq1q1rtmzw4MGKp6enoiiKcvLkScXe3l5ZtmyZafvy5cubrjmzZs1SfH19Mz3+w+/R+PHjlfbt25uWJyQkKK6ursqHH36oPHy5//XXXxVAWbVqVbpj9ezZUylVqpQSFxf32HMqyoP37GEff/yxolarlYSEBEVRFAVQVqxYYbZNYmKiUr16dSU4OFhRFEX577//FFtbW2Xfvn1ZnvNRj/v7yO71O8c1Qh07dmT27Nmm5yqViri4OCZOnEiXLl2ePpkJIYR4PEWBlHjrPB6abzIrzs7OODs7s3LlSpKTk5/qJY8dO5ZPPvmEkydPUqdOHQAWLVqEra0t27dvf2z71JYtW1KxYkV++ukn07LU1FQWL17MgAEDTMsSEhL4+OOP+fHHH9m+fTvR0dH07t3btH7r1q307duXkSNHcuLECebPn09oaCgff/xxjl6Lg4OD6bZWtWrVmD59OkOHDmXt2rVMnz6dhQsXmmZL9/T0JCIigi1btmR53Ndff52tW7dy+fJlAJYvX46vry8NGjQw227JkiX4+fnRrVu3dMd4++23uX37NuvXr8/Ra3r4tRkMhgxr7dLY29vz448/8u233/Lnn38yYMAAPvjgAxo2bPhE53xaOW4s/fnnnxMYGEiNGjVISkri1Vdf5ezZs5QuXZpffvklN8oohBDiYakJMK2Mdc79wXWwdcrWplqtltDQUAYPHsy8efNo0KABrVq1onfv3qYwk12TJ09ON1lqlSpVmDFjRrb2HzhwIAsXLuTdd98F4K+//iIpKYmXXnrJtE1qaipz584lICAAMAat6tWrs2fPHho3bsykSZMYO3YsQUFBAFSsWJEpU6bw3nvvMXHixGyVY//+/SxZsoS2bdualo0cOZI///yTLl26MHz4cNq0aWNa16tXL9auXUurVq3w9PSkSZMmtGvXjr59+5rCUhp3d3c6d+5MaGgoEyZMYMGCBWZBL82ZM2eoXr16huVLW37mzJlsvZ6HnT17lnnz5tGoUSNcXFweu22jRo0YN24cPXv2pH79+vzvf//L8fksJcc1QuXKlePw4cN88MEHjB49mvr16/PJJ59w8OBB3N3dc6OMQgghCqgXXniB69evs2rVKjp16kRYWBgNGjQgNDQ0R8dp1KhRumU5qUHo168f586dY9euXYCxoe9LL72Ek9ODUKfVas06yFSrVo3ixYtz8uRJwNiIefLkyaaaLmdnZwYPHkxERAQJCQmZnvvo0aM4Ozvj4OBA48aNadq0KXPnzjWtV6lU/O9//8NgMDB+/HizfTUaDQsXLuTq1avMmDGDsmXLMm3aNFO7o0cNGDCA0NBQLly4wM6dOzOdIV7JQc3e48TExODs7IyjoyNVq1bFw8ODxYsXZ2vfDz/8EIPBwNixY9Fqc1wvYzE5PnNSUhL29vb06dMnN8ojhBAiKzaOxpoZa507h+zt7enQoQMdOnTgww8/ZNCgQUycOJGtW7cC5hflzGY7fziwPG5ZZtzd3enWrRsLFy6kQoUKrFmzJse9yOLi4pg0aRI9e/ZMt87e3j7T/apWrcqqVavQarWUKVMmXWcjwBQEMgsEZcuW5fXXX+f1119nypQp+Pn5MW/ePCZNmmS2XefOnXnjjTcYOHAg3bp1o1SpUumO5efnZwp3j0pb7ufnl+nreZiLiwsHDhxArVbj5eVl1ps8K1m95ryS47O7u7vTo0cP+vTpQ7t27VCrC+fg1CEhIYSEhKRrlS+EEFanUmX79lR+VKNGDVauXImbmxsAERER1K9fH4BDhw7l2nkHDRrEK6+8Qrly5ahUqRLPPPOM2XqdTse+ffto3LgxAKdPnyY6Otp0u6hBgwacPn2aypUr5+i8tra2Od7ncUqUKIGXl5dZr6s0Wq2Wvn37MmPGDNasWZPh/r179+bVV1/lr7/+StdO6PPPP6dUqVLpbkNmRq1WW/S1WUOOg9CiRYtYsmQJ3bt3x9XVlZdffpk+ffpkWG1ZkAUHBxMcHExsbCyurq7WLo4QQhQ4t2/fplevXgwYMIA6derg4uLCvn37mDFjBt27d8fBwYEmTZrwySefUKFCBW7evJnu1pAlBQYGUqxYMaZOncrkyZPTrbexsWH48OHMmTMHrVbLsGHDaNKkiSkYTZgwga5du+Lj48OLL76IWq3m8OHDHDt2zNTtu2/fvpQtW5bp06dbpMzz58/n0KFD9OjRg0qVKpGUlMSPP/7I8ePH+eqrrzLcZ8qUKbz77rsZ1gaBMQgtW7aMoKAgZs6cSbt27YiNjSUkJIRVq1axbNmyHNW2ZSU8PDxdwK1SpYpFz/E0clyd06NHD5YtW0ZkZCTTpk3jxIkTNGnSBD8/vwx/sYQQQhRNzs7OBAQEMGvWLFq2bEmtWrX48MMPGTx4sKmNzIIFC9DpdDRs2JBRo0bl6jgyarWafv36odfr6du3b7r1jo6OvP/++7z66qs888wzODs7s3TpUtP6wMBA/v77b9atW4e/vz9NmjRh1qxZlC9f3rTN5cuXM2y786QaN25MXFwcQ4YMoWbNmrRq1Ypdu3axcuVKWrVqleE+tra2lC5dOt0gimlUKhW//fYbH3zwAbNmzaJq1aq0aNGCS5cuERYWxvPPP2+x8gOMGTOG+vXrmz0OHjxo0XM8DZVigRZTJ06c4LXXXuPIkSOF7lZSWo1QTExMuhb6QgiR25KSkggPD6dChQqPbYcismfgwIFERUWxatUqs+WhoaGMGjWK6Oho6xRMPJHH/X1k9/r9xC2UkpKSWLVqFUuWLOHff//Fw8PD1C1RCCGEyE9iYmI4evQoS5YsSReCRNGW4yC0du1alixZwsqVK9Fqtbz44ousW7eOli1b5kb5hBBCiKfWvXt39uzZw5AhQ7LdELioq1mzJpcuXcpw3fz58zPtml/Q5PjWmKOjI127duW1116jS5cu2NjY5FbZ8gW5NSaEsCa5NSas5dKlS5kOZ+Dh4ZHloIl5wSq3xiIjI/PFixdCCCFE7nm4EXhhlq0gFBsba0pTiqIQGxub6bZSayKEEEKIgiJbQahEiRJERETg7u5O8eLFM+ySpygKKpWq0PQakwEVhRBCiMIvW0Hov//+o2TJkgBs2rQpVwuUX8iAikIIIUThl60g9PCgTRUqVMDb2ztdrZCiKFy5csWypRNCCCGEyEU5Hlm6QoUKREVFpVt+584dKlSoYJFCCSGEEELkhRwHobS2QI+Ki4uTrp1CCCGEKFCyHYTGjBnDmDFjUKlUfPjhh6bnY8aMYeTIkbz88svUq1cvF4sqhBCioImKimLo0KH4+PhgZ2eHp6cngYGBbN++3aLnCQsLQ6VSPfYRFhZm0XNmx0cffWQ6v1arxdfXl9GjRxMXF8eUKVPw8vLizp07ZvscPnwYOzs7/v77bwA2b95M27ZtKVmyJI6OjlSpUoWgoCBSUlKAB6+9RIkSJCUlmR1r7969pvM/TK/XM2vWLGrXro29vT0lSpSgc+fOOfq5hIaGmo6tVqvx8vLi5Zdf5vLly2bbtW7d2uzn4OHhQa9evcwGa7x48WKGP7M+ffpkuzxPKtvjCKVNkKYoCkePHsXW1ta0ztbWlrp16/LOO+9YvoRCCCEKrBdeeIGUlBQWLVpExYoViYyMZOPGjdy+ffuJjqcoCnq9Hq3W/PLVrFkzs8lOR44cSWxsLAsXLjQtS+v0k9dq1qzJhg0b0Ol0bN++nQEDBpCQkEBISAh//fUXwcHB/PLLLwCkpqYSFBREnz596Nq1KydOnKBTp04MHz6cOXPm4ODgwNmzZ1m+fHm6Xs0uLi6sWLGCV155xbTshx9+wMfHxyycKIpC79692bBhQ7rZ51u3bs2yZcuyPfFqsWLFOH36NIqiEB4ezltvvUWvXr3YvXu32XaDBw9m8uTJKIrCpUuXGDVqFH369GHr1q1m223YsIGaNWuanjs4OGSrHE9FyaF+/fopMTExOd2twIqJiVGAIvWahRD5R2JionLixAklMTHR2kXJsbt37yqAEhYWluH68PBwBVAOHjyYbp9NmzYpiqIomzZtUgBl9erVSoMGDRQbGxtl06ZNSqtWrZTg4GBl5MiRSqlSpZTWrVubHTsoKEjp3r27oiiKsnnzZkWr1SoRERFm24wcOVJp3ry5oiiKsnDhQsXV1VVZsWKFUrlyZcXOzk7p2LGjcvnyZbN9Vq5cqdSvX1+xs7NTKlSooHz00UdKampqpu/BxIkTlbp165otGzx4sOLp6akoiqKcPHlSsbe3V5YtW2bavnz58qZrzqxZsxRfX99Mj//wezR+/Hilffv2puUJCQmKq6ur8uGHHyoPX+5//fVXBVBWrVqV7lg9e/ZUSpUqpcTFxT32nIry4D172Jw5c9JdM1u1aqWMHDnSbLuffvpJcXR0ND3P6HchOx7395Hd63eO2wgtXLhQBk0UQggrUhSFhNQEqzyUHMzK5OzsjLOzMytXriQ5OfmpXvPYsWP55JNPOHnyJHXq1AFg0aJF2Nrasn37dubNm5fpvi1btqRixYr89NNPpmWpqaksXryYAQMGmJYlJCTw8ccf8+OPP7J9+3aio6Pp3bu3af3WrVvp27cvI0eO5MSJE8yfP5/Q0FA+/vjjHL0WBwcH022tatWqMX36dIYOHcratWuZPn262XXW09OTiIgItmzZkuVxX3/9dbZu3Wqq/Vm+fDm+vr40aNDAbLslS5bg5+dHt27d0h3j7bff5vbt26xfvz5Hrwng5s2brFixAo1Gg0ajyXS7O3fu8NtvvxEQEJDjc+SGJ5p9ft++ffz2229cvnzZ9MNM88cff1ikYEIIITKWqEskYIl1LiK7X92No41jtrbVarWEhoYyePBg5s2bR4MGDWjVqhW9e/c2hZnsmjx5crrJUqtUqcKMGTOytf/AgQNZuHAh7777LgB//fUXSUlJvPTSS6ZtUlNTmTt3rukCvWjRIqpXr86ePXto3LgxkyZNYuzYsQQFBQFQsWJFpkyZwnvvvcfEiROzVY79+/ezZMkS2rZta1o2cuRI/vzzT7p06cLw4cNp06aNaV2vXr1Yu3YtrVq1wtPTkyZNmtCuXTv69u2brlLC3d2dzp07ExoayoQJE1iwYIFZ0Etz5swZqlevnmH50pafOXMmW68nJiYGZ2dnYzhPSABgxIgRODk5mW339ddf8/3335u28/PzY+3atemO16xZM9TqB3U0W7dupX79+tkqy5PKcY3Qr7/+SrNmzTh58iQrVqwgNTWV48eP899//+XLgQdPnz5NvXr1TA8HBwdWrlxp7WIJIUSR8MILL3D9+nVWrVpFp06dCAsLo0GDBoSGhuboOI0aNUq3rGHDhtnev1+/fpw7d45du3YBxoa+L730ktkFW6vV4u/vb3perVo1ihcvzsmTJwFjI+bJkyebarqcnZ0ZPHgwERERphCQkaNHj+Ls7IyDgwONGzemadOmzJ0717RepVLxv//9D4PBwPjx48321Wg0LFy4kKtXrzJjxgzKli3LtGnTqFmzplmbqDQDBgwgNDSUCxcusHPnzkxniM9Jzd7juLi4cOjQIfbt28fnn39OgwYNMqwhe+211zh06BCHDx9m27ZtVK5cmY4dO3Lv3j2z7ZYuXcqhQ4dMjxo1aliknI+T4xqhadOmMWvWLIKDg3FxceHLL7+kQoUKvPnmm3h5eeVGGZ9K1apVOXToEGDs4u/r65vuU4UQQhQkDloHdr+6O+sNc+ncOWVvb0+HDh3o0KEDH374IYMGDWLixImmhrIPX5Qzm+380RqGzJZlxt3dnW7durFw4UIqVKjAmjVrctyLLC4ujkmTJtGzZ8906x43fEzVqlVZtWoVWq2WMmXKmHU2SpPW+PvRRuBpypYty+uvv87rr7/OlClT8PPzY968eUyaNMlsu86dO/PGG28wcOBAunXrRqlSpdIdy8/PzxTuHpW23M/PL9PX8zC1Wk3lypUBY23S+fPnGTp0qNltSABXV1fTdpUrV+aHH37Ay8uLpUuXMmjQINN23t7epu3ySo6D0Pnz53n22WcBY2+x+Ph4VCoVo0ePpm3btul+KPnJqlWraNeuXY7+eIQQIr9RqVTZvj2VH9WoUYOVK1fi5uYGQEREhOn2R9oH19wwaNAgXnnlFcqVK0elSpV45plnzNbrdDr27dtH48aNAeMdhejoaNPtogYNGnD69OkcX6htbW0tenEvUaIEXl5exMfHp1un1Wrp27cvM2bMYM2aNRnu37t3b1599VX++uuvdO2EPv/8c0qVKvXEFQZjx46lUqVKjB49Ol3bpIeltSFKTEx8ovNYUo5vjZUoUcJUlVW2bFmOHTsGQHR09GOrBjOzZcsWunXrRpkyZVCpVBnetgoJCcHX1xd7e3sCAgLYs2dPjs8D8Ntvv/Hyyy8/0b5CCCFy5vbt27Rt25aff/6ZI0eOEB4ezrJly5gxYwbdu3fHwcGBJk2amBpBb968Od2tIUsKDAykWLFiTJ06lf79+6dbb2Njw/Dhw9m9ezf79++nX79+NGnSxBSMJkyYwI8//sikSZM4fvw4J0+e5NdffzUrc9++fRk3bpzFyjx//nyGDh3KunXrOH/+PMePH+f999/n+PHjGTZ2BpgyZQpRUVEEBgZmuL5379706NGDoKAgfvjhBy5evMiRI0d48803WbVqFd9///0TVxh4e3vTo0cPJkyYYLY8ISGBGzducOPGDQ4fPszQoUOxt7enY8eOT3QeS8pxEGrZsqWpNXmvXr0YOXIkgwcP5pVXXqFdu3Y5LkB8fDx169YlJCQkw/VLly5lzJgxTJw4kQMHDlC3bl0CAwO5efOmaZt69epRq1atdI/r16+btomNjWXHjh106dIlx2UUQgiRc87OzgQEBDBr1ixatmxJrVq1+PDDDxk8eLCpjcyCBQvQ6XQ0bNiQUaNGMXXq1Fwrj1qtpl+/fuj1evr27ZtuvaOjI++//z6vvvoqzzzzDM7OzixdutS0PjAwkL///pt169bh7+9PkyZNmDVrFuXLlzdtc/ny5Qzb7jypxo0bExcXx5AhQ6hZsyatWrVi165drFy50mwe0IfZ2tpSunTpDGeBAGON4m+//cYHH3zArFmzqFq1Ki1atODSpUuEhYVlewyhzIwePZp//vnHrNLiu+++w8vLCy8vL9q0acOtW7dYvXo1VatWfapzWYJKyWGLqTt37pCUlESZMmUwGAzMmDGDHTt2UKVKFcaPH0+JEiWevDAqFStWrDD7IQQEBODv72/6ozEYDHh7ezN8+HDGjh2b7WP/9NNPrF27lp9//vmx2yUnJ5t184yNjcXb25uYmBgZNkAIkeeSkpIIDw+nQoUKMo2RBQwcOJCoqChWrVpltjw0NJRRo0YRHR1tnYKJJ/K4v4/Y2FhcXV2zvH7nuI3QwyNzqtXqHIWRnEpJSWH//v1m1YxqtZr27duzc+fOHB3rt99+44033shyu+nTp+frdk5CCCFyLiYmhqNHj7JkyZJ0IUgUbdm6NRYbG5vthyXdunULvV6Ph4eH2XIPDw9u3LiR7ePExMSwZ8+eTO+XPmzcuHHExMSYHleuXMlxuYUQQuQv3bt3p2PHjgwZMkR6DmdTzZo1zYYKePixePFiaxfPYrJVI1S8ePFM7zWmUe7PSv/o3Cf5gaurK5GRkdna1s7ODjs7u1wukRBCiLyUVVf5fv360a9fvzwpS0GxevXqTIczeLSCoiDLVhDatGlTbpcjQ6VLl0aj0aQLMZGRkXh6eubquUNCQggJCcmXwU4IIYTIbQ83Ai/MshWEMmuZnttsbW1p2LAhGzduNDWgNhgMbNy4kWHDhuXquYODgwkODjY1thJCCCFE4ZPj7vNgnPujT58+NGvWjGvXrgHGXlnbtm3L8bHi4uJMQ2kDhIeHc+jQIdOkcWPGjOG7775j0aJFnDx5kqFDhxIfH5/hGBCWFBISQo0aNcyGWxdCCGux1JQIQhQmlvi7yHEQWr58OYGBgTg4OHDgwAFTV/OYmBimTZuW4wLs27eP+vXrm0YVHTNmDPXr1zcNxvTyyy/z2WefMWHCBOrVq8ehQ4f4999/c/3+ZHBwMCdOnGDv3r25eh4hhHgcGxsbgCcasFaIwi7t7yLt7+RJ5Hgcofr16zN69Gj69u2Li4sLhw8fpmLFihw8eJDOnTvnqDdXQZDdcQiEECK3REREEB0djbu7O46Ojll2XhGisEubxf7mzZsUL148w7lOc20codOnT9OyZct0y11dXQvVQFTSWFoIkV+kdQ55eER9IYSxV/vTdp7KcRDy9PTk3Llz+Pr6mi3ftm0bFStWfKrC5CfSWFoIkV+oVCq8vLxwd3fPtDuzEEWNjY2NafLWp5HjIDR48GBGjhzJggULUKlUXL9+nZ07d/LOO+/w4YcfPnWBhBBCZEyj0VjkH78Q4oEcB6GxY8diMBho164dCQkJtGzZEjs7O9555x2GDx+eG2UUQgghhMgVOW4snSYlJYVz584RFxdHjRo1cHZ2JjExEQcHB0uX0SoebiN05swZaSwthBBCFCDZbSz9xEHoYcnJyYSEhDBjxgzpNSaEEEIIq8vu9Tvb4wglJyczbtw4GjVqRLNmzVi5ciUACxcupEKFCsyaNYvRo0c/dcGFEEIIIfJKttsITZgwgfnz59O+fXt27NhBr1696N+/P7t27eKLL76gV69e0ohPCCGEEAVKtoPQsmXL+PHHH3nuuec4duwYderUQafTcfjw4UI5uJeMIySEEEIUftluI2Rra0t4eDhly5YFwMHBgT179lC7du1cLaC1SRshIYQQouCxeBshvV6Pra2t6blWq8XZ2fnpSimEEEIIYUXZvjWmKAr9+vXDzs4OgKSkJIYMGYKTk5PZdn/88YdlSyiEEEIIkUuyHYSCgoLMnvfp08fihRFCCCGEyEvZDkILFy7MzXLkO9JYWgghhCj8LDKgYmEmjaWFEEKIgsfijaWFEEIIIQobCUJCCCGEKLIkCAkhhBCiyJIgJIQQQogiS4KQEEIIIYosCUKZCAkJoUaNGvj7+1u7KEIIIYTIJdJ9PgvSfV4IIYQoeKT7vBBCCCFEFiQICSGEEKLIkiAkhBBCiCJLgpAQQgghiiwJQkIIIYQosiQICSGEEKLIkiAkhBBCiCJLgpAQQgghiiwJQpmQkaWFEEKIwk9Gls6CjCwthBBCFDwysrQQQgghRBYkCAkhhBCiyJIgJIQQQogiS4KQEEIIIYosCUJCCCGEKLIkCAkhhBCiyJIgJIQQQogiS4KQEEIIIYqsIhGEZs2aRc2aNalRowYjRoxAxpAUQgghBBSBIBQVFcXcuXPZv38/R48eZf/+/ezatcvaxRJCCCFEPqC1dgHygk6nIykpCYDU1FTc3d2tXCIhhBBC5AdWrxHasmUL3bp1o0yZMqhUKlauXJlum5CQEHx9fbG3tycgIIA9e/Zk+/hubm688847+Pj4UKZMGdq3b0+lSpUs+AqEEEIIUVBZPQjFx8dTt25dQkJCMly/dOlSxowZw8SJEzlw4AB169YlMDCQmzdvmrapV68etWrVSve4fv06d+/e5e+//+bixYtcu3aNHTt2sGXLlrx6eUIIIYTIx6x+a6xz58507tw50/VffPEFgwcPpn///gDMmzePf/75hwULFjB27FgADh06lOn+y5Yto3LlypQsWRKAZ599ll27dtGyZcsMt09OTiY5Odn0PDY2NqcvSQghhBAFhNVrhB4nJSWF/fv30759e9MytVpN+/bt2blzZ7aO4e3tzY4dO0hKSkKv1xMWFkbVqlUz3X769Om4urqaHt7e3k/9OoQQQgiRP+XrIHTr1i30ej0eHh5myz08PLhx40a2jtGkSRO6dOlC/fr1qVOnDpUqVeK5557LdPtx48YRExNjely5cuWpXoMQQggh8i+r3xrLCx9//DEff/xxtra1s7PDzs6OkJAQQkJC0Ov1uVw6IYQQQlhLvq4RKl26NBqNhsjISLPlkZGReHp65uq5g4ODOXHiBHv37s3V8wghhBDCevJ1ELK1taVhw4Zs3LjRtMxgMLBx40aaNm1qxZIJIYQQojCw+q2xuLg4zp07Z3oeHh7OoUOHKFmyJD4+PowZM4agoCAaNWpE48aNmT17NvHx8aZeZLlFbo0JIYQQhZ9KsfLEW2FhYbRp0ybd8qCgIEJDQwGYO3cuM2fO5MaNG9SrV485c+YQEBCQJ+WLjY3F1dWVmJgYihUrlifnFEIIIcTTye712+pBKL+TICSEEEIUPNm9fufrNkLWFBISQo0aNfD397d2UYQQQgiRS6RGKAtSIySEEEIUPFIjJIQQQgiRBQlCQgghhCiyJAhlQtoICSGEEIWftBHKgrQREkIIIQoeaSMkhBBCCJEFCUJCCCGEKLIkCGVC2ggJIYQQhZ+0EcqCtBESQgghCh5pIySEEEIIkQUJQkIIIYQosiQICSGEEKLIkiCUCWksLYQQQhR+0lg6C9JYWgghhCh4pLG0EEIIIUQWJAgJIYQQosiSICSEEEKIIkuCkBBCCCGKLAlCQgghhCiyJAhlQrrPCyGEEIWfdJ/PgnSfF0IIIQoe6T4vhBBCCJEFCUJCCCGEKLIkCAkhhBCiyJIgJIQQQogiS4KQEEIIIYosCUJCCCGEKLIkCAkhhBCiyJIglAkZUFEIIYQo/GRAxSzIgIpCCCFEwZPd67c2D8skhMhNBgPci4CYK2DnAs6e4FgSVCprl0wIIfItCUJCFCRpYefOebhzAW7f/3rnAtwJB12i+fYaW3D2ABfP+1+9wOX+V2fPB987lAS13CkXQhQ9EoSEyG9yGnYeptJAsbKQEgeJd0CfYqwhirny+HOqtebBKC08uXjeX37/4VhaApMQolCRICSENZjCzgVj4Mlp2ClRHkpWhJKVoFSl+99XhOI+oLExbqdLhrhIuBcJcTfg3kOPh58n3AKDDmKvGh+Po9aCk/uDYGQKSg8HKC9wKg1qjeXeLyGEyCUShITILY+GHbPaHQuFncfR2hm3Le7z+O10KRB/M+OQ9PDz+PuB6d514+NxVBpwdje/HfdwzVJagHJyA438GxJCWI/8BxLiaVg77FiC1hZcyxkfj6NPhbibmQSlSOP7EBdp3EbRG5/fi4CIQ5kfU6U2hqF07Zfu35qzdwUbB7BxAltH41cbB+NDGoELISxAgpAQWck07IQbvy8IYccSNDbgWtb4eBy9DuKjHgSjexHmQSktQMXfBMVwPzxFwo0jOSiMCmwcjYHo4YBk62Rcbut4f/3jvnd66BhO5tto7SVoCVFESBASIs29G3DrbNEOO5ag0UIxL+PjcQz6+4HpMbfkkuMgNcH4SEkAffL9nRVIjTc+EnLhNajUD0KSKTQ9+r1TFoHrofXuNYw1b0KIfKdIBKHPPvuMhQsXolKpGDt2LH369LF2kUR+oE+Fy7vgzL9wZi3cPpv5thJ2LE+tedBeKLv0OmMoTUm4H4Qe/T7+QWh6OECZvr+/XWbfpwUtxWDseZcSZ5nXWsIXXl4MnrUsczwhhMUU+iB09OhRlixZwv79+1EUhTZt2tC1a1eKFy9u7aIJa4i/Dec2GMPPuY2QHPNgnYSd/E+jBY2LccDI3KDXPQhNjw1UWQSxh7+Puwl3L8IPHaD7XKj1Qu6UXQjxRAp9EDp58iRNmzbF3t4egLp16/Lvv//Su3dvK5dM5AlFgZsn7tf6rIOre4yf9tM4loIqgeDXESq1NTbOFUWXRguaYmBvwel0Eu7A8oFw/j/4fQBcPwTtP5LhBYTIJ6w+MtqWLVvo1q0bZcqUQaVSsXLlynTbhISE4Ovri729PQEBAezZsyfbx69VqxZhYWFER0dz9+5dwsLCuHbtmgVfgch3UpPg7Hr4522YXRu+aQYbJ8OVXcYQ5FEbWrwDAzfAO2ehxzdQs4eEIJE7HEvCa7/DMyONz3fMgZ9fMAYkIYTVWb1GKD4+nrp16zJgwAB69uyZbv3SpUsZM2YM8+bNIyAggNmzZxMYGMjp06dxd3cHoF69euh0unT7rlu3jho1ajBixAjatm2Lq6srTZo0QaORT2KFTux1Yzufs+vgQpjxlkQarT1UaAV+gcZHVt3EhbA0tQY6TAavuvDnMLiwCb5tDb2XSLshIawsX80+r1KpWLFiBc8//7xpWUBAAP7+/sydOxcAg8GAt7c3w4cPZ+zYsTk+x6BBg+jRowfPPvtshuuTk5NJTk42PY+NjcXb21tmn89vDAa4fvD+La9/03e9Llb2fvDpBL4tjL13hMgPbhyDX1+F6EvGHmXSbkiIXFEoZp9PSUlh//79jBs3zrRMrVbTvn17du7cme3j3Lx5E3d3d06fPs2ePXuYN29epttOnz6dSZMmPVW5RS5JvgfnN92v+Vlr7HptooJyjR6EH49aMg6MyJ88a8EbYenbDbWbKKNsC2EF+fqv7tatW+j1ejw8PMyWe3h4cOrUqWwfp3v37sTExODk5MTChQvRajN/2ePGjWPMmDGm52k1QsJK7lwwBp8z/8LF7WBIfbDO1gUqtzUGn8odwNnNeuUUIifS2g1tnAzbZxvbDd04Ai8uNK4TQuSZfB2ELCUntUd2dnbY2dnlYmnEY+lT4cruB2P73Dpjvr5kRfDrbKz58Wkqg9SJgkutgQ6T7rcbCja2bfu2NfReDJ61rV06IZ6OQf9gjC7T+F7xjzyPMw4/kRIP9V41Dl9iBfk6CJUuXRqNRkNkZKTZ8sjISDw9czAI2xMICQkhJCQEvV6fOyf4ezRc3Wtsy1KsLBQrY2zEW6zMg+c2Drlz7vwm4Y6xl1dGY/uotcbA49fJ+Chd2XrlFCI31OoJpf1g6WvG8Ya+vz/eUO0XrV0yURToUoyBJG18LNP3j4aWTAJMatp2CebfP240/oz4BEgQyoitrS0NGzZk48aNpgbUBoOBjRs3MmzYsFw9d3BwMMHBwabGVhZ38yTcOGp8ZMax1EPBqBCFJUUxvv60Wp8Mx/bpaHxUagsOxa1WVCHyhGctGLzpQbuh5QMh4rC0GxLmDHpIioHEu5AUDUmxOat1SY1PH2AM6XtcW5bKOC2NaR5AZ2PnFdPz++ucc7dy43Gs/hcWFxfHuXPnTM/Dw8M5dOgQJUuWxMfHhzFjxhAUFESjRo1o3Lgxs2fPJj4+nv79+1ux1BbQ7Uvjp7/YaxBzzdj9O/bag+e6REi4bXxkKyzdD0iuZc2DU34JS6lJcHHrg/ATc8V8vUetBw2dyzaUweZE0SPthooGgwGSY41BJjH6QahJjL7/9e5D3z+8Psa8ttzS1DYPQsmjISVdgEnbztH8e1vn9PvZOOT7jitW7z4fFhZGmzZt0i0PCgoiNDQUgLlz5zJz5kxu3LhBvXr1mDNnDgEBAblarodvjZ05cyZvu88rivGX/9FwFHsdYq8av6aFpezIMiyVBRt7y7+O2Ahj764zax8/tk+VjlBcGqQLYXLsD2O7odQEKF5e2g3lN4pirGnJNLREZxxqkqKNNToP14A/CRsnY025XTHz8PKkAcbGqVC2t8xu93mrB6H8LrtvZJ7LlbB0Pxy5lk0fnFzKZB2W0sb2OXu/l1fEYfP1LmUe1PpUaClj+wjxODeOPWg3pHWQdkOWpijGoJmTIGO6JRXz9LeUtPbgUALsixtDjX1x43PT98UzXm/vWihDS26QIGQh+TYIZYcpLD106+2pwlLpBzVID4cltcY4vs/ZdRB/86EdVMbbXH6djAHIs3a+ryIVIl9JuAPLB8H5jcbnzYZDu4+k3dCTurIXtswwjtuUeNd8OI4nobF9fGh5XKjJjVp4YUaC0FOy6q2xvGTpsCRj+whhWQY9/DcFts0yPq/YWtoN5dT1Q7BpmrG2+lEqzZMFGYcSBaL9S1EmQchCCnSNkKU8GpZi7gektLCUFAvlm90f26eZVNsKkRuOr4CVb91vN+Rzf54yaTf0WJEnIGwanPzL+FylgbqvQKMB4OxuDDW2zhJmCikJQhYiQUgIkW9EHjfOUybthh7v1jkImw7HlgMKoDK+T63GylhkRUihmGvMmnJ9QEUhhMgpj5r3xxu6325o+UCIOCTthtLcvQibZ8DhXx70zKrRHVqPA/fqVi2ayL+kRigLUiMkhMh3pN2QuZhrsPUzOPDjg95cfp2gzQfGKUxEkSQ1QkIIUVipNdD+I+NFfmXaPGWt4OXF4FXH2qXLO/cijWFw3wLQJxuXVWwDbcdDuUbWLZsoMCQICSFEQVWzB5Suer/dUDj80LFotBuKvw07voTd3z7o0erTzBiAfJ+xbtlEgSNBSAghCjKPGvDGJvh94IN2Q9cPQvtJha/dUGI07AyBXV8bR3YGKNsI2v7PWBMkvb/EEyhkfyWWI42lhRAFhkMJeG0Z/DcVtn0BO+ca5yjsFVo42g0l34Pd82DHV8ZRnQE860Cb/xmH7ZAAJJ6CNJbOgjSWFkIUKMdX3h9vKN443lBBbjeUkgB7vzdOQptw27jMrbqxEXS1rqBWW7V4In+TxtJCCFEU1XweSvsV7HZDumTYHwpbP4e4SOOykpWM3eBr9TQ2FhfCQiQICSFEYVNQ2w3pU+HQYtg80zhqPRhrtVq9D3V65++yiwJLfquEEKIwyqzd0IsLwamUtUtnzqCHI7/B5k+MgyICuJSBlu9A/ddl2h6RqyQIZUIaSwshCjy1BtpPvD/e0FsQvhm+bQ2980m7IYMBTqyATdPh9lnjMic3aPE2NOwvM7SLPCGNpbMgjaWFEIVC5IkH7Ya0DvDcV1Cnl3XKoij/b+/+g6Kq/z2OvxYK3JCETFBzI9RMIUgU5Cp3rG/ylXGSbkZ542uO6eiddNFoZ+piXXPmphI5OY5Amt2mb2VOOaJToykhomiTgSAGKmgiZhmgowbo+KPl3D9W6euYYoUctvN8zPDHnoXdF3x0eHH2ffYjVW/07AjfuM9zzB4sJaRLI2ZIfgHm5MJfCsPSAIBfXZkbypsufbdFWjfds09ZZ84NGYbnuYsWemaWJMn/TmlkmvRvM6Vu/LGJzkcRAgCrsAdL/1hjztzQkWLP8x77xnP79gBP+RmV5skFmIQiBABW0tlzQ9/v8hSguh2e27d1k+KmS//+ohRwd8c/H/A7UYQAwIp+6/2GOnJu6Mdyz0tg323x3Pb1k4Y/5xmEDuzdMc8BdACK0HVw1RiAv7y2uaEZ0ncFnrmh43ukv//vH58bqq/yDEHXbPTctvlKMc9Ko1+Sghwdlx3oIFw11g6uGgPwl9fq9py92fGW53b4aOmpf/6+uaETNdK2TGnfes9tm48U/Z/Swy9Ld/Xv8MhAe7hqDABwc3x8pTGveeaG1s/0DDavfER6ZpXn2I2cqpW2ZUmVaySj1XMs8knPdhi9Bt3y6MCfRRECAHhE/Mevc0OnaqX3kq4/N3TmmFS8WNqzSjIujxAMHu8pQL0f7NzcwJ9AEQIA/CpkiDRj6/XnhprrPS+hlf1Tcl/0fM3Av3t2hL9nmKnRgT+CIgQAuJo9WPrHp7/ODe3KlRoqpd7RUun/Sb+c93xe+Gjpb/8j3Rtvbl7gT6AIAQCu9VtzQ0eKPfc54qW/vSr1f9jcjEAHoAgBAK7vytzQuv/yvBniw/8tDRwj2WxmJwM6BEUIAHBjIUOk53eYnQK4JXzMDgAAAGAWitB15ObmKiIiQnFxcWZHAQAAtwjvLN0O3lkaAADvc7O/vzkjBAAALIsiBAAALIsiBAAALIsiBAAALIsiBAAALIsiBAAALIsiBAAALIsiBAAALIsiBAAALIsiBAAALIsiBAAALOs2swN0dVe2YmtqajI5CQAAuFlXfm+3t6UqRagdzc3NkiSHw2FyEgAA8Hs1NzerR48e172f3efb0draquPHjyswMFA2m63DHrepqUkOh0PHjh1jV/sugjXpWliProX16FpYj/YZhqHm5mb17dtXPj7XnwTijFA7fHx81K9fv1v2+HfeeSf/iLsY1qRrYT26Ftaja2E9buxGZ4KuYFgaAABYFkUIAABYFkXIJP7+/po/f778/f3NjoLLWJOuhfXoWliProX16DgMSwMAAMvijBAAALAsihAAALAsihAAALAsihAAALAsipBJcnNzdd9996lbt26Kj49XSUmJ2ZEsKTMzU3FxcQoMDFRISIieeOIJ1dTUmB0Ll73xxhuy2WxKT083O4pl/fjjj3r22WfVs2dP2e12RUVFaffu3WbHsiy326158+YpPDxcdrtdAwYM0Ouvv97uflq4PoqQCT799FO5XC7Nnz9f5eXleuihh5SUlKTGxkazo1nO9u3b5XQ6tWvXLhUUFOjSpUsaO3aszp49a3Y0yystLdU777yj6Ohos6NY1unTp5WQkKDbb79dmzZt0v79+/XWW28pODjY7GiWlZWVpeXLlysnJ0cHDhxQVlaW3nzzTWVnZ5sdzWtx+bwJ4uPjFRcXp5ycHEme/cwcDodmz56tjIwMk9NZ24kTJxQSEqLt27dr9OjRZsexrJaWFg0bNkxvv/22FixYoKFDh2rp0qVmx7KcjIwMffXVV9qxY4fZUXDZ+PHjFRoaqvfee6/tWEpKiux2u1atWmViMu/FGaFOdvHiRZWVlSkxMbHtmI+PjxITE/X111+bmAyS9PPPP0uS7rrrLpOTWJvT6dRjjz121f8TdL7PP/9csbGxevrppxUSEqKYmBi9++67ZseytFGjRqmwsFAHDx6UJO3du1c7d+7UuHHjTE7mvdh0tZOdPHlSbrdboaGhVx0PDQ1VdXW1Sakgec7MpaenKyEhQQ8++KDZcSzrk08+UXl5uUpLS82OYnm1tbVavny5XC6XXnnlFZWWlmrOnDny8/PTlClTzI5nSRkZGWpqatLgwYPl6+srt9uthQsXatKkSWZH81oUIeAyp9Opqqoq7dy50+wolnXs2DG98MILKigoULdu3cyOY3mtra2KjY3VokWLJEkxMTGqqqrSihUrKEImWbNmjT7++GOtXr1akZGRqqioUHp6uvr27cua/EEUoU529913y9fXVw0NDVcdb2hoUO/evU1KhbS0NG3YsEHFxcXq16+f2XEsq6ysTI2NjRo2bFjbMbfbreLiYuXk5OjChQvy9fU1MaG19OnTRxEREVcdGzJkiPLy8kxKhJdeekkZGRl65plnJElRUVE6evSoMjMzKUJ/EDNCnczPz0/Dhw9XYWFh27HW1lYVFhZq5MiRJiazJsMwlJaWpvXr12vr1q0KDw83O5KljRkzRpWVlaqoqGj7iI2N1aRJk1RRUUEJ6mQJCQnXvJ3EwYMHFRYWZlIinDt3Tj4+V//q9vX1VWtrq0mJvB9nhEzgcrk0ZcoUxcbGasSIEVq6dKnOnj2rqVOnmh3NcpxOp1avXq3PPvtMgYGBqq+vlyT16NFDdrvd5HTWExgYeM18VkBAgHr27MnclglefPFFjRo1SosWLdLEiRNVUlKilStXauXKlWZHs6zk5GQtXLhQ9957ryIjI7Vnzx4tWbJE06ZNMzua1+LyeZPk5ORo8eLFqq+v19ChQ7Vs2TLFx8ebHctybDbbbx5///339dxzz3VuGPymRx55hMvnTbRhwwbNnTtXhw4dUnh4uFwul2bMmGF2LMtqbm7WvHnztH79ejU2Nqpv375KTU3Va6+9Jj8/P7PjeSWKEAAAsCxmhAAAgGVRhAAAgGVRhAAAgGVRhAAAgGVRhAAAgGVRhAAAgGVRhAAAgGVRhAAAgGVRhAB4pfr6es2ePVv9+/eXv7+/HA6HkpOTr9rHDwDaw15jALxOXV2dEhISFBQUpMWLFysqKkqXLl1Sfn6+nE6nqqurzY4IwEtwRgiA15k1a5ZsNptKSkqUkpKiQYMGKTIyUi6XS7t27ZIkLVmyRFFRUQoICJDD4dCsWbPU0tLS9hhHjx5VcnKygoODFRAQoMjISH3xxRdt91dVVWncuHHq3r27QkNDNXnyZJ08ebLt/rVr1yoqKkp2u109e/ZUYmKizp4923k/BAAdgiIEwKucOnVKmzdvltPpVEBAwDX3BwUFSZJ8fHy0bNky7du3Tx988IG2bt2ql19+ue3znE6nLly4oOLiYlVWViorK0vdu3eXJJ05c0aPPvqoYmJitHv3bm3evFkNDQ2aOHGiJOmnn35Samqqpk2bpgMHDmjbtm168sknxdaNgPdh01UAXqWkpETx8fFat26dJkyYcNNft3btWj3//PNtZ3Wio6OVkpKi+fPnX/O5CxYs0I4dO5Sfn9927IcffpDD4VBNTY1aWlo0fPhw1dXVKSws7M9/UwBMw4wQAK9ys3+7bdmyRZmZmaqurlZTU5N++eUXnT9/XufOndMdd9yhOXPmaObMmfryyy+VmJiolJQURUdHS5L27t2roqKitjNE/+rw4cMaO3asxowZo6ioKCUlJWns2LF66qmnFBwc3KHfK4Bbj5fGAHiV+++/Xzab7YYD0XV1dRo/fryio6OVl5ensrIy5ebmSpIuXrwoSZo+fbpqa2s1efJkVVZWKjY2VtnZ2ZKklpYWJScnq6Ki4qqPQ4cOafTo0fL19VVBQYE2bdqkiIgIZWdn64EHHtCRI0du/Q8AQIfipTEAXmfcuHGqrKxUTU3NNXNCZ86cUWFhoVJTU3X+/Hn5+Hj+3luwYIHmzZun06dPt80R/au5c+dq48aN+vbbb/Xqq68qLy9PVVVVuu229k+cu91uhYWFyeVyyeVydcj3CKBzcEYIgNfJzc2V2+3WiBEjlJeXp0OHDunAgQNatmyZRo4cqYEDB+rSpUvKzs5WbW2tPvroI61YseKqx0hPT1d+fr6OHDmi8vJyFRUVaciQIZI8g9SnTp1SamqqSktLdfjwYeXn52vq1Klyu9365ptvtGjRIu3evVvff/+91q1bpxMnTrR9PQAvYgCAFzp+/LjhdDqNsLAww8/Pz7jnnnuMxx9/3CgqKjIMwzCWLFli9OnTx7Db7UZSUpLx4YcfGpKM06dPG4ZhGGlpacaAAQMMf39/o1evXsbkyZONkydPtj3+wYMHjQkTJhhBQUGG3W43Bg8ebKSnpxutra3G/v37jaSkJKNXr16Gv7+/MWjQICM7O9uEnwKAP4uXxgAAgGXx0hgAALAsihAAALAsihAAALAsihAAALAsihAAALAsihAAALAsihAAALAsihAAALAsihAAALAsihAAALAsihAAALAsihAAALCs/wddCZKa+8zb/AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAug1JREFUeJzs3XdYU9cbwPFvQgh7C6KAggPce1VF3KtaV7XWukdbR2vVDjvUqrVaO+zQXx2toq1Wa62WtlpHFUXr3gPBgQtRkL1Hcn9/XBNBQAEDYZzP8/AYb27ufYMCL+e85z0KSZIkBEEQBEEQKiClsQMQBEEQBEEwFpEICYIgCIJQYYlESBAEQRCECkskQoIgCIIgVFgiERIEQRAEocISiZAgCIIgCBWWSIQEQRAEQaiwRCIkCIIgCEKFJRIhQRAEQRAqLJEICUIZdeXKFbp3746dnR0KhYJt27YZOyShFPr4449RKBQ5jnl6ejJ69GiD3WP06NF4enoa7HqCUJJEIiQIxczf3x+FQqH/UKlUuLm5MXr0aMLDw4t83VGjRnH+/HkWLFjATz/9RIsWLQwYden0+OfR0dGR5s2bM3XqVC5duvRM196wYQNff/21YQLNJnvMSqWSqlWr0r17dwIDAw1+r+J09+5dPv74Y86cOWPsUATBoFTGDkAQKop58+bh5eVFWloaR44cwd/fn4MHD3LhwgXMzc0Lda3U1FQOHz7Mhx9+yJQpU4op4tKpW7dujBw5EkmSiI+P5+zZs6xdu5b//e9/fPbZZ0yfPr1I192wYQMXLlzgrbfeMmzA5Iw5LCyM//3vf3Tu3Jm///6bXr16Gfx+TxMSEoJSWbjfg+/evcvcuXPx9PSkSZMmOZ5btWoVWq3WgBEKQskRiZAglJBevXrpR23Gjx9PpUqV+OyzzwgICGDIkCGFulZUVBQA9vb2BosvOTkZKysrg12vKNLS0lCr1U/8Ie3t7c3w4cNzHFu0aBF9+/ZlxowZ1KlTh969exd3qIXyeMwDBgygUaNGfP311/kmQgX5XBSVmZmZQa9nampq0OsJQkkSU2OCYCS+vr4AXLt2Lcfxy5cv8+KLL+Lo6Ii5uTktWrQgICBA//zHH39M9erVAXjnnXdQKBQ56jNOnz5Nr169sLW1xdrami5dunDkyJEc99BN1+3fv59Jkybh4uKCu7s7AB07dqRBgwacO3cOPz8/LC0tqVWrFr/99hsA+/fvp3Xr1lhYWODj48OePXtyvbfw8HDGjh1L5cqVMTMzo379+qxevTrHOYGBgSgUCjZu3MhHH32Em5sblpaWJCQkFPpz6eTkxMaNG1GpVCxYsCDX+7xx40ae99ZNT3Xs2JG///6bmzdv6qexPD09SUpKwsrKiqlTp+a65507dzAxMWHhwoWFjrdhw4ZUqlSJsLCwHPHk97k4evQoPXv2xM7ODktLS/z8/Dh06FCu6x48eJCWLVtibm5OzZo1WbFiRZ73z6tGKC4ujmnTpuHp6YmZmRnu7u6MHDmSBw8eEBgYSMuWLQEYM2aM/nPk7+8P5F0jlJyczIwZM/Dw8MDMzAwfHx+++OILJEnKcZ5CoWDKlCls27aNBg0a6P+//PPPP4X9tApCkYgRIUEwEt0PZwcHB/2xixcv0q5dO9zc3Jg5cyZWVlb8+uuv9O/fny1btjBgwAAGDhyIvb0906ZN4+WXX6Z3795YW1vrX+/r64utrS3vvvsupqamrFixgo4dO+oTmOwmTZqEs7Mzs2fPJjk5WX88NjaWPn36MHToUAYPHsz333/P0KFDWb9+PW+99Ravv/46w4YN4/PPP+fFF1/k9u3b2NjYAHD//n3atGmj/wHn7OzMjh07GDduHAkJCbmmnubPn49arebtt98mPT0dtVpdpM9ntWrV8PPzY9++fSQkJGBra1vg13744YfEx8dz584dlixZAoC1tTXW1tYMGDCATZs28dVXX2FiYqJ/zS+//IIkSbzyyiuFjjU2NpbY2Fhq1aqV43hen4u9e/fSq1cvmjdvzpw5c1AqlaxZs4bOnTsTFBREq1atADh//jzdu3fH2dmZjz/+mKysLObMmUPlypWfGk9SUhK+vr4EBwczduxYmjVrxoMHDwgICODOnTvUrVuXefPmMXv2bF599VV9Et+2bds8rydJEi+88AL79u1j3LhxNGnShJ07d/LOO+8QHh6u/xzrHDx4kN9//51JkyZhY2PDt99+y6BBg7h16xZOTk6F/vwKQqFIgiAUqzVr1kiAtGfPHikqKkq6ffu29Ntvv0nOzs6SmZmZdPv2bf25Xbp0kRo2bCilpaXpj2m1Wqlt27ZS7dq19cfCwsIkQPr8889z3Kt///6SWq2Wrl27pj929+5dycbGRurQoUOumNq3by9lZWXluIafn58ESBs2bNAfu3z5sgRISqVSOnLkiP74zp07JUBas2aN/ti4ceOkKlWqSA8ePMhx3aFDh0p2dnZSSkqKJEmStG/fPgmQatSooT/2NIA0efLkfJ+fOnWqBEhnz57N8T7DwsJynKe79759+/THnn/+eal69eq5rql7jzt27MhxvFGjRpKfn1+BYh43bpwUFRUlRUZGSkePHpW6dOkiAdKXX36ZI57HPxdarVaqXbu21KNHD0mr1eqPp6SkSF5eXlK3bt30x/r37y+Zm5tLN2/e1B+7dOmSZGJiIj3+rb569erSqFGj9H+fPXu2BEi///57rvh19z1+/Hiuf2udUaNG5fjcbdu2TQKkTz75JMd5L774oqRQKKSrV6/m+Pyo1eocx86ePSsB0nfffZfrXoJgaGJqTBBKSNeuXXF2dsbDw4MXX3wRKysrAgIC9FNSMTEx7N27lyFDhpCYmMiDBw948OAB0dHR9OjRgytXrjxxlZlGo2HXrl3079+fGjVq6I9XqVKFYcOGcfDgwVzTThMmTMgxyqFjbW3N0KFD9X/38fHB3t6eunXr5hhV0j2+fv06II8EbNmyhb59+yJJkv49PHjwgB49ehAfH8+pU6dy3GvUqFFYWFgU9NP4RLqRscTERINcD+R/t6pVq7J+/Xr9sQsXLnDu3LlctUr5+fHHH3F2dsbFxYXWrVtz6NAhpk+fnmt07PHPxZkzZ7hy5QrDhg0jOjpa/7lMTk6mS5cuHDhwAK1Wi0ajYefOnfTv359q1arpX1+3bl169Ojx1Pi2bNlC48aNGTBgQK7nHl96XxDbt2/HxMSEN998M8fxGTNmIEkSO3bsyHG8a9eu1KxZU//3Ro0aYWtrq/9/JQjFSUyNCUIJWbZsGd7e3sTHx7N69WoOHDiQo2j16tWrSJLErFmzmDVrVp7XiIyMxM3NLc/noqKiSElJwcfHJ9dzdevWRavVcvv2berXr68/7uXllee13N3dc/0AtLOzw8PDI9cxkKd6dDHExcWxcuVKVq5cme97yC6/GIoiKSkJQD9NZwhKpZJXXnmF77//npSUFCwtLVm/fj3m5uYMHjy4QNfo168fU6ZMQaFQYGNjQ/369fMsTH/8c3HlyhVATpDyEx8fT3p6OqmpqdSuXTvX8z4+Pmzfvv2J8V27do1BgwYV5K0UyM2bN6latWquf4e6devqn88ue/Km4+DgoP9/JQjFSSRCglBCWrVqpV811r9/f9q3b8+wYcMICQnB2tpav/z47bffzve3+MdrSp5VfiMxeY0SPem49LAAVvcehg8fnu8P70aNGhUohqK4cOECJiYm+oQiv9EMjUZTqOuOHDmSzz//nG3btvHyyy+zYcMG+vTpo08En8bd3Z2uXbs+9bzHPxe6z+fnn3+ea8m6jrW1Nenp6QWKo7R62v8rQShOIhESBCPQrTbq1KkTS5cuZebMmfrpLFNT0wL90Hycs7MzlpaWhISE5Hru8uXLKJXKXCM6hubs7IyNjQ0ajaZI7+FZ3Lp1i/379/Pcc8/pRyJ0hehxcXE5zn18RAKePAXUoEEDmjZtyvr163F3d+fWrVt89913hgs+H7rpIltb2yd+Pp2dnbGwsNCPIGWX1/+HvO5z4cKFJ55TmCmy6tWrs2fPHhITE3OMCl2+fFn/vCCUFqJGSBCMpGPHjrRq1Yqvv/6atLQ0XFxc6NixIytWrCAiIiLX+breQfkxMTGhe/fu/PHHHzmWi9+/f58NGzbQvn37Qq2kKgoTExMGDRrEli1b8vzB+rT3UFQxMTG8/PLLaDQaPvzwQ/1xXSJx4MAB/TGNRpPntJ2VlRXx8fH53mPEiBHs2rWLr7/+GicnpxJphNi8eXNq1qzJF198oZ/2y073+TQxMaFHjx5s27aNW7du6Z8PDg5m586dT73PoEGDOHv2LFu3bs31nG5URjeV93hSmZfevXuj0WhYunRpjuNLlixBoVAYpYmkIORHjAgJghG98847DB48GH9/f15//XWWLVtG+/btadiwIRMmTKBGjRrcv3+fw4cPc+fOHc6ePfvE633yySfs3r2b9u3bM2nSJFQqFStWrCA9PZ3FixeXyHtatGgR+/bto3Xr1kyYMIF69eoRExPDqVOn2LNnDzExMc90/dDQUH7++WckSSIhIYGzZ8+yefNmkpKS+Oqrr+jZs6f+3Pr169OmTRvef/99YmJicHR0ZOPGjWRlZeW6bvPmzdm0aRPTp0+nZcuWWFtb07dvX/3zw4YN491332Xr1q1MnDixRJoIKpVKfvjhB3r16kX9+vUZM2YMbm5uhIeHs2/fPmxtbfnzzz8BmDt3Lv/88w++vr5MmjSJrKwsvvvuO+rXr8+5c+eeeJ933nmH3377jcGDBzN27FiaN29OTEwMAQEBLF++nMaNG1OzZk3s7e1Zvnw5NjY2WFlZ0bp16zxrvPr27UunTp348MMPuXHjBo0bN2bXrl388ccfvPXWWzkKowXB6Iy3YE0QKgbdEu7jx4/nek6j0Ug1a9aUatasqV/Gfu3aNWnkyJGSq6urZGpqKrm5uUl9+vSRfvvtN/3r8ls+L0mSdOrUKalHjx6StbW1ZGlpKXXq1En677//ChyTn5+fVL9+/VzHq1evLj3//PO5jpPHkvb79+9LkydPljw8PCRTU1PJ1dVV6tKli7Ry5Ur9Obol45s3b851zfwA+g+lUinZ29tLTZs2laZOnSpdvHgxz9dcu3ZN6tq1q2RmZiZVrlxZ+uCDD6Tdu3fnWj6flJQkDRs2TLK3t5eAPJfS9+7dWwJyfT6fFvOTlvxL0tM/F6dPn5YGDhwoOTk5SWZmZlL16tWlIUOGSP/++2+O8/bv3y81b95cUqvVUo0aNaTly5dLc+bMeeryeUmSpOjoaGnKlCmSm5ubpFarJXd3d2nUqFE52iD88ccfUr169SSVSpVjKf3jy+clSZISExOladOmSVWrVpVMTU2l2rVrS59//nmONgBP+vzkFaMgFAeFJIlqNEEQhIIYMGAA58+f5+rVq8YORRAEAxE1QoIgCAUQERHB33//zYgRI4wdiiAIBiRqhARBEJ4gLCyMQ4cO8cMPP2Bqasprr71m7JAEQTAgMSIkCILwBPv372fEiBGEhYWxdu1aXF1djR2SIAgGJGqEBEEQBEGosMSIkCAIgiAIFZZIhARBEARBqLBEsfRTaLVa7t69i42NTZF2YRYEQRAEoeRJkkRiYiJVq1ZFqcx/3EckQk9x9+7dYt+fSRAEQRCE4nH79m3c3d3zfV4kQk+h2zDw9u3bxb5PkyAIgiAIhpGQkICHh0eOjX/zIhKhp9BNh9na2opESBAEQRDKmKeVtYhiaUEQBEEQKiyRCAmCIAiCUGGJREgQBEEQhApL1AgZgFarJSMjw9hhCEKpoVarn7hcVRAEobQQidAzysjIICwsDK1Wa+xQBKHUUCqVeHl5oVarjR2KIAjCE4lE6BlIkkRERAQmJiZ4eHiI34AFgUdNSCMiIqhWrZpoRCoIQqkmEqFnkJWVRUpKClWrVsXS0tLY4QhCqeHs7Mzdu3fJysrC1NTU2OEIgiDkSwxhPAONRgMghv8F4TG6rwnd14ggCEJpJRIhAxBD/4KQk/iaEAShrBCJkCAIgiAIFZZIhARBEARBqLBEIlRBRUVFMXHiRKpVq4aZmRmurq706NGDQ4cOGfQ+gYGBKBSKJ34EBgYa9J4F8fHHH+vvr1Kp8PT0ZNq0aSQlJTF//nyqVKlCTExMjtecPXsWMzMz/vrrLwD2799P586dcXR0xNLSktq1azNq1Ch9Tynde3dwcCAtLS3HtY4fP66/f3YajYYlS5bQsGFDzM3NcXBwoFevXoX6d/H398fe3j7HseDgYDw8PBg8eDAZGRn4+/vr769UKqlSpQovvfQSt27dynW9q1evMnbsWP3/FTc3N7p06cL69evJysoqcFyCIAilkUiEKqhBgwZx+vRp1q5dS2hoKAEBAXTs2JHo6OgiXU+SpDx/KLZt25aIiAj9x5AhQ+jZs2eOY23btn3Wt1Mk9evXJyIighs3bvDZZ5+xcuVKZsyYwfvvv4+HhweTJ0/Wn5uZmcmoUaMYPnw4ffr04dKlS/Ts2ZMWLVpw4MABzp8/z3fffYdarc5VIGxjY8PWrVtzHPvxxx+pVq1ajmOSJDF06FDmzZvH1KlTCQ4OJjAwEA8PDzp27Mi2bduK9D6PHz+Or68vPXv2ZNOmTfpCZltbWyIiIggPD2fLli2EhIQwePDgHK89duwYzZo1Izg4mGXLlnHhwgUCAwMZP34833//PRcvXixSTIIgCABEhUBSpHFjkIQnio+PlwApPj4+13OpqanSpUuXpNTUVCNEVnSxsbESIAUGBub5fFhYmARIp0+fzvWaffv2SZIkSfv27ZMAafv27VKzZs0kU1NTad++fZKfn580efJkaerUqZKTk5PUsWPHHNceNWqU1K9fP0mSJGn//v2SSqWSIiIicpwzdepUqX379pIkSdKaNWskOzs7aevWrVKtWrUkMzMzqXv37tKtW7dyvGbbtm1S06ZNJTMzM8nLy0v6+OOPpczMzHw/B3PmzJEaN26c49iECRMkV1dXSZIkKTg4WDI3N5c2b96sP7969er6/wdLliyRPD09871+9s/RRx99JHXt2lV/PCUlRbKzs5NmzZolZf8S3LhxowRIAQEBua41cOBAycnJSUpKSnriPSXp0edMkiTp33//laytraV3330333N0vv322xz/17VarVS3bl2pefPmkkajyfNeWq02z+Nl9WtDEIQS5t9HkubYStLZTQa/9JN+fmcnRoQMSJIkUjKyjPIhSVKB47S2tsba2ppt27aRnp7+TO955syZLFq0iODgYBo1agTA2rVrUavVHDp0iOXLl+f72g4dOlCjRg1++ukn/bHMzEzWr1/P2LFj9cdSUlJYsGAB69at49ChQ8TFxTF06FD980FBQYwcOZKpU6dy6dIlVqxYgb+/PwsWLCjUe7GwsNBPa9WpU4eFCxcyceJEdu7cycKFC1mzZg22trYAuLq6EhERwYEDB5563REjRhAUFKSfdtqyZQuenp40a9Ysx3kbNmzA29ubvn375rrGjBkziI6OZvfu3QV+P1u3buX555/no48+4rPPPnviuZGRkWzduhUTExNMTEwAOHPmDMHBwbz99tv5NgsVq8MEQSiyrHS4fUx+XKWJ0cIQDRUNKDVTQ73ZO41y70vzemCpLtg/p0qlwt/fnwkTJrB8+XKaNWuGn58fQ4cO1SczBTVv3jy6deuW41jt2rVZvHhxgV4/btw41qxZwzvvvAPAn3/+SVpaGkOGDNGfk5mZydKlS2ndujUgJ1p169bl2LFjtGrVirlz5zJz5kxGjRoFQI0aNZg/fz7vvvsuc+bMKVAcJ0+eZMOGDXTu3Fl/bOrUqfzxxx/07t2bN954g06dOumfGzx4MDt37sTPzw9XV1fatGlDly5dGDlypD5Z0nFxcaFXr174+/sze/ZsVq9enSPR0wkNDaVu3bp5xqc7HhoaWqD3k5SUxODBg/nggw9477338jwnPj4ea2trOYFPSQHgzTffxMrKKse9fHx89K+JjIykRo0a+r8vXryYSZMmFSgmQRCEHO6cgKw0sHKBSrWNFoYYEaqgBg0axN27dwkICKBnz54EBgbSrFkz/P39C3WdFi1a5DrWvHnzAr9+9OjRXL16lSNHjgByoe+QIUP0P4xBTtxatmyp/3udOnWwt7cnODgYkIuY582bpx/psra2ZsKECUREROh/wOfl/PnzWFtbY2FhQatWrXjuuedYunSp/nmFQsGHH36IVqvlo48+yvFaExMT1qxZw507d1i8eDFubm58+umn+rqjx40dOxZ/f3+uX7/O4cOHeeWVV/KMqTAje09iYWFBt27dWLVqlf7z9DgbGxvOnDnDiRMn+PLLL2nWrNlTR9GcnJw4c+YMZ86cwd7eXmw2LAhC0d04KP/p2R6MOLosRoQMyMLUhEvzehjt3oVlbm5Ot27d6NatG7NmzWL8+PHMmTOHoKAgIOcP5czMzDyvkT1hedKx/Li4uNC3b1/WrFmDl5cXO3bsKPQqsqSkJObOncvAgQNzPWdubp7v63x8fAgICEClUlG1atU8O4SrVKocfz7Ozc2NESNGMGLECObPn4+3tzfLly9n7ty5Oc7r1asXr776KuPGjaNv3744OTnlupa3t3e+SYvuuLe3d77vJzsTExO2bdvGwIED6dSpE/v27cs12qRUKqlVqxYgjzhdu3aNiRMn6qcqa9eWf0MLCQmhadOm+uvqXpPf50QQBKFAbsg/a/Bsb9QwxIiQASkUCizVKqN8GKJWo169eiQnJ+Ps7AyQY2TjzJkzz3z9/IwfP55NmzaxcuVKatasSbt27XI8n5WVxYkTJ/R/DwkJIS4uTv+DvVmzZoSEhFCrVq1cH0/aCFetVlOrVi08PT0Nsk2Kg4MDVapUITk5OddzKpWKkSNHEhgYmOe0GMDQoUO5cuUKf/75Z67nvvzyS5ycnHJNQz6JmZkZv//+Oy1btqRTp05cunTpiefPnDmTTZs2cerUKQCaNm1KnTp1+OKLL9BqtQW+ryAIwlNlpsGd4/Jjrw5GDUUkQhVQdHQ0nTt35ueff+bcuXOEhYWxefNmFi9eTL9+/bCwsKBNmzb6Iuj9+/fnmhoypB49emBra8snn3zCmDFjcj1vamrKG2+8wdGjRzl58iSjR4+mTZs2tGrVCoDZs2ezbt065s6dy8WLFwkODmbjxo05Yh45ciTvv/++wWJesWIFEydOZNeuXVy7do2LFy/y3nvvcfHixTyLnQHmz59PVFQUPXrkPWo4dOhQBgwYwKhRo/jxxx+5ceMG586d47XXXiMgIIAffvihUKNtICdDW7ZsoXXr1nTq1OmJy909PDwYMGAAs2fPBuTEfs2aNYSEhNCuXTsCAgK4cuUKly5dYvny5URFRekLqwVBEAol/KRcH2RdGZxqGTUUkQhVQNbW1rRu3ZolS5bQoUMHGjRowKxZs5gwYYK+Rmb16tVkZWXRvHlz3nrrLT755JNii0epVDJ69Gg0Gg0jR47M9bylpSXvvfcew4YNo127dlhbW7Np0yb98z169OCvv/5i165dtGzZkjZt2rBkyRKqV6+uP+fWrVt51u4UVatWrUhKSuL111+nfv36+Pn5ceTIEbZt24afn1+er1Gr1VSqVCnf0TuFQsGvv/7KBx98wJIlS/Dx8cHX15ebN28SGBhI//79ixSrWq3mt99+o23btnTq1IkLFy7ke+60adP4+++/OXZMXsnRpk0bTp48iY+PD5MnT6ZevXq0bduWX375hSVLljBx4sQixSQIQgVXSuqDABSSoaozy6mEhATs7OyIj4/PtRooLS2NsLAwvLy8nliLIjzduHHjiIqKIiAgIMdxf39/3nrrLeLi4owTmFAk4mtDEIQn8u8DN4L4vd04Ut2b09GjI27Wbga9xZN+fmcnqh0Fo4qPj+f8+fNs2LAhVxIkCIIglEPZ6oPWJ4YSemw3Va2qGjwRKigxNSYYVb9+/ejevTuvv/56oQqBK7L69evnaBWQ/WP9+vXGDk8QBOHJHtYHZVhX5npSOAB1HOsYLRwxIiQY1dOWyo8ePZrRo0eXSCxlxfbt2/NtZ1C5cuUSjkYQBKGQHi6bv+bRlKy0S9iZ2eFq5Wq0cEQiJAhlTPYicEEQhDLnYaH0ZUd3uHuJOg51jLpdT7mfGouLi6NFixY0adKEBg0asGrVKmOHJAiCIAgVU2aafn+xyw+3hfJx9HnSK4pduR8RsrGx4cCBA1haWpKcnEyDBg0YOHBgnp19BUEQBEEoRuEnQJMO1pW5nHIPMG59EFSAESETExMsLS0BSE9PR5Ikg+3nJAiCIAhCITycFtNWb09IbAhg/BEhoydCBw4coG/fvlStWhWFQsG2bdtynbNs2TI8PT0xNzendevW+mZvBRUXF0fjxo1xd3fnnXfeoVKlSgaKXhAEQRCEAnuYCIW7NSQ5MxlTpSledl5GDcnoiVBycjKNGzdm2bJleT6/adMmpk+fzpw5czh16hSNGzemR48eREZG6s/R1f88/nH37l0A7O3tOXv2LGFhYWzYsIH79++XyHsTBEEQBOGhbPVBITbygEQt+1qYKk2NGZXxa4R69epFr1698n3+q6++YsKECfo9qJYvX87ff//N6tWrmTlzJlDwDUErV65M48aNCQoK4sUXX8zznPT0dNLT0/V/T0hIKOA7EQRBEAQhX/r6IFcuZ8UDxq8PglIwIvQkGRkZnDx5kq5du+qPKZVKunbtyuHDhwt0jfv375OYmAjIXYwPHDiAj0/+85ELFy7Ezs5O/+Hh4fFsb6KUioqKYuLEiVSrVg0zMzNcXV3p0aMHhw4dMuh9AgMDUSgUT/x4Wi+h4vDxxx/r769SqfD09GTatGkkJSUxf/58qlSpQkxMTI7XnD17FjMzM/766y8A9u/fT+fOnXF0dMTS0pLatWszatQoMjIygEfv3cHBgbS0tBzXOn78uP7+2Wk0GpYsWULDhg0xNzfHwcGBXr16Ferfxd/fX39tpVKJu7s7Y8aMyTGK+vg09P79+zE1NeXgwYM5rpWcnEyNGjV4++23C3x/QRCEPGXbXywkRq4PEonQUzx48ACNRpOrSVzlypW5d+9ega5x8+ZNfH19ady4Mb6+vrzxxhs0bNgw3/Pff/994uPj9R+3b99+pvdQWg0aNIjTp0+zdu1aQkNDCQgIoGPHjkRHRxfpepIkkZWVlet427ZtiYiI0H8MGTKEnj175jjWtm3bZ307RVK/fn0iIiK4ceMGn332GStXrmTGjBm8//77eHh4MHnyZP25mZmZjBo1iuHDh9OnTx8uXbpEz549adGiBQcOHOD8+fN89913qNVqNBpNjvvY2NiwdevWHMd+/PFHqlWrluOYJEkMHTqUefPmMXXqVIKDgwkMDMTDw4OOHTvmWT+XH1tbWyIiIrhz5w6rVq1ix44djBgxIt/z/fz8eOONNxg9ejTJycn64++++y4WFhbFuulueXbi3gkG/DGAhUcXGjsUQTC+MLmRIp7tCY4JBkpHIoRUigDS1q1b9X8PDw+XAOm///7Lcd4777wjtWrVqkRiio+PlwApPj4+13OpqanSpUuXpNTU1BKJxVBiY2MlQAoMDMzz+bCwMAmQTp8+nes1+/btkyRJkvbt2ycB0vbt26VmzZpJpqam0r59+yQ/Pz9p8uTJ0tSpUyUnJyepY8eOOa49atQoqV+/fpIkSdL+/fsllUolRURE5Dhn6tSpUvv27SVJkqQ1a9ZIdnZ20tatW6VatWpJZmZmUvfu3aVbt27leM22bdukpk2bSmZmZpKXl5f08ccfS5mZmfl+DubMmSM1btw4x7EJEyZIrq6ukiRJUnBwsGRubi5t3rxZf3716tX1/w+WLFkieXp65nv97J+jjz76SOratav+eEpKimRnZyfNmjVLyv4luHHjRgmQAgICcl1r4MCBkpOTk5SUlPTEe0rSo89ZdgsWLJCUSqWUkpIiSVLurzVJkv8/161bV5o8ebIkSZK0d+9eSa1WSydOnHjqPR9XVr82DEWr1Uq/BP8iNVnbRGrg30Bq4N9Auhx92dhhCYLxZKRK0jxnSZpjK8WEn9R/XSSmJxbbLZ/08zu7Uj0iVKlSJUxMTHIVN9+/fx9XV+O1486XJEFGsnE+CtESQLcv1bZt23LUQxXFzJkzWbRoEcHBwTRq1AiAtWvXolarOXToEMuXL8/3tR06dKBGjRr89NNP+mOZmZmsX7+esWPH6o+lpKSwYMEC1q1bx6FDh4iLi2Po0KH654OCghg5ciRTp07l0qVLrFixAn9/fxYsWFCo92JhYaGf1qpTpw4LFy5k4sSJ7Ny5k4ULF7JmzRr9Dsaurq5ERERw4MCBp153xIgRBAUFcevWLQC2bNmCp6cnzZo1y3Hehg0b8Pb2pm/fvrmuMWPGDKKjo9m9e3eh3lP296bVavMctdMxNzdn3bp1rFy5kj/++IOxY8fywQcf0Lx58yLds6LK0GQw9/BcFhxdQJaUha1a/j/jf9HfuIEJgjHdOa6vDwpB/rnjYeOBtdrayIGVgmLpJ1Gr1TRv3px///2X/v37A6DVavn333+ZMmWKcYPLS2YKfFrVOPf+4C6orQp0qkqlwt/fnwkTJrB8+XKaNWuGn58fQ4cO1SczBTVv3rxcm6XWrl2bxYsXF+j148aNY82aNbzzzjsA/Pnnn6SlpTFkyBD9OZmZmSxdupTWrVsDcqJVt25djh07RqtWrZg7dy4zZ85k1KhRANSoUYP58+fz7rvvMmfOnALFcfLkSTZs2EDnzp31x6ZOncoff/xB7969eeONN+jUqZP+ucGDB7Nz5078/PxwdXWlTZs2dOnShZEjR+qTJR0XFxd69eqFv78/s2fPZvXq1TkSPZ3Q0FDq1q2bZ3y646GhoQV6P9lduXKF5cuX06JFC2xsbJ54bosWLXj//fcZOHAgTZs25cMPPyz0/SqyqJQopgdO50zUGRQomNpsKm2qtGHo30PZEbaDN5q+QVVrI32PEARjyl4fFCt/HysV02KUghqhpKQkzpw5o1/5FRYWxpkzZ/S/PU+fPp1Vq1axdu1agoODmThxIsnJyfpVZELRDBo0iLt37xIQEEDPnj0JDAykWbNm+Pv7F+o6LVq0yHWsMCMIo0eP5urVqxw5cgSQC32HDBmCldWjpE6lUtGyZUv93+vUqYO9vT3BwfIc89mzZ5k3b16OXdgnTJhAREQEKSkp+d77/PnzWFtbY2FhQatWrXjuuedYunSp/nmFQsGHH36IVqvlo48+yvFaExMT1qxZw507d1i8eDFubm58+umn+rqjx40dOxZ/f3+uX7/O4cOHeeWVV/KMSTJQs8/4+Hisra2xtLTEx8eHypUrF3hn+lmzZqHVapk5cyYqVan+XalUOR91nqF/DeVM1BlsTG1Y1mUZ4xqOo36l+rR2bY1G0vDTpZ+efiFBKI90iZCXL5djLgPg42DcRoo6Rv8ud+LEiRy/aU+fPh2AUaNG4e/vz0svvURUVBSzZ8/m3r17NGnShH/++ad07rJtaimPzBjr3oVkbm5Ot27d6NatG7NmzWL8+PHMmTOHoCC5oC37D+X8djvPnrA86Vh+XFxc6Nu3L2vWrMHLy4sdO3YUehVZUlISc+fOZeDAgbmeMzc3z/d1Pj4+BAQEoFKpqFq1Kmq1Otc5ukQgv4TAzc2NESNGMGLECObPn4+3tzfLly9n7ty5Oc7r1asXr776KuPGjaNv3755bvHi7e2tT+4epzvu7e2d7/vJzsbGhlOnTqFUKqlSpQoWFhYFeh08/T0LuQVcC2Duf3PJ0GZQw64G33T6Bk87T/3zYxqM4ei9o2y5soXXG7+OnZmd8YIVhJKWmSZPjQF4+nL54B9A6RkRMvp3uo4dOz71t+ApU6aUzqmwxykUBZ6eKo3q1avHtm3bcHZ2BiAiIoKmTZsCBe/VVBTjx4/n5Zdfxt3dnZo1a9KuXbscz2dlZXHixAlatWoFQEhICHFxcfrpombNmhESEkKtWrUKdV+1Wl3o1zyJg4MDVapUybHqSkelUjFy5EgWL17Mjh078nz90KFDGTZsGH/++WeuOqEvv/wSJyenXNOQ+VEqlQZ9b0LesrRZfHniS34O/hmAju4dWei7MFfdQ9uqbfF28CY0NpRNIZt4tdGrxghXEIxDVx9kU4V0OzfC4sMAkQgJRhQdHc3gwYMZO3YsjRo1wsbGhhMnTrB48WL69euHhYUFbdq0YdGiRXh5eREZGZlrasiQevToga2tLZ988gnz5s3L9bypqSlvvPEG3377LSqViilTptCmTRt9YjR79mz69OlDtWrVePHFF1EqlZw9e5YLFy7ol32PHDkSNzc3Fi40zDLmFStWcObMGQYMGEDNmjVJS0tj3bp1XLx4ke+++y7P18yfP5933nkn3w1/hw4dyubNmxk1ahSff/45Xbp0ISEhgWXLlhEQEMDmzZsLNdr2NLpp6Oxq165t0HuUZ3Fpcbx94G2ORhwF4LVGrzGpySSUitwVBwqFgjENxvB+0PusD17PyHojMVflP1opCOVKtvqgq/HX0EgaHMwccLF0MW5cDxm9Rqi0WrZsGfXq1ctRm1JeWFtb07p1a5YsWUKHDh1o0KABs2bNYsKECfoamdWrV5OVlUXz5s156623irWPjFKpZPTo0Wg0GkaOHJnreUtLS9577z2GDRtGu3btsLa2ZtOmTfrne/TowV9//cWuXbto2bIlbdq0YcmSJVSvXl1/zq1bt/Ks3SmqVq1akZSUxOuvv079+vXx8/PjyJEjbNu2DT8/vzxfo1arqVSpUq4mijoKhYJff/2VDz74gCVLluDj44Ovry83b94kMDBQv2DAUKZPn07Tpk1zfJw+fdqg9yivQmJCGPr3UI5GHMVCZcGSjkuY0nRKnkmQTg/PHlSxqkJMWgwB1wJKMFpBMLJsidDl6If1QY4++X4vLGkKyVDVmeVUQkICdnZ2xMfH51oNlJaWRlhYGF5eXk+sRRGebty4cURFRREQkPMHhL+/P2+99RZxcXHGCUwokvL8tbHrxi4+OvQRqVmpuFu7803nb/B2KFjt1s+Xfuaz459RzaYaAf0DMFGaFHO0gmBkmWmwqJo8NfbGKRZc2cjGkI2Mrj+aGS1mFOutn/TzOzsxIiQYVXx8PAcPHmTDhg288cYbxg5HEPKllbR8e+pbZuyfQWpWKm2qtGFjn40FToIABtYeiK3alluJt9h7e28xRisIpcSdY/r6IBxrEBIrb63h41g6VoyBSIQEI+vXrx/du3fn9ddfL3AhcEVXv379HK0Csn8UdIm8UDiJGYm8ufdNVp1fBcDIeiP5vuv3hV79ZWlqydA6cjPQ1edXG6xdgiCUWtmmxbRIj/YYcygdhdIgiqUFI3vaUvnRo0czevToEomlrNi+fXu+7QxKZVuJMu5G/A3e3PcmYfFhqJVqPm77MX1r5u7+XVDD6gzD/4I/F6IvcOL+CVq6lr86REHQy5YI3Um8Q0pWCmqlOkd7CWMTiZAglDHZi8CF4nXgzgFmHphJYmYiLpYufNPpGxpUavBM13SycKJ/rf78Gvoray6sEYmQUH5lpubsH/SwkWJth9qolKUn/RBTY4IgCI+RJIkfzv/AlH+nkJiZSFOXpmzqs+mZkyCdUfVHoUBBUHgQobGF3zZFEMqEO8dBkwE2VcGxhj4RKi39g3REIiQIgpBNSmYK7x54l29OfYOExIveL/Jj9x+pZFHJYPeoZluNrtW7ArD24lqDXVcQSpVs02IoFPpCaZEICYIglFLhSeGM3DGSf278g0qhYlabWcx5bg6mJqYGv9fYBvLGu9uvb+de8j2DX18QjC57IgT6HkIiERIEQSiFjt87zst/vUxIbAiO5o780OMHhvgMKbb7NajUgJauLcmSssRmrEL5k6M+qD3RqdFEpkaiQEFth9rGje0xIhHKR3nuLC0IwiOSJLE+eD0Tdk0gNj2Wuo512dRnE80rNy/2e4+pPwaA30J/Iz49vtjvJwgl5rH6IN20WDXbaliZlq5tfEQilI/Jkydz6dIljh8/buxQBEEoJhmaDOb8N4dFxxahkTQ8X+N51vVah6uVa4ncv71be2rZ1yIlK4XNoZtL5J6CUCLCguQ/dfVBD/sH+TiUnkaKOiIRqqCioqKYOHEi1apVw8zMDFdXV3r06MGhQ4cMep/AwEAUCsUTP57WS6g4fPzxx/r7q1QqPD09mTZtGklJScyfP58qVaoQExOT4zVnz57FzMyMv/76C4D9+/fTuXNnHB0dsbS0pHbt2owaNYqMjAzg0Xt3cHAgLS0tx7WOHz+uv392Go2GJUuW0LBhQ8zNzXFwcKBXr16F+nfx9/fXX1upVFKlShVeeuklbt26leO8jh075vh3qFy5MoMHD+bmzZv6c27cuJHnv9nw4cMLHE9pFZkSyZh/xrD16laUCiVvt3ibhe0XluhmqAqFQl8r9POln0nXpJfYvQWhWD1eH1RKV4yBSIQqrEGDBnH69GnWrl1LaGgoAQEBdOzYkejo6CJdT5IksrKych1v27YtERER+o8hQ4bQs2fPHMfatm37rG+nSOrXr09ERAQ3btzgs88+Y+XKlcyYMYP3338fDw8PJk+erD83MzOTUaNGMXz4cPr06cOlS5fo2bMnLVq04MCBA5w/f57vvvsOtVqNRqPJcR8bGxu2bt2a49iPP/5ItWrVchyTJImhQ4cyb948pk6dSnBwMIGBgXh4eNCxY0e2bdtW4Pdma2tLREQE4eHhbNmyhZCQEAYPHpzrvAkTJhAREcHdu3f5448/uH37dp5Jzp49e3L8my1btqzAsZRG56LOMfSvoZx7cA4btQ3fd/leXtJuhE0ge3r1xNXKlei0aP689meJ318QDC4jBcJPyI8fJkL6EaFStLWGniQ8UXx8vARI8fHxuZ5LTU2VLl26JKWmphohsqKLjY2VACkwMDDP58PCwiRAOn36dK7X7Nu3T5IkSdq3b58ESNu3b5eaNWsmmZqaSvv27ZP8/PykyZMnS1OnTpWcnJykjh075rj2qFGjpH79+kmSJEn79++XVCqVFBERkeOcqVOnSu3bt5ckSZLWrFkj2dnZSVu3bpVq1aolmZmZSd27d5du3bqV4zXbtm2TmjZtKpmZmUleXl7Sxx9/LGVmZub7OZgzZ47UuHHjHMcmTJggubq6SpIkScHBwZK5ubm0efNm/fnVq1fX/z9YsmSJ5Onpme/1s3+OPvroI6lr16764ykpKZKdnZ00a9YsKfuX4MaNGyVACggIyHWtgQMHSk5OTlJSUtIT7ylJjz5n2X377be5/h/7+flJU6dOzXHeTz/9JFlaWur/ntf/hYIozV8bv4f+LjVd11Rq4N9A6r+tv3Qz/qaxQ5LWXlgrNfBvIPX5vY+UpckydjiC8GyuBUrSHFtJ+qKOJGm1UmpmqtRobSOpgX8DKTI5ssTCeNLP7+zEiJABSZJESmaKUT6kQuxZpNuXatu2baSnP9tQ/MyZM1m0aBHBwcE0atQIgLVr16JWqzl06BDLly/P97UdOnSgRo0a/PTToxUzmZmZrF+/nrFjx+qPpaSksGDBAtatW8ehQ4eIi4tj6NCh+ueDgoIYOXIkU6dO5dKlS6xYsQJ/f38WLFhQqPdiYWGhn9aqU6cOCxcuZOLEiezcuZOFCxeyZs0a/Q7Grq6uREREcODAgaded8SIEQQFBemnprZs2YKnpyfNmjXLcd6GDRvw9vamb9/c2zfMmDGD6Ohodu/eXaj3BBAZGcnWrVsxMTHBxCT/3c5jYmL49ddfad26daHvURZkajNZeHQhs/+bTaY2k84enfm5989Us6329BcXs0Heg7BR23Aj4QaBtwONHY4gPBvdtJiXLygUXIm9glbS4mjuaNB+XIZSenpclwOpWam03mCcHyJHhx3F0tSyQOeqVCr8/f2ZMGECy5cvp1mzZvj5+TF06FB9MlNQ8+bNy7VZau3atVm8eHGBXj9u3DjWrFnDO++8A8Cff/5JWloaQ4Y8WracmZnJ0qVL9T+g165dS926dTl27BitWrVi7ty5zJw5k1GjRgFQo0YN5s+fz7vvvsucOXMKFMfJkyfZsGEDnTt31h+bOnUqf/zxB7179+aNN96gU6dO+ucGDx7Mzp078fPzw9XVlTZt2tClSxdGjhypT5Z0XFxc6NWrF/7+/syePZvVq1fnSPR0QkNDqVu3bp7x6Y6HhhagC7EkER8fj7W1tZycp6QA8Oabb2JllXO1xv/+9z9++OEH/Xne3t7s3Lkz1yXbtm2LUvno96agoCCaNm369FhKidi0WN7e/zbH7h0DYFLjSbzW+DWUitLxu6CVqRVDfYay6vwqVl9YTedqnY0yTScIBvF4fVDso/qg0vj/unR8FxBK3KBBg7h79y4BAQH07NmTwMBAmjVrhr+/f6Gu06JFi1zHmjcv+LLj0aNHc/XqVY4cOQLIhb5DhgzJ8QNbpVLlaGNQp04d7O3tCQ4OBuQi5nnz5uXYhV1X+6JLAvJy/vx5rK2tsbCwoFWrVjz33HMsXbpU/7xCoeDDDz9Eq9Xy0Ucf5XitiYkJa9as4c6dOyxevBg3Nzc+/fRTfd3R48aOHYu/vz/Xr1/n8OHDvPLKK3nGVJiRvTylJ0H8bWysrTgT+Ccn9u/ky88W0qxZszxHyF555RXOnDnD2bNnOXjwILVq1aJ79+4kJibmOG/Tpk2cOXNG/1GvXr1ni7MEXY65zNC/hnLs3jEsVZZ83elrJjaZWGqSIJ1hdYehVqo59+AcpyJPGTscQSiaslYfhBgRMigLlQVHhx012r0Ly9zcnG7dutGtWzdmzZrF+PHjmTNnDkFB8rLH7D+U89vt/PERhvyO5cfFxYW+ffuyZs0avLy82LFjR6FXkSUlJTF37lwGDhyY6zlz8/xXAPn4+BAQEIBKpaJq1aqo1epc56hUqhx/Ps7NzY0RI0YwYsQI5s+fj7e3N8uXL2fu3Lk5zuvVqxevvvoq48aNo2/fvjg5OeW6lre3tz65e5zuuLe3d77vB0mChHCQJJRKBbWq2gNQd3gPrl06zcQxr/DTD8tAbQUP+3jY2dlRq1YtAGrVqsWPP/5IlSpV2LRpE+PHj9df2sPDQ39eWfJP2D/MOjSLNE0a1Wyq8U2nb6jlUDrfRyWLSrxQ6wV+C/2NNRfWlEgfI0EwOF3/IFs3cPACsq0Ycyh9K8ZAJEIGpVAoCjw9VRrVq1ePbdu24ezsDEBERIR++uPMmTPFdt/x48fz8ssv4+7uTs2aNWnXrl2O57Oysjhx4gStWrUCICQkhLi4OP10UbNmzQgJCSn0D2q1Wm3QH+4ODg5UqVKF5OTkXM+pVCpGjhzJ4sWL2bFjR56vHzp0KMOGDePPP//MVSf05Zdf4uTklGsaMoeMJMhMARSgUIJNFchIhswUZk4eTc12LzBt/AGaNXw4/ZaRDGnxkHj/YXJkoa8hSk1NLdLnoLTQaDUsPbOUH87/AEDbqm1Z3GExdmZ2Ro7syUbVG8WW0C3sv7Ofq7FXS23SJgj5emx/MY1Wo99YuDQunQeRCFVI0dHRDB48mLFjx9KoUSNsbGw4ceIEixcvpl+/flhYWNCmTRsWLVqEl5cXkZGRuaaGDKlHjx7Y2tryySefMG/evFzPm5qa8sYbb/Dtt9+iUqmYMmUKbdq00SdGs2fPpk+fPlSrVo0XX3wRpVLJ2bNnuXDhAp988gkAI0eOxM3NjYULFxok5hUrVnDmzBkGDBhAzZo1SUtLY926dVy8eJHvvvsuz9fMnz+fd955J8/RIJAToc2bNzNq1Cg+//xzunTpQkJCAsuWLSMgIIDNmzc/ebQt8eF+VWbWgAJsHjYFlCQ8Knkz4IU+zF7yI3/99D+5/T0SKUnx3Lt2DoD7UTHM/3Y15uZmdPdtBVlp8ihTGZOYkch7B94jKFwe2RxTfwxTm03FRJl/oXhp4WnnSZdqXdhzaw/+F/35pP0nxg5JEArnRrZGisDtxNukZqVibmJOddvqRgwsf6VrklwoEdbW1rRu3ZolS5bQoUMHGjRowKxZs5gwYYK+Rmb16tVkZWXRvHlz3nrrLX1CURyUSiWjR49Go9EwcuTIXM9bWlry3nvvMWzYMNq1a4e1tTWbNm3SP9+jRw/++usvdu3aRcuWLWnTpg1LliyhevVHX3S3bt3Ks3anqFq1akVSUhKvv/469evXx8/PjyNHjrBt2zb8/PzyfI1araZSpUr5FgsqFAp+/fVXPvjgA5YsWYKPjw++vr7cvHmTwMBA+vfvn39AGcnyiBAKMMtZrI1CASozpr39Hn/v3MuxsHhwbQgqC1at30qVpt2p0rQ7nYa8yoPoaLav+xYfFzVEBkOUPKRN8gNISwBt7l5Rpcn1+OsM+3sYQeFBmJmYsch3EdNbTC8TSZDOmAbytht/h/0tNmMVypaMFLiTsz5IVyhd26F2qf06VEjPXJ1ZPi1btoxly5ah0WgIDQ0lPj4+12qgtLQ0wsLC8PLyemItivB048aNIyoqioCAgBzH/f39eeutt4iLizNOYGVF9DVITwALR3Ao4m9dWRmQmSx/M3s4pQZ5fHtQmT+cSrOU/1SZy8lWNsb42th/ez8zg2aSlJmEq5Ur33T6hnpOZaeoO7vR/4zm5P2TjK4/mhktZhg7HEEomOuBsK6fXB807SIoFHxz6ht+OP8Dg70HM/u52SUaTkJCAnZ2dnn+/M5OTI3lY/LkyUyePFn/iRSKR3x8POfPn2fDhg25kiChgDJT5CQIwLpy0a+jUssfFg7y3yWtPIWWkfIwQUqWiyCz0uQPHnYhV5g8TIoscxRilxRJklh1fhVLTy9FQqKZSzO+6vgVThZ5T0GWBWMbjOXk/ZNsDt3MhEYTsFXn/01cEEqNx+qDAIJj5IUepbU+CEQiJBhZv379OHbsGK+//vqTC4EFvfr16+fYDwwkuZZHoWDFipX5Ls0vNIVSTmzUVoBcQI8mM2dilJkCkgYyEuUPHa0ppMTBuePg3ggq1wcTU8PElU1KZgofHfqI3TflRpMv+bzEey3fw7QY7lWSdJuxXo27yuaQzYxrOM7YIQnC0z3WPwhK/9J5EImQYGRPWyo/evRoRo8eXSKxlBXbt29/1M4gMx1irsqPHWtS2b2YixFNTMHCTv4AOQHLSs02nZYMWemgzZD/fmgxJN0GlQW4NQP3FuDeUv6webYd3u8k3uHNfW9yJfYKKqWKD1t/yIveLxrgTRqfUqFkdP3RfHToI34O/pkR9UagNsnd3kEQSo0c9UG+ADxIfcCD1AcoUFDbvrYRg3sykQgJQhmTvQic2JtgV00ukHaqWfLBKBTytJipJVg9bJ2vzYLEOIjOAI/nICxBXqZ/85D8oWPn8TAxaiUnRlUagcqsQLc9EnGEt/e/TXx6PE7mTizptISmLmWn03VB9PbqzbenvyUyJZK/rv/FwNq5+2QJQqlx5xhoM8HWHRw8gUejQdVtq5fq1jIiERKEsiorHVJj5cfPOLpiUEqVvITf3A76fQdqNURflRut3Tku/9YYeRHib8sfF7fKrzNRg2ujhyNGD0eOHiv8liSJ9cHr+eLEF2gkDQ2cGrCk0xJcrUrR+zcQUxNTRtYbyRcnvmDNhTX0r9W/1HXDFgS9POqD9I0US3F9EIhEyCDEwjvBKJIiAQnUNg/reEqPHF8TSiU4e8sfTR/WL6Unwt3TjxKj28cg5YHcmj/8BOgatNfoBP2WgZ0b6Zp05h2eR8A1uaj+hZovMPu52ZiZFGwUqSwaVHsQK86u0G/G2rla56e+RhCMoozWB4FIhJ6JqakpCoWCqKgonJ2dS+VmckI5pcmEhAeABNYOkJZm7Ij0JEkiKioKhUKBqWk+RctmNuDVQf6QXwRxN+H28UcjR/fOwfV98P1z3O/2MdPu7eH8g/OYKEyY0WIGw+sOL/dfc9Zqa4b4DOHHCz+y5sIakQgJpVMe/YMg52arpZlIhJ6BiYkJ7u7u3Llzhxs3bhg7HKEiSY2Tl8yrzCA50tjR5KJQKHB3d9dv2VGAF8h1BQ6e0GiwfOzBFfj9Vc5EX2DamS94oDLBTm3LFx2/pE2VNsUVeqnzSt1XWHdpHWeiznA68nS5q4USyoHbR3PVB6VkpnAj/gYgEqFyz9ramtq1a+e7KakgGFxqHKwdBVkp8PzX4OVl7IhyMTU1LXgSlJ9KtdnSYSKfHF1AFlpqZ2TwTUwMHqmlZ/SrJDhbOvNCzRfYcmULqy+s5rvOeW/hIghGk0d90JW4K0hIVLKoRCWLSkYM7ulEImQAJiYmz/5NXxAK6vBqiAuRC4vrdMnV1bmsS9ekExwdzLar29hyZQsA3Zxb8MnVM1jGX5c717aZBF1mg6mFkaMtGaPqj+L3K78TeDuQ63HXqWFfw9ghCcIjZbg+CEQiJAhlS1oCHF0uP/adUeaTIK2k5WbCTS48uMC5qHOcf3CekNgQsh7uaaZAwZSmU5jQcAKKzBTY9RGcWA1H/gfX9sLAlVClsZHfRfHzsvOik0cn9t7ei/9Ff+a1y705sSAYRUYyhJ+UH2evD9KtGHMo3dNiIBIhQShbTvwo9+Sp5A11XzB2NIUWmxbL+Qfn9UnP+QfnSczekfohR3NHGlVqxNA6Q2nn1k4+qLaCPkvAuxf8MVneEHZVF+j0AbSbCqV0Q0dDGdNgDHtv7+XP638ypekUXCxdjB2SIMgrPrWZcl+wh/VB8GhEqLTXB4FIhPKVfdNVQSgVMlPh8DL5cfvp8rL0UixDk0FwTDDno85z7sE5zked507SnVznmZmYUdexLg2dG9KoUiMaOjekqlXV/FeEeXeHSYfhz6lw+S/4dy6E7oQBy8Gx9NVLGUoTlyY0c2nGqchT/Bz8M9ObTzd2SIKQZ32QRqshNDYUEFNjZZrYdFUodU6tg+QosK8GDUvXVhKSJHEr8dajkZ6o81yOvayf4srO09aTRs6NaFipIQ2dG+Lt4I2pspB7g1lVgpd+hjMbYMd7cPsILG8PPRdB0+FlfsowP2MajOHU3lNsDtnMhIYTsFHbGDskoaLLoz7oZuJN0jRpWKgsqGZTzUiBFZxIhAShLMjKgEPfyI/bvVUsG5gWRlxanH5q69yDc1x4cIH49Phc5zmYOdDQuSENK8mjPfUr1cfOzEC/WCgUcoNGz3aw9XW4dRgCpkDoP9D3m0dbfpQjHdw7UMOuBtfjr/Nb6G+MaTDG2CEJFVk+9UG6abHaDrUxKQNT1iIREoSy4NxGSAgHa1doYqDd5QsoQ5NBSEyIPL31cLTnVuKtXOeplWrqOtWVk56HIz5u1m7F3/TQwRNG/w3/fQt7F8jTZbePyh2pvXsU771LmG4z1tn/zebnSz/zSt1XxGasgvFkrw+yf7QdTnBMMAB1HesaK7JCEYmQIJR2miw4uER+3PYNMDUvtltJksTtxNv6mp7zD85zOeYymdrcfbI8bT3101uNKjWSp7iMNVKlNIH206BmF/j9VYgKhg1DoPkY6P6JvPdZOfF8jedZenopkamR/H39bwbUHmDskISK6kaQ/Ge2+iAoW0vnQSRCglD6XdoGMdfBwhFaGHYqJD49Xj/Ko5viikuPy3WevZl9jqSnQaUGhpviMqQqjeDVQNg7Hw4vhZNrIGw/DFgJHi2NHZ1BqE3UDK83nK9OfoX/RX/61eonNmMVjCOP+iBJksrU0nkQiZAglG5aLQR9KT9uM+mZNlfN1GQSEhuSY+n6zYSbuc4zVZrqV3HpanvcbdzLzr5epubQYwHU7g7bJspJ5Ooe0OFt6PCO0eurDOFF7xdZeW4l1+Ovc+DOATp6dDR2SEJFk0990IPUB8SkxaBUKKnlUMtIwRWOSIQEoTQL3QGRl8DMFlpNKPDLJEniTtId/fTWuQfnuBx9mQxtRq5zq9lUy5H0+Dj6lI+6kxp+MPE/2P4OnP8V9n8GV3bBwFVQqbaxo3smNmobBvsMZs2FNay5sEYkQkLJu30UtFm56oN0o0Getp5YqMpG53eRCAlCaSVJcOAL+XHL8WBh/9SXhCeF88XxLzh5/ySx6bG5nrczs6NBpQZyv55KcvJjb/7065ZZFvYwaBX49IS/psHd07DcF7rPlz+nZWWUKw/D6w7np0s/cSryFGciz9DEpYmxQxIqkjz6BwGExJat+iAQiZAglF7X98HdU6CygOcmP/X0qJQoxu8cr29aqFKq5CmubLU9HjYeZWeKy5AaDIJqz8lTZdcDYfvbELJDXllmW8XY0RWJi6ULfWv0ZevVray5sIZvOn9j7JCEikSfCPnmOKyvDyoDHaV1RCIkCKXVgYe1Qc1HP7UnTnx6PK/ufpU7SXdwt3Znoe9C6jnVKx9TXIZiWxWGb4Xjq2D3bLj2L3z/nNxzqF4/Y0dXJKPrj2br1a3su72P6/HXqWEnNmMVSkA+9UGQbWuNMlIoDSCWGghCaXTrCNw8CEpTecn8E6RkpjBpzySuxl3F2cKZVd1X0cSliUiC8qJUQuvX4NX98matqbHw60i5IWNa7oaQpV0N+xp09OiIhMS6i+uMHY5QUejrg6qBw6P6oJTMFP0CjLI0NSYSIUEojXS1QU2GgZ1bvqela9J5c9+bnHtwDjszO1Z2W4m7jXsJBVmGudSBcXvA921QKOHsL/B9+0fD/WXI2AZjAQi4FkBUSpSRoxEqhDyWzQOExoYiIeFi4YKThZMRAisakQgJQmlz9wxc3S3/gG7/Vr6nZWmzeHf/uxyNOIqlypLvu3xfZparlgoqNXSZBWN2yN2p42+Bfx/YNQuy0o0dXYE1dWlKE+cmZGozWR+83tjhCBVBWLZGitno6oPK0mgQiERIEEofXd+gBi+CY941H1pJy5z/5rD39l7USjXfdv6Whs4NSzDIcqRaG3j9IDQbCUjyVh0rO8H9i8aOrMB0e479GvIrSRlJRo5GKNfSk+RFHJBvIlSWCqVBJEKCULpEhUDwn/Jj3+l5niJJEp8f/5yAawGYKEz43O9zWldpXYJBlkNmNvDCdzD0F7CsBJEXYWVH+O87uallKdfRoyOetp4kZiay5coWY4cjlGf51AdB2dtaQ0ckQvlYtmwZ9erVo2XL8tGWXygjgr4CJKjTB1zy3rBw+dnl/Bz8MwDz282nc7XOJRhgOVenN0w6DN69QJMBuz6CdS9AXO5NZksTpUKpHxVad2kdmZrce8MJgkHkUx+Upc3iStwVQIwIlRuTJ0/m0qVLHD9+3NihCBVFTBic3yw/7vB2nqf8fOln/nf2fwC83+p9+tbsW1LRVRzWLvDyL9D3WzC1kjeW/L4dnN0kN7kspfrU6EMli0pEpkSyPWy7scMRyqt8EqGbCTdJ16RjqbLEw8bDCIEVnUiEBKG0OPQNSBp5B/WqTXM9ve3qNj47/hkAk5tMZljdYSUdYcWhUEDzUfB6ELi3gvQE2PoqbB4NKTHGji5PahM1w+sOB8D/oj9aqfRP6QllTAHqg3wcfcrcJsBlK1pBKK8S7sKZhyt+8hgN+vfmv8z5bw4AI+qN4LVGr5VkdBWXU015VVnnj0Cpgkvb4H/PwdU9xo4sT4N9BmNlasXVuKscDC97rQCEUk5XH2Sfuz5Inwg5lK36IBCJkCCUDv8tlWtSqrWF6m1zPHX47mHeOfAOWklL/1r9eafFOxVzmwxjMVHJu9aP3wOVvCHpHvw8SN7MNSPF2NHlYKu2ZbD3YABWX1ht5GiEciefbTWg7K4YA5EICYLxJUfDyTXy4w4zcjx1NuosU/dNJVObSbfq3Zjz3ByRBBlL1aZyR+pWD0fjjq2ElX4Qfsq4cT3mlbqvoFKqOHn/JGejzho7HKE8yac+SJKkR1triERIEIRCO/I/yEyBKk3k+qCHQmNDmbRnEqlZqbSt2pZFvotQKcX2gEaltoTei2H472BTBR6Ewo/dYP/noMkydnQAuFq58rzX8wD4X/A3bjBC+ZG9Pqh6uxxPRaZEEpsei4nChJr2NY0Q3LMRiZAgGFNaPBxbJT/u8LZcpAvcTrjNa7tfIyEjgcbOjVnScYnYO6w0qdUFJv4H9frLNRP7PoE1vSD6mrEjA+TNWAH+vfUvN+JvGDUWoZy4fSTf+qCQWHk0yMvOC3OVuTGieyYiERIEYzq2CtLjwbku+Mi/xd9Pvs+E3RN4kPoAbwdvlnVZhqWppZEDFXKxdITB/jBwFZjZwZ1jsNwXTvobfZl9LYda+Ln7ISGx9tJao8YilBMFqA8qa40UdUQiJAjGkpEsT4uB3EVaqSQuLY7Xdr9GeFI41WyqsaLbCuzM7Iwbp5A/hQIaDYGJh+QfEJnJ8OdU+GUoJEUaNTRdg8WAqwE8SH1g1FiEciCf+iDIVijtUPbqg0AkQoJgPCfXQkq0vOFn/YEkZyYzcc9ErsVfw8XShZXdV1LJopKxoxQKwt4DRgZA9wVgoobQf+Rl9peN19iwmUszGjk3IkObwYbgDUaLQygH0pMeLQp4rD4IsiVCTiIREgShoLLS5c09AdpPIx0Nb+59kwvRF7A3s2dVt1W4WbsZN0ahcJRKaDtFXllWuQGkPICNL8MfUyA9scTDUSgUjK0/FoCNIRtJzkwu8RiEcuL2EbnZax71QUkZSdxOvA2UzR5CIBIhQTCOMxsgMQJsqpLZcDBv73+bY/eOYWVqxfJuy6lhn/eu80IZULkeTNgL7aYCCjj9E6ztC1kZJR6KfjPWjES2hIrNWIUi0k+Ldcj1VGhsKACVLSvjYO5QklEZjEiEBKGkabLg0NcAaNu+weyjnxB4OxAzEzO+6/wd9Z3qGzU8wQBUZtBtHoz+Gywc4O5pCFxY4mGYKE0YVX8U8HAzVq3YjFUogoLUB5XB/kE6IhEShJJ2YQvE3kCyrMRCKYq/rv+FSqHiS78vaena0tjRCYbk2U7evBXk5Pfm4RIPoW/NvjiZO3E/5T7/hP1T4vcXyrjs9UGeueuDdEvny+qKMRCJkCCULK0WDn4FwFKfNmy88hsKFHzS/hP8PPyMHJxQLOq9AE2Gg6SVN25NSyjR25uZmDG8nrwZ6+oLq5GMvLRfKGP09UHV5Rqhx4gRIUEQCufyXxB1mbWOzqyMOwfAh60/5Pkazxs5MKFY9Vok/yCJuwU73ivx2w/2HoylylJsxioUXliQ/Gce/YMytZlcjb0KlN2l8yASIUEoOZIEQV+w1dqKL+wsAJjabCov1XnJyIEJxc7MBgauBIUSzm6AS3+U6O3tzOx40ftFANZcXFOi9xbKuCfUB92Iv0GGNgMrUyvcbMruKleRCAlCSbn6L7viQ/m4kiMAY+qPYVyDcUYOSigx1dpA+2ny4z+nQkJEid5+RL0RqBQqjt87zvmo8yV6b6GMSk+UC/0hz/ogfUdpBx+UirKbTpTdyMu4k/dPEng7kHNR57ideJvkzGQxd1/OHQr6hPdcKqFVKBhUexDTmk8TO8lXNH4zoUpjSI2FPyaX6FYcrlau9K7RGxCjQkIB3Tpa7uuDAMRW1vlYtmwZy5YtQ6PRFMv1fzj/Q665ejMTMxzMHXAwc8DRwhFHM0cczB1wNHfE0fzRY92flipL8YO0jDhzdh3TFFFkKZT0cPNjVptZ4t+uIlKpYeAPsKIDXPtX3muu9asldvtR9UcRcC2APTf3cCvhFtVsc/9wEwS9G/nXBwGExMgrxkQiVE5NnjyZyZMnk5CQgJ2d4fd68rT1JDYtlti0WGLSYkjTpJGuSede8j3uJd8r0DVE4lQ2hMSEMOnMl6QqlbQzdWJhpyWYKE2MHZZgLM7e0H0+bH8bds8Crw7gUjI/SLwdvPF18yUoPIi1F9cy67lZJXJfoYzS1Qd55U6EJEnicmzZ3mxVRyRCRvJeq5wrR1IyU4hNf5QYxaTF5His+7tInMqWmwk3eXXnWBLR0iwtnSW9l2NqYmrssARjazle3o/s6h74fQKM/1ceLSoBYxqMISg8iG1XtzGxyUSxn52Qt+z1QXnsL3Y/5T7x6fGoFCpq2tcs4eAMSyRCpYSlqSWWppYF3l9KlzjFpMbIf+aRPJVU4uRi6YKrleuzvP1y6V7yPSbsmkBMRgJ10jP4zrkDFs5lewhZMBCFAvotkzdmvXdO7jrddU6J3LpF5RY0rNSQ8w/O88vlX3ij6Rslcl9j00patodtZ9W5Vdib2fNDjx8wVYpfSvKlqw9y8JQ3FX6Mrj7Iy94LMxOzEg7OsEQiVEY9a+IUnRqd7whUbFpsoROn5pWbM6LeCDq6dxTTPkBMWgyv7n6ViOQIPDMyWX4vCtsB7xo7LKE0sXGFvt/AryPg4BKo3Q2qty322yoUCsY0GMP0wOlsvLyRcQ3GYWlqWez3NRZJkggKD+KbU9/o98UCOBN5RnRyfxJ9fVDuZfOQrVC6DPcP0hGJUAVRlMRJP6r0lMQpMiWSk/dPcvL+Sdyt3Xml7iv0r9Ufa7V1Mb+r0ikxI5HXd79OWHwYrgo1K++F41Snj1wbIgjZ6bpOn/kZfn8NJh4Cc9tiv21nj85Us6nGrcRb/H7ld33n6fLmTOQZlpxcwqlIeYsIa1NrKltW5lr8NYLuBIlE6En0/YOeXChd1uuDQCRCQj50iZO7jftTz72ffJ+NIRvZHLqZO0l3+Oz4Zyw7s4wBtQfwSt1XCpx8lQdpWWm8sfcNgmOCcVTbsfJ6CFU0GvCdYezQhNKq1yL5t++4m3LX6QHfF/stdZuxzj8yn3WX1vFSnZfK1TTR1dirfHP6GwJvBwKgVqoZVncY4xqM40jEEd458A5B4UFMbzHdqHGWWk+pDwIIjgkGoK5j3ZKKqtiIPkLCM6tsVZmpzaay+8XdzGozCy87L5Iyk/jp0k/0/r030wOnc+r+qXLfJylTm8mM/TM4ef8k1qbWLDerhVdmBtTuLveOEYS8GKnr9As1X8DR3JGI5Ah23thZIvcsbneT7vLRwY8Y9OcgAm8HolQoGVh7IH8P/JsZLWZgb27Pc1WfQ6lQcjXuKneT7ho75NLp1pEn1gclZCQQnhQOlI8RIZEICQZjobJgiM8QtvXbxv+6/I+2VduilbTsvrmbUf+M4uW/X+bv63+Tqc00dqgGp9Fq+PDghxy4cwBzE3OWtp5D3Qt/yU/6vm3c4ITSzwhdp81V5rxS9xUA1lxYU6Z/UYlNi2Xx8cX02dqHP679gVbS0rVaV7a+sJW5befmWMxhZ2ZHE+cmAATdCTJSxKXcU+qDQmPkWqsqVlWwMzN8e5mSJhIhweCUCiW+7r6s6LaCrS9sZVDtQaiVai5GX2Rm0Ex6/taTH87/QFxanLFDNQhJkvj06KfsCNuBSqHiq45f0Tx0H2gz5fn1aq2NHaJQFuToOj0JtNpiv+VLPi9hobIgNDaU/+7+V+z3M7SUzBRWnF1B799789Oln8jUZtLStSXre69nSacl1LCvkefrfN3lupegcJEI5elp9UGx5ac+CEQiJBSzWg61+Ljtx+wevJspTaZQyaISkamRfHPqG7r91o15h+dxPf66scN8Jt+e/pZfQ39FgYKFvgvxta8DJ9fKT4raIKGgdF2nVRZwbS8cX1Xst7Qzs2NQ7UGAPCpUVmRqMvnl8i/0/r03S88sJSkziTqOdVjedTk/dv+RRs6Nnvh6Xzf5B/zRiKOka9JLIuSyIy0B7p6RHz9txVgZ7yitIxIhoUQ4mjvyWuPX2DloJwvaL6COYx3SNGlsDt1Mv239mLhnIv/d/a/MDc+vubCGH87/AMDs52bT06snHFkGWang1hxqdDRugELZous6DbB7NkReLvZbjqw3EhOFCUfvHeXig4vFfr9noZW0/H39b17Y9gKfHv2U6LRoPGw8WNxhMZv6bKKdW7sCNYH1dvDGxcKFNE0aJ+6dKIHIy5Dbuv5BXmCX92IZ/dYa5WDpPIhESChhahM1L9R8gV/7/MrqHqvp5NEJBQoOhh/ktd2vMTBgIFtCt5CWlWbsUJ/qt9Df+OrkVwBMaz6NF71flKc1jsmJEb5vy43zBKEwWo6HWl0hK03uOp2VUay3q2JdhV5evYDSuxmrJEkE3QliyJ9DmBk0kztJd3Ayd+Kj1h/xR78/6OXVq1C7nysUCjE9lp+n1AdlajK5GncVEFNjgvBMFAoFLV1b8m3nb/l7wN+8UvcVLFWWXI27yseHP6b7b9357vR3RKVEGTvUPP0T9g/zDs8DYHzD8YxtMFZ+4tgqyEgEl/rg3dOIEQpllq7rtIXjo67TxWx0/dEA7L65m9sJt4v9foVxNuosY3eOZdK/kwiJDcHa1Jo3mr7B9oHb5WX/RdyyRjc9JgqmH/OU+qDr8dfJ1GZiY2pTblqjiERIMDoPWw9mtprJnsF7eLvF21S1qkpseiwrz62k+5bufHjwQ/2cdGkQdCeI94PeR0LiJZ+XeLPpm/IT6Ulw5H/yY9/poBRfXkIR6bpOg9x1+mbxFjL7OPrQzq0dWknL2ktri/VeBXU97jpT905l+PbhnLh/ArVSzah6o9gxcAevNnr1mbtht6naBpVSxa3EW9xMuGmgqMu4HPVBefcP0n0v9nH0KTd7UYrv1EKpYaO2YVT9Ufw98G++9PuSpi5NydJmEXAtgMF/DmbMP2PYe2svGq3GaDGevH+S6YHTyZKy6OXViw9af/Dom8HJNfLUmGNNqD/AaDEK5YSu6zSS3HU6LaFYbze2vjyque3qNmLSYor1Xk9yL/kesw7NYkDAAPbe3otSoWRArQH8NeAv3m75Nvbm9ga5j5WpFc0rNwfEqJCevn9Q/vVB5a1QGkQiJJRCKqWK7p7dWddrHRt6b6CXVy9UChUn7p9g6r6p9N3Wl/XB60nOTC7RuIKjg5ny7xTSNGl0cO/AgvYLHtUlZKbBf9/Jj9tPA7HfmmAIvRaBfXWIvyV3nS5GLV1bUt+pPumadH65/Eux3isvcWlxfHH8C57//Xm2Xd2GVtLS2aMzv7/wO/PazaOKdRWD31M/PSbqhGRPqQ+C8rd0HkQiJJRyDZ0bsrjDYnYM2sG4BuOwVdtyO/E2i44totvmbnxx/At9h9PiFBYfxut7XicpM4nmlZvzpd+XObckOPMzJN0HW3do9FKxxyNUEI93nb64rdhupduMFeCXy7+QkplSbPfKLiUzhZXnVtLr916svbSWDG0GLSq34OfeP/NN52+oaV+z2O6tK5g+fu94ib3fUu0p9UGSJIkRIUEwFlcrV95q/ha7X9zNR60/wtPWk8TMRNZeWqvfxuNM5JliWX4fkRTBq7tfJSYthrqOdVnaeSnmKvNHJ2gy4eDDeo52U+V+MIJgKNm7Tv/1VrF2ne5arSvu1u7Ep8ez9erWYrsPyFvSbLy8kd6/9+a709+RlJmEj4MP33f9ntU9VtPYufi3pfGy9cLN2o1MbSZHI44W+/1KtbQEiDgjP86nPigiOYLEjERUShU17YovQS1pIhESyhRLU0teqvMSf/T/g2VdltGmShv9Nh4jdoxg2N/D2H59u8G28YhOjebV3a9yL/keXnZeLO+2HGu1dc6Tzm+Wpy6sXKDZCIPcVxByKKGu0yZKE/0KsnUX15GlzTL4PbSSlu3Xt9NvWz8WHF1AdFo07tbuLPJdxK99f6W9W/sSK8JVKBRiekzn1hGQtAWqD6ppV7PIq/VKI5EICWWSUqGkg3sHVnVfxZYXtjCw9kDUSjUXoi/wXtB79Nwib+MRnx5f5HskZCTw+p7XuZFwg6pWVVnZbSWO5o45T9JqIEjuJcRzk8HU4hnelSDkowS7Tver1Q9Hc0fuJt9l141dBruuJEkcCj/E0L+G8l7Qe9xOvI2juSMftP6AgP4BPF/j+UL1AjKU7P2EylpDV4PS1Qd55T0tBo8aKZan+iAQiZBQDng7eDO37Vx2vbiLSU0m4WTuRGTKo208PjnyCWHxYYW6ZmpWKm/8+waXYy7jZO7Eyu4rc2zcqBccANFXwNweWo4zzBsShLyUUNdpc5U5L9d5GZAbLBoiOTgXdY5xu8bx+p7XCY4JxsrUiilNprBj4A5ervOyUUcXWrq2xMzEjHvJ9/SNAiukp9QHAQTHBAPlqz4IRCIklCNOFk5MbDyRXS/u4pN2n+Dj4ENqViqbQjbxwrYXmLRnEofvHn7qN/ZMTSbTAqdxKvIUNmobVnRbQXXb6rlPlCQ48KX8uPXrcmGrIBSnEuo6PdRnKBYqCy7HXOZwxOEiX+d63HXe2vcWr2x/heP3jmOqNGVkvZHsGLiD1xq/9sy9gAzBQmVBS9eWQAWeHsteH1Q97/ogyLa1RkVOhLKyspg3bx537twprngE4ZmpTdT0q9WPzX03s7rHajp6dESBgqDwIF7d/SoDAwby+5Xf89xsUaPV8P7B9zkUfggLlQX/6/K//IeBr+yC++dBbQ2tXyvmdyUI5NF1+tNiuY29uT0Daw8EirYZ673ke8z5bw4DAgbw761/USqU9KvZj78H/M07Ld/BwdzB0CE/kwrfZVpXH+RYA+zy7hYdnx7P3eS7QAWfGlOpVHz++edkZRm+gE4QDE23jcd3nb/jzwF/MqzOMCxUFlyNu8qc/+bQ/bfuLDuzjAepDwC5hmH+kfnsvLETlVLF1x2/polLk7wvLklw4Av5cYuxYOmY93mCYGg5uk5/XWxdp0fUG4GJwoQjEUe4FH2pQK+JT4/nyxNf8vzvz/P7ld/RSlo6eXRiS98tfNL+k2LpBWQIujqh05GnScxINHI0RnDjgPznE/oHhcaGAuBm7Yat2rYkoioxhZ4a69y5M/v37y+OWEqVZcuWUa9ePVq2bGnsUAQDqG5bnfdbv8+ewXuY0XwGVayqEJMWw/Kzy+n+m7yNxydHPmHLlS0oFUoWd1hMW7e2+V/wRhDcOQYmZvDclJJ7I4IAJdJ12s3ajR6ePQDwv+D/xHNTMlNYdW4Vvbb0wv+iPxnaDJpXbs5PvX7i287fUsuhlsHjMyQPGw+87LzQSBoO3y36VGCZVYD6IP3WGg7lazQIQFXYF/Tq1YuZM2dy/vx5mjdvjpWVVY7nX3jhBYMFZ0yTJ09m8uTJJCQkYGdnZ+xwBAOxVdsyusFohtcbzr+3/uWnSz9xNuosAdcC9Od8/NzHdKve7ckX0o0GNRsJNpWLMWJByEevRXJCHndT7jo94HuD32JMgzFsD9vOzps7eTPxTdxtci6rztRm8nvo7yw/t1w/surt4M3UZlPxdfMtU3tR+br5EhYfRlB4EN09uxs7nJKTFg8RZ+XHT6gPKo+NFHUKnQhNmjQJgK+++irXcwqFAo3GePtACUJBqZQqenj2oIdnD85FnePnSz9zMPwgk5tOZkDtp+wTducEhO0HpUpuoCgIxqDrOr2ml9x12rsH1O9v0FvUcaxD26pt+e/uf6y7tI4PWn8AyL2Adt3YxXenv+NW4i1AHkGa0nQKvb16G2UZ/LPydfdl3aV1BN0JQitpy+R7KJIC1AdB+V06D0VIhLTF1MhLEIylkXMjFvstLvgLdKNBjYaCvUfxBCUIBaHrOh30pdx12qM12Bq2DmdMgzH8d/c/tl7ZysTGEwmODubrU1/rl1I7mjvyWqPXGOw9uEw32Wvm0gxLlSXRadEExwRT36m+sUMqGQXYXyxTk8m1+GtA+RwRqiApryAYyL0LELpD3vtJt+2BIBhTMXedbu3amrqOdUnTpDH4z8G8tuc1fS+gSU0msWPgDobVHVamkyCQV5u2qdIGqGCrx/T1QR3yPeVq3FWytFnYqm2pYlU6C96fRZESof3799O3b19q1apFrVq1eOGFFwgKqkD/cYSKK+hh36B6/aFS6S4AFSqIYu46rVAoGNtgLAD3U+5jqjRleN3hbB+4nYmNJ5aKXkCGkr3LdIWQvT4on/3FIGd9UFmq+yqoQidCP//8M127dsXS0pI333yTN998EwsLC7p06cKGDRuKI0ZBKB0eXIWLDzei9J1h3FgEIbti7jrdtXpXXq7zMi/5vMRfA/7ivVbv5d5uphxo7yZPD52POk9sWqyRoykB+vqgmmBbNd/TQmLLb30QFKFGaMGCBSxevJhp0x5NC7z55pt89dVXzJ8/n2HDhhk0QEEoNQ4uASTw7gWuDYwdjSDk1HI8hP4DV/fA7+Nh/F55tMgAVEqVvlC6PHO1csXbwZvQ2FAO3T1Enxp9jB1S8SpAfRCU7xVjUIQRoevXr9O3b99cx1944QXCwgq3n5MglBlxt+DcRvlxh7eNG4sg5CVH1+nzxdZ1urzr4C7XylSIOqEC9A+SJOnRirFy2EMIipAIeXh48O+//+Y6vmfPHjw8xAoaoZw69C1os8DLD9xbGDsaQchbCXWdLs90220cunsIjbYct4MpYH1QeFI4SZlJmCpNqWFXo4SCK1mFnhqbMWMGb775JmfOnKFtW7nz7qFDh/D39+ebb74xeICCYHSJ9+HUOvmxGA0SSjtd1+kzP8tdpyceBHPRFLagGjk3wkZtQ3x6POcfnM9/m52y7ubhgtUHPRwNqmVfq8yvDMxPoUeEJk6cyMaNGzl//jxvvfUWb731FhcuXGDTpk289prYeFIohw4vBU06uLd64hCyIJQavRaBfXWIvyV3nRYKTKVU0a6qPEJy4M4BI0dTjApYH6TrF1VeC6WhiLvPt2zZkoMHDxIdHU10dDQHDx6kX79+xRWjIBhPSgycWC0/7vC2XIchCAUgSRJ7L9/n1XUn+OnIzZK9ua7rtEIJZ3+Bi9tK9v5lnG4Z/cHwg0aOpBgVoD4IHo0IlddCaSjC7vOLFy8Wu88LFcfRFZCRBK4NoXYF2n9IKDKtVuKfCxH0+e4gY/1PsOvSfT79O5i0zBKuN9F1nQa563RCRMnevwzTjQgFxwQTmRJp5GiKQWoc3DsnP37airHY8r1iDIowNdalS5cKsfu8IJCeCEeXy499Z4jRIOGJsjRa/jgTTo+vD/D6z6e4eDcBS7UJVmoTUjM1HL8RU/JBZe86vW2iwbtOl1dOFk40cJJbZBwKP2TkaIqBrn+QU60nbskSlxbHveR7gLyZbnkldp8XhPwc/xHS4sCpNtQV/6+FvGVkadl2Opz/BV7lRnQKADbmKsa09WRMOy8+3R7M5pN3CAyJwre2c8kGp+s6vaIDXN8Hx1ZCm9dLNoYyytfdlwvRFwgKD3r6RsxlTQHrg3SNFN2t3bFR2xR3VEYjdp8XhLxkpsLhZfJj3+mgNDFuPEKpk5apYfOJ2yzff53wuFQAHCxNGe9bgxHPVcfWXF5h09HH5WEiFMmsPvVKPlBd1+ntb8OeOVCjI7iU32kOQ/F18+X7s9/z393/yNRmYqosRyumClgfVN4bKeqI3ecFIS+nfoLkSLCvBg0HGzsaoRRJychiw9FbrDxwncjEdACcbcx4rUMNhrWuhqU657fV9rUqoVTAtahkbsek4OFohL25irHrdJkTeRlMTMGp5hNPq1+pPo7mjsSkxXAm8gwtXVuWUIDFLHt9UPX8+wfBo0Lp8rxiDApZI5SZmYlKpeLChQvFFY8gGF9WBhx62BOr3VT5m6ZQ4SWmZbJs31Xaf7aPT/4OJjIxHTd7C+b3q0/Qu50Y71sjVxIEYGdpSrNqDgDsD40q6bBlFb3rdGYanN0EP3SD/7WG/7V5arNJpUKp33usXHWZvnW4QPVBUDEKpaGQiZCpqSnVqlUT019C+XZuEyTcAWtXuTGdUKHFJmfw1e5Q2i3ay+c7Q4hJzqC6kyWLBzVi39sdGfGcJ+amT5467egj1wYFhhgpEYKK2XU69gbsngNL6sHWV+HOMfm4JgM2vgLR1574cl2X6XK1G71+WuzJ9UHpmnSux10HRCKUy4cffsgHH3xATIwRVkAIQnHTah5urgq0nQKm5saNRzCaqMR0Fu4Ipv1ne/n23yskpGVR28Wab4Y24d/pfgxp6YFaVbBvoR19XAD479oDMrKMWF6g6zqNJHedTos3XizFRauB0J2wfgh80wQOfQ0p0WDrDp0/gqlnoWozSI2B9YPlXmH5eK7qcygVSq7GXeVu0t0SewvFSl8o/eT6oKtxV9FIGuzN7KlsWbkEAjOeQtcILV26lKtXr1K1alWqV6+ea9XYqVOnDBacIJS4i1sh5hpYOEDzMcaORjCCiPhUVuy/zi/HbpH+MGmpX9WWNzrXons9V5TKwrdRqFfFlkrWah4kZXDiRgxta1UydNgF12uR/MMw7qbcdXrAcuPFYkjJD+D0T3ID1Lhbj47X7CzXSNXuASYPf+S9vBF+6Cp/rW98BUZuA5VZrkvamdnRxLkJpyJPEXQniJfqvFQy76W4pMZBROHrgxTlvHVIoROh/v37F0MYglAKaLUQ9HA1ZJtJYGZt3HiEEnUrOoXv91/jt5O3ydRIADTxsOfNLrXo5OPyTD8MlEoFHbyd+f1UOIGhUcZNhHRdp9f0krtOe/eE+v2NF8+zkCS4cxyO/yD/EqPJkI+b20PT4dBibN5F0TaV4ZVf4cfucOs/+GMyDFyVZ68wX3dfOREKLweJ0K3DgFSw+iDdijGH8j0tBkVIhObMmVMccQiC8YX+A5EXQW0DrSYYOxqhhFyLSmLZvqv8ceYuGq2cALWp4cgbnWvTtqaTwX4b7ujjwu+nwtkfEsUHvesa5JpFpus6HfSl3HXao9UTN94sdTKS4fxmOQG6d/7R8apN5dGf+gNB/ZTVeS51Ycg6WP+ifC3HGtDpg1yn+br58s2pbzgacZR0TTpmJrlHjsqMAi6bh4qzYgwKkQgdO3aM5s2bY2KSd1Fgeno6f/zxB0OGDDFYcIJQYiQJgr6QH7caL0+NCeVacEQCy/Zd5e/zEUhy/oOftzNTOteipaejwe/n+3AZfcj9RO7GpVLV3sLg9ygUv5nycvqIs7BtEgz/HZSFLhstWVGhcOJHOLMB0hPkYypzaPAitBwLbs0Ld72aneD5r+DPN2H/Z+DgBU1eznGKt4M3LhYuRKZGcuLeCdq5PXlKqVQrYCNFraTVN1Ms74XSUIhi6eeee47o6Gj9321tbbl+/br+73Fxcbz88st5vVQQSr/rgRB+ElQW0GaysaMRitHZ23FMWHeCXt8E8dc5OQnqVq8yAVPasXZsq2JJggAcrNQ09rAHjLiMPjtd12mVxaOu06WRJlPeNNa/DyxrKW97k54gj+B0XwDTg6H/ssInQTrNRz3aky3gDQjLuUJMoVDoN2Et06vHstcHPSURCk8MJzkzGbVSjaedZ7GHZmwFToQk3a9M+fw9v2OCUOpJEuydLz9uPgqsS3gbBKFEHL8Rw8jVx+i37BC7L91HoYA+jaqwY6ovq0a2oJG7fbHH0NFbXj2235jL6LPTdZ0Guet05GXjxpNdwl3YtxCWNIDNo+TRDIUSfJ6XR6+mnJRXdloaIHHtPBvq9QdtJmx6RR55yka/jL4s9xPS1wfVllspPIGuf1Ath1rlq6N2PgpdI/Qk5b2yXCingv+UR4NMraD9dGNHIxiQJEn8dy2ab/+9wtEweZm0iVJB/yZuTOpUk5rOJVsQ7+fjzJI9oRy6+oBMjRZTk1IwFVWauk5LEoQdkGt/Lv8N0sOedVYu8i8pzUaBvYfh76tUyqvnEsLl4usNg2H8v2AlF7W3qdoGlVLFrcRb3Ey4SXXb6oaPobiFFWxaDCA4OhioGNNiYOBESBDKHE0W/DsPgNt1xhDxwJQqmSlUtjUvcI8YofSRJIl9IZF8t/cqp2/FAWBqomBwCw8m+tU0zjYXQCM3Oxyt1MQkZ3DyZixtajgZJY4cdF2n//fco67TXT8u2RhS4+DsRrn+50G20Zjq7aDlOKjTt/iTM1MLGPoL/NBFbsT4y8sw6k8wNcfK1IrmlZtzNOIoQXeCqF6vDCZCBawPAipUfRAUMhG6dOkS9+7dA+RvNJcvXyYpKQmABw8eGD46QShuZ36G6CskKO3odbwJSccP65+qZG1GFTvzRx/2FlSxM8fV1pyq9ha42JphphKbsZYmWq3Ezov3+G7vVS5FyMW0Ziolw1pX49UONahiZ9wCZaVSQYfaldh25i77Q6NKRyIEj7pO/zpC7jpdqxt4lkBRcMQ5efTn/GbITJGPqa2h8VBoMQ4ql/AmtdbO8Mpm+LGb3IV620QY9CMolfi6+cqJUHgQw+uVsY7zqbGPVtcVIBGqKJut6hQqEerSpUuOOqA+ffoA8pSYJEliakwoWzJSkPYtRAF8ld6PTJU11e3MiYhPIyNLy4OkdB4kpXM+PP/uu5Ws1VSxs8DVzpyqdua42llkS54sqGwnkqWSkKXR8te5CJbuu8rVSPmXMyu1CSOe82Rcey+cbUrPkmc/H2e2nblLYEgU7/UsRT9odF2nz/wMW1+HiQfB3M7w98lMg0t/yAmQbssLAJd68uhPo5fkXkfG4uwDL62HnwbAxd/B0Qu6zMbX3ZcvTnzB8XvHSclMwdLUOKOKRXKz4PVBMWkxRKZEAvKKuYqgwIlQWFhYccYhCCVOc+R7TJLucVvrzG+Kbqwe3ZJ2tSohSRIxyRlExKcREZ/GvfhU7sancS8+jYj4VP1xOVnK4EFSxlOTJdeHiVEVO/OHSZOF/k+RLBVdRpaWrafv8L/Aa9yMlkcUbM1VjG7nxdh2nthblr4d1jvUdkahkJfv309Io7JtKdrGpTi7TsfekLs+n/pJ3t4CQGkqJ2Atx0O15/JsaGgUXr7wwrfyiFDQl+DghVfT4bhZuxGeFM7RiKN0qtbJ2FEWXAH3F4NH/YOq2VTDytTqKWeXDwVOhKpXL4NzooKQD01SNOmBX2IJfK19iWUjn6Pdw26/CoUCJ2sznKzNaOCW92/E2ZOl7AnSvfg07sanPjyWRnq2ZOlCeEK+8ThZqalib46rrQVV7c0fJk6PkqfKtuZP3dizIknL1PDridssD7zG3fg0AByt1Ixr78WI56pja156V7o4WZvRyM2Os3fi2R8SxZCWxVD8W1S5uk73gPoDin49rUYuwj7+A1zZDTycUbB1hxZjoNlIsHYxSOgG12QYxITBgcXw11so7NzxdfNlY8hGgsKDylgiVIj6oArUSFFHFEsLFY5GK3Fg9ft00iYTLFWn97Ap+HkXbsl8QZOl2JRMOUmKSyMiQR5dioh7ONKUkMbduFTSs7REJ2cQnfz0ZCnXyNLD5En39/KeLKVkZLHh6C1WHLhOVGI6AC42ZrzaoQbDWlfDUl02vqX5+bjIiVBoKUuEIGfX6T/fAo/Whe86ne++X10e7vvV/dG+X6VZpw8gNkyuYfp1JL59F7ERuZ9QmSkHyVEf9PSO0rql8xWlPghEIiRUMFqtxOKNe5ge/TsoINn3I7rUe/KeO0WlUChwtFLjaKWmftX8k6W4lMwco0jZR5d0f0/LfJQsXbybf7LkaKXG1dYcG3MVVmYqLNUmDz/kx1ZmKixMTbAyM8FCrcJKbYKF2gSrh89bmqmwNDXB0swEtYmy1HyjT0jL5KfDN/kh6DqxKZkAuNlb8HrHmgxu7l7mEkA/b2e+/fcKQVeiyNJoUZWGZfTZFaXrdFH3/SrNFAp4YSnE34Fbh2m5exFmldTcS77H1bir1HaobewIn05XH1TJW95j7SkuR4tESHho2bJlLFu2DI1GY+xQBAORJInZARdofOlbzFSZPKjUihZdBhs1JoVCgYOVGocCJEvyKFIqd+NyJkm66bi0TC0xyRnEJGcYJDYTpUKfSFmpVY8SJrOcydWjP+XHVmYmD5MtVc4k6+Hz5qYFT7BikzNYcyiMNf/dIDEtCwBPJ0smdaxF/6ZuZbbFQRMPe+wtTYlLyeT07bhi62ZdZLqu0ys6POo63eb1vM/Nd9+vZvLoT4OB8tL0ssrUXC6e/rErFjHXaWlfi4NKeVSoTCRChagPSstKIyxBrgf2cRBTYxXe5MmTmTx5MgkJCdjZFcPKCaFESZLEvL8ucezoIeaq5fnySv0XlZ7izCfInizVq2qb5zmSJBGfmqmfcktKyyI1Q0NyRhYpGRpSdH+ma0jJ1JCS/tjxh4+TMzRkZGkBeQoxMS3rYQKSbsD3w8NRJ92IVF4jUyZkaSQCzt4lJUP+ZaS2izVTOtfi+YZVSt8ISiGZKBX41nbmz7N32R8SVfoSIXjUdXr723LX6RodwSXbKEFUqJz8nP3FMPt+lWZWTvDKb/BDFzrE3ONgJUeC7gQxtsFYY0f2dIWoD7oadxWtpMXR3BEXy1Jau1UMipQIZWVlERgYyLVr1xg2bBg2NjbcvXsXW1tbrK1LtlOrIDyNJEks2nGZNYdusMp0EyYKCeq+AO7l5xu1QqHA3lKNvaWaulXyTpYKKkujJSVTIydS6TkTpZSHx1IzNSSna0h9mDzlTKqyJ11Z8p8ZGlIz5YRGkiA5Q0NyhoaCbDRRv6otb3SuRfd6riiVpT9xLSg/bzkRCgyN5O0epfS378e7To/dKRc9H//h0Q9YkPf9ajkeGr9smC0vSiOnmjB0A+3XDwTg9P2TJGYkYqM24lL/p0mJeTRKV73g/YN8HHxKzbR4SSh0InTz5k169uzJrVu3SE9Pp1u3btjY2PDZZ5+Rnp7O8uUGXG4pCAbw1e5QVhy4TgvFZbqZnAKFCXSZbeywSi2ViRJbE6XBV15ptZKcQGU8HK1K15CamUVyet6JVFqmltZejnT0cS6X35R1BfoXwhOITEzDxaYULaPXebzr9Oe1HjU+VCjBp7fc+8erY+nfud4QqrfFo8+3eB2dTZjalMNBC+jeZZGxo8rfrULWB1WwRoo6hU6Epk6dSosWLTh79ixOTo+6og4YMIAJEyYYNDhBeFbf/XuF7/ZeBSSWufwB8UCzEVCpDMztlzNKpQIrM7mIWwBnGzMauNlyITyBoNAHDGrubuyQ8pa963RmyqN9v5qPBrtSGnNxajQE36u/EZYYTFDwr3Sv3hVqdTV2VHkrRH0QVMyl81CI3ed1goKC+Oijj1CrczYq8/T0JDw83GCBCcKzWr7/Gl/ulvctWtEyksrxZ0FlIa+IEYRSQDcqFBhaSnajz0+9F2DoBhiyDqZdhM4fVcwk6CHfNtMACLIwR/vraLh/0bgB5acQ9UFaSVvh9hjTKXQipNVq81xJdefOHWxsSvFcqVCh/HgwjEU75GHed7vXose9FfITbSaCbfEslxeEwuroIxekBl2JQqOVnnK2kdV5Hur1M97O9KVIs8rNsVRZEq0yIZg0WD8EEu8ZO6ycUmLg3gX5cQHqg24n3iY1KxUzEzOq21asBsqFToS6d+/O119/rf+7QqEgKSmJOXPm0Lt3b0PGJghF8tPhG8z/6xIAb3apzSSH4xB1GSwcoN1UI0cnCI809bDH1lxFXEomZ+/EGTscoYDUJmraVGkDQJCTOyTcgQ0vya0ESgt9fZBPgeqDgmOCAahtXxuVsmJNXxc6Efryyy85dOgQ9erVIy0tjWHDhumnxT777LPiiFEQCmzjsVvM+kMepp7YsSbT/Nxh36fyk74zwMLeeMEJwmNUJkp8az+cHgsp5dNjQg6+7nKX5qAqtcDSCSLOwJYJ8rYipYGoDyqwQidC7u7unD17lg8++IBp06bRtGlTFi1axOnTp3FxqTh9B4TSZ8vJO7y/VV4qOq69F+/28EFx/AdICJf3NmopivmF0kdXJ7Q/JNLIkQiF0d5NTjDOx4YSO3AlmJhByN+w6yMjR/ZQIeqD4NGKsbqOdYsrolKr0ONfaWlpmJubM3z48OKIRxCKJODsXd757SySBCOfq85Hz9dFkRYv75cE8p5BpqVwebJQ4fn5yInQufB4opPScbI2M3JEQkG4Wrni4+BDSGwIh5Rp9BnwPfw2Fo78Dxy8oPWrxgsue32QGBF6qkKPCLm4uDBq1Ch2796NVqstjpgEoVB2nI9g2qYzaCV4uZUHH/etL/edOfQ1pMWBc11oPNTYYQpCnirbmlO3ii2SBEFXHhg7HKEQ9NNjd4KgwaBH/cn+eQ9CdxovsJv/oa8Psn76TM2D1AdEpUahQIG3g3fxx1fKFDoRWrt2LSkpKfTr1w83NzfeeustTpw4URyxCcJT7b50nzd+OY1GK/Fic3cW9G8odx9OuAtHvpdP6joHlGVrU06hYtEvoxfTY2WKr5ucCB26ewiNVgPtp8sbzEpa2DwGIs4ZJ7BC1geFxshtRqrbVsfS1LK4oiq1Cp0IDRgwgM2bN3P//n0+/fRTLl26RJs2bfD29mbevHnFEaMg5GlfSCST158iSyvRr0lVPhvU6NEWDIGLICsNqj0H3j2NG6ggPEXHh9NjB648QFval9ELeo2cG2GjtiE+PZ7zD87Lnbj7fA1efpCZDBuGQLwR+usVMhG6HPtwa40KOC0GRUiEdGxsbBgzZgy7du3i3LlzWFlZMXfuXEPGJgj5OnjlAa/9dJIMjZbeDV35cnBjTHRJUFQonP5Jftx1bpnYWFWo2JpXd8DaTEVMcgbnw+ONHY5QQCqlinZV2wFw4M4B+aCJqdx4spIPJEbALy9BemLJBZUSA/cLVx9UUbfW0ClyIpSWlsavv/5K//79adasGTExMbzzzjuGjE0Q8nTkejTj1x0nI0tLt3qV+WZo05y7ke+dJw9N+zwP1VobL1BBKCBTEyXtaslbFoll9GWLrk7oYPjBRwct7OGVzWDlLO/R9ttY0GSVTECFrA+CnJutVkSFToR27tzJqFGjqFy5MhMnTqRy5crs2rWLmzdvsmhRKd58TigXTtyIYaz/cdIytXTycWbpsKaYZk+Cbh+H4D/lDSHFxqpCGaLrMh0YKuqEyhLdiFBwTDCRKdn+7Ryqw8ubQGUOV3bBPzNBKoFpz0JOi6VkpnAj/gYgRoQKbMCAAaSmprJu3Tru3bvHihUr6NChQ3HEJgg5nLkdx+g1x0nJ0OBbuxLfD2+OmSpbEbQkwZ458uMmw8ClYn5RC2WTrmD67O04YpMzjByNUFBOFk40cGoAwKHwQzmfdG8OA1cCCji+Co4uL/6AdImQl2+BTr8adxUJCSdzJ5wtnYsxsNKr0InQ/fv3+fXXX+nXrx+mpqbFEZMg5HIhPJ6RPx4lKT2LNjUcWTmiBeamj60Eu7Ibbh6SfwPr+L5xAhWEIqpqb4F3ZWu0EgRdFcvoyxL9MvrwoNxP1usH3R4uJPrnfbj8d/EFkr0+qAD7i4GoD4ICJkIJCQn6x5IkkZCQkO+HIBhacEQCw388SkJaFi2qO/DjqJZYqB9LgrQa2POx/LjVqxV6Z2yh7NJPj4ll9GWKbhn9f3f/I1ObmfuEtm9A8zGABFvGw93TxROIrj7IuQ5YF2x0pyI3UtQpUCLk4OBAZKT8hWlvb4+Dg0OuD91xQTCkK/cTGf7DUeJSMmniYc+aMS2xMsujIfr5zRB5EcztoP20kg9UEAyg48PpsQOhYhl9WVK/Un0czR1JzkzmTOSZ3CcoFND7C6jZBTJT5A1a424bPpBC1gfBo6XzFXlEqEBbbOzduxdHR0cA9u3bV6wBCYLO9agkhv1wlOjkDBq62bF2bCtszPOYjs1Kh70L5Mftp4GlY8kGKggG0sLTEUu1CQ+S0rkUkUADNztjhyQUgFKhpL1bewKuBRB0J4iWri1zn2SigsH+sLqn/EvbhiEwdieY2xoukELuL6bRargSewWo2CNCBUqE/Pz89I+9vLzw8PCQtzDIRpIkbt8uhgxXqJBuRiczbNVRohLTqVvFlp/GtcLOIp+atOM/QvwtsKkKrV8v2UAFwYDUKiVta1ZiT/B9AkMiRSJUhvi6+cqJUHgQ01tMz/skc1sYtgl+6AKRl2DzKBj2q9x76FkVoT7oZuJNUrNSMTcxp7pN9WePoYwqdLG0l5cXUVG5+1zExMTg5eVlkKCEiu1ObArDVh3lXkIa3pWt+XlcK+wt1XmfnBYPBz6XH3ecCaYWJReoIBQDXZdp0U+obHmu6nMoFUquxl3lbtLd/E+095CTIVNLuLYXtr9jmGX1Nx+uWCtCfZC3gzcmFXgbokInQpIk5RoNAkhKSsLcXOzuLTybiPhUXl51hPC4VGo4W/Hz+NZP3o37v+8gNQYqeUOTV0ouUEEoJrpl9KduxRKfkkfhrVAq2ZnZ0cS5CfBwE9YnqdoUBv0AKODkGvn72LMqSn1QTMXeWkOnQFNjANOny0N9CoWCWbNmYWn5aGM2jUbD0aNHadKkicEDFCqOyIQ0hq06yu2YVKo7WbJhfBtcbJ6QXCfeg8PL5MddZstz8IJQxnk4WlLT2YprUckcvPqA5xtVMXZIQgH5uvtyKvIUQeFBvFTnpSefXOd56PEp7Hwfds+SGzDW61f0mxchEdKNCFXkQmkoxIjQ6dOnOX36NJIkcf78ef3fT58+zeXLl2ncuDH+/v7FGKpQnkUlpvPyqiOEPUjG3cGCDRPa4Gr3lBHG/YvlFRjuLaFOn5IJVBBKgFhGXzbpltEfjThKuib96S9oMxFaTpAf//4q3DlRtBsXoT4IRA8hnQL/Cq1bLTZmzBi++eYbbG0NWOkuVGgxyRkM/+Eo16KSqWpnzi8T2uBm/5Ran+hrcNJffiw2VhXKmY4+zvx4MIz9oVH5liMIpY+3gzcuFi5EpkZy4t4J2rm1e/ILFArouQjibsGVnfDLUBj/rzw6VBj6+qC6Ba4PepD6gOi0aJQKJbUdahfufuVMoWuE1qxZI5IgwWDiUuQkKOR+Ii42ZmyY0AYPR8unv3DvfJA0ULsHeD7lm40glDEtPR2xMDUhMjGd4IgS3LlceCYKheLJXabzYqKCF1eDa0NIjpKX1afGFe7Gz1AfVN22Ohaqir3IpEi7z584cYJ3332XoUOHMnDgwBwfglBQCWmZjFx9jEsRCVSylpMgz0pWT39h+Cm4uBVQQNc5xR6nIJQ0c1MTnqv5cDd6sQlrmaJPhJ5WMJ2dmbW8jN6mKkRdhl9HgqYQhfLPkAjVcajY02JQhERo48aNtG3bluDgYLZu3UpmZiYXL15k79692NmJnhdCwSSlZzF69THO3YnH0UrN+vGtqeVi/fQXZt9YtfFQqFy/eAMVBCPRLaPfL5bRlyltqrRBpVRxK/EWNxNuFvyFtlUfLqu3grD98Ne0gi2rT47OVh9U8NFxsWLskUInQp9++ilLlizhzz//RK1W880333D58mWGDBlCtWrViiNGoZxJychi7JrjnLoVh52FKT+Pa42Pq03BXnxtL4QdABM1dPqgeAMVBCPSLaM/eTOWxDSxjL6ssDK1onnl5kAhR4UAqjSCwWtAoYTTP8HBr57+miLUB4FYMZZdoROha9eu8fzzzwOgVqtJTk5GoVAwbdo0Vq5cafAAhfIlLVPD+LUnOHYjBhtzFT+Pa029qgWsOdNqH22s2nIC2IvEWyi/qjtZ4VXJiiytxCGxG32Zols9VuA6oey8e0CvxfLjf+fBhS1PPr8I02IpmSn60SoxIlSERMjBwYHERLl4z83NjQsX5CG5uLg4UlJSDBudUK6kZWp49aeT/HctGiu1CWvHtqKheyGmUy/+DvfOgZkt+M4ovkAFoZTQjQrtDxXTY2WJrk7o+L3jpGQW4ediqwnQZpL8eOtEuHU0/3OLkAiFxoYiIeFs4Uwli0qFj6+cKXQi1KFDB3bv3g3A4MGDmTp1KhMmTODll1+mS5cuBg9QKB8ysrRMXn+KA6FRWJia4D+2Fc2qORT8AlkZ8koxgHZvgpVT8QQqCKVI9u02JENswyCUCC9bL9ys3cjUZnI04glJzJN0/wR8eoMmHTa+DDHXc5+THC1v4AqFqg/STYuJ0SBZoROhpUuXMnToUAA+/PBDpk+fzv379xk0aBA//vijwQMUyr5MjZY3fjnFv5cjMVMp+XF0C1p6FnKH+JP+EHsDrCs/+k1JEMq5NjWcMFMpiYhPI/R+krHDEQpIoVA82/QYgNJE3oajSmNIiYb1Q+TGidkVsT7ocqxopJhdoRMhR0dHqlatKr9YqWTmzJkEBATw5Zdf4uBQiN/whQohS6Nl2qYz7Lx4H7WJklUjW9C2ZiGHYtMT4cDDOXO/90BdgCX2glAOmJua0KaGPPq5XyyjL1Oy9xMq8mie2gpe3gS27hB9BTaNkEfHdXTTYl6+hbqsGBHKqUCJUEJCQoE/BEFHo5V497dz/HUuAlMTBctHNKODd8F/a9E7vExuNOZYE5qNNHygglCKid3oy6aWri0xMzHjXvI9rsZdLfqFbKvAK7+C2gZuHoQ/33y0rL4I9UFZ2ixCY0MB0UNIp0BbbNjb2z+1xbuuDbxGozFIYELZptVKvP/7OX4/HY5KqWDpsGZ0rlO58BdKinq0M3OXWWBiathABaGU0xVMH78RQ1J6FtZmYnPhssBCZUEr11YEhQcRFB70bNtYVK4PQ/zl6bGzv4BjDWgxrkj1QTcTbpKuScdCZYGHjUfRYypHCvQVpdtnTBAKQpIkZv1xgV9P3EGpgG+GNqVHfdeiXezA55CRBFWbQb3+Bo1TEMoCr0pWVHO05FZMCv9dfUD3on4tCSXO191XToTuBDG2wdhnu1itrvD8l/DXW7BvgdyBGsClHlgVvNxA10jR28EbE6XJs8VUThQoEfLz8yvuOIRyQpIk5v55ifVHb6FQwJKXmvB8oypFu1hMGJxYLT/u+rHYWFWokBQKBR19nFl3+Cb7Q6NEIlSGtHeTp6xOR54mMSMRG3UBG8fmp8UYefXYf98+6i9UiGkxEI0U81KkvcaCgoIYPnw4bdu2JTw8HICffvqJgwcPGjQ4oWyRJImFOy7j/98NABYPakS/Jm5Fv+C+BaDNhJpdoIZIxoWKSzc9JpbRly0eNh542XmhkTQcvnvYMBftOhfqvvDo74VMhPR7jIlESK/QidCWLVvo0aMHFhYWnDp1ivT0dADi4+P59NNPDR6gUHZ8uSuUlQfkXhefDmjI4BbPMP8ccRbOb5Yfi41VhQruuZpOqE2UhMelci1KLKMvS3TL6A/cOWCYCyqVMGAFePmBgyfU6Fjgl0qSREisGBF6XKEToU8++YTly5ezatUqTE0fFa62a9eOU6dOGTQ4oez49t8rLN0nr4yY+0J9hrV+xu0v9syV/2w4WO6jIQgVmKVaResacu8tsXqsbNEtoz8YfhCtpDXMRdWWMPIPePMMmBe8O39UahQxaTEoFUpq2dcyTCzlQKEToZCQEDp06JDruJ2dHXFxcYaISShjvg+8xle75eWYHz1fl1FtPZ/tgtf3w7V/QWkKnT589gAFoRwQ222UTc1cmmGpsiQ6LZrgmGDDXVihKHTdpG5azMvWC3OVueFiKeMKnQi5urpy9WrunggHDx6kRo0aBglKKDu2nLzDZ//IX1zv9vRhvO8z/h/4f3t3Hh5lefUP/DtLZrLvC9mAQEggrNlYDaSCUKr4qoCWn1qXt3ipQcW8toX6KvZ1obYWWzFq1dbWVqsFXKgLiEgggEAghC0hCQkhkHWy7zOTmef3x2QGIoRskzzzzPP9XBeX42TmmQMTmJP7Pvc5gnB5sGrSg4B/1NCuR+QkrP2EDpfUo93QJXI01F8alQazQ2cDGMQ0ejuzJkJspNjTgBOh1atX44knnsDhw4ehUChQUVGBDz74AE899RQeeeSR4YiRHJQgCMjo3g57JHU8Hk21w1Jr3udARQ6g8QTm/2Lo1yNyEuODPBHu6waDyYxDJXVih0MDcGWXaTGxUPraBtyZa926dTCbzVi4cCHa29sxf/58aLVaPPXUU3jssceGI0ZyUDllDSipbYObiwppP7JDEmQyArv/z3J77mMDmp1D5Oysx+g/OFyGzALd4BqUkiisx+hP6U6hobMBfq7ijKPiaI1rG/CKkEKhwNNPP436+nqcPn0ahw4dgk6nw/PPP4+Ojo7hiJEc1JajlwAAP5kaap9ut8f/AdQXA+6BwJy0oV+PyMnwGL00jfIYhVi/WAgQcKDigCgxtBnbUNZSBoArQj80qD5CAKDRaBAXF4eZM2fCxcUFmzZtQlQU6znkot3QhS9OVgIAViZFDP2ChjYg87eW2wt+BWiH2HiMyAnNjQ6Ei0qBsvp2lNa1ix0ODYBte0ykOiHrfLFg92D4u/qLEoOj6ncipNfrsX79eiQlJWHu3Ln47LPPAADvvfceoqKi8Oqrr+LJJ58crjjJwXx9qgqt+i6MCXDHrCg7/KU69AbQWm3pi5F4/9CvR+SEPLVqJI+1HqPnNHopsfYTOlBxACbzyM/kZH1Q7/qdCD377LN48803MXbsWJSWlmLlypV46KGH8Oqrr2LTpk0oLS3Fr371q+GMlRzIlmMXAQArEiL6HMjbp7Y64MBrlts3PgOoNUOMjsh5Xbk9RtIxLWgavDReaNI34VTtqRF/fVt9kB/rg36o34nQli1b8P7772Pr1q345ptvYDKZ0NXVhRMnTuCnP/0pVCoOb5OLsrp2HCqph0IBLE+0w7ZY1h8AfTMwahow+Y6hX4/IiaXGBgMADpXUodM48isLNDhqpRrzwixT4u3WZXoAuCLUu34nQpcuXUJiYiIAYMqUKdBqtXjyySeHvhpAkrO1ezXohuhAhPm6De1ijWVA9juW24ues7SPJ6JexYR4ItTHFfouHqOXmiu7TI8ko9mIooYiAEyErqXfnzomkwkazeUtC7VaDU9Pz2EJihyX2SxgW45l0O6QZolZ7XkJMBmAqPnA+BuHfj0iJ6dQKLg9JlHWFaH8+nzUtI9cjVdpUykMZgPc1e6I8LLDKr6T6feZZ0EQcP/990Or1QIAOjs78fDDD8PDw6PH4z755BP7Rmgn7e3tmDRpElauXIlXXnlF7HAk62BxHcobO+DtqsbiuCH2Mak+A5z4yHJ70XMDbhdPJFepsUH4KPsix21ITIBbAKYETMHputM4UH4At0+4fURe98qO0koFV91/qN+J0H333dfj/++55x67BzOcXnzxRcyePVvsMCTv30ct22K3zgiDq8sQ68K+/Q0AAZh8OxCeOPTgiGRibnQg1EoFzte24UJdG8YEePT9JHIIKREpOF13GlnlWSOWCFkLpbktdm39ToTee++94YxjWBUVFeHs2bNYtmwZTp8+LXY4ktXUYcTOM1UAgDuHui1WegAo2gko1ZaTYkTUb96uLkgY44cj5+uxt1CHn81hIiQV8yPm480Tb+JgxUEYzUa4KF2G/TXPNrBQ+npEXyPbt28fli1bhrCwMCgUClt/oitlZGRg7NixcHV1xaxZs3DkyJEBvcZTTz2FjRs32ili+frPiQrou8yIDfHC1HCfwV9IEIBvN1huJ9wHBIy3T4BEMmIdwso6IWmJC4iDv6s/2oxtyK3JHfbXEwSBozX6IHoi1NbWhunTpyMjI+OaX//444+Rnp6ODRs2ICcnB9OnT8eSJUtQU3O50GzGjBmYMmXKVb8qKirw+eefIyYmBjExMSP1W3JaW45ZRmqsTBpi76CzXwKXsgEXd0sXaSIasNQYyzH674t5jF5KlAqlbfbYSHSZrm6vRqO+ESqFCtG+dpgJ6YTsMCBqaJYuXYqlS5f2+vVNmzZh9erVeOCBBwAAb731Fr788kv89a9/xbp16wAAubm5vT7/0KFD+Oijj7Blyxa0trbCaDTC29sbzz777DUfr9frodfrbf/f3Nw8iN+V8ymsbsGJi41QKxW4LT588BcydQG7f2O5PScN8OLgSKLBmBTqhWAvLWpa9MgurUfKBA4ploqU8BRsL96OrPIspCelD+trWVeDonyioFVph/W1pEr0FaHrMRgMOHbsGBYtWmS7T6lUYtGiRfj+++/7dY2NGzfi4sWLKC0txSuvvILVq1f3mgRZH+/j42P7FRlphyPiTmBLd5H0jRODEeg5hL9MJz4EagsBN39g7uN2io5IfniMXrrmhM2BUqHEucZzqGitGNbXyq/PB8D6oOtx6ESotrYWJpMJISE9Vw1CQkJQVVU1LK+5fv16NDU12X5dvHhxWF5HSowmMz49bofeQcYOYE93rdb8XwCu3naIjki+rF2meYxeWny0PpgRNAPA8G+P8cRY30TfGhtJ999/f5+P0Wq1tl5JZLHnbA1qWw0I9NTYCjQH5fCfgZYKwGc0kPzf9guQSKZumBAIlVKBczWtuNTQjgg/d7FDon5KiUhBTk0OssqzcNfEu4btda7sIUTX5tArQoGBgVCpVKiuru5xf3V1NUaNGiVSVPJjLZK+IyECLqpBfst0NAD7N1lu3/g0oGaySTRUPm4uiI/0BcDtMamxTqM/XHkYepO+j0cPTouhBZdaLf9+T/TjilBvHDoR0mg0SExMxO7du233mc1m7N69G3PmzBExMvnQteix56zlhN7KoQxY3f8q0NkEBE8Gpq60U3REZF2l5faYtMT4xSDYPRidpk4crTo6LK9R2FAIABjlMQq+rr7D8hrOQPREqLW1Fbm5ubaTX+fPn0dubi7KysoAAOnp6XjnnXfw97//Hfn5+XjkkUfQ1tZmO0VGw+uz4+XoMguYHumLCSFeg7tIU7llWwzoHqw6xI7URGRjrRM6eK4Whi6zyNFQfykUCtuqUFb58NQJ2SbOczXoukRPhI4ePYr4+HjEx8cDsCQ+8fHxtpNdd911F1555RU8++yzmDFjBnJzc7Fjx46rCqjJ/gRBwJbuSfN3Jg1hNShzI9DVCYyZB0y4yU7REREAxIV6I9BTgzaDCUdL68UOhwbAOo1+uAqm2Uixf0Qvlk5NTYUgCNd9zJo1a7BmzZoRioisTl5qQmF1K7RqJZZNDxvcRWrOArkfWG4v+g0HqxLZmVKpwPyYIHySU47MQh3mRgeKHRL10+zQ2VAr1ShrKcOF5gsY4z3Grte3rQjxxNh1ib4iRI7Luhr04ymj4O06yHk43z0PCGZg4i1AZLIdoyMiK9sxehZMS4qHiwcSQywDp+29KmQ0GXGu8RwArgj1hYlQLzIyMhAXF4fkZHl+eHcaTfg819Loa9ADVssOA2e/ABRKYOEGO0ZHRFdKiQ6EUgEUVLegorFD7HBoAIarTqikqQRGsxGeLp4I9xzCNAAZYCLUi7S0NOTl5SE7O1vsUESx80wVWjq7EO7rhjnjAgZ+AUEAvn3Ocjv+HiCIs96IhoufhwbTu4/R8/SYtFjrhLKrstFubLfbdQsaLPVBMX4xUCr4UX89/NOha9ra3TtoeWIElMpB1PUU7gTKDgJqVyB1vZ2jI6Ifsg5h5faYtER5RyHcMxxGsxGHKw/b7brW+qBJAZPsdk1nxUSIrlLe2IH952oBDLJ3kNl0ebDqrIcB70EWWhNRv1n7CR04VwujicfopWK4jtHbToz5sT6oL0yE6Crbjl2CIABzxgUg0n8QLftPfgzU5AGuvsANa+0dHhFdw9RwH/h7aNCi78KxCw1ih0MDYDtGX57V5ynq/hAEgSfGBoCJEPVgNgu2bbGVg+kdZOwEvnvRcjslHXDzs2N0RNQbpVKB+RMsR+dZJyQtyaOSoVVpUdVWZTvpNRRVbVVoNjRDrVBjvO94O0To3JgIUQ+Hz9ejrL4dnlo1lk4JHfgFst8Fmi8B3uHAzIfsHyAR9cp6jJ5zx6TFTe2GmaNmArDP9lh+fT4AYJzvOGhUmiFfz9kxEaIerL2Dlk0PhZtmgKMwOpuArFcst3/0a8DFzc7REdH1pEwIhEIB5Fc2o7q5U+xwaADs2WXaWh/EbbH+YSJENq36Lnx9qgoAsCJxEL2DDvzJMmU+aCIwfZWdoyOivgR4ajEt3AcAt8ek5obwGwAAx2uOo8XQMqRrWeuDWCjdP0yEyObLkxXoMJowLsgDCaN9B/bk5krg+zcstxdu4GBVIpEsYJdpSYr0ikSUTxRMggnfV3w/pGtZewjx6Hz/MBEim38ftRRJ35kUCcVAZ4LtfRno6gAiZwOxS4chOiLqjwUxlmP0WUU6dPEYvaRYj9Hvu7Rv0NdoNjSjvLUcgKWZIvWNiVAv5DZio1jXimMXGqBSKnBH/ADbsdcWATnvW24veo6DVYlENCPSF77uLmju7MLxi41ih0MDYK0T2l++H2ZhcEmstT4ozCMMPlofu8XmzJgI9UJuIzasR+YXxAQh2Nt1YE/+7nlAMAExS4Exc4YhOiLqL5VSgZQJllUhbo9JS0JwAtzV7qjrrLOd/BooWyNFDlrtNyZChC6TGduOWbfFBtg7qGgXkPd592DVZ4chOiIaqNTu7bHMwhqRI6GB0Kg0mB06G8DgT4+xkeLAMREiZBXVoqZFD38PDW6cGNL3E4wdwPF/Am+nAh+ssNw3fRUQEjescRJR/8zvToROlzejpoXH6KXkyi7Tg2E7McYVoX5Tix0Aic/aO+i/ZoRBo75OblxfAhz9qyUJ6uhu4a/SAFNWAEteGoFIiag/gry0mBLujdPlzcgqrMXywcwMJFFYC6ZP6U6hobMBfq79785vNBlR3FQMgCtCA8EVIZmrbzNgV141AGDltXoHmU2WSfL/XAG8lgAc3GxJgnxGWwqj0/OB298E3HxHNG4iuj7rNPpM9hOSlBCPEMT6xUKAgAMVBwb03OKmYnSZu+Cl8UKYB4dd9xdXhGTu89xyGE0CpoR7Iy7M+/IX2uqA4/+wrAA1Xrh8f/QiIHk1MOEm9goicmALYoPw+p5zyCrSwWQWoFLyNKdUpESkoKChAFmXsnDLuFv6/bwr64MG3AJFxpgIydyW7t5BttWgS8eA7HeA058AJr3lPldfIP4eIOlBIIAD/IikID7SF96uajS2G3HiUiMSRnMAslSkhKfg3VPv4kDFAZjMJqj6+UOn7cQYO0oPCBMhGTtd3oS8ymZ4qbqwUpUJvP03oOL45QeETres/kxZDmjcRYqSiAZDrVIiZUIQvjxVicwCHRMhCZkWNA1eGi806ZtwqvYUZgTP6NfzeGJscFgjJGO7Dx7Cr9Uf4JA2De5fP2FJglQaYNpPgZ/vBh7aCyTcyySISKKsXab3FvAYvZSolWrMC5sHoP9dpgVB4LDVQeKKkNyYTUDRLpiOvIPHindDqRYAMyzFz8kPAvH3Ah6BYkdJRHawINaSCJ0sb0Jdqx4BnlqRI6L+SolIwY7SHdhfvh+PJzze5+PLW8vRYmyBWqnGOJ9xIxCh82Ai1IuMjAxkZGTAZDKJHYp92Iqf/wI0lsG64/y9Ih4z7/oVVDGLWfxM5GRCvF0xKdQb+ZXNyCqqxW0DHZ9DorGuCOXX56OmvQbB7sHXfbx1NSjaNxouKpdhj8+ZcGusF04xYkMQLMXPnz4MbJoEfLsBaCwDXH3xtfcKLNBvwv7Zb0E1cSmTICInZd0ey+T2mKQEuAVgSsAUAMCB8r6P0Z9t6G6kyELpAWMi5Iyu7Pz87o3AiX9ZToCFzgD+KwNVPz+ONN0duCCMwopr9Q4iIqeR2r09tq+oFmazIHI0NBDzI+YD6F+XaRZKDx63xpxJfQmQ/RdLEtTZaLlPpQEm3wHMXA2EJwIKBT7JPAezACSP9UNUoIeoIRPR8Eoc4wcvrRr1bQacKm/C9EhfsUOifkqJSMEbJ97AwYqDMJqNcFH2vuXFQunBYyIkdd3Fz8h+Bzj37eX7eyl+FgThcu+gJK4GETk7F5US86IDseNMFTILdEyEJCQuIA7+rv6o76xHbk0ukkclX/NxTfomVLZVAuCMscHg1phUtdUB+18FXpsB/Ouuy0lQ9CJg1cfAE7nADU9edQLs2IUGnK9tg7tGhZunho542EQ08qynxziNXlqUCiVuCL8BwPWn0VtXg8I9w+Gl8RqR2JwJV4SkRBCA8mNA9ruD7vxsXQ36ydRQeGj59hPJgbVO6MTFRjS0GeDnoRE5IuqvlPAUbC/ejqzyLKQnpV/zMawPGhp+EkqBsQM4tdWSAFXmXr4/dIal9mfyHf1qethu6MIXJysAACs5jZpINkJ93BAb4oWC6hZknavFrdM5kFMq5oTNgVKhxLnGc6horUCY59XvnTUR4rbY4HBrzJHVFQM7nwb+MBHYvsaSBKm0wPRV3Z2fMy0rQf3s/PzVqSq0GUwYG+COmVH+wxo6ETkW2/YYj9FLio/WBzOCZgDofXvMenR+oh9XhAaDK0KOps/i558BHgGDuvSWoxcBACsSIziZmEhmUmOC8Pa+EuwrtByjV3IavWSkRKQgpyYHWeVZuGviXT2+pjfpcb7xPABujQ0WEyFH0VYHHH8fOPpXS9NDq+hFlsGnE24aUtPDC3VtOHy+HgoFcEcCt8WI5CZprD/cNSrUtuqRV9mMKeE+YodE/ZQSnoI/5fwJhysPQ2/SQ6u6PCqluLEYXUIXvDXeGOUxSsQopYuJkJisxc9H3gHOfHp18XPyfwP+9pkZs/WYpUg6ZUIQwnzd7HJNIpIOjVqJueMD8W1+NTILapgISUiMXwyC3YNR016Do1VHMS98nu1r1hNjk/wncaV/kFgjJAZBAHL+Aby9AHh3IXDyox6dn5GeDyx50W5JkMksYFt3IsQiaSL5sp4e21uoEzkSGgiFQoGU8BQAV3eZZqH00DEREoNCAeS8D1SeuKL4+bsBFz/318HiWlQ0dcLbVY2b4kLsem0ikg7r3LGcskY0dRhFjoYGIiWiOxG6dO1EiPVBg8etsV4M+/T5lHRAd3ZIxc/99e/u3kG3xYfD1YXDVYnkKtLfHeODPFCsa8P+olrcPI1NVaViduhsqJVqlLWU4ULzBYzxHgOzYEZBg2VrjCtCg8cVoV4M+/T52KXdnZ+HNwlqajdi55kqAMBKDlglkr3U2GAAwF52mZYUDxcPJIYkAri8KlTeUo42YxtclC6I8okSMzxJYyLk5LafrIChy4yJo7wwJdxb7HCISGRX1gkJAqfRS8kP64Ss/YOifaOvO5CVro+JkJPb2t07aGVSJE8UEBGSx/rDzUWF6mY98itbxA6HBsBaJ5RdlY12Yzvrg+yEiZATK6hqwYlLTVArFbhtBlvqExHg6qLCnPGWLXkOYZWWKO8ohHuGw2g24nDlYdvRedYHDQ0TISdm7SS9cFIwAjy1fTyaiOTCtj1WwGP0UvLDY/TWFaFJ/pPEDEvymAg5KaPJjE+PlwNgkTQR9ZQaYymYPnahAS2dPEYvJdbtsV0XdqG6vRqApeEiDR4TISf13dka1LUZEOSltf30R0QEAKMD3BEV6IEus4AD52rFDocGYOaomdCqtGjUNwIAIr0i4anxFDcoiWMi5KS2dPcOuiM+HGoV32Yi6snaXJFdpqXFVe2KmaNm2v5fqoXSgiCgoKoFf95bjLvfPYSmdvFWJtlQ0QnVtHRiT4GlCHJlEkdqENHVUmOD8LeDpcgssByj56lS6UiJSLEdoY/1k06hdEunEQfO1WFvYQ32FuhQ0dRp+9r+c+I1+GQi5IQ+O14Ok1lA/GhfRAd7iR0OETmg2eMCoFUrUdnUicLqVsSO4r8VUnFD+A222468IiQIAgqqW5BZoENmQQ2Oljagy3y5d5VWrcTscQFIjQ1Cwhhf0eJkIuRkBEGwbYuxSJqIeuPqosLscQHYW6jD3sIaJkISEukViXlh81DQUIAZwTPEDqcHy6pPLTILdNhbqEPlFas+ADA2wB2pscFYEBuEOeMCHGLsExMhJ3PiUhOKalrh6qLELdM5R4iIepcaG4S9hTpkFujw0PzxYodDA5CxMAMKhQJKhbg1oIIg4GzV5VWfYxeuXvWZMz4AqTFBSI0NxthADxGjvTYmQk7G2jto6ZRQeLuy5ToR9S41Nhi/+U8eskvr0arvgqeWHwlSoVKKt5LS3GnEgaLLqz5VzT1XfaICPbAgJgipsUGY7SCrPtfD73on0mk0YfuJCgDAykQWSRPR9Y0NcMdof3eU1bfj++I63BQXInZI5IAEQUB+ZQsyC2uQWaBDzg9WfVxdlJg7PhCpsUFYEBOEMQGOt+pzPUyEnMjOM1Vo6exChJ8bZo8b3qn2RCR9CoUCqbFBeP/7C8gsqGEiRDZNHUbsL6pFZkEN9hbqUNOi7/H1cUEeSI0JRmpsEGZG+Tv8qs/1MBHqRUZGBjIyMmAymcQOpd+sRdIrEiOgVPIoLBH17XIixGP0ciYIAs5UNHfXjNUgp6wRpitWfdxcVJg7PqB71ScYowPcRYzWvpgI9SItLQ1paWlobm6Gj4+P2OH06VJDOw4UWzrELk/gthgR9c/scQHQqJQob+xAsa6VLTdkpKndiKxzOlutj+4Hqz7jgzyQGmtZ9UkeK+1Vn+thIuQkth0rhyAAc8cHINLfeTJ1Ihpe7ho1Zo3zR1Z38aszJ0I1LZ14/btzKNG1IcBTg0BPLQI9tQjw1CDoitsBnhpo1c73oW82C8irbEZmgaXW5/jFq1d95kUHYEFsMFJjgmTzWcJEyAmYzQK25lhOi7GTNBEN1IKYIGQV1WJvoQ4/Txkndjh2Z+gy428Hz+O13efQqu/q13O8XdU9EqWrb3f/10sLD43KYbcUG9sNtiR3b6EOta09V32igz1tR9uTo/ycMgHsCxMhJ3DofB0u1nfAS6vGjyezdxARDUxqbBBe+DIfh0vq0W7ogrvGeT4aMgtq8H9f5KFE1wYAmB7pi1XJkWjuNKKu1QBdqx61rQbUtepR26pHXasBXWYBzZ1daO7sQkltW5+voVUrbUlRoIemZ8Jkvc9LiwAPDfzcNcNaw2k2W2p9MgtqkFmow/GyBlyx6AN3jarHCS+5rPpcj/N8t8vY1u4i6Vumh8FNI79snoiGZnyQJ8J93VDe2IFDJXW4caL0T49dqGvD81/k49v8agBAoKcGv/zxRKxIuP5hErNZQHOnEbXdCVJtqx61LXrUtVlu61oMqGu7nDS1G0zQd5lR3tiB8saOPuNSKRXw99AgwEODIK/uVaYrEqVALy2CrFt0Hlpo1H03TGxoM2BfkWXFZ1+hDrWthh5fnxDsidRYy6pP0lh5rvpcDxMhiWvpNOKr05UAuC1GRINjPUb/weEyZBboJJ0Item78EbmObyz7zwMJjPUSgXunzsWjy+a0K8ms0qlAr7uGvi6axAd3PfrtRu6UNtiQG2bJWG6cnWpts3QfZ8lkWpsN8JkFqBr0UPXosfZqpY+r+/j5nL1dlx3olTbYkBmYQ1OXGzsserjoVFhbvTlVZ8IP676XA8TIYn78mQlOo1mRAd7Ij7SV+xwiEiiFsRcToSkeIxeEARsP1GBjV+dtXU6TpkQiA3L4oa1ANxdo8boAHW/jpMbusxoaDdA13J5Ran2ii053RX31bUZYDILaOowoqnDaNva601MiKflhFdMEJLG+vdrJYksmAhJ3L+7R2qsTIyQ3D9cROQ45kYHwkWlQFl9O0rr2hHlgDOhenOmogm/2Z6HI6X1AIBIfzc8c3McbooLcah/FzVqJUK8XRHi7drnY83dSVBtq75ngnRF8qRRK3FDtGWURZiv2wj8DpwTEyEJO1fTipyyRqiUCtyeEC52OEQkYZ5aNZLH+uNgcR0yC2oQFRgldkh9amgz4A+7CvDh4TKYBcuoh7TUaKyeP07yPW+USgX8PDTw89BgQojztjRwBEyEJGzrMUuR9I9igxDs1fdPGERE15MaG9SdCOnwwDzHTYS6TGb860gZXvmmEE0dRgDALdNC8eufTOLKCA0YEyGJ6jKZsS3HOlIjUuRoiMgZLIgJxktfncWhkjp0Gk0OuapyqKQOz20/Yys0njjKC8/dOpnzFWnQmAhJ1L4iSzt0fw8NbpzYj6MNRER9iAnxRKiPKyqbOnGopA6psY7zb0tFYwc2fn0W/zlRAcBymuqpxTFYNXM01CoWBtPgMRGSKOuA1dvjw3k6gIjswnqM/l9HLiKzQOcQiVCn0YR3s0qQsacYHUYTFArg/80cjacWx8LPQyN2eOQEmAhJUH2bwdYkjL2DiMieFsRYEqF9hTpR4xAEAbvyqvH8l3m4WG9pVJg81g8blk3GlHDHH4RN0sFESII+O14Oo0nA1HAfTBzlLXY4RORE5kUHQq1UoKS2DWV17f3qj2Nv52pa8Zv/nEFWUS0AYJS3K9b/ZCJunR7mUMfhyTkwEZKgLd2nxbgaRET25uXqgsQxfjh8vh6ZhTX42ZyxI/bazZ1GvPZtEf52sBRdZgEalRKr50fh0dRoeGj5cUXDg99ZEnO6vAn5lc3QqJW4dXqY2OEQkRNaEBtkSYQKdCOSCJnNArblXMLLOwps09EXTQrGM7fEYUyAdBo7kjQxEZKYLd2dpBfHhcDXnYWCRGR/qTHB+N2OAnxfPPzH6HMvNmLD9jM4cbERADAu0APPLIvDjxygUJvkgYlQLzIyMpCRkQGTySR2KDb6LhM+7z46ujKJvYOIaHhMCvVCsJcWNS16ZJfWI2VCkN1fQ9eix+92nLVt9XtoVHhi0QTcPzeKJ2FpRPG7rRdpaWnIy8tDdna22KHYfJtXg8Z2I0J9XHFDdKDY4RCRk1IoFFgQY0l+Mgvse3rMaDLj3awS3PhKpi0JWp4QgT1PpeKh+eOZBNGI44qQhFgHrC5PiIBKyZMTRDR8UmODseXYJewt1OEZO10zq0iH57afQXH3JPVpET547tbJSBjtZ6dXIBo4JkISUdXUiawiy09mKxJ5WoyIhtcNEwKhUipwrqYVlxraEeE3+GP0ZXXteOHLPHyTZ+l/FuChwS9/HIuViZFQ8oc6EhkTIYnYlnMJZgGYGeWPsYE8RUFEw8vHzQUJo32RXdqAzAId7pk9ZsDXaDd04c3MYvx5XwkMXWaolArcN2csnlg0AT5uLsMQNdHAMRGSAEEQbKfFVnI1iIhGyIKYIGSXNmBv4cASIUEQ8MXJSrz0VT4qmzoBAPOiA/DcssmYEOI1XOESDQoTIQk4eqEBpXXtcNeo8JOpoWKHQ0QykRobjFe+KcTBc7UwdJn7VcicX9mM57afweHz9QCACD83/O/NcVgyOYRdockhMRGSAOtq0M1TQ9ldlYhGTFyoNwI9taht1eNoaT3mXue0amO7AZt2FeKfhy7ALACuLko8mhqNh+aPG9Y+RERDxU9VB9em78KXJysBAHcms3cQEY0cpVKB+TGB+CSnHHsLdddMhExmAf86UoZXvilAY7sRgOWHtvU/mTikAmuikcKGDQ7uq1OVaDOYEBXogaQxPGJKRCMrtbvD87X6CR05X49lm/fjfz87jcZ2I2JDvPDh6lnIuDuBSRBJBleEHJy14diKxAjurxPRiEuJDoRSARRUt6CisQNhvm6oaurES1/lY3t3p3tvVzX+Z3Es7p41GmoVf74maWEi5MBKa9tw5Hw9lArgjoRwscMhIhny89BgeqQvjpc1YldeNVr1XcjYcw7tBhMUCmDVzNH4n5tiEOCpFTtUokFhIuTAtnavBqVMCEKoj5vI0RCRXKXGBON4mWU4qlXiGD/85tbJmBLuI2JkREPHNUwHZTIL2JZjSYRWJrF3EBGJJzX28tDVYC8t/njXDGx9eA6TIHIKXBFyUAfO1aKyqRO+7i64KS5E7HCISMamRfhg3dKJ6DKZcf+8KHiyjQc5EX43OyjrgNX/mh4GrZo9OIhIPAqFAg8vGC92GETDgltjDqip3WgbTrgyib2DiIiIhgsTIQe0/UQ5DF1mTAr1xuQwb7HDISIiclpMhByQtXfQSvYOIiIiGlZMhBzM2apmnLzUBBeVArfFs3cQERHRcGIi5GC2HLWsBi2cGAJ/D43I0RARETk3JkIOxNBlxmfHywEAdyazdxAREdFwYyLkQL47W4O6NgOCvbSYPyGo7ycQERHRkDARciBbj1l6B92eEM7BhURERCOAn7YOoqalE3sKdACAlYnsHURERDQSmAj1IiMjA3FxcUhOTh6R1/s0pxwms4CE0b6IDvYckdckIiKSOyZCvUhLS0NeXh6ys7OH/bUEQbjcO4idpImIiEYMEyEHkHuxEedqWuHqosQt00LFDoeIiEg2mAg5AOtq0E+mhMLL1UXkaIiIiOSDiZDIOgwm/Ce3AgCwIom9g4iIiEYSEyGR7TxThRZ9FyL93TA7KkDscIiIiGSFiZDItnT3DlqREAmlkgNWiYiIRhITIRFdrG/HgXN1UCiA5YkcsEpERDTSmAiJaFuOpUh67vgARPi5ixwNERGR/DAREonZLGBr92mxO9k7iIiISBRMhERyqKQOlxo64OWqxpLJo8QOh4iISJaYCInE2jto2fQwuLqoRI6GiIhInpgIiUAQBLTqu6BQcFuMiIhITGqxA5AjhUKBd36WhMqmDozydhU7HCIiItliIiSiUB83sUMgIiKSNW6NERERkWwxESIiIiLZYiJEREREssVEiIiIiGSLiRARERHJFhMhIiIiki0mQkRERCRbTISIiIhItpgIERERkWwxESIiIiLZYiJEREREssVEiIiIiGSLiRARERHJFqfP90EQBABAc3OzyJEQERFRf1k/t62f471hItSHlpYWAEBkZKTIkRAREdFAtbS0wMfHp9evK4S+UiWZM5vNqKiogJeXFxQKhd2u29zcjMjISFy8eBHe3t52uy4NHt8Tx8L3w7Hw/XAsfD/6JggCWlpaEBYWBqWy90ogrgj1QalUIiIiYtiu7+3tzW9iB8P3xLHw/XAsfD8cC9+P67veSpAVi6WJiIhItpgIERERkWwxERKJVqvFhg0boNVqxQ6FuvE9cSx8PxwL3w/HwvfDflgsTURERLLFFSEiIiKSLSZCREREJFtMhIiIiEi2mAgRERGRbDEREklGRgbGjh0LV1dXzJo1C0eOHBE7JFnauHEjkpOT4eXlheDgYNx2220oKCgQOyzq9tvf/hYKhQJr164VOxTZKi8vxz333IOAgAC4ublh6tSpOHr0qNhhyZbJZMIzzzyDqKgouLm5Yfz48Xj++ef7nKdFvWMiJIKPP/4Y6enp2LBhA3JycjB9+nQsWbIENTU1YocmO3v37kVaWhoOHTqEXbt2wWg0YvHixWhraxM7NNnLzs7Gn//8Z0ybNk3sUGSroaEB8+bNg4uLC77++mvk5eXhD3/4A/z8/MQOTbZefvllvPnmm3j99deRn5+Pl19+Gb/73e+wefNmsUOTLB6fF8GsWbOQnJyM119/HYBlnllkZCQee+wxrFu3TuTo5E2n0yE4OBh79+7F/PnzxQ5HtlpbW5GQkIA33ngDL7zwAmbMmIE//vGPYoclO+vWrcOBAweQlZUldijU7ZZbbkFISAj+8pe/2O5bvnw53Nzc8M9//lPEyKSLK0IjzGAw4NixY1i0aJHtPqVSiUWLFuH7778XMTICgKamJgCAv7+/yJHIW1paGm6++eYef09o5G3fvh1JSUlYuXIlgoODER8fj3feeUfssGRt7ty52L17NwoLCwEAJ06cwP79+7F06VKRI5MuDl0dYbW1tTCZTAgJCelxf0hICM6ePStSVARYVubWrl2LefPmYcqUKWKHI1sfffQRcnJykJ2dLXYosldSUoI333wT6enp+PWvf43s7Gw8/vjj0Gg0uO+++8QOT5bWrVuH5uZmTJw4ESqVCiaTCS+++CLuvvtusUOTLCZCRN3S0tJw+vRp7N+/X+xQZOvixYt44oknsGvXLri6uoodjuyZzWYkJSXhpZdeAgDEx8fj9OnTeOutt5gIieTf//43PvjgA3z44YeYPHkycnNzsXbtWoSFhfE9GSQmQiMsMDAQKpUK1dXVPe6vrq7GqFGjRIqK1qxZgy+++AL79u1DRESE2OHI1rFjx1BTU4OEhATbfSaTCfv27cPrr78OvV4PlUolYoTyEhoairi4uB73TZo0Cdu2bRMpIvrFL36BdevW4ac//SkAYOrUqbhw4QI2btzIRGiQWCM0wjQaDRITE7F7927bfWazGbt378acOXNEjEyeBEHAmjVr8Omnn+K7775DVFSU2CHJ2sKFC3Hq1Cnk5ubafiUlJeHuu+9Gbm4uk6ARNm/evKvaSRQWFmLMmDEiRUTt7e1QKnt+dKtUKpjNZpEikj6uCIkgPT0d9913H5KSkjBz5kz88Y9/RFtbGx544AGxQ5OdtLQ0fPjhh/j888/h5eWFqqoqAICPjw/c3NxEjk5+vLy8rqrP8vDwQEBAAOu2RPDkk09i7ty5eOmll3DnnXfiyJEjePvtt/H222+LHZpsLVu2DC+++CJGjx6NyZMn4/jx49i0aRMefPBBsUOTLB6fF8nrr7+O3//+96iqqsKMGTPw2muvYdasWWKHJTsKheKa97/33nu4//77RzYYuqbU1FQenxfRF198gfXr16OoqAhRUVFIT0/H6tWrxQ5LtlpaWvDMM8/g008/RU1NDcLCwrBq1So8++yz0Gg0YocnSUyEiIiISLZYI0RERESyxUSIiIiIZIuJEBEREckWEyEiIiKSLSZCREREJFtMhIiIiEi2mAgRERGRbDERIiIiItliIkREklRVVYXHHnsM48aNg1arRWRkJJYtW9Zjjh8RUV84a4yIJKe0tBTz5s2Dr68vfv/732Pq1KkwGo3YuXMn0tLScPbsWbFDJCKJ4IoQEUnOo48+CoVCgSNHjmD58uWIiYnB5MmTkZ6ejkOHDgEANm3ahKlTp8LDwwORkZF49NFH0draarvGhQsXsGzZMvj5+cHDwwOTJ0/GV199Zfv66dOnsXTpUnh6eiIkJAT33nsvamtrbV/funUrpk6dCjc3NwQEBGDRokVoa2sbuT8EIrILJkJEJCn19fXYsWMH0tLS4OHhcdXXfX19AQBKpRKvvfYazpw5g7///e/47rvv8Mtf/tL2uLS0NOj1euzbtw+nTp3Cyy+/DE9PTwBAY2MjbrzxRsTHx+Po0aPYsWMHqqurceeddwIAKisrsWrVKjz44IPIz89HZmYm7rjjDnB0I5H0cOgqEUnKkSNHMGvWLHzyySe4/fbb+/28rVu34uGHH7at6kybNg3Lly/Hhg0brnrsCy+8gKysLOzcudN236VLlxAZGYmCggK0trYiMTERpaWlGDNmzNB/U0QkGtYIEZGk9Pdnt2+//RYbN27E2bNn0dzcjK6uLnR2dqK9vR3u7u54/PHH8cgjj+Cbb77BokWLsHz5ckybNg0AcOLECezZs8e2QnSl4uJiLF68GAsXLsTUqVOxZMkSLF68GCtWrICfn59df69ENPy4NUZEkjJhwgQoFIrrFkSXlpbilltuwbRp07Bt2zYcO3YMGRkZAACDwQAA+PnPf46SkhLce++9OHXqFJKSkrB582YAQGtrK5YtW4bc3Nwev4qKijB//nyoVCrs2rULX3/9NeLi4rB582bExsbi/Pnzw/8HQER2xa0xIpKcpUuX4tSpUygoKLiqTqixsRG7d+/GqlWr0NnZCaXS8vPeCy+8gGeeeQYNDQ22OqIrrV+/Hl9++SVOnjyJp59+Gtu2bcPp06ehVve9cG4ymTBmzBikp6cjPT3dLr9HIhoZXBEiIsnJyMiAyWTCzJkzsW3bNhQVFSE/Px+vvfYa5syZg+joaBiNRmzevBklJSX4xz/+gbfeeqvHNdauXYudO3fi/PnzyMnJwZ49ezBp0iQAlkLq+vp6rFq1CtnZ2SguLsbOnTvxwAMPwGQy4fDhw3jppZdw9OhRlJWV4ZNPPoFOp7M9n4gkRCAikqCKigohLS1NGDNmjKDRaITw8HDh1ltvFfbs2SMIgiBs2rRJCA0NFdzc3IQlS5YI77//vgBAaGhoEARBENasWSOMHz9e0Gq1QlBQkHDvvfcKtbW1tusXFhYKt99+u+Dr6yu4ubkJEydOFNauXSuYzWYhLy9PWLJkiRAUFCRotVohJiZG2Lx5swh/CkQ0VNwaIyIiItni1hgRERHJFhMhIiIiki0mQkRERCRbTISIiIhItpgIERERkWwxESIiIiLZYiJEREREssVEiIiIiGSLiRARERHJFhMhIiIiki0mQkRERCRbTISIiIhItv4/qq2+ZuxvdfQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA0FlJREFUeJzs3XdcU9f7wPFPwt6IqAgy3Ioi7r333m39dbi7tMOinVpnrW1tra2jttpq6+jXunDvvVoniuIWByJLZO/k/v64BkVAARNuAufdF6+GS3LvQwTy5DznPEclSZKEIAiCIAhCKaRWOgBBEARBEASliERIEARBEIRSSyRCgiAIgiCUWiIREgRBEASh1BKJkCAIgiAIpZZIhARBEARBKLVEIiQIgiAIQqklEiFBEARBEEotkQgJgiAIglBqiURIEIzY1KlTUalUSodRrErj96yT1/fu4+PD8OHD9XaN4cOH4+Pjo7fzFdaJEyewtLTk9u3bL3wurVZL3bp1mTlzph4iM5zMzEw8PT1ZuHBhrq8tWrQILy8v0tPTFYhMAJEICQq6ceMGb7/9NlWqVMHa2hpHR0datWrFTz/9RGpqKgApKSksWLCArl27UrFiRRwcHGjQoAG//PILGo0mx/kOHDiASqVi7dq1eV5v+PDh2Nvb5zqu1Wr55ZdfqF+/PjY2NpQtW5aOHTty7ty5534PKpUKlUrF6NGj8/z6xIkTs+8TExPz3PMZ2rJly7Ljefrjs88+K7Y4UlJSmDp1KgcOHCi2axbEk8+HWq3G3d2drl27Gl2czxMeHs7UqVMJCgpSOpRcJk6cyP/93//h7e2d47gkSSxfvpy2bdvi7OyMra0tfn5+TJ8+neTk5DzP9ffff3P37l3ee++97GNJSUlMmTKF7t274+LigkqlYtmyZXk+vn379vn+PtSqVeu538vevXsZOXIkNWrUwNbWlipVqjB69Gju37+f434WFhYEBAQwc+ZM0tLScnxt+PDhZGRk8Ouvvz73eoJhmCsdgFA6bd26lZdeegkrKyuGDh1K3bp1ycjI4MiRI3z88cdcvHiR3377jZs3b/L+++/TqVMnAgICcHR0ZOfOnYwZM4Z///2XP//884VjGTlyJCtXrmTo0KG89957JCcnc/bsWaKiogr0eGtra9atW8fChQuxtLTM8bW///4ba2vrXH/8lDZ9+nQqV66c41jdunWL7fopKSlMmzYNkF+MnjRp0qRiTcqe1qVLF4YOHYokSYSGhrJw4UI6duzI1q1b6dGjR7HHc+XKFdTqwr1nDQ8PZ9q0afj4+FC/fv0cX1u8eDFarVaPERZcUFAQe/bs4dixYzmOazQaXn31Vf755x/atGnD1KlTsbW15fDhw0ybNo01a9awZ88eKlSokONxs2fPZsiQITg5OWUfi4mJYfr06Xh5eeHv7//cJLZSpUrMmjUr1/Enz5mfTz/9lNjYWF566SWqV6/OzZs3mT9/Plu2bCEoKAg3N7fs+44YMYLPPvuMVatWMXLkyOzj1tbWDBs2jDlz5vD++++X2tFQRUmCUMxu3rwp2dvbS7Vq1ZLCw8Nzff3atWvS3LlzJUmSpOjoaOnChQu57jNixAgJkK5du5Z9bP/+/RIgrVmzJs/rDhs2TLKzs8txbPXq1RIgrV+/vkjfCyD1799fUqvVUmBgYI6vHT16VAKkQYMGSYAUHR1d6PNPmTJF0uev6dKlSyVAOnnyZIEfk5qaKmk0Gr3FIEnyvysgTZkyRa/nfVGANHbs2BzHzp8/LwFS165d832cvp4jff17nzx5UgKkpUuXvvC59OmDDz6QvLy8JK1Wm+P4119/LQHShAkTcj1m06ZNklqtlrp3757j+JkzZyRA2rNnT47jaWlp0v379yVJev7z0K5dO6lOnTpF/n4OHjyY69/94MGDEiBNnDgx1/179+4ttWnTJtfxU6dOSYC0d+/eIsciFJ0ojQnF7rvvviMpKYnff/+dihUr5vp6tWrV+PDDDwFwdXWlTp06ue4zYMAAAC5duvRCscyZM4emTZsyYMAAtFptvkPwz+Lh4UHbtm1ZtWpVjuMrV67Ez88v35GWNWvW0KhRI2xsbHB1deX111/n3r17BbrmihUrsh/r4uLCkCFDuHv3bqFjf5quvPi///2PSZMm4eHhga2tLQkJCcTGxjJhwgT8/Pywt7fH0dGRHj165FlCTEtLY+rUqdSoUQNra2sqVqzIwIEDuXHjBrdu3aJcuXIATJs2LbsUMXXqVCDveTJZWVnMmDGDqlWrYmVlhY+PD1988UWueRU+Pj707t2bI0eO0LRpU6ytralSpQp//fVXkZ8TPz8/XF1dCQ0Nfe5zBPDff//RvXt3nJycsLW1pV27dhw9ejTXeY8cOUKTJk2wtramatWq+ZZG8pojFBcXx0cffYSPjw9WVlZUqlSJoUOHEhMTw4EDB2jSpAkgj0Lonl9deSivOULJycmMHz8eT09PrKysqFmzJt9//z2SJOW4n0ql4r333iMwMJC6detiZWVFnTp12LFjR4Gey8DAQDp27Jjj3zc1NZXZs2dTo0aNPEdm+vTpw7Bhw9ixYwf//vtvjnNZWlrStm3bHPe3srLKMRJjSG3bts01Wte2bVtcXFzy/NvUpUsXjhw5QmxsbI7jjRo1wsXFhY0bNxo0XiFvojQmFLvNmzdTpUoVWrZsWeRzREREAHKi9LTExMQ85+M8/aKZkJDAiRMnGDNmDF988QXz5s0jKSmJypUr88033/Dyyy8XOJ5XX32VDz/8kKSkJOzt7cnKymLNmjUEBATkWRZbtmwZI0aMoEmTJsyaNYvIyEh++uknjh49ytmzZ3F2ds73WjNnzuTLL7/k5ZdfZvTo0URHRzNv3jzatm373MfqxMfH53qOnnwuZ8yYgaWlJRMmTCA9PR1LS0tCQkIIDAzkpZdeonLlykRGRvLrr7/Srl07QkJCcHd3B+QyR+/evdm7dy9Dhgzhww8/JDExkd27d3PhwgU6d+7ML7/8wrvvvsuAAQMYOHAgAPXq1cs33tGjR/Pnn38yePBgxo8fz3///cesWbO4dOkSGzZsyHHf69evM3jwYEaNGsWwYcP4448/GD58OI0aNcozqX6ehw8f8vDhQ6pVq5bjeF7P0b59++jRoweNGjViypQpqNVqli5dSseOHTl8+DBNmzYFIDg4mK5du1KuXDmmTp1KVlYWU6ZMyVX6yUtSUhJt2rTh0qVLjBw5koYNGxITE8OmTZsICwujdu3aTJ8+ncmTJ/PWW2/Rpk0bgHx/3yRJom/fvuzfv59Ro0ZRv359du7cyccff8y9e/f48ccfc9z/yJEjrF+/njFjxuDg4MDPP//MoEGDuHPnDmXLls037nv37nHnzh0aNmyY63wPHz7kww8/xNw875ekoUOHsnTpUrZs2ULz5s0BOHbsGHXr1sXCwuK5z9mzaDSaPP9e2NjYYGdnV+jzJSUlkZSUlOffpkaNGiFJEseOHaN37945vtawYcM8E2ahGCg8IiWUMvHx8RIg9evXr8jnSE9Pl3x9faXKlStLmZmZ2cd1pbFnfTxZGtMNrZctW1aqUKGCtHDhQmnlypVS06ZNJZVKJW3fvv25sfColBIbGytZWlpKy5cvlyRJkrZu3SqpVCrp1q1b2eUOXWksIyNDKl++vFS3bl0pNTU1+1xbtmyRAGny5MnZx54uldy6dUsyMzOTZs6cmSOO4OBgydzcPNfxp+lKY3l9PPkcVqlSRUpJScnx2LS0tFxlgNDQUMnKykqaPn169rE//vhDAqQ5c+bkur6uJPKs0tjT33NQUJAESKNHj85xvwkTJkiAtG/fvuxj3t7eEiAdOnQo+1hUVJRkZWUljR8//pnPjSTJ/56jRo2SoqOjpaioKOm///6TOnXqJAHSDz/8IElS/s+RVquVqlevLnXr1i1H6SclJUWqXLmy1KVLl+xj/fv3l6ytraXbt29nHwsJCZHMzMxylca8vb2lYcOGZX8+efLkfMu5uus+qyQ0bNgwydvbO/vzwMBACZC++uqrHPcbPHiwpFKppOvXr+d4fiwtLXMcO3funARI8+bNy3WtJ+3Zs0cCpM2bN+c4PnfuXAmQNmzYkO9jY2NjJUAaOHBg9rFKlSpJgwYNeuY1C1Iay+/34e23337mufMzY8aMfMtc4eHhEiB9++23ub721ltvSTY2NkW6pvBixIiQUKx05QMHB4cin+O9994jJCSErVu35vkOcvLkydnvgp80e/bsHO+4kpKSAHjw4AH//vsvzZo1A6Bv375UrlyZr776iu7duxcopjJlytC9e3f+/vtvXn/9dVatWkXLli1zrYwBOHXqFFFRUUydOhVra+vs47169aJWrVps3bo1eyLx09avX49Wq+Xll1/O8S7Wzc2N6tWrs3//fr744ovnxrtgwQJq1KiR79eHDRuGjY1NjmNWVlbZtzUaDXFxcdjb21OzZk3OnDmT/bV169bh6urK+++/n+u8RZkIum3bNgACAgJyHB8/fjzff/89W7dupUOHDtnHfX19c/z7lytXjpo1a3Lz5s0CXe/333/n999/z/7c2tqagIAAxo0bl+N+Tz9HQUFBXLt2jUmTJvHgwYMc9+3UqRPLly9Hq9UiSRI7d+6kf//+eHl5Zd+ndu3adOvWLfv7zc+6devw9/fPLg8/qajPr5mZGR988EGO4+PHj2ft2rVs3749x6qszp07U7Vq1ezP69Wrh6Oj43OfX91zUqZMmRzHExMTgWf/TdB9Tff3Q3e+p89VFD4+PixevDjX8UqVKhX6XIcOHWLatGm8/PLLdOzYMdfXdfHmNQJVpkwZUlNTSUlJwdbWttDXFopOJEJCsXJ0dAQe//ErrNmzZ7N48WJmzJhBz54987yPn58fnTt3znV8xYoVOT7XvYhVrlw5OwkCsLe3p0+fPqxYsYKsrKx8h+uf9uqrr/LGG29w584dAgMD+e677/K8n65/Ss2aNXN9rVatWhw5ciTfa1y7dg1JkqhevXqeXy9omaBp06Y0btw4368/vaIM5DYDP/30EwsXLiQ0NDRH+4InSyI3btygZs2aBX7enuf27duo1epcpSk3NzecnZ1z9aN5MrnQKVOmDA8fPizQ9fr168d7772HSqXCwcGBOnXq5Fkiefo5unbtGiAnSPmJj48nPT2d1NTUPP8Na9as+dxE6MaNGwwaNKgg30qB3L59G3d391yJSO3atbO//qQXfX6lp+Yd6a77rL8J+SVLT5+rKOzs7PL8e6GTkZGRa05PuXLlMDMzy3Hs8uXLDBgwgLp167JkyZI8z6WLN6+E9VlfEwxLJEJCsXJ0dMTd3Z0LFy4U+rHLli3j008/5Z133mHSpEkvHItuTkte8zLKly9PZmYmycnJBVpGC/JIkpWVFcOGDSM9Pb1Qc4wKSqvVolKp2L59e64/xECefZKK4unRIICvv/6aL7/8kpEjRzJjxgxcXFxQq9WMGzeuWJZjF/QFIq/nBQr+olmpUqVnvjDqPP0c6Z6D2bNn51qyrmNvb2/yjfOK+vzqkuWnEyZdwnX+/Hn69++f52PPnz8PyKN9T56voMnXizh27FiOEUeA0NDQHBPO7969S9euXXFycmLbtm35jm7p4s1r/tDDhw+xtbXN83dPMCyRCAnFrnfv3vz2228cP36cFi1aFOgxGzduZPTo0QwcOJAFCxboJQ53d3fc3NzyXKkVHh6OtbV1oUp4NjY29O/fnxUrVtCjR488/9gB2eWyK1eu5Bo+v3LlSp7lNJ2qVasiSRKVK1d+ZmnLENauXUuHDh1ylI1AXsH05PdatWpV/vvvPzIzM/MdoSrMu15vb2+0Wi3Xrl3LftEEiIyMJC4u7pnPV3HSlYscHR2fmUiVK1cOGxub7BGkJ125cqVA13neG4nCPr979uwhMTExx8/75cuXs7+uD7oGhbrVdzqtW7fG2dmZVatWMXHixDwTLd2qvycnGNeqVSvXuQzB39+f3bt35zj25Kq0Bw8e0LVrV9LT09m7d2+eK2F1dPE++XP85NfyOi4Ynlg+LxS7Tz75BDs7O0aPHk1kZGSur9+4cYOffvop+/NDhw4xZMgQ2rZty8qVKwvdXO5ZXnnlFe7evZvjD11MTAwbN26kY8eOhb7WhAkTmDJlCl9++WW+92ncuDHly5dn0aJFOUYHtm/fzqVLl+jVq1e+jx04cCBmZmZMmzYt1ztwSZJyzU3RJzMzs1zXXLNmTa5EctCgQcTExDB//vxc59A9XjcHIi4u7rnX1ZVA586dm+P4nDlzAJ75fBWnRo0aUbVqVb7//vvs+WdPio6OBuTnsVu3bgQGBnLnzp3sr1+6dImdO3c+9zqDBg3i3LlzuVbLwePnV1fKK+jzq9Focv17/fjjj6hUKr01kfTw8MDT05NTp07lOG5ra8uECRO4cuUKEydOzPW4rVu3smzZMrp165a9YgygRYsWXLhwweAjbGXKlKFz5845PnRz+5KTk+nZsyf37t1j27Zt+ZasdU6fPo1KpcrzDeCZM2deaCWtUHRiREgodlWrVmXVqlW88sor1K5dO0dn6WPHjrFmzZrsvim3b9+mb9++qFQqBg8ezJo1a3Kcq169es9cdv08n3/+Of/88w+DBg0iICAAJycnFi1aRGZmJl9//XWhz+fv74+/v/8z72NhYcG3337LiBEjaNeuHf/3f/+XvXzex8eHjz76KN/HVq1ala+++orPP/+cW7du0b9/fxwcHAgNDWXDhg289dZbTJgwodBxF0Tv3r2ZPn06I0aMoGXLlgQHB7Ny5UqqVKmS435Dhw7lr7/+IiAggBMnTtCmTRuSk5PZs2cPY8aMoV+/ftjY2ODr68vq1aupUaMGLi4u1K1bN8+eS/7+/gwbNozffvuNuLg42rVrx4kTJ/jzzz/p379/rrKFUtRqNUuWLKFHjx7UqVOHESNG4OHhwb1799i/fz+Ojo5s3rwZkPsn7dixgzZt2jBmzBiysrKYN28ederUyS4D5efjjz9m7dq1vPTSS4wcOZJGjRoRGxvLpk2bWLRoEf7+/lStWhVnZ2cWLVqEg4MDdnZ2NGvWLM+5X3369KFDhw5MnDiRW7du4e/vz65du9i4cSPjxo3LMTH6RfXr148NGzYgSVKOUavPPvuMs2fP8u2333L8+HEGDRqEjY0NR44cYcWKFdSuXTtXF/l+/foxY8YMDh48SNeuXXN8bf78+cTFxREeHg7ILTvCwsIAeP/993OUu+Pj43PNH9R5/fXXn/n9vPbaa5w4cYKRI0dy6dKlHL2D7O3tc5X6du/eTatWrXK1GTh9+jSxsbH069fvmdcTDESBlWqCIEmSJF29elV68803JR8fH8nS0lJycHCQWrVqJc2bN09KS0uTJOn5S+KfXH5dlM7SkiRJN27ckAYMGCA5OjpKNjY2UseOHaUTJ04U6Hsgj07ET3t6+bzO6tWrpQYNGkhWVlaSi4uL9Nprr0lhYWF5PvZp69atk1q3bi3Z2dlJdnZ2Uq1ataSxY8dKV65ceWYsz+ss/aznMC0tTRo/frxUsWJFycbGRmrVqpV0/PhxqV27dlK7du1y3DclJUWaOHGiVLlyZcnCwkJyc3OTBg8eLN24cSP7PseOHZMaNWokWVpa5vi3zOt7zszMlKZNm5Z9Pk9PT+nzzz/P/jnR8fb2lnr16pUr9rxizEtB/j2f93N29uxZaeDAgVLZsmUlKysrydvbW3r55ZdzLac+ePBg9vdfpUoVadGiRXl+708vn5ckSXrw4IH03nvvSR4eHpKlpaVUqVIladiwYVJMTEz2fTZu3Cj5+vpK5ubmOZaQP718XpIkKTExUfroo48kd3d3ycLCQqpevbo0e/bsXB2g83t+8ooxL7qWFYcPH871NY1GIy1dulRq1aqV5OjoKFlbW0t16tSRpk2bJiUlJeV5vnr16kmjRo3KM578/maEhoZm3+9Zy+cL8vL4rOs8/RzHxcVJlpaW0pIlS3Kd59NPP82z47ZQPFSSpIdp94IgCIJQAJ06dcLd3Z3ly5e/8LmWL1/O2LFjuXPnToEaiSpp7ty5fPfdd9y4cSPHhOj09HR8fHz47LPPsjvqC8VLzBESBEEQis3XX3/N6tWrcy3LL4rXXnsNLy8vvS2gMJTMzEzmzJnDpEmTcq0KW7p0KRYWFrzzzjsKRSeIESFBEARBEEotMSIkCIIgCEKpVWoSoZSUFLy9vQ22okYQBEEQBNNTahKhmTNn5uhBIQiCIAiCUCoSoWvXrnH58mW9NQYTBEEQBKFkULyh4qFDh5g9ezanT5/m/v37bNiwIVcTqgULFjB79mwiIiLw9/dn3rx5NG3atMDXmDBhArNnz+bYsWOFjk+r1RIeHo6Dg4PYDE8QBEEQTIQkSSQmJuLu7v7MXQIUT4SSk5Px9/dn5MiRDBw4MNfXV69eTUBAAIsWLaJZs2bMnTuXbt26ceXKFcqXLw9A/fr1ycrKyvXYXbt2cfLkSWrUqEGNGjWKlAiFh4fj6elZ+G9MEARBEATF3b17l0qVKuX7daNaPq9SqXKNCDVr1owmTZpk74Oj1Wrx9PTk/fff57PPPnvuOT///HNWrFiBmZkZSUlJZGZmMn78eCZPnpzn/dPT03PsXRMfH4+Xlxd3797F0dHxxb5BQRAEQRCKRUJCAp6ensTFxeXYVuVpio8IPUtGRganT5/m888/zz6mVqvp3Lkzx48fL9A5Zs2axaxZswBYtmwZFy5cyDcJ0t1/2rRpuY47OjqKREgQBEEQTMzzprUY9WTpmJgYNBoNFSpUyHG8QoUKREREGOSan3/+OfHx8dkfd+/eNch1BEEQBEFQnlGPCOmbbkfzZ7GyssLKysrwwQiCIAiCoDijHhFydXXFzMyMyMjIHMcjIyNxc3NTKCpBEARBEEoKo06ELC0tadSoEXv37s0+ptVq2bt3Ly1atDDotRcsWICvry9NmjQx6HUEQRAEQVCO4qWxpKQkrl+/nv15aGgoQUFBuLi44OXlRUBAAMOGDaNx48Y0bdqUuXPnkpyczIgRIwwa19ixYxk7diwJCQnPnG0uCIIgCILpUjwROnXqFB06dMj+PCAgAIBhw4axbNkyXnnlFaKjo5k8eTIRERHUr1+fHTt25JpALQiCIAiCUFhG1UfIGOlGhOLj48XyeUEQBEEwEQV9/TbqOUJKEnOEBEEQBKHkEyNCzyFGhARBEATB9IgRIUEQBEEQhOcQiZAgCIIgCKWWSIQEQRAEQSi1RCKUDzFZWhAEQRAM6/rD60SnRCsag5gs/RxisrQgCIIgGMboXaM5cf8EM1vPpE/VPno9t5gsLQiCIAiC0YpNi+VkxEkkJOqXr69YHCIREgRBEASh2O29sxetpKW2S208HTwVi0MkQoIgCIIgFLvdt3YD0NWnq6JxiERIEARBEIRi9TDtISciTgDQzbuborGIRCgfYtWYIAiCIBjGvjv70EgauSzmqFxZDEQilK+xY8cSEhLCyZMnlQ5FEARBEEqUXbd3AdDFu4vCkYhESBAEQRCEYhSXFsd/9/8DlJ8fBCIREgRBEAShGO27K5fFapapibejt9LhiERIEARBEITis+uWXBYzhtEgEImQIAiCIAjFJD49/nFZzFskQoIgCIIglCL77uwjS8qiRpka+Dj5KB0OIBKhfInl84IgCIKgX8a0WkxHbLr6HGLTVUEQBEF4cfHp8bT/pz1Z2iw29t9IFacqBr2e2HRVEARBEASjsf/ufrK0WVRzrmbwJKgwRCIkCIIgCILBGdtqMR2RCAmCIBiIVtKyI3QHQVFBSociCIpKyEjg+P3jgPJ7iz3NXOkABEEQSqJMTSaTjk5iW+g2QJ4cGtAogEoOlRSOTBCK34G7Bx6XxZyNpywGYkRIEARB75Iyknh377tsC92GmcoMtUrN7tu76RfYj5/O/ERyZrLSIQpCscouixlJ76AniURIEARBj6JSohi+Yzj/3f8PW3NbFnZayNo+a2lesTkZ2gyWBC+h94bebLi2Aa2kVTpcQTC4xIxEjoUfA4xr2byOSIQEQRD05GbcTV7f9jpXHl6hrHVZlnZfSkuPllQvU53fuvzGzx1+xsvBi5jUGCYfm8yQLUM4HXla6bAFwaAO3D1ApjaTKk5VqFammtLh5CISoXyIhoqCIBTGmcgzvLH9De4n38fH0YcVPVfgW9Y3++sqlYoOXh0I7BfIhMYTsLew51LsJYbvGM74A+O5l3RPwegFwXCMdbWYjmio+ByioaIgCM+z5/YePj30KRnaDOqVq8f8jvMpY13mmY95kPqABUELWHdtHVpJi6XakmF1hjHabzS2FrbFFLkgGFZiRiLtVrcjU5vJ+r7rqV6merFdWzRUFARBKAarLq0i4EAAGdoM2nu2Z0nXJc9NggDK2pRlcovJ/NP7H5q6NSVDm8Hi4MX03tCbjdc3ivlDQolwMOwgmdpMKjtVppqz8ZXFQCRCgiAIRaKVtPx4+kdmnZiFhMTLNV7mx/Y/YmNuU6jz1HSpyZKuS/ipw094OngSnRrNpKOTeHXrq5yNOmug6AWheDy5WkylUikcTd5EIiQIglBImZpMJh6ZyB8X/gDg/QbvM6n5JMzVRWvNplKp6OjVkcB+gQQ0CsDOwo6LDy4ydPtQPj74MeFJ4foMXxCKRVJGEkfvHQWMd34QiERIEAShUJIykhizdwxbbm7BTGXGjFYzeKveW3p5t2tpZsmIuiPYMmALg6oPQoWKHbd20DewL/POziMlM0UP34EgFI+DYQfJ0Gbg4+hDdefimxtUWKKztCA8ciPuBokZiQDZL2oq3X8q+f88eq3LdfwR3ecFeYzq8RfyPJ4jBlUBjj/63EJtISbbGkh0SjRj9o7hcuxlbMxtmNN+Dq09Wuv9Oq42rkxtOZUhtYbw3cnvOBlxkt/O/0bgtUA+bPQhvav0Rq0S72MF46Yri3Xx7mK0ZTEQq8aeS6waKx1+PP1jdpmjJOjo2ZFJzSdRzrac0qGUGDfjb/Lu7ncJTw7HxdqFhZ0XUqdsHYNfV5Ik9t7Zy/envs9eYu/n6scnTT6hfvn6Br++IBRFcmYybf/XlgxtBmv7rKWmS81ij6Ggr98iEXoOkQiVfHtu7+GjAx8BUMle3gdKQv610P16SLr/JPn/j76c+/gjus9zfU0qwGOeOK671pOPeTK+Z3GwdODzpp/Tu0pvo343ZgqCooJ4b997xKfH4+3ozS+df8HTwbNYY0jXpLMiZAWLgxdnb9HRo3IPAhoF4GbnVqyxCMLzbLu5jU8Pf4q3ozeb+29W5G+QSIT0RCRCJdvthNsM2TKEpMwkhtcZzvjG45UOqVCeTJ5ATpBuxN1g8rHJhDwIAaBtpbZMbj6ZCnYVlAzVZO29s5dPD31Kuiadeq71mNdpHi7WLorFE5Maw7yz89hwbQMSEtZm1gyvO5wRdUaIkqhgND7a/xF77uzhTb83+aDhB4rEIPoICcJzpGalEnAggKTMJBqWb6jYL+uLUKlUqFVqzNRmmKnNMFebU9OlJit7ruTDhh9iobbgUNghBmwcIL9wivc9hbL68moCDgSQrkmnfaX2LOm2RNEkCOT5Q9NaTmN179U0qtCINE0ai84tok9gHzbf2Cz6DwmKS8lM4fC9w4BxrxbTEYlQPsQWGyWbJEnM/HcmVx9excXahdntZmOhtlA6LL0xV5sz2m80a/qswc/Vj8TMRCYfm8y7e94lIjlC6fCMniRJ/HzmZ7767yu0kpZB1QfxY4fC9wgypNpla7O021LmtJ+Dh70HUSlRfHHkC97Y9gbnos8pHZ5Qih0KO0S6Jh1PB09qlin+uUGFJUpjzyFKYyXT+mvrmXJsCmqVmsVdFtO0YlOlQzKYLG0Wy0OWM//sfDK0GdhZ2DGh8QR5ebaYO5RLpjaTqcemsunGJgDG1h/L2/XeNurnKl2TzvKQ5Sw+v5iULHmJfa8qvRjXcJyYPyQUu4ADAey+vZtRdUcxrtE4xeIQc4T0RCRCJc+lB5d4fdvrZGgz+LDhh4z2G610SMXiZvxNJh+dnD1a0KJiC6a2nIq7vbvCkRmP5MxkAg4EcCz8GGYqM6a0mMKA6gOUDqvAolOi+fnsz2y8vjF7/tDIuiMZXne4UY1mCSVXSmYK7Va3I02Txureq3NsPFzcxBwhQchDQkZC9r5Q7Sq1Y2TdkUqHVGyqOFXhz+5/MqHxBKzMrDh+/zgDNg7gnyv/iHklyJOQR+wYwbHwY9iY2zCv4zyTSoIAytmWY0arGfzd+28alm9ImiaNhecW0mdDH7be3CrmiAkGd+jeIdI0aVSyr0Rtl9pKh1MgIhESSg1Jkph0ZBJhSWF42Hsws/XMUteUzkxtxrA6w1jbZy0NyzckJSuFGf/O4M1dbxKWGKZ0eIoJjQ/l9W2vcyn2Ei7WLvzR7Q/aVGqjdFhFVqdsHZZ1X8b37b7H3c6dyJRIPjv8Ga9vf53g6GClwxNKsOy9xXyMd2+xp5WuVwGhVFt2cRn77+7HQm3BD+1+wMnKSemQFOPj5MPS7kv5rOlnWJtZcyLiBAM3DeTvy3+XutGhoKgghm4fyr2ke3g5eLGixwrqutZVOqwXplKp6ObTjY39N/JBgw+wMbfhfPR5Xt32Kl8c/oLI5EilQxRKmJTMFI7cOwKYxmoxHZEICaXCqYhT/HTmJwA+a/oZdVwN3xHY2KlVal6r/Rrr+66ncYXGpGal8vV/XzNq5yjuJtxVOrxisf/OfkbvGk1cehx+rn4s77kcT8fibZRoaNbm1rxZ7022DNhC36p9Adh8czN9Avuw6Nwi0rLSFI5QKCmO3DtCalYqHvYe+LooNzeosEQiJJR4MakxfHzoYzSSht5VevNSjZeUDsmoeDp68nu33/mi2RfYmNtwKvIUAzcNZEXIihI9OvTPlX8Yd2Ac6Zp02lZqy5KuyvcIMqTytuWZ2Xom/+v1PxqUb0BqVioLghbQJ7AP20O3i/lDwgvbdftRWczbdMpiIFaNPZdYNWbasrRZvLX7LU5GnKSaczVW9lwpuu8+Q1hiGFOOTeFExAkAGpZvyPRW0/F29FY4Mv2RJIn5QfP57fxvAAyqPohJzSdhri49e1BLksTOWzuZc3oO95PvA1C/XH0+bfppiSgLCsUvNSuVdqvbkZqVyt+9/jaKnyOxakwQgPln53My4iS25rbMaT9HJEHPUcmhEou7LubL5l9ia27LmagzDNo0iD8v/olGq1E6vBeWqc3ky6NfZidBY/zHMKXFlFKVBIE8f6h75e5s6r+J9+q/h425DUHRQfzf1v9j4pGJRKVEKR2iYGKeLIsVx2bE+iQSIaHEOnD3AL9f+B2Aaa2mUdmpsrIBmQi1Ss3LNV9mQ78NtKjYgnRNOt+f+p6hO4ZyM/6m0uEVWUpmCu/ve5+NNzZipjJjaoupvFv/XZMawtc3a3Nr3vZ/m839N2fPH9p0YxO9N/Tmt/O/iflDQoHpVot18e5icr9TojT2HKI0ZprCEsN4ecvLJGYk8lrt1/is6WdKh2SSJEli/bX1zD41m+TMZCzVloxtMJahvkNNahQlJjWGsXvHEvIgBBtzG75v9z1tK7VVOiyjExwdzLcnv81uuulu585HjT+im3c3k3txE4pPWlYabVe3JTUrlVU9V+FXzk/pkABRGhNKsXRNOgEHAkjMSKReuXqMb2RaO8obE5VKxaAagwjsF0grj1ZkaDP48fSPDN0+lBtxN5QOr0BuJ9zm9W2vE/IghDJWZfi96+8iCcqHXzk/lvdYzrdtvqWCbQXCk8P5+ODHDN8xnIsPLiodnmCkjt47SmpWKu527kYxN6iwxIjQc4gRIdMz/fh01lxdg7OVM2v6rBF7LemJJElsvLGR7058R2JmIhZqC8bUH8PwOsONdnTofPR53tv7Hg/TH+Lp4MmizovwcvRSOiyTkJqVyrKLy/gj+A/SNGmoUFG7bG3M1eaoUaNWqVGpVJipzFCpVDmOqVVq1DxxW6VGxePbeR3TnePJx+jO8+R583rMk7E8eZ/8YqnpUtPk5rEYs08OfcL20O0M8x3GhCYTlA4nm9hrTE9EImRaNt/YzBdHvkCFikWdF9HSo6XSIZU4kcmRTP93OofCDgHgW9aXGa1mUKNMDYUjy+ng3YNMODiBNE0adcrWYUGnBZS1Kat0WCYnIjmCn878xJabW5QORW8s1BZsHrAZD3sPpUMxeWlZabRb3Y6UrBRW9FyBfzl/pUPKJhKhF7RgwQIWLFiARqPh6tWrIhEyAVcfXuW1ra+RpkljjP8Y3q3/rtIhlViSJLHl5ha+OfENCRkJmKvNebve24zyG4WF2kLp8Fh7dS0z/p2BVtLS2qM1P7T7QawYfEE34m4QlhiGVtKiRYskSblvP/Eh8fiYJEloeerrTxx75rmeOvb0eTWSJt9r5XWuaw+vcS/pHkNqDmFi84lKP60mb++dvYzbPw43Ozd2DdplVHPJRCKkJ2JEyDQkZSTxf1v/j1sJt2jp3pKFnRZipjZTOqwSLzolmun/TufA3QMA1HapzYxWM6jpUlOReCRJYuG5hSw6twiAAdUG8GWLL40iOROMw4n7Jxi1axRWZlbsGLQDVxtXpUMyaZ8e+pRtodt4w/cNPmnyidLh5CAmSwulhiRJTDk2hVsJt6hgW4Fv2nwjkqBiUs62HD93+Jlv2nyDk5UTl2IvMWTLEBYGLSRTk1mssWRqM5lybEp2EvSO/ztMazlNJEFCDk3cmlDPtR7pmnRWhKxQOhyTlq5J52DYQUDuJm2qRCIkmLyVl1ay6/YuzNXm/ND+B8pYl1E6pFJFpVLRq0ovAvsF0tmrM1lSFr+c+4UhW4cQ8iCkWGJIyUzhg30fsOH6BtQqNZNbTGZs/bFGNUwvGAeVSsVov9EA/O/K/0jISFA4ItN19N5RkjOTqWBbgXrl6ikdTpGJREgwaUFRQfxw6gcAJjSeYFQT9UobVxtX5rSfw+x2syljVYarD6/y6tZX+fnMz2RoMgx23QepDxi5cyRH7h3B2syanzr8JPaTE56pnWc7qjlXIzkzmf9d/p/S4Zis3bd3A3ITRbXKdNMJ041cKPVi02KZcHACWVIW3Xy68WqtV5UOqdRTqVR09+lOYP9Auvl0QyNpWBy8mFe2vMLFGP33obmTcIc3tr/BxQcX5R5B3X6nvWd7vV9HKFnUKjWj/EYBsCJkBalZqQpHZHoyNBnZcwO7+phuWQxEIiSYKI1Ww2eHPiMyJRIfRx+mtZwmyiBGxMXahe/bfc+c9nNwsXbhetx1Xtv2GnNPzyVdk66XawRHB/PG9je4m3gXD3sP/urxl0kPzwvFq7tPdzzsPXiY/pD119YrHY7JORZ+jKTMJMrbljf5kXiRCAkm6dfzv3L8/nFszG34sf2P2FnYKR2SkIcu3l0I7BdIj8o90Egafr/wOy9vfpnz0edf6LyHwg4xatcoYtNi8S3ry4qeK/Bx8tFP0EKpYK42Z2TdkQAsvbC02Cf3m7on9xYz5bIYiERIMEFH7h3JXhn0ZfMvqVammsIRCc9SxroM37X9jrkd5lLWuiw342/yxvY3mHNqTpE29Vx/bT0f7PuA1KxUWnm0Ymm3pWIJtFAk/ar1w9XGlciUyBLVMNLQMjQZ7L+7HzDt1WI6IhESTMr9pPt8fvhzJCRervEyfar2UTokoYA6eXViY/+N9K7SG62kZenFpby0+SWCooIK9HhJkvgl6BemHJuCRtLQr2o/5nWcZ/yNEkWrNqNlZWbFMN9hAPxx4Q80Wo3CEZmG4+HH5bKYTXnql6+vdDgvTCRCgsnI1GQy4eAE4tLj8C3ryydNjat5l/B8TlZOzGozi3kd51HOphy3Em4xdPtQvjv53TMnrGZps5h2fBoLzy0E4K16bzGj1Qzj7xH08Bb8UBPWjlI6EiEfL9V8CUdLR24l3GLPnT1Kh2MSdt2Wy2KdvTubfFkMRCIkmJDvT33P+ZjzOFo6Mqf9HKzMrJQOSSii9p7t2dBvA/2q9kNCYnnIcgZvGszpyNO57puSmcK4/eNYd20dapWaL5t/yfsN3jeNyfF7pkJSJFxYCwnhSkcj5MHOwo5Xa8srTn8P/h2x2cKzZWoy2X/nUVnMxFeL6YhESDAJ20O3s+ryKgBmtZklNkssAZysnPiq9Vcs7LSQ8rbluZN4hxE7RvDNiW9IyUwB5BYJo3eN5mDYQazNrJnbfi4v13xZ4cgLKOwUXNzw+PNLm5WLRXim12q9ho25DZdiL3E0/KjS4Ri14/ePk5iZiKuNK/XL1Vc6HL0QiZBg9G7G3WTKsSkAvOn3Jm0rtVU4IkGf2lRqQ2C/QAZVH4SExMpLKxm0aRBbb27ljW1vEBwTjLOVM4u7LqaDVwelwy0YSYJdX8q3bR/teH8xULFwhGdztnbObsK5+PxihaMxbrrVYp29OpeYrYxEIiQYtZTMFAIOBJCalUpTt6aMqT9G6ZAEA3CwdGBqy6ks6rwINzs3wpLC+OzwZ9xJvJPdI8ikJmVe2QZ3joG5Nfzfo87Fd45DYoSycQn5Guo7FHO1OWeiznAm8ozS4RilTE0m++7uA0pOWQxEIiQYMUmSmP7vdG7E36CcTTm+bfst5mpzpcMSDKiVRys29N2Q/e68tkttVvRcQWWnygpHVgiaTNgtj2DSfAx4NoVKTQAJQjYpGpqQvwp2FehXtR8AS4KXKByNcfr3/r8kZiRS1rosDcs3VDocvRGJkGC01lxdw9abWzFTmTG73WzRK6aUsLe0Z3KLyex9aS+req0yvX/3M3/Cg2tySaz1OPmYb3/5/yGBCgUlFMTIuiNRq9QcvneYy7GXlQ7H6Dy5WqyklMVAJEKCkboYc5FvTnwDwLiG42hUoZHCEQnFrbxtedMbAUxPhAPyzy3tPgNrJ/m2rzzSwO1jojxmxLwcvejm3Q2QV5AJj2VqM9l3Ry6LdfPppnA0+iUSIYUkZiQSnx6vdBhGKT49noADAWRqM+no2ZFhdYYpHZIgFMzRnyE5GlyqQKPhj487e4JHY0ASq8eMnG4z1p23dnIr/paywRiRE/dPkJCRgIu1S4kqi4FIhBTz67lf6bG+B0svLC3SNgMllVbS8vnhzwlPDsfTwZMZrWeYRr8YQUi4D8fny7c7TwVzy5xfr9Nf/n/IxuKMSiikmi41aVepHRISSy8uVToco5FdFitBq8V0SkUi5OPjQ7169ahfvz4dOii//Faj1XAy8iSJGYnMOT2H3ht6s+HaBtHeHXk4+vC9w1iZWTGn/RwcLR2VDkkQCmb/TMhMAc9mULtv7q/rjt0+CklRxRubUCij/UYDsOnGJiKSRSkzU5vJ3jt7gZK1WkynVCRCAMeOHSMoKIj9+/crHQpmajNW9VzFjFYzqGBbgciUSCYfm8zgzYM5cPdAqe1s+t/9/5gfJL+jnthsIrVcaikckSAUUGQIBK2Ub3eZAXmNYpbxBveGIGnhklg9Zszql69P4wqNydJm8efFP5UOR3En758kPj0eF2uXEjlfs9QkQsbGTG1G/2r92TJgC+MbjcfR0pHrcdd5f9/7DN8xvMAbUZYUkcmRfHLoE7SSlgHVBjCg+gClQxKEgtszRU5wavcBr2b5309XHhPNFY3em35vArDu2joepj1UOBpl6cpinbw6md4ChgJQPBE6dOgQffr0wd3dHZVKRWBgYK77LFiwAB8fH6ytrWnWrBknTpwo1DVUKhXt2rWjSZMmrFy5Uk+R64e1uTXD6w5n28BtjKw7EiszK85EneGN7W/w4b4PuRl3U+kQDS5Tm8knhz4hNi2WGmVq8EWzL5QOSRAK7uZBuLYL1ObQedqz75u9euwoJEUbPjahyFq4t8C3rC+pWamsvGRcrxvFqaSXxcAIEqHk5GT8/f1ZsGBBnl9fvXo1AQEBTJkyhTNnzuDv70+3bt2IinpcY69fvz5169bN9REeLm9yeOTIEU6fPs2mTZv4+uuvOX/+fLF8b4XhZOXER40+YsuALQysPhC1Ss2+u/sYsGkAU49NJTI5UukQDean0z9xJuoM9hb2/Nj+R6zNrZUOSRAKRquFXZPk241HQtmqz75/GR9wbyDKYyZApVJlzxVadXkVSRlJCkekjJMRJ4lLj6OMVRkaV2isdDgGoXgi1KNHD7766isGDMi7FDJnzhzefPNNRowYga+vL4sWLcLW1pY//vgj+z5BQUFcuHAh14e7uzsAHh7yBp0VK1akZ8+enDmTf/v09PR0EhIScnwUJzc7N6a1nMb6vuvp4NkBraRl3bV19N7Qm5/O/ERCRvHGY2h7bu/hzxC5Bv9Vq6/wcvRSOCJBKIQLayHiPFg6QLtPC/YY0VzRZHTy6kRlp8okZiTyz9V/lA5HEbtv7wago1fHElkWAyNIhJ4lIyOD06dP07lz5+xjarWazp07c/z48QKdIzk5mcTERACSkpLYt28fderUyff+s2bNwsnJKfvD09Pzxb6JIqrqXJWfO/4s77FUrj5pmjSWBC+h5/qe/HnxT9I16YrEpU+3E27z5VF5Y8phvsPo5N1J4YgEoRAy02DvdPl263FgV8AO2Lp5QreOQHKMISIT9EStUjOqrtxX6K+Lf5WIv7uFkaXNYu/tkl0WAyNPhGJiYtBoNFSoUCHH8QoVKhARUbAljZGRkbRu3Rp/f3+aN2/O0KFDadKkSb73//zzz4mPj8/+uHv37gt9Dy+qQfkG/NXjL37u8DNVnKoQnx7P96e+p8+GPmy6sclkl9ynZaURcCCApMwkGpZvyIeNPlQ6JEEonBO/QvxdcHCX9xQrqDI+ULH+o/KYaK5o7HpW6UlFu4o8SHtA4LVApcMpVqciT/Ew/SHOVs40dWuqdDgGY9SJkD5UqVKFc+fOce7cOS5cuMCHHz77BdfKygpHR8ccH0pTqVR08OrAur7rmN5yOuVty3M/+T4Tj0zkpS0vcSjskMktuZ/530yuPryKi7ULs9vNxkJtoXRIglBwKbFw6Af5dsdJYGlbuMfrJk2L8pjRs1BbMLzOcACWXlxKljZL2YCK0a5bJXu1mI5RJ0Kurq6YmZkRGZlzonBkZCRubm4KRaUcc7U5A6oPYMuALYxrOA4HCweuPbzG2L1jGblzJOejjW8SeF42XNtA4PVA1Co1s9vOprxteaVDEoTCOfQ9pMdDhbrgP6Twj9eVx0IPQ/IDvYYm6N/A6gNxsXbhXtI9toduVzqcYpGlzXq8Wsy75JbFwMgTIUtLSxo1asTevXuzj2m1Wvbu3UuLFi0UjExZNuY2jPIbxfZB2xleZziWaktORZ7itW2vEXAggND4UKVDzNfl2MvM/G8mAO/Vf4+mFUvucKtQQsWGwonf5NtdpkFRthtwqQJu9UDSwGVRHjN21ubWvOH7BiB3v9dKWoUjMrzTkaeJTYvFycqJJhXzn05SEiieCCUlJREUFERQUBAAoaGhBAUFcefOHQACAgJYvHgxf/75J5cuXeLdd98lOTmZESNGGDSuBQsW4Ovr+8z5REpzsnJifOPxbBmwhX5V+6FCxe7buxmwcQAzjs8gOsW4+pQkZCQQcCCAdE06bSu1zd7cUBBMyt7poM2EKh2gWufn3z8/ormiSXml5ivYW9hzI/4G++8qv0OBoelWi3Xy6lTipy6oJIUnlxw4cCDP/b+GDRvGsmXLAJg/fz6zZ88mIiKC+vXr8/PPP9Os2TO6t+pRQkICTk5OxMfHG8V8oWe59vAaP535iYNhBwF55OgN3zcYUWcE9pb2isYmSRLj9o9j3919uNu580+ff3CyclI0JkEotLDTsKQjoIJ3DoObX9HP9eAGzGsIKjOYcA3syuotTMEwfj7zM4uDF+Pn6sfKnitL7IbQGq2GTms68SDtAb90/oXWHq2VDqlICvr6rXgiZOxMKRHSORVxih/P/Jg9Z8jZypm3673NyzVfxtLM8jmPNoxlF5bxw+kfsFBbsLzHcuq45t/CQBCMkiTBsl5yV2j/V2HALy9+zkWtISIY+s6DhkNf/HyCQT1IfUC3dd1I16SzuOtimldsrnRIBnEy4iQjd47E0dKRA68cMNkRoYK+fiteGhP0r7FbY1b0WMHc9nPxcfQhLj2Ob09+S9/Avmy5uaXY69unI08z98xcAD5r+plIggTTdGW7nASZW0PHifo5p665oiiPmYSyNmUZVH0QAEvOL1E4GsPZeWsnIDdRNNUkqDBEIpQPU5gj9CwqlYpO3p3Y0G8DU1pMoZxNOe4l3ePzw5/z8uaXOXrvaLEsuY9JjeHjgx+jkTT0qtKLl2q8ZPBrCoLeabLkjVUBmr8LTpX0c15dIhR6UF6SLxi94XWGY64y57+I/0xmpW5haLQa9tzeA5T81WI6IhHKx9ixYwkJCeHkyZNKh/JCzNXmDK4xmK0Dt/Jhww+xt7DnysMrvLPnHd7c9SYXYy4a7NpZ2iw+PfQp0anRVHOuxuTmk0tsTV0o4c78CTFXwbYstP5If+d1rSYvwddmweWt+juvYDAV7SvSq0ovAJYEl7xRoTNRZ3iQ9gAHS4cSW/p7mkiESgkbcxtG+41m+8DtDPUdioXagv8i/mPI1iFMODiBOwl39H7NhUELORFxAltzW35o/wO2FoVsOicIxiA9EQ7Mkm+3+xSs9TzJX+w9ZnJG+o1EhYr9d/dz7eE1pcPRK10TxY6eHbEwK/llMRCJUKnjbO3Mx00+ZsuALfSt2hcVKnbe2km/wH589e9XxKTqZ++jg3cPsjh4MQDTWk6jilMVvZxXEIrdsXmQHC33/mlkgLYdumX0Nw+I8piJqOJUhc7ecuuEPy788Zx7mw6tpGXPnUdlsRK8t9jTRCJUSrnbuzOz9UzW9FlDG482ZElZrL6ymp7re7IgaAHJmclFPndYYhifH/kcgFdrvUr3yt31FbYgFK+E+3IiBNBpCpgbYNWla3UoX0cuj13Zpv/zCwYx2m80ANtDt3M3Udk9KfXlbNRZYlJjcLBwoEXF0tO0WCRC+TD1ydIFVdOlJgs7L+SPbn/g5+pHalYqi84touf6nqy6tIpMTWahzpeuSWf8wfEkZiRSz7UeExpPMFDkglAMDnwNmSlQqenj/cEMQTcqFLLRcNcQ9Mq3rC+t3FuhkTQsu7BM6XD0QlcW6+DVodSUxUAkQvkqKZOlC6qJWxNW9lzJD+1+wNvRm9i0WGadmEXfwL5sD91e4CX33534jpAHIThbOfN9u+9L1S+TUMJEXYKzK+TbXWeAISf66+YJ3dgPqXGGu46gV7pRocDrgUbXyb+wtJK21K0W0xGJkJBNpVLR1acrG/pt4MvmX1LWuixhSWF8cugThmwZwvHw4898/OYbm/nn6j+oUPFNm2+oaF+xmCIXBAPYPQUkLdTqDV4GXj1TrgaUqy1v3SHKYyajUYVG1C9XnwxtBstDlisdzgsJigoiKjUKewt7WriXnrIYiERIyIOF2oKXa77MtoHbeL/B+9hZ2HEp9hJv7X6Lt3a9RciDkFyPufbwGjP+nQHAO/7v0MqjVXGHXXRaLVxYB/8MlSesCkLoIbi2E9Tm0Hla8VxT7D1mclQqFW/WexOA1VdWE58er3BERbfr9qOymGcHxXYgUIpIhIR82VrY8la9t9g2cBuv134dc7U5x+8f55Utr/DJoU+yJwgmZyYTcCCA1KxUWrq35O16bysceQFJElzdCb+2hbUj5fkZf/WHA9+AVqN0dIJStFrYNUm+3WiE3OunOGSXx/aJ8pgJaePRhhplapCSlcLfl/9WOpwi0Upadt+SN1ktTavFdEQiJDyXi7ULnzb9lM39N2c3Etseup2+gX2Z9d8sJh2ZxK2EW1SwrcCsNrMwU5spHHEBhB6G37vCqpchMhgsHR7tJC7JPWNWDIIk0675C0V0YR3cPyf/TLT7tPiuW74WlKv1qDy2vfiuK7wQlUqVPVdoxaUVpGSmKBxR4Z2PPk9UahR2FnalriwGIhHKV2lZNVYYlRwq8U2bb/in9z+0cm9FljaLVZdXsefOHsxV5nzf7ntcrF2UDvPZwk7DX/3gz94QdkLeN6rlBzDuPLy+Dgb8Cha2cHM//NoGbj97XpRQwmSmwd7p8u3WH4J9ueK9vmiuaJK6enfFy8GL+PR41l5dq3Q4habbW6y9Z3uszKwUjqb4iUQoH6Vt1Vhh1C5bm0VdFrG462J8y/qiQsWnTT+lfvn6SoeWv8gQ+N9rsKSjPA9IbQ5NRsMHQfKKINtHCZz/EHhzH7jWgMT78m7jR3+Wy2hCyXfiN4i/Aw7u0HysXk4pSVLB9/XTzRO6sQ/STHe+SWljpjZjZN2RAPwZ8icZmgyFIyo4raRl9+1HZbFStlpMRyRCQpE1r9ic//X6H4eHHGZIrSFKh5O32Juw7k34pSVc3gIqNfj/H7x3Cnr9AI55rGwrXxve3A9+L4Gkgd1fwv9ehdSHxR+/UHxSYuHw9/LtjhPB8sW3hIlMSKPxV3t4b9XZgj2gfG1wrQmaDLiy44WvLxSfPlX7UN6mPFEpUWy+sVnpcArsfPR5IlMisbOwM61FLnokEiHhhahUKpys9Lz3kj7E34PN42B+Ewj+B5Cgdl949zgMWAQulZ/9eCt7GLgYes0BM0t5SfOvbSG8gC9oguk5/IM8ClO+jpws60Hg2Xs8SM5ga/B9QmMK2K09u7lioF5iEIqHpZklw+oMA+RtNzQmsuBCt1qsXaV2pbIsBiIREkqa5BjYORF+bgCnl8rbFlTrDG8dgFeWyxNSC0qlgiajYNRucPaGuDvyBOsTi0WprKR5eEsuiwF0mQ56mvC/Lfh+9u31Z8IK9iBdB+vreyEtQS9xCMVjcI3BOFs5cyfxTna5yZjlKIuVwtViOiIREkqGtHjYNxN+8ofj80GTDl4tYPg2eRK0e4Oin9u9Prx9SG6sp8mAbRNg3Sh5V3KhZNg7Xf63rdIeqnXSyynvxqZwLuzxPJ/1Z+6h1RYggS7vC2Wryz/DV0V5zJTYWtjyau1XAVgcvLjgc8MUEhwTTERyBLbmtrRyL51lMRCJkGDqMlLgyFyYWw8OfQcZSVDRH15bByO2g4+efrltnOGVFdB1pjzR+sI6+K2DPAlbMG33Tsv/nqjk0SA9baWx/YI8GtTQyxkHa3PuxaXy780Hz3+gSiWaK5qwV2u9iq25LVcfXuXwvcNKh/NMut5B7Sq1w9rcWuFolCMSoXyI5fNGLitDLlH9XB/2TIG0OHml18t/wVsHoXpn/e8NpVJBy/dg+FZ5VdGDa7C4IwSt0u91hOIjSbBrsny73ityEq0nW4MjABjQwIM+/u4ArD1d0PJYf/n/1/eI8piJcbJy4pWarwCw+LzxjgpJkiTKYo+IRCgfYvm8kdJkwdmVML+RXKJKigRnL+j/C4z5V55fYcjNMUHed+qdw1C1E2SlQuC7sPE9yEw17HUF/bu6A24fATMr6DhJb6cNe5jCubtxqFTQra4bgxtVAmD7hQiS0rOef4IKdaBsNbk8dm2X3uISiscbvm9gqbYkKDqI05GnlQ4nTxdiLhCeHI6NuQ2tPVorHY6iRCIkmAatVi4T/NICNo6RJy7bV4Ce38N7p6H+q3qb4Fogdq7w2lroMBFQwdnlsKQzPLhRfDEIL0aTBbsfjQY1fxecPfV26h0X5NGgJj4ulHewpoGnM1Vc7UjN1OSYQJ0vlerxqNDFDXqLSyge5WzL0b9afwCWBC9RNph8PLlarDSXxUAkQoKxkyS4thsWt4c1wyDmKtiUkedyfBAETd8Ec4U2CFSrod0nMDQQ7MpB5AX4tZ144TIVZ5c/+nlygTYBej311kfJTi8/uU+VSqVi0KNRoQKXx3TzhK7vgfQkvcYnGN7wusMxU5lxNPxonhtVK0mSJHbdkhOh0l4WA5EICcbs1lFY2gNWDn6095O9vPfTh+eg1Yd6aXinF1Xaw9uHwbsVZCTCmuGw7RN5HpNgnNKTYP/X8u12n4C1/nphhcelcvaOXBbrUdct+/jAhh6oVHAiNJY7DwqwH1WFuuBSBbLSxOoxE+Tp4En3yt0B4xsVuvjgoiiLPUEkQoLxCT8LywfCsp5w57g8f6PFe3IC1OELvb5o6Y1jRRi6CVqNkz8/8Sss7S6X8ATjc2weJEdBmcrQeJReT60rfTXxdqG84+OSQ0UnG1pXcwVgXUF6Cj1ZHhPNFU3SqLryz9ae23u4GX9T4Wge040GtfFog425jcLRKE8kQoLxiLoMq1+H39rDjb3yMvXGI+HDIOg2U56XY8zMzKHLNPi/1WDtLC/LXtQGru5UOjLhSYkRcOxn+XbnKXovreoSoZ5+brm+NqihXB5bfzasYD2FdOWxa7tFecwEVS9TnQ6eHZCQWHphqdLhAI/KYrdFWexJIhESlPfwFmx4R54IfWkzoJKXMr93Enr/CI7uSkdYODW7yw0Y3RvKy/pXvQx7psqTcwXlHZgFmSng0fjxiIuehMelckZXFvPLvY9dtzpu2FuZczc2lRO3Yp9/Qrd68qhVVhpcEwm1KRrtNxqALTe2cD+pABPlCyL6Kvz9f/BLK9g/C2JDC/zQkNgQ7iXdw9rMmjYebfQTj4kTiVA+RB+hYpBwH7YEwLzGcO5vkLRy9+Z3j8HA3+T5EaaqjDeM3AlN35Y/P/Ij/NVXHo0QlBN1Gc78Jd/u+pXeWy1sf7RarLF3GSo45l6JY2NpRu96coK0riCTpkVzRZNXr1w9mrk1I0vKYtnFZS92soxk2DNN3kT6yjZ5gcbBb+R+an/0gNN/yl32nyG7LFapDbYWRjLPUmEiEcqH6CNkQMkPYNck+Zf31O+gzYSqHeHNfTBkJVTwVTpC/TC3hJ7fweClYOkAt4/CotZw86DSkZVee6Y8Tri9W+j99NsflcV61M09GqSjWz22Nfg+yQXpKaQbtbq2W34hFEzO6HryqND6a+t5kFqA7uJPkyS4tAUWNIMjc+S/mdW7Qd/5UKUDoII7x2DzB/B9DVg7Cq7tgac2fhWrxfImEiGh+KQlwIFv5P3Ajs2Th/s9m8GwLfDGBvBopHSEhlF3oLzpa4W6kBwNy/vDwe/k3khC8Qk9LK++UplB56l6P31EfBqnbj8EoEce84N0GnuXwbusLSkZmux+Q89U0R/K+MjNO0VzRZPUzK0ZdcvWJU2TxspLKwv34NhQuby++jWIvwtOnjBkFby6Ghq+IbfvCAiRf6Zda8p/Vy+shZWDYI4v7PoSoi4BcCn2EmFJYVibWdPWo63ev09TJRIhwfAyU+Hoz3ICdGCWvMTczQ9eXSOXjyqXgjq1azUYvQcavC6PSOyfKbcFSC7Cu0Oh8LRa2P2lfLvxCHCtrvdL6PYWa+RdhopO+a/EUalU2ZOmC7567NGO9KI8ZpJUKlX2qNDfl/8mMaMAGzZnpslvHBc0kxNgtQW0DoCx/0GtXjnLuo7u0Poj+Wtv7oemb8n9sZIeLQxY2Bx+bcuuY98Coiz2NJEICYaTlQEnf4efG8gvQqmx8q7ag5fCW4egRlfDb4dhTCxsoN8C6LcQzG3klXG/toE7/ykdWcl3cb3clkHXi8oAHq8Wy78spjOwoQcAx248IOxhAXoKZZfHdskbDQsmp4NnB6o6VSUpM4nVV1Y/+87XdsvJy4FZ8jYrldvJcyc7TwFLu/wfp1KBR0PoORvGX5E3iq7ZC9TmSPfPsStS/lvTJewShGyCrHQ9foemSyRCgv5pNXDufzC/MWwNgMT78nBuvwXyfmB1B8pdmUurBq/Bm3vlpDDhntwv6dh8eR6AoH9Z6bB3mny71TiwL6/3S0QmPC6L5bVs/mmVytjSokpZADacuff8C7g3kPfUy0wR5TETpVapGeUn9xVaHrKc1Kw89iaMD5NbiKwcDA9DwaEiDP4Dhm6EcjUKd0FzS6jdB/5vFYy/ypUOH3PXwgIrrZZ2N47DP2/ADzVh6wQIO12q//6U4lcjQe8kSX6X8UtL2PA2xN0Gu/LQYza8f1ouC5mZKx2lcahQB97aD3UGgjYLdk2U/wCmxikdWclz4je5saVDRWgx1iCX2B58H0mChl7OzyyLPUm3Eeu6M2HP36FcNFcsEbpX7o6HvQexabFsuPbEVjxZGfLK0vlN5BYiKjO5iex7J6HuoBcfObcryy4HRwBaV2yObcsP5N+H1IdwcjEs6QgLmsLhORBfgMS8hBGJkPDiJAmu74XFHeR3GdGX5YaCnabIzRCbvQXmVkpHaXysHOR3ez2/BzNLuLwFfmsH4UFKR1ZypMTCodny7Q4TDbYty7ZgedJzQcpiOj383LCzNOPWgxROPxpNeibdMvqrO0V5zERZqC0YUWcEAMsuLiNTmwmhh+TVpHumyiN+Xi3gncNyE1krB71cN0cTxRqD5L0aP7oIr68Dv5fkUn3MVXnk9Mc68Fc/OLe61KxSFImQ8GJuHYVlvWHFQHkOhoUdtP1Y3g6jTcCz69mC/E6v6ZvypHFnL7m55O9d4dQfpXqoWm8O/yD3VSnvC/VfNcglohLSOHlbbo6YVxPF/Nhammffv0Absbo3fFweu76nSLEKyutfvT9lrctyP/k+2/4ZDH/2gZgrYOsK/X+BEdvlEWM9uvrwKrcTbmOptqSdZzv5oNoMqnWGQUtgwlXoO0/eLxEJbh6ADW/JS/EDx8orLkvwKleRCAmFJ0lwY7/cwGtZT7h9RN4PrPlYOQHqOAlsnJWO0rR4NJS7UdfsKU+O3PIRrH9TbKvwIh7ekstiIL8DVpsZ5DI7LkYgSVDf0xkP58Lt26Qrj205f5/UDM2z7/zk6jFRHjNZVpgx1F6e7/N74hW0qKDJaHj/lJysG2AByc5bclfy1h6tsbPI482ptSM0HAojtsEHQdD+c7llQ0YSBK2AP3vDz/6wbyY8uKH3+JQmEiGh4CQJru6C37vIvXDuHJNLOo1HwgdnoPvXYF9O6ShNl00ZuT9Il+nyHIHgNbC4o9wNWSi8vTNAkyGvuKnW2WCX2XpeXi3WqxCjQTpNfVyoVMaGpPQsdoUUoKeQbp7QlR1yWwrBtNz5D35rz8un/sFBoyXU0oJ9/b6DXj/Iv/8GIEkSu2/vBqCLT5fnP8ClMrT/TE6IRmyXEyQrR3me3aHvYF7DR6PWS0vMnEaRCOVDbLHxBK1W7mr6W3tY9RKEnQRza2j2jvzL0vtHcKqkdJQlg0oFrT6E4VvlyYwxV+S5V+f+p3RkpuXeGbmpHEDXGQZr0xCVmJa9Z9izmijmR61+3FOoQOUxj0byCszMZFEeMyXJMbBxLPzRFSKDsbdy4v8qyJ3NF9/b+/zJ8i/g6sOr3Eq4haXakvaV2hf8gSoVeLeUS2YTrsKg3+U3FCo13P0PtoyTS2drhstvkE14L0WRCOVDbLGBnABd3CD3uln9GtwPAgtbaPk+fHgeenwLTh5KR1kyebeAtw9DlfbynJANb8OmD+Qma8KzSRLsnizfrveK3JnZQHZekMti/p7OVCpTtInYukToyPUY7sc/Z5RHNFc0LVqNPN9vXiM4u0I+1uB1eP80r3eajY25DSEPQjgeftxgIehGg1p6tMTe0r5oJ7GwAb/B8uTqj0LkUetyteUy/sUN8hvkObVh50SIuKDH6ItHoRKhzMxMzM3NuXDB9L5RoRA0WXD+H7mh15rh8sZ+lg5yV9NxwfJmlQ4VlI6y5LMvB6+vl+v1qODMn/B75xJZo9erqzvh1mF53lrHSQa91NZgXVms8KNBOl5lbWla2QVJgvUF6SmkK49dFeUxoxZ+FpZ0luf7pcVBBT8YuUvup2bnShnrMgyqPgiAJReWGCSEHKvFvPW0t5hjRXnUesxxeOugXBmwLQvJUXB8PixqJa+CO74AkqL0c00DK1QiZGFhgZeXFxrNcyb1CaZJkwlnV8KCJvJE3ZgrYO0E7T6DceflrqZ2rkpHWbqozeR6/Rvr5VUlEcFyiTJko9KRGSdN1uPRoObvyKusDCQ6MZ0ToY/KYs/YZLUgCtVTqFJjcKwkT2S9vveFrisYQOpD2BIAv3WA8DPym8ju38r7DXo1y3HXYXWGYa4252TESYKigvQeyvW464TGh2KhtqC9Z3v9nlylAvf6cmUg4DIM+Vtu4Ki2kP9O7fwCfqgFq16RRy+NeDS70KWxiRMn8sUXXxAbG2uIeAQlZGXIE9/mNYSNYyD2pjxxr+MkeQSow+dg66J0lKVb1Y5ybxGvFpCeAP8MhR2fy/92wmNBK+QE3qaMPIJpQDsvRqCVwL+SE54uL9afqKdfRWwszLgZnczZu3HPvnOO1WMiITYakgRBq2BeYzj1OyDJPXrePyUn5Xk0k3Wzc6Nv1b4ALAnW/6iQbjSolXsrHCz105MoT+aWUKunvKXHhKtybzSPRiBp5JHLNcPghxry6Njdk0bXGqTQbX7nz5/P9evXcXd3x9vbGzu7nEvxzpw5o7fgBAPLTIOzy+WOpgmPhuTtyslzgBqPAqsi1pMFw3B0h2GbYe90eSPFfxfKE9cHLwVnT6WjU156Euz/Wr7d9hODt3DQ7S1WmN5B+bG3MqdHXTfWn73H2tNhNPR6zgqiOv3h3wVwZbv8e2xh/cIxCC8g8iJsHQ93Hs31ca0Jvb6Hys/f4X1k3ZEEXg/kYNhBrsReoaZLTb2FtevWo7KYj57KYgVh6yL3Rmv6JkRfgXN/y80ZE8Pl+VKn/oCy1cB/CNQbYhR/uwqdCPXv398AYQjFKiMFTi+Vd4RPerRk194NWo+DhsMM1n1X0AMzC3kVlFcLCHxHToR+bQMDF0P1AiyNLcmOz4ekSLn/SZPRBr1UTFI6/958ABRt2XxeBjWqxPqz99h8LpzJvX2xtnhG3yOPxuDoIb+BubFPfjcuFL+0BHmH+P8WyaMfFrbypr7Nx8ijJAXg7ehNF+8u7Ly1k98v/M53bb/TS2jXH17nZvxNzNXmj5soFrdyNaHzVOj4pdxB+9zf8hYiD67Dvq/kvkQ+reX+SbX7Kvbmu9CJ0JQpUwwRh1Ac0hPh5BJ5g8+UGPmYYyU5AWrwhnhXaUpq9ZQbMK4ZLk/KXDkY2oyH9l+Uzv3cEiPlxB7krV0K+CJUVLqymJ/Hi5fFdFpUKYu7kzXh8WnsDomkj797/ndWq+UXjv9+kZsrikSoeEkSXFgnr5LSvZms3Re6zypSK5HRfqPZeWsnO2/t5L367+Hl+OJz23RlsZbuLXG0dHzh870QtRlU7SB/pCfKe1Ke+1te1KD70GRCo2HKhFfUB54+fZoVK1awYsUKzp49q8+YBH1Li4eDs2Gun7yfTUoMOHtDn5/hg7PyEKZIgkxPGR95aw7d6MfhH+RGl4mRSkaljAOz5N46Ho2gzgCDX05XFivM3mLPo1arGNjw8aTp59LtPXZlO2Sl6y0O4Tlirsl7ca0bJSdBZSrDa+vgleVF7qdWy6UWbTzaoJW0LL24VC9h6pbN6221mL5YOUCD12D4FrkNS4eJUL7O459nBRQ6EYqKiqJjx440adKEDz74gA8++IBGjRrRqVMnoqOjDRGjUFQpsfLQ449+sP8reTVD2Wryfjbvn5azbwO/cxYMzNxK7ko76HewtJffWS1qLa/+Ky0bc0ZfgTN/ybe7fmWw5ok6D5LSOX5Dv2UxnUGPVo8duhpNZMJzVtlUagoO7vLk+Rv79BqHkIeMZNgzDRa2gNCDclPZ9l/AmH+h+ot3Lh/tJ7+h2Xh9I5HJL/Zm5mbcTa7HXcdcbU4Hrw4vHJvBlPGGdp/AmGPyCmWFFDoRev/990lMTOTixYvExsYSGxvLhQsXSEhI4IMPPjBEjEJhJcfIIz9z/eSW6OnxUK6W/GI59oRcjzWzUDpKQZ/8BsvLc8v7yv08No6BH2rKy3jvn1M6OsPaPUWen1Gzl9wJ18B2XoxEK0FdD0e8yup3Pl1lVzsae5dBK0Hg2ef0FFKrwVdecSSaKxqQJMmd9Rc0gyNzQJsJ1bvJCVD7T/U2mt6wQkMalm9IpjaTv0L+eqFz7bwt7y3WomIL5ctiJqDQidCOHTtYuHAhtWvXzj7m6+vLggUL2L59u16DEwopMUKuWc/1k1eCZSTJTbxe+hPePS6/WBpo40nBCLhWh9F7odNkufSZniAv4/21rfxx8nd5cmdJcusIXN0u783WeWqxXHL7Bf2XxZ6kGxVae7oAPYWy9x4T5TGDiA2V++Csfg3i74KTl7wf4Kur5T259OzNem8CsObqGuLS4op8HkVWi5mwQidCWq0WC4vcowkWFhZotVq9BCUUUvw92PYJzK0nr5zJTAH3BnKDq3cOy7VXtdhNpVSwtJUnTX8QBEM3Qp2B8sa498/B1gB5lChwjLz5o5H18ig0rRZ2fSnfbjQMytUw+CVjkzM49qgs1vMFmyjmp1e9iliZq7kWlcT5sPhn39mzmbwnXXo83DxgkHhKpcw0OPCt3F3/2k65SWCb8TD2P6jVy2Dl11burajtUpvUrFRWXV5VpHPcjH9UFlOZ08HTiMtiRqTQr44dO3bkww8/JDw8PPvYvXv3+Oijj+jUqZNegxOe4+Ft2DwOfq4PJ36V932p1FSeuPfmfnkliYHnSwhGSq2W9yl7aanc9bXb13Jvk8wUCFopb/64sLncBj/FRJujXlz/qHOv/aNtSAxv18UINFoJ34qO+LjaPf8BReBobUG3OvKWHc+dNK1bPQaiPKYv1/bIvxsHvoasNKjcDt49Jo+0Gri1iEqlYpTfKABWXlpJcmZyoc+hGw1q5t4MJyvl5t2YkkInQvPnzychIQEfHx+qVq1K1apVqVy5MgkJCcybN88QMQpPe3BD3sl4XkO5H5AmA7xbyyMAo3bJE/dEAiTo2JWFFmPld7Mjd0H918DcBqIvP2qDXxPWjpRHFExlVDcrHfZOk2+3+hDsyxfLZbP3FqtnmNEgHd2WGxuDwknPes6WRrou01e2ik7jLyI+DFa/DisHwcNQeaRt8B/y39ViGG3U6ezVGR9HHxIyElh7dW2hH69bLdbNu5u+QyuxCt1wxNPTkzNnzrBnzx4uX74MQO3atenc+cVnzQvPEX0VDn8PwWtAevSCVaWDPOu+GCaJCiZOpZL3OvJqJvc7CV4rb+R6/5zcE+XCOnlJfoM35B2yHYq+kajBnVwCcXfkRqAtxhbLJR8+WRYz0PwgnVbVXHFztCYiIY19l6Ke3b3aqznYV5CbSd48ADXEvJBCycqQu3Qf/E4eMVWZQfN35T3+rAy4LUU+zNRmjKw7ksnHJvPnxT8ZUmsIVmZWBXrsrfhbXH14FXOVOR29Oho40pKjUIlQZmYmNjY2BAUF0aVLF7p0KbmdbBcsWMCCBQuMY4PZyItwaPajoe9H8zqqd5W3EfBsomRkgqmydoImo+SP8CB5+XnwGnh4C/bNkLeqqNEdGg6Fap2Nq0lj6kP5RQugwxdgaZgS1dN2hchlsdoVHalsoLKYjplaxYCGHvxy4AZrT4c9OxFSm8nlsZOL5eaKIhEquNDD8tYYMVfkz71ayO0oKtRRNKzeVXqzIGgBkSmRbLy+kZdrvlygx+maKDarKMpihSF2n8/H2LFjCQkJ4eTJk8oFcf8c/O81+KUlXNwASFCrt7xM+rU1IgkS9MO9PvSeA+Mvyz2mPJvLy9GvbIW/X5FXIe6bKc9JMwaHf4C0OChXWx65KiZbg+UOwr38imekbNCj5ooHrkYTnficFWG6ZnSXt4jyWEEkRsC60fBnbzkJsnWF/otgxHbFkyAACzMLRtQdAcDSC0vJ0mYV6HFitVjRiN3njVHYKVj5srzk+fIWQCUvk33nKAxZKa8IEwR9s7STe0yN2glj/oMW74GNi7xZ4qHv4Cd/WD5AHplU6sX24W3471f5dpfpxdYOIi4lg2PX5W1pDF0W06lW3p76ns5otBIbg57TU8irBdiVl7vIhx4qlvhM1uk/YX4TeQQUldyZ/f1TUP//jGpu5cDqAyljVYawpDB23tr53PvfTrjNlYdXMFOZ0dFTlMUKQ+w+b0xuH5dfcHRdYlVqqPtoD6nytZSNTShdyteCbjPllTKXt8ils5sH5J/NG/vkd9D1/0/epNe1evHFte8reXFA5bbFusnsrpBIsrQStdwcqFKu+DaGHNyoEkF341h7OoxRrSujyu+FWm0mN1c8uQRCNuil03GJdH0PbH7U+NejkVwGM9I3ljbmNrzu+zrzzs5jSfASelTugVqV/9iFbjSoqVtTnK2diynKkkHsPq80SZK3RTj4nfx/kCfr+f8ftAmAslWVjU8o3cytoO4g+SM2FM6ukD+SIuDYPPnDq6Xcx8e3H1jYGC6W8LMQ/I98u8v0Yn33boi9xQqiTz13pm8J4XJEIhfDE6jr8Yx5H7795UTo8lboPVd0j39acozcQwug0QjoNcfo+6sNqTWEPy78wfW46xwKO0R7z/b53lc3P0iUxQqvUIlQVlYWKpWKkSNHUqlS0TaXEx6RJLixV94M9e6/8jG1hbwZXeuP5NU7gmBMXCpDpy/lnj3XdsmjRNd2wp1j8se2T6Dey3JS5Oan32tL0uPmiX4vF+u7+PiUTI4Wc1lMx8nWgi6+Fdh6/j5rT4c9OxHybgl25SA5Wt4Lq5oYFcomSbDpfXllXbna8qpJI0+CABwtHXml5iv8ceEPFgcvpl2ldnmOCt5JuMPl2MuYqczo5CX6+RVWoX4SzM3NmT17NllZBZu4JeRDq4WlPWHFIDkJMrOCJm/Ch0HQ5yeRBAnGzcxcbtb56v/go4vQYRI4e8ndjU8uljd9/a09nFoK6Yn6uea1XfKIqZmVnIwVo10hEWRqJGpWcKBa+eIri+kMfjRpetO5cDKyntHnSW0GtfvIt0VzxZxOL4Ur2+Qu64MWG3bkUs/e8H0DKzMrzkef51TkqTzvoxsNauLWhDLWZYozvBKhSJ2lDx48aIhYSg+1GsrXlpvaNR8L485Dr+/BSYyyCSbG0R3afQwfnIM3NsjlGbWFXMbaMg6+ryk3/7x7suhbemiyYPdk+Xazt+WkqxgpVRbTaVPdlXIOVsQmZ7D/StSz76zbe+zyFtBkGjw2kxB9FXZ8Id/uNEX/o5UG5mrjyoBqAwBYfH5xnvcRq8VeTKHnCPXo0YPPPvuM4OBgGjVqlGuydN++ffUWXInW/nP5w76c0pEIwotTq6FqR/kjOQbO/S2vznlw7fG8ovK+cl+ieq+ArUvBzx20Uu6Cbe0sz5srRvGpmRx5VBbrVU+ZBpPmZmoGNPDgt0M3WXc6LHv7jTx5t5InsqfEyKvHqpXyMklWBqwfDVmp8pYzzccoHVGRDK87nDVX13D8/nEuxlykjuvjJf53E+9yKfaSKIu9gEInQmPGyD9Ic+bMyfU1lUpVKnoM6YVIgISSys4VWr4vL7+/86/cvfpiIESFwI7PYPcUeYVTw6Hg0+bZk54zkuXmjiB3ULcp3mH/3SGRZGokalSwp1r54u8yrDOoYSV+O3STfZejeJCUTln7fDoNm5nL5bHTSyFko0iEDnwt92OzKSP3CTKBeUF58bD3oFeVXmy6sYklwUv4scOP2V/TjQY1dmuMi3Uh3mAI2Yq0+3x+HyIJEgQhm0oF3i1gwCK5WWPP7+WyhCZd7uHyZx95v7wjP0JiZN7nODZfXqHm7C33eylm2xUui+nUdHOgXiUnsrQSm86FP/vOTzZX1JTi+Zyhh+HIXPl233ngqOy/4YsaVXcUKlTsubOHG3E3so9nrxbzFmWxojLN9FgQBNNi4wxN34S3D8ud0RuNAEsHiL0Je6bCj75yF/Vru0H76A1VUhQc/Um+3XmKvJS/GCWkZXL4mjKrxfKi6zS99vRzdqT3bg22ZSHlweOWHKVN6kPY8A4gySOPuknkJqyKc5Xs/cP+uPAHIJfFQh6EoFapRVnsBRQ4EerZsyfx8fHZn3/zzTfExcVlf/7gwQN8fX31GpwgCCWMSiUvfe8zVx4l6rcAKjUFbZY8grFyMMytB/tnwc6JkJkM7g2hzsBiD3VPSCQZGi3VyttTo4JyZTGdvv7uWJipuBiewKX7CfnfUVceA3nvsdJGkmDLR5AQBi5VoNsspSPSm9F+8qjo1ptbuZd0jz239wDQuEJjytqUVTI0k1bgRGjnzp2kpz/e7+brr7/Osc1GVlYWV65c0W90giCUXFb28l5ho3fDu8fliaw2ZeQXsIPfPG6e2PUrRbY+UHq12NPK2FnSqVYFANY9b1TIt5/8/0ubS1957Nz/5L0Z1eYwaIn8c1ZC1HWtS4uKLdBIGpZdWPZ4tZgoi72QAidC0lNLX5/+XBBMVUJaJgsPXOflRceZtvkiQXfjxM93cavgKze5C7gMg36Xt9AA8HsJfFoVezgJaZkcuvpotZiRJEIgb7kBEBh0j0zNM3oK+bSV94lLeQC3jxRTdEYgNhS2fSzfbv+ZvI1GCaMbFVp3bR0XHlyQy2Leoiz2Igq9akwQSooHSeksPXqLP4/fIjFNftd84lYsS4/ewrusLf383elb313R1UKljoU1+A2WP9IS5I1gFbD3klwWq1rOjhoVjGdEoV3NcpS1syQmKYNDV6PpVLtC3nc0M4faveXu3xcD5aXjJZ0mC9a/BRmJ8ia0rYu31UJxaeLWhHrl6nE++jwAjSo0wtXGVeGoTFuBR4RUKlWu1t75bgAoCEYsPC6VaZsv0urbfczff53EtCyqlbdnUq/a9PV3x8bCjNsPUvh533U6zzlEr58P8+vBG4THpSodeuli7Vhsu8s/bev5CEAeDTKmv3MWZmr6N/AACjBpWtdc8dLmxxPQS7LDP0DYCbByhIG/KfazY2gqlYo3/d7M/lyUxV5cgUeEJEli+PDhWFnJKzfS0tJ45513shsqPjl/SBCMUWhMMosO3GD92TAyNXLpy8/DibEdqtHVtwJqtfyCl5yexZ5LkWwMCufQ1WguhidwMTyBWdsv07SyC/3qu9OzbkXK2Fkq+e0IBpKYlsmha9EA9KxnPGUxncGNKvH7kVD2XoriYXJG/j+HldvKc65SYuD20cflxpLo7kk4+K18u9ecYu8+XtzaVmpL4wqNuRl/U3ST1gOVVMDJECNGjCjQCZcuXfpCARmbhIQEnJyciI+Px9HRUelwhCK4GB7PwgM32B58H+2jn/bmVVwY26Earau5PvMd/8PkDLZduM/GoHBOhD5eHGCuVtG2Rjn61Xenc+0K2FmJKnNJsTHoHh/+L4gqrnbsHZ/3JpdK6/nTYULuJzC9Xx2GtvDJ/44b34Ozy6HxKOiduwluiZCeKO9v9/CWvCHvoLy3oShpsrRZSEhYqC2UDsVoFfT1u8CJUGklEiHTdepWLAv2X2f/lejsY51qlWdMh6o08i58B9bwuFS2nA9nY1A4F8MfL1+2sTCji28F+vq707ZGOSzNRXsuU/bWX6fYFRLJex2qMaFbTaXDydMfR0KZviWEepWc2PRe6/zveH2PvLmzXXm5XUFJLBcFjpG3YXHygnePgLWT0hEJRqKgr9+l4m1saGgoI0eOJDIyEjMzM/79999ce6QJJYMkSRy6FsOC/dezR3DUKuhVz51321XF173oyay7sw1vta3KW22rcj0qkU1B4Ww8F87tBylsOhfOpnPhONlY0NOvIv3qu9PUxyW73CaYhqT0LA5cfVQWM6LVYk/rV9+dr7dd4nxYPFcjE/Pvc1S5nbxHW3IU3D4GldsUa5wGd3GDnASp1DDwV5EECUVSKhKh4cOH89VXX9GmTRtiY2Oz5zkJJYdWK7HzYgQLDlznwj15tMbCTMXgRpV4u21VfFz1m/hWK+9AQNeafNSlBufD4tkYFM7m8+FEJ6bz94k7/H3iDm6O1vTxr0i/+h7UcXc0yhKLkNPeS5FkZGmp7GpH7YrGu1qwrL0VHWqVZ3dIJOtOh/F5z9p539HMAmr1hqAVcnPFkpQIxYfB5g/l260DwLulsvEIJqvEJ0IXL17EwsKCNm3kPwAuLmJTupIkU6NlY1A4vxy4zo3oZEAuVb3azIvRbSpT0cnGoNdXqVT4ezrj7+nMxF61+ffmAzYG3WP7hQgiEtJYfDiUxYdDqVLOjn7+HvSt705lPSdlgv48bqLoZvSJ66CGldgdEsmGs/f4uFtNzM3yKcnW6f8oEdoEPb4rGeUxrVbeQiMtXu483v4zpSMSTJjikxkOHTpEnz59cHd3R6VSERgYmOs+CxYswMfHB2tra5o1a8aJEycKfP5r165hb29Pnz59aNiwIV9//bUeoxeUkpap4c9jt2g/+wAT1pzjRnQyjtbmfNCxGkc/68iXvX0NngQ9zUytolU1V74b7M+pSZ359Y1G9PKriJW5mpvRyfy45yodvj9A3/lHWHL4JpEJacUan/BsyelZHLhi/GUxnY61ylPG1oKoxHQOX4/J/46V28klo+QouPNv8QVoSMfnyfuoWdjJ3aPNxIRhoegUHxFKTk7G39+fkSNHMnBg7v2EVq9eTUBAAIsWLaJZs2bMnTuXbt26ceXKFcqXLw9A/fr1ycrK3UZ+165dZGVlcfjwYYKCgihfvjzdu3enSZMmdOnSxeDfm6B/CWmZrPj3Nn8cCSUmKQMAV3srRrepzGvNvHCwNo4/iFbmZnSr40a3Om4kpmWy62Ikm86Fc+R6DOfD4jkfFs/MbZdoUaUsff3d6VG3Ik62xhF7abXvchTpWVp8ytriW9H4F0ZYmqvpV9+DZcduse50GB1qls/7juaWj8pjK+XymAKduvUqPAj2zpBv9/gGylZVNBzB9BVp1djy5ctZtGgRoaGhHD9+HG9vb+bOnUvlypXp169f0YNRqdiwYQP9+/fPPtasWTOaNGnC/PnzAdBqtXh6evL+++/z2WfPHw49fvw4U6dOZefOnQDMnj0bgI8//jjP+6enp+foiZSQkICnp6dYNaawvLpAezjb8E67KrzU2BNrC9MY7o9JSmdbsLwc//Tth9nHLcxUtK9Znn713elUqwI2lqbx/ZQk7644zfYLEbzbviqfdq+ldDgFcuFePL3nHcHSXM3JLzrnn0xf3QWrXgJ7Nwi4BGrFiwFFk5ECv7WDmKvyxrIvL1dkHzrBNBR01Vihfxt++eUXAgIC6NmzJ3FxcWg0csdSZ2dn5s6dW+SA85KRkcHp06fp3Llz9jG1Wk3nzp05fvx4gc7RpEkToqKiePjwIVqtlkOHDlG7dj4TC4FZs2bh5OSU/eHp6fnC34dQdPl1gZ7zsj8HPm7PGy18TCYJAnn0amgLH9a925LDn3Tgk+41qeXmQKZGYndIJO+tOkvjr3bz0eog9l+JevZ+UoLepGRksf9KFGBce4s9Tx13R2q5OZCRpWXz+fD871ilPVg5QVIE3DXh8tiuSXIS5FAR+vwskiBBLwqdCM2bN4/FixczceJEzMwevwA1btyY4OBgvQYXExODRqOhQoWc++lUqFCBiIiIAp3D3Nycr7/+mrZt21KvXj2qV69O7969873/559/Tnx8fPbH3bt3X+h7EIomNCaZT9eep93s/Sw9eou0TC1+Hk4ser0Ru8a1ZWDDSljkNznURHi62DKmfTV2jGvLjnFtGNO+KpXK2JCcoWHD2XuMWHqSZl/v5cvAC5y6FYtWK1p+Gcq+y1GkZWrxcrGlzgu0WChuKpWKQQ3ljVjXnXnGlhvmllCrp3z7YqDhAzOEK9vh1O/y7f6/gK1Y+CLoR6HnCIWGhtKgQYNcx62srEhOTtZLUPrWo0cPevToUaD7WllZieX1CgoJT2DhgetsK0IXaFNWy82RWt0d+bhbTc7ciWNT0D22nL/Pg+QMlv97m+X/3sbD2YY+/u70q+9OLTeHEvtcKOHxajHj2lusIPo1cOebHZc5eyeOG9FJVC2Xzyaxvv3h3N9waRN0/8a0ymOJkXKXbIAW70HVDsrGI5QohU6EKleuTFBQEN7e3jmO79ix45klp6JwdXXFzMyMyMjIHMcjIyNxc3PT67UEZZ26FcvCAzfYdzkq+9iLdIE2VSqVikbeZWjkXYYve/ty7MYDNgaFs/NiBPfiUll08AaLDt6gRgV7+tX3oK+/O54utkqHbdJSMrKyf+5MqSymU97BmnY1yrHvchTrTofxSX7zm6p2kDckTbwPd/8D7xbFG2hRSRJsHCPvmVahLnSarHREQglT6EQoICCAsWPHkpaWhiRJnDhxgr///ptZs2axZMkSvQZnaWlJo0aN2Lt3b/YEaq1Wy969e3nvvff0eq2nLViwgAULFmTPgRL0z5BdoEsCczM1bWuUo22NcszMrMu+y1FsDLrH/svRXI1MYvbOK8zeeYUGXs7083enVz13yjmI0czC2n85mrRMLZ4uNtT1MM2fucGNKrHvchTrz9xjfNeamOXV0dzcCmr2hPP/k1ePmUoidGKxvFWIubW8VN5c/IwL+lXoRGj06NHY2NgwadIkUlJSePXVV3F3d+enn35iyJAhhQ4gKSmJ69evZ38eGhpKUFAQLi4ueHl5ERAQwLBhw2jcuDFNmzZl7ty5JCcnF3gT2KIaO3YsY8eOzZ51LuhPfl2gBzWsxNvtqoqGg3mwtjCjp19FevpVJD41k50XI9gUFM6xGzGcvRPH2TtxTN8SQqtqrvT1d6dffQ+x51kBbbtgumUxnU61y+NkY0FEQhrHbsTQpnq5vO9Yp/+jRGgTdJtl/OWxqEvyBGmALjOgvH6rDoIAL7jpakpKCklJSdn9fIriwIEDdOiQu947bNgwli1bBsD8+fOZPXs2ERER1K9fn59//plmzZoV+ZqFYahNV6dvDiH4XhwVnWxwd7bBw9k6+7a7szVONhYm+0c5P0p3gS6JohLT2HpeXo4fdDcu+3hPPzcWvtZIucBMRGqGhoYzdpOaqWHj2Fb4ezorHVKRfRl4geX/3qZffXd+GpJ7HicAWekwuxqkJ8DIXeBVPH9HiyQrHRZ3hMgLUL0rvPqPWCUmFIrBdp/v2LEj69evx9nZOdcF+/fvz759+4oUsLEyVCL00qJjnLz1MN+v21qa4e5sQ0UnazycbR4lSY9uPzpuKsvG0zI1/HPqLr8evMm9uFQAHK3NGd7Sh+GtKuNiZ6lwhCXD7QfJbAwK5+e918jSSvz6RiO61RFz6Z5le/B93l15hkplbDj8SQeTfvNx7m4c/RYcxcpczclJnXHMr7no+rfg/GpoPga6zyreIAtj50Q4Ph9sXWHMcbAv+htuwXglpGWiVqmwt9J/f2eD7T5/4MABMjIych1PS0vj8OHDhT1dqTWlTx1uPUgmPC6V8Lg0+f/xqdyPS+NBcgYpGRquRyVxPSop33O42ltmJ0gVnWzwcJZHlCo+SpjK2Vspuvu5qXSBLim8y9rxQafqpGVqWHjgBlM2XqRl1bLieX6GrSa8Wuxp9So5Ua28Pdejkth2/j5DmnrlfUff/nIiFLIRus40zvLYjf1yEgTQb4FIgkqwmVsucfhaNN+/5E/Laq6KxFDgROj8+fPZt0NCQnL08dFoNOzYsQMPDw/9RqcgQ0+WruvhRF2PvOcepWVqCI9L5X58Gvfi5ORIlyjpEqfUTA0xSRnEJGUQfC8+z/OYq1W4OVnL5bZH/6/4qAzn/miUydHaXO8vACWlC7Sp+qBTdbYG3+f2gxS+33mFaf3qKh2SUUrL1GSvFjOFvcWeR6VSMbhRJb7Zfpm1p8PyT4SqdgRLB0i4B/dOgWfT4g30eVJi5Q1VARqPgprdlY1HMJh/bz5g9Sm5V5+FgnMaC1waU6vV2S+YeT3ExsaGefPmMXLkSP1GqDBDlcZehCRJxKdmcu9RUnQ/PjVnwhSXSmRiOpoCNOCztzKnoi5ZypEwyaNKbk7WWJkXLHEJj0tl8eGb/H3iDmmZckfkquXsGNO+Gn3ru5t8A0RTcvR6DK8t+Q+VCta925KGXmWUDsno7Lhwn3dWnMHD2YYjn5p2WUwnMiGNFrP2opXgwIT2+OS38GDdaAheA83HQncj2ohakmD163B5C7jWgLcOgqVoD1ESpWdp6PHTYW5GJ/N/Tb2YNdBP79fQe2ksNDQUSZKoUqUKJ06coFy5x6sSLC0tKV++fI5O04LhqFQqnG0tcba1pI573qNKWRotUYnpj5IkOUG6H/fE7fhUHqZkkpSexbWoJK49swRnlWsy95OJU2J6Fr8dvMn6s2FkauTky8/DibEdqtLV103R8lxp1aqaKwMberD+zD0+XxfMlg9ai0T0KVuD5VHtnn5uJSIJAqjgaE2b6uU4eDWadWfCGN+1Zt539O0vJ0IhG6HrV8ZTHju7XE6C1BbyUnmRBJVYC/ff4GZ0MuUcrPish7J7+xU4EdI1UNRqxd5HpsDcTJ2drDTyzvs+KRlZ3I9/PIoUnp0kyf+/F5dKepaWmKR0YpLSOReWdwnuSc2ruDCmfTXaVC+5XaBNxaRevuy/HMWVyEQWH77JmPbVlA7JaKRlath7SW7UWhLKYk8a3KgSB69Gs/7MPT7qXCPvNyLVOoGlPSSEQfgZqNS4+AN92oMbsP1T+XanL6Giv7LxCAZzPSqRhQfktjlT+vjiZKPsPMZCT5b+66+/nvn1oUOHFjkYoXjZWppTtZx9vi35JUniYUrmE4lSKuFPJE7349OITEhDK5XOLtDGzsXOkkm9fBm/5hw/7blGz7oV8y+VlDIHr0aTkqHB3cma+ia8ZD4vXXwr4GBtzr24VP69+SDvCagWNlCjO1xYCxc3KJ8IaTLlcl1mCvi0gRbvKxuPYDBarcQX6y+QqZHoWKu8UXRzL3Qi9OGHH+b4PDMzk5SUFCwtLbG1tS0xiZDoLC2X4FzsLHGxs8x3YnemRktapkasTDJSAxt6sP5sGEevP2BiYDArRjUTI3U83lusRwlYLfY0awsz+vi7s+q/O6w9E5b/Spw6/eVEKGSTXB5T8nk48I08MmXtDAMWGU+pTtC71afucuJWLDYWZkzvV8cofv8K/dP28OHDHB9JSUlcuXKF1q1b8/fffxsiRkWMHTuWkJAQTp48qXQoRs3CTC2SICOmUqmY2d8PK3M1R68/YMPZe0qHpDi5LFZyVovlRbcj/fbgCJLSs/K+U7XOYGEH8Xfg3plijO4pt4/BkTny7T5zwamScrEIBhWVmMasbZcAGN+1BpXKGMccML2k3dWrV+ebb77JNVokCILyfFzl/kIAM7aEEJucuw9YaXLoajRJ6VlUdLKmQQkri+k09HKmiqsdqZma7NGvXCxsoEY3+XbIhuIL7kmpcXKDR0kL9V+DOgOUiUMoFtM3h5CQlkVdD0eGt/RROpxseht/NDc3Jzw8XF+nEwRBj95qW4WaFRx4mJLJV1tDlA5HUdllsboVS+yKRpVKxaBG8sjKutNh+d+xTn/5/xc3ykvXi9u2CRB/F8r4QI9vi//6QrHZfzmKLefvo1bBNwPrYW5Eq1gLPUdo06ZNOT6XJIn79+8zf/58WrVqpbfABEHQHwszNbMG+THol2OsP3OPQQ0r0UqhLq5KSsvUsOdRWaxXvZK9/ciABh58v+sK/4XGcjc2BU+XPMoQ1bqAha1cHgs/Ax7FuD/d+X/kJfwqMxi4BKwciu/aQrFKychiUuAFAEa2qpzvnFOlFDoR6t+/f47PVSoV5cqVo2PHjvzwww/6iksQBD1r6FWGoc29+fP4bb7YEMzOcW1LXZfvw9diSErPws3RmgaeJbvJpLuzDa2ruXL4WgzrzoQxrnON3HeytJXLYxc3yD2FiisRengbto6Xb7f7FDybFM91BUX8uPsq9+JS8XC24aMuefwcKqzQY1NarTbHh0ajISIiglWrVlGxYsmZeLhgwQJ8fX1p0kT8ggolx4RuNXFztOb2gxR+3ntN6XCK3fbs1WKlo9GnbtL0ujNhaPPrNO/bX/7/xcDiKY9pNbDhbUhPAM9m0Ga84a8pKObCvXh+PxIKwFf962JngM1VX5TxFOmMjFg1JpREDtYWTOtXB4DfDt3kckSCwhEVn/QsDbtDSmYTxfx0q+OGvZU5d2NTOXkrNu87Ve8ql8fibsP9IMMHdWQO3Dku73c24FcwM74XRkE/sjRaPl8fjFaC3vUq0qGWcW6eW6CfwICAgAKfcM6cOUUORhAEw+tWx41udSqw82Ikn60LZt27LTErBaMjR67FkJieRQVHKxqVkr3XbCzN6OVXkdWn7rL2dBjNqpTNfSdLWzkZCgmUR4XcGxguoLDTcs8ggF7fg0tlw11LUNyfx28TfC8eR2tzJvfxVTqcfBUoETp79myBTmYMjZEEQXi+aX3rcvT6A4LuxrHyv9sMbeGjdEgGt7UUrBbLy+DGlVh96i7bgu8zrV8dbC3z+LPv209OhEICofNUwzRXTE+C9aNBmwV1BkK9V/R/DcFo3ItL5YddVwD4vGdtyjtYKxxR/gqUCO3fv9/QcQiCUIzcnKz5pHtNJm+8yHc7rtDV1w03J+P9Q/WiSmNZTKexdxm8y9py+0EKOy5EMLBhHg0La3QDcxt4eAvunwP3+voPZMdnEHsTHCtB7znKdrIWDEqSJL4MvEBKhoYmPmV4pbGn0iE90wvNEQoLCyMs7Bk9KgRBMFqvNfOmgZczSelZTNl0QelwDOro9RgS07Io72BFY+/SURbTUalU2ZOm1+bXU8jSDqp3kW+HBOo/iJBN8s7yqGDgr2BTuv4NSpttwRHsuxyFhZmKWQP9jH4EtkirxqZPn46TkxPe3t54e3vj7OzMjBkzxM70gmBCzNTyHylztYqdFyPZeTFC6ZAMZut5+XvrUbd0rBZ72oAGHgAcv/mAsIcped9J11wxRM/NFRPCYfMH8u3W48Cntf7OLRid+NRMpm6+CMC77atRrbzx94cqdCI0ceJE5s+fzzfffMPZs2c5e/YsX3/9NfPmzePLL780RIyKEMvnhdKglpsjb7WtAsCUjRdJTMtUOCL9y8jSsjtEToRKW1lMx9PFlhZVyiJJsOFMPvvNVe8G5tZy+SoiWD8X1moh8F1IfQgV/aH9F/o5r2C0vt1xmejEdKqUs2NM+6pKh1MghU6E/vzzT5YsWcK7775LvXr1qFevHmPGjGHx4sUsW7bMACEqQyyfF0qLDzpVx7usLREJaXy/84rS4ejd0RsxJKRl4WpvRWMfF6XDUczgRo97Ckl5jfhY2eu/PPbvQrh5QJ5/NOh3MLfUz3kFo3TyViyr/rsDwNcD/EymYWuhE6HY2Fhq1aqV63itWrWIjc2nT4UgCEbL2sKMrwf4AfDXv7c5c+ehwhHp17bzutVibqWiTUB+utd1w9bSjFsPUjh9O59/Y302V4wIhr3THl18FrhWf7HzCUYtI0vLF+vlkcRXGnvSPK9WDUaq0ImQv78/8+fPz3V8/vz5+Pv76yUoQRCKV6tqrgxs6IEkwRfrg8nUlIz5fpkaLbtK6Wqxp9lZmWc/B/lOmq6hK4/dgMgXmECfmQrrRoMmA2r2gkbDi34uwST8evAG16KScLW35POeuQdLjFmhE6HvvvuOP/74A19fX0aNGsWoUaPw9fVl2bJlzJ492xAxCoJQDCb18qWMrQWXIxJZfPim0uHoxdHrMcSnZuJqb0XTyqW3LKajWz229fx9UjM0ue9g5QDVOsu3LwYW/UK7p0D0ZbCvAH1/FkvlS7ib0UnM238dgC97++Jsa1ol0EInQu3atePq1asMGDCAuLg44uLiGDhwIFeuXKFNmzaGiFEQhGLgYmfJl73l7q8/7bnGrZhkhSN6cdseNVHsXrdCqS6L6TSr7EKlMjYkpmexKySfVYK68lhIYNHKY1d3wYlf5dv9F4Kda1FCFUyEJEl8sSGYjCwtbWuUo6+/u9IhFVqRNnlxd3dn5syZ+o5FEASFDWjgwbozYRy9/oCJgcGsGNXMZDvGi7JYbmq1ioENK/Hz3musPR1Gv/oeue9UszuYWcGD6xAVAhXqFPwCSdGwcYx8u9m7j0eXhBJrzekw/r0Zi7WFmpn965rk34tCjwjt2LGDI0eOZH++YMEC6tevz6uvvsrDhyVrkqUglDYqlYqZ/f2wMldz9PoDNpzNZ6m1CTh+4wFxKZmUtbOkWWXTmbhpaIMaysnPkesx3I9PzX2HopbHJAk2vQfJ0VDeV96qQyjRYpLS+XrbJQA+6lwDTxdbhSMqmkInQh9//DEJCfKO1cHBwQQEBNCzZ09CQ0MLtTmrsRN9hITSysfVjg87yyt8ZmwJITY5Q+GIikZXFutWyleLPc27rB1NK7vIPYXyS3SzmysGFrw8dup3uLpDHk0atAQsSu6WLYLsqy0hxKVk4lvRkVGtTXcD3UInQqGhofj6yvMI1q1bR58+ffj6669ZsGAB27dv13uAShF9hITS7M02Vajl5sDDlEy+2hqidDiFlqnRZnfK7iXKYrkMfmLLjTx7CtV4VB6LuQpRl55/wugrsHOSfLvz1MKV0wSTdOhqNIFB4ahVyB3qzV5oxy5FFTpyS0tLUlLkFu179uyha9euALi4uGSPFAmCYNoszNR8PdAPlQrWn7nH0esxSodUKP/efMDDlExc7CxpJlaL5dKzXkVsLMy4GZ3M2btxue9g7QjVOsm3n9dcMStDXiqflQpVO0Kzd/QdrmBkUjM0TAyUewYNa+mDv6ezsgG9oEInQq1btyYgIIAZM2Zw4sQJevXqBcDVq1epVCmPXY0FQTBJDb3KMLS5NwBfbAgmLTOP5dZGKrssVsfNpN+pGoq9lTnd67oBsC6/nkK+/eT/P2+e0P6vIOI82LhA/19ALZ7vku6nvde4G5tKRSdrxnetqXQ4L6zQP7Hz58/H3NyctWvX8ssvv+DhIU+82759O927d9d7gIIgKGdCt5q4OVpz+0EKP++9pnQ4BZKl0bLzorxaTJTF8qfbcmPzufC8k9yaPcDMEmKu5F8eu3kQjv4s3+43HxzcDBStYCxCwhOy+4zN6FcXe6siLT43KoX+Dry8vNiyZUuu4z/++KNeAhIEwXg4WFswrV8d3l5+mt8O3aRvfXdquTkqHdYz/XszltjkDFzsLGleRZTF8tOiSlncnawJj09jz6VIetd7qv+LtZNc6rq6Q96RvnztnF9PiYUN7wCS3Dm6Vq/iCl1QiEYr8fmGYDRaiR513ejsW0HpkPSiSGOYGo2GtWvXMmPGDGbMmMHatWvJysrSd2yCIBiBbnXc6FanAllaic/WyX8EjdnW7LJYBVEWewZdTyF4xpYbT+499iRJgi3jIDEcylaDbl8bKkzBiCw/fotzd+NwsDJnat+SMyG+0H8lLl68SPXq1Rk2bBgbNmxgw4YNDB8+nOrVq3PhwgvsTSMIgtGa1lceAg+6G8fK/24rHU6+sjRadj1aLdajriiLPc+gR+WxQ1ejiUpIy32Hmj1AbQHRl+SVYTpBq+RRIrU5DFwMlnbFFLGglPC4VGbvlH8GPulRiwqOJac9QqETodGjR1O3bl3CwsI4c+YMZ86c4e7du9SrV4+33nrLEDEKgqAwNydrPukuT4r8bscVIuLzeNE0AidCY3mQnIGzrQUtqoomis9T2dWORt5l0ObXU8jGWS6PweNRodibsP0T+XaHL8CjYXGEKihsyqaLJGdoaOjlzGtNvZQOR68KnQgFBQUxa9YsypQpk32sTJkyzJw5k7Nnz+o1OEEQjMdrzbxp4OVMUnoWUzYZ5+hvdlnM1w0LURYrEN2k6XVn8ukp9GRzRU0WrH8LMpLAuxW0GldcYQoK2nEhgt0hkZirVcwaWA91CWtQWui/FDVq1CAyMjLX8aioKKpVq6aXoARBMD5mapXcOE2tYufFyOyGhcZCo5WyY+pZT5TFCqpXvYpYmau5GplE8L343HfQlceiQiDwXQg7CVZOMOBXUJsVf8BCsUpIy8x+4/N2uyrUdHNQOCL9K1AilJCQkP0xa9YsPvjgA9auXUtYWBhhYWGsXbuWcePG8e233xo63mIjttgQhNxquTnyVtsqAEzZeJHEtEyFI3rsv9AHxCTJZbGWoixWYI7WFnSrIy97z3PStE0ZqNJevh38j/z/3nPA2bN4AhQU9f3OK0QmpONT1pb3O1ZXOhyDUEl5joXmpFarc+woq3uI7tiTn2s0ptN0rSASEhJwcnIiPj4eR0fjXjYsCMUhLVNDt7mHuP0ghWEtvJnWr67SIQEwKTCYFf/e4eXGlfhusL/S4ZiUg1ejGfbHCZxtLfjvi05YmT810nN2BWwcK9+uNwQG/lr8QQrF7vTthwxedAxJgpWjm9GqmqvSIRVKQV+/C9RHaP/+/XoLTBAE02ZtYcbXA/x4bcl//PXvbfo18KChV5nnP9CANFqJHRfkkn1P0USx0FpXc6WCoxWRCensuxRFj6efw1q9YM80efJ0z9mKxCgUr0yNli/WByNJMKhhJZNLggqjQIlQu3btCnQysXxeEEqHVtVcGdjQg/Vn7vHF+mA2v99a0cnJJ2/FEpOUjqO1OS2rltw/2IZi9qin0C8HbrDuTFjuRMimDHx4DlRqsat8KfHboZtciUykjK0FE3vVfv4DTNgL/+VKTEzkt99+o2nTpvj7i+FoQSgtJvXypYytBZcjErNb7itFt7dY1zpuWJqL1WJFMehRc8X9V6KJTkzPfQdLW5EElRK3HyRnb6nzZW9fXOwsFY7IsIr8F+PQoUMMGzaMihUr8v3339OxY0f+/fdffcYmCIIRc7Gz5MvevgD8tOcatx8kKxKHRiux/YK8WkzsLVZ01crbU9/TGY1WYmNQHj2FhFJBkiQmbrhAepaWVtXKMqCBh9IhGVyhEqGIiAi++eYbqlevzksvvYSjoyPp6ekEBgbyzTffiBVWglDKDGjgQatqZUnP0jJxw4W8+9AY2KlbsUQnymWxkjyPoTjoOk2vPZ1PTyGhxNtw9h5HrsdgZa5mZn+/HAulSqoCJ0J9+vShZs2anD9/nrlz5xIeHs68efMMGZsgCEZOpVIxs78fVuZqjlyPybs7sYHpymJdfEVZ7EX1reeOpZmayxGJXAxPUDocoZjFJmfw1dZLAHzQqTo+rqVj65QC/9XYvn07o0aNYtq0afTq1QszM9FISxAE8HG148POcn+RGVtCiE3OKLZra58si9VzK7brllROthZ0ebSj+Loz+WzEKpRYM7deIjY5g5oVHLL7hZUGBU6Ejhw5QmJiIo0aNaJZs2bMnz+fmJgYQ8YmCIKJeLNNFWq5OfAwJZOvtoYU23VP3X5IVGI6DtbmtK5WrtiuW5LpttzYGBRORpZW4WiE4nLsegzrzoShUsGsQX6laouaAn+nzZs3Z/Hixdy/f5+3336b//3vf7i7u6PVatm9ezeJiYmGjFMQBCNmYaZm1kA/VCpYf+YeR68Xz5ukx2WxCqIspidtqrtSzsGK2OQMDlyJUjocoRikZWr4YkMwAG8091a8L1hxK/RfDjs7O0aOHMmRI0cIDg5m/PjxfPPNN5QvX56+ffsaIkZBEExAA68yDG3uDcAXG4JJyzRsl3m5LCYnQj3ritVi+mJups5eKZTnlhtCiTN/33VuPUihgqMVH3erqXQ4xe6F3kLVrFmT7777jrCwMP7++299xSQIgoma0K0mbo7W3H6Qkt2HxFDO3HlIZEI6DlbmtKkhVovpk66n0L7LUTxIyqOnkFBiXIlIZNHBGwBM61sXB2sLhSMqfnoZSzYzM6N///5s2rRJH6cTBMFEOVhbMK1fHUDuTHs5wnArj7Y+Kot19q2Qe28s4YXUdHPAz8OJLK3EpnPhSocjGIhWK/H5+vNkaSW6+Fage93SueBAFNUFQdCrbnXc6FanAllaic/WBaPR6r8fjVYrsT1YXi0m9hYzjMFP9BQSSqaVJ+5w5k4cdpZmTH/0BqY0EomQIAh6N61vXeytzAm6G8fK/27r/fxn7z4kIiENeytz2lQXZTFD6OvvjoWZiovhCVy6L3oKlTSRCWl8t/0yAB93q0lFJxuFI1KOSITysWDBAnx9fUW3bEEoAjcnaz7pLk+6/G7HFSLi0/R6/q3n5dGgzrXLY20hymKGUMbOkk61HvUUEqNCJc7UTRdJTM/C39OZN1r4KB2OokQilI+xY8cSEhLCyZMnlQ5FEEzSa828aeDlTFJ6FlM2XdDbeXOsFhNlMYPSlccCg8LJ1IieQiXF7pBItl+IwEyt4puBfpipS/42Gs8iEiFBEAzCTK1i1kA/zNUqdl6MZOfFCL2cNygsjvvxadhZmtG2hmiiaEjtapajrJ0lMUnpHLoarXQ4gh4kpWcxeaP8xuTNNlWoXdFR4YiUJxIhQRAMppabI2+3k1v1T9l4kcS0zBc+57bz8mhQp9oVRFnMwCzM1PR/1FNIbLlRMvyw6wr349PwdLHhw/9v787DoirbP4B/ZxiGHUSURWQVQcANREAtwRUxed3SMBMIpVciw6UUN0xQSa3oVSm0FLT0l5lBuEVmsmiaomIoCC4gKii4ALLJMPP8/kAnJxZBgTMw9+e65vLyOdt9ZhjOzbOO6s11OHKBEiFCSJuaN7I3zPXUcbesGp8lZr/SuRj7Z20xahZrH8/mFPo9swiP2nEdOdL6Lt4qQeyfeQCAtZP6QU1If0gAlAgRQtqYqrIS1k7uBwDYdfomzuc/eulzpd8qwZ2SKmgIleBuQ81i7cGuhzbsjLRRI5bgwN80p1BHJRJLEPJzBhgDJg3sQc3Kz6FEiBDS5oZZdcNUx55gDFj2c8ZLd7x9trbYSGoWa1dTaU6hDm/HiVxkFZahi7oyVkyw4zocuUKJECGkXSx/wxa66sq4cvcxvkm90eLjGWM4/HQSxTf6KeYMuFyZOLAHhEp8/H27FGfzHnIdDmmhWw8rEfl7DgBg2XhbdNNU4Tgi+UKJECGkXXTVEGLl079E//f7Vdx8UNGi4/++XYo7JVVQFyrB3Ua/LUIkjeimqSKtFfo66TrH0ZCWYIxhefwlVIskcLXsimlPP0fyD0qECCHtZrKDMV6z6oYntRIsj7sExpq//MazZrERfWgSRS78d7gl+Ly6hVhppumOI+FiAVJyiiEU8LFucj/weIo9Z1BDKBEihLQbHo+HtZP7QkXAx4lr9xF34U6zjmOMSRdZfYNGi3HCvJsGPJ++91uTqVaoIyiprEHYgUwAwLwRVrDsrslxRPKJEiFCSLsy09NA8Oi6+UvCD2biYTOGZGfcKcXtR1VQU1bCCGoW40ygWy8AwIG/C3HrYSXH0ZAXiTh8BQ8qatBbXxP/ffrZkfooESKEtLuA1y3Rx1ALjypFWHso64X7P6sNGtlHn+Y+4VBfYx283rsbxBL2Uh3eSfs5feMB9qbdAgBETOkHoYAe942hd4YQ0u6UlfiImNIPPF7djMUnr91vdN+60WK0tpi8CHSvq1nYe/YWih8/4Tga0pBqkRjL4jIAAG+7mMLJvCvHEck3SoQIIZxwMNWFj6sZAGBZXAaqReIG97t0pwy3HlZBVZmPEX1oEjiuDbHUwwCTLnhSK0Hsn7lch0Ma8FXSddworkB3LRUsGdeH63DkHiVChBDOfORhA0NtVdx8UIlNx642uM/zzWLqQkF7hkcawOPx8P7TWqFdp262yvpxpPVcK3qMr5OuAQA+8bKHjpoyxxHJP0qECCGc0VJVRthEewDAtpQbuHJXdlh23dpidYmQZ19qFpMXY2wN0Ku7Bh5X12LPX/lch0OekkgYlv6cAZGYYWQffYyniUebhRIhQginxtobwsPeALUShpD9GRBL/plb6HJBGW4+qISKgI+RfWi0mLzg83mY+3QU0rcnchtt1iTta2/aLZzNewR1oRLCJtrTnEHNRIkQIYRzq//TF5oqAqTfKsHuv25Ky6WTKNroQ0OFmsXkycSBxjDSUUXx4yfNng+KtJ2ix9WIOFw3AnPhGGv01FXnOKKOgxIhQgjnDHVUsWScDQBgw6/ZuFtaLTtarD81i8kboYCPOa9bAqibYPH5mjzS/sIOZKKsuhb9jHXgN9Sc63A6lE6fCGVnZ2PgwIHSl5qaGuLj47kOixDyLzNdzOBg2gXlT2qxKuESMgvLkPe0WWwUNYvJJe/BJuiiroy8B5X49dJdrsNRWMevFOHg34Xg8+rmDBIodfpHe6vq9O+WjY0N0tPTkZ6ejhMnTkBDQwNjxozhOixCyL/w+by6X+J8HhIv38PyuEsAAHeb7tQsJqc0VATwHWIOAPgq6VqL1o4jraOyphYr4uu+K7Nfs0BfYx2OI+p4On0i9LyEhASMGjUKGhoaXIdCCGlAH0Nt/Netrrkl/VYJAJpEUd75DTWHmrISLheUIfVq4xNjkrYReTQHd0qqYNxFDQvGWHMdTofEeSKUkpICLy8v9OjRAzwer8Fmq6ioKJibm0NVVRUuLi44c+bMS13rxx9/xFtvvfWKERNC2tK8kb1hrlfX0VMo4GOUrQHHEZGm6GoIMcPZFADwdRItxtqeLt0pxfYTdZNarpnUl+bZekmcJ0IVFRUYMGAAoqKiGty+d+9eLFy4EKtWrcL58+cxYMAAeHh4oKioSLrPwIED0bdv33qvgoIC6T5lZWX4888/MX78+Da/J0LIy1NVVkLElP5QEfAxxcEYmtQsJvfmvG4BAZ+HUzce4EL+I67DUQi1YgmW/pwBCQMm9DfCCOpH99J4TI4adXk8HuLi4jBp0iRpmYuLCwYPHowtW7YAACQSCUxMTDBv3jyEhIQ0+9zfffcdEhMT8f333ze535MnT/DkyT/r55SVlcHExASlpaXQ1tZu2Q0RQl5axZNaqCkrgc+nuVA6go/2XcRP527Dw94AW2c5cR1Op/dt6g2sOZQFbVUBfl/kBn0tVa5DkjtlZWXQ0dF54fOb8xqhptTU1ODcuXMYPXq0tIzP52P06NE4depUi87V3GaxiIgI6OjoSF8mJiYtjpsQ8uo0VASUBHUgc5/27Uq8fA/Xih5zHE3nVlRWjcijOQCApeNtKQl6RXKdCN2/fx9isRgGBrJ9BAwMDHD3bvOHapaWluLMmTPw8PB44b5Lly5FaWmp9HXr1q0Wx00IIYrGSl8LY+3qfldvTb7BcTSd28bEbFTUiDHQpAvecqI/1l+VXCdCrUVHRwf37t2DUCh84b4qKirQ1taWeRFCCHmxuU8XY41Pv4OCkiqOo+mcMm6X4qfztwEAoV52VGvaCuQ6EerWrRuUlJRw7949mfJ79+7B0JAWkyOEEHniaKoLV8uuEIkZvk3N5TqcTocxhtUHLoMxYNLAHnA01eU6pE5BrhMhoVCIQYMG4dixY9IyiUSCY8eOYciQIW167aioKNjZ2WHw4MFteh1CCOlM3ne3AgD835l8PKqo4TiazuXg34VIu/kIaspKWOLZh+twOg3OE6Hy8nLpzM8AkJubi/T0dOTn5wMAFi5ciG+++QY7d+5EVlYWAgMDUVFRgXfffbdN4woKCkJmZibOnj3bptchhJDO5PXe3WDfQxtVIjF2nsrjOpxOo1okxqdHrgAA5rr1gpGOGscRdR6cJ0JpaWlwcHCAg4MDgLrEx8HBAaGhoQCAt956C5999hlCQ0MxcOBApKen49dff63XgZoQQgj3eDweAp/2FYr9Mw+VNbUcR9Q5fJNyA3dKqtBDRxXvDbfkOpxORa7mEZJHzZ2HgBBCSB2xhGHk50m4+aASoRPs4P+aBdchdWh3S6sx4rMkVInE2DTDAf8Z0IPrkDqETjGPECGEkI5Hic/Df4fX1Qp9m3oDNbUSjiPq2Db8egVVIjEGmenCqz+tvdfaKBFqBHWWJoSQlzfF0RjdtVRQUFqNhIsFLz6ANOhC/iP8fOEOACB0gh14PBou39ooEWoEdZYmhJCXp6qshNlPm8Sik69DIqFeGC3FGEPYwUwAwFTHnhhg0oXbgDopSoQIIYS0iZkuptBSFeBaUTmOZt178QFERsLFAlzIL4G6UAmLx9lwHU6nRYkQIYSQNqGlqgyfIWYAgK+SroPG5jRfZU2tdLh80AgrGGjTemJthRIhQgghbcZvqAVUBHxcvFWC0zcech1Oh7E1+QYKS6th3EVN2sRI2gYlQo2gztKEEPLqumupYPrThUG/Tr7OcTQdQ0FJFbam1L1Xy8bbQlVZieOIOjdKhBpBnaUJIaR1vDfcEkp8HlJyinHpTinX4ci9T49cQbVIAmfzrhjfj9bVbGuUCBFCCGlTJl3VMeHp/DfRVCvUpHM3HyLhYgF4vLrV5Wm4fNujRIgQQkibm+tWN8Hi4YxC5N2v4Dga+SSRMIQdqBsuP32QCfoa63AckWKgRIgQQkibszXSxgib7pAwYGvKDa7DkUtxF+7g4u1SaKoIsMjDmutwFAYlQoQQQtrF+yOsAAD7z91GUVk1x9HIl4ontVj/6z/D5fW1aLh8e6FEqBE0aowQQlrXYPOucDLTRY1Ygu0nc7kOR658nXQdRY+fwLSrOvxfM+c6HIVCiVAjaNQYIYS0vkD3ur5Cu0/no7RKxHE08uH2o0psS61rLlw23hYqAhou354oESKEENJuRtjow8ZAC+VPavH96ZtchyMXIo5cQU2tBEMs9eBhb8B1OAqHEiFCCCHths/nYa67JQAg5mQuqkVijiPi1pnchzj0dyH4PGAlrS7PCUqECCGEtKsJ/XvAuIsa7pfXYN+521yHwxmJhCHs4GUAwFuDTWHXQ5vjiBQTJUKEEELalbISH+8Nr6sV2pZyHbViCccRceOnc7dx6U4ZtFQEWDSWhstzhRKhRtCoMUIIaTvTnUygpyHErYdVOJRRyHU47a78SS02JGYDAD4c1RvdNFU4jkhxUSLUCBo1RgghbUdNqIR3h5kDqBs6zhjjNqB2FnX8Gu6XP4G5njp8h5pzHY5Co0SIEEIIJ2a5mkNDqIQrdx8jKbuY63DaTf6DSmxPrZtHafkbdhAK6FHMJQHXAXQGEokENTU1XIdBiNwQCoXg8+mXO2majroyZrqaYVvKDXyddB0j+uhzHVK7WHc4CzViCV6z6obRtopxz/KMEqFXVFNTg9zcXEgkitnZj5CG8Pl8WFhYQCgUch0KkXOzX7NA7Mk8nMl7iLS8h3Ay78p1SG3q1PUH+PXyXRouL0coEXoFjDEUFhZCSUkJJiYm9BcwIairIS0oKEBhYSFMTU3pFz1pkoG2KqY4GuOHs7cQnXwd33biREgsYQg7WLe6/EwXM9gYanEcEQEoEXoltbW1qKysRI8ePaCurs51OITIje7du6OgoAC1tbVQVlbmOhwi594bbom9abfwe1YRsu8+7rQJwo9pt5BVWAZtVQEWjKHh8vKCqjBegVhcNyMqVf8TIuvZd+LZd4SQplh214RnX0MAQHTydY6jaRtl1SJ89nS4fPBoa3TVoOeGvKBEqBVQ1T8hsug7QVoq0M0KAJBwsQC3HlZyHE3r2/LHNTyoqIFldw34DDHjOhzyHEqEGkETKhJCSPvp11MHr/fuBrGE4dunK7F3Frn3KxBzsm64/Mo37KCsRI9eeUKfRiNoQkVCCGlfgW69AAA/nL2F++VPOI6m9aw9lAWRmMHNurvCTBHQkVAipKCKi4sRGBgIU1NTqKiowNDQEB4eHjh58mSrXicpKQk8Hq/JV1JSUqteszk++eQT6fUFAgHMzc2xYMEClJeXIzw8HEZGRnj48KHMMRcvXoSKigoOHjwIAEhOTsbIkSPRtWtXqKuro3fv3vD19ZXOKfXs3nV1dVFdXS1zrrNnz0qv/zyxWIzIyEj069cPqqqq0NXVhaenZ4s+l9jYWHTp0kWmLCsrCyYmJpg2bRpqamoQGxsrvT6fz4eRkRHeeust5Ofn1zvftWvX4O/vL/1ZMTY2xqhRo7B7927U1tY2Oy5CXmRILz0M6KmDJ7US7Pwzj+twWsWJq/fxe9Y9KPF5WDnBlutwSAMoEVJQU6dOxYULF7Bz507k5OQgISEB7u7uePDgwUudjzHW4ENx6NChKCwslL6mT5+OcePGyZQNHTr0VW/npdjb26OwsBB5eXlYv349tm3bhkWLFmHp0qUwMTFBUFCQdF+RSARfX1+88847mDBhAjIzMzFu3Dg4OTkhJSUFGRkZ2Lx5M4RCYb0OwlpaWoiLi5Mp2759O0xNTWXKGGPw9vZGWFgYgoODkZWVhaSkJJiYmMDd3R3x8fEvdZ9nz57F66+/jnHjxmHv3r3Sjsza2tooLCzEnTt3sH//fmRnZ2PatGkyx545cwaOjo7IyspCVFQULl26hKSkJMyZMwdff/01Ll++/FIxEdIQHo+HQPe6WqGdf+ah/EnHTrRrxRKEPx0uP8vVDFb6nXM0XIfHSJNKS0sZAFZaWlpvW1VVFcvMzGRVVVUcRPbyHj16xACwpKSkBrfn5uYyAOzChQv1jjl+/DhjjLHjx48zAOzw4cPM0dGRKSsrs+PHjzM3NzcWFBTEgoODmZ6eHnN3d5c5t6+vL5s4cSJjjLHk5GQmEAhYYWGhzD7BwcHstddeY4wxFhMTw3R0dFhcXByzsrJiKioqbOzYsSw/P1/mmPj4eObg4MBUVFSYhYUF++STT5hIJGr0PVi1ahUbMGCATFlAQAAzNDRkjDGWlZXFVFVV2b59+6T7m5mZSX8OIiMjmbm5eaPnf/49WrFiBRs9erS0vLKykuno6LCVK1ey57+CP/zwAwPAEhIS6p1rypQpTE9Pj5WXlzd5Tcb+ec8YY+zYsWNMU1OTLV68uNF9ntm0aZPMz7pEImG2trZs0KBBTCwWN3gtiUTSYHlH/W4Q7onFEjbis+PMbMlBti35OtfhvJJdp/KY2ZKDbMDqRPao4gnX4Sicpp7fz6MaoVbEGENlTS0nL9aCBQs1NTWhqamJ+Ph4PHnyau3wISEh+PTTT5GVlYX+/fsDAHbu3AmhUIiTJ08iOjq60WOHDx8OS0tLfPfdd9IykUiE3bt3w9/fX1pWWVmJtWvXYteuXTh58iRKSkrg7e0t3Z6amgofHx8EBwcjMzMTW7duRWxsLNauXduie1FTU5M2a/Xp0wcREREIDAxEYmIiIiIiEBMTA21tbQCAoaEhCgsLkZKS8sLzzpo1C6mpqdJmp/3798Pc3ByOjo4y++3ZswfW1tbw8vKqd45FixbhwYMHOHr0aLPvJy4uDm+88QZWrFiB9evXN7lvUVER4uLioKSkBCUlJQBAeno6srKy8NFHHzU6WSiNDiOtjc/nYe7wulqhb0/cwJPajjkFQ2mlCF/8VjdcfsFoa3RRp+Hy8oomVGxFVSIx7EITObl2ZpgH1IXN+zgFAgFiY2MREBCA6OhoODo6ws3NDd7e3tJkprnCwsIwZswYmbLevXtjw4YNzTp+9uzZiImJwccffwwAOHDgAKqrqzF9+nTpPiKRCFu2bIGLiwuAukTL1tYWZ86cgbOzM1avXo2QkBD4+voCACwtLREeHo7Fixdj1apVzYrj3Llz2LNnD0aOHCktCw4Oxi+//ILx48dj3rx5GDFihHTbtGnTkJiYCDc3NxgaGsLV1RWjRo2Cj4+PNFl6Rl9fH56enoiNjUVoaCh27Nghk+g9k5OTA1vbhvsQPCvPyclp1v2Ul5dj2rRpWLZsGZYsWdLgPqWlpdDU1KxL4Cvrhit/+OGH0NDQkLmWjY2N9JiioiJYWlpK/79hwwa8//77zYqJkOaa5GCML47m4G5ZNeLO34G3s+mLD5Iz/zt2FY8qReitr4mZLh0vfkVCNUIKaurUqSgoKEBCQgLGjRuHpKQkODo6IjY2tkXncXJyqlc2aNCgZh/v5+eHa9eu4fTp0wDqOvpOnz5d+jAG6hK356cx6NOnD7p06YKsrCwAdZ2Yw8LCpDVdmpqaCAgIQGFhofQB35CMjAxoampCTU0Nzs7OGDJkCLZs2SLdzuPxsHz5ckgkEqxYsULmWCUlJcTExOD27dvYsGEDjI2NsW7dOmm/o3/z9/dHbGwsbty4gVOnTmHmzJkNxtSSmr2mqKmpYcyYMfjmm2+k79O/aWlpIT09HWlpafj888/h6Oj4wlo0PT09pKenIz09HV26dKHFhkmbEAr4mPO6BQBga8oNiCWt871oL9eLy7HrVB6AuvXEBDRcXq5RjVArUlNWQmaYB2fXbilVVVWMGTMGY8aMwcqVKzFnzhysWrUKqampAGQfyiKRqMFzPJ+wNFXWGH19fXh5eSEmJgYWFhY4cuRIi0eRlZeXY/Xq1ZgyZUq9baqqqo0eZ2Njg4SEBAgEAvTo0aPBGcIFAoHMv/9mbGyMWbNmYdasWQgPD4e1tTWio6OxevVqmf08PT3x3nvvYfbs2fDy8oKenl69c1lbWzeatDwrt7Zu3rT8SkpKiI+Px5QpUzBixAgcP368Xm0Tn8+HlVXdJHa2tra4fv06AgMDpU2VvXv3BgBkZ2fDwcFBet5nxzT2nhDSGmY4m2LzH9eQe78CiZfvYnw/I65Dara1h7JQK2EY1Ucfw627cx0OeQFKU1sRj8eDulDAyas1+mrY2dmhoqIC3bvXfXGfr9lIT09/5fM3Zs6cOdi7dy+2bduGXr16YdiwYTLba2trkZaWJv1/dnY2SkpKpA92R0dHZGdnw8rKqt6rqYVwhUIhrKysYG5u3irLpOjq6sLIyAgVFRX1tgkEAvj4+CApKanBZjEA8Pb2xtWrV3HgwIF62z7//HPo6enVa4ZsioqKCn7++WcMHjwYI0aMQGZmZpP7h4SEYO/evTh//jwAwMHBAX369MFnn30GiUTS7OsS0ho0VATwHWoOAPg66Xqr1Za2teScYvxxpQgCPg/L3qDh8h0BJUIK6MGDBxg5ciS+//57/P3338jNzcW+ffuwYcMGTJw4EWpqanB1dZV2gk5OTq7XNNSaPDw8oK2tjTVr1uDdd9+tt11ZWRnz5s3DX3/9hXPnzsHPzw+urq5wdnYGAISGhmLXrl1YvXo1Ll++jKysLPzwww8yMfv4+GDp0qWtFvPWrVsRGBiI3377DdevX8fly5exZMkSXL58ucHOzgAQHh6O4uJieHg0XGvo7e2NyZMnw9fXF9u3b0deXh7+/vtv/Pe//0VCQgK+/fbbFtW2AXXJ0P79++Hi4oIRI0Y0OdzdxMQEkydPRmhoKIC6xD4mJgbZ2dkYNmwYEhIScPXqVWRmZiI6OhrFxcXSjtWEtAW/oeZQVeYj404pTl57uak92pPoueHyvkPN0au7JscRkeagRKgRnXmJDU1NTbi4uCAyMhLDhw9H3759sXLlSgQEBEj7yOzYsQO1tbUYNGgQ5s+fjzVr1rRZPHw+H35+fhCLxfDx8am3XV1dHUuWLMHbb7+NYcOGQVNTE3v37pVu9/DwwMGDB/Hbb79h8ODBcHV1RWRkJMzM/lnPJz8/v8G+Oy/L2dkZ5eXlmDt3Luzt7eHm5obTp08jPj4ebm5uDR4jFArRrVu3RmvveDwefvzxRyxbtgyRkZGwsbHB66+/jps3byIpKQmTJk16qViFQiF++uknDB06FCNGjMClS5ca3XfBggU4dOgQzpw5AwBwdXXFuXPnYGNjg6CgINjZ2WHo0KH4v//7P0RGRiIwMPClYiKkObpqCOE9uK6j8dfJ1ziO5sV2n76Ja0Xl6KohxIejenMdDmkmHuso9Y0cKSsrg46ODkpLS+uNBqqurkZubi4sLCya7ItCXmz27NkoLi5GQkKCTHlsbCzmz5+PkpISbgIjL4W+G6S13H5UCfeNSaiVMPwSNAwDTLpwHVKDSipr4LYxCaVVIqyZ1BfvuNLCqlxr6vn9PKoRIpwqLS3FiRMnsGfPHsybN4/rcAghcqanrjr+M7AHgLq+QvLqy9+vorRKhD6GWvAebMJ1OKQFKBEinJo4cSLGjh2LuXPntqgjsCKzt7eXmSrg+dfu3bu5Do+QVvdsMdbEzLu4VlTOcTT1Xb33GN+dvgmAhst3RDT+lXDqRUPl/fz84Ofn1y6xdBSHDx9udDoDAwODdo6GkLbX20ALY+wMcDTzHralXMeGNwdwHZIUYwzhh7IgljCMsTPAMKtuXIdEWogSIUI6mOc7gROiKALde+Fo5j3EXbiDBWOsYaSjxnVIAIDj2UVIySmGshIPy8fTcPmOiOrvCCGEyD1HU124WHSFSMywPTWX63AAADW1Eqw5WDfZqf8wC5h3a9n0FkQ+UCJECCGkQwh0r+srtOdMPkoquV/e5bvTN3HjfgW6aQrxwUgrrsMhL4kSIUIIIR2Cm3V32Bppo7JGjF2nbnIay8OKGvzv97qFiReNtYGWqjKn8ZCXR4kQIYSQDoHH40lrhWJO5qKyppazWL44mo2y6lrYGmljuhMNl+/IKBEihBDSYYzvawgzPXU8qhRh79lbnMRw5W4Z9vyVDwBY5WUHJf6rr/VIuEOJECGEkA5DoMTHe8MtAQDfpNyASNy+CwIzxhB+MBMSBnj2NYSrpV67Xp+0PkqEFFRxcTECAwNhamoKFRUVGBoawsPDAydPnmzV6yQlJYHH4zX5etFcQm3hk08+kV5fIBDA3NwcCxYsQHl5OcLDw2FkZISHDx/KHHPx4kWoqKjg4MGDAIDk5GSMHDkSXbt2hbq6Onr37g1fX1/U1NR14nx277q6uqiurpY519mzZ6XXf55YLEZkZCT69esHVVVV6OrqwtPTs0WfS2xsrPTcfD4fPXv2xLvvvouioiLpPjweD/Hx8dL/JycnQ1lZGSdOnJA5V0VFBSwtLfHRRx81+/qEtLWpjj3RTVMFBaXVSEgvaNdr/55VhJPXHkCoxMcyGi7fKVAipKCmTp2KCxcuYOfOncjJyUFCQgLc3d3x4MHLrfDMGENtbf32+qFDh6KwsFD6mj59OsaNGydTNnTo0Fe9nZdib2+PwsJC5OXlYf369di2bRsWLVqEpUuXwsTEBEFBQdJ9RSIRfH198c4772DChAnIzMzEuHHj4OTkhJSUFGRkZGDz5s0QCoUQi8Uy19HS0kJcXJxM2fbt22FqaipTxhiDt7c3wsLCEBwcjKysLCQlJcHExATu7u4yicuLaGtro7CwELdv38Y333yDI0eOYNasWY3u7+bmhnnz5sHPzw8VFRXS8sWLF0NNTa1NF90lpKVUlZUw+zULAEB08nVIJO2zZOaTWjHWHqpbXX726xYw6areLtclbYyRJpWWljIArLS0tN62qqoqlpmZyaqqqjiI7OU9evSIAWBJSUkNbs/NzWUA2IULF+odc/z4ccYYY8ePH2cA2OHDh5mjoyNTVlZmx48fZ25ubiwoKIgFBwczPT095u7uLnNuX19fNnHiRMYYY8nJyUwgELDCwkKZfYKDg9lrr73GGGMsJiaG6ejosLi4OGZlZcVUVFTY2LFjWX5+vswx8fHxzMHBgamoqDALCwv2ySefMJFI1Oh7sGrVKjZgwACZsoCAAGZoaMgYYywrK4upqqqyffv2Sfc3MzOT/hxERkYyc3PzRs///Hu0YsUKNnr0aGl5ZWUl09HRYStXrmTPfwV/+OEHBoAlJCTUO9eUKVOYnp4eKy8vb/KajP3znj1v7dq1jM/ns8rKSsYYYwBYXFyczD5VVVXM1taWBQUFMcYY++OPP5hQKGRpaWkvvOa/ddTvBuk4SqtqWN/QX5nZkoPst8t32+WaW5OvMbMlB5nTmqPscXXjv1+IfGjq+f08qhFqRFRUFOzs7DB48ODmH8QYUFPBzYs1/y+iZ+tSxcfH48mTJy/x7vwjJCQEn376KbKystC/f38AwM6dOyEUCnHy5ElER0c3euzw4cNhaWmJ7777TlomEomwe/du+Pv7S8sqKyuxdu1a7Nq1CydPnkRJSQm8vb2l21NTU+Hj44Pg4GBkZmZi69atiI2Nxdq1a1t0L2pqatJmrT59+iAiIgKBgYFITExEREQEYmJipCsYGxoaorCwECkpKS8876xZs5Camor8/LrOlfv374e5uTkcHR1l9tuzZw+sra3h5eVV7xyLFi3CgwcPcPTo0Rbd0/P3JpFIGqy1e0ZVVRW7du3Ctm3b8Msvv8Df3x/Lli3DoEGDXuqahLQlbVVlvDOkbpb1r5KugbXgd+DLuF/+BJuPXQMAfOxhA00VWpihs6BPshFBQUEICgpCWVkZdHR0mneQqBJY16NtA2vMsgJA2LxZTQUCAWJjYxEQEIDo6Gg4OjrCzc0N3t7e0mSmucLCwuotltq7d29s2LChWcfPnj0bMTEx+PjjjwEABw4cQHV1NaZPny7dRyQSYcuWLXBxcQFQl2jZ2trizJkzcHZ2xurVqxESEgJfX18AgKWlJcLDw7F48WKsWrWqWXGcO3cOe/bswciRI6VlwcHB+OWXXzB+/HjMmzcPI0aMkG6bNm0aEhMT4ebmBkNDQ7i6umLUqFHw8fGRJkvP6Ovrw9PTE7GxsQgNDcWOHTtkEr1ncnJyYGvbcJ+DZ+U5OTnNup/nXb16FdHR0XBycoKWllaT+zo5OWHp0qWYMmUKHBwcsHz58hZfj5D28u4wc2w/kYsL+SU4k/sQLm3Ycfnz37Lx+Ekt+hnr4E3Hnm12HdL+qEZIQU2dOhUFBQVISEjAuHHjkJSUBEdHR8TGxrboPE5OTvXKWlKD4Ofnh2vXruH06dMA6jr6Tp8+HRoa/yR1AoFApmauT58+6NKlC7Ky6qa2v3jxIsLCwmRWYQ8ICEBhYSEqKysbvXZGRgY0NTWhpqYGZ2dnDBkyBFu2bJFu5/F4WL58OSQSCVasWCFzrJKSEmJiYnD79m1s2LABxsbGWLdunbTf0b/5+/sjNjYWN27cwKlTpzBz5swGY2qtv2pLS0uhqakJdXV12NjYwMDAoNkr069cuRISiQQhISEQCOhvJSK/9LVUMW1QXVLydfL1NrvO5YJS/PB0qH6olx34NFy+U6Hfcq1JWb2uZoara7eQqqoqxowZgzFjxmDlypWYM2cOVq1ahdTUVACyD+XGVjt/PmFpqqwx+vr68PLyQkxMDCwsLHDkyJEWjyIrLy/H6tWrMWXKlHrbVFVVGz3OxsYGCQkJEAgE6NGjB4RCYb19niUCjSUExsbGmDVrFmbNmoXw8HBYW1sjOjoaq1evltnP09MT7733HmbPng0vLy/o6dX/y9Xa2lqa3P3bs3Jra+tG7+d5WlpaOH/+PPh8PoyMjKCm1vwFKl90z4TIk/8O74X/O5OPpOxiXC4ohX2PZtbgNxN7OlyeMeCN/kYYbN61Vc9PuEe/6VoTj9fs5il5ZGdnh/j4eHTv3h0AUFhYCAcHBwBAenp6m113zpw5mDFjBnr27IlevXph2LBhMttra2uRlpYGZ2dnAEB2djZKSkqkzUWOjo7Izs6GlVXL1voRCoUtPqYpurq6MDIykhl19YxAIICPjw82bNiAI0eONHi8t7c33n77bRw4cKBeP6HPP/8cenp69ZohG8Pn81v13giRV6Z66pjQvwcSLhYgOvkGNs9waNXzJ16+i9M3HkJFwMdSzz6tem4iHygRUkAPHjzAtGnT4O/vj/79+0NLSwtpaWnYsGEDJk6cCDU1Nbi6uuLTTz+FhYUFioqK6jUNtSYPDw9oa2tjzZo1CAsLq7ddWVkZ8+bNw6ZNmyAQCPDBBx/A1dVVmhiFhoZiwoQJMDU1xZtvvgk+n4+LFy/i0qVL0mHfPj4+MDY2RkRERKvEvHXrVqSnp2Py5Mno1asXqqursWvXLly+fBmbN29u8Jjw8HB8/PHHDdYGAXWJ0L59++Dr64uNGzdi1KhRKCsrQ1RUFBISErBv374W1ba9SG5ubr0Et3fv3q16DULaw1y3Xki4WIBDfxfgo7HWMNNrnZ/hapEYaw/X1ca+N9wSPXVpuHxnRH2EFJCmpiZcXFwQGRmJ4cOHo2/fvli5ciUCAgKkfWR27NiB2tpaDBo0CPPnz2/TeWT4fD78/PwgFovh4+NTb7u6ujqWLFmCt99+G8OGDYOmpib27t0r3e7h4YGDBw/it99+w+DBg+Hq6orIyEiYmZlJ98nPz2+w787LcnZ2Rnl5OebOnQt7e3u4ubnh9OnTiI+Ph5ubW4PHCIVCdOvWrd4kis/weDz8+OOPWLZsGSIjI2FjY4PXX38dN2/eRFJSEiZNmtRq8QPAwoUL4eDgIPO6cOFCq16DkPZg10Mb7jbdIWHAtpQbrXbeHSdzcethFQy0VTDXrVernZfIFx5r6zGHHdyzUWOlpaX1RgNVV1cjNzcXFhYWTfZFIS82e/ZsFBcXIyEhQaY8NjYW8+fPR0lJCTeBkZdC3w3S3v668QBvbTsNoYCPE0tGQF/r1X7uih5XY8TGJFTUiPHF9AGYQiPFOpymnt/PoxohwqnS0lKcOHECe/bswbx587gOhxDSQTlbdIWjaRfU1EoQczLvlc/3WWI2KmrEGGDSBZMGGr96gERuUSJEODVx4kSMHTsWc+fObXZHYEVnb28vM1XA86/mDpEnpLPh8XgIdK8bIPD9qZsoq254pGtzXLpTin3nbgMAQifQcPnOjjpLE069aKi8n58f/Pz82iWWjuLw4cONTmdgYGDQztEQIj9G9dGHtYEmcu6V4/vTN/G+e8tHTjLGsPrAZTAGTBzYA4PMdNsgUiJPKBEipIN5vhM4IeQffD4Pc916YeGPF7HjRB78h1lAVVmpRec4lFGIs3mPoKrMx5JxNFxeEVDTGCGEkE7Da0APGHdRw/3yJ/jpafNWc1WLxIg4fAVA3ZD8Hl2aPxEp6bgoESKEENJpKCvxEfC6BYC6ofS1Ykmzj/029QbulFTBSEcV/x1Ow+UVBSVChBBCOpW3Bpuiq4YQ+Q8rcfjS3WYdc6+sGl8l1a1XFuLZB2rCljWpkY6LEiFCCCGdippQCX5DzQEAXyddb9Zixut/vYLKGjEcTbvgPwN6tHGERJ5QIkQIIaTT8RliBg2hErIKy5CcU9zkvum3SvDz+TsAgFVe9o3O/k46J0qECCGEdDpd1IV428UUQF2tUGMYYwg7cBkAMMXRGANMurRHeESOUCKkoIqLixEYGAhTU1OoqKjA0NAQHh4eOHnyZKteJykpCTwer8nXi+YSaguffPKJ9PoCgQDm5uZYsGABysvLER4eDiMjIzx8+FDmmIsXL0JFRQUHDx4EACQnJ2PkyJHo2rUr1NXV0bt3b/j6+qKmpgbAP/euq6uL6upqmXOdPXtWev3nicViREZGol+/flBVVYWuri48PT1b9LnExsZKz83n82FkZIS33noL+fn5Mvu5u7vLfA4GBgaYNm0abt68Kd0nLy+vwc/snXfeaXY8hHBl9muWUFbi4a/chzh381GD+yRcLMD5/BKoKSthsQcNl1dElAgpqKlTp+LChQvYuXMncnJykJCQAHd3dzx48OClzscYQ21tbb3yoUOHorCwUPqaPn06xo0bJ1M2dOjQV72dl2Jvb4/CwkLk5eVh/fr12LZtGxYtWoSlS5fCxMQEQUFB0n1FIhF8fX3xzjvvYMKECcjMzMS4cePg5OSElJQUZGRkYPPmzRAKhRCLxTLX0dLSQlxcnEzZ9u3bYWpqKlPGGIO3tzfCwsIQHByMrKwsJCUlwcTEBO7u7oiPj2/2vWlra6OwsBB37tzB/v37kZ2djWnTptXbLyAgAIWFhSgoKMAvv/yCW7duNZjk/P777zKfWVRUVLNjIYQrhjqqmOJQt0ZYQ7VCVTVifHqkbrj8++69YKhD6+IpJEaaVFpaygCw0tLSetuqqqpYZmYmq6qq4iCyl/fo0SMGgCUlJTW4PTc3lwFgFy5cqHfM8ePHGWOMHT9+nAFghw8fZo6OjkxZWZkdP36cubm5saCgIBYcHMz09PSYu7u7zLl9fX3ZxIkTGWOMJScnM4FAwAoLC2X2CQ4OZq+99hpjjLGYmBimo6PD4uLimJWVFVNRUWFjx45l+fn5MsfEx8czBwcHpqKiwiwsLNgnn3zCRCJRo+/BqlWr2IABA2TKAgICmKGhIWOMsaysLKaqqsr27dsn3d/MzEz6cxAZGcnMzc0bPf/z79GKFSvY6NGjpeWVlZVMR0eHrVy5kj3/Ffzhhx8YAJaQkFDvXFOmTGF6enqsvLy8yWsy9s979rxNmzbV+zl2c3NjwcHBMvt99913TF1dXfr/hn4WmqOjfjdI53Ot6DEzDznIzJYcZNl3y2S2RR7NZmZLDrKhEcdYVU0tRxGSttLU8/t5ClEjFBkZCXt7e9jZ2eHDDz9s1giCl8EYQ6WokpNXS+7p2bpU8fHxePLkySvdc0hICD799FNkZWWhf//+AICdO3dCKBTi5MmTiI6ObvTY4cOHw9LSEt999520TCQSYffu3fD395eWVVZWYu3atdi1axdOnjyJkpISeHt7S7enpqbCx8cHwcHByMzMxNatWxEbG4u1a9e26F7U1NSkzVp9+vRBREQEAgMDkZiYiIiICMTExEhXMDY0NERhYSFSUlJeeN5Zs2YhNTVV2jS1f/9+mJubw9HRUWa/PXv2wNraGl5eXvXOsWjRIjx48ABHjx5t0T0BQFFREeLi4qCkpAQlpcaHBD98+BA//vgjXFxcWnwNQuRVr+6aGGdvCACITv6nVqigpEr6/6Xj+7R4BmrSeXT6JTaKi4uxZcsWXL58GcrKyhg+fDhOnz6NIUOGtPq1qmqr4LKHm4fIX2//BXVl9WbtKxAIEBsbi4CAAERHR8PR0RFubm7w9vaWJjPNFRYWVm+x1N69e2PDhg3NOn727NmIiYnBxx9/DAA4cOAAqqurMX36dOk+IpEIW7ZskT6gd+7cCVtbW5w5cwbOzs5YvXo1QkJC4OvrCwCwtLREeHg4Fi9ejFWrVjUrjnPnzmHPnj0YOXKktCw4OBi//PILxo8fj3nz5mHEiBHSbdOmTUNiYiLc3NxgaGgIV1dXjBo1Cj4+PtJk6Rl9fX14enoiNjYWoaGh2LFjh0yi90xOTg5sbW0bjO9ZeU5OTrPup7S0FJqamnXJeWUlAODDDz+EhoaGzH5fffUVvv32W+l+1tbWSExMrHe+oUOHgs//5++m1NRUODg4NCsWQrg2160Xjly6i4T0AiwcY42euupY/+sVVIskGGyuizf6GXEdIuGQQtQI1dbWorq6GiKRCCKRCPr6+lyHxLmpU6eioKAACQkJGDduHJKSkuDo6IjY2NgWncfJyale2aBBg5p9vJ+fH65du4bTp08DqOvoO336dJkHtkAgwODBg6X/79OnD7p06YKsrCwAdZ2Yw8LCZFZhf9b35VkS0JCMjAxoampCTU0Nzs7OGDJkCLZs2SLdzuPxsHz5ckgkEqxYsULmWCUlJcTExOD27dvYsGEDjI2NsW7dOmm/o3/z9/dHbGwsbty4gVOnTmHmzJkNxtRatZVaWlpIT09HWloaPv/8czg6OjZYQzZz5kykp6fj4sWLOHHiBKysrDB27Fg8fvxYZr+9e/ciPT1d+rKzs2uVOAlpDwNMumCYlR5qJQzfpubi3M1H+CW9ADweEDqBhssrOs5rhFJSUrBx40acO3cOhYWFiIuLw6RJk2T2iYqKwsaNG3H37l0MGDAAmzdvhrOzc7PO3717d3z00UcwNTWFQCDA3Llz0atX20ydriZQw19v/9Um527OtVtKVVUVY8aMwZgxY7By5UrMmTMHq1atQmpqKgDZh3Jjq53/u4ahsbLG6Ovrw8vLCzExMbCwsMCRI0daPIqsvLwcq1evxpQpU+ptU1VtvPOjjY0NEhISIBAI0KNHDwiFwnr7CAQCmX//zdjYGLNmzcKsWbMQHh4Oa2trREdHY/Xq1TL7eXp64r333sPs2bPh5eUFPT29eueytraWJnf/9qzc2tq60ft5Hp/Ph5VV3crbtra2uH79OgIDA2WaIQFAR0dHup+VlRW2b98OIyMj7N27F3PmzJHuZ2JiIt2PkI4o0M0KJ689wA9n83Emt25E6JuOPdGvpw7HkRGucZ4IVVRUYMCAAfD392/wQbZ3714sXLgQ0dHRcHFxwZdffgkPDw9kZ2dLa3YGDhzY4Iil3377DWpqajh48CDy8vKgpqYGT09PpKSkYPjw4a1+Lzwer9nNU/LIzs4O8fHx6N69OwCgsLBQ2vyRnp7eZtedM2cOZsyYgZ49e6JXr14YNmyYzPba2lqkpaVJk9/s7GyUlJRIm4scHR2RnZ3d4ge1UChs1Ye7rq4ujIyMUFFRUW+bQCCAj48PNmzYgCNHjjR4vLe3N95++20cOHCgXj+hzz//HHp6evWaIZsrJCQEvXr1woIFC+r1TXresz5EVVVVL3UdQuTVMCs99O+pg79vlyKzsAwaQiV8PM6G67CIHOA8EfL09ISnp2ej27/44gsEBATg3XffBQBER0fj0KFD2LFjB0JCQgA0/ZDet28frKys0LVrVwDAG2+8gdOnTzeaCD158kSmA3FZWVlLb0nuPXjwANOmTYO/vz/69+8PLS0tpKWlYcOGDZg4cSLU1NTg6uqKTz/9FBYWFigqKqrXNNSaPDw8oK2tjTVr1iAsLKzedmVlZcybNw+bNm2CQCDABx98AFdXV2liFBoaigkTJsDU1BRvvvkm+Hw+Ll68iEuXLmHNmjUAAB8fHxgbGyMiIqJVYt66dSvS09MxefJk9OrVC9XV1di1axcuX76MzZs3N3hMeHg4Pv744wZrg4C6RGjfvn3w9fXFxo0bMWrUKJSVlSEqKgoJCQnYt29fi2rbnmdiYoLJkycjNDRUOg8SUNcR/e7durWY7t27h/DwcKiqqmLs2LEvdR1C5BWPx0OgWy8E7j4PAAgaaQV9LRouT+S8j1BNTQ3OnTuH0aNHS8v4fD5Gjx6NU6dONescJiYm+PPPP1FdXQ2xWIykpCTY2DT+V0BERAR0dHSkLxMTk1e+D3mjqakJFxcXREZGYvjw4ejbty9WrlyJgIAAaR+ZHTt2oLa2FoMGDcL8+fOlCUVb4PP58PPzg1gsho+PT73t6urqWLJkCd5++20MGzYMmpqa2Lt3r3S7h4cHDh48iN9++w2DBw+Gq6srIiMjYWZmJt0nPz+/wb47L8vZ2Rnl5eWYO3cu7O3t4ebmhtOnTyM+Ph5ubm4NHiMUCtGtW7dG+yPweDz8+OOPWLZsGSIjI2FjY4PXX38dN2/eRFJSUr0m45ZasGABDh06hDNnzkjLvvnmGxgZGcHIyAgjRozA/fv3cfjw4Sa/I4R0VGPtDTHaVh9De+nBf5gF1+EQOcFjbTWW/CXweDyZPkIFBQUwNjbGn3/+KTPKa/HixUhOTsZffzWvP87y5cvx888/g8/nY9SoUfjf//7X6MOooRohExMTlJaW1hsNVF1djdzcXFhYWDTZF4W82OzZs1FcXIyEhASZ8tjYWMyfPx8lJSXcBEZeCn03CCFcKysrg46OToPP7+dx3jTWHtauXdvsOWVUVFSgoqLSxhGRZ0pLS5GRkYE9e/bUS4IIIYSQtibXTWPdunWDkpIS7t27J1N+7949GBoachQVaU0TJ07E2LFjMXfu3JfuCKxo7O3tZaYKeP61e/dursMjhJAORa5rhIRCIQYNGoRjx45Jm8skEgmOHTuGDz74oE2vHRUVhaioqHrrRpHW9aKh8n5+fvDz82uXWDqKw4cPNzqdgYGBQTtHQwghHRvniVB5eTmuXbsm/X9ubi7S09PRtWtXmJqaYuHChfD19YWTkxOcnZ3x5ZdfoqKiQjqKrK0EBQUhKChI2sZIiLx4vhM4IYSQV8N5IpSWliazdMHChQsBAL6+voiNjcVbb72F4uJihIaG4u7duxg4cCB+/fVX+suXEEIIIa9MrkaNyaOmep0/Gxljbm4ONbWWz+xMSGdVVVWFvLw8GjVGCOFMc0eNyXVnaS5FRUXBzs5OZo2rf3s2C++zFcsJIXWefSeaWu2eEELkAdUIvUBTGSVjDPn5+RCJROjRo4fM6tyEKCqJRIKCggIoKyvD1NSUFrQkhHCC5hFqBzweD0ZGRsjNzcXNmze5DocQucHn8ykJIoR0CJQIvSKhUIjevXtT8xghzxEKhVRDSgjpECgRagV8Pp86hBJCCCEdEP3J1ojmdJYmhBBCSMdGnaVfoLmdrQghhBAiP2j4PCGEEELIC1AfoRd4VmFWVlbGcSSEEEIIaa5nz+0XNXxRIvQCjx8/BgCYmJhwHAkhhBBCWurx48dNrhlKfYRe4NnkcFpaWq06J0pZWRlMTExw69Yt6nskJ+gzkS/0ecgX+jzkC30eL8YYw+PHj1844THVCL0An89Hz5492+z82tra9EMsZ+gzkS/0ecgX+jzkC30eTWuqJugZ6ixNCCGEEIVFiRAhhBBCFBYlQhxRUVHBqlWroKKiwnUo5Cn6TOQLfR7yhT4P+UKfR+uhztKEEEIIUVhUI0QIIYQQhUWJECGEEEIUFiVChBBCCFFYlAgRQgghRGFRIsSRqKgomJubQ1VVFS4uLjhz5gzXISmkiIgIDB48GFpaWtDX18ekSZOQnZ3NdVjkqU8//RQ8Hg/z58/nOhSFdefOHbzzzjvQ09ODmpoa+vXrh7S0NK7DUlhisRgrV66EhYUF1NTU0KtXL4SHh79wPS3SOEqEOLB3714sXLgQq1atwvnz5zFgwAB4eHigqKiI69AUTnJyMoKCgnD69GkcPXoUIpEIY8eORUVFBdehKbyzZ89i69at6N+/P9ehKKxHjx5h2LBhUFZWxpEjR5CZmYnPP/8curq6XIemsNavX4+vv/4aW7ZsQVZWFtavX48NGzZg8+bNXIfWYdHweQ64uLhg8ODB2LJlC4C69cxMTEwwb948hISEcBydYisuLoa+vj6Sk5MxfPhwrsNRWOXl5XB0dMRXX32FNWvWYODAgfjyyy+5DkvhhISE4OTJk0hNTeU6FPLUhAkTYGBggO3bt0vLpk6dCjU1NXz//fccRtZxUY1QO6upqcG5c+cwevRoaRmfz8fo0aNx6tQpDiMjAFBaWgoA6Nq1K8eRKLagoCC88cYbMt8T0v4SEhLg5OSEadOmQV9fHw4ODvjmm2+4DkuhDR06FMeOHUNOTg4A4OLFizhx4gQ8PT05jqzjokVX29n9+/chFothYGAgU25gYIArV65wFBUB6mrm5s+fj2HDhqFv375ch6OwfvjhB5w/fx5nz57lOhSFd+PGDXz99ddYuHAhli1bhrNnz+LDDz+EUCiEr68v1+EppJCQEJSVlaFPnz5QUlKCWCzG2rVrMXPmTK5D67AoESLkqaCgIFy6dAknTpzgOhSFdevWLQQHB+Po0aNQVVXlOhyFJ5FI4OTkhHXr1gEAHBwccOnSJURHR1MixJEff/wRu3fvxp49e2Bvb4/09HTMnz8fPXr0oM/kJVEi1M66desGJSUl3Lt3T6b83r17MDQ05Cgq8sEHH+DgwYNISUlBz549uQ5HYZ07dw5FRUVwdHSUlonFYqSkpGDLli148uQJlJSUOIxQsRgZGcHOzk6mzNbWFvv37+coIvLxxx8jJCQE3t7eAIB+/frh5s2biIiIoEToJVEfoXYmFAoxaNAgHDt2TFomkUhw7NgxDBkyhMPIFBNjDB988AHi4uLwxx9/wMLCguuQFNqoUaOQkZGB9PR06cvJyQkzZ85Eeno6JUHtbNiwYfWmk8jJyYGZmRlHEZHKykrw+bKPbiUlJUgkEo4i6vioRogDCxcuhK+vL5ycnODs7Iwvv/wSFRUVePfdd7kOTeEEBQVhz549+OWXX6ClpYW7d+8CAHR0dKCmpsZxdIpHS0urXv8sDQ0N6OnpUb8tDixYsABDhw7FunXrMH36dJw5cwbbtm3Dtm3buA5NYXl5eWHt2rUwNTWFvb09Lly4gC+++AL+/v5ch9Zh0fB5jmzZsgUbN27E3bt3MXDgQGzatAkuLi5ch6VweDxeg+UxMTHw8/Nr32BIg9zd3Wn4PIcOHjyIpUuX4urVq7CwsMDChQsREBDAdVgK6/Hjx1i5ciXi4uJQVFSEHj16YMaMGQgNDYVQKOQ6vA6JEiFCCCGEKCzqI0QIIYQQhUWJECGEEEIUFiVChBBCCFFYlAgRQgghRGFRIkQIIYQQhUWJECGEEEIUFiVChBBCCFFYlAgRQgghRGFRIkQI6ZDu3r2LefPmwdLSEioqKjAxMYGXl5fMOn6EEPIitNYYIaTDycvLw7Bhw9ClSxds3LgR/fr1g0gkQmJiIoKCgnDlyhWuQySEdBBUI0QI6XDef/998Hg8nDlzBlOnToW1tTXs7e2xcOFCnD59GgDwxRdfoF+/ftDQ0ICJiQnef/99lJeXS89x8+ZNeHl5QVdXFxoaGrC3t8fhw4el2y9dugRPT09oamrCwMAAs2bNwv3796Xbf/rpJ/Tr1w9qamrQ09PD6NGjUVFR0X5vAiGkVVAiRAjpUB4+fIhff/0VQUFB0NDQqLe9S5cuAAA+n49Nmzbh8uXL2LlzJ/744w8sXrxYul9QUBCePHmClJQUZGRkYP369dDU1AQAlJSUYOTIkXBwcEBaWhp+/fVX3Lt3D9OnTwcAFBYWYsaMGfD390dWVhaSkpIwZcoU0NKNhHQ8tOgqIaRDOXPmDFxcXPDzzz9j8uTJzT7up59+wty5c6W1Ov3798fUqVOxatWqevuuWbMGqampSExMlJbdvn0bJiYmyM7ORnl5OQYNGoS8vDyYmZm9+k0RQjhDfYQIIR1Kc/92+/333xEREYErV66grKwMtbW1qK6uRmVlJdTV1fHhhx8iMDAQv/32G0aPHo2pU6eif//+AICLFy/i+PHj0hqi512/fh1jx47FqFGj0K9fP3h4eGDs2LF48803oaur26r3Sghpe9Q0RgjpUHr37g0ej9dkh+i8vDxMmDAB/fv3x/79+3Hu3DlERUUBAGpqagAAc+bMwY0bNzBr1ixkZGTAyckJmzdvBgCUl5fDy8sL6enpMq+rV69i+PDhUFJSwtGjR3HkyBHY2dlh8+bNsLGxQW5ubtu/AYSQVkVNY4SQDsfT0xMZGRnIzs6u10+opKQEx44dw4wZM1BdXQ0+v+7vvTVr1mDlypV49OiRtB/R85YuXYpDhw7h77//xvLly7F//35cunQJAsGLK87FYjHMzMywcOFCLFy4sFXukRDSPqhGiBDS4URFRUEsFsPZ2Rn79+/H1atXkZWVhU2bNmHIkCGwsrKCSCTC5s2bcePGDXz33XeIjo6WOcf8+fORmJiI3NxcnD9/HsePH4etrS2Auo7UDx8+xIwZM3D27Flcv34diYmJePfddyEWi/HXX39h3bp1SEtLQ35+Pn7++WcUFxdLjyeEdCCMEEI6oIKCAhYUFMTMzMyYUChkxsbG7D//+Q87fvw4Y4yxL774ghkZGTE1NTXm4eHBdu3axQCwR48eMcYY++CDD1ivXr2YiooK6969O5s1axa7f/++9Pw5OTls8uTJrEuXLkxNTY316dOHzZ8/n0kkEpaZmck8PDxY9+7dmYqKCrO2tmabN2/m4F0ghLwqahojhBBCiMKipjFCCCGEKCxKhAghhBCisCgRIoQQQojCokSIEEIIIQqLEiFCCCGEKCxKhAghhBCisCgRIoQQQojCokSIEEIIIQqLEiFCCCGEKCxKhAghhBCisCgRIoQQQojCokSIEEIIIQrr/wGq14Y8pCkeywAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Mole fraction predictions displayed with absolute error:\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyJ9JREFUeJzs3XdYVMfXwPHvLr1bEBWkqNixCxY0do29JcYWuzHRxJbyml6NqWpUUixRY2y/2HvvFcWKHaUoCAhI77v3/eMKkQBKWbi7MJ88PFm23HtYYffszJkzKkmSJARBEARBEMohtdIBCIIgCIIgKEUkQoIgCIIglFsiERIEQRAEodwSiZAgCIIgCOWWSIQEQRAEQSi3RCIkCIIgCEK5JRIhQRAEQRDKLZEICYIgCIJQbolESBAEQRCEckskQoKgB4KCglCpVKxcuVLpUEpNefyZs+T1s3/xxReoVCqdnePo0aOoVCqOHj2qs2MWhlarxcPDgzlz5ujkeD/88AP169dHq9Xq5HglZfbs2bRu3TrX9dHR0VhZWbF7924FohKeRyRCgl65d+8ekydPplatWpibm2Nra4u3tze//PILKSkp2fdzc3Ojb9++eR4j6w1g48aN+Z5nzpw5qFQqPDw8ChTX2LFjUalU2Nra5ogjy927d1GpVKhUKn766acCHbOkZcXz369q1aqVahxr165lwYIFpXrOF8n698z6srW1pWnTpvz888+kpaUpHV6h/Prrr3qZTK5bt44HDx7w9ttv57rt+vXrjBo1CicnJ8zMzHB0dGTkyJFcv349z2PFx8fz/fff83//93+o1f++bW3YsIFRo0ZRp04dVCoVnTp1yvPxK1euzPfvQaVScfbs2Rf+PL/99huvvvoqLi4uqFQqxo4dm+f9ZsyYwZUrV9i+fXuO6ytXrszEiRP59NNPX3guoXQZKx2AIGTZtWsXr776KmZmZowePRoPDw/S09M5efIk77//PtevX2fJkiXFPs/Dhw/59ttvsbKyKtTjjI2NSU5OZseOHQwdOjTHbWvWrMHc3JzU1NRix6dL3bt3Z/To0Tmus7CwKNUY1q5di7+/PzNmzMhxvaurKykpKZiYmJRqPFnMzMxYtmwZALGxsWzatIn33nuP8+fPs379+lKP55NPPmH27NmFftyvv/6Kvb19rjfml156iZSUFExNTXUUYeH8+OOPDBs2DDs7uxzXb968meHDh1OpUiUmTJhAzZo1CQoKYvny5WzcuJH169czaNCgHI/5888/yczMZPjw4Tmu/+233/Dz88PT05Po6OgXxvTVV19Rs2bNXNe7u7u/8LHff/89CQkJeHl58ejRo3zvV61aNQYMGMBPP/1E//79c9z25ptvsnDhQg4fPkyXLl1eeE6hdIhESNALgYGBDBs2DFdXVw4fPkz16tWzb5s6dSoBAQHs2rVLJ+d67733aNOmDRqNhqioqAI/zszMDG9vb9atW5crEVq7di19+vRh06ZNOolRV+rWrcuoUaMKdF9JkkhNTS21REmlUmFubl4q58qLsbFxjudmypQptG7dmg0bNjBv3jwcHR1zPaYknyNjY2OMjXX3kqxWqxV7fi9dusSVK1f4+eefc1x/7949Xn/9dWrVqsXx48epUqVK9m3Tp0+nQ4cOvP7661y9epVatWpl37ZixQr69++f6+dZvXo1Tk5OqNXqAo3u9urVi1atWhXpZzp27Fj2aJC1tfVz7zt06FBeffVV7t+/n+PnaNCgAR4eHqxcuVIkQnpETI0JeuGHH34gMTGR5cuX50iCsri7uzN9+vRin+f48eNs3LixyFM1I0aMYM+ePcTGxmZfd/78ee7evcuIESPyfMz9+/d59dVXqVSpEpaWlrRp06bASd2tW7d45ZVXqFSpEubm5rRq1SrXkHtRZU0v7tu3j1atWmFhYcEff/wByG88Xbp0wcHBATMzMxo2bMhvv/2W53H27NlDx44dsbGxwdbWFk9PT9auXQtAp06d2LVrF8HBwdnTEG5ubkD+NUKHDx+mQ4cOWFlZUaFCBQYMGMDNmzdz3CerniYgIICxY8dSoUIF7OzsGDduHMnJyUV6PtRqdfbUSlBQ0Aufo9jYWGbMmIGzszNmZma4u7vz/fff56phiY2NZezYsdjZ2VGhQgXGjBmT4/fnvz/Tf/399994eXlhaWlJxYoVeemll9i/f392fNevX+fYsWPZz2/Wz5BfjdA///xDy5YtsbCwwN7enlGjRhEaGprjPmPHjsXa2prQ0FAGDhyItbU1VapU4b333kOj0bzwudy6dSumpqa89NJLOa7/8ccfSU5OZsmSJTmSIAB7e3v++OMPkpKS+OGHH7KvDwwM5OrVq3Tr1i3XeZydnXNMlZUkV1fXAtdwZcW6bdu2XLd1796dHTt2IEmSTuMTik4kQoJe2LFjB7Vq1aJdu3YFfkxGRgZRUVG5vuLi4vK8v0aj4Z133mHixIk0bty4SHEOHjwYlUrF5s2bs69bu3Yt9evXp0WLFrnuHxERQbt27di3bx9Tpkxhzpw5pKam0r9/f7Zs2fLcc12/fp02bdpw8+ZNZs+ezc8//4yVlRUDBw584WOzpKam5np+nq2BuX37NsOHD6d79+788ssvNGvWDJCnHFxdXfnoo4/4+eefcXZ2ZsqUKfj4+OQ4/sqVK+nTpw8xMTF8+OGHfPfddzRr1oy9e/cC8PHHH9OsWTPs7e1ZvXo1q1evfm4SevDgQXr27ElkZCRffPEFs2bN4vTp03h7e2cnJ88aOnQoCQkJzJ07l6FDh7Jy5Uq+/PLLAj03ebl37x4g13M87zlKTk6mY8eO/P3334wePZqFCxfi7e3Nhx9+yKxZs7IfK0kSAwYMYPXq1YwaNYpvvvmGhw8fMmbMmALF8+WXX/L6669jYmLCV199xZdffomzszOHDx8GYMGCBdSoUYP69etnP78ff/xxvsdbuXIlQ4cOxcjIiLlz5zJp0iQ2b95M+/btcyVnGo2Gnj17UrlyZX766Sc6duzIzz//XKDp6dOnT+Ph4ZFr2nPHjh24ubnRoUOHPB/30ksv4ebmluODwunTpwHy/PsqrLi4uFx/DwWZUissOzs7ateuzalTp3Ld1rJlS2JjY/OthxIUIAmCwuLi4iRAGjBgQIEf4+rqKgHP/frnn39yPGbx4sWSnZ2dFBkZKUmSJHXs2FFq1KhRgc43ZswYycrKSpIkSXrllVekrl27SpIkSRqNRqpWrZr05ZdfSoGBgRIg/fjjj9mPmzFjhgRIJ06cyL4uISFBqlmzpuTm5iZpNBpJkqTsx65YsSL7fl27dpUaN24spaamZl+n1Wqldu3aSXXq1HlhzPk9L1nnyHoO9+7dm+uxycnJua7r2bOnVKtWrezvY2NjJRsbG6l169ZSSkpKjvtqtdrsy3369JFcXV1zHS+vn7lZs2aSg4ODFB0dnX3dlStXJLVaLY0ePTr7us8//1wCpPHjx+c45qBBg6TKlSvn/YQ8I+vf8/Hjx9Ljx4+lgIAA6dtvv5VUKpXUpEmT7Pvl9xx9/fXXkpWVlXTnzp0c18+ePVsyMjKSQkJCJEmSpK1bt0qA9MMPP2TfJzMzU+rQoUOunz3rZ8py9+5dSa1WS4MGDcr+Pcny7PPbqFEjqWPHjrl+xiNHjkiAdOTIEUmSJCk9PV1ycHCQPDw8cvx77dy5UwKkzz77LMfzA0hfffVVjmM2b95catmyZa5z/VeNGjWkIUOG5LguNja2QH/n/fv3lwApPj5ekiRJ+uSTTyRASkhIeO7j8nseJEmSVqxYke/fg5mZ2Qt/nv+ysrKSxowZ89z79OjRQ2rQoEGu60+fPi0B0oYNGwp9XqFkiBEhQXHx8fEA2NjYFOpxrVu35sCBA7m+8lq1FR0dzWeffcann36aa0i+sEaMGMHRo0cJDw/n8OHDhIeH5zsttnv3bry8vGjfvn32ddbW1rzxxhsEBQVx48aNPB8XExPD4cOHs0c8nv302rNnT+7evZtrOiMvAwYMyPX89OzZM/v2mjVr5vg+y7M1MFmfojt27Mj9+/ezR9wOHDhAQkICs2fPzlW7UZRl4I8ePeLy5cuMHTuWSpUqZV/fpEkTunfvnuey4zfffDPH9x06dCA6Ojr7d+p5kpKSqFKlClWqVMHd3Z2PPvqItm3b5hpty+s5+ueff+jQoQMVK1bMMbrQrVs3NBoNx48fB+R/f2NjY956663sxxoZGfHOO++8ML6tW7ei1Wr57LPPck3/FOX5vXDhApGRkUyZMiXHv1efPn2oX79+ntO1eT2/9+/ff+G5oqOjqVixYo7rEhISgBf/nWfdnvVvGB0djbGx8QvrcgrCx8cn19/Dnj17in3cvGT9buR1PVCo+kShZIliaUFxtra2wL8vlAVlb2+fZ91AXgWnn3zyCZUqVSrQG9CL9O7dGxsbGzZs2MDly5fx9PTE3d09z6mb4ODgPHuKNGjQIPv2vIo8AwICkCSJTz/9NN/ltpGRkTg5OT031ho1auT5HGXJawUNwKlTp/j88885c+ZMrpqbuLg47OzssqeRCtqC4EWCg4MBqFevXq7bGjRowL59+0hKSsqx2s/FxSXH/bLeZJ48eZL9e5Ufc3NzduzYAciF8DVr1qRGjRq57pfXc3T37l2uXr2ab1IdGRmZ/TNVr14915t4Xj/jf927dw+1Wk3Dhg1feN+CeN7zW79+fU6ePJnjOnNz81w/X8WKFXny5EmBzif9pwYmK8F50d95QROmovDy8npusfTjx49z1EBZW1sXOQGTJCnPhDXredFlzyiheEQiJCjO1tYWR0dH/P39S+T4d+/eZcmSJSxYsICwsLDs61NTU8nIyCAoKAhbW9scoxDPY2ZmxuDBg1m1ahX379/niy++0HnMWQW37733Xp4jNlCwJb8vktfqp3v37tG1a1fq16/PvHnzcHZ2xtTUlN27dzN//ny9amhnZGSU5/X/fRPO77HPSxKz5PUcabVaunfvzgcffJDnY+rWrfvC4+q7/J7bgqhcuXKuhMnOzo7q1atz9erV5z726tWrODk5ZSeylStXJjMzk4SEhBJJjp7l6emZnTACfP7550X++37y5An29vZ5Xg/keZugDJEICXqhb9++LFmyhDNnztC2bVudHjs0NBStVsu0adOYNm1arttr1qzJ9OnTC7WSbMSIEfz555+o1WqGDRuW7/1cXV25fft2rutv3bqVfXtespbcmpiYFOjNWpd27NhBWloa27dvzzHicuTIkRz3q127NgD+/v7PTcoK+sk367nI7/myt7cvdO+nklK7dm0SExNf+G/j6urKoUOHSExMzDGykNfPmNc5tFotN27cyC5iz0tRnt//Lt2+fft2vr+LRVG/fn0CAwNzXd+3b1+WLl3KyZMnc0wXZzlx4gRBQUFMnjw5x7FAXj3WpEkTncWYlzVr1uRomPrs0vfCCgwMpGnTpnleD/+OCgvKEzVCgl744IMPsLKyYuLEiUREROS6/d69e/zyyy9FOraHhwdbtmzJ9dWoUSNcXFzYsmULEyZMKNQxO3fuzNdff83ixYuf26m5d+/e+Pr6cubMmezrkpKSWLJkCW5ubvlOezg4ONCpUyf++OOPPJu3PX78uFDxFkbWSMCzoypxcXGsWLEix/169OiBjY0Nc+fOzdVI8tnHWllZ5buS71nVq1enWbNmrFq1KscKJn9/f/bv30/v3r2L8uOUiKFDh3LmzBn27duX67bY2FgyMzMB+d8/MzMzR+sBjUbDokWLXniOgQMHolar+eqrr3KNwv33+c1rOf5/tWrVCgcHB37//fccKwf37NnDzZs36dOnzwuPUVBt27bF398/V5fu999/HwsLCyZPnpxrtVZMTAxvvvkmlpaWvP/++zmOBXKNU0nz9vamW7du2V9FTYTi4uK4d+9enqtg/fz8sLOzo1GjRsUNV9ARMSIk6IXatWuzdu1aXnvtNRo0aJCjs/Tp06f5559/8m1p/yL29vYMHDgw1/VZI0B53fYiarWaTz755IX3mz17NuvWraNXr15MmzaNSpUqsWrVKgIDA9m0adNze6D4+PjQvn17GjduzKRJk6hVqxYRERGcOXOGhw8fcuXKlULHXRA9evTA1NSUfv36MXnyZBITE1m6dCkODg45kjJbW1vmz5/PxIkT8fT0ZMSIEVSsWJErV66QnJzMqlWrAHm58IYNG5g1axaenp5YW1vTr1+/PM/9448/0qtXL9q2bcuECRNISUlh0aJF2NnZlcgUZFG9//77bN++nb59+zJ27FhatmxJUlIS165dY+PGjQQFBWFvb0+/fv3w9vZm9uzZBAUF0bBhQzZv3lygxNDd3Z2PP/6Yr7/+mg4dOjB48GDMzMw4f/48jo6OzJ07F5Cf399++41vvvkGd3d3HBwc8mzWZ2Jiwvfff8+4cePo2LEjw4cPJyIigl9++QU3Nzdmzpyps+dnwIABfP311xw7dowePXpkX1+nTh1WrVrFyJEjady4ca7O0lFRUaxbty57tBHkURkPDw8OHjzI+PHjc5zn+PHj2YXpjx8/JikpiW+++QaQl+L/t4/Rnj17skdjn9WuXbsXJj07duzI/pvLyMjg6tWr2efq379/jtGqgwcPZrdO+K8DBw7Qr18/USOkTxRbryYIebhz5440adIkyc3NTTI1NZVsbGwkb29vadGiRTmWkbu6ukp9+vTJ8xhZy4b/u3z+v4q6fD4/eS2flyRJunfvnvTKK69IFSpUkMzNzSUvLy9p586deT722eXUWY8dPXq0VK1aNcnExERycnKS+vbtK23cuPGFMQPS1KlT8739ec/h9u3bpSZNmkjm5uaSm5ub9P3330t//vmnBEiBgYG57tuuXTvJwsJCsrW1lby8vKR169Zl356YmCiNGDFCqlChggRkL6XP72c+ePCg5O3tnX28fv36STdu3Mhxn6yl5o8fP85xfdYy6f/G+F8F+feUpOc/RwkJCdKHH34oubu7S6amppK9vb3Url076aeffpLS09Oz7xcdHS29/vrrkq2trWRnZye9/vrr0qVLl164fD7Ln3/+KTVv3lwyMzOTKlasKHXs2FE6cOBA9u3h4eFSnz59JBsbGwnIXkL+3+XzWTZs2JB9vEqVKkkjR46UHj58WKDnJ78Y89KkSRNpwoQJed529epVafjw4VL16tUlExMTqVq1atLw4cOla9eu5Xn/efPmSdbW1rnaOmTFk9fX559/nn2/5y2fz+t3MC9ZLQUK8vjXXntNat++fa5j3Lx5UwKkgwcPvvB8QulRSZJobykIgiDo1urVq5k6dSohISFUqFChWMeKi4ujVq1a/PDDD4Wexi5t4eHh1KxZk/Xr1+caEZoxYwbHjx/Hz89PjAjpEVEjJAiCIOjcyJEjcXFxydWNvCjs7Oz44IMP+PHHH/Vq1WJeFixYQOPGjXMlQdHR0SxbtoxvvvlGJEF6RowICYIgCIJQbokRIUEQBEEQyi2RCAmCIAiCUG6JREgQBEEQhHJLJEKCIAiCIJRboqHiC2i1WsLCwrCxsRGV/oIgCIJgICRJIiEhAUdHx+c2rxWJ0AuEhYXh7OysdBiCIAiCIBTBgwcPqFGjRr63i0ToBbJ2O37w4EH2bsiCIAiCIOi3+Ph4nJ2ds9/H8yMSoRfImg6ztbUViZAgCIIgGJgXlbWIYul8+Pj40LBhQzw9PZUORRAEQRCEEiI6S79AfHw8dnZ2xMXFiREhQRAEQTAQBX3/FiNCgiAIgiCUWyIREgRBEASh3BKJkCAIgiAI5ZZIhARBEARBKLdEIiQIgiAIQrklEiFBEARBEMotkQgJgiAIglBuiURIEARBEIRySyRCgiAIgiCUWyIREgRBEASh3BKJkCAIgiAIigh4EsDj5MeKxiASIUEQBEEQFPH9+e/p+k9XdtzboVgMIhESBEEQBKHURadE4xvui4REM4dmisUhEqF8+Pj40LBhQzw9PZUORRAEQRDKnIPBB9FKWhpVboSzjbNicYhEKB9Tp07lxo0bnD9/XulQBEEQBKHM2Ru0F4CX3V5WNA6RCAmCIAiCUKoeJz/GL8IPgB5uPRSNRSRCgiAIgiCUqv3B+5GQaFKlCY7WjorGIhIhQRAEQRBK1b6gfYDy02IgEiFBEARBEEpReFI4lyIvoUJFD1dlp8VAJEKCIAiCIJSirNGg5g7NqWpVVeFoRCIkCIIgCEIpyp4Wq6n8tBiIREgQBEEQhFLyMOEh16KuoVap6e7aXelwAJEICYIgCIJQSrJGgzyremJvYa9wNDKRCAmCIAiCUCqyEiGlewc9SyRCgiAIgiCUuJD4EG7G3MRIZaQ302IgEiFBEARBEEpB1pYarau3pqJ5RYWj+ZdIhARBEARBKHH6srfYf4lESBAEoYQ8THjImwfe5IvTXxCRFKF0OIKgmPux97n75C7GamO6uHRROpwcjJUOQBAEoSy69vgabx9+m5jUGAB2B+5mTKMxjGs0DksTS4WjE4TSlTUa1M6xHXZmdgpHk5MYERIEQdCxwyGHGb9vPDGpMdSvVJ/mDs1JyUzh9yu/03dLX7bc3YJGq1E6TEEoFZIk6e20GIhESBAEQafW3FzDjCMzSNWk0sGpAytfXsmql1fxc8efqWFdg8cpj/ns9GcM3TmUM2FnlA5XEErcnSd3CIwLxFRtSmfnzkqHk4tIhARBEHRAo9Xwve/3fOf7HRISr9Z9lYVdFmJlYoVKpaKHWw+2DdzGe63ew8bUhjtP7vDGgTeYcnAK92LvKR2+IJSYrN5B3k7eWJtaKxxNbiIREgRBKKaUzBTePfYuf9/8G4CZLWfyaZtPMVbnLMM0NTJlTKMx7B60m5ENRmKsMuZE6AmGbB/CN2e/ITolWonwBaHESJL0795iejgtBuUgEYqNjaVVq1Y0a9YMDw8Pli5dqnRIgiCUIdEp0UzYN4FDIYcwVZvy40s/Mt5jPCqVKt/HVDCvwGyv2WwZsIUuzl3QSBo23N5Any19WH5tOWmatFL8CQSh5NyMuUlIQgjmRuZ0cu6kdDh5UkmSJCkdREnSaDSkpaVhaWlJUlISHh4eXLhwgcqVKxfo8fHx8djZ2REXF4etrW0JRysIgiEJjAvkrYNvEZoYip2ZHQs7L6RF1RaFPs758PP8eP5HbsbcBMDRypHpLabTq2av5yZUgqDv5vnNY4X/Crq7dmdep3mleu6Cvn+X+REhIyMjLC3lpappaWlIkkQZz/0EQSgFF8IvMGr3KEITQ3G2cebvXn8XKQkC8Kzmyfq+6/m2/bdUtaxKWFIY/3fi/xi5eySXIi/pOHJBKB2SJLE/aD+gv9NioAeJ0PHjx+nXrx+Ojo6oVCq2bt2a6z4+Pj64ublhbm5O69at8fX1LdQ5YmNjadq0KTVq1OD999/H3l4/drwVBMEw7b6/mzcOvEF8ejxNqjTh795/42bnVqxjqlVq+tXux45BO3i72dtYGFtwLeoao/eMZtbRWTyIf6Cb4AWhlFyLukZoYigWxhZ0qNFB6XDypXgilJSURNOmTfHx8cnz9g0bNjBr1iw+//xzLl68SNOmTenZsyeRkZHZ98mq//nvV1hYGAAVKlTgypUrBAYGsnbtWiIiRIdXQRAKT5Ikll1bxv+d+D8ytBl0d+3O8h7LqWReSWfnsDC2YHLTyewevJshdYagVqk5EHyA/tv689P5n4hLi9PZuQShJGX1Durk3AkLYwuFo8mfXtUIqVQqtmzZwsCBA7Ova926NZ6enixevBgArVaLs7Mz77zzDrNnzy70OaZMmUKXLl145ZVX8rw9LS2NtLR/CxXj4+NxdnYWNUJl3MWIi/zs9zPxafHZNRmqrP+eqdHI7zYVqhffrnrmfk9vy/o+12Ofue2Fj1X9ez4AE7UJfWv3pZtLN1FfokMZ2gzmnJ3DprubABjTcAyzWs1CrSrZz5N3ntzh5ws/czrsNAB2Zna81fQthtYbionapETPLQhFpZW0dN/YncjkSH7p/Isi22oUtEZIr7fYSE9Px8/Pjw8//DD7OrVaTbdu3ThzpmCNyCIiIrC0tMTGxoa4uDiOHz/OW2+9le/9586dy5dfflns2AXDEZYYxvQj04lNi1U6FJ05/OAwXZy78HGbj3GwdFA6HIOXlJHEu0ff5VTYKdQqNbO9ZjO8/vBSOXfdinX5o/sfnAw9yc8XfiYgNoDvfL9j3a11zGo5i87OnUXCK+idK4+vEJkcibWJNd5O3kqH81x6nQhFRUWh0WioWrVqjuurVq3KrVu3CnSM4OBg3njjjewi6XfeeYfGjRvne/8PP/yQWbNmZX+fNSIklE1pmjRmHp1JbFosjSo34r1W7wEg8e9AqSRJ2d9LSDm+R3p6Xdbtz972zPdZA6/Z95XI95i5bs86xjPfPxvjf88RGB/I6uurOfzgMOfDz/Nuq3cZXGeweLMsovCkcN4+9Da3n9zGwtiCH176QZFlwO2d2tOmehu2BGxh8aXFBMcHM/3IdFpVbcV7nu/RqHKjUo9JEPKzN1CeFuvs3BkzIzOFo3k+vU6EdMHLy4vLly8X+P5mZmaYmen3P5qgG5IkMefsHG5E36CiWUXmd5pPdevqSoelE31r9eXzU5/jH+3PF2e+YE/gHj5v+znOtiKpL4zbMbeZcmgKkcmRVDavjE9XHxrZK5dwGKuNebXuq/Ry68Wf/n/y142/uBBxgWE7h9GvVj+mtZhGNatqisUnCCB3Wd8f/HS1WE39XS2WRfFi6eext7fHyMgoV3FzREQE1aqV7B+7j48PDRs2xNPTs0TPIyhn492NbAnYglql5oeOP5SZJAjk6ZS/e//Ne63ew9zInHPh5xi8fTCrrq8iU5updHgG4VToKcbsHUNkciS17Gqxps8aRZOgZ1mbWjOtxTR2DNxB31p9Adhxfwf9tvRj0aVFJGckKxyhUJ5djLxIVEoUtqa2tK3eVulwXkivEyFTU1NatmzJoUOHsq/TarUcOnSItm1L9smdOnUqN27c4Pz58yV6HkEZ1x5fY+65uQBMaz6NNtXbKByR7hmpjRjTaAyb+2+mdbXWpGpS+enCT7y++3XuPLmjdHh6bfPdzUw9NJWkjCS8qnmxuvdqnKydlA4rl+rW1ZnbYS7r+qyjhUMLUjWpLLm6hN6be7Ppziaxw72giKxpsa4uXTEx0v+CfsUTocTERC5fvpw9fRUYGMjly5cJCQkBYNasWSxdupRVq1Zx8+ZN3nrrLZKSkhg3bpyCUQuGLDolmplHZ5KhzaCbSzfGe4xXOqQS5WzrzNIeS/my3ZfYmNjgH+3PazteY/GlxaRr0pUOT69IksTCiwv5/PTnaCQN/Wr14/duv2Nrqt8rRj3sPVj58koWdFqAi40L0anRfHHmC17d+SqnQ08rHZ5QjmRqMzkYchDQ7yaKz1J8+fzRo0fp3LlzruvHjBnDypUrAVi8eDE//vgj4eHhNGvWjIULF9K6detSiU9ssVG2ZGozmXxgMr7hvtS0q8na3mv1cjfkkhKZHMmcs3M4/OAwALXsavFluy9p5tBM2cD0QLomnU9PfcruwN0AvNn0TaY0nWJwReYZmgzW317P71d+Jz49HpB3/X6v5Xu4V3RXODqhrDsddprJByZTwawCR4YeybXxcGkq6Pu34omQvhOJUNky78I8VlxfgaWxJev6rKNWhVpKh1TqJEniQPABvj33LdGp0ahQMaLBCKY1n4aliaXS4SkiLi2O6Uem4xfhh7HKmM/afsagOoOUDqtY4tLi+OPqH6y7tY5MbSZqlZohdYYwpdkU7C1Ed32hZHx++nM2393MK3Vf4fO2nysai9hrrJhEsXTZsz9oPyuurwDga++vy2USBHLjxh5uPdg2cBsDag9AQmLNzTUM2jaoXE6jPEx4yOt7Xscvwg9rE2t+7farwSdBIDde/MDzA7YN2EY3l25oJS3/3PmHvlv6suzaMlIzU5UOUShjMrQZHAw2rGkxECNCLyRGhMqGe7H3GLFrBMmZyYxrNI5ZrWa9+EHlxOnQ03x19itCE0MB6F+7Px94foCdmZ3CkZW8a4+v8fbht4lJjaGaVTV8uvpQt2JdpcMqEX4Rfvx0/if8o/0BqG5VnWktptG7Zu8S744tlA8nHp5gyqEpVDavzKFXD2GkNlI0HjEiJAhPJaYnMuPIDJIzk/Gq5sW0FtOUDkmvtHNqx+b+mxnVYBQqVGy/t53+W/uzL2gfZflz0uGQw4zfN56Y1BgaVGrAmt5rymwSBNCyakvW9FnD3A5zqWZVjUdJj/jwxIeM3DUSvwg/pcMTyoCsvcW6u3ZXPAkqDDEi9AJiRMiwSZLEzKMzORRyiKqWVdnQdwOVLSorHZbeuhx5mS9Of8G9uHuA3BX2kzaflLltOtbcXMP3vt8jIdHBqQM/dfypXNVHpWam8vfNv1l2bRlJGUkAdHPpxsyWM3GxdVE4OsEQpWvS6bShEwkZCax8eSUtq7ZUOiQxIiQIAMv9l3Mo5BAmahPmd5ovkqAXaObQjP/1+x9vNX0LY7UxRx4cYeDWgWy6s6lMjA5ptBq+9/2e73y/Q0Li1bqvsrDLwnKVBAGYG5szsfFEdg7aydC6Q1Gr1BwMOciAbQP43vd7scO9UGinQk+RkJGAg6UDzR2aKx1OoYhEKB+iWNrwnQk7w6JLiwD4sPWHNK6S/x5zwr9MjUyZ0mwKG/puwKOyBwkZCXxx5gsm7p9ISHyI0uEVWUpmCrOOzuLvm38DMLPlTD5t86miy3uVZm9hz6dtP2VTv020d2pPpjaTv2/+Te/NvVl9YzUZmgylQxQMRNa0WA/XHgZXcyamxl5ATI0ZprDEMF7b+RqxabEMch/El+2+NLh+MPpAo9Xw982/WXxpMamaVMyNzHm7+duMbDDSoBKI6JRo3jn8DteirmGqNmVOhzkGtaqltJwOO81PF37i7pO7ALjYuDCr5Sy6uHQRfz9CvlIzU+m4oSPJmcn83ftvmlZpqnRIgJgaE8qxZ3eUb1i5IR+3+Vi8iBdR9jYdA3Ju0zFq9yhux9xWOrwCuR93n5G7R3It6hp2ZnYs7bFUJEH5aOfYjn/6/sMXbb/A3sKekIQQZhydwdi9Y7kedV3p8AQ9dTL0JMmZyVS3qk4T+yZKh1NoYkToBcSIkOHJauhVwawCG/puwNHaUemQygRJktgasJUfz/9IQkYCxipjxjcez+QmkzE1MlU6vDxdCL/A9CPTiU+Px9nGmd+6/YarravSYRmE5Ixk/vT/k1XXV5GqkXsO1a1YF2O1MWrUqFVqVCqV/H/k/z/7pVKpct7vP49R88zl/xwj6/7P3p71mPzOW5hz1K9UX3RT16H3jr3HvqB9jG00lndbvat0ONlEZ2kdEYmQYdl4ZyNfnvkStUrNb91+o51jO6VDKnMikyP59ty3HAqRN0PW1206dt/fzSenPiFDm0GTKk1Y1GURlcwrKR2WwQlPCmfRpUVsv7dd6VB0xlhlzPaB23G2dVY6FIOXnJFMp/91IiUzhfV91tPIvpHSIWUTiZCOiETIcFx7fI0xe8eQoc1geovpTGw8UemQyrQDwQeYc3ZO9jYdw+sPZ3qL6YqvwJIkieX+y/nl4i+A3NPk2/bfYm5srmhchi44PpiHCQ/RSlokJLSSVr4sSWh55rKkRcszl7O+/nNdQY+hkTT5HjevY/z3do2kyXHcWzG3CEkIYUidIXzR7guln1aDtzdwL+8ff58a1jXYPXi3XpUhFPT923CqHUuZj48PPj4+aDQapUMRCiAmNYZZx2aRoc2gi3MXJnhMUDqkMq+7a3e8qnnx04Wf2BqwlbW31nL0wVE+a/sZ3k7eisSUoc1gztk5bLq7CYAxDccwq9Usg1vFoo9cbV3LxLTipchLjN4zmm33tjG5yWSqW1dXOiSDlrVa7OWaL+tVElQYYkToBcSIkP7L1Gby5oE3ORd+DjdbN9b1WVeudpTXB3lt0/F+q/epYF6h1GJITE/kvWPvcSrsFGqVmtlesxlef3ipnV8wHBP2TcA33Jdh9YbxcZuPlQ7HYCWmJ9JxQ0fStels7LeRepXqKR1SDmLVmFBuLLy0kHPh57AwtmBB5wUiCVJAXtt0DNg2oNS26QhPCmfM3jGcCjuFhbEFv3T+RSRBQr4mN5kMwOa7m3mc/FjhaAzXkQdHSNem42brZtDb04hESDBoB4IPsML/3x3la1eorXBE5ZeliSX/5/V/rO69mtp2tYlJjeG9Y+8x/ch0IpMjS+y8t2NuM3L3SO48uUNl88qs6LmCTs6dSux8guHzrOZJsyrNSNems/L6SqXDMVj7gvYB0NOtp8FOi4FIhAQDdj/2Pp+c/ASAsY3G0tOtp8IRCQBNqzTNc5uOjXc26nx06FToKcbsHUNkciS17Gqxps8avVq1IugnlUrF5KbyqNA/d/4hJjVG4YgMT3x6PKfCTgEYfF8ukQgJBikpI4kZR//dUX56i+lKhyQ8I2ubjv/1/R+N7RuTkJHAl2e+1Ok2HZvvbmbqoakkZSThVc2L1b1X42TtpJNjC2Wft6M3jSo3IiUzhdU3VisdjsE5HHKYTG0m7hXcca/ornQ4xSISoXyIvcb0lyRJfHrqUwLjAqlqWZUfXvrBoLZ7KE/qVKzD6l6reb/V+1gYW+Ab7suQ7UNY6b+STG1mkY4pSRILLy7k89Ofo5E09KvVj9+7/Y6tqVjMIBScSqXijSZvALDu1jqx0WwhZa0WKwsj8SIRysfUqVO5ceMG58+fVzoU4T9WXF/BgeADmKhNmNdpnthRXs8ZqY0Y3Wg0m/pvonV1eZuOn/1+LtI2HemadGafmM3Sa0sBeLPpm8xpPwcTI5OSCF0o4zo5d6JuxbokZSSx9uZapcMxGLGpsZwLOwcY/rQYiERIMDBnH53NbpQ322s2TaoY3r425ZWzjTNLuy/lq3ZfYWNiw/Xo6wzbOYxFlxaRrkl/4ePj0uJ448Ab7A7cjbHKmK+9v2Zqs6kGXaQpKEutUjOpySQAVt9cTWJ6osIRGYaDIQfJlDKpX6k+bnZuSodTbCIREgzGo8RHfHDsA7SSloHuA3m17qtKhyQUkkqlYlCdQWwbuI1uLt3IlDJZcnUJr+x4hcuRl/N93IOEB4zaPQq/CD+sTaz5tduvDHQfWGpxF1lcKCz2hJ2zlI5EyEd3l+7UtKtJQnoC62+vVzocg1CWpsVAJEKCgcjaUf5J2hMaVGrAx63FjvKGrIplFeZ3ni9PbZpXJjAukNF7RjP33FySM5Jz3Pfa42uM2j2KoPggqllVY1WvVbR1bKtQ5IV06CuIugN+KyAhQulohDwYqY2Y1FgeFfrr+l+5fv+EnKJSojgfLpeMiERIEErR3HNzuR59HTszO+Z3ni/2jSojurt2Z9vAbQx0H4iExNpbaxm4bSAnQ08CcCjkEOP3jScmNYYGlRqwpvcaw2ncFnoRrj4dYZC0cGObsvEI+epVsxfONs48SXvCxjsblQ5Hrx0MPohW0tKociOcbcrGprUiERL03qY7m9h0dxMqVPzQ4QexRLqMsTOz42vvr/mj+x84WTvxKOkRbx18i4n7JzLzyExSNal0cOrAypdX4mDpoHS4BSNJsF/ucYXF0x3v/TcpF4/wXMZq4+xNmldeX0maJk3hiPRXVhPFslAknUUkQoJe84/yZ865OQC80/wd2jm1UzgioaS0c8y5Tce5R+eQkBhadygLuyxUfFf7Qrm1E4JPgbE5jPwHUMGDsxD3UOnIhHz0q9WP6lbVeZzymM13Nysdjl6KTI7EL8IPKDvTYiASIUGPxaTGMPPoTDK0GXR27syExmJH+bLu2W06OtboyGyv2XzS5hPD6hOVmQ4HPpMvt30barQC16cJ/PUtysUlPJeJkQnjPcYD8Kf/n2RoMhSOSP8cCD6AhETTKk2pbl1d6XB0RiRC+RANFZWVqc3kg+MfEJ4UjputG3Paz0GtEr+u5UXTKk1Z3HUxIxuMNLyi+PPLIOY+WDlA+xnydR6D5f/7i5EGfTaoziCqWFQhPCmc7fe2Kx2O3tkbKK8WK0vTYiASoXyJhorKWnRpEeceyTvKz+80HxtTG6VDEoQXS46BY9/Ll7t8DGZPf28bDACVGsIuykmSoJfMjMwY22gsAMuuLSty9/OyKDwpnMuPL6NCRQ+3HkqHo1MiEVLImbAz/HHlD7FUMw8Hgw/yp/+fAHzl/ZXB72MjlCPHf4TUWHBoBM1f//d66ypQs6N8WUyP6bVX6r5CJfNKPEx8yJ7APUqHozeyiqRbVG1hOIsWCkgkQgrQSlrm+81n8eXF9NrcizU31xSos255cD/uPh+f/BiA0Q1Hl7khWKEMiwoA3yXy5R5fg9oo5+1ieswgWJpY8npDOYldcnUJGq1G4Yj0Q9a0WFkqks4iEiGFjGk0BmcbZ2JSY/jO9zv6benH1oCt5fqPLikjiRlH5B3lW1VtxcyWM5UOSRAK7uDnoM0E9+7g3jX37fX7gtoEIvzhceH2WBNK17B6w7A1tSUoPogDIQeUDkdxDxIe4B/tj1qlprtrd6XD0TmRCClArVLTp1Yftg3cxqdtPqWKRRXCksL49NSnDN4+mIPBB5EkSekwS9WzO8o7WDrwY8cfDWulkFC+BZ2Ul8yrjKDHN3nfx7IS1O4iXxajQnrN2tSaUQ1GAfKokFbSKhyRsvYH7QfAs6on9hb2CkejeyIRUpCJ2oSh9Yaya/AuZrWcha2pLffj7jPz6ExG7BrBmbAzSodYalZeX8mB4AMYq42Z12lemfxjE8oorRb2fSRfbjkGHOrnf1+PIfL/r2+Wmy4KemtEgxFYmVhx98ldjj44qnQ4isqqD+pZs+xNi4FIhPSChbEF4zzGsXfIXt5o8gYWxhb4R/vzxoE3mLhvIlcfX1U6xBJ17tE5FlxcAMBsz9k0rdJU2YAEoTCuboBHV8DUBjp99Pz71usFRmby/mMR/qUTn1AkdmZ2jKg/AoA/rv5R7kbpswTHB3Mz5iZGKiO6uXRTOpwSIRIhPWJjasM7zd9h9+DdjGwwEhO1CefCzzFy90imHZ7G3Sd3lQ5R58KTwnn/2PtoJS0Dag9gaL2hSockCAWXnixvrArw0rvy6rDnMbeFuk+XHovpMb03quEoLIwtuBF9I3v/u/Imq0i6TfU2VDSvqHA0JUMkQnrI3sKe2V6z2TloJwPdB6JWqTny4AhDtg/hoxMf8TChbLTpT9ekM+vorOwd5T9p84nhNc8TyrcziyEhDOxcoPVbBXtMo6zVY5vE9Jieq2ReiaF15Q9n5XVUaG9Q2V0tlkUkQvnQh87SjtaOfO39NVv6b6G7a3ckJHbc30G/rf2Yc3YOj5MfKxabLsz1ncu1qGtiR3nBMCWEw8kF8uVun4NJAX9/6/YEEyuIDZYbLAp6bUyjMZiqTbny+Aq+4b5Kh1Oq7sXeIyA2AGO1MV1cuigdTokRiVA+9KmzdK0KtZjXaR7r+6ynbfW2ZGozWX97Pb0392aB3wLi0uKUDrHQttzdwsY7G8WO8oLhOvwNZCRBDc9/i6ALwtRKrhUCMT1mAKpYVmFIXfnfd8nVJQpHU7qyRoPaObbDzsxO4WhKjkiEDEgj+0Ys6bGE5T2W08S+CamaVJb7L6fX5l4su7bMYLpUX4+6zjdn5SXGbzd/W+woLxie8Gtw6W/5co85UNgp3azmite3yKvOBL023mM8xmpjfMN9uRR5SelwSoUkSWV2b7H/EomQAfKq7sXfvf9mYeeFuFdwJyE9gV8u/kLvzb1Zd2udXu+a/CT1CTOPziRdm04n505MbDxR6ZAEoXAkCfZ9DEjQaBC4tC78Mdy7gZkdxIfCg3M6D1HQrWpW1RhQewAAf1z5Q+FoSsedJ3cIig/CVG1KZ+fOSodTokQiZKBUKhWdXTqzsd9Gvm3/LU7WTkSnRvPtuW/pt7Uf2+9t17su1Rqthg+Of8CjpEe42rrybftvxY7yguG5ux8Cj4GRKXT7omjHMDaD+n3ky9fF9JghmNB4AkYqI06FncI/quy3PsjqHdTeqT3WptYKR1OyxLuQgTNSG9Gvdj92DNzBx60/xt7CntDEUD4++TGv7HiFQyGH9Galw6JLizj76KzYUV4wXJoM2P+JfLn1m1DRrejHym6uuAU0Ypdzfeds40yfWnLy+sfVsj0qJElSdn3QyzXL9rQYiESozDAxMmFY/WHsGrSLGS1mYGNqQ0BsADOOzGDU7lGce6Ts8Puh4EMs918OwFftvqJOxTqKxiMIReK3Um6GaFkZOrxbvGPV6ggWlSDpMQSXzx41hmZi44moUHH0wVFux5Td/eJuxNzgQcIDzI3M6Vijo9LhlDiRCJUxliaWTGg8gb1D9jKp8SQsjC24GnWVifsnMmn/JEWGdO/H3efjU/KO8q83fL1cfMIQyqCUWDg6V77c6UOwqFC84xmZQMP+8mWxeswg1LSrmV04XJZXkO0LlKfFXqrxEpYmlgpHU/JEIlRG2ZraMq3FNHYP3s3w+sMxVhtz9tFZhu8azowjM7gXe69U4kjKSGLmkZkkZSTRsmpLsaO8YLhO/AzJ0WBfF1qO080xs5or3twuT7sJem9iE3mBx4HgA9yPva9wNLonSdK/e4uV4SaKzxKJUBlnb2HPR60/YsfAHfSv3R8VKg6FHGLw9sF8fPJjQhNDS+zcWTvK34+7j4OFAz91/AkTtUmJnU8QSsyTIDj3u3y5xzdgZKyb47q1BysHSHkC94/q5phCiapbsS5dXboiIbH02lKlw9G5q1FXCUsKw8LYgg41OigdTqkQiVA5UcOmBnPaz2Fz/810demKVtKy/d52+m7py9xzc4lKidL5OVddX5W9o/zPnX4WO8oLhuvgF6BJh5odoU4P3R1XbQSNBsqX/Tfp7rhCiZrUZBIAuwN3ExIfonA0upU1GtTJuRMWxhYKR1M6RCJUzrhXdGdB5wWs7b2W1tVbk6nNZO2ttfTe3JuFFxcSnx6vk/P4PvJl/sX5APyf5//RzKGZTo4rCKUu5Jy8sgsV9CxC88QXyVo9dmsXZKTq9thCiWhUuREdnDqglbTZi0DKAq2kzU6EynoTxWeJRKicalylMct6LGNpj6U0tm9MSmYKS68tpdemXiy/tpyUzJQiHzs8KZz3j8s7yvev3Z/X6r2mw8gFoRRJEuz7SL7cfBRUa6z7c9TwAlsnSIuHgIO6P75QIt5o8gYA2wO2E5YYpnA0unE58jKRyZFYm1jT3qm90uGUGpEIlXNtqrdhTe81LOi0gNp2tYlPj2fBxQX02dyHDbc2FLpLddaO8jGpMdSvVJ9P23wqdpQXDJf/Jgi9IG+S2uWTkjmHWi13qAbRXNGANHNoJo+qS5n86f+n0uHoRFbvoC4uXTA1MlU4mtIjEiEBlUpFV9eubOq/iTnt5+Bk7cTjlMd8c+4b+m/tz457Owrcpfo73++4FnUNW1Nb5ncSO8oLBiwjFQ5+KV9uPwNsqpXcubL2Hru9B9KTSu48gk5NbjIZgM13NxOZHKlwNMWj0Wo4EHwAKD+rxbKIRCgfPj4+NGzYEE9PT6VDKTVGaiP61+7P9oHb+dDrQyqbV+Zh4kM+OvkRr+x4hSMhR57bpXrL3S38c+cfVKj4/qXvqWFToxSjFwQdO/cbxIWAjSO0fbtkz+XYQu5SnZEMd/aV7LkEnWlVtRUtHFqQoc1ghf8KpcMpFr8IP6JSorA1taVt9bZKh1OqRCKUj6lTp3Ljxg3Onz+vdCilztTIlBENRrB78G6mNZ+GjYncpXrakWm8vud1zofnfk6uR/+7o/yUZlMMb35ZkiD+kfx/QUh8DMd/li93/QxMS7ipnEr1b08hsXrMYKhUquxRoY13NhKdEq1wREWXNS3W1aUrJkblq82JSISEfFmaWDKpyST2DNnDeI/xmBuZc+XxFcbvG8/kA5O5Hn0dgNjUWGYdmSXvKF+jU3YRoUGQJLlAdVk3mFcf1g2H5BiloxKUdnQupCdA9abQpJSK/bNWj909AKm6Wb0plLy2jm1pbN+YVE0qf934S+lwiiRTm8nBYLlQvzytFssiEiHhhezM7JjZcia7B+/mtXqvYawy5nTYaYbtHMaso7N499i7hCWF4WLjwpwOcwxjR3lJgoBDsLwH/D1ELogFuLMHfvOGoFPKxicoJ/Im+D2d5uj5rVzMXBqqNgL7eqBJg9u7S+ecQrGpVKrsD3/rb60nNjVW2YCKwDfclydpT6hoVhGv6l5Kh1PqDOAdS9AXVSyr8EmbT9g+aDt9a/VFhYoDwQfwDfeVd5TvPB9bU1ulw3w+SYJ7R+DPl+HvwfDQF4zNoc1UGL0NKrtDQhis6gtHv4cCFokLZcj+T0HSQv2+cufn0qJS/Vs0LfYeMygda3SkXsV6JGcms+bWGqXDKbSs3kHdXLthrNZR13QDIhIhodCcbZyZ22EuG/tvpJNzJ6xMrPja+2vqVqyrdGjPF3gcVvSG1QPhwVkwMoPWb8H0K/Dyt1CrE7xxDJqOkN8Ij34Lfw2Qa4eE8iHgEAQcALUxdP+q9M+fVSd075CYojUgz44KrbmxhoT0BIUjKrgMTUa5nhYDkQgJxVC3Yl0WdVnEmeFn9Hu5ZdBJWNEHVvWDkNNyAuQ1WU6Aen2Xc1m0mTUM+g0G/SH3jgk6Ab97y3UbQtmm1cD+p72CvN6AyrVLP4YqdaFqY9Bmwq2dpX9+oci6uXajtl1tEjISWH9rvdLhFNiZR2eIT4/H3sKellVbKh2OIkQiJBSb3jZMDDoFK/vCyj4QfBKMTMFzEky/DL1/ANvq+T+26TCYfFzuJJwcDWtegX0fQ2Z6qYUvlLJLqyHyBphXgJfeVy4OD7F6zBCpVersPcj+uvEXyRnJCkdUMFnTYt1du2OkNlI4GmWIREgoe4LPyKM/K3vLIzpqE2g1AaZdgj4/ga1jwY5j7w4TDsqjRwBnFsOfPSEmsORiF5SRlgCH58iXO/4fWFbSyWElSWLn1TBuhBViFVhWl+nA45Bo2E36ypuebj1xsXEhNi2W/93+n9LhvFCaJo3DIYeB8tdE8VkiERLKjpBzck3PipflNxG1CbQcJydAfeeBXREaPJqYy6NHw9bKIwVhF+GPl8Sn9bLm5AJIioRKtcBzos4Ou8c/nLfXXmLSXxee24w0h0o1wamlXKd2Y5vOYhFKnrHamImN5d+flddXkpqp35vongo9RWJGIg6WDjR3aK50OIoRiZBg+B6ch9WD4M8ecP+oXOjaYgxMuwj9FkAF5+Kfo34fePMkOLeRN8fcOB62T4N0wxj+Fp4j7qE82gdygbSxbvZY0mgl5h+4A0BobAr3Hhdi64xGYvWYoepbuy+OVo5Ep0az6a5+f2DKaqLYw7WHYbQ9KSHl9ycXDN9DP7kH0PJucO8wqIyg+evwjh/0XwgVXHR7vgrOMHbX0/oRFVxcBUs7Q8QN3Z5HKF2HvoLMVHD1lpfM68jOq2HcjUzM/v70vaiCPzhreizkDMSF6iwmoeSZqE2Y0HgCACv8V5Cu0c+6wtTMVI4+OArAyzXL52qxLCIREgxPqB+seRWWdZG7QquMoNkoOQEasFjes6mkGBnLu5CP3grWVeHxLTkZ8lsptucwRKF+cHWDfLnnHLmXjw5karQsOHgXAKcKFgCcvFuIRMjOCVzaAhLc2KqTmITSM9B9IA4WDkQkR7Dtnn5Ob54IPUFKZgqOVo40sW+idDiKEomQYDjCLsHa12BpF7i7H1RquefP2+dhoI9cW1FaanWCN09B7a7yaMKO6fJ0WWpc6cUgFI8kySsBAZoMA0fd1UhsuRRKYFQSlaxM+fEV+U3mzP1oMjXagh8ka8sNMT1mcEyNTBnnMQ6A5deWk6HNUDii3PYGytNiPd166u/K31IiEiFB/z26Iu8BtqQT3Nn7NAEaDm9fkHv+KNHvBcC6CozcKNeVqI3h+mb4vYM8ZSfov5s75KknYwvo+qnODpueqWXhYXk06M2OtWhdqzI25sYkpGbiX5jVYw0HyL/roRfgSZDO4hNKx5C6Q6hkXonQxFB239evLVOSM5I5/vA4AD1rlt/VYllEIiTor0dXYf1IeZXW7d3ym0KT12DqeRj0u3IJ0LPUavCeDuP2yjVJscFy0fbpRaAtxKd/oXRlpsOBz+TL7d4u2orCfPzj94AHMSlUsTHj9TZuGKlVtKtdGYBTAYWYHrN2ALcO8uXrW3QWn1A6LIwtGNNoDADLri1Do0fb9Rx7eIxUTSrONs40rNRQ6XAUJxIhQf+E+z9NgDo87a6rgsavwpRzMHiJ3N9H3zh7wuQT8qd4babcoXjtUEgqxBufUHrOL4UngXKdl/cMnR02NUPD4sMBAEzpVBsLU7lBnbe7PVDIOiEQzRUN3Gv1XsPOzI6g+CD2B+9XOpxsYlosJ5EICfoj4jpseF3e0iIrAfIYAlPPwZBl8vYD+syiAry6CvrOlzdyDTgg72QfeFzpyIRnJcfAse/ly10+kbdV0ZH1viE8ikulup05w73+XbWYlQj5BT8hJb0QIwMN+svTruHXIOquzuIUSoeViRWvN3gdgCVXl6CVlB8lTkxP5GToSaD87i32XyIREpQXeRP+NwZ+awc3t8vXNRoEU87AK39ClXrKxlcYKhW0Gg+TDoN9PUgMh1X95a7FmkyloxNAToJS46CqBzQbqbPDpqRr8Dl6D4Cpnd0xN/l3u4Ja9lZUtzMnXaPlQnAhNlO1rAS1OsuXRdG0QRreYDjWJtYExAZkd3EuNk0GXPgTDn4JwaflffIK6MiDI6Rr03GzddP/jbJLiUiEBOVE3oJ/xsGvbf9dItxwALx1Bl5dCQ4NlIyueKo2gjeOyH2NkOD4D/K2H6InjLKiAuD8Mvlyj29Ah3sr/X02mMcJadSoaMHQVjmbeKpUKtrVfjo9Vpg6IXhm9dgm0aLBANma2jKiwQhAHhUqcIfx/AQclD807pwJJ+fBil4wrwHsehcCT7wwKcraW+zlmi+LabGnyk0ilJycjKurK++9957SoQiP78DGCfBrG3mlFRI06CcvRx/6F1QtI8V7plZyX6Mhy8HUBkJOy9N+t/coHVn5deAzuYarTk+o3Vlnh01Ky+S3Y/Jo0LQudTA1zv3S2r6OXDB9OiC6cAev3xuMzCDqtrwprGBwRjUYhYWxBTdjbnIi9ETRDhJ9D9YOk5vIRt0By8pyB3JzO0iMkBP8VX3h53qwYwbcO5JrFDouLY5TYacAMS32LGOlAygtc+bMoU2bNkqHUb5FBcjTEv4b5X2UQO7k2/H/oHoZbujV+BW5R83G8fDoMqwbBq3fgu5fgrGZ0tGVH4En4PYuuQFnj691euiVp4OISUrHrbIlg1s45Xkf76cjQv5hcTxJSqeiVQG38jC3gzrd5bo5/83yaKNgUCqaV2RYvWGsuL6CP678QQenDgUfjUlLgOM/wplfQZsh14x5vSG/blpUkFdABh6TR9Vv7YKkx+C3Qv6yqAQN+soj7TU7cjjkMJnaTNwruFO7gh6sutUT5WJE6O7du9y6dYtevXopHUr5FH0PNk8GH0+49j85CarXGyYfh2FrynYSlKVybZhwANpMlb8/9xss7y4/N0LJ02ph30fy5VbjdFp3Fp+awZLj9wGY3q0OxkZ5v6w62JpTx8EaSZKbKxbKs6vHxPSYQRrdaDRmRmZcjbrK2UdnX/wArRYur4VFLeHUL3ISVLsrvHUaXp4rJ0Eg741XpzsM8IH37sKozfJei5aVISUGLv4ljyL96M4+3/kAvOzSveR+UAOkeCJ0/Phx+vXrh6OjIyqViq1bt+a6j4+PD25ubpibm9O6dWt8fX0LdY733nuPuXPn6ihiocBi7sOWt2CxJ1xdLydAdV+GN47C8HVQvanSEZYuY1N4+VsYvkH+pPboitwj6er/lI6s7Lu6HsKvgpktdPpQp4f+82QgcSkZuDtY079p3qNBWbJWjxWqnxDIfzcmlvKS/0eXixipoCR7C3teqfsKAH9c/eP5d37oJ39Q2vqWPO1VsSYMXw+jNj0/iTcyAfeu8l6L796B0dvkxRtWVXiSHs/ZDLlQv+eBH2DLm/I0fUaqrn5Eg6V4IpSUlETTpk3x8fHJ8/YNGzYwa9YsPv/8cy5evEjTpk3p2bMnkZGR2fdp1qwZHh4eub7CwsLYtm0bdevWpW5dUR1famICYetUWNQKrqwFSQN1esgrqUZs0OlWBgap3svw1ilwbQ/pibB5EmydAumF2J1cKLj0JHljVYAO74KVvc4OHZuczvITgQDM6FYHI/XzpzvaFzURMrWSkyEQPYUM2NhGYzFRm+AX4ceF8Au575AQLn94XNZF7ihuag3dvpBbiNTrVbi98IyM5a2A+s6Hd29zsNsHaFQq6mdocUt+AlfWydP0P7rDpklwcydkpOjqRzUoitcI9erV67lTVvPmzWPSpEmMGyfv2/L777+za9cu/vzzT2bPng3A5cuX83382bNnWb9+Pf/88w+JiYlkZGRga2vLZ599luf909LSSEtLy/4+Pr4QLfHLuydB8lz25XVy8gPg3k3+BF6jlaKh6R1bRxizXX6+jn0Pl9fAA195tVw1D6WjK1tOL4aER3Ln79Zv6vTQS0/cJyEtk/rVbOjtUf2F929dqxJGahVB0ck8fJJMjYqWBT+Zx2B5ccH1rdDtK7mruWBQqllVY6D7QP658w9Lri6hVbWnr4uZaXD2N/n1ID1Rvq7pcOj6Odi++PfqhdRG7EuQp+F7es2A7h5yTdGN7ZAQJpcsXPsfmFhB3Z7QaCC4dwfTQvx+GjC9/ktKT0/Hz8+Pbt26ZV+nVqvp1q0bZ86cKdAx5s6dy4MHDwgKCuKnn35i0qRJ+SZBWfe3s7PL/nJ2ds73vsJTT4Jh+zvyXPalv+UkqHYXuSZm1CaRBOVHbQSdZsOYHWBTHaLvyhvKnl8m6kB0Jf4RnFogX+72JZiY6+zQ0YlprDgVBMDM7nVRv2A0CMDG3ISmNeyAIqwec+8urz6MewAPzxc2XEFPTGg8AWOVMWceneFq5BW4vVdeQXvwczkJcmwBEw7K2wjpIgkColKiOB8h/870rPkyuLaFXt/DzOvy63Tbt8HOGTKS5GT7f6Phx9ry//03Q1qiTuLQV3qdCEVFRaHRaKhatWqO66tWrUp4eHiJnPPDDz8kLi4u++vBgwclcp4yIfoebHtbToAu/iUvS67VGcbvh9e3gLOX0hEaBrf2cuuAOj1Bkyb3A/nfaEh5onRkhu/wN5CRDDW85CadOvTH8fskp2to7GRHj4ZVX/yAp7KmxwrdT8jEHOr3kS+L6TGD5WTtRN/afQFYsmcyrHtNrqe0coABv8LEQ/KWPTp0MPggWkmLR2UPnG2e+XCvVsuv0z3nwIxrMPEwtJsmj55mJMONbbBxnJwUrR8JV/+B1LI3S6L41FhpGjt27AvvY2ZmhpmZWNL8XI+uyo28bmz7dxl8zY7yFJhrW2VjM1RWleX6qbO/woHP5Q7bYZfhleUioSyqR1flKUeAnt8Wrr7iBSITUvnrTBAAs7rXLVRjunbu9iw8HMDpe1FIklS4pnYeQ+TC7xtb5ZVDOmwIKZSS1DgmxsazXZI4pkrippkFDVpOgpfeB3PbEjnl3iB5b7GXaz6nd5BKBTVayl/dv5KL8m9sk6dinwTK7Rtu7ZR7Wrl3lZfk133539VrBkyvEyF7e3uMjIyIiIjIcX1ERATVqlVTKKpyLPg0nJgn76GVpU5P6DALXESPpmJTqaDtVHBpK/ccehIIf74s74flPUPUhBSGJMH+jwFJTh50/An71yP3SM3Q0tylAp3qVSnUY5u7VMDCxIioxHRuRyRQv1oh3vxqdQLzCvJKouBTUPOlQp1bUJBWC5f/hkNf4Zr0mJerVGa3tRVLW/Rnno77Wj0rMjmSixEXAXmT1QJRqeRFLY7N5Tql8GtyUnRjK0QHwO3d8pfaRC6DaDhAbvxpUbHEfo6SpNevrKamprRs2ZJDhw5lX6fVajl06BBt25bsyIOPjw8NGzbE01O3L6AGR5Lgzn75DXlFLzkJUqnlN5c3T8LI/4kkSNecWsg9ljyGyPVWh76EvwdDYuSLHyvI7uyVN7s1MpNfyHXoUVwKa8+FAPBu93qF3qbAzNgIr5qVgCLsRm9sCg37y5fF3mOGI+QcLO0s11ImPYbK7kxq/yUAB8LPEPAkoMROvT9oPxISzao0o5pVEQYQVCq511vXT+HtC3Ifo47/B1Xqy72N7u6DbVPk1Wd/D5HLJJIKWf+mMMUTocTERC5fvpy98iswMJDLly8TEiK/0MyaNYulS5eyatUqbt68yVtvvUVSUlL2KrKSMnXqVG7cuMH58+W0KFGrkesQfu8Aa1+FkDNgZCo36nr7grwZarXGSkdZdpnbyltz9F8MxhZw/4i8k/09HW3aWJZpMmD/p/LlNm9BRVedHn7x4QDSNVq8albC271ykY6R9bhCL6MHeVsFkD+hazKKdH6hlMSHyUvT/+whTzWZ2cp73L11Bvemr9PdVW5suPTa0hILIWtarMCjQc+jUsmdzTt/JC/pn3IOOn0EDo3kGtGAg3Ky91Md+GsAXFgBiY+Lf94SppKKvQNc8Rw9epTOnXPv+TNmzBhWrlwJwOLFi/nxxx8JDw+nWbNmLFy4kNatW5dKfPHx8djZ2REXF4etbcnM3+qVzDS4sl7uZBrztOuxiZXcjbftVHnZt1C6Im/JBYuRNwAVtJ8pvxAZmSgdmX46twT2vA+W9jDtorxFhY48iEmmy89HydBIbHijDa1rFS0Ruh4WR5+FJ7E0NeLK5z0wyacbdZ40mTCvvjyyMGqT3KJC0C8ZqXBmkVxKkJEMqKD5KOj6GVg7ZN/tVswtXt3xKmqVmu0Dt+Nqq9uk/VHiI3ps6oEKFQdfPYiDpcOLH1RUUXefLsnfJk+lZVGpwdVbXpJfvx/YFHxhQXEV9P1b8URI35WbRCg9CfxWPu25EiZfZ15B7rvSejJYVlIyOiEjRd4i4sKf8vfOrWHIMnl1h/CvlFhY2FzeWqDPz+A5UaeH/2DjFf534SHt3e35e2LRP4xptRKt5hwkJimdf95si6dbIf++dr0rt1loNhIG/lrkOAQdkyS5oHjfxxAbLF9Xw0tequ7UIs+HvH3obY49PMaA2gP4pv03Og1npf9Kfvb7mZZVW7Ly5ZU6PfZzRd97WlO07T+d0FXg2k6uKWrQX2ftAfJT0PfvQk2NZWRkYGxsjL+/f7EDFPREcgwc/R7me8hvtAlhYF1NHr6d6Q+dPxRJkD4wsZA7xL66Uh5ef3AOfm8vN0QT/nXiJzkJsq8HLcbq9NBBUUlsuhgKwKwexetUr1araFu7GNNjHkPk/9/cKY/iCsqLvClPB20YJSdBNtVh8FKYsD/fJAjgjSZvALDz/k5CE0N1GtK+oH2AAjvNV64tL6KZfAymX5FXoTm1BCS5yH/PB/Ko5vKe8maycQ9LN77/KFQiZGJigouLCxqNpqTi0Rtlvlg6IRz2fwILGsPRb+U3j4o1od8vMOMqtHsHzGyUjlL4r0aD4M0T8otKahz873V5dEDsFyRv7XLu6R5OPb6RtxjQoV8O3UWjlehcrwotXIq/OqbI220AOLcBG0dIi4OAQy++v1ByUp7A7g/kGr7AY3ItZYd35VrKJkNf2LahSZUmtK3eFo2kYfm15ToL60HCA/yj/VGr1HRzVXD6tKIbeE+Xt1iacU1uZVHjaUuQB2dh34cwv5G8I4FCCl0s/fHHH/PRRx8RExNTEvHojTJbLB0TCDtmyAnQ6UVyJ9OqHnJh7tsXoOVYMBZ9lPRaRTcYv09+cQF5imRZV3h8R9GwFHfwC9Cky0096+h2d+2AyAS2Xn46GtRdNzvXZyVCl0JiSUrLLNyD1ep/G0ReF6vHFKHVwPnlsLAF+P4hr/Cs3xem+sq1QGbWBT7U5KaTAdgasJXwJN00C84aDfKs5om9he721yuWCi5yrenEAzDzBrz8vdwuBJWiPegK/ZFp8eLFBAQE4OjoiKurK1ZWVjluv3jxos6CE3Qo4jqcnC+vBMtqgujcWv7kUqeHTpvNCaXAyEQebnZ7CbZMhgh/WNJRrotpNkLp6EpfyFm5UFOllrvk6vj3ef7Bu0gS9GhYlcY1dFN87VzJEudKFjyIScE3MIbO9QtZyOoxBM76wK3dkJ5cbvaF0gtBp2DP/0HE06LgKg3kBpe1cy/8KYiWVVvSqmorLkRcYOX1lcz2ml3sEBWbFisoOydo86b8lRSl082QC6vQidDAgQNLIAyhxDzwlVcu3Nnz73W1u8oJkGs7kQAZujrd5J3sN0+S++ZsfQvuH5WLMw20uVmhabVyfRvIK3OqNtLp4W8+imfX1UeAvKeYLrV3t2ed7wNOBkQVPhFyagEVXOV6lLv75VU5QsmKfQAHPoXrW+Tvze2g88fQakKxp2LfaPIGFw5cYOOdjUxsPLFYozhBcUHcirmFkcqIri5dixVXqVAwCYIiJEKff67b5mRCCZAkud/MyfkQdOLplSq5EVv7WeDYTMnoBF2zqQavb5W3PTkyF65ukFdrNBwALUbLS1fLcsJ7fTOE+sltHjp/ovPDzz8gTzn2aVKdBtV1u3LU+2kiVKQ6IZVK3pE+a6RXJEIlJz0ZTi+EkwsgM0UeeWw5Vv59sypaC4X/alO9DU2qNOHq46v8df0vZrWaVeRjZfUOalO9DRXNy8kHomIocgrr5+fHzZs3AWjUqBHNmzfXWVD6wMfHBx8fH8MqDNdq4dYOeQQoa8mi2hiaDIP2M8C+jpLRCSVJbSTvVeTaHna/J0+VXd0gf1WqDS1eh6YjSrWHR6nISJFrgwA6zNT5z3ftYRz7b0SgVsHMbrr/+2n7tA/RrfAEHiekUcWmkPV5jZ4mQnf3Q1qCWOCga5IkT7nu/xTinm7A7eoNL38nd1vWIZVKxeQmk5l6aCrrb69nnMe4IicxWdNiOmmiWA4Uulg6MjKSLl264OnpybRp05g2bRotW7aka9euPH6s/x0kC8qgiqU1GXBpDfzaWt61/NFluRtx67fkpYsDfUQSVF64tpW3Ppl0WO4CbmotN8Y8+AXMayDvIH1nn9yUryw4+6v8BmXrBG2m6vzw8w7cBmBAMyfcHXSfZFS2NqPh01Gm0/eKMCpUrTFUrgOZqXB7z4vvLxRcuD+s7Av/jH36O1YDXlkBY3fpPAnK0sGpAw0qNSAlM4W/b/5dpGMEPAkgIDYAY7UxXVy66DjCsqnQidA777xDQkIC169fJyYmhpiYGPz9/YmPj2fatGklEaOQn/RkebnwwubyXi9Rd8DMTh4ZmOkPvb4DuxpKRymUNpVKXl7ffyG8e1vepqOGl7yq5dZOWDtUXjV4+Bt4EqR0tEWXGAkn5suXu36u82Jhv+AnHLn9GCO1iuldS+6DRPs6xVhGnzU9BmLvMV1Jioads+CPDhB8EozNoeNsePu8/FyX4DRz1qgQwNqba4lPjy/0MfYFy6NB3o7e2Jnprqt6WVboqbG9e/dy8OBBGjRokH1dw4YN8fHxoUePHjoNTshHSqy8ZPrsb5D89MXTykFelthqvLxPlSCAvIS3xevyV+RNuLgarqyTG2ce/1H+qtVJriWq39ewWicc+RbSE+Qdshu/qvPDZ9UGDWnhhJu91QvuXXTtaldmyfH7nAqIRpKkQm/iSqPBcOx7eZ+nlCflp0he1zSZcGG5/HuVGitf13Ag9Pi6VDu4d3bpjHsFdwJiA1h3c1320vqCkCSJvYE63FusnCj0iJBWq8XEJPceRyYmJmi1Wp0EJeQjMVKe4ljQGA5/LSdBFVzkJdMzrsp1QCIJEvLj0ABe/hbevSUP8dd6utT3/lHYOB5+rg97P5QTJn0XcQMurpIv9/xW7qujQ2fvR3MyIAoTIxXvdCnZaWWvmpUwMVIRGptCcHRy4Q/gUP/pppcZcGuX7gMsD+4fk0eA9nwgJ0FVPWDMThi6qtS3sVGr1NndplffXE1SRlKBH3vnyR2C4oMwVZvS2bloS/nLo0K/enTp0oXp06cTFhaWfV1oaCgzZ86ka1cDWKZXQHrVWTo2BHa9JydAJ+dDWjxUqQ+DlsA7F+X9lEwslI5SMBTGZvIQ/+itcg3ZSx/IXYpTYuSam1/bwLJucPEvSEtUOtq8HfhU7ofVoJ/cBkKHJEli3n55NGhoK2ecK5Vsfx5LU+PsTtUnizI9Bs9Mj23SUVTlxJMgeUuMv/rLmxpbVJQ/WL5xDGp2UCysHq49cLN1Iy4tjg23NxT4cVmrxTrU6IC1acEbOpZ3hU6EFi9eTHx8PG5ubtSuXZvatWtTs2ZN4uPjWbRoUUnEqAi9KJaOvAVb3pRrgM4vlQsinVrCsLXw1hlo+prYgVwonopu0OVjuaZsxD/y9JjaGB6eh+3vwM/15P8/9JNX0OiDgIPyl9oEun2p88OfDIjCNygGU2M1b3dx1/nx8+L9tMt0kQqm4d9E6P4xuTmd8HzpSXKN3GIvuLkDVEbg9ca/Hyx1vD1LYRmpjZjYWN4weNX1VaRkprzwMWJarOgK/a/t7OzMxYsXOXjwILdu3QKgQYMGdOum4F4mZU2on7wE/tbOf6+r2VFugljzpbLdE0ZQhtoI6vaQvxIi5Dqii3/JK84u/iV/OTSSa4maDFVuI15NJux72ivI6w15c0cdkiSJn5+OBo3wcqG6XemMtHq72zPvwB1O34tGo5UwUhfyb7xSLblWKuyS3EPKc0LJBFoW3NwpT4HFP93gtOZL8lYPVRsqG9d/9K7Vm9+u/EZoYiib7mxiVMNRz73/jegbPEx8iLmROR1rdCylKMuGQiVCGRkZWFhYcPnyZbp370737rrdz6dckyS5M/DJeXLNRpb6feVdfJ1aKhaaUM7YVJXrzbynQ/BpOQm6sRUir8Pe/4MDn8lTUi1Gg1sHndfnPNel1fD4pjyF0fF9nR/+yO1ILj+IxdxEzZTOuk2ynqdpDTuszYyJTc7gRlh80bbxaDRYToT8N4tEKD9BJ+WNiiWtXPvT81v5NVYPP1yaqE2Y0HgCX535ihX+KxhabyimRqb53j9rWuylGi9haSK2WykMsfu80rRaucBxWTd5nvr+UXmYtulwmHIOhq0RSZCgDJUK3Lxh8B/yMvzeP8l9azRp4L9R/n1d1ByO/wTxj0o+ntR4ODJHvtxxts5XR0mSxLynK8XGtHXDwcZcp8d/HmMjNW1qyaNsp4o6PZa1CWvwqdL59zA0SdGwaaKcBHkMgann5YReD5OgLANqD6CqZVUiUyLZGrA13/tJkvTv3mI19XRvMT0mdp9XiiYTrmyA39rB+hEQekHuV+E5CaZdgkG/y6tBBEEfWFQAr0lys8Y3jsl7K5nZysWmh7+G+Q1h7TB5A9CSatZ4agEkPZY7Zbcar/PD77segX9oPFamRkzuWHqjQVmy6oSK1E8IoIKzvJEyT7shC/+SJHkfvoRHcgPKfgvBpPQS3aIyNTJlnMc4AJZfW06GNiPP+12NusqjpEdYGlvSwUm5Im9DJXafV4JWK+8UHuEvf29qA14Toc0UsC7kxouCUNocm8lfPb6R33Av/gUhZ+SNfe/sAetq0GyE3LuoUi3dnDM2BE4vli/3+BqM858iKAqtVsruGzTOuyaVrHR7/IJo/zQR8g2MITVDg7mJUeEP4jEEHpyTp8favKXjCA3Y2V/h7j4wMoNXV8j9tQzEkDpDWHp1KWFJYey8t5NBdQbluk9WkXQn506YG+t/gqdvxO7z+SjRvcbUarmJXUK4/GLlOVH+xC0IhsTUUk54mo2Ax3fg0l9weR0khsu1bifnyTVELcbIUxDF+QR+6Ct5Ss6tA9Trrbuf4ald1x5xOyIBG3NjJnXQUfJWSO4O1jjYmBGZkMbFkCe0q12EHbkbDoA9/wcPfeXksZR74Oil0Itw4Olm4T3nyNO7BsTc2JxxHuP46cJPLLu2jH61+2Gs/vetWytp2R+8H4CX3cS0WFEUKhHKzMxEpVIxfvx4atQo21s3TJ06lalTpxIfH4+dXQm0KX/pfej8sc63BRAERVSpK48QdflMHhW6+BcEHIKgE/KXeQVo8ppcYF3No3DHfugH1/4BVPI5dFzTodFKLDgojwZNbF8LO0tlWlKoVCq83e3ZcimUUwFRRUuEbKqBW3v5Ob++RS54L89S42HjOLnZZIN+8odOA/Rq3VdZdm0ZIQkh7AvaR59afbJvuxR5icjkSKxNrPF28lYwSsNVqBohY2NjfvzxRzIzy8iGjUqyqCCSIKHsMTaVRyVGbYIZ16DTh2DnLHfr9f0DfveGpV3Ab6W8W/qLSBLs+0i+3HS4PCWnY9suh3LvcRIVLE0Y395N58cvjKw6oZMB0UU/iMcQ+f/lvbmiJMHOGXIdm50L9F+k14XRz2NpYsnohqMBWHp1KVrp310csqbFurh0ee6qMiF/ReosfezYsZKIRRCEsqSCM3SaLXevHrVJTpDUJnKfrB3T4ad6sG0qPPDNv1njjW3w4CwYW0DXT3UeYoZGyy+H7gLwxku1sDFXtkGpt3tlAK49jCUuJe/C2Bdq0F9eefroCkTf02F0BubSajkZVBnBK8sNfg+2YfWHYWNqw724exwMPgiARqvhQPABQDRRLI5C1wj16tWL2bNnc+3aNVq2bJmrWLp///46C04QhDJAbQTu3eSvxMdwdb08dRZ1By79LX9Vqf+0WeMwsJKTATLT4ODT2g7vaWDrqPPQNl98SHB0MpWtTBnT1k3nxy+s6nYW1Kpixf3HSZy9H03PRtUKfxCrylC7s9x9239zifRb0nuRN2H3B/Llrp+Cs5ey8eiAjakNIxuM5Pcrv7Pk6hK6u3bnQsQFolOjsTW1pW31tkqHaLAKnQhNmTIFgHnz5uW6TaVSiR5DgiDkz7oKtHsH2r4tr266+Jf8Zv34ljwFduBzaNBXTorCr8nTGtbVoN00nYeSnqll4aEAAN7qVBsrM2W3VcjS3t2e+4+TOBUQVbRECOTmigEH4Xo5TITSk+GfcZCZArW7QLuyUyc1qsEo/rr+F7ef3ObYw2MceyjPznRz7YaJ2G6pyIq0+3x+XyIJEgShQFQqcGkDA3+F925D3/nyFhHaDLnId/UguYM1QJdPSmS584YLDwiNTcHBxoxRbVx1fvyiyiqSLnI/IYD6fcDIVN5INPKmjiIzEPs+lLuPWznAoD9Kt/N5CbMzs2NY/WEA/H7l9+wpMjEtVjxl5zdEEATDZG4nN0h84yhMPiHvIWb+dKVmtSby8nwdS83Q4HNYHg2a2tm9aD17SkjbWpVRq+De4yQexb14s808WVSQpyJBHnErL/w3y4X4qGDwkjLZl210w9GYG5lzPfo6sWmxVDKvhFc1w5/6U1KBE6HevXsTFxeX/f13331HbGxs9vfR0dE0bKhfm9YVh4+PDw0bNsTT01PpUASh/KjeBHr/KG/pMWoTvL5FrjHSsbXnQgiPT8XRzpxhXs46P35x2Fma0LhGBQBO6Wr1WH7F6GVJTKBchA/y/oy1OysbTwmpbFGZV+q+kv19N5duOfoKCYVX4ERo3759pKWlZX//7bff5thmIzMzk9u3b+s2OgVNnTqVGzducP78eaVDEYTyx8RCHtGwKkIvnRdISdfw61F5NdXbXepgZqw/o0FZvGvLBeOnizM9VvdlebVdzD0Iv6qjyPRUZjpsHA9p8fI2I50+UjqiEjXOYxymanmpvJgWK74CJ0LSfz5R/Pd7QRAEQ/DXmSCiEtNwrmTBq630szFs++x+QlFFf601s4a6T98ky3pPocNfQdhFeUp1yHIwKtsjJA6WDszvPJ8PvT7Es5qYtSguUSMkCEK5kZiWye/H5NGgaV3qYGKkny+BLVwrYmasJjIhjYDIxKIfyGOw/H//LWV3euzuATi9SL484Fe5f1U58FKNlxjRYAQqA20SqU8K/CqgUqlyPeHiH0AQBEOy8lQgT5IzqGVvxaDmTkqHky9zEyM83SoBxVw9VqcHmFpDXAg8vKCj6PRI/CPYMlm+7PWG3HpBEAqpwOOHkiQxduxYzMzMAEhNTeXNN9/Mbqj4bP2QIAiCvolLyWDJ8fsATO9WB2M9HQ3K4u1uz8mAKE4GRDPWu2bRDmJiIW9Se+1/8vSYcxmaRtFqYPMkSI6WN1Lt/rXSEQkGqsCvBGPGjMHBwQE7Ozvs7OwYNWoUjo6O2d87ODgwevTokoxVEAShyJafDCQ+NZM6Dtb0baL7LtW6llUndO5+NJka7Qvu/RxZq8eub5GTh7Li+E/y5rImVvDKSjAxVzoiwUAVeERoxYoVJRmHIAhCiXmSlM6fJwMBmNm9LkZq/Z/Wb+hoi52FCXEpGVwNjaOFSxH3yqrdRS4iTgyHkDPy7vSGLugUHPtOvtx3Hti7KxuPYND0e2xYEARBB5acuE9iWiYNqtvyclG3rShlRmoV7Z4uoz91txh1Qsam0KCffLksNFdMioZNE0HSQtPh0HSY0hEJBk4kQoIglGlRiWmsPBUEwKzudVEbwGhQFu9nltEXS6Onq8dubANNZjGjUpAkwbYpkBAGld2h909KRySUASIREgShTPv96D1SMjQ0rWFHtwaGteVCViJ0KSSW5PRiJDA1O4JlZUiOgqDjOopOAWd/gzt7wcgMXllRInvQCeWPSITyIbbYEATDFxGfyuqzwYBcG2RoLT/cKlviVMGCdI2W80FPin4gI2NoOFC+bKjNFcMu/bsRb8858nYsgqADIhHKh9hiQxAM369HAkjL1NLStSId61ZROpxCU6lUeLs/rRMq7vRYVnPFmzvkLSkMSWo8/DMOtBlQvy94TlQ6IqEMKVIitHr1ary9vXF0dCQ4WP60tWDBArZt26bT4ARBEIoqNDaFdb4PAHjXAEeDsmRNjxU7EXJpCzbVITUO7h3WQWSlRJJg50x4Egh2zjBgMRjov6WgnwqdCP3222/MmjWL3r17Exsbi0Yj96WoUKECCxYs0HV8giAIRbL48F3SNVra1KpEO3fdb95aWtrVlmO/HhZPTFIxRnLURv9Oj103oNVjl/4G/42gMpL3EbMoYhsBQchHoROhRYsWsXTpUj7++GOMjP7dtblVq1Zcu3ZNp8EJgiAURUh0Mv9ceAjAuz3qKRxN8VSxMaN+NRsATt8r7vTY0+aKt3ZBRkoxIysFj2/D7vfly10+BpfWysYjlEmFToQCAwNp3rx5ruvNzMxISkrSSVCCIAjF8cuhu2RqJTrUsc/es8uQZY0KnQqILt6BarQCOxdIT5Q3K9VnGSnwz1jITIFancB7ptIRCSUgOT2TQzcjFI2h0IlQzZo1uXz5cq7r9+7dS4MGDXQRkyAIQpHde5zIlktlYzQoS/s6OiqYVqnAY5B8Wd9Xj+39ECJvgFUVGLQE1GJtT1lz73EiA31OMemvC8Uf7SyGAm+xkWXWrFlMnTqV1NRUJEnC19eXdevWMXfuXJYtW1YSMQqCIBTYLwfvopWga30HmjlXUDocnfCqWRljtYqQmGQexCTjXMmy6AdrNBhO/QJ39kFaon724rm+Bfyebus0eAnYVFU2HkHndl97xAcbr5KYlkkVGzNMFNwEudCJ0MSJE7GwsOCTTz4hOTmZESNG4OjoyC+//MKwYaLVuSAIyrkdnsCOq2GA3DeorLA2M6aZcwUuBD/hVEAUw7xcin6w6k2hUm2IuSc3J2z8iu4C1YUnQbB9mny5/Ux5rzShzMjQaPluzy2WP937r3XNSiwa0RwHG+U2zS1SCjZy5Eju3r1LYmIi4eHhPHz4kAkTJug6NkEQhEJZcPAOkgQvN6qGh5Od0uHolM6221Cp/u0ppG97j2kyYON4SIuHGl7Q+WOlIxJ0KDwuleFLzmYnQW92rM2aia0VTYKgCIlQly5diI2NBcDS0hIHB7llfXx8PF26iMxdEARlXA+LY49/OCpV2RoNytK+jpwInb4XjVYrFe9gWavHAg5ASmzxjqVLh76CUD8wt4NXloORidIRCTpyOiCKvotOcCH4CTbmxix5vSWze9XHWMEpsSyFjuDo0aOkp+fuZZGamsqJEyd0EpQgCEJhzT9wB4C+TRyp93S5eVnStEYFLE2NiElK51Z4QvEO5tAAqjQATbq8lF4f3D0IpxfKl/svhgrFmP4T9IZWK+FzJIBRy88RlZhOg+q27HynPT0aVVM6tGwFrhG6evVq9uUbN24QHh6e/b1Go2Hv3r04OTnpNjpBEIQCuPwgloM3I1GrYEa3OkqHUyJMjdW0rlmJI7cfcyogioaOtsU7oMcQOPKN3Fyx+UjdBFlU8Y9gy2T5suckaNhf2XgEnYhLzmDW/y5z6FYkAENb1eCrAR6Ymxi94JGlq8CJULNmzVCpVKhUqjynwCwsLFi0aJFOgxMEQSiIeU9HgwY2d6J2FT1cBaUj3u72HLn9mJMBUUx6qVbxDuYxWE6E7h2BpGiwqqybIAtLq4Etb0ByFFRtDD2+USYOQaf8Q+N4a40fD2JSMDVW8/WARrzmqZ+jfAVOhAIDA5EkiVq1auHr60uVKv9uYGhqaoqDg0OOTtOCIAil4UJQDMfvPMZIrWJ617I5GpQlq2DaNzCG9EwtpsbFqK+oXFteQfboCtzcDq3G6SjKQjoxDwKPg4kVvLoCTJQtnBWKR5IkNpx/wGfbr5OeqcWlkiW/jmyh14sXCpwIubq6AqDVakssGH3i4+ODj49P9l5qgiDop5/3y6NBr7asgWtlK4WjKVn1qtpgb21KVGI6l0Ke0LpWMUdxGg2WEyH/TcokQsGn4ei38uU+P4F92U5ky7qUdA2fbvNno5/c0LRbAwd+frUZdpb6XfRe6D5Cf/3113NvHz16dJGD0SdTp05l6tSpxMfHY2env5msIJRnp+9FceZ+NCZGKt7u4q50OCVOrVbRrrY926+EcepetA4SoUFw8HMIOgkJ4WBTigWsyTGwaSJIWmgyDJqNKL1zCzoXFJXEW2sucvNRPGoVvNezHm++VBu1WqV0aC9U6ERo+vTpOb7PyMggOTkZU1NTLC0ty0wiJAiCfpMkiXlPR4OGebpQo2Ixui0bEG/3ynIiFBDFrOK2CajoKvfreegLN7ZB68m6CfJFJAm2TYX4ULm5Y5+fSue8QonYdz2c9/53hYS0TOytTVk4vHn2/niGoNATzE+ePMnxlZiYyO3bt2nfvj3r1q0riRgFQRByOX43igvBTzA1VjO1c9kfDcqSVSd0+UEsCakZxT+gEs0Vz/0Bt3eDkalcF2RW9todlAeZGi1z99xk8mo/EtIyaeVakV3TOhhUEgRF7Cz9X3Xq1OG7777LNVokCIJQEuTRoNsAjGrtSjW78lNgW6OiJW6VLdFoJXwDY4p/wIYDARU8OAtxD4t/vBcJuwwHPpUv9/hGLtgWDE5kQiojl53jj2P3AZjYvibr3mhDVVvD+1vUWUtHY2NjwsLCdHU4QRCEfB26GcmVh3FYmBjxVqfaSodT6trparsNANvq4OotX76+pfjHe560BNg4Tm7kWL8veL1RsucTSsS5+9H0WXiSc4ExWJsZ8+vIFnzSt6GiG6cWR6FrhLZv357je0mSePToEYsXL8bb21tngQmCIORFq5Wy+waNbudKFRszhSMqfe3d7Vl7LoRTukiEQJ4eCz4prx5r945ujvlfkgQ7Z0HMfbCtAf0XyfueCQZDkiSWnrjP93tvo9FK1Ktqw2+jWlDLwHt3FToRGjhwYI7vVSoVVapUoUuXLvz888+6iksQBCFP+66Hc+NRPFamRkx+qfyNBgG0rVUZlQruRCQSmZBa/E0rGw6A3e9D2CU5UalUzGaNebm8Fq79D1RG8j5ilpV0fw6hxMSnZvD+P1fYdz0CgMHNnfhmkAeWpoVOI/ROoX+C8tJHSBAE/aPRSsw/KI8GTWhfk0pWpgpHpIyKVqY0crTFPzSe0wHRDGxezO2NrOyhVke4d1gumn7pPd0EmuXxbdj99JidPwKXNro9vlCibj6K562//QiKTsbUSM3n/RsywssFVRkZ0TPMCT1BEMqlnVfDuBORiK25MRM6lMCohQHx1mWdEMjNFUH3dUIZKfDPOMhIhpodof1M3R5fKFEb/R4y6NdTBEUn41TBgo1vtWVka9cykwRBAUeEZs2aVeADzps3r8jBCIIg5CdTo+WXg3cBmNShFnYW+t2ttqS1d7fnj2P3OR0QhSRJxX9jatAXds6ECH95BKdKPd0Euu9jiLwOVlVg8FJQi62YDEFqhoYvd1xnne8DADrVq8L8oc2oWAZHYQuUCF26dKlABytLGaIgCPpl6+Uw7kclUdHShHHtayodjuJauVbC1EhNWFwqgVFJxS9YtagI7l3hzl55eqzzh8UP8sY2uLBcvjzod7CpWvxjCiXuQUwyb63xwz80HpUKZnary9ud3Q2iS3RRFCgROnLkSEnHIQiCkK8MjZaFh+TRoMkda2NtZvgFmsVlYWpES9eKnLkfzamAKN2s3PEY8jQR2gSdZhdvVdeTYNj2dAWa9wxw71b8+IQSd/hWBDPWXyY+NZNKVqb8MqwZHepUefEDDVixaoQePnzIw4el0IBLEIRybaPfQ0JikrG3NmV0W1elw9Eb7evIdUKnAqJ1c8B6vcDYHKLvylNkRaXJgE0TIC0OanhCl090E59QYjRaiR/33WL8ygvEp2bS3KUCO99pX+aTIChCIqTVavnqq6+ws7PD1dUVV1dXKlSowNdffy1WlAmCoHNpmRoWPR0NequTe5lYrqsr7WrLm66evheFRisV/4BmNlCnh3zZf1PRj3P4G3h4HsztYMhyMCrf9Vz6LioxjdF/nsPnyD0AxrZzY8MbbXGsYKFwZKWj0K8oH3/8McuXL+e7777LbqB48uRJvvjiC1JTU5kzZ47OgxQEofxa7/uAsLhUqtqaMbK1i9Lh6JXGTnbYmBsTn5qJf2gcTZ0rFP+gHoPh5nY5Eer6eeGnxwIOwqkF8uX+i+SNXQW95Rccw9Q1lwiPT8XS1IjvhjShf1NHpcMqVYVOhFatWsWyZcvo379/9nVNmjTBycmJKVOmiERIEASdSc3Q4HMkAIC3O7tjbiJWHD3L2EhN21qV2X8jglP3onSTCNXpCSZWEBsCoRehRsuCPzYhHDY/3cG+1QS5UaOglyRJ4s9TQczdfZNMrYS7gzW/j2qBu0P52wC30FNjMTEx1K9fP9f19evXJyZGBxsACoIgPPX32WAiE9JwqmDBUE9npcPRS1n9hHS23YappVwrBIWbHtNqYPMbkBwFVT2g57e6iUfQucS0TN5ee4mvd94gUyvRr6kj26Z6l8skCIqQCDVt2pTFixfnun7x4sU0bSp2ERYEQTeS0jL57ahcs/BOF3fMjMVoUF6yEqHzQU9IzdDo5qAeQ+T/X98CBa39PDkPAo+BiSW8sgJMDG8X8vLgTkQC/RefZNe1R5gYqfiyfyMWDmuGVTleiVnon/yHH36gT58+HDx4kLZt2wJw5swZHjx4wO7du3UeoCAI5dOqM0FEJ6XjUsmSIS1rKB2O3qpdxYpqtuaEx6fiF/wkOzEqFveuYGYHCWHw4Cy4tnv+/YPPwJG58uXeP0GVusWPQdC5rZdC+XDzNVIyNFS3M8dnZAtauFRUOizFFXpEqGPHjty5c4dBgwYRGxtLbGwsgwcP5vbt23To0KEkYiw2Nzc3mjRpQrNmzejcubPS4QiC8BySJHEp5AlLjt8HYHrXOpgYid2A8qNSqWjnLq8e09l2G8ZmcqdpkJsrPk9yDGyaCJIGGg+FZiN0E4OgM2mZGj7d6s+MDZdJydDQoY49O99pL5Kgp4o0Fubo6GhwRdGnT5/G2loHDccEQSgR8akZbLsUylrfB9x8FA9ArSpWDGhWvlawFEV7d3s2XwzVXZ0QyKvHLq+BG1vh5e/AKI+3C0mCbW9D/EN5x/q+84rXhFHQuYdPkpm65iJXHsYBMK1rHaZ3rYNRGe0SXRSFToT27t2LtbU17du3B8DHx4elS5fSsGFDfHx8qFhRZJiCIBSMJElcehDLunMh7LgaRmqGXI9iaqymT+PqzOxWF2MxGvRCWdNh10LjiEvOwM5SB317anYEi0qQ9BiCT0KtTrnv47sEbu8CI1O5LsisfBbb6qujtyOZseEysckZVLA0Yf5rzehcz0HpsPROoV9h3n//feLj5U9r165dY9asWfTu3ZvAwMBCbc6a5fjx4/Tr1w9HR0dUKhVbt27NdR8fHx/c3NwwNzendevW+Pr6FuocKpWKjh074unpyZo1awodoyAIuhWXksGq00H0+uUEg389zT9+D0nN0FLHwZrP+jbE96OuzH+tGS6VLZUO1SBUtTXH3cEaSYIz93U0KmRk8u/y97xWjz26Avufdozu/jU4NtPNeYVi02gl5h+4w7iV54lNzqBJDTt2vtNeJEH5KPSIUGBgIA0bNgRg06ZN9OvXj2+//ZaLFy/Su3fvQgeQlJRE06ZNGT9+PIMHD851+4YNG5g1axa///47rVu3ZsGCBfTs2ZPbt2/j4CD/ozZr1ozMzMxcj92/fz+Ojo6cPHkSJycnHj16RLdu3WjcuDFNmjQpdKyCIBSdJElcDHnC2nMP2HXt39EfM2M1fZpUZ4SXCy1dK4rNm4uovbs9AZGJnAyI4mWP6ro5qMdg8FsBN3dA75/B+OnO42kJ8M840KRDvd7QerJuzicUW0xSOtPXX+LEXTkhHtXGhU/7NhSrLp+j0ImQqakpycnJABw8eJDRo0cDUKlSpeyRosLo1asXvXr1yvf2efPmMWnSJMaNGwfA77//zq5du/jzzz+ZPXs2AJcvX37uOZycnACoXr06vXv35uLFi/kmQmlpaaSlpWV/X5SfSRCEf8UlZ7Dl0kPW+T7gdkRC9vV1q1ozwsuFQc1r6GYqp5xrV7syK08HcVpX+44BuHqDdVVIjID7R6Hu0+03dr0HMffA1gkG+Ii6ID1x+UEsU/72IywuFXMTNXMHN2ZQc7Hi8kUKnQi1b9+eWbNm4e3tja+vLxs2bADgzp071Kih2yc8PT0dPz8/Pvzww+zr1Go13bp148yZMwU6RlJSElqtFhsbGxITEzl8+DBDhw7N9/5z587lyy+/LHbsglCeSZKEX/AT1vqGsOvqI9Iy5dEfcxM1fZs4MtzLhRYuFcTojw61qV0ZtQruRyURGpuCky72iVIbQcOB4PsHXN8sJ0KX18LV9aBSy/uIWVYq/nmEYpEkidVng/l65w0yNBK17K34bVRL6lUTNVsFUehEaPHixUyZMoWNGzfy22+/ZY+27Nmzh5dfflmnwUVFRaHRaKhatWqO66tWrcqtW7cKdIyIiAgGDRoEgEajYdKkSXh6euZ7/w8//DBHrVN8fDzOzqKjrSAURGxyOpsvhrLON4S7kYnZ19evZsOI1i4MaOaEnYUY/SkJtuYmNHWuwKWQWE4FRDG0lY5etzyGyInQzZ3Q9hrsele+vtNH4NpWN+cQiiwpLZMPN19j+5UwAHp5VOOHV5pgYy7+zgqq0ImQi4sLO3fuzHX9/PnzdRKQrtWqVYsrV64U+P5mZmaYmZmVYESCULZIksT5oCes8w1h17VHpD8d/bEwMaJf0+oM93KhmbMY/SkN3rXtuRQSy2ldJkI1PMG2hrxEfmUfyEiGmi9Bh8IvjhF0KyAykbf+9uNuZCLGahWze9VnQvua4m+tkIrUR0ij0bBlyxZu3rwJQIMGDRg4cCDGxrpt0W1vb4+RkRERERE5ro+IiKBatWo6PZcgCIXzJCmdTRcfss43hHuPk7Kvr1/NhpGtXRjQ3Alb8am0VHm727P4SAAnA6KRJEk3b4hqNXgMgtOLIDUOLO1h8FJ52kxQzL7r4czacJmkdA1Vbc3wGdGCVm5imrIoCp25XL9+nX79+hEREUG9evUA+P7776lSpQo7duzAw8NDZ8GZmprSsmVLDh06xMCBAwHQarUcOnSIt99+W2fnyYuPjw8+Pj5oNDrau0cQygBJkvANjGGdbwi7/cNzjP70b+rI8NYuNK1hJz6RKqSFawXMTdREJaZxJyJRdzUiHkPkRAhg0B9gIz6IKulBTDLT1l0iLVNL21qVWTi8OVVsxExGURU6EZo4cSIeHh74+fllN0988uQJY8eO5Y033uD06dOFOl5iYiIBAQHZ3wcGBnL58mUqVaqEi4sLs2bNYsyYMbRq1QovLy8WLFhAUlJS9iqykjJ16lSmTp1KfHw8dnZ2JXouQdB3MUnpbL74kLW+Idx/ZvSnYXXbp7U/jqImQQ+YGRvh6VaJE3ejOBUQpbtEyLE59JkH5nZQp5tujikU2Vc7b2QnQasneImmo8VU6ETo8uXLXLhwIUcH6YoVKzJnzpznFiHn58KFCzn2/8oqVB4zZgwrV67ktdde4/Hjx3z22WeEh4fTrFkz9u7dm6uAWhAE3ZIkibP35dGfvf7hpGvk0R9LUyMGNJNXfjV2EqM/+qa9u312IjS+fU3dHdhzgu6OJRTZkduRHLgRgbFaxdcDG4kkSAcKnQjVrVuXiIgIGjVqlOP6yMhI3N3dCx1Ap06dkCTpufd5++23S3wqTBAEWUxSOpv85Nqf+1H/jv54ONkywsuV/s0csTbTbT2goDtZ222cvR9NhkYrNqwtQ9IyNXy5/ToA49vXxN1BLI/XhQK9mj3bVHDu3LlMmzaNL774gjZt2gBw9uxZvvrqK77//vuSiVIBokZIKE8kSeLM/WjW+T5g3zOjP1amRvRv5sQILxca1xBTxIagYXVbKlqa8CQ5g6sPY2npKgpoy4qlx+8TFJ1MVVszpnWto3Q4ZYZKetFwDHITw2eHv7MeknXds9+XtcQhq0YoLi4OW1tbpcMRBJ2KSkxjk99D1p9/QOAzoz9Natgx3MuFfk3F6I8hmrrmIruuPWJmt7pM7ybeMMuCh0+S6TbvGKkZWn4Z1owBzZyUDknvFfT9u0CvcEeOHNFZYIIgKEurlUd/1vqGsP96OBka+YOMtZlxdu2Ph5MY/TFk3u727Lr2iFMBUSIRKiO+3nmD1AwtrWtWon9TR6XDKVMKlAh17NixQAfz9/cvVjCC4cnQaImIT6VGRbFLuL6LSkzjnwsPWX8+hODo5OzrmzpXYISXM32bOGIlRn/KBG/3ygBcevCEpLRM8e9q4I7decy+6xEYqVV8NcBDLFDQsWL/dSQkJLBu3TqWLVuGn59fmZsaE/IWl5LBOt8QVp4KIjw+lQWvNWNgczFUq2+0WonT96JZ5xvC/hv/jv7YmBkzsLkTw7ycaeQoRn/KGpdKltSoaMHDJyn4BsXQuZ6D0iEJRZSWqeGLpwXSY9u5if3DSkCRE6Hjx4+zfPlyNm3ahKOjI4MHD8bHx0eXsSlKFEvn7UFMMstPBvK/Cw9ITv/3ufnj+H0GNHMUn1T0RGRCKhv9HrLe9wEhMf+O/jRzrsAILxf6Nq2OpakYJSirVCoV7d3tWX/+AafuRolEyIAtOxFIYFQSVWzMmCGmOUtEoV4Jw8PDWblyJcuXLyc+Pp6hQ4eSlpbG1q1badiwYUnFqAjRUDEnv+AnLDtxn33Xw9E+La+vX82GkW1c+WbnDW4+iufKwziaOVdQNM7yLj41g482X2OvfziZ2n9Hfwa1cGKYpwsNHUXBf3nRLisRuhetdChCEYXGprD4sNxw+OPeDUTT0hJS4ESoX79+HD9+nD59+rBgwQJefvlljIyM+P3330syPkFBmRot+65HsOzkfS6FxGZf/1LdKkzqUJP27vaoVCouBT9h86VQ1p4LFomQwhYdusvOq48AaOFSgeFeLvRt4oiFqdgXqrxpV1uuE7r5KJ6oxDTsrcUWDIZmzq4bpGRo8KpZiQHNRIF0SSlwIrRnzx6mTZvGW2+9RZ06YniuLEtMy2TD+QesOBXIwycpAJgaqRnY3JEJ7WvlmqMe3tqFzZdC2XHlEZ/0bSg22lRIaoaGf/weArBweHOxsqScs7c2o0F1W24+iuf0vWjx+2BgTtx9zO5r4U8LpBuJsoMSVOCWoydPniQhIYGWLVvSunVrFi9eTFRUVEnGJpSysNgUvt19k7bfHuLrnTd4+CSFSlamTOtah1Ozu/DDK03zLNRr5VqROg7WpGRo2HYpVIHIBYDd1x4Rm5yBUwUL+jSurnQ4gh7wfjoqdDpAvFYbkvRMLZ8/LZAe3daV+tXElHZJKnAi1KZNG5YuXcqjR4+YPHky69evx9HREa1Wy4EDB0hISCjJOIUSdPVhLNPWXaLDD0dYcvw+CWmZ1KpixbeDGnN6dhdmda/73J2NVSoVw71cAFhzLuSFW6YIJePvs8EADPdyxkgtPj0K4F1H3m7jxN0o8XdpQJafDOT+4yTsrc2Y2b2u0uGUeYXehMbKyorx48dz8uRJrl27xrvvvst3332Hg4MD/fv3L4kYFeHj40PDhg2LtJGsIdBqJfZfD2foH2fov/gU26+EodFKtK1VmT/HtuLgzI6MaO2CuUnBaksGt3DCzFjNrfAELj+ILdnghVxuhMVzMSQWY7WKoZ7OSocj6Akvt0qYGKkIjU3JsXpQ0F+P4lJYdPguAB/2qi9KDUpBsXbjq1evHj/88AMPHz5k3bp1uopJL0ydOpUbN25w/vx5pUPRqeT0TFafCaLrvGO8sdoP38AYjNUqBjV3Yuc77Vn3Rhu61K+KupAjChUsTbOnY9b5hpRE6MJzrDknjwb19KiGg425wtEI+sLKzJjmzhUBOBUgVo8Zgm923SQ5XUMr14oMbiF6s5UGnTQSMTIyYuDAgQwcOFAXhxNKQGR8KqvOBLHmXAixyRkA2JobM6K1K2PbuVHNrvhvniNE0bQiEtMy2fq0NmtkaxeFoxH0jbe7Pb5BMZwKiGKE+P3Qa6cCoth19RFqFaKDdCkSHdXKuJuP4ll2IpDtV0Kzuwq7VLJkvLcbr7Zy1mnr/ZZPi6bvRiay7VIor7d109mxhfxtuRRKUrqG2lWsaFurstLhCHqmfZ3KzD8Ip+9FodVKhR7tFUpHzgJpN9HzqxSJRKgMkiSJo3ces/xEICefWS3SyrUiEzvUonvDqiVSTKtSqRjR2oUvd9xgzbkQRrVxFZ9oSpgkSax5WiQ9srV4voXcmtSogJWpEU+SM7jxKF5sqKunVpwKJCAyEXtrU1EgXcpEIlSGpGZo2HoplOUnA7kbmQiAWgW9GldnYvuaNHepWOIxDG5eg+/23OJWeAKXHsTSohTOWZ5dDHnCrfAEzE3UDGlRQ+lwBD1kYqSmTa3KHLoVyamAKJEI6aHwuFR+OSQXSP/fy/WxsxBlBaVJJEJlQHRiGqvPBrP6TDDRSekAWJsZ85qnM2PbueFcqfR2hrezNKFPk+psvhjKunMhIhEqYX+flQvT+zVxxM5SvHgKefN2t5cToXvRTO5YW+lwhP+Ys1sukG7hUkF8oFGASITyYQibrgZEJrD8ZCCbLoaSnqkFwNHOnHHeNXnNy1mxYuURXi5svhjKjqthfNK3ofh0U0JiktLZdU3eTmNUG1eFoxH0mbe73E/INzCatEwNZsZiyxV9cfpeFDuuhGUXSIsartInEqF86Oumq5IkcfpeNMtO3OfI7cfZ1zepYcfEDrXo7VENY6NidUUotpauFalb1Zo7EYlsuxzKaFE0XSI2+j0gPVOLh5MtTWroz++ooH/qVrXG3tqMqMQ0LgbH0ra2KKrXBxkaLZ9vkwukR7Z2FdOWChGJkIFIz9Sy40oYy04GcvNRPAAqFXRvUJVJL9WilWtFvSmUzeo0/eWOG6w9F8Lromha57RaiTXn5GmxUaJIWngBlUpFe/fKbL0cxul7USIR0hOrTgdxNzKRSlamvNejntLhlFsiEdJzscnprDkXwqrTQUQmpAFgYWLEq61qMN67Jm72VgpHmDdRNF2yTgZEERydjI2ZMf3FrtRCAbRzt2fr5TBOBkTxrnjTVVxEfCoLDsoF0rNfri9q/BQkEiE9FRSVxJ+nAvnnwkNSMuQ6JQcbM8a0c2NkaxcqWJoqHOHz2Vma0LeJI5suPmStKJrWuaxO0oNbOGFpKv6MhRfLqhO68iCW+NQM0fBUYd/uvkliWibNnCvwSktRIK0k8QqqRyRJ4nzQE5aduM+BmxFk7ZHYoLotE9vXpF9TR0yNla3/KYwRrZ3ZdPEhO6+G8akomtaZ8LhUDt6MBGCkKJIWCsipggW17K24H5XEufsxdG9YVemQyq2z96PZdjkMlQq+FgXSihOJkB7I1GjZ7R/O8hP3ufIwLvv6zvWqMKlDLdrWrmyQNSAtXCpSr6oNtyMS2HoplDHt3JQOqUxY5xuCRivhVbMSdavaKB2OYEDauVfmflQSpwKiRCKkkGcLpEd4udBYLHRQnEiEFBSfmsEG3wesPB1EaGwKAKbGaoa0cGJC+5q4Oxj2m5xcNO3MFztusM43hNFtRVFvcWVqtKw/LxdJi33FhMJq727P32dDcnScF0rXX2eCuR2RQEVLE97vKWq19IFIhPJRkn2EtFqJuXtuss73AYlpmQBUtjLl9baujGrjir21mc7PqZRBLWow92nR9MWQWFq6ilqh4jh4M5KI+DQqW5nyskc1pcMRDEzbWvaoVBAQmUhEfCpVbYu/2bJQcJEJqSw4cAeAD16ur/e1nuWF4RSclLKpU6dy48YNzp8/r/Njq9Uq7j1OIjEtE3cHa74b3JhTs7swo1vdMpUEAdhZyEXTIE/pCMWTVSQ91NNZNMUTCs3O0oTGT3vVnBKjQqXuu923SEjLpGkNO15r5ax0OMJTIhFSyMxudVkxzpP9M15imJcL5iZl901txNMpnJ1Xw4hLyVA4GsMVFJXEibtRqFRybYEgFEXW6jExPVa6fANj2HwpFJXoIK13RCKkkMY17Ohcz6Fc/DG0cKlAvao2pGZo2XopVOlwDNbapyNqHetWKdX944Sypf3TROh0QDRS1tJUoURlarR8ts0fgGGeLjR1rqBsQEIOIhESSpxKpcoeFVp7LkS8+BZBaoaGfy48AORO0oJQVC1dK2JqrCY8PpV7j5OUDqdcWH02mFvhCVSwNOEDUSCtd0QiJJSKgc2dMDdRcztCLpoWCmeP/yOeJGfgaGdO5/oOSocjGDBzEyM83eRFC6JOqOQ9Tkhj3n65QPr9nvWoaCUKpPWNSISEUvFs0fTac6JourD+Pis/Z8O9XDAqB9OpQsnKqhMSiVDJ+26PXCDd2MmOYZ6itk8fiURIKDXDvZ4pmk4WRdMFdfNRPH7BTzBWq3jNS6w0EYrPu7acCJ25H02mRqtwNGWXX3AMmy4+BOCrAY3Ehxg9JRIhodS0cKlA/Wo2pGVq2XLpodLhGIysJfM9G1XDwUb0fRGKz8PJDltzYxJSM7kWGvfiBwiFptFKfLpV7iD9Witnmov9FvWWSISEUiN3mn5aNO0riqYLIjEtky0X5ZV2opO0oCtGahXtno4Knb4XrXA0ZdOac8HceBSPnYUJH7wsCqT1mUiEhFKVVTR9JyKRiyFPlA5H7229FEpSuoZaVaxoW7uy0uEIZYi3u/z7dPKuqBPStajENH7cdxuA93rWo3IZa5Rb1ohEKB8+Pj40bNgQT09PpUMpU+wsTOj3tGh6jSiafi5JkrKfo5GtxT5tgm5lFUz7BT8hJV33WwmVZ9/vuUVCaiYeTrai+akBEIlQPkpyi43ybvjTKZ5dVx+JounnuBgSy81H8Zg93YhXEHSppr0VjnbmpGu0XAiOUTqcMsMv+An/+Mk1kF/29xAF0gZAJEJCqWvu/G/R9GZRNJ2vNWflIul+TR3F5oyCzqlUKtqJ7TZ0SqOV+Hy73EH61ZY1xCbTBkIkQkKpe7bT9DpRNJ2nJ0np7Lz2CIBRbUQnaaFktBf9hHRqrW8I/qHx2Job83+96isdjlBAIhESFPFs0bRfsCia/q+Nfg9Jz9TSyNGWpjXslA5HKKPaPS2Yvh4Wz5OkdIWjMWwxSen8f3t3H1fz/f8P/HEu63ShEl1IEenSVUmlNmUobZphfMIqi/Zhsax9WAyNXLZZ+6F9sA/FPvows1psZmZFfF2FLEqFXE1EutD1uXj9/khnnVUqi3d1nvfb7dy28758nvPuOM/zej3fr9fnTwukP/K2QQ8qkO40KBEinOim+WfRdP1koqSOQsGUYwe940ZF0uTFMdLVhLWxDhirG1yRPL/on6+itEoKO9NuNNRFJ0OJEOHMdCqabtLJ649ws6gSuhpCvDmkF9fhkC7Og+qE/raLt4ux51zdpMhRExwgFNBXa2dCV4twZigVTTdp99N5xSY6mUFbQ8hxNKSrq68T+j9KhJ6LXMGw/Ie6EaQnO/WGc9/uHEdE2ooSIcIZHo+nbEJOOENF0wBwv7QaR7IfAKAiafJyuFh2h4DPw82iStx5XMl1OJ3OnnO3kflHKXQ1hYigAulOiRIhwqkJjmaQiATIK6SiaaDuH1W5gsGlb3dYG+tyHQ5RA7qaIgw11wcA/N91ahVqi+KKWuUI0uFjrdFTlwqkOyNKhAinummK4DfEFEBdq5A6k8kV2HO2rs5ghhsVW5KXx0N5Gz0VTLdF9OEclFRKYWuiiwBqwe20KBEinKufiPVgZgFKKtX3Ft6jVwtxv6wahtpijBtownU4RI14PJ3H7uS1R1AoqIu6NX6/W4I95+p+vK2cMJAKpDsxunKEc0PN9WFn2g21MgW+fzrTujr679ORpKc4m0NDKOA4GqJOHC0MIBEJUFRRi5wHT7gOp8NTKBiW/XAFjAETHc3gYkkF0p0ZJUKEczweD9NdzAGo70jTt4oqkJb3CDweaJJG8tKJhXy49qv7MqdRplv2bfodXLpTAh0NIRZTgXSnR4kQ6RAaFk2nq2HRdH191MgBPWFhqMVxNEQdefSn6TZao6SyFut/vgoA+HCsNYy6aXIcEfm7KBFqRmxsLOzt7TF8+HCuQ1EL6lw0XS2V49v0uiJpumWecKW+YPpM/mPUyhQcR9NxfXY4B8WVUtgY6yJoBH1euwJKhJoRGhqKrKwsnDt3jutQ1MZ017p/VH5Us6Lpny/fR3GlFL30NPGarRHX4RA1ZWuiC0NtMSpr5bh0t4TrcDqkzLulyimBVtII0l0GXUXSYQzprQf7p0XT+9WoaLq+SNrfxQICPs0rRrjB5/Mw4undYyfyqHvsr+oKpC+DMWDC0F5w7WfIdUiknVAiRDoMHo+HaU9HmlaXoumr98uQfqsYQj4P/sPNuQ6HqLlXrKhOqDnfnb+LjDsl0BYLsOR1O67DIe2IEiHSobw1tBckIgGuFZbj3M2uXzRdP6+Yt4MxFV0SztXXCWXcKUF5jYzjaDqO0kop1j0tkF4wxhrG9FntUigRIh2KrqZIOeP6/8527aLpihoZEi/WdQHOcKWiS8I98+5asOiuBZmC4Ww+jTJdb8ORHDyuqMUAIx3M9OjLdTiknVEiRDqc6U+7x37MLEBxRdctmk7K+APlNTL066EN9/5Ub0A6hvpWoRN5lAgBwOU/SpV1fCsmOEBEBdJdDl1R0uEMblA0/f3Frlk0zRjDf592i013tQCPR0XSpGOorxOiCVjrCqSX/3AZCgb4DekF96djLZGuhRIh0uHweDxlq1DCmVtdsmj64p0SZBeUQUPIx9vDenMdDiFK9XeOXb3/BIVPqjmOhlv7L9zFhdt1BdKfUIF0l0WJEOmQJgztBS2xANcfVnTJoun6pvbxg3tBX0vMcTSE/Km7thgOvboBAE5dV9/usdIqKdYdqiuQ/mD0AJjoUYF0V0WJEOmQGhZNJ5y5xXE07au4ohYHfy8AALzjRvOKkY6HbqMHYo7koqiiFv17auNdD0uuwyEvECVCpMOa9nTy0Z8u3+9SRdP7L9xFrUwBe9NuGGquz3U4hDTiriyYftQlu6ZbknWvDLtO3QQArJwwEGIhfVV2ZXR1SYc1uLceHHrVjzR9l+tw2oVCwbD76Vxq77j1oSJp0iEN72sAsYCPe6XVuFlUyXU4LxVjfxZIvzHIVHkXHem6KBEiHRaPx1O2CnWVkab/73oR8h9VQEdDiAlDe3EdDiFN0hIL4dRHH4D6dY99f+EPpN8qhkQkwCdvUIG0OqBEiHRoDYumz+Y/5jqcv23303qnSU5m0NYQchwNIc3z6K9+dUJl1VKsbVAg3UtfwnFE5GWgRIh0aF1ppOkHZdX4JesBABpJmnR8HgPqEqFTN4ogV3T+1tjWiDmSi0flNejXUxuzXqECaXVBiRDp8OrHFOrsRdN7zt6BXMEwvK8BbEx0uQ6HkGcabKYHXQ0hSiqlyLpXxnU4L9zV+2XYderpCNJvOlCBtBqhK006vEFmnb9oWiZXYM+5P4ukCenohAI+XPvVDa54oot3jzHGsDzpCuQKBt+BJnh1QE+uQyIvESVCpMNTGWm6kxZN/3a1EAWl1eiuLca4gSZch0NIq7xiVZcIdfXpNn7IuIezNx9DIhJg6Xh7rsMhLxlVa7YDhUKB2trO22XTGYyzM8SOY2JUV1fjzLX7GGpuwHVIbfJjxm2Y6QowdXgvMJkU1TIp1yG9UGKxGHw+/c7q7F55Wid0Nv8xqqVyaIoEHEfU/p5US7H6p2wAwLzXrGBGBdJqRy0Sofz8fAQHB+PBgwcQCAQ4ffo0tLW12+XYtbW1yM/Ph0KhaJfjkeZFjTZCRY0c8tJC5MtKuA6n1WRyBcZbCjHe0ggm3er+Hrs6Pp8PS0tLiMU0fUhn1r+nDox0NVD4pAYXbhUrB1rsSr78NQ8Pn9TAsoc2Zr9KBdLqSC0SoZkzZ2LVqlV49dVX8fjxY2hoaLTLcRljKCgogEAggLm5Of0CfsFMamW4/bgSPB4P5j20IRR0jve78Ek1FDq10NYQoreBFtfhvHAKhQL37t1DQUEBLCwsaNDITozH4+EVqx74/uIfOHn9UZdLhHLuP0H8/90EAET62UND2PVavEjLunwidOXKFYhEIrz66qsAgO7du7fbsWUyGSorK9GrVy9oaXX9LziuaWoCj6oYqqRyVCkE6KndPgnti6RgDOWPa8ETitFTXxuamiKuQ3opevbsiXv37kEmk0EkUo/X3FV5PE2ETlwrwkIfrqNpP/UjSMsVDD4OxvCyMeI6JMIRzn9SHz9+HH5+fujVqxd4PB6SkpIabRMbG4u+fftCU1MTrq6uOHv2bKuPn5eXBx0dHfj5+cHJyQlr1qxpt9jlcjkAUPP/S9Rdu+69flxR2ymKpsuqpJApFBAJ+Oim2eV/dyjVfybqPyOk86qfYiLzbglKq7pObVvypXs4k/8YmiI+llGBtFrjPBGqqKjAkCFDEBsb2+T6vXv3Ijw8HJGRkbhw4QKGDBkCHx8fFBYWKrcZOnQoBg4c2OhR/4s0LS0NX331FU6dOoUjR47gyJEj7foaqOn/5dHXEoPP46FGJkdFbcf/ki0qryui764tVqu/E3V6rV2diZ4m+vfUhoIBp28UcR1OuyivkWHN0wLpUC8rteiyJs3j/Ceqr68vfH19m13/xRdfICQkBO+++y4AYMuWLfjxxx+xY8cOREREAAAyMjKa3d/MzAzOzs4wNzcHALz++uvIyMjA2LFjm9y+pqYGNTU1yudlZV1/ILHORMDnQV9LhMcVtXhcXgudDjxNRZVUjopaGXjgKVuyCOmMXrHqgesPK3Dy2iP4OHT+4R82Hs3Dg7Ia9DHUQsjIflyHQzjWcb9FUHdH1vnz57F48WLlMj6fjzFjxuDUqVOtOsbw4cNRWFiI4uJi6Onp4fjx4/jnP//Z7PZr167FihUr/nbs5MXpri3G44palFZLIZMrOmzR9OOnrUHdJEKIOmiMhLSGu1UP7Dx1CwlnbuPH3wsgEvAhEvIgEvAhFvAhEvAhFDR8znu6zV+eC/gQC+ueC/l//r9yXYPjNnvsv5xXJOA1OA8fAv6zWyPzHjzBjhN1d25+6ufQJYcEIG3ToROhR48eQS6Xw9jYWGW5sbExrl692qpjCIVCrFmzBiNHjgRjDN7e3hg/fnyz2y9evBjh4eHK52VlZcrWpK7k4cOHWL58OX788Uc8ePAABgYGGDJkCJYvXw4PD492O09qaipGjRr1zG1SUlLg5eXV6mNqiYWQiASokspRXClFT922F01/+umnyoRXIBCgd+/emDhxIqKiohATE4OvvvoKV65cUSmuv3TpElxcXLB//36MHz8ex44dw4oVK5CRkYHq6mqYmZnB3d0dX3/9NQRCEX759SiCp/pBX18fBQUF0NTUVB7r3LlzcHFxAQCVWie5XI6NGzdix44dyMvLg0QigZubG5YuXdrq6xIfH48FCxagpKREuSw7Oxve3t5wc3PD7t27kZCQoGxl5fF4MDY2xsiRI/HZZ5/BwsJC5XjXrl3DmjVr8Ouvv+LBgwfo0aMHbG1tERwcjH/84x8QCjv0PyOkHbj3N0QPHQ08Kq9BUQef5obPqxsVu7kE7HGFFDIFwxg7Y4yypQJp0sETofbSUvdbQxoaGu12e31HNnnyZNTW1mLnzp3o168fHjx4gKNHj6Ko6PlqABhjkMvljb4U3d3dUVBQoHweFhaGsrIyxMXFKZc9z5183bXF+KOkCo8ratFD5/nqbxwcHPDrr79CJpPh5MmTCA4ORmVlJWJjY3HgwAGEhobif//7HwBAKpUiKCgI77zzDsaPH4+srCyMGzcO8+fPx8aNGyGRSJCXl4f9+/dDLpfjSS1D/chSurq6SExMxLRp05Tn3r59OywsLHD79p8TyTLG4O/vj19//RWfffYZRo8ejbKyMsTGxsLLywv79u3DW2+91ebXee7cOfj6+mLixInYunWrcpiHbt26IScnB4wx5Ofn4/3338eUKVNw5swZ5b5nz57FmDFj4ODggNjYWNja2gIA0tPTERsbi4EDB2LIkCFtjol0LrqaIqQtGoX7ZdWQyhWolSkglSsglbO653IFpLK65zJF/Xr2dJv69X953nCZgj3dv8G6+mP/5Vx/Lqs7l1SuetOEggG1srptmiMRCRDpRwXS5CnWgQBgiYmJyuc1NTVMIBCoLGOMscDAQPbmm2++lJhKS0sZAFZaWtpoXVVVFcvKymJVVVUvJZb2UlxczACw1NTUJtfn5+czAOzixYuN9klJSWGMMZaSksIAsJ9++ok5OTkxkUjEUlJSmKenJwsNDWVhYWHM0NCQeXl5qRw7KCiITZgwgTHG2LFjx5hQKGQFBQUq24SFhbFXXnmFMcZYXFwc09PTY4mJiczKyoppaGgwb29vln/zFsu8W8Iu3SlmT6qkLCkpiTk6OjINDQ1maWnJPv30UyaVSpt9DyIjI9mQIUNUloWEhDATExPGGGPZ2dlMU1OT7du3T7l9nz59lH8HMTExrG/fvk0eW6FQsNz7Zew/3x5gANjSpUvZmDFjlOsrKyuZnp4eW7ZsGWv4EdyzZw8DwJKTkxsdc9KkSczQ0JCVl5c3+5rq1b9njDF29OhRpqOjwxYtWtTsNvU2btyo8reuUCiYnZ0dGzZsGJPL5c2+1qZ01s8G6XwUCgWrkcpZebWUFVfUsAdlVexucSXLf1jOcu+Xsct/lLCLt4vZ2fwidjLvIUu5+oDdfNTy54h0fs/6/m6oQxcuiMViDBs2DEePHlUuUygUOHr0KEaMGPFCzx0bGwt7e3sMHz681fswxlBZK+PkwdpwK7mOjg50dHSQlJSkUhj+PCIiIrBu3TpkZ2dj8ODBAICdO3dCLBbj5MmT2LJlS7P7jhw5Ev369cM333yjXCaVSrF7924EBwcrl1VWVmL16tXYtWsXTp48iZKSEsyYPg36WnXj0/z8awoCAwMRFhaGrKwsbN26FfHx8Vi9enWbXotEIlFOlWJra4u1a9di7ty5OHz4MNauXYu4uDh069YNAGBiYoKCggIcP3680XGqauWokspR30YVEBCAtLQ0ZevP/v370bdvXzg5Oansl5CQAGtra/j5+TU65kcffYSioqI23fGYmJiIN954A0uXLsX69eufuW1hYSESExMhEAggENTVTGRkZCA7Oxv/+te/mh0slO4OI1zj8XgQC/nQ1hBCX0sMI11NmOlL0LeHNgYY68Khlx6GmutjeN/ucLfqAS8bI/QxbJ+ZBUjXwHnXWHl5Oa5du6Z8np+fj4yMDHTv3h0WFhYIDw9HUFAQnJ2d4eLigi+//BIVFRXK+oYXJTQ0FKGhoSgrK4Oenl6r9qmSymG//PALjas5WSt9oCVu3eUUCoWIj49HSEgItmzZAicnJ3h6esLf31+ZzLTWypUrG92BN2DAAERHR7dq/1mzZiEuLg4LFy4EABw4cADV1dWYOnWqchupVIrNmzfD1dUVQF2iZWdnhxtZGdDvY4/P16/GokUfIygoCADQr18/REVFYdGiRYiMjGxVHOfPn0dCQgJee+015bKwsDD88MMPeP311zF//nyVWqcpU6bg8OHD8PT0hImJCdzc3DB69GgEBgaiVFZ3HervaDMyMoKvry/i4+OxfPly7NixQyXRq5ebmws7O7sm46tfnpub26rXU15ejilTpmDJkiX4+OOPm9ymtLQUOjo6dQl8ZSUA4IMPPlBOP1N/LhsbG+U+hYWF6Nfvz7tsoqOj8f7777cqJkII6Yg4bxFKT0+Ho6MjHB0dAQDh4eFwdHTE8uXLAQD/+Mc/8Pnnn2P58uUYOnQoMjIy8PPPPzcqoCZtM3nyZNy7dw/JyckYN24cUlNT4eTkhPj4+DYdx9nZudGyYcOGtXr/mTNn4tq1azh9+jSAukLfqVOnqswFJxQKVVrmbG1toa+vj/xreZCIBMjNuoxVq6KULV06OjoICQlBQUGB8gu+KZmZmdDR0YFEIoGLiwtGjBiBzZs3K9fzeDx88sknUCgUWLp0qcq+AoEAcXFxuHv3LqKjo2FmZoY1a9bAwcEB127eAVBXV1EvODgY8fHxuHHjBk6dOoUZM2Y0GVNbWvaeRSKRYOzYsfj666+RnZ3d5Da6urrIyMhAeno6NmzYACcnpxZb0QwNDZGRkYGMjAzo6+vTZMOEkE6P8xYhLy+vFv/xnzdvHubNm/eSInp+EpEAWSu5GYNe8hy3gGpqamLs2LEYO3Ysli1bhtmzZyMyMhJpaWkAVL+UpdKmR5RtavLatkxoa2RkBD8/P8TFxcHS0hKHDh1Campqq/fvriNGZUUF5i9cgvcC/Rt11TS8U+uvbGxskJycDKFQiF69ejU5Qnh98Xdzd0aZmZkhICAAAQEBiIqKwoAB1tj7zQ58FLEUmqI/f2f4+vrivffew6xZs+Dn5wdDQ8NGx7K2tm42aalfbm1t3ezraUggECApKQmTJk3CqFGjkJKS0qi1ic/nw8rKCkBdi9P169cxd+5cZVflgAEDAAA5OTnKHyoCgUC5D90tRgjpCjhvEeqonqdGiMfjQUss5OTRHrUa9vb2qKioQM+ePQFA5W6vZw1a+XfNnj0be/fuxbZt29C/f/9Gt4nLZDKkp6crn+fk5KCkpAR2dnbQl4hhN2gIruXlwtS8L6ysrFQez5oIVywWw8rKCn379m2XaVL09fVhaGSMqsrKRiNJC4VCBAYGIjU1tcluMQDw9/dHXl4eDhw40Gjdhg0bYGho2OxAoE3R0NDA999/j+HDh2PUqFHIysp65vYRERHYu3cvLly4AABwdHSEra0tPv/8cygUzd+BQwghnRklQs0IDQ1FVlYWzp07x3Uo7a6oqAivvfYa/vvf/+L3339Hfn4+9u3bh+joaEyYMEE5dk19EfSxY8cadQ21Jx8fH3Tr1g2rVq1qsvZLJBJh/vz5OHPmDM6fP4+ZM2fCzc0NLi4uEPB5+OjjxTi4fw+WR67AlStXkJ2djT179qjEHBgYqDIw59+1detWzJ07F7/88guuX7+OK1euIPxfC3EtJxujxo6DvlbjxCoqKgoPHz6Ej0/TrYb+/v6YOHEigoKCsH37dty8eRO///47/vnPfyI5ORn/+c9/2tTaBtQlQ/v374erqytGjRqFK1euNLutubk5Jk6cqOyW5vF4iIuLQ05ODjw8PJCcnIy8vDxkZWVhy5YtePjwobKwmhBCOitKhNSQjo4OXF1dERMTg5EjR2LgwIFYtmwZQkJClDUyO3bsgEwmw7Bhw7BgwQKsWrXqhcXD5/Mxc+ZMyOVyBAYGNlqvpaWFjz/+GNOnT4eHhwd0dHSwd+9e5frJb76BjXF7kPLbrxg+fDjc3NwQExODPn36KLe5ffu2SgvX3+Xi4oLy8nLMmTMHDg4O8PT0xP+dOo2Y//wXY0e/1uTotmKxGD169Gi29Y7H4+Hbb7/FkiVLEBMTAxsbG7z66qu4desWUlNTn2sMofrzfvfdd3B3d8eoUaNw+fLlZrf98MMP8eOPPyonNnZzc8P58+dhY2OD0NBQ2Nvbw93dHf/73/8QExODuXPnPldMhBDSUfBYe1VndlH1d42VlpYqb52uV11djfz8fFhaWj6zFoW0bNasWXj48CGSk5NVljc1SnJT8gqfoKpWDlM9TfTUffnXQipX4GrBEzAwDDDWfa6ara6EPhuEEK496/u7Iap2JJwqLS1FZmYmEhISGiVBbWGoLcbd2io8rpCih47GSx/f5nFFLRgYtJ9O/0EIIaRzoK6xZjxPsTRpuwkTJsDb2xtz5sxpUyHwX+lJxBDweKiRyVFRI2vHCFvGGMPjp/Mvddd58bPMOzg4qAwV0PCxe/fuF35+QgjpSqhrrAXUNdZ5/FFciaKKWuhLRLB4iSPHllVJcbOoAkI+D7Ym3cBvYfbrv+vWrVvNDmdgbGwMXV3dF3r+1qDPBiGEa9Q1RtROd20xiipqUVotg0yugFDwcho862fjNtAWv/AkCIBKETghhJC/h7rGSJchEQuhJRaAMYbiypcz4nGNTI4n1XWtM921X3y3GCGEkPZFiRDpUuqTkccVte02XcWz1NcG6WgIoSGkImlCCOlsKBEiXcqfRdOKF140rWAMxRV1rUGGOhov9FyEEEJeDEqEmkF3jXVOAj4P+lp1k53Wt9a8KGVVUsgUCogEfHTTpHI7QgjpjCgRakZXnmKjq6vvHiutlkEqf3FzZBWV1yrP97LHLSKEENI+KBEiXU7DoumSF1Q0XS2Vo6JWBh546N7EvGKEEEI6B0qE1NTDhw8xd+5cWFhYQENDAyYmJvDx8cHJkyfb9Typqang8XjPfKSmprbrOYGWi6Y//fRT5fmFQiH69u2LDz/8EOXl5YiKioKpqSkeP36sss+lS5egoaGBgwcPoqiiFumnTuKf096EsVEPaGlpYcCAAQgKCkJtba3KazcwMEB1dbXKsc6dO6c8f0NyuRwxMTEYNGgQNDU1YWBgAF9f3zZdl/j4eOWx+Xw+evfujXfffReFhYXKbXg8HpKSkpTPjx07BpFIhBMnTqgcq6KiAv369cO//vWvVp+fEEI6E0qE1NTkyZNx8eJF7Ny5E7m5uUhOToaXlxeKioqe63iMMchkjYuT3d3dUVBQoHxMnToV48aNU1nm7u7+d19OI60pmnZwcEBBQQFu3ryJ9evXY9u2bfjoo4+wePFimJubIzQ0VLmtVCpFUFAQ3nnnHfi+/gbOX/wd7we8DZfhzjh+/DgyMzOxadMmiMViyOVylfPo6uoiMTFRZdn27dthYWGhsowxBn9/f6xcuRJhYWHIzs5GamoqzM3N4eXlpZK4tKRbt24oKCjA3bt38fXXX+PQoUMICAhodntPT0/Mnz8fM2fOREVFhXL5okWLIJFIXuiku4QQwilGnqm0tJQBYKWlpY3WVVVVsaysLFZVVcVBZM+vuLiYAWCpqalNrs/Pz2cA2MWLFxvtk5KSwhhjLCUlhQFgP/30E3NycmIikYilpKQwT09PFhoaysLCwpihoSHz8vJSOXZQUBCbMGECY4yxY8eOMaFQyAoKClS2CQsLY6+88gpjjLG4uDimp6fHEhMTmZWVFdPQ0GDe3t7s9u3bKvskJSUxR0dHpqGhwSwtLdmnn37KbhaWskt3itnNR+WNXmNkZCQbMmSIyrKQkBBmYmLCGGMsOzubaWpqsn379im379OnDystLWWPyqvZwsg1zMzcgikUimbf5/r3aOnSpWzMmDHK5ZWVlUxPT48tW7aMNfwI7tmzhwFgycnJjY41adIkZmhoyMrLG7+Wv6p/zxpavXo14/P5rLKykjHGGACWmJiosk1VVRWzs7NjoaGhjDHGfvvtNyYWi1l6enqL5/yrzvrZIIR0Hc/6/m6IWoTaE2NAbQU3jzaMmVM/L1VSUhJqamr+1kuOiIjAunXrkJ2djcGDBwMAdu7cCbFYjJMnT2LLli3N7jty5Ej069cP33zzjXKZVCrF7t27ERwcrFxWWVmJ1atXY9euXTh58iRKSkrg7++vXJ+WlobAwECEhYUhKysLW7duRXx8PL7etAEAUNbKommJRKLs1rK1tcXatWsxd+5cHD58GGvXrkVcXBx0dXXxuLwWhj2N8KjwAdLS0lo8bkBAANLS0nD79m0AwP79+9G3b184OTmpbJeQkABra2v4+fk1OsZHH32EoqIiHDlypMXzNffaFApFk6129TQ1NbFr1y5s27YNP/zwA4KDg7FkyRIMGzbsuc5JCCGdAd3z24zY2FjExsY26uZ4JmklsKbXiwvqWZbcA8Stm19LKBQiPj4eISEh2LJlC5ycnODp6Ql/f39lMtNaK1eubDRZ6oABAxAdHd2q/WfNmoW4uDgsXLgQAHDgwAFUV1dj6tSpym2kUik2b94MV1dXAHWJlp2dHc6ePQsXFxesWLECERERCAoKAgD069cPUVFRWLRoEWbOW4jKWhmKK2thpNv8nFfnz59HQkICXnvtNeWysLAw/PDDD3j99dcxf/58jBo1CpW1MlRJ5fDxm4isc2nw9PSEiYkJ3NzcMHr0aAQGBjaa08bIyAi+vr6Ij4/H8uXLsWPHDpVEr15ubi7s7OyajK9+eW5ubmveVhV5eXnYsmULnJ2dW5yHzNnZGYsXL8akSZPg6OiITz75pM3nI4SQzoRahJrR1W+fnzx5Mu7du4fk5GSMGzcOqampcHJyQnx8fJuO4+zs3GhZW1oQZs6ciWvXruH06dMA6gp9p06dCm3tP5M6oVCoMp6Tra0t9PX1kZ2dDaCuiHnlypUqs7CHhISgoKAAmry6FpCmiqYzMzOho6MDiUQCFxcXjBgxAps3b1au5/F4+OSTT6BQKLB06VIAf94yb6ijiZ3x8bh79y6io6NhZmaGNWvWKOuO/io4OBjx8fG4ceMGTp06hRkzZjT5fvw1xudVWloKHR0daGlpwcbGBsbGxq2emX7ZsmVQKBSIiIiAUEi/lQghXRv9K9eeRFp1LTNcnbuNNDU1MXbsWIwdOxbLli3D7NmzERkZqezuafil3Nxs5w0Tlmcta46RkRH8/PwQFxcHS0tLHDp0qM13kZWXl2PFihWYNGlSo3XGBroofVCO2qdF0zqaIuU6GxsbJCcnQygUolevXhCLG98GX58ICIVCyOQKlFapzitmZmaGgIAABAQEICoqCtbW1tiyZQtWrFihchxfX1+89957mDVrFvz8/GBoaNjoXNbW1srk7q/ql1tbW7fmLYGuri4uXLgAPp8PU1NTSCSSVu1X/1ob/pcQQroy+peuPfF4re6e6ojs7e2RlJSEnj17AgAKCgrg6OgIAMjIyHhh5509ezamTZuG3r17o3///vDw8FBZL5PJkJ6eDhcXFwBATk4OSkpKlN1FTk5OyMnJgZWVVZPH19cSo6iiBkUVtSqJkFgsbnafphRXSqFgDJoiAbTEjecVMzAwgKmpqcpdV/WEQiECAwMRHR2NQ4cONXl8f39/TJ8+HQcOHGhUJ7RhwwYYGho26oZsDp/Pb9NrI4QQdUWJkBoqKirClClTEBwcjMGDB0NXVxfp6emIjo7GhAkTIJFI4ObmhnXr1sHS0hKFhYXKrqEXwcfHB926dcOqVauwcuXKRutFIhHmz5+PjRs3QigUYt68eXBzc1MmRsuXL8f48eNhYWGBt99+G3w+H5cuXcLly5exatUqdNcWY07IuzA26YV//7/PIRK0vUeYMaacssNQW4xt27YhIyMDEydORP/+/VFdXY1du3bhypUr2LRpU5PHiIqKwsKFC5tsDQLqEqF9+/YhKCgIn332GUaPHo2ysjLExsYiOTkZ+/bta1NrW0vy8/MbJbgDBgxo13MQQkhHR4mQGtLR0YGrqytiYmJw/fp1SKVSmJubIyQkBEuWLAEA7NixA7NmzcKwYcNgY2OD6OhoeHt7v5B4+Hw+Zs6ciTVr1iAwMLDRei0tLXz88ceYPn06/vjjD7z66qvYvn27cr2Pjw8OHjyIlStXYv369RCJRLC1tcXs2bMBABKxAIUFf4DP47dYNN2cihoZamQ88Hk86GuJ4eLighMnTmDOnDm4d+8edHR04ODggKSkJHh6ejZ5DLFYjB49ejR7Dh6Ph2+//RZffvklYmJi8P7770NTUxMjRoxAampqo5ayvys8PLzRsrS0NLzyyivteh5CCOnIeKy9qjO7qLKyMujp6aG0tLTR3UDV1dXIz8+HpaUlNDXb/uVK/jRr1iw8fPgQycnJKsvj4+OxYMEClJSU/K3jP66oxd3iSoiFfNgY67Z5brBbRRUorZLCUFsMM4O212OpG/psEEK49qzv74aoRYhwqrS0FJmZmUhISGiUBLUnPYkIBSU81MoUKK+RQbdBrVBLpHIFyqrq7j7rrq3xokIkhBDCAbp9vhmxsbGwt7dXuW2btL8JEybA29sbc+bMaXUh8PMQ8Ou6tAAoa31a63FFLRgYtMRCSJookn7ZHBwcVIYKaPho7S3yhBBC6lDXWAuoa6zrqKqVI6/wCXjgwdZUt1VF04wxXL3/BFK5AubdtWDQAWaav3XrVrPDGRgbG7c4aOLLQJ8NQgjXqGuMkL+QiAXQEgtbNdJ0vSdPp+cQ8nnQa0N32ovUp08frkMghJAug7rGiFqpHwixqZGmm1L0tBvNQFsMPr9tBdaEEEI6PkqEiFrRk4gg4P1ZNP0stTI5nlQ/HUm6A3SJEUIIaX+UCBG1IuDzoK/duqLp+tYgHQ0hNETcF0kTQghpf5QIEbVT37pTVlVX/9MUBWMorqhrDTLUoVvmCSGkq6JEiKid+qJpBobiyqZbhcqqpJApFBAJ+OimSfcUEEJIV0WJEFFLLRVN13eLddcWt3kUakIIIZ0HJUJq6uHDh5g7dy4sLCygoaEBExMT+Pj44OTJk+16ntTUVPB4vGc+UlNT2/WcrfH/oldjiLkB7Ez1IBKJ0LdvX3z44YcoLy9H5Kcr4DbQCmXFJSpF0pcuXYKGhgYOHjwIADh27Bhee+01dO/eHVpaWhgwYACCgoJQW1ur8toNDAxQXV2tcv5z584pX39DcrkcMTExGDRoEDQ1NWFgYABfX982XZf4+Hjlsfl8PkxNTfGPf/wDt2/fVtnOy8tL5ToYGxtjypQpuHXrlnKbmzdvNnnN3nnnnVbHQwghHRklQmpq8uTJuHjxInbu3Inc3FwkJyfDy8sLRUVFz3U8xhhkssZ3Ybm7u6OgoED5mDp1KsaNG6eyzN3d/e++nDbj8XiwsbXH0fNXceJiFtavX49t27bho48+QvC8cBibmiE6ciFEwrqPiFQqRVBQEN555x2MHz8eWVlZGDduHJydnXH8+HFkZmZi06ZNEIvFkMvlKufS1dVFYmKiyrLt27fDwsJCZRljDP7+/li5ciXCwsKQnZ2N1NRUmJubw8vLC0lJSa1+fd26dUNBQQH++OMP7N+/Hzk5OZgyZUqj7UJCQlBQUIB79+7hhx9+wJ07d5pMcn799VeVaxYbG9vqWAghpENjpEmbN29mdnZ2zNramgFgpaWljbapqqpiWVlZrKqqioMIn19xcTEDwFJTU5tcn5+fzwCwixcvNtonJSWFMcZYSkoKA8B++ukn5uTkxEQiEUtJSWGenp4sNDSUhYWFMUNDQ+bl5aVy7KCgIDZhwgTGGGPHjh1jQqGQFRQUqGwTFhbGXnnlFcYYY3FxcUxPT48lJiYyKysrpqGhwby9vdnt27dV9klKSmKOjo5MQ0ODWVpask8//ZRJpdJm34PIyEg2aPAQdulOMfv9TgmrlclZSEgIMzExYZfvlrCklDNMU1OT7du3T7l9nz59lH8HMTExrG/fvs98n+vfo6VLl7IxY8Yol1dWVjI9PT22bNky1vAjuGfPHgaAJScnNzrWpEmTmKGhISsvL3/mORu+Zw1t3Lix0d+xp6cnCwsLU9num2++YVpaWsrnTf0ttEZn/WwQQrqO0tLSZr+/G6IWoWaEhoYiKysL586da/U+jDFUSis5ebA2zJRSPy9VUlISampqnuftUYqIiMC6deuQnZ2NwYMHAwB27twJsViMkydPYsuWLc3uO3LkSPTr1w/ffPONcplUKsXu3bsRHBysXFZZWYnVq1dj165dOHnyJEpKSuDv769cn5aWhsDAQISFhSErKwtbt25FfHw8Vq9e/czY+Tz8WTRdUQuJRIKa2lrIGYONrS3WrFmDuXPn4vDhw1i7di3i4uKUw7SbmJigoKAAx48fb/E9CggIQFpamrJrav/+/ejbty+cnJxUtktISIC1tTX8/PwaHeOjjz5CUVERjhw50uL5/qqwsBCJiYkQCAQQCJofBuDx48f49ttv4erq2uZzEEJIZ0W3w7SjKlkVXBO4+RI5M/0MtERardpWKBQiPj4eISEh2LJlC5ycnODp6Ql/f39lMtNaK1eubDRZ6oABAxAdHd2q/WfNmoW4uDgsXLgQAHDgwAFUV1dj6tSpym2kUik2b96s/ILeuXMn7OzscPbsWbi4uGDFihWIiIhAUFAQAKBfv36IiorCokWLEBkZ+czzd9cWo7JWhrRTZ5CQkABX95EAAENtMRYsWIDk5GS8/vrrmD9/PkaNGqXcb8qUKTh8+DA8PT1hYmICNzc3jB49GoGBgY3mtDEyMoKvry/i4+OxfPly7NixQyXRq5ebmws7O7sm46xfnpub+8zXU6+0tBQ6Ojp1yXllJQDggw8+gLa2tsp2X331Ff7zn/8ot7O2tsbhw4cbHc/d3R18/p+/m9LS0uDo6NiqWAghpCOjFiE1NXnyZNy7dw/JyckYN24cUlNT4eTkhPj4+DYdx9nZudGyYcOGtXr/mTNn4tq1azh9+jSAukLfqVOnqnxhC4VCDB8+XPnc1tYW+vr6yM7OBlBXxLxy5UqVWdjra1/qk4CmZGZmwsK4O1wGmGLq66/BabgrFq1cX1fgrFV3t9gnn3wChUKBpUuXquwrEAgQFxeHu3fvIjo6GmZmZlizZg0cHBxQUFDQ6FzBwcGIj4/HjRs3cOrUKcyYMaPJmNrSsvcsurq6yMjIQHp6OjZs2AAnJ6cmW8hmzJiBjIwMXLp0CSdOnICVlRW8vb3x5MkTle327t2LjIwM5cPe3r5d4iSEEK5Ri1A7kgglODP9DGfnbitNTU2MHTsWY8eOxbJlyzB79mxERkYiLS0NgOqXcnOznf+1haG5Zc0xMjKCn58f4uLiYGlpiUOHDrX5LrLy8nKsWLECkyZNarTuWTOf29jYIDk5GY8qZRDpdIdIXHeHmL5EBOHTmemFQqHKf//KzMwMAQEBCAgIQFRUFKytrbFlyxasWLFCZTtfX1+89957mDVrFvz8/GBoaNjoWNbW1srk7q/ql1tbWzf7ehri8/mwsrICUNeadP36dcydO1elGxIA9PT0lNtZWVlh+/btMDU1xd69ezF79mzldubm5srtCCGkK6FEqB3xeLxWd091RPb29khKSkLPnj0BAAUFBcruj4yMjBd23tmzZ2PatGno3bs3+vfvDw8PD5X1MpkM6enpcHFxAQDk5OSgpKRE2V3k5OSEnJycNn9Ri8ViWFlZwUwqR96DP1tA6scYaisDAwOYmpqioqKi0TqhUIjAwEBER0fj0KFDTe7v7++P6dOn48CBA43qhDZs2ABDQ8NG3ZCtFRERgf79++PDDz9sVJvUUH0NUVVV1XOdhxBCOhtKhNRQUVERpkyZguDgYAwePBi6urpIT09HdHQ0JkyYAIlEAjc3N6xbtw6WlpYoLCxs1DXUnnx8fNCtWzesWrUKK1eubLReJBJh/vz52LhxI4RCIebNmwc3NzdlYrR8+XKMHz8eFhYWePvtt8Hn83Hp0iVcvnwZq1atAgAEBgbCzMwMa9eubXR8iahupOnKWhk0RQJoiVueV2zr1q3IyMjAxIkT0b9/f1RXV2PXrl24cuUKNm3a1OQ+UVFRWLhwYZOtQUBdIrRv3z4EBQXhs88+w+jRo1FWVobY2FgkJydj3759bWpta8jc3BwTJ07E8uXLleMgAXWF6Pfv3wcAPHjwAFFRUdDU1IS3t/dznYcQQjobqhFSQzo6OnB1dUVMTAxGjhyJgQMHYtmyZQgJCcHmzZsBADt27IBMJsOwYcOwYMECZULxIvD5fMycORNyuRyBgYGN1mtpaeHjjz/G9OnT4eHhAR0dHezdu1e53sfHBwcPHsQvv/yC4cOHw83NDTExMejTp49ym9u3bzdZu1PPpJsGxAI+TLpptmokaRcXF5SXl2POnDlwcHCAp6cnTp8+jaSkJHh6eja5j1gsRo8ePZo9Po/Hw7fffoslS5YgJiYGNjY2ePXVV3Hr1i2kpqbirbfeajGuZ/nwww/x448/4uzZs8plX3/9NUxNTWFqaopRo0bh0aNH+Omnn2BjY/O3zkUIIZ0Fj7VXdWYXVVZWBj09PZSWlja6G6i6uhr5+fmwtLR8Zi0KadmsWbPw8OFDJCcnqyyPj4/HggULUFJSwk1g5LnQZ4MQwrVnfX83RF1jhFOlpaXIzMxEQkJCoySIEEIIedGoa4xwasKECfD29sacOXOeuxBY3Tg4OKgMFdDwsXv3bq7DI4SQToW6xlpAXWOko7l161azwxkYGxtDV1f3JUfUGH02CCFco64xQrqohkXghBBC/h7qGiOEEEKI2qJEqB1Q7yIhqugzQQjpLCgRakZsbCzs7e1V5rj6q/pReGtra19WWIR0CvWfiWfNdk8IIR0BFUu34FnFVowx3L59G1KpFL169VKZnZsQdaVQKHDv3j2IRCJYWFi0aoBKQghpb1Qs/RLweDyYmpoiPz8ft27d4jocQjoMPp9PSRAhpFOgROhvEovFGDBgAHWPEdKAWCymFlJCSKdAiVA74PP5NFYKIYQQ0gnRTzZCCCGEqC1KhAghhBCitigRIoQQQojaohqhFtSPLlBWVsZxJIQQQghprfrv7ZZGCaJEqAVPnjwBAJibm3McCSGEEELa6smTJ9DT02t2PQ2o2IL6weF0dXXbdUyUsrIymJub486dO88c6Im8PHRNOha6Hh0LXY+Oha5HyxhjePLkSYsDHlOLUAv4fD569+79wo7frVs3+iPuYOiadCx0PToWuh4dC12PZ3tWS1A9KpYmhBBCiNqiRIgQQgghaosSIY5oaGggMjISGhoaXIdCnqJr0rHQ9ehY6Hp0LHQ92g8VSxNCCCFEbVGLECGEEELUFiVChBBCCFFblAgRQgghRG1RIkQIIYQQtUWJEEdiY2PRt29faGpqwtXVFWfPnuU6JLW0du1aDB8+HLq6ujAyMsJbb72FnJwcrsMiT61btw48Hg8LFizgOhS19ccff+Cdd96BoaEhJBIJBg0ahPT0dK7DUltyuRzLli2DpaUlJBIJ+vfvj6ioqBbn0yLNo0SIA3v37kV4eDgiIyNx4cIFDBkyBD4+PigsLOQ6NLVz7NgxhIaG4vTp0zhy5AikUim8vb1RUVHBdWhq79y5c9i6dSsGDx7MdShqq7i4GB4eHhCJRDh06BCysrKwYcMGGBgYcB2a2lq/fj3+/e9/Y/PmzcjOzsb69esRHR2NTZs2cR1ap0W3z3PA1dUVw4cPx+bNmwHUzWdmbm6O+fPnIyIiguPo1NvDhw9hZGSEY8eOYeTIkVyHo7bKy8vh5OSEr776CqtWrcLQoUPx5Zdfch2W2omIiMDJkyeRlpbGdSjkqfHjx8PY2Bjbt29XLps8eTIkEgn++9//chhZ50UtQi9ZbW0tzp8/jzFjxiiX8fl8jBkzBqdOneIwMgIApaWlAIDu3btzHIl6Cw0NxRtvvKHyOSEvX3JyMpydnTFlyhQYGRnB0dERX3/9NddhqTV3d3ccPXoUubm5AIBLly7hxIkT8PX15TiyzosmXX3JHj16BLlcDmNjY5XlxsbGuHr1KkdREaCuZW7BggXw8PDAwIEDuQ5Hbe3ZswcXLlzAuXPnuA5F7d24cQP//ve/ER4ejiVLluDcuXP44IMPIBaLERQUxHV4aikiIgJlZWWwtbWFQCCAXC7H6tWrMWPGDK5D67QoESLkqdDQUFy+fBknTpzgOhS1defOHYSFheHIkSPQ1NTkOhy1p1Ao4OzsjDVr1gAAHB0dcfnyZWzZsoUSIY58++232L17NxISEuDg4ICMjAwsWLAAvXr1omvynCgResl69OgBgUCABw8eqCx/8OABTExMOIqKzJs3DwcPHsTx48fRu3dvrsNRW+fPn0dhYSGcnJyUy+RyOY4fP47NmzejpqYGAoGAwwjVi6mpKezt7VWW2dnZYf/+/RxFRBYuXIiIiAj4+/sDAAYNGoRbt25h7dq1lAg9J6oResnEYjGGDRuGo0ePKpcpFAocPXoUI0aM4DAy9cQYw7x585CYmIjffvsNlpaWXIek1kaPHo3MzExkZGQoH87OzpgxYwYyMjIoCXrJPDw8Gg0nkZubiz59+nAUEamsrASfr/rVLRAIoFAoOIqo86MWIQ6Eh4cjKCgIzs7OcHFxwZdffomKigq8++67XIemdkJDQ5GQkIAffvgBurq6uH//PgBAT08PEomE4+jUj66ubqP6LG1tbRgaGlLdFgc+/PBDuLu7Y82aNZg6dSrOnj2Lbdu2Ydu2bVyHprb8/PywevVqWFhYwMHBARcvXsQXX3yB4OBgrkPrtOj2eY5s3rwZn332Ge7fv4+hQ4di48aNcHV15TostcPj8ZpcHhcXh5kzZ77cYEiTvLy86PZ5Dh08eBCLFy9GXl4eLC0tER4ejpCQEK7DUltPnjzBsmXLkJiYiMLCQvTq1QvTpk3D8uXLIRaLuQ6vU6JEiBBCCCFqi2qECCGEEKK2KBEihBBCiNqiRIgQQgghaosSIUIIIYSoLUqECCGEEKK2KBEihBBCiNqiRIgQQgghaosSIUIIIYSoLUqECCGd0v379zF//nz069cPGhoaMDc3h5+fn8o8foQQ0hKaa4wQ0uncvHkTHh4e0NfXx2effYZBgwZBKpXi8OHDCA0NxdWrV7kOkRDSSVCLECGk03n//ffB4/Fw9uxZTJ48GdbW1nBwcEB4eDhOnz4NAPjiiy8waNAgaGtrw9zcHO+//z7Ky8uVx7h16xb8/PxgYGAAbW1tODg44KefflKuv3z5Mnx9faGjowNjY2MEBATg0aNHyvXfffcdBg0aBIlEAkNDQ4wZMwYVFRUv700ghLQLSoQIIZ3K48eP8fPPPyM0NBTa2tqN1uvr6wMA+Hw+Nm7ciCtXrmDnzp347bffsGjRIuV2oaGhqKmpwfHjx5GZmYn169dDR0cHAFBSUoLXXnsNjo6OSE9Px88//4wHDx5g6tSpAICCggJMmzYNwcHByM7ORmpqKiZNmgSaupGQzocmXSWEdCpnz56Fq6srvv/+e0ycOLHV+3333XeYM2eOslVn8ODBmDx5MiIjIxttu2rVKqSlpeHw4cPKZXfv3oW5uTlycnJQXl6OYcOG4ebNm+jTp8/ff1GEEM5QjRAhpFNp7W+3X3/9FWvXrsXVq1dRVlYGmUyG6upqVFZWQktLCx988AHmzp2LX375BWPGjMHkyZMxePBgAMClS5eQkpKibCFq6Pr16/D29sbo0aMxaNAg+Pj4wNvbG2+//TYMDAza9bUSQl486hojhHQqAwYMAI/He2ZB9M2bNzF+/HgMHjwY+/fvx/nz5xEbGwsAqK2tBQDMnj0bN27cQEBAADIzM+Hs7IxNmzYBAMrLy+Hn54eMjAyVR15eHkaOHAmBQIAjR47g0KFDsLe3x6ZNm2BjY4P8/PwX/wYQQtoVdY0RQjodX19fZGZmIicnp1GdUElJCY4ePYpp06ahuroafH7d771Vq1Zh2bJlKC4uVtYRNbR48WL8+OOP+P333/HJJ59g//79uHz5MoTClhvO5XI5+vTpg/DwcISHh7fLaySEvBzUIkQI6XRiY2Mhl8vh4uKC/fv3Iy8vD9nZ2di4cSNGjBgBKysrSKVSbNq0CTdu3MA333yDLVu2qBxjwYIFOHz4MPLz83HhwgWkpKTAzs4OQF0h9ePHjzFt2jScO3cO169fx+HDh/Huu+9CLpfjzJkzWLNmDdLT03H79m18//33ePjwoXJ/QkgnwgghpBO6d+8eCw0NZX369GFisZiZmZmxN998k6WkpDDGGPviiy+Yqakpk0gkzMfHh+3atYsBYMXFxYwxxubNm8f69+/PNDQ0WM+ePVlAQAB79OiR8vi5ubls4sSJTF9fn0kkEmZra8sWLFjAFAoFy8rKYj4+Pqxnz55MQ0ODWVtbs02bNnHwLhBC/i7qGiOEEEKI2qKuMUIIIYSoLUqECCGEEKK2KBEihBBCiNqiRIgQQgghaosSIUIIIYSoLUqECCGEEKK2KBEihBBCiNqiRIgQQgghaosSIUIIIYSoLUqECCGEEKK2KBEihBBCiNqiRIgQQgghauv/A8QQlPFlf9YjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAz/NJREFUeJzs3XdYleUbwPHvOYeNDBUnIijiQAUV0dTM3Jp7VJaVs6k21H5py1FppZml2FDT0jRzr9x7L9wDBy5QEERANpzz/v54AEVA1oH3AM/nuriEM9735gic+33GfWsURVGQJEmSJEkqhbRqByBJkiRJkqQWmQhJkiRJklRqyURIkiRJkqRSSyZCkiRJkiSVWjIRkiRJkiSp1JKJkCRJkiRJpZZMhCRJkiRJKrVkIiRJkiRJUqklEyFJkiRJkkotmQhJUhGbOHEiGo1G7TCKVGn8ntNk9b27ubkxePBgo51j8ODBuLm5Ge14eXX06FEsLCy4efNmgY9lMBho0KAB33zzjREiKzzJycm4uLgwZ86cTPf9+uuvVK9encTERBUik/JKJkKSSVu4cCEajYbjx49nef/zzz9PgwYN0r+Oi4vDz8+PTp06UaVKFezs7GjcuDG//PILer0+V+fUaDRoNBqGDx+e5f2fffZZ+mPCw8Pz/k0ZWdprlNXHuHHjiiyOuLg4Jk6cyO7du4vsnLnx+Ouh1WqpWrUqnTp1Mrk4c3Lnzh0mTpzIqVOn1A4lk88++4xXXnkFV1fXDLcrisKiRYt47rnncHR0xMbGhoYNGzJ58mRiY2OzPNbSpUu5ffs2I0eOTL8tJiaGCRMm0KVLF8qVK4dGo2HhwoVZPv/555/P9vehbt26OX4vd+/eZdy4cbRt2xY7Ozs0Gk2WPyvm5uaMHj2ab775hoSEhAz3DR48mKSkJH777bcczyepz0ztACTJmAIDAxk1ahTt27dn9OjR2Nvbs2XLFt577z0OHz7Mn3/+mavjWFlZsXLlSubMmYOFhUWG+5YuXYqVlVWmP35qmzx5MjVq1Mhw2+NJYmGLi4tj0qRJgHgzetznn39epEnZkzp27Mgbb7yBoihcv36dOXPm0K5dOzZu3EjXrl2LPJ6AgAC02rxdh965c4dJkybh5uZGo0aNMtw3d+5cDAaDESPMvVOnTrF9+3YOHjyY4Xa9Xs+rr77Kv//+S+vWrZk4cSI2Njbs27ePSZMmsXz5crZv306lSpUyPG/atGkMGDAABweH9NvCw8OZPHky1atXx9vbO8cktlq1akydOjXT7Y8fMzsBAQF89913eHh40LBhQw4dOpTtY4cMGcK4ceNYsmQJQ4cOTb/dysqKQYMGMWPGDEaNGlVqR0OLDUWSTNiCBQsUQDl27FiW97dp00apX79++tdhYWHKuXPnMj1uyJAhCqBcuXIlx3MCSu/evRWtVqusWbMmw30HDhxQAKVfv34KoISFheXxO1KUCRMmKMb81cvpNcpKfHy8otfrjRaDoojXHlAmTJhg1OMWFKCMGDEiw21nzpxRAKVTp07ZPs9Yr5Gx/r+PHTumAMqCBQsKfCxjev/995Xq1asrBoMhw+1TpkxRAGXs2LGZnrNu3TpFq9UqXbp0yXC7v7+/Aijbt2/PcHtCQoJy9+5dRVFyfh2e/JuQV9HR0cr9+/cVRVGU5cuXK4Cya9eubB/fvXt3pXXr1pluP378uAIoO3bsyHcsUtGQU2NSieLk5ET9+vUz3d6nTx8ALl68mKvjODs789xzz7FkyZIMt//99980bNgw25GW5cuX4+Pjg7W1NU5OTrz22msEBwfn6pyLFy9Of265cuUYMGAAt2/fztVzn2b37t1oNBr++ecfPv/8c5ydnbGxsSE6OpqIiAjGjh1Lw4YNKVOmDPb29nTt2pXTp09nOk5CQgITJ06kdu3aWFlZUaVKFfr27cu1a9e4ceMGFSpUAGDSpEnpUxETJ04Esl4nk5KSwldffYW7uzuWlpa4ubnx6aefZlpX4ebmRvfu3dm/fz/NmjXDysqKmjVr8tdff+X7NWnYsCFOTk5cv349x9cI4MiRI3Tp0gUHBwdsbGxo06YNBw4cyHTc/fv34+vri5WVFe7u7tlOjWS1RigyMpKPPvoINzc3LC0tqVatGm+88Qbh4eHs3r0bX19fQIxCpL2+adNDWa0Rio2NZcyYMbi4uGBpaUmdOnWYPn06iqJkeJxGo2HkyJGsWbOGBg0aYGlpSf369dm8eXOuXss1a9bQrl27DP+/8fHxTJs2jdq1a2c5MtOjRw8GDRrE5s2bOXz4cIZjWVhY8Nxzz2V4vKWlJZUrV85VPAVlZ2dHuXLlcv34jh07sn//fiIiIjLc7uPjQ7ly5Vi7dq2xQ5SMTE6NScVCVFRUlutxkpOTc/X8kJAQQCRKufXqq6/ywQcfEBMTQ5kyZUhJSWH58uWMHj06y2mxhQsXMmTIEHx9fZk6dSqhoaH89NNPHDhwgJMnT+Lo6Jjtub755hu++OILXnrpJYYPH05YWBizZs3iueeey/G5abJ6jR7/fr/66issLCwYO3YsiYmJWFhYcOHCBdasWcOLL75IjRo1CA0N5bfffqNNmzZcuHCBqlWrAmKao3v37uzYsYMBAwbwwQcf8PDhQ7Zt28a5c+fo0KEDv/zyC++++y59+vShb9++AHh5eWUb7/Dhw/nzzz/p378/Y8aM4ciRI0ydOpWLFy+yevXqDI+9evUq/fv3Z9iwYQwaNIg//viDwYMH4+Pjk2Xim5MHDx7w4MEDatWqleH2rF6jnTt30rVrV3x8fJgwYQJarZYFCxbQrl079u3bR7NmzQA4e/YsnTp1okKFCkycOJGUlBQmTJiQaeonKzExMbRu3ZqLFy8ydOhQmjRpQnh4OOvWrSMoKIh69eoxefJkvvzyS9566y1at24NQMuWLbM8nqIo9OzZk127djFs2DAaNWrEli1b+PjjjwkODubHH3/M8Pj9+/ezatUq3nvvPezs7Pj555/p168ft27donz58tnGHRwczK1bt2jSpEmm4z148IAPPvgAM7Os32beeOMNFixYwIYNG3jmmWcAOHjwIA0aNMDc3DzH1+xp9Hp9ln8vrK2tsbW1LdCxn+Tj44OiKBw8eJDu3btnuK9JkyZZJsySiVF5REqSnipt2udpHzkNgycmJiqenp5KjRo1lOTk5BzPSepUSkREhGJhYaEsWrRIURRF2bhxo6LRaJQbN26kT3ekTY0lJSUpFStWVBo0aKDEx8enH2vDhg0KoHz55Zfptz05VXLjxg1Fp9Mp33zzTYY4zp49q5iZmWW6PS+vkaIoyq5duxRAqVmzphIXF5fhuQkJCZmmf65fv65YWloqkydPTr/tjz/+UABlxowZmc6fNiXytKmxJ7/nU6dOKYAyfPjwDI8bO3asAig7d+5Mv83V1VUBlL1796bfdu/ePcXS0lIZM2bMU18bRRH/n8OGDVPCwsKUe/fuKUeOHFHat2+vAMoPP/ygKEr2r5HBYFA8PDyUzp07Z5j6iYuLU2rUqKF07Ngx/bbevXsrVlZWys2bN9Nvu3DhgqLT6TJNjbm6uiqDBg1K//rLL79UAGXVqlWZ4k8779OmhAYNGqS4urqmf71mzRoFUL7++usMj+vfv7+i0WiUq1evZnh9LCwsMtx2+vRpBVBmzZqV6VyP2759uwIo69evz3D7zJkzFUBZvXp1ts+NiIhQAKVv377pt1WrVk3p16/fU8+Zm6mx7H4f3n777ace+0m5mRq7c+eOAijfffddpvveeustxdraOk/nlIqeHBGSigU/Pz9q166d6fYxY8bkuBts5MiRXLhwgY0bN2Z7dZqVsmXL0qVLF5YuXcprr73GkiVLaNmyZaadMQDHjx/n3r17TJw4ESsrq/Tbu3XrRt26ddm4cWP6QuInrVq1CoPBwEsvvZThKrZy5cp4eHiwa9cuPv300xzjze41SjNo0CCsra0z3GZpaZn+uV6vJzIykjJlylCnTh38/f3T71u5ciVOTk6MGjUq03HzsxD0v//+A2D06NEZbh8zZgzTp09n48aNtG3bNv12T0/P9FEQgAoVKlCnTh0CAwNzdb758+czf/789K+trKwYPXo0H374YYbHPfkanTp1iitXrvD5559z//79DI9t3749ixYtwmAwoCgKW7ZsoXfv3lSvXj39MfXq1aNz587p3292Vq5cibe3d/oU7uPy+/rqdDref//9DLePGTOGFStWsGnTpgy7sjp06IC7u3v6115eXtjb2+f4+qa9JmXLls1w+8OHDwExzZSdtPvSph/TjvfksfLDzc2NuXPnZrq9WrVqBT72k9LizWoEqmzZssTHxxMXF4eNjY3Rzy0Zh0yEpGKhWbNmNG3aNNPtZcuWfeoW9mnTpjF37ly++uorXnjhhTyf99VXX+X111/n1q1brFmzhu+//z7Lx6XVT6lTp06m++rWrcv+/fuzPceVK1dQFAUPD48s78/tNEF2r1GaJ3eUgajZ8tNPPzFnzhyuX7+eIal8fErk2rVr1KlTJ0+J5NPcvHkTrVabaWqqcuXKODo6ZqpH83hykaZs2bI8ePAgV+fr1asXI0eORKPRYGdnR/369bOcInnyNbpy5QogEqTsREVFkZiYSHx8fJb/h3Xq1MkxEbp27Rr9+vXLzbeSKzdv3qRq1aqZEpF69eql3/+4gr6+yhPrjtLOm5YQZSW7ZOnJY+WHra0tHTp0yPb+pKSkTGt6KlSogE6ny/O50uLNKmF92n2S6ZCJkFRiLVy4kE8++YR33nmHzz//PF/H6NmzJ5aWlgwaNIjExEReeuklI0cpkhGNRsOmTZuy/ENcpkwZo5znydEggClTpvDFF18wdOhQvvrqK8qVK4dWq+XDDz8sku3YuX2DyO4NKrdvmtWqVXvqG2OaJ1+jtNdg2rRpmbaspylTpkyxL5yX39c3LVl+MmFKS7jOnDlD7969s3zumTNnADHa9/jxcpt8FcTBgwczjDgCXL9+PV9FKdPizWr94YMHD7Cxscnyd08yHTIRkkqktWvXMnz4cPr27Yufn1++j2NtbU3v3r1ZvHgxXbt2zXaxddp0WUBAAO3atctwX0BAQJbTaWnc3d1RFIUaNWo8dWqrMKxYsYK2bdtmmDYCsYPp8e/V3d2dI0eOkJycnO0IVV6uel1dXTEYDFy5ciX9TRMgNDSUyMjIp75eRSltusje3v6piVSFChWwtrZOH0F6XEBAQK7Oc+7cuac+Jq+v7/bt23n48GGGEZdLly6l328MaQUK03bfpXn22WdxdHRkyZIlfPbZZ1kmWmm7/h5fYFy3bt1MxyoM3t7ebNu2LcNt+d2Vlhbv4z/Hj9+X1e2SaZHb56USZ+/evQwYMIDnnnuOv//+O8+F6540duxYJkyYwBdffJHtY5o2bUrFihX59ddfM4wObNq0iYsXL9KtW7dsn9u3b190Oh2TJk3KdAWuKEqmtSnGpNPpMp1z+fLlmbb89+vXj/DwcGbPnp3pGGnPT1sDERkZmeN506YpZ86cmeH2GTNmADz19SpKPj4+uLu7M336dGJiYjLdHxYWBojXsXPnzqxZs4Zbt26l33/x4kW2bNmS43n69evH6dOnM+2Wg0evb9pUXm5fX71en+n/68cff0Sj0RitiKSzszMuLi6ZKr/b2NgwduxYAgIC+OyzzzI9b+PGjSxcuJDOnTun7xgDaNGiBefOnSv0EbayZcvSoUOHDB+Pr+3LixMnTqDRaGjRokWm+/z9/bPd2SeZDjkiJJUoN2/epGfPnmg0Gvr378/y5csz3O/l5fXULd1Z8fb2xtvb+6mPMTc357vvvmPIkCG0adOGV155JX37vJubGx999FG2z3V3d+frr79m/Pjx3Lhxg969e2NnZ8f169dZvXo1b731FmPHjs1TzLnVvXt3Jk+ezJAhQ2jZsiVnz57l77//pmbNmhke98Ybb/DXX38xevRojh49SuvWrYmNjWX79u2899579OrVC2trazw9PVm2bBm1a9emXLlyNGjQIMuaS97e3gwaNIjff/+dyMhI2rRpw9GjR/nzzz/p3bt3pmkLtWi1WubNm0fXrl2pX78+Q4YMwdnZmeDgYHbt2oW9vT3r168HRP2kzZs307p1a9577z1SUlKYNWsW9evXT58Gys7HH3/MihUrePHFFxk6dCg+Pj5ERESwbt06fv31V7y9vXF3d8fR0ZFff/0VOzs7bG1tad68eZZrv3r06EHbtm357LPPuHHjBt7e3mzdupW1a9fy4YcfZlgYXVC9evVi9erVKIqSYdRq3LhxnDx5ku+++45Dhw7Rr18/rK2t2b9/P4sXL6ZevXqZKr336tWLr776ij179tCpU6cM982ePZvIyEju3LkDwPr16wkKCgJg1KhRGapGR0VFsXjx4izjfe2113L8nr7++msAzp8/D8CiRYvS1/k9Oc2+bds2WrVqlanMwIkTJ4iIiKBXr145nk9SmQo71SQp1/JaWTptG3R2H7mpekwWlYif9OT2+TTLli1TGjdurFhaWirlypVTBg4cqAQFBWX53CetXLlSefbZZxVbW1vF1tZWqVu3rjJixAglICDgqbHk9BqlvSbLly/PdF9CQoIyZswYpUqVKoq1tbXSqlUr5dChQ0qbNm2UNm3aZHhsXFyc8tlnnyk1atRQzM3NlcqVKyv9+/dXrl27lv6YgwcPKj4+PoqFhUWG1zur7zk5OVmZNGlS+vFcXFyU8ePHKwkJCRke5+rqqnTr1i1T7FnFmJXc/H8+7TVSFEU5efKk0rdvX6V8+fKKpaWl4urqqrz00kuZqgbv2bMn/fuvWbOm8uuvv2b5vT+5fV5RFOX+/fvKyJEjFWdnZ8XCwkKpVq2aMmjQICU8PDz9MWvXrlU8PT0VMzOzDFvIn9w+ryiK8vDhQ+Wjjz5SqlatqpibmyseHh7KtGnTMlWAzu71ySrGrKRVg963b1+m+/R6vbJgwQKlVatWir29vWJlZaXUr19fmTRpkhITE5Pl8by8vJRhw4ZlGU92v9fXr19Pf9zTts/n9i0vt8+PjIxULCwslHnz5mU6xieffJJlxW3J9GgUxQhL9CVJkqRSq3379lStWpVFixYV+FiLFi1ixIgR3Lp1K1eFRNU0c+ZMvv/+e65du5ZhQXRiYiJubm6MGzeODz74QMUIpdyQa4QkSZKkApkyZQrLli3LtC0/PwYOHEj16tULtMmhKCQnJzNjxgw+//zzTLvCFixYgLm5Oe+8845K0Ul5IUeEJEmSJEkqteSIkCRJkiRJpZZMhCRJkiRJKrVkIiRJkiRJUqklEyFJkiRJkkotWVAxBwaDgTt37mBnZycb50mSJElSMaEoCg8fPqRq1apP7TAgE6Ec3LlzBxcXF7XDkCRJkiQpH27fvk21atWyvV8mQjlIa1h4+/Zt7O3tVY5GkiRJkqTciI6OxsXFJUPj4azIRCgbfn5++Pn5odfrAdF9WiZCkiRJklS85LSsRRZUzEF0dDQODg5ERUXJREiSJEmSioncvn/LXWOSJEmSJJVaMhGSJEmSJKnUkomQJEmSJEmllkyEsuHn54enpye+vr5qhyJJkiRJUiGRi6VzIBdLS5IkSVLxIxdLS5IkSZIk5UAmQpIkSZIklVoyEZIkSZIkqdSSiZAkSZIkSaWWTIQkSZIkSSq1ZCKUDbl9XpIkSZJKPrl9Pgdy+7wkSZIkFY7AyEAszSxxLuNs9GPL7fOSJEkqMygG/jz/JweDD6odiiSZpKlHp9J9VXfWXVunWgxmqp1ZkiSphNt5ayfTj0/HUmfJ8h7LqeFQQ+2QJMlknA47zeG7hzHTmOFTyUe1OOSIkCRJUiFZcWUFAIn6RL488CV6g17liCTJdPx2+jcAurt3L5SpsdySiZAkSVIhuBtzN31KzNrMmlNhp1hyaYnKUUmSaTh//zz7gveh1Wh5s+GbqsYiEyFJkqRCsPrqahQUmlduzse+HwPws//P3Iq+pXJkkqS+30//DkDXGl2pbl9d1VhkIpQNuX1ekqT80hv0rL66GoC+Hn3p79GfZ6o8Q4I+gS8PfolBMagcoSSpJyAigJ23d6JBw1sN31I7HJkIZWfEiBFcuHCBY8eOqR2KJEnFzME7BwmJDcHB0oH2ru3RaDRMbDkRazNrToSe4J9L/6gdoiSpZu7ZuQB0cutETceaKkcjEyFJkiSjW3VlFQA9avbAUmcJgHMZZ0b7jAZgpv9Mbj+8rVp8kqSWwMhAtt7YCsBbXuqPBoFMhCRJkowqPD6c3bd3A2Ja7HEv1XkJ38q+xKfEM+HgBDlFJpU6v5/9HQWFdi7tqF22ttrhADIRkiRJMqp119aRoqTgVcELj7IeGe7TarRMajkJazNrjoUcY3nAcpWilKSidzP6JpuubwLgLW/TGA0CmQhJkiQZjaIo6dNi/T36Z/kYFzsXPmjyAQAzTszgTsydIotPktQ07+w8DIqB1s6tqV++vtrhpJOJkCRJkpEcDz3Ozeib2JjZ0Nmtc7aPe6XuKzSp2IS4lDgmHJyAbPkolXTBMcFsuLYBgLe931Y5moxkIiRJkmQkK6+sBERtFBtzm2wfp9VomdxqMpY6Sw7fPZz+PEkqqeafnU+KksIzVZ7Bu4K32uFkIBMhSZIkI4hKjGLbjW0A9K+d9bTY41ztXXm/8fsATD8+nbsxdws1PklSS0hsCGuurgHgHe931A0mCzIRyoYsqChJUl5sCNxAkiGJ2mVr53r9w8B6A/Gu4E1sciyTDk2SU2RSibTg3AKSDck0rdRU1eaq2ZGJUDZkQUVJknJLUZT06a1+Hv3QaDS5ep5Oq2Nyq8lYaC04cOdA+lWzJJUUYXFh6b8bprY2KI1MhCRJkgroXPg5rjy4gqXOkm41u+XpuTUdajKy8UgAph2bRmhsaGGEKEmqWHh+IYn6RLwreNO8cnO1w8mSTIQkSZIKKO2Kt6NrRxwsHR7dkZIEWz+Hc09fDP2G5xs0dGrIw+SHTD48WU6RSSVCREIEyy+LWllve72d65HSoiYTIUmSpAKIS45LLxL3ZCVpziyDg7NgzQiIj8z2GDqtjq9afYW51py9QXvZELihECOWpKLx1/m/iE+Jp375+jzr/Kza4WRLJkKSJEkFsPnGZuJS4nC1d6VppaaP7lAUOPqb+DwlXiRFT+Hu6M57jd4DYOrRqYTFhRVWyJJU6KISo1h6aSkgeoqZ6mgQyERIkiSpQFZeFtNefT36Zvxjf+swhJx99PWx+SI5eorB9QfjWd6Th0kP+erwV3KKTCq2Fl9cTFxKHLXL1qatS1u1w3kqmQhJkiTl0+UHlzkTfgYzjRk93XtmvDNtNKh+HzC3hfAAuHngqccz05rxVauvMNOasev2rvQpN0kqTh4mPeTvC38Dpr02KI1MhCRJkvJp9ZXVADzv8jxO1k6P7oi+AxfWic9bj4WGqQUWj/+R4zFrl63N215im/GUo1MIjw83asySVNiWXlrKw+SHuDu408G1g9rh5EgmQpIkSfmQqE9kfeB6APrV7pfxzuN/gKIH11ZQuQH4DhO3X1gHMfdyPPawhsOoW64uUYlRTDkyxdihS1KhiU2O5a8LfwHwptebaDWmn2aYfoSSJEkmaMfNHUQlRlHFtgotqrR4dEdKIpxYKD5v9pb4t4o3ODcFQzKcXJTjsc215mKKTGPGtpvb2HJji/G/AUkqBMsClhGVGIWrvStd3LqoHU6uyERIkiQpH9JqB/Wp1QedVvfojvOrITYM7J2hbvdHt6eNCp1YCAZ9jsevW64uw72GA/DN4W+ISIgwVuiSVCjiU+L58/yfAAxvODzj74UJk4lQNmSvMUmSsnMr+hZHQ46iQUPvWr0f3aEocORX8XnToaAze3Rf/T5g5QiRt+Dqjlyd562Gb+FR1oMHiQ+YemSq0eKXpMKw4vIKIhIicC7jnOcK62qSiVA2ZK8xSZKys+rKKgBaObeiSpkqj+4IOg53ToLOEnwGZ3ySuTU0Gig+Pz4/V+cx14kpMp1Gx+Ybm9l+c7sRopck40vUJ7Lg3AJArHEz15qrHFHuyURIkiQpD5INyay9thYQDVYzSNsy36Af2DqRSdMh4t/LW8TIUC7UL1+foQ2GAvDV4a+ITIjMT9iSVKhWX1lNWHwYlWwq0cu9l9rh5IlMhCRJkvJgb9BewuPDKWdVjjYubR7d8TAUzq8Rnzd/K+snO3lAjecABU78metzvuP9Du4O7kQkRPDtsW/zHbskFYZkfTLzz4lRzqENhmKhs1A5oryRiZAkSVIepE2L9arVK+Pw/4kFYldYtWZQtXH2B2iaumja/y/RlDUXLHQWfP3s12g1WjYGbmTXrV35DV+SjG7dtXWExIZQwbpC5lISxYBMhCRJknIpJDaE/cH7Aehb67EGqylJj4olNn/76Qep2w3KVILYexCwMdfnbuDUgEH1BwEw+fBkohKj8hS7JBWGFEMK887OA0SLGEudpcoR5Z1MhCRJknJpzdU1GBQDTSs1xc3B7dEdF9dBTKhIcOr1zPb5AOjMockb4vNjuVs0nWZEoxHUcKhBeHw43x/7Pm/BS1Ih+O/6fwTFBFHOqhwv1nlR7XDyRSZCkiRJuWBQDOktNfp69M1455HURdJNh4FZLtZH+AwGjRZu7IOwy7mOwVJnyeSWk9GgYd21dewN2pvr50qSsekNeuaemQvAG55vYG1mrXJE+SMTIUmSpFw4fOcwd2LvYGdhR0fXjo/uuHMSgo6C1jzzlvnsOFSD2qlVd3PRf+xxjSo24g1PMaI06dAkopOi8/R8STKWLTe2cCP6Bg6WDgyoO0DtcPJNJkKSJEm5sOLKCgC61+yOlZnVozuO/C7+rd8H7Crl/oBNxZZ4Ti+BpLg8xTKy8Uhc7V25F3eP6cem5+m5kmQMBsXA3LNiNOi1eq9ha26rckT5JxMhSZKkHNyPv8+u22KnVobaQbHhcE602shxkfST3NuDoyskRMH5VXl6qpWZVfoU2eqrqzkQfCBv55akAtpxawdXI69SxrwMr9Z7Ve1wCkQmQpIkSTlYf209KYYUGpRvQJ1ydR7dcWIh6BOhahOo1jRvB9VqHxVYzOOiaYAmlZowsJ6oVD3h4ARikmLyfAxJyg9FUfj9jBgJfbXeq9hb2KscUcHIREiSJOkpFEVJb7CaoUaKPiX3W+az0+g1sbbojr9Ya5RHoxqPolqZaoTGhfLDiR/yF4Mk5dGeoD1ciriEjZkNr9d7Xe1wCkwmQpIkSU/hf8+fG9E3sDazpmuNro/uuLQBooPBtoJYH5QfZSqAZ2o7gjwumgawMbdhcqvJgGh4eejOofzFIUm5pCgKv50WuyQH1B2Ao5WjugEZgUyEJEmSniKtknTXGl0zLgg9mrpI2mcwmBWgiJxvaqXpsyvEeqG8Pr2yLwPqiB07Ew9OJDY5Nv+xSFIODt45yLn757DSWaXvXizuZCIkSZKUjeikaLbe2Ao8UTso5CzcPABas0e7v/KreguoUA+S4+D0snwd4iOfj3Au48yd2Dv8eOLHgsUjSdlQFIVfT/8KwIt1XqS8dXmVIzIOmQhlw8/PD09PT3x9fdUORZIklfwX+B8J+gRqOdbCy8nr0R1pBRTr9QD7qgU7iUbzKJk6Ph8UJc+HsDG3YVLLSQAsC1jG0btHCxaTJGXhaMhRToWdwkJrwZD6Q9QOx2hkIpSNESNGcOHCBY4dO6Z2KJIkqSDDImmPfmg0GnFHXAScXS4+b5bPRdJP8n4ZzG0g7BLcPJivQzSv0pwXa4sWBxMOTiAuOW+1iSQpJ7+dERcAfT36UsGmgsrRGI9MhCRJkrJwIeIClyIuYaG1oId7j0d3+P8FKQlQuSFUf8Y4J7NygIb9xef5WDSdZrTPaCrbViYoJoifT/5snNgkCfAP9edYyDHMtGYMazhM7XCMSiZCkiRJWVh1WSySbu/aHgdLB3GjQf+o5k+zt8W0lrE0TX1zubAWYsLydYgyFmWY1EJMkf198W9OhJ4wVnRSKZc2GtTLvReVbSurHI1xyURIkiTpCXHJcWy8vhGA/h79H90RsAmiboF1uUcjOMZStRE4+4AhGU4uyvdhWjq3TF/Y/eWBL4lPiTdSgFJpdTbsLAfvHESn0TG84XC1wzE6mQhJUgmSrE/mfvx9lHwsuJUe2XpzK7HJsbjYudC08mMVo4+mLpJu8gaYF0Kn7bRF0ycWgMGQ78OMbTqWijYVufXwFrNOzjJScFJplTYa1L1md6rZVVM5GuMzUzsASZJypigK0UnR3Iu7l/4RGhea6euIhAgAXvd8nf/5/k/lqIuvlZfFIum+Hn3RalKvF+9dhOt7QaMF30K6Kq7fF7Z8CpG34NoO8OiY83OyYGdhx4QWExixYwSLLyymk2snGlVsZNxYpVLh4v2L7Anag1aj5U2vN9UOp1DIREiS0iiKcdd85FKyPpmw+LBMyc3jn4fFhZGgT8j1MeWbX/5di7zGqbBT6DQ6ern3enRHWgHFut3A0aVwTm5hA40GwuE5Yi1SPhMhgOeqPUdP956su7aOLw58wfIey7EyszJisMWPQTGwL2gfOq2OZ52fVTucYiFtNKiLWxdc7V1VjqZwyERIkh6Gwo7JogN4h0nQ/C2jHDZtFOfJkZvsRnFyw8HSgYo2FaloU5FKNpUyfF7BugIVbSoy48QM1l1bx+TDk1nWfRnmWnOjfD+lRdqW+TbV2jzaIhwfCaf/EZ8ba8t8dnyGiEToyhaIvF2gpOt/vv/j0J1D3Ii+wZxTcxjddLQRAy0+FEXh4J2D/OT/ExcjLgLwxTNf8FKdl1SOzLRdfnCZHbd2oEHDW17G+btoimQiJJVeKYniDWfvdEjr3L35EyhXEzw6PPWpxh7FMdeaU9GmYnoyk2WiY1MhV1f0Y5uOZW/QXq48uMKiC4sY2qCAlY9LkSR9EuuvrQeeaLB66m9R+bmiJ7gV8khChdrg1hpu7AP/P6Hd5/k+lIOlA1+2+JJRO0fx54U/6eDaAa8KXjk/sQQ5HXaan/x/4liIqAlnrjUn2ZDM14e/xtrMOmNpBCmDuWfmAtDBtQPuju4qR1N4ZCIklT6KApc2wtbP4cF1cZuzDzhUQ7mwluiVwwh96Q/uWVpmuRbnXtw9o43ipH3uaOn4aC1KAZW1KsvYpmP5/MDn/HLqFzq5diqRCxwLw85bO4lMjKSiTUVaVm0pbjQY4Kh4Q6DZW0Uzfeo7LDUR+gvafAK6/I/qPe/yPN1qdmNj4Ea+OPAF//b4F0tdAXqjFRNXH1xl1slZ7Ly9EwALrQUD6g5gWMNh/Hr6V5ZeWsoXB77AxtyG9tXbqxyt6QmMCmTLjS0AvO1VyKOgKpOJkFS6hF6AzePg+h7xdZnK0HESZ6vUY9Lhydxwq06iBtj3YY6HShvFefzj8SmqvIziGFtP956svbaWYyHH+PrI1/zS/pdHlZGlbKVNi/Wp1Qczbeqfx6vbRMJs5QBeRTSVUqcb2FaEmFCRtNfvXaDDjfMdx+E7hwmMCuTX07/yQZMPjBOnCboTcwe/U35sCNyAQTGg1Wjp5d6Ld73fpUqZKgCMazaOuOQ41l5by8d7PmZ2+9mPEl8JgHln5qGg8LzL89QpV0ftcAqVTISk0iEuAnZ9I6r2KgbQWULLUfDsRySZWTB+XV9uRt+E1FzBQa+nos6GilWbUsk261GcspZlTTa50Gg0fPHMF/Rb148DwQfYcnMLXdy6qB2WSbv98DaH7x5Gg4Y+Hn0e3ZHWV6zx62Bhm/WTjc3MQmzR3zdd9B8rYCLkaOXIF898wYe7P2TBuQV0qN6B+k71jROribgff595Z+exLGAZyYZkADq6dmRko5HUdKyZ4bFajZaJLScSlxLHtpvb+GDnB/zW8TeaVGqiRugm53b0bf67/h8A73i9o3I0hU8mQlLJpk8Wu292T4WESHFbvZ7Q6Sso6wbAX2fncTP6Jk7WTvzR+Q+qRN/D6s+ekBIM1XpCyy9VC78gajjU4M2GbzLn9By+O/odLau2xN7CXu2wTNbqK6sBaFG1Bc5lnMWN4VfENnY0hbdlPjs+g2H/DLFlP/wKOHkU6HDtXdvTxa0Lm29s5vMDn7Os+zIsdBbGiVVFMUkx/HXhL/48/ydxKaK/WvPKzfmgyQc0rNAw2+eZac34rvV3xKfEsz94PyN2jGBe53nUL1+yEsT8mHduHnpFz7POz5a4hDkrsqCiVHJd3Q6/tBILoBMioVIDGLQBXl6UngSFxIbw+xmxLXq0z2hqONTAyqU59JwtjrHvBzi3Up34jWBYw2G42bsRHh/Oz/6y91R2UgwprL26FiC9KjPwaG1Q7S5QrkbRBuXoAh6dxOfHFxjlkOObj6ecVTmuRl5N/7kvrhL1iSy6sIgXVr3AL6d/IS4lDs/ynvze8XfmdZ731CQojbnOnB+f/5GmlZoSkxzDO9ve4eqDq0UQvem6E3OHdVfXASV/bVAamQhJJU/4VVjyMizuB+EBYFMeus+Et/dCjdYZHvrD8R+IT4mnScUmdK/Z/dEdXi9Cq9R1FGtGwN3TRRe/EVnoLPiyhRjR+jfgX07dO6VuQCZqf/B+7sXfo6xlWdq5tBM3JkSL3WJgtJIKeZbWf+zU35Bc8FYZ5azK8WnzTwGYd3YeF+9fLPAxi1qKIYXVV1bTfXV3vj/2PQ8SH+Bm78YPbX7gn27/0KJqizwdz8rMitntZ9PQqSGRiZG8te0tbkffLqToTd8f5/4gRUmheZXmpaYOmUyEVBIeH87sk7PRG/Rqh1JyJETBls9gzjNweTNozeCZETDKH5oOAa0uw8OP3j3K5hub0Wq0jG8+PvN6n/YToFYHSImHfwbmuxGm2nwr+9LLvRcKCpMPT05fPyE9klZJuqd7T8zTdmidXirKKjjVhppt1QmsVntwrC5GNM+tMsohO7t1pqNrR/SKni8OfEGyvnj8PCiKwo6bO+i3rh9fHvySkNgQKtpUZFLLSazutZpObp3yvWbP1tyWXzr8gkdZD8Liwxi+dTghsSFG/g5MX2hsKKuuiJ+z0jIaBDIRUkWKIYXX/nuN3878xj8B/6gdTvFn0MOJP+HnJnBotmha6dEJ3jsMXaaAtWOmpyQbkpl6dCoAL9V+ibrl6mY+rlYH/eZDOXeIug3/vgEpSYX8zRSOMU3H4GjpyJUHV1h8YbHa4ZiU0NhQ9gbvBaBv7dRpMYPhUSXpotoynxWtThRYBLHQ30g+a/4ZjpaOBDwIYN65eUY7bmE5evcoA/8byIe7PyQwKhAHSwfGNh3Lxj4b6evR99EOvwJwsHTg946/42rvyp3YO7y59U3ux983QvTFx4LzC0g2JNOkYhN8K/uqHU6RkYmQCsy0ZgypL/64/ez/c6m88jCaGwfg9zaw/n2IC4fyHjBwBQxc/tTFpf9c+oerkVcpa1mWkY1HZn98a0d45R+wtIdbB8XW+2IorbYQwJxTcwiOCVY5ItOx9tpaDIqBJhWbUNMhdXdR4E64fxUs7MB7gLoBNn4dtOYQfNxoU7Tlrcszvtl4AH4//TsBEQFGOa6xnb9/nre3vc2wrcM4G34WazNr3vJ6i019NzGo/iCjl6ZwsnZibse5VLGtwo3oG7y97W2iEqOMeg5TFR4fzorLKwB427v0jAaBTIRU82KdF2lcsTFxKXF8ffhr2S08ryJvwb+DYOELEHIWLB2g81R471CO/ZnC48OZc2oOAB80+QAHS4enn6tCbeg3D9CIrcxGvDIvSj3de+Jb2ZcEfQLfHP5G/swhek+lTQVkqCR9JHU0qPFAsLRTIbLHlKkAnj3F58fmG+2wXWt0pZ1LO1KUFDFFZkJTptejrjNm9xgGbBjAwTsHMdOa8WrdV/mv73+MajwKO4vC+z+pUqYKczvNpbxVeQIeBPDejveITY4ttPOZij/P/0miPhEvJy9aVMnbOqviTiZCKtFqtExoMQEzrRl7gvaw9eZWtUMqHpJiYec3MNsXLqwRncCbDoX3/aHFe7mqwPvjiR+JSY6hQfkGGevFPE3tztA+dRv9fx/DzYP5/x5UklZbyFxrzr7gffJnDjhy9wjBMcHYmdvR0TU1gY4IhCupr00zE+mvlLZo+uwKsRbOCDQaDV+0+AJ7C3suRlxkwTnj7EwriJDYECYenEiftX3YenMrGjT0qNmD9b3XM775eJysnYokDld7V+Z2mouDpQNnws7w/s73SUjJfdPj4uZBwgOWBSwDxGiQqdZHKywyEVKRu6M7wxuK2iRTj0wtNUOw+aIocOZfmNUU9n4PKQmiH9Pb+6D7j2Cbuz+Qp+6dYt01sTX00+af5q2txbMfQf2+YEiBZa+LhpjFTFptIYBvj37Lw6SHKkekrrTRoBdqvoC1mbW48eg8QIFaHaG8ifRXcm0JFepCcqz4PTASJ2snxjUT072/nv5Vta3jkQmRzDg+g+6ru7Pyykr0ip7nqz3Pip4rmNJ6iiotYjzKevBrh1+xNbflaMhRxuwZY1KjZsa06MIi4lPi8SzvSWvn1jk/oYQpNYlQXFwcrq6ujB07Vu1QMniz4Zu42btxP+E+P574Ue1wTFPQCZjfEVa9CQ/vgKMrvLQIBq2Hyg1yfRi9Qc+UI1MAUSsmN3VGMtBooJcfVPYS65H+eRWS4vJ2DBPweG2hn/x/Ujsc1TxIeMCOWzsA6OeROi2WGAMnUxeTNzehdRIajRj5BDE9ZsRpze41u9OmWhuSDcl8ceALUgwpRjt2TuKS4/j9zO90XdWVBecXkKhPpEnFJvzV9S9mtZ9F7bK1iyyWrDRwasDsdrOx0lmxN2gvn+77tMTt9I1KjGLJpSUAvOX1VqkbDYJSlAh98803PPPMM2qHkYmFzoKJLScCos/R8ZDj6gZkSqLvwup3YV47CDoG5rZiemrEUbFmIo+/sCuvrORixEXsLOzy32vJwgYGLAEbJwg5A+tGGvVNqShY6Cz44pkvAFFb6HRY8ayRVFDrr60n2ZCMZ3lP6pWvJ248swwSo8ROQXcTa8TpPQDMbSDsItw6bLTDpk2Z2pnbce7+Of48/6fRjp2dZH0ySy8t5YVVLzDr5CxikmOoU7YOc9rPYWGXhTSu2LjQY8itppWb8mPbHzHTmrH5xmYmHZqEQTGoHZbRLLm4hNjkWDzKetDWRaUyESorFYnQlStXuHTpEl27dlU7lCz5VPKhf+3+AEw6NIlEfaLKEaksOUFUdJ7lA6fFlQrer8KoE9B6DJjnfadIZEIkP58UlZVHNhpJOaty+Y/P0UVUp9aaiarTB2bm/1gqaValGT3de4raQodKX20hRVEeLZJOGw1SlMe6zL8JWhP782jlAA1SYz1uvEXTAJVsK/G/Zv8DxK7CwMhAox4/jUExsCFwAz3W9GDKkSncT7hPtTLV+K71d/zb419aV2ttkiMSzzo/y/fPfY9Wo2X11dV8f+z7ErHZICYphkUXFwFiNChPSwVKENW/671799KjRw+qVq2KRqNhzZo1mR7j5+eHm5sbVlZWNG/enKNHj+bpHGPHjmXq1KlGirhwfOTzEU7WTtyIvsHcM3PVDkcdigIX1oFfM9gxWayHqOYLw3dCn1/Avkq+Dz3r5CyiEqOoXbY2L9UxQgdx15bwwjTx+fZJcHlLwY9ZxMY2HYujpSOXH1wudbWFToed5lrUNazNrHmhxgvixut7xWiLuS00elXdALPjm7po+sJaiA036qF7uffiWednSTIk8cXBL4w6BaQoCnuD9vLi+hcZv288wTHBOFk78Xnzz1nXex0v1HzB5N+EO7p25KtWXwHw98W/mX1qtsoRFdzSS0t5mPSQGg416Fj96bttSzLVf/JiY2Px9vbGz88vy/uXLVvG6NGjmTBhAv7+/nh7e9O5c2fu3buX/phGjRrRoEGDTB937txh7dq11K5dm9q11Z1rzom9hX16XY/55+aXvn43Iefgzx7w7+sQeRPsqkDfuTB0K1TzKdChL9y/wPLLywGxQNoYxdcAsWaj6VBAgZXDIeyycY5bRMpalWVM0zFA6asttPKKqCTdybUTZSzKiBvTCig2ekWMvpiiqo2hahPQJz1ay2QkGo2GCS0mYGtuy5mwMyy+aJzj+4f6M3jzYEbsGMHlB5exMxdT0xv7bOTlui8/quRdDPR078lnzT8D4Pczv/PHueJZSgPE+qy/LvwFiLWquicq75cmGsWExvc0Gg2rV6+md+/e6bc1b94cX19fZs8W2bfBYMDFxYVRo0YxblzOxe3Gjx/P4sWL0el0xMTEkJyczJgxY/jyy6w7iicmJpKY+GhqKjo6GhcXF6KiorC3L9zO3Yqi8P7O99kdtJtGFRrxZ9c/Tf4qqcBiw2HXN3BiISgGMLOClqOg1YdgWabAhzcoBt7Y9Aanw07TrWY3vm39bYGPmUFKEvzVSxRbLF8Lhu/IspK1qVIUhaFbhnI89DitnVvj197PJKcmjCkmKYZ2y9sRnxLPoq6LRD+lyFvwk7f4GRxxFCrUUTvM7PkvEmvTyrrBqJNGn8JbeXklEw9NxFJnyYoeK3BzcMvXcQIiAvj55M/sDRJVuy11lgysN5ChDYbmXLvLxM0/O5+Z/jMBUaV7QF2Vi27mw8JzC/nhxA+42Lmwrvc6410gmpDo6GgcHBxyfP826XfZpKQkTpw4QYcOHdJv02q1dOjQgUOHDuXqGFOnTuX27dvcuHGD6dOn8+abb2abBKU93sHBIf3DxcWlwN9Hbmk0Gj575jNszGw4FXaK5QHLi+zcRU6fDIfmiLYYx/8Qb0CevcWbULvPjZIEgVgQezrsNDZmNoz2GW2UY2ZgZgEv/QUOLqIS8crhouVHMZFWS6Y01Rb67/p/xKfEU9OhJt4VvMWNx+aJn8Gaz5t2EgRinZCVAzy4Add2Gv3wfT360qJKCxL1iXx58Ms8T5HdfnibcfvG8eL6F9kbtBedRseLtV9kY5+NfOTzUbFPgkDsvEwrQ/HNkW9Yf229yhHlTUJKAgvPLwTEaFBJTILywqQTofDwcPR6PZUqVcpwe6VKlQgJKZy2FOPHjycqKir94/btoq0VU9m2cvqOph/9fyQ0NrRIz18krmyDX1rClvFih07lhjD4P3jpTyjrarTTPEx6yIwTMwB4x/sdKtpUNNqxMyhTAQb8DWbWcHUb7JhUOOcpJDUdaqbXsyoNtYXSpsX6evQVo19JceAvpghoZkJb5rNjYSM2D0ChVDnXaDRMbDkRGzMbTt47ydJLS3P1vPD4cL4+/DU9V/dkY+BGFBS6unVlbe+1fNniSyrZVsr5IMXIqMajGFhvIACfH/ic7Te3qxxR7q28spL7CfdxLuNMd/fuaoejOpNOhIxt8ODBTJ8+/amPsbS0xN7ePsNHUXu5zst4OXkRmxyb3hi0RAi/An+/CH/3h/DLYgt6j5/grT3g1srop5tzag4RCRG42bvxWr3XjH78DKp4Q+/UdW4HfoIzxWs0r7TUFrp4/yIX7l/ATGtGT/fUthVnl0P8A9HlvXZndQPMraapjVgvb4KoIKMfvmqZqunrx37y/4lb0beyfWx0UjQ/+//MC6teYFnAMlKUFFo5t+Lf7v/yfZvvcbU33sWNKdFoNPzP93/0rtUbg2Lg470fcyD4gNph5ShJn5S+tmlog6GYa4vPGq3CYtKJkJOTEzqdjtDQjKMioaGhVK5cWaWoCp9Oq2NCywmYaczYcWsHO27uUDukgomPhM2fwpxnROsCrTm0GCnaYvgMFh22jezKgyvpV7Ljm40vmgWZDfrBs6nTb+tGwp2ThX9OI7HUWZaK2kJpo0Htq7enrFXZ1C3zqYukfd8slJ/FQlGhjqisrhjgROHU/elfuz/NKjcjQZ/Alwe/zFQ7JyElgQXnFtB1ZVfmnp1LfEo8XhW8+KPzH/za4ddHtZlKMK1Gy8QWE+nk2okUQwof7vrQ5GvBrbm6hntx96hkU4netXqrHY5JMOlEyMLCAh8fH3bseJQIGAwGduzYQYsWhdsUzs/PD09PT3x9fQv1PNmpXbY2QxqIq74pR6YUz+kKg14M3c9qAof9RGuK2l3gvcPQ+ZtC25mjKApTj05Fr+jpUL0DLZ1bFsp5stTuc/DoLFqA/DMQYu7l/BwTUdJrC8WnxPNf4H/AY7WDbh6E0HNiWrNxIY8aGltapWn/v8SaOyPTarRMajkJazNrToSeSO9FlWJIYcXlFXRb3Y0ZJ2YQnRSNu4M7P7X9icVdF+NbWZ2/mWrRaXV82/pbnqv2HAn6BEbuHMn58PNqh5WlZH0y887OA2BIgyFY6CxUjsg0qJ4IxcTEcOrUKU6dOgXA9evXOXXqFLduiaHY0aNHM3fuXP78808uXrzIu+++S2xsLEOGDCnUuEaMGMGFCxc4duxYoZ7nad72fhtXe1fuxd8rftMV1/fBb21gw0cQdx+c6sBrK+HVZeBUq1BPveXGFo6FHMNSZ8nHvh8X6rky0eqg31xwqg3RwaInWUpS0cZQACW5ttC2m9t4mPwQ5zLONK/SXNx49Dfxr9dLYFOAIptqqNsdbCtCTAgE/Fcop6hmV40Pm3wIiGbFyy4to8/aPkw6NIl7cfeoaluVr1t9zcqeK2lXvV2J33GYHXOdOT+0+QHfyr7EJsfy9va3ufLgitphZbI+cD13Y+9S3qr8o4sBSf1E6Pjx4zRu3JjGjUVJ9dGjR9O4ceP0nV0vv/wy06dP58svv6RRo0acOnWKzZs3Z1pAXRJZ6iz58hnxOiwLWMbJe8VgquXBDfHm/2d3CD0rRn26fAfvHoBaHXJ8ekHFJccx7bgodDi84XCqlqla6OfMxMoBBiwFSwe4fRj+G1ts2nCU5NpCKy8/WiSt1WjF2pqLG8SdptRXLLfMLKDJ6+LzY8atNP24AXUH4FPJh/iUeL4+8jU3om9Qzqoc45qNY32f9fSq1atU16BJY2Vmxax2s/By8iIqMYq3tr3Fzeibxj9RUiwcXwC/PQd+z0BU7n5HUwwp6cV6hzQYgpVZ3iv0l1QmVUfIFOW2DkFh+vLAl6y+upqaDjVZ3mO5aQ5nJsbA/hlwcDboE0GjFUP3z38KtuWLLIyZJ2Yy/9x8qpWpxprea7DUWRbZuTO5sh2WvCjWcbwwXbRtKAZKYm2hwKhAeq3phVajZWu/rWIH047JopWLW2sYvEHtEPMn8hbM9AIUGHmi0EZbb0XfYsDGARgUA4PqD+INzzewNbctlHMVd1GJUQzdMpTLDy5TxbYKf3X9i8q2RljTev+aKPNw8m+x2zZN1SYwZFOOrYfWX1vPp/s/paxlWTb324yNuU3BYzJxJaKOkCSMaTqGclblCIwKZP65wrvyyxeDAU7/I/qC7ftBJEE1noN39kO3H4o0CboRdYM/L4iFo580+0TdJAjAowN0mCg+3zxOTBcWAyWxttDqK6sBeM75OZEEJSeIIp4Azd5SL7CCcqwOHp3E5ycWFNppqttXZ1PfTex8cSfver8rk6CncLB04LeOv+Fm78bd2Lu8ufVNwuPz2Q7FoIdL/8GiPqlrLeeIJKhsDbEe0bos3PEXSxCeMqahN+j5/YzYFPBG/TdKRRKUFzIRyobai6Uf52DpwLhmoor23DNzCYwqnIaIeRJ9B/ZOg58bweq3xTqFsm7w8t/wxjqoVL9Iw1EUhW+PfkuKIYXWzq1pU61NkZ4/Wy3fh4YvioXiywfBg0IYKi8EJam2ULI+mXXX1gFiWgyA86vE2jX7alDnBRWjM4K0/mMnF0NyfKGdxsHSQb6B5pKTtRNzO82lqm1VbkTf4K1tbxH1+ChOTmLDYd8M+KkR/PNKauFMjdiIMXAFjPKH5z6G/gvE6PvpJY92P2Zh281t3Ii+gb2FPa/UfaXA319JIxOhbJjCYunHdXHrQmvn1iQbkpl0cFKmraxFQp8irk6WvAw/1oedX4u+YJYOYuRjxFGo1x1UmEbZdXsXB+4cwFxrzifNPjGdqRyNBnrOgiqNxBvvPwPFHH8xUFJqC+26vYuIhAgqWFegdbXW4sr5SOoiad9hoCvmVXVrdQCH6pAQCedXqx2NlKqybWXmdpqLk7UTVx5c4d3t7xKbnMPvftAJWPU2zPAUhVmjbolRn5bvw/snYeC/4NHxUVsV97bQUTSCZfP4LEedDYqB386In/fXPF+To3lZkIlQMaHRaPj8mc+xNrPG/54/q66sKrqTRwSKDus/1hdXJ5c3i3Uvrq2gz28w5hI8+xGYqTMVlZCSwPfHvgdgcP3BplfAzdwaBiwRO3xCz8Ka94rF4umSUlsorXZQ71q9RSuBoGNw9xToLKHJIHWDMwatDnxSv49CqDQt5V91++r83vF3HCwdOBt+llE7R5GQkpDxQcnxYt3P78/DvHZw5h+xxKBKI+g1B0ZfhE5fQbkaWZ+kxQho+BIoejHqHJmx+OWuW7u4GnmVMuZl0ithSxnJRKgYqVqmKqMajwJgxvEZhMWFFd7JkhPg7ArREf7nxmIhdEyIqAbd8n0YeRyG/AfeA0TJfxUtOLeA4JhgKtlUSp/OMTkOzvDyIlFM8sIa2Pf0CuemorjXFgqOCebQHdGXsI9HH3Fj2mhQwxeLdA1boWryhvjZCjoGd8+oHY30GI+yHvzW4TdszW05FnKM0btHk6xPFjtst34BM+rB2vdEAVadBXgNEM2b39oNjQeKC6mn0Wig58+iun36qHMcIJYMpI0GvVL3Fewt1NnwY+pkIlTMvFr3VeqXr8/D5Id8e9TIndQBQi/ApnEwoy6sHAbX9wIaMfz+0l+Prk6cPIx/7nwIehiUvoD8Y9+PTXsNQ/VnoFtqArTzazHNWAwU59pCq6+sRkGheZXmuNi5wMMQkYgCNC/Gi6SfVKYi1OshPj9uYhsqJOo71cevvR9WOiv2Be9j3N9tSPmpERz8WbR3cXCB9hPE39e+v0G1pnlbYmBuLdZn2pSHkDOw/gNQFPYG7eVixEWszax53fP1Qvv+ijuZCBUzOq2OiS0notPo2HpzK7tv7y74QRNjRHXaeR3glxZw5Bfxy2lfDdqMgw/PimKInr1E7RITMu3YNBL1iTSv3JxOrp3UDidnPoNFKweAVW/BvUuqhpMbxbW2kN6gZ/VVsWamv0d/cePxBWLhussz4gq6JEmrNH1mOSREqxuLlFH8A3yuHWJmdBLmisJW5SETncpiqNlW1Bz74DS0Hg22Tvk/h6MLvPgnaHRw9l+Ug7PTR4MG1BkgWspIWZKJUDZMadfYk+qWq8sb9d8A4OvDXxOTFJP3gyiKWJi37n34oQ6sGyWG1bVm4spy4Er48Ay0HS9+wUzQgeAD7Ly9EzONGeObjzedBdI56TJV1K5JeijWXMU/UDuiHPVy70XTSk1J0CfwzeFvKA7lxw7cOcC9uHs4WjrSrno7UeE7bYt5SRoNSuP2rKjgnhwLZ5apHY0EcPc0rB0JP9SDrZ/R6t4Npj2IQ4eGtXZl+K5Oc5Q6XY3X465Ga/H3BTi0/xvOhp/FSmeV/n4hZU0mQtkwtV1jT3rX+12qlalGaFwos07Oyv0T4yLEGolfWomFef5/QlIMlK8FHSeLodmXF4saOCZcLTZZn5w+NfhqvVdxd3RXOaI80JmLKzeH6mIh+oqhYkeeCSuOtYXSKkn3cO8hipBeWAsxoWBXBer1VDm6QqDRPBoVOv5HsViQXyKlJIpRuXkdRfXnk4sgJR4qNYDuM2k/4ixfPfsNAEsuLcnb3+/caPYWiver/OZoB0B/1044WRdgpKkUkIlQMWVtZs0XLcSOnqWXlj59R4+iiLU+K4fDD3Vh0//g3nkwsxIL8wb/JxY/t/pArDUoBhZdXMSN6BuUtyrPu97vqh1O3tmWh1eWgLmNqBGyfYLaEeWoONUWCo8PZ0/QHuCxBqtHfhX/Nh0qktGSyHuAaCB77wLcPqJ2NKVLVBDs+Ersrl01HIKOihH2Bv1gyGZRZLbpELCwpYd7Dz5v/jkAc8/OTW+EahQaDcd9X8PfygoLg8KQ8zuLTckOtchEqBhrWbVl+o6eiQcnZt7R8zBUFOWa1UTs/jq7XGzLrNRQtHwYc0kszHNrpUrtn/wKjQ3l19PiTW1M0zGUsSijckT5VLkh9J4jPj80W1ToNnHFpbbQmqtr0Ct6GlVoJEYLg09A8HGxK8dnsNrhFR5rR2iYmvgVYv8xKZWiQOBusVNrppfYDRobJkYdn/8UPjoP/f8A1xaZ/sa+XPdlRvuMBuAn/59Yemmp0cL67byYAu6ToKdiyAVYO0KOED6FTISKubFNx1LWsixXI6+y8NxCUZL98hbxizmjnijKFREIFnbgMwTe3AXv7BN9r6yL5+K5H078QHxKPI0rNqZ7ze5qh1Mw9fuICrEg1msFn1A3nhwUh9pCiqKk19lKryR9JLXqbv0+xWbUM9+aplaavrBGVCiWjC8hWvxM+TWDv3rBpQ2ijo9bazHt/eFZeP4TsHt6j7EhDYbwlpdYrzblyBTWXl1b4NBO3TvFkZAjmGnNGNZumhiVOr8aDsws8LFLKpkIFXNlrcrysa94I/315Gxu/tQAlrz06BfTpTn08oOxAdBjJjg3KVajP086FnKMTdc3oUHD+GbFaIH00zz/qWjzoE8UCezDELUjeipTry10LOQYtx/extbcls5unSEmTLTUAGhWDLvM55VzE1GMT58Ep/5WO5qS5d5F2DBaXGRu+hjCL4NFGfAdDu8dFs176/fO09TryEYjea3eawB8efBLtt3cVqAQfz0jRst7ufeiSp3u0FUUm2X7JNEIWspEJkLZMOVdY+lSEuH8arofmE/LuHiSMDDZOgXFuhw8MwLeOwLDtkLj18Ci+JdVTzGkMOXIFABeqvMS9crXUzkiI9FqRYXuCnXh4V1Y9pr4vzVhplxbKK2S9As1XhB1pU4sFEmBsw9U81E3uKKS1n/s+ALRGFnKP32yGFFZ0A3mPCPqNCXFgFNt6DpNbDDp9gNUzN/fI41Gw8e+H9OnVh8MioH/7f0f+4Ly16D5bNhZDgQfQKfRMaxh6s9A06GpFdQVWDlUdLGXMpCJUDZMetdYWABs+UxclSwfjCZwF5/fj8AKDUetrVjT+3voMgUq1lU7UqNaFrCMq5FXcbR0TK+wXWJY2Ys2HFYOoozBhtEmPadvqrWFohKj2H5TXPX28+gn3sTSCgw2f0fFyIpYg36iB+CD6xC4U+1oiqeHIbD7O5jZEJYPhpv7RY2eej1EY+kRR0UZBquCV2vWarRMaDGBLm5dSDGk8NHujzgWkvf3nrQO891qdhMFREHMALwwDao1g4QoMeqcaLobHdQgE6HiIilW9KOZ31nMSx+aLcqp21WB5z7GZYQ/I1IX3k33n0l4fMlaGxAeH87sk7MBeL/J+zhYOqgcUSEo7/6om/SpxU/tJm0KTLG20IbADSQZkqhbri6e5T3h4noxymZbETx7qx1e0bGwFTvIQIwKSbmjKHDzICwfInZ/7Z6S+vNTQazl+/CsKC9Ss43RlxjotDqmtJ5Cm2ptSNQnMnLHSM6Gnc318y9FXGJ30G40aDK3GjKzFJ0BylSGsIuw+h05UvgYmQiZujunYMNHYtv72vfg9mFxVVKnG7yyDD48B+0+h7JuvOb5GvXK1SM6KZrvj36vduRG9ZP/T8Qkx+BZ3pO+tfqqHU7hqdU+YzfpwD3qxvMUplZbSFEUVlxeAYhF0hqN5lEy2XSIyVVFL3RpNYUC/oMo0xixM1mJMaL20q/PwoKuYk2ZIUWssew7T+z+ave56BlYiMy15kxvM51mlZsRlxLHO9vf4fKDy7l6btpoUJcaXajhkEWDVvsqIonTWYg1pPt+MGboxZpMhExRfCQcnQu/tobf24hf0MRoKOsG7b+E0RdEDZo6XUBnlv40M60ZE1pOQKvRsunGJvYG7VXtWzCm02GnWXN1DQCfNv8UnQkXejSKFiNEfae0btIR19WOKFumVFvobPhZrkZexVJnSbea3UTz0VuHxK4ZnyGqxaWainXB9VlQDKJwqpRZ+NXU3or1xAVn6DlRh6nJG/D2PrHG0utFMaJSRKzMrJjVbhZeFbyITormra1vcSPqxlOfc/XB1fRF1m81fErVdBdfUToFYNc3ELDZSFEXbzIRMhVpQ7Kr3xGjP/+NFc3zdBbQoL+Ykx51ElqPeeqWzPrl66fvQPj68NfEJccV1XdQKPQGffoC6d61euNdoYT1h8qKRgM9foKqTUT7jX9eFVesJspUagulLZLu5NpJdNk+mtpl3rOXuBoujXxTR4VO/CnWS0mixMiljfBXb5jtI3orJkZDuZrQeQqMuQg9Z0EVL9VCtDG3YU77OdQpW4f7Cfd5c9ub3I25m+3jfz8rRoM6unakVtlaTz+4zyCxyw0FVr0J4VeMGHnxJBMhtcWEwYGfYbavGJI9vVSUY69QD7p8C2MCoP98MSetzd1/14hGI6hqW5W7sXeZfWp2IX8DhWvV1VVcuH8BO3M7PmjygdrhFB1zKxjwN5SpJKoEr37bZOf0TaG2UGxyLJuubwKgX+1+opXMWTFNViq2zGenbg+xviUmBAI2qR2N+iKui+mvf16FwF2ABmp3EU2lR54Qo7EmUl/NwdKB3zr+hpu9GyGxIQzfOjzLtZ83om6w5cYWgPSaRDnqPBWqtxAJ4NJXxCLqUkwmQtko1O3zigJXt8Oy12FGXdj2Bdy/Aua20Ph1GL4D3jsEz7wLNuXyfHgbc5v09ht/X/ybc+HnjP0dFInIhMj0EYYRjUeUvn459lUzzunvnaZ2RNlSu7bQpuubiE+Jx83ejSYVm4ipoJQE0WHepVmRxmJSzCzE3xR4tHuutLp9FOZ1EBcW1mVFS6EPTsGry6BWh1xfaBal8tblmdtpLlVtq3Lr4S3e3PomkQmRGR4z9+xcDIqB56s9T91yudwpbGYhFk/bVRXvPatM90KrKJje/7yJKPTt89smwsV1YkGec1Po8bMoethrNlRrWuAdCc86P8sLNV7AoBiybr9RDMw+NZuoxChqOdbi5Tovqx2OOlyaQfcfxee7p8DFDerG8xRq1hZKqyTdz6MfGoP+UXuJZm8X6wKiRuEzGNCIVhCltYbMuZWwsDvEhYvk+N1Dosl0WTe1I8tRZdvKzOs0jwrWFbgaeZV3t79LTJKYKr/98DYbAzcC8LZ3Hkc+y1SEAYtBZwmXN8Ge74wderEhEyE1aDTQ4j1R1+SdA/DmDjFva2ln1NP8z/d/OFg6EPAggEUXFhn12IXtwv0L/BvwLyAWSJtpzXJ4RgnW+LVHNXBWvw2hF9SNJxtq1RYKiAjgbPhZzLRm9HDvIf6oR90Gm/Kink5pV9YVPDqKz4//oW4sRU1RxEjqiqGicnudF2DIpmK3ZszF3oW5nebiaOnIufvnGLlzJPEp8cw/Ox+9oqdV1VY0cGqQ9wM7+4j1iAB7vjXpC63CJBMhtTR6Fbp+B5Xz8cObS+WtyzO26VgAfjn1C7ejbxfauYzJoBiYcmQKCgpda3TFt7IJV/cuKp2+hhrPiYq2SweINTAmSI3aQmmjQW1d2lLeujwcSV0k3WSQWGslPeo/dupvSI5XN5aikpIEa96DnV+Lr1uMFFPNxbTKvrujO792/JUy5mU4EXqC97a/x9projdZnkeDHtfolYwXWvcuGSHa4kUmQiVcL/deNK/cnAR9ApMPTzaJonc52RC4gdNhp7E2s2aMzxi1wzENOnPRzNHRFSJvikq3+hS1o8rkydpCBe2blJOElATWB64HUitJh16AG/tEra20NhOSGBFycBG7EC8UvLGnyYuLgEV94PQS8bPQ7Qfo/A0U89Ib9cvXx6+9H1Y6K46HHifFkELzys1pXLFxwQ7c6WvRMDYpRiwkj480SrzFhUyESjiNRsOXLb7EUmfJ4buH0980TNXDpIfMOD4DgHe836GSbSWVIzIhNuXglaViUf31PWKRvQkqytpC229t52HSQ6raVqVF1RaPtszX7QYO1QrtvMWOViem3+HR+qmS6v41mN9RtMSwsIOB/6ZuFy8ZmlRqwk/tfsJcKxq7Fmg0KI3OHF5cKJLliGuwcrgoM1BKyESoFKhuX513vMXQ57Rj04hIMM1pFYBfTv/C/YT7uNm78Xq919UOx/RUqg99RHdpDs8RbVdMUFptobD4MH72/7nQzrPysqgd1NujN9qEKDgj1pXRvBRvmc9O4zdEccmgoxCS+9YNxcrNQ2Jn2P2r4k192BaxI6yEaVm1JX91/Yuf2/5svKUDtk6iZIeZNVzdJgoulhIyESolBtUfRO2ytYlMjGTaMdPchn31wVWWXFwCwPhm4zHXmasckYny7AltxonPN3wIt02vMfDjtYWWBSzjTNgZo5/jRtQNjoceR6vR0qdWHzi5GJLjoGJ9cG1l9PMVe3aVRMNQKJmLps/8C3/1hPgIUYx0+A5x4VBCNXBqQNvqbY170CreopgkiBYc51cb9/gmSiZCpYS51pyJLSaiQcOGwA0cDD6odkgZKIrCt0e/Ra/oaV+9PS2dW6odkmlr8wnU7Q76JFj2GkRnX3VWLY/XFpp0aJLRSzisuioWSbeq2orK1hVEWxoQHcFL+5b57KT1Hzvzb8npQK4osPtbUSVZnySSvcEbReIn5Z3Xi2JhOYjF5qHn1Y2nCMhEKBuFWlBRJQ0rNOTVeq8CMPnwZJNqv7H15laOhBzBUmfJx74fqx2O6dNqxRRZRU9RNXjZQEhOUDuqTB6vLfT3BeNN4yUbkll7VSz67Ve7H1zZKhaRWzlCw5eMdp4Sx601ONUWi2LPLFM7moJLSRQ7nXZPFV+3+gBe/AssbNSNq7jrMAlqPi9GWP951WR3qRqLTISyUegFFVUyqvEoKttWJjgmmF9P/6p2OADEJcelT9cNazgM5zKF2+G5xLC0gwFLRJXc4BOiaaSJ7QrMUFvotPFqC+25vYeIhAjKW5XnuWrPPbZl/g35Jvg0Gs2jUaFjf5jcz0uexEWIfmFnlomdYT1+EkUSTbBCdLGjM4P+C8Qu1Qc3Uuswmd4uVWORPzGljK25bfrajb8u/MXF+xdVjgjmnZ1HaFwozmWcGVK/FHYJL4hyNcRuD41ObBU+PEftiDJJqy0UnxJvtNpCaQ1We9fqjfn966JvlEZbonYHFRrvAWJB7L3zou1EcRR+Fea1h1sHwdJe9ArzGax2VCWLTTlxoWVuI36/dkxSO6JCIxOhUui5as/R2a0zekXPhIMTSDGol+nfjL7JwvMLAVEJ28pMFsDLs5rPixopAFs/h2s7VQ3nScauLRQSG8KB4AMA9PHoA0dF521qdxVVlKWnsy77qOJ2cew/dmO/SIIiAsGxOgzbBu5GXjQsCZUbQC8/8fnBnx81Mi5hZCJUSo1rNg47CzsuRlzk74vqbMFOWyCdbEimlXMr2rrIP2b51vwdaDQQFAMsHwIhptVo15i1hVZfWY2Cgm9lX1wtysLppeKO5rnsvC2Bb+r02Pk1EHtf1VDy5NRSMR2WECl6NA7fARVz2WhUyp8GfeHZj8Tna0fCXePvAFWbTIRKKSdrp/SqzX6n/Ah6GFTkMewJ2sP+4P2Yac0Y5zsOjdzpk38ajWjOWs1XvEn8+qzYTRZ0Qu3I0hmjtpDeoGf1VbGlt59HPzi1RCz8rVAXarQxZrglW9UmYqu0PlG03TB1iiJaZax5BwzJ4NkbBm8QjUOlwtfuC1GPKSUe/hlYvJLnXJCJUCnW16Nv+tqNr498XaTtNxL1iXx79FsABnkOws3BrcjOXWKZWYo5/TrdAAUurod57UTX7avbVV8Ya4zaQofuHuJu7F3sLezp4NLu0bRYszfllvm80Gge9R87/gcYDOrG8zTJCbBymGieCtB6jFjIa26tblyliVYH/eZBuZoQdQuWDypRi6dlIlSKpbXfsNBacCD4AP9d/6/Izr3g3AKCY4KpaFORt7zklIbRlKkIryyB946IqTKtmei9tbgf/NZazPGr+AesoLWF0hqs9nDvgeWNA6IdgKUDeA0ojHBLtob9xULjB9fh+m61o8labLgoknhupfhZ7uUH7b+UO8PUYF1WXGhZlBF/U0y0xU9+yJ+mUq6GQ430ROT7Y98TmRBZ6OcMjglm3tl5AHzc9GNszOV2Z6OrWBd6z4EPTsMzI0R/spCz4sp6VhNRfDBJnTpS+a0tFB4fzq5buwAxmpneV6zxQLAsUxihlmwWtmIHGZhm/7Gwy2JR9O0jYOUAr6+Gxq+pHVXpVrFexhY/p/9RNx4jkYmQxNAGQ6nlWIuIhAimH59e6Oebfmw6ifpEfCv70tmtc6Gfr1RzqAZdpsBH56Dt52DjJAoP/jcWZjaEPdOKvFhafmsLrb+2nhQlBS8nL2obdHBlG6CRW+YLIq2mUMAmiL6jbiyPC9wD8zuIGjZl3WDYdqjxnNpRSSAqdz/3P/H5uvch2F/deIxAJkIS5jpzJrSYgAYNa6+t5cjdI4V2roPBB9l+azs6jY7xzcbLBdJFxaYctPkYPjwLL0wX247jwmHX1/BjA9j8KUQZp9hhbuS1tpCiKOnTYn09+sKxeYACHh2hvHsRRFxCVawn+rIpevD/S+1oBP9FsLgvJESBS3OxM6xCbbWjkh73/Hio3UUstl/2GsTcUzuiApGJkARAo4qNeLnOywBMOjSJhBTjt2tI1icz9agohf9K3VfwKOth9HNIObCwEQuLR52EfvOhUkNIjoXDfvCTt+gtFBZQ6GHktbbQidAT3Ii+gY2ZDV2rthYNVgGayS7zBZY2KnTiT3UXwBoMsH0SrBsJhhRo0B/eWCe6okumRauFvr9DeQ+IDoZ/B4HeuL0Ei5JMhLJREnuN5eSDJh9Q0aYitx/eLpT2G4svLuZG9A3KWZXjvUbvGf34Uh7ozMRi2Xf2wcCVogeVIVlspfZrBktfgVuFNzIIeastlFZJumuNrthcWAuJ0VDOHdzbFWqMpUK9HmLK9OEduLxJnRiS42HFENg/Q3zd5hOxS8lcFlg1WVYO8MpSseD+1kHYPF7tiPJNJkLZKKm9xp6mjEUZPmv+GQALzy8kIMJ4IwOhsaHpydVon9HYWdgZ7dhSAWg04NFB1GQZvlO8KaKBgP/gj07wRxe4vKXQtt7nprZQVGJU+ohRP4++j7rMN3tL7h4yBjNLaPK6+Pz4H0V//ph7osTDhTWgNYfev0LbT2U5hOLAyUOMDAEcmyumNYuhPP0VSU5OxszMjHPnTKtqrWQ87aq3o0P1DugVPRMPTkRv0BvluDNOzCAuJQ7vCt70cO9hlGNKRlbNB15eDCOPQePXxZvSrUOw5CX4paXYIWLk4e/c1BbaGLiRRH0iHmU9aBAVDuEBYgtvo1eNGkup5jMY0Ij2LPevFd15710UO8OCj4OVI7yxBhq9UnTnlwquTldoKy6g2Tgago6rG08+5CkRMjc3p3r16uj1xnlzlEzT+ObjKWNehnP3z/FPQMG3Rx4POc5/1/9Dg4ZPm3+KViOv4k2akwf0mi0WVrd8Hyzs4N4FWP02/NwYDv8CSbFGO93TagspipI+LdbPox+aY6mjQY1eBSt7o8VQ6pV1E5WDAU4sKJpzXtsJ8ztB5C1RqG/4DnB7tmjOLRlX67FQtzvok8Ti6YchakeUJ3l+R/rss8/49NNPiYgo2i23UtGpaFORj3xEb5mf/H/ibszdfB8rxZDClKNTAHix9ot4lvc0SoxSEbCvAp2+Elvv208A24oQdRs2j4Mf68OuqUYrtT+m6RgcLB0y1RY6f/88lx9cxkJrQfdyXmKbN4hpsWIgIVnPpPXnWXuq6Hbk5ZtvaqXpk3+Las6F6cRCWNxfrPWq3lIkQU61CvecUuHRakV9oQp14eFd+PcNSElSO6pcy3MiNHv2bPbu3UvVqlWpU6cOTZo0yfAhlQz9a/enccXGBW6/sSxgGVceXMHB0oFRjUcZOUqpSFg7QuvRYoSo+49QtgbEP4A938LMBvDf/8RVfQGUsyqX3vvu8dpCaaNBHd064nB6GaCIBdJOxWPH4fz911lw4AbjV50lNtHEWxJ4dAL7ahAfARfWFs45DAbY+jms/0Bs2fd6WUyH2ZQrnPNJRcfSTlSetnQQRTA3/U/tiHLNLK9P6N27dyGEIZkarUbLhBYT6L++P3uD9rLl5ha6uHXJ0zHux9/H75QfAO83fh9HK8dCiFQqMuZWYqt1k0FwcR3s/xHunhYVno/NE7vQWn0Alern6/C9a/Vm7bW1nAg9wTeHv2F6m+n8FyjavvRz6wZ/p1YVLiZb5sNjEvllt1hvE5ekZ/O5EPr5VFM5qqfQ6sRaoV1fw/H54P2ycY+fFAer3oRLG8TXz38Kbf4nF0WXJOXdof98+PtFMcVaxetReQYTplGKstNmMRQdHY2DgwNRUVHY25e+NQlzTs3hl9O/UN6qPGt7r8XB0iHXz51wcAKrrqyiXrl6LO22FJ1WV4iRSkVOUSBwNxyYKf5N49EJWn0Iri3z/CYXGBVIv3X9SDGk0NalLbtu76K6XXU2VO+PZsOHYi3LKH/xpm3ivlhzjkWHb6LTatAbFFrVKs/fw59RO6ynexgipj0NKfDOAajcwHjHXToA7pwEnQX0mgNeLxrn2JLp2TcDdkwSGy4Gb4Dq6vzc5/b9O9+rVk+cOMHixYtZvHgxJ0+ezO9hJBM3vOFwajjU4H7CfX488WOun3c27Gx6JeBPm38qk6CSSKMB97bwxlp4azfU7wMaLVzZCgtfgPkd4eKGPHU2f7y20K7bj/qKadK2zPu+WSySoKv3HrLkqJgu/L6fFwAHr93nTmS8mmHlzK4y1O0mPjfWVvrQ8zC3vUiCrMuJIokyCSrZnv0IPHuL2mTLXjet9i1ZyHMidO/ePdq1a4evry/vv/8+77//Pj4+PrRv356wsLDCiFFSkYXOgoktJgJivcaxkJzrKhkUA98c+QaAnu49aVSxUSFGKJmEqo3hxYUw8jj4DAGdJQQdg2UDYU5zUQk6l4snhzccjqu9KwBmGjN6WVaGe+fB3KbYNN38dtMl9AaFDvUq0c+nGs/ULIeiwOqTxWDRdNPURdNnlkFi9kUuc+XKdpjfGaKDoHwtGL4dXFsUPEbJtGk0oulzxfoQe0/sJCvsBfgFkOdEaNSoUTx8+JDz588TERFBREQE586dIzo6mvfff78wYpRU1qRSE16sLa7gJh+aTKI+8amPX31lNefvn6eMeZn03WdSKVHeHXrMFAurnx0tFk6GX4a1I0QLj4Ozc3xztdRZMqHFBCx1lvSs1ROnk6klHLxeFgu3TdzBa+Fsv3gPnVbD+BfqAtC3iVgbtMo/KN8bD4pMjedE0pIUA2f+zf9xjs2DJS9C0kNRuXzYNtkXrjSxsIUBf4v6UMEn4L8xhVaYtaDynAht3ryZOXPmUK9evfTbPD098fPzY9MmlcqzS4XuQ58PqWBdgRvRN/j9zO/ZPi4qMYqZ/jMBeK/RezhZyz5BpZJdJegwQWy97zgZylQWLRy2fibWoOz4CmKyH0H2rezL3pf3MsFzGFzaKG4sBlvmDQaFbzZeBGBg8+q4VygDwAsNq2BlruVaWCyng6LUDDFnGs2jBa7HF+T9zcugF018N44BxQCNBsJrq+TOsNKoXA14cYGYMj+5OLVZsunJcyJkMBgwNzfPdLu5uTmGPKwFkIoXewt7xjcXvWT+OPsHVx5cyfJxs0/OJjIxklqOtRhQd0BRhiiZIit7sZPswzPQc5Zo0pgQBfumi633G0ZDxPUsn2pjboP2+AKxzdqtNVQy/RpUa04Fc/5ONHaWZnzQ/tEW/zKWZnSpXxkQo0Imz/sVMLOC0LNiijO3EmPENMhhsVuUdl9ALz8wsyicOCXT595OXAyBqEF2Y7+68WQhz4lQu3bt+OCDD7hz59Hip+DgYD766CPat29v1OAk09Khegeed3meFCWFSYcmYVAyJr6XIi7x72UxlD6+2XjMtZkTZqmUMrOEJm/AiKOijYezD6QkiG3as5rA8iFiK/7jkhPA/0/xeXPT3zIfn6Rn2hbRn++9trUoX8Yyw/1p02PrTt8hKcXELxptykGDfuLzY/Nz95zou7Cgq+hTp7OE/n/Ac2Pl9ngJWoyEhi+K3Yj/DoLI22pHlEG+CipGR0fj5uaGu7s77u7u1KhRg+joaGbNmlUYMUomQqPR8Fnzz7Axs+F02Gn+DXi0fkBRFKYcmYJBMdDFrQvNqjRTMVLJZGm1orHr8B0waINo66AY4Pwq+O05WNQHAveI6ZhzKyHuPji4QO2uakeeoz8OXOduVALOjtYMaeWW6f5WtZyoZG9JZFwyOy/dK/oA8ypt0fT51RCXQyeBu2dgbjsIOSM62Q/e8CiRkiSNBnr8DJW9IC48dfG06eygzHMi5OLigr+/Pxs3buTDDz/kww8/5L///sPf359q1Uy4WJhkFJVtK/NBkw8AmOk/k5BY0VNmQ+AGTt47ibWZNWOajlEzRKk40GigRmt4bSW8vQ8a9BfrCK7thL96ijfVfT+Ix/oOA12ea78WqbCHiczZdRWA/3Wpg5V55i3+Oq2G3o2dgWIyPebcRLxx6RPh1N/ZP+7yFviji1gD5lRH7AxzkRdC0hMsbMTiaZvycPdUanVx01g8na/u8+fPn6djx46MGjWKUaNG0aFDh8KKTzV+fn54enri6+urdigm5+U6L+NVwYvY5FimHplKTFIMM07MAOAtr7eobFtZ5QilYqWKl6hG+/5JUSfIzAru+EPENfF5k0FqR5ijmdsvE5ukx6uaAz28qmb7uH6p02O7Au4REWvivZg0mkf9x47/kXU9qCO/iUKJybFQow0M2yoWyEpSVhyrizIbGp0oz3D4F7UjAmT3+WyNGDGCCxcucOxYHhYKlhI6rY4JLSZgpjFj5+2dvLP9HcLjw3G1d+UNzzfUDk8qrsq6Qbfp8OE5eO5jcHQV/5r4bqMroQ/555hY8/DZC/XQarNfE1O7kh0NnR1I1iusP23aReYAMVJnaQ8RgXB9z6PbDXrRY27T/8TUZuPXxeheMShvIKmsxnPQWTTiZuvnYipcZbL7vJQvtcvWZkiDIQCcDhOLXMc1G4eFTu4OkQqoTAVo97nYafbcWLWjydHU1OKJnTwr0bxm+Rwf37dJMZoesywj6jeBWNgOog7U0ldEjzmADpPEjkCd3Bwh5VLzt8H7VbEjdPlgeHBT1XBk93kp3972fju9AnBbl7Y86/ysyhFJUtE6cDWcnZfuYabVMK5r3Vw9p6d3Vcy0Gk4HRXH1XgErNxeFtOmxS/9B0HH4oytc2SKmLV/6C579UO4Mk/JGo4HuP4qK9PER8M9A0ZRXJbL7vJRvljpLfmr7Eysur2BYw2FqhyNJRUr/WPHE155xpWZq8cSclC9jyfN1KrL9Yigr/YP5pEvuEijVVKwH1VvCrYOif5xiANuK8Mo/UM1H7eik4srcSpTS+P15Ua/q+B/QcqQqoeQpEUpJSUGj0TB06FC5Q0wCwN3RnU+afaJ2GJJU5FafDObC3WjsrMx4/7HiibnRr4kz2y+GsuZkMGM71UH3lHVFJqHpUJEIKQaoUA8G/isWvkpSQThUE6OKgXvgmfdUCyNPU2NmZmZMmzaNlJSUwopHkiTJ5MUn6ZmeWjxxZNtalLPN29q4dvUq4mBtzt2oBA4H3i+MEI3LsyfU6gj1+8CwLTIJkozHtSW0HS9qjKkkX5Wl9+xRf5W3JEmSWubtCyQkWhRPHNTSLc/PtzTT0cO7CgArTxSDRdNmlvDaCrH12cpB7WgkyajyvEaoa9eujBs3jrNnz+Lj44OtrW2G+3v27Gm04CRJkkzNvYcJ/LLnGpB98cTc6NukGosP32LTuRC+6p2CraVpF42UpJIqz795770n5vFmzJiR6T6NRlMqagxJklR6/bjtCnFJerxdHOnpnX3xxJw0dnGkhpMt18Nj2XwuhH4+ct2lJKkhX93ns/uQSZAkSSXZ5dCHLDt2C4DPu9VDU4Bt4xqNhn6pNYVWFoeaQpJUCBQTaLOh3uokSZKkYmbqfxcxKNClfmV83Qpe8Tqt99ihwPsER5pOE0pJKipLjt5i9LJTRMUlqxZDrhOhF154gaioqPSvv/32WyIjI9O/vn//Pp6enkYNTpIkyVTsvxLOroAwzLQaPsll8cScVCtrwzM1y6EosOZksFGOKUnFxe2IOKZsvMiqk8GsO63ez3+uE6EtW7aQmJiY/vWUKVMytNlISUkhICDAuNFJkiSZAL1B4euNFwBRPLGGk20Oz8i9tEasK/2DTGKaQJKKgsGg8MnKM8Qm6fF1K8vA5q6qxZLrROjJX1D5CytJUmmx0j+ISyEPsbMy44M8Fk/MSdeGVbAy1xIYFsvpoKicnyBJJcDfR29x8Np9rMy1TOvv/dRmxYVNrhGSJEl6irikFH7YKka7R7WrRdk8Fk/MSRlLM7rUrwwUk0asklRAtyPimPqfaE/zSZe6uBlxhDU/cp0IaTSaTDskCrJjQpIkqTiYt+86odGJVCubv+KJuZG2dX7d6Tskpsjdt1LJZTAofLziNHFJeprVKMegFm5qh5T7OkKKojB48GAsLS0BSEhI4J133kkvqPj4+iFJkqSS4F50Ar+mFk/8pEtdLM3yVzwxJy3dnahkb0lodCK7LoXRpUHlQjmPJKlt8ZGbHA6MwNpcx7T+XqpOiaXJdSI0aNCgDF+/9tprmR7zxhtvFDwiSZIkE/Hj9svEJelp5OJId68qhXYenVZD78bO/LYnkFX+QTIRkkqkm/djmfrfJQDGda2La3l1p8TS5DoRWrBgQWHGIUmSZFICQh6y7NhtoODFE3OjX5Nq/LYnkF0B94iITcpzI1dJMmViSuwM8cl6nqlZjtefUW+X2JPkYmlJkqQsTEktnti1QWWaGqF4Yk5qV7KjobMDyXqF9afvFPr5JKko/XXoBkevR2BjoVN9l9iTZCIkSZL0hL2Xw9hzOQxznYZPuhineGJu9E1tuSF3j0klyY3wWL7dLKbExneti0s5G5UjyqhUJEJubm54eXnRqFEj2rZtq3Y4kiSZML1BYUrq1t7Xn3Er0q29Pb2rYqbVcDooiqv3HhbZeSWpsBgMCv9bcYaEZAMt3curWjgxO6UiEQI4ePAgp06dYteuXWqHIkmSCVt5QhRPtLcy4/32tYr03OXLWPJ8nYoiDn/ZckMq/hYevMHRGxHYWuj4rp9p7BJ7UqlJhCRJknISm5jC9NTiie+398DRpugXLKd1pF9zMhi9QVbwl4qv6+GxfL8ldUrshXomNyWWJl+J0KJFi2jVqhVVq1bl5s2bAMycOZO1a9fm+Vh79+6lR48eVK1aFY1Gw5o1azI9xs/PDzc3N6ysrGjevDlHjx7N0zk0Gg1t2rTB19eXv//+O88xSpJUOszdF8i9h4lUL2fD6y3UGcJvV68iDtbm3I1K4NC1+6rEIEkFpTcofLz8NAnJBp6t5cTA5tXVDilbeU6EfvnlF0aPHs0LL7xAZGQker2oguro6MjMmTPzHEBsbCze3t74+fllef+yZcsYPXo0EyZMwN/fH29vbzp37sy9e/fSH9OoUSMaNGiQ6ePOHbHzYv/+/Zw4cYJ169YxZcoUzpw5k+c4JUkq2e5FJ/DbnkCgcIsn5sTSTEcPb1GzSC6aloqrBQeuc/zmA8pYmvFtv4Ym3YlCo+Sxe6qnpydTpkyhd+/e2NnZcfr0aWrWrMm5c+d4/vnnCQ8Pz38wGg2rV6+md+/e6bc1b94cX19fZs+eDYDBYMDFxYVRo0Yxbty4PJ/j448/pn79+gwePDjL+xMTEzNUyY6OjsbFxYWoqCjs7e3zfD5JkoqHT1acYdnx2zSp7sjKd1uq+ofb/9YD+s45iLW5juOfd8DWMtcl3yRJddfCYnjhp30kphiY2rchrzRTZzQoOjoaBweHHN+/8/zbdf36dRo3bpzpdktLS2JjY/N6uKdKSkrixIkTjB8/Pv02rVZLhw4dOHToUK6OERsbi8FgwM7OjpiYGHbu3MlLL72U7eOnTp3KpEmTChy7JBmToigkJBuITkgmOj459d+Ux75OSb89Wa/wSrPq+LiWVTvsYuPi3Wj+PSGKJ37WzVP1q9fGLo7UdLIlMDyWTedC6J/ai0ySTF3alFhiioHWHk4M8HVRO6Qc5TkRqlGjBqdOncLVNeP8+ebNm6lXr57RAgMIDw9Hr9dTqVKlDLdXqlSJS5cu5eoYoaGh9OnTBwC9Xs+bb76Jr69vto8fP348o0ePTv86bURIkgoiL4nM0xKc3Npw5g7zB/nSqpZTIX5XJceU/y6iKNCtYRWTSCA1Gg19mzgzfetlVvkHyURIKjbm7w/E/1Zk6pSYl+oXFbmR50Ro9OjRjBgxgoSEBBRF4ejRoyxdupSpU6cyb968woixQGrWrMnp06dz/XhLS8v0xrKSlKaoE5nsaDVgb22OvZU59tZm4t/HP7c259iNCPZdCWfowmP8MVgmQznZczmMfVfCMddp+F+XOmqHk653Y5EIHQq8T3BkPM6O1mqHJElPdfVeDNO3Xgbgi+71is3PbJ4ToeHDh2Ntbc3nn39OXFwcr776KlWrVuWnn35iwIABRg3OyckJnU5HaGhohttDQ0OpXFk2JZSMJyI2iYUHrhMWk6h6ImNvZfbYYzLeZ2uhy/EKKzFFz7uL/dl56Z5MhnKgNyhM2SiKJw5q4WYyTSABqpW1oUXN8hwKvM+ak8GMaFu0NY0kKS/0BoWxy0+TlGKgTe0KvNS0+Myk5GsF3sCBAxk4cCBxcXHExMRQsWJFY8cFgIWFBT4+PuzYsSN9AbXBYGDHjh2MHDmyUM4plU5+u64yf//1HB9XFIlMQVma6fjltSa8t9ifHanJ0PxBvjzrIZOhJy0/fpuA0Ic4WJszsp3pJRp9mzhzKPA+K/2DeO9592IxzSCVTnP3BXLqdiR2Vqa/S+xJeU6E2rVrx6pVq3B0dMTGxgYbG1EgKTo6mt69e7Nz5848HS8mJoarV6+mf339+nVOnTpFuXLlqF69OqNHj2bQoEE0bdqUZs2aMXPmTGJjYxkyZEheQ88TPz8//Pz80ssDSCWXoihsuyBGHQf4ulC3sp2qiYwxWJrpmPNYMjTsT5kMPSk2MYUftolhfLWKJ+aka8MqfLn2PIFhsZwOiqKRi6PaIUlSJldCHzJjW9qUmCdVHIrHlFiaPG+f12q1hISEZBoFunfvHs7OziQnJ+cpgN27d2fZ/2vQoEEsXLgQgNmzZzNt2jRCQkJo1KgRP//8M82bN8/TefIrt9vvpOLr6r0YOszYg4VOy8kvO5aorcqJKXpG/O3P9ov3sDTTymToMTO2XebnHVdwLW/Dto/aYGFmmoX2P1p2itUng3n9GVe+6t1A7XAkKYMUvYF+vxzkdFAUbetU4I/BviZzsWj07fOPFyG8cOECISEh6V/r9Xo2b96Ms7NzngN9/vnnySkXGzlypJwKkwrNzktiNOgZ9/IlKgkCMTLkN7BJejI07M9jzBvUlNYeFdQOTVUhUQn8vvcaAOO61DXZJAjE9Njqk8GsP3OHz7vXU63QoyRl5fd9gZwOisLOyoypfYvHLrEn5fqvfqNGjdBoNGg0Gtq1a5fpfmtra2bNmmXU4CSpKOy8JKqUt6tTMpODJ5Oh4X8eL/XJ0IxtASQkG/BxLUuXBqa98aKluxOV7a0IiU5g16Uwk49XKj0uhz5k5rYrAEzoUZ/KDlYqR5Q/ub4Mun79OteuXUvfMn/9+vX0j+DgYKKjoxk6dGhhxlqk/Pz88PT0fGrNIan4i4pP5tiNBwC0q1sph0cXX5ZmOuYM9KFDvYokphgY/udx9l4OUzssVVy4E83yE6J1xWfd6pn8FaxOq6F3YzHavlK23JBMRIreIHaJ6Q20q1sxvVlwcZTrRMjV1RU3NzcMBgNNmzbF1dU1/aNKlSrodCVruHbEiBFcuHCBY8eOqR2KVIj2Xg5Db1DwqFiG6uVNszOysViYaVOToUokphh486/SlwwpipJePLG7VxWaVFe/eGJupL3J7Lp0j4jYJJWjkST4bW8gZ4KisLcyY2rf4rVL7El5XhDx119/PfX+N954I9/BSFJR25U2LVavcEpAmBqRDDXhvb/92X4xlOF/HWfeG015rnbpmCbbfTmM/VfDsdBp+aRLXbXDyTWPSnZ4VXPgTFAU604FM7hVDbVDkkqxSyHRzNwudolN7FmfSvbFc0osTZ4ToQ8++CDD18nJycTFxWFhYYGNjY1MhKRiQ29Q2BWQtj6odCRC8CgZGrHEn20XSk8ylKI3pBdPHNzKDZdyxWsEsG9jZ84ERbHqpEyEJPUkp06JJesVOtSrRJ/GxXdKLE2et0o8ePAgw0dMTAwBAQE8++yzLF26tDBilKRCcer2Ax7EJWNvZWYS/aWKkoWZFr9Xm9DRsxJJKQaG/3WcPSV8mmz5iSCu3IvB0cacEc+bXvHEnPTwroqZVsOZoCiuhD5UOxyplPp19zXOBUfjYG3OlD4NivWUWBqj7Bn18PDg22+/zTRaJEmmbMdFMRr0fJ2KmOlMd/t0YUlLhjqlJkNvluBkKCYxhR9SeyC9384DBxtzlSPKu/JlLGlbV4xcrvQPVjkaqTS6eDean3eKXWKTetanYjGfEktjtL/+ZmZm3Llzx1iHU53cNVbypW+br1t6psWeZGGmZfYTydDu1OnCkuT3PdcIj0nErbwNrz3jqnY4+Za2aHrNyWD0hoL3vpOk3ErWGxjzr5gS6+RZiV6NqqodktHkeY3QunXrMnytKAp3795l9uzZtGrVymiBqW3EiBGMGDEivTKlVLIER8ZzKeQhWg20KeFrY3KSlgyNWurPlvOhvLXoBL+/7sPzJWTd1N2oeH7fFwjAuK6mXTwxJ23rVsTB2pyQ6AQOXbsvq4RLRcZv11Uu3I3G0cacr0vIlFiaPCdCac1P02g0GipUqEC7du344YcfjBWXJBWqtNEgH9eylLU1vR5TRc3CTMusV0pmMvTD1sskJBvwdStL5/rFuxihpZmOnt5VWXT4Jiv9g2QiJBWJ83eimL1T9ASd3KsBFe1KxpRYmjxfGhkMhgwfer2ekJAQlixZQpUqVQojRkkyuvRt8yW4iGJepSVDneuLabK3Fp0o9tNk5+9EpRch/PQF0y+emBt9U6fHNp8LISYxReVopJIuKcXA2OVnSDEodKlfmR5eJe99vviOEUtSPsUn6TlwNRwo3euDspI2TZaeDP11Ir3EQHHzePHEHt5VaVxMiifmpJGLIzWdbIlP1rP5XEjOT5CkApi96yoX70ZT1sacr3qXrCmxNLmaGhs9enSuDzhjxox8ByNJReHgtXASUww4O1pTu1IZtcMxOeY6kQyNXCKmyd7+6wS/veFD22I2TbY7IIwDV+9jodPyv8511A7HaDQaDf18qjFtSwArTwTR36ea2iFJJdS54Cjm7BJTYl/1bkAFO0uVIyocuUqETp48mauDlaRM0c/PDz8/P/R6vdqhSEa2I3VarH29iiXqZ9aY0pKhUUtOsvl8iEiGXvdJ375t6lL0Br75TxRPHFIMiyfmpHdjZ6ZtCeBQ4H2CHsRRrWzJ+v4k9YkpsdOkGBReaFiZ7l4lZ5fYkzSKosg9mE+RtmssKioKe3t7tcORCkhRFFp+u5O7UQksGOJb7EY5ilqy3pCeDFnotMUmGfr7yE0+W32Osjbm7P64LQ7Wxa9uUE5e+f0whwLv83HnOoxoW/wKREqm7YetAczaeZXythZs/eg5ypcpfqNBuX3/LtAaoaCgIIKCZDdkqfi4ePchd6MSsDbX0aJmebXDMXnmOi2zXm1M1waVSdIbeHvRifSF5qYqJjGFH7eJ4okftPcokUkQQL/UKbGVJ4KQ17OSMZ0NimLO7muAmBIrjklQXuRr19jkyZNxcHBI7z7v6OjIV199hcFgKIwYSyz5x6vo7bwUCkCrWk5YmetUjqZ4MNdp+fmVjMlQ2utoin7dfY3wmCRqONkysBgXT8xJlwaVsTbXERgey6nbkWqHI5UQiSl6xiw/hd6g0M2rCi80LHm7xJ6U50Tos88+Y/bs2Xz77becPHmSkydPMmXKFGbNmsUXX3xRGDGWOIqiMGPbZZ6fvpvAsBi1wylVZDXp/ElLhl5oKJKhdxb5m2QydDcqnrmPFU80L8GtU8pYmtGlgaiLtEq23JCM5OcdV7gcGoNTGQu+6tVA7XCKRJ7/Svz555/MmzePd999Fy8vL7y8vHjvvfeYO3cuCxcuLIQQSx6NRsOp25HcvB/HhjN31Q6n1Lgfk8jJ1CtnmQjlnblOy08DMiZDOy6aVjI0bUsAiSkGmrmVo5Nnya8R1a+JmB5bd/oOiSlyY4dUMKdvR/LrHnEh8XXvBpQrJcVm85wIRUREULdu3Uy3161bl4iICKMEVRp0Ty1KteFMyenPZup2B4ShKFC/qj2VHUpWZdSikpYMdWtYhSS9gXcXm04ydC44itUnxcjIZ91KRvHEnLRwL09leyui4pNNfu2WZNoSkvWMXX4avUGhh3dVujQo+VNiafKcCHl7ezN79uxMt8+ePRtvb2+jBGUKCrvpamfPypjrNFwOjeFy6MNCOYeUUdq0WHs5GlQg5jotMwc0Sk+G3ll8QvVkSFEUvtkoiif2alQVbxdHVeMpKjqtht6NRaVp2ZFeKoifdlzhyr0YnMpYMrlnfbXDKVJ5ToS+//57/vjjDzw9PRk2bBjDhg3D09OThQsXMm3atMKIURUjRozgwoULHDt2rFCO72BjTmsP0exzw2k5KlTYkvUG9l4OAygW279N3ePJULJeUT0Z2nnpHocC72NhpuXjElQ8MTfSOtLvunSP+zGJKkcjFUcnbz3gtz1il9g3fRqUuv6LeU6E2rRpw+XLl+nTpw+RkZFERkbSt29fAgICaN26dWHEWGKlT4+dvSt3kBWyYzcieJiYQnlbC7yrOaodTokgpskyJkPbLxR9MpSiNzAltXji0FY1Sl1xQY9KdnhVcyDFoLBeXlRJeZQ2JWZQoHejqsW+MXF+5Ln7PEDVqlX55ptvjB1LqdPRsxIWZloCw2K5ePchnlVlwcbCsvOimBZrW7ciWm3JXztSVMxSkyE0sPHMXd79+wS/DPShQxEuVP7n2G2uhcVSztaC99q6F9l5TUnfxs6cCYpi1clgBreqoXY4UjHy4/bLXAuLpYKdJRNL2ZRYmjyPCG3evJn9+/enf+3n50ejRo149dVXefDggVGDK+nsrMx5vnbq9JhcNF2odgbIbfOFxUyn5aeXG9HNS4wMvfv3CbYV0cjQw4Tk9OKJH3bwwN6qZBZPzEnPRs6YaTWcCYriilxzKOWS/60HzN0rdolN6dMQR5vSNSWWJs+J0Mcff0x0dDQAZ8+eZfTo0bzwwgtcv349T81ZJaG7t+jfsuGMnB4rLNfDYwkMi8VMq6G1h5Pa4ZRIaclQ99Rk6L0iSoZ+3XON+7FJ1KxgyyvNqhf6+UxVOVuL9LVvctG0lBuPT4n1bexMx1JQbiI7eU6Erl+/jqenJwArV66kR48eTJkyBT8/PzZt2mT0AEu69nUrYmWu5VZEHGeDo9QOp0RK2y3WvGY57ErpiEFRMNNpmflEMrT1fEihne9OZDzz9l0HYHzXeiW6eGJupC2aXnMyGL1BXlRJTzdj22UCw2KpaGfJhB6lc0osTZ7/clhYWBAXFwfA9u3b6dSpEwDlypVLHymScs/W0oz2dUUmLosrFo5d6dWkS+8VT1FJS4Z6eFclWa8wYol/oSVD01OLJzavUY4O9eSUZ9u6FXG0MSckOoGD18LVDkcyYSduRqRXYJ/atyEONqX7AjHPidCzzz7L6NGj+eqrrzh69CjdunUD4PLly1SrVs3oAZYGabvHNsrpMaN7mJDMkev3Abk+qKiY6bT8+JJ3oSZD54LFwmAoPcUTc2JppqOHl5hqly03pOzEJ+kZu/wMiiIqk7evJy8Q85wIzZ49GzMzM1asWMEvv/yCs7MYjt20aRNdunQxeoClwfN1KmJjoSM4Mh7/W5Fqh1Oi7L8STrJeoaaTLTWcbNUOp9RIS4Z6piZD7/1tvGRIURS+3ngBgD6NnfGS5RDS9U2dHtt8LoSYxBSVo5FM0fStAVwPj6WSvSVf9vBUOxyTkOft89WrV2fDhg2Zbv/xxx+NEpCp8PPzw8/PD72+8Pv3WFvo6FCvEutO32HDmTv4uJYt9HOWFjtkk1XVmOm0zHhJVJtfd/oO7/3tz5yBTehUwDolOy7e43BgBJZmWsaWsuKJOWnk4kjNCrYEhsWy6exdXmzqonZIkgk5diOCPw6IdXXf9vXCwbp0T4mlydfqQr1ez4oVK/jqq6/46quvWLFiBSkpJevqo7ArSz8pbXrsv7N3MciFjkZhMCjsltvmVZWWDPVqVJUUgxgZ2lKAkaFkvYEpm0TxxGHP1sDZ0dpYoZYIGo0mvRGrnB6THhefpOfj5adRFHjRp5qssP+YPCdC58+fx8PDg0GDBrF69WpWr17N4MGD8fDw4Ny5c4URY6nQpk4F7CzNCI1O5PhNWY/JGM4ERxEek4SdpRlN3cqpHU6pZabT8sOLj5KhEQVIhv45eovAsFjK21rw7vOls3hiTno3dkajgUOB9wl6EKd2OJKJ+H7LJW7cj6OKgxWfd5dTYo/LcyI0fPhwGjRoQFBQEP7+/vj7+3P79m28vLx46623CiPGUsHSTEfH+mm7x2RxRWPYmdr76rnaFbAwK91bq9WWVTK0+VzekqHohGR+3H4FgA871palELLh7GhNi5rlAbGVXpKOBN5n4cEbAHzbT06JPSnP7w6nTp1i6tSplC37aB1L2bJl+eabbzh58qRRgytt0nZ8/Hc2RNYBMYK0atJyCNg0iGmyRunJ0MgleUuGftl9jYjYJNwr2DLAV659eZq+j02PyZ2opVtcUgofrxC7xF5u6kKb1G4G0iN5ToRq165NaGjmirH37t2jVq1aRgmqtGpVywkHa3PCYxI5Enhf7XCKtZCoBM4FR6PRwPN15C++qdBpNcx4qRG9MyRDOdfPCo6MZ/5+WTwxt7o0qIy1uY7A8FhO3Y5UOxxJRd9vDuBWRBxVHaz4rHs9tcMxSbn6axIdHZ3+MXXqVN5//31WrFhBUFAQQUFBrFixgg8//JDvvvuusOMt0SzMtHRJ3VGzXhZXLJBdqaNBjVwccSpjqXI00uN0Wg0/ZEiGTuaYDE3bfImkFAMtapanvSyemKMylmZ0bSD+lqz0D1I5Gkkth5+YEiutvfhykqvt846OjhkKlimKwksvvZR+W9rQa48ePYpku3lJ1t27CsuO32bzubtM7lVfXvnm047UbvPt5bSYSUpLhjQaDatPBjNyyUlmvQJdG1bJ9NgzQZGsOXUHjUYWT8yLvk2qsepkMOtP3+WL7p5YmunUDkkqQrGJKXy84jQArzRz4Tk5JZatXCVCu3btKuw4pFQtapannK0FEbFJHLx2X87n5kNCsp4DV0WLAbk+yHTptBqmvyjqDK0+GcyopSeZRcZkSFEUvtkotsv3aexMA2cHNUItllq4l6eyvRUh0QnsunSPLg0yJ5lSyfXd5kvcjojH2dGaT1+QU2JPk6tEqE2bNrk6mNw+X3BmOi1dGlRmyZFbbDxzRyZC+XA48D7xyXoq21vhWcVe7XCkp0hLhjTAqpPBjFx6ktk8Soa2XQjlyPXU4omdZPHEvNBpNfRp4swvu6+x4kSwTIRKkYPXwvnr0E0AvuvnJXdY5qDA8y4PHz7k999/p1mzZnh7exsjplIvrbji5nMhJKUYVI6m+EnrNt+uXkU5jVIM6LQapr3oTd/GzugNCiOXnmTT2bsk6w18u+kSAMNb16CqLJ6YZ30bi5YbuwPucT8mUeVopKIQm5jC/1acAWBg8+o86+GkckSmL9+J0N69exk0aBBVqlRh+vTptGvXjsOHDxszNlX5+fnh6emJr69vkZ+7eY3yVLCzJDohhf1Xw4r8/MWZoiiPEqE6clqsuMgqGfrwn1MEhsfiVMaCd5+XO1Lzw6OSHV7VHEgxKKw/LeuTlQZTN10k6IGYEhsvp8RyJU+JUEhICN9++y0eHh68+OKL2Nvbk5iYyJo1a/j2229VSRoKS1G32HicTqvhhdQdHxtOy91jeXHlXgxBD+KxNNPSqpa8EipO0pOhJiIZ2nhW/Ox/2KE2ZSzz3BZRSpXWcmOlbLlR4h24Gs7iw7cAmNbfS/7e5FKuE6EePXpQp04dzpw5w8yZM7lz5w6zZs0qzNhKte7eorji1guhJCTLnXi5lbZbrKV7eawt5C6Z4kan1TCtv3d6F3WPimVk8cQC6uFdFTOthrPBUVwOfah2OFIhiXlsSuz1Z1xpKS8Ecy3XidCmTZsYNmwYkyZNolu3buh08k2mMPlUL0tleytiElPYc1lOj+XWzkui2Ge7epVUjkTKr7RkaMEQX5a93QIzWUKiQMrZWqTvnpSNWEVxzr2Xw7gc+pDohGS1wzGaKf9dJDgyHpdy1ozrWlftcIqVXI+b7d+/n/nz5+Pj40O9evV4/fXXGTBgQGHGVqpptRq6eVVh/v7rbDhzl86phRal7EXGJXEitWGt7DZfvOm0GtrKNV5G069JNbZdCGX1ySA+7lwHnbZ0biJYd/oOY/89TZL+0SaUMpZmVHawokrqR2UHa6o6WKXeZk0VRyvsLM1MeuPFvithLDkipsS+7+eNrZwSy5Ncv1rPPPMMzzzzDDNnzmTZsmX88ccfjB49GoPBwLZt23BxccHOzq4wYy11uqcmQjsuhhKfpJdTPTnYczkMgwJ1K9vhLHcYSVK6tnUr4GhjTmh0IgevhdPao3SV5VAUhV/2XOP7zQGAaEwbk5hCVHwyMYkpXL0Xw9V7Mdk+39ZCRxVHa5Eo2Vs9+tzBiqoO1lR2sMLeSp1k6WFCMp+kTokNauFKC/fyRR5DcZfntNHW1pahQ4cydOhQAgICmD9/Pt9++y3jxo2jY8eOrFu3rjDiLJUauTji7GhNcGQ8uwLu8UIWVXelR9LWB8nRIEnKyNJMR0/vqvx16Car/INLVSKUojfwxdrzLD0qRkyGPVuDT1+oh06rIS4phbtRCYREJXA3KoG7kfHcjU79NyqBkOgEIuOSiU3S5ypZSh9Femx0qYpj2miTdaEkS99svMidqASql7PhEzklli8FGj+rU6cO33//PVOnTmX9+vX88ccfxopLAjQaDd29qvDb3kA2nLkjE6GnSNEb0tdSyURIkjLr26Qafx26yeZzIXzVO6VU7CiKSUxhxN/+7LkchlYDX3b3ZHCrGun321iY4V6hDO4VymR7jLiklEeJUlQCIVHx3Hk8eYqKT0+WroXFci0sNttj2aQmS2mjSFUeT5wcrahib429de6TpT2Xw/jn2G1A7BKzsSj5/6eFwSivmk6no3fv3vTu3dsYh5Me092rKr/tDWTnpXvEJqbIud9s+N+KJCo+GUcbcxpXL6t2OJJkcryrOVCzgi2BYbFsOnuXF5uW7N14IVEJDFl4jIt3o7Ey1zLrlSZ09Mz7JgobCzNqVihDzackS/FJeu5GxWdIju4+kTw9iEsmLklPYFgsgblIlh5Pkp5MnhyszXmYmMK4lWJKbHBLN5rXlFNi+SXfVU1cA2d7XMvbcPN+HNsvhtKrkbPaIZmkHam7xdrWqVhqF4JK0tNoNBr6NanGtC0BrPIPLtGJ0MW70QxdeIy7UQk4lbFk/qCmeLs4Ftr5rC10uUqWQqJTk6RIMe12JzJj8pTbZMnaXIetpY7wmCTcytvwvy6y/UxByETIxKVNj/ntusaGM3dlIpSNXanVpGWTVUnKXu/GzkzfGsChwPsEPYijWlkbtUMyur2Xw3jvb39iElOoVbEMCwb74lJO/e/T2kJHDSdbajjZZvuYhGQ9IVEJ3HlidCkkKoE7qclTRGwS8cl64pP1aDUw7UVvOSVWQPLVKwa6e1XFb9c19gSEEZ2QjL1soJfB7Yg4LofGoNNqaFOKFoFKUl45O1rTomZ5Dl67z5qTwYxs56F2SEb177HbjF99Fr1B4Zma5fjttaY42BSfv5dW5jrcnGxxy0WydDcqAUcbc+rJxtIFJiuVFQN1K9vhXsGWJL2BbedD1Q7H5KT1FmvqWrZY/dGTJDWktdxY5R+MoigqR2MciqIwfUsA/1t5Br1BoU9jZ/4c2qxE/j1IS5ZauJeXSZCRyESoGBDTY6LlxoYzsnHik3akJkLt68lpMUnKSZcGlbE21xEYHsvJ25Fqh1NgiSl6Plx2itm7rgLwfrtazHjJG0szWXdNyh2ZCBUT3b3E1vl9V8KJjEtSORrTEZuYwuFr9wG5bV6ScsPW0oyuqU2dV/kHqRxNwUTFJfPG/KOsPXUHM62G7/t5MbpTHZOuAi2ZHpkIFRMeleyoU8mOFIPCVjk9lu7A1XCS9Aaql7N5ai0QSZIe6ecjpsfWn75LYkrxbOp8OyKOvr8c4Mj1COwszVgwxJeXZINeKR9kIlSMpI0KrZfTY+nS1ge1q1tRXgVKUi49U7M8VRysiIpPZmdqRfbi5NTtSPrMOcC1sFiqOFix/N0WpapatmRcMhHKhp+fH56envj6+qodSrru3mKd0MFr97kfk6hyNOpTFCVDIiRJUu7otBp6NxalOFYWs470W8+HMOD3Q4THJOFZxZ41I1pRt7JcNCzln0yEsjFixAguXLjAsWPH1A4lXQ0nW+pXtUdvUNh8PkTtcFR3/k409x4mYmOho3nNcmqHI/2/vTsPi7Jc/wD+nWGYYZBVlEVkFVlEUBABMQXckIJjahotLKl0NDSUTonmkuKS+iu6XArtKGjpcckgRA09CooeDVFRFAIX3EFwAWSHmef3B/LmBCggMMDcn+uaq3je7X5nGN+bZyVdymTHukQoObugy/xhFX06F//8+Twqa6TwsOqNvTOHQU9DRd5hkS6OEqEuhhs9dilPzpHIX/0iqyP696IRIoS0kIWuOgb11UStlCH+UudubpdIGZYduIplBzLBGPC+izH+HeCkEOulkfZHiVAXU99P6I/cxyh4VinnaOTr+PNlNUZbt3z9IEJI3UKsQN2cQp1VRbUEs34+j+jTtwAA4d7WWPn2QAiU6PFF2gb9JnUxRj1VMchIC1IGHM5Q3OaxwmdVuHSvGADgYU2dJAlpDd9BfaCsxEPG/WLkPHwm73AaeFRaBb8fz+JI5kMIBXxseM8BM9370cAI0qYoEeqCfJ/XCiny5IpJ2XXNYvZ9NaGrTn0ECGmNnj2E8LSqG2iwv5PNKXS9oBQTvz+NS3eLoKWqjJ0zXOD7fMAIIW2JEqEu6E27ukTo3K2nyC9WzOax+iG/NFqMkNdT3zwWd/E+JNLOseTGHzcfY/IP/8PdJxUw7qmKX2e5YagpDYgg7YMSoS6oj5YYQ0y0AQAHMxSv03R1rRQp1woBUCJEyOsaZa0LLVVlPCypwunrj+QdDn5Lvw//rakorqiBg7EWYj9xgzlNlkraESVCXZSPAjePpeY+QVm1BL3VRRjYR1Pe4RDSpQkFfPzjeZOTPJfcYIxhU9J1hO5OR7VECu+B+vhPsCt01ERyi4koBkqEuqg37QzA4wEX7xTh3tNyeYfToY49Hy02ykoXfD51miTkddU3j/1+NR+lVbUdfv0aiRQLfs3AusRsAEDwCDNset8RKso0LQZpf5QIdVF6Gipwft5mfvCy4jSPvTibtCc1ixHSJgb11US/3j1QWSPFoQ5ubn9WWYPp29Ow+9xd8HnA8gm2+PKtAfRHDukwlAh1YfVLbiQoUCJ081EZbj8uh1CJjzf695J3OIR0Czwe74U5hTqueSyvuAJTos7gZE4hxMpK2OLvhIBhph12fUIASoS6NO+B+uDzgIz7xbj1qEze4XSI+tFiLuY9aVZZQtrQRAdD8HjA2ZtPOqS5PfNBCSZu+h/+zH+GXmoi7PmnK8YMoMlRScejRKgL66Umglu/uloRRRk9doybTZqaxQhpS320xHDrpwMAiG3nmaZP5BRiStT/kF9SCQtdNcR+4gb7vlrtek1CmkKJUBf31+ix7p8IFVfUIO3WUwDAKFpWg5A2N8nhefPYxftgrH3mFNqdegfTYs6hrFqCYeY62D/LDUY9VdvlWoQ0ByVCXZyXrT4EfB6y8kpwo7BU3uG0q5RrhaiVMljoqsFYh/7hJKStjR+oD1WhEnIfleHi3aI2PbdUyrAu8U+E/5oBiZRhkoMhtk9zhqZYuU2vQ0hLUSLUxWn3EGK4RV3zWHdfkb6+fxA1ixHSPnqIBBg/UB8AsP9823WarqqVYO6edGxKugEA+HR0f3wzdRCEAnoEEfmj38JuQBEmV5RIGZJz6maTpmHzhLSfyc9Hjx249ABVtZLXPl9ReTX8/52K+EsPIODzsO4de4SNtaSFU0mnQYlQNzDOVh9CJT6uFZQiO7/zrSDdFtLvFuFJWTU0VATc8iKEkLbnaq4DA00VlFTWcrWwrXXncTkm/fA/pN56AnWRADEfOWOKk1EbRUpI26BEqBvQFCtjpOXz5rFuWit0/PloMXcrXSgr0a8tIe1Fic/DRAdDAK+3Iv3FO08x8fvTuFlYhj6aKvhllhvN/UU6JXqidBM+9n9Nrtheoz3k6Rj1DyKkw0xyrEuEkrML8ai0qsXH/34lH+/9eBaPy6ph20cDsSHDYaWv3tZhEtImKBHqJsYM0INIwEfuozJcfVAi73Da1IOiCvyZ/wx8HuBu2Vve4RDS7VnoqmNQX03UShkOXGpZLfPWU7mYtfM8Kmuk8LTqjb3/HAY9DZV2ipSQ16cQiVBubi48PT0xYMAA2NnZoays+83CrCYSwNOqrraku02uWL+2mKOxNrR7COUcDSGKYfKQuk7TzW0ek0gZvoq/ioiETDAGfOBijB8DnNCDZoAnnZxCJEJBQUFYvnw5MjMzceLECYhEInmH1C58Bv01eqw7NY/VJ0KjbKhZjJCO4mPfB8pKPFy5X/LKQRjl1bWY+fN5xPzvFgAg3NsaK94eCAH15yNdQLf/Lb169SqUlZUxYsQIAEDPnj0hEHTPv1BGWetCrKyEu08qcPlesbzDaRMV1RKcvv4IQN39EUI6Rs8eQq6W+deLTdcKFT6rwntbzuJo5kMIBXxsfN8BM9370fB40mXIPRE6efIkfH190adPH/B4PMTFxTXYZ9OmTTA1NYWKigpcXFyQmpra7PNfu3YNampq8PX1haOjI1atWtWG0XcuqkIBV2vSXUaPnbn5CFW1UhhqiWGlR50tCelI9c1jcRfvQyJtWMt8veAZJn5/GpfuFUNbVRm7ZrhwAzcI6SrkngiVlZVh0KBB2LRpU6Pb9+zZg7CwMCxduhQXLlzAoEGD4OXlhYKCv+a3GDx4MAYOHNjg9eDBA9TW1iIlJQXff/89zpw5g6NHj+Lo0aMddXsdzvf55IoHL+dB2sg/XF1N/WixUda69BcmIR3M00oXWqrKeFhSxdXM1jt78zEmff8/3HtaARMdVfz6yXA4mfaUU6SEtJ7c24i8vb3h7e3d5PZvv/0WwcHB+OijjwAAUVFROHjwILZt24bw8HAAQHp6epPHGxoawsnJCUZGdZN4vfnmm0hPT8fYsWMb3b+qqgpVVX8NFy0p6VojsDysdNFDqIQHxZW4ePcphph03X+YGGN/9Q+iZjFCOpxQwMc/BvXBjjO38euFexj5fNRm3MX7+PyXS6iRMDgaa+HHACfoqHXPvpek+5N7jdDLVFdX4/z58xgzZgxXxufzMWbMGJw5c6ZZ5xg6dCgKCgrw9OlTSKVSnDx5EjY2Nk3uv3r1amhqanKv+gSqq1BRVsLYAXUrsx/o4muP/Zn/DHnFlVBR5mNYPx15h0OIQqpfcuP3q/l4VlmDDceuYe6edNRIGN6008euYFdKgkiX1qkToUePHkEikUBPT0+mXE9PD/n5+c06h0AgwKpVqzBy5EjY29ujf//+8PHxaXL/BQsWoLi4mHvdvXv3te5BHurb6A9l5DXart9V1NcGvWHRCyrKSnKOhhDFZN9XE/1690BljRRTos7gm6M5AICPR5pj43uO9N0kXZ7cm8Y6wqua314kEom6/PD6EZa9oK4iQMGzKpy79QSu5l2zNuVYVt2yGqOs9V6xJyGkvfB4PExy7It1idncxKbL/mEL/2Gm8g6NkDbRqWuEevXqBSUlJTx8+FCm/OHDh9DX15dTVJ2fSKAEL9u69+fg5a7ZPPakrBoX7xYBADytaTZpQuRpkqMhRAI+xMpK+DHAiZIg0q106kRIKBRiyJAhOHbsGFcmlUpx7NgxDBs2rF2vvWnTJgwYMABDhw5t1+u0F5/no8cOX8lDrUQq52haLjm7AIwBAww0YKAplnc4hCg0A00xDn46Av/9zB2jbaiGlnQvcm8aKy0txfXr17mfc3NzkZ6ejp49e8LY2BhhYWEIDAyEk5MTnJ2d8d1336GsrIwbRdZeQkJCEBISgpKSEmhqarbrtdrDcIte0FJVxqPSavyR+wTDLbrWqs/HnvcPGk2zSRPSKVjoqsk7BELahdwTobS0NHh6enI/h4WFAQACAwMRExODd999F4WFhViyZAny8/MxePBg/P777w06UBNZykp8jLfVx+5zd5Fw+UGXSoRqJFKczC4EAHjSsHlCCCHtiMe606JU7aC+Rqi4uBgaGhryDqdFTl17hA+3/gEtVWWc+3IMlLvIuj9nbjzGez+ehU4PIVK/HAMlPk2kSAghpGWa+/zuGk9G0iqu5j2h00OIovKaBrPCdmbH/6zrHO9hpUtJECGEkHZFiVATunpnaQAQKPHhbVc3eiyhC40eo/5BhBBCOgolQk0ICQlBZmYmzp07J+9QXkv95IqJV/NRVSuRczSvdutRGW4WlkHA5+GN/l2nXxMhhJCuiRKhbm6oaU/oqovwrLIWp651/uax+tmknc16QkNFWc7REEII6e4oEermlPg8vGlXN6dQV2geo0VWCSGEdCRKhBSA76C6ROho5kNU1nTe5rHSqlr8kfsYACVChBBCOgYlQk3oDp2l6zkYaaOPpgpKq2qR/Hx+ns7o1LVC1EgYzHr1gHlvmryNEEJI+6NEqAndpbM0APBlmsceyDmaph3LomYxQgghHYsSIQXhM6hu9NixrAKUV9fKOZqGpFKGpGxKhAghhHQsSoQUxKC+mjDqKUZFjYTrkNyZZNwvxqPSaqiJBBhq2lPe4RBCCFEQlAgpCB6Ph7fs6mqFEi51vtFj9ZMojrTsBaGAfi0JIYR0DHriKBAf+7p+QknZBSit6lzNY/XLaoyypsV0CSGEdBxKhJrQnUaN1bPtowGzXj1QVSvFsayH8g6H87CkElful4DHAzysess7HEIIIQpEIO8AOquQkBCEhIRwq9d2BzweDz72Bthw/DoOXMrDhMGG8g4JAJD0vFlsUF8t9FITyTkaQjoviUSCmpoaeYdBSKegrKwMJSWl1z4PJUIKxse+DzYcv46TOYUorqiBplj+y1hwi6zSaDFCGsUYQ35+PoqKiuQdCiGdipaWFvT19cHj8Vp9DkqEFIylnhosdNVwvaAURzMf4p0hfeUaT2WNhFsDzZMSIUIaVZ8E6erqQlVV9bX+0SekO2CMoby8HAUFdX9IGxgYtPpclAgpmPrmse/+ew0Jlx/IPRH6I/cJKmok0NMQwbaPhlxjIaQzkkgkXBKko6Mj73AI6TTEYjEAoKCgALq6uq1uJqPO0grIx75uGP2pa4/wtKxarrEcz/prtBj9lUtIQ/V9glRVVeUcCSGdT/334nX6zlEipIAsdNVgra+OWilD4tV8ucXBGKP+QYQ0E/2hQEhDbfG9oERIQfk+X3Ij4bL8Jle8XlCKe08rIBTw4WZBVf6EEEI6HiVCTeiO8wi9qH5yxf/deITHpVVyiaG+Nsitnw5UhdRdjRBCSMejRKgJ3Wn1+caY6PSAnaEmpAw4fEU+zWPHs6hZjJDurrCwELNmzYKxsTFEIhH09fXh5eWF06dPt+l1kpOTwePxXvpKTk5u02s2x1dffcVdXyAQwNTUFPPmzUNpaSkiIiJgYGCAJ0+eyBxz6dIliEQiJCQkAABOnDiBUaNGoWfPnlBVVUX//v0RGBiI6uq6Pp71966trY3KykqZc507d467/oskEgkiIyNhZ2cHFRUVaGtrw9vbu0WfS0xMDLS0tGTKsrKyYGRkhClTpqC6uhoxMTHc9fl8PgwMDPDuu+/izp07Dc53/fp1TJs2jftdMTQ0xOjRo7Fz507U1rbfagiUCCmw+lqhhMsPOvzaReXVSLtd9+WnYfOEdF+TJ0/GxYsXsX37duTk5CA+Ph4eHh54/Phxq87HGGv0oejm5oa8vDzuNXXqVIwfP16mzM3N7XVvp1VsbW2Rl5eHW7duYc2aNdiyZQs+++wzLFiwAEZGRggJCeH2rampQWBgID788EP4+PggMzMT48ePh5OTE06ePImMjAxs2LABQqEQEolE5jrq6uqIjY2VKdu6dSuMjY1lyhhj8PPzw/LlyxEaGoqsrCwkJyfDyMgIHh4eiIuLa9V9njt3DiNGjMD48eOxZ88eCIVCAICGhgby8vJw//597N+/H9nZ2ZgyZYrMsampqXB0dERWVhY2bdqEK1euIDk5GTNmzMAPP/yAq1evtiqmZmHkpYqLixkAVlxcLO9Q2tzdJ2XMZH4CMw1PYA+LKzr02nEX7zGT+Qls3LcnOvS6hHQ1FRUVLDMzk1VUdOx3tC08ffqUAWDJycmNbs/NzWUA2MWLFxsck5SUxBhjLCkpiQFghw4dYo6OjkxZWZklJSUxd3d3FhISwkJDQ5mOjg7z8PCQOXdgYCCbMGECY4yxEydOMIFAwPLy8mT2CQ0NZW+88QZjjLHo6GimqanJYmNjmYWFBROJRGzcuHHszp07MsfExcUxBwcHJhKJmJmZGfvqq69YTU1Nk+/B0qVL2aBBg2TKgoODmb6+PmOMsaysLKaiosL27dvH7W9iYsI9cyIjI5mpqWmT53/xPVq0aBEbM2YMV15eXs40NTXZ4sWL2YuP+927dzMALD4+vsG5Jk2axHR0dFhpaelLr8nYX+8ZY4wdO3aMqampsS+++KLJfeqtX79e5rkqlUqZjY0NGzJkCJNIJI1eSyqVNlr+su9Hc5/fVCOkwPpqq2KwkRYYAw5ldGyn6ePP+weNsqHaIEJaijGG8upaubwYY82OU01NDWpqaoiLi0NV1ev1RQwPD8fXX3+NrKws2NvbAwC2b98OoVCI06dPIyoqqsljR44cCXNzc/z0009cWU1NDXbu3Ilp06ZxZeXl5Vi5ciV27NiB06dPo6ioCH5+ftz2lJQUBAQEIDQ0FJmZmdi8eTNiYmKwcuXKFt2LWCzmmrWsra2xevVqzJo1C4mJiVi9ejWio6OhoVE3r5q+vj7y8vJw8uTJV57X398fKSkpXLPT/v37YWpqCkdHR5n9du3aBUtLS/j6+jY4x2effYbHjx/j6NGjzb6f2NhYvPXWW1i0aBHWrFnz0n0LCgoQGxsLJSUlbt6f9PR0ZGVl4V//+hf4/MbTkvYcNUk9VBWcj70B0u8WIeFyHoKGm3XINWslUiRnFwIARlGzGCEtVlEjwYAliXK5duZyr2YPbhAIBIiJiUFwcDCioqLg6OgId3d3+Pn5cclMcy1fvhxjx46VKevfvz/Wrl3brOOnT5+O6OhofP755wCAAwcOoLKyElOnTuX2qampwcaNG+Hi4gKgLtGysbFBamoqnJ2dsWzZMoSHhyMwMBAAYG5ujoiICHzxxRdYunRps+I4f/48du3ahVGjRnFloaGh+O233/Dmm29izpw58PT05LZNmTIFiYmJcHd3h76+PlxdXTF69GgEBARwyVI9XV1deHt7IyYmBkuWLMG2bdtkEr16OTk5sLGxaTS++vKcnJxm3U9paSmmTJmChQsXYv78+Y3uU1xcDDU1NW42aAD49NNP0aNHD5lrWVlZcccUFBTA3Nyc+3nt2rX45JNPmhVTS1GNkIJ763k/obTbT/GgqKJDrnnxbhGKK2qgpaoMByOtDrkmIUQ+Jk+ejAcPHiA+Ph7jx49HcnIyHB0dERMT06LzODk5NSgbMmRIs48PCgrC9evXcfbsWQB1HX2nTp3KPYyBusTtxZHC1tbW0NLSQlZWFoC6TszLly/narrU1NQQHByMvLw87gHfmIyMDKipqUEsFsPZ2RnDhg3Dxo0bue08Hg9ffvklpFIpFi1aJHOskpISoqOjce/ePaxduxaGhoZYtWoV1+/o76ZNm4aYmBjcvHkTZ86cwQcffNBoTC2p2XsZsViMsWPH4scff+Tep79TV1dHeno60tLS8M0338DR0fGVtWg6OjpIT09Heno6tLS0uBq09kA1QgrOQFOMoabaOHfrKQ5l5GHGCPNXH/Sajj0fLeZh2RsCJcrFCWkpsbISMpd7ye3aLaWiooKxY8di7NixWLx4MWbMmIGlS5ciJSUFgOxDuakZgl9MWF5W1hRdXV34+voiOjoaZmZmOHz4cItHkZWWlmLZsmWYNGlSg20qKipNHmdlZYX4+HgIBAL06dOH60T8IoFAIPPfvzM0NIS/vz/8/f0REREBS0tLREVFYdmyZTL7eXt74+OPP8b06dPh6+vb6LIslpaWTSYt9eWWlpZN3s+LlJSUEBcXh0mTJsHT0xNJSUkNapv4fD4sLCwA1NU43bhxA7NmzeKaKvv37w8AyM7OhoODA3fe+mOaek/aCj2FCLfkRkdNrnj8z+fLatjodcj1COlueDweVIUCubzaoq/GgAEDUFZWht69ewOATM1Genr6a5+/KTNmzMCePXuwZcsW9OvXD8OHD5fZXltbi7S0NO7n7OxsFBUVcQ92R0dHZGdnw8LCosGrqb4tACAUCmFhYQFTU9NGk6CW0tbWhoGBAcrKyhpsEwgECAgIQHJycqPNYgDg5+eHa9eu4cCBAw22ffPNN9DR0WnQDPkyIpEIv/76K4YOHQpPT09kZma+dP/w8HDs2bMHFy5cAAA4ODjA2toa//d//wepVNrs67YVSoSa0N0nVHyRt50++Dwg/W4R7j5punq3Ldx9Uo6ch6VQ4vPg3r93u16LECJfjx8/xqhRo/Dzzz/j8uXLyM3Nxb59+7B27VpMmDABYrEYrq6uXCfoEydONGgaakteXl7Q0NDAihUr8NFHHzXYrqysjDlz5uCPP/7A+fPnERQUBFdXVzg7OwMAlixZgh07dmDZsmW4evUqsrKysHv3bpmYAwICsGDBgjaLefPmzZg1axaOHDmCGzdu4OrVq5g/fz6uXr3aaGdnAIiIiEBhYSG8vBqvNfTz88PEiRMRGBiIrVu34tatW7h8+TL++c9/Ij4+Hv/+979bVNsG1CVD+/fvh4uLCzw9PV863N3IyAgTJ07EkiVLANQl9tHR0cjOzsbw4cMRHx+Pa9euITMzE1FRUSgsLGz1gqrNQYlQE7r7hIov0lVXgYtZXfXpwXYePZaUXdcsNsREG5qqyu16LUKIfKmpqcHFxQWRkZEYOXIkBg4ciMWLFyM4OJjrI7Nt2zbU1tZiyJAhmDt3LlasWNFu8fD5fAQFBUEikSAgIKDBdlVVVcyfPx/vv/8+hg8fDjU1NezZs4fb7uXlhYSEBBw5cgRDhw6Fq6srIiMjYWJiwu1z586dRvvutJazszNKS0sxc+ZM2Nrawt3dHWfPnkVcXBzc3d0bPUYoFKJXr15N1t7xeDzs3bsXCxcuRGRkJKysrDBixAjcvn0bycnJePvtt1sVq1AoxC+//AI3Nzd4enriypUrTe47b948HDx4EKmpqQAAV1dXnD9/HlZWVggJCcGAAQPg5uaG//znP4iMjMSsWbNaFVNz8Fhb9ZjqpkpKSqCpqYni4uIGPfS7k51/3MaXsVcw0FADCXNGtNt1Arel4kROIRZ4W+Of7v3a7TqEdBeVlZXIzc2FmZnZS/uhkOaZPn06CgsLER8fL1MeExODuXPnoqioSD6BkVZ52fejuc9vqhEiAIDxtvpQ4vNw5X4Jbj1q2O7cFsqra3HmZt1ssjRsnhDSkYqLi3Hq1Cns2rULc+bMkXc4pBOhRIgAAHTURHDrV9c81l5Lbpy+/hjVtVIY9RTDQletXa5BCCGNmTBhAsaNG4eZM2e2qCOwIrO1tZWZKuDF186dO+UdXpuh4fOE42NvgJRrj5BwOQ+zR/Vv8/PXjxYbba3XrrOEEkLI371qqHxQUBCCgoI6JJau4tChQ01OZ6Cn131G/VIiRDhetvr4MvYK/sx/husFz2Chq95m52aM/bWsBjWLEUJIp/diJ/DujJrGCEdLVYgR/XsBaPs5ha4+KMHDkiqoCpXgYt6zTc9NCCGEtBYlQkTGi5MrtuWAwvraoDcsekEkaL/5IAghhJCWoESIyBhrqwehEh/XC0qR/fBZm5332PNEaDStNk8IIaQToUSIyNBQUYa7Vd2MzwmX2qZ5rPBZFS7dLQIAeFpRIkQIIaTzoESoCYq0xMbf+TxfkT7h8oM2aR5Lfj6btJ2hJnQ1aEI4QgghnQclQk1QpCU2/m6MjR5EAj5uPS7H1Qclr30+Gi1GCCGks6JEiDTQQyTgkpYDrzm5YnWtFCnXHgGgRIgQRVRYWIhZs2bB2NgYIpEI+vr68PLywunTp9v0OsnJyeDxeC99vWouofbw1VdfcdcXCAQwNTXFvHnzUFpaioiICBgYGODJkycyx1y6dAkikQgJCQkAgBMnTmDUqFHo2bMnVFVV0b9/fwQGBqK6uhrAX/eura2NyspKmXOdO3eOu/6LJBIJIiMjYWdnBxUVFWhra8Pb27tFn0tMTAx3bj6fj759++Kjjz5CQUEBtw+Px0NcXBz384kTJ6CsrIxTp07JnKusrAzm5ub417/+1ezrtxVKhEij6kePHXzN0WPnbj1BaVUteqmJYGeo2VbhEUK6iMmTJ+PixYvYvn07cnJyEB8fDw8PDzx+/LhV52OMoba2tkG5m5sb8vLyuNfUqVMxfvx4mTI3N7fXvZ1WsbW1RV5eHm7duoU1a9Zgy5Yt+Oyzz7BgwQIYGRkhJCSE27empgaBgYH48MMP4ePjg8zMTIwfPx5OTk44efIkMjIysGHDBgiFQkgkEpnrqKurIzY2VqZs69atMDY2liljjMHPzw/Lly9HaGgosrKykJycDCMjI3h4eMgkLq+ioaGBvLw83Lt3Dz/++CMOHz4Mf3//Jvd3d3fHnDlzEBQUhLKyv5Zz+uKLLyAWi9t10d0mMfJSxcXFDAArLi6WdygdqryqltksPsxM5iewC7eftPo8y+KvMpP5CezzfeltGB0hiqOiooJlZmayiooKeYfSYk+fPmUAWHJycqPbc3NzGQB28eLFBsckJSUxxhhLSkpiANihQ4eYo6MjU1ZWZklJSczd3Z2FhISw0NBQpqOjwzw8PGTOHRgYyCZMmMAYY+zEiRNMIBCwvLw8mX1CQ0PZG2+8wRhjLDo6mmlqarLY2FhmYWHBRCIRGzduHLtz547MMXFxcczBwYGJRCJmZmbGvvrqK1ZTU9Pke7B06VI2aNAgmbLg4GCmr6/PGGMsKyuLqaiosH379nH7m5iYcM+cyMhIZmpq2uT5X3yPFi1axMaMGcOVl5eXM01NTbZ48WL24uN+9+7dDACLj49vcK5JkyYxHR0dVlpa+tJrMvbXe/ailStXMj6fz8rLyxljjAFgsbGxMvtUVFQwGxsbFhISwhhj7Pjx40woFLK0tLRXXvPvXvb9aO7zm2qESKPEQiWMtqmbQv1gKydXZIzh2PNlNUZZd5/p2AmRO8aA6jL5vFpQQ1y/LlVcXByqqqpe65bDw8Px9ddfIysrC/b29gCA7du3QygU4vTp04iKimry2JEjR8Lc3Bw//fQTV1ZTU4OdO3di2rRpXFl5eTlWrlyJHTt24PTp0ygqKoKfnx+3PSUlBQEBAQgNDUVmZiY2b96MmJgYrFy5skX3IhaLuWYta2trrF69GrNmzUJiYiJWr16N6OhobrV0fX195OXl4eTJk688r7+/P1JSUnDnzh0AwP79+2FqagpHR0eZ/Xbt2gVLS0v4+vo2OMdnn32Gx48f4+jRoy26pxfvTSqVNlprV09FRQU7duzAli1b8Ntvv2HatGlYuHAhhgwZ0qprvi5aYoM0ycfeAAcuPcDBjDwsfNMGfH7L1ge7+agMtx+XQ1mJhzeez1hNCGkDNeXAqj7yufbCB4CwR7N2FQgEiImJQXBwMKKiouDo6Ah3d3f4+flxyUxzLV++vMFiqf3798fatWubdfz06dMRHR2Nzz//HABw4MABVFZWYurUqdw+NTU12LhxI1xcXADUJVo2NjZITU2Fs7Mzli1bhvDwcAQGBgIAzM3NERERgS+++AJLly5tVhznz5/Hrl27MGrUKK4sNDQUv/32G958803MmTMHnp6e3LYpU6YgMTER7u7u0NfXh6urK0aPHo2AgAAuWaqnq6sLb29vxMTEYMmSJdi2bZtMolcvJycHNjY2jcZXX56Tk9Os+3nRtWvXEBUVBScnJ6irv3yJJicnJyxYsACTJk2Cg4MDvvzyyxZfr61QjRBpkrtlb6iLBMgrrsSFO09bfHzS89FiruY6UBNRzk2IIpo8eTIePHiA+Ph4jB8/HsnJyXB0dERMTEyLzuPk5NSgrCU1CEFBQbh+/TrOnj0LoK6j79SpU9Gjx19JnUAgkJkyxdraGlpaWsjKygJQ14l5+fLlMquwBwcHIy8vD+Xl5U1eOyMjA2pqahCLxXB2dsawYcOwceNGbjuPx8OXX34JqVSKRYsWyRyrpKSE6Oho3Lt3D2vXroWhoSFWrVrF9Tv6u2nTpiEmJgY3b97EmTNn8MEHHzQaE2ujlQOKi4uhpqYGVVVVWFlZQU9Pr9kr0y9evBhSqRTh4eEQCOT3jKCnE2mSirISxg7Qw68X7yPhch6cTFu2RtixLBo2T0i7UFatq5mR17VbSEVFBWPHjsXYsWOxePFizJgxA0uXLkVKSgoA2YdyU6udv5iwvKysKbq6uvD19UV0dDTMzMxw+PDhFo8iKy0txbJlyzBp0qQG21RUmp4jzcrKCvHx8RAIBOjTpw+EQmGDfeoTgaYSAkNDQ/j7+8Pf3x8RERGwtLREVFQUli1bJrOft7c3Pv74Y0yfPh2+vr7Q0dFpcC5LS0suufu7+nJLS8sm7+dF6urquHDhAvh8PgwMDCAWi5t1HPDqe+4oVCNEXspnUN3kigcz8iCRNv8viJLKGpy7VTcklBIhQtoYj1fXPCWPF69lTeSNGTBgAMrKytC7d90s9i/WbKSnp7/2+ZsyY8YM7NmzB1u2bEG/fv0wfPhwme21tbVIS0vjfs7OzkZRURHXXOTo6Ijs7GxYWFg0ePH5TT9OhUIhLCwsYGpq2mgS1FLa2towMDCQGXVVTyAQICAgAMnJyY02iwGAn58frl27hgMHDjTY9s0330BHR6dBM2RT+Hw+LCwsYG5u3qIkqDOhGiHyUm9Y9IaGigCFz6qQmvsEw/o1/OuiMSk5j1ArZejXuwdMdJr/VxshpPt4/PgxpkyZgmnTpsHe3h7q6upIS0vD2rVrMWHCBIjFYri6uuLrr7+GmZkZCgoKGjQNtSUvLy9oaGhgxYoVWL58eYPtysrKmDNnDtavXw+BQIDZs2fD1dUVzs7OAIAlS5bAx8cHxsbGeOedd8Dn83Hp0iVcuXKFG/YdEBAAQ0NDrF69uk1i3rx5M9LT0zFx4kT069cPlZWV2LFjB65evYoNGzY0ekxERAQ+//zzRmuDgLpEaN++fQgMDMS6deswevRolJSUYNOmTYiPj8e+fftaVNv2Krm5uQ0S3P79+7fpNV4H1QiRlxIK+PCy1QdQt+RGc9WPFqsfeUYIUTxqampwcXFBZGQkRo4ciYEDB2Lx4sUIDg7m+shs27YNtbW1GDJkCObOnduu88jw+XwEBQVBIpEgICCgwXZVVVXMnz8f77//PoYPHw41NTXs2bOH2+7l5YWEhAQcOXIEQ4cOhaurKyIjI2FiYsLtc+fOnUb77rSWs7MzSktLMXPmTNja2sLd3R1nz55FXFwc3N3dGz1GKBSiV69eDSZRrMfj8bB3714sXLgQkZGRsLKywogRI3D79m0kJyfj7bffbrP4ASAsLAwODg4yr4sXL7bpNV4Hj7VVj6luqqSkBJqamiguLm7QQ19RnMgpROC2VOj0EOKPhaMhUHp5/iyRMgxd+V88KavG7o9d4WrevFokQkhDlZWVyM3NhZmZ2Uv7oZDmmT59OgoLCxEfHy9THhMTg7lz56KoqEg+gZFWedn3o7nPb2oaI6/k1k8H2qrKeFxWjbM3n7xyKPyle0V4UlYNdRUBhphod1CUhBDStOLiYmRkZGDXrl0NkiCi2KhpjLySshIf4wf+tSL9qxx/PlrM3bI3lF9Re0QIIR1hwoQJGDduHGbOnNnsjsCKztbWVmaqgBdfzR0i3xVQjRBpFl97A/wn9Q5+v5qPiLcHvjTBOfZ8/qDRNjRajBDSObxqqHxQUBCCgoI6JJau4tChQ01OZ6Cn1336f1IiRJrFxVwHvdREeFRahVPXH8HTqvEk50FRBbLySsDjAe6WlAgRQkhX9WIn8O6M2i2asGnTJgwYMEBmllFFpsTn4U2756PHLjU9IiIpu642yNFYGz17vP58GYQQQkh7okSoCSEhIcjMzMS5c+fkHUqn4WNft7bRkcx8VNVKGt3nOM0mTQghpAuhRIg0m5OJNvQ0RHhWWYuTOY8abK+skeD0jbpySoQIIYR0BZQIkWbj83l4067p0WNnbjxGZY0UfTRVYK3/8pWHCSGEkM6AEiHSIvXNY//NfIjKGtnmsfrZpEfZ6DY5oykhhBDSmVAiRFrE0VgLhlpilFVLkPy8YzRQt3p0ff+g0dbdZ1glIYSQ7o0SIdIiPB4Pb9nXNY8duPzX6LE/85/hQXElVJT5zV6YlRDS/RUWFmLWrFkwNjaGSCSCvr4+vLy8cPr06Ta9TnJyMng83ktfr5pLqD189dVX3PUFAgFMTU0xb948lJaWIiIiAgYGBnjy5InMMZcuXYJIJEJCQgIA4MSJExg1ahR69uwJVVVV9O/fH4GBgaiurgbw171ra2ujsrJS5lznzp3jrv8iiUSCyMhI2NnZQUVFBdra2vD29m7R5xITE8Odm8/nw8DAAO+++y7u3Lkjs5+Hh4fM56Cnp4cpU6bg9u3b3D63bt1q9DP78MMPmx1Pa1EiRFrM53kidDyrAOXVtXX//3wSxeH9ekFFWUlusRFCOpfJkyfj4sWL2L59O3JychAfHw8PDw88fvy4VedjjKG2trZBuZubG/Ly8rjX1KlTMX78eJkyNze3172dVrG1tUVeXh5u3bqFNWvWYMuWLfjss8+wYMECGBkZISQkhNu3pqYGgYGB+PDDD+Hj44PMzEyMHz8eTk5OOHnyJDIyMrBhwwYIhUJIJLLdE9TV1REbGytTtnXrVhgbG8uUMcbg5+eH5cuXIzQ0FFlZWUhOToaRkRE8PDwQFxfX7HvT0NBAXl4e7t+/j/379yM7OxtTpkxpsF9wcDDy8vLw4MED/Pbbb7h7926jSc5///tfmc9s06ZNzY6l1Rh5qeLiYgaAFRcXyzuUTkMqlbIRa44zk/kJLD79PmOMsUnfn2Ym8xPYz2dvyTk6QrqXiooKlpmZySoqKuQdSos9ffqUAWDJycmNbs/NzWUA2MWLFxsck5SUxBhjLCkpiQFghw4dYo6OjkxZWZklJSUxd3d3FhISwkJDQ5mOjg7z8PCQOXdgYCCbMGECY4yxEydOMIFAwPLy8mT2CQ0NZW+88QZjjLHo6GimqanJYmNjmYWFBROJRGzcuHHszp07MsfExcUxBwcHJhKJmJmZGfvqq69YTU1Nk+/B0qVL2aBBg2TKgoODmb6+PmOMsaysLKaiosL27dvH7W9iYsI9cyIjI5mpqWmT53/xPVq0aBEbM2YMV15eXs40NTXZ4sWL2YuP+927dzMALD4+vsG5Jk2axHR0dFhpaelLr8nYX+/Zi9avX9/gmenu7s5CQ0Nl9vvpp5+Yqqoq93NjvwvN8bLvR3Of31QjRFqMx+NxtUIJlx/gSVk1Ltx5CgBNzjhNCGk7jDGU15TL5cUYa3ac9etSxcXFoaqq6rXuOTw8HF9//TWysrJgb28PANi+fTuEQiFOnz6NqKioJo8dOXIkzM3N8dNPP3FlNTU12LlzJ6ZNm8aVlZeXY+XKldixYwdOnz6NoqIi+Pn5cdtTUlIQEBCA0NBQZGZmYvPmzYiJicHKlStbdC9isZhr1rK2tsbq1asxa9YsJCYmYvXq1YiOjuZWS9fX10deXh5Onjz5yvP6+/sjJSWFa5rav38/TE1N4ejoKLPfrl27YGlpCV9f3wbn+Oyzz/D48WMcPXq0RfcEAAUFBYiNjYWSkhKUlJpuGXjy5An27t0LFxeXFl+jPdASG6RVfOz74PvkG0jKLsTByw/AGGBjoIE+WmJ5h0ZIt1dRWwGXXfJ5iPzx/h9QVVZt1r4CgQAxMTEIDg5GVFQUHB0d4e7uDj8/Py6Zaa7ly5c3WCy1f//+WLt2bbOOnz59OqKjo/H5558DAA4cOIDKykpMnTqV26empgYbN27kHtDbt2+HjY0NUlNT4ezsjGXLliE8PByBgYEAAHNzc0REROCLL77A0qVLmxXH+fPnsWvXLowaNYorCw0NxW+//YY333wTc+bMgaenJ7dtypQpSExMhLu7O/T19eHq6orRo0cjICCAS5bq6erqwtvbGzExMViyZAm2bdsmk+jVy8nJgY2NTaPx1Zfn5OQ0636Ki4uhpqZWl5yXlwMAPv30U/To0UNmv++//x7//ve/uf0sLS2RmJjY4Hxubm7g8/+qo0lJSYGDg0OzYmktqhEirWJjoA7z3j1QXSvF/x2p+8KMpkkUCSF/M3nyZDx48ADx8fEYP348kpOT4ejoiJiYmBadx8nJqUHZkCFDmn18UFAQrl+/jrNnzwKo6+g7depUmQe2QCCQWVbJ2toaWlpayMrKAlDXiXn58uUyq7DX932pTwIak5GRATU1NYjFYjg7O2PYsGHYuHEjt53H4+HLL7+EVCrFokWLZI5VUlJCdHQ07t27h7Vr18LQ0BCrVq3i+h393bRp0xATE4ObN2/izJkz+OCDDxqNqSU1ey+jrq6O9PR0pKWl4ZtvvoGjo2OjNWQffPAB0tPTcenSJZw6dQoWFhYYN24cnj17JrPfnj17kJ6ezr0GDBjQJnG+DNUIkVbh8XjwsTPA+uPXUVxRtzrxKFptnpAOIRaI8cf7f8jt2i2loqKCsWPHYuzYsVi8eDFmzJiBpUuXIiUlBYDsQ7mp1c7/XsPQVFlTdHV14evri+joaJiZmeHw4cMtHkVWWlqKZcuWYdKkSQ22qaioNHmclZUV4uPjIRAI0KdPHwiFDddhFAgEMv/9O0NDQ/j7+8Pf3x8RERGwtLREVFQUli1bJrOft7c3Pv74Y0yfPh2+vr7Q0Wk4itfS0pJL7v6uvtzS0rLJ+3kRn8+HhYUFgLrapBs3bmDWrFkyzZAAoKmpye1nYWGBrVu3wsDAAHv27MGMGTO4/YyMjLj9OgolQqTVfAb1wfrj1wEAPXsIMaivlnwDIkRB8Hi8ZjdPdUYDBgxAXFwcevfuDQDIy8vjmj/S09Pb7bozZszAe++9h759+6Jfv34YPny4zPba2lqkpaXB2dkZAJCdnY2ioiKuucjR0RHZ2dktflALhcI2fbhra2vDwMAAZWVlDbYJBAIEBARg7dq1OHz4cKPH+/n54f3338eBAwca9BP65ptvoKOj06AZsrnCw8PRr18/zJs3r0HfpBfV9yGqqKho1XXaEiVCpNUs9dRhqaeGnIel8LDqDSU+zSZNCPnL48ePMWXKFEybNg329vZQV1dHWloa1q5diwkTJkAsFsPV1RVff/01zMzMUFBQ0KBpqC15eXlBQ0MDK1aswPLlyxtsV1ZWxpw5c7B+/XoIBALMnj0brq6uXGK0ZMkS+Pj4wNjYGO+88w74fD4uXbqEK1euYMWKFQCAgIAAGBoaYvXq1W0S8+bNm5Geno6JEyeiX79+qKysxI4dO3D16lVs2LCh0WMiIiLw+eefN1obBNQlQvv27UNgYCDWrVuH0aNHo6SkBJs2bUJ8fDz27dvXotq2FxkZGWHixIlYsmQJNw8SUNcRPT8/HwDw8OFDREREQEVFBePGjWvVddoS9REiryV0tCWMe6oiyM1U3qEQQjoZNTU1uLi4IDIyEiNHjsTAgQOxePFiBAcHc31ktm3bhtraWgwZMgRz587lEor2wOfzERQUBIlEgoCAgAbbVVVVMX/+fLz//vsYPnw41NTUsGfPHm67l5cXEhIScOTIEQwdOhSurq6IjIyEiYkJt8+dO3ca7bvTWs7OzigtLcXMmTNha2sLd3d3nD17FnFxcXB3d2/0GKFQiF69ejW51BGPx8PevXuxcOFCREZGwsrKCiNGjMDt27eRnJyMt99++7VinjdvHg4ePIjU1FSu7Mcff4SBgQEMDAzg6emJR48e4dChQ7Cysnqta7UFHmurHlPdVElJCTQ1NVFcXNyghz4hhLS3yspK5ObmwszM7KX9UEjzTJ8+HYWFhYiPj5cpj4mJwdy5c1FUVCSfwEirvOz70dznNzWNEUII6faKi4uRkZGBXbt2NUiCiGKjpjFCCCHd3oQJEzBu3DjMnDmz1R2BFY2tra3MVAEvvnbu3Cnv8NoMNY29AjWNEULkiZrGiLzcvn27yekM9PT0oK6u3sERNURNY4QQQghpFy92Au/OqGmMEEIIIQqr2ydC2dnZGDx4MPcSi8WIi4uTd1iEENIi1IuBkIba4nvR7ZvGrKysuJlKS0tLYWpqSh3lCCFdhrKyMoC6CenEYlrUmJAX1a/xVv89aY1unwi9KD4+HqNHj271jJmEENLRlJSUoKWlhYKCAgB1k/41NVEeIYqifhX7goICaGlpcUt2tIbcE6GTJ09i3bp1OH/+PPLy8hAbG9tgVstNmzZh3bp1yM/Px6BBg7BhwwZuyvOW2Lt3b6OziRJCSGemr68PAFwyRAipo6WlxX0/WkvuiVBZWRkGDRqEadOmNbqi7549exAWFoaoqCi4uLjgu+++g5eXF7Kzs6GrW7fa+eDBg1FbW9vg2CNHjqBPnz4A6obR/e9//8Pu3bvb94YIIaSN8Xg8GBgYQFdXt8nhzIQoGmVl5deqCarXqeYR4vF4DWqEXFxcMHToUG5dGqlUCiMjI8yZMwfh4eHNPvdPP/2ExMRE/Pzzzy/dr6qqClVVVdzPJSUlMDIyonmECCGEkC6kufMIdepRY9XV1Th//jzGjBnDlfH5fIwZMwZnzpxp0bn27t2Ld99995X7rV69GpqamtzLyMioxXETQgghpGvo1InQo0ePIJFIoKenJ1Oup6eH/Pz8Zp+nuLgYqamp8PLyeuW+CxYsQHFxMfe6e/dui+MmhBBCSNcg9z5CHUFTUxMPHz5s1r4ikQgikaidIyKEEEJIZ9CpE6FevXpBSUmpQRLz8OHD1+4l3lz1XahKSko65HqEEEIIeX31z+1XdYXu1ImQUCjEkCFDcOzYMa4DtVQqxbFjxzB79uwOieHZs2cAQH2FCCGEkC7o2bNn0NTUbHK73BOh0tJSXL9+nfs5NzcX6enp6NmzJ4yNjREWFobAwEA4OTnB2dkZ3333HcrKyvDRRx91SHx9+vTB3bt3oa6u3qaTmNWPRrt79y6NRusk6DPpXOjz6Fzo8+hc6PN4NcYYnj17xk2j0xS5J0JpaWnw9PTkfg4LCwMABAYGIiYmBu+++y4KCwuxZMkS5OfnY/Dgwfj9998bdKBuL3w+H3379m2382toaNAvcSdDn0nnQp9H50KfR+dCn8fLvawmqJ7cEyEPD49Xtt/Nnj27w5rCCCGEEKI4OvXweUIIIYSQ9kSJkJyIRCIsXbqUhup3IvSZdC70eXQu9Hl0LvR5tJ1OtcQGIYQQQkhHohohQgghhCgsSoQIIYQQorAoESKEEEKIwqJEiBBCCCEKixIhOdm0aRNMTU2hoqICFxcXpKamyjskhbR69WoMHToU6urq0NXVxdtvv43s7Gx5h0We+/rrr8Hj8TB37lx5h6Kw7t+/jw8//BA6OjoQi8Wws7NDWlqavMNSWBKJBIsXL4aZmRnEYjH69euHiIiIV87HR5pGiZAc7NmzB2FhYVi6dCkuXLiAQYMGwcvLCwUFBfIOTeGcOHECISEhOHv2LI4ePYqamhqMGzcOZWVl8g5N4Z07dw6bN2+Gvb29vENRWE+fPsXw4cOhrKyMw4cPIzMzE9988w20tbXlHZrCWrNmDX744Qds3LgRWVlZWLNmDdauXYsNGzbIO7Qui4bPy4GLiwuGDh2KjRs3AqhbSNbIyAhz5sxBeHi4nKNTbIWFhdDV1cWJEycwcuRIeYejsEpLS+Ho6Ijvv/8eK1aswODBg/Hdd9/JOyyFEx4ejtOnTyMlJUXeoZDnfHx8oKenh61bt3JlkydPhlgsxs8//yzHyLouqhHqYNXV1Th//jzGjBnDlfH5fIwZMwZnzpyRY2QEAIqLiwEAPXv2lHMkii0kJARvvfWWzPeEdLz4+Hg4OTlhypQp0NXVhYODA3788Ud5h6XQ3NzccOzYMeTk5AAALl26hFOnTsHb21vOkXVdcl9rTNE8evQIEomkwaKxenp6+PPPP+UUFQHqaubmzp2L4cOHY+DAgfIOR2Ht3r0bFy5cwLlz5+QdisK7efMmfvjhB4SFhWHhwoU4d+4cPv30UwiFQgQGBso7PIUUHh6OkpISWFtbQ0lJCRKJBCtXrsQHH3wg79C6LEqECHkuJCQEV65cwalTp+QdisK6e/cuQkNDcfToUaioqMg7HIUnlUrh5OSEVatWAQAcHBxw5coVREVFUSIkJ3v37sXOnTuxa9cu2NraIj09HXPnzkWfPn3oM2klSoQ6WK9evaCkpISHDx/KlD98+BD6+vpyiorMnj0bCQkJOHnyJPr27SvvcBTW+fPnUVBQAEdHR65MIpHg5MmT2LhxI6qqqqCkpCTHCBWLgYEBBgwYIFNmY2OD/fv3yyki8vnnnyM8PBx+fn4AADs7O9y+fRurV6+mRKiVqI9QBxMKhRgyZAiOHTvGlUmlUhw7dgzDhg2TY2SKiTGG2bNnIzY2FsePH4eZmZm8Q1Joo0ePRkZGBtLT07mXk5MTPvjgA6Snp1MS1MGGDx/eYDqJnJwcmJiYyCkiUl5eDj5f9tGtpKQEqVQqp4i6PqoRkoOwsDAEBgbCyckJzs7O+O6771BWVoaPPvpI3qEpnJCQEOzatQu//fYb1NXVkZ+fDwDQ1NSEWCyWc3SKR11dvUH/rB49ekBHR4f6bcnBvHnz4ObmhlWrVmHq1KlITU3Fli1bsGXLFnmHprB8fX2xcuVKGBsbw9bWFhcvXsS3336LadOmyTu0LouGz8vJxo0bsW7dOuTn52Pw4MFYv349XFxc5B2WwuHxeI2WR0dHIygoqGODIY3y8PCg4fNylJCQgAULFuDatWswMzNDWFgYgoOD5R2Wwnr27BkWL16M2NhYFBQUoE+fPnjvvfewZMkSCIVCeYfXJVEiRAghhBCFRX2ECCGEEKKwKBEihBBCiMKiRIgQQgghCosSIUIIIYQoLEqECCGEEKKwKBEihBBCiMKiRIgQQgghCosSIUIIIYQoLEqECCFdUn5+PubMmQNzc3OIRCIYGRnB19dXZh0/Qgh5FVprjBDS5dy6dQvDhw+HlpYW1q1bBzs7O9TU1CAxMREhISH4888/5R0iIaSLoBohQkiX88knn4DH4yE1NRWTJ0+GpaUlbG1tERYWhrNnzwIAvv32W9jZ2aFHjx4wMjLCJ598gtLSUu4ct2/fhq+vL7S1tdGjRw/Y2tri0KFD3PYrV67A29sbampq0NPTg7+/Px49esRt/+WXX2BnZwexWAwdHR2MGTMGZWVlHfcmEELaBCVChJAu5cmTJ/j9998REhKCHj16NNiupaUFAODz+Vi/fj2uXr2K7du34/jx4/jiiy+4/UJCQlBVVYWTJ08iIyMDa9asgZqaGgCgqKgIo0aNgoODA9LS0vD777/j4cOHmDp1KgAgLy8P7733HqZNm4asrCwkJydj0qRJoKUbCel6aNFVQkiXkpqaChcXF/z666+YOHFis4/75ZdfMHPmTK5Wx97eHpMnT8bSpUsb7LtixQqkpKQgMTGRK7t37x6MjIyQnZ2N0tJSDBkyBLdu3YKJicnr3xQhRG6ojxAhpEtp7t9u//3vf7F69Wr8+eefKCkpQW1tLSorK1FeXg5VVVV8+umnmDVrFo4cOYIxY8Zg8uTJsLe3BwBcunQJSUlJXA3Ri27cuIFx48Zh9OjRsLOzg5eXF8aNG4d33nkH2trabXqvhJD2R01jhJAupX///uDxeC/tEH3r1i34+PjA3t4e+/fvx/nz57Fp0yYAQHV1NQBgxowZuHnzJvz9/ZGRkQEnJyds2LABAFBaWgpfX1+kp6fLvK5du4aRI0dCSUkJR48exeHDhzFgwABs2LABVlZWyM3Nbf83gBDSpqhpjBDS5Xh7eyMjIwPZ2dkN+gkVFRXh2LFjeO+991BZWQk+v+7vvRUrVmDx4sV4+vQp14/oRQsWLMDBgwdx+fJlfPnll9i/fz+uXLkCgeDVFecSiQQmJiYICwtDWFhYm9wjIaRjUI0QIaTL2bRpEyQSCZydnbF//35cu3YNWVlZWL9+PYYNGwYLCwvU1NRgw4YNuHnzJn766SdERUXJnGPu3LlITExEbm4uLly4gKSkJNjY2ACo60j95MkTvPfeezh37hxu3LiBxMREfPTRR5BIJPjjjz+watUqpKWl4c6dO/j1119RWFjIHU8I6UIYIYR0QQ8ePGAhISHMxMSECYVCZmhoyP7xj3+wpKQkxhhj3377LTMwMGBisZh5eXmxHTt2MADs6dOnjDHGZs+ezfr168dEIhHr3bs38/f3Z48ePeLOn5OTwyZOnMi0tLSYWCxm1tbWbO7cuUwqlbLMzEzm5eXFevfuzUQiEbO0tGQbNmyQw7tACHld1DRGCCGEEIVFTWOEEEIIUViUCBFCCCFEYVEiRAghhBCFRYkQIYQQQhQWJUKEEEIIUViUCBFCCCFEYVEiRAghhBCFRYkQIYQQQhQWJUKEEEIIUViUCBFCCCFEYVEiRAghhBCFRYkQIYQQQhTW/wN+KMfMkEuPtAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmjJJREFUeJzs3XdYk1f7B/BvQiDsvREEcYICgiwXDhzYUkfrqFVxtlrqKH3baodWrbXVt+qvSl+sVVFbrVWrVWudFQdqERQXKKI42SB7Jjm/Px55JASQYDCA9+e6csFznnUSRu6cc59zBIwxBkIIIYQQwhOquwKEEEIIIc0NBUiEEEIIITVQgEQIIYQQUgMFSIQQQgghNVCARAghhBBSAwVIhBBCCCE1UIBECCGEEFIDBUiEEEIIITVQgEQIIYQQUgMFSISogUAgwFdffaXuarxUr+JzrlLzuUdGRkIgEODevXsquf69e/cgEAgQGRmpkus1xrBhwzBjxgyVXOv333+HqakpioqKVHI9dausrIS9vT1+/PFHhX0RERFwcHBAeXm5GmpG6kMBEmkRbty4gQkTJsDOzg5isRi2trZ45513cOPGDYVjL168iA8++ACurq7Q09ODg4MDxowZg6SkpAbd66uvvoJAIIBQKMTDhw8V9hcUFEBHRwcCgQAffPDBCz83VXB0dIRAIKj1UVZW9tLqcejQoWYXBFX9PKseurq6cHFxwRdffIGCggJ1V08p27dvx5o1a9RdDQXR0dE4evQoPv30U4V9Dx48wMyZM+Ho6AixWAxLS0uMGDEC0dHRtV5LKpVi0aJFmD17NvT19fnyo0ePYtq0aejatSs0NDTg6OhY6/lRUVF1/i0IBAL89ttv9T6XnJwcrFy5En379oWFhQWMjY3h5+eHnTt31np8eXk5Pv30U9ja2kJHRwe+vr44duyY3DGampoICwvDsmXLFP4eJ0+ejIqKCqxfv77eepGXT6TuChDyPH/88QfefvttmJqaYtq0aXBycsK9e/ewceNG7N69G7/99htGjhzJH//dd98hOjoao0ePhpubG9LT07Fu3Tp4enriwoUL6Nq1a4PuKxaLsWPHDnzyyScK9WmOPDw88NFHHymUa2lpvbQ6HDp0COHh4bUGSaWlpRCJ1Pcv53//+x/09fVRVFSEo0ePYtmyZfjnn38QHR0NgUDwUusyceJEjBs3DmKxWKnztm/fjuvXr2PevHly5W3btkVpaSk0NTVVWMuGW7lyJQYOHIj27dvLlUdHR2PYsGEAgOnTp8PFxQXp6emIjIxEnz598H//93+YPXu23DkHDhzArVu38O6778qVb9++HTt37oSnpydsbW2fW6c5c+bA29tbodzf37/e886fP4/PP/8cw4YNwxdffAGRSIQ9e/Zg3LhxSEhIwOLFi+WOnzx5Mnbv3o158+ahQ4cOiIyMxLBhw3Dy5En07t2bP27KlCmYP38+tm/fjqlTp/Ll2traCAkJwapVqzB79uyX/rtI6sEIacaSk5OZrq4u69y5M8vMzJTbl5WVxTp37sz09PTYnTt3+PLo6GhWXl4ud2xSUhITi8XsnXfeee49Fy1axACwUaNGMQ8PD4X9gwYNYm+++SYDwEJDQxv1vACwRYsWNerc2rRt25a99tprSp1TXFyssvtXCQ0NZc3t30rVzzMrK0uufNSoUQwAO3fuXJ3nquo1UtXP+7XXXmNt27Z94euoUkZGBhOJROznn3+WK8/NzWXW1tbMysqKJScny+0rKSlhffr0YUKhkEVHR8vte+ONN1jv3r0V7vP48WNWUVHBGKv/dTh58iQDwHbt2tWo53P37l127949uTKZTMYGDBjAxGIxKyoq4sv//fdfBoCtXLmSLystLWXOzs7M399f4dqvv/4669Onj0J5bGwsA8BOnDjRqDqTpkFdbKRZW7lyJUpKSvDTTz/BwsJCbp+5uTnWr1+P4uJirFixgi/v2bOnQqtJhw4d4OrqisTExAbfe/z48YiPj8fNmzf5svT0dPzzzz8YP358redkZmZi2rRpsLKygra2Ntzd3bFly5YG3e/x48eYOnUqrKysIBaL4erqik2bNjW4vvXp168funbtiri4OPTt2xe6urr47LPPAAB//vknXnvtNdja2kIsFsPZ2RlLly6FVCpVuM6///6LYcOGwcTEBHp6enBzc8P//d//AeA+SYeHhwOAXJdGldpykC5fvoygoCAYGhpCX18fAwcOxIULF+SOqcrXiY6ORlhYGCwsLKCnp4eRI0ciKyur0a/JgAEDAAApKSnPfY3Ky8uxaNEitG/fHmKxGPb29vjkk08U8kbKy8vx4YcfwsLCAgYGBnjjjTfw6NEjhXvXlYP0999/IyAgAAYGBjA0NIS3tze2b9/O1++vv/7C/fv3+de2qpuprhykf/75B3369IGenh6MjY0xfPhwhb+Bqi7I5ORkTJ48GcbGxjAyMsKUKVNQUlLy3Nfxr7/+gkQiQWBgoFz5+vXrkZ6ejpUrV8LZ2Vlun46ODrZs2QKBQIAlS5bw5WVlZTh8+LDCtQDA1tb2pbSQOTk5oW3btnJlAoEAI0aMQHl5Oe7evcuX7969GxoaGnKtXdra2pg2bRrOnz+v0EU/aNAgnD17Frm5uXLlXl5eMDU1xZ9//tkEz4g0FnWxkWbtwIEDcHR0RJ8+fWrd37dvXzg6OuKvv/6q9zqMMWRkZMDV1bXB9+7bty/atGmD7du38//Ed+7cCX19fbz22msKx5eWlqJfv35ITk7GBx98ACcnJ+zatQuTJ09GXl4e5s6dW+e9MjIy4Ofnx+c1WVhY4O+//8a0adNQUFCg0KVSm8rKSmRnZ8uV6erqQldXFwCXWxEUFIRx48ZhwoQJsLKyAsC9Wevr6yMsLAz6+vr4559/sHDhQhQUFGDlypX8tY4dO4bXX38dNjY2mDt3LqytrZGYmIiDBw9i7ty5eO+995Camopjx45h27Ztz63vjRs30KdPHxgaGuKTTz6BpqYm1q9fj379+uHUqVPw9fWVO3727NkwMTHBokWLcO/ePaxZswYffPBBnbkhz3Pnzh0AgJmZGV9W22skk8nwxhtv4OzZs3j33XfRpUsXXLt2DatXr0ZSUhL27dvHnz99+nT88ssvGD9+PHr27Il//vmn1t+V2kRGRmLq1KlwdXXFggULYGxsjMuXL+Pw4cMYP348Pv/8c+Tn5+PRo0dYvXo1AMjl6NR0/PhxBAUFoV27dvjqq69QWlqKtWvXolevXrh06ZJCDs+YMWPg5OSE5cuX49KlS/j5559haWmJ7777rt56nzt3DmZmZgpBxYEDB6CtrY0xY8bUep6TkxN69+6Nf/75B6WlpdDR0UFcXBwqKirg6enZgFesfoWFhQp/DwD3825MN1Z6ejoA7oNZlcuXL6Njx44wNDSUO9bHxwcAEB8fD3t7e77cy8sLjDGcO3cOr7/+utw5np6edeZlETVRdxMWIXXJy8tjANjw4cPrPe6NN95gAFhBQUGdx2zbto0BYBs3bnzufat3yfznP/9h7du35/d5e3uzKVOmMMaYQhfbmjVrGAD2yy+/8GUVFRXM39+f6evry9UPNbpcpk2bxmxsbFh2drZcXcaNG8eMjIxYSUlJvXVu27YtA6DwqLpHQEAAA8AiIiIUzq3t2u+99x7T1dVlZWVljDHGJBIJc3JyYm3btmVPnjyRO1Ymk/Hf19fFVvM5jxgxgmlpacl1j6ampjIDAwPWt29fvmzz5s0MAAsMDJS714cffsg0NDRYXl5e3S8Me/bzvHXrFsvKymIpKSls/fr1TCwWMysrK74bra7XaNu2bUwoFLIzZ87IlUdERDAAfBdRfHw8A8Def/99uePGjx+v8NyrnlNKSgpjjPtdNzAwYL6+vqy0tFTu/OrPua6upZSUFAaAbd68mS/z8PBglpaWLCcnhy+7cuUKEwqFbNKkSQqvz9SpU+WuOXLkSGZmZqZwr5p69+7NvLy8FMqNjY2Zu7t7vefOmTOHAWBXr15ljDH2888/MwDs2rVr9Z7XkC62uh5paWnPfU415eTkMEtLS4XuMVdXVzZgwACF42/cuFHr71JqaioDwL777juFc959912mo6OjdN1I06EuNtJsFRYWAgAMDAzqPa5qf10jkm7evInQ0FD4+/sjJCREqTqMHz8eycnJuHjxIv+1ru61Q4cOwdraGm+//TZfpqmpiTlz5qCoqAinTp2q9TzGGPbs2YPg4GAwxpCdnc0/hgwZgvz8fFy6dOm5da0aPVP9MWnSJH6/WCzGlClTFM7T0dHhv6/61N2nTx+UlJTw3YuXL19GSkoK5s2bB2NjY7nzG/NpXCqV4ujRoxgxYgTatWvHl9vY2GD8+PE4e/asws/z3XfflbtXnz59IJVKcf/+/Qbds1OnTrCwsICTkxPee+89tG/fHn/99RffwgbU/hrt2rULXbp0QefOneV+NlVddCdPngTA/fwBLjm4uoa0/h07dgyFhYWYP38+tLW15fY15vVNS0tDfHw8Jk+eDFNTU77czc0NgwYN4uta3cyZM+W2+/Tpg5ycnOeO9MvJyYGJiYlCeWFhodJ/uzk5OQBQ6/WUtXDhQoW/h2PHjsm9Hg0hk8nwzjvvIC8vD2vXrpXbV1paWmuifdXPsLS0VK686nnV1rJlYmKC0tLSBnVrkpeDuthIs1X1z7MqUKpLfYFUeno6XnvtNRgZGfH5Asro3r07OnfujO3bt8PY2BjW1tb8G2NN9+/fR4cOHSAUyn/u6NKlC7+/NllZWcjLy8NPP/2En376qdZjMjMzn1tXc3PzWnM3qtjZ2dU6ou3GjRv44osv8M8//yi8Gebn5wN41h3V0BGAz5OVlYWSkhJ06tRJYV+XLl0gk8nw8OFDuS5RBwcHueOq3myePHnSoHvu2bMHhoaG0NTURJs2bRTyYoDaX6Pbt28jMTFRIQeuStXP5v79+xAKhQrXre051qTq17fqd62u1/fIkSMoLi6Gnp4eX17f61uzC6kmxphCmYGBQaP/dmu7nrK6detW799Dbm4uKioq+G0dHR0YGRkpHDd79mwcPnwYW7duhbu7u9w+HR2dWucvqhrKX/3DB/DsedUW9Na3j6gHBUik2TIyMoKNjQ2uXr1a73FXr16FnZ2dwj/x/Px8BAUFIS8vD2fOnGnQ0ODajB8/Hv/73/9gYGCAsWPHKgRAL0omkwEAJkyYUGcLl5ub2wvfp+Y/awDIy8tDQEAADA0NsWTJEjg7O0NbWxuXLl3Cp59+ytetOagruG3om2nfvn3l8kdqU9trJJPJ0K1bN6xatarWc6rnmLRkjX19zczMag1Su3TpgsuXL6O8vLzO6QyuXr0KTU1NdOjQgb8WwAVlbdq0Uab6Shs1apRcq25ISIhCkvvixYvx448/4ttvv8XEiRMVrmFjY4PHjx8rlKelpQGAwv+cqteptt/DJ0+eQFdXt9bfQaIeFCCRZu3111/Hhg0bcPbsWbk5RaqcOXMG9+7dw3vvvSdXXlZWhuDgYCQlJeH48eNwcXFpdB3Gjx+PhQsXIi0trd7k47Zt2+Lq1auQyWRyQVRVN1XNJNYqVSOepFJpvZ94m0JUVBRycnLwxx9/oG/fvnx51ciuKlWtItevX6+3jg399GthYQFdXV3cunVLYd/NmzchFAqbTeDh7OyMK1euYODAgfU+v7Zt20Imk+HOnTtyLTe1Pcfa7gFwr2/NuYSqa+jrW/W7Vtfra25uLtd69CI6d+6MPXv2KJS//vrrOH/+PHbt2oUJEyYo7L937x7OnDmDwMBAPijo3LkzAO73r1u3biqpX12+//57ucCuZjBTNZ/XvHnzap0AE+DmHjt58iQKCgrkPqD9+++//P7qqv6uqlqVa+6rrZyoD+UgkWbt448/ho6ODt577z0+P6FKbm4uZs6cCV1dXXz88cd8uVQqxdixY/l/zs+bGO55nJ2dsWbNGixfvpwfnVKbYcOGIT09XW5UlUQiwdq1a6Gvr4+AgIBaz9PQ0MCbb76JPXv24Pr16wr7X2Qo+/NUtRpUbyWoqKhQWBLB09MTTk5OWLNmDfLy8uT2VT+36k235jG13Xfw4MH4888/5Ya6Z2RkYPv27ejdu/dzu3VeljFjxuDx48fYsGGDwr7S0lIUFxcDAIKCggAAP/zwg9wxDZn5evDgwTAwMMDy5csVZlqu+fpWdXvWx8bGBh4eHtiyZYvcz+L69es4evQoP3mjKvj7++PJkydyw98B4L333oOlpSU+/vhjhX1lZWWYMmUKGGNYuHAhX+7l5QUtLS3ExsaqrH518fLyQmBgIP+o/iFq586dmDNnDt555506Ww4B4K233oJUKpXrGi8vL8fmzZvh6+urEOTHxcVBIBDU+j/p0qVL6NmzpwqeGVEVakEizVqHDh2wZcsWvPPOO+jWrZvCTNrZ2dnYsWOHXN7HRx99hP379yM4OBi5ubn45Zdf5K5Z26fZ56lviH6Vd999F+vXr8fkyZMRFxcHR0dH7N69G9HR0VizZk29CavffvstTp48CV9fX8yYMQMuLi7Izc3FpUuXcPz4cYV5U1SlZ8+eMDExQUhICObMmQOBQIBt27YpdKsIhUL873//Q3BwMDw8PDBlyhTY2Njg5s2buHHjBo4cOQKAe9MBuETlIUOGQENDA+PGjav13l9//TWOHTuG3r174/3334dIJML69etRXl4uN6+Vuk2cOBG///47Zs6ciZMnT6JXr16QSqW4efMmfv/9dxw5cgQ9evSAh4cH3n77bfz444/Iz89Hz549ceLECSQnJz/3HoaGhli9ejWmT58Ob29vjB8/HiYmJrhy5QpKSkr4ubS8vLywc+dOhIWFwdvbG/r6+ggODq71mitXrkRQUBD8/f0xbdo0fpi/kZGRSpeDee211yASiXD8+HG5+YDMzMywe/duvPbaa/D09FSYSTs5ORn/93//JxcUaGtrY/DgwTh+/Ljc/EgA1x23f/9+AEBycjLy8/Px9ddfAwDc3d0VXoczZ87UusyOm5tbvV3WMTExmDRpEszMzDBw4ED8+uuvcvt79uzJDyzw9fXF6NGjsWDBAmRmZqJ9+/bYsmUL//+ppmPHjqFXr15yU0sAXOCUm5uL4cOH11kvogZqGTtHiJKuXr3K3n77bWZjY8M0NTWZtbU1e/vtt2sdDlw1XLuux/PUNfNyTahlJu2MjAw2ZcoUZm5uzrS0tFi3bt3khl5XP7fmzMoZGRksNDSU2dvb889x4MCB7KeffnpunZ83k3ZAQABzdXWtdV90dDTz8/NjOjo6zNbWln3yySfsyJEjDAA7efKk3LFnz55lgwYNYgYGBkxPT4+5ubmxtWvX8vslEgmbPXs2s7CwYAKBQO71ru05X7p0iQ0ZMoTp6+szXV1d1r9/f4WZrauGxF+8eFGuvGo4d8061tTQn2d9r1FFRQX77rvvmKurKxOLxczExIR5eXmxxYsXs/z8fP640tJSNmfOHGZmZsb09PRYcHAwe/jw4XOH+VfZv38/69mzJ9PR0WGGhobMx8eH7dixg99fVFTExo8fz4yNjRkAfqh7bcP8GWPs+PHjrFevXvz1goODWUJCQoNen7rqWJs33niDDRw4sNZ9KSkpbMaMGczBwYFpamoyc3Nz9sYbbyhMm1Dljz/+YAKBgD148KDW+tT2CAkJ4Y973jD/581oXt99anuNS0tL2X/+8x9mbW3NxGIx8/b2ZocPH1a4bl5eHtPS0lKYcZwxxj799FPm4OAgN6UDUT8BYyoYLkAIIeSVdebMGfTr1w83b97kE64bSyqVwsXFBWPGjMHSpUtVVEP1W7NmDVasWIE7d+7IJWKXl5fD0dER8+fPb1BLNXl5KAeJEELIC+nTpw8GDx6skq5RDQ0NLFmyBOHh4SgqKlJB7dSvsrISq1atwhdffKEwSm3z5s3Q1NRUmIeKqB+1IBFCCCGE1EAtSIQQQgghNVCARAghhBBSAwVIhBBCCCE1UIBECCGEEFIDTRTZSDKZDKmpqTAwMKDFBQkhhJAWgjGGwsJC2Nra1ru2JgVIjZSamtps1ooihBBCiHIePnxY76LIFCA1UtWyEQ8fPmw2a0YRQgghpH4FBQWwt7evd/kngAKkRqvqVjM0NKQAiRBCCGlhnpceQ0naSgoPD4eLiwu8vb3VXRVCCCGENBGaSbuRCgoKYGRkhPz8fGpBIoQQQlqIhr5/UwsSIYQQQkgNFCARQgghhNRAARIhhBBCSA0UIBFCCCGE1EABEiGEEEJIDRQgKYmG+RNCCCGtHw3zbyQa5k8IIYS0PDTMnxBCCCGkkShAIoQQQgipgQIkQgghhJAaKEAihBB1kJQDUom6a0EIqcMrESCNHDkSJiYmeOuttxT2OTo6ws3NDR4eHujfv78aakcIeeUkHQW+7wys9QTSr6u7NoSQWrwSAdLcuXOxdevWOvefO3cO8fHxOHny5EusFSHklSOTASeXA9vHAKW5QN59YONg4OYhddeMEFLDKxEg9evXDwYGBuquBiHkVVaSywVGp74FwACvKYBTAFBZDPw2Hoj+P4BmXSGk2VB7gHT69GkEBwfD1tYWAoEA+/btUzgmPDwcjo6O0NbWhq+vL2JiYlR2f4FAgICAAHh7e+PXX39V2XUJIYSXGg/8FAAkHwNE2sCICCB4DTBhD9BjKgAGHFsI/PkBIKlQc2UJIQAgUncFiouL4e7ujqlTp2LUqFEK+3fu3ImwsDBERETA19cXa9aswZAhQ3Dr1i1YWloCADw8PCCRKCY7Hj16FLa2tvXe/+zZs7Czs0NaWhoCAwPRrVs3uLm5qebJEULI5V+Ag2GAtBwwcQTG/gJYd+P2aWgCr60CLDoDh+cD8b8AuXe5Y/TM1FptQl51ag+QgoKCEBQUVOf+VatWYcaMGZgyZQoAICIiAn/99Rc2bdqE+fPnAwDi4+MbfX87OzsAgI2NDYYNG4ZLly7VGiCVl5ejvLyc3y4oKGj0PQkhr4DKMuDvT4BLW7jtjkOBkRGAjon8cQIB4PseYOoM7J4CPDgHbOgPjP8dsOz88utNCAHQDLrY6lNRUYG4uDgEBgbyZUKhEIGBgTh//vwLX7+4uBiFhYUAgKKiIvzzzz9wdXWt9djly5fDyMiIf9jb27/w/QkhrVTeA2Dz0KfBkQDo/wUwbodicFRdh0Bg2jGulSnvPrBxEHD7+MuqMSGkhmYdIGVnZ0MqlcLKykqu3MrKCunp6Q2+TmBgIEaPHo1Dhw6hTZs2fHCVkZGB3r17w93dHX5+fpg0aVKdi9AuWLAA+fn5/OPhw4eNf2KEkNYr+QSwvi+QepkLiCbsBgI+BoQN+Hdr2RmY/g/QthdQXgBsHw1ciKDkbULUQO1dbC/D8eO1fwpr164drly50qBriMViiMVihIeHIzw8HFKpVJVVJIS0dDIZcPZ74J9lABhg2x0YsxUwdlDuOnpmwMR9wMEPuZykw58CWTeBYSu5nCVCyEvRrFuQzM3NoaGhgYyMDLnyjIwMWFtbq6VOoaGhSEhIwMWLF9Vyf0JIM1Saxw3V/+drAAzwDAGmHFY+OKoi0gKGrwMGfw1AAMRtBn4ZxU0VQAh5KZp1gKSlpQUvLy+cOHGCL5PJZDhx4gT8/f3VUqfw8HC4uLjU2RVHniovBK7tBooy1V0TQppW+jXgp35A0t+Ahhh4Yx3wxg+ApvaLXVcgAHrOBt7eAWjpAymngZ8DgexklVSbEFI/AWPq7dwuKipCcjL3B9+9e3esWrUK/fv3h6mpKRwcHLBz506EhIRg/fr18PHxwZo1a/D777/j5s2bCrlJL1NBQQGMjIyQn58PQ0NDtdWjWcq6Bfz2DpBzG9AyAPr+B/CbBYjE6q4ZIap15TfgwDxAUsq1Fo3ZBth6qP4+6deBHeOA/IeAthHXddeun+rvQ8groKHv32oPkKKiompdAy0kJASRkZEAgHXr1mHlypVIT0+Hh4cHfvjhB/j6+r7kmnKq5yAlJSVRgFRTwn5g3yygoggQagKySq7cxJHrLuj8OvfJmJCWTFIOHF4AxG7kttsHAqM2ALqmTXfPokzug8ejGECgAbz236eTTBJClNFiAqSWilqQapBJgX+WAmdXc9ttewNvbQKSjwMnFgNFT/PIHPsAQ5c/myiPkJYm/zHw+yTgcSwAARDwKfdoyCi1F1VZBuyfDVz7ndv2nQkMXgZovBLjbQhRCQqQmhgFSNWU5AK7pwJ3ny726/8BEPjVsxE35UVc4HRuLTebMASA5yRgwJeAvoW6ak2I8u6e4n7XS7K5rq5RPwMdB7/cOjAGnPme+0ACAM4DgdGbufoQQp6LAqQmQl1sNaTGAzsnAvkPAE1d4I21QLe3aj/2yX3g+CLgxl5uW8uAmx/GdyblJ5HmjTEgeg1wYgnAZFwL6JhtgKmT+uqUsB/Y+x5QWQKYdwLG/waYtlNffQhpIShAamLUggQgfjs3V4ukDDBxerrGVNfnn3f/PLfuVFo8t23i9DQ/6TXKTyLNT1k+sO994OZBbtvjHeC17wFNHfXWC+A+oOx4GyhMBXRMub9Bx17qrhUhzRoFSE3slQ6QJBXAkc+Aixu47Q6DgVE/1b+MQk0yGXBlRy35Sd82LMgi5GXISAB2TgBy7wAaWkDQCsBrcvMK5AvSgN/e5mbuFmoCwWuA7hPUXStCmq2Gvn8363mQmqNXfh6kgjRgy+vPgqOA+cDbO5ULjgAuobX7O8DsOKDPR9z8MffOAOv7AAfmAkVZqq87Icq4thv4eSAXHBm2AaYeBnpMaV7BEQAY2gCTDwGuI7lRo3+GAke/4AZOEEIajVqQGumVbEG6fx7YFcK1+IiNuFajTkNVc+2a+UliQ6Dvx9wq55SfRF4mSQVw7Evg3whuu11/4M2N3BIgzRljQNS3wKlvue2OQcCbGwCxgXrrRRpGWglUFAOVpVxeGf99MVBR8uz7ytKn+0rq+L4UEOsDvrOA9gObX0DfDFAXWxN7pQIkxoCYDcCRBYBMAlh0Acb9Cpg5q/5e9889zU96ukaeiRMwZBnQaRj9oZOmV5DGfQh4+C+33ec/QP/PAKGGeuuljGu7uZwpaTlg6colbzd2yRPCYYwLYBocrJTIH1fX95WlT7eLuf+tqmbvC/T/HGgXoPprt2AUIDWxVyZAqijhErGv/sZtu47iRqqJ9ZvunjIZcGU7N2KoKj/JqS8wZDnlJ5Gmc+8ssGsKUJzJtZCOjAA6D1N3rRrnUSy3NlxRBqBnAYzbDtj7qLtWzVfuXSBuC5fHVVfLDHtJXZYCDUBLjxsEoKnLPbR0a3yvA2jq1VL+9PHwX+Diz9wAGoDL7+z/OdBWPUt0NTcUIDWRV2qY/5N7XIJq+jXuj3bQEsA/9OW15JQXPp0/aR33aVgg5OZP6v8FzZ9EVIcx4Pw64Ngi7k3Q0hUYu61pWkhfpvxH3PIk6de4BPM31gHuY9Vdq+ZDKgFuHwEubgTunHj+8VWEIi440dR5GpRU/76ugKYB+6q+19BSzf/YgjTg7CogLhKQVnBlzgO5QKmN14tfvwWjAKmJtfoWpOQTwJ5pQOkTQNecm4jOqa966vLkHvfmlbCP2xYbAgGfAD7vcaueE9JY5YVcUnPCn9y221jg9TXcm1VrUF7EzZVUNUVBn4+4DxgvY9bv5qowHbi0lQscCh4/LRRw+TquIwFt4xqBS7XWHC29ZxPgthR5D4HTK4H4X59143UM4rqObdzUWzc1oQCpibXaAIkx7lPHiaUAGGDryX2aNmqj7pop5ieZtuPmT6L8JNIYWbe4FtLsJG54/NDlgPf01ve7JJM9XQZoFbfdJRgYuZ57s39VMAaknObWzrv517NAQdeMmxLBa4p6J/18GXJTgFMruHQJJuPKurzBBUqWXdRbt5eMAqQm1ioDpLICbqHZqk+bnpOAoJWAprZ661VdrflJAdybm5WreutGWo4be4E/P+AWVTawBcZsBexb+dQd8TuAA3O47hYbd2DcDsDITt21alqlT7jnHbsJyLn9rNzelwuGu7zRvP6/vQzZt7nRjtf3AGAABEDXN4F+CwDz9uqu3UtBAVITa3UBUtYtbqXwnNtcH/iwldyEeM1VeSFwZhVwPvxZfpLXZK5/Xc9c3bUjzZW0Ejj+FZdzBHDJq29tfnVy2h5c4P7OS7IBfWvg7e2AXSvMR3kcB1zcxAUBklKuTEsfcBsD9JhGgz0AbhLUqG+AxAPctkAIuL/NpS+YOKq1ak2NAqQm0iqTtBP2cy1HVZ+mx24D2vRQd60a5sk94NjCZzkklJ9E6lKYAeyeAtyP5rZ7zeMWTNYQqbVaL92T+1zydmYCINIGRvwP6DpK3bV6cRUlwPXdXNJ11TJGAJd07z2Vyy+jOaEUpV0BTn4DJB3mtoUirtux78fNI7WiCVCA1MRaRQuSTPo0N2E1t922N5eMrW+p3no1xr1oLj8p/Sq3bdoOGLwM6BTU+nJKiPLunwd2TQaK0rlFkkf8CLi8oe5aqU9ZAbBnOjeKCwD6fcZ9sGiJfytZSVwXWvx2oDyfK9PQAlxGAN7TuO60lvi8XrZHscDJZcCdf7htDS2uVb7PR4CBtVqrpmoUIDWxFh8gleQCu6cCd09y2/4fAIGLW/anaZmU+yd5Ygk3lw0AtOsHDPmG8pNeVYxxM2If/eLZJKdjtwHmHdRdM/WTSbnW16ruxq5vAsPDm8civM8jreRyJS9u5JYoqmLiyCVcd59AXe2Ndf8c8M8y4P5ZblukzeVr9f6w1bymFCA1sRYdIKXGAzsnAvkPuKGrb6wFur2l7lqpTnkhcOb7p/lJFZSf9KoqL+KSkq/v4ba7vgkE/9C0k5y2RHFbgL/CuADSzoubVLK5thjkP+KG51/a+myQhkAIdBzK5RY5D3i1pzBQFcaAlFNcoPQohivT1OOWfuo5G9A1VW/9XhAFSE2sxQZI8du5mbElZdwyHuN+bb2tKwr5SUZP85Pepfyk1i47mRvCn5XI5VQMXsb9c6eultqlnAF+n8iN+jK0A97ewY10aw5kMq7bJ3YjlydTNURd34obaesZAhjbq7eOrRVjQPJx4J+vn+V1iQ0Bv/cB//cBbSO1Vq+xKEBqYi0uQJJUAEc+Ay5u4LY7DOEWm9UxVmu1XgrKT3q1JB4A9s4CKgq5kVqjI2mJhYbIucMlb2cncS3LozYAXV5XX32Kc4DL24C4zdyHnSqOfbjcos6vt7xJG1sqxoBbh7hk7ozrXJm2Mdea5DuzxbXKUoDURFrkKLaaC3AGzAcCPn21mqIpP6n1k0q4QQfRa7jttr24IfwGVmqtVotSmseN9LvzDwABELiIG+33sj5IMAY8jOHWEUvY92yJDLER4DEe6DEVsOj4cupCFMlkQOKfwMnlQPYtrkzXjMtP6jGtxcxATwFSE2sxLUj3z3PBUVEG909m1E9Ap6HqrpX6lBVwMwrL5SdN4WaTpfyklqsoi3tjr0rY9f8ACPyKWhgaQyrhWlyrWpvd3waC/w8QiZvunuWFwNXfudFoVS0UAGDbnXvj7fpmi3nzfSXIpMC13cCpb7mFfgGuy7PPR1y+Z1P+rqgABUhNrNkHSIwBMRuAIwu45EtLF2DsLy1/AU5VyU3h8pMS93PblJ/Ucj28CPw+CShM5RJJh69rHfP6qFvMBuDvT7kFfO39uHxFVX+IyLjBjUS7upObhw0ARDpcQOQ9tXVOYtmaSCXAlR3cEib5D7gyQzug738AjwnN9n8pBUhNrFkHSBUlXCL21d+4bddR3Ei1FtZP/FLcO/s0P+kat23qDAxZxo2Kofyk5o0xrivm8AJAVgmYd+Q+BFh0UnfNWo87/wC/T+bmFzJ2AN7eCVi5vNg1JeXcwImLG4GHF56Vm3XgutA83gZ0TF7sHuTlklRw+WKn/8t9UAG435eA+dwEnc1s+hgKkJpYsw2QntzjRu+kXwMEGsCgJYB/KL3Z10cm5Va6PrEEKM7iytr1f5qf9IJvBqRpVJQAB+dxLQ8A4DKcm8OHZkpWvawkYPsY4EkKt1zHW5uAjkOUv05uCpdwffkXoCSHKxOKgM6vcd1oTn3p/1RLV1nG/YzPrHqW62nWnguUuo4ChBrqrd9TFCA1sWYZICWfAPZM44bq6ppzs2I79VV3rVqOsgJu/qQLP9bIT/oc0DNTd+2ITMpNEJh3n5vkNOM6fQh4WUpyuW7Me2e4v4vBX3NDvZ/3msukQNIRboh+8glwi6OC64bxmswN02+ucy6Rxqso4XLYzq4BSnO5MovO3IK4Xd5Q+wAhCpCqGTlyJKKiojBw4EDs3r1bbl9KSgqmTp2KjIwMaGho4MKFC9DT03vuNZtVgMQYl3h8YikABth6crMFt9J1dJpcbflJVi7cp12hxtOvmtW+r/bQqLEtd7xI/hyN2q6hUe3Yhhxf20Pj6bFPtwVC+Tcyxri8NGnF08fT72WVXAAirXj6tbJGebV9svqOa0B5Y+5VNf9NFT0Lbgi/Y++X9qvxSpNUAIf+A1zawm17hgDD/lt7nklhBjeZY1wkUPDoWbnzQG6Ifochza7bhTSB8kJuJvtza4Gyp8vAWHXjBsWocZoVCpCqiYqKQmFhIbZs2aIQIAUEBODrr79Gnz59kJubC0NDQ4hEz//DbTYBUlkBt9DszYPctuckIGgloKmtvjq1FilnuCT3qvyklqwqWJJJuYCjpXPsw43INLRVd01eLYwBF/4HHP2cC1gd+wBjtnIzKzPGtTBd3Mj9P5JJuHN0TLmlP3pM4eYgI6+e0jxu5PCF/3HzkwHcB/kBn3NB80sOlChAqiEqKgrr1q2TC5Bu3LiBuXPn4vjx40pfr1kESFm3gN/eAXJucwsLDlvJNVsT1ZFJuUTusnzuH77C42m3T/VtmYQLQuS2JU+Pk9ZxnRrnS2s5X1bL+VKJ/P7GEoq43yENTa4Fq+p7DU0lyquuoVXtesqWV7u2sMZ9qt+PPgCoV9IRYPc07s3OxIn7vxO//dncOAC3SGyPaVx+GP28CMB11Ub/HxDzE1BZwpXZ+3GB0ktMB2no+7fa2zhPnz6NlStXIi4uDmlpadi7dy9GjBghd0x4eDhWrlyJ9PR0uLu7Y+3atfDx8Xnhe9++fRv6+voIDg7G48eP8dZbb+Gzzz574eu+FIkHgL0zuaGxBrZcl1qbHuquVesj1ADaBai7Fg0nk9UfoFV11dUMQih/hyij4xBg2lFgx1guefv4Iq5cSx9wG8MFRtZd1VtH0vzomgKDFnM5g2fXcKNQH14AtgRzrZEDvgAc/NRdS57aA6Ti4mK4u7tj6tSpGDVKce6SnTt3IiwsDBEREfD19cWaNWswZMgQ3Lp1C5aWlgAADw8PSCQShXOPHj0KW9u6m+AlEgnOnDmD+Ph4WFpaYujQofD29sagQYNU9wRVTSblZgs+u5rbbtuby8PQt1BrtUgzIRQCQi0AzXP+EdKKWLkAM05yH9RKsrluNLexNJKQPJ++JTD0G26pkjPfc7lq984Am4YA7QO5HKVmMAeW2gOkoKAgBAUF1bl/1apVmDFjBqZMmQIAiIiIwF9//YVNmzZh/vz5AID4+PhG3dvOzg49evSAvT230OGwYcMQHx9fa4BUXl6O8vJyfrugoKBR93whJbnc6J27J7lt/w+AwMWU7EgIUQ89c2DC7ucfR0htDG2A1/4L9JoDnF4JXP6VWxw3+TjQaRgXKFl3U1v1mvViXBUVFYiLi0NgYCBfJhQKERgYiPPnz7/w9b29vZGZmYknT55AJpPh9OnT6NKlS63HLl++HEZGRvyjKqh6aVLjgfUBXHCkqQu8uZGb0JCCI0IIIS2ZsQM3mfHsWG5pG4GQWxw3ojfXwqQmzTpAys7OhlQqhZWV/GKTVlZWSE9Pb/B1AgMDMXr0aBw6dAht2rThgyuRSIRvvvkGffv2hZubGzp06IDXX6999eoFCxYgPz+ffzx8+LDxT0xZ8Tu4psf8B1xC5PTjQLe3Xt79CSGEkKZm2g4YGQG8/y+33AwEgJP6ckBfieaH+kapPa+Lr4pYLIZYLEZ4eDjCw8MhlUpVWcXaSSqAI589WzSywxBuaLOOcdPfmxBCCFEHi47cjO0DFwEmbdVWjWbdgmRubg4NDQ1kZGTIlWdkZMDaWj2zr4aGhiIhIQEXL15s2hsVpAFbXn8WHAXMB97+jYIjQgghrwY1BkdAMw+QtLS04OXlhRMnTvBlMpkMJ06cgL+/v1rqFB4eDhcXF3h7ezfdTe6fB34KAB7+y83i/PZOoP8CtU/PTgghhLwq1N7FVlRUhOTkZH47JSUF8fHxMDU1hYODA8LCwhASEoIePXrAx8cHa9asQXFxMT+q7WULDQ1FaGgoP9GUSvGrk8/n5q2xdOFWJzdzVu19CCGEEFIvtQdIsbGx6N+/P78dFhYGAAgJCUFkZCTGjh2LrKwsLFy4EOnp6fDw8MDhw4cVErdbjUexXHDkOorL6hfrq7tGhBBCyCvnlVlqRFWqJ2knJSWpfqmRihLgxl7AYzzNbkwIIYSoGK3F1sSaxVpshBBCCFFKQ9+/KetXSS8lSZsQQgghakUtSI1ELUiEEEJIy0MtSIQQQgghjUQBkpKoi40QQghp/aiLrZGoi40QQghpeaiLjRBCCCGkkShAIoQQQgipgQIkJVEOEiGEENL6UQ5SI1EOEiGEENLyUA4SIYQQQkgjUYBECCGEEFIDBUiEEEIIITVQgKQkStImhBBCWj9K0m4kStImhBBCWh5K0iaEEEIIaSQKkAghhBBCaqAAiRBCCCGkBgqQCCGEEEJqoACJEEIIIaQGCpCURMP8CSGEkNaPhvk3Eg3zJ4QQQloeGuZPCCGEENJIFCARQgghhNRAARIhhBBCSA0UIBFCCCGE1PBKBEgjR46EiYkJ3nrrLbnyW7duwcPDg3/o6Ohg37596qkkIYQQQpqNV2IUW1RUFAoLC7Flyxbs3r271mOKiorg6OiI+/fvQ09P77nXpFFshBBCSMtDo9iq6devHwwMDOo9Zv/+/Rg4cGCDgiNCCCGEtG5qD5BOnz6N4OBg2NraQiAQ1NrFFR4eDkdHR2hra8PX1xcxMTEqr8fvv/+OsWPHqvy6hBBCCGl51B4gFRcXw93dHeHh4bXu37lzJ8LCwrBo0SJcunQJ7u7uGDJkCDIzM/ljPDw80LVrV4VHampqg+pQUFCAc+fOYdiwYSp5ToQQQghp2UTqrkBQUBCCgoLq3L9q1SrMmDEDU6ZMAQBERETgr7/+wqZNmzB//nwAQHx8/AvV4c8//8TgwYOhra1d5zHl5eUoLy/ntwsKCl7onoQQQghpvtTeglSfiooKxMXFITAwkC8TCoUIDAzE+fPnVXafhnSvLV++HEZGRvzD3t5eZfcnhBBCSPPSrAOk7OxsSKVSWFlZyZVbWVkhPT29wdcJDAzE6NGjcejQIbRp00YuuMrPz0dMTAyGDBlS7zUWLFiA/Px8/vHw4UPlngwhhBBCWgy1d7G9DMePH69zn5GRETIyMp57DbFYDLFYjPDwcISHh0MqlaqyioQQQghpRpp1C5K5uTk0NDQUApiMjAxYW1urpU6hoaFISEjAxYsX1XJ/QgghhDS9Zh0gaWlpwcvLCydOnODLZDIZTpw4AX9/f7XUKTw8HC4uLvD29lbL/QkhhBDS9NTexVZUVITk5GR+OyUlBfHx8TA1NYWDgwPCwsIQEhKCHj16wMfHB2vWrEFxcTE/qu1lCw0NRWhoKD8TJyGEEEJaH7UHSLGxsejfvz+/HRYWBgAICQlBZGQkxo4di6ysLCxcuBDp6enw8PDA4cOHFRK3XxbKQSKEEEJav1diLbamQGuxEUIIIS0PrcVGCCGEENJIFCApiZK0CSGEkNaPutgaibrYCCGEkJaHutgIIYQQQhqJAiQlURcbIYQQ0vpRF1sjURcbIYQQ0vJQFxshhBBCSCNRgEQIIYQQUgMFSEqiHCRCCCGk9aMcpEaiHCRCCCGk5aEcJEIIIYSQRqIAiRBCCCGkBgqQCCGEEEJqoABJSZSkTQghhLR+lKTdSJSkTQghhLQ8lKRNCCGEENJIFCARQgghhNRAARIhhBBCSA0UIBFCCCGE1EABEiGEEEJIDRQgKYmG+RNCCCGtHw3zbyQa5k8IIYS0PDTMnxBCCCGkkShAIoQQQgipgQIkQgghhJAaXokAaeTIkTAxMcFbb72lsG/16tVwdXWFi4sL5syZA0rJIoQQQsgrESDNnTsXW7duVSjPysrCunXrEBcXh2vXriEuLg4XLlxQQw0JIYQQ0py8EgFSv379YGBgUOs+iUSCsrIyVFZWorKyEpaWli+5doQQQghpbpQKkCorKyESiXD9+nWVVeD06dMIDg6Gra0tBAIB9u3bp3BMeHg4HB0doa2tDV9fX8TExKjk3hYWFvjPf/4DBwcH2NraIjAwEM7Oziq5NiGEEEJaLqUCJE1NTTg4OEAqlaqsAsXFxXB3d0d4eHit+3fu3ImwsDAsWrQIly5dgru7O4YMGYLMzEz+GA8PD3Tt2lXhkZqaWu+9nzx5goMHD+LevXt4/Pgxzp07h9OnT6vsuRFCCCGkZRIpe8Lnn3+Ozz77DNu2bYOpqekLVyAoKAhBQUF17l+1ahVmzJiBKVOmAAAiIiLw119/YdOmTZg/fz4AID4+vlH3Pn78ONq3b88/j9deew0XLlxA3759FY4tLy9HeXk5v11QUNCoexJCCCGk+VM6QFq3bh2Sk5Nha2uLtm3bQk9PT27/pUuXVFa5iooKxMXFYcGCBXyZUChEYGAgzp8//8LXt7e3x7lz51BWVgZNTU1ERUXh3XffrfXY5cuXY/HixS98T0IIIYQ0f0oHSCNGjGiCatQuOzsbUqkUVlZWcuVWVla4efNmg68TGBiIK1euoLi4GG3atMGuXbvg7+8PPz8/DBs2DN27d4dQKMTAgQPxxhtv1HqNBQsWICwsjN8uKCiAvb19454YIYQQQpo1pQOkRYsWNUU9mtTx48fr3Lds2TIsW7bsudcQi8UQi8UIDw9HeHi4SvOwCCGEENK8KB0gVYmLi0NiYiIAwNXVFd27d1dZpaqYm5tDQ0MDGRkZcuUZGRmwtrZW+f0aIjQ0FKGhofxid4QQQghpfZSeBykzMxMDBgyAt7c35syZgzlz5sDLywsDBw5EVlaWSiunpaUFLy8vnDhxgi+TyWQ4ceIE/P39VXqvhgoPD4eLiwu8vb3Vcn9CCCGEND2lA6TZs2ejsLAQN27cQG5uLnJzc3H9+nUUFBRgzpw5SlegqKgI8fHx/Ei0lJQUxMfH48GDBwCAsLAwbNiwAVu2bEFiYiJmzZqF4uJiflTbyxYaGoqEhARcvHhRLfcnhBBCSNMTMCUXHzMyMsLx48cVWlBiYmIwePBg5OXlKVWBqKgo9O/fX6E8JCQEkZGRALiRcytXrkR6ejo8PDzwww8/wNfXV6n7qFpVF1t+fj4MDQ3VWhdCCCGENExD37+VzkGSyWTQ1NRUKNfU1IRMJlP2cujXr99zF4j94IMP8MEHHyh97aZASdqEEEJI66d0C9Lw4cORl5eHHTt2wNbWFgDw+PFjvPPOOzAxMcHevXubpKLNDbUgEUIIIS1PQ9+/lc5BWrduHQoKCuDo6AhnZ2c4OzvDyckJBQUFWLt27QtVuiWgJG1CCCGk9VO6BQkAGGM4fvw4P1ljly5dEBgYqPLKNWfUgkQIaS6kUikqKyvVXQ1CmgVNTU1oaGjUub9JcpAqKyuho6OD+Ph4DBo0CIMGDVLmdEIIISrEGEN6errSg2MIae2MjY1hbW0NgUDQ6GsoFSBpamrCwcHhlU5QpiRtQkhzURUcWVpaQldX94XeDAhpDRhjKCkpQWZmJgDAxsam0ddSuott48aN+OOPP7Bt2zaYmpo2+sYtHXWxEULUSSqVIikpCZaWljAzM1N3dQhpVnJycpCZmYmOHTsqdLc12TD/devWITk5Gba2tmjbti309PTk9l+6dEnZSxJCCFFSVc6Rrq6ummtCSPNT9XdRWVlZbz5SfZQOkEaMGNGoGxFCCFE96lYjRJEq/i6UCpAkEgkEAgGmTp2KNm3avPDNWyLKQSKEEEJaP6XmQRKJRFi5ciUkEklT1afZo7XYCCGEkNZP6YkiBwwYgFOnTjVFXQghhLwisrKyMGvWLDg4OEAsFsPa2hpDhgxBdHS0Su8TFRUFgUBQ7yMqKkql92yIr776ir+/SCSCo6MjPvzwQxQVFWHp0qWwsbFBbm6u3DlXrlyBWCzGwYMHAQCnTp3CgAEDYGpqCl1dXXTo0AEhISGoqKgA8Oy5m5iYoKysTO5aFy9e5O9fnVQqxerVq9GtWzdoa2vDxMQEQUFBSv1cIiMjYWxsLFeWmJgIe3t7jB49GhUVFYiMjOTvLxQKYWNjg7Fjx/IL1VeXnJyMqVOn8r8rdnZ2GDhwIH799dcmbbBROgcpKCgI8+fPx7Vr1+Dl5aWQpP3GG2+orHKEEEJapzfffBMVFRXYsmUL2rVrh4yMDJw4cQI5OTmNuh5jDFKpFCKR/Ntaz549kZaWxm/PnTsXBQUF2Lx5M1+mrhHZrq6uOH78OCQSCaKjozF16lSUlJQgPDwcBw4cQGhoKHbs2AGASzYOCQnBhAkT8PrrryMhIQFDhw7F7Nmz8cMPP0BHRwe3b9/Gnj17FFJADAwMsHfvXrz99tt82caNG+Hg4CAXkDDGMG7cOBw/fhwrV67EwIEDUVBQgPDwcPTr1w+7du1qVB7yxYsXERQUhJEjR2L9+vUQCrm2GUNDQ9y6dQuMMaSkpOD999/H6NGj8e+///LnxsTEIDAwEK6urggPD0fnzp0BALGxsQgPD0fXrl3h7u6udJ0ahClJIBDU+RAKhcpersXKz89nAFh+fr66q0IIeQWVlpayhIQEVlpaqu6qKO3JkycMAIuKiqp1f0pKCgPALl++rHDOyZMnGWOMnTx5kgFghw4dYp6enkxTU5OdPHmSBQQEsNDQUDZ37lxmZmbG+vXrJ3ftkJAQNnz4cMYYY6dOnWIikYilpaXJHTN37lzWu3dvxhhjmzdvZkZGRmzv3r2sffv2TCwWs8GDB7MHDx7InbNv3z7WvXt3JhaLmZOTE/vqq69YZWVlna/BokWLmLu7u1zZjBkzmLW1NWOMscTERKatrc127drFH9+2bVv+PWf16tXM0dGxzutXf42++OILFhgYyJeXlJQwIyMj9uWXX7LqYcBvv/3GALD9+/crXGvUqFHMzMyMFRUV1XtPxp69ZowxduLECaavr88++eSTOo+p8sMPP8i9r8pkMtalSxfm5eXFpFJprfeSyWS1ltf399HQ92+lu9hkMlmdj1chcZnWYiOENFeMMZRUSNTyYEpMqaevrw99fX3s27cP5eXlL/Sc58+fj2+//RaJiYlwc3MDAGzZsgVaWlqIjo5GREREnef27dsX7dq1w7Zt2/iyyspK/Prrr5g6dSpfVlJSgmXLlmHr1q2Ijo5GXl4exo0bx+8/c+YMJk2ahLlz5yIhIQHr169HZGQkli1bptRz0dHR4bvHOnfujOXLl2PWrFk4cuQIli9fjs2bN/Pz9lhbWyMtLQ2nT59+7nUnTpyIM2fO8K1Fe/bsgaOjIzw9PeWO2759Ozp27Ijg4GCFa3z00UfIycnBsWPHGvx89u7di9deew1ffPEFvvvuu3qPzczMxN69e6GhocEPy4+Pj0diYiL+85//8K1ONTXlKE6lu9hedaGhoQgNDeUnmiKEkOaitFIKl4VH1HLvhCVDoKvVsLcUkUiEyMhIzJgxAxEREfD09ERAQADGjRvHBzkNtWTJEoVlrzp06IAVK1Y06Pxp06Zh8+bN+PjjjwEABw4cQFlZGcaMGcMfU1lZiXXr1sHX1xcAF4B16dIFMTEx8PHxweLFizF//nyEhIQAANq1a4elS5fik08+waJFixpUj7i4OGzfvh0DBgzgy+bOnYs///wTw4YNw+zZs9G/f39+3+jRo3HkyBEEBATA2toafn5+GDhwICZNmqQw+aGlpSWCgoIQGRmJhQsXYtOmTXIBYJWkpCR06dKl1vpVlSclJTXo+RQVFWH06NH47LPP8Omnn9Z6TH5+PvT19fnZrwFgzpw5fOpO1b06derEn5OZmYl27drx2ytWrMD777/foDopq8EtSMOGDUN+fj6//e2338qt/5OTkwMXFxeVVo4QQkjr9OabbyI1NRX79+/H0KFDERUVBU9PT0RGRip1nR49eiiUeXl5Nfj8yZMnIzk5GRcuXADAJRiPGTNGLr9WJBLJ9Rp07twZxsbGSExMBMAlTy9ZsoRvGdPX18eMGTOQlpbGv/HX5tq1a9DX14eOjg58fHzg7++PdevW8fsFAgE+//xzyGQyfPHFF3LnamhoYPPmzXj06BFWrFgBOzs7fPPNN3B1dZXLuaoydepUREZG4u7duzh//jzeeeedWuukTEtgfXR0dDBo0CBs2LCBf51qMjAwQHx8PGJjY/H999/D09Pzua1uZmZmiI+PR3x8PIyNjfkWt6bQ4BakI0eOyDWFfvPNNxgzZgyfqS6RSHDr1i2VV5AQQkjD6GhqIGHJELXdW1na2tr8wudffvklpk+fjkWLFuHMmTMA5N+sq2YOr6nmQKG6yupiaWmJ4OBgbN68GU5OTvj777+VHtVWVFSExYsXY9SoUQr7tLW16zyvU6dO2L9/P0QiEWxtbaGlpaVwTFXSec3k8yp2dnaYOHEiJk6ciKVLl6Jjx46IiIjA4sWL5Y4LCgrCu+++i2nTpiE4OLjW5Wk6duxYZzBTVd6xY8c6n091Ghoa2LdvH0aNGoX+/fvj5MmTCq1TQqEQ7du3B8C1UN25cwezZs3iuzw7dOgAALh16xa6d+/OX7fqnLpeE1VpcAtSzahSVVEmIYQQ1RAIBNDVEqnloYpcEBcXFxQXF8PCwgIA5FpC4uPjX/j6dZk+fTp27tyJn376Cc7OzujVq5fcfolEgtjYWH771q1byMvL49/wPT09cevWLbRv317hUVfuDABoaWmhffv2cHR0rDU4UpaJiQlsbGxQXFyssE8kEmHSpEmIioqqtXsNAMaNG4fbt2/jwIEDCvu+//57mJmZKXRn1kcsFuOPP/6At7c3+vfvj4SEhHqPnz9/Pnbu3MkvWda9e3d07twZ//3vfyGTyRp8X1VROkmbEEIIeRE5OTkYMGAAfvnlF1y9ehUpKSnYtWsXVqxYgeHDh0NHRwd+fn588vWpU6cUuphUaciQITA0NMTXX3+NKVOmKOzX1NTE7Nmz8e+//yIuLg6TJ0+Gn58ffHx8AAALFy7E1q1bsXjxYty4cQOJiYn47bff5Oo8adIkLFiwQGV1Xr9+PWbNmoWjR4/izp07uHHjBj799FPcuHGj1iRrAFi6dCmysrIwZEjtrYzjxo3DyJEjERISgo0bN+LevXu4evUq3nvvPezfvx8///yzUq1zABck7dmzB76+vujfvz9u3LhR57H29vYYOXIkFi5cCIAL+Ddv3oxbt26hV69e2L9/P27fvo2EhAREREQgKyur0eusNUSDA6TaJpSiNYAIIYQoS19fH76+vli9ejX69u2Lrl274ssvv8SMGTP4HJxNmzZBIpHAy8sL8+bNw9dff91k9REKhZg8eTKkUikmTZqksF9XVxeffvopxo8fj169ekFfXx87d+7k9w8ZMgQHDx7E0aNH4e3tDT8/P6xevRpt27blj3nw4EGtuUGN5ePjg6KiIsycOROurq4ICAjAhQsXsG/fPgQEBNR6jpaWFszNzet87xYIBPj999/x2WefYfXq1ejUqRP69OmD+/fvIyoqqtFrsWppaWH37t3o2bMn+vfvj+vXr9d57Icffoi//voLMTExAAA/Pz/ExcWhU6dOCA0NhYuLC3r27IkdO3Zg9erVmDVrVqPq1BAC1sC+MqFQiKCgIIjFYgBcpv+AAQP4aLK8vByHDx9u9UP9q6/FlpSUhPz8fIURA4QQ0tTKysqQkpICJyenevNcSMNMmzYNWVlZ2L9/v1x5ZGQk5s2bJzcoiTR/9f19VI1Cf977d4MznKqGL1aZMGGCwjG1Rd6tDQ3zJ4SQ1iM/Px/Xrl3D9u3bFYIj8mprcIBUfVp2QgghpDUYPnw4YmJiMHPmTKUSkF9lrq6uuH//fq371q9fX+cUAi1Ng7vYiLyGNtERQkhToC42oi7379+vc9oFKysrGBgYvOQaKXqpXWyEEEIIIdWTz1szGuZPCCGEEFLDKxEgjRw5EiYmJnjrrbcU9v33v/+Fq6srunbtil9++UUNtSOEEEJIc/NKBEhz587F1q1bFcqrRi7ExcXh4sWLWLduHQ3lJIQQQkjjAqRt27ahV69esLW15TPZ16xZgz///FOllVOVfv361Zo0lpiYCH9/f2hra0NHRwfu7u44fPiwGmpICCGEkOZE6QDpf//7H8LCwjBs2DDk5eXxE0MaGxtjzZo1Slfg9OnTCA4Ohq2tLQQCAfbt26dwTHh4OBwdHaGtrQ1fX19+hs0X1bVrV0RFRSEvLw9PnjxBVFQUHj9+rJJrE0IIIaTlUjpAWrt2LTZs2IDPP/9cbg2UHj164Nq1a0pXoLi4GO7u7ggPD691/86dOxEWFoZFixbh0qVLcHd3x5AhQ5CZmckf4+Hhga5duyo8UlNT6723i4sL5syZgwEDBmDUqFHw8/Nr0nVdCCGEENIyKB0gpaSkoHv37grlYrG41hWEnycoKAhff/01Ro4cWev+VatWYcaMGZgyZQpcXFwQEREBXV1dbNq0iT8mPj4e169fV3jY2to+9/7vvfceLl26hJMnT0JTUxMdOnSo9bjy8nIUFBTIPQghhDROVlYWZs2aBQcHB4jFYlhbW2PIkCGIjo5W6X2ioqL4tUTrekRFRan0ng3x1Vdf8fcXiURwdHTEhx9+iKKiIixduhQ2NjbIzc2VO+fKlSsQi8U4ePAgAODUqVMYMGAATE1Noauriw4dOiAkJAQVFRUAnj13ExMTlJWVyV3r4sWLta6xKpVKsXr1anTr1g3a2towMTFBUFCQUj+XyMhI/tpCoRBt2rTBlClT5Bo2avYYnTp1Cpqamjh79qzctYqLi9GuXTv85z//afD9VUXpAMnJyQnx8fEK5YcPH0aXLl1UUSdeRUUF4uLiEBgYyJcJhUIEBgbi/PnzKrlH1Q/s1q1biImJqXOV4+XLl8PIyIh/2Nvbq+T+hBDyKnrzzTdx+fJlbNmyBUlJSdi/fz/69euHnJycRl2PMQaJRKJQ3rNnT6SlpfGPMWPGYOjQoXJlPXv2fNGn0yiurq5IS0vDvXv38N133+Gnn37CRx99hAULFsDe3h6hoaH8sZWVlQgJCcGECRPw+uuvIyEhAUOHDkWPHj1w+vRpXLt2DWvXroWWlpbCmqgGBgbYu3evXNnGjRvh4OAgV8YYw7hx47BkyRLMnTsXiYmJiIqKgr29Pfr161drCkxdDA0NkZaWhkePHmHDhg34+++/MXHixDqPDwgIwOzZszF58mS5xpZPPvkEOjo6TbpYcZ2YkjZs2MDs7OzYb7/9xvT09NiOHTvY119/zX//IgCwvXv38tuPHz9mANi5c+fkjvv444+Zj49Pg687cOBAZm5uznR0dJidnZ3c9fz8/FiXLl1Yjx49WGxsbJ3XKCsrY/n5+fzj4cOHDADLz89v+BMkhBAVKS0tZQkJCay0tFTdVVHakydPGAAWFRVV6/6UlBQGgF2+fFnhnJMnTzLGGDt58iQDwA4dOsQ8PT2ZpqYmO3nyJAsICGChoaFs7ty5zMzMjPXr10/u2iEhIWz48OGMMcZOnTrFRCIRS0tLkztm7ty5rHfv3owxxjZv3syMjIzY3r17Wfv27ZlYLGaDBw9mDx48kDtn3759rHv37kwsFjMnJyf21VdfscrKyjpfg0WLFjF3d3e5shkzZjBra2vGGGOJiYlMW1ub7dq1iz++bdu2/HvO6tWrmaOjY53Xr/4affHFFywwMJAvLykpYUZGRuzLL79k1cOA3377jQFg+/fvV7jWqFGjmJmZGSsqKqr3now9e82qW7ZsGRMKhaykpIQxpvh+zxj3O92lSxcWGhrKGGPsn3/+YVpaWvW+N9elvr+P/Pz8Br1/Kz2T9vTp06Gjo4MvvvgCJSUlGD9+PGxtbfF///d/GDdunKriNpU6fvx4nfsa2hIlFoshFosRHh6O8PBwhQidEELUjjGgskQ999bUBWp019RFX18f+vr62LdvH/z8/CAWixt92/nz5+O///0v2rVrBxMTEwDAli1bMGvWrOd2C/Xt2xft2rXDtm3b8PHHHwPgWmp+/fVXrFixgj+upKQEy5Ytw9atW6GlpYX3338f48aN469/5swZTJo0CT/88AP69OmDO3fu4N133wUALFq0qMHPRUdHh+8e69y5M5YvX45Zs2bBwMAAy5cvx+HDh/mlMaytrZGWlobTp0+jb9++9V534sSJWLlyJR48eAAHBwfs2bMHjo6O8PT0lDtu+/bt6NixI4KDgxWu8dFHH+GPP/7AsWPHMGLEiAY/p+rPTSaT1drKV0VbWxtbt25Fz549MWjQIMybNw+fffYZvLy8lL6fKjRqqZF33nkH77zzDkpKSlBUVARLS0tV1wsAYG5uDg0NDWRkZMiVZ2RkwNrauknu+TyhoaEIDQ3l13IhhJBmo7IE+Ob5uZdN4rNUQEuvQYeKRCJERkZixowZiIiIgKenJwICAjBu3Di4ubkpddslS5YoLDLboUMHuQCnPtOmTcPmzZv5AOnAgQMoKyvDmDFj+GMqKyuxbt06+Pr6AuACsC5duiAmJgY+Pj5YvHgx5s+fj5CQEABAu3btsHTpUnzyyScNDpDi4uKwfft2DBgwgC+bO3cu/vzzTwwbNgyzZ89G//79+X2jR4/GkSNHEBAQAGtra/j5+WHgwIGYNGmSwvpilpaWCAoKQmRkJBYuXIhNmzZh6tSpCnVISkqqM1WmqjwpKalBz6e627dvIyIiAj169HjuOm09evTAggULMGrUKHTv3h2ff/650vdTFaVzkAYMGMBPpqirq8sHRwUFBXI/WFXQ0tKCl5cXTpw4wZfJZDKcOHEC/v7+Kr1XQ4WHh8PFxQXe3t5quT8hhLQGb775JlJTU7F//34MHToUUVFR8PT0RGRkpFLX6dGjh0KZMi0OkydPRnJyMi5cuACASzAeM2YM9PSeBXsikUjuf37nzp1hbGyMxMREAFzy9JIlS/iWMX19fcyYMQNpaWkoKam7Re/atWvQ19eHjo4OfHx84O/vj3Xr1vH7BQIBPv/8c8hkMnzxxRdy52poaGDz5s149OgRVqxYATs7O3zzzTd8XlNNU6dORWRkJO7evYvz58/jnXfeqbVOTEXr1+fn50NfXx+6urro1KkTrKys8Ouvvzbo3C+//BIymQzz58+HSKS+JWOVvnNUVBTfBFhdWVkZzpw5o3QFioqKkJyczG+npKQgPj4epqamcHBwQFhYGEJCQtCjRw/4+PhgzZo1KC4uxpQpU5S+lypQCxIhpNnS1OVactR1byVpa2tj0KBBGDRoEL788ktMnz4dixYt4t9Lqr9Z17V6fPVApr6yulhaWiI4OBibN2+Gk5MT/v77b6VHtRUVFWHx4sUYNWqUwr6aK8lX16lTJ+zfvx8ikQi2trbQ0tJSOKYqQKgrULCzs8PEiRMxceJELF26FB07dkRERAQWL14sd1xQUBDeffddTJs2DcHBwTAzM1O4VseOHfmgr6aq8o4dO9b5fKozMDDApUuXIBQKYWNjAx0dnQadBzz/Ob8sDb771atX+e8TEhKQnp7Ob0ulUhw+fBh2dnZKVyA2Nlau2TAsLAwAEBISgsjISIwdOxZZWVlYuHAh0tPT4eHhgcOHD8PKykrpe6kC5SARQpotgaDB3VzNkYuLC/bt2wcLCwsAQFpaGj+tTG2jp1Vl+vTpePvtt9GmTRs4OzujV69ecvslEgliY2Ph4+MDgBv1nJeXx3c7eXp64tatW2jfvr1S99XS0lL6nPqYmJjAxsam1il3RCIRJk2ahBUrVuDvv/+u9fxx48Zh/PjxOHDggEIe0vfffw8zMzOF7sy6CIVClT43dWhwgOTh4cHPa1BbV5qOjg7Wrl2rdAX69ev33Ca9Dz74AB988IHS124K1IJECCEvJicnB6NHj8bUqVPh5uYGAwMDxMbGYsWKFRg+fDh0dHTg5+eHb7/9Fk5OTsjMzFToYlKlIUOGwNDQEF9//TWWLFmisF9TUxOzZ8/GDz/8AJFIhA8++AB+fn58wLRw4UK8/vrrcHBwwFtvvQWhUIgrV67g+vXr/PD0SZMmwc7ODsuXL1dJndevX4/4+HiMHDkSzs7OKCsrw9atW3Hjxo0634uXLl2Kjz/+uNbWI4ALkHbt2oWQkBCsXLkSAwcOREFBAcLDw7F//37s2rVLqda556nqMaquQ4cOKr3Hi2hwgJSSkgLGGNq1a4eYmBg+wge4KNjS0pJmoSaEEPJc+vr68PX1xerVq3Hnzh1UVlbC3t4eM2bMwGeffQYA2LRpE6ZNmwYvLy906tQJK1aswODBg5ukPkKhEJMnT8Y333yDSZMmKezX1dXFp59+ivHjx+Px48fo06cPNm7cyO8fMmQIDh48iCVLluC7776DpqYmOnfujOnTp/PHPHjwAEKh6taH9/HxwdmzZzFz5kykpqZCX18frq6u2LdvHwICAmo9R0tLC+bm5nVeUyAQ4Pfff8eaNWuwevVqvP/++9DW1oa/vz+ioqIUWtZeVFWPUXVnzpxB7969VXqfxhIwVWVkvSKqd7ElJSUhPz9fYcQAIYQ0tbKyMqSkpMDJyanePBfSMNOmTUNWVhb2798vVx4ZGYl58+bxg5NIy1Df30dVD9Dz3r+VzoDaunVrvftri75bE+piI4SQ1iM/Px/Xrl3D9u3bFYIj8mpTOkCaO3eu3HZlZSVKSkqgpaUFXV3dVh8gEUIIaT2GDx+OmJgYzJw5s8EJyK86V1dX3L9/v9Z969evr3MKgZZG6QDpyZMnCmW3b9/GrFmz+Im2WjMaxUYIIa3H84b0T548GZMnT34pdWkpDh06VOe0C+oaYd4UVJaDFBsbiwkTJuDmzZuquFyz19A+TEIIaQqUg0RI3VSRg6SylHqRSITUVDVNUEYIIYQQokJKd7HVTGJjjCEtLQ3r1q1T+RBAQgghhBB1UDpAqrmKr0AggIWFBQYMGIDvv/9eVfVqtigHiRBCCGn9lA6QZDJZU9SjxaBh/oQQQkjrp7ppPQkhhBBCWokGtSDVNh14XVatWtXoyhBCCCGENAcNakG6fPlygx5NudoyIYSQ1iMrKwuzZs2Cg4MDxGIxrK2tMWTIEERHR6v0PlFRUfxC63U9njcXUlP46quv+PuLRCI4Ojriww8/RFFREZYuXQobGxvk5ubKnXPlyhWIxWIcPHgQAHDq1CkMGDAApqam0NXVRYcOHRASEoKKigoAz567iYkJysrK5K518eJF/v7VSaVSrF69Gt26dYO2tjZMTEwQFBSk1M8lMjKSv7ZQKISNjQ3Gjh2LBw8eyB3Xr18/uZ+DlZUVRo8eLTcJ5b1792r9mU2YMKHB9WmsBrUgnTx5sqnr0WJQkjYhhLy4N998ExUVFdiyZQvatWuHjIwMnDhxAjk5OY26HmMMUqkUIpH821rPnj2RlpbGb8+dOxcFBQXYvHkzX2Zqatq4J/GCXF1dcfz4cUgkEkRHR2Pq1KkoKSlBeHg4Dhw4gNDQUOzYsQMAt2pFSEgIJkyYgNdffx0JCQkYOnQoZs+ejR9++AE6Ojq4ffs29uzZo/D+ZGBggL179+Ltt9/myzZu3AgHBwe5oIUxhnHjxuH48eNYuXIlBg4ciIKCAoSHh6Nfv37YtWuXwkCtuhgaGuLWrVtgjCElJQXvv/8+Ro8ejX///VfuuBkzZmDJkiVgjOH+/fuYN28eJkyYgDNnzsgdd/z4cbi6uvLbOjo6DarHC2Ev4OHDh+zhw4cvcokWKz8/nwFg+fn56q4KIeQVVFpayhISElhpaam6q6K0J0+eMAAsKiqq1v0pKSkMALt8+bLCOSdPnmSMMXby5EkGgB06dIh5enoyTU1NdvLkSRYQEMBCQ0PZ3LlzmZmZGevXr5/ctUNCQtjw4cMZY4ydOnWKiUQilpaWJnfM3LlzWe/evRljjG3evJkZGRmxvXv3svbt2zOxWMwGDx7MHjx4IHfOvn37WPfu3ZlYLGZOTk7sq6++YpWVlXW+BosWLWLu7u5yZTNmzGDW1taMMcYSExOZtrY227VrF39827Zt+fec1atXM0dHxzqvX/01+uKLL1hgYCBfXlJSwoyMjNiXX37JqocBv/32GwPA9u/fr3CtUaNGMTMzM1ZUVFTvPRl79ppV98MPPyi8ZwYEBLC5c+fKHbdt2zamq6vLb9f2u9AQ9f19NPT9W+kkbZlMhiVLlsDIyAht27ZF27ZtYWxsjKVLl77yI9wIIUSdGGMoqSxRy4MpsSiDvr4+9PX1sW/fPpSXl7/Qc54/fz6+/fZbJCYmws3NDQCwZcsWaGlpITo6GhEREXWe27dvX7Rr1w7btm3jyyorK/Hrr79i6tSpfFlJSQmWLVuGrVu3Ijo6Gnl5eRg3bhy//8yZM5g0aRLmzp2LhIQErF+/HpGRkVi2bJlSz0VHR4fvHuvcuTOWL1+OWbNm4ciRI1i+fDk2b97Mz/xsbW2NtLQ0nD59+rnXnThxIs6cOcO3Fu3ZsweOjo7w9PSUO2779u3o2LEjgoODFa7x0UcfIScnB8eOHVPqOQFAZmYm9u7dCw0NDWhoaNR5XG5uLn7//Xf4+voqfY+moPQw/88//xwbN27Et99+y08MefbsWXz11VcoKytT+heCEEKIapRKSuG7XT1vLv+O/xe6mroNOlYkEiEyMhIzZsxAREQEPD09ERAQgHHjxvFBTkMtWbJEYZHZDh06YMWKFQ06f9q0adi8eTO/luiBAwdQVlaGMWPG8MdUVlZi3bp1/Bv3li1b0KVLF8TExMDHxweLFy/G/PnzERISAgBo164dli5dik8++QSLFi1qUD3i4uKwfft2DBgwgC+bO3cu/vzzTwwbNgyzZ89G//79+X2jR4/GkSNHEBAQAGtra/j5+WHgwIGYNGmSwvIZlpaWCAoKQmRkJBYuXIhNmzbJBYBVkpKS0KVLl1rrV1WelJTUoOeTn58PfX19LmgvKQEAzJkzB3p6enLH/fjjj/j555/54zp27IgjR44oXK9nz54QCp+16Zw5cwbdu3dvUF0aS+kWpC1btuDnn3/GrFmz4ObmBjc3N7z//vvYsGEDIiMjm6CKhBBCWps333wTqamp2L9/P4YOHYqoqCh4enoq/T7So0cPhTIvL68Gnz958mQkJyfjwoULALgE4zFjxsi9kYtEInh7e/PbnTt3hrGxMRITEwFwydNLlizhW8b09fUxY8YMpKWl8cFBba5duwZ9fX3o6OjAx8cH/v7+WLduHb9fIBDg888/h0wmwxdffCF3roaGBjZv3oxHjx5hxYoVsLOzwzfffANXV1e5nKsqU6dORWRkJO7evYvz58/jnXfeqbVOyrQE1sfAwADx8fGIjY3F999/D09Pz1obUN555x3Ex8fjypUrOHv2LNq3b4/BgwejsLBQ7ridO3ciPj6ef7i4uKiknvVRugUpNzcXnTt3Vijv3LmzQsY9IYSQl0dHpIN/x//7/AOb6N7K0tbWxqBBgzBo0CB8+eWXmD59OhYtWsQn6FZ/s65r9fiaLRJ1ldXF0tISwcHB2Lx5M5ycnPD3338rPaqtqKgIixcvxqhRoxT21beQcKdOnbB//36IRCLY2tpCS0tL4ZiqpPOayedV7OzsMHHiREycOBFLly5Fx44dERERgcWLF8sdFxQUhHfffRfTpk1DcHAwzMzMFK7VsWNHPuirqaq8Y8eOdT6f6oRCIdq3bw+Aa326c+cOZs2aJdedCQBGRkb8ce3bt8fGjRthY2ODnTt3Yvr06fxx9vb2/HEvi9ItSO7u7nIRbpV169bB3d1dJZUihBCiPIFAAF1NXbU8ag4XbwwXFxcUFxfDwsICAORaQppyGpnp06dj586d+Omnn+Ds7KywrqhEIkFsbCy/fevWLeTl5fHdTp6enrh16xbat2+v8KjeLVSTlpYW2rdvD0dHx1qDI2WZmJjAxsYGxcXFCvtEIhEmTZqEqKioWrvXAGDcuHG4ffs2Dhw4oLDv+++/h5mZmUJ3ZkPNnz8fO3fuxKVLl+o9ripHqbS0tFH3USWlW5BWrFiB1157DcePH4e/vz8A4Pz583j48CEOHTqk8go2NzTMnxBCXkxOTg5Gjx6NqVOnws3NDQYGBoiNjcWKFSswfPhw6OjowM/PD99++y2cnJyQmZmp0MWkSkOGDIGhoSG+/vprLFmyRGG/pqYmP5xeJBLhgw8+gJ+fH3x8fAAACxcuxOuvvw4HBwe89dZbEAqFuHLlCq5fv46vv/4aADBp0iTY2dlh+fLlKqnz+vXrER8fj5EjR8LZ2RllZWXYunUrbty4gbVr19Z6ztKlS/Hxxx/X2noEcAHSrl27EBISojDMf//+/di1a5dSrXPV2dvbY+TIkVi4cCE/jxPAJcCnp6cDADIyMrB06VJoa2tj8ODBjbqPKindghQQEICkpCSMHDkSeXl5yMvLw6hRo3Dr1i306dOnKerYrISGhiIhIQEXL15Ud1UIIaRF0tfXh6+vL1avXo2+ffuia9eu+PLLLzFjxgy+h2LTpk2QSCTw8vLCvHnz+ECjKQiFQkyePBlSqRSTJk1S2K+rq4tPP/0U48ePR69evaCvr4+dO3fy+4cMGYKDBw/i6NGj8Pb2hp+fH1avXo22bdvyxzx48KDW3KDG8vHxQVFREWbOnAlXV1cEBATgwoUL2LdvHwICAmo9R0tLC+bm5nW29gkEAvz+++/47LPPsHr1anTq1Al9+vTB/fv3ERUV1eA5kOry4Ycf4q+//kJMTAxftmHDBtjY2MDGxgb9+/dHdnY2Dh06hE6dOr3QvVRBwFSVkfWKqVqsNj8/X2HEACGENLWysjKkpKTAycmp3jwX0jDTpk1DVlYW9u/fL1ceGRmJefPmIS8vTz0VI41S399HQ9+/lW5BOnz4MM6ePctvh4eHw8PDA+PHj8eTJ0+UvRwhhBCiNvn5+Th79iy2b9+O2bNnq7s6pBlROkD6+OOPUVBQAIAbohgWFoZhw4YhJSVFqUVtCSGEEHUbPnw4Bg8ejJkzZzY6AflV4+rqKjelQfXHr7/+qu7qqYzSSdopKSn8/AN79uxBcHAwvvnmG1y6dAnDhg1TeQUJIYSQpvK8If2TJ0/G5MmTX0pdWopDhw7VOe2ClZXVS65N01G6BUlLS4uf+Or48eN8prmpqSnfstScPHz4EP369YOLiwvc3Nywa9cuuf0HDx5Ep06d0KFDB/z8889qqiUhhBDSMrRt27bWKQ3at28PAwMDdVdPZZRuQerduzfCwsLQq1cvxMTE8Jn8SUlJaNOmjcor+KJEIhHWrFkDDw8PpKenw8vLC8OGDYOenh4kEgnCwsJw8uRJGBkZwcvLCyNHjqxzCCQhhBBCXg1KtyCtW7cOIpEIu3fvxv/+9z/Y2dkBAP7++28MHTpU5RV8UTY2NvDw8ADALe5nbm7Oz/gdExMDV1dX2NnZQV9fH0FBQTh69Kgaa0sIIcqhgciEKFLF34XSAZKDgwMOHjyIK1euYNq0aXz56tWr8cMPPyhdgdOnTyM4OBi2trYQCATYt2+fwjHh4eFwdHSEtrY2fH195eZQUEZcXBykUins7e0BAKmpqXyAB3BTtj9+/LhR1yaEkJdJU1MTAOpd64uQV1XV30XV30ljKN3FBgBSqRR79+7l12bp0qULRowYUedaMfUpLi6Gu7s7pk6dWus6Njt37kRYWBgiIiLg6+uLNWvWYMiQIbh16xYsLS0BAB4eHpBIJArnHj16FLa2tgC4NeQmTZqEDRs2KF1HQghpbjQ0NGBsbIzMzEwA3GSGqljug5CWjDGGkpISZGZmwtjYmF+6pDGUjmhu3LiB4OBgZGRk8DNdfvfdd7CwsMCBAwfQtWtXpa4XFBSEoKCgOvevWrUKM2bMwJQpUwAAERER+Ouvv7Bp0ybMnz8fwPPX6CkvL8eIESMwf/589OzZky+3tbWVazF6/PgxP3V8bdcoLy/nt5tjQjoh5NVibW0NAHyQRAjhGBsb838fjaV0gDR9+nR07doVcXFxMDExAQA8efIEkydPxrvvvotz5869UIWqq6ioQFxcHBYsWMCXCYVCBAYG4vz58w26BmMMkydPxoABAzBx4kS5fT4+Prh+/ToeP34MIyMj/P333/jyyy9rvc7y5csVVkcmhBB1EggEsLGxgaWlZZ3Drgl51Whqar5Qy1EVpQOk+Ph4xMbG8sERwK0gvGzZMnh7e79wharLzs6GVCpVmFfBysoKN2/ebNA1oqOjsXPnTri5ufH5Tdu2bUO3bt0gEonw/fffo3///pDJZPjkk0/qHMG2YMEChIWFYcOGDdiwYQOkUimSk5Nf6PkRQogqaGhoqOQNgRDyjNIBUseOHZGRkQFXV1e58szMTLRv315lFVOV3r17QyaT1bn/jTfewBtvvPHc64jFYojFYnz00Uf46KOP+LVcCCGEENL6NGgUW0FBAf9Yvnw55syZg927d+PRo0d49OgRdu/ejXnz5uG7775TaeXMzc2hoaGBjIwMufKMjIwX7ltsrPDwcLi4uKi8tYwQQgghzYeANWCyAKFQKDc6ouqUqrLq21KptPGVEQiwd+9ejBgxgi/z9fWFj48P1q5dCwCQyWRwcHDABx98wCdpq0NDVwMmhBBCSPPR0PfvBnWxnTx5UmUVq6moqEgulyclJQXx8fEwNTWFg4MDwsLCEBISgh49esDHxwdr1qxBcXExP6qNEEIIIUTVGhQgBQQENOhi169fV7oCsbGx6N+/P78dFhYGAAgJCUFkZCTGjh2LrKwsLFy4EOnp6fDw8MDhw4fVtiBeeHg4wsPDX6iljBBCCCHNW4O62OpTWFiIHTt24Oeff+Znqn4VUBcbIYQQ0vI09P1b6aVGqpw+fRohISGwsbHBf//7XwwYMAAXLlxo7OVaDErSJoQQQlo/pVqQ0tPTERkZiY0bN6KgoABjxoxBREQErly5AhcXl6asZ7NDLUiEEEJIy6PyFqTg4GB06tQJV69exZo1a5CamsqPLCOEEEIIaU0aPFHk33//jTlz5mDWrFno0KFDU9apWaMkbUIIIaT1a3AL0tmzZ1FYWAgvLy/4+vpi3bp1yM7Obsq6NUuhoaFISEjAxYsX1V0VQgghhDSRBgdIfn5+2LBhA9LS0vDee+/ht99+g62tLWQyGY4dO4bCwsKmrCchhBBCyEvzQsP8b926hY0bN2Lbtm3Iy8vDoEGDsH//flXWr9miJG1CCCGk5WnyYf4A0KlTJ6xYsQKPHj3Cjh07XuRSLQYN8yeEEEJavxeeKPJVRS1IhBBCSMvzUlqQCCGEEEJaIwqQCCGEEEJqoACJEEIIIaQGCpCUREnahBBCSOtHSdqNREnahBBCSMtDSdqEEEIIIY1EARIhhBBCSA0UIBFCCCGE1EABEiGEEEJIDRQgEUIIIYTUQAGSkmiYPyGEENL60TD/RqJh/oQQQkjLQ8P8CSGEEEIaiQIkQgghhJAaKEAihBBCCKmBAiRCCCGEkBpafYD08OFD9OvXDy4uLnBzc8OuXbvk9o8cORImJiZ466231FRDQgghhDQ3rT5AEolEWLNmDRISEnD06FHMmzcPxcXF/P65c+di69ataqwhIYQQQpqbVh8g2djYwMPDAwBgbW0Nc3Nz5Obm8vv79esHAwMDNdWOEEIIIc2R2gOk06dPIzg4GLa2thAIBNi3b5/CMeHh4XB0dIS2tjZ8fX0RExPTqHvFxcVBKpXC3t7+BWtNCCGEkNZM7QFScXEx3N3dER4eXuv+nTt3IiwsDIsWLcKlS5fg7u6OIUOGIDMzkz/Gw8MDXbt2VXikpqbyx+Tm5mLSpEn46aefmvw5EUIIIaRlE6m7AkFBQQgKCqpz/6pVqzBjxgxMmTIFABAREYG//voLmzZtwvz58wEA8fHx9d6jvLwcI0aMwPz589GzZ89G1bO8vBzl5eX8dkFBQaOuQwghhJDmT+0tSPWpqKhAXFwcAgMD+TKhUIjAwECcP3++QddgjGHy5MkYMGAAJk6c2Oi6LF++HEZGRvyDuukIIYSQ1qtZB0jZ2dmQSqWwsrKSK7eyskJ6enqDrhEdHY2dO3di37598PDwgIeHB65du8bvDwwMxOjRo3Ho0CG0adOmzsBrwYIFyM/P5x8PHz5s/BMjhBBCSLOm9i62pta7d2/IZLI69x8/frxB1xGLxRCLxQgPD0d4eDikUqmqqkgIIYSQZqZZtyCZm5tDQ0MDGRkZcuUZGRmwtrZWS51CQ0ORkJCAixcvquX+hBBCCGl6zTpA0tLSgpeXF06cOMGXyWQynDhxAv7+/mqpU3h4OFxcXODt7a2W+xNCCCGk6am9i62oqAjJycn8dkpKCuLj42FqagoHBweEhYUhJCQEPXr0gI+PD9asWYPi4mJ+VNvLFhoaitDQUBQUFMDIyEgtdSCEEEJI01J7gBQbG4v+/fvz22FhYQCAkJAQREZGYuzYscjKysLChQuRnp4ODw8PHD58WCFx+2WhHCRCCCGk9RMwxpi6K9ESVbUg5efnw9DQUN3VIYQQQkgDNPT9u1nnIBFCCCGEqAMFSEqiJG1CCCGk9aMutkaiLjZCCCGk5aEuNkIIIYSQRqIASUnUxUYIIYS0ftTF1kjUxUYIIYS0PNTFRgghhBDSSBQgEUIIIYTUQAGSkigHiRBCCGn9KAepkSgHiRBCCGl5KAeJEEIIIaSRKEAihBBCCKmBAiRCCCGEkBooQFISJWkTQgghrR8laTcSJWkTQgghLQ8laRNCCCGENBIFSIQQQgghNVCARAghhBBSAwVIhBBCCCE1UIBECCGEEFIDBUhKomH+hBBCSOtHw/wbiYb5E0IIIS0PDfMnhBBCCGkkCpAIIYQQQmqgAIkQQgghpAYKkAghhBBCamj1AdLDhw/Rr18/uLi4wM3NDbt27WrQPkIIIYS8ulr9KLa0tDRkZGTAw8MD6enp8PLyQlJSEvT09Ord9zw0io0QQghpeRr6/i16iXVSCxsbG9jY2AAArK2tYW5ujtzcXOjp6dW7jxBCCCGvLrV3sZ0+fRrBwcGwtbWFQCDAvn37FI4JDw+Ho6MjtLW14evri5iYmEbdKy4uDlKpFPb29krtI4QQQsirRe0BUnFxMdzd3REeHl7r/p07dyIsLAyLFi3CpUuX4O7ujiFDhiAzM5M/xsPDA127dlV4pKam8sfk5uZi0qRJ+OmnnxTuUd8+QgghhLx6mlUOkkAgwN69ezFixAi+zNfXF97e3li3bh0AQCaTwd7eHrNnz8b8+fMbdN3y8nIMGjQIM2bMwMSJExu8r+Zx5eXl/HZBQQHs7e0pB4kQQghpQVrFTNoVFRWIi4tDYGAgXyYUChEYGIjz58836BqMMUyePBkDBgxQCIDq21fT8uXLYWRkxD+oK44QQghpvZp1gJSdnQ2pVAorKyu5cisrK6SnpzfoGtHR0di5cyf27dsHDw8PeHh44Nq1a8/dV9OCBQuQn5/PPx4+fPhiT44QQgghzVarH8XWu3dvyGQypffVJBaLIRaLER4ejvDwcEilUlVWkxBCCCHNSLNuQTI3N4eGhgYyMjLkyjMyMmBtba2WOoWGhiIhIQEXL15Uy/0JIYQQ0vSadYCkpaUFLy8vnDhxgi+TyWQ4ceIE/P391VKn8PBwuLi4wNvbWy33J4QQQkjTU3sXW1FREZKTk/ntlJQUxMfHw9TUFA4ODggLC0NISAh69OgBHx8frFmzBsXFxZgyZYpa6hsaGorQ0FA+C54QQl5FJRUSxKTk4vzdHEikDN6OJvB2NIWZvljdVSNEJdQeIMXGxqJ///78dlhYGAAgJCQEkZGRGDt2LLKysrBw4UKkp6fDw8MDhw8fVkjcflkoB4kQ8ioql0gR/yAP5+7k4NydbMQ/zEOl9NksMRvPpgAA2lvqw8fJFL5OpvB2NIWtsY66qkzIC2lW8yC1JLQWGyGkNZPKGG6k5iM6mQuILt7LRVml/KAWW2Nt2Le9jErBE+Rm2+PeYyuAackdY2+qAx9HM/g4mcDHyQyOZroQCAQv86kQIofWYmsi1IJECGmNGGO4nVmEc8nZiL6Tgwt3c1BYJpE7xlxfC/7O5ujlbAZfJ2Nsub0Ke27v4XYaAKYummir5wodaWfkZLVF8iNjPMwtxcPcR9hz6REAwMJAzLcw+TiZoqOlAYRCCpgaq6RCgpvphUhILUBCWgESUgtQUFaJHm1N0Ku9OfzbmcHSUFvd1WyRqAWpkagFiRDS0j3MLUF0cvbTbrMcZBeVy+030BbBr50ZejqboaezOTpa6UMgEKBcWo5PTn2Cfx7+AwEEGOgwENdzriO9WH5+OgMtQzjre0Bb0glZmW2R8EATFVL5txwjHU14Oz4LmFxtDSHSaNbjh9SCMYaswnLceBoEJaQVIDGtACnZxXj2Ls4gEOVDqJkHmVQPTKIPyLTR3tKA/xn6tTOFsa5Wfbdq9Rr6/k0BUiNRgEQIaWkyC8tw/k4OziXnIPpONh49KZXbr60phLejKfydzdDL2bzWYKWgogBz/pmDuIw4aAo1saLvCgS2DQRjDPcL7uNC2gWcTz2PmPQYFFUWyZ1rq2cLZ4Pu0KrojIzMNrhyX4KSCvnWeF0tDXi1NeFzmNztjaGtqdE0L0gzJZUxpGQX4Ua1VqHEtAJkF1XIHyiohIb2YxgaP4a+0WOUa6SgVPZE7hAm0wCT6oNJ9PmvZjqmcDa1QTdrW3jZt4WdgQXMdMxgLDaGSNj6O5YoQGpiFCARQpq7/JJKXEjJwfk7OYhOzsbtTPmARSQUwMPeGD3bm6Onsxm6OxhDLKo7GMkqycLM4zOR9CQJ+pr6+GHAD/C2rn3KE4lMghs5N3Ah9QLOp53HlawrkMieddkJIEAn085w1u8OUUUnpKZbITalCAU1uvW0NITwsDeGz9MWJs+2JtAXt5438eLyp11k1VqGbqUXKOR7AQwaWrmwtsyEgdFjVIhSkFN5DzImH2CKBCJY6VkhrzwPxZXFStVFAAGMxMYw0zaFmY4ZTJ9+NdN+9n31rzqilpmATwFSE6meg5SUlEQBEiGk2SipkCD23hNE38nG+Ts5uP44H7Jq/+EFAsDV1hA9nc3h72wGH0dT6DUw2LhfcB/vHXsPj4sew0zbDBGDItDZtHPD61ZZgtiMWL6FKTkvWW6/WEOM7hbd0c6gO0TlHZGSaoyYlDyFbj8NoQBdbQ2fBkxm8HY0aRFdRowxZBaWy+UKJaQV4F5O9S6yZ3TFEjjY5MDQ+DEqNe8hozwJhZV5CsdZ6FjA3cIdbhZucLNwg4uZCx+4lEnKkFuWi9yyXOSU5iC3LBf389KRmJmGlCfpyCzJQQXLh0BUDIFGMQQC5cIBXZFurYGTmbYZTHW4r2baZjDTMYOhlmGzSc6nAKmJUQsSIUTdKiQyxD/Mw7k72TiXnIPLD5/IDb0HAGcLPfR0Nkev9mbwdTKDiZ7ywcSN7Bt4/8T7yC3Lhb2BPdYPWg97gxdbsDurJAsX0i5wj9QLyCzNlNtvLDaGr7Uv2ht2h6C0I2491kRMSq5CtyAAdLY24FuYfBxN1Z6ULJHKkJJdLBcIJaQWIKe4otbjLQ010c6mFEbGqZBq3kdGxS08KLoLGZNvRdIUaqKLWRe4mbvB3dId7ubusNazfqHA42FuCc7dyUZ0chbO3XuA3LJcCDSKIBAVQaBRBG1xCSxMKqCvWwahqBgl0jzklOagQlb7c6mLSCB6bjBVVW6ibQJNoWajn9PzUIDUxChA4khkEpRKShUflaWokFXAQtcCbfTbwEhMk2oS8qKkMoaE1ALuDe1ODi6m5KK0Ur6Lxc5Yh0vIbc8l5Vq9YLBwPvU85p2chxJJCbqYdsGPgT/CXMf8ha5ZE2MMKfkpOJ92HhdSLyAmPQYlkhK5Y+wN7OFv44+ORp6QFTvj6sNKxKTk4E6WYjeSk7kefBxN+aCpjYlOk7VeFJVLcCtdPhC6mV6IconiOp9CAeBsoY8ONhowMUmHVOsesipu4+aT6yioKFA43kbPBm4WbnwLURfTLtDSaLrWMsYYkjOL+Lmuzt/JUejyNNPTgm87U/Rw0kUnO0BHu1SulSqnLEeuxSqnLAeFFYVK18VIbARTbVO87/4+hjoNVdVTBEABUpNp6i42iVQGiYxBImOQShmkjEEik0EqY5BIGfdVxn2tevD7Zc/2y/htGcqllXzQUiYtRZm0DGWSUpRLSlEmK0O5tBTl0jJUyspQLitDxdNH5dOHhJVDwqq+cg8pyiBFORgkz39SAHQ09GGjZ4t2xg6wN7CHnb4d2hi0QRuDNrDVs4WmRtN9WiCkpWKM4U5WET8X0YW7ucgvrZQ7xkxPi0uqfppH5GCqunmGDqccxoKzCyCRSeBr44s1/dZAX0tfJdeuT6WsEtezr+N86nlcSLuAq1lXIa2WayMUCOFi6gJ/W390MfZCWWEbxN0vQkxKLhLTCxS6rGyMtPlgydfJFM4W+kq/RowxZBSUIyEtXy4Yup9bUnsXmZYGutgYoou1PizM8sC07iGr8jau51zF3fy7Csdra2jDxcwF7hbucLdwRzeLbrDUtVSqjqpWPSA/dycHMbUE5LZG2vB3NueDchsjxbykCmkFHyzlluYqBlHVgqknZU/kftbf9P4Gwc7BKn1eFCA1saZqQZr7+1nsv54MgbACAkEFIKyAQPj0q6CS335W9pxjBBUQCJt+zibGBIBMC4xpcV9lmgDTgEAzH0JRUb3nCiCAla4V2hi0kQuc2uhzX820zZpN3zUhTe1hbgmXVP30TSmrsMbQe7EIvlVD79uboZOVQZP8ffya+Cu+i/kODAxDHIfgm97fNGnrRX2KKork8pdqBhjaGtrwsvKCv60/XE17IC/PFLH38hGTkoOrj/Ihkcm/zZnpacG7WgtTFxtDaFSbi0kileFudrFCvlBuHV1k1obacLE1hIuNIRwsGCB+gPSym7iacxXXs6/Xmixtb2AvlzvU0aRjk3YrqUKFRIYrj/Jw7mnAfvlBHiqk8i1lTuZ6clMKKLv0jIzJkF+ezwdOTkZOsNC1UOXToACpqTVVgBT06/t4JDmjsuvJYUJoQAyhQAwNiCGCGBoCMUQCbYieftUUiqEp0IamUBtaQjG0hNrQ0tCBlkAbYpE2xEJtiDV0oC3SgY6GNsQiXehoaENLQwxNDSE0hAKIhAJoCAWQyhjuZhfjZno2bmbfx8OiR5AKcyDUyoVQMxcCzVwItXIhEFbWW21tDW25wMlO344Pnuz07aCrqds0rxchL0FWYTnO383BuafzET3Ile9aEouqDb1vb46uTTxPEGMMay+vxYZrGwAAb3d+G/N95kMoaD5zE2UUZzzLX0q7gOzSbLn9ptqm8LXxhb+NPzzMvZGWo41/U3IRk5KLSw+eKHR/GYhF6OFoAgsDMW6mF+JmeiEqauki0xAK4GyhBxcbQ7jYGqKTtT60dNJxvzgRV7Ou4krWFTwofKBwnq5IF93Mu/HdZd0susFU21S1L4oalFZIEXs/l59H69qjPNSIRdHZ2oBv3fRxMoWBtvqDQAqQmlhTBUjLzi/HXykHoCPS4R6aOtAV6T7brv54zj4dkfx+TaGmWltipDKGB7klSMooxO2MQiRlFOFWRgFScjMg4QOnHAi0nkBYFTyJ8p87ssJU21QucKrehWelawUN4as1hwpp3iokMly8l4sTiZk4m5yFpAzFoffu9sbo5WwGf2dzeLatf+i9KklkEiy9sBR/3P4DAPCBxwd41+3dZt2CyxhDcl4y3x0XmxGLUol8IrejoSP8bPzgZ+sHD3Mv3MuS8QFT7L0nKCpXTBXQe9pFVtUy5GJrCFPDctzKu44rWVdwNesqEnISFO4FAE5GTnwitZu5G9obt38l/g/ll1YiJiWXz1+6mS6fe6QhFKCbnRF6Pg32vdqaqGWOKwqQmhglaauORCrD/dwSJKVzQVNSJhdApWQXo1JaCYFm3tPg6Qnf6qQpfgKhVi5kgpJ6ry0SimCjZyPX4lS9C4+Sx8nL8KS4AlFJmTiemInTt7JQWO0NWSAAXGwM+W4JbydTtczzUyYpwyenP8HJhychFAjxpd+XeKvjWy+9Hi+qUlqJK1lXuITvtAu4nn1dbjSYUCBEV/Ou8Lfxh5+NH1xNu+FOVhn+TeHyuzpbG8DFxhA2Rpq4lXcTV7Ou8q1DqcWpCvcz0DTgu8ncLNzQzbwb/V95KquwHBfucq1L5+9k416O/P9rLQ0hPNsa86Ms3doYQ/MlzKJOAVIToXmQXp5KqQz3sou5oCmjELczuQDqXnbxs5wCYemz1ibNXGjr5EFXLx8CUS5KWTZkz0kiN9A0qLPrzlbfVm05F6Rlq0quPp6YiROJGYi7/0Su68FcXwsDOluiXydL+Ldr3NB7VSqoKMDsE7NxKfMStIRaWNF3BQa2HajWOqlKQUUBLqZfxIVUrjvuXsE9uf06Ih30sOoBf1t/WOhY4Go2FxAl5iQqDGUXQID2Ju251qGnydSORo7NqvuxOXucV4pzydl8jl1GgXx+na6WBnycTPkPCy42hk2yTh8FSE2MWpDUp0LCzTFSvasuKbMQ93NKIJXrAJdBICqAUCsXenr5MDUqgrZuHphGDoqkmSiozK33PgIIYKVnhTb6beBv64/X270OW33bpn1ypMWqlMpwMSWXC4puZuB+jU/Lna0NENjFCgO7WMK9jXGzWaA1syQTM4/PxO0nt2GgaYAfBvyAHtY91F2tJpNWlMYle6edx79p/yK3rO7/A8ZiY7lE6q5mXV/KKL5XAWMMKdnFiH7aunT+Tg6elMjnoxrramL+0M4Y5+Og0ntTgNTEKEBqfsolUtzN4gKnpKeB0+2MwjqH4UJQARPDItiYl8DYsBBa2k8gEeagQJKO9JLUWnMLvKy8ENwuGIMcB8FQi37ur7r6us60NITwczZDYBdLDOhsiTYmzW8wwb38e3jv2HtILU6FuY45IgIj0Mm0k7qr9dLImAy3n9zm85fyy/Phau7Ktw7ZG9g36/yr1kQmY7iZXshPKfDv3RwUV0gRMcELQ7taq/ReFCA1MQqQWo6ySimSM4v4LrqqVqeHT+oInACY6WuinSVgbVYMsV4mHleex43cS2DgTtASaqGffT8EOwejl20vmsfpFcF1nRXjRGIGTiRmIvZ+rkLXWf9OlhjYxQp9Opg3eBkPdbiefR3vH38fT8qfoK1hW0QERqCNQRt1V4sQAFyL7LXH+ehgqa/ykW8UIDUxCpBavtIKLnBKyih8mhjOfV/bUgYAYGxQhDb2t1Ck+S9yKp4N5TUWG2Oo41AEOwejm3k3+sTZylTvOvvnZoZComlnawMM7MIFRR7NqOusPucen8O8qHkolZTCxcwFPw78EWY6ZuquFiEvBQVITYwCpNaruFzCB063M4uQmFaAuPtPUFJRNeEmg1CcCgPzq9AwjEcl8vlzHQ0d8Vq71/B6u9fp07iKVS12GpsRC0dDRwQ7BzfZxHp5JRWIupWF44kZOJWUhcKyltV1Vp9Ddw/h87OfQ8Ik8LPxw5r+a6CnqafuahHy0lCA1MQoQHq1VEpluPooHxfu5uD8nRzE3s9FWaUMgBQaesnQNLoMTYMEQPhs1Et3y+4Idg7G4LaDadhvIzDGcCfvDqJTo3H28VlcyrgkN6rI0dAR87zmYYD9gBdutXte15mZnhb6d7ZEYBdL9O5goZZh+KrwS8Iv+O7idwCAIMcgLOu9jLqHySuHAqQmQsP8CcAlhF99lI/zd7iAKe7BE1TISiEyuA5Nw8vQ0LvDT3CpIRDB16o3xnQegb5t+tIbUj0KKgrwb9q/iH7MBUUZJRly+231bNHDugfOPDqDJ+VPAACelp4I6xEGdwt3pe5VKX02YeOJxLq7zgZ0toKHvbHcUhQtDWMMP1z+AT9f+xkAML7zeHzq8ykNTyevJAqQmhi1IJHqyiqliH+YxwVMd3MQn3ofTO8SNI0uQ0M7nT9OE/pwMwnAeJeRGOTs88rnK8mYDIm5iYh+HI3ox9G4knVFbqFKsYYYPax7oLdtb/Sy6wVHQ0cIBAIUVRRh0/VN2JawDWXSMgDA4LaDMddzLhwM6x4SXNV1duJmJqJuZcp1nWlqCODXzgyBXawwoLMl7E1bVtdZXSQyCZacX4K9yXsBAHM952Ja12mv/O8eeXVRgNTEKEAi9SmrlOLS/Sc4fzcHUSnxSC45BaFBPISaz6beF0rM4aTTF685vobXXLrB1lhxFezWKLcsF+dSzyH6cTTOpZ5TmIfGycgJvWx7obddb3hZeUFbpF3ntdKL0/Fj/I/Yl7wPDAwioQhjO43Fe27vwUTbBABwJ6sIJxIzcDwxE3H3n8jNlWWqx406C+xiiT4dW27XWV1KJaX45NQniHoUBaFAiIV+C/FmxzfVXS1C1IoCpCZGARJRRkmFBBfvZWNv4inEZB1DgcZlCKrlK0lLHGAg9UVPq0AEtG8Lf2czWBnWHRi0JBKZBFezriI6lWslSshJ4KdLALiFPP1s/NDLrhd62fWCnb6d0vdIepKEVXGrEP04GgCgraGHDuI3kHq/B+5ly08+18mq2qizFt51Vp/88nzM/mc2LmdehlhDjBV9V2CAwwB1V4sQtaMAqYlRgEReRFZRASLjD+Dow7+RXn4VeJqvxJgGJEWdIMn3hL3YE37trOHvbAa/dqawNGg5AVN6cTrXbZYajQupF1BYKb9oZWfTzuhlywVEHhYeL5yXlV9SiaikTPx+4x9cLf4VED8GAMgqjSDJGQJv80AEdrbGwC5WrabrrD4ZxRmYeXwmkvOSYaBpgLUD18LLykvd1SKkWaAAqYlRgERUJaskC38kHcDe2/vxuOQOX86kOqgscIMkvzukpW3R3tIAfu1M4d/OHH7tTGGmL1ZjreVVSCsQlxHHB0XJecly+43ERuhp2xO9bHuhp21PWOhavPA9q7rOuFFn1bvOZDC2uA5NiyMoYzkAgE4mnRDmFYaedj1f+L7N3d38u5h5bCbSitNgoWOBiEER6GjSUd3VIqTZoADpqYcPH2LixInIzMyESCTCl19+idGjRwMA8vLyEBgYCIlEAolEgrlz52LGjBkNui4FSKQpJD1JwsG7B3Hwzl/IKs3ky2UVpqjM90BlvidYpTkAoKOVPvzbmcHf2Qy+Ti9/wdMHBQ9w9vFZRKdG42L6RbmlWYQCIbqZd0Mvu17obdsbLmYu0BBq1Hs9qYyhqEyCgrJKFJZJUFQuQeHT7wvLKlFQJkFhmQT5pRW4cDcXKdnFcud3tNLHwC5WCOxiCQ97E0hYBbYnbseGqxv4Fqyetj0R5hXWapfTuJZ1De+feB955XlwNHRExKCIRnVZEtKaUYD0VFpaGjIyMuDh4YH09HR4eXkhKSkJenp6kEqlKC8vh66uLoqLi9G1a1fExsbCzOz5M8pSgESaklQmxcWMizhw5wCO3z+OEsmzIeiaEkcUZrtDUuAGJn02wV9nawP4O5vBvx0XMBnpqnY6gZLKElxMv8gHRQ8LH8rtN9M2R3cLP7gYe8NR1wMyqS4f3BSVSVBYLh/oVAU/RU+/L66Q1nHn2lWNOhvY2bLerrO8sjz8dO0n7Li5AxKZBAIIEOwcjNndZ8NaT7VrPKnT2cdnERYVhlJJKbqadUV4YDhMtU3VXS1Cmh0KkOrg7u6OgwcPwt7eXq48NzcXnp6eiI2Nhbm5+XOvQwESeVlKKktw8uFJHLh7AOdTz0PGZAAAITRgKXJH2RMPPHzsBLBnAZFAALjYGPItTN5OpjCsZT0jxhjKJTK+1aZ6wFJQWomUwmQkFcTifsllZElugkFS7WQNCMqdUFnUEeUFHSArtwbw4gnPWiIhDLVFMNDWhIG2iHuINaFf9b22JjpbG6BPB3Ol1mh6WPgQay+txd/3/gbATSEwocsETOs2DQZaBi9cb3U6ePcgvjz7JSRMgp62PbG632roarb+XCtCGqPFBEinT5/GypUrERcXh7S0NOzduxcjRoyQOyY8PBwrV65Eeno63N3dsXbtWvj4+Ch9r7i4OISEhOD69et8WV5eHgICAnD79m2sXLkSoaGhDboWBUhEHbJLs3Ho7iEcvHsQibmJfLmepj5cDHtDq9Qbtx6YIyVLfj05oQBwtTWCnlijWvcVFwhVSqv9CxCWQKSXDA39JIj0kiDULJC7jqzCBJLiTpAUdYS0xBmQyedB6Wpp8EGMvpgLaAyrBzpPv+f2aSoEQvraIohF9XfFvahrWdfwfdz3iMuIA8CtpTfTfSbGdBzTIifx3HpjK1bGrgQABDkFYVkvmh2bkPq0mADp77//RnR0NLy8vDBq1CiFAGnnzp2YNGkSIiIi4OvrizVr1mDXrl24desWLC0tAQAeHh6QSCQK1z569ChsbW0BcC1Effr0wYYNG9Czp2KiZkZGBkaNGoU//vgDVlZWz603BUhE3ZKfJOPg3YP4K+UvpBc/m4zSVs8W/dsMhTn8cSdVt9Z8nWdkEGo/hkg/CWKD24D4Pj+iDgCE0IK5qAvstbujg0EPtNF3gKGOJgzEmnIBT1XQI9JoGTMzM8Zw6tEprI5bjbv5dwEA9gb2mOs5F4PbDm4RkygyxrDm0hpsur4JADChywR87P0xzY5NyHO0mACpOoFAoBAg+fr6wtvbG+vWrQMAyGQy2NvbY/bs2Zg/f36DrlteXo5BgwZhxowZmDhxYp3Hvf/++xgwYADeeuutWq9RXl7ObxcUFMDe3p4CJKJ2MiZDbHosDtw9gGP3j6G48lkw5GrmimDnYHQ364e76QJupJdGIe6XXEZifiyu5cQgvyJP7nrORs7cnES2veBp5VnvRI0tnUQmwd7kvQi/HI6cMm7Em5u5Gz7q8RE8rTzVXLu6SWQSfHXuK/x5508ANDs2IcpoFQFSRUUFdHV1sXv3brmgKSQkBHl5efjzzz+fe03GGMaPH49OnTrhq6++ktuXkZEBXV1dGBgYID8/H7169cKOHTvQrVs3het89dVXWLx4sUI5BUikOSmVlCLqYRQO3j2I6MfR/LIdGgIN+Nn4IbcsV65rDgD0NfWfTdRo2ws2+jZqqLl6lVSWYMuNLdh8YzM/Gq+/fX986PUhnIyc1Fw7eaWSUnx86mOcenQKGgINLPJfhJEdRqq7WoS0GK0iQEpNTYWdnR3OnTsHf39//rhPPvkEp06dwr///vvca549exZ9+/aFm5sbX7Zt2zZ069YNMTExePfd/2/v3oOirBc/jr9hE0REQQwMRRPN4qool1EayzAN0zOV5YljajpdzFWj9dRgZTrnqGQqOcB663TKKZ30iE5qqRFeUH+ZKKLgBT2gphmoeUG8u/D7wxMTa+Ul8VnYz2uGf56FZz/w6Oxnv/v9Pt9XqKqqoqqqCrPZzKuvvvqb59EIktQ1P1/4mVUHV7G8eDm7ft5V47HgZsE83PLa/mYR90bQwFVzVuDaPalm7pjJkv1LqKyqxORi4tkOzzK843Cae9x48UZtO3PpDCOzR5J/PB93kzvTHpnGo4GPGh1LpE652YJUvzYe+g0PP/wwlZWVv/lYTEwM+fn5N3Ued3d33N3dsVqtWK1WbLZbW5Iscrf5evgyMHggA4MHUnK6hPVH1uPr4Uu3gG4O8WLviO5tdC/ju45nUPAgPsz7kHWH17GwaCHLi5czNGwog0MGG7Y6rPRcKcOzhlN8phgvNy+s8VYi/SINySLiDBx6Nl/z5s0xmUyUlZXVOF5WVkaLFsbcv8RsNrN7925yc3MNeX6R2xHkHcTQsKH8pd1fVI5uQpB3EOmPpfPv3v8mzDeM81fPY8230ndpXzL3ZXK18vpFIbWp5HQJg1YOovhMMX4efsx7Yp7KkUgtc+iC5ObmRpcuXcjOzq4+VllZSXZ2do2P3O4mq9VKSEgI0dHRhjy/iNw90S2imf/kfKZ2n0rLxi05fuE4E76bwHPLnyPnSA53Y4bCzuM7GbxqMKXnSrm/yf181uczHvB5oNafV8TZGT4HqaKigv/+99q+TZGRkaSmptKjRw+aNWtG69atWbhwIUOGDGHOnDnExMQwY8YMFi1axN69e29qOX5t0TJ/Eedy2XaZhUULmbNzDmcunQEgpkUMligLob6htfKcG45sYMz6MVy4eoHw5uFY4634NPSplecScRZ1ZpL2unXr6NGjx3XHhwwZwqeffgpARkZG9Y0iO3XqRFpaGrGxsXc56TW/noO0b98+FSQRJ1N+uZx/FfyL+bvnc7nyMgB92vZhdOfRd3Tfs+XFy3lv03tcrbpKXMs4Uh9J1d2xRe6AOlOQ6iqNIIk4t6MVR8nYnsHykuUANHBtwN8e+hsvR7xMU/emf+rc83bNY9rWaQD0DerLP+L+oZWGIneIClItU0ESEYA9P+9h+rbpfP/TtduONHFrwisRr5D4UCJuJrdbOldVVRUfbvuQT3Z9AsDgkMGMiRqju2OL3EEqSLVEH7GJiL2qqio2Hd1E6rZU9p/aD0DLxi0ZFTmKhLYJN1VwrlReYcL/TWBZ8TIALF0sDA0bWqu5RZyRClIt0wiSiNizVdpYVryMjO0ZHLtwDIAQ3xDGdBlDzH2/v8H2+Svn+fv6v7Phxw2YXExM6DaBp9o/dZdSizgXFaRapoIkIr/nwtULfL77cz4u/Lh6b7zurbrzRuc3aO/Tvsb3nr54GvMaMzuP76ShqSHTHpnGI4GPGBFbxCmoINUSfcQmIjfr5MWTzN4xm/8U/YerVVdxdXHl6fZPM6LTCPwa+VF6rpRXs16l5EwJTdyaYI230smvk9GxReo1FaRaphEkEblZB88cJG17GlmHsgDwuMeDvz74V1YeWEnZ+TL8G/kz5/E5tPNuZ3BSkfpPBamWqSCJyK3KP5bP9K3TyT+eX30sqGkQcx6fQwtPY7ZPEnE2Kki1TAVJRG5HVVUVa35Yw6wds2jWsBkfdP8A74beRscScRo3+/p9z13MVC/8eg6SiMitcnFxIb5NPPFt4o2OIiJ/QCNIt0kjSCIiInXPzb5+6/asIiIiInZUkERERETsqCCJiIiI2FFBukVWq5WQkBCio6ONjiIiIiK1RJO0b5MmaYuIiNQ9mqQtIiIicptUkERERETsqCCJiIiI2FFBEhEREbGjgiQiIiJiRwXpFmmZv4iISP2nZf63Scv8RURE6h4t8xcRERG5TfcYHaCu+mXgrby83OAkIiIicrN+ed2+0QdoKki36ezZswAEBgYanERERERu1dmzZ2natOnvPq45SLepsrKSo0eP4uXlhYuLyx07b3l5OYGBgRw+fFhzmxyErolj0fVwLLoejkXX48aqqqo4e/YsAQEBuLr+/kwjjSDdJldXV1q1alVr52/SpIn+cTsYXRPHouvhWHQ9HIuuxx/7o5GjX2iStoiIiIgdFSQREREROypIDsbd3Z3x48fj7u5udBT5H10Tx6Lr4Vh0PRyLrsedo0naIiIiInY0giQiIiJiRwVJRERExI4KkoiIiIgdFSQREREROypIDsZqtXL//ffTsGFDYmNj2bJli9GRnFJKSgrR0dF4eXnh5+fHU089RVFRkdGx5H/ef/99XFxcSEpKMjqKU/vxxx954YUX8PX1xcPDg/DwcLZu3Wp0LKdks9kYN24cbdu2xcPDg3bt2vHPf/7zhvuNye9TQXIgCxcuxGKxMH78ePLy8ujYsSO9e/fm2LFjRkdzOuvXr8dsNrN582aysrK4cuUKvXr14ty5c0ZHc3q5ubnMmTOHiIgIo6M4tVOnThEXF0eDBg1YuXIlu3fvZvr06fj4+BgdzSlNmTKFWbNmkZGRwZ49e5gyZQoffPAB6enpRkers7TM34HExsYSHR1NRkYGcG2/t8DAQEaNGkVycrLB6Zzb8ePH8fPzY/369XTv3t3oOE6roqKCzp07M3PmTCZOnEinTp2YMWOG0bGcUnJyMps2bWLDhg1GRxGgb9+++Pv78/HHH1cf69+/Px4eHnz++ecGJqu7NILkIC5fvsy2bdvo2bNn9TFXV1d69uzJd999Z2AyAThz5gwAzZo1MziJczObzTz55JM1/p+IMZYtW0ZUVBTPPfccfn5+REZG8tFHHxkdy2l169aN7Oxs9u3bB8COHTvYuHEjCQkJBieru7RZrYM4ceIENpsNf3//Gsf9/f3Zu3evQakEro3kJSUlERcXR1hYmNFxnNYXX3xBXl4eubm5RkcRoKSkhFmzZmGxWHj77bfJzc1l9OjRuLm5MWTIEKPjOZ3k5GTKy8t56KGHMJlM2Gw2Jk2axMCBA42OVmepIIncgNlsprCwkI0bNxodxWkdPnyY119/naysLBo2bGh0HOHaG4eoqCgmT54MQGRkJIWFhcyePVsFyQCLFi1i/vz5LFiwgNDQUPLz80lKSiIgIEDX4zapIDmI5s2bYzKZKCsrq3G8rKyMFi1aGJRKRo4cyYoVK8jJyaFVq1ZGx3Fa27Zt49ixY3Tu3Ln6mM1mIycnh4yMDC5duoTJZDIwofO57777CAkJqXEsODiYzMxMgxI5tzfffJPk5GSef/55AMLDwzl06BApKSkqSLdJc5AchJubG126dCE7O7v6WGVlJdnZ2XTt2tXAZM6pqqqKkSNHsnTpUtasWUPbtm2NjuTU4uPjKSgoID8/v/orKiqKgQMHkp+fr3JkgLi4uOtufbFv3z7atGljUCLndv78eVxda76km0wmKisrDUpU92kEyYFYLBaGDBlCVFQUMTExzJgxg3PnzjF06FCjozkds9nMggUL+PLLL/Hy8qK0tBSApk2b4uHhYXA65+Pl5XXd/C9PT098fX01L8wgb7zxBt26dWPy5MkMGDCALVu2MHfuXObOnWt0NKfUr18/Jk2aROvWrQkNDWX79u2kpqYybNgwo6PVWVrm72AyMjKYOnUqpaWldOrUibS0NGJjY42O5XRcXFx+8/gnn3zCiy++eHfDyG969NFHtczfYCtWrGDs2LHs37+ftm3bYrFYePnll42O5ZTOnj3LuHHjWLp0KceOHSMgIIDExETee+893NzcjI5XJ6kgiYiIiNjRHCQREREROypIIiIiInZUkERERETsqCCJiIiI2FFBEhEREbGjgiQiIiJiRwVJRERExI4KkoiIiIgdFSQRqVdKS0sZNWoUQUFBuLu7ExgYSL9+/WrscygiciPai01E6o2DBw8SFxeHt7c3U6dOJTw8nCtXrrB69WrMZjN79+41OqKI1BEaQRKRemPEiBG4uLiwZcsW+vfvT4cOHQgNDcVisbB582YAUlNTCQ8Px9PTk8DAQEaMGEFFRUX1OQ4dOkS/fv3w8fHB09OT0NBQvv766+rHCwsLSUhIoHHjxvj7+zNo0CBOnDhR/fjixYsJDw/Hw8MDX19fevbsyblz5+7eH0FE7ggVJBGpF06ePMmqVaswm814enpe97i3tzcArq6upKWlsWvXLubNm8eaNWt46623qr/PbDZz6dIlcnJyKCgoYMqUKTRu3BiA06dP89hjjxEZGcnWrVtZtWoVZWVlDBgwAICffvqJxMREhg0bxp49e1i3bh3PPPMM2vJSpO7RZrUiUi9s2bKF2NhYlixZwtNPP33TP7d48WKGDx9ePQoUERFB//79GT9+/HXfO3HiRDZs2MDq1aurjx05coTAwECKioqoqKigS5cuHDx4kDZt2vz5X0pEDKM5SCJSL9zse71vv/2WlJQU9u7dS3l5OVevXuXixYucP3+eRo0aMXr0aF577TW++eYbevbsSf/+/YmIiABgx44drF27tnpE6deKi4vp1asX8fHxhIeH07t3b3r16sWzzz6Lj4/PHf1dRaT26SM2EakXHnjgAVxcXP5wIvbBgwfp27cvERERZGZmsm3bNqxWKwCXL18G4KWXXqKkpIRBgwZRUFBAVFQU6enpAFRUVNCvXz/y8/NrfO3fv5/u3btjMpnIyspi5cqVhISEkJ6ezoMPPsiBAwdq/w8gIneUPmITkXojISGBgoICioqKrpuHdPr0abKzs0lMTOTixYu4ul57fzhx4kTGjRvHqVOnqucp/drYsWP56quv2LlzJ++88w6ZmZkUFhZyzz03HoC32Wy0adMGi8WCxWK5I7+jiNwdGkESkXrDarVis9mIiYkhMzOT/fv3s2fPHtLS0ujatSvt27fnypUrpKenU1JSwmeffcbs2bNrnCMpKYnVq1dz4MAB8vLyWLt2LcHBwcC1CdwnT54kMTGR3NxciouLWb16NUOHDsVms/H9998zefJktm7dyg8//MCSJUs4fvx49c+LSN2hgiQi9UZQUBB5eXn06NGDMWPGEBYWxuOPP052djazZs2iY8eOpKamMmXKFMLCwpg/fz4pKSk1zmGz2TCbzQQHB/PEE0/QoUMHZs6cCUBAQACbNm3CZrPRq1cvwsPDSUpKwtvbG1dXV5o0aUJOTg59+vShQ4cOvPvuu0yfPp2EhAQj/hwi8ifoIzYREREROxpBEhEREbGjgiQiIiJiRwVJRERExI4KkoiIiIgdFSQREREROypIIiIiInZUkERERETsqCCJiIiI2FFBEhEREbGjgiQiIiJiRwVJRERExI4KkoiIiIid/wcD+QVExi5XLgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "from matplotlib import pyplot as plt\n", "\n", @@ -581,7 +3281,277 @@ "cell_type": "code", "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SurrType.PYSMO_KRG\n", + "2025-03-17 17:36:14 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=kriging\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 39\n", + "Number of nonzeros in inequality constraint Jacobian.: 1\n", + "Number of nonzeros in Lagrangian Hessian.............: 3\n", + "\n", + "Total number of variables............................: 15\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 2\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 1\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 1\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 -0.0000000e+00 4.20e+01 2.26e-02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 -2.2208184e-01 8.99e+00 1.45e-02 -1.7 6.94e+02 - 9.39e-01 1.00e+00h 1\n", + " 2 -3.1500983e-01 4.55e+02 3.16e-02 -2.5 6.08e+03 - 9.48e-01 1.00e+00h 1\n", + " 3 -3.2646827e-01 1.71e+03 1.30e-02 -2.5 1.72e+04 - 5.42e-01 4.89e-01h 1\n", + " 4 -3.2727204e-01 2.22e+02 6.79e-03 -2.5 9.03e+03 - 1.00e+00 1.00e+00h 1\n", + " 5 -3.2603541e-01 3.23e+01 3.16e-04 -2.5 1.31e+02 - 1.00e+00 1.00e+00h 1\n", + " 6 -3.2609765e-01 3.96e-01 3.86e-06 -2.5 1.83e+02 - 1.00e+00 1.00e+00h 1\n", + " 7 -3.3095969e-01 6.95e+01 4.43e-03 -3.8 3.80e+03 - 9.20e-01 1.00e+00h 1\n", + " 8 -3.3153543e-01 3.65e+00 8.14e-04 -3.8 1.12e+03 - 1.00e+00 1.00e+00h 1\n", + " 9 -3.3138139e-01 4.61e-01 1.14e-05 -3.8 2.96e+02 - 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 -3.3138774e-01 3.05e-04 6.91e-09 -3.8 1.03e+01 - 1.00e+00 1.00e+00h 1\n", + " 11 -3.3167316e-01 1.22e-01 5.16e-04 -5.7 1.82e+02 - 1.00e+00 9.83e-01h 1\n", + " 12 -3.3168105e-01 7.41e-04 7.25e-09 -5.7 1.43e+01 - 1.00e+00 1.00e+00h 1\n", + " 13 -3.3168473e-01 3.41e-05 7.91e-09 -8.6 1.82e+00 - 1.00e+00 1.00e+00h 1\n", + " 14 -3.3168473e-01 1.72e-09 2.50e-14 -8.6 2.68e-03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 14\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: -3.3168473018874750e-01 -3.3168473018874750e-01\n", + "Dual infeasibility......: 2.5035529205297280e-14 2.5035529205297280e-14\n", + "Constraint violation....: 6.1212990624078506e-12 1.7244019545614719e-09\n", + "Complementarity.........: 2.5059041410567415e-09 2.5059041410567415e-09\n", + "Overall NLP error.......: 2.5059041410567415e-09 2.5059041410567415e-09\n", + "\n", + "\n", + "Number of objective function evaluations = 15\n", + "Number of objective gradient evaluations = 15\n", + "Number of equality constraint evaluations = 15\n", + "Number of inequality constraint evaluations = 15\n", + "Number of equality constraint Jacobian evaluations = 15\n", + "Number of inequality constraint Jacobian evaluations = 15\n", + "Number of Lagrangian Hessian evaluations = 14\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", + "Total CPU secs in NLP function evaluations = 0.004\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SurrType.PYSMO_PLY\n", + "2025-03-17 17:36:14 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 39\n", + "Number of nonzeros in inequality constraint Jacobian.: 1\n", + "Number of nonzeros in Lagrangian Hessian.............: 3\n", + "\n", + "Total number of variables............................: 15\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 2\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 1\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 1\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 -0.0000000e+00 5.35e+01 3.24e-02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 -2.2227750e-01 1.30e+01 1.45e-02 -1.7 6.89e+02 - 9.38e-01 1.00e+00h 1\n", + " 2 -3.1492876e-01 5.64e+02 3.41e-02 -2.5 6.01e+03 - 9.71e-01 1.00e+00h 1\n", + " 3 -3.2714017e-01 2.01e+03 1.99e-02 -2.5 1.39e+04 - 6.00e-01 7.01e-01h 1\n", + " 4 -3.2662426e-01 2.91e+02 5.57e-03 -2.5 7.48e+03 - 1.00e+00 1.00e+00h 1\n", + " 5 -3.2618524e-01 1.47e+01 1.24e-04 -2.5 4.56e+02 - 1.00e+00 1.00e+00h 1\n", + " 6 -3.2612971e-01 4.24e-02 9.16e-07 -2.5 8.41e+01 - 1.00e+00 1.00e+00h 1\n", + " 7 -3.3096494e-01 8.05e+01 4.63e-03 -3.8 3.74e+03 - 9.24e-01 1.00e+00h 1\n", + " 8 -3.3151074e-01 7.83e+00 1.23e-04 -3.8 1.13e+03 - 1.00e+00 1.00e+00h 1\n", + " 9 -3.3138534e-01 5.65e-01 1.09e-05 -3.8 2.55e+02 - 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 -3.3139357e-01 1.08e-03 3.11e-08 -3.8 1.28e+01 - 1.00e+00 1.00e+00h 1\n", + " 11 -3.3167896e-01 1.27e-01 8.04e-04 -5.7 1.96e+02 - 1.00e+00 9.72e-01h 1\n", + " 12 -3.3168859e-01 1.17e-03 2.28e-08 -5.7 1.38e+01 - 1.00e+00 1.00e+00h 1\n", + " 13 -3.3169228e-01 3.87e-07 1.13e-09 -8.6 1.95e+00 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 13\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: -3.3169227859422723e-01 -3.3169227859422723e-01\n", + "Dual infeasibility......: 1.1339429495425323e-09 1.1339429495425323e-09\n", + "Constraint violation....: 1.4249529091406254e-09 3.8666985346935689e-07\n", + "Complementarity.........: 3.9898113808548269e-09 3.9898113808548269e-09\n", + "Overall NLP error.......: 3.9898113808548269e-09 3.8666985346935689e-07\n", + "\n", + "\n", + "Number of objective function evaluations = 14\n", + "Number of objective gradient evaluations = 14\n", + "Number of equality constraint evaluations = 14\n", + "Number of inequality constraint evaluations = 14\n", + "Number of equality constraint Jacobian evaluations = 14\n", + "Number of inequality constraint Jacobian evaluations = 14\n", + "Number of Lagrangian Hessian evaluations = 13\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SurrType.PYSMO_RBF\n", + "2025-03-17 17:36:14 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=rbf\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 39\n", + "Number of nonzeros in inequality constraint Jacobian.: 1\n", + "Number of nonzeros in Lagrangian Hessian.............: 3\n", + "\n", + "Total number of variables............................: 15\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 2\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 13\n", + "Total number of inequality constraints...............: 1\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 1\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 -0.0000000e+00 4.58e+01 2.28e-02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 -2.2187269e-01 1.44e+01 1.33e-02 -1.7 6.80e+02 - 9.44e-01 1.00e+00h 1\n", + " 2 -3.1833654e-01 6.49e+02 1.65e-02 -2.5 6.42e+03 - 9.23e-01 1.00e+00h 1\n", + " 3 -3.2904216e-01 1.98e+03 3.27e-03 -2.5 1.61e+04 - 6.11e-01 5.97e-01h 1\n", + " 4 -3.2728772e-01 2.07e+02 3.54e-03 -2.5 8.41e+03 - 1.00e+00 1.00e+00h 1\n", + " 5 -3.2617335e-01 1.27e+01 3.00e-04 -2.5 7.83e+02 - 1.00e+00 1.00e+00h 1\n", + " 6 -3.2612431e-01 5.10e-03 1.28e-06 -2.5 4.03e+01 - 1.00e+00 1.00e+00h 1\n", + " 7 -3.3094622e-01 5.19e+01 4.80e-03 -3.8 3.78e+03 - 9.21e-01 1.00e+00h 1\n", + " 8 -3.3154557e-01 3.78e+00 1.51e-03 -3.8 1.17e+03 - 1.00e+00 9.89e-01h 1\n", + " 9 -3.3138015e-01 4.26e-01 1.61e-05 -3.8 3.24e+02 - 1.00e+00 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 -3.3138995e-01 5.21e-04 8.48e-08 -3.8 1.39e+01 - 1.00e+00 1.00e+00h 1\n", + " 11 -3.3167385e-01 1.35e-01 8.06e-04 -5.7 1.76e+02 - 1.00e+00 9.73e-01h 1\n", + " 12 -3.3168390e-01 1.87e-04 4.24e-08 -5.7 1.52e+01 - 1.00e+00 1.00e+00h 1\n", + " 13 -3.3168758e-01 3.70e-05 1.36e-09 -8.6 1.69e+00 - 1.00e+00 1.00e+00h 1\n", + " 14 -3.3168758e-01 2.31e-09 2.50e-14 -8.6 3.09e-03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 14\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: -3.3168758389152364e-01 -3.3168758389152364e-01\n", + "Dual infeasibility......: 2.5035529205297280e-14 2.5035529205297280e-14\n", + "Constraint violation....: 8.5709850027361010e-12 2.3137545213103294e-09\n", + "Complementarity.........: 2.5059042476426688e-09 2.5059042476426688e-09\n", + "Overall NLP error.......: 2.5059042476426688e-09 2.5059042476426688e-09\n", + "\n", + "\n", + "Number of objective function evaluations = 15\n", + "Number of objective gradient evaluations = 15\n", + "Number of equality constraint evaluations = 15\n", + "Number of inequality constraint evaluations = 15\n", + "Number of equality constraint Jacobian evaluations = 15\n", + "Number of inequality constraint Jacobian evaluations = 15\n", + "Number of Lagrangian Hessian evaluations = 14\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n", + "Total CPU secs in NLP function evaluations = 0.002\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + } + ], "source": [ "# create list objects to store data, run optimization\n", "results = {}\n", @@ -597,7 +3567,169 @@ "cell_type": "code", "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_296077/4045444663.py:12: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0!\n", + "You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy.\n", + "A typical example is when you are setting values in a column of a DataFrame, like:\n", + "\n", + "df[\"col\"][row_indexer] = value\n", + "\n", + "Use `df.loc[row_indexer, \"col\"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`.\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + "\n", + " df[j][i] = results[(i, j)]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SurrType.PYSMO_KRGSurrType.PYSMO_PLYSurrType.PYSMO_RBF
fs.bypass_frac0.10.10.1
fs.ng_steam_ratio1.1245231.1264511.124305
fs.steam_flowrate1.226471.2285921.226153
fs.reformer_duty39080.24972839131.2664339062.177089
fs.AR0.0041070.0041070.004107
fs.C2H60.0005180.0005190.000545
fs.C3H80.0001140.0001140.000119
fs.C4H100.0000650.0000650.000068
fs.CH40.0161930.01620.016991
fs.CO0.1048390.1044190.104856
fs.CO20.0535340.0535610.053528
fs.H20.3316850.3316920.331688
fs.H2O0.148950.1490560.148918
fs.N20.340.340.34
fs.O20.0-0.00.0
\n", + "
" + ], + "text/plain": [ + " SurrType.PYSMO_KRG SurrType.PYSMO_PLY SurrType.PYSMO_RBF\n", + "fs.bypass_frac 0.1 0.1 0.1\n", + "fs.ng_steam_ratio 1.124523 1.126451 1.124305\n", + "fs.steam_flowrate 1.22647 1.228592 1.226153\n", + "fs.reformer_duty 39080.249728 39131.26643 39062.177089\n", + "fs.AR 0.004107 0.004107 0.004107\n", + "fs.C2H6 0.000518 0.000519 0.000545\n", + "fs.C3H8 0.000114 0.000114 0.000119\n", + "fs.C4H10 0.000065 0.000065 0.000068\n", + "fs.CH4 0.016193 0.0162 0.016991\n", + "fs.CO 0.104839 0.104419 0.104856\n", + "fs.CO2 0.053534 0.053561 0.053528\n", + "fs.H2 0.331685 0.331692 0.331688\n", + "fs.H2O 0.14895 0.149056 0.148918\n", + "fs.N2 0.34 0.34 0.34\n", + "fs.O2 0.0 -0.0 0.0" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# print results as a table\n", "df_index = []\n", @@ -639,7 +3771,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.16" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/surrogates/best_practices_optimization_test.ipynb b/idaes_examples/notebooks/docs/surrogates/best_practices_optimization_test.ipynb index 24abb8ba..6eb6ec73 100644 --- a/idaes_examples/notebooks/docs/surrogates/best_practices_optimization_test.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/best_practices_optimization_test.ipynb @@ -1,647 +1,648 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# ML/AI Best Practices: \"Selecting Surrogate Model Form/Size for Optimization\"\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "In this notebook we demonstrate the use of model and solver statistics to select the best surrogate model. For this purpose we trained (offline) different models with ALAMO, PySMO for three basis forms, and TensorFlow Keras. The surrogates are imported into the notebook, and the IDAES flowsheet is constructed and solved." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Introduction\n", + "\n", + "This example demonstrates autothermal reformer optimization leveraging the ALAMO, PySMO and Keras surrogate trainers, and compares key indicators of model performance. In this notebook, IPOPT will be run with statistics using ALAMO, PySMO Polynomial, PySMO RBF, PySMO Kriging and Keras surrogate models to assess each model type for flowsheet integration and tractability." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Problem Statement \n", + "\n", + "Within the context of a larger Natural Gas Fuel Cell (NGFC) system, the autothermal reformer unit is used to generate syngas from air, steam, and natural gas. Two input variables are considered for this example (reformer bypass fraction and fuel to steam ratio). The reformer bypass fraction (also called internal reformation percentage) plays an important role in the syngas final composition and it is typically controlled in this process. The fuel to steam ratio is an important variable that affects the final syngas reaction and heat duty required by the reactor. The syngas is then used as fuel by a solid-oxide fuel cell (SOFC) to generate electricity and heat. \n", + "\n", + "The autothermal reformer is typically modeled using the IDAES Gibbs reactor and this reactor is robust once it is initialized; however, the overall model robustness is affected due to several components present in the reaction, scaling issues for the largrangean multipliers, and Gibbs free energy minimization formulation. Substituting rigorously trained and validated surrogates in lieu of rigorous unit model equations increases the robustness of the problem.\n", + "\n", + "### 2.1. Inputs: \n", + "- Bypass fraction (dimensionless) - split fraction of natural gas to bypass AR unit and feed directly to the power island\n", + "- NG-Steam Ratio (dimensionless) - proportion of natural relative to steam fed into AR unit operation\n", + "\n", + "### 2.2. Outputs:\n", + "- Steam flowrate (kg/s) - inlet steam fed to AR unit\n", + "- Reformer duty (kW) - required energy input to AR unit\n", + "- Composition (dimensionless) - outlet mole fractions of components (Ar, C2H6, C3H8, C4H10, CH4, CO, CO2, H2, H2O, N2, O2)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\".\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"AR_PFD.png\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Training Surrogates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Previous Jupyter Notebooks demonstrated the workflow to import data, train surrogate models using [ALAMO](alamo/alamo_flowsheet_optimization_src_test.ipynb), [PySMO](pysmo/pysmo_flowsheet_optimization_src_test.ipynb) and Keras, and develop IDAES's validation plots. To keep this notebook simple, this notebook simply loads the surrogate models trained off line.\n", + "\n", + "Note that the training/loading method includes a \"retrain\" argument in case the user wants to retrain all surrogate models. Since the retrain method runs ALAMO, PySMO (Polynomial, Radial Basis Functions, and Kriging basis types) and Keras, it takes about an 1 hr to complete the training for all models.\n", + "\n", + "Each run will overwrite the serialized JSON files for previously trained surrogates if retraining is enforced. To retrain individual surrogates, simply delete the desired JSON before running this notebook (for Keras, delete the folder `keras_surrogate/`)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from idaes_examples.mod.surrogates.AR_training_methods import (\n", + " train_load_surrogates,\n", + " SurrType,\n", + ")\n", + "\n", + "trained_surr = train_load_surrogates(retrain=False)\n", + "# setting retrain to True will take ~ 1 hour to run, best to load if possible\n", + "# setting retrain to False will only generate missing surrogates (only if JSON/folder doesn't exist)\n", + "# this method trains surrogates and serializes to JSON\n", + "# The return value is a set of surrogate types (instances of SurrType) that were trained\n", + "\n", + "# imports to capture long output\n", + "from io import StringIO\n", + "import sys" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4. Build and Run IDAES Flowsheet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This step builds an IDAES flowsheet and imports the surrogate model objects. As shown in the prior three examples, a single model object accounts for all input and output variables, and the JSON model serialized earlier may be imported into a single SurrogateBlock() component. While the serialization method and file structure differs slightly between the ALAMO, PySMO and Keras Python Wrappers, the three are imported similarly into IDAES flowsheets as shown below." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.1 Build IDAES Flowsheet\n", + "\n", + "This method builds an instance of the IDAES flowsheet model and solves the flowsheet using IPOPT. The method allows users to select a case and the surrogate model type to be used (i.e., alamo, pysmo, keras). The case argument consists of a list with values for the input variables (in this order, bypass split fraction and natural gas to steam ratio). Then the method fixes the input variables values to solve a square problem with IPOPT. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Import IDAES and Pyomo libraries\n", + "from pyomo.environ import ConcreteModel, SolverFactory, value, Var, Constraint, Set\n", + "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", + "from idaes.core.surrogate.alamopy import AlamoSurrogate\n", + "from idaes.core.surrogate.pysmo_surrogate import PysmoSurrogate\n", + "from idaes.core.surrogate.keras_surrogate import KerasSurrogate\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "\n", + "def build_flowsheet(case, surrogate_type: SurrType = None):\n", + " print(case, \" \", surrogate_type.value)\n", + " # create the IDAES model and flowsheet\n", + " m = ConcreteModel()\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + " # create flowsheet input variables\n", + " m.fs.bypass_frac = Var(\n", + " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", + " )\n", + " m.fs.ng_steam_ratio = Var(\n", + " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", + " )\n", + "\n", + " # create flowsheet output variables\n", + " m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", + " m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", + " m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", + " m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", + " m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", + " m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", + " m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", + " m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", + " m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", + " m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", + " m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", + " m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", + " m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", + "\n", + " # create input and output variable object lists for flowsheet\n", + " inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", + " outputs = [\n", + " m.fs.steam_flowrate,\n", + " m.fs.reformer_duty,\n", + " m.fs.AR,\n", + " m.fs.C2H6,\n", + " m.fs.C3H8,\n", + " m.fs.C4H10,\n", + " m.fs.CH4,\n", + " m.fs.CO,\n", + " m.fs.CO2,\n", + " m.fs.H2,\n", + " m.fs.H2O,\n", + " m.fs.N2,\n", + " m.fs.O2,\n", + " ]\n", + "\n", + " # create the Pyomo/IDAES block that corresponds to the surrogate\n", + " # call correct PySMO object to use below (will let us avoid nested switches)\n", + "\n", + " # capture long output from loading surrogates (don't need to print it)\n", + " stream = StringIO()\n", + " oldstdout = sys.stdout\n", + " sys.stdout = stream\n", + "\n", + " if surrogate_type == SurrType.ALAMO:\n", + " surrogate = AlamoSurrogate.load_from_file(\"alamo_surrogate.json\")\n", + " m.fs.surrogate = SurrogateBlock()\n", + " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", + " elif surrogate_type == SurrType.KERAS:\n", + " keras_surrogate = KerasSurrogate.load_from_folder(\n", + " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", + " )\n", + " m.fs.surrogate = SurrogateBlock()\n", + " m.fs.surrogate.build_model(\n", + " keras_surrogate,\n", + " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", + " input_vars=inputs,\n", + " output_vars=outputs,\n", + " )\n", + " elif SurrType.is_pysmo(\n", + " surrogate_type\n", + " ): # surrogate is one of the three pysmo basis options\n", + " surrogate = PysmoSurrogate.load_from_file(\n", + " surrogate_type.value + \"_surrogate.json\"\n", + " )\n", + " m.fs.surrogate = SurrogateBlock()\n", + " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", + " else:\n", + " raise ValueError(f\"Unknown surrogate type: {surrogate_type}\")\n", + "\n", + " # revert to standard output\n", + " sys.stdout = oldstdout\n", + "\n", + " # fix input values and solve flowsheet\n", + " m.fs.bypass_frac.fix(case[0])\n", + " m.fs.ng_steam_ratio.fix(case[1])\n", + "\n", + " solver = SolverFactory(\"ipopt\")\n", + " try: # attempt to solve problem\n", + " results = solver.solve(m, tee=True)\n", + " except: # retry solving one more time\n", + " results = solver.solve(m, tee=True)\n", + "\n", + " return (\n", + " value(m.fs.steam_flowrate),\n", + " value(m.fs.reformer_duty),\n", + " value(m.fs.C2H6),\n", + " value(m.fs.CH4),\n", + " value(m.fs.H2),\n", + " value(m.fs.O2),\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.2 Model Size/Form Comparison\n", + "\n", + "As mentioned above, as part of best practices the IDAES ML/AI demonstration includes the analysis of model/solver statistics and performance to determine the best surrogate model, including model size, model form, model trainer, etc. This section provides the rigorous analysis of solver performance comparing different surrogate models (ALAMO, PySMO polynomial, PysMO RBF, and PySMO Kriging).\n", + "\n", + "To obtain the results, we run the flowsheet for ten different simulation cases for each surrogate model type. Since the simulation cases are obtained from the training data set we can compare model performance (absolute error of measurement vs predicted output values)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# Import Auto-reformer training data\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "np.set_printoptions(precision=6, suppress=True)\n", + "csv_data = pd.read_csv(r\"reformer-data.csv\") # 2800 data points\n", + "\n", + "# extracting 10 data points out of 2800 data points, randomly selecting 10 cases to run\n", + "case_data = csv_data.sample(n=10)\n", + "\n", + "# selecting columns that correspond to Input Variables\n", + "inputs = np.array(case_data.iloc[:, :2])\n", + "\n", + "# selecting columns that correspond to Output Variables\n", + "cols = [\"Steam_Flow\", \"Reformer_Duty\", \"C2H6\", \"CH4\", \"H2\", \"O2\"]\n", + "outputs = np.array(case_data[cols])\n", + "\n", + "# For results comparison with minimum memory usage we will extract the values to plot on each pass\n", + "# note that the entire model could be returned and saved on each loop if desired\n", + "\n", + "# create empty dictionaries so we may easily index results as we save them\n", + "# for convenience while plotting, each output variable has its own dictionary\n", + "# indexed by (case number, trainer type)\n", + "# trainers = [\"alamo\", \"pysmo_poly\", \"pysmo_rbf\", \"pysmo_krig\", \"keras\"]\n", + "# temporarily remove keras\n", + "trainers = list(trained_surr - {SurrType.KERAS})\n", + "\n", + "cases = range(len(inputs))\n", + "steam_flow_error = {}\n", + "reformer_duty_error = {}\n", + "conc_C2H6 = {}\n", + "conc_CH4 = {}\n", + "conc_H2 = {}\n", + "conc_O2 = {}\n", + "\n", + "# run flowsheet for each trainer and save results\n", + "i = 0\n", + "for case in inputs: # each case is a value pair (bypass_frac, ng_steam_ratio)\n", + " i = i + 1\n", + " for trainer in trainers:\n", + " [\n", + " sf,\n", + " rd,\n", + " eth,\n", + " meth,\n", + " hyd,\n", + " oxy,\n", + " ] = build_flowsheet(case, surrogate_type=trainer)\n", + " steam_flow_error[(i, trainer)] = abs(\n", + " (sf - value(outputs[i - 1, 0])) / value(outputs[i - 1, 0])\n", + " )\n", + " reformer_duty_error[(i, trainer)] = abs(\n", + " (rd - value(outputs[i - 1, 1])) / value(outputs[i - 1, 1])\n", + " )\n", + " conc_C2H6[(i, trainer)] = abs(eth - value(outputs[i - 1, 2]))\n", + " conc_CH4[(i, trainer)] = abs(meth - value(outputs[i - 1, 3]))\n", + " conc_H2[(i, trainer)] = abs(hyd - value(outputs[i - 1, 4]))\n", + " conc_O2[(i, trainer)] = abs(oxy - value(outputs[i - 1, 5]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can visualize these results by plotting a graph for each of the quantities above, creating a data series for each surrogate trainer. Some data series may overlay if values are identical for all cases:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "from matplotlib import pyplot as plt\n", + "\n", + "# create figure/axes for each plot sequentially, plotting each trainer as a separate data series\n", + "\n", + "# Steam Flow Prediction\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot()\n", + "for trainer in trainers:\n", + " # pick out the points that use that trainer and plot them against case number\n", + " sf = [steam_flow_error[(i, j)] for (i, j) in steam_flow_error if j == trainer]\n", + " ax.plot(cases, sf, label=trainer)\n", + "# add info to plot\n", + "ax.set_xlabel(\"Cases\")\n", + "ax.set_ylabel(\"Relative Error\")\n", + "ax.set_title(\"Steam Flow Prediction\")\n", + "ax.legend()\n", + "plt.yscale(\"log\")\n", + "plt.show()\n", + "\n", + "# Reformer Duty Prediction\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot()\n", + "for trainer in trainers:\n", + " # pick out the points that use that trainer and plot them against case number\n", + " rd = [reformer_duty_error[(i, j)] for (i, j) in reformer_duty_error if j == trainer]\n", + " ax.plot(cases, rd, label=trainer)\n", + "# add info to plot\n", + "ax.set_xlabel(\"Cases\")\n", + "ax.set_ylabel(\"Relative Error\")\n", + "ax.set_title(\"Reformer Duty Prediction\")\n", + "ax.legend()\n", + "plt.yscale(\"log\")\n", + "plt.show()\n", + "\n", + "# C2H6 Mole Fraction Prediction\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot()\n", + "for trainer in trainers:\n", + " # pick out the points that use that trainer and plot them against case number\n", + " eth = [conc_C2H6[(i, j)] for (i, j) in conc_C2H6 if j == trainer]\n", + " ax.plot(cases, eth, label=trainer)\n", + "# add info to plot\n", + "ax.set_xlabel(\"Cases\")\n", + "ax.set_ylabel(\"Absolute Error\")\n", + "ax.set_title(\"C2H6 Mole Fraction Prediction (O(1E-2))\")\n", + "ax.legend()\n", + "plt.yscale(\"log\")\n", + "plt.show()\n", + "\n", + "print()\n", + "print(\"Mole fraction predictions displayed with absolute error:\")\n", + "print()\n", + "\n", + "# CH4 Mole Fraction Prediction\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot()\n", + "for trainer in trainers:\n", + " # pick out the points that use that trainer and plot them against case number\n", + " meth = [conc_CH4[(i, j)] for (i, j) in conc_CH4 if j == trainer]\n", + " ax.plot(cases, meth, label=trainer)\n", + "# add info to plot\n", + "ax.set_xlabel(\"Cases\")\n", + "ax.set_ylabel(\"Absolute Error\")\n", + "ax.set_title(\"CH4 Mole Fraction Prediction (O(1E-1))\")\n", + "ax.legend()\n", + "plt.yscale(\"log\")\n", + "plt.show()\n", + "\n", + "# H2 Mole Fraction Prediction\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot()\n", + "for trainer in trainers:\n", + " # pick out the points that use that trainer and plot them against case number\n", + " hyd = [conc_H2[(i, j)] for (i, j) in conc_H2 if j == trainer]\n", + " ax.plot(cases, hyd, label=trainer)\n", + "# add info to plot\n", + "ax.set_xlabel(\"Cases\")\n", + "ax.set_ylabel(\"Absolute Error\")\n", + "ax.set_title(\"H2 Mole Fraction Prediction (O(1E-1))\")\n", + "ax.legend()\n", + "plt.yscale(\"log\")\n", + "plt.show()\n", + "\n", + "# O2 Mole Fraction Prediction\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot()\n", + "for trainer in trainers:\n", + " # pick out the points that use that trainer and plot them against case number\n", + " oxy = [conc_O2[(i, j)] for (i, j) in conc_O2 if j == trainer]\n", + " ax.plot(cases, oxy, label=trainer)\n", + "# add info to plot\n", + "ax.set_xlabel(\"Cases\")\n", + "ax.set_ylabel(\"Absolute Error\")\n", + "ax.set_title(\"O2 Mole Fraction Prediction (O(1E-20))\")\n", + "ax.legend()\n", + "plt.yscale(\"log\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.3 Comparing Surrogate Optimization\n", + "Extending this analysis, we will run a single optimization scenario for each surrogate model and compare results. As in previous examples detailing workflows for [ALAMO](alamo_flowsheet_optimization_src_test.ipynb), [PySMO](pysmo_flowsheet_optimization_src_test.ipynb) and [Keras](keras_flowsheet_optimization_src_test.ipynb), we will optimize hydrogen production while restricting nitrogen below 34 mol% in the product stream." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Import additional Pyomo libraries\n", + "from pyomo.environ import Objective, maximize\n", + "\n", + "\n", + "def run_optimization(surrogate_type=None):\n", + " print(surrogate_type)\n", + " # create the IDAES model and flowsheet\n", + " m = ConcreteModel()\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + " # create flowsheet input variables\n", + " m.fs.bypass_frac = Var(\n", + " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", + " )\n", + " m.fs.ng_steam_ratio = Var(\n", + " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", + " )\n", + "\n", + " # create flowsheet output variables\n", + " m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", + " m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", + " m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", + " m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", + " m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", + " m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", + " m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", + " m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", + " m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", + " m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", + " m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", + " m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", + " m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", + "\n", + " # create input and output variable object lists for flowsheet\n", + " inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", + " outputs = [\n", + " m.fs.steam_flowrate,\n", + " m.fs.reformer_duty,\n", + " m.fs.AR,\n", + " m.fs.C2H6,\n", + " m.fs.C3H8,\n", + " m.fs.C4H10,\n", + " m.fs.CH4,\n", + " m.fs.CO,\n", + " m.fs.CO2,\n", + " m.fs.H2,\n", + " m.fs.H2O,\n", + " m.fs.N2,\n", + " m.fs.O2,\n", + " ]\n", + "\n", + " # create the Pyomo/IDAES block that corresponds to the surrogate\n", + " # call correct PySMO object to use below (will let us avoid nested switches)\n", + "\n", + " # capture long output from loading surrogates (don't need to print it)\n", + " stream = StringIO()\n", + " oldstdout = sys.stdout\n", + " sys.stdout = stream\n", + "\n", + " if surrogate_type == SurrType.ALAMO:\n", + " surrogate = AlamoSurrogate.load_from_file(\"alamo_surrogate.json\")\n", + " m.fs.surrogate = SurrogateBlock()\n", + " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", + " elif surrogate_type == SurrType.KERAS:\n", + " keras_surrogate = KerasSurrogate.load_from_folder(\n", + " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", + " )\n", + " m.fs.surrogate = SurrogateBlock()\n", + " m.fs.surrogate.build_model(\n", + " keras_surrogate,\n", + " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", + " input_vars=inputs,\n", + " output_vars=outputs,\n", + " )\n", + " elif SurrType.is_pysmo(\n", + " surrogate_type\n", + " ): # surrogate is one of the three pysmo basis options\n", + " surrogate = PysmoSurrogate.load_from_file(\n", + " surrogate_type.value + \"_surrogate.json\"\n", + " )\n", + " m.fs.surrogate = SurrogateBlock()\n", + " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", + " else:\n", + " raise ValueError(f\"Unknown surrogate type: {surrogate_type}\")\n", + "\n", + " # revert to standard output\n", + " sys.stdout = oldstdout\n", + "\n", + " # unfix input values and add the objective/constraint to the model\n", + " m.fs.bypass_frac.unfix()\n", + " m.fs.ng_steam_ratio.unfix()\n", + " m.fs.obj = Objective(expr=m.fs.H2, sense=maximize)\n", + " m.fs.con = Constraint(expr=m.fs.N2 <= 0.34)\n", + "\n", + " solver = SolverFactory(\"ipopt\")\n", + " try: # attempt to solve problem\n", + " results = solver.solve(m, tee=True)\n", + " except: # retry solving one more time\n", + " results = solver.solve(m, tee=True)\n", + "\n", + " return inputs, outputs" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# create list objects to store data, run optimization\n", + "results = {}\n", + "for trainer in trainers:\n", + " inputs, outputs = run_optimization(trainer)\n", + " for var in inputs:\n", + " results[(var.name, trainer)] = value(var)\n", + " for var in outputs:\n", + " results[(var.name, trainer)] = value(var)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# print results as a table\n", + "df_index = []\n", + "for var in inputs:\n", + " df_index.append(var.name)\n", + "for var in outputs:\n", + " df_index.append(var.name)\n", + "df_cols = trainers\n", + "\n", + "df = pd.DataFrame(index=df_index, columns=df_cols)\n", + "for i in df_index:\n", + " for j in df_cols:\n", + " df[j][i] = results[(i, j)]\n", + "\n", + "df # display results table" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + } }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# ML/AI Best Practices: \"Selecting Surrogate Model Form/Size for Optimization\"\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "In this notebook we demonstrate the use of model and solver statistics to select the best surrogate model. For this purpose we trained (offline) different models with ALAMO, PySMO for three basis forms, and TensorFlow Keras. The surrogates are imported into the notebook, and the IDAES flowsheet is constructed and solved." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. Introduction\n", - "\n", - "This example demonstrates autothermal reformer optimization leveraging the ALAMO, PySMO and Keras surrogate trainers, and compares key indicators of model performance. In this notebook, IPOPT will be run with statistics using ALAMO, PySMO Polynomial, PySMO RBF, PySMO Kriging and Keras surrogate models to assess each model type for flowsheet integration and tractability." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Problem Statement \n", - "\n", - "Within the context of a larger Natural Gas Fuel Cell (NGFC) system, the autothermal reformer unit is used to generate syngas from air, steam, and natural gas. Two input variables are considered for this example (reformer bypass fraction and fuel to steam ratio). The reformer bypass fraction (also called internal reformation percentage) plays an important role in the syngas final composition and it is typically controlled in this process. The fuel to steam ratio is an important variable that affects the final syngas reaction and heat duty required by the reactor. The syngas is then used as fuel by a solid-oxide fuel cell (SOFC) to generate electricity and heat. \n", - "\n", - "The autothermal reformer is typically modeled using the IDAES Gibbs reactor and this reactor is robust once it is initialized; however, the overall model robustness is affected due to several components present in the reaction, scaling issues for the largrangean multipliers, and Gibbs free energy minimization formulation. Substituting rigorously trained and validated surrogates in lieu of rigorous unit model equations increases the robustness of the problem.\n", - "\n", - "### 2.1. Inputs: \n", - "- Bypass fraction (dimensionless) - split fraction of natural gas to bypass AR unit and feed directly to the power island\n", - "- NG-Steam Ratio (dimensionless) - proportion of natural relative to steam fed into AR unit operation\n", - "\n", - "### 2.2. Outputs:\n", - "- Steam flowrate (kg/s) - inlet steam fed to AR unit\n", - "- Reformer duty (kW) - required energy input to AR unit\n", - "- Composition (dimensionless) - outlet mole fractions of components (Ar, C2H6, C3H8, C4H10, CH4, CO, CO2, H2, H2O, N2, O2)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\".\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"AR_PFD.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Training Surrogates" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Previous Jupyter Notebooks demonstrated the workflow to import data, train surrogate models using [ALAMO](alamo/alamo_flowsheet_optimization_src_test.ipynb), [PySMO](pysmo/pysmo_flowsheet_optimization_src_test.ipynb) and Keras, and develop IDAES's validation plots. To keep this notebook simple, this notebook simply loads the surrogate models trained off line.\n", - "\n", - "Note that the training/loading method includes a \"retrain\" argument in case the user wants to retrain all surrogate models. Since the retrain method runs ALAMO, PySMO (Polynomial, Radial Basis Functions, and Kriging basis types) and Keras, it takes about an 1 hr to complete the training for all models.\n", - "\n", - "Each run will overwrite the serialized JSON files for previously trained surrogates if retraining is enforced. To retrain individual surrogates, simply delete the desired JSON before running this notebook (for Keras, delete the folder `keras_surrogate/`)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "from idaes_examples.mod.surrogates.AR_training_methods import (\n", - " train_load_surrogates,\n", - " SurrType,\n", - ")\n", - "\n", - "trained_surr = train_load_surrogates(retrain=False)\n", - "# setting retrain to True will take ~ 1 hour to run, best to load if possible\n", - "# setting retrain to False will only generate missing surrogates (only if JSON/folder doesn't exist)\n", - "# this method trains surrogates and serializes to JSON\n", - "# The return value is a set of surrogate types (instances of SurrType) that were trained\n", - "\n", - "# imports to capture long output\n", - "from io import StringIO\n", - "import sys" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4. Build and Run IDAES Flowsheet" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This step builds an IDAES flowsheet and imports the surrogate model objects. As shown in the prior three examples, a single model object accounts for all input and output variables, and the JSON model serialized earlier may be imported into a single SurrogateBlock() component. While the serialization method and file structure differs slightly between the ALAMO, PySMO and Keras Python Wrappers, the three are imported similarly into IDAES flowsheets as shown below." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4.1 Build IDAES Flowsheet\n", - "\n", - "This method builds an instance of the IDAES flowsheet model and solves the flowsheet using IPOPT. The method allows users to select a case and the surrogate model type to be used (i.e., alamo, pysmo, keras). The case argument consists of a list with values for the input variables (in this order, bypass split fraction and natural gas to steam ratio). Then the method fixes the input variables values to solve a square problem with IPOPT. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Import IDAES and Pyomo libraries\n", - "from pyomo.environ import ConcreteModel, SolverFactory, value, Var, Constraint, Set\n", - "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", - "from idaes.core.surrogate.alamopy import AlamoSurrogate\n", - "from idaes.core.surrogate.pysmo_surrogate import PysmoSurrogate\n", - "from idaes.core.surrogate.keras_surrogate import KerasSurrogate\n", - "from idaes.core import FlowsheetBlock\n", - "\n", - "\n", - "def build_flowsheet(case, surrogate_type: SurrType = None):\n", - " print(case, \" \", surrogate_type.value)\n", - " # create the IDAES model and flowsheet\n", - " m = ConcreteModel()\n", - " m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - " # create flowsheet input variables\n", - " m.fs.bypass_frac = Var(\n", - " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", - " )\n", - " m.fs.ng_steam_ratio = Var(\n", - " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", - " )\n", - "\n", - " # create flowsheet output variables\n", - " m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", - " m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", - " m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", - " m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", - " m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", - " m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", - " m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", - " m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", - " m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", - " m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", - " m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", - " m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", - " m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", - "\n", - " # create input and output variable object lists for flowsheet\n", - " inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", - " outputs = [\n", - " m.fs.steam_flowrate,\n", - " m.fs.reformer_duty,\n", - " m.fs.AR,\n", - " m.fs.C2H6,\n", - " m.fs.C3H8,\n", - " m.fs.C4H10,\n", - " m.fs.CH4,\n", - " m.fs.CO,\n", - " m.fs.CO2,\n", - " m.fs.H2,\n", - " m.fs.H2O,\n", - " m.fs.N2,\n", - " m.fs.O2,\n", - " ]\n", - "\n", - " # create the Pyomo/IDAES block that corresponds to the surrogate\n", - " # call correct PySMO object to use below (will let us avoid nested switches)\n", - "\n", - " # capture long output from loading surrogates (don't need to print it)\n", - " stream = StringIO()\n", - " oldstdout = sys.stdout\n", - " sys.stdout = stream\n", - "\n", - " if surrogate_type == SurrType.ALAMO:\n", - " surrogate = AlamoSurrogate.load_from_file(\"alamo_surrogate.json\")\n", - " m.fs.surrogate = SurrogateBlock()\n", - " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", - " elif surrogate_type == SurrType.KERAS:\n", - " keras_surrogate = KerasSurrogate.load_from_folder(\n", - " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", - " )\n", - " m.fs.surrogate = SurrogateBlock()\n", - " m.fs.surrogate.build_model(\n", - " keras_surrogate,\n", - " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", - " input_vars=inputs,\n", - " output_vars=outputs,\n", - " )\n", - " elif SurrType.is_pysmo(\n", - " surrogate_type\n", - " ): # surrogate is one of the three pysmo basis options\n", - " surrogate = PysmoSurrogate.load_from_file(\n", - " surrogate_type.value + \"_surrogate.json\"\n", - " )\n", - " m.fs.surrogate = SurrogateBlock()\n", - " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", - " else:\n", - " raise ValueError(f\"Unknown surrogate type: {surrogate_type}\")\n", - "\n", - " # revert to standard output\n", - " sys.stdout = oldstdout\n", - "\n", - " # fix input values and solve flowsheet\n", - " m.fs.bypass_frac.fix(case[0])\n", - " m.fs.ng_steam_ratio.fix(case[1])\n", - "\n", - " solver = SolverFactory(\"ipopt\")\n", - " try: # attempt to solve problem\n", - " results = solver.solve(m, tee=True)\n", - " except: # retry solving one more time\n", - " results = solver.solve(m, tee=True)\n", - "\n", - " return (\n", - " value(m.fs.steam_flowrate),\n", - " value(m.fs.reformer_duty),\n", - " value(m.fs.C2H6),\n", - " value(m.fs.CH4),\n", - " value(m.fs.H2),\n", - " value(m.fs.O2),\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4.2 Model Size/Form Comparison\n", - "\n", - "As mentioned above, as part of best practices the IDAES ML/AI demonstration includes the analysis of model/solver statistics and performance to determine the best surrogate model, including model size, model form, model trainer, etc. This section provides the rigorous analysis of solver performance comparing different surrogate models (ALAMO, PySMO polynomial, PysMO RBF, and PySMO Kriging).\n", - "\n", - "To obtain the results, we run the flowsheet for ten different simulation cases for each surrogate model type. Since the simulation cases are obtained from the training data set we can compare model performance (absolute error of measurement vs predicted output values)." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# Import Auto-reformer training data\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "np.set_printoptions(precision=6, suppress=True)\n", - "csv_data = pd.read_csv(r\"reformer-data.csv\") # 2800 data points\n", - "\n", - "# extracting 10 data points out of 2800 data points, randomly selecting 10 cases to run\n", - "case_data = csv_data.sample(n=10)\n", - "\n", - "# selecting columns that correspond to Input Variables\n", - "inputs = np.array(case_data.iloc[:, :2])\n", - "\n", - "# selecting columns that correspond to Output Variables\n", - "cols = [\"Steam_Flow\", \"Reformer_Duty\", \"C2H6\", \"CH4\", \"H2\", \"O2\"]\n", - "outputs = np.array(case_data[cols])\n", - "\n", - "# For results comparison with minimum memory usage we will extract the values to plot on each pass\n", - "# note that the entire model could be returned and saved on each loop if desired\n", - "\n", - "# create empty dictionaries so we may easily index results as we save them\n", - "# for convenience while plotting, each output variable has its own dictionary\n", - "# indexed by (case number, trainer type)\n", - "# trainers = [\"alamo\", \"pysmo_poly\", \"pysmo_rbf\", \"pysmo_krig\", \"keras\"]\n", - "# temporarily remove keras\n", - "trainers = list(trained_surr - {SurrType.KERAS})\n", - "\n", - "cases = range(len(inputs))\n", - "steam_flow_error = {}\n", - "reformer_duty_error = {}\n", - "conc_C2H6 = {}\n", - "conc_CH4 = {}\n", - "conc_H2 = {}\n", - "conc_O2 = {}\n", - "\n", - "# run flowsheet for each trainer and save results\n", - "i = 0\n", - "for case in inputs: # each case is a value pair (bypass_frac, ng_steam_ratio)\n", - " i = i + 1\n", - " for trainer in trainers:\n", - " [\n", - " sf,\n", - " rd,\n", - " eth,\n", - " meth,\n", - " hyd,\n", - " oxy,\n", - " ] = build_flowsheet(case, surrogate_type=trainer)\n", - " steam_flow_error[(i, trainer)] = abs(\n", - " (sf - value(outputs[i - 1, 0])) / value(outputs[i - 1, 0])\n", - " )\n", - " reformer_duty_error[(i, trainer)] = abs(\n", - " (rd - value(outputs[i - 1, 1])) / value(outputs[i - 1, 1])\n", - " )\n", - " conc_C2H6[(i, trainer)] = abs(eth - value(outputs[i - 1, 2]))\n", - " conc_CH4[(i, trainer)] = abs(meth - value(outputs[i - 1, 3]))\n", - " conc_H2[(i, trainer)] = abs(hyd - value(outputs[i - 1, 4]))\n", - " conc_O2[(i, trainer)] = abs(oxy - value(outputs[i - 1, 5]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can visualize these results by plotting a graph for each of the quantities above, creating a data series for each surrogate trainer. Some data series may overlay if values are identical for all cases:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "from matplotlib import pyplot as plt\n", - "\n", - "# create figure/axes for each plot sequentially, plotting each trainer as a separate data series\n", - "\n", - "# Steam Flow Prediction\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot()\n", - "for trainer in trainers:\n", - " # pick out the points that use that trainer and plot them against case number\n", - " sf = [steam_flow_error[(i, j)] for (i, j) in steam_flow_error if j == trainer]\n", - " ax.plot(cases, sf, label=trainer)\n", - "# add info to plot\n", - "ax.set_xlabel(\"Cases\")\n", - "ax.set_ylabel(\"Relative Error\")\n", - "ax.set_title(\"Steam Flow Prediction\")\n", - "ax.legend()\n", - "plt.yscale(\"log\")\n", - "plt.show()\n", - "\n", - "# Reformer Duty Prediction\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot()\n", - "for trainer in trainers:\n", - " # pick out the points that use that trainer and plot them against case number\n", - " rd = [reformer_duty_error[(i, j)] for (i, j) in reformer_duty_error if j == trainer]\n", - " ax.plot(cases, rd, label=trainer)\n", - "# add info to plot\n", - "ax.set_xlabel(\"Cases\")\n", - "ax.set_ylabel(\"Relative Error\")\n", - "ax.set_title(\"Reformer Duty Prediction\")\n", - "ax.legend()\n", - "plt.yscale(\"log\")\n", - "plt.show()\n", - "\n", - "# C2H6 Mole Fraction Prediction\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot()\n", - "for trainer in trainers:\n", - " # pick out the points that use that trainer and plot them against case number\n", - " eth = [conc_C2H6[(i, j)] for (i, j) in conc_C2H6 if j == trainer]\n", - " ax.plot(cases, eth, label=trainer)\n", - "# add info to plot\n", - "ax.set_xlabel(\"Cases\")\n", - "ax.set_ylabel(\"Absolute Error\")\n", - "ax.set_title(\"C2H6 Mole Fraction Prediction (O(1E-2))\")\n", - "ax.legend()\n", - "plt.yscale(\"log\")\n", - "plt.show()\n", - "\n", - "print()\n", - "print(\"Mole fraction predictions displayed with absolute error:\")\n", - "print()\n", - "\n", - "# CH4 Mole Fraction Prediction\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot()\n", - "for trainer in trainers:\n", - " # pick out the points that use that trainer and plot them against case number\n", - " meth = [conc_CH4[(i, j)] for (i, j) in conc_CH4 if j == trainer]\n", - " ax.plot(cases, meth, label=trainer)\n", - "# add info to plot\n", - "ax.set_xlabel(\"Cases\")\n", - "ax.set_ylabel(\"Absolute Error\")\n", - "ax.set_title(\"CH4 Mole Fraction Prediction (O(1E-1))\")\n", - "ax.legend()\n", - "plt.yscale(\"log\")\n", - "plt.show()\n", - "\n", - "# H2 Mole Fraction Prediction\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot()\n", - "for trainer in trainers:\n", - " # pick out the points that use that trainer and plot them against case number\n", - " hyd = [conc_H2[(i, j)] for (i, j) in conc_H2 if j == trainer]\n", - " ax.plot(cases, hyd, label=trainer)\n", - "# add info to plot\n", - "ax.set_xlabel(\"Cases\")\n", - "ax.set_ylabel(\"Absolute Error\")\n", - "ax.set_title(\"H2 Mole Fraction Prediction (O(1E-1))\")\n", - "ax.legend()\n", - "plt.yscale(\"log\")\n", - "plt.show()\n", - "\n", - "# O2 Mole Fraction Prediction\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot()\n", - "for trainer in trainers:\n", - " # pick out the points that use that trainer and plot them against case number\n", - " oxy = [conc_O2[(i, j)] for (i, j) in conc_O2 if j == trainer]\n", - " ax.plot(cases, oxy, label=trainer)\n", - "# add info to plot\n", - "ax.set_xlabel(\"Cases\")\n", - "ax.set_ylabel(\"Absolute Error\")\n", - "ax.set_title(\"O2 Mole Fraction Prediction (O(1E-20))\")\n", - "ax.legend()\n", - "plt.yscale(\"log\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4.3 Comparing Surrogate Optimization\n", - "Extending this analysis, we will run a single optimization scenario for each surrogate model and compare results. As in previous examples detailing workflows for [ALAMO](alamo_flowsheet_optimization_src_test.ipynb), [PySMO](pysmo_flowsheet_optimization_src_test.ipynb) and [Keras](keras_flowsheet_optimization_src_test.ipynb), we will optimize hydrogen production while restricting nitrogen below 34 mol% in the product stream." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Import additional Pyomo libraries\n", - "from pyomo.environ import Objective, maximize\n", - "\n", - "\n", - "def run_optimization(surrogate_type=None):\n", - " print(surrogate_type)\n", - " # create the IDAES model and flowsheet\n", - " m = ConcreteModel()\n", - " m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - " # create flowsheet input variables\n", - " m.fs.bypass_frac = Var(\n", - " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", - " )\n", - " m.fs.ng_steam_ratio = Var(\n", - " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", - " )\n", - "\n", - " # create flowsheet output variables\n", - " m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", - " m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", - " m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", - " m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", - " m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", - " m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", - " m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", - " m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", - " m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", - " m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", - " m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", - " m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", - " m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", - "\n", - " # create input and output variable object lists for flowsheet\n", - " inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", - " outputs = [\n", - " m.fs.steam_flowrate,\n", - " m.fs.reformer_duty,\n", - " m.fs.AR,\n", - " m.fs.C2H6,\n", - " m.fs.C3H8,\n", - " m.fs.C4H10,\n", - " m.fs.CH4,\n", - " m.fs.CO,\n", - " m.fs.CO2,\n", - " m.fs.H2,\n", - " m.fs.H2O,\n", - " m.fs.N2,\n", - " m.fs.O2,\n", - " ]\n", - "\n", - " # create the Pyomo/IDAES block that corresponds to the surrogate\n", - " # call correct PySMO object to use below (will let us avoid nested switches)\n", - "\n", - " # capture long output from loading surrogates (don't need to print it)\n", - " stream = StringIO()\n", - " oldstdout = sys.stdout\n", - " sys.stdout = stream\n", - "\n", - " if surrogate_type == SurrType.ALAMO:\n", - " surrogate = AlamoSurrogate.load_from_file(\"alamo_surrogate.json\")\n", - " m.fs.surrogate = SurrogateBlock()\n", - " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", - " elif surrogate_type == SurrType.KERAS:\n", - " keras_surrogate = KerasSurrogate.load_from_folder(\n", - " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", - " )\n", - " m.fs.surrogate = SurrogateBlock()\n", - " m.fs.surrogate.build_model(\n", - " keras_surrogate,\n", - " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", - " input_vars=inputs,\n", - " output_vars=outputs,\n", - " )\n", - " elif SurrType.is_pysmo(\n", - " surrogate_type\n", - " ): # surrogate is one of the three pysmo basis options\n", - " surrogate = PysmoSurrogate.load_from_file(\n", - " surrogate_type.value + \"_surrogate.json\"\n", - " )\n", - " m.fs.surrogate = SurrogateBlock()\n", - " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", - " else:\n", - " raise ValueError(f\"Unknown surrogate type: {surrogate_type}\")\n", - "\n", - " # revert to standard output\n", - " sys.stdout = oldstdout\n", - "\n", - " # unfix input values and add the objective/constraint to the model\n", - " m.fs.bypass_frac.unfix()\n", - " m.fs.ng_steam_ratio.unfix()\n", - " m.fs.obj = Objective(expr=m.fs.H2, sense=maximize)\n", - " m.fs.con = Constraint(expr=m.fs.N2 <= 0.34)\n", - "\n", - " solver = SolverFactory(\"ipopt\")\n", - " try: # attempt to solve problem\n", - " results = solver.solve(m, tee=True)\n", - " except: # retry solving one more time\n", - " results = solver.solve(m, tee=True)\n", - "\n", - " return inputs, outputs" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# create list objects to store data, run optimization\n", - "results = {}\n", - "for trainer in trainers:\n", - " inputs, outputs = run_optimization(trainer)\n", - " for var in inputs:\n", - " results[(var.name, trainer)] = value(var)\n", - " for var in outputs:\n", - " results[(var.name, trainer)] = value(var)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# print results as a table\n", - "df_index = []\n", - "for var in inputs:\n", - " df_index.append(var.name)\n", - "for var in outputs:\n", - " df_index.append(var.name)\n", - "df_cols = trainers\n", - "\n", - "df = pd.DataFrame(index=df_index, columns=df_cols)\n", - "for i in df_index:\n", - " for j in df_cols:\n", - " df[j][i] = results[(i, j)]\n", - "\n", - "df # display results table" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.16" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/best_practices_optimization_usr.ipynb b/idaes_examples/notebooks/docs/surrogates/best_practices_optimization_usr.ipynb index dc5a8e7d..b199a819 100644 --- a/idaes_examples/notebooks/docs/surrogates/best_practices_optimization_usr.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/best_practices_optimization_usr.ipynb @@ -1,647 +1,648 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# ML/AI Best Practices: \"Selecting Surrogate Model Form/Size for Optimization\"\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "In this notebook we demonstrate the use of model and solver statistics to select the best surrogate model. For this purpose we trained (offline) different models with ALAMO, PySMO for three basis forms, and TensorFlow Keras. The surrogates are imported into the notebook, and the IDAES flowsheet is constructed and solved." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Introduction\n", + "\n", + "This example demonstrates autothermal reformer optimization leveraging the ALAMO, PySMO and Keras surrogate trainers, and compares key indicators of model performance. In this notebook, IPOPT will be run with statistics using ALAMO, PySMO Polynomial, PySMO RBF, PySMO Kriging and Keras surrogate models to assess each model type for flowsheet integration and tractability." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Problem Statement \n", + "\n", + "Within the context of a larger Natural Gas Fuel Cell (NGFC) system, the autothermal reformer unit is used to generate syngas from air, steam, and natural gas. Two input variables are considered for this example (reformer bypass fraction and fuel to steam ratio). The reformer bypass fraction (also called internal reformation percentage) plays an important role in the syngas final composition and it is typically controlled in this process. The fuel to steam ratio is an important variable that affects the final syngas reaction and heat duty required by the reactor. The syngas is then used as fuel by a solid-oxide fuel cell (SOFC) to generate electricity and heat. \n", + "\n", + "The autothermal reformer is typically modeled using the IDAES Gibbs reactor and this reactor is robust once it is initialized; however, the overall model robustness is affected due to several components present in the reaction, scaling issues for the largrangean multipliers, and Gibbs free energy minimization formulation. Substituting rigorously trained and validated surrogates in lieu of rigorous unit model equations increases the robustness of the problem.\n", + "\n", + "### 2.1. Inputs: \n", + "- Bypass fraction (dimensionless) - split fraction of natural gas to bypass AR unit and feed directly to the power island\n", + "- NG-Steam Ratio (dimensionless) - proportion of natural relative to steam fed into AR unit operation\n", + "\n", + "### 2.2. Outputs:\n", + "- Steam flowrate (kg/s) - inlet steam fed to AR unit\n", + "- Reformer duty (kW) - required energy input to AR unit\n", + "- Composition (dimensionless) - outlet mole fractions of components (Ar, C2H6, C3H8, C4H10, CH4, CO, CO2, H2, H2O, N2, O2)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\".\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"AR_PFD.png\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Training Surrogates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Previous Jupyter Notebooks demonstrated the workflow to import data, train surrogate models using [ALAMO](alamo/alamo_flowsheet_optimization_src_usr.ipynb), [PySMO](pysmo/pysmo_flowsheet_optimization_src_usr.ipynb) and Keras, and develop IDAES's validation plots. To keep this notebook simple, this notebook simply loads the surrogate models trained off line.\n", + "\n", + "Note that the training/loading method includes a \"retrain\" argument in case the user wants to retrain all surrogate models. Since the retrain method runs ALAMO, PySMO (Polynomial, Radial Basis Functions, and Kriging basis types) and Keras, it takes about an 1 hr to complete the training for all models.\n", + "\n", + "Each run will overwrite the serialized JSON files for previously trained surrogates if retraining is enforced. To retrain individual surrogates, simply delete the desired JSON before running this notebook (for Keras, delete the folder `keras_surrogate/`)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from idaes_examples.mod.surrogates.AR_training_methods import (\n", + " train_load_surrogates,\n", + " SurrType,\n", + ")\n", + "\n", + "trained_surr = train_load_surrogates(retrain=False)\n", + "# setting retrain to True will take ~ 1 hour to run, best to load if possible\n", + "# setting retrain to False will only generate missing surrogates (only if JSON/folder doesn't exist)\n", + "# this method trains surrogates and serializes to JSON\n", + "# The return value is a set of surrogate types (instances of SurrType) that were trained\n", + "\n", + "# imports to capture long output\n", + "from io import StringIO\n", + "import sys" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4. Build and Run IDAES Flowsheet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This step builds an IDAES flowsheet and imports the surrogate model objects. As shown in the prior three examples, a single model object accounts for all input and output variables, and the JSON model serialized earlier may be imported into a single SurrogateBlock() component. While the serialization method and file structure differs slightly between the ALAMO, PySMO and Keras Python Wrappers, the three are imported similarly into IDAES flowsheets as shown below." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.1 Build IDAES Flowsheet\n", + "\n", + "This method builds an instance of the IDAES flowsheet model and solves the flowsheet using IPOPT. The method allows users to select a case and the surrogate model type to be used (i.e., alamo, pysmo, keras). The case argument consists of a list with values for the input variables (in this order, bypass split fraction and natural gas to steam ratio). Then the method fixes the input variables values to solve a square problem with IPOPT. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Import IDAES and Pyomo libraries\n", + "from pyomo.environ import ConcreteModel, SolverFactory, value, Var, Constraint, Set\n", + "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", + "from idaes.core.surrogate.alamopy import AlamoSurrogate\n", + "from idaes.core.surrogate.pysmo_surrogate import PysmoSurrogate\n", + "from idaes.core.surrogate.keras_surrogate import KerasSurrogate\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "\n", + "def build_flowsheet(case, surrogate_type: SurrType = None):\n", + " print(case, \" \", surrogate_type.value)\n", + " # create the IDAES model and flowsheet\n", + " m = ConcreteModel()\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + " # create flowsheet input variables\n", + " m.fs.bypass_frac = Var(\n", + " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", + " )\n", + " m.fs.ng_steam_ratio = Var(\n", + " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", + " )\n", + "\n", + " # create flowsheet output variables\n", + " m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", + " m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", + " m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", + " m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", + " m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", + " m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", + " m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", + " m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", + " m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", + " m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", + " m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", + " m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", + " m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", + "\n", + " # create input and output variable object lists for flowsheet\n", + " inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", + " outputs = [\n", + " m.fs.steam_flowrate,\n", + " m.fs.reformer_duty,\n", + " m.fs.AR,\n", + " m.fs.C2H6,\n", + " m.fs.C3H8,\n", + " m.fs.C4H10,\n", + " m.fs.CH4,\n", + " m.fs.CO,\n", + " m.fs.CO2,\n", + " m.fs.H2,\n", + " m.fs.H2O,\n", + " m.fs.N2,\n", + " m.fs.O2,\n", + " ]\n", + "\n", + " # create the Pyomo/IDAES block that corresponds to the surrogate\n", + " # call correct PySMO object to use below (will let us avoid nested switches)\n", + "\n", + " # capture long output from loading surrogates (don't need to print it)\n", + " stream = StringIO()\n", + " oldstdout = sys.stdout\n", + " sys.stdout = stream\n", + "\n", + " if surrogate_type == SurrType.ALAMO:\n", + " surrogate = AlamoSurrogate.load_from_file(\"alamo_surrogate.json\")\n", + " m.fs.surrogate = SurrogateBlock()\n", + " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", + " elif surrogate_type == SurrType.KERAS:\n", + " keras_surrogate = KerasSurrogate.load_from_folder(\n", + " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", + " )\n", + " m.fs.surrogate = SurrogateBlock()\n", + " m.fs.surrogate.build_model(\n", + " keras_surrogate,\n", + " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", + " input_vars=inputs,\n", + " output_vars=outputs,\n", + " )\n", + " elif SurrType.is_pysmo(\n", + " surrogate_type\n", + " ): # surrogate is one of the three pysmo basis options\n", + " surrogate = PysmoSurrogate.load_from_file(\n", + " surrogate_type.value + \"_surrogate.json\"\n", + " )\n", + " m.fs.surrogate = SurrogateBlock()\n", + " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", + " else:\n", + " raise ValueError(f\"Unknown surrogate type: {surrogate_type}\")\n", + "\n", + " # revert to standard output\n", + " sys.stdout = oldstdout\n", + "\n", + " # fix input values and solve flowsheet\n", + " m.fs.bypass_frac.fix(case[0])\n", + " m.fs.ng_steam_ratio.fix(case[1])\n", + "\n", + " solver = SolverFactory(\"ipopt\")\n", + " try: # attempt to solve problem\n", + " results = solver.solve(m, tee=True)\n", + " except: # retry solving one more time\n", + " results = solver.solve(m, tee=True)\n", + "\n", + " return (\n", + " value(m.fs.steam_flowrate),\n", + " value(m.fs.reformer_duty),\n", + " value(m.fs.C2H6),\n", + " value(m.fs.CH4),\n", + " value(m.fs.H2),\n", + " value(m.fs.O2),\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.2 Model Size/Form Comparison\n", + "\n", + "As mentioned above, as part of best practices the IDAES ML/AI demonstration includes the analysis of model/solver statistics and performance to determine the best surrogate model, including model size, model form, model trainer, etc. This section provides the rigorous analysis of solver performance comparing different surrogate models (ALAMO, PySMO polynomial, PysMO RBF, and PySMO Kriging).\n", + "\n", + "To obtain the results, we run the flowsheet for ten different simulation cases for each surrogate model type. Since the simulation cases are obtained from the training data set we can compare model performance (absolute error of measurement vs predicted output values)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# Import Auto-reformer training data\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "np.set_printoptions(precision=6, suppress=True)\n", + "csv_data = pd.read_csv(r\"reformer-data.csv\") # 2800 data points\n", + "\n", + "# extracting 10 data points out of 2800 data points, randomly selecting 10 cases to run\n", + "case_data = csv_data.sample(n=10)\n", + "\n", + "# selecting columns that correspond to Input Variables\n", + "inputs = np.array(case_data.iloc[:, :2])\n", + "\n", + "# selecting columns that correspond to Output Variables\n", + "cols = [\"Steam_Flow\", \"Reformer_Duty\", \"C2H6\", \"CH4\", \"H2\", \"O2\"]\n", + "outputs = np.array(case_data[cols])\n", + "\n", + "# For results comparison with minimum memory usage we will extract the values to plot on each pass\n", + "# note that the entire model could be returned and saved on each loop if desired\n", + "\n", + "# create empty dictionaries so we may easily index results as we save them\n", + "# for convenience while plotting, each output variable has its own dictionary\n", + "# indexed by (case number, trainer type)\n", + "# trainers = [\"alamo\", \"pysmo_poly\", \"pysmo_rbf\", \"pysmo_krig\", \"keras\"]\n", + "# temporarily remove keras\n", + "trainers = list(trained_surr - {SurrType.KERAS})\n", + "\n", + "cases = range(len(inputs))\n", + "steam_flow_error = {}\n", + "reformer_duty_error = {}\n", + "conc_C2H6 = {}\n", + "conc_CH4 = {}\n", + "conc_H2 = {}\n", + "conc_O2 = {}\n", + "\n", + "# run flowsheet for each trainer and save results\n", + "i = 0\n", + "for case in inputs: # each case is a value pair (bypass_frac, ng_steam_ratio)\n", + " i = i + 1\n", + " for trainer in trainers:\n", + " [\n", + " sf,\n", + " rd,\n", + " eth,\n", + " meth,\n", + " hyd,\n", + " oxy,\n", + " ] = build_flowsheet(case, surrogate_type=trainer)\n", + " steam_flow_error[(i, trainer)] = abs(\n", + " (sf - value(outputs[i - 1, 0])) / value(outputs[i - 1, 0])\n", + " )\n", + " reformer_duty_error[(i, trainer)] = abs(\n", + " (rd - value(outputs[i - 1, 1])) / value(outputs[i - 1, 1])\n", + " )\n", + " conc_C2H6[(i, trainer)] = abs(eth - value(outputs[i - 1, 2]))\n", + " conc_CH4[(i, trainer)] = abs(meth - value(outputs[i - 1, 3]))\n", + " conc_H2[(i, trainer)] = abs(hyd - value(outputs[i - 1, 4]))\n", + " conc_O2[(i, trainer)] = abs(oxy - value(outputs[i - 1, 5]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can visualize these results by plotting a graph for each of the quantities above, creating a data series for each surrogate trainer. Some data series may overlay if values are identical for all cases:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "from matplotlib import pyplot as plt\n", + "\n", + "# create figure/axes for each plot sequentially, plotting each trainer as a separate data series\n", + "\n", + "# Steam Flow Prediction\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot()\n", + "for trainer in trainers:\n", + " # pick out the points that use that trainer and plot them against case number\n", + " sf = [steam_flow_error[(i, j)] for (i, j) in steam_flow_error if j == trainer]\n", + " ax.plot(cases, sf, label=trainer)\n", + "# add info to plot\n", + "ax.set_xlabel(\"Cases\")\n", + "ax.set_ylabel(\"Relative Error\")\n", + "ax.set_title(\"Steam Flow Prediction\")\n", + "ax.legend()\n", + "plt.yscale(\"log\")\n", + "plt.show()\n", + "\n", + "# Reformer Duty Prediction\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot()\n", + "for trainer in trainers:\n", + " # pick out the points that use that trainer and plot them against case number\n", + " rd = [reformer_duty_error[(i, j)] for (i, j) in reformer_duty_error if j == trainer]\n", + " ax.plot(cases, rd, label=trainer)\n", + "# add info to plot\n", + "ax.set_xlabel(\"Cases\")\n", + "ax.set_ylabel(\"Relative Error\")\n", + "ax.set_title(\"Reformer Duty Prediction\")\n", + "ax.legend()\n", + "plt.yscale(\"log\")\n", + "plt.show()\n", + "\n", + "# C2H6 Mole Fraction Prediction\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot()\n", + "for trainer in trainers:\n", + " # pick out the points that use that trainer and plot them against case number\n", + " eth = [conc_C2H6[(i, j)] for (i, j) in conc_C2H6 if j == trainer]\n", + " ax.plot(cases, eth, label=trainer)\n", + "# add info to plot\n", + "ax.set_xlabel(\"Cases\")\n", + "ax.set_ylabel(\"Absolute Error\")\n", + "ax.set_title(\"C2H6 Mole Fraction Prediction (O(1E-2))\")\n", + "ax.legend()\n", + "plt.yscale(\"log\")\n", + "plt.show()\n", + "\n", + "print()\n", + "print(\"Mole fraction predictions displayed with absolute error:\")\n", + "print()\n", + "\n", + "# CH4 Mole Fraction Prediction\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot()\n", + "for trainer in trainers:\n", + " # pick out the points that use that trainer and plot them against case number\n", + " meth = [conc_CH4[(i, j)] for (i, j) in conc_CH4 if j == trainer]\n", + " ax.plot(cases, meth, label=trainer)\n", + "# add info to plot\n", + "ax.set_xlabel(\"Cases\")\n", + "ax.set_ylabel(\"Absolute Error\")\n", + "ax.set_title(\"CH4 Mole Fraction Prediction (O(1E-1))\")\n", + "ax.legend()\n", + "plt.yscale(\"log\")\n", + "plt.show()\n", + "\n", + "# H2 Mole Fraction Prediction\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot()\n", + "for trainer in trainers:\n", + " # pick out the points that use that trainer and plot them against case number\n", + " hyd = [conc_H2[(i, j)] for (i, j) in conc_H2 if j == trainer]\n", + " ax.plot(cases, hyd, label=trainer)\n", + "# add info to plot\n", + "ax.set_xlabel(\"Cases\")\n", + "ax.set_ylabel(\"Absolute Error\")\n", + "ax.set_title(\"H2 Mole Fraction Prediction (O(1E-1))\")\n", + "ax.legend()\n", + "plt.yscale(\"log\")\n", + "plt.show()\n", + "\n", + "# O2 Mole Fraction Prediction\n", + "fig = plt.figure()\n", + "ax = fig.add_subplot()\n", + "for trainer in trainers:\n", + " # pick out the points that use that trainer and plot them against case number\n", + " oxy = [conc_O2[(i, j)] for (i, j) in conc_O2 if j == trainer]\n", + " ax.plot(cases, oxy, label=trainer)\n", + "# add info to plot\n", + "ax.set_xlabel(\"Cases\")\n", + "ax.set_ylabel(\"Absolute Error\")\n", + "ax.set_title(\"O2 Mole Fraction Prediction (O(1E-20))\")\n", + "ax.legend()\n", + "plt.yscale(\"log\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.3 Comparing Surrogate Optimization\n", + "Extending this analysis, we will run a single optimization scenario for each surrogate model and compare results. As in previous examples detailing workflows for [ALAMO](alamo_flowsheet_optimization_src_usr.ipynb), [PySMO](pysmo_flowsheet_optimization_src_usr.ipynb) and [Keras](keras_flowsheet_optimization_src_usr.ipynb), we will optimize hydrogen production while restricting nitrogen below 34 mol% in the product stream." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Import additional Pyomo libraries\n", + "from pyomo.environ import Objective, maximize\n", + "\n", + "\n", + "def run_optimization(surrogate_type=None):\n", + " print(surrogate_type)\n", + " # create the IDAES model and flowsheet\n", + " m = ConcreteModel()\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + " # create flowsheet input variables\n", + " m.fs.bypass_frac = Var(\n", + " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", + " )\n", + " m.fs.ng_steam_ratio = Var(\n", + " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", + " )\n", + "\n", + " # create flowsheet output variables\n", + " m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", + " m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", + " m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", + " m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", + " m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", + " m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", + " m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", + " m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", + " m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", + " m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", + " m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", + " m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", + " m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", + "\n", + " # create input and output variable object lists for flowsheet\n", + " inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", + " outputs = [\n", + " m.fs.steam_flowrate,\n", + " m.fs.reformer_duty,\n", + " m.fs.AR,\n", + " m.fs.C2H6,\n", + " m.fs.C3H8,\n", + " m.fs.C4H10,\n", + " m.fs.CH4,\n", + " m.fs.CO,\n", + " m.fs.CO2,\n", + " m.fs.H2,\n", + " m.fs.H2O,\n", + " m.fs.N2,\n", + " m.fs.O2,\n", + " ]\n", + "\n", + " # create the Pyomo/IDAES block that corresponds to the surrogate\n", + " # call correct PySMO object to use below (will let us avoid nested switches)\n", + "\n", + " # capture long output from loading surrogates (don't need to print it)\n", + " stream = StringIO()\n", + " oldstdout = sys.stdout\n", + " sys.stdout = stream\n", + "\n", + " if surrogate_type == SurrType.ALAMO:\n", + " surrogate = AlamoSurrogate.load_from_file(\"alamo_surrogate.json\")\n", + " m.fs.surrogate = SurrogateBlock()\n", + " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", + " elif surrogate_type == SurrType.KERAS:\n", + " keras_surrogate = KerasSurrogate.load_from_folder(\n", + " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", + " )\n", + " m.fs.surrogate = SurrogateBlock()\n", + " m.fs.surrogate.build_model(\n", + " keras_surrogate,\n", + " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", + " input_vars=inputs,\n", + " output_vars=outputs,\n", + " )\n", + " elif SurrType.is_pysmo(\n", + " surrogate_type\n", + " ): # surrogate is one of the three pysmo basis options\n", + " surrogate = PysmoSurrogate.load_from_file(\n", + " surrogate_type.value + \"_surrogate.json\"\n", + " )\n", + " m.fs.surrogate = SurrogateBlock()\n", + " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", + " else:\n", + " raise ValueError(f\"Unknown surrogate type: {surrogate_type}\")\n", + "\n", + " # revert to standard output\n", + " sys.stdout = oldstdout\n", + "\n", + " # unfix input values and add the objective/constraint to the model\n", + " m.fs.bypass_frac.unfix()\n", + " m.fs.ng_steam_ratio.unfix()\n", + " m.fs.obj = Objective(expr=m.fs.H2, sense=maximize)\n", + " m.fs.con = Constraint(expr=m.fs.N2 <= 0.34)\n", + "\n", + " solver = SolverFactory(\"ipopt\")\n", + " try: # attempt to solve problem\n", + " results = solver.solve(m, tee=True)\n", + " except: # retry solving one more time\n", + " results = solver.solve(m, tee=True)\n", + "\n", + " return inputs, outputs" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# create list objects to store data, run optimization\n", + "results = {}\n", + "for trainer in trainers:\n", + " inputs, outputs = run_optimization(trainer)\n", + " for var in inputs:\n", + " results[(var.name, trainer)] = value(var)\n", + " for var in outputs:\n", + " results[(var.name, trainer)] = value(var)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# print results as a table\n", + "df_index = []\n", + "for var in inputs:\n", + " df_index.append(var.name)\n", + "for var in outputs:\n", + " df_index.append(var.name)\n", + "df_cols = trainers\n", + "\n", + "df = pd.DataFrame(index=df_index, columns=df_cols)\n", + "for i in df_index:\n", + " for j in df_cols:\n", + " df[j][i] = results[(i, j)]\n", + "\n", + "df # display results table" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + } }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# ML/AI Best Practices: \"Selecting Surrogate Model Form/Size for Optimization\"\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "In this notebook we demonstrate the use of model and solver statistics to select the best surrogate model. For this purpose we trained (offline) different models with ALAMO, PySMO for three basis forms, and TensorFlow Keras. The surrogates are imported into the notebook, and the IDAES flowsheet is constructed and solved." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. Introduction\n", - "\n", - "This example demonstrates autothermal reformer optimization leveraging the ALAMO, PySMO and Keras surrogate trainers, and compares key indicators of model performance. In this notebook, IPOPT will be run with statistics using ALAMO, PySMO Polynomial, PySMO RBF, PySMO Kriging and Keras surrogate models to assess each model type for flowsheet integration and tractability." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Problem Statement \n", - "\n", - "Within the context of a larger Natural Gas Fuel Cell (NGFC) system, the autothermal reformer unit is used to generate syngas from air, steam, and natural gas. Two input variables are considered for this example (reformer bypass fraction and fuel to steam ratio). The reformer bypass fraction (also called internal reformation percentage) plays an important role in the syngas final composition and it is typically controlled in this process. The fuel to steam ratio is an important variable that affects the final syngas reaction and heat duty required by the reactor. The syngas is then used as fuel by a solid-oxide fuel cell (SOFC) to generate electricity and heat. \n", - "\n", - "The autothermal reformer is typically modeled using the IDAES Gibbs reactor and this reactor is robust once it is initialized; however, the overall model robustness is affected due to several components present in the reaction, scaling issues for the largrangean multipliers, and Gibbs free energy minimization formulation. Substituting rigorously trained and validated surrogates in lieu of rigorous unit model equations increases the robustness of the problem.\n", - "\n", - "### 2.1. Inputs: \n", - "- Bypass fraction (dimensionless) - split fraction of natural gas to bypass AR unit and feed directly to the power island\n", - "- NG-Steam Ratio (dimensionless) - proportion of natural relative to steam fed into AR unit operation\n", - "\n", - "### 2.2. Outputs:\n", - "- Steam flowrate (kg/s) - inlet steam fed to AR unit\n", - "- Reformer duty (kW) - required energy input to AR unit\n", - "- Composition (dimensionless) - outlet mole fractions of components (Ar, C2H6, C3H8, C4H10, CH4, CO, CO2, H2, H2O, N2, O2)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\".\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"AR_PFD.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Training Surrogates" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Previous Jupyter Notebooks demonstrated the workflow to import data, train surrogate models using [ALAMO](alamo/alamo_flowsheet_optimization_src_usr.ipynb), [PySMO](pysmo/pysmo_flowsheet_optimization_src_usr.ipynb) and Keras, and develop IDAES's validation plots. To keep this notebook simple, this notebook simply loads the surrogate models trained off line.\n", - "\n", - "Note that the training/loading method includes a \"retrain\" argument in case the user wants to retrain all surrogate models. Since the retrain method runs ALAMO, PySMO (Polynomial, Radial Basis Functions, and Kriging basis types) and Keras, it takes about an 1 hr to complete the training for all models.\n", - "\n", - "Each run will overwrite the serialized JSON files for previously trained surrogates if retraining is enforced. To retrain individual surrogates, simply delete the desired JSON before running this notebook (for Keras, delete the folder `keras_surrogate/`)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "from idaes_examples.mod.surrogates.AR_training_methods import (\n", - " train_load_surrogates,\n", - " SurrType,\n", - ")\n", - "\n", - "trained_surr = train_load_surrogates(retrain=False)\n", - "# setting retrain to True will take ~ 1 hour to run, best to load if possible\n", - "# setting retrain to False will only generate missing surrogates (only if JSON/folder doesn't exist)\n", - "# this method trains surrogates and serializes to JSON\n", - "# The return value is a set of surrogate types (instances of SurrType) that were trained\n", - "\n", - "# imports to capture long output\n", - "from io import StringIO\n", - "import sys" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4. Build and Run IDAES Flowsheet" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This step builds an IDAES flowsheet and imports the surrogate model objects. As shown in the prior three examples, a single model object accounts for all input and output variables, and the JSON model serialized earlier may be imported into a single SurrogateBlock() component. While the serialization method and file structure differs slightly between the ALAMO, PySMO and Keras Python Wrappers, the three are imported similarly into IDAES flowsheets as shown below." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4.1 Build IDAES Flowsheet\n", - "\n", - "This method builds an instance of the IDAES flowsheet model and solves the flowsheet using IPOPT. The method allows users to select a case and the surrogate model type to be used (i.e., alamo, pysmo, keras). The case argument consists of a list with values for the input variables (in this order, bypass split fraction and natural gas to steam ratio). Then the method fixes the input variables values to solve a square problem with IPOPT. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Import IDAES and Pyomo libraries\n", - "from pyomo.environ import ConcreteModel, SolverFactory, value, Var, Constraint, Set\n", - "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", - "from idaes.core.surrogate.alamopy import AlamoSurrogate\n", - "from idaes.core.surrogate.pysmo_surrogate import PysmoSurrogate\n", - "from idaes.core.surrogate.keras_surrogate import KerasSurrogate\n", - "from idaes.core import FlowsheetBlock\n", - "\n", - "\n", - "def build_flowsheet(case, surrogate_type: SurrType = None):\n", - " print(case, \" \", surrogate_type.value)\n", - " # create the IDAES model and flowsheet\n", - " m = ConcreteModel()\n", - " m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - " # create flowsheet input variables\n", - " m.fs.bypass_frac = Var(\n", - " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", - " )\n", - " m.fs.ng_steam_ratio = Var(\n", - " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", - " )\n", - "\n", - " # create flowsheet output variables\n", - " m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", - " m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", - " m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", - " m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", - " m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", - " m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", - " m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", - " m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", - " m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", - " m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", - " m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", - " m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", - " m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", - "\n", - " # create input and output variable object lists for flowsheet\n", - " inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", - " outputs = [\n", - " m.fs.steam_flowrate,\n", - " m.fs.reformer_duty,\n", - " m.fs.AR,\n", - " m.fs.C2H6,\n", - " m.fs.C3H8,\n", - " m.fs.C4H10,\n", - " m.fs.CH4,\n", - " m.fs.CO,\n", - " m.fs.CO2,\n", - " m.fs.H2,\n", - " m.fs.H2O,\n", - " m.fs.N2,\n", - " m.fs.O2,\n", - " ]\n", - "\n", - " # create the Pyomo/IDAES block that corresponds to the surrogate\n", - " # call correct PySMO object to use below (will let us avoid nested switches)\n", - "\n", - " # capture long output from loading surrogates (don't need to print it)\n", - " stream = StringIO()\n", - " oldstdout = sys.stdout\n", - " sys.stdout = stream\n", - "\n", - " if surrogate_type == SurrType.ALAMO:\n", - " surrogate = AlamoSurrogate.load_from_file(\"alamo_surrogate.json\")\n", - " m.fs.surrogate = SurrogateBlock()\n", - " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", - " elif surrogate_type == SurrType.KERAS:\n", - " keras_surrogate = KerasSurrogate.load_from_folder(\n", - " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", - " )\n", - " m.fs.surrogate = SurrogateBlock()\n", - " m.fs.surrogate.build_model(\n", - " keras_surrogate,\n", - " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", - " input_vars=inputs,\n", - " output_vars=outputs,\n", - " )\n", - " elif SurrType.is_pysmo(\n", - " surrogate_type\n", - " ): # surrogate is one of the three pysmo basis options\n", - " surrogate = PysmoSurrogate.load_from_file(\n", - " surrogate_type.value + \"_surrogate.json\"\n", - " )\n", - " m.fs.surrogate = SurrogateBlock()\n", - " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", - " else:\n", - " raise ValueError(f\"Unknown surrogate type: {surrogate_type}\")\n", - "\n", - " # revert to standard output\n", - " sys.stdout = oldstdout\n", - "\n", - " # fix input values and solve flowsheet\n", - " m.fs.bypass_frac.fix(case[0])\n", - " m.fs.ng_steam_ratio.fix(case[1])\n", - "\n", - " solver = SolverFactory(\"ipopt\")\n", - " try: # attempt to solve problem\n", - " results = solver.solve(m, tee=True)\n", - " except: # retry solving one more time\n", - " results = solver.solve(m, tee=True)\n", - "\n", - " return (\n", - " value(m.fs.steam_flowrate),\n", - " value(m.fs.reformer_duty),\n", - " value(m.fs.C2H6),\n", - " value(m.fs.CH4),\n", - " value(m.fs.H2),\n", - " value(m.fs.O2),\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4.2 Model Size/Form Comparison\n", - "\n", - "As mentioned above, as part of best practices the IDAES ML/AI demonstration includes the analysis of model/solver statistics and performance to determine the best surrogate model, including model size, model form, model trainer, etc. This section provides the rigorous analysis of solver performance comparing different surrogate models (ALAMO, PySMO polynomial, PysMO RBF, and PySMO Kriging).\n", - "\n", - "To obtain the results, we run the flowsheet for ten different simulation cases for each surrogate model type. Since the simulation cases are obtained from the training data set we can compare model performance (absolute error of measurement vs predicted output values)." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# Import Auto-reformer training data\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "np.set_printoptions(precision=6, suppress=True)\n", - "csv_data = pd.read_csv(r\"reformer-data.csv\") # 2800 data points\n", - "\n", - "# extracting 10 data points out of 2800 data points, randomly selecting 10 cases to run\n", - "case_data = csv_data.sample(n=10)\n", - "\n", - "# selecting columns that correspond to Input Variables\n", - "inputs = np.array(case_data.iloc[:, :2])\n", - "\n", - "# selecting columns that correspond to Output Variables\n", - "cols = [\"Steam_Flow\", \"Reformer_Duty\", \"C2H6\", \"CH4\", \"H2\", \"O2\"]\n", - "outputs = np.array(case_data[cols])\n", - "\n", - "# For results comparison with minimum memory usage we will extract the values to plot on each pass\n", - "# note that the entire model could be returned and saved on each loop if desired\n", - "\n", - "# create empty dictionaries so we may easily index results as we save them\n", - "# for convenience while plotting, each output variable has its own dictionary\n", - "# indexed by (case number, trainer type)\n", - "# trainers = [\"alamo\", \"pysmo_poly\", \"pysmo_rbf\", \"pysmo_krig\", \"keras\"]\n", - "# temporarily remove keras\n", - "trainers = list(trained_surr - {SurrType.KERAS})\n", - "\n", - "cases = range(len(inputs))\n", - "steam_flow_error = {}\n", - "reformer_duty_error = {}\n", - "conc_C2H6 = {}\n", - "conc_CH4 = {}\n", - "conc_H2 = {}\n", - "conc_O2 = {}\n", - "\n", - "# run flowsheet for each trainer and save results\n", - "i = 0\n", - "for case in inputs: # each case is a value pair (bypass_frac, ng_steam_ratio)\n", - " i = i + 1\n", - " for trainer in trainers:\n", - " [\n", - " sf,\n", - " rd,\n", - " eth,\n", - " meth,\n", - " hyd,\n", - " oxy,\n", - " ] = build_flowsheet(case, surrogate_type=trainer)\n", - " steam_flow_error[(i, trainer)] = abs(\n", - " (sf - value(outputs[i - 1, 0])) / value(outputs[i - 1, 0])\n", - " )\n", - " reformer_duty_error[(i, trainer)] = abs(\n", - " (rd - value(outputs[i - 1, 1])) / value(outputs[i - 1, 1])\n", - " )\n", - " conc_C2H6[(i, trainer)] = abs(eth - value(outputs[i - 1, 2]))\n", - " conc_CH4[(i, trainer)] = abs(meth - value(outputs[i - 1, 3]))\n", - " conc_H2[(i, trainer)] = abs(hyd - value(outputs[i - 1, 4]))\n", - " conc_O2[(i, trainer)] = abs(oxy - value(outputs[i - 1, 5]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can visualize these results by plotting a graph for each of the quantities above, creating a data series for each surrogate trainer. Some data series may overlay if values are identical for all cases:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "from matplotlib import pyplot as plt\n", - "\n", - "# create figure/axes for each plot sequentially, plotting each trainer as a separate data series\n", - "\n", - "# Steam Flow Prediction\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot()\n", - "for trainer in trainers:\n", - " # pick out the points that use that trainer and plot them against case number\n", - " sf = [steam_flow_error[(i, j)] for (i, j) in steam_flow_error if j == trainer]\n", - " ax.plot(cases, sf, label=trainer)\n", - "# add info to plot\n", - "ax.set_xlabel(\"Cases\")\n", - "ax.set_ylabel(\"Relative Error\")\n", - "ax.set_title(\"Steam Flow Prediction\")\n", - "ax.legend()\n", - "plt.yscale(\"log\")\n", - "plt.show()\n", - "\n", - "# Reformer Duty Prediction\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot()\n", - "for trainer in trainers:\n", - " # pick out the points that use that trainer and plot them against case number\n", - " rd = [reformer_duty_error[(i, j)] for (i, j) in reformer_duty_error if j == trainer]\n", - " ax.plot(cases, rd, label=trainer)\n", - "# add info to plot\n", - "ax.set_xlabel(\"Cases\")\n", - "ax.set_ylabel(\"Relative Error\")\n", - "ax.set_title(\"Reformer Duty Prediction\")\n", - "ax.legend()\n", - "plt.yscale(\"log\")\n", - "plt.show()\n", - "\n", - "# C2H6 Mole Fraction Prediction\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot()\n", - "for trainer in trainers:\n", - " # pick out the points that use that trainer and plot them against case number\n", - " eth = [conc_C2H6[(i, j)] for (i, j) in conc_C2H6 if j == trainer]\n", - " ax.plot(cases, eth, label=trainer)\n", - "# add info to plot\n", - "ax.set_xlabel(\"Cases\")\n", - "ax.set_ylabel(\"Absolute Error\")\n", - "ax.set_title(\"C2H6 Mole Fraction Prediction (O(1E-2))\")\n", - "ax.legend()\n", - "plt.yscale(\"log\")\n", - "plt.show()\n", - "\n", - "print()\n", - "print(\"Mole fraction predictions displayed with absolute error:\")\n", - "print()\n", - "\n", - "# CH4 Mole Fraction Prediction\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot()\n", - "for trainer in trainers:\n", - " # pick out the points that use that trainer and plot them against case number\n", - " meth = [conc_CH4[(i, j)] for (i, j) in conc_CH4 if j == trainer]\n", - " ax.plot(cases, meth, label=trainer)\n", - "# add info to plot\n", - "ax.set_xlabel(\"Cases\")\n", - "ax.set_ylabel(\"Absolute Error\")\n", - "ax.set_title(\"CH4 Mole Fraction Prediction (O(1E-1))\")\n", - "ax.legend()\n", - "plt.yscale(\"log\")\n", - "plt.show()\n", - "\n", - "# H2 Mole Fraction Prediction\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot()\n", - "for trainer in trainers:\n", - " # pick out the points that use that trainer and plot them against case number\n", - " hyd = [conc_H2[(i, j)] for (i, j) in conc_H2 if j == trainer]\n", - " ax.plot(cases, hyd, label=trainer)\n", - "# add info to plot\n", - "ax.set_xlabel(\"Cases\")\n", - "ax.set_ylabel(\"Absolute Error\")\n", - "ax.set_title(\"H2 Mole Fraction Prediction (O(1E-1))\")\n", - "ax.legend()\n", - "plt.yscale(\"log\")\n", - "plt.show()\n", - "\n", - "# O2 Mole Fraction Prediction\n", - "fig = plt.figure()\n", - "ax = fig.add_subplot()\n", - "for trainer in trainers:\n", - " # pick out the points that use that trainer and plot them against case number\n", - " oxy = [conc_O2[(i, j)] for (i, j) in conc_O2 if j == trainer]\n", - " ax.plot(cases, oxy, label=trainer)\n", - "# add info to plot\n", - "ax.set_xlabel(\"Cases\")\n", - "ax.set_ylabel(\"Absolute Error\")\n", - "ax.set_title(\"O2 Mole Fraction Prediction (O(1E-20))\")\n", - "ax.legend()\n", - "plt.yscale(\"log\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4.3 Comparing Surrogate Optimization\n", - "Extending this analysis, we will run a single optimization scenario for each surrogate model and compare results. As in previous examples detailing workflows for [ALAMO](alamo_flowsheet_optimization_src_usr.ipynb), [PySMO](pysmo_flowsheet_optimization_src_usr.ipynb) and [Keras](keras_flowsheet_optimization_src_usr.ipynb), we will optimize hydrogen production while restricting nitrogen below 34 mol% in the product stream." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Import additional Pyomo libraries\n", - "from pyomo.environ import Objective, maximize\n", - "\n", - "\n", - "def run_optimization(surrogate_type=None):\n", - " print(surrogate_type)\n", - " # create the IDAES model and flowsheet\n", - " m = ConcreteModel()\n", - " m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - " # create flowsheet input variables\n", - " m.fs.bypass_frac = Var(\n", - " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", - " )\n", - " m.fs.ng_steam_ratio = Var(\n", - " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", - " )\n", - "\n", - " # create flowsheet output variables\n", - " m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", - " m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", - " m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", - " m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", - " m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", - " m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", - " m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", - " m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", - " m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", - " m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", - " m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", - " m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", - " m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", - "\n", - " # create input and output variable object lists for flowsheet\n", - " inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", - " outputs = [\n", - " m.fs.steam_flowrate,\n", - " m.fs.reformer_duty,\n", - " m.fs.AR,\n", - " m.fs.C2H6,\n", - " m.fs.C3H8,\n", - " m.fs.C4H10,\n", - " m.fs.CH4,\n", - " m.fs.CO,\n", - " m.fs.CO2,\n", - " m.fs.H2,\n", - " m.fs.H2O,\n", - " m.fs.N2,\n", - " m.fs.O2,\n", - " ]\n", - "\n", - " # create the Pyomo/IDAES block that corresponds to the surrogate\n", - " # call correct PySMO object to use below (will let us avoid nested switches)\n", - "\n", - " # capture long output from loading surrogates (don't need to print it)\n", - " stream = StringIO()\n", - " oldstdout = sys.stdout\n", - " sys.stdout = stream\n", - "\n", - " if surrogate_type == SurrType.ALAMO:\n", - " surrogate = AlamoSurrogate.load_from_file(\"alamo_surrogate.json\")\n", - " m.fs.surrogate = SurrogateBlock()\n", - " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", - " elif surrogate_type == SurrType.KERAS:\n", - " keras_surrogate = KerasSurrogate.load_from_folder(\n", - " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", - " )\n", - " m.fs.surrogate = SurrogateBlock()\n", - " m.fs.surrogate.build_model(\n", - " keras_surrogate,\n", - " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", - " input_vars=inputs,\n", - " output_vars=outputs,\n", - " )\n", - " elif SurrType.is_pysmo(\n", - " surrogate_type\n", - " ): # surrogate is one of the three pysmo basis options\n", - " surrogate = PysmoSurrogate.load_from_file(\n", - " surrogate_type.value + \"_surrogate.json\"\n", - " )\n", - " m.fs.surrogate = SurrogateBlock()\n", - " m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", - " else:\n", - " raise ValueError(f\"Unknown surrogate type: {surrogate_type}\")\n", - "\n", - " # revert to standard output\n", - " sys.stdout = oldstdout\n", - "\n", - " # unfix input values and add the objective/constraint to the model\n", - " m.fs.bypass_frac.unfix()\n", - " m.fs.ng_steam_ratio.unfix()\n", - " m.fs.obj = Objective(expr=m.fs.H2, sense=maximize)\n", - " m.fs.con = Constraint(expr=m.fs.N2 <= 0.34)\n", - "\n", - " solver = SolverFactory(\"ipopt\")\n", - " try: # attempt to solve problem\n", - " results = solver.solve(m, tee=True)\n", - " except: # retry solving one more time\n", - " results = solver.solve(m, tee=True)\n", - "\n", - " return inputs, outputs" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# create list objects to store data, run optimization\n", - "results = {}\n", - "for trainer in trainers:\n", - " inputs, outputs = run_optimization(trainer)\n", - " for var in inputs:\n", - " results[(var.name, trainer)] = value(var)\n", - " for var in outputs:\n", - " results[(var.name, trainer)] = value(var)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# print results as a table\n", - "df_index = []\n", - "for var in inputs:\n", - " df_index.append(var.name)\n", - "for var in outputs:\n", - " df_index.append(var.name)\n", - "df_cols = trainers\n", - "\n", - "df = pd.DataFrame(index=df_index, columns=df_cols)\n", - "for i in df_index:\n", - " for j in df_cols:\n", - " df[j][i] = results[(i, j)]\n", - "\n", - "df # display results table" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.16" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization.ipynb b/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization.ipynb index 8a16cf25..d7739732 100644 --- a/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization_doc.ipynb b/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization_doc.ipynb index bae4c938..7a02d4dc 100644 --- a/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization_doc.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -60,7 +61,19 @@ "cell_type": "code", "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABYUAAALDCAYAAABKE28mAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+lSURBVHhe7N0PnCP3Xd9/FSj/C6UFOgX6o9seLVeu4IVCV4ADVnDCCUyIwpF6Hz3gEEe4iBAc5RKc7TVko4cDG+Ugl60dnGVNnGixnWgTX9DZONEWc44u+IKuiZ09kgs6EmM24QKiPhzFPcPn9/2M5qsdSTPSSPtP2n098/jmVtrvzHy/35nVWu/96jsxAQAAAAAAAADsGYTCAAAAAAAAALCHEAoDAAAAAAAAwB5CKAwAAAAAAAAAewihMAAAAAAAAADsIYTCAAAAAAAAALCHEAoDAAAAAAAAwB5CKAwAAAAAAAAAewihMAAAAAAAAADsIYTCAAAAAAAAALCHEAoDAAAAAAAAwB5CKAwAAAAAAAAAewihMAAAAAAAAADsIYTCAAAAAAAAALCHEAoDwG71sYdk8nt+R2I9yztk4dNe/bH0tKzeX5T5j3oPR9nnHpf8mx+VNe9hoM8+IqnA87Qkhc96dbA3bcu1cUUKLws6xmAlfvguSby0KDN3PCzFj31GGs96ux9RjScvSuGOoqRuXhDH14+JF5l+vPK9Mn9/VaqfHfFOYDRdeF/bz8Zml9T9V7wDYfe7KLmAa0BL7oJXBQCAAREKA8AuVXlz8JuHzpK450lvizHz2ccl/9JmH0b6DdGzT7nBdeJ609aXPUIojOGMUSjcVa6/S7L316Q+arnqs3Upv+mutiA4rEwu1ryNgAEQCmPTEAoDADYfoTAA7EbPfERmNIQMePPQVW56SKreZmNBQ9Z33SsTvj6M7Buiz1Zl5mbfWBMKY1jjHAp7Jf66R6U2MsHw01J5812B7Qwqmfc/5W0HDIBQGJuGUBgAsPkIhQFgF2p88L2BbxyCy4LkP+ZtOOLqH39Esv6Q1Ssj94bo2StSfttSW3DtFkJhDGsXhMJa4m++KA3vaDvq0w9LMqB9weUuWbjsbQcMglAYm4ZQGACw+QiFAWDXeUpKrwl+4xBWJt92ydt2lI3PG6K1+5cC20kojKHtklBYA9b8x73D7aD6++8NaFtYea+Un/E2BAZBKIxNQygMANh8hMIAsNvUH5V0wJuG2PfcK7k3vyPgeVOuf59URv4+SoTC2MN2OhR+80WvTm+Np67I6sMPSLLH8jXO3Ed2fLZwdXEhsG2x65dk4WO+pSKeeVrqn74ide8hMJDQUJjXdAyKUBgAsPkIhQFgl6k/GDID7tWPSr3HR6ZnPjTqU+EIhbGHjUko3PLkIzIdGgzv/Mzb0BtxvulxrwawCQiFsWkIhQEAm49QGAB2lfBQJ/2gznV7UhZ+Lvj7sTfs/Oy93giFsYeNWyhsVN8WMhtX1zHf4SUkQkPhIfoJhCIUxqYhFAYAbD5CYQDYTUJnAt8rRe/zz7V3hSwhYeqURvoG+1vwhqj+KSnfX5bsK++SxMH2fcYPv0Myb3pYih/7jDQGXFpjy0PhZz4jlfvfJ+nDC+s3s7t+QRIvLUr+/ouyNvRSIM9K/XJVFt5wryRuXhDH14aNjEdPz9al8vaiJL3xdw7eJek3PCzlJwecSvrsU1J98AHJvNQ3Js81Y/LK90nhQo82m2ugZI6f8vVX25A68UDv7Xp59hlZu/CIzOs4+s+Rb/+Jw/dK9u2PSPlyxB+6MQyF5Xz4eqrRf2a35prc9FB4i15L+ml88lHJvXL9Govra8CDNakPeJzGk483x9jX9v03m3a/vSqrYTvzrvOc6XP8uf7+mmv7XT2262uMX4c67aVQWF9L3/U+8xrc/TOgJX5YX1ffJwvm+lzbzE8K1GtSvMO8hr9o/VgTLzLn782PSCX0/DWvsfkT7+i+5u/otd0wnnV/TvLmWEE/J7XI/921Of8N1HjyohR0vDp+N+2/Wa/5shQ+9KmBXz8AAOOLUBgAdpHQwFeXjvDq9LrrfnM2cUQbCqmivrkJr9ez9At2Pvu4zL/mrrawoWd57pLkP9T7hj6hQXDP0jFWfcf0Wak9WJREj/Va3XL9XZJ98El3l1E1PvmIZG8O2FdAcW6+VxY+Gu2dbHD45vXn2c9I4Zag72u5S+Y/GWEfRv2jZUn53mwHlYmXlqXqb7KGyG9f6gpsO4tz8/uk/Dlvmwjq5x/o25bO4txclMInn/b2EGIcQ+EeN9mKEmJs7jU55GtJv/HdgteSlrBz7p2LhhnfeND3tbyu2vzkR599yLNPSjHXp/1BryeffjTSuUm/61MDfQJllF+HhrLNoXDN/B4KPZc/97DUeoR91cW7grczxXmN778hOj39KSn0u4YCSuptj/cJH0N+Zu0fVyO+hqfefqn9OE9dkvmXBtf1l8SbPtI3HA37vd96fYt4rK42BtpgKPy5xyUfoS1uMa9TuYcH+28IAMB4IhQGgF2jJvmbAv7j3pT2sLfHEhL+8LifMQ2Fa++PEKqGlIlXPyyrIdndlofCTz4llTsGe+M9ff9nvB33pmMSGi71KMnFS30Dn/Aw5mnzvfAQInbTQ1Ltuw/T9tK9fUOBVnnR+6Si5+/Zz0jx1QHfDyt2u56eltV7egQyfctd5trvcZAxDIUbH3xv8L5M6RdibP41ufmh8Fa9lrT0CnR7rtn8O5J5vxeW9trH02ZMIgawWuzrSePCAwP1e7e8Dg1l22cK16X0mqDjNUvynpCg73L4H4tjN/V4/fvcR2TGN0N30OLc8kiPoDrkZ1ZD4QFfw+PmenevkSfPSXqAP9q1tgvRMxQe8FgTrz7XM7TfSCjc+NhDPW/+GVbir3u0T5sAAOOOUBgAdgvzH/2TAf9R7186wgpfQmKAN6pjGAr3nEUVsTg3PxD4BnlrQ+G7ZPqWHsFFaHmHLFz29h1io2OSfHut55vmsDBm/p739jxu8l3r4UXoPu7vMVMypMTv+IiUe4VAIcWZ673mduP8+0J+/gYo179XymHhy9iFws9IeS5gP25ZkmKP2ddbc00O+VoSMr5b+VrSEnbO3/Rw+B/2tOh1ZD/9HrqPR3rMjg0p15uxON87jA4u5nXo0157QozD69BQdmL5iKcfl5mQPxC7x+3sks6UDvu57/XHqp7bRS+hQXVoKFyWwsCv4aYfH/yI5IYIsHvdhDc0FH7YtH2IYw0VkpvSKxTu+YmCCCX+umrvZa8AAGONUBgAdonQmzoFzf4NDZgGeBO8oZAq6pubIYOcgABro2+M/CXojdvWhsLDl55h5pObcTzzZvuj4W+ag8OYfqX9DxnD7WOzS/cfV1qevRQ6S3/Q0prh2WlDP29RbV4o3PPnTT/G7tXrsmXX5JCvJQHju9WvJS1Dvh5Mvu2StwNjC15Thiltbeo0Jq9DQwkNhTdehg4CX9Z+zdWWw393xe8In4Vdf/DewG0GLqGzsYf9md3k0uMTVGG/950hP0GgZboUtrzMEKFwzz8QRC/hbQIAjDtCYQDYDZ41bxZC3oQErxPcI/w53COw8RunUPgZs58eb4ziryxL6XJ9/cZFT1+R1Yd7rw2bWm7/SPR2hcKJ3MNS+fTTvrZ+Rsp3vCN8ttv1D4S84a6Hf/xW1xB910WpPe0d5NmnpXbhYcmEzXzqEfINFcZ0vAnvtw9dk3fBd1O4xudqshBlFuSL/Ns9K41PV2Wmx8fpsx8MDp3q7w8JR65/h+Q+5L8hljnGZz8lpV7nKyx8HflQ2PSt/pTUP12T4tvv7bm8QOb9YRHLVl6TQ76WdI7vNryWtAwV6C5I/mPe9irCPlJvq8rq57xrW8f14fdGCr2Td/i2e6Yu1Xf1WMol9PfK+LwODWWHQmGdqV+9I3w2beua++y58JnfPdcgDl+uKv66R6Rqrwv1TJ/zFvoa1v9n1v4+dD37jNQ/9nCkmezx1/m302v+fT1es3wz7ztE+b3f9vPl/p55XOZf2WOms3+mf5vw8Qi7FkInC5jS/nNvxu5yVXLp4LrhbQIAjDtCYQDYBRofCvsI7L1SCpl4GP5mZkHyH/cq9bItobDfMNs09XrjNr3cY2b0U4+HfwS0x5uk0OPZG+SE6RPg9Gpr+E2CQs7Hx8OWG+nxcWFdgzRkPMLOQb8wxg0Q/HfYeeZpqXeMa899hK33W39U0kH1bRliu9T9QbOlngpZw3NBZs6HjGOvICzsGtnpUHiTSs+Zsdt0TarQa6pP+L2tryX9At2gPzrUO8ap32tKyHq/vcIkLYNvZ37evDptxuh1aCg7Fgobz/a4f4AuBfJkj/WH3e97+wkSdt46ZiG3CV3iKqwv4b/ztYSt99tvBvPg24W/xvYOhXtcw9J7LevgP+YP+N9ATz0qmYC6WkLX+e5x08Xg338AgHFHKAwAY6/H2p297hjeIyzo+VFfa0Mh1YBvblzDbKPCZzRNvunxnutQunrc0Cn4jdsWhcI9Z20ZoR/BDg75q4vB4U2/cx/2BwgnJEzrGcb0ChB8wvfRMSuyTV2KPWYLZz8Y9mbdvCl+SfA2oYHhs09L/bOfksrDj8j8He+V9OG7ZH+vnz2jthyyrvduDoX73LBvu65JNVwovM2vJT0D3V5/dPDptY9eM2E/+kD4bPZer0XnB1tDd5xeh4ayk6Gw6nHNOc81JeB5LVFuDth46impfexxKb7rAZk58Q5JvOiuHq/HxrOPy0zAsbQMHArrkhNh5+xz52Q6aBst+geYsB+bHsuYhI11r1A4fK1kT6/QPvD3x2D/DRT6CZZ+M+A/HXLTwX7//QIAGEuEwgAw7p75iGSD/gPelND1SV09AqBeb7iscQmFLz8siYBtotz8yAqd/RYS/G1FKNx/ls4g4xMWfEaYJR72xj5kXcheYUzP8+YTuo/r3yeVHtdp+LGH3K5nYDiYga+RMQ+FE7lHZLVnhrl916Qa6hxv92tJr0A3akAz7GtKr+3ClrtQA12n4/U6NJSdDoWNQW/i59xybovCv0F/h4fX7/UHn17bxd70uFcnyOD/jREeCkdbbiE0uA38HTVY+ypvCq7b+78LVdjPZfgnzwAA44tQGADGXPhHHvv/B3yvWS5933BuKKQa/M3XcNuYPpZC+viSR0LXn+xi3tgHv6kO/kj05ofCEUKSQcYndMZWlHM32BvGYYNZv9B99BnPTd9uo6Gwri974VFZeMO9Eg9bY3Y3hcLPXZD0mx+RypMR0pFtvCbVMOd4219Lhg1m/Xrso+dr/KZvF3Aex+x1aCihofBm/tz202OZiM7SaybtMHSt2k/XpHT/A5JJL4SG08HXVPjvtN5/JN387cKu+dDf9VGD9dBZzUHXxyDtC/v56PPz6wkOlKP8dwgAYNwQCgPAWOuxNmmfj6+7erzxd+Y+0vvj0IO8+e8y+Juv4bYRqd4RvM1AAd+Afd38UHiTx7THeR++3CULl739+wwbzPoNG9KGbtdzttjwx2ujN1fyPlqdfeVd4SFwZ9kVofBdkn3wyf7LKfht4zWphjnH2/5a0mNMogQ7rmGvm9Dt3tF7rdlN6t/wZeteh4YyEqGw8fTjMtPjBonN0msN3CiaN9J0l9F5U1FSN4eHwJ0l+Hoe7nd+r+1mzntVAg1+vNDf9ZFfE3oc86NelZZB2hdedyMl7GarAIDxRSgMAOOsx5vq/h8RVL1CoD4ffxw2bHAN/uZruG02KeALPXZwX/dmKBx8HkLHP8ofLTzDnsPt3k6evSKVPjPi+pZRDYXb+q43NLsiqw8/IKkeYffEqx/us2SEzzZek2qYczz0ddFmgNeS0DEZYMbesNfNdmy3jec89NwN8Do0lFEJhY2GaUs8sC3NEnYDtn7ql6u9P/0QoQT/nA73O387t9vSULjrmJtTdyOFm80BwO5DKAwAY6z2rpCbVW1S6RksDxsauIZ50zbMNjsQ5BiEwus2Y/yH3cd2blc/3zsgjVzGIhT2efpTstDjhn6xF71Xyp/z6vayjdekGuYcb8a1PNBryWac82H3sR3bbeM535xzN4QRCoWl/qhkQm46p2XgtYTNz34hd9fwfwDzleCf0+F+52/ndoTCAIBxRygMAGOrx52rN6v0ukv1hgKLYd60DbONSO2euwK3GSgM6NHXYkDgRSi8bjPCmGH3sV3b9ZuBp2X/zXdJ+g0PyMKDj0v1009LbXnAa2RD10ZUQ4TC6mlz7b0oYBtbXvQ+qfSbMbyN16Qa5trY9teSzTjnw+5jO7YLrbuxslWvQ0MZmVD4ihR7/fHGK9P3R1yr+tnPSKHf/p67IImXFmXm7Y9I6cKnZO3pxwf8HT7c7/zt3C70d/0b+iy/1RJ2zKBPAwzSvvC6GymEwgCw+xAKA8C4Cr0T/maWe6UYlgpvJLB45iOSDdy215u24d7obenNoa5/IPBO9yMfCoeO/+bfdGkzwpjtCnetgbYzYzkTMvsu/sqylC5fkUbAmA58jWzo2ohqyFBYmdejZNB2Xuk7C3Ebr0k1zLWx7a8lm3HOh93Hdmw3Zq9DQxmRULhmXm+izeg17eq1ZrQn9FNK179DZu6/KLWngtaeGvR3+HC/87dzu9DX8cMPR3tN2LIbzT0pC4eD6vZZExwAsOcQCgPAmKouLgT8B//ml+S7Qt5BhL75j/Cmo0egHf6mrSb5kBvl9Hyj9/GHZDJgG23nwqe9On1U3xYy1iHrUdbff29w/VEJhUPfMIbfmGtYmxHGbEu46zPIdqHnutcse6O2HBKqjGsobPQLnnrPQty+a1INdW1s92vJZpzzYfexLduN1+vQUEYhFH4y7JyElBc9JNWeoXzY7+IFyX/MqxLk2cdlpmubZgn+HT7GoXDE14TGB98bsK0pgX9wHqR9z0j5DcF1uVkcAMCPUBgAxtGzl0ID0k0vPxcy4yX0zX+/O3ybt5T3hK+FHP6mLTyw6vlGr8dYTb7p8f4f8TRvqKdDZoKGrrkcFgSMTCgcHpLEFyPPeYxkM8KYYfexHduF1e39MdvwN+zjHAqL1KX0moBtbbnetLXHH4zCxnKzr0k11LWx3a8lm3HOh93HNm23Xed8qPO9GXY6FH52uGWm4ndcCr+eQ8/x+6TiVQk08B+DxzkUjvKaUJfiq4O3DV5+YrD2hbXN2eqbKwIAxgqhMACMo7CPIJvS8+ZwoXqEVKGztsLfoDi3PCK1kJlGjY89JMkeN7sJf9MWHlj1C6GriyFrgZoyvdwjpXrq8fC1Um8yb4DDJtyEBQH9Pma+oRBosDeMjQ+9N+QausvUD18AVgP9iRfdJYlXvlfyulbkhy7K6mefClwiQW1GGDPsPrZju9C6Lwv/Gaif77EG8ViHwsbTH5Fsz5tZ9Xht2KZrUg17bWzra8lmnPNh97FN243T69BQdjQUfkaqd4Rdrzq+nwr/ee81/qHneMH8Lg7Z5tkne65BHPx7f/vC3abBt+sVCmsJ/3TEs+668oP9d9yA7ft0+JI+vT61obOXJw6any1dD/qOh6X4IV0H/ympM8EYAHYlQmEAGDvPSHku+D/0dQ3g0jCZsBH6MUZTJgNnbX1GCi8Jrq8l/rqHpfLp9TeIjc99SkpvW5KJgLr+Ev6mLTywagVNzz4j9U/XpPzJjnkwfe663lz7tb4eKDx9RVYffkBSzw2uryXz/h5zbUKDAPNG+7x3gvQYH7rUHpBtKAQa8A1jnxlkqbdVZfVz6+8C3fN3xztC38Q6ITfW2YwwZth9bMd21TsC6nkl/rpHpGrH0L02L8pCv7v1j3sobOhrSa8+TpdCZlFv0zWphr4ut/O1ZDPO+bD72K7txuh1aCg7GAr3ugFmaxZrr6Ul9I8VQRlv6Dq4plz/Dsl96DMDXf9agn/vj38orCWR8/+30LPS6Pd7IPQPzoO272kJ/2N/Z7uMpz8jlXcVw/9gqZ8a8//3CgBgVyAUBoBx0+PGVmFr3EbSa783Ba8xuBXrGoe/aXuq90fT/SXgjb7eJKpnGDdA6fvxy9C1RztLRzCwoRBo8De0jfPvi9jOfuUdoWuAbkYYsx3hrt8g2/X6Y8pQJewGRZsREPa1OaFwvzAidv29Ugr5AdqOa1Jt5LrctteSzTjn2xXuWkNsNy6vQ0MJDYU3q4SM69Pm90HYzPTr3ytlXxbYay3w4JA9bC3o4UvwOrfbF+42Db5dlFB40BL+B+ch+jXoetI9SvaDQX8hAACMO0JhABgzvUKo4ZaOsHrNQA65gUxoANC/OCEBdK83bbV7wj+63VYCg5anpXJHn1maEUqvj7+3hN5Vv7OYcf24t43aUAg0zBthMyZvjjimPUqvj6JuRhizHeGu30DbPVuTfFj40qcE/wy8TypB19eGro2oNisUNvotIxEahm79Nak2dl1u02vJZpzzYfexrduNx+vQUHYkFO79R5mu0PHZz/Rc2iFoZr/eYHOo69+8JgRtl1oOOndjHAqH9LNfiZvrMezTDcP2q98NQKOU3u0CAIwzQmEAGCu9ZssOv3SE1Qhd39G8wZkL/ljuMG844q97VCrLwW+mer5p67FGXlsJvaHb07J6f4+PR/Yp2u5oH5/sFbC3l7b+bigEGvKN8LNPbSjgmr7nUz3fLG5GGLMt4a7PoNs1LjwgiR4BaHe5SzLv/4w747T7e4P+ASbKtRHVJobCRr9lJEJnnm3xNak2fl1uw2vJZpzzbQ13jWG3G4PXoaHsQCjcK7AN/WNMj5sgBt4g8tnPhN8kLaQ46Yek+vQlyQUd59VB7RrjUNj8N8jq+cF+L/R/TRi2X8+a/067t+/SXWElbv7brx7pv3sAAOOIUBgAxkn9UUkH/Ee7W/otaRBFryUk9COngevcmWZ98H3R3vxcf5dk76+5bzDC3kz1fnMjUitFeXPzvt53Qf/sRVl4wzsiv0lyDi5J/kMh66CG0Y/v3hy8P39J3e/b74ZCoGHfMKpnZe1DD8j0weDtg4pzc1EKH+//V4jNCGO2K9y1htmu8clHJBNhxrA7bp/0wtCQZUYm33ap+X2/zQgI+9rcULjfjMXOj7G327prUm1aSLiVryWbcc63O9zdUJtH+3VoKNsdCvcJd4s9zkHPP/AG3Tjz2bpUeqzv7C+ptz3uBYthf9i+V4pd/wGzfeFu0+Db9QqF3T9Mf/pRyfb77wDffxf1tpHf8ea/0z7+iGR7rN/dVZ47xH/3AADGDqEwAIyR+oP3Bv/HuykbWzpiXeibZ1OC1/3zPHtFKvc/IJmX3iVx301l9A7xqRPvk4WHP9X2pmfYUNj12YtSuKMoKX8Id/2CJA6/QzJ3PCLlyxHH4pnPSPXBh2XmxDsk0RHoxXVfb3q4/aZRg3r2Kak9/LBkX3mX7Pe9Ubd3zV94sCZr/iHdUKCysTeMrmefkbWPPSoLbzJje7i9zc3xvVeybx9gfI3NCGOG3cd2b+c/3wlfsOUc1J+BB6RwoeMN9rPmnAUGOAEByWYEhH1tdihs9FlGonXDqzBbcE2qzbgu22zFa8lmnPPtDnc3o80j+jo0lO0MhfssAxG8RIPfFSn22D55T+d0YY/9fXx4oe2PI3E9T++qSq3jNIX97u/+Y9j2hbtNg2/XNxRWIf8doOOTu//xrvEJtwm/4+VZqV9+XApvf6+kzc+W/7/VtNjXquLHfDcLBADsaoTCAAAAAAAMIFIoDADACCMUBgAAAABgAITCAIBxRygMAAAAAMAACIUBAOOOUBgAAAAAgAEQCgMAxh2hMAAAAAAAAyAUBgCMO0JhAAAAAAAGQCgMABh3hMIAAAAAAAyAUBgAMO4IhQEAAAAAGAChMABg3BEKAwAAAAAwAEJhAMC4IxQGAAAAAAAAgD2EUBgAAAAAAAAA9hBCYQAAAAAAAADYQwiFAQAAAAAAAGAPIRQGAAAAAAAAgD2EUBgAAAAAAAAA9hBCYQAAAAAAAADYQwiFAQAAAAAAAGAPIRQGAAAAAAAAgD2EUBgAAAAAAAAA9hBCYQAAAAAAAADYQwiFAQAAAAAAAGAPIRQGAAAAAAAAgD2EUBgAAAAAAAAA9hBCYQAAAAAAAADYQwiFAQAAAAAAAGAPIRQGAAAAAAAAgD2EUBgAAAAAAAAA9hBCYQAAAAAAAADYQwiFAQAAAAAAAGAPIRQGAAAAAAAAgD2EUBgAAAAAAAAA9hBCYQAAAAAAAADYQwiFAQAAAAAAAGAPIRQGAAAAAAAAgD2EUBgAAAAAAAAA9hBCYQAAAAAAAADYQwiFAQAAsLXO5SQWiwWUCYkfysj8mZo0vKqDq8vqUlbmz3sP0cfmj9faUsqcy5xUvMcAAAAYfYTCAAAA2FpeKDx5eEbyc/n1cjwtiQOO+734rWWpe9UH8kRBUmb73DnvMXrbgvEiFAYAABg/hMIAAADYWl4onFpa857wq0tlNm6+78j0fUHf74NQeDCEwgAAADAIhQEAALC1eobCqir562ISuy5vvlrXuFiU3JGE7He85Sb2xSV1vCCrV70KXctSrAeTfbft5UpF5o8lZUK3c/bL9FxF6mf1WCkpPOHVUdfWpDyXlvi+5jEmptKSW15tWwqjFZiafeaPxFv7TAa1ZYD9lc7lJan1TL9mHmrW2Mh4RTm2y9+PfUnJnq5JjVAYAABg7BAKAwAAYGv1DYVFancmTJ2UFC57T1xakKSGk4dyUjhTlvJKURZuSYpjnnOOlZpLTVxZlfJ9M5Iwz6Vv1zqrzeejbBvmakVyUxp4piS3VJLy8rykb3AkPqWzmX2hcKMqefN8q95KSQqzKTcsjc9WWmFqM8SNm+0nJDVbkJKvnnNreT10HWh/jjj7kpJbLktpqSCVK+YbGxmviMeWKyXJaOBs6uXNsZtjk5Dpw3ru/KGwGUOzbexQQYaY+w0AAIBtQCgMAACArRUhFK6fzrh17LIG1dsTsn8qJ5W2qaoNKd+qaxD7AsiA5RAibxugOjcpMWd6PZxWNij2hcK1xaSpl5VSR8LceCgrTiwpC5eaj5shrun73bXmE57KbHtbBt1f5kxb5zY0XlGPHTY2MzrLm1AYAABgrBAKAwAAYGtFCIVtnX5r3TZD0ayUbfg5wBq5Xdt28ZaxOO6bweup3a3b2lC4JoUXauiZl9KKzrj1FW8mru1r85i+GdCe1vPD7s+/jEUP/ccr6rFrsnBjyNi4s7x7h+0AAAAYLYTCAAAA2FoRQuG1+6bdOp3hbqO+JqvndJmEeZk5lvTWy/WFoj1C4b7bdqnIjLazY1avy+2D3dabCdujOLc1V0cOC3Hbn9/4/qzBxyvqsZv1End2j01zljehMAAAwDghFAYAAMDWihAKV09Omjq+8PJySbK6zq0bTE5I/MaEpI/PS/64t/ZwaMhpRN22U6MsWW1n1FB4tn8MOlAovIH9DT9eUY8dHgrrMhOEwgAAAOOFUBgAAABbq28o7C3bcHBBmpFjXYpHzOPrslJ6on2xgtYN6UJDzgG27RK+fER7GOstpXCjbW+4aKHwRve3kfGKemyWjwAAANhNCIUBAACwtXqGwnWpzMbN9x3JnLZ3OvNmr57oiBmvrcr8QfN8z5BzgG0DBN5MTQPRjm3dm7PFJmXmbHtE2jg7I5POfpl5qPl8tFB4o/vbyHhFP/bqKT1PZl+BN+EjFAYAABgnhMIAAADYWl4oPHl4RvJz+fVyPC3xfRooxiQ+W/HNQK1L6ZguhTAhqbmie9Oz0lJOpg84MrFvohlM2pCzXpKM7vvYgpRWVs2WA2wb5GpZZrRN+1KSWypJ+cyCuyyD4+g+fdu2wlB7nJIU5tKScGLiHC60Zt1GDYU3tr+NjJcR8diteh1j01yywh8Km3r63KGChC8YAgAAgJ1EKAwAAICt5YXCXcXZL4kjWVlYCYgOr65K4bi9UZoj+29IS/5MTeoX8jJpHs+s2Ai5IdVT0169aSnqriJvG+JKRfJH4jLhtXF6riLVuwPCWHOc4ux6sO0cSEh6rixr17zvG5FDYbWB/W1ovFSEY7vqvuOYsUkeL0jpdm0ToTAAAMA4IRQGAAAA+qi5ofAMSyQAAABgVyAUBgAAAFy6DMOExI8VO2a41qRwiJmvAAAA2D0IhQEAAABP/XRGnJgjiaPzUlwpS/lMQXKHdF3euOTO9Vl2AgAAABgThMIAAACAz9pKXtI37BdH18WNTUj8SE6Kj7m3ZAMAAAB2BUJhAAAAAAAAANhDCIUBAAAAAAAAYA8hFAYAAAAAAACAPYRQGAAAAAAAAAD2EEJhAAAAAAAAANhDCIUBAAAwPi4tSDIWk8mTVe+JYLXFpMRiKSk84T2xrdakcCgmsUMF89VeU5PS8aTsd0z/zXlK3V3znt9i9VUp3DIv/qtibSm1g9dAp7pU5tIS36fj4sj+mzKycL7ufS+6xrmcxGM5qXiPo9nAsa+acfWdz4mptORX9t5VDQDAbkQoDAAAgDFSk4WDMYldl28LANtVJX+dqXOkKIPHbpthD4fCZ2fc4DF5W1HKK2WpPtHwvrG1mgFwe1g6OqFwXUrHHIk5CUmfMuNypiC5QxOmbXHJnY8+PvXzeUm64ewgofBGjm1+jqbM8ey2K0WZP5oQx5zf6fsIhgEAGHeEwgAAABgr9eW0xGKTkr/gPdHpQl4mY47MrGxPINlt74bCOxXEBoXCI8O7HrMP+a/HWvMaObhgvuqjsSbluZRMxDQQHjAU3sixz+fcALh927oUj5hte/5RBgAAjANCYQAAAIyXRlmysZg4s8HRWGVWZ0ba4Kwhq8s5Sd+wXxwvVJuYSkl2adV8x/JC3NmSVOaSbvg2MTUjhTvClqCoycKN4cf3h8LVs3mZPmDaE9OP7Wel8Nj63OXwJS78+7dtq0i9x76aovTVcJcESHnLCazXadtblDptvHZ6x20WPQfBY1u+qttEbK/RuFiU3JG4F4xOSPxITooXm7Uqs/Z4XvHOS1BAXX8sfD9WK2C+UpG8revsl+Txgqy67R5M9eSk73pcVz+d6WpfkGb/HEncYsbw7sHC7w0d+1zO1EnIwiXvsafZnuhtAAAAo4lQGAAAAGOmIeVbNfidkXJXeliWGScmk3PNeYy1OzV4nZDUbEFKK2UpLy9I9qZmsJo5bSNOL7h0HJm4KSfFlZIU7q5I/YmCpGIxSS11zPe9tCCJXjOVfftznIRkF0vux/Zn3OP6PrYfaf/evqbiEu+1L2OgvurasEtmX9rXW5NuKJtctPNGo9Tp1JC182UpnkiY4yVk5j5z/BUNkUPG1mwRrb1mz+46ujFxbkjL/LLWm5f0DaaeMy3FJ0TqF+1xzfd1Pxeb23aGwq393DQjhTO+/eg4nlsfx+Z2ZrynbNtMm2ebM3WdW8u+wLoiOfNc7xnha1I8HFLHPc8xmTnrPQ5RPTndWsd3sBnRGzz2VfOztM/0+fCCrHqno35hQabNz1f8tmpXcA8AAMYLoTAAAAC21tWqzN+ss0Ed2X/zvFSHmG3ZJWSJiMZDWYnFkt7sRnPcG/dLfLbSHmB5wbGdUarhmRtcxjJSamub91H5jlCtdmeiz8fn7f5sOyxvPeTW/qLs3+6rPbhs7au1BEDEvnpBdHsY2JDSy8y5OVJo7itKnRDds3PDxjbquensp+dqWbL79ktqcdV9GBSWtrfFW2fajHXbfq6tynzH/pvbdd8kz52B3naMaKGw2/8T/pZ5wv4o0MOgofCGj62zpW8y+9B+eiV5stpjxjgAABgXhMIAAADYUu5H2H2hUviyC4PwQr7j/pmbXsjad51WLyxrbes9Dgj3musX+0PO5nHtTORg3v4CbnRXcz/+Py1F70D99x/etmZAuL6vYB199UJX56aclC7W2wNZK0qdEO1BrApvf7CO9q4VZdpcM/3Cy6CwtK0t7h8RYh3r4zY1z8H6Mgmt7S43H1vdfYvCC7WDrvktD4U3eOyrFcnpTOp9Kcm5M8btjeYmJH13baDrAgAAjB5CYQAAAGyprQmFxVuTNyMlm7xeKUra7D+93BnFNqS+tioVXQbg1IxkbvLWsG0FlT2CS2+frfDMDRd7LR2hvP0F9dNdp9W3fd/999tXTHLnvMeufn0143Y6KwmdjavPO/slcSQnhZVaW4AdpU6Q7uC0Xyjcp73uzc46+9gtKCxta0vI+riujnEMC3/Dnu/N6/8YzhSuzul6xNNd4XjzDxtxmX/MewIAAIwlQmEAAABsra1YPkJ1hMBuYNaxznBbuLkvLokb05I9lZfsjb7g0YZngcFlXUrHzPe8Wb9uwN1z6Qjl7S80yPWHk/32329fjuTONx9G66vnWl1WVwqSP7Z+MznncOfSChHqdOgOTsPHNlJ7A4PvbkFhaVtbdjAU3uiawn5B/bQBrzuOtrjH28ixa+7NDttn4nvqJcmYbQcJswEAwOghFAYAAMCY8paLcAPV5kfl224E5oXGk8dLstaWbHmBVyss6xUKi7dOcVqKV5pLOyTu7L04RWt/x0pu0OvXnGXpm91s9N5/+L6aAaG3r8h9DdKQ2qLuq9cM6Ch1bJsihMJR2xu6fIQGnhMSP9E830FhaVtb+i4fYep5M2K7+9AU9nw/btDvdM/urZ/OtB03iqB+hofCGzk2oTAAALsdoTAAAADGVmNlRhwNVM/qzMeOwNKbAdo1G/LivCR9wZmY/+8VCts1djOzOXOMzpvHBfH21xm66RqtU+b5zrWGe+4/ZF/XqpL37ytqX8/lJXEg3hXsNs5oSOiNX5Q6IbqD05CxjXxummF/1zrRl9uXPwgKS9vb0gzcdb/ts6G9G81NzUvzlnVBfWgKe74v76aI7YF0rTkufde/bhfUz542cGx3+YjO685o/mGj93UAAABGH6EwAAAAxlhFck5M4lNxid3YEXJdKUlGlyfYl5L8clnKum7t7LTsdyZkQpdDaAWPfUJhaUj5Vkccx4kY4nn7M22K25t0Lc9LWm/aFbBGa+/921C42Q93X2cWJNu5r6h9bVSbwbSpl10smnplKS5mJWm2dQ4Xo9cJ0R2choxt5HNjmnMuJ3HTf+emGSmcMXWX85LSOlM5qXpZZ3Pm66Rk7jTjc7EZuXe2pXs/3jmJxSV3bj00jR4Km2uvLcAOo7Oam8dJnzLjeaYguUMTXceNsr+BQ+GNHPtKWbJt14Geo5RMmHrx2Ur3DGIAADBWCIUBAAAw1pozGmOSXOyOaxsXC5K1Ny9zb5iWl9Kluvexerv+cL9Q2OzHnZEcfIxu3v5mK+66uckDGsrpeso5KXUFwk3h+19vW6W1rwmJm36UOxobra9GvSoLvnWCdT3f9FxZ1q5531dR6gSIHAobkdtrNC4WJXck7gaSWjd5vCCr/rWpW+tWm+97wXVQuFt/zLcfbxxLl9vjzc0PhY1ra1KeS3vjaa6FmzKycL5zQZCtCIWNjRy7viqF40nZrwG++f7EVFpyy6tdS5kAAIDxQygMAAAA9HMuJ05AULhpQvffP7AGAAAABkUoDAAAAPTUkPJxp3st4E3Ta/+EwgAAANh8hMIAAABAoJqU5vIyczQhTmyyYw3WzRBl/4TCAAAA2HyEwgAAAECgVZl3b+i2X9KLq1twY60o+ycUBgAAwOYjFAYAAAAAAACAPYRQGAAAAAAAAAD2EEJhAAAAAAAAANhDCIUBAAAAAAAAYA8hFAYAAAAAAACAPYRQGAAAAOPj0oIkYzGZPFn1nghWW0xKLJaSwhPeEzvhak1KpzKSmpowbYmZ4sj+G9KSW16Vulelpb4qhVvmpXevdtBG2ncu5/bfOVyUNe+pdmtSOGTG51Ah8Pv1SyWZP5aS+D4dQy0TEj+UkXzQOG5YXVaXsjJ/3ntorC2lzDG3+lqqS2Uu7fXRXCc3ZWThfMTeXTXn5nhS9jvN8ZmYSkt+JXik+2mYcxWP5aTiPe5Lr4vj6+fGOZCU7NJWnBcAALDZCIUBAAAwRmqycDAmsevyPQLKquSvM3WOFHcunLpakdyUBmUTEj+Slfxc3pSspL2AeMK0reZVVc3gcYAwbpttqH1eKKxh5/R9QWFlWChcl8ptCXF0vA5mZGaxKOWVspTPFCR/LCkTGkLeZK6Dq171zfBEQVJmv7lz3mNj60PhupSOORJzEpI+Zfpo+pc7pNdJXHLnG16dMOZa1+vMbrtSlPmjOmZhYx2ufj4vSTdYjnie7TW+LyW5pZI5dkkKtybd8xWfrUi/lgMAgJ1FKAwAAICxUl9OSyw2KfkL3hOdLuRlMubIzMrOxVLNmcpxyZ3rbkNtUUPG9vbtjVBYw8uMlK54z7cEh8K1O3UMHZm+czUwYGzOao1JvM+s8YEEhMJbzrtesw/5e1lrjsnBhbY/HnQ5n3MD4PZt61I8Yrbt+YcTn8aalOdSbsjePE/RznNrNv5l7wlP87wlZeGS9wQAABhJhMIAAAAYL42yZGMxcWaDo6vKrM66tMFWQ1aXc5K+Yb87g9GdpTuVcj/i7otkmwHcbEkqc80ZqBNTM1K4I2wJipos3Bh+fFWZ7RGuee3f74WZzbq+4t/vWlnyR+JeYKezjnNSvNgZkUbpoy/YvVKR/M1e3X3Nj/trvdpyVpIHzNjFHNl/c97Ua27Xq331x4qS69c+LxSeubsZuDrHSh0zuANC4SslyThBdf0aUj4Rl+TL1mdd2z6WzuUlqUsa7IvLjBeYNi5qWxOtZRb0e6njBVm1M4394bVbmucvcKZwfVWKs3a5Bx3v5rIgnWcmiurJSd/1uq5+OtN93E5umxNdAWzP669Ds64jiVvM9X931PC/LqVbzDX0wkJ3aH1x3g3rtzVYBwAAAyMUBgAAwJhpSPlWDX5npNyZwjXKMuPEZHKuGbg2Zy1OSGq2ICVdemB5QbI3NYPPzGkbN3qhpOPIxE05KerH4O+uSN2bNZpa6vgY/qUFSfSaqWw0ZzPHZeZM/4/w1y+WpXgiYeqnZV7beLHZrsb5vCRMXyYO5aRwprlsQmtZAd8M5Gh9tOFmXOJTtm5R5o/EzXOTknnZtEzckJUFc5zS0kxzGQFvlmpo+7yZus5NM832Lc9L+gY9bscMaS9s1ZCw5oaO7e0KCoWbgagzcLDY7KMjzr6k5Ja1L4VmuO2tRd0aS9P3hVuaSx20gucrq1K+b8ac25ikb9c6zbVxu0Jhu2yCk5QZd9kEu2RD57IJpp55Lmyt5KY1KR4OqeNeZzGZOes9DnLVXO/7TB8OL8iqN6T1Cwsybc5f/LZqpJC6enK6tQaxDdWjhMlh+s7kBwAAI4FQGAAAAFvralXm3ZmpOgN1fnPWgA1ZIqLxUFbWP7pujnvj/u71Tb3geH3GqxdKxjJSamub9zH8rmUNEhE+ml+T0ss0cDXb74tL+vi8FM5UZPVKcEzXHcY11052jnfOlG1I+bjjW1Ygah/tMWKSuts3t9ObtRy7bkYqvr67fYxNS9HreHf7vHWbzdi0zRS9tirzuuazf9kDXyis/WoG8P5lJLpD4eptGi6vHz8q28fMmfZxrt6ekP1Tpv3tg9T844K/XxHWFK7OTTYfdyybsHp757IJ0UJht+8n1ke2JeyPEp105vdNZh96LK8kT1Y7rptous/zgGxg3m/ZCwAAsOMIhQEAALCl3I/H+wKrXssuROeFksfLvjDUC3H7BlJeENfatjuUtJqzHv0f4W8e185E7qd+sSQLx9OScJdl8Pp/YH1mptUVxl32AsE5nYmqs1bXS3PWbp9lBbr6aI/RGWZ6wWVnKHl2pu0YXe1zQ/lYx1q2Tc0x8y1p0BYKG17f1peG6B7/0OUPvKDUjmWzdLaz39isa9bPrs847xsKB113nitFSZttE3cOEod6N04M+pmIEgprCKuzs1s3e7OzlickfXetu419dJ3nQVxdlYXDpi3OdFdgDgAARg+hMAAAALbU1oTC4t3oKiMlOyXSC+XSy51zJBtSX1uVii4LcWpGMjd56+m2QsjwUNjusxXMuWHokB+Nv7omqyt2CQhHppfWw8OuMM4LUsOLI7nzXl1Xvz52hpuWFwp3nhP3+D1CYff73WvZujpD4M7HRvsyEmGhcMBM4XpFFubykvfKzGFv1m7EULhRN+fgnC4rMS8zx5Le+sK++n1D4eZ4BQe/IWPZk9f3IWcKu7OWA0LY5vjGZf4x74mIus5zVOa8uOG0actC15rXAABgFBEKAwAAYGttxfIRqiMEdgOtjnWGa6ez7rq8bpC6Ly6JG9OSPZWX7I3mcZRQWOpSOma+d6Tozmp1A+6+S0f0s9ac0ezkWvsJDl3bw8kw0fpoj9EZmO5MKGxa3RxzdxmJ7vGPuqZwZ5+C+2hcLknWXe/YHEdviHdjwl3SI3+8Y9b1DoTCw68p3LzhYeCs5XpJMmZbN1D2+tTsu1cCr/WA8xzF5YKk9YZ7U+ZcMkMYAICxQSgMAACAMeUtF+EGtt4avLf6AjIvNJ48XpK1ttTMC9NawVivUFi8dYrTUrzSXDqg7/IAa+a4Tu961bn9beFbVxjnBYJ9jxW5j/YYnYHpkKFw3+UjzLY2IAwMhY3WMhJ5yXeOv9cvJyjw9OnsU3AfvevkuqyUnmjfW3PtZF/9vqFw/+Uj2tZsjsD9Q4PTHcQ2g3HfOHbZ+VC4Ya4DvSmhc1N+8/7YAwAAtgWhMAAAAMZWY2VGHA1sz2qI2rGsgxdGds20vDgvybZgrHcobG/alpnNmWP4byQWphlQux+lf6xzKQvjSkmyGix6s49Vdxjn7aPjBnCmMVI5MSnOgRkp6/OR+xgWmA4ZCttw1Oy/LQK1N5qbmpdV76nQUNhoLnNg6ne0VdWWpt3Z5dN3rrbGqc1aSWbc2b+d7QzpY+cSDbat/vp9Q2EN9L0lKzrC2uaN5gZfssHeNLE9YPdmUvdZHzusLc1xHXyZk+7z3MPlgkxrIHy44xoAAABjgVAYAAAAY6wiOScm8am4xG7sCNCulCRjvqc34cov603aSlKYnZb9zoRM6Mfdo4bC0pDyrY44jhPhJnYeLzDTsHNiKi1Zbw3c7JG4TGhA2bEObHNW6KRk7ixJ+WIzAm2cy0lc69r2nylI3r2JmG894sh97BOY9gmFe7XPuWlGCmfMsZfnJe2GtHHJnfMFnD1C4Vb4qW3oGv+GVE8m3bWR9eZ82VMFKenN9pYXZMYdB7ONk5Ds0mprpmxwH3UJEG3XhKTmiu7N+kpLOZk+4Jgx0vWdffW9GbaTxxbMsZphdNc+9eZuU3rspMy03dzNXIdmHNd77o1t6HVl6RISzXFLnzLtM+e5ue50xzgG7e9KWbLaFnP+s4vaNz3/Kfcaa29LNOGhcOex7Zjul9Tx9TWe/aXU948nAABgJxEKAwAAYKw1Z0vGJLnYHdc2LhYka2+65uyXxBENq+reR/bt+sP9QmGzH3dGcvAxQtVXpTiXkdQN3vFNcQ4kJD1blNXOqa+tdZdNvcPFVjsaF4uSs0Gyrsl8Q1ryK+2tjNbHsMA0Wigc1r76Y/72TUhcj325I4rsGQoblxa6ZjX7NZ6oSGE2LYkDGkLqcZrjkF0sSa1jHIP7aFxdlcJxe2M5bxzP1KTuzdKdWbFtbkj1lIbqWq95o7vAfeq5NW2Ka/Bu2qTBv+6vvedRQ2Hj2pqU5+z+TPtuysjC+c6LJGR/pi3rfWu2JbccMru6j8ihsBeeN89HcAk93wAAYCQQCgMAAAD9nMuJExQ2AgAAAGOIUBgAAADoqSHl407bGsB9LSyI/Pqvew88X/M13hce6ngPPLulzu/8jvcAAABgdBEKAwB2tQ984APux1i/4iu+wnsGAKKqSWku761fO9mxvmsPDz4okk43A8S3va353Hd8h8j//b/rISJ1dm8dQmEAADAGCIUBALsaoTCA4a3KvN44zdkv6cX1m5n19OEPizz/+d4D4xd+wfwXt/lP7scfbz7WEFEfU6dpt9YBAAAYcea/XgAA2L0IhQEAAAAAaEcoDADY1TYeCteleKR5J/X0cshqov3urA8AAAAAwAghFAYA7GobDoWvFCUdm5T4lCOxgwtS855uQygMAAAAABgjhMIAgF1to6FwbTFpts9K8fSMe6Op/AXvGwAAAAAAjClCYQDArraxULgmCzfGJHasJPVGWWacmDi3lrtvNtU5U9h9nJLC2aKkDzRvUpVaXPW+CWBTXFuT8lxaEvozZn7+Yvvikp4ry9o17/stdamYevF9zWVgnANJyS6tmmc7NWR1KStJb38TU2nJnQn6bEDUehHZ14snvMcDWFvJS255zXs0YjbwCYrN7NdG9jX0ths4pwAAANuFUBgAsKttKBS+kJdJs23mdDM+qsxqCJSW4hX34brAUNgRx4lLZrEk5eUFKV30vgdgE9SkcFj/4JKQ9KmilFfKUjyVlrj5OXQOF3zLvNSldEx/bickNVuQ0kpJCrMpmTD14rdV2/7AUz0Z99UryvzRhDjm53j6vvZQMGq9yIYOECuSM/1ILW1OeLrphg6FN7NfG9nXBrYlFAYAAGOAUBgAsKttJBRuhsBZKdvkyLzRd8y+um441xl+eI8TtzM7GNgKjZXmci4zZ9vn7TceyroB7cyK9/xaUabNz2LyzvaZvNW5SfMzmpGS/VF21w7vrNeQyglTz5lZfw2IWm8QQweIIx4KD41QGAAAYDsQCgMAdrWhQ+HA5SKqkr8u1n3DuZBQeJiPTQPor3p7QiZiM1LxHrdcLUnGH+Q9UZCUeZx9qD2tXVtKtYV29dOZ4BDP/bSA0/pZjlov1NVVKRxPyn7z2qLLykyfqkojKEC8UpH5Y6nWkhdaN3EkLxX7KQWvX+733OLbvt+2YWw7LjbbqLOpQ5fk0KU7TmVaS2jokhyZU5X2JTkCXxfX9++OQWxC4hH7VT+bl/QN+90/zNk+lXvltb3GqF/7Nzq+QecUAABgxBAKAwB2tWFD4fpy2mznm3Hoac4w7LjhXGD4QSgMbLuOJV/cdcFf6EhsakZKXoDYeKIkM1O6zERRbKZYvU3DwVx3yNwoS9bsL3V3889AUesFq0reHFeXvMjqsjJnCpI7tF+mD7cH1HLV7Ev/IHVDWuaXy1LWJS90TWSz/9hU3uzFaKxJdWXenbWcOKHLZ1RlTV+qomwbxn3dmpT4lCMTh/JSbFuSY32sWkt3xOLe0h3rS3K0Ld0R+Lqo+5+QxNH51v4TGg7bP7SF9EuDcw3dk7csuNuVl00ddyx7zM4OG6Mo7d/o+Lp9JRQGAACjjVAYALCrDRcK16V4xLzJ1zf6IaVtBnFg+EEoDLRcrcr8zTrL05H9N89L9ar3/Kay6wx3BIXXzPNH97f9/O4/Vmyb/VqZNc+/0L8WsdVcQiA224yBo9YL0vxDU9y8LvgbZ9p2SNu0HiDWT2clvq87UKwtJtvqBS1vEH3bAN7rVvuazNK1JEezH91Ld9TPdCzdEfK6OHmi0raWc+es7aB+BY77xXlJ7ItLvufrbMAYRW3/RsbX7Wuf8QYAANhhhMIAgF1tqFD40oIkzTbOsQXRG1i1l6LkDmqI47vhXEj4QSgMNFVP6gx7/blpFqdHeDqcupRv1RvAdYeuxSMT7uzc9lmhjiROlL3lAhpSPm7adajgmw1r+cPeqPWCeNve2LH0jKGha6QA0X1dScjCJe9xQGgZqmvbAG6doCUwzHF0duxtOg9Wb9wX3A93JrQur3Pc+4NZyOvizFnvsdVZL6BfzdBVb9xZkdpAf1Do3NcA7d/I+LqPCYUBAMBoIxQGAOxqw4TCtTsTZpuOJSJ8mjPNYpJc9GKFkPCDUBho2tJQWGcCa/Abi8vMQ22r2obMzhVpnJ1xlyPInGnW3/qZwmvNGcGtwNHHXfIiIEC8WpfahbKUlxckfzzdWsO2V3ja0nfbAKFBptd2Nwzv0Y+2ekbU18Wu5wP6pTPND+k5bvZjYiolmVNFqfbNazv3NUD7NzK+oWMJAAAwOgiFAQC72uChcMjN5Py8m9DFrvPWkIwafgB71VYtH1GvSO4GXTIiKfkLnTFf+Ozc1s+5F+Ju/ZrCPcLISwuS8AeIbQGoGa8bEpI6NiMLs80/RkUPT3ttGyA0yPTa7q4rPECoGvV1sev58DC28URViovZ9RvOBQT+7TY5FI46vqFjCQAAMDoIhQEAu9qgoXBjZcYNG9LL7TMOO7XdcC5q+AFg81wuSUZvNjaVkdJl77k20UPh+ulMcIjn3bjOLnkQtV636MtHNF9bUjJ/of01qFmvd3gafdsA7utW0CckzHGcmEyejLh8xAkvMo/6utj1fHgo3OZKWWb0eMdK3jIgQTr3NUD7NzK+bp8IhQEAwGgjFAYA7GrD3WgOwEi7WpGcGwjnpNJj1nHYTcWay0f4/vhzpShp8zh5pz8qbEjlxGT7jeui1gtQP5MRp6st3s3xWgGiN1u1a4mKupSOa71e4ekg2wbwwtmuG8EtN9ttw+J+N2qzS3JsXiisNwqMy8SRYkf4uyrzN5r+DhQKD9D+jYwvoTAAABgDhMIAgF2NUBjYfaon9aZyMUkczUl+Lt9VFs7ZYG9VFm5ymjeamytIaaUsxVNpSeiN0w77w72GVG/TfTqSvFXrFWX+aMINCaeX2gPgaPWCeAFw66Z3Rcm3liLwzRR2++ZI4pYFt73l5XnJHJwQZ58p/uDRzmw9mJPiSlXWGoNsG8ALZ93tj86bfZqxmtOb8sUkPusPim2QHe+4eV/HmA4dCnf3a+2+aXeME0fzUjhj+nWmIPkj2te45M63h7vtuvcVuf0bGV9CYQAAMAYIhQEAuxqhMLDbeGGd+bkOK/6ZoXJtTcpz6zcDcw4kJXOqLGvXvO+31GV1KSvJA81ZnxNTacmdCQp6o9YL0NaWCYkfyUvlvhnztT9ArEvF1169qVp2sSJrayXJmMetG1watdOmHW49R3Ln9Zno23ax4eyZqswfiTdDUjNW2aVVs9cO2o9TmdYYuPUWq+31hg6Fg/plnjuT860l7Mj+m7JSeCx8jrAVtK9I7TeGHl9CYQAAMAYIhQEAuxqhMABEEBbaAgAAYFciFAYA7GqEwgAQAaEwAADAnkIoDADY1QiFASACQmEAAIA9hVAY2HbNu1nrG6/QMlvx6m4x3gCin8sFmXYiros47PXkbjfc2otrK3nJLfvWDg1AKAwAEfDfBAAAAHsKoTCw7bxQ+GAm8I7pbjkd8YY1G8UbQPRyuSiZKf1DxaiGws2fpbYbSgUgFAYAAAAAoB2hMLDtvFB4u2YDA4O6VpfqUlYSjjdzfavvoE4oDAAAAADAtiIUBrbdYKFw/Wxe0jfsF0e3cfZL4kheyr0zsKYrFZk/lpL4Pi/Y87atXPG+rzpndtpw7mxR0gccd5vU4qr3zajqUjmVkaRub/btHEhK5lTFPOtzbU3K/erYtlxclcLxpEx4fZiea9arn5+X9NSEu/3Ewayp12hup4K23ReX9FxZ1q55dVTP/tZldSnbu41GlPMT6RwOMiYbOD9R2rK2lHLbMHFoXqpnvGMOM1O44zzsd0PmCYkHXoedx+gz/k8UJKV9aJXwNhIKAwAAAADQjlAY2HbRQ+HGuZxMxhxJ3rIgxZWylJc1CDXbOjNS9mWgXa6WJevExLkhLfPLZruVkhTm0hLX407lpepVCw7xHHGcuGQWS+Z4C1K66H0vkpoUDmuINyGp2YKU9LizKTeUjd9WlWaTbZ24pE8Vm23z6jiHC+a7HrctkxKfmpDE0XnTf1Pv1qQbZqZelpH4vpTktW9BY9La1pGJQ3l37Iqnmv13DhellYGG9ndNikcmzD4TXhub2+vMWX8bo5yfaOdwkDEZ/vxEvZ7WlrOSXVptBrDuMTcSCvvP4fo4xg4udPTLf4wI499Yk+qKab85XuKE1qnKmq8PfoTCAAAAAAC0IxQGtl30ULgya+q90BcKqovzktgXl3yPdVvrp7NuaNoZ5NUWk+3hW2CIF5PE7YPODm5qrMyIE3Mk+1B7Ole7MykTUzNSvmratpw2x5iUmbPtdepnsu62Myve815bJk9UvDBZ1WThRjMm2ofL3lNG46Gsec6R3HnvCW/btkDV0HpBx+jsb7MfSZnvDFwvLUjSt32U8xOlzqBjMuz5Gep6co+5kVC48xzamcid1+H646jjb3+WWD4CAAAAAIDBEAoD284LhcOKLyxuhrg6K7Qitavekxvhhm8JWbjkf9wd4rUeD6h6my5pkDM9DFOX0jHTxxt9s0RbqpK/znzveLkZIHptmTnrftOzJoVDpk5nsHm5uZRAez+cgH6YsdfZprd5c6VD+ls5YY7x7VlZ0Nm0baU5M9Weoyjnp3+dwcdk2PMz1PXkHnNjoXD7OTQC660fI+r4EwoDe5n3++BQYf3THztobSUvueVRaAkAAAAQDaEwsO28UPhgRvJz+e5y2hcNXq3K/KHmurlaJqZSkjlVlGrU951X61K7UHaXGcgfT7fWF+4M7UIfD2RNiof7vUH33sTbkLNNxxv8wLaEhADe+rJhIeO6AY5hng8tdgmKKOenb52NjskAhrmeQscyQGf7wtobWM8eY4DxJxQG9rCO18cdFe21CAAAABglhMLAtvNC4QjLR1iNJ6pSXMyu3yAsFpfcue4IsaUt/HNk/w0JSR2bkYVZXaagR2gXFuJFEuUN+kYD0JBjDBoK21BxkGP0EOX8hNfZ6JgMbqDrKXQsA3S2L6y9gfU6QuFI408oDOxdg79Wbx1CYQAAAIwfQmFg2w0eCre5UpYZXVLgWKl5I7AA1blJN2Sbv9Beo7n2bo/QLizEiyh0+YjzOZk4kJKFixGWSjjhbR3YlpAQIDAUnpT8Be9xixl7JyaTJ3stH9GQ8nFzjFi29838wkQ4P+11NjomG9Svve4xtzMUHmT8CYWBvSvg94F9Lbm4KoXjSdmvN7WMTUj8SF4qV7w6qqOe3tQzti8u6bmyrF3z6qi21yYf//Pe7x99jWmW9fr1s/n1P745+yVh2lEmNwYAAMCIIBQGtl3UULgmhaNxmThS7AjrVmVeb7YWGjp6b5Q7193V8PG4475pDQ3tOh8PKPhGcw2pnJhshcX9bqqWOeP1KrAtg4TCATc4W86YY/jC4pD+NvsRk9TdHTGtu3bxhCQX9UZvUc5PtHO4sTGJasjryT1mQCgSpLN9Ye0NrLd+jGjjrwiFgb0rLBSelPjUhCSOzktxpSzFU2lJaDh80PeHt1Y9RyYO5Vv14uZ1wmktT2N0vDa1+J9vrEnVW+88caIo5ZWqrJmX8oapM2lev5O3LLj7Ly+bOlOmHc6M7w9eXh9ivdbiBwAAALYGoTCw7aLPFF67b9oNBRNH81I4Y95UnilI/kjcvIGMS+68fVfZ/aayelLrmO3Mm9GS92Y0c3BCnH2mmGOHhnadjwdWk8JhDZ7jkj6lb45LsnBLwu3D9H32bXZ3ncJsyp2p5Rz2BdmBbRksFHbHwAYDc81jxM24t96Ph/bXtnF9DHW5hZSuyTxlxtm7SVuU8xPtHG5kTKKL1pYO7jGDQuGAMKOzfWHtDaznP0a08W/NpD6YM+e4GcQEIRQGRoAua3Szzpp1ZP/N81KNerPLUGGhcMAfBJdS7a8xXr2211dDP02j7ZtZ8bbuem3ydD3f/QeqyqxpW+cfZy/OS2JfXPKt10RCYQAAAOwcQmFg20UPhVXtTM639qt5M31TVgqP+ed0Br2prEtlbv3GcnpDsexiRdbWSpIxj5OL3ttU741x3xBvIObYpzKSPKChnh47LfmzHXNQr61J2VfHOZA07au2z1QNbMtgoXDuTFXmj8Sb4aoeY2k1wjGs9n7oR4tTxwuy2tGV/ucnWp3hx2Qwkdri5x5zu0NhFXH8T2cl6V7njuTOe092IBQGdl71pC5rpD+rzeIMu4RSS3goPHPWe2wFvuaY14yu11Lz+9kxbbvNv8TQcKFwbTFp6sQlY3731jYcgAMAAACbj1AYwO7TGQBgTyMUBnbedobCw/0hSnXsM6xe1/PdoXD7DV+bf5zNnCpK1VcFAAAA2EmEwgB2n7BgAHsSoTAwArZx+YgNh8J2XeGwel3PB4TCnsYTVXf5m/VPaMRNO0LWugEAAAC2EaEwgB68N8juG9k+ZcOzvjZRWDCw64zp+dlmhMLAbrTRUNh309GW5vIRkyf9y0d019P12aOGwm2ulGVG10EPvVEsAAAAsH0IhQH01KjXpR6ljNKaiXsmFB7T87PNCIWB3WijoXDADemWM+L4Q+ALeZk09dLL/gi35v0xrlcobOocjcvEkWJH+Lsq8zcSCgMAAGA0EAoDAHY1QmFgN9p4KKw3m0scnZfiSlmKcyn3pqTxWX9QXJX8lKnnJGVmqSTlMwXJHZqQ+OFpSbSFwqaezgA+mDP7qsqa2YHOJtalMhJH81I4U3a3zR+Jm2PGJXfeHsF+2sN/o1gAAABgexAKAwB2NUJhYDfaeCicO1OV+SNxNwx2DiQlu7TaPYP3SsUNc7VObF9c0nMVqV8uSKpjreHa6awk92nA60juvPfcmZxvLWFH9t+UlcJj/iMQCgMAAGDnEAoDAHY1QmEAbcLCYwAAAGAPIRQGAOxqhMIA2hAKAwAAAITCAIDdjVAYQBtCYQAAAIBQGACwuxEKA2hDKAwAAAAQCgMAdjdCYQAAAAAA2hEKAwB2NUJhAAAAAADaEQoDAHY1QmEAAAAAANoRCgMAdjVCYQAAAAAA2hEKAwB2nUceeURe+9rXuuVnfuZn3FD4S77kS1rPafnrv/5rrzYAjIgnCpIyr1f6mtVeJiR+KCPzZ+texd2qIrnA/vvKbMWruz3WVvKSW17zHhncqBAAAOwShMIAgF1nbW1NvvRLv7Q7TPDKd33Xd3k1AWCEeKHw5OEZyc/l18uJjCQPOOb1y5HM6d0cDHuh8MFMe//95XTNq7sdmu1JLREKAwCA3YdQGACwK2UymbYg2F8efPBBrxYAjBAvFG4LIa2rFZm5zryGHS5KwHd3CS8U3ubZwOECQmEAAIBdglAYALArhc0W/r7v+z6vBgCMmF6hsKxJ4ZB5HXthQdy5so2yzDgxcQIC1MZDWfN6l5LCE+aBO7PVfH1xVQrHkzKhr4X74pKeK8vatWb9lisVmT+Wkvg+7zXT2S+JI3mpXPG+76mfzUv6hv3i+OqUO5ocpU63AUJh26+zRUnrLGpzjNTiavN7EfthWimVU3YWthnLA0nJnKqYZ42upTz849kxU/jampTD9mN1nIf95ty5y4IEtgsAAGDrEQoDAHatl7/85e4bdH8pl8vedwFgxISGwg1ZW8lJMubI9H3r36vMahiak/YItSHl4+b17kixGUq6YeSkxKccmTiUl+JKWYqn0hI3x3H8s46vliWrIfMNaZlfLkt5pSSFuWa92FReql61htnfpGlH8pYFd1/l5XlJT5k6zoyUG9HrBBs0FHbEceKSWSyZYyxI6aJ5PmI/RGpSOKwh7oSkZgtS0nqzKTc0j99WlUZjTaorpt3mceJE0eynKmvadve4/lDY7icu6VNab30/zmEvwFet8zAhiaPzrfOQ0HD44MJ6PQAAgG1CKAwA2LU+97nPyZd/+Ze7b+C1POc5z/G+AwCb4GpV5m/W2bCO7L95XqpXveeH1TU7tb1ML9akLVO9kHfD17ZZq42yZE3d9LI3T9ULMdsCSkNnE2u7Z1aae6yfzkp8nzcb1qe2mDTbrz9fmTVtsbOVrYvzktgXl7zXjih1gg0aCsckcbs3O9gTtR+NlRm3/9mH2lPq2p1JmZiakbJ7LgOWj+gIhevLafN4UmbOtu+nfqZ9fO12kycqbedwbSnV1i4AAIDtQigMANjVXvGKV7hvxLX8yZ/8ifcsAGxc9eRk6/VFS9BSDgPxQuFeN5pLnqz6QsWq5K9rP279tK6nnpaiXZLADSM7gmNXRXI6o/a29bmzgdztE7JwqfmwGa7q7NyK1EJC8Ch1gnmhcFjxj29HONtXRz+qtwXNsu7ULxSuS+mYadeNQTN9m+cmdrzcPF/edjNn3W+uG7QfAAAAm4RQGACwq9nZws997nO9ZwBgc2xVKBy8pnBdyif0eHGZf8x7yqjOmeda4aYXUh4rNZeOUG7oGDQT1Vuj+FCh/cZ1V+tSu6BLPixI/ni6tS5vK7TU2dGHJlp9nphKSeZUUar+nUSpE8gLhQ9m2kNxW077otd+YWrPfqxJ8bB53Nn3Lv1CYW8MbfDbpmN8w9pLKAwAAHYIoTAAYFPM3nlGpg7PjWT5pu/4ITlw8GWB3xulomMIYIxs0fIRwaGw4S4X0fF997lJyV8wX9dLkjHfz5z23eKsXyhs1xVuC3JNf25ISOrYjCzM6vII3aFl44mqFBez6zeTi8VNnfZoNEqddl4oPMDyEV1haqR+hATiXQiFAQDA7kUoDADYFH92+TOBQecolO+bvi3w+VErOoYA9rBhQmGpycKNMZmcq3pLR2Tbb+bmho5eaNym4i4fMXmyuXyEO+M4lpL5C75A2dC1h/uGllfKMqNLJfhnKHeKUmcTQuGo/QhdPuJ8TiYOpGRBb1rXNxSOsHzECe8IhMIAAGDEEAoDADbNa95yf2DYSelfdOwA7HE9Q+GGVNzlI7oDXncN3+tykjseE+fWjlmrXujYdYOz5Yw4rX15s1o7bw6noedxXcvYhpY1KRyNy8SRYkewuyrzN9rAN0qdMBsNhaP2w4xm4I3mvDFuhcX9QmGz5z43msuc8XpLKAwAAEYMoTAAYNP8n48/0RZ0/thMSV7wujIloOjY+MdKxw7AHhd2o7m5rKSnmksiOEGh6qUFScYccRxHZlbaw0kbOupSComj81JcKUtxLiUT5rn47HpQXD0Zb9a5ZUFKpk55eV4yByfE2WeKL7Rcu2/aDTsTR/NSOGPqnSlI/ohuG5fc+ebeotQJtgkzhSP2ww24D2tQHJf0qaKUV0qycEvCbff0fTYE9mb7HsyZcavKmja967jd+ynMNsfXOewLpwmFAQDAiCEUBgBsqlfk390KOhO/fFdgIEopu2Njx0nHDABsKNwMcf1F18ZNS255NWSWbU0WDpp6zkz70hHKho5nqjJ/JN4MKw8kJbvUua+6VObWb8imN4fLLlZkba25TnFycX3ube1MzrdOsGnbTVkpPNa+tyh1um08FB6kH27dUxlJHmjOIp6YSkv+bEc/Tmcl6e7Lkdx580TQca+tSdm3H3d8F6vt40soDAAARgyhMABgU33oo5dbYaeWHz/xQGAoupeLjol/jHTMAGB4zWUTnKAwldARAAAAAQiFAQCb7qW33dMKPBMve3tgMLqXi46JHR8dKwDYEHf5iKCbyRmEwgAAAAhAKAwA2HR/9OFPtELP+M+8UW76n38YGI7uxaJjoWNix0fHCgCGUT+34K43nNLlDQ4VJOj2dITCAAAACEIoDADYEj//2ne0gs/nvvwdgQHpXiw6FnZcdIwAYFj1M1l3jeCJgzkpX/Ge7EQoDAAAgACEwgCALfHgBz/WCj/jP/sm+Ylff39gSLqXio6BjoUdFx0jAAAAAAC2G6EwAGDLTN+62ApAf+RXC4FB6V4qOgZ2PHRsAAAAAADYCYTCAIAt896V/9MKQb//yG8FBqV7qegY2PHQsQEAAAAAYCcQCgMAtlTqFb/TCkJvfMXvB4ale6Fo3+046JgAAAAAALBTCIUBAFvqngc/3ApDf+Dn3xwYmO6Fon2346BjAgAAAADATiEUBgBsqX/4x3+U5C/PtwLR52XvDQxNd3PRPtv+61jomABAlycKkorFJDaVk2rDe65DZdZ8P5aTive4zVpFCrNpSRxwTB2t58j+G9KSXSzL2jWvTgT18wXJHUnIfkf3Ycq+uKSOzUt5zavgs7aSl9xywDdGVkVy7tgEleZ45ZZXpe7VHlTXeJzLufvOnfMeAwAAjAhCYQDAlrvr/nOtUPQHf2E+MDjdzUX7bPuvYwEAgWwobEr8tqoE5cJhoXBtKS0TZjvnwLRkTxWktFKW8kpRFo5PN8PdqYyULnuVe6gtTYvj7icpmRN5yc/lZeZYsrkPJyG5c/5WNQPW1NIYhsJH58346Bj5yvKCZA9NNMf/ZNWrP4iA8SAUBgAAI4pQGACw5Z5uPCOJo7/dCkaff/zdgeHpbizaV9tvHQMdCwAI5AuFY7G45C94z/sEhcKNh7JukBu/tRw8w/VyQaadmDjHSr1nwDbKMqP1Dhek5j3VUjffu84c++CC73tjHArPBs61NmpSOKRjnJVyyGztcOM4HgAAYK8iFAYAbIs73vXHrXD0+qO3Bwaou7FoX22/dQwAIJQXCqduLzQD2Km8dM5X7Q6Fq5KfCq7rV1tMSfzIvFSvek8EsccPCTVrdyYk5qSldMU8aAuwtaSk8ESznkhdVpeykvSWsXBnHZ+qdAfSVyoyf8y0a5+3D2e/JI7kpaL7t9yZtmbfF1elcDzpzobWetNzzf3Vz89Leqo5u3fiYNbU65fk9guFTT/vTnX0x+jX1rDxCJopfG1Nyqcy/ccHAABgCxEKAwC2xd/83d/L9//MG1sB6Y++ajkwRN1NRfto+6t91zEAgFC+ULZxdkYmzdedyxh0hcIX8m69zZmdWpX8dTpTeEFW+yWUjTWprsxL2hw7caIo5ZWqrLl57JoUj0y4S02kT+nzZSmeSkuicwby1bJk9bkb0jK/rMs3lKQwl5a42V9bwO2GqpMSn5qQxNF5KWq9W5PuzOjUyzIS35eSvG6/rOGw2daZ6TPDt18o3JDycR3jjJTsGERpa9h4dIXCNSkc1jA47o2P2ddsqrn0R9AMbQAAgC1CKAwA2Da/9c5yKyR9zkveGhik7qaifbT91b4D2GWuVmX+5v3i6A3Kbu4zCzeKtpm6DamcmHTDQ/8yEp2h8Np90+axI7nz3hMb1LiQl6SjxzB9uikjM4tFKV+oSSPwRnXdyyU0VmbMeCRl/qL3hHVpQZJmnzMrzcS2fjrrBrpts3GN2mLSHNv3vBeqTp6o+NZYrsnCjdpGU8+3TrIuo9F/LHqEwo26VJcybtjrHC+3jhe5rQHj0RkK15fT5vGkzJxtT67rZ3QJkPXxAQAA2GqEwgCAbfPkX/9dKyTVcvDX3hsYpu6Gon3z91X7DmB3qZ7U0FbDyWZxeixJEEnn8g1XK13LSHSFwksBSx24vPCzo0S64VljTSpLeckcijeXa3DLhCSPFzpmEHeHoJUTpu63Z2Wh8yZu3izaXss2uNwQNSELl/yPYzJz1nvsWmuu+/vCjpm1l5vj17uPweOyXrSfRakFhuAdOtvaNxSuS+mYOcaN/nWZreYs7ZgvjAYAANhKhMIAgG31ht/9w1ZQ+kO/dGdgoLobivbN9lP7DGD32fJQ2OhcRiI4FA6aHVuT0lxe8rYc01mtEUPhNg2pX662loCITZljt2ZEd4agXlhrngsth4umls/VutQulKW8vCD54+nWmr2tdnbMtG3yjnOo0L4vb/wihcJH59cDa1164gbH9C0rxUs9Itl+be0bCnvtDgx+Q/oEAACwRQiFAQDb6s+fuNIKS7Ukbz0dGKqOc9E++fuofQawC23p8hFW+zISQ68pHBiuDuh8zj3W9H32WCGhcJRgU8fuUPMGce5SFTckJHVsRhZmdXkFXzu3KhTuDPCvmufdNYmn25akcEVtK6EwAAAYI4TCAIBt99o7/qAVmP7wSxcCg9VxLton2z/tKwBEEhgKG75lJPK6PIM/FLbLDhwMWpLAJ0IoXJ3T4DMbfqO2K0V3CYj19nWGoPYmbT324anOadCdkvkL7Xe0a64L7GvndoXC6nJBprtmQw/Q1r6hcITlI04EtAsAAGALEAoDALbdx/78r1qhqZYfm/mDwHB1HIv2xd837SsARBIWCht2GQkNGNtDYfO9czn35mjxW0uyFrQWbn1VFo40Z7r2CkybN4kL209DVm/XpSomfTe+6w5B7T5Sd3fEnu56vxOSXFw1D7xQt3NNYA1Njzvt7dzOUNioLU03x+C2qjebd4C29g2FzVZ9bjSXOdMePAMAAGwVQmEAwI549W+/pxWc3pBZDAxYx7FoX2y/tI8AEFmPUFhD2eYyEt2hsKqdzrjBcGxfUjInFqSoa+WeKcj88ZR3s7gJSc1VpHfkaI4xG28ew9kvyWMzzfWIT2QkeaAZgMZnK15Yquws5Zw5XlXW3G/UpHBY6zqSuGVBSqYdxcWspHT9Xd8M3OpJPc56HV3XN3NwQpx9ppjj7FQo7LZf9x2LS+58s6eR2xo0Hl3tt+MTl/SpopRXSlKYbZ4j53Bn8AwAALB1CIUBADviT1c/1QpPtfz4/zgTGLKOU9E++PukfQSAyHqGwsbVsmR1eYOAUNh1ZVVKpzKSmrLr38ZkYiolmbmCVEJ2GWRtZUGyRxKtG6lpoBw/lJH5le6d1E5nJenW89/sri4V0w4bJMf2xSV1vCCrbYm0qTO3frM2bWd2sSJrayXJmMfJRS8e3fZQ2HBnNZs6U3lp3t4vYluNrvEIav+1NSn7xsc5kDT7q/YJ7AEAADYXoTAAYMe8fO6+VoCa+OXfCwxax6kkXvZ7rf5o3wAAAAAAGEWEwgCAHfPBC3/eClG13HTiwcCwdRyKtt3fF+0bAAAAAACjiFAYALCjXvL6pVaQ+txfuTswcB2Hom23/dA+AQAAAAAwqgiFAQA76gN/8metMDX+M3n5idc+FBi6jnLRNmvbbT+0TwAAAAAAjCpCYQDAjvvZE29vBao/8vJ3Bgavo1y0zbb92hcAAAAAAEYZoTAAYMf9wR8/1gpVv//nTsoLfv0DgeHrSBbTVm2zbb/2BQAAAACAUUYoDAAYCS9+1UIrWL3xlqXgAHYEi7bVtlv7AAAAAADAqCMUBgCMhHd/oNoKV3/gyG8HBrCjWLSttt3aBwAAAAAARh2hMABgZLzg5Xe0AtbnveKewBB2lIq20bZX2w4AAAAAwDggFAYAjIx3lh5thaw/mD4VGMSOUtE22vZq2wFsv/qlkswfS0l8X0xiMVP2xSV1LC/Fx+pejeGsreQlt7zmPdoa23EMAAAAIAihMABgZPy/a8/K8469pRW0Pv+V9wWGsaNQtG22ndpmbTuA7dSQ6smkOLGYODekJb9UkvJKWUpLeckcnJBYzJHEbRUZLhquSM7sN7W0lYHtdhwDAAAACEYoDAAYKQvv+WArbL3+F+YDA9lRKNo2205tM4DttXbftDgxR6bvXA0Ifhuyeqd+PybJO2vec4MgFAYAAMDuRigMABgpT/19Q57z8ydbgeuPHn93YCi7k0XbZNunbdU2A9hGjbLMODFxjpV6zASuS+mYIzEnI6Ur3lPnchKLpaTwhPfY8j//REFSMW8pCrd4z9s6F1elcDwpE/q9fXFJz5Vl7Zq7l6aNHMOon81L+ob9bqAdc/ZL4kheyuTGAAAA2GSEwgCAkTN/zx+th66/eHtgMLuTRdtk26dtBbC9Gg9l3TA1+1CfP8icy7nhaua0Fx1HCWwba1JdmZe02S5xoijllaqs6WHcOpMSn3Jk4lBeiitlKZ5KS9zUcw4XpZXbbuAYDVNnMuZI8pYFd//lZVNnSsPhGSm3uromhUMaJOek4j0DAAAADIpQGAAwcv76b59qha5afvTVy4Hh7E6UH331e9rapm0F0MfVqszfrLNfHdl/87xUr3rPD6l2dyo4eO3kzch1bqs2H0cJbF0BSzu4dTQALoh/QQoNqLVfMytearuBY1RmYxJ7Yfv+5eK8JPbFJX/Oe0woDAAAgE1AKAwAGEn5t7+/Fbz+0EveGhjQ7kTRtth2aRsB9Fc9OekGqrY4sxuLM93wNEoo7AWvMXu8DYfCjuRa4axl6upSFpsQPNcWk6ZOXDKLFaltMDgHAAAAeiEUBgCMpE+v/W0rfNVy8NfuDwxpt7NoG/xt0jYC6G+zQ+HanYmOgDXEWlGm9XibNlM46JjezN1DheYSEhs5hs6oPjRh6jXHaWIqJZlTRan6qgAAAACbgVAYADCycm97oC2EHaWibQMQ0SYvH7Glawq7hgiF7brCGzmGp/FEVYqL2fUbzsXikjvXp68AAADAAAiFAQAj6+N/8dnAQHYUirYNwA5plGXG8c3ODdSQ8nFHYrG0FK94T7nB7KTkL3iPPWv3TfcPbEO2deuatkye9M9GHvIYQa6Yvl5n+nqsJF60DQAAAGwYoTAAYKT9j/nTgaHsThZtE4CdpSGrzjxOnqwGhKUNWb1Tvx+T5J2+27ZdyMukeS697N+i5t24LUooHJPJExWz93VryxlzHF8IPPQxTJ2jcZk4Uuzoz6rM30goDAAAgM1FKAwA2NUqlYob5Gj5whe+4D0LYPw1pHoy6Qa/zg1pyS+VpLxSltJSXjIHdV1eRxK3VTqC1Krkp8zrgZOUGa1/piC5QxMSPzwtibbA1tTT2bkHc1JcqcqapsBeKOzu9+i8eb4sxbmUTJjn4rP+oHj4Y9igO3E0L4UzZXfb/JG4OWZccuftEbzlKmI52djKzAAAANjLCIUBALvahz70IS/IicnnP/9571kAu0X9Uknmj6Ukvq/5cx7bF5fUsXkpXQqZV3ul4gatGuZq3fRcReqXC5JqC2xFaqezknT36UjuvHnCC4VzZ6oy723vHEhKdmm1ewbvsMfQ587kfGsJO7L/pqwUHvMfgVAYAAAAG0coDADY1R599FE3yNHy93//996zADAgGwqf8x4DAAAAY4xQGACwq334wx9uhcJPPfWU9ywADIhQGAAAALsIoTAAYFerVqutUPjv/u7vvGcBYECEwgAAANhFCIUBALvahQsXWqFwvc69+wEMiVAYAAAAuwihMABgV/vIRz7SCoX/5m/+xnsWAAAAAIC9i1AYALCrPfbYY61Q+MqVK96zAAAAAADsXYTCAIBd7WMf+1grFP7sZz/rPQsAAAAAwN5FKAwA2NUuXrzYCoXX1ta8ZwEAAAAA2LsIhQEAu9rHP/7xVij85JNPes8CwOiqny9I7khC9jvN167Yvrikjs1LOeDvWmsrecktj9MfvCqS816TQ8tspVnVvblfSgpPNB8CAABg8xAKAwB2tUuXLrWChr/8y7/0ngWA0VRbmhbHvF45B5KSOZGX/FxeZo4lmwGxk5DcuYZXUzUD1tTSGIbCBzNu3wLL6VqzKqEwAADAliEUBgDsap/85CdbofCnP/1p71kAGEGNssw4MXEOF8SLRdfVzfeu0zB1wfe9MQ6F7WzgXgiFAQAAtgyhMABgV6vVaq1Q+C/+4i+8ZwFgBD1RkFSPkLd2Z0JiTlpKV8wDr659fWsPT+uyupSV5AHH/Z476/hUxTzb4UpF5o+lJL7P24ezXxJH8lLR/Vs2mL24KoXjSZnw6k3PNfdXPz8v6akJd/uJg1lTzz+TOcgGQ+Fra1I+lQnv24W8TMYcyZ3zHruqktdA3cmZr3zcuglZuOQ9BgAA2EMIhQEAu85jn3hEHnzkLvlfv/9yedNdL5H//vLvkVt+84fckr8r7T6vRetoXQAYDc3w0jm8IKtdCW6HxppUV+YlHYtJ4kRRyitVWXPz2DUpHplwl5pIn9Lny1I8lZZE5wzkq2XJ6nM3pGV+uWzqlaQwl5a4BrZT+fXw1A1mJyU+NSGJo/NS1Hq3Jt0lLlIvy0h8X0ryuv2yhsMavM5IuWcuvJFQuCaFwxoGx72+mbbMptyger1vZv+mX5MnffFvK0BvD4CrJycldp2vrwAAAHsIoTAAYOx9/gtX5eEPv0sWl2da4e+gRbfVfei+ACCSq1WZv3m/ODFH9t88L9VNePloXMhLUtcP1n3elJGZxaKUL9Skcc2r0KZ7+YjGyoxpT1LmL3pPWJcWJGn2ObPSTGzrp7NuoNu5NENtMdkexLrBbEwmT1RkPeutycKN2kZT77L3lNF4KOu2O3feeyLQ8KFwfTltHk/KzNn21Ll+Juueg2bfGlI+bvZ/qCB2VOqnMxK7Li5xM66Z0zZtb/Zhco5IGAAA7E2EwgCAsfboYw/Ia377xwKD3mGK7kv3CQD9uDNN3RmozeJECTqjaKxJZSkvmUPx5nINbpmQ5PFCxwzi7lC4csLU/fasLKzo7F9/ac4q7hvGukGsb0atFwrPnPUeu9akcMjs64Udax9fbs7IbV+6oZMXCocVf/vaQuG6lI6Z79/oX1PZ8paHOF52g2s3BI5lpOSNVWXWkdiJohTN9q1z5M4e7lxmAgAAYO8gFAYAjKWPfuKsvP6tLw4Mdm899SNy290/Lr+9nHLLW07/lLzt/Te7Rb+2z7/+rqRbN2gfum89BgCE2bJQuE1D6perrSUgYlM5qbRmJHeGwl5Y62tTVzlcbM2gdV2tS+2CLv+wIPnj6db6wq2w1AuF28NT7zi+2bgub5mGSKHwwYzk5/Ld5bQv8m0Lhb1jesFvu472eO3IPqQ1mzOCdYZw7e5UK1RuBsfZPktdAAAA7F6EwgCAsbNUekNXiPuq30rIG+95gdxe+ulWABy16Da6re6jc7/vKb/FOyoAdNiC5SN6Op+TyVhMpu+zUWxIKNwZ1gbRth9q3iDOXarihoSkjs3Iwqwu0bANoXCUAH3YUNgLgt2Qfq0o03aZC/fGctNSXPOWmDhW6r75HgAAwB5BKAwAGBu63q/eIM4f2mbzN7izgoPC3mGK7kv36T+GrjfMWsMAtlp1TkPaHrNXrxTdJSDWQ+DOUNgLOyPMgK3O6SznlMxfaI9Fm+sCj2IoHGH5iBPr+3RncZu6Ve2PvZlcoyxZc+yZFdOGtvWFAQAA9h5CYQDAWPjLz16S/F3ptrD2dQsH5a0Pvjgw3N1I0X3qvv3H0mNrGwBgqzRvEheT+K0lWeu6sVxDVm9Pid5oLX/Be6orFF7fR+rujujUXe93QpKLq+aBF+p2rgmswetxZ0RDYdO6Pjeay5zxhbxmWyc2Lekjpj+t2cVrUjwck8mDSZn07RcAAGAvIhQGAIw8naXbGQhv5uzgsKLH8B9T28CMYQBbpyGV2bgbwsac/ZI8NtNcZ/dERpIHmmFtfLbiWz7BmyF7MCfFlaqsud+oSeGw1nUkccuClFbKUlzMSkrXCvatR1w9qcdZr1NenpfMwQlx9pniD3ZHKBRe71tc0qeKUl4pSWE25d6MzzncEXB7s4K17evLbXgziPX5g0EzjgEAAPYOQmEAwMjzLxmhSzvo+r9BIe5WFD2WfzkJXUoCALbS2sqCZI8kWjd9i8UmJH4oI/MrbRGsq3Y6K0m3niO5896TUpfKqfUgObYvLqnjBVltWy3B1Jlbv7HcxFRKsosVWVsrScY8Ti56kelIhcLGtTUp+/rmHEiadlcD1gb2lpuIJWTB/yGPszPudok7iYQBAMDeRigMABhpnTeV285A2BY9pr8N7/kAN58DAAAAAIwvQmEAwMj66CfOtoWx27FkRFjpXEpC2wYAAAAAwDgiFAYAjKzXv/XFrRBWb/wWFNZuZ/HffE7bBgAAAADAOCIUBgCMpEcfe6AVwOqavm998MWBQe12Fm2Df31hbSMAAAAAAOOGUBgAMHI+/4Wr8prf/rFW+LqTy0Z0Fv8yEtpGbSsAAAAAAOOEUBgAMHIePv+uVvD6qt9KBIazO1m0TbZ9zBYGAAAAAIwbQmEAwMj53eXXtELXN97zgsBgdieLtsm2T9sKAAAAAMA4IRQGAIwcG7hqub3004HB7E4WbZO/jQAAAAAAjBNCYQDASPnoJ862wtZbT/1IYCg7CkXbZtupbQYAAAAAYFwQCgMARsp7PvCWVtg6SjeY6yyvvyvZaueDj9zltR4ANqIiuVhMYoHFkf03pCW3vCp1r/agGhfmJT010dyfMyOVa943dosnCpLqGjct3tgtVYceO7W2kjfjv+Y9AgAAGG+EwgCAkTK/9CutsPW3l1OBgewoFG2bbae2GQA2zguFj85LeaXcXpYXJHuoGejGT1a9+oOoSeGFZt9TGVk4o/scPlweWTYUPpiR/Fx+vZzISMoLw53DC7J61as/kOa5SS0RCgMAgN2BUBgAMFIIhQHsXV4oPFvxHneqSeGQznzNSrnhPRVZv33vAjYUDulj7e5pccz347dVZeDhIxQGAAC7DKEwAGCkvP6tL26FraN4kzlb3nL6p1rtzN+V9loPABvRP7it3Z2SWCwlhSe8J1x1WV3KSvKA05wNeyApmVOV9ZnA53Lu8/7SCjevrUn5VCZ8W+Vub455tihprefsl9Ti6vrzF1elcDwpE7pv873pueb29fPry1VMHMyaep1RbJ92q7BjB+kTCuvxike0/xkp2YPY/beNp+F/vmtZCvP8J8sy45g2Bxyr8VA2eJ8AAAAjhFAYADBSbNCqJSiMHaXibysAbFy/ULgh5eMdoaasSfHIhMSchKRPFd2lJoqn0pLQwPJwQWpa5cqqeX5e0rpvb2mK6hMa0NakcFgD2bi3bUkKsyk33G1tq9yA1BHHiUtmseQuZVG6aJ+flPjUhCTMfou6/a1JdzZu6mUZie9LSX5Zl77QcNgc25nxzXCO0G4VduwgfUNhG9jGZMbeHzRKKNxYk6o3fokT2taqrJl+VGY1pM6Zs+bnnaMjxfZwGwAAYMQQCgMARoo/aA0KYkep+NsKYA+6WpX5m/eLozcyu3leqkOtVevXIxRu1KW6lJG4+b5zvNxa/qCxMmOOn5T5zqD00oIkTbtmVmzN7n3Xl9NuqDtztpXUuupnsm6fWtu6AWlMErd3zND1np88UfEtx1CThRvNcTRQvew9ZTTDWEdy573HUdsdduwgEUJhuZCXSVOnNVM6SijsClg+wt2X6dM577FqlCVr6qWXiYQBAMBoIxQGAIyU2Tt+uhW0jsvyEW+86+e91gPYS6onJ93A0pagpQQG4wW3oWVCkseLUrvmVTcqJ8zz356VBXtDulbxZga32tQZCteldMw8vnFhfVZuS1Xy15nv2fDZC2bbwk/lPd+adetaa657/ELfbF91uRnY2n1EbnfYsYNECYW9OpsSCnvj5D/v9dMZs11aile8JwAAAEYUoTAAYKRwozkA42LLQmFviQe36NILNzgSm8pK8VL7jN5WAOtrQ1c5XDS1VGco7G3rm3W8zvveoUJz2z6hcPvzHdtaXhjbrDtAuzc7FD6fay5vsSmhsLkG5sw10FpCwgvaj5VYOgIAAIw8QmEAwEghFAYwNrZr+Yir5nl3Td7ptiUZQgPYQCMYCkdp9yaHws2ZvL4lHzYYCjeXkJiU/AXzdb0kGVMnc5pIGAAAjD5CYQDASHnPB97SCltff1cyMJAdhaJts+188JG7vNYDwEaEhMLqckGmHfO9qZxUWuGzvfFc1ncDtzCd+46wfMQJr+6mh8IDtHtTQ+G6FI+Y7/tveOfu3wt1fdbumzbPRwiFvTWUJ+eqXuAc5VwAAADsPEJhAMBI+egnzrbC1ltP/UhgIDsKRdtm26ltBoCN6xEKG7WlaXfpg/ht1dbs3uYN22KSursj2nXX8J2Q5KK9QVv3vvvdaC5zxpvxuumh8ADt3sRQuHa3N34nq94zhnfjufYbw9WafYgUCpvai0mJXZeT3PGYOLcGzbwGAAAYPYTCAICR8vkvXG2FrVpG8WZz2iZ/GwFgc/QOhdfDyrjkztvo0Tx32DHPOZK4ZUFKK2UpLmYltc/Ua5tVHLRvu21c0qeKUl4pSWE2JROmnnPYd6O4LQiFI7d7mFD4YEbyc/n1ciIjyQN6rI5+uaqSd5fmSMrMUknKZwqSOzQh8cPTkmgLhb3Z0wdzUlypypo/+b20IEnTD8dxZGaFSBgAAIwHQmEAwMj53eXXtALXN97zgsBgdifLbxZ+otU+bSsAbI5+obDhzqTV4DQv6/Nd61I5tR58xvbFJXW8IKttS9uG7PvampR92zoHkpJdrLbfKG1LQmEVod3DhMJdZULihzKSX15t75d1pSL5I3E3DNc2pOcqUnfHuX2t4drprCQ1tNY1ic97T7pqsnDQPO9flgIAAGDEEQoDAEbOw+ff1QpdX/VbicBgdieLtsm279HHHvBaDQDYm5pBuNMrzAcAABgxhMIAgJGjS0jc+tvrN3K77e4fDwxnd6JoW2y7tI3aVgDAHuYuH9F9szoAAIBRRigMABhJOgPXhq+vzN8gb33wxYEh7XYWbYO2xbaLWcIAsHfVzy1Ifs5bB7lzuQwAAIARRygMABhZs3es39DtdQsHA4Pa7SzaBtsebRsAYO+qn8m66xBPHMxJ+Yr3JAAAwJggFAYAjKyPfuJsK4TVspPLSPiXjdCibQMAAAAAYBwRCgMARtp7PvCWtjD2jfe8IDC03cqix/S3QdsEAAAAAMC4IhQGAIy8+aVfaQWyuqbvdgbDeiz/OsK/u/war1UAAAAAAIwnQmEAwMj7/Beuyhvv+vlWMKtlO5aS6FwyQtugbQEAAAAAYJwRCgMAxsJffvZSVzCsN35764MvDgx0N1J0n/6bymnRY//N33FveQDbo/5YUfLHUhLfF5NYzJR9cUkdm5fyXnkZOpdz+5075z021lbyklv2DUBAnZ1Vl+KR5vlKL9e95zpVJKfnM7A4sv+GtOnjqtnTxgx0/Vxbk/JcWhIHnFbd9FxZ1q5533d57Z6teI+7VWb1WDlTs1397Lxkbtovjm7v7Jfk8YKsbrCDg/181KVyKiNJr+7EVFryK50Vh+2f2bcZO9sO50BSskvbfP7a1KV0zJzHQwVprzr8+Wu5XJBpJyWFJ7zHbRqyupSVpHcN6RjnztS87w0v+jhsQv9Cx25ww5y/+qWSzHdtk5fiYxu9mpq2pU2RXkuiGvKcjmEbtuTcP1GQlO5rKifVhvdch60fv3U7ey2hF0JhAMDY0Fm6/qUktOjSDps5a1j35V8uQosuGcEMYQDboy6V2xJugDZxKCsLy2Upr5SluJiVlPtmKi65cyHv8HaTrsC3+eY8teRLMEYtFL5SlHRsUuJT5k3swQUJjsS8kOHovHte28rygmQPTbh9ip+sevUHNej1U5PCYdNeJyHpU8Vm3VNpiZvtncMFXx+GC0dqS9OmLY4kTH+LZt+lpRlJOqbeVF6G6+Gg/WuYdsXd55v9K8r8Ud3ekekl/xkapn9eiBibkNRsQUorJSnMpmTC7Cd+W9UceRgb+/lvjrept9mh8OWiZKb0+8GhcPWkjrEdB98Y3zdsvDroOGywf0b42A1imPPXMOOXdLdxbkhLfqnkblNaykvmoL4emJ+f2ypmz8ParjZFfS2JaphzOm5t2MJzb0NhU8Jej7Z+/NQoXEvohVAYADB2lkpvaAtttbzqtxLu+r+3l346MOztVXSb3yz8hLuPzv1yUzkA26l2d8p9kzR9d8DbnqurMn/IvIlzMlK64j23ZzTfnLeFwiOmtpg05y4rxdMz5g3wpOQveN9o0y9kMG+G9Ryb/ZTDs79Qg14/jZVmW2fOth+s8VDWPO/IzIp9fohwpFGWGScmcbNN294v5GXS7GtmxXs8gIF/PrxjtV83DSkf18Ah5wumh+jfWlGmzTbJO9vbUp2bNPVMG4ZIcjb0839ZQ6C4xDW83axQ+FpdqktZSWiQr9sHhcLuH0M6x6EhlRNmHJyZbbmOh+6f1XPsohvm/K3d1/zDyfSdQTPMG7J6ZzOs7rzOotquNkV/LYlq8HM6bm3Y0nPvC4U1+A/6fbT14zcq1xJ6IRQGAIylj37irMze8dNdIa6WW0/9iLz+rqS8+T0vcstbTv9UKwDWr+3zWkfrBu1D963HAIBt44VosSPFgDdPngt5SUylJO9/s6Qfs9SPx3sfs9SPsGdOdcy8cWfVpqRwcVUKx5PubEb9KP/0XLNe/fy8pKeas1QnDmZNPd/+g7YN+yhnlLYY9bN5Sd+wvqRA4ki+/WPM/lnAbW9utXjBVNBM4SHGYr8beE1I3LShEhS2RVKThRvNfo6VpO6dR+fWsnnL26l/yNAMcQLCt36GuH6qtyfM+ZxphQItV0uSMe1cD1MHD0fqpzPm8XDhdqAh+rd2OiuJA90BbfWkBrf+gHCIUNG7LrMPtXdwbWn7zl/LVdP+KXO+7q4127lJoXCzLzrDdF6qZ7yfm45+Nc9zQH/dQN5p//mMYqhxGK5/rr5jF9Ew7fa2cfR1o/lMAG9GetgfA3rZxjZFfy2JavBzOlZt2Opz770+pW4vyMx1po0Bn87Y8vEbmWsJvRAKAwDG2qOPPSC3/nYyMNgdpui+dJ8AsN10FowGMJ0hU2/exyxj9uPx6x9hb/uYpRuE6tIGE95H+U29W5sf6Uy9LCPxfSnJ68eKlzUcNm8U/TP8Wts6MnEo7y4DsP5RzqIvQInWlobZn4ZFyVsW3H2FH9MLfBtrUl0xdczjxAndb1XWtJ6/jmvYsWj2x50N2bbsw5o3azcgSOrkBmAxyZxuvvWtzGo70lLseiPfL2TQWax6zO4gs5/hrp8QHf0ZJhyxAVvtSkXmj/X5Y0IEm9K/aw2preTcJSzaP1I9eP/cPwS80JznqRkp2ZzniZLMmGu5/ecimuH711wiw17jdtzbjz9M/8xPwHJ2fY1k9+emO/yt3qbXesDPSKMsWXNMDVsHMdw4DNe/aGMXzTDtjryNGXt9rV7/eYxmJNrU9VoS1bDnNMAItmGrz30rFF5ak8bZGffYncsSbfX4jc61hF4IhQEAY0/X+9UgV9f+DQp6oxTdVvfB2sEAIrtalfmbdbarI/tvnpfqBl8+WjNEL3tPRFBfTpttuj9mWT/T8TFLN9CJyeQJ/0f5vdmtHcdsvpFzJHfee8Lbti1YNbSe/xhR2+K+EX1h+77k4rwk9sUlbwNe75jrgW/zzXnbDKGOOhsbi6AZntFD4WYI7JsVa46hb3K7bzjXI2Ro6Ef1M82w/XjQLOPehrl+gtn1HP0f/ffa3bfYsVqT4mHz+LqEOa+OJG/VtWbLUpyzIf3goelG+2dnvWrZf0upI5getH+ea2asju5vq7P/mOnbEKH3sP3TmbqOb5ZdcLA5ZP/83J8b/89HU+DPs6vHtd7DcOMwXP+ijV00w7S7tU3nLOtOXsDn3DbYStw736ag15KoNuGadY1mG7b63PtDYfPLpbmcS8cyEtFC4eHHb3SuJfRCKAwA2HV02YcHH7nLvSmdll+89fpW+PvGu36+9bzWYYkIAMNqfgR9/Y2hM2D40an5Bi3CG6gW/dil2ebGoJuaVSWvHxm14aIXhM60veR5oWdnoOOur+kLZN1tgz4Gbt4w60dD3Tdy0dvSXHs3LpnFitTCgnSvvdFD4Y2OhdF1zIjsR2Tblovwjtl1w7l+IcOEJI8XpTZEqDj49ROkLuVbmzdmC7yR18GM5OfygSVzUI9vAwYbqHfPFF1bzrSH9BFttH+183qDo5IU5oJuWDRo/1RNikcmZP1mSHZmuiOJE+Xm7NoBDNU/87M67bSfK3c/YaHwQP3r4P58dLbPm9keGKR6xxzwdXG48zxE/yKPXTTDtDv6Nts3lpvXprDXkqg24Zod4TZs9blvD4WNq5WuZSSabdi68Rudawm9EAoDAHa97/3e7zX/IRGTubk57xkA2LjNDoVbM1Ujz+rygrfAWaXe92zAERh4dtSxvDeTrbqBYZDybz9AW3SG9aHm+sVaJqZSkjlVlKq/EV3tbb5pDA+FBzh+4FgYYc/30Zyh3B1yNm841nnDOe/N79F50Tuqu0WXz7jBMW/Ws1K8NPwb3sGvnw4661VDTvPGe+ahAWY4e9oDBm/MA5fBqMiM2degM9823D+f5ix3/0zuQftnz3t3SNH8qLYjmTODxcKD968mCwe7b+TntrPzZ3qI/nUJeR1wt9vEmcLDnedB+zfI2EUzTLtrdyYCx7SLd1PD7fiZ2ZQ29XwtiWqD1+yIt2Grz31XKGx0LiOx1eM3OtcSeiEUBgDset/3fd9n/mMiJr/xG7/hPQMAm2CTl4/Q0EWDqp7r7+ms1AMJSd+5Kg0bvO10KOwuBTBAWzyNJ6pSXMyu33DOvOlrBWxd7W2+OR+9ULguxSPa9vDSPoM4JGTwbnYVc6aHDz1N+we7fnzq5vgaTDtJyV8I2n7QcMSujRwUOPTfV6CN9K9LM5heb8OQ/es1M32r++ddrz3L0P0L4B6v+3Vgs9cUHu48D9i/gcYuoiHaveXryu5Em/q+lkS1gWt2DNqw5ec+IBQ2R21bRmKrx290riX0QigMANj1pqam3P8oue2227xnAGAE6ZtzvdlZjzvFt89wjLBkwgnv7Z5506Wvg+2BZ3BYGxwKd854VeYNm2nvpDvraIC2BLli+q517F3Ku9rbfHMeHgpvdCyMsOd7ubQgSbONc2xhfeZvqxQl53602H/DuWY/AkMG9+Ps5ntT5k36MH9gGPj68VwuSUYD6amMlEID6R7t9nQGDKGzxEw7NSxM3DlgWDhE/6qn4jJxXfdd920b1memDdq/LQiFB+3fldWAa64s80e1XTPNmzhetHsa/Px1cX8+us+nrssbeJ69m0J1LdPSz1DX8YD9G2jsIhqm3XabztfgNnqtOabtQTeu7GO72xTptSSqIa/ZcWnDVp/7wFDY8C0jkT8xZNujGplrCb0QCgMAdr3v//7vN/+xYd7o53LeMwAwmmp36nq7jkwHza7T4NR9k5STqjdppt/N1VofYQ8MPAcJhQNuzOauDbseFkdrS00KR+My0RVSrMq83vRu6FB4o2NhhD3fQzP4DArMm5ptikly0Z7P3iFDbWnaDWjit1XbxjqqQa+f1gzlvkH0EOGIF5h3fkS/efOh8DHrZeCfDzewdLpmqjXH2b/kx+D9C7ve7Ee01wPL6AY+fwHcdnaFMEOcv07uz0dA+HulKGmz72RbyO/NSBzyplCDj8Mm9M8IHrvohjl/a/c1r8XkyWpAcNuQ1Tubrwnt4xvdtrUp8mtJVEOc0zFrw5ae+7BQ2LCvUfq7aWvHb1SuJfRCKAwA2PV+8Ad/0P0Pn9nZWe8ZABhVNSm9TG+oEpOJQ1lZWNYZbM2bYyV0xk3X8gK15h25Y/GOm13F2m+kFRh4DhYKa7CQODrvzqIrzjWP0R74RWuLfZOYOJqXwhnTvzMFyR/xbiJz3ttbV3u92ZcHc+b4VVnTal11NjIWRtfz3viEBkm2TUGzRT12plRrtmq/kMH0wT2mbyzCzlOgwa6f6slm3cTRXOBNlBbO2bfxQ4Qj5sqozOr++103W9e/1jXRdTO4zjYM079VWbjJ2/dcQUrav1PNdrTfxG4r+9ctONgcpn8d3J+PgFDYjGL1tuZ5Tt6q41CU+aMJ92d8esn/k7GV47AJ/TOCx26rz58Zv5NJNxhzbkhLfklviFiW0pLexEzXUjU/P7dVOgK10WtT9NeSqG0f/JyOVxvUFp77HqGw+9rsLiOx1eOntvJawmYgFAYA7HrPec5z3P+4eN3rXuc9AwCjbW1lXjKHErJf37Trmyld83G2KKtB74WurUn5VEaSBzQQ1bpJyS52zMoJDEJD3tiFhMK5M1WZPxJvhqx6jKXVjjerRpS2GLUzOd9awo7svykrhcd8tQLaWzudleS+Zv3cefNEUJ+GHguj63lvfEKCpMbKjNv+fjNC22841z9k0GUkdPzX7xI/yBvwpmjXjxdq67FCynqgMGzo1pDVZXOup/TNf/N8ZLquh63qn0evibm0xN1rJyYTU2nJLXdeu0P2r2Pfbv9OlWXtmvd91xb3r0NwsDns+fNxfz6CQmFVl9Ul8/Pp/dy5Y3ym808lWzkOm9A/I3jstuf81S+VZP5YqnUtxfbFJXVsXkqXgjYatTYN8loSte2DntNxa8O6LTn3PUNh42pZsu61sJXjt25rriVsBkJhAMCu98M//MPuf0S89rWv9Z4BAEQWFqJiG1VkZoA34OOH/u0N4zoOo9jucb6mRqHtjN/GjPP4wY9QGACw6yUSuuZjTE6cOOE9AwCIjFB4x+m6yBO3lmV9uYPdhf7tDeM6DqPY7nG+pkah7Yzfxozz+KEdoTAAYNd77nOf6wYaMzMz3jMAgMgIhXdYXYrHd/Md2Onf3jCu4zCK7R7na2oU2s74bcw4jx86EQoDAHa9G2+80Q00br31Vu8ZAEBkhMIAAAC7DqEwAGDXe/7zn+8GGq9+9au9ZwAAAAAA2LsIhQEAu97BgwfdUPhVr3qV9wwAAAAAAHsXoTAAYNf7sR/7MTcUfuUrX+k9AwAAAADA3kUoDADY9W666SY3FH7FK17hPQMAAAAAwN5FKAwA2PVe8IIXuKHwr/7qr3rPAAAAAACwdxEKAwA2xeydZ2Tq8BxlA0XHEAAAAACArUYoDADYFH92+TOBQScletExBAAAAABgqxEKAwA2zWvecn9g2EnpX3TsAAAAAADYDoTCAIBN838+/kRb0PljMyV5wevKlICiY+MfKx07AAAAAAC2A6EwAGBTvSL/7lbQmfjluwIDUUrZHRs7TjpmAAAAAABsF0JhAMCm+tBHL7fCTi0/fuKBwFB0LxcdE/8Y6ZgBAAAAALBdCIUBAJvupbfd0wo8Ey97e2AwupeLjokdHx0rAAAAAAC2E6EwAGDT/dGHP9EKPeM/80a56X/+YWA4uheLjoWOiR0fHSsAAAAAALYToTAAYEv8/Gvf0Qo+n/vydwQGpHux6FjYcdExAgAAAABguxEKAwC2xIMf/Fgr/Iz/7JvkJ379/YEh6V4qOgY6FnZcdIwAAAAAANhuhMIAgC0zfetiKwD9kV8tBAale6noGNjx0LEBAAAAAGAnEAoDALbMe1f+TysE/f4jvxUYlO6lomNgx0PHBgAAAACAnUAoDADYUqlX/E4rCL3xFb8fGJbuhaJ9t+OgYwIAAAAAwE4hFAYAbKl7HvxwKwz9gZ9/c2BguheK9t2Og44JAAAAAAA7hVAYALCl/uEf/1GSv/y/WoHo87L3Boamu7lon23/dSx0TAAAAAAA2CmEwgCALfd7959rhaI/+AtvCQxOd3P5wV+Yb/VfxwIAAAAAgJ1EKAwA2HJPN56RxNHfbgWjzz/+7sDwdDcW7avtt46BjgUAAAAAADuJUBgAsC3ueNcft8LR64/eHhig7saifbX91jEAAAAAAGCnEQoDALbF3/zd38v3/8wbWwHpj75qOTBE3U1F+2j7q33XMQAAAAAAYKcRCgMAts1vvbPcCkmf85K3Bgapu6loH21/te8AAAAAAIwCQmEAwLZ58q//rhWSajn4a+8NDFN3Q9G++fuqfQcAAAAAYBQQCgMAttUbFv+wFZT+0C/dGRio7oaifbP91D4DAAAAADAqCIUBANvqz5+40gpLtSRvPR0Yqo5z0T75+6h9BgAAAABgVBAKAwC23Wvv+INWYPrDL10IDFbHuWifbP+0rwAAAAAAjBJCYQDAtvvYn/9VKzTV8mMzfxAYro5j0b74+6Z9BQAAAABglBAKAwB2xKt/+z2t4PSGzGJgwDqORfti+6V9BAAAAABg1BAKAwB2xJ+ufqoVnmr58f9xJjBkHaeiffD3SfsIAAAAAMCoIRQGAOyYl8/d1wpQE7/8e4FB6zgV7YPtj/YNAAAAAIBRRCgMANgxH/w/f94KUbXcdOLBwLB1HIq23d8X7RsAAAAAAKOIUBgAsKNe8vqlVpD63F+5OzBwHYeibbf90D4BAAAAADCqCIUBADuq/Cd/1gpT4z+Tl5947UOBoesoF22ztt32Q/sEAAAAAMCoIhQGAOy4nz3x9lag+iMvf2dg8DrKRdts2699AQAAAABglBEKAwB2XOmPH2uFqt//cyflBb/+gcDwdSSLaau22bZf+wIAAAAAwCgjFAYAjIQXv2qhFazeeMtScAA7gkXbatutfQAAAAAAYNQRCgMARsK7P1Bthas/cOS3AwPYUSzaVttu7QMAAAAAAKOOUBgAMDJe8PI7WgHr815xT2AIO0pF22jbq20HAAAAAGAcEAoDAEbGO0uPtkLWH0yfCgxiR6loG217te0AAAAAAIwDQmEAwMj4f9eelecfe0sraH3+K+8LDGNHoWjbWu00bda2AwAAAAAwDgiFAQAjZeE9H2yFrdf/wnxgIDsKRdtm26ltBgAAAABgXBAKAwBGylN/35Af+vmTrcD1+cffHRjK7mT5UdMm2z5tq7YZAAAAAIBxQSgMABg58/f8USt0fc4v3h4YzO5k0TbZ9mlbAQAAAAAYJ4TCAICR89d/e7UVumr50VcvB4azO1G0Lf62aVsBAAAAABgnhMIAgJGUf/v7W8HrD73krYEB7U4UbYttl7YRAAAAAIBxQygMABhJn17721b4OqpF2wgAAAAAwLghFAYAjKzc2x4IDGNHoWjbdsq1a9fkqaeekr/6q7+Sv/3bv5XPfvaz8jd/8zfuv//4j/8on//85916//AP/yDPPvus+7Vu02g05MqVK2493e6v//qv3a+1nq1jfeELX3D3pfW13tWrV+Vzn/uc1Ot191/9nu77mWee8bZo0ue1bU888YTbJi2f+tSn5P/+3//rfs/Sr7XY42g7bNv+7u/+zj2m9k+/52+XHlOLPr+2ttZqn9bVr3VbS+sou73288knn5Snn37ara9t1K91u062X7rNX/zFX8jf//3fu8fTY2mf9F/lb5v/OLpve250zD796U+7fe30//7f/3OLbmPHQMtnPvMZt632XGpf7Lm0dDvd5i//8i/d9uhxtF/+4/i/1j7pedRt9F/dRr/Wdur+/deN0v7o83o+tZ6eQ22Xnn9tW9D42vOp42r3rf3R+jpu2mY/3daeT92/tl/H2o6BttO2R9mv9V/bNj0vdqx1O3ut2br6te2bHkv3b9ujRc+V7sfS+sq2VfejbdH967/2Z0D/tez1Ys+R/qvj6x8zfaz90f1r/c7j6FhofW2P/mt/brS9ytbXf+02ehytZ39mtI16DO2PHVvLjoceW8dM69mx0zbaa0XradFt9Vj6vB5P6+j4ar/1X73u/P2w9LEWfb3R617ra/u0bToO9vzo9/3b6tf2urT90fr2urF9ttvYduq1pvV0GzvO2latp0W303/916mOj702ta4dO399bZ+l22g/tK4eR7fTY+m/9jj+sdavdRt7XerxdFv9Wturx9Cx0zpKt1f6WPfvf/3Ua9VeA0rral/0X92HHkvr2TZpO+1jS+vqMbWuLdoera//6s+dHUPL9kH/tY91nOw46P71fNnjaF0teiz7OqDttD9f2nfdv15zlu7T1gcAANuPUBgAMLI+8anPBgayo1C0bTtB32R/4hOfkJ/7uZ+T7/3e75X/9J/+k3z7t3+7fNu3fZv84A/+oPzqr/5qK+Cyb7T1Tfejjz4qhw4dkuuuu86tq9vs27dP/ut//a8yOzvrhjeWHkPf3P/hH/6h/PRP/7S7zb/9t//Wrf/v/t2/kx/5kR+R//W//pcb7tj6So/3vve9T174whfKd33Xd8l//I//Ub7jO75Dvvu7v1ue97znye233+6GCn4aCiwvL8tP/uRPyoEDB9y26TZ6rB//8R+XQqHgHscGDkoDvjvuuEN+7Md+rNWP//yf/7O7vW7z+7//+61wwwYaus1b3vIWtx3//t//e7cfWl/Lz/zMz8gDDzRDfn+woSHJqVOn3G20L3ocLTruP/uzP+v2VekxdP+6jY7ja17zGrnhhhvcNul2+/fvd8fj53/+5+X8+fNuOKOBkw2fdJv/8T/+hztOWlePoWP+wz/8w/KLv/iL8vjjj7f6YYOk1dVV+ZVf+RX5gR/4Afme7/ke+f/+v//PHYvnPOc58tKXvlQ+9rGPufWVHkfPzUc+8hHJZDLyX/7Lf3GPodeOFt3+ta99rRs+KRvU6HV04cIFOXr0qNse7Yv2Q8fs+c9/vhw/ftzdxp4XpdtqH/X61P5rf/Scat/0+rztttvckF3pMZT26V3vepf8t//239xtvvVbv1X+w3/4D24bdQz0utFzYWl9LXqedRvbD71uvvM7v1N+9Ed/VH7nd36nK4DV62hpaUl+4id+wm2P9kePo306ePCgLCwsuNso2ycdg/n5eXnBC17g9tv2Scdbfzbe8573uPXsmGnR0OzkyZPuz4m2yV47ehzdRvtq+670aw3Z3vSmN8mNN97oHkO3s9fni1/84tb1qfR8avt0HGdmZtzrU/et7dJx0H/1utHzoGzbdBsN5G699Va5/vrr3WNo//VfvQb0+vzgBz/obmP7oteNvt78z//5P93XCvvzpuOs194v//Ivy4c//OG2bfT1QK81bcPU1JRbV3/mdFs9jrZZA2W7jYak+vOg1/kv/MIvuNea/nxqP3Qsvu/7vs99jdIx8l9rel7PnTsnv/RLv+T22/ZFx0x//vTn0B7H0m3+9//+3/KiF73IPY5uo/X1enjuc58rb3jDG9zrxL6mafv0GiiVSvJTP/VTbj0993ocbZ/+HLztbW9rBaNaX8+Pvh7oedZtdP86ZnosvRb0NerOO+90+63s+dF9/N7v/Z7bDt2/jpv2X7e/6aabpFgstoW2uo0+1uNrO3TM9GdN26XbHD582L0+tY4ew26jx9HrU39O9JzoNnqcyclJ93eEvh7bP6IoHXMNmX/jN37DfX2ZmJhojbW2Ua8BPQ+6b6XHstfnr//6r7vXmh5H26fH0XbpMXRcbbuU/2sAALA9CIUBALueBkGxWEy+6Zu+yXtmfOkbeg2otD9avvzLv1y+4iu+wv36n/yTf+J+/Zu/+ZtuXQ0nlG6jb8z/6T/9p269L/uyL5Ov/MqvlC/5ki9xn/uar/ka9w2/pW/odRt946917bG+6qu+yt3Gfq3BhtIARUMEnRGmgZ6t/0Vf9EXyxV/8xe7X2rZ/9a/+lRs0KxvYffzjHxfHcVrb2D7odvq1fm9lZcXdxoZhf/zHfyz/8l/+y7ZtbN+++qu/2g0tNKjS/dvg4cEHH3T7qW3SetqPL/3SL3W/1uc08NIgS2lwpH269957W8fQOtouu722T8MbG3AqbZ8GNHYbW+yxdBsNsm2wo/X1WPl83q3n77vdVrf77//9v7fNFNSg7pWvfGWrz7aePVf6r4a/2n/7hwENujSks9/XY2nR68A+p8GfnR2p22oQpCGmbY+/XVp0PLW/Wlf7of2p1WpuGGrr6HjpNerf5q1vfau7jV4zuo0Gy3p96vftGOh2Om76WM/1u9/9brddSq+BT37yk27wZffbWXSbP/qjP3LPvR5Dj6Who17Tto7dvxZ9/I3f+I3uNaDb2LbpdaOvG3YbravXmI69fq3Xpw1FlY5DuVx26+j3dVx13HQM9LH2S//AoufFFj3Oe9/73tY4ab3Oa00DO/2DitbVsdPzpD9/to4t9udT//3+7/9+tx9aX+k1ZK+1zm30GHoN6WuLHkPpz4D+/GiIbPtrrx27rbZTA1al58VeNxru6vd1v1pf+6b716//+T//524wqPu3x9Ig/eabb3a/r/W0X/q1vs7ofnQ8T5w44da19A8F+kcDewz/z4M+1nOj22i7lLbt8uXLbrDrH1stdht9jdI/QtiAUre9dOmSO/52/1rPbqPlX/yLf+H+gcKOs/bpz/7sz+Tf/Jt/09pGx1j7oF/ba0CDUd2/jrFeN3/6p38qX/d1X+fu355H2y89noa3+lqo2+hriI7fI4884o6nv6691nQf2lf9g6DSPun1puHyP/tn/8zdRovu24659kX/aKR9tteZtk/7p/vW/WrRY9g26tcadD/22GNu37UvGnjra4Ptv+7bHlOPp3/E+NCHPuQeQ+vrv/ZaAAAA24dQGACw691zzz3um1ENCcadvqnX2VbaH/um3H6tb8D1Xw0RbUChdIadDXT929jttOisOg0ZdDstOqPQvqHXN/EaBNhtNBjSMOh1r3tdW4ios1c1XLD1OosGkDrz1tLjnT17trWNPZ4WDRG0XbqNhvo2MNCw4cyZM24btJ7/eDbo0WDloYceagWpehydgWf7brfVPtnwToNkDWU0oFAahGhbNfDQvtpjaNHjaNFgQwNBu43+q7MgbR3/v1q0fxou6TgpO852G3/QZLfT5xKJhBuA2THQQF1nddq6/vr6r4YvOvPVfkxbj6Phtc6Q7Tw/NuDRMdFZtzpm2g8NkPQPAzbg7Wyb7ke306DZhtx6HA3ddPag7tcGzvY4Oo66jV5r/lmSOjv1m7/5m93zo/Xs8WyfdDv9Q4cNUPXc6B8GdPal1rPnVb+2jzUUvuuuu9xjKO2Tztz8+q//+labbLHH1XHTa01pX7Rf73znO93QTb9v22OLPqff0/BZ6yv9efit3/ot+dqv/dq269kWbZ8GbzoD226jY64zxbUd/v7o8fRa1ue+4Ru+wZ1RbrfRtukMd3s+tY4eT7fRY+tzGnDqObTnU/8woGGttlu3023s9vqcnht9bdFxtudHA14N/Pztstvb4+rMeQ0q9Rha9FrVWeHaFq1rf95s0XbqNW1pn3QJDP3DTNAY6/ZadMa01tXzr+Osr2salGode63526aveceOHWu9ruk46/Wpf5jQetpfexw9rm6n27ziFa9otUvHQv9wZV8ntO36r16TOh7aLh3vN77xja3wWf/VgFTr2f3bouOlRbfR2braNqXnSP8AYcfYX3Q/WvSPFm9/+9vd+krbpjOB7XE6x04f6wzt97///W6btD+6nIXuw+7Xf260XbqN/uFEZ/7aa0Bfb7StWl/r2PHVujou+py+rtlPJ9jj6Kxrexytq//q+OkxtS8aiuv1QhgMAMDOIRQGAOx6dsanvhEddxoEaAChb6w1QNA32vbNvb7x1nBTPx6t9M250jfer3/961t1tdiQWLfRjwFryGZpgKBrTOrHgvVNvA1C9BgavmgIoLPJ7Aw0G4ZoEKCBtIYGWke30a81fNHH+tF4DSrtR/S1fTq72M4Q1KJtssfQr/Vj0zorVNlgQ2exaVhpj6H19Dj6r7ZVl3bQ/Srtu26jM1g1qNL62mc9hj2mtk+XXND2W3qsP/mTP3H7abex/2rRYOllL3uZG5pZGm7o2OvHt7WuHTd7PBuk25BK26Zf60fTNdzSetoW7YvdTv+Q4f94utJwS//QoYGP1tFzabfV7TTc1GU3bGCvNHTSGZDaDt2/nkt7LN32W77lW9yQRq8vpe3T8dAwyIaitk26jY69zgrXMdK6djsN7PRa0+9rXXtd6r/6nF5rGjjZa0b7rzOFX/WqV7nnT8fIjpu9BnRGsH85DD2eXkd6nnXfWk/7rF/ba0DPta5has+/nhvdRj8eb9tjx9lePzqLW9uidbVd2kYNBHVfWscWPZZup/vQZU80oNVj6BjrNnp9xuNx9zjaH/1Xix5DH7/kJS9pBWG6nc7m1RBR+6n17NjpsfQ4es70WtOxVbqt9qtarbrBrz3/dhv9V0NHnSVrz4vW1+PoH0v0HOh+bdH62jbdRoM8S8dA+3T69Gl3TLWOXjO2XdpODfPf/OY3u3WV9kdn/eryLtpu2x7dzgapGoq/4x3vcOtq+/QY2jZd8kOPo/u116ftky67oAGobmOPpSG3/jxpXdsP/7Wj4eYf/MEftOor3Sabzbb13b4W6La6vIVen8peo3p+damUzmPYbTTM1pDf0vPz53/+5+716W+b9kPbpf3S1zWduW6vGz0/eu3pH3Ns/3Xfdhtt4/T0tDtb3P8HFd1HMplstUfr6nnUc6XXhf7hwL9Uh46Fvm7r9elvlx5Lt9VrW5cg0p8V2zbdRn/O9Y9gdhvdv/1a/3Dxa7/2a+451DYpfe3R1xP/Nnr+bUisM6X1j3u2PgAA2BmEwgCAXU9nCOqbUZ1tN+70TbQW/RixzmLUcOV3f/d33RmO9913n1y8eNGtZwMkpSGFPtYZjbrN4uKi3H333e4aqrqNDTT0jbyGAJZup4Gl1tWP/OtxtOhH3W3oqtv412HVYEC/r7M0tegMXd1GQ0wNPWw9pWGDBg8arN5///1uu7Q/Gijptnpsu43SutoP/VeDDj2O7l9nvvnbpsGPsuGJ1teisxF1bVYNWXUbHQsdNz2OXbPW9l/bpuOsMwt16QIdK1tfA1cN12wgrH32h28a1Nh62h/tl7ZTZ+zZttkwRI+nRT9urqGXHkf7rm3Uj2zrefYHtXY7/Vc/Oq7nRtul50f7pOdTZ1/rGNtAxwaQ+liDRG2P7l/bZo9j15JVuo09pgbQGnRr27QP9nrTj6DrdaN19RrQf/WY2kYN0T7wgQ+4Y6B90T7pz6D+ccaGu/5x1m10LDXA0z5oOKjH0b5pcKTXtNbRNum/Ot76r7ZNlyPR/WufdP96PG2rnjeto8X2X7/WoFvHSPuiRZdg0O01wNI/hNhrU+l2Os66pq6uH6391vbpGsPaNv150utT92sDeN1G26khvm6j+9bxtW3UgFV/XvznVOlx9frUa03bpMfRMdA26lj662v/tb62TWed6zbaHq2vY6DH0XOm37fnxx5HH+s5sNem//VA/zBkx9Zuo+dJ96PXp9bXduk1o9ebnl8dA39dOw76r4arOma6b9snbZ9eNzpO/p9Pra991Jn3ev51O3td6zZ63Sp7vej2ejzdRn+utG22fdofPcc6819pfa2n14vSY+msXK2vfdB/9TVHz5e9bnQclI6zvubo64P+LNrXND2nOoZ6fep1o7RtWpTuQ69pPd/aHj3/uq22T1+D/Gsd2/OkbdTndRvtu46zbqdf68+GvT7tOdGij/Ua1Ncw+/Op673r+Om42Nc1W1fHQI+lf2jTa17bY19v9Fi6H3sNaD37c6rjrX8g0ddpPY6eU91Ox0GvNf2ZV3oMLUq31230tV//IKWfiNA/pv3rf/2v3Znx9rqx1zMAANh+hMIAgF1PAywNhfUj5buBDVNswKj0Tbu+sbZv5pUNAZSGAkrrWfY5ZUMD3V5pPRvw+N+w2+/bYKKT3cbS+jZYUPb4to3KhgPK/qv0aw1kgo6jdL/+/ijdRvvs34+yoZrSbfT4vYIIu73Ws9tqO3RbPa6//Zb/Obt/f9/9x/O3R+m+ta49rq1rx8BPn7PXgPLvyx7P32Zlt7Ft1Mc2+FK2vfqvbYP/OLa+7butY/dn6fO2vfq1bYf+q3VtUfp9//nz19e26GMt9hr2s+Ol/HX8Y6zsfmyb7LH99fT7yj5n22SfV/Zr/dceV+vbr5X/OrXjpP/6t7X/agnqu/5rt9HH/v376/vp83psu43ts61v++Ufe+Wv49dZx7bLf73odvY4to36tS12v/7v637tvvRr3d4/ZradVlBbO19fbL/1e/qvnz7WAN4eQx/r8e3rg+2Pfm3HXPejx9Wv9Vj+a69zG62nJew1T49t92mft18rf7s6+2r32bmN6tyn/2dUi3+//nPmH1/9nrbRf1ylz+ux/efFPqfsPuz2lj62+7Jf67+6H397dEx0Br/uTx/7+6HnBgAAbC9CYQDArqczBzUU1o+5jjv/G2zV+dj+6w8A7Jt1+29nyKD8b+iVfYPuDwe0jt2vfx82HLDP2W30sf3abuvfzh+46Pf02Hb//tBT2TBJBQWiehwtth/+dtt9+p+zOvtp69r92MdBbF9s/3Ubu52y7VU2VOlsg9a3zwV9zx5f96Xf76zjZ+vaf23fdFs71v422XbrPv3Pa7/0sd1e+cfBft/2SXU+1rb7z7X/a+U/Xme7/WGTv792PGw9faxF2f3rfv3BnX97/Vq3tcfWbey+bL3O7f1tUWF9svvp/FfpfmxdO9b+sM72QdnvB+1b+dus9cKO27lP/2Ol9WxdFfR9ZZ+346PP63Ht19oPfWw/LaBf2+tAt7X70ef1sf7r/7lX+rx//P3XnT72j4U+1nOi+/W3RdljKf92dhtLH9vt/G3sbKuffU7/9bffPtf5tb8ttp3aBrsfpV/b86lf+1+L7Pf8X2s9fxv915DSura+PYa/vv1e5/Vt62tdu52t6+c/vqV1/PvU7ZTWs/tV+rXtj9J//a+J9lwBAIDtRSgMANj19COvGgrrWovjTt9c68eS9SPtGo76AxQAAHaaPyhWNmS2/3YGxPocAADYfoTCAIBdT9eK1FBYb6IzzvSNs94w7ad+6qfku7/7u90bVuljFTSLCwCA7WKDX0sf2xnB+rX+jiIEBgBgdBAKAwB2Pb15jobCejf2caZvpl/xile07n6vd4s/efJk6yO69l8AAHaCDX+V/qu/l/R3l97c7jd/8zfd31nnz59vBcMExAAA7BxCYQDArqd3iNdQ+Cu/8iu9Z8aTvrlOJpNuX77oi77IDYVf/vKXux/F3bxAuCI5s389RmiZrXh1d07jwrykpyaa7XFmpLIX8vBzObe/uXPeYwAYERruBv0e0mD4r/7qr+TIkSPup3W+5mu+Rg4fPix/9md/1trGP7sYAABsH0JhAMCu9+CDD7ph2pd/+Zd7z4wnffP8ohe9SL7kS76k1R8bCm/ejXq8UPhgRvJz+eByurlkxc6pSeGFpo1TGVk4U5byyqrUve/saoTCAEZUWCisge+FCxfkm77pm1q/u77xG7/RvQGs/T4AANgZhMIAgF3voYcect+IfumXfqn3zHjSN9zPe97z3H7oTGEtv/zLv9y68//m8ELhEZgNHG4c2rgFCIUBjLjO2b86U/jixYvyzd/8zW4orH/M/IZv+Ab5/d//fff7hMIAAOwcQmEAwK73gQ98wA3T9A3pONM32j/xEz/h9kWLLh8xMzMjTz/9tPtGXMvGDRa41s/mJX3DfnF0G2e/JI7kpbzmfTOMG26mpHC2KOkDjrtdanHV+2ZdVpeyktTnzT6dA0nJnKqszwT2glF/SS15B7y2JuVTmfBtVdix7fMXV6VwPCkTum/zvem55vb18+vLVUwczJp6zZsnrevTbtWz3xF4fc+d8bVxX1zSc2VZsxP0GmWZcczxA85f46Fs8/hPmAdB/e3cl3WlIvPHUhLf5425d54rV7zve6JcC0NdLwDGgv4O6vzUyjPPPOOuIfy1X/u1rbXwNSAuFotuYGx/bxEOAwCw/QiFAQC73srKihtm6czacaah8E/+5E+6fdHZVvrm+ld/9Vfd721OIKyih8KNczmZjDmSvGVBiitlKS9rcKph34yUOzNTPzeQdMRx4pJZLJntFqR0Ub+xJsUjE2b7hKRPFaVs9lk8lZaEhpyHC+IuWnFl1TxvjqNtPDrv1qk+oQerSeGwBrJxb9uSFGZTbtjZ2laFHdt9flLiUxOSMPst6va3Jt3wMvWyjMT3pSS/HNbHCO1Wof2OyN3e7NNxZOJQ3h1zPU7c7WPRtKKpMquBc86cSb+GlI+bdh8pNoPqVn9770uuliWr/bghLfPafx2XuWa92FReql619WvhbWZfHzB9e4tvnPTa/MdIdQCML/09ZMNd/VeLnSn8Ld/yLfJlX/Zl7muYzhS+55572gLkzfsdBgAAoiIUBgDsSr/+67/eVtwZjqb88A//cKt84hOf8GqPB31zvbi4KF/91V/tBsL6xlpnW6mgtRyHEz0Ursyaei/0hZ7q4rwk9sUl32uJAy/cTNzePku2sTIjTiwp851B6aUFScYcmVmxKWx3G+vLaTfknDnbnkbXz2TNPn3bhhzbPj95oiLre6jJwo163aSkcNl7ymjOuHUkd957HLXdYceOytveOV72tbHZHu1ja1mJC3k3fG1bZqJRlqzZNr3szV22+/KH1obdl21z/XTWDcTd2cU+tUW94eH6881r4Z3y5/Ks/KNca5aLp8y1MCVvPPcP5vE/yAdbdZqP/1HrturoNhomEQwB404DXvs7SYPhxx9/XL7u677OnSlsl4945zvf2QqR9d/NWxcfAABERSgMANiV9A2pzgzW4Cuo/PRP/7RXc7zo+sH33nuvvPWtb5X3ve990mj448HN4AWuYcUXxDaDQZ31WpHaIMsae4Fk59q4lRNm/9+elYUVnZHqL97M4NaxO0PhupSOmcc3LrQH1K6q5K8z37NBasix7fMzZ73HrjUpHDLbdgbflwuS8u0jcrvDjh2Vu/2k5C94j1sqMmP269xm5+02++xfQqJ+OmO2TUvRLvng7qsjOHaZsdWZwa19hXC3T8jCpebD9WvhEfnzq14o7BYNiZsh8J+31fFC4VY9Lf9g9kQoDIwrO0vYP2PYzhS+7rrr3FBYfy9/27d9mzzwwAOt72/eHzUBAMAgCIUBALvWb/zGb4gbZAaUc+eGTeZGwxe+8AXvq/WvN+eNtRe4HsxIfi7fXU774tGrVZk/1FxnV8vEVEoyp4pS7bdGbGA46gWw3r4CS2tZg85Q2Nu2YwZtk/e9Q4XmtmHBbK822W2tJ/yh8ADtDjt2VO723bN2W204VmouDWFU5yZ9S0h4obnv+3331dnnq3WpXSi7S17kj6db6wu3+hJ4Lbxb/nTtH6X1P1PnLaF1iIOBcecPg5WdMfzUU0/JwsKCu4TEt37rt8rc3Jz7B00NhLVovc3/AycAAOiHUBgAsGt9/vOfl6/6qq9qhVC2PO95z/NqjCd9E603l/PzvxHfmM7Atb/GE1UpLmbXbyAWi0vuXI83+IMEsIFGMBSO0u6wY0fVL8j1999dQsKbVVwvScYcN3Pad9u7fvuyQXZb2OvI/hsSkjo2IwuzulxHd18+b66Fd3dcC68314INfbX0qgNgfNkQ2D9j2P/HSv36ypUr7h8y9Xt6Ezr9fQYAAHYGoTAAYFfL5/NeoLVedNmFcaVvpP3FzhK2s642bvBQuM2Vsszocg3+WamdAsNR70ZosWzvm9S5OtsYYfmIE17dsGA28PkoofAA7Q47dlTu9uHLR0ye9C/50FwPeXKu6i0d0dG+HvvS5SPsvtwZx7GUzF9oP5vNdZUD+uJPf9uuBf83tHj+2lfH9zSA8aW/izTw9S8hoV/b31H6u8v/tdYFAADbj1AYALCr6cdWv/7rv94NsLR87/d+r/ed8aRvpNfW1uQjH/mI/OVf/mXrjfXmiRoK16RwNC4TR4od4e+qzOvN2QYOhcW7YVtMUnd3RLvuGr4Tkly0N2jrbmO/G81lznitCQtmA5+PEgoP0O6wY0flbd9+MzxzJpamzfG7A153nd/rcpI7HhPn1o5Z1CH7WlvO+Pbl9b9zTWUN4Y87vr74roW27Nd/LXzS1Jkydd5lvvZds/46hMLAWNOA19IQ2P7xUkNfnSXsv5mcPu9/bvN/lwEAgH4IhQEAu94b3vAGN8DSsri46D07fvRNtIbBL37xi+U7v/M75Zd+6Zfkk5/8pPvmW99Y+z+mO7zoM4XX7tMw0pHE0bwUzpSlfKYg+SNxM85xyZ23UaMXLMbs+rZGaDhak8JhDRvNPm9ZkNJK2V2WIqXr106Z7Vs3swtqo902LulTRSmvlKQwm5IJU8857As1w44d+Hy0UDhyu0P7HZG7/aTEpybMmM9L0dfHuBmL9jjcuLQgSdMmx3FkZqXju15b3Da7+zJtnuveV/Wkns/1fpWX5yVzcEKcfab4+tJ2LZRMvZL/WtClTq6ZOjd7debM9fKB9uvlUXNEQmFgrNmg17KBsP1af1fp9/VfuwSSPq+B8Ob8/gIAAIMgFAYA7Hp/8zd/497gZt++fd4z40nfSN9yyy3yxV/8xW6gp//q8hj6/OaJHgqr2pmcb21YR/bflJXCY/45woOEwqoulVMZSR5ozkSN7YtL6nhBVtumHYe08dqalH3bOgeSkl2sts9YDjt24PNRQ2EVod09+x2Bu31KCherMn8k7ga4sX1JyXT2saUm/z97ZwGgRbW+8dkOdunuEBURUWyxKBUVFANBRKklzHvNv3Et7MQOVO69FnajYgcWUmLR3du7X8fzf58z3/kY9q6Kriyg7w/ePTNnTs3MmS+eeb93HusvZZpf+b+hLexYpm1uyxyvZ36s0pbs122bHyzHh8Nd9MQXWLfOjVN87BObfYirnwvFsoXzk96AYSlznZTZfcsy30mP1rtYUZSdGoq8hO9LFHutGLxkyRJcd911+Mc//oFvvvkmKQbrA+YURVEUZfuhorCiKIryl8MfrMD8hZ/jnc+n4IFnLzB20S1H45+3HmHsjimjk/ksw7I7A/SkOvHEE404l5GRYURhfsGml7D3Z7mK4uKK2s2rE/hrKlD/ApHI5jihrsobRTTmxr0OR+gZGEqssxxFIdn+p97UUBRle0GR117PNuVrwZo1a3DKKacgOzsbWVlZOO6448yvXtQ7WFEURVG2LyoKK4qiKH8JKAR/8u0LeOLlK5Pi7+811mUbbGtHhF+gBw4caMS81NRUIwpfcsklSU+rP+0L9mOPAddem1hJULduYiGBlkmsJNgRy5jwEYn4wFXLVCcK13g8jB8a85Shl2DEzUuUiUQ4V6OeMnH5z9ijUubww0wZRVF2TigAMyyE9RBmSvvxxx/RtGnT5HsXl1944YVELbee3thUFEVRlNpHRWFFURRlp+eb+W/jiknHVSv0/hFjW2xzR4Oi7zHHHIOUlBTz5TozMxOXXnop/H5/osSfwDvvAKNHu4Ld5MluXteuQFnZZvFPy/xJZU7H013dsAy/aSf8n1tvK/oq6dgSd1x/Hk5KlXoMfVHdeDq6As0NdbbFfo1E/Op/VSlTskWZ+MiR0s41W5aplHY0hoSi7LRQ3LU3J7nM9yauL1q0yMQ2pyCcl5eHJk2aYOrUqaZMMBg0wrGiKIqiKLWPisKKoijKTst3Cz/DxIdPq1bYvfzevrjpv8dj0ssnGXvwrcGY/N5QY/e9fkoyf+KUY03Z6tpg2+xjR4Ffrvv374+cnBwj6DGExIQJE0w+vaxq/DP8b78Fjj46sSKMGSOfFOSjwvffu+sU/7iuZVz+hDKBkhKUnHkmSiSv5MsvUcL1lSvd9T593HXaWVvfV8lDI0yM4A79/oUPfqEMnj5fEgc3vP9n71c/IB5CLBKUMqPdvPnfIx6R+buxxKzH+x3lar9x+TNqVKLMHJSVFjLTNKcoys5Fdd6+zOOD5ubMmWOEYHtDkwLx888/r6FjFEVRFGU7I5/CFUVRFGXn45m3bv4fEffSu3vj9qknbCEAb62xDuuyjartvvLBfYlety8Uf08++WTzxZrG8BEXXnih+eJNbKoo2wd6+7kPlDOhI6IyH6n5MJupWJybEnkUihGLSzlbh6ZzWFF2Rvj+Q5GXKd+rKAYTegHPnz8fzZo1M/GE+d7VokULIwqzHLF1FUVRFEWpXVQUVhRFUXYqGO+XD4jzirYX3dHLeAVXJ/b+EWNbbNPbB+MNb+9Yw/xy/fLLLxuPK4aOaNu2Ld7hz/UFemiV0VtTUbYbjB/KmMFhqjwMFZwUgaOSzcsn7AN8pYAJLWxEYRrFoDAi3KiisKLstHhvTFLkpTDMvJ9++sm8b9FL2MYUZvgIlqFp+AhFURRF2T6oKKwoiqLsNKzesAh3TBm9hVh73WP98fA7p1Ur7tbE2Cbb9vbFvjmG7Qm/PD/33HP4z3/+YwRhG7NRvayU7U8MsWgQ8WjI1XY5JcUoBs/46Gc88dAbeOyB19C/zxkYfeY/MWfmArAovYVdhZimorCi7KxQAGaMYC98b/rhhx+w5557Jn/hwuUPPvggUcJFhWFFURRFqX1UFFYURVF2CuilW1UQ/jO9g3/J2Ie3T45he3oM2y/ONnaj/YkuCQTofqko2wtXCY4ZUThqwkfEIsDihRtx2UW3o0uH3mieeyBync7Icpqjc5vuuPaqG7FyxRpTNejn/JUFNmPNEJd/MfPXu8ndnCy0JZsLCLxmKDgn3Ja5wW7fokxim6IofwjrKcyUNyuZ8j2K700vvPACOnbsiM6dO+OOO+4w+dZT2Ps+piiKoihK7aGisKIoirJT4A0ZwdAOjP9bnYi7LYx9ecNJMJTE9sR+8bbCsP78VtkR4KzkLIyZB82VyJwsR0lFKUaPOxfpGU2Q4+yKFk5f1HP2R57TFnWcRmiQ3xzDzxiDcFDmMaczxaRgyOizEWrLpk2Z3wgiwhATkkHpls7F7MsVimWFBY1xObHRFGAmBSfeyCkXY4gKaYHZtowQl/bjoCidyFAU5XfB9yW+F1lB2GLfm5hyG1OWs2W4rqKwoiiKomwfVBRWFEVRdniqPlSuNgVha+zTO4ZX3t8+D5+zX6xt2AgrEHO5omL7xjxW/t5wJrq+tlwKyIIfi5Yvwp49esBxspDtdMZB9S/B/pkXob3TH/WcvVDH6Ype+43Gz1/HAL9UozBMDckovxSapKVwABEETZYxyUuKw9JPTCrG43It0C2ZueyebdC4bBqlIFwqVikmZex2mkBBWK4qWWKriqL8UfiexBuWFH6rwjy+dxFbzmLFY0VRFEVRag8VhRVFUZQdmu8WfraFGFsbISN+yaqGkuDYaht+qV60aBG+/PJLrFq1Sr2slB0GSjqBhN5q/sjygkUr0LZjZ6SlpaKOsyt61b0Ppzadhj5ZD6K7cxU6OxfjqA4P4Pnrgyj7DoiXAb6yADatK0PAF0Nc2qGuGwxHEZFl4yFMQVgsjpBYiWwtFCuSfIq+YbcC+7fGdeMFTC/hhPDrLWNgHFT1FFaUmkKx196sJNZ7uCpWBLbisIrCiqIoilL7qCisKIqi7NBMfPi0pAjLB79VJ9bWpnkfPsex1Sb88jxz5kz069cPbdq0wYABA8wDfCw+H0UvRdk+UNLh7QkTvZdTURZWrNyEPbrugzQnFXWdvdEr7WmMaLgIw+vOwdD6X2FAvQ8xsOGHGLPLfNxx+go8d+9snHLsaJxy/Bl4YNLDWLZ4CWKJn5lTV6JuRFE4jqgYO6EoXCxWJsb1hOchB2PN6FF2dLSEKGzNwHwKwyynKMofge9R3puUXLcPnqPoy+WysrKkhzC3W1FYURRFUZTaR0VhRVEUZYflm/lvJwVYxvR9+J3TqhVqa9M4Bm98YY6xtqDH1fnnn2+e3u44jklvv/12FYOVHYKY/AvLvwiiCFZGjSi8fn0ZBhx7GrKdRmjs9MGAtA8wKrMIo1ILMTa3BGdkr8KZdVbjFGcxTq37Gfavd6mU7SrWFI1zm2DoSSfglReekskfQDhUiVjMevRyzvvAsA+xGENHyKoRi/lAOopNYpKXNMlz/yZCTFjcDQJFKVoyQ1GU3wkFXusZTBHYLlMM/uyzz3DxxRfjwgsvxPTp0802CsgsxzLeOMSKoiiKotQOKgoriqIoOyT+YAWumHRcUny99emB1Yq028O8YSQ4Ro61NuCXZnoHp6SkIDs724jCEyZMMPn0tNIv1cr2JIYI/CinJCyTNW60Vz5A7s2XvsCJh12EvdMvw9Ds7zAuLYgCJ4yzU+MYmVKKc/OiOC8TGFlnLY7IfhqtnZHGqzjPaYo6TgZ2a90G3331ravlGoWX89z1Sab4S+9hky3LrgcxRSY3P2msaoyNsL7NsXC9ap6iKL8HCr3EirxWFF69ejUGDx5sbmbyvWvgwIH48ccftyhvPYoVRVEURak9VBRWFEVRdkg+mflCUni99O7e1Yqz29M4Jju+2vIW5pfs/v37my/WFIbr1KmDc88912yzX64VZXtBUdgXK5bUByPchuNGyI2VAa/c68PxzV7HiDrL8I/sOCY4cZwrn0LHOMViJThHlkc6IZxWZz2OSH8duzvj0dI5EA2dZuiQ2x5v/ftdxIukE+pGYnQYjoQkpeDLbtyupG/GGaa5+Ukz2yj50pOYojCNNWQjC1tTFOUPQWG3ahgI5vG9ac6cOWjatCkyMjKQmpqKJk2a4Kmnnkq+b2k8YUVRFEXZPqgorCiKouyQPP7yFUnR9fapJ1QrzG5P45js+DjW2oCi8KBBg4wobMNHnHfeecmnuesXa2V7Qi/cKAIIhstlMkaN7hqqiJtwv5/8BxjU4gucnrYUF2TGMU4+gZ5Pyw5ijFOK82R5vNiobODkjFU4rdF09Ey5Hrs6Z2CfjFG4cfh0rPpUOlkLVK4CNqyoQNFGHwIUhyXbBn+ISf8MKWHDSPCKoOxkjSEuKArHTWnWlFK2oF4+ilJjrJewFYlpP/30kxGFeTOTojCXX3rppUQNt46iKIqiKLWPisKKoijKDgfDMVjBlfbgW4OrFWa3p3FM3jHWBvyizfARVhS2nsKVlZWJEr+N9eSy8R6J/dku1+2XeW73PjCIcJui/Bpxyq1BmWNWqZWpFS0Cpj0InNjiK5yRuQrjU6M4Wz6BTqAQnOHD2FSfEYTpLTxabGQqMCJ7I86ssxzD8pfhtHqLcXLDnzG4/Qw8eVURLh3+BPbf/VCcPW4sPvzkfZT6K4wDcSDG3rnkQyhcIctRo/OGojLXmcYY7Zh5FIXd8BMGqxwzVW1KUf4wXnGXyzS+j8ydO9cIwTYePpeff/75LX7hojc1FUVRFKX2kY/eiqIoirJj8d3Cz5Ji6+X39q1WlN0RjGOz4+SYtzUUZYcNG2a8rdLT041dffXVyS/iVUXcX6I6cZfexvxSzrb4dHiLzdvatpW/N0bXMUqsGKNIBIAPXvsZQw5/FPumPIRT0xegIDViBOGxYmMyghiTFjDLzKMHMW1sSkTyIxiRBgzPAIZmASfXXYGDMx5DS+dUNHR2QbaTiY7tW+Hq6y7Hmo1rjeAbZRBjE3OYijTDSIQlNwx/2G/kYBpFYT4Szw0jIVhRmKaisKL8Yfh+QbNiL987AoEAFi5ciNatW5v3rpycHDRv3hxTp05NlvGKw4qiKIqi1B7ysVtRFEVRdixeef++pNjKh7pVJ8juCDZxyrHJcb7z+ZTE6Lcd/LL99ttvo2XLluZhPV26dMG0adPg8/l+lxdvRcWWD8bjl3LrQWzFX+sxzHXriayewspvInPGiKx02A3GUVK4EUNOPgNZTmu0dIbg+JQvMDItjPGprlfwCFkelRHB6BQ3pMTZThznOCGcnVIhZXwokPxRUvbMdOD0OkUY0nwm2jrnoolzKPIcuQ6cdORlOjjvnOFA1Gecf2N+sVAYQT9vbvgRFwuEK2RYrp+w+4/ewgkVWEVhRakxVtz1irz2puKCBQuQl5eX/JWL9RS2qCisKIqiKNsHFYUVRVGUHY77nzk/KbZOevmkagXZHcE4NjtOjrk24Jfs9957D48//jg+//xz44Vl4Zfv3wvrlJeXm2XvF3OGlPC2TdH4j7Sv/J3g/IjJRIqIMQ1h+YrvsfvubZHpOGjs9MRRzrs4K82P8RnAKPkUeiZF4cwoxqRGMdYJ42wnhHOcgJjfLFMoLkiRshSGM/wYlP4DhjT9BIfn3Iy2zglo4HRHQ6czTu87wcQuNsZpy3sccq1QFAYqEY5WGhGYOa4x1ASXZMwcNqd+YlVRlD8G358I3yt4E9GKwsuWLcOhhx5qwkfwYXM9evTA9OnTk2X5XqPvL4qiKIpS+6gorCiKouxwqCj8y1ih1sYBtl+8ydbEFq7qEWyhIMy2mdLoTcw+uMwv678nbrHy94QyK0M1GDfhuA/xSDFWrJmL3bo2RYO6Duo73XCU8wZGpJdhfGYEo1KCOCstiDGyPDaVAnAQE5ywWGxzzGExhpYoEBudCozKCmNE/gacmPEFBua9hUOc+7CHczVObPUUXr85ivLvpfuNQMUaPoxuEypKN0gGPeODZnQJ2dqkrgQlazbTblAU5Q9jby7yfYPG9yiGJ+KvXPr06YN99tkHTzzxRFIMJnwP0/cYRVEURal95CO2oiiKouxYTHz4tKTYuiM+ZM7afa+fkhznHVNGJ0a/7anqUWW9sbYGKwYz5ARhPQrFX3/9NebNm4dNmzbhq6++wtChQ3HxxRcbb2SWtV/uFeWX4Ax0HW6jiEVKZakMK9b9iN26tkeak4IGzsE4Lv19jMwoxfhMP8akVGJUWhAFaVGMd6KY4ESMMDxWlm1sYa9RHB7LsBNS/sz0IgzPXo2CxisxJPd7jGi0Aqc2nYFLB8zAuOMno3n6vmjXcDfcd+ftWLZ4PiorixCJMo6wO05r7ojFNmcoivIH4XuR/VWJfb/gsn1/omBsxV/m2ZuO9ianoiiKoii1i3y8VhRFUZQdCyu00qoTY3ck8461tuCXbn7htgIvv1hz3X7x3hqsdzEFXz7w56STTsLIkSMxc+ZMHH/88SbuIx8K1LhxY0ycOBFLly79Xe0rfz84o+gnHJZpEon4EEcAaws3YMKEK5CX2h0tndE4KXs2RmdUYHxaBcalVGJsWhhjU+LGM/gcsYLUCoxO82FMiusdTCF4XEoM41OCGO+4D6g7PwOYkMbwE36My/LjDKcYY9LjGJa3Cie0fhVtnbNQx9kH2U4z1EnNxAnH9sXHH76buHlCMcqrAVMUpnhFU1dhRakJfI+wNynt+5PNo/Br33eYZ4VgLttfsCiKoiiKUrvIR2tFURRF2bHwCq3VCbE7knnHWht6Er88//DDD3j55ZdNaj2tiP3Z7q9hv7Db5cLCQvOTXorAjPX41FNP4YorrkBWVlYy/mNqaiqOO+44bNjAn+IrSvVQ7gmEXZnVFVnD8AfDWL00jrEnTcH+2ffjtNzlGJMeSYi8QUxIjZsQERSFz00BxqT6MIqicKobS5iC8bgUPpjOL3XcGMPWa/iCTKZxnGdSYHhaBQbVnYWDMx5GO+csNHAORH2nHeo6jXHUQQOw+Lu1rmpNx2C5BIxHM4LyN2SWXLlqM7xKrG0pHnPZbuGyXFOJNUX5O8P3Fu97ElOKv951mhWB7Xa7rCiKoihK7SIfoRVFURRlx+L6hwYnhdadJXzE7U+MclWxbfi9ll+aGeZht912Q6tWrXDQQQdhxowZyW1bAz2KrbcWv5ivWbPGtEevYArAU6ZMwffff49rrrkGbdq0MeIwRWE+OZ5PkCesb38azGUrNHvzqsNuV/66xBN6aSxq1dcYwoXAzOeBU1p/iiGZJSY2MIVg2rli9BA2wrDkj02JoiBVzAjC1mIYJ/n0GPaGkzDiMLczFWO7Z2WEcXruKpxa9z3s5VyGds5AtHQORa82Z+GbV1a7D6ILyVwMB+ELb5LFMgTgl79x80g6cwlzTpt/7npU9icUZUU+kJHxiaUkd9TsrF9qUlhO1BVTlL879v3Avj/wFykUi5nyRqT3vcD+0kVRFEVRlNpHPkIriqIoyg5EfCd+0Nw2VoX4xZkhHijUUsRleuWVVyZFWPvQnt/ClmdKUbhFixaoU6eOMYrCzJs/fz6mTZuGs846C/vvvz/+8Y9/YOXKlcmfAPPBQaWlpSalAMBlC8dJwZlf9pnqF/6/EZz/8Zj8jyAaCctkiBot9ZMpMRzb8HUMySrG6LTNojAFYXoJFzCOsBGF/7gx3MQYsbOcCMbWXYfBmZ/iuLSncJhzJ3rl3omJp87A7BeA4Apg1YINmD37S2wsW4ZKyDyWYdNfMW4u4oikMn9lPzaLvUGZyyWy5JOVkOda3ywK01QUVv7O2PcWi11nKInPPvvMvH8NGTIEr776qnl/oFlPYUVRFEVRah/56KwoiqIoOxA7tSgsg9+GqhDF1YEDB5pQDzbcwwUXXGAe3LO1nsLeclxev349unbtatrLzMzEf/7zHyxfvhxz587FihUr8N133+GDDz4wKYXi1atXG4/hYcOGoUuXLrj00kvNw+ko/lIAqCoKWJiv4vBfn3g8hooK+t26nrb8EywEpt45Cye0fQKn5izDqAwkvXsnGC/gCEY7MSPoVif2brVJ/fH0FmY7WWEU1KnAiNxNGFZnDU7KXoKTG87D8C6f46Lj38UeDfujVb126NfnYLz7/vOoDBUiAj4AyyfztFQu5XLZhwhCMmV9gcRlzWuHO0X1l1OZqRWQE6vb8PJXlJ0Cvq9Q7GXK13wu833jmGOOSd7MPProo/Htt9+a8nxv2Nr3L0VRFEVR/lzkY7OiKIqi7EDId8NX3r8vKbbe9N/jqxVkdwSbOOXY5Djf+ewJGTsVo2335dYrCjOkA2P+XnTRRUlPq60RXfkF3cIv42VlZbj66qtRt25dIw6/8MILWLVqFRYtWmSEYC4vXrwYP/30UzJlPGP2zXHwC3737t3x4osvGmHYC8dFD7FfEoqVvxpxRKJhIwdHEEW5P4CKihjuuOFRdMjbBx2coTgxZxZGZEZQkErP3jjGpQYwNi2EUfKJdLTYlmEjfp8xnMR4SdnuKMeHUSl+jEgNY2SmtJ0HDMmpwOCGC9Ez/TE0dI5BPWcX1HXqoEluDi47/xyUb1onFwXnMB+QRQ/gqLnPw+lL85VLvhWEE9ExZAv32iyqKKwo7nuM9zWfgi/fNxo1amRE4fT0dPMAU96AJCzLsBKKoiiKotQ+KgoriqIoOxZx4LsFnyXF1svv7VutILsjGMdmx/ndwk9l8NteFOYD36yXsBWF7RfqqqLsb8Ev7zSKvZMmTcLjjz9ulukJTGNs4YULF5qUAjHzli5ditdffx377ruvGYONOUwvY4rFHANFgKpCsFeMVv6axOWfzCgEY0Ejk3I2rlxVit6HDUCOk4kWzqE4LvsDnJFVjjFpFG7DKEirwNiMIEalAqMo6HpE3t9r45woCpxKnJ8VkPWNGJtWiHEZPpzlBDBCtp+ZEcMgZznObDYPuzsXoZ1zLJo4u6Ch0widstvizSmvunpwRK6loN/MYV5SvOdiHBk5pasRhblCaXjbXv2KsnPB13z7XvDjjz+aMEX2ZmbTpk3x3HPPmZuGiqIoiqJsP1QUVhRFUXY4/IGKpNhK2xEfNscxecdIUYiS2LYWhY899tikp3Bubq4JH1FeXv67RNfqxGPWp+D7888/G/GXX+KXLFli1ikIM6QE8+fMmWPynn76aRMbsmHDhkYcrl+/Pv7v//4v+TNgjpXGdZrGjfzrY3XTiPxlQIWgZCxcvA67duiGHCcFjZ0eOCbzLQxjXOH0KEY5QYxJK/8TReEYxjoB/CM7gnEphZiQVowLciMY44QxXD7xjqF3crakdQtxcvaH2N+5Efs449Ha6YddnKPx4D/eBDbJDvhkPxhkWC4pOv/z/gantZnadid5uZlLjgpxSLLccBncrCh/d/iab28Q8n1g5syZRgjmexeNAvGbb75pttkbiPa9Q1EURVGU2kNFYUVRFGUHw1VeHn/5iqTgevvUE6oVZren3fr0wOT4HpOxUh/iY6koDW8r+AWaD37jT3Ctt/BVV12VFIS31lPYW85+eae38Q8//GDMxhLmMsNIUCxmOnv2bJMuW7YMa9euNes33XQTTj75ZCMQf/zxxygpKTHjYcqfDLOcFQe2dnzKzgvlncpAACbSrpzz7+YvQvcu+6FJRgM0dg7C0elv4oysIhRkMI5wAAWp9BQOG0GYISRqGj6CD63jw+vGOSHjNXxuegwTZBtDU0wQYx9nMM2qwIQmGzEo7RMc47yCvs5UTNjrQzx62UKsniPXSLHsSwCIhoCAn17AcYQibsxhhpYwarEJF8OHOwZlK0soyt8bKwLb9ySuU/Tlr02aNWuWDDtkPYVtGX1vUBRFUZTtg3wsVhRFUZQdCVcU/mTmC0nR9dK7e1crzG5P45js+L6a/7bxF+RP57elKMwvzxRe27Rpg7y8PBPL96OPPjL5v8dT2H5xZ0qjIDx9+nR8+OGHxjuYYi69gRlKgg+Xo4cwBWJu45d7bmM+BeKVK1ea8l9++aXZTmP5iRMnYo899kDv3r3xzDPPoKio6HeNUdk54SnmFRCK8WqIYdmy5Th8/96o4zRBM6c/jk3/AGdllmBcBkM9BDHW8WNcatSItiPFaioKn5Mqy0zTuB6RPiJGKGYet5tt6bKcCQxzCjEqZyPG5G8wdmrdr3B8h3/jxANuxJknXIw3XngPcbmw5RJBKOqT/aIoXCJWJkbPdwpZFIVD5rpXUVhRXPhaz/eWQCAAv99v3iNatmxpfuHCm5qtW7fGs88+a8ooiqIoirL9kI/GiqIoirIjwS+JcfiDFbh80uYHue1ID5zjWOy4OMYKGWttiMKEXldfffWVievLEA+VlZVG4OUXb6b0uKLxS7lX+LWeWFxmWVuOy1dccQV22WUX9OzZE++9954JFcG2Ke4yprANJ2HF4l8z1n3//fexzz77mDjDFADq1auHoUOHYtasWabPqkJA1XXuI43jt6igvBPA08jTFIPMq4CsRlBRvgn33vwQmjsHYlfnAgzO/Q4jMyoxLiWMCU4M56TEMdaJG1F4fELQrU7w3TqLS7sMHRFOWAzj2W7Cxllj2bQKFGQUYUzmJozOLMSojDKcnv8z+jSYgkbOcajrtMegY07GquUrEY4GZJdo5bJzRWIUhikKc37yutK5qSgWvp57X7u5zpuHBx54oHnIXE5Ojlnm+xi3VfeeoCiKoihK7SAfjRVFURRlR4FfDPmTbFoc38x/Oym+XnxHLzz8zmnVirS1aRwDx2LH9fV3bxtJyNXCtr0obL9A8wE9/OJNz9y33noLTz31FF588UVMnToVr732mvnCzTi+XjGV5SkC08uX8RzpqfXAAw+gW7du5ie9/MJOr156CFuPYArCFIOZ0qqKwFWNISUoDJ977rnIz89PeobxZ8MMM8FxW1Ga+2HH92uigLecsgMjl22YzrQ8VXI643EKpxXwr4/gP9fOwYCmT2No7mKMyQhivBPF2U4c5yYE2wKmFGslrV7w3RqLoSA1bGxsakTW45uFYK+lhDA2rQxj04tRkF6KMemVGJMWxhl1luHIOk+gvnMU6jotcWC3Hpg/d5bsVhDhuMxZ2Ze48RJO7CSnrNcURUnCG3t83abxdf+LL77AgAED0LdvX7z00kvmdd2KxyyrKIqiKErtIx+NFUVRFGVHgcoKvxxSVXKF4esf2vxAt+se61+tUFubxjHY8XBsHKU7Uv5LqGHbEH6R5k9ymX7++efYb7/9kg/voWcu4wxzuXHjxrjvvvuMJzGx3rfvvvtu8inwLEex1sZ5ZN3JkyebmMLWS5hGgdiKw9UJwV5jOcYgnjt3Lm6++WYTQqJJkybGW7hPnz5GcObYaRUVFUYw4HJZGcU2FwoFzCNMVRDeSeApi8h/n1iQHrQhMTmvpcDMZ4FTWkzDsNzVKMiIGS9hKwrb8A4Uh2siCjP0xJiEcdmEorBtio0zFjNexGNT/Rib5kdBWhAFqVFTZ3jOSvSu8ziaO0ejidMM+3bZBXNnzTD7wYjB7sMkKWLJFe99mXJfALb1pa8oOzx8veYNP2KFXubZB416X9f5Ou/Nt/UURVEURak95OOxoiiKouwo8AsjlZbNovB3Cz9LirC07RlGwhs2gjZPxmZH6o7dqkPbHn6BvvTSS42YSw9f+/A5Gpcp+p500knYuHFj0huL3lp8IJwVjr11aHXq1DGi8Jo1a5KCMI2exUwZV7g6IdhrFIVZnmXpMcxYw3wYXv/+/fH4449j06ZNKC4uNt7CM2bMMDGSmWfHaMUC77qKwjsJ9vJNXgZhxCKldBbG18/EMbDJS0YUHptJATiOCVVE4aRRzP0DZkRhqU9LisIpMTF6DTOsBC0qxrx4so4xqTM8ex16Zz6JRs7RqO80wsHd9sC8WV/IfkQQlv2KyD4ld40L3FdrtXfpK8oODV+zrSDsFYbtDcCqr+f6Gq8oiqIo2w/5CKwoiqIoOwpWVdpSZXnl/fu2EGNvn3pCtaLttjT26R3DyzImjjLhN8hvtmLbXhmyYRcomt54443Izs42RhGYRsGXIjHzhg8fnvQUZj0KxIwfzIfU0Ts4NzfX1OGyjfXIMBT0FKaoa0VgegjTw3drPIVpjD9s61IkZr9r167FsmXLTBtM+fNh60V8xhlnmHAW9BrziggWKxiocLCDI6csSudgOYU8f/SqjceCWPVTEW4793UclnM3TstZhDFZcRMqYnzCW3hCQpSlVRV6f5cl2tjcVhTjUn0Yl1YhVi7LflcU5raEecuflVWC43LfQ0tnOFo5u2PckLOwdvky2Yc45D9CcrFzBpqZyWnKFRqXt/2lryg7Bbz2qxOFuUzjzcmq2HKKoiiKotQu8hFYURRFUXYUqKp4lZbNKsv9z5yfFGQZ07c2hWH25Y0j/PhLV5gR8seuNPN1liImlaNtLAzxyzXFU6Z8eM/48ePRtWtX7LXXXsZ23XVX9OjRA2eddVbyQT7W65ZfvBnzd8SIETjggAPMw+UozLZt2xb169fHiSeeiA8//DD5oDkKuDTrMby1ovCiRYtMynaYMpQERWKmFIm/++47XHjhhUaIzsrKMinHcuutt2LDhg3JsXLsdpmoKLwTIKcsLPPNF/DJdRFHcVEp/u/8iWidvh/aOSNwYtYcjMwMY1waRdkoJqSGMC41kvTurVbs3VqTNqyNM0bxOSwWEPOLhYwQ7W5zy3lF4RGZlRhc72f0rjcZ559wB76dPjd514eXtvvKxDASksGpyWlpzdwQYolt/AKgKDswfM22YSDs67XN4/sQQwaVl5cbYZjbrUDsracoiqIoSu0hH4EVRVEUZUeBgoorvSSUFjEXf6ACt08ZlRRmabURSqJqyIjbnxhlxsKvr4yG6DpGyjipGm055G2C/eJshVKfz2c8b+fNm5cM80Axlt65JBze7JXFkA388l1SUmLEWtZjeYq1FIvff/99Iwbz4XUUdplynV7C1vN3a4zlOR7GIuYyhWC2xVjDbI/je+WVV3DwwQcbb2WGsaA4zDjIs2bNMvtGwcCK2SoG7xy4UbUjCeNfyPlfj577HYVcpx4aO71xTPrHOCPDh7EZFIGjGJtWibHpAYxOBcaI1UwYjrshIpyYiU9sbUIVY944mgkhwYfTRc3D6UZk+nBqTjGGtpuF1+5c4z5PTi7yuOwIvYTDcm1H4ZfLnBt4Xcm8pBgc5/zkevIWkaL8LbE38pjydduKwRR/P/30UxxzzDE4/PDDzQNNmc9yVhC2dRVFURRFqT3kI7GiKIqi7CjwSyFFFWtbfklcvX4RbntiS2GYD357+J3TqhV0a2Js0/tQOdrtj49EUfE6MywKXpSB5GutjFQy7NC3HPI2gV+grShsH9Rj173eVvZLN7HbvV+8bbgG5lEoXrVqlRGDKS5bIdcKuzatTgT2mvUoZjt22QrKTG0eheGPPvoI//rXv9C8eXMTuqJhw4b47LPPkmPl+Lk/3n1SdlzcSyAOfzhgJGGKqIsXb8Ju7fdFnpOLxs5B6Js6DcMyShOicAwFaZUoSA8aUbggraaiMB8iFzLCsFcU9grD7jrFY8YWjmBsKh86F0JBahAjMgIYWieAwa3n4+0HfCYWsr9M9kn2g7IvvYRl78Rkm3kFcPfYiMJUjk2pzdeXF15jFMl4zdFTkh6Tf5QdSTz7rbH8ke070v4pvw+eO1rVG3mMU89fpzBcEW8Adu/e3bzWs6y9+acoiqIoSu0jH40VRVEUZUeCgsAviwL+YMUWoSRoDO3wZ3oNsy1vuAja4y9fYTyE7dCYULrcYrS/POwdBiuw8su4XeYXeHoWU6ylGMyUwjCFXYZ64DrNhoWoidFTmO1QZKZAzOWXX34Zt99+u3nIHfPWrVuHQCBgvIZff/11U4/rHK8VECgc22UrftOIV1S2y944lsz7Je9j5ts6Fm/b3F6diME6tpwdjzefMPWuW1i+uvGwnLesHRfz7Dhp1dVlvnccxJ5v247FtuctS1jOm2fLVe3PrrMoLSKrRhSOxrDwp3XYb48jjCjc1DkI/VJexfDMQozPjJvwEWNTgmJRjJZPpLSaegq7D5aLJ0NEVGvJsra8axSFT80pxKBWX2HydYvhK3Jv/PgRln8hhGN+WZMc7q/sJ8XisEwFs/s8pFseVnP8KAJz7nJOcz4/9NBD6Nu3L4YNG5Yo5Zaz2Llgj7Vl8zGOG49/L/YceVM7R7lsz7udD1xnas32XzUl3u2E694xct+8+ZZf285lm/KXDhZbx97o4jLz7Liri0Wr7FjYc2vPJecaja/3DRo0MKIwfxnSokUL4y3MMvY8K4qiKIpS+8hHY0VRFEXZ+XjmrZu3EG1pl97d28T/ffCtwdWKvb9mrHPr0wNNG1Xb5YPu/krYL+uEggtjE0+aNAlTpkzBnDlzkrGAGe6B3r3e+MJegfePmFcUZnvsmynDV7A/28fXX3+Nbt26GRGBMY/vvPNOI1hbgchrhClFIwpYVsTiPnoFLeJd57JXyGIb3u22feaxbXp3UiQvLS0121m3an2b2mUrjlSF+VXHRqor68XbX1W4v78lrnjHRrjsrcf2OS5bzpZlWnW8dhvhtnBI9kmGF4lIWci5iEewekURTjl6JOo7bdDGGYgBGR9iRGYJxqdTuI1jvMMHv8WMIDw21Svw1r6NzCzD4Pyf0NW5HYfudj7uvXsqigI++OVfZYTnPCQ7LeczJPsn+2k9iM1R4B8eHkl5DPmAR3reM643b3acfPLJxhPecRxkZmbipJNOMsesumPKPK8w6j0Hdrtdt6n3vHOZxvyqArKF2zlGe81YWIfjt+155wa3WWGWyzS7zDpMvWXtGLitqjhM82LLcr+Zsl8a4boKwjsPnE88d3ZeMeXrfcuWLY0gzPnftGlTczOQ2+y59c5DRVEURVFqBxWFFUVRlJ2W7xZ+husfGvw/Ii7t8nv7YuKUY3HPKycbu+/1U5ICMJdtPsuwbHVtsG328VfCijaWoqIinHnmmcjOzkbdunXxxhtvYMWKFUacpXjL1Bv2oarI+0fMhqGgNzJTtk3Bl/kUjSkUM+YwPcuskEZx+Mgjj8Qnn3xixAMrIFkRySsaWUHNwvJW3LKCk1eUYl7VdZahFyPDalDQeOKJJ3DuuefiqKOOMt7LVUUtYoUQbmMbxKaEy951ux8Wjo95XrN5VWEe+/H2VRXmc7vdd0vVcfwW7MuWt2Nimzzm3nYpiIYDYUnlOKMSkWglooEY3nxqBo7a/Tz0cK7Fqdk/YVQ6H/7mhnM4h567TgQFTgDj0yNwvXarF223tY3MWo3js15AE2cg8pz2OOSQnvhuyVwE4UMwRo9WOQ88FRSEZbdD0TgCkk8BPBoOoqK0FEWFhSYsyi233GKE31atWpn5a42iGK+z0047zQilPIb22DLlcWXqPa72+LMstxNblufXe35svoXrdp6wPstWhWWs2X6Z2jzClHXtfPKOyS7bOtxOs9uJHadt35azyyznFcJtecI69jpXdmx4juw5tvDc8uYIhWA+VJTXAT2FX3rpJXOjzc6RqvUURVEURdn2qCisKIqi7PR8M/9tXD7p2GqF3T9ibItt/hWxAo4VbdavX4/OnTsb0bVOnTpG/KQobOMAU6ylUMv4wn+GKGzbtSKzXafRC9d6JTO96KKLjHhAzzIKCRQUKKZZ0YhwmR6PhHlc90LBwYoO3noWW95uoxBMT2CO68knn8TYsWPRo0cP1KtXzwh6PEb//e9/k/UoZNhjWh3cZsUtjoNCoF1nHW/d32rDbuc4vQIK1737xbK/JbDYcVu4bueEbY/LNG+56khu5/Ck26CP8XJ5TigK+4Ay4KPJIQxq/gbOqLMOY9LdMA4UhM9LYYzfKAqcCkzIcENJVCfY1oaNzF6K43MeRgvnMDRwGqNbt874+rvPEIJfdiuKeFTOAZ84F5Udlf+hWAjloUJsKluNjz56FzffOBHHH38c2rdvj7S0NDNfmFoxmPOX11lGRgYGDBjwP+fQu87jbs8H5wxTYueBPd82nzDP1iFsj8Z12zaX7XamLE+r2jf7sUIsl+01xGXv/GC+Pf92bHYMtOrGbssQ9uvdF+bbtmnc7q2n7PhUPXc0vqa3bt3aXAu8Bvi6/uyzzybnAcuznKIoiqIotYuKwopSQy688ELzIVdNTe2vb38VvF/EGbJhzz33NPtHseqxxx7D6tWrjRhsxVsb8sEr4P5Rs+15l5lyHOyD3sJz5841+WvXrjU/MT7llFOMKEvP4auvvto8qMuKSfQ0o3jFde6P9+fyVpiweMVh5lujEEyPaf7c/4EHHkBBQQG6du1qHohEMY/HhkIG1+nt9uKLLyaFKtb3ihnMs+tV++e6xbtMbFmeGyuMebHtVq1HmO8dQ3XYdqtrw7teXfvMs/tJs6KdhXlmPyUrHpQ/DLRrHsZW5qaSfPIIcFzd93BmnSIUpLsPe6MofL7Y2WJjnUqcvb1F4ZyFOD7nLjRzeqCBUw8H7NsVc3+ayejIss9yfHkqZd/CvkqZLxvx3kfTcNGVE3Bo7x5o1aoJMtLTkJJ4rbBiMM0KwnadNzk4p73HkMePc5dzkTc5eGOC85znjOW4zZ5jlqXxPLAst9m6tLKyMrPdCrKc90zteWMZbrPluUzjdcQyzGN9C+vQWMbG+2Z/7Ns7V1nGzi/bHrcXFxcnx0jjeJjacrauffge27P7TeM627L7r+z4eM8VzyFf7/mrD76O5uXloVmzZiamMGFZPbeKoiiKsn1QUVhRagh/zmy/6Kmpqf11jd5/f0X4Zb1Lly5GtKLoSS/YZcuWmXwKsxSHrTGvpladKEyxmWbjDFMgZmgJu/zFF18YIfbxxx/HvHnzzPgoLG3atAl33XWXidlKQZcCEwUIYoWwqjCPghNFJopQVng+66yz0KlTJ9SvXz8pBDNlWA2vtyd/+j916tSkEEZsP7btqoIaoehBsY3rHBvHaoUvyy8ts65d57jtMvvxiinecoTr3vFwW9WxcTvHw/3hNi5XN34vth7rePu3nsImxAICsr1I0nLECoFPJgNDWn+K03NWoiAzhAlOxIjB54lRHB7rhDA+bfuGjxiVtQzHZ0xGW+co1Hda4cB9DsS3c2cjLDvk94dQXlSKH2X91huuRc9DD0DTVg2Q08BBRh16saci1UlNegh75xCvLd5w4TpFMYrCJ554YnKOcl58++23+M9//oObb74Z9957r0n5ULpp06aZGxYWHm8rkHL+v/vuu7jxxhtx7bXXmmvhuuuuM9cKHxxpxVRbnv1RyP3yyy/NNcM+WIehLu6//35z/Vmxltjzy3PNkC7PPfecie3NOtdff715OCTDzfBXBCzDfpgS1qM4/fHHH5tfH3CMrEOjhyj3l9cA55r3WuIyxXCK4nbspLp5qOx4eF87CM8bja/j/fr1M6+nubm55mGLfPAi5wnnv6IoiqIo2wcVhRWlhlhRmF/IFEVRdjYYM5c/ZecXdXpwvfrqq1vEEmZq15lWFXl/r1mxlyIzRWG2SeO67dOK0RSAmXI7H35HMZhexBSoGGpi6NChRnSjmN2zZ0+89dZbRiij0EBxyQpUFMO4TNuwYYMRgt9++22MGDHC/IyZQp0V8OyyXfcuU9Bo3LixiYVpRSrbLtcpuFHEothFo9jBPI6lOlGLedzGMhTCWIdp1Tpsn+uEeVy3fdh+mFKQ4TYLjwOxdSjSUfRjedtPVRHHwrosy/lB8dz2VbWOdzkcAipL5HhXQsqWo6x8DfyVa/H52zMxrOcd6O7chJOzZmF0djEmpPsxPiEM0wpo1Qi1tWmjMzdhcPYn6OxcgC65A3DFeXdgwcJ1+HHBMtx5xyT069UbDfMykZnmID3DQWYdmSvpMj9SZX44zK+DjHQ31AmNQrDXQ9ibz2uO8Jj++9//Rvfu3c02O5/tXGzTpo35RZIV63n8eW4osh1xxBFmTlJkZpu2Ltf32GMP89BIwvI83zyfDz74IJo0aWLapuc9++Qyr33axIkTTR+2HucNxbv+/fsn94X9sD8aXzco9jFmLOcZx8iUojS9+hluhe3TWJbj5TJvstErn32wDlNeOx9++CGGDBli+qNI7t1mrwdl54DnjvOWMOXNPb5mDxo0CG+++aY5rxaeW/sapyiKoihK7aGisKLUEBWFFUXZmeEXdwqkFJjGjx+Pzz77zIiv9P6zQi5FWXoRUsT1Crx/xCj42gfNUdilCEzh1xr7YF8sQ5GY5SkIU0xmWdbj+GbOnGni/VJ0okhlvTGvvPJK4zVMKDJQjKAYyjYpeJ9zzjnGM5qv2zSKVHaZgppd/iWjpzDFKuvBaKHQ+vnnnxuhy3pf3nrrrXj44YfNg8cKCwu3EM2scDZ9+nQj1N12222YNGmSqTdlyhTMmDHDeEt6YR16jdJ7lP2wPOvddNNNRlj85ptvjMhoyxIKL/zJP+vQA/Xuu+8246KXJ73C6bFpvUOtEM0x8hjzeN1333244447kh6i3HeKjVZ8ZlnCftas2ojnn30Xd97+CG6/41bcNelGXHfdZeh7yDHIc7qgvTMKA7I+wMjcdRifWek+XE4+iU5IBcZIOlqsOrG2tmx0RgVG5C/HKU3fws2jP8CT932MAcePQHpWvpx7mWNy/jPFmDopYqliabRUpKfmIcXJkXKbw0Z4zXqbUxDlnDv++OPNseZNjJEjRybLUNC14i7LMp8hSxjSxZ4fzjXemKCoyzIsT2Nd219OTo6JyW3PK+Ec3GuvvbYoR7OCMut069bNlLPn1YrWLMcyTO24bJqfn2/mlXdO8MYLhWlbz/bJfWQ9rlMY57XKucNxUujef//9k0Iyr1O+JnB+KjsP9nxauM45a/G+ZrAc5413niqKoiiKUnuoKKwoNURFYUVRdmb4ZZxGb1AKsBRiaRRl7TqFGYqxNt2WZoVhpuzfhpSweTSKRxSq+dP1E044AY0aNTLCFgUnPjSPwjb3Z/bs2SbUw3nnnYe9997bCE0sx9dsK1bZlNuYWvHOGtdtORqFM4rnFJt53ChwUMx44YUXTOgJlrHlKVRzmd7FjzzySFLcYnkuM8/bvhWoORbG3OTP9a2Awjrsk+Ks9SSlsGb3h3W47zwmHJcVrSks8/2JZazozbrsl0bhjSEIrGjDuvSm5jFjOe6DPTbsj3UOPPBA4/Xn7YcexWedOVraz0dGphyHhGCanin9OJnIdRqiidMLR2e+jDNylqMgqxxjHD/GOhHjITxSPpGOEtue3sKj00IYllGEM1vPw5P/Wo1Hbnkfw4aei7322Rf5+dmok52CbNkvIwo7ct7S5XzRezZFzrOTi4xUisdbzhcaj5n1suUyj+NJJ51kjhtvWIwePdqcRx5nlmMZe465zrAmFOkJhTQKta+88ooRi+25qVqXgjHFfyu08VzxhkKvXr2S55TjYGpFYa4fcMABRqimUMe5x/PL2K+cm2zbjpPLvEHClON49NFHkyIf5ym9+Q866CCzvWpfNHoNH3fccUaAJqzLa53l6bHMY8UYtPQoVXYuvK8LXLY3C7wiMLHLnC+KoiiKomwfVBRWlBqiorCiKDsz/EJOo0hpxWArzjL1CrR/hqfwbxm9gekVbD2TvV7LzONYrIcxx0qvVcYr7dOnD9q2bYvBgwebmKmMY0qvSIq4FKEoNlmRjmZFMCvgWQHObrcCm12nWYGLYhfFNiu48ef29Hq09Zhaoc7WO+yww4wIQiMUrQ855BBTxivWsj4FM6aMO2uhQMcHdlHUYzmvhzP3jyn3hw/J84ou9BLefffdk/tpy9k22Pfll1+eLM+6PK58sJ/dF47f9sF6HB+9ju2+8DjQS7lJk+ZIScuFkyLHjWEVMtlfBtKdOmiY1hCNnANxdNbLOD17FUZnVmJ0SgBjU4MoSItiZAowSmy7isLpIYzKL8MZrWfitbuK5MQydAcw/+fv8MSUB3H2uLNwwN57omWTZsjOaoCU1Dw4aXJcjCicJSbHNSEK87xWN4donJPHHnusOXa89ijwHn300UbUb926tRGBGTaC85kiLW8E2GNNKK7xvF5xxRXGG5flWKddu3YmLEPHjh0xfPhwc50Qzh3WZwgJCry9e/c27bMsjfVZl3OU1413/rAv3oShhz3Hx37YZ4cOHYzRs/iCCy4wrw9e+HpCr3KOn32xLMfVqlUr09cxxxxjbnoQjo998nq3x4jHkGEu6Elvx6/sPHDe0Cw8f95fV3Cb90YUz799PVUURVEUpfZQUVhRaoiKwoqi7OxQmKLHnhV9mVoRmB65Vqy127elWW9g9kWjEMw4wuyf4hSFa4aT4DaGPrjnnntw2mmnmbimTz75pNlGwYzewhQuTznlFLRs2dL8xJ1iphVqq9ov5dO8giqFPgrANu4qoQDGn+pT7ON2a/R4pJjKdNSoUcbDk2UpclEQ4cPtWIfCLMsxtXXphXn++edvIZSwzqmnnmrEXJa3xp/bU+ildyhDSVBkobEf/jyfAiTbs+2zDsvbOgwLQVHGim+sQ+Gb/bA8y9l943GkqMdjzXnDOhR4OE967NcDaVlpSMmW45TvIKtuJlLS6iPdaYgcpw4aOz1xTNbbOD2zEKPSwhjthFGQ5kNBhg8j04IYnR5DQUq8WsG2Nmx0RjmG1VmIE5u+gCvPfBrLfypCBCEEUCJHvxLhQCnmfzsLrz7/Ov5x3tXYe58jULdRE2TnyfHPoCi8pYewNe/84TKPIcNHWNGM55jz/NNPPzVhQ+iFTfv6669NrF6KuVY4Y8o5xJQ3CfggN8b8ZTgVu8y5z3AThOUoxjHl/GMbvJFi+2IfNIY+4c0Y2wexc4LjpPfwe++9Z+pxTJ988okxLtu+LKzDujR66/MmDftgymuW+8b9Zbs0ziMeA17/VkznnOYvABjChOOh2eOl7NjY+WOxryucD/xFAc0b5obmFYwVRVEURak9VBRWlBqiorCiKDsz/MLO8AH0EqSXKQUbCnw2ZIMVaikSM/UKuNvC2C8FYK8oTbNiMbfRA5KiJL0r6eVIoY2hGxgbmVhRginDJ7AO46JSzKVATMHJCqMUoOjNaT062ZY1rjPfiqlcp8DLGMBVH8a1Zs0aI+Lyqfo0Hk++PzBWMwVhjt0ranGZD9Ljg5ds2cMPP9yUp8B98cUXbyHsWeGE7dAL9OCDDzb7Q4/L/fbbz9S97LLLjCDOshQOCc8vzynFcYZ9OFLap+DLfuh1fN111yVFR1uedRmG4uSTTzbjYjm2z2U+0I9xjG2MZCscMn3jzddx/MBj0Lf/YTi0bw8ccOj+OOzQ47FHh8PQ0OmANs5JGJD9Bc7I8GG0iSMcw7j0AArSKzEqrRJj0sMoSI1VK9jWho3M3IgTMz7AHs4/0TJtf1x0/iXYULYSYZQiRrdhWUJUzl0AKCsGlizdhJdefx1nnz8Be+21BxrUy0dOQki384fL3vlDo9jO8BE8n1YwoyjKOeE9d/acELvM1M4jLlNQtXWY8jzYGwlMuZ1wG832SWxZ5ts877LFjtGLdwy2vHcfvP3afmwdprZN73XE65TXpT1ODB/xuhxfYvdJ2bGx88HOCa7z3HF+vvbaa+Y1iK9vDz300BbCsJ0biqIoiqLULioKK0oNUVFYUZSdGcaPpbhI0YoiKX/KThGWgiwFSHoPWlGWgm11Qu6faRSDmVpx2ArE9CykGMzQBozfS3HXCm/0vGRcUz7QjQIDoRBBsyIFl+lpu2LFCvOANgqdXoGYHorWW5gp86r+9J/9UXzmMfJC0Yv9UCilCM0HyFEU4zK9Odmvd1xecYxiCctQmKVxnfXoTUdYz+tFx3XGhrUed1ymuMI+WN+OxQvHQvGNIStYntttH6zL9q2o6BVz2J7ti7FvbTm73ZbdnIalXCFKytahpHI1iss2wlcGfPvhKpxz4l04IPManJz9E0aku97A4+RT6ISUKMal+jEqpRxj0gKSH91CqK1NG5m1Cv3Tn0ZrZxDynZY48IB9MPvnGZAzhAgCstNy3hhZISKLssuBEBCMh2TVj1WrFuP96dMwetRIdO/e3YTfoBjMa8reZKBxTnFuMRY2zz+Nx6/qOeO6Pdbe48zzS2xdwrI8j9W1YVPOj6rY+mzXistWqCN2O1PWZ2r7JyzPut5xWDGY2HETlrHjsXjXWZavNfb48PXIKworOwd2Lthzz5Tnma/bDJdjb8TxgYL0Tud88r6+KYqiKIpSu6gorCg1REVhRVF2ZigKM0YoBSuKMFOmTDFf4K0oTG9Wu24F221p7IfGPhlLmKkVqa1dddVVRjii8EbPXXqv2p+ZE6/YxGW7TvHBilYULyhC3XzzzSa8AuOlsj2KFl4xmAIx1ylksM/mzZsbr+OqWDGW5hXDbH9WdLVwmSKtrVNVlLXiik2J3cZyXvGFy97y3E9vWZtakZzmFXdtGW63dZnafItd53avOJgsy80yjFiE+8z2pQwdPEuBDyaXYkiHNzAkZzXGpAPjKQiLnSM23olijOMD4wuPTdl+nsIjspfj6IzJaOQciTynKfbqvge+nP85grIvEUTh9wVk52WvfFEEZPd4xOWISepHLCoWCSIgG3hN0Sty5MiRJp4zY+PyxgXnkBU9Bw4caI6ZPW/23HiPq4X59tjbZdazeYTLVtjl+WHKNmkWW495dn4Qm0dYxrZBvOUstoyFy6xvr4Fw2J3zXLbz3y7bcTO1c5DLNHrG77rrrkZM53XH+MoMhWGPSXVjUXYs7PnlfGDKc8Y83tRjCBt7c43XBB8CarFzQlEURVGU2kVFYUWpISoKK4qyM/Poo4+aL+tW9Hz88cdN7F4KtBRjrXcuBeLaEIXpIUyxlin7ZExSxjFlzFSKxHzwHGOhMvwBH5h1ww03mDwr+FJYsD9Jp9DAfJqFIgXzaRbm0WvtmmuuMR6c1tOzqkBMMYMeyQxdYQUwC5fpZWkFLCuKWLGNWNHDOwbr4WnLW2z7duy2vG3PenRWFcpYxuZx2Xope4+BHSPH4/UMteOyKevY/ljWjpFmj7WFeTE2y25YJSZ/olKmUtovAj5/DDil6UcYlrUJBanA2QlB+PxEOtaJYkIaPYi3X0zhETnLcHzeFDR2eqGO0xJ77b0PPpv9FcrjIeMgLLso+yb7LP+5HI6F4IsWyyq9cOWYc7ts4HHiMebxYXxm3kRgyA/+dJ4xnCkQc56xXNVjTrwp2+Gx5rngOpe9Zblsz4PdbrH1mdrlqufM2xapWs6Wsf1w3Y7Hzg3m2fJM7Ri57L0WbVt23dYnLEtvdL4e8SZPly5dzM0fetHbOsrOgZ0vdl5wmb/4oMjP11C+rjZr1gxPP/20KUPs/FEURVEUpXZRUVhRaoiKwoqi7MxYwZPiJx/E9tRTTxmRlV/iKQYzpXeuFWyrirg1NQq/3pR9UJSmGE3RYMSIESZuLsVfCmxWRGVIAz5Uzv4svqqoQCHC+5N5Cl0Wr8hEYcorTlHEokB86623mgfYdevWLRkKgKI5j9Gbb75p+vMKqt42LHY7t9k+7TgpnFlBxC5bz0nC8t4xs54VWYjd5t1vbvfum12uKgZ6yxCu27FwrFbUI1XLesdkYRlTTpqIc7MsxgLSX1gsGkdgHfDibStxfOPnMSx7lRGF6SlshWEuj+V6mptWJ9huncUxLiWGcU7MtDneiYtFMD4lLPkhMTc0RYHXUiUvNSL5MYzMXItjUl5Ce2cU6jvd0PfwE7B45Wqjc5fJ/pgjyBAS0aAkzA3LLsu5Myo4d37L42OPqz23vK4mT56Ms88+GzfeeKM51tzmFey5zuNPvG3Z82PngS1j8+38q26d7dh1i3c+EFuOcNy2n6p487xtcJn1bD9ctu2xDvfRlrftE26j2XrcLz5Y8ptvvjF5dj8J620VHCLjexgpn8a23XHzr92yOdeFu7Z5XbayjUQGR2sW+ccsyPEx/2yetBiX82m2/G95uQzc+UPYEfdfUo7F3Sv25S65VeRal5TjNLkmkzkypxI1DG7hzf2ZpYj8pbl1mSaPRaK8bd+uuyalY3K8ZVyJ0ltuFnP/2t42m12y8Jza88yUN/f4Kwt6gFMYbtGiBZ5//vnkzQ7vXFIURVEUpfaQj8yKotQEFYUVRdmZ4esXvYTpvdWpUye88847RgS2XsH0FuZPfynUUiC2Yu4vWVXhmGKvFXy962yT67ZdpszjMkXZcePGoWPHjsnwDfxZOb0GtzVWxKBQwf44Fj5Y7vTTTzeebvQUth5u1ogKG640FE4IY0bjCgL+ijCe/fer6LnHIOzmjMbJWTMxKi1g4gnTCtKBkU4MoyjiUtiV9H/F3q0zCsITnBDOdiIJwTkm5sc5KWWYkFpqYhez/TFio6X86NQ4xqRJXppP6oYxOr0Cp6UtxYHOYzis6fl48ZGP4auIISQ7RIEsZLQ4ipQ+2Tm/WCSpj3ET5TqvMFYdnCe8WcCbD17Bk9i59Hej6nVkhUKL3e4Vz38JVosZb26en3LJKZd1SaOuIMrzxFsvpWL0YbbCMPXWiGxkVdNzXLZGfTKHKQ67Z51lzfmOybUeD8lizNQxeeEySSsRDEdMWXPLQMrJBWE6LQ8k6rNxitthKSEpb1uZW0ecTwxBwr5kc1RKsx2O02xn5TD79CEQrXDHyH6lbCjEICZmUfJkKVYOX7jI5HFfmcYg4+PxYDtSkJKx2SdObLNPzJeeQkWyHGZpOXKyneMJczSJ9s0SjaK4OwCmdo3j4rmioG/PIV8X+esPhoygIMz3HL6Ovvzyy+a11nvzQ1EURVGU2kU+FiuKUhNUFFYUZWeGX9IpujIcA72EZ82aZTwavTF8KdRSHP4zwkfYsBBslyIwYxbTuM2Kx4y3mp2dbbxzOT7GOi4oKDAPPasNvIIUxQ2KeHx4HI/NM888Y44F87xixlZ7Mf6FoSxEKSvEOBI8HJIsWbwafY48GplOJho5B+OEzHcxKqMY49NixlN3VHocI1LjGC2fSMdR3JW0OsF3a4yewONTgpjghJNeyOc6IUl9mJBSaYTfAsljX6Ok/KhUYEx6AAUUqVNiGJMaxpmZxRjVZi6evnwRsF72QfYjGEkIaNxJs1QpO+sDYkZdM4KaK5VRGvttOFc4r9Q78n+x1549PtZbeGuFQ1M9GkO4ZBWKVs/HxvULUFS4AkUb1mHThiKs3VCB5ZsqGdEEFSyakDKjcgIpyNKjN0RhN0iR1y8DiSIu55/CqhkBVVJpn7c+6Cce53rAB9/aRajctAoVgRBKglGUR8PufAnKdumC9TlzzARhzGVj4aQ4HadwHZfXFBkALx16n7M/bi/lAr3uI0HZ5hOTutJOPCQ9hAPSfgxlklURiiEWohjuky7LUR4KoFQao/Bc7udklp4SO8K5SjnX7L6Uics+ISIly1ejcPUKLJKON8omaZK7a8YSCHNk3CuuuWKwTTnzuRSObPZKt+IwzyNf6xs1amRez62nMEVh72utd1lRFEVRlNpBPhYrilITVBRWFGVnplWrVujQoQPOPPNME57BCrZWwLXmza+J0WPMehwzPAU9hClCc539MK9Hjx5J72V6515++eUoLCysFRGNfVDwpZhhRQ0Lt1nzisBW5Pu744rCQYTjIVdsCgMLF6xCh3adkCXvk42drjgu/TmMzlyDszN9KHDCGJkQZxn6YbyJJ1yTmMIMBUGBN2LCR/BBdta4Pk7MeAmLjRRjv6MpTqcy5IRsS41iRJ0NOKvNZ3j7znVJV1LqfpTB3DPMJQpvYhSFOQ0onElCgfG3fYX/l9qY1zsivL6qCoFcpwBM8x6XrT1GFHbLCjfg1ismoFvHumjZMg9t2zZDh1Yt0bJpS3TaZU+M++cV+HD+IhTKSQtTCI2HjacwHbejcrLZE7VTzmiEKaT6jLeuyYvKuIJ89GBC5A2W4+evP8LwE/ph3732wJRnXkAF25JWgnTDlWW27RPzcwIxRAO9hMMRRIJh441rPIE5r2QcrsetFI6whbgRdDnjGLKEnrxhXl+cbVSv+UDHUBHWrVqCp1+ahh+WrJPjJFm+csQC/FUFH4HoisJGajYhLsyKVOdg3D45JqmGsK8U7099FAfu3Q2HnVSAj75fZ+a88V5mHVl2rwKO6H9FYa6xeQvPJQV9pnxvOeWUU0woHsaw58M9v/32W+Mxz9dPltHXUEVRFEWpfeQjsKIoNUFFYUVRdmbKy8vNF3Om9Ni1cYQp0DKldzAFYa7TQ9Yr8FZnLGs9fqszCsv2wXVz5szB66+/jg8++MDk09auXYtHHnnEPERu0KBBpgwFA2vbAwpSVrT4NXFqe41vR4GyEEUrejlSIWL4iJUrNqD7nj1QNz0TLZweODb1GYzJWolzsygKh4w4yxAS4yjMpjC27x8XhSnujkkLYYyk9DgeJ+bGFnaXk6EjxEamAqPSKAqHTVxhbh+TFsCwvAU4q9PbeOPORTC/oZf9oOwVlJSRAFxRLCA753poGqUsUSZq/v6+OcA5Y0Wxvxv2urLwOKxZswbTpk3De++9Z15vrKhIfksYZikKmJXF63HRyGORJ5/N0rMcZGSno0m9esjPykVOVj04mfWw22HH4INZ86RSBRAqMfq+HUkwGsdGX8S9CWA8hgPmNJt1GQPDKVBopVCKYBGWzPwA/Q7aC00b1sf9TzxjPHujciWYGSFDZj0KyiETj9ovE8kv1wbPuSsIU7jlclwGQf/dcEhaD/oQl3J+aYdXlRGnowEwgnVlOIRQBcddgeXzPsJpg47GHvsdjve/+sF49hrBOCxtRMLwyWKhn6+dPL7SnxwgI+5SFA5LGybEBsVmme6lhXj93/ciPyMVLfbqhXdnrzRj5z5Q0ObNEXdvWNrKwJzzm0XhmOdceb27ucw40RMmTMCFF16It99+O7HFpWp5RVEURVFqB/kIrChKTVBRWFGUnRkKLnzqP2Pnvv/++0mvYAq3FHG5TLHWxgD+LasqCrM97za2y4fIvfvuu5g4cSK6d++Oww47zAhBFRQ6ElhPXI6PD4yrLeGM4oT1EvauW7zCFPOrCh9/ZyiIMvqoEYXpJSmncNWKdTj84H7IcRqgiXMYjk99CQVZa3FuRhAFTsTEEi5IA8anMvQDHwgXq1bw3RobkxrHyPQoRlLsZbtiVhxmynAVY8RGUxBOD4v5MSa93MQU5kPpRmcU4tS8z9C/8X24cNA9mPnufKOE8YwbcczsJddCsrP0hpZlrlJwM/9MQAFTamvgHKuNOb2jwmvJe50xPMwll1xiHujI8DH89cL69evNte8t+0twM2P6+orX4JKRfdAw3UGrDq3Qp/+x6N+nH07o1x+HHng4nIz6cJruimvuug8x32qptB4BfwCV/ggiURlHuQ8lcnor5aSHA+VycisR95ehsrwMhZUhlMjUpsgbDsnfslVY+u0H6HdAVzSuXw/3Pv48ymROlFdsQCBQhnIpYoRfGZt5fFu0VMwv/cVRLlYaDKHI53cdf6W/WFzmUVD6jFRKxWIZU5GULUa4aB1CFaUok/EZD2XGuyhZg/eemYTmdVPRsfsheO+bRSiVziI+2RaUBV+lrAdRGpKeZdUvY6EETGHZeBnLfiG6Ab7ABpTJa1dZWQne+M99aNGwHjoeeBw++G6tEZl51PnK9r+iMDO2FIWjFLY954qp97XcpvYGG42vm96HgiqKoiiKUnvIR2RFUWqCisKKouzMUIidPHky2rVrh6OOOgoffvihEXApBNtYwnbZK/D+lrGsNa5bcXnu3LnmwW0HHnhg8iFyjB188cUXJ0a0JRQMKCLQtuZBU9sCChfV4RU8iBU9/q64EhGPlViUomkUFaXluOnq+7Bni4Ho4BTgpIxPMS6jFOcwZIR8Ch3DNJ3evFFj42rgKcy2RkpbI9JgYgbTK5h9GEsJY2xqyHgSj04PivkwOqMiIQr7jSg8KmstBua9jNbOEBPq4swTRmH18uVG/OJZdmcB9zIiCU2WmSkJxfDfIwrbOe3l7zB/vPvoFQ95HTGUDEML8HWBn6sYg5Y3j+yxqvpgvupga4GSlbiqoBeaZjk4YchgVMjJi1TKa0cwiu+//Q5duh0EJ78DBo+egHj5IiyZ/S4eeehB/PvJqfj+pwV48PH/4L4pz+PTr+fIwCpQuHohPnjzddx7zz2Y9OhkvPHR59hYLmPnuQ9twJJv3kHffXczovBtDz+Lj7/9Hg89cAsefvhuTP98DjYGKAyzsE9e0DZi3cqFePLZ13HzXY/g/oJiLDEAAP/0SURBVEcfxQefzkAZHXtl8GE+EC/mQ2D9Erz9whRMuut63D/pFjz76EOY9fU3WM94xdJUzFeBT15+Ehed3huNcxzUa9cVE666Ay+8Nh3xQBSlS5Zj2vPP4+77J0kfj+Hj975BufRRIqOoYMgIit1l6zF71oeY9NAdeHDKv/HqKy/hyXtuQPMG9dCye1989P16IwHz5W/L8BE0znQebVcO5t7RmGPPKVOKv9bbm6n3tdR7/pnaZUVRFEVRag8VhRWlhqgorCjKzgw98SjQ8uE/+fn5ePrpp414SyGXAi5F4arev79lXkGYZgVhplOnTkX79u2NJyBfO5nus88+eO2118x4vF65ViTw+/215knG/tkvBYuqAgaFK68IbGGd6vL/bvBsRawyFAlKSmE4hFULwph0yQ84PPcZDM1cjHGpcfMgOCPWpsXFwhjnxEzs33FGwP1jZkThtIQoLMv0Ch6bEpH+/BiXRvG3DAXpFIIrXVE4PWBE4rEpbkzhEdkr0a/OQ2jsHIn6Tlsc2r0nfpw/z8Rf5X7Rm9NFFqgIcj0xRRhNmT/zd4WyraOqCPZ3EMV+SRTkzR++PvA1gUZhuEmTJpg+fboRE7f2+mJrgZJluH78kWiS4aDvCYOwpjSCisIyVKzbiO++moXu+xwOp1EXDJ9wASpWfYlHbj4X2RlpyM5rgP17Hob8Zm3QqstB+M+zL2Hjinm4aMJwNGvSCvn1mqBuwzy07tQJ511xK1auKQKC67D06zfRr8cuqJebi337nIpdehyCJvUd5OelYLcDeuPBZ14DAz8EA+uxYN77KBg5BHWbdUZ2w/Zo3KwZuvc4ADfd+QRK5CWOe1myYQVuu+I8dO/QEK2b10HjuplonJWF/fc9CA+9+IaJalK+aSP+ecZJ2DVH+kmRY5bdDBktu+D4E0/GnC+/wtghw9GoTh4at2iAuvXrYbd2e+LW2x/G8lAEfh6lTasxfeq/cfCRh8Cpk4X6zVugc4e2GHTYPqifnYW2+x6Dd2atQEBejkNhzu6EKMyYyP8jCrtewrRo4nXSegLb13OeZ3uu7bnkOuO3c53Lf/dfWiiKoijK9kA+AiuKUhNUFFYUZWeG3nlWpOXD3aZMmWIeCrRkyRITY5gphV2Kuowv7BV/KeJwm132CsIsa435rE+B+aGHHjLegHl5eWjYsCHOOOMM451cnWjgFYhrG47l1/rnGKsKXN71vyvmFNIYF5VxdxlDtQL4/FlgYPMZGJ69AeNTN8f5HZ9BUTiIsU605qKwmI0VPIZic2oE41IC0p9PrBLjJC1IoxAcxui0qJgbSoL1GGpieO4i9My9FvWcvdDAaYF9duuG7+bMlJ1J+j+bXTPY/UxkWFHYU6JavHOEc6zqHPqrU3X/LRR++brBXw7wBhU/V9FT+JVXXjHbf+t6tDCmbfn6n3HjOUegUbqDOs3b4oA+J2HgMQMx4Mg+2L9LN6Sm1UVKk26YeOd9QOG3eO6By5CXnQknIw977n8IHnnqRbz6wUwsXLIct119DupnOdiz+yF49sU38cQT92KX3Tshv1U3PPqfFwH/OiybOQ399m6PTBlzruRfeeu9ePOlyTj5xL5w8lrgqCFjsGT1EpSXLsXFZ5+CnEwH+/cahKdf+wT33HcfGjdtifotumHqqx/DFwzgw3dfw/67t8EBe7TFM/99EC9OnYJTj+2P7Jz6OHTwGPy40YdghR9rvvsSd1xwCurJfjbb6whcfd+TeP+9t3HxOWORm5GLvr374Smp+8ADk7Brm13QrEUnPPrGdFTEY9gw53OceXw/GV9DHHjcKfjv01Px6KQ7sEeTHOSmpqBtj2Pw/ry1Rv5lnGbO7KQobB5SZ0VhN+VZ5fZgwpvb+/rIlOeXAjAfGEpjDHu73TsPFEVRFEWpXeQjsKIoNUFFYUVRdmb4YKfdd9/dCDGM5fn444+bh71R5GXsXxsDmOIw4wpbEZhi7/Lly41wTMGXy9zOelxnuAnGKeZD5JhyG2OGbty4EZMmTcI555yDF1980YgDFAUoGig7N5R2wq5etIUoHC0DPvw3MKDp50YUnpCGpAA8Lj2WFIWTD4TzCL2/xwpS4jjTCWJcFnB2Fh82x7AQfpzthExoCrbPchSBR8jy6HRgpCxTHB7pxHF63bnYxTkDdZ2OyHfqo0/Pw7Dw5/myM4yT7IpjBqZeM0kilrLNUKrFKwB6BWJ6ifJ1haIwP1Px9ahp06Z49dVXzXYKwlsjHsalzWDRYlwz9mA5jw6cjLpwMpsjzclAHVmvl5aO+vVa4MhBZ2Pxqg1Aybd44taz0bRBfdRt3BaTnnjGPESOMYAXLfgZh3ZvhbZN6+CK6yZh+fpyLF08C/+86Bw4eW3Rd+AwBMo34Mcv38KJB++KxrmZGPd/t2ODX8ZRuRJPPHonnAbtsPuhR+PrOV9i6cIvsUfbTDRvnIs7Jr+IheuCmDt3Hk4fNgIZ9Tpj0LCz4QtVorhwFVb+9D3WLlkAf+VGbFi7GPfeOhHZeQ3RpudJ+PinItdht2IDPnn2RjTKddD2oAF4f95KrFg4C3vv1hL5jZrj9vsewpr1y7Dgx1koOGMo8vIb4tiR56HIF8QnT92PLi0aI6vTIXjqw+8RY9SKwrW454rz0DA3By326oPPfi5yZ7Qci4D091uisBGG5fjzPNEY7ocpzx1/6cHX+/322w8HH3ww7rzzTvOaz+3eEEGKoiiKotQu8pFYUZSasC1F4UcffdS0q6amdi2eeuopIyAqfy4bNmxAt27djJdwTk6OOc4Ugin+Usild+/8+fNNStGGxu1W+GU5isZctttnzZqFe++9F4ceeqjxCO7Vq5fxSK6srDRf/OlFRiHAKwoRFQV2bnj2gqEI4lRPGbc0FgJjCxeuAiZdNhvHNHseQ7MWYHxa1ISPMAJwOlCQGsZYJ1JjT+GxqXGMz2QaxhjHJ236pJ8ozpU2z5XtE8T4ALohkj++LnCqU4wzc8swsu5GjKq/AqM7f4TTDr4WLfI6Y7+u++HRBx5ANOxDTPaBUzUc9sxPLlozCR+4RdnMU0b5H7zXuPf6p3DIG0o2njBF4UaNGuKdd975fYKhzD3fxoW4dsKhaJTtwKnbAs12OwSdOu2G7rt2Rs99uuOG62/D1z8XG+9XlM/BlNvOQU5aOtp17oGP5i42D2MLhOL45vOPsFfHeshKcZCZ3wIZ+U3kNdJBVm46nPxWaL3bvigtK8Ky77/Akbs3QscmdXH/U9NQHJH9rFyBZ/5zvxGFux5+LL6e/SU+ef95tKor9dNk/+p3gJPdHLl1cpGWkQ0ntx0O7nMiynwbEIuUoWRdMZYtWIZ///dRnHrqMWjVIAPp2XnYte8ovDW7EAGGVy9fjw+evgqN8x20O3gQ3p+7Et989DIa15H9zslDWsMmyMxOQcP8NNTNdJCRmYV2PXphfWE53p18G1rl56DpAYPxznw+2E7a27QG7/z7PjTIzUGH/Y/Dx99vhE8uYR76ZExhIwq789w9I0w3i8I8p1W9gLnM94k99tjDnFvefGTIIt4wtOXsr0MURVEURald5KOxoig1YVuKwvYnlGpqaq599NFHiatD+bMoKSnBHXfcYYThww8/3HxRpzhjRWCv+Gu9gLlMkdd6EjOPnsRMWf/00083Xn48ZxR5mjVrZoRiCgTWI9gKPV5RQJ9Av3PjikMxhMMBWYkA4RDWr12PKy66CY3T9kZT52ScnPkhCtI34exEHN8Chm8QG+uEMSGlZg+aGyt1J6RLe04Q452QEYIpCFOAppfwKLGR6QGMa1COE1K/wwnZX+K47LdxUqNXcMXhX2LRK0BkPfDeW59g5pczEQ0xLnIUEZPKDrpT1cBVVxSzGElMbMtcZUu84q699glFYb6WMIwNP/vw4ZN8DZk2bVoybIS3fLVI05FAGMGipbhqwmGon+2g36kjsLxMXl9kW9hXDvgrTLlKMZ+URflcPHPPJaiXlYcOux2Er5cUYZOJlRDGku++QccWdZCT4WD3rvugV79j0efo3uhz7DHY/8j+GFZwAVZvKsL82TMwcP92aNcgE3c98SJKpe24fyWe+e8DcOq2wp6HH4s538/GR9OfR6NMB3lZDnbbvx8OOupU9D26Hw7r1Rs9jxmKMRdciuKyJfhh/lcYOfwCZKQ3Rv2mDXHgQV3QtX0e0jMz0bbnWXhjVgXM/YnKTXj/mcvQrL6DFj2Oxyuf/Ih5n7+GxnnyfplfF+16HIAjex2Gkwf0xVFH7ove/fpgzIUTsW59KV665xrUT09Bq0NG4NPF0hYPcel6vP3EPWhaNx9t9+2Pad8sNw+/C0lnG0v8VURhcxjN3y1EYc9rPM8XX9N5zvl+wvcB+17OeNHPPPNM8n2ANwlVGFYURVGU2kc+HiuKUhNqQxT2ekuqqf0dzX6RVFH4z4df3Pkgt9dff93E9rUev1bspRDMdRsaYtmyZfj222+3EIKth/CcOXNw8cUXJ1+76HncsmVLjBkzxoSNsOIOU7tMvEKRsvNCcSiKMHyBcp5UIzStWbUBhx3UB1lOHlo7vTEw/WWMzliFs9P94MPlRqfAGEXhs9NqLgqPcSLG6/i8dOC8ROxiGr2ER6X5cXrOzxhc/xP0dB6Q8YxHC2coCg59CBWzZAf4BC96RlrtkfsQjSHGmBjMS0xTJl5T/hhVBWI+9PKss85CgwYNjPXv39/cfOK23xSECZuLyiksXokrz+mNerkOep00HIuL4q5XsDm5rsBfQUd2Nlk6B4/ceC6a1WuG3fc8AnNWlKFEtkfCAXz90TTs1bEhmtfPwqT7H4QvEkcwEkKRz4+1fmB9AAhIGz/M+QID9m+HVvXScPeUF1ApzQZKF+Pxh29HWoN26HJQP3wzeyZmfTkdrfIddOnUCo89Ow1l7EcGXOKrNCEnSkNR+CqX4NabLkdGWhMceMjxuHfyI1iydB6eeuA65NfJQdtDTsf074MISt24rxjvPf1/RgTu3HMQPpqzErM+eQ27d6iHvPbtcd/TU+UYRxCsKETAvxHF5aUolH4qKyJ47ZFb0Kp+Plr0OBnvzys1hwaFa/Di/TdLe3lot++xmD57DYLUgM04zaGVFdnh/xGF3cuDxvARxIq9VvDlr02aN2+e9ASnQMxwEtxm2apzrCiKoijKn4qKwopSQ2pDFFYhTPm7w+tAr4VtB7+YU6Sl4OuNHcy4wUzp5cVlpl4RmMIxvYWtBzHrXnbZZeYBUfXq1UOfPn3Mg+v4YCFLVQGYQgA9xKwpOy/0F4wiKH9dETUWABYvWoXOHXZDlly/jZ2uOC7tGYzKWI6zMyuMEDwq1X3Ym3nQXFrMCLvVC75bZwVO3DzIjiIwHx5HY1iK8VnAWXnLMaDOc+jijEdT53A0cvZEA6cTxpxyDjYtXYd4IIhIlDJd3HiWGo0qYeFAyA2LYfYzmW2Wt5zRytbifS3gMmPQ8nWE8WZvu+02vP/++0mhcKtFYZl6waLV+GfBkcjLdXD8GeOwLgiUBkMIRijXMuBvDJUyN6VToOIH/HvS5WiY3Rjt2u+PWQs38LmIqIzGULJxJcYMPBRNMh2cNHQoFq9Zj7WrV+Ghx/+Dsyfei/9O+wTRWASL536Ofnu3Qov6GbjjsWeMKBwPrMbzzzyCnCYdscveh+Grmd9g9dLvcdRBu6F+TirOGn8JVpeEsWTVMlxz00Rcdeu9ePXtt7Fx1SyMPP14ZOc0wZAR52Hx+vXyGjwHl4wYhDqpKdj18MH4ZKEP5dS3fWX48JnrTZiMTvv1xrTPv8PKhXNx6EF7IqNRQ5w+djyKCjdhxVI5ppNukX5uwkvTPkdFWQA/f/EODtyrCzKb7IFbH3wBxRuKsWzO1zj/tOOQLddq8z37YsaCUjlmckjFKN36jEIs5yFx18SePabMoUXkNZznku8n9pzxdZ2/FOGDRfk+zs+29AJ/4YUXkuWqvi8oiqIoilI7qCisKDVERWFF2faoKLxt4RdzPnDOxg6myEuzYSOYx5RCML2E6dHHh8dR8H3wwQfNMusznw+cu+eee3D//fdjxYoVRnC2orP94k8RwLvO1AoJys6LKwn7TEoViU6ZSxatQdcu3VA3Ix1Nnb1xXPqLGJWxFmdn+DHGCWMkReE0V9Ad7xF3/5jFUZAaw3gTQiJu4gefLfkFYqc7G3Fyzic4wLkMjZweyHcaIz8lF53adsCzzzyFaKxSxu1HBCEEYkEEwhS3ZKd4n4LaFpftfBWzIpjd5G7ngvJHseKgfR3gMoViu0z7VXgyAnGEitfiknOPRZ08B0cPHomlJTGUx3mrIiiniJJtlA7giDMsSPkPePyuK5GXUh899j4aPy4vNiUqpKtQoAzvPnkvurbIRX69bPTs3QtH9OqHzPotUXfPQ/DQS9MQiwTx8zcf4vCuzdGxVQPc+9/nUSJzJhpYjSefuA9OdhN0O6AvfvjpZwTLN+KlKfegRYM6aNCsEw47+kQc2vcIaa8O2nfbB9Omv4N42XI8cvc1yG/YADmNm+OI4weir/S7S24GGmVkou1+R+CDH1eDmnasogLfvPII9mxdB6n1G6P3iYNx4/VX4+EHJ6Fpm9bIrV8fR/fri169jkRW3Xy0l+vwpTc/MppuxbqFuPqS89C4eXs0aNoOxxx9LI48oAdaZzqok5aOzocwRvE6VEhH1HZ5RswtO56DXxGF7YPmCFN7s4/vHfQO5oMEGVOY4SOefvrpZDl90KiiKIqibB9UFFaUGqKisKJse1QU3nZQiFm7di3uu+8+86T/2bNnG49fmvUItkZhmJ7Bzz//PAYPHowWLVqgfv36uPDCC5PxgO0T5asKvF5BxysasFwgEFAv4b8AjCdMUZWetubn6GFg9apCnDjgVGQ5uWjqHIEB6dMxOqPMxP4d5UQxIi0q665wO1Y+lRpLiry/zwpSGI4iiPGZFIQjxkv43CzgTFkekrEUYzp9ij1TTkUzpx3aNa2PY449GC+/9SIK/eX0HwVncJDhL+IyH7k/nKacxrSY7E6QUpwrfnnNzGb+cae1UgN4A4mvB/amkRWKvWEGfhGeDCkWLtmI664cjrYd6mDAGWOxrDRmzq1f/kaNH7AUMidPznLlAjw+6Vp0aLo7eux1FOb9vMbMBdeROAgUrsBHLz6OoYMOR8vWTdCsQ3fs3/90TH7nM5RKGUSCWPn91zjxiG7ovkc7TH7+NRSFIogE1uCFZx9Dqw57ofcxgzFv3nwg6kdg/WK88dxT6Hn4MWjQqiNadW6Ho08+Hu999ZUMieNZjw1LvsW4C85Ek11aokmnzji6z3F47pZ7cNIRfbD7oQfh6Q/fh59zLRRFeOEPuOnCs9Fxz13RuFN7DD1jODas34jnpk7FgOOORevmzdGh067oM/AUvPrep/DJXDYe75FyrF86Hzdf839o3aIpdu2yBwafdAJuufhs7N6+A7ocdgo+mr/JTH2+XPPo02vYrPyKKGzKyrmyr/H2/PG9g+Ej+D7Oz7Zt27bFa6+9Zspwu33fUBRFURSldlFRWFFqiIrCirLtUVF421FcXGxEXT7gaZdddsHbb79tPINp1lOYxp91c/1f//oX2rRpY16fMjMzjQ0fPtwIORQAiBV0iM2zqVf8ZTnvugrDOzeMLhpB2BWLeCpDco4DwNOPvY5O9Q5HV+ccnJj+JcZk+DAhzfXmHcNwEekJUTcpCMcwNjVsbBwfPiflxsk2r9Gr2C67YnIMY9IDGJFVglH5RTg9YyWGZCzBGfnLcWr+Nzi/xyz89+Ll+Pipn3Dx2Atx+y1XYlPJEiNi03+UIiAtLAMPSy6Hb+5ryLTlM/PcnXLnNP9yNtPcHIELyRXlt/hFAVCyKVpGIvx1Ae8syJkwD/tjvATPMU8s8DxFZYXRrOVFxlUvQ34UbvoJG4qXYV2J35zXCnlt4bmltzBvXVAPlkalzkaEilehdEMligq51Z0H7Nn0H/VLmyUIlC7F6rVLsWy9DyvL5XVTtlNojsdDCJdvQKxkNdatXIxNgYgRlcPBImnAh9WrirBufZkZoWk1Kq3La2VJcRCrNpVgRek6rC7fKCMS+PoXrpRGy2W8hVi8fgnWlhSjbFMZ6L4c3FCEFUWrsD5UbsYXD0ib0hbKirBqw0qsKtmEosoAAmG5EiNxFG3YiI1r12Ddug0oLOXtDhmSHPeyUhmbjBsxH2L+Tdi0fgXWbipERRn7KUTp+g1YXBhDiZTn8eDD5ni4zC4kHjTHRXsNJM9JgurO7YYNG3DKKaegbt265kbicccdZ36ZYn9JQux7hKIoiqIotYd8jFYUpSaoKKwo2x4VhbcdjAu89957m+PLn/U+9thjJhQEPYMZW5jb6TXMmMJffvmliRfMhwXxIXJ5eXk48MADMX36dCMEqKfX3504ohR4EooR9S+jdhUD0+4tx6mtX8cZdRagIKMC4/lgOfkUem6KG/OXou4EegynxsRCGJtWjnFi41MCsj1qypjYwImyF2VTVE4IxGKjHT/G5pbjjAar0D97Bo7Jn4a9nNvQxbkIg3vciblv+twHyVF/MioW/1Dq4mATAxZjXGSK2zqTtx3e1wneCEquyykIVoawdvVaLF+xFD5/KcKRCsR5ZyEak7kVd8VaFqdaKefSL2fKZ4Rev9SXcxyWDdEw/DL5ImyQXrFMxHi2WZ9mRE6zQcrTpB3mBSStjJqa7rRgnAnpPy59ROUf81mO05pTiTcQzJLUYV+2fYMtKJ1HpWXK0skGxJiUyV8GLTH5TKQN3lZh2+zP7GhI9p/tRLjO8CwROgknblrIn7iMQsYZkDxecqauLEdZyPQpZdwGBe6rmJn/nOth+Wt8lBP7K6OPMQyM0aFdgVvMbDNVZLv0x5rsPtkstyfMnk+vyMvzzJBEV155JS699FLzXsLtDA9i3zv0pqCiKIqi1D7yMVpRlJqgorCibHtUFN52UADu2rVrUhR+7rnnjGcwv8AzrATDRdCsMHzYYYehdevW6NKlCy655BITN5hUVlZuIfYof1Oo61iBiMthWdwAzHseGNjwLZyRswYFGRR5YzhHPoWeJ0axl/GFx6VHMSaVwnAUBWmVGCs2LiVsRF+WoYh8nn0onSzTs5ii8LkZsj09hmEZSzGw/nQclH0PWjsFaOj0R32nB07tO36zEmjHVp25f5RtTFWx0L5u+Cr9eOPlN3HigBPRq/cReOSxBxAOV4CibMwfNKJkhZxDP88lVcuIK1r6ZJKF4/SwlTUjIEfgi1A6lSzjDSwVpQuefla1U8E0mBBV2Rj/VRgxOVFFCsXCURlDSPKiCMaMPGraIhRGGSzFSMXyn8YSphTLsJOwLEg9+g8bAdnms21JSmWBQS2M0i2buYnjM2MwJWSfeHdFNsQj0lOkTBbCRqsOSUfBkE/GKjWkOptmPXZpqjKlmzsFazYsea4IHHE3mSx6/bKwWXHLyo5zH9xj647HFGYbFI0TojDLJI+lp0/vL0VIVbGX2xguwnoIW0FYPYUVRVEUpfaRj9KKotQEFYUVZdujovC2g6Jup06dzOsNQ0g88cQTWLZsmRGHr7rqKtx5552YO3eueYgcvbrmzZuHBx54AJ9++qn5Im8fEMQv9hQDlL831ILo0BiJx9yYvNR5ioHPpkRwXMNXMCSzxDxYziv0Utgd5QRRkBbDmBQYK0iNGHGYoSGsNzDtbIrGTth4C5+X5XoLn8nQEVL2rPo/YW/nEtR1DkKesyfqOO3QsfHumHjl9aD3KOUrOyTjQCpmtCuvKdscr/hnl/n6sWrFKhyw7wFIT01Hanoqdu2yC7766jPZKBMqGkc4GDYiZJgaI0VhOaX0jKWo6g/7pDHJDFZIGtkc8sCc5Jg5z3x4IF+haO6plr4ZRoEmy673a8zIphWVPutMa/BIpwbWt+WZmo2S2PYNHACnXYwia0hMMtyKZhsTBpbwcylRNhyOICRjTvYV5x5Ki4n2KdWGgpXyuiurZp1jD8lY2SAtiKhsj/EBfXLM6EFsupOyITG2ljh0pkvX31faoLDMa4QmO85clt3CU5gVzHbu9S+JwmZQBu+55XsD173n3uZrPGFFURRF2X7IR2lFUWqCisKKsu1RUXjbwViPJ510khGEGevxjjvuwGWXXWa8h/ka1LRpU7zwwgvmS7v94l71iz3XrTis/H0xupFMDYpEIQo+FJfCEcz9fAkKjrkdh2bfi5PTN2IkvX0TMYEnUACWdFRKEGPSoxidEIXHMIxEStyNM+yxMU4E4zLCUt6PEY4fo6XO2NwohqdtxKC8d9AtZwjynBao7zRFh2btcdctN6GocBX8oWIZF0MAuDIYzWhcYkbLSpiy7an6+kF4g2nBzz8jVV7n01JSkZkjr0eNGuCVV19JTCopJ2VDcpaMCBuQvCC9bE3gCHMepWEpE5SUQqOUk2IRyQrIaxPreM+1C3MokbqvXcyn3y+9grnMUA6hIEVQaSchrrqhRdwxWDMkEtuHgQucaJK6ISEShZgvbfNfhRhDYJg8s4/SNz1rWVQsEuHexYwDr3vPjWOVBSkfDccQDpbLuuxDPCLLfrneKOWyvrQuZSIR9ziwab/sCoVcmp3/3APTGAvz+PFY89qVXPbEo2O65XhY1Gy3ArorDDN7czMs6GK9f+17RHXLdp03HBVFURRFqX3k47WiKDVBRWFF2faoKLzt4Jfxjz/+GIMHD8aAAQNw0EEHGXHYHvOGDRvikUceMQ+S4xd469nFL/w05ln45V75+8KZYGKdSuqKT1GsWbccE0ZNQJ7TEu2dERiQuhhnmhARifAPxisYGJkewJjMsAkfsdlTOGbK0OgRbMTijAjOTCvDWZklGJ65CWflFuL07OUY13IFbj1xMf4x5GZ033UPDD15EN5/91X4/OsQMz/Sr0BlpEzG5ApZW4pjHCn9NSmo6Rze1nhfM+wyX0t++vEHpMlrTlqKvPakpqFB46Z4590PzCmJ+uTcxBmZN+HrSo/gSNCIlrJkQiZUVAaNiBqTfHMaxXiOWYZ+ugHGG2Z33Ga6pSzKrTILuC4WiYZRUlYkRdzACiZbygekbcJ8bkmGXUjUSyTGDFxgP+wiMQ6ayWBIB/Okuxh8UpB7ZMpTcOX4A/R6NpvleuKNDFmU7fTAD8dkH00cZGbyD8fFYxOS7XzMoyvmGkE3LNsT7Zg+k17RrnEf2La9XrnsluXy5uuEWVvsjyzzKNBfmMKw2c4/tq7nfYHLDBPBdZ/PZ8IVMU59RUWFyfN6CdtUURRFUZTaQ0VhRakhKgoryrbHCpR6Lfz52C/sDBnBGMHp6enIysoynsP0Ev7Xv/5lvsxT8K0uPATr84s/0S/1f2949jkTKDkFZC4wRuvyVT9hz906Id/JRTOnL45L+xLD0wMoSA+hwIkaj+GxacCo9CDGZEoe1+XT6dgUegq7gvBosVEUjjNCGF13A4bkzMOpeTNwVMrL6JP2NIa0fhWvXR5B+TdAxWpg/ZrVKNy0hqNAjGJwuEhGQjkxmBS6aJzNlNGiqBQrkbLlsg//O8eVP4+qrxF23RWFvzeicGZ6GpyUNNRr1ByvvPaOEWXjQYZI4PmjhFoup3YdAkUrsHT9aizZUITi8rjxhjVCZSSAcHklVi5dheUby1Aik9IXowgqDVG45CQ1Hq0Ud91QCGby0mJhhEKVCEgb64sKzU0O40RLz2TznzXoTZyQQ01bbkIzjXCfku25qTvXiLk6JI8zkL7rfISdW9QIxcFyxMqKsWnFOqxZsRa+SMjU4L7Z/TNzlOEegpWSUYlIsAwVpRuxaeM6LFu1GotWrsZiSTcWlSJQKW3K/0hUeqEgnIyhzIfzsTV33KYPMTvezdJ3Ymz8Ywub7RSU+c8Vzs22RF17TpnyfYPnliLwww8/bEIV7b777rj55ptNHHobV5jleONRURRFUZTaRUVhRakhKgoryrZHReFtB7+UU+ylPfTQQ9h3333RokULnH766XjzzTeTYSFKS0tNar/kW7huRYDqRGPl7wNnAWdGIBpBQOYCPXBXr/sJ3XZvjWYZ2Wju7IfjMl/BmVmrMC6zFGOdoBGAKf6OTAtgjJiNNcyU4SXoITxKto/IiGJ47moMrvcRjs1/FPs656Op0xvtnT64YOCNwDp2LCZT0IQ9pTglq+G4GwyAM7OqUdJyI7oysmuhlOIcd0UqZdtQVRTm64dNf/7pe6TL63xWRiqctGw0atoOr73xoQmd4CrDAfijJbJSJC9IP+DWq89BveaN0Kjtrrj+xgcRlHJ+aT4Q9OHVp/6Nerl1sMeBvfDBrB+N8Bo1T46TAvTINeKoJ8Ywh8UugpXwVxbh4xmf4J6HHsSSlWtM1ywUC/AGgvtwOT56zgSkSAQv5quk+0opK8YrV/LZJhMx9sFrw43Sy4fimRHJbGN7iW0sWL4Rr02ZjF2atkGXznviy7lzzbSm069PCvpkcpsaIZmrgWJEA6VY+NM8TLz2CvTr1RPNG9dFTlYqWrZpgUGnDMZjjz2LVWtL2CPKI/TgZUduzxSF7RiTxn2VdEs/YWaIcTGx6orCCUGdeLYRnmd7w5FG7+AePXqYm420XXfdFdOnT0+W1fARiqIoirJ9kI/aiqLUBBWFFWXbo6LwtsOKMvTS4vJnn32GDz74IPkl3W4nVQUdC8Vgbznl7wl9Bim80cuQ/0LRSixeMgsH7b0H6jq5aOH0xPGZz2NkzmKcnV2I8Y4rApsHzaWEMSYlgAlOBGc7MUnjSVF4RBowPLsUp9WbgyMz70FH51Q0cPaUNluhRWZ7jDjpTBjlMCbzMKFjcTpS/+OspOBmRTlrzOdsdiPNUpbziVF+03m8Lan6OmHXmS5a8CNyMhwTV9hxMlG3UVu88fZnMPelKOjGGUG4Uk7gWqB0Fq675Aw4WelwchphwKDRWLCkCD45qRSFX3/qEeSkOdj1oH74YN4yI8WaM04PW4ZfoOdszBWF2TxngZkQgRK888YL2PfgA3DYUUdj2doNbj7nlRRi+YBkBMySZCbipbB94+dqvHGlbXdymXbN3JNl9+WT8myZrLh3MCiusmnzasvtJWvx4XNPoUO9FmjXchfMXrSEpRk+2bTDscbi0lt4k0zZ9fjk/bdxVN9eSE1xkJvpoGG2g/o5DvLys+CkZaBhw7a46PIb8PPGYjPD7bwPS2umZyOSb97A08Htrv9y4i6LOfY0N3Gr8F/C+5oVbMMsk3if4DnlMtP58+ebsET8XGt/hfLSSy9t8d5hU0VRFEVRag8VhRWlhqgorCjbHhWFFWVnIKEKgV6U/GG8DyVFyzHylOFo6XRHO2cwBqa/ijG5i3FBbjHOMSKw6xnsxg4O4WynQtZLMd7xY2xqFKNTgbOyghiavxInNnxX2jgDTZ39kO80RvP8JjjtpNMw4/MvjCZlJCU7hCT0ZbSW2GQXbCWvbVFXqS0oCK5bswp7d+2E3Kx0pGbmo03H7vhi5gKEqIZSzLVetrE1QNnXmHjpUDgZ6XDS6qNJy66496FnURoGfAEfXv73nchOd9DpkP54c+ZSI3HGeeMgXIZI+Tr4C1ehvKgIpRVAObXdxBjK1i3CtVdcgOz8uji8/wD8vHINfD6pHQgjUlqOwspKFMtYfBR0YzKesnKENpZirSya31LEKhEt34jKknKUlwdRKV1uKgujuES6ZicMURLZhED5JlSWFaK0dCPK/H6UydyjNovy9Xh7yiPoVL8V2rfeHZ99/7MRhSkcU1g2TVCsDa/F6h+/wInH9UdqahqatWyGgcf1xaUTzsQ/xg3HGcNPQ5t2HZCT0xjN2nTBvc++xKAbRtDlw+AqIpXYUCTHobgI/qISVBSXgz8A8UsHdH4ORcoQi5bBX1Yk2wpRzrQiAEZ44HaGXWFIFora5uFy8t+aN5yQjT8/b948tGzZ0ryP87Mtf43y/PPPJ3+JQlQUVhRFUZTaR0VhRakhKgoryrbHKwqr/XlG7y1F+VOhYBSmhyH9EisQCZTgh8+X4+KBz6B31oM4I38ORqWvwnhnE852fDhHPonSJqQC48XOywijwCnCBfWCGJVZiNPT12F0s7UY0vxrDNntBRzV+UK0yemOPTp0xU03TMTPixYZwYzem5WMG0EoTpk/FKeYR+GJsiCXY+4mKwKzCEVHGpdNXaW2oYDoryzD1Ccno//RfXB47/649e7JWF9Cj1aBnr3WHze+ASj9Ajddepp5IJ2T3hCp2c1w1IBhmLNgNcoryvDByw8jK91B832PwvTvNsIvpz4a8GP+7E9x7+3/wmXnj8ZVl16KW257GF/MXooimSIbigrx+L3Xod9h+8DJyEVeiw4Y/c+LMPW55+BftRKP3XU3/nnF1Xj1k09QIvMpGq3A2q9n4Lp/XIxLbnkQ3y5dhbh/PT589WlcdclVuP6GOzHt089x+fW34rL/ux3fz1uEoH8Dvvr8Tdx8/VW44tJ/4P8uPgf3P/IQvl64ARWcpuXr8c6UR7BLvdZo13oPfPzDQulrsygcMHOXSvbPeHXKnciQz4nNWrbDvY88ilWrl8tUl9KxSlT4yjHlyafR58hjcMzxp+DVz75GKcXbSBDF61fi9bdfwcQbr8bF50zA5RdchKf++wKWrSwFQydzGD7/Jsz+9iPcct1VuPSf5+NSGevNt92Fz79ahnI5Fb64H/4YY3C715PxIDbu0NJFIoyQ9RJmGIlZs2ahUaNG5nNtWloamjRpgufkuFIwptmyiqIoiqLULioKK0oNUVFYUbY9VhRW+3NNRWHlT4WClRFW44hEimWhAvFgwISA/WAScGqjbzCiTiFGOOUY71TgH6lRnCefRBlCgp7Co8RGOlGMyqjE6WnLMCh1Jk7O+wynNp+Ga0+ci1nPAfM/KMHrz36Ijz74HMXlFa6AJVYaDyEgnRuRygyCMhqFRG7lT/YrEimFRaklY1RRePtBEfB/YCzecDmWLPwJi5auNSIpRVBXYgzJZjmHLBMrBEpm4KaLT0VKWgbqNuuMBi06Iqtec1x9072orCjHtGfvRlaGgzY9B+HN2esQkmk4/5sv0eeIfdGoroP2zfLQvEF95OY2w4FHnIiP5i3Big3rMe70vmhaR14f0/KRUr8NGnbqjPMuOBcbv5+NYw46EFkNmuOKO+/B6mAZgsEizHhqMlplZaNhl5544eMvESpZhGv/MRJZTi4aNumIdt27o26rduja7XB8/sk3+GD6yzjkgN3RIC8LrZvWR+smWciuk40+p52D+Us2AeUb8M4TFIXbom3rbvjgxyW8fMwx4CHjrEakBNgwE+cO7YO8nDycNnwc1pS7D1FEzI94uNIs+8Mx/PTd91izZr2Z/f5oGJHCpXjzmYfQqVNzNG6Uj/ZNGqFFw2ao27ADTh99GVbw0Mpl89qbT6P34XvJcWqINmKNm9ZFbr3GOKTXGZj20Ty51hhVmfG4Y4hIP+Z0WmMiGd6YwgsWLECrVq2QmppqRGGGj3jxxRfNNhWDFUVRFGX7oaKwotQQFYUVZdszYsSIpJCp9ueZisLKnwoFIQqrRuPxyXolYoEgUAx88SgwrMX3GJ5VYYTfc1Oj+EcaQ0fEzMPmTFzhtDCGZq7E4Pxv0cv5L7o6V6G9MwpXDHoZ0SXSJH+fL80ykgC7olBG0ZCyLwXhIIVDMwCr9FIyptcyhWAKwtasMCwDZUNWHGaaELWUbYsVC7eAgi+FXznBFDV55ijrB00xegiL8RxRFC38DLdeMhjpGTno0uMIjDznfNRp3AwHHXE0Zn7zNV5/8m7k5KSg9WGn4dWZq1G6sQR3XHsFOndsgdNPG4Af58zAq889g54H90Zm3db4580PoSgcxqJZb+Dy84Yjo04r7HnoCXjl0xlYuORHFP80Eyf3PhyZ9Vvj6vseQ5FMlFC4CHOen4zmaQ7qdz0Cr309D/7C73DXVROQ6eQhM7cVjjp9KD6eNw/fzl6MVcvW4dzxZ6Lrrq1w3ZWXY/YXH+O5KXeiUZMGcJp2x33/fhMo34R3nngUu9Rtjzatu+O9n5ahUHaZTrjc9yD3H2WIrPgIPXethyaNW+EfV9zmXhrcFi5G5cblWLF6NZavWoNlixbK8jr8tNGHSmmjaMU8DD/xCOyxRyfcO+l2/DxzhhyX65CZ0RAtO+yHF96di6UbyjF2wlA0yHdw8F67Y8aH7+Ld99/AoKFnos3uR+GKmx5FYbBYzhFjPNMTmDdjeE7l1Hi8hG1oCHoCz50714SMSE9PN59t27Zti5dfftmUoXisKIqiKMr2QUVhRakhKgoriqIoihCH8cik1hqO+hCniBeNwb8aeOmmMhxX912cnlVq4gSPdyIY5wQx1okaT+EJacDIOuswsMGr2M05Bw2dw8S6oJnTHldOuBKoiFBdkk4oE4bch12JhaUvV/71wxcpkSEY1SwBpSquewVi6znMNCEOm+0sx/JKbVC9KCznlw9Ri4dRGYoZj1WeoUAsimiED2eTc8VTFZDlTTNwx6VDkZmRh4N7D8C7Mz5B7wHHILd+I0y87hpMm/ooUjPSUH+/E/Hm7LUyWdjYJpSVbEJFRSl8xeux4LvZOPmEE5Ga2xhHjboUhZxe5T/ggZsvQVp2O/Q+6RwsLClHMFaBTfM/wQmHHYDshp1w2V2PYU0sLO2sxqxn7kGbrBQ07XEsXpgxG6Hi2bjl4jNRP6MFdt3jCDz13rsmJrCPU0/aj/iL4S9dD39JKSo2rsK3Hz2H/Q/cB06D7jj7ivtknhfi7SmPolO9Dmjdem+8+/NybJKqnO+s7wuF5TgUI7R4Gg5ol4V69Vrh/KvuxQbZzJkcXj0H553WF43r5aNRoyZo16Yl6rdsj0OGXICfisII+Tci6t+ATSXFCPgqEFizAJ+98izaNmiKVi274I5HX8PijRWYcO4w5KQ72LNdc7zx4jNYvOJHzPp5CRZLR8uLeV6CcjWVIRKLIBAIm6uH12NUrnfCc2sFYnoCr127FiNHjkR+fr4JHTF06FAjFHu9hNVjWFEURVFqHxWFFaWGqCisKIqiKC7U+Xz+MOg7SIHWV1mBt577BH07n419nYk4OWMhRmVEMTYliAIniLNTXC/hM50KnJT5Jdo5I5Hr7Il8pzXqptbHwfvsh+lvvSYtBxGJ0B+SElultM04pLKY0HLjCIvx4XabHyhnbTNccwVitywjETPlOutTFdyyhrJt+B9BmMTk3IQrEPSVoTwYQYWc23Ip5kqODB1hReEAUPQN7r7sDGSk5eGQPgOwsmQtbrnvFtRr3BAtmzbGJeNGICu3PuruexLemLVS6pUgunER5n03H8889yL+76IL0HO/bkb4zKjbCH3HXImN0le8dA7uvvY8pGR2wEHHjMXctRuky0pULPgMA3r2QJ0mXXDJHVOwXoYRjmzEvKl3oV22g6b7nYDnZ8xBtOxb3PiP01DHaYquex+DL1csMV68fDgbx15ZvB5ffvwennvyaVx63ljs1T4T6RkOnEYHoOCy+2U3izBtymR0rNcRrdrsg7d/Xo6NUtUcLpmeRjaNFiKy+E0c3b0Z6tZrg/GX34e1ku2TMrF1czH2hJ6oXycXOTl1TAgNJ7cuDhlyIRabJ80VorJoET75fAYmP/wQxgzqjQ55achzMtC6dTfc8shrWFoUwL+fvAcdWmWiiexbbpqDOg0ycHC/Y3H/kzMwZ5kfJfFyOS8VMh7XS5inxR/iAybdc0uB14q8ViD+8ccfcc011+CGG27Ap59+avK4rdq5oCiKoihKraCisKLUEBWFFUVRFAVGEKIMRGnVR/1OMtasXY5j+/RBvpOLZs7h6J/6NkbmFGNsRiXGOmGcm8FYwnGcmVKIUR2+RHPnSOTnNEXzpi3Rq1dfTJ36CsIRaVcaZtuReIX0Q/MhzgfLsTMjFEYR8VPkjUo5/nPLU28yJitMbT6NJaOef6xFKVupfSgMRsMBbFi5GFMmP4wpTz+Lz2bPM2eawSRisRI5YTKpGGkgJCe9cCbuupSicD4O7nM8VpSswFfzP8URvQ9BTloKdm/RHKkZDdHkkGF4Y9ZSoGwJ3phyB3bdbS/Ubdga3bt2waBjj0T3Ls2RlpeL3mOuMR65KJ+Lh2+5CLn19sK+fQswd90mmV7lKPvxA5x42L7IrL8bLr3rSVcUDm/A3KdvQtsMBw32HoDnZ3yHSMmXuOXCwchzWqDnEafj23WrkqJwRVE57rr5BnRs3QJN6zXCIXt3wZD+e6Jt26ZwGh2M4f+8l6ox3vr3ZHSo1wkt2/TAtAWuKJyYsCZBSHpf/xEuHd4XaRlNcUD/cXj3pzKUcOqWyPG7818YM3oszjhzBLrv2R7pOdk47JRzsWCtlFn5JSZePAz18/PRrkVL9D9gNwzudxga5bdAXsMuuOnRt2RvpZmKZXjikYk4fUA/7NdtVzRoXgdO3YZi+2DYuTdgUeFSBFEmp4I3VdxLkJdijOfRePS759QKwnbZrtvtwWAQfr/fCMhcVxRFURSldlFRWFFqyM4iCr///vuJJUVRFOXvDcWXXzLKTkwTiTUj+VDMSWyrWkb+0Es3zJ/6y1owEkc4Gsaq1QvQuV1jNEh10Njpil6ZT2JYo0UYVvcnDM6Zh6H5P2Bog9m4qMcCTL5gOW6+4jGcfsbpuGbi1Vi4dLFpiz9L58/n3ZHZaLOJ3+Mzk8NitpRxRWFaYlhc8Bh1J7tq2k7UcP+5krC1reWP1FG2hKJg4aYNKBg5DCnyuSctOxd9jjsBi9ashZ9iMM+3iTksi4xBW/gdbrp4BDLTc3F4vwFYsHoJSoObcOft16JxXjpypY30zPpoecAgfPz9Ciz5/hMcundb5OTWw8mnnIlvv/gaS36ci6Gn9kF2w3wcMexSFMqkiJV+h7uvORdZWR2x3xHDsLzchxDKsfqH9zCo38GoU78T/nXb4yiMROD3rcPbj16DFnVS0WzvgXj9i+8RLZuFu68ajTynOQ49YggWl5WiTGZYeaACc2fNQqP8+mjdqAUuPf8ifP/t51j243R02XMXOA33xzlXTkasshyv/+dxtG/QDq3bdMOHPyw2orKdsEY3jZcB5fPx3tQHkJvTCKn57THknCvx6cx5qNiw1MQUXrV6Pb78eiaGDT0RmdlZ6HfyaCxbW4gv33sGdeVa3KV9e9x9221Y8f3X+Pbj6WjcoAUaNNsdNz34khGFSyvXoax4CSoLV2PGJ9Nxx70349hTh8Cpsxua79oTc5csQEXMZ64hCt6VQUb13nwNWPHXir32oXNWIGa+N5awLaMoiqIoSu2iorCi1JCdRRRmO4cccghee40/w1UURVH+ivyqOGk2yp9fMiPruGEUuGayKURRkAJj+TIOr1kRuEESrposIw+5fykEMcJpvBwrlszC3ru1QJ68BzVydsOh9R/BcS0/xKF1H0e39KuxZ+4FKDhmMmZNCyFWLHUD0lMwiFCYcYPZjjTPcbALg7fTxAZr8scVhDmKxDZb1JrgreLKwNzg1rFrW5b5X6pu9zSv/A5siAGmixYtQH5+NpwUB05qBuo3bon3PvxC5oIUMAc5IqdJ5lW0HIHCRbjqkvHIyEjHob2OwsqNZYjKfNm08nsMOupA1M1ykJqWiV33ORKfzf4Rc+d/hc67NEe9/Lq48ZqbsHbxWjz33yex515tkZqXiYFnXYpimXuRskW4Z+LFyMtohiN7nYrvFi/F+vK1WLbyGwwbNhB5uY1x6klnYvHCRZg763Mc03dvpGakon33AXj7k7kIl/2AiZeMQN20Zuh95GlYtrHQxN8tj67HtHdeRf2cZmjXZFf8+8EnsGLx97jz7ouR2ygHTr1uOPuiSQhX+vHif55A+2at0KHNLpg55weEExOM12LMBBeWAxIpwapFczH8tFNRPy8f2RkZOHD//XD6kMEYOnQIjhs4CD32PxD16tVFoyZNMOG8C7Fi1Ro89/S/kZPhYL8e++C9t6dh4fdzcNWlF0obeWjYqCXufugZrNrkx0233YozzjwNDz14F1avXowlyxfi9kn3Ibt+W3Tp0QtzF6w2rwg8NcEoXzEiCEcDiMZ4HclYzeuJm1oxmB7ENF7fzAsEAiblubfzYGfF7uev8VvbFUVRFGV7oKKwotSQnUkUttajRw/897//TWzZzFffLUssKYqiKDsjlB2qlR7sBgoTv2RGGGV83YQoTCEq4qauZ26FmBVvpKytYrK4EEYwkvDSjUcRCVVgzbIf0Oeg/ZDnpKO+szsObHItumRcjSbO6ch2eqKu0w1XXni3qy6xCWmTApFXQNkawYVQ0rU+v6Yh1jEuxgkzbbAUy7mpKcfyZmfdHNZOtJC0qni32fI05bepem4JxcKffv4RTioFYQdpmdlo0KgFXnl1ujv/xCIBP2LBElkoRrB8Da67+mJkZqah91HHYs2mAIKhGELFy/Heq1PQrGE20jMysNd+h+OjL77F0rVLcNLgAaibm4MOLdriwD0PRPfdu6J5qzyk52fjuNPOhU/mYKxyFR6/5wa0bdIRDeu3xUFH9MJVN/8L68oW4677bkSzRs3RqE4jdNulM3oe0B0tWucjPS8PrXfrg7ff/wbBsgW45qJRqJPaCL0OPwkrNxTJFRWSq2cTFsm10L3Lwaib3hxd2u6KvffcBd16tES9FvWRkr8bzr3wdgQrAnjpmSfRuklTdGjdDnNnzXf3ndeHYOZbLIJ41C+ZlVj8w2yMGnoy2jbOR4M62cjIzDKCekZ2HeTk1UP7TrvgoksuxY8//YRQKGRi+bZt2wZ18+qgU4d26NvrcLRs1hj183LQrl1H2ccnsLEkjGtvuAUtW7dE4yb5OPCgvbHfAT3kWLVBiza74qrr78YGOQ2VMqaQDIiewjFzM4mDlGsocU6Z0vvXegmXl5dj+fLl5gFzxcXF5jpn6IjKykqz3Yad2Bnh+O1+K4qiKMrOhIrCilJDaksUrql5RWFrXbp0wX333We+KJCDht+Gqe98a5YVRVGUvxDUK37NDFTf+H7A3+gLXE2KvhSFK+2KIBtYL7mdC3zAnPyVP0EWl9RXXI7Lz7sKHevth3pOdzR1eqOJ0xd1nP2Q43RGp1Zd8fD9kxGh2yHbSY5lS7ZGcGEJir2ufzEzJPUKwqYNd7s1VwZOlHX/S76bWvslvGV+ZehKFbzn0i5TEPzxpx+QlumKwpk5uWjctBVef+N9BDk3zIGWoxzzS1qBQNkq3HLDFdh11044ZcgZWLyq2JxmxErgL1yMs4adjD26dsVxg4bhq7k/wB/345vZM3Dm6UOxe/vO2HvX7rht4g14bMokdNuvOw7odSpWrpP5HS3BxmXf4/ILr0Tnzntjl67dcO1t18vsL8WyVT/htptuwZ67dEHPHj3wj3MK8OjkSdhjnx44ov8oaX8RAqWLcPeNl6LHHgfhzDPOx09LV8gVFUYQJQhGK/DFx7NxXK9B2K1NJxyy/1649Y7LcN2t16ND1944ddg/UbyxEO+8/gp6HnAA+hzRGz/MXwA631ZU8GaNO5WDITkG0mosXCHjrUTx2mV4//WXMGzwydil867o2Hl3dN1rH1xw4cWYPXcefP4AfD7WgRFhX3rpRRxx+KHo2L4tDj34AEx96r+44NwJ6LbnXrjwsuuwqTSECn8YL738IgYOPAodOrRA+w6tccDBB+OhyU/KcaowYjAlYL5SmGue58XkxJIewRaKv6WlpbjtttvQtm1b7LbbbrjyyitNnj3/TOk5vLPC8VdniqIoirKjo6KwotSQ2hCFt7W1adMGEydOxL6nXm2E4VunvJsYgaIoivKX4Tc1ChawUo9ApZPaDlMjCnvDR0jK4lw1WfwTRijGn5HLJq6ymRCwbmEl7vy/l9Gt2YlomtIVeU5rNM/qgo7N9sB1//o/lJasg68y7NaRNv+omLLFcAgz2JbxAna3UArmPzeOcNwUMZiyWy4mt/0K3rJbU16Rs1DFE5xYUTg1XT6XpImlpKFBo+Z4c9qH5hTKyZJCEcSCZXKgK8TKEQ2VIhINIRCOm1AGIcZZkHyENiHoL0EgFEalzEFuC8jfqFgsLBMyKJl+KRuJIBQphj8aMLObHq+ISP1oBaKBqAlb4YvGUeQvh4/9SamwX64BqYeAD/FQJaIxv8x5YJMMKWAcZQsRqViLQHnUFOMtlpDpuQLheAChCumEmQHZl4DsC8rkMoma4VRY8TsWQrCyEhEZJwVhRlagGBxhKpujMXrlSuG4X1ZkPEYclj2IhOR4xEy4CX8oIrsp81yW2SSPL4+5CdMgaVSOQzQcRFj2w/wcQK7bUDBs6sqa25fk+33FCAZKEAzKMZG6MmxThl7VpqwYx8Rr34SM4VWV6Mf0xRxJFy5ciK5duyI1NRXp6enYY4898O677ybDStiyOyvc56pzuuq6oiiKouyIqCisKDVkW4rCI0aM+B8B98+2Vq1aGUF4w4YNRhC2NuHGZ7Fmo3m8iaIoivIXgTLFL5n710hCsijLXE2KwlSs6A2YyE/UMNvMIiXWiPnLLIZ/jUmVKJ2LK4APn9+A84bejRP7nIRunTrh2CP74b23Xkcsul4KlJhadC5kzNTqBJatgTVM32ZNYIbZD+ZwR9x4w/zHkTJIRrLsFhWVbUl1AiDzGD4iLd1Bnfw6SMvIQtPmbfDyq28jKsXDoYQ6GpdJFZNJFSsXo6AZRSAUg5/zzZxvyeO2eMicTr9Uq5BtFGZ9QeZLLpXSQKI9+GQuRBCQLHZhxNUwPYbduUGZkzM/JGXCMdkm7SLI7RxH2LTnC7qiNK8cxOVzU0SM3YhVRFypNCQlInEpL31EyiUnxAGHZHpWIsx9kP4psprxSb67r27C/ZLEDDscjUgaRiBYhkCgRHJlTFE/4gEK5TK/WYZ1EuV9gaBZ5vG1YRzi0keIrvwMUmzCvLjLcalcVunGBWc7EeO+L0YxW9pnXW7jcaIQ7pdhUgiPmTbleMuxY9vElJULmsZfo/3www9o0KCB+dxJYbhJkyaYOnVqsuzO7CVM3OMqB01RFEVRdjJUFFaUGrItReE/E68QTGvYsCFuueUWE9fN4hWFaceecz9mzF2S2KooiqLszFCyMAJRFWP+ZjnDFYqMOGUrmI1WIJKVzYXdZbNOOZhyawzhGEUeyaSCRKUsAGxYCGxcBKxbugbffP4+ijeslCrliMYoCpclvB9/nd8SXbjVu0/mjxkvc9zBxMQoe20hCldfkQtbye8t//fGex7tMtOlS5egWbPG7ueUlDQ0bd4aH378BXwUcM0hlhMUDSDi5+cWv6wHEaV3rGTTSTdANTQeQCxUBr+fnr3urPXJQlhOLs+4cb2NiHEj70LEfSaf4RCCVG8ZvDdOr3VXHPVLkxXSAduP8E6HtG88dCkwmzsf8p91pTDF0niE3r8cm+TJZtbjGCrCfsmSTCnPhuM+n6Tc4orXFFlN/XgEYYrOLC15Adl37h89cun5G5Y+fcEK2crB8nqU42HEbqqzsh+ybxx3mB7DYmybqU/64zHmQ97YNsvGo9wfKSPHkNd8TMqxLvviaYlSFDb7K2lMjnOYR5HHwS1jxWd6+4ZDFVwSkzY8nr/sk2L0jz/+iObNmyc/gzZt2hQvvPCC2f5XgPvxW/vyV9lXRVEU5a+FisKKUkN2NlE4JycHd955Jyoq+AF+S6qKwtaenvZNooSiKIqyY0PhQSyRWLhImYZG4Ydm17coasRgqlM0LifyjAhFwYzrYpbksisKh6IUjigNBxGO+hAOBo1zpfEYNqKbtMKf4BuvY6Y+qRdCICTlZM3bdFV+6yfmrMsSNNOOadDmUgJ25eDNorC75Rcq2pXfwFt2a8r/vakqnlFAJMwrLCzEhf+8AE2aNEaLlq1w/AmDsHTFGplHcmqkSoyCLb1zQzKZKFTKxAqFAua0UXwNUK00k8x9WGIoGjeCMHN8RtCUc87wEZxHdOPlsrTBWwM+6p7MppJL4djMkpipW+rnfJFtHHuMHrnlUtcVhanFcgAmjAJ3i+7xMhruT1D65+ag5AdkmfWNEG2E6RCi/koTzoL9VgYSgqwRil2xNiw7zibp8UvBmNvdGxlRyQsgxLARPA7mupStHJ+sSXPGIjIgrhuTPzzW7vGXqzPgd0VhljTXuRv2wfUudsfv7h/Fa4rc7EOOoGQHQnLFShUjCrMYvZfDnjKyQxSKLeyXD5dr1qwZ0tLSzGdRCsTPPPOMEantHNiZ4fGy+22Pc1Wqy1MURVGU7Y2KwopSQ3YmUfimm25KeIlUj1cIPmTk3Vus3/TYO4lSiqIoyo4JRQcr8mwWIBK5xlxhafO62SZ/TGn+McYMikwUpyhrUeyhPMY8b7mEGdzAEWwzImWjKJP1ckQY89S0JyUSTZlCxn+SPxmPJvs3DpwU6xJQRPEKKb8lqnCr3S+zYszmUuKjF6UrCLvm8RS2ByZZnibL3v4TtplEWR4rbx3lF6Fw5j2PXqE/Golg4/r1mPrss3ju+Rfw488LURlwH14YCruCoxuyITEfGWaBIiS3S5PmFJqQBxGZSzzDRl5NbjM9Sfm4EYYlJyJtM3QCs8XMUCQ74KNXLz14eQPBbYNiqTvUSsQi9FSWeS1tMNoEG+YcDrFdacB4Gcuc4Pyy/TMNBDn5pQMZfzzI60KWpWI0wmvHNGNqRGK8QUKR0W2XWjfHz/ASDDXBeezK1RSUOQBp3Xj9uvtBMZixhblMi8q6Pe6bxVoWdns0qRjFzESOrMqy8RSWMVOoTjwJktvseGje8xKRfYrKOOz5Ne1Jv0znzJmDFi1amGdl0Fq2bLlF+IhfElJ3Frif/HxdWVlpvLL5EL3Vq1djvcxn66Vt9++P7ufOfHwURVGUHRcVhRWlhuwsorD3i9cv4RWBj//X2zh87ENb5I2d+DRWrtscbkJRFEXZkYjLf4pOlGtceYcyApdozKUkZNfNNvnDn3ebshRkbUGKZnH+ZJw/hw8iFKJnr2SxCymTNDaS7IXCB+APlMtyqawVi/mkj0pJ2Y70zgGwaRkjI7GypjWOxbQvf37Jfg1upWBlionFInEx05m8B0bAmK7WS5h+o5XBgKljhs5xUXUzO8U6TOn5JyXl/dMUicaN4GbqCCZ+qljIPKyLddy+fonfHP9vbP+rssW5ZSrGuUAh1pwWipqSUnB0jzHTxLKcDdZkOa5ZmGfqJIzLzEuebFufme4Gl8RyHPRA5s2NRH3JdzfJuQbnNz1jJcc2brALHBPnDP2Vq/bPkVLMZv+Sy0x3g6lDUdg1d79orGvbYAmKwvRBdv2QE3ueOH6e5n4Hthdvffm7xbFmP64o7B3PlmXdcbivJ1ImylJSTq6fn3/+GR07djQPmaMo3L59e7z11ltSPG5iDrOM17t4W8C+2I+da1vMu63E1rEith33ihUrMH36dMyYMcPET37ggQfQuXNn9OvXD5MnTzYCMfeTdVjeOw67bEV0L3bd1lMURVGUPxsVhRWlhuwsovDW4BWAT7juA2O9z52yRf7RE+7Dp7MWJWooiqIoOw4ecSYh2VB24BKNuXaLKzUQKRGj6BNFnKJDYmMg4Ec0RiG4UlYphFEMYXmzuNnMH9uqrHExTvGoAoHQJkSiFIQDiMT5UCzZaAch5V1RmKlUkT/J9n8FiiO/bLJdyvBhde6CJ030FIyFjZxGP1AzatkWoQenGRfLywJNjkmMwo9kMyYrQxGYEAGyboRnFqdgI50mY7KG6U3JLb8Mx6n8Ajy+FPHlnARDIfjFeMx5asK8SWGOLY+5xxK53GpLWONWa1x34RrFNderd/NGLgiy7NanKJx4SBvX3UyB1wTDb9GLVhJ2aqpywRXt3KKuKJyszw0GW05SO2HNRv7hfKMgzJT/3FzbhtsO/3G7FYUTA0gUtnV+P27NzfXlr/c4m2PNPXL3ye72/5aV7R6R016bGzduxNlnn21CSNBjeOTIkfj+++9NbZarrQfN2XF5xVc7xt+CZawwy2W7n2vWrMH48eORl5eHAw44wIjdQ4YMMaEyKILXrVsXAwYMwHvvved52J/bVtVljs3CdVKdWKwoiqIofxYqCitKDfmri8K0fhdO3WIb7ck3v07UUhRFUXYMKM5QbNos2VBW4BKNueGom2f+mnIRSSmKBqRQHKGgSRJinBsGoiK4ydShI7Gpy6oJYylKrBSzTIaUiQajiBiBlO3LcjSEYJgP9JIibIN1TR0KxowpTEGEG8VqBBuIJURa6YgCo1gowLG4x4CSTiAWNZIa5bdKH+PTJspSmIrKsTDHUNqRA0Gd2BeKoCJAL2O3vj9MWc5tz4U7JDkU139jJ6wIpPwCnINyvnx+vznGPEe0QJjzhfBYWzMZJuG5sMZ11/iPrSQzEn8opnJOSGlbyZxZipi2KG9YuJ7s5o9t2NSjMCzlbX6yPmeVrW//VcVWSGyxFUweryXuLVO3rjVbw83lPnEf3DGbLbZgDWDbruybaIgJXwxoiWNuy3CEbtkEyQMn2zwiJue6jRu8aNEiPPLII3jwwQexYMECs80aReHauC5sf1WXtxaW575Y8Zb7NnPmTBx66KHGA5qxkh966CHz7I62bdsiKyvL5DM98MADjYDsl7ltxWFv6oXHz+ZVt11RFEVR/ixUFFaUGvJ3EIVp/f/vVfQcOWmLMhMfnZaoqSiKomx/KMxEXUvISJQ8uGSN68YY95QPh6IYHCpH6foVKC8qQnkFjCDslz+BuB9BFKHEvw5FpZXwsbhsMyaNUfdxPRYZhiEhktmuKZqwj2gYfGBWKCztShbrumOh4EYv5ApJZZl1aTWCLYdk9znQkKxGUVlShrKiUgR8QdDJjzJaRdAVeOl9asJixKSOr8ykrOevrDAPPVu5eg3WFxajuCKAilAcPqlE/1J/oh3uqhl2PCZ9UrRh/zXeib8NVQW5uEyosqISzPrmWyMabizchMqgzEHz8MK4zB0eXxbc0phwuzuvNm9yzxDPmOQmTw2vCXfOJvNpRmT1irqsR5M1ZiTrswwFalNpi/wt61t+OWczXGNDlFo3y6223Jbl3XLuDKQlxrFloT8Ee3SPY6IhJmw+uY+2jBvV2B1lAi5YE6wXrVf4ZB49Yq1XMIVV6yFLqs6HmmD79rbJZdunHZ/N95b7NVjPCsKsw3359ttvsc8++xjxt0mTJiZcxHfffWdCSBx99NFo0KCB8Rbu2bOnEcZtfwwnQYGYbdrQEjQ7Nh43Ltu+7LKiKIqi/JmoKKwoNeTvIgrTBvzrHRw+7uEtyo2+9iksW1OYaEFRFEXZfsTlf9S1hJJDqYNmdR1X+uDfiCQhIwgv/3kObr/uMlxx0YV49LEXUBl2/SErY34s2/g97njgRlx+9Q2Y9u4XrgcxTRqkA2FCJk20J3nUe9h9NIhopBIV5cX49tu5+OH7daCmwXG4EX0pClNMZgXpkG2Z9rYOK6BYc+EYKiUVk76DFaWYdNvt+NdlV+GNV9/mc8WSD8minBaiRzH7DlcgVrER0YpCLFv4E6Y88Tgm3nADLr/qalz8f1fi5jvvxVvvf4r1pX74pSsrFzIEMdti71HzkDF7lP8Ym/fj74EVvyy+ikq88Ozz6HNkbxx22GG49vrrUFReImeIjweMybnj0RZYxZ1IicPtCpUUKbc8AzzLiQmZKM8rgqJwTPJN2US+Paus69anyCt5LGAzxWxPtppblrA8RWH+E5J1WMrOOI4wOZRE/c1L7vYtRWFDsi2usKxtLzH7ttj+x2GP7jFMNMTEOzyzyBHKuRBzR5ogUS7GFwYuyrml+Ep4julRax90bM+5V/xkasv/GbA9a168eXaZ/W5t3yz/S6Iwvws0btwY99xzj7mpsXTpUhNjeOLEiSgoKMDdd9+NxYsXo7y83Nx0+uyzz/Duu+9i3bp15mF0FIZ5LJja9tkXU2L7VRRFUZQ/ExWFFaWG/J1EYWu9z/v3FmX7jrsHH81cmGhFURRF2T5QPKBwQHOVHOZ4zYgMJkQCBa8AEC7FjOmvoEfnFsiS97JOux6Ir+etNlGEfQhj1sJP0b5rS2TUaYR/XXt3Uoqyvyh3RTcKsWxTEikQN+EayhAIrMFjj9+L0047HU889ob0bUfHiL4U0BKSkh2cadA0+gehMMeHgJWZ/dqwahkO2Xd/5Gfm45/nXQpqwElRWLoxR4fHIFKGaPkavDb1CQw87mg0qF8fKalpSMvMgZOSASczD3vsewj+77pb8NOK9WaPuYchqe4eZTEq3jJ+K+BUx69tI7+1/a+Adx+9ojCXVyxfgU7tOiIjNR2pKSlo3bY1PvnyMzmrESNCGrGSxWk88Pbgyx/ru8osg2mX84EPAZRJmbgk3KqUmQNuFvNMJQpxiQcPGjjTOaelFNvihkTC4u489gzBlGfoB9PY5oLmBg3HwRlDGbVqfeZxiXBGulIry5l27UIyg2XdvkxLNn/zQP4wrG57N03Zdj1tcxvLVCsKJ8rwnHoFTJ5bwnyKrxRAuew9/zbdFrBt23dlZWWyX4qvVoAldpy/Butx37xtzJo1C7169UJqairatWuHF1980XgE01t4yZIlWLZsmYmfzJRGYfjJJ5/EEUccgU6dOuHUU0/Fs88+i6KiIvf1OdEHU5oVrL3HVFEURVH+LFQUVpQa8ncUhWlHVRNn+N+vfZloSVEURal9KKxQOKC5Kg1zvGb+xsKIhxgnQixQiK/ffxX7dGhkROHUzJb451X3YG1FBD5E8NO6WejQvQ3SchvhptsmGynKtC7NG5NSMZTJclDakwwWCFM2XYGfF7yN9h3rokHD+nj0kZdBR0HWjSCMcJRxORON0eJxxCJBacf9afcvmVeQsXDZ5Bk35VKxEhlDCSqLN6B/rz5omNsAl/7zKoRkM8VsDtMcnXgM4WAp4oFN+GTaszi0x27ISHXQsGEjtOvQEW07dEKrDp3RuHVHOBl5yG3SBhPvfBCbKiNGQkweC2nTFW/CyfFVxY7dO37vPvxd8B4bexwIPSQX/rwQGU4astIykCJzsWHjBnj3o+lynKMIxcOupzCLswlrprq0I6VkhiTmuGAWKMYyZrScLXOi3CqMKB1BwD1/krFZFPZLNdsC+5ISRhRmIckSc+u7596ef7cGlzwyKRMa2zCCsOtN/7/13ajJFisKJ1aqMY5HyhuTcjbf9JUw98/vwjbB3mnJZpiZaNtb5n9EYW5MmDfsAVMKp0yLi4vx448/4osvvsCGDRuS2/5MqrummMfrrqysDB9++KERbEtLS5MeyoRjoVj9a7Cs16OY6zQ+RO+qq64yAu//s3cdgFUUW/umd0iAkARCkptKhxCqiF1QQbCgiNJb6MWCvbdnb9gbdkHFhgqK0ntv0nsngfTbb77/fLN3wg3q+9+TZ0H2g5OdnTkzc2Z2dnPny7lnu3XrhlWrVmH9+vWKAOZ4SQLzSO9h9k2C+J577kFMTAxCQ0MREhKC5ORkjBs3TunqfihM03ZCz6kJEyZMmDDxv4RJCpswcYo4U0lhioozPOi5avXue2W6fIA1P7iaMGHCxJ8PEhx8/lIMhubkHINIIqHkkMxywFaIZT9MQ6vUONQIsCAoMBTJ2a0x5+cjOC7q23YuQLv26QiqkYB7n3xLecmSFnHaXDi8bx+2bVqHbZtXY+um1di/by8kG3anHSWFK/HjjEmoGWNBzdhYPPTI29i2owQuZxmOFx7Axo07pe3jqBBzFOXhOI59OzZg3dYd2Hu0SBE2FcWF2LttI3Zs3oAjR49i2669WLNpG3bvPwSn3Q57SRGO7JF2Nq7D5o0b8fPmjTh8XMoqScA5ULh/J7q0bYXYkHDcevu/UE5uUCZBewurF8O5S3B0+xpcc9n5CJHxJ1mzcN+/HsfmTetRfOww9u7ZhWeefQ5pWY0QHZ+MS64djE17Cw0yjETTsQJs3/yzzMMmbKI34LYdOF5UpjytSUnC64DHVoz9hw7g5y2bseXn9di+ZQsOHDyOMplMTS6ra3MGwJ/YYpqkF0FycPPPmxAcEKQ8hRUpXDsO076aJteKdK+P8qU6hc3otPzQVKY6JVSCMyuTzPXu02c2gx+QGOYaoDmGCWpV+7XAAn+RrKr6xvpR9Y1sX4oW+ur79A1PYV7l/8RTmFX82iCq2tFCW7RIxsnlClWJ/xisYdhlEL2qBd2mT3hg2Qm9k+bbd6KvKaEJTYZMeOKJJ1CvXj3Ur18fN998syKJNTT56V/XH7+W75+n0yfr8ZxCgpXEbM2aNdG2bVvceeedmD17tnrxW1FRUVVs338H/7b12uWRQpKZnsGUtWvXYp88G9kfyWESwVu3bsXmzZuVMG/GjBno2rWrijVMUpgvomPoCb6Ez58E1rbrcWj4p02YMGHChIlTgUkKmzBxijiTSWHK5ffMxLn5r1arO/Ced7F931FfqyZMmDBh4k8DuQISBj7OgAdN5BhZ8tPLr8X7SGF7IZbP/BRt0mqhlvwuqxNpQVjNGjh30EPYVgoUbvkJnZrUhCU2AROffVcFZyh3ODB3xme49pJzUSs4DPGRUYiLsODq3lfim9Wbsbe8Au+/ej/SalgQIW0GBYYhIDwHrdp0xbZ18/Dco3ciOCABLdtfic1FZbDBjtLdi3F+22xYYhIw8v6n4XS7sGDm52iTGY+kmEDcctutaNLubATXScXQsRNxaN9efPHuG7iiU2vUCbagdkwUomrF44YJt2Hpjv2wyzCP7d+Fnu0bo25wAMbf/SyOeqBCPvDvlnY1ITIP5Qew9MsP0bBBGiJr1sOT733N4BNSJiN1HpY5KkFlxXF8/ukU3P3g41iyo0jNAVwu2A7txptPP4zczAaIj45AzdBwZCSm4KFHnsPaArehV7ofc794B5dc0Q0hNaJQKzIQ9WvVQe8bxuObOZtwTFTKRBQNZFygfzz8CS1NxPG4edMmhAQbXsJ8aVdCYgI+/exTmRbjn/ffEmG/VsY838r3K9btMetEttb1R3UNDZ37y9Jf6p7Q8tnh+3lCdOq/we+p85/hP2lZ6/yaniYx9XXVZCbj65IM5nUNCgpCWloavv3WeFkxdbVoYphH/3zGI2Y+07pNf7JU9+mfR/EnWFevXq361xIZGalCODz22GOYM2eO8uQlQcy+dL9adFu6XZ2n26bQE5nhIkgM0+OXBLD2FN64cWMVKbxJ1jmJ4rlz5+LWW29Fs2bN1MvorFYrXn755aqxMF4xyWrawzxC933y+f8HbbcJEyZMmDBxMkxS2ISJU8SZTgpruWDMO9Xqnz/kGcxautnXsgkTJkyY+FNwEmPDAymDapQUSWGGe/BUAPZjWDHzM7RNq42EEAv6X3suQmuEI7zhJfj4+7Vw7VmK85vFw1IjARNf/FARmD9vWotLOrVERp0oXN/tKvS7+lq0bpyC0JhgnNV3BDYcK8Wi795Fn4sao1aYBTVqxqNJ296YeNfzOLR1AZ68azTCA+uh9TnXY/GhI9JmBex7FqBzu2zpJwVD7nkGTkc5lv7wKTpkxyNKfsfWqJOIs7pcib4jb8GHn36F5Qvnol3jdGSKDX17dMGAa69CWmZDWOIaYPBdj+FouQuO4wW4rn1DJARZMOrOZ1EgttN7l/NQ4amER/rA0S1466HbEB8Vh+TM1lh51Ks8pBlSAuV74CnaLe3sg+34YRwuLMV2mbJCTqa9FLM/eRspMSFonlZf+r8avbpdjuTYuqgVb8V9b3+Jw25gz8pZOKdxoiKEL+h6GUYOuAZntWyBmrUa4vzuI7D2oEOR0E7F6/gu2j8c/uSUJrR4JGFGso6fqUgc1qpVC1999VUVoaWJMBN/X/gTlCRR6fHP68aQCSkp8owIDVXXuG7duvj444+V/slkJfNIsBIs02EedFgKTc7qcorul2kSqexT6/HIcoZ14Lri+goODq6yhbGA6aWrCWKuORK5JIhpB+MQ+5Ow+oV5bJPCMuYVFBSokBEkwEkCk/wl0cwjPYVJEHMeeM40iWGmp02bhocffhiPPvooli9frjyo6VlNXcYaZsgLHe7Cf5xMq7mRoz7n0YQJEyZMmPhvYJLCJkycIkxS+IR0vmlKtTYob36+0Ne6CRMmTJj4w0FOQItfklSCkSU/GTbBy1gKNsB+HMtnTkObtNpIirTgvcnPotu1V8ESnYZ+w27C7mUzcGG7HFhqJmPCc5PhgAd7tq3BC4/di5eeeFS53JYeKcBbkx5FYHgA4jtcgukrNgLO/Sjb/BNS40NRKz4Zr3+yGjYaUL4dz90zEpGBCchqcRmWFpSiGE7Ydi3AxXlZ0q8V+fc+D7hLsWTG+2hhrYmakUG49Kq+OFIBuGQgFaVl2LByER66+2a8+9YrgKMM5Qd3Y8KYsbBEJaJ1197YfaQEFYVHcVXrLCQEWzDaRwo7PMY8qNAO/Fm8G49PGIq4sGi0P687dkv7BVRwFuPA+vl48qGJePCuCXj83ltx7/2P4pbnPsWCzdKSrRA/fvwqXnj4AUx7/304igtwdM9uXN/9GgSH1kbXEbdjT7lD5vZDJIZYkNAgDZNefxPH92/BxhWLcfvdT+HBZ6dgzX6PioJsJ+lEz2XfVfonw5+40iQXjyTJoqOj1WcqEnXx8fH48ccf/6Ov9pv4e0BfJ15jkrEESdOlS5ciISFBkbAkZkkKT506teqlc4QmNfU5j8xjaJFfI4IpJGN1XGKdp9O6Dttgmi+EY/9aaAfJYa43njOEA/MY4qJz587qc/0333yjCGIStVyHug+2SU9e9s/jvHnz8Mgjj+CFF15QnsIkgek1TFKY4SRIFJMA3r17d1UoCX9yeO/evdizZ4/SI3nN+br66qtVaInmzZvj/vvvx4oVK6q9pI/iP1YNbSPFhAkTJkyY+P9gksImTJwiTFK4ulx2+5e/iDN894tfw+kyPXxMmDBh4g8HeQAtfskTWfJTk8JegxReNnMaWqfVQWJ0AL79/kt8v3Ae6jTIQFpKGl566Fa0bdUUllgrbnz+bXi9DKtwBJ7SQhzesw+rlq/DO6+/iZ6Xno2wqBBENb8A36zcChzfjoNLv0BKnTDE1m2AJ96cgxJyniWb8MoDoxBhiUXTNj2wXkwgKVq+bT4uakVP4SwMvutZwFGIdd9/gFbWWoiOCMXdT7+pPGptdmmEXs7lBag4dlCRKYsXLsCkR+5BlwvOhaVmfWR06IIte4+i5Mhh9OrYHElhQRhz59M4INVcMnzOgyKFScIW78bTt45CZEAwcttfjPXHxUQp8hTtw8cvPYKIYAtC5Hc84y0HiI6lXlu8+vl8sU+sdhxF2VGxYcd2LJo7C/feegvOapGLoJBYnHXNKByTjpbN/BBtMmMREBaK7KbNMbxfL9x/+0TMWbgOOwqAg3IZGGbCrQgcEjs8/rPhT1bpNI+8lq1bt1Zf6w8PD0fTpk2xZMmSqnJNgpn4+4LXieLvWUvCkqEbSAprT12Swl988YW6pvR2pQ49cw8fPqzi/PLlbXwZHdP0kmU529Rt6zr0qKUuvXSpy/pMHzt2TJWTtGUfrEeyln9soIcw7fAnh5nPNG3zJ4kZ8uKCCy7AxIkT8eGHH6o1yv7KyvidCWN89A6+8sorERUVpdYviWTmae9geg37ew8zpjBJYe0pzCOJZ+Zr3YULFyIrK0uR1rQlIiJCeTJ/9913alyEvh945Dhpiz94fnKeCRMmTJgwcTJMUtiEiVOESQr/UlSc4eGvVWuv312TsWX3EV9PJkyYMGHiDwE5AC1+yRNZ8lO9aM5HCjuKsHTm58izxqNOTDC+mPU9Ch02DOzXCzWDLDinRUMk1GsAS61s3P7a+1KvABV7V+LdV17GxRdciqbN2yI9zYqc+jURGByAkJzzMH35dmn3CA4u+QpJcSGolWTFM+8tAF//huKNePX+4Yi0RCHv7Ksx70C5CtdQvm0Rzs/NgaVOEwy46xmgaC+2fDMZ7VLjEVsjDh/OXY/DoscXc8F5HMe2rcVT992Fiy++HM2a5yIjKQZ1akXAEl4LjTt1xbZ9BSg6dBDXdspVMYfH3fUUCqSqQbtWqtjC8Niln1347NUnERsWgfrpLTB9xR4VIgO2fZj16WvIbZEHa0o6shNiEBQYAEtKW7z21WKgtAhHNi7DjeOGodN5HdCkURbSk5NQJyoMwWE10aHHOBSSvy7ajjefmYiMxhlISE5GbEgIaoRGIDWrJa4aMA5r9pcpUtylDDOu0D8d/uSuJq145Nf0Z82aheuvvx7du3fH66+/XkUEanLPxN8XvE76eqmwBr5zXjd6zCYmJlYjhd977z2lw/JDhw7h1VdfxZgxY5Cfn48hQ4Zg/PjxGDp0qPLApYct9XSbJEZJvL744osYOXIkRowYoY7jxo3DsGHD8NRTT2H//v1V7VPogUuClQQwyVZ/MphpTcD6E8P6SMI3KSkJ7du3V3GASfySICYBTQKXZLAe1+TJkxUhTA9hkr/0GOY5CV/OA0lg/UI6TQyTENY69BjmH0P4Yr6cnBzExMQoOxl3+Nprr1VzRXAO9JxoORn+Zb9WbsKECRMmTJiksAkTpwiTFP5tuXDsu9XaPGfQ0/h+0c++3kyYMGHCxP8c3Pdr8UueyJKfihQmY2lXHq9Lvv8SudYE1I4Jw+c/zkGxx40fvv4ADROjVDzfwLBYWGrl4KYXXhf9vfhp6guoExGJurUb4IaBI/DRx1Pw4mP3IDo6EontrsBn8+U5bz+GfUu/Q3J8FKLrJOHBl7+C9AaUb8Eztw9AVEAE8s7qjmWHHcpT1rV3HTo1Y5iKhhh85zOA7Qh2/PgxWqUloEZsPN6dtQbqz4peByoOShv33ojoYAviktIwcvxNmPHZZNw1cTQskbXR4bLrsGN/IY7u348rO+aidkggJtz1hM8jF/B4Pb4Xu8kc2A5h/dxvkNe0KQLD49BzxB3YcaRE7D+i+tm5YxfWr9uAT99+CdFRMh8Nz8OrXyxA0f5dGHl9d0RGBCM5rQHuuut2zPz2K/TvdTVCwmri4t4Tcahc+vCI1fbdWLxiKV57azKuvbwrGmdkIDAiBkG1GuDRVz9TJLRXXSB6VxpX6Z8MElka/kQV80l0HTx4UJFtJBYZGsCf+DLx9wWvjyaFeSQ0cUlyND09vYqAJdlJr1eGXqDX7bPPPouaNWuqcn9ylmQo82+++WYVOkF7ydKrmDF4GWJE6+k6rJ+cnKw+l+u1Rnvorazb9m+fwrTOo9BGhm7wL9NCT/batWsjNzcXt912myJvW7VqpXRpzyuvvFJF8JL01SQwCWHmcS7oGUyPYOYxdrAmj0kQU4f1mcf4xvwjSYMGDVRMZpLmmuzmXPAPKZw//UK634J5/5gwYcKEid+CSQqbMHGKMEnhfy+db5parV3Ka58t8PVowoQJEyb+p1Dkok/8kiey5GcVKewAHKVY/P3XaGmth1oxkZg2a57y6K0o2Iq7RvVBbEAQLIE1YYlvhLFPvgBb0WY8dnM/1JT8q3tcj4079mP/kSN46Yn7ERIUiNgmF+LLBVsAWzl2LpuNunFhSEyx4pm3p6NMukTJFrz88FjUiohB4xbn4scN+3CkwoWfPnoTTevXg6VmEwy79Umg/BCWfTsZjTLrITahPqb8sBYVNN9WBvfhbbj28nMQFhWIobfdhYOlZSje8zPGDugNS2hNtDynK7btOYrCQ0dwxTntUCc8FGMmPogijwyZbcgcVJHCzmMo3L4WE0aNQHBEDVgiauPiHtfKnMzAytnfY/GiuXjv3TfRuWM7BAaGIyrjbLz55Tzs3bEWHZqnIULGcc/9j6CkrAjr163EJRecj+CQGFx83SgUOoGygi1YteBrrF2/FQWF5XCVFWL96oXIadkEIXUaYNzdr+O4YsvFokrFIvPkH43fIoU1caVJYMKf1NNEo4m/L/yvoT5nmkT/TTfdpMhaxuzt16+f8rQlsclQDyQ7/YlXTciSgGX6/PPPV20QbI/etAMGDFC6JHDpyavJW4YeoVxxxRWKNKUNXDsM5cByEsMUTQBT2IYW/3wK7fCvo9tgeAmSwyS72R/zSQq//PLLivQlsUsh0UtSmKQvhWnaQkKYHsI8Up9kMIliXUeX0cOZL5yj5/z8+fPVPPAFePSUnjJlCj799FMVL5nksCbhTZgwYcKEif8UJilswsQpwiSF/3+57PavcPbg56u1f8cLX8LmIENgwoQJEyb+Z9Ds7wmu7aQs+cmYwjqEhKMMC2ZOR3NrfcRGR+KTb2cpj16P7TCWz/oCHRo1ld9xUbDEpuO2F16Fx3kAT989CnXDItAkszmeeflNPPHcc2jVKA2hQYGo0/BszFqxB3B6sWfDaiQnxiKyRgyGjL0TM3+cD2fRdsz++h3ERcUgLCoefUZNxBvvfoTuHdsghgR0VDqG3vyw8mBeOmMKGmU0QESNWvjsx1UGKexxoHT/Zgzq3Q1R0cHIzM3Dq++8i0fuHI+GqYkIjKyNFh27YPeBYzheUIjO7VshLjwUo2++R9X3qImohMMlv388Mn5PqfR1HIvm/ohuPa5CaK16CI6MRZj8Xo8JtCAs2IIgOdaRMTRIzUbP/NuxfNsh7NuzFe1aNUJEZCS69rgC7374PsaMHYn42BgEh0ThwqvyUSATOfX9F5EcH4KcnMbyOeERfPbhu3jmyYdRI6EW6jdqgVc+/MnwoCZdXUk6/p9P6PiTVpr81dBl+uhPMp6sa+LvCf9rRzKW5xTG+33jjTfw2muvKUKTXuDUYVzgp59+WpHFsbGxKn4uSV6GTWCacX1vueUW5Q1LkPgkKUpPYcYpJnFMPQrTrEui9uGHH67ynmX/a9asqUb6kuyl6HMtJHeZz6N/PvMYj7hGjRrKa5dE9fDhw5UdF198seo7MzMT77//viJ2SfyS3CWxS69fCvNIADOfae1JzHOWkwgmMcyjLmO+9hzW3sQkge+++25FTnPc7J+kMQljHbrjt6Cvzz8V5nPChAkTJv47mKSwCROnCJMU/s+k+73f/yLO8A23v4Wfdxqx0UyYMGHCxP8AivT0E7+kIV643Q5J0DPVDTgrMG/mN+iY2xTpKcn49qe5qFCxDBxwFh/FXSNHo37dFERYm+Gel16Du7IYqxZ8i+u6XIrkWkmoGZ+MxNQ0DOpzDRrnZCO5UXt8/M1ikHegp+7ggdejXv26iK+bjPbtO2DnlhU4vH8zxo4eg3rJ6aidkIK01HRc3+0yZKSkISq1Gcbc9Rhgt2HZt1/hrKZNkZaSjs9mLVDhHzxwo9JZjO+mvouL2rdG3drxSKhbF40bpeKaXlciydoILTtchDUbt+PwwUPoedlFSK1XF7fe/SBKXfQ49U0K4SYpXK7EXnYcm7duw6gJd6B9p/NRPyEW9WrHIKlWvMxLJnr1uh4vvzEZ2w8dVyRuSakTL774EnLzGiMuPgbx9eujRatcXN71fCTWS0aHiwZgXyFwvGAXXnruHrRt2xx14+ugfp0EJNZNRLN2rfGI1N90oFhmWkCehmS9vmj/YPiTUicTOCT8+GIxvsyLJCDPtYcw0yb+OeA64LXldaXnL+MD0/uXcXP79OmD6667TqUZH5iEKPW4XnikkCB9/PHHVZ1evXqhd+/euOGGG1RdhqMg8UywDvuih64mff3JXv9zTQiTbNVpegSTrCYRfOGFF6pQFoyHTMKWoIcu4wjTBoaTYD8sIxmsCWFNEjP9e4VksI45vHz5ctUXPZW1hzNJdMZV5gv69FzpsfOc4HyTUCd0OeWfAo5Fh5zRosfHI8/94T/2f9I8mDBhwsR/A5MUNmHiFGGSwv+dnBxnuOOAJ/Hdgg0+C0yYMGHCxCmB+1p/8UGferz03CPJRlJYxOPC0X178MFbr+H9yW9h76HDcEqpaMkPF7YuXYopk9/HU299gPmbt0mZXfJLsWPFCkx+4RU8/9LrmDb9Gxw5sAvfffs1nn3lHSxesxP8HghfnrZ712Z88N7rmPzmG3j/nXdQWHBA7HDi8NEj+OIL0X/6OXz12Rc4umcPPpfj8299jO/mLYfX6caezZsx5Z138dYbb2HH/kMolQadXmnZ64C3vAiLf5yJN19+Ea+9PAk//DAdhwuOYPKH0/DSGx9g9/6jiqz55otP8OZrL2P2gsUod5FQ8k0EhWQjQ2gwtnKlEy6XEzanB2vWbcTHH72PSc8+hVefo31fYvvug2pMrE4ht3ysqASzZn2D5yY9iTffexdLV63AoYM78PGUqXhi0lTs45vtSK5XHMHihbNlDl7H6y+9iLfeegMz5v+EfSUlynuZ8+11Susu0sM07J8Nf2LGn4ghmUPyi56XJLymT59e5U1qEjb/DPDaa8KS8CcvGTOYXsMkNRlSgn8cKCwsrPL21Xr+a4IxiVmPYSKoz1jDJD01Ccr+6DnLIz2FSfSeLJoQ9ieD6RFMIthqteKiiy7CxIkT8e677ypyV/dP6CNtpIcvSVuS1TxSdFgIksPa6/f3iiaFSS7zyHjDJMHT0tJU+AoSw6mpqfIs/KFqbrSntvYe9vec1nPPPD2O0x0ch/+a0uPikXPhf845oGg9XWbChAkTZxpMUtiEiVOESQr/99Ll5qlo3++Jav29PHWezwoTJkyYMPG7wX2tv/hQlaU2viKVXhhhJDxy9MBeXKQIYqcIKWMSoKqCy6m8do853MpT1waSCSSGJd/NzTdQ4TRqVFYadUulyCb5ZYrjtKPs+D7pg+QrX/Amm3PJ5tEr53CLHWSPeeR/SZLOIVHK6tR1e+SnxyinOGw21Zehxa+UiybHI32SrK1gV5Ir23z5KXZJK2yTorK0MJYEx+EVUe2J8CjZdJbm1MAr7Usee7L7+mc5td1M+ObTKQUOr/QlbTGrWGxgHWWDmmv5T0LGWybDLYZdWiAhTOvV9DGURSVHzA7+2SARo6HJGOYxvMBVV12lvg7POLLnnHOO+ho9STgSPf71TJy+4HXUpC2PJC/1OjCeT78E8zWpx/r+aYJHkpua/KSwbU14UriW/OMCk/ilFzDT/h7BfKkbieA77rgDX375pSJ26bWu22Ff7IfwzyMprV8exzp8gZz2FCYhTA/ik4ne/0bYFtsnKcw0YzIvXboUL7zwAi699FJFCF922WVYtGiRmh8KCfIDBw5Ui61M0F49d8TJ56creM05Rh51muP2h75mGiefmzBhwsSZBpMUNmHiFGGSwr9PLrvja5w9+IVqfd723Oco427ehAkTJkz8PnBv6y8+VD+thMftgldEsbDcEFMkTU9cg7SVU/IeJD+8bkWCksRk6IQKO0MuOEFPYnKYLqkgLcJT6ZBTpgxCl3VICqOyTPTkKG3ZnF7VPnuxsx2SwVKhrKzcsM8jG3Q5sC++do1tVJJUtUsOCQ1lJjfxtNuBSleJ1KFVhh2GLcosRXAz3IRXfnr5k6SHLqwSacvtVGSu6o1xlmW8Ht+0qHPpyylpF/VJYCty25gjSJuVck6CmL14GJpD0rSbLVKHU6xYZjfnolTyyuWfS42PpDCbJCGvyGll1D8b/uSTJmRI3pBIY7xWTdrVqVMH3333XTU9E6c39DUkYecPXn+SwyRxT14fmrBk2r+ezjsZJ+vp82XLllV5BHN9UUgS69AQLVu2VHF66YFLIlV7GPu34Q/m0W56KpN8pYcwXwpHL14SwvTs1TGA6WHM/F8je/9TYTtr166tdk5ymCTxwoULMXPmTMyePVvl7d+/X/VNwnjw4MEqvMWhQ4eqCHhCzx/lt+bydAOvkfYe918zepyEHq9Os1zrmDBhwsSZCJMUNmHiFGGSwr9fut/7A84b8Xq1fq+79U2s337AZ5EJEyZMmPivwH2tv5wEvfH1eNzwkuTgKb1wJd/uoP8q/WoF3DMzQe/WSoMEtYmO4csqhR5JiT6ZT5dTNtnqnwteEsNsS+o6pZLLSf/iCkPfwz6MZt1S0eN1wGUjCau7Y4kL7kqvIp8NQpg/aB97Nghr6nr4FW4bSWXR9LqUrl10SQpzTF6pw3+khFmLozKIZFb2CRviuQIzpDKJWcWG05eZDUlSDixVqvQk9tAbkX0wwyVTVCZj5RxRWeySFM1wyKlLdOwOKttESuF2Fsv4nGoefT7ORj1eg6pO/tnQhAyh1yPJNRJd+kVgPDJeKj01qUOCTntnmjg9wevI66yhSVbm63WgwXP/dXIyacm0/3pguSb3dJqgHvvkOT2Fua7oEcy1xbAL7dq1Q35+Pr7++msVskKHV9Dt00vdH9omHtku9Riygi/Q6969u/Iu5kvgNHFLwlaTw9pr+PcK69PjmAQz22QePYf1OY+6nPl84V2jRo0UCV6rVi1cffXVapwMq0O7OSd6nDye7uA1YbiRWbNm4aOPPlIkPK8pSWJeR//1osfLo7+YMGHCxJkIkxQ2YeIUYZLCpy4XjnuvWt+U6fPW+6wyYcKECRP/Mbiv9ZeToEkNolLFSAA8bo86uuWcZKyibRzyk7EYGCLCl6eITo9b9FzwOkn0UkcOTvKZpF1d8FRWyAa8QtWhKN9iyTPCNEhSunI6vahwFEs5PfGkrohB3rJ3BxwumyJ4SccwtIJBXjulruQ7HUa7KpyE5NPD1uVUoR3Ull8Kqe8So0i2MqyDXRG1Ir7QEIp8pTKPcs4s0tqK8HUzXAR7JsHt5fB95K9AkdNikAyi0i32Og0KneKRMpuDXzGXHkWc9LqWeuSDGaUCHs7BMUmUS7duNVKDFDbqKyU5KGP+4fAnX/R6JMFGYkt7CfMYHx+vvDapr0k+E6c/9PXnNaXw2vuTsRRNyFZ7Xkk+z7WOJpiZ1ke9TrQO9ZnHI9dXeno6WrdujSFDhmDatGnqhYZaX5Ojug8N/zwtPNc2MixEjx491JpNSkpSf8jQJLAOGUGylt7D/iTv7xWOg0KSm+c6TAU97fWRhChfhtemTRtERkaqe4pkOMf+wQcfqHFxDJrYJvTxdMbBgwfVteVY8/LyVCzoL774Qs0XCWKGAfEnwfX602LChAkTZyJMUtiEiVOESQr/b6TLzZ+gw0lxhid9PMdnmQkTJkyY+I/Ava6//BsozynR8bi9iu/klph+vWprTJdeh+ERS4rU4a0kbSrnLCWZ64RTNtiK3ZQCyYFDTiphg5cEKCt6PdJuubRfDpfDIIXpMGzYxejELoN7ljMHXx6naFKbbNQdqk+DIpZyr1RUHrpyRiJYbPEo29mH9GtzKE5Vka+qbRmPol7dUp/EMMlbtiZ1OAiKMQzpy6jnJdGrXjinxQWGm1CkrqgahLDRt+qXxLHoMOkQW9xkxqVRr5d9keh1qi5KxGRGyFDex94SqXMczsoKFTqCFpG0VqQwY0jYOSbJ/IfDn3wiMUWQnCFxo7/SzyO9G0nosIx1/gmk1ZkOXkP13PGl9TXVaU3qajCPa0SLPtfguX97mvDjUevxnEIC+MMPP1Skqc73J5b9+9Zpne/fp3+a/SxZskSRr1yzdevWxSuvvKLIYBK0JId1OImTyd3fI7xHeNQkM72C2Q+PmiTWpDG9lJ977jm1T2EoFr6Mjsdbbrmlauz+8Zz9x3U6gmNgnOXRo0crj3B6SFMYkubcc89V4/7kk09UHGaSxwwxwTlgPeJ0H78JEyZM/F6YpLAJE6cIkxT+30lXxhkeMqmaHbc8PQ3FZSQKTJgw8ceAGyKKseH2JY2jgs7gJpkEll+hbzNlnIuQODPx18J3KfQl+jXozW/VV6NF1+Wir65Bwqrr7SgDGJ5BykibKGKTR5cDHq8RHkHRJvwhUiEKRgvyvPZWiEhFEbejRPKccPleSqdUROwq5IMR59creuolbWRpK22o9JBeBsQC1Y+x5qQTEqtOsZAvw1PsMvNEpG1quDyVRkxf6YjdO6SI1KxbEdXFki+2M6YFlf3WOqdDcn2kssyJm2EpZAxSyBliT/Qa1l7Cyg6lY1f9sK5qii/ukzqaFGa+TbKoY3hVc0QVomGEu2DbjHrsZbtUUnaJ/G6wsrJEHY1/J3JPlir8SgFb0FKlq+bMOOPPX5b//6KbUKc8qgbETpmfbZs3IzQwBMEBwQiQz1W1a9fCdzO/hVvmR4UC0Z58qrJP1IErhPPOBo18NisrTgnLVE5Vx4bw4CtRwnMFrVMFnWHMqNGf0bYWXnEeq1U748DRcybV3eSbkRMzo0rlhy9ajbolXE4988bdwKS+TOpOkgWiNQzhOuAdSfKX3wDgM8TXLrslpAG3fmAxX+nzfpYjs6nHpeRrWBGikiEtSdqox760qr+wGr9AoapKPbvNhmVLFiOvRXOEBgehbnw8Jk2apIhnErQ6tIMmcnk8VSHZy7Z4pDDOsCaHWc7+dF8kpX/66SfceOON6NKli3oR3dtvv10Vd5ehJEik8iWP/vGG9VHj5HN/sOzX9P9dHX/8mp5/nn9b/65NljGW8vDhw6v+uKTD0fCcLxaMi4tT+zZ6EDO8xvLly9XYdQzif4d/17cJEyZMnM4wSWETJk4RJin8v5Xu9/2A80a+Uc2Wa255HWu37PdZacKEif8lSEhx485NttslG3PZ+TKsqnII5WbMV+al9ySJLkXGGbtpg6SRjRKJuUoPPC6WmRun0xe8rnLx3aUo3bcZx3Zuxt6de7FnzyHs2blH0ruxe/debN97EFsPFaNYLj+JVDrqMXYuyRJFCJNQZVOS7ygrUgmuFMbdNdxygeOSVH/u80q5/agiXIwXrtlQKeuIFE6x2qNLTVl7ivLTjJKbnsQVUke0fGEsGL5B09peMURxxbSNhDCOyXoukL4kzUC/tLOyHE57MQ7tPoRd2wtQJM2US1dOxosgeVRZKku6QlFVZaJPW128KegF7SmXYR4XHR8NTo5YdJzsV2z0SuekmVQ3PjF+Upvt8746uezE4feDDXCmDSKOdJpBXhq9+gstUWAVnviLgK2QuKaoLBIiWnxtsozzw3RVOyd3cpKQd6H4mvHVkwynDYd27UJ6YipCLaEIDghC/eQk/DBnptjigtPLsCGirPuhMC3gSJ3yT/2pwldG+1nDrmobc6IIfa4/2iYHquox8k8S6orp9nmkVGUYJCeJQ/4jme8QsfvEJkKvb+Oqn6nQM0qy1vD896pwKZwh/jOmXj0CRNX4g4CIyuVzwvgjFNcGc/RvJi2GOkv4u8iIVU4N5vP+Y7sGccdnhTr4KvHuPSxyTEyTjBMXXZWTCHZLW67KCvk9x+tstMXwL1zf/K3GHtlKheTxnPaoP2jJs2rFogXomNcS4YEWJCUk4LXXXlNeuyRk/clcTdr+UUIymF7Juh8SxiSLaQc9l+fOnate3MjyPXv2yLN8twolwVjIjKs8Y8YMHDlyRHk/+4fu4JzqPyAyzXxNkDLNzwHa45bnFIYD0X/EYb6/6Dx91Hr0yNY62tNbp3WZ1iX87SB4TlKYnsIkgbWnMNOaGNZCsjhBrhU9iKlPgpjzR29yEsRsV4+FaYr2Hj85j+cEz02YMGHidIRJCpswcYowSeE/Ri4a9341eyhfzl7rs9SECRP/K3Aj43aT9JXNluxpnBWy8eHeR/Y5Xo8bLrdNsrnBp1ckaRZu/owNGmPRVnq8cDnsqJQ2/Hb5Jk5LyLXzulB0eBcevSMfF7ZrhFbNWqBDu7PRsV1btGzWFLm5rZF31kW44IphWL2tUHEuJEEZ+YB8rSLe6EkrJ7aSUiOTa0yE/0joEvSZLeH+3nlM9EsVqczqcNKj16kImDLVuAseRwlcag1KhtRxlJfJwQa7o1DO7SIkDcUG9ksaR9oi98s4w85K9kQCl5690ir7ET2nowDLF8/BZed3xZXdB2DWgk2KiFY2eKRNT7mYWqZIIeZLbZWutBdJWYkoSo60wyHQG5hhMFiXvMBfRw6wc5l/ir6JjVlXKX+pspAJfwVfAcdl+G4bVKgq5P2t7nGSaEYZ6T/2pMCiqm6Nhn1XvZr4qylVtuapQMmxI7jjltuQk5GD7Kws9Ol3PQ4c2SO6Drm+JBhplapwQuQH841AIXL9jQaVfYzXzHjScrUlk+tC6nM9+nR4MFYMa5K0ZI7Av/0qOXHCn9TkGGiRFp6z7MyGnh29Ovg7g0deEWMa1RLiZOlFoH7wPpVrxKSI/xwrNdZTDYioHJLCFP5+khxRVtycbrOa8O49LHXl2eJbCmKWuvj8A5JdniF2ucO5TpzSkG5GC59NJIj1H77scsI++YO//w7u3YPR+UOQWKcWWrZooV50RiJWewmTnKXnMI8nE7n/a2F/7JdpEsQ817GGea7toM6aNWtw0UUXKZKUXrUZGRm4+eabsWLFCuU9zJfV8UghiXzo0KFqZDGPJH95pMfxgQMHsG/fPlWPRwrzjh8/ruoZnzX4+UHmT4RkL9skkcs+du3apY6sp8lptu1PLpOE5Yv9fq0vCsc1cODAaoSwDkfDo/Ye1uQwhfGHSRAzBvHQoUMVUc7rV1BQoMbFMfo/02kTbfMfC/M0aWzChAkTpxtMUtiEiVOESQr/cdLllk/Rof+T1ex67sPZPmtN/DPBXZZsODwuuByahuFm3wGXh96ChhcPN4hu2aHRG1DVUVty2eV5KZKkmw83eJUOHHdwuwcUyJ7zut6bUTtyObIbLMWqdYb3j9r4kRmocv8Rkep2m5tck2GSrz/VlYiNroEqT7rz6WuRvYFsgLhZ8MqpsSl2ucuUeLykukio0khjg+N08uv43EAb1ILxtXg3nC56QdEAFxxObpiZJknrQI8e3dWGp0mTJli2fJkidZ0uuxLaShscdtogvdAeaVLxRL5zHmk3v77Lo85TImmPjNXYiHG+nXB7K+AQ+xV1UumWTTE3eIa+i2yYqiebIz8vHhOnIeQ6VjorUbB3O/r0aI1I+d0WEigSEobwMAsiwmVjHRqOyNh0ZDTriVkL9koVr9wrBbLmZF04jPtCiYekqQ02u2yeZU3ZK0jKSYLhIWQdl8lSsXFNymL1upwoKpf7Q61xkq6y3kSVt5xie+RO9aBU8hifWE4l34g/LPeFS46y/h2yIFlbLX75XyR6pazPZwi93F2S4SLtJ33bj8PrPo5Z33yF2uFJSEvOxfcL1uKYnV5fok/ymO2IvTZ57vCO5B1YofqWtuwFolMEr71MkUXlvJekiM+l34ImD/5QsHnlCesTGqTZNH3D/lvhXHMk9L4k0cp/ho+nQf0awucw8w0xdFlHlfsIafrn0p/bJmKXNOlzarIHCrVJxjK8BzWVp6ZIcXkRfpwzC9/98A127t0mLXG9SAuynjRFzTVniGGrXFgRXiX+vjD651oiUcyXF9JTlc9hYy1Qn3VZm5ZT09Cl1ZwFhZOnRYvRvCF62FqYV9XAmYnfXmoyOZx73/1ZNYdMax2m9TzqfIJH5rHM+DUoefztzdA0xUambpNlWuTcy4ePfA7gH4bc5aJPHplV2Y6Ucx3x6ldIJulrZvO543DLGlLhYCSHIWWY5j3FLC4zX/tOh6ws+X2/fNVKvPDiJEyZOlURsoz3S0L2j/YOPll0nxSSv5qIZjgJEsIkTbVty5Ytw4gRI1C7dm15xocowjQiIgLNmjVD586dccUVV6g9zoUXXqi8iQcNGoR58+ahvJyfqGRK5FqS7OUL3BiSgvqsR7n44otVvSuvvFLFNS4tLVWfd/gMJMlKWbVqleq/W7duqs4ll1yC888/Xx0Z7oKxfzUhrIlYevK+8MILqs7ll1+ujuyH9Xv27ImHHnoIgwcPriKCdfiIkz2Gma/JYZ1HHc4DYxC3bNkS48ePVy8N5NwVFhaql9T5E8H6ec48jseECRMmTleYpLAJE6cIkxT+Y6XrndPR6aQ4wzc++SmOldB3y8Q/D/Ihm95+jBVIzzB+fdtVCpcc3V4nKuw29RVz7v+4t6Rjhkc2ah6PSz6gO2GvkE2fywtHGdcHN/nGC6ts0ixf+DT5HRfqRk/FiAHHcFw2hyQkyJn4eFi4yr2KJHV76J1CoTcLNyM8ilmiS3E6+fVB6skes7QcjJfqkTq6XPFJtMBJopa2k9SwSdomG02P0lf2U89Xx+EkeUy9CjhkzNyeutVXpsUm2VAbRxdsjjK8/8FkBIdY0Pv6a2Czl8PuIEEm/UpD7NfuYJiHStjtLtms0DbJs3NDxg2MKPj6pA0UktgOJ71y2IhRboxB5lbmXb2qiy8Wc8sci65T5oOb4SoymW1UyCQybeL0BReFLMrSwzvQu1tTxARakGnNlo16V5zTqQPOv6Ajzr3wArRsdzFuGPYvrN9KqlTuyYoDKDl2FG5ZE+RgeE85Sg+jouSI3HeyVrhOZN14y0tkHRbDVemAQ+6D0go7ykq40ebdSpJY/RQ7HKLnVvefvaxI1tZxlJQeQYXcT2VyQ5O0cbsKJHEY3mNH4CwpU968pU6544uLYCsvo2+wInKNGMF2OZF25V4udlSgzFUGR/lRfPvZJ0iIro+E2lmYPmep4ooMb1J5Mtj4PLGh8PhhsUsFqlA2Kr9hx1Gg6BBcpaXK25kEdJlUtvEPMUrn1/GnkMKca39hn+pGlYfAr4h6rvj+qQqKvGOZbuDfwdehrqMeauyPTy/SuQbVyxAOJFxVn+rBYvRKkph6JOWYovAfKV2nW559skbsZXIVjeCzUk/b5CfM0/2qvn157Ev16etX6bJckj4wSUuMcuMPc0xpYUmVOhNalaKbViyiiCYK/do/4yBjV0uc83SyMF+tK/4ilYnS18Jfv9rEM8E7Tm4stbYkqeebRbyv1R1OUtj4/afaUmUU+f0kadWM1HPJR4O1c49j82zg2Hppea8II0rwxhYdLh3GIGcXFCOGONecKLjlw4KrXI7SuVZi96JCs2gSLThQcBTbduxQRKwOHUHi8+QwEn+kkOzVxLC/xzBt0nmaHGZICZK8DJ9AIpiEMCU2NraKVCVRyjT3OYzJS9KWL2nTnrGMQ/zDDz+gYcOGSp9CYpX12BbP69WrhylTpsjz/AShSg/h/v37q3J/UpZ1eGRfJHq1hzH7IynLF08mJiYqfdpFXU3u8pwvpzz77LNVmyyjFzCPkZGR1Ujgk4U6PPqXUz8qKgrNmzdXL6mbPn26mkd6D5Og9o/BbMKECROnM0xS2ISJU4RJCv8Jct+sX8QZvurGV7Fqk3yqN/EPA3dZDtkz0hPFJpuAY9i1ezOWLluIVWtWY/3GTdh7oEARw/J5XD6cG0RnSWm5bLy2Y83qVVi3ah02rFmH4qIj0oYLNmclSmXHZpc6P/1UBmvdp3HrmE1YsmILdh5Yi7JSOxz0HvJt6kmw/rxlHVauWYaVq5djxaoV2Ld/v/KCVHtNnxQVF2PDzxuwZt0qbNy0Dus2rsTRwsOKn6BtimyW9BHZKK5euxqLly7G8pUrsXnLdpSW8euItJ+ev7LPFBv37D2gdJatWogly+fi0NH9sDEsg/RFHW4+Dx89gk1bN2DqZ+8jtnYERo0bioJjh+GWTqnncHpkc+vG8eJCrF2/RmxfLvO2Cj9v3oiSslLRo28cqd5KVNgrsO/APlW2bMVS0VuBXXt2KRKZ+2ESXOyzuLQEO3btlPlYi8XLVmL+wuUoLKww9sfcCVNJpIJ/qGHaxGkMWWieEpQf3YgBV7VEfIQF9975BOy8zlzPsrZIm5E8LZFz/rHFaduP6Z+8gk/feReL5qyALG2U2Ssx76fp+PLLKZjyzU8oLJH78OA+zJjyLj6e8gHWb9mIJUsX4u233sSUKZ9jzfqtOFpOn1LpRu5T/mXGXnZI7uM5+Pj9lzH1w7fx2dRPMHf+auwrAsrVmtuP3Rtm4tsP38WXn3yFDXuOYN6K1fjsvTfw+acfYe62XTgqah5+48AmN7hs5Ldt2ITXP5yK96d9jrnff4uvPngfDWolISerBb6Zt0yNq9LhwJE9uzHjmxmY8vEUfPTBO3J/rMFBaYLl9E6sKNiGn8SeKZM/wOqde/Hx93Mw9YuZ+GHWfB/naRAffzbYI6dPi3Fr8m4n+UvCms8wfntBB0zQvr78aWiqSiS9/OVEY4boDk7WIzvme45SzaD4jZ7VA5FsPsupR31Roh7t1gmfFYZDL/V0m7qevy1M63JeHHbob5su45Hn/nX921AivcqDj/PA76ZwllhNV6WqspM/Tq5LBd2+UjpD4T83PuFtoMRXbKxBXizfn1lY6D+XTKtZpxfwMZECERK/1JVCX7uGDh9MJIZLJYvfNCiB01so7ZfIOUUaZJuiVrAZePamg7i60Uo83LsSM54GNk8Hjq+TS3dAdNiFrBV24fK44XSWw0sy2Ct2KOEfJ6Qh/nFCBTA2zOCSK5dTWnFEnjGbt26tiutL8pWxhUnAkqjl+ckk7h8hJC7ZH/vVHsOaGGY58+n9ynANPNIj97HHHlMet4yx27ZtW0WuktwlSaqJUh5J/rK+JkSL5XPQhx9+qLyNSaxSx/8YHh6u2qIHL71ptVctwz507NixikD274NkLPNZzjnTHsb0SH7qqaeUJy/rkAQmecw6Wkj+Wq3Wam3qdplHfbb/W+WaRNb5TJOorlu3rvIefuSRR9QcErTJP2TEX/HMN2HChIn/BUxS2ISJU4RJCv95ctH4D6rZSJn242qf9Sb+GeAGUTZdXm4eyvHll59i4MB+aNuuPVq37Yhzz7sM42+8D5u2HMXxItnHyUbu6FEnXnxxMjp37o727c9BuzZno9ulV+DhB/+FI0eKUFTkQlGxFzt2FWBE/lPIaTARzbNuRruzzse1N3TDB+9PQ6nsPY/uly3o0Up8N/MH9B1wg5S3Q9v27XD2OedhaP4ozJ6zGEUlTmnLiYJj5XjplTfQ5bJuaN/xLLRq2wrnXXQO7nvwQRwtcKDYZ9vWbQdx/wNP4IKLuqJV3lnodE4XXHFlH7z99jQUFLhRKnvNwkIP5s1bi1GjbkX7s87DWeechQsuPl/6HIkZM+eL/dKWSEGBC2++9RG6du+Bth3aIi6+Blq0aoY77roH27bvF7vYZyV27z2ABx5+CGd16oSO55yDcy+4EF0u7Sr2vo7jxeUoPF4ix1IsXrocY8ZPkD47omWrVtLnRbi+T38sX74JBTKnnLPCY3a8/c4U9OzVX/QulPYukXnuidtuexQbN+xD0TE3nSqrNvMeJ5kRE6cvXHIdi1F6cA36dW+JuBALxo66BfsPVODg4WPYe/Ag9hccwa4jx3DEJuvNXonjhzej7xWdUEd0WzfNxeKVm7Bo5c9o2rwZgiMi0bX3EBQcL8OmuV+jtbU2QsIjcPk1vdG6TR4S4+NUHM4LLu6Cz2fNV+EeyLe4K0rxxYevo+v5bVC/bgySZK3XrhEOa1ZjTHz8Axy1y5PCthPvPHMzYuX3b60aCRhy8z3IapmHejWCEFcjBJ36DMbCXQdF0QGUHcPmBQtwVdceCIythxpJaeiQ2xzXXnIREmPikNIgU/qfpyimnZvWY9ywYUiIt6JufH2k1ItFq1Yt8chzH6OggoRRERb8MAVN69ZGzZBIXHrDYNTMbIbE1BzccsudihSmV9tfQRCQpOLtSKKKR4PQJCVMUtgghI0Sg/JkifYR5i2sLNYn/kSnCIdT5YxLRV++v44SdipHZtMOCptUGYy14RAhOSwN6WZUwteOk6FARMr51wXm6YZ4cWg6G6M+jWCa5eyTOjyqMhGdryeCHYk+D76koceEzpQ2SY/Tc9n4Z5DlxhwaPsUU3YWCPqmWeQbDNw8nX54TK4/zy9fyFUs5//grWtWugYhKaC9gCvVYW/LV4qvqxleV16rcJ/rVf6VwksSlghxKtgJPDC1Aj8QduDRqF7pFr8OQnJ/x5DWHMf2BSmz+VHTk46TzgLTLLvV6UnZJwsuHjmTymz78Vo10zuJytxcVlV5s2rcDX8yYjpk/fK/i4q5evVoRs4zFy6MmZP9o0QS0JoZJCvsLdei5vHbtWhU+gh68AwYMUN61PD4on2G6dOmCuLg4JfHx8ahTp47yHk5KSsLVV1+tQinw+UYhOfz9998jNzdXEcPUpy6F9dgGvZDZj34m8vnImMFjxoxROvQkJumq+2Td+vXrq3AVOlQFwb6++eYbpKenqxjA1CPhzD7ZNz2IGVKrffv2VYQvjxQSyBR97l+m0ySL/YlgtpmVlYXLLrsM99xzDz777DN1bekl7P9813PBcZkwYcLE6QiTFDZh4hRhksJ/rlwy8TN06P9UNVuffu9H3whMnP6ohMNmbBQd9gr1whBLAD+ohyIoOE6OlAQMGXofnn1uGl555RvceeeLsklor8oCAmshMKimpGNkc5GNibc8ieeefVf0PsaY0fdKfopIWwRZWssH/xhYAgOQld0Wr7z0NV58fgZefnE62p91MSxBIdJvMAJDokU/UvquhSuvGoxJkz5S8sijryAjs5UqCw2vKXoRUkf0g6Nx112T8Nqr3+KVl7+UTdatiIxkn7EitF3sC0xE8+ZdcNedL2Py2z/gmaenoEvnAVIWr/QCgqUtC/uPRefO/fDipK/x0qRv8PBD7yA5OU/KaFMoQiOipM8wBIfWwugxD4jO13j5pa9w620PIyAoUnTCRdiW2B8Si/i66Xjm2Tfx6msf4Znn3sTlPa4XPZmDgEgEh9VU47AExODii/rg6aem4O23vsPjj7+D5i0vkjZq+0kd2UDVxaCBN+OLabNxrNAGO4Otyh7JQ/dhE6cxSH6UoHjvWgy6ogPigi1oldccfQcNRr9BAzFgaD76DxuNa/qPxHufz0a5ItxKsGfNHJzdpB7iwiwYc+NNGD3xXgREJqJh6wuwfOshuD1OrPvuDVzQpC4Cw2ogtn4j3PfAI3jxuSfQ5dyWco8EoW2Xnli77ziccODw/q0YctXVaJmSjttvvBmvTHoKg/tdjPAaIUho2R3fLtoJ2A7ig2duR2JEmGzmI5Ej9+0TL7+KO8f0QUIdWfdJmbjrtQ9kUZajePNq3NSnLyJkrWe37YJHJr2FJx+4Gy1SEhFtCUR2RmPMXLQMhRVluH1CPupGxaBNXjc8/9xkPP3YzUhJqYWkjHPx4RfLwNi2i36cihZJ0agZGoKw5Ca464X38cZ7U7Fo0RKQK/AnDP5MkL/SPpjacdagfg1S2KCx/FhSZawktQhIa6ikL48q/rwshWn25V/PoHgFvgbYi7ZBlZDtZxwRp9T0GGS0tkZRKb6TwqJCzF2yAD/OX4ADR4rUt0L4jQunlFOPwtoGXUu/YgF/SAHL2J7yTGYejfQNVYUHkCR/u1B8fqrGOAjVEFvQVp3wqCYtzP6qixH44oRQlzOlGjqDYYyfM8lZcshMM14vI0KT5i2XkgpZRXYck1nzefOyCivwGkqa14SrVqdUuRb5YbQtV0rO+XcG42oZ64nLTIWXkX9Ot1xlLmC50K7dwCujj6JnrZ24IdqJ/hGVGBBuQ7+wgxgQvQ03Z+7FM5cfwxf3ebDuM6Bsg9TZLw0Wi02y6N1uucpeaVP6L5NFyW9JcP3w/jp4bD/uuH8C2nVsgSuu6oHly5crcpbELIlYpikM13Ayifu/Fk3+khA+OWwEy/XL5ugdfOuttyoyV5OjJGIZr/fdd9/Fvffei5tuukk+X92J2267Tb2AjmUcA71jKfT6JRFaUVGBb7/9Vu2DWO+uu+5SdViX5wz5QO9g/eI46rM+CVZ6KN99991Kn7okX1lv0qRJystah5zQf2grKSnBRx99pPqgsE/WoX08Mn7x8OHDqwhgffQnfrV3MoXlmghmqAiS1HzhHolgejczNAbtJCFN0AbapD2Eea7H9Vc9902YMGHiVGGSwiZMnCJMUvjPl653foNOQ1+sZu+4x6fi6HFuOUyc9uCOj5s6l1c+lD+O5AY5co/Fygf6JPngbpUP9I2RmtoFWVk9kNeqD3KyuyMkuBGCAjPkA38qLEGJIskICm6CJo17onGjS0TvCiTXOwchAc0RYmmHQEtzaas+QsPrISQ0HS1ze6FhTm80a3oDatfJRWCw9BVUHwGBDaTNdNHNQr2kc6X8akOaXS352ZKfrnQCguohMsoqdRogO6sbGjW8Ck2bXCXpS0UnQ9lN3aDATAQGZCEmOk/6u0J0eopcLW2fJ/nZCA/PRlBIorSXgIiIHMTVbIcWzfqiWeM+aNakN8JCm8o8sL8EBATXQUxNaTM4VTYxXdCqZX/kZF0Nq/UChIVnil0pYqNVjmkiVkRGNkZ2dhexvTuaN++OpKQOCA3NkvFnKF2Og3Ym1j0HLZtfh4z0y9Cw4eWyUZK5Cs4SyYQlwIqwsCw1zxnpHdGlc28sWbxexWE+EcfT3BidtlDxdEkKr0O/bu0QxY10oEXuJxEeg0PVHxECoxLQJ/9WlFTItXaWAEW78N6zdyI+0oLa8bEIr5OM8Hot8ey7MxQBB3cZ9s2fjI7p4QiKqI0b75+EYqnrdZThy3ceR1q9GATVzcHL0+aiXBaTs7wAP8/7Huvn/IBjhw6iqPAAfvj6bUREh8NSvxOee28WYNuLTyfdiXrRUYiOTsTzH05XpFOJ2H5513NhiUvG5WNukb6PY+fCH5BXLx314qx44YNvcUyWaqXtCF5+5B7UCakFa0oTfLtgPjbs3ISs5NpIjquNxx+bjK1bDmHd8pnocflFCIhqiBuG3gObqwgLZ01Be2si4kLDce3o23BQ+lVkJNmo3wAJgz+aNGDrJMsovBONRylz5UzFcfUJPdrIvulblsJKKos0Hakug3ClCotIgJEQJjViEK9GNbZv0M4kT40c1jSIOkNHsbryPGdcabgl18tY73wBHUlD1a1B3BVW4LlnnkDDpllo1KwxJky8FfuPHFcvHWR/Br9LMpgUIF88arwcTpexP+OldqTupGff0EVRHdgX16MmJxnzmMSlYbcoqSC00pq/qDKS6oaeQRBzrBTDDoZDqJTWjJfZSTtnLIwJ59xwBfDqkkZV10aKeHtwGahvA0geZ4o1VMInVb9GqGBc0Op/jfBdEi7fEwSwrz3Woz4Zf70Aec4A41uB14YcQu/oHegX7MZA2QEPFRkZCAwPKsPQoH0YFLUZfWqvxJhmP+NfPQ5jyu2VWDMVKN4gzchN7pGF45S22Y/qX9a12+3AqpWL0a5NMwQFWFCvXiJef/11RcQyPIM/MctQDSeTuP+tkOz9tXwtulx7DJ+sz7AN9BIm8UoPW02UMs2XydFexvEl8Umyk2QuzxnP99+Rn8ynLglfEqjUZR0dE5jnhH4OMp/Eqk6zDuvrl7lRXxPC+qjT7EvrM74vz+lRzLLDhw8rUliTwP7EsD8BrI8MN0EiODs7G127dsWzzz6Ln376ScU81uNgvxr+afZLIZiviWITJkyYON1gksImTJwiTFL4r5PzR71Z3ebxr2D5xt2+0Zg4bcHP3PI5m/FqyR+8+850REVlIiGhA+rXuxhpqVeKXIt06/XISL9ejtchLeUqJNe/DEn1LkRCg05ITLkIDVKvg9XaFxkZV4nelUhPkfMG1yOp7uWol3gZ6tfvjAYpXdAgrStS069GWnp/pGcMQGrqVUhJEZ2kbkhKkGPClWhQ/zqkpw5AlnUIstKHqHRK/d6on3S1tNVddLuq/lMadEdW5g3ITL9B7LoW1jSjreTky0TnEiQlXipjuFz0xJ60XsjMuF6kt6SvkbweYtMlqJvYUcZxrqqXntYbmdaBIoORkSb2pV0n83AREpPORb3kTkhOuUDs7Sb9XKPKM9IGqL6tqdeIbVegbp3LRborO62p0lZ6H2RlyJxY+8Ca0lvGRb2rZAw9ZKwyjoQeMkbREWE7GekyZzKGBg0uR5LYn5BwoWx6L0SD5PPE7vNlPM1xy033Ye+eA/DwZV5q+//LDaOJ0wSVcv08JbAd3oT+3dohRn63xSdEI6NRJrIa5yC7STNkNM5F41bn4KZ7nkKZTW5UdxlgOwDb3pXocUFLRIRZYImIQ/fhD2NLqcHPwF6AvT+9jAuzoxBWsx6m/LAOjMPJNzwe2zgDl3VqCkuNdNz6/OcoIvHjccJ7dC0ObZqF2bM+x8MP3IXczDSEBMfCUv98PPP+DGlzEz54ajTqx9RErdqZ+HrxFkX42Q9txfW9usFSpz4uGjoclfYDmPPRm8iJTkVWvTzMWLZFkYJ0A5w97X00iM5GVlp7fPHTTMxd8RPiwgNQIyhE1nlDpKc3RiNrIhJq15IxZaL1uVehsHg3Fv/0Cdo2SEW8jPOZDz9RUU/JPylS6q+E79mp2DK6xvKtfyRk+UZMutrySKGdNFizabzsJN2kCsk8p5cxWg3KliQoyVD+LHfa4KzUNKobLi/JUJJ/zNd17JLWdKs0TtKkQhonIcyHurccDtcxWRdlcr3oMSqd024pOrJxB6x14xAVakFQINdebcxeME9RjEb4BpcMy6B0GXOWvqcuJQ6pzsABTJVJii/qlAa5nn3kN7kcWiTWidBztRSl3iKpUaHsVhPiFRtVjAw55byQyeR8UnTcDJI//MWkSGNZp3wBmYxXvZBMsZZUPjOh/zzgYCxeFKNSrjWnxMvQRjtEtopsNo7Ht8sUk6zllHOe5b+aOrlkvLzOg3IQvfINsnzWG8cyqes6ZJRTl2S8W55X6rpweReKrrRb/jNQKvq2TfI82ChtMcrYKuDtPoUYELkTQwNdGCk74NEiY9TRgdGBRzAiqABDg+zoF2BH3xAnBsTaMTSlAnee78Rn9wJb5bFTJDbYaYNccpDwLC/FmoWL0al5e4RZQuTzRSKeeeaZKlJ4w4YNihT+X8UTZlv+5+yHxK8mnplHb17dH4/+5dprmZ61NWvWVCEYSIiOHz9e6ZzOIDF74MAB5OfnVyOBNfFNEphHEsEMO5GZmalCZTz++OMqlMbx41yQJkyYMHHmwSSFTZg4RZik8F8rvxZn+JMf5NO/idMX3OzJppzikg3lyhX7kZZ2Lpo0vhpZmSRS+yEzfTCy0ocZkjEEGekDDKIzvRdSsq4UuRZpGcOQnjESGZmD5MM/idURyBJJTxPd9L5IT+8j5X1hzeqLNClPyxwBK/UzBqv20tMGwpo6COmpw5CRNgrZ6ePQMONGZKWNQ2baGMkT3bR8kSFij/SRMVDsG4xs6Tc7I1/sEhvZbyaJaRKsFOkzrR/SrQOkfCiyM0U3c6jSTbcy/3oZQ0+x7VrR7W+MzzpaZKzIKOlnqOj0kfZ6ifSUsRnzwbay0qk3Ro7DRW+YjJd2U/IlLXkcf/oI5GTKWGScPGdZutIZaoxD6mRaxXaKtGHYNtCYL9pmvRbZWb1ErkCd2m3l2ZeA6KgkPPH403DwhV5nOCly+oPsYDFK9q9F70tboG6EBXfecQcOHS1GaYUNx0tLcbzchoIyF0rlMpM7g7NQMTWVBdtx+8j+CJHfhyE14zHy0XewwwlFt8FRiH0/vIJz08NRIyENXy/ZrngdeF1w71yAq87LVaTwLc9/ihIxoeL4Ybz+2C1oXD8U9ZJi0aRRBvKyG8hai0Noemc88fY3orQVHz13MxIiayAlLRdLtxUqnsYhdlx95cWwxCbh0vxRYttBzP/sHdQLrINGKe0we9UOFJHQc+/F0u+nIS6gATJTO2DG4rmYtWQmIgIsiI+MljWeh5Yt26N9q4ZonZeLvHN6od/wO1BmO4x5Mz9Gu7QUJMcl4J1vZqnXYSmOlUTiXwkSa8oNUy4ORcdeIKHJOKgOJ1x2uUepJ0K+VvFpMue+LAEpX3p3OlDhqlAkH6k+5cLJAdIbTh7OfOmg4aUrmh56yRqesyRZGUpB+e+yQc6JJqClrqeS1C1J2QqUiNi1niyUPau3IkLWT6hIsEhi3Xj8MOt7GQopafofsxHab4PHXSr2MygBvYXF1soKKSVBXS7DZlgCB7xiJ802+FuxW7H2YlslieMKZatN0hyrmgjR5VB5JJ9clRax2zkPcio/qOrh/Ko6Mg92Wc1uWX2yniVT5MwEp48zYARyOA71l599wPqpwKtDt+L+Livx8KXb8FC3bXhmwF4sfN8Ljzw+1BLgtLFaCXBwBTD1wWN48OrNuLfLTtxx/nbcdbHU6XcQXzzmRuFa0eMDhLF+GQC4ArDtAZZ+CLw+/BDuuXgN7rxgFe7tvAYPd1uPj0aVYN2zwAfXVWJI+F7kBzoUKTzKT0YGlInYVX6+CL2IhwQCA4KAG8KKcH3NXRiYtg7/unIPZjzhxo4ZBlHtkX6Xf70NnbIvQaQlDgm1k/Diiy9WkbfaY5fnOoTD7xWSuiR5eaRHL8Mr+LfLPHojsz/GDSYhvXLlSsyYMQOffPIJ5s2bp/ILCgqwePFiTJgwQRGojAmsvW9PZ5AU3rdvH0aMGKEIYH/PYL7wjvGKc3JycMEFF6g9G+eGY6aHMb2OTZgwYeJMhfzKM2HCxKnAJIX/emGc4bMGPF3N/iff+cE3KhOnGzyyQVRewrLfoyxZvBfJ9c9DVubVyLDegMyMYchMH4UMRcxSSJaOlPJ8ZGYNgTVnANJyBiMtczRS08chLX0MrFbRs05Qkpk+FhkZo5GRORLWjBGiN1JkFFIyxoq+lEnbbI99ZMl5Vvp4ZFlvFLlZSXrKjchIvRGZ0lZ2BmWcyBhkSxtZbNdnl6ov7WdlDhMZaoiyfYQqy7SOFhE9HlV/kk9CWcZAXZ6znfQUsTv1JkmL7dax0s9I0WGbJJ3ZptST/My0m5QYfYs9tCuT9t2o7My0jpeycWo8TGdax/mEY5R2Zfw5maKTKnMgeqodZRvtlbnNEJsyBilyOyvzGtSIbo3goFQEBdbC0KEj4PbY4KLXqKIGTJyekBuOXpwFGzC4Z2v1orkbx96NgwfdKCqyobi0GEeKjuBISQkOFntgJ0dXeQSw7ca8Lz5BVnwCagYHITQ6DtGNO+L9uWtRzuVQXoB9M99A54a1ERlfD8989A2OkVt0OrB33he4pHVjWGpl4rGPvkOZpwILfvwSKVFhyElIxLixN2LpknlYPf8Twws5qT2eZxx52yFMeeF+1AmPQb3kxli65ZAioO2FW3FNz0tgqdkAlw4aCadtL+Z8/haSw2sjOzkXPy7dgmK3R/reg1mfv4vESCtS6+fhh6WLMH/NPNSpGYys5GS8P/krYyl7j6Gk7Cj2HQeOqedSGebPnII26XWRFFsTH367AAWV0i/5wb966ZNZU17BcmH8vYRpmxTbKz0ocTtQ6nWi2OPAcbcN9JMtl+vOYAwMhkACtKLCiQqpX+ZywybidvChLI3IGiB/Crtce7sTpXY7Sp0u2ETXIXmMu8qY0AzfYCPBRFJVlhS9kO0iZaJTKjYwdEOx6PG1YFJs8M2lwK4N+xEZEINwSwSCLcGoGxuPGV9/i0qS29J9pfTjln6dFXaxSXqxO+Bx8evpblTY6DEqrTkq1C8Rm8uFClclZCiQZWYQ04x9TnK8nG8Ss8PhrcBxqWeTeXKIuU7RsTmNyMC0q8zhVVXK5aRMpETKi2yVaio4vTI1cDkr4SURzwn+yxfAXwte7gpeS0WMy/U4Cmx9D7ijxTYMjZRnimUXBlqOoH/AEfSN3odxbZdjxRcHUVluLFXewGWbgMk3HsK1iUvRLfBn9Ikqww3hNlwbUozrahzBdUnb8fZ4UdQewy7ppwCY8yowvNla3BC9CX1D92FIjRL0DT+MftEHMChuC260bsAzHZwYGnoI+YEVGB7gxnB/AjgAGGapxAiLB+PknDJa0pSxgcAokSEBTvQLKMagmkcxLGUXnryiGDP+BUz7135c0ngkoi2p8izJxPvvv6/CNJCwJUnLI0M2/C/CR2iyme2T4OU5yWBdToKYZCf7+u677xTx27RpU+URzLAKfEmcDnmgj4R/WITTFRzD/v37FdFNj2D9sriGDRuiR48euP322zFnzhxFilOXoSEY7oJpiv98mDBhwsSZBPmVZ8KEiVOBSQr/PaTbXd+i09CXqo1h9KNTcLhQNgwmTitwb0KHNH4+37atELfd9jwS6p6FzMyeyMkhKUnv1tGwpo6FNWWcHMfI+ShkZIxAekY+rJn5yus3JX0kUqyjkZI2Fqlp45CWNh5W6wR1TLNKnpSlWkchNX2M6I5VkmolgTwS6fSilaMho0XYB2WsT0gyi6RLWfoopZ+eNlxsGWHYkzpOzkcb+Vax1zoU1jTKsKo2T7THI/uQMaSLvowvI3245I1UbVlTx0t7ExQpnGGVtOSnW6Vc2qW+YR9J3Bt9OrSJOiLU5dwoUry6KPukzBA9VuqyLfZD26hjzIfRH8lteg73Qo2Y9giwpCE8LAmDBg2Ht9IlG3ubXEFzY3X6wqMYvNIjW9DvylzUCLKgW5eeeObpyXj6qWfwwqSn8fxLz+Hehx/DUy9+go2b9wOOg9j38xxcd+lFSIiIwqXnnoc27TvCUrs+WnftiY27DgDOMuz7/h10SouBJaIGOvcfhdXb9+Hwvr1475E7kVO3FhKbno2fft4Hm7sM7772DGIDLTivbTvMX7AE+/buxKR/3YgwsSc4IQ+vfjwbsB3GO8/ci3qxiUhJbSHtHVWk8PFDG3DVFRfDUjMNPQaNlQfKMexaPxdd2nVAzdDamHjPU9h79Dj27FiO0YOvRaQlGvUScjBz8RJs3r8TrXMboVZkBEbn34jDB49h8+ZVePbFZzHp7S/x/by18LhKseD7T5CbFo/4mCh8M3cF+GV5/Q34vxT64akfoCQ+PEaE4CKHDau3bsL0Od/j+4U/Ys6y2Vi+fhEKinfLHcuvTYt4S2EvLseaVRvw48JF+G7ubCxetRwbV68GCumRSWZUZtnmxPGCo1i4YhlmLpiHOYuXYsGcxTi8e6+sH76ZS2aEXpyiv2/rfsyfsxw/LliG7+YvxNw1y3Gw5IisNDK1okNipqgMyxatwscffimfp6IRGBiNYEsoEmvWwo9ffAGQYHY6UVZQiNXLV2L+3IWYN28RFkh7yjZHmYxZhKEcKmw4snM3fpgzV/pbgBkLFssaWgrbgUKxW+bFRmK7FJ6yw1izbjG+nTMTc5cux4KFa7F+9WZZqrRf+vOKfR4nCo8elfoLMXveAnz/0zwsWLoKm7bvQWFRBfbsO4JNW3aiuKRCOSE7HTKeMxgkhXkPVvCPEgypcRiY/whwfdgqjAw+hjEkWEm2hgDDajpwXb0fMOedbeoPDQ6n1JfLV7weeOTategRswTXRxdgYKQH/UJFwt24NqIAveruwY0XrIFrBzsSKZfregj46l+V6JW0FH3CD6BvQCkGh3vRP8yFAVE29I3cj8G1NuJfecDg0CIMCXJgWKAbQwOAIWLPYJGBkiY5zHAS4yxeOTow2mITex0YL2W0O1+EdfoFl+G6yJ3ok7wMvRtNwYiL38I1Z9+I1tkX4Joreyvicc+ePVUvltOevZq4PRXRBLMmnHXICAr7oNBT+I033sDFF1+sXqrG8AkkSM8991zlGasJUBKihCZIT3dSlOM4ePCgCoWRlZWliGC+LG769OnKg1jrcJw8auG5jltswoQJE2ci5NebCRMmTgUmKfz3kvNHvVVtHN3GvoQl63b5RmjidICHrsIChsAcP+EexNTIRHBINhKTuiA9o48iTdNJalon+GScyGjJHw4rRdJp6SIZw0VGSHqsyHhF/lLS0if4hPljYM0YpyQ9Y6zIaGRkDhdh6ImhJwnzhiEzM1+VZ6hzo8yaPkSER5K10g7JW9pIclbZNUwkH2mKICbJSsKYXsnjRXz2M1/0rSRgSTTLGJifIXZS0pWQtB6tRJezH7ZhiPQpdmVkDpGjtol2is0i+qjSnMeqMRj6qm4G7eYYjPatVtpCoX0khgchLe061KlzgTz7UmXDGY9h+eNQXlEGfoVctl3q+pk4DSGXzmP34vjB3ehzRR4i5XdbcEAgQoIj1EuUAinBgbAE1ERM7bZ4/c1vUXJ0N556YCxigi1olmXF6iWLMeXjj5GUmQ5LzVjc++QLKD9eiENzp+KslBhYQqMRntYUV17XB2OGDcF5TXOQXKs2+o65A0cUR+jCT99+jpzU2qhbOwLdruwu62swmqfVRVxkFGo2aIdnXv8UXts+vPrUnYgNr4WEhMZYu/UI6AxadnwbrrqyCywRyeh6XT68laUoLdiCpx+8HWmJSagVn4GBQ8bghuu6I71+LCIDApCV0QjTZy9GkTTwxmuvIbluHSTWjsOwIYPRq3dvhETHIbVJO3w6fSa8zuNY/OPnyE1vgPiYGpj+41zlsFhBDvEv51QqUek1IvAy2AHvRpJ09M6duWgBrh3UF23ObYemrbLRskUqunfJw+QX7gAKVwPHV8F1YA2+++hjXHLRJWjWoQ0y8xqjUW4Oena9ED9/8zVAYmX/fti2/IzHH7kbrTrmIr1VYzRulYtObc/G+AH9UbBpIXB0M3BkL/asWIHBvaXPth3QpEN7NOrYBh06n437H7wNtoPbpd8D8B7ciy/efRsXX3QeMps1hyU4WtZIDEJDwlC/ZjTmffIBULAfxds24tUnHsU5Hc9Ck+Yt0KhFLjqefTaG3tALe1cskP62AQe2oWj1KtyaPxzN2rRCdvs8ZHVojQ7ndMQL99wD7Nkt9svngT0/Y/kPU2SdnIdm7ZqgYauWaJnbET0uvhTfv/uitLVJbNuO8p1rMElsvahdC3TMa4bWLZqhRfNmuObaXvh46qfoftU1uOiSrvjymxmwuRh248x++nH8pPpJDqv4zAeBef8CBtXehhERZRhscWBUEJAf7sWguELcdNZKbJhRoMhdFZZDKpfJsnh9wlYMylmB/gk7MSj2CAbHFWBYQgH6JW5H38z1eG3CUXjpKcwb3lGkPJLXfibttliFgfH7MSrRjYGxFehXoxSD61ZgSGIBJmQfxcOtgf6hdgwUGwYHigT4CGGRASJM03t4hIUxh8VWi13SpRhmKZF8OQ/3ID/Sjvz4YxjbaB+e6HkQ79+9G0umHcGKHzdg2oefYeZ3M6vCOaxZs0YRtDwnecu0JnB/r5AIpoewjhWsyWZNDrPsxx9/xCWXXKL2JgyhEBMTg2bNmqkX4PFlaPoFb/74pxCifOHcggUL8M033yhvak10awJYj5NHEsH+ZLA+mjBhwsSZBvnVZ8KEiVOBSQr//eTiCR9WGwvl4xkrfKM08feGFx56acEFu9OOxk1byf0VC0tQKmJrnY0mzQYr8tKqSMrxPhkr5yORZh2KtLRhsKbIeSoJ1GFIV+QovYdHIFWOqRnDYc0aI+dSnkkCdbQSevtqj1+GlUjPFL0MaStD2kwfLEdph235CfOMsqFKl3UyMkeJDSRSaZO0R+/lzHwRlpOEHS52Ukj+ktj1Eb3KfqOMaYqqK/rKfmk/zToMqYwBrGwmcWsI+zHqjBDJ99kk85Q5FBlZ+SLShvRtlXbSSE6r9ow2DbspQ0U4LoPY1rYY9rBd2jISGWJPBsed2huJCV0QHtYEcbE5eOGFt2B3OGSzyV26ubE6bcFL5waO7tuJ0QMuRbP0Gsi0psm9kYmGmQ2QnV5f0lakpjdHdtNL8dHU2Vi+cDbaNEtFi0YZePDeu2ErK4atvBijRgxGVuNGaNzhQsyePRv7532Mc7PiYKlZD/1vfgi9rrsejdKSkZudgTtvuwOb9hUpxz96Z5Ye3YsnH70HTZtmIyUrE7mtWuDZB27DwF69YG18Pu7518uwle7F5x++gmY5eWjdugs27TyqvtZ/vGAnhg3rh7TGrTFs3G2wOUrksVKMA9vX4tH77kLDhs2Qld0YV/W4DBMnjESLhtnodPa5+GnJWpTI2IuLS/Hqi8+hU7sWyMpIgTW7IS7ufg0+/maWIrzgLMKSH7/Ehe1ykdesKWb8NFfl809ZJLb+SlTKP+OVcIzqyqi6BjFc5nThjbcnIyoiHGHyeaWGSKJIhkjv7GjMfXgYNjw3DutevBvjz+uIupIfSQm0oFaQBZmSfuby87D58Xux5cn7MOv+CTg/I0a9iDAqxIJoOdYXaSXy2ZirsPHZm7HxuXsx7eYRyJK8OiLhPqkt0jk1Gksfux1bnnsQ6555AMPbZiNB8tmfRfoLlGOcnDeW9Idj+2LDq49g+j2j0SMzXumxX9pHnRbhFnww+nrsfuFO7HzmLnw8uA+a+3T4sroAaYN6F9UOw+w7xmLf8w9i/VO34qn+5yub1RhEqENbhzWshU2TbsPW1+7D3H9NQI/kCFglv54I+6ZeQngQ8hpnI1zarxEdiV7X9pRrTyr0zH72KVJYfhiksKzAAuDnz4HbL1yPvvWXIj9tKx45x423+wEfjANWfCR6dFC3uVUIEZdNZrAM2L0Y+PJfdryRX4KPhgMf5QNvDSrGW6OPYvozbhxmTGH5VVPJWNl8mZ0scvchYM6b0u4ED14baMc7I4H3xgLPXl+CqTcCa18E3r4O6BNRjAHBXgwO8qqQESp0hAgJYaZHB9Mj2IthQXaMjCxDfvQhDIzeisHxGzE6exMevPgAvn0A2CLjKlsvdhwV4UcWeQC4bE7s3bNXEbMka0nUkhBm7F8SuKcaPoJtkGhmmxR6C2timMI8nvN52717d9StW1fF0B08eDBmzZqlCFNNgvoLiVMnX5r3DyBF9Zh0Wh85bn8y/NeOLDdhwoSJMxHy68+ECROnApMU/nvKJbdO+0Wc4cfenukbqYm/LxiNkH535bA5S5BiTYclIFrusUTE1m6Phk36wpoxAGnK63aUCL2C6Q08TGQQrHy5Wsp4kXHIsJJA7iP6fZCW2RepUi81U3SyBsPqIz/TGX5B6mZYhyJTvXCNJKi0S6I1Y6TqRxGoop+mZAjSMgaL8EjCmP2KLRl8Sd1okTFITWN91jWI5bRMxjceZBxVPV8d6TvVKkISVrUh+VVlrCe66gV4/ZSkZvQXEfszqc8xazslTVukzBCfbcpu2sBy6lNoF8U4Z5lVeVQb/WsSXIlqR8Q3RmO+8tGo0UhkZQ1AUuJlyMrsitGjHsbmTQeMy3eGkyKnP7xwuxiTtQwHtizD1tULsXr5CqxasQY/r1mNjSJrV63G6rWbsHFnAQ4WVKCksABrly3Gzq07UHS82KAlbcWwHd6l6izctB/Fdjt2zp6Mc7JrIrh2Jqb8sBaH9+3H5pWLsGnjGuw9dNh4SZzi1eT+95SgtOg4Nm7ajuXrNmHDxvVSeAgFe7Zg3aaj2Lq7WPTKUFF8CCuXbsS6dfsUGVVqd6HS48DWLRuwYt1q7D50QKzhV4WdZJ7gLC3AzxtWYeOGNdi3ZxfKpI9tGzZgzap1OFzqVjZ4KitRUXoMxbR//SosWb0We4+XqRARZQxOK88lOI5h58bl2Cy2lzO+rtjN95jZnXwZ2l8J0sJeNWYXvyLNHJmXSkclls6ahx7tz0Z2YBBayGeWC0QuF7kzwYJPO1nxZYdEfNLRigcaJuNcySex2jrSIHq7BljwbGY4vjs7A990TMd7ndLQt54FeYEWNA02dC4UGSLpj1pEYPZ5iZjRKQWTW9fHtZJ/nkheiIi0w34n1LJg9vmN8X3rBvj+7Cw80ED6CJe2RCchzIJ40WkqcrnoT8qNw5TzUvHuOSkYW9+CsySf/TWXvtvK8Wqp81zDKMw+OxE/nZWMd5un4PogC9pJfpbYkyntnS3jGFbDgk/OsmKWjPWLs5NwX0MLzpf67aWc89FepKvIU6kBmHFhqsxJPUy9MBPjalvQXfI7ibC/FmJTXo1gNKsdgVg5j5M+ul98jvzqknXLdaao0TMTXG/8w4jLI6uw0q7YYXcRsPDLQrx67zpMeeogjqyUvP2ic1iUecNV2uSe5TNH/os4PEY9SD3HNjlStovwC1/HpKgMqLBXgjGwbfzjsXxm4KwzHjTJWdchqSftOw9K0yRs2c8+OV8DvDqgAr1j9qB/aAWGBNnVC+eGBzgwQokTwywe9LdUYoDFi8GRdgypcwT56dtw7yW78NmDdmz8DigRWyrlEcA42S6SwTJe8op8NOzZfRBr166v8gqmNy+JYIaRIIFL0vbXyN7/Rtie9hJmu/QKpgfwe++9p8JKHDp0CKWlpViyZAmeeeYZTJ06FYcPcxIMkADmS9X4jQwSoSSDNRmqCdLTGf4krx6jPqeQHNbgXPgTwVrXhAkTJs40mKSwCROnCJMU/vsK4wyfM+zlauMa8fBHOHCUL5kx8fcEP6BzpyVbPa8d2Q0by/1lkML1kjsjNe06ZChCl96rPg9Zev9m0BuXL0MbhSzrBJFxyEwfgoyM/pLfD9bM/iIkVEl0kjgdLHWlTvpwRQpnMlaunPOlaowprNqWtkiapmdKnvK0NTxrlfBciUG6Gp66JKl1XTlW1WOfJFkHI1VsSs+SOpqs9RHCBvEs9rCMaSVDJI82D5R8kezBctREtOipPtkHxecVLeXpWWyL7fjIZp9uuownPZPEtR6b1Fci9ZUu2/V5NPvEGCPHJ2Kl5CM1ZaDM8wCkp12NLp3HYOWKA2ozr77+ewYTIv8M8Pq55ELKPUjyk3FVmcW9shJ1kVXSLvlqO808ufh0lOQ3ddUaIDnmKAXfFEnv33LZnG+YMxV5GbURUrM+3v3sR1WHzIps0+lkp8K9sl0Vi5R9ywlf5sUyFVKGTIzYRedAvtfL45aWFdlr9GszkmxA/rvFNopXdJkreV5RUKSdE263YqOMir4x0aO2QsbgZh57ZXxaj+gyX8rpDazGq2LNit20UUr5Hje7VFa1DAP+MpASNghhGTuNoT003CUDKC3CordewgMdm+PBnLp4OisWbzaKw8yOqZjVujbmtYrEvPa18VWHFLzdJgkPNQ7BQ82C8FgzCz7sUAMz8mIwv3UsFrarha9Ed+r58XgyNxj3NwnAky2i8FxWJKa3S8SitpFY3CoYC0RnZl5NTGtfF8/khODRZmH4V+MgvJEbiW+ljUW5NbG0RQyWtI7DDx3i8HqrENwnbY1vFo2rIy0YGGzBC1kWzOgQix/aS//ta+KTtrF4oXm02BSD+xtH4YkmUfisUxK+bxeLFW2isLhlBGa3rovPxI4nW0bh3hahuDc3DM/kReLLDnXwY9s4sSsKC86qiemdovFW21A80yoMD+QE49nm8ZjcrA5m5cVhXpsamCV9Tpe+P+0Qj7dbxuGF7Bg8lVNT2qqPe9ul4vKUMKQEWRAbYsG1V3aBs/SYzDdXi8z1mQoOnfcQ/0IiC88j9xs5OIaXLj8uxbzt+EjhkWuz0gGvR0XkVi+VVY8EUeCfNdTNxrVLXV89469G6jWGIgYhXCZ98N5lieL0eAnYttcFj10qsbBMyrcCrw8vwXWx29AnrBQDg1wqtvDQ4BIMDTmEoeG7MDRuK/JTt2J4o59x94X78fFEYPPnYp3UVWG3+TCT9pW3rbLTJv065f53YvWajXjttbfxySefKsJWk7YkiHVoBx3q4T8VtuGf1mQzz+fPn48XXngBl112GUJDQ9G4cWO89dZbigjVZKgmPEl+alL0ZBLUnxCuSotUPcoknxnMoxgzbYRKYUpdRhGl59NQR3kGG3p8Kuk8XX5CU/3iUM9oDXXxqtrVj2+CB5YYnzMo7MN3wZWyIZWqEq+P/JNzPtK9co1oj/GMNGpRXd2zXuafGI8hPGNlX4Y64z+esBOdw7UgeTxXeYQ+qZZpwoQJE39bmKSwCROnCJMU/vvL+aPfrja2y0ZNwsI1fEuJib8lfLsAbmw6nXORbHgS5R6zIimxG7IyhiKdMW6tRsgFeq8aRC0JXuYzDq4c0xmXl3nDoGMBaz0tJIQNYdr/3EeCsu1fiNRV8mtlut5Jdf36/O26vyJV9bTtPvt/TZft/r99+Nt3ko1+YsQO5txSRomMVqLmVs4zM4YjNaWPHK9F586jsW79UfWSIKdsKKs2UiZOY/D66Z0w5dfxW9tdgwKQleA03Oi4IlxuN5bM/wmtmjdGveRUTPn0C18DXiljDFz/tqr3eyLf2LKf0K1e69fOjH8aWkNLdVTPZYo26NHoM+LXc4zUXwtaS4pCURwkhcmDkBQrLwfK9mLPlKfw5fkpWNAxHnNaR2N+mxpY0CYWi/IisLptIJbmWrC4dSgWtI3A3HbhImGY1y4UC9uGYGnrECzLC1ayRNIL2oaqMkMnXNqJkLphWJ4XhBV5gerIOovahGF+W7YVbui1DVN9LM8LwYpWwXLU7YVgTvsw/NghCj+1j1L6C6UPli1pbegsahPqaysCc9pFSnsRWCjts4x9rmCfeaGiZ/Q1p304ZovMExtZl/awv2Wtg+Q8SPXJMmVb20gskjlZ2TIGy0iQtwvBj2eF4vuzIjG7XQ0sy43D8txYsT0GX5xTB0OtFqTKZ7+YGAt697sGlS5ZnyTf/w4L4a8CbwmuOfXXEbusQ7ui5pjlIPfGbN7GSuSEjLHv5lFFavp8GTww01+YpzQ0NVhF0VWJ8cdJihMet8Poi6TwNuCVoSXoVWsrrgsvwfUBQP+QSgyJKUV+/B7c3GgzHuq2Bq/evQKLvymCjV9+IQnMx5gak4ivM/6Rineax+uE0+XA7j17cM0118lnlXA0atRIee9qAleHdKB3rw73oIldTRhr0tg/j+kNGzZUpUkoMywF6/JFdkOGDEF0dDSCgoLUi+Tq16+PV155RQw8NXB2OWV8bHAeDdKUozWGr5h9futCkpwa6ql8vmlRnudeRSJLmm8NrHTALnPF9tTnOvXHPZ74kbIMJE0CmSdK+PvADae0wWXEkCKqAUmzbZf8IxFfyT8oeMslWy4uW/N1axjDJ2CR/HQbtyTzvLSUa9JYj2xWrTW6fMt1pD3Mp5YhPJNynSng5xu+tlMZxL6kQy9og+SpPpjnM0RJVaaICRMmTPx9YfEdTZgw8TthksKnh1w84aNq46N88O0y38hN/J3g4eba9zn67bc/lHusJ2rWaIX0tF5ISR6oCGH1MjdFXuZDvSiNR0UIM84u8zXBa8p/LyTUDWLYEJLsJIQpI5FJ4jmtLzLSe6JD+7749LN5KLcZ23QXv/prboDOaPh7ohH84w6/rsyvPfNN8BMmTFBfbdaeaxonn5v478HHpkGpSIoMHC8FReb/2NYVmH7PYLzfvhYWdIzFsjbhWN4qBEtahooEYE1bC1bmaQk4I2V1bjA2NIvAmpZhWCTzMb+9BQvaBmNp6zCsbhmBdS1Csb5lIBZ3rIHnmwbj4ggLzslNwRtvvwyH3Wk++rgA6dGrHgE2Oa2QZKUie5WjJrk7HikkhQ3XYMUnsipDt5zKFLKualZSJIUrK31knU3+bwGeG7YTl9eeib71tmJ4yjFMaHQMj15UhKlj3dj4DlDGWMUkgsUecnpusZM8pmpYxPC49cItBYqSljSfbwsXLkLLlq0QEBCEhIQEvPnmm4rIJQlMUpcxhfn8o2hS2J8c9hftTaxDT7C+rqtJZZK/JIRJBoeHhyM5ORnXX3+9qndq4LydRArTzdufFGb8jkobbDIXJFapp/IVKayvHtNcCKRwDeJeTajSUf9Vewp8hwSJZ+ZT1HsJ+ATzqOWhmpFiPs6cbhLMLrgr7TLvvFBO0eM6EyvYKDsyjJQDSWHRlXN2rRoTfeaxFptVq42fWehVrkqN8VCM769Iuc6QJD/jsL6aDdUe7WT/PJdTijEIQ4wMn5gwYcLE3xcmKWzCxCnCJIVPH7n01s9x1sBnqo3zkTdm+EZv4m8D+fzsdhof8vn5etq0uaiXdDYyrNehUY72Bib5y5ef0QvYRwprT2FFav4a2WnKfybac5qi8zinhvd1WtpAZGb2RUpKN9Su3RrdewzCj7MXwuV1yAaM20S1KzNxBoPkiQZJE4KEL2NdkjTWBLD+mrMmg/3jPZr478FZNygVkhJ8hnqVs1rx0WN48eEH0SOzLkbUteD9luEqzMOavFBFhK5sZcGKthYszpXjGUwKr20ZhM1Nw7CheTCWt7ZgWRsLVrUKlPkJVt7NS/OCsaq5BctbhmJhmyS8d05TLHv/FZn0ckUq+bijMxdcgLyFFR9WJlKuzu3HZQ3uA8rofUvHTk4UY8B45d5XXsWs4obTY5f5O5UZZF12boR3qFRernIqv5ZKtwFv3LkBQzt8gUeu2YypE91Y/RbgWCnlx0Rol8FjVnF6iteTJvl4ohjPLjbohUfa5h+7nPJZZdWqNcjLa4uQ4DAkJSWpsA4kaEniktylx68mfU8mhSm6THsFkwBm6AmSyZpUZrzgXbt2qfPPP/9ceSQ3aNAAF154oSKJWUc/R38/WN8gcdWTmKeKFCYZKkk599o4WTbOrnrWqG8lUPjM5/NGhHPD68gytqNa9DhlPkmoGpeE7Rn1ZNKVvtGdkWCfFaLk4a2lHIlV/yJuevaSmGVf8o+0s90jbeiG5cie3eoPEtIu87SoEpvk0n9dg62S7vW17xOfunHCAmWcoalIYGMRS9qYAVWBoq5B1YlPTJgwYeLvDZMUNmHiFGGSwqeXdLv7u1/EGR724AfYe4gB40z8LSAfqiu5+ZJNBvcZGzceREJCB2RnXo+sDHoEa/J3uEEIZwwRGSbn2qPVJIV/v8j8aqJdiS/8hiaJJc9q7Y/s7L5yTS6UZ18yQsISMfH2u1BmL5LtD3fV3AyZOJOhiWB/6LiWBMkVLdT9NX0T/z145xlEjUeeoyRPnLC5PVi9egMuPftC1JPPKh1EHmsYhHltorAmNwjr6CWcZ8Hy9hYs5LH1mUsKr2kZiE3NQrCheSBWqnmwYH1Lgxie3y4EC9sFYU0bC5Y2krwWiZh/+XnAqsWA2w6nl19qP7MpIIM4lQQXIj0wZUKc+4AZrx3Cyzdtw0u3bMCO+VLGMMK85ZWeiDrIs4Bxv09pBqUujSATSKKRbsNsX0xxF8qlmnEcK7+04fhqyTskUiRSbpQrV2a3C065beghrAlhOrd6pB3j2SWfTXyxcit9Cna7EwsWLEbz5rkICgxRpPBrr71WRfDqkA/0AKbofMrJhDBDTWhCmPVWrVqFl156Cffcc49qk+UHDx5EUVERZs6ciY8//li1of+wxufpqYFjJNnquywqQYLWIE15qjyFvRUol/lykgBmfAeZC065mwHWVTx345NAuUwVX3ipWlMu4gadSmGuGC0JY7KNniWp1JlnxJBnJi8jaxs2GSQyPbh5zn5INVfyDwz8lpk0RBKakaaN56AoSH22S303yuS0QjKUosqjUI1CS4wZ8GXQHi0C6UWS9EQmIWzMi4JuwLdOTogJEyZM/P1hksImTJwiTFL49JQLTooz3GXEC5i3kq+5NvFXw8M3zqgP017ZcHlk87MU9et3RHraNSdiCisCmCQlCeHBIvQW1qEOTFL494v/nFKY1gQxZTCysgbJsRfi4jrKs68eLEFx6D9oCFyV5XLVSERxi2XiTIb2FNZHEhY2m62KtOD5ySQxz7W+id8Hzh7JE/XVZw9fqGpDeaUH8xevQl6j9qgrn1Vy+HmlZQ3MbV8Tq5tZsK6pBWtaWrCsgwWL253ZpPDq3ACsb0Gi3IJVMg+r8yzY2EKOrQJkvoIwr0MgVrULwLImAVjXPBELunSCd96PgMMGt6xlg/Y6c0G6zK0oOrKBcq8XAhunAGPbrcUVtdbgysT5eD5/J5x8pQPZPB8bx8eA2+cxfEowPjYYrKNmHkXoeEoSmnymukjsm9EH+OuK5WIAgwqQ6qMtiphkWxQfDM9UksFueU65VAgJKrhlnFu2bEf37lchNCRcfj9m4dNPP60ieXnU5C/P/Qlhf1KYQl3K6tWr8eGHH6JXr15ITExEbGwsOnfujOXLl1c9KzUJTFEvvqPhpwy2QVqUI/WdMhYv++OpV65wxXGZ23KZXoMchatUyp0qmoJ6CajLBrvYw6n2Ta9UlDZI8MoZZ63qPqHNPlKY5+yTBLDhGnxEGuPbCQH5GIhSyVd+xvw2Egl8OXfKKfupEPs8LrmoJOoVwWyQ0sr/2BdChO1yGbjBF4TSZsmQYurRHgMG5asqqLrGQQkHqOaYRDDXC9syiqrpmTBhwsRpCJMUNmHiFGGSwqevXHzjx9XGTHlv+lLfbJj4y6B2ZCSI3FixYg369RuL+Pg2qF+vO3Ky8pFu9ZG/yotVk5ckhUkGm6Twqcn/TwpnZg1ESurVqFmzgzz76iMopI4ihe3uEtnU+QIymjhj4U9OkKzQBIa/OJ1O2O32KjKDQuijid8HPjlJVhgecqRL7CiX5+nshcvRqlE71LUEIEs+rzyQWxPzz4rD2haB+LmlBWtbWbCknQUL25zZpDBlRSu+sE7mQeaC3sJrc+kpHICFbYOxoG0gFstc8eV53+fWxtNNkjD17ltQvHuXIp2qSKIzFKTLHLIC+bV9OGVC9gFzHgWuqbEE14QU4IY6ezG+43Ijdi8ZQy5WmTDe9s7/xbcFOPmKnZQjxfgoAb5vTqfVRdJpqUA1W6UHxR6n8SdNyVehb+VIu4znk4ys0g236LjdJDdJPLImOwRKisvw3HOTcNGFnTHxlokq1APDRpD01TGCNSHMkBI6NrAmg/0JYoaaoHdwbm6uihkcEhKi4gd36NABy5YtQ0VFhbLJP/QOn6f/G2KY9Q1fWWN65NxHCrPI6/bg+MFdWLdqEdZsWIt161Zg04o52LhyCVau3YKV6zZh/dqVWLV+PVbvOo5izqXUqyRh66HdbuWUrS+H6k4+55HI5WxyBTA0N9217fuWYdPSb6SPtVixYROW/LwJqzesw+Y1S7F/+06UFgPlUoFO52xPeSKrl9aROvYazt8qn/bLQYSX3gX+8ZqhKVhGQtggeGmK8YOWUZOG8HeXHJRwUTDfeHEe+6SGXAH5yQ7kaPz/hZgwYcLE3x0mKWzCxCnCJIVPb7n0ti/QceCz1cb+4Gvf+mbExF+BSr7ZWzYKLtlIXHXVtXJ/1UBQYDqS63VHWkp/VHkEV5HC9FwdInkmKXzqYoSIMMhgTQj7QkgoGYKMzIFITb0GdeqcI9cmGQFBtTHh5okoLi+QrZHaVhsX0sQZCR0Kwp+g0N5sLNPewJrQIEwv4f8NOIOcfZdyjeS96IRNpnjZqg3o0qmL8hRuLvJYbgzmd4jFmtxgbMoLwbrWFixpY8EiOZ7JpPDS1gFY0C4QC9obXtNL2xrzsSIvECtahWBZXhAWyzz90CkK96db0ErmMjMmAPffcTvsZQb5dCaDlBm/nM+wAspt9AAw/wGgd9gKDAxxo1/0EUw8ayPKV4kinTXJ4YkqiTWP8iStoud+J+R3D2PRqhADJPHkIO3TsVQeQfrvzSpfkYRyZI/8U6bxJxS/315SxueW0+mQZxfpP5bQ99QQj3ohmmErH2MMZ1Bw9BhWr1qtYv/u3LlTkb86ZARJYaY1+ctzhorQ3sSaIF68eDF69uyJwMBAhIWFIS4uDmeffbYKH6GflzySCObR/49utPfUwPbZBidJwP78SOHiY8fw2AN3IjkhDsGhwQgPtqBehAXxkcEIjqoLS1hNhEhefL1k9My/HduOkLhmc5x8mzRh/NmYTybVA3/4GHj2ymtBB/OiA/vwwh03ICPOguAQCyyh4bBERCIoMgx1o0PQ87IeeP+973HgmHHd2J7byQXFAMSMdqwCRMjTT6DGIEdjCNKHQ/ry3auqyPAQV/ZQQQlrsmX3CQdh9Uw1KG3ayvZ5ZgTEEH293uSM5RRfF0r+P/yneiZMmDDxR8AkhU2YOEWYpPDpL5ffPQPn5L9SbfyD73sfuw4U+mbGxJ8K2SDYbeXyQdyDpKQGihS2WFKQlNgVmSSBrSNhpaQPhZWEcOZARVaSDLYqwvjPJ4WtJ0lVWYZPfOfVyv6mYlXEsCaBJe1fLnnZ2cNk/nujXr0usmltiHrJzfHO+1Ngc5XLJoj+M2p7ZeIMhz8B/GuE78lEsCY8TPx+cDZJXdichsccvdtIfB0+XIAHJk5E+zrhuDrGgrfa1MCCdjFY3jwQa3JDsCo3ACvaGC+bO5NfNLe0TSDmtQ/GXMZXFlki87GstUXmJxjrWvClfCFYJuWfd4rA4AYWpMhnv+hwC6646gqDgSI/dAYvYw6/ioxjOIh9wAL5aNwvfA2GhwM3hB7GxPY/o3S5T1FUFFkrCf5B0esLMfC7Ieu90m1Ta7/SyzALVX6cSgyCUn5IguUe+axBm/lbi6GFFblYrXtdmxQfCUKXIoNJbpIoNghZKZWbjI8yegzv3btXhX+gp7AOHUHR5K8WxgwmCbxmzRoVO5iEMYlk1rv77ruRk5ODs846C+PGjcOKFSvU89H/mxcE0yd/2+LUwDY0pSlpMuf05OXg5LT0+HE8/ej9qJ8Qh5qxNZAUFwFrhAVRch9YwuoirHYqatWugbr1k9FzyETsK5KWWNUlbVTaZL4dVaQwn0tVU8uxyYHPLof8KDm0D8/fchXqBlkQFGJBZN0EhCclIrp2TSTVCEVUQCiaNO2MyVPmqmAQXDXGHwMofImcQT7zulZdQhWvmpGGvaofZrNfw9eY+aLCU2WwsSJ4nX3mGXkqTrujap1T5IqoPBVDW+aJ+myLOkyrrkVUf/8GqgsjacKECRN/Oiy+owkTJn4nTFL4nyMXjJlcbQ4uyn8Os5dv9c2OiT8LXsYU5uZOJFGRwrEICEhDndqdkZM1DOnWEUhLE7EOQVr6QIMUzvSRwiq0xF9AClvzTwhJVcnLyBiBjMyRhkha6fnK/s5itfJIe0UyZD4z6JU92jhKXgbJ+LQ+SEu9As2aXYHHn5iMY0XciMmGSG2mzK2NCRN/BXjnKXKDJ2S3NCvhcuPglpV4f2JfvNq+DmZ0qImFbSKwqm0kVuRFYlmLQKxtY8EqRQifyZ7CQZjfLhTz2gcZ3sKKJA/C2hah2Nw0HOtbhGFZuxB81CkcvbMsiJXPfsGxFlxy9RVw0bGQvNMZ/PgjEcZp4BqEQ872AkseBm4IWYHBQV70jyzAbWdtQvlKn6KsTYNv9IrYT50UJvzYNR7YGn83GfQvLeNF4u8pihE8gOEuXCLGK9JYQzfCNG8iikHzMawVP5uob0SIisdjvGyurKwCO3bswvp167F+/fpfeAAzj0QwSV+GiODL5PiiOBLAd9xxB6ZNm4aCggIVHuLQoUP47rvvsHDhQhWLnfhz/mimfLbl6HtwKFKYIn3Lf6fYNn/WDDx8/9248aYJuH/iGPQ9tyFqBVpQJ70tbhh9F2676zbccc89ePezn1BQboSDOFZwHAWHduHQkd04UHQMpTKVdhGZRt+0Gv66vDoki8sP78WkW3ogkZ7IKUkYcuPNGP/A/Rh7y3gM7tUD8VFxiKnZBP3z78f+Eo9B/noq4LUXoeTYIew/tA87Cw7hcKlNeR6r4TgOoejodhwoOIYisYkrrdIr1754J44d3IkDx9zKJuVW7izDkaP7cLjwKCrEKEUWu8vhKC/EkUN7sHv/Yew7BhTIpVGfeLhubcdgO34U+w4X4nBRBYpsHuw/elzaKEKFQ1aX7w8UvwWW/btyEyZMmPgjYZLCJkycIkxS+J8lnX8lzvDkLxf7ZsjEnwJuRNSmy4HMzIYIDq4j91gy4mIvQuOGI5GRPgoZiqSkJ2v18BF/B1JYkcEkgU+Sqvxfqf/3EdrnC88hR6scrdbRfiJznDYUmRkDkJ3VC5d0GYNt28tQXGq8KMbw9zG3NiZM/BXgPejwktgS8FbU4iQLcgC7P3sKX16QhMUda2JhXgiWtYnE8jY1sLRFsIorTFkl8muE6ZkgJICX5YVhSetgLGpnkfmROWkZjI3NwrC5SQTWNQ/H4laB+KRDGIZnWlBPPvsFRlpwYY9uap7pqHgmP/4YWKFMkawyCWT39gNLHgduiFmO6wKOo1/sAYxruwy2daKs+V9RI9/p8sXqPaUJZFW2yY8QviQJXw8JZ+ULTCaaR14o6U+FCeANwt9fOojAyaJZRYqR52WoAKa8fBmuA2Vl5Zg27XP07dtP7QXo/UsimOEhtMcwCWGGk2D+rFmzMH78eDRr1gyhoaEqZnB+fr5qjyEgeCwvL/9FKJ4/mhgmbck5MIhhGasihaVPDltNqPzwOCTNF+2JHN+Hb5+/DWkxwWh0dk+sPUhyXVSkXplMcVEpsG7DATz3/KsYMbw/Ro0egCeffwyLV65CsU2uOZUp0ixXjV3quaSvkoM78OyNXVEv1IJL5d46ZHP6/tjgwp6NK3D5RZciMCwdF3YdhH0FpXB43DhyYA+WLZyDBx+4G4PzB2Lc7RPwyuT3sHl7Edx2L0oOrMJzj9+GG2+5Az8tXosS6ae49Bi+ePdpjBPb7v3XK9h/WNaGqwL7tm3CHfc+iLsefATbdu2E02XD4f278MUnH2PcmDEYmj8adz74FL5fuAYHipxwu5yoPLYDU956AYOGj8Ijz76CD6Z9g/yxN+PO+x7Euo2b1RQqclmBiaoThV/mmDBhwsSfB5MUNmHiFGGSwv88UXGGBz1XbT7ue2W6fFjnxzoTfzT4AZukMI+9rrsBNWqkyD2Whgb1r0BaygDfi+ZICucjPZMhJAaLDPUjM/984rUaKZxJ71qGsqBn8AlRxDDLmP7bConr0Uo4l1arSNroEyLnWTKGzPSBaJDcAxecPxwbNhTKJlD2UtzQqhexmFsbEyb+CvDO4x2oOBxybBRFCkuifAc2vXM3Zp4fj1UdY7CwVTAWt47A0rZxWNIyFGtbWrBOvVTtzCWFV+cGYUPzcKxtEWKEjZC52Nw0GFubhGFj00iZowis7RCFL1oE4r4UC9rIZ7/acQEYODL/BG94Bj/+SCg65Z/6gr6PFF77BjAyZxt6BO9C77pb8HDPrXBuEWU/Dpjco9NhEK2nBN8NQA9UxV+qU8aALRWbjskZpUikTBQcIqJBJXXD+ET9UBTer4p66ZwfKczwDfQK7t69u3oxXFpaGr744ouqsBEkgkkKkyCmh/BPP/2E/v37IzY2VsUNDgoKQr169TBx4kRFCOtQEJoAZh8kh3muSeI/CidIYY5VxqhIYUlS1LTID8ZXlt/zXs5D0T58/cQ4JIdbkHHWtVi632PEC650wVViw1effo8LO8tnuNoNkJqWhMzMukhJqYkeV1+Bb35chXJpiiGLOVS+oJBXil2VH92BpydcirohFnS84CLMXf0zlm78Get/XovpUyejY5sOCK2Rg6v7jEeZzYFjBUfwxssvoUPbNqhRMxo5TbLQID0BydYMDB15Hzas34JDO+Yhv39X1K6VhNvueRyF0vf23VtxzSV5iAq2ILvFeViweB0ZaXw8+U3ExDdEo7xO2LFnI/bv34S7b5+IxtmNkJKcgaycJkhKbYALL++Jj6Yvh93mhX3vMtw45EpYQiMQEZ+K9GZtkNawBTp3vQJrNmxSX9xwy/X1TaRPjGtMMHXizIQJEyb+XJiksAkTpwiTFP5nyuX3zMS5+a9Wm5OB97yL7fuO+mbLxB8H2fw4HbJR8GLt2p+Rn38b4mJzkZXZG1kZw1ToCJKT+qVo1vTBInwhGj2Ixyhi89cJzz9O/ElhRQDrPLFRiaRVnq/s7yv0ama4CJ+nsIrfzDRJ4jEyv5K2DoM1rS9ysnohN/daTP1kHopK3CgpK5UrZ5LCJkz8VSDN4Kz0GB5p5B+0I6Q8T7et+REf39oLLzcOwJy2EVjYOhSLWoVhaesaWJYbqryE15zhpPDalkHY3DQMPzcLVrGVVytSmHkyPy0isCo3DKvygjC/TRQ+bBqDPjUtGNDjfMyc9d0JcvEMBpcduWD1wjPGoi0FipYDk28qxNiO63HzxSux8F1RKBBF9QcLmTBWEnF7SIRK+lTA+r7rwCQvB4MSGJ7CRjxYFWvbKyXU473Bo752Vf0z8WsiP8VIxirWIFG7ZMkSNG7cWJG8devWxSuvvKI8hCkkhRkrmIQwyeNPPvkEjRo1UrpRUVGqHsNH8OV0mgw2XnBnvEhOxxEm9PGPAkfFqThBCkuOHnqVeOFxu+QZI7YV7MTUe/ojLTIAjS4cjBmbK1AsKg5bMY5t3oj86wYiOMKKiy/vg+9++Bpz50zD9T3PQVytKPS4fiw27ixXBL4MUR5VbhFG/PWi/OhWPHVTNxWWIqRGPBo0boP0xk2RnZMOa1JNhAQGo2a9lrjvX6+g8MgBrFw8H62bt0JszVroM2ggFq9YhM8/fw+dzumEuDo5ePChJ1BStAWTX38cibXicXm3q7F+yy4sXbkMOZl1ECT9xNdvgpcmvQ7b/k24efQoWGIaoXf+RJTb9+OjDychuV4iWjRrjQ8/+BKLl6zALbeNR0SturjwqvFynQ/CvXcBbh3WHZaQCEQkpGPgmFuxbP02rNq4FQ6ZTqesdc6ZMYmcXwrTBnSJCRMmTPwVMElhEyZOESYp/M+WC8a8U21ezh/yDGYt3eybMRN/COSDs8vh8HnHAN99txT16p2N7MzrkZnOmMIGQalITBVCgoTwMDDUgUFe/tWk8Im4wSeHjDgtYgqrI23WwpjIo5CRSQ9iksSDkZXZH4kJXRAS0hA1Y7Pw8dSvZAvJf2Sh/tiNqwkTJn4dJBUUB0yWhe77cit6JFlw+AgG39ADWfJZZWC4BR+3CMHC9lFYkhuC5a0isLJVKNa0tsiRhPCZSwqvaxmIbU1CsLlZkIqvTNnYPADrWwRjhczR8lbBWN3SIulwLD4rBV9feS4Kl/0kE14Gp5OE1hkOWXL8soh6pxdf/CW/x8nF2vYB+1cAx36WbBLC6o8VJB1FZNL4e57hG5wMTXBK1BivAL1pKQxmwVZ9nC+bZTFvEK1iqBn5/2G3tJUOtMpmr1fF/OWL4PLy8hAZGYnExERMmjRJhYngC+dmz56NxYsXq5ASe/bsUbojR45E8+bNcc011+Cbb75BWVmZaksTwSdDk8V/NNiDmit1xuvDwUryJCEprubz2B589+gwJIdYkNppIH7aC/D1zB57EdZ89i7apKSjfsY5mDxtjky1Ew7bbiz+4U00b5KGhKyO+OS7deDfD+xOepgzOATJezvKjm7C4zd1R2yQBZbgOFii6yM0Mhox0WGoFR2IBimpuGbwROw9XA778f148fGHUKdGXTRt3hYrNm1Gsa0EZcf3YtLTT6B27VQ0y22HjdtWY+nSWWjdKBOd5FrN+v5HTPvqS4TVCkdU7TgkJGXjtnE348CaOeje5RJEplyAFz+aiSOFG3DbxAGIiYlCt27X4NvvFmLRouWY9NwjSErNQHzDyyRvPrB3Nu4a3hWW8Gg0PfsS/LBknfozhF3mySnCxzGfEcYkcoarLzqmTpyZMGHCxJ8LkxQ2YeIUYZLC/3zpfNOUanNDefPzhb5ZM/G/hldtFmW/5nKrb3euWrUbKSnnIz2tF1IbDERWxjikW8eCL0SzkiRWpDAJ2VFITWV4hr+WFD4RT9hPh+mTCOK/q1itMqfKC5tjkTyf7ZxXzndW1lDk5PRHXOw58uxLRUhYEoYMGw2X1yEbH7p/GVtKEyZM/LkgqUCOyyCFXWRvcKzUhuWr1qFtbi6S5LNKe5Hnm4Zg/lk1saxlMFa1DMHqVkFY2caC5Xl8sdqZ7CkciE3NghURvLK1EVOY87E8LxBLWgdJOgDrWliwoV0kZufG4fPL2gDbVskvq1I18/zy+xlN7PDRr73TYZPlJ/NC4pf/GcpXl9Gd2G2TMhe8Lg88cs6qLh0P+3eDjZOKo5CAo9+pYRZJTMWr8kTsqWI/fR1qvX8L0eVnErbjls8p9OilJy+J3pYtW1R5Cr/22muYMWMG7r//fvTs2RO33HKL8hguLS1V+seOHVPew3ypnGpWGtQhIpSXtYAksU77l/+R4Pg5g8Y8cKDqvxqvkZBcyabXq4NvcCvchRmPDEFquAUNzhmKH/YZwTnsRQcx/V8TkRkaityzrsO89Yfl0ou+5wD2rvkMV1x2NiLq5eHxV79VfxuQj3pwqAASRtzn8sKf8fTt1yI2xIKYxMbo1mskuve4Ej26dcaAPlfh1TffxM8HbOolcKX7N+L2EYNQI6wOLr+yHw7Z2I6MoOIo5nzzORpmN0Zyejamz5+HTds2om/385FVJxrPPvwobpx4G0JTknHxtdchOSkLfS+/At+8/iRaNWmGlPY3YMnOEhw4sBpjRvZEUHAAgkJjEBlTH7E141G3ZiiiatZBvZZX4qOp04E9P+De/MsQHB2Ldl2uwdZDpSiT+eInInoKc06Ny8cfPFM5zFBg6sSZCRMmTPy5MElhEyZOESYpfGbIZbd/+Ys4w3e/+DWc/DRr4n8L+WRcSbcK+V9UZMd7736LpKSzYU29FjlZI1Vs2wYNRqJ+8hCkpBqhIzIySWaOQkoDkpd/ftxef1I4M5MvaBuO1NShYudgJalpDHMxXJX9Wv2/j8gYVCgOzukwJUynWY25bpAyQOQGNGrUD9HR7WWjlI6AoFoYkj8CTm8Fyu2M2cjNjgkTJv5skFQgFebk17udBlFJmmXhqo1o1rgtaspnFXoL39cyBj91iMOK5kHKO5ZhI5a2EWlrwXJ6DJ9Elp4psrqV4S3M+Vgu87GovQVzz7JgXgdJt6WOBT+3YFiJAPzQtiY+v6INjn7/CbwFe2SW6eVIUvMMpnb46OcCVB+L7HB6SmCT3ws6i7/WjXgBNjmRlUmXYikg0fpLmuz3QBriHyYrGSbC+GzG9nTbFKWjLKJXskPKGV6CQSb8gh8pO38pJPVIYPNIkpbErY4p3Pv665CYlKBiCt92223o0qULIiIiVJzhBg0a4Ouvv1b6drusEx/hSyHRy3MthCaH2fYfTQT7g72r66TOOJe+a0ITfKLnUVlasAtf3n29IoVTLxyF6buMyCC2wj348bEJaBYZisZteuKH1YfU3YHKgyj8eRp6dG6LsHpt8MAL02GXJcC2nIoWZvCJIpQcXYdHbr4aNcMs6HRJf2w7IHOtQo3wmpXDLmuoUE6dIqW7VmDioN6im4iLLr0eu8rs0pfMa9EhzJ/+KZo3zERKdkN8MnclDhYV4dl7RqBRnAWDundHpwu6oEbrDnj0nY9x6QVd0aVlLu4b1BONM7Nx/oB7sV/a37tnNYYN6I6IyBA0bJaLYaMm4uabbsfNI4Yif8R4jHroHSxctgbYNQN3D7oYwdFx6Np3FA6UAcUyheUiylNYLDdjCpswYeLvCpMUNmHiFHE6kcK0lV9l+y34E56/Roye6aLiDA+vHme4312TsWX3Ed8M/rNBL5c/BfLJ2Ks8iYCPPvgULfLOQXCYFTnWa5GdOQwJGUPQpP1NaN06H62a9UNmWi/kZA5BBknhlFFIlWMaw0hYxyM9bRwy0keJDEemdajoMHzDaKWTmj4SaYyRmzkGKZKfkj4IjZuNQaPssdImCVySoYOkznBkZY5FahrbHg1rxmhpX+pSh2nrCDkniToAzZoz1MJwlZeRNRq5uTejdSu2SQ/nIaJvEMgMx2CV9qxsL1PsFvvSlHcuvXGlvbR8ZMp5RvowpLI9Es1p0rbo8yVwqexT8tJENyNtBLJljGlpw6QtqS/tpZLgzWSbMgZ6+lJXxlEVEkL1QzuZx5AQYhfjM2fKPEjb6Zlil9TNzhYbrIOl74Fo2HQEWrcZjzYthqNxRk/UiMmTZ19dhEbEYeDQoSg4ViiXjhsdbnx4FOidjr8oMEE9iuDXdE7O85dTwf/XXlUex8AtMt3btIvbr4xLgQlNfehMfyWd549fK+dR0XoiegPpg1/yBHTdk8WHX8kyxsC29fbfN6Yq8Jzy/7XzW9CKup0T7Rn/Tmj8lmgY5/xnvPzot+pXB3N+X79afgu/pmsI/2kbSQwaHqNaNKrrUs8gEU/8o736vuD10ddIXydpwb9higIT9Ir0wO41iC54SQc7UOH1YM7iZWjeLFeRwo1EHs2Nxuy2MVjdPAgbWwZjdQsLlrQ2iGHGFF7VKgBLWwfLOWPrBqi8NbmBWJUbhOWtQ7GsdQiWSv6K1gHKo5ZhJ1bTw1iOy/OCsEyE5LKKy5sbjJW5YVjWKkLaDFHetyRcl0v95XnSRyvJY922JKONOL7sj17Ly0RnWV6o1AvHwjbhWCx9r2wVpOwzwlwYtq5sFSj6fDkcbWa7JHZlXAyPIfnsh3qUFVLGMdFWNS5KrvTbMgRrWoaKsH0fKdzOgjlnWTC3gwWL2wSp/tbLXC2U9Kst62BERi3c0/ty/Lz4R3g8FTL7vute7drwXpbr4Z/H44nl6YNeq/onnwP6mSJlVXqGRhWqTn3rhZ2r86oCP/Cc/Zy0pkSqrz/J09VPqBiiflCHtvEokKyqMYsJfHkYE5UqloQkyQEXSA5fyUBeT6pVyrrkenWrnzwXVQ7hlCCNMGYw+2WDPtAsYxj8SeNohF3OHZJjkMIMNuEb+X8MkrgMH0GZOXMGJkwYjyuvvBIJCQnKa5jhJCgdO3ZUMYW1ty/DRGiwDRLFmgjWeQTz/InhP5ogZuu0wNe7/m/MiS/hFtv41HLL9XMd249pT9yC5OhwZHbsjdnb7SikTnkBFr75OJrXikR6w/b4bNYKFLv5wrxCrPrpbbRqnILkJhfgva9XoUI6NFYSrwA9p0tRXrARj95+DaIjLDira19sPyxK6jaSNerxwiF98NNohcsJx9EtePKuCYiXzyF5bc/Dkp37pS+5poX78MGLTyM5KQEN89pj3vYjKLRXYMGXL6GjNRopkRFIrJ+Jht2ux48bd+C+iTejjjwbrTXCkdwgAxOe/gDHpY+ioztw101DUSs2Br37DsDBIjtcMhbP8QPYt2cf1h70ih1i0N65uGvY5QiNqY2u1w/H9iMV6g9y9FkvdXCF+c2rSlGYNmHChIm/HiYpbMLEKeJ0IoVpJ+W3yGF/svPXSFFTDLlw7LvV5uqcQU/j+0U/+2bxn4v58+fDarXijTfeUBuVPwpqPySflb0VbrRr1Q6W0GBYAmqgfuwFyMkahMyLbsZrP2zHzO9X4JXH30KLjK5omtEHWWnDkZoyGslpo5FivRHpqXchvcHtyMoYj+yM4chM7o/s1CHIyJiA+mnjkZw+FqlZ45CefTPqpQ5D47yRGDnuY3Q570lkJecjJ4desb2QmToczRvdicSk0WhgvQmpmROkfemn/jCxZwIapI5EVqMRuOSyW3HjTe8iVXnVjsal3V7ClKmH8eUnm9Cn571o3nAwMtOGiI1DkJN9IxokjUFaygSk5UxAonWYtDsc6VkkekeiQfIQNMoYJnYPQYNsGVfOOKTUH42G6TcjO+tG1EvJR2rDcWLPSKTXG47cnFtQv95AWHNGiYyX8cl4c4ajQdoAGeNwZDWW8SYPVQS5VcqysscgNT0fKWn5yJD5SkuV9jIGSN3hUncCMrJuRf36A9CiyWhkyLxlWgdg9E0f48vpBzBz6nZ0aNgT9eq2ledJLMJionHz7RNlYyvXTO1pucXzbXp5LZnH5XJiVyRgBjfm1OPFlgPLKdwnaWH+yaLLfKhSlx9K/PNEqqAzfqs9/3IelY3cpPILsfRg4haPZIMcqKPHo3R5wnLqS6bK00rVFH3wb8RX7munEmUiJSIkLU6QTNWEeUpO7sMnWsEvS52rH5xzfqmVtrIP+sidqHLi+rFNgX+hv5xIVINhs6INRNi203ck/eP3de7fENWq/ODRyCN5xLoGfcTWf6HvJ4bd7FsL6/Bf9Xq/JSe35y+/pm+0y3+0j19cNogmXX5yGyRTDL9Ep9LlmfHPDbfyhDMIqxNfg2ea14NrT1o80bESEkXGONmeXVIVki6Vy3hcysvh8TqwfdcWdLmkExIDLOgknwHeaBOFJW2jsb5FCDa2CMWKZhYsa2fB4lyD9FzbKgjzWodhYfsIRfySNN3QIgirRXdZ2xpYKPXntrRgZYdgrGojR0n/zKPUXZoXhsUkjdsapPC65pFY3TwOi1rFq3qL20tfHagXgGWto7CwVTQWtbZg9dkGEbxW2ljXiuUWLGgVgCWtY7GgXTxmtq+liOxVuSFY29IghVdJvTWKFA7Bkjxpq00E5rcLxNLWQdjQLALrm0dhaSuRvHCszhX7cwNVXOAVeUFYITavlXFtpHDMTaKwrkUNrGFIDbYp7ZMkny/zsqBdkNgRpvLWSZ8zz47EkJR4NJC5TAyxYOzw/vBWOlVUBBWmQF8fXnC5l/mV+KprxjxeNx93eUKPJ7xveMpMPk9Ifcka0OQq21Y6xnNB/WA+Ra8XeuLyBvIVKD2CCZXPtaTXmXGfsz2uQK5bY72xDd+By463lK9/NTi1TmVM1FV5UixCT2DyY0qdeeXyQ5ZhwWJg42SRD6RsuxSKmWXStTHCCmlFTjh8NitVTg1s4N81wjI9acagjH//edfqnlNzaYBpt9uFI0eOqJAR0dHRyks4IyMDV199Nb7//ntFHJ8O+O054FwZzxnlXS3PlbKSQrz+wtOIja6Jlq0vxIZth4wV5SrHjhVz0f+KzqgVF4Feffth7sotmLdkBcaPvAF1akWhyxUDsGJLgVpFJIbV2vRIbZcdZUc24ZG7eiIsyoK2V/TCjqOiwF/DXB+yTuh5y9l0SG+OisNY8P1naJ+TKu3WwsDbH8TiDZux6NtpuPaSCxBXOxFDb74LO2Vp20T/0PpvMbhra9SQezcqJgnXjvsX9pW6MfnFB5AQbUFIcARSm7TDd6u3qbvPVXIYH772PBrUTUCTFq0w6b2PsGbDGnz00kMYeN2VuPHeZ7Fz70E49y/DTUOuRnBkLVx27RAckcXN37DqrpSp4/Lm7PGONO5vY+0p8KDFhAkTJv4CmKSwCROniNORFP4tctif6Pw1MtSUE9L5pqnV5ovy2mcLfDP5zwRJYb12+BVJxs37I8hhB1/GYew/kGXNhIUvGwmsieT4zkhJuw7DH/sMm2Vz4BGd/RsLcEO3schKugw5afnIyhyP9IajkJyeLzbeiPSUCchIHYqMlP5Ir98fDfmiNMYdzhwLa/YY1LPmIz55MNqffzfenroaW3YAA695Hg2T+yIx+SpkNB6InKwRaJA0CNnZo5HTaCwS2U7jsWjUcBziE/ogo9k49BowCevXlWDeT7tkI9gXSQ36o+cNL6FUdgT8puzEsY/AWr87sjMGIys7H+nWYbAm5yO1wXAkkZxtNApZDenNy9ANY5CVMQqN0qXPdLG70XAkpA6WdscjM22c2D8cqWnDkSjHzJybYE0ahabp49GkyUikZAxAfRlTasYIaas/MrIGIDV7iMzHMGRnjkNasvTbYBByckRX+s1qeKPMzTg0yibR3BfJYl9a9k2o14Aez0ORQxtEPyWpN15+ezXsck3K9gKXtesj9ndAZEwq2p19DmbNna1iAzoZPE8RC77dPTc5ev9Dqdr0cN1w+0iRAn899UMaY97J9Sk635fw39BXF//Nl6+iLvxFWzyhTX79qnMSJKQuKByT6PnX122oBHVFp6o+f3C3q8W/EsW/THRVHYJz4tv96kweqsoJnvi3wbRW8qX1aTXhD92/ISerVLOJ+IUC6/n360NVOVG9D13o/88gU39xhZRoGBoGwXwyIax1/fWrg/ZxDjUBS6KWbZzo72SpaqtaQo+VdvCfkVu9Lu3SxDWFOYYe5QRYn+X05iUh74Tb61bedy6PtKGNUMI+9b1krK3KSlkbipSTU39dBcM6Rdu4RN8r9bxOadcJu70Yb0x6FFc3j8eYFAumnRWD5W3DsbZFMDbkRWJ1XiiWtw/EstYWbFRetcGY1SoIc9oGYkVbetFasK4ZSdRALJH8pe1DMZ+kaYdALJA6y9sFYn0Hg0ilh7ARgsLwwl0nfaxpGYZleeFGiAopYz9LcgOwpn0cVrerLedBWHOW9NNO+mA9KSepTGJ4dW44lrSOwswOUfipXRjWtGCIB6OPFSLrSe6KLMsLwaLWwVgkNi9rHaj6XdsyWPKDsaRNgOqbpPPypiR2Zbx5QWKD9CV9klhe1YShNCKwMjfE540cqMZAz2bay5fxMWzE+vYWfN4+Br2SklDPEoLYgED0uLQzXI4KeOXa6DWhrou6Nor2OnG91HqUU15GCrPU+uK1lisoGUYenwO87rzmUs5MVXaij2q3s2aZq85FfAdfUsAU9dgmj6IoWcylBcaq5XqjLZIvpzoWL0tUw4olZn2DljOMMLrk3cYXhjG6ssqWoR+YCzx3/UqMb7gYN+bOw9cPH1IxBthDmeiVyj8HqTMa4PfI+zvjZFKYoJcvYwTzpXIkgnv06IHXX38du3btUuX+4SFOTxhXmN7VfHbxShcVF+Kpp55GjZha6NjhImzZulddQrc8f9zFR/Hlh2+gQ5sc1K5bG6mN2yOjSR6S68WhY8d2+ODTGeq3Kv9kcozBgbnQGCLCXYmyw9vxwO3XIDTagjZXXI3tR2Wd6cegdGCXtWKsUobwKEfZ0T14/r6JaJKThYjURkhv0RodGmcgM7E2ul91HX5Yvl6FtWCACvuBpXj6tsGIDwtB3YQs3P3cJzgu3c+f+a585qqF4Kg66NyzP7YWHFd98APc/q2bcPOo0UhMrIeIhETktstFVmI4mmel4O6HnkVhYRFK9soaH9oLoVG1ceX1+dhztELV511M4Xq3e9SdITPJuaTImLmM/MWECRMm/gKYpLAJE6cITQrz+HcXTeidLCwjOexPcP4aEWpKdbns9q9w9uDnq83bHS98CZvD2FD90+BPCmtJTU3FK6+88j8nh138eqW0mVK/gfQTBEtwXdSp2xmpjW7A+z9uUm+4LuJ3+2Qv+ez9k9Es7TI0zRiJ9LRRSMnug+TsXmjYfCSysoYgo0EvNM0ahKxMOc8cjUbZw2FN7Y+0jEFIzR6MBg2HoN+ol3GwFDh4uAL5ve5Ek5QeSGvcF/FZNyCj4WCkW29AZkZPpKV2R2Z6L+Rk9ZO2pW7mAOR0HIfp84+gvBhYMnsdMtJ7oH56T9ww4ilsP+xCRVkx/o+9twCs6tjahg/uUChOkqMxJC5oKbSFCrRocUtICMEpdXdXCsXdaSm0heIOSYgHd7dAAnHP869n9jkh9HLv+7/f+33vbW/3gpW998yaNWtmz56z5znrrHl92qtwt/aEu1uIAmrd3EahpXU43KW8iydDYoyCk/MweLiOhYf7FLhKW1yNQ+BmGaTkm7sMRyvvaXByCkUrt7Fwt4TD5jZF+EW4mqbB0iIcHh5D4eoxGM7mEEmPRGvPELRuNRJNXPrDRdra2mOaLHomoKXYbXQZAidzuOieKmWlPuMU6Y9wmD3GiO2iq/VE6auRStbdeTRs0l9fztyjQOG0c4XoFtgLHtYueKL7cGzdFaMWgtm5BD94Vn4ZRGYamav+BzHzKMcyXEY5/Gt4LfkPXDRxQaWV0RapZJ6Xv9b4ni2sS8rdp4t6WH/5esvJakL/PSrTTeKJo42OdpId18yzC/PAKh1cpsehQ2uvAyDUzkWHwzPQIa/ACso7+tMO3ihZOZDL1XOvKP8x8UHk0EkbWL/DBrZBqLxOTdk9/mP6fW0p144yQZ7/kz4iOfSU6SNRjrpEtnx9qixt5b0l21GFewXtxGvKCqv+owJHWwldsKxdP7P/yIocFQs9MI/6tftXUpol1VCv1CFZDk9M7g1HzM1hiqbO0bZcUZeD4hLh4nyUlBRrmB5l7HURcyoUHerX6dQnnJUv5fm7/LTLiJv5DhZ2boatHeogmiEXvA2ID6iBuKCaiAqopAG+rSsgyqcydrergn0dDEjuaEASgVovAw7LUXnLdjIgKsiAg5K/OaAKdrWrg/3B9BDWvHfp6UvvW3KK7z2gN1n4BIFfyY9qbUCcT03Ee9VAtAfPaYscCQYHGhAtcolyfbqNBvzuaG8QmzRPZnIUQV7hE2LXMWEF4LK83cuXgLGDo0TXLmnHgbZaTOAj3hWxz7cqdgZWx4HOdSW9EmIJLotsDMNQCCf6VlCexLSd7TnsXUmFlogWuQ0dWmBECzOaG6qivqEm+j79nNymYhTl08M/S7qez5x2T9Q95w3mfZI/pUiXv3eEtS8qtF8GcHzx5isRje33tDzzwKyy4eFIKJ9Ylinyku/IpmiZhvLzhePSnqQV5tyZI1kOzpZr+k1yzNrbowpQM2EuescT4r0jrbgtIzZTxrLIpAL7pwOjnFLwfKVTGPbQcbza+SSyj0q1UpQ/sM+VcirydaH0AX9qQr1/AfojKMxrgr4Eh+/cuVO2iRyJ6eVDRvw1ie0tkjGXh0L7roEZmelYvnw5ujz6BMLDJuPixZvKW17NN7yf2bexd+cvGD9pPFoGdEFQpyfw4rTxSDmciDy5/3ekS/jWwNmN73sokPsvj0He7euY//0raNvJA/0mTMap6/JyRaE8+YyScnky8PkbC4LChQVST1E+ilKv4pd1P+PZkZFSVzs891hHfP/ZRzhx5qKq44Yw5UvvHMPP8z/H4+3aonffEfjt4Dlkic6LJw5gyoQRaNu1B97/+gdkiF7K85cdpYVFuH3xIqZ//RWCunSGd5AvenTviDXLF0sfiE6ZdG+di8O3n72NoA5d8PLbn+HctTtqtpfmKOZTpQHCjs9ZMp8h7VDGOumkk07/BtJBYZ10+h/SvwJb/2pct4kFLbtF6KDwf4OffXsrOkfMuQ8Ybmr0RGBwO3Tu3Pk/in18fB44bsjcSGX6dFn9/V8geluVCudkZSLQPxCVDTWkjqao3eQJdHr2VZy4mY9UWZOsWX1COSsd2JKCx4P6w9N5JIwtwmByHwqr11D0HvwZho/8Ft06jIOX62AYbeHwbfsKQkd8hVGDP1IxiZ2sQ9C11yf4ZNZuBf+k3UrD9He+x8h+r6GF5yg0bjka3Xu+jhHDP0DIqI8wdswX6Nv7NZhdnkVrjxB4eofhmdBPEXdBDJE1zbmk0xgd+haCu4zGgIjPcfmOtCe/EG9MfRn9+kzF4OGfoO+Qt9DzuZfR2jIA5uYDYW41FS4tx6FDx0iMGPYRRoz8DqNCpuOp7pPg1bIvbMY+sNmGon23NzA4dAZGD/8Yj3UMx5Bh36D/oBno2fNb9On1OQYNfBU9eo5Dt6dew7AR32HooLcwaNAraOnXBx27jseIoXMQOnQWBj3/Btp49YaHVwhMttGwOIXD0zYOz/X7DP2Hf4GBIV8hfMJM9JE+8HTtizbWUJEZiu9mRyFbOin3KtDVuwdcjV3R/clwJKRcVhu+qGUad5tXIBaXQFwKaWCWxuxhLpPsC/+yRRAXR5RlPuVYxrGcoh6HoIMpzzo0D1CNef7P+I9LM/tiTDHPmUZ9DjmeqwY9mMuo3MUfZcpl3aP/QoBJ5c1xmKrM5R9HHxFsINv7k3kOOQcr9VTCvnTIs31C5eph0Xu34g+gsJZ4jxUx39GXjv4UYj6z/itWuvjH0UgH89pREc/trAwkl8t28D/oE3t47iheVif1s+0OZibLOMihzG6LArwcZRzjl31t1+/QW6bfzg6djusHyaj7KLq5wRYDrzrkWKUk3b4BpKcCWcRAOKVQVGRUqZJi5fXrgBVYVJGcqHsoQsWUF11khiclHswWKJAm6yaurJ2BX57zxPYOdXDQ14AYLwMO+VXDocAaOOCjxe9NDqiDvQF18WvnpljdoT62Pt4Iu7s2wp6OjbCrbV3sbldVbby209uA6LYMr1AT0R0exn7/mogPrqVA2QTRnUgvXAf73WPGL07xZzzfikgIrI2YwIcQFdwIMY+4ILpdfSQGVUQsbRMZgsJHxUaGlFDhKALtoC49g+nBK0yAmXpVnGKRd9TLuMCMG0yAmHkEmQlYn2F+KwMOBNXDtuB6+D2oFrYwBnL7SjgUVEHFLWY/JPlWUGD0EZE/Kkdlh09FVefPwQ0Q0aQeLPLZ16hCZQzq3UuGixYmQgOFCapq90a7QXKQ+6MdMoUz5JZzOyxuv6WByGXPHoXs8op5rg6ahNzWMi6XfU/+vjK81Pzj+a/cqNEyy7EA4lVjAAD4wUlEQVQaQ+qU/+hVnyus+fKSNWCYo0kqKFdOK0F5xlTOkqcmQ85FjrEkrgNb3gcGPnQcQ6vdxNA6F/BCwHncOSTFZEgWSfsZ0Vd5TubZyyidf356kLcwyZFePhYwgeK/jpfwP7sBvM9FKCjUxgHB4ZzcTBQWFqFIprI8ma/4hVReYQkKeMFJrFg+d0qz5bYWI0Om0Fy55yybX5inQkDkCPONgeEVtAlMjpx2GWoj96KMigwV15efXtr4kApEiN7oOVJ/gfJal6QCORJ0l/FDADiPaYWio0BkRK2cqQBQBVSed0Xk5MWsSOwUdaw/U4qjJE3ZSpsoz2ezoCibwxSFdPQQ/QXZmciWuZSjtiBPNMo559kS9es26syU9sucKzpoKdmxyZzGDliYDVaN1uwvzzrppJNO/wbSQWGddPof0po1a1ToiL8CPwjMI+uewv9zLh9n+EF9/HfgRo0aYd26dfYn4/+USpGbz5iY8uJflI933nwXrs1boZLBGTVdnsbED1cjU97yjx69iPCwxbh7C7h9MQch/SNga9IXnuZxaOo8CE/0fg8HDxcjW9YR875YD19bLzh5hCJ82ipkySqjQN7f+/d5FY2cnsOS327jjKwH+AKPYilwOxNJBy7DPfhl9I1YiZ83piBb1vu3U2WNew2Iib6JF6fMgatTfwwY+DlirxcrLxS1esjIwY3rd/HuF0vQc9TnOCMZpbJK2bFuOxISr+CmrEDuyov/tj1JGN77fXhZxqOZ6VW0e+ILrFy9C5lSPjW9BOlSZn/UYUye8B5am5+Bq6UXQl+ei0uyOuKvwvdu3omrNwpw5Tbw7icbsXXnZeV5FRubgg2/xiNN2sd1WXxCMt7++FMsW7sVVy/JYkf0Xrx0DZNefAmWlk/AxdoLrTxHYNiQr7B931XlLX2ZbZU6Tpy7gu++XYmOAWPg3KQ/ZsxJVHGD754Dunr1kb5+Bt27j0dUzAUFPnEBl5EplXCxoxY3XPSoFZ6dywFrzLeviTRZx2qQ+fa0sjz+oTA7mD9fdYC9PL/ne/PHYhrzH2Uc5aiDdTkqtx/Ks4N4TrHyfJ+M/cSR5pBR9Ie8/4oVyQnP1SrUzuXN5Q1WsTy5RKanFhfccs105t9beWqs9FKBo//Zv9IfrIaqyrO9am2xqgpqpCX+IysqO7mXzuLk8nY40h7EjnJ/LP/AfPlTxuXSy8vxvHzdf7ShrJz8UewoUK7TFdAgaWUsMg5k9kFcprMcl8+negc7rsun2+9zgTx78VE3sX3zHRzcV4rjR7X5hvt75sptphMdrVS/sBamSX/sCnUtcmQCw/Ta411nQsmN84id8TaWPe6Cze1qIzqwsgqTEBdQA7HC0b4Ml1ANsa2rIfHpNjj9/iTEfTgNiR9MxZH3puLsuy/hwpvjcf2tUTg5KgixnRibl961NZASWA8HW1ZHnG8jxPg4I4rxg4MqITrIgASRURu5+TIshdTHMm0rKu/jfT4VsCX4YSQPeRS33hiLtAl9cLpDHRxpY0C8T0UkBNUQXVVwyLsSjnlVwYnWlXDCq6ICabkhHT2D9wdXwL7gyjgQXB2HAisowJlxgo8wfIR3ValT0uT6tJcB50TvmdZiUytp+yMtsDXwYWyW+hN6WHFhSCvsa6dtaBdLcFzqJ/jMuo7x6K21IybYgC2d6uA9cxUEy+eeT/O6+OjdqSgp5NzH37AQuLffC7L9XD2mctTiRzPEAmcjnms+jxwS2ixmnye1BJWiAbuOMvZxIMyyJQruIrTFO+3I0b4M02JWE3x21KHgV8XUS9ZIG4jUruVz1qR1BfKXcaoL5PwelKXK0za7fWStjDaclV5eyPjd/C4woG4KhlW/hCG1TuD1DtdwN0ry1MCUdlEZZe3Tv1b4z0//FSjMTeXKX5P+/MAw7fxnN4CjswhFxbkKEC5Rn0W8cZIjzeL3TmymaiFVFMoNzZNxWcxfRZSoOatQmGOKXwPkS9FM6SJ+Mqme4pdkjnHAY+ldkcrGLSnDJ0ILh8Nxzi8qGB04H1kEjylLBbky3vOKkCV2KH0FIk8w3p5NHRzHKJUXHHo6y+RInLnsk7E4Q8RzkC3l+QSxHpZiWXX78lk/rac+6QtlDz3DpbzUDSlPEDwvnwGEREbSOf/mFzFWvPbk8SnWDCbTMntf8+BgnXTSSad/A+mgsE46/Y3ojyCeAwx2kA4K/59zeVDYybsbnIWHhETi7bff/o/hUaNG/cMYIterVw8ffvjh/5WNVLjsyC/KlVdm+Scv0pfOXcdnb87Aww/5oZnvICzachR5BTlYuXAV2ga9iL27pYxUO+PT6Wjt/Cza2Mao8Amdn3kf0cfklV7ezud9slryuqOR2yiMfmWVeh+/e/EaBvd9Ec1c+mBA5Cos2nBJLU6L72Zj05JNeG3ydDwx8BMky6KWHnuHYy7hi8/WY+PvF5Ah64k7svYPH/Au2voOxStf/Iwj10WprALSzp7H5x/PQ8/+r6HPmFk4fVMalSM6ruVjyaK9mD5vG45cuq28Zn5dFoPglqEwt3oFS9anIV/WFXExMfj0s7lY/eNuWfAAZ06kYuRzr8LUrBvC31kAquNOPtmXb2L+3A344rvf0e25d/HTrydkkSKLdlFyYPclzJ65A4ePXFOOV9QbH3cJc76PQmxUJgok8VBiIrp1HwujSz+0DX4Ra3+8ivOXgd+2ncR7Xy7FL9ujkCurvLQ7uRjS7zU4N30a02dHI1vaknmhBN0DnoOryyOw2bpi2ktf4sTpqyhk8GQusbiCUosbLnq4POIyysG8lnTHAsjBiuzpLEYuSyccQaCFMVjpvUbvOsdmXvx3vypH9WRNFcEMgh0aSEJPJU2ftvQrJ/iHeoUcihxcRrwoJ1wuX9PNOpivEv41qwPbWA4MKr92dLCqjjazn7lgJRMgljLU88dy9uqZr/WdFsPW0WflWTOF/1iQy2DWU2ac1qcOtudo7fuHysoL2Fny/vGm/COXyf+R5Y/SwXpoF+2z26gQUOZTzsEiWx7ELW8iWcnwDxMduv7AChimHrn8I99XnvY42FGRsLJLhCnvSLaXV7eQ544i9mOB3M5dWy9g9ozTWDA3FatWpGPjb9k4sL8Ix2Quu3Zd5q0M7XkulDL0IlZzlr2pjipUtWq3L0kRO/MlLSs3G9t+XYPX+nbGS64VsFptNFcTSf7VkOTHOLqVEUdv24DKiPKthXPjegOnk4DsVKn0PHDrlPBF4KacXz4KbFmIG688g/0damgbtnlXVLF64/3r4KB/Y0QF1EdcQEXlmUtQONGvIpJ9Gae3EqL86I3LDeQM2O5bFbueaInCHz4AroreI1tw8unmKmxDrE91JATVQ7RfFcSJ/hNelXC8dQUN7PWpqDyCD4muA2LzvqCq2BtcDQeDKyI+UOpTdUp9/tIuqYvXx8XOU14aOJzcujKSgp2xJciEpHF9gMWvy4fIMOx8tDIO0CPZn5vric1sm/SLCiMhdcZLffsJZneuhbVBdfGKRz3MemOyzNMJ0st35bPrzn1DkffDcW/KswNA1Xxk+UwSgNXKlM2TdiU8MI/DxD5U7KygNcnnHEDmndaA3XtM3ZwzyZwz78FSaqwIa3+pmWNfA9G0fJ7Tj5egsgYW36vbIXNPD5nn1KS+v+I0dRXYKrd24ENHMazmLYQ0vIKX25/B3WjJo7kiWMgjCzk+IjSj/rJEr2AHCPxHcDiP36r+qclxJx90E5jGzym2h59xwjKZsanqfsuA4JHjopSTUoHk52TKhXxeF8v4kXvM/Pxi+vne+6ThMOHtVzGuiaQyUQ2iLJnb8pAhZTgs1BegRXelZAbyS+6KSKGIy5NEWcWsXPtUZ/X8DGDYhyKRYZoCclmr6NQ2tLPbQ1Mpz2dJbKBdqg3IFhU58r4p9TJf9JeKLu1TWhKKc5SHML+sU7e7RJ7BEvmMpRnUm6/1DWvlr9+KSsTeIg52Rw0ipBTbqdypTjrppNP/NumgsE46/Y3IAeL9EQx2kA4K//f5QeEjhry6AMfOyQr+P4z+GFO4Vq1aeP3115GRkWGX+J+T9tour/vycp5vd41L3n8JLZp1QsfnX0X0JXkRL8rEtIiJsJqG45NPopSDSWJUNB717QdP54Fo4RSKTt0/RfQJWSrLu/+sdxbD39ITTdqMw7CXVojOYmScO4Xh/aahuVN/1DaGY0DEEm56jeyruRj+1EtwatgVH85dr366ePlIFqYM/RjNGveAX7sJ2J+QrcDRvev2wM/cBc6uoVi/TSRl0XBoxy64OfdEvQZ90TtiIU5xdxPK/rgHrd1GwNkyDPNWRsmiBjgdexad/XvjqQFf4FIWcPtWHj5++xP4temFZ3tMxYmTd9TCedGnG+Hu/AzGfLgUp7j2F9m9q3bB27UPXExD4eIxHus2XkFRfi6yU2/j+afehrXZECxYGKU8YTJvAuOGfwHX5uF4/cWNuJsNpKYVoN8z78K1xRi0bvUGwsf+hvHjV6F9h4liY2+EjP0QqRl3kJGdgY/fnYUWTdpj5oK9KnxE5uUMPO7fEWbnljIO6qFC5cb4/Iv5yjOxkCsstbjhgudBzMVQ2SrOnibEMmSHiGPNJMRFqBbX0vGza81TSPN806BJVZxV/4GZp6kk6EJwQxZ6Ut7xU2htkVgmpFiVlVOOReZrHsb2RbA6JxNwYZ7DUK0wgVctXijBIYKw/Kfp1E7u8b16CNU4ynHE0RuKS89ytjlYKeLCkp7CfO4oy2U1V9JCzLa3Q5Pnf9bg6MN7Pwd3/CRcA5YcbaIe6uPP2ZnGHr7fBK3PNcDpHthMe2kXl+/aElxrg33AKnt5LXn/qFBLI5edOJiZbAx1Ujfr0OzTmDpZl6PBPGd9ZDkvr6Jcn2gn1OewX+sDrTzrYFkRpJijfFlZXrBe9j3vAZn1sa1ML88i67CBR2GCBjwy1EOZfuEiEd+74xoWzEnDnFkFmP1DlnA65s+7jZUrMrDx1wLslo/tc2eBa1eBO/w1gJiqsBBRwTmzsITjWmwpFdvy0yQjB7lFhTh85iSe7PUk6su8/VhVA2b51cK+wDpI9q6OY941kMxN5AIMOOhvwJ62D2F/+LMovnhalEolN+KAk1uF9wnLecZdaa5MKtvnY28/d0RJGYKnR4MMSGpnwN5gA6Il7UQrjeN9KiCOoKq3QYWVIKi6K6Ay9nesg9+DGuK3R7yROvtLuZ1XpHE7EPO8CfvElj1e1REXUA8JXhWQ7CW6/AxIER0EsGN9qiDWuxLihGO9qiJK0vYEV8DuthWwN7CCtM2AfWLPfuEDcn6QbRMm8H1CjkdbV0SyZwvseKQtrv+4SNoobds8Cb93MyCqrR3Ipue0XxXEBAj7V0WsXw0cCqiKmHYVsIttCKqOLc+3R97hBHX/HKPT8azzQGBV87blDKTdJ95uTYRPkvYc3QcK28cDpbVnVyt3rzzTHXORElSk6SJ4q6UqXeqv45nhOLeDvpLs+DJBI7nQCqg0TYejHv5yh3VpeY5aeHSA2moepAph/lyf30eoai8DOz4CBtY/jT6GuxhU9zKmtEvAXRlGKp8hFuhOSXnH1GG3469KBH8deyzw3MF/DaKdDv5HUqOihHOljNnSPBTKS1MxEVB7ETaT3sD5eXIzmS5zT2FhLgqV167ISBJHEm81v7fjrc+WFwf1lYMCfaXf2HVUQpBVLhzDQqHOMob5DpBTkCbqZOywXhFVugvlMy4/T6qUNwNhNc8Kse8Li7jhpv3znoYyj1UIE4fOziuU10Ipr9ydOX45uvklitTHidmOdrNJtEo9DSUyz4rtnOUJKpfky5xbmI1ihrKgXYqlx7i5nOguJhCtWkKmHTSCQnYqd6qTTjrp9L9NOiisk05/I/pnYLCDygObDwJAdb6f/64bzVWrVg2TJk3CrVtEPP/vEhfBhbIM4HKUcer4C73YvZfRoGFbRLwzH5clLetuKsIHh6BTu8l4+eWfkZlVgsy0NAzvFQ4vc0+YLKPQsfuHiD4pixN5957//nIEmHuhvvt4DH95nayPJfHmTQzsMRnNWgxAY88pGDp+JfcqQc7VbEQ+/zEsLZ7BvpM31U8Xd69LQIDzMzAb+6OxqR/e/WKjWrukH7+GpwN7o6XXVGzbJ7bnlSB+9wG4Nu8Fo3kMekcswclUaZSsx98MfwcuTQbAteV4fPTdRrWIuH7iCh4NeEbqnos0imWX4lTyScQeuI7dO69AYe2y4ti/5gLcW/TFiDeW0PFKrUo+nfg+3Fp0g7PLYLh4TML63+VeSN+cSTgBf9NwWBoPwydfbUaWlM+7DjzuMxJuzcdgdMgi9ZPNu1mFGPHc+2jZYjRamCPRzBqGLo++hP59P8A330Vjx94bauly5+5dfP7hfJhaPIovvtsCrvWyrmSie/AjaNLQScZDTRgq1ceo0CkqtIRa2Cjmgqc8cxFE1hZEhBWYXiYuf7juuk9c0hyApgbo3vsZNMEIh0ZVhOWVvMYPchQla+AMxxeBmHugZ3lz7y/LerhkJajKMlwoOphgCNMciz3qo30EXgnA8p+mT9Wh/mkWq+ty9bAWlrkH1BKIYR2iUy2GhViIBzG2RLlHsR9Zh6ZVS6HAPeZB06+1Q/vpbr6cEVQnc5Gt1cM8bbnOG6ml3bPvnn6NNbBLA7M1T0RtwU7W+pawkYO1PqSl9/45iP1AdpyXr5PJilU+/7B22khEiSAX69KALrLWIxrsoCCrMmRA4z9cauAYj8LaiGS644oFtIM6dbBcavWx3vvHhQYua7bxQeVs5hib5YE4HokdqHSpjl+o5MtzvXtHKubPycK8OcC8ucDcOSWY/UMeZs3MxJwf7mLe7HQsXpCGn3/Kwv69JTh5Qk1lMgdKjaKPVjNep/K6K5Bjodxh0b0/8Qgs3m1Qt5IB3jKHf+1VC3sC6iHJqwaOeVVHCjdza2tQAO++wMY4GDpAJiiZvO7cwMll72HjxG7YNaUXfnstDMf27ZTKZMa6EoWYid2x+dGGiOlhRFR/D/zyZAts6mVD7ICWOPFMCxwIrImtbRtjT1crknp5Ib6vN/YP8MbmJ1pgT6cG2CJ1rW/rjauzvhNbb6LwejR+DmuL3/t6Yme/IET19cK+R2viAOMBB1VQ+jZ3dMHW7j7Y1+8RRPXriJieftjbuQV2BlfCXpHZ71cN24LqYOPTTtg2qA12DgvCzkFB2NXXHztELta/OuK86yImyBOxoaOQHZ8AZF9E1p4vsDXEhMQnqyrwOM63Eg6J7IHAajgYVB0H/asgOqiS2qxOsZxv7uWHkqNH1JDkXSerG6zGGccHn7V8GQVFZeNLDSDFksJA0uoo/x3lOPx4lOdejWH568hiMU2AZSSFCfYMnmol7PWUFaIsx4QGsilZYQeWp40aYYc80x3nShu/ZJCWMV0KaE8zZ1FtTuGvN1QH2MsomIx18jG9Auz6ChhujEefmpcwqNkxvPjkHmRIl6nOKqJ+ftDL/KCQNbn8k9ODAN7y4K9jszkSzx0hIx5U7s9HtNF+Ix9ITOd4kXumWGsnm8Yxw/mM85pSIyelBfJ5w2/tOcHZg+tyZuTQUONQDkqTPAdF/KkExw2rsH+rUFLC8pIkfG/u1uZ99dlHMaaTOecp1q4LpH5t/penwh7DvUT0KhtpkpLR9NL+Yvv9UwIiz3q4qadqL42QuqjNniIXmdK+fORSn7qWAc3nRHUGr+2KVSnawJaypMNo5umkk046/TlIB4V10kmnMioPbj4IBNX5Hnd7Yc19/UWe89N+e0/+Z9LBgwcRGhqKS5cYO/H/DREs4o7PfG3me/OV87n4/rvf0NTlUczfEK188kqKipB6MQ3nTwMXL2pgSIm8yM/4ZDr83LrA2dQHj/Z4B4fOyPJU8ua9uwztXQehlst4hL+xQy1Gc85dw5DnXkHT5gPR0H0SRk5diQJZ22ZfTcOYfu/A6twDSdcKkSbv7b8t3YMA5+7wcB+AJubeeOW9H9VPXu+eTEVIz7GwuI/BjoNiu6TF746Gu9NzaNZiOPqPX4Ujsiimk+Sro94VncNg8RiDT3/4Tf1k8dLh8+jWrg9GTlqs/EPzZXVx9fQ5HE2+gaNHspCcfBNH4zKw6osktGwRglFv/IRLXEtkFWPqoFC0ND8Ki+vzaGYLw4+/3lSrq9OHzqK9NQTWxoPw/jcb1K7aaSez0StwJEySFjFugSzxS3Az/QbG9n0dHo37wDUgEpM/+BXHThTh0jnRcQY4TidBKZuZUYAvPliBFo0ex/ezDyFL2pJ1uQDdg7uiYYMWMFSoCUPVehg5ehxyGPiUJOX481GClw6ArVQWfWQu8riY4086uSRSQJnIcx1Gjx0emaF+bqpkNfiBY4LLqfLMX8jzyBoKpa6CknuAZKEswJiu1X6P6cXGtamjnAJcSotRxPiHks4FIhe1Dt306C4Qowi28OeqBHgIfBaW0tOW4G0u8ovonUlwhACO1C761PJPdLBtxD3kVJUrlnLaz1JFjz2fzL5mGUKMtDy3OEfVlVeSIWOFsRXpucv+oNeTjF8N79O8skQPe54b5HBxqgHuWn+rvpaFKduq6deYfeA414CkYmkHgWyWIagqbeACmrKijt6o3EDnXnnVy3Zr88UOAqByn0pykVeaJ2eEw7R62Oe5Uuhe37MUAX6C4LmSlq9sZF1qYzS2i+eUF2Y7uYh3rNflv8jSYsJTpdrPf1mXcA7LswzThPOKeb80awhWFcrCnfWo/ha9WbLCZ5gWxh7PkCMBVO3es99YB++olqZ0Sj695ck5Uobt4uZJ3NhI6w3Gj2T/sV9yxIaCsvZnsY78QrGxBJliNH/FQH3yX7UrX3Ru33obc+fkYfYsYPZsjecIz5Vr8rxZpZgzswDzfshSHsVLFl3Hup9uYN/eLJySZzb1tjyz8oyqXymTxbZMOe5LOg+zdxBqGAxoI/yxe1XsDmyARK+aSG7F2LsGJAYbcMifcX8tiBs0DDgns9KNG0h+ZyiWd6qLnzo9jLmP27Bt+vvAnbMyOe/HvtcGYkWfYDF8FXAiBqd/XoIrvyyTc5lnt32ODf1aYsvwnrj2zedAXByQcghI3obUmS8iqYcNu/0aY2PbANyeP1c69JrMNyexed67yI5ZL5N7PBC1FGc+fgJbn62BrQEGbO5swu9hI3BywVKZpDhZiR37t+HmR+MR+2QTxARURpJffRx80gdnZ3+M4iNRMtGeErmjomsPTr85FdGdWmG7rzMSRz4naXulLdJJHCxZ8mFy+CeUvNMNUdIfUV4VERNYC3uDqiGqYw1tY732BuyRfjrQwYC9gQas7mLFyfXrkXOb41gbu+xzNVg4rkuy5f7ya04NFFYYkUOGIBI/dDiAOeCJlvFoHxD8qXqJzGNFpfzShVCUMMtwYmF5DngehUulPuoukDwmcU5RJ9RHw/hFQWGmpMnRXn+hPFTas54lCWIHJ2OWoV7aYh8/KL4rRw4q7bqwRJsJc+RzWHtCMtSvdzS9LHwLxUU35FwqlyF08XfgrWcSMMScgpHeUZj1ciJK+WUp9dNOzgMlDAtAsI8Gix06/ZuIfa8GoP383kEjR759MGg3UEsW5hjkMFLjnJMsr/lPfUEl8jL3yUhTw4tFGfJKzZkyGHKzZbAoYFVmX+7tIGmal66cSpUsrs3/VC6f3HKh9p2jHlbKz0gVwkGEmSdJ+So2iYxJeRZL1ZdlYoKwmnelHHHbogL5fJDPukKW4Yc13z0KGAc5U9Tkih4+hyInHw40hfaz5dyUji8M9hqEpKzM9+olgh2gmCUkXTFL8cg0yVN8j/4xRSeddNLpf490UFgnnXQqo/IA54OAUJ01Lh8/mPxIyFfYevCYvRd1+p8QX/i5RFCvzvIO/fqr38BQyQrvdoNw5GIuMmQRwA3U8uV9PCONoKWs5SWNwFXs7mg84v8kmjs/g0d7vImEc6XIFNkln61FB4/n0chtHMa89pt6g8++cBMjn38TTsZBqG8dg+FyT/lz7uzr6Qjv+yosTt2x71SG8uDd8VscglyfgqupL2zuA/Dp12vVuuPsocvo0Wk0XDwjsGmvLGhlzRG36wDcXZ6Es2kg+kTMwUkGAZZ1yutj3oPVOATOtlH4fPYWBSKdTTqPrm17Y/TUpbgl+s6fvo0Xx70CN8tjCPAfiJYtuyGwdR/0DHwR5oYDEfbmz8pTmhtnj+07Bm7GbrC4DkMLq9S/TTpE8o4ePIO25pGwNh2ED3/YhLuy/kg7no1nfYfC3GwgIibNk7rykJaVhlFPTYC/uT+6DfoIR24Dd2Vdv2f7GUyYtASjwr5TwGOe2P7JO8vQpEEnfDd7lwKysq5mKVC4bi0XVK/lipp122DEyLdxSxb6eWJGttjHNR3vn/1XtHJXNXCNizrGRM0ROXLmXbmPcg8ZjiNH7hXDL6oFpSwMNVBZW0bR+Z5g1x2RTRf9abJ+TBemzbRTW2oVoaBE2/mfJbkmpd47UgfLkO/KOcuq2KzsS6mAi02NpJRc0xv6lshwsz6WZZl0GQi3pI/Ur2KVpJQrIdhIUFl0SXu52bqjPfxp/+1bcpRyGXLOX8+yF4plIVlYzMWmlBNFzGN8am4oduMGcE34uoyZmwT3pIxUJ63iZjfcBZ1evrIolfbeFLnLl0ReylH+mtTFTQfTpI/yiKBKCQ2otveftPGWvQ3Xr8tR5Fkfz9MkPYdraREukg4plhUw+4H28R7xvl7lL/vPascrV6Ws1Mn+UR5XIltI1Jh9Qfuk3HXReUFkL1HezvwC55KUzRT7aV0+MoWzlJW8V7wnVyX/4mVpj+g/J/LnLmhlea85NtSvi0VWAdVSF8Hcm5J3WdpxUeQuC1+S8qyXaQRiCfASEM5jv0sZlr0pbbok+k8cB5KTgEThpMPAqXNa3bSHQC7rYG/myB+GXbkgfR4Xl4/DKcAR4ZRk4JjoYFvvSB9Slv3NelhvttzAq9LPR0+I7LEiHDlRhORj+TiUkIWklFJ1v3lvOA7Z19u33sXcOfmYNRuKHwQMz5fzBXOAhXOKhXOxcO5dLJ5/G0sX38DKlVex70AejsvHUZq0nyE9bwnvjrmMwOBuaGAwoK3wD151sb/tw4hpUxVJfjUR51sR+30MOOBbATE+jXF4zHDpUA6U6zi1+APseqE3ol4YjH1vjUdazFbpeOmos5uxa2pvzO/dVSbf/VKZDP470hHH90hDFqBk1Xv4efQTuLJuoXTCGemoeODANul0OV5JABa9hu1PeeDHR/xxfe4MuVnSGYVS/toeFB9cKTfkIJAqDTn/E2Lf7I4f2z2MnQM6I2fbehmAcpOPpqDk4G65aaLrUgxyvxuDPU84I76tCXh7gtyURMlLRNbOnXKzjkqHyE0/m4hzE57FpuAmSBrcBVgn9dyUu5bJQSt17ZmDtMltEd++IuICayDavyr2+hkQI9cMe0FQ+GAnA3a2q4Jl5moYKH35nPkxrJu9H0XyPMhjKoNVmM87v3WQDwX1ZZCMjHxec3DIOFF7wxGLlXujvunkNcsxj4OOP3UnQCUDqbhInkl5ZhQaxTrIlJXbo3RIXhHrlTFE2Ep5/Mu5soF65ZkvK8dz1sl0aXZxgczL3HhLKZKKOYB5ynxHPTwyjUwbRHeBGMSa+IVLIX/Kz0mYedQtx5Ly9ckzc2IdsPbdYqz7MgvX5TmjzdzrS/WHmuUccY+1L7J0+ncRBw5vCpnn9oP9VDvh/XHI2O+VXUZ9Fsq4VeIqW+Z2AqP8skA+HIuzslWMYA4VTUWJvFPws03Ge0muiMmgoLewmj21NG7qUJBZpL6Q5hdxyolYdJTyw4AVyTXDdWhwMwXkTUBeMtRnswzoUga3Vp7y8klDWZoj5fjZpUBgfolXIp+w8sFawomYAsW5MqavyrtmOm7KBzHnf9ZJ4mNFC9W4FXG2mVkaWE19NK4caw21syap8f304FSddNJJp/8d0kFhnXTSqYzKA50PAkP/7tzzrS3oHDH7vn4a/sYinLxw096DOv3PiS/ysqyVN3+Cv56tu8BQyYznQ95Bmiw4+TPpjZsSsH59PH5ak4DVq2Ox99AV5RFccLcAA3qOhLOpB4K7TsX+5GxuSI1fFmzFI959EfT4q1j8y1n1bp527goG9J6Kpk690dA2GiMnLlGbZWffyMKUYW+gtfUpfLpkJy7JW/rJM7cxPuRttDQPxrNPvYrklBMoKizCJqnb6twPtqAX8cs+WViLDTFbt8PHoztsnn3QM/QjnJOFcWl2EV6JeBVu1iGwtYrAZz9sU6DwuSPXEOT9JJ4a8CGOX5OFkrTv+8/WoLXHIHTuNAlTp3yP16bNwtPtJqJp/acw7t2fcZELaemDsf3fgLt5EMyWCDRqGo7NW2RBLQuXo7HnEWQeAXPTgfhwzlakyRok80wJegeEwOI0ACHjflDr/NQ76Zg29G24N3ocE99brTawO3M+B2Ehb6G19wi8/u461Xf0Xvz0vRVwat4Bs5dtRHpuMTKuXcPjgZ0R4NMbjz/+Mp55+jN8+O5BxEUB8QeAQ3tLcfmM1h4C7QpgFP0EYQk+njkNxEaVIlZkE2K4uZ6UiSlBYlKBAhvplcNxwHJcABJwvXgBOLAP2LYZ2LEF2PwbsPX3EuzemYOU5BwFKKs6irJkwUePXOD2bdEfl4XdO/KxZWMpfv8F2Cllt4sO6jovQ4HrSurXVmOyDJXzU6eKsXt3NrZsysHWjSXYtlHqlfK7thUQh1JtoJcRwW3aSm+l86fk3u8txh7Rv1P0s8zmDcC+7UDU7gKcPcmfj7I9hYp5zv6J2VuCnZuAn1YU4OfVxfhpVTHWrQF+/aUQsfGFynuV69E8WdhyIUoA8dgRtr8QP60EVi8DVq0A1vxYjLUbMrF5x3VcvixjUdqj+k/qIRZFEHTL73fw89pcVW79Kim7GFgnZX/5MQPx0flce2trWClHQD9XxllSXCF+W3cXS+fdxvyZd7FoVg7mfn8bq5felX7MxdVLUgfvsZRjfQTYCcb+8lsqli5Jx/zZeZjzPbB4LrBobg7Wrr6JhOS7dudIeoAXKUdGAsI7t6dh9fJbmDcnAwvn52H2D3I+9wqWL7uAHdtTFYDN8UBQl/eXnsspRwqxYtVFzJ17DTO/v6PA0rkzCZrmYu3am4hLvKv6j76NuUU5CgwgyL15YzoWzk4V2zIx+/tczJ2Vj9mzMzFv/nVs+OWa+gJBeSmrvpe+kDoPxadixfJTWDj3lvRHKebPAOZ8VyR1ZWHN6ruISxA5KcA6uPyn1/HpcyX4+edMzJl9C3Pn3MKcOamYP/+2XN/E/Hlp2LKlUIH6xCE43+3cnoM5c3M1UFjaMntOqXCxlCOXKHB4trRv/iyI/dLOH8QG6d/Z04F5TKfM3CzMX3hb2n8He+UZS5bnbefu6xjeawxaGgzoI7zCuy72BtTCvjYVkdD+IcQE18RefwMOtq2MXT4VETuxJ+5cPQYZFWKcdBgBW34jRBQ+7y5wLRGl697HpmEdsKz/s/JAx4mMdNrxPbg8uQs2d6iHLc+2xZYXw1CaJg9HahJiPw7B0n7tsfet1+SBPi4T4FbEvD0Qcx5vhasLvwXSpZ7rybgzdyR+7e+BbeER8gAny+A4iSNLP8bK7oE49f4kuYGJwNmdiHl5EBY82QZJX74g+uOl7l+xfcxT2Na+JfCBpEmZk9OGY03nDtg9eRLyT4iu20nImBeKrY/Xxl6/etj+dBfc3SUPdaoMwPXfYm3nutjduSp2+Upf+FRSHsPRfgYktDMgLsiAqEADdgcb8FtAM3xc34KuBie0MTyN8C5zcV3mlBsHpQkyD+aelwGgAF4CnfSCzZHnS/pO5u+MEyIXLVWK7C25P6n75Shl0qQJRVfUYJWHSQrzoeJ4kucwX8bIHemyK3tFdpfI7pSmyPHOIRmnMjcqMFoewPziuzL2MhT4RWA3V7r+rsyvaXs0+XSxMU3quiblihj9SfSXlhLtJYIrSggwyzOdLrbQtnSx87bI3xRb70i350se8bWiQpaRActGEnST7suWuq6K7BXKsxz7QurMSxIx+XyDDCFlJ+sU+1SIVc43cl4qfwgM8osvHRT+dxL7ngOQA0gmMhIP9lONeMF8crl7JcmOHAWUFpbIO1URcuUDIi/zLhLlQ/uXlSsQdeysGgbFnMAlr7AkT6aVDBRyTBGglXHPLzQLZWwVFd7BnQsnsH7FOqz5KQ7HT8lnu1TAzyc1iEq0z1V+5Zwn8vxCRDNNRlRxvnz+8SHkOCUoLLkyqfOLXc63muX8K89lCQFoeX7EJoVJ80uPtJP49eeVWLhhN+JPydyk6qR6fv3MEatdqxOV7tDJRJ49iJlH1kknnXT6c5EOCuukk05lVB7sfBAo+nfmp1/dgA4h397XR2/O+BUF99wMdfq/QgQDNQ9HAr0PO7VG1Ua+mLF4l/o1auKhq2jj3QfNnJ6AxfIMmjXviueHvae88fhuP+PL1XDzGAwPnwjMXpKswKY7smheOW8r5iyLxWV6QMm7+e0r6Rj4/CtobuwLJ49IPD9qvvIwzJe18c9zt+PNF+ei64A38VvCXaTLCuZY8h388PV2/LL2iPK+O3H0GoY9/z5cjIPRpE0Elm66ROcSpJ65gc8+WIoevV9Gj+Hv4KrI0q6XIt+CyaU/LB7h+GLWXuSIDWePZyLYvx88g8Lx/aLDuCOL9MuysP7um91YveYYckXf+TNFCJOxZnR5Di+8vx7E+3LFxvAhb8Fm6wejbTicjSHYviNLxfQ9kngdbaUO5yYD8N6MbUiTPkw/A3TzDoGx+QBETl2i0m7dKUVYr9dgqv84+oR+jXPSRv6MfsP6OHwj5RKPFWibykl9337+K+rXC8Q38zYgW1Y+uamF6B7cDy9PWYX5cy9j+ZJsLF2QhVnfXsG86VewcMZlrFtxHUeSSpAj6zwuELlgojPZmTPFWLH0FGZNP4O5M25hwQ93MXfmdfww4xTmzk3BbxtPIJsxL+Q/F3uM+XfjGrB9Szbm/nAF83/IFC7EvJn5WDArQ8qew6rlx3D6VK4CQBkXkMwNuBLib4ltx7BwjpSblYlZ3+VKnflynoXF81Ox8ZfbKuyq2lyc9YmRN67nYuWKI1gw9zwWzU3Dwlk5WPxDMZbOKcT8Gdel3GmcPS31iCwBZXrTFsi6c+fv6Vg25yoWTL+Ned9nY+EPRdIX+VgxPw9L5lzAzi3XtF9WS18osFbG8gXRs2zeFSyZnYNZX2tl5n5fKHUCc2ZkYNWqq8ozVUTBcA2cafilyM9rL2PJ3NtYPFvkpgMzvy3CnNkFmDnnFuYtPI6Y6IsKcCFYS+CafXH8OLB44QXM+yEds78txYLvgbnfAivmQuy8jp9WXELqdWkPK5G+oK03pd9/W3dN7tF1zPk2EwsJts7QeP6MPCyel4r4GKlDxg37gX3Cug7F5WD27NOYo+6VVs8iKTvr20IsXXgbP607jnRpB7uDbSNWRg/kNcsvSXtkLLA9Use8H0qwZH6O3PezWLLgCFKSslSbFBAvzNAPm7dcVWNnycJCubdafyyUOn+QuhbMu4YffzqpfskvpqklOb2Nj6bIGFx0GXOnp2Ox9PUCsW0ewdVZcs/mpWOV9MWRIzKGxECWJbjLXxysWJmAebNPYtHsXCwS+fnfae1aKHbOnnEDW7bmKW92fiQQtCaAn5RcgAVzbss9knE0X+qZXSJchIVzpcz3uTJ2M1W4Fjqs0St/86Y0eQ7YfwSERWaO9IWMPY15XqrFG6bXsNTNNiswWOwhSDxf8r77PgfzF8lYl/Z/8/1hLFp5Bru2XcSqb1bghfYd8KG1Nra0b4SogOqI8qmIQ21rY39ANez2M2CvfxXs86+L2IhnkXU2UQarTJhpMngupciEdU4G0lHgVBSKfvkScaGtsbJzI6x+vgcQtR/IuITCzXMR38OIrd418duj/rjIWMEF6ci9FI+rK9/D6e9fxtml0hHnRN+Vnche9Q5md3XHxblfyESdKvXE4nBYK6xvWw+/9BoM7D8sk/UFXNu4FD/1fAyZc7/mt1wyAW/H7UXv4uTn43FzrQyws7sVcnn8w0j81MaC34M9saSLBesGdsTBKSE4MuNLqU/svyP2r38Bvz5qwEG/StjXIwg5+w7JAJTJf+3H2Nq9Pn4PNCCqfQXEBlRBvH8lJAUZkChp3HzuoI9B+qoetgR1xus1+2N4pdfQvcpcPNtwAz588iI+fOY8PuhzAXNfuohL3ExN5hfN85ADXeaXZPksejsDH/U9g7e7peDjnqeEz+C9Hsfw/ejr2L2wAHTcLeKDxDioMoYKbwIbZ2Xjk2GX8H7Pa/jsmdv4oOtlfNnzBj7pfRzL3riM6wRe+dyCYW2yFHB7IUrG0KQzYtNRfPPcTXz82GV8LmXfe/omvhh1BQfXShmpSz0Y8iHFuKuZ0g0bv87Bl0Mu4J0nT+KDp0/h3e7xeLN7Ar4cfBM/f56N1JMiznlC2sSQSfQOPrq9EDPGX8GrT53Fq92v4R2p4+MeV/GB1L1k0lWc+V3k5HOL+DG/1CnghMHJkL9KYP/IuRaUopBvAHKt07+HeC94c8n2+8CDgxXxhHK8h9q9UyQHfrbx3hbx/vJakjlEzp88huGPd4Kx/kOY/M6nyltYFZcPXy0uvPZpoGL+Sh6/WMsqypTP5HQc378Rns5mNGrWHktXR2u/GOHkWiKDvIhfStCNgFo0q/krpeJ8fvGaa//CQz43lFu6Zp/2OUUPeYLPUqo0B4UFrEsUO+wqyseFuM1o0bgeqjr54L3vVqKQ8Znkg4e10S+ZdSlSKLV2rfUaW/3PWCeddNLpz0k6KKyTTjqVUXnA80HA6N+Vu72w+r6+Ic//+YC913T6v0vySl3En7+WILukFHWd3eDi/SR+33MR50/lYdXCffDyGQmjbRDMtoFo1PRptOs8BZs2X8XZ40XY+fsFuLmHorkxFL36TsevG67jymng2vlCbNt9Bus2xuP8hXSkJF9G3/6volHz59DQKRRBnd7HqjVncOkMkHqqFFG7bsDoHYL+kQuwZsMZnDpRhMvni3DxdD62/nICUyLnwGocBKPbKNT3HIZhU+YiLuYqrp3OxQXR8fb7a/B86OdIOF6Ay2fuYurYD2ExD4bZLRzvf7ULJy4A+/emolPHCNRr8RwCOr+ExQsO4+wJ4AxDZV4owf4DpzFp0qfSnp5o6vwUxk5bhONS7uSJTIwc8TJMHk+ghfUpWGz9sHLlYZw8k4W9ey/AyzUERqfhePOLrTh6URbsMUXoFjhR0oZiWMgcHBb7Tp4qwYhn34O3dRg8AyLx3eIkHDlarH7if/hMNhau3oH9Madx4ngmFvxwAGaX5/Dmxz/ilNR/PDoLg7u/h28/PYn5c3KwZEER5v6QLXJZWDE/HwtnpGHWN6exf1cOsjNlqScLLYJrBJlj47Ixd9ZJLJidhuULCGYRUMvCgnnpmDvvPJYtS8btVFl0ycKOIC1DAp4Te9euvIHpX10C8SSCYEvmAsvkfNZ31zB35mEcikrXwF2phyD03TvctOsKZn+fgvkzb2HFQmARQTMpu2B2Eeb9kIrF888gO0Pkub4UpofQhbPZWLHsDBbMScXCH/Iw59tiBf4tpWfmzCyp/yqS44uVV7kCoaUMHSR/WXMDC6Zfx6IZBAxLsYig3bclUiYfc747j983XFVfJhB85tqQoUSPJEDyLmHxD0UKaF06T+yT45I5BFBzsGzRdZw6KX0g/aA8m4SzxN41yy6I3A0FTBIApdfofCk7c3YGZs89i+2bzyJX5JQ3nnC2rIeTkqTNc85gzsw0zKXnLstIu5ZI+R++uobVSy7j+mWph2tk1iXtunUD2PDjdcyZfhPzvy/BMrFrsfQfy84THQtm3UH0ftEv7aJt7Hsu2A8czMYPM8/KfclW/bBY2rRMjrO/KcKiubexetUJFcqCnrgET3nfrl8Cflp+HfOmp0ldUkbuFXnp3ALMnXEByxcex9FkWdyLfmWfvV07tt2U8XMOi+bIGJyu9R/B6znTi7Bk4W389uvVMpCWfcFxdfqY9OESqeu7NJGV+ytlCKrO5pcNc9KwdtUVnDkldklfsN+JP2TL/Vr/8xksnHNebMxQfTfnaykndS6aVSztSsfe3VBfzDhCoLDeY0chY49jQMaE9B/BboL4rI9g9Ia1JbggzzvbwzGxc2s65s2lZ3EpNO9ggsEFduZ5ibrXc9ifUp5gNr2jybNF94zp+Zi3oFg4E0uXpWLdz6nYvvsOLhzPQ9HZ27gkD9C6bh7Y07EBYnwMSPCrqEIk7Ocmam2rYZ9fHbl2xbGwkfIwyIN3+yyw+lPcenskst+cgPRXQnD+hWeQNNSGXW0NWBdowE/PPw4c2gFkpODOz59j1yMu2B9sxm8dA5BKdJu/+c6+LRPbHul84bMEmGOBhGXImTkBCzq64uKcL4FckTkXjYRnnLDTpyF29ouQDjkMTuB3f1mKzb2eBpYvBje/Q9p54NQ+0blX+CBUDOPD63Dpo7HYFtgGhwc/hwuz38DN7TJRXJTP6mty0++my/EI8Osb+P3xSogKNmB3Lw/cPbhV++bw50+w7tEa2NnRgPhOBhzyrYB434pIDDAgTvoq0bcK4n0a4JCXBetsz+ODhosQUvkARtRJw4i6BRhU8TYGVLmFXjVvoq9LAua/flUDXemsKGO1+Cbw46f56NU4Hr256VpNyt/A81WvYmDdCxjU+BjGdTyIizIvKKyKQJZ03c0kYHTbBPSscwl9q93CkOoXMaTqaQyveQ79aydjuGsSNnwtgiwjFTFURd4tGXfvp6O/8zb0qRqPUTVvYETl2xhaJQ39a6aiV6MkvDngFG5xwzcC1xx/cjwtXRXqfQC96yTj+RpXMbRWGobUvI7+1a/gWeGRrQ5j91KpiBibtKtIbhm9ome/cBPPif3P1bqF3jXu4PnqmRhRqwB9Kl1A/wYp+GrkbWSJHL+skv/qyyBuUFdUYJ+o5KEuKGUcbgJ18vDo9G8imfDKwZuKeHCwIp5QTu6bOt6T03K0f45r3u+r52W8PtoWLnVrY9oH36hIJKoKmdBLimVuomcu9wEQlfws4ftCjgz+4sJUnNi7Fl4mFzRo1hazFu1SMmrCLLmL4nwZgDJu8mSiVhu+sc4ys7Lks0UeOjCOf4H6DOC8fC+/EEV0w+c4LMxEPj/IKcTBmZ+Hy/FbYGzeEJVa+OO9739U9paq0EwMb8bAFHbihyZjf0stTHP0yB9ZJ5100unPTDoorJNOOpVRedDzQeDo35G7Tlh8X790Gf01tsecsPeYTv/XSblyFKGwIFctb1s92hWGujY80XMi+veYjJ5dJ8BiHaI2bHOyjITZbTRs7qF4+qn3MGrIVwgdPh0tW42Hi2ksTMZIdOv6EYYN+BgRoZ/gye5j0carFwYPeQshoZ+jjU8onBhqwTYVzZ0j0enRNzBk0JcYN2o6Bvf9BE2tw9DYNhztOk6V9I8xasS7GDzgDXRqOxFNH+4Lq2k03FqOR4s24WjqMQRDBn+M4QPew8jhn6F9x4lwbT0GA4d8j5DBH+LR4DDYLKNg9RiLTt1ex9DRM9C372dw9wiBpXUEmltHIihgIvo8+yEGDfkCI0O+wtNPToKba0+42PrCxW0wfIMmY/jIWRg+/At4+QyBi0c/qWM4LMbBGCC6RoV+gZ693oCHazhcnEeiU/fX0X/YVxjS/yt42UaLXCiC276Cvs+L/pHfI6h1JGxOw2ES+VZ+kzB02NcYHf6tlPkQrQMG4clnxiNk5Cfo+cRbsBqH4hHRN1j6N6TPt3jM+xW8/Uos5s65g0UL72L6t5ewbGEu5ky/gSXzrmPpglM4klKsPCC58RfDBfAn+CfOFGHZslNYOP8Kli7MwcK5OZg/9y4WLUrD0uVX8dumS8gl2MB1lpTlAjA1Fdi27RbmzzsrnIr5c7jJFmOpZmLhnKvY8NMVnD4hizRZkamfrbKuXCAlMQtrV51TnsIL52YI50m9OVgw/yZWrbqGLVuuKeCOi1ACgFzN3bpZgg3rL2HxwmtYMj8Dy+YXYPmCUuE8adMN/PLzVVy+LOtG2sahKkwPz0MHMrF+5XWsWHgDq5bdwfIlGar8qqUZWLf6OuJi7irAsER5wcuSUspfvQhsXH8Xq5dmYZH0wbLFd7FkofTDAql3wU3s2HpHxQ52AK4KJJd2xR7IwI/LL2HJ3OtSxx2xNQOLFqdj/pJrWPvTZZw4motCsYmAtQofIXzxKrD+17NYtvwcli65jTUrpV2Lc+Se3cLqZedxcF8aMu6KrPQDyxF45X2IPpghslewYmm62JaNRfOk7+emY8Wy29i0KR3nzkkZ1kP7pAt5v89dKMFvG69i2ZLLIp8qdmZj1aJ86ctUrFlxEUmJmVq4DymgWMpnpgEHd2Zg/epULJ53CyuWZKvjknmXsXb5BezfeRu3GUNVZNWqW5ie2mdO5+LXXy5If1+W8ZSJtSvlXi3OkPt+C5s3peLkSVnAixz7mx7NLJ8ja//ovXexYc11rFl2E2uW38GPa7KwclU61v54Bfv2XlVAdRlAIWXocc2wJ1s23sCPK25K2Rz8tCJHyqdj/Y+3sXtnpuoLDbDQ+o99knpT28vs5zUFWL3yjow7guK3pL672PwrcDhR2k5cjPWIfQd2Z8j4zlBhIubMZriI8sw04IeZwFw5KnB4dhFmzszED7PuYMGiDCxflYXVP2Vi565inDkO1WfEQhVacScTp5dOx0/PuGNH+1qI9TLgqK8BCV4VEOtbCUkda+BAQB3s8jEiZuRA4MJJ4EoSTr7yLDb41cB2r4bY0voh/OJXDb95S7lgA3YFV8amvk8A8fulsYm4ufJD0d0Ye3wbYvujvkj74TsgI1sGxXEkfTYBmyf3xvpXw7Dj9VFImNAFu3q3wfrOAbhFt+csedBP78bhvs7Y4l0bO/uPBrbHAmmncWPtdGzp2RXFRPDTrqLkWAx2vD8Rm6YNw5ZXQrHn5SE4OPEJbB3QHtuf7QkVg0XswcW9uLRhDqLnfYe8Y2eBmxdRvOJVrO9YEfuCDNjbzxtp+7droPCvH+PXx2tgZ6AWMiK6NcHgqogPrIxDch3vVxFJvrWQ2LoR1rbojvcaLkVolTiE1kjDyCo5GFuzCCOq5mBArSz0aBCNNwfsvgcKy7HoGjBrygX0b3wE/aqmYmT1AoTVKkVIjQIMqZ6KgXVOIzIoFrG/yyBS45xgOnBqF9DL9Bv617uMIdUyMKryTYyrfRchlUVH3ct4vkkiZk6+jBICtXKji+Whz7gEfBV2Fv0b7cPw6hcQVjkDE6uXYlSFLIysnYne9eMxvus+XDok1dA+qTJXyidtBgY678bz1c9gZI0cDKmYhWGV72J0vXz0q5aO551i8PPXopy/gCGYLMdMeR36aOhhdK+ejKH1CzG8trSnYh7CqkJ0ZGLww8fwbt+TSJXnh973fAwZOIZRxYvzOVGVoqSgGLkyCfPx4Tyi07+LZCJSk4UagEzQboiDFfGEefbJzpEhBy2HkKnkyYcW50B+tN64dBajugbDWLcWJr37pQYKc1dGmWgz7qTi7LmTSElJwokTl3DubD7S5LOIPsTFhddxfNcSBLq5oImpE+at2Kc+Ywpy7iI7/RSOH96LY8eScPj4GSSeuKniuvNztrigEHlZV3H+XCzOnE9AWsZNXLmZhqPHzuHY4dO4ee2GfO5wg8MssTEb2ZmpKMq+g8unTuNUymlcPHoMZ2N3yLuUBdWcA/Dml8vVF5JsrgZ50zeZbRRWH5japov0IGaP/JHZL/Ze+hf0X0vopJNOOv2/Ih0U1kknncqoPPj5IID078QqfvCY++MHj3prCc5cloWrTv/viOhXfp6sFTJlHZ2HmRvWoolnJxiqeMDS5FG0NvaBzToKRtfxaGYeD4vnC7BaItC80UAYmw6W4wCYrWGwWCfA1GIyrE4TYWw+GM5NeqClpR9auw2Bi/NQuJhGo7lLKMy2SXB3fx0uLpPRxHk4mrYYCOemQ9G4wQB4eo2Hi3UEzM5D4GYehoYNu8NkGQSbbSwsxvHwsE6Fu9tU1G8+HM2sobDYQuHUYgCaNe0Ns2kUXF1fhdllGpzqD4ab00i4WsbC6haJpsaBaOIyEM1bhAiHw+gxEU5icwspazWPQPPmIWjRbBTMYre7bRSc3ELRxDwaRudxcGk2Vo5j4WwUdp0Iq/tUWJqOhalxqLRhOJqI/WZrBIzmMBitw9GoWR84Ow2Dh9s4WE0RcGomdTYdLufhcJF63CzjYTNPEpkwOEu/NGrSHw2bDRO9Y9FcyppaPA+nBoPQ0jYRlpYT0KjpMLRuFgHPRuHo3uUrvPDSNnz2VTQWLb2ATRuBDevysOm3mziw/6aKlcp1lIrJKkujfDnPkD+xiRnYsu2WcB527gJ2CG/ZUYRd+4tw6qwMAVlFlZbI8kpOZMmlfr5/7nI+9h+6hc07bol8IbZtL8LWrfnYsycfJ08A2bLKLAMZyaKD3sJHDxdj585sbNmai+075Vzkd+5NR1zyHVxJLVT2sY7iEv7clJ5DwBmx4cDBEilXhB1Sz45tRdi9Mw/RUZk4d6FQebhqXkH5ahlIb9L0tFIcP5IlMrdwKPEuouOzEBtXgoSEUpw4XqI2StN+4HpHytyW82IFYnOzM250FhNbiLikHMSnZCFJjinJmQpQ1PpCikmbSkWeXJQr/XEqF4eTc5CYmIfYhDxpTyHijxbh9AVpi71RXByrDXXkkn1/OS0bp65kIOXUXZw4X4BTF0T+fB6uXGPYgxJpR6mwLG7lyMeQ7eJGfucvFeHcJeDYGbk/Yu/py8U4f60A19LykevoC+7ubu8PenndTJMyF/Nx5lwRLohNl+x8RXQReC4DuoVpqxRTYO2Nq5AxkCd1luLMGc2Llh7MGbdFhg1h21hWGql5f5UgO7eUeCduS/lU6Wcyz9PSGUNS5FkHy9j7hcyNKum5zQ0EGW/5mvAV6e+0DBmrUoi6CwrzVFH2v9o8X3RlSRmGM0m7JXeS9ch9T7tThCzpCLZbRLU/yh0tS6qScS9lb0s9N9JKkJpRiFuZhXJerDYjVF9kqAIl4B5Lu7fexII5GQr0dWwsV8Y/aMfZPM4B5s0vwvyFmVi84jZ++u0OdkblI+E41MZyHPvKm5M3nizGZVw8hj0zXsO3HetiS6caSPE14EwbA060MiBZON7fgN2+FbG9bTPsHdtPDBZl6Sm4+EFfbO9QC1G+DRDt3xg72z2MvcHVcDzIINc1sO2px/jASCMvIHX5J9jdviYO+lfBni5uOP3uC5rL+eEDODz5Gax6pBGW9/DCpkFtcaCfB7Z2NmN7p87ImjFP6hK58ztxaFAD/BJUEZv7Pi+Twx4gMxnX1n+OzU8H4tYXb8j1ReSl7MKG0c9hRnsblvcMwo7B7XHgOTN+7OqKDWMnS51yc26l4PyST7DmmS7YP/UllBy7Ljda+MdPsanLwzjQtjZ29m6LtP0MgCuD7PeP8WtnA+LaGpDkY8Bhv9pICmS85RqIDq6IKMYWlvQTwrtad8SbDT7FC40PYHS1JIyvexkvNEzD2AapCG+ejhc7nMGW6TJQCAoTxSLGJiZFLy7CZJ8zGNPkFsbVz8D4etkYWycTY+vfxhRzKj7vexmp0u0c52ojLXnW0w8Dnw5OxljLUYxreA0Ta9/GtLrZmFgjAxOb3MA7nW9hr4wHdb9lKKkvg2R87vwOeCXgEsbUvoyptbPwat18jKt2A2MeuoRpfiex8MVLyD6j1cWBzi/iLkpXfNjtKsY3u44JD+di/EM5mNjgjtRzF2OapuPNrmdxfLMYxbpUzBOp8orM+x+nYlzrixjVMBUR9W9iQr0MTKlTiokNb+NFr2NY+up5pMuzzRjVGdIR/MpXVcq6pd6iLG0+5FPDZ06nfxdxLio30ZLUJGhnRTxhHu8Wj/YMOfCMnur0oy0uKUa+jGFqu37xNEIfC4Kxbk1M/fA79Z0CP9ivnTqJ7775HE89/QTcPdwQFPgYnu/7Mpav3INU+VAvyLuEU3vmI9CtKRo4BWH+6r1qg7iLZw/jh29fwXPPBMHTwwIf/47o+fxk/PhrHDJEeU5WNqL2bkC/Pp3w2JOBmDF3Ot768HN4+bZDp3ad8cn778ln0Un5/OEeBNnIuHsDv61djl6PP462bQIxsv9AfPPhm2jSpBlqO/viw+mr1LuB+pJVTNeCReRIg2VyVd1E/3aGwdA2Sf4jO3qpPN9P/zxHJ5100ul/g3RQWCeddCqj8gDog4DSvws/9cr6f4gf/M6s35QHjk7/j4koEd3tShkdMRe3SoqwcfdhNGvRGW1s/eDhMghurpFoYRwLF9tkNDdGwmYVNoXD0zYBFvMYuFjDYBYZV9NkuDpPgod1ggqn4OE6EkbjIFjdxqBxi5EwWcbDap4Cl6YTYTVOkfRxcLGMgs08Gi09xsHJFIIWcm6yRsBsCZOyw5S3r7t1jMizzimSNgkmt4mwtZwEF2M4TMYwuLmLbS7hkv8aLE4vw+Y8Dq1cadtYqTMCFvdwsXsELG7jhSfDyTweZrHdKnW5WkfDYhsLs7TD5hICT9cxkj9K2hQBD7dpcGk2HianSbDaXkRz80SxdxJaWV+EpVmE2CbsNhY2V9FnkfptI6SvQlS9btaJMDuLbdaxUkckzKaxsFgmwugi584R0qZx0j+RsEq+1VX6xCTnttFwF/akvEuE2BEJk9jq4RSJ1uz/FoPQzKknHus+Drv3X1PeuQTLsrK0W0gvIS6duCgicMhzLqgInjF+MWPJqr2X5JyxWDNkjaXCJEg+40pzKcUfE1OeQCzBYe5zxdjE9Dijtyl3JL8PZGQpVV5LYxxqbgzHEJ30+OQv2RmrmruJs4YCESrkDn20sLRQlSPWkcs6RJagIjefY9tYH9uktYcL33zhAuQXEhCVOmm7MB2gyAozET0sr8BPtTzmcpg/Z9XqojzBELabbeReXpxmWE61R7iIrr48pxD1yMERRoELVfYH66MnNnUoEFmYunmaL88Q+1+L3mi/B8I8p7xdHIXFyjdLzkS/3X6VLn/YV+wzRzlpkhw1nzD2RZEKLkqgVuoqpc+UlKHtUlYtpEUB7VL9wHTJKNU6pcxeMu8Xy5LVRn5yQnyV4VVVIuVUMd4v2sufnNMKpmj94BAjF9r7TrGccvMjdW7Xy/6jHMuwL3jUFvc56sgwNpRXBzLPhdX41rJEVtsckz2hNsmS/1pqlrSfcS3limUklZAB7wb7keV5jwiekIrlPu7dcRvzZ2epmMHzZgvzOKtEuEjS87GA4VoWZWPJ4nSsXp2G7dtzceQYcOO2PBuilB759MxXHstaharvsu9m4fuvP8EjxloY1cyA5YHVEetfGUfaGHDMtxJSfCuAYRL2BVfDL52aYt/kPsDFGODaflx6vye2dKiCfb41EeP/EPb41cahtpqn8cHgOtj+TCdg9ybg9jHcWPwmtneuhZh2tbHNtwkODnwGSIkHrp4ANnyD6Jd6IX3xe8DhjcDWubg2sgd+btUK2TOmywC+DJzdhJh+DUVHHfz6vJTduwXc4ezWhq+xoWtrHBs3EDh5ALh+BBlrZmHvy6G4s/xr0fcb8POHSBz8KHZETABOnQOupODqmu+xa0oYstf/KGVSgVtSx9qvsKFdE+wOaIxdPTogf9sOaed54NBKHIpsi+PP1EestwFxvtUQ7VMV+30MiAmqiBg/A5IDDUiSdkf727CqzWh8bPsAi/rF4sfI21gTeRfLIzOw+pViHFwkfU9AmI875xe6w8v9xXXgxDox9XVgcXg2VkYWYfnYIiyLzMXeL4H0QyIj8wwBWjW4+FjJfHo3Gfjt42ysmHAXayMLsCa8CD9LM9e+UIDklSKTJmyvRpUTHbgKJC8DfpxSiNXhhVg+IhsbJpdi9ZRs7JNxRUdqyqkvm+xfBNHmtH3AxreBpWMLNNsisrF4bAY2vCW3h7GB6ebJAUzXdu5GKu0qugAcnA8sm5qP5eOzsEpsXDG6BOumFSFB+qJAbgfHY15JljxVOTIsOSlKGu0lixrWX8gJVqd/I3Hy4g3h5KEmsgcQ7xHzHHyPtJmQXwFr4CjnVM7SV88cxpjHfGCpWx3j3/6OeyAi4+Z1fPbWK2jSoC4aNWyAoLZBaNXKDw3ru8HL53H8uGWfzN8ZOLZjLoJdm6K5qRN+WLQFaelpWDDrCzSta4CrsT6C23rLO5cnatZsCjfPDti896i8JxRh/9YV8v7UABVqV4enfyCCOzwCH682aFynGlo0aYhPvv5O5OipfA2/rlsNYzNnNKjTCK09/dDB1xeBLvVQzWBA1eaBeG/GevXZr+Z+1VI+oPLyUcovELUecfTbH3vHwQ65e/J/pH+eo5NOOun0/5p0UFgnnXQqo/Ig6IPA0r8Dd5u66r5+IC/aEGXvIZ3+N6iYO9HIIrWgqEhe2kuRcvQmmjTpgNYeI2BxIcg5HmbzRJgt44QJbo4RjtDSJc3ZLQwutlDYTGPgbhwPq3EyrLYpaGEJQ3PXkXD2HAEn2wjRMRbupqlwbToJLY30+p0Ak2Uk3KxDYbMMh4t1HFq4TkEz98lwkjyrOQLuLqPQxjICLS2jYRK9TsYpMFqlDsk3O0fCapqgrk2WibC5TIOry1RYxSaLVWy0io20V/SabWNhFDuNrhEiO0V0ix1iv83KNIZ0GAZXyyi4mUO0sBNSn8USCYtpoiyEJkk9E6WNkSIrdUo5NxNB6jAFLLMvrNJWN8tgKT8crqZJCiB3M4cpnVblST0WJuskBfLazKGqHjfpL1eT1rcEzM3W0WLnKDmGCo+Rvh0vfSz9YIyQPhqFpk0fh8HQDBUr18e773+qgYiypuHCybG8+acsfx7IkqcRz7Qrx1kZy58/8j+jB8nK//tYo3tXDyzj4DJJ/nUs9e6nMhn5Q75HvOCSkqxl/KNejf//0h/LPajsg2T+yBrdf0UqL/PP+L9K+e/SP5R7oLL7E8tfaSn/Pbq/LP8++N7+c7pX+h454ABHruOfnMsffhlQJiJcSFB4Zzrmz8pVYPB8hoiYXYQFc7KxeP4drFp2Cz+vvYmd2+4iObFIbQRID2aC24pFB/USbFZTqPwjREGg/PCJ8+jYpRseMhgQKPxVq5rY1/4hHPKvgij/SjgUUAlJgZWwM7g6lndtir1TegKJ64GTv+DCa13wa8cK2N++Fg76VkOsbw3EB1THAT8DtrarhW29A4D9K4DLW5G2/CVseLQe9rRtgH1tmuNAxwBcevUlYN9W4GYycEc4NR5I2AS8/yL2+nlgs68nMme+L3mHgDPrkPCsETs7NsSq5zug5KDYcC0Bt9dMx/pHW2HrI62Q88FUIPp34OpRyRO+eQQ4tB7pL/XH5kAXbH2sK7B4ieg6LHkngRtHUHI2CqUn9gHnY4CfZmBje1fsCnTF7x19kfrtF8DZY2LXGeDcHuCDvogOMGC/tC8mqBJiCQYHVcbBVgYkBlWTPjMgVvopOsgJG57oDCSf1wDgHDtr34+Ue8zlj+MhZxrxJMoQJHYwrx3lOB5UOfuR13bg9IHlmM58RxlS+TLl5f9YhnLlide04UH1kO+zT/447CvfrvJlec50e18QNHSwIpZ3sE5/Evqf3BAOqhwUlRaqL6h46/n16e2LKRjftSWstapg/Nuz1XcYl88mo9cTwWhQvSr6PPcczlw8i6QjCXhhciRGhkZi1uq96svZEzuWoJ2tOZo174glK3Yh9eZ5fPXhKwgf0B/rli9BTn46tm39GYHuJjRu1Bxvz1yD1JwixPy+EN5uzWCoY8JjfUNx8uRRXDgejVG9O6FRg9roPngSzt3MR9ql0wgbPAg1qjVH9x4jEZVyFnevX8SsSf3QqJIBFZy74PWZW1Rsea1bOJg5sPmwa1/wqdHMZL4A6aSTTjr9BUkHhXXSSacyKg+EPggw/U/nrhMW3dcHj4/5FrtiT9l7R6f/NZL36qIC/py/FLm5xdixIwkuzo/Cah4Ai2m0An8JTiog2BouHCbnBIYJCkfC5DoaZrcQuLlJujkcRtMkmCwvwIkAsfsEGG2j5BgGk2ksbObJaGmZBk/KOIfCZgmBq3mE1BMCJ6mjmXUqmrhPRHO3SNEVATeC0k37oSXDRZimwLPlm8rL1yj12KRuD7dJMFojhcfBapwAm9Rppg2WUJjodWymrWMVyOoiNrq4hiqw1WqeKPWOVeCvi2242Dhc0kLhKu0laGuRciYzPXxFp9hqFdtcCCy7aiCzzTIOrtIHruwPOVrpKWyWtkh5q3EcLMJWk9Qt1/RCNooNztaxcJE2WUzhcDWOgZsxQuRFVoHC42Cyib3SVyZbiNgbXgYKm01j4OQ0APXrt4PB0BgVK9XC6PAwZGXT/8e++tdJJ53sxOeBsEEZmqYO/Jk/k5R3pzw23Ghu1/armDfnOubNzlKxtpcsTMe6tRnYvbMQR1KAyxdFLl8rQyC4TK3j3FGVHOnFTsgit6gE+w8lwrWVrwKFgwgKt6mDncF1cNC3ImKCKyNOOMmvAvb5VsYvHRriwIAglHw5mTuI4dwYb+zsXBn7g6sgWvKTfashyacSkqRMbOcG2N/dE1kfRyBv/jScevEJbA+uiISg6kjxro8DrRpjbycvJEUOwOnZbyJ13Ze4teRtHJnwLA61t2CfewMcCjbh4sRncXXJi7g9KxyHOlRHfMc62NWrFdK+noKsue/gzMtDsLldM+wMaoQ9HVrg3LjnkDbrXWSv/g6p899H4oQe2NXxYWz3qY1NPi2QOLA7bn88DYUrvsbl+e9h24sDsP+FvsifOQ1F74/CgUeN2O3fCBt9GuPQgC64/OFU3Fj4NfIXfICLI3yw18+gYg5HBRpwyNuA5IBK6pgYJG0OMGCnlwG729XH74M6IyNxP1QQb7pkl7nq6qTT35E4/nNkOirSfrUgzEjRty8kY+ITreD+UA1M+WABrsujculcEob27orGtWuiRZPGmDB1AhYtnYMDe37DpWupuCYydEQ/sW0xOrm7oEnzzpi/ZJvMdWmiNBXZ127h4qkzOBS3B998+RbaerRAg4caYPTbM3Fb5siYX2chqJUR1V3a4YuFG+WxzEdh2inM+nAcatWohLa9xyP2xC1cPRaHTl6t0bBhS7z3+RLcoc0ZN3Fzx0L4OjWEweUxvDpzKzLpfa8ebU62hLuZUKzOmKL+kPXHXyeddPoLkg4K66STTmVUHhB9EGj6n8o939yMR8bMuq/9oe8sw/mrDGSp0/86lZaiVP2kugQ7d+3DiBGT8fDD/rCY+8PDjR7BkbAo71sCwqHCIcJ2T1oCxZaRcDEPhtljOJqZh8HFbTIsbq/A7DQVniZ6746FheEdJL1Jc4Kok1R4hNbukXBXXrOSb5oAZ9NUtLBMRjOp08k9DBbbGLiaR6OVbaRwOExOE2B0lvzmI+HZMhImk9RrHAEjwVRrGKyWMbCZ6SHMkBBio2KxV8paKOM2UniUnI+B1RoBV5YRWaMtTJgg91hYpa1kttdsmQCzeZK0X+y1TISzLVKxUfXFOC30gy1C8/AlMEzwmKz6RPQpMJ0A+WS4SBlnsYehNghu24wvSLvHw1X60Gymx/Q/B4U93KV+01C5Jx1QsVILVK5SD6NCQpGbmy3rIX1VpNPfnDj873sEeOFAb2Vuo9cor+SS3r0OcJig8IF9F9VGjD//nIY9ewpx5AjUxoaMP8xQJo6QE3RI41F5oCq9VFKoKbTrc7hpFkoFB6IPwbN1G7SoaoC/wYCvW1XDnqAaiPExID64EhICKyDZi6ERKiPBrwH2tqqPHZ71scu7DnYFGLBHODqgApICq+K4fzUktzTgqLfIe1fBHrfa2OPTGDvaNsHWVgac8DPgrOg6y3jF3tUQ798AOwMbYl3bBlgTXBe/tauNLZKf0KYCTvhWRaKU2edVAZvaVscWqeeI8FGxa7+HpLepht1taqnQFXulvkNtKyGmXRXsC6qJjV618FubOtgeILb6VMZe0RnXrgL2BVfHvvb1sc23Dn7xrIbNXnWlDfWx268WdvtWxoFA0etrwAG2qR37oRa2+j2E3/2a4nfveohpXwv7ReZge2E7KJzoVwEJ/nKUMslB0h9ta2J5sBPeatsS8z54B5fPnbX3vw4K6/R3JjsoLM8BPWjJDCRx61wSxnb1hLlWZYx/6wcVPiIn4wrWLvoWXYIDYHF2Qo061VGtpgEtXZti4tSXsG7/ZRVm6tS2BQgyNUZTYzcsWrkbyLuG84f34fN3P8XY0RHo+liQvNvVRqMqBtSv3wghb/6A1NwSRK/7FsEtnVHV2Amz1x1ESWE2im6fwNyPxqNOrapo238qki9k4XTMNlgb1EbjJq0xa8lmLd5xQQYyolbDq/nDMDTvhJe++xUFZa82PCEUTFd4fvVmn261V1b98ddJJ53+kqSDwjrppFMZlQdFHwSe/ieyih886pv72v7+nE32HtHpf58ICMvCgrs5F+dj0KChqFxFXswNzmjW9Gm4ElRVISPoIUuwlaDqSDkPkTSCnxHw9IiEs2kYLK1D0Ng8CEaPsbC5TYS5WRjcm49GG0sIbM5DVBgFV4/JIkuwdSI8bZFwN4XDjcCraSqMphfgzE3YXMPg4sZN6ag/DB5uI2ByGiALkVB4WMeL7Eh4eIahafOBaNWGgOpoYXoEj4HVTMC3HBO0lXR6ChM45qZ4vNZkNS9fgrxGC0NQ0K77mWkmxkiWep2t0k7rWDhbIuFCD2kVEoLhKOhVLPWYJytmqAiz4knCU0VmsgqN4eJKADpcZKZIG16ATfRblbf1PwOFGRd5onCkyI1Aw4aPyH1pIvenPqa+8BJycnJQojzldNLpb0wEBe4DBnhBtMDBWqbCc4UdHr+MI3v6VDpOnS7CpctA+h2ouMoEghWLrINLpNC9KN2EJQgA58vcKdcOcEKBFrkoKcxHUlwc2gf4o4nBgE7CM1tWQnRwdST6GpAQVAGH5JjoZcBxnyo43qomjrepjxTvhoj3q4PoIAMOkgMMiAuoiGS/ikhqbcAJKXPUqyKO+TRAXKu6SAioj2T/yjgp6SdE12GRSWwjZbyrINqvJg62rYOoDqKvXVUcEn3JwQakiM54kaEdiYFVpD4DjknaCX9N/2GvCkhqI/X5VUK8lGHICoK5ce3osVsdUV5Sxl/aQQ9eyY8RndEdDNgtcgfFzsPt6uJYYD0keVVTIDQ3iosWTuqktSm2vRYmIsq3MqK9a0leTQUux7SviIOiJ0r0JUibEmif1KuAYTnf2f4hvOH6MHylL30sVnz11Vdyj/IVO+6vTjr9/YiTT64KH3EPFC7BrQspiHisNcy1q2DSOxoojNIsIOcGYnbtwNeff4YBQ56X9ygTnJrUQI06D6H7sDdwLTUXl/ctR1sLN5p7DLMWbcHFY/sQOqAbHqrVEK1beiMifBA+ensygjxcUO+hxgh5azbuSMVHfp8tz2Yj1LA9jmVbj0h9BSi4cRTT3wxF/bo14NNzHJIvZuFS4k54NK6Lho088OUPP6qQ2QUZqbgb8xO8nRujsrEz3pljDx+h5lW2kS3js84t9col80R//HXSSae/IOmgsE466VRG5YHRBwGo/2n8xAPiBy/9LcbeGzr9e4hv1LKMKM5DVlY63D08YDDURoWKLni4QRe4EgRWIGqEBgTbRggP18BhFTpBA4xdzKPR+en3EfzYq+j42Bvo0uV1dH/kFTzb9WU82SkC3R6JhIfrEHi2nAAn42TYbK+iReMQtHKdBJt5KiymaTAZp2pgrJWev6HKu9aFYRnch+KJJ15Ct86voOcTb+ORDlPg6joULYxDYSbIStsY6kF53Y4TXYxrPEHFAVahGczjFZt5bSLQytAUYyVfjnJtMk2GkRvgWSYJT5RzliEoTLA4Ei6uwm6RMNJLmN7C1rFwUkeGrYgEN7MzSR8YLQxrQR6vWOmzToLRVc4ZesIWITKUY77oF3sUS50m6vkjKCwy9DR2cZJ+No+EU4vuqFbdClc3fyxbvgYFDGSqk05/d+IUdh8wwAuiBUQNNOSAG9g5PIYd8nTyzcwsRqGIcJM+Bf5KllayVAEt3NCPGxyW2oO28lhSmqtYSxNJllOxLbM1LspD5tXLeP+FSehQvzKG1zVglV9NJAZVwWFfAxICDYiRY7wPQeFKON+qCs56VsMJr9pI8q2G/ZLHUAoH29kB2cAKSPI34JhwgrsBp3xq4Uir6jjqXU1twsa85LYGJLYXWTnGBlZGrH9VxPlWVp7Jh0THfpHZawdw40UuRWw45VMRJyT/KMswZIPwYbmmjfHCsSKvvHylPMFfejcnBlRQQHK05O+nXim7R/JoayJZ8uI9NID6pH9lHJZ62dbEjiIrbYpim2hvewK/lZAcWB3RfhUQ26Giso+gcFJgTQUmExROEk4Rnb8FP4RhzR9SIHvNKrXQo3dfZOZnyL3hZovse510+jsS57c85SnMTebI3Ao09fxhjHnCG+a61TDpre+UN2723Rs4dzQWx+Jjce3SRdy4dQ0HDu5A5OgBqF7nIbh2Goyzl9JwYfcSBJuboG6LLpi/Ygfid61BC5nDWjR3xZy5i3H7xmns27oWHb3dUeehpgoUvpVTgqQN38Hb1BC13Z/C8u0nZB7MR+GNo5j3YSQeqlsDAX2nIO5MOu6cisaTQS1R7yEzpr7+FVKzZa7NTkf08i/QvEYlVDM/grdn/YZcor/8dk61US7U5qrcUk+bo9UfdaKTTjrp9NcjHRTWSSedyqg8OPogEPU/ibuOX3hfe7uPnY698aftPaHTv49KUcLYjPLSXVKSD7PFigoV66FKVQsaPvwYPD00D9x/Bgpz47lmLmF49MmPsXFPOk5fBa7dFL4MXL8kfEHOL2Qj8dBZvP3qDzA5PaP0uXlMg6srQVxtozYVnsI8XsXqdRe9NsYAtkxW4Gu/YZ/iQEwqblwUfeeAFYsTEOA/Fjb3sbC4MgQD4/uKLpE1Md6vSdKM3HhuEixytFgZD3kCXE1T4cbQDSLL8BHckM7KDerMDPkwEUbbeGFuSqfl2wh628Lg5DZamOEswmFVcYUj4ezGcBDjYKQekbERnJbyJis3jGNIiQixn97FotNtDEyuDLtBr+swkYlQdtIm1qs8hR8IChPUngQ32ySYjSPEnt4ICOiNL7+ch9RUWeYRjOJ6SSed/s5ETPA+XJAXDjBB4+KSIgUMK5LsMq9h4YLCUhQVcx4kvMhNuURWgY3kAsnLQUkpweB8NUeWlEi6ClvAreU0HzZyKWNelspzWZAD5GbjdkoiVr0YgW+DmmFrh4eR6GPAEW8D4gkKCxPsVcAwAVkPAxLaVERCYGVEt5P8RwyI6lgBu3zpgSt5ASLjb8AhT4LD1XA0oDqOBFVRHsf0KCZAu1fO94muWN+qOBxYGyl+1RHrJWVYjqEZOmkg7kG5jhe54y0r4USbKkj0roCo1hoQfKRtJSTTk1nsIseKbFxABRXX18FxQWJPuyqIDa6MKOoS3dwoLoaAsF8F0VcZiV5kaV8bsVvyDkubWJa2HBSb6C2tQmkEVpV+kDaLTobMiJJjUkAN1Vf0Ek6WfkqR48a29TGkSW042UHhLt2eRJ7cE/5oXgeFdfr7EuerfM5wZbMdw0dcO5uCkY95w1SvOl7+cCbuSMaxI/EY1OcpeLnZMGXieGzbuQUbN63DoP5Ponb9h/HYwKm4fD0DhzfNg7+xMR42dsGsxRtxYMsKuDaviYcfdsYrr76NPds34KWJo9CwRkXUa9AMYW/Pwl15hUz45Qe09XRBTUtXLPotEYV52Si6dRoz3hmD2jUro23fiUg8l4aimyfw9dvTUL++ER7enfHd3GX4ff1ahDzmhYcqGlDD1A6vfbNKfVFXqkBhssy3pXxP1X6voWZyR5ZOOumk01+QdFBYJ510KqPyIOmDgNT/BO7x5u94JFxeFsu1Nfz95bh0Pd3eCzr9e6kUeblZciDQUQBXV3cYDHWEm+PhBo/B3c0B2jJ8BOPzjhQeIecMHzFGeco2NIaic8/3kXQ2X/3ArzCvCNnpmcRFkJlVhLtZ6aI7D5k3b+GVSe/Dq9VQNGzSD7bWYWhuGQQn8wC4GAfBbBqlNmpraR4Nd3OkpE9Dc7fx2LD7InJlgXD3Vh52/BqFLz9Zi9atRqJp81ApNxFW53BYXELRwkIOg80YAXeX8XBzYYxfev6OgckUAVenyXBzYho3fwu5l24MlzJhcLGOVnF/TdYRsFqGiS3DpI1D0dg6EM1sQ2CzjICb1GF2jYCzW6TIjoWLRXSZBgsPhbNpDJxFp1nkzKLDxSr5IuMkulzMA2ExDZC6h0i9oTBKnzL2sJVgNkNX/BegsIsTbemFp56KQMrhyyiSRR4BrTzpa510+lsTMcH7cEFeEC1wwCT05tWghPs8hkmqrPwhYFxajJLiAhQX5UsSYV6Cwxpr+ijnKCP/JYmeedwTn1sgFfJvcYZcyHyaKXwnHZdXzMWP3VtjT/uHkdSKnsEGxAYacCDIgOj2VTRPYAKh7Ssirn0lHAg2YLdc75D0PQSPJZ2hH+IlPVGYoGpccAUFojpkd7atgP3tqyOuXV0kBtZDik9dJLephSSvGoj3qYKDvlKuXWVEtaugAOTEoOo4EfQQjrcWObeaSPF6SORq46AfQ1xUUnF9Y/0rIdGrGo5JemLLKsqDOb6t6JL69tBTOKgaEgMeQoJ3dWHNWznOryKivCshyre62FkbSbQloDbiPA044lUBhxnzOLAyUkR3QmAVHAqurupkXVFiIwHhQ1J3gk9lBQrTIzmJ15K3pd1DGFG/IpwNBtSuXA1PPfucfNYUoKCUXty8ITrp9HekEpTIexu/nnLMdiUyMd26eBKRvTujlXNjvPz+t7gjU1hWZhp+XLEQj7QNRNNGDVCnXk3UqVsNzZvWQdfuT2H5pjjkyAvc4W3L0b6lBZZW3bF45WbRlYyRA59G02Ym1KpdX8rWRjt/D/h5WNDcyYq+Y9/F3TwgfuMCdPb1RNOW3bFmawqKCwuQf/scZn08Gc2a1EenfpE4cilNXlqu48LhaIwaEYmHGlpQ46EmsLk0x2OeTWBsWBcPWdvi3ekrUcgpl6yeb7ZM++pNtVFYJeuPvk466fQXJR0U1kknncqoPFD6IED1r85Pvfwz2o/6+r52fjRvs731Ov1pSAEiJSgszEev3v1Rt64RBoMRjRs9CXdXhojgxmvC3CRNeQsLM76wCoUwEQ2cx6HDUx8j8Wy++kH10YREbFr7K35ecwCLF+3Ab5sO4OY17mANxO5Ihp/XCDR3GQqj52gYPYbBo80geHkPRevWo+BhGw5P42C4Oo+C0fUleAa/hqRLJciQlcDvG35FgGeAyDwOD4+hCkg1myLh5ToaPq1CYPMOhcUrBGbjACk/CG7GELiJnZ5eoWjlFYaW5jHwtkXC1zscLb1GwuwxAm18xsLHbSRaW4eKXBhaBYSjldhiszwHd5fe8Go1HDa/UXDzD0FL6yC0NA6ByRIKZ9sY4XAFILdyGyT1i92tx8Bd2OjSHxbGVraMgsU9BO5tBqON12CpYwC83YfD22+M1BEhdYTCaqQX9r8GhVXIC5PoMvfC44+H4MiRq8jJYSxo3jt1B3XS6e9N9z0HvODD4YBJ7jFjcJd5DAuV0jvYsZucAocdZTUuVQGINVIbzpElyT5lolDECQqT8xU0LFwoE92du0DabRye+w2WP9ESW4MfQgLjAvtrwOdeOca0q4aDQRW0DdjaGrBP0hiqIa5jRcTIdRRB0baVlQcvmZ6zDD1BkJgbs+0TmQOdKmJvh6rYF1gNMSqcRA0caVMDya2qIrFNJcT5aF6+BJLjeBQ9iT6VJK8yklrXwGGfh5DoVR9JAfURTVBY9NKLOSW4ClLaVMMRkTnlW1fkxSYpy7oJSB8KYPiHOlJW6vLRvHlVyAlfsTewNuIDauOQV3XEta4iba6Fk37VkezJDe0qKnmGq0hsV12BwXG+mmdyfDs5l7rjvWij2Ct59KpOkPp2daiLlx82INBggEvdWggNC0V+cZ7cIQb6uO/m66TT34i0+YrPAGeqQpnLiouLkXP7KhZ+9jpejAzFml93qpmJc1lRXiZSEg7h9VdfREjoCOHheP/91xGXlKyC3+TlAzeOReGDV6Zi4pQPcTDmGIrz03D53FG8+877CA0Nwxuvv4h9uzZj889rMH78VLz19VLcyS3F2bit+ODVFzD+pS8RlXxN5spSFGWnYvdvixERPgLvfbsI1zLo7ctfU2Tg5LEzePfdzxAyZgK++PgDHN/7G16bMgFhL36In3fGq/aUKE9hzsucdPnlnA4K66STTv8ZpIPCOumkUxmVB0sfBKr+lfmJKSvvax95+aZD9pbr9GeiYgbVlJfrwsIixMUdxvP9x6JuXV+YXPrBw20sLIzTax4PLYQEgeHRwgSLGRt3Gho5vYpOT83AoVOFChT+9O1P4GNqB+cGz6LpQ/3h5xWK9asSFF5yOfkuAnwi4GQKg7v3VPQa8DU++Xw9vpv+Kz76ZD1GjfgCHXxHwtKiH7qKzs/nnsL5LC1aZ/KhKHzzwRfo22sKWjj3hpvHePTp9R0+e3sdvv9mkyxOfsHEd5agc5dRcDd3g4e5D4KDwvDa+0vw0Rc/YlzI93hz6gp8//1WvPz2QvQa+i4++3oT3p4yF2MGf4i33/8ZX87cgXc+WITneoxFj85j8OHba/HB9G1476tNGPjMq/AzPw+j8zC4cMM6jzB0fexVvPvycnz/xSZ8/PlGvPLmGrQPjEBL18Gw2IYguOM4vPX+Ynwp9U8a8T3ee3Etvp2+BS+/sRz+XuM1L2fp238NCjOsRijMpucQGNgPc+euRXp6Hoq1NZJOOun0D8QHg9ABmTBCebYDDY6Hp7xo+az/gokfUxt/HUEuUKEMZAbkg5mdjQtxhzArchg+DWiKX9s/jFjfikgmCBpcBfv9KyImoBpiAisrD1kCrTEKbJV8fwMSfSsgxaeCCjdx1EvYuwIOCycReBUZlmEoCALD+4Mria4qSPaugmNtquBEm0pSRpMlkEwwmMcUuT7io4WwSPapiDi/Koj1q4E4n3qI862p6qUcvX6VrFdlHG1TVbEqQ5CaMnZ9CT4M81ANSUx3sJRL9K2MJJ+qYk81pHhXFa4stldU8YpThNkHlE0QZgxiXrO9cf6MV1xBrml7JTmvLP1RUfXN7uDKWO5RARObV0DIk49g86ZfpK+LwA0AddLp70zadKQFvin7goQhwYrvyDGP38Ur1ojPC6/odavNh3yOeMYUVbwkR5LlSuZC9T2ZypU5TbuQ/xSSNG6yKaf8Qkwrm6HqZdgHXnMqVXWVcps7+vU70u0W2edbJcdv2Pgri9LCsi/ZtPIkVipXisuKaemKddJJJ53+eqSDwjrppFMZlQdMHwSs/lW5yx/iBz897nscSDprb7VOfzqyv1vznTsrqxjR0Wfh7NQFLk794OHKTdm44Rnj8jKERLjGBIglzWSeCrPtNXTs/jkOnMqDvNZj7swFeOaRfujgE47H2r+Ent2nYufGw9wPBWeT7qCNTyScXMMx/oWViDqUjTtpwLGjGbhyAzh5qhifvrMYrV17Y3jYKiRdAG6KXRnCBRnZuHj0CiIivkajZj0xcfIqRO3PQ/4t4JIMr6M3geOi66f1+/Fkl8FwdXkSPXu8iBOXCpApa5DLJ4ALKWLDGeCXrSfxxudrcZPrpttA4q7zOHlOZNKB29KIg3tS8PuKQ7gmsidE702xfff6I3gmMBQetlA4W0ej7aMvYduOG7h7Fbh6ughnzwMX5fyn1bF47JFQGM398Fy/91W78rOl7rgsZIjM0aOl2Lj5OgK9I2FsNlT6kbGQ/zko7GoVlrxmzbqhalUbvLwewYoV61As6zLl2KiTTjo9gPhwED7QwI97zDQHc+K7//I+/hekROQPcUniwNoPuAmmFCP95k1MHReBlrUN6CO8wL8mYtrWUN60MQHaRnBJftUR712pLFYvOd6fAGklJPlURopPRQUEH1GAcEUFrib5VlQyDEFBj1569kYHVtTCPXDjNh+CyRroSjCYcvS+VTGJ7QCsyhMdyks5sCqi/Gsjxr+a8mB2yCZKPutK8qmibFFgL4Fg2kg56varptqhPJEdLDLxfmKjnwbqJijmOdO09lHGIU9wmZ7Dql12OQ1YroQ43xoacN6+InZK2b3BNbDqCTec+H21dHo+SosILv0XN0knnf6DiaNfm7ocvsLCKpHzEPcdyFdALPnek2IHZe1zofZP06OEOKHxJxHMlmt+90z9mreuJqtI/WRC+0KM+tW3/gy7IwLcd1P7zprS/EqfYV40lQUqlUJkJSQsf0roz1ykHAvIzFKZapJlPo/qv71YORBcJ5100ukvRjoorJNOOpVReeD0QeDqX417vLHpH+IHj/1wJa6m0lNApz8t2d+yCWwQGI6LuwQX58fgZhsGo3MoLAqcFFZhJMbYQWF6EGvpTi1GoctTb+HQ1WLcFlVnzl9GYtRhHNpzGfu2nsGZo1eQnZaFwjsFmPntjzC1DkNwt3cQn3IH+bIOWLN0B0YOexUffbkSd+T66vm7CB/5Jjy8x2DouMU4ewfIERv3b41BvydD4es3Ck8++x5OnJalRhZw7MANRIz6ABFvLUPsFSAzB1gwYyW83J5Fl0cjkHTmDnKlXZmSN/PDnzFy6HvoPegNjHlpFnK4cpHheXTvSYwZ9xV+WLpLLZfys/JxOeEOpo35Fm9+/QvSuZqRxn0Q+S3czCPgYhuNmQvjwZC+F49dRsSwFzA2cjGOn5IFkqySvv5iLpxNfdCz90c4elwaJWul/Ms5mPX+YoQM/w59+34Dc/M+8HIPVbGF/xUobLNMgNk4HA/V64iKFY2oWrURJkyYhqwsLp100kmnf04OCOGfseRTRDHPHReOfD74DuZkUZ4ljSLyvHN/ORQxNEURcgsLsT/2ELzb+qNeBQO8DQZ86V0Ve9rXQrQPwd+qSPSthmOtq+JYm6pI8qmkvGYJkNJzNtGHacIEZZXXbAUFktIrl164SsYum+BXEXH+BIWFA+xAcZABUcEaRzMOsR3sVUCuPZ9exrvaC7erhH1B1XEgqDIO2uVjyCITE1BBAdhk6oiVNIaPOEQ5OR4MrKKxXJexpEcFVUBUYEXhSnbmeUUFQjNfsV2eeglU03M53q+KAoYdoHCsb21E+ddQsZWj20v7RNeO3m1QcjJKuj4HBZnaZps66fR3pXszFeFRvrnIi4aawmRuKiXIyk3oymYr++NSHhQmlKx5GTty1V/+obewvBBSkuUV4Ct6y/TYQV3HbKjVLWcUkHS5UqdqglSTZLGytcyzmC+c/Gabiap6rYTDOiarDJVXju0H2qzZrZNOOun01yMdFNZJJ53KqDx4+iCQ9a/ET768Du1HfnVfmz5duMXeUp3+1CTv1UUF8notb+G5OaVYuXIbGj7cFq7WIXAv8xQmKOzwFA4r8xS2msfBZg5Bx8emYdepfNwUddx8Sb3121cTJUWSfvU81q9cj8c6j0RT1wgMGbcad7OB9JsZePuFz/HM4yEYMvptnLpSiAJZy3z/9Wo0atEHrYInIul8AfLExvnTV8P54SA0av4cXntvI26nA9m3gch+r8DS5HE87DkUr32/Hbmy/si9XYyuwaPxdPcXEXciXXkKH953HY97D4NTo25wsvTG6GkLkc4ViuiZNvIl1G/0CHoNewuZhQWyPinCD+8uQ0unHmj5SBgu0AX6LrDs09UwOw1GQIfXcU7qzpC6GD+5R5f+6NnrI/zye6r0IXD65HV4tB6O5/p9juOn8lRfHN4Wjw6uj8Po1Ac2tzC4GYfA0zJK+jASJsu4B4DCWr87tRgNT49w1KnTDgZDU1SoWA9hYZHIyeGiTyeddPqvieDBv2JOWuWZcAbZAXk4mBNbOaYov5vhZUkxiorykFdcjB0HD6BNu0DUMBjQWvgz72rYHlQdB70NiA+qigTvSjjiWRGnvKsj2YfetBW0kAzC8b7VEOcn7K/FA2ZICYZROORXHbEETu2AsObJy1ANmjdurMgTFGZoCUdICoKulHewAzgmMLsvmBveVUI0vXEDKpeByTxS5pB/Zc0bWPiQv9QvaQosLsuvonkK+1fSwjwQ/KX3sQJ/CQIzjXm0jd7Rci4co2QpQ9BZA73ZljjJIyf6Sj8QFParoWzbJ3UdaF8ZuwOr48enWuHKvo3S51kaqMRbp5NOf1MqP3NpE5G8aPBCfblFMPYPm9AxS72YCRM4listnfLatXqklGJNhlMbZz5tkisPCmsnzGOaplNkNIXlytnrk/mR5f4pKCx/CPNya08NqLZnMI+nDjl7kgPM5rlOOumk01+NdFBYJ510KqPyAOqDgNa/Cj8xZcV9bSGv2hxnb6VOf3biZktFBYUoKirCxo3bEBz8FB6q5webZSDMJnoKj1cA8D/GFB4Hq3kszE5D8PiTbyL6EnBd9J0+m434gydx6ngqcvNKcSfrMubN+xod/R5FK7e+aOH2Kqa+E61iz9G7riRVlgxpwNkbwC1ZO+RkAyuX7ISbZwh82k3FyStArqwiVi/cDluLJ9DMOhSrN14F9yA5HH0UXd2fha91COrawtFn/GJcuZqrfrE4uMe76NHtLSSczEOurD3Wzd0H/xa90Mo8Es1dhiH0hdUKLC64nI8RT4WgmUsvPNH3DVzPuIPCvDy8FvI5bI17wtYhAmfp7C6rmdVfrlDtfarvdzh1W1vgFNzJQfbNEtxIB25mylJMqr90PguuLUfgmT6f4NgpMUbWZz999yO6tuwtfdkfFvfRsLqMhJtR+pExhR8EClu0fje6hMPdLRT1G3Swg8J1ED5mLPLyCAqXrah00kmn/zZpQIQGQ9zPGrpBWOOPTEjDzgRfNOxFHsUCFBXnIU/mtF0Ho9AmOAg1DQZ4CX/hXQM7g2sgytuAuCBuHlcBh1sZcNynivIMpoes8uQlAOxfTYGhBG4PBGtevfuDGeqhOqICqihvXwK8KsSEdzUc9mLc3ipI8K2svIYPBVRQQDJBZXoS0xOZYSBYT4Iv66qCOD9NlmWog/kOUJmswlH4VEeyd03FCb7VFPDryGeYB8YLPtKmOo62qYEUr+rSpqoKXD4YVAkHgjTvYOqh7sOUFTsPe7Eugt5VpY1VFPCsvKB9abfm8UxAmGEnCCTHUEeHitgqeeuCGuAFc228EzYcybGHNFBJgV866fT3JI7+e28AfB+QyagsQZurSoWZ5JjRStTcJROWHRSmFGc8Td7ue8s/5TyDNUlKcba0k70erTxJ6i8VvVolqhbmaZMj69PK0kqV7gCFNeUqT1NJWJhsr4C2ODLLJTlmap7rpJNOOv3VSAeFddJJpzIqD6I+CGz9K3CXcQvua0ePiTMRnXLe3kKd/vxEQFgWEvLyX1RUgOC2HVChQn0YDE5o2uRpWM0h0MJGjNOAYGuosKQRGLaMVaEPLMaRePSJ1xFtj//7xaeL4eveBYMHv4nohJsKMzl6/CQmhb4MW7PuaGaagilv7UOBvM1n37mNxK3J+H1VHJb9fAQLf07C5t9TMHnct3B2GYH2j76FU5eAjGzgxyU7YWzaBQ3NgzF/7Um1nrh0+Awec+sBb5dBqNR0JHpFLkFauixHskrwQtgPeLLrq4g9nqnCRMz6YCU6WZ+HpclgNGk+DBGvrFeevqXXgcGPMU7wSDzR/2PczitAcUExXh7xNbxMI2FuPxEn0qURWaVY8fkiuLQYgqcHzMCpu2ofbRxPOILtv0Rh8ZpTWPTjKfz6azQWzNuE1n7j8OhT7+L42TwUy0ro6xdmoL35OdhcB8PkHgZ36zi4mTRv4H8FCru5joeL80A0bvwIKlVugeo1GuDlV15BfkEOStRPLvVlkU5/Z/o/H/8sSRiEXmnaPw0iJjPPwffTH3JkzsvL48+0cyUlHwUFBTicchSPdX0CTQ0GdBKe4VULUe3q4JCPHXQV1kJFGBSYGsd4ugRyycozt6qSo+fuwbYaOHwwkGCxBgrTo1iL90uQlcBqRdFHEJhgsKZHxfr1Z1iGykjw1UBhFZaC3sUqNIUWuoExi7mpHXVqnskVFJhLIDhRbSbHWMi0iRu/ad7L9GxOobezFzeiq47DXtXFBgLL9AK+521MW+gJzJjIR70qi7y2IR7tUZ7Iqh5pu38FVS5GdMdLHm1WtjBNeHNwTbxvqQl/6cumVSpjysTJKMrP04AlnXT6mxJnIDtOKsSvqOWZKANOCZlqADDz+aSQNVBYe+cjMU0Dhe1oLk8Va9c8pUpNzk52GR6oTfPqZTgXedGhkGQwXZPnG6BcSRqveaXSGZOY3+zb5e/ppwRjENszWAnVO1glMZce0DoorJNOOv01SQeFddJJpzIqD6Y+CHD9MzPjB3cKm3lfG8Z/vBo3uEuXTn8h4it1EYoKc1Ao7OrmDoOhtnAzNGr0ODzcCf6OEaaXsJzbRgmPtAPDY2CW9OYthqPr0+/g4OkitdHc958vgrf5cbh7jsaA0AU4ewsqVETU78no23UC3DymIPLFX5AtL/hXL53DyKdHwLNJR7h49kczz+fh4z0Qbsa+aNE8DI88+gGOnMxHkawPVszfCIvLY2jkNhRfL4pDgax/7p67gsEdhsPXNAi1TGMR9u4m5BeWIPfWbfTtNhXdu0xD8tlMZMqaZOZ789HFox/cWgyFs2k0xr/1K67fAbLPFWDEU5PQxDkMHZ/9FDdyCpGbU4Q3Rs+DR/MQuHV9EyeJ/qbnYtFHs+Ek5ds++THOyPontagAM76cDm+3Tqjb/Cm0aDkIni0fR+vWz6CJaRie7PcVDp/OQ7HYOuPVpfBv8RxM1iFo5DISrpapsDpPgcU8+V+CwjZrJMzmIXB2fhw1a1vQrkNX/L75d7lzRXLP6HejL4t0+jsTx/+/eAYc2Q9gHogzEH4oz+XwB43LTu5nyhLCyBPpAmTLX3keS0pRfDcP8z+fgR4WCyKbVsdq/0aIDaiFBF+DittLkDe6rXAAvXIJCle+L6YwYwerUBKBkh+kgaMEiuk9S/BYbQTnQ3CV3rlavipvZ4LCKhwEOZBeuARfKyPZp5LavO6wjwEpYgv5sB0cZt30QGZZ5W1MENif4O09AJfex5Qh+MwN67ixHUHeZHoi+2l5BK3JjGNcZqu9DsoTJCaorOqiPoa+kPoYY5g2x/lWV6Awy1PPIannl+CHMPTh6nAyGFCnUk30eKYXSov5ucXe583QSae/H3HkO+YpbUM3zj9agvblFqFWbZM3npG1KMHy3DBemGRoc57DB5hpkqj9F+KJlsvgFAR6VX5ZHZofsOZvnCYnWSrx3kZz1MKSRUqWadSh6lKb2Uk+DZAD9TBf8yXmjGqHfKmChR0s9bO8DgrrpJNOf2XSQWGddNKpjMoDqg8CXv+s/ORLP/1D/OAvFm+zt0qnvxbxpbsIBQXZclaIho2awFChLgyG5mjW9EnYrKM0QFjFE2bYiJB7oLCFoPBYOBtHo/uzH2H/kWw60+LLTxahtevTaO40FK5tpuLjb6OQLWuQYlkvTP9sHWzuw/F0349w7EweGAFhxcz1eCzoeTw/9H3MX5GMubP3o9+z78JiCkFw8DScOicLCVktLJm/DY0bd0Rzj8EYOnYmrt+QFYKU/3neNjzZcQy69fsMm6IzkJldgoO7otBGbHiq2xQcPpODPFl4TP9kBbxNz6C120g0btYfo6csQ7asULKvAsOffQnOzuPQrefXuCu2ZmcXYdroubA0HQVb4Ms4I+sdrlrmf7NU5MJgajUN6/edUyB4UtwxPPf0cDz61AR89v0WLF22E5Mnfw2jbYD0y7s4crIIxG6/eGUl/C2D4OYmfeo2Bq4EfI3aZn0KFLaOERbdBIStY6Vv6UU8Hq62cTCbhsJqfRYdOgzA8hW/IDePSygu+7Sll046/X2J4///7BlwlCyPOTjYkaf4vot7TDwjV57BPJk785Aj5WTyKJSMO3nA+WvY887bWNauJXYENcNBbqYWaEBMewP2ylGBwkHCgYy5S09fDThlKIhkb21DOQK9BGkJoNITV4VaYLowvYsZo5fArwrpQBlJJ1jLfHraMp3xexm7VwsnUUGrg6BwOWCYaaqc6NC8hclaOAflbWwvqzbEs8uxPqZr3sia/WVsz1dAtVwTFNbq1Op32Eebkr2rKRD4gN0jWotVXElrk/DRgErY4F8Pw51roonBgLpVqsm8/jQKGVNd3RiddPp7UrmpSIjgq7wX2BO0OYwzFENIaHOVhr/ynUHY/uzcm+/sBZmu/beTBr2Wgbb2fDLLaW8g1ExPYbHBnn1PJ2FgzZdYs8GeSz1EjzVBpYf5GjxM72bNS1n9Kc/2Ew30Vgk66aSTTn850kFhnXTSqYzKg6oPAl//jPz45OX32U1euy3B3iKd/nokr+0lxSjIz5V39CLYXD1gMNQTdkGTRk/C3ZWbyo0VLhc+wkYvYTlKutkSCSfnUDzx5HuIPZyPHHlH/+DTZbC594TJOgItJK/rEx8j+TCQLeuFqzeBHn2nwb3N8/jwk+24dBFIuw7s33kCh5PuIu2WnO+6jqe7TYWLU0906jQep88A+bKuWLzsEBo3fwxG977w8B2G6XP24eJl0XsXOLD3FGLiruO2nMfGXcCgARPgZnsMjz8xBkdPFCInH/jssw1o6dkfJksfuFj7Y8ILS1VYivRUoH+PabA2jUSvp75BVo4sb7KLMGHMXJhbjIaf3+u4dE1skMXLtzPWonnzcXAxvYxBoV/jyLlMZGQBKSmXsGffCdXGo8fSMWH8p9I/3dC796s4fQrIlfXSR2//ipaWIXC3DIfNNAKe0p9WF/YvN5qzxxW2M72EtY3m6C0coYHz5r7o3i0SJ0+mMxQzSkpkoVWi+d3opJNO//tEX7V8ZCtIOJ/gC38SzV0xb8ukcOMmMn74FnvbeiLKqx72+RpwqIMBB9oZsJ+AZ3sDDgbYvYblmuApvXgZZuGwNwFghlFg/F/tnGlHvCopcJWgKsHgA8KMPRwTqIGzDMVAb+BkH4aHkGs/hoKwg7xSB4FYDWCuoGQI0lIfgVrWzzzKaICtdu3w8r1fjnGLK4nd3FxOA5+V/SJzxLui2Mo4wZp3MpkhK46o8BGSZ7dfeQX7V8LxVrWQ4l0d+9oasEf6RAsjUREHAytL26viRJvq+N23HsLdKmugcGUD+vZ8FiVZMtlqKJdOOunkQFfvI15raQ86+/9H/7rUvVw+jLRBo3uy95/du7qf7uX9KymddNJJp/8M0kFhnXTSqYzKA6sPAmD/bNxl3Pz7bZ48C7FHL9hbo9NflYoK6Jkhr/TFRXj55TfRtGlL1KrVGi7OvWFyGQmLeZwGTjKMhPIWZlxhDcxketOmI/HYE+/hp1/OIi4lG1Neno2W3oPh6j4azs6j4eo2HlOnbUBMQgEOJWfhvU/WoLnxaXR85A2p71cc3JeGI0mZSI7LwoJZB9Cj+yswS91ml74ICozEzp0ZOBRbinc/2IQmLZ6Fa8vhMNoGwztwAl58ZS0OHEhFYnwaDsWkYtHCPRg08A242p6Gm9uz6Np1AjZvvo6o6AK8+PJatGoTiqYt+sLZNAhjxy1HdEwxDu6/geeeegmWJqPxRMd3cfDAeSQmXkP46DkwOYUg0PdV7NqVj5ikVEx7fQFcjBNhNE2Dp/doPD/sXaz/JRkpKXelTDq2bDmFMeGfw9O9F5o3eQy9er6BLRtv4uCeAkydsAreLSPQ0jUcrsYQuJnC4GpmaI6xMFkj77EChTVmH9tsY2A2DYPJ2AuPdQ1HcvI15WSTX5CH4pJ8uXP6Akonnf49RCAkF8WleeAPpAtLJIXf0+TKc3n9Es7P/Ay/tXNHVFATRKnN1AyIDTYgJsiA+LYGRNnBUYKqBGE1r1oCugRUq6h4w2Seqw3jVOgFkRU9KnavsBbaQds4TvPe1Tx0FYusCtXgR2/eSvaj3eP3H+TuMe34Z8z8eMX0JNY2pyPgrMBmSaeNtFWFwLAzAWKH/ZSh/Y42My5xijc3lTOoEBIEuaMCKyM6gGE1qiClTQXsCqqJ160GBFU0oFXDanjvlRdRyG/g9KlPJ5100kknnXT6i5EOCuukk05ldB/A+gAQ9s/Cz7y+EZ3CZtxn76TP1iA1PcveEp3+0sSFdYn8Ly7FrdRMfPDBLDRp0h4uTn3h6U5AWNsMTQshEaYBwwSIlRfrBLi6ToTRPAo+AWEI7hgOq0cfmGz94eEZCRdjOEymCNhcw9Dx0SnwCx6l2OYxGBbbaLi7jUGg3xh0DB6LAK/R8GsdDnOLwXAVfdzAzsM1HAH+L6BlS8kPfAGu7uFwNo2CZ+tJaOESouoI8JXy7SKFx8Gr1QjYzANgNQmbh4h9Q+HjPQHt278Gdw/aP0ZsoXfzaHi2nAJ/vxcQ5B8GN3M/tLSGw9Maio7twxEcNAqulmFiQwhsljC0a/eitC8Enm1Ev7TX5jYZzVwGwdVzGPx8pW3tJ8DPJxT+PmFS/0B42IbB2OJ5uFtHwq/NBDzS7nW0lr50aTYCbtIfbsaxsLlEiJ0MzREBLXSEgyPs4SPooU3QOBQ261BYLb3QqmUPfPbZfFy/ni63rQi5eXe1m6eTTjr97xPjchbmoSQ3R218ya9ouCdlalEudm5dj/cGdsd7trr4PagpEnxrIcWrApL9DYjzozduReEKCiClZ64KJWEHiBnTl6Brgl8lxQR8CSgzzyHDMgRok3yqI9GnmgJYCc4yZjH5kMgxpi9B5hTvajjsVVN55BJwJoDLfCUrR0dMYnoCH/HWmB69DCmhYgxLPoFsHnnNepOZL/IsR1tok4M12yooj2QygWiH/eX10D7ljSz6GNuYug4EVcaBwKqI9asqeRWQIDbSi/jngKp41VwB34b3x/mkGPWxpf10XSeddNJJJ5100umvQzoorJNOOpVReZD1QWDsn4EZP7jdiC/vs/WrpTvsLdDpP4JkVV1cWKI2gybGERNzDk0ad4CrdQhsjCdMQNg8CcozWIWQEFbpGljs5BQGiy0cru6jYLYNgov5eRgtQ5Sc1SplLGPh7DISRvMQuFieh7OpPzxajYbRFCr54TC5EAQeKjwSHrYxcDNHwN06Xq4j4WoZpzZaa958hMhGSJlwtFDex5PRtHkYPDymwOQ8AsYWg2E1Dkcrjwi0dBfbjCEwG0Ph4TYeRpG3ih6jMQJW2yTYbFPknGD2NLFf7DMOk/qGS90iL2wxDpayg+DuKvXY6BEdKvIjYLKMgMU1FGbLGBVH2Uiw1jUcLk7DYXYeCZPTCHi6RsDUYgTcLOGwmcQ+61gtRIRzGNzFBleTBga7m6VdBIbNY9WmciapR3FZTOExignCm6VfbLYhaNb0cRgMRtSo0RxffPmt3DbG3cuTG6iDwjrp9G8huuwzlgsdhoX5m4sbwjFXzqFnvyfR2GDA05UMWOj1EOIDH8Zhr2pI8q+CGB8DYvwqIzGoWpn3LUFTev5qm8MxDjCBYI15zjTmUYag6z2vXM2TmKAwQdeoYI0JvmrgbEWRYZzi6kimLD18WRfrcchKOeXpq8JEEERmCArNq5ebvVEXAWSHTgXkqlAV9hjBcs10Vb/dRgLb9CQm81x5NkseZQgIOzyG97fV9B6VPiEQTS/hmIBqYkNVJFOmvQHbpY79Hetg56C2wOHdQGGGilSaI6zPfjrppJNOOumk01+JdFBYJ510KqPyQOuDANl/Nz8ofvC6HYl263X6j6FihpCQpXUpvYWBgwfPoFnTR9DSYxTMxjANEDZP1kBhFUKCoPBYBQgzz2abAHeP8XAxjdI2l3MbAzf3sTCawmC2RKBlSylLkNMyGs4uI5R3r9EcInJyNIbC3S1CeeO6WuXaaQxcLZNgch4Pq2mSXHOTNTm3ah7JZvM4uNomw8VF6jNOhM06FW5WscEYCbOUtbiIXcZxdp4Ai2kijKKLALDJJOWMots0FU7Ok+R8iuidKnWLTmmTs/Ng0T0aJhcC1WPg4R4psqOkffR2DpMj65d6pB02ttFTdEh9NukDV9FNdpN+cm4aIecT5XwSrC7j4CH2mZ3HwlPstoqdLs1HK8DbjaEhpH/MVqnTFmpnnku/EQxWXtmSZh4m/TkEDRs+gqpVbahYqQHCwseioChTbhlhESJSOumk0/82qTAu+QWay6ocuG/SdTndcjQJLQM88ZDBgDbCn7eugwOBjZDgVRPxATUQ7VcFUX7VkBBQXQNhfTRgmJ7DUYEVcSBI4/3BGjuuuWkcYwQTUCWAypjAib7aZnD0POaGcgo8FqasA5jVwkZorEI+KJDWDjITqBUmqBvnVxnxvtWR4FtDmN7HlTTv43JyvOYGdAxrkehTxW6Hw34NEI4KqoCDYm95ZpoChMvZT11bOhmwu70BR+T6mDd1M3RGVZxsXUV5LEe1NeAgZcS2X5/yBFJ2A7lp6uuwDOlwffbTSSeddNJJJ53+SqSDwjrppFMZlQdbHwTK/tv4ne14NHLeffb1mTobCccv2S3X6T+KSoHC/CJ1vHolDZ99thBNGreHxTQQrn/0FC4DhR2ewhNU3GB6zxqN4XBxGQNX1wnKQ9jFOBo217Fo3mI4XN3Gwd19ogolQT0tnELRstUkKRcmciPh5DwCbm4Ef8fD02MaXJwjYbNOljJTlTcwwz1YrWNF9zipIxzNm4+Gj8+bcHYaC5NLJNysE+DhOlnsnQAzAWHTeCk/SbFV2NWVOsaihbCbx4uKjdIuM2VszJ8g9oeIDaxX0k3jpF6CwOEq3ATbo+mSNGmryUzAm+lS1jIFFqPoIShsnQqrcSKspomSThZ7GCbCPBburmKT6rcwuNkkzTJagc7/FShssY6QvhqBypW9YDA0R5UqDTE6bAyyc9NQXMoQLjosopNO/xaSOVM9fnRbJUop0+htOWxNioWblwUNKxvQ2mDAx961sSOwAaK9qyEuiFwVcYwD7F0R3BiOXrcKgOXmbcIxAYwRzBjAGhMoZRrzKMM0liMorDx1CciKDOPwHgisofhgYHUpQw9ihqHQgFge4xQoXFnyq4lcNTlqG8YpoFf0Mv6vY5M42sg6KXMwqBKi5EivZeokGK1tVscYyNzoTgOhme/QxY3vyDx3eDyr0BgiSy9jgtT7gkVvkBY+IkWYoDLlVL8wHnIHA7ZL2o5OTbC0WxucXL8M+ek3VXczXIfuKayTTjrppJNOOv2VSAeFddJJpzIqD7o+EJz9N/Azr/+GTqO/v8+2qV/8iLQMeiTq9J9IpcWalzD51Vffhrt7e1Sr6oEWzZ6DxRQKR+xgLaYww0dwszkCw9wIbRystjHCBHsJEk+G1UKv4gkwmkbDxTQSbu5avtFIYHWq5E2G0YUxc8NhcwuD1W00bB4MlxAOJ5dQOBuZPhEW2zh1bTSLDQRLLaPkGCr6IuBiDBEbxsLFJQxurrSP+unRyxi8YxWArNjG8Axim6ucu3EjN4ZqGAMXaxiauYyCszlc9EeK3klyHCf2RqoQE+royuNYBUDTG9oo5yaGf7BNVEC10RShrtkuEz2V1WZ8E6SNExT4TXvYRgLImuf0SOERagM+m2uIHEPg0VJkysBgDRDWwkdozL52dhkCT88RqF+/AwwGJ1SoUN/uKZwltyxXbpwOCuuk07+FiEgyZkS2cKZwHpAhj+P+lHj8f+2dB2AVVdbHHwkt9CY+qQmEEnookogKRBGJYoliQUEgWDCW1Szfrpvd1dXYMDZkXQuyu2rQ1Y2urLC2oFICUgKCBhWlKEWKBEh5Sd5L/t85d2ZeXho8NEHB/09vZubOmXvvTPTF/DycGTS0h8kUjpb2wKAmeO+M1lg+pAFWnl4Pa093YcMQF7L7axmG+uaFaiuGShvWAJ9IjGbgftGvPjb3tVpOf31hm5yTmCyJWSnbtXKNSlnNsFWZqlm+K4Y2wdJhrbBkWGssG9oCK4eEGSGrtX9NRq8RyCEyRyMsG9ZcYlti6dBWyBraDKt13sFWjDZTT3hIqIzZVMZqKWO2MVtrzBAjcXVMrVls1j9M5pemL737dFB9fCnr/7qP1TbJ+vXFc/pSPOslcvWt9Q9shM/7N8FnA2Rf5tNSFUtiXfhY2rLhmvEcKvOF4H+DwzB38Cm4rJkLiXEj8b+M/8Arz541hQkhhBByokEpTAjxEyheqxO0x7uNnflvxF6XVmFdT87/0F4tOTmRX6ntYsKlpV706TvQSEeVj+728egZqTV1NUM4yRLBRgirkNWXzemL0FTuap1dzeS9HRHhd6BzJ5WityCyx43oFimxkVPRpetUU/ZBz/XoPtOSzJE3oKvW6e1pZcl2lJju+jK2bjciIvJmdA6XuWUMlabdJSYicoocqxieJvNNM7K4p8SHh1svvtOsZJXPfqGqa9es28jp6BR+ncwh1+hauk9BhM7ZcxrCe1yPzhE6x+0I73YHOna+WeaS9XeXezNyOEnG/Y3MI2vvovOqdL4NXbsmoUPHafK8fiP7Kn1vlbgkdOpkxei6evScIWuUOcOnolfvm9C562Q5vg69om4w9Ym7Rkyy7qW7JYKt5rxoTppmFas4l/V37XolTj31XPnedEOLFhG4+54H4CsrhreUVTUJ+dlwpHCB7GjaqnyUFspn6pfbNuHaK8agTwMX4l0uPN8nDMtjW1mZwEOs+sFaRkFr864ZrCUe6mOlStWhWk+3PrKlfTqwHj7Tppm4g+phVXQ9uVauP72B2a7SrN7BIfgs2mWavtBN5eyqIU3wiWlhWK0lKrR2sZzTF8NpVvF6uW6t9K1UyTw4TFpTiQvDOpXCel6aClrdV6H8SXQjGbO5xLWQOZtKn5aNsOY0L4eLDsHaYQ2xcqiWt1DhXE/GCsUGfWHdgHr4XNb/qezrfVq1kTVjWDOj9R4bYlPfRsgZEGrqEq8aLi3GqUusGccqvhvjg9Pb4redXYiSZ9k+xIVrr7rGksLSKIUJIYQQciJBKUwI8RMoX6uTtMeznXv7yxXWo+2tDz+1V0pOXvRXai0dUQyvtxDdI3vA5WpmyhSc5h6H7pqda0ToTZYIjlQpO8UWwyqJVb5Kn5Y5UNEbfqfVdF/7IidbrYbzEZHXIbzHVHSNTJR2vbQbpd2Ert1vsgSpZs7K+BoXYca6LmB+FdRaYsFp0xFhxnRKMUwz14ZLfHgPbTrXZGmTTOvaU5r0d1U53f0WdO12p7Tf2GtQcXuLtNtMi1D57cypa9eSGvpczBpqanLPNTYrxioTofc6w243y3xatzjJNJXu4eGJ6CH30LXLxWjXdjiuuuo25ORshc+nf2aduXKE/GyoFC6Rf/9KSuH1+eAp86JI/p0sLtmPZf95AfeeOxCPn9YAywa1x9oBjbF+kCWD18S48FG0bM90YeVQFz4ZXA9rhmn9Xs2OleOYelguMfoStqwzZHu6C0skfoWK5OH1jXhdIWNpxu5ncu0XQ0OwYYALGwe6kDPYZSTsp/oSOiOO6xsxnD24gSnlsGFIfWyQc9n9rHi9zgjcoaHIljFXy/46LfEg+9kaJ+c/G9JAYq05Ppd1aLzJFJa1aymI9TGN5B607IOsUdqqM+phqaxZ72GFvf4suS8jfWWrtZPXqvyWMTf2rYccGUOfw1qJz5Hzuq6Ng+rjc3lmm/s2xbsDW+G6Di50cLnQpKEL555/PgqLS/nJRwghhJATDkphQoifQAFbnag9Hu2ie96vUj94wszn8emXO+xVkpMb+bW6TFPdSuDzFcJ92mlw1VMp3BHtTxmDnj2mBUjhREvIGjGrIlilsGbj2pJWyyeE32E13de+SM2GlVbDec3+VfGrErirvmiue5IRtOGyNYLUZM1qtq/KXpWy2lSoytyyJkvWaoxVfsLKulWRrM0pyVCdILZaV7k/SwrL3N1ul3arJYT1eiNob7EErZnDlrlG1gZmTmsLlNPabGFunp3TNPNXm2ZYa/a1yl+rqQi2mty3mdNqOk9U71vRvdt16NzpIpw3JgmrPtmmid0o8aoU1tIRVCOE/Dzo52cpfGVeFKIUBfLvY5GpdnsQyNuO7fPS8M6IflgxuCOyBjbButjG5mVrq2Os2rnrZKuSNntgKNYPa4i1pzfAsmgXPlLhe3Z9LJWYjzWDdkQIPokJwerhmiEcgg3Dw7B+UAOs0/ITKnblGs3e1ZIP61U6y7HW/V07rAFWRYdg3emN8GlMGFYMUIkbgvVDQ7HhdJlzqFwn8dpUBqtkXjtE6xA3wNqhjfDJoBBky5qyh2qNYDkv4+ocOVoCQ6WyHH8+pCHWyDrWavayjndmIyyX7Sdn6LrrYZncg+5r9u/a2Ppyj6FYLWv9bIi+ZE/rIss48hyW6X0Olxg5XjewvtxfMznXAut6NcS7w9pgWmcXOrpcaNHEhQsuuRBFvjJ57vz0I4QQQsiJBaUwIcRPoIitTtjWdbvgD//FmZXqB8987A0czNM6peTXgf5KrdmmxSguycMZI0agQcM2Rgqf2n4MevdSCWoJ2HIprBm7KoJtAepIYRWlEb+xmpGmlaRwNedV9Fry9TaES394xB12k/1uWtJB5aiKU5WpjlhVqapj6YvgNItXM3plDH+2bWCzM467a2kGRxYHNqdkQ+A1TryKZqc5Alju15G8zv3L+ari1y65ofLbySzWl/WZJvdv5Pidsv7fyPpvlfWrDLaEcLgca1+EuS4JnTpOle/D9egReSXGnHMzvt6cb6RwcTGlMCE/J5qrWiz/Dv5Qlo8DKMFhaSVa59t3wEjhrfMexaKzo/FBdGcsjj0Fy0e2xuLBVnawCtlP+7nwea8QfDGgKbIHNsKKgSFYHdMQq08PRVZ/FzbEhGKNxK8eohK5HrK0BMOgUKzVOsN9GmNTP9k6UldalrTlpzfEspgwfDysEZYMtWr4rpLxPpFz+pK3LBkva2gIlsm5JXL88TAXlqrEHd4Qq/TldIMbY0V0Y4lrjJUxTfChxC8/IxRLhkucxKq41bk+HaLlLUKxuX8Ycvo2woahYVgua1aprXN8GlPfyF+VyWt0/NNlTjleObAe1g9ogM+jGuDrIWFYL2OqIP9Y4lbE6DpaYMmAlrKGU7FiUFtsGHEK3pC4pK4u9Ha50LqRC1dfexkKfV4UlZbx048QQgghJxSUwoQQP4EytjppW5dt7G9fR+zkRyqsYc6rH9krI78e9FdqH0p9RfBJe+75FzDs9HPRpElvU66gZ49EW3LqS+ZUAAeUj/DLUc3e1bibbfmppRVk30hkzSqWVsN5U+6hW5IlRyPukKai1Gnap9I3SeJVBFcUwipXHalqxjCtPPu2atOs4spNM4ADM421lYtgp/kzfys3vwjWdWmzZbBm+VaQwbYMt2Ww1ZJl/XLPKoJNVnR1mcI3o1dPua/wSegReQVGnHEd3n/vUxQWAKVqhlk+gpCfDZXCJfLVI/8eFkor0j9xoZnCZYewb/t6LHg0BXcN6IK7I1sgtU9jPDusBf5zZhssPastsoc0w/K+YfhgYFs819WFx6NceLS/C4/1deGNES2xeHAzrNQ6vkNb4Z3oMPw9OhSzervwcB+J6+bCq1FNkTlYXxJXHx8OrYcPRrbC6yNa44n+jXBfdxfuj3Dhr73r4bUB9fH+6U2wZHgYVo5qi//FNMMrQ5rgrwMa4eGeLqT1qYcnernwSnRjvBPTAstkjGUj2uDtwU3w6qAwPCpjPSRx98h4T/YPxZtnt8ai0xthZWwYPo5uiMwhbTEvMhSPyhiPD5S1yfpeHhSKj4c2x6ohLfHJ4OZYfHoL/Puslni8n8wn9/jXvqH4m9uFRfJMsoY0RNbw+vjorDC8dXYrPDu8Le7rGYZZUa3xSKQ8sz4N5Lk1xx/7N8aZYS6c2etUPDvnUfPs+b/ECCGEEHKiQSlMCPETKGSrE7d11c65/aUKc2t7e8lGe1XkV0eZ/FpdqoKxDAcPFmLOnHR07nw2IrtdKW06NFvVSE7NiFW5aySwZsyqAFW5a2fM6r7JjFWZqRJZM2s1NiC+ynnp1+NwlaZ3IEKzZ51mS2FLsqpwteWrGUP6TRkKFckqhVWiOmI4sEm/xJsYs63YrLF1XJW8do1fOTatu1WOoqL8lWaEsN6P0+eIYEcGa1MhXI0UlvX6S2hIi5Bzuk4ro9mpLVwusvV+o3onocNpl8u1l6Jjh7MwceLtWLFiPUrLfPId09If+r0jhBxvNE/VJ/8emn8HvV5pJSgrLUZu3l6kPn43BkZ3QXhLF/o2cyE6zIWL2rrwWExHvHNOP2TH9MZHw3tjRgsXzm7kQremLnSRuEGtXZjY3oX/juiJlSP645MzB+C5fu1wgfT3b+VC5+YynlxzvsTf3b0hFp/bCe+MduPl8yNxR/+WOFviomW8oSESE+rCjbI/V+XzyE54N64r/nVud8zo4EKcXN/X5cIAiTtLWqJc98rojvg4vovEnYr0mNaY2tiF0XJuWAOJayj7Mv+N4Q3w6vnd8X5cG3wgsSm9mmK0jNVT7rNHGxf6yf6VEvdyn3bIkntcfWY/vH5md1wbYT2HbhITJdtRsrZbJfYdube1o3tg0bkRmDXCjbPdMkY7F/rIffaTucc2kbie9fHXsf1x77lDsPiFp3Fw2xagpASlPn72EUIIIeTEglKYEOInUMpWJ29ru1109/sYNeP5CvNe9bsXsPHrnfaKyK8R4zTKAJ+vzJQlWLNmGyLCz0X3iKvQM1IlrC02VVIGClFHfBoxqoJUJaaKVm26rxJZpaojUKs5L617xAxpSdIcmarz6daRwfac/vINKm2TYLKIJU4zgP3CtkLTfm0yl45lms4R2G5Gd11Dt+ulOfJXm+47x854zv4MM6dfHjtzHLE50rhiM/LXX+LCaSqkrbF1DZGR09GhQwI6djgfLldXhIS0w9133w9PUZ5827R+KcUIIT8HPhzA2pd/g6dWy4GpwlMKn6cY27/djismXwVXfRdCQ1xoKdu2Lhf6NXbhsUnj8PkTd2PPI3dj5cxbMED6T5Pz9Ru4ECKtXTMXBrd0Ycldt2P7w/dh24P34smLz0UXHUeur9fQhWay1Zeu3TQ8Cp/PugPbnk7Bxw8n49phPXCKlliQplutwTtE2pOXnIktf70Hnz+eggW/vx4jZPxO0t9GWjtpEaEujGjhwr/vvBabn/4jVj9wK16ZcZkp13CqHdfc3j+/a2tseOYv+CLtFmx8/LeYNryvmauBrD1U7qOJ7PeStb5w6VjsmHWfae/OnIGREU3RVOZp2ESanHdL3HA5Xjjlcnz/hKwt7f/wzE0JOK2RC43lXFNpOm6EtAlR7fHew3/EyhefBw7myoOXH1gl8sB9+sOLEBIMu+cnyH9DuI7QEpD+nR18QrIb6RPkPu7Nso9rm1zkzE/GHP28J4SQnwClMCHET6CcrU7i1maL1/rBiU9VmPP3T76JvIIiezXkV4s6Rfkdu6hQy0gAH3ywEaedOhLduk5Er8hbrCxek5WrAlgFp8pK2ToZsEZwOuJT4k1z+gLEbLXnb0Jkt+sRGaHtRmk3obv0OaLWKkGhdYztMhSmdIWWnbjByFirBITKYokzTfet5oheayx7XCOgbw5ogfPfLE3Od9Nrtd1opLH/PoyY1j6r3q8jdLXUhF8m674R507Taxyh7ayxvOnatVWudVxetuJ69O03A+HhV6BZs+EICYmQ1gZTp12Pw/n75Run//5SChPyc1DyXToucrlwzwo50KR9/X80sj24Lw+PPPgYBg0Ygj59+mJwv744s3cvTLs4Hlkf/Aco3A3k78KeTZ9i8pXXoX+/4egZNQhRfQcieuAg3JKYiLxvvwUOHwYOHcLS/y7Axeefj759+qF3v4Ho3WcwYoefg7+mPYGS3d9I3C4U79qK52Y9jNFDYxHdawAG9OyPQX0G4LxRI/Hxe4tQWpCLkoP7kLvzW/wuKQl9u3ZHq/phGNC9J86IHow7broR3331JYoOHoAnNxefZ6/H2NHnYkBUfwyMGoCBvfrhnJgz8Pg9f5Yb3CttJwp3bsffn/07zjxzjKx9kKyrL/r1icJ5Z43AB/961RK4+YexY+OnSPntnRgcHS1xA9CnXzQG9DsdVyVchW/WrwPyfgByd2Djh//DNRePx5CefXF65ECM6jsU5w2Mxux77sah73cjP79AKzYb/w6vfO4VaqkOFpAgJBgsKRyNiXelIW1WdW0usuRf2ROXOpbC8nmfIJ/3qfp5TwghPwFKYUJOQj788EN779gIFLTVidzaalo/OKZS/eC/vbbEXgX5taNlCErlL29pKTZ//R3uSnkULVsOQvdul6FH96mIVKkaMcNsu3VLRI8e0xARMVnadegWMU3irjfnIrvfiIjw6XKN7quQTZQYub57Irp2vU62N5imMSprrXH1+omyfzUiIyahW/h1cr2Odz16Rl4v409G9+7XoFvkVYjscSUiuk1At+5XS99kOZ4u5xNNbGSkzBF5LSJ66DgT0LvbVegZfi16dZPxZT4zl2b+ytgREhvRbQp6y1xRsq6eukYdJ/x69IrUNU2RWLm3cNnK+qx71K3cg1xrSeYZcm9yj5HTEa71fntIfLdJsn+txMh13afI8XUSZ2179Jgic14r8ZPknKxT77fHNabPqs8sz0SeU/fIaegaoedlnB6TER5xpbQE9OlzBZo1j5Zf6E5FaIM2uG7q9SgpLYJWNKUUJuTnwftdOi52pLCaSv1/NCqHfYDncDHWrd2AJUuXY8mHH2Pdsizs3PyVCShFIUp9h4EyL3IPFWHJ8vVY/NEnWJa1FqtWrcP+fQfM/6iTD2eUeOTfc18ptm/7Dh9/nGViPlq6Btmffg1TPaGsBCUFByXWi6LD+chZn4PlH61A5vtLzFg7du9BoddrlueVQYuKS7Bn9148PutxdGzfEc/+9RnkbMzBrl3fw1PssxKeZe7DhV7s/P4HLFu+CkuXZGHJ4qX44rMc5OfmoqxYZaxE6v9MlI+gdRs2Y/mKbHz08QosW7YS27duN2v3FRfL8iRA9g8dPIwVK1Zj6bJVyFq5Hkuz5D5zC01dYJ9XHlqZtBIPvt/+LVYvWYlPMldg5fvL8FX2BhQd0j8VIael5ck9+6Wwlj2iEyYkKCwpfKJnAx8JSmFCyIkBpTAhJyH33HMPRo0adcxyOFDSVidza6Odc9uLFeYZMSUN/1v2mb0C8mtHX9XjQwGKcBhFZYW4duoUuOq3kF8cTkHHTiPRvdsliIy4Ct26Xo2e3SchvMvl6NH9cpzaPg6nus/GaaeNQXjnK9E9/Dr0ipyGiC4T0TNyssRfha6dL4O7/QWyTUDb1udLjIwh5zp3uEL2J6Nnt2no0ulyGSNO2ih0PG0cTmt/MSLDp6Bblyno1X06una6CuFdE9C1y4Xo3OU8tGt3Fjqcdp71ErzIiRJ3DXp2vUHWNB3tu16E08JlPaeOQI/2ZyOy/Tj06nw1IjpeZ6SwCuQuEZPQoceVOOW0seh1yjj0bhOPiFMvR3ina6RNRFRPvYcr0S38SlnnJTjt1PHo4L4InWS/02mXyjjXyNqvRY9uU9C14zUy72S5x/MREX6xPJPz0L7dWHSPmCDtChlH71Pm73qlxE00z6JjBxnvtHiJHYPu3S+R+7jUPLuIzlPMM+keMRGnyBh6Pjz8Qrjdo9Cjxzh0DR+JtqcMkO9LG/n+tMT1N9+OQ4UF8r3T1y0RUndYIiEVC1ekIT5SfuGOjEXKe5oSK3h3I3NWImK1X35ZjohJROobOSZhtgJ5Oci4t+Y4Z47Kv8pX7vcf78tC2tVRpgSBu188kufnoEqCWxBrO9K9eTZlIHVqHKLc1vV6LmFmOnLyzGlgRarV72+yLv2XUVtuNfebIXObrFZtpXL9fXIuAelLM5DYzw2XOwoJ83Lk3NFxRrFwjuye8hMGPfSVWp8TZis7Bw4cwC1Jt6Bd23Z48IEHTW3eIo/1p4Y0rsTrM3G6Xz16pvxszXE1U3EEJaDH2Q3oUnTXeHBzRAg5FqzPuyClsHxmp89MCPgMS6j+c7YC5VI2d2kaJurnmsuNqPHJSN8YeKUTtxBZs+S/wcz4Kci0P1tzN+pnb6zpd7kiEDs1FRmbqvxUMXMkxkRY6xuXjIVbt1SRwsH+bDEc6edUdZ/35iJCCDl2KIUJOQlRKez8h8KxyOFAWVud0P0p7aK738PIm56rMMc1d81Dzpbd9uyE6C/XPpSgAPru/NyCHxDRMxKu0CaoF9oOYU164tRTR6Bv1AQM6j9J2rXo3HEsmoQNlH/WuyK0fmeEhIajebPhRogOGTwFpw+bil69LkHLlsPRpMlAhIT0QmhoL7PfuPEgRPVOwOBoGWvAtejT+yq0bDFcxugkY3VEg4Y90azJELRtFYc+Pa9B/z6TET1wEjp3ikOrVjpnB9QL0bjuMl4/tD/lTAwZeB2i+0xHP4lt7h6Oes27olnT09DA1QotZbxWjYcgKvJqDOw3Hf37T0W3Xpcj7JThcNXripbyy0ZLV3c0dg1A65YjMaDvRET1ugyDB01Ej8gL0bZNjMzZDSH1eqJ+aBRaNB+GTh3HYGB/Ga//NTLmJHRwn4vmzQeZsg76TBo1ikLTpgPRvds4DOh/BYYOmST3fKm5zwb1+0qMxoWjYcNeaNMmGv36XoIhgxIxoM8URHS5BE3DhqFRw/4mTsds0bIv2p0yAIOHxqNbZAxate2OTuF98MRfn0OB14uSMkphUrdYvzy74Y6Ml1+QM7Fwfjqy9skJTzbSRssv/ZEJSJ2/EJmLFyL93gTzi3ys/FLu/xU+LwupMfLz0R2HxNkZEpeBOdfHwS1jTnzN+nkU7C/u1nEsYmPciLtjLhbqnHfFGzkc+0B2+ZxBrq3Ge9s8F/ESGzEhFemLMs2a595hzeOesdASI/tykPlaCuKkL/FpjbGFif9+45Fi5nbut9JzMZJB5nbHImmexL0h97PJPlfLlJoXiVr4fD58/vnnOOuss+RzqCEuvvhiHDx40JwrKyszzSFwnxByYmN93gUjhW1pG5OINOfz0/6cjZ+3xY6pDuc6+YyWz/tk/VxblI6U8SqHY5G62v/Ja8W53YgYn4oMHf/FLPP56ZHPxVj9nB2fYn32vjEHifpZrtev8H96IndBkllPxIQ0uT4TGbMTETd6IiaOkXF/jBQ+2s+pmj7vCSHkR0ApTMhJSKAUPhY5HChsqxO7P7bF37UAZybOrjD+H556C4X65zwJCaAMWjiixKjhvKI8nH5GLOo3ao6GjdvLP8enoHu3kUj5w1w8lvYW7vnzixg18jrUq9dJzrVF/YbtZNtSWgeMOPNqPPr4a3jgoX/iD396Cqd1GgRX6ClyrrW0Nia+UVgXzEi6V+JeRdqjr2L6DffJGJ3hCmkisWESY2Uod4sYhb/c/SKefOItPPxwOkaOuhwh9XUMiQlpKttm0lphdNyVuP++f+DxWf/B73//DDpGDYGrcQPzcqcGYQ0QIrFhjTrjmivvwsMPZiD1/lcw4/ZZqN8yXMZpiYaupmgi62vg6oRmzfrg7rufxwMP/AOPPPISxo27TmJOQb0QvcfWsrWexznnXoO0tPm4//5/4qEH09GrV5w573I1lxhdYys0atwRkyYn46GH/4FHH52PxOl/RIuWPeVcW7jqyXghum2FU07tgVtu/QvSHvk3Hkj9F6684veoH6rS+FR5xqfKVsar1xY9esbg0cf+jtQH/or/+30qHnvyGWz9bjdKyvS7x6w5UrdYvzy7kLSo/BdyZcu8ePkFOhkLK/1m7HkvWX6RjsfczdaxiQs4tvAgc2YEoibMhebGBvuLu7OWCnJV2PJcxTmCXVtN95b9dByiYmTeCt2y5rtUTgSss5o/Tpw9S8u8JCB9q91hk/N0pedgZ57FPR1cdvBPxRG8RUVFeOWVV9C2bVv5jAxBREQEli9fbs6pPHbiKIQJObmwPu+CkML251rKUvvY4MHCW92ImpqOmrWwLXsrCVz5RMbccdI/bq59rROXhIXOn7wwZCNtkPRPqDSHNwdzKlxvxbknVYzzLE1BtKz7x0jhYH5OsXwEIaS2oBQ+iVDpx8bmNP3lrrqm52qSw4HStjq5+2PaecmvVRhX23MZy+wZCSEnMoVF2kqhdTgLijyUwqTOqV4kbEH6pfIzbkIaFi7WrKmAZmdTJczXLODdyJikcemyVzPB/uJe/VoE+5d1K/M42LUdYbwasOKTken4jiqSwJYaMzMrSGvDvgwkSmzcc7bGsKXw8RIMKny15ebm4rbbbkO9evVMa9OmDWbNmmUyiJ2MYhXCekwIOXmwPr+s302qtoDPQU8mUtyarZuKhZtyq36W1Ygte6v5vLfmnogMc6KGuHVpRuomO+WJAsh9I1Guj7Ok7ea55nO8atwWzP1RmcLB/ZyiFCaE1BaUwicR1f9QZWOr2vSPaX7wwQf2PznlBIrb6gTvsbbK9YPPnvYY3ss6PllIhJC6R5WNr8zaFvtKUEYlTOoY65fnyuI0C6nV/KwLbO4HsiUuG6lakzfgl/TqCO4X95rj/Osx8wS7tprurRxP7m7krNCyEnOQMiPeri8cEF9FElhz+8VvBQLXKBxnKayit7CwEF9++SWGDx/ul8JNmjTBJZdcgh9++MHEaHMEMiHk5MH6vIvGxLvSkDarcpuLrIA/WbFlQTLinHrq7ijETU1F+uItRymZYMve6j7vK3ze1SCFTYwtfisTeH2NcblYOKPi/MH9bAnu5xSlMCGktqAUPonQkgFsbE4z/+FUqQ0aNAhvvfWW/U9MVQIFbnWSN9g2/s/vVqkfPPmP/8CX2/bYMxFCTgZ8pVZmcKmKG33NXJlm81EMk7qjenFaSXDWSHBxwf3iXnOcM48le4NdW033JmxdiGRTx1J/lkcgdkwcEmfOQdpMLRdzYklhpwyEbvPz8/Hvf//blI4IDQ0182sJiZ49e2LVqlUmxuv1VsgYJoScHNT4eVcT3lzkLE5H2ozyF85VLtlQkaNJYTdSV+tBXUlhLfdQcf7gfrYE+TODUpgQUktQChNyElJZCnft2hXp6en22ZoJlLjVyd5gWvxdb2HEtCcrjPWnv/4XxSVeexZCyMmCx1MMn5phlMFXWoySEv3jkxQ3pO6oXiTYf0x3jFPjsSZq/mO5u1+b6H/jvDVHUpUawNkPVKzhW1Oc88t60gI9Eezaarq3XGRMlesHJWPhdxX/ePKW544mhY9ePiLhRXtVx0kKK072r75Q7s4770T9+vWNDHayhVu2bInZs2cbIRxYRoLZwoScPFT/eRcsHmyZp9dHI22d3VUFW/Y6L+MMoOJndw1S+KjlI2TtWqv9mMtHHO1nS3A/pyiFCSG1BaUwISchjhRu3rw5nnvuObv36ASK3OqE79Haecn/qjCGthfetF4YQwg5CSkDiouKrR1TWZiZwqRuqUkkWC/miUbK0oq/mJuX/bijkGL/wl79C3y2VJAC+ib5KrIhLwspKlirSOEAsWqTPStW+hORsc86DnZt1d+bnTX2p0pZY87Ljo4ohXUtR3rRXCzmbLQ7jpMUdoRwcXExvvnmmwrvQFAxrBnDYWFhuPbaa7F//35/vG6ZKUzIyUNNn+VVWJGGuH6xVeSvZ1E1n9MVsGVv5c8/bzbSYqR/aoYti2uQws7/VJP+Cp/wzmdvzBzrhW/ydY6OVynOI5+psfrZFiCFg/3ZEszPKUphQkhtQSlMyEmISuGHHnrIPgqeQJlbnfQ9Uou79Z8Vrh89/XF88MkX9siEkJMSdTTG0+gX/dMA2ihuSN1Ro0iQX6xT9RdzVwQSZmUgc/FCpM9KNHUoK/wRYyfOHY+U+QslLgNpEyLkulikrral7b6FSNKajjGJmPNGJjLfmIPE0RGYOEnnriqFzZz3pmOhzDn3jji4XW5MnB+gB4JcW/X3pnUpNYvMuVZrCqdiYj83IiJ13QHxubJuWU/0jLmylhxLeFRzv3Ou1zW6EHtvVnkG8XGUwto8Hg9ee+01nHrqqSY7WOdWIaxiuGHDhujTpw+WL1/uj6cQJuTkImgp7Mm2PsMiE5A8z/oMzJiXjHjz+ZlRLnLtzzDnxZ1+2St9em2qfv4tmmuV4nFPDBDFNUnhcrHrHp+C9EXOzwL9PJafFyvK/yefExcxIdXELZT1+WsgB5aBCPJnS1A/p6r7vCeEkB8BpTAhxE+g1K1O/FbXTP3gG5+tcO3UP7+Ir7/ba49KCDlpqSCFmSlM6p4jioS8HGTcm1heb7JfHBJnZWJ35epFFeLciBqfjPRN5b/gK55N6UgeH2XkqbtfPJLn55hf/KtKYVnL0oX+2Aj5ZT9tcWW1IASxthrvTa5Nn+m8WE7WO1rmWLQFueaPN7uRsthZuwfZsyfacc6b9YXcinObNcr1Fe74OElhRctCaBZwSkqKv5awNhXCWkpC97WExAsvvOCvKaxlJCiGCTl5CFoKK7nZmBtQS9gVGVv1s70mKTwhHVkLkhHfz/qfa7FT05BZ4SO6Zims5G7MQOrUWESYzynr+oVbK/68UHI3Vv6ZsRBzdNxKtYGD+dliOOrPqRo+7wkh5BihFCaE+AkUu9UJ4Mpt3O//U6V+8D3PvG3XGCWEnPT4pbBCKUx+XRyT1CB+tHTEV199VaF0hJMtrFuVw40bNzYlJPbu3euXwSqICSEkOI4sewkhhFhQChNC/ATK3eokcGA7785XK8Rr+8dbLGxFyK+KClJY/2cQpTD59UApfOyo4FUp/Pbbb6N169Z+KVxdxnCvXr2wevVqf01hSmFCTiLmztV6d/aBTYsW9o7NT4oJkMJ1PlcAP3cMIYQcI5TChBA/gYK3OhHstLhb/1Eh9twbn8SHq7+yRyGE/GqgFCa/YiiFjx0tA3H48GH87ne/8wtgbbqvWcJOxrD2qTTWl+WqENbrCCEnCe+8AyQmWkLz+eetvr59gUOHysXnT45pbknhs36H3XU+188c8+abVh8hhPwIKIUJIX4CRW91Mnj8n97B2Tc+UyEu8Z6XsXXnfnsEQsivCccJW41SmPy6oBQ+djTrd8uWLYiJifFL4EaNGhkR7GQLO5JY+6+++moUFBSwpjAhJwtr1gBjx9oHwvTpkH/hgc8+s45VfOrxT475Culy7HIPKC8fUWdz/cwx991n7xBCyLEjnyiEEGIRKHsrC2FTP3jqExVi7ntukX0lIeTXSGUpXEYpTAg5Alo64j//+Q9atGhhJLBK4YYNG8KRwnrsvGxO5XCPHj2wfv16c60KZUIIIYQQUntQChNC/AQK30AhPKaa+sEvvf2JfRUh5NdKRSmsf6m0oRQm5NfK0bJ58/LycNddd/mlr5MtrMdOX+C5li1b4umnn6YQJoQQQgipAyiFCSF+AqWvI4Tjbvl7hf6xM57CkrWb7SsIIYQQQiwceRtYA9h5UZxuv/32WwwePNgI3wYNGhj5GyiHHUHsZAtrCYnx48ejsLDQHo0QQgghhNQWlMKEED+B8vfCP/0PZ9/wtwp9N9yXjm93H7CjCSGEEEKq4vV6/VnDKoi1eTweLFiwAM2bNzfC1xHD2px9RwoHyuJu3bohJyeHNYUJIYQQQmoZSmFCiJ9AAXzG1McrHD8w9x07ihBCCCGkKpUzhVXkOjL34MGDSEpKMvLXyQZ2JLDWE3aygx1B7NQa1hISDz/8MEtIEEIIIYTUMpTChBA/gRI4sKUvWmVHEEIIIYRUj8rgwIxezRhWVOh++eWXiIqK8svgJk2amK1mBDdu3LiCENZ9J1tY48aMGWPqERNCCCGEkNqDUpgQ4qeyDI5PmoPl67+xzxJCCCGE1IwK4ZKSEv++loxQdPvWW2+hQ4cOaNq0qWkqe5s1a2ayhFUGO9uwsDBTYkJb69atTUyfPn2wevVqMxYhhBBCCKkdKIUJIX4ChfCM+1/Bzr0H7TOEEEIIIUdGRXBxcbG/1INTW1izfN98801MmDABV111Fa688kpcfvnluPTSS434VRmsL5VTMaw1hK+99lpcdtlluPrqq80106dPx/Lly82YhBBCCCGkdqAUJoT4cYTww39/1+4hhBBCCAkOFcAqhHXroPsqh7ds2WJKSGzdutXsf/3111i1apWRvk4ZCc0OvuOOO/DNN9/gq6++wrZt27B582Zs2LAB+/bts0ckhBBCCCG1AaUwIcSPCuF/vbvGPiKEEEIICZ7KL4NTIey8dE7RYy0l4cjjoqIiZGRkYNiwYRg8eDDGjh3rzwh2xtLrK4tmQgghhBDy06EUJoT4Wblhq71HCCGEEFK7OHJXt05pifz8fKxZswaLFy82GcFOv5ahUHTfqVNMCCGEEEJqD0phQgghhBBCSJ3jZA07Wb+O/FVJrE3lryOOCwsL/XGEEEIIIaT2+UVL4d3zE+ByuY7QEpD+nR38s7EFC2fGI8ptrSnhxS12P6me3UifIM9qQrrsHQdyc5B+xxxk24cnJj/2mdnX3ZtlHx8DJ8VzI4QQQsgvEUf8qiR2ykmoENatlpRwzgXGEkIIIYSQ2uUEkMLRmHhXGtJmVdfmIivXDv65WJoia3Qj/oEMZC7ORPZ3HvsEqZ7jK4Wtf4ZS8SO06C+I4y+FT47nRgghhJBfEo7c1a2WidAsYZW/KoLz8vKMGNZ+RwgrThYxIYQQQgipXU4AKfxLyAaumRNhjb9mft1yk1KYEEIIIb8cVAYHimFtP/zwAz788EO8+uqrWLt2rZHDTkygDHb6CCGEEEJI7XDySOG8HKTPTEBspEuucSEiJgHJ83Nw5ERiR5otRNaseESY61KQmeeczkTa1FjT73JFIHZqKjI2OZnA9rXmnNPKJVruxgyk1nitUtPc5SIvd2kaJvZzm7EjxiUjXa/3bkGGU67CHYWJsyTOHtHPEdetHOW+j8pPWaN9rZP1ui4NsXJttIwVuMLsx2JlzFikrg7srcRRvudZ91r9/hYoR4/6jBQPct5IReLoKLjtMZw5yiNr4ft1VCo9s0pzJsZEmDnd/eJrXFsFjnLvR3xuhBBCCCE/EhW7jujVfX3J3CuvvIJzzjkHvXv3xpVXXonMzEz/eecFc7qvGcSEEEIIIaT2OEmksC2/YhKRNn8hMhcvRPpd8Ubkxc87Uo1f+zq3GxHjU5Gh171oSTvP6jTEuV2ImJCK9EWZyFyUjtQJKt9ikbpCBZoHu1dnIuNPcdIXh5TXJGaxJSQ9K1KN6HSPT7GufWMOEkerLHSuVWqa27mXWMRGJiBV70evj5G+QUlImhSBuDvmYmEN93j0dSs133dw/JQ12tf6BacH2Q9YAjhtnenwi+LYx45U0dZZQ83f89xNzvcnEXMWy7PYZN1hcM8I2PJcvPRFIOHedLkX/T7ORfJ4/T66kbTAeVo/7fsVHJWfWTVz+u/BjZTFlb7PAVI3mHuv6bkRQgghhPwUnGxfRw7v3r0bV1xxBerVq4eQkBA0a9YM//d//+c/r1vnGkphQgghhJDa5eSQwt+lI8HlQspS+9jgwcJb3Yiamo6aFZwtzVxJWFghS3YL5o5zwT1zYSVR6kHmTDdc4+b6x6y6xmykDbIEXoV5vTmYI2OWX1vT3E6/jLnV7hI87yVLnwvRfwrMqJV1jpHYSRlylX0c1LprmjtYfsoa7Wv9glPwZCNVJaquzyvPz9m3T1dLkN/zqmUQgn1G2ZgzJgqx91bMYIYnEyma9esXrT/lWQRL5WdW/ZyQu0ytbm3+42DvvbrnRgghhBDy03GEr9YN3rNnD+Li9H9Eu9CgQQM0bdoUkydPNucCJXCgHCaEEEIIIbXDCSCFVX5V1wJErC3q3ONTsXBTbkWJd0SqEZTKVks4JszSDNTMCs3KoCyfu4oUXpeGaLk2+b2qq8h9I1Fi4zB3sx7VMLfTf2klqbwi1dx3RQkKZP0pYIyg113T3MHyE9ZYw9ye1Zpd7UbcaM0ariw7qyHI73kVuXkM39vqsdc/M9Oe86c8i2Cp/MxqmLOmOEcKH/M/15TChBBCCKldnAxg3e7YsQPnnXee+W8mzRYOCwvDlClTjBQOFMHOMSGEEEIIqT1OACkcjYl3pSFtVuU2F1kB6Y5bFiSbPxZvhLE7CnFTU5G+eMtRSiJUlmg2ttCrubmRutoKrSKFzbWO+K2EPW7qCj2oYe6jrMm6thxT/9WJDXrdNc0dLD9hjTXO7ZG4aHN9QpDlFYL5nleRm0E/IwcPcnfnIEvLP8xOQdJ4u77w0e4nqGcRLJXnqOkZ1hDnSOFjuHdKYUIIIYTUNiqCnSxhzQTeu3evyRTW0hEqhTVT+JprrqkQ68DyEYQQQgghtcvJ86I5xZuLnMXpSJtR/vIx96TK2ZSBHJvQq45fohQ++rprmjtYfsIaa5zbKm2g1x+1dEQgR/me1ySFg/neVpDOkbGIG5OI5NlpSNYSEEe7n6CeRbBUnqOmZ1hDXCUpHMy9UwoTQgghpDbRTF/nxXEqhQsLC02m8MiRI9GwYUMjhlu1aoWrr766Qpaws6/XEEIIIYSQ2uPkksIV8GDLPL0+uvwFZlWoQa5tnos4lwtxzx1dTVZZ41HLR0isKY0QrNizCUYyBr3umuYOlp+wxhqutV7qFo85b8xBvIwRH8Szr0rV73kVuRnsM9qXgUSJi565ELsrfCvtusBHuZ9fpBQ+5n+uKYUJIYQQUnuo3NXsXyfrd9++fRg/frzJEtbWpEkT3Hrrrf7zTrawI4gJIYQQQkjtcXJI4RVpiOsXW0X+ehYlVRCEValJrtlZq4NSkFXhRWweZP0pGu5+Kci0+6uu8SgvmouZgxzTEazYswlKMga77prmDpafssZqrt0814jg2MeyzWH2Y1pXOL76bGuHIL/nVeVmkM/IvpfKNYGxyZLWR7wf5ZcohY/5n2tKYUIIIYTUHip7tTk1gvfv34/77rsPbrcbjRs3Rv/+/ZGenu4vG6GxFMKEEEIIIXXDySGFPdlIjXHBFZmA5HkZ1ouz5iUjXl9ENimjXJzZoi5hvtNTk1yTISU2VuWfjJn2RiYyF6Uj7fo4uF1uTJxfrnurW6NzrXt8CtIXybVvzEHiaLfExSJ1hZN2GqzYswlSMga37prvOzh+yhorX2uLyphUZDuPxpOFVBXrgWUk7LH937sgv+e5CyxJnPTcQmRusqoNB/WM9i1EkpaOcGK0pvC9ExHljkCElqmo8X5sgvx+BUflOWr6/tUQ55fCwf7zUf1zI4QQQgj5KQTWCFZUDm/evBl//vOfMWnSJMybNw+7du3yxzlCmGKYEEIIIaT2OXnKR+RmY25AXVmtAZs4KxO7A99JUVks1ijXLDybMpA6NRYROp7LjajRiUhbXEnD1bDG3I2B10YgdmoaFm4NrEMQrNizOQbJePR1H/m+j85PWWPFa7e8qM8vGilLK5bb8LyXbF7olvCiLSqrfO+EYL7nedmYc7X9crgAWRzM99azKR3JzovlzIvs5Hu4ORfZj0XLcQoyzZJ/+vfr6FSeo6bvXw1xAVJYCebea3puhBBCCCE/FifzV1ug+PV4PP46w4qTSawExhJCCCGEkNrjFy2FCSGEEEIIIScXKn0D6war+NWX0Dn7isYE4vQTQgghhJDa4ZcthefOBe65xz6wadHC3rFhjH1gw5hyGGMf2PzYmGeftQ8IIYQQQn48TsZvYMawymBnX0WwtkA57JxzjgkhhBBCSO3wy5XC77wDJCZa0ur5562+vn2BQ4fKxRVjai9mepxVguGobbBVKuNEua9faoxdXuLorQXSN/3Ma6YUJoQQQshPRKVucXGx2Vfp62QGa9/27dvx1VdfmXrCKoX1nJMprDGBkpgQQgghhNQOv0wpvGYNMHasfSBMny4rlaV+9pl1rOJKjxljURsxXg9yJ09GrvTlrliB3Nxc5H77rXV8zjnWsTaJ8RxpHOVEu3flZ4g52nN2vhemdPHPvWZCCCGEkFpCpa9mC2tbt24dfvvb3+Kaa67Bfffdh61bt9pR5SUjmClMCCGEEFL7uOwtIYQQQgghhNQZgZJXOXjwIO688060bt0aISEh6Ny5M2bPnm0ygxVHBqs8dvoIIYQQQkjtQClMCCGEEEIIqXMcGeyUhNi9ezdGjRplhLC2Jk2aYMqUKf6X0CkaF3hMCCGEEEJqB0phQgghhBBCSJ3jZPuq5NWawfv378fZZ5+N+vXro0GDBmjWrBkmTpxoYjTWqSusONcSQgghhJDagVKYEEIIIYQQUqdolrDWEnayhXW7Z88ejB49Gvpy3Xr16iEsLAyTJ0/2l4woKiryx+q1hBBCCCGk9qAUJoQQQgghhBwXnIxf3e7atQvnnXeeEcJaPkIzhVUKOzEqg5khTAghhBBSN1AKE0IIIYQQQuqcQMGrwnfv3r2Ii4szQlhLSGhN4cTERBOn5xWnnjDlMCGEEEJI7UIpTAghhBBCCKlTVPIWFxebrdNyc3Mxbdo0NGrUyAjhdu3a4eGHHzZxWk/YEcO6ZfkIQgghhJDahVKYEEIIIYQQUudotq+TBazSV2sGv/322zj//PMxZMgQXHPNNVi5cqVfBmuWsHMNM4UJIYQQQmoXSmFCCCGEEEJInaPZvpoFrKjkVTGs4nfTpk3IzMzEtm3bzDmVwnpezwU2QgghhBBSe1AKE0IIIYQQQuocpwyEI31VEOs2sF/lr8pibc41TjwhhBBCCKk9KIUJIYQQQgghdY7KXcXJEK4se7W/sLDQ7Gu/Nu3TLTOFCSGEEEJqF0phQgghhBBCSJ3jZACrDHayhDVDWIVvQUFBhZfJaZ+edzKFCSGEEEJI7UIpTAghhBBCCKlzHBnsSF4VxHv37sW7776L+fPn44MPPkBeXp45p2icI5GDIwupLhdcR2r3ZtmxPx7PujlIjImwxnOnIOt4JTGvSJU5E5D+nX18FDwSHztuLrbYx7XO7kyk3ZuB3fbh8cP6PifMP/4zH5lcLJwRgeT3PPYxIYQQ8suGUpgQQgghhBBS52jmr+KIXs0OfvHFF9GjRw906NABw4cPx/vvv+/PENatc01wYtiWwuOSkDYrrfq24Kcq0i1Iv1TmiEnC3EWZyFycg1z7TJ1zLFLYk43UmGikrqg7QZl1rzyHCemUwoFsnot4dzIyy//fBiGEEPKLhVKYEEIIIYQQclxwRK+TJXzZZZehfv36Juu2SZMmuP322/0vnVN06wjio2NL4VrIBq6Z4zFHDRyDFN4yL77OhS2lcHV4kDnTjehZ2fYxIYQQ8suFUpgQQgghhBBS56jc1fIRzr5K4REjRhghHBISgsaNG2PatGl+EaxNUSHs7B+ZYxO2uUvTkDg6Cm69xh2FuKlpyDySZzRSVmIDWrmYzEXO/GTE93Obfne/eCTNzqomizjIuLwcpM+MR5TbWtvE2dmmHERQUtiTiRS5LmlBwKjOtZsCxnVFIFbuOWufHeMnF1mzk5DglMhwuRE1OhFpS53xdiN9Qvkz0GY9h5pkbeV++/jFLGRcr89fxp8wFznm3NHmVoKVwh7kvJGKifazjhiXbN2/rr3CPyPBzCnsy0La1Dj72dkxi6tZgzxrtysRGVWeKyGEEPLLglKYEEIIIYQQUueo2HVeJqf7u3btwjnnnGNEnErhsLAwzJgxw/+SOSc7uC6ksArWaJcb8XfMRcbiTGS+oXWC5Vp3CjJrqriwLweZiyVO57h+juxnIvs7Dd6NjKkRcm0cEmdnmP6M2YmIc7vgnpQeUNM32LhspJm1xCF53kJkLkpH6oQoTJyUIM/q6FLY816yxCVhYaDTNFI4GrExEYiTtes9O3O7KtQdtjJdA9e4cH6a9WxcsUhbZ8XsXp2JOddL35gUM5b1HI5NCrvdbsTeOhcLF2dg7gJVwsHMrQQnhbfMn2iEs3W/C5F+bwIi3LGIHSTj+f8ZCXJOj8wp17nHJ2PuG1o2JANzpsZKjBspiyv/AyOx8lzj59VZNWdCCCGkVqAUJoQQQgghhNQ5Kna1bIQjeVUKn3vuuUYI16tXD02bNsXkyZP9MQ6Vj2vGkoXBSGFT+uDSQBErbJqDuMhYpK2wj6ul6hyexSlwu+IxZ5Pd4aD1ZQOkYbBxuW8kGiFZsR7wFjs792hSWCVnNfdmpLAL0X/Kkohyds+vJJr3LURyTERV4WrWWFHEVi0fUZOsrdxvP8Mxc+zsYJug565pngD2ZRh5HyvfpwpP0YjigO9fsHM6mdZbrUOLHMwZE4HYWZX/edMXzskck36Ol/ARQgghwUMpTAghhBBCCKlzHBnsZAvv378fI0eORIMGDRAaGooWLVrgiiuuMOccCexkCB+TFK6pBYhcU3PXFYukeVnYckwvBbPnCBgr609y3DsZcxdrBmlgs7OK7djg4mypOyYwe9fCygA+mhTegrljyuf0Y0vhlKX2sYPdn3pEEa5Y9x33XPmqfrIUrrzGGqk8d03zlJO7IEnuKw5zN9sdfrKQEtTclea0JbFmNmdtDdTM1ZP9WLTMnyqjEEIIIb9cKIUJIYQQQgghxwWVvI7g1ZrCF154ockSVjHpvGguUBxrKQnFkcNHxpaN45KQNiutalsQoFnzsjFnglND1oWImAQkzc5A9lFTOysLzar1das0kzF6jHEzMytkuBrWpSH6qFLYWl/0Y5VedFaT/K2p3+tB7tZsaJmEubOSkejU2w2QqXUmhY86d03zlLPlRc2ATpHIytjPt/LcR53Tg+zZCYjQPm2RsUiYMQcZ66pfQ5UMbEIIIeQXCKUwIYQQQggh5LjgCGHd5ubm4uGHH0aXLl1MlnC/fv3w5ptvmnMqgbWpFA4UyUfmKLKxGjzfZSNjXnL5C+eqlG2oTOU5bMlYQY5WxzHGVSeFN89FXJBSuIowDVoKV5Sf7n5xiJuQhJR5qRWynpXal8LBzl3TPOVseS5OxghGCgd/vwbPbmS/MRfJ/hfOVS1RoVAKE0IIORGgFCaEEEIIIYQcF7Q+sLPVpnWFH330Udxyyy14/vnnkZdn1XJwRLATV1dSuAL7MpGiLyGbsRCB72irSOU57HIPruSaX1BnOMa4H10+wlrfj84UNtnILiQ8nY1cK0nbwpOJ5Ar3LTPVIIWrzL07AxN1zKNJ4aDntq4/khQ+UvkIfQmcf6xjuN8qeHOR+SctE1HppX4CpTAhhJATAUphQgghhBBCSJ3jiN7ArTaPx2OOA5sjjxWNccpIHJkaZGMVtiD9+lhETM2oJH/1xWFy/TFJYdgvkHMh4cVKGndrOhJcEYifZ71OLdi43EVJEheNlKWB9ljWPMkdhGi0awr/qdIzCFIK+2VmhReq6ZqSK76gTagqhbORplK90nO1SjkEStzqv0/Bz310KVzTi+ZUrAeOFeycW+YnIjYyERn7zKGfnKc1I7mqFGZNYUIIIScClMKEEEIIIYSQOkdFryOEtWawil6nz8kG1n5txcXF5ho959QXPjrBSmFg92sT4Xa5EXd9GtIXZSJzUTrSpsbClI9Y7WhEu9RABblX3RyOsJXx7piLhYszTUmKhEiJi5Fr/S+yO8Y4dxwSZ2eYOrdp/vrHR88+NS+0q5xpfAyZwrFy7B6djLn6XGTuOTPiEeGOkFbxvi3xGY/UNzKR/Z31zLIf02foRvxd6XJ/C5F+bwIiYiZi4pijS+Hg5w5CCgtb5iXY3+M5yNBnPUvW4nZXFMzBzvldBibKsXt0ItLmL5Q4ubdZieba2AeyK5WPyMXCGXLtEf/nAiGEEPLzQylMCCGEEEIIqXOcLGAVvYpKYZW/Tt1gJxvYyRJ2YjWTODiCl8LKlkWpAbWE3Ygan4z0jYEaL1gprOQia3YS4vup9JXz+iKymenIqWIFg4zz7kamSkcVxq4IxE5NQ9ZrKbJ/dClslZmolNUarBQWcpemlb9ozaxvLrJ277ZE57gA2bx1IZLHWXHuB5ySEXJ/lde9b4t5jkeVwkJwcwcnheVJIGd+sv9ZR4yT7++mhVXmPpb7TQ2oJezuF4/k+TlVxa9deuLo6yOEEEJ+XiiFCSGEEEIIIXWOkxnsNOd48+bNWLduHXbs2GH6ioqKqmQIOyKZBIEnC6mDXEh8g3mqVclCigrbyiU8ahGrTEjVUhOEEELILw1KYUIIIYQQQkid44hdzQB2MoTXrl2LpKQkjB07Fvfddx++/PJLE6eyWOMUPXb2j8rcucA999gHNi1a2Ds2J0vMEdgyL75iluuvDS0L0S8OaavtYxvP0hREu9xVM6ZrjVxkTHUhelall+0RQgghv0AohQkhhBBCCCF1jiOFVQbr/sGDB3HDDTegadOmCAkJQbt27ZCWlmYEsGYJO3JYt861R+Sdd4DEREuePv+81de3L3DoULlkPVliJkywtjXhyUZqTDRSVwRbeuNkIxtpMVoOIgGppgZwJjJmJyJO6wJPSq87Wb55LuLdSVjILGFCCCEnAJTChBBCCCGEkDrHyf51JO++ffsQFxdn6rOGhoaiSZMmmDZtWoUMYaeEhF57RNasAcaOtQ+E6dPlNx35Veezz6xjlax6fLLEfPON3VEznhWpiP01Zwvn5iB9ZoJd39iqAZw0OxO7rdLVdYC+YC4CSQtYtoMQQsiJgfwXBSGEEEIIIYTUPSp5VfBq27NnD0aPHm2EnUphzRieOnWqP5NYcWRwUJnChBBCCCEkaCiFCSGEEEIIIXWOkyXs8XjMVqXwOeecY6Rw/fr1TabwLbfcYsSxE6u1h5WjZgoTQgghhJBjglKYEEIIIYQQUqcECl4Vvtq0fMTIkSNRr169CpnCTj1hRwxrKyoqMtcSQgghhJDagVKYEEIIIYQQUueo5HWEr2737t2LUaNGGSHcsGFDtGjRAlOmTLGjy19I58hhQgghhBBSe1AKE0IIIYQQQuocFbv5+flmX8tB5Obm4sYbb0SbNm3QuHFjdOzYEffdd5+J0/OODGaWMCGEEEJI7UMpTAghhBBCCKlznExhRWWv7n/44Ye44YYbMHbsWNx2223Izs42GcKOCNY4PSaEEEIIIbULpTAhhBBCCCGkzgl8WZwjenX71VdfISsrC9u3bzfiWOOc0hGKbp19QgghhBBSO1AKE0IIIYQQcsJTJn+XoLSsFPo6N6NcS6Wph7VdbBk80lUIX5l0qGPVIHvXZ75a+PfKrABnmGI5YYaTrZG0ZhxtEmGanBQ03mra4VytYtds7C4r3pSI8Md4Uer1wlci/XKuSMYu1XM+WYd2mvWYHtPMWKbpF2vXOSezyVd5EmVF0qRHDs2SpVnndT6P7EiM1eFsqh47F9rHXvlq7k0PrG5nU6EveH7URYQQQgghPwlKYUIIIYQQQk54fPJ3AbxlJTgkR4XapZUatAqD+tQylZwH4MV+FJdKpxpPj9VUcBYZSWrh3yuzpKmqWB3msJzQrUe2Rgr7iqVJj9lKlHSp2tRptanSLTNXq5yVCfWkzqtdxizr3ypYVbNKjI5uxrVO6z14NVjH9+pCC6SnxETq+GYsbSqYdSPNnk32dU+eRJm00hKUymGpBHgltFjm8ELH+kHOH7Yukn4d04ykxxprbazxbYmtx6rWizVSjp2NNv9Oda3ibgCVggghhBBCjhOUwoQQQgghhJzwqPXMg+rOw3JUqI6x3M6acgw+HJDzB6ES1hhPlcLqh40kLVeTRowqthRWEWorW+TLgccWoSZ712tLYScbV7p1LG1WjrHulZ83XTqgNhMfKIV1PumUcyqFLQUs15t55JxP7k/WpJHazFjG5MoocoFmF1uz6VV5sndAxss3cSW2b1Yp7JH1Fvukv0xiSmVcGUOXZ4aSZgYp1VX55C/pLZXZtPSFnNRl62Pzzy9Nn16pOSPIHNW2iruVqPkMIYQQQkhdQSlMCCGEEELICY9mw+bKtthIS/Wa5ottOktKCuHDIdnNh5ZO8BX7LLOpArbUKqagjlPVpG4NpvRCsemzZCuQX2Jyd018mdYF1vRbNapqZG23qddb4+mevYjKUli39iUqVMvMQlUKywk5ryHlUliayufSw9IKjZwutMcp1bRlXX9xmVmKymQfDstV++Dz7Zc1ypi6BIk30rhM119kzScdpfIcfMVedcAmTMWxmdxkSOfLrsplFcty1h5Dn6+u1roH1dqFsqu90qHXBzZCCCGEkF8olMKEEEIIIYSc8KjSzEepKbEgqLBUj1ksmxKVrip3D6O0TKVwmVUNwSfNFp2aQWtcqF5rBK4OoGiQpUFVCmvTusW+Us2itaYxctgur6BYPlRLR2iE06RXT+gF5iJp9kblsZWrrBJaTkq4hmj5iBLdMwuUmUsOyH6B0a95Gq5BJRovF9hjWzWKNVf6oDS5X59Hq0eYc14JKyn1wlumxTKKzX2oSNZrzS3IrhlHd/SFd7Imk1WtD0rXYP1tpHS5FNa/9Q7sA0IIIYSQEwRKYUIIIYQQQk541JLmw1dyyJKkjgiVll9kZbKWlR6SVoASXymKpd9TBhRJ8/rKUFxi5eoaraklFcosCayqE74fpB1CvhyoEIWvEGXeYiNtjS4ukkhNtRUsLapWVdejTYW09kpTsSphmo2r0dqr2yq1h+VyjbFUtB3klb3ifXKiAPly7rCEm+FMxrOcs8e2BK5VGqJMYku1frIMpsnGukTL7WphCM0EtrOepd9TpCUsdDZpunzpk1ATb8bVJuf0ZX2ai63ZxubFdxpnT23hBOuFlRshhBBCyC8HSmFCCCGEEEJOeNRkemRzGD9s/wKfrV6JDRu+xI69h43INTVvffuRf+A7ZK3JxuqcbdgrJwrKpNtXasSmClIjNzW1tkyzZBU5YWrvHkZZST6Kigpx4NBho0/zZEiVyiapWLaOCrXyiXVWFa1WDq3BlGCw8of1eiveyin29xqpa06YEXQk3ddU3uK9XyFn3XJ8snEL9smterVfm1pdY3z1ernKV2BaqeznHtqHLd98ibVr1mDduhx8+mkOtm/7GnmFB2XsUhTKjatX1vs3T8AWvaYJzhTWjq5aKxZrlrReZF2oobp63Vp34wzgnCk/azVCCCGEkJ8fSmFCCCGEEEJOeFRGlqCkYC/mP30/rh4fh8uvuBIvzH8Dh+SsCl8UbMeqD9/E+QlX4Kqku7D6m1wc8gElJZrpq9mzlr60kL0yVbKaHVsq+4XAoS1Y89FC/P31t/F9kVXXVzORTbTuy9YSqJppbBV/UN1r5lY0A7lUc3Qt4WtpUkej6swBUljQOG0mu9dTjNXvvYprEsbiqmm3I3vzfhTpJTphia5Vm8ypL5ArKUBZ/kHkfPEZ/vb833DTjKm49NKLcOGFl+OyhKsw887b8cZbr+PrPTtNxWBTlljH0nmtVGJp+kVLbmgRCavLBGnpDNnVZsU4ec4aaZWR0L8sMexEOs2648qY6axdQgghhJDjBqUwIYQQQgghJzxlKPP5UHL4e9x7x1VoGepC4yaNcMk10/HZLi13IOR/iQUvPQpXo+Zo23ck3l27w5SAsIRlsV9bGkPp06xYvcpU1YUMjM1LXsfki0dj1MXXYP3OAisXWC4q85Ual6oCV8fQEg9WCYcS069xRnoWH5R+q+yEnDXlgHV8FaiWapWZTKaunCjzv3rObL2FRfjfS4/j1KYutOk8AB+t+87MZ8ZVM20yhTVLOA84vANrl7yL62+agdO6RsBVz4XQ0HqoFxKCENlv3aQ+Th8+FH94+AlsP1RsymiU6kJNjQm9IR1UF+eR9RfbOc+CT2aUefRldiXaYVKktQSF9YyspnLYuiPttY70DvT+tOk1ZgI/elSxhxBCCCGk7qEUJoQQQggh5ERHraI6zcN7MOuuK9Hc5ULDxvXQvlt/PJn+IQrVS+Z9ikUvPwhX07ZoP+RCLFr9vS2Fi+X6QhSVlKHQ40NJYQGK8g+bl8mp6CyWsfN/2IF/pt6MDmEuDD7nUnyyLQ+HfTKltKK8PHg8RVbWsQ5XmgetQVxScAieYq8pUWEyivP3oOTwPhyQXX0N3KHCQngK81Ba6jXNV1qC4sJ8lHnyzRryigrNtUYMyw28+1IaurVrhDZdBuPjDXv82cbGPJsmRyWHsO+Lj3HTtReiWetT0LxdF5x51rlISLgUl0+4EBfGn4VeXdqgQf0G6BA1Ehkffoo8vU6fQUmBTJYvz8CD/AJZV5HcQ0mhEdgqoM15fVGdPJT8ghJ5RodQ7JF792p9YksKa25xickmLpV7lnsq0/vSq/Vs9WJY98qPCCGEEEKOD5TChBBCCCGEnOioVfTJ5tAePPK7S9C8ngv1GrrgaubG2CvuxOavvgMOb8CCf9wPV1hrtBsyHu+u2Y9Cuc5XfAibv1iL1974L557bh7Sn3kC/3ktHas2bUeujFmYfwjvvP533HjpWWgR6kK3QbG4Z85LWLhsPfYcyEPm22/iny88i6Wf5iBfSyqU5GLP15/ipXnPI+M/b+Pr3XkoKPJi8yfv4YU5s/Dioo+QuWEL5v7j73j5ny9g+9bNKCkqRHb2Grw6/yW8NPdp/OP5p/Hq669h07bdOChrKPL48P5Ls9C9bQO07jwMH27Yb2Sx5uH6pbBmNxfsw0evzUHH5i6c2qU3pt/+R6xZ9xnyCw7DU3QAe3Z+gdn334UhA6MxZMy1eP4/S804Jrv54A6s+fgdzPvnP/D0M88i/YUX8MF7i7H5+wJLnnsPycP4ARs3bMSCBW/h2b89jrlz/4bX3/wvNny5BfneMiOqC0q06rCuTcWwnSWsGdB2b6AU1q8VFTEhhBBCyPGBUpgQQgghhJATHTWL6h8P7sEjM+ONvG3cugmaduiNpqdE44W//RM4sB6L0h+BK6wNOp4xAe+u3o98uSbn0yxMu+4ynBbeAxHh3TDwtDBEnNYGF918N5Z8uQeHv/8Gt18bjw4t6iGsUQhCm7ZC+x6DcFNKGtZt2oorzj8bbZuG4u4n/or9xV7Asw9vv/I82rdqiaj+Q/Hauytw4HAB7v/NJLOulj2jMeqq6egc3gVnxkTj4w/+h1VZS3H5ZQkI79wBkZ3aoKvMH9mzB26+84/44vsyFHhK8cFLD6JH21C07hyDxRtyUSC3qwUa/FnC3kKZehv+OO1itKvvwkVXXo8vdhWYLF9fWZGEyRW+Q/Dt24q3Xv83MpZ8iV0+GOFbmLcLH7/5HC4fG4P2HdzoEt4TnVqdhn69TsfvH5qHnYe88ObvwoaVi3DdpMsRGdkJ3SPaoWt4R5zWqReuTfwNVq7fhAJZRr7XKidhyV5Zm5aZKK0qhR0h7DSKYUIIIYQcTyiFCSGEEEIIOdFRq6hSOHcPHp8Zj9YNXOjYvw/GT7kNrVp1w4SxF+DAxsV49/Xn4Qpriw5DL8SHnx7AIQ8wf94cDB8UibEXXIynnpyNv92bjN4RHeFqF4XfPvZPlHjysOiVZzB5/Flo3siFLn2HIuWxeViwdAO+2boDl40cjNNahOIPjz6FXF1L4R588O9/omXjxujd/3T8d9nn+OFwIR757WQ0dbngat0Jfc69BI/PfgwvvzAH+3dswaMP3Y/oQYNw9RUJeGrWn5Hy2yS0b38qmrePwN/f+gT5haVY/OL96NkmBK06n4HMjYdMWQet52uksHnRXAEO7vwSFwyIwKkN6mP6b+41L9nzyIPxluZh27av8NWnq/DNykx8uWEDlm8+gNXf5eOQ14c9OzbjjzdchfOG98XNv7kN9z/8CG5PTESrpm1wSu8YfLBqAzy53+G+3yWhWaMwdAsPxxOP3YeHZ92Hc8ddhGFnjsGTz72I3CKrgrA2I3rVV/t0bY76dVq5FC7XxIQQQgghxw9KYUIIIYQQQk501CraUvipmRegTSMX+p9/AV54+2Ocd+ZoRDZvghce/CP+/fLf4WpyCtz9R+Hd1d8hzwusXfouFr7+D6xavQYH9u3Dho/exgXnxcHVshsuvDEFeT6g8MBO/P2B3xjZfPoF1+AbD3BQ5vwq53NcdkZvdGnTAH944mn8oGvJ343FGf9E84aN0KvfcCxa+TX2HyrEw7+5ytQ6DusxCE+9+T68ZUVA8QGg4ABWfPQB3sjIwJavv8DB77/C//6Tjn59+6FRy074Teo85EvoRy/ei95t6qFl5zPxwcY85JlblkVolnCZ3vxhfP/1OpzRsR06Nm6O3977jKlfXAQPDubtxAMP3ItrEy7C9AvjMO2qKxA/9Xbc8sBT2HngIHz5B7H83/Ox6t238fV32/D1t9/gPy8/i1bNGqFBpx6Y/dKryNvzLW6+5mo0CWmNXt0H4P133sIHmf/F629lYP6bb+HDTz7FIU2ULrPqMOsL6Yz49TlrtJutgM05aZTChBBCCPk5oBQmhBBCCCHkREetonrRA9/jqTvGGXk74JKrsHZ3Hp594M/o2diFM6L64K6Zf4QrrB16DDsXCz/5ytTTLT6wE1+uWYpFC/+Hxx5+CNdfNhadTm0HV/MIjL7ut9in7jZvP57+0w1o18iFweOuwYYDMFJ255bNuHZUX7ibuJAy+1nsVbPp2YulC+ajTbMW6NFnOBYs34w9uQV4LPlqtJV1dTljDD7eshcmp7b0EFCUi/z932P5smV44/VX8MSDv8dlF4zEKW3boXGrLpj6u9nIM1L4L+jdxoWWnc/C+xsLbCnskzHk5jVTGAXY/fV6jOvTBR3DmmJ68iP4Xk4Vy8P5ft8WXHzJeWjicqG9NJOx3Kwbhl40Bdv2fg94D6Jsxyasee8tvPzvfyHlL3/GhWfHomFIKBp26YeHn3sR3kO78beH7kG3Dt3RPKwF+veNwDnnjsCM23+Dt95bgk3bfzBSOF+WolLYK828w06fiYphTRv2i2FKYUIIIYT8vFAKE0IIIYQQcqKjVtFI4d34623j0Lq+C5HjJyInrxTfZS1AQv/OaFqvGaL6ng1X/Vboc/oovLd+Mw4Ul+HtV/6OK8aORJ9eUYgZEo2rzh2OyK6d4GrRHWOu/6MpwVB4eD9euDcJLUNdGDjuWqzZCxwuA3Z9swmTR/ZGp2YupDz1PHZp6dzCPcjM+CfaNGuJyL6x+O+KLTiQV4LH7rwS7jAXepxzEbJ2HkKZVvst+QHe3F14+fmnMfLssxHVqxvGnjUAF8Sdjnat2qBhy86Y/sdncNADfPziPUYKt+h8Nt7bWIjDMlWxXwqrcPXi4M6vkDxhNE6R+z997BR8ssVj6vweOLQbjzyagkmXj8LUscMwtHcUXM3744zLbsXOA3twaE8O/nH/7TgnOgI9BvRF7MjROD9mBJo3ao0GnQfjfq3J7N2P3G2f4omHH8KF485D3z4d0aZdU7gatkDnHkNx55/SsOOAz4h2j8ypj6JEv6jtNU3XqGvVbxalMCGEEEJ+XiiFCSGEEEIIOdFR3+iTdnAfnkoeb160NvD8K5Gz34vi/dvx2F0zcEpYfTRw1UdIaCv0HBCDxdnr8fXO7bhkzEg0Cw3ByPMuwT9fmo/Ply3AtZeNhyusO0ZP/B2+l7F/yNuLv/5lupGto8dNRM73pTgo036z9QtcGtsdXVppTeFn8YMazsM78ea82WjetCW69j0Try35BnvyS/HAnVegfUMXYs+9EJv25KMIpSgq3IddOaswqFsntGjWEhOuuBL/XfAqln/8Pwzu0xNhzd24LuUF7PUAmS+mIqqdC626DscHGw+aF8SpBy9zZGupF2X5P+Dfz8xCu8b10KJ9BP7vnjSsWbcehw/vww8/fIv9u77Cx2+9gisuukTurwtGXjQJuzRL+aO30b11A4S3bYFb7vwd3v5fJt57MwOntG6PJp2j8chzL8scP6Dk8LfYt3c/Nn3xBea//DTuvOMGxJxxFuo1aoMufWLw+XbrBXhalkNfcKfZwrq8ClI4QAHrV6eHEEIIIeR4QilMCCGEEELICY66WM2ILTici8dmjkf7EBdGnnsZvtxVgoPFJdj46TJcMrIXmrlcaBDSEv0Hn42la5dhQ84qREV0RtMmrXFn6jPI2fY9PnzreZzRrxtC6kdi/KR7sL0M2FtyAHMeTIQ71IXzYsZg/cZd+Dq/BF/u3oaJFw5H+yYuXH39TGz4Ygc2r3wPSVePR2jDZujQbxTmL/0WOwuAv/zfRLgbyvVnjsK3Ow6YDOTD3kNY9/7r6KAvxju1K+Y89yI2frMZL/z9GUS2b4amTdti0p/TsaMIePfFWejZ1oVW4f2xeMMelMi6SoodoSpPwFuMMk8eNn+2FuefcyZaNG2IU9u1wtVXJmD242l48vFHMevBB3H5pQlo16Y92rXviMlTErFj9068Mv9lNAkJxYDeg/D2wuXIydmKRx/8Mxo3qo8m7Xth9gvpyMvbhgULXsKsJ5/BG/99Bzu//RzffbMeD953D5q2aIvwAbFY9dUuU9ZChbVmDGuisFcWaMRwBQVsOixX7D8ihBBCCDl+UAoTQgghhBBygqNSOL9MWv5hPHTHeJwS4sLwmPPw5Q6PEZR5BXvx+vP3omNTFxqGtkDPPsOwdM1SbN/5FeLPHYUWLdqhz4jxmPHbFFx1QQy6t2+O0NCuiLv4Nnwv16sUnv/8XejVzoXeHbojOfk+/O3fC/DdoX14+pHfo2PrRjilS39cN+1WzEy8EgO7toMrpDFO6RmD15ZbUvie309Gm1AXzh8xCjt2/GAyjQvlrx0bliImshOaN2mFc86/BNNvvQ3njY1Dt3ZN0CSsJa7+3XPYehhY9OKj6NrShZZdeiNz3XaThevz2pq1VHe88Mr9ewsP4f1Fb+KicaMRGX4amjUOlXtWGR6CBvUbolnTlugT1R+TJ0/BW28twGG55sPFi9GjSzec0sqNSy+dittunYlzzj4dLVs2RcM2XfHAE09j9/dfIPX+36Nrr/7o2XcgZt5xA/7w25swcsRwdO3WA0m/uwff7Cs0mcKmVrM0lcJFJfrdUVT9VpXC5UeEEEIIIccPSmFCCCGEEEJOcEzVBi/gKSxA+hN3ID4mAtdOvhlb9nitMgu+fHz/5VLMmHghRgwfhUsnTEZ2zqfIL8rFgoxXcemll6PfiPMx9OxzcMvUy5D6+ztxxhmX4sIr78AuGTzXdxhfZL+FmddfipFDzsBZZ12A5NRHkOv1YMfmVUhOmobBsedhxFljMf2ycbj/97dhaMxZiL96Bv6XvRvfyyKefvz3OOf0CCRNvQG7vz+EXJQivzQPOLgD//rbkzh39HkYFjsKZ55zHu688ze484ZJGHl2HCb97ikjlZcueBEJ5w7DOZdcjaycnSgpVRlsSVVvib60TvZKiuRheOTvg1i6eBGeevxBXDp+LM6MPR1nDB+OM2LOwKRrr8OL/0xHzudfwCfXlPhKsHvXTjz+0CM492xZw7DRGDXqPMy6/25MmTIJQ0eej4dmPw1P0X58s+VzzJL9uLHxOOP0ARgxrD/GxI3EH/54N1Z99rWps2yksGy1tIV+X4pNYWHFUcDaymsKl/cQQgghhBw/KIUJIYQQQgg5wVH5aMoVlJRgT04m1nzwL6xe+zny5ES+9Jeqoizcia2fZmHJh8uxdMU6fH/wAIq8clVxIdauXoP/LVmN9z5ejr3bv0TB/r1YtuxzvLvkM/xQpmPL9b5d2PbZcizP/AgffbQKG7buQoEWMvYdwL6dXyPz49VYuXI9tm1cjcPfb8f7i5fgw9WbsO0wcNALfLd1DZa+9y+sWb4KpTKmytN8r5z0HgLyDmD1J6uR+dFyfCBt/759+GHHFixfnoU3l21Crkxz8NsvsOKD/+L9ZWuwT5atUrjEW1ouU7VGg2YMFxegrDhPjgtRcGgv1q3JwvKlH+K9d97Bxx8uwTdfb5PnVIZSGdPr8xkp7PN5cXDvASz/KAuLF2chS9ZYcPAHfP31V1j44TKszdkErzdf4jzYc/AwVmWvw8eZMt77i7Bi2RLs3P299YI5bbKMIlmbZjKr7PV6TeVjaY7+1cYXzRFCCCHk54VSmBBCCCGEkBMcFYuaEezzlQIl3wNFe41oVEmpYrhUs2i9uRL0gwk2QlXOaYxm15YWF8OjIXqsNRkkQN+JpnJT5a1XI31yvWb2+nwolBNF0l+kJrPsMMpKDsOri9Bjr6yktBhaNSFfmlNjF2UHpcmRTKz+Vl80V1wqo3ulSbzivJjNVyzzlZbImF5zfYGO69Ms4BIUyZiFGiNdpRKst2ZuRE2zml5fsYQeln2TsysDFqFM+sx5HccOM1vpK5W/TKaxGVD7ZNcrfYWFshZZo3TLCBIjK5YL9Rl59eIy2ZP1eIskTvr0+akQ1vM6lGYh6ySl+jzNWwDtZhZLKUwIIYSQnxdKYUIIIYQQQk5wVCqqpLWkcC5QfNA40EKfVdvWCMeSPDlQWVpqXn6mwtenErOwwMhKX1kZ9HLHaqoULrav98qBryRfrlXNrLHSr+ObernaJ7PrJNo0W7ekCMUlpWYOFbgeWYzXd1jGLDQxGlZcViLjyHUqhMtUO/tQomZZ16DN50Wxt8iMXqAL1sXJ6SKZ2CPHGm+aLsE0OW/kt66lWG5J1lvmka21Zksay65sNFNY5XNxcYkcyliy5jK9F7kxzRoukX69pEyCiuWBeEpLUFigT1idtk+eh56UA1mHT4Wy9ut41hKtqRzzrLE+NeF6jTlr+vVy3SvvIYQQQgg5flAKE0IIIYQQcoKjUlHVpEpOFOdDs2pVEBd65VD6jezVbFnN4vWVoMRbBo+6SpWXRSpRS4w8LfVJp8Sqzywt03xYrxnHJ4EqUcvKfNIn15ssXpnThKtYlbFVyOo8pWUoKtQMXZlbAvRFa2Z6GavIq/nB1ry+0mIZQ6Wtrlwlb4n0WfOrmC6T8TRGRpAue10aauxpmfTIevWu9VhOm/RnWb+vSPOSNVAlrlyrUtiWuMbJytYsVfa9Xr1HPSdN7rO0pFjuUTOC5Z5kDXrfRSiQCImzrysq1XnlOej1RXK13F+Z3LPjnDX7WDOMrYeoN6JjW+LbWoBGUQoTQggh5OeFUpgQQgghhJATHBWKKhfNjrdYDrymJILKRtWj5l1nxoKqANYD410tIVmswlJbkVyqcld2ZRyfZvVCpa1EmWNLXmrhCJPhK30mTgWpZXHlpHZKn1pfRQK0fIIqUJ1L9bFujfy1R9NsXHORWak1ifGncqTSWMtTmBIQ0l+sntcM7ZU1aLVkXbf87QxnFql3pk3OmSbzGzkrp/RWJEQrOvi0VoVB1m8m1LVqvAp1+/7M2QIZWlYuBzq83rverxlSpzHj+qAlOsrvRZosqky/F7o4p5lF6nnrqx45jRBCCCHkeEIpTAghhBBCyAmOoyLLTaPslFnZqI6KtM6pnFSTaSlYs6eW1EhhFbB2RrD2W6+Cs8aSEN1YY6kstqSpNu0zMxnxac2pzULP6kxWLV5rT2N0Tr3GirXiVchKvFm/tbH6DkrzmJF0DVaw9uv61BILTr9p+sWZ17lLazSDE+fHjCzNuU7LTZgqynaYlXlsP1JB55Yxdd8JMv1Oh938MlhjA+ewcC5zGiGEEELI8YRSmBBCCCGEkJMNYxrli/ztaEqDU9ZA+sulsMapuJQe3bUuE/QVbyqFZaOXSafulhlJKk2D/H36RfZkx+62v+oMKm41n9g6MqUYHKkqzbpeD2wpLLvla9C+Q9I89rWCOaH9mimsWbtWvLUjzXzRyGOVwopuy9dr9VpSuPzYHtMZxzT9omcDml8KO1c6wRb+S+1GCCGEEHI8oRQmhBBCCCHkZMA2i6ogza5JbbX2HSVpvmphXNmoKtVmMELX6q8ohQusi8tPW33a9MAfK9gX2t2CXqgCVTNvnbrC2qsit9gfqP0mc9iIXq0tHHAPJk7Xoa97C1ivGdfKFNY4vca+QNAdHeEIUtiPE1tqd+tXax3lV+n6LSmszRlTI8uH0sgjtfJIQgghhJBfApTChBBCCCGEnAzY3lGVpZGXto/U7nKhKdiOsoJk1aDAZqJVxmpJCdlUcJu2FNYDJ9702/j3dUdnsDJvy/utDF89LhfNGmfJWEflWmdkT8tayHmN0H5dhjWeZisXm2NdrRnHP4f2OnfoP2sRsGsdaEELS0Zb6DUBUtiU1rDm15GcchB6rvwa3dOxKgxOCCGEEPKLhVKYEEIIIYSQEx11kbahtF6DJh1qMNWdyglVmNbr3qw+jfXKjjaD4zNNgA6kIlflrfWCNdOloea8CuFC2TUHfh+qR6anwo7OasleJ86pEWwSmbXPoPLXUr6qgHV2a/GWgNULVcpqhG71GKUqlq0MXu3zT2nQHT2jzT+xRcCuE+dIYXPKns8voPWtdKWWrDZz2yUhnNGtq8oHdY5qaoQQQgghvwQohQkhhBBCCDnRUdtoDGYZ9JVsJdrht5YqML3SZ2fDap/seE1JBlWdgoRXfYlbgRz6rH690FynB5YU9ufW6kaaPaw1hhnHeqGctRrp8F9/QFohfLKrlSysYM3GteK0gq+KYaNgVQrb06i61dXq6szwPjkqtbS2I3C132r6l57xr8rCCfCjB5UyhY2tDshK9slX6dNjI4VN+Q29L2t0Z1Drq3VNTU3PV8W5khBCCCHk+EEpTAghhBBCyImOYyPlS6HRvXKgxtJYTBWnJdJnlTwwfbLjhb68zcrJ1etV0pqsYKNlD5utxpt+s6NNdxwpbNXVNf1mPGvXcpzmjByrTLXnNXH6ZZ+0AnglxAxnMm89cs4aT/OTdQVmRI2XGO3X+VRs64rNeF49p7rbEsU6spnaNEsKW2LYRFs4AX70oLIUlibddn6z/3npse4aKSxN78q6MxNlvups1TUnqsLUBmdBVc8QQgghhNQllMKEEEIIIYScDBivqBJWZaUc+H2lpS/1qwmx7aQWRLCUqnPsqEnVn5qra/KNrX5nx2T6as6snjOD+y80p/VYQ2wprDNWnFe/qPYtNkOZ4cwJGdOuJaGz6wxGp2qfNZRsLAmrK7Yu03OWzLW9rem3mv6l8zq9NaHnrBh/lD2IylzTZw/hyF1zb9Ks0e1g+6uer645UVZkZWo+QwghhBBSV1AKE0IIIYQQchIRvF6sSUY6/TWNdKRzwVDd9eXHRxv9SOcIIYQQQkhwUAoTQgghhBBCCCGEEELIrwhKYUIIIYQQQgghhBBCCPkVQSlMCCGEEEIIIYQQQgghvyIohQkhhBBCCCGEEEIIIeRXBKUwIYQQQgghhBBCCCGE/IqgFCaEEEIIIYQQQgghhJBfDcD/A8HahWaUpSAYAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from IPython.display import Image\n", "from pathlib import Path\n", @@ -91,7 +104,27 @@ "cell_type": "code", "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2025-03-17 17:36:17.904242: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2025-03-17 17:36:17.904968: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", + "2025-03-17 17:36:17.908041: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", + "2025-03-17 17:36:17.914657: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", + "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", + "E0000 00:00:1742258177.926239 296211 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1742258177.929301 296211 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "W0000 00:00:1742258177.938642 296211 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "W0000 00:00:1742258177.938663 296211 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "W0000 00:00:1742258177.938664 296211 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "W0000 00:00:1742258177.938665 296211 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "2025-03-17 17:36:17.942645: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] + } + ], "source": [ "# Import statements\n", "import os\n", @@ -155,7 +188,16 @@ "cell_type": "code", "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dang/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be removed in a future version. Please use 'DataFrame.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + } + ], "source": [ "# Import Auto-reformer training data\n", "np.set_printoptions(precision=6, suppress=True)\n", @@ -207,7 +249,226 @@ "metadata": { "scrolled": false }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dang/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n", + "2025-03-17 17:36:20.210719: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 502ms/step - loss: 0.3816 - mae: 0.5276 - mse: 0.3816\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 173ms/step - loss: 0.3746 - mae: 0.5232 - mse: 0.3746 - val_loss: 0.3230 - val_mae: 0.4945 - val_mse: 0.3230\n", + "Epoch 2/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 17ms/step - loss: 0.3142 - mae: 0.4739 - mse: 0.3142\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 0.3106 - mae: 0.4715 - mse: 0.3106 - val_loss: 0.2687 - val_mae: 0.4451 - val_mse: 0.2687\n", + "Epoch 3/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.2590 - mae: 0.4252 - mse: 0.2590\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - loss: 0.2580 - mae: 0.4245 - mse: 0.2580 - val_loss: 0.2238 - val_mae: 0.3994 - val_mse: 0.2238\n", + "Epoch 4/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 17ms/step - loss: 0.2143 - mae: 0.3814 - mse: 0.2143\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step - loss: 0.2151 - mae: 0.3820 - mse: 0.2151 - val_loss: 0.1868 - val_mae: 0.3573 - val_mse: 0.1868\n", + "Epoch 5/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - loss: 0.1783 - mae: 0.3422 - mse: 0.1783\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - loss: 0.1801 - mae: 0.3442 - mse: 0.1801 - val_loss: 0.1562 - val_mae: 0.3199 - val_mse: 0.1562\n", + "Epoch 6/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - loss: 0.1495 - mae: 0.3074 - mse: 0.1495\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step - loss: 0.1519 - mae: 0.3108 - mse: 0.1519 - val_loss: 0.1310 - val_mae: 0.2865 - val_mse: 0.1310\n", + "Epoch 7/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 0.1266 - mae: 0.2789 - mse: 0.1266\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - loss: 0.1291 - mae: 0.2831 - mse: 0.1291 - val_loss: 0.1104 - val_mae: 0.2588 - val_mse: 0.1104\n", + "Epoch 8/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.1088 - mae: 0.2571 - mse: 0.1088\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step - loss: 0.1112 - mae: 0.2614 - mse: 0.1112 - val_loss: 0.0941 - val_mae: 0.2388 - val_mse: 0.0941\n", + "Epoch 9/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 0.0954 - mae: 0.2407 - mse: 0.0954\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 27ms/step - loss: 0.0974 - mae: 0.2444 - mse: 0.0974 - val_loss: 0.0815 - val_mae: 0.2233 - val_mse: 0.0815\n", + "Epoch 10/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 0.0857 - mae: 0.2297 - mse: 0.0857\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - loss: 0.0871 - mae: 0.2321 - mse: 0.0871 - val_loss: 0.0722 - val_mae: 0.2129 - val_mse: 0.0722\n", + "Epoch 11/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - loss: 0.0789 - mae: 0.2219 - mse: 0.0789\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - loss: 0.0798 - mae: 0.2231 - mse: 0.0798 - val_loss: 0.0654 - val_mae: 0.2048 - val_mse: 0.0654\n", + "Epoch 12/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.0743 - mae: 0.2161 - mse: 0.0743\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - loss: 0.0747 - mae: 0.2164 - mse: 0.0747 - val_loss: 0.0604 - val_mae: 0.1982 - val_mse: 0.0604\n", + "Epoch 13/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.0710 - mae: 0.2117 - mse: 0.0710\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 0.0708 - mae: 0.2113 - mse: 0.0708 - val_loss: 0.0565 - val_mae: 0.1926 - val_mse: 0.0565\n", + "Epoch 14/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 0.0683 - mae: 0.2075 - mse: 0.0683\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - loss: 0.0677 - mae: 0.2065 - mse: 0.0677 - val_loss: 0.0531 - val_mae: 0.1876 - val_mse: 0.0531\n", + "Epoch 15/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - loss: 0.0659 - mae: 0.2029 - mse: 0.0659\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 0.0649 - mae: 0.2015 - mse: 0.0649 - val_loss: 0.0501 - val_mae: 0.1823 - val_mse: 0.0501\n", + "Epoch 16/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 0.0633 - mae: 0.1980 - mse: 0.0633\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 0.0621 - mae: 0.1961 - mse: 0.0621 - val_loss: 0.0473 - val_mae: 0.1765 - val_mse: 0.0473\n", + "Epoch 17/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 0.0608 - mae: 0.1928 - mse: 0.0608\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - loss: 0.0595 - mae: 0.1906 - mse: 0.0595 - val_loss: 0.0447 - val_mae: 0.1704 - val_mse: 0.0447\n", + "Epoch 18/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 0.0583 - mae: 0.1873 - mse: 0.0583\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step - loss: 0.0570 - mae: 0.1849 - mse: 0.0570 - val_loss: 0.0425 - val_mae: 0.1642 - val_mse: 0.0425\n", + "Epoch 19/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 0.0560 - mae: 0.1823 - mse: 0.0560\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - loss: 0.0547 - mae: 0.1795 - mse: 0.0547 - val_loss: 0.0405 - val_mae: 0.1580 - val_mse: 0.0405\n", + "Epoch 20/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 0.0540 - mae: 0.1776 - mse: 0.0540\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - loss: 0.0527 - mae: 0.1743 - mse: 0.0527 - val_loss: 0.0388 - val_mae: 0.1521 - val_mse: 0.0388\n", + "Epoch 21/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 0.0522 - mae: 0.1730 - mse: 0.0522\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - loss: 0.0509 - mae: 0.1695 - mse: 0.0509 - val_loss: 0.0374 - val_mae: 0.1468 - val_mse: 0.0374\n", + "Epoch 22/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 0.0505 - mae: 0.1689 - mse: 0.0505\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - loss: 0.0493 - mae: 0.1650 - mse: 0.0493 - val_loss: 0.0361 - val_mae: 0.1423 - val_mse: 0.0361\n", + "Epoch 23/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.0490 - mae: 0.1653 - mse: 0.0490\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - loss: 0.0478 - mae: 0.1611 - mse: 0.0478 - val_loss: 0.0350 - val_mae: 0.1386 - val_mse: 0.0350\n", + "Epoch 24/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 0.0475 - mae: 0.1620 - mse: 0.0475\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 34ms/step - loss: 0.0464 - mae: 0.1576 - mse: 0.0464 - val_loss: 0.0339 - val_mae: 0.1358 - val_mse: 0.0339\n", + "Epoch 25/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - loss: 0.0461 - mae: 0.1589 - mse: 0.0461\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - loss: 0.0450 - mae: 0.1544 - mse: 0.0450 - val_loss: 0.0330 - val_mae: 0.1337 - val_mse: 0.0330\n", + ".\n", + ".\n", + ".\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 8.1064e-05 - mae: 0.0064 - mse: 8.1064e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - loss: 8.4865e-05 - mae: 0.0066 - mse: 8.4865e-05 - val_loss: 6.2869e-05 - val_mae: 0.0058 - val_mse: 6.2869e-05\n", + "Epoch 977/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 8.0814e-05 - mae: 0.0064 - mse: 8.0814e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step - loss: 8.4609e-05 - mae: 0.0066 - mse: 8.4609e-05 - val_loss: 6.2697e-05 - val_mae: 0.0058 - val_mse: 6.2697e-05\n", + "Epoch 978/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 8.0564e-05 - mae: 0.0063 - mse: 8.0564e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - loss: 8.4354e-05 - mae: 0.0066 - mse: 8.4354e-05 - val_loss: 6.2527e-05 - val_mae: 0.0058 - val_mse: 6.2527e-05\n", + "Epoch 979/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - loss: 8.0317e-05 - mae: 0.0063 - mse: 8.0317e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - loss: 8.4101e-05 - mae: 0.0066 - mse: 8.4101e-05 - val_loss: 6.2357e-05 - val_mae: 0.0058 - val_mse: 6.2357e-05\n", + "Epoch 980/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 8.0070e-05 - mae: 0.0063 - mse: 8.0070e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - loss: 8.3850e-05 - mae: 0.0066 - mse: 8.3850e-05 - val_loss: 6.2189e-05 - val_mae: 0.0058 - val_mse: 6.2189e-05\n", + "Epoch 981/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 7.9825e-05 - mae: 0.0063 - mse: 7.9825e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - loss: 8.3599e-05 - mae: 0.0066 - mse: 8.3599e-05 - val_loss: 6.2021e-05 - val_mae: 0.0057 - val_mse: 6.2021e-05\n", + "Epoch 982/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 18ms/step - loss: 7.9581e-05 - mae: 0.0063 - mse: 7.9581e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step - loss: 8.3350e-05 - mae: 0.0066 - mse: 8.3350e-05 - val_loss: 6.1855e-05 - val_mae: 0.0057 - val_mse: 6.1855e-05\n", + "Epoch 983/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 17ms/step - loss: 7.9339e-05 - mae: 0.0063 - mse: 7.9339e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 37ms/step - loss: 8.3103e-05 - mae: 0.0066 - mse: 8.3103e-05 - val_loss: 6.1689e-05 - val_mae: 0.0057 - val_mse: 6.1689e-05\n", + "Epoch 984/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 7.9098e-05 - mae: 0.0063 - mse: 7.9098e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step - loss: 8.2857e-05 - mae: 0.0066 - mse: 8.2857e-05 - val_loss: 6.1524e-05 - val_mae: 0.0057 - val_mse: 6.1524e-05\n", + "Epoch 985/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 7.8858e-05 - mae: 0.0063 - mse: 7.8858e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - loss: 8.2611e-05 - mae: 0.0066 - mse: 8.2611e-05 - val_loss: 6.1360e-05 - val_mae: 0.0057 - val_mse: 6.1360e-05\n", + "Epoch 986/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 7.8620e-05 - mae: 0.0063 - mse: 7.8620e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - loss: 8.2368e-05 - mae: 0.0065 - mse: 8.2368e-05 - val_loss: 6.1197e-05 - val_mae: 0.0057 - val_mse: 6.1197e-05\n", + "Epoch 987/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 7.8383e-05 - mae: 0.0063 - mse: 7.8383e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - loss: 8.2126e-05 - mae: 0.0065 - mse: 8.2126e-05 - val_loss: 6.1035e-05 - val_mae: 0.0057 - val_mse: 6.1035e-05\n", + "Epoch 988/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 7.8147e-05 - mae: 0.0062 - mse: 7.8147e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step - loss: 8.1885e-05 - mae: 0.0065 - mse: 8.1885e-05 - val_loss: 6.0874e-05 - val_mae: 0.0057 - val_mse: 6.0874e-05\n", + "Epoch 989/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 7.7912e-05 - mae: 0.0062 - mse: 7.7912e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - loss: 8.1645e-05 - mae: 0.0065 - mse: 8.1645e-05 - val_loss: 6.0714e-05 - val_mae: 0.0057 - val_mse: 6.0714e-05\n", + "Epoch 990/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 17ms/step - loss: 7.7679e-05 - mae: 0.0062 - mse: 7.7679e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step - loss: 8.1406e-05 - mae: 0.0065 - mse: 8.1406e-05 - val_loss: 6.0554e-05 - val_mae: 0.0057 - val_mse: 6.0554e-05\n", + "Epoch 991/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 7.7447e-05 - mae: 0.0062 - mse: 7.7447e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - loss: 8.1169e-05 - mae: 0.0065 - mse: 8.1169e-05 - val_loss: 6.0395e-05 - val_mae: 0.0057 - val_mse: 6.0395e-05\n", + "Epoch 992/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - loss: 7.7216e-05 - mae: 0.0062 - mse: 7.7216e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 27ms/step - loss: 8.0933e-05 - mae: 0.0065 - mse: 8.0933e-05 - val_loss: 6.0238e-05 - val_mae: 0.0057 - val_mse: 6.0238e-05\n", + "Epoch 993/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 7.6987e-05 - mae: 0.0062 - mse: 7.6987e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step - loss: 8.0699e-05 - mae: 0.0065 - mse: 8.0699e-05 - val_loss: 6.0081e-05 - val_mae: 0.0057 - val_mse: 6.0081e-05\n", + "Epoch 994/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - loss: 7.6759e-05 - mae: 0.0062 - mse: 7.6759e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - loss: 8.0465e-05 - mae: 0.0065 - mse: 8.0465e-05 - val_loss: 5.9925e-05 - val_mae: 0.0057 - val_mse: 5.9925e-05\n", + "Epoch 995/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - loss: 7.6532e-05 - mae: 0.0062 - mse: 7.6532e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 33ms/step - loss: 8.0233e-05 - mae: 0.0065 - mse: 8.0233e-05 - val_loss: 5.9769e-05 - val_mae: 0.0057 - val_mse: 5.9769e-05\n", + "Epoch 996/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 7.6306e-05 - mae: 0.0062 - mse: 7.6306e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step - loss: 8.0002e-05 - mae: 0.0065 - mse: 8.0002e-05 - val_loss: 5.9615e-05 - val_mae: 0.0057 - val_mse: 5.9615e-05\n", + "Epoch 997/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 7.6081e-05 - mae: 0.0062 - mse: 7.6081e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - loss: 7.9772e-05 - mae: 0.0064 - mse: 7.9772e-05 - val_loss: 5.9461e-05 - val_mae: 0.0056 - val_mse: 5.9461e-05\n", + "Epoch 998/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 7.5858e-05 - mae: 0.0062 - mse: 7.5858e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - loss: 7.9543e-05 - mae: 0.0064 - mse: 7.9543e-05 - val_loss: 5.9309e-05 - val_mae: 0.0056 - val_mse: 5.9309e-05\n", + "Epoch 999/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 7.5636e-05 - mae: 0.0061 - mse: 7.5636e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 32ms/step - loss: 7.9316e-05 - mae: 0.0064 - mse: 7.9316e-05 - val_loss: 5.9157e-05 - val_mae: 0.0056 - val_mse: 5.9157e-05\n", + "Epoch 1000/1000\n", + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 7.5415e-05 - mae: 0.0061 - mse: 7.5415e-05\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - loss: 7.9090e-05 - mae: 0.0064 - mse: 7.9090e-05 - val_loss: 5.9005e-05 - val_mae: 0.0056 - val_mse: 5.9005e-05\n", + "\n" + ] + } + ], "source": [ "# capture long output (not required to use surrogate API)\n", "from io import StringIO\n", @@ -306,7 +567,741 @@ "metadata": { "scrolled": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWCdJREFUeJzt3XlclOX6P/DPgOzCKCAIiIJgqbkhLrlvmJpSfuv8Mk1D08zSTCm3Y2654JJK7mmuJWIqdTJLU9LT0SwN5aSmlgquiDLEgFKAM8/vD86MDDDDLM/sn/frxUt45pmZ63kk5+q+r+u+JYIgCCAiIiJyEC7WDoCIiIhITExuiIiIyKEwuSEiIiKHwuSGiIiIHAqTGyIiInIoTG6IiIjIoTC5ISIiIofC5IaIiIgcCpMbIiIicihMboiIrGTbtm2QSCTIzs62dihEDoXJDZEDO336NCZMmICnnnoKPj4+aNiwIV566SX8/vvvVc7t2bMnJBIJJBIJXFxc4OfnhyeffBIjRozA4cOHDXrf/fv3o0ePHggKCoK3tzcaN26Ml156CQcPHhTr0qpYtGgRvvzyyyrHf/zxR8ydOxcFBQVme+/K5s6dq76XEokE3t7eaN68Od5//30UFhaK8h4pKSlITk4W5bWIHA2TGyIHtmTJEuzbtw99+vTBRx99hLFjx+KHH35A27Ztcf78+SrnN2jQAJ9++il27NiBZcuW4bnnnsOPP/6IZ555BkOGDEFZWVmN7/nhhx/iueeeg0QiwYwZM7By5Uq8+OKL+OOPP5CammqOywSgO7mZN2+eRZMblfXr1+PTTz/FihUr0LRpUyxcuBD9+/eHGFv6Mbkh0q6WtQMgIvNJTExESkoK3N3d1ceGDBmCli1bYvHixfjss880zpdKpRg+fLjGscWLF2PixIlYt24dIiIisGTJEq3v9+jRI8yfPx99+/bFd999V+Xxe/fumXhFtqO4uBje3t46z/nHP/6BwMBAAMC4cePw4osvIi0tDT/99BM6depkiTCJnBJHbogcWOfOnTUSGwBo0qQJnnrqKVy8eFGv13B1dcWqVavQvHlzrFmzBnK5XOu5eXl5KCwsRJcuXap9PCgoSOPnv//+G3PnzsUTTzwBT09PhISE4IUXXsDVq1fV53z44Yfo3LkzAgIC4OXlhdjYWOzdu1fjdSQSCR4+fIjt27erp4JGjhyJuXPnYsqUKQCAyMhI9WMVa1w+++wzxMbGwsvLC/7+/nj55Zdx8+ZNjdfv2bMnWrRogYyMDHTv3h3e3t745z//qdf9q6h3794AgKysLJ3nrVu3Dk899RQ8PDwQGhqK8ePHa4w89ezZEwcOHMD169fV1xQREWFwPESOiiM3RE5GEATk5ubiqaee0vs5rq6uGDp0KGbNmoXjx49j4MCB1Z4XFBQELy8v7N+/H2+//Tb8/f21vqZCocCgQYOQnp6Ol19+Ge+88w6Kiopw+PBhnD9/HlFRUQCAjz76CM899xxeeeUVlJaWIjU1Ff/v//0/fP311+o4Pv30U4wZMwYdOnTA2LFjAQBRUVHw8fHB77//jl27dmHlypXqUZR69eoBABYuXIhZs2bhpZdewpgxY3D//n2sXr0a3bt3x9mzZ1GnTh11vDKZDAMGDMDLL7+M4cOHIzg4WO/7p6JK2gICArSeM3fuXMybNw9xcXF48803cfnyZaxfvx6nT5/GiRMn4ObmhpkzZ0Iul+PWrVtYuXIlAKB27doGx0PksAQiciqffvqpAEDYvHmzxvEePXoITz31lNbnffHFFwIA4aOPPtL5+rNnzxYACD4+PsKAAQOEhQsXChkZGVXO27JliwBAWLFiRZXHlEql+vvi4mKNx0pLS4UWLVoIvXv31jju4+MjJCQkVHmtZcuWCQCErKwsjePZ2dmCq6ursHDhQo3j586dE2rVqqVxvEePHgIAYcOGDVqvu6I5c+YIAITLly8L9+/fF7KysoSPP/5Y8PDwEIKDg4WHDx8KgiAIW7du1Yjt3r17gru7u/DMM88ICoVC/Xpr1qwRAAhbtmxRHxs4cKDQqFEjveIhcjacliJyIpcuXcL48ePRqVMnJCQkGPRc1chAUVGRzvPmzZuHlJQUxMTE4NChQ5g5cyZiY2PRtm1bjamwffv2ITAwEG+//XaV15BIJOrvvby81N//+eefkMvl6NatG86cOWNQ/JWlpaVBqVTipZdeQl5envqrfv36aNKkCY4ePapxvoeHB0aNGmXQezz55JOoV68eIiMj8cYbbyA6OhoHDhzQWqtz5MgRlJaWYtKkSXBxefzP8+uvvw4/Pz8cOHDA8AslckKcliJyEnfv3sXAgQMhlUqxd+9euLq6GvT8Bw8eAAB8fX1rPHfo0KEYOnQoCgsL8fPPP2Pbtm1ISUlBfHw8zp8/D09PT1y9ehVPPvkkatXS/c/Q119/jQULFiAzMxMlJSXq4xUTIGP88ccfEAQBTZo0qfZxNzc3jZ/DwsKq1C/VZN++ffDz84ObmxsaNGignmrT5vr16wDKk6KK3N3d0bhxY/XjRKQbkxsiJyCXyzFgwAAUFBTgP//5D0JDQw1+DVXreHR0tN7P8fPzQ9++fdG3b1+4ublh+/bt+Pnnn9GjRw+9nv+f//wHzz33HLp3745169YhJCQEbm5u2Lp1K1JSUgy+hoqUSiUkEgm+/fbbahO9yjUsFUeQ9NW9e3d1nQ8RWQ6TGyIH9/fffyM+Ph6///47jhw5gubNmxv8GgqFAikpKfD29kbXrl2NiqNdu3bYvn07cnJyAJQX/P78888oKyurMkqism/fPnh6euLQoUPw8PBQH9+6dWuVc7WN5Gg7HhUVBUEQEBkZiSeeeMLQyzGLRo0aAQAuX76Mxo0bq4+XlpYiKysLcXFx6mOmjlwROTLW3BA5MIVCgSFDhuDkyZPYs2ePUWurKBQKTJw4ERcvXsTEiRPh5+en9dzi4mKcPHmy2se+/fZbAI+nXF588UXk5eVhzZo1Vc4V/rfInaurKyQSCRQKhfqx7Ozsahfr8/HxqXahPh8fHwCo8tgLL7wAV1dXzJs3r8qieoIgQCaTVX+RZhQXFwd3d3esWrVKI6bNmzdDLpdrdKn5+PjobMsncmYcuSFyYO+++y6++uorxMfHIz8/v8qifZUX7JPL5epziouLceXKFaSlpeHq1at4+eWXMX/+fJ3vV1xcjM6dO+Ppp59G//79ER4ejoKCAnz55Zf4z3/+g8GDByMmJgYA8Oqrr2LHjh1ITEzEqVOn0K1bNzx8+BBHjhzBW2+9heeffx4DBw7EihUr0L9/fwwbNgz37t3D2rVrER0djV9//VXjvWNjY3HkyBGsWLECoaGhiIyMRMeOHREbGwsAmDlzJl5++WW4ubkhPj4eUVFRWLBgAWbMmIHs7GwMHjwYvr6+yMrKwhdffIGxY8fivffeM+n+G6pevXqYMWMG5s2bh/79++O5557D5cuXsW7dOrRv317j7ys2Nha7d+9GYmIi2rdvj9q1ayM+Pt6i8RLZLGu2ahGRealamLV96Tq3du3aQpMmTYThw4cL3333nV7vV1ZWJmzatEkYPHiw0KhRI8HDw0Pw9vYWYmJihGXLlgklJSUa5xcXFwszZ84UIiMjBTc3N6F+/frCP/7xD+Hq1avqczZv3iw0adJE8PDwEJo2bSps3bpV3Wpd0aVLl4Tu3bsLXl5eAgCNtvD58+cLYWFhgouLS5W28H379gldu3YVfHx8BB8fH6Fp06bC+PHjhcuXL2vcG11t8pWp4rt//77O8yq3gqusWbNGaNq0qeDm5iYEBwcLb775pvDnn39qnPPgwQNh2LBhQp06dQQAbAsnqkAiCCJsckJERERkI1hzQ0RERA6FyQ0RERE5FCY3RERE5FCY3BAREZFDYXJDREREDoXJDRERETkUp1vET6lU4s6dO/D19eXy5URERHZCEAQUFRUhNDQULi66x2acLrm5c+cOwsPDrR0GERERGeHmzZto0KCBznOcLrnx9fUFUH5zdO2RQ0RERLajsLAQ4eHh6s9xXZwuuVFNRfn5+TG5ISIisjP6lJSwoJiIiIgcCpMbIiIicihMboiIiMihOF3NDRERkbEUCgXKysqsHYbDcnd3r7HNWx9MboiIiGogCALu3r2LgoICa4fi0FxcXBAZGQl3d3eTXofJDRERUQ1UiU1QUBC8vb25CKwZqBbZzcnJQcOGDU26x0xuiIiIdFAoFOrEJiAgwNrhOLR69erhzp07ePToEdzc3Ix+HRYUExER6aCqsfH29rZyJI5PNR2lUChMeh0mN0RERHrgVJT5iXWPOS1lIplMhtLSUq2Pu7u7cxiTiIjIgpjcmEAmk2HNmjU1njdhwgQmOERERBbCaSkT6BqxMeY8IiIiMY0cORISiQQSiQRubm4IDg5G3759sWXLFiiVSr1fZ9u2bahTp475AhUZR26IiIjMyNrlC/3798fWrVuhUCiQm5uLgwcP4p133sHevXvx1VdfoVYtx0sFHO+KiIiIbIQtlC94eHigfv36AICwsDC0bdsWTz/9NPr06YNt27ZhzJgxWLFiBbZu3Ypr167B398f8fHxWLp0KWrXro1jx45h1KhRAB4X/M6ZMwdz587Fp59+io8++giXL1+Gj48PevfujeTkZAQFBZnlWvTFaSkiIiIzsdXyhd69e6N169ZIS0sDUL4y8KpVq3DhwgVs374d33//PaZOnQoA6Ny5M5KTk+Hn54ecnBzk5OTgvffeA1DeJj9//nz897//xZdffons7GyMHDnSotdSHY7cEBEROaGmTZvi119/BQBMmjRJfTwiIgILFizAuHHjsG7dOri7u0MqlUIikahHgFRee+019feNGzfGqlWr0L59ezx48AC1a9e2yHVUhyM3RERETkgQBPU005EjR9CnTx+EhYXB19cXI0aMgEwmQ3Fxsc7XyMjIQHx8PBo2bAhfX1/06NEDAHDjxg2zx68LkxsiIiIndPHiRURGRiI7OxuDBg1Cq1atsG/fPmRkZGDt2rUAdE+XPXz4EP369YOfnx927tyJ06dP44svvqjxeZbAaSkTVN61VC73RX5+APz9ZZBKi7SeR0REZE3ff/89zp07h8mTJyMjIwNKpRLLly+Hi0v5mMfnn3+ucb67u3uVLREuXboEmUyGxYsXIzw8HADwyy+/WOYCasDkxgQBAQGYMGECSktLkZLihQ8+kEKplMDFRcDSpXIMG/YXVygmIiKrKikpwd27dzVawZOSkjBo0CC8+uqrOH/+PMrKyrB69WrEx8fjxIkT2LBhg8ZrRERE4MGDB0hPT0fr1q3h7e2Nhg0bwt3dHatXr8a4ceNw/vx5zJ8/30pXqYnTUiYKCAiAQhGCqVPrQKksn7tUKiWYNq0OFIoQJjZERGRVBw8eREhICCIiItC/f38cPXoUq1atwr/+9S+4urqidevWWLFiBZYsWYIWLVpg586dSEpK0niNzp07Y9y4cRgyZAjq1auHpUuXol69eti2bRv27NmD5s2bY/Hixfjwww+tdJWaJIIgCNYOwpIKCwshlUohl8vh5+cnymsePQr07l398Z49RXkLIiKykr///htZWVmIjIyEp6enQc+1hXVu7Imue23I5zenpUTQpAng4gJUXMna1RWIjrZeTEREZH0Vyxe0YfmC+JjciKBBA2DjRuCNNwCFojyx+fjj8uNEROTcmLhYHpMbkYweDfTrB1y5Uj5iw8SGiIjIOpjciKhBAyY1RERE1sZuKSIiInIoTG6IiIjIoTC5ISIiIofC5IaIiIgcCpMbIiIicihMboiIiMgox44dg0QiQUFBgd7PiYiIQHJystliApjcEBEROayRI0dCIpFg3LhxVR4bP348JBIJRo4cafnAzIzr3NgYmUzGZbqJiEg04eHhSE1NxcqVK+Hl5QWgfA+nlJQUNGzY0MrRmQeTGxvCDdaIiEhsbdu2xdWrV5GWloZXXnkFAJCWloaGDRsiMjJSfV5JSQmmTJmC1NRUFBYWol27dli5ciXat2+vPuebb77BpEmTcPPmTTz99NNISEio8n7Hjx/HjBkz8MsvvyAwMBD/93//h6SkJPj4+Jj/Yv+H01I2RNeIjTHnERGRbbl1Czh6tPxPS3rttdewdetW9c9btmzBqFGjNM6ZOnUq9u3bh+3bt+PMmTOIjo5Gv379kJ+fDwC4efMmXnjhBcTHxyMzMxNjxozB9OnTNV7j6tWr6N+/P1588UX8+uuv2L17N44fP44JEyaY/yIrYHJDRERkAZs3A40aAb17l/+5ebPl3nv48OE4fvw4rl+/juvXr+PEiRMYPny4+vGHDx9i/fr1WLZsGQYMGIDmzZtj06ZN8PLywub/Bbp+/XpERUVh+fLlePLJJ/HKK69UqddJSkrCK6+8gkmTJqFJkybo3LkzVq1ahR07duDvv/+22PVyWsqGyeW+yM8PgL+/DFJpkbXDISIiI926BYwdCyiV5T8rlcAbb5RvuGyJPQnr1auHgQMHYtu2bRAEAQMHDkRgYKD68atXr6KsrAxdunRRH3Nzc0OHDh1w8eJFAMDFixfRsWNHjdft1KmTxs///e9/8euvv2Lnzp3qY4IgQKlUIisrC82aNTPH5VXB5MZGnTkTg/37B0EQXCCRKBEf/zXatj1r7bCIiMgIf/zxOLFRUSiAK1cst+Hya6+9pp4eWrt2rVne48GDB3jjjTcwceLEKo9ZsnjZqtNSP/zwA+Lj4xEaGgqJRIIvv/xS5/lpaWno27cv6tWrBz8/P3Tq1AmHDh2yTLAikslkyMnJqfKVl5cHoHzERpXYAIAguGD//kGQy32tGTYRERmpSRPApdInrqsrEB1tuRj69++P0tJSlJWVoV+/fhqPRUVFwd3dHSdOnFAfKysrw+nTp9G8eXMAQLNmzXDq1CmN5/30008aP7dt2xa//fYboqOjq3y5u7ub6cqqsurIzcOHD9G6dWu89tpreOGFF2o8/4cffkDfvn2xaNEi1KlTB1u3bkV8fDx+/vlnxMTEWCBi0+nTEZWfH6BObFQEwQX5+f6cniIiskMNGgAbN5ZPRSkU5YnNxx9bbtQGAFxdXdVTTK6urhqP+fj44M0338SUKVPg7++Phg0bYunSpSguLsbo0aMBAOPGjcPy5csxZcoUjBkzBhkZGdi2bZvG60ybNg1PP/00JkyYgDFjxsDHxwe//fYbDh8+rFc3sFismtwMGDAAAwYM0Pv8yisaLlq0CP/617+wf/9+u0lu9Ol08veXQSJRaiQ4EokS/v755gyNiIjMaPTo8hqbK1fKR2wsmdio+Pn5aX1s8eLFUCqVGDFiBIqKitCuXTscOnQIdevWBVA+rbRv3z5MnjwZq1evRocOHbBo0SK89tpr6tdo1aoV/v3vf2PmzJno1q0bBEFAVFQUhgwZYvZrq8iua26USiWKiorg7++v9ZySkhKUlJSofy4sLLREaCaRSosQH/91lZob1aiNJYf2iIhIPA0aWDapqTyyUlnFchBPT0+sWrUKq1at0nr+oEGDMGjQII1jlVvK27dvj++++07ra2RnZ+uMSQx2ndx8+OGHePDgAV566SWt5yQlJWHevHkWjMow2jqiFiyIxOzZ95GdXQsREY8QGtoeQHuuUExERFQDu01uUlJSMG/ePPzrX/9CUFCQ1vNmzJiBxMRE9c+FhYUIDw+3RIg10tURFRgYiJCQYMTGWjlIIiIiO2OXyU1qairGjBmDPXv2IC4uTue5Hh4e8PDwsFBk+tPWERUVdYVFw0RERCawuxWKd+3ahVGjRmHXrl0YOHCgtcMxmq6OKCIiIjKeVUduHjx4gCtXrqh/zsrKQmZmproNbcaMGbh9+zZ27NgBoHwqKiEhAR999BE6duyIu3fvAgC8vLwglUqtcg3GYkcUEZF9EQTB2iE4PLHusVVHbn755RfExMSo27gTExMRExOD2bNnAwBycnJw48YN9fkbN27Eo0ePMH78eISEhKi/3nnnHavEbwxVp5OqI0oiKV+ykh1RRES2yc3NDQBQXFxs5Ugcn2q5lMrr8BhKIjhZKlpYWAipVAq5XK6z39+cZDKZ+i/wzh2XCh1R5YkOO6KIiGxLTk4OCgoKEBQUBG9vb0gkEmuH5HCUSiXu3LkDNzc3NGzYsMo9NuTz2y4Liu1dxcQlJATsiCIisnH169cHANy7d8/KkTg2FxeXahMbQzG5ISIiqoFEIkFISAiCgoJQVlZm7XAclru7O1wqb8JlBCY3REREenJ1dTW5HoTMz+5awYmIiIh0YXJDREREDoXTUg6iYgdWddiBRUREzoLJjQOQyWRYs2ZNjedNmDCBCQ4RETk8Tks5gMojNnK5L7KyIiCX++o8j4iIyBFx5MbB6NppnIiIyBlw5MaBaNtpvPIIDhERkSNjcuNAuNM4ERERkxuHotppvCLuNE5ERM6GyY0DqWmncSIiImfAgmIH07btWURFXUF+vj/8/fOZ2BARkdNhcuMA3N3dNX6WSouqTWoqn0dEROSImNyYyBZWBg4ICMCECROsHocuFe/TnTsuyMqqhcjIRwgNVdpEfERE5DiY3JjAllYGtuXEoOJ90rUOD1dQJiIiMbCg2AT6rvjr7CsDq66/pnV4nP0+ERGROJjckMVwHR4iIrIETkuJSC73RX5+APz9ZTq7lGyhTscaVOvwVExwuA4PERGJjcmNSPTd08mW6nQsTbUOT+X7xHZ1IiISE5MbEWirJYmKulLlg9vZ63S4Dg8REZkbkxsR6KolqenDW9+pLEeibR0eIiIiMTC5MYFcLgdQcy2JXC5HSEhIlefrO5VFRERE+mO3lAkEQQBQ855OqvMqqqkt2pHouzIyV1AmIiIxcOTGBHXq1FF/r6uWpOJ5KqZMZdkbe1hBmYiIHAeTG9FJ9DrLFtqiLdmSzsSFiIgshcmNSAytn7F2W3TllnRthc2O2JJORESOjcmNCAxpBa9YV6JrKsvc9ScVR2x0JWaO2pJORESOi8mNCAypn7G1+hNDEjMiIiJ7wORGBIbWz9jSNI8zFTYTEZFzYCu4CVRTRzW1gttyi7MqMauI+z0REZE948iNCSpPMc2efR/Z2bUQEfEIoaHtAbS3+RZnaxc2ExERiY3JjYkqJi4hIUBs7OPHVK3WOTk51T7XVhKftm3PIijoLm7ebIjw8Bto0KD6eB3NrVvAH38ATZoADRpYOxoiIhILkxszsfXdvwsKCtTf6+qWKigoqHbrCHu3eTMwdiygVAIuLsDGjcDo0daOioiIxMCaGzOx9d2/JZLyxQZr2gZCdZ6jkMlkyMjIxdixApT/KzVSKoE33hCQkZELmUxm3QCJiMhkTG4sRC73RVZWhM3sHSWVSgHo7paqeJ4jUI2mrV59EEqlZtKmUEiwevW3WLNmDRMcIiI7x2kpCzBk9WJLbokA2MY2EJaiuq81XTMXLiQism9MbszMkEXyrFGn44zdUs54zUREzoTJjZkZskhe5REDbfs9iT2yoGsbCHtgTNeTvV8zERFpx+TGzIyd9jF0I05TSaVFdvUBr5q+S0nxwtSpUiiVEri4CFi6VI5hw/7Sa/rO3q6ZiIj0w4JiM6tp9eLq1NTB5OxU03fLlu3ClCl+6uJgpVKCKVP8sGzZLhYGExE5MY7cmIkpu39bYr8nfbeEsMWtI1TTcjXdJxYGExE5JyY3ZmLK7t+W6GCytd3JjeFMnV5ERKQ/JjdmZGxiYKluHltOXPRh6H2y59EqIiLSH5MbG8VuHv0Ycp8cYbSKiIhqxuTGhlQeMdDWzcORBU2GdD0xcSEicnxMbmwIRxaIiIhMx+TGxjBxISIiMg3XuSG7w8JgIiLShSM3ZHc4fUdERLpYdeTmhx9+QHx8PEJDQyGRSPDll1/W+Jxjx46hbdu28PDwQHR0NLZt22b2OMn2BAQEICQkROsXExsiIudl1eTm4cOHaN26NdauXavX+VlZWRg4cCB69eqFzMxMTJo0CWPGjMGhQ4fMHCkRERHZC6tOSw0YMAADBgzQ+/wNGzYgMjISy5cvBwA0a9YMx48fx8qVK9GvXz9zhUlERER2xK4Kik+ePIm4uDiNY/369cPJkye1PqekpASFhYUaX0REROS47Cq5uXv3LoKDgzWOBQcHo7CwEH/99Ve1z0lKSoJUKlV/hYeHWyJUIiIishK7Sm6MMWPGDMjlcvXXzZs3rR0SERERmZFdtYLXr18fubm5Gsdyc3Ph5+cHLy+vap/j4eEBDw8PS4RHRERENsCuRm46deqE9PR0jWOHDx9Gp06drBQRERER2RqrJjcPHjxAZmYmMjMzAZS3emdmZuLGjRsAyqeUXn31VfX548aNw7Vr1zB16lRcunQJ69atw+eff47JkydbI3xyULduAUePlv9JRET2x6rJzS+//IKYmBjExMQAABITExETE4PZs2cDAHJyctSJDgBERkbiwIEDOHz4MFq3bo3ly5fjk08+YRs4iWbzZqBRI6B37/I/N2+2dkRERGQoiSAIgrWDsKTCwkJIpVLI5XL4+flZOxyyIbdulSc0SuXjY66uQHY20KCB1cIiIiIY9vltVzU3ROYik8nw008yjcQGABQK4OefZZDJZNYJjIiIDMbkhpyeTCbDmjVr8OOP2yGRaGY3EokSJ05sx5o1a5jgEBHZCSY35PRUu4tLpUWIj/9aneBIJErEx38NqbRI4zwiIrJtdrXODYlLJpPp/MB2d3d3ut2127Y9i6ioK8jP94e/f746sSEiIvvB5MZJqaZiVORyX+TnB8DfX6bxgT5hwgSnS3Ck0iImNUREdozJjZOqOGJz5kwM9u8fBEFwUU/FtG17tsp5RERE9oA1N05OLvdVJzYAIAgu2L9/EORyXytHRkREZBwmN04uPz9AndioCIIL8vP9rRQRERGRaZjcODl/f1m17c/+/vlWioiIiMg0TG6cXE3tz7bCnPs9ubu7i3oeERFZFwuKyWbbn1Wt6ikpXpg6VQqlUgIXFwFLl8oxbNhforWqBwQEYMKECWyLJyJyEExuCIDttT+rWtXlcl8kJ0+CIEgAAEqlBFOm+OH27S2QSotEa1Vn4kJE5Dg4LeWkbH0qRjWKUlPBM1vViYioMo7cOCl7mYpRFTxXTHBY8ExERLowuXFi1k5c9KEqeK68yKAtTaEREZFtYXJDNs9WC56JiMg2Mbmhatnappq2VvBMRES2i8kNVVF5U01tnHFTTSIisn3slqIqKo/YyOW+yMqKqLLfFDuViIjIFnHkhnTStWO4Odl6qzoREdkuJjeklbYdw6Oirpi9/sVeWtWJiMj2MLkhrXQtoGeJ4l4mLkREZAwmNw7OlK4nLqBHRET2iMmNAzO164kL6BERkT1icuPA9O1m0nUeF9AjIiJ7w+TGicjlvsjPD4C/v0xnklK5A0nbAnrsVCIiIlvE5MZJGNLSzU4lIiKyZ0xunIAxLd1MXIiIyF5xhWInoKulm4iIyNFw5MYJGNPSbWsbZxIREemLyY0TMLSlmxtnkj5u3QL++ANo0gRo0MDa0RARPWZUctOwYUP07NkTPXr0QM+ePREVFSV2XCSCit1Mulq6K3c9VbdxZnVdVtw4076ImYxs3gyMHQsolYCLC7BxIzB6tDhxEhGZyqjkZtGiRfjhhx+wZMkSvP766wgLC0OPHj3UyU6TJk3EjpOMIEbXk7U2ziRxiZWMyGQyZGc/wtixQVAqJQDKX/ONNwS0aXMPERG1OJpHRFZnVHIzfPhwDB8+HACQk5ODf//73/j666/x1ltvQalUQqFQiBokGc+UDxprbpxJ4rl163FiA6iSEaBfP8NGcFTTlVlZEVAqEzQeUygkWL36W0RGXud0JRFZndE1N8XFxTh+/DiOHTuGo0eP4uzZs2jRogV69uwpYnhkTdbeOJNMJ5PJ8NNPgFKpmWwoFMDPP8vg5aV/AqwaAaypQJ3TlURkbUYlN507d8bZs2fRrFkz9OzZE9OnT0f37t1Rt25dseMjK+LGmfZNNdIil/tCIplU5e/xxIntOH++yOCRFu45RkS2zqjk5tKlS/Dx8UHTpk3RtGlTNGvWjImNA+KHmH1TjaDU9PdozEgL9xwjIltmVHIjk8lw7tw5HDt2DIcOHcLMmTPh7u6OHj16oFevXnj99dfFjpOshB9ijsEcf4/a9hwjIrI2o1YolkgkaNWqFSZOnIi9e/fi22+/Rd++fbFnzx6MGzdO7BjJwqrbODMy8nqVDzJH3Tjz1i3g6NHyPx2Jtr9HIiJHY9TIzZkzZ3Ds2DEcO3YMx48fR1FREVq2bIm3334bPXr0EDtGsjBn3jiT67eIgwv8EZE1GZXcdOjQATExMejRowdef/11dO/eHVKpVOzYyIpsIXGx5BYQYqzfIvYHur0mCCkpXpg6lQkiEVmPUclNfn4+/Pz8xI6FSK3yFhDaVkkWY00VU9ZvUSVg5R/oUiiVEri4CFi6VI5hw/4yOgGzxREkfaYh5XJffPCBtNKaOlzgj4gsy6jkRpXYZGRk4OLFiwCA5s2bo23btuJFRk6t4oiNrlWSxVhTxdj1Wyq2WicnT4IgqEZ8JJgyxQ+3b2+BVGpYq7UtrwCsa7qyoKAAn3/+OfLzA9Rxq3CBPyKyNKOSm3v37mHIkCH497//jTp16gAo/8etV69eSE1NRb169cSMkZyYJVdJNrT1XfUhX9Nih/omYGKvAKxvwbchheE1vS8X+CMiW2BUcvP222/jwYMHuHDhApo1awYA+O2335CQkICJEydi165dogZJzsvSqyQb0zIt1mKHYq8AbI3CcK6NRES2wKjk5uDBgzhy5Ig6sQHKp6XWrl2LZ555RrTgiKy3SrKk5lP+R+wPdDFfzxpTQFwbiYiszajkRqlUws3NrcpxNzc3KFWVhEQiqOmDPi8vr9rnGTIiUVBQoP5eV31PQUEBQkJCqn0NsT/Q7T1B4AJ/RGRNRiU3vXv3xjvvvINdu3YhNDQUAHD79m1MnjwZffr0ETVAIl0f9GlpaSZ3Uj169AhAzfU9qvO0EfsDnQmCfuy1ZZ6IzMeo5GbNmjV47rnnEBERgfDwcADAzZs30aJFC3z22WeiBkgEaP+gF7OTirug2w9zteATkWMwKrkJDw/HmTNncOTIEVy6dAkA0KxZM8TFxYkaHDkvfddUEaOTSjXFWlN9T3VTsWR55mjBJyLHYlRyA5TvL9W3b1/07dtXzHiIAOju9MnLy0NaWppoIy2q1bVrqu+pvAq3OVqt7ZUl74XYLfhE5Hj0Tm5WrVql94tOnDjRoCDWrl2LZcuW4e7du2jdujVWr16NDh06aD0/OTkZ69evx40bNxAYGIh//OMfSEpKgqenp0HvS7bN1DVVjGFIIa/Yrdb2nCxZo+3cep10RGTr9E5uVq5cqdd5EonEoORm9+7dSExMxIYNG9CxY0ckJyejX79+uHz5MoKCgqqcn5KSgunTp2PLli3o3Lkzfv/9d4wcORISiQQrVqzQ+33J/plrTRVDCnnF/LC29w1LLR0X19QhIm30Tm6ysrLMEsCKFSvw+uuvY9SoUQCADRs24MCBA9iyZQumT59e5fwff/wRXbp0wbBhwwAAERERGDp0KH7++WezxEe2zd5bpiuz1cTFVjna3z8RicOl5lMeE3sNm9LSUmRkZGgUIru4uCAuLg4nT56s9jmdO3dGRkYGTp06BQC4du0avvnmGzz77LPVnl9SUoLCwkKNL3IsUmkRIiOvG/3BZs/TQWT63z8ROR6DCord3NyQk5Ojni6aMmUKZsyYAX9/f6PePC8vDwqFAsHBwRrHg4OD1V1YlQ0bNgx5eXno2rUrBEHAo0ePMG7cOPzzn/+s9vykpCTMmzfPqPjINomdjNj7dBAREWkyKLkRBEHj548//hhvvvmm0cmNMY4dO4ZFixZh3bp16NixI65cuYJ33nkH8+fPx6xZs6qcP2PGDCQmJqp/LiwsVK/NQ/bJHMkIExciIsdhdCs4UDXZMVRgYCBcXV2Rm5urcTw3Nxf169ev9jmzZs3CiBEjMGbMGABAy5Yt8fDhQ4wdOxYzZ86Ei4vmTJuHhwc8PDxMipNsD5MR58VpRCKqiUnJjanc3d0RGxuL9PR0DB48GEB5XU96ejomTJhQ7XOKi4urJDCurq4ATE+2yDSqVWO14dQOiYHTiERUE4OTm9mzZ8Pb2xtAeUHwwoULqyxuZkhLdmJiIhISEtCuXTt06NABycnJePjwobp76tVXX0VYWBiSkpIAAPHx8VixYgViYmLU01KzZs1CfHy8Oskhy1OtGlsTrhpLYuDvEBHpYlBy0717d1y+fFn9c+fOnXHt2jWNcyQSiUEBDBkyBPfv38fs2bNx9+5dtGnTBgcPHlQXGd+4cUNjpOb999+HRCLB+++/j9u3b6NevXqIj4/HwoULDXpfEpe+q8Fy1VgiIjI3ieBkczmFhYWQSqWQy+Xw8/OzdjgOIycnBxs3blT/rG2n7rFjxyIkJMQaIZpFxam4O3dckJVVC5GRjxAaWr5sAqdHiIjEYcjnt1lrbvz8/JCZmYnGjRub823IxujaqduRVJyK03XNnIojIrIsgxbxM5STDQoRtO/ULZf7Wjky8alGbGq6Zk7FERFZllmTG3I+unZqdlTOeM1ERLaMyQ2JSrVTc0WOvlOzM14zEZEtY3JDolLt1Kz6sHeGnZqd8ZqJiGyZWQuKDW0LJ/tVcTVYXTs1O+qqsdydmojIdpg1uWFBsfPgqrHlIzi2nNTcugX88QfQpAnQoIG1oyEiMh+zJjfffvstwsLCzPkWZEMcOXGxV6p1eFJSvDB1qhRKpQQuLgKWLpVj2LC/HD7hJCLnZFRyIwgC9u7di6NHj+LevXtQKjWLKdPS0gAAXbt2NT1CIhtl6xs4qtbhkct9kZw8CYJQPk2sVEowZYofbt/eAqm0yOLr8HAEiYjMzajkZtKkSfj444/Rq1cvBAcHs7aGnJKtT8Wp4tLVqi6VFllkHR6OIBGRJRmV3Hz66adIS0vDs88+K3Y8RHbFHj6QVa3qFRMcS7aq2+oIEhE5LqNawaVSKbdUILIT1m5V12cEqeJ5RESmMmrkZu7cuZg3bx62bNkCLy8vsWMiIpHZQqu6tUeQiMh5GJXcvPTSS9i1axeCgoIQEREBNzc3jcfPnDkjSnBEJB5rt6qrRpAqbzBqy+3zRGSfjEpuEhISkJGRgeHDh7OgmMhOyOW+yM8PgL+/zGoJhS2MIBGR4zMquTlw4AAOHTrEVm8iG1ZQUKD+/syZmCojJm3bnlWfFxISYrG4rD2CRESOz6iC4vDwcPj5+YkdCxGJSDWiKpf7qhMboLyId//+QZDLfTXOIyJyFEaN3CxfvhxTp07Fhg0bEBERIXJIRCQGqVQKoOZ1blTnkXhU6/pow3V9iMzLqORm+PDhKC4uRlRUFLy9vasUFOfns/uByFZYu0vJ1ldyFptqXR8VbbVOXNeHyHyMSm6Sk5NFDoOIzMXaXUq2vpKz2Cpep65aJ67rQ2Q+RndLEZH9sHaXkj0nLsZOMWmrdYqKusKCaiIzM3lX8L///rvKf/gsNiayPexSMpwpU0w11ToRkfkYldw8fPgQ06ZNw+effw6ZTFblcYVCYXJgRETWZsoUk7VrnYicmVGt4FOnTsX333+P9evXw8PDA5988gnmzZuH0NBQ7NixQ+wYicgIzlbIa041tdNXx9p7ehE5M6NGbvbv348dO3agZ8+eGDVqFLp164bo6Gg0atQIO3fuxCuvvCJ2nERkIGcr5DUnY6eYrF3rROSsjEpu8vPz1buC+/n5qVu/u3btijfffFO86IjIJExcxGHKFBNrnYgsz6jkpnHjxsjKykLDhg3RtGlTfP755+jQoQP279+POnXqiBwiEVkaF6HTZEg7PacDiazPqORm1KhR+O9//4sePXpg+vTpiI+Px5o1a1BWVoYVK1aIHSMRWRAXoauevlNMnA4ksj6jkpvJkyerv4+Li8OlS5eQkZGB6OhotGrVSrTgiMjyuAiddvpOMTFxIbIuUda5adSoERo1aiRGPERkI7gInW1NMXGqkEh/RiU3CoUCixYtwoYNG5Cbm4vff/8djRs3xqxZsxAREYHRo0eLHScRWRgXobOdKabKU4XaONtUIZE2Rq1zs3DhQmzbtg1Lly7V+D+WFi1a4JNPPhEtOCKyHlWHUEXOuAhdQEAAQkJCtH5ZIpmonFzJ5b7Iyoqoss6OM04VElXHqJGbHTt2YOPGjejTpw/GjRunPt66dWtcunRJtOCIyHqsveEmVU9XHRQRlTMqubl9+zaio6OrHFcqlSgrKzM5KCJnZWt1FVyEzrbUVAeVl5dX5TmsxSFnZFRy07x5c/znP/+pUkS8d+9exMTEiBIYkbOx1boKLkJnO2qqg0pLS6v2eazFIWdjVHIze/ZsJCQk4Pbt21AqlUhLS8Ply5exY8cOfP3112LHSOQU9K2XMHddhS11CJGmmlZK1rYmEWtxyNkYldw8//zz2L9/Pz744AP4+Phg9uzZaNu2Lfbv34++ffuKHSORU9L2QWVuttIhRFXpqoNiLQ7RY0avc9OtWzccPnxYzFiI6H+s/UHFxMV2VVcHxTWJiDQZ1QreuHFjyGSyKscLCgrUG2oSkXG0fVBVbvsl51F5ClAqLUJk5HV14qKrFofIGRk1cpOdnQ2FQlHleElJCW7fvm1yUETOjIvnOTZjOuK0TRXm5eUhLS3NpF3LiRyRQcnNV199pf7+0KFDkEql6p8VCgXS09MREREhWnBEzogfVI7LlE1JdU0Vck0iIk0GJTeDBw8GAEgkEiQkJGg85ubmhoiICCxfvly04IicET+oHJc5NyXlmkREjxmU3CiV5UuxR0ZG4vTp0wgMDDRLUETOqGJdha4PKrZg2z+xCoCrq8Wp7vn8nSFnY1Byc/LkSchkMmRlZamP7dixA3PmzMHDhw8xePBgrF69Gh4eHqIHSuTo2ILtPMSqq+LvDFH1DEpu5s2bh169emHQoEEAgHPnzmH06NEYOXIkmjVrhmXLliE0NBRz5841R6xEDo8fQs5BzLoq/s4QVWVQK/h///tf9OnTR/1zamoqOnbsiE2bNiExMRGrVq3C559/LnqQRESORFVXpdp1nXVVROIyaOTmzz//RHBwsPrnf//73xgwYID65/bt2+PmzZviRUdE5KBYAExkPgaN3AQHB6vrbUpLS3HmzBk8/fTT6seLiorg5uYmboRERA6q8mJ8RCQOg0Zunn32WUyfPh1LlizBl19+CW9vb3Tr1k39+K+//oqoqCjRgyQi8RmzmByZhpuSElmGQcnN/Pnz8cILL6BHjx6oXbs2tm/frvEf4ZYtW/DMM8+IHiQRiavyYnLaVLeYnC2w18TMlO4me71mImswKLkJDAzEDz/8ALlcjtq1a8PV1VXj8T179qB27dqiBkhE4tN3kThjFpMzN3tPzIyJyd6vmcjSjNo4UyqVVklsAMDf39+o4dS1a9ciIiICnp6e6NixI06dOqXz/IKCAowfPx4hISHw8PDAE088gW+++cbg9yWicnK5L7KyIuxic87KCZe22G0xMTOWM14zkSmM2jhTTLt370ZiYiI2bNiAjh07Ijk5Gf369cPly5cRFBRU5fzS0lL07dsXQUFB2Lt3L8LCwnD9+nXUqVPH8sETOQBd2wDYOnuO3VjOeM1EhjJq5EZMK1aswOuvv45Ro0ahefPm2LBhA7y9vbFly5Zqz9+yZQvy8/Px5ZdfokuXLoiIiECPHj3QunVrC0dOZP+0bQNgDyM49hy7sZzxmomMYdXkprS0FBkZGYiLi1Mfc3FxQVxcHE6ePFntc7766it06tQJ48ePR3BwMFq0aIFFixZBoVBUe35JSQkKCws1voionK5tAGydPcduLGe8ZiJjWDW5ycvLg0Kh0FgYEChfT+fu3bvVPufatWvYu3cvFAoFvvnmG8yaNQvLly/HggULqj0/KSkJUqlU/RUeHi76dRDZK9U2ABUZuw2Apdlz7MZyxmsmMobVp6UMpVQqERQUhI0bNyI2NhZDhgzBzJkzsWHDhmrPnzFjBuRyufqLKygTPWbP2wDYc+zGcsZrJjKGVQuKAwMD4erqitzcXI3jubm5qF+/frXPCQkJgZubm0a3VrNmzXD37l2UlpZW6dby8PDgLuVElVT870TXNgC2vpicM25h4IzXTGQoqyY37u7uiI2NRXp6OgYPHgygfGQmPT0dEyZMqPY5Xbp0QUpKCpRKJVxcygeefv/9d4SEhNj8P8REtsKUxeSsrfJ/51JpUbUf8I7074Glr5kLBpK9kwiCIFgzgN27dyMhIQEff/wxOnTogOTkZHz++ee4dOkSgoOD8eqrryIsLAxJSUkAgJs3b+Kpp55CQkIC3n77bfzxxx947bXXMHHiRMycObPG9yssLIRUKoVcLoefn5+5L4+IzMAZP3wtdc1cMJBslSGf31Zf52bIkCG4f/8+Zs+ejbt376JNmzY4ePCgusj4xo0b6hEaAAgPD8ehQ4cwefJktGrVCmFhYXjnnXcwbdo0a10CEVmYM36oGruysaEJkT2vXk2kYvWRG0vjyA0ROQNjR2BycnKwcePGGp83duxYhISEmBQjkSEM+fy2u24pIiKqmVgjMPa0NQeRitWnpYiIyPzkcl/k5wfA31+md4eVrq0e8vLyqpzviLVOZJ+Y3BCR03DGQmTAuP2otG31EBV1BVJpEdLS0qp9HguNyRYwuSEip+CsXUA1JSna6NrqQdfzWGhMtoA1N0TkFJy1C8jY/ahq2uqBtThkyzhyQ0RkI8wxbaZKUiomOLr2o1ItBKja6qHydJZUWmTUNBeRJTG5ISKnZEyBrTmZa9pMV5JSncqrV8+efR/Z2bXg53cPP/541uhpLiJLYnJDRE7HFkcexJ42M2X/sIrJU0gIEBsL5OSU4scfja/FIbIkJjdE5FTsZeTB1JElc+0fZug0F5E1MLkhIqdiDyMPYo0smaPry9BpLiJrYHJDRE7F1kcebHVkyZRpLiJLY3JDRE5Bny6giudZi62OLJlrmovIHJjcEJFT0NYFFBHxCKGh7QG0t4kPZ1seWbL2vSHSF5MbInIa1XUB2RrWtBCZjskNEZEN0LemRS6Xa30+R1aIykkEQRCsHYQlFRYWQiqVQi6Xw8/Pz9rhEJGNs+Rmm9req6CgAJ9//nmNz3e0fbGIKjLk85sjN0REWlh6s01TX8PR9sUiMhY3ziQi0sJZN9sksnccuSEisjPm3hfLklNxRObA5IaISE+2sNmmuffFsvRUHJE5MLkhItKDLWy2aYnVizkVR46ANTdERDXQllTI5b4WjUPX6sVE9BiTGyKiGthKUqFavbgic69eLJf7IisrwuKJHJEpOC1FRFQDa2+JYK19sWxhKo7IGExuiIi0sJXNNq2xL5at7k5OpA8mN0REWtjSZpuW3hfLVncnB9iqTjVjckNEpIM9bLZpDmJOxYmZjLBVnfTB5IaIiNTEnooTOxlhqzrpg8kNERGpiT0Vx2SErIHJDRERabCnqThbWDWabA+TGyIishgxkxG2qpM2TG6IiMgixExG2KpOujC5ISIisxM7GampVT0vL0/jsYKCAjx69Ahubm6QSqVVXo/t446FyQ0REZmd2Ovm1NSqnpaWZvBrsn3ccXBvKSIiMjux9sWq3Kques3KrerGYMeW4+DIDRERmY3Y6+boalV3d49EWhoLionJDRERmZE5trDQ1qqek6M5MqStM4vt446PyQ0REZmVNdbN0daZxfZx58CaGyIicijaOrNu3Qqp9rhc7mvNcMkMOHJDRERmZeldvLV1Zt282dBmdzoncTG5ISIis7HGLt7a2sTDw2+IttM52TZOSxERkdlYcuPMmtrEGzTI0dk+rm/HFtk+jtwQEZFD0NWZ5e3dBI8eRWLIEDdROrbItjG5ISIiizF3G7b2zqxgjfNseadzMh2TGyIisgi2YZOlsOaGiIjMTlt7NtuwyRw4ckNERGYn9saZtsDSLe6kPyY3RERkdjXt4m1vrNHiTvrjtBQREZmNvrt421sbtiVb3MlwHLkhIiKzCQgIwPDhw1FcXIwXXgAmTLiMmzc9EB5egvr1IwFEwtvb2+5HN7gZp21hckNERGYjk8nw2WefVTl+86bmz/Y8fcMuMNtjE9NSa9euRUREBDw9PdGxY0ecOnVKr+elpqZCIpFg8ODB5g2QiIiM4ujTN+wCs01WT252796NxMREzJkzB2fOnEHr1q3Rr18/3Lt3T+fzsrOz8d5776Fbt24WipSIiEiTri4wsh6rJzcrVqzA66+/jlGjRqF58+bYsGEDvL29sWXLFq3PUSgUeOWVVzBv3jw0btzYgtESERE9puoCq8ieu8AchVWTm9LSUmRkZCAuLk59zMXFBXFxcTh58qTW533wwQcICgrC6NGja3yPkpISFBYWanwREZF1yOW+yMqKcJhpm5q6wMg6rFpQnJeXB4VCgeBgzT0/goODcenSpWqfc/z4cWzevBmZmZl6vUdSUhLmzZtnaqhERGQiSxTeWmphvYqt623bnkVU1BXk5/vD3z9fI7GxtxZ3R2FX3VJFRUUYMWIENm3ahMDAQL2eM2PGDCQmJqp/LiwsRHh4uLlCJCKiamgrvI2KuiLaKIclF9arvAN5dbhCsfVYNbkJDAyEq6srcnNzNY7n5uaifv36Vc6/evUqsrOzER8frz6mVJYPBdaqVQuXL19GVFSUxnM8PDzg4eFhhuiJiEhflth+wdKdWUxcbJdVa27c3d0RGxuL9PR09TGlUon09HR06tSpyvlNmzbFuXPnkJmZqf567rnn0KtXL2RmZnJEhojIxqimZWoqvOX0DYnJ6tNSiYmJSEhIQLt27dChQwckJyfj4cOHGDVqFADg1VdfRVhYGJKSkuDp6YkWLVpoPL9OnToAUOU4ERFZX8Xpm7CwQkybJoVCIYGrq4AlSwoxbNhQs03fcNVg52X15GbIkCG4f/8+Zs+ejbt376JNmzY4ePCgusj4xo0bcHGxesc6EREZSZW4vPsuMGQIcOUKEB0tQYMGdQDUMfj1tBUN5+Xlqb/nqsHOTSIIgmDtICypsLAQUqkUcrkcfn5+1g6HiIgMoE/RsFzui+TkSVV2IJ80KRlSaRHGjh2LkJAQc4dKIjPk85tDIkREZDf0KQbmqsFk9WkpIiIiMamKlyuP3GhbNdhSa+OQ5TC5ISIiu1Vd0bBq1eDKNTeqxyt2ZllybRyyHCY3RERkl3QVDS9YEInZs+8jO7sWIiIeITS0PYD2VUZhTFkbhyM+tovJDRER2Z2aVjwODAxESEgwYmPN8/4c8bFtLCgmIiK7Y66iYX039rT0ashkGI7cEBGR3TG0aFgfpqyNwwUDbQuTGyIishuqYmBDiob1YcrGnoYkRazTsQwmN0REZDcq78atT9GwPozd2NOQpIh1OpbD5IaIiOxKxQ/+kBCIUjRs7DRXTUlRxS0hKn4PaJ/KYp2O6ZjcEBGR0zJ1mqumpCgtLa3a53HvK/NickNERE7L1GmumpKi6phS30P6YXJDREROzZhproojOW3bnkVU1BXk5/vD3z9fI0GpburJ2PoeQzlz8TKTGyIiIgNVHvFRycvLU09FaZt6Mkcbe2XOXrzMRfyIiIhEpm3qSS73VU9lSSRKANBrKstQlZMubYsTOmrxMkduiIiIDFTTyEhNU0+6prLE5ozFyxy5ISIiMlBNIx6qqaeKKk89SaVFiIy8XiWxMXQBQl10jSA5Mo7cEBERmahy4XBNXVS9evVCkyZNqryO2EW+YhYvVyxQvnPHBVlZtRAZ+QihoeVJnC0VKDO5ISIiMpBcLld/r2vaRxCg8adKUFAQQkJCzB6nWMXLFafhdF2vrRQoc1qKiIjIQGVlZQC0T/vcuhWC/fsH4fHHrOZ0UFlZGXJycqp8yWQyUeMUq3hZNWJT0zSXrRQoc+SGiIjISNqmfW7caKhzOkjbysWA+KMfYhYvW2qNHlNx5IaIiMhIbm4lACrNOUFAQEDNBcXmbM8uLi6u5qhEz/O006dQ2hZw5IaIiMhIZWUeqJo0SODuXqazoFis9mxtqxBXTFp0vZe3t7dB72fMdhPWwOSGiIjIQLVqlX986irYjYy8Xu10kFh7S1Vea6e6rR7MsY+VJdfoMRaTGyIiIgPVqVMHQM0jGaq28IrEqlupOGKjbXSmpvfKy8ur9rVrauuu7rpsCZMbIiIiE+gayXjhhRcQGBgI4PG+U2LvLaVrdKam90pLS6t2xAewnbZuYzC5ISIiMlDlVYS1jWSEhoZWSRDErlvRNToTGXnd6NqfiiND+q6aLObqyqZgckNERGQgbbuCV6RrakfMupWaRme0vZch9TimXq+lMbkhIiIygqEf5PqO9hg6+qHPSJAYtT+2krjog8kNERGRBZhz9MOYkSCxa39sCZMbIiIiCzH/6EfVhfoqFjUDjwub7WXNGmMwuSEiIrJDhizUp22TTntYs8YY3H6BiIjIDqlWF65pM8uaViGWSosQGXldtMTm1i3g6NHyP62FyQ0REZEd01UYXB1ztHXLZDLk5ORg+fICNGokoHdvoFEjAcuXF5hlt/OacFqKiIjIjhlaGCx2YbNqGwi53BfJyZMgCOV1P0qlBFOm+OH27S2QSossuiggkxsiIiI7ZkxhsJhJhipJqqm1XIzdzvXF5IaIiMjO2UJhsC21lrPmhoiIyAGIXRhszPvHx38NiUQJAFZtLefIDRERERnk1i3gjz+AJk0AV9fHx21hBAlgckNERGSXLL2ZpUwmQ2lpKVJSvDB1qhRKpQQuLgJmz1ZonKdtWwlLYnJDRERkhyy5maWujqh580IxaZKv1ROaipjcEBER2SlLtVbr2xFlK1hQTERERHpxcysBIFQ6KsDNreY2b7Gmx/TBkRsiIiLSqaCgAABQVuaBqptzSlBWVp649O3bF5GRkVWeL9b0mL6Y3BAREZFOjx49AlDzWja+vr5aN+m0JE5LERERkV70WcvGFjbO5MgNERER6U3XWjZpaXXxwQeAUgm4uAAbNwKjR1s+RiY3REREZJDq1rKRy33x0UdhUJYP6kCpBN54Q0CbNvcQEVHLojU3nJYiIiIindzc3Go8Jz8/AEqlZrGxQiHB6tXfYs2aNZDJZOYKrwomN0RERKSTVCqt8RxVsXFFFYuNLbkruE0kN2vXrkVERAQ8PT3RsWNHnDp1Suu5mzZtQrdu3VC3bl3UrVsXcXFxOs8nIiIi8+PGmRXs3r0biYmJ2LBhAzp27Ijk5GT069cPly9fRlBQUJXzjx07hqFDh6Jz587w9PTEkiVL8Mwzz+DChQsICwuzwhUQERE5Nn0X4LOVjTMlgiBUXmrQojp27Ij27dtjzZo1AAClUonw8HC8/fbbmD59eo3PVygUqFu3LtasWYNXX321xvMLCwshlUohl8vh5+dncvxERETOQLVxZmV5eXlIS0ur8fljx441aQ0cQz6/rTpyU1paioyMDMyYMUN9zMXFBXFxcTh58qRer1FcXIyysjL4+/ubK0wiIiKnZ8luJ1NZNbnJy8uDQqFAcHCwxvHg4GBcunRJr9eYNm0aQkNDERcXV+3jJSUlKCkpUf9cWFhofMBERERk82yioNhYixcvRmpqKr744gt4enpWe05SUhKkUqn6Kzw83MJREhERkSVZNbkJDAyEq6srcnNzNY7n5uaifv36Op/74YcfYvHixfjuu+/QqlUrrefNmDEDcrlc/XXz5k1RYiciIiL9i42dZldwd3d3xMbGIj09HYMHDwZQXlCcnp6OCRMmaH3e0qVLsXDhQhw6dAjt2rXT+R4eHh7w8PAQM2wiIiL6n4CAAEyYMEHnOjZOtyt4YmIiEhIS0K5dO3To0AHJycl4+PAhRo0aBQB49dVXERYWhqSkJADAkiVLMHv2bKSkpCAiIgJ3794FANSuXRu1a9e22nUQERE5K1srNrZ6cjNkyBDcv38fs2fPxt27d9GmTRscPHhQXWR848YNuLg8nj1bv349SktL8Y9//EPjdebMmYO5c+daMnQiIiKyQVZf58bSuM4NERGR/THk89uuu6WIiIiIKmNyQ0RERA6FyQ0RERE5FCY3RERE5FCY3BAREZFDYXJDREREDoXJDRERETkUqy/iZ2mqZX24OzgREZH9UH1u67M8n9MlN0VFRQDA3cGJiIjsUFFREaRSqc5znG6FYqVSiTt37sDX1xcSicTg5xcWFiI8PBw3b950+hWOeS/K8T6U4314jPeiHO9DOd6Hx0y5F4IgoKioCKGhoRrbMlXH6UZuXFxc0KBBA5Nfx8/Pz+l/SVV4L8rxPpTjfXiM96Ic70M53ofHjL0XNY3YqLCgmIiIiBwKkxsiIiJyKExuDOTh4YE5c+bAw8PD2qFYHe9FOd6HcrwPj/FelON9KMf78Jil7oXTFRQTERGRY+PIDRERETkUJjdERETkUJjcEBERkUNhckNEREQOhclNNdauXYuIiAh4enqiY8eOOHXqlNZzL1y4gBdffBERERGQSCRITk62XKAWYMi92LRpE7p164a6deuibt26iIuL03m+PTHkPqSlpaFdu3aoU6cOfHx80KZNG3z66acWjNZ8DLkPFaWmpkIikWDw4MHmDdCCDLkX27Ztg0Qi0fjy9PS0YLTmY+jvREFBAcaPH4+QkBB4eHjgiSeewDfffGOhaM3HkPvQs2fPKr8PEokEAwcOtGDE5mHo70NycjKefPJJeHl5ITw8HJMnT8bff/9teiACaUhNTRXc3d2FLVu2CBcuXBBef/11oU6dOkJubm615586dUp47733hF27dgn169cXVq5cadmAzcjQezFs2DBh7dq1wtmzZ4WLFy8KI0eOFKRSqXDr1i0LRy4uQ+/D0aNHhbS0NOG3334Trly5IiQnJwuurq7CwYMHLRy5uAy9DypZWVlCWFiY0K1bN+H555+3TLBmZui92Lp1q+Dn5yfk5OSov+7evWvhqMVn6H0oKSkR2rVrJzz77LPC8ePHhaysLOHYsWNCZmamhSMXl6H3QSaTafwunD9/XnB1dRW2bt1q2cBFZuh92Llzp+Dh4SHs3LlTyMrKEg4dOiSEhIQIkydPNjkWJjeVdOjQQRg/frz6Z4VCIYSGhgpJSUk1PrdRo0YOldyYci8EQRAePXok+Pr6Ctu3bzdXiBZh6n0QBEGIiYkR3n//fXOEZzHG3IdHjx4JnTt3Fj755BMhISHBYZIbQ+/F1q1bBalUaqHoLMfQ+7B+/XqhcePGQmlpqaVCtAhT/41YuXKl4OvrKzx48MBcIVqEofdh/PjxQu/evTWOJSYmCl26dDE5Fk5LVVBaWoqMjAzExcWpj7m4uCAuLg4nT560YmSWJ8a9KC4uRllZGfz9/c0VptmZeh8EQUB6ejouX76M7t27mzNUszL2PnzwwQcICgrC6NGjLRGmRRh7Lx48eIBGjRohPDwczz//PC5cuGCJcM3GmPvw1VdfoVOnThg/fjyCg4PRokULLFq0CAqFwlJhi06Mfys3b96Ml19+GT4+PuYK0+yMuQ+dO3dGRkaGeurq2rVr+Oabb/Dss8+aHI/TbZypS15eHhQKBYKDgzWOBwcH49KlS1aKyjrEuBfTpk1DaGioxi+7vTH2PsjlcoSFhaGkpASurq5Yt24d+vbta+5wzcaY+3D8+HFs3rwZmZmZFojQcoy5F08++SS2bNmCVq1aQS6X48MPP0Tnzp1x4cIFUTbytQZj7sO1a9fw/fff45VXXsE333yDK1eu4K233kJZWRnmzJljibBFZ+q/ladOncL58+exefNmc4VoEcbch2HDhiEvLw9du3aFIAh49OgRxo0bh3/+858mx8Pkhsxi8eLFSE1NxbFjxxymcNIQvr6+yMzMxIMHD5Ceno7ExEQ0btwYPXv2tHZoFlFUVIQRI0Zg06ZNCAwMtHY4VtepUyd06tRJ/XPnzp3RrFkzfPzxx5g/f74VI7MspVKJoKAgbNy4Ea6uroiNjcXt27exbNkyu01uTLV582a0bNkSHTp0sHYoFnfs2DEsWrQI69atQ8eOHXHlyhW88847mD9/PmbNmmXSazO5qSAwMBCurq7Izc3VOJ6bm4v69etbKSrrMOVefPjhh1i8eDGOHDmCVq1amTNMszP2Pri4uCA6OhoA0KZNG1y8eBFJSUl2m9wYeh+uXr2K7OxsxMfHq48plUoAQK1atXD58mVERUWZN2gzEePfCTc3N8TExODKlSvmCNEijLkPISEhcHNzg6urq/pYs2bNcPfuXZSWlsLd3d2sMZuDKb8PDx8+RGpqKj744ANzhmgRxtyHWbNmYcSIERgzZgwAoGXLlnj48CHGjh2LmTNnwsXF+MoZ1txU4O7ujtjYWKSnp6uPKZVKpKena/xflzMw9l4sXboU8+fPx8GDB9GuXTtLhGpWYv1OKJVKlJSUmCNEizD0PjRt2hTnzp1DZmam+uu5555Dr169kJmZifDwcEuGLyoxficUCgXOnTuHkJAQc4Vpdsbchy5duuDKlSvqRBcAfv/9d4SEhNhlYgOY9vuwZ88elJSUYPjw4eYO0+yMuQ/FxcVVEhhV4iuYuu2lySXJDiY1NVXw8PAQtm3bJvz222/C2LFjhTp16qjbNkeMGCFMnz5dfX5JSYlw9uxZ4ezZs0JISIjw3nvvCWfPnhX++OMPa12CaAy9F4sXLxbc3d2FvXv3arQ5FhUVWesSRGHofVi0aJHw3XffCVevXhV+++034cMPPxRq1aolbNq0yVqXIApD70NljtQtZei9mDdvnnDo0CHh6tWrQkZGhvDyyy8Lnp6ewoULF6x1CaIw9D7cuHFD8PX1FSZMmCBcvnxZ+Prrr4WgoCBhwYIF1roEURj730bXrl2FIUOGWDpcszH0PsyZM0fw9fUVdu3aJVy7dk347rvvhKioKOGll14yORYmN9VYvXq10LBhQ8Hd3V3o0KGD8NNPP6kf69Gjh5CQkKD+OSsrSwBQ5atHjx6WD9wMDLkXjRo1qvZezJkzx/KBi8yQ+zBz5kwhOjpa8PT0FOrWrSt06tRJSE1NtULU4jPkPlTmSMmNIBh2LyZNmqQ+Nzg4WHj22WeFM2fOWCFq8Rn6O/Hjjz8KHTt2FDw8PITGjRsLCxcuFB49emThqMVn6H24dOmSAED47rvvLBypeRlyH8rKyoS5c+cKUVFRgqenpxAeHi689dZbwp9//mlyHBJBMHXsh4iIiMh2sOaGiIiIHAqTGyIiInIoTG6IiIjIoTC5ISIiIofC5IaIiIgcCpMbIiIicihMboiIiMihMLkhIjKjkSNHYvDgwdYOg8ipMLkhclIjR46ERCJRfwUEBKB///749ddfrR2aKCpem+qra9euZnu/7OxsSCQSZGZmahz/6KOPsG3bNrO9LxFVxeSGyIn1798fOTk5yMnJQXp6OmrVqoVBgwZZOyzRbN26VX19OTk5+Oqrr6o9r6yszGwxSKVS1KlTx2yvT0RVMbkhcmIeHh6oX78+6tevjzZt2mD69Om4efMm7t+/j969e2PChAka59+/fx/u7u7qnX8jIiIwf/58DB06FD4+PggLC8PatWs1nrNixQq0bNkSPj4+CA8Px1tvvYUHDx6oH79+/Tri4+NRt25d+Pj44KmnnsI333wDAPjzzz/xyiuvoF69evDy8kKTJk2wdetWva+vTp066uurX78+/P391SMsu3fvRo8ePeDp6YmdO3dCJpNh6NChCAsLg7e3N1q2bIldu3ZpvJ5SqcTSpUsRHR0NDw8PNGzYEAsXLgQAREZGAgBiYmIgkUjQs2dPAFWnpUpKSjBx4kQEBQXB09MTXbt2xenTp9WPHzt2DBKJBOnp6WjXrh28vb3RuXNnXL58We/rJnJ2TG6ICADw4MEDfPbZZ4iOjkZAQADGjBmDlJQUlJSUqM/57LPPEBYWht69e6uPLVu2DK1bt8bZs2cxffp0vPPOOzh8+LD6cRcXF6xatQoXLlzA9u3b8f3332Pq1Knqx8ePH4+SkhL88MMPOHfuHJYsWYLatWsDAGbNmoXffvsN3377LS5evIj169cjMDBQlOtVxXrx4kX069cPf//9N2JjY3HgwAGcP38eY8eOxYgRI3Dq1Cn1c2bMmIHFixer40pJSUFwcDAAqM87cuQIcnJykJaWVu37Tp06Ffv27cP27dtx5swZREdHo1+/fsjPz9c4b+bMmVi+fDl++eUX1KpVC6+99poo103kFEzeepOI7FJCQoLg6uoq+Pj4CD4+PgIAISQkRMjIyBAEQRD++usvoW7dusLu3bvVz2nVqpUwd+5c9c+NGjUS+vfvr/G6Q4YMEQYMGKD1fffs2SMEBASof27ZsqXGa1YUHx8vjBo1yqjrAyB4enqqr8/Hx0f44osvhKysLAGAkJycXONrDBw4UHj33XcFQRCEwsJCwcPDQ9i0aVO156pe9+zZsxrHK+6G/uDBA8HNzU3YuXOn+vHS0lIhNDRUWLp0qSAIgnD06FEBgHDkyBH1OQcOHBAACH/99Zcht4DIaXHkhsiJ9erVC5mZmcjMzMSpU6fQr18/DBgwANevX4enpydGjBiBLVu2AADOnDmD8+fPY+TIkRqv0alTpyo/X7x4Uf3zkSNH0KdPH4SFhcHX1xcjRoyATCZDcXExAGDixIlYsGABunTpgjlz5mgUNL/55ptITU1FmzZtMHXqVPz4448GXd/KlSvV15eZmYm+ffuqH2vXrp3GuQqFAvPnz0fLli3h7++P2rVr49ChQ7hx4wYA4OLFiygpKUGfPn0MiqGiq1evoqysDF26dFEfc3NzQ4cOHTTuGQC0atVK/X1ISAgA4N69e0a/N5EzYXJD5MR8fHwQHR2N6OhotG/fHp988gkePnyITZs2AQDGjBmDw4cP49atW9i6dSt69+6NRo0a6f362dnZGDRoEFq1aoV9+/YhIyNDXZNTWlqqfo9r165hxIgROHfuHNq1a4fVq1cDgDrRmjx5Mu7cuYM+ffrgvffe0/v969evr76+6Oho+Pj4aFx7RcuWLcNHH32EadOm4ejRo8jMzES/fv3UcXp5een9vmJwc3NTfy+RSACU1/wQUc2Y3BCRmkQigYuLC/766y8AQMuWLdGuXTts2rQJKSkp1dZ9/PTTT1V+btasGQAgIyMDSqUSy5cvx9NPP40nnngCd+7cqfIa4eHhGDduHNLS0vDuu++qkysAqFevHhISEvDZZ58hOTkZGzduFPOS1U6cOIHnn38ew4cPR+vWrdG4cWP8/vvv6sebNGkCLy8vdTF1Ze7u7gDKR4C0iYqKgru7O06cOKE+VlZWhtOnT6N58+YiXQkR1bJ2AERkPSUlJbh79y6A8s6kNWvW4MGDB4iPj1efM2bMGEyYMAE+Pj74v//7vyqvceLECSxduhSDBw/G4cOHsWfPHhw4cAAAEB0djbKyMqxevRrx8fE4ceIENmzYoPH8SZMmYcCAAXjiiSfw559/4ujRo+rkaPbs2YiNjcVTTz2FkpISfP311+rHxNakSRPs3bsXP/74I+rWrYsVK1YgNzdXnXR4enpi2rRpmDp1Ktzd3dGlSxfcv38fFy5cwOjRoxEUFAQvLy8cPHgQDRo0gKenJ6RSqcZ7+Pj44M0338SUKVPg7++Phg0bYunSpSguLsbo0aPNcl1EzogjN0RO7ODBgwgJCUFISAg6duyI06dPY8+ePeo2ZgAYOnQoatWqhaFDh8LT07PKa7z77rv45ZdfEBMTgwULFmDFihXo168fAKB169ZYsWIFlixZghYtWmDnzp1ISkrSeL5CocD48ePRrFkz9O/fH0888QTWrVsHoHw0ZMaMGWjVqhW6d+8OV1dXpKammuVevP/++2jbti369euHnj17on79+lVWFp41axbeffddzJ49G82aNcOQIUPUdTC1atXCqlWr8PHHHyM0NBTPP/98te+zePFivPjiixgxYgTatm2LK1eu4NChQ6hbt65ZrovIGUkEQRCsHQQR2a7s7GxERUXh9OnTaNu2rcZjERERmDRpEiZNmmSd4IiIqsFpKSKqVllZGWQyGd5//308/fTTVRIbIiJbxWkpIqrWiRMnEBISgtOnT1epk7G2RYsWoXbt2tV+DRgwwNrhEZGVcVqKiOxOfn5+lRV9Vby8vBAWFmbhiIjIljC5ISIiIofCaSkiIiJyKExuiIiIyKEwuSEiIiKHwuSGiIiIHAqTGyIiInIoTG6IiIjIoTC5ISIiIofC5IaIiIgcyv8HRgINHAlxbYEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWApJREFUeJzt3XlYlFX/P/D3gGwijKGCoCiI5poLpKalqGFoivmrHjU3tAzt0dQoTTP3ck/JLbPHtSdcUrNMc8lHK820cK3chVxC1CEH1Nxmzu8PvjMxrDPDLPfyfl0Xl3LPmXvOme3+cM75nKMRQggQERERKYSHuytARERE5EgMboiIiEhRGNwQERGRojC4ISIiIkVhcENERESKwuCGiIiIFIXBDRERESkKgxsiIiJSFAY3REREpCgMboiI3GTlypXQaDTIyMhwd1WIFIXBDZGC/fzzzxg2bBgaNmwIf39/1KhRAz169MCZM2cKlW3Xrh00Gg00Gg08PDwQGBiIunXrol+/fti1a5dNj7tlyxbExsYiODgY5cuXR61atdCjRw9s377dUU0rZNq0adi8eXOh4z/++CMmTZqEmzdvOu2xC5o0aZL5udRoNChfvjwaNGiAd999Fzk5OQ55jNTUVKSkpDjkXERKw+CGSMFmzpyJjRs34umnn8aHH36IpKQkfP/994iOjsavv/5aqHz16tXx6aefYvXq1Zg9eza6deuGH3/8Ec888wx69uyJBw8elPqYc+bMQbdu3aDRaDB27FjMmzcPL7zwAs6ePYu1a9c6o5kASg5uJk+e7NLgxuSjjz7Cp59+irlz56JevXp4//330alTJzhiSz8GN0TFK+fuChCR8yQnJyM1NRXe3t7mYz179sRjjz2GGTNm4L///a9Fea1Wi759+1ocmzFjBoYPH47FixcjIiICM2fOLPbxHj58iKlTp6Jjx47YuXNnoduvXbtWxhZJx507d1C+fPkSy7z44ouoXLkyAGDIkCF44YUXsGnTJvz0009o1aqVK6pJpErsuSFSsNatW1sENgBQp04dNGzYECdPnrTqHJ6enpg/fz4aNGiAhQsXQq/XF1v2xo0byMnJwZNPPlnk7cHBwRa/3717F5MmTcKjjz4KX19fhIaG4vnnn8f58+fNZebMmYPWrVujUqVK8PPzQ0xMDDZs2GBxHo1Gg9u3b2PVqlXmoaABAwZg0qRJGDVqFAAgMjLSfFv+OS7//e9/ERMTAz8/PwQFBaFXr164dOmSxfnbtWuHRo0aIS0tDW3btkX58uXxzjvvWPX85dehQwcAQHp6eonlFi9ejIYNG8LHxwdhYWEYOnSoRc9Tu3btsHXrVvzxxx/mNkVERNhcHyKlYs8NkcoIIZCVlYWGDRtafR9PT0+89NJLGD9+PPbt24cuXboUWS44OBh+fn7YsmULXn/9dQQFBRV7ToPBgK5du2L37t3o1asXRowYgdzcXOzatQu//voroqKiAAAffvghunXrhj59+uD+/ftYu3Yt/vWvf+Hrr7821+PTTz/FoEGD0KJFCyQlJQEAoqKi4O/vjzNnzmDNmjWYN2+euRelSpUqAID3338f48ePR48ePTBo0CBcv34dCxYsQNu2bXHkyBFUrFjRXF+dTofOnTujV69e6Nu3L0JCQqx+/kxMQVulSpWKLTNp0iRMnjwZcXFxeO2113D69Gl89NFH+Pnnn7F//354eXlh3Lhx0Ov1uHz5MubNmwcAqFChgs31IVIsQUSq8umnnwoAYtmyZRbHY2NjRcOGDYu93xdffCEAiA8//LDE80+YMEEAEP7+/qJz587i/fffF2lpaYXKLV++XAAQc+fOLXSb0Wg0///OnTsWt92/f180atRIdOjQweK4v7+/SExMLHSu2bNnCwAiPT3d4nhGRobw9PQU77//vsXxEydOiHLlylkcj42NFQDEkiVLim13fhMnThQAxOnTp8X169dFenq6+Pjjj4WPj48ICQkRt2/fFkIIsWLFCou6Xbt2TXh7e4tnnnlGGAwG8/kWLlwoAIjly5ebj3Xp0kXUrFnTqvoQqQ2HpYhU5NSpUxg6dChatWqFxMREm+5r6hnIzc0tsdzkyZORmpqKZs2aYceOHRg3bhxiYmIQHR1tMRS2ceNGVK5cGa+//nqhc2g0GvP//fz8zP//66+/oNfr0aZNGxw+fNim+he0adMmGI1G9OjRAzdu3DD/VK1aFXXq1MGePXssyvv4+GDgwIE2PUbdunVRpUoVREZGYvDgwahduza2bt1a7Fydb7/9Fvfv38fIkSPh4fHP1/Orr76KwMBAbN261faGEqkQh6WIVOLq1avo0qULtFotNmzYAE9PT5vuf+vWLQBAQEBAqWVfeuklvPTSS8jJycHBgwexcuVKpKamIiEhAb/++it8fX1x/vx51K1bF+XKlfw19PXXX+O9997D0aNHce/ePfPx/AGQPc6ePQshBOrUqVPk7V5eXha/V6tWrdD8pdJs3LgRgYGB8PLyQvXq1c1DbcX5448/AOQFRfl5e3ujVq1a5tuJqGQMbohUQK/Xo3Pnzrh58yZ++OEHhIWF2XwOU+p47dq1rb5PYGAgOnbsiI4dO8LLywurVq3CwYMHERsba9X9f/jhB3Tr1g1t27bF4sWLERoaCi8vL6xYsQKpqak2tyE/o9EIjUaDb775pshAr+Aclvw9SNZq27ateZ4PEbkOgxsihbt79y4SEhJw5swZfPvtt2jQoIHN5zAYDEhNTUX58uXx1FNP2VWPxx9/HKtWrUJmZiaAvAm/Bw8exIMHDwr1kphs3LgRvr6+2LFjB3x8fMzHV6xYUahscT05xR2PioqCEAKRkZF49NFHbW2OU9SsWRMAcPr0adSqVct8/P79+0hPT0dcXJz5WFl7roiUjHNuiBTMYDCgZ8+eOHDgAD7//HO71lYxGAwYPnw4Tp48ieHDhyMwMLDYsnfu3MGBAweKvO2bb74B8M+QywsvvIAbN25g4cKFhcqK/1vkztPTExqNBgaDwXxbRkZGkYv1+fv7F7lQn7+/PwAUuu3555+Hp6cnJk+eXGhRPSEEdDpd0Y10ori4OHh7e2P+/PkWdVq2bBn0er1Flpq/v3+JaflEasaeGyIFe/PNN/HVV18hISEB2dnZhRbtK7hgn16vN5e5c+cOzp07h02bNuH8+fPo1asXpk6dWuLj3blzB61bt8YTTzyBTp06ITw8HDdv3sTmzZvxww8/oHv37mjWrBkAoH///li9ejWSk5Nx6NAhtGnTBrdv38a3336Lf//733juuefQpUsXzJ07F506dULv3r1x7do1LFq0CLVr18bx48ctHjsmJgbffvst5s6di7CwMERGRqJly5aIiYkBAIwbNw69evWCl5cXEhISEBUVhffeew9jx45FRkYGunfvjoCAAKSnp+OLL75AUlIS3nrrrTI9/7aqUqUKxo4di8mTJ6NTp07o1q0bTp8+jcWLF6N58+YWr1dMTAzWrVuH5ORkNG/eHBUqVEBCQoJL60skWe5M1SIi5zKlMBf3U1LZChUqiDp16oi+ffuKnTt3WvV4Dx48EJ988ono3r27qFmzpvDx8RHly5cXzZo1E7Nnzxb37t2zKH/nzh0xbtw4ERkZKby8vETVqlXFiy++KM6fP28us2zZMlGnTh3h4+Mj6tWrJ1asWGFOtc7v1KlTom3btsLPz08AsEgLnzp1qqhWrZrw8PAolBa+ceNG8dRTTwl/f3/h7+8v6tWrJ4YOHSpOnz5t8dyUlCZfkKl+169fL7FcwVRwk4ULF4p69eoJLy8vERISIl577TXx119/WZS5deuW6N27t6hYsaIAwLRwonw0QjhgkxMiIiIiieCcGyIiIlIUBjdERESkKAxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIqiukX8jEYj/vzzTwQEBHD5ciIiIpkQQiA3NxdhYWHw8Ci5b0Z1wc2ff/6J8PBwd1eDiIiI7HDp0iVUr169xDKqC24CAgIA5D05Je2RQ0RERNKRk5OD8PBw83W8JKoLbkxDUYGBgQxuiIiIZMaaKSWcUExERESKwuCGiIiIFIXBDRERESmK6ubcWMtgMODBgwfuroZieXl5wdPT093VICIiBWJwU4AQAlevXsXNmzfdXRXFq1ixIqpWrcr1hoiIyKEY3BRgCmyCg4NRvnx5XnidQAiBO3fu4Nq1awCA0NBQN9eIiIiUhMFNPgaDwRzYVKpUyd3VUTQ/Pz8AwLVr1xAcHMwhKiIichhOKM7HNMemfPnybq6JOpieZ85tIiIiR2JwUwQORbkGn2ciInIGDksRERFRmeh0Oty/f7/Y2729vV063YPBDREREdlNp9Nh4cKFpZYbNmyYywIcDkspxIABA6DRaKDRaODl5YWQkBB07NgRy5cvh9FotPo8K1euRMWKFZ1XUSIiUpSSemzsKecI7LlxMHd2zXXq1AkrVqyAwWBAVlYWtm/fjhEjRmDDhg346quvUK4cX24iIlI+Xu0cyN1dcz4+PqhatSoAoFq1aoiOjsYTTzyBp59+GitXrsSgQYMwd+5crFixAhcuXEBQUBASEhIwa9YsVKhQAXv37sXAgQMB/DPZd+LEiZg0aRI+/fRTfPjhhzh9+jT8/f3RoUMHpKSkIDg42OHtICIiKgsOSzmQFLvmOnTogCZNmmDTpk0AAA8PD8yfPx+//fYbVq1ahf/9738YPXo0AKB169ZISUlBYGAgMjMzkZmZibfeegtAXrr21KlTcezYMWzevBkZGRkYMGCAy9pBRERkLfbcqEC9evVw/PhxAMDIkSPNxyMiIvDee+9hyJAhWLx4Mby9vaHVaqHRaMw9QCYvv/yy+f+1atXC/Pnz0bx5c9y6dQsVKlRwSTuIiIiswZ4bFRBCmIeZvv32Wzz99NOoVq0aAgIC0K9fP+h0Oty5c6fEc6SlpSEhIQE1atRAQEAAYmNjAQAXL150ev2JiIhsweBGBU6ePInIyEhkZGSga9euaNy4MTZu3Ii0tDQsWrQIQMlDZbdv30Z8fDwCAwPx2Wef4eeff8YXX3xR6v2IiIjcgcNSCve///0PJ06cwBtvvIG0tDQYjUZ88MEH8PDIi2vXr19vUd7b2xsGg8Hi2KlTp6DT6TBjxgyEh4cDAH755RfXNICIiCTN29vb4ne9PgDZ2ZUQFKSDVptbbDlnYnCjIPfu3cPVq1ctUsGnT5+Orl27on///vj111/x4MEDLFiwAAkJCdi/fz+WLFlicY6IiAjcunULu3fvRpMmTVC+fHnUqFED3t7eWLBgAYYMGYJff/0VU6dOdVMriYhISipVqoRhw4bh/v37SE31w5QpWhiNGnh4CMyapUfv3n+7fIViDkspyPbt2xEaGoqIiAh06tQJe/bswfz58/Hll1/C09MTTZo0wdy5czFz5kw0atQIn332GaZPn25xjtatW2PIkCHo2bMnqlSpglmzZqFKlSpYuXIlPv/8czRo0AAzZszAnDlz3NRKIiKSmkqVKsFgCMXo0RVhNObN8TQaNXj77YowGEJdGtgAgEYIIVz6iG6Wk5MDrVYLvV6PwMBAi9vu3r2L9PR0REZGwtfX1+Zzu3udG7kp6/NNRETSsWcP0KFD0cfbtSv7+Uu6fhfEYSkHyt81VxxXd80RERG5Qp06gIcHkH/HH09PoHZt19eFwY2DMXAhIiI1ql4dWLoUGDwYMBjyApuPP8477moMboiIiMghXnkFiI8Hzp3L67FxR2ADMLghIiIiB6pe3X1BjQmzpYiIiEhRGNwQERGRojC4ISIiIkVhcENERESKwuCGiIiIFIXBDVll79690Gg0uHnzptX3iYiIQEpKitPqREREVBQGNwoxYMAAaDQaDBkypNBtQ4cOhUajwYABA1xfMSIiIhfjOjcKEh4ejrVr12LevHnw8/MDkLd/U2pqKmrUqOHm2hERkaPodDpu9VMCBjcKEh0djfPnz2PTpk3o06cPAGDTpk2oUaMGIiMjzeXu3buHUaNGYe3atcjJycHjjz+OefPmoXnz5uYy27Ztw8iRI3Hp0iU88cQTSExMLPR4+/btw9ixY/HLL7+gcuXK+H//7/9h+vTp8Pf3d35jiYhUips0l47DUk50+XLebqiXL7vuMV9++WWsWLHC/Pvy5csxcOBAizKjR4/Gxo0bsWrVKhw+fBi1a9dGfHw8srOzAQCXLl3C888/j4SEBBw9ehSDBg3CmDFjLM5x/vx5dOrUCS+88AKOHz+OdevWYd++fRg2bJjzG0lEpGIl9djYU06JGNw4ybJlQM2aedu/16yZ97sr9O3bF/v27cMff/yBP/74A/v370ffvn3Nt9++fRsfffQRZs+ejc6dO6NBgwb45JNP4Ofnh2X/V8mPPvoIUVFR+OCDD1C3bl306dOn0Hyd6dOno0+fPhg5ciTq1KmD1q1bY/78+Vi9ejXu3r3rmsYSEREVgcNSTnD5MpCU9M+270Zj3i6p8fHO32+jSpUq6NKlC1auXAkhBLp06YLKlSubbz9//jwePHiAJ5980nzMy8sLLVq0wMmTJwEAJ0+eRMuWLS3O26pVK4vfjx07huPHj+Ozzz4zHxNCwGg0Ij09HfXr13dG84iIqAC9PgDZ2ZUQFKSDVpvr7upIAoMbJzh79p/AxsRgyNsl1RWbib388svm4aFFixY55TFu3bqFwYMHY/jw4YVu4+RlIiLXOHy4GbZs6QohPKDRGJGQ8DWio4+4u1pu59Zhqe+//x4JCQkICwuDRqPB5s2bSyy/adMmdOzYEVWqVEFgYCBatWqFHTt2uKayNqhTB/Ao8Mx6euZt/+4KnTp1wv379/HgwQPEx8db3BYVFQVvb2/s37/ffOzBgwf4+eef0aBBAwBA/fr1cejQIYv7/fTTTxa/R0dH4/fff0ft2rUL/Xh7ezupZURE7qPT6ZCZmVnsj06nc2l99PoAc2ADAEJ4YMuWrtDrA1xaDylya8/N7du30aRJE7z88st4/vnnSy3//fffo2PHjpg2bRoqVqyIFStWICEhAQcPHkSzZs1cUGPrVK8OLF2aNxRlMOQFNh9/7Lot4D09Pc1DTJ6enha3+fv747XXXsOoUaMQFBSEGjVqYNasWbhz5w5eeeUVAMCQIUPwwQcfYNSoURg0aBDS0tKwcuVKi/O8/fbbeOKJJzBs2DAMGjQI/v7++P3337Fr1y6rZvETEcmJFDOUsrMrmQMbEyE8kJ0dpPrhKbcGN507d0bnzp2tLl9wtdtp06bhyy+/xJYtWyQV3ADAK6/kzbE5dy6vx8ZVgY1JYGBgsbfNmDEDRqMR/fr1Q25uLh5//HHs2LEDjzzyCIC8YaWNGzfijTfewIIFC9CiRQtMmzYNL7/8svkcjRs3xnfffYdx48ahTZs2EEIgKioKPXv2dHrbiIhcTYoZSkFBOmg0RosAR6MxIigo22V1kCpZz7kxGo3Izc1FUFBQsWXu3buHe/fumX/PyclxRdUA5AU0rgpqCvasFJR/yM/X1xfz58/H/Pnziy3ftWtXdO3a1eJYwZTy5s2bY+fOncWeIyMjo8Q6ERGR7UxD/1ptLhISvi4058bUa6PmKQKyDm7mzJmDW7duoUePHsWWmT59OiZPnuzCWhERkdK5M0OpUqVKGDZsmLmXaMKE68jIKIeIiIcIC2sOoDlXKHZ3BeyVmpqKyZMn48svv0RwcHCx5caOHYvk5GTz7zk5OQgPD3dFFYmISIGkkKGUP3AJDQViYlz68JIny+Bm7dq1GDRoED7//HPExcWVWNbHxwc+Pj4uqhkRESlZcRlKUVHnVD+JV0pkt0LxmjVrMHDgQKxZswZdunRxd3WIiEhFSspQIulwa8/NrVu3cO7cOfPv6enpOHr0qDlFeezYsbhy5QpWr14NIG8oKjExER9++CFatmyJq1evAgD8/Pyg1WodVi8hhMPORcXj80xEcsMMJXlwa8/NL7/8gmbNmpnTuJOTk9GsWTNMmDABAJCZmYmLFy+ayy9duhQPHz7E0KFDERoaav4ZMWKEQ+rj5eUFALhz545DzkclMz3PpuediEiqCmYoaTR5y9AzQ0maNEJlfz7n5ORAq9VCr9cXuRZMZmYmbt68ieDgYJQvXx4ajcYNtVQ2IQTu3LmDa9euoWLFiggNDXV3lYiISqXT6cwZSn/+6ZEvQykv0FF7hpKzlXb9zk+WE4qdqWrVqgCAa9euubkmylexYkXz801EJHXMUJIPBjcFaDQahIaGIjg4GA8ePHB3dRTLy8ur0NYQREREjsDgphienp68+BIREcmQ7FLBiYiIiErC4IaIiIgUhcNSRESkSvmzn4rC7Cf5YnBDRESqo9PpsHDhwlLLDRs2jAGODHFYioiIVKdgj41eH4D09Ajo9QElliN5YM8NERGpmhR2+SbHYs8NERGpVnG7fBfswSF5YXBDRESqxV2+lYnBDRERqZZpl+/8uMu3/DG4ISIi1Sptl2+SJ04oJiIiVYuOPoKoqHPIzg5CUFA2AxsFYHBDRESq4+3tbfG7VptbZFBTsBzJA4MbIiIH4qq38lCpUiUMGzZMNa9V/vfln396ID29HCIjHyIsLG84TkltBRjcEBE5DFe9lRe1vAb535clremjpPclJxQTETmItavZctVbciXT+620NX2U9L5kcENERKQCalrTh8NSREROotcHIDu7EoKCdMVm4HCODrmKaU2f/AGOUtf0YXBDROQE1uxXxDk65EqmNX0Kvi+VmPrO4IaIyMGKm9sQFXXO4kLCOTrkampZ04fBDRGpiiuGgUqa21DSxcSaYSyisipuTR8lYXBDRKrhqmEge+Y2WDOMRUTWYbYUEamGs4eBTKvZlrZfUcFVb0tL0SUqC2tXWVbSaszsuSEicpCCq95OmHAdGRnlEBHxEGFhzQE0L3LYy95hLCJrqG01ZoDBDRGpmDPmuOS/QISGAjExpd9Hrim6TGOXD7W9DgxuiEiVpDTHRY4pugXnLxUXKDKNndyBwQ0RqY61qdrOln+OQ0kpulKcC5G/x6akQJFp7OQODG6ISHWkMsdFCXMhpBIoEuXH4IaIVEdKc1ykHLhYQyqBIlF+TAUnItWwN1WbimcKFPOTw2RoUjb23BCRatibqk3Fk+NkaFI+BjdEJDnOTDG2J1VbzvI/l3/+6YH09HKIjHyIsLC83hZHBHNq2a9IrS5fBs6eBerUAapXd3dtrMPghogkhTtlO07+57KkjCZHPJdq2K9IjZYtA5KSAKMR8PAAli4FXnnF3bUqHefcEJGkcKdsxzE9R6Vt72DPc6nGJf3VRKfTIS0tC0lJAsb/m1JlNAKDBwukpWVBp9O5t4KlYM8NEUkad8ouO2dkNCkhjZ2KZurxS0+PgNGYaHGbwaDBggXfIDLyD0n3njK4ISLJsmYVYW4BUDpnpb6r/XlVKtPnqbT3jZR7TxncEJEkWbM4HOfnWIcZTWQPOb9vGNwQkSRZM5RS8C/H4oawpPwXpqswo8mx5JhBZA+5vm8Y3BCRJNk6lCKljTClihlNZWMaAk1N9cPo0VoYjRp4eAjMmqVH795/K3YIVI7vG2ZLEZEklbaKcH6lZQMRlZVpCHT27DUYNSoQRqMGAGA0ajBqVCBmz16DhQsXSj6LSC3Yc0NEkmLLTtmm4Sbub1Q0pms7jrXvNQ6BSgODGyKSFFtSjDMzMwFIayNMKWG6tuPxvSYPDG6ISHJsvdjKOavD2Ri4OJYa3mtK6PFjcENEiiDXrA6SH6W/15TQ48fghohkq+BfjsVldUj5L0ySJzlmENlCyoGLNRjcEJFsKeEvTCJyPAY3RCRrDFyIqCCuc0NERFQKJUyyVRP23BAREZWCQ6Dy4taem++//x4JCQkICwuDRqPB5s2bS73P3r17ER0dDR8fH9SuXRsrV650ej2JiIgqVaqE0NDQYn8Y2EiHW4Ob27dvo0mTJli0aJFV5dPT09GlSxe0b98eR48exciRIzFo0CDs2LHDyTUlIiIiuXDrsFTnzp3RuXNnq8svWbIEkZGR+OCDDwAA9evXx759+zBv3jzEx8c7q5pEREQkI7KaUHzgwAHExcVZHIuPj8eBAweKvc+9e/eQk5Nj8UNERETKJavg5urVqwgJCbE4FhISgpycHPz9999F3mf69OnQarXmn/DwcFdUlYiIiNxEVsGNPcaOHQu9Xm/+uXTpkrurRERERE4kq1TwqlWrIisry+JYVlYWAgMD4efnV+R9fHx84OPj44rqERERkQTIquemVatW2L17t8WxXbt2oVWrVm6qEREREUmNW4ObW7du4ejRozh69CiAvFTvo0eP4uLFiwDyhpT69+9vLj9kyBBcuHABo0ePxqlTp7B48WKsX78eb7zxhjuqT0RELnL5MrBnT96/RKVxa3Dzyy+/oFmzZmjWrBkAIDk5Gc2aNcOECRMAAJmZmeZABwAiIyOxdetW7Nq1C02aNMEHH3yA//znP0wDJyJSsGXLgJo1gQ4d8v5dtszdNSKp0wghhLsr4Uo5OTnQarXQ6/UIDAx0d3WIiKgEly/nBTRG4z/HPD2BjAygenW3VYvcwJbrt6zm3BARkXrodDr89JPOIrABAIMBOHhQB51O556KkeQxuCEiIsnR6XRYuHAhfvxxFTQay+hGozFi//5VWLhwIQMcKhKDGyIikhzT7ttabS4SEr42BzgajREJCV9Dq821KEeUn6zWuSEi59DpdCVeJLy9vbnjMblNdPQRREWdQ3Z2EIKCss2BDVFxGNwQqZyp+99Erw9AdnYlBAXpLC4iw4YNY4BDbqPV5jKoIasxuCFSufw9NocPN8OWLV0hhIe5+z86+kihckREUsY5N0QEIK/HxhTYAIAQHtiypSv0+gA314yIyDYMbogIAJCdXckc2JgI4YHs7CA31YiIyD4MbogIABAUpCsy5TYoKNtNNSIisg+DGyICUHrKrRJxvyLp8vb2dmg5UhdOKCYiMzWk3JrS3lNT/TB6tBZGowYeHgKzZunRu/ffTHuXiEqVKmHYsGFcooDswuCGiCwoOeXWlPau1wcgJWUkhNAAAIxGDUaNCsSVK8uh1eYy7V0i+BqQvTgsRaRyaur+N/UClDZ5mmnvRPLGnhsilVNj979p8nT+AIeTp4mUg8ENESkqcLGGafJ0wQULlTocR6Q2DG6ISJXUMHmaSK0Y3BC5ATeqlAYlT54mUjMGN0QuVnCjyuIwY4eIyD7MliJysYI9Nnp9ANLTIwrt4cSMHSIi+7DnhsiNStqFmxxPTWnvRGrG4IbITYrbhTsq6hzngTiJGtPeidSIwQ2Rm5S0kByDG+dh4EKkfAxuSLbknnHEheSIiJyDwQ3JkhIyjriQHBGRczC4IVmyNpNI6hlHXEiOiMjxGNyQIuj1AcjOroSgIJ3kA4SCmTjFLSTHjB0iIvswuCHZk1s6NTN2iIici8ENyZpc06kZuBAROQ9XKCZZKymdmoiI1InBDcmaKZ06P6ZTExGpG4MbkiW9Xg/gn3RqU4BTMJ3aVI6ISKkuXwb27Mn7l/LYNeemRo0aaNeuHWJjY9GuXTtERUU5ul5EJRJCmP8fHX0EwcFXcfFiDdSocRHVq2cWWY6I5OvyZeDsWaBOHaB6dXfXRjqWLQOSkgCjEfDwAJYuBV55xd21cj+7em6mTZsGX19fzJw5E3Xq1EF4eDj69u2LTz75BGfPnnV0HYkKqVixovn/hw83w7Jlg7BzZycsWzYIhw83K7IcEcnTsmVAzZpAhw55/y5b5u4auZ9Op0NaWhaSkgSM/zcybzQCgwcLpKVlQafTubeCbmZXcNO3b18sXboUZ86cwZUrVzB79mwAwL///W/Uq1fPoRUkKklx2VJ6fYCba0ZEjnD58j89E4DpAq7uIRjTCu0LFmyH0aixuM1g0GDBgm+wcOFCVQc4dqeC37lzB/v27cPevXuxZ88eHDlyBI0aNUK7du0cWD2iknHzSSLl0ul0+OknwGi0XDrBYAAOHtTBz0+dyyqY1sgqbX86qa/Q7kx2BTetW7fGkSNHUL9+fbRr1w5jxoxB27Zt8cgjjzi6fkQl4uaTRMpk6p3Q6wOg0Yws9Bnfv38Vfv01V9L7xzkb96crnl3BzalTp+Dv74969eqhXr16qF+/PgMbcgt+uImUydTrUNpnXM29EwD3pyuOXcGNTqfDiRMnsHfvXuzYsQPjxo2Dt7c3YmNj0b59e7z66quOridRsfjhJlI2fsZLVtz+dGpm14RijUaDxo0bY/jw4diwYQO++eYbdOzYEZ9//jmGDBni6DoSFVLU5pORkX8U+oBz80nbcc0MkqLiPuNERbGr5+bw4cPYu3cv9u7di3379iE3NxePPfYYXn/9dcTGxjq6jkSFcPNJ5+CaGUTOwXV6XMuu4KZFixZo1qwZYmNj8eqrr6Jt27bQarWOrhtRiZwduOh0OtUETzqdDhkZD5GUFGxOLTWtmdG06TVERJRzWFvl/CUv57qT+/CPBtezK7jJzs5GYGCgo+tCJBmmTA0TvT4A2dmVEBSks+gWV0Kmhqmt6ekRMBoTLW4zrZkRGflHmdpqChRTU/0werQWRqMGHh4Cs2bp0bv337IIFHmBIls5648Ga4fb1Twsb1dwYwps0tLScPLkSQBAgwYNEB0d7biaEblR/h6bw4ebFcrUiI4+UqicXDl7zYz8Kb0pKSMhhOlLXoNRowJx5cpyaLXSTel1Za8WKYcz/2jgsHzp7Apurl27hp49e+K7774zL29/8+ZNtG/fHmvXrkWVKlUcWUcityluBeSoqHOKm9jorLR60xdwaQsuSjFQdEWvFhVN7r0Tzv6jge+3ktkV3Lz++uu4desWfvvtN9SvXx8A8PvvvyMxMRHDhw/HmjVrHFpJIndR2wrIzky5leOCi1wJ1n2U0jvBtbjcw67gZvv27fj222/NgQ2QNyy1aNEiPPPMMw6rHJG7SeWCnH9y859/eiA9vRwiIx8iLCxvwx1Hfsk7a80MOX/Jy7nucib1wMVaXKfH9ewKboxGI7y8vAod9/LygtG0uxmRxNiT/SSFi1r+yc0lzf+Rw9CInL/k5Vx3cj8utOdadgU3HTp0wIgRI7BmzRqEhYUBAK5cuYI33ngDTz/9tEMrSOQIZcl+cvdFzRSQlTb/Ry5DI3L+kpdz3YlcRQpLJtgV3CxcuBDdunVDREQEwsPDAQCXLl1Co0aN8N///tehFSRyhLJmP0nhoqa2+T9EJB9SW+7BruAmPDwchw8fxrfffotTp04BAOrXr4+4uDiHVo7I0azNfpJipoaz5v9Isa1EJB9SXO7BruAGyNtfqmPHjujYsaMj60PkVNb2fkgxU8NZ83+c3VYGT6RGanrfS3G5B6uDm/nz51t90uHDh9tUiUWLFmH27Nm4evUqmjRpggULFqBFixbFlk9JScFHH32EixcvonLlynjxxRcxffp0+Pr62vS4pD629H5IcXKus+b/OLOtUgwUraWmCxQ5lpzf9/aSSnYpYENwM2/ePKvKaTQam4KbdevWITk5GUuWLEHLli2RkpKC+Ph4nD59GsHBwYXKp6amYsyYMVi+fDlat26NM2fOYMCAAdBoNJg7d67Vj0vqJIXsp7KSwvwfW8n1C1yNFyhyHLW9L6T0/Wp1cJOenu6UCsydOxevvvoqBg4cCABYsmQJtm7diuXLl2PMmDGFyv/444948skn0bt3bwBAREQEXnrpJRw8eNAp9SPlcXf2E8mL2i5QRGUhle9Xj9KL/MPRa9jcv38faWlpFhORPTw8EBcXhwMHDhR5n9atWyMtLQ2HDh0CAFy4cAHbtm3Ds88+W2T5e/fuIScnx+KHSKvNRWTkH7IIbDg0QkRyIoXvV5smFHt5eSEzM9M8XDRq1CiMHTsWQUFBdj34jRs3YDAYEBISYnE8JCTEnIVVUO/evXHjxg089dRTEELg4cOHGDJkCN55550iy0+fPh2TJ0+2q36kHHIOEDg0QkRkG5uCGyGExe8ff/wxXnvtNbuDG3vs3bsX06ZNw+LFi9GyZUucO3cOI0aMwNSpUzF+/PhC5ceOHYvk5GTz7zk5Oea1eUg95B4gSLVeRERSZHcqOFA42LFV5cqV4enpiaysLIvjWVlZqFq1apH3GT9+PPr164dBgwYBAB577DHcvn0bSUlJGDduHDw8LEfafHx84OPjU6Z6kjIwQCAicjwp9oyXKbgpK29vb8TExGD37t3o3r07gLx5Pbt378awYcOKvM+dO3cKBTCenp4Ayh5suYI9+xsRERFJlRR7xm0ObiZMmIDy5csDyJsQ/P7770Or1VqUsSUlOzk5GYmJiXj88cfRokULpKSk4Pbt2+bsqf79+6NatWqYPn06ACAhIQFz585Fs2bNzMNS48ePR0JCgjnIkaqC+xsVRw4bIBIREZlI7ZplU3DTtm1bnD592vx769atceHCBYsyGo3Gpgr07NkT169fx4QJE3D16lU0bdoU27dvN08yvnjxokVPzbvvvguNRoN3330XV65cQZUqVZCQkID333/fpsd1B2tXZ5TLBohERERSpBFyGMtxoJycHGi1Wuj1egQGBrr0sTMzM7F06VLz78XtTJ2UlITQ0FCX1o0Kyz+E+OefHkhPL4fIyIcIC8tbEoFDiERErmPL9dupc24CAwNx9OhR1KpVy5kPI0sl7UxN7pd/CLGk14pDiERE0mPTIn62UlmnkNWK25larw9wc83IxNRjU9prxSFEIiLpcWpwQ0UraedUkha+VkRE8sPgxg1MO6fm566dU6lkfK2IiOSHwY0bmHZONV005bgztVrwtSIikh+nTii2NS1c6fKvzljSzqlS3N9IzaSyyy0REVnHqcENJxRbkuIqjmQdrTZXNUHN5cvA2bNAnTpA9erurg0Rke2cGtx88803qFatmjMfQnYYuJAUmdb0SU31w+jRWhiNGnh4CMyapUfv3n8z6CYiWbEruBFCYMOGDdizZw+uXbsGo9FywuWmTZsAAE899VTZa0jkBlLcCM5ZTGv66PUBSEkZCSHyhpONRg1GjQrElSvLodXmck0fO7AXjMg97ApuRo4ciY8//hjt27dHSEgI59aQ4qhpCNHUxpLS3rXaXK7pYyX2ghG5n13BzaeffopNmzbh2WefdXR9iCRDbRcgU9p7/gCHae+2YS8YkTTYlQqu1Wq5pQKRwjDtveys6QXLX46InMOunptJkyZh8uTJWL58Ofz8/BxdJyJyE6a9OwZ7wYjcy67gpkePHlizZg2Cg4MREREBLy8vi9sPHz7skMoRkeupKe3dWUy9YAU3XOXzSuQadgU3iYmJSEtLQ9++fTmhmMgOpkmnAPDnnx5ITy+HyMiHCAvLGxLipFP5Yy8YkfvYFdxs3boVO3bsYKo3kR1Mk04B4PDhZoX+uo+OPgIAnHSqAOwFI3IPuyYUh4eHIzAw0NF1IVIFU4+NXh9gDmyAvAmnW7Z0hV4fYFHO2dS0pg8RqYNdPTcffPABRo8ejSVLliAiIsLBVSJSh9LWlXEVNa3pQ6RW+YfCi6K0z7hdwU3fvn1x584dREVFoXz58oUmFGdnMyOAqDRSyqhR0peaO7EXjKQo/1A4kNdrnJ1dCUFBOos/pJQ0FG5XcJOSkuLgahCpDzNqlIe9YCRF+d+PJc3zU9L6S3ZnSxFR2TGjRnkYuLiP2oZebFXcPL+oqHOK++4p867gd+/eLfRm4mRjIusxo4ao7NQ49GIrqczzcwW7gpvbt2/j7bffxvr166HT6QrdbjAYylwxIiIia6lx6MVWUprn52x2pYKPHj0a//vf//DRRx/Bx8cH//nPfzB58mSEhYVh9erVjq4jkaJw0imR85S2xIKaqWn/OLt6brZs2YLVq1ejXbt2GDhwINq0aYPatWujZs2a+Oyzz9CnTx9H15NIMTjplMh51DT0Yg+1zPOzK7jJzs427woeGBhoTv1+6qmn8NprrzmudkQKxcCFyDnUNPRiLzXM87MruKlVqxbS09NRo0YN1KtXD+vXr0eLFi2wZcsWVKxY0cFVJHIPZl4QyQ+XWChMjUPhdgU3AwcOxLFjxxAbG4sxY8YgISEBCxcuxIMHDzB37lxH15HI5Zh5QSRfahl6sZYah8LtCm7eeOMN8//j4uJw6tQppKWloXbt2mjcuLHDKkfkLsy8IJI3NQy92EJJgYs1HLLOTc2aNVGzZk1H1IdIUtS06BWRnKlx6MWZ5D4sb1dwYzAYMG3aNCxZsgRZWVk4c+YMatWqhfHjxyMiIgKvvPKKo+tJ5BbMvCCSBzUOvThLwWH54kh5WN6udW7ef/99rFy5ErNmzbKIghs1aoT//Oc/DqsckbuZMi/yY+YFkTRVqlQJoaGhxf5I9UIsNQUDRL0+AOnpEYXWCpLysLxdPTerV6/G0qVL8fTTT2PIkCHm402aNMGpU6ccVjkid2PmBRGpWUlzDqXMruDmypUrqF27dqHjRqMRDx48KHOllEzu45hqxMwLIlIjOc85tCu4adCgAX744YdCk4g3bNiAZs2aOaRiSqSEcUy1YuYFEamFXq8HUPqcQ71ej9DQUHdUsVR2BTcTJkxAYmIirly5AqPRiE2bNuH06dNYvXo1vv76a0fXUTGsHZ+U8jimWjDzgojUyjQCU9pqz1IeqbEruHnuueewZcsWTJkyBf7+/pgwYQKio6OxZcsWdOzY0dF1VKziFoYj92PmBRGpnVabi8aNj+PYsSYANAAEGjc+Lovrld3r3LRp0wa7du1yZF1URa6TtNSEgQsRqZleH4DjxxsjL7ABAA2OH2+MDh3+J/kAx65U8Fq1akGn0xU6fvPmTfOGmlS84iZpFUyzIyIicrVy5fL6PUqac5O/nBTZVbOMjAwYDIZCx+/du4crV66UuVJKx4XhiEgJmP2pTKYNsEubcyPljbJtCm6++uor8/937NgBrVZr/t1gMGD37t2IiIhwWOWUqrQ3DBGR1HFzWeWT8zpfNgU33bt3BwBoNBokJiZa3Obl5YWIiAh88MEHDqucUsn5DUNEBHBzWbWQ6zpfNgU3RmPeMvSRkZH4+eefUblyZadUSqnypw2X9IZhejERyYWcF3qjohW8BhW3zpeUr1U2BTcHDhyATqdDenq6+djq1asxceJE3L59G927d8eCBQvg4+Pj8IoqAdOLiUhpOIdQeZRwrbIpuJk8eTLat2+Prl27AgBOnDiBV155BQMGDED9+vUxe/ZshIWFYdKkSc6oqyJI+c1ARGQrziFUJrlfq2xKBT927Biefvpp8+9r165Fy5Yt8cknnyA5ORnz58/H+vXrHV5JIiKSJtMcQo0mb9oC5xCSFNjUc/PXX38hJCTE/Pt3332Hzp07m39v3rw5Ll265LjaERGR5Ml10ikpl009NyEhIeb5Nvfv38fhw4fxxBNPmG/Pzc2Fl5eXY2tIRESSp9XmIjLyDwY2JAk29dw8++yzGDNmDGbOnInNmzejfPnyaNOmjfn248ePIyoqyuGVlDIuYkVEasTNZUnKbApupk6diueffx6xsbGoUKECVq1aZfHGXb58OZ555hmHV1KqCi5iVRwuYiUNDESJSmbLZ0QJGTWkXDYFN5UrV8b3338PvV6PChUqwNPT0+L2zz//HBUqVHBoBaXM2sWpuIiV+zEQJSqZPZ8RflZIquzaOFOr1RYKbAAgKCjIri7IRYsWISIiAr6+vmjZsiUOHTpUYvmbN29i6NChCA0NhY+PDx599FFs27bN5sd1NL0+AOnpEdwAU4IKBpjFvVYMREmt+BkhJXH7lp7r1q1DcnIylixZgpYtWyIlJQXx8fE4ffo0goODC5W/f/8+OnbsiODgYGzYsAHVqlXDH3/84fYNvEpafpykha8VUcn4GSG5s6vnxpHmzp2LV199FQMHDkSDBg2wZMkSlC9fHsuXLy+y/PLly5GdnY3NmzfjySefREREBGJjY9GkSRMX1/wfxS0/zh4c6eFrRVQyfkZICdwa3Ny/fx9paWmIi4szH/Pw8EBcXBwOHDhQ5H2++uortGrVCkOHDkVISAgaNWqEadOmwWAwFFn+3r17yMnJsfhxtJKWHydp4WtFVDJ+RkgJ3Brc3LhxAwaDwWJhQCBvPZ2rV68WeZ8LFy5gw4YNMBgM2LZtG8aPH48PPvgA7733XpHlp0+fDq1Wa/4JDw93eDtMy4/nx+XHpYmvFVHJ+BkhJXD7sJStjEYjgoODsXTpUsTExKBnz54YN24clixZUmT5sWPHQq/Xm3+csYIylx+XD75WRCXjZ4SUwK0TiitXrgxPT09kZWVZHM/KykLVqlWLvE9oaCi8vLwssrXq16+Pq1ev4v79+4WytXx8fJy2S3n+xypp+XEuYiUtXCqeqGT8jJDcuTW48fb2RkxMDHbv3o3u3bsDyOuZ2b17N4YNG1bkfZ588kmkpqbCaDTCwyOv4+nMmTMIDQ11eRDBRazko+B7Q6vNLfILm4EoqZUSPiNcqJNMNEII4c4KrFu3DomJifj444/RokULpKSkYP369Th16hRCQkLQv39/VKtWDdOnTwcAXLp0CQ0bNkRiYiJef/11nD17Fi+//DKGDx+OcePGlfp4OTk50Gq10Ov1CAwMdHbzSEL4xUdUMjl/RrhQp/LZcv12+zo3PXv2xPXr1zFhwgRcvXoVTZs2xfbt282TjC9evGjuoQGA8PBw7NixA2+88QYaN26MatWqYcSIEXj77bfd1QSSCX6hkRI4MwCR82eEK8ZTfm7vuXE19twQkVyxd6J4mZmZWLp0aanlkpKSEBoa6oIakaPZcv2WXbYUEZFasXfCetwOR93cPixFRET20esDkJ1dCUFBOmY05cPtI4jBDVlNzpMNiZSGF3BLer3+//4tevuIqKhz0GpzodfrOSylAgxuyCoc6yeSjtIu4Gr04MEDACVvH6HV5prLkbJxzg1ZhWP9RNLB/Z+Kx+0jCGDPDZEicQhR2UwX8PwBjtov4OXK5V3OtNpcNG58HMeONQGgASDQuPFxc4+WqRwpG19lsgsnMkoXhxCVz7T/U8E5N2r+LFasWBFA3nfT8eONkRfYAIAGx483RocO/4NWm2suR8rG4IZsxomM0sYhROXifnalK23ODakDgxuyCScyyg972ZSD+9mVjkN2BDC4IRvxryJ5YS+b8qg5cLEGh+wIYHBDNuJfRfLBXjZSEw7ZUX4Mbsgqpi+E0v4q4heHdLCXjdSEQ3aUH4MbskrBL44JE64jI6McIiIeIiysOYDm/OKQGPaykdrw+4dMGNyQ1fJ/cYSGAjExbqwMlYpzD4hIrRjcEDmAlBbN49wDIlI7BjcSJ6WLJhVNaovmce4BEakdgxsJk9pFk4omxUXz+H4gIjXjxpkSJsWLJhERkdSx54bIwbgicGEcXiUiV2JwIyO8aEofVwQujMOrRORqDG5kghdN6eOKwEXj8CoRuRrn3MhAcRdNvT7AzTWj/EpaEZiIiFyHwY0M8KIpD6YVgfPjisCF6fUBSE+PYHBORE7DYSkZ4DL60sZ9t6zH4VUicgUGNxLGi6Y8cN8t63BOEhG5CoMbCeNFUz6471bpuEs5cUkAchUGNxLHiyYphbOGV3nBlAcuCUCuxOCGiJzKmcOrvGDKB5cEIFdicENETuXM4VVeMImoKAxuiMjpOLxKBXHFdXImBjdEpBi8YMoDlwQgZ2NwQ0SKwAumPHBJAHIFBjdEJHu8YDqGKzLPbFkSgJlwZC8GN0Qke1xDp+xclXlm7ZIAzISjsuDeUkQke9zXq+ycnXlWcEkA0+tV3JIAzISjsmDPDRHJFrcokQ+uuE6uxOCGiGSLF0zncUbmWVmWBGAmHNmCwQ0RyRrX0HE8qWWeSa0+JH2cc0NERGbFZZ7p9QGsD8kGe26IHIApq6QUUss8k1p9SB4Y3BCVEVNWSUmctXu7UupD8sBhKaIyYsoqKYGtqdpqqw/Ji0YIIdxdCVfKycmBVquFXq9HYGCgu6tDCpCZmYmlS5eWWi4pKQmhoaEuqBGRffIPr/75p0e+zLO8wMLVw6tSqw+5ly3Xbw5LETkYU1ZJrqSWeSa1+pB8MLghciCmrBIRuR/n3BA5CFNWiYikgT03RA7ClFWiknHJBHIVBjdEDsKUVaLicckEciUOSxGVEVNWiUrHJRPIldhzo2LsInYMbt5IZDtmFZIzMbhRKXYROxZTVomsx6xCcjZJDEstWrQIERER8PX1RcuWLXHo0CGr7rd27VpoNBp0797duRVUIHYRE5E7MKuQXMHtwc26deuQnJyMiRMn4vDhw2jSpAni4+Nx7dq1Eu+XkZGBt956C23atHFRTYmIqKxKyiokchS3Bzdz587Fq6++ioEDB6JBgwZYsmQJypcvj+XLlxd7H4PBgD59+mDy5MmoVauWC2tLRERlYcoqzI9ZheRobg1u7t+/j7S0NMTFxZmPeXh4IC4uDgcOHCj2flOmTEFwcDBeeeWVUh/j3r17yMnJsfihwvT6AKSnR7BrmIicqrSsQiJHcOuE4hs3bsBgMCAkJMTieEhICE6dOlXkffbt24dly5bh6NGjVj3G9OnTMXny5LJWVdHUMrmP2WFE7pN/KYTo6COIijqH7OwgBAVlWwQ2XDKBHEFW2VK5ubno168fPvnkE1SuXNmq+4wdOxbJycnm33NychAeHu6sKspOcZP7oqLOKeovKWaHEblXwSUTisI/MMhR3BrcVK5cGZ6ensjKyrI4npWVhapVqxYqf/78eWRkZCAhIcF8zGjM69osV64cTp8+jaioKIv7+Pj4wMfHxwm1Vwa1bBnA7DAi92PgQq7i1jk33t7eiImJwe7du83HjEYjdu/ejVatWhUqX69ePZw4cQJHjx41/3Tr1g3t27fH0aNH2SNjA1PXb2mT+9hFTEREcuP2Yank5GQkJibi8ccfR4sWLZCSkoLbt29j4MCBAID+/fujWrVqmD59Onx9fdGoUSOL+1esWBEACh2nkuXvIq5WLQdvv62FwaCBp6fAzJk56N37JUV3EXN1VCIi5XJ7cNOzZ09cv34dEyZMwNWrV9G0aVNs377dPMn44sWL8PBwe8a6bNgyadb075tvAj17AufOAbVra1C9ekUAFZ1fWTdRywRqIiK10gghhLsr4Uo5OTnQarXQ6/UIDAx0d3UcipNmi5eZmYmlS5dCrw9ASsrIQjt3jxyZAq02F0lJSQgNDXVjTYmIqCi2XL/ZJaIgnDRbOq6OSkSkfG4fliKylz3r1pgmUBfsueHqqEREysHgRsGUPGnW1iE4U9aXaXXUgnNuTM8Ps8OIiOSPwY1CKX3SrK1DcAUXEJsw4ToyMsohIuIhwsKaA2ju0uwwrpZMROQ8DG4USC2rDtsqf7AQGgrExLinHpz4TUTkXJxQrEBqnDQrp40/OfGbiMi52HOjQGqbNCv3ITglz40iInIHBjcKosZJs3IfgpNKYMY5QESkJAxuFERqk2ZdQc4bf0olMOMcICJSGgY3CiOVSbOu4swhOGf3ZkglMCvYxuKGyTgHiIjkgsENyZKzh+Bc0ZshxblRUhkmIyIqCwY3JEvOHoJzRUZTaYGZq0llmIyIqKwY3JBsuXIIzpEZTfl7k6KjjyAq6hyys4MQFJRtcW5XT/yWyjAZlYyTv4lKx+CGqBSOHqop2OtUFHdcoKQ4TEaWOPmbyDoMbhSGf9U5lrOGaqT4GkhtmIwK4+RvIuswuFEQZ/9Vp8bASW1DNSUNk5G0cPI3UfEY3CiIMyfBqrU7XA1DNQXn9mi1uUUGNUpa/FHuOPmbqGQMblzMlb0fjpwEq9bucDUM1Uh1DhAVT209inKV//v+zz89kJ5eDpGRDxEWZgTAz5UzMbhxIVf2fjizy1oN3eFSzWhyFn7ByosaehTlLv/3fUnfmUrr7ZYKBjcu5KreD2u7rO3pRVJLdzh7M0jK1NCjKHem747SvjOV1tstFQxu3MSZvR/WdFnb24ukpu5wBi7FU+Pkcqnh5G95UNN3ppQwuHEDZ/d+WNNlbW8vErvDqWBgXNx7h93tjsfJ3/LD70z3YHDjBs6O5G3tsralF4nd4UVTU09G/naW9N5hd7vjcbhUfvid6R4MbtzAWZG8LZNgrR0PLgq7wy2ptSdDLfOvpEZJ7yG14Hem6zG4cQNnRfK2/FWXmZkJwPpeJHaHF0+tPRmcS0BkveK+M8k5GNy4ibMieVv/qrO2F4nd4aVTS0+GXq8HUPp7R6/XIzQ01C11JCJ1Y3DjQlLs/bClF0nNgYs11NKT8eDBAwB5753GjY/j2LEmADQABBo3Pm5uq6kckRpZ+z2uxt5uV2Bw40JS7f3geLBjqC0rQq8PwPHjjZEX2ACABsePN0aHDv/je4hUT6rf92rB4MbFpPJGlmIvktypLStCLT1VRPaSyve9GjG4USn+VeEcaugFK1cu72ujtJ4qUzkiIlfjt4/C2LJRGwMX51B6VkTFihUBlN5TZSpHRORqDG4UhBu1uYeaJw6qoaeKiOSHwY2CcKM291D7EJ+UeqouXwbOngXq1AGqV3d3bYjIXRjcKBAnerqeUgOXokitp8o0FJua6ofRo7UwGjXw8BCYNUuP3r3/VnRgSURFY3CjQGpLSSbXklJPlWkoVq8PQErKSAiRl5ZuNGowalQgrlxZDq02l0OxRCrD4EaB1JaSTK4nlUDBFGCV1lvJoVgidWFwo1Cc6Elqwt5KIsrPo/QiJFdabS4iI/9gYEOKZ+qt1GjyljxgbyWRurHnhiSJWS9kK/ZWEpEJgxsFkVoWi62Y9UJlJaW0dCJyHwY3ClKWLBZ395Qw64WIiByFwY3C2HPhX7YMSEoCjEbAwwNYuhR45RUnVK4EzHohIiJH4YRiFdPpdEhLy0JSkoAxbx4mjEZg8GCBtLQs6HQ6l9fJlPWSH7NeqDhyH4olIudgz41KmYaB0tMjYDQmWtxmMGiwYME3iIz8w+XDQFyjh2whpQUFiUg6GNyolOliUNr6IO4YBmLWC9mCgQsRFcRhKRm5fBnYsyfvX0eR6vogXKOHiIjsxZ4bmXDmpF/2lBARkZIwuJE4nU6HjIyHSEoKhtFoSo/Om/TbtOk1RESUc0i3PNcHISIipWBwI2FSnfTrDMx6ISIiR2FwI2FSnvTraMx6ISIiR5HEhOJFixYhIiICvr6+aNmyJQ4dOlRs2U8++QRt2rTBI488gkceeQRxcXElllcCqU76dbRKlSohNDS02B8GNkREZA2399ysW7cOycnJWLJkCVq2bImUlBTEx8fj9OnTCA4OLlR+7969eOmll9C6dWv4+vpi5syZeOaZZ/Dbb7+hWrVqbmiBazh60i+HgYiISKk0Qgjhzgq0bNkSzZs3x8KFCwEARqMR4eHheP311zFmzJhS728wGPDII49g4cKF6N+/f6nlc3JyoNVqodfrERgYWOb6O1NmZiaWLl1aarmkpCSEhobafH7TRpXF4TAQERFJhS3Xb7f23Ny/fx9paWkYO3as+ZiHhwfi4uJw4MABq85x584dPHjwAEFBQc6qpmIxcCEiIiVya3Bz48YNGAwGhISEWBwPCQnBqVOnrDrH22+/jbCwMMTFxRV5+71793Dv3j3z7zk5OfZXmIiIiCRPEhOK7TVjxgysXbsWX3zxBXx9fYssM336dGi1WvNPeHi4i2tJREREruTW4KZy5crw9PREVlaWxfGsrCxUrVq1xPvOmTMHM2bMwM6dO9G4ceNiy40dOxZ6vd78c+nSJYfU3RU46ZeIiMh2bh2W8vb2RkxMDHbv3o3u3bsDyJtQvHv3bgwbNqzY+82aNQvvv/8+duzYgccff7zEx/Dx8YGPj48jq+0yXPuFiIjIdm5PBU9OTkZiYiIef/xxtGjRAikpKbh9+zYGDhwIAOjfvz+qVauG6dOnAwBmzpyJCRMmIDU1FREREbh69SoAoEKFCqhQoYLb2uEsDFyIiIhs4/bgpmfPnrh+/TomTJiAq1evomnTpti+fbt5kvHFixfh4fHP6NlHH32E+/fv48UXX7Q4z8SJEzFp0iRXVp2IiIgkyO3r3LianNa5ISIiojy2XL9lnS1FREREVBCDGyIiIlIUBjdERESkKAxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIri9kX8XM20rA93ByciIpIP03XbmuX5VBfc5ObmAgB3ByciIpKh3NxcaLXaEsuoboVio9GIP//8EwEBAdBoNA49d05ODsLDw3Hp0iVFrn6s9PYBym8j2yd/Sm+j0tsHKL+NzmqfEAK5ubkICwuz2JapKKrrufHw8ED16tWd+hiBgYGKfMOaKL19gPLbyPbJn9LbqPT2AcpvozPaV1qPjQknFBMREZGiMLghIiIiRWFw40A+Pj6YOHEifHx83F0Vp1B6+wDlt5Htkz+lt1Hp7QOU30YptE91E4qJiIhI2dhzQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjclWLRoESIiIuDr64uWLVvi0KFDJZZPSUlB3bp14efnh/DwcLzxxhu4e/dumc7pbI5u46RJk6DRaCx+6tWr5+xmFMuW9j148ABTpkxBVFQUfH190aRJE2zfvr1M53QFR7dRSq/h999/j4SEBISFhUGj0WDz5s2l3mfv3r2Ijo6Gj48PateujZUrVxYqI5XX0Bntk/Prl5mZid69e+PRRx+Fh4cHRo4cWWS5zz//HPXq1YOvry8ee+wxbNu2zfGVt5Iz2rhy5cpCr6Gvr69zGlAKW9u3adMmdOzYEVWqVEFgYCBatWqFHTt2FCrn9M+goCKtXbtWeHt7i+XLl4vffvtNvPrqq6JixYoiKyuryPKfffaZ8PHxEZ999plIT08XO3bsEKGhoeKNN96w+5zO5ow2Tpw4UTRs2FBkZmaaf65fv+6qJlmwtX2jR48WYWFhYuvWreL8+fNi8eLFwtfXVxw+fNjuczqbM9oopddw27ZtYty4cWLTpk0CgPjiiy9KLH/hwgVRvnx5kZycLH7//XexYMEC4enpKbZv324uI6XX0Bntk/Prl56eLoYPHy5WrVolmjZtKkaMGFGozP79+4Wnp6eYNWuW+P3338W7774rvLy8xIkTJ5zTiFI4o40rVqwQgYGBFq/h1atXndOAUtjavhEjRoiZM2eKQ4cOiTNnzoixY8cKLy8vl3+PMrgpRosWLcTQoUPNvxsMBhEWFiamT59eZPmhQ4eKDh06WBxLTk4WTz75pN3ndDZntHHixImiSZMmTqmvrWxtX2hoqFi4cKHFseeff1706dPH7nM6mzPaKKXXMD9rvlhHjx4tGjZsaHGsZ8+eIj4+3vy71F5DE0e1T86vX36xsbFFXvh79OghunTpYnGsZcuWYvDgwWWsYdk5qo0rVqwQWq3WYfVyFFvbZ9KgQQMxefJk8++u+AxyWKoI9+/fR1paGuLi4szHPDw8EBcXhwMHDhR5n9atWyMtLc3ctXbhwgVs27YNzz77rN3ndCZntNHk7NmzCAsLQ61atdCnTx9cvHjReQ0phj3tu3fvXqGuXz8/P+zbt8/uczqTM9poIoXX0B4HDhyweD4AID4+3vx8SO01tFVp7TOR6+tnDWufA7m7desWatasifDwcDz33HP47bff3F0luxiNRuTm5iIoKAiA6z6DDG6KcOPGDRgMBoSEhFgcDwkJwdWrV4u8T+/evTFlyhQ89dRT8PLyQlRUFNq1a4d33nnH7nM6kzPaCAAtW7bEypUrsX37dnz00UdIT09HmzZtkJub69T2FGRP++Lj4zF37lycPXsWRqMRu3btwqZNm5CZmWn3OZ3JGW0EpPMa2uPq1atFPh85OTn4+++/Jfca2qq09gHyfv2sUdxzIIfXz1p169bF8uXL8eWXX+K///0vjEYjWrdujcuXL7u7ajabM2cObt26hR49egBw3fcogxsH2bt3L6ZNm4bFixfj8OHD2LRpE7Zu3YqpU6e6u2oOY00bO3fujH/9619o3Lgx4uPjsW3bNty8eRPr1693Y82t8+GHH6JOnTqoV68evL29MWzYMAwcOBAeHsr5mFjTRjm/hsTXTwlatWqF/v37o2nTpoiNjcWmTZtQpUoVfPzxx+6umk1SU1MxefJkrF+/HsHBwS597HIufTSZqFy5Mjw9PZGVlWVxPCsrC1WrVi3yPuPHj0e/fv0waNAgAMBjjz2G27dvIykpCePGjbPrnM7kjDYWFQRUrFgRjz76KM6dO+f4RpTAnvZVqVIFmzdvxt27d6HT6RAWFoYxY8agVq1adp/TmZzRxqK46zW0R9WqVYt8PgIDA+Hn5wdPT09JvYa2Kq19RZHT62eN4p4DObx+9vLy8kKzZs1k9RquXbsWgwYNwueff24xBOWq71Hl/EnqQN7e3oiJicHu3bvNx4xGI3bv3o1WrVoVeZ87d+4Uurh7enoCAIQQdp3TmZzRxqLcunUL58+fR2hoqINqbp2yPN++vr6oVq0aHj58iI0bN+K5554r8zmdwRltLIq7XkN7tGrVyuL5AIBdu3aZnw+pvYa2Kq19RZHT62cNe54DuTMYDDhx4oRsXsM1a9Zg4MCBWLNmDbp06WJxm8s+gw6bmqwwa9euFT4+PmLlypXi999/F0lJSaJixYrmdLx+/fqJMWPGmMtPnDhRBAQEiDVr1ogLFy6InTt3iqioKNGjRw+rz+lqzmjjm2++Kfbu3SvS09PF/v37RVxcnKhcubK4du2a5Nv3008/iY0bN4rz58+L77//XnTo0EFERkaKv/76y+pzupoz2iil1zA3N1ccOXJEHDlyRAAQc+fOFUeOHBF//PGHEEKIMWPGiH79+pnLm1KlR40aJU6ePCkWLVpUZCq4VF5DZ7RPzq+fEMJcPiYmRvTu3VscOXJE/Pbbb+bb9+/fL8qVKyfmzJkjTp48KSZOnOjWVHBntHHy5Mlix44d4vz58yItLU306tVL+Pr6WpRxFVvb99lnn4ly5cqJRYsWWaSy37x501zGFZ9BBjclWLBggahRo4bw9vYWLVq0ED/99JP5ttjYWJGYmGj+/cGDB2LSpEkiKipK+Pr6ivDwcPHvf//b4qJR2jndwdFt7NmzpwgNDRXe3t6iWrVqomfPnuLcuXMubJElW9q3d+9eUb9+feHj4yMqVaok+vXrJ65cuWLTOd3B0W2U0mu4Z88eAaDQj6lNiYmJIjY2ttB9mjZtKry9vUWtWrXEihUrCp1XKq+hM9on99evqPI1a9a0KLN+/Xrx6KOPCm9vb9GwYUOxdetW1zSoCM5o48iRI83vz5CQEPHss89arBPjSra2LzY2tsTyJs7+DGqEKGY8gYiIiEiGOOeGiIiIFIXBDRERESkKgxsiIiJSFAY3REREpCgMboiIiEhRGNwQERGRojC4ISIiIkVhcENEJAF79+6FRqPBzZs33V0VItljcEOkMgMGDIBGo8GMGTMsjm/evBkajcb8uxACn3zyCVq1aoXAwEBUqFABDRs2xIgRI6zewO/OnTsYO3YsoqKi4OvriypVqiA2NhZffvmluUxERARSUlIc0jZnMz13Go0GXl5eiIyMxOjRo3H37l2bztOuXTuMHDnS4ljr1q2RmZkJrVbrwBoTqRODGyIV8vX1xcyZM/HXX38VebsQAr1798bw4cPx7LPPYufOnfj999+xbNky+Pr64r333rPqcYYMGYJNmzZhwYIFOHXqFLZv344XX3wROp3Okc1xqU6dOiEzMxMXLlzAvHnz8PHHH2PixIllPq+3tzeqVq1qEWASkZ0cupkDEUleYmKi6Nq1q6hXr54YNWqU+fgXX3whTF8Ja9asEQDEl19+WeQ5jEajVY+l1WrFypUri729qH1oTH744Qfx1FNPCV9fX1G9enXx+uuvi1u3bplvX716tYiJiREVKlQQISEh4qWXXhJZWVnm20174mzfvl00bdpU+Pr6ivbt24usrCyxbds2Ua9ePREQECBeeuklcfv2bavak5iYKJ577jmLY88//7xo1qyZ+fcbN26IXr16ibCwMOHn5ycaNWokUlNTLc5RsM3p6enm+ubfq23Dhg2iQYMGwtvbW9SsWVPMmTPHqnoSqR17bohUyNPTE9OmTcOCBQtw+fLlQrevWbMGdevWRbdu3Yq8v7W9C1WrVsW2bduQm5tb5O2bNm1C9erVMWXKFGRmZiIzMxMAcP78eXTq1AkvvPACjh8/jnXr1mHfvn0YNmyY+b4PHjzA1KlTcezYMWzevBkZGRkYMGBAoceYNGkSFi5ciB9//BGXLl1Cjx49kJKSgtTUVGzduhU7d+7EggULrGpPQb/++it+/PFHeHt7m4/dvXsXMTEx2Lp1K3799VckJSWhX79+OHToEADgww8/RKtWrfDqq6+a2xweHl7o3GlpaejRowd69eqFEydOYNKkSRg/fjxWrlxpV12JVMXd0RURuVb+3ocnnnhCvPzyy0IIy56bevXqiW7dulncb8SIEcLf31/4+/uLatWqWfVY3333nahevbrw8vISjz/+uBg5cqTYt2+fRZmaNWuKefPmWRx75ZVXRFJSksWxH374QXh4eIi///67yMf6+eefBQCRm5srhPin5+bbb781l5k+fboAIM6fP28+NnjwYBEfH29VexITE4Wnp6fw9/cXPj4+AoDw8PAQGzZsKPF+Xbp0EW+++ab599jYWDFixAiLMgV7bnr37i06duxoUWbUqFGiQYMGVtWVSM3Yc0OkYjNnzsSqVatw8uTJUsuOGzcOR48exYQJE3Dr1i2rzt+2bVtcuHABu3fvxosvvojffvsNbdq0wdSpU0u837Fjx7By5UpUqFDB/BMfHw+j0Yj09HQAeT0bCQkJqFGjBgICAhAbGwsAuHjxosW5GjdubP5/SEgIypcvj1q1alkcu3btmlXtAYD27dvj6NGjOHjwIBITEzFw4EC88MIL5tsNBgOmTp2Kxx57DEFBQahQoQJ27NhRqF6lOXnyJJ588kmLY08++STOnj0Lg8Fg07mI1IbBDZGKtW3bFvHx8Rg7dqzF8Tp16uD06dMWx6pUqYLatWsjODjYpsfw8vJCmzZt8Pbbb2Pnzp2YMmUKpk6divv37xd7n1u3bmHw4ME4evSo+efYsWM4e/YsoqKicPv2bcTHxyMwMBCfffYZfv75Z3zxxRcAUOi8Xl5e5v+bspzy02g0MBqNVrfH398ftWvXRpMmTbB8+XIcPHgQy5YtM98+e/ZsfPjhh3j77bexZ88eHD16FPHx8SW2l4gcq5y7K0BE7jVjxgw0bdoUdevWNR976aWX0Lt3b3z55Zd47rnnHPp4DRo0wMOHD3H37l14e3vD29u7UE9EdHQ0fv/9d9SuXbvIc5w4cQI6nQ4zZswwz1f55ZdfHFpPa3h4eOCdd95BcnIyevfuDT8/P+zfvx/PPfcc+vbtCwAwGo04c+YMGjRoYL5fUW0uqH79+ti/f7/Fsf379+PRRx+Fp6en4xtDpCDsuSFSucceewx9+vTB/Pnzzcd69eqFF198Eb169cKUKVNw8OBBZGRk4LvvvsO6deusvri2a9cOH3/8MdLS0pCRkYFt27bhnXfeQfv27REYGAggb52b77//HleuXMGNGzcAAG+//TZ+/PFHDBs2DEePHsXZs2fx5ZdfmicU16hRA97e3liwYAEuXLiAr776qtShLmf517/+BU9PTyxatAhAXq/Xrl278OOPP+LkyZMYPHgwsrKyLO4TERFhfk5v3LhRZM/Rm2++id27d2Pq1Kk4c+YMVq1ahYULF+Ktt95ySbuI5IzBDRFhypQpFhdYjUaDdevWISUlBdu2bcPTTz+NunXr4uWXX0Z4eDj27dtn1Xnj4+OxatUqPPPMM6hfvz5ef/11xMfHY/369RaPnZGRgaioKFSpUgVA3jyZ7777DmfOnEGbNm3QrFkzTJgwAWFhYQDyhshWrlyJzz//HA0aNMCMGTMwZ84cBz4j1itXrhyGDRuGWbNm4fbt23j33XcRHR2N+Ph4tGvXDlWrVkX37t0t7vPWW2/B09MTDRo0QJUqVYqcjxMdHY3169dj7dq1aNSoESZMmIApU6YUmRFGRJY0Qgjh7koQEREROQp7boiIiEhRGNwQkd3yp2oX/Pnhhx/cXT2bXLx4scT22JrKTUTuw2EpIrJbSRtoVqtWDX5+fi6sTdk8fPgQGRkZxd4eERGBcuWYYEokBwxuiIiISFE4LEVERESKwuCGiIiIFIXBDRERESkKgxsiIiJSFAY3REREpCgMboiIiEhRGNwQERGRojC4ISIiIkX5/4nild+K3JESAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcAFJREFUeJzt3XlYVGX/BvB7GBk2mUFQNkFAsNQSFVREy9wSDSnL3lzKcIv0BQsxNXNJs9IsFRXTLLdKskzrl0saotarUhpKrpEYmia4DDGgJiBzfn/QnBjZZoZZ4f5c11w4c5455znn9ZW753zP80gEQRBARERERLWys3QHiIiIiGwBQxMRERGRDhiaiIiIiHTA0ERERESkA4YmIiIiIh0wNBERERHpgKGJiIiISAcMTUREREQ6YGgiIiIi0gFDExFRA7NhwwZIJBJcuHDB0l0halAYmohIb0ePHkVCQgIeeOABuLi4oFWrVnjmmWfw22+/VWnbu3dvSCQSSCQS2NnZQS6X4/7778eoUaOQlpam13G3b9+ORx55BJ6ennB2dkbr1q3xzDPPYPfu3cY6tSrefvttfP3111U+P3z4MObOnYvCwkKTHftec+fOFa+lRCKBs7Mz2rdvj1mzZqGoqMgox0hNTUVycrJR9kXU0DA0EZHe3nnnHWzduhX9+vXDsmXLEBcXhx9++AFhYWE4depUlfZ+fn745JNP8PHHH+Pdd9/F448/jsOHD2PAgAEYNmwYysrK6jzme++9h8cffxwSiQQzZszA0qVLMXToUJw7dw6bN282xWkCqD00zZs3z6yhSWPVqlX45JNPsGTJErRt2xZvvfUWBg4cCGMsJcrQRFSzJpbuABHZnqSkJKSmpkImk4mfDRs2DB06dMDChQvx6aefarVXKBR47rnntD5buHAhXnrpJbz//vsIDAzEO++8U+Px7t69i/nz5+PRRx/Fd999V2X7tWvX6nlG1uP27dtwdnautc3TTz+N5s2bAwAmTJiAoUOHYtu2bfjxxx8RGRlpjm4SNUocaSIivfXo0UMrMAFAmzZt8MADD+Ds2bM67UMqlWL58uVo3749UlJSoFKpamx748YNFBUVoWfPntVu9/T01Hp/584dzJ07F/fddx8cHR3h4+ODp556CufPnxfbvPfee+jRowc8PDzg5OSE8PBwfPnll1r7kUgkuHXrFjZu3CjeEhs9ejTmzp2LqVOnAgCCgoLEbZVriD799FOEh4fDyckJ7u7uGD58OC5duqS1/969e+PBBx9EZmYmevXqBWdnZ7z22ms6Xb/K+vbtCwDIzc2ttd3777+PBx54AA4ODvD19UV8fLzWSFnv3r2xc+dOXLx4UTynwMBAvftD1FBxpImIjEIQBFy9ehUPPPCAzt+RSqUYMWIEZs+ejYMHDyI6Orradp6ennBycsL27dsxadIkuLu717jP8vJyDB48GOnp6Rg+fDhefvllFBcXIy0tDadOnUJwcDAAYNmyZXj88cfx7LPPorS0FJs3b8Z//vMf7NixQ+zHJ598gvHjx6Nbt26Ii4sDAAQHB8PFxQW//fYbPvvsMyxdulQc9WnRogUA4K233sLs2bPxzDPPYPz48bh+/TpWrFiBXr164fjx43BzcxP7q1QqMWjQIAwfPhzPPfccvLy8dL5+Gpow6OHhUWObuXPnYt68eejfvz8mTpyI7OxsrFq1CkePHsWhQ4dgb2+PmTNnQqVS4fLly1i6dCkAoGnTpnr3h6jBEoiIjOCTTz4RAAhr167V+vyRRx4RHnjggRq/99VXXwkAhGXLltW6/zlz5ggABBcXF2HQoEHCW2+9JWRmZlZpt27dOgGAsGTJkirb1Gq1+Ofbt29rbSstLRUefPBBoW/fvlqfu7i4CLGxsVX29e677woAhNzcXK3PL1y4IEilUuGtt97S+vzkyZNCkyZNtD5/5JFHBADC6tWrazzvyl5//XUBgJCdnS1cv35dyM3NFT744APBwcFB8PLyEm7duiUIgiCsX79eq2/Xrl0TZDKZMGDAAKG8vFzcX0pKigBAWLdunfhZdHS0EBAQoFN/iBob3p4jonr79ddfER8fj8jISMTGxur1Xc1IRnFxca3t5s2bh9TUVHTu3Bl79uzBzJkzER4ejrCwMK1bglu3bkXz5s0xadKkKvuQSCTin52cnMQ///XXX1CpVHj44Ydx7Ngxvfp/r23btkGtVuOZZ57BjRs3xJe3tzfatGmD/fv3a7V3cHDAmDFj9DrG/fffjxYtWiAoKAgvvvgiQkJCsHPnzhprofbu3YvS0lIkJibCzu7ff/ZfeOEFyOVy7Ny5U/8TJWqEeHuOiOolPz8f0dHRUCgU+PLLLyGVSvX6/s2bNwEArq6udbYdMWIERowYgaKiIvz000/YsGEDUlNTERMTg1OnTsHR0RHnz5/H/fffjyZNav/nbceOHXjzzTeRlZWFkpIS8fPKwcoQ586dgyAIaNOmTbXb7e3ttd63bNmySn1YXbZu3Qq5XA57e3v4+fmJtxxrcvHiRQAVYasymUyG1q1bi9uJqHYMTURkMJVKhUGDBqGwsBD/+9//4Ovrq/c+NFMUhISE6PwduVyORx99FI8++ijs7e2xceNG/PTTT3jkkUd0+v7//vc/PP744+jVqxfef/99+Pj4wN7eHuvXr0dqaqre51CZWq2GRCLBt99+W22AvLdGqPKIl6569eol1lERkfkwNBGRQe7cuYOYmBj89ttv2Lt3L9q3b6/3PsrLy5GamgpnZ2c89NBDBvWjS5cu2LhxI/Ly8gBUFGr/9NNPKCsrqzKqo7F161Y4Ojpiz549cHBwED9fv359lbY1jTzV9HlwcDAEQUBQUBDuu+8+fU/HJAICAgAA2dnZaN26tfh5aWkpcnNz0b9/f/Gz+o60ETVkrGkiIr2Vl5dj2LBhyMjIwJYtWwyaG6i8vBwvvfQSzp49i5deeglyubzGtrdv30ZGRka127799lsA/956Gjp0KG7cuIGUlJQqbYV/Jn+USqWQSCQoLy8Xt124cKHaSSxdXFyqncDSxcUFAKpse+qppyCVSjFv3rwqk00KggClUln9SZpQ//79IZPJsHz5cq0+rV27FiqVSuupRRcXl1qnfyBqzDjSRER6mzJlCr755hvExMSgoKCgymSW905kqVKpxDa3b99GTk4Otm3bhvPnz2P48OGYP39+rce7ffs2evToge7du2PgwIHw9/dHYWEhvv76a/zvf//DkCFD0LlzZwDA888/j48//hhJSUk4cuQIHn74Ydy6dQt79+7Ff//7XzzxxBOIjo7GkiVLMHDgQIwcORLXrl3DypUrERISghMnTmgdOzw8HHv37sWSJUvg6+uLoKAgREREIDw8HAAwc+ZMDB8+HPb29oiJiUFwcDDefPNNzJgxAxcuXMCQIUPg6uqK3NxcfPXVV4iLi8Mrr7xSr+uvrxYtWmDGjBmYN28eBg4ciMcffxzZ2dl4//330bVrV63/vcLDw/H5558jKSkJXbt2RdOmTRETE2PW/hJZLUs+ukdEtknzqHxNr9raNm3aVGjTpo3w3HPPCd99951OxysrKxM+/PBDYciQIUJAQIDg4OAgODs7C507dxbeffddoaSkRKv97du3hZkzZwpBQUGCvb294O3tLTz99NPC+fPnxTZr164V2rRpIzg4OAht27YV1q9fLz7SX9mvv/4q9OrVS3BychIAaE0/MH/+fKFly5aCnZ1dlekHtm7dKjz00EOCi4uL4OLiIrRt21aIj48XsrOzta5NbdMx3EvTv+vXr9fa7t4pBzRSUlKEtm3bCvb29oKXl5cwceJE4a+//tJqc/PmTWHkyJGCm5ubAIDTDxBVIhEEIyxWRERERNTAsaaJiIiISAcMTUREREQ6YGgiIiIi0gFDExEREZEOGJqIiIiIdMDQRERERKQDTm5pJGq1GleuXIGrqyuXISAiIrIRgiCguLgYvr6+sLOrfSyJoclIrly5An9/f0t3g4iIiAxw6dIl+Pn51dqGoclIXF1dAVRc9NrW0CIiIiLrUVRUBH9/f/H3eG0YmoxEc0tOLpczNBEREdkYXUprWAhOREREpAOGJiIiIiIdMDQRERER6YA1TURERBakVqtRWlpq6W40aDKZrM7pBHTB0ERERGQhpaWlyM3NhVqttnRXGjQ7OzsEBQVBJpPVaz8MTURERBYgCALy8vIglUrh7+9vlJEQqkoz+XReXh5atWpVrwmoGZqIiIgs4O7du7h9+zZ8fX3h7Oxs6e40aC1atMCVK1dw9+5d2NvbG7wfxloiIiILKC8vB4B63zKiummuseaaG4qhiYiIyIK4XqnpGesa8/aclVIqlbU+TSGTyeDh4WHGHhERETVuDE1WSKlUIiUlpc52CQkJDE5ERERmwttzVkjX+To4rwcREZnb6NGjIZFIIJFIYG9vDy8vLzz66KNYt26dXlMnbNiwAW5ubqbrqAlYVWhauHAhJBIJEhMTxc/u3LmD+Ph4eHh4oGnTphg6dCiuXr2q9b0//vgD0dHRcHZ2hqenJ6ZOnYq7d+9qtTlw4ADCwsLg4OCAkJAQbNiwocrxV65cicDAQDg6OiIiIgJHjhwxxWkSERHVm1KpRF5eXo0vpVJpsmMPHDgQeXl5uHDhAr799lv06dMHL7/8MgYPHlzl929DYjW3544ePYoPPvgAoaGhWp9PnjwZO3fuxJYtW6BQKJCQkICnnnoKhw4dAlBRCR8dHQ1vb28cPnwYeXl5eP7552Fvb4+3334bAJCbm4vo6GhMmDABmzZtQnp6OsaPHw8fHx9ERUUBAD7//HMkJSVh9erViIiIQHJyMqKiopCdnQ1PT0/zXgwiIqJaWLqMw8HBAd7e3gCAli1bIiwsDN27d0e/fv2wYcMGjB8/HkuWLMH69evx+++/w93dHTExMVi0aBGaNm2KAwcOYMyYMQD+LdJ+/fXXMXfuXHzyySdYtmwZsrOz4eLigr59+yI5OdkqfhdbxUjTzZs38eyzz+LDDz9Es2bNxM9VKhXWrl2LJUuWoG/fvggPD8f69etx+PBh/PjjjwCA7777DmfOnMGnn36KTp06YdCgQZg/fz5Wrlwp3r5avXo1goKCsHjxYrRr1w4JCQl4+umnsXTpUvFYS5YswQsvvIAxY8agffv2WL16NZydnbFu3TrzXgwiIqI6WGMZR9++fdGxY0ds27YNQMUs3MuXL8fp06exceNG7Nu3D9OmTQMA9OjRA8nJyZDL5eLI2CuvvAIAKCsrw/z58/HLL7/g66+/xoULFzB69GiznUdtrCI0xcfHIzo6Gv3799f6PDMzE2VlZVqft23bFq1atUJGRgYAICMjAx06dICXl5fYJioqCkVFRTh9+rTY5t59R0VFifsoLS1FZmamVhs7Ozv0799fbHOvkpISFBUVab2IiIgas7Zt2+LChQsAgMTERPTp0weBgYHo27cv3nzzTXzxxRcAKp4AVygUkEgk8Pb2hre3N5o2bQoAGDt2LAYNGoTWrVuje/fuWL58Ob799lvcvHnTUqclsnho2rx5M44dO4YFCxZU2Zafnw+ZTFalUMzLywv5+flim8qBSbNds622NkVFRfj7779x48YNlJeXV9tGs497LViwAAqFQnz5+/vrftJEREQNkCAI4u22vXv3ol+/fmjZsiVcXV0xatQoKJVK3L59u9Z9ZGZmIiYmBq1atYKrqyseeeQRABX1y5Zm0dB06dIlvPzyy9i0aRMcHR0t2RW9zZgxAyqVSnxdunTJ0l0iIiKyqLNnzyIoKAgXLlzA4MGDERoaiq1btyIzMxMrV64EUPstw1u3biEqKgpyuRybNm3C0aNH8dVXX9X5PXOxaCF4ZmYmrl27hrCwMPGz8vJy/PDDD0hJScGePXtQWlqKwsJCrdGmq1evigVo3t7eVZ5y0zxdV7nNvU/cXb16FXK5HE5OTpBKpZBKpdW20ezjXg4ODnBwcDDsxOug65T6nHqfiIisxb59+3Dy5ElMnjwZmZmZUKvVWLx4sbgQsebWnIZMJquyrMmvv/4KpVKJhQsXindwfv75Z/OcgA4sGpr69euHkydPan02ZswYtG3bFtOnT4e/vz/s7e2Rnp6OoUOHAgCys7Pxxx9/IDIyEgAQGRmJt956C9euXRMr69PS0iCXy9G+fXuxza5du7SOk5aWJu5DJpMhPDwc6enpGDJkCICKVZHT09ORkJBgsvOviYeHBxISEjgjOBERWaWSkhLk5+ejvLwcV69exe7du7FgwQIMHjwYzz//PE6dOoWysjKsWLECMTExOHToEFavXq21j8DAQNy8eRPp6eno2LEjnJ2d0apVK8hkMqxYsQITJkzAqVOnMH/+fAudZVUWDU2urq548MEHtT5zcXGBh4eH+Pm4ceOQlJQEd3d3yOVyTJo0CZGRkejevTsAYMCAAWjfvj1GjRqFRYsWIT8/H7NmzUJ8fLw4EjRhwgSkpKRg2rRpGDt2LPbt24cvvvgCO3fuFI+blJSE2NhYdOnSBd26dUNycjJu3bolPhJpbgxERERkrXbv3g0fHx80adIEzZo1Q8eOHbF8+XLExsbCzs4OHTt2xJIlS/DOO+9gxowZ6NWrFxYsWIDnn39e3EePHj0wYcIEDBs2DEqlUpxyYMOGDXjttdewfPlyhIWF4b333sPjjz9uwbP9l0QQBMHSnaisd+/e6NSpE5KTkwFUTG45ZcoUfPbZZygpKUFUVBTef/99rdtmFy9exMSJE3HgwAG4uLggNjYWCxcuRJMm/2bCAwcOYPLkyThz5gz8/Pwwe/bsKo8wpqSk4N1330V+fj46deqE5cuXIyIiQqd+FxUVQaFQQKVSQS6X1/s6VHb5MnDuHNCmDeDnZ9RdExGRhdy5cwe5ubkICgrSu67X0vM02ZrarrU+v7+tLjTZKlOFprVrgbg4QK0G7OyANWuAceOMtnsiIrKQ+oQmgAu768NYoclqZgSnqi5f/jcwARU/X3wRiIriiBMRUWPHQGR+Fp+niWp27ty/gUmjvBzIybFMf4iIiBozhiYr1qZNxS25yqRSICTEMv0hIiJqzBiarJifX0UNk1Ra8V4qBT74gLfmiIiILIE1TVZu3LiKGqacnIoRJgYmIiIiy2BosgF+fgxLRERElsbbc0REREQ6YGgiIiIi0gFDUyOhVCqRl5dX40upVFq6i0RERDhw4AAkEgkKCwt1/k5gYKC4kogpsaapEeB0+0REZCyjR4/Gxo0b8eKLL1ZZhDc+Ph7vv/8+YmNjsWHDBst00IQYmhqQmqbUv3Hjhk7fr206fiIiIg1/f39s3rwZS5cuhZOTE4CKpUpSU1PRqlUrC/fOdHh7roHQjCatWbOmymvbtm2W7h4RETUgYWFh8Pf31/r9sm3bNrRq1QqdO3cWPyspKcFLL70ET09PODo64qGHHsLRo0e19rVr1y7cd999cHJyQp8+fXDhwoUqxzt48CAefvhhODk5wd/fHy+99BJu3bplsvOrCUNTA8FRIiKixuvyZWD//oqf5jJ27FisX79efL9u3TqMGTNGq820adOwdetWbNy4EceOHUNISAiioqJQUFAAALh06RKeeuopxMTEICsrC+PHj8err76qtY/z589j4MCBGDp0KE6cOIHPP/8cBw8eREJCgulP8h4MTURERDZs7VogIADo27fi59q15jnuc889h4MHD+LixYu4ePEiDh06hOeee07cfuvWLaxatQrvvvsuBg0ahPbt2+PDDz+Ek5MT1v7TyVWrViE4OBiLFy/G/fffj2effRajR4/WOs6CBQvw7LPPIjExEW3atEGPHj2wfPlyfPzxx7hz5455TvYfrGkiIiKyUZcvA3Fx/y7urlYDL75YsZKEqSdFbtGiBaKjo7FhwwYIgoDo6Gg0b95c3H7+/HmUlZWhZ8+e4mf29vbo1q0bzp49CwA4e/YsIiIitPYbGRmp9f6XX37BiRMnsGnTJvEzQRCgVquRm5uLdu3ameL0qsXQ1AipVK4oKPCAu7sSCkWxpbtDREQGOnfu38CkUV5esfSWOVaSGDt2rHibbOXKlSY5xs2bN/Hiiy/ipZdeqrLN3EXnDE2NzLFjnbF9+2AIgh0kEjViYnYgLOy4pbtFREQGaNMGsLPTDk5SacVapeYwcOBAlJaWQiKRICoqSmtbcHAwZDIZDh06hICAAABAWVkZjh49isTERABAu3bt8M0332h978cff9R6HxYWhjNnziDEXCdVC9Y0NVAqlStycwOhUrlqfaYJTAAgCHbYvn2w2EYmk1mkr0REZBg/P2DNmoqgBFT8/OAD861XKpVKcfbsWZw5cwZSTSf+4eLigokTJ2Lq1KnYvXs3zpw5gxdeeAG3b9/GuHHjAAATJkzAuXPnMHXqVGRnZyM1NbXK/E7Tp0/H4cOHkZCQgKysLJw7dw7/93//Z5FCcI40NUA1jSYVFHiIgUlDEOzQs2csevcGJ7YkIrJB48ZV1DDl5FSMMJl7gXe5XF7jtoULF0KtVmPUqFEoLi5Gly5dsGfPHjRr1gxAxe21rVu3YvLkyVixYgW6deuGt99+G2PHjhX3ERoaiu+//x4zZ87Eww8/DEEQEBwcjGHDhpn83O4lEQRBMPtRG6CioiIoFAqoVKpa/wKZimaeJpXKFcnJiVrhSCJRIzExGQCwbNlkqNUScZtUCly4YP7/kxERNXZ37txBbm4ugoKC4OjoaOnuNGi1XWt9fn/z9lwD4eHhgYSEBPToEVvjaNLMmbFYs0ZisWFcIiIiW8bbcw2Ih4cHunevvigwIsIDHh6WH8YlIiKyVRxpamB0KQr08wN692ZgIiIi0gdHmhogjiYREREZH0OTlVIqlbWuJyeTyWp92s3Pj2GJiMgW8Hks0zPWNWZoskKaJ+HqkpCQwGkCiIhslGZeo9LSUjg5OVm4Nw2bZhDi3rmk9MXQZIVqG2EypB0REVmfJk2awNnZGdevX4e9vT3s7FhmbApqtRrXr1+Hs7MzmjSpX+xhaKIa1fcWIRER1UwikcDHxwe5ubm4ePGipbvToNnZ2aFVq1aQSCR1N64FQxNVi7cIiYhMTyaToU2bNrxzYGIymcwoI3kMTVQt3iIkIjIPOzs7zghuI3gD1QqpVKp73lddfLe6dqbtU/V9ICIiaiw40mSFysrKxD/XtPjuve0A09Ug1dYHIiKixoKhyYqpVK5iWAEq1pDbvn0wgoNzoFAUa7U1VQ2SPn0gIiJqyHh7zgppHoksKPCodvHdggJ3rXaA6WqQ6uoDERFRY8HQZIXc3NwAAO7uSkgkaq1tEoka7u4FWu1Mqa4+EBERNRYMTVZMoShGaOgJAJrp3wWEhp7Q6baYsQq3FYpixMTsEIOTpqaJt+aIiKixYU2TFVOpXHHiRCgAzWRcEpw4EYq+fffVGlqMUbgtk8nEP4eFHUdwcA4KCtzh7l6gdezK7YiIiBoyhiYrVls9UU2hyViF2x4eHkhISOCM4ERERP9gaLJCmtEbTT1R5eBUuZ6o8jxNN27cAGBY0KoJAxEREdG/GJqsUOVRnpYtizB9ugLl5RJIpQLmzs1HeXlF+Pn888+rfLeuoEVERESGYSG4lfLw8ICPjw+mTHHDhQsS7N8PXLggwbhxtS82WFfhNmuQiIiIDMORJhvg51fxAoC8vLrbh4UdR0JCGxQVeSIw8C58fbsC6MoaJCIionpgaLJxKpUrCgo84O6u1KpZevBBN/j4MCAREREZC0OTDeOacERERObDmiYbVdPUAvWdzJKIiIiqZ9HQtGrVKoSGhkIul0MulyMyMhLffvutuL13796QSCRarwkTJmjt448//kB0dDScnZ3h6emJqVOn4u7du1ptDhw4gLCwMDg4OCAkJAQbNmyo0peVK1ciMDAQjo6OiIiIwJEjR0xyzsai75pwSqUSeXl5Nb6USqXR+mapY2VmXsWXXyqRmXnVJMciIqLGzaK35/z8/LBw4UK0adMGgiBg48aNeOKJJ3D8+HE88MADAIAXXngBb7zxhvgdZ2dn8c/l5eWIjo6Gt7c3Dh8+jLy8PDz//POwt7fH22+/DQDIzc1FdHQ0JkyYgE2bNiE9PR3jx4+Hj48PoqKiAFQ8up+UlITVq1cjIiICycnJiIqKQnZ2Njw9Pc14RXSnz9QCSqUSKSkpde4zISGh3oXi9x6rpporYx+rtluVxjgWERGRRUeaYmJi8Nhjj6FNmza477778NZbb6Fp06b48ccfxTbOzs7w9vYWX3K5XNz23Xff4cyZM/j000/RqVMnDBo0CPPnz8fKlSvFmaxXr16NoKAgLF68GO3atUNCQgKefvppLF26VNzPkiVL8MILL2DMmDFo3749Vq9eDWdnZ6xbt858F0NHmikD9Jla4N5ZvWtal6622b91VXkfx451RnJyIjZujEVyciKOHetskmPVdavSGMciIiKymkLw8vJybNmyBbdu3UJkZKT4+aZNm/Dpp5/C29sbMTExmD17tjjalJGRgQ4dOsDLy0tsHxUVhYkTJ+L06dPo3LkzMjIy0L9/f61jRUVFITExEUDFL9TMzEzMmDFD3G5nZ4f+/fsjIyOjxv6WlJSgpKREfF9UVFSv89fVvcubzJlzHRcuNNF5agFzFY8bazkXXRhzFnQiIqKaWDw0nTx5EpGRkbhz5w6aNm2Kr776Cu3btwcAjBw5EgEBAfD19cWJEycwffp0ZGdnY9u2bQCA/Px8rcAEQHyfn59fa5uioiL8/fff+Ouvv1BeXl5tm19//bXGfi9YsADz5s2r38kbqHIg8vEBwsN1+15DDTKcBZ2IiMzB4qHp/vvvR1ZWFlQqFb788kvExsbi+++/R/v27REXFye269ChA3x8fNCvXz+cP38ewcHBFuw1MGPGDCQlJYnvi4qK4O/vb8Ee1c0cQaawsBBA3UGmsLAQPj4+Rjmm5lblvSNoHGUiIiJjsnhokslkCAkJAQCEh4fj6NGjWLZsGT744IMqbSMiIgAAOTk5CA4Ohre3d5Wn3K5evQoA8Pb2Fn9qPqvcRi6Xw8nJCVKpFFKptNo2mn1Ux8HBAQ4ODnqerWWZY0RG8+SiQlGM0NAT+OWXjgAkAASEhp4Qg8y9TzjWV1jYcQQH56CgwB3u7gUMTEREZHRWN0+TWq3WqhWqLCsrCwDEEYrIyEicPHkS165dE9ukpaVBLpeLt/giIyORnp6utZ+0tDSxbkomkyE8PFyrjVqtRnp6ulZtVUNQV/G4MalUrjhxIhQVgQkAJDhxItSk80gpFMUICrrIwERERCZh0ZGmGTNmYNCgQWjVqhWKi4uRmpqKAwcOYM+ePTh//jxSU1Px2GOPwcPDAydOnMDkyZPRq1cvhIaGAgAGDBiA9u3bY9SoUVi0aBHy8/Mxa9YsxMfHi6NAEyZMQEpKCqZNm4axY8di3759+OKLL7Bz506xH0lJSYiNjUWXLl3QrVs3JCcn49atWxgzZoxFrospmWtEhsXZRETU0Fg0NF27dg3PP/888vLyoFAoEBoaij179uDRRx/FpUuXsHfvXjHA+Pv7Y+jQoZg1a5b4falUih07dmDixImIjIyEi4sLYmNjteZ1CgoKws6dOzF58mQsW7YMfn5++Oijj8Q5mgBg2LBhuH79OubMmYP8/Hx06tQJu3fvrlIcbqsqTz8AVIzIVBdc7m1nCHt7ewB13wrUtKsPXftrjPMiIiKSCIIgWLoTDUFRUREUCgVUKpXWXFLWQqlU1jpfUW3TFOgjLy8Pa9asAVD79AZxcXFGKQQ313kREVHDpM/vb4sXgpN5WCI4mONWIAMRERGZC0MTmVRNtwKJiIhsjdU9PUe2jXVGRETUUHGkiYzq3mVeqsM6IyIiskUMTWR0DERERNQQ8fYcERERkQ4YmoiIiIh0wNBEREREpAOGJiIiIiIdMDQRGdnly8D+/RU/iYio4WBoIqqBIeFn7VogIADo27fi59q1pusfERGZF0MTUSVKpRJ5eXlYvLgQAQHCP+FHwOLFhcjLy4NSqazxe5mZVxEXJ0CtrvhMrQZefFFAZubVGr9HRES2g/M0Ef1DqVQiJSUFKpUrkpMTIQgSAIBaLcHUqXL8+ec6KBTFSEhI0JqLSvO93NxAqNWxWvssL5dgxYpvERR0scr3iIjItnCkiegfmlnMCwo8IAja/9cQBDsUFLhrtbv3e+7uSkgkaq1tEoka7u4F1X6PiIhsC0MT0T3qCj81USiKEROzQ/yuRKJGTMwOLlhMRNRA8PYcGZ1SqRRHVa5csUNubhMEBd2Fr29FmLD2tec04Wf79sEQBDu9wk9Y2HEEB+egoMAd7u4FDExERA0IQxMZlaa+BwCOHetcJXiEhR0HAKuv76lP+FEoihmWiIgaIN6eI6PSjDCpVK5iYAIqaoK2bx8MlcpVq501UyiKERR0kQGIiIgAMDSRidRVTE1ERGRrGJrIJAwtpiYiIrJWDE1kErb4JJlMJjOonaHfIyIi28JCcDIZW3uSzMPDAwkJCbXWW1X35J+h3yMiItvC0EQmZWtPkhkabBiIiIgaPt6eIyIiItIBQxMZFet7iIiooeLtOTIqfep7Ll8Gzp0D2rQB/PzM2EkiIiIDMDSRQQxdKkXzvcWLCzFtmgJqtQR2dgIWLVJh5Mi/WTBNRERWi6GJ9GboUima76lUrkhOToQgSAAAarUEU6fK8eef66BQFFv9EitERNQ4saaJ9GboUima93XNFm4LS6wY4vJlYP/+ip9ERGR7GJrIYIYulWJNs4WbK8isXQsEBAB9+1b8XLvWtMcjIiLjY2gigxkafqxltnBzBZnLl4G4OED9z6VSq4EXX+SIExGRrWFNExlME37urWnSJfxYcrZwpVKJCxfuIi7OE2q1pq4KePFFAZ06XUNgYBOj1lSdO/dvYNIoLwdycvjUIBGRLWFoonqpT/ixxGzhmmL03NxAqNWxWtvKyyVYseJbBAVdNFoxulKphFx+F3Z2/wY0AJBKBbi6XoNSadyARkREpsPQRPVmaPhRqVxRUOABd3el2cKTpshcc2uxck1W5VuLxihGr/yU4eDB2k8ZRkfvwI4d1T9lSERE1omhiSyitqkKzKE+txZ1VTl41TYi11CfFiQiamgYmkhvhi6Vcvv2bQA1T1UQHJwDhaJYbGdq5q6rsrXFi4mISBtDE+lNn6VSKnN2dgZQ+1QFCkWx2M4cGGSIiEhXDE1kkPrU4NRVT0RERGSNOE8TmZ21zNNERESkD440kUVYcp4mIiIiQzA0kcVYop7I0CJ2IiIihiZqVAwtYjcEAxoRUcPC0ESNjrkmkjRnQCMiItNjaCKzaYwjLwxEREQNB0MTmQ1HXoiIyJZZdMqBVatWITQ0FHK5HHK5HJGRkfj222/F7Xfu3EF8fDw8PDzQtGlTDB06FFevXtXaxx9//IHo6Gg4OzvD09MTU6dOxd27d7XaHDhwAGFhYXBwcEBISAg2bNhQpS8rV65EYGAgHB0dERERgSNHjpjknBs7Dw8P+Pj41PhiYCIiImtl0dDk5+eHhQsXIjMzEz///DP69u2LJ554AqdPnwYATJ48Gdu3b8eWLVvw/fff48qVK3jqqafE75eXlyM6OhqlpaU4fPgwNm7ciA0bNmDOnDlim9zcXERHR6NPnz7IyspCYmIixo8fjz179ohtPv/8cyQlJeH111/HsWPH0LFjR0RFReHatWvmuxhERERk3QQr06xZM+Gjjz4SCgsLBXt7e2HLli3itrNnzwoAhIyMDEEQBGHXrl2CnZ2dkJ+fL7ZZtWqVIJfLhZKSEkEQBGHatGnCAw88oHWMYcOGCVFRUeL7bt26CfHx8eL78vJywdfXV1iwYIHO/VapVAIAQaVS6XfCREREZDH6/P62mhnBy8vLsXnzZty6dQuRkZHIzMxEWVkZ+vfvL7Zp27YtWrVqhYyMDABARkYGOnToAC8vL7FNVFQUioqKxNGqjIwMrX1o2mj2UVpaiszMTK02dnZ26N+/v9imOiUlJSgqKtJ6ERERUcNl8dB08uRJNG3aFA4ODpgwYQK++uortG/fHvn5+ZDJZHBzc9Nq7+Xlhfz8fABAfn6+VmDSbNdsq61NUVER/v77b9y4cQPl5eXVttHsozoLFiyAQqEQX/7+/gadP1nW5cvA/v0VP4mIiGpj8dB0//33IysrCz/99BMmTpyI2NhYnDlzxtLdqtOMGTOgUqnE16VLlyzdJdLT2rVAQADQt2/Fz7VrLd0jIiKyZhafckAmkyEkJAQAEB4ejqNHj2LZsmUYNmwYSktLUVhYqDXadPXqVXh7ewMAvL29qzzlpnm6rnKbe5+4u3r1KuRyOZycnCCVSiGVSqtto9lHdRwcHODg4GDYSZNFKZVKXLhwF3FxnlCrJQAAtRp48UUBnTpdQ2BgEz7FR0REVVh8pOlearUaJSUlCA8Ph729PdLT08Vt2dnZ+OOPPxAZGQkAiIyMxMmTJ7WecktLS4NcLkf79u3FNpX3oWmj2YdMJkN4eLhWG7VajfT0dLENNRxKpRIpKSlYsWK3GJg0ysslWLHiW6SkpECpVFqoh0REZK0sOtI0Y8YMDBo0CK1atUJxcTFSU1Nx4MAB7NmzBwqFAuPGjUNSUhLc3d0hl8sxadIkREZGonv37gCAAQMGoH379hg1ahQWLVqE/Px8zJo1C/Hx8eIo0IQJE5CSkoJp06Zh7Nix2LdvH7744gvs3LlT7EdSUhJiY2PRpUsXdOvWDcnJybh16xbGjBljketCpqOZWNPdXQmJRI3Kz0JIJGq4uxdotSMiItIwODQFBgZi7NixGD16NFq1amXQPq5du4bnn38eeXl5UCgUCA0NxZ49e/Doo48CAJYuXQo7OzsMHToUJSUliIqKwvvvvy9+XyqVYseOHZg4cSIiIyPh4uKC2NhYvPHGG2KboKAg7Ny5E5MnT8ayZcvg5+eHjz76CFFRUWKbYcOG4fr165gzZw7y8/PRqVMn7N69u0pxODUcCkUxYmJ2YPv2wRAEO0gkasTE7IBCUWzprhERkZWSCIIgGPLF5ORkbNiwAadOnUKfPn0wbtw4PPnkk422zqeoqAgKhQIqlQpyudzS3aEa5OXlYc2aNeJ7lcoVBQXucHcv0ApMcXFxKC/3wblzQJs2gJ9f/Y99+TKMuj8iIqo/fX5/G1zTlJiYiKysLBw5cgTt2rXDpEmT4OPjg4SEBBw7dszQ3RLVythTBCgUxQgKulhlhCk11cmoT9bxST0iIttX70LwsLAwLF++HFeuXMHrr7+Ojz76CF27dkWnTp2wbt06GDiQRSRSKpXIy8vD4sWFCAgQ/gkeAhYvLkReXp7Ri7ZVKldMm6aAWl3xXvNkXWbmVYOOdfkyEBeHe/bHuaGIiGxNvQvBy8rK8NVXX2H9+vVIS0tD9+7dMW7cOFy+fBmvvfYa9u7di9TUVGP0lRohzdNuKpUrkpMTIQiaKQIkmDpVjj//XAeFohgJCQlGmyagoMCjxifrgoIu6nUspVKJH38E1Grt9uXlwE8/KeHkBE5vQERkIwwOTceOHcP69evx2Wefwc7ODs8//zyWLl2Ktm3bim2efPJJdO3a1SgdpcZJ8xRbQYEH7l31RxDsUFDgDoWi2KhPuxnrybrKgU8iSayyv0OHNuLUKeMGPiIiMh2Db8917doV586dw6pVq/Dnn3/ivffe0wpMQMWTa8OHD693J4k0QaayykFGVzKZrM42mifrNMcz9Mk6TbhSKIoRGnoCgOZWtYDQ0BPi/uoKYVzqhYjIOhg80vT7778jICCg1jYuLi5Yv369oYcgEhlrigAPDw8kJCRUG1Ru3LiBbdu2AQDCwo4jODin2ifr9KVSueLEiVAAmlt+Epw4EYq+fffVud+1a/+th7KzA9asAcaNM7grRERUDwaHpj59+uDo0aNVbisUFhYiLCwMv//+e707R1SZsYKMrrfCFIpio8zbVNetxZrUVEAeFcUpC4iILMHg23MXLlxAeXl5lc9LSkrw559/1qtTRDWpaYoAa1RYWAig7luLmnaVVRSQK8XApKEpIOcyL0RE5qf3SNM333wj/lmz3IlGeXk50tPTERgYaJTOEdmyu3fvAqj71qKmnQYLyImIrJPeoWnIkCEAAIlEgtjYWK1t9vb2CAwMxOLFi43SOaKGQp9bi5ULyGsLW9ayPh5nOieixkLv0KT+535BUFAQjh49iubNmxu9U0Qaujztpk87Sx7LkBopYxakaxgz5LBQnYgaE4MLwXNzc43ZD6Jq1fa0m4ZMJjPKbSpjH8ve3t4o7YxVkA4YN+SwUJ2IGhuDQ9Mbb7xR6/Y5c+YYumsiLeas2zHmsSrX+xmjXX0ZO+ScO4dqC9VzchiaiKhhMjg0ffXVV1rvy8rKkJubiyZNmiA4OJihiciKGHs5F6VSCbn8LuzsPLWWnJFKBbi6XoNS2cTgAMoaKSKyVgaHpuPHj1f5rKioCKNHj8aTTz5Zr04RkfEY+2k8zf4AYPDgzlqF6tHRO7BjR8W/DYY83ccaKSKyZvVesLcyuVyOefPmISYmBqNGjTLmrolsjjmL2Gtj7KfxKrerrVBd36f7WCNFRNbOqKEJAFQqFVQqlbF3S2RzDC0sN2XYMsXTeMYqVGeNFBFZO4ND0/Lly7XeC4KAvLw8fPLJJxg0aFC9O0bUEBhS12PqJwaN+TSesZiyRoqIyFgMDk1Lly7Vem9nZ4cWLVogNjYWM2bMqHfHiBqzygGhoRdGm7JGiojImDhPE5EVawyF0aaqkSIiMrZ61TQJggClUgmJRML/AiQyIqVSiQsX7iIu7t/bVRWF0QI6dbqGwMCGe7vKGm8fEhEBgF3dTarKz8/H888/j2bNmsHLywuenp5o1qwZxo4di6tXrxq7j0SNiuZ21YoVu7XqewCgvFyCFSu+RUpKCpRKpYV6SETUOOk90lRUVIQePXrg5s2bGDNmDNq2bQtBEHDmzBl89tlnOHjwII4dO4amTZuaor9EDZ7mNpS7uxISibrKvEru7gVa7epi7KfxLDmVQkOv7yIi66Z3aFq2bBmkUilOnz6NFi1aaG2bNWsWevbsieXLl+O1114zWieJGqO65lXSlbGfxjPneoCVpaY6Ydq0hl3fRUTWTe/QtHPnTrz22mtVAhMAeHp6YsaMGfjwww8ZmoiMwFjzKhk7wJi7nkqlcsUbbyg48SURWZTeNU2//fYbevToUeP2Hj16IDs7u16dIqJ/KRTFCAq62KiLowsKPKqp76pYN4+1XURkLnqHpqKiIri5udW43c3NDUVFRfXpExE1IrrUPmnquyrTrJvHongiMhe9b88JggA7u5qzlkQigSAI9eoUETUetdVI3bhxA9u2bTPaunlERPVhUGi67777IJFIatxORKQPXWqkTLFuHhGRPvQOTevXrzdFP4joH5Z8pN/aceJLIrIkvUNTbGysXu0/++wzPP7443BxcdH3UESNkqUe6SciotrVaxkVXbz44ouIiIhA69atTX0oogaDgYiIyPoYtIyKPljjRERERA2ByUMTEZEtunwZ2L+/4icREcDQRERWzFJF8WvXAgEBQN++FT/XrjXq7onIRkkEE98/c3V1xS+//NLga5qKioqgUCigUqkgl8st3R0iszH1IrpKpdKsRfGXL1cEJXWluTSlUuDCBS7ZQtQQ6fP72+SF4ETU8GiCTMUiugqo1RLY2QlYtEiFkSP/NmqQMXdR/Llz2oEJqFiyJSeHoYmosTMoNJWXl+PQoUMIDQ2tdUkVAAgICIC9vb0hhyEiK6RUKpGSkgKVyhXJyYkQhIqJbtVqCaZOlePPP9dBoShGQkKCzT0FqFQqIZffhZ2dp9Zad1KpAFfXa1Aqm9jcORGR8RgUmqRSKQYMGICzZ8/WGZpOnTplyCGIyEppbpUVFHhAELTLIgXBDgUF7lAoim1uaRNNGASAwYM7ay3ZEh29Azt2HAcAmwyDRGQcBt+ee/DBB/H7778jKCjImP0hIhuhWUS3cnCSSNRwdy+wYK8MVznk1bZki62FQSIyHoOfnnvzzTfxyiuvYMeOHcjLy0NRUZHWi4gaNs0iuhJJRQHQvYvo2jqFohhBQRcbzPkQUf0ZPNL02GOPAQAef/xxrcV7BUGARCJBeXl5/XtHRFZP8/wt57EloobO4NC0f/9+Y/aDiGxEYWEhAEClcsX27YPx74C1HbZvH4zg4BwoFMUoLCyEj4+PpbpJRGR0BoemRx55xJj9ICIbcffuXQB1F4Jr2hERNRT1mhH8f//7H5577jn06NEDf/75JwDgk08+wcGDB43SOSKyXppC8MpsuRCciKguBoemrVu3IioqCk5OTjh27BhKSkoAACqVCm+//bZO+1iwYAG6du0KV1dXeHp6YsiQIcjOztZq07t3b0gkEq3XhAkTtNr88ccfiI6OhrOzMzw9PTF16tQq/5V74MABhIWFwcHBASEhIdiwYUOV/qxcuRKBgYFwdHREREQEjhw5oscVIWocNPOu1VUIzvnZiKihqdfTc6tXr8aHH36o9Y9jz549cezYMZ328f333yM+Ph4//vgj0tLSUFZWhgEDBuDWrVta7V544QXk5eWJr0WLFonbysvLER0djdLSUhw+fBgbN27Ehg0bMGfOHLFNbm4uoqOj0adPH2RlZSExMRHjx4/Hnj17xDaff/45kpKS8Prrr+PYsWPo2LEjoqKicO3aNUMvEVGDpFAoxD+HhR1HYmIyYmM3IDExGWFhx6ttZw71XWDXUuvcEZHtMHjtOWdnZ5w5cwaBgYFa68v9/vvvaN++Pe7cuaP3Pq9fvw5PT098//336NWrF4CKkaZOnTohOTm52u98++23GDx4MK5cuQIvLy8AwOrVqzF9+nRcv34dMpkM06dPx86dO7Um2hw+fDgKCwuxe/duAEBERAS6du0qTm6nVqvh7++PSZMm4dVXX62z71x7jhqLvLw8rFmzps52cXFxJi8EN/ZyLuZe546ILM8sa895e3sjJycHgYGBWp8fPHjQ4MV5VSoVAMDd3V3r802bNuHTTz+Ft7c3YmJiMHv2bDg7OwMAMjIy0KFDBzEwAUBUVBQmTpyI06dPo3PnzsjIyED//v219hkVFYXExEQAFZPVZWZmYsaMGeJ2Ozs79O/fHxkZGdX2taSkRLwlCYBzU5FVqxwGrlyxQ25uEwQF3YWvb8WtNVsMA6ZYzsXWrgERmZfBoemFF17Ayy+/jHXr1kEikeDKlSvIyMjAK6+8gtmzZ+u9P7VajcTERPTs2RMPPvig+PnIkSMREBAAX19fnDhxAtOnT0d2dja2bdsGAMjPz9cKTADE9/n5+bW2KSoqwt9//42//voL5eXl1bb59ddfq+3vggULMG/ePL3Pk8jcKi8PcuyY9vIgMTE7xFtqtrY8SENdzoWIrJfBoenVV1+FWq1Gv379cPv2bfTq1QsODg545ZVXMGnSJL33Fx8fj1OnTlV58i4uLk78c4cOHeDj44N+/frh/PnzCA4ONrT79TZjxgwkJSWJ74uKiuDv72+x/hDVRBMaNPMqaQKGIGjPq6RruLC22p+GtpwLEVkvg0OTRCLBzJkzMXXqVOTk5ODmzZto3749mjZtqve+EhISsGPHDvzwww/w8/OrtW1ERAQAICcnB8HBwfD29q7ylNvVq1cBVNxC1PzUfFa5jVwuh5OTE6RSKaRSabVtNPu4l4ODAxwcHHQ/SSILq2tERlceHh5ISEiwmtofzVN8946gcfkTIjI2g0OThkwmQ/v27Q36riAImDRpEr766iscOHBAp8V/s7KyAEAsMI2MjMRbb72Fa9euwdPTEwCQlpYGuVwu9isyMhK7du3S2k9aWhoiIyPFcwgPD0d6ejqGDBkCoOJ2YXp6OhISEgw6NyJrY8wRGWu7jVfbArtERMZicGi6c+cOVqxYgf379+PatWtQq7UnudNl2oH4+Hikpqbi//7v/+Dq6irWICkUCjg5OeH8+fNITU3FY489Bg8PD5w4cQKTJ09Gr169EBoaCgAYMGAA2rdvj1GjRmHRokXIz8/HrFmzEB8fL44ETZgwASkpKZg2bRrGjh2Lffv24YsvvsDOnTvFviQlJSE2NhZdunRBt27dkJycjFu3bmHMmDGGXiIiq2INIzKmLEhXKIoZlojIpAwOTePGjcN3332Hp59+Gt26ddNatFdXq1atAlAxrUBl69evx+jRoyGTybB3714xwPj7+2Po0KGYNWuW2FYqlWLHjh2YOHEiIiMj4eLigtjYWLzxxhtim6CgIOzcuROTJ0/GsmXL4Ofnh48++ghRUVFim2HDhuH69euYM2cO8vPz0alTJ+zevbtKcTiRLbPkiExDLUgnosbD4NC0Y8cO7Nq1Cz179jT44HVNEeXv74/vv/++zv0EBARUuf12r969e+P48eO1tklISODtOGrwLDUiY+yCdCIiczN4RvCWLVvC1dXVmH0hokagtoJ0fVjbU3xE1PAZPNK0ePFiTJ8+HatXr0ZAQIAx+0RERmRt4cJYBenW9hQfETV8BoemLl264M6dO2jdujWcnZ2rLM5ZUMA5UoisgbWFC2MWpDMQEZE5GRyaRowYgT///BNvv/02vLy8DCoEJyLzsLZwwSkCiMgWGRyaDh8+jIyMDHTs2NGY/SGiRoJTBBCRrTG4ELxt27b4+++/jdkXIiIiIqtlcGhauHAhpkyZggMHDkCpVKKoqEjrRURUmbUVpBMR6Usi1DVZUg3s7Cry1r21TIIgQCKRoLy8vP69syFFRUVQKBRQqVSQy+WW7g6RVao8I3h1+LQbEZmbPr+/Da5p2r9/v6FfJaJGioGIiGyZQaGprKwMb7zxBlavXo02bdoYu09EZMM4mkREDZVBocne3h4nTpwwdl+IyMZVXl+uNlxfjohskcG355577jmsXbsWCxcuNGZ/iMiG3TvCpFK5oqDAA+7uSq3pBbi+nPaI3JUrdsjNbYKgoLvw9VUDqHtE7vJl4Nw5oE0bwM/PLF0mavQMDk13797FunXrsHfvXoSHh8PFxUVr+5IlS+rdOSKyXceOda4y63dYWO2LZjcWlUfkartO947IaYJWaqoTpk1TQK2WwM5OwKJFKowc+TdvfRKZmMGh6dSpUwgLCwMA/Pbbb1rbODs4UeOmUrmKQQCoWJB3+/bBCA7O4YSW+Hekra7rVHlEThO0VCpXJCcnQhAq/p1VqyWYOlWOP/9cB4WimLc+iUyIT88RkdEVFHhoLcgLVASCggJ3hqZK9LlOmgBV13d465PIdAye3LKyy5cv4/Lly8bYFRE1AO7uSkgkaq3PJBI13N25kHdlhlwnXlsiyzE4NKnVarzxxhtQKBQICAhAQEAA3NzcMH/+fKjV6rp3QEQNlkJRjJiYHeIvd02tDkeZtBlynXhtiSzH4NtzM2fOFJ+e69mzJwDg4MGDmDt3Lu7cuYO33nrLaJ0kItsTFnYcwcE5KChwh7t7AX+p18CQ68RrS2QZBoemjRs34qOPPsLjjz8ufhYaGoqWLVviv//9L0MTUSN077pxCkVxtb/Qub6ctpquk7G/Q0T1Y3BoKigoQNu2bat83rZtWxQU8N46UWPk4eGBhIQEzghORA2SwaGpY8eOSElJwfLly7U+T0lJQceOHevdMSKyTQxEddN1pI0jckTWxeDQtGjRIkRHR2Pv3r2IjIwEAGRkZODSpUvYtWuX0TpIRNTQGDIix6BFZHkSQRAEQ7985coVrFy5Er/++isAoF27dvjvf/8LX19fo3XQVhQVFUGhUEClUkEul1u6O0TUAHExZCLj0+f3t16h6amnnsKGDRsgl8vx8ccfY9iwYXBwcKh3hxsChiYi28dQQtT4mCw0yWQyXLx4ET4+PpBKpcjLy4Onp2e9O9wQMDQR2bbK68HVhsuUEDUs+vz+1qumqW3btpgxYwb69OkDQRDwxRdf1HiA559/Xp9dExFZ1L0jTCqVKwoKPODurtR6tL8hLVNSeWTtyhU75OY2QVDQXfj6VkycyZE1Im16habVq1cjKSkJO3fuhEQiwaxZs6pdnFcikTA0EZHNOnass7iQrmbG7bCw45bullFVHlmr7Xw5skb0L71CU48ePfDjjz8CAOzs7PDbb7/x9hwRNSgqlasYIICKxXC3bx+M4OCcBjWZpGaEqa7zbUgja0T1ZfDac7m5uWjRooUx+0JEZHEFBR5igNAQBDsUFLhbqEem1djOl6g+DJ6nKSAgAP/73//wwQcf4Pz58/jyyy/RsmVLfPLJJwgKCsJDDz1kzH4SEZmFu7sSEolaK0hIJGq4u1v3SgeGPvlnq+dLZAkGh6atW7di1KhRePbZZ3H8+HGUlJQAAFQqFd5++21OcElENkmhKEZMzI4qNT7WfGvu3if/aipir64+qa7zvXHjBovEif5hcGh68803sXr1ajz//PPYvHmz+HnPnj3x5ptvGqVzRESWEBZ2HMHBOSgocIe7e4FVByZA+4m+2oq6axqJqu18Z83KxfbtD7BInAj1qGnKzs5Gr169qnyuUChQWFhYnz4REZndvcuPKBTFCAq6WCUwWfMyJTUVdatUrnV+t7rzrWt/LBKnxsbgkSZvb2/k5OQgMDBQ6/ODBw+idevW9e0XEZFZGbIenLWprajbkNEyY++PyNYZHJpeeOEFvPzyy1i3bh0kEgmuXLmCjIwMTJkyBXPmzDFmH4mIzMKaA5Eu9Cnq1mXEjEXiRNoMDk2vvvoq1Go1+vXrh9u3b6NXr15wcHDA1KlTMX78eGP2kYiIdKBPEXttI2s3btzAtm3bbLIonsiUDA5NEokEM2fOxNSpU5GTk4ObN2+iffv2+OCDDxAUFIT8/Hxj9pOIiHSgTxG7LiNrtlYUT2RKeoemkpISzJ07F2lpaeLI0pAhQ7B+/Xo8+eSTkEqlmDx5sin6SkRkdQydH8mUFIpio4YbY++PyFbpHZrmzJmDDz74AP3798fhw4fxn//8B2PGjMGPP/6IxYsX4z//+Q+kUqkp+kpEZFXunR+pJqZ+NF/XJ/qs+ck/Ilugd2jasmULPv74Yzz++OM4deoUQkNDcffuXfzyyy/VLt5LRNRQ6frIvakfzTf0yb+aRslUKpVOx2UIo8ZG79B0+fJlhIeHAwAefPBBODg4YPLkyQxMREQWpO9Ilq6jZM888wzc3NyqfG7t0y8QmYLeoam8vFzrvy6aNGmCpk2bGrVTRES2qKblS6yRrqNfbm5u8PHxMXFviGyD3qFJEASMHj0aDg4OAIA7d+5gwoQJcHFx0Wq3bds24/SQiMgG1LZ8iS2wpcBHZCl6h6bY2Fit988995zROkNEZItqWm4kODjHJgKIrQc+InPROzStX7/eFP0gIrJZtrzciK0HPiJzMnjBXmNYsGABunbtCldXV3h6emLIkCHIzs7WanPnzh3Ex8fDw8MDTZs2xdChQ3H16lWtNn/88Qeio6Ph7OwMT09PTJ06FXfv3tVqc+DAAYSFhcHBwQEhISHYsGFDlf6sXLkSgYGBcHR0REREBI4cOWL0cyaihkez3EhltrLcSG2Bj4i0WTQ0ff/994iPj8ePP/6ItLQ0lJWVYcCAAbh165bYZvLkydi+fTu2bNmC77//HleuXMFTTz0lbi8vL0d0dDRKS0tx+PBhbNy4ERs2bNBa/y43NxfR0dHo06cPsrKykJiYiPHjx2PPnj1im88//xxJSUl4/fXXcezYMXTs2BFRUVG4du2aeS4GEdkczUMxmuVGNMHp3uVGrPnRfFsOfETmJhEEQbB0JzSuX78OT09PfP/99+jVqxdUKhVatGiB1NRUPP300wCAX3/9Fe3atUNGRga6d++Ob7/9FoMHD8aVK1fg5eUFAFi9ejWmT5+O69evQyaTYfr06di5cydOnTolHmv48OEoLCzE7t27AQARERHo2rWr+AiuWq2Gv78/Jk2ahFdffbXOvhcVFUGhUEClUkEulxv70hCRlao819GVK3a4cKEJAgPvwte3IohY66P5eXl5WLNmDYDaa5ri4uL49Bw1aPr8/jZ47TlT0Eyo5u5eMSycmZmJsrIy9O/fX2zTtm1btGrVSgxNGRkZ6NChgxiYACAqKgoTJ07E6dOn0blzZ2RkZGjtQ9MmMTERQMWjt5mZmZgxY4a43c7ODv3790dGRka1fS0pKUFJSYn4vqioqH4nT0Q2qXIg8vEB/pnGrk6WXn6l8uhXbevLWfMoGZG5WU1oUqvVSExMRM+ePfHggw8CAPLz8yGTyapMrObl5SUuCJyfn68VmDTbNdtqa1NUVIS///4bf/31F8rLy6tt8+uvv1bb3wULFmDevHmGnSwRNWrmXn6lpoA2bNgwlJWVoUmTJpzAkkgHVhOa4uPjcerUKRw8eNDSXdHJjBkzkJSUJL4vKiqCv7+/BXtERLbCnMuvmCKgWXqUjMhSrCI0JSQkYMeOHfjhhx/g5+cnfu7t7Y3S0lIUFhZq/VfQ1atX4e3tLba59yk3zdN1ldvc+8Td1atXIZfL4eTkBKlUCqlUWm0bzT7u5eDgIE7wSURkrYwd0KxlkWIiS7Do03OCICAhIQFfffUV9u3bh6CgIK3t4eHhsLe3R3p6uvhZdnY2/vjjD0RGRgIAIiMjcfLkSa2n3NLS0iCXy9G+fXuxTeV9aNpo9iGTyRAeHq7VRq1WIz09XWxDRESGhzClUom8vLwaX0ql0hTdJTIqi440xcfHIzU1Ff/3f/8HV1dXsQZJoVDAyckJCoUC48aNQ1JSEtzd3SGXyzFp0iRERkaie/fuAIABAwagffv2GDVqFBYtWoT8/HzMmjUL8fHx4kjQhAkTkJKSgmnTpmHs2LHYt28fvvjiC+zcuVPsS1JSEmJjY9GlSxd069YNycnJuHXrFsaMGWP+C0NE1IBwdIoaCouGplWrVgEAevfurfX5+vXrMXr0aADA0qVLYWdnh6FDh6KkpARRUVF4//33xbZSqRQ7duzAxIkTERkZCRcXF8TGxuKNN94Q2wQFBWHnzp2YPHkyli1bBj8/P3z00UeIiooS2wwbNgzXr1/HnDlzkJ+fj06dOmH37t1VisOJiIzNnOu+GftYuuzPnDVcRKZk0dCkyxRRjo6OWLlyJVauXFljm4CAAOzatavW/fTu3RvHj9e+llJCQgISEhLq7BMRkbGYc903Yx/L0P1xcWCyVVZRCE5E1BiZc903Yx/L0P3VFrRu3LhR7Xf4NB5ZC4YmIiIz00wYWddCv8acWLKuY1UXWGoLK4YsUlxX0Nq2bVuN/We9E1kDhiYiIjPz8PBAQkICLly4i08+EaBWS8RtUqmASZMGITCwiVFCgiZ4adaYqxx0Kq8xV1NgqSms1LW/6hgStDRY70TWwKJTDhARNVYeHh4ID/fCmjUSSKUVn0mlwAcfSBAe7mW0URVNQJs6dQTefbcIUmlFLamdnaC1qHBN7g0r9VmkmIsDk63jSBMRkQWNGwdERQE5OUBICFBpfl+j0QSwKVOAYcMqjuXqeg07duhfBK4JYZowNWfO9UqLFHcF0LXG23qaoHVvTVPl4MYicbJmDE1ERBbm52easFTbsfLy1HU3roG+ixTrujiwOZ8kJDIEQxMREZl0hOfe0anKbty4gW3btpn1SUIiQzE0ERE1cuYY4amrRqs+ReJE5sJCcCKiRqymER6VytWs/WCRONkChiYiokasthEec6jP03hE5sbbc0REjZCu8zcZK6wolcoa51oaNmwYBEFAXJybXk/jEZmbRNBlATiqU1FRERQKBVQqFeRyuaW7Q0RUJ02QSU11wvTpCpSXSyCVCnjnHRVGjvzbaGFFqVQiJSWlznac9ZssQZ/f3xxpIiJqpKqbvykkRAI/PzcAbkY7jq6zeXPWb7J2DE1ERGTWuaKIbBULwYmIiIh0wNBEREREpAOGJiIiMiuVyhW5uYFmnwuKqL5Y00RERGbD9eXIlnGkiYiIzMJaZh8nMhRDExERmZRmgsy6Zh/nrN9k7Ti5pZFwcksiopoplUpcuHAX3bp5Qq2WiJ9LpQJ++ukaAgOb6D2xZW2zjAPgTOKkE05uSUREVsXDwwMeHsCaNcCLLwLl5YBUCnzwgQTh4V5674+zjJMlMDQREZHZjBsHREVpZh83fEJNzjJOlsDQREREZsXZx8lWMTQRERGBNVJUN4YmIiJq9FgjRbrglANERNTosUaKdMHQRERENo9Ls5A58PYcERHZNC7NQubCkSYiIrI5t2/fBlD30iyadvriyBVVhyNNRERkc5ydnQHUvjSLQlEsttNHbSNXN27cqPY7fLKucWBoIiIim+XuroREotYKThKJGu7uBQbtr6aRq+DgHCgUxdi2bVuN3+WTdQ0fb88REZHNUiiKEROzAxKJGgDEkSGFotig/dW1qHBtrly5gry8PK2XUqk0qB9knTjSRERENi0s7DiCg3NQUOAOd/cCgwKTTCYDUL+Rq5pGoTgC1XAwNBERkc1TKIoNHl0CKhYUTkhIQGlpKVq2LML06QqUl0sglQqYPfsKAMP3zbmdGg6GJiIisnkqlSsKCjzg7q40ODxpRoOmTAGGDdMsKiyBVCrFmjXG7C3ZKoYmIiKyOSqVSvxzbU+7qVQq+Pj46L3/yosK5+Xde+z6BzSyTQxNRERkcwRBAFD3026adsZSe0BjmGroGJqIiMjmuLm5Aah7niZNO2OoLaCdPx/CWckbAU45QERENkvztFtl9ZmnqTqaJ+tqCmiXLvnVOis5NRwMTUREZLOMPU9TdTRP1k2aNBB2dtq3+yqOKzF4bieyLbw9R0RENs0Y8zTVxcPDAx4ewJo1wIsvAuXlgFQqIDp6B/z9L9U6t5NmpIpsH0MTERE1EBKTH2HcOCAq6t/pCJyceqK0tGuVuZ3eeacII0eO4Jp0DQxDExER2bTanmgzhcrTEQDVz+3k5+cGwM1kfSDLYGgiIiKbo7nlVdeUA+a8NaYdpqghsmgh+A8//ICYmBj4+vpCIpHg66+/1to+evRoSCQSrdfAgQO12hQUFODZZ5+FXC6Hm5sbxo0bh5s3b2q1OXHiBB5++GE4OjrC398fixYtqtKXLVu2oG3btnB0dESHDh2wa9cuo58vEREZh6Y4u0eP2GqLsHv2jDXqmm9KpbLKYrymWJjXXMchw1h0pOnWrVvo2LEjxo4di6eeeqraNgMHDsT69evF9w4ODlrbn332WeTl5SEtLQ1lZWUYM2YM4uLikJqaCgAoKirCgAED0L9/f6xevRonT57E2LFj4ebmhri4OADA4cOHMWLECCxYsACDBw9GamoqhgwZgmPHjuHBBx800dkTEVF9eHh4oHt3wM4OUFeadUAqBSIiKgq3jUGpVCIlJaXOdvUNaeY6DhnOoqFp0KBBGDRoUK1tHBwc4O3tXe22s2fPYvfu3Th69Ci6dOkCAFixYgUee+wxvPfee/D19cWmTZtQWlqKdevWQSaT4YEHHkBWVhaWLFkihqZly5Zh4MCBmDp1KgBg/vz5SEtLQ0pKClavXm3EMyYiImPy87v3iTbggw8Mu02mVCqrXVz3xo0bOn2/vgvz6vp9LgBsOVZf03TgwAF4enqiWbNm6Nu3L958800xYWdkZMDNzU0MTADQv39/2NnZ4aeffsKTTz6JjIwM9OrVS+u+dlRUFN555x389ddfaNasGTIyMpCUlKR13KioqCq3CysrKSlBSUmJ+L6oqMhIZ0xERPrQfqLN8MCkyygPNW5WPbnlwIED8fHHHyM9PR3vvPMOvv/+ewwaNAjl5eUAgPz8fHh6emp9p0mTJnB3d0d+fr7YxsvLS6uN5n1dbTTbq7NgwQIoFArx5e/vX7+TJSIig/n5Ab17G16IzdEb0oVVjzQNHz5c/HOHDh0QGhqK4OBgHDhwAP369bNgz4AZM2ZojU4VFRUxOBERkdFwAWDrY9Wh6V6tW7dG8+bNkZOTg379+sHb2xvXrl3TanP37l0UFBSIdVDe3t64evWqVhvN+7ra1FRLBVTUWt1blE5ERA2fOcKMueeeIt1Y9e25e12+fBlKpRI+Pj4AgMjISBQWFiIzM1Nss2/fPqjVakRERIhtfvjhB5SVlYlt0tLScP/996NZs2Zim/T0dK1jpaWlITIy0tSnRERENuTYsc5ITk7Exo2xSE5OxLFjnY1+jJrmnuICwJZn0ZGmmzdvIicnR3yfm5uLrKwsuLu7w93dHfPmzcPQoUPh7e2N8+fPY9q0aQgJCUFUVBQAoF27dhg4cCBeeOEFrF69GmVlZUhISMDw4cPh6+sLABg5ciTmzZuHcePGYfr06Th16hSWLVuGpUuXisd9+eWX8cgjj2Dx4sWIjo7G5s2b8fPPP2PNmjXmvSBERGQVqhtNqmsizXvV9DSeRk1LrBQUeNS4ADBv01mWRUPTzz//jD59+ojvNTVCsbGxWLVqFU6cOIGNGzeisLAQvr6+GDBgAObPn691W2zTpk1ISEhAv379YGdnh6FDh2L58uXidoVCge+++w7x8fEIDw9H8+bNMWfOHHG6AQDo0aMHUlNTMWvWLLz22mto06YNvv76a87RRETUCNV0a6yuMFP5KW1D5lzSfN/dXckFgK2URBAEwdKdaAiKioqgUCigUqkgl8st3R0iItJDXl4e1qxZA5XKFcnJiVUCS2JiMgBg2bLJUKv/XRhYKhXw00/XEBjYRGvUSLO/usTFxYklJ8C/o1OpqU73LACswsiRf3MBYBPQ5/e3TRWCExERmYJm9Ka20aSgoItYsuQWpkxpWmkiTQnCw72q26VBNIGICwBbJ4YmIiJq9DRr2V24cBeffCJUGU2aNGnQP6NJTTF0aP0m0qxN5TooqRS4//6Kz/PyKn5ypMmyGJqIiIhQEZw8PKpblkV7NMnPT/+wpMs0BVx7zvoxNBEREVVijGVZKtN1ziWuPWf9GJqIiIjuYchoUnX0naaArJtNTW5JRERkS2orLCfbw5EmIiIiIzPGnEs11UHduHGjxmOy1sm0GJqIiIiMTPM0XmlpKVq2LLpnzqUijBw5otaQU1sd1LZt22o87jPPPAM3N7cqnzNQGQdDExERkQkYOudSfeqgvvjiixq38am7+mNoIiIiMjFdCssLCwsBmG7tOT51V38sBCciIrICN2/eBPBvHVRlleuggIrRqNzcQKhUrlX2U9s2qh+ONBEREVkBR0dHAIBCUYyYmB1Vapo0o0y11TvpOicUGYYjTURERFZIELR/AjXXO6lUrrVuI+NgaCIiIrIiKpUrvvlmMP79FW2Hb74ZLE5BUFO9E+eEMj3eniMiIrIily75o+qYhh0uXfKDv/9lAAKAfxcUrlzvVNucUFR/HGkiIiKyKYL2u3/eamqhNEXk99ZCaZ7OI8NxpImIiMiK+PtfQnWjSf7+l1FQ4IHqRqE00xGEhR2Hp2c+Ll1qBX//P+Dnl1dpHxIYg1KprHX6goY8kSZDExERkRVo0qTiV7JCUYzHH99e49Nztd2Cq+3pOYVCUe8+KpVKpKSkiO9rWuqloU6kydBERERkBTw9PcU/h4UdR3BwDgoK3OHuXiAGktqmI6jPTOK6qjzCVFtAa6gTaTI0ERERWYHK69Xdq7CwUFwipaZAZaqZxKtjjoBmjRiaiIiIrERNt7R8fHxqDFQ3btzAtm3bxJnEjfH0XOW6pStX7JCb2wRBQXchk90AYLqAdvkycO4c0KZN3cvOWAJDExERkQ2oq0aorpnEdVW5bqnqLbifEBYGowY0jbVrgbg4QK0G7OyANWuAceMM3p1JMDQRERE1EDXdutOHZoSprltwoaEn8MsvHVHxlJ+A0NAT4vFUKhV8fHx0Publy/8GJqDi54svAlFR1jXixHmaiIiIbJhMJtN6r1AUIyjoYpXAdG+7utR2C06lcsWJE6H4d1oECU6cCBWXbCkrK9P5OEqlEj/+qBQDk0Z5OfDTT0oolUq9+m1KHGkiIiKyYbUVkGsYMneSu7sSgBra4ysVt+Dqqmn666+/kJl5VayF8vVVV9sPza1AlcoVEklildt9hw5txKlTxVYzhQFDExERkY0zXaDQnhBTMz9mXTVNixcXYvv2FtVOR1A5AGmCXl31WNYyhQFDExEREYlUKhUA/DP7uHZo0owmBQVdNHi+qJoCkDHqsUyNoYmIiIhEmnqkukaTTDFflEJRbJVhSYOF4ERERFRFXQsAa9rcW3SuCVuV1Xc6AmvBkSYiIiISadbAAwy7ZWas+aKsEUMTERERidzc3LTeG3LLzBbqkwzB0ERERER6e+qpp9C8eXPxvWY5Fw1DwpZK5YqCAg+4uyurfNcallhhaCIiIiK9NW/eXK9Zv6tTecLNqku2/DtNwRdfuCIpyfJLrDA0ERERUb3pOuN45XaaiTkvXLiLefM8IQgVUxxUTFMQgzlzIiCTydCpU1OrWGKFoYmIiIhEhoQfwPCZyT08PJCeDgiCdltBkOCXX5whl5fWuMSKk5MpJ/asiqGJiIiIRPVZlsXYAebbb7+Fv/9lAJNReaJNSy2xwtBEREREWsw5eqNUKhEcfBcSyb+35wBAIhH+CUwAIKByaKo8KmXOJVY4uSURERFZhGbB3h07ViMmZjsqFggGADViYrZDoSj+ZzmXe+NKxQzj5saRJiIiIrKIa9euiX+uaW6nupZzMSeONBEREZFF3L17V+t9dcuy6LKci7lwpImIiIismrXMMM7QRERERFbPkBnGjY2354iIiIh0wNBERERENuv27dtmOxZDExEREdksZ2dnsx3LoqHphx9+QExMDHx9fSGRSPD1119rbRcEAXPmzIGPjw+cnJzQv39/nDt3TqtNQUEBnn32Wcjlcri5uWHcuHG4efOmVpsTJ07g4YcfhqOjI/z9/bFo0aIqfdmyZQvatm0LR0dHdOjQAbt27TL6+RIREdG/7O3tLd0FvVg0NN26dQsdO3bEypUrq92+aNEiLF++HKtXr8ZPP/0EFxcXREVF4c6dO2KbZ599FqdPn0ZaWhp27NiBH374AXFxceL2oqIiDBgwAAEBAcjMzMS7776LuXPnYs2aNWKbw4cPY8SIERg3bhyOHz+OIUOGYMiQITh16pTpTp6IiKiRa9GihaW7oBeJINy7RJ5lSCQSfPXVVxgyZAiAilEmX19fTJkyBa+88goAQKVSwcvLCxs2bMDw4cNx9uxZtG/fHkePHkWXLl0AALt378Zjjz2Gy5cvw9fXF6tWrcLMmTORn58vLi746quv4uuvv8avv/4KABg2bBhu3bqFHTt2iP3p3r07OnXqhNWrV+vU/6KiIigUCqhUKsjlcmNdFiIiogZNqVRWuxTKjRs3sG3btjq/HxcXBx8fH4OPr8/vb6utacrNzUV+fj769+8vfqZQKBAREYGMjAwAQEZGBtzc3MTABAD9+/eHnZ0dfvrpJ7FNr169tFZjjoqKQnZ2Nv766y+xTeXjaNpojlOdkpISFBUVab2IiIhIPx4eHvDx8anyat68uaW7VoXVhqb8/HwAgJeXl9bnXl5e4rb8/Hx4enpqbW/SpAnc3d212lS3j8rHqKmNZnt1FixYAIVCIb78/f31PUUiIiKyIVYbmqzdjBkzoFKpxNelS5cs3SUiIiIyIasNTd7e3gCAq1evan1+9epVcZu3t7fWYn9AxTo2BQUFWm2q20flY9TURrO9Og4ODpDL5VovIiIiMo7KZTXGaGcMVruMSlBQELy9vZGeno5OnToBqCjW+umnnzBx4kQAQGRkJAoLC5GZmYnw8HAAwL59+6BWqxERESG2mTlzJsrKysRHG9PS0nD//fejWbNmYpv09HQkJiaKx09LS0NkZKSZzpaIiIgq8/DwQEJCQrVF4hoymQweHh5m65NFQ9PNmzeRk5Mjvs/NzUVWVhbc3d3RqlUrJCYm4s0330SbNm0QFBSE2bNnw9fXV3zCrl27dhg4cCBeeOEFrF69GmVlZUhISMDw4cPh6+sLABg5ciTmzZuHcePGYfr06Th16hSWLVuGpUuXisd9+eWX8cgjj2Dx4sWIjo7G5s2b8fPPP2tNS0BERETmZc5ApBPBgvbv3y8AqPKKjY0VBEEQ1Gq1MHv2bMHLy0twcHAQ+vXrJ2RnZ2vtQ6lUCiNGjBCaNm0qyOVyYcyYMUJxcbFWm19++UV46KGHBAcHB6Fly5bCwoULq/Tliy++EO677z5BJpMJDzzwgLBz5069zkWlUgkABJVKpd9FICIiIovR5/e31czTZOs4TxMREZHtaRDzNBERERFZE4YmIiIiIh0wNBERERHpgKGJiIiISAcMTUREREQ6YGgiIiIi0gFDExEREZEOrHYZFVujme6qqKjIwj0hIiIiXWl+b+sybSVDk5EUFxcDAPz9/S3cEyIiItJXcXExFApFrW04I7iRqNVqXLlyBa6urpBIJHp/v6ioCP7+/rh06VKjnlGc1+FfvBYVeB0q8Dr8i9eiAq9DhfpeB0EQUFxcDF9fX9jZ1V61xJEmI7Gzs4Ofn1+99yOXyxv1X34NXod/8VpU4HWowOvwL16LCrwOFepzHeoaYdJgITgRERGRDhiaiIiIiHTA0GQlHBwc8Prrr8PBwcHSXbEoXod/8VpU4HWowOvwL16LCrwOFcx5HVgITkRERKQDjjQRERER6YChiYiIiEgHDE1EREREOmBoIiIiItIBQ5MZrVy5EoGBgXB0dERERASOHDlSY9vTp09j6NChCAwMhEQiQXJysvk6amL6XIcPP/wQDz/8MJo1a4ZmzZqhf//+tba3Nfpci23btqFLly5wc3ODi4sLOnXqhE8++cSMvTUdfa5DZZs3b4ZEIsGQIUNM20Ez0ec6bNiwARKJROvl6Ohoxt6alr5/JwoLCxEfHw8fHx84ODjgvvvuw65du8zUW9PR5zr07t27yt8JiUSC6OhoM/bYNPT9+5CcnIz7778fTk5O8Pf3x+TJk3Hnzp36d0Qgs9i8ebMgk8mEdevWCadPnxZeeOEFwc3NTbh69Wq17Y8cOSK88sorwmeffSZ4e3sLS5cuNW+HTUTf6zBy5Ehh5cqVwvHjx4WzZ88Ko0ePFhQKhXD58mUz99z49L0W+/fvF7Zt2yacOXNGyMnJEZKTkwWpVCrs3r3bzD03Ln2vg0Zubq7QsmVL4eGHHxaeeOIJ83TWhPS9DuvXrxfkcrmQl5cnvvLz883ca9PQ91qUlJQIXbp0ER577DHh4MGDQm5urnDgwAEhKyvLzD03Ln2vg1Kp1Pr7cOrUKUEqlQrr1683b8eNTN/rsGnTJsHBwUHYtGmTkJubK+zZs0fw8fERJk+eXO++MDSZSbdu3YT4+HjxfXl5ueDr6yssWLCgzu8GBAQ0mNBUn+sgCIJw9+5dwdXVVdi4caOpumg29b0WgiAInTt3FmbNmmWK7pmNIdfh7t27Qo8ePYSPPvpIiI2NbRChSd/rsH79ekGhUJipd+al77VYtWqV0Lp1a6G0tNRcXTSL+v4bsXTpUsHV1VW4efOmqbpoFvpeh/j4eKFv375anyUlJQk9e/asd194e84MSktLkZmZif79+4uf2dnZoX///sjIyLBgz8zLGNfh9u3bKCsrg7u7u6m6aRb1vRaCICA9PR3Z2dno1auXKbtqUoZehzfeeAOenp4YN26cObppcoZeh5s3byIgIAD+/v544okncPr0aXN016QMuRbffPMNIiMjER8fDy8vLzz44IN4++23UV5ebq5uG50x/r1cu3Ythg8fDhcXF1N10+QMuQ49evRAZmameAvv999/x65du/DYY4/Vuz9csNcMbty4gfLycnh5eWl97uXlhV9//dVCvTI/Y1yH6dOnw9fXV+v/QLbI0GuhUqnQsmVLlJSUQCqV4v3338ejjz5q6u6ajCHX4eDBg1i7di2ysrLM0EPzMOQ63H///Vi3bh1CQ0OhUqnw3nvvoUePHjh9+rRRFg+3FEOuxe+//459+/bh2Wefxa5du5CTk4P//ve/KCsrw+uvv26Obhtdff+9PHLkCE6dOoW1a9eaqotmYch1GDlyJG7cuIGHHnoIgiDg7t27mDBhAl577bV694ehiWzGwoULsXnzZhw4cKBBFbzqw9XVFVlZWbh58ybS09ORlJSE1q1bo3fv3pbumlkUFxdj1KhR+PDDD9G8eXNLd8eiIiMjERkZKb7v0aMH2rVrhw8++ADz58+3YM/MT61Ww9PTE2vWrIFUKkV4eDj+/PNPvPvuuzYbmupr7dq16NChA7p162bprpjdgQMH8Pbbb+P9999HREQEcnJy8PLLL2P+/PmYPXt2vfbN0GQGzZs3h1QqxdWrV7U+v3r1Kry9vS3UK/Orz3V47733sHDhQuzduxehoaGm7KZZGHot7OzsEBISAgDo1KkTzp49iwULFthsaNL3Opw/fx4XLlxATEyM+JlarQYANGnSBNnZ2QgODjZtp03AGP9G2Nvbo3PnzsjJyTFFF83GkGvh4+MDe3t7SKVS8bN27dohPz8fpaWlkMlkJu2zKdTn78StW7ewefNmvPHGG6bsolkYch1mz56NUaNGYfz48QCADh064NatW4iLi8PMmTNhZ2d4ZRJrmsxAJpMhPDwc6enp4mdqtRrp6ela/6XY0Bl6HRYtWoT58+dj9+7d6NKlizm6anLG+juhVqtRUlJiii6ahb7XoW3btjh58iSysrLE1+OPP44+ffogKysL/v7+5uy+0Rjj70N5eTlOnjwJHx8fU3XTLAy5Fj179kROTo4YoAHgt99+g4+Pj00GJqB+fye2bNmCkpISPPfcc6bupskZch1u375dJRhpArVQ3+V2611KTjrZvHmz4ODgIGzYsEE4c+aMEBcXJ7i5uYmPCI8aNUp49dVXxfYlJSXC8ePHhePHjws+Pj7CK6+8Ihw/flw4d+6cpU7BKPS9DgsXLhRkMpnw5Zdfaj1KW1xcbKlTMBp9r8Xbb78tfPfdd8L58+eFM2fOCO+9957QpEkT4cMPP7TUKRiFvtfhXg3l6Tl9r8O8efOEPXv2COfPnxcyMzOF4cOHC46OjsLp06ctdQpGo++1+OOPPwRXV1chISFByM7OFnbs2CF4enoKb775pqVOwSgM/f/GQw89JAwbNszc3TUZfa/D66+/Lri6ugqfffaZ8PvvvwvfffedEBwcLDzzzDP17gtDkxmtWLFCaNWqlSCTyYRu3boJP/74o7jtkUceEWJjY8X3ubm5AoAqr0ceecT8HTcyfa5DQEBAtdfh9ddfN3/HTUCfazFz5kwhJCREcHR0FJo1ayZERkYKmzdvtkCvjU+f63CvhhKaBEG/65CYmCi29fLyEh577DHh2LFjFui1aej7d+Lw4cNCRESE4ODgILRu3Vp46623hLt375q518an73X49ddfBQDCd999Z+aempY+16GsrEyYO3euEBwcLDg6Ogr+/v7Cf//7X+Gvv/6qdz8kglDfsSoiIiKiho81TUREREQ6YGgiIiIi0gFDExEREZEOGJqIiIiIdMDQRERERKQDhiYiIiIiHTA0EREREemAoYmIyAaNHj0aQ4YMsXQ3iBoVhiYiMqrRo0dDIpGILw8PDwwcOBAnTpywdNeMovK5aV4PPfSQyY534cIFSCQSZGVlaX2+bNkybNiwwWTHJaKqGJqIyOgGDhyIvLw85OXlIT09HU2aNMHgwYMt3S2jWb9+vXh+eXl5+Oabb6ptV1ZWZrI+KBQKuLm5mWz/RFQVQxMRGZ2DgwO8vb3h7e2NTp064dVXX8WlS5dw/fp19O3bFwkJCVrtr1+/DplMJq5kHhgYiPnz52PEiBFwcXFBy5YtsXLlSq3vLFmyBB06dICLiwv8/f3x3//+Fzdv3hS3X7x4ETExMWjWrBlcXFzwwAMPYNeuXQCAv/76C88++yxatGgBJycntGnTBuvXr9f5/Nzc3MTz8/b2hru7uzgi9Pnnn+ORRx6Bo6MjNm3aBKVSiREjRqBly5ZwdnZGhw4d8Nlnn2ntT61WY9GiRQgJCYGDgwNatWqFt956CwAQFBQEAOjcuTMkEgl69+4NoOrtuZKSErz00kvw9PSEo6MjHnroIRw9elTcfuDAAUgkEqSnp6NLly5wdnZGjx49kJ2drfN5EzV2DE1EZFI3b97Ep59+ipCQEHh4eGD8+PFITU1FSUmJ2ObTTz9Fy5Yt0bdvX/Gzd999Fx07dsTx48fx6quv4uWXX0ZaWpq43c7ODsuXL8fp06exceNG7Nu3D9OmTRO3x8fHo6SkBD/88ANOnjyJd955B02bNgUAzJ49G2fOnMG3336Ls2fPYtWqVWjevLlRzlfT17NnzyIqKgp37txBeHg4du7ciVOnTiEuLg6jRo3CkSNHxO/MmDEDCxcuFPuVmpoKLy8vABDb7d27F3l5edi2bVu1x502bRq2bt2KjRs34tixYwgJCUFUVBQKCgq02s2cOROLFy/Gzz//jCZNmmDs2LFGOW+iRqHeS/4SEVUSGxsrSKVSwcXFRXBxcREACD4+PkJmZqYgCILw999/C82aNRM+//xz8TuhoaHC3LlzxfcBAQHCwIEDtfY7bNgwYdCgQTUed8uWLYKHh4f4vkOHDlr7rCwmJkYYM2aMQecHQHB0dBTPz8XFRfjqq6+E3NxcAYCQnJxc5z6io6OFKVOmCIIgCEVFRYKDg4Pw4YcfVttWs9/jx49rfR4bGys88cQTgiAIws2bNwV7e3th06ZN4vbS0lLB19dXWLRokSAIgrB//34BgLB3716xzc6dOwUAwt9//63PJSBqtDjSRERG16dPH2RlZSErKwtHjhxBVFQUBg0ahIsXL8LR0RGjRo3CunXrAADHjh3DqVOnMHr0aK19REZGVnl/9uxZ8f3evXvRr18/tGzZEq6urhg1ahSUSiVu374NAHjppZfw5ptvomfPnnj99de1CtEnTpyIzZs3o1OnTpg2bRoOHz6s1/ktXbpUPL+srCw8+uij4rYuXbpotS0vL8f8+fPRoUMHuLu7o2nTptizZw/++OMPAMDZs2dRUlKCfv366dWHys6fP4+ysjL07NlT/Mze3h7dunXTumYAEBoaKv7Zx8cHAHDt2jWDj03UmDA0EZHRubi4ICQkBCEhIejatSs++ugj3Lp1Cx9++CEAYPz48UhLS8Ply5exfv169O3bFwEBATrv/8KFCxg8eDBCQ0OxdetWZGZmijVPpaWl4jF+//13jBo1CidPnkSXLl2wYsUKABAD3OTJk3HlyhX069cPr7zyis7H9/b2Fs8vJCQELi4uWude2bvvvotly5Zh+vTp2L9/P7KyshAVFSX208nJSefjGoO9vb34Z4lEAqCipoqI6sbQREQmJ5FIYGdnh7///hsA0KFDB3Tp0gUffvghUlNTq62r+fHHH6u8b9euHQAgMzMTarUaixcvRvfu3XHffffhypUrVfbh7++PCRMmYNu2bZgyZYoY2gCgRYsWiI2Nxaeffork5GSsWbPGmKcsOnToEJ544gk899xz6NixI1q3bo3ffvtN3N6mTRs4OTmJRfD3kslkACpGrGoSHBwMmUyGQ4cOiZ+VlZXh6NGjaN++vZHOhIiaWLoDRNTwlJSUID8/H0DFk2opKSm4efMmYmJixDbjx49HQkICXFxc8OSTT1bZx6FDh7Bo0SIMGTIEaWlp2LJlC3bu3AkACAkJQVlZGVasWIGYmBgcOnQIq1ev1vp+YmIiBg0ahPvuuw9//fUX9u/fL4auOXPmIDw8HA888ABKSkqwY8cOcZuxtWnTBl9++SUOHz6MZs2aYcmSJbh69aoYZhwdHTF9+nRMmzYNMpkMPXv2xPXr13H69GmMGzcOnp6ecHJywu7du+Hn5wdHR0coFAqtY7i4uGDixImYOnUq3N3d0apVKyxatAi3b9/GuHHjTHJeRI0RR5qIyOh2794NHx8f+Pj4ICIiAkePHsWWLVvEx+UBYMSIEWjSpAlGjBgBR0fHKvuYMmUKfv75Z3Tu3BlvvvkmlixZgqioKABAx44dsWTJErzzzjt48MEHsWnTJixYsEDr++Xl5YiPj0e7du0wcOBA3HfffXj//fcBVIzezJgxA6GhoejVqxekUik2b95skmsxa9YshIWFISoqCr1794a3t3eVmbxnz56NKVOmYM6cOWjXrh2GDRsm1hk1adIEy5cvxwcffABfX1888cQT1R5n4cKFGDp0KEaNGoWwsDDk5ORgz549aNasmUnOi6gxkgiCIFi6E0TU+Fy4cAHBwcE4evQowsLCtLYFBgYiMTERiYmJlukcEVE1eHuOiMyqrKwMSqUSs2bNQvfu3asEJiIia8Xbc0RkVocOHYKPjw+OHj1apQ7J0t5++200bdq02tegQYMs3T0isjDeniMi+kdBQUGVGbQ1nJyc0LJlSzP3iIisCUMTERERkQ54e46IiIhIBwxNRERERDpgaCIiIiLSAUMTERERkQ4YmoiIiIh0wNBEREREpAOGJiIiIiIdMDQRERER6eD/AVX3YcF2VO6VAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbtZJREFUeJzt3XlcVFX/B/DPMLLLjEGyCQKiiZgbqIiWKzkaYpY9uaW4hfoTn5BSM8210iwVt9SeVKwkl9R6UtOI1FLJDDU1zdSgNAFtyBnURJy5vz94ZmJYh2H2+bxfL1469565c84dmPudc7/nHJEgCAKIiIiIqEZOlq4AERERkS1g0ERERESkBwZNRERERHpg0ERERESkBwZNRERERHpg0ERERESkBwZNRERERHpg0ERERESkBwZNRERERHpg0EREZGfS09MhEomQl5dn6aoQ2RUGTURUZydOnEBycjJat24NT09PNG3aFM899xx++eWXSmV79uwJkUgEkUgEJycnSCQStGzZEiNHjkRmZmadXvfzzz9Hjx494OvrCw8PDzRr1gzPPfcc9u/fb6ymVfLmm2/i008/rbT92LFjmDdvHm7dumWy165o3rx52nMpEong4eGByMhIzJ49G0ql0iivkZGRgbS0NKMci8jeMGgiojp76623sHPnTvTp0wcrVqxAUlISvvnmG0RFReHcuXOVygcFBeHDDz/EBx98gLfffhsDBw7EsWPH0LdvXwwZMgSlpaW1vuY777yDgQMHQiQSYebMmVi+fDkGDx6MS5cuYevWraZoJoCag6b58+ebNWjSWLt2LT788EMsW7YMEREReOONN9CvXz8YYylRBk1E1Wtg6QoQke1JTU1FRkYGXFxctNuGDBmCNm3aYPHixfjoo490ykulUjz//PM62xYvXox///vfePfddxEaGoq33nqr2td78OABFi5ciCeeeAJffvllpf03btyoZ4usx927d+Hh4VFjmWeffRYPP/wwAGDixIkYPHgwdu3ahe+++w6xsbHmqCaRQ2JPExHVWdeuXXUCJgBo0aIFWrdujQsXLuh1DLFYjJUrVyIyMhKrV6+GQqGotuyff/4JpVKJbt26Vbnf19dX5/G9e/cwb948PPLII3Bzc0NAQACeeeYZXLlyRVvmnXfeQdeuXeHj4wN3d3dER0fjk08+0TmOSCTCnTt3sHnzZu0tsdGjR2PevHmYNm0aACAsLEy7r3wO0UcffYTo6Gi4u7vD29sbQ4cOxdWrV3WO37NnTzz66KPIyclB9+7d4eHhgVdffVWv81de7969AQC5ubk1lnv33XfRunVruLq6IjAwEJMnT9bpKevZsyf27t2L3377Tdum0NDQOteHyF6xp4mIjEIQBBQWFqJ169Z6P0csFmPYsGF47bXXcOTIEcTHx1dZztfXF+7u7vj8888xZcoUeHt7V3tMlUqFAQMGICsrC0OHDsWLL76I4uJiZGZm4ty5cwgPDwcArFixAgMHDsSIESNw//59bN26Ff/617+wZ88ebT0+/PBDjB8/Hp07d0ZSUhIAIDw8HJ6envjll1/w8ccfY/ny5dpen8aNGwMA3njjDbz22mt47rnnMH78eNy8eROrVq1C9+7dcerUKTRq1EhbX7lcjv79+2Po0KF4/vnn4efnp/f509AEgz4+PtWWmTdvHubPn4+4uDhMmjQJFy9exNq1a3HixAkcPXoUzs7OmDVrFhQKBa5du4bly5cDABo2bFjn+hDZLYGIyAg+/PBDAYCwYcMGne09evQQWrduXe3zdu/eLQAQVqxYUePx58yZIwAQPD09hf79+wtvvPGGkJOTU6ncxo0bBQDCsmXLKu1Tq9Xa/9+9e1dn3/3794VHH31U6N27t852T09PITExsdKx3n77bQGAkJubq7M9Ly9PEIvFwhtvvKGz/ezZs0KDBg10tvfo0UMAIKxbt67adpc3d+5cAYBw8eJF4ebNm0Jubq6wfv16wdXVVfDz8xPu3LkjCIIgbNq0SaduN27cEFxcXIS+ffsKKpVKe7zVq1cLAISNGzdqt8XHxwshISF61YfI0fD2HBHV288//4zJkycjNjYWiYmJdXqupiejuLi4xnLz589HRkYGOnTogAMHDmDWrFmIjo5GVFSUzi3BnTt34uGHH8aUKVMqHUMkEmn/7+7urv3/X3/9BYVCgccffxwnT56sU/0r2rVrF9RqNZ577jn8+eef2h9/f3+0aNECBw8e1Cnv6uqKMWPG1Ok1WrZsicaNGyMsLAwTJkxA8+bNsXfv3mpzob766ivcv38fKSkpcHL652P/hRdegEQiwd69e+veUCIHxNtzRFQvBQUFiI+Ph1QqxSeffAKxWFyn59++fRsA4OXlVWvZYcOGYdiwYVAqlTh+/DjS09ORkZGBhIQEnDt3Dm5ubrhy5QpatmyJBg1q/njbs2cPXn/9dZw+fRolJSXa7eUDK0NcunQJgiCgRYsWVe53dnbWedykSZNK+WG12blzJyQSCZydnREUFKS95Vid3377DUBZsFWei4sLmjVrpt1PRDVj0EREBlMoFOjfvz9u3bqFb7/9FoGBgXU+hmaKgubNm+v9HIlEgieeeAJPPPEEnJ2dsXnzZhw/fhw9evTQ6/nffvstBg4ciO7du+Pdd99FQEAAnJ2dsWnTJmRkZNS5DeWp1WqIRCJ88cUXVQaQFXOEyvd46at79+7aPCoiMh8GTURkkHv37iEhIQG//PILvvrqK0RGRtb5GCqVChkZGfDw8MBjjz1mUD06duyIzZs3Iz8/H0BZovbx48dRWlpaqVdHY+fOnXBzc8OBAwfg6uqq3b5p06ZKZavreapue3h4OARBQFhYGB555JG6NsckQkJCAAAXL15Es2bNtNvv37+P3NxcxMXFabfVt6eNyJ4xp4mI6kylUmHIkCHIzs7Gjh07DJobSKVS4d///jcuXLiAf//735BIJNWWvXv3LrKzs6vc98UXXwD459bT4MGD8eeff2L16tWVygr/m/xRLBZDJBJBpVJp9+Xl5VU5iaWnp2eVE1h6enoCQKV9zzzzDMRiMebPn19psklBECCXy6tupAnFxcXBxcUFK1eu1KnThg0boFAodEYtenp61jj9A5EjY08TEdXZSy+9hP/+979ISEhAUVFRpcksK05kqVAotGXu3r2Ly5cvY9euXbhy5QqGDh2KhQsX1vh6d+/eRdeuXdGlSxf069cPwcHBuHXrFj799FN8++23GDRoEDp06AAAGDVqFD744AOkpqbi+++/x+OPP447d+7gq6++wv/93//hqaeeQnx8PJYtW4Z+/fph+PDhuHHjBtasWYPmzZvjzJkzOq8dHR2Nr776CsuWLUNgYCDCwsIQExOD6OhoAMCsWbMwdOhQODs7IyEhAeHh4Xj99dcxc+ZM5OXlYdCgQfDy8kJubi52796NpKQkvPzyy/U6/3XVuHFjzJw5E/Pnz0e/fv0wcOBAXLx4Ee+++y46deqk835FR0dj27ZtSE1NRadOndCwYUMkJCSYtb5EVsuSQ/eIyDZphspX91NT2YYNGwotWrQQnn/+eeHLL7/U6/VKS0uF//znP8KgQYOEkJAQwdXVVfDw8BA6dOggvP3220JJSYlO+bt37wqzZs0SwsLCBGdnZ8Hf31949tlnhStXrmjLbNiwQWjRooXg6uoqRERECJs2bdIO6S/v559/Frp37y64u7sLAHSmH1i4cKHQpEkTwcnJqdL0Azt37hQee+wxwdPTU/D09BQiIiKEyZMnCxcvXtQ5NzVNx1CRpn43b96ssVzFKQc0Vq9eLURERAjOzs6Cn5+fMGnSJOGvv/7SKXP79m1h+PDhQqNGjQQAnH6AqByRIBhhsSIiIiIiO8ecJiIiIiI9MGgiIiIi0gODJiIiIiI9MGgiIiIi0gODJiIiIiI9MGgiIiIi0gMntzQStVqN69evw8vLi8sQEBER2QhBEFBcXIzAwEA4OdXcl8SgyUiuX7+O4OBgS1eDiIiIDHD16lUEBQXVWIZBk5F4eXkBKDvpNa2hRURERNZDqVQiODhYex2vCYMmI9HckpNIJAyaiIiIbIw+qTVMBCciIiLSA4MmIiIiIj0waCIiIiLSA3OazEylUqG0tNTS1bBbzs7OEIvFlq4GERHZIQZNZiIIAgoKCnDr1i1LV8XuNWrUCP7+/pwvi4iIjIpBk5loAiZfX194eHjwgm4CgiDg7t27uHHjBgAgICDAwjUiIiJ7wqDJDFQqlTZg8vHxsXR17Jq7uzsA4MaNG/D19eWtOiIiMhomgpuBJofJw8PDwjVxDJrzzNwxIiIyJgZNZsRbcubB80xERKbA23NERERkleRyOe7fv1/tfhcXF7OmvTBoIiIiIqsjl8uxevXqWsslJyebLXDi7Tmq0ejRoyESiSASieDs7Aw/Pz888cQT2LhxI9Rqtd7HSU9PR6NGjUxXUSIisis19TAZUs4YrCpoWrx4MUQiEVJSUrTb7t27h8mTJ8PHxwcNGzbE4MGDUVhYqPO833//HfHx8fDw8ICvry+mTZuGBw8e6JQ5dOgQoqKi4OrqiubNmyM9Pb3S669ZswahoaFwc3NDTEwMvv/+e1M00yByuRz5+fnV/sjlcpO9dr9+/ZCfn4+8vDx88cUX6NWrF1588UUMGDCg0nkmIiKyV1Zze+7EiRNYv3492rZtq7N96tSp2Lt3L3bs2AGpVIrk5GQ888wzOHr0KICy4fzx8fHw9/fHsWPHkJ+fj1GjRsHZ2RlvvvkmACA3Nxfx8fGYOHEitmzZgqysLIwfPx4BAQGQyWQAgG3btiE1NRXr1q1DTEwM0tLSIJPJcPHiRfj6+pr3ZFRg6S5KV1dX+Pv7AwCaNGmCqKgodOnSBX369EF6ejrGjx+PZcuWYdOmTfj111/h7e2NhIQELFmyBA0bNsShQ4cwZswYAP8kac+dOxfz5s3Dhx9+iBUrVuDixYvw9PRE7969kZaWZvFzTkREVJFV9DTdvn0bI0aMwH/+8x889NBD2u0KhQIbNmzAsmXL0Lt3b0RHR2PTpk04duwYvvvuOwDAl19+ifPnz+Ojjz5C+/bt0b9/fyxcuBBr1qzRdtmtW7cOYWFhWLp0KVq1aoXk5GQ8++yzWL58ufa1li1bhhdeeAFjxoxBZGQk1q1bBw8PD2zcuNG8J6MK1thF2bt3b7Rr1w67du0CADg5OWHlypX46aefsHnzZnz99deYPn06AKBr165IS0uDRCLR9oy9/PLLAMqmBVi4cCF+/PFHfPrpp8jLy8Po0aPN1g4iIiJ9WUXQNHnyZMTHxyMuLk5ne05ODkpLS3W2R0REoGnTpsjOzgYAZGdno02bNvDz89OWkclkUCqV+Omnn7RlKh5bJpNpj3H//n3k5OTolHFyckJcXJy2TEUlJSVQKpU6P44mIiICeXl5AICUlBT06tULoaGh6N27N15//XVs374dQNnoBqlUCpFIBH9/f/j7+6Nhw4YAgLFjx6J///5o1qwZunTpgpUrV+KLL77A7du3LdUsIiKiKlk8aNq6dStOnjyJRYsWVdpXUFAAFxeXSgnEfn5+KCgo0JYpHzBp9mv21VRGqVTi77//xp9//gmVSlVlGc0xKlq0aBGkUqn2Jzg4WP9G2wlBELS327766iv06dMHTZo0gZeXF0aOHAm5XI67d+/WeIycnBwkJCSgadOm8PLyQo8ePQCU5akRERFZE4sGTVevXsWLL76ILVu2wM3NzZJVqbOZM2dCoVBof65evWrpKpndhQsXEBYWhry8PAwYMABt27bFzp07kZOTgzVr1gCo+ZbhnTt3IJPJIJFIsGXLFpw4cQK7d++u9XlERESWYNFE8JycHNy4cQNRUVHabSqVCt988w1Wr16NAwcO4P79+7h165ZOb1NhYaE2Mdnf37/SKDfN6LryZSqOuCssLIREIoG7uzvEYjHEYnGVZTTHqMjV1RWurq6GNdwOfP311zh79iymTp2KnJwcqNVqLF26FE5OZXG45tachouLC1Qqlc62n3/+GXK5HIsXL9b21P3www/maQAREVk1FxcXo5YzBosGTX369MHZs2d1to0ZMwYRERGYMWMGgoOD4ezsjKysLAwePBgAcPHiRfz++++IjY0FAMTGxuKNN97QLtAKAJmZmZBIJIiMjNSW2bdvn87rZGZmao/h4uKC6OhoZGVlYdCgQQAAtVqNrKwsJCcnm6z9tqKkpAQFBQVQqVQoLCzE/v37sWjRIgwYMACjRo3CuXPnUFpailWrViEhIQFHjx7FunXrdI4RGhqK27dvIysrC+3atYOHhweaNm0KFxcXrFq1ChMnTsS5c+ewcOFCC7WSiIisiY+PD5KTkzkjuIaXlxceffRRnW2enp7w8fHRbh83bhxSU1Ph7e0NiUSCKVOmIDY2Fl26dAEA9O3bF5GRkRg5ciSWLFmCgoICzJ49G5MnT9b2BE2cOBGrV6/G9OnTMXbsWHz99dfYvn079u7dq33d1NRUJCYmomPHjujcuTPS0tJw584d7VB5R7Z//34EBASgQYMGeOihh9CuXTusXLkSiYmJcHJyQrt27bBs2TK89dZbmDlzJrp3745FixZh1KhR2mN07doVEydOxJAhQyCXy7VTDqSnp+PVV1/FypUrERUVhXfeeQcDBw60YGuJiMhamDMg0odIEATB0pUor2fPnmjfvj3S0tIAlE1u+dJLL+Hjjz9GSUkJZDIZ3n33XZ3bZr/99hsmTZqEQ4cOwdPTE4mJiVi8eDEaNPgnJjx06BCmTp2K8+fPIygoCK+99lqloe2rV6/G22+/jYKCArRv3x4rV65ETEyMXvVWKpWQSqVQKBSQSCQ6++7du4fc3FyEhYUZlLtl6XmabE19zzcREVmfa9eAS5eAFi2AoCDjHbem63dFVhc02SpTBk2A9S1aaM0YNBER2ZcNG4CkJECtBpycgPfeA8aNM86x6xI0Wc2M4FQzBkREROSIrl37J2ACyv6dMAGQyYzb46QPi8/TRERERFSdS5f+CZg0VCrg8mXz14VBExEREVmtFi3KbsmVJxYDzZubvy4MmoiIiMhqBQWV5TCJxWWPxWJg/Xrz35oDmNNEREREVm7cuLIcpsuXy3qYLBEwAQyaiIiIyAYEBVkuWNLg7TkiIiIiPTBoIiIiItIDgyayqEOHDkEkEuHWrVt6Pyc0NFQ7YzwRERmPXC5Hfn5+tT9yudzSVbQo5jRRjUaPHo3NmzdjwoQJlRbhnTx5Mt59910kJiYiPT3dMhUkIiKj4JJdtWPQRLUKDg7G1q1bsXz5cri7uwMoW6okIyMDTZs2tXDtiIhsm7Usk1VTHQwpZ48YNFGtoqKicOXKFezatQsjRowAAOzatQtNmzZFWFiYtlxJSQmmTZuGrVu3QqlUomPHjli+fDk6deqkLbNv3z6kpKTg6tWr6NKlCxITEyu93pEjRzBz5kz88MMPePjhh/H0009j0aJF8PT0NH1jiYjMiL07toU5TTbo2jXg4MGyf81l7Nix2LRpk/bxxo0bMWbMGJ0y06dPx86dO7F582acPHkSzZs3h0wmQ1FREQDg6tWreOaZZ5CQkIDTp09j/PjxeOWVV3SOceXKFfTr1w+DBw/GmTNnsG3bNhw5cgTJycmmbyQRkZmxd8e2MGiyMRs2ACEhQO/eZf9u2GCe133++edx5MgR/Pbbb/jtt99w9OhRPP/889r9d+7cwdq1a/H222+jf//+iIyMxH/+8x+4u7tjw/8quXbtWoSHh2Pp0qVo2bIlRowYgdGjR+u8zqJFizBixAikpKSgRYsW6Nq1K1auXIkPPvgA9+7dM09jiYiIqsDbczbEkis9N27cGPHx8UhPT4cgCIiPj8fDDz+s3X/lyhWUlpaiW7du2m3Ozs7o3LkzLly4AAC4cOECYmJidI4bGxur8/jHH3/EmTNnsGXLFu02QRCgVquRm5uLVq1amaJ5REREtWLQZENqWunZHLOkjh07VnubbM2aNSZ5jdu3b2PChAn497//XWkfk86JiMxHofBCUZEPvL3lkEqLLV0dq8CgyYZoVnouHziZc6Xnfv364f79+xCJRJDJZDr7wsPD4eLigqNHjyIkJAQAUFpaihMnTiAlJQUA0KpVK/z3v//Ved53332n8zgqKgrnz59Hc0ssX01ERACAkyc74PPPB0AQnCASqZGQsAdRUacsXS2LY06TDbH0Ss9isRgXLlzA+fPnIdZU4n88PT0xadIkTJs2Dfv378f58+fxwgsv4O7duxg3bhwAYOLEibh06RKmTZuGixcvIiMjo9L8TjNmzMCxY8eQnJyM06dP49KlS/jss8+YCE5EDkGh8EJubigUCi+zv7aLi4u2DpqACQAEwQmffz5AWydNOUfEniYbY+mVniUSSbX7Fi9eDLVajZEjR6K4uBgdO3bEgQMH8NBDDwEou722c+dOTJ06FatWrULnzp3x5ptvYuzYsdpjtG3bFocPH8asWbPw+OOPQxAEhIeHY8iQISZvGxGRJVm6d8fHxwfJyck4eBBYvly3T0UQnNCtWyJ69oRDT30gEgRBsHQl7IFSqYRUKoVCoagUWNy7dw+5ubkICwuDm5ubhWroOHi+ichWaOZpUii8kJaWou3dAQCRSI2UlDRIpcVmnafp2rWy0dkVU0Hy8sz/Rd0carp+V8Tbc0RERBai6d3p2jVRJ2AC/undMffElpZOBbFmvD1HRERkQT4+PujSpeqBPjExPrDE3TBLp4JYK/Y0ERERWZg19u4EBQE9ezJgKo89TURERFaAvTvWj0GTGTHn3jx4nskeyeXyGtcfc3FxcehRTfYiKIjBkjVj0GQGzs7OAIC7d+/C3d3dwrWxf3fv3gXwz3knsnWaEVa1MXfCMJGjYdBkBmKxGI0aNcKNGzcAAB4eHhCJRBaulf0RBAF3797FjRs30KhRo0oTcBLZKn1XuNe3HBEZhkGTmfj7+wOANnAi02nUqJH2fBMRmRtvpdovBk1mIhKJEBAQAF9fX5SWllq6OnbL2dmZPUxEZDG8lWrfGDSZmVgs5kWdyA6xd4EA3kq1dwyaiIjqydy9CwqFF4qKfODtLYdUWlzv45Hp8L2yLwyaiIjqyZy9C/ou6sqeL8uz9AK8ZHwMmoiIbIRC4aW9CANla5N9/vkAhIdf1unFYF6N5en7XpFt4TIqRERWzsXFBQBQVORT5aKuRUXeOuWYV2N5tb1XZJvY00REZGTGzmPx8fFBcnIy8vIe4MMPBajV/8zzJhYLmDKlP0JDG7DXyIp4e8shEql1AieRSA1v7yIL1orqi0ETEZERmSqPxcenbLX7994DJkwAVCrNoq4iREf71fhcJiObn1RajISEPZV+F3j+bRuDJiIiIzFHHktdF3VlMrJ5aW6RAkBU1CmEh19GUZE3vL2LdH4Hypcj28GgiYjISGrKYzFmD4O+i7oyGdn8NLdSOXLRPjFoIiKHYMoh+Jpeg9ryWMzdu2CuII50MSCyXwyaiMjumXoIfvnehSZNlJgxQwqVSgSxWMBbbykxfPgwi/QuMBmZyLgYNBGR3TPHEHxNQPTSS8CQIZqcIxGCghoBaGTwcQ2h6dGqLRmZeTVEdcOgiYjIyPTNOTKVink1c+bcRF5eA4SGPkBgYCcAnZhXQ2QABk1E5HAcYQh++YAoIACIjrZgZYjsBIMmInIoHIJPRIbiMipE5DCqG4KvUHhZuGZEZAssGjStXbsWbdu2hUQigUQiQWxsLL744gvt/p49e0IkEun8TJw4UecYv//+O+Lj4+Hh4QFfX19MmzYNDx480Clz6NAhREVFwdXVFc2bN0d6enqluqxZswahoaFwc3NDTEwMvv/+e5O0mYgspy7rgcnlcuTn51f7I5fLzVVth8NzbzvKv1c5OYX45BM5cnIK7fa9sujtuaCgICxevBgtWrSAIAjYvHkznnrqKZw6dQqtW7cGALzwwgtYsGCB9jkeHh7a/6tUKsTHx8Pf3x/Hjh1Dfn4+Ro0aBWdnZ7z55psAgNzcXMTHx2PixInYsmULsrKyMH78eAQEBEAmkwEAtm3bhtTUVKxbtw4xMTFIS0uDTCbDxYsX4evra8YzQkSmpO8QfFNPUUDVq3juq8s/47m3vPLvVU23ve3pvbJoT1NCQgKefPJJtGjRAo888gjeeOMNNGzYEN999522jIeHB/z9/bU/EolEu+/LL7/E+fPn8dFHH6F9+/bo378/Fi5ciDVr1mhHjaxbtw5hYWFYunQpWrVqheTkZDz77LNYvny59jjLli3DCy+8gDFjxiAyMhLr1q2Dh4cHNm7caL6TQUQmU3EIvkikBoBqh+BXnHpAofBCbm5opdt49ZmigKpW/pyePNkBaWkp2Lw5EWlpKTh5skOV5cgyNO9Bbbe97em9sppEcJVKhR07duDOnTuIjY3Vbt+yZQs++ugj+Pv7IyEhAa+99pq2tyk7Oxtt2rSBn98/i1XKZDJMmjQJP/30Ezp06IDs7GzExcXpvJZMJkNKSgqAsjczJycHM2fO1O53cnJCXFwcsrOzq61vSUkJSkpKtI+VSmW92k9EplOfIfhMHLcMLgFjOxxp5nmLB01nz55FbGws7t27h4YNG2L37t2IjIwEAAwfPhwhISEIDAzEmTNnMGPGDFy8eBG7du0CABQUFOgETAC0jwsKCmoso1Qq8ffff+Ovv/6CSqWqsszPP/9cbb0XLVqE+fPn16/xRGQ2hgzB54W7aqZckkbDkS7Ets6RZp63eNDUsmVLnD59GgqFAp988gkSExNx+PBhREZGIikpSVuuTZs2CAgIQJ8+fXDlyhWEh4dbsNbAzJkzkZqaqn2sVCoRHBxswRoRkbHxwl2ZuXKOHOlCbOtqm3nenlg8aHJxcUHz5s0BANHR0Thx4gRWrFiB9evXVyobExMDALh8+TLCw8Ph7+9faZRbYWEhAMDf31/7r2Zb+TISiQTu7u4Qi8UQi8VVltEcoyqurq5wdXWtY2uJyJbwwl1ZxZyj6m5d1jePxZEuxPYgKuoUwsMvo6jIG97eRXb7PlndPE1qtVonV6i806dPAwACAgIAALGxsTh79ixu3LihLZOZmQmJRKK9xRcbG4usrCyd42RmZmrzplxcXBAdHa1TRq1WIysrSye3iogcT22J447MHHNeRUWdQkpKGhIT05GSksZcMisnlRYjLOw3u/77sGhP08yZM9G/f380bdoUxcXFyMjIwKFDh3DgwAFcuXIFGRkZePLJJ+Hj44MzZ85g6tSp6N69O9q2bQsA6Nu3LyIjIzFy5EgsWbIEBQUFmD17NiZPnqztBZo4cSJWr16N6dOnY+zYsfj666+xfft27N27V1uP1NRUJCYmomPHjujcuTPS0tJw584djBkzxiLnhYish6N8g64rc926lEqLec7Jalg0aLpx4wZGjRqF/Px8SKVStG3bFgcOHMATTzyBq1ev4quvvtIGMMHBwRg8eDBmz56tfb5YLMaePXswadIkxMbGwtPTE4mJiTrzOoWFhWHv3r2YOnUqVqxYgaCgILz//vvaOZoAYMiQIbh58ybmzJmDgoICtG/fHvv376+UHE5EjkEz9YBGdRfuiuUcialuXep7Th353FsLR3yvRIIgCJauhD1QKpWQSqVQKBQ6c0kRkW0yxwgxW5Sfn4/33nsPQM05TUlJSdpUirriubcd9vBe1eX6bfFEcCIia2TtH/TWwFS3LnnubYejvVcMmoiIyGDMOSJHYnWj54iIyHo5Yh4LkQZ7moiISG8Vl6Spii3ksRAZgkETERHVCQMiclS8PUdERESkBwZNRERERHpg0ERERESkBwZNRERERHpg0ERERERmd+0acPBg2b+2gkETERGRlbDFQMIQGzYAISFA795l/27YYOka6YdBExERkQXJ5XLk5+dj6dJbCAkR/hdICFi69Bby8/Mhl8stXUWjkcvlyMkpRFKSALW6bJtaDUyYICAnp9Dq28p5moiIiCxELpdj9erVUCi8kJaWAkEQAQDUahGmTZPgjz82QiotRnJyss3Pj6Vpa25uKNTqRJ19KpUIq1Z9gbCw36y6rexpIiIishDNzOpFRT4QBN1LsiA4oajIW6ecLdO0wdtbDpFIrbNPJFLD27tIp5w1YtBERERkYbUFEvZEKi1GQsIebXtFIjUSEvbYxMLPvD1HRCYjl8u13xqvX3dCbm4DhIU9QGBg2Ycl1ygjKqMJJD7/fAAEwcmmAglDREWdQnj4ZRQVecPbu8hm2smgiYhMQpO/AAAnT3aodDGIijoFAFadv0BkTrYaSBhKKi22uTby9hwRmYSmh0mh8NIGTEBZnsbnnw+AQuGlU46IygKJsLDfbC6YcBQMmojIpGpLcCUishUMmojIpBwpwZWI7BuDJiIyKVseKUNkai4uLkYtZ83soa1MBCcik3O0BFciffn4+CA5ObnG3D57GWVqD21l0EREZmGLI2WIzMGagwRjs/W28vYcERERkR4YNBGRSdhD/gIRUXm8PUdkp65dAy5dAlq0AIKCzP/69pC/QERUHoMmogpseekPTd0zMtwxfboUarUITk4ClixRYPjwv81ed2s9T0REhmDQRFSOLS/9oam7QuGFtLQUCIIIAKBWizBtmgR//LERUmmxVdadiMgWMKeJqBxbXvpDU6faZuC2xroTWcq1a8DBg2X/EtWGQRNRFWx56Q/OwG15vBDbhg0bgJAQoHfvsn83bLB0jcjaMWgiqoItBx6cgduyeCG2DdeuAUlJgPp/f+ZqNTBhAgNdqhlzmoiqoAk8KuY02UrgwRm4zU8ulyMv7wGSknyhVmvyyYAJEwS0b38DoaENmEtmRS5d+idg0lCpgMuXLTPalGwDgyaiath64MEZuM1Hk4SfmxsKtTpRZ59KJcKqVV8gLOw3JuFbCblcDonkAZyc/glwAUAsFuDldQNyOQNcqhqDJqJaiWovQg5Nk1yvua1bPh+u/G1dJuFbXvkRsgMG6I6QjY/fgz17rHeELFkegyaiatQ05QBRVWz9tq4jKB+41tSbzACXqsKgiaicu3fvAqh+yoHw8MuQSou15awJly2xDrZ+W9fR8DY21QWDJqJyPDw8ANQ85YBUWqwtZ024bIn14IWYyD4xaCKqQm25KdaKARERkelwniaiKnCuIyIiqog9TUTVYG4KERGVx6CJqAbMTSF9MAmfyDEwaCIiqicm4dsOBrhUHwyaiIiMgAGRbWCAS/XBoImoHH4LJbJ/DIjIUAyaiMrht1AiIqqORaccWLt2Ldq2bQuJRAKJRILY2Fh88cUX2v337t3D5MmT4ePjg4YNG2Lw4MEoLCzUOcbvv/+O+Ph4eHh4wNfXF9OmTcODBw90yhw6dAhRUVFwdXVF8+bNkZ6eXqkua9asQWhoKNzc3BATE4Pvv//eJG0m6+fj44OAgIBqfxgwERE5JosGTUFBQVi8eDFycnLwww8/oHfv3njqqafw008/AQCmTp2Kzz//HDt27MDhw4dx/fp1PPPMM9rnq1QqxMfH4/79+zh27Bg2b96M9PR0zJkzR1smNzcX8fHx6NWrF06fPo2UlBSMHz8eBw4c0JbZtm0bUlNTMXfuXJw8eRLt2rWDTCbDjRs3zHcyiIiIyLoJVuahhx4S3n//feHWrVuCs7OzsGPHDu2+CxcuCACE7OxsQRAEYd++fYKTk5NQUFCgLbN27VpBIpEIJSUlgiAIwvTp04XWrVvrvMaQIUMEmUymfdy5c2dh8uTJ2scqlUoIDAwUFi1apHe9FQqFAEBQKBR1azARERFZTF2u31YzI7hKpcLWrVtx584dxMbGIicnB6WlpYiLi9OWiYiIQNOmTZGdnQ0AyM7ORps2beDn56ctI5PJoFQqtb1V2dnZOsfQlNEc4/79+8jJydEp4+TkhLi4OG2ZqpSUlECpVOr8EBERkf2yeNB09uxZNGzYEK6urpg4cSJ2796NyMhIFBQUwMXFBY0aNdIp7+fnh4KCAgBAQUGBTsCk2a/ZV1MZpVKJv//+G3/++SdUKlWVZTTHqMqiRYsglUq1P8HBwQa1nxzXtWvAwYNl/xIRkfWzeNDUsmVLnD59GsePH8ekSZOQmJiI8+fPW7patZo5cyYUCoX25+rVq5auEtmQDRuAkBCgd++yfzdssHSNiIioNhafcsDFxQXNmzcHAERHR+PEiRNYsWIFhgwZgvv37+PWrVs6vU2FhYXw9/cHAPj7+1ca5aYZXVe+TMURd4WFhZBIJHB3d4dYLIZYLK6yjOYYVXF1dYWrq6thjSaHJZfLkZf3AElJvlCrRQAAtRqYMEFA+/Y3EBragKPziIislMV7mipSq9UoKSlBdHQ0nJ2dkZWVpd138eJF/P7774iNjQUAxMbG4uzZszqj3DIzMyGRSBAZGaktU/4YmjKaY7i4uCA6OlqnjFqtRlZWlrYMkTHI5XKsXr0aq1bt1wZMGiqVCKtWfYHVq1dDLpdbqIZERFQTi/Y0zZw5E/3790fTpk1RXFyMjIwMHDp0CAcOHIBUKsW4ceOQmpoKb29vSCQSTJkyBbGxsejSpQsAoG/fvoiMjMTIkSOxZMkSFBQUYPbs2Zg8ebK2F2jixIlYvXo1pk+fjrFjx+Lrr7/G9u3bsXfvXm09UlNTkZiYiI4dO6Jz585IS0vDnTt3MGbMGIucF7JPmgkzvb3lEInUKD8OQyRSw9u7SKccERFZF4ODptDQUIwdOxajR49G06ZNDTrGjRs3MGrUKOTn50MqlaJt27Y4cOAAnnjiCQDA8uXL4eTkhMGDB6OkpAQymQzvvvuu9vlisRh79uzBpEmTEBsbC09PTyQmJmLBggXaMmFhYdi7dy+mTp2KFStWICgoCO+//z5kMpm2zJAhQ3Dz5k3MmTMHBQUFaN++Pfbv318pOZzIGKTSYiQk7MHnnw+AIDhBJFIjIWEPpNJiS1eNiIhqIBIEQTDkiWlpaUhPT8e5c+fQq1cvjBs3Dk8//bTD5vkolUpIpVIoFApIJBJLV4cs5No14NIloEULIChId19+fj7ee+897WOFwgtFRd7w9i7SCZiSkpIQEBBgriqbTU3nhojIUupy/TY4pyklJQWnT5/G999/j1atWmHKlCkICAhAcnIyTp48aehhyQg4lN0y6joiTiotRljYbw7Rw8TRgkRkD+qdCB4VFYWVK1fi+vXrmDt3Lt5//3106tQJ7du3x8aNG2FgRxbVkVwuR35+PpYuvYWQEOF/FycBS5feQn5+PpOLTUgulyMnpxBJSQLU6rJtmhFxOTmFDn/ur10DkpJQ4dwwqCci21PvRPDS0lLs3r0bmzZtQmZmJrp06YJx48bh2rVrePXVV/HVV18hIyPDGHWlamhGZSkUXkhLS4EgaIayizBtmgR//LERUmkxkpOTOZzdyDTnPjc3FGp1os4+zYi4sLDfkJycbKEaWpZcLsd33wFqte7vnUoFHD8uh7s7+DtJRDbD4KDp5MmT2LRpEz7++GM4OTlh1KhRWL58OSIiIrRlnn76aXTq1MkoFaXqaUZbFRX5oOLKOILghKIib0ilxRyVZQL2NCLO2DlH5YN5kSil0rk5enQzzp1jME9EtsPg23OdOnXCpUuXsHbtWvzxxx945513dAImoGzk2tChQ+tdSdKP5sJdXvkLN5mOZkSc5vxXNSLOxcVFr2PpW86YTJFzpAkUazs3xgoomctHRKZmcE/Tr7/+ipCQkBrLeHp6YtOmTYa+BNURh7JbVlTUKYSHX65yRBxQdhsqOTm5xiDBxcXF7L0u1eUcyWTGG+VW27mprw0b/mmDkxPw3nvAuHFGfQkiIsODpl69euHEiROVPuBv3bqFqKgo/Prrr/WuHNWdqS9OVDOptLjGc25tt6HMmXNU27kxlDmCPiIioB5BU15eHlQqVaXtJSUl+OOPP+pVKaofU12cyL7YQ84RE82JyJzqHDT997//1f5fs9yJhkqlQlZWFkJDQ41SOSIynYo5R9Xd1rXWJHZ7CPqIyLbUOWgaNGgQAEAkEiExUXeItbOzM0JDQ7F06VKjVI6IzMMWb+vaetBH1oEz1VNd1DloUv8vcSAsLAwnTpzAww8/bPRKUd1Y86gse2dP596Wb+vaYtBXHi/clsEBBFRXBuc05ebmGrMeVA/WOirLEfDcV8/cAaWtBn28cFsGBxCQIQwOmhYsWFDj/jlz5hh6aDKAI16UrQXPfdUYUNaOF27LuXTpn/OuoVIBly/z3FP1DA6adu/erfO4tLQUubm5aNCgAcLDwxk0EZFDB0S14cg/y5HL5ZBIHsDJyRdqtUi7XSwW4OV1A3J5A5578LZxVQwOmk6dOlVpm1KpxOjRo/H000/Xq1JERPaMI/8sR3PuAWDAgA46Awji4/dgz56ya5ujn3veNq5avRfsLU8ikWD+/PlISEjAyJEjjXloIjIye0pitzUc+Wc55c9pTQMIHPnc87Zx9YwaNAGAQqGAQqEw9mGJyMhsPefIXoI+Wx/5Z+tsdQCBKTHfq3oGB00rV67UeSwIAvLz8/Hhhx+if//+9a4YEZmetQZE+rD1oK88XrjJWjDfq2YGB03Lly/Xeezk5ITGjRsjMTERM2fOrHfFiOwdkyzrz5E/vImMjfleteM8TUQWwCRLIrI2zPeqXb1ymgRBgFwuh0gkctiok6gu5HI58vIeICnpn67vsiRLAe3b30BoqGN3fROR9eBt48qcai9SWUFBAUaNGoWHHnoIfn5+8PX1xUMPPYSxY8eisLDQ2HUksguaru9Vq/br5AoAgEolwqpVX2D16tWQy+UWqiEREdWkzj1NSqUSXbt2xe3btzFmzBhERERAEAScP38eH3/8MY4cOYKTJ0+iYcOGpqgvkc3SdGl7e8shEqkrzc3j7V2kU47sl72M/LNF9nTumRdpfnUOmlasWAGxWIyffvoJjRs31tk3e/ZsdOvWDStXrsSrr75qtEoS2ZPa5uYh+2dPI/9sjb2ce+ZFWkadg6a9e/fi1VdfrRQwAYCvry9mzpyJ//znPwyaiGrAuXnI2i/K9szWzz0nn7ScOuc0/fLLL+jatWu1+7t27YqLFy/Wq1JEjkAqLUZY2G8MmIhIb2VrFsqrnHzy+HE5cyJNrM5Bk1KpRKNGjard36hRIyiVyvrUiYiIiCrQDCY5dmwzRCLdqEmzZmF9BpPYU76XqdT59pwgCHByqj7WEolEEAShXpUiIiIiXaZes9Be8r1MyaCg6ZFHHoFIJKp2PxEREZmOqfIiHTkg0kedg6ZNmzaZoh5Edo9d30RkTJx80vzqHDQlJibWqfzHH3+MgQMHwtPTs64vRWRX2PVNRGTb6rWMij4mTJiAmJgYNGvWzNQvRWT1GBAREdkug5ZRqQvmOBEREZE9MHnQRERERFRf164BBw+W/WspDJqIiIhsgCMPJtmwAQgJAXr3Lvt3wwbL1EMkmPj+mZeXF3788Ue7z2lSKpWQSqVQKBSQSCSWrg6R1eHiokT1J5fLHW4wybVrZYFS+VnQxWIgL884nyV1uX6bPBGciByX5gM+I8Md06dLoVaL4OQkYMkSBYYP/9suP+CJTMkR/14uXUKVy8Zcvmz+L2AGBU0qlQpHjx5F27Zta1xSBQBCQkLg7OxsyMsQkQ3TLPmgUHghLS0FglA2Ia5aLcK0aRL88cdGSKXFSE5OdsgLARHVTi6XQyJ5ACcnX6jV/0yqLRYL8PK6Abm8gVk/PwwKmsRiMfr27YsLFy7UGjSdO3fOkJcgIhunuYVQVOQDQdBNnxQEJxQVeUMqLTZ4yQcism+aL14AMGBAB51lY+Lj92DPnlMAYNYvXgbfnnv00Ufx66+/IiwszJj1ISI74+0th0ik1gmcRCI1vL2LLFgrIrJ25b9Q1bRsjDm/eBk8eu7111/Hyy+/jD179iA/Px9KpVLnh4gsyxqG5wL/LC6qWZW94uKiRET6kEqLERb2m0U/OwzuaXryyScBAAMHDtRZvFcQBIhEIqhUqvrXjojqxFoTr021uCgRkTkZHDQdPHjQmPUgonqy9sRrLi5KRLbO4KCpR48exqwHEdUTE6+JiEyrXjOCf/vtt3j++efRtWtX/PHHHwCADz/8EEeOHDFK5Yio7jSJ1+Ux8ZqIqP4MDpp27twJmUwGd3d3nDx5EiUlJQAAhUKBN998U69jLFq0CJ06dYKXlxd8fX0xaNAgXLx4UadMz549IRKJdH4mTpyoU+b3339HfHw8PDw84Ovri2nTpuHBgwc6ZQ4dOoSoqCi4urqiefPmSE9Pr1SfNWvWIDQ0FG5uboiJicH3339fhzNCZB2sJfHakZd8ICL7ZPDtuddffx3r1q3DqFGjsHXrVu32bt264fXXX9frGIcPH8bkyZPRqVMnPHjwAK+++ir69u2L8+fPw9PTU1vuhRdewIIFC7SPPTw8tP9XqVSIj4+Hv78/jh07hvz8fIwaNQrOzs7a4C03Nxfx8fGYOHEitmzZgqysLIwfPx4BAQGQyWQAgG3btiE1NRXr1q1DTEwM0tLSIJPJcPHiRfj6+hp6mogswhoSr318fJCcnOxwSz6YA5ekIUdgjV+8DF57zsPDA+fPn0doaKjO+nK//vorIiMjce/evTof8+bNm/D19cXhw4fRvXt3AGU9Te3bt0daWlqVz/niiy8wYMAAXL9+HX5+fgCAdevWYcaMGbh58yZcXFwwY8YM7N27V2eizaFDh+LWrVvYv38/ACAmJgadOnXSTqSlVqsRHByMKVOm4JVXXqm17lx7jiwtPz8f7733Xq3lkpKSEBAQYIYakTFZ68hIIlMyx1p7Zll7zt/fH5cvX0ZoaKjO9iNHjhi8OK9CoQAAeHt762zfsmULPvroI/j7+yMhIQGvvfaatrcpOzsbbdq00QZMACCTyTBp0iT89NNP6NChA7KzsxEXF6dzTJlMhpSUFABlCbQ5OTmYOXOmdr+TkxPi4uKQnZ1dZV1LSkq0tyQBWHxuqvK/WNevOyE3twHCwh4gMLDsFg0/UIlsl7WPjCQyFWv7fTY4aHrhhRfw4osvYuPGjRCJRLh+/Tqys7Px8ssv47XXXqvz8dRqNVJSUtCtWzc8+uij2u3Dhw9HSEgIAgMDcebMGcyYMQMXL17Erl27AAAFBQU6ARMA7eOCgoIayyiVSvz999/466+/oFKpqizz888/V1nfRYsWYf78+XVupymUn2r+5EndqeYTEvYgKsr8U80TkfFwZCSRdTA4aHrllVegVqvRp08f3L17F927d4erqytefvllTJkypc7Hmzx5Ms6dO1dp5F1SUpL2/23atEFAQAD69OmDK1euIDw83NDq19vMmTORmpqqfaxUKhEcHGyRumg+KBUKL23ABJR9mH7++QCEh1/mB6oDsMb7/2RcXJKGyLIMDppEIhFmzZqFadOm4fLly7h9+zYiIyPRsGHDOh8rOTkZe/bswTfffIOgWrIaY2JiAACXL19GeHg4/P39K41yKywsBFB2C1Hzr2Zb+TISiQTu7u4Qi8UQi8VVltEcoyJXV1e4urrq30gzqO1bKNk3Jl7bP83IyIq9yfz7JjIPg4MmDRcXF0RGRhr0XEEQMGXKFOzevRuHDh3Sa/Hf06dPA4A2kTU2NhZvvPEGbty4oR3llpmZCYlEoq1XbGws9u3bp3OczMxMxMbGatsQHR2NrKwsDBo0CEDZ7cKsrCwkJycb1DZL4LdQYkBk/6xhZCSRozI4aLp37x5WrVqFgwcP4saNG1CrdSfTO3nyZK3HmDx5MjIyMvDZZ5/By8tLm4MklUrh7u6OK1euICMjA08++SR8fHxw5swZTJ06Fd27d0fbtm0BAH379kVkZCRGjhyJJUuWoKCgALNnz8bkyZO1PUETJ07E6tWrMX36dIwdOxZff/01tm/fjr1792rrkpqaisTERHTs2BGdO3dGWloa7ty5gzFjxhh6isyO30KtHxP2yRi4JA2RZRgcNI0bNw5ffvklnn32WXTu3Fln0V59rV27FkDZtALlbdq0CaNHj4aLiwu++uorbQATHByMwYMHY/bs2dqyYrEYe/bswaRJkxAbGwtPT08kJibqzOsUFhaGvXv3YurUqVixYgWCgoLw/vvva+doAoAhQ4bg5s2bmDNnDgoKCtC+fXvs37+/UnK4teO3UOvFhH0iIttmcNC0Z88e7Nu3D926dTP4xWubIio4OBiHDx+u9TghISGVbr9V1LNnT5w6darGMsnJyTZ1O646/BZqnZiwT0Rk2wxeRqVJkybw8vIyZl2IHEJNCftEVeHISCLrYHBP09KlSzFjxgysW7cOISEhxqwT1RE/UG0LE/aprjgyksg6GBw0dezYEffu3UOzZs3g4eEBZ2dnnf1FRbwAmAs/UG0LE/bJEPz7JbI8g4OmYcOG4Y8//sCbb74JPz8/gxLByXj4gWpbmLBPRGR7DA6ajh07huzsbLRr186Y9SFyGEzYJyKyLQYngkdERODvv/82Zl2IiIiIrJbBQdPixYvx0ksv4dChQ5DL5VAqlTo/RKSLCftERLZNJNQ2WVI1nJzK4q2KuUyCIEAkEkGlUtW/djZEqVRCKpVCoVBAIpFYujpkpcrPCF4VJuwTEZlXXa7fBuc0HTx40NCnEjksBkRERLbLoKCptLQUCxYswLp169CiRQtj14nAHgkiIiJrY1DQ5OzsjDNnzhi7LvQ/5dcoqwnXKCMiIjIfg2/PPf/889iwYQMWL15szPoQUKmHSaHwQlGRD7y95TpD1LlGGRGR6ZXv+b9+3Qm5uQ0QFvYAgYFqAOz517h2Dbh0CWjRAggKsnRtTMPgoOnBgwfYuHEjvvrqK0RHR8PT01Nn/7Jly+pdOQJOnuxQaeboqKiaFx4mIiLjKN/zX9PnsaP2/GsCyowMd0yfLoVaLYKTk4AlSxQYPvxvuwsoDQ6azp07h6ioKADAL7/8orOPs4Mbh0Lhpf0DBcoWdf388wEID7/MSRGJiMxA08NU2+exI/b8awJKhcILaWkpEISya79aLcK0aRL88cdGSKXFdhVQcvScFSsq8tFZ1BUo+0MtKvJm0EREZEb8PK5MEyjWdm7sKaA0eHLL8q5du4Zr164Z41BUjre3HCKRWmebSKSGtzcXQyYiMid+HlfPkc6NwUGTWq3GggULIJVKERISgpCQEDRq1AgLFy6EWq2u/QBUK6m0GAkJe7S/jJp76I76rYaIyFL4eVw9Rzo3Bt+emzVrlnb0XLdu3QAAR44cwbx583Dv3j288cYbRqukI4uKOoXw8MsoKvKGt3eRXf4SEhHZAn4eV89Rzo3BQdPmzZvx/vvvY+DAgdptbdu2RZMmTfB///d/DJrqoeLaY1JpcZW/gFyjjIjIvKr7PCbHODcGB01FRUWIiIiotD0iIgJFRfZ3H9OcfHx8kJyczBnBiYiIrIjBQVO7du2wevVqrFy5Umf76tWr0a5du3pXzNExICIisjx9e/TZ8+8YDA6alixZgvj4eHz11VeIjY0FAGRnZ+Pq1avYt2+f0SpIRERkKez5r54jBpQiQRAEQ598/fp1rFmzBj///DMAoFWrVvi///s/BAYGGq2CtkKpVEIqlUKhUEAikVi6OkRERCZnD4vL1+X6Xaeg6ZlnnkF6ejokEgk++OADDBkyBK6urvWusD1g0OS47OFDg4jIUZksaHJxccFvv/2GgIAAiMVi5Ofnw9fXt94VtgcMmhxT+XWpamJPywgQEdmTuly/65TTFBERgZkzZ6JXr14QBAHbt2+v9gVGjRpVl0MT2aSKPUwKhReKinzg7S3XGXprT8sIEBEZqnzP/PXrTsjNbYCwsAcIDCybGNPae+brFDStW7cOqamp2Lt3L0QiEWbPnl3l4rwikYhBEzmcmlZAJyJydOV75mv6vLTmnvk6BU1du3bFd999BwBwcnLCL7/8wttzRKh9BXQiIken6WGq7fPSmnvmDV57Ljc3F40bNzZmXYhsVk2rfBMR0T9s+fPS4HmaQkJC8O2332L9+vW4cuUKPvnkEzRp0gQffvghwsLC8NhjjxmznkRWTbPKd/kPAntd5ZvI1Dgi1b7Z8uelwUHTzp07MXLkSIwYMQKnTp1CSUkJAEChUODNN9/kBJfkUDSrfFe8R89bc0R1U3FEanWDK6w574Vqpvm8/O9/B6DshpftfF4aHDS9/vrrWLduHUaNGoWtW7dqt3fr1g2vv/66USpHZEscZZVvIlMq38NUU7KwNee9UNUUCoXOY5EIEISyfyuWCwgIMGPN9GdwTtPFixfRvXv3StulUilu3bpVnzoR2YyKywNIpcUIC/utUsBkT8sIEJlDdcnCCoWXhWtGhiotLQVQ+3urKWeNDO5p8vf3x+XLlxEaGqqz/ciRI2jWrFl960VkE7guFZFp1JQszF5c22bL763BQdMLL7yAF198ERs3boRIJML169eRnZ2Nl156CXPmzDFmHYmsGgMiIuOz5WRhqlqDBmUhR23vraacNTK4Zq+88grUajX69OmDu3fvonv37nB1dcW0adMwfvx4Y9aRiIgcDAdX2J9GjRoBqP291ZSzRgYHTSKRCLNmzcK0adNw+fJl3L59G5GRkVi/fj3CwsJQUFBgzHoSEZGD4eAK+2Wr722dg6aSkhLMmzcPmZmZ2p6lQYMGYdOmTXj66achFosxdepUU9SV7BTnZCGi6kilxTZzQaW6scX3ts5B05w5c7B+/XrExcXh2LFj+Ne//oUxY8bgu+++w9KlS/Gvf/0LYrHYFHUlO1RxTpbqcE4WIseg70hTjkglS6hz0LRjxw588MEHGDhwIM6dO4e2bdviwYMH+PHHH6tcvJeoJvrOtcI5WYhsV116kzki1X7ZQ0Bc56Dp2rVriI6OBgA8+uijcHV1xdSpUxkwERFRJYb0JjMgsk/2EBDXOWhSqVQ6UWCDBg3QsGFDo1aKHFd1SyYQkW1ibzKVZ80BkT7qHDQJgoDRo0fD1dUVAHDv3j1MnDgRnp6eOuV27dplnBqSw6hpyQQisg/8YkS2rM5BU2Jios7j559/3miVIcdV3bT64eGX+cFKZCf4xYhsXZ2Dpk2bNpmiHuTgbHlafSKqHb8YkT0weMFeY1i0aBE6deoELy8v+Pr6YtCgQbh48aJOmXv37mHy5Mnw8fFBw4YNMXjwYBQWFuqU+f333xEfHw8PDw/4+vpi2rRpePDggU6ZQ4cOISoqCq6urmjevDnS09Mr1WfNmjUIDQ2Fm5sbYmJi8P333xu9zVQ1zbT65XHJBCL7UdMXIyJbYdGg6fDhw5g8eTK+++47ZGZmorS0FH379sWdO3e0ZaZOnYrPP/8cO3bswOHDh3H9+nU888wz2v0qlQrx8fG4f/8+jh07hs2bNyM9PV1n/bvc3FzEx8ejV69eOH36NFJSUjB+/HgcOHBAW2bbtm1ITU3F3LlzcfLkSbRr1w4ymQw3btwwz8lwUJpBBZpp9TWBU8Vp9a15CCoR1Y5fjMgeiARBECxdCY2bN2/C19cXhw8fRvfu3aFQKNC4cWNkZGTg2WefBQD8/PPPaNWqFbKzs9GlSxd88cUXGDBgAK5fvw4/Pz8AwLp16zBjxgzcvHkTLi4umDFjBvbu3Ytz585pX2vo0KG4desW9u/fDwCIiYlBp06dtENj1Wo1goODMWXKFLzyyiu11l2pVEIqlUKhUEAikRj71Ni18nO4XL/uhLy8BggNfYDAwLIPWGsfgkpE1cvPz8d7770HoOacpqSkJAQEBFiyquSg6nL9tqqlhBUKBQDA27usuzYnJwelpaWIi4vTlomIiEDTpk21QVN2djbatGmjDZgAQCaTYdKkSfjpp5/QoUMHZGdn6xxDUyYlJQVA2VDXnJwczJw5U7vfyckJcXFxyM7OrrKuJSUlKCkp0T5WKpX1a7yZWdPSJeVfJyAA+N80YERkB8r3Ete03hh7k8kWWE3QpFarkZKSgm7duuHRRx8FABQUFMDFxaXSisd+fn7aBYELCgp0AibNfs2+msoolUr8/fff+Ouvv6BSqaos8/PPP1dZ30WLFmH+/PmGNdbCuHQJGcqagm2yDfYwoSGRhtUETZMnT8a5c+dw5MgRS1dFLzNnzkRqaqr2sVKpRHBwsAVrpD9ONkeGYLBt30wZEPP3geyFVQRNycnJ2LNnD7755hsEBQVpt/v7++P+/fu4deuWTm9TYWEh/P39tWUqjnLTjK4rX6biiLvCwkJIJBK4u7tDLBZDLBZXWUZzjIpcXV21E3wSOQIG2/aLATGRfiw6ek4QBCQnJ2P37t34+uuvERYWprM/Ojoazs7OyMrK0m67ePEifv/9d8TGxgIAYmNjcfbsWZ1RbpmZmZBIJIiMjNSWKX8MTRnNMVxcXBAdHa1TRq1WIysrS1uGiMheMSCumVwuR35+frU/crnc0lUkM7FoT9PkyZORkZGBzz77DF5eXtocJKlUCnd3d0ilUowbNw6pqanw9vaGRCLBlClTEBsbiy5dugAA+vbti8jISIwcORJLlixBQUEBZs+ejcmTJ2t7giZOnIjVq1dj+vTpGDt2LL7++mts374de/fu1dYlNTUViYmJ6NixIzp37oy0tDTcuXMHY8aMMf+JISIiq8BeOCrPokHT2rVrAQA9e/bU2b5p0yaMHj0aALB8+XI4OTlh8ODBKCkpgUwmw7vvvqstKxaLsWfPHkyaNAmxsbHw9PREYmIiFixYoC0TFhaGvXv3YurUqVixYgWCgoLw/vvvQyaTacsMGTIEN2/exJw5c1BQUID27dtj//79lZLD7RHXgiJD8PfGfvG9/Qd74ag8iwZN+kwR5ebmhjVr1mDNmjXVlgkJCcG+fftqPE7Pnj1x6lTNaxwlJycjOTm51jrZE64FRYbg74394ntbMwaUjs0qEsHJMrgWFBmCvzf2i+9tzRhQEoMmB6SZRK62RXI52ZzlWeO8SFxc2X7xva1MM+lybQGlQqHgjOYOgEGTA9JMNpeX9wAffihArRZp94nFAqZM6Y/Q0AZMarQwa0tA1QTRmjXEyl9cy68hxmDbdtX23jqi0tJSALUHlJpyZN8YNDkoHx8f+PgA770HTJgAqFSAWAysXy9CdLT9J7/bAmtLQC0/s3OTJkrMmCGFSiWCWCzgrbeUGD58GGd2tlEVF86ueAuKC2czoKQyDJoc3LhxgEwGXL4MNG8OlJtblKgSTUD00kvAkCGa3xsRgoIaAWhkyapRPVRc6mTOnJvlFs7uBKCTwwfEmoDyv/8dgLIpDnUDSnIMDJoIQUEMlqju+HtjX7hwdtUaNNC9TIpEgCCU/VtTObJPFp0RnIj0p1B4ITc3FAqFl6WrQuQwNEt4VZcIrvl7rLiwPNknhsZENoBDnYksiyMLCWBPE5HVq+0bLhGZniYRvDwmgjseBk1EVq6mb7hEZFoVRxZqAieOLHRMvD1HZKU4L1LtrHHyT7IvHFlI5YkEfRaAo1oplUpIpVIoFApIJBJLV4fshCYoyMhwrzAvkgLDh//t0B/W1jb5JxHZprpcv9nTRGTFOC9S9axt8k8isn8MmohsBOdFIiKyLCaCExEREemBQRMRERGRHhg0EZFd4IzpRGRqzGkiIpvHGdOJyBzY00RENo0zphORuTBoIiKbpJnUs7YZ0x158k8iMi5ObmkknNySyPzkcjny8h6gc2dfqNUi7XaxWMDx4zcQGtrA4IktOds4kWPg5JZE5BB8fHzg4wO89x4wYQKgUgFiMbB+vQjR0X4GH5ezjRNRVRg0EZHNGzcOkMk0M6bXfxJQzjZORFVh0EREdoEzphORqTFoIiIim8b8MzIXBk1ERGSzmH9G5sQpB4iIyGYx/4zMiUETEVEtuEQLEQG8PUdk1ZirYXlcooWINBg0EVkp5mpYjmYW8eqWaAkPvwyptJizjVshhcILRUU+8PaWQyottnR1yM4waCKyUszVsBwfHx8kJyfj4EFg+fLKS7R065aInj3BYFVP5uoxZa8gmRqDJiKiKvj4+KBLF8DJCVCr/9kuFgMxMWUzkVPtzNVjWluvIJExMGgiIqpGUFBVS7RwEs26MFePaU0LN1cMmpgrSIZi0EREVANjL9FCxqXJK/P2lkMkUusETiKRGt7eRTrlmCtI9cGgiYioFlyixXpp8s/u37+PJk2UmDFDCpVKBLFYwFtvKTF8+DCdniPmClJ9MGgio2PXt2lwVBBR1TSfJy+9BAwZoukVFCEoqBGARpasGtkZBk1kVOz6Ng2OCiJ7Yergn72CZEoMmsio2PVtPJwriOyNNQb/7MGlumDQRGSlOFcQ2RNrnBLAGoM4sm5ce47IipXNFeQDpwp/qf/MFcSAiaybpie0pikBypczl+qCOK4vSDVhTxORleNcQWTLND2meXkP8OGHAtRqkXafWCxgypT+CA1tYPYvAHWZ14lIg0ETkQ3gXEFky3x8ymZQrxz8ixAd7WfWutR1Xiei8hg0kUkxydJ4OCqIbJ01BP91ndeJqDwGTWQyTLIkooqsIfjnvE5kKAZNZFQcJk9EtsQagjiyHRYdPffNN98gISEBgYGBEIlE+PTTT3X2jx49GiKRSOenX79+OmWKioowYsQISCQSNGrUCOPGjcPt27d1ypw5cwaPP/443NzcEBwcjCVLllSqy44dOxAREQE3Nze0adMG+/btM3p7HYGm67tr18Qqkyy7dUu0u4kt5XI58vPzq/2Ry+WWriKRXePfIJmLRXua7ty5g3bt2mHs2LF45plnqizTr18/bNq0SfvY1dVVZ/+IESOQn5+PzMxMlJaWYsyYMUhKSkJGRgYAQKlUom/fvoiLi8O6detw9uxZjB07Fo0aNUJSUhIA4NixYxg2bBgWLVqEAQMGICMjA4MGDcLJkyfx6KOPmqj19qtsmDzg5ASo1f9s/2eYvOXqZmycAZ3Isvg3SOZk0aCpf//+6N+/f41lXF1d4e/vX+W+CxcuYP/+/Thx4gQ6duwIAFi1ahWefPJJvPPOOwgMDMSWLVtw//59bNy4ES4uLmjdujVOnz6NZcuWaYOmFStWoF+/fpg2bRoAYOHChcjMzMTq1auxbt06I7bYNhmylpyjDJPnDOhElsW/QTInq89pOnToEHx9ffHQQw+hd+/eeP3117UX6OzsbDRq1EgbMAFAXFwcnJyccPz4cTz99NPIzs5G9+7ddXJoZDIZ3nrrLfz111946KGHkJ2djdTUVJ3XlclklW4XlldSUoKSkhLtY6VSaaQWW5f6fIuzhpEyRERExmLVM4L369cPH3zwAbKysvDWW2/h8OHD6N+/P1QqFQCgoKAAvr6+Os9p0KABvL29UVBQoC3j56c7D4jmcW1lNPursmjRIkilUu1PcHBw/Rprper7LS4oCOjZkwETERHZPqvuaRo6dKj2/23atEHbtm0RHh6OQ4cOoU+fPhasGTBz5kyd3imlUmm3gRMRka3g3HBkSlYdNFXUrFkzPPzww7h8+TL69OkDf39/3LhxQ6fMgwcPUFRUpM2D8vf3R2FhoU4ZzePaylSXSwWU5VpVTEon4gc2keVwbjgyNau+PVfRtWvXIJfLERAQAACIjY3FrVu3kJOToy3z9ddfQ61WIyYmRlvmm2++QWlpqbZMZmYmWrZsiYceekhbJisrS+e1MjMzERsba+omkR05ebID0tJSsHlzItLSUnDyZAdLV4nIYXABXjIHi/Y03b59G5cvX9Y+zs3NxenTp+Ht7Q1vb2/Mnz8fgwcPhr+/P65cuYLp06ejefPmkMlkAIBWrVqhX79+eOGFF7Bu3TqUlpYiOTkZQ4cORWBgIABg+PDhmD9/PsaNG4cZM2bg3LlzWLFiBZYvX6593RdffBE9evTA0qVLER8fj61bt+KHH37Ae++9Z94TYgMcoSfFkNGCtU3mSUSmxQV4yRwsGjT98MMP6NWrl/axJkcoMTERa9euxZkzZ7B582bcunULgYGB6Nu3LxYuXKhzW2zLli1ITk5Gnz594OTkhMGDB2PlypXa/VKpFF9++SUmT56M6OhoPPzww5gzZ452ugEA6Nq1KzIyMjB79my8+uqraNGiBT799FPO0VSBI3R913W0oGZUZm0f2JwBncg0uAAvmZNIEATB0pWwB0qlElKpFAqFAhKJxNLVMZr8/Hy89957UCi8kJaWUukDKSUlDVJpMZKSkrS3TW2Zpr21Kd9euVyOvLwH6NzZF2q1SFtGLBZw/PgNhIY24KR6RCak6R3OyHCvsACvAsOH/80FeKlGdbl+21QiOJkfe1Jq5+NTNst55ck8RYiO9qv9AERUL1yAl8yFQRPVSLOWXF7eA3z4oVCpJ2XKlP7sSfkfa5jM05B8LCJ7wgV4yZQYNFGtHLknpa6J75b8wOYaXEREpsWgifRmDT0p5mRrie9cg4uIyLQYNFGdOErXN6cQICKiimxqcksic6kp8Z2IiBwTe5qIyjH1nC/mTNR2hIlIiYjMiUETUTma0YL3799HkybKCnO+KDF8+DCDAxtzJmpbSz4WR/MRkT1h0ES1crQLn6nmfDFXora15GNxNB8R2RsGTXbCVIGNo1/4bDHx3VrW4OJoPiKyNwya7IApAxtzXPgcrSdLw9g5R9a+BhdzrIjI1jFosgPm/EZv7Aufo/ZkmSLnyJT5WPVlLTlWRET1waDJDpnqG70pLnyOeAvHlDlH1rgGl7XkWBER1ReDJjtjqm/05rrwOcItHHPlHFlLPpa15FgREdUXgyY7YsrApi4XPkNzlBzlFk5tOUf2xtHaS0T2i0GTHTHlN3p9L3yG5ig5wi0cTQK2VFqMhIQ9lQJETTstlahtKrW1l4jIVjBosiOm/Eav74WvYg9TdbfbKpZzhFs45RO1AWDOnJvIy2uA0NAHCAzsBKCTXY0ULB/8RUWdQnj4ZRQVecPbu0jnPbW3INFWOeooVqK6YNBkR0zxjb4+F7663G5zlFs45S86AQFAdLQFK2NiFYPEqvBCbB0q9hBX92XH3kaxEtUVgyY7YMpv9IZe+Op6u423cOwTL7C2ofzfd01fduxpFCuRIRg02QFTf6M35Hn63m7jLRwi6+EIuYVE9cGgyU5Y2zd6fW+38RZOzcrnmVy/7oTc3AYIC3uAwEA1AMc+N2R8jpBbaE+uXQMuXQJatLCO6UUcAYMmMom63G7jRb9q5fNMarplYk95JgwSLctRcgvtwYYNQFISoFYDTk7Ae+8B48ZZulb2j0ETmUxNt9uodprgobZbJvaSZ+KIQaK1YW6hbbh27Z+ACSj7d8IEQCZjj5OpMWiiOqmtO7hi7pFUWlzlBy5zlPTnKLdMHC1ItFb8smPd5HI5vvsOUKt1vzioVMDx43K4u7P33pQYNJHe9OkOZo6S8TnaLRNHCRKtWXVfdsiyNL2xCoUXRKKUSp8JR49uxrlzxeyNNSEGTVQruVyOvLwHSEryhVotAqDpDhbQvv0NhIY20PkD5R+rcTnKLROFQgGgLEgE1ADKB07/BIkKhQIBAQFmr58907fnlz3ElqX5MlrbZwJ7Y02HQRPVSPPNJjc3FGp1os4+lUqEVau+QFjYb/xmY2KOcMuktLS03CORzj6RqLpyZAzsIbY9jvCZYI0YNFGNNB+itd0i4jcb03OUWyZFRT6oGDTx9pzpMSCyPY7ymWBNnGovQvRPd7BIVDZcw15vEZHlaQL08uw5h4uIbAd7mkhv7A42L0fNM3GUHC4isj0MmqhO2B1sPo6WZ9KgwT8fRzUF6OXLERGZEz99yKHY2rID9hIQ6aNRo0Y6j6sL0CuWMwdb+70hItNgThOZ1LVrwMGDZf9a2oYNQEgI0Lt32b8bNli6RmQL+HtD1sJRb9lbE/Y0kclY09pIXHbA+lnjBYG/N2RNHO2WvTVi0EQ13now9EJmbRebS5f+qYuGSgVcvsyLn7WwtgsCl6sga8TfOcti0OTgausNMvRCZm1BSosWZe0rXyexGGje3Px1oepZywWBy1UQUVWY0+TAqusNqph/5OPjg4CAgGp/qrpoaIKU8iwVpMjlcojF+Viy5BbEYuF/dRHw1lu3IBbnQy6Xm79SZNUqLldR3fxknNSVyLGwp8mBmao3qCxIuY8lS9wxY4YUKpXof0GKAmLx35DLzXuLZfXq1drH//63l3YY++3bxXjvvbLt7DGg6nB+MiLSYNDkwExxy8ragpSKPQHVDWNnjwHVhPOTERHA23MOLSioLIdJLC57LBYD69fXr5epqiAlLOy3ShccBilERGRr2NPk4MaNKxvRdvlyWQ8TR5IRERFVjUETISiIwRIREVFtGDQ5KLlcbjXz4RAREdkCBk0OqGKydnU4oowclTXOTk5ElsegyQHpm4TNZG1yVNY2OzkRWQeLjp775ptvkJCQgMDAQIhEInz66ac6+wVBwJw5cxAQEAB3d3fExcXh0qVLOmWKioowYsQISCQSNGrUCOPGjcPt27d1ypw5cwaPP/443NzcEBwcjCVLllSqy44dOxAREQE3Nze0adMG+/btM3p7yfzYY0CGMmRSVyKybxbtabpz5w7atWuHsWPH4plnnqm0f8mSJVi5ciU2b96MsLAwvPbaa5DJZDh//jzc3NwAACNGjEB+fj4yMzNRWlqKMWPGICkpCRkZGQAApVKJvn37Ii4uDuvWrcPZs2cxduxYNGrUCElJSQCAY8eOYdiwYVi0aBEGDBiAjIwMDBo0CCdPnsSjjz5qvhNiB6wtSGGPARERGYtIEATB0pUAAJFIhN27d2PQoEEAynqZAgMD8dJLL+Hll18GACgUCvj5+SE9PR1Dhw7FhQsXEBkZiRMnTqBjx44AgP379+PJJ5/EtWvXEBgYiLVr12LWrFkoKCjQXqhfeeUVfPrpp/j5558BAEOGDMGdO3ewZ88ebX26dOmC9u3bY926dXrVX6lUQiqVQqFQQCKRGOu0mER+fj7e08wyWYOkpCQEBATU+fhMMiciIltRl+u31U5umZubi4KCAsTFxWm3SaVSxMTEIDs7GwCQnZ2NRo0aaQMmAIiLi4OTkxOOHz+uLdO9e3edng2ZTIaLFy/ir7/+0pYp/zqaMprXqUpJSQmUSqXOD5XhbQ0iIrJHVhs0FRQUAAD8/Px0tvv5+Wn3FRQUwNfXV2d/gwYN4O3trVOmqmOUf43qymj2V2XRokWQSqXan+Dg4Lo2kYiIiGyI1QZN1m7mzJlQKBTan6tXr1q6SkRERGRCVhs0+fv7AwAKCwt1thcWFmr3+fv748aNGzr7Hzx4gKKiIp0yVR2j/GtUV0azvyqurq6QSCQ6P7bC2pK1iYiIbIHVztMUFhYGf39/ZGVloX379gDKkrWOHz+OSZMmAQBiY2Nx69Yt5OTkIDo6GgDw9ddfQ61WIyYmRltm1qxZKC0thbOzMwAgMzMTLVu2xEMPPaQtk5WVhZSUFO3rZ2ZmIjY21kytNS+OKCMiIqo7iwZNt2/fxuXLl7WPc3Nzcfr0aXh7e6Np06ZISUnB66+/jhYtWminHAgMDNSOsGvVqhX69euHF154AevWrUNpaSmSk5MxdOhQBAYGAgCGDx+O+fPnY9y4cZgxYwbOnTuHFStWYPny5drXffHFF9GjRw8sXboU8fHx2Lp1K3744Qe9RpjZKgZEREREdSRY0MGDBwUAlX4SExMFQRAEtVotvPbaa4Kfn5/g6uoq9OnTR7h48aLOMeRyuTBs2DChYcOGgkQiEcaMGSMUFxfrlPnxxx+Fxx57THB1dRWaNGkiLF68uFJdtm/fLjzyyCOCi4uL0Lp1a2Hv3r11aotCoRAACAqFom4ngYiIiCymLtdvq5mnydbZ0jxNREREVMYu5mkiIiIisiYMmoiIiIj0wKCJiIiISA8MmoiIiIj0wKCJiIiISA8MmoiIiIj0wKCJiIiISA9Wu4yKrdFMd6VUKi1cEyIiItKX5rqtz7SVDJqMpLi4GAAQHBxs4ZoQERFRXRUXF0MqldZYhjOCG4larcb169fh5eUFkUhk1GMrlUoEBwfj6tWrdjnbuL23D7D/NrJ9ts/e28j22T5TtVEQBBQXFyMwMBBOTjVnLbGnyUicnJwQFBRk0teQSCR2+8cA2H/7APtvI9tn++y9jWyf7TNFG2vrYdJgIjgRERGRHhg0EREREemBQZMNcHV1xdy5c+Hq6mrpqpiEvbcPsP82sn22z97byPbZPmtoIxPBiYiIiPTAniYiIiIiPTBoIiIiItIDgyYiIiIiPTBoIiIiItIDgyYLWLNmDUJDQ+Hm5oaYmBh8//33NZZPS0tDy5Yt4e7ujuDgYEydOhX37t2r1zFNzdhtnDdvHkQikc5PRESEqZtRrbq0r7S0FAsWLEB4eDjc3NzQrl077N+/v17HNDVjt8+a3r9vvvkGCQkJCAwMhEgkwqefflrrcw4dOoSoqCi4urqiefPmSE9Pr1TGmt4/U7TRlt/D/Px8DB8+HI888gicnJyQkpJSZbkdO3YgIiICbm5uaNOmDfbt22f8yuvJFG1MT0+v9B66ubmZpgG1qGv7du3ahSeeeAKNGzeGRCJBbGwsDhw4UKmcqf8OGTSZ2bZt25Camoq5c+fi5MmTaNeuHWQyGW7cuFFl+YyMDLzyyiuYO3cuLly4gA0bNmDbtm149dVXDT6mqZmijQDQunVr5Ofna3+OHDlijuZUUtf2zZ49G+vXr8eqVatw/vx5TJw4EU8//TROnTpl8DFNyRTtA6zn/btz5w7atWuHNWvW6FU+NzcX8fHx6NWrF06fPo2UlBSMHz9e5wPbmt4/wDRtBGz3PSwpKUHjxo0xe/ZstGvXrsoyx44dw7BhwzBu3DicOnUKgwYNwqBBg3Du3DljVl1vpmgjUDabdvn38LfffjNWleukru375ptv8MQTT2Dfvn3IyclBr169kJCQYP7PUYHMqnPnzsLkyZO1j1UqlRAYGCgsWrSoyvKTJ08WevfurbMtNTVV6Natm8HHNDVTtHHu3LlCu3btTFLfuqpr+wICAoTVq1frbHvmmWeEESNGGHxMUzJF+6zp/SsPgLB79+4ay0yfPl1o3bq1zrYhQ4YIMplM+9ia3r+KjNVGW34Py+vRo4fw4osvVtr+3HPPCfHx8TrbYmJihAkTJtSzhvVnrDZu2rRJkEqlRquXsdS1fRqRkZHC/PnztY/N8XfIniYzun//PnJychAXF6fd5uTkhLi4OGRnZ1f5nK5duyInJ0fbxfjrr79i3759ePLJJw0+pimZoo0aly5dQmBgIJo1a4YRI0bg999/N11DqmFI+0pKSip1gbu7u2u/pVvTe2iK9mlYw/tniOzsbJ3zAQAymUx7Pqzp/TNUbW3UsNX3UB/6ngNbd/v2bYSEhCA4OBhPPfUUfvrpJ0tXySBqtRrFxcXw9vYGYL6/QwZNZvTnn39CpVLBz89PZ7ufnx8KCgqqfM7w4cOxYMECPPbYY3B2dkZ4eDh69uypvXVlyDFNyRRtBICYmBikp6dj//79WLt2LXJzc/H444+juLjYpO2pyJD2yWQyLFu2DJcuXYJarUZmZiZ27dqF/Px8g49pKqZoH2A9758hCgoKqjwfSqUSf//9t1W9f4aqrY2Abb+H+qjuHNjKe6iPli1bYuPGjfjss8/w0UcfQa1Wo2vXrrh27Zqlq1Zn77zzDm7fvo3nnnsOgPk+Rxk0WblDhw7hzTffxLvvvouTJ09i165d2Lt3LxYuXGjpqhmNPm3s378//vWvf6Ft27aQyWTYt28fbt26he3bt1uw5vpZsWIFWrRogYiICLi4uCA5ORljxoyBk5N9/Pnp0z5bfv+oDN9D2xcbG4tRo0ahffv26NGjB3bt2oXGjRtj/fr1lq5anWRkZGD+/PnYvn07fH19zfraDcz6ag7u4YcfhlgsRmFhoc72wsJC+Pv7V/mc1157DSNHjsT48eMBAG3atMGdO3eQlJSEWbNmGXRMUzJFG6sKLho1aoRHHnkEly9fNn4jamBI+xo3boxPP/0U9+7dg1wuR2BgIF555RU0a9bM4GOaiinaVxVLvX+G8Pf3r/J8SCQSuLu7QywWW837Z6ja2lgVW3oP9VHdObCV99AQzs7O6NChg029h1u3bsX48eOxY8cOnVtx5voctY+vujbCxcUF0dHRyMrK0m5Tq9XIyspCbGxslc+5e/dupaBBLBYDAARBMOiYpmSKNlbl9u3buHLlCgICAoxUc/3U53y7ubmhSZMmePDgAXbu3Imnnnqq3sc0NlO0ryqWev8MERsbq3M+ACAzM1N7Pqzp/TNUbW2sii29h/ow5BzYOpVKhbNnz9rMe/jxxx9jzJgx+PjjjxEfH6+zz2x/h0ZLKSe9bN26VXB1dRXS09OF8+fPC0lJSUKjRo2EgoICQRAEYeTIkcIrr7yiLT937lzBy8tL+Pjjj4Vff/1V+PLLL4Xw8HDhueee0/uY5maKNr700kvCoUOHhNzcXOHo0aNCXFyc8PDDDws3btyw+vZ99913ws6dO4UrV64I33zzjdC7d28hLCxM+Ouvv/Q+pjmZon3W9P4VFxcLp06dEk6dOiUAEJYtWyacOnVK+O233wRBEIRXXnlFGDlypLb8r7/+Knh4eAjTpk0TLly4IKxZs0YQi8XC/v37tWWs6f0TBNO00ZbfQ0EQtOWjo6OF4cOHC6dOnRJ++ukn7f6jR48KDRo0EN555x3hwoULwty5cwVnZ2fh7NmzZm2bhinaOH/+fOHAgQPClStXhJycHGHo0KGCm5ubThlzqWv7tmzZIjRo0EBYs2aNkJ+fr/25deuWtow5/g4ZNFnAqlWrhKZNmwouLi5C586dhe+++067r0ePHkJiYqL2cWlpqTBv3jwhPDxccHNzE4KDg4X/+7//07kg1XZMSzB2G4cMGSIEBAQILi4uQpMmTYQhQ4YIly9fNmOLdNWlfYcOHRJatWoluLq6Cj4+PsLIkSOFP/74o07HNDdjt8+a3r+DBw8KACr9aNqUmJgo9OjRo9Jz2rdvL7i4uAjNmjUTNm3aVOm41vT+maKNtv4eVlU+JCREp8z27duFRx55RHBxcRFat24t7N271zwNqoIp2piSkqL9HfXz8xOefPJJ4eTJk+ZrVDl1bV+PHj1qLK9h6r9DkSBUc/+DiIiIiLSY00RERESkBwZNRERERHpg0ERERESkBwZNRERERHpg0ERERESkBwZNRERERHpg0ERERESkBwZNRER27NChQxCJRLh165alq0Jk8xg0EZFRjB49GiKRCIsXL9bZ/umnn0IkEmkfC4KA//znP4iNjYVEIkHDhg3RunVrvPjii3ovHHr37l3MnDkT4eHhcHNzQ+PGjdGjRw989tln2jKhoaFIS0szSttMTXPuRCIRnJ2dERYWhunTp+PevXt1Ok7Pnj2RkpKis61r167Iz8+HVCo1Yo2JHBODJiIyGjc3N7z11lv466+/qtwvCAKGDx+Of//733jyySfx5Zdf4vz589iwYQPc3Nzw+uuv6/U6EydOxK5du7Bq1Sr8/PPP2L9/P5599lnI5XJjNses+vXrh/z8fPz6669Yvnw51q9fj7lz59b7uC4uLvD399cJXInIQEZdlIWIHFZiYqIwYMAAISIiQpg2bZp2++7duwXNR83HH38sABA+++yzKo+hVqv1ei2pVCqkp6dXu7+qdao0vv32W+Gxxx4T3NzchKCgIGHKlCnC7du3tfs/+OADITo6WmjYsKHg5+cnDBs2TCgsLNTu16yZtX//fqF9+/aCm5ub0KtXL6GwsFDYt2+fEBERIXh5eQnDhg0T7ty5o1d7EhMThaeeekpn2zPPPCN06NBB+/jPP/8Uhg4dKgQGBgru7u7Co48+KmRkZOgco2Kbc3NztfUtv5bjJ598IkRGRgouLi5CSEiI8M477+hVTyJHx54mIjIasViMN998E6tWrcK1a9cq7f/444/RsmVLDBw4sMrn69sb4u/vj3379qG4uLjK/bt27UJQUBAWLFiA/Px85OfnAwCuXLmCfv36YfDgwThz5gy2bduGI0eOIDk5Wfvc0tJSLFy4ED/++CM+/fRT5OXlYfTo0ZVeY968eVi9ejWOHTuGq1ev4rnnnkNaWhoyMjKwd+9efPnll1i1apVe7ano3LlzOHbsGFxcXLTb7t27h+joaOzduxfnzp1DUlISRo4cie+//x4AsGLFCsTGxuKFF17Qtjk4OLjSsXNycvDcc89h6NChOHv2LObNm4fXXnsN6enpBtWVyKFYOmojIvtQvrekS5cuwtixYwVB0O1pioiIEAYOHKjzvBdffFHw9PQUPD09hSZNmuj1WocPHxaCgoIEZ2dnoWPHjkJKSopw5MgRnTIhISHC8uXLdbaNGzdOSEpK0tn27bffCk5OTsLff/9d5WudOHFCACAUFxcLgvBPT9NXX32lLbNo0SIBgHDlyhXttgkTJggymUyv9iQmJgpisVjw9PQUXF1dBQCCk5OT8Mknn9T4vPj4eOGll17SPu7Ro4fw4osv6pSp2NM0fPhw4YknntApM23aNCEyMlKvuhI5MvY0EZHRvfXWW9i8eTMuXLhQa9lZs2bh9OnTmDNnDm7fvq3X8bt3745ff/0VWVlZePbZZ/HTTz/h8ccfx8KFC2t83o8//oj09HQ0bNhQ+yOTyaBWq5GbmwugrCcmISEBTZs2hZeXF3r06AEA+P3333WO1bZtW+3//fz84OHhgWbNmulsu3Hjhl7tAYBevXrh9OnTOH78OBITEzFmzBgMHjxYu1+lUmHhwoVo06YNvL290bBhQxw4cKBSvWpz4cIFdOvWTWdbt27dcOnSJahUqjodi8jRMGgiIqPr3r07ZDIZZs6cqbO9RYsWuHjxos62xo0bo3nz5vD19a3Tazg7O+Pxxx/HjBkz8OWXX2LBggVYuHAh7t+/X+1zbt++jQkTJuD06dPanx9//BGXLl1CeHg47ty5A5lMBolEgi1btuDEiRPYvXs3AFQ6rrOzs/b/mlFv5YlEIqjVar3b4+npiebNm6Ndu3bYuHEjjh8/jg0bNmj3v/3221ixYgVmzJiBgwcP4vTp05DJZDW2l4iMq4GlK0BE9mnx4sVo3749WrZsqd02bNgwDB8+HJ999hmeeuopo75eZGQkHjx4gHv37sHFxQUuLi6Vek6ioqJw/vx5NG/evMpjnD17FnK5HIsXL9bmA/3www9Grac+nJyc8OqrryI1NRXDhw+Hu7s7jh49iqeeegrPP/88AECtVuOXX35BZGSk9nlVtbmiVq1a4ejRozrbjh49ikceeQRisdj4jSGyI+xpIiKTaNOmDUaMGIGVK1dqtw0dOhTPPvsshg4digULFuD48ePIy8vD4cOHsW3bNr0v2j179sT69euRk5ODvLw87Nu3D6+++ip69eoFiUQCoGyepm+++QZ//PEH/vzzTwDAjBkzcOzYMSQnJ+P06dO4dOkSPvvsM20ieNOmTeHi4oJVq1bh119/xX//+99ab/mZyr/+9S+IxWKsWbMGQFkvXWZmJo4dO4YLFy5gwoQJKCws1HlOaGio9pz++eefVfZ0vfTSS8jKysLChQvxyy+/YPPmzVi9ejVefvlls7SLyJYxaCIik1mwYIHOhVskEmHbtm1IS0vDvn370KdPH7Rs2RJjx45FcHAwjhw5otdxZTIZNm/ejL59+6JVq1aYMmUKZDIZtm/frvPaeXl5CA8PR+PGjQGU5SEdPnwYv/zyCx5//HF06NABc+bMQWBgIICyW4Xp6enYsWMHIiMjsXjxYrzzzjtGPCP6a9CgAZKTk7FkyRLcuXMHs2fPRlRUFGQyGXr27Al/f38MGjRI5zkvv/wyxGIxIiMj0bhx4yrznaKiorB9+3Zs3boVjz76KObMmYMFCxZUOUKQiHSJBEEQLF0JIiIiImvHniYiIiIiPTBoIiKrU35KgIo/3377raWrVye///57je2p65QBRGQ5vD1HRFanpoV7mzRpAnd3dzPWpn4ePHiAvLy8aveHhoaiQQMOZCayBQyaiIiIiPTA23NEREREemDQRERERKQHBk1EREREemDQRERERKQHBk1EREREemDQRERERKQHBk1EREREemDQRERERKSH/wfxlgUEhSsgKQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcY5JREFUeJzt3XlcVOX+B/DPMLJJOAgoDIpCiFsuCCpCpml0oasmt0W0csukTErE3RA1LYpcyLBIr1slaV65XjUjDfN3b0m4YS6pqYFLOigQA8IVkDm/P7hzYmBmgGEWls/79ZqXcs5zznnOoznfnuX7SARBEEBEREREDWJl6QoQERERNUcMooiIiIgMwCCKiIiIyAAMooiIiIgMwCCKiIiIyAAMooiIiIgMwCCKiIiIyAAMooiIiIgMwCCKiIiIyAAMooiIWritW7dCIpEgJyfH0lUhalEYRBFRox0/fhxRUVF45JFH4ODggC5dumDcuHH49ddfa5V9/PHHIZFIIJFIYGVlhXbt2qFHjx6YOHEiDh061KDn7tu3D8OHD0fHjh3Rtm1bPPzwwxg3bhzS0tKM9Wq1vPvuu9izZ0+t40ePHsWyZctQWFhosmfXtGzZMrEtJRIJ2rZti969eyM2NhZFRUVGeUZKSgoSExONci+iloZBFBE12vvvv4/du3fjiSeewIcffojIyEj8+9//hr+/P86dO1erfOfOnfH555/js88+wwcffICnn34aR48exV/+8hdERESgoqKizmeuWrUKTz/9NCQSCRYtWoS1a9fi2WefxeXLl7Fjxw5TvCYA/UHU8uXLzRpEqX3yySf4/PPPsWbNGvTs2RPvvPMOwsLCYIytURlEEenWxtIVIKLmLyYmBikpKbCxsRGPRUREoG/fvnjvvffwxRdfaJSXyWR46aWXNI699957ePPNN/Hxxx/Dy8sL77//vs7nPXjwACtWrMCTTz6JgwcP1jp/586dRr5R01FaWoq2bdvqLfPcc8/B1dUVAPDaa6/h2WefRWpqKn766ScEBQWZo5pErRJ7ooio0YKDgzUCKADw9fXFI488ggsXLtTrHlKpFOvWrUPv3r2RlJQEpVKps2xeXh6Kiorw6KOPaj3fsWNHjZ/v37+PZcuWoXv37rCzs4NcLsczzzyDq1evimVWrVqF4OBguLi4wN7eHgEBAfjHP/6hcR+JRIKSkhJs27ZNHEKbMmUKli1bhnnz5gEAvL29xXPV5yB98cUXCAgIgL29PZydnTF+/HjcuHFD4/6PP/44+vTpg5MnT2LYsGFo27YtFi9eXK/2q27kyJEAgOzsbL3lPv74YzzyyCOwtbWFh4cHZs6cqdGT9vjjj+Prr7/GtWvXxHfy8vJqcH2IWir2RBGRSQiCgNzcXDzyyCP1vkYqlWLChAlYsmQJfvjhB4waNUpruY4dO8Le3h779u3DG2+8AWdnZ533rKysxOjRo5Geno7x48dj1qxZKC4uxqFDh3Du3Dn4+PgAAD788EM8/fTTePHFF1FeXo4dO3bg+eefx/79+8V6fP7553jllVcwePBgREZGAgB8fHzg4OCAX3/9FV9++SXWrl0r9gp16NABAPDOO+9gyZIlGDduHF555RXcvXsXH330EYYNG4asrCw4OTmJ9c3Pz8dTTz2F8ePH46WXXoKbm1u9209NHRy6uLjoLLNs2TIsX74cISEhmDFjBi5duoRPPvkEx48fx48//ghra2u89dZbUCqVuHnzJtauXQsAeOihhxpcH6IWSyAiMoHPP/9cACBs2rRJ4/jw4cOFRx55ROd1//znPwUAwocffqj3/nFxcQIAwcHBQXjqqaeEd955Rzh58mStcps3bxYACGvWrKl1TqVSib8vLS3VOFdeXi706dNHGDlypMZxBwcHYfLkybXu9cEHHwgAhOzsbI3jOTk5glQqFd555x2N42fPnhXatGmjcXz48OECACE5OVnne1e3dOlSAYBw6dIl4e7du0J2drbw6aefCra2toKbm5tQUlIiCIIgbNmyRaNud+7cEWxsbIS//OUvQmVlpXi/pKQkAYCwefNm8dioUaOErl271qs+RK0Nh/OIyOguXryImTNnIigoCJMnT27QteqejuLiYr3lli9fjpSUFAwYMADffvst3nrrLQQEBMDf319jCHH37t1wdXXFG2+8UeseEolE/L29vb34+z/++ANKpRKPPfYYTp061aD615SamgqVSoVx48YhLy9P/Li7u8PX1xfff/+9RnlbW1tMnTq1Qc/o0aMHOnToAG9vb7z66qvo1q0bvv76a51zqb777juUl5cjOjoaVlZ/fg1Mnz4d7dq1w9dff93wFyVqhTicR0RGpVAoMGrUKMhkMvzjH/+AVCpt0PX37t0DADg6OtZZdsKECZgwYQKKioqQmZmJrVu3IiUlBWPGjMG5c+dgZ2eHq1evokePHmjTRv8/d/v378fKlStx+vRplJWVicerB1qGuHz5MgRBgK+vr9bz1tbWGj936tSp1vyyuuzevRvt2rWDtbU1OnfuLA5R6nLt2jUAVcFXdTY2Nnj44YfF80SkH4MoIjIapVKJp556CoWFhfjPf/4DDw+PBt9DnRKhW7du9b6mXbt2ePLJJ/Hkk0/C2toa27ZtQ2ZmJoYPH16v6//zn//g6aefxrBhw/Dxxx9DLpfD2toaW7ZsQUpKSoPfoTqVSgWJRIJvvvlGa0BZc45R9R6x+ho2bJg4D4uIzIdBFBEZxf379zFmzBj8+uuv+O6779C7d+8G36OyshIpKSlo27Ythg4dalA9Bg4ciG3btuH27dsAqiZ+Z2ZmoqKiolavj9ru3bthZ2eHb7/9Fra2tuLxLVu21Cqrq2dK13EfHx8IggBvb2907969oa9jEl27dgUAXLp0CQ8//LB4vLy8HNnZ2QgJCRGPNbYnjqgl45woImq0yspKREREICMjA7t27TIoN1FlZSXefPNNXLhwAW+++SbatWuns2xpaSkyMjK0nvvmm28A/DlU9eyzzyIvLw9JSUm1ygr/S0YplUohkUhQWVkpnsvJydGaVNPBwUFrQk0HBwcAqHXumWeegVQqxfLly2slvxQEAfn5+dpf0oRCQkJgY2ODdevWadRp06ZNUCqVGqsiHRwc9KabIGrN2BNFRI02Z84c7N27F2PGjEFBQUGt5Jo1E2sqlUqxTGlpKa5cuYLU1FRcvXoV48ePx4oVK/Q+r7S0FMHBwRgyZAjCwsLg6emJwsJC7NmzB//5z38QHh6OAQMGAAAmTZqEzz77DDExMTh27Bgee+wxlJSU4LvvvsPrr7+OsWPHYtSoUVizZg3CwsLwwgsv4M6dO1i/fj26deuGM2fOaDw7ICAA3333HdasWQMPDw94e3sjMDAQAQEBAIC33noL48ePh7W1NcaMGQMfHx+sXLkSixYtQk5ODsLDw+Ho6Ijs7Gz885//RGRkJObOnduo9m+oDh06YNGiRVi+fDnCwsLw9NNP49KlS/j4448xaNAgjT+vgIAA7Ny5EzExMRg0aBAeeughjBkzxqz1JWqyLLk0kIhaBvXSfF0ffWUfeughwdfXV3jppZeEgwcP1ut5FRUVwsaNG4Xw8HCha9eugq2trdC2bVthwIABwgcffCCUlZVplC8tLRXeeustwdvbW7C2thbc3d2F5557Trh69apYZtOmTYKvr69ga2sr9OzZU9iyZYuYQqC6ixcvCsOGDRPs7e0FABrpDlasWCF06tRJsLKyqpXuYPfu3cLQoUMFBwcHwcHBQejZs6cwc+ZM4dKlSxptoy/9Q03q+t29e1dvuZopDtSSkpKEnj17CtbW1oKbm5swY8YM4Y8//tAoc+/ePeGFF14QnJycBABMd0BUjUQQjLC5EhEREVErwzlRRERERAZgEEVERERkAAZRRERERAZgEEVERERkAAZRRERERAZgEEVERERkACbbNCGVSoVbt27B0dGRWycQERE1E4IgoLi4GB4eHrCy0t3fxCDKhG7dugVPT09LV4OIiIgMcOPGDXTu3FnneQZRJuTo6Aig6g9B3z5gRERE1HQUFRXB09NT/B7XhUGUCamH8Nq1a8cgioiIqJmpayoOJ5YTERERGYBBFBEREZEBGEQRERERGYBzooiIiJqYyspKVFRUWLoaLZa1tTWkUmmj78MgioiIqIkQBAEKhQKFhYWWrkqL5+TkBHd390blcWQQRURE1ESoA6iOHTuibdu2TNRsAoIgoLS0FHfu3AEAyOVyg+/FIIqIiKgJqKysFAMoFxcXS1enRbO3twcA3LlzBx07djR4aI8Ty4mIiJoA9Ryotm3bWrgmrYO6nRsz94xBFBERURPCITzzMEY7cziPmp38/HyUl5frPG9jY8OucCIiMjkGUdSs5OfnIykpqc5yUVFRDKSIiMikOJxHRpGfn4/bt2/r/OTn5xvlOfp6oAwpR0REjTdlyhRIJBJIJBJYW1vDzc0NTz75JDZv3gyVSlXv+2zduhVOTk6mq6iRNYkgav369fDy8oKdnR0CAwNx7NgxveV37dqFnj17ws7ODn379sWBAwc0zguCgLi4OMjlctjb2yMkJASXL1/Weq+ysjL4+flBIpHg9OnT4vEjR45g7NixkMvlcHBwgJ+fH7Zv397od22J1L1DGzZs0PlJSkoyWiBFRES1met/ZnUJCwvD7du3kZOTg2+++QYjRozArFmzMHr0aDx48MCkz7YUiwdRO3fuRExMDJYuXYpTp06hf//+CA0NFfM31HT06FFMmDAB06ZNQ1ZWFsLDwxEeHo5z586JZRISErBu3TokJycjMzMTDg4OCA0Nxf3792vdb/78+fDw8ND6nH79+mH37t04c+YMpk6dikmTJmH//v3Ge/kWgr1DRESW1RT+Z9bW1hbu7u7o1KkT/P39sXjxYvzrX//CN998g61btwIA1qxZg759+8LBwQGenp54/fXXce/ePQBVnRdTp06FUqkUe7WWLVsGAPj8888xcOBAODo6wt3dHS+88ILOOMGcLB5ErVmzBtOnT8fUqVPRu3dvJCcno23btti8ebPW8h9++CHCwsIwb9489OrVCytWrIC/v784T0YQBCQmJiI2NhZjx45Fv3798Nlnn+HWrVvYs2ePxr2++eYbHDx4EKtWrar1nMWLF2PFihUIDg6Gj48PZs2ahbCwMKSmphq9DYiIiBqjqf7P7MiRI9G/f3/xu9PKygrr1q3D+fPnsW3bNhw+fBjz588HAAQHByMxMRHt2rUTe8/mzp0LoCoNwYoVK/Dzzz9jz549yMnJwZQpU8z6LtpYdGJ5eXk5Tp48iUWLFonHrKysEBISgoyMDK3XZGRkICYmRuNYaGioGCBlZ2dDoVAgJCREPC+TyRAYGIiMjAyMHz8eAJCbm4vp06djz5499c7JoVQq0atXL53ny8rKUFZWJv5cVFRUr/u2Zo1daadUOqKgwAXOzvmQyYpNUUUiImqEnj174syZMwCA6Oho8biXlxdWrlyJ1157DR9//DFsbGwgk8kgkUjg7u6ucY+XX35Z/P3DDz+MdevWYdCgQbh37x4eeughs7yHNhYNovLy8lBZWQk3NzeN425ubrh48aLWaxQKhdbyCoVCPK8+pquMIAiYMmUKXnvtNQwcOBA5OTl11vWrr77C8ePH8emnn+osEx8fj+XLl9d5L2Nrakv+6xvYNHal3alTA7Bv32gIghUkEhXGjNkPf/+sRtWdiIiMSxAEMSfTd999h/j4eFy8eBFFRUV48OAB7t+/j9LSUr0dGidPnsSyZcvw888/448//hAnq1+/fh29e/c2y3to0ypTHHz00UcoLi7W6AHT5/vvv8fUqVOxceNGPPLIIzrLLVq0SKOXrKioCJ6eno2uL6A7UCosLMRXX31V5/XmWvLfkMCmMd3PSqWj+BwAEAQr7Ns3Gj4+V9gjRUTUhFy4cAHe3t7IycnB6NGjMWPGDLzzzjtwdnbGDz/8gGnTpqG8vFxnEFVSUoLQ0FCEhoZi+/bt6NChA65fv47Q0FCLz7W1aBDl6uoKqVSK3NxcjeO5ubm1uvLU3N3d9ZZX/5qbm6uxqWBubi78/PwAAIcPH0ZGRgZsbW017jNw4EC8+OKL2LZtm3js//7v/zBmzBisXbsWkyZN0vs+tra2te5pDPXtsdHHHH/RzBHY2NjYAAAKClzE56gJghUKCpwhkxWL5YiIyHIOHz6Ms2fPYvbs2Th58iRUKhVWr14NK6uqf79rdgLY2NigsrJS49jFixeRn5+P9957T+yYOHHihHleoA4WnVhuY2ODgIAApKeni8dUKhXS09MRFBSk9ZqgoCCN8gBw6NAhsby3tzfc3d01yhQVFSEzM1Mss27dOvz88884ffo0Tp8+LaZI2LlzJ9555x3xuiNHjmDUqFF4//33ERkZaZyXNoClI+360hfYGIuLiwuioqLwxhthsLISNM5JpQLeeOMpJtokIrKAsrIyKBQK/P777zh16hTeffddjB07FqNHj8akSZPQrVs3VFRU4KOPPsJvv/2Gzz//HMnJyRr38PLywr1795Ceno68vDyUlpaiS5cusLGxEa/bu3cvVqxYYaG31GTx1XkxMTHYuHEjtm3bhgsXLmDGjBkoKSnB1KlTAQCTJk3SGHabNWsW0tLSsHr1aly8eBHLli3DiRMnEBUVBaBqL5zo6GisXLkSe/fuxdmzZzFp0iR4eHggPDwcANClSxf06dNH/HTv3h0A4OPjg86dOwOoGsIbNWoU3nzzTTz77LNQKBRQKBQoKCgwY+s0D+peH2fnfEgkmknVJBIVnJ0LNMrpolQ6IjvbC0qlo95yLi4uCAhww4YNEqg33pZKgU8/lSAgwI0BFBGRBaSlpUEul8PLywthYWH4/vvvsW7dOvzrX/+CVCpF//79sWbNGrz//vvo06cPtm/fjvj4eI17BAcH47XXXkNERAQ6dOiAhIQEdOjQAVu3bsWuXbvQu3dvvPfee1pX1VuCxedERURE4O7du4iLi4NCoYCfnx/S0tLEieHXr18Xu/2AqgZOSUlBbGwsFi9eDF9fX+zZswd9+vQRy8yfPx8lJSWIjIxEYWEhhg4dirS0NNjZ2dW7Xtu2bUNpaSni4+M1/pCHDx+OI0eONP7FG6CwsLDeZRsyqdtYk9HVvUPl5eXo1KkICxbIUFkpgVQq4P33i/DCCxPqvJ8hk8SnTQNCQ4ErV4Bu3YD/xb9ERK1OfacwmGqqw9atW8VcUPrMnj0bs2fP1jg2ceJEjZ8/+eQTfPLJJxrHJkyYgAkTJmgcEwTN0QhLkAhNoRYtVFFREWQyGZRKJdq1a2fwfc6ePauRn0pXoKQvEImMjBTniJl6/7mbN+sX2Fy4cAFfffUVlEpHJCZGawwFSiQqREcnQiYrxrhx4/SmliAiagnu37+P7OxseHt7N+h/+tWa2krtpk5fe9f3+9viPVHUMLoCpYZM6jZ1UrbOnTWDJ13/Yd+9exdA3ZPEW+p2AURExsQAyfwYRDUj+gKlugIRS6lPr5d6LlXNnij1XCpra2uT1pGIiMgQFp9YTvWnL1Cqa1K3UqkU0+jn5eVplKvvhG5D1Kc3SyYrRr9+ZwCoR5YF9Ot3Rgz+ZDKZ0etFRETUWOyJagbUPTHW1mWoCjQk1c4KsLYuh0xWjIULs5GQ8LA4qXvZMgUqK6sCkZ07d2q9t7mzfmubz6VUOuLMmX7V3kuCM2f6YeTIw0ycSURETRaDqGZA3RNTUWELzQAKACSoqKhabfHGG23x+uuS/03qlkAqlWDDBt33NXfWb10BW1MdiiQiItKHw3nNSF1DdkDVhO7HH9e+Kq7msJ05kmNWf7a2gE2pdKzXexERETU17IlqBtR5PWSyYowZs79Wb466t0Zf/g9tvUA+Plf0Tug2Jn0Bm7f3Nb3vZQ5cGkxERA3FIKoZqJ7MEgDi4u4iJ6cNvLwewMNjEIBBer/kdfUCRUcnGhyUNVRdK/D8/bP+t8rQGc7OBRoBlKn3watv3qxx48bByclJ4xiDKyKi1otBVDNR/YtaLgcCAup/rb5eIH//LERF+aKoqGO9gzJD1NWL9swzz8DV1bXWdeYIUuqbD6vmRplq3KuPiMi0jhw5ghEjRuCPP/6o9T+zunh5eSE6OhrR0dEmqxeDqFagrl6gPn2cIJebJgio3oukr7fJw8OjyQQi9d06R625bBBNRGQqU6ZMwbZt2/Dqq6/W2lR45syZ+PjjjzF58uR6bQ3TnDCIagXq6gUypZpDkdo0pSExfSkfGhpcERG1Jp6entixYwfWrl0Le3t7AFVbq6SkpKBLly4Wrp1pMIhqwerbC2TqOUdNJUCqi76UD1evdjNrPi0ioubG398fV69eRWpqKl588UUAQGpqKrp06QJvb2+xXFlZGebNm4cdO3agqKgIAwcOxNq1azFo0CCxzIEDBxAdHY0bN25gyJAhmDx5cq3n/fDDD1i0aBFOnDgBV1dX/O1vf0N8fDwcHBxM/7L/wyCqBWtuvUCWpmvu2I0bnc2aT4uIqLFu3gQuXwZ8ffVvBG9sL7/8MrZs2SIGUZs3b8bUqVNx5MgRscz8+fOxe/dubNu2DV27dkVCQgJCQ0Nx5coVODs748aNG3jmmWcwc+ZMREZG4sSJE5gzZ47Gc65evYqwsDCsXLkSmzdvxt27dxEVFYWoqChs2bLFbO/LPFEtnIuLC+Ryuc4PA6g/6cpXBUjMlk+LiKixNm0CunYFRo6s+nXTJvM9+6WXXsIPP/yAa9eu4dq1a/jxxx/x0ksviedLSkrwySef4IMPPsBTTz2F3r17Y+PGjbC3t8em/1X0k08+gY+PD1avXo0ePXrgxRdfxJQpUzSeEx8fjxdffBHR0dHw9fVFcHAw1q1bh88++wz379832/syiCL6H/XcMXUgpR628/S8wWSgRNQs3LwJREYCqv/9k6VSAa++WnXcHDp06IBRo0Zh69at2LJlC0aNGqWx8vrq1auoqKjAo48+Kh6ztrbG4MGDceHCBQDAhQsXEBgYqHHfoKAgjZ9//vlnbN26FQ899JD4CQ0NhUqlQnZ2tgnfUBOH81q4ppBEsinUQZ/6zB2zdDJQIqL6uHz5zwBKrbISuHLFfMN6L7/8MqKiogAA69evN8kz7t27h1dffRVvvvlmrXPmnMTOIKoFq28SSVPmOapZB10r3CyZa0nX3DGlUilu3GzJiflERPXl6wtYWWkGUlIp0K2b+eoQFhaG8vJySCQShIaGapzz8fGBjY0NfvzxR3Tt2hUAUFFRgePHj4v5nHr16oW9e/dqXPfTTz9p/Ozv749ffvkF3cz5YlowiGrBagcF2gMYU+Y5qn5vfekDLJ1rSVsAJ5fLOTGfiJqVzp2BDRuqhvAqK6sCqE8/Ne/kcqlUKg7NSaVSjXMODg6YMWMG5s2bB2dnZ3Tp0gUJCQkoLS3FtGnTAACvvfYaVq9ejXnz5uGVV17ByZMna+WXWrBgAYYMGYKoqCi88sorcHBwwC+//IJDhw7Vq/PAWBhEtRL6Ahhz0Jc+oCkPi7XUAKmpD7ESkeGmTQNCQ6uG8Lp1M28ApdauXTud59577z2oVCpMnDgRxcXFGDhwIL799lu0b98eQNVw3O7duzF79mx89NFHGDx4MN599128/PLL4j369euH//u//8Nbb72Fxx57DIIgwMfHBxERESZ/t+oYRLUCxgxgGvrlq1QqAejfekYmK4ZSqYRcLm9QXcgwTWGYl4hMq3Nn8wZPdWUi37Nnj/h7Ozs7rFu3DuvWrdNZfvTo0Rg9erTGsalTp2r8PGjQIBw8eFDnPXJycvTWyRgYRDUTjek5qCuAaUgdGjq/qaKiAkBV+gBABc0FoX+ucFOXI9NrCsO8REQtAYOoZqCxk7Pr2jsvLy+v1jXagrLGz2+SaP4k0VHMAqoHqbduWSE7uw28vR/Aw6NqdqaxhrfM9Zz6svQwLxFRc8YgqhlobPBS1955W7YcalBQZsjwYEGBC2oGUYb0hplC9SBVX/s2dnirMc8xxRym5jpPjYioqWAQ1Yw05ktP1xJ9Q4IyQ4YH6+oNsyT1e9bVvo0d3jL0OaZKE2GsYV4iotaKQVQz0tAvvZr5i2SyYo1yhgZlDQmI2rRpIz5bX2+YupwlmSuoaOhzTJUmoikHtkStmSAIlq5Cq2CMdrb8NxfVW0O/9HQlkczLy0NqaqrBQUNdAVF1Tk5O4u/1JaysXs5STB1UqFcq1jXJXtdKRWMPvzXkz5GITM/a2hoAUFpaCnt7ewvXpuUrLS0F8Ge7G4JBVDNiyJeevuGdxgQN+gKiut6hqX5Jmzqo0FyBqHuSva6ViqboKTP0z5GIjE8qlcLJyQl37twBALRt2xaSprQCp4UQBAGlpaW4c+cOnJycaiUEbQgGUc2MMb/0Ghs01Ccgqu+WKE1l6xRzBBWGTrI3Vk9ZXcO8usoRkem5u7sDgBhIkek4OTmJ7W0oBlHNkDF7cxoSNBgSEOkaUqxZvikldTR1b5mhwZCxesqa458JUWshkUggl8vRsWNH5s8zIWtr60b1QKkxiGoGTN2bU9+gwdAvX34Za2pMMGSsnjJz/plwixmihpNKpUb5kifTYhDVDBi756AxQVlL/LIz15Bj9RWI+oKhulYqNuV5ZTVxixkiaskYRDUTxvyC4XCOJnO1R80ViLqCoZrlmtu8suq4xQwRtWRNIohav349PvjgAygUCvTv31/ctVmXXbt2YcmSJcjJyYGvry/ef/99/PWvfxXPC4KApUuXYuPGjSgsLMSjjz6KTz75BL6+vrXuVVZWhsDAQPz888/IysqCn5+feO7MmTOYOXMmjh8/jg4dOuCNN97A/PnzjfrultJaAqT6asrt4eLigpdeeklcjqtQtMH167bo0qUM7u4PAFSt4mnK7wBwixkianms6i5iWjt37kRMTAyWLl2KU6dOoX///ggNDdW5MuHo0aOYMGECpk2bhqysLISHhyM8PBznzp0TyyQkJGDdunVITk5GZmYmHBwcEBoaivv379e63/z58+Hh4VHreFFREf7yl7+ga9euOHnyJD744AMsW7YMGzZsMN7LU6tiaI9Sfn4+vvjiC6SmpiI2NhuhoT3wyisPIzS0B2Jjs5GamoovvvgC+fn5pqi2UejKcaVUOlq4ZkREhrN4T9SaNWswffp0TJ06FQCQnJyMr7/+Gps3b8bChQtrlf/www8RFhaGefPmAQBWrFiBQ4cOISkpCcnJyRAEAYmJiYiNjcXYsWMBAJ999hnc3NywZ88ejB8/XrzXN998g4MHD2L37t345ptvNJ6zfft2lJeXY/PmzbCxscEjjzyC06dPY82aNYiMjDRVc1ALZuiwobm2pTElbjFDRC2RRXuiysvLcfLkSYSEhIjHrKysEBISgoyMDK3XZGRkaJQHgNDQULF8dnY2FAqFRhmZTIbAwECNe+bm5mL69On4/PPP0bZtW63PGTZsmEavQGhoKC5duoQ//vjDsBemVs/FxQVyuVznR9+QnL5ApKlTp3WojlvMEFFzZ9EgKi8vD5WVlXBzc9M47ubmBoVCofUahUKht7z6V31lBEHAlClT8Nprr2HgwIENek71Z9RUVlaGoqIijQ+RsTTnQESd1kFdf24xQ0QtgcWH8yzho48+QnFxMRYtWmTU+8bHx2P58uVGvSeRWnPf645bzBBRS2PRIMrV1RVSqRS5ubkax3Nzc3WmYnd3d9dbXv1rbm6uxiauubm54sq7w4cPIyMjA7a2thr3GThwIF588UVs27ZN53OqP6OmRYsWISYmRvy5qKgInp6eWsuSaVRP7HjrlhWys9vA2/sBPDyqekCae+qG5haIcIsZImrJLBpE2djYICAgAOnp6QgPDwcAqFQqpKenIyoqSus1QUFBSE9PR3R0tHjs0KFDCAoKAgB4e3vD3d0d6enpYtBUVFSEzMxMzJgxAwCwbt06rFy5Urz+1q1bCA0Nxc6dOxEYGCg+56233kJFRYW4w/OhQ4fQo0cPtG/fXmvdbG1tawVmZD7VEzvqW05vaGLHmzeBy5cBX1+gc2ejVr1BmlOyTeYkI6KWzOLDeTExMZg8eTIGDhyIwYMHIzExESUlJeJqvUmTJqFTp06Ij48HAMyaNQvDhw/H6tWrMWrUKOzYsQMnTpwQUw9IJBJER0dj5cqV8PX1hbe3N5YsWQIPDw8xUOvSpYtGHR566CEAgI+PDzr/79vxhRdewPLlyzFt2jQsWLAA586dw4cffoi1a9eao1nIAKZYxabu2UpJscf8+TKoVBJYWQlISFDihRf+ywCgHtg+RNRSWTyIioiIwN27dxEXFweFQgE/Pz+kpaWJk7ivX78OK6s/578HBwcjJSUFsbGxWLx4MXx9fbFnzx706dNHLDN//nyUlJQgMjIShYWFGDp0KNLS0mBnZ1fveslkMhw8eBAzZ85EQEAAXF1dERcXx/QGzYCxltOre7aUSkckJkZDECQAAJVKgnnz2uH33zdDJis2+ZYlzTljORFRS2bxIAqoGl7RNXx35MiRWseef/55PP/88zrvJ5FI8Pbbb+Ptt9+u1/O9vLwgCEKt4/369cN//vOfet2Dmg71KrbqgZQhq9jUPVZ1BWWG5meq7/BgcxgSa+lz0YiItGkSQRSRMRl7FZuxgjLA8OHBphyAmHouGhFRU8UgilokY65iM1ZQ1lSGB42tJWRUJyIyBIMoarGMuYrNGEGZqYcHG8IUw2/c2oWIWhsGUUT1ZKygzJjDg4Yw1fCbIe/FuVRE1JwxiKIWo7msYrN05nFjD78plUoAVe/Vr98Z/PxzfwASAAL69TsjvpdSqdRIgMu5VETU3DGIohajOaxiU2sKmceNNfxWUVEBoCooO3OmH6oCKACQ4MyZfhg58jBksmKxnBrnUhFRc8cgiloUYwZIpu7ZsnTmcWMPKxoalHEuFRE1VwyiiHRoTj1bhmgqqSAsPUeMiMhQDKKI9DA0QNI2YVomKzRizYzDGMOKbdpU/TNSV1CmLleTpeeIEREZikEUkZHpnjDdHmPGDBAnTOti7onvjR1WdHJyEn+vLyirXq6mpjBHjIiooRhEERlZfSdMP/PMM3B1ddW4tjkPD6oZGpRZeo4YEVFDMYgiMpG6Jky7urpqLPk3l+aSCoKIqKljEEVkIk11wrSxJ8wbGpQxmCOi5o5BFJGJNOUJ08YcMjQ0KGvpqx+JqOVjEEVkQq1lwrShgQ4DJCJqzhhEEZkYJ0wTEbVMVnUXISIiIqKaGEQRGRknTBMRtQ4cziMyMk6YJiJqHRhEEZkAAyQiopaPw3lEREREBmAQRURGdfMm8P33Vb8SEbVkDKKIqNHy8/Nx+/ZtrF5diK5dBYwcCXTtKmD16kLcvn0b+fn5lq4iEZHRcU4UETVKfn4+kpKSoFQ6IjExGoIgAQCoVBLMm9cOv/++GTJZMaKiopr1XLGbN4HLlwFfX6BzZ0vXhoiaAvZEEVGjqFch6ttwuXq55oQ9bESkD3uiiMgomuqGy4ZqLT1sRGQ49kQRkVGoN1yWSFQA0KQ2XDaEsXrYONGeqOViTxQRGU1L3HDZkB62/Px8lJeXIyXFHvPny6BSSWBlJSAhQYkXXvgvk60StRAMoojIqJrKhsvGmgiu7mHbt280BMGqzh42DgMStR4MooioxTBVD1BDetjqMwwokxU3y4n2RKSJQRQRtQim7gFqaA9bS5toT0S1cWI5ETWKjY2NUcsZqqmlWmhpE+2JqDb2RBFRo7i4uCAqKkpvcGLOidRNqQeoIcOA6qFIALh1ywrZ2W3g7f0AHh5VQRgnoxM1PRbviVq/fj28vLxgZ2eHwMBAHDt2TG/5Xbt2oWfPnrCzs0Pfvn1x4MABjfOCICAuLg5yuRz29vYICQnB5cuXNco8/fTT6NKlC+zs7CCXyzFx4kTcunVLo8y3336LIUOGwNHRER06dMCzzz6LnJwco7wzUUvj4uICuVyu82POL39j9QAZq4dNJiuGt/e1OgOopKQkbNiwAa+9dhyDBnXA88+7YNCgDnjttePYsGEDkpKSmNyTqImxaE/Uzp07ERMTg+TkZAQGBiIxMRGhoaG4dOkSOnbsWKv80aNHMWHCBMTHx2P06NFISUlBeHg4Tp06hT59+gAAEhISsG7dOmzbtg3e3t5YsmQJQkND8csvv8DOzg4AMGLECCxevBhyuRy///475s6di+eeew5Hjx4FAGRnZ2Ps2LGIiYnB9u3boVQqMXv2bDzzzDM4deqU+RqIiAxijFQL5uxhUz9DqXQUVwECVcOQ+/aNho/PFU5GJ2qCLBpErVmzBtOnT8fUqVMBAMnJyfj666+xefNmLFy4sFb5Dz/8EGFhYZg3bx4AYMWKFTh06BCSkpKQnJwMQRCQmJiI2NhYjB07FgDw2Wefwc3NDXv27MH48eMBALNnzxbv2bVrVyxcuBDh4eGoqKiAtbU1Tp48icrKSqxcuRJWVlX/mM2dOxdjx44VyxBR02aMVAvmHj6ra0UfETUtFhvOKy8vx8mTJxESEvJnZaysEBISgoyMDK3XZGRkaJQHgNDQULF8dnY2FAqFRhmZTIbAwECd9ywoKMD27dsRHBwsBkcBAQGwsrLCli1bUFlZCaVSic8//xwhISF6A6iysjIUFRVpfIiodWnMMKB6Pld1XNFH1HRZrCcqLy8PlZWVcHNz0zju5uaGixcvar1GoVBoLa9QKMTz6mO6yqgtWLAASUlJKC0txZAhQ7B//37xnLe3Nw4ePIhx48bh1VdfRWVlJYKCgmrNv6opPj4ey5cv11uGiFq2xgwDNjSxJxFZVqtdnTdv3jxMmzYN165dw/LlyzFp0iTs378fEokECoUC06dPx+TJkzFhwgQUFxcjLi4Ozz33HA4dOgSJRKL1nosWLUJMTIz4c1FRETw9Pc31SkQtSvXVatrUDESaSqoFoHHDgC1x6xyilspiQZSrqyukUilyc3M1jufm5sLd3V3rNe7u7nrLq3/Nzc2FXC7XKOPn51fr+a6urujevTt69eoFT09P/PTTTwgKCsL69eshk8mQkJAglv/iiy/g6emJzMxMDBkyRGv9bG1tYWtrW78GICKd1KvV1JRKRxQUuMDZOV8jqIiIiIBMJtP4WRAEODk5ab1vc0kT0FS2ziEi/SwWRNnY2CAgIADp6ekIDw8HAKhUKqSnpyMqKkrrNUFBQUhPT0d0dLR47NChQwgKCgJQNQzn7u6O9PR0MWgqKipCZmYmZsyYobMuKlXVHISysjIAQGlpqTihXE0qlWqUJSLTqd4DderUgFrDW/7+WQCADRsOaA2uuC8dEZmDRYfzYmJiMHnyZAwcOBCDBw9GYmIiSkpKxNV6kyZNQqdOnRAfHw8AmDVrFoYPH47Vq1dj1KhR2LFjB06cOIENGzYAACQSCaKjo7Fy5Ur4+vqKKQ48PDzEQC0zMxPHjx/H0KFD0b59e1y9ehVLliyBj4+PGIyNGjUKa9euxdtvvy0O5y1evBhdu3bFgAEDzN9QRK2UviX/V6920xlcNbdUAE1pKJKI6s+iQVRERATu3r2LuLg4KBQK+Pn5IS0tTZwYfv36dY0eoeDgYKSkpCA2NhaLFy+Gr68v9uzZI+aIAoD58+ejpKQEkZGRKCwsxNChQ5GWlibmiGrbti1SU1OxdOlSlJSUQC6XIywsDLGxseJQ3MiRI5GSkoKEhAQkJCSgbdu2CAoKQlpaGuzt7c3YQkStm64l/zdudNabT6m5aWpZ34mofiSCIAiWrkRLVVRUBJlMBqVSiXbt2lm6OkTNxu3bt7Fhw4ZqmwlrbuHy7LO78Y9/PF/rusmTt8Lb+xoiIyM15kUSETVEfb+/Lb7tCxGRLrq2cPH0vMF8SkRkca02xQERNQ+6lvwznxIRWRqDKCJq8rQt+Wc+JSKyNAZRRNTk1HcVGvMpEZElMYgioiZH12q1wsJCfPXVV3Vez1QARGQOXJ1nQlydR2R8Dd0Ohoiooer7/c2eKCJqVhggEVFTwRQHRERERAZgEEVERERkAAZRRERERAZgEEVERERkAAZRRERERAZgEEVERERkAAZRRERERAZgEEVERERkACbbJCLSgdnRiUgfBlFERFrk5+cjKSmpznJRUVEMpIhaKQ7nERFpUbMHSql0RHa2F5RKR73liKj1YE8UEVEdTp0agH37RkMQrCCRqDBmzH74+2dZulpEZGHsiSIi0kOpdBQDKAAQBCvs2ze6Vo8UEbU+DKKIiPQoKHARAyg1QbBCQYGzhWpERE0Fh/OIiPRwds6HRKLSCKQkEhWcnQuM+hxzrgSs/qxbt6yQnd0G3t4P4OGhMvqziFoyBlFERHrIZMUYM2Z/rTlRMlmx0Z5hzpWA1Z+lb65XREQEZDJZresZYBH9iUEUEVEd/P2z4ONzBQUFznB2LjBqAAVoXwlYUOACZ+d8jWcZYyWg+h665nr5+FyBTFaMnTt36qwH0zoQVWEQRUSkhY2NjcbPMlmx1uCpZrnGMtdKQH1zvWSyYr31YFoHoioMooiItHBxcUFUVJRZM5bX1TtkTPrmepmzHkTNGYMoIiIdzD1kVVfvkDHpm+uVne1ltnoQNWcMooiImghzrQRU0zXXy9z1IGqumCeKiKiJUPcOSSRVqQZMsRJQ2zO9va9pPMMS9SBqjtgTRUTUhJh6JWBzqwdRU8YgiojIwsy5ErAh99BVDyKqwiCKiMjCTLESUF8G9HHjxkEikdRKpllYWIivvvqqznsbO60DUXMlEQRBsHQlWqqioiLIZDIolUq0a9fO0tUholaiZgb0hiTNNOf2M0RNVX2/vy0+sXz9+vXw8vKCnZ0dAgMDcezYMb3ld+3ahZ49e8LOzg59+/bFgQMHNM4LgoC4uDjI5XLY29sjJCQEly9f1ijz9NNPo0uXLrCzs4NcLsfEiRNx69atWvdZtWoVunfvDltbW3Tq1AnvvPOOcV6aiMiEqgdBp04NQGJiNLZtm4zExGicOjVAazk1FxcXyOVynR8GUER/smgQtXPnTsTExGDp0qU4deoU+vfvj9DQUNy5c0dr+aNHj2LChAmYNm0asrKyEB4ejvDwcJw7d04sk5CQgHXr1iE5ORmZmZlwcHBAaGgo7t+/L5YZMWIEvvrqK1y6dAm7d+/G1atX8dxzz2k8a9asWfj73/+OVatW4eLFi9i7dy8GDx5smoYgIjIBXUkzlUpHC9eMqGWw6HBeYGAgBg0aJHY7q1QqeHp64o033sDChQtrlY+IiEBJSQn2798vHhsyZAj8/PyQnJwMQRDg4eGBOXPmYO7cuQAApVIJNzc3bN26FePHj9daj7179yI8PBxlZWWwtrbGhQsX0K9fP5w7dw49evQw+P04nEdElnD79m1s2LAB2dle2LZtcq3zkydvhbf3NURGRkIul1ughkRNW5MfzisvL8fJkycREhLyZ2WsrBASEoKMjAyt12RkZGiUB4DQ0FCxfHZ2NhQKhUYZmUyGwMBAnfcsKCjA9u3bERwcDGtrawDAvn378PDDD2P//v3w9vaGl5cXXnnlFRQU6E80V1ZWhqKiIo0PEZEp5efn4/bt2xqfvLw8AH8mzayOSTOJjMdiq/Py8vJQWVkJNzc3jeNubm64ePGi1msUCoXW8gqFQjyvPqarjNqCBQuQlJSE0tJSDBkyRKN367fffsO1a9ewa9cufPbZZ6isrMTs2bPx3HPP4fDhwzrfKT4+HsuXL6/jzYmIjKPmBPKa9G3tQkSN12pTHMybNw/Tpk3DtWvXsHz5ckyaNAn79++HRCKBSqVCWVkZPvvsM3Tv3h0AsGnTJgQEBODSpUs6h/gWLVqEmJgY8eeioiJ4enqa5X2IqPXRt4pOjUkziUzHYkGUq6srpFIpcnNzNY7n5ubC3d1d6zXu7u56y6t/zc3N1Rjnz83NhZ+fX63nu7q6onv37ujVqxc8PT3x008/ISgoCHK5HG3atBEDKADo1asXAOD69es6gyhbW1vY2trW4+2JiIxPVyqDhiTNZIoDovqzWBBlY2ODgIAApKenIzw8HEDVxPL09HRERUVpvSYoKAjp6emIjo4Wjx06dAhBQUEAAG9vb7i7uyM9PV0MmoqKipCZmYkZM2borItKVTVnoKysDADw6KOP4sGDB7h69Sp8fHwAAL/++isAoGvXrga/MxGRqZw6NaDWsJ2/f5bea2omzaxreFBNW34potbIosN5MTExmDx5MgYOHIjBgwcjMTERJSUlmDp1KgBg0qRJ6NSpE+Lj4wFUpR0YPnw4Vq9ejVGjRmHHjh04ceIENmzYAACQSCSIjo7GypUr4evrC29vbyxZsgQeHh5ioJaZmYnjx49j6NChaN++Pa5evYolS5bAx8dHDMZCQkLg7++Pl19+GYmJiVCpVJg5cyaefPJJjd4pIqKmQFcqAx+fK5DJivHMM8/A1dVV4xptPUo1e6B09WzVZxiRqDWwaBAVERGBu3fvIi4uDgqFAn5+fkhLSxMnhl+/fh1WVn8uIAwODkZKSgpiY2OxePFi+Pr6Ys+ePejTp49YZv78+SgpKUFkZCQKCwsxdOhQpKWlwc7ODgDQtm1bpKamYunSpSgpKYFcLkdYWBhiY2PFoTgrKyvs27cPb7zxBoYNGwYHBwc89dRTWL16tRlbh4iofgoKXMQASk0QrFBQ4AyZrBiurq4NTmVgSM8WUWvDbV9MiHmiiMiU1PmglEpHJCZGawRSEokK0dGJkMmK650Pytj3I2qumnyeKCIiMg51KgN1TqjGpjLQ17NFRH9qtSkOiIiau+oTw/WlMqg5gbwu6iSdNXuimKSTSBODKCKiZsrFxQVRUVFGT0nAJJ1E9cMgioioGTNVqoGGJOlkbilqrRhEERERgNrDfrqSdFYvx9xS1JoxiCIiIgCGDQ8ytxS1ZgyiiIhI1JjeIuaWotaGQRQREYkMnd9UV9Z0Yz6LqKlgEEVERAAaN7+prqzpxnwWUVPBZJtERASg/vOWtJVT55aqTl9uKW1zqbKzvaBUOhpUJyJLYE8UERE1WmNyS3EuFTVXDKKIiEgrXSvtdGlIbqnqz2joXCpdOMeKzI1BFBER1aKvdygvL08sp1QqNa6rT26p6ho6l0oXzrEiS2AQRUREGurqHUpNTdV63bhx4+Dk5FTruL4eIGPt09eY+VxEhmIQRUREGgztHXJycoJcLm/Qs0y1T19DhyKJDMEgioiINBird6i+DJlLpQ8nqpO5MMUBEREB+HPekrp3SJ2yoGbvkK50BIY8S00mK4a397VaAZSuuVS66BqKbExdiXRhTxQREQGovXdeXNxd5OS0Qbt2d3D0aFVPjrF6eQzZp68+jDVRnag+GEQREZGoetAilwMBAcDt2+U4etS46QhqPstYzD0USa0bh/OIiKhe9PXyWFphYSGAuoci1eWIjIE9UUREVC/G7uUxZnJMiUQi/l7fRPXq5Ygay2hB1P3795GUlIS5c+ca65ZERNQE1JxwrisdQUMmgRs7OaZMJtNytHbApL0ckWEaFETdvXsXmZmZsLGxwRNPPAGpVIqKigp8/PHHiI+Px4MHDxhEERG1MLomnHt5PYCHxyAAgxo8CdyUyTGZ4oDMpd5B1A8//IDRo0ejqKgIEokEAwcOxJYtWxAeHo42bdpg2bJlmDx5sinrSkREFqJtwnlTZOzJ70T61HtieWxsLP7617/izJkziImJwfHjx/G3v/0N7777Ln755Re89tprsLe3N2VdiYiohTJG7imgaU9+p5an3j1RZ8+exccff4zevXvj7bffxpo1a5CQkICxY8easn5ERNTCGXP4jSkOyJzq3RP1xx9/wNXVFQBgb2+Ptm3bok+fPiarGBERtXx1ZRjPy8vD7du3NT75+fk671dXigMiY2rQxPJffvkFCoUCACAIAi5duoSSkhKNMv369TNe7YiIqEWrK8N4amqq1utqrtqrvjJQX4qDhm4jQ6RPg4KoJ554AoIgiD+PHj1a47xEIkFlZaVxakZERC2eocNvda3ak8mK2ftEJlfvICo7O7vOMsXF/AtLRER1q2/uqfoyZcoEIl3qHUR17dpV6/Hi4mJ8+eWX2LRpE06cOMGeKCIiqlN9NjsGquZMFRS4wNk5v0GBlaHXETWEwRnL//3vf2PTpk3YvXs3PDw88Mwzz9Qr+ywRERGgf7NjwPBVe8Za7WfMbWmoZWpQEKVQKLB161Zs2rQJRUVFGDduHMrKyrBnzx707t3bVHUkIqJWxtCkmcZKtmnsbWmoZap3ioMxY8agR48eOHPmDBITE3Hr1i189NFHRqnE+vXr4eXlBTs7OwQGBuLYsWN6y+/atQs9e/aEnZ0d+vbtiwMHDmicFwQBcXFxkMvlsLe3R0hICC5fvqxR5umnn0aXLl1gZ2cHuVyOiRMn4tatW1qfd+XKFTg6OsLJyalR70lERPVjaNJMYyXb5Bwrqo96B1HffPMNpk2bhuXLl2PUqFGQSqVGqcDOnTsRExODpUuX4tSpU+jfvz9CQ0Nx584dreWPHj2KCRMmYNq0acjKykJ4eDjCw8Nx7tw5sUxCQgLWrVuH5ORkZGZmwsHBAaGhobh//75YZsSIEfjqq69w6dIl7N69G1evXsVzzz1X63kVFRWYMGECHnvsMaO8LxER1U29aq+6+qzaM/Q6IkPUO4j64YcfUFxcjICAAAQGBiIpKQl5eXmNrsCaNWswffp0TJ06Fb1790ZycjLatm2LzZs3ay3/4YcfIiwsDPPmzUOvXr2wYsUK+Pv7i92ugiAgMTERsbGxGDt2LPr164fPPvsMt27dwp49e8T7zJ49G0OGDEHXrl0RHByMhQsX4qeffkJFRYXG82JjY9GzZ0+MGzeu0e9KRET61Vy1pytppq58T6ZKtmmsbWmoZan3nKghQ4ZgyJAhSExMxM6dO7F582bExMRApVLh0KFD8PT0hKNjw/5ylZeX4+TJk1i0aJF4zMrKCiEhIcjIyNB6TUZGBmJiYjSOhYaGigFSdnY2FAoFQkJCxPMymQyBgYHIyMjA+PHja92zoKAA27dvR3BwMKytrcXjhw8fxq5du3D69GmdCd+qKysrQ1lZmfhzUVFRndcQEdGfdK3a8/J6AA+PQQAGaZ3Qbcpkm8bcloZalgavznNwcMDLL7+Ml19+GZcuXcKmTZvw3nvvYeHChXjyySexd+/eet8rLy8PlZWVcHNz0zju5uaGixcvar1GoVBoLa/OpK7+VV8ZtQULFiApKQmlpaUYMmQI9u/fL57Lz8/HlClT8MUXX6Bdu3b1ep/4+HgsX768XmWJiEg7bav26nNN9eBLG0NW0xlrojq1TPUeztOmR48eSEhIwM2bN/Hll18aq05mM2/ePGRlZeHgwYOQSqWYNGmSmJF9+vTpeOGFFzBs2LB632/RokVQKpXi58aNG6aqOhER1eDi4gK5XK7zY8gqOmNNVKeWyeA8UdVJpVJxgndDuLq6QiqVIjc3V+N4bm4u3N3dtV7j7u6ut7z619zcXMjlco0yfn5+tZ7v6uqK7t27o1evXvD09MRPP/2EoKAgHD58GHv37sWqVasAVM21UqlUaNOmDTZs2ICXX365Vt1sbW1ha2vboDYgIqKmy9Btaah1aFRPVGPZ2NggICAA6enp4jGVSoX09HQEBQVpvSYoKEijPAAcOnRILO/t7Q13d3eNMkVFRcjMzNR5T/VzAYhzmjIyMnD69Gnx8/bbb8PR0RGnT5/G3/72N8NemIiImoXGTnCn1sEoPVGNERMTg8mTJ2PgwIEYPHgwEhMTUVJSgqlTpwIAJk2ahE6dOiE+Ph4AMGvWLAwfPhyrV6/GqFGjsGPHDpw4cQIbNmwAULUJcnR0NFauXAlfX194e3tjyZIl8PDwEHvKMjMzcfz4cQwdOhTt27fH1atXsWTJEvj4+IiBVq9evTTqeeLECVhZWaFPnz5mahkiIrIUQye4U+ti8SAqIiICd+/eRVxcHBQKBfz8/JCWliZODL9+/TqsrP7sMAsODkZKSgpiY2OxePFi+Pr6Ys+ePRrBzfz581FSUoLIyEgUFhZi6NChSEtLg52dHQCgbdu2SE1NxdKlS1FSUgK5XI6wsDDExsZyOI6IiAAYNsGdWheJoJ5JTUZXVFQEmUwGpVJZ7xV+REREZFn1/f62eE8UERFRc8PNiQlgEEVERNQg3JyY1Cy6Oo+IiKi54ebEpMYgioiIiMgADKKIiIgagZsTt16cE0VERGQgbk7curEnioiIyAC6Nidmj1TrwSCKiIjIANycmBhEERERGUC9OXF13Jy4dWEQRURE1ADcnJjUuO2LCXHbFyKilql6xvJbt6yqbU5cFVAxY3nzxm1fiIiIGqG+W7twc+LWi0EUERFRDdzaheqDc6KIiIhq4NYuVB/siSIiIjKD+g4PUvPBIIqIiMjEODzYMjGIIiIiqoNS6YiCAhc4O+eLKQwAIC8vT2v5mr1KHB5smRhEERER6aFvf7zU1FSd17FXqeXjxHIiIiIdGrM/HnuVWj4GUURERDqYan88pdIR2dle3Ky4meNwHhERUQ3qLVvU++NVD6Qauz+evuFBal4YRBEREdXg4uKCqKgolJeXo1OnIixYIENlpQRSqYAlS24B+HNyua5J59roGh708blS57XU9DCIIiIi0kI9KXzOHCAiArhyBejWTQKpVIoNG6rKNLRXSd/wIIOo5odzooiIiOrQuTPw+ONVv6o1ZNJ5zeHB6qoPD6rLUfPAnigiIiIDNKRXSd/w4PvvF+GFFyYwY3kzxCCKiIioAeo76bxmr5Ku4cHOnZ0AOOl8HreLabokgiAIlq5ES1VUVASZTAalUol27dpZujpERGQk6sAmJcVeo1dp2bLbGDs2H9bW1pDJZLWua2jAw+1iLKO+39/siSIiImogbb1KLi6FSE3dCD1JzAE0LODhdjFNGyeWExERNYJ60rmr6/16lW9IwFNYWGjUcmRcDKKIiIiaqAcPHhi1HBkXgygiIqJmgtvFNC2cE0VERGQCDclkXh/cLqbpaRI9UevXr4eXlxfs7OwQGBiIY8eO6S2/a9cu9OzZE3Z2dujbty8OHDigcV4QBMTFxUEul8Pe3h4hISG4fPmyRpmnn34aXbp0gZ2dHeRyOSZOnIhbt26J548cOYKxY8dCLpfDwcEBfn5+2L59u/FemoiIWqxTpwYgMTEa27ZNRmJiNE6dGtCo+zUksSeZj8WDqJ07dyImJgZLly7FqVOn0L9/f4SGhuLOnTtayx89ehQTJkzAtGnTkJWVhfDwcISHh+PcuXNimYSEBKxbtw7JycnIzMyEg4MDQkNDcf/+n5P+RowYga+++gqXLl3C7t27cfXqVTz33HMaz+nXrx92796NM2fOYOrUqZg0aRL2799vusYgIqJmzxQBj77EnmQ5Fs8TFRgYiEGDBol5MFQqFTw9PfHGG29g4cKFtcpHRESgpKREI5gZMmQI/Pz8kJycDEEQ4OHhgTlz5mDu3LkAAKVSCTc3N2zduhXjx4/XWo+9e/ciPDwcZWVlsLa21lpm1KhRcHNzw+bNm+v1bswTRUTUety+fRsbNmxAdrYXtm2bXOv85Mlb4e19DZGRkZDL5fW658WLF7Fz507cvCnH3/8+HYCk2lkBr7yyEZ0730ZERAR69uxpnBehen9/W7Qnqry8HCdPnkRISIh4zMrKCiEhIcjIyNB6TUZGhkZ5AAgNDRXLZ2dnQ6FQaJSRyWQIDAzUec+CggJs374dwcHBOgMooCoYc3bWHfWXlZWhqKhI40NERK2DKfbHUyfsrKiwhWYABQASVFTYaJQj87LoxPK8vDxUVlbCzc1N47ibmxsuXryo9RqFQqG1vEKhEM+rj+kqo7ZgwQIkJSWhtLQUQ4YM0TtU99VXX+H48eP49NNPdZaJj4/H8uXLdZ4nIqKWyxT745WWlgKoe4sZdTkyL4vPibKkefPmISsrCwcPHoRUKsWkSZOgbXTz+++/x9SpU7Fx40Y88sgjOu+3aNEiKJVK8XPjxg1TVp+IiJoYFxcXyOVyzJnjhJwcCb7/HsjJkWDOHCfI5fIGb83Stm1bAIBMVowxY/aLPVzq1XnqVX+lpaW4ffu2xic/P9+4L0e1WLQnytXVFVKpFLm5uRrHc3Nz4e7urvUad3d3veXVv+bm5mqMOefm5sLPz6/W811dXdG9e3f06tULnp6e+OmnnxAUFCSW+b//+z+MGTMGa9euxaRJk/S+j62tLWxtbfW/NBERtQqdO1d9jMXfPws+PldQUOAMZ+cCjbQJqTr2muGeeqZl0Z4oGxsbBAQEID09XTymUqmQnp6uEchUFxQUpFEeAA4dOiSW9/b2hru7u0aZoqIiZGZm6ryn+rlA1bwmtSNHjmDUqFF4//33ERkZ2fAXJCIiMrqac6N04556pmXxZJsxMTGYPHkyBg4ciMGDByMxMRElJSWYOnUqAGDSpEno1KkT4uPjAQCzZs3C8OHDsXr1aowaNQo7duzAiRMnsGHDBgCARCJBdHQ0Vq5cCV9fX3h7e2PJkiXw8PBAeHg4ACAzMxPHjx/H0KFD0b59e1y9ehVLliyBj4+PGGh9//33GD16NGbNmoVnn31WnE9lY2Ojd3I5ERGRKTDZZtNj8SAqIiICd+/eRVxcHBQKBfz8/JCWliZODL9+/TqsrP7sMAsODkZKSgpiY2OxePFi+Pr6Ys+ePejTp49YZv78+SgpKUFkZCQKCwsxdOhQpKWlwc7ODkDVGHNqaiqWLl2KkpISyOVyhIWFITY2VhyO27ZtG0pLSxEfHy8GcAAwfPhwHDlyxAwtQ0REVEVX7ikfnytGyYZOhrF4nqiWjHmiiIioMeqbe0rXFjMNyUlFf6rv97fFe6KIiIhIP30pDvQN8ymVSgZRJtSqUxwQERE1ZerEnLpSHADQu8VMRUWFBWrderAnioiIqImqnsATAOLi7iInpw0E4TLOn89CdraXzj31OFfK9BhEERERNWHV8zzJ5UBAAHDhwh2cP193JvPi4mLcvn271j0bmjmdtGMQRURE1Mw4OTkBqBrm69fvDH7+uT+q8kcJ6NfvjNgLdejQIZ33YCLOxmMQRURE1ITl5+fXSpqZl5cHoCr1wZkz/fBnAk4Jzpzph5EjD9c5nMdEnI3HIIqIiKiJys/PR1JSks7zBQUunBNlQVydR0RE1ETV1VuknhNVXfU5UUBVb1V2tpe4Yo+Mhz1RREREzZQ69UHNPFHqXihuFWNaDKKIiIiaMX//LERF+aKoqCO8vB7AxsYbqalZ3CrGDBhEERERNXN9+jhBLq9aaXf7dtXwHudLmR7nRBERETUTDZnfVJ/5UtQ47IkiIiJqBuo7v6nmVjG65kupy5HhGEQRERE1cYbOb/L3z4KPzxUUFDjD2bmAw3hGxiCKiIioiVL3FtU1v6l6r1LNtAgyWbHW4InJNhuPQRQREVETpd6AOCfnAT7/XIBKJRHPSaUC3njjKXh5teH2LRbCieVERERNmIuLCwIC3LBhgwRSadUxqRT49FMJAgLc6gygmGzTdNgTRURE1AxMmwaEhgJXrgDdugGdO9d9DZNtmhaDKCIiomaic+f6BU+A4ZPRqf44nEdERNQC6ZuMTsbBIIqIiKgFYrJN02MQRURE1ILUTLapDqSYbNP4JIIgCJauREtVVFQEmUwGpVKJdu3aWbo6RETUSuTn54t5oG7dskJOTht4eT2Ah0dVQGVjY8O0CHrU9/ubE8uJiIhamOoBklwOBARYsDItGIfziIiIiAzAIIqIiIjIAAyiiIiIiAzAIIqIiIjIAAyiiIiIiAzAIIqIiIjIAAyiiIiIiAzAIIqIiIjIAAyiiIiIiAzQJIKo9evXw8vLC3Z2dggMDMSxY8f0lt+1axd69uwJOzs79O3bFwcOHNA4LwgC4uLiIJfLYW9vj5CQEFy+fFmjzNNPP40uXbrAzs4OcrkcEydOxK1btzTKnDlzBo899hjs7Ozg6emJhIQE47wwERFRM5Kfn4/bt2/r/OTn51u6ihZh8W1fdu7ciZiYGCQnJyMwMBCJiYkIDQ3FpUuX0LFjx1rljx49igkTJiA+Ph6jR49GSkoKwsPDcerUKfTp0wcAkJCQgHXr1mHbtm3w9vbGkiVLEBoail9++QV2dnYAgBEjRmDx4sWQy+X4/fffMXfuXDz33HM4evQogKp9c/7yl78gJCQEycnJOHv2LF5++WU4OTkhMjLSfA1ERERkQfn5+UhKShJ/ViodUVDgAmfnfHEzYwCIiopqdfvxWXwD4sDAQAwaNEj8A1KpVPD09MQbb7yBhQsX1iofERGBkpIS7N+/Xzw2ZMgQ+Pn5ITk5GYIgwMPDA3PmzMHcuXMBAEqlEm5ubti6dSvGjx+vtR579+5FeHg4ysrKYG1tjU8++QRvvfUWFAqFuNP1woULsWfPHly8eLFe78YNiImIqLm7ffs2NmzYAAA4dWoA9u0bDUGwgkSiwpgx++HvnwUAiIyMhFwut2RVjaa+398WHc4rLy/HyZMnERISIh6zsrJCSEgIMjIytF6TkZGhUR4AQkNDxfLZ2dlQKBQaZWQyGQIDA3Xes6CgANu3b0dwcDCsra3F5wwbNkwMoNTPuXTpEv744w+t9ykrK0NRUZHGh4iIqCVQKh3FAAoABMEK+/aNhlLpaOGaWY5Fg6i8vDxUVlbCzc1N47ibmxsUCoXWaxQKhd7y6l/rc88FCxbAwcEBLi4uuH79Ov71r3/V+Zzqz6gpPj4eMplM/Hh6emotR0RE1NwUFLiIAZSaIFihoMDZQjWyvCYxsdxS5s2bh6ysLBw8eBBSqRSTJk1CY0Y3Fy1aBKVSKX5u3LhhxNoSERFZjrNzPiQSlcYxiUQFZ+cCC9XI8iw6sdzV1RVSqRS5ubkax3Nzc+Hu7q71Gnd3d73l1b/m5uZqjM3m5ubCz8+v1vNdXV3RvXt39OrVC56envjpp58QFBSk8znVn1GTra0tbG1t63hrIiKi5kcmK8aYMftrzYmqPrm8tbFoT5SNjQ0CAgKQnp4uHlOpVEhPT0dQUJDWa4KCgjTKA8ChQ4fE8t7e3nB3d9coU1RUhMzMTJ33VD8XqJrXpH7Ov//9b1RUVGg8p0ePHmjfvn0D35SIiKh5KiwsFH/v75+F6OhETJ68FdHRieKk8prlWguLD+fFxMRg48aN2LZtGy5cuIAZM2agpKQEU6dOBQBMmjQJixYtEsvPmjULaWlpWL16NS5evIhly5bhxIkTiIqKAgBIJBJER0dj5cqV2Lt3L86ePYtJkybBw8MD4eHhAIDMzEwkJSXh9OnTuHbtGg4fPowJEybAx8dHDLReeOEF2NjYYNq0aTh//jx27tyJDz/8EDExMeZtICIiIgt68OCBlqOSepZr2SyeJyoiIgJ3795FXFwcFAoF/Pz8kJaWJk7ivn79Oqys/oz1goODkZKSgtjYWCxevBi+vr7Ys2ePmCMKAObPn4+SkhJERkaisLAQQ4cORVpampgjqm3btkhNTcXSpUtRUlICuVyOsLAwxMbGisNxMpkMBw8exMyZMxEQEABXV1fExcUxRxQREbUq6lXrgP4UB9XLtRYWzxPVkjFPFBERNXfqPFFKpSMSE6M1VuhJJCpERydCJitmnigiIiIibZjioDYGUURERFQnpjiojUEUERER1Umd4kAdSDHFQROYWE5ERETNg79/Fnx8rqCgwBnOzgWtOoACGEQRERGRHtX3kAWqeqS0BU81y7UGDKKIiIhIJxcXF0RFRaG8vFxnGRsbG7i4uJixVk0DgygiIiLSqzUGSPXBieVEREREBmAQRURERGQADucRERGRwfLz81vtfCkGUURERGSQ/Px8JCUl1VkuKiqqRQZSHM4jIiIig9TsgVIqHZGd7QWl0lFvuZaCPVFERETUaKdODcC+faMhCFZiNnN//yxLV8uk2BNFREREjaJUOooBFFC1MfG+faNr9Ui1NAyiiIiIqFEKClzEAEpNEKxQUOBsoRqZB4MoIiIiahRn53xxY2I1iUQFZ+cCC9XIPBhEERERkUEKCwsBVO2nN2bMfjGQUs+JUu+xpy7X0nBiORERERnkwYMH4u/9/bPQsaMCN250gafndXTufFtruZaEQRQREREZxNraWvy9vtV51cu1JBzOIyIiIoPIZDIAda/OU5draRhEERERUaPUZ3XezZvA999X/dpSMIgiIiKiRqlrdd6GDZXo2lXAyJFA164CVq8uxO3bt5Gfn2+J6hoNgygiIiJqFH2r85RKRyxf7gGVSgIAUKkkmDevHT744EskJSU160CKE8uJiIio0fz9s+DjcwUFBc5wdi4Q0xvoG+qTyYqb9b56DKKIiIjIIDY2Nho/y2TFYvCkph7qqx5ItZREnAyiiIiIyCAuLi6IiorS2puUl5eH1NRUcaivZvqDmsFWc8QgioiIiAzm4uJSZxldQ33NHYMoIiIiMjltQ33NHVfnERERERmAQRQRERE1SU09QSeDKCIiIjK6miv3Glpu0yaga1f8L0Fn1c9NjUQQBMHSlWipioqKIJPJoFQq0a5dO0tXh4iIyKzy8/P15oGysbHROjH95s2qwElVLQm6VArk5ACdO5ugojXU9/ubE8uJiIjIJOqzck+by5c1AygAqKwErlwxTxBVXxYfzlu/fj28vLxgZ2eHwMBAHDt2TG/5Xbt2oWfPnrCzs0Pfvn1x4MABjfOCICAuLg5yuRz29vYICQnB5cuXxfM5OTmYNm0avL29YW9vDx8fHyxdurRWpPztt99iyJAhcHR0RIcOHfDss88iJyfHaO9NRERE2vn6AhKJ5jGJBOjWzTL10cWiQdTOnTsRExODpUuX4tSpU+jfvz9CQ0Nx584dreWPHj2KCRMmYNq0acjKykJ4eDjCw8Nx7tw5sUxCQgLWrVuH5ORkZGZmwsHBAaGhobh//z4A4OLFi1CpVPj0009x/vx5rF27FsnJyVi8eLF4j+zsbIwdOxYjR47E6dOn8e233yIvLw/PPPOMaRuEiIiItKoZVDUJggUNHjxYmDlzpvhzZWWl4OHhIcTHx2stP27cOGHUqFEaxwIDA4VXX31VEARBUKlUgru7u/DBBx+I5wsLCwVbW1vhyy+/1FmPhIQEwdvbW/x5165dQps2bYTKykrx2N69ewWJRCKUl5fX+/2USqUAQFAqlfW+hoiIqLU7fFgQgNqf7783z/Pr+/1tsZ6o8vJynDx5EiEhIeIxKysrhISEICMjQ+s1GRkZGuUBIDQ0VCyfnZ0NhUKhUUYmkyEwMFDnPQFAqVTC2dlZ/DkgIABWVlbYsmULKisroVQq8fnnnyMkJATW1tY671NWVoaioiKNDxERETWMry9gVSNCkUo5nCfKy8tDZWUl3NzcNI67ublBoVBovUahUOgtr/61Ife8cuUKPvroI7z66qviMW9vbxw8eBCLFy+Gra0tnJyccPPmTXz11Vd63yk+Ph4ymUz8eHp66i1PREREmvLz8yGV3kZCQiGk0qoEAlKpgPffL4RUehv5+fkAmkYOqVa9Ou/3339HWFgYnn/+eUyfPl08rlAoMH36dEyePBkTJkxAcXEx4uLi8Nxzz+HQoUOQ6BiYXbRoEWJiYsSfi4qKGEgRERHVU35+PpKSksSf33zTUdxv7969YmzYUHXcyWkOYmIegkpV1WO1YQMwbZr562uxIMrV1RVSqRS5ubkax3Nzc+Hu7q71Gnd3d73l1b/m5uZCLpdrlPHz89O47tatWxgxYgSCg4OxQf2n8j/r16+HTCZDQkKCeOyLL76Ap6cnMjMzMWTIEK31s7W1ha2trZ63JiIiIl1qrpTXtt+eUumIt992EFMgqFTAq68CoaHmT39gseE8GxsbBAQEID09XTymUqmQnp6OoKAgrdcEBQVplAeAQ4cOieW9vb3h7u6uUaaoqAiZmZka9/z999/x+OOPIyAgAFu2bIFVjYHX0tLSWsekUqlYRyIiIjI+pVJZZ5mCAheoVJojQuocUuZm0RQHMTEx2LhxI7Zt24YLFy5gxowZKCkpwdSpUwEAkyZNwqJFi8Tys2bNQlpaGlavXo2LFy9i2bJlOHHiBKKiogAAEokE0dHRWLlyJfbu3YuzZ89i0qRJ8PDwQHh4OIA/A6guXbpg1apVuHv3LhQKhcacqVGjRuH48eN4++23cfnyZZw6dQpTp05F165dMWDAAPM1EBERUStSUVFRZxln53xYWWlutmKpSecWnRMVERGBu3fvIi4uDgqFAn5+fkhLSxMnhl+/fl2jRyg4OBgpKSmIjY3F4sWL4evriz179qBPnz5imfnz56OkpASRkZEoLCzE0KFDkZaWBjs7OwBVPVdXrlzBlStX0LlGv5/wvx1wRo4ciZSUFCQkJCAhIQFt27ZFUFAQ0tLSYG9vb+pmISIiIh1ksmLExf2OFSs6o7KyKoD69FPLZDLn3nkmxL3ziIiI6u/s2bNITU2ts9wzzzyD9u374sqVqh4oYwdQ3DuPiIiIWqzOnS2/j57F984jIiIiao4YRBEREVGT0KZN/QbI6lvO1BhEERERUZPg5ORk1HKmxiCKiIiImgQbGxujljM1rs4zIa7OIyIiapj8/PxamcvVCgsLIZFIIJPJtJ63sbGBi4tLo+vA1XlERETU7OgKgvLz8/HVV1/VeX1UVJRRAqn64HAeERERNXm6eqcMLWcMDKKIiIiIDMDhPCIiImqSbt4ELl8GfH2rtnepTql0REGBC5yd8yGTFVukfgyiiIiIqMnZtAmIjARUKsDKCkhI+HPv2lOnBmDfvtEQBCtIJCqMGbMf/v5ZZq8jh/OIiIioSbl5888ACqj6dcECGZRKRyiVjmIABQCCYIV9+0ZDqXQ0ez3ZE0VERERNRn5+Pn76CVCpNFfYVVZKUFDgDEAiBlBqgmCFggJnsw/rMYgiIiKiJiE/Px9JSUlQKh0hkURrBEsSiQrOzgXi73WdMycO5xEREVGToE5PIJMVY8yY/ZBIqsbz1POeZLJivecA82YzZ08UERERNTn+/lnw8bmCggJnODsXaAzVrVzpjbi4u8jJaQMvrwfw8BgEYJDRMpbXF4MoIiIiapLUPU/aeHio4OFhvsSa2jCIIiIiomYlNTVV5zlu+0JERERkAG77QkRERNTEMYgiIiIiMgCDKCIiImoSzJmewBg4sZyIiIiaBBcXF0RFRWmd15SXl6d3QrklMIgiIiKiJsOceZ4ai8N5RERERAZgEEVERERNXn3nS3HbFyIiIqJq9M2XUuO2L0RERERaNLX5UhzOIyIiIjIAgygiIiIiAzCIIiIiIjIAgygiIiIiAzCIIiIiIjKAxYOo9evXw8vLC3Z2dggMDMSxY8f0lt+1axd69uwJOzs79O3bFwcOHNA4LwgC4uLiIJfLYW9vj5CQEFy+fFk8n5OTg2nTpsHb2xv29vbw8fHB0qVLay2ZFAQBq1atQvfu3WFra4tOnTrhnXfeMd6LExERUbNm0SBq586diImJwdKlS3Hq1Cn0798foaGhuHPnjtbyR48exYQJEzBt2jRkZWUhPDwc4eHhOHfunFgmISEB69atQ3JyMjIzM+Hg4IDQ0FDcv38fAHDx4kWoVCp8+umnOH/+PNauXYvk5GQsXrxY41mzZs3C3//+d6xatQoXL17E3r17MXjwYNM1BhERETUrEkEQBEs9PDAwEIMGDUJSUhIAQKVSwdPTE2+88QYWLlxYq3xERARKSkqwf/9+8diQIUPg5+eH5ORkCIIADw8PzJkzB3PnzgUAKJVKuLm5YevWrRg/frzWenzwwQf45JNP8NtvvwEALly4gH79+uHcuXPo0aOHwe9XVFQEmUwGpVKJdu3aGXwfIiIiMp/6fn9brCeqvLwcJ0+eREhIyJ+VsbJCSEgIMjIytF6TkZGhUR4AQkNDxfLZ2dlQKBQaZWQyGQIDA3XeE6gKtJydncWf9+3bh4cffhj79++Ht7c3vLy88Morr6CgoEDvO5WVlaGoqEjjQ0RERC2TxTKW5+XlobKyEm5ubhrH3dzccPHiRa3XKBQKreUVCoV4Xn1MV5marly5go8++girVq0Sj/3222+4du0adu3ahc8++wyVlZWYPXs2nnvuORw+fFjnO8XHx2P58uW1jjOYIiIiaj7U39t1Dda16m1ffv/9d4SFheH555/H9OnTxeMqlQplZWX47LPP0L17dwDApk2bEBAQgEuXLukc4lu0aBFiYmI07t+7d294enqa9kWIiIjI6IqLiyGTyXSet1gQ5erqCqlUitzcXI3jubm5cHd313qNu7u73vLqX3NzcyGXyzXK+Pn5aVx369YtjBgxAsHBwdiwYYPGOblcjjZt2ogBFAD06tULAHD9+nWdQZStrS1sbW3Fnx966CHcuHEDjo6OkEgkWq/RpaioCJ6enrhx40arn0/FtqjCdqjCdvgT26IK26EK2+FPjW0LQRBQXFwMDw8PveUsFkTZ2NggICAA6enpCA8PB1DVA5Seno6oqCit1wQFBSE9PR3R0dHisUOHDiEoKAgA4O3tDXd3d6Snp4tBU1FRETIzMzFjxgzxmt9//x0jRoxAQEAAtmzZAisrzalhjz76KB48eICrV6/Cx8cHAPDrr78CALp27Vrvd7SyskLnzp3rXV6bdu3atfr/GNTYFlXYDlXYDn9iW1RhO1RhO/ypMW2hrwdKzaLDeTExMZg8eTIGDhyIwYMHIzExESUlJZg6dSoAYNKkSejUqRPi4+MBVKUdGD58OFavXo1Ro0Zhx44dOHHihNiTJJFIEB0djZUrV8LX1xfe3t5YsmQJPDw8xEDt999/x+OPP46uXbti1apVuHv3rlgfdU9WSEgI/P398fLLLyMxMREqlQozZ87Ek08+qdE7RURERK2XRYOoiIgI3L17F3FxcVAoFPDz80NaWpo4Mfz69esavUTBwcFISUlBbGwsFi9eDF9fX+zZswd9+vQRy8yfPx8lJSWIjIxEYWEhhg4dirS0NNjZ2QGo6rm6cuUKrly5UquXSD2BzMrKCvv27cMbb7yBYcOGwcHBAU899RRWr15t6iYhIiKi5kKgJun+/fvC0qVLhfv371u6KhbHtqjCdqjCdvgT26IK26EK2+FP5moLiybbJCIiImquLL53HhEREVFzxCCKiIiIyAAMooiIiIgMwCCKiIiIyAAMoixo/fr18PLygp2dHQIDA3Hs2DGdZc+fP49nn30WXl5ekEgkSExMNF9FzaAhbbFx40Y89thjaN++Pdq3b4+QkBC95ZuThrRDamoqBg4cCCcnJzg4OMDPzw+ff/65GWtrOg1ph+p27NgBiUQi5oVrCRrSFlu3boVEItH4qNO7NHcN/TtRWFiImTNnQi6Xw9bWFt27d8eBAwfMVFvTaUg7PP7447X+PkgkEowaNcqMNTadhv6dSExMRI8ePWBvbw9PT0/Mnj0b9+/fb1wlTLr2j3TasWOHYGNjI2zevFk4f/68MH36dMHJyUnIzc3VWv7YsWPC3LlzhS+//FJwd3cX1q5da94Km1BD2+KFF14Q1q9fL2RlZQkXLlwQpkyZIshkMuHmzZtmrrlxNbQdvv/+eyE1NVX45ZdfhCtXrgiJiYmCVCoV0tLSzFxz42poO6hlZ2cLnTp1Eh577DFh7Nix5qmsiTW0LbZs2SK0a9dOuH37tvhRKBRmrrXxNbQdysrKhIEDBwp//etfhR9++EHIzs4Wjhw5Ipw+fdrMNTeuhrZDfn6+xt+Fc+fOCVKpVNiyZYt5K24CDW2L7du3C7a2tsL27duF7Oxs4dtvvxXkcrkwe/bsRtWDQZSFDB48WJg5c6b4c2VlpeDh4SHEx8fXeW3Xrl1bVBDVmLYQBEF48OCB4OjoKGzbts1UVTSLxraDIAjCgAEDhNjYWFNUz2wMaYcHDx4IwcHBwt///ndh8uTJLSaIamhbbNmyRZDJZGaqnfk0tB0++eQT4eGHHxbKy8vNVUWzaOy/EWvXrhUcHR2Fe/fumaqKZtPQtpg5c6YwcuRIjWMxMTHCo48+2qh6cDjPAsrLy3Hy5EmEhISIx6ysrBASEoKMjAwL1sz8jNEWpaWlqKiogLOzs6mqaXKNbQdBEJCeno5Lly5h2LBhpqyqSRnaDm+//TY6duyIadOmmaOaZmFoW9y7dw9du3aFp6cnxo4di/Pnz5ujuiZjSDvs3bsXQUFBmDlzJtzc3NCnTx+8++67qKysNFe1jc4Y/1Zu2rQJ48ePh4ODg6mqaRaGtEVwcDBOnjwpDvn99ttvOHDgAP761782qi4W3faltcrLy0NlZaW4vY2am5sbLl68aKFaWYYx2mLBggXw8PDQ+A+quTG0HZRKJTp16oSysjJIpVJ8/PHHePLJJ01dXZMxpB1++OEHbNq0CadPnzZDDc3HkLbo0aMHNm/ejH79+kGpVGLVqlUIDg7G+fPnG70ZuqUY0g6//fYbDh8+jBdffBEHDhzAlStX8Prrr6OiogJLly41R7WNrrH/Vh47dgznzp3Dpk2bTFVFszGkLV544QXk5eVh6NChEAQBDx48wGuvvYbFixc3qi4MoqhZe++997Bjxw4cOXKkxUygbQhHR0ecPn0a9+7dQ3p6OmJiYvDwww/j8ccft3TVzKK4uBgTJ07Exo0b4erqaunqWFxQUBCCgoLEn4ODg9GrVy98+umnWLFihQVrZl4qlQodO3bEhg0bIJVKERAQgN9//x0ffPBBsw2iGmvTpk3o27cvBg8ebOmqWMSRI0fw7rvv4uOPP0ZgYCCuXLmCWbNmYcWKFViyZInB92UQZQGurq6QSqXIzc3VOJ6bmwt3d3cL1coyGtMWq1atwnvvvYfvvvsO/fr1M2U1Tc7QdrCyskK3bt0AAH5+frhw4QLi4+ObbRDV0Ha4evUqcnJyMGbMGPGYSqUCALRp0waXLl2Cj4+PaSttIsb4d8La2hoDBgzAlStXTFFFszCkHeRyOaytrSGVSsVjvXr1gkKhQHl5OWxsbExaZ1NozN+HkpIS7NixA2+//bYpq2g2hrTFkiVLMHHiRLzyyisAgL59+6KkpASRkZF46623YGVl2OwmzomyABsbGwQEBCA9PV08plKpkJ6ervF/ka2BoW2RkJCAFStWIC0tDQMHDjRHVU3KWH8nVCoVysrKTFFFs2hoO/Ts2RNnz57F6dOnxc/TTz+NESNG4PTp0/D09DRn9Y3KGH8nKisrcfbsWcjlclNV0+QMaYdHH30UV65cEQNqAPj1118hl8ubZQAFNO7vw65du1BWVoaXXnrJ1NU0C0PaorS0tFagpA6yhcZsIdyoaelksB07dgi2trbC1q1bhV9++UWIjIwUnJycxOXIEydOFBYuXCiWLysrE7KysoSsrCxBLpcLc+fOFbKysoTLly9b6hWMpqFt8d577wk2NjbCP/7xD43lu8XFxZZ6BaNoaDu8++67wsGDB4WrV68Kv/zyi7Bq1SqhTZs2wsaNGy31CkbR0HaoqSWtzmtoWyxfvlz49ttvhatXrwonT54Uxo8fL9jZ2Qnnz5+31CsYRUPb4fr164Kjo6MQFRUlXLp0Sdi/f7/QsWNHYeXKlZZ6BaMw9L+NoUOHChEREeaurkk1tC2WLl0qODo6Cl9++aXw22+/CQcPHhR8fHyEcePGNaoeDKIs6KOPPhK6dOki2NjYCIMHDxZ++ukn8dzw4cOFyZMniz9nZ2cLAGp9hg8fbv6Km0BD2qJr165a22Lp0qXmr7iRNaQd3nrrLaFbt26CnZ2d0L59eyEoKEjYsWOHBWptfA1ph5paUhAlCA1ri+joaLGsm5ub8Ne//lU4deqUBWptfA39O3H06FEhMDBQsLW1FR5++GHhnXfeER48eGDmWhtfQ9vh4sWLAgDh4MGDZq6p6TWkLSoqKoRly5YJPj4+gp2dneDp6Sm8/vrrwh9//NGoOkgEoTH9WEREREStE+dEERERERmAQRQRERGRARhEERERERmAQRQRERGRARhEERERERmAQRQRERGRARhEERERERmAQRQRUQswZcoUhIeHW7oaRK0KgygiMqkpU6ZAIpGIHxcXF4SFheHMmTOWrppRVH839Wfo0KEme15OTg4kEglOnz6tcfzDDz/E1q1bTfZcIqqNQRQRmVxYWBhu376N27dvIz09HW3atMHo0aMtXS2j2bJli/h+t2/fxt69e7WWq6ioMFkdZDIZnJycTHZ/IqqNQRQRmZytrS3c3d3h7u4OPz8/LFy4EDdu3MDdu3cxcuRIREVFaZS/e/cubGxsxF3avby8sGLFCkyYMAEODg7o1KkT1q9fr3HNmjVr0LdvXzg4OMDT0xOvv/467t27J56/du0axowZg/bt28PBwQGPPPIIDhw4AAD4448/8OKLL6JDhw6wt7eHr68vtmzZUu/3c3JyEt/P3d0dzs7OYo/Rzp07MXz4cNjZ2WH79u3Iz8/HhAkT0KlTJ7Rt2xZ9+/bFl19+qXE/lUqFhIQEdOvWDba2tujSpQveeecdAIC3tzcAYMCAAZBIJHj88ccB1B7OKysrw5tvvomOHTvCzs4OQ4cOxfHjx8XzR44cgUQiQXp6OgYOHIi2bdsiODgYly5dqvd7E7V2DKKIyKzu3buHL774At26dYOLiwteeeUVpKSkoKysTCzzxRdfoFOnThg5cqR47IMPPkD//v2RlZWFhQsXYtasWTh06JB43srKCuvWrcP58+exbds2HD58GPPnzxfPz5w5E2VlZfj3v/+Ns2fP4v3338dDDz0EAFiyZAl++eUXfPPNN7hw4QI++eQTuLq6GuV91XW9cOECQkNDcf/+fQQEBODrr7/GuXPnEBkZiYkTJ+LYsWPiNYsWLcJ7770n1islJQVubm4AIJb77rvvcPv2baSmpmp97vz587F7925s27YNp06dQrdu3RAaGoqCggKNcm+99RZWr16NEydOoE2bNnj55ZeN8t5ErUKjti8mIqrD5MmTBalUKjg4OAgODg4CAEEulwsnT54UBEEQ/vvf/wrt27cXdu7cKV7Tr18/YdmyZeLPXbt2FcLCwjTuGxERITz11FM6n7tr1y7BxcVF/Llv374a96xuzJgxwtSpUw16PwCCnZ2d+H4ODg7CP//5TyE7O1sAICQmJtZ5j1GjRglz5swRBEEQioqKBFtbW2Hjxo1ay6rvm5WVpXF88uTJwtixYwVBEIR79+4J1tbWwvbt28Xz5eXlgoeHh5CQkCAIgiB8//33AgDhu+++E8t8/fXXAgDhv//9b0OagKjVYk8UEZnciBEjcPr0aZw+fRrHjh1DaGgonnrqKVy7dg12dnaYOHEiNm/eDAA4deoUzp07hylTpmjcIygoqNbPFy5cEH/+7rvv8MQTT6BTp05wdHTExIkTkZ+fj9LSUgDAm2++iZUrV+LRRx/F0qVLNSa2z5gxAzt27ICfnx/mz5+Po0ePNuj91q5dK77f6dOn8eSTT4rnBg4cqFG2srISK1asQN++feHs7IyHHnoI3377La5fvw4AuHDhAsrKyvDEE080qA7VXb16FRUVFXj00UfFY9bW1hg8eLBGmwFAv379xN/L5XIAwJ07dwx+NlFrwiCKiEzOwcEB3bp1Q7du3TBo0CD8/e9/R0lJCTZu3AgAeOWVV3Do0CHcvHkTW7ZswciRI9G1a9d63z8nJwejR49Gv379sHv3bpw8eVKcM1VeXi4+47fffsPEiRNx9uxZDBw4EB999BEAiAHd7NmzcevWLTzxxBOYO3duvZ/v7u4uvl+3bt3g4OCg8e7VffDBB/jwww+xYMECfP/99zh9+jRCQ0PFetrb29f7ucZgbW0t/l4ikQCompNFRHVjEEVEZieRSGBlZYX//ve/AIC+ffti4MCB2LhxI1JSUrTOy/npp59q/dyrVy8AwMmTJ6FSqbB69WoMGTIE3bt3x61bt2rdw9PTE6+99hpSU1MxZ84cMYgDgA4dOmDy5Mn44osvkJiYiA0bNhjzlUU//vgjxo4di5deegn9+/fHww8/jF9//VU87+vrC3t7e3FSfU02NjYAqnq0dPHx8YGNjQ1+/PFH8VhFRQWOHz+O3r17G+lNiKiNpStARC1fWVkZFAoFgKqVcElJSbh37x7GjBkjlnnllVcQFRUFBwcH/O1vf6t1jx9//BEJCQkIDw/HoUOHsGvXLnz99dcAgG7duqGiogIfffQRxowZgx9//BHJycka10dHR+Opp55C9+7d8ccff+D7778Xg7C4uDgEBATgkUceQVlZGfbv3y+eMzZfX1/84x//wNGjR9G+fXusWbMGubm5YnBjZ2eHBQsWYP78+bCxscGjjz6Ku3fv4vz585g2bRo6duwIe3t7pKWloXPnzrCzs4NMJtN4hoODA2bMmIF58+bB2dkZXbp0QUJCAkpLSzFt2jSTvBdRa8SeKCIyubS0NMjlcsjlcgQGBuL48ePYtWuXuDwfACZMmIA2bdpgwoQJsLOzq3WPOXPm4MSJExgwYABWrlyJNWvWIDQ0FADQv39/rFmzBu+//z769OmD7du3Iz4+XuP6yspKzJw5E7169UJYWBi6d++Ojz/+GEBV786iRYvQr18/DBs2DFKpFDt27DBJW8TGxsLf3x+hoaF4/PHH4e7uXivT+JIlSzBnzhzExcWhV69eiIiIEOcptWnTBuvWrcOnn34KDw8PjB07Vutz3nvvPTz77LOYOHEi/P39ceXKFXz77bdo3769Sd6LqDWSCIIgWLoSREQ5OTnw8fHB8ePH4e/vr3HOy8sL0dHRiI6OtkzliIi04HAeEVlURUUF8vPzERsbiyFDhtQKoIiImioO5xGRRf3444+Qy+U4fvx4rXlMlvbuu+/ioYce0vp56qmnLF09IrIwDucREelQUFBQK8O3mr29PTp16mTmGhFRU8IgioiIiMgAHM4jIiIiMgCDKCIiIiIDMIgiIiIiMgCDKCIiIiIDMIgiIiIiMgCDKCIiIiIDMIgiIiIiMgCDKCIiIiID/D94AwwXR2+iCAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAb7hJREFUeJzt3XlcVPX+P/DXMAIDqGOgwqAoRLgvKCZCpumlO3Zx4ZYbdtXUJPuKSZRriGuXIjVULLSfipWkeTVTM9Io2yRyTc0lNdRSBhVyQExQ5vz+4M65jGwDznJm5vV8POaBc87nnPl8zjhn3vNZZYIgCCAiIiKienGydgaIiIiIbBGDKCIiIqIGYBBFRERE1AAMooiIiIgagEEUERERUQMwiCIiIiJqAAZRRERERA3AIIqIiIioARhEERERETUAgygiIjuXnp4OmUyGixcvWjsrRHaFQRQRPbCDBw8iNjYWnTt3hoeHB9q0aYORI0fi119/rZL2iSeegEwmg0wmg5OTE5o2bYr27dtj7Nix2LdvX71ed9euXejfvz9atmwJd3d3PPzwwxg5ciQyMzNNVbQq/v3vf2PHjh1Vth84cAALFizAzZs3zfba91uwYIF4LWUyGdzd3dGpUyckJCSgqKjIJK+RkZGBlJQUk5yLyN4wiCKiB/bmm29i27Zt+Nvf/oYVK1YgJiYG3377LXr27ImTJ09WSd+6dWt88MEHeP/99/HWW29h6NChOHDgAP7+979j1KhRuHv3bp2vuXTpUgwdOhQymQxz5szB22+/jWeeeQbnzp3D5s2bzVFMALUHUQsXLrRoEKX37rvv4oMPPsDy5cvRoUMHvP766xg0aBBMsTQqgyiimjWydgaIyPbFx8cjIyMDLi4u4rZRo0aha9eueOONN/Dhhx8apFcqlfjXv/5lsO2NN97ASy+9hHfeeQf+/v548803a3y9e/fuYfHixXjyySexd+/eKvuvXbv2gCWSjtu3b8Pd3b3WNMOHD0fz5s0BAFOmTMEzzzyD7du348cff0RYWJglsknkkFgTRUQPLDw83CCAAoCgoCB07twZp0+fNuoccrkcK1euRKdOnZCamgqtVltj2hs3bqCoqAiPPfZYtftbtmxp8PzOnTtYsGAB2rVrB4VCAZVKhaeffhoXLlwQ0yxduhTh4eHw8vKCm5sbQkJC8J///MfgPDKZDCUlJdi4caPYhPbcc89hwYIFmDFjBgAgICBA3Fe5D9KHH36IkJAQuLm5wdPTE6NHj8bvv/9ucP4nnngCXbp0weHDh9GvXz+4u7tj7ty5Rl2/ygYOHAgAyM3NrTXdO++8g86dO8PV1RW+vr6YOnWqQU3aE088gc8++wyXLl0Sy+Tv71/v/BDZK9ZEEZFZCIKA/Px8dO7c2ehj5HI5oqOjMW/ePHz//feIjIysNl3Lli3h5uaGXbt2Ydq0afD09KzxnOXl5Rg8eDCysrIwevRoTJ8+HcXFxdi3bx9OnjyJwMBAAMCKFSswdOhQPPvssygrK8PmzZsxYsQI7N69W8zHBx98gOeffx69e/dGTEwMACAwMBAeHh749ddf8dFHH+Htt98Wa4VatGgBAHj99dcxb948jBw5Es8//zyuX7+OVatWoV+/fjh69CiaNWsm5regoABPPfUURo8ejX/961/w9vY2+vrp6YNDLy+vGtMsWLAACxcuREREBF588UWcPXsW7777Lg4ePIgffvgBzs7OeO2116DVavHHH3/g7bffBgA0bty43vkhslsCEZEZfPDBBwIAYd26dQbb+/fvL3Tu3LnG4z755BMBgLBixYpaz5+YmCgAEDw8PISnnnpKeP3114XDhw9XSbd+/XoBgLB8+fIq+3Q6nfjv27dvG+wrKysTunTpIgwcONBgu4eHhzB+/Pgq53rrrbcEAEJubq7B9osXLwpyuVx4/fXXDbafOHFCaNSokcH2/v37CwCEtLS0Gstd2fz58wUAwtmzZ4Xr168Lubm5wpo1awRXV1fB29tbKCkpEQRBEDZs2GCQt2vXrgkuLi7C3//+d6G8vFw8X2pqqgBAWL9+vbgtMjJSaNu2rVH5IXI0bM4jIpM7c+YMpk6dirCwMIwfP75ex+prOoqLi2tNt3DhQmRkZKBHjx744osv8NprryEkJAQ9e/Y0aELctm0bmjdvjmnTplU5h0wmE//t5uYm/vvPP/+EVqvF448/jiNHjtQr//fbvn07dDodRo4ciRs3bogPHx8fBAUF4euvvzZI7+rqigkTJtTrNdq3b48WLVogICAAL7zwAh555BF89tlnNfal+vLLL1FWVoa4uDg4Of3va2Dy5Mlo2rQpPvvss/oXlMgBsTmPiExKo9EgMjISSqUS//nPfyCXy+t1/K1btwAATZo0qTNtdHQ0oqOjUVRUhJycHKSnpyMjIwNDhgzByZMnoVAocOHCBbRv3x6NGtV+u9u9ezeWLFmCY8eOobS0VNxeOdBqiHPnzkEQBAQFBVW739nZ2eB5q1atqvQvq8u2bdvQtGlTODs7o3Xr1mITZU0uXboEoCL4qszFxQUPP/ywuJ+IascgiohMRqvV4qmnnsLNmzfx3XffwdfXt97n0E+J8Mgjjxh9TNOmTfHkk0/iySefhLOzMzZu3IicnBz079/fqOO/++47DB06FP369cM777wDlUoFZ2dnbNiwARkZGfUuQ2U6nQ4ymQyff/55tQHl/X2MKteIGatfv35iPywishwGUURkEnfu3MGQIUPw66+/4ssvv0SnTp3qfY7y8nJkZGTA3d0dffv2bVA+evXqhY0bNyIvLw9ARcfvnJwc3L17t0qtj962bdugUCjwxRdfwNXVVdy+YcOGKmlrqpmqaXtgYCAEQUBAQADatWtX3+KYRdu2bQEAZ8+excMPPyxuLysrQ25uLiIiIsRtD1oTR2TP2CeKiB5YeXk5Ro0ahezsbGzdurVBcxOVl5fjpZdewunTp/HSSy+hadOmNaa9ffs2srOzq933+eefA/hfU9UzzzyDGzduIDU1tUpa4b+TUcrlcshkMpSXl4v7Ll68WO2kmh4eHtVOqOnh4QEAVfY9/fTTkMvlWLhwYZXJLwVBQEFBQfWFNKOIiAi4uLhg5cqVBnlat24dtFqtwahIDw+PWqebIHJkrIkiogf2yiuvYOfOnRgyZAgKCwurTK55/8SaWq1WTHP79m2cP38e27dvx4ULFzB69GgsXry41te7ffs2wsPD0adPHwwaNAh+fn64efMmduzYge+++w5RUVHo0aMHAGDcuHF4//33ER8fj59++gmPP/44SkpK8OWXX+L//u//MGzYMERGRmL58uUYNGgQxowZg2vXrmH16tV45JFHcPz4cYPXDgkJwZdffonly5fD19cXAQEBCA0NRUhICADgtddew+jRo+Hs7IwhQ4YgMDAQS5YswZw5c3Dx4kVERUWhSZMmyM3NxSeffIKYmBi8+uqrD3T966tFixaYM2cOFi5ciEGDBmHo0KE4e/Ys3nnnHTz66KMG71dISAi2bNmC+Ph4PProo2jcuDGGDBli0fwSSZY1hwYSkX3QD82v6VFb2saNGwtBQUHCv/71L2Hv3r1Gvd7du3eF9957T4iKihLatm0ruLq6Cu7u7kKPHj2Et956SygtLTVIf/v2beG1114TAgICBGdnZ8HHx0cYPny4cOHCBTHNunXrhKCgIMHV1VXo0KGDsGHDBnEKgcrOnDkj9OvXT3BzcxMAGEx3sHjxYqFVq1aCk5NTlekOtm3bJvTt21fw8PAQPDw8hA4dOghTp04Vzp49a3Btapv+4X76/F2/fr3WdPdPcaCXmpoqdOjQQXB2dha8vb2FF198Ufjzzz8N0ty6dUsYM2aM0KxZMwEApzsgqkQmCCZYXImIiIjIwbBPFBEREVEDMIgiIiIiagAGUUREREQNwCCKiIiIqAEYRBERERE1AIMoIiIiogbgZJtmpNPpcPXqVTRp0oRLJxAREdkIQRBQXFwMX19fODnVXN/EIMqMrl69Cj8/P2tng4iIiBrg999/R+vWrWvczyDKjJo0aQKg4k2obR0wIiIiko6ioiL4+fmJ3+M1YRBlRvomvKZNmzKIIiIisjF1dcVhx3IiIiKiBmAQRURERNQADKKIiIiIGoBBFBEREVEDMIgiIiIiagAGUUREREQNwCCKiIiIqAEYRBERERE1AIMoIiIiogbgjOV2qqCgAGVlZTXud3FxgZeXlwVzREREZF8YRNmhgoICpKam1pkuNjaWgRQREVEDMYiyQ7XVQDUknaNjrR4REVVHEn2iVq9eDX9/fygUCoSGhuKnn36qNf3WrVvRoUMHKBQKdO3aFXv27DHYLwgCEhMToVKp4ObmhoiICJw7d67ac5WWliI4OBgymQzHjh0Tt+/fvx/Dhg2DSqWCh4cHgoODsWnTpgcuK9kWfa3e2rVra3ykpqaioKDA2lklIiILs3oQtWXLFsTHx2P+/Pk4cuQIunfvDrVajWvXrlWb/sCBA4iOjsakSZNw9OhRREVFISoqCidPnhTTJCcnY+XKlUhLS0NOTg48PDygVqtx586dKuebOXMmfH19q32dbt26Ydu2bTh+/DgmTJiAcePGYffu3aYrPEkea/WIiKgmMkEQBGtmIDQ0FI8++qjYh0en08HPzw/Tpk3D7Nmzq6QfNWoUSkpKDIKZPn36IDg4GGlpaRAEAb6+vnjllVfw6quvAgC0Wi28vb2Rnp6O0aNHi8d9/vnniI+Px7Zt29C5c2ccPXoUwcHBNeY1MjIS3t7eWL9+vVFlKyoqglKphFarRdOmTY06xhTy8vKwdu3aOtPFxMRApVJZIEe2i9eSiMjxGPv9bdWaqLKyMhw+fBgRERHiNicnJ0RERCA7O7vaY7Kzsw3SA4BarRbT5+bmQqPRGKRRKpUIDQ01OGd+fj4mT56MDz74AO7u7kblV6vVwtPTs8b9paWlKCoqMnhIgVbbBLm5/tBqm1g7K0RERHbDqh3Lb9y4gfLycnh7exts9/b2xpkzZ6o9RqPRVJteo9GI+/XbakojCAKee+45TJkyBb169cLFixfrzOvHH3+MgwcPYs2aNTWmSUpKwsKFC+s8lyUdOdIDu3YNhiA4QSbTYciQ3ejZ86i1s2UztFrtfc+boLDQC56eBVAqiw3SsSbK9nDQABE9CIccnbdq1SoUFxdjzpw5RqX/+uuvMWHCBLz33nvo3LlzjenmzJmD+Ph48XlRURH8/PweOL8NpdU2EQMoABAEJ+zaNRiBgecNAgCq2d27d8V/1xaQVk5HtsHcU4EwQCOyf1YNopo3bw65XI78/HyD7fn5+fDx8an2GB8fn1rT6//m5+cb1Azk5+eL/Z2++uorZGdnw9XV1eA8vXr1wrPPPouNGzeK27755hsMGTIEb7/9NsaNG1dreVxdXauc0xpcXFwAAIWFXmIApScITigs9IRSWSymo7oxILU/5hw0wLnaiByDVftEubi4ICQkBFlZWeI2nU6HrKwshIWFVXtMWFiYQXoA2Ldvn5g+ICAAPj4+BmmKioqQk5Mjplm5ciV+/vlnHDt2DMeOHROnSNiyZQtef/118bj9+/cjMjISb775JmJiYkxTaAvw8vJCbGwspk0bBCcnw3EDcrmAadOe4s27nmoLSInux1GdRI7B6s158fHxGD9+PHr16oXevXsjJSUFJSUlmDBhAgBg3LhxaNWqFZKSkgAA06dPR//+/bFs2TJERkZi8+bNOHTokDiCSiaTIS4uDkuWLEFQUBACAgIwb948+Pr6IioqCgDQpk0bgzw0btwYABAYGIjWrVsDqGjCGzx4MKZPn45nnnlG7E/l4uJSa+dyqfDy8oKXF7B2LfDCC0B5OSCXA2vWyBAS4l33CQgA0KhRxUfE07MAMpnOIJCSyXTw9Cw0SEdkKWwuJLI+q9/5R40ahevXryMxMREajQbBwcHIzMwUO4ZfvnwZTk7/++IKDw9HRkYGEhISMHfuXAQFBWHHjh3o0qWLmGbmzJkoKSlBTEwMbt68ib59+yIzMxMKhcLofG3cuBG3b99GUlKSGMABQP/+/bF///4HL7iFTJoEqNXA+fPAI48A/40RyUjNmjUDACiVxejW7Th+/rk7ABkAAd26HReb8vTppIZftMaradBAZVK5nmwuJJIGqwdRQMUHPTY2ttp91QUsI0aMwIgRI2o8n0wmw6JFi7Bo0SKjXt/f3x/3T5eVnp6O9PR0o46XutatGTw9KK22CY4f74aKAAoAZDh+vBsGDvxKsn2i+EVrPGNGsdbnet7PmACtPthcSCQNkgiiiKSurk76UiTFL1qp1ORUZuyggYZeT04zQmS/GEQR1UI/grGuPlG2MNLR1LUh9SXVmjFzBsiWGtVp7feWyFExiCKqhX6kY1lZGVq1KsKsWUqUl8sglwt4880ijBkTbRP9iqRQGyK1mrEHDZCNCVwsUYNp7HsrxVpAIlvHIIqoDvovlldeAUaN0nfSl6F162YAmlkza0aR6hxX1q49eZAAua7AxVI1mMa+t1KtBSSydQyiiOrBFjvpS7E/lxRqxoCGBcjGBC6WqsE09r2VWi0gkb1gEEVk5+qqDbE0qdaMGRsgGxu4WKIGs6HvrbVrAYnsBYMoIiszd18VpbIYQ4bsrlLzY60vTynWjNVHQwIXU9dg6psB63pvq2sulEotIJE9YBBFZGL1CYrM2Vel8hdoz55HERh4HoWFnvD0LDQIViw9slBqNWPGepDAxdQqNxcCQGLidVy82Aj+/vfg6/sogEerDb6lWgtIZKsYRBGZUH2DInP2Vbn/i7Y61hiRJbWaMWM1NHAxZ370VCogJKTuY2y9FpBIahhEEZnQgwZFpu6rIqWRVlKtGauPhgQuUmKrtYBEUsUgisiM6hMU2XtfFanWjDkSW60FJJIqBlFEZlKfoMhR+qowQLIOe6gFJJIiBlFEZlDfoIh9VcicWAtIZB4MoojMoL5BEfuqkLkxQCIyPae6kxBRfemDospqC4r0fVX0x7CvChGR9LEmisgMjO3Ay74qZC+4wLHp8FraDgZRRCZU36CIfVXIHtw/P1pNo1K5wHHduFi0bWEQRWRCDQmKeCMkW1f5/3tto1K5wHHd7r9GNQWkvJbSwCDKTrE62Hp4XclRmWuqDke9n9n73HH2gEGUHWJ1MBFZgzmm6rCHpsKGBIGOMnecrWMQZYdYHUxE1mCOqTpsvamwoUEg546rntRqJRlE2TlWB1N9VL5BXb3qhNzcRggIuAdf34qpF+y12cQcHPFamnNZGVutmWloECiVueOkFLRIsVaSQZQds9WbjqORyk2q8g2qtpu9lJtNpMKRr2Vto1IfhK3XzNT3fiyFdQ6lFrRIsVaSQZQds/WbjiOQ0k1Kf+Op62Yv1WYTKXH0a6lUFpv8HiOVmpmGasj92FwBqbGkGLQA0qogYBBlx2z9puMIpHiTMmfw7WhNXI7yQ8bYyWAfZNJYKdTMPAhj78f3X6OaAlJLTsArpaAFkNbnikGUHbP1m44jkdJNylzBtyM2cTnKDxlLTRpr7ZqZB2Hs/ViKE/BKKWgBpPW5YhBl52z5puNIpHSTMlfw7YhNXI70Q8ZSX+rmaCq0FGPvx1L7ESGloAWQ1ueKQZQdkmJ1MNVOajcpcwbfUgoYLYE/ZB6MJZoKLckWg0ApBS16UvlcMYiyQ1KsDqbaSfEmZa6bvdQCRkuwxS9OqbD1+5m9BIFSCVoqk8LnikGUjajvMHip3lCoZlK8SZmDFANGkjZbvp/ZehBYmbWDFikGpAyibACXcXEc1rxJWfIGZe8BoxRv9mQ9tnpfltr/YykGpAyibACXcbFfUrpJWfoGZe1fteYkxZs9UX1J8f+x1D4zkgiiVq9ejbfeegsajQbdu3fHqlWr0Lt37xrTb926FfPmzcPFixcRFBSEN998E//4xz/E/YIgYP78+Xjvvfdw8+ZNPPbYY3j33XcRFBRU5VylpaUIDQ3Fzz//jKNHjyI4OFjcd/z4cUydOhUHDx5EixYtMG3aNMycOdOkZa8vLuNiX6R2k5LaDaq+pDQPla1fSyKA/4/rYvUgasuWLYiPj0daWhpCQ0ORkpICtVqNs2fPomXLllXSHzhwANHR0UhKSsLgwYORkZGBqKgoHDlyBF26dAEAJCcnY+XKldi4cSMCAgIwb948qNVqnDp1CgqFwuB8M2fOhK+vL37++WeD7UVFRfj73/+OiIgIpKWl4cSJE5g4cSKaNWuGmJgY812QWkhpLiEyHUe5SZm71s0R56EiIuuyehC1fPlyTJ48GRMmTAAApKWl4bPPPsP69esxe/bsKulXrFiBQYMGYcaMGQCAxYsXY9++fUhNTUVaWhoEQUBKSgoSEhIwbNgwAMD7778Pb29v7NixA6NHjxbP9fnnn2Pv3r3Ytm0bPv/8c4PX2bRpE8rKyrB+/Xq4uLigc+fOOHbsGJYvX261IMrRhoaTfTF3rZsjzkNFRNblVHcS8ykrK8Phw4cREREhbnNyckJERASys7OrPSY7O9sgPQCo1WoxfW5uLjQajUEapVKJ0NBQg3Pm5+dj8uTJ+OCDD+Du7l7t6/Tr18/gV7G+huzPP/9sWIEfkH5oeGX2PjSc7IuXlxdUKlWND1PUENX2Y4OIyJSsGkTduHED5eXl8Pb2Ntju7e0NjUZT7TEajabW9Pq/taURBAHPPfccpkyZgl69etXrdSq/xv1KS0tRVFRk8DAl/dBwfSDFoeFEVfHHBhFZitWb86xh1apVKC4uxpw5c0x63qSkJCxcuNCk57yfvQ8NJ3pQnIeKiCzFqkFU8+bNIZfLkZ+fb7A9Pz8fPj4+1R7j4+NTa3r93/z8fKhUKoM0+pF3X331FbKzs+Hq6mpwnl69euHZZ5/Fxo0ba3ydyq9xvzlz5iA+Pl58XlRUBD8/v2rT1geXcSGqH/7YILIOKY2QtQSrBlEuLi4ICQlBVlYWoqKiAAA6nQ5ZWVmIjY2t9piwsDBkZWUhLi5O3LZv3z6EhYUBAAICAuDj44OsrCwxaCoqKkJOTg5efPFFAMDKlSuxZMkS8firV69CrVZjy5YtCA0NFV/ntddew927d+Hs7Cy+Tvv27fHQQw9VmzdXV9cqgZkpSG0YPJEtsOd5qMhx/PEHcO4cEBQEtG5t7dzUzhFHyFq9OS8+Ph7jx49Hr1690Lt3b6SkpKCkpEQcrTdu3Di0atUKSUlJAIDp06ejf//+WLZsGSIjI7F582YcOnQIa9euBQDIZDLExcVhyZIlCAoKEqc48PX1FQO1Nm3aGOShcePGAIDAwEC0/u//0jFjxmDhwoWYNGkSZs2ahZMnT2LFihV4++23LXFZqrCX/3BERFQ7fW1ORoYbZs5UQqeTwclJQHKyFmPG/CXZH82OOELW6kHUqFGjcP36dSQmJkKj0SA4OBiZmZliJ+7Lly/Dyel//d/Dw8ORkZGBhIQEzJ07F0FBQdixY4c4RxRQMfdTSUkJYmJicPPmTfTt2xeZmZlV5oiqjVKpxN69ezF16lSEhISgefPmSExMtNr0BkRUOynN/k7UUPraHK22CVJS4iAIMgCATifDjBlNceXKeiiVxZKuzXGk6XisHkQBFVV7NTXf7d+/v8q2ESNGYMSIETWeTyaTYdGiRVi0aJFRr+/v7w9BEKps79atG7777jujzkEkRY7UP4HN3mQK1m4+0///rSsQkXJtjn6EbOX82+sIWUkEUURkeo7YP8FeykGWJcXmM1sORBxphCyDKCI75Yj9E4jqS6rNZ7YeiDjKCFkGUUR2zpH6J9gyR2p6lRIpN5/ZeiDiCCNkGUQRWZm5vzyl1CzAQKF6jtj0KjVS+pxU5giBiC1jEEVkRZb48pRKswADhZqx6dX6pPI5sWWOOEKWQRSRFVnqy1MKzQIMFOrGplfrksLnxJY54ghZBlFEEmCJL0+pNAswUKiZVJuUHIm1Pye2XptjTwGSMRhEEUmAI315OlJZ64tNSuSItTm2jEEUkQSY48tTqr9oGSjUjk1K5EgBkq0PNmEQRSQRpv7ylPIvWgYKtbN2k5IjkeqPDUdgD4NNGEQRSYipvzyleuMBGCiQNEj5x4a9s4fBJgyiiIisjLUh1sUAybpsebAJgygiK3KkL09HKmt9sTaEHJktDzZhEEVkRY705elIZW0IRy03kS0PNmEQRWRljvTl6UhlJSLj2epgEwZRREREZHW2ONjEqe4kRERERHQ/BlFERERkcfYw2ITNeURERGRx9jDYhEEUERERWYWUAyRjsDmPiIiIqAEYRBEREf3XH38AX39d8ZeoLgyiiIjIoRUUFCAvLw/Llt1E27YCBg4E2rYVsGzZTeTl5aGgoMDaWSSJYp8oIjP64w/g3DkgKAho3drauSGi+xUUFCA1NRVabROkpMRBEGQAAJ1OhhkzmuLKlfVQKosRGxtr8/13yPRYE0VkYvxVS2Q79CPDalsEt3I6ospYE0VkQvxVS2SbbHkRXLIe1kSRpNlaJ0/+qiWyTfpFcGUyHQDY1CK4ZD2siSLJKSgoQFlZGTIy3DBzphI6nQxOTgKSk7UYM+YvyU++BvBXLZEtstVFcMl6GESRpNhLc5j+V+2uXYMhCE78VUtmxQEMpmOLi+CS9TCIIkkxpjlMqSy2ieYw/qolc7KHGlsiW8cgiiTJXprD+KuWzMFeamyJbB07lpMksZMnUc04gMF0XFxcTJqOHAtrogjA/5oGAODqVSfk5jZCQMA9+PpWBDHWaBpgcxhR7eylxtaavLy8EBsbW2vAyaZRqonVa6JWr14Nf39/KBQKhIaG4qeffqo1/datW9GhQwcoFAp07doVe/bsMdgvCAISExOhUqng5uaGiIgInDt3ziDN0KFD0aZNGygUCqhUKowdOxZXr141SPPFF1+gT58+aNKkCVq0aIFnnnkGFy9eNEmZpUbfNLB27VpMmXIQjz7aAiNGeOHRR1tgypSDWLt2LVJTU60ySaRSWYyAgEs2E0DxVy1ZEmtsTcPLywsqlarGBwMoqolVa6K2bNmC+Ph4pKWlITQ0FCkpKVCr1Th79ixatmxZJf2BAwcQHR2NpKQkDB48GBkZGYiKisKRI0fQpUsXAEBycjJWrlyJjRs3IiAgAPPmzYNarcapU6egUCgAAAMGDMDcuXOhUqlw5coVvPrqqxg+fDgOHDgAAMjNzcWwYcMQHx+PTZs2QavV4uWXX8bTTz+NI0eOWO4CWYj+F5hW20QcTQZUNAvs2jUYgYHnbaYzt7XxVy1ZGmtsiazHqkHU8uXLMXnyZEyYMAEAkJaWhs8++wzr16/H7Nmzq6RfsWIFBg0ahBkzZgAAFi9ejH379iE1NRVpaWkQBAEpKSlISEjAsGHDAADvv/8+vL29sWPHDowePRoA8PLLL4vnbNu2LWbPno2oqCjcvXsXzs7OOHz4MMrLy7FkyRI4OVUEFK+++iqGDRsmprFHdY2II+MwQCJL4wAGIuuwWnNeWVkZDh8+jIiIiP9lxskJERERyM7OrvaY7Oxsg/QAoFarxfS5ubnQaDQGaZRKJUJDQ2s8Z2FhITZt2oTw8HAxOAoJCYGTkxM2bNiA8vJyaLVafPDBB4iIiKg1gCotLUVRUZHBw5bo+1dUZun+FWwOIyIiW2G1mqgbN26gvLwc3t7eBtu9vb1x5syZao/RaDTVptdoNOJ+/baa0ujNmjULqampuH37Nvr06YPdu3eL+wICArB3716MHDkSL7zwAsrLyxEWFlal/9X9kpKSsHDhwlrTSJkUJohkcxgREdkKhx2dN2PGDEyaNAmXLl3CwoULMW7cOOzevRsymQwajQaTJ0/G+PHjER0djeLiYiQmJmL48OHYt28fZDJZteecM2cO4uPjxedFRUXw8/OzVJFMQgr9KxggEdWONbZkKZVHblfH0X/UWi2Iat68OeRyOfLz8w225+fnw8fHp9pjfHx8ak2v/5ufnw+VSmWQJjg4uMrrN2/eHO3atUPHjh3h5+eHH3/8EWFhYVi9ejWUSiWSk5PF9B9++CH8/PyQk5ODPn36VJs/V1dXuLq6GncBJIz9K4ikjTW2VJm5Ah39yG09rbYJCgu94OlZYPAd4ciTulotiHJxcUFISAiysrIQFRUFANDpdMjKykJsbGy1x4SFhSErKwtxcXHitn379iEsLAxARTOcj48PsrKyxKCpqKgIOTk5ePHFF2vMi05X0Q+otLQUAHD79m2xQ7meXC43SEtEZE2O+qVFhswZ6FQOzI4c6VGlq0fPnkerpHM0Vm3Oi4+Px/jx49GrVy/07t0bKSkpKCkpEUfrjRs3Dq1atUJSUhIAYPr06ejfvz+WLVuGyMhIbN68GYcOHcLatWsBADKZDHFxcViyZAmCgoLEKQ58fX3FQC0nJwcHDx5E37598dBDD+HChQuYN28eAgMDxWAsMjISb7/9NhYtWiQ2582dOxdt27ZFjx49LH+hzIxNA0REtskSgU5d0984MqsGUaNGjcL169eRmJgIjUaD4OBgZGZmih3DL1++bFAjFB4ejoyMDCQkJGDu3LkICgrCjh07xDmiAGDmzJkoKSlBTEwMbt68ib59+yIzM1OcI8rd3R3bt2/H/PnzUVJSApVKhUGDBiEhIUFsihs4cCAyMjKQnJyM5ORkuLu7IywsDJmZmXBzc7PgFbIMNg0QEdk2cwY6nP6mZlbvWB4bG1tj893+/furbBsxYgRGjBhR4/lkMhkWLVqERYsWVbu/a9eu+Oqrr+rM1+jRo8V5pRwBAyQiIttlzkCHywvVzOrLvhAREdGDMec8f1xeqGZWr4kiIiKiB2Puef6kMP2NFDGIIiIisgPmDnQ4/U1VDKKIiIjshCkDHY7crhuDKCIiIhtlzkCHI7frJhMEQbB2JuxVUVERlEoltFotmjZtau3sEBGRHeLSLKZn7Pc3a6KIiIhsGAMk6+EUB0REREQNwCCKiIiIqAEYRBERERE1AIMoIiIiogZgEEVERETUAAyiiIiIiBqAQRQRERFRAzCIIiIiImoATrZJRERENkFqs7MziCIiIiLJKygoQGpqap3pYmNjLRZIsTmPiIiIJO/+Giittglyc/2h1TapNZ05sSaKiIiIbMqRIz2wa9dgCIITZDIdhgzZjZ49j1o8H6yJIiIiIpuh1TYRAygAEAQn7No1uEqNlCUwiCIiIiKbUVjoJQZQeoLghMJCT4vnhc15RNRglUfKXL3qhNzcRggIuAdfXx0Ay4+UIbIEqY0QczSengWQyXQGgZRMpoOnZ6HF88IgisjGSOUGXnmkTG39Eyw5UobI3KQ4QszRKJXFGDJkd5V7jlJZbPG8MIgisiH338C12iYoLPSCp2eBwQ3EEjdwfSBXU/+EwMDzUCqLLTpShsjcqhshVt1nkP/vzatnz6MIDDyPwkJPeHoWWiWAAhhEEdmUyjfm2mp/LHkDr61/grVubESWIJURYo7CxcXF4LlSWVztPeb+dObEIIrIBtVV+2NJUuqfQGQpUvoMOgovLy/ExsZKojuDHoMoIhskpdofKfVPILIUKX0GHYnU+pkxiCKyQVKr/ZFK/wQiS5HaZ5Csg/NEEdkgfe2PTFYxlYAUan+UymIEBFxiAEUOQYqfQbI81kQR2SjW/hBZFz+DxCCKyIbVNDrFEowdAWPJkTJE5ibFEWJkPQyiiGyIlAIXKY6UIfsklQlmAf6/J0MyQRAEa2fCXhUVFUGpVEKr1aJp06bWzg7ZCSl9oRCZm5QmmCXHYez3t9U7lq9evRr+/v5QKBQIDQ3FTz/9VGv6rVu3okOHDlAoFOjatSv27NljsF8QBCQmJkKlUsHNzQ0RERE4d+6cQZqhQ4eiTZs2UCgUUKlUGDt2LK5evVrlPEuXLkW7du3g6uqKVq1a4fXXXzdNoYkegJeXF1QqVY0PfpGQPbl/gtmUlDhs3DgeKSlxOHKkR7XpiCzFqkHUli1bEB8fj/nz5+PIkSPo3r071Go1rl27Vm36AwcOIDo6GpMmTcLRo0cRFRWFqKgonDx5UkyTnJyMlStXIi0tDTk5OfDw8IBarcadO3fENAMGDMDHH3+Ms2fPYtu2bbhw4QKGDx9u8FrTp0/H//t//w9Lly7FmTNnsHPnTvTu3ds8F4KIiGpV0+SWWm0TK+eMHJlVm/NCQ0Px6KOPilW1Op0Ofn5+mDZtGmbPnl0l/ahRo1BSUoLdu3eL2/r06YPg4GCkpaVBEAT4+vrilVdewauvvgoA0Gq18Pb2Rnp6OkaPHl1tPnbu3ImoqCiUlpbC2dkZp0+fRrdu3XDy5Em0b9++weVjcx4R0YPJy8vD2rVrkZvrj40bx1fZP358OgICLiEmJgYqlcoKOSR7JPnmvLKyMhw+fBgRERH/y4yTEyIiIpCdnV3tMdnZ2QbpAUCtVovpc3NzodFoDNIolUqEhobWeM7CwkJs2rQJ4eHhcHZ2BgDs2rULDz/8MHbv3o2AgAD4+/vj+eefR2Fh7ZOolZaWoqioyOBBREQPTj+5ZWWc3FJ6CgoKkJeXV+OjoKDA2lk0KauNzrtx4wbKy8vh7e1tsN3b2xtnzpyp9hiNRlNteo1GI+7Xb6spjd6sWbOQmpqK27dvo0+fPga1W7/99hsuXbqErVu34v3330d5eTlefvllDB8+HF999VWNZUpKSsLChQvrKDkREdUXlxeSvvsHAdTEngYBOOwUBzNmzMCkSZNw6dIlLFy4EOPGjcPu3bshk8mg0+lQWlqK999/H+3atQMArFu3DiEhITh79myNTXxz5sxBfHy8+LyoqAh+fn4WKQ8Rkb3j5JbSZmznfnsaBGC1IKp58+aQy+XIz8832J6fnw8fH59qj/Hx8ak1vf5vfn6+Qdt4fn4+goODq7x+8+bN0a5dO3Ts2BF+fn748ccfERYWBpVKhUaNGokBFAB07NgRAHD58uUagyhXV1e4uroaUXoiIsfW0Kk6rDnBLNVPTdNR2BOrBVEuLi4ICQlBVlYWoqKiAFR0LM/KykJsbGy1x4SFhSErKwtxcXHitn379iEsLAwAEBAQAB8fH2RlZYlBU1FREXJycvDiiy/WmBedrqKdvbS0FADw2GOP4d69e7hw4QICAwMBAL/++isAoG3btg0uMxER1a/ZR0oTzJLxjhzpUaXptWfPo9bOlslZtTkvPj4e48ePR69evdC7d2+kpKSgpKQEEyZMAACMGzcOrVq1QlJSEoCKaQf69++PZcuWITIyEps3b8ahQ4ewdu1aAIBMJkNcXByWLFmCoKAgBAQEYN68efD19RUDtZycHBw8eBB9+/bFQw89hAsXLmDevHkIDAwUg7GIiAj07NkTEydOREpKCnQ6HaZOnYonn3zSoHaKiIjq7/4aqJpqLMrKyqBSqThDuI2paTqKwMDzdlcjZdUgatSoUbh+/ToSExOh0WgQHByMzMxMsWP45cuX4eT0vwGE4eHhyMjIQEJCAubOnYugoCDs2LEDXbp0EdPMnDkTJSUliImJwc2bN9G3b19kZmZCoVAAANzd3bF9+3bMnz8fJSUlUKlUGDRoEBISEsSmOCcnJ+zatQvTpk1Dv3794OHhgaeeegrLli2z4NUhIrJ/xtRYMECyLYWFXmIApScITigs9LS7IIrLvpgR54kiIqpKP/eTVtsEKSlxBl+4MpkOcXEpUCqLOfeTjbGn91Xy80QREZFjq63GgmyXfjoK/bxe9jwdhcNOcUBERNaln0Dz/hoLTqBpmyp37q9tOgp7GgTAIIqIiKyCE2jaFy8vL4cbBMAgioiIqmjoPE71xQk07Ys9BUjGYBBFREQGzL18x/3NOTVNoGlPzT5knxhEERGRgfrM49QQjtjsQ/aJQRQREdXIXDNPM0Aie8AgiojshqX68TgKR5p5mqzD1j+zDKKIyC6Yux+PI3KkmafJ8uzhM8vJNonILlTXjyc31x9abZNa01HN9PM4VcZ5nMhUjP0sSvkzy5ooIrI7jrKCvLlxHiei2jGIIouw9XZvsh3sx2NanMeJLKWmUaBSxiCKzM4e2r3JdrAfz4PjPE5kabZae8wgiszOHtq9yXZwPbYHx3mcyBK0Wu1//9Zee6zVaqFSqayZ1RoxiCKLs8UqW7Id7MdjGgyQyNzu3r0LoO7aY306KWIQRRZlq1W2ZFvYj4fIdthy7TGnOCCLqanK9v4h6EQNUV0/noCAS1UCKPbjIZKGRo0q6nH0tceAfjoNw9pjfTopkm7OyO6wwy+ZE/vxENmWZs2aGTyXyQBBqPhbWzopYRBFFmPLVbZSwukiauao5SayZbY8LQmDKLIYdvh9cJwugojsjS23UjCIIrOr3Aeltg6/7KtSN04XQWR9rA02LVtupTBZEHXnzh2kpqbi1VdfNdUpyU6wr4r5cLoIIstibbDp6H8419VKIeUf2PUKoq5fv46cnBy4uLjgb3/7G+RyOe7evYt33nkHSUlJuHfvHoMoqhZvJqbH6SKILI+1waZz/w/sxMTruHixEfz978HX91EAj0r+B7bRQdT333+PwYMHo6ioCDKZDL169cKGDRsQFRWFRo0aYcGCBRg/frw580pE/2XLHTGJiPQqB0gqFRASYsXMNIDR80QlJCTgH//4B44fP474+HgcPHgQ//znP/Hvf/8bp06dwpQpU+Dm5mbOvBLRf9XWEZOILEerbYLcXH/Od+egjK6JOnHiBN555x106tQJixYtwvLly5GcnIxhw4aZM39EVA1b7ohJZC/YpE5G10T9+eefaN68OQDAzc0N7u7u6NKli9kyRkQ103fElMkqZvjldBFElsUVGAioZ8fyU6dOQaPRAAAEQcDZs2dRUlJikKZbt26myx0RGeB0EdbFoe2k1WoB1D23kVarhUqlskYWyYLqFUT97W9/gyAI4vPBgwcb7JfJZCgvLzdNzoioCk4XYT0c2k4AcPfuXQB1N6nr05F9MzqIys3NrTNNcTGbEojMjV/Q1sGh7QRUXTS3prmNpLxoLpmO0e9y27Ztq91eXFyMjz76COvWrcOhQ4dYE0VEDoETnTqmyovh9ux5FC1banD5chu0aXMZrVvnVZuO7FeDQ+Vvv/0W69atw7Zt2+Dr64unn37aqKpusg/sG0KOjKOyCOD/A6pnEKXRaJCeno5169ahqKgII0eORGlpKXbs2IFOnTqZK48kMewbQo6ME50SwP8HVMHoKQ6GDBmC9u3b4/jx40hJScHVq1exatUqk2Ri9erV8Pf3h0KhQGhoKH766ada02/duhUdOnSAQqFA165dsWfPHoP9giAgMTERKpUKbm5uiIiIwLlz5wzSDB06FG3atIFCoYBKpcLYsWNx9erVal/v/PnzaNKkCatn/4t9Q8iRcaJTAvj/gCoYHUR9/vnnmDRpEhYuXIjIyEjI5XKTZGDLli2Ij4/H/PnzceTIEXTv3h1qtRrXrl2rNv2BAwcQHR2NSZMm4ejRo4iKikJUVBROnjwppklOTsbKlSuRlpaGnJwceHh4QK1W486dO2KaAQMG4OOPP8bZs2exbds2XLhwAcOHD6/yenfv3kV0dDQef/xxk5SXiGybflRWZZzo1PHw/wEB9Qiivv/+exQXFyMkJAShoaFITU3FjRs3HjgDy5cvx+TJkzFhwgR06tQJaWlpcHd3x/r166tNv2LFCgwaNAgzZsxAx44dsXjxYvTs2VNsXhIEASkpKUhISMCwYcPQrVs3vP/++7h69Sp27Nghnufll19Gnz590LZtW4SHh2P27Nn48ccfqwxLTUhIQIcOHTBy5MgHLqu94rIH5Eg40alj08/BVtf/A87V5hiM7hPVp08f9OnTBykpKdiyZQvWr1+P+Ph46HQ67Nu3D35+fmjSpH5fomVlZTh8+DDmzJkjbnNyckJERASys7OrPSY7Oxvx8fEG29RqtRgg5ebmQqPRICIiQtyvVCoRGhqK7OxsjB49uso5CwsLsWnTJoSHh8PZ2Vnc/tVXX2Hr1q04duwYtm/fXmd5SktLUVpaKj4vKiqq8xhbx46V5Cg40SkBVedqS0y8josXG8Hf/x58fR8F8CgH1jiQeo/O8/DwwMSJEzFx4kScPXsW69atwxtvvIHZs2fjySefxM6dO40+140bN1BeXg5vb2+D7d7e3jhz5ky1x2g0mmrT62dS1/+tLY3erFmzkJqaitu3b6NPnz7YvXu3uK+goADPPfccPvzwQzRt2tSo8iQlJWHhwoVGpbUH7FhJjoQTnZJe5fdYpQJCQqyYGbIqo5vzqtO+fXskJyfjjz/+wEcffWSqPFnMjBkzcPToUezduxdyuRzjxo0TZ2SfPHkyxowZg379+hl9vjlz5kCr1YqP33//3VxZlwR2rCRH4+XlBZVKVeODARSRYzHJlKpyuVzs4F0fzZs3h1wuR35+vsH2/Px8+Pj4VHuMj49Pren1f/Pz8w3WLcrPz0dwcHCV12/evDnatWuHjh07ws/PDz/++CPCwsLw1VdfYefOnVi6dCmAir5WOp0OjRo1wtq1azFx4sQqeXN1dYWrq2u9roEtq2vZAyIiInv2QDVRD8rFxQUhISHIysoSt+l0OmRlZSEsLKzaY8LCwgzSA8C+ffvE9AEBAfDx8TFIU1RUhJycnBrPqX9dAGKfpuzsbBw7dkx8LFq0CE2aNMGxY8fwz3/+s2EFthPsWElERGSimqgHER8fj/Hjx6NXr17o3bs3UlJSUFJSggkTJgAAxo0bh1atWiEpKQkAMH36dPTv3x/Lli1DZGQkNm/ejEOHDmHt2rUAKhZBjouLw5IlSxAUFISAgADMmzcPvr6+Yk1ZTk4ODh48iL59++Khhx7ChQsXMG/ePAQGBoqBVseOHQ3yeejQITg5OaFLly4WujLSxY6VREREEgiiRo0ahevXryMxMREajQbBwcHIzMwUO4ZfvnwZTk7/qzALDw9HRkYGEhISMHfuXAQFBWHHjh0Gwc3MmTNRUlKCmJgY3Lx5E3379kVmZiYUCgUAwN3dHdu3b8f8+fNRUlIClUqFQYMGISEhwaGa4x4EO1YSEZGjkwn6ntRkckVFRVAqldBqtUaP8CMiIiLrMvb72+o1UUT2hoszExE5BgZRRCbExZmJiByHVUfnEdkbLs5MROQ4GEQRERERNQCDKCIz4uLMRET2i32iiMyEizMTEdk31kQRmUFNizOzRoqIyH4wiCIyAy7OTERk/xhEEZmBfnHmyrg4MxGRfWEQRWRCXJyZiMhxcNkXM+KyL46p8ozlV686VVqcuSKg4ozlRETSxmVfiKyEizMTWReXXiJLYRBFRER2g0svkSWxTxQREdkNLr1ElsSaKKI6sGmAiIiqwyCKqBZsGiAiopowiCKqBZsGiMzDUjW8Wm0TFBZ6wdOzQJxihMhUGEQREZFFWaqGl+tXkrmxYzkREVmUJWp4uX4lWQKDKKJ60GqbIDfXnzdiIonj+pVkCWzOIzISmwaIpE+/pJJ+/crKgVTl9Su59BKZAoMoIiPU1DQQGHienVWJHpApO397eXkhNjYWZWVlaNWqCLNmKVFeLoNcLuDNN4swZkw0pyUhk2EQRWSE2poGGEQRNZw5anj1AdIrrwCjRgHnzwOPPCJD69bNADR74DwT6TGIIqoFmwaIzMcSNbytW1c8iMyBQRRRLdg0QGQ+rOElW8cgyk5xqRLTYdMAkWmxhpfshUwQBMHambBXRUVFUCqV0Gq1aNq0qcVel0uVEJHU6X/oZWS43VfDq8WYMX9Z9Icef3TS/Yz9/mZNlB2yxER2vOkQ0YOQSg0vf3TSg2AQRfXGmw4RmZI1O39zfUx6EJyxnOqNNx0iIiIGUQ6BS5UQERGZHpvz7ByXKiEiMp4pZ08n+yeJmqjVq1fD398fCoUCoaGh+Omnn2pNv3XrVnTo0AEKhQJdu3bFnj17DPYLgoDExESoVCq4ubkhIiIC586dM0gzdOhQtGnTBgqFAiqVCmPHjsXVq1fF/fv378ewYcOgUqng4eGB4OBgbNq0yXSFtgBLrWLOmi4isgdHjvRASkocNm4cj5SUOBw50sPaWSKJs3oQtWXLFsTHx2P+/Pk4cuQIunfvDrVajWvXrlWb/sCBA4iOjsakSZNw9OhRREVFISoqCidPnhTTJCcnY+XKlUhLS0NOTg48PDygVqtx584dMc2AAQPw8ccf4+zZs9i2bRsuXLiA4cOHG7xOt27dsG3bNhw/fhwTJkzAuHHjsHv3bvNdDBOzxCrmvOkQkT2w1I9Osi9WD6KWL1+OyZMnY8KECejUqRPS0tLg7u6O9evXV5t+xYoVGDRoEGbMmIGOHTti8eLF6NmzpzhaTBAEpKSkICEhAcOGDUO3bt3w/vvv4+rVq9ixY4d4npdffhl9+vRB27ZtER4ejtmzZ+PHH3/E3bt3AQBz587F4sWLER4ejsDAQEyfPh2DBg3C9u3bzX5NHtT9E9lVZsqJ7HjTISJ7YYkfnWR/rNonqqysDIcPH8acOXPEbU5OToiIiEB2dna1x2RnZyM+Pt5gm1qtFgOk3NxcaDQaREREiPuVSiVCQ0ORnZ2N0aNHVzlnYWEhNm3ahPDwcDg7O9eYX61Wi44dO9a4v7S0FKWlpeLzoqKiGtOak6WWKuGSDdLH+byIasfZ0+lBWDWIunHjBsrLy+Ht7W2w3dvbG2fOnKn2GI1GU216jUYj7tdvqymN3qxZs5Camorbt2+jT58+tTbVffzxxzh48CDWrFlTY5qkpCQsXLiwxv2WZM6J7HjTsQ2cz4uoblwfkx6EQ4/OmzFjBiZNmoRLly5h4cKFYp8nmUxmkO7rr7/GhAkT8N5776Fz5841nm/OnDkGtWRFRUXw8/MzW/6NZeqJ7Mx902HtiWlwPi8i40hl9nSyPVYNopo3bw65XI78/HyD7fn5+fDx8an2GB8fn1rT6//m5+dDpVIZpAkODq7y+s2bN0e7du3QsWNH+Pn54ccff0RYWJiY5ptvvsGQIUPw9ttvY9y4cbWWx9XVFa6urrUX2k6Y66bD2hMisiZrzp5OtseqHctdXFwQEhKCrKwscZtOp0NWVpZBIFNZWFiYQXoA2Ldvn5g+ICAAPj4+BmmKioqQk5NT4zn1rwvAoE/T/v37ERkZiTfffBMxMTH1L6CDaN0aeOIJ09x4WHtiPpyKgojItKzenBcfH4/x48ejV69e6N27N1JSUlBSUoIJEyYAAMaNG4dWrVohKSkJADB9+nT0798fy5YtQ2RkJDZv3oxDhw5h7dq1AACZTIa4uDgsWbIEQUFBCAgIwLx58+Dr64uoqCgAQE5ODg4ePIi+ffvioYcewoULFzBv3jwEBgaKgdbXX3+NwYMHY/r06XjmmWfE/lQuLi7w9ORoDbItnHSViMj0rB5EjRo1CtevX0diYiI0Gg2Cg4ORmZkpdgy/fPkynJz+V2EWHh6OjIwMJCQkYO7cuQgKCsKOHTvQpUsXMc3MmTNRUlKCmJgY3Lx5E3379kVmZiYUCgUAwN3dHdu3b8f8+fNRUlIClUqFQYMGISEhQWyO27hxI27fvo2kpCQxgAOA/v37Y//+/Ra4MkSmUdNUFIGB5zmKkojoAcgEQRCsnQl7VVRUBKVSCa1Wi6ZNm1o7OzYhLy9PrFUEal6CISYmxqDPmy0zV0d6/bXMzfXHxo3jq+wfPz4dAQGX7OpaEhGZgrHf31aviSKqiSM0QVmiI31dU1EQEVHDWH3GcqLqOMps6ObsSK+fp0upLMaQIbvF2ev1Aam+Zo/zeRERNQxrokiSOBv6g6s8nxcAJCZex8WLjeDvfw++vo8CeJRzbhERPQAGUWQRxvb7cfTZ0GvqA9ZQlQMklQoICXngUxIR0X8xiCKzq2+/H0ddgsER+oAREdkTBlFkdvXt9+OISzBwGgIi0+HSUWQpDKJI0hxlCQb2ASMyDS4dRZbE0XlkcVx+pCp9H7DKOA0BUf1x6SiyJNZEkUWx34+h+6chuP/acBoCIiLpYhBFFsN+P1VxGgIiItvFIIoshv1+qsdpCIiIbBP7RJHFsN8PEVka+2CSObEmisyO/X5Ij0PPyZLYB5PMjUEUmR37/RDAoedkWeyDSZbAIIosgv1+iEPPyRL0Ndp19cFkzTeZAoMoIiKyG/qa74sX7+GDDwTodDJxn1wuYNq0p+Dv34i1nWQS7FhORFbBDr9kLl5eXggJ8cbatTLI5RXb5HJgzRoZQkK8GUCRybAmiogsjh1+yRImTQLUav36m46xhBRZFoMoIrIodvglS3KU9TfJOticR0QWVVuHXyIiW8IgiogsipOuEpG9YBBFRBZx/6Sr+kCKk64Ska2SCYIgWDsT9qqoqAhKpRJarRZNmza1dnaIrK7yjOVXrzpVmnS1IqDipKtEJAXGfn+zYzkRWQwnXSUie8LmPCIiIqIGYBBFRERE1AAMooiIiIgagEEUERERUQMwiCIiIiJqAAZRRERERA3AIIqIiIioARhEERERETUAgygiIiKiBpBEELV69Wr4+/tDoVAgNDQUP/30U63pt27dig4dOkChUKBr167Ys2ePwX5BEJCYmAiVSgU3NzdERETg3LlzBmmGDh2KNm3aQKFQQKVSYezYsbh69apBmuPHj+Pxxx+HQqGAn58fkpOTTVNgO1BQUIC8vLwaHwUFBdbOIhERkVlZfdmXLVu2ID4+HmlpaQgNDUVKSgrUajXOnj2Lli1bVkl/4MABREdHIykpCYMHD0ZGRgaioqJw5MgRdOnSBQCQnJyMlStXYuPGjQgICMC8efOgVqtx6tQpKBQKAMCAAQMwd+5cqFQqXLlyBa+++iqGDx+OAwcOAKhYN+fvf/87IiIikJaWhhMnTmDixIlo1qwZYmJiLHeBJKigoACpqanic622CQoLveDpWSAuIgsAsbGxXAeNiIjsltUXIA4NDcWjjz4qfinrdDr4+flh2rRpmD17dpX0o0aNQklJCXbv3i1u69OnD4KDg5GWlgZBEODr64tXXnkFr776KgBAq9XC29sb6enpGD16dLX52LlzJ6KiolBaWgpnZ2e8++67eO2116DRaMRV5WfPno0dO3bgzJkzRpXNXhcgzsvLw9q1awEAR470wK5dgyEITpDJdBgyZDd69jwKAIiJiYFKpbJmVomIiOrN2O9vqzbnlZWV4fDhw4iIiBC3OTk5ISIiAtnZ2dUek52dbZAeANRqtZg+NzcXGo3GII1SqURoaGiN5ywsLMSmTZsQHh4OZ2dn8XX69esnBlD61zl79iz+/PPPas9TWlqKoqIig4c902qbiAEUAAiCE3btGgyttomVc0ZERGR+Vg2ibty4gfLycnh7exts9/b2hkajqfYYjUZTa3r9X2POOWvWLHh4eMDLywuXL1/Gp59+WufrVH6N+yUlJUGpVIoPPz+/atPZi8JCLzGA0hMEJxQWelopR0RERJYjiY7l1jJjxgwcPXoUe/fuhVwux7hx4/AgrZtz5syBVqsVH7///rsJcys9np4FkMl0BttkMh08PQutlCMiIiLLsWrH8ubNm0MulyM/P99ge35+Pnx8fKo9xsfHp9b0+r/5+fkG/XHy8/MRHBxc5fWbN2+Odu3aoWPHjvDz88OPP/6IsLCwGl+n8mvcz9XVFa6urnWU2n4olcUYMmR3lT5RlTuXk+kVFBSgrKysxv0uLi7s0E9EZAFWDaJcXFwQEhKCrKwsREVFAajoWJ6VlYXY2NhqjwkLC0NWVhbi4uLEbfv27UNYWBgAICAgAD4+PsjKyhKDpqKiIuTk5ODFF1+sMS86XUWNSmlpqfg6r732Gu7evSv2k9q3bx/at2+Phx566EGKbVd69jyKwMDzKCz0hKdnIQMoM7t/ZGRNODKSiMj8rN6cFx8fj/feew8bN27E6dOn8eKLL6KkpAQTJkwAAIwbNw5z5swR00+fPh2ZmZlYtmwZzpw5gwULFuDQoUNi0CWTyRAXF4clS5Zg586dOHHiBMaNGwdfX18xUMvJyUFqaiqOHTuGS5cu4auvvkJ0dDQCAwPFYGzMmDFwcXHBpEmT8Msvv2DLli1YsWIF4uPjLXuBbIBSWYyAgEsMoCzg/hoorbYJcnP9q3Tmr62mioiITMPq80SNGjUK169fR2JiIjQaDYKDg5GZmSl24r58+TKcnP4X64WHhyMjIwMJCQmYO3cugoKCsGPHDnGOKACYOXMmSkpKEBMTg5s3b6Jv377IzMwU54hyd3fH9u3bMX/+fJSUlEClUmHQoEFISEgQm+OUSiX27t2LqVOnIiQkBM2bN0diYqLDzxEFwGDEoinSUcPUNr0EERGZn9XnibJn9jpPFMB+Odain6NLq22ClJQ4g9GRMpkOcXEpUCqLOUcXEdEDMPb72+o1UWSbGCBZV23TS7BZlYjIMqzeJ4qI6o/TSxARWR+DKCIbpJ9eQh9IcXoJIiLLY3MekY3i9BJERNbFIIrIhtw/4lGpLK42eOLISCIi82MQRWRDvLy8EBsby5GRREQSwCCKyMYwQCIikgZ2LCciIiJqAAZRRERERA3A5jwikizOjE9EUsYgiogkqaCgAKmpqXWmi42NZSBFRFbB5jwikqT7a6C02ibIzfWHVtuk1nRERJbCmigikrwjR3pg167BEAQncXb2nj2PWjtbROTgWBNFRJKm1TYRAyigYqHlXbsGV6mRIiKyNAZRRCRphYVeYgClJwhOKCz0tFKOiIgqsDmPiCTN07MAMpnOIJCSyXTw9Cy0Yq7sH0dGEtWNQRQRSZpSWYwhQ3ZX6RPFBZfNhyMjiYzDIIqIJK9nz6MIDDyPwkJPeHoWMoAys+pGRhYWesHTs8Dg2nNkJDk6BlFEJEkuLi4Gz5XK4mqDp/vTkWlxZCRRzRhEEZEkeXl5ITY2lv1yrKimkZGBgedZG0gEBlFEJGGVA6Q//gDOnQOCgoDWra2YKQdS28hIBlFEnOKAiCSsoKAAeXl5WLbsJtq2FTBwINC2rYBly24iLy8PBQUF1s6iXdOPjKyMIyOJ/oc1UUQkSfoRYlptE6SkxEEQZAAAnU6GGTOa4sqV9VAqizlCzIw4MpKodgyiiEiS9H2h6mpS4ggx8+LISKKaMYgiIknjZJuWx5GRRMZhEEVEksYmJcvjyEgi4zCIIiLJY5OS5TFAIqobgygisgk1NSkREVkLgygiIiIJEQQB9+7dQ3l5ubWzYrfkcjkaNWoEmUz2QOdhEEUWx0kTiYiqV1ZWhry8PNy+fdvaWbF77u7uUKlUDzRAgkEUWdS6dUBMDKDTAU5OwNq1wKRJ1s4VSZGxNzaOECN7odPpkJubC7lcDl9fX7i4uDxwTQlVJQgCysrKcP36deTm5iIoKAhOTg2be1wmCIJg4vzRfxUVFUGpVEKr1aJp06bWzo7V/fEH0LZtRQClJ5cDFy+yRoqqV1BQwBFi5DDu3LmD3NxctG3bFu7u7tbOjt27ffs2Ll26hICAACgUCoN9xn5/syaKLObcOcMACgDKy4Hz560XRLFpUdoYIJEjamitCNWPKa6z1d+p1atXw9/fHwqFAqGhofjpp59qTb9161Z06NABCoUCXbt2xZ49ewz2C4KAxMREqFQquLm5ISIiAufOnRP3X7x4EZMmTUJAQADc3NwQGBiI+fPnV/m1+8UXX6BPnz5o0qQJWrRogWeeeQYXL140WbkdUVBQRRNeZXI58Mgj1snPunUVNWMV67FVPCciIjKWVYOoLVu2ID4+HvPnz8eRI0fQvXt3qNVqXLt2rdr0Bw4cQHR0NCZNmoSjR48iKioKUVFROHnypJgmOTkZK1euRFpaGnJycuDh4QG1Wo07d+4AAM6cOQOdToc1a9bgl19+wdtvv420tDTMnTtXPEdubi6GDRuGgQMH4tixY/jiiy9w48YNPP300+a9IHaudeuKPlByecVzuRxYs8Y6NUB//PG/vllAxd8XXqjYTkREZBTBinr37i1MnTpVfF5eXi74+voKSUlJ1aYfOXKkEBkZabAtNDRUeOGFFwRBEASdTif4+PgIb731lrj/5s2bgqurq/DRRx/VmI/k5GQhICBAfL5161ahUaNGQnl5ubht586dgkwmE8rKyowun1arFQAIWq3W6GMcwe+/C8LXX1f8tZavvhIEoOrj66+tlycicmx//fWXcOrUKeGvv/6ydlbqbfz48QIAAYDQqFEjoWXLlkJERISwbt06g+/SumzYsEFQKpXmy2gltV1vY7+/rVYTVVZWhsOHDyMiIkLc5uTkhIiICGRnZ1d7THZ2tkF6AFCr1WL63NxcaDQagzRKpRKhoaE1nhMAtFotPD09xechISFwcnLChg0bUF5eDq1Wiw8++AARERFwdnau8TylpaUoKioyeFBVrVsDTzxh3T5IUmtaJCJ6UAUFBcjLy6vxUVBQYNbXHzRoEPLy8nDx4kV8/vnnGDBgAKZPn47Bgwfj3r17Zn1ta7Fax/IbN26gvLwc3t7eBtu9vb1x5syZao/RaDTVptdoNOJ+/baa0tzv/PnzWLVqFZYuXSpuCwgIwN69ezFy5Ei88MILKC8vR1hYWJX+V/dLSkrCwoULa01jC8zR2Vpqo6z0TYsvvFDRud2aTYtERA+qoKAAqampdaaLjY01273W1dUVPj4+AIBWrVqhZ8+e6NOnD/72t78hPT0dzz//PJYvX44NGzbgt99+g6enJ4YMGYLk5GQ0btwY+/fvx4QJEwBAnNph/vz5WLBgAT744AOsWLECZ8+ehYeHBwYOHIiUlBS0bNnSLGUxlkOPzrty5QoGDRqEESNGYPLkyeJ2jUaDyZMnY/z48YiOjkZxcTESExMxfPhw7Nu3r8Z5O+bMmYP4+HjxeVFREfz8/MxeDlMyxzxOUvhwV2fSJECtrhgd+MgjDKCIyHbV9iO1IelMZeDAgejevTu2b9+O559/Hk5OTli5ciUCAgLw22+/4f/+7/8wc+ZMvPPOOwgPD0dKSgoSExNx9uxZAEDjxo0BAHfv3sXixYvRvn17XLt2DfHx8XjuuefqrNwwN6sFUc2bN4dcLkd+fr7B9vz8fDGSvZ+Pj0+t6fV/8/PzoVKpDNIEBwcbHHf16lUMGDAA4eHhWLt2rcG+1atXQ6lUIjk5Wdz24Ycfws/PDzk5OejTp0+1+XN1dYWrq2stpZa2mjpbq9UPFmBI7cNduVZMLgfat6/YnpdX8ZdzDxERmU6HDh1w/PhxAEBcXJy43d/fH0uWLMGUKVPwzjvvwMXFBUqlEjKZrEocMHHiRPHfDz/8MFauXIlHH30Ut27dEgMta7BaEOXi4oKQkBBkZWUhKioKQMVsrVlZWYiNja32mLCwMGRlZRm8Cfv27UNYWBiAimY4Hx8fZGVliUFTUVERcnJy8OKLL4rHXLlyBQMGDEBISAg2bNhQZa6I27dvV9km/++QMt39Ex3ZESnO42RqUq0VIyKyV4IgiC04X375JZKSknDmzBkUFRXh3r17uHPnDm7fvl3rBKOHDx/GggUL8PPPP+PPP/8Uv4svX76MTp06WaQc1bHqFAfx8fF47733sHHjRpw+fRovvvgiSkpKxDbRcePGYc6cOWL66dOnIzMzE8uWLcOZM2ewYMECHDp0SAy6ZDIZ4uLisGTJEuzcuRMnTpzAuHHj4OvrKwZqV65cwRNPPIE2bdpg6dKluH79OjQajUGfqcjISBw8eBCLFi3CuXPncOTIEUyYMAFt27ZFjx49LHeBLMwROltLrVaMiMjenT59GgEBAbh48SIGDx6Mbt26Ydu2bTh8+DBWr14NoPZ7bklJCdRqNZo2bYpNmzbh4MGD+OSTT+o8zhKs2idq1KhRuH79OhITE6HRaBAcHIzMzEyxY/jly5cNaoTCw8ORkZGBhIQEzJ07F0FBQdixYwe6dOkippk5cyZKSkoQExODmzdvom/fvsjMzBSndN+3bx/Onz+P8+fPo/V91SvCf1fAGThwIDIyMpCcnIzk5GS4u7sjLCwMmZmZcHNzM/dlsRp2tiYiIlP66quvcOLECbz88ss4fPgwdDodli1bJn63f/zxxwbpXVxcUF5ebrDtzJkzKCgowBtvvCH2Mz506JBlClAHq3csj42NrbH5bv/+/VW2jRgxAiNGjKjxfDKZDIsWLcKiRYuq3f/cc8/hueeeqzNfo0ePxujRo+tMZ2/Y2ZqIiBqitLQUGo0G5eXlyM/PR2ZmJpKSkjB48GCMGzcOJ0+exN27d7Fq1SoMGTIEP/zwA9LS0gzO4e/vj1u3biErKwvdu3eHu7s72rRpAxcXF6xatQpTpkzByZMnsXjxYiuV0pDVl30h6ZHCPE5ERGRbMjMzoVKp4O/vj0GDBuHrr7/GypUr8emnn0Iul6N79+5Yvnw53nzzTXTp0gWbNm1CUlKSwTnCw8MxZcoUjBo1Ci1atEBycjJatGiB9PR0bN26FZ06dcIbb7xhMC2RNVm9JoqIiIgejIuLi0nT1Vd6ejrS09PrTPfyyy/j5ZdfNtg2duxYg+fvvvsu3n33XYNt0dHRiI6ONtim74JjTQyiyOys/eEmIrJ3Xl5eiI2NldSkxo6AQRSZHT/cRETmx3uo5TGIIouQyoebtWJERGQqDKIIgPTWtjMX1ooREZGpMIgih5vF2x7KQERE1scpDoizeBMRETUAgygiIiKiBmAQRUTUAH/8AXz9dcVfIqkoKwOKiir+kvkxiCIiqqd164C2bYGBAyv+rltn7RwRAdevA8ePA7/+WvH3+nVr58j+MYgiIqqHP/4AYmIAna7iuU5XsWg3a6TImsrKgEuXDLddumQ/NVL79++HTCbDzZs3jT7G398fKSkpZssTwCCKiKhezp37XwClV15esWg3kTXcu3cPt27dq3ZfSck93LtX/T5Teu655yCTyTBlypQq+6ZOnQqZTIbnnnvO7PmwNAZRRET1EBQEON1355TLgUcesU5+yLHdu3cP165dQ0nJDQD3ryUn4NatG7h27ZpFAik/Pz9s3rwZf/31l7jtzp07yMjIQJs2bcz++tbAIIo4izdRPbRuDaxdWxE4ARV/16yp2E5kabr/VovK5To0a6bF/wIpAc2aaSGX6wzSmVPPnj3h5+eH7du3i9u2b9+ONm3aoEePHuK20tJSvPTSS2jZsiUUCgX69u2LgwcPGpxrz549aNeuHdzc3DBgwABcvHixyut9//33ePzxx+Hm5gY/Pz+89NJLKCkpMVv5qsPJNomzeBPV06RJgFpd0YT3yCMMoEga3N1vw9X1Du7da4Tr13U4etQJAQFO8PU1fwClN3HiRGzYsAHPPvssAGD9+vWYMGEC9u/fL6aZOXMmtm3bho0bN6Jt27ZITk6GWq3G+fPn4enpid9//x1PP/00pk6dipiYGBw6dAivvPKKwetcuHABgwYNwpIlS7B+/Xpcv34dsbGxiI2NxYYNGyxWXgZRBICzeBMZo/LySHI50L59xfa8vIq//LFB1iaX6/Dxx40wc6YSOp0MTk4CkpO1mDbNMq//r3/9C3PmzMGl//Zy/+GHH7B582YxiCopKcG7776L9PR0PPXUUwCA9957D/v27cO6deswY8YMvPvuuwgMDMSyZcsAAO3bt8eJEyfw5ptviq+TlJSEZ599FnFxcQCAoKAgrFy5Ev3798e7774LhUJhkfIyiCIiMoKjLY9EtunqVScxgAIAnU6GWbOU+Oc/7+Lhh83/+i1atEBkZCTS09MhCAIiIyPRvHlzcf+FCxdw9+5dPPbYY+I2Z2dn9O7dG6dPnwYAnD59GqGhoQbnDQsLM3j+888/4/jx49i0aZO4TRAE6HQ65ObmomPHjuYoXhUMooiIjMDlkcgW5OY2EgMovfJyGS5ckFkkiAIqmvRiY2MBAKtXrzbLa9y6dQsvvPACXnrppSr7LNmJnUEUERGRnQgIuAcnJ8EgkJLLBQQG3j9yz3wGDRqEsrIyyGQyqNVqg32BgYFwcXHBDz/8gLZt2wIA7t69i4MHD4pNcx07dsTOnTsNjvvxxx8Nnvfs2ROnTp3CI1YeFsvReURERHbC11eH5GQt5PKKoEkuF/Dmm1qLDn6Qy+U4ffo0Tp06Bbl+GOt/eXh44MUXX8SMGTOQmZmJU6dOYfLkybh9+zYmTZoEAJgyZQrOnTuHGTNm4OzZs8jIyEB6errBeWbNmoUDBw4gNjYWx44dw7lz5/Dpp5+KNWCWwpooIiIiG+V0/6RlAKKjb6N//zu4eLER/P3vwddXByenxhbNV9OmTWvc98Ybb0Cn02Hs2LEoLi5Gr1698MUXX+Chhx4CUNEct23bNrz88stYtWoVevfujX//+9+YOHGieI5u3brhm2++wWuvvYbHH38cgiAgMDAQo0aNMnvZKpMJgmC5Oj4HU1RUBKVSCa1WW+t/KCKSvry8PKxdu7bOdDExMVCpVBbIEdmbO3fuIDc3FwEBAfUaXXbv3r1a54FycnJCo0asM7lfbdfb2O9vXlUiIiIbxgDJetgnioiIiKgBGEQRERmByyMR0f1YB0hEZAQuj0RE92MQRURkJAZIRFQZm/OIiIgkhIPmLcMU15lBFBERkQQ4OzsDAG7fvm3lnDgG/XXWX/eGYHMeERGRBMjlcjRr1gzXrl0DALi7u0Mmk9VxFNWXIAi4ffs2rl27hmbNmlWZVb0+GEQRERFJhI+PDwCIgRSZT7NmzcTr3VAMooiIiCRCJpNBpVKhZcuWuHv3rrWzY7ecnZ0fqAZKz+p9olavXg1/f38oFAqEhobip59+qjX91q1b0aFDBygUCnTt2hV79uwx2C8IAhITE6FSqeDm5oaIiAicO3dO3H/x4kVMmjQJAQEBcHNzQ2BgIObPn19l2LIgCFi6dCnatWsHV1dXtGrVCq+//rrpCk5ERFQDuVwOhULBh5kepgigACsHUVu2bEF8fDzmz5+PI0eOoHv37lCr1TVWYx44cADR0dGYNGkSjh49iqioKERFReHkyZNimuTkZKxcuRJpaWnIycmBh4cH1Go17ty5AwA4c+YMdDod1qxZg19++QVvv/020tLSMHfuXIPXmj59Ov7f//t/WLp0Kc6cOYOdO3eid+/e5rsYREREZFOsugBxaGgoHn30UaSmpgIAdDod/Pz8MG3aNMyePbtK+lGjRqGkpAS7d+8Wt/Xp0wfBwcFIS0uDIAjw9fXFK6+8gldffRUAoNVq4e3tjfT0dIwePbrafLz11lt499138dtvvwEATp8+jW7duuHkyZNo3759g8vHBYiJiIhsj7Hf31ariSorK8Phw4cRERHxv8w4OSEiIgLZ2dnVHpOdnW2QHgDUarWYPjc3FxqNxiCNUqlEaGhojecEKgItT09P8fmuXbvw8MMPY/fu3QgICIC/vz+ef/55FBYW1lqm0tJSFBUVGTyIiIjIPlmtY/mNGzdQXl4Ob29vg+3e3t44c+ZMtcdoNJpq02s0GnG/fltNae53/vx5rFq1CkuXLhW3/fbbb7h06RK2bt2K999/H+Xl5Xj55ZcxfPhwfPXVVzWWKSkpCQsXLqyyncEUERGR7dB/b9fVWOfQo/OuXLmCQYMGYcSIEZg8ebK4XafTobS0FO+//z7atWsHAFi3bh1CQkJw9uzZGpv45syZg/j4eIPzd+rUCX5+fuYtCBEREZlccXExlEpljfutFkQ1b94ccrkc+fn5Btvz8/NrnLfBx8en1vT6v/n5+VCpVAZpgoODDY67evUqBgwYgPDwcKxdu9Zgn0qlQqNGjcQACgA6duwIALh8+XKNQZSrqytcXV3F540bN8bvv/+OJk2amHTCtKKiIvj5+eH333+3y75W9l4+wP7LaO/lA+y/jCyf7bP3MpqzfIIgoLi4GL6+vrWms1oQ5eLigpCQEGRlZSEqKgpARQ1QVlYWYmNjqz0mLCwMWVlZiIuLE7ft27cPYWFhAICAgAD4+PggKytLDJqKioqQk5ODF198UTzmypUrGDBgAEJCQrBhwwY4ORl2DXvsscdw7949XLhwAYGBgQCAX3/9FQDQtm1bo8vo5OSE1q1bG52+vpo2bWqXHww9ey8fYP9ltPfyAfZfRpbP9tl7Gc1VvtpqoPSs2pwXHx+P8ePHo1evXujduzdSUlJQUlKCCRMmAADGjRuHVq1aISkpCUDFtAP9+/fHsmXLEBkZic2bN+PQoUNiTZJMJkNcXByWLFmCoKAgBAQEYN68efD19RUDtStXruCJJ55A27ZtsXTpUly/fl3Mj74mKyIiAj179sTEiRORkpICnU6HqVOn4sknnzSonSIiIiLHZdUgatSoUbh+/ToSExOh0WgQHByMzMxMsWP45cuXDWqJwsPDkZGRgYSEBMydOxdBQUHYsWMHunTpIqaZOXMmSkpKEBMTg5s3b6Jv377IzMyEQqEAUFFzdf78eZw/f75KLZG+A5mTkxN27dqFadOmoV+/fvDw8MBTTz2FZcuWmfuSEBERka0QyObcuXNHmD9/vnDnzh1rZ8Us7L18gmD/ZbT38gmC/ZeR5bN99l5GKZTPqpNtEhEREdkqq6+dR0RERGSLGEQRERERNQCDKCIiIqIGYBBFRERE1AAMoiRi9erV8Pf3h0KhQGhoKH766ada06ekpKB9+/Zwc3ODn58fXn75Zdy5c+eBzmlOpi7fggULIJPJDB4dOnQwdzFqVJ/y3b17F4sWLUJgYCAUCgW6d++OzMzMBzqnJZi6jFJ6D7/99lsMGTIEvr6+kMlk2LFjR53H7N+/Hz179oSrqyseeeQRpKenV0kjlffQHOWz5fcvLy8PY8aMQbt27eDk5GQwgXNlW7duRYcOHaBQKNC1a1fs2bPH9Jk3kjnKmJ6eXuU91E8HZGn1Ld/27dvx5JNPokWLFmjatCnCwsLwxRdfVEln7s8ggygJ2LJlC+Lj4zF//nwcOXIE3bt3h1qtxrVr16pNn5GRgdmzZ2P+/Pk4ffo01q1bhy1btmDu3LkNPqc5maN8ANC5c2fk5eWJj++//94SxamivuVLSEjAmjVrsGrVKpw6dQpTpkzBP//5Txw9erTB5zQ3c5QRkM57WFJSgu7du2P16tVGpc/NzUVkZCQGDBiAY8eOIS4uDs8//7zBTVxK76E5ygfY7vtXWlqKFi1aICEhAd27d682zYEDBxAdHY1Jkybh6NGjiIqKQlRUFE6ePGnKrBvNHGUEKmb7rvweXrp0yVRZrpf6lu/bb7/Fk08+iT179uDw4cMYMGAAhgwZYvn7qNUmVyBR7969halTp4rPy8vLBV9fXyEpKana9FOnThUGDhxosC0+Pl547LHHGnxOczJH+ebPny90797dLPmtr/qWT6VSCampqQbbnn76aeHZZ59t8DnNzRxllNJ7WBkA4ZNPPqk1zcyZM4XOnTsbbBs1apSgVqvF51J7D/VMVT5bfv8q69+/vzB9+vQq20eOHClERkYabAsNDRVeeOGFB8zhgzNVGTds2CAolUqT5ctU6ls+vU6dOgkLFy4Un1viM8iaKCsrKyvD4cOHERERIW5zcnJCREQEsrOzqz0mPDwchw8fFqslf/vtN+zZswf/+Mc/GnxOczFH+fTOnTsHX19fPPzww3j22Wdx+fJl8xWkBg0pX2lpaZUqczc3N/FXvJTev4bmp64y6knhPWyI7Oxsg+sBAGq1WrweUnsP66uu8unZ6vtnDGOvga27desW2rZtCz8/PwwbNgy//PKLtbPUIDqdDsXFxfD09ARguc8ggygru3HjBsrLy8WlbvS8vb2h0WiqPWbMmDFYtGgR+vbtC2dnZwQGBuKJJ54Qm7sack5zMUf5ACA0NBTp6enIzMzEu+++i9zcXDz++OMoLi42a3nu15DyqdVqLF++HOfOnYNOp8O+ffuwfft25OXlNfic5mSOMgLSeQ8bQqPRVHs9ioqK8Ndff0nuPayvusoH2Pb7Z4yaroEtvH/Gat++PdavX49PP/0UH374IXQ6HcLDw/HHH39YO2v1tnTpUty6dQsjR44EYLn7KIMoG7R//378+9//xjvvvIMjR45g+/bt+Oyzz7B48WJrZ80kjCnfU089hREjRqBbt25Qq9XYs2cPbt68iY8//tiKOTfOihUrEBQUhA4dOsDFxQWxsbGYMGGCwTqRts6YMtrye0h8/+xBWFgYxo0bh+DgYPTv3x/bt29HixYtsGbNGmtnrV4yMjKwcOFCfPzxx2jZsqVFX9uqCxAT0Lx5c8jlcuTn5xtsz8/Ph4+PT7XHzJs3D2PHjsXzzz8PAOjatau46PJrr73WoHOaiznKV12w0axZM7Rr1w7nz583fSFq0ZDytWjRAjt27MCdO3dQUFAAX19fzJ49Gw8//HCDz2lO5ihjdaz1HjaEj49PtdejadOmcHNzg1wul9R7WF91la86tvT+GaOma2AL719DOTs7o0ePHjb1Hm7evBnPP/88tm7datB0Z6n7qP389LVRLi4uCAkJQVZWlrhNp9MhKysLYWFh1R5z+/btKoGEXC4HAAiC0KBzmos5yledW7du4cKFC1CpVCbKuXEe5ForFAq0atUK9+7dw7Zt2zBs2LAHPqc5mKOM1bHWe9gQYWFhBtcDAPbt2ydeD6m9h/VVV/mqY0vvnzEacg1sXXl5OU6cOGEz7+FHH32ECRMm4KOPPkJkZKTBPot9Bk3WRZ0abPPmzYKrq6uQnp4unDp1SoiJiRGaNWsmaDQaQRAEYezYscLs2bPF9PPnzxeaNGkifPTRR8Jvv/0m7N27VwgMDBRGjhxp9DltvXyvvPKKsH//fiE3N1f44YcfhIiICKF58+bCtWvXJF++H3/8Udi2bZtw4cIF4dtvvxUGDhwoBAQECH/++afR57Q0c5RRSu9hcXGxcPToUeHo0aMCAGH58uXC0aNHhUuXLgmCIAizZ88Wxo4dK6b/7bffBHd3d2HGjBnC6dOnhdWrVwtyuVzIzMwU00jpPTRH+Wz5/RMEQUwfEhIijBkzRjh69Kjwyy+/iPt/+OEHoVGjRsLSpUuF06dPC/PnzxecnZ2FEydOWLRseuYo48KFC4UvvvhCuHDhgnD48GFh9OjRgkKhMEhjKfUt36ZNm4RGjRoJq1evFvLy8sTHzZs3xTSW+AwyiJKIVatWCW3atBFcXFyE3r17Cz/++KO4r3///sL48ePF53fv3hUWLFggBAYGCgqFQvDz8xP+7//+z+ALqq5zWpqpyzdq1ChBpVIJLi4uQqtWrYRRo0YJ58+ft2CJDNWnfPv37xc6duwouLq6Cl5eXsLYsWOFK1eu1Ouc1mDqMkrpPfz6668FAFUe+jKNHz9e6N+/f5VjgoODBRcXF+Hhhx8WNmzYUOW8UnkPzVE+W3//qkvftm1bgzQff/yx0K5dO8HFxUXo3Lmz8Nlnn1mmQNUwRxnj4uLE/5/e3t7CP/7xD+HIkSOWK1Ql9S1f//79a02vZ+7PoEwQamgfISIiIqIasU8UERERUQMwiCIiIiJqAAZRRERERA3AIIqIiIioARhEERERETUAgygiIiKiBmAQRURERNQADKKIiBzI/v37IZPJcPPmTWtnhcjmMYgiIrN47rnnIJPJ8MYbbxhs37FjB2QymfhcEAS89957CAsLQ9OmTdG4cWN07twZ06dPN3oh1Nu3b2POnDkIDAyEQqFAixYt0L9/f3z66adiGn9/f6SkpJikbOamv3YymQzOzs4ICAjAzJkzcefOnXqd54knnkBcXJzBtvDwcOTl5UGpVJowx0SOiUEUEZmNQqHAm2++iT///LPa/YIgYMyYMXjppZfwj3/8A3v37sWpU6ewbt06KBQKLFmyxKjXmTJlCrZv345Vq1bhzJkzyMzMxPDhw1FQUGDK4ljUoEGDkJeXh99++w1vv/021qxZg/nz5z/weV1cXODj42MQyBJRA5l0ERkiov8aP368MHjwYKFDhw7CjBkzxO2ffPKJoL/1fPTRRwIA4dNPP632HDqdzqjXUiqVQnp6eo37q1tnS++7774T+vbtKygUCqF169bCtGnThFu3bon733//fSEkJERo3Lix4O3tLURHRwv5+fnifv2aX5mZmUJwcLCgUCiEAQMGCPn5+cKePXuEDh06CE2aNBGio6OFkpISo8ozfvx4YdiwYQbbnn76aaFHjx7i8xs3bgijR48WfH19BTc3N6FLly5CRkaGwTnuL3Nubq6Y38prUf7nP/8ROnXqJLi4uAht27YVli5dalQ+iRwda6KIyGzkcjn+/e9/Y9WqVfjjjz+q7P/oo4/Qvn17DB06tNrjja0t8fHxwZ49e1BcXFzt/u3bt6N169ZYtGgR8vLykJeXBwC4cOECBg0ahGeeeQbHjx/Hli1b8P333yM2NlY89u7du1i8eDF+/vln7NixAxcvXsRzzz1X5TUWLFiA1NRUHDhwAL///jtGjhyJlJQUZGRk4LPPPsPevXuxatUqo8pzv5MnT+LAgQNwcXERt925cwchISH47LPPcPLkScTExGDs2LH46aefAAArVqxAWFgYJk+eLJbZz8+vyrkPHz6MkSNHYvTo0Thx4gQWLFiAefPmIT09vUF5JXIo1o7iiMg+Va5N6dOnjzBx4kRBEAxrojp06CAMHTrU4Ljp06cLHh4egoeHh9CqVSujXuubb74RWrduLTg7Owu9evUS4uLihO+//94gTdu2bYW3337bYNukSZOEmJgYg23fffed4OTkJPz111/VvtbBgwcFAEJxcbEgCP+rifryyy/FNElJSQIA4cKFC+K2F154QVCr1UaVZ/z48YJcLhc8PDwEV1dXAYDg5OQk/Oc//6n1uMjISOGVV14Rn/fv31+YPn26QZr7a6LGjBkjPPnkkwZpZsyYIXTq1MmovBI5MtZEEZHZvfnmm9i4cSNOnz5dZ9rXXnsNx44dQ2JiIm7dumXU+fv164fffvsNWVlZGD58OH755Rc8/vjjWLx4ca3H/fzzz0hPT0fjxo3Fh1qthk6nQ25uLoCKmpohQ4agTZs2aNKkCfr37w8AuHz5ssG5unXrJv7b29sb7u7uePjhhw22Xbt2zajyAMCAAQNw7Ngx5OTkYPz48ZgwYQKeeeYZcX95eTkWL16Mrl27wtPTE40bN8YXX3xRJV91OX36NB577DGDbY899hjOnTuH8vLyep2LyNEwiCIis+vXrx/UajXmzJljsD0oKAhnz5412NaiRQs88sgjaNmyZb1ew9nZGY8//jhmzZqFvXv3YtGiRVi8eDHKyspqPObWrVt44YUXcOzYMfHx888/49y5cwgMDERJSQnUajWaNm2KTZs24eDBg/jkk08AoMp5nZ2dxX/rR9VVJpPJoNPpjC6Ph4cHHnnkEXTv3h3r169HTk4O1q1bJ+5/6623sGLFCsyaNQtff/01jh07BrVaXWt5ici0Glk7A0TkGN544w0EBwejffv24rbo6GiMGTMGn376KYYNG2bS1+vUqRPu3buHO3fuwMXFBS4uLlVqVnr27IlTp07hkUceqfYcJ06cQEFBAd544w2xP9GhQ4dMmk9jODk5Ye7cuYiPj8eYMWPg5uaGH374AcOGDcO//vUvAIBOp8Ovv/6KTp06icdVV+b7dezYET/88IPBth9++AHt2rWDXC43fWGI7AhroojIIrp27Ypnn30WK1euFLeNHj0aw4cPx+jRo7Fo0SLk5OTg4sWL+Oabb7Blyxajv8SfeOIJrFmzBocPH8bFixexZ88ezJ07FwMGDEDTpk0BVMwT9e233+LKlSu4ceMGAGDWrFk4cOAAYmNjcezYMZw7dw6ffvqp2LG8TZs2cHFxwapVq/Dbb79h586ddTYRmsuIESMgl8uxevVqABW1ePv27cOBAwdw+vRpvPDCC8jPzzc4xt/fX7ymN27cqLYm7JVXXkFWVhYWL16MX3/9FRs3bkRqaipeffVVi5SLyJYxiCIii1m0aJHBF7lMJsOWLVuQkpKCPXv24G9/+xvat2+PiRMnws/PD99//71R51Wr1di4cSP+/ve/o2PHjpg2bRrUajU+/vhjg9e+ePEiAgMD0aJFCwAV/Zi++eYb/Prrr3j88cfRo0cPJCYmwtfXF0BF02J6ejq2bt2KTp064Y033sDSpUtNeEWM16hRI8TGxiI5ORklJSVISEhAz549oVar8cQTT8DHxwdRUVEGx7z66quQy+Xo1KkTWrRoUW1/qZ49e+Ljjz/G5s2b0aVLFyQmJmLRokXVjkAkIkMyQRAEa2eCiIiIyNawJoqIiIioARhEEZHkVZ6C4P7Hd999Z+3s1cvly5drLU99pyggIuthcx4RSV5tCxG3atUKbm5uFszNg7l37x4uXrxY435/f380asSB00S2gEEUERERUQOwOY+IiIioARhEERERETUAgygiIiKiBmAQRURERNQADKKIiIiIGoBBFBEREVEDMIgiIiIiagAGUUREREQN8P8Bbzh7mVz4j4cAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAY4pJREFUeJzt3XtYVNX+P/D3cEfEQUBugkJAXlJAUBGzvIShKUp6Tmpp6vFy6khpVKZ5T0vznmmZXdQyjn7NS94OpWS/SjlqgJqmpgaiCSiQA0ICMuv3B2e2zDAzzAAzw+X9eh4eYc/aM2vvLN6tvdZnyYQQAkREREQksbJ0B4iIiIgaGgYkIiIiIg0MSEREREQaGJCIiIiINDAgEREREWlgQCIiIiLSwIBEREREpIEBiYiIiEgDAxIRERGRBgYkIqJGbMuWLZDJZMjMzLR0V4iaFAYkItLr1KlTiI+PxyOPPAInJye0a9cOzzzzDH777bdqbfv16weZTAaZTAYrKyu0atUKHTp0wLhx43D48GGjPnf//v3o27cvPDw80KJFCzz00EN45plnkJSUVF+XVs0777yDvXv3Vjt+/PhxLFy4EHfu3DHZZ2tauHChdC9lMhlatGiBzp07Y+7cuSgsLKyXz0hMTMTatWvr5b2ImhoGJCLS691338WuXbvwxBNP4L333sPUqVPxww8/IDw8HOfOnavW3tfXF1988QU+//xzrFixAsOGDcPx48fx5JNPYtSoUSgvL6/xM1euXIlhw4ZBJpNh9uzZWLNmDUaOHInLly9j+/btprhMAPoD0qJFi8wakFQ+/PBDfPHFF1i9ejU6duyIt99+G4MGDUJ9bKPJgESkm42lO0BEDVtCQgISExNhZ2cnHRs1ahS6du2KZcuWYdu2bWrt5XI5xo4dq3Zs2bJlePnll/HBBx/A398f7777rs7Pu3//PhYvXoyBAwfi22+/rfb6rVu36nhFDUdJSQlatGiht83f/vY3uLu7AwBeeOEFjBw5Ert378Z///tfREVFmaObRM0SR5CISK/evXurhSMACA4OxiOPPIILFy4Y9B7W1tZYt24dOnfujPXr10OhUOhsm5eXh8LCQjz66KNaX/fw8FD7+d69e1i4cCEefvhhODg4wNvbGyNGjMDVq1elNitXrkTv3r3h5uYGR0dHRERE4KuvvlJ7H5lMhuLiYmzdulV6rDVhwgQsXLgQr7/+OgAgICBAeq3qnJ9t27YhIiICjo6OcHV1xejRo3H9+nW19+/Xrx+6dOmC1NRUPP7442jRogXefPNNg+5fVQMGDAAAZGRk6G33wQcf4JFHHoG9vT18fHwwbdo0tRGwfv364eDBg7h27Zp0Tf7+/kb3h6ip4ggSERlNCIHc3Fw88sgjBp9jbW2NMWPGYN68efjpp58wZMgQre08PDzg6OiI/fv346WXXoKrq6vO96yoqMDQoUORnJyM0aNHY/r06SgqKsLhw4dx7tw5BAYGAgDee+89DBs2DM899xzKysqwfft2/P3vf8eBAwekfnzxxReYPHkyevbsialTpwIAAgMD4eTkhN9++w3//ve/sWbNGmk0p02bNgCAt99+G/PmzcMzzzyDyZMn4/bt23j//ffx+OOPIz09HS4uLlJ/8/PzMXjwYIwePRpjx46Fp6enwfdPRRX83NzcdLZZuHAhFi1ahOjoaLz44ou4dOkSPvzwQ5w6dQrHjh2Dra0t5syZA4VCgRs3bmDNmjUAgJYtWxrdH6ImSxARGemLL74QAMSnn36qdrxv377ikUce0Xnenj17BADx3nvv6X3/+fPnCwDCyclJDB48WLz99tsiNTW1WrvPPvtMABCrV6+u9ppSqZS+LykpUXutrKxMdOnSRQwYMEDtuJOTkxg/fny191qxYoUAIDIyMtSOZ2ZmCmtra/H222+rHf/ll1+EjY2N2vG+ffsKAGLjxo06r7uqBQsWCADi0qVL4vbt2yIjI0N89NFHwt7eXnh6eori4mIhhBCbN29W69utW7eEnZ2dePLJJ0VFRYX0fuvXrxcAxGeffSYdGzJkiGjfvr1B/SFqbviIjYiMcvHiRUybNg1RUVEYP368UeeqRiiKior0tlu0aBESExPRrVs3fPPNN5gzZw4iIiIQHh6u9lhv165dcHd3x0svvVTtPWQymfS9o6Oj9P2ff/4JhUKBxx57DGlpaUb1X9Pu3buhVCrxzDPPIC8vT/ry8vJCcHAwjh49qtbe3t4eEydONOozOnTogDZt2iAgIAD//Oc/ERQUhIMHD+qcu3TkyBGUlZVhxowZsLJ68J/4KVOmoFWrVjh48KDxF0rUDPERGxEZLCcnB0OGDIFcLsdXX30Fa2tro86/e/cuAMDZ2bnGtmPGjMGYMWNQWFiIEydOYMuWLUhMTERsbCzOnTsHBwcHXL16FR06dICNjf7/lB04cABLlizB6dOnUVpaKh2vGqJq4/LlyxBCIDg4WOvrtra2aj+3bdu22nyumuzatQutWrWCra0tfH19pceGuly7dg1AZbCqys7ODg899JD0OhHpx4BERAZRKBQYPHgw7ty5gx9//BE+Pj5Gv4eqLEBQUJDB57Rq1QoDBw7EwIEDYWtri61bt+LEiRPo27evQef/+OOPGDZsGB5//HF88MEH8Pb2hq2tLTZv3ozExESjr6EqpVIJmUyG//znP1rDouacnqojWYZ6/PHHpXlPRGQ+DEhEVKN79+4hNjYWv/32G44cOYLOnTsb/R4VFRVITExEixYt0KdPn1r1o3v37ti6dSuys7MBVE6iPnHiBMrLy6uN1qjs2rULDg4O+Oabb2Bvby8d37x5c7W2ukaUdB0PDAyEEAIBAQF4+OGHjb0ck2jfvj0A4NKlS3jooYek42VlZcjIyEB0dLR0rK4jaERNGecgEZFeFRUVGDVqFFJSUrBz585a1d6pqKjAyy+/jAsXLuDll19Gq1atdLYtKSlBSkqK1tf+85//AHjw+GjkyJHIy8vD+vXrq7UV/yukaG1tDZlMhoqKCum1zMxMrQUhnZyctBaDdHJyAoBqr40YMQLW1tZYtGhRtcKNQgjk5+drv0gTio6Ohp2dHdatW6fWp08//RQKhUJt9aCTk5PekgtEzRlHkIhIr1dffRX79u1DbGwsCgoKqhWG1CwKqVAopDYlJSW4cuUKdu/ejatXr2L06NFYvHix3s8rKSlB79690atXLwwaNAh+fn64c+cO9u7dix9//BFxcXHo1q0bAOD555/H559/joSEBJw8eRKPPfYYiouLceTIEfzrX//C8OHDMWTIEKxevRqDBg3Cs88+i1u3bmHDhg0ICgrC2bNn1T47IiICR44cwerVq+Hj44OAgABERkYiIiICADBnzhyMHj0atra2iI2NRWBgIJYsWYLZs2cjMzMTcXFxcHZ2RkZGBvbs2YOpU6fitddeq9P9N1abNm0we/ZsLFq0CIMGDcKwYcNw6dIlfPDBB+jRo4faP6+IiAjs2LEDCQkJ6NGjB1q2bInY2Fiz9peowbLkEjoiavhUy9N1felr27JlSxEcHCzGjh0rvv32W4M+r7y8XHz88cciLi5OtG/fXtjb24sWLVqIbt26iRUrVojS0lK19iUlJWLOnDkiICBA2NraCi8vL/G3v/1NXL16VWrz6aefiuDgYGFvby86duwoNm/eLC2jr+rixYvi8ccfF46OjgKA2pL/xYsXi7Zt2worK6tqS/537dol+vTpI5ycnISTk5Po2LGjmDZtmrh06ZLavdFXAkGTqn+3b9/W205zmb/K+vXrRceOHYWtra3w9PQUL774ovjzzz/V2ty9e1c8++yzwsXFRQDgkn+iKmRC1MOGPkRERERNCOcgEREREWlgQCIiIiLSwIBEREREpIEBiYiIiEgDAxIRERGRBgYkIiIiIg0sFFlLSqUSN2/ehLOzM8v1ExERNRJCCBQVFcHHxwdWVrrHiRiQaunmzZvw8/OzdDeIiIioFq5fvw5fX1+drzMg1ZKzszOAyhusb18pIiIiajgKCwvh5+cn/R7XxeIBacOGDVixYgVycnIQGhqK999/Hz179tTZfufOnZg3bx4yMzMRHByMd999F0899ZT0+u7du7Fx40akpqaioKAA6enpCAsLk14vKCjAggUL8O233yIrKwtt2rRBXFwcFi9eDLlcbnC/VY/VWrVqxYBERETUyNQ0Pcaik7RVmyQuWLAAaWlpCA0NRUxMDG7duqW1/fHjxzFmzBhMmjQJ6enpiIuLQ1xcHM6dOye1KS4uRp8+ffDuu+9qfY+bN2/i5s2bWLlyJc6dO4ctW7YgKSkJkyZNMsk1EhERUeNj0b3YIiMj0aNHD6xfvx5A5cRnPz8/vPTSS5g1a1a19qNGjUJxcTEOHDggHevVqxfCwsKwceNGtbaZmZkICAioNoKkzc6dOzF27FgUFxfDxsawQbXCwkLI5XIoFAqOIBERETUShv7+ttgIUllZGVJTUxEdHf2gM1ZWiI6ORkpKitZzUlJS1NoDQExMjM72hlLdJH3hqLS0FIWFhWpfRERE1DRZbA5SXl4eKioq4OnpqXbc09MTFy9e1HpOTk6O1vY5OTl16sfixYsxdepUve2WLl2KRYsWGf3+FRUVKC8vr233qAZ2dnZ6l2kSERHVhsUnaVtSYWEhhgwZgs6dO2PhwoV6286ePRsJCQlq5+pb5i+EQE5ODu7cuVNPvSVtrKysEBAQADs7O0t3hYiImhCLBSR3d3dYW1sjNzdX7Xhubi68vLy0nuPl5WVUe32KioowaNAgODs7Y8+ePbC1tdXb3t7eHvb29ga/vyoceXh4oEWLFiwmaQKqYp3Z2dlo164d7zEREdUbiwUkOzs7REREIDk5GXFxcQAqf+ElJycjPj5e6zlRUVFITk7GjBkzpGOHDx9GVFSUUZ9dWFiImJgY2NvbY9++fXBwcKjtZWhVUVEhhSM3N7d6fW9S16ZNG9y8eRP379+vMeQSEREZyqKP2BISEjB+/Hh0794dPXv2xNq1a1FcXIyJEycCAJ5//nm0bdsWS5cuBQBMnz4dffv2xapVqzBkyBBs374dP//8MzZt2iS9Z0FBAbKysnDz5k0AwKVLlwBUjj55eXmhsLAQTz75JEpKSrBt2za1Cddt2rSBtbV1na9LNeeoRYsWdX4v0k/1aK2iooIBiYiI6o1FA9KoUaNw+/ZtzJ8/Hzk5OQgLC0NSUpI0ETsrK0ttAm7v3r2RmJiIuXPn4s0330RwcDD27t2LLl26SG327dsnBSwAGD16NABgwYIFWLhwIdLS0nDixAkAQFBQkFp/MjIy4O/vX2/Xx0c+psd7TEREpmDROkiNmb46Cvfu3UNGRgYCAgLq/fEdqeO9JiJqGvLz81FWVqbzdTs7u3qZtmJoHaRmvYqNiIiILC8/P18qGq1PfHy82eb2soAMqZkwYQJkMhlkMhlsbW3h6emJgQMH4rPPPoNSqTT4fbZs2QIXFxfTdZSIiJoMfSNHtWlXHziC1ACZa5hRl0GDBmHz5s2oqKhAbm4ukpKSMH36dHz11VfYt2+fwduxEBERNVb8TdfANIRhRnt7e6m2VNu2bREeHo5evXrhiSeewJYtWzB58mSsXr0amzdvxu+//w5XV1fExsZi+fLlaNmyJb7//ntporxqErVqkvwXX3yB9957D5cuXYKTkxMGDBiAtWvXwsPDwyTXQkREVBt8xNbANMRhRgAYMGAAQkNDsXv3bgCVFazXrVuH8+fPY+vWrfjuu+8wc+ZMAJWrDdeuXYtWrVohOzsb2dnZeO211wBUlkBYvHgxzpw5g7179yIzMxMTJkww67UQERHVhCNIZLCOHTvi7NmzAKBWrNPf3x9LlizBCy+8gA8++AB2dnaQy+WQyWTVqpz/4x//kL5/6KGHsG7dOvTo0QN3795Fy5YtzXIdRERENeEIEhlMCCE9Mjty5AieeOIJtG3bFs7Ozhg3bhzy8/NRUlKi9z1SU1MRGxuLdu3awdnZGX379gVQWfOKiIiaJ4VCUa/t6gMDEhnswoULCAgIQGZmJoYOHYqQkBDs2rULqamp2LBhAwD9j/6Ki4sRExODVq1a4csvv8SpU6ewZ8+eGs8jIqKmTbUDRX21qw98xEYG+e677/DLL7/glVdeQWpqKpRKJVatWiVVOv+///s/tfZ2dnaoqKhQO3bx4kXk5+dj2bJl8PPzAwD8/PPP5rkAIiJqsAxdHW3OVdQcQaJqSktLkZOTgz/++ANpaWl45513MHz4cAwdOhTPP/88goKCUF5ejvfffx+///47vvjiC2zcuFHtPfz9/XH37l0kJycjLy8PJSUlaNeuHezs7KTz9u3bh8WLF1voKomIqKEwtG6eOevrMSBRNUlJSfD29oa/vz8GDRqEo0ePYt26dfj6669hbW2N0NBQrF69Gu+++y66dOmCL7/8UtpQWKV379544YUXMGrUKLRp0wbLly9HmzZtsGXLFuzcuROdO3fGsmXLsHLlSgtdJRERNVQKhTMyMvyhUDhbrA/ci62WTLUXW0Oog9SYcC82IqLGLzs7G5s2bQIApKV1w/79QyGEFWQyJWJjDyA8PB0AMHXqVHh7e9fps7gXWyPl5uaG+Ph4i1bSJiIiMhVtu0Xk5eUBqBw5UoUjABDCCvv3D0Vg4BXI5UVm7ScDUgPE8ENERE1RTU9JCgrcpHCkIoQVCgpczR6QOAeJiIiIzOL27dt6X3d1zQeguTG6Eq6uBQAqn6CYC0eQiIiIyCwMq2MkU/9JJsNzzz0Hf38bsz5hYUAiIiKiBqGgwA2aAUkIGYqKPGHu2Sd8xEZEREQNgqtrPmQy9Uds1tZAUJD5+8KARERERA2CXF6E2NgDsLKqrEBkbQ189BHg62v+vvARGxERETUY4eHpiI8Phq1tJwQFWSYcAQxIREREZCE3bngjK6s92rW7Bl/fbOm4l9d9dO1qwY6Bj9jIzL7//nvIZDLcuXPH4HP8/f2xdu1ak/WJiIjMo+pms3v2DMcnn0zBt9/G4JNPpmDPnuFa21kKAxKpmTBhAmQyGV544YVqr02bNg0ymQwTJkwwf8eIiKjR8/DwAFA5cnTmTCgerFiT4cyZUNy44a3WzpIYkKgaPz8/bN++HX/99Zd07N69e0hMTES7du0s2DMiImrM3NzcMHbsWLi4DIXmcn5Ahtath2Ls2LENYkcJBiSqJjw8HH5+fti9e7d0bPfu3WjXrh26desmHSstLcXLL78MDw8PODg4oE+fPjh16pTaex06dAgPP/wwHB0d0b9/f2RmZlb7vJ9++gmPPfYYHB0d4efnh5dffhnFxcUmuz4iIrKM/Px8bNu2DXfuHAAgNF4V+PPPA9i2bRvy8/Mt0T01DEgN3I0bwNGjlX+a0z/+8Q9s3rxZ+vmzzz7DxIkT1drMnDkTu3btwtatW5GWloagoCDExMSgoKCyJPz169cxYsQIxMbG4vTp05g8eTJmzZql9h5Xr17FoEGDMHLkSJw9exY7duzATz/9hPj4eNNfJBERmZVqk1pf32yEhp7Bg5AkEBp6RpqorW/DdnNhQGrAPv0UaN8eGDCg8s9PPzXfZ48dOxY//fQTrl27hmvXruHYsWMYO3as9HpxcTE+/PBDrFixAoMHD0bnzp3x8ccfw9HREZ/+r6MffvghAgMDsWrVKnTo0AHPPfdctflLS5cuxXPPPYcZM2YgODgYvXv3xrp16/D555/j3r175rtgIiIyq6ef/hqTJ3+MmJgkTJ78MZ5++mtLd0mN5aeJk1Y3bgBTpwLK/xUUVSqBf/4TiIkxT02INm3aYMiQIdiyZQuEEBgyZAjc3d2l169evYry8nI8+uij0jFbW1v07NkTFy5cAABcuHABkZGRau8bFRWl9vOZM2dw9uxZfPnll9IxIQSUSiUyMjLQqVMnU1weERE1AL6+2WrL+xsSBqQG6vLlB+FIpaICuHLFfEWz/vGPf0iPujZs2GCSz7h79y7++c9/4uWXX672GieEExGRpTAgNVDBwYCVlXpIMvd+NIMGDUJZWRlkMhliYmLUXgsMDISdnR2OHTuG9u3bA6jcpfnUqVOYMWMGAKBTp07Yt2+f2nn//e9/1X4ODw/Hr7/+iiBLbLRDRESkA+cgNVC+vsCmTZWhCLDMfjTW1ta4cOECfv31V1irOvI/Tk5OePHFF/H6668jKSkJv/76K6ZMmYKSkhJMmjQJAPDCCy/g8uXLeP3113Hp0iUkJiZiy5Ytau/zxhtv4Pjx44iPj8fp06dx+fJlfP3115ykTUREFsURpAZs0qTKOUdXrsBi+9G0atVK52vLli2DUqnEuHHjUFRUhO7du+Obb75B69atAVQ+Itu1axdeeeUVvP/+++jZsyfeeecd/OMf/5DeIyQkBP/v//0/zJkzB4899hiEEAgMDMSoUaNMfm1ERES6yIQQmoUIyACFhYWQy+VQKBTVQsS9e/eQkZGBgIAAODg4WKiHzQPvNRFR45Gfn4/169dLPysUzigocIOraz7k8iLpeHx8vMmKRer7/V0VR5CIiIjILNzc3BAfH4+ysjIkJjrirbfkUCplsLISWL5cgWef/Qt2dnaspE1ERETNi5ubGyoqvDFzpguUysrtRpRKGd54wwUVFd4NIhwBDEhERERkZvpK2TQUDEhERERkVqpSNlWZu5RNTRiQTIjz302P95iIqPFpCKVsasJJ2iZga2sLACgpKYGjo6OFe9O0qTY01KzTREREDVtDKGWjDwOSCVhbW8PFxQW3bt0CALRo0QIymczCvWp6lEolbt++jRYtWsDGhn+ViYgaG1/fhheMVPhbxUS8vLwAQApJZBpWVlZo164dAygRkZnl5+dLo/jaNJTl+rXFgGQiMpkM3t7e8PDwQHl5uaW702TZ2dnBSnOmHxERmZRmwUddTFnw0dQYkEzM2tqa82OIiKhJ0Rw50lURW98IU0PHgERERES1lpbWDfv3D4UQVpDJlIiNPYDw8HRLd6vO+GyCiIiIakWhcJbCEQAIYYX9+4dCoXC2cM/qjgGJiIiIaqWgwE0KRypCWKGgwNVCPao/DEhERERUK66u+ZDJ1PcMkcmUcHUtsFCP6g8DEhEREdWKXF6E2NgDUkhSzUGqOlG7seIkbSIiIqq18PB0BAZeQUGBK1xdC5pEOAIawAjShg0b4O/vDwcHB0RGRuLkyZN62+/cuRMdO3aEg4MDunbtikOHDqm9vnv3bjz55JNwc3ODTCbD6dOnq73HvXv3MG3aNLi5uaFly5YYOXIkcnNz6/OyiIiImiw7Ozu1n+XyIgQEXKsWjjTbNSYWHUHasWMHEhISsHHjRkRGRmLt2rWIiYnBpUuX4OHhUa398ePHMWbMGCxduhRDhw5FYmIi4uLikJaWhi5dugAAiouL0adPHzzzzDOYMmWK1s995ZVXcPDgQezcuRNyuRzx8fEYMWIEjh07ZtLrJSIiagrc3NwQHx/fpCtpy4QFt0OPjIxEjx49pGqcSqUSfn5+eOmllzBr1qxq7UeNGoXi4mIcOHBAOtarVy+EhYVh48aNam0zMzMREBCA9PR0hIWFSccVCgXatGmDxMRE/O1vfwMAXLx4EZ06dUJKSgp69eplUN8LCwshl8uhUCjQqlUrYy+diIiowWuK24kY+vvbYiNIZWVlSE1NxezZs6VjVlZWiI6ORkpKitZzUlJSkJCQoHYsJiYGe/fuNfhzU1NTUV5ejujoaOlYx44d0a5dO70BqbS0FKWlpdLPhYWFBn8mERFRY6O5nYiuatmNeTsRfSwWkPLy8lBRUQFPT0+1456enrh48aLWc3JycrS2z8nJMfhzc3JyYGdnBxcXF6PeZ+nSpVi0aJHBn0NERNSYVR050lctuzFvJ6KPxSdpNxazZ8+GQqGQvq5fv27pLhEREZlcU66WrY/FApK7uzusra2rrR7Lzc2Fl5eX1nO8vLyMaq/rPcrKynDnzh2j3sfe3h6tWrVS+yIiImqqVL8na6qWrfn7tKmwWECys7NDREQEkpOTpWNKpRLJycmIiorSek5UVJRaewA4fPiwzvbaREREwNbWVu19Ll26hKysLKPeh4iIqCm7f/8+gJqrZavaNTUWXeafkJCA8ePHo3v37ujZsyfWrl2L4uJiTJw4EQDw/PPPo23btli6dCkAYPr06ejbty9WrVqFIUOGYPv27fj555+xadMm6T0LCgqQlZWFmzdvAqgMP0DlyJGXlxfkcjkmTZqEhIQEuLq6olWrVnjppZcQFRVl8Ao2IiKi5kIuL0JIyFmcORMKQAZAICTkbJMpCKmLRQPSqFGjcPv2bcyfPx85OTkICwtDUlKSNBE7KysLVlYPBrl69+6NxMREzJ07F2+++SaCg4Oxd+9eqQYSAOzbt08KWAAwevRoAMCCBQuwcOFCAMCaNWtgZWWFkSNHorS0FDExMfjggw/McMVEREQNj7bl/H/++SeAyjlIZ8+GoDIcAYAMZ8+GYMCA75p0SLJoHaTGjHWQiIioKahpOX9Ghj+2bh1f7bzx47cgIOAaRowYga5du5qzy3XS4OsgERERkeXVtJw/MPAKZDKl2kTtqnOQbG1tzd5nc+AyfyIiomZMtQpNoXDGvn2x1ZbzA0Bs7AFporYqOKker8nlcvN32gw4gkRERNSMqVahXb/uhwfzjCoJYYXr130RHp6OwMArKChwhatrQZOee6TCgEREREQ1ksuLtAYjOzs7C/TG9BiQiIiICH5+1wEooT77Rgk/vxsAgP79+yM4OFjtnMa4Wa2hGJCIiIgIcnkRhg07gH37hqIyJCkxbNiDuUatW7eGt7e3RftoTgxIREREBADNcq6RLgxIREREzZjmMn1dc42a6nJ+XbjMn4iIqBkzdJl+U13OrwsDEhERUTNm6Cq0prpaTRc+YiMiImrG3NzcEB8fX20vtqqa8mo1XRiQiIiImrnmFn4MwUdsRERERBoYkIiIiIg0MCARERERaWBAIiIiItLAgERERESkgQGJiIiISAMDEhEREZEGBiQiIiIiDQxIRERERBoYkIiIiIg0MCARERERaWBAIiIiItLAgERERESkgQGJiIiISAMDEhEREZEGG0t3gIiIiAyXn5+PsrIyna/b2dnBzc3NjD1qmhiQiIiIGon8/HysX79e+lmhcEZBgRtcXfMhlxdJx+Pj4xmS6ogBiYiIqJGoOnKUltYN+/YNReVsGSWGDTuA8PD0au2odjgHiYiIqJFRKJyrhCMAsMK+fUOhUDhbsltNCgMSERFRI6FQKAAA16/7ofqvcCtcv+6r1o5qjwGJiIiokSgvL6/XdqQbAxIREVEj4+d3HYBQOyaTKeHnd8MyHWqCGJCIiIgaGbm8CMOG7YdMpgRQGY5iYw+orWSjuuEqNiIiokYoPDwdgYFXUFDgClfXAoajesaARERE1ABpKwhZVKQeguTyIq3ByMaGv97rineQiIiogdEsCHnjhjeystqjXbtr8PWt+XwXFxfTda6ZYEAiIiJqYKqOHO3ZMxxnzoQCkAEQCA09g6ef/tpifWsuOEmbiIiogVHVMbpxw7tKOAIAGc6cCcWNG956z7ezszNtB5sBjiARERE1MKo6RllZ7fEgHKnIcP16O/j6ZqN///4IDg5We5Wb1dYPBiQiIqIGql27a6isd1Q1JAn4+WUBAFq3bg1vb/2jSVQ7fMRGRETUQPn6ZiM09AweFIWsnIPk65ttyW41CxxBIiIiasCefvpr9OhxEtevt4OfXxbDkZkwIBEREVnI1atXUVJSUu14VlaW2s++vtkMRmbGgERERGQBV69exbZt2+r0HiwIaTq8s0RERBagOXJ06VIQLl9+GMHBv6FDhysGvQcLQpoOAxIREZGFffLJRNy44QdAhp9/7g5f3+uYPHlzjeex3pHpWHwV24YNG+Dv7w8HBwdERkbi5MmTetvv3LkTHTt2hIODA7p27YpDhw6pvS6EwPz58+Ht7Q1HR0dER0fj8uXLam1+++03DB8+HO7u7mjVqhX69OmDo0eP1vu1ERER6aLaV+3SpSApHFWS4cYNP1y6FAQA6NWrF6ZOnVrtKz4+nvWOTMiiAWnHjh1ISEjAggULkJaWhtDQUMTExODWrVta2x8/fhxjxozBpEmTkJ6ejri4OMTFxeHcuXNSm+XLl2PdunXYuHEjTpw4AScnJ8TExODevXtSm6FDh+L+/fv47rvvkJqaitDQUAwdOhQ5OTkmv2YiIiIAuH//PgDg8uWHoa0Y5JUrlQUgHR0d4e3tXe2L4ci0LBqQVq9ejSlTpmDixIno3LkzNm7ciBYtWuCzzz7T2v69997DoEGD8Prrr6NTp05YvHgxwsPDpQ39hBBYu3Yt5s6di+HDhyMkJASff/45bt68ib179wIA8vLycPnyZcyaNQshISEIDg7GsmXLUFJSoha0iIiIzCE4+Dc8qHOkIhAUdFlbczITiwWksrIypKamIjo6+kFnrKwQHR2NlJQUreekpKSotQeAmJgYqX1GRgZycnLU2sjlckRGRkpt3Nzc0KFDB3z++ecoLi7G/fv38dFHH8HDwwMRERE6+1taWorCwkK1LyIiorrq0OEKfH2vo2oxSF/f6wZP1CbTsFhAysvLQ0VFBTw9PdWOe3p66nzUlZOTo7e96k99bWQyGY4cOYL09HQ4OzvDwcEBq1evRlJSElq3bq2zv0uXLoVcLpe+/Pz8jLtgIiIiHcLDT6NqQKr8mSzJ4pO0zU0IgWnTpsHDwwM//vgjTp48ibi4OMTGxiI7W3cRrtmzZ0OhUEhf169fN2OviYioqamoqAAAKBTO2L9/KB78SrbC/v1DoVA4q7Uj87JYQHJ3d4e1tTVyc3PVjufm5sLLy0vrOV5eXnrbq/7U1+a7777DgQMHsH37djz66KMIDw/HBx98AEdHR2zdulVnf+3t7dGqVSu1LyIiotpyd3cHABQUuEEI9V/HQlihoMBVrR2Zl8UCkp2dHSIiIpCcnCwdUyqVSE5ORlRUlNZzoqKi1NoDwOHDh6X2AQEB8PLyUmtTWFiIEydOSG1UhbmsrNQv3crKCkqlsu4XRkREZARX13zIZOq/f2QyJVxdCyzUIwIs/IgtISEBH3/8MbZu3YoLFy7gxRdfRHFxMSZOnAgAeP755zF79myp/fTp05GUlIRVq1bh4sWLWLhwIX7++WfEx8cDqJxfNGPGDCxZsgT79u3DL7/8gueffx4+Pj6Ii4sDUBmyWrdujfHjx+PMmTP47bff8PrrryMjIwNDhgwx+z0gIqLmydbWFgAglxchNvaAFJJkMiViYw9ALi9Sa0fmZdFK2qNGjcLt27cxf/585OTkICwsDElJSdIk66ysLLWRnt69eyMxMRFz587Fm2++ieDgYOzduxddunSR2sycORPFxcWYOnUq7ty5gz59+iApKQkODg4AKocqk5KSMGfOHAwYMADl5eV45JFH8PXXXyM0NNS8N4CIiJotuVwufR8eno7AwCsoKHCFq2uBFI4025H5yIQQmsUXyACFhYWQy+VQKBScj0REREbLzs7Gpk2bamw3depUeHt7m6FHzYOhv7+b3So2IiIiopowIBERERFpYEAiIiKyADs7u3ptR/XLopO0iYiImoL8/HyUlZXpfN3Ozq7a5rJubm6Ij483+jwyDwYkIiKiOsjPz5c2TQcqK2MXFLjB1TVfbTVafHy81pBEDRMDEhERUR1UHQFKS+uG/fuHQggrqZ5ReHh6tXbU8HEOEhERUT1Q7amm2jZECPU91ahxYUAiIiKqBzXtqUaNCwMSERFRPeCeak0LAxIREVE9qGlPNWpcOEmbiIionujbU40aFwYkIiKieiSXFzEYNQF8xEZERFQHrIjdNHEEiYiIqA5YEbtpYkAiIiKqI4afpoeP2IiIiIg0cASJiIjIQFU3pb150woZGTYICLgPH5/Kpf18lNZ0MCAREREZoOqmtPr2XNO2KS01PgxIREREVVQdJaoqLy8PgO491wIDr0AuL+KmtE0EAxIREdH/VB0lAirDUEGBG1xd86XaRvr2XGP9o6aDAYmIiOh/qo7+6HqMptpzrWpI4p5rTQ9XsREREWnQ9RhNoXDmnmvNBEeQiIiINNT0GI17rjV9DEhERNTs1DQR29U1H4AS6g9a1B+jcc+1po0BiYiImhXNidi6ydR/kuloRk0S5yAREVGzYsgy/IICN2gGJNUjtppwU9qmgSNIREREGmpaqda/f38EBwdXO4+VtJsOBiQiImrWtNU6Uq1U01zmr3q9TZs28Pb2tmS3ycQYkIiIqNnSt2WIvpVqLi4uFuoxmQvnIBERUbOkr9aRilxehICAa1yt1gwxIBERUbOkr9YREQMSERE1KwqFAkDVWkdVccsQqsSAREREzYoQospPtat1xKX8TR8naRMRUbOimmCtr9aRXF6EESNGwN3dvdr5XMrfPDAgERFRs1RTrSN3d3cu5W/G+IiNiIiaJVWtI5msch6SZq0jat44gkRERM2WvlpH1LwZNYJ048YNaadjAPjxxx/x3HPP4bHHHsPYsWORkpJS7x0kIiIyJdY6Im2MCkgjR47Ef//7XwDA119/jX79+uHu3bt49NFHUVJSgr59++LAgQMm6SgRERGRuRj1iO38+fN45JFHAABLly7FO++8gzfeeEN6ff369Zg/fz6GDh1av70kIiKqJ4Yu0edS/ubNqIBkY2ODoqLKIciMjAwMHjxY7fXBgwerBSYiIqKGxs3NDfHx8SgrK9PZhkv5yaiA1LdvX/z73/9GSEgIunXrhu+//x4hISHS60ePHkXbtm3rvZNERET1ieGHamJUQFq2bBkee+wx3Lx5E3369MGcOXNw6tQpdOrUCZcuXcKOHTuwceNGU/WViIiIyCxkQr3meo2uXr2KuXPn4uDBg7h79y6AykdvPXr0wOuvv464uDhT9LPBKSwshFwuh0KhQKtWrSzdHSKiJi0/P5+PxKheGPr72+iApCKEwK1bt6BUKuHu7g5bW9tad7YxYkAiIjKP/Px8rF+/vsZ28fHxDElUI0N/f9e6UKRMJoOnp2dtTyciIjKIvpGj2rQjMoRRASkhIcGgdqtXr65VZ4iIiDTduXPH4HbcO43qi1EBKT09Xe3nn376CREREXB0dJSOyWQyzdOIiIhq7f79+/XajsgQRgWko0ePqv3s7OyMxMREPPTQQ/XaKSIiIhVV/T2VGze8kZXVHu3aXYOvb7bOdkR1YdRWI6awYcMG+Pv7w8HBAZGRkTh58qTe9jt37kTHjh3h4OCArl274tChQ2qvCyEwf/58eHt7w9HREdHR0bh8+XK19zl48CAiIyPh6OiI1q1bN5vVd0REjU3VkaE9e4bjk0+m4NtvY/DJJ1OwZ89wre2I6sqiAWnHjh1ISEjAggULkJaWhtDQUMTExODWrVta2x8/fhxjxozBpEmTkJ6ejri4OMTFxeHcuXNSm+XLl2PdunXYuHEjTpw4AScnJ8TExODevXtSm127dmHcuHGYOHEizpw5g2PHjuHZZ581+fUSEVHt3bjhjTNnQgGopnLIcOZMKG7c4Lwjqn+1XuYPVD5iO3PmTK0fsUVGRqJHjx7S8k2lUgk/Pz+89NJLmDVrVrX2o0aNQnFxsdqGuL169UJYWBg2btwIIQR8fHzw6quv4rXXXgMAKBQKeHp6YsuWLRg9ejTu378Pf39/LFq0CJMmTapVvwEu8yciMpcffvgBR48exXff9cUPP/Sr9nrfvkfRv/8P6N+/Px5//HHzd5AaFUN/fxs1gnT27Fm1LyEELl68WO24IcrKypCamoro6OgHnbGyQnR0NFJSUrSek5KSotYeAGJiYqT2GRkZyMnJUWsjl8sRGRkptUlLS8Mff/wBKysrdOvWDd7e3hg8eLDaKJQ2paWlKCwsVPsiIiLTU9XZa9lS+xwjJ6e7au2I6oNRk7TDwsIgk8lQddBp6NChACAdl8lkqKioqPG98vLyUFFRUa2WkqenJy5evKj1nJycHK3tc3JypNdVx3S1+f333wEACxcuxOrVq+Hv749Vq1ahX79++O233+Dq6qr1s5cuXYpFixbVeF1ERFS/WrZsCQDo0OEyDh0SePCIDQAEOnS4rNaOqD4YFZAyMjJM1Q+zUSqVAIA5c+Zg5MiRAIDNmzfD19cXO3fuxD//+U+t582ePVutDlRhYSH8/PxM32EiombOxqbyV5VcXoRhw/Zj//6hEMIKMpkSsbEHIJcXqbUjqg9G/W1q3759vX2wu7s7rK2tkZubq3Y8NzcXXl5eWs/x8vLS2171Z25urlqxsNzcXISFhQGAdLxz587S6/b29njooYeQlZWls7/29vawt7c38OqIiKi+uLi4SN+Hh6cjMPAKCgpc4epaIIUjzXZEdVWrVWyqURhtx/WFjKrs7OwQERGB5ORktfOTk5MRFRWl9ZyoqCi19gBw+PBhqX1AQAC8vLzU2hQWFuLEiRNSm4iICNjb2+PSpUtSm/LycmRmZtZrACQiovphZ2en9rNcXoSAgGtq4UhbO6I6EUZQKBTi73//u3BwcBAeHh5i3rx54v79+9LrOTk5wsrKyuD32759u7C3txdbtmwRv/76q5g6dapwcXEROTk5Qgghxo0bJ2bNmiW1P3bsmLCxsRErV64UFy5cEAsWLBC2trbil19+kdosW7ZMuLi4iK+//lqcPXtWDB8+XAQEBIi//vpLajN9+nTRtm1b8c0334iLFy+KSZMmCQ8PD1FQUGDUvQAgFAqFwecQEVHt5OXliZs3b+r8ysvLs3QXqZEw9Pe3UY/Y5s2bhzNnzuCLL77AnTt3sGTJEqSlpWH37t1SchdGVA0YNWoUbt++jfnz5yMnJwdhYWFISkqSJllnZWXByurBIFfv3r2RmJiIuXPn4s0330RwcDD27t2LLl26SG1mzpyJ4uJiTJ06FXfu3EGfPn2QlJQEBwcHqc2KFStgY2ODcePG4a+//kJkZCS+++47tG7d2pjbQUREZuLm5mbpLlAzY1QdpPbt22Pr1q3o168fgMqVaEOGDIGLiwv27duHO3fuwMfHx6BVbI0d6yARERE1Piapg3T79m21eTru7u44cuQIioqK8NRTT6GkpKT2PSYiIiJqIIx6xNauXTtcuHABAQEB0jFnZ2d8++23ePLJJ/H000/XeweJiKhpyc/PR1lZmc7X7ezs+EiNLM6ogDRw4EBs3rwZTz31lNrxli1b4ptvvsHAgQPrtXNERNS05OfnS9tLAYBC4YyCAje4uuarrUqLj49nSCKLMiogvfXWW8jOztb6mrOzMw4fPoy0tLR66RgRETU9VUeO0tK6VSv6GB6eXq0dkSUYNQcpPT0df/vb37TuQ6ZQKNCrVy/IZDItZxIRUXOSn5+P7Ozsal95eXkAKkeOVOEIAISwwv79Q6FQOFuy20QSo0aQ1q5diylTpmid9S2Xy/HPf/4Ta9as4W7KRETNmOZjNG0KCtykcKQihBUKClyrFYAksgSjRpDOnDmDQYMG6Xz9ySefRGpqap07RUREjZfm4zGFwhkZGf5qo0OurvmQydR3ZZDJlHB1LTBLH4lqYtQIUm5uLmxtbXW/mY0Nbt++XedOERFR06BrnpFcXoTY2AM6N54lsjSjAlLbtm1x7tw5BAUFaX397NmzapvEEhFR86NQKP73p/Z5RoGBVyCXF+ndeJbI0ox6xPbUU09h3rx5uHfvXrXX/vrrLyxYsABDhw6tt84REVHjU15eDkD/PCMVXRvPElmaUSNIc+fOxe7du/Hwww8jPj4eHTp0AABcvHgRGzZsQEVFBebMmWOSjhIRUeNia1sKQACourpZwNa25iX8qv09iSzFqIDk6emJ48eP48UXX8Ts2bOljWllMhliYmKwYcMGaaNZIiJq3srL7aEejgBAhvLyyvDTv39/BAcHVzuPlbSpITAqIAGVG9YeOnQIf/75J65cuQIhBIKDg9G6dWtT9I+IiBop1Uq1qo/Zqq5Ua926NeetUoNl1Bykqlq3bo0ePXqgZ8+eDEdERCSxsan8f2/VSjXVcn7NlWqqdkQNEf92EhFRvXJxcZG+17dSrWo7ooaGAYmIiExKLi/iKjVqdBiQiIhIp/z8fL0bx2qbUG3oCjSuVKOGjAGJiIi00txTTaFwRkGBG1xd89VGhOLj49VCkpubG+Lj440OVkQNCQMSERFpVTXg6NoyRLOdCsMPNXa1XsVGRETNg64tQ6puPkvU1DAgERGRXoZsGULU1DAgERGRXqqCj1VVLfhI1BQxIBERkV41FXwkaoo4SZuIiGqkr+AjUVPEgERE1Ezoq2mkUCgghFCrbp2Xl6fWhgUfqTlhQCIiagY0axrpo17vqOb2LPhITREDEhFRM6CvaGNV+uodjRgxAu7u7mrtWfCRmioGJCIiAqC73lFg4BXI5UVwd3eHt7e3hXtJZB5cxUZE1AwoFAq1n2/c8Mbx471w48aDwMN6R0QPcASJiKgJ0TUR+9atW9L3e/YMx5kzoQBkAARCQ8/g6ae/luodVQ1JrHdEzRUDEhFRE2HIROwbN7yrhCMAkOHMmVD06HESvr7ZiI09UG0OEleuUXPEgERE1EQYMhE7K6s9HoQjFRmuX28HX99s1jsi+h8GJCKiJkp9uX5l0HFzywMgoB6SBFxd86WfWO+IiAGJiKhJ0rVc387uPrSNINnZldf4nqx3RM0JAxIRUROjb7l+TROx+/fvj+Dg4GrvyXpH1NwwIBERNTH6lusHBFzTOxG7devWrHVEBAYkIqJGSdtyftXeaTWNEumbiG1ra2uG3hM1fAxIRESNjOZyfs290+TyohqX6+uaiC03ZPM1omaAAYmIqJGpOnKkazJ2bZfrcyI2USUGJCKiRqqmvdMmThyotrnsnTt3IJPJdI4ScSI20QMMSEREjZS+ydjaNpfl5Gsiw3GzWiKiRko1Gbsq7p1GVD84gkRE1EDp2nhWtVrNkMnYRFQ7DEhERA2QIRvPAvqX7BNR7TEgERE1QJojR9r2VVPh3mlE9Y8BiYjIxHQ9KlOpafWYrqX8NeGSfaLaY0AiIjIhQx+VxcfHaw1JNS3lHzFihNpSfhUu2SeqGwYkIiIT0jdyZEg7Y5fyE1H9aBDL/Dds2AB/f384ODggMjISJ0+e1Nt+586d6NixIxwcHNC1a1ccOnRI7XUhBObPnw9vb284OjoiOjoaly9f1vpepaWlCAsLg0wmw+nTp+vrkoiI6gWX8hNZhsUD0o4dO5CQkIAFCxYgLS0NoaGhiImJwa1bt7S2P378OMaMGYNJkyYhPT0dcXFxiIuLw7lz56Q2y5cvx7p167Bx40acOHECTk5OiImJwb1796q938yZM+Hj42Oy6yMiqgvVUn5VSOJSfiLzsHhAWr16NaZMmYKJEyeic+fO2LhxI1q0aIHPPvtMa/v33nsPgwYNwuuvv45OnTph8eLFCA8Pl57xCyGwdu1azJ07F8OHD0dISAg+//xz3Lx5E3v37lV7r//85z/49ttvsXLlSlNfJhFRrYWHp2PGjLUYP34LZsxYa9AEbSKqG4sGpLKyMqSmpiI6Olo6ZmVlhejoaKSkpGg9JyUlRa09AMTExEjtMzIykJOTo9ZGLpcjMjJS7T1zc3MxZcoUfPHFF2jRokWNfS0tLUVhYaHaFxFRTRQKhcbPzsjI8IdC4ay3neYKNLm8CAEB16qNHHGlGpFpWHSSdl5eHioqKuDp6al23NPTExcvXtR6Tk5Ojtb2OTk50uuqY7raCCEwYcIEvPDCC+jevTsyMzNr7OvSpUuxaNEig66LiEilvLxc+l7fcv2q7QDAzc0N8fHxdSoPQES11yxXsb3//vsoKirC7NmzDT5n9uzZSEhIkH4uLCyEn5+fKbpHRE1QTcv1tWH4IbIciwYkd3d3WFtbIzc3V+14bm4uvLy8tJ7j5eWlt73qz9zcXLWlr7m5uQgLCwMAfPfdd0hJSYG9vb3a+3Tv3h3PPfcctm7dWu1z7e3tq7UnoubH2KKPNjaV/5mtabm+qh0RNQwW/TfSzs4OERERSE5ORlxcHABAqVQiOTkZ8fHxWs+JiopCcnIyZsyYIR07fPgwoqKiAAABAQHw8vJCcnKyFIgKCwtx4sQJvPjiiwCAdevWYcmSJdL5N2/eRExMDHbs2IHIyMj6v1AiahJqU/TRxcUFQOVyfUAAkEntqi7XV7UjoobB4v/LkpCQgPHjx6N79+7o2bMn1q5di+LiYkycOBEA8Pzzz6Nt27ZYunQpAGD69Ono27cvVq1ahSFDhmD79u34+eefsWnTJgCATCbDjBkzsGTJEgQHByMgIADz5s2Dj4+PFMLatWun1oeWLVsCAAIDA+Hr62umKyeixqauRR81A5IQde8TEZmGxQPSqFGjcPv2bcyfPx85OTkICwtDUlKSNMk6KysLVlYPhqV79+6NxMREzJ07F2+++SaCg4Oxd+9edOnSRWozc+ZMFBcXY+rUqbhz5w769OmDpKQkODg4mP36iIiAykds1RcOP3jERkQNi8UDElA5HK3rkdr3339f7djf//53/P3vf9f5fjKZDG+99Rbeeustgz7f398fgv8rR0QmpKqIXXUeEitiEzVcFi8USUTUlKnqFNVUEZv1jIgalgYxgkRE1FRp1jOaP/82MjNt4O9/Hz4+PQD0YD0jogaIAYmIqJYUCmcUFLjB1TVf7zyiquHH2xuIiDBH74ioLhiQiKhZMraekSZ9VbGJqPFjQCKiZqc29YyAB/OEaqqKzflERI0fAxIRNTu1rWekmk909CiwZk31qtiPPjoe/fpxixCipoABiYjICG5ubujVC7CyApTKB8etrYHISDcwGxE1DVzmT0RkJF9fYNOmylAEVP750UeVx4moaeAIEhE1e4auRqtq0iQgJga4cgUICmI4ImpqGJCIqNlRKBTS9/pWoykUCnh7e+t8H19fBiOipoqP2Iio2SkvLwegezWaQuGs1o6Imh8GJCJqtgoK3NT2RgMqQ1JBgauFekREDQUDEhE1OzY2lbMLbG1LAWhuVC1ga1um1o6Imh8GJCJqdlxcXAAA5eX2AGQar8pQXm6n1o6Imh8GJCJqtlxd8yGTKdWOyWRKuLoWWKhHRNRQMCARUbMllxchNvaAFJJUq9gMXepPRE0XH7ATUaNQ181ldQkPT0dg4BUUFLjC1bWA4YiIADAgEVEjoLm5rK7Cjpqby+qiuZmsXF6kNRhx01mi5osBiYgavKojR/oKOxq6Ca1q01lTjEgRUdPAgEREjYauwo6BgVeMfjTG8ENE+nCSNhE1GizsSETmwhEkImowdE3EzsvLA/BgWX7VkMRl+URkCgxIRNQgGDIRW7UsX3MOEleeEVF9Y0AiogbB0InYXJZPRObAgEREJqGvbpFCoYAQQm0rD9VjNEMmYutalk9EVF8YkIio3mk+LjOGvonYNYUi1i0iovrCgEREtVbTpGpDaM41qmki9ogRI+Du7l7tfVi3iIjqEwMSEdWKMaNEuipf65prpG8itru7O7y9vU1yTUREKgxIRFQrhlat1hWC9M014kRsIrI0FookIpPRFYJUI0r6ij7K5UUICLjGcEREFsGAREQmoy8EqeYaVWVI0UdOxCYic+AjNiKq0dWrV1FSUqJ27M8//6zxPH0Trmsq+qhtMjYnYhORuTAgEZFeV69exbZt26Sf1Sdc6z+3phCkb64RJ2MTkSUxIBGRXlVHjvRVuNalpgnXuoo+8lEaEVkSAxIR6XX37l0AlSNH+/bFApABqF7hWtdSfm2PyrRV0q6Kj9KIyNIYkIhIr/LycgDA9et+UIUjFSGscP26L65eddA5suTj41Mt7PDRGRE1dAxIRGSQkhJHrcfz81vj+++fUFvKf/BgLObPj4S/vw1HgoioUWJAIiKDtGjxl9bjFRU21ZbyV1TIUFTkCWYjImqsWAeJiAzi53cdgFA7JpMp8fDDl6vVM7K2BoKCzNg5IqJ6xhEkoiZG1wayKrWdAC2XF2HYsP3V5hr5+mYjNvYADhyIhVIpg7U18NFHgK9vXa6CiMiyGJCImhBDN5CNj483OCQ5ODhI3+tash8eno7Jk/3g7NwNQUEMR0TU+DEgETUhmiNHupbeG7rRLAD4+fmp/ayrblH37l7g4jQiaioYkIiaEIVCIX2vr6ijQqEweKm9oQUbWdiRiJoSBiSiJkRVs0ihcJbCEVC9qKOqnSHc3NwQHx9vknlNREQNFQMSURNUUOBWbem9EFYoKHDV+nisJgw/RNTccJk/URPk6ppfbem9TKaEq2uBhXpERNS4MCARNUFyeRFCQs7iQd0igZCQs7UaPSIiao4YkIiaIIXCGWfPhuDB3mkynD0bAoXC2ZLdIiJqNDgHicjC6rOwo41N5b/SNc1BUrUjIiLtGsQI0oYNG+Dv7w8HBwdERkbi5MmTetvv3LkTHTt2hIODA7p27YpDhw6pvS6EwPz58+Ht7Q1HR0dER0fj8uXL0uuZmZmYNGkSAgIC4OjoiMDAQCxYsMCo2jBE9UFV2HHTpk3YtGkT5s/fjwkTzmL+/P3SsfXr1yM/P9+g93NxcQFQ8xwkVTsiItLO4gFpx44dSEhIwIIFC5CWlobQ0FDExMTg1q1bWtsfP34cY8aMwaRJk5Ceno64uDjExcXh3LlzUpvly5dj3bp12LhxI06cOAEnJyfExMTg3r17AICLFy9CqVTio48+wvnz57FmzRps3LgRb775plmumUil6t/zPXuG45NPpuDbb2PwySdTsGfPcK3t9FHVIpLLixAbe0AKSao6SKo5SKxZRESkn0wIIWpuZjqRkZHo0aOHtD2CUqmEn58fXnrpJcyaNata+1GjRqG4uBgHDhyQjvXq1QthYWHYuHEjhBDw8fHBq6++itdeew1AZVE8T09PbNmyBaNHj9bajxUrVuDDDz/E77//blC/CwsLIZfLoVAo0KpVK2MvmwgA8Msvv2D37t24ccMbn3wyBQ/mDAGAwOTJH8PXNxsjRoxA165dDXrPqo/sbt60QmamDfz978PHpzIssWYRETVnhv7+tuhEhLKyMqSmpmL27NnSMSsrK0RHRyMlJUXrOSkpKUhISFA7FhMTg7179wIAMjIykJOTg+joaOl1uVyOyMhIpKSk6AxICoUCrq6uOvtaWlqK0tJS6efCwsIar4/IUFlZ7aEejgBAhuvX28HXN9uo96oafry9gYiIuvePiKi5sWhAysvLQ0VFBTw9PdWOe3p64uLFi1rPycnJ0do+JydHel11TFcbTVeuXMH777+PlStX6uzr0qVLsWjRIv0XRM1ebSdct2t3DZVL8tVHkPz8suq9j0REVLNmv5Tljz/+wKBBg/D3v/8dU6ZM0dlu9uzZaiNXhYWF1TbxpOZNNeFa5cYNb2RltUe7dtfURoHi4+OrhSRf32yEhp7BmTOhqAxJAqGhZ4wePSIiovph0YDk7u4Oa2tr5Obmqh3Pzc2Fl5eX1nO8vLz0tlf9mZubq7YZZ25uLsLCwtTOu3nzJvr374/evXtj06ZNevtqb28Pe3t7g66Lmqfbt29L3+/ZM7xa2Hn66a+ldtpGkZ5++mv06HES16+3g59fFsMREZEFWXQVm52dHSIiIpCcnCwdUyqVSE5ORlRUlNZzoqKi1NoDwOHDh6X2AQEB8PLyUmtTWFiIEydOqL3nH3/8gX79+iEiIgKbN2+GlZXFF/RRI1dQULmE/sYN7yrhCABkOHMmFDdueKu108bXNxtRUScYjoiILMzij9gSEhIwfvx4dO/eHT179sTatWtRXFyMiRMnAgCef/55tG3bFkuXLgUATJ8+HX379sWqVaswZMgQbN++HT///LM0AiSTyTBjxgwsWbIEwcHBCAgIwLx58+Dj44O4uDgAD8JR+/btsXLlSrX/89c1ckVUk/v37wOoecK1qh0A2NraGvTehrYjIqL6YfGANGrUKNy+fRvz589HTk4OwsLCkJSUJE2yzsrKUhvd6d27NxITEzF37ly8+eabCA4Oxt69e9GlSxepzcyZM1FcXIypU6fizp076NOnD5KSkuDg4ACgcsTpypUruHLlCnx9fdX6Y+GqB9QI6JqIXVRUWWPIzS0P2iZcu7pWL/bYpk0bgz7T0HZERFQ/LF4HqbFiHaTmSXMitjYZGf7YunV8tePjx29BQMA19O/fH48//rjae9bXViNERKRfo6iDRGRpxoYTQ7ajUW3zUXUvtKrbfGhi+CEiangYkKjZ0hwNUiicUVDgBlfXfGlLDkD7snx9VNt87N8/FEJYVdvmg4iIGj4GJGq2qo4GpaV1qxZowsPTq7XTpCtUhYenIzDwCgoKXOHqWqD2mo0N/7UjImro+F9qavKqPkZLT7fByZN26NmzDC4uGQAqQ44qHAGAEFbYv38oAgOvQC4vwp07d9RqaqnoC1VA5UiStlEjfVvaEBFRw8CARE1a1cdo1Ys3/oGnnwYKCtzU5gsBlSGpoMAVcnmR2rJ8lZpClT5ckUZE1PAxIFGTpqpxpat4Y48eJ42eVA3UHKpGjBgBd3f3audxRRoRUePAgERNWnl5OQD9xRujok4gJOSs2uhSSMhZvSNBNYUqd3d3rY/liIioceD+GtQstGt3DZXFG6sS8PPLgkLhjLNnQ1B1dOns2RAoFM7V3sfOzg7Ag5VqMpmy8gyNlWqqdkRE1DhxBImaBV/fbISGnqm2gayvbzYyMvz1Pi6rys3NDfHx8dKk7/nzbyMz0wb+/vfh49MDQA8+RiMiagIYkKjB0VW8UaFQoLy8HDY2NnBxcan2ek3B5Omnv0aPHidx/Xo7+PllSRvC1vS4THMftKqf4e0NREQYdXlERNQIMCBRg2LIVh761FTU0dc3WwpGKjUVdpTL5bXuDxERNU4MSNSgaI4c6SrEaOj5htJX2JHziYiImh8GJGqwairEaAhDq1YPHDgQAQEB1Y5zPhERUfPEgERmceoU8OOPwGOPAT161Ny+LoUYq/Lw8DCoXYcOHRiEiIhIwoBEJnP16lWUlJRg7ty22LevNVSrx4YN+xNLlvyBFi1aIDAwUOu5NRViNPTRm+aqM204SkRERJoYkKje3LgBXL4MBAcDpaVXsW3bNty44Y19+6agao2hfftaw8PjK/j6ZmPs2LFaQ5K+lWXGPnpj+CEiImOxUCTVSX5+PrKzs7Fq1R20by8wYADQvr3Apk0VAPRXsAaAkpISre+rqxAjAK2P3rQVdSQiIqotjiCR0VQjRe7uf2L37vVQKJyxdu0MCFEZhJRKGVasCMKMGc5VKlhXDUmVFaxrom1lmTFFHYmIiGqLAYkMoiremJjoiJkz5VAqZbCycsHQod3QuvWfOkNLQMA1nRWstdFcUi+XF6kFn5qKOnJJPhER1QcGJKqRqnijtpGi/fuHYtKkTwAoof7E9kFo0VXBWht9k6pVlbRdXXOwcKE3KipksLYWePfdQjz77BhOtiYionrDgEQ1UoUVXSvLbt70hrZ5RkVFLaXRH20VrHXRFXK8vb0BAF27AhMmAFeuAEFBMvj6ugBwMexiiIiIDMCARBJde6Dl5eUB0P146+5dZ+iaiG1oKDKWr2/lFxERkSkwIBEAw/ZA07VnmYdHDn74oS9qMxGbiIioIWJAIgCG72Gma88yYyZiV9WiRYs69JqIiMg0GJCaqKqPy27etEJGhg0CAu7Dx6eyrlBdJjRrriwD9E/E7tSpEzp16lTtffRV0iYiIrIkBqQmqOrjMn1Vp+Pj43WGJEO38qhK10RsX19fdO3atZZXQ0REZH4MSI2YrknVmZmZAGre8PX27dtaA5KxW3nUxNPTs9bnEhERWQIDUiNSda8zR0f1SdXaRnxq2vC1vLy82mfUFKr0GThwIJyd1bf84GM0IiJqjBiQGjjtFawF3njjDuztK9voGvGpqeq0NjWFqhEjRsDd3b3aeSzSSERETQkDUgOjbZRIWwXrZcsCMGNG5WiNvhEfbcvy9Y0E1RSq3N3dpYKNRERETRUDUgOQnp6OoqIiHDzohRUrgiGEDDKZwEsv/QFXV/2jOoBM74iPrmX5mlR7mNUUqrjXGRERNQcMSBaWnp6Offv2QaFwxpo1r0BVbFEIGd5/vwtmzDhS46iOYY/RNCtdq9PcA23+/NvIzLSBv/99+Pj0ANCDj9GIiKjZYECysKKiypGZ69f9oBlihLDC9eu+6NLlgt5RnZCQs2pFGkNCzkqvGbMirWr48fYGIiLq/XKJiIgaBQakRkLXozKFwhlnz4bgQbiS4ezZEAwY8B0A/fOTbGz4j5+IiEgb/oZsIPz8rgNQAqg6n0gJP78b0k/aKljXZX6Sh4dH/V4EERFRE8GA1EDI5UUYNuwA9u0bisqQpMSwYfpXnAE1rzqzshJQKh88urO2FnjppcHw97fhfCIiIiIdGJAaEENXnFVV06qz1auL8eqrLVFRAVhbAx99JENEBCtbExER6cOA1MBoe4xWk2XLgvWsOmuJkSOBK1eAoCDA19c0/SYiImpKGJAaie7duyM8PLza8apL73WtOvP1ZTAiIiIyBgOShWnuXaZtTzUA8PHxYQVrIiIiM2FAsrBu3boBgFRJ+733gqX91l577TKGDMmBs7Oz1I6IiIhMTyaEEJbuRGNUWFgIuVwOhUKBVq1a1fn9btwA2rcHlMoHx6ytgcxMPh4jIiKqL4b+/rbS+QqZ1eXL6uEIACoqKidXExERkXkxIDUQwcGAlcY/DWvrypVnREREZF4MSA2Ery+waVNlKAJUNYv4eI2IiMgSOEm7AZk0CYiJYc0iIiIiS2NAamBYs4iIiMjy+IiNiIiISEODCEgbNmyAv78/HBwcEBkZiZMnT+ptv3PnTnTs2BEODg7o2rUrDh06pPa6EALz58+Ht7c3HB0dER0djcuXL6u1KSgowHPPPYdWrVrBxcUFkyZNwt27d+v92oiIiKjxsXhA2rFjBxISErBgwQKkpaUhNDQUMTExuHXrltb2x48fx5gxYzBp0iSkp6cjLi4OcXFxOHfunNRm+fLlWLduHTZu3IgTJ07AyckJMTExuHfvntTmueeew/nz53H48GEcOHAAP/zwA6ZOnWry6yUiIqKGz+KFIiMjI9GjRw+sX78eAKBUKuHn54eXXnoJs2bNqtZ+1KhRKC4uxoEDB6RjvXr1QlhYGDZu3AghBHx8fPDqq6/itddeAwAoFAp4enpiy5YtGD16NC5cuIDOnTvj1KlT6N69OwAgKSkJTz31FG7cuAEfH58a+13fhSKJiIjI9BpFociysjKkpqYiOjpaOmZlZYXo6GikpKRoPSclJUWtPQDExMRI7TMyMpCTk6PWRi6XIzIyUmqTkpICFxcXKRwBQHR0NKysrHDixAmtn1taWorCwkK1LyIiImqaLBqQ8vLyUFFRAU9PT7Xjnp6eyMnJ0XpOTk6O3vaqP2tq4+Hhofa6jY0NXF1ddX7u0qVLIZfLpS8/Pz8Dr5KIiIgaG4vPQWosZs+eDYVCIX1dv37d0l0iIiIiE7FoQHJ3d4e1tTVyc3PVjufm5sLLy0vrOV5eXnrbq/6sqY3mJPD79++joKBA5+fa29ujVatWal9ERETUNFk0INnZ2SEiIgLJycnSMaVSieTkZERFRWk9JyoqSq09ABw+fFhqHxAQAC8vL7U2hYWFOHHihNQmKioKd+7cQWpqqtTmu+++g1KpRGRkZL1dHxERETVOFq+knZCQgPHjx6N79+7o2bMn1q5di+LiYkycOBEA8Pzzz6Nt27ZYunQpAGD69Ono27cvVq1ahSFDhmD79u34+eefsWnTJgCATCbDjBkzsGTJEgQHByMgIADz5s2Dj48P4uLiAACdOnXCoEGDMGXKFGzcuBHl5eWIj4/H6NGjDVrBRkRERE2bxQPSqFGjcPv2bcyfPx85OTkICwtDUlKSNMk6KysLVlW2ue/duzcSExMxd+5cvPnmmwgODsbevXvRpUsXqc3MmTNRXFyMqVOn4s6dO+jTpw+SkpLg4OAgtfnyyy8RHx+PJ554AlZWVhg5ciTWrVtnvgsnIiKiBsvidZAaK4VCARcXF1y/fp3zkYiIiBqJwsJC+Pn54c6dO5DL5TrbWXwEqbEqKioCAC73JyIiaoSKior0BiSOINWSUqnEzZs34ezsDJlMZvT5qgTb3EegeB8q8T48wHtRifehEu/DA7wXlep6H4QQKCoqgo+Pj9oUHk0cQaolKysr+Pr61vl9WDKgEu9DJd6HB3gvKvE+VOJ9eID3olJd7oO+kSMVFookIiIi0sCARERERKSBAclC7O3tsWDBAtjb21u6KxbF+1CJ9+EB3otKvA+VeB8e4L2oZK77wEnaRERERBo4gkRERESkgQGJiIiISAMDEhEREZEGBiQiIiIiDQxIJrJhwwb4+/vDwcEBkZGROHnypM6258+fx8iRI+Hv7w+ZTIa1a9ear6NmYMy9+Pjjj/HYY4+hdevWaN26NaKjo/W2b0yMuQ+7d+9G9+7d4eLiAicnJ4SFheGLL74wY29Ny5h7UdX27dshk8kQFxdn2g6aiTH3YcuWLZDJZGpfVTfgbsyM/ftw584dTJs2Dd7e3rC3t8fDDz+MQ4cOmam3pmXMvejXr1+1vxMymQxDhgwxY49Nw9i/E2vXrkWHDh3g6OgIPz8/vPLKK7h3717dOiGo3m3fvl3Y2dmJzz77TJw/f15MmTJFuLi4iNzcXK3tT548KV577TXx73//W3h5eYk1a9aYt8MmZOy9ePbZZ8WGDRtEenq6uHDhgpgwYYKQy+Xixo0bZu55/TL2Phw9elTs3r1b/Prrr+LKlSti7dq1wtraWiQlJZm55/XP2HuhkpGRIdq2bSsee+wxMXz4cPN01oSMvQ+bN28WrVq1EtnZ2dJXTk6OmXtd/4y9D6WlpaJ79+7iqaeeEj/99JPIyMgQ33//vTh9+rSZe17/jL0X+fn5an8fzp07J6ytrcXmzZvN2/F6Zux9+PLLL4W9vb348ssvRUZGhvjmm2+Et7e3eOWVV+rUDwYkE+jZs6eYNm2a9HNFRYXw8fERS5curfHc9u3bN6mAVJd7IYQQ9+/fF87OzmLr1q2m6qJZ1PU+CCFEt27dxNy5c03RPbOqzb24f/++6N27t/jkk0/E+PHjm0RAMvY+bN68WcjlcjP1znyMvQ8ffviheOihh0RZWZm5umg2df3vxJo1a4Szs7O4e/euqbpoFsbeh2nTpokBAwaoHUtISBCPPvponfrBR2z1rKysDKmpqYiOjpaOWVlZITo6GikpKRbsmfnVx70oKSlBeXk5XF1dTdVNk6vrfRBCIDk5GZcuXcLjjz9uyq6aXG3vxVtvvQUPDw9MmjTJHN00udreh7t376J9+/bw8/PD8OHDcf78eXN012Rqcx/27duHqKgoTJs2DZ6enujSpQveeecdVFRUmKvbJlEf/7389NNPMXr0aDg5OZmqmyZXm/vQu3dvpKamSo/hfv/9dxw6dAhPPfVUnfrCzWrrWV5eHioqKuDp6al23NPTExcvXrRQryyjPu7FG2+8AR8fH7V/WRqb2t4HhUKBtm3borS0FNbW1vjggw8wcOBAU3fXpGpzL3766Sd8+umnOH36tBl6aB61uQ8dOnTAZ599hpCQECgUCqxcuRK9e/fG+fPn62XjbEuozX34/fff8d133+G5557DoUOHcOXKFfzrX/9CeXk5FixYYI5um0Rd/3t58uRJnDt3Dp9++qmpumgWtbkPzz77LPLy8tCnTx8IIXD//n288MILePPNN+vUFwYkarCWLVuG7du34/vvv28yk1GN4ezsjNOnT+Pu3btITk5GQkICHnroIfTr18/SXTOboqIijBs3Dh9//DHc3d0t3R2LioqKQlRUlPRz79690alTJ3z00UdYvHixBXtmXkqlEh4eHti0aROsra0RERGBP/74AytWrGjUAamuPv30U3Tt2hU9e/a0dFfM7vvvv8c777yDDz74AJGRkbhy5QqmT5+OxYsXY968ebV+Xwakeubu7g5ra2vk5uaqHc/NzYWXl5eFemUZdbkXK1euxLJly3DkyBGEhISYspsmV9v7YGVlhaCgIABAWFgYLly4gKVLlzbqgGTsvbh69SoyMzMRGxsrHVMqlQAAGxsbXLp0CYGBgabttAnUx38nbG1t0a1bN1y5csUUXTSL2twHb29v2NrawtraWjrWqVMn5OTkoKysDHZ2dibts6nU5e9EcXExtm/fjrfeesuUXTSL2tyHefPmYdy4cZg8eTIAoGvXriguLsbUqVMxZ84cWFnVbjYR5yDVMzs7O0RERCA5OVk6plQqkZycrPZ/f81Bbe/F8uXLsXjxYiQlJaF79+7m6KpJ1dffCaVSidLSUlN00WyMvRcdO3bEL7/8gtOnT0tfw4YNQ//+/XH69Gn4+fmZs/v1pj7+TlRUVOCXX36Bt7e3qbppcrW5D48++iiuXLkiBWUA+O233+Dt7d1owxFQt78TO3fuRGlpKcaOHWvqbppcbe5DSUlJtRCkCtCiLtvN1mmKN2m1fft2YW9vL7Zs2SJ+/fVXMXXqVOHi4iItyR03bpyYNWuW1L60tFSkp6eL9PR04e3tLV577TWRnp4uLl++bKlLqDfG3otly5YJOzs78dVXX6ktXy0qKrLUJdQLY+/DO++8I7799ltx9epV8euvv4qVK1cKGxsb8fHHH1vqEuqNsfdCU1NZxWbsfVi0aJH45ptvxNWrV0VqaqoYPXq0cHBwEOfPn7fUJdQLY+9DVlaWcHZ2FvHx8eLSpUviwIEDwsPDQyxZssRSl1BvavvvRp8+fcSoUaPM3V2TMfY+LFiwQDg7O4t///vf4vfffxfffvutCAwMFM8880yd+sGAZCLvv/++aNeunbCzsxM9e/YU//3vf6XX+vbtK8aPHy/9nJGRIQBU++rbt6/5O24CxtyL9u3ba70XCxYsMH/H65kx92HOnDkiKChIODg4iNatW4uoqCixfft2C/TaNIy5F5qaSkASwrj7MGPGDKmtp6eneOqpp0RaWpoFel3/jP37cPz4cREZGSns7e3FQw89JN5++21x//59M/faNIy9FxcvXhQAxLfffmvmnpqWMfehvLxcLFy4UAQGBgoHBwfh5+cn/vWvf4k///yzTn2QCVGX8SciIiKipodzkIiIiIg0MCARERERaWBAIiIiItLAgERERESkgQGJiIiISAMDEhEREZEGBiQiIiIiDQxIREQN3IQJExAXF2fpbhA1KwxIRFRrEyZMgEwmk77c3NwwaNAgnD171tJdqxdVr0311adPH5N9XmZmJmQyGU6fPq12/L333sOWLVtM9rlEVB0DEhHVyaBBg5CdnY3s7GwkJyfDxsYGQ4cOtXS36s3mzZul68vOzsa+ffu0tisvLzdZH+RyOVxcXEz2/kRUHQMSEdWJvb09vLy84OXlhbCwMMyaNQvXr1/H7du3MWDAAMTHx6u1v337Nuzs7KTduv39/bF48WKMGTMGTk5OaNu2LTZs2KB2zurVq9G1a1c4OTnBz88P//rXv3D37l3p9WvXriE2NhatW7eGk5MTHnnkERw6dAgA8Oeff+K5555DmzZt4OjoiODgYGzevNng63NxcZGuz8vLC66urtJIz44dO9C3b184ODjgyy+/RH5+PsaMGYO2bduiRYsW6Nq1K/7973+rvZ9SqcTy5csRFBQEe3t7tGvXDm+//TYAICAgAADQrVs3yGQy9OvXD0D1R2ylpaV4+eWX4eHhAQcHB/Tp0wenTp2SXv/+++8hk8mQnJyM7t27o0WLFujduzcuXbpk8HUTNXcMSERUb+7evYtt27YhKCgIbm5umDx5MhITE1FaWiq12bZtG9q2bYsBAwZIx1asWIHQ0FCkp6dj1qxZmD59Og4fPiy9bmVlhXXr1uH8+fPYunUrvvvuO8ycOVN6fdq0aSgtLcUPP/yAX375Be+++y5atmwJAJg3bx5+/fVX/Oc//8GFCxfw4Ycfwt3dvV6uV9XXCxcuICYmBvfu3UNERAQOHjyIc+fOYerUqRg3bhxOnjwpnTN79mwsW7ZM6ldiYiI8PT0BQGp35MgRZGdnY/fu3Vo/d+bMmdi1axe2bt2KtLQ0BAUFISYmBgUFBWrt5syZg1WrVuHnn3+GjY0N/vGPf9TLdRM1C3Xa6paImrXx48cLa2tr4eTkJJycnAQA4e3tLVJTU4UQQvz111+idevWYseOHdI5ISEhYuHChdLP7du3F4MGDVJ731GjRonBgwfr/NydO3cKNzc36eeuXbuqvWdVsbGxYuLEibW6PgDCwcFBuj4nJyexZ88ekZGRIQCItWvX1vgeQ4YMEa+++qoQQojCwkJhb28vPv74Y61tVe+bnp6udnz8+PFi+PDhQggh7t69K2xtbcWXX34pvV5WViZ8fHzE8uXLhRBCHD16VAAQR44ckdocPHhQABB//fWXMbeAqNniCBIR1Un//v1x+vRpnD59GidPnkRMTAwGDx6Ma9euwcHBAePGjcNnn30GAEhLS8O5c+cwYcIEtfeIioqq9vOFCxekn48cOYInnngCbdu2hbOzM8aNG4f8/HyUlJQAAF5++WUsWbIEjz76KBYsWKA2SfzFF1/E9u3bERYWhpkzZ+L48eNGXd+aNWuk6zt9+jQGDhwovda9e3e1thUVFVi8eDG6du0KV1dXtGzZEt988w2ysrIAABcuXEBpaSmeeOIJo/pQ1dWrV1FeXo5HH31UOmZra4uePXuq3TMACAkJkb739vYGANy6davWn03UnDAgEVGdODk5ISgoCEFBQejRowc++eQTFBcX4+OPPwYATJ48GYcPH8aNGzewefNmDBgwAO3btzf4/TMzMzF06FCEhIRg165dSE1NleYolZWVSZ/x+++/Y9y4cfjll1/QvXt3vP/++wAghbVXXnkFN2/exBNPPIHXXnvN4M/38vKSri8oKAhOTk5q117VihUr8N577+GNN97A0aNHcfr0acTExEj9dHR0NPhz64Otra30vUwmA1A5B4qIasaARET1SiaTwcrKCn/99RcAoGvXrujevTs+/vhjJCYmap0H89///rfaz506dQIApKamQqlUYtWqVejVqxcefvhh3Lx5s9p7+Pn54YUXXsDu3bvx6quvSgENANq0aYPx48dj27ZtWLt2LTZt2lSflyw5duwYhg8fjrFjxyI0NBQPPfQQfvvtN+n14OBgODo6ShPUNdnZ2QGoHInSJTAwEHZ2djh27Jh0rLy8HKdOnULnzp3r6UqIyMbSHSCixq20tBQ5OTkAKleMrV+/Hnfv3kVsbKzUZvLkyYiPj4eTkxOefvrpau9x7NgxLF++HHFxcTh8+DB27tyJgwcPAgCCgoJQXl6O999/H7GxsTh27Bg2btyodv6MGTMwePBgPPzww/jzzz9x9OhRKWDNnz8fEREReOSRR1BaWooDBw5Ir9W34OBgfPXVVzh+/Dhat26N1atXIzc3VwouDg4OeOONNzBz5kzY2dnh0Ucfxe3bt3H+/HlMmjQJHh4ecHR0RFJSEnx9feHg4AC5XK72GU5OTnjxxRfx+uuvw9XVFe3atcPy5ctRUlKCSZMmmeS6iJojjiARUZ0kJSXB29sb3t7eiIyMxKlTp7Bz505piToAjBkzBjY2NhgzZgwcHByqvcerr76Kn3/+Gd26dcOSJUuwevVqxMTEAABCQ0OxevVqvPvuu+jSpQu+/PJLLF26VO38iooKTJs2DZ06dcKgQYPw8MMP44MPPgBQOSoze/ZshISE4PHHH4e1tTW2b99uknsxd+5chIeHIyYmBv369YOXl1e1Ctjz5s3Dq6++ivnz56NTp04YNWqUNC/IxsYG69atw0cffQQfHx8MHz5c6+csW7YMI0eOxLhx4xAeHo4rV67gm2++QevWrU1yXUTNkUwIISzdCSJq2jIzMxEYGIhTp04hPDxc7TV/f3/MmDEDM2bMsEzniIi04CM2IjKZ8vJy5OfnY+7cuejVq1e1cERE1FDxERsRmcyxY8fg7e2NU6dOVZs3ZGnvvPMOWrZsqfVr8ODBlu4eEVkYH7ERUbNUUFBQrfK0iqOjI9q2bWvmHhFRQ8KARERERKSBj9iIiIiINDAgEREREWlgQCIiIiLSwIBEREREpIEBiYiIiEgDAxIRERGRBgYkIiIiIg0MSEREREQa/j+QK8jUUEvmqQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAY2BJREFUeJzt3X1c0+X+P/DXhtypMAOVG0EhJG9TFBUxS+tQWGrxyxK1vMvEOmEapXl/f0JNjbzPviXWiTSPZqUeyqjOKSUrsMy8SQ0yE1AhBmKKsuv3B2eLjW1ssO3z2fZ6Ph48dJ9dn8+ua4PtvevmfSmEEAJEREREpKOUugJEREREcsMAiYiIiMgAAyQiIiIiAwyQiIiIiAwwQCIiIiIywACJiIiIyAADJCIiIiIDDJCIiIiIDDBAIiIiIjLAAImIyIllZmZCoVCgsLBQ6qoQuRQGSERk1rfffovU1FR069YNLVq0QPv27TFy5Ej8/PPP9coOHjwYCoUCCoUCSqUS/v7+6NSpE8aOHYsDBw5Y9bgfffQRBg0ahLZt26J58+a49dZbMXLkSGRnZ9uqafW89NJL2LNnT73jhw4dwqJFi1BeXm63xza0aNEi3XOpUCjQvHlzdO3aFfPmzUNFRYVNHiMrKwsZGRk2uRaRq2GARERmrVixArt27cLf/vY3vPrqq0hJScF///tf9O7dG8eOHatXPiwsDG+//TbeeustvPzyy3jwwQdx6NAh3HfffUhOTsaNGzcafMxVq1bhwQcfhEKhwOzZs/HKK69gxIgROH36NLZv326PZgIwHyAtXrzYoQGS1qZNm/D2229jzZo16Ny5M/7xj39gyJAhsMU2mgyQiExrJnUFiEje0tLSkJWVBS8vL92x5ORk3H777Vi+fDn++c9/6pVXqVR4/PHH9Y4tX74czz77LDZu3IiIiAisWLHC5OPdvHkTS5cuxb333otPPvmk3v0XL15sYovk4+rVq2jevLnZMo888ghat24NAHjqqacwYsQI7N69G19//TXi4+MdUU0it8QeJCIya8CAAXrBEQBER0ejW7duOHHihEXX8PDwwNq1a9G1a1esX78earXaZNnLly+joqICd9xxh9H727Ztq3f72rVrWLRoEW677Tb4+PggJCQEDz/8MM6ePasrs2rVKgwYMACBgYHw9fVFbGws/vWvf+ldR6FQoKqqCtu2bdMNa02YMAGLFi3CjBkzAACRkZG6++rO+fnnP/+J2NhY+Pr6IiAgAKNGjcJvv/2md/3Bgweje/fuyMvLw1133YXmzZtjzpw5Fj1/dd1zzz0AgIKCArPlNm7ciG7dusHb2xuhoaF45pln9HrABg8ejH379uHXX3/VtSkiIsLq+hC5KvYgEZHVhBAoKSlBt27dLD7Hw8MDo0ePxvz58/HVV19h6NChRsu1bdsWvr6++OijjzB16lQEBASYvGZNTQ2GDRuGnJwcjBo1CtOmTUNlZSUOHDiAY8eOISoqCgDw6quv4sEHH8Rjjz2G6upqbN++HY8++ij27t2rq8fbb7+NJ598Ev369UNKSgoAICoqCi1atMDPP/+Md999F6+88oquN6dNmzYAgH/84x+YP38+Ro4ciSeffBKXLl3CunXrcNddd+HIkSNo1aqVrr6lpaW4//77MWrUKDz++OMICgqy+PnT0gZ+gYGBJsssWrQIixcvRkJCAp5++mmcOnUKmzZtwrfffouDBw/C09MTc+fOhVqtxvnz5/HKK68AAFq2bGl1fYhcliAistLbb78tAIg33nhD7/igQYNEt27dTJ73/vvvCwDi1VdfNXv9BQsWCACiRYsW4v777xf/+Mc/RF5eXr1yb775pgAg1qxZU+8+jUaj+//Vq1f17quurhbdu3cX99xzj97xFi1aiPHjx9e71ssvvywAiIKCAr3jhYWFwsPDQ/zjH//QO/7jjz+KZs2a6R0fNGiQACA2b95sst11LVy4UAAQp06dEpcuXRIFBQXitddeE97e3iIoKEhUVVUJIYTYunWrXt0uXrwovLy8xH333Sdqamp011u/fr0AIN58803dsaFDh4oOHTpYVB8id8MhNiKyysmTJ/HMM88gPj4e48ePt+pcbQ9FZWWl2XKLFy9GVlYWevXqhY8//hhz585FbGwsevfurTest2vXLrRu3RpTp06tdw2FQqH7v6+vr+7/f/zxB9RqNe68807k5+dbVX9Du3fvhkajwciRI3H58mXdT3BwMKKjo/H555/rlff29sbEiROteoxOnTqhTZs2iIyMxJQpU9CxY0fs27fP5NylTz/9FNXV1Zg+fTqUyr/e4idPngx/f3/s27fP+oYSuSEOsRGRxYqLizF06FCoVCr861//goeHh1XnX7lyBQDg5+fXYNnRo0dj9OjRqKiowOHDh5GZmYmsrCwMHz4cx44dg4+PD86ePYtOnTqhWTPzb2V79+7FsmXL8P333+P69eu643WDqMY4ffo0hBCIjo42er+np6fe7Xbt2tWbz9WQXbt2wd/fH56enggLC9MNG5ry66+/AqgNrOry8vLCrbfeqrufiMxjgEREFlGr1bj//vtRXl6OL7/8EqGhoVZfQ5sWoGPHjhaf4+/vj3vvvRf33nsvPD09sW3bNhw+fBiDBg2y6Pwvv/wSDz74IO666y5s3LgRISEh8PT0xNatW5GVlWV1G+rSaDRQKBT497//bTRYNJzTU7cny1J33XWXbt4TETkOAyQiatC1a9cwfPhw/Pzzz/j000/RtWtXq69RU1ODrKwsNG/eHAMHDmxUPfr06YNt27ahqKgIQO0k6sOHD+PGjRv1emu0du3aBR8fH3z88cfw9vbWHd+6dWu9sqZ6lEwdj4qKghACkZGRuO2226xtjl106NABAHDq1CnceuutuuPV1dUoKChAQkKC7lhTe9CIXBnnIBGRWTU1NUhOTkZubi527tzZqNw7NTU1ePbZZ3HixAk8++yz8Pf3N1n26tWryM3NNXrfv//9bwB/DR+NGDECly9fxvr16+uVFf9LpOjh4QGFQoGamhrdfYWFhUYTQrZo0cJoMsgWLVoAQL37Hn74YXh4eGDx4sX1EjcKIVBaWmq8kXaUkJAALy8vrF27Vq9Ob7zxBtRqtd7qwRYtWphNuUDkztiDRERmPf/88/jwww8xfPhwlJWV1UsMaZgUUq1W68pcvXoVZ86cwe7du3H27FmMGjUKS5cuNft4V69exYABA9C/f38MGTIE4eHhKC8vx549e/Dll18iKSkJvXr1AgCMGzcOb731FtLS0vDNN9/gzjvvRFVVFT799FP8/e9/x0MPPYShQ4dizZo1GDJkCMaMGYOLFy9iw4YN6NixI44ePar32LGxsfj000+xZs0ahIaGIjIyEnFxcYiNjQUAzJ07F6NGjYKnpyeGDx+OqKgoLFu2DLNnz0ZhYSGSkpLg5+eHgoICvP/++0hJScELL7zQpOffWm3atMHs2bOxePFiDBkyBA8++CBOnTqFjRs3om/fvnqvV2xsLHbs2IG0tDT07dsXLVu2xPDhwx1aXyLZknIJHRHJn3Z5uqkfc2VbtmwpoqOjxeOPPy4++eQTix7vxo0b4vXXXxdJSUmiQ4cOwtvbWzRv3lz06tVLvPzyy+L69et65a9evSrmzp0rIiMjhaenpwgODhaPPPKIOHv2rK7MG2+8IaKjo4W3t7fo3Lmz2Lp1q24ZfV0nT54Ud911l/D19RUA9Jb8L126VLRr104olcp6S/537dolBg4cKFq0aCFatGghOnfuLJ555hlx6tQpvefGXAoEQ9r6Xbp0yWw5w2X+WuvXrxedO3cWnp6eIigoSDz99NPijz/+0Ctz5coVMWbMGNGqVSsBgEv+iepQCGGDDX2IiIiIXAjnIBEREREZYIBEREREZIABEhEREZEBBkhEREREBhggERERERlggERERERkgIkiG0mj0eDChQvw8/Njun4iIiInIYRAZWUlQkNDoVSa7idigNRIFy5cQHh4uNTVICIiokb47bffEBYWZvJ+BkiN5OfnB6D2CTa3rxQRERHJR0VFBcLDw3Wf46ZIHiBt2LABL7/8MoqLi9GzZ0+sW7cO/fr1M1l+586dmD9/PgoLCxEdHY0VK1bggQce0N2/e/dubN68GXl5eSgrK8ORI0cQExOju7+srAwLFy7EJ598gnPnzqFNmzZISkrC0qVLoVKpLK63dljN39+fARIREZGTaWh6jKSTtLWbJC5cuBD5+fno2bMnEhMTcfHiRaPlDx06hNGjR2PSpEk4cuQIkpKSkJSUhGPHjunKVFVVYeDAgVixYoXRa1y4cAEXLlzAqlWrcOzYMWRmZiI7OxuTJk2ySxuJiIjI+Ui6F1tcXBz69u2L9evXA6id+BweHo6pU6di1qxZ9conJyejqqoKe/fu1R3r378/YmJisHnzZr2yhYWFiIyMrNeDZMzOnTvx+OOPo6qqCs2aWdapVlFRAZVKBbVazR4kIiIiJ2Hp57dkPUjV1dXIy8tDQkLCX5VRKpGQkIDc3Fyj5+Tm5uqVB4DExEST5S2lfZLMBUfXr19HRUWF3g8RERG5JskCpMuXL6OmpgZBQUF6x4OCglBcXGz0nOLiYqvKW1qPpUuXIiUlxWy59PR0qFQq3Q9XsBEREbkut04UWVFRgaFDh6Jr165YtGiR2bKzZ8+GWq3W/fz222+OqSQRERE5nGSr2Fq3bg0PDw+UlJToHS8pKUFwcLDRc4KDg60qb05lZSWGDBkCPz8/vP/++/D09DRb3tvbG97e3lY/DhERETkfyXqQvLy8EBsbi5ycHN0xjUaDnJwcxMfHGz0nPj5erzwAHDhwwGR5UyoqKnDffffBy8sLH374IXx8fKxvABEREbksSfMgpaWlYfz48ejTpw/69euHjIwMVFVVYeLEiQCAcePGoV27dkhPTwcATJs2DYMGDcLq1asxdOhQbN++Hd999x22bNmiu2ZZWRnOnTuHCxcuAABOnToFoLb3KTg4WBccXb16Ff/85z/1Jly3adMGHh4ejnwKiIiISIYkDZCSk5Nx6dIlLFiwAMXFxYiJiUF2drZuIva5c+f09kkZMGAAsrKyMG/ePMyZMwfR0dHYs2cPunfvrivz4Ycf6gIsABg1ahQAYOHChVi0aBHy8/Nx+PBhAEDHjh316lNQUICIiAh7NZeIiIichKR5kJyZM+VBKi0tRXV1tcn7vby8EBgY6MAaERERScPSz2/Jtxoh+yotLdUl4jQnNTWVQRIREdH/uPUyf3dgrueoMeWIiIjcAQMkIiIiIgMMkIiIiIgMMEAiIiIiMsBJ2kRE4GpPItLHAImI3B5XexKRIQ6xEZHb42pPIjLEAMnFeXl52bQcERGRO+AQm4sLDAxEamoq51YQERFZgQGSG6gb/Jw/D5w+DURHA2FhElaKiIhIxjjE5kbeeAPo0AG4557af994Q+oaERERyRN7kNzE+fNASgqg0dTe1miAKVOAxMSm9yRxeTQREbkaBkhu4vTpv4IjrZoa4MyZpgVIclsezWCNbEGt9kNZWSACAkqhUlVKXR0ikgADJDcRHQ0olfpBkocH0LFj064rp+XRcgvWyHnUXcWZn98LH300DEIooVBoMHz4XvTufaReOSJybQyQ3ERYGLBlS+2wWk1NbXD02muuNVFbTsEaORftas/CwptYsqQthFAAAIRQYt++4ViwIA4REc0YWBO5EQZIbmTSpNo5R2fO1PYcuVJwRNRUgYGBOHrU2FC0ApWVQWBsROReGCC5mbAwBkZEpthrKJqInA+X+RMR/Y92KNrDo/a2Kw5FE5Fl2INERFQHh6KJCGCARDYmp+XRcqoLORcORRMRAyRqErkujzZXFyIiooYwQKImkdPyaG0Qplb76YIjbV0++mgYoqLOQKWqZC4bIiJqEAMkajK5LI/WBmuffw688or++gMhlLjjjvEYPBjMZUNEToO7A0iHARLZhFyWRwcGBqJ/f+N1iYsLZC4bInIa3B1AWlzmTzYhp+XRcqoLEVFjcXcAabEHiWxGTsuj5VQXIiJyPgyQyKbktDxaTnUhIiLnwiE2IiIiIgMMkIiIiIgMMEAiIiIiMsAAiYiIiMgAAyQiIiIZMsz6r1b7oaAgAmq1n9lyZBtcxUZERCRD2t0BqqurkZXliyVLVNBoFFAqBVauVGPMmD+ZSduOFEIIIXUlnFFFRQVUKhXUajX8/f2lrg4REbmo8+eBDh3q7w5QWMhUJo1h6ec3h9iIiIhk7PRpY3td1ibCJfthgERERCRj2r0u65Jir0t3wwCJiIhIxri/pDQ4SZuIiEjmuL+k4zFAIiIicgLcX9KxGCARkSRKS0tRXV1t8n4uXyYiKTFAIiKHKy0txfr16xssl5qayiCJiCTBSdpE5HCGPUemMgSb62EiIrIn9iARkaTy83vho4+GQQglFAoNhg/fi969j0hdLSJyc+xBIiLJqNV+uuAIAIRQ4qOPhtXrSSIicjQGSEQkmbKyQF1wpCWEEmVlARLViIioFgMkIpJMQEApFAr9PRQUCg0CAsokqhERUS0GSEQkGZWqEsOH79UFSdo5SCpVpcQ1IyJ3x0naRCSp3r2PICrqDMrKAhAQUMbgiIhkQfIepA0bNiAiIgI+Pj6Ii4vDN998Y7b8zp070blzZ/j4+OD222/H/v379e7fvXs37rvvPgQGBkKhUOD777+vd41r167hmWeeQWBgIFq2bIkRI0agpKTEls0iIjO8vLz0bqtUlYiM/LVecGRYjojIUSTtQdqxYwfS0tKwefNmxMXFISMjA4mJiTh16hTatm1br/yhQ4cwevRopKenY9iwYcjKykJSUhLy8/PRvXt3AEBVVRUGDhyIkSNHYvLkyUYf97nnnsO+ffuwc+dOqFQqpKam4uGHH8bBgwft2l4iqhUYGIjU1FRm0iYi2VIIIYRUDx4XF4e+ffvqMupqNBqEh4dj6tSpmDVrVr3yycnJqKqqwt69e3XH+vfvj5iYGGzevFmvbGFhISIjI3HkyBHExMTojqvVarRp0wZZWVl45JFHAAAnT55Ely5dkJubi/79+1tU94qKCqhUKqjVavj7+1vbdCK3x61GiEgKln5+S9aDVF1djby8PMyePVt3TKlUIiEhAbm5uUbPyc3NRVpamt6xxMRE7Nmzx+LHzcvLw40bN5CQkKA71rlzZ7Rv395sgHT9+nVcv35dd7uiosLixyQifYZbjajVfigrC0RAQKneMBu3GiEiqUgWIF2+fBk1NTUICgrSOx4UFISTJ08aPae4uNho+eLiYosft7i4GF5eXmjVqpVV10lPT8fixYstfhwiMq1uz5G5TNrcaoSIpMJVbBaaPXu2Xu9VRUUFwsPDJawRkfMzlUk7KuoMV7PZEYc3iRomWYDUunVreHh41Fs9VlJSguDgYKPnBAcHW1Xe1DWqq6tRXl6u14vU0HW8vb3h7e1t8eMQUcPMZdJmgGQfhsObpnB4k9ydZMv8vby8EBsbi5ycHN0xjUaDnJwcxMfHGz0nPj5erzwAHDhwwGR5Y2JjY+Hp6al3nVOnTuHcuXNWXYeImo6ZtB3PsOdIrfZDQUFEvf3vOLxJ7k7SIba0tDSMHz8effr0Qb9+/ZCRkYGqqipMnDgRADBu3Di0a9cO6enpAIBp06Zh0KBBWL16NYYOHYrt27fju+++w5YtW3TXLCsrw7lz53DhwgUAtcEPUNtzFBwcDJVKhUmTJiEtLQ0BAQHw9/fH1KlTER8fb/EKNiKyDW0mbcM5SOw9cgxz87+I3J2kAVJycjIuXbqEBQsWoLi4GDExMcjOztZNxD537hyUyr86uQYMGICsrCzMmzcPc+bMQXR0NPbs2aPLgQQAH374oS7AAoBRo0YBABYuXIhFixYBAF555RUolUqMGDEC169fR2JiIjZu3OiAFjsHzk8gR2ImbWlw/heReZLmQXJmrpoHicuvyRGKior0en5NSUlJQUhIiANq5D60z31BQQS2bRtf7/7x4zMRGfkrn3tyWbLPg0TyxOXX0qrbe3fhghIFBc0QGXkToaG183RcpffO0i1EuNWI/Wjnf9WdJM/5X0R/YYBERrH73fHq9t6ZC05dofeOW41Ij/O/iMxjgERGcfm142mDhYaCU1fpvWPwIz3O/yIyjQESGcXud+kwOCV7Mhy2VKkqjf5ecXiT3B0DJDKK3e/SYXBK9sThTSLLMEAik9j9Lg0Gp2RvDH6IGsYAicwy1f1O9sXglIhIWgyQSA+XX8sHg1MiIukwQCI9nJ9ARETEAImMYPAjDfbeERHJBwMkIplg7x0RkXwwQCKSEQY/RETyoGy4CBEREZF7YYBEREREZIABEhEREZEBBkhEREREBhggERERERlggERERERkgAESERERkQEGSEREREQGGCARERERGWCARERERGSAARIRERGRAQZIRERERAYYIBEREREZYIBEREREZIABEhEREZGBZlJXgJxfaWkpqqurTd7v5eWFwMBAB9aIiIioaRggUZOUlpZi/fr1uttqtR/KygIREFAKlapSdzw1NZVBEhEROQ0GSNQkdXuO8vN74aOPhkEIJRQKDYYP34vevY/UK0eu7/x54PRpIDoaCAuTujZERNbjHCSyCbXaTxccAYAQSnz00TCo1X4S14wcpbS0FEVFRVi9uhwdOgjccw/QoYPA6tXlKCoqQmlpqdRVJCKyGHuQyCbKygJ1wZGWEEqUlQXoDbWRa9IOtarVfsjImA4hFAAAjUaBGTP88fvvb0KlquRQKxE5DfYgkU0EBJRCodDoHVMoNAgIKJOoRuRI2iFUc4Fy3XJERHLHAIlsQqWqxPDhe3VBknYOEnuP3AsDZSJyFRxiI5vp3fsIoqLOoKwsAAEBZQyO3JA2UDacrM/fBSJyNgyQyKZUqkp+GLo5BspE5AoYIFGTeHl5WV2OiSVdHwNlInJ2DJCoSQIDA5GammpxwOPOiSWZG4iIyHkwQKImsyaQcbfEktresqwsX8ycqYJGo4BSKbBypRpjxvzJ3jIiIpligESSMJVYMirqjMsMzbhTbqDGDLUSEckZAySShDsklrQkN5BKVekSvWXWDrUSEckdAySShDZfTt3AwVXz5bhLWxn8EJErYaJIkoQ7JZZ0p7YSEbkK9iCRZNwpX447tZWIyBUwQHJC9s4j5Mg8Re6UL8ed2kpE5OwYIDkZwzxCpjR2ZZS9r8/VTkRE5AwYIDkZw54dU4kWG7syyt7X52on+2EiSiIi22GA5MTMJVqU8/XdJfhxRG8ZE1ESEdmH5AHShg0b8PLLL6O4uBg9e/bEunXr0K9fP5Pld+7cifnz56OwsBDR0dFYsWIFHnjgAd39QggsXLgQr7/+OsrLy3HHHXdg06ZNiI6O1pX5+eefMWPGDBw8eBDV1dXo0aMHli5dirvvvtuubbUleydadIdEjvZm794yd0pESUTkaJIu89+xYwfS0tKwcOFC5Ofno2fPnkhMTMTFixeNlj906BBGjx6NSZMm4ciRI0hKSkJSUhKOHTumK7Ny5UqsXbsWmzdvxuHDh9GiRQskJibi2rVrujLDhg3DzZs38dlnnyEvLw89e/bEsGHDUFxcbPc224q55IPOcH13ERgYiJCQEJM/TQlcLElEWbccERFZTtIAac2aNZg8eTImTpyIrl27YvPmzWjevDnefPNNo+VfffVVDBkyBDNmzECXLl2wdOlS9O7dWzepWAiBjIwMzJs3Dw899BB69OiBt956CxcuXMCePXsAAJcvX8bp06cxa9Ys9OjRA9HR0Vi+fDmuXr2qF2jJnTb5YF22TD5o7+uT7fC1IiKyPckCpOrqauTl5SEhIeGvyiiVSEhIQG5urtFzcnNz9coDQGJioq58QUEBiouL9cqoVCrExcXpygQGBqJTp0546623UFVVhZs3b+K1115D27ZtERsba7K+169fR0VFhd6PlOydfJDJDZ0HXytyZ+fPA59/XvsvkS1JNgfp8uXLqKmpQVBQkN7xoKAgnDx50ug5xcXFRstrh8a0/5oro1Ao8OmnnyIpKQl+fn5QKpVo27YtsrOzccstt5isb3p6OhYvXmxdI+3M3skHmdzQefC1InfCxQnkCJJP0nY0IQSeeeYZtG3bFl9++SV8fX3xf//3fxg+fDi+/fZbhISEGD1v9uzZSEtL092uqKhAeHi4o6qtY7jiyVTywcaujLL39cl+mIiS3AEXJ5CjSBYgtW7dGh4eHigpKdE7XlJSguDgYKPnBAcHmy2v/bekpEQv0CkpKUFMTAwA4LPPPsPevXvxxx9/wN/fHwCwceNGHDhwANu2bcOsWbOMPra3tze8vb2tb6iN2XtlFPMUEZGcWbI4QaWq5OIEajLJAiQvLy/ExsYiJycHSUlJAACNRoOcnBykpqYaPSc+Ph45OTmYPn267tiBAwcQHx8PAIiMjERwcDBycnJ0AVFFRQUOHz6Mp59+GgBw9epVALXznepSKpXQaPQnusqVvYMTBj9EJHfaxQl1gyQuTiBbknQVW1paGl5//XVs27YNJ06cwNNPP42qqipMnDgRADBu3DjMnj1bV37atGnIzs7G6tWrcfLkSSxatAjfffedLqBSKBSYPn06li1bhg8//BA//vgjxo0bh9DQUF0QFh8fj1tuuQXjx4/HDz/8oMuJVFBQgKFDhzr8OSBqLG7bQu6MixPI3iSdg5ScnIxLly5hwYIFKC4uRkxMDLKzs3WTrM+dO6fX0zNgwABkZWVh3rx5mDNnDqKjo7Fnzx50795dV2bmzJmoqqpCSkoKysvLMXDgQGRnZ8PHxwdA7dBednY25s6di3vuuQc3btxAt27d8MEHH6Bnz56OfQKImoDDoeTuuDiB7EkhhBBSV8IZVVRUQKVSQa1W6+YyERGRfRUVFWHLli0NlktJSTG56Ibcm6Wf35IOsRERERHJEQMkIiIiIgMMkIiIyGlwcQI5itsliiSqS5uR1xROciaSFy5OIEdhgERuS5uRV0ut9kNZWSACAkr1VsMwIy+RvPDvkRyBARK5rbrfQPPze+Gjj4ZBCKUun0rv3kfqlSMiIvfAOUjk9tRqP11wBNRuV/DRR8OgVvtJXDMiIpIKAyRye+b2dCIiIvfEAIncnnZPp7q4pxMRkXtjgERuj3s6ERGRIU7SJgL3dCIiIn0MkIj+R6WqZGBEREQAOMRGbowZeYmIyBT2IJHbYkZeIiIyhQESuTUGP0REZAyH2IiIiIgMsAeJiIhcVt0NqS9cUKKgoBkiI28iNLQ2rQeH0ckUBkhEROSS6m5IbW6/RW5ITcYwQCKyQt1vo8bw2yiRfGj/Vk3ttxgVdQYqVSU3pCajGCARWajut1Gg9k23rCwQAQGlevmT+G2USF7M7bfI3GdkCgMkIgvV/ZZprrue30aJ5EW732LdIIn7LVJDuIqNyEqmuuvVaj+Ja0ZExnC/RWoM9iARWYnd9USWO38eOH0aiI4GwsKkqwf3WyRrMUCiejgR2Tx21xOZp30PycryxcyZKmg0CiiVAitXqjFmzJ+SvYdwv0WyBgMk0mM4EdkUd56IrO2uN5yDxDdeor/eQ9RqP2RkTIcQCgCARqPAjBn++P33N6FSVbr1ewg5BwZIpMfSCcbuPhGZ3fVExmnfGxoainbEewg3pKamYIBE1EjsricyTQ5D0dyQmpqCARKZZSrXjzvit1Eiy8llKJrBDzUWAyQyyVyuH3fEb6NE1uFQNDkzBkhkVEOp+d0Vgx8i63Aour6amhrcuHFD6mq4LE9PT3h4eDT5OgyQyCjm+iEiuaqbiuTCBSUKCpohMvImQkNrE0HKtSdXCIHi4mKUl5dLXRWX16pVKwQHB0OhUDT6GgyQyCg5TLAkIjJUNxWJuWkAckwjoA2O2rZti+bNmzfpw5uME0Lg6tWruHjxIgAgJCSk0ddigER6tBOMG5pgyYnIRGSMvRczaHuOGpoGILdUJDU1NbrgSG6Bm6vx9fUFAFy8eBFt27Zt9HAbAyTSYzgRecGCSygsbIaIiJsIDe0LoK9su6+JSHqOWszgbNMAtHOOmjdvLnFN3IP2eb5x4wYDJLKdum9cISFAbKyElSEip+OIL1DOOg2Aw2qOYYvnWdlwESIiInnRTgNQKGonZnPLH7I19iAREZFTYp4lsierepDOnz+Py5cv625/+eWXeOyxx3DnnXfi8ccfR25urs0rSEREZIpKVYnIyF8ZHNnRhAkToFAooFAo4OnpiaCgINx777148803odFoLL5OZmYmWrVqZb+K2phVAdKIESPw9ddfAwA++OADDB48GFeuXMEdd9yBq1evYtCgQdi7d69dKkpEROTOSktLUVRUZPKntLTUbo89ZMgQFBUVobCwEP/+979x9913Y9q0aRg2bBhu3rxpt8eVklVDbD/99BO6desGAEhPT8dLL72EF198UXf/+vXrsWDBAgwbNsy2tSQiIoL77olYN/+TOfbK/+Tt7Y3g4GAAQLt27dC7d2/0798ff/vb35CZmYknn3wSa9aswdatW/HLL78gICAAw4cPx8qVK9GyZUt88cUXmDhxIoC/JlAvXLgQixYtwttvv41XX30Vp06dQosWLXDPPfcgIyMDbdu2tXk7rGFVgNSsWTNUVtZ2YxYUFOD+++/Xu//+++/XC5iIiIhsyV33RLQ0r5Mj8z/dc8896NmzJ3bv3o0nn3wSSqUSa9euRWRkJH755Rf8/e9/x8yZM7Fx40YMGDAAGRkZWLBgAU6dOgUAaNmyJYDapfhLly5Fp06dcPHiRaSlpWHChAnYv3+/w9pijFUB0qBBg/Duu++iR48e6NWrF7744gv06NFDd//nn3+Odu3a2bySREREWq4W/Dizzp074+jRowCA6dOn645HRERg2bJleOqpp7Bx40Z4eXlBpVJBoVDoeqK0nnjiCd3/b731VqxduxZ9+/bFlStXdEGUFKwKkJYvX44777wTFy5cwMCBAzF37lx8++236NKlC06dOoUdO3Zg8+bN9qorERERyYgQQjdk9umnnyI9PR0nT55ERUUFbt68iWvXruHq1atmE2Tm5eVh0aJF+OGHH/DHH3/oJn6fO3cOXbt2dUg7jLFqknaXLl1w+PBhVFdXY+XKlaiqqsI777yDRYsW4cyZM9i+fTsmTJhgp6qSXEk5cZCIiKRz4sQJREZGorCwEMOGDUOPHj2wa9cu5OXlYcOGDQDMD/tVVVUhMTER/v7+eOedd/Dtt9/i/fffb/A8R7A6D1JUVBTeffddCCFw8eJFaDQatG7dGp6envaoH8mc1BMHiYhIGp999hl+/PFHPPfcc8jLy4NGo8Hq1auhVNb2vbz33nt65b28vFBTU6N37OTJkygtLcXy5csRHh4OAPjuu+8c04AGNDpRpEKhQFBQkC3rQk5IjhMHnVlpaanbTT4lIvm7fv06iouLUVNTg5KSEmRnZyM9PR3Dhg3DuHHjcOzYMdy4cQPr1q3D8OHDcfDgwXpTbiIiInDlyhXk5OSgZ8+eaN68Odq3bw8vLy+sW7cOTz31FI4dO4alS5dK1Ep9VgVIaWlpFpVbs2ZNoypD5M7YG0dEcpWdnY2QkBA0a9YMt9xyC3r27Im1a9di/PjxUCqV6NmzJ9asWYMVK1Zg9uzZuOuuu5Ceno5x48bprjFgwAA89dRTSE5ORmlpqW6Zf2ZmJubMmYO1a9eid+/eWLVqFR588EEJW1vLqgDpyJEjere/+uorxMbGwtfXV3eMG/ERNQ5746TF3juSMynzP2VmZiIzM7PBcs899xyee+45vWNjx47Vu71p0yZs2rRJ79jo0aMxevRovWNCiMZV1oasCpA+//xzvdt+fn7IysrCrbfeatNKERGgVvuhrCwQAQGl3EbBzgx770w99+y9I6m4a/4nKVm1is0eNmzYgIiICPj4+CAuLg7ffPON2fI7d+5E586d4ePjg9tvv71eIikhBBYsWICQkBD4+voiISEBp0+frnedffv2IS4uDr6+vrjllluQlJRky2a5LbXaDwUFEVCr/aSuilPLz++FjIzp2LZtPDIypiM/v5fUVXJpdT90zD337L0jKQUGBiIkJMTkD4Mj25I0QNqxYwfS0tKwcOFC5Ofno2fPnkhMTMTFixeNlj906BBGjx6NSZMm4ciRI0hKSkJSUhKOHTumK7Ny5UqsXbsWmzdvxuHDh9GiRQskJibi2rVrujK7du3C2LFjMXHiRPzwww84ePAgxowZY/f2ujp+qNuGWu2Hjz4aBiFq/zyFUOKjj4Yx6HQAPvdEpCVpgLRmzRpMnjwZEydORNeuXbF582Y0b94cb775ptHyr776KoYMGYIZM2agS5cuWLp0KXr37q3rGhdCICMjA/PmzcNDDz2EHj164K233sKFCxewZ88eAMDNmzcxbdo0vPzyy3jqqadw2223oWvXrhg5cqSjmu2S+MFiO2VlgbrnUUsIJcrKAiSqkfvgc09EWlYFSEePHtX7EULg5MmT9Y5borq6Gnl5eUhISPirMkolEhISkJuba/Sc3NxcvfIAkJiYqCtfUFCA4uJivTIqlQpxcXG6Mvn5+fj999+hVCrRq1cvhISE4P7779frhTLm+vXrqKio0PuhvyYENvTB4mobR9pTQEApFAqN3jGFQoOAgDKJauQ++NwTkZZVk7RjYmKgUCj0ZpcPGzYMAHTHFQpFvURQxly+fBk1NTX1cikFBQXh5MmTRs8pLi42Wr64uFh3v/aYqTK//PILAGDRokVYs2YNIiIisHr1agwePBg///wzAgKMf1NMT0/H4sWLG2yXu9FOHCwsvIm33xbQaP5axejhITB16v2IiGjGsXErqFSVGD58r65HTqHQYPjwvZyo7QB87olIy6oAqaCgwF71cBjtHi9z587FiBEjAABbt25FWFgYdu7ciSlTphg9b/bs2Xp5oCoqKnRZP91dYGAgAgOBLVuAKVOAmhrAwwN47TUFYmOZTNRSdXvZevc+gqioMygrC0BAQJneBzR74+zL3HNPRO7DqgCpQ4cONnvg1q1bw8PDAyUlJXrHS0pK6u30qxUcHGy2vPbfkpIShISE6JWJiYkBAN3xuhvgeXt749Zbb8W5c+dM1tfb2xve3t4Wts49TZoEJCYCZ84AHTsCYWFS18i5cBmvfKhUlQyMiNxcoyZpa3thjB03F2TU5eXlhdjYWOTk5Oidn5OTg/j4eKPnxMfH65UHgAMHDujKR0ZGIjg4WK9MRUUFDh8+rCsTGxsLb29vnDp1Slfmxo0bKCwstGkA6K7CwoDBgxkcNRaX8UpDyiR8RCRTwgpqtVo8+uijwsfHR7Rt21bMnz9f3Lx5U3d/cXGxUCqVFl9v+/btwtvbW2RmZorjx4+LlJQU0apVK1FcXCyEEGLs2LFi1qxZuvIHDx4UzZo1E6tWrRInTpwQCxcuFJ6enuLHH3/UlVm+fLlo1aqV+OCDD8TRo0fFQw89JCIjI8Wff/6pKzNt2jTRrl078fHHH4uTJ0+KSZMmibZt24qysjKrngsAQq1WW3wOEcnX5cuXxYULF0z+XL58WeoqkhP7888/xfHjx/U+i6jW559/LgCIP/74w+JzOnToIF555RWT95t7vi39/LZqiG3+/Pn44Ycf8Pbbb6O8vBzLli1Dfn4+du/erftmJaxID56cnIxLly5hwYIFKC4uRkxMDLKzs3WTrM+dO6fbFRio3cclKysL8+bNw5w5cxAdHY09e/age/fuujIzZ85EVVUVUlJSUF5ejoEDByI7Oxs+Pj66Mi+//DKaNWuGsWPH4s8//0RcXBw+++wz3HLLLdY8HUTkQtg7R2TchAkTsG3bNkyZMqXeBrTPPPMMNm7ciPHjx1u0HYkzUQgrIpoOHTpg27ZtGDx4MIDalWhDhw5Fq1at8OGHH6K8vByhoaEWrWJzdhUVFVCpVFCr1fD395e6OkREJGPXrl1DQUEBIiMj9b6wO4MJEybgs88+Q0VFBYqKinT7r167dg0hISHw9/fH3Xff3egA6YsvvsDdd9+NP/74A61atbLonIiICEyfPh3Tp083er+559vSz2+r5iBdunRJb55O69at8emnn6KyshIPPPAArl69as3liIiIyAn07t0b4eHh2L17t+7Y7t270b59e/Tq9deuCdevX8ezzz6Ltm3bwsfHBwMHDsS3336rd639+/fjtttug6+vL+6++24UFhbWe7yvvvoKd955J3x9fREeHo5nn30WVVVVdmufMVYFSO3bt8eJEyf0jvn5+eGTTz7Bn3/+if/3//6fTStHRETkSKWlpSgqKjL5U1paKnUVAQDnzwOff177r6M88cQT2Lp1q+72m2++iYkTJ+qVmTlzJnbt2oVt27YhPz8fHTt2RGJiIsrKapOt/vbbb3j44YcxfPhwfP/993jyyScxa9YsvWucPXsWQ4YMwYgRI3D06FHs2LEDX331FVJTU+3fyDqsmoN07733YuvWrXjggQf0jrds2RIff/wx7r33XptWjoiIyFFKS0t1W1cBtVsolZUFIiCgVC/tQ2pqqqRz1t54A0hJATQaQKmszUE3aZL9H/fxxx/H7Nmz8euvvwIADh48iO3bt+OLL74AAFRVVWHTpk3IzMzE/fffDwB4/fXXceDAAbzxxhuYMWMGNm3ahKioKKxevRoA0KlTJ/z4449YsWKF7nHS09Px2GOP6YbPoqOjsXbtWgwaNAibNm1y2BClVQHSkiVLUFRUZPQ+Pz8/HDhwAPn5+TapGBERkSPVzUGWn9+rXkb13r2P1CvnaOfP/xUcAbX/TplSm4PO3ulV2rRpg6FDhyIzMxNCCAwdOhStW7fW3X/27FncuHEDd9xxh+6Yp6cn+vXrpxt9OnHiBOLi4vSua5ja54cffsDRo0fxzjvv6I4JIaDRaFBQUIAuXbrYo3n1WBUgHTlyBKmpqfj666/rTWxSq9UYMGAANm3aZNMKEhEBtd/umUSTHMHU5ttRUWckTyB6+vRfwZFWTU1tgl5H5J974okndENdGzZssMtjXLlyBVOmTMGzzz5b77727dvb5TGNsSpAysjIwOTJk43O+lapVJgyZQpeeeUV3HXXXTarIBGR4dCHKVIPfZBrMLf5ttQBUnR07bBa3SDJw6N29wJHGDJkCKqrq6FQKJCYmKh3X1RUFLy8vHDw4EHdgq4bN27g22+/1Q2XdenSBR9++KHeeV9//bXe7d69e+P48ePo6KhGmWDVJO0ffvgBQ4YMMXn/fffdh7y8vCZXioioLsOeI7XaDwUFEVCr/cyWI2qMgIBSKBT63TQKhQYBAWUS1egvYWG1c448PGpv1+576bjdCzw8PHDixAkcP34cHtpK/E+LFi3w9NNPY8aMGcjOzsbx48cxefJkXL16FZP+N0nqqaeewunTpzFjxgycOnUKWVlZ9dIDvPjiizh06BBSU1Px/fff4/Tp0/jggw/kPUm7pKQEnp6epi/WrBkuXbrU5EoREZlibm4IkS2oVJUYPnxvvd8zqXuPtKTe99Jc7qDly5dDo9Fg7NixqKysRJ8+ffDxxx/rEjG3b98eu3btwnPPPYd169ahX79+eOmll/DEE0/ortGjRw/85z//wdy5c3HnnXdCCIGoqCgkJyfbvW11WRUgtWvXDseOHTPZ7XX06FG9TWKJiGxJznNDyPmVl5fr/t+79xG0bVuM335rj/DwcwgLK9IrJ/VnXViY4wKjhhJA7tmzR/d/Hx8frF27FmvXrjVZftiwYRg2bJjeMcN0AX379sUnn3xi8hrGcifZmlUB0gMPPID58+djyJAh9ZbZ/fnnn1i4cGG9RhMR2Yqc54aQ87t586bu/+Z6KuuWI9dlVYA0b9487N69G7fddhtSU1PRqVMnAMDJkyexYcMG1NTUYO7cuXapKBGRdm5I3SBJLnNDyPlpp5A01FNpbqoJuQ6rAqSgoCAcOnQITz/9NGbPnq3bmFY7m33Dhg26jWaJiGxN7nNDyLmpVCoADfdUasuRa7MqQAJqN6zdv38//vjjD5w5cwZCCERHR+smYBER2VPv3kcQFXUGZWUBCAgoY3BENseeSgIaESBp3XLLLejbt68t60JEZJSXl5fe7dpv8fUDI8NyRI1hz55K7cgL2ZctnudGB0hERI4SGBiI1NRUZtImh7F1T6V23tLVq1fh6+triyqSGVevXgWAJs0XY4BERE6BwQ85mqmeysbw8PBAq1atcPHiRQBA8+bNoVAobHJt+osQAlevXsXFixfRqlWresksrcEAiYjIzXBfO+MsHaJt7FBucHAwAOiCJLKfVq1a6Z7vxlIIDog2SkVFBVQqFdRqtdmsokREcmK4r51a7YeyskAEBJTq9Za46752jggea2pqcOPGjSZdg0zz9PQ023Nk6ec3e5CIiNxI3Q9/c8kQ3XVfO0cEhR4eHk0a+iHHsGqzWiIicg2mkiEabgBM5K4YIBERuSFzyRCJiAESEZFb0iZDrIvJEIn+wgCJiMgNaZMhaoMkbttCpI+TtImI3BS3bSEyjQESkYwwPw05mi2TIRLV5ezvZwyQiGTCMD+NKe6an4Zsw97JEIkA18i3xQCJSCYszTvjrvlpyDa4rx05givk22KARETkZuwd/Dj70ArZjql8W1FRZ2Q/tMsAiUimTHVJE8mZKwytkO2Yy7cl9/c1BkhEMmSuS9pR2AtAjeEKQytkO9p8W3WDJGfJt8UAiUhm5NAlzQnj1FRy+D0m6ZSXlwP4K9+WYaCs/R0oLy9HSEiIhDU1jYkiiWRGDltAcMI4NZUcfo9JOjdv3tS7LYT+v6bKyQkDJCKZkeMWEGq1HwoKIriRKVlMjr/H5HjansS/wg3n2RSZARKRTGjzzjS0BYSj89Pk5/dCRsZ0bNs2HhkZ05Gf38uhj0/OiVuZuDdPT08ADfckasvJEecgEcmEYX6aBQsuobCwGSIibiI0tC+Avg6fGM15JNQU3MrEfalUKgANT9LWlpMjBkhEMlI3+AkJAWJjJawMnHuJLskDtzJxbw1N0pYzBkhEZJIzL9ElaTRmKxOmlHBtztqTyACJiExy5m9/JA1rtzJhYkn34Iw9iQyQiKieut/uzX3744amZIw1gQwTS7omV9gUmQESEdXDDU3J0bggwLW4wnsIAyQiMkrOb1zkerggwPU4+3sI8yAREZHkmFiS5IY9SEREJDkuCHAO7rTikAESERHJgrMuB3cX7raJNQMkIiKSDWdcDu4uDHuOTKVkcJUVhwyQ3IA7dYkSkXNxheXg7shcSgZXwQDJxblblygRORdXWA7ubtwlJQMDJBdnaVenq3SJEpHzYfDjXNwlJYMslvlv2LABERER8PHxQVxcHL755huz5Xfu3InOnTvDx8cHt99+O/bv3693vxACCxYsQEhICHx9fZGQkIDTp08bvdb169cRExMDhUKB77//3lZNIiIicknukpJB8gBpx44dSEtLw8KFC5Gfn4+ePXsiMTERFy9eNFr+0KFDGD16NCZNmoQjR44gKSkJSUlJOHbsmK7MypUrsXbtWmzevBmHDx9GixYtkJiYiGvXrtW73syZMxEaGmq39hEREbkSbUoGbZDkqikZFEIIIWUF4uLi0LdvX908GY1Gg/DwcEydOhWzZs2qVz45ORlVVVXYu3ev7lj//v0RExODzZs3QwiB0NBQPP/883jhhRcAAGq1GkFBQcjMzMSoUaN05/373/9GWloadu3ahW7duuHIkSOIiYmxqN4VFRVQqVRQq9Xw9/dvwjNgX0VFRdiyZUuD5VJSUhASEuKAGhERyRcXtZhm+HlSu4qtfkoGuX+eWPr5LekcpOrqauTl5WH27Nm6Y0qlEgkJCcjNzTV6Tm5uLtLS0vSOJSYmYs+ePQCAgoICFBcXIyEhQXe/SqVCXFwccnNzdQFSSUkJJk+ejD179qB58+YN1vX69eu4fv267nZFRYXF7SQiIvkzXNRiahm7uy5qMVxJaColg6usOJQ0QLp8+TJqamoQFBSkdzwoKAgnT540ek5xcbHR8sXFxbr7tcdMlRFCYMKECXjqqafQp08fFBYWNljX9PR0LF682KJ2ERGR86nbc2RuGbu7LmpxtxWHbrmKbd26daisrNTruWrI7Nmz9XquKioqEB4ebo/qERGRhNxlGXtjuErwYwlJA6TWrVvDw8MDJSUlesdLSkoQHBxs9Jzg4GCz5bX/lpSU6I2BlpSU6OYXffbZZ8jNzYW3t7fedfr06YPHHnsM27Ztq/e43t7e9co7A8OuTlNdxo7sEuUYPxHJmbssYyfzJA2QvLy8EBsbi5ycHCQlJQGonaSdk5OD1NRUo+fEx8cjJycH06dP1x07cOAA4uPjAQCRkZEIDg5GTk6OLiCqqKjA4cOH8fTTTwMA1q5di2XLlunOv3DhAhITE7Fjxw7ExcXZvqESqtslmpXliyVLVNBoFFAqBVauVGPMmD8dGpAwcSURyZ12GXvdIMkVl7GTeZIPsaWlpWH8+PHo06cP+vXrh4yMDFRVVWHixIkAgHHjxqFdu3ZIT08HAEybNg2DBg3C6tWrMXToUGzfvh3fffedbma9QqHA9OnTsWzZMkRHRyMyMhLz589HaGioLghr3769Xh1atmwJAIiKikJYWJiDWu44gYGBOH8emDkT0PwvdYVGo8CLL7ZCcnIrODIOYeJKIpI77TJ2wzlI7D1yL5IHSMnJybh06RIWLFiA4uJixMTEIDs7WzfJ+ty5c1Aq/4riBwwYgKysLMybNw9z5sxBdHQ09uzZg+7du+vKzJw5E1VVVUhJSUF5eTkGDhyI7Oxs+Pj4OLx9cnH69F/BkVZNDXDmDOCCMSERUZP07n0EUVFnjC5jJ/cgeR4kZ+UseZC0zp8HOnTQD5I8PIDCQscGSMzLRERyxfcn92Dp57fkmbTJMcLCgC1baoMioPbf115j7xERkZali1VcJc8PmSf5EBs5zqRJQGJi7bBax44MjoiI6nK3PD9kHgMkNxMWJq/AyFTaASIiKTD4IS0GSCQZc5lq5Yo5nIiI3AMDJHIo7dh9Q5lq5TjGzxxORETugwESOZR2jP/zz4FXXqmfqfaOO8Zj8GB5dnMzhxMRkftggEQOFxgYiP79AaWyftqBuLhAhyauJCIiMobL/EkSTDtARERyxh4kkoyzpx3gCjwiItuR2yIYBkgkKbmlHbCUM67AIyKSKzkuguEQG5GVTK3AU6v9JK4ZEZFzMuw5Uqv9UFAQUe991ZGLYNiDRGSlsrJAXXCkJYQSZWUBHGojImoiufTQsweJyELa3EwBAaVQKDR69ykUGgQElOmVIyIi68iph549SEQWqrtPU7t2FXjxRRVqahTw8BBYsaICY8aMZiZtIqImkFMPPQMkIitog5/nnweSk7Ur8BQIC2sFoJWUVSMicnraHvq6QVLdHnpH4hAbUSOFhQGDBzvnKjwiIjlSqSoxfPhe3TQG7RwkKeZ3sgeJiEhm5JYPhsiRevc+gqioMygrC0BAQJlki18YIBERyYhhPhhTCUm5KTK5EsPFLSpVpdHAyJGLYBggERHJSN2eI3PLnbkpMrmSuotgTGEmbSIiMrncOSrqDPNtkUuSW48oJ2kTEcmQueXORGR/7EEiIpIhOS13Julwwr50GCAREcmQdrmz4RwkDq+5D07YlxYDJCIimZLLcmeSBifsS4sBEpEdsXucmsrUcmdyH/acsM/3KNMYIBHZiWH3uCnsHqe6LM3zwk2R3Ye99ifje5R5DJBkgBG8a7K025vd41SXHPPBkLTsNWHf8HfM1Bwnd32PYoAkMUbw7sPUmw+RIf6tU12OmLBvbo6Tu2KAJDH2MrgHvvkQUVPYc8I+k5Iax0SRRHZm6s1HrfaTuGZE5ExUqkpERv5q86CFSUmNY4BEZGd88yGixnDUhH3tHKe6mJSUQ2xEdmfPjMhymuAvp7oQuQJHTdhnUlLjGCAR2Zm93nzkNMGfGX+J7MNRfy9MSlofAyQiO6nb7W3uzaex3eNyWqLLjL8kV+zZNM3wvcdUUlJ3zbnFAElmuBTcdTgyn41cVslxNQzJCXs2zWPOLfMYIEmsbmRu7kPOXSN4Z+eINxY5BSX2yvhL1Bjs2WyYuwY/lmCAJDFtBF9YeBNLlrSFEAoAtR8q+/YNx4IFcYiIaMZfYjJJTkGJPSekEzWWnL5EkPPgMn8ZCAwMREVFEDQahd7xmhoFKiuDGByRWXJaoqudkK6tD1fDkBww1QY1BnuQZCI6GlAqAU2dzzkPD6BjR+nqRM5Bbkt0uRqG5IY9m9QYDJBkIiwM2LIFmDIFqKmpDY5ee632uCGuyiBDcgtKTK2GIZKC3L5EkHNggCQjkyYBiYnAmTO1PUemgiO55L4haclpia6jMv4SNZbcvkSQ/DFAkpmwMOOBkRY3tyUtOS3RlVNd5Kpuz++FC0oUFDRDZORNhIbWjqu7+/PjCOzZJGswQCJyYnL6QJVTXeSmbs+vueXm7Pm1LfZsUlMwQCIisjNtz1FDy83Z82tb7NmkpmCARETkIHLKWeUuGPxQYzEPkpNTq/1QUBABtdpP6qoQUQPklLOKiMxjD5ITk8v+W0RkGS43J3IeDJCcFFPnEzknLjcncg4MkJyMdrVFQ3MZuCpDHpjUk4zhcnMi+ZNFgLRhwwa8/PLLKC4uRs+ePbFu3Tr069fPZPmdO3di/vz5KCwsRHR0NFasWIEHHnhAd78QAgsXLsTrr7+O8vJy3HHHHdi0aROio6MBAIWFhVi6dCk+++wzFBcXIzQ0FI8//jjmzp0r+8Ci7ua2b78t9PZv8/AQmDr1fm5uKxOGST3Vaj+UlQUiIKBU78ORS7stwzxCRORIkgdIO3bsQFpaGjZv3oy4uDhkZGQgMTERp06dQtu2beuVP3ToEEaPHo309HQMGzYMWVlZSEpKQn5+Prp37w4AWLlyJdauXYtt27YhMjIS8+fPR2JiIo4fPw4fHx+cPHkSGo0Gr732Gjp27Ihjx45h8uTJqKqqwqpVqxz9FFgtMDAQgYHGtiZRIDY2SOrq0f/U7TkyN1+MS7sb5ux5hJiPh8j5KIQQQsoKxMXFoW/fvro3P41Gg/DwcEydOhWzZs2qVz45ORlVVVXYu3ev7lj//v0RExODzZs3QwiB0NBQPP/883jhhRcAAGq1GkFBQcjMzMSoUaOM1uPll1/Gpk2b8Msvv1hU74qKCqhUKqjVavj7+1vbbJs5f9781iQknaKiImzZsgVqtR8yMqbX2yhz+vQMqFSVSElJQUhIiIQ1lT9XeC453EokD5Z+fkvag1RdXY28vDzMnj1bd0ypVCIhIQG5ublGz8nNzUVaWprescTEROzZswcAUFBQgOLiYiQkJOjuV6lUiIuLQ25urskASa1WIyAgwGRdr1+/juvXr+tuV1RUNNg+R2hoaxKSHnPf2I4zP5cMfoici6QB0uXLl1FTU4OgIP1hoaCgIJw8edLoOcXFxUbLFxcX6+7XHjNVxtCZM2ewbt06s8Nr6enpWLx4sfkGERmhzX1j2OshRe4bZ+/FkNNzSUSuTfI5SFL7/fffMWTIEDz66KOYPHmyyXKzZ8/W67mqqKhAeHi4I6pITk4uuW/sPWncEZOo5fJcEpHrkzRAat26NTw8PFBSUqJ3vKSkBMHBwUbPCQ4ONlte+29JSYneXISSkhLExMTonXfhwgXcfffdGDBgALZs2WK2rt7e3vD29raoXUSG5JD7xp6Txh05iVoOzyU5D2fvNSXpSBogeXl5ITY2Fjk5OUhKSgJQO0k7JycHqampRs+Jj49HTk4Opk+frjt24MABxMfHAwAiIyMRHByMnJwcXUBUUVGBw4cP4+mnn9ad8/vvv+Puu+9GbGwstm7dCqWSu66Qfckl9409kow6ejNWuTyXJG9MtUFNIfkQW1paGsaPH48+ffqgX79+yMjIQFVVFSZOnAgAGDduHNq1a4f09HQAwLRp0zBo0CCsXr0aQ4cOxfbt2/Hdd9/peoAUCgWmT5+OZcuWITo6WrfMPzQ0VBeE/f777xg8eDA6dOiAVatW4dKlS7r6mOq5IrKWXJd223OiszNPoibXw1Qb1BSSB0jJycm4dOkSFixYgOLiYsTExCA7O1s3yfrcuXN6vTsDBgxAVlYW5s2bhzlz5iA6Ohp79uzR5UACgJkzZ6KqqgopKSkoLy/HwIEDkZ2dDR8fHwC1PU5nzpzBmTNnEGawBEzirAfkQrRJPeXWvW/Pic72urZcg01yDtyaSRrOPrwpeYAE1HZvmhpS++KLL+ode/TRR/Hoo4+avJ5CocCSJUuwZMkSo/dPmDABEyZMaExViawixz9+e050tte15RpsknNgz6bjGQ5vmiLn4U1ZBEhEzsLZvxFp2XOis72u7QzPK8kT00M4nqXDlnIe3mSARGQhV5vwac+JzpxETXLC9BDUGAyQiCzk7BM+OY+H3Jlc0kO4Si+0tUx9oZQzBkhEVrJmwqecdqC35zwedw++zp8HTp8GoqO59Y+cSd2z6QrzchrD3BdKOWOARGQlSyd8ynEHens9jjtOotYGv1lZvpg5UwWNRgGlUmDlSjXGjPnT5drrjOQWuLvCvBxrOfMKQgZIRFaydMKno5MnSs2dggFt8KtW+yEjYzqEUAAANBoFZszwx++/vwmVqtLlegKcjdwDd2ccdrKWM68gZIBEZCVrJ3w68xsEGaf9wG3otXWV4NeZyTVAddZhJ2s58wpCBkhEjWDNhE9nfoMg8/jaUmM487CTpbTDlg19oZTzvEQGSESNZOmETy4xdl18bakx3KFX2XB4c8GCSygsbIaIiJsIDe0LoK/s5+kxQHJC7rpMVGpNmfAplyXGZHt8bclaztzzaM3nT93PoZAQIDbW7tWzKQZITsZdl4nKQVMnfEq9xJjsh68tWcNZex7d7fOHAZKTMfxwNrUKgpND7cMV/uiJSBp1e5fN9TzKdV6Ou6UpYIDkxNxlFYSzklsOFiKSltzTDpA+BkhOyh1WQTiarbMhO/rNkNmcHYfBLzUWgx/nwQDJSbnDKghHsHc2ZHu/GTKbszTYE0Dk+okuGSA5KWdeBSEXzp4NWc71d4feLDn+ThA5ijtM8VA2XITkSLsKQqGo3fTUWVZByIkl2ZDrlpMbudW/tLQURUVFWL26HB06CNxzD9Chg8Dq1eUoKipCaWmpQ+pBRPZlaoqHWu0ncc1siz1IToz5V2zD2Xvj5FB/OfdmUdPZO/cac7s5F3eZ4sEAyckYTvo0lX+Fk0Mtp1JVokePo/jhh54AFAAEevQ46jR/6HLIqcK9yVyXYe4bU/NOGhv82vv6ZDvaz5WGvpS5yucPAyQnw8mhtlNeXg6g9g356NEeqA2OAECBo0d74J57PoNKVYny8nKEhIRIVU2LyKU3UQ69WWRbdd9rzM07aWzwa+/rk+3U/fxp164CL76oQk2NAh4eAitWVGDMmNEu9fnDAMkJucovn9Ru3rwJoOFeD205uZNDNmc59GaRfdg7tQhTlzgH7efP888DycnAmTNAx44KhIW1AtBKyqrZHAMkcnvs9bAtufRmkW3Ze96Js85rcef5U2FhrrtKFWCARMReDzuQQ28W2Za9v0g44xcVd9ubzN0wQCK35enpqfu/uV6PuuXkhNmcyZHs/UXCGb+ouNveZO6GARK5LZVKZXDbeK+HYTm54IR926o7VHLhghIFBc0QGXkToaG1ucb4XNp/+JTDsyQnDJCInJhcPrCdvTer7lCJuZVUHCqx//CpMw/POuPWG+48h6ohDJCIqMmcvTdLW++GVlLJdajEnh9y9g5+nT241nLGrTc4h8o8BkjktlzljVku5PwGaunecM64ksreiRbtHfw6e3ANWJeiQE49NpxDZR4DJHJbrvDGTKZpP4iysnwxc6YKGo0CSqXAypVqjBnzp9HX1hlXUjki0aK9/wac/W/M0sCaPTbOhQESuTW+Cbmmxu4N19iVVJb2UNkTEy1Kx9LAmj02zoUBEhG5nKbsDWfpSqrG9FBZqjEr6pxxeNDZaYffGwqsOUxvGTkNPwIMkIjIhTV2yKyhlVSN7aGyRGNX1Dnj8KCzMxymX7DgEgoLmyEi4iZCQ/sC6Gv2Q11uq96krI8chx8ZIBGRy7JX8sGm9FBZem1rV9Q5Y6JFV1D3wzokBIiNtew8ua16k7o+chx+ZIBERC7NkiGzxq5otGevTWOGzJho0TnIbb6Y3OojFwyQiMjlNTRk1tgVjfbstbHX8CBJTy7zxbQBf0P1cdc5VAyQiIjQ+BWN9uq1sTT4Yj4v5yOX+WLaLwaFhTfx9tsCGo1Cd5+Hh8DUqfcjIqKZ2672ZYBERNRE9uq1sST4Yj4v5yHHVW+BgYEIDAS2bAGmTAFqagAPD+C11xSIjQ1yWD3kiAESEbkcV+pVsST4YvDjHJq66s2eJk0CEhOBM2eAjh2ly+clJwyQiMjlsFeF5Kqxq94cISyMgVFdDJCIyCXZM/ixZw+VK/V+EVnK8PfZVE4mR/7eK4QQwmGP5kIqKiqgUqmgVqvh7+8vdXWIyMHsmfVXbhmFiRzBntnp67L085sBUiMxQCIiIrKt8+eBDh0AjeavYx4eQGGh7Yb/LP38Vpq8h4iIiMiBTp/WD46A2pV1Z844vi4MkIiIiEgWoqMBpUFk4uFRu7LO0RggERERkSyEhdXmZPLwqL1dm5NJmtV1XMVGREREsiGXnEwMkIiIiEhW5JCTiUNsRERERAZkESBt2LABERER8PHxQVxcHL755huz5Xfu3InOnTvDx8cHt99+O/bv3693vxACCxYsQEhICHx9fZGQkIDTp0/rlSkrK8Njjz0Gf39/tGrVCpMmTcKVK1ds3jYiIiJyPpIHSDt27EBaWhoWLlyI/Px89OzZE4mJibh48aLR8ocOHcLo0aMxadIkHDlyBElJSUhKSsKxY8d0ZVauXIm1a9di8+bNOHz4MFq0aIHExERcu3ZNV+axxx7DTz/9hAMHDmDv3r3473//i5SUFLu3l4iIiORP8kSRcXFx6Nu3L9avXw8A0Gg0CA8Px9SpUzFr1qx65ZOTk1FVVYW9e/fqjvXv3x8xMTHYvHkzhBAIDQ3F888/jxdeeAEAoFarERQUhMzMTIwaNQonTpxA165d8e2336JPnz4AgOzsbDzwwAM4f/48QkNDG6w3E0USERE5H6dIFFldXY28vDwkJCTojimVSiQkJCA3N9foObm5uXrlASAxMVFXvqCgAMXFxXplVCoV4uLidGVyc3PRqlUrXXAEAAkJCVAqlTh8+LDRx71+/ToqKir0foiIiMg1SRogXb58GTU1NQgKCtI7HhQUhOLiYqPnFBcXmy2v/behMm3bttW7v1mzZggICDD5uOnp6VCpVLqf8PBwC1tJREREzkbyOUjOYvbs2VCr1bqf3377TeoqERERkZ1IGiC1bt0aHh4eKCkp0TteUlKC4OBgo+cEBwebLa/9t6EyhpPAb968ibKyMpOP6+3tDX9/f70fIiIick2SBkheXl6IjY1FTk6O7phGo0FOTg7i4+ONnhMfH69XHgAOHDigKx8ZGYng4GC9MhUVFTh8+LCuTHx8PMrLy5GXl6cr89lnn0Gj0SAuLs5m7SMiIiLnJHkm7bS0NIwfPx59+vRBv379kJGRgaqqKkycOBEAMG7cOLRr1w7p6ekAgGnTpmHQoEFYvXo1hg4diu3bt+O7777Dli1bAAAKhQLTp0/HsmXLEB0djcjISMyfPx+hoaFISkoCAHTp0gVDhgzB5MmTsXnzZty4cQOpqakYNWqURSvYiIiIyLVJHiAlJyfj0qVLWLBgAYqLixETE4Ps7GzdJOtz585BWWdr3wEDBiArKwvz5s3DnDlzEB0djT179qB79+66MjNnzkRVVRVSUlJQXl6OgQMHIjs7Gz4+Proy77zzDlJTU/G3v/0NSqUSI0aMwNq1ax3XcCIiIpItyfMgOSu1Wo1WrVrht99+43wkIiIiJ1FRUYHw8HCUl5dDpVKZLCd5D5KzqqysBAAu9yciInJClZWVZgMk9iA1kkajwYULF+Dn5weFQmGz62ojW1fumXL1NrJ9zs/V2+jq7QNcv41sX+MJIVBZWYnQ0FC9KTyG2IPUSEqlEmFhYXa7vjukEnD1NrJ9zs/V2+jq7QNcv41sX+OY6znSYqJIIiIiIgMMkIiIiIgMMECSGW9vbyxcuBDe3t5SV8VuXL2NbJ/zc/U2unr7ANdvI9tnf5ykTURERGSAPUhEREREBhggERERERlggERERERkgAESERERkQEGSA6wYcMGREREwMfHB3Fxcfjmm2/Mls/IyECnTp3g6+uL8PBwPPfcc7h27VqTrmlPtm7fokWLoFAo9H46d+5s72aYZU0bb9y4gSVLliAqKgo+Pj7o2bMnsrOzm3RNe7N1++T0Gv73v//F8OHDERoaCoVCgT179jR4zhdffIHevXvD29sbHTt2RGZmZr0ycnn97NE+Ob1+gPVtLCoqwpgxY3DbbbdBqVRi+vTpRsvt3LkTnTt3ho+PD26//Xbs37/f9pW3gD3al5mZWe81rLthuyNZ277du3fj3nvvRZs2beDv74/4+Hh8/PHH9crZ/W9QkF1t375deHl5iTfffFP89NNPYvLkyaJVq1aipKTEaPl33nlHeHt7i3feeUcUFBSIjz/+WISEhIjnnnuu0de0J3u0b+HChaJbt26iqKhI93Pp0iVHNakea9s4c+ZMERoaKvbt2yfOnj0rNm7cKHx8fER+fn6jr2lP9mifnF7D/fv3i7lz54rdu3cLAOL99983W/6XX34RzZs3F2lpaeL48eNi3bp1wsPDQ2RnZ+vKyOn1s0f75PT6CWF9GwsKCsSzzz4rtm3bJmJiYsS0adPqlTl48KDw8PAQK1euFMePHxfz5s0Tnp6e4scff7RPI8ywR/u2bt0q/P399V7D4uJi+zSgAda2b9q0aWLFihXim2++ET///LOYPXu28PT0dPh7KAMkO+vXr5945plndLdrampEaGioSE9PN1r+mWeeEffcc4/esbS0NHHHHXc0+pr2ZI/2LVy4UPTs2dMu9W0Ma9sYEhIi1q9fr3fs4YcfFo899lijr2lP9mif3F5DLUvenGfOnCm6deumdyw5OVkkJibqbsvp9avLVu2T6+snhGVtrGvQoEFGA4iRI0eKoUOH6h2Li4sTU6ZMaWINm8ZW7du6datQqVQ2q5etWNs+ra5du4rFixfrbjvib5BDbHZUXV2NvLw8JCQk6I4plUokJCQgNzfX6DkDBgxAXl6erqvwl19+wf79+/HAAw80+pr2Yo/2aZ0+fRqhoaG49dZb8dhjj+HcuXP2a4gZjWnj9evX63Vl+/r64quvvmr0Ne3FHu3TkstraK3c3Fy95wMAEhMTdc+HnF6/xmiofVrO+vpZytLnwZlduXIFHTp0QHh4OB566CH89NNPUlepUTQaDSorKxEQEADAcX+DDJDs6PLly6ipqUFQUJDe8aCgIBQXFxs9Z8yYMViyZAkGDhwIT09PREVFYfDgwZgzZ06jr2kv9mgfAMTFxSEzMxPZ2dnYtGkTCgoKcOedd6KystKu7TGmMW1MTEzEmjVrcPr0aWg0Ghw4cAC7d+9GUVFRo69pL/ZoHyCv19BaxcXFRp+PiooK/Pnnn7J6/RqjofYBzv36WcrU8+AMr6ElOnXqhDfffBMffPAB/vnPf0Kj0WDAgAE4f/681FWz2qpVq3DlyhWMHDkSgOPeQxkgycwXX3yBl156CRs3bkR+fj52796Nffv2YenSpVJXzSYsad/999+PRx99FD169EBiYiL279+P8vJyvPfeexLW3HKvvvoqoqOj0blzZ3h5eSE1NRUTJ06EUukaf26WtM/ZX0N3x9fP+cXHx2PcuHGIiYnBoEGDsHv3brRp0wavvfaa1FWzSlZWFhYvXoz33nsPbdu2dehjN3Poo7mZ1q1bw8PDAyUlJXrHS0pKEBwcbPSc+fPnY+zYsXjyyScBALfffjuqqqqQkpKCuXPnNuqa9mKP9hkLIlq1aoXbbrsNZ86csX0jGtCYNrZp0wZ79uzBtWvXUFpaitDQUMyaNQu33npro69pL/ZonzFSvobWCg4ONvp8+Pv7w9fXFx4eHrJ5/RqjofYZ40yvn6VMPQ/O8Bo2hqenJ3r16uVUr+H27dvx5JNPYufOnXrDaY56D3WNr7Qy5eXlhdjYWOTk5OiOaTQa5OTkID4+3ug5V69erRckeHh4AACEEI26pr3Yo33GXLlyBWfPnkVISIiNam65pjzfPj4+aNeuHW7evIldu3bhoYceavI1bc0e7TNGytfQWvHx8XrPBwAcOHBA93zI6fVrjIbaZ4wzvX6Waszz4Mxqamrw448/Os1r+O6772LixIl49913MXToUL37HPY3aLPp3mTU9u3bhbe3t8jMzBTHjx8XKSkpolWrVrrllmPHjhWzZs3SlV+4cKHw8/MT7777rvjll1/EJ598IqKiosTIkSMtvqazt+/5558XX3zxhSgoKBAHDx4UCQkJonXr1uLixYsOb58Q1rfx66+/Frt27RJnz54V//3vf8U999wjIiMjxR9//GHxNR3JHu2T02tYWVkpjhw5Io4cOSIAiDVr1ogjR46IX3/9VQghxKxZs8TYsWN15bXL4GfMmCFOnDghNmzYYHSZv1xeP3u0T06vnxDWt1EIoSsfGxsrxowZI44cOSJ++ukn3f0HDx4UzZo1E6tWrRInTpwQCxculGyZvz3at3jxYvHxxx+Ls2fPiry8PDFq1Cjh4+OjV8ZRrG3fO++8I5o1ayY2bNigl6agvLxcV8YRf4MMkBxg3bp1on379sLLy0v069dPfP3117r7Bg0aJMaPH6+7fePGDbFo0SIRFRUlfHx8RHh4uPj73/+u9+HT0DUdzdbtS05OFiEhIcLLy0u0a9dOJCcnizNnzjiwRfVZ08YvvvhCdOnSRXh7e4vAwEAxduxY8fvvv1t1TUezdfvk9Bp+/vnnAkC9H22bxo8fLwYNGlTvnJiYGOHl5SVuvfVWsXXr1nrXlcvrZ4/2yen1E6JxbTRWvkOHDnpl3nvvPXHbbbcJLy8v0a1bN7Fv3z7HNMiAPdo3ffp03e9nUFCQeOCBB/TyCDmSte0bNGiQ2fJa9v4bVAhhYlyDiIiIyE1xDhIRERGRAQZIRERERAYYIBEREREZYIBEREREZIABEhEREZEBBkhEREREBhggERERERlggERE5CK++OILKBQKlJeXS10VIqfHAImIrDZhwgQoFAosX75c7/iePXugUCh0t4UQeP311xEfHw9/f3+0bNkS3bp1w7Rp0yzeNPPq1auYPXs2oqKi4OPjgzZt2mDQoEH44IMPdGUiIiKQkZFhk7bZm/a5UygU8PT0RGRkJGbOnIlr165ZdZ3Bgwdj+vTpescGDBiAoqIiqFQqG9aYyD0xQCKiRvHx8cGKFSvwxx9/GL1fCIExY8bg2WefxQMPPIBPPvkEx48fxxtvvAEfHx8sW7bMosd56qmnsHv3bqxbtw4nT55EdnY2HnnkEZSWltqyOQ41ZMgQFBUV4ZdffsErr7yC1157DQsXLmzydb28vBAcHKwXpBJRI9l04xIicgvjx48Xw4YNE507dxYzZszQHX///feF9m3l3XffFQDEBx98YPQaGo3GosdSqVQiMzPT5P3G9m3S+vLLL8XAgQOFj4+PCAsLE1OnThVXrlzR3f/WW2+J2NhY0bJlSxEUFCRGjx4tSkpKdPdr95DKzs4WMTExwsfHR9x9992ipKRE7N+/X3Tu3Fn4+fmJ0aNHi6qqKovaM378ePHQQw/pHXv44YdFr169dLcvX74sRo0aJUJDQ4Wvr6/o3r27yMrK0ruGYZsLCgp09a27t+G//vUv0bVrV+Hl5SU6dOggVq1aZVE9idwde5CIqFE8PDzw0ksvYd26dTh//ny9+99991106tQJDz74oNHzLe3lCA4Oxv79+1FZWWn0/t27dyMsLAxLlixBUVERioqKAABnz57FkCFDMGLECBw9ehQ7duzAV199hdTUVN25N27cwNKlS/HDDz9gz549KCwsxIQJE+o9xqJFi7B+/XocOnQIv/32G0aOHImMjAxkZWVh3759+OSTT7Bu3TqL2mPo2LFjOHToELy8vHTHrl27htjYWOzbtw/Hjh1DSkoKxo4di2+++QYA8OqrryI+Ph6TJ0/WtTk8PLzetfPy8jBy5EiMGjUKP/74IxYtWoT58+cjMzOzUXUlcitSR2hE5Hzq9oL0799fPPHEE0II/R6kzp07iwcffFDvvGnTpokWLVqIFi1aiHbt2ln0WP/5z39EWFiY8PT0FH369BHTp08XX331lV6ZDh06iFdeeUXv2KRJk0RKSoresS+//FIolUrx559/Gn2sb7/9VgAQlZWVQoi/epA+/fRTXZn09HQBQJw9e1Z3bMqUKSIxMdGi9owfP154eHiIFi1aCG9vbwFAKJVK8a9//cvseUOHDhXPP/+87vagQYPEtGnT9MoY9iCNGTNG3HvvvXplZsyYIbp27WpRXYncGXuQiKhJVqxYgW3btuHEiRMNlp07dy6+//57LFiwAFeuXLHo+nfddRd++eUX5OTk4JFHHsFPP/2EO++8E0uXLjV73g8//IDMzEy0bNlS95OYmAiNRoOCggIAtT0sw4cPR/v27eHn54dBgwYBAM6dO6d3rR49euj+HxQUhObNm+PWW2/VO3bx4kWL2gMAd999N77//nscPnwY48ePx8SJEzFixAjd/TU1NVi6dCluv/12BAQEoGXLlvj444/r1ashJ06cwB133KF37I477sDp06dRU1Nj1bWI3A0DJCJqkrvuuguJiYmYPXu23vHo6GicOnVK71ibNm3QsWNHtG3b1qrH8PT0xJ133okXX3wRn3zyCZYsWYKlS5eiurra5DlXrlzBlClT8P333+t+fvjhB5w+fRpRUVGoqqpCYmIi/P398c477+Dbb7/F+++/DwD1ruvp6an7v3b1WV0KhQIajcbi9rRo0QIdO3ZEz5498eabb+Lw4cN44403dPe//PLLePXVV/Hiiy/i888/x/fff4/ExESz7SUi22omdQWIyPktX74cMTEx6NSpk+7Y6NGjMWbMGHzwwQd46KGHbPp4Xbt2xc2bN3Ht2jV4eXnBy8urXo9I7969cfz4cXTs2NHoNX788UeUlpZi+fLluvk73333nU3raQmlUok5c+YgLS0NY8aMga+vLw4ePIiHHnoIjz/+OABAo9Hg559/RteuXXXnGWuzoS5duuDgwYN6xw4ePIjbbrsNHh4etm8MkQthDxIRNdntt9+Oxx57DGvXrtUdGzVqFB555BGMGjUKS5YsweHDh1FYWIj//Oc/2LFjh8Uf0IMHD8Zrr72GvLw8FBYWYv/+/ZgzZw7uvvtu+Pv7A6jNg/Tf//4Xv//+Oy5fvgwAePHFF3Ho0CGkpqbi+++/x+nTp/HBBx/oJmm3b98eXl5eWLduHX755Rd8+OGHDQ7b2cujjz4KDw8PbNiwAUBt79uBAwdw6NAhnDhxAlOmTEFJSYneOREREbrn9PLly0Z7sJ5//nnk5ORg6dKl+Pnnn7Ft2zasX78eL7zwgkPaReTMGCARkU0sWbJE70NaoVBgx44dyMjIwP79+/G3v/0NnTp1whNPPIHw8HB89dVXFl03MTER27Ztw3333YcuXbpg6tSpSExMxHvvvaf32IWFhYiKikKbNm0A1M4b+s9//oOff/4Zd955J3r16oUFCxYgNDQUQO1wX2ZmJnbu3ImuXbti+fLlWLVqlQ2fEcs1a9YMqampWLlyJaqqqjBv3jz07t0biYmJGDx4MIKDg5GUlKR3zgsvvAAPDw907doVbdq0MTo/qXfv3njvvfewfft2dO/eHQsWLMCSJUuMrtQjIn0KIYSQuhJEREREcsIeJCIiIiIDDJCISFJ1l+Eb/nz55ZdSV88q586dM9sea5fpE5F0OMRGRJIyt2ltu3bt4Ovr68DaNM3NmzdRWFho8v6IiAg0a8bFw0TOgAESERERkQEOsREREREZYIBEREREZIABEhEREZEBBkhEREREBhggERERERlggERERERkgAESERERkQEGSEREREQG/j9OpNzzDK4s9gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZCBJREFUeJzt3XlcVOX+B/DPsAybMGwBw6Ig4FIqCipClksUlqJUt9TKzEzL5JZZWZZiZaVpGrllVi4thNermZrXVLJftyQ13HJNDAQSUEEGhARknt8f3DkyMDNss7B83q/XvGDOec6Z5zyXnO99zvd8H5kQQoCIiIiImsTK0h0gIiIiaosYRBERERE1A4MoIiIiomZgEEVERETUDAyiiIiIiJqBQRQRERFRMzCIIiIiImoGBlFEREREzcAgioiIiKgZGEQREbVz69evh0wmQ1ZWlqW7QtSuMIgiohY7dOgQEhIScNttt8HJyQmdO3fGww8/jD/++KNe26FDh0Imk0Emk8HKygouLi7o3r07JkyYgD179jTpc7dv344hQ4bAy8sLjo6O6Nq1Kx5++GHs2rXLWJdWz7vvvoutW7fW275//3688cYbKC4uNtln1/XGG29IYymTyeDo6Ihbb70Vc+bMQUlJiVE+Izk5GUlJSUY5F1F7wyCKiFrsvffew+bNm3HXXXfhww8/xNSpU/HTTz8hPDwcJ06cqNfe398fX3zxBT7//HMsXrwYo0ePxv79+3HPPfdg7NixqKqqavAz33//fYwePRoymQyzZ8/GBx98gAcffBDnzp1DSkqKKS4TgOEg6s033zRrEKXx0Ucf4YsvvsDSpUvRo0cPvPPOOxgxYgSMsTQqgygi/Wws3QEiavtmzpyJ5ORkyOVyadvYsWPRu3dvLFy4EF9++aVWe4VCgccee0xr28KFC/Hcc89h1apVCAwMxHvvvaf3827cuIH58+fj7rvvxu7du+vtv3TpUguvqPUoLy+Ho6OjwTb/+Mc/4OnpCQB45pln8OCDD2LLli349ddfERUVZY5uEnVInIkiohaLjo7WCqAAIDQ0FLfddhtOnz7dqHNYW1tj2bJluPXWW7FixQqoVCq9ba9cuYKSkhLcfvvtOvd7eXlpvb9+/TreeOMNdOvWDfb29lAqlXjggQdw/vx5qc3777+P6OhoeHh4wMHBAREREfj3v/+tdR6ZTIaysjJs2LBBuoX2xBNP4I033sDLL78MAAgKCpL21c5B+vLLLxEREQEHBwe4u7tj3LhxyMnJ0Tr/0KFD0atXL6Snp+POO++Eo6MjXnvttUaNX23Dhw8HAGRmZhpst2rVKtx2222ws7ODr68vpk+frjWTNnToUHz33Xe4cOGCdE2BgYFN7g9Re8WZKCIyCSEECgoKcNtttzX6GGtra4wfPx5z587Fzz//jJEjR+ps5+XlBQcHB2zfvh3//Oc/4e7urvec1dXVGDVqFFJTUzFu3Dg8//zzKC0txZ49e3DixAkEBwcDAD788EOMHj0ajz76KCorK5GSkoKHHnoIO3bskPrxxRdf4KmnnsLAgQMxdepUAEBwcDCcnJzwxx9/4Ouvv8YHH3wgzQrdcsstAIB33nkHc+fOxcMPP4ynnnoKly9fxvLly3HnnXfiyJEjcHV1lfpbWFiIe++9F+PGjcNjjz0Gb2/vRo+fhiY49PDw0NvmjTfewJtvvomYmBhMmzYNZ8+exUcffYRDhw7hl19+ga2tLV5//XWoVCrk5ubigw8+AAB06tSpyf0harcEEZEJfPHFFwKA+Oyzz7S2DxkyRNx22216j/vmm28EAPHhhx8aPH9iYqIAIJycnMS9994r3nnnHZGenl6v3dq1awUAsXTp0nr71Gq19Ht5ebnWvsrKStGrVy8xfPhwre1OTk5i4sSJ9c61ePFiAUBkZmZqbc/KyhLW1tbinXfe0dr++++/CxsbG63tQ4YMEQDE6tWr9V53bfPmzRMAxNmzZ8Xly5dFZmam+Pjjj4WdnZ3w9vYWZWVlQggh1q1bp9W3S5cuCblcLu655x5RXV0tnW/FihUCgFi7dq20beTIkaJLly6N6g9RR8PbeURkdGfOnMH06dMRFRWFiRMnNulYzUxHaWmpwXZvvvkmkpOT0a9fP3z//fd4/fXXERERgfDwcK1biJs3b4anpyf++c9/1juHTCaTfndwcJB+v3r1KlQqFe644w4cPny4Sf2va8uWLVCr1Xj44Ydx5coV6eXj44PQ0FDs27dPq72dnR0mTZrUpM/o3r07brnlFgQFBeHpp59GSEgIvvvuO725VHv37kVlZSVmzJgBK6ubXwNTpkyBi4sLvvvuu6ZfKFEHxNt5RGRU+fn5GDlyJBQKBf7973/D2tq6Scdfu3YNAODs7Nxg2/Hjx2P8+PEoKSnBgQMHsH79eiQnJyMuLg4nTpyAvb09zp8/j+7du8PGxvA/dzt27MDbb7+No0ePoqKiQtpeO9BqjnPnzkEIgdDQUJ37bW1ttd77+fnVyy9ryObNm+Hi4gJbW1v4+/tLtyj1uXDhAoCa4Ks2uVyOrl27SvuJyDAGUURkNCqVCvfeey+Ki4vx3//+F76+vk0+h6YkQkhISKOPcXFxwd133427774btra22LBhAw4cOIAhQ4Y06vj//ve/GD16NO68806sWrUKSqUStra2WLduHZKTk5t8DbWp1WrIZDL85z//0RlQ1s0xqj0j1lh33nmnlIdFRObDIIqIjOL69euIi4vDH3/8gb179+LWW29t8jmqq6uRnJwMR0dHDB48uFn96N+/PzZs2IC8vDwANYnfBw4cQFVVVb1ZH43NmzfD3t4e33//Pezs7KTt69atq9dW38yUvu3BwcEQQiAoKAjdunVr6uWYRJcuXQAAZ8+eRdeuXaXtlZWVyMzMRExMjLStpTNxRO0Zc6KIqMWqq6sxduxYpKWlYdOmTc2qTVRdXY3nnnsOp0+fxnPPPQcXFxe9bcvLy5GWlqZz33/+8x8AN29VPfjgg7hy5QpWrFhRr634XzFKa2tryGQyVFdXS/uysrJ0FtV0cnLSWVDTyckJAOrte+CBB2BtbY0333yzXvFLIQQKCwt1X6QJxcTEQC6XY9myZVp9+uyzz6BSqbSeinRycjJYboKoI+NMFBG12Isvvoht27YhLi4ORUVF9Ypr1i2sqVKppDbl5eXIyMjAli1bcP78eYwbNw7z5883+Hnl5eWIjo7GoEGDMGLECAQEBKC4uBhbt27Ff//7X8THx6Nfv34AgMcffxyff/45Zs6ciYMHD+KOO+5AWVkZ9u7di2effRZjxozByJEjsXTpUowYMQKPPPIILl26hJUrVyIkJATHjx/X+uyIiAjs3bsXS5cuha+vL4KCghAZGYmIiAgAwOuvv45x48bB1tYWcXFxCA4Oxttvv43Zs2cjKysL8fHxcHZ2RmZmJr755htMnToVL730UovGv6luueUWzJ49G2+++SZGjBiB0aNH4+zZs1i1ahUGDBig9b9XREQENm7ciJkzZ2LAgAHo1KkT4uLizNpfolbLko8GElH7oHk0X9/LUNtOnTqJ0NBQ8dhjj4ndu3c36vOqqqrEJ598IuLj40WXLl2EnZ2dcHR0FP369ROLFy8WFRUVWu3Ly8vF66+/LoKCgoStra3w8fER//jHP8T58+elNp999pkIDQ0VdnZ2okePHmLdunVSCYHazpw5I+68807h4OAgAGiVO5g/f77w8/MTVlZW9codbN68WQwePFg4OTkJJycn0aNHDzF9+nRx9uxZrbExVP6hLk3/Ll++bLBd3RIHGitWrBA9evQQtra2wtvbW0ybNk1cvXpVq821a9fEI488IlxdXQUAljsgqkUmhBEWVyIiIiLqYJgTRURERNQMDKKIiIiImoFBFBEREVEzMIgiIiIiagYGUURERETNwCCKiIiIqBlYbNOE1Go1Ll68CGdnZy6dQERE1EYIIVBaWgpfX19YWemfb2IQZUIXL15EQECApbtBREREzZCTkwN/f3+9+xlEmZCzszOAmv8RDK0DRkRERK1HSUkJAgICpO9xfRhEmZDmFp6LiwuDKCIiojamoVQcJpYTERERNQODKCIiIqJmYBBFRERE1AzMibKw6upqVFVVWbob7ZatrS2sra0t3Q0iImqHGERZiBAC+fn5KC4utnRX2j1XV1f4+PiwVhcRERkVgygL0QRQXl5ecHR05Be8CQghUF5ejkuXLgEAlEqlhXtERETtCYMoC6iurpYCKA8PD0t3p11zcHAAAFy6dAleXl68tUdEREbDxHIL0ORAOTo6WrgnHYNmnJl7RkRExsQgyoJ4C888OM5ERGQKvJ1HREREbUJhYSEqKyv17pfL5WZNk2EQRURERK1eYWEhVqxY0WC7hIQEswVSvJ1HTfLEE09AJpNBJpPB1tYW3t7euPvuu7F27Vqo1epGn2f9+vVwdXU1XUeJiKhdMTQD1Zx2xsCZqDbKklOaI0aMwLp161BdXY2CggLs2rULzz//PP79739j27ZtsLHhnxUREbV//LZrgyw9pWlnZwcfHx8AgJ+fH8LDwzFo0CDcddddWL9+PZ566iksXboU69atw59//gl3d3fExcVh0aJF6NSpE3788UdMmjQJwM2k73nz5uGNN97AF198gQ8//BBnz56Fk5MThg8fjqSkJHh5eRn9OoiIiFqCt/PaoNY4pTl8+HCEhYVhy5YtAAArKyssW7YMJ0+exIYNG/DDDz9g1qxZAIDo6GgkJSXBxcUFeXl5yMvLw0svvQSgpgzB/PnzcezYMWzduhVZWVl44oknzHYdREREjcWZKDKaHj164Pjx4wCAGTNmSNsDAwPx9ttv45lnnsGqVasgl8uhUCggk8mkGS2NJ598Uvq9a9euWLZsGQYMGIBr166hU6dOZrkOIiKixmgVM1ErV65EYGAg7O3tERkZiYMHDxpsv2nTJvTo0QP29vbo3bs3du7cqbVfCIHExEQolUo4ODggJiYG586dk/ZnZWVh8uTJCAoKgoODA4KDgzFv3jytmZusrCwpgbr269dffzXuxbcjQgjp9tzevXtx1113wc/PD87OzpgwYQIKCwtRXl5u8Bzp6emIi4tD586d4ezsjCFDhgAAsrOzTd5/IiJqvVQqlVHbGYPFg6iNGzdi5syZmDdvHg4fPoywsDDExsZK653VtX//fowfPx6TJ0/GkSNHEB8fj/j4eJw4cUJqs2jRIixbtgyrV6/GgQMH4OTkhNjYWFy/fh0AcObMGajVanz88cc4efIkPvjgA6xevRqvvfZavc/bu3evdMspLy8PERERphmIduD06dMICgpCVlYWRo0ahT59+mDz5s1IT0/HypUrARi+xVhWVobY2Fi4uLjgq6++wqFDh/DNN980eBwREbV/jV11wpyrU1g8iFq6dCmmTJmCSZMm4dZbb8Xq1avh6OiItWvX6mz/4YcfYsSIEXj55ZfRs2dPzJ8/H+Hh4VKitRACSUlJmDNnDsaMGYM+ffrg888/x8WLF7F161YAN58uu+eee9C1a1eMHj0aL730kpTPU5uHhwd8fHykl62trcnGoi374Ycf8Pvvv+PBBx9Eeno61Go1lixZgkGDBqFbt264ePGiVnu5XI7q6mqtbWfOnEFhYSEWLlyIO+64Az169NAbTBMRUcfS2Ce/zfmEuEWDqMrKSqSnpyMmJkbaZmVlhZiYGKSlpek8Ji0tTas9AMTGxkrtMzMzkZ+fr9VGoVAgMjJS7zmBmuk/d3f3ettHjx4NLy8vDB48GNu2bTN4PRUVFSgpKdF6tUcVFRXIz8/HX3/9hcOHD+Pdd9/FmDFjMGrUKDz++OMICQlBVVUVli9fjj///BNffPEFVq9erXWOwMBAXLt2Dampqbhy5QrKy8vRuXNnyOVy6bht27Zh/vz5FrpKIiJqTRpbW9CcNQgtGkRduXIF1dXV8Pb21tru7e2N/Px8ncfk5+cbbK/52ZRzZmRkYPny5Xj66aelbZ06dcKSJUuwadMmfPfddxg8eDDi4+MNBlILFiyAQqGQXgEBAXrbtmW7du2CUqlEYGAgRowYgX379mHZsmX49ttvYW1tjbCwMCxduhTvvfceevXqha+++goLFizQOkd0dDSeeeYZjB07FrfccgsWLVqEW265BevXr8emTZtw6623YuHChXj//fctdJVERESGdfin8/766y+MGDECDz30EKZMmSJt9/T0xMyZM6X3AwYMwMWLF7F48WKMHj1a57lmz56tdUxJSYlJAim5XG7Udk2xfv16rF+/vsF2L7zwAl544QWtbRMmTNB6/9FHH+Gjjz7S2jZ+/HiMHz9ea5sQonmdJSIiMiGLBlGenp6wtrZGQUGB1vaCgoJ6j75r+Pj4GGyv+VlQUAClUqnVpm/fvlrHXbx4EcOGDUN0dDTWrFnTYH8jIyOxZ88evfvt7OxgZ2fX4HlaysPDAwkJCa1qEUYiIiJj0Lcix5UrVyzQG8MsGkTJ5XJEREQgNTUV8fHxAAC1Wo3U1FQkJCToPCYqKgqpqaladYj27NmDqKgoAEBQUBB8fHyQmpoqBU0lJSU4cOAApk2bJh3z119/YdiwYYiIiMC6detgZdXwnc2jR49qBWaWxACJiIjam8auyAEAKpUzioo84O5eCIWi1MQ9083it/NmzpyJiRMnon///hg4cCCSkpJQVlYmLQvy+OOPw8/PT8qpef755zFkyBAsWbIEI0eOREpKCn777TdpJkkmk2HGjBl4++23ERoaiqCgIMydOxe+vr5SoPbXX39h6NCh6NKlC95//31cvnxZ6o9mJmvDhg2Qy+Xo168fAGDLli1Yu3YtPv30U3MNDRERUYfS2HI2hw/3w/btoyCEFWQyNeLidiA8/AgA06Sy6GPxIGrs2LG4fPkyEhMTkZ+fj759+2LXrl1SYnh2drbWLFF0dDSSk5MxZ84cvPbaawgNDcXWrVvRq1cvqc2sWbNQVlaGqVOnori4GIMHD8auXbtgb28PoGbmKiMjAxkZGfD399fqT+38m/nz5+PChQuwsbFBjx49sHHjRvzjH/8w5XAQERF1WI0plKlSOWPHjjgIUVPcWQgrfPddHBITIxEYaGPWOzUywaxdkykpKYFCoYBKpYKLi4u0/fr168jMzERQUJAU2JHpcLyJiNqG33//XWfNxtoyMwOxYcPEetv37QOGDjVOP/R9f9dl8WKbRERERI1la1sBoP78j5OT+fvCIIqIiIjajKoqOwCyetvLyszfFwZRRERE1Ga4uxfCykp7JsraGggJMX9fGEQRERFRm6FQlCIx8S9YW9e8t7YGPv4YqPOcmFkwiKJW5ccff4RMJkNxcXGjjwkMDERSUpLJ+kRERObR2MWDH364FFlZNcnkWVnA5Mkm7ZZeDKKoSZ544gnIZDI888wz9fZNnz4dMpkMTzzxhPk7RkREbV7dxYNzc5XYv38QcnOV9dr5+9c8jWeJGSgNi9eJorYnICAAKSkp+OCDD+Dg4ACgpoxAcnIyOnfubOHeERFRW1W7UOY334zBsWNhqEkiFwgLO4b77/+2XjtL4kwUNVl4eDgCAgK0anls2bIFnTt3liq8A0BFRQWee+45eHl5wd7eHoMHD8ahQ4e0zrVz505069YNDg4OGDZsGLKysup93s8//4w77rgDDg4OCAgIwHPPPYcySzyGQUREZpGbq6wVQAGADMeOhdWbkbI0BlHtQG5uzX3h3FzzfeaTTz6JdevWSe/Xrl0rLdWjMWvWLGzevBkbNmzA4cOHERISgtjYWBQVFQEAcnJy8MADDyAuLg5Hjx7FU089hVdffVXrHOfPn8eIESPw4IMP4vjx49i4cSN+/vlnvWsrEhFR26VZ9iU7uwvqlzGQISens1Y7S2MQ1cZ99hnQpQswfHjNz88+M8/nPvbYY/j5559x4cIFXLhwAb/88gsee+wxaX9ZWRk++ugjLF68GPfeey9uvfVWfPLJJ3BwcMBn/+vkRx99hODgYCxZsgTdu3fHo48+Wi+fasGCBXj00UcxY8YMhIaGIjo6GsuWLcPnn3+O69evm+diiYjIrDp3voD6BTUFAgKyLdEdvZgT1Ybl5gJTpwJqdc17tRp4+mkgNtb0iXa33HILRo4cifXr10MIgZEjR8LT01Paf/78eVRVVeH222+Xttna2mLgwIE4ffo0AOD06dOIjIzUOm9UVJTW+2PHjuH48eP46quvpG1CCKjVamRmZqJnz56muDwiIrIgf/88hIUdq5cT5e+fZ+muaWEQ1YadO3czgNKorgYyMszztMKTTz4p3VZbuXKlST7j2rVrePrpp/Hcc8/V28ckdiKi9uv++7/FgAEHkZPTGQEB2a0ugAIYRLVpoaGAlZV2IGXOqq0jRoxAZWUlZDIZYmNjtfYFBwdDLpfjl19+QZcuXQAAVVVVOHToEGbMmAEA6NmzJ7Zt26Z13K+//qr1Pjw8HKdOnUKIJUrREhGRRfn757XK4EmDOVFtmL8/sGYNLFa11draGqdPn8apU6dgrenE/zg5OWHatGl4+eWXsWvXLpw6dQpTpkxBeXk5Jv+vKtozzzyDc+fO4eWXX8bZs2eRnJyM9evXa53nlVdewf79+5GQkICjR4/i3Llz+Pbbb5lYTkREFseZqDZu8uSaHKiMjJoZKHMXHXNxcdG7b+HChVCr1ZgwYQJKS0vRv39/fP/993BzcwNQcztu8+bNeOGFF7B8+XIMHDgQ7777Lp588knpHH369MH//d//4fXXX8cdd9wBIQSCg4MxduxYk18bERGRITIhRN30dzKSkpISKBQKqFQqrWDj+vXryMzMRFBQEOzt7S3Yw46B401E1DYUFhZixYoVDbZLSEiAh4eHyfqh7/u7Ls5EERERUavg4eGBhIQEg3Wg5HK5SQOopmAQRURERK1G7QApN7fmSfTQUMuukacPE8uJiIio1bFUMemmYBBFRERErYq+YtLmXN6sMRhEWRBz+s2D40xE1LYYKibdmjCIsgBbW1sAQHl5uYV70jFoxlkz7kRE1LppiknXZs5i0o3FxHILsLa2hqurKy5dugQAcHR0hExWd7VqaikhBMrLy3Hp0iW4urrWKwhKREStk6aY9NNP18xAmbuYdGMxiLIQHx8fAJACKTIdV1dXabyJiKhtsHQx6cZgEGUhMpkMSqUSXl5eqKqqsnR32i1bW1vOQBERWUhhYWGLaj75+7fO4EmDQZSFWVtb80ueiIjandZSfdyUmFhORERERmdoBqo57VojBlFERERkciqVMzIzA6FSOVu6K0bD23lERERkUocP98P27aMghBVkMjXi4nYgPPyIpbvVYpyJIiIiIpNRqZylAAoAhLDC9u2j2sWMFIMoIiIiMpmiIg8pgNIQwgpFRe4W6pHxMIgiIiIik3F3L4RMpr2Gi0ymhrt7kYV6ZDwMooiIiMhkFIpSxMXtkAIpTU6UQlFq4Z61HBPLiYiIyOjkcrn0e3j4EQQHZ6CoyB3u7kVaAVTtdm0NgygiIiIyOg8PDyQkJLSoYnlrxyCKiIiImq2lS7u0ZQyiiIiIqFk6wtIuhjCxnIiIiJql7gyUvqrkbXlpF0M4E0VEREQt1l6rkhvCmSgiIiJqluLiYgANVyXXtGtvGEQRERFRs9y4cQNAw1XJNe3aG97OIyIiIoP0PYF39epVADVVyQEBQCbtay9VyQ1hEEVERER6NfYJvLpBlBAm61Krwdt5REREpFdjnsArKvJA/ZCifSwybAhnooiIiKhR9D2Bp1lkuHZeVO3beba2tpbqsklxJoqIiIj0aswTeA0tMqxQKCzSd1PjTBQRERHp1Zgn8BSKUoOLDLdXDKKIiIioQba2FaibPA4I2NrezJlSKEp1Bk9yudzk/bMEBlFERETUoKoqO2gHUAAgQ1VVTYA0bNgwhIaG1juOCxATERFRh9ZQ8ribmxuUSqWlumcRTCwnIiIivTRP1jWUPN5en8AzhDNRREREpFftJ+sMJY+31yfwDGEQRURERI2mL3m8I+LtPCIiItKrsU/Wtdcn8AzhTBQRERHp5eHhgYSEBJ0LEGu05yfwDGEQRURERAZ1xACpMXg7j4iIiKgZGEQRERERNUOrCKJWrlyJwMBA2NvbIzIyEgcPHjTYftOmTejRowfs7e3Ru3dv7Ny5U2u/EAKJiYlQKpVwcHBATEwMzp07J+3PysrC5MmTERQUBAcHBwQHB2PevHn17vceP34cd9xxB+zt7REQEIBFixYZ76KJiIioTbN4ELVx40bMnDkT8+bNw+HDhxEWFobY2FhcunRJZ/v9+/dj/PjxmDx5Mo4cOYL4+HjEx8fjxIkTUptFixZh2bJlWL16NQ4cOAAnJyfExsbi+vXrAIAzZ85ArVbj448/xsmTJ/HBBx9g9erVeO2116RzlJSU4J577kGXLl2Qnp6OxYsX44033sCaNWtMOyBERETUNggLGzhwoJg+fbr0vrq6Wvj6+ooFCxbobP/www+LkSNHam2LjIwUTz/9tBBCCLVaLXx8fMTixYul/cXFxcLOzk58/fXXevuxaNEiERQUJL1ftWqVcHNzExUVFdK2V155RXTv3r3R16ZSqQQAoVKpGn0MERERWVZjv78tOhNVWVmJ9PR0xMTESNusrKwQExODtLQ0ncekpaVptQeA2NhYqX1mZiby8/O12igUCkRGRuo9JwCoVCq4u7trfc6dd96pVfciNjYWZ8+exdWrV3Weo6KiAiUlJVovIiIiap8sGkRduXIF1dXV8Pb21tru7e2N/Px8ncfk5+cbbK/52ZRzZmRkYPny5Xj66acb/Jzan1HXggULoFAopFdAQIDOdkRERNT2WTwnytL++usvjBgxAg899BCmTJnSonPNnj0bKpVKeuXk5Bipl0RERNTaWDSI8vT0hLW1NQoKCrS2FxQUwMfHR+cxPj4+BttrfjbmnBcvXsSwYcMQHR1dL2Fc3+fU/oy67Ozs4OLiovUiIiKi9smiQZRcLkdERARSU1OlbWq1GqmpqYiKitJ5TFRUlFZ7ANizZ4/UPigoCD4+PlptSkpKcODAAa1z/vXXXxg6dCgiIiKwbt06WFlpD0VUVBR++uknVFVVaX1O9+7d4ebm1vyLJiIiovbBTInueqWkpAg7Ozuxfv16cerUKTF16lTh6uoq8vPzhRBCTJgwQbz66qtS+19++UXY2NiI999/X5w+fVrMmzdP2Nrait9//11qs3DhQuHq6iq+/fZbcfz4cTFmzBgRFBQk/v77byGEELm5uSIkJETcddddIjc3V+Tl5UkvjeLiYuHt7S0mTJggTpw4IVJSUoSjo6P4+OOPG31tfDqPiIio7Wns97fF184bO3YsLl++jMTEROTn56Nv377YtWuXlMSdnZ2tNUsUHR2N5ORkzJkzB6+99hpCQ0OxdetW9OrVS2oza9YslJWVYerUqSguLsbgwYOxa9cu2NvbA6iZUcrIyEBGRgb8/f21+iOEAFDzRN/u3bsxffp0REREwNPTE4mJiZg6daqph4SIiIjaAJnQRA1kdCUlJVAoFFCpVMyPIiIiaiMa+/3d4Z/OIyIiImoOBlFEREREzWDxnCgiIiIyrsLCQlRWVgIALl60QmamDYKCbsDXVw2g5ul4Dw8PS3axXWAQRURE1I4UFhZixYoVAIDDh/th+/ZREMIKMpkacXE7EB5+BACQkJDAQKqFeDuPiIioHdHMQKlUzlIABQBCWGH79lFQqZy12lHzMYgiIiJqh4qKPKQASkMIKxQVuVuoR+0PgygiIqJ2RKVSAQBsbSsA1K1iJGBrW6nVjpqPQRQREVE7olmurKrKDoCszl4ZqqrkWu2o+RhEERERtUPu7oWQydRa22QyNdzdiyzUo/aHQRQREVE7pFCUIi5uhxRIaZ7OUyhKLdyz9oMlDoiIiNqp8PAjCA7OQFGRO9zdixhAGRmDKCIiojZIX0HNigrtQEmhKNUZPNnYMARoKY4gERFRG1O3oOa2baNQk6GjxujRBxAe3vA5XF1dTdnFDoE5UURERG1M7YKaNwMoALDCtm03C2qSaTGIIiIiamM0NZ5ycgJQ/6vcCjk5/g2eQy6XG79jHQxv5xEREbUxja3xNGzYMISGhtbbzgWIjYNBFBERURsVEJCDmqrkN4tqymRqBATkAgDc3NygVCot07kOgLfziIiI2iiFohSjR29nLSgL4UwUERFRG8ZaUJbDIIqIiKgVO3/+PMrLywEAv/9ujyNHnODrq714sL5aUGRaDKKIiIhaqfPnz+PLL78EAHzzzRgcOxaCmvwnJcLCOuH++781eDwLapoWc6KIiIhaKc0MVG6uEseOheFmArkMx46FITfXcNI4C2qaFoMoIiKiVi47uwtqP4FXQ4acnM4Gj2MtKNPiPB8REVErVVpak+fk4XEFdUsZAALu7oUAgEGDBqFPnz5ax7IWlOkxiCIiImqlbty4AQCQy29A10yUXF5TdNPBwYH1oCyAt/OIiIhaOXf3QqkWlIZMpoa7e5GFekQAgygiIqJWT6EoRVzcDhbVbGUYRBEREbURQmj/JMtiEEVERNRKVVdXAwBUKmds3z4KN7+2rbB9+yioVM5a7ci8GEQRERG1Up6engCAoiIPCKH9lS2EFYqK3LXakXkxiCIiImrlmFjeOjGIIiIiaqVsbW0BNJxYrmlH5sU6UURERK2UQqGQfg8PP4Lg4AwUFbnD3b1I68m82u3IfBhEERERtREKRSnLGrQivJ1HRERE1AwMooiIiIiagUEUERFRKyWXy43ajoyLOVFERERmUFhYiMrKSgDAxYtWyMy0QVDQDfj61jxxJ5fL4eHhoXWMh4cHEhISpON00XUcmQeDKCIiIhMrLCzEihUrAACHD/fD9u2jIISVVKogPPwIACAhIUFnIEWtE2/nERERmZhmJkmzfIum+rgQ2su3GJpxotaHQRQREZGZNLR8C7UtDKKIiIjMhMu3tC8MooiIiMykoeVbqG1hYjkREZEZGVq+hdoWBlFERERmxuVb2gfeziMiIiJqBgZRREREJsbK4+0Tb+cRERGZGCuPt08MooiIiMyAAVL7w9t5RERERM3AIIqIiMgEcnOBfftqflL7xCCKiIjISAoLC5GXl4clS4rRpYvA8OFAly4CS5YUIy8vD4WFhZbuIhkRc6KIiIiaqLCwUEoSv3jRCpmZNvD0vIr/+7+voFI5IylpBoSQAQDUahleftkFf/21FgpFKRISEpgf1U4wiCIiImqCwsJCrFixAgBw+HA/bN8+CkJYQSZzQ1xcP7i5XdW7yLBCUWrwCT1qW3g7j4iIqAk0QZBK5SwFUEBNoLR9+yjY2lZwkeEOgkEUERFRMxQVeeiccaqqknOR4Q6Ct/OIiIiawd29EDKZWiuQ0sw4BQVd4CLDHQBnooiIiJpBoShFnz7HAYj/bRHo0+e4FDApFKUICrrAAKods3gQtXLlSgQGBsLe3h6RkZE4ePCgwfabNm1Cjx49YG9vj969e2Pnzp1a+4UQSExMhFKphIODA2JiYnDu3DmtNu+88w6io6Ph6OgIV1dXnZ8jk8nqvVJSUlp0rURE1HZoyhXUfWVlZQGoyYk6frwPANn/jpDh+PE+UKmcLdVlMjOL3s7buHEjZs6cidWrVyMyMhJJSUmIjY3F2bNn4eXlVa/9/v37MX78eCxYsACjRo1CcnIy4uPjcfjwYfTq1QsAsGjRIixbtgwbNmxAUFAQ5s6di9jYWJw6dQr29vYAapICH3roIURFReGzzz7T279169ZhxIgR0nt9ARcREbUvtZ/AA2oCpqIiD7i7F0ozS/pyojRP4VH7Z9EgaunSpZgyZQomTZoEAFi9ejW+++47rF27Fq+++mq99h9++CFGjBiBl19+GQAwf/587NmzBytWrMDq1ashhEBSUhLmzJmDMWPGAAA+//xzeHt7Y+vWrRg3bhwA4M033wQArF+/3mD/XF1d4ePjY6zLJSKiNqJ2GQLtMgY1SeLh4UcM5kQZIpfLTdZvMi+LBVGVlZVIT0/H7NmzpW1WVlaIiYlBWlqazmPS0tIwc+ZMrW2xsbHYunUrACAzMxP5+fmIiYmR9isUCkRGRiItLU0Kohpr+vTpeOqpp9C1a1c888wzmDRpEmQymd72FRUVqKiokN6XlJQ06fOIiKh10VfGIDg4AwpFKeLidtQLsDSzUHfffTeCgoK0zieXy1losx2xWBB15coVVFdXw9vbW2u7t7c3zpw5o/OY/Px8ne3z8/Ol/Zpt+to01ltvvYXhw4fD0dERu3fvxrPPPotr167hueee03vMggULpFkuIiJq+xq6ZRcefkTvU3hBQUFQKpXm7jKZEUsc6DF37lzp9379+qGsrAyLFy82GETNnj1ba6aspKQEAQEBJu0nERGZTmNu2SkUpcyB6qAs9nSep6cnrK2tUVBQoLW9oKBAbx6Sj4+Pwfaan005Z2NFRkYiNzdX63ZdXXZ2dnBxcdF6ERFR26W5ZQdoKpCzcCbdZLEgSi6XIyIiAqmpqdI2tVqN1NRUREVF6TwmKipKqz0A7NmzR2ofFBQEHx8frTYlJSU4cOCA3nM21tGjR+Hm5gY7O7sWnYeIiNoeTTqsgbRY6oAsejtv5syZmDhxIvr374+BAwciKSkJZWVl0tN6jz/+OPz8/LBgwQIAwPPPP48hQ4ZgyZIlGDlyJFJSUvDbb79hzZo1AGpqO82YMQNvv/02QkNDpRIHvr6+iI+Plz43OzsbRUVFyM7ORnV1NY4ePQoACAkJQadOnbB9+3YUFBRg0KBBsLe3x549e/Duu+/ipZdeMuv4EBGRZahUqv/9NJxYbgifwmv/LBpEjR07FpcvX0ZiYiLy8/PRt29f7Nq1S0oMz87OhpXVzcmy6OhoJCcnY86cOXjttdcQGhqKrVu3SjWiAGDWrFkoKyvD1KlTUVxcjMGDB2PXrl1SjSgASExMxIYNG6T3/fr1AwDs27cPQ4cOha2tLVauXIkXXngBQgiEhIRI5RiIiKj9E6KmCnlDieW6nsAD+BReRyETmr8UMrqSkhIoFAqoVCrmRxERtSF5eXlYs2YNVCpnJCXNqJdYPmNGEhSKUkydOpVP4LVDjf3+tviyL0RERK2VJrFcJqtJLK9bC4o6tibfztuxYwcOHjyI2NhY3H777fjhhx/w/vvvQ61W44EHHsDUqVNN0U8iIiKLMFQLijq2Js1Effzxx7j//vuxc+dO3Hffffjyyy8RHx8PPz8/BAYGYsaMGfjwww9N1VciIiKLUChKERR0gQEUaWnSTNSyZcuwatUqTJkyBfv27cN9992HJUuW4NlnnwUADBo0CIsWLcLzzz9vks4SERERtRZNmonKzMxEbGwsAGDYsGGorq7GnXfeKe0fOnQoLly4YNweEhEREbVCTQqiPDw8pCDp4sWLuHHjBrKzs6X9Fy5cgLu7u3F7SEREZGaNrfHEWlAdW5Nu540ZMwaTJ0/GxIkTsW3bNjz++ON48cUXYWVlBZlMhpdffhn33HOPqfpKRERkFh4eHkhISEBlZaXeNqwFRU0Kot577z1UVlYiJSUF0dHRWL58OZYtW4YxY8agqqoKQ4YMkaqLExERtWUMkKghRim2ef36dVRVVcHZ2dkYfWo3WGyTiIio7Wns97dRln2xt7fXWlaFiIjI3AoLC3n7jcyqSUHUzJkzG9Vu6dKlzeoMERFRcxQWFmLFihUNtktISGAgRUbTpCDqyJEjWu9//vlnREREwMHBQdomk8mM0zMiIqJGMjQD1Zx2RI3RpCBq3759Wu+dnZ2RnJyMrl27GrVTRERETVFcXKz1PjdXiezsLujc+QL8/fO02nHBYDIWo+REERERWdKNGzek37/5ZgyOHQsDIAMgEBZ2DPff/229dkQt1aRim0RERK1RaWnNmna5ucpaARQAyHDsWBhyc5Va7YiMgUEUERG1eZoZpj/+6IabAZSGDH/8EarVjsgYmnQ77/jx41rvhRA4c+YMrl27prW9T58+Le8ZERFRE3XqdK1J24laoklBVN++fSGTyVC7PueoUaMAQNouk8lQXV1t3F4SERE1Qvfuf2DnTgHt2Sg1unc/Z6kuUTvWpCAqMzPTVP0gIiJqNltbWwCAQlGK0aO3Y9u2UajJWFFj9OgdUChKtdoRGUOTgqguXbqYqh9ERETN1qlTJ+n38PAjCA7OQFGRO9zdi6QAqm47opZqcokDIQSysrIQEBAAGxsbVFZW4ptvvkFFRQXuu+8+eHp6mqKfREREetnYaH+dKRSlWsGTvnZELdGkv6azZ88iNjYWOTk56Nq1K3bv3o2HHnoIZ86cgRACjo6O2L9/P0JDQ03VXyIionpcXV2N2o6oMZpU4uCVV15BWFgYjh49ilGjRmHkyJHw9/fH1atXUVRUhKioKLz11lum6isREZFOcrncqO2IGkMmaj9q1wAvLy/s3r0bffv2RVlZGZydnfHTTz9h8ODBAID9+/dj/PjxuHDhgsk63JaUlJRAoVBApVLBxcXF0t0hImrXCgsLDa6NJ5fLufgwNUpjv7+bdDvv2rVrcHd3BwA4OTnByclJaw2igIAAFBQUNLPLREREzccAicytSbfzfH19kZ2dLb1ftGgRvLy8pPeXL1+Gm5ub8XpHRERE1Eo1KYiKiYnBmTNnpPfTpk2Ds7Oz9H737t0IDw83Xu+IiIiIWqkm5UQ1JCsrC3Z2dlq3+Doy5kQRETUdc5vI0kySE/XDDz8gISEBv/76a72TqlQqjBw5EqtXr2YQRUREzVJYWIgVK1ZI71UqZxQVecDdvVCr7lNCQgIDKbK4JgVRSUlJmDJlis6oTKFQ4Omnn8bSpUtxxx13GK2DRETUcdSegTp8uB+2bx8FIawgk6kRF7cD4eFH6rUjspQm5UQdO3YMI0aM0Lv/nnvuQXp6eos7RURE7V9hYSHy8vK0XleuXAFQMwOlCaAAQAgrbN8+CiqVs6FTEplVk2aiCgoKDC7eaGNjg8uXL7e4U0RE1L4Zvm0HFBV5SAGUhhBWKCpy17mcC5ElNCmI8vPzw4kTJxASEqJz//Hjx5kPRUREDWrotl1wcAZkMrVWICWTqeHuXmSJ7hLp1KTbeffddx/mzp2L69ev19v3999/Y968eRg1apTROkdERO2bvtt2ABAXtwMymRoApOCKs1DUmjRpJmrOnDnYsmULunXrhoSEBHTv3h0AcObMGaxcuRLV1dV4/fXXTdJRIiJqP1QqFQDDt+3Cw48gODgDRUXucHcvYgBFrU6Tgihvb2/s378f06ZNw+zZs6EpMSWTyRAbG4uVK1fC29vbJB0lIqL2o6qqCgDg7l4IQA3tGyM3b9spFKUMnqjValIQBQBdunTBzp07cfXqVWRkZEAIgdDQUC73QkREzSTTfifT06wWuVxuor4QNV6TgygNNzc3DBgwwJh9ISKiDqaoyAN1g6jaT+ENGzYMoaGhWvtZsZxai2YHUURERC3l7l5o8Ck8Nzc3PvVNrVaTns4jIiIyBhubmv8Pr1CUGnwKT9OOqDXiXycREZmdq6ur9Luhp/BqtyNqbRhEERGRxfEpPGqLGEQREVGLFBYWGlwQWFcieGOfruNTeNSaMYgiIqJmM7wG3s2ZpYSEBK1AysPDAwkJCU0OvohaEwZRRETUbA2tgRcefqReOw0GSNTW8ek8IiJqMX1r4KlUzhbuGZHpMIgiIqIWM7QGHlF7xSCKiIhaTFM0s7baRTOJ2iMGUURE1GINFc0kao+YWE5EREZhqGgmUXvEIIqIiCT6aj6pVCpUVVXBxsZGq4r4lStXtNqxaCZ1JAyiiIgIQP2aT8bEopnUHjGIIiIiALprOTXFAw88AE9Pz3rbWTST2isGUUREpJO+6uP6tnt6ekKpVFqiq0QWwSCKiIgA1OQ9aRw+3A/bto1CzUPcaoweXVN93FBVcqKOhkEUEVEHoy95/NKlSwBqZppuBlAAYIVt20bByytfZ1Xy4OAMJpNTh8QgioioA2lM8nhOTgDqlxG0wh9/hOqtSs4gijoiixfbXLlyJQIDA2Fvb4/IyEgcPHjQYPtNmzahR48esLe3R+/evbFz506t/UIIJCYmQqlUwsHBATExMTh37pxWm3feeQfR0dFwdHTUelS3tuzsbIwcORKOjo7w8vLCyy+/jBs3brToWomILK0lyeOdOl1jVXKiWiwaRG3cuBEzZ87EvHnzcPjwYYSFhSE2NlaaUq5r//79GD9+PCZPnowjR44gPj4e8fHxOHHihNRm0aJFWLZsGVavXo0DBw7AyckJsbGxuH79utSmsrISDz30EKZNm6bzc6qrqzFy5EhUVlZi//792LBhA9avX4/ExETjDgARkYWpVM7IzAzUWig4ICAHgNBqJ5Op0b37OVYlJ6pFJoQQDTczjcjISAwYMECaWlar1QgICMA///lPvPrqq/Xajx07FmVlZdixY4e0bdCgQejbty9Wr14NIQR8fX3x4osv4qWXXgJQkyjp7e2N9evXY9y4cVrnW79+PWbMmIHi4mKt7f/5z38watQoXLx4Ed7e3gCA1atX45VXXsHly5cbXe+kpKQECoUCKpUKLi4ujR4XIiJTycvLw5o1awDAYJL4N9+MwbFjYQBkAATCwo7h/vu/BaB5Oq9+VfKEhASWMqB2obHf3xbLiaqsrER6ejpmz54tbbOyskJMTAzS0tJ0HpOWloaZM2dqbYuNjcXWrVsBAJmZmcjPz0dMTIy0X6FQIDIyEmlpafWCKH3S0tLQu3dvKYDSfM60adNw8uRJ9OvXr7GXSUTUKqlUznqTxAHg+PE+qAmgAECG48f7YPjwH6BQlCI+vj9CQ0O1zsdaUNQRWSyIunLlCqqrq7UCFQDw9vbGmTNndB6Tn5+vs31+fr60X7NNX5vG0Pc5tT9Dl4qKClRUVEjvS0pKGv2ZRETmVFTkoTdJHJAZTCB3c3NjPSgitILE8vZkwYIFUCgU0isgIMDSXSIi0sndvVBvkrihfQBga2trtn4StWYWC6I8PT1hbW2NgoICre0FBQXw8fHReYyPj4/B9pqfTTlnUz6n9mfoMnv2bKhUKumVk5PT6M8kIjKmwsJC5OXl1XtpFgxWKEr1Jokb2ldzrMIyF0XUyljsdp5cLkdERARSU1MRHx8PoCaxPDU1FQkJCTqPiYqKQmpqKmbMmCFt27NnD6KiogAAQUFB8PHxQWpqKvr27Qug5pbagQMH9D6Jp+9z3nnnHVy6dAleXl7S57i4uODWW2/Ve5ydnR3s7Owa/TlERKZQtxaUvmVawsOPIDg4Q2eSuKF9XEyYqIZFi23OnDkTEydORP/+/TFw4EAkJSWhrKwMkyZNAgA8/vjj8PPzw4IFCwAAzz//PIYMGYIlS5Zg5MiRSElJwW+//SY9aSKTyTBjxgy8/fbbCA0NRVBQEObOnQtfX18pUANqakAVFRUhOzsb1dXVOHr0KAAgJCQEnTp1wj333INbb70VEyZMwKJFi5Cfn485c+Zg+vTpDJKIqNWrXQvK0BN4uhYMLi4uhkwm0zvbxARyopssGkSNHTsWly9fRmJiIvLz89G3b1/s2rVLSuLOzs6GldXNO47R0dFITk7GnDlz8NprryE0NBRbt25Fr169pDazZs1CWVkZpk6diuLiYgwePBi7du2Cvb291CYxMREbNmyQ3muettu3bx+GDh0Ka2tr7NixA9OmTUNUVBScnJwwceJEvPXWW6YeEiIiozH0BJ5CUapzwWAmjBM1nkXrRLV3rBNFRJagqQWVmRmIDRsm1ts/ceJ6BAVdwNSpUxk0EenQ2O9vPp1HRNRONfSUHRG1DBcgJiJqwwoLC+uth1f3Cby6OVFcpoXIOBhEERG1UXWfwtPF0FN2RNQyDKKIiFoBXTNKtel6Kq5ue32lDDS1n4jIuBhEERFZWGNmlADDC/waKmWgD+s9EbUMgygiIgszNAPVmHYNlTLQVQ+K9Z6IWo5BFBFRG2doMWF99aCIqOVY4oCIqI1jKQMiy2AQRUTUxjW0YDARmQZv5xERWZhKpWp0O3235VjKgMj8GEQREVlYVVWV1vvcXCWys7ugc+cL8PfP09uu7tN1+koZ8Ck8ItNgEEVE1Ip8880YHDsWBkAGQCAs7Bjuv/9bnW09PDyQkJDQ5PpSRGQcDKKIiIysqYUzbWxq/inOzVXWCqAAQIZjx8IwYMBB+PvnSe1qY4BEZDkMooiIjKg5hTNdXV0BANnZXXAzgNKQISenM/z986R2RNQ68Ok8IiIjaknhzM6dLwAQdbYKBARkt7xjRGR0DKKIiFoJf/88hIUdw81AqiYnqnZyORG1HrydR0TUitx//7cYMOAgcnI6IyAgmwEUUSvGIIqIyMLqliDw98/TGTyxVAFR68IgiojIhFQqZxQVecDdvVBvAUyWKiBqmxhEERGZyOHD/bB9+ygIYSUtxRIefkRnWwZIRG0PE8uJiExApXKWAigAEMIK27ePgkrlbOGeEZGxcCaKiEiPphbN1GwDgKIiDymA0hDCCkVF7lAoSpnfRNQOyIQQdYuSkJGUlJRAoVBApVLBxcXF0t0hoiZoTtHM2sdmZd3AwIFeUKtvFs+0thY4cOASAgNtePuOqBVr7Pc3b+cREenQkqKZHh4eiIjwxpo1Mlhb12yztgY+/liGiAhvBlBE7QRv5xERmcjkyUBsLJCRAYSEAP7+lu4RERkTgygiokZoTKkCXfz9GTwRtVcMooiIdFCpVNLvhkoVqFQqKJVKS3WTiCyIOVFERDpUVVUBaLhUgaYdEXU8DKKIiAwwVKqAiDo2BlFERAa4uxdCJlNrbZPJ1HB3L7JQj4iotWAQRUSkg41NTcqoQlGKPn2OA9CU1BPo0+e4lFyuaUdEHQ+DKCIiHVxdXQHU5EQdP94HgKZopgzHj/eRcqI07Yio42EQRURkAHOiiEgfBlFERAYwJ4qI9OHNfCJqN5qzYLChtkBNTlRc3I56daI0OVFcSJio4+ICxCbEBYiJzKclCwYbOqcmKLt40QpZWTYIDLwBX9+amammBGVE1HY09vubM1FE1C7UnYHSt0xLYxcWBqAVICmVQEREy/tJRO0HgygiancMLdNCRGQsTCwnonaloWVaiIiMhTNRRNSm6Esev3LlCgDDJQlq39YjImopBlFE1GY0JnlcU5KgdiDFkgREZAq8nUdEbYau5PHMzECtW3WakgSa2k51SxIQERkLZ6KIyGIM1XVSqVQQQmgtq6K5ZQcYTh4PDz+C4OAMFBW5w929iAEUEZkEgygisojG1nXSRV/yeHBwhhQwKRSlOoMnFsckImNhEEVEJtVQInhzNJQ8/sADD8DT07PecSyOSUTGxCCKiEymJbNNhjSUPO7p6QmlUmn0zyUiqo2J5URkMk2pDq4rSVzfPiaPE1FrwJkoIrI4Q0ni+vYxeZyILI0zUURkUYYqjDdUfVyhKEVQ0IV6ARSTx4nIHDgTRUQtdv78eZSXl9fbfvXq1QaPNZQkDsianEDO5HEiMhcGUUTUIufPn8eXX37Z7OMbShJnAjkRtVa8nUdELaJrBqopDCWJN5RAztt2RGRJMiGEsHQn2quSkhIoFAqoVCq4uLhYujtEJpGWlobdu3dL73NzlcjO7oLOnS/A3z9Pq61K5YyiIg+4uxdq5TE98MADqKz0QlaWDQIDb8DXV61VsfziRSutfQBv2xGR6TT2+5u384ioRaqqqqTfv/lmDI4dCwMgAyAQFnYM99//LQDDT+D5+vrCw8MDERE3z1v7Np1SCa19REStAYMoIjKK3FxlrQAKAGQ4diwMAwYchLPzNWzfHgchavYJYYXvvotDYmIkAgNtOKNERG0Sc6KIyCj++KMbbgZQGjKcOxf6vyfwtPdVV8tQWurNAIqI2iwGUURkFJ066S526eR0De7uhbCy0k6/tLYGQkLM0TMiItPg7TyiDkjfosAazUna7t79HHbuFNCejRLo3v0cFIpSvPTSOSxZ0g3V1TUB1McfA/7+zes/EVFr0CpmolauXInAwEDY29sjMjISBw8eNNh+06ZN6NGjB+zt7dG7d2/s3LlTa78QAomJiVAqlXBwcEBMTAzOnTun1aaoqAiPPvooXFxc4OrqismTJ+PatWvS/qysLMhksnqvX3/91XgXTmQBmkWB16xZo/e1YsUKFBYWNup89vb2AGpKFYwevV2rHMHo0dulp/AefLAYWVnAvn1AVhYwebIpro6IyHwsPhO1ceNGzJw5E6tXr0ZkZCSSkpIQGxuLs2fPwsvLq177/fv3Y/z48ViwYAFGjRqF5ORkxMfH4/Dhw+jVqxcAYNGiRVi2bBk2bNiAoKAgzJ07F7GxsTh16pT0D/6jjz6KvLw87NmzB1VVVZg0aRKmTp2K5ORkrc/bu3cvbrvtNuk98zeorWvsosCNbRcQECD9bmg9u4CAACiVnH0iovbD4jNRS5cuxZQpUzBp0iTceuutWL16NRwdHbF27Vqd7T/88EOMGDECL7/8Mnr27In58+cjPDwcK1asAFAzC5WUlIQ5c+ZgzJgx6NOnDz7//HNcvHgRW7duBQCcPn0au3btwqefforIyEgMHjwYy5cvR0pKCi5evKj1eR4eHvDx8ZFetra2Jh0PIlNTqVR13jsjMzNQWo9OXzt96ha85Hp2RNRRWHQmqrKyEunp6Zg9e7a0zcrKCjExMUhLS9N5TFpaGmbOnKm1LTY2VgqQMjMzkZ+fj5iYGGm/QqFAZGQk0tLSMG7cOKSlpcHV1RX9+/eX2sTExMDKygoHDhzA/fffL20fPXo0rl+/jm7dumHWrFkYPXq03uupqKhARUWF9L6kpKRxA0FkRrXrOhmq3VS7nSEeHh5ISEgweo4VEVFrZ9Eg6sqVK6iuroa3t7fWdm9vb5w5c0bnMfn5+Trb5+fnS/s12wy1qXur0MbGBu7u7lKbTp06YcmSJbj99tthZWWFzZs3Iz4+Hlu3btUbSC1YsABvvvlmYy6dyOJUKmcpgAJqajdt3z4KwcEZ9WaRGsIAiYg6IovnRLVWnp6eWjNeAwYMwMWLF7F48WK9QdTs2bO1jikpKdHKFyFqTWpqN2nf0RfCCkVF7k0OooiIOiKL5kR5enrC2toaBQUFWtsLCgrg4+Oj8xgfHx+D7TU/G2pz6dIlrf03btxAUVGR3s8FgMjISGRkZOjdb2dnBxcXF60XUWvl7l4IQLt2k0ymhrt7kWU6RETUxlg0iJLL5YiIiEBqaqq0Ta1WIzU1FVFRUTqPiYqK0moPAHv27JHaBwUFwcfHR6tNSUkJDhw4ILWJiopCcXEx0tPTpTY//PAD1Go1IiMj9fb36NGjWut5EbV92kEUlyMnImo8i9/OmzlzJiZOnIj+/ftj4MCBSEpKQllZGSZNmgQAePzxx+Hn54cFCxYAAJ5//nkMGTIES5YswciRI5GSkoLffvsNa9asAQDIZDLMmDEDb7/9NkJDQ6USB76+voiPjwcA9OzZEyNGjMCUKVOwevVqVFVVISEhAePGjYOvry8AYMOGDZDL5ejXrx8AYMuWLVi7di0+/fRTM48QkXGLY9rY1PxnX1Tkgfr/P+rm7TxNOyIi0s3i/0qOHTsWly9fRmJiIvLz89G3b1/s2rVLSgzPzs6GldXNf+ijo6ORnJyMOXPm4LXXXkNoaCi2bt0q1YgCgFmzZqGsrAxTp05FcXExBg8ejF27dkk1ogDgq6++QkJCAu666y5YWVnhwQcfxLJly7T6Nn/+fFy4cAE2Njbo0aMHNm7ciH/84x8mHhEibZrimA1JSEhoVCDl6uoKoOZ2nkym1sqLqn07T9OOiIh0kwnBCXxTKSkpgUKhgEqlYn4UNdvp06fxr3/9S3qvUjmjqMgD7u6FWgngDz/8MHr27Nng+WoHZYZKHDQ2KCMiam8a+/1t8ZkoIjLsxo0b0u+HD/fDtm2jUHMbTo3Ro28GPbXbGVK3rlNi4mVkZdkgMPAGfH0HABjAuk5ERI3AIIqojVCpnGsFUABghW3bWl7XSakEIiKM108ioo7C4su+EFHj5OQEQFcieE4OF6MjIrIEzkQRmdH58+dRXl6ud7+joyOCg4PN2CMiImouBlFEZnL+/Hl8+eWX0vvcXCWys7ugc+cL8PfPk7Y/9thjOgOpgIAc1NR1kknbZDI1AgJyTdltIiLSg0EUkZnUrqL/zTdjcOxYGGoCIoGwsGO4//5vpXa6giiFohSjR2+v9zQdl2ghIrIMBlFEZqJ5ei43V1krgAIAGY4dC8OAAQfh759X7yk7W1tb6ffw8CMIDs5AUZE73N2LtAKo2u2IiMj0GEQRmYCuCuOlpTUBT3Z2F9S+JVdDhpyczlq39TRuueUWrfcKRanO2ae67YiIyLQYRBEZWUMVxj08rqBubhMg/rcgsK722nWddGFdJyIi82MQRWRkhoIdAJDLb0DXTJRcXqX3GAZIREStD4MoIgOMufCvRkNr1hERUdvAIIpID2Mv/KuhUJQiLm4Hn7IjImrjGEQRQfeMU2ZmptZ7fQv/Xrp0yWAQpes4Q0/ZOTg4GOOSiIjIxBhEUYfXmBmnw4f71Zs5aszCv4aO0/eUXdeuXVtwNUREZC4MoqjDu3z5stb7upXEVSpnKRACACGssH17wwv/NnTcAw88AE9PT61j+JQdEVHbwSCKOryqqptPxemqJN637zGtJHCgJiAqKnI3GEQVFXkYPM7T0xNKpdKYl0JERGZUd0l4og5LXyXx4mJn1NR1qk3A1lb3U3tyuRzAzafwaqv9FJ6mHRERtU2ciSL6H32VxP/6y1/n9qoq3UFQ7eKYfn4leOUVBaqrZbC2FnjvvRI88sh43rYjImoHGERRm2OodpNKpYIQAq6urjr3GwpeOne+AF2VxENDzyE9vX+T6jppPuPFF4GxY4GMDCAkRAZ/f1cAuvtGRERtC4MoalMaW7vJEH11nfz98xAWdqxeTlT37hkG6zo1tPCvv3/Ni4iI2hcGUdSmNLSkSkvPcf/932LAgIPIyemMgIBsaUFgQ3WduPAvEVHHxCCKOjwbG+3/DPz986TgqbZ//GMQgoKCtLYxt4mIqONiEEUdnpeXV6Pade/enQETERFJGESRRbV0gV99S7E0tK+22k/TNbcfRETU8TCIIoupmySuL+jRlwhuaEkVQ/t0YYBERERNxSCKLObSpUvS74cP98O2baNQU/9VjdGjbwY9uhb4NbSkCoBmLdNCRETUFAyiyOSOHDmC0tKa4OXSJTlycx3g7/831OpsADUB0c0ACgCssG3bzaBH1wK/hpZUAWTNWqaFiIioKRhEkVHoy206c+YMfvrpJwC6ZpsuITwcyMkJQP0ViKyQk+MPheK01ta6S6roK4BpaB+XWyEiImNgEEUt1pgCmIZmm5qioSVVRo68D0IILrdCREQmxyCKWqzuDJSuBPGzZ7tB12zT2bOh6N79HOoutyKTqREQkKvz8xqzpErPnlxuhYiITItBFBmVvqfirl3rpLP9tWudoFCUYvTo7XqXVTHE0JIqXG6FiIhMiUEUNYmu3KcrV64AMPzEXLduf+Cnn4ag7uK+3bqdA2B4WRUiIqLWiEEUNVpDuU+GnpgLCrqgc3Hf2surKBSlOoOnhhb4JSIisgQGUYTcXODcOSA01PDtr4Zynxp6Yk7f4r4N4QK/RETUGjGI6qA0t+WSkx0wa5YCarUMVlYCixap8Mgjfzf4FJu+3Ke4uB0Gc5v0Le7bv39/hIeH19vOp+mIiKi1YhDVgWhmnDw9r2LLlhVQqZyRlDQDQtTkKanVMrz8sgv++mstFIpSvcutGMp9am5uk6+vL5RKpfEuloiIyMQYRLVz58+fR3l5ObZsccNbb/lBrZZBJnNFXFw/uLldNVjZ+/LlyzqDKEO5T5q8Jl3BU2RkJBwdHettd3Z2Rr9+/Vp4pURERObFIKqdqZ3fVFFxHl9++WW9GSchZNi+fRQmT/7UYA5TVVWVzs9oKPfpgQcegKenp9YxvC1HRETtTd3qh9QG5OYC+/bV/ARq8pvy8vKwZEkxunQRGD4c6NJFYM2aagD6Z46qquSIi9sBQP2/rY2rz6RQlCIubgdksprj6uY+eXp6QqlUar0YQBERUXvDmag2Ql8i+Jtv5qG6+hOd+U2LF4dgxgxnuLsXoiZQqh1I1cwcXb3qDpkMEAKQyXR9sm6s60RERB0dZ6LaAE19psWLv8ZLL9UEUEBNoJSY6COVGtCXp1RDO0KSyYDS0k46E8RVKmed/ai7cK9CUYqgoAv1Aigu8EtERB0BZ6LagPPnzwMAcnICUDcYEsIKOTn+CAjI1ZunVFTkofO47OzOBhPE66q9+K8+zH0iIqKOgkFUG3D9+vUG22jylPTVaNIVYHXunG0wQVwXBkhEREQ1GES1IQEBOdCV2xQQUJNhri9PSV+A5e+fZzDwsrHhnwcREZE+/JZsQxSKUowevQPbto1CTSClxujR2k/T6avRpC/AMpQg7uXlZepLIiIiarMYRLUx4eFH4OWVj+zszujcufHrzwH6A6xx4wYjICBAaxtzm4iIiAxjENXG6FuzriHDhg2Dm5tbve2Ojo4IDg42RVeJiIjaNQZRbYihNesaqtN02223cWaJiIjIiBhEtQGaBO+G1qwbNGgQ+vTpU+943pojIiIyPgZRbYC3tzeAhtesCwkJgVKptEgfiYiIOhoGUW1AcHAwHnvsMZSXl0OhuIi33vKTln1JTLyIBx64m7lNREREZiYTQghLd6K9KikpgUKhgEqlgouLi9HOm5sLZGQAISGAv7/RTktERERo/Pc3Z6LaIH9/Bk9ERESWxgWIiYiIiJqBQRQRERFRMzCIIiIiImoGBlFEREREzcAgioiIiKgZWkUQtXLlSgQGBsLe3h6RkZE4ePCgwfabNm1Cjx49YG9vj969e2Pnzp1a+4UQSExMhFKphIODA2JiYnDu3DmtNkVFRXj00Ufh4uICV1dXTJ48GdeuXdNqc/z4cdxxxx2wt7dHQEAAFi1aZJwLJiIiojbP4kHUxo0bMXPmTMybNw+HDx9GWFgYYmNjcenSJZ3t9+/fj/Hjx2Py5Mk4cuQI4uPjER8fjxMnTkhtFi1ahGXLlmH16tU4cOAAnJycEBsbi+vXr0ttHn30UZw8eRJ79uzBjh078NNPP2Hq1KnS/pKSEtxzzz3o0qUL0tPTsXjxYrzxxhtYs2aN6QaDiIiI2g5hYQMHDhTTp0+X3ldXVwtfX1+xYMECne0ffvhhMXLkSK1tkZGR4umnnxZCCKFWq4WPj49YvHixtL+4uFjY2dmJr7/+WgghxKlTpwQAcejQIanNf/7zHyGTycRff/0lhBBi1apVws3NTVRUVEhtXnnlFdG9e/dGX5tKpRIAhEqlavQxREREZFmN/f626ExUZWUl0tPTERMTI22zsrJCTEwM0tLSdB6Tlpam1R4AYmNjpfaZmZnIz8/XaqNQKBAZGSm1SUtLg6urK/r37y+1iYmJgZWVFQ4cOCC1ufPOOyGXy7U+5+zZs7h69arOvlVUVKCkpETrRURERO2TRYOoK1euoLq6WlpgV8Pb2xv5+fk6j8nPzzfYXvOzoTZeXl5a+21sbODu7q7VRtc5an9GXQsWLIBCoZBeAQEBui+ciIiI2jyL50S1J7Nnz4ZKpZJeOTk5lu4SERERmYhF187z9PSEtbU1CgoKtLYXFBTAx8dH5zE+Pj4G22t+FhQUQKlUarXp27ev1KZu4vqNGzdQVFSkdR5dn1P7M+qys7ODnZ2d9F78b21n3tYjIiJqOzTf25rvcb3MkqFlwMCBA0VCQoL0vrq6Wvj5+RlMLB81apTWtqioqHqJ5e+//760X6VS6Uws/+2336Q233//vc7E8srKSqnN7Nmzm5RYnpOTIwDwxRdffPHFF19t8JWTk2Pwe14mRENhlmlt3LgREydOxMcff4yBAwciKSkJ//rXv3DmzBl4e3vj8ccfh5+fHxYsWACgpsTBkCFDsHDhQowcORIpKSl49913cfjwYfTq1QsA8N5772HhwoXYsGEDgoKCMHfuXBw/fhynTp2Cvb09AODee+9FQUEBVq9ejaqqKkyaNAn9+/dHcnIyAEClUqF79+6455578Morr+DEiRN48skn8cEHH2iVQjBErVbj4sWLcHZ2hkwma9K4lJSUICAgADk5OXBxcWnSse0Nx6IGx6EGx+EmjkUNjkMNjsNNLR0LIQRKS0vh6+sLKysDmU+NnlYxoeXLl4vOnTsLuVwuBg4cKH799Vdp35AhQ8TEiRO12v/rX/8S3bp1E3K5XNx2223iu+++09qvVqvF3Llzhbe3t7CzsxN33XWXOHv2rFabwsJCMX78eNGpUyfh4uIiJk2aJEpLS7XaHDt2TAwePFjY2dkJPz8/sXDhQuNeuAEsj3ATx6IGx6EGx+EmjkUNjkMNjsNN5hoLi89EkW4lJSVQKBRQqVT8fxQcCwAcBw2Ow00cixochxoch5vMNRZ8Oo+IiIioGRhEtVJ2dnaYN2+e1tN+HRXHogbHoQbH4SaORQ2OQw2Ow03mGgveziMiIiJqBs5EERERETUDgygiIiKiZmAQRURERNQMDKKIiIiImoFBlAWtXLkSgYGBsLe3R2RkJA4ePKi37cmTJ/Hggw8iMDAQMpkMSUlJ5uuoGTRlLD755BPccccdcHNzg5ubG2JiYgy2b0uaMg5btmxB//794erqCicnJ/Tt2xdffPGFGXtrOk0Zh9pSUlIgk8kQHx9v2g6aUVPGYv369ZDJZFovzSoNbV1T/yaKi4sxffp0KJVK2NnZoVu3bti5c6eZems6TRmHoUOH1vt7kMlkGDlypBl7bDpN/ZtISkpC9+7d4eDggICAALzwwgu4fv16yzph0lKepFdKSoqQy+Vi7dq14uTJk2LKlCnC1dVVFBQU6Gx/8OBB8dJLL4mvv/5a+Pj4iA8++MC8HTahpo7FI488IlauXCmOHDkiTp8+LZ544gmhUChEbm6umXtuXE0dh3379oktW7aIU6dOiYyMDJGUlCSsra3Frl27zNxz42rqOGhkZmYKPz8/cccdd4gxY8aYp7Mm1tSxWLdunXBxcRF5eXnSKz8/38y9Nr6mjkNFRYXo37+/uO+++8TPP/8sMjMzxY8//iiOHj1q5p4bV1PHobCwUOtv4cSJE8La2lqsW7fOvB03gaaOxVdffSXs7OzEV199JTIzM8X3338vlEqleOGFF1rUDwZRFjJw4EAxffp06X11dbXw9fXVu/BybV26dGlXQVRLxkIIIW7cuCGcnZ3Fhg0bTNVFs2jpOAghRL9+/cScOXNM0T2zac443LhxQ0RHR4tPP/1UTJw4sd0EUU0di3Xr1gmFQmGm3plPU8fho48+El27dtVaQL49aOm/ER988IFwdnYW165dM1UXzaapYzF9+nQxfPhwrW0zZ84Ut99+e4v6wdt5FlBZWYn09HTExMRI26ysrBATE4O0tDQL9sz8jDEW5eXlqKqqgru7u6m6aXItHQchBFJTU3H27FnceeedpuyqSTV3HN566y14eXlh8uTJ5uimWTR3LK5du4YuXbogICAAY8aMwcmTJ83RXZNpzjhs27YNUVFRmD59Ory9vdGrVy+8++67qK6uNle3jc4Y/1Z+9tlnGDduHJycnEzVTbNozlhER0cjPT1duuX3559/YufOnbjvvvta1BebFh1NzXLlyhVUV1fD29tba7u3tzfOnDljoV5ZhjHG4pVXXoGvr6/Wf1BtTXPHQaVSwc/PDxUVFbC2tsaqVatw9913m7q7JtOccfj555/x2Wef4ejRo2boofk0Zyy6d++OtWvXok+fPlCpVHj//fcRHR2NkydPwt/f3xzdNrrmjMOff/6JH374AY8++ih27tyJjIwMPPvss6iqqsK8efPM0W2ja+m/lQcPHsSJEyfw2WefmaqLZtOcsXjkkUdw5coVDB48GEII3LhxA8888wxee+21FvWFQRS1aQsXLkRKSgp+/PHHdpNA2xTOzs44evQorl27htTUVMycORNdu3bF0KFDLd01sygtLcWECRPwySefwNPT09LdsbioqChERUVJ76Ojo9GzZ098/PHHmD9/vgV7Zl5qtRpeXl5Ys2YNrK2tERERgb/++guLFy9us0FUS3322Wfo3bs3Bg4caOmuWMSPP/6Id999F6tWrUJkZCQyMjLw/PPPY/78+Zg7d26zz8sgygI8PT1hbW2NgoICre0FBQXw8fGxUK8soyVj8f7772PhwoXYu3cv+vTpY8pumlxzx8HKygohISEAgL59++L06dNYsGBBmw2imjoO58+fR1ZWFuLi4qRtarUaAGBjY4OzZ88iODjYtJ02EWP8O2Fra4t+/fohIyPDFF00i+aMg1KphK2tLaytraVtPXv2RH5+PiorKyGXy03aZ1Noyd9DWVkZUlJS8NZbb5myi2bTnLGYO3cuJkyYgKeeegoA0Lt3b5SVlWHq1Kl4/fXXYWXVvOwm5kRZgFwuR0REBFJTU6VtarUaqampWv8vsiNo7lgsWrQI8+fPx65du9C/f39zdNWkjPU3oVarUVFRYYoumkVTx6FHjx74/fffcfToUek1evRoDBs2DEePHkVAQIA5u29UxvibqK6uxu+//w6lUmmqbppcc8bh9ttvR0ZGhhRQA8Aff/wBpVLZJgMooGV/D5s2bUJFRQUee+wxU3fTLJozFuXl5fUCJU2QLVqyhHCL0tKp2VJSUoSdnZ1Yv369OHXqlJg6dapwdXWVHkeeMGGCePXVV6X2FRUV4siRI+LIkSNCqVSKl156SRw5ckScO3fOUpdgNE0di4ULFwq5XC7+/e9/az2+W1paaqlLMIqmjsO7774rdu/eLc6fPy9OnTol3n//fWFjYyM++eQTS12CUTR1HOpqT0/nNXUs3nzzTfH999+L8+fPi/T0dDFu3Dhhb28vTp48aalLMIqmjkN2drZwdnYWCQkJ4uzZs2LHjh3Cy8tLvP3225a6BKNo7n8bgwcPFmPHjjV3d02qqWMxb9484ezsLL7++mvx559/it27d4vg4GDx8MMPt6gfDKIsaPny5aJz585CLpeLgQMHil9//VXaN2TIEDFx4kTpfWZmpgBQ7zVkyBDzd9wEmjIWXbp00TkW8+bNM3/Hjawp4/D666+LkJAQYW9vL9zc3ERUVJRISUmxQK+NrynjUFd7CqKEaNpYzJgxQ2rr7e0t7rvvPnH48GEL9Nr4mvo3sX//fhEZGSns7OxE165dxTvvvCNu3Lhh5l4bX1PH4cyZMwKA2L17t5l7anpNGYuqqirxxhtviODgYGFvby8CAgLEs88+K65evdqiPsiEaMk8FhEREVHHxJwoIiIiomZgEEVERETUDAyiiIiIiJqBQRQRERFRMzCIIiIiImoGBlFEREREzcAgioiIiKgZGEQREbUDTzzxBOLj4y3dDaIOhUEUEZnUE088AZlMJr08PDwwYsQIHD9+3NJdM4ra16Z5DR482GSfl5WVBZlMhqNHj2pt//DDD7F+/XqTfS4R1ccgiohMbsSIEcjLy0NeXh5SU1NhY2ODUaNGWbpbRrNu3Trp+vLy8rBt2zad7aqqqkzWB4VCAVdXV5Odn4jqYxBFRCZnZ2cHHx8f+Pj4oG/fvnj11VeRk5ODy5cvY/jw4UhISNBqf/nyZcjlcmmV9sDAQMyfPx/jx4+Hk5MT/Pz8sHLlSq1jli5dit69e8PJyQkBAQF49tlnce3aNWn/hQsXEBcXBzc3Nzg5OeG2227Dzp07AQBXr17Fo48+iltuuQUODg4IDQ3FunXrGn19rq6u0vX5+PjA3d1dmjHauHEjhgwZAnt7e3z11VcoLCzE+PHj4efnB0dHR/Tu3Rtff/211vnUajUWLVqEkJAQ2NnZoXPnznjnnXcAAEFBQQCAfv36QSaTYejQoQDq386rqKjAc889By8vL9jb22Pw4ME4dOiQtP/HH3+ETCZDamoq+vfvD0dHR0RHR+Ps2bONvm6ijo5BFBGZ1bVr1/Dll18iJCQEHh4eeOqpp5CcnIyKigqpzZdffgk/Pz8MHz5c2rZ48WKEhYXhyJEjePXVV/H8889jz5490n4rKyssW7YMJ0+exIYNG/DDDz9g1qxZ0v7p06ejoqICP/30E37//Xe899576NSpEwBg7ty5OHXqFP7zn//g9OnT+Oijj+Dp6WmU69X09fTp04iNjcX169cRERGB7777DidOnMDUqVMxYcIEHDx4UDpm9uzZWLhwodSv5ORkeHt7A4DUbu/evcjLy8OWLVt0fu6sWbOwefNmbNiwAYcPH0ZISAhiY2NRVFSk1e7111/HkiVL8Ntvv8HGxgZPPvmkUa6bqENo0fLFREQNmDhxorC2thZOTk7CyclJABBKpVKkp6cLIYT4+++/hZubm9i4caN0TJ8+fcQbb7whve/SpYsYMWKE1nnHjh0r7r33Xr2fu2nTJuHh4SG97927t9Y5a4uLixOTJk1q1vUBEPb29tL1OTk5iW+++UZkZmYKACIpKanBc4wcOVK8+OKLQgghSkpKhJ2dnfjkk090ttWc98iRI1rbJ06cKMaMGSOEEOLatWvC1tZWfPXVV9L+yspK4evrKxYtWiSEEGLfvn0CgNi7d6/U5rvvvhMAxN9//92UISDqsDgTRUQmN2zYMBw9ehRHjx7FwYMHERsbi3vvvRcXLlyAvb09JkyYgLVr1wIADh8+jBMnTuCJJ57QOkdUVFS996dPn5be7927F3fddRf8/Pzg7OyMCRMmoLCwEOXl5QCA5557Dm+//TZuv/12zJs3Tyuxfdq0aUhJSUHfvn0xa9Ys7N+/v0nX98EHH0jXd/ToUdx9993Svv79+2u1ra6uxvz589G7d2+4u7ujU6dO+P7775GdnQ0AOH36NCoqKnDXXXc1qQ+1nT9/HlVVVbj99tulbba2thg4cKDWmAFAnz59pN+VSiUA4NKlS83+bKKOhEEUEZmck5MTQkJCEBISggEDBuDTTz9FWVkZPvnkEwDAU089hT179iA3Nxfr1q3D8OHD0aVLl0afPysrC6NGjUKfPn2wefNmpKenSzlTlZWV0mf8+eefmDBhAn7//Xf0798fy5cvBwApoHvhhRdw8eJF3HXXXXjppZca/fk+Pj7S9YWEhMDJyUnr2mtbvHgxPvzwQ7zyyivYt28fjh49itjYWKmfDg4Ojf5cY7C1tZV+l8lkAGpysoioYQyiiMjsZDIZrKys8PfffwMAevfujf79++OTTz5BcnKyzrycX3/9td77nj17AgDS09OhVquxZMkSDBo0CN26dcPFixfrnSMgIADPPPMMtmzZghdffFEK4gDglltuwcSJE/Hll18iKSkJa9asMeYlS3755ReMGTMGjz32GMLCwtC1a1f88ccf0v7Q0FA4ODhISfV1yeVyADUzWvoEBwdDLpfjl19+kbZVVVXh0KFDuPXWW410JURkY+kOEFH7V1FRgfz8fAA1T8KtWLEC165dQ1xcnNTmqaeeQkJCApycnHD//ffXO8cvv/yCRYsWIT4+Hnv27MGmTZvw3XffAQBCQkJQVVWF5cuXIy4uDr/88gtWr16tdfyMGTNw7733olu3brh69Sr27dsnBWGJiYmIiIjAbbfdhoqKCuzYsUPaZ2yhoaH497//jf3798PNzQ1Lly5FQUGBFNzY29vjlVdewaxZsyCXy3H77bfj8uXLOHnyJCZPngwvLy84ODhg165d8Pf3h729PRQKhdZnODk5Ydq0aXj55Zfh7u6Ozp07Y9GiRSgvL8fkyZNNcl1EHRFnoojI5Hbt2gWlUgmlUonIyEgcOnQImzZtkh7PB4Dx48fDxsYG48ePh729fb1zvPjii/jtt9/Qr18/vP3221i6dCliY2MBAGFhYVi6dCnee+899OrVC1999RUWLFigdXx1dTWmT5+Onj17YsSIEejWrRtWrVoFoGZ2Z/bs2ejTpw/uvPNOWFtbIyUlxSRjMWfOHISHhyM2NhZDhw6Fj49PvUrjc+fOxYsvvojExET07NkTY8eOlfKUbGxssGzZMnz88cfw9fXFmDFjdH7OwoUL8eCDD2LChAkIDw9HRkYGvv/+e7i5uZnkuog6IpkQQli6E0REWVlZCA4OxqFDhxAeHq61LzAwEDNmzMCMGTMs0zkiIh14O4+ILKqqqgqFhYWYM2cOBg0aVC+AIiJqrXg7j4gs6pdffoFSqcShQ4fq5TFZ2rvvvotOnTrpfN17772W7h4RWRhv5xER6VFUVFSvwreGg4MD/Pz8zNwjImpNGEQRERERNQNv5xERERE1A4MoIiIiomZgEEVERETUDAyiiIiIiJqBQRQRERFRMzCIIiIiImoGBlFEREREzcAgioiIiKgZ/h9DzYd+S3ejFwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYchJREFUeJzt3XlclNX+B/DPgGyijOHCoqiIqLnkgkqYe9SYuHBb3ErJTMwrJZdyTXGrNLdwK/T+VKwbaV6Nruk1jeyWSlaombmkBq6ACjEgXkWZ8/uDO08MMDAzzvLMzOf9es0LeebMM+fM4DPfOcv3KIQQAkRERERkFBdbV4CIiIjIHjGIIiIiIjIBgygiIiIiEzCIIiIiIjIBgygiIiIiEzCIIiIiIjIBgygiIiIiEzCIIiIiIjIBgygiIiIiEzCIIiJycCkpKVAoFMjOzrZ1VYgcCoMoInpgP/74I+Li4tChQwd4e3ujefPmGDFiBH777bcqZfv37w+FQgGFQgEXFxf4+Pigbdu2GDt2LPbv32/U8+7atQv9+vVDkyZNULduXbRq1QojRozA3r17zdW0Kt555x2kpaVVOX748GHMnz8fhYWFFnvuyubPny+9lgqFAnXr1kX79u0xZ84cFBUVmeU5UlNTkZSUZJZzETkaBlFE9MDeffdd7NixA48//jhWrVqF2NhYfPvtt+jWrRtOnjxZpXyzZs3w0Ucf4cMPP8SyZcswbNgwHD58GE8++SRGjhyJe/fu1fqcy5cvx7Bhw6BQKDBr1iy89957eOaZZ3Du3Dls3brVEs0EUHMQtWDBAqsGUVoffPABPvroI6xcuRLt2rXD22+/jUGDBsEcW6MyiCLSr46tK0BE9i8hIQGpqalwd3eXjo0cORKdOnXCkiVL8I9//EOnvFKpxAsvvKBzbMmSJXjttdfw/vvvo2XLlnj33Xf1Pt/9+/exaNEiPPHEE9i3b1+V+69fv/6ALZKP27dvo27dujWWefbZZ9GoUSMAwCuvvIJnnnkGO3fuxPfff4+IiAhrVJPIKbEniogeWK9evXQCKAAIDQ1Fhw4dcPr0aYPO4erqitWrV6N9+/ZYu3Yt1Gq13rI3b95EUVERHnvssWrvb9Kkic7vd+7cwfz589GmTRt4enoiICAATz/9NC5cuCCVWb58OXr16oWGDRvCy8sLYWFh+Oc//6lzHoVCgZKSEmzZskUaQnvxxRcxf/58TJs2DQAQHBws3VdxDtI//vEPhIWFwcvLC76+vhg1ahQuX76sc/7+/fujY8eOyMzMRN++fVG3bl3Mnj3boNevooEDBwIAsrKyaiz3/vvvo0OHDvDw8EBgYCCmTJmi05PWv39/7N69GxcvXpTa1LJlS6PrQ+So2BNFRBYhhEBeXh46dOhg8GNcXV0xevRozJ07FwcPHkRUVFS15Zo0aQIvLy/s2rULr776Knx9ffWes6ysDEOGDEF6ejpGjRqFqVOnori4GPv378fJkycREhICAFi1ahWGDRuG559/HqWlpdi6dSuee+45fPHFF1I9PvroI7z88svo2bMnYmNjAQAhISHw9vbGb7/9hk8++QTvvfee1CvUuHFjAMDbb7+NuXPnYsSIEXj55Zdx48YNrFmzBn379sWxY8fQoEEDqb75+fl46qmnMGrUKLzwwgvw8/Mz+PXT0gaHDRs21Ftm/vz5WLBgASIjIzF58mScPXsWH3zwAX788UccOnQIbm5uePPNN6FWq3HlyhW89957AIB69eoZXR8ihyWIiCzgo48+EgDExo0bdY7369dPdOjQQe/jPvvsMwFArFq1qsbzJyYmCgDC29tbPPXUU+Ltt98WmZmZVcpt2rRJABArV66scp9Go5H+ffv2bZ37SktLRceOHcXAgQN1jnt7e4uYmJgq51q2bJkAILKysnSOZ2dnC1dXV/H222/rHP/ll19EnTp1dI7369dPABDJycl6213RvHnzBABx9uxZcePGDZGVlSXWr18vPDw8hJ+fnygpKRFCCLF582adul2/fl24u7uLJ598UpSVlUnnW7t2rQAgNm3aJB2LiooSLVq0MKg+RM6Gw3lEZHZnzpzBlClTEBERgZiYGKMeq+3pKC4urrHcggULkJqaiq5du+LLL7/Em2++ibCwMHTr1k1nCHHHjh1o1KgRXn311SrnUCgU0r+9vLykf//xxx9Qq9Xo06cPjh49alT9K9u5cyc0Gg1GjBiBmzdvSjd/f3+EhobiwIEDOuU9PDwwfvx4o56jbdu2aNy4MYKDgzFp0iS0bt0au3fv1juX6quvvkJpaSni4+Ph4vLnx8DEiRPh4+OD3bt3G99QIifE4TwiMqvc3FxERUVBqVTin//8J1xdXY16/K1btwAA9evXr7Xs6NGjMXr0aBQVFeHIkSNISUlBamoqhg4dipMnT8LT0xMXLlxA27ZtUadOzZe7L774Am+99RaOHz+Ou3fvSscrBlqmOHfuHIQQCA0NrfZ+Nzc3nd+bNm1aZX5ZbXbs2AEfHx+4ubmhWbNm0hClPhcvXgRQHnxV5O7ujlatWkn3E1HNGEQRkdmo1Wo89dRTKCwsxHfffYfAwECjz6FNidC6dWuDH+Pj44MnnngCTzzxBNzc3LBlyxYcOXIE/fr1M+jx3333HYYNG4a+ffvi/fffR0BAANzc3LB582akpqYa3YaKNBoNFAoF/v3vf1cbUFaeY1SxR8xQffv2leZhEZH1MIgiIrO4c+cOhg4dit9++w1fffUV2rdvb/Q5ysrKkJqairp166J3794m1aN79+7YsmULcnJyAJRP/D5y5Aju3btXpddHa8eOHfD09MSXX34JDw8P6fjmzZurlNXXM6XveEhICIQQCA4ORps2bYxtjkW0aNECAHD27Fm0atVKOl5aWoqsrCxERkZKxx60J47IkXFOFBE9sLKyMowcORIZGRnYvn27SbmJysrK8Nprr+H06dN47bXX4OPjo7fs7du3kZGRUe19//73vwH8OVT1zDPP4ObNm1i7dm2VsuJ/yShdXV2hUChQVlYm3ZednV1tUk1vb+9qE2p6e3sDQJX7nn76abi6umLBggVVkl8KIZCfn199Iy0oMjIS7u7uWL16tU6dNm7cCLVarbMq0tvbu8Z0E0TOjD1RRPTAXn/9dfzrX//C0KFDUVBQUCW5ZuXEmmq1Wipz+/ZtnD9/Hjt37sSFCxcwatQoLFq0qMbnu337Nnr16oVHH30UgwYNQlBQEAoLC5GWlobvvvsO0dHR6Nq1KwBg3Lhx+PDDD5GQkIAffvgBffr0QUlJCb766iv89a9/xfDhwxEVFYWVK1di0KBBGDNmDK5fv45169ahdevWOHHihM5zh4WF4auvvsLKlSsRGBiI4OBghIeHIywsDADw5ptvYtSoUXBzc8PQoUMREhKCt956C7NmzUJ2djaio6NRv359ZGVl4bPPPkNsbCzeeOONB3r9jdW4cWPMmjULCxYswKBBgzBs2DCcPXsW77//Pnr06KHzfoWFhWHbtm1ISEhAjx49UK9ePQwdOtSq9SWSLVsuDSQix6Bdmq/vVlPZevXqidDQUPHCCy+Iffv2GfR89+7dE3//+99FdHS0aNGihfDw8BB169YVXbt2FcuWLRN3797VKX/79m3x5ptviuDgYOHm5ib8/f3Fs88+Ky5cuCCV2bhxowgNDRUeHh6iXbt2YvPmzVIKgYrOnDkj+vbtK7y8vAQAnXQHixYtEk2bNhUuLi5V0h3s2LFD9O7dW3h7ewtvb2/Rrl07MWXKFHH27Fmd16am9A+Vaet348aNGstVTnGgtXbtWtGuXTvh5uYm/Pz8xOTJk8Uff/yhU+bWrVtizJgxokGDBgIA0x0QVaAQwgybKxERERE5Gc6JIiIiIjIBgygiIiIiEzCIIiIiIjIBgygiIiIiEzCIIiIiIjIBgygiIiIiEzDZpgVpNBpcu3YN9evX59YJREREdkIIgeLiYgQGBsLFRX9/E4MoC7p27RqCgoJsXQ0iIiIyweXLl9GsWTO99zOIsqD69esDKH8TatoHjIiIiOSjqKgIQUFB0ue4PgyiLEg7hOfj48MgioiIyM7UNhWHE8uJiIiITMAgioiIiMgEDKKIiIiITMAgioiIiMgEDKKIiIiITMAgioiIiMgEDKKIiIiITMAgioiIiMgEDKKIiIiITMCM5QQAyM/PR2lpqd773d3d0bBhQyvWiIiISN4YRBHy8/Oxdu3aWsvFxcUxkCIiIvofDudRjT1QppQjIiJyBgyiiIiIiEzAIIqIiIjIBAyiiIiIiEzAieVERAbiKlYiqkgWPVHr1q1Dy5Yt4enpifDwcPzwww81lt++fTvatWsHT09PdOrUCXv27NG5XwiBxMREBAQEwMvLC5GRkTh37px0f3Z2NiZMmIDg4GB4eXkhJCQE8+bN07k4ZmdnQ6FQVLl9//335m08EdkF7SrWDRs26L2tXbsW+fn5tq4qEVmJzYOobdu2ISEhAfPmzcPRo0fRuXNnqFQqXL9+vdryhw8fxujRozFhwgQcO3YM0dHRiI6OxsmTJ6UyS5cuxerVq5GcnIwjR47A29sbKpUKd+7cAQCcOXMGGo0G69evx6+//or33nsPycnJmD17dpXn++qrr5CTkyPdwsLCLPNCEJGscRUrEVWmEEIIW1YgPDwcPXr0kPIUaTQaBAUF4dVXX8XMmTOrlB85ciRKSkrwxRdfSMceffRRdOnSBcnJyRBCIDAwEK+//jreeOMNAIBarYafnx9SUlIwatSoauuxbNkyfPDBB/j9998BlPdEBQcH49ixY+jSpYtJbSsqKoJSqYRarYaPj49J57AG5okiql1OTg42bNhQa7nY2FgEBARYoUZEZCmGfn7bdE5UaWkpMjMzMWvWLOmYi4sLIiMjkZGRUe1jMjIykJCQoHNMpVIhLS0NAJCVlYXc3FxERkZK9yuVSoSHhyMjI0NvEKVWq+Hr61vl+LBhw3Dnzh20adMG06dPx7Bhw/S25+7du7h79670e1FRkd6yctKwYUPExcVxrgcREZERbBpE3bx5E2VlZfDz89M57ufnhzNnzlT7mNzc3GrL5+bmSvdrj+krU9n58+exZs0aLF++XDpWr149rFixAo899hhcXFywY8cOREdHIy0tTW8gtXjxYixYsKCGFssXAyQiIiLjOP3qvKtXr2LQoEF47rnnMHHiROl4o0aNdHq8evTogWvXrmHZsmV6g6hZs2bpPKaoqAhBQUGWqzwRERHZjE2DqEaNGsHV1RV5eXk6x/Py8uDv71/tY/z9/Wssr/2Zl5enMy8hLy+vytyma9euYcCAAejVq5dBcx3Cw8Oxf/9+vfd7eHjAw8Oj1vM4Iy4NJyIiR2PTIMrd3R1hYWFIT09HdHQ0gPKJ5enp6YiLi6v2MREREUhPT0d8fLx0bP/+/YiIiAAABAcHw9/fH+np6VLQVFRUhCNHjmDy5MnSY65evYoBAwYgLCwMmzdvhotL7QsVjx8/7hQTRq9cAc6dA0JDgWbNHvx8nLhORESOyObDeQkJCYiJiUH37t3Rs2dPJCUloaSkBOPHjwcAjBs3Dk2bNsXixYsBAFOnTkW/fv2wYsUKREVFYevWrfjpp5+kniSFQoH4+Hi89dZbCA0NRXBwMObOnYvAwEApULt69Sr69++PFi1aYPny5bhx44ZUH21P1pYtW+Du7o6uXbsCAHbu3IlNmzbh//7v/6z10tjExo1AbCyg0QAuLsCGDcCECQ92TrktDWevGJnC3d3drOWIyP7ZPIgaOXIkbty4gcTEROTm5qJLly7Yu3evNDH80qVLOr1EvXr1QmpqKubMmYPZs2cjNDQUaWlp6Nixo1Rm+vTpKCkpQWxsLAoLC9G7d2/s3bsXnp6eAMp7rs6fP4/z58+jWaWulooZHxYtWoSLFy+iTp06aNeuHbZt24Znn33Wki+HTV258mcABZT/nDQJUKnM0yMlB+wVI1NVXsV67ZoLsrLqIDj4PgIDy//TMAAnci42zxPlyOwlT5TWgQPAwIHVH+/f3/Tzyim/jpzqQvbLEj22RCQfhn5+2zxjOclHaGj5B0JFrq5A69a2qQ+RHOnrsb1yxbb1IiLrYxBFkmbNyr9Ru7qW/+7qCqxf7zhDeUTmcO7cnwGUVlkZcP68bepDRLZj8zlRJC8TJpTPgTp/vrwHigEUkS5tj23FQIo9tkTOiT1RVEWzZuVzoBhAEVXFHlsi0mJPFFkcl4aTo2GPLREBDKLICuS8NFytro+Cgobw9c2HUlls9ecn+9WsGYMnImfHIIqsQhsg2XppeMXerqNHu2LXriEQwgUKhQZDh36Bbt2OVSlHRCRnTCBsO8wTZUH2lifK0q5cAVq0qDohNzvbut/o8/PzkZ19Hz17NoFGo6hQF4EjR66jZcs6vOAQkV1gAmHLYJ4okh25LA1v2LAhior8dAKo8rooUFzsxwsNEdkNuW2r5WwYRJHVyCmZp5zqQkRE9olBFFmNnJaGy6kuRERknzixnKxKTkvD5VQXIiKyPwyiyOrktDRcTnUhIiL7wuE8IiIiIhMwiCIiIiIyAYMoIiIiO8VttWyLc6KIiIjsVOVttarDjOWWwyCKiIjIjlUMkK5cKU9sHBrKRTPWwOE8IiIiB7BxY/nWWgMHlv/cuNHWNXJ8DKKIiIjs3JUrf27uDpT/nDSp/DhZDoMoIiIiOyeXvUmdDYMoIiIiO8f9QG2DQRQREZGd436gtsHVeURERA6A+4FaH4MoIpKt/Px85r8hMgL3A7UuBlFEJEv5+flYu3ZtreXi4uIYSBGRTXBOFBHJUk09UKaUIyIyNwZRRGQX1Or6yMpqCbW6vq2rQkQEgMN5RGQHjh7til27hkAIFygUGgwd+gW6dTtm62oRkZNjTxQRyZpaXV8KoABACBfs2jWEPVJEZHMMoohI1goKGkoBlJYQLigo8LVRjYiIyjGIIiJZ8/XNh0Khu5+FQqGBr2+BjWpERFSOQRQRyZpSWYyhQ7+QAintnCilstjGNSMiZ8eJ5UQkS+7u7tK/u3U7hpCQ8ygo8IWvb4FOAFWxHBGRNTGIIiJZatiwIeLi4pixnIhki8N5RERERCZgTxQRyRK3fSEiuWNPFBHJUuVhPH0Zy7ntCxHZCnuiiEj2mLHc+vLz8zkfjagWDKKISNb0ZSwPCTnPNAcWwqFUIsNwOI+IZI0Zy62PQ6lEhmFPFJmEXf1kLdqM5RUDKWYstx4OpRLpxyCKjMaufrImbcbyyh/kHMqzPA6lEtWMQRQZrbqu/oKChvD1zde5sLKrn8ylpozlZDk1DaXyPSBiEEUPiF391ucsQ6mVt3NRKour/eDmti+Ww6FUopoxiCKTsavf+ioPperrBXSEoVRu+2J7HEolqhmDKDIZu/qtr2JAUVMvoKMMpTJAsj0OpRLpxxQHZDJtV39F7Oq3Dn29gJWXoBOZorqh1ODgi1UCKA6lkrNjTxSZjF39tsNeQLIkDqUSGYZBFD0QdvXbBif8kqUxQCKqHYfzyGjs6rc9bS+gdjiVvYBERNbHnigyGrv65YG9gEREtsUgikzCAEke9OVOIiIiy+NwHpEdMXSIlEOpRESWx54oIjvCoVQiIvlgEEVkZxggERHJA4fziIiIiEzAIIqIiIjIBLIIotatW4eWLVvC09MT4eHh+OGHH2osv337drRr1w6enp7o1KkT9uzZo3O/EAKJiYkICAiAl5cXIiMjce7cOen+7OxsTJgwAcHBwfDy8kJISAjmzZtXZZ7JiRMn0KdPH3h6eiIoKAhLly41X6OJiIjIrtk8iNq2bRsSEhIwb948HD16FJ07d4ZKpcL169erLX/48GGMHj0aEyZMwLFjxxAdHY3o6GicPHlSKrN06VKsXr0aycnJOHLkCLy9vaFSqXDnzh0AwJkzZ6DRaLB+/Xr8+uuveO+995CcnIzZs2dL5ygqKsKTTz6JFi1aIDMzE8uWLcP8+fOxYcMGy74gREREZB+EjfXs2VNMmTJF+r2srEwEBgaKxYsXV1t+xIgRIioqSudYeHi4mDRpkhBCCI1GI/z9/cWyZcuk+wsLC4WHh4f45JNP9NZj6dKlIjg4WPr9/fffFw899JC4e/eudGzGjBmibdu2BrdNrVYLAEKtVhv8GCIiIrItQz+/bdoTVVpaiszMTERGRkrHXFxcEBkZiYyMjGofk5GRoVMeAFQqlVQ+KysLubm5OmWUSiXCw8P1nhMA1Go1fH19dZ6nb9++Ovl2VCoVzp49iz/++KPac9y9exdFRUU6NyIiInJMNg2ibt68ibKyMvj5+ekc9/PzQ25ubrWPyc3NrbG89qcx5zx//jzWrFmDSZMm1fo8FZ+jssWLF0OpVEq3oKCgassRERGR/bP5nChbu3r1KgYNGoTnnnsOEydOfKBzzZo1C2q1WrpdvnzZTLUkIiIiubFpENWoUSO4uroiLy9P53heXh78/f2rfYy/v3+N5bU/DTnntWvXMGDAAPTq1avKhHF9z1PxOSrz8PCAj4+Pzo2IiIgck02DKHd3d4SFhSE9PV06ptFokJ6ejoiIiGofExERoVMeAPbv3y+VDw4Ohr+/v06ZoqIiHDlyROecV69eRf/+/REWFobNmzfDxUX3pYiIiMC3336Le/fu6TxP27Zt8dBDD5neaCIiInIMVprortfWrVuFh4eHSElJEadOnRKxsbGiQYMGIjc3VwghxNixY8XMmTOl8ocOHRJ16tQRy5cvF6dPnxbz5s0Tbm5u4pdffpHKLFmyRDRo0EB8/vnn4sSJE2L48OEiODhY/Pe//xVCCHHlyhXRunVr8fjjj4srV66InJwc6aZVWFgo/Pz8xNixY8XJkyfF1q1bRd26dcX69esNbhtX5xEREdkfQz+/bb533siRI3Hjxg0kJiYiNzcXXbp0wd69e6VJ3JcuXdLpJerVqxdSU1MxZ84czJ49G6GhoUhLS0PHjh2lMtOnT0dJSQliY2NRWFiI3r17Y+/evfD09ARQ3qN0/vx5nD9/Hs2aNdOpjxACQPmKvn379mHKlCkICwtDo0aNkJiYiNjYWEu/JERERGQHFEIbNZDZFRUVQalUQq1Wc34UERGRnTD089vpV+cRERERmYJBFBEREZEJbD4nipxDfn6+tMHztWsuyMqqg+Dg+wgM1AAoX6nZsGFDW1aRiIjIKAyiyOLy8/Oxdu1aAMDRo12xa9cQCOEChUKDoUO/QLduxwAAcXFxDKSIiMhucDiPLE7bA6VW15cCKAAQwgW7dg2BWl1fpxw5hytXgAMHyn8SEdkjBlFkNQUFDVF5z2shXFBQ4KvnEeRo8vPzkZOTgxUrCtGihcDAgUCLFgIrVhQiJycH+fn5tq4iEZHBOJxHVuPrmw+FQqMTSCkUGvj6FtiwVmQt2mFdtbo+kpLiIYQCAKDRKDBtmg+uXt0EpbKYw7pEZDfYE0VWo1QWY+jQL6BQlE8m186JUiqLbVwzsgbtcG1tPZIc1iUie8GeKLKqbt2OISTkPAoKfOHrW8AAygmxR5KIHAV7osjqlMpiBAdfZADlpNgjSUSOgj1RRGR17JEkIkfAIIoszt3d3ahyTMzpHJTKYgZPRGTXGESRxTVs2BBxcXE1ThjWBkbOnpjzyhXg3DkgNBRo1szWtSEiopowiCKrMDTgqS0xZ0jIeSiVxQ61gkvb85aa6oXp05XQaBRwcRFYulSNMWP+y543IiKZYhBFslTTMnhHGgJyptxJxg7rEhHJHYMokiVnWQZvSO4kR+l5M2ZYl4jIHjCIIlnSLoOvPCfKkXqhKnKWoJEBEhE5EgZRJFvOtAze2YJGIiJHwCCKZM2ZlsE7U9BIROQIGEQ5KEvnWmIuJ8twpqCRiMjeMYhyQJbOtWTJ83MFFxER2QsGUQ7I0rmWLHl+ruCyHCbyJCIyLwZRDszSuZYsdX5nCpAs3fPGRJ5ERJbDIMqBWXrZvLMsy7ckS/a8OVMiTyIiW2AQ5cAsvWyey/LNw1IBjDMl8iQisgUGUQ7O0svmuSxf/thjSERkGS61FyF7p1QWIzj4osUCHEufnx6MtsdQoShPP8EeQ3ImV64ABw6U/yQyN/ZEETkB9hiSM+GCCrIWBlEOyNIrvpjLyT4xkSc5Ay6oIGtiEOWALJ1ribmciEiuuKCCrIlBlIOydADDAImI5IwLKsgaOLGcyEFx2JWcGRdUkDWwJ4rIQXHYlZwdF1SQpTGIInJgDJDI2XFBBVkSh/OIiIiITMAgioiIiMgEDKKIiMhhcEEFWRPnRBHVQpv9GACuXXNBVlYdBAffR2Bg+aofTs4mkg8uqCBrYhBFVANt9mMAOHq0K3btGgIhXKTl0t26HQMAZj8mkhH+XyRr4XAeUQ2032bV6vpSAAWUZz7etWsI1Or6OuWIiMh5MIgiMkBNW0gQEZFzYhBFZADtFhIVcQsJIiLnxiCKyADcQoKIiCrjxHIiA3ELCSIiqohBFJERuIUEERFpcTiPiIiIyAQMoohqwOzHRESkD4fziGrA7MdERKQPgyiiWjBAIiKi6nA4j4iIiMgEDKKIiIj+58oV4MCB8p9EtWEQRURETi0/Px85OTlYsaIQLVoIDBwItGghsGJFIXJycpCfn2/rKpJMcU4UkZnl5+dLE9GvXXNBVlYdBAffR2BgebZzTkQnko/8/HysXbsWanV9JCXFQwgFAECjUWDaNB9cvboJSmUx4uLi+P+WqmAQRWRG2gsyABw92hW7dg2BEC7SNjHduh0DAF6QiWRC+4Wnpk3GlcriGlfokvPicB6RGWkvtGp1fSmAAsovxrt2DYFaXV+nHBHJAzcZJ1MwiCKygJq+1RKR/HCTcTIFh/OILED7rbZiIMVvtUTVu3IFOHcOCA0FmjWzXT24yTgZiz1RRBbAb7VENZPrijilshjBwRf5f5UMYvMgat26dWjZsiU8PT0RHh6OH374ocby27dvR7t27eDp6YlOnTphz549OvcLIZCYmIiAgAB4eXkhMjIS586d0ynz9ttvo1evXqhbty4aNGhQ7fMoFIoqt61btz5QWx2J9gKo78YlweXfauPjkxATk4L4+CRpUjmRs9MuwFi27BNMm+YDjUZ3RdyyZZ9g7dq1vI6Q7Nl0OG/btm1ISEhAcnIywsPDkZSUBJVKhbNnz6JJkyZVyh8+fBijR4/G4sWLMWTIEKSmpiI6OhpHjx5Fx44dAQBLly7F6tWrsWXLFgQHB2Pu3LlQqVQ4deoUPD09AZRP6n3uuecQERGBjRs36q3f5s2bMWjQIOl3fQGXs6m4Ag0on0RdUNAQvr75Ot/euAKt/Fstv9ES6eKKOHIUNg2iVq5ciYkTJ2L8+PEAgOTkZOzevRubNm3CzJkzq5RftWoVBg0ahGnTpgEAFi1ahP3792Pt2rVITk6GEAJJSUmYM2cOhg8fDgD48MMP4efnh7S0NIwaNQoAsGDBAgBASkpKjfVr0KAB/P39zdVch1HxwlbTMn5eAImoJnKYO+ju7m7WcuRcbBZElZaWIjMzE7NmzZKOubi4IDIyEhkZGdU+JiMjAwkJCTrHVCoV0tLSAABZWVnIzc1FZGSkdL9SqUR4eDgyMjKkIMpQU6ZMwcsvv4xWrVrhlVdewfjx46FQKPSWv3v3Lu7evSv9XlRUZNTz2Rt9y/hDQs47be8LL8hEhtPOHaz8Rcya14+GDRsiLi6uxi99TJBL+tgsiLp58ybKysrg5+enc9zPzw9nzpyp9jG5ubnVls/NzZXu1x7TV8ZQCxcuxMCBA1G3bl3s27cPf/3rX3Hr1i289tpreh+zePFiqZfLGdTWFe+MeEEmMo4cVsTJ8f9jWVkZ7t27Z+tqOCw3Nze4uro+8HmY4kCPuXPnSv/u2rUrSkpKsGzZshqDqFmzZun0lBUVFSEoKMii9bQlOXTFy5EcL8hEcsa5g38SQiA3NxeFhYW2rorD007ZqWmEqTY2C6IaNWoEV1dX5OXl6RzPy8vTOw/J39+/xvLan3l5eQgICNAp06VLlweqb3h4OBYtWoS7d+/Cw8Oj2jIeHh5673NEcuiKJyKqiVxyUBlKG0A1adIEdevWfaAPeKqeEAK3b9/G9evXAUAnXjCWzYIod3d3hIWFIT09HdHR0QAAjUaD9PR0xMXFVfuYiIgIpKenIz4+Xjq2f/9+REREAACCg4Ph7++P9PR0KWgqKirCkSNHMHny5Aeq7/Hjx/HQQw85VZBkCDl0xRMRVaTdBDw11QvTpyuh0Sjg4iKwdKkaY8b8V7ZD6mVlZVIAJcf6ORIvLy8AwPXr19GkSROTh/ZsOpyXkJCAmJgYdO/eHT179kRSUhJKSkqk1Xrjxo1D06ZNsXjxYgDA1KlT0a9fP6xYsQJRUVHYunUrfvrpJ2zYsAFAeW6n+Ph4vPXWWwgNDZVSHAQGBkqBGgBcunQJBQUFuHTpEsrKynD8+HEAQOvWrVGvXj3s2rULeXl5ePTRR+Hp6Yn9+/fjnXfewRtvvGHV18desCueiIxhyQUY2hQsanV9JCXFQwjdHFRXr26CUlksyxQs2jlQdevWtXFNnIP2db537559BlEjR47EjRs3kJiYiNzcXHTp0gV79+6VJoZfunQJLi5/zrfp1asXUlNTMWfOHMyePRuhoaFIS0uTckQBwPTp01FSUoLY2FgUFhaid+/e2Lt3r5QjCgASExOxZcsW6feuXbsCAA4cOID+/fvDzc0N69atw9/+9jcIIdC6dWspHQNxBRoRPRhLLsBwhBxUHMKzDnO8zgohhDBDXagaRUVFUCqVUKvV8PHxsXV1zErbXa6PXLvLicix5eTkYMOGDRV6onQXvsTHJ0GpLEZsbOwDzYWxhDt37iArKwvBwcE6X/zJMmp6vQ39/ObqPDIJAyQikjMufCFrMHrvvC+++AKJiYk4dOgQAODrr7/G4MGDMWjQIGluEhERka1x/0rrefHFF6V9Zt3c3ODn54cnnngCmzZtgkajMfg8KSkpdrXFmlFB1Pr16/GXv/wFe/bsweDBg/GPf/wD0dHRaNq0KVq2bIn4+HisWrXKUnUlIiIyilJZjODgi07RA2XrjeEHDRqEnJwcZGdn49///jcGDBiAqVOnYsiQIbh//75Fn9tWjBrOW716Nd5//31MnDgRBw4cwODBg7FixQr89a9/BQA8+uijWLp0KaZOnWqRyhIREVFVlTeG18eSqxI9PDykfI1NmzZFt27d8Oijj+Lxxx9HSkoKXn75ZaxcuRKbN2/G77//Dl9fXwwdOhRLly5FvXr18M0330ir87WTvufNm4f58+fjo48+wqpVq3D27Fl4e3tj4MCBSEpKQpMmTSzSFkMZ1ROVlZUFlUoFABgwYADKysrQt29f6f7+/fvj4sWL5q0hERER1cjQ1YbWXpU4cOBAdO7cGTt37gRQvkfu6tWr8euvv2LLli34+uuvMX36dADlK/CTkpLg4+Mj9Z5pUwvdu3cPixYtws8//4y0tDRkZ2fjxRdftGpbqmNUT1TDhg1x8eJFNG/eHNeuXcP9+/dx6dIlKcXAxYsX4evra5GKEhER1YYpWOSnXbt2OHHiBADoJMtu2bIl3nrrLbzyyit4//334e7uDqVSCYVCUWXnkpdeekn6d6tWrbB69Wr06NEDt27dQr169azSjuoYFUQNHz4cEyZMQExMDP71r39h3LhxeP311+Hi4gKFQoFp06bhySeftFRdiYiIasRNwOVHCCENz3311VdYvHgxzpw5g6KiIty/fx937tzB7du3a0wympmZifnz5+Pnn3/GH3/8IU1Wv3TpEtq3b2+VdlTHqCDq3XffRWlpKbZu3YpevXphzZo1WL16NYYPH4579+6hX79+UnZxIiIiW2CAJC+nT59GcHAwsrOzMWTIEEyePBlvv/02fH19cfDgQUyYMAGlpaV6g6iSkhKoVCqoVCp8/PHHaNy4MS5dugSVSmXzpKlGBVHe3t5V0hi88cYbiIuLw71791C/fn2zVo6IiIjs19dff41ffvkFf/vb35CZmQmNRoMVK1ZIu5F8+umnOuXd3d1RVlamc+zMmTPIz8/HkiVLEBQUBAD46aefrNOAWpgl2aanpyezq1KNmOGciMix3b17F7m5uSgrK0NeXh727t2LxYsXY8iQIRg3bhxOnjyJe/fuYc2aNRg6dCgOHTqE5ORknXO0bNkSt27dQnp6Ojp37oy6deuiefPmcHd3x5o1a/DKK6/g5MmTWLRokY1aqcuoICohIcGgcitXrjSpMuSY5LD0loiILGvv3r0ICAhAnTp18NBDD6Fz585YvXo1YmJi4OLigs6dO2PlypV49913MWvWLPTt2xeLFy/GuHHjpHP06tULr7zyCkaOHIn8/HwpxUFKSgpmz56N1atXo1u3bli+fDmGDRtmw9aWM2rvvAEDBuj8fvDgQYSFhcHLy+vPEyoU+Prrr81XQzvmyHvnGUO7l1Vt5LiXlRyxV4/IMT3I3nn8smo8q++dd+DAAZ3f69evj9TUVLRq1cqY05CTU6vro6CgIXx9850ii7A5Vb5Q6nsteaEkci5clWgb3ICYrOro0a5VNgTlflaGq3iBrOm1tPWKFUdVsRfw2jUXZGXVQXDwfQQGli+35ocU2RL/9qyPQRRZjVpdX/rQBwAhXLBr1xCEhJxnj5SR+FpaX8VewJoCWPYCEjkPo7Z9IXoQBQUNpQ99LSFcUFDALPfG4mtpfdoeKH0BrFpdX6ccETk+o3qitGnbtYQQOHPmDG7duqVz/JFHHnnwmpHD8fXNh0Kh0fnwVyg08PUtsGGt7BNfS9upKYBlLyCRczEqiOrSpQsUCgUqLugbMmQIAEjHFQpFlURZRACgVBZj6NAvqgyD8IPHeHwtbYcBLBFpGRVEZWVlWaoe5MAqbvTZrdsxhIScR0GBL3x9C3Q+9LkhqHFqei3JchjAEpGWUUFUixYtLFUPcmBcems5SmUxP7xtgAEsEQEmrM4TQiA7OxtBQUGoU6cOSktL8dlnn+Hu3bsYPHgwGjVqZIl6kp1jgGQehvbWsVfP8hjAEpFRQdTZs2ehUqlw+fJltGrVCvv27cNzzz2HM2fOQAiBunXr4vDhwwgNDbVUfYmcGnv1iMgZffPNNxgwYAD++OMPNGjQwKDHtGzZEvHx8YiPj7dYvYxKcTBjxgx07twZx48fx5AhQxAVFYVmzZrhjz/+QEFBASIiIrBw4UJL1ZWIUB5IBQQE6L0xgLIM9gIS6ffiiy9CoVDglVdeqXLflClToFAo8OKLL1q/YhZmVE/U4cOHsW/fPnTq1AlvvfUWVq1ahQ0bNsDNzQ0AMHPmTIwePdoiFSUisiX2AhLVLCgoCFu3bsV7770n7al7584dpKamonnz5jaunWUY1RN169Yt+PqWJ/Pz9vaGt7e3zoaxQUFByMvLM28NiYhkgr2ARPp169YNQUFB2Llzp3Rs586daN68Obp27Sodu3v3Ll577TU0adIEnp6e6N27N3788Uedc+3Zswdt2rSBl5cXBgwYgOzs7CrPd/DgQfTp0wdeXl4ICgrCa6+9hpKSEou1rzpGBVGBgYG4dOmS9PvSpUvRpEkT6fcbN27goYceMl/tiIiIyGhXrgAHDpT/tKaXXnoJmzdvln7ftGkTxo8fr1Nm+vTp2LFjB7Zs2YKjR4+idevWUKlUKCgoz7V2+fJlPP300xg6dCiOHz+Ol19+GTNnztQ5x4ULFzBo0CA888wzOHHiBLZt24aDBw8iLi7O8o2swKggKjIyEmfOnJF+nzx5MurXry/9vm/fPnTr1s18tSMiIiKjbNwItGgBDBxY/nPjRus99wsvvICDBw/i4sWLuHjxIg4dOoQXXnhBur+kpAQffPABli1bhqeeegrt27fH3//+d3h5eWHj/yr6wQcfICQkBCtWrEDbtm3x/PPPV5lPtXjxYjz//POIj49HaGgoevXqhdWrV+PDDz/EnTt3rNZeo+ZEJScn13j/qFGjEBMT80AVIiIikrP8/HzZzo27cgWIjQU0mvLfNRpg0iRApQKaNbP88zdu3BhRUVFISUmBEAJRUVE6qY8uXLiAe/fu4bHHHpOOubm5oWfPnjh9+jQA4PTp0wgPD9c5b0REhM7vP//8M06cOIGPP/5YOiaEgEajQVZWFh5++GFLNK8Ko4Kor7/+GnFxcfj+++/h4+Ojc59arUZUVBSSk5N15kkRERE5ivz8fKxdu1b6Xa2uj4KChvD1zdfJGxYXF2eTQOrcuT8DKK2yMuD8eesEUUD5kJ52WG3dunUWeY5bt25h0qRJeO2116rcZ81J7EYFUUlJSZg4cWKVAAoAlEolJk2ahJUrV6JPnz5mqyAREZFcVOyBOnq0a5Xtf7p1O1alnDWFhgIuLrqBlKsr0Lq19eowaNAglJaWQqFQQKVS6dwXEhICd3d3HDp0SNoF5d69e/jxxx+lfE4PP/ww/vWvf+k87vvvv9f5vVu3bjh16hRaW7Nh1TBqTtTPP/+MQYMG6b3/ySefRGZm5gNXiojIFPn5+cjJydF7y8/Pt3UVyUGo1fWlAAoAhHDBrl1DoFbXr+WRltWsGbBhQ3ngBJT/XL/eer1Q5c/pitOnT+PUqVNw1Vbkf7y9vTF58mRMmzYNe/fuxalTpzBx4kTcvn0bEyZMAAC88sorOHfuHKZNm4azZ88iNTUVKSkpOueZMWMGDh8+jLi4OBw/fhznzp3D559/bvWJ5Ub1ROXl5Uk5oao9WZ06uHHjxgNXiojIWHIfZiHHUlDQUAqgtIRwQUGBr823A5owoXwO1Pnz5T1Q1gygtKobsdJasmQJNBoNxo4di+LiYnTv3h1ffvmltLq/efPm2LFjB/72t79hzZo16NmzJ9555x289NJL0jkeeeQR/Oc//8Gbb76JPn36QAiBkJAQjBw50uJtq8ioIKpp06Y4efKk3u6zEydOcD4UEdmE3IdZyLH4+uZDodDoBFIKhQa+vgU2rNWfmjWzbvBUuaeosrS0NOnfnp6eWL16NVavXq23/JAhQzBkyBCdY5VTJfTo0QP79u3Te47qckuZm1HDeYMHD8bcuXOrXT743//+F/PmzavSaCIia5LrMAs5FqWyGEOHfgGFonzykTZYt3UvFFmXUT1Rc+bMwc6dO9GmTRvExcWhbdu2AIAzZ85g3bp1KCsrw5tvvmmRihIRGULOwyxk/woLC6V/d+t2DE2a5OLy5eYICrqEZs1ydMpxZMbxGRVE+fn54fDhw5g8eTJmzZoFIQQASDPw161bBz8/P4tUlIjIEHIfZiH7dv/+fenfNQ0bVyxHjsuoIAoAWrRogT179uCPP/7A+fPnIYRAaGgot3shIlnQDrNU/nBjLxSZg3Zxlb5h45CQ81Aqi2tchEWOw+ggSuuhhx5Cjx49zFkXIiKz6NbtGEJCzqOgwBe+vgUMoMhslEolgNqHjbXlTKEd5SHLMsfrbHIQRUQkZ+UfZAyeyDIsMWys7b26ffs2vLy8HriOVLPbt28DwAP1GjKIIiKH4O7ubtZyRDWxxLCxq6srGjRogOvXrwMA6tatC4VCYa4q0/8IIXD79m1cv34dDRo0qJIQ1BgMoojIITRs2BBxcXGy3RiWHI8lho39/f0BQAqkyHIaNGggvd6mYhBFRA6DARJZm7mHjRUKBQICAtCkSRPcu3fPbOclXW5ubg/UA6XFIIqIiKrIz89nr141rDVs7OrqapYPebIsBlFERKSD+xDqx2FjqohBFBER6eA+hDVjgERaRu2dR0REzoP7EBLVjEEUERFVq6aEkkTEIIqIiPTQJpSsiPsQEv2JQRQREVVLm1BSG0hxH0IiXZxYTkREenEfQiL9GEQR2Rnm7yFr4z6EZCn2fj1jEEVkRyrn79HHGfP3kPlwH0KyBke4njGIIrIjhublcdb8PWQeTChJ1uAI1zMGUUR2TF8maaIHZekAyd6Hccj87PF6xiCKyE7VlEmaSM64rQxVZq/XMwZRRHZIXybpkJDzVv0Gx94EMgW3laGK5HI9MwWDKCI7VFMmaWtddBxhUijZlj1/eNKDKywsBFD79aywsBABAQE2qGHtbJ5sc926dWjZsiU8PT0RHh6OH374ocby27dvR7t27eDp6YlOnTphz549OvcLIZCYmIiAgAB4eXkhMjIS586d0ynz9ttvo1evXqhbty4aNGhQ7fNcunQJUVFRqFu3Lpo0aYJp06bh/v37D9RWInORQyZpR5gUSrbFbWWcm/YztbbrmZw/e20aRG3btg0JCQmYN28ejh49is6dO0OlUuH69evVlj98+DBGjx6NCRMm4NixY4iOjkZ0dDROnjwplVm6dClWr16N5ORkHDlyBN7e3lCpVLhz545UprS0FM899xwmT55c7fOUlZUhKioKpaWlOHz4MLZs2YKUlBQkJiaa9wUgMpEcM0mr1fWRldWSm9OSweTwZYBsT47XM0PZdDhv5cqVmDhxIsaPHw8ASE5Oxu7du7Fp0ybMnDmzSvlVq1Zh0KBBmDZtGgBg0aJF2L9/P9auXYvk5GQIIZCUlIQ5c+Zg+PDhAIAPP/wQfn5+SEtLw6hRowAACxYsAACkpKRUW699+/bh1KlT+Oqrr+Dn54cuXbpg0aJFmDFjBubPn8/cKGQzFf/2asokbe2/UXudFEq2pf3wrPy3Yw8fnvTg3NzcdH4XQvenvnJyYrMgqrS0FJmZmZg1a5Z0zMXFBZGRkcjIyKj2MRkZGUhISNA5plKpkJaWBgDIyspCbm4uIiMjpfuVSiXCw8ORkZEhBVG1ycjIQKdOneDn56fzPJMnT8avv/6Krl27GtpMIrOSY/4ezmuhB8FtZZyXUqkE8Oc15M/BMd1riLacHNksiLp58ybKysp0AhUA8PPzw5kzZ6p9TG5ubrXlc3Nzpfu1x/SVMYS+56n4HNW5e/cu7t69K/1eVFRk8HMSGUpuk7TlMMmd7Bu3lXFu9nwNsfnEckeyePFiKJVK6RYUFGTrKhFZHOe1kLG4rQxVZM/XEJv1RDVq1Aiurq7Iy8vTOZ6Xlwd/f/9qH+Pv719jee3PvLw8neWQeXl56NKli8F18/f3r7JKUPu8+uoGALNmzdIZbiwqKmIgRQ6P81rIWMYOSzMfmWOz52uIzYIod3d3hIWFIT09HdHR0QAAjUaD9PR0xMXFVfuYiIgIpKenIz4+Xjq2f/9+REREAACCg4Ph7++P9PR0KWgqKirCkSNH9K7E0/c8b7/9Nq5fv44mTZpIz+Pj44P27dvrfZyHhwc8PDwMfh4ieybXSe5kHwwNepjd3HE5wjXEpqvzEhISEBMTg+7du6Nnz55ISkpCSUmJtFpv3LhxaNq0KRYvXgwAmDp1Kvr164cVK1YgKioKW7duxU8//YQNGzYAABQKBeLj4/HWW28hNDQUwcHBmDt3LgIDA6VADSjPAVVQUIBLly6hrKwMx48fBwC0bt0a9erVw5NPPon27dtj7NixWLp0KXJzczFnzhxMmTKFQRLR/8hxkjs5HmY3d1yOcA2xaRA1cuRI3LhxA4mJicjNzUWXLl2wd+9eaRL3pUuX4OLy57StXr16ITU1FXPmzMHs2bMRGhqKtLQ0dOzYUSozffp0lJSUIDY2FoWFhejduzf27t0LT09PqUxiYiK2bNki/a5dbXfgwAH0798frq6u+OKLLzB58mRERETA29sbMTExWLhwoaVfEiK7IueLGzkWrgJ1TPZ+DVEIUTkjA5lLUVERlEol1Go1fHx8bF0dIiK7k5OTgw0bNiArqyW2bImpcn9MTAqCgy8iNjZWtluDkP0x9PObq/OIiEj27HkFFzkubkBMRESyZ88ruJyJs62kZBBFRER2gdnN5a3ySkp9HGklJYMoAuB83x6IyD4xu7l8Vf4M0ZeOwpFWUjKIIqf89kBE9oHZze2Ts2xKziCKDP5W4EjfHojIPjhCLiFn40zpKBhEERGRrDFAsi/2vKGwsZjigIiIiMzGmdJRsCeKiIjICFyIUzNnSkfBIIqIiMhAXIhjGGdJR8EgiqrQtyyViMjZOeMyfkNVXiGpLx2FI62kZBBFOpxlWSoR0YPi9VKXM66kZBBF0reC2palWuvbA+cbEJHcOdMyfmM427WZQRRJ3x4OHADee6/qstTHHotB//7W+c/B+QZEZA+caRk/6ccgigCUB0iPPgq4uACaCitTXV2B8PCGsFa8wsSfRGQPtMv4KwZSjrqMn/RjniiSNGsGbNhQHjgB5T/Xry8/TkREf9Iu49fmQ3LkZfykH3uiSMeECYBKBZw/D7RuzQCKiEgfZ1nGT/oxiKIqmjVj8EREVB1nXMZP+jGIIlljzioikhNnXMZP+jGIItliDhYikiMGSKTFieUkS/pysKjV9W1cMyIionLsiSJZ0c4jqC0Hi5znGzBZKBGRc1AIIYStK+GoioqKoFQqoVar4ePjY+vq2I38/HxkZ99Hz55NoNEopOOurgJHjlxHy5Z1ZBuEMFkoEZH9M/Tzm8N5JDsNGzZEWJgfNmxQVMpZpUBYmJ+sgw8mCyUich4cziPZYs4qIiKSMwZRJGv2nrOKKRqIiMxHbnNOGUQRWQhTNBARmY8c55xyThSRBTBFAxGReclxzimDKCILqClFAxEROQYGUUQW4OubL+3urqVQaODrW2CjGhERORa1uj6yslratIefc6KIzEibBFSpLMbQoV9UmROlnVwu52ShRERyJ5c5pwyiiMyo8uakiYk3kJ1dBy1b3kdgYA8APZixnIjoAeibcxoSct7qq6AZRBGZWcUAKSAACAuzYWWIiBxMbduCWRPnRBEREZHdkNOcU/ZEERHZIbklHSSyNDnOOeUGxBbEDYiJyBLkmHSQyBoqfnm4ds2lwpzT8p4pc315MPTzmz1RRER2pnIPlL7thbjRNTkauc05ZRBFRGTH5LLUm8gZcWI5EZGd4vZCRLbFnigiIjslp6XeZDtcZGA7DKKIiOyUdql3xUCK2ws5Fy4ysC0O5xER2SntUm9tzpzKS73J8VW3yKC6/eS4yMAy2BNFZGPsiqcH0a3bMYSEnEdBgS98fQsYQDkxSywy4PWpZgyiiGyIXfFkisrJBJXK4mqDJ2507TwssZ8cr0+1YxBlJ/htwDEZ2sXOrniqqPJG19XhNcG5WGKRAa9PtWMQZQf4bYCIKuP/daqIiwxsgxPL7QC/DTgPfZNCiYhqYo1FBrw+VcWeKCKZYOZpInoQllxkwOtT9dgTRSQDzDxNRKaobpFBcPDFKgHUgywy4PVJP/ZEEcmApTJPy21BgtzqQ2TvrLHIgJnx9WMQRSQDlpgUKrcFCXKrD5GjsPT/F05a149BFJENabvYtZNCK8850H7LM6UrXm4LEuRWHyIt9pBWz5LXJ0fBIMoOqdX1UVDQEL6++U7flWrvKnfFJybeQHZ2HbRseR+BgT0A9DDbBVxufzdyqw85J/aQ6mfN65O9YhBlBypG+TWtkHDmbwP2rOIFKCAACAsz/3PIbWWN3OpDzqu6veeqC+6dtYfUGtcne8Ygyg5ovw1kZ9/HwoVNIIQCQPnEvt27hyIxMRwtW9Zx6m8DpJ8ltoNwpPoQaTG4J2MxxYGdaNiwIYqK/KDRKHSOl5UpUFzsxwCK9KppZQ3rQ1SOy/jJFAyi7EhoKOBS6R1zdQVat7ZNfcg+aFfWVGTLlTVyqw8RwOCeTMMgyo40awZs2FAeOAHlP9evLz9eWX5+PnJycvTe8vPzrVt5shlrbAdhz/UhAhjck2lkMSdq3bp1WLZsGXJzc9G5c2esWbMGPXv21Ft++/btmDt3LrKzsxEaGop3330XgwcPlu4XQmDevHn4+9//jsLCQjz22GP44IMPEBoaKpUpKCjAq6++il27dsHFxQXPPPMMVq1ahXr16gEAsrOzERwcXOW5MzIy8Oijj5qx9caZMAFQqYDz58t7oPQFUFxtQhUXGtS0HYS1FiTIrT5EFdW2jJ+oOjYPorZt24aEhAQkJycjPDwcSUlJUKlUOHv2LJo0aVKl/OHDhzF69GgsXrwYQ4YMQWpqKqKjo3H06FF07NgRALB06VKsXr0aW7ZsQXBwMObOnQuVSoVTp07B09MTAPD8888jJycH+/fvx7179zB+/HjExsYiNTVV5/m++uordOjQQfpdDkFHs2bVB09azMdDgHUyGdtzfeSGuYpsz5J7z5FjUgghhC0rEB4ejh49ekg9JxqNBkFBQXj11Vcxc+bMKuVHjhyJkpISfPHFF9KxRx99FF26dEFycjKEEAgMDMTrr7+ON954AwCgVqvh5+eHlJQUjBo1CqdPn0b79u3x448/onv37gCAvXv3YvDgwbhy5QoCAwOlnqhjx46hS5cuJrWtqKgISqUSarUaPj4+Jp3DFDk5OdiwYUOt5WJjYxEQEGCFGhFRTSr3HutbZs/eY/Njzz1Vx9DPb5v2RJWWliIzMxOzZs2Sjrm4uCAyMhIZGRnVPiYjIwMJCQk6x1QqFdLS0gAAWVlZyM3NRWRkpHS/UqlEeHg4MjIyMGrUKGRkZKBBgwZSAAUAkZGRcHFxwZEjR/CXv/xFOj5s2DDcuXMHbdq0wfTp0zFs2DC97bl79y7u3r0r/V5UVGTYC0FETq1iD1RNy+zZe2x+7CGlB2HTIOrmzZsoKyuDn5+fznE/Pz+cOXOm2sfk5uZWWz43N1e6X3uspjKVhwrr1KkDX19fqUy9evWwYsUKPPbYY3BxccGOHTsQHR2NtLQ0vYHU4sWLsWDBAkOaTkRUBXNo2QYDJDKVzedEyVWjRo10erx69OiBa9euYdmyZXqDqFmzZuk8pqioCEFBQRava224vQaRfahpmT3/7xLJj02DqEaNGsHV1RV5eXk6x/Py8uDv71/tY/z9/Wssr/2Zl5enM98nLy9Pmtvk7++P69ev65zj/v37KCgo0Pu8QPn8rf379+u938PDAx4eHnrvtwVm4CWyH9pl9hUDKS6zJ5Ivm+aJcnd3R1hYGNLT06VjGo0G6enpiIiIqPYxEREROuUBYP/+/VL54OBg+Pv765QpKirCkSNHpDIREREoLCxEZmamVObrr7+GRqNBeHi43voeP37criZiMwMvkX1hDi0i+2Lz4byEhATExMSge/fu6NmzJ5KSklBSUoLx48cDAMaNG4emTZti8eLFAICpU6eiX79+WLFiBaKiorB161b89NNP0mo0hUKB+Ph4vPXWWwgNDZVSHAQGBiI6OhoA8PDDD2PQoEGYOHEikpOTce/ePcTFxWHUqFEIDAwEAGzZsgXu7u7o2rUrAGDnzp3YtGkT/u///s/Kr5DxtHl2ahsaYD4eeeDSdqqIy+yJ7IfNg6iRI0fixo0bSExMRG5uLrp06YK9e/dKE8MvXboElwp7nfTq1QupqamYM2cOZs+ejdDQUKSlpUk5ogBg+vTpKCkpQWxsLAoLC9G7d2/s3btXyhEFAB9//DHi4uLw+OOPS8k2V69erVO3RYsW4eLFi6hTpw7atWuHbdu24dlnn7XwK/LgKm5Y/NFHQme/PVdXgVdffYobFssEl1ebl6MEpEplMYMnIjtg8zxRjsxWeaIq2rgRmDQJKCv7c5uYCRNsUhWqBnN6mY8951piME0kL3aRJ4osz5BtYkg+uJLSdPaca4m5iojsE4MoJ1DbNjEkD1xJaR72mmuJARKR/bHp6jwiKseVlOZT04IKIiJzYk8UkQzIJcmipSdmW2PiN3MtEZG1MIgikgE5fPBbemK2tSZ+a3MtVR4alfNQHtmWo6zqJOtjEEUkA3L44Lf0xGxrTvxmriUyFFdG0oNgEEVkQxUTntb0wW/NxKiWnphtrYnfzLVEhqgctOvrIZXjqk6yPQZRRDYkx6Xtlp6fZanzGxpoMlM/6cMVstZn70OpDKKIbExuFwhLz8+y1PnlGJCS/bDX1Bj2zBGGUhlEEZEOS8/PsuT55XqhJfmTywpZZ2LoEKmch1IZRBGZmb13TwOWn5jNid8kN3JYIUv2h0EUkRk5Qve0lqUnZnPiN8mJHFbIajnCFzFnwSCKyIxMWekjlwumpSdmc+I3yZ0cekgd6YuYsexx71AGUUQWYshKHzldMC09MdvZJn7LJTimmlUO2vX1kForuHeEeUKmsNeVkQyiiCzA0JU+cstRY41AzRlYKzs7PTi5B/f22DtjLHteGckgisgCTFnpY6/fxKgqa2Znpwcn10DWWa4J9rwy0qX2IkRkLO1Kn4pqWumj75uYWl3f4nUly+H7SqZyhr8d7RBpbddLOc+TZE8UkQUYu9LHnr+JkX58X8lUzvC3U3EotWnTIsyYoURZmQKurgLvvluEMWNGy37uIIMoB8VJrbZnzEof5qhxTHxfyVT2+rdj7GeP9t+vvw6MHAmcPw+0bq1As2YNADSwbGXNgEGUA5LTii9nY+pKHznlqCHz4ftKprLHv50H/exp1qz8Zk8YRDkgZ10iKwcPstJHDjlqyPz4vpIxKn7BqulvR47zhJzxs4dBFJGZGdO7J7ccNWQZzM5OhpJ7ygXSxSCKyIZ4wXRMzM5OD4L/3+0Hgygn4AzJ2izJ0pP0ecF0PAyOiZzjs4dBlINzlmRtlmLvk/QrBoDXrrkgK6sOgoPvIzCwPCcLP8gth68rOTNn+exhEOXA7DmVvlzIbVsWY1QMAGu6oMk1ACQi++RMnz0MohyYMyRrsyZ7+2alDexqu6BZMwBkz5jjsuSwN/Pe2Rdn+uxhEOWAKqfS15esjZNaDWfP36zkckFjz5jjsuSGy9zM2X4442cPgygH5Aip9OWisLAQQO2BSGFhIQICAmxQw9rJJfOxHHvGyDwsueEyN3O2H8742cMgykHZeyp9ubh//z6A2gMRbTk5klvmY7n0jJH5WbLH1p57g52Js332MIhyAvaYSl9ulMpiPPLICfz8c2cACgACjzxywm4u3nLKmi2XnjEyP0sGyAy+7Y8zfPYwiCIygFpdHydOPILyAAoAFDhx4hEMHPi13VzA5ZI1W249Y2Q+lgyQ7Tn45sR4x8UgiqgGbm5uAGr/FqwtR4aRU88YmY8lA2R7Db7tPdcc1YxBFFENlEolgNq/BWvLyYnctx6RS8+Yqa5cAc6dA0JDHX/IwhiWDJDtMfi251xzVDsGUUQGsMdvwdx6xPy0wzKpqV6YPl0JjUYBFxeBpUvVGDPmv3w9/8eSAbI9B9/2lmuOascgishA9vgtWE4f6HLvGauNdlhGra6PpKR4CFE+P06jUWDaNB9cvboJSmWxXQzLmLsXzZLvrb3/3WjZ6+pCzueqGYMoohpUvjDr+xYs9wu4HNh7z5i23rXNj5PrsIwle9Es+d7a+9+NljGrC+USuHA+V+0YRBHVwFEu4HIh59fJ0N4Ze1wlZo1eNEu+t3L+uzGUoX83cgpcDP1CINcvDtbAIIqoFo5wAafqmdI7Y8r8OFtPQrf3XjRHYOjfjZwnouurizNjEEVETulBemcMmR9nzUnojtyL5kiMnVcpp4nocqqLnDCIIiKn9KC9MzWtErPG8Jm1etHowZg6r1JOE9HlVBe5zBfTYhBFRE7NEr0zlh4+s3QvGpmPqfMq5bTNjVzqIqf5YloMoojIqVmyd8ZSw2eW7EUj8zPlA11OQ69yqYscJ7oziCIip2dI74wx+Yq0F3FLD5/J5cONzE9OQ69yqovcMIgiIkLtvTPGDMvk5ORIxyw5fMYPN8dm66HXil8caqqLM+fJYxBFRGQgU+dZWHL4zNy9aGRbckrwK/c8eXJIucAgiojIzpmzF41sS27vlVz/JuSScoFBFBE5JWfrnZHrhyFVxfeqZnJKucAgioickiW/8TtbgEZkTXJJuQAwiCIiJ2apb/yWHpJhkEbOSPv3XNuqVGv+3SuEEMJqz+ZkioqKoFQqoVar4ePjY+vqEJEDkVvmZiJrqJipf8YMJcrKFHB1FXj3XfNup2To5zeDKAtiEEVERGQZV64A588DrVubf2NvQz+/OZxHREREdqdZM/MHT8Zyqb0IEREREVXGIIqIiIjIBAyiiIiIiEzAIIqIiIjIBAyiiIiIiEwgiyBq3bp1aNmyJTw9PREeHo4ffvihxvLbt29Hu3bt4OnpiU6dOmHPnj069wshkJiYiICAAHh5eSEyMhLnzp3TKVNQUIDnn38ePj4+aNCgASZMmIBbt27plDlx4gT69OkDT09PBAUFYenSpeZpMBEREdk9mwdR27ZtQ0JCAubNm4ejR4+ic+fOUKlUuH79erXlDx8+jNGjR2PChAk4duwYoqOjER0djZMnT0plli5ditWrVyM5ORlHjhyBt7c3VCoV7ty5I5V5/vnn8euvv2L//v344osv8O233yI2Nla6v6ioCE8++SRatGiBzMxMLFu2DPPnz8eGDRss92IQERGR/RA21rNnTzFlyhTp97KyMhEYGCgWL15cbfkRI0aIqKgonWPh4eFi0qRJQgghNBqN8Pf3F8uWLZPuLywsFB4eHuKTTz4RQghx6tQpAUD8+OOPUpl///vfQqFQiKtXrwohhHj//ffFQw89JO7evSuVmTFjhmjbtq3BbVOr1QKAUKvVBj+GiIiIbMvQz2+b9kSVlpYiMzMTkZGR0jEXFxdERkYiIyOj2sdkZGTolAcAlUollc/KykJubq5OGaVSifDwcKlMRkYGGjRogO7du0tlIiMj4eLigiNHjkhl+vbtq7MHj0qlwtmzZ/HHH39UW7e7d++iqKhI50ZERESOyaZB1M2bN1FWVgY/Pz+d435+fsjNza32Mbm5uTWW1/6srUyTJk107q9Tpw58fX11ylR3jorPUdnixYuhVCqlW1BQUPUNJyIiIrtn8zlRjmTWrFlQq9XS7fLly7auEhEREVmITffOa9SoEVxdXZGXl6dzPC8vD/7+/tU+xt/fv8by2p95eXkICAjQKdOlSxepTOWJ6/fv30dBQYHOeap7norPUZmHhwc8PDyk38X/9nbmsB4REZH90H5uaz/H9bLKDK0a9OzZU8TFxUm/l5WViaZNm9Y4sXzIkCE6xyIiIqpMLF++fLl0v1qtrnZi+U8//SSV+fLLL6udWF5aWiqVmTVrllETyy9fviwA8MYbb7zxxhtvdni7fPlyjZ/zCiFqC7Msa9u2bYiJicH69evRs2dPJCUl4dNPP8WZM2fg5+eHcePGoWnTpli8eDGA8hQH/fr1w5IlSxAVFYWtW7finXfewdGjR9GxY0cAwLvvvoslS5Zgy5YtCA4Oxty5c3HixAmcOnUKnp6eAICnnnoKeXl5SE5Oxr179zB+/Hh0794dqampAAC1Wo22bdviySefxIwZM3Dy5Em89NJLeO+993RSIdREo9Hg2rVrqF+/PhQKhdles6KiIgQFBeHy5cvw8fEx23nlwtHbBzh+Gx29fYDjt5Hts3+O3kZLtk8IgeLiYgQGBsLFpYaZTwZ3q1jQmjVrRPPmzYW7u7vo2bOn+P7776X7+vXrJ2JiYnTKf/rpp6JNmzbC3d1ddOjQQezevVvnfo1GI+bOnSv8/PyEh4eHePzxx8XZs2d1yuTn54vRo0eLevXqCR8fHzF+/HhRXFysU+bnn38WvXv3Fh4eHqJp06ZiyZIl5m24iRw9dYKjt08Ix2+jo7dPCMdvI9tn/xy9jXJon817osh4RUVFUCqVUKvVDvvtwpHbBzh+Gx29fYDjt5Hts3+O3kY5tI+r84iIiIhMwCDKDnl4eGDevHk6KwEdiaO3D3D8Njp6+wDHbyPbZ/8cvY1yaB+H84iIiIhMwJ4oIiIiIhMwiCIiIiIyAYMoIiIiIhMwiCIiIiIyAYMomVi3bh1atmwJT09PhIeH44cffqixfFJSEtq2bQsvLy8EBQXhb3/7G+7cufNA57Qkc7dv/vz5UCgUOrd27dpZuhl6GdO+e/fuYeHChQgJCYGnpyc6d+6MvXv3PtA5rcHcbZTTe/jtt99i6NChCAwMhEKhQFpaWq2P+eabb9CtWzd4eHigdevWSElJqVJGLu+hJdpnz+9fTk4OxowZgzZt2sDFxQXx8fHVltu+fTvatWsHT09PdOrUCXv27DF/5Q1kiTampKRUeQ+1u3pYm7Ht27lzJ5544gk0btwYPj4+iIiIwJdfflmlnKX/DzKIkoFt27YhISEB8+bNw9GjR9G5c2eoVKoqmyRrpaamYubMmZg3bx5Onz6NjRs3Ytu2bZg9e7bJ57QkS7QPADp06ICcnBzpdvDgQWs0pwpj2zdnzhysX78ea9aswalTp/DKK6/gL3/5C44dO2byOS3NEm0E5PMelpSUoHPnzli3bp1B5bOyshAVFYUBAwbg+PHjiI+Px8svv6xzEZfTe2iJ9gH2+/7dvXsXjRs3xpw5c9C5c+dqyxw+fBijR4/GhAkTcOzYMURHRyM6OhonT540Z9UNZok2AoCPj4/Oe3jx4kVzVdkoxrbv22+/xRNPPIE9e/YgMzMTAwYMwNChQ61/HbVZrnSS9OzZU0yZMkX6vaysTAQGBurdhHnKlCli4MCBOscSEhLEY489ZvI5LckS7Zs3b57o3LmzReprLGPbFxAQINauXatz7OmnnxbPP/+8yee0NEu0UU7vYUUAxGeffVZjmenTp4sOHTroHBs5cqRQqVTS73J7D7XM1T57fv8q6tevn5g6dWqV4yNGjBBRUVE6x8LDw6XN7m3JXG3cvHmzUCqVZquXuRjbPq327duLBQsWSL9b4/8ge6JsrLS0FJmZmYiMjJSOubi4IDIyEhkZGdU+plevXsjMzJS6JX///Xfs2bMHgwcPNvmclmKJ9mmdO3cOgYGBaNWqFZ5//nlcunTJcg3Rw5T23b17t0qXuZeXl/QtXk7vn6n1qa2NWnJ4D02RkZGh83oAgEqlkl4Pub2HxqqtfVr2+v4ZwtDXwN7dunULLVq0QFBQEIYPH45ff/3V1lUyiUajQXFxMXx9fQFY7/8ggygbu3nzJsrKyuDn56dz3M/PD7m5udU+ZsyYMVi4cCF69+4NNzc3hISEoH///tJwlynntBRLtA8AwsPDkZKSgr179+KDDz5AVlYW+vTpg+LiYou2pzJT2qdSqbBy5UqcO3cOGo0G+/fvx86dO5GTk2PyOS3JEm0E5PMemiI3N7fa16OoqAj//e9/ZfceGqu29gH2/f4ZQt9rYA/vn6Hatm2LTZs24fPPP8c//vEPaDQa9OrVC1euXLF11Yy2fPly3Lp1CyNGjABgvesogyg79M033+Cdd97B+++/j6NHj2Lnzp3YvXs3Fi1aZOuqmYUh7Xvqqafw3HPP4ZFHHoFKpcKePXtQWFiITz/91IY1N8yqVasQGhqKdu3awd3dHXFxcRg/fjxcXBznv6MhbbTn95D4/jmCiIgIjBs3Dl26dEG/fv2wc+dONG7cGOvXr7d11YySmpqKBQsW4NNPP0WTJk2s+tx1rPpsVEWjRo3g6uqKvLw8neN5eXnw9/ev9jFz587F2LFj8fLLLwMAOnXqhJKSEsTGxuLNN9806ZyWYon2VRdsNGjQAG3atMH58+fN34gamNK+xo0bIy0tDXfu3EF+fj4CAwMxc+ZMtGrVyuRzWpIl2lgdW72HpvD396/29fDx8YGXlxdcXV1l9R4aq7b2Vcee3j9D6HsN7OH9M5Wbmxu6du1qV+/h1q1b8fLLL2P79u06Q3fWuo46zldfO+Xu7o6wsDCkp6dLxzQaDdLT0xEREVHtY27fvl0lkHB1dQUACCFMOqelWKJ91bl16xYuXLiAgIAAM9XcMA/yWnt6eqJp06a4f/8+duzYgeHDhz/wOS3BEm2sjq3eQ1NERETovB4AsH//fun1kNt7aKza2lcde3r/DGHKa2DvysrK8Msvv9jNe/jJJ59g/Pjx+OSTTxAVFaVzn9X+D5ptijqZbOvWrcLDw0OkpKSIU6dOidjYWNGgQQORm5srhBBi7NixYubMmVL5efPmifr164tPPvlE/P7772Lfvn0iJCREjBgxwuBz2nv7Xn/9dfHNN9+IrKwscejQIREZGSkaNWokrl+/Lvv2ff/992LHjh3iwoUL4ttvvxUDBw4UwcHB4o8//jD4nNZmiTbK6T0sLi4Wx44dE8eOHRMAxMqVK8WxY8fExYsXhRBCzJw5U4wdO1Yq//vvv4u6deuKadOmidOnT4t169YJV1dXsXfvXqmMnN5DS7TPnt8/IYRUPiwsTIwZM0YcO3ZM/Prrr9L9hw4dEnXq1BHLly8Xp0+fFvPmzRNubm7il19+sWrbtCzRxgULFogvv/xSXLhwQWRmZopRo0YJT09PnTLWYmz7Pv74Y1GnTh2xbt06kZOTI90KCwulMtb4P8ggSibWrFkjmjdvLtzd3UXPnj3F999/L93Xr18/ERMTI/1+7949MX/+fBESEiI8PT1FUFCQ+Otf/6rzAVXbOa3N3O0bOXKkCAgIEO7u7qJp06Zi5MiR4vz581ZskS5j2vfNN9+Ihx9+WHh4eIiGDRuKsWPHiqtXrxp1Tlswdxvl9B4eOHBAAKhy07YpJiZG9OvXr8pjunTpItzd3UWrVq3E5s2bq5xXLu+hJdpn7+9fdeVbtGihU+bTTz8Vbdq0Ee7u7qJDhw5i9+7d1mlQNSzRxvj4eOnv08/PTwwePFgcPXrUeo2qwNj29evXr8byWpb+P6gQQs/4CBERERHpxTlRRERERCZgEEVERERkAgZRRERERCZgEEVERERkAgZRRERERCZgEEVERERkAgZRRERERCZgEEVE5ES++eYbKBQKFBYW2roqRHaPQRQRWcSLL74IhUKBJUuW6BxPS0uDQqGQfhdC4O9//zsiIiLg4+ODevXqoUOHDpg6darBG6Hevn0bs2bNQkhICDw9PdG4cWP069cPn3/+uVSmZcuWSEpKMkvbLE372ikUCri5uSE4OBjTp0/HnTt3jDpP//79ER8fr3OsV69eyMnJgVKpNGONiZwTgygishhPT0+8++67+OOPP6q9XwiBMWPG4LXXXsPgwYOxb98+nDp1Chs3boSnpyfeeustg57nlVdewc6dO7FmzRqcOXMGe/fuxbPPPov8/HxzNseqBg0ahJycHPz+++947733sH79esybN++Bz+vu7g5/f3+dQJaITGTWTWSIiP4nJiZGDBkyRLRr105MmzZNOv7ZZ58J7aXnk08+EQDE559/Xu05NBqNQc+lVCpFSkqK3vur22dL67vvvhO9e/cWnp6eolmzZuLVV18Vt27dku7/8MMPRVhYmKhXr57w8/MTo0ePFnl5edL92j2/9u7dK7p06SI8PT3FgAEDRF5entizZ49o166dqF+/vhg9erQoKSkxqD0xMTFi+PDhOseefvpp0bVrV+n3mzdvilGjRonAwEDh5eUlOnbsKFJTU3XOUbnNWVlZUn0r7kX5z3/+U7Rv3164u7uLFi1aiOXLlxtUTyJnx54oIrIYV1dXvPPOO1izZg2uXLlS5f5PPvkEbdu2xbBhw6p9vKG9Jf7+/tizZw+Ki4urvX/nzp1o1qwZFi5ciJycHOTk5AAALly4gEGDBuGZZ57BiRMnsG3bNhw8eBBxcXHSY+/du4dFixbh559/RlpaGrKzs/Hiiy9WeY758+dj7dq1OHz4MC5fvowRI0YgKSkJqamp2L17N/bt24c1a9YY1J7KTp48icOHD8Pd3V06dufOHYSFhWH37t04efIkYmNjMXbsWPzwww8AgFWrViEiIgITJ06U2hwUFFTl3JmZmRgxYgRGjRqFX375BfPnz8fcuXORkpJiUl2JnIqtozgickwVe1MeffRR8dJLLwkhdHui2rVrJ4YNG6bzuKlTpwpvb2/h7e0tmjZtatBz/ec//xHNmjUTbm5uonv37iI+Pl4cPHhQp0yLFi3Ee++9p3NswoQJIjY2VufYd999J1xcXMR///vfap/rxx9/FABEcXGxEOLPnqivvvpKKrN48WIBQFy4cEE6NmnSJKFSqQxqT0xMjHB1dRXe3t7Cw8NDABAuLi7in//8Z42Pi4qKEq+//rr0e79+/cTUqVN1ylTuiRozZox44okndMpMmzZNtG/f3qC6Ejkz9kQRkcW9++672LJlC06fPl1r2TfffBPHjx9HYmIibt26ZdD5+/bti99//x3p6el49tln8euvv6JPnz5YtGhRjY/7+eefkZKSgnr16kk3lUoFjUaDrKwsAOU9NUOHDkXz5s1Rv3599OvXDwBw6dIlnXM98sgj0r/9/PxQt25dtGrVSufY9evXDWoPAAwYMADHjx/HkSNHEBMTg/Hjx+OZZ56R7i8rK8OiRYvQqVMn+Pr6ol69evjyyy+r1Ks2p0+fxmOPPaZz7LHHHsO5c+dQVlZm1LmInA2DKCKyuL59+0KlUmHWrFk6x0NDQ3H27FmdY40bN0br1q3RpEkTo57Dzc0Nffr0wYwZM7Bv3z4sXLgQixYtQmlpqd7H3Lp1C5MmTcLx48el288//4xz584hJCQEJSUlUKlU8PHxwccff4wff/wRn332GQBUOa+bm5v0b+2quooUCgU0Go3B7fH29kbr1q3RuXNnbNq0CUeOHMHGjRul+5ctW4ZVq1ZhxowZOHDgAI4fPw6VSlVje4nIvOrYugJE5ByWLFmCLl26oG3bttKx0aNHY8yYMfj8888xfPhwsz5f+/btcf/+fdy5cwfu7u5wd3ev0rPSrVs3nDp1Cq1bt672HL/88gvy8/OxZMkSaT7RTz/9ZNZ6GsLFxQWzZ89GQkICxowZAy8vLxw6dAjDhw/HCy+8AADQaDT47bff0L59e+lx1bW5socffhiHDh3SOXbo0CG0adMGrq6u5m8MkQNhTxQRWUWnTp3w/PPPY/Xq1dKxUaNG4dlnn8WoUaOwcOFCHDlyBNnZ2fjPf/6Dbdu2Gfwh3r9/f6xfvx6ZmZnIzs7Gnj17MHv2bAwYMAA+Pj4AyvNEffvtt7h69Spu3rwJAJgxYwYOHz6MuLg4HD9+HOfOncPnn38uTSxv3rw53N3dsWbNGvz+++/417/+VesQoaU899xzcHV1xbp16wCU9+Lt378fhw8fxunTpzFp0iTk5eXpPKZly5bSa3rz5s1qe8Jef/11pKenY9GiRfjtt9+wZcsWrF27Fm+88YZV2kVkzxhEEZHVLFy4UOeDXKFQYNu2bUhKSsKePXvw+OOPo23btnjppZcQFBSEgwcPGnRelUqFLVu24Mknn8TDDz+MV199FSqVCp9++qnOc2dnZyMkJASNGzcGUD6P6T//+Q9+++039OnTB127dkViYiICAwMBlA8tpqSkYPv27Wjfvj2WLFmC5cuXm/EVMVydOnUQFxeHpUuXoqSkBHPmzEG3bt2gUqnQv39/+Pv7Izo6Wucxb7zxBlxdXdG+fXs0bty42vlS3bp1w6effoqtW7eiY8eOSExMxMKFC6tdgUhEuhRCCGHrShARERHZG/ZEEREREZmAQRQRyV7FFASVb999952tq2eUS5cu1dgeY1MUEJHtcDiPiGSvpo2ImzZtCi8vLyvW5sHcv38f2dnZeu9v2bIl6tThwmkie8AgioiIiMgEHM4jIiIiMgGDKCIiIiITMIgiIiIiMgGDKCIiIiITMIgiIiIiMgGDKCIiIiITMIgiIiIiMgGDKCIiIiIT/D/WosFbclneLwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbR5JREFUeJzt3XtcVNX6P/DPDHcQBgG5CQoBouYFQUXM8kZhKUp5SsnUTKU8UhKVZSlmWpalkqmRlZdKjh7TPGpGGdqvU3K8gJpXEkPRBFSIATEBmfX7g+9sGZgZYIAZLp/36zUvmL2fvWftlTmPa6/9LJkQQoCIiIiIGkRu6gYQERERtUZMooiIiIgMwCSKiIiIyABMooiIiIgMwCSKiIiIyABMooiIiIgMwCSKiIiIyABMooiIiIgMwCSKiIiIyABMooiI2riNGzdCJpPh4sWLpm4KUZvCJIqIGu3IkSOIjY3FvffeCzs7O3Tp0gVPPPEEfv/991qxw4YNg0wmg0wmg1wuh4ODAwIDAzF58mTs27evQZ+7e/duDB06FK6urrC1tcU999yDJ554AikpKU11abW888472LlzZ63tBw8exJtvvomioqJm++ya3nzzTakvZTIZbG1t0bNnT8yfPx/FxcVN8hnJyclITExsknMRtTVMooio0d577z1s374dI0eOxIcffoiYmBj8/PPPCA4OxqlTp2rFe3l54csvv8QXX3yB999/H2PHjsXBgwfx0EMPYcKECaioqKjzMz/44AOMHTsWMpkM8+bNw8qVKzF+/HicP38eW7ZsaY7LBKA/iVq0aJFRkyi1jz/+GF9++SVWrFiB7t274+2338aoUaPQFEujMoki0s3c1A0gotYvPj4eycnJsLS0lLZNmDABvXv3xrvvvouvvvpKI16hUOCpp57S2Pbuu+/ihRdewNq1a+Hj44P33ntP5+fduXMHixcvxoMPPogffvih1v5r16418opajlu3bsHW1lZvzD/+8Q+4uLgAAJ577jmMHz8eO3bswP/+9z+EhYUZo5lE7RJHooio0QYPHqyRQAFAQEAA7r33Xpw9e7Ze5zAzM8OqVavQs2dPrF69GkqlUmfsjRs3UFxcjPvuu0/rfldXV433t2/fxptvvolu3brB2toaHh4eeOyxx3DhwgUp5oMPPsDgwYPh7OwMGxsbhISE4Ouvv9Y4j0wmQ2lpKTZt2iTdQnv66afx5ptv4pVXXgEA+Pr6Svuqz0H66quvEBISAhsbGzg5OWHixIm4fPmyxvmHDRuGXr16IT09HQ888ABsbW3x+uuv16v/qhsxYgQAIDs7W2/c2rVrce+998LKygqenp6YPXu2xkjasGHD8O233+LSpUvSNfn4+DS4PURtFUeiiKhZCCGQn5+Pe++9t97HmJmZITo6GgsWLMAvv/yC0aNHa41zdXWFjY0Ndu/ejeeffx5OTk46z1lZWYkxY8YgNTUVEydOxJw5c1BSUoJ9+/bh1KlT8PPzAwB8+OGHGDt2LCZNmoTy8nJs2bIFjz/+OPbs2SO148svv8SMGTMwcOBAxMTEAAD8/PxgZ2eH33//Hf/617+wcuVKaVSoU6dOAIC3334bCxYswBNPPIEZM2bg+vXr+Oijj/DAAw/g2LFjcHR0lNpbUFCAhx9+GBMnTsRTTz0FNze3evefmjo5dHZ21hnz5ptvYtGiRQgPD8esWbOQmZmJjz/+GEeOHMGvv/4KCwsLvPHGG1Aqlbhy5QpWrlwJAOjQoUOD20PUZgkiombw5ZdfCgDi888/19g+dOhQce+99+o87ptvvhEAxIcffqj3/AkJCQKAsLOzEw8//LB4++23RXp6eq249evXCwBixYoVtfapVCrp91u3bmnsKy8vF7169RIjRozQ2G5nZyemTp1a61zvv/++ACCys7M1tl+8eFGYmZmJt99+W2P7yZMnhbm5ucb2oUOHCgAiKSlJ53VXt3DhQgFAZGZmiuvXr4vs7GzxySefCCsrK+Hm5iZKS0uFEEJs2LBBo23Xrl0TlpaW4qGHHhKVlZXS+VavXi0AiPXr10vbRo8eLbp27Vqv9hC1N7ydR0RN7ty5c5g9ezbCwsIwderUBh2rHukoKSnRG7do0SIkJyejX79++P777/HGG28gJCQEwcHBGrcQt2/fDhcXFzz//PO1ziGTyaTfbWxspN//+usvKJVK3H///cjIyGhQ+2vasWMHVCoVnnjiCdy4cUN6ubu7IyAgAAcOHNCIt7KywrRp0xr0GYGBgejUqRN8fX3x7LPPwt/fH99++63OuVQ//vgjysvLERcXB7n87tfAzJkz4eDggG+//bbhF0rUDvF2HhE1qby8PIwePRoKhQJff/01zMzMGnT8zZs3AQD29vZ1xkZHRyM6OhrFxcU4dOgQNm7ciOTkZERGRuLUqVOwtrbGhQsXEBgYCHNz/X/d7dmzB0uWLMHx48dRVlYmba+eaBni/PnzEEIgICBA634LCwuN9507d641v6wu27dvh4ODAywsLODl5SXdotTl0qVLAKqSr+osLS1xzz33SPuJSD8mUUTUZJRKJR5++GEUFRXhv//9Lzw9PRt8DnVJBH9//3of4+DggAcffBAPPvggLCwssGnTJhw6dAhDhw6t1/H//e9/MXbsWDzwwANYu3YtPDw8YGFhgQ0bNiA5ObnB11CdSqWCTCbDd999pzWhrDnHqPqIWH098MAD0jwsIjIeJlFE1CRu376NyMhI/P777/jxxx/Rs2fPBp+jsrISycnJsLW1xZAhQwxqR//+/bFp0ybk5uYCqJr4fejQIVRUVNQa9VHbvn07rK2t8f3338PKykravmHDhlqxukamdG338/ODEAK+vr7o1q1bQy+nWXTt2hUAkJmZiXvuuUfaXl5ejuzsbISHh0vbGjsSR9SWcU4UETVaZWUlJkyYgLS0NGzbts2g2kSVlZV44YUXcPbsWbzwwgtwcHDQGXvr1i2kpaVp3ffdd98BuHuravz48bhx4wZWr15dK1b8XzFKMzMzyGQyVFZWSvsuXryotaimnZ2d1oKadnZ2AFBr32OPPQYzMzMsWrSoVvFLIQQKCgq0X2QzCg8Ph6WlJVatWqXRps8//xxKpVLjqUg7Ozu95SaI2jOORBFRo7300kvYtWsXIiMjUVhYWKu4Zs3CmkqlUoq5desWsrKysGPHDly4cAETJ07E4sWL9X7erVu3MHjwYAwaNAijRo2Ct7c3ioqKsHPnTvz3v/9FVFQU+vXrBwCYMmUKvvjiC8THx+Pw4cO4//77UVpaih9//BH//Oc/MW7cOIwePRorVqzAqFGj8OSTT+LatWtYs2YN/P398dtvv2l8dkhICH788UesWLECnp6e8PX1RWhoKEJCQgAAb7zxBiZOnAgLCwtERkbCz88PS5Yswbx583Dx4kVERUXB3t4e2dnZ+OabbxATE4OXX365Uf3fUJ06dcK8efOwaNEijBo1CmPHjkVmZibWrl2LAQMGaPz3CgkJwdatWxEfH48BAwagQ4cOiIyMNGp7iVosUz4aSERtg/rRfF0vfbEdOnQQAQEB4qmnnhI//PBDvT6voqJCfPrppyIqKkp07dpVWFlZCVtbW9GvXz/x/vvvi7KyMo34W7duiTfeeEP4+voKCwsL4e7uLv7xj3+ICxcuSDGff/65CAgIEFZWVqJ79+5iw4YNUgmB6s6dOyceeOABYWNjIwBolDtYvHix6Ny5s5DL5bXKHWzfvl0MGTJE2NnZCTs7O9G9e3cxe/ZskZmZqdE3+so/1KRu3/Xr1/XG1SxxoLZ69WrRvXt3YWFhIdzc3MSsWbPEX3/9pRFz8+ZN8eSTTwpHR0cBgOUOiKqRCdEEiysRERERtTOcE0VERERkACZRRERERAZgEkVERERkACZRRERERAZgEkVERERkACZRRERERAZgsc1mpFKpcPXqVdjb23PpBCIiolZCCIGSkhJ4enpCLtc93sQkqhldvXoV3t7epm4GERERGeDy5cvw8vLSuZ9JVDOyt7cHUPUfQd86YERERNRyFBcXw9vbW/oe14VJVDNS38JzcHBgEkVERNTK1DUVhxPLiYiIiAzAJIqIiIjIAEyiiIiIiAzAOVEmVllZiYqKClM3o82ysLCAmZmZqZtBRERtEJMoExFCIC8vD0VFRaZuSpvn6OgId3d31uoiIqImxSTKRNQJlKurK2xtbfkF3wyEELh16xauXbsGAPDw8DBxi4iIqC1hEmUClZWVUgLl7Oxs6ua0aTY2NgCAa9euwdXVlbf2iIioyXBiuQmo50DZ2tqauCXtg7qfOfeMiIiaEpMoE+ItPONgPxMRUXPg7TwiIiJqFQoKClBeXq5zv6WlpVGnyTCJIiIiohavoKAAq1evrjMuNjbWaIkUb+dRgzz99NOQyWSQyWSwsLCAm5sbHnzwQaxfvx4qlare59m4cSMcHR2br6FERNSm6BuBMiSuKXAkqpUy5ZDmqFGjsGHDBlRWViI/Px8pKSmYM2cOvv76a+zatQvm5vxjRUREbR+/7VohUw9pWllZwd3dHQDQuXNnBAcHY9CgQRg5ciQ2btyIGTNmYMWKFdiwYQP++OMPODk5ITIyEsuWLUOHDh3w008/Ydq0aQDuTvpeuHAh3nzzTXz55Zf48MMPkZmZCTs7O4wYMQKJiYlwdXVt8usgIiJqDN7Oa4Va4pDmiBEj0LdvX+zYsQMAIJfLsWrVKpw+fRqbNm3C/v37MXfuXADA4MGDkZiYCAcHB+Tm5iI3Nxcvv/wygKoyBIsXL8aJEyewc+dOXLx4EU8//bTRroOIiKi+OBJFTaZ79+747bffAABxcXHSdh8fHyxZsgTPPfcc1q5dC0tLSygUCshkMmlES+2ZZ56Rfr/nnnuwatUqDBgwADdv3kSHDh2Mch1ERET1wZEoajJCCOn23I8//oiRI0eic+fOsLe3x+TJk1FQUIBbt27pPUd6ejoiIyPRpUsX2NvbY+jQoQCAnJycZm8/ERG1XEqlsknjmgKTKGoyZ8+eha+vLy5evIgxY8agT58+2L59O9LT07FmzRoA+m8xlpaWIiIiAg4ODti8eTOOHDmCb775ps7jiIio7avvqhPGXJ2Ct/OoSezfvx8nT57Eiy++iPT0dKhUKixfvhxyeVWe/u9//1sj3tLSEpWVlRrbzp07h4KCArz77rvw9vYGABw9etQ4F0BERC1afZ/8NuYT4hyJogYrKytDXl4e/vzzT2RkZOCdd97BuHHjMGbMGEyZMgX+/v6oqKjARx99hD/++ANffvklkpKSNM7h4+ODmzdvIjU1FTdu3MCtW7fQpUsXWFpaSsft2rULixcvNtFVEhFRS1Lf2oLGrEHIJIoaLCUlBR4eHvDx8cGoUaNw4MABrFq1Cv/5z39gZmaGvn37YsWKFXjvvffQq1cvbN68GUuXLtU4x+DBg/Hcc89hwoQJ6NSpE5YtW4ZOnTph48aN2LZtG3r27Il3330XH3zwgYmukoiISD+ZEEKYuhFtVXFxMRQKBZRKJRwcHKTtt2/fRnZ2Nnx9fWFtbd3g85q6TlRr09j+JiIi08vNzcW6devqjIuJiYGHh0ejPkvX93dNnBPVCjk7OyM2NrZFLcJIRERkTEqlPQoLneHkVACFosQkbTD57bw1a9bAx8cH1tbWCA0NxeHDh/XGb9u2Dd27d4e1tTV69+6NvXv3auwXQiAhIQEeHh6wsbFBeHg4zp8/rxHz9ttvY/DgwbC1ta3z3mlBQQG8vLwgk8lQVFRkyCU2C2dnZ3h4eOh8MYEiIqLWqKCgQCrEXP1148YNKSYjox8SE+OwadNUJCbGISOjn0naatKRqK1btyI+Ph5JSUkIDQ1FYmIiIiIikJmZqXWZj4MHDyI6OhpLly7FmDFjkJycjKioKGRkZKBXr14AgGXLlmHVqlXYtGkTfH19sWDBAkRERODMmTPSrZzy8nI8/vjjCAsLw+eff663jdOnT0efPn3w559/Nn0HEBERkaQ+01WUSnvs3j0GQlSNAwkhx+7dY+DnlwWFogSWlpbGaCoAE49ErVixAjNnzsS0adPQs2dPJCUlwdbWFuvXr9ca/+GHH2LUqFF45ZVX0KNHDyxevBjBwcFShwshkJiYiPnz52PcuHHo06cPvvjiC1y9ehU7d+6UzrNo0SK8+OKL6N27t972ffzxxygqKpKWJCEiIqLmc/369TpjCgudpQRKTQg57rtvqtHnApssiSovL0d6ejrCw8PvNkYuR3h4ONLS0rQek5aWphEPABEREVJ8dnY28vLyNGIUCgVCQ0N1nlOXM2fO4K233sIXX3wh1TqqS1lZGYqLizVeREREVD/1KZTp5FQAmUzzmTiZDAgNdTb6VBaTJVE3btxAZWUl3NzcNLa7ubkhLy9P6zF5eXl649U/G3JObcrKyhAdHY33338fXbp0qfdxS5cuhUKhkF7qgpFERETUfP5vxTGjM/nE8pZo3rx56NGjB5566qkGH6dUKqXX5cuXm6mFRERE7VPV7TzNrEmlArKyjN8WkyVRLi4uMDMzQ35+vsb2/Px8uLu7az3G3d1db7z6Z0POqc3+/fuxbds2mJubw9zcHCNHjpTavHDhQp3HWVlZwcHBQeNFRERETcfJqQByuebtPDMzwN/f+G0xWRJlaWmJkJAQpKamSttUKhVSU1MRFham9ZiwsDCNeADYt2+fFO/r6wt3d3eNmOLiYhw6dEjnObXZvn07Tpw4gePHj+P48eP47LPPAAD//e9/MXv27Hqfh4iIiJqWQlGChIQ/YWZW9d7MDPjkE8DLy/htMWmJg/j4eEydOhX9+/fHwIEDkZiYiNLSUkybNg0AMGXKFHTu3FlaMmTOnDkYOnQoli9fjtGjR2PLli04evSoVMFUJpMhLi4OS5YsQUBAgFTiwNPTE1FRUdLn5uTkoLCwEDk5OaisrMTx48cBAP7+/ujQoQP8/Pw02qmuTdGjRw+jrsnTHv30008YPnw4/vrrr3r3tY+PD+Li4hAXF9esbSMiIuO6csUDOTld0aXLJXh55UrbH3vsL0yf7oWsrKoRKFMkUICJk6gJEybg+vXrSEhIQF5eHoKCgpCSkiJNDM/JydF4Mm7w4MFITk7G/Pnz8frrryMgIAA7d+6UakQBwNy5c1FaWoqYmBgUFRVhyJAhSElJ0VjuIyEhAZs2bZLe9+tXVaTrwIEDGDZsWDNfdev29NNPY9OmTXj22WdrLSo8e/ZsrF27FlOnTsXGjRtN00AiImq1zM3vpiXffDMOJ070BSADINC37wk8+uh/pDgvL9MlT2omX/YlNjYWsbGxWvf99NNPtbY9/vjjePzxx3WeTyaT4a233sJbb72lM2bjxo0N+pIfNmwYuMTgXd7e3tiyZQtWrlwJGxsbAFXr0yUnJzfoaUYiIqLq1IW2r1zxqJZAAYAMJ070xYABh+Hllau1ILcp8Ok8arDg4GB4e3tjx44d0rYdO3agS5cu0qgeUFUq4oUXXoCrqyusra0xZMgQHDlyRONce/fuRbdu3WBjY4Phw4fj4sWLtT7vl19+wf333w8bGxt4e3vjhRdeQGlpabNdHxERmVZOTlfcTaDUZLh8uWX9Q51JVBtw5Qpw4EDVT2N55plnsGHDBun9+vXrpblsanPnzsX27duxadMmZGRkwN/fHxERESgsLAQAXL58GY899hgiIyNx/PhxzJgxA6+99prGOS5cuIBRo0Zh/Pjx+O2337B161b88ssvOkcviYio9SovLwcAdOlyCUDNO0AC3t45GnGmxiSqlfv8c6BrV2DEiKqfdSwF2GSeeuop/PLLL7h06RIuXbqEX3/9VaOuVmlpKT7++GO8//77ePjhh9GzZ098+umnsLGxkdYr/Pjjj+Hn54fly5cjMDAQkyZNwtNPP63xOUuXLsWkSZMQFxeHgIAADB48GKtWrcIXX3yB27dvG+diiYjIqLy8ctG37wncTaSq5kRVn1zeEph8ThQZ7soVICamqsgYUPXz2WeBiIjmn2zXqVMnjB49Ghs3boQQAqNHj4aLi4u0/8KFC6ioqMB9990nbbOwsMDAgQNx9uxZAMDZs2cRGhqqcd6apShOnDiB3377DZs3b5a2CSGgUqmQnZ2NHj16NMflERGRiT366H8wYMBhXL7cBd7eOS0ugQKYRLVq58/fTaDUKiurqrYa44mFZ555RrqttmbNmmb5jJs3b+LZZ5/FCy+8UGsfJ7ETEbVtXl65LTJ5UmMS1YoFBAByuWYiZcyqraNGjUJ5eTlkMhkiIiI09vn5+cHS0hK//vorunbtCqBqYckjR45I9Zx69OiBXbt2aRz3v//9T+N9cHAwzpw5A39TlKIlIiLSg3OiWjEvL2DdOpisaquZmRnOnj2LM2fOwEzdiP9jZ2eHWbNm4ZVXXkFKSgrOnDmDmTNn4tatW5g+fToA4LnnnsP58+fxyiuvIDMzE8nJybVKT7z66qs4ePAgYmNjcfz4cZw/fx7/+c9/OLGciIhMjiNRrdz06VVzoExVtVXf+oDvvvsuVCoVJk+ejJKSEvTv3x/ff/89OnbsCKDqdtz27dvx4osv4qOPPsLAgQPxzjvv4JlnnpHO0adPH/y///f/8MYbb+D++++HEAJ+fn6YMGFCs18bERGRPjLBKpLNpri4GAqFAkqlUiPZuH37NrKzs+Hr66tRSZ2aB/ubiKh1KCgowOrVq+uMi42NhbOzc7O1Q9f3d00ciSIiIqIWwdnZGbGxsXrrQFlaWjZrAtUQTKKIiIioxWgpCVJ9cGI5ERERkQGYRBEREREZgEmUCXFOv3Gwn4mIqDkwiTIBCwsLAMCtW7dM3JL2Qd3P6n4nIqLW4coV4MCBqp8tESeWm4CZmRkcHR1x7do1AICtrS1kMpmJW9X2CCFw69YtXLt2DY6OjrUKghIRUcv1+ed314eVy6uKS/9freYWg3WimpG+OhNCCOTl5aGoqMg0jWtHHB0d4e7uzkSViKiVuHIF6Nq19rJmFy8ap6g060S1cDKZDB4eHnB1dUVFRYWpm9NmWVhYcASKiMhECgoKDKr5dP68ZgIFAJWVVatzGHtlDn2YRJmYmZkZv+SJiKjNaUz18YCAqlt4NUeiWtpa9JxYTkRERE2u5giUUmmP7GwfKJX2euOAqtGmdeuqEieg6ucnn7SsUSiAI1FERETUzDIy+mH37jEQQg6ZTIXIyD0IDj6m95jp04GIiKpbeP7+LS+BAphEERERUTNSKu2lBAoAhJBj9+4x8PPLgkJRovdYL6+WmTyp8XYeERERNZvCQmcpgVITQo7CQicTtajpMIkiIiKiZuPkVACZTPNRO5lMBSenQhO1qOkwiSIiIqJmo1CUIDJyj5RIqedE1XUrrzXgnCgiIiJqVsHBx+Dnl4XCQic4ORW2iQQKYBJFREREzcDS0lLjvUJRojV5qhnXmjCJIiIioibn7OyM2NhYgyqWtxZMooiIiMhghi7t0hYwiSIiIiKD1FzaRam0R2GhM5ycCjRu3Wlb2qUtYBJFREREBqk+AqWvKrm+karWjCUOiIiIqFF0VSWvuU5eW8MkioiIiAxSVFQEoO6q5Oq4toZJFBERERnkzp07AOquSq6Oa2s4J4qIiIj00vUE3l9//QXgblXymnOi2kpRTV2YRBEREZFONZ/A00cIzZ9tHW/nERERkU41R6CUSntkZ/toTBpXTyy/m1ZwYrlRrFmzBj4+PrC2tkZoaCgOHz6sN37btm3o3r07rK2t0bt3b+zdu1djvxACCQkJ8PDwgI2NDcLDw3H+/HmNmLfffhuDBw+Gra0tHB0da33GiRMnEB0dDW9vb9jY2KBHjx748MMPG32tRERErVlGRj8kJsZh06apSEyMQ0ZGPwB1Tyy3sLAweluNwaRJ1NatWxEfH4+FCxciIyMDffv2RUREBK5du6Y1/uDBg4iOjsb06dNx7NgxREVFISoqCqdOnZJili1bhlWrViEpKQmHDh2CnZ0dIiIicPv2bSmmvLwcjz/+OGbNmqX1c9LT0+Hq6oqvvvoKp0+fxhtvvIF58+bVeziTiIiorVA/WadU2mPXrkitZQzqmliuUCiM2mZjkQlhujuXoaGhGDBggJScqFQqeHt74/nnn8drr71WK37ChAkoLS3Fnj17pG2DBg1CUFAQkpKSIISAp6cnXnrpJbz88ssAAKVSCTc3N2zcuBETJ07UON/GjRsRFxdXr0cvZ8+ejbNnz2L//v31vr7i4mIoFAoolUo4ODjU+zgiIqKW4uTJk9ixYwdOneqJr79+vNb+f/zj3+jV66zeYpsxMTHw8PAwdtMNVt/vb5NNLC8vL0d6ejrmzZsnbZPL5QgPD0daWprWY9LS0hAfH6+xLSIiAjt37gQAZGdnIy8vD+Hh4dJ+hUKB0NBQpKWl1UqiGkKpVMLJyUlvTFlZGcrKyqT3xcXFBn8eERFRaxIcfAx+flkoLHSCk1OhxpN5lpaWJmxZ8zFZEnXjxg1UVlbCzc1NY7ubmxvOnTun9Zi8vDyt8Xl5edJ+9TZdMYY4ePAgtm7dim+//VZv3NKlS7Fo0SKDP4eIiKil8va+DEAFzZlAKnh7XwEADB8+HAEBAbWOa8sLEJt8YnlLd+rUKYwbNw4LFy7EQw89pDd23rx5UCqV0uvy5ctGaiUREVHzUihKMHbsHlQlUgCgwtixd2tBdezYER4eHrVebTWBAkw4EuXi4gIzMzPk5+drbM/Pz4e7u7vWY9zd3fXGq3/m5+dr3HvNz89HUFBQg9t45swZjBw5EjExMZg/f36d8VZWVrCysmrw5xAREbVU1Z+s03fLrq0+gaePyUaiLC0tERISgtTUVGmbSqVCamoqwsLCtB4TFhamEQ8A+/btk+J9fX3h7u6uEVNcXIxDhw7pPKcup0+fxvDhwzF16lS8/fbbDTqWiIioraj5ZJ1CUQJf30u1qpG31Sfw9DFpxfL4+HhMnToV/fv3x8CBA5GYmIjS0lJMmzYNADBlyhR07twZS5cuBQDMmTMHQ4cOxfLlyzF69Ghs2bIFR48exbp16wAAMpkMcXFxWLJkCQICAuDr64sFCxbA09MTUVFR0ufm5OSgsLAQOTk5qKysxPHjxwEA/v7+6NChA06dOoURI0YgIiIC8fHx0nwqMzMzdOrUyXgdRERERC2WSZOoCRMm4Pr160hISEBeXh6CgoKQkpIiTQzPycmBXH53sGzw4MFITk7G/Pnz8frrryMgIAA7d+5Er169pJi5c+eitLQUMTExKCoqwpAhQ5CSkgJra2spJiEhAZs2bZLe9+tXVSzswIEDGDZsGL7++mtcv34dX331Fb766isprmvXrrh48WJzdQcREVGLU98n69rqE3j6mLROVFvHOlFERNQW6FqAWK2tPYHX4utEERERUevQlhKkpsQSB0REREQGYBJFREREZAAmUUREREQGYBJFREREZAAmUUREREQGYBJFREREZAAmUUREREQGYBJFREREZAAmUUREREQGYBJFREREZAAmUUREREQGYBJFREREZAAmUUREREQGYBJFREREZAAmUUREREQGMDd1A4iIiKhpFRQUoLy8HABw9aoc2dnm8PW9A09PFQDA0tISzs7Opmxim8AkioiIqA0pKCjA6tWrAQAZGf2we/cYCCGHTKZCZOQeBAcfAwDExsYykWok3s4jIiJqQ9QjUEqlvZRAAYAQcuzePQZKpb1GHBmOSRQREVEbVFjoLCVQakLIUVjoZKIWtT1MooiIiNogC4syAKLGVgELC45ANRUmUURERG2IUqkEAFRUWAGQ1dgrQ0WFpUYcGY5JFBERURtSUVEBAHByKoBMptLYJ5Op4ORUqBFHhmMSRURE1AYpFCWIjNwjJVLqp/MUihITt6ztYIkDIiKiNio4+Bj8/LJQWOgEJ6dCJlBNjEkUERFRK3fkCPDf/wL33w906KD51a5QlGhNnszNmQI0FnuQiIioFVJXJZ8zR4Ft22xQNYlcYOxYNwQH1328o6NjM7ew7WMSRURE1Mqoq5JfueKBbdtm4u5TeDLs2tURrq4e8PLKNWUT2wVOLCciImplrl+/DgDIyekKbWUMLl/uYvQ2tUdMooiIiFoZdXmCLl0uQVtBTW/vnDrPYWlp2fQNa2d4O4+IiKiV8vLKRd++J3DiRF+o50T17XtCupU3fPhwBAQE1DrO0tKSiw83ASZRRERErdijj/4HAwYcxuXLXeDtnaMxF6pjx47w8PAwYevaNiZRRERErZyXVy4nkpsAkygiIqIWTF3KAACOHTPH4cOW8PDgki0tAZMoIiKiFkpdygAAvvlmXLW5T/3Qt68cjz76H5O2r73j03lEREQt1LVr1wAAV654VEugAECGEyf64soV/fOdWJW8eTGJIiIiaqHu3LkDAPj9927QVg/q999rP3lXnaura/M0jAC0gCRqzZo18PHxgbW1NUJDQ3H48GG98du2bUP37t1hbW2N3r17Y+/evRr7hRBISEiAh4cHbGxsEB4ejvPnz2vEvP322xg8eDBsbW11lr3PycnB6NGjYWtrC1dXV7zyyivSH2YiIiJjKCmpWvOuQ4ebWvertw8aNAgxMTEar9jYWJYxaGYmTaK2bt2K+Ph4LFy4EBkZGejbty8iIiKk4cuaDh48iOjoaEyfPh3Hjh1DVFQUoqKicOrUKSlm2bJlWLVqFZKSknDo0CHY2dkhIiICt2/flmLKy8vx+OOPY9asWVo/p7KyEqNHj0Z5eTkOHjyITZs2YePGjUhISGjaDiAiItJD/Y/3wMDfUbuopgqBgVWDBDY2NvDw8NB4MYFqfjIhRM3/KkYTGhqKAQMGSJPmVCoVvL298fzzz+O1116rFT9hwgSUlpZiz5490rZBgwYhKCgISUlJEELA09MTL730El5++WUAgFKphJubGzZu3IiJEydqnG/jxo2Ii4tDUVGRxvbvvvsOY8aMwdWrV+Hm5gYASEpKwquvvorr16/Xu8prcXExFAoFlEolHBwc6t0vREREAPDzzz/jwIEDAICMjH7YtWsMqsY/VBg7dg+Cg48BqCqq+cADD5iuoW1Mfb+/TTYSVV5ejvT0dISHh99tjFyO8PBwpKWlaT0mLS1NIx4AIiIipPjs7Gzk5eVpxCgUCoSGhuo8p67P6d27t5RAqT+nuLgYp0+frvd5iIiImkpw8DG8+GIipk7diBdfTJQSKDIdk03bv3HjBiorKzUSFQBwc3PDuXPntB6Tl5enNT4vL0/ar96mK6Y+dH1O9c/QpqysDGVlZdL74uLien8mERFRXRSKEigUJaZuBv0fk08sb0uWLl0KhUIhvby9vU3dJCIiasWq/8McAJRKe2Rn+0CptNcbR8ZhsiTKxcUFZmZmyM/P19ien58Pd3d3rce4u7vrjVf/bMg5G/I51T9Dm3nz5kGpVEqvy5cv1/sziYiIarKzs5N+z8joh8TEOGzaNBWJiXHIyOinNY6Mx2RJlKWlJUJCQpCamiptU6lUSE1NRVhYmNZjwsLCNOIBYN++fVK8r68v3N3dNWKKi4tx6NAhnefU9TknT57UeEpw3759cHBwQM+ePXUeZ2VlBQcHB40XERGRoeztq0aclEp77N49BkJUfW0LIcfu3WOkESl1HBmXSUuZxsfHY+rUqejfvz8GDhyIxMRElJaWYtq0aQCAKVOmoHPnzli6dCkAYM6cORg6dCiWL1+O0aNHY8uWLTh69CjWrVsHAJDJZIiLi8OSJUsQEBAAX19fLFiwAJ6enoiKipI+NycnB4WFhcjJyUFlZSWOHz8OAPD390eHDh3w0EMPoWfPnpg8eTKWLVuGvLw8zJ8/H7Nnz4aVlZVR+4iIiNovCwsLAEBhobOUQKkJIUdhoRMUihIpjozLpEnUhAkTcP36dSQkJCAvLw9BQUFISUmRJnHn5ORALr/7h2bw4MFITk7G/Pnz8frrryMgIAA7d+5Er169pJi5c+eitLQUMTExKCoqwpAhQ5CSkgJra2spJiEhAZs2bZLe9+tXNSR64MABDBs2DGZmZtizZw9mzZqFsLAw2NnZYerUqXjrrbeau0uIiIgkCoUCAODkVACZTKWRSMlkKjg5FWrEkXGZtE5UW8c6UURE1Bi5ubnS3ZaMjH7SLT2ZTIXIyLt1omJiYuDhoX8dPaq/+n5/c2VCIiKiViA4+Bj8/LJQWOgEJ6dCljpoAZhEERERtRKsE9WysE4UERGRkV25Ahw4UPVTn/ouM1bfOGpaHIkiIiIygoKCApSXlyM52QZz5yqgUskglwssW6bEk0/+DUtLy1qLBjs7OyM2Nhbl5eU6z6vtODIOJlFERETNrKCgAKtXr4ZSaY/ExDgIIQMAqFQyvPKKA/78cz0UihLExsZqTaSoZeLtPCIiomamHknSV++pehy1DkyiiIiIjERd76m66vWeqHVhEkVERGQkCkUJIiP3SImUut4Tn7hrnTgnioiIyIhY76ntYBJFRERkZKz31Dbwdh4RERGRAZhEERERERmASRQREVEzY+XxtolzooiIiJoZK4+3TUyiiIiIjIAJUtvD23lEREREBmASRURERGQA3s4jIiJqIgUFBdK8p6tX5cjONoev7x14elZVKOe8p7aFSRQREVEjXLkCnD8PuLj8hR07VgMAMjL6YffuMRBCLi3tEhx8DAAQGxvLRKqN4O08IiKiBiooKEBubi6WLy9C164CI0YAQUGOyMjoB6XSXkqgAEAIOXbvHgOl0h4A9D6hR60LkygiIqIGKCgowOrVq/H++//CK684QKWSAQBUKhl27x6Dy5e9pQRKTQg5CgudTNFcakZMooiIiBpAPZJUWOisNVkCBGQylcZ2mUwFJ6dCYzWRjIRJFBERkQGcnAq0Jkve3lcQGblH2qeeE8UFh9seTiwnIiIygEJRgsjIPdi1awyqxiTuJkvBwcfg55eFwkInODkVMoFqo5hEERERaVG9XEF1Fy9e1HgvkwFCVP2sTqEoYfLUxjGJIiIiqkE9eVwfXU/h+fllMXlqJzgnioiIqIaaI1BKpT2ys32kMgWA7onldT2FZ2lp2XQNJZPiSBQREZEeugpnqieWV0+kqj+FN3z4cAQEBGicixXL2xaORBEREemgr3CmemK5rqfwOnXqBA8PD40XE6i2hSNRREREOui7ZVfXU3iOjo5Gbi0ZG5MoIiIiHeq6ZQfwKbz2zKAk6vDhw0hLS0NeXh4AwN3dHWFhYRg4cGCTNo6IiMiU9NWCImpQEnXt2jWMHz8ev/76K7p06QI3NzcAQH5+Pl588UXcd9992L59O1xdXZulsURERMagVCo13uuqBaUPn8Jr+xqURP3zn/9EZWUlzp49i8DAQI19mZmZeOaZZzB79mxs27atSRtJRERkTEIIAHXXgnrwwQfh6+tb63g+hdc+NCiJ+v777/Hzzz/XSqAAIDAwEKtWrcKwYcOaqm1EREQmoZ4UXtfEcl9fX3h4eJighdQSNKjEgZWVFYqLi3XuLykpgZWVVaMbRURE1BLoWmS4+sRyar8alERNmDABU6dOxTfffKORTBUXF+Obb77BtGnTEB0d3eSNJCIiMoW6akFR+9ag23krVqyASqXCxIkTcefOHWnSXHl5OczNzTF9+nR88MEHzdJQIiIiU9BXC4ratwbfzvv4449x/fp1/Pjjj1i/fj3Wr1+PH3/8EdevX8fatWsbfDtvzZo18PHxgbW1NUJDQ3H48GG98du2bUP37t1hbW2N3r17Y+/evRr7hRBISEiAh4cHbGxsEB4ejvPnz2vEFBYWYtKkSXBwcICjoyOmT5+OmzdvasR8//33GDRoEOzt7dGpUyeMHz++1srdRETUPlTNf7rEBIo0GLTsi4ODA4YPH47o6GhER0dj+PDhcHBwaPB5tm7divj4eCxcuBAZGRno27cvIiIicO3aNa3xBw8eRHR0NKZPn45jx44hKioKUVFROHXqlBSzbNkyrFq1CklJSTh06BDs7OwQERGB27dvSzGTJk3C6dOnsW/fPuzZswc///wzYmJipP3Z2dkYN24cRowYgePHj+P777/HjRs38NhjjzX4GomIiKhtkgn1c5xNID8/H5988gkSEhLqFR8aGooBAwZg9erVAACVSgVvb288//zzeO2112rFT5gwAaWlpdizZ4+0bdCgQQgKCkJSUhKEEPD09MRLL72El19+GUBVrQ83Nzds3LgREydOxNmzZ9GzZ08cOXIE/fv3BwCkpKTgkUcewZUrV+Dp6Ymvv/4a0dHRKCsrg1xelWfu3r0b48aNQ1lZGSwsLOp1fcXFxVAoFFAqlQYlmUREZBoFBQXSd5M+sbGxLGXQBtX3+7tJl33Jy8vDokWL6pVElZeXIz09HfPmzZO2yeVyhIeHIy0tTesxaWlpiI+P19gWERGBnTt3AqgaQcrLy0N4eLi0X6FQIDQ0FGlpaZg4cSLS0tLg6OgoJVAAEB4eDrlcjkOHDuHRRx9FSEgI5HI5NmzYgKeffho3b97El19+ifDwcL0JVFlZGcrKyqT3+p5kJCKilsvZ2RmxsbEoLy/XGcNaUNSgJOq3337Tuz8zM7Pe57px4wYqKyulqudqbm5uOHfunNZj8vLytMarl59R/6wrpmZFdXNzczg5OUkxvr6++OGHH/DEE0/g2WefRWVlJcLCwmrNv6pp6dKlWLRokd4YIiJqHZggUV0alEQFBQVBJpNB2x1A9XZZQ2rit1B5eXmYOXMmpk6diujoaJSUlCAhIQH/+Mc/sG/fPp3XOG/ePI2RsuLiYnh7exur2URERGREDUqinJycsGzZMowcOVLr/tOnTyMyMrJe53JxcYGZmRny8/M1tufn58Pd3V3rMe7u7nrj1T/z8/M1Ksjm5+cjKChIiqk5cf3OnTsoLCyUjl+zZg0UCgWWLVsmxXz11Vfw9vbGoUOHMGjQIK3ts7KyYrFRIiITKSgo4O03MqoGJVEhISG4evUqunbtqnV/UVGR1lEqbSwtLRESEoLU1FRERUUBqJpYnpqaitjYWK3HhIWFITU1FXFxcdK2ffv2ISwsDEDVbTh3d3ekpqZKSVNxcTEOHTqEWbNmSecoKipCeno6QkJCAAD79++HSqVCaGgoAODWrVvShHI1MzMzqY1ERNSycCI4mUKDShw899xz8PHx0bm/S5cu2LBhQ73PFx8fj08//RSbNm3C2bNnMWvWLJSWlmLatGkAgClTpmhMPJ8zZw5SUlKwfPlynDt3Dm+++SaOHj0qJV0ymQxxcXFYsmQJdu3ahZMnT2LKlCnw9PSUErUePXpg1KhRmDlzJg4fPoxff/0VsbGxmDhxIjw9PQEAo0ePxpEjR/DWW2/h/PnzyMjIwLRp09C1a1f069evIV1GRERGoG8EypA4ovpo0EjUo48+qnd/x44dMXXq1Hqfb8KECbh+/ToSEhKQl5eHoKAgpKSkSBPDc3JyNEaEBg8ejOTkZMyfPx+vv/46AgICsHPnTvTq1UuKmTt3LkpLSxETE4OioiIMGTIEKSkpsLa2lmI2b96M2NhYjBw5EnK5HOPHj8eqVauk/SNGjEBycjKWLVuGZcuWwdbWFmFhYUhJSYGNjU29r4+IiIyjqKhI431mpj/On++GgIDfERiYpRHHBYOpqTRpnSjSxDpRRETGcfLkSezYsQMA8Nln03DlijcAGQABL6/LmDGj6i7JY489ht69e5uuodQqNEudqJo1mnRZsWJFQ05LRETUKCUlVcuxZGb6V0ugAECGK1e8kZnpj8DALCmOqCk0KIk6duyYxvtffvkFISEhGre42kKJAyIial3u3LkDADh/vhvuJlBqMmRlBSAwMEuKI2oKDUqiDhw4oPHe3t4eycnJuOeee5q0UURERIYICPgdR4/2h2YiJeDvf17XIUQGM2gBYiIiopYoMDALXl6XAain+1bNiao+uZyoqTTp2nlERESmUH1d0xkzNiAz0x9ZWQHw9z+vkUDVdwF5ovpgEkVERK1ehw4dNN4HBmZpHX2qGUfUGI1agFgIgXPnzuHmzZsa2/v06dP4lhEREdWTuXn9vs7qG0dUH41egHjMmDEANBcgrqysbNpWEhER6eHo6NikcUT10aAkKjs7u7naQUREZDBLS8smjSOqD1Ysb0asWE5EZDwFBQV618aztLTk4sNUL81SsVyXESNGYMOGDejatWtTnI6IiKjBmCCRsTUoidq1a5fW7T///DP27NkDb29vAMDYsWMb3zIiIiKiFqxBt/PkcnmtieW1TsiJ5RLeziMiImp96vv93aCK5REREXj44YeRl5cHlUolvczMzHDq1CmoVComUERERNQuNOh23nfffYeVK1eif//+WLt2rVTegIiIqKlwgji1Fg2eWP7iiy9i+PDhmDRpEnbv3o2VK1c2R7uIiKgdKigowOrVq6X3SqU9Cgud4eRUAIWiRNoeGxvLRIpMzqCn84KCgnD06FG8+OKLCAoK0jtHioiISBttI043btyQfs/I6Ifdu8dACDlkMhUiI/cgOPgYAOgdqSIyFoNLHNjY2CApKQm7du3CgQMH4OLi0pTtIiKiNkz/iFPVe3UCBQBCyLF79xj4+WVpjEgRmVKDkqj9+/cjNjYW//vf/6TZ6mPHjsXYsWOhVCpx7733IikpCffff3+zNJaIiNqG6iNJ2kacOnb8S0qg1ISQo7DQiUkUtRgNejovMTERM2fO1Pq4n0KhwLPPPosVK1Y0WeOIiKht0zXiZGFRBplMpRErk6ng5FRoimYSadWgJOrEiRMYNWqUzv0PPfQQ0tPTG90oIiJq25RKJQCgsNBZ64hTRYUlIiP3SImUeoSKo1DUkjTodl5+fj4sLCx0n8zcHNevX290o4iIqG2rqKgAADg5FQBQQfPf9FUjTr6+l+Dnl4XCQic4ORUygaIWp0EjUZ07d8apU6d07v/tt9/g4eHR6EYREVF7ItN8V+2tQlECX99LTKCoRWpQEvXII49gwYIFuH37dq19f//9NxYuXMgCnEREVG+Fhc6omUSpJ5DrY2lp2YytIqqfBt3Omz9/Pnbs2IFu3bohNjYWgYGBAIBz585hzZo1qKysxBtvvNEsDSUiorbHyakAMplKY15U9Qnkw4cPR0BAgMYxrFhOLUWDkig3NzccPHgQs2bNwrx586QimzKZDBEREVizZg3c3NyapaFERNR2mJtXff0oFCWIjNxTq8SB+vZdp06dOE2EWqwGF9vs2rUr9u7di7/++gtZWVkQQiAgIAAdO3ZsjvYREVEb5OjoKP0eHHxM5wTy6nFELY3BFcs7duyIAQMGNGVbiIionVIoSjh5nFqdBk0sJyIiagr1nRjOCeTUkhk8EkVERARoLiR89aoc2dnm8PW9A0/PqkKZ2iaCOzs7IzY2Vu9CwpxATi0dkygiIjJY9YWEta2BFxx8DAAQGxurNZEias14O4+IiAymHknStQaeUmmvEUfUljCJIiKiRtO1Bl5dRTOJWjMmUURE1GjqopnVVS+aSdQWMYkiIqJGUxfNVCdSNYtmErVFnFhORERNQl/RTKK2iEkUERFJqpcr0KausgMsmknticlv561ZswY+Pj6wtrZGaGgoDh8+rDd+27Zt6N69O6ytrdG7d2/s3btXY78QAgkJCfDw8ICNjQ3Cw8Nx/vx5jZjCwkJMmjQJDg4OcHR0xPTp03Hz5s1a5/nggw/QrVs3WFlZoXPnznj77beb5qKJiFogdbmCdevW6XytXr0aZ8+eRW5uLnJzc3Hjxg1TN5vIZEw6ErV161bEx8cjKSkJoaGhSExMREREBDIzM+Hq6lor/uDBg4iOjsbSpUsxZswYJCcnIyoqChkZGejVqxcAYNmyZVi1ahU2bdoEX19fLFiwABEREThz5gysra0BAJMmTUJubi727duHiooKTJs2DTExMUhOTpY+a86cOfjhhx/wwQcfoHfv3igsLERhISdIElHbVd8yBP/+978bfG5WHqe2SCaEEKb68NDQUAwYMEAq1KZSqeDt7Y3nn38er732Wq34CRMmoLS0FHv27JG2DRo0CEFBQUhKSoIQAp6ennjppZfw8ssvAwCUSiXc3NywceNGTJw4EWfPnkXPnj1x5MgR9O/fHwCQkpKCRx55BFeuXIGnpyfOnj2LPn364NSpUwgMDDT4+oqLi6FQKKBUKuHg4GDweYiIjCE3Nxfr1q2T3iuV9igsdIaTU0G9btE99thjcHFxqbWdlceptanv97fJbueVl5cjPT0d4eHhdxsjlyM8PBxpaWlaj0lLS9OIB4CIiAgpPjs7G3l5eRoxCoUCoaGhUkxaWhocHR2lBAoAwsPDIZfLcejQIQDA7t27cc8992DPnj3w9fWFj48PZsyYUedIVFlZGYqLizVeRESthVKplH7PyOiHlSvjsGnTVKxcGYeMjH7V4uyRne0jFdJUc3FxgYeHR60XEyhqq0x2O+/GjRuorKyEm5ubxnY3NzecO3dO6zF5eXla4/Py8qT96m36YmreKjQ3N4eTk5MU88cff+DSpUvYtm0bvvjiC1RWVuLFF1/EP/7xD+zfv1/nNS1duhSLFi2q69KJiFqkiooKAFVJ0q5dY3D339ly7No1Bn5+WbhwwV/n0i5E7Q2fztNCpVKhrKwMX3zxBbp16wYA+PzzzxESEoLMzEydt/jmzZuH+Ph46X1xcTG8vb2N0mYiovrS9QTen3/+CQC4fNkbtW9UyJGZGYDvvhtda2kXP78sPpFH7ZLJkigXFxeYmZkhPz9fY3t+fj7c3d21HuPu7q43Xv0zPz8fHh4eGjFBQUFSzLVr1zTOcefOHRQWFkrHe3h4wNzcXEqgAKBHjx4AgJycHJ1JlJWVFaysrPReNxGRKVVfMLihbt7soHNpFyZR1B6ZbE6UpaUlQkJCkJqaKm1TqVRITU1FWFiY1mPCwsI04gFg3759Uryvry/c3d01YoqLi3Ho0CEpJiwsDEVFRUhPT5di9u/fD5VKhdDQUADAfffdhzt37uDChQtSzO+//w4A6Nq1a2Mum4jIpGqOQGmb3+TtfRmA5jNHMpkK3bqd59IuRNWY9HZefHw8pk6div79+2PgwIFITExEaWkppk2bBgCYMmUKOnfujKVLlwKoKjswdOhQLF++HKNHj8aWLVtw9OhR6WkSmUyGuLg4LFmyBAEBAVKJA09PT0RFRQGoGlEaNWoUZs6ciaSkJFRUVCA2NhYTJ06Ep6cngKqJ5sHBwXjmmWeQmJgIlUqF2bNn48EHH9QYnSIias0yMvppnd+kUJSgb98TOHGiLwAZAIE+fX6Dl1cuIiP31DqGo1DUXpk0iZowYQKuX7+OhIQE5OXlISgoCCkpKdLE8JycHMjldwfLBg8ejOTkZMyfPx+vv/46AgICsHPnTqlGFADMnTsXpaWliImJQVFREYYMGYKUlBSpRhQAbN68GbGxsRg5ciTkcjnGjx+PVatWSfvlcjl2796N559/Hg888ADs7Ozw8MMPY/ny5UboFSKi5qdU2kvJEKA5vwkAfvutD6oSKACQ4bff+mDEiP16l3ZhLShqb0xaJ6qtY50oImpp1LWgsrN9sGnT1Fr7p07dCECmc5+v7yUMHz4cAQEBGvtYC4rakvp+f/PpPCKidsjJqQAymUpjonj1+U369rm6umo8vEPUXpl87TwiImp6BQUF0vp21V/qte4UihJERu6RJopXn9+kb1/VsQrTXBRRC8ORKCKiNqZmGQNdy7fom9/EuU9EdWMSRUTUxlQvY6DrCTw19chTTRMmTNA64sS5T0R3MYkiImqj9D2Bp1CUcMFgokZiEkVE1EYVFjrrrTCuXjCYiAzDieVERG2U+gm86lhhnKjpcCSKiKgV07aYcM0n8FhhnKh5MIkiImql6rOYsL6n7IiocZhEERG1UjVHoHTR9QQeETUOkygiohZA22256urzxJyuelD6zklEhmMSRURkYvW5LQcAsbGxOhMpffWgtJUyYBkDosZjEkVEZGL1vS2nK66uelAsZUDUPFjigIioldNXD4qImg+TKCKiVo71oIhMg0kUEVErp64HpU6kWA+KyDg4J4qIyMSUSmWN99qfslMqlRpzm6o/XaevHhSfwiNqHkyiiIhMrKKiQvpd31N21eMAwNnZGbGxsY0ujUBEhmESRUTUQtT1lJ02TJCITIdJFBFRE2to4Uxz86q/ivU9ZadQlEhxRNQy8P9IIqImZEjhTEdHRwCAhUUZAAFAVi1SwMKiXCOOiFoGPp1HRNSEGlM4s6LCCpoJFADIUFHBieFELRGTKCKiFoL1nohaFyZRREQtBOs9EbUunBNFRGRirPdE1DoxiSIiaka6CmdWx3pPRK0Tkygiomair3BmTUyQiFofJlFERDo0tN5TdYYUziSi1oVJFBGRFobUewLuzluqq3Am5zcRtX5MooiItDC03pN6ftPFi3fw5ZcCKtXduk9mZgLPP/8wfHzMefuOqA1giQMioibm7OyMkBA3rFsng5lZ1TYzM+CTT2QICXFjAkXURnAkioiomUyfDkREAFlZgL8/4OVl6hYRUVNiEkVEVA/1KVWgjZcXkyeitopJFBGRFkqlUvpdX6kCpVIJDw8PUzWTiEyIc6KIiLSoqKgAoLtUgVJprxFHRO0PkygiIj30lSogovaNSRQRkRbm5lWzHZycCgCoauxVwcmpUCOOiNqfFpFErVmzBj4+PrC2tkZoaCgOHz6sN37btm3o3r07rK2t0bt3b+zdu1djvxACCQkJ8PDwgI2NDcLDw3H+/HmNmMLCQkyaNAkODg5wdHTE9OnTcfPmTa2fl5WVBXt7ezg6OjbqOomo9dD8/12msU8m0xVHRO2JyZOorVu3Ij4+HgsXLkRGRgb69u2LiIgIXLt2TWv8wYMHER0djenTp+PYsWOIiopCVFQUTp06JcUsW7YMq1atQlJSEg4dOgQ7OztERETg9u3bUsykSZNw+vRp7Nu3D3v27MHPP/+MmJiYWp9XUVGB6Oho3H///U1/8UTU4hUWOqNmEsXbeUQEtIAkasWKFZg5cyamTZuGnj17IikpCba2tli/fr3W+A8//BCjRo3CK6+8gh49emDx4sUIDg6WlmcQQiAxMRHz58/HuHHj0KdPH3zxxRe4evUqdu7cCQA4e/YsUlJS8NlnnyE0NBRDhgzBRx99hC1btuDq1asanzd//nx0794dTzzxRLP2AxG1TE5OBZDJNG/nyWR3b+cRUftl0iSqvLwc6enpCA8Pl7bJ5XKEh4cjLS1N6zFpaWka8QAQEREhxWdnZyMvL08jRqFQIDQ0VIpJS0uDo6Mj+vfvL8WEh4dDLpfj0KFD0rb9+/dj27ZtWLNmTb2up6ysDMXFxRovIjKegoIC5Obm6nwVFBQ0+JwKRQkiI/dIiZS6xAEXESYik86IvHHjBiorK+Hm5qax3c3NDefOndN6TF5entb4vLw8ab96m74YV1dXjf3m5uZwcnKSYgoKCvD000/jq6++goODQ72uZ+nSpVi0aFG9YomoadVcMFhXccyaCwbrUn2B4ODgY/Dzy0JhoROcnAo1zseFhInaLz5WosPMmTPx5JNP4oEHHqj3MfPmzUN8fLz0vri4GN7e3s3RPCKqofpCwPqKY9Z3YWH1QsL64i0tLbkOHlE7ZtIkysXFBWZmZsjPz9fYnp+fD3d3d63HuLu7641X/8zPz9eoIpyfn4+goCAppubE9Tt37qCwsFA6fv/+/di1axc++OADAFVzrVQqFczNzbFu3To888wztdpmZWUFKyur+l4+ETUDXcUx/fyyGnwLjgkSEelj0jlRlpaWCAkJQWpqqrRNpVIhNTUVYWFhWo8JCwvTiAeAffv2SfG+vr5wd3fXiCkuLsahQ4ekmLCwMBQVFSE9PV2K2b9/P1QqFUJDQwFUzZs6fvy49Hrrrbdgb2+P48eP49FHH22aDiCiJsfimERkLCa/nRcfH4+pU6eif//+GDhwIBITE1FaWopp06YBAKZMmYLOnTtj6dKlAIA5c+Zg6NChWL58OUaPHo0tW7bg6NGjWLduHQBAJpMhLi4OS5YsQUBAAHx9fbFgwQJ4enoiKioKANCjRw+MGjUKM2fORFJSEioqKhAbG4uJEyfC09NTiqnu6NGjkMvl6NWrl5F6hoi0KSgo0HqL7caNGwDuPk1XPZHi03RE1BxMnkRNmDAB169fR0JCAvLy8hAUFISUlBRpYnhOTg7k8rt/GQ4ePBjJycmYP38+Xn/9dQQEBGDnzp0ayc3cuXNRWlqKmJgYFBUVYciQIUhJSYG1tbUUs3nzZsTGxmLkyJGQy+UYP348Vq1aZbwLJ6IGqzl5XBv103Q150TxaToiamoyIYQwdSPaquLiYigUCiiVyno/4UdEuuXm5kqjzoDuJ/Du7qv9NF1MTIzGfEkioprq+/1t8pEoIiJD6HsCD6gakeLoExE1JyZRRGQyuuY3AYBSqYQQQmNtOvW8p8Y8gce6TkTUVJhEEZFJ1Gd+ky76nsBTKErw2GOPwcXFpdZxrOtERE2JSRQRNau6nqarj5pzn+p6As/FxYXznoio2TGJIqJm05jRJjVdc5/4BB4RmRqTKCJqNvVdYgXQ/qSdvrlP+tazIyIyBiZRRGRyukab6pr7pOsJPE4eJyJjYBJFRI3WmHlP+kab6pr7pG0COSePE5GxMIkiokZp7LwnfaNNvr6X9M594gRyIjIlJlFE1CjXr19v1PF1jTZx7hMRtVTyukOIiHT766+/NN5nZvpjz55HkJnpX6/j1WvdyWQqAND6pJ1CUQJf30u1EijOfSIiU+JIFBE1SkVFhfT7Z59Nw5Ur3gBkOHq0P7y8LmPGjA11nmPJEl8kJFzHxYvm8PG5A0/PAVAqu9WqWF4d5z4RkakxiSKiJpGZ6S8lUFVkuHLFG5mZ/ggMzAKge8FgT09PODs7IyTk7vk414mIWjomUUTUJM6f74a7CZSaDFlZAQgMzEJh4aNYvbo3VCoZ5HKBZcuUePLJvzmiREStFudEEVGTCAj4HYCosVXA3/88lEp7KYECAJVKhldfdURlpQcTKCJqtTgSRdQO6arrpGbI6FBgYBa8vC5Xu6Un4OV1GYGBWcjO9pESKLXKSiArC/DyMuACiIhaACZRRO1Mfes6xcbG1iuRMje/+9fIjBkbkJnpj6ysAPj7n5fmQjk5FUAuFxqJlJkZ4F+/B/iIiFok3s4jamfqu55dfeM6duyo8T4wMAujR38nJVBAVYmCRYtyYWZW9d7MDPjkE45CEVHrxiSKqJ1RKpU13tsjO9sHSqW93jhdXF1d6xU3a5YVLl4EDhwALl4Epk+v12FERC0Wb+cRtTPV6zrpWvi3Zpw+zs7OiI2NrfccK44+EVFbwSSKqJ3St/BvQ5dW4RN2RNQe8XYeUTulb+FfIiKqG5MoonZKvfBvddUX/iUiIv2YRBG1U/VZ+JeIiHTjnCiidqZ6Xafg4GNwdc3D5ctd4O2dAy+vXK1xRERUG/+WJGoFLly4gFu3buncb2trCz8/v3qdy9HRUfpd39N51eOIiKg2JlFELdyFCxfw1VdfSe+VSnsUFjrDyalA49bbU089Va9EytLSUjqPvqfz1HFERKQdkyiiFq76CJS+kSN9I1XVqes6HTgArFxZ++m8++6bimHDWLaAiKgunFhO1EroGjmqWWm8PpydnTFokDPkNf4GMDMDQkOdmUAREdUDkyiiVqKp6zp5eQHr1oHr2RERGYi384iMqDETxC0sygAIALJqWwUsLOq3ULA206cDERFAVhbg788EioioIZhEERlJzQniuuiaIF5RYQXNBAoAZKioaNwEcC8vJk9ERIbg7TwiI8nPz9d4f+WKBw4eHIQrVzz0xqmxwjgRUcvCkSgiI7lz5470+zffjMOJE31RNbIk0LfvCTz66H9qxVWnrjBe8+k8VhgnIjINJlFERnblike1BAoAZDhxoi8GDDisUTFczdbWVvo9OPgY/PyyUFjoBCenQo0EqnocERE1PyZRRM2goKAA5eWaE75LSqoSnt9/7wZtc5t+/z1AaxLl5+eHp556qskqlhMRUdNgEkXUxAoKCrB69Wqd+zt0uNmg7QCYIBERtUAtYmL5mjVr4OPjA2tra4SGhuLw4cN647dt24bu3bvD2toavXv3xt69ezX2CyGQkJAADw8P2NjYIDw8HOfPn9eIKSwsxKRJk+Dg4ABHR0dMnz4dN2/e/RL76aefMG7cOHh4eMDOzg5BQUHYvHlz0100tQoFBQXIzc3V+SooKKh1TM0RqJoCA38HoKqxVYXAwPPawomIqIUy+UjU1q1bER8fj6SkJISGhiIxMRERERHIzMyEq6trrfiDBw8iOjoaS5cuxZgxY5CcnIyoqChkZGSgV69eAIBly5Zh1apV2LRpE3x9fbFgwQJERETgzJkzsLa2BgBMmjQJubm52LdvHyoqKjBt2jTExMQgOTlZ+pw+ffrg1VdfhZubG/bs2YMpU6ZAoVBgzJgxxusgMpm6RpTUYmNj9Vb4rrnWnUJRgrFj92DXrjGo+neMCmPHcoI4EVFrIxNCCFM2IDQ0FAMGDJC+rFQqFby9vfH888/jtddeqxU/YcIElJaWYs+ePdK2QYMGISgoCElJSRBCwNPTEy+99BJefvllAIBSqYSbmxs2btyIiRMn4uzZs+jZsyeOHDmC/v37AwBSUlLwyCOP4MqVK/D09NTa1tGjR8PNzQ3r16+v17UVFxdDoVBAqVTCwcGhQf1Cppebm4t169bVGRcTEwMPj7tlCqofp2+tu6rkqvYE8UceeQQDBgxo4qshIqL6qu/3t0lv55WXlyM9PR3h4eHSNrlcjvDwcKSlpWk9Ji0tTSMeACIiIqT47Oxs5OXlacQoFAqEhoZKMWlpaXB0dJQSKAAIDw+HXC7HoUOHdLZXqVTCycmwJTaoZbtw4QJOnjyp8Tpx4oRGjFJpj+xsn1pr1RUVFWk9Z11r3SkUJfD1vVRrBOqee+5poqsiIqLmZNLbeTdu3EBlZSXc3Nw0tru5ueHcuXNaj8nLy9Man5eXJ+1Xb9MXU/NWobm5OZycnKSYmv7973/jyJEj+OSTT3ReT1lZGcrKyqT3xcXFOmOp5ahZSVzz9lvVNn0jSrrqOulb606hKMFjjz0GFxcXjf2WlpZc/JeIqJUw+Zyo1uDAgQOYNm0aPv30U9x7770645YuXYpFixYZsWXUFKqXDtCWLPn5ZWHXrkioyxKoR5T8/LL0zmNSVxivnkhVrzDu4uKicRuQiIhaF5PeznNxcYGZmVmtZS7y8/Ph7u6u9Rh3d3e98eqfdcVcu3ZNY/+dO3dQWFhY63P/3//7f4iMjMTKlSsxZcoUvdczb948KJVK6XX58mW98dSyKJX22LUrstbtt8zMANSs6ySEHJcv619wTl1hXL1UCyuMExG1LSZNoiwtLRESEoLU1FRpm0qlQmpqKsLCwrQeExYWphEPAPv27ZPifX194e7urhFTXFyMQ4cOSTFhYWEoKipCenq6FLN//36oVCqEhoZK23766SeMHj0a7733HmJiYuq8HisrKzg4OGi8qPW4fNkb2pKlggIX7QfoYGl5d0Hg4OBjiItLxNSpGxEXlyjdAqwZR0RErY/Jb+fFx8dj6tSp6N+/PwYOHIjExESUlpZi2rRpAIApU6agc+fOWLp0KQBgzpw5GDp0KJYvX47Ro0djy5YtOHr0qPQ0lEwmQ1xcHJYsWYKAgACpxIGnpyeioqIAAD169MCoUaMwc+ZMJCUloaKiArGxsZg4caL0ZN6BAwcwZswYzJkzB+PHj5fmSllaWnJyeTvj7HwDVXWdqv+bQwVv7ys64p0RGxurt14U5z4REbV+Jk+iJkyYgOvXryMhIQF5eXkICgpCSkqKNDE8JycHcvndL6/BgwcjOTkZ8+fPx+uvv46AgADs3LlTqhEFAHPnzkVpaSliYmJQVFSEIUOGICUlRaoRBQCbN29GbGwsRo4cCblcjvHjx2PVqlXS/k2bNuHWrVtYunSplMABwNChQ/HTTz81Y49QXbQtqaKmVCohhICjo6PW/fqSF2/vy9CWLAUGnoe5ue66ThYWFrXOxQSJiKjtM3mdqLaMdaKaXn0LYOpTszjmyZMnsWPHDgBVE8trJkt11XWqWSeKiIhat/p+f5t8JIqoIepaUqWx5wgOPgY/vyytyZK62nhNnNtERNQ+MYmiNqvmciu62NraarzXlSw9/PDD8Pb21tjGuU1ERO0Xkyhqk/QVx6zJz88PTz31lEa9qJpsbW3h5+fXXM0lIqJWiEkUmdSFCxeaPHnRtdyKvuKYTJCIiKihmESRydRcbkWXp556qkFJTl3LrRARETUFJlHU7HSVJPjzzz813uuaw6RvpErbMXUtt0JERNQUmERRs6pZkuDKFQ/k5HRFly6X4OWVK23XV1pAF13zntTLrdTcx1EoIiJqSkyiqEnoGm06ffq09Ps334zDiRN9UbW0ikDfvifw6KP/+b8169QJFADIsWuX9jlM6nICdc170leqgCUJiIioKTCJokarTwHMK1c8qiVQACDDiRN9MWDAYRQVdUTtZRyrFvhVKM5qbFUvqXLgALByZe15T0FB/8CAAaUGVSwnIiJqCCZR1Gj1KYD5++/dUHNxX0CG8+cD0KnTjQZ9nrOzMwYNAuRyQKW6u93MDBgxogu8vBp0OiIiIoMwiaIG0Xbb7sYNzSRI22TvDh20z0eys7v5f2vWCVRPsmQy3Qv8AoCXF7BuHfDss0BlZVUC9cknYAJFRERGwySK6q0+t+10TfYODDyPvXs1EyVAIDDwPBSKEowdu7vBE8GnTwciIoCsLMDfnwkUEREZF5MoqreaI1A1R5zqmuytL1HSNxG85rIs1Xl5MXkiIiLTYBJFBtE24tSx4196i1zqS5R69OiBHj161PocLrdCREQtFZOodqr6cit5eebIybFCly5lcHe/A0B/8qJrxGn69M/qLHKpa3FfLy8v9O7du8muj4iIqLkxiWqHqi+3om+hXl3LrehaVqWiwtLgIpdubm5NcGVERETGwySqjdM24mRufhFA3QUrdS23om9ZFV/fSzpv2T344IOwt7evdT7esiMiotaISVQbUL3swNWrcmRnm8PX9w4qKy/hu+++A1BzxMkHkZGldc5h0qWuZVWmTXsQLi4uGsewyCUREbU1TKJaueplB2rfmjuE4GD9c5gAFTSrhddvoV59k8RdXFzg4eHRhFdJRETU8jCJaiWq35Y7edIax47ZoV+/UmkRX3235nTNYSoqckTNKuKymkXFq6m55pyuSeJcm46IiNoDJlGtQPWJ4FWL+Prj7iK+pXj0Ud2TvQsLnWBhUYaaFcEBgVu3bFAzidJ3O0+9bp2+ZV54246IiNoLJlGtwLVr1wDoX8RX32TvwkJnaFu3ztb27zpLEtTEBImIiKiKvO4QMrWKigoAQE5OV2hLhi5f7iJN9pbJqlbkrT7ZW51gaRz1f2vT6TqGiIiI9ONIVCvSpcslaLst5+2dA0D3ZG99T9MZutwKERFRe8ckqhXx8spF374nqt3SE+jb94Q0uRzQPdlbX7I0cmQgunTpohHP2k1ERET6MYlqZbp2zcFvv/WBEDLIZAJdu+bU+1hdCVb37t2ZMBERETUQk6hWpK4K4/qwWjgREVHTYhLViugrY6BQlKB///4IDg6udRzLDhARETU9JlGtgLW1NQD9a9YBQKdOnVgpnIiIyEhY4qAVUN9u01fGoHocERERNT+ZEEKYuhFtVXFxMRQKBZRKJRwcHBp1rpqLDF+8aA4fnzvw9KxKqHjLjoiIqGnU9/ubt/NaieoJkocHEBJiwsYQERERb+cRERERGYJJFBEREZEBmEQRERERGYBJFBEREZEBmEQRERERGYBJFBEREZEBWkQStWbNGvj4+MDa2hqhoaE4fPiw3vht27ahe/fusLa2Ru/evbF3716N/UIIJCQkwMPDAzY2NggPD8f58+c1YgoLCzFp0iQ4ODjA0dER06dPx82bNzVifvvtN9x///2wtraGt7c3li1b1jQXTERERK2eyZOorVu3Ij4+HgsXLkRGRgb69u2LiIgIXLt2TWv8wYMHER0djenTp+PYsWOIiopCVFQUTp06JcUsW7YMq1atQlJSEg4dOgQ7OztERETg9u3bUsykSZNw+vRp7Nu3D3v27MHPP/+MmJgYaX9xcTEeeughdO3aFenp6Xj//ffx5ptvYt26dc3XGURERNR6CBMbOHCgmD17tvS+srJSeHp6iqVLl2qNf+KJJ8To0aM1toWGhopnn31WCCGESqUS7u7u4v3335f2FxUVCSsrK/Gvf/1LCCHEmTNnBABx5MgRKea7774TMplM/Pnnn0IIIdauXSs6duwoysrKpJhXX31VBAYG1vvalEqlACCUSmW9jyEiIiLTqu/3t0lHosrLy5Geno7w8HBpm1wuR3h4ONLS0rQek5aWphEPABEREVJ8dnY28vLyNGIUCgVCQ0OlmLS0NDg6OqJ///5STHh4OORyOQ4dOiTFPPDAA7C0tNT4nMzMTPz1119a21ZWVobi4mKNFxEREbVNJk2ibty4gcrKSri5uWlsd3NzQ15entZj8vLy9Marf9YV4+rqqrHf3NwcTk5OGjHazlH9M2paunQpFAqF9PL29tZ+4URERNTqce28JjRv3jzEx8dL75VKJbp06cIRKSIiolZE/b0thNAbZ9IkysXFBWZmZsjPz9fYnp+fD3d3d63HuLu7641X/8zPz4eHh4dGTFBQkBRTc+L6nTt3UFhYqHEebZ9T/TNqsrKygpWVlfRe/R+BI1JEREStT0lJCRQKhc79Jk2iLC0tERISgtTUVERFRQEAVCoVUlNTERsbq/WYsLAwpKamIi4uTtq2b98+hIWFAQB8fX3h7u6O1NRUKWkqLi7GoUOHMGvWLOkcRUVFSE9PR0hICABg//79UKlUCA0NlWLeeOMNVFRUwMLCQvqcwMBAdOzYsV7X5+npicuXL8Pe3h4ymaxBfVNcXAxvb29cvnwZDg4ODTq2rWFfVGE/VGE/3MW+qMJ+qMJ+uKuxfSGEQElJCTw9PesMNKktW7YIKysrsXHjRnHmzBkRExMjHB0dRV5enhBCiMmTJ4vXXntNiv/111+Fubm5+OCDD8TZs2fFwoULhYWFhTh58qQU8+677wpHR0fxn//8R/z2229i3LhxwtfXV/z9999SzKhRo0S/fv3EoUOHxC+//CICAgJEdHS0tL+oqEi4ubmJyZMni1OnToktW7YIW1tb8cknnxihV/hkX3Xsiyrshyrsh7vYF1XYD1XYD3cZqy9MPidqwoQJuH79OhISEpCXl4egoCCkpKRIk7hzcnIgl9+d/z548GAkJydj/vz5eP311xEQEICdO3eiV69eUszcuXNRWlqKmJgYFBUVYciQIUhJSYG1tbUUs3nzZsTGxmLkyJGQy+UYP348Vq1aJe1XKBT44YcfMHv2bISEhMDFxQUJCQkataSIiIio/ZIJUcesKTKJ4uJiKBQKKJVKDsuyLwCwH9TYD3exL6qwH6qwH+4yVl+YvGI5aWdlZYWFCxdqTFRvr9gXVdgPVdgPd7EvqrAfqrAf7jJWX3AkioiIiMgAHIkiIiIiMgCTKCIiIiIDMIkiIiIiMgCTKCIiIiIDMIkyoTVr1sDHxwfW1tYIDQ3F4cOHdcaePn0a48ePh4+PD2QyGRITE43XUCNoSF98+umnuP/++9GxY0d07NgR4eHheuNbk4b0w44dO9C/f384OjrCzs4OQUFB+PLLL43Y2ubTkH6obsuWLZDJZNIKCG1BQ/pi48aNkMlkGq/q9fFas4b+mSgqKsLs2bPh4eEBKysrdOvWDXv37jVSa5tPQ/ph2LBhtf48yGQyjB492ogtbj4N/TORmJiIwMBA2NjYwNvbGy+++CJu377duEY0aylP0mnLli3C0tJSrF+/Xpw+fVrMnDlTODo6ivz8fK3xhw8fFi+//LL417/+Jdzd3cXKlSuN2+Bm1NC+ePLJJ8WaNWvEsWPHxNmzZ8XTTz8tFAqFuHLlipFb3rQa2g8HDhwQO3bsEGfOnBFZWVkiMTFRmJmZiZSUFCO3vGk1tB/UsrOzRefOncX9998vxo0bZ5zGNrOG9sWGDRuEg4ODyM3NlV7q1R9as4b2Q1lZmejfv7945JFHxC+//CKys7PFTz/9JI4fP27kljethvZDQUGBxp+FU6dOCTMzM7FhwwbjNrwZNLQvNm/eLKysrMTmzZtFdna2+P7774WHh4d48cUXG9UOJlEmMnDgQDF79mzpfWVlpfD09BRLly6t89iuXbu2qSSqMX0hhBB37twR9vb2YtOmTc3VRKNobD8IIUS/fv3E/Pnzm6N5RmNIP9y5c0cMHjxYfPbZZ2Lq1KltJolqaF9s2LBBKBQKI7XOeBraDx9//LG45557RHl5ubGaaBSN/Tti5cqVwt7eXty8ebO5mmg0De2L2bNnixEjRmhsi4+PF/fdd1+j2sHbeSZQXl6O9PR0hIeHS9vkcjnCw8ORlpZmwpYZX1P0xa1bt1BRUQEnJ6fmamaza2w/CCGQmpqKzMxMPPDAA83Z1GZlaD+89dZbcHV1xfTp043RTKMwtC9u3ryJrl27wtvbG+PGjcPp06eN0dxmY0g/7Nq1C2FhYZg9ezbc3NzQq1cvvPPOO6isrDRWs5tcU/xd+fnnn2PixImws7NrrmYahSF9MXjwYKSnp0u3/P744w/s3bsXjzzySKPaYvK189qjGzduoLKyUlofUM3NzQ3nzp0zUatMoyn64tVXX4Wnp6fG/1CtjaH9oFQq0blzZ5SVlcHMzAxr167Fgw8+2NzNbTaG9MMvv/yCzz//HMePHzdCC43HkL4IDAzE+vXr0adPHyiVSnzwwQcYPHgwTp8+DS8vL2M0u8kZ0g9//PEH9u/fj0mTJmHv3r3IysrCP//5T1RUVGDhwoXGaHaTa+zflYcPH8apU6fw+eefN1cTjcaQvnjyySdx48YNDBkyBEII3LlzB8899xxef/31RrWFSRS1au+++y62bNmCn376qc1MoG0Ie3t7HD9+HDdv3kRqairi4+Nxzz33YNiwYaZumlGUlJRg8uTJ+PTTT+Hi4mLq5phcWFgYwsLCpPeDBw9Gjx498Mknn2Dx4sUmbJlxqVQquLq6Yt26dTAzM0NISAj+/PNPvP/++602iWqszz//HL1798bAgQNN3RST+Omnn/DOO+9g7dq1CA0NRVZWFubMmYPFixdjwYIFBp+XSZQJuLi4wMzMDPn5+Rrb8/Pz4e7ubqJWmUZj+uKDDz7Au+++ix9//BF9+vRpzmY2O0P7QS6Xw9/fHwAQFBSEs2fPYunSpa02iWpoP1y4cAEXL15EZGSktE2lUgEAzM3NkZmZCT8/v+ZtdDNpir8nLCws0K9fP2RlZTVHE43CkH7w8PCAhYUFzMzMpG09evRAXl4eysvLYWlp2axtbg6N+fNQWlqKLVu24K233mrOJhqNIX2xYMECTJ48GTNmzAAA9O7dG6WlpYiJicEbb7wBudyw2U2cE2UClpaWCAkJQWpqqrRNpVIhNTVV41+R7YGhfbFs2TIsXrwYKSkp6N+/vzGa2qya6s+ESqVCWVlZczTRKBraD927d8fJkydx/Phx6TV27FgMHz4cx48fh7e3tzGb36Sa4s9EZWUlTp48CQ8Pj+ZqZrMzpB/uu+8+ZGVlSQk1APz+++/w8PBolQkU0Lg/D9u2bUNZWRmeeuqp5m6mURjSF7du3aqVKKmTbNGYJYQbNS2dDLZlyxZhZWUlNm7cKM6cOSNiYmKEo6Oj9Djy5MmTxWuvvSbFl5WViWPHjoljx44JDw8P8fLLL4tjx46J8+fPm+oSmkxD++Ldd98VlpaW4uuvv9Z4fLekpMRUl9AkGtoP77zzjvjhhx/EhQsXxJkzZ8QHH3wgzM3NxaeffmqqS2gSDe2HmtrS03kN7YtFixaJ77//Xly4cEGkp6eLiRMnCmtra3H69GlTXUKTaGg/5OTkCHt7exEbGysyMzPFnj17hKurq1iyZImpLqFJGPr/xpAhQ8SECROM3dxm1dC+WLhwobC3txf/+te/xB9//CF++OEH4efnJ5544olGtYNJlAl99NFHokuXLsLS0lIMHDhQ/O9//5P2DR06VEydOlV6n52dLQDUeg0dOtT4DW8GDemLrl27au2LhQsXGr/hTawh/fDGG28If39/YW1tLTp27CjCwsLEli1bTNDqpteQfqipLSVRQjSsL+Li4qRYNzc38cgjj4iMjAwTtLrpNfTPxMGDB0VoaKiwsrIS99xzj3j77bfFnTt3jNzqptfQfjh37pwAIH744Qcjt7T5NaQvKioqxJtvvin8/PyEtbW18Pb2Fv/85z/FX3/91ag2yIRozDgWERERUfvEOVFEREREBmASRURERGQAJlFEREREBmASRURERGQAJlFEREREBmASRURERGQAJlFEREREBmASRUTUBjz99NOIiooydTOI2hUmUUTUrJ5++mnIZDLp5ezsjFGjRuG3334zddOaRPVrU7+GDBnSbJ938eJFyGQyHD9+XGP7hx9+iI0bNzbb5xJRbUyiiKjZjRo1Crm5ucjNzUVqairMzc0xZswYUzeryWzYsEG6vtzcXOzatUtrXEVFRbO1QaFQwNHRsdnOT0S1MYkiomZnZWUFd3d3uLu7IygoCK+99houX76M69evY8SIEYiNjdWIv379OiwtLaVV2n18fLB48WJER0fDzs4OnTt3xpo1azSOWbFiBXr37g07Ozt4e3vjn//8J27evCntv3TpEiIjI9GxY0fY2dnh3nvvxd69ewEAf/31FyZNmoROnTrBxsYGAQEB2LBhQ72vz9HRUbo+d3d3ODk5SSNGW7duxdChQ2FtbY3NmzejoKAA0dHR6Ny5M2xtbdG7d2/861//0jifSqXCsmXL4O/vDysrK3Tp0gVvv/02AMDX1xcA0K9fP8hkMgwbNgxA7dt5ZWVleOGFF+Dq6gpra2sMGTIER44ckfb/9NNPkMlkSE1NRf/+/WFra4vBgwcjMzOz3tdN1N4xiSIio7p58ya++uor+Pv7w9nZGTNmzEBycjLKysqkmK+++gqdO3fGiBEjpG3vv/8++vbti2PHjuG1117DnDlzsG/fPmm/XC7HqlWrcPr0aWzatAn79+/H3Llzpf2zZ89GWVkZfv75Z5w8eRLvvfceOnToAABYsGABzpw5g++++w5nz57Fxx9/DBcXlya5XnVbz549i4iICNy+fRshISH49ttvcerUKcTExGDy5Mk4fPiwdMy8efPw7rvvSu1KTk6Gm5sbAEhxP/74I3Jzc7Fjxw6tnzt37lxs374dmzZtQkZGBvz9/REREYHCwkKNuDfeeAPLly/H0aNHYW5ujmeeeaZJrpuoXWjU8sVERHWYOnWqMDMzE3Z2dsLOzk4AEB4eHiI9PV0IIcTff/8tOnbsKLZu3Sod06dPH/Hmm29K77t27SpGjRqlcd4JEyaIhx9+WOfnbtu2TTg7O0vve/furXHO6iIjI8W0adMMuj4AwtraWro+Ozs78c0334js7GwBQCQmJtZ5jtGjR4uXXnpJCCFEcXGxsLKyEp9++qnWWPV5jx07prF96tSpYty4cUIIIW7evCksLCzE5s2bpf3l5eXC09NTLFu2TAghxIEDBwQA8eOPP0ox3377rQAg/v7774Z0AVG7xZEoImp2w4cPx/Hjx3H8+HEcPnwYERERePjhh3Hp0iVYW1tj8uTJWL9+PQAgIyMDp06dwtNPP61xjrCwsFrvz549K73/8ccfMXLkSHTu3Bn29vaYPHkyCgoKcOvWLQDACy+8gCVLluC+++7DwoULNSa2z5o1C1u2bEFQUBDmzp2LgwcPNuj6Vq5cKV3f8ePH8eCDD0r7+vfvrxFbWVmJxYsXo3fv3nByckKHDh3w/fffIycnBwBw9uxZlJWVYeTIkQ1qQ3UXLlxARUUF7rvvPmmbhYUFBg4cqNFnANCnTx/pdw8PDwDAtWvXDP5sovaESRQRNTs7Ozv4+/vD398fAwYMwGeffYbS0lJ8+umnAIAZM2Zg3759uHLlCjZs2IARI0aga9eu9T7/xYsXMWbMGPTp0wfbt29Henq6NGeqvLxc+ow//vgDkydPxsmTJ9G/f3989NFHACAldC+++CKuXr2KkSNH4uWXX67357u7u0vX5+/vDzs7O41rr+7999/Hhx9+iFdffRUHDhzA8ePHERERIbXTxsam3p/bFCwsLKTfZTIZgKo5WURUNyZRRGR0MpkMcrkcf//9NwCgd+/e6N+/Pz799FMkJydrnZfzv//9r9b7Hj16AADS09OhUqmwfPlyDBo0CN26dcPVq1drncPb2xvPPfccduzYgZdeeklK4gCgU6dOmDp1Kr766iskJiZi3bp1TXnJkl9//RXjxo3DU089hb59++Kee+7B77//Lu0PCAiAjY2NNKm+JktLSwBVI1q6+Pn5wdLSEr/++qu0raKiAkeOHEHPnj2b6EqIyNzUDSCitq+srAx5eXkAqp6EW716NW7evInIyEgpZsaMGYiNjYWdnR0effTRWuf49ddfsWzZMkRFRWHfvn3Ytm0bvv32WwCAv78/Kioq8NFHHyEyMhK//vorkpKSNI6Pi4vDww8/jG7duuGvv/7CgQMHpCQsISEBISEhuPfee1FWVoY9e/ZI+5paQEAAvv76axw8eBAdO3bEihUrkJ+fLyU31tbWePXVVzF37lxYWlrivvvuw/Xr13H69GlMnz4drq6usLGxQUpKCry8vGBtbQ2FQqHxGXZ2dpg1axZeeeUVODk5oUuXLli2bBlu3bqF6dOnN8t1EbVHHIkiomaXkpICDw8PeHh4IDQ0FEeOHMG2bdukx/MBIDo6Gubm5oiOjoa1tXWtc7z00ks4evQo+vXrhyVLlmDFihWIiIgAAPTt2xcrVqzAe++9h169emHz5s1YunSpxvGVlZWYPXs2evTogVGjRqFbt25Yu3YtgKrRnXnz5qFPnz544IEHYGZmhi1btjRLX8yfPx/BwcGIiIjAsGHD4O7uXqvS+IIFC/DSSy8hISEBPXr0wIQJE6R5Subm5li1ahU++eQTeHp6Yty4cVo/591338X48eMxefJkBAcHIysrC99//z06duzYLNdF1B7JhBDC1I0gIrp48SL8/Pxw5MgRBAcHa+zz8fFBXFwc4uLiTNM4IiIteDuPiEyqoqICBQUFmD9/PgYNGlQrgSIiaql4O4+ITOrXX3+Fh4cHjhw5Umsek6m988476NChg9bXww8/bOrmEZGJ8XYeEZEOhYWFtSp8q9nY2KBz585GbhERtSRMooiIiIgMwNt5RERERAZgEkVERERkACZRRERERAZgEkVERERkACZRRERERAZgEkVERERkACZRRERERAZgEkVERERkgP8Pu2uYItd8so4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbUhJREFUeJzt3XlcVFX/B/DPDLsoQ6CyKCkhueSCYBJmaUaNpSZlqWhJZuLTIyVRWpriVg9lpuRS6PNo2EKaaZZLlKE9LfJg4Za5pAaZCahDDIi5Mef3B7+5MTAzzAwMs33er9e8cO49995z7owz3zn3nO+VCSEEiIiIiMgscltXgIiIiMgRMYgiIiIisgCDKCIiIiILMIgiIiIisgCDKCIiIiILMIgiIiIisgCDKCIiIiILMIgiIiIisgCDKCIiIiILMIgiInJy2dnZkMlkKC4utnVViJwKgygiarIffvgBKSkpuOWWW+Dr64sbb7wRo0ePxi+//NKg7ODBgyGTySCTySCXy+Hn54euXbvisccew86dO8067tatWzFo0CC0b98erVq1wk033YTRo0cjNze3uZrWwL/+9S9s2bKlwfI9e/Zg3rx5qKiosNqx65s3b550LmUyGVq1aoUePXpg9uzZqKysbJZj5OTkIDMzs1n2ReRsGEQRUZO99tpr2LRpE+6++268+eabSE5OxjfffIPo6GgcPny4QfmOHTvivffew7vvvovXX38dDzzwAPbs2YN7770XY8aMwbVr1xo95uLFi/HAAw9AJpNh5syZWLp0KUaNGoUTJ05g/fr11mgmAONB1Pz581s0iNJ6++238d5772HJkiXo1q0bXnnlFQwdOhTNcWtUBlFEhrnbugJE5PjS0tKQk5MDT09PadmYMWPQq1cvvPrqq3j//fd1yisUCjz66KM6y1599VU888wzeOutt9C5c2e89tprBo93/fp1LFy4EPfccw++/PLLBuvPnTvXxBbZj0uXLqFVq1ZGyzz88MNo27YtAOAf//gHRo0ahc2bN+N///sf4uLiWqKaRC6JPVFE1GQDBgzQCaAAIDIyErfccguOHj1q0j7c3NywbNky9OjRAytWrIBarTZY9sKFC6isrMTtt9+ud3379u11nl++fBnz5s3DzTffDG9vb4SEhOChhx7CqVOnpDKLFy/GgAEDEBgYCB8fH8TExODjjz/W2Y9MJkN1dTXWrVsnXUJ7/PHHMW/ePEyfPh0AEB4eLq2rOwbp/fffR0xMDHx8fBAQEICxY8fi999/19n/4MGD0bNnTxQWFuLOO+9Eq1atMGvWLJPOX11DhgwBABQVFRkt99Zbb+GWW26Bl5cXQkNDMXXqVJ2etMGDB2P79u347bffpDZ17tzZ7PoQOSv2RBGRVQghUFZWhltuucXkbdzc3JCYmIg5c+bgu+++w7Bhw/SWa9++PXx8fLB161Y8/fTTCAgIMLjPmpoaDB8+HHl5eRg7diymTZuGqqoq7Ny5E4cPH0ZERAQA4M0338QDDzyA8ePH4+rVq1i/fj0eeeQRbNu2TarHe++9hyeffBL9+/dHcnIyACAiIgK+vr745Zdf8OGHH2Lp0qVSr1C7du0AAK+88grmzJmD0aNH48knn8T58+exfPly3Hnnndi/fz/8/f2l+qpUKtx3330YO3YsHn30UQQFBZl8/rS0wWFgYKDBMvPmzcP8+fMRHx+Pp556CsePH8fbb7+NH374Ad9//z08PDzw0ksvQa1W48yZM1i6dCkAoHXr1mbXh8hpCSIiK3jvvfcEALFmzRqd5YMGDRK33HKLwe0++eQTAUC8+eabRvefnp4uAAhfX19x3333iVdeeUUUFhY2KLd27VoBQCxZsqTBOo1GI/370qVLOuuuXr0qevbsKYYMGaKz3NfXVyQlJTXY1+uvvy4AiKKiIp3lxcXFws3NTbzyyis6y3/66Sfh7u6us3zQoEECgMjKyjLY7rrmzp0rAIjjx4+L8+fPi6KiIrFq1Srh5eUlgoKCRHV1tRBCiHfeeUenbufOnROenp7i3nvvFTU1NdL+VqxYIQCItWvXSsuGDRsmOnXqZFJ9iFwNL+cRUbM7duwYpk6diri4OCQlJZm1rbano6qqymi5+fPnIycnB3379sUXX3yBl156CTExMYiOjta5hLhp0ya0bdsWTz/9dIN9yGQy6d8+Pj7Sv//880+o1Wrccccd2Ldvn1n1r2/z5s3QaDQYPXo0Lly4ID2Cg4MRGRmJ3bt365T38vLCxIkTzTpG165d0a5dO4SHh2PKlCno0qULtm/fbnAs1VdffYWrV68iNTUVcvnfXwOTJ0+Gn58ftm/fbn5DiVwQL+cRUbMqLS3FsGHDoFAo8PHHH8PNzc2s7S9evAgAaNOmTaNlExMTkZiYiMrKShQUFCA7Oxs5OTkYMWIEDh8+DG9vb5w6dQpdu3aFu7vxj7tt27bh5ZdfxoEDB3DlyhVped1AyxInTpyAEAKRkZF613t4eOg879ChQ4PxZY3ZtGkT/Pz84OHhgY4dO0qXKA357bffANQGX3V5enripptuktYTkXEMooio2ajVatx3332oqKjAt99+i9DQULP3oU2J0KVLF5O38fPzwz333IN77rkHHh4eWLduHQoKCjBo0CCTtv/222/xwAMP4M4778Rbb72FkJAQeHh44J133kFOTo7ZbahLo9FAJpPh888/1xtQ1h9jVLdHzFR33nmnNA6LiFoOgygiahaXL1/GiBEj8Msvv+Crr75Cjx49zN5HTU0NcnJy0KpVKwwcONCievTr1w/r1q1DSUkJgNqB3wUFBbh27VqDXh+tTZs2wdvbG1988QW8vLyk5e+8806DsoZ6pgwtj4iIgBAC4eHhuPnmm81tjlV06tQJAHD8+HHcdNNN0vKrV6+iqKgI8fHx0rKm9sQROTOOiSKiJqupqcGYMWOQn5+PjRs3WpSbqKamBs888wyOHj2KZ555Bn5+fgbLXrp0Cfn5+XrXff755wD+vlQ1atQoXLhwAStWrGhQVvx/Mko3NzfIZDLU1NRI64qLi/Um1fT19dWbUNPX1xcAGqx76KGH4Obmhvnz5zdIfimEgEql0t9IK4qPj4enpyeWLVumU6c1a9ZArVbrzIr09fU1mm6CyJWxJ4qImuy5557DZ599hhEjRqC8vLxBcs36iTXVarVU5tKlSzh58iQ2b96MU6dOYezYsVi4cKHR4126dAkDBgzAbbfdhqFDhyIsLAwVFRXYsmULvv32WyQkJKBv374AgAkTJuDdd99FWloa9u7dizvuuAPV1dX46quv8M9//hMjR47EsGHDsGTJEgwdOhTjxo3DuXPnsHLlSnTp0gWHDh3SOXZMTAy++uorLFmyBKGhoQgPD0dsbCxiYmIAAC+99BLGjh0LDw8PjBgxAhEREXj55Zcxc+ZMFBcXIyEhAW3atEFRURE++eQTJCcn4/nnn2/S+TdXu3btMHPmTMyfPx9Dhw7FAw88gOPHj+Ott97CrbfeqvN6xcTEYMOGDUhLS8Ott96K1q1bY8SIES1aXyK7ZcupgUTkHLRT8w09jJVt3bq1iIyMFI8++qj48ssvTTretWvXxL///W+RkJAgOnXqJLy8vESrVq1E3759xeuvvy6uXLmiU/7SpUvipZdeEuHh4cLDw0MEBweLhx9+WJw6dUoqs2bNGhEZGSm8vLxEt27dxDvvvCOlEKjr2LFj4s477xQ+Pj4CgE66g4ULF4oOHToIuVzeIN3Bpk2bxMCBA4Wvr6/w9fUV3bp1E1OnThXHjx/XOTfG0j/Up63f+fPnjZarn+JAa8WKFaJbt27Cw8NDBAUFiaeeekr8+eefOmUuXrwoxo0bJ/z9/QUApjsgqkMmRDPcXImIiIjIxXBMFBEREZEFGEQRERERWYBBFBEREZEFGEQRERERWYBBFBEREZEFGEQRERERWYDJNq1Io9Hg7NmzaNOmDW+dQERE5CCEEKiqqkJoaCjkcsP9TQyirOjs2bMICwuzdTWIiIjIAr///js6duxocD2DKCtq06YNgNoXwdh9wIiIiMh+VFZWIiwsTPoeN4RBlBVpL+H5+fkxiCIiInIwjQ3F4cByIiIiIgswiCIiIiKyAIMoIiIiIgswiCIiIiKyAIMoIiIiIgswiCIiIiKyAIMoIiIiIgswiCIiIiKyAIMoIiIiIgswYzkBAFQqFa5evWpwvaenJwIDA1uwRkRERPaNQRRBpVJhxYoVjZZLSUlhIEVERPT/eDmPjPZAWVKOiIjIFTCIIiIiIrIAgygiIiIiCzCIIiIiIrIAB5YTEZmIs1iJqC4GUUREJuAsViKqj5fziIhMwFmsRFQfgyiCp6dns5YjIiJyBbycRwgMDERKSgrHehAREZmBQRQBAAMkIiIiM/FyHhEREZEFGERRA2fOALt31/4lIiIi/WweRK1cuRKdO3eGt7c3YmNjsXfvXqPlN27ciG7dusHb2xu9evXCjh07dNYLIZCeno6QkBD4+PggPj4eJ06c0CnzyiuvYMCAAWjVqhX8/f2NHk+lUqFjx46QyWSoqKiwpIkOZc0aoFMnYMiQ2r9r1jTPflUqFUpKSgw+VCpV8xyIiIiohdh0TNSGDRuQlpaGrKwsxMbGIjMzE0qlEsePH0f79u0blN+zZw8SExORkZGB4cOHIycnBwkJCdi3bx969uwJAFi0aBGWLVuGdevWITw8HHPmzIFSqcSRI0fg7e0NoHYK8iOPPIK4uDisaSRKmDRpEnr37o0//vij+U+AnTlzBkhOBjSa2ucaDTBlCqBUAh07Wr5fe8uvw4SJZAnOYiWi+mRCCGGrg8fGxuLWW2+VvmA1Gg3CwsLw9NNP48UXX2xQfsyYMaiursa2bdukZbfddhuioqKQlZUFIQRCQ0Px3HPP4fnnnwcAqNVqBAUFITs7G2PHjtXZX3Z2NlJTUw32ML399tvYsGED0tPTcffdd+PPP/9stOeqrsrKSigUCqjVavj5+Zm8na3s3l3bA6Vv+eDBlu+3pKQEq1evbrRccnIyQkJCLD+QCewtoCPHUjcAP3tWjqIid4SHX0doaO0vDwbgRM7B1O9vm13Ou3r1KgoLCxEfH/93ZeRyxMfHIz8/X+82+fn5OuUBQKlUSuWLiopQWlqqU0ahUCA2NtbgPg05cuQIFixYgHfffRdyuWmn6cqVK6isrNR5OJLISKB+U93cgC5dbFMfa2DCRGqKwMBAhISEYMeOEPTvH4RHHglE//5B2LEjBCEhIQygiFyMzYKoCxcuoKamBkFBQTrLg4KCUFpaqneb0tJSo+W1f83Zpz5XrlxBYmIiXn/9ddx4440mb5eRkQGFQiE9wsLCTN7WHnTsCKxeXRs4AbV/V61q2qU8Imdj6LI3J2IQuR6bDyy3RzNnzkT37t3x6KOPmr2dWq2WHr///ruVamg9kyYBxcW1l/CKi2ufE9HfTpz4O4DSqqkBTp60TX2IyHZsFkS1bdsWbm5uKCsr01leVlaG4OBgvdsEBwcbLa/9a84+9dm1axc2btwId3d3uLu74+6775bqPHfuXIPbeXl5wc/PT+fhiDp2rB0DxR4oooZc4bI3EZnGZkGUp6cnYmJikJeXJy3TaDTIy8tDXFyc3m3i4uJ0ygPAzp07pfLh4eEIDg7WKVNZWYmCggKD+9Rn06ZNOHjwIA4cOIADBw7gP//5DwDg22+/xdSpU03eDxE5H172JiItm6Y4SEtLQ1JSEvr164f+/fsjMzMT1dXVmDhxIgBgwoQJ6NChAzIyMgAA06ZNw6BBg/DGG29g2LBhWL9+PX788Udp5pdMJkNqaipefvllREZGSikOQkNDkZCQIB339OnTKC8vx+nTp1FTU4MDBw4AALp06YLWrVsjIiJCp54XLlwAAHTv3t2s2Xmkn1rdBuXlgQgIUEGhqGJdyOFMmlSb+uPkydoeKAZQRK7JpkHUmDFjcP78eaSnp6O0tBRRUVHIzc2VBoafPn1aZ2bcgAEDkJOTg9mzZ2PWrFmIjIzEli1bpBxRADBjxgxUV1cjOTkZFRUVGDhwIHJzc6UcUQCQnp6OdevWSc/79u0LANi9ezcGN2UuP+lVN2/Ovn19sXXrcAghh0ymwYgR2xAdvb9BuZZgrC5EjenYkcETkauzaZ4oZ+doeaKsSaVSobj4Ovr3bw+NRiYtd3MTKCg4h86d3Vss0eaKFSugVrdBZmYqhPg7SJfJNEhNzYRCUcU8UUTkMJhAuPmZ+v1t054och2BgYE4dEjfrCYZqqqC0FL/vwMDA5GSkoLdu4GlS3WHBAohx+23J2HwYPADh4gcAhMI2xaDKGox2llNdQMpW8xqCgwMxG236a9LbGxgiwV0RERNxQTCtsU8UdRi7GlWkz3VhYiIHBN7oqhF2dOsJnuqCxEROR4GUdTi7GlWkz3VhYiIHAsv5xERERFZgEEUERERkQUYRBERERFZgEEUERGRgzL1Tg8tfUcIV8GB5URERA5Km0CYGcttg0EUERGRA2OAZDu8nEdERERkAQZRRERERBZgEEVERERkAQZRRERETuLMGWD37tq/ZH0MooiIiJzAmjVAp07AkCG1f9essXWNnB+DKCIiIgd35gyQnAxoNLXPNRpgyhT2SFkbUxwQkd1SqVTMf0NkghMn/g6gtGpqgJMneZN1a2IQRUR2SaVSYcWKFY2WS0lJYSBFLi8yEpDLdQMpNzegSxfb1ckV8HIeEdml+j1QanUbFBV1hlrdxmg5IlfUsSOwenVt4ATU/l21ir1Q1saeKCKye/v29cXWrcMhhBwymQYjRmxDdPR+W1eLyK5MmgQolbWX8Lp0YQDVEhhEEZFdU6vbSAEUAAghx9atwxERcRIKRZWNa0dkXzp2ZPDUkng5j4jsWnl5oBRAaQkhR3l5gI1qRERUi0EUEdm1gAAVZDLdaUcymQYBAeU2qhERUS0GUURk1xSKKowYsU0KpLRjongpj4hsjWOiiMjuRUfvR0TESZSXByAgoJwBFBHZBQZRRGSXPD09dZ4rFFV6g6f65YiIWgqDKCKyS4GBgUhJSWHGciKyWxwTRURERGQB9kQRkV2qf9sXtboNyssDERCg0rmsx9u+EJGtMIgiIrtU9zKesYzlvO0LEdkKgygismvMWG4bKpWK49GIGsEgiojsmrGM5QyirKP+pVRDeCmVXB0HlhORXWPG8pZn6iVSXkolV8eeKLIIu/qppWgzltcfE8VeqJZjaFA/katjEEVmY1c/tTRmLLcdY4P6iVwdL+eR2er3QKnVbVBU1BlqdRuj5YiaQqGoQnj4bwygWpChQf31/68TuSqbB1ErV65E586d4e3tjdjYWOzdu9do+Y0bN6Jbt27w9vZGr169sGPHDp31Qgikp6cjJCQEPj4+iI+Px4kTJ3TKvPLKKxgwYABatWoFf3//Bsc4ePAgEhMTERYWBh8fH3Tv3h1vvvlmk9vqjPbt64vMzFSsW5eEzMxU7NvX19ZVcnoqlQolJSUoKSlBYWEZPv5YhcLCMmmZSqWydRWbham3c+FtX6zH2KB+IrLx5bwNGzYgLS0NWVlZiI2NRWZmJpRKJY4fP4727ds3KL9nzx4kJiYiIyMDw4cPR05ODhISErBv3z707NkTALBo0SIsW7YM69atQ3h4OObMmQOlUokjR47A29sbQG0PySOPPIK4uDisWbOmwXEKCwvRvn17vP/++wgLC8OePXuQnJwMNzc3pKSkWPekOBBOPW95dS+lGrvM4gyXUnnbF9vTDuqvG0hxUD/R32waRC1ZsgSTJ0/GxIkTAQBZWVnYvn071q5dixdffLFB+TfffBNDhw7F9OnTAQALFy7Ezp07sWLFCmRlZUEIgczMTMyePRsjR44EALz77rsICgrCli1bMHbsWADA/PnzAQDZ2dl66/XEE0/oPL/pppuQn5+PzZs3M4iqg1PPW542oGgsgHWWS6kMkGyLg/qJjLNZEHX16lUUFhZi5syZ0jK5XI74+Hjk5+fr3SY/Px9paWk6y5RKJbZs2QIAKCoqQmlpKeLj46X1CoUCsbGxyM/Pl4IoS6jVagQEGO/CvnLlCq5cuSI9r6ystPh4joC/Um2HASxZU91LpMYG9fNSKrk6mwVRFy5cQE1NDYKCgnSWBwUF4dixY3q3KS0t1Vu+tLRUWq9dZqiMJfbs2YMNGzZg+/btRstlZGRIvVyugL9SbYcBLFkTL6USmYYpDhpx+PBhjBw5EnPnzsW9995rtOzMmTN1esoqKysRFhZm7SraFKee2wYDWLI2BkhEjbNZENW2bVu4ubmhrKxMZ3lZWRmCg4P1bhMcHGy0vPZvWVkZQkJCdMpERUWZXccjR47g7rvvRnJyMmbPnt1oeS8vL3h5eZl9HEdTvwtfoajS++XNrn7rYgBLRGRbNguiPD09ERMTg7y8PCQkJAAANBoN8vLyDA7ejouLQ15eHlJTU6VlO3fuRFxcHAAgPDwcwcHByMvLk4KmyspKFBQU4KmnnjKrfj///DOGDBmCpKQkvPLKK2a3z5mxq99+GApgiYjI+mx6OS8tLQ1JSUno168f+vfvj8zMTFRXV0uz9SZMmIAOHTogIyMDADBt2jQMGjQIb7zxBoYNG4b169fjxx9/xOrVqwEAMpkMqampePnllxEZGSmlOAgNDZUCNQA4ffo0ysvLcfr0adTU1ODAgQMAgC5duqB169Y4fPgwhgwZAqVSibS0NGk8lZubG9q1a9dyJ8iOMUAiIiJXZ9MgasyYMTh//jzS09NRWlqKqKgo5ObmSgPDT58+Dbn874GzAwYMQE5ODmbPno1Zs2YhMjISW7ZskXJEAcCMGTNQXV2N5ORkVFRUYODAgcjNzZVyRAFAeno61q1bJz3v27c2QeTu3bsxePBgfPzxxzh//jzef/99vP/++1K5Tp06obi42Fqng6hRTEBJRGQ/ZEIIYetKOKvKykooFAqo1Wr4+fnZujrkJHjzZyIi6zL1+5uz84gcDAMkIiL7YPN75xERERE5IgZRRERERBZgEEVERERkAQZRRERERBZgEEVERERkAQZRRERERBZgEEVERERkAQZRRERERBZgEEVERERkAQZRRERERBZgEEVERERkAQZRRERERBZgEEVERERkAQZRRERERBZgEEVERERkAXdbV4Bcg0qlwtWrVwEAZ8/KUVTkjvDw6wgN1QAAPD09ERgYaMsqEhERmYVBFFmdSqXCihUrAAD79vXF1q3DIYQcMpkGI0ZsQ3T0fgBASkoKAykiInIYvJxHVqftgVKr20gBFAAIIcfWrcOhVrfRKUeu4cwZYPfu2r9ERI6IQRS1mPLyQCmA0hJCjvLyABvViGxlzRqgUydgyJDav2vW2LpGRETmYxBFLSYgQAWZTKOzTCbTICCg3EY1opamUqlQWFiG5GQBzf+/FTQaYMoUgcLCMqhUKttWkIjIDAyiqMUoFFUYMWKbFEhpx0QpFFU2rhm1BO3YuOXLc6HRyHTW1dTIsHz551ixYgUDKSJyGBxYTi0qOno/IiJOorw8AAEB5QygXIh2zJu2R7Lupd26PZIcG0dEjoI9UdTiFIoqhIf/xgDKRbFHkoicBXuiiKjFsUeSiJwBgyiyOk9PT4vLnTkDnDgBREYCHTs2d83sjyu1V6GoYvBERA6NQRRZXWBgIFJSUoyOdambsVyb3TwnxwczZiig0cgglwssWqTGuHF/OW128zVrgOTk2tlqcjmwejUwaZKta0VERIYwiKIWYWrQo53BpVa3QWZmKoSoncWl0cgwfbof/vhjLRSKKqfKbq5SqVBcfB3Jye2lWWvaaf9RUefQubO707SViMiZcGA52RVtb1VjiTmdZQYXp/0TETkuBlFkl1wlMWf9af91Odu0/6aMjSMiske8nEd2STsNvv7Nip11ILIrtNfcsXFERPaOQRTZLVebBu8K7WWARETOhEEU2TVXmwbvau0lInJkDKKclDZNAACcPStHUZE7wsOvIzS0dtxNc142caXcRkRERFoMopyQdsYXAOzb17fBOJvo6P0A0KQ0Aa6ay8mRMdglImpeDKKckLYHSq1uIwVQQG2KgK1bhyMi4iQUiiqLZ3xZM5cTZ3BZBxN5EhE1PwZRTsxYrqWmjLsxJZeTpUGaq83gsnbQyESeRETWY/MgauXKlXj99ddRWlqKPn36YPny5ejfv7/B8hs3bsScOXNQXFyMyMhIvPbaa7j//vul9UIIzJ07F//+979RUVGB22+/HW+//TYiIyOlMq+88gq2b9+OAwcOwNPTExUVFQ2Oc/r0aTz11FPYvXs3WrdujaSkJGRkZMDd3eanzGTa3EN1A53mzLVkrf270pe6NYNGbY9hUVFnaDRJOuu0iTzDw39zquzvREQtyabJNjds2IC0tDTMnTsX+/btQ58+faBUKnHu3Dm95ffs2YPExERMmjQJ+/fvR0JCAhISEnD48GGpzKJFi7Bs2TJkZWWhoKAAvr6+UCqVuHz5slTm6tWreOSRR/DUU0/pPU5NTQ2GDRuGq1evYs+ePVi3bh2ys7ORnp7evCfAyrS5h7RJHJs795C19+8qAgMDERISYvBhaYDjSok8iYhsQSaEELY6eGxsLG699VZpELRGo0FYWBiefvppvPjiiw3KjxkzBtXV1di2bZu07LbbbkNUVBSysrIghEBoaCiee+45PP/88wAAtVqNoKAgZGdnY+zYsTr7y87ORmpqaoOeqM8//xzDhw/H2bNnERQUBADIysrCCy+8gPPnz5t8aaWyshIKhQJqtRp+fn4mn5emKikpwerVq6XnanUbvbmHkpOTERISYnf7p+ZR93UyNsGArxMRkS5Tv79t1hN19epVFBYWIj4+/u/KyOWIj49Hfn6+3m3y8/N1ygOAUqmUyhcVFaG0tFSnjEKhQGxsrMF9GjpOr169pABKe5zKykr8/PPPJu/HXigUVQgP/81qPUTW3j81XXT0fqSmZiIpKRupqZlSAEVERJaz2QCfCxcuoKamRidQAYCgoCAcO3ZM7zalpaV6y5eWlkrrtcsMlTGFoePUPYY+V65cwZUrV6TnlZWVJh+TyNqYyJNcRd08efo40+QUsi3HGSXtADIyMjB//nxbV4NpAojIZdXNkwdohxsEIiBApfMjghMqqDnYLIhq27Yt3NzcUFZWprO8rKwMwcHBercJDg42Wl77t6ysTGeMR1lZGaKiokyuW3BwMPbu3dvgOHWPoc/MmTORlpYmPa+srERYWJjJx20u1k4TwCCNiOxV3c89Y2MBOaGCmoPNgihPT0/ExMQgLy8PCQkJAGoHlufl5SElJUXvNnFxccjLy0Nqaqq0bOfOnYiLiwMAhIeHIzg4GHl5eVLQVFlZiYKCAoMz8Qwd55VXXsG5c+fQvn176Th+fn7o0aOHwe28vLzg5eVl8nGsyZq/sFwtlxMROZ7Gkg0TNQebXs5LS0tDUlIS+vXrh/79+yMzMxPV1dWYOHEiAGDChAno0KEDMjIyAADTpk3DoEGD8MYbb2DYsGFYv349fvzxR2kGkkwmQ2pqKl5++WVERkYiPDwcc+bMQWhoqBSoAbU5oMrLy3H69GnU1NTgwIEDAIAuXbqgdevWuPfee9GjRw889thjWLRoEUpLSzF79mxMnTrVboIkW2OAZP/YY0iuzFrJhonqsmkQNWbMGJw/fx7p6ekoLS1FVFQUcnNzpUHcp0+fhlz+93+CAQMGICcnB7Nnz8asWbMQGRmJLVu2oGfPnlKZGTNmoLq6GsnJyaioqMDAgQORm5sLb29vqUx6ejrWrVsnPe/bty8AYPfu3Rg8eDDc3Nywbds2PPXUU4iLi4Ovry+SkpKwYMECa58SombDHkNyZdZONkwE2DhPlLOzVZ4oIiJXxfxo1BxM/f7m7DwiInJK0dH7ERFxUm8yYKLmwCCKiIicFvOjkTXZ9N55RI7mzBlg9+7av0RkfzihgloSe6KIGqHNfpyT44MZMxTQaGSQywUWLVJj3Li/ODibyI5wQgW1JAZRREZosx+r1W2QmZkKIWQAAI1GhunT/fDHH2uhUFQx+zGRHeH/RWopvJxHZIT216yxnDN1yxERketgEEVkAm3OmbqYc4aIyLUxiCIygUJRhREjtkmBlDbnDGf9EBG5Lo6JIjIRc84QEVFdDKKIzMCcM0REpMXLeUREREQWYBBFREREZAEGUURGMPsxEREZwjFRREYw+zERERnCIIqoEQyQiIhIH17OIyIiIrIAgygiIiIiC/ByHhERuTSVSiWNezx7Vo6iIneEh19HaGjtHQo47pEMYRBFZEVnzgAnTgCRkUDHjrauDRHVp1KpsGLFCgDAvn19sXXrcAghl27tFB29HwCQkpLCQIoa4OU8omamUqlQUlKCN96oQKdOAkOGAJ06CbzxRgVKSkqgUqlsXUUi+n/aHii1uo0UQAGAEHJs3TocanUbnXJEdbEniqgZaX/VqtVtkJmZCiFkAACNRobp0/3wxx9roVBU8VctkZ0pLw+UAigtIeQoLw/grZ7IIPZEETUj7a9VYx/IdcsRkX0ICFBBJtPoLJPJNAgIKLdRjcgRMIgisgJ+IBM5FoWiCiNGbJP+32rHRLEXiozh5TwiK9B+INcfpMoPZKJa9jgjLjp6PyIiTqK8PAABAeX8/0qNYhBFFqn7AagPpwTzA5nIEHueEadQVPH/KpmMQRSZre4HoDEcPM0PZCJ9GpsRFxFxEgpFFccOkt3jmCgyW/0PNrW6DYqKOktTgQ2VIyKqq7EJGC3B09OzWcuRa2FPFDWJsa54IiJjtBMw6gZSLT0BIzAwECkpKRyeQBZhEEUWa6wr3hXxVy2R6exlAoY9Bkg1NTW4du2aravhtDw8PODm5tbk/TCIIosxOV1D/FVLZB5OwNAlhEBpaSkqKipsXRWn5+/vj+DgYMhkMov3wSCKLGYPXfH2iAESkXk4AeNv2gCqffv2aNWqVZO+4Ek/IQQuXbqEc+fOAQBCQkIs3pdFQdTevXuRn5+P0tJSAEBwcDDi4uLQv39/iytCjsdeuuKJiOqyxxxUpqipqZECKHusnzPx8fEBAJw7dw7t27e3+NKeWUHUuXPnMGrUKHz//fe48cYbERQUBAAoKyvDs88+i9tvvx2bNm1C+/btLaoMOR52xRORuaw5dtCec1A1RjsGqlWrVjauiWvQnudr1661TBD1z3/+EzU1NTh69Ci6du2qs+748eN44oknMHXqVGzcuNGiypBjqP/BZqgrnoOniUgfa44ddIYcVLyE1zKa4zybFUR98cUX+OabbxoEUADQtWtXLFu2DIMHD25ypci+cfA0ETWVtT8fOPGFWoJZQZSXlxcqKysNrq+qqoKXl1eTK0X2jwESEdkzTnyhlmBWxvIxY8YgKSkJn3zyiU4wVVlZiU8++QQTJ05EYmJis1eSiIjIHNqJLzJZ7WByTnyxrscffxwymQwymQweHh4ICgrCPffcg7Vr10Kj0Zi8n+zsbPj7+1uvos3MrJ6oJUuWQKPRYOzYsbh+/bo05uXq1atwd3fHpEmTsHjxYqtUlIiIyByuNvHF1jeGHzp0KN555x3U1NSgrKwMubm5mDZtGj7++GN89tlncHd3vqxKZvVEeXl54e2338b58+fx1VdfYe3atVi7di2++uornD9/Hm+99ZbZl/NWrlyJzp07w9vbG7Gxsdi7d6/R8hs3bkS3bt3g7e2NXr16YceOHTrrhRBIT09HSEgIfHx8EB8fjxMnTuiUKS8vx/jx4+Hn5wd/f39MmjQJFy9e1CnzxRdf4LbbbkObNm3Qrl07jBo1CsXFxWa1jYiIbEuhqEJ4+G8uEUCtWLECq1evNvhYsWIFVCqV1erg5eWF4OBgdOjQAdHR0Zg1axY+/fRTfP7558jOzgZQ2xnTq1cv+Pr6IiwsDP/85z+l79+vv/4aEydOhFqtlnq15s2bBwB477330K9fP7Rp0wbBwcEYN26clOfJliy6AbGfnx/uuusuJCYmIjExEXfddRf8/PzM3s+GDRuQlpaGuXPnYt++fejTpw+USqXBE7Nnzx4kJiZi0qRJ2L9/PxISEpCQkIDDhw9LZRYtWoRly5YhKysLBQUF8PX1hVKpxOXLl6Uy48ePx88//4ydO3di27Zt+Oabb5CcnCytLyoqwsiRIzFkyBAcOHAAX3zxBS5cuICHHnrI7DYSERFZm6mzDVt6VuKQIUPQp08fbN68GQAgl8uxbNky/Pzzz1i3bh127dqFGTNmAAAGDBiAzMxM+Pn5oaSkBCUlJXj++ecB1KYhWLhwIQ4ePIgtW7aguLgYjz/+eIu2RR+LgihDysrKsGDBApPLL1myBJMnT8bEiRPRo0cPZGVloVWrVli7dq3e8m+++SaGDh2K6dOno3v37li4cCGio6OlnCBCCGRmZmL27NkYOXIkevfujXfffRdnz57Fli1bAABHjx5Fbm4u/vOf/yA2NhYDBw7E8uXLsX79epw9exYAUFhYiJqaGrz88suIiIhAdHQ0nn/+eRw4cID3MiIismO8f6X96datm3QlJzU1FXfddRc6d+6MIUOG4OWXX8ZHH30EoPY1USgUkMlkCA4ORnBwMFq3bg0AeOKJJ3Dffffhpptuwm233YZly5bh888/b3AVqaU16wXK0tJSzJ8/H+np6Y2WvXr1KgoLCzFz5kxpmVwuR3x8PPLz8/Vuk5+fj7S0NJ1lSqVSCpCKiopQWlqK+Ph4ab1CoUBsbCzy8/MxduxY5Ofnw9/fH/369ZPKxMfHQy6Xo6CgAA8++CBiYmIgl8vxzjvv4PHHH8fFixfx3nvvIT4+Hh4eHgbbdOXKFVy5ckV6bmwmIxERNT+mYLE/QggpJ9NXX32FjIwMHDt2DJWVlbh+/TouX76MS5cuGU0yWlhYiHnz5uHgwYP4888/pcHqp0+fRo8ePVqkHfqYFUQdOnTI6Prjx4+bvK8LFy6gpqZGynquFRQUhGPHjundprS0VG957e1ntH8bK1M/o7q7uzsCAgKkMuHh4fjyyy8xevRoTJkyBTU1NYiLi2sw/qq+jIwMzJ8/32gZIiKyLgZI9uXo0aMIDw9HcXExhg8fjqeeegqvvPIKAgIC8N1332HSpEm4evWqwSCquroaSqUSSqUSH3zwAdq1a4fTp09DqVTaPGmqWUFUVFQUZDIZhBAN1mmXO0Om1dLSUkyePBlJSUlITExEVVUV0tPT8fDDD2Pnzp0G2zhz5kydnrLKykqEhYW1VLWJiIjsyq5du/DTTz/h2WefRWFhITQaDd544w3I5bWjibSX8rQ8PT1RU1Ojs+zYsWNQqVR49dVXpe/UH3/8sWUa0AizgqiAgAAsWrQId999t971P//8M0aMGGHSvtq2bQs3NzeUlZXpLC8rK0NwcLDebYKDg42W1/4tKyvTuStzWVkZoqKipDL1B65fv34d5eXl0vYrV66EQqHAokWLpDLvv/8+wsLCUFBQgNtuu01v/by8vJhs1ABbT70lIiLrunLlCkpLS3VSHGRkZGD48OGYMGECDh8+jGvXrmH58uUYMWIEvv/+e2RlZenso3Pnzrh48SLy8vLQp08ftGrVCjfeeCM8PT2xfPly/OMf/8Dhw4excOFCG7VSl1lBVExMDM6ePYtOnTrpXV9RUaG3l0ofT09PxMTEIC8vDwkJCQAAjUaDvLw8pKSk6N0mLi4OeXl5SE1NlZbt3LkTcXFxAGovwwUHByMvL08KmiorK1FQUICnnnpK2kdFRQUKCwsRExMDoDZS1mg0iI2NBQBcunRJipK1tDcnNCdpGNWqe0NQY+zxhqBERGSa3NxchISEwN3dHTfccAP69OmDZcuWISkpCXK5HH369MGSJUvw2muvYebMmbjzzjuRkZGBCRMmSPsYMGAA/vGPf2DMmDFQqVSYO3cu5s2bh+zsbMyaNQvLli1DdHQ0Fi9ejAceeMCGra0lE6ZGPQA++eQTVFdX49FHH9W7/s8//8Rnn32GpKQkk/a3YcMGJCUlYdWqVejfvz8yMzPx0Ucf4dixYwgKCsKECRPQoUMHZGRkAKhNcTBo0CC8+uqrGDZsGNavX49//etf2LdvH3r27AkAeO211/Dqq69i3bp1CA8Px5w5c3Do0CEcOXIE3t7eAID77rsPZWVlyMrKwrVr1zBx4kT069cPOTk5AGqDqvj4eMybN0+6nDdr1iwcO3YMR48ehY+Pj0ntq6yshEKhgFqttigFhLMoKSnB6tWrGy2XnJys04NI+rFXj8g5Xb58GUVFRQgPD5e+r0zFH6vmM3a+Tf3+Nqsn6sEHHzS6/oYbbjA5gAJqbyNz/vx5pKeno7S0FFFRUcjNzZUGhp8+fVqnR2jAgAHIycnB7NmzMWvWLERGRmLLli1SAAUAM2bMQHV1NZKTk1FRUYGBAwciNzdX5wR98MEHSElJwd133w25XI5Ro0Zh2bJl0vohQ4YgJycHixYtwqJFi9CqVSvExcUhNzfX5ACKDFOr26C8PBABASqnT4DX3Op/UBo6l/ygtL4zZ4ATJ4DISKBjR1vXhlwdZyXahlk9UWQe9kTVqtsTtW9fX2zdOhxCyKV7WUVH7wfAnihT8FzalrYXMCfHBzNmKKDRyCCXCyxapMa4cX/xS4qapCk9UWS+Fu+Jqp+jyZAlS5aYs1tyEWp1G+lLHwCEkGPr1uGIiDjJHikz8Vy2PG0voFrdBpmZqRCidpauRiPD9Ol++OOPtVAoqtgLSORCzAqi9u/fr/P8u+++Q0xMjM4lLmdIcUDWUV4eKH3pawkhR3l5AL/4zcRz2fK0l0kaO/e2zltDRC3HrCBq9+7dOs/btGmDnJwc3HTTTc1aKXJOAQEqyGQanS8gmUyDgIByG9bKMfFc2g7PPRFpNeu984iMUSiqMGLENshktWkitON42HNiPp5L2+G5JyKtZr13HpE+dW/0GR29HxERJ1FeHoCAgHKdLx7eENQ8xs4lWRfPPREBDKKoBXDqrfUoFFX8ArcRnnsiatINiIUQOHbsGC5evKizvHfv3k2vGTkVBkjNw9TeOvbqERFZX5NvQDx8+HAAujcgrn/zQCJqHuzVIyJX9PXXX+Ouu+7Cn3/+CX9/f5O26dy5M1JTU3VuFdfczAqiioqKrFUPIjIRAyTbYC8gkWGPP/441q1bhylTpjS4qfDUqVPx1ltvISkpCdnZ2bapoJWYFUQZuvEwEZGzYy8gkXFhYWFYv349li5dKuWPvHz5MnJycnDjjTfauHbW0SwpDoYMGYLffvutOXZFRGS3AgMDERISYvDBAIpcWXR0NMLCwrB582Zp2ebNm3HjjTeib9++0rIrV67gmWeeQfv27eHt7Y2BAwfihx9+0NnXjh07cPPNN8PHxwd33XUXiouLGxzvu+++wx133AEfHx+EhYXhmWeeQXV1tdXap49ZQdRnn32m9/HNN99g27Zt0nMiIiKynTNngN27a/+2pCeeeALvvPOO9Hzt2rWYOHGiTpkZM2Zg06ZNWLduHfbt24cuXbpAqVSivLw2Ye3vv/+Ohx56CCNGjMCBAwfw5JNP4sUXX9TZx6lTpzB06FCMGjUKhw4dwoYNG/Ddd98hJSXF+o2sS5hBJpMJuVwuZDKZwYdcLjdnl05NrVYLAEKtVtu6KkREZOf++usvceTIEfHXX381aT//+Y8QcrkQQO3f//ynmSpoRFJSkhg5cqQ4d+6c8PLyEsXFxaK4uFh4e3uL8+fPi5EjR4qkpCRx8eJF4eHhIT744ANp26tXr4rQ0FCxaNEiIYQQM2fOFD169NDZ/wsvvCAAiD///FMIIcSkSZNEcnKyTplvv/1WyOVy6fx16tRJLF261GCdjZ1vU7+/zRoTpVQq4ebmhrVr16J9+/bScg8PDxw8eBA9evRo3giPiIiITHbmDJCcDGhqE+pDowGmTAGUSqBjR+sfv127dhg2bBiys7MhhMCwYcPQtm1baf2pU6dw7do13H777dIyDw8P9O/fH0ePHgUAHD16FLGxsTr7jYuL03l+8OBBHDp0CB988IG0TAgBjUaDoqIidO/e3RrNa8CsIOrzzz/H0qVL0a9fP7z11ltSegMiIiJXoVKp7HaCwYkTfwdQWjU1wMmTLRNEAbWX9LSX1VauXGmVY1y8eBFTpkzBM88802BdSw5iNztj+bPPPou77roL48ePx9atW7F06VJr1IuIiMjuqFQqrFixQnquVrdBeXkgAgJUOhnsU1JSbBJIRUYCcrluIOXmBnTp0nJ1GDp0KK5evQqZTAalUqmzLiIiAp6envj++++lGf/Xrl3DDz/8IOVz6t69e4Px1f/73/90nkdHR+PIkSPo0pIN08Oi275ERUXhxx9/xLPPPouoqCid5JtERLZizz0E5Bzqvr/27euLrVuHQwi5dCPq6Oj9Dcq1pI4dgdWray/h1dTUBlCrVrVcLxQAuLm5SZfm3NzcdNb5+vriqaeewvTp0xEQEIAbb7wRixYtwqVLlzBp0iQAwD/+8Q+88cYbmD59Op588kkUFhY2yC/1wgsv4LbbbkNKSgqefPJJ+Pr64siRI9i5c6dOkGttFt87z8fHB1lZWfjss8+we/dunWueREQtzd57CMi5qNVtpAAKAISQY+vW4YiIOGnzeypOmlQ7BurkydoeqJYMoLT8/PwMrnv11Veh0Wjw2GOPoaqqCv369cMXX3yBG264AUDt5bhNmzbh2WefxfLly9G/f3/861//whNPPCHto3fv3vjvf/+Ll156CXfccQeEEIiIiMCYMWOs3ra6ZMKMbqRdu3YhJSUF//vf/xqcILVajQEDBiArKwt33HFHs1fUEVVWVkKhUECtVht9QxFR05WUlGD16tUAjPcQJCcnIyQkxJZVJQemfZ8VFXXGunVJDdYnJWUjPPw3i95nly9fRlFREcLDw+Ht7d1cVSYDjJ1vU7+/zcoTlZmZicmTJ+vdoUKhwJQpU7BkyRJzdklE1KwM9RCo1W1sXDNyJgEBKshkuiO4ZTINAgLKbVQjsgWzgqiDBw9i6NChBtffe++9KCwsbHKliIgsVV4eKAVQWkLIUV4eYKMakTOpqKgAACgUVRgxYpsUSGl7PLWX8rTlyLmZFUSVlZXBw8PD4Hp3d3ecP3++yZUiIrIUewjImq5fv67zXDsgpv7AmPrlyDmZFUR16NABhw8fNrj+0KFDHGtARDbVWA8BUXPQXjb++2uUl41dkVmz8+6//37MmTMHQ4cObTAI66+//sLcuXOZgJOIbC46ej8iIk6ivDwAAQHlDKCo2Wivxhi7bKxQVBm9atMYpg1qGc1xns0KombPno3Nmzfj5ptvRkpKCrp27QoAOHbsGFauXImamhq89NJLTa4UEVFTKRRVDJ6o2SkUCgB/XzauG0jVvWysLWcObeB16dIl+Pj4NENtyZhLly4BQJMCXrOCqKCgIOzZswdPPfUUZs6cKUVx2qykK1euRFBQkMWVISKylKenZ7OWIzJGe9m4fiqNpgTubm5u8Pf3x7lz5wAArVq1gkwma64q0/8TQuDSpUs4d+4c/P39GyQENYfZyTY7deqEHTt24M8//8TJkychhEBkZKSUJIuIyBYCAwORkpLCjOXUYqxx2Tg4OBgApECKrMff318635ayOGP5DTfcgFtvvbVJByciak4MkKilNfdlY5lMhpCQELRv3x7Xrl1rtv2SLg8Pjyb1QGlZHEQRERG5mpa6bOzm5tYsX/JkXQyiiIiogbo3cz57Vo6iIneEh19HaGht6ghXvTTKy8ZUF4MoIiLSUfdmzsbuQ+iqN3N2xTaTfmYl2yQiIuen7WVp7D6ExnpjiFwBgygiItKL9yEkMo5BFBER6cX7EBIZxyCKiIj04n0IiYzjwHIiIjKI9yEkMoxBFJGDqTv1XB9Or6bmxvsQEuln88t5K1euROfOneHt7Y3Y2Fjs3bvXaPmNGzeiW7du8Pb2Rq9evbBjxw6d9UIIpKenIyQkBD4+PoiPj8eJEyd0ypSXl2P8+PHw8/ODv78/Jk2ahIsXLzbYz+LFi3HzzTfDy8sLHTp0wCuvvNI8jSaykHbq+erVqw0+VqxYAZVKZeuqEhE1SqVSoaSkxODD3j/LbNoTtWHDBqSlpSErKwuxsbHIzMyEUqnE8ePH0b59+wbl9+zZg8TERGRkZGD48OHIyclBQkIC9u3bh549ewIAFi1ahGXLlmHdunUIDw/HnDlzoFQqceTIEXh7ewMAxo8fj5KSEuzcuRPXrl3DxIkTkZycjJycHOlY06ZNw5dffonFixejV69eKC8vR3k5B1OSbZk6pZxTz6kpeDNnagl185EZY8/5yGRCCGGrg8fGxuLWW2+VTqJGo0FYWBiefvppvPjiiw3KjxkzBtXV1di2bZu07LbbbkNUVBSysrIghEBoaCiee+45PP/88wAAtVqNoKAgZGdnY+zYsTh69Ch69OiBH374Af369QMA5Obm4v7778eZM2cQGhqKo0ePonfv3jh8+DC6du1qcfsqKyuhUCigVqvh5+dn8X6ItEpKSrB69WrpuVrdBuXlgQgIUOlcbklOTkZISIgtqkhOwtqXjXlZmup/nhlii88zU7+/bdYTdfXqVRQWFmLmzJnSMrlcjvj4eOTn5+vdJj8/H2lpaTrLlEoltmzZAgAoKipCaWkp4uPjpfUKhQKxsbHIz8/H2LFjkZ+fD39/fymAAoD4+HjI5XIUFBTgwQcfxNatW3HTTTdh27ZtGDp0KIQQiI+Px6JFixAQYDg/ypUrV3DlyhXpeWVlpVnnhMgcxjJJEzWVNQOY+j0Qhn4M2HMPBDU/Q+8De2azIOrChQuoqalBUFCQzvKgoCAcO3ZM7zalpaV6y5eWlkrrtcuMlal/qdDd3R0BAQFSmV9//RW//fYbNm7ciHfffRc1NTV49tln8fDDD2PXrl0G25SRkYH58+c31nSiJjOUSToi4qTDfPiQ66rbA2XsxwAvS7sOR/1RyNl5emg0Gly5cgXvvvsubr75ZgDAmjVrEBMTg+PHjxu8xDdz5kydnrLKykqEhYW1SJ3JtRjLJN2SQRQvyVBT8MeAa6uoqADQ+PugoqLCbocn2CyIatu2Ldzc3FBWVqazvKysDMHBwXq3CQ4ONlpe+7esrEznhJeVlSEqKkoqc+7cOZ19XL9+HeXl5dL2ISEhcHd3lwIoAOjevTsA4PTp0waDKC8vL3h5eRltN1Fz0GaSrhtItXQmaWcYFEq2ZS8/Bsg2rl+/DqDx94G2nD2yWYoDT09PxMTEIC8vT1qm0WiQl5eHuLg4vdvExcXplAeAnTt3SuXDw8MRHBysU6ayshIFBQVSmbi4OFRUVKCwsFAqs2vXLmg0GsTGxgIAbr/9dly/fh2nTp2Syvzyyy8AgE6dOjWl2UTNwh4ySdfvgVKr26CoqLN0c1pD5Yi0eFsZAhz7fWDTy3lpaWlISkpCv3790L9/f2RmZqK6uhoTJ04EAEyYMAEdOnRARkYGgNq0A4MGDcIbb7yBYcOGYf369fjxxx+l0f0ymQypqal4+eWXERkZKaU4CA0NRUJCAoDaHqWhQ4di8uTJyMrKwrVr15CSkoKxY8ciNDQUQO1A8+joaDzxxBPIzMyERqPB1KlTcc899+j0ThG1tLpTyo1lkm7pqeeOOp6BbEv7Y6D+e4e9UK5FoahC796HcPBgHwAyAAK9ex9yiPeBTYOoMWPG4Pz580hPT0dpaSmioqKQm5srDQw/ffo05PK/O8sGDBiAnJwczJ49G7NmzUJkZCS2bNki5YgCgBkzZqC6uhrJycmoqKjAwIEDkZubK+WIAoAPPvgAKSkpuPvuuyGXyzFq1CgsW7ZMWi+Xy7F161Y8/fTTuPPOO+Hr64v77rsPb7zxRgucFSLDAgMDkZKSYlfjkDiuhZqCt5VxXR4eHgBqP0MOHeqN2gAKAGQ4dKg3hgzZBYWiSipnj2w+sDwlJQUpKSl613399dcNlj3yyCN45JFHDO5PJpNhwYIFWLBggcEyAQEBOok19QkNDcWmTZuMliGyBXsbX8RxLdRUvK2Ma1IoFAAa/wzRlrNHNr/tCxE5Nkcez0C2wYzoVJcjf4bYvCeKiBwbx7WQucy9LM1UGs7NkT9DGEQRUZNxXAuZy9Sgh9nNnZe9TpQxB4MoIrJI/Q82Q+Na7PkDkOwfs5s7L3ucKGMuBlFEZBFn+AAkx8FZoM7J0T8fGEQRkcUc/QOQHAdngZI94uw8IiKye448g4ucF3uiiIjI7jnyDC5X4mozKRlEERGRQ+AsUPvmijclZxBFREQOg9nN7ZepMySdaSYlgygC4HpdsETkGJjd3HEZyunlTBhEkUt2wRKRY2AqDcdkLKeXM2EQRS7ZBUtEjoMBkmNxpZxeTHFAREREzcZYTi9nwyCKiIiImo0r5fTi5TwiIiIzcCKOca6U04tBFBERkYnqT8QxNAPNFSfi1J0haSynlzPNpGQQRUREZKK6PVDGZqC54kQcV5xJySCKGnCF3B5ERE3hSjPQzOFMAZIpGESRTteqsV9WLdUFy/EGRGTvjM1Ac+UgytUwiCKpC7a4+DoWLGgPIWQAaj8Qtm8fgfT0WHTu7N4igQsTfxKRI9DOQKsbSDnrDDQyjCkOCEBtIFVZGQSNRqazvKZGhqqqoBYLWJj4k4gcgXYGmnYqvzPPQCPD2BNFkshIQC4HNHXSe7i5AV262K5ORET2ytgMNHIN7IkiSceOwOrVtYETUPt31ara5URE1JBCUYXw8N8YQLko9kSRjkmTAKUSOHmytgeKARQR0d9MnWDjTLmQyDAGUdRAx472Ezwx3QIR2RNXzIVEhjGIIrtlLN0CEZGtMEAiLQZRZJccOZEd81wREbkGBlFkV7TjCBpLZGev4w2Y54qIyHUwiCK7Ujfx53vvCZ28VW5uAk8/fV+LJf60BPNcERG5DqY4ILsTGBiImJggrF4tq5duQYaYmJZL/ElERGQMe6LIbjHdAhER2TMGUWTX7CndgiWYooGIqPnY28QdBlFEVsIUDUREzcceJ+5wTBSRFRhK0aBWt7FxzYiIHJM9TtxhEEVkBcZSNBARUdOp1W1QVNTZpj9OeTmPqBlp81cFBKggk2l0AimZTIOAgHKdckREZD57GS5hFz1RK1euROfOneHt7Y3Y2Fjs3bvXaPmNGzeiW7du8Pb2Rq9evbBjxw6d9UIIpKenIyQkBD4+PoiPj8eJEyd0ypSXl2P8+PHw8/ODv78/Jk2ahIsXL+o93smTJ9GmTRv4+/s3qZ3k/LR5rqZPT8Trr1fCzU0AqM1x9frrlZg+PZGJNomImsCehkvYPIjasGED0tLSMHfuXOzbtw99+vSBUqnEuXPn9Jbfs2cPEhMTMWnSJOzfvx8JCQlISEjA4cOHpTKLFi3CsmXLkJWVhYKCAvj6+kKpVOLy5ctSmfHjx+Pnn3/Gzp07sW3bNnzzzTdITk5ucLxr164hMTERd9xxR/M3npxSYGAgQkJC8Nxz/igulmH3bqC4WIbnnvNHSEgIAygioiawp+ESNg+ilixZgsmTJ2PixIno0aMHsrKy0KpVK6xdu1Zv+TfffBNDhw7F9OnT0b17dyxcuBDR0dHSiH0hBDIzMzF79myMHDkSvXv3xrvvvouzZ89iy5YtAICjR48iNzcX//nPfxAbG4uBAwdi+fLlWL9+Pc6ePatzvNmzZ6Nbt24YPXq0Vc8DOaeOHYHBgx07TQMRkT3RDpeoq+5wiZZk0yDq6tWrKCwsRHx8vLRMLpcjPj4e+fn5erfJz8/XKQ8ASqVSKl9UVITS0lKdMgqFArGxsVKZ/Px8+Pv7o1+/flKZ+Ph4yOVyFBQUSMt27dqFjRs3YuXKlSa158qVK6isrNR5EBFZg0qlQklJicGHSqWydRWJrEKhqMKIEdukQEo7JsoWufhsOrD8woULqKmpQVBQkM7yoKAgHDt2TO82paWlesuXlpZK67XLjJVp3769znp3d3cEBARIZVQqFR5//HG8//778PPzM6k9GRkZmD9/vklliYgsVT9fjqGkrhx/R86k7oSc6Oj9iIg4ifLyAAQElOu871ty4g5n5xkwefJkjBs3DnfeeafJ28ycORNpaWnS88rKSoSFhVmjekTkwurmwTE2S4k3uiZnop24w4zl/69t27Zwc3NDWVmZzvKysjIEBwfr3SY4ONhoee3fsrIyhISE6JSJioqSytQfuH79+nWUl5dL2+/atQufffYZFi9eDKB2rJVGo4G7uztWr16NJ554okHdvLy84OXlZWrziYiaxNAspYiIk7zNEDkle+tZtemYKE9PT8TExCAvL09aptFokJeXh7i4OL3bxMXF6ZQHgJ07d0rlw8PDERwcrFOmsrISBQUFUpm4uDhUVFSgsLBQKrNr1y5oNBrExsYCqB03deDAAemxYMECtGnTBgcOHMCDDz7YPCeAiKgJ7GmWEpErsvnlvLS0NCQlJaFfv37o378/MjMzUV1djYkTJwIAJkyYgA4dOiAjIwMAMG3aNAwaNAhvvPEGhg0bhvXr1+PHH3/E6tWrAQAymQypqal4+eWXERkZifDwcMyZMwehoaFISEgAAHTv3h1Dhw7F5MmTkZWVhWvXriElJQVjx45FaGioVKauH3/8EXK5HD179myhM0NEZFxjSV3JNdjbTXldic2DqDFjxuD8+fNIT09HaWkpoqKikJubKw0MP336NOTyvz8gBgwYgJycHMyePRuzZs1CZGQktmzZohPczJgxA9XV1UhOTkZFRQUGDhyI3NxceHt7S2U++OADpKSk4O6774ZcLseoUaOwbNmylms4EVETaWcp1R8TxUt5rsMeb8rrSmRCCGHrSjiryspKKBQKqNVqk2f4ERE1pqSkROp9B7Sz8xrOUkpOTtYZG0rOR/97oeFMTb4XzGPq97fNe6KIiKhpFIoq9j6R3dxPzpUwiCKyMY5nIHOZmgeHN7p2HdaaqcnPJ+MYRBHZEMczkCXsMV8O2ZaxmZqWBlH8fGocgygHwV8DzsnUZIhMmkj18f871WWNmZr1P3cMjbdy5c8nBlEOgL8GiIjIGGvP1OR4K/0YRDkA9la4DkO/9IiIGmPsfnJNwcz4hjGIIrIT/KVHROaqP3nA0EzNpkwysMZ4K2fBIIrIDnBmDRFZoiUmGTAzvmEMoojsgKvMrGFQR9T8rP1/hpnxDWMQRWQHWmJmTVPLNZU9BnVEAIN7U1hrvJWjYxBFZEPacQqN/dJrjqSJth60zunSZI/qB/eG3peuGNy3xHgrR8cgisiG6o9nSE8/j+Jid3TufB2hobcCuLVZfgXb26B1e6sPua66Qbux96UrBvdM6to4BlEOoH6Ub+iXkiv/GnBkdT+AQkKAmJjm3b+9TU+2t/oQAXxfGuLKAZIpGEQ5gLq/BnJyfLBggQIajQxyucCiRWqMG/eXy/8aIMPsbXqyvdWHCOD7kiwjb7wI2YPAwEDU1IRgxgx/aDQyAIBGI8MLL/ijpiaEARQZpB20XpctpyfbW32IAL4vyTIMohzIiROARvf/OGpqgJMnG5ZVqVQoKSkx+FCpVC1TabI57aB17ReEracn21t9iAC+L8kyvJznQCIjAblcN5BycwO6dNEtx6nkBOiOkTM2PdkWY+k4XZrsEd+XZC4GUQ6kY0dg9WpgypTaHig3N2DVqtrlddlbfiCyDXubWcPp0sYxV5F9MPS+JNKHQZSDmTQJUCprL+F16dIwgCKqy56+dO0tqLMnzFVkO6YG7a4a3JNxDKIcUMeODJ7IMTEA0I+5imyHwT01BYMoIiI7wVxFtsEAiSzF2XlERHbCWK4iIrI/DKKIiOwEcxURORYGUUREdoK5iogcC8dEOSHea4/IcTFXEZHjYBDlhHivPcfC/EDNx1nOJXMVETkGBlFOKjAwEGfOADNm/J3hXHuvvTFj/OEA3yMugdnlm48j51piriIix8QgyokZu9ce80zZB2aXbz6OnGuJuYqIHBODKCdm6r32yH4Y6j0h0zlqriUGSESOh0GUEzP1XntkH4z1npDpjOVasucgiogcD4MoJ8d77TkGe+k9sfbA7JYY+K3NtVQ3kGKuJSKyBgZRLoD32rN/9tB7Yu1B7i01iF6ba6l+rx57ocgQZ5nVSS2PQRSRHbCH3pP6XyKGxmdZOjDb2vuvi7mWyFScIUtNwSCKyA7YW++JtcdntcT4L+ZaIlO0ZHBPzodBFJEN1c37Y6z3pCXzA1l7fJa19s9cS9RUnNxB5mIQRWRD9pgfyNrjs6y1f3s8l+Q47GVyh6tx9PFoDKKIbMzePiCsPT7Lmvu3t3NJjsMeJne4GmcYjyZvvIj1rVy5Ep07d4a3tzdiY2Oxd+9eo+U3btyIbt26wdvbG7169cKOHTt01gshkJ6ejpCQEPj4+CA+Ph4nTpzQKVNeXo7x48fDz88P/v7+mDRpEi5evCit//rrrzFy5EiEhITA19cXUVFR+OCDD5qv0eS0VCoVSkpKDD5UKpWtq2iUdnyWTFabpbW5x2dZe/9EltAG93UxNYZ1OcMdG2zeE7VhwwakpaUhKysLsbGxyMzMhFKpxPHjx9G+ffsG5ffs2YPExERkZGRg+PDhyMnJQUJCAvbt24eePXsCABYtWoRly5Zh3bp1CA8Px5w5c6BUKnHkyBF4e3sDAMaPH4+SkhLs3LkT165dw8SJE5GcnIycnBzpOL1798YLL7yAoKAgbNu2DRMmTIBCocDw4cNb7gSRQ3GGX1aA9We3cfYc2Rt7m9zhihzxjg02D6KWLFmCyZMnY+LEiQCArKwsbN++HWvXrsWLL77YoPybb76JoUOHYvr06QCAhQsXYufOnVixYgWysrIghEBmZiZmz56NkSNHAgDeffddBAUFYcuWLRg7diyOHj2K3Nxc/PDDD+jXrx8AYPny5bj//vuxePFihIaGYtasWTrHnTZtGr788kts3ryZQRQZ5Mi/rOoPuDY0u83SgdnW3j9RU9lLcO/o44Qs4aiD+m0aRF29ehWFhYWYOXOmtEwulyM+Ph75+fl6t8nPz0daWprOMqVSiS1btgAAioqKUFpaivj4eGm9QqFAbGws8vPzMXbsWOTn58Pf318KoAAgPj4ecrkcBQUFePDBB/UeW61Wo3v37pY2l1yQKb+s7OUD09oDs11t4Le9vK5knL0F987Sm20ORx7Ub9Mg6sKFC6ipqUFQUJDO8qCgIBw7dkzvNqWlpXrLl5aWSuu1y4yVqX+p0N3dHQEBAVKZ+j766CP88MMPWLVqlcH2XLlyBVeuXJGeV1ZWGixLzs+UX1b29oFp7WM4y4d+Y+q/roaCaWf6InRU9hbcu2LeKkce1G/zy3mOYPfu3Zg4cSL+/e9/45ZbbjFYLiMjA/Pnz2/BmpG9MvWXlSt+YLqCuq+XsWCar6t9sNdA1lEvcZnLHu7YYCmbzs5r27Yt3NzcUFZWprO8rKwMwcHBercJDg42Wl77t7Ey586d01l//fp1lJeXNzjuf//7X4wYMQJLly7FhAkTjLZn5syZUKvV0uP33383Wp6cl7FfVobs29cXmZmpWLcuCZmZqdi3r6+1q0lWZiiYVqvb2LhmZO9c6b3jyDN2bRpEeXp6IiYmBnl5edIyjUaDvLw8xMXF6d0mLi5OpzwA7Ny5UyofHh6O4OBgnTKVlZUoKCiQysTFxaGiogKFhYVSmV27dkGj0SA2NlZa9vXXX2PYsGF47bXXkJyc3Gh7vLy84Ofnp/Mg12TudGlX+sB0JZYE00SAa7x36t+xITU1E0lJ2UhNzdTpcbPnySY2v5yXlpaGpKQk9OvXD/3790dmZiaqq6ul2XoTJkxAhw4dkJGRAaB2ltygQYPwxhtvYNiwYVi/fj1+/PFHrF69GgAgk8mQmpqKl19+GZGRkVKKg9DQUCQkJAAAunfvjqFDh2Ly5MnIysrCtWvXkJKSgrFjxyI0NBRA7SW84cOHY9q0aRg1apQ0VsrT0xMBAc7zJibrMHe6tCOPCSDDHPkyBdmWK7x37G08miVsHkSNGTMG58+fR3p6OkpLSxEVFYXc3FxpYPjp06chl//9JhowYABycnIwe/ZszJo1C5GRkdiyZYuUIwoAZsyYgerqaiQnJ6OiogIDBw5Ebm6ulCMKAD744AOkpKTg7rvvhlwux6hRo7Bs2TJp/bp163Dp0iVkZGRIARwADBo0CF9//bUVz0jz4Mwg27D0Xniu8IHpiph7iCzlqO8dc797HP17SCaEELauhLOqrKyEQqGAWq1u0Ut79jbjy9WY8yFSUlIi9aIaG0SanJyMkJAQ61eemkXd1xXQThhoGEzzdaX6HPm940zfPaZ+f9u8J4qanyMnfHQGln442EuiP2p+hnIPEdVnb3mrzOGK3z0MoohsyJE/MMkwU18vvq5UnzOME9JyxNu4mItBFJENOdMHJv2Nrys1hTO8L1wlxxWDKKJGWHuQvjU/MDnBwHZ4XslVOfJtXMzFIIrICEceKOnIdScix+VKKVsYRLkAV7gubS2OPFDSHm8pw54xIufnSilbGEQ5OVe5Lt1SHDUgtYf3AW/K69zqBshnz8pRVOSO8PDrCA2tzdzflACZwbdjcdQcV5ZgEOWEtDN+GrsuzZlB5rGHQMQS9jI+gTfldV51A2Rjr60lATKDb8dhabJhR8YgyglpZwbt3g0sXdrwuvTttydh8GAOfDVFRUUFgMYDkYqKCrtLfKdlb+MT7CWoo+ajDXwbe20tCZAZfDsOV5yVyiDKSQUGBuK22wC5HNDUuQ+umxsQGxsIJ3oPW9X169cBNB6IaMvZI3sbn2BvQR01H2u+tgy+HYMzBUimkDdehBxVx47A6tW1gRNQ+3fVqtrlZB5tIFKXowyU1I5P0Nbf1uMTHPlcknHWfG2NBWj2TqVSoaSkxOBDpVLZuopkIfZEOblJkwClEjh5EujShQGUpRSKKvTufQgHD/YBIAMg0Lv3IYf5BWxPt5RxpUGnrsaar6299aiaiqlGnBuDKBfQsSODJ0t5eHgAqL2UcOhQb9QGUAAgw6FDvTFkyC4oFFVSOXtiz7eUsaegjpqXtV5bRw2+7THVCDUfBlFERigUCgCNj/XQlrMn9j7IkzfldV7Wem0dPfh21Bm+ZBiDKCITOOqlBHu6POAMN+W1Zi4kMo2jBt+OOjCeObqMYxBFZAJHvZRgT+y9Z6wx1syF5OisGSA7Q/ANOOasVI7nahyDKCIjXDF5nDU58getNXMhtQRr9qJZM0B29OBby5zebHvp/XHk2161FAZRREY4ywc46WdJYOHoPQrW6kWz5v8BZ/j/ZWpvtj33/jjqba+siUEUUSOc4QOcGrI0sHDE8XGO3ovmLEwZGG+vs/k4KF4/BlFE5JIsDSzM6VGw5iB0V+lFc3RNSTViL4GLow6KbwkMoojIpVkSWDTWo2Dty2eu1Ivm6CwdEmBPgYs9Bd/2Ml5Mi0EUEbk0SwMLY1PtrX35zNq9aNS8LPlSt6fAxV6Cb3scL8YgiohcmjUDC2t/EVqjF43sg70ELoD9BN/2OFuQQRQRuTxTAgtz8hVpP8St/UVojV40sg/2ELgwxUvjGEQREaHxwMKcsS0lJSXSPq35RWgPX7RkPbbuNbT3FC/2kHKBQRQRkYks+bKw9hdhc/eikW3Z243D7TXFi73MXGQQRUQuqSUDC2tfPmvOXjSyLb5WjbOnmYsMoojIJbnal5WztMMV8LUyzp5mLjKIIiKXZa0vK2v3cvHyHLkye5q5yCCKiKiZWbuXy9V60YiAv38UNDahoiV/PMiEEKLFjuZiKisroVAooFar4efnZ+vqEBERObT6tzsqLnZH587NdzslLVO/v9kTRURERA6hboAUEgLExNiwMgDkjRchIiIiovoYRBERERFZgEEUERERkQUYRBERERFZgEEUERERkQUYRBERERFZwC6CqJUrV6Jz587w9vZGbGws9u7da7T8xo0b0a1bN3h7e6NXr17YsWOHznohBNLT0xESEgIfHx/Ex8fjxIkTOmXKy8sxfvx4+Pn5wd/fH5MmTcLFixd1yhw6dAh33HEHvL29ERYWhkWLFjVPg4mIiMjh2TyI2rBhA9LS0jB37lzs27cPffr0gVKpxLlz5/SW37NnDxITEzFp0iTs378fCQkJSEhIwOHDh6UyixYtwrJly5CVlYWCggL4+vpCqVTi8uXLUpnx48fj559/xs6dO7Ft2zZ88803SE5OltZXVlbi3nvvRadOnVBYWIjXX38d8+bNw+rVq613MoiIiMhxCBvr37+/mDp1qvS8pqZGhIaGioyMDL3lR48eLYYNG6azLDY2VkyZMkUIIYRGoxHBwcHi9ddfl9ZXVFQILy8v8eGHHwohhDhy5IgAIH744QepzOeffy5kMpn4448/hBBCvPXWW+KGG24QV65ckcq88MILomvXria3Ta1WCwBCrVabvA0RERHZlqnf3zbtibp69SoKCwsRHx8vLZPL5YiPj0d+fr7ebfLz83XKA4BSqZTKFxUVobS0VKeMQqFAbGysVCY/Px/+/v7o16+fVCY+Ph5yuRwFBQVSmTvvvFPnHjxKpRLHjx/Hn3/+qbduV65cQWVlpc6DiIiInJNNg6gLFy6gpqYGQUFBOsuDgoJQWlqqd5vS0lKj5bV/GyvTvn17nfXu7u4ICAjQKaNvH3WPUV9GRgYUCoX0CAsL099wIiIicni8d14zmjlzJtLS0qTnarUaN954I3ukiIiIHIj2e1sIYbScTYOotm3bws3NDWVlZTrLy8rKEBwcrHeb4OBgo+W1f8vKyhASEqJTJioqSipTf+D69evXUV5errMffcepe4z6vLy84OXlJT3XvgjskSIiInI8VVVVUCgUBtfbNIjy9PRETEwM8vLykJCQAADQaDTIy8tDSkqK3m3i4uKQl5eH1NRUadnOnTsRFxcHAAgPD0dwcDDy8vKkoKmyshIFBQV46qmnpH1UVFSgsLAQMf9/C+hdu3ZBo9EgNjZWKvPSSy/h2rVr8PDwkI7TtWtX3HDDDSa1LzQ0FL///jvatGkDmUxm1rkxprKyEmFhYfj999/h5+fXbPu1F87ePsD52+js7QOcv41sn+Nz9jZas31CCFRVVSE0NLTRgja1fv164eXlJbKzs8WRI0dEcnKy8Pf3F6WlpUIIIR577DHx4osvSuW///574e7uLhYvXiyOHj0q5s6dKzw8PMRPP/0klXn11VeFv7+/+PTTT8WhQ4fEyJEjRXh4uPjrr7+kMkOHDhV9+/YVBQUF4rvvvhORkZEiMTFRWl9RUSGCgoLEY489Jg4fPizWr18vWrVqJVatWtUCZ8U4Z5/15+ztE8L52+js7RPC+dvI9jk+Z2+jPbTP5mOixowZg/PnzyM9PR2lpaWIiopCbm6uNIj79OnTkMv/Hv8+YMAA5OTkYPbs2Zg1axYiIyOxZcsW9OzZUyozY8YMVFdXIzk5GRUVFRg4cCByc3Ph7e0tlfnggw+QkpKCu+++G3K5HKNGjcKyZcuk9QqFAl9++SWmTp2KmJgYtG3bFunp6Tq5pIiIiMh1yYRoZNQU2Z3KykooFAqo1Wqn7aJ15vYBzt9GZ28f4PxtZPscn7O30R7aZ/OM5WQ+Ly8vzJ07V2cQuzNx9vYBzt9GZ28f4PxtZPscn7O30R7ax54oIiIiIguwJ4qIiIjIAgyiiIiIiCzAIIqIiIjIAgyiiIiIiCzAIMpOrFy5Ep07d4a3tzdiY2Oxd+9eo+UzMzPRtWtX+Pj4ICwsDM8++ywuX77cpH1aU3O3b968eZDJZDqPbt26WbsZBpnTvmvXrmHBggWIiIiAt7c3+vTpg9zc3CbtsyU0dxvt6TX85ptvMGLECISGhkImk2HLli2NbvP1118jOjoaXl5e6NKlC7KzsxuUsZfX0Brtc+TXr6SkBOPGjcPNN98MuVyucweMujZu3Ihu3brB29sbvXr1wo4dO5q/8iayRhuzs7MbvIZ18ym2JHPbt3nzZtxzzz1o164d/Pz8EBcXhy+++KJBOWv/H2QQZQc2bNiAtLQ0zJ07F/v27UOfPn2gVCob3N9PKycnBy+++CLmzp2Lo0ePYs2aNdiwYQNmzZpl8T6tyRrtA4BbbrkFJSUl0uO7775rieY0YG77Zs+ejVWrVmH58uU4cuQI/vGPf+DBBx/E/v37Ld6ntVmjjYD9vIbV1dXo06cPVq5caVL5oqIiDBs2DHfddRcOHDiA1NRUPPnkkzof4vb0GlqjfYDjvn5XrlxBu3btMHv2bPTp00dvmT179iAxMRGTJk3C/v37kZCQgISEBBw+fLg5q24ya7QRAPz8/HRew99++625qmwWc9v3zTff4J577sGOHTtQWFiIu+66CyNGjGj5z1Gb5UonSf/+/cXUqVOl5zU1NSI0NFRkZGToLT916lQxZMgQnWVpaWni9ttvt3if1mSN9s2dO1f06dPHKvU1l7ntCwkJEStWrNBZ9tBDD4nx48dbvE9rs0Yb7ek1rAuA+OSTT4yWmTFjhrjlllt0lo0ZM0YolUrpub29hlrN1T5Hfv3qGjRokJg2bVqD5aNHjxbDhg3TWRYbGyumTJnSxBo2XXO18Z133hEKhaLZ6tVczG2fVo8ePcT8+fOl5y3xf5A9UTZ29epVFBYWIj4+Xloml8sRHx+P/Px8vdsMGDAAhYWFUrfkr7/+ih07duD++++3eJ/WYo32aZ04cQKhoaG46aabMH78eJw+fdp6DTHAkvZduXKlQZe5j4+P9Cvenl4/S+vTWBu17OE1tER+fr7O+QAApVIpnQ97ew3N1Vj7tBz19TOFqefA0V28eBGdOnVCWFgYRo4ciZ9//tnWVbKIRqNBVVUVAgICALTc/0EGUTZ24cIF1NTUSPcK1AoKCkJpaanebcaNG4cFCxZg4MCB8PDwQEREBAYPHixd7rJkn9ZijfYBQGxsLLKzs5Gbm4u3334bRUVFuOOOO1BVVWXV9tRnSfuUSiWWLFmCEydOQKPRYOfOndi8eTNKSkos3qc1WaONgP28hpYoLS3Vez4qKyvx119/2d1raK7G2gc49utnCkPnwBFeP1N17doVa9euxaeffor3338fGo0GAwYMwJkzZ2xdNbMtXrwYFy9exOjRowG03OcogygH9PXXX+Nf//oX3nrrLezbtw+bN2/G9u3bsXDhQltXrVmY0r777rsPjzzyCHr37g2lUokdO3agoqICH330kQ1rbpo333wTkZGR6NatGzw9PZGSkoKJEyfq3Gjb0ZnSRkd+DYmvnzOIi4vDhAkTEBUVhUGDBmHz5s1o164dVq1aZeuqmSUnJwfz58/HRx99hPbt27fosd1b9GjUQNu2beHm5oaysjKd5WVlZQgODta7zZw5c/DYY4/hySefBAD06tUL1dXVSE5OxksvvWTRPq3FGu3TF2z4+/vj5ptvxsmTJ5u/EUZY0r527dphy5YtuHz5MlQqFUJDQ/Hiiy/ipptusnif1mSNNupjq9fQEsHBwXrPh5+fH3x8fODm5mZXr6G5GmufPo70+pnC0DlwhNfPUh4eHujbt69DvYbr16/Hk08+iY0bN+pcumupz1Hn+enroDw9PRETE4O8vDxpmUajQV5eHuLi4vRuc+nSpQaBhJubGwBACGHRPq3FGu3T5+LFizh16hRCQkKaqeamacq59vb2RocOHXD9+nVs2rQJI0eObPI+rcEabdTHVq+hJeLi4nTOBwDs3LlTOh/29hqaq7H26eNIr58pLDkHjq6mpgY//fSTw7yGH374ISZOnIgPP/wQw4YN01nXYv8Hm22IOlls/fr1wsvLS2RnZ4sjR46I5ORk4e/vL0pLS4UQQjz22GPixRdflMrPnTtXtGnTRnz44Yfi119/FV9++aWIiIgQo0ePNnmfjt6+5557Tnz99deiqKhIfP/99yI+Pl60bdtWnDt3zu7b97///U9s2rRJnDp1SnzzzTdiyJAhIjw8XPz5558m77OlWaON9vQaVlVVif3794v9+/cLAGLJkiVi//794rfffhNCCPHiiy+Kxx57TCr/66+/ilatWonp06eLo0ePipUrVwo3NzeRm5srlbGn19Aa7XPk108IIZWPiYkR48aNE/v37xc///yztP77778X7u7uYvHixeLo0aNi7ty5wsPDQ/z0008t2jYta7Rx/vz54osvvhCnTp0ShYWFYuzYscLb21unTEsxt30ffPCBcHd3FytXrhQlJSXSo6KiQirTEv8HGUTZieXLl4sbb7xReHp6iv79+4v//e9/0rpBgwaJpKQk6fm1a9fEvHnzREREhPD29hZhYWHin//8p84XVGP7bGnN3b4xY8aIkJAQ4enpKTp06CDGjBkjTp482YIt0mVO+77++mvRvXt34eXlJQIDA8Vjjz0m/vjjD7P2aQvN3UZ7eg13794tADR4aNuUlJQkBg0a1GCbqKgo4enpKW666SbxzjvvNNivvbyG1mifo79++sp36tRJp8xHH30kbr75ZuHp6SluueUWsX379pZpkB7WaGNqaqr0/gwKChL333+/2LdvX8s1qg5z2zdo0CCj5bWs/X9QJoSB6yNEREREZBDHRBERERFZgEEUERERkQUYRBERERFZgEEUERERkQUYRBERERFZgEEUERERkQUYRBERERFZgEEUEZEL+frrryGTyVBRUWHrqhA5PAZRRGQVjz/+OGQyGV599VWd5Vu2bIFMJpOeCyHw73//G3FxcfDz80Pr1q1xyy23YNq0aSbfCPXSpUuYOXMmIiIi4O3tjXbt2mHQoEH49NNPpTKdO3dGZmZms7TN2rTnTiaTwcPDA+Hh4ZgxYwYuX75s1n4GDx6M1NRUnWUDBgxASUkJFApFM9aYyDUxiCIiq/H29sZrr72GP//8U+96IQTGjRuHZ555Bvfffz++/PJLHDlyBGvWrIG3tzdefvllk47zj3/8A5s3b8by5ctx7Ngx5Obm4uGHH4ZKpWrO5rSooUOHoqSkBL/++iuWLl2KVatWYe7cuU3er6enJ4KDg3UCWSKyULPeRIaI6P8lJSWJ4cOHi27duonp06dLyz/55BOh/ej58MMPBQDx6aef6t2HRqMx6VgKhUJkZ2cbXK/vPlta3377rRg4cKDw9vYWHTt2FE8//bS4ePGitP7dd98VMTExonXr1iIoKEgkJiaKsrIyab32nl+5ubkiKipKeHt7i7vuukuUlZWJHTt2iG7duok2bdqIxMREUV1dbVJ7kpKSxMiRI3WWPfTQQ6Jv377S8wsXLoixY8eK0NBQ4ePjI3r27ClycnJ09lG/zUVFRVJ9696L8uOPPxY9evQQnp6eolOnTmLx4sUm1ZPI1bEnioisxs3NDf/617+wfPlynDlzpsH6Dz/8EF27dsUDDzygd3tTe0uCg4OxY8cOVFVV6V2/efNmdOzYEQsWLEBJSQlKSkoAAKdOncLQoUMxatQoHDp0CBs2bMB3332HlJQUadtr165h4cKFOHjwILZs2YLi4mI8/vjjDY4xb948rFixAnv27MHvv/+O0aNHIzMzEzk5Odi+fTu+/PJLLF++3KT21Hf48GHs2bMHnp6e0rLLly8jJiYG27dvx+HDh5GcnIzHHnsMe/fuBQC8+eabiIuLw+TJk6U2h4WFNdh3YWEhRo8ejbFjx+Knn37CvHnzMGfOHGRnZ1tUVyKXYusojoicU93elNtuu0088cQTQgjdnqhu3bqJBx54QGe7adOmCV9fX+Hr6ys6dOhg0rH++9//io4dOwoPDw/Rr18/kZqaKr777judMp06dRJLly7VWTZp0iSRnJyss+zbb78Vcrlc/PXXX3qP9cMPPwgAoqqqSgjxd0/UV199JZXJyMgQAMSpU6ekZVOmTBFKpdKk9iQlJQk3Nzfh6+srvLy8BAAhl8vFxx9/bHS7YcOGieeee056PmjQIDFt2jSdMvV7osaNGyfuuecenTLTp08XPXr0MKmuRK6MPVFEZHWvvfYa1q1bh6NHjzZa9qWXXsKBAweQnp6OixcvmrT/O++8E7/++ivy8vLw8MMP4+eff8Ydd9yBhQsXGt3u4MGDyM7ORuvWraWHUqmERqNBUVERgNqemhEjRuDGG29EmzZtMGjQIADA6dOndfbVu3dv6d9BQUFo1aoVbrrpJp1l586dM6k9AHDXXXfhwIEDKCgoQFJSEiZOnIhRo0ZJ62tqarBw4UL06tULAQEBaN26Nb744osG9WrM0aNHcfvtt+ssu/3223HixAnU1NSYtS8iV8Mgiois7s4774RSqcTMmTN1lkdGRuL48eM6y9q1a4cuXbqgffv2Zh3Dw8MDd9xxB1544QV8+eWXWLBgARYuXIirV68a3ObixYuYMmUKDhw4ID0OHjyIEydOICIiAtXV1VAqlfDz88MHH3yAH374AZ988gkANNivh4eH9G/trLq6ZDIZNBqNye3x9fVFly5d0KdPH6xduxYFBQVYs2aNtP7111/Hm2++iRdeeAG7d+/GgQMHoFQqjbaXiJqXu60rQESu4dVXX0VUVBS6du0qLUtMTMS4cePw6aefYuTIkc16vB49euD69eu4fPkyPD094enp2aBnJTo6GkeOHEGXLl307uOnn36CSqXCq6++Ko0n+vHHH5u1nqaQy+WYNWsW0tLSMG7cOPj4+OD777/HyJEj8eijjwIANBoNfvnlF/To0UPaTl+b6+vevTu+//57nWXff/89br75Zri5uTV/Y4icCHuiiKhF9OrVC+PHj8eyZcukZWPHjsXDDz+MsWPHYsGCBSgoKEBxcTH++9//YsOGDSZ/iQ8ePBirVq1CYWEhiouLsWPHDsyaNQt33XUX/Pz8ANTmifrmm2/wxx9/4MKFCwCAF154AXv27EFKSgoOHDiAEydO4NNPP5UGlt94443w9PTE8uXL8euvv+Kzzz5r9BKhtTzyyCNwc3PDypUrAdT24u3cuRN79uzB0aNHMWXKFJSVlels07lzZ+mcXrhwQW9P2HPPPYe8vDwsXLgQv/zyC9atW4cVK1bg+eefb5F2ETkyBlFE1GIWLFig80Uuk8mwYcMGZGZmYseOHbj77rvRtWtXPPHEEwgLC8N3331n0n6VSiXWrVuHe++9F927d8fTTz8NpVKJjz76SOfYxcXFiIiIQLt27QDUjmP673//i19++QV33HEH+vbti/T0dISGhgKovbSYnZ2NjRs3okePHnj11VexePHiZjwjpnN3d0dKSgoWLVqE6upqzJ49G9HR0VAqlRg8eDCCg4ORkJCgs83zzz8PNzc39OjRA+3atdM7Xio6OhofffQR1q9fj549eyI9PR0LFizQOwORiHTJhBDC1pUgIiIicjTsiSIiIiKyAIMoIrJ7dVMQ1H98++23tq6eWU6fPm20PeamKCAi2+HlPCKye8ZuRNyhQwf4+Pi0YG2a5vr16yguLja4vnPnznB358RpIkfAIIqIiIjIArycR0RERGQBBlFEREREFmAQRURERGQBBlFEREREFmAQRURERGQBBlFEREREFmAQRURERGQBBlFEREREFvg/Yp8lj8QWI0kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAX3JJREFUeJzt3XlcVOXiBvBnBtlEHDbZURBwTUBESTM1w8CrqGk3tHJrsUwyo7LM3K4VamZkbmVuaaa3tK6al0qS372lpYFKbiSGCwmokMN2A2Te3x80RwZmgIFZgHm+n898nDnnPWfecyJ5fM+7yIQQAkREREQWRG7uChARERGZGgMQERERWRwGICIiIrI4DEBERERkcRiAiIiIyOIwABEREZHFYQAiIiIii8MARERERBaHAYiIiIgsDgMQEVELtXXrVshkMly6dMncVSFqcxiAiCzY8ePHER8fj969e8PBwQGdO3fGww8/jF9//bVO2WHDhkEmk0Emk0Eul6Njx47o3r07Jk+ejG+//Vav792/fz+GDh0Kd3d3tG/fHl27dsXDDz+M5ORkQ11aHW+99Ra+/PLLOtuPHDmCxYsX49atW0b77toWL14s3UuZTIb27dujV69eeP3111FUVGSQ79i5cyeSkpIMci6itogBiMiCLV++HHv27MH999+P9957DzNmzMB//vMfhIeH4/Tp03XK+/r6Yvv27fj444/x9ttvY8yYMThy5AgeeOABxMXFobKyssHvXLlyJcaMGQOZTIZ58+bh3XffxYQJE3DhwgXs2rXLGJcJoP4AtGTJEpMGILX169dj+/btWLVqFXr06IE333wTMTExMMQSjQxARPVrZ+4KEJH5JCQkYOfOnbCxsZG2xcXFoU+fPli2bBl27NihUV6hUOCxxx7T2LZs2TLMnj0b69atg7+/P5YvX67z+27fvo2lS5dixIgR+Oabb+rsv379ejOvqOUoKytD+/bt6y3z0EMPwc3NDQDwzDPPYMKECdi7dy9+/PFHDBw40BTVJLJYbAEismCDBg3SCD8AEBwcjN69e+PcuXONOoeVlRVWr16NXr16Yc2aNVAqlTrL3rx5E0VFRbjnnnu07nd3d9f4/Oeff2Lx4sXo1q0b7Ozs4OXlhfHjx+PixYtSmZUrV2LQoEFwdXWFvb09+vXrh88//1zjPDKZDKWlpdi2bZv02GnatGlYvHgxXn75ZQBAQECAtK9mn5sdO3agX79+sLe3h4uLCyZOnIirV69qnH/YsGG46667kJaWhiFDhqB9+/Z47bXXGnX/aho+fDgAIDs7u95y69atQ+/evWFrawtvb2/MmjVLowVr2LBh+Oqrr3D58mXpmvz9/fWuD1FbxhYgItIghEB+fj569+7d6GOsrKwwadIkLFiwAN9//z1GjRqltZy7uzvs7e2xf/9+PPfcc3BxcdF5zqqqKowePRopKSmYOHEinn/+eRQXF+Pbb7/F6dOnERgYCAB47733MGbMGDz66KOoqKjArl278Pe//x0HDhyQ6rF9+3Y8+eSTGDBgAGbMmAEACAwMhIODA3799Vd8+umnePfdd6XWmE6dOgEA3nzzTSxYsAAPP/wwnnzySdy4cQPvv/8+hgwZghMnTsDJyUmqb0FBAUaOHImJEyfiscceg4eHR6Pvn5o62Lm6uuoss3jxYixZsgRRUVGYOXMmMjMzsX79ehw/fhw//PADrK2tMX/+fCiVSuTk5ODdd98FAHTo0EHv+hC1aYKIqIbt27cLAGLTpk0a24cOHSp69+6t87gvvvhCABDvvfdevedfuHChACAcHBzEyJEjxZtvvinS0tLqlNu8ebMAIFatWlVnn0qlkt6XlZVp7KuoqBB33XWXGD58uMZ2BwcHMXXq1DrnevvttwUAkZ2drbH90qVLwsrKSrz55psa23/55RfRrl07je1Dhw4VAMSGDRt0XndNixYtEgBEZmamuHHjhsjOzhYffPCBsLW1FR4eHqK0tFQIIcSWLVs06nb9+nVhY2MjHnjgAVFVVSWdb82aNQKA2Lx5s7Rt1KhRokuXLo2qD5El4iMwIpKcP38es2bNwsCBAzF16lS9jlW3MBQXF9dbbsmSJdi5cyf69u2Lr7/+GvPnz0e/fv0QHh6u8dhtz549cHNzw3PPPVfnHDKZTHpvb28vvf/jjz+gVCpx7733Ij09Xa/617Z3716oVCo8/PDDuHnzpvTy9PREcHAwDh8+rFHe1tYW06dP1+s7unfvjk6dOiEgIABPP/00goKC8NVXX+nsO3To0CFUVFRgzpw5kMvv/PX91FNPoWPHjvjqq6/0v1AiC8VHYEQEAMjLy8OoUaOgUCjw+eefw8rKSq/jS0pKAACOjo4Nlp00aRImTZqEoqIi/PTTT9i6dSt27tyJ2NhYnD59GnZ2drh48SK6d++Odu3q/2vqwIEDeOONN3Dy5EmUl5dL22uGpKa4cOEChBAIDg7Wut/a2lrjs4+PT53+VA3Zs2cPOnbsCGtra/j6+kqP9XS5fPkygOrgVJONjQ26du0q7SeihjEAERGUSiVGjhyJW7du4b///S+8vb31Pod62HxQUFCjj+nYsSNGjBiBESNGwNraGtu2bcNPP/2EoUOHNur4//73vxgzZgyGDBmCdevWwcvLC9bW1tiyZQt27typ9zXUpFKpIJPJ8O9//1trGKzdp6ZmS1RjDRkyROp3RESmxQBEZOH+/PNPxMbG4tdff8WhQ4fQq1cvvc9RVVWFnTt3on379hg8eHCT6hEREYFt27YhNzcXQHUn5Z9++gmVlZV1WlvU9uzZAzs7O3z99dewtbWVtm/ZsqVOWV0tQrq2BwYGQgiBgIAAdOvWTd/LMYouXboAADIzM9G1a1dpe0VFBbKzsxEVFSVta24LGFFbxz5ARBasqqoKcXFxOHr0KD777LMmzT1TVVWF2bNn49y5c5g9ezY6duyos2xZWRmOHj2qdd+///1vAHce70yYMAE3b97EmjVr6pQVf00UaGVlBZlMhqqqKmnfpUuXtE546ODgoHWyQwcHBwCos2/8+PGwsrLCkiVL6kxMKIRAQUGB9os0oqioKNjY2GD16tUaddq0aROUSqXG6DsHB4d6pyQgsnRsASKyYC+++CL27duH2NhYFBYW1pn4sPakh0qlUipTVlaGrKws7N27FxcvXsTEiROxdOnSer+vrKwMgwYNwt13342YmBj4+fnh1q1b+PLLL/Hf//4X48aNQ9++fQEAU6ZMwccff4yEhAQcO3YM9957L0pLS3Ho0CE8++yzGDt2LEaNGoVVq1YhJiYGjzzyCK5fv461a9ciKCgIGRkZGt/dr18/HDp0CKtWrYK3tzcCAgIQGRmJfv36AQDmz5+PiRMnwtraGrGxsQgMDMQbb7yBefPm4dKlSxg3bhwcHR2RnZ2NL774AjNmzMBLL73UrPuvr06dOmHevHlYsmQJYmJiMGbMGGRmZmLdunXo37+/xn+vfv36Yffu3UhISED//v3RoUMHxMbGmrS+RC2aOYegEZF5qYdv63rVV7ZDhw4iODhYPPbYY+Kbb75p1PdVVlaKjRs3inHjxokuXboIW1tb0b59e9G3b1/x9ttvi/Lyco3yZWVlYv78+SIgIEBYW1sLT09P8dBDD4mLFy9KZTZt2iSCg4OFra2t6NGjh9iyZYs0zLym8+fPiyFDhgh7e3sBQGNI/NKlS4WPj4+Qy+V1hsTv2bNHDB48WDg4OAgHBwfRo0cPMWvWLJGZmalxb+qbIqA2df1u3LhRb7naw+DV1qxZI3r06CGsra2Fh4eHmDlzpvjjjz80ypSUlIhHHnlEODk5CQAcEk9Ui0wIAyw6Q0RERNSKsA8QERERWRwGICIiIrI4DEBERERkcRiAiIiIyOIwABEREZHFYQAiIiIii8OJELVQqVS4du0aHB0dOZ08ERFRKyGEQHFxMby9vSGX19/GwwCkxbVr1+Dn52fuahAREVETXL16Fb6+vvWWYQDSwtHREUD1DaxvXSMiIiJqOYqKiuDn5yf9Hq8PA5AW6sdeHTt2ZAAiIiJqZRrTfYWdoImIiMjiMAARERGRxWEAIiIiIovDPkDNUFVVhcrKSnNXo82ytraGlZWVuatBRERtEANQEwghkJeXh1u3bpm7Km2ek5MTPD09OR8TEREZFANQE6jDj7u7O9q3b89fzkYghEBZWRmuX78OAPDy8jJzjYiIqC1hANJTVVWVFH5cXV3NXZ02zd7eHgBw/fp1uLu783EYEREZDDtB60nd56d9+/ZmrollUN9n9rUiIiJDYgBqIj72Mg3eZyIiMgY+AiMiIiKjKigoQEVFhc79NjY2Ju9WwgBERERERlNQUIA1a9Y0WC4+Pt6kIYiPwCzItGnTIJPJIJPJYG1tDQ8PD4wYMQKbN2+GSqVq9Hm2bt0KJycn41WUiIjajPpafppSzlDYAmRi5m4GjImJwZYtW1BVVYX8/HwkJyfj+eefx+eff459+/ahXTv+SBARUdvH33Ym1BKaAW1tbeHp6QkA8PHxQXh4OO6++27cf//92Lp1K5588kmsWrUKW7ZswW+//QYXFxfExsZixYoV6NChA1JTUzF9+nQAdzooL1q0CIsXL8b27dvx3nvvITMzEw4ODhg+fDiSkpLg7u5ulGshIiJqqhbxCGzt2rXw9/eHnZ0dIiMjcezYMZ1l9+7di4iICDg5OcHBwQFhYWHYvn27Rpmaj3rUr5iYGGNfRoNaajPg8OHDERoair179wIA5HI5Vq9ejTNnzmDbtm347rvvMHfuXADAoEGDkJSUhI4dOyI3Nxe5ubl46aWXAFQPVV+6dClOnTqFL7/8EpcuXcK0adNMei1ERESNYfYWoN27dyMhIQEbNmxAZGQkkpKSEB0djczMTK0tBy4uLpg/fz569OgBGxsbHDhwANOnT4e7uzuio6OlcupHPWq2trYmuZ7WqkePHsjIyAAAzJkzR9ru7++PN954A8888wzWrVsHGxsbKBQKyGQyqSVJ7fHHH5fed+3aFatXr0b//v1RUlKCDh06mOQ6iIiIGsPsLUCrVq3CU089henTp6NXr17YsGED2rdvj82bN2stP2zYMDz44IPo2bMnAgMD8fzzzyMkJATff/+9Rjn1ox71y9nZ2RSX02oJIaRHWocOHcL9998PHx8fODo6YvLkySgoKEBZWVm950hLS0NsbCw6d+4MR0dHDB06FABw5coVo9efiIhaJqVSadByhmLWAFRRUYG0tDRERUVJ2+RyOaKionD06NEGjxdCICUlBZmZmRgyZIjGvtTUVLi7u6N79+6YOXMmCgoKdJ6nvLwcRUVFGi9Lc+7cOQQEBODSpUsYPXo0QkJCsGfPHqSlpWHt2rUA6n80V1paiujoaHTs2BGffPIJjh8/ji+++KLB44iIqG1r7Ez+pp7x36yPwG7evImqqip4eHhobPfw8MD58+d1HqdUKuHj44Py8nJYWVlh3bp1GDFihLQ/JiYG48ePR0BAAC5evIjXXnsNI0eOxNGjR7WuJ5WYmIglS5YY7sJame+++w6//PILXnjhBaSlpUGlUuGdd96BXF6dj//5z39qlLexsUFVVZXGtvPnz6OgoADLli2Dn58fAODnn382zQUQEVGL1djRxaYehWz2PkBN4ejoiJMnT6KkpAQpKSlISEhA165dMWzYMADAxIkTpbJ9+vRBSEgIAgMDkZqaivvvv7/O+ebNm4eEhATpc1FRkfRLvK0pLy9HXl6exjD4xMREjB49GlOmTMHp06dRWVmJ999/H7Gxsfjhhx+wYcMGjXP4+/tL9z40NBTt27dH586dYWNjg/fffx/PPPMMTp8+jaVLl5rpKomIqKVo7Lxxpp5fzqyPwNzc3GBlZYX8/HyN7fn5+XU62NYkl8sRFBSEsLAwvPjii3jooYeQmJios3zXrl3h5uaGrKwsrfttbW3RsWNHjVdblZycDC8vL/j7+yMmJgaHDx/G6tWr8a9//QtWVlYIDQ3FqlWrsHz5ctx111345JNP6tzbQYMG4ZlnnkFcXBw6deqEFStWoFOnTti6dSs+++wz9OrVC8uWLcPKlSvNdJVERET1M2sLkI2NDfr164eUlBSMGzcOAKBSqZCSkoL4+PhGn0elUqG8vFzn/pycHBQUFMDLy6u5VW4WGxsbg5bT19atW7F169YGy73wwgt44YUXNLZNnjxZ4/P69euxfv16jW2TJk3CpEmTNLYJIZpWWSIiIiMy+yOwhIQETJ06FRERERgwYACSkpJQWloqTbY3ZcoU+Pj4SK0QiYmJiIiIQGBgIMrLy3Hw4EFs375d+mVcUlKCJUuWYMKECfD09MTFixcxd+5cBAUFaQyTNwdXV1fEx8e3uAXhiIiITEWpdERhoStcXAqgUBSbrR5mD0BxcXG4ceMGFi5ciLy8PISFhSE5OVnqGH3lyhWpMy5QPdro2WefRU5ODuzt7dGjRw/s2LEDcXFxAAArKytkZGRg27ZtuHXrFry9vfHAAw9g6dKlLWIuIIYbIiJqq7Qt93Tz5k3pfXp6X+zfPxpCyCGTqRAbewDh4SdMXU0AgEzwGUUdRUVFUCgUUCqVdfoD/fnnn8jOzkZAQADs7OzMVEPLwftNRNQ6NLTck1LpiKSkORDiTqOGTKbCnDlJUCiKDbIMVH2/v2szewsQERERtX43btyod39hoatG+AEAIeS4556pGDbM9E9IGICIiIio2RqayNDFpQAymUojBFlZAZGRrjBH7xCzL4VBREREbZ9CUYyQkAwAd3rePPYY4OtrnvowABEREZHRKZWOyMgIASCTtu3YAeTkmKc+DEBERERkdNr6AFVVATrmKDY6BiAiIiIyOnUfoJqsrICgIPPUhwGIDCY1NRUymQy3bt1q9DH+/v5ISkoyWp2IiKhlUCiKERt7AHJ5dR8gKyvggw/YB4hMYNq0aZDJZHjmmWfq7Js1axZkMhmmTZtm+ooREVGrV3s195wcLxw5cjdycu4sQxUefgKHDmXh8GHg0iXgiSdMXMkaOAzewvj5+WHXrl149913YW9vD6B6ssGdO3eic+fOZq4dERG1Vu7u7tL7L74Yi1OnQlHd4VkgNPQUHnzwXwCAkBAXswx7r40tQBYmPDwcfn5+2Lt3r7Rt79696Ny5M/r27SttKy8vx+zZs+Hu7g47OzsMHjwYx48f1zjXwYMH0a1bN9jb2+O+++7DpUuX6nzf999/j3vvvRf29vbw8/PD7NmzUVpaarTrIyIi88rJ8aoRfgBAhlOnQjVagloCBiAzyskBDh82/RDAxx9/HFu2bJE+b968WVp8Vm3u3LnYs2cPtm3bhvT0dGkx2cLCQgDA1atXMX78eMTGxuLkyZN48skn8eqrr2qc4+LFi4iJicGECROQkZGB3bt34/vvv0d8fLzxL5KIiExKvQbYlStdUHOoezUZrl7trFHO3BiAzGTTJqBLF2D48Oo/N20y3Xc/9thj+P7773H58mVcvnwZP/zwAx577DFpf2lpKdavX4+3334bI0eORK9evbBx40bY29tj018VXb9+PQIDA/HOO++ge/fuePTRR+v0H0pMTMSjjz6KOXPmIDg4GIMGDcLq1avx8ccf488//zTdBRMRkcl07nwZNSc7rCbg53fFHNXRiX2AzCAnB5gxA1D9NRpQpQKefhqIjjZNb/hOnTph1KhR2Lp1K4QQGDVqFNzc3KT9Fy9eRGVlJe655x5pm7W1NQYMGIBz584BAM6dO4fIyEiN8w4cOFDj86lTp5CRkYFPPvlE2iaEgEqlQnZ2Nnr27GmMyyMiIjPy9c1FaOipOn2AfH1zzV01DQxAZnDhwp3wo6aeDMpUwwEff/xx6VHU2rVrjfIdJSUlePrppzF79uw6+9jhmoio7XrwwX+hf/9juHq1M/z8rrS48AMwAJlFcDAgl2uGIFNPBhUTE4OKigrIZDJER0dr7AsMDISNjQ1++OEHdOnSBUD1InfHjx/HnDlzAAA9e/bEvn37NI778ccfNT6Hh4fj7NmzCDLXLFdERGQ2vr65LTL4qLEPkBn4+gIfflgdegDzTAZlZWWFc+fO4ezZs7BSV+QvDg4OmDlzJl5++WUkJyfj7NmzeOqpp1BWVoYn/pq04ZlnnsGFCxfw8ssvIzMzEzt37sTWrVs1zvPKK6/gyJEjiI+Px8mTJ3HhwgX861//YidoIiIyO7YAmckTT1T3+cnKqm75McdMmB07dtS5b9myZVCpVJg8eTKKi4sRERGBr7/+Gs7OzgCqH2Ht2bMHL7zwAt5//30MGDAAb731Fh5//HHpHCEhIfi///s/zJ8/H/feey+EEAgMDERcXJzRr42IiKg+MiFE7a7aFq+oqAgKhQJKpbJOSPjzzz+RnZ2NgIAA2NnZmamGloP3m4iodSgoKMCaNWsaLBcfHw9XI82EWN/v79rYAkRERETN5urqivj4+Hrn+bGxsTFa+NEXAxAREREZREsJN43BTtBERERkcRiAiIiIyODMtdxTYzEANRH7jpsG7zMRUetjzuWeGosBSE/W1tYAgLKyMjPXxDKo77P6vhMRUcuma7mnltYSxE7QerKysoKTkxOuX78OAGjfvj1kstqr3lJzCSFQVlaG69evw8nJqc5kjURE1DK1hOWeGoMBqAk8PT0BQApBZDxOTk7S/SYiopavJSz31BgMQE0gk8ng5eUFd3d3VFZWmrs6bZa1tTVbfoiIzKCgoKDJ8/mol3t6+unqlh9zLPfUGAxAzWBlZcVf0ERE1KYYYkbnlrDcU0MYgIiIiEhSX8uPPuV8fVtm8FHjKDAiIiLSSal0RHa2P5RKR3NXxaDYAkRERERapaf3xf79oyGEHDKZCrGxBxAefsLc1TIItgARERFRHUqloxR+AEAIOfbvH91mWoIYgIiIiKiOwkJXKfyoCSFHYaGLmWpkWAxAREREVIeLSwFkMs0ZDWUyFVxcCs1UI8NiACIiIqI6FIpixMYekEKQug+QQlFs5poZBjtBExERkcTGxkZ6Hx5+AoGBWSgsdIGLS6FG+KlZrjViACIiIiKJq6sr4uPjmzwTdGvBAERERGShmrPkRWvHAERERGSBDLHkRWvWIjpBr127Fv7+/rCzs0NkZCSOHTums+zevXsREREBJycnODg4ICwsDNu3b9coI4TAwoUL4eXlBXt7e0RFReHChQvGvgwiIqJWo3bLj64Znxu7NEZrY/YWoN27dyMhIQEbNmxAZGQkkpKSEB0djczMTLi7u9cp7+Ligvnz56NHjx6wsbHBgQMHMH36dLi7uyM6OhoAsGLFCqxevRrbtm1DQEAAFixYgOjoaJw9exZ2dnamvkQiIqIWrS3P+KyL2VuAVq1ahaeeegrTp09Hr169sGHDBrRv3x6bN2/WWn7YsGF48MEH0bNnTwQGBuL5559HSEgIvv/+ewDVrT9JSUl4/fXXMXbsWISEhODjjz/GtWvX8OWXX5rwyoiIiFquW7duAWh4xmd1ubbGrAGooqICaWlpiIqKkrbJ5XJERUXh6NGjDR4vhEBKSgoyMzMxZMgQAEB2djby8vI0zqlQKBAZGanznOXl5SgqKtJ4ERERtWW3b98G0PCMz+pybY1ZH4HdvHkTVVVV8PDw0Nju4eGB8+fP6zxOqVTCx8cH5eXlsLKywrp16zBixAgAQF5ennSO2udU76stMTERS5Ysac6lEBERtUi6Rnr98ccfAO7M+FwzBLWlGZ91MXsfoKZwdHTEyZMnUVJSgpSUFCQkJKBr164YNmxYk843b948JCQkSJ+Liorg5+dnoNoSERGZR2NGeikUxQgJycCpU6EAZAAEQkIy2syMz7qYNQC5ubnBysoK+fn5Gtvz8/Ph6emp8zi5XI6goCAAQFhYGM6dO4fExEQMGzZMOi4/Px9eXl4a5wwLC9N6PltbW9ja2jbzaoiIiFoWbSO9Cgtd4eJSIAUcpdIRGRkhqA4/ACBDRkYIhg//rk2HILP2AbKxsUG/fv2QkpIibVOpVEhJScHAgQMbfR6VSoXy8nIAQEBAADw9PTXOWVRUhJ9++kmvcxIREbUl6el9kZQ0B9u2TUVS0hykp/cF0HAfIGtra5PX1RTM/ggsISEBU6dORUREBAYMGICkpCSUlpZi+vTpAIApU6bAx8cHiYmJAKr760RERCAwMBDl5eU4ePAgtm/fjvXr1wMAZDIZ5syZgzfeeAPBwcHSMHhvb2+MGzfOXJdJRERkcg2N9AoMzGqwD5BCoTB5vU3B7AEoLi4ON27cwMKFC5GXl4ewsDAkJydLnZivXLkCufzOf5TS0lI8++yzyMnJgb29PXr06IEdO3YgLi5OKjN37lyUlpZixowZuHXrFgYPHozk5GTOAURERBalMSO9AgIuIzb2QJ15gNry4y8AkAkhhLkr0dIUFRVBoVBAqVSiY8eO5q4OERFRk/zyyy/Yu3cvcnK88NFHT+FOPx8AEHjyyY3w9c0FoO4fVHfV99a0FIY+v7/N3gJERERExlVZaQvN8AMAMlRW2gAA7rvvPgQHB9c5jouhEhERUavVUD8fZ2dnjZHTlsDsS2EQERGRcahHcCkUxYiNPQCZTAUAdfr5tNWRXvVhCxAREVEbVXMEV3j4CQQGZmnt59NWR3rVhwGIiIjIQigUxW1+dFdj8REYERFRG2VjY2PQcm0JW4CIiIjaKFdXV8THx2tdDFWtLY/0qg8DEBERURtmieGmMfgIjIiIiCwOAxARERFZHAYgIiIisjgMQERERGRxGICIiIjI4jAAERERkcVhACIiIiKLwwBEREREFocBiIiIiCwOAxARERFZHAYgIiIisjgMQERERGRxGICIiIjI4jAAERERkcVhACIiImqhcnKAw4er/yTDYgAiIiJqQQoKCpCbm4t33rmFLl0Ehg8HunQReOedW8jNzUVBQYG5q9gmtDN3BYiIiKhaQUEB1qxZA6XSEUlJcyCEDACgUsnw8ssd8fvvm6FQFCM+Ph6urq5mrm3rxhYgIiKiFqKiogIAUFjoCiE0f0ULIUdhoYtGOWo6BiAiIqIWxsWlAICq1lYVXFwKzVGdNokBiIiIqEWSaX6S6ShGTcIARERE1EIolUoA1Y/Aagegmo/A1OWo6RiAiIiIWojKykoA1Y/AZDLNR2Ay2Z1HYOpy1HQMQERERC2MQlGM2NgDUgiSyVSIjT0AhaLYzDVrOzgMnoiIyIxycoALF4DgYM3t4eEnEBiYhcJCF7i4FDL8GBgDEBERkZls2gTMmAGoVIBcDixZojm3j0JRrDX4tGvHX9/NxUdgREREJlZQUIC0tHzMmCGg+qurj0oFLFrkBaXSscHjnZycjFtBC8AISUREZELq2Z6zs/2hUk3V2KdSyVBY6MLHXSbAFiAiIiITunHjBgDA2rocgKi1V8DamrM8mwIDEBERkQmph7BXVtqi9lw/gAyVlTYNnsPGpuEyVD8+AiMiIjID9Vw/Ndf8qjnXz3333Yfg2kPDUB1+uBBq8zEAERERmYF6rp/9+0dDCHmduX6cnZ3h5eVl5lq2XS3iEdjatWvh7+8POzs7REZG4tixYzrLbty4Effeey+cnZ3h7OyMqKioOuWnTZsGmUym8YqJiTH2ZRAREWmVkwMcPlz9Z03h4ScwZ04Spk7dijlzkhAefsI8FbRAZg9Au3fvRkJCAhYtWoT09HSEhoYiOjoa169f11o+NTUVkyZNwuHDh3H06FH4+fnhgQcewO+//65RLiYmBrm5udLr008/NcXlEBERAage7ZWbm4t33rmFLl0Ehg8HunQR2LHDVqOcQlGMgIDLHPllYjIhRO0u6CYVGRmJ/v37Y82aNQAAlUoFPz8/PPfcc3j11VcbPL6qqgrOzs5Ys2YNpkyZAqC6BejWrVv48ssvm1SnoqIiKBQKKJVKdOzYsUnnICIiy6Ue6q5UOuLdd19Azc7OMpkKc+YkNRh4xo8fjz59+hi5pm2LPr+/zdoCVFFRgbS0NERFRUnb5HI5oqKicPTo0Uado6ysDJWVlXBxcdHYnpqaCnd3d3Tv3h0zZ85EQUGBznOUl5ejqKhI40VERNRU6qcYV6/6Qduq7lev+jZ4Ds72bFxmDUA3b95EVVUVPDw8NLZ7eHggLy+vUed45ZVX4O3trRGiYmJi8PHHHyMlJQXLly/H//3f/2HkyJGoqqrSeo7ExEQoFArp5efn1/SLIiIii3f79u1mn8Pd3d0ANSFdWnW8XLZsGXbt2oXU1FTY2dlJ2ydOnCi979OnD0JCQhAYGIjU1FTcf//9dc4zb948JCQkSJ+LiooYgoiIqMmKi6sfbzk5/YHqyQ5rtgIJODndAgDcfffdCAkJqXM8h7obn1kDkJubG6ysrJCfn6+xPT8/H56envUeu3LlSixbtgyHDh3S+sNTU9euXeHm5oasrCytAcjW1ha2trZajiQiItKfugWoockO7e3tOdTdTMz6CMzGxgb9+vVDSkqKtE2lUiElJQUDBw7UedyKFSuwdOlSJCcnIyIiosHvycnJQUFBAX/IiIjIpNSTHdZUc7JDMh+zD4NPSEjAxo0bsW3bNpw7dw4zZ85EaWkppk+fDgCYMmUK5s2bJ5Vfvnw5FixYgM2bN8Pf3x95eXnIy8tDSUkJAKCkpAQvv/wyfvzxR1y6dAkpKSkYO3YsgoKCEB0dbZZrJCIiy6Se7FAdgmpPdkjmY/Y+QHFxcbhx4wYWLlyIvLw8hIWFITk5WeoYfeXKFcjld3La+vXrUVFRgYceekjjPIsWLcLixYthZWWFjIwMbNu2Dbdu3YK3tzceeOABLF26lI+5iIjI5MLDTyAwMAuFhS5wcSlk+GkhzB6AACA+Ph7x8fFa96Wmpmp8vnTpUr3nsre3x9dff22gmhEREemvvLxcy9bafYF0lSNTaBEBiIiIqC1xcHCQ3qen962z3pd6yYua5ci0zN4HiIiIqK1xdHQEACiVjlL4AaonQdy/fzSUSkeNcmR6DEBEREQGZm1tDQAoLHSVwo+aEHIUFrpolCPTYwAiIiIyMIVCAaDhYfDqcmR6DEBERERGwmHwLRc7QRMRERkRh8G3TAxARERERqZQFDP4tDB8BEZERKSHnBzg8OHqP3WxsbFp1LkaW44Mjy1AREREjbRpEzBjBqBSAXI58OGHwBNP1C3n6uqK+Ph4VFRU6DwXV3w3LwYgIiKiBhQUFODSpduYMcMdKlX1jM4qFfD00wJhYdfh79+uTphhuGnZGICIiIjqUVBQgDVr1iA72x8q1VSNfVVVMrz//r8REHAZ8fHxDD2tCPsAERER1UP9GKuhOX3qe9xFLQ8DEBERUSNwTp+2hY/AiIiIGolz+rQdDEBERER64Jw+bQMfgREREZHFYQAiIiIii8MARERERBaHAYiIiKgeXNaibWInaCIionpwWYu2iQGIiIioAQw3bQ8fgREREZHFYQsQERERqtf84mMuy8EAREREFiknB7hwAQgOBuztqxc8VVMqHVFY6AoXlwKNSQ+54GnbwQBEREQWQ93Ks3OnPebOVUClkkEuF1i48H9SmfT0vti/fzSEkEvrfYWHnwDABU/bEvYBIiIii1BQUN3K8/bbn+LllztCpZIBAFQqGZYs8YZS6Qil0lEKPwAghBz794+GUulozqqTEbAFiIiILIK69aaw0FUKOGpCyFFY6AJApnMf1/9qWxiAiIjIori4FEAmU2kEHZlMBReXQum9rn3UdvARGBERWRSFohixsQcgk6kAQOrno17lXdc+alvYAkRERG2OtiHtN2/elN6Hh5+Au3serlzpjM6dr8DXN1djX2BgFgoLXeDiUsjw00YxABERUZui7uyspjmkvXpbfSO9AEitQdR2MQAREVGbUrPlR1vQCQzM0jrSKzAwq8HQwwVP2w4GICIiapN0DWmfMGFPvSO97rvvPgQHB9c5H2eCblsYgIiIqE3SNdwdEPWO9OrUqRO8vLxMWVUyA44CIyKiNkk93L0mmUwFP7+cekd6OTk5mbqqZAZsASIiojZJPaS9dh8ghaKYI72IAYiIiNqu+oIOR3pZNj4CIyKiNkWpVGrZKjN5PahlaxEBaO3atfD394ednR0iIyNx7NgxnWU3btyIe++9F87OznB2dkZUVFSd8kIILFy4EF5eXrC3t0dUVBQuXLhg7MsgIqIWQAghvU9P74ukpDnYtm0qkpLmID29b4PHc6i7ZTD7I7Ddu3cjISEBGzZsQGRkJJKSkhAdHY3MzEy4u7vXKZ+amopJkyZh0KBBsLOzw/Lly/HAAw/gzJkz8PHxAQCsWLECq1evxrZt2xAQEIAFCxYgOjoaZ8+ehZ2dnakvkYiITEjdiVnXMHj1fD/jx4+Hm5ubxrEc6m45zN4CtGrVKjz11FOYPn06evXqhQ0bNqB9+/bYvHmz1vKffPIJnn32WYSFhaFHjx746KOPoFKpkJKSAqA6+SclJeH111/H2LFjERISgo8//hjXrl3Dl19+acIrIyIic6p/1XfAzc0NXl5eGi+GH8th1gBUUVGBtLQ0REVFSdvkcjmioqJw9OjRRp2jrKwMlZWVcHGp/oHOzs5GXl6exjkVCgUiIyN1nrO8vBxFRUUaLyIiat10DYPnyu4EmDkA3bx5E1VVVfDw8NDY7uHhgby8vEad45VXXoG3t7cUeNTH6XPOxMREKBQK6eXn56fvpRARUQvDld2pPmbvA9Qcy5Ytw65du5Camtqsvj3z5s1DQkKC9LmoqIghiIioDeB8P6SLWQOQm5sbrKyskJ+fr7E9Pz8fnp6e9R67cuVKLFu2DIcOHUJISIi0XX1cfn6+xlTm+fn5CAsL03ouW1tb2NraNvEqiIioJeN8P6SNQR6BZWdn4/bt23ofZ2Njg379+kkdmAFIHZoHDhyo87gVK1Zg6dKlSE5ORkREhMa+gIAAeHp6apyzqKgIP/30U73nJCKitqGxw9g53N2yGaQFqHv37jh16hR69uyp97EJCQmYOnUqIiIiMGDAACQlJaG0tBTTp08HAEyZMgU+Pj5ITEwEACxfvhwLFy7Ezp074e/vL/Xr6dChAzp06ACZTIY5c+bgjTfeQHBwsDQM3tvbG+PGjTPE5RIRUQvm6uqK+Ph4VFRU6CzD4e6kVwAaP3681u1VVVWYPXs2HB0dAQB79+5t9Dnj4uJw48YNLFy4EHl5eQgLC0NycrLUifnKlSuQy+80VK1fvx4VFRV46KGHNM6zaNEiLF68GAAwd+5clJaWYsaMGbh16xYGDx6M5ORkzgFERGQhGG6oITJRc8rMBsjlcgwZMgQBAQEa2z/++GOMGTNGmnxqy5YtBq2kqRUVFUGhUECpVKJjx47mrg4RERE1gj6/v/UKQLt27cLLL7+Mf/zjH9IjKgCwtrbGqVOn0KtXr6bXugVhACIiImp99Pn9rdcjsIkTJ+Luu+/GY489hgMHDuCjjz6Cs7NzsypLRESWraCggP11yOT07gTt7++P//znP1iyZAlCQ0OxceNGyGRcZZeIiPRXUFCANWvWSJ+VSkcUFrrCxaVAY+h6fHw8QxAZVJNGgcnlcixZsgQjRozAlClTUFVVZeh6ERGRBbh+/br0Pj29r7R4qXrW5vDwE1I5BiAypGbNAzR48GBkZGQgPT0dgYGBhqoTERFZCPUcckqlI/bti62zcrtS6ahRjshQmj0RYocOHRAaGsqZlImISG/FxdWPua5e9QOg2Z1CCDmuXvXVKEdkKHo9Auvbt2+j+vukp6c3uUJERGQ51C07ZWX2Wvert7MFiAxNrwBUcyZlIQQSExPxzDPPwMXFxdD1IiIiC9K+/f/02k7UXHoFoEWLFml8fuedd/D888+ja9euBq0UERFZFj+/qwAEaj4Gk8lU8PPLMVudqG0zyGKoREREzaFQFGPMmP2QyVQAII0C4yruZCwGWQyViIioKaytraX34eEnEBiYhcJCF7i4FGqEn5rliAyBAYiIiMxGvYakmkJRrLXVp3Y5oubSKwCtXr1a4/Pt27exdetWuLm5aWyfPXt282tGRERtXmODDQMQGZpeAejdd9/V+Ozp6Ynt27drbJPJZAxARETUKDY2NgYtR9RYeq0Gbym4GjwRkelwMVQyFH1+f+s1Cuy7775Dr169UFRUVGefUqlE79698d///le/2hIRkUVzdXWFl5eXzhfDDxmDXgEoKSkJTz31lNZUpVAo8PTTT2PVqlUGqxwRERGRMegVgE6dOoWYmBid+x944AGkpaU1u1JERERExqRXAMrPz693LoZ27drhxo0bza4UERERkTHpNQrMx8cHp0+fRlBQkNb9GRkZ8PLyMkjFiIio9WGHZmot9ApAf/vb37BgwQLExMTAzs5OY9///vc/LFq0CKNHjzZoBYmIqHUoKCjAmjVrpM9KpSMKC13h4lKgMblhfHw8QxCZnV4B6PXXX8fevXvRrVs3xMfHo3v37gCA8+fPY+3ataiqqsL8+fONUlEiImrZarb8pKf3xf79oyGEXFrXKzz8RJ1yROaiVwDy8PDAkSNHMHPmTMybNw/qKYRkMhmio6Oxdu1aeHh4GKWiRETUMtR8zHXtmhzZ2e0QEHAbNjY3AVS3/KjDDwAIIcf+/aMRGJjFxU2pxdB7LbAuXbrg4MGD+OOPP5CVlQUhBIKDg+Hs7GyM+hERUQtS8zFX3VaenxAeDhQWukrhR00IOQoLXRiAqMVo8mKozs7O6N+/vyHrQkRELZy65ae+Vh4XlwLIZCqNECSTqeDiUmiWOhNpo9cweCIiIqDhVp7Y2AOQyVQAIPUBYusPtSRNbgEiIiLLo1QqAaDBVp7w8BMIDMxCYaELXFwKGX6oxWELEBERNVplZSUAQKEoRkhIBgD1etoCISEZGkFHoShGQMBlhh9qkRiAiIhIb0qlIzIyQgDI/toiQ0ZGCJRKxwaPtbGxMWrdiBqDj8CIiEhvDfUBuu+++xAcHFznOM4ETS0FAxAREemtoT5Azs7OXBqJWjQ+AiMiokZr1676380NjfRSlyNqqfgTSkREjebk5CS9r2+kV81yRC0RAxARETWZQlHMUV7UKjEAERFZsJrremlTu9NyY0dwcaQXtXQMQEREFqrmul5A9dD2wkJXuLgUaLTqxMfHSyHI1dUV8fHxeoUmopaIAYiIyELVDDF1FzY9gPDwE3XKAWC4oTaBo8CIiCycroVNGzOpIVFrxQBERGTh6pvUkKitMnsAWrt2Lfz9/WFnZ4fIyEgcO3ZMZ9kzZ85gwoQJ8Pf3h0wmQ1JSUp0yixcvhkwm03j16NHDiFdARNS6qSc1rKnmpIZEbZFZA9Du3buRkJCARYsWIT09HaGhoYiOjsb169e1li8rK0PXrl2xbNkyeHp66jxv7969kZubK72+//57Y10CEVGr19CkhkRtkVk7Qa9atQpPPfUUpk+fDgDYsGEDvvrqK2zevBmvvvpqnfL9+/dH//79AUDrfrV27drVG5CIiEhTfZMaErVFZgtAFRUVSEtLw7x586RtcrkcUVFROHr0aLPOfeHCBXh7e8POzg4DBw5EYmIiOnfurLN8eXk5ysvLpc9FRUXN+n4iIlOrbz4fpVIJIUSd2Zlv3ryp8ZmTGpIlMVsAunnzJqqqquDh4aGx3cPDA+fPn2/yeSMjI7F161Z0794dubm5WLJkCe69916cPn0ajo7aRzQkJiZiyZIlTf5OIiJzqj2fj6FxUkNqi9rcPEAjR46U3oeEhCAyMhJdunTBP//5TzzxxBNaj5k3bx4SEhKkz0VFRfDz8zN6XYmIDKF2y4+uCQ3rM378eLi5udXZzkkNqa0yWwByc3ODlZUV8vPzNbbn5+cbtP+Ok5MTunXrhqysLJ1lbG1tYWtra7DvJCIyl/omNAR0hyM3Nzd4eXmZo8pEZmG2UWA2Njbo168fUlJSpG0qlQopKSkYOHCgwb6npKQEFy9e5P/YRNRmKZXKv/6sf0LD9PS+SEqag23bpiIpaQ7S0/uarc5E5mbWR2AJCQmYOnUqIiIiMGDAACQlJaG0tFQaFTZlyhT4+PggMTERQHUz79mzZ6X3v//+O06ePIkOHTogKCgIAPDSSy8hNjYWXbp0wbVr17Bo0SJYWVlh0qRJ5rlIIiID0tbZWT11SEMTGmoLR4GBWez4TBbJrAEoLi4ON27cwMKFC5GXl4ewsDAkJydLHaOvXLkCufzO/8zXrl1D3753/sWycuVKrFy5EkOHDkVqaioAICcnB5MmTUJBQQE6deqEwYMH48cff0SnTp1Mem1ERIbWUGdna+tyAAKArMZWAWvrinrDEQMQWSKzd4KOj49HfHy81n3qUKPm7+8PIUS959u1a5ehqkZE1KI01Nm5stIWmuEHAGSorLSRZnuuGYI42zNZMrMHICIi0p+2zs6BgVk6Q456tufax7D1hywVAxARUSujq7PznDlJCAnJwKlToahuCRIICcmQQk59sz1zrh+yNAxAREStjK7+PFev+iIjIwR3HoPJkJERguHDv4NCUYz77rsPwcHBdc7HuX7IEjEAERG1Mrr68wCyejs6Ozs7c0oQor8wABERtTC61vVSr92lqz+Pn9/Vejs6W1tbm+YCiFoBBiAiohak9lB3XTM36+rPU19HZ4VCYdqLIWrBGICIiFqQmi0/DS1roW31dnZ0JmocBiAiohZI10gv9czNtRcvvXXrFm7fvg1ra2utLT3s6EykiQGIiKgFamjm5tqLl7JzM5F+zLYYKhER6aYe6VUTZ24mMhwGICKiFkg90ksdgjhzM5Fh8REYEZEZNDTUHai/QzMRNQ8DEBGRiTW0qntN2kZ6EVHzMQARETWTrtYctdojsBpa1b0xOKSdqHkYgIiImqGxrTnx8fFah6HXN9dP7aHuahzSTtR8DEBERM1QX8tPQ+Uamuun9lB3IjIcjgIjIjKT+ub6ISLjYgAiIjITzvVDZD4MQEREZsK5fojMh32AiIiaQalUanzOyfHClStd0LnzZfj65mqU09afh3P9EJkHAxARUTNUVlZK77/4YixOnQoFIAMgEBp6Cg8++K865WoPYdc11w+HuhMZDwMQEZEB5OR41Qg/ACDDqVOh6N//mEZLEAC4uroiPj5er7mDiMiwGICIiP6i74SGANCuXfVfo1eudMGd8KMmw9WrneHrmyuVU2O4ITIvBiAiIjR9QkMnJycAQOfOlwEIaIYgAT+/KxrliKhl4CgwIiI0b0JDAPD1zUVo6ClUhyBA3Qeo9uMvImoZ2AJERGQgDz74L/TvfwxXr3aGn98Vhh+iFowBiIjIgHx9cxl8iFoBPgIjItJCqXREdrY/lErHess1dqg6h7QTtSxsASIiqqW+Fdpr45B2otaJAYiIqIaGVmjXhuGGqPXhIzAiohq4QjuRZWALEBG1SfpOaqjuo6Neob1mCKq5Qjv78hC1DQxARNTmNGVSw5p9eXx8ivDKKwpUVclgZSWwfHkRHnlkEvvyELUhDEBE1OY0dVJDdbh58UUgLg7IygKCgmTw9XUC4GTYShKRWTEAEVGbp1Q6orDQFS4uBTo7Mtfm61v9IqK2iQGIiNo0fYa0E5Hl4CgwImpzlErlX39qH9KuntxQXY6ILA8DEBG1OZWVlQAaHtKuLkdElsfsAWjt2rXw9/eHnZ0dIiMjcezYMZ1lz5w5gwkTJsDf3x8ymQxJSUnNPicRtV3qIe011RzSTkSWy6wBaPfu3UhISMCiRYuQnp6O0NBQREdH4/r161rLl5WVoWvXrli2bBk8PT0Nck4iarsUimKEhGQAEH9tEQgJyWh0R2giarvMGoBWrVqFp556CtOnT0evXr2wYcMGtG/fHps3b9Zavn///nj77bcxceJE2NraGuScRNT2tGtXPb5DqXRERkYIANlfe2TIyAiR+gCpyxGR5TFbAKqoqEBaWhqioqLuVEYuR1RUFI4ePdpizklErY+TkxOAhvsAqcsRkeUx2z9/bt68iaqqKnh4eGhs9/DwwPnz5016zvLycpSXl0ufi4qKmvT9RNSyNLSsBRFZLrN3gm4JEhMToVAopJefn5+5q0REBqBQFCM29oDUEVo9DxD7ABGR2VqA3NzcYGVlhfz8fI3t+fn5Ojs4G+uc8+bNQ0JCgvS5qKiIIYjIhPRduLQhNRcsDQ8/gcDALBQWusDFpVAj/HBhUyLLZbYAZGNjg379+iElJQXjxo0DAKhUKqSkpCA+Pt6k57S1tdXZqZqIjKv2wqW6lq2ouXBpQ2oubKoLFzYlsmxmHQKRkJCAqVOnIiIiAgMGDEBSUhJKS0sxffp0AMCUKVPg4+ODxMREANWdnM+ePSu9//3333Hy5El06NABQUFBjTonEbUsNUNKfctWNHaBUzWGGyKqj1kDUFxcHG7cuIGFCxciLy8PYWFhSE5OljoxX7lyBXL5nW5K165dQ9++faXPK1euxMqVKzF06FCkpqY26pxE1DLpWrYiMDCLfXaIyOBkQgjRcDHLUlRUBIVCAaVSiY4dO5q7OkRthra+Pjdv3sTevXuRne2Pbdum1jlm6tStCAi4jBkzZsDLy8tUVSWiVkif39+cBYyITKJ2X5/aOGSdiEyJw+CJyCRqt/wolY7IzvaXZmXmkHUiMiW2ABGRyenq7FzfkHUiIkNiACIivdU3b49SqYQQos4yEzdv3vxrf/2dndUvIiJjYgAiIr001JenIfWtz1Vf8OGkhURkSAxARKSTrlFbjaVtUsOGOjuPHz8ebm5uGufhpIVEZGgMQESkVXNbenT181F3dq69Tx2Q3NzcONydiIyOAYiItGrszMvaWnka6ufDzs5EZG4MQETUZLpaeRrTz0dXZ2f29SEiU2AAIqImqa+Vpyn9fAD29SEi02EAIrJwFy9eRFlZWZ3tf/zxR73H1dfKExBwmf18iKhFYwAismAXL17Ejh07mnRsQ6087OdDRC0Zl8IgsmC1W35ycrxw5MjdyMlpuHWmMUtXKBTFCAi4XCf8sJ8PEZkbW4CILFhJSYn0/osvxuLUqVAAMgACoaGn8OCD/5L2axvtFR5+AvHxwSgqcoe//214e/eHUtlN60zQauznQ0QtAQMQkQWrrKwEUN3ycyf8AIAMp06Fon//Y/D1zdU52gsAwsPdNQIN+/YQUWvAAERE+PXXbrgTftRkuHAhGI6OJdi/PxZCVO8XQo6vvorFwoWR8Pdvx9YcImqVGICICB06aO+g7OBQ8tdoL81wVFUlQ3GxB5h9iKi1YgAiamXqW4kdaFofm+7dL+DgQQHNViCB7t0vAADkcgGV6s4+KysgKEivryAialEYgIhakcauzxUfH69XCFIoijFmzH6d8/a89NIFvPNON1RVVYefDz4AfH2bfBlERGbHAETUijR2fa7GlrOzs5Pe1zdvz4QJt/Dcc0BWVnXLD8MPEbV2DEBEFszPz0/js671ufz8/ODlxeBDRG0HJ0IkakWUSmWtz47IzvaHUulYbzldGjshIScuJKK2hi1ARK2Iet4eQPdK7LXL1cfV1RXx8fEG71RNRNTSMQARtUL1rcSu75pbDDdEZIn4CIyoFapvJXYiImoYAxBRK6Reib2mmiuxExFR/RiAiFqRdu2qn1orFMUICckAIP7aIxASkiE9/lKXIyIi7fi3JJERGXrWZvUK60qlIzIyQlBz8dKMjBAMH/4dFIpinSuxExFRNQYgIiMx1qzNQP19gPTtBE1EZIn4CIzISK5fv67xWdecPbXL1Uc9H09DfYA4bw8RUf3YAkRkJLdv35bep6f3xb59o1H9bw4Vxoy5M2dPzXINqTlvj49PEV55RYGqKhmsrASWLy/CI49M4rw9RESNwABEZGRKpWON8AMAcuzb17Q5e4A78/a8+CIQF6den0sGX18nAE4GqjURUdvGAETUSE3t0Hz1qh/qPm2W4+pVXygU55pVJ19frs9FRNQUDEBEjWDMDs1ERGR67ARN1Ag3btzQ+KyrQ3PtcgDg53cVd+brqSaTqeDnl2PwehIRUeOwBYioEQoL78ywXN8ipDXLqSkUxRgzZn+dYzhcnYjIfBiAiBpBPVKrukNzLNQTEAohx759sVKH5pojuqytraX34eEnEBiYhcJCF7i4FGqEn5rliIjINBiAiGrQ1dG5uLg6sGRmBuPO7MtqMmRmBmPAgHSNrZ06ddL4rFAUa231qV2OiIiMjwGI6C+N6ehcUuKodXtpaYc622rO2aML5+whIjKPFtEJeu3atfD394ednR0iIyNx7Nixest/9tln6NGjB+zs7NCnTx8cPHhQY/+0adMgk8k0XjExMca8BGoD6gsqat26/YraHZoBgeDgC1rLu7q6wsvLS+eL4YeIyDzMHoB2796NhIQELFq0COnp6QgNDUV0dLTO5QGOHDmCSZMm4YknnsCJEycwbtw4jBs3DqdPn9YoFxMTg9zcXOn16aefmuJyqAUpKCjQ+Bmo/SooKKj3eG0jvXx9cxEaego1V2EPDT0FX99c410IEREZnEwIUfufsyYVGRmJ/v37S48eVCoV/Pz88Nxzz+HVV1+tUz4uLg6lpaU4cOCAtO3uu+9GWFgYNmzYAKC6BejWrVv48ssvm1SnoqIiKBQKKJVKdOzYsUnnIPNqyrw9ubm5+PDDDwHUP9ILAHJyvHD1amf4+V3RCD8jRozAoEGDDHw1RETUGPr8/jZrC1BFRQXS0tIQFRUlbZPL5YiKisLRo0e1HnP06FGN8gAQHR1dp3xqairc3d3RvXt3zJw5s95/7ZeXl6OoqEjjRa2DrlaezMzMRh2vraVRqXSUwg9QPdJr//7RdVqCBg78qU7Lj4uLSzOuhoiITMWsnaBv3ryJqqoqeHh4aGz38PDA+fPntR6Tl5entXxeXp70OSYmBuPHj0dAQAAuXryI1157DSNHjsTRo0dhZWVV55yJiYlYsmSJAa6ITKmxrTxAdYvNlStd0LnzZY3Qom0h0sJCVyn8qAkhR2GhS4Nz93BEFxFR69AmR4FNnDhRet+nTx+EhIQgMDAQqampuP/+++uUnzdvHhISEqTPRUVF8PPzM0ldqem0zc5cWOgKF5cCjaDyxRdjcepUKKqHr1f32XnwwX/pPK+LSwFkMpVGCJLJVHBxqZ7kcPz48XBzc6tzHEd0ERG1HmYNQG5ubrCyskJ+fr7G9vz8fHh6emo9xtPTU6/yANC1a1e4ubkhKytLawCytbWFra1tE66AzKmyslJ6r6vPTk6OV43wAwAynDoViv79j+nsuKxQFCM29oDOmZvd3Nzg5eVl5KsjIiJjMmsfIBsbG/Tr1w8pKSnSNpVKhZSUFAwcOFDrMQMHDtQoDwDffvutzvIAkJOTg4KCAv7SaqPUszNr67Nz5UoXaJu48OrVznXOY2NjI70PDz+BOXOSMHXqVsyZk6TRAbpmOSIiap3M/ggsISEBU6dORUREBAYMGICkpCSUlpZi+vTpAIApU6bAx8cHiYmJAIDnn38eQ4cOxTvvvINRo0Zh165d+Pnnn6XROyUlJViyZAkmTJgAT09PXLx4EXPnzkVQUBCio6PNdp1kPFev+qF2yBFCjqtXfdG582VUD1mvuV/Az+9KnfNw4kIiIsth9gAUFxeHGzduYOHChcjLy0NYWBiSk5Oljs5XrlyBXH6noWrQoEHYuXMnXn/9dbz22msIDg7Gl19+ibvuugsAYGVlhYyMDGzbtg23bt2Ct7c3HnjgASxdupSPuVoAXUtNqBk6YKjn7andB0jX4y+GGyIiy2D2eYBaIs4DZByNHbX18MMPw8nJqc722uHol19+wd69e6FUOuLdd+dA84muCi+8kCT129E1b09cXBx69OjRxCsiIqKWRJ/f32ZvASLL0ZilJgDgn//8p859NScuVFMoijFmzAHs2zca1SFIhTFjDmiMBPP1zdXa6sNh60RElokBiFokXUPaa4aodu3u/PiGh59AYGAWCgtd4OJSqHHMiBEjEBAQUOc72J+HiMhyMQBRi9PQMhRq7u7uGp8VimKtExV2796dQYeIiDQwAFGTXLx4EWVlZTr3t2/fHoGBgXqfV9cyFIGBWXXCDUdtERFRUzEAkd4uXryIHTt2NFjuscce0zsE6bsMBcMNERE1hVknQqTWqb6Wn6aUq0m9DEVNNZehICIiMgS2AFG9Tpw4geJizZaXmgvPAro7LDdE23ENLUNBRERkCAxApHNywvPnz+M///mP9DkzMwgXLnRDcHAlunev3pae3rfO8HNtHZYBzSUk6uvoXN+ILiIiIkNgALJwjZ2c8KOPpiMnp3rJiZ9/joCv71X8/e+f1wg/ACDHvn3aOywDdzotX7p0G//4hzuEqF6eQgg5DhyI1ThO14gursNFRESGwABk4RozOWFmZpAUfqrJkJPjhx9/7I+63ciq1+BSKM5pPZerqysyMgCVZjcfqFQyDB36BAYM0N1viCO6iIjIUBiAqEEXLnSDthXV8/M9m3S+4GBALtcMQVZWQL9+Cnh5KZpcTyIiosbiKDALUVBQgNzc3DqvmzdvapRTKh2Rne0PpdJR2hYc/CuqV1SvSaBPn1/qbJfJVPDzy6m3Lr6+wIcfVoceoPrPDz6o3k5ERGQKbAGyALX7+egataWrY3L37lnw9b1a4zGYgK/vVfTt+wuEaKdzxFb79u111umJJ4DoaCArCwgKYvghIiLTYgCyADX7+egKOQ3NwPzkk1uQmRmErKxgBAVdQPfuWQCqR2zFxMhga9sbfn7l8PQMABDQqJmgfX0ZfIiIyDwYgFohXcPW1XR1Fq4v5DRmBubu3bOk4FNT794KDBnStTmXREREZFIMQK1MYx9nxcfH1wlB9YUc9QzMNfc3dgZmR0fHBssQERG1JAxALVTNxUbz8trhyhVbdO5cjqqqy1KZ+iYTvHHjRp0AVF/IaWgG5sjISK19ehwdHdG3b1+DXz8REZExMQC1QDUXG60bci4gPLzhVdMrKyvrnLehkPPGGwFYuPAGLl1qB3//2/D27g+gP+ffISKiNocByIxq9uW5dk2O7Ox2CAi4jdLS3wE0v8+ONvUtM+Hm5gYvLw/062foKyUiImpZGIDMpGZfnrqtPD8hPLz+PjvW1uWonoOn5gSFAtbWDc/srGuZCSIiIkvBAGQCNVdUP3euAzIyOiIoqHpF9fpaeeoLOZWVttA2O3NlZd21shq7fhbX2SIiIkvBAGRkJ06cwL59+wAAX3wxFqdOhaI6uAQiNLQDwsJO6WzlqS6nPeToM2pLvQhpU4bOExERtUUMQEambvnJyfGqEX4AQIZTp0LRq9eZeoNMU0dt1cZwQ0REdAcDkIlcudIF2lpzCgtd6w0y9e2rr0Nzu3b8T0tERKQLf0uaSOfOl6GtP4+f3xX4+ubqDDL1hRxAd4dmd3d341wIERFRG8AAZCK+vrlaFxT19c0FUP/ILF37Ro4cCT8/vzrb2Z+HiIiofgxAJqJUOuL3331Rsw/Q77/7Qql0rHdI+n333QdnZ+c62xuz2CgRERFpxwBkIk2duLB3795szSEiIjIwBiATaWjYekREBMLDwzWO4aMsIiIi42AAMjL1SukNDVv39vaGl5eXOatKRERkMWRCCGHuSrQ0RUVFUCgUUCqV6NixY7PPV3Mm6OvXbfD77/bw8fkf3N2rJybkiupERETNp8/vb7YAmQDDDRERUcsib7gIERERUdvCAEREREQWhwGIiIiILA4DEBEREVkcBiAiIiKyOAxAREREZHEYgIiIiMjitIgAtHbtWvj7+8POzg6RkZE4duxYveU/++wz9OjRA3Z2dujTpw8OHjyosV8IgYULF8LLywv29vaIiorChQsXjHkJRERE1IqYPQDt3r0bCQkJWLRoEdLT0xEaGoro6Ghcv35da/kjR45g0qRJeOKJJ3DixAmMGzcO48aNw+nTp6UyK1aswOrVq7Fhwwb89NNPcHBwQHR0NP78809TXRYRERG1YGZfCiMyMhL9+/fHmjVrAAAqlQp+fn547rnn8Oqrr9YpHxcXh9LSUhw4cEDadvfddyMsLAwbNmyAEALe3t548cUX8dJLLwEAlEolPDw8sHXrVkycOLHBOhl6KQwiIiIyPn1+f5u1BaiiogJpaWmIioqStsnlckRFReHo0aNajzl69KhGeQCIjo6WymdnZyMvL0+jjEKhQGRkpM5zlpeXo6ioSONFREREbZdZ1wK7efMmqqqq4OHhobHdw8MD58+f13pMXl6e1vJ5eXnSfvU2XWVqS0xMxJIlS+psZxAiIiJqPdS/txvzcIuLoQKYN28eEhISpM+///47evXqBT8/PzPWioiIiJqiuLgYCoWi3jJmDUBubm6wsrJCfn6+xvb8/Hx4enpqPcbT07Pe8uo/8/Pz4eXlpVEmLCxM6zltbW1ha2srfe7QoQOuXr0KR0dHyGQyva+rqKgIfn5+uHr1qkX3IeJ9uIP3ohrvQzXehzt4L6rxPlRr7n0QQqC4uBje3t4NljVrALKxsUG/fv2QkpKCcePGAajuBJ2SkoL4+HitxwwcOBApKSmYM2eOtO3bb7/FwIEDAQABAQHw9PRESkqKFHiKiorw008/YebMmY2ql1wuh6+vb5OvS61jx44W/YOsxvtwB+9FNd6HarwPd/BeVON9qNac+9BQy4+a2R+BJSQkYOrUqYiIiMCAAQOQlJSE0tJSTJ8+HQAwZcoU+Pj4IDExEQDw/PPPY+jQoXjnnXcwatQo7Nq1Cz///DM+/PBDAIBMJsOcOXPwxhtvIDg4GAEBAViwYAG8vb2lkEVERESWzewBKC4uDjdu3MDChQuRl5eHsLAwJCcnS52Yr1y5Arn8zmC1QYMGYefOnXj99dfx2muvITg4GF9++SXuuusuqczcuXNRWlqKGTNm4NatWxg8eDCSk5NhZ2dn8usjIiKilsfsAQgA4uPjdT7ySk1NrbPt73//O/7+97/rPJ9MJsM//vEP/OMf/zBUFfVia2uLRYsWafQrskS8D3fwXlTjfajG+3AH70U13odqprwPZp8IkYiIiMjUzL4UBhEREZGpMQARERGRxWEAIiIiIovDAEREREQWhwGoidauXQt/f3/Y2dkhMjISx44d01n2zJkzmDBhAvz9/SGTyZCUlGS6ihqZPvdh48aNuPfee+Hs7AxnZ2dERUXVW7410ec+7N27FxEREXBycoKDgwPCwsKwfft2E9bWuPS5FzXt2rULMpmszczXpc992Lp1K2QymcarrUzboe/Pw61btzBr1ix4eXnB1tYW3bp1w8GDB01UW+PS514MGzaszs+ETCbDqFGjTFhj49D3ZyIpKQndu3eHvb09/Pz88MILL+DPP/9sfkUE6W3Xrl3CxsZGbN68WZw5c0Y89dRTwsnJSeTn52stf+zYMfHSSy+JTz/9VHh6eop3333XtBU2En3vwyOPPCLWrl0rTpw4Ic6dOyemTZsmFAqFyMnJMXHNDUvf+3D48GGxd+9ecfbsWZGVlSWSkpKElZWVSE5ONnHNDU/fe6GWnZ0tfHx8xL333ivGjh1rmsoakb73YcuWLaJjx44iNzdXeuXl5Zm41oan730oLy8XERER4m9/+5v4/vvvRXZ2tkhNTRUnT540cc0NT997UVBQoPHzcPr0aWFlZSW2bNli2oobmL734ZNPPhG2trbik08+EdnZ2eLrr78WXl5e4oUXXmh2XRiAmmDAgAFi1qxZ0ueqqirh7e0tEhMTGzy2S5cubSYANec+CCHE7du3haOjo9i2bZuxqmgSzb0PQgjRt29f8frrrxujeibVlHtx+/ZtMWjQIPHRRx+JqVOntokApO992LJli1AoFCaqnenoex/Wr18vunbtKioqKkxVRZNp7t8T7777rnB0dBQlJSXGqqJJ6HsfZs2aJYYPH66xLSEhQdxzzz3NrgsfgempoqICaWlpiIqKkrbJ5XJERUXh6NGjZqyZaRniPpSVlaGyshIuLi7GqqbRNfc+CCGQkpKCzMxMDBkyxJhVNbqm3ot//OMfcHd3xxNPPGGKahpdU+9DSUkJunTpAj8/P4wdOxZnzpwxRXWNpin3Yd++fRg4cCBmzZoFDw8P3HXXXXjrrbdQVVVlqmobhSH+vty0aRMmTpwIBwcHY1XT6JpyHwYNGoS0tDTpMdlvv/2GgwcP4m9/+1uz69MiZoJuTW7evImqqippqQ41Dw8PnD9/3ky1Mj1D3IdXXnkF3t7eGv8ztDZNvQ9KpRI+Pj4oLy+HlZUV1q1bhxEjRhi7ukbVlHvx/fffY9OmTTh58qQJamgaTbkP3bt3x+bNmxESEgKlUomVK1di0KBBOHPmjEEWZjaHptyH3377Dd999x0effRRHDx4EFlZWXj22WdRWVmJRYsWmaLaRtHcvy+PHTuG06dPY9OmTcaqokk05T488sgjuHnzJgYPHgwhBG7fvo1nnnkGr732WrPrwwBEZrFs2TLs2rULqampbaazpz4cHR1x8uRJlJSUICUlBQkJCejatSuGDRtm7qqZTHFxMSZPnoyNGzfCzc3N3NUxq4EDB2LgwIHS50GDBqFnz5744IMPsHTpUjPWzLRUKhXc3d3x4YcfwsrKCv369cPvv/+Ot99+u1UHoObatGkT+vTpgwEDBpi7KiaXmpqKt956C+vWrUNkZCSysrLw/PPPY+nSpViwYEGzzs0ApCc3NzdYWVkhPz9fY3t+fj48PT3NVCvTa859WLlyJZYtW4ZDhw4hJCTEmNU0uqbeB7lcjqCgIABAWFgYzp07h8TExFYdgPS9FxcvXsSlS5cQGxsrbVOpVACAdu3aITMzE4GBgcattBEY4u8Ia2tr9O3bF1lZWcaookk05T54eXnB2toaVlZW0raePXsiLy8PFRUVsLGxMWqdjaU5PxOlpaXYtWuX2da2NKSm3IcFCxZg8uTJePLJJwEAffr0kRY7nz9/vsZi6fpiHyA92djYoF+/fkhJSZG2qVQqpKSkaPwLrq1r6n1YsWIFli5diuTkZERERJiiqkZlqJ8HlUqF8vJyY1TRZPS9Fz169MAvv/yCkydPSq8xY8bgvvvuw8mTJ+Hn52fK6huMIX4mqqqq8Msvv8DLy8tY1TS6ptyHe+65B1lZWVIQBoBff/0VXl5erTb8AM37mfjss89QXl6Oxx57zNjVNLqm3IeysrI6IUcdkEVzlzJtdjdqC7Rr1y5ha2srtm7dKs6ePStmzJghnJycpGGrkydPFq+++qpUvry8XJw4cUKcOHFCeHl5iZdeekmcOHFCXLhwwVyXYBD63odly5YJGxsb8fnnn2sM7ywuLjbXJRiEvvfhrbfeEt988424ePGiOHv2rFi5cqVo166d2Lhxo7kuwWD0vRe1tZVRYPrehyVLloivv/5aXLx4UaSlpYmJEycKOzs7cebMGXNdgkHoex+uXLkiHB0dRXx8vMjMzBQHDhwQ7u7u4o033jDXJRhMU//fGDx4sIiLizN1dY1G3/uwaNEi4ejoKD799FPx22+/iW+++UYEBgaKhx9+uNl1YQBqovfff1907txZ2NjYiAEDBogff/xR2jd06FAxdepU6XN2drYAUOc1dOhQ01fcwPS5D126dNF6HxYtWmT6ihuYPvdh/vz5IigoSNjZ2QlnZ2cxcOBAsWvXLjPU2jj0uRe1tZUAJIR+92HOnDlSWQ8PD/G3v/1NpKenm6HWhqfvz8ORI0dEZGSksLW1FV27dhVvvvmmuH37tolrbRz63ovz588LAOKbb74xcU2NS5/7UFlZKRYvXiwCAwOFnZ2d8PPzE88++6z4448/ml0PmRDNbUMiIiIial3YB4iIiIgsDgMQERERWRwGICIiIrI4DEBERERkcRiAiIiIyOIwABEREZHFYQAiIiIii8MARERkRtOmTcO4cePMXQ0ii8MARERaTZs2DTKZTHq5uroiJiYGGRkZ5q6aQdS8NvVr8ODBRvu+S5cuQSaT4eTJkxrb33vvPWzdutVo30tE2jEAEZFOMTExyM3NRW5uLlJSUtCuXTuMHj3a3NUymC1btkjXl5ubi3379mktV1lZabQ6KBQKODk5Ge38RKQdAxAR6WRrawtPT094enoiLCwMr776Kq5evYobN25g+PDhiI+P1yh/48YN2NjYSKs9+/v7Y+nSpZg0aRIcHBzg4+ODtWvXahyzatUq9OnTBw4ODvDz88Ozzz6LkpISaf/ly5cRGxsLZ2dnODg4oHfv3jh48CAA4I8//sCjjz6KTp06wd7eHsHBwdiyZUujr8/JyUm6Pk9PT7i4uEgtNbt378bQoUNhZ2eHTz75BAUFBZg0aRJ8fHzQvn179OnTB59++qnG+VQqFVasWIGgoCDY2tqic+fOePPNNwEAAQEBAIC+fftCJpNh2LBhAOo+AisvL8fs2bPh7u4OOzs7DB48GMePH5f2p6amQiaTISUlBREREWjfvj0GDRqEzMzMRl83ETEAEVEjlZSUYMeOHQgKCoKrqyuefPJJ7Ny5E+Xl5VKZHTt2wMfHB8OHD5e2vf322wgNDcWJEyfw6quv4vnnn8e3334r7ZfL5Vi9ejXOnDmDbdu24bvvvsPcuXOl/bNmzUJ5eTn+85//4JdffsHy5cvRoUMHAMCCBQtw9uxZ/Pvf/8a5c+ewfv16uLm5GeR61XU9d+4coqOj8eeff6Jfv3746quvcPr0acyYMQOTJ0/GsWPHpGPmzZuHZcuWSfXauXMnPDw8AEAqd+jQIeTm5mLv3r1av3fu3LnYs2cPtm3bhvT0dAQFBSE6OhqFhYUa5ebPn4933nkHP//8M9q1a4fHH3/cINdNZDGavZwqEbVJU6dOFVZWVsLBwUE4ODgIAMLLy0ukpaUJIYT43//+J5ydncXu3bulY0JCQsTixYulz126dBExMTEa542LixMjR47U+b2fffaZcHV1lT736dNH45w1xcbGiunTpzfp+gAIOzs76focHBzEF198IbKzswUAkZSU1OA5Ro0aJV588UUhhBBFRUXC1tZWbNy4UWtZ9XlPnDihsX3q1Kli7NixQgghSkpKhLW1tfjkk0+k/RUVFcLb21usWLFCCCHE4cOHBQBx6NAhqcxXX30lAIj//e9/+twCIovGFiAi0um+++7DyZMncfLkSRw7dgzR0dEYOXIkLl++DDs7O0yePBmbN28GAKSnp+P06dOYNm2axjkGDhxY5/O5c+ekz4cOHcL9998PHx8fODo6YvLkySgoKEBZWRkAYPbs2XjjjTdwzz33YNGiRRqdsGfOnIldu3YhLCwMc+fOxZEjR/S6vnfffVe6vpMnT2LEiBHSvoiICI2yVVVVWLp0Kfr06QMXFxd06NABX3/9Na5cuQIAOHfuHMrLy3H//ffrVYeaLl68iMrKStxzzz3SNmtrawwYMEDjngFASEiI9N7LywsAcP369SZ/N5GlYQAiIp0cHBwQFBSEoKAg9O/fHx999BFKS0uxceNGAMCTTz6Jb7/9Fjk5OdiyZQuGDx+OLl26NPr8ly5dwujRoxESEoI9e/YgLS1N6iNUUVEhfcdvv/2GyZMn45dffkFERATef/99AJDC2AsvvIBr167h/vvvx0svvdTo7/f09JSuLygoCA4ODhrXXtPbb7+N9957D6+88goOHz6MkydPIjo6Wqqnvb19o7/XEKytraX3MpkMQHUfJCJqHAYgImo0mUwGuVyO//3vfwCAPn36ICIiAhs3bsTOnTu19kP58ccf63zu2bMnACAtLQ0qlQrvvPMO7r77bnTr1g3Xrl2rcw4/Pz8888wz2Lt3L1588UUpgAFAp06dMHXqVOzYsQNJSUn48MMPDXnJkh9++AFjx47FY489htDQUHTt2hW//vqrtD84OBj29vZSB/DabGxsAFS3JOkSGBgIGxsb/PDDD9K2yspKHD9+HL169TLQlRARALQzdwWIqOUqLy9HXl4egOoRV2vWrEFJSQliY2OlMk8++STi4+Ph4OCABx98sM45fvjhB6xYsQLjxo3Dt99+i88++wxfffUVACAoKAiVlZV4//33ERsbix9++AEbNmzQOH7OnDkYOXIkunXrhj/++AOHDx+WAtTChQvRr18/9O7dG+Xl5Thw4IC0z9CCg4Px+eef48iRI3B2dsaqVauQn58vBRM7Ozu88sormDt3LmxsbHDPPffgxo0bOHPmDJ544gm4u7vD3t4eycnJ8PX1hZ2dHRQKhcZ3ODg4YObMmXj55Zfh4uKCzp07Y8WKFSgrK8MTTzxhlOsislRsASIinZKTk+Hl5QUvLy9ERkbi+PHj+Oyzz6Qh3AAwadIktGvXDpMmTYKdnV2dc7z44ov4+eef0bdvX7zxxhtYtWoVoqOjAQChoaFYtWoVli9fjrvuuguffPIJEhMTNY6vqqrCrFmz0LNnT8TExKBbt25Yt24dgOpWlXnz5iEkJARDhgyBlZUVdu3aZZR78frrryM8PBzR0dEYNmwYPD0968zgvGDBArz44otYuHAhevbsibi4OKlfTrt27bB69Wp88MEH8Pb2xtixY7V+z7JlyzBhwgRMnjwZ4eHhyMrKwtdffw1nZ2ejXBeRpZIJIYS5K0FErdelS5cQGBiI48ePIzw8XGOfv78/5syZgzlz5pinckREOvARGBE1SWVlJQoKCvD666/j7rvvrhN+iIhaMj4CI6Im+eGHH+Dl5YXjx4/X6bdjbm+99RY6dOig9TVy5EhzV4+IWgA+AiOiNqewsLDOzMlq9vb28PHxMXGNiKilYQAiIiIii8NHYERERGRxGICIiIjI4jAAERERkcVhACIiIiKLwwBEREREFocBiIiIiCwOAxARERFZHAYgIiIisjj/D7K6Xz0XSj/vAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXMFJREFUeJzt3XtYVGXiB/DvzMhNxDFQrqIgkKapCCpp3jJqcNXyyQq1Es3U2ihdSpMsFLVFzYy8lNVPhSzTWs22dLFiYzfNtEXNzEtKkFmAinERV1Dm/f3BzsQAw2WYmXNmzvfzPDw6Z86ced8ZOPOd93ZUQggBIiIiIgVRS10AIiIiIntjACIiIiLFYQAiIiIixWEAIiIiIsVhACIiIiLFYQAiIiIixWEAIiIiIsVhACIiIiLFYQAiIiIixWEAIiKSqYyMDKhUKhQUFEhdFCKnwwBEpGDffvstEhMT0adPH3h6eqJbt2548MEH8eOPPzbYd9SoUVCpVFCpVFCr1ejYsSN69uyJRx55BJ9//nmrnveTTz7ByJEj4evri/bt26NHjx548MEHkZWVZa2qNfDXv/4Vu3btarD966+/xuLFi1FaWmqz565v8eLFxtdSpVKhffv26N27N1544QWUl5db5Tm2bt2K9PR0qxyLyBkxABEp2IoVK7Bjxw7ceeedeO211zBr1iz8+9//RlRUFI4fP95g/65du2LLli1455138PLLL+Oee+7B119/jbvvvhvx8fG4fv16s8+5atUq3HPPPVCpVEhOTsarr76KiRMn4syZM9i2bZstqgmg6QCUmppq1wBk8MYbb2DLli1YvXo1evXqhZdeeglxcXGwxiUaGYCImtZO6gIQkXSSkpKwdetWuLq6GrfFx8ejb9++WL58Od59912T/bVaLR5++GGTbcuXL8fTTz+N119/HSEhIVixYoXZ57tx4waWLl2Ku+66C5999lmD+y9cuNDGGsnH1atX0b59+yb3uf/++9G5c2cAwOOPP46JEydi586d+OabbzBkyBB7FJNIsdgCRKRgQ4cONQk/ABAREYE+ffrg5MmTLTqGRqPBmjVr0Lt3b6xbtw5lZWVm97106RLKy8tx++23N3q/r6+vye1r165h8eLFuPnmm+Hu7o6AgADcd999yMvLM+6zatUqDB06FD4+PvDw8EB0dDT+9re/mRxHpVKhsrISmZmZxm6nadOmYfHixZg3bx4AIDQ01Hhf3TE37777LqKjo+Hh4QFvb29MmjQJv/zyi8nxR40ahVtvvRW5ubkYMWIE2rdvj+eff75Fr19do0ePBgDk5+c3ud/rr7+OPn36wM3NDYGBgXjyySdNWrBGjRqF3bt34+effzbWKSQkpNXlIXJmbAEiIhNCCBQXF6NPnz4tfoxGo8HkyZPx4osvYt++fRg7dmyj+/n6+sLDwwOffPIJnnrqKXh7e5s9Zk1NDcaNG4fs7GxMmjQJc+bMQUVFBT7//HMcP34cYWFhAIDXXnsN99xzDx566CFUV1dj27ZteOCBB/Dpp58ay7FlyxY89thjGDx4MGbNmgUACAsLg6enJ3788Ue8//77ePXVV42tMV26dAEAvPTSS3jxxRfx4IMP4rHHHsPFixexdu1ajBgxAkeOHEGnTp2M5S0pKcGYMWMwadIkPPzww/Dz82vx62dgCHY+Pj5m91m8eDFSU1MRGxuLJ554AqdPn8Ybb7yBb7/9Fvv374eLiwsWLlyIsrIynD9/Hq+++ioAoEOHDq0uD5FTE0REdWzZskUAEBs3bjTZPnLkSNGnTx+zj/voo48EAPHaa681efyUlBQBQHh6eooxY8aIl156SeTm5jbYb9OmTQKAWL16dYP79Hq98f9Xr141ua+6ulrceuutYvTo0SbbPT09RUJCQoNjvfzyywKAyM/PN9leUFAgNBqNeOmll0y2f//996Jdu3Ym20eOHCkAiA0bNpitd12LFi0SAMTp06fFxYsXRX5+vnjzzTeFm5ub8PPzE5WVlUIIITZv3mxStgsXLghXV1dx9913i5qaGuPx1q1bJwCITZs2GbeNHTtWdO/evUXlIVIidoERkdGpU6fw5JNPYsiQIUhISGjVYw0tDBUVFU3ul5qaiq1bt2LAgAHYu3cvFi5ciOjoaERFRZl0u+3YsQOdO3fGU0891eAYKpXK+H8PDw/j/3///XeUlZVh+PDhOHz4cKvKX9/OnTuh1+vx4IMP4tKlS8Yff39/RERE4MsvvzTZ383NDdOnT2/Vc/Ts2RNdunRBaGgoZs+ejfDwcOzevdvs2KEvvvgC1dXVmDt3LtTqP07fM2fORMeOHbF79+7WV5RIodgFRkQAgKKiIowdOxZarRZ/+9vfoNFoWvX4K1euAAC8vLya3Xfy5MmYPHkyysvLcfDgQWRkZGDr1q0YP348jh8/Dnd3d+Tl5aFnz55o167p09Snn36KZcuW4ejRo6iqqjJurxuSLHHmzBkIIRAREdHo/S4uLia3g4KCGoynas6OHTvQsWNHuLi4oGvXrsZuPXN+/vlnALXBqS5XV1f06NHDeD8RNY8BiIhQVlaGMWPGoLS0FF999RUCAwNbfQzDtPnw8PAWP6Zjx4646667cNddd8HFxQWZmZk4ePAgRo4c2aLHf/XVV7jnnnswYsQIvP766wgICICLiws2b96MrVu3troOden1eqhUKvzjH/9oNAzWH1NTtyWqpUaMGGEcd0RE9sUARKRw165dw/jx4/Hjjz/iiy++QO/evVt9jJqaGmzduhXt27fHsGHDLCrHwIEDkZmZicLCQgC1g5QPHjyI69evN2htMdixYwfc3d2xd+9euLm5Gbdv3ry5wb7mWoTMbQ8LC4MQAqGhobj55ptbWx2b6N69OwDg9OnT6NGjh3F7dXU18vPzERsba9zW1hYwImfHMUBEClZTU4P4+HgcOHAAH374oUVrz9TU1ODpp5/GyZMn8fTTT6Njx45m97169SoOHDjQ6H3/+Mc/APzRvTNx4kRcunQJ69ata7Cv+N9CgRqNBiqVCjU1Ncb7CgoKGl3w0NPTs9HFDj09PQGgwX333XcfNBoNUlNTGyxMKIRASUlJ45W0odjYWLi6umLNmjUmZdq4cSPKyspMZt95eno2uSQBkdKxBYhIwZ555hn8/e9/x/jx43H58uUGCx/WX/SwrKzMuM/Vq1dx9uxZ7Ny5E3l5eZg0aRKWLl3a5PNdvXoVQ4cOxW233Ya4uDgEBwejtLQUu3btwldffYUJEyZgwIABAICpU6finXfeQVJSEg4dOoThw4ejsrISX3zxBf785z/j3nvvxdixY7F69WrExcVhypQpuHDhAtavX4/w8HAcO3bM5Lmjo6PxxRdfYPXq1QgMDERoaChiYmIQHR0NAFi4cCEmTZoEFxcXjB8/HmFhYVi2bBmSk5NRUFCACRMmwMvLC/n5+fjoo48wa9YsPPvss216/VurS5cuSE5ORmpqKuLi4nDPPffg9OnTeP311zFo0CCT9ys6Ohrbt29HUlISBg0ahA4dOmD8+PF2LS+RrEk5BY2IpGWYvm3up6l9O3ToICIiIsTDDz8sPvvssxY93/Xr18Xbb78tJkyYILp37y7c3NxE+/btxYABA8TLL78sqqqqTPa/evWqWLhwoQgNDRUuLi7C399f3H///SIvL8+4z8aNG0VERIRwc3MTvXr1Eps3bzZOM6/r1KlTYsSIEcLDw0MAMJkSv3TpUhEUFCTUanWDKfE7duwQw4YNE56ensLT01P06tVLPPnkk+L06dMmr01TSwTUZyjfxYsXm9yv/jR4g3Xr1olevXoJFxcX4efnJ5544gnx+++/m+xz5coVMWXKFNGpUycBgFPiiepRCWGFi84QERERORCOASIiIiLFYQAiIiIixWEAIiIiIsVhACIiIiLFYQAiIiIixWEAIiIiIsXhQoiN0Ov1+O233+Dl5cXl5ImIiByEEAIVFRUIDAyEWt10Gw8DUCN+++03BAcHS10MIiIissAvv/yCrl27NrkPA1AjvLy8ANS+gE1d14iIiIjko7y8HMHBwcbP8aYwADXC0O3VsWNHBiAiIiIH05LhKxwETURERIrDAERERESKwwBEREREisMARERERIrDAERERESKwwBEREREisMARERERIrDAERERESKwwBEREREisOVoB1cSUkJqqurzd7v6uoKHx8fO5aIiIhI/hiAHFhJSQnWrVvX7H6JiYkMQURERHWwC8yBNdXyY8l+RERESsEARERERIrDAERERESKI4sAtH79eoSEhMDd3R0xMTE4dOiQ2X137tyJgQMHolOnTvD09ERkZCS2bNliss+0adOgUqlMfuLi4mxdDSIiInIQkg+C3r59O5KSkrBhwwbExMQgPT0dOp0Op0+fhq+vb4P9vb29sXDhQvTq1Quurq749NNPMX36dPj6+kKn0xn3i4uLw+bNm4233dzc7FIfIpIfzpYkovokD0CrV6/GzJkzMX36dADAhg0bsHv3bmzatAkLFixosP+oUaNMbs+ZMweZmZnYt2+fSQByc3ODv7+/TctORPLH2ZJE1BhJu8Cqq6uRm5uL2NhY4za1Wo3Y2FgcOHCg2ccLIZCdnY3Tp09jxIgRJvfl5OTA19cXPXv2xBNPPIGSkhKzx6mqqkJ5ebnJDxE5B86WJKLGSNoCdOnSJdTU1MDPz89ku5+fH06dOmX2cWVlZQgKCkJVVRU0Gg1ef/113HXXXcb74+LicN999yE0NBR5eXl4/vnnMWbMGBw4cAAajabB8dLS0pCammq9itmJq6urVfcjIiJSCsm7wCzh5eWFo0eP4sqVK8jOzkZSUhJ69Ohh7B6bNGmScd++ffuiX79+CAsLQ05ODu68884Gx0tOTkZSUpLxdnl5OYKDg21ej7by8fFBYmIixzYQERG1kqQBqHPnztBoNCguLjbZXlxc3OT4HbVajfDwcABAZGQkTp48ibS0tAbjgwx69OiBzp074+zZs40GIDc3N4cdJM1wQ0RE1HqSjgFydXVFdHQ0srOzjdv0ej2ys7MxZMiQFh9Hr9ejqqrK7P3nz59HSUkJAgIC2lReIiIicg6Sd4ElJSUhISEBAwcOxODBg5Geno7KykrjrLCpU6ciKCgIaWlpAGrH6wwcOBBhYWGoqqrCnj17sGXLFrzxxhsAgCtXriA1NRUTJ06Ev78/8vLyMH/+fISHh5vMEnNG588DZ84AERFA165Sl4aIiEi+JA9A8fHxuHjxIlJSUlBUVITIyEhkZWUZB0afO3cOavUfDVWVlZX485//jPPnz8PDwwO9evXCu+++i/j4eACARqPBsWPHkJmZidLSUgQGBuLuu+/G0qVLHbabqyU2bgRmzQL0ekCtBt56C5gxo+3H5fopRETkjFRCCCF1IeSmvLwcWq0WZWVl6Nixo9TFadb580D37rXhx0CjAQoK2tYSJMf1UxjIqLXk+HtMRLbRms9vyVuAqO3OnDENPwBQUwOcPdu2ACS39VP4QUaW4GxJImoMA5ATiIio7faq3wL0v4lyTkNugYwcR91ww7FyRATI5GKo1DZdu9aO+TGs8ajRAG++yZM7UX0bN9Z2F48eXfvvxo1Sl4iIpMIA5CRmzKgd8/Pll7X/WmMANJEzOX/+j4kCQO2/s2fXbici5WEXmBPp2pWtPkTm2GqsHBE5JrYAEZEiGMbK1eWMY+WIqGUYgIhIEThWjojqYhcYmVX/KvJlZV64fNkH3t4l0GorzO5nL+bKQ2TOjBmATlfb7RUezvBDpGQMQGRW3fVTtm71wJIlWuj1KqjVAitXlmHKlP/adf2UukHr8OEB+OSTcRBCDZVKj/HjP0VU1JEG+xHVx7FyJBdc2FVaXAm6EY62ErSt2WqlaUuUlJSgoOAGBg/2hV6vqlMegYMHLyAkpB1PGEQke1zY1TZa8/nNMUDUrKZmz9ibj48Pysv9TMJPbXlUqKjw44mCiBwCF3aVHgMQNUtus2fkVh4iInI8DEDULLnNnpFbeYiIyPFwEDS1iNxmz8itPERE5FgYgKjF5DZ7Rm7lISIix8EuMCIiIlIcBiAiIiJSHAYgIiIiO2vpgq1c2NV2OAaIiIjIzuqutG8OV4K2LQYgIiIiCTDcSItdYERERKQ4DEBEREQSO38e+PLL2n/JPhiAiIiIJLRxY+0Fp0ePrv1340apS6QMDEBEREQSOX8emDXrjwtO6/XA7NlsCbIHBiAiIiKJnDnzR/gxqKmpvcwP2RYDEBERkUQiIgB1vU9ijab2GodkW5wGT0RWV1JSwvVNiFqga1fgrbdqu71qamrDz5tv8jqH9sAARERWVVJSgnXr1jW7X2JiIkMQEYAZMwCdrrbbKzyc4cdeGICIyKqaavmxZD8iJejalcHH3jgGiIhsqqzMC/n5ISgr85K6KERERmwBIiKbOXx4AD75ZByEUEOl0mP8+E8RFXVE6mIREbEFiIhso6zMyxh+AEAINT75ZBxbgohIFhiAiMgmLl/2MYYfAyHUuHzZW6ISERH9gQGIiGzC27sEKpXpCm8qlR7e3pclKhER0R8YgIjIJrTaCowf/6kxBBnGAGm1FRKXjIiIg6CJyMpcXV2N/4+KOoKwsLO4fNkb3t6XTcJP3f2IiOyNAYiIrMrHxweJiYlcCZqIZI1dYERERKQ4bAEiIqvipTCIyBHIogVo/fr1CAkJgbu7O2JiYnDo0CGz++7cuRMDBw5Ep06d4OnpicjISGzZssVkHyEEUlJSEBAQAA8PD8TGxuLMmTO2rgYRoeElLsytBM1LYRCRlCRvAdq+fTuSkpKwYcMGxMTEID09HTqdDqdPn4avr2+D/b29vbFw4UL06tULrq6u+PTTTzF9+nT4+vpCp9MBAFauXIk1a9YgMzMToaGhePHFF6HT6XDixAm4u7vbu4pEisWVoO2vpKSE46+IWkAlhBBSFiAmJgaDBg0yNpnr9XoEBwfjqaeewoIFC1p0jKioKIwdOxZLly6FEAKBgYF45pln8OyzzwIAysrK4Ofnh4yMDEyaNKnZ45WXl0Or1aKsrAwdO3a0vHJEClRYWIi33noLZWVeSE+fa7IYokqlx9y56dBqKzBr1iwEBARIWFLnw+5HUrrWfH5L2gVWXV2N3NxcxMbGGrep1WrExsbiwIEDzT5eCIHs7GycPn0aI0aMAADk5+ejqKjI5JharRYxMTFmj1lVVYXy8nKTHyJqG64EbX8t7VZk9yORxF1gly5dQk1NDfz8/Ey2+/n54dSpU2YfV1ZWhqCgIFRVVUGj0eD111/HXXfdBQAoKioyHqP+MQ331ZeWlobU1NS2VMVhsHmc7MWwEnT9FiCuBG0/ZWVeuHzZB97eJVyAkqgeyccAWcLLywtHjx7FlStXkJ2djaSkJPTo0QOjRo2y6HjJyclISkoy3i4vL0dwcLCVSisfbB4nezKsBF1/DBA/iO2D46+ImiZpAOrcuTM0Gg2Ki4tNthcXF8Pf39/s49RqNcLDwwEAkZGROHnyJNLS0jBq1Cjj44qLi03GFxQXFyMyMrLR47m5ucHNza2NtZG/xmbnNPbtkM3jZC1NrQRNtlNW5mUMP0Bt1+Mnn4xDWNhZvgdE/yNpAHJ1dUV0dDSys7MxYcIEALWDoLOzs5GYmNji4+j1elRVVQEAQkND4e/vj+zsbGPgKS8vx8GDB/HEE09YuwoOi98O7U8p3Y/1L3Gh1VY0+qHLS2HYTlPjrxiAiGpJ3gWWlJSEhIQEDBw4EIMHD0Z6ejoqKysxffp0AMDUqVMRFBSEtLQ0ALXjdQYOHIiwsDBUVVVhz5492LJlC9544w0AgEqlwty5c7Fs2TJEREQYp8EHBgYaQ5bS8duh/dXvfjTX+uYM3Y+8FIb0OP6KqHmSB6D4+HhcvHgRKSkpKCoqQmRkJLKysoyDmM+dOwe1+o8/4srKSvz5z3/G+fPn4eHhgV69euHdd99FfHy8cZ/58+ejsrISs2bNQmlpKYYNG4asrCyuAfQ//HZof3XDQFOtb87S/chwIy2OvyJqnuQBCKj91muuyysnJ8fk9rJly7Bs2bImj6dSqbBkyRIsWbLEWkV0Kvx2KB22vpEt1e1WbGr8FbsfiWQSgMi++O1QOmx9I1ti9yNRyzEAKRRn50iDrW9kaww3RC0ji4uhkn00NjsnNPTnBuGHzeO2Y2h9U6n0AMDWNyIiibAFSEHYPC4PbH0jIpIeA5DCMNzIg7m1cYiIyD7YBUZkBy3tVmT3IxGRfbAFiMgO2P1IRCQvDEBEdsJwQ0QkH+wCIyIiIsVhACIiIiLFYQAiIiIixWEAIiIiIsVhACIiIiLFYQAiIiIixWEAIiIiIsVhACIiIiLFYQAiIiIixWEAIiIiIsVhACIiIiLFYQAiIiIixWEAIiIiIsVhACIiIiLFYQCiFjt/Hvjyy9p/iYiIHBkDEDWppKQEhYWFeOWVUnTvLjB6NNC9u8Arr5SisLAQJSUlUheRiIio1dpJXQCSr5KSEqxbtw5lZV5IT58LIVQAAL1ehXnzOuLXXzdBq61AYmIifHx8JC4tERFRy7EFiMyqrq4GAFy+7AMhTH9VhFDj8mVvk/1IOdgdSkSOjgGImuXtXQKVSm+yTaXSw9v7skQlIilt3Ah0747/dYfW3iYicjQMQNQsrbYC48d/agxBKpUe48d/Cq22QuKSkT2VlJQgN7cYs2YJ6P+Xh/V6YPZsgdzcYo4HIyKHwjFA1CJRUUcQFnYWly97w9v7MsOPwhjGg+Xnh0CvTzC5r6ZGhbVr/4HQ0J85HoyIHAYDELWYVlvB4KNQhnFehu7QumPC6naHcjwYETkKdoERUYuxO5SInAVbgMhmzp8HzpwBIiKArl2lLg1ZC7tDicgZsAWIzHJ1dbV4P84Ucm5abQVCQ39m+CEih8UWIDLLx8cHiYmJTY7rcHV1NRn0WlJSgoKCG5g1yxd6vWHhxNqZQpGRFxAS0s4pB8mytYuIyLEwAFGTWhNWlDZTqKSkBNXV1di61QPz52uh16ugVgusXFmGKVP+2yAcEhGRfDAAkdUoaaYQLxNCROTYOAaIrE4JM4WUdpmQtowHIyKSI7YAkU0oZaZQc61dzsKS8WBERHLGAEQ2o4SFEw2tXZ98Mg5CqJ2ytcuA4YaInIksusDWr1+PkJAQuLu7IyYmBocOHTK779tvv43hw4fjpptuwk033YTY2NgG+0+bNg0qlcrkJy4uztbVsDpecdsxREUdwdy56UhIyMDcuemIijoidZGIiKgZkgeg7du3IykpCYsWLcLhw4fRv39/6HQ6XLhwodH9c3JyMHnyZHz55Zc4cOAAgoODcffdd+PXX3812S8uLg6FhYXGn/fff98e1WmzkpISFBYW4pVXStG9u/jfOjoCr7xSisLCQqtecJIBy3q4Lg4RkWORvAts9erVmDlzJqZPnw4A2LBhA3bv3o1NmzZhwYIFDfZ/7733TG7/3//9H3bs2IHs7GxMnTrVuN3NzQ3+/v62LbyV2WNmEaduExERSRyAqqurkZubi+TkZOM2tVqN2NhYHDhwoEXHuHr1Kq5fvw5vb2+T7Tk5OfD19cVNN92E0aNHY9myZWY/2KuqqlBVVWW8XV5ebkFt2q4lM4u02gqLZxbZOmBxppDtcKFFIiLrkjQAXbp0CTU1NfDz8zPZ7ufnh1OnTrXoGM899xwCAwMRGxtr3BYXF4f77rsPoaGhyMvLw/PPP48xY8bgwIED0Gg0DY6RlpaG1NTUtlXGimw1s8jWAUtJM4XsEfbYWkdEZDuSd4G1xfLly7Ft2zbk5OTA3d3duH3SpEnG//ft2xf9+vVDWFgYcnJycOeddzY4TnJyMpKSkoy3y8vLERwcbNvCN8HWM4tsOXVbKR/Itg57XGiRiMi2JA1AnTt3hkajQXFxscn24uLiZsfvrFq1CsuXL8cXX3yBfv36Nblvjx490LlzZ5w9e7bRAOTm5gY3N7fWV8CGbLmOjpKmbtuSLYOHrVvriIiUTtIA5OrqiujoaGRnZ2PChAkAAL1ej+zsbCQmJpp93MqVK/HSSy9h7969GDhwYLPPc/78eZSUlCAgIMBaRbcLW66jo5SFCh2dUhZaJCKyN8mnwSclJeHtt99GZmYmTp48iSeeeAKVlZXGWWFTp041GSS9YsUKvPjii9i0aRNCQkJQVFSEoqIiXLlyBQBw5coVzJs3D9988w0KCgqQnZ2Ne++9F+Hh4dDpdJLUUa44dVv+lHBZESIiKUg+Big+Ph4XL15ESkoKioqKEBkZiaysLOPA6HPnzkGt/iOnvfHGG6iursb9999vcpxFixZh8eLF0Gg0OHbsGDIzM1FaWorAwEDcfffdWLp0qey6uYhagq11pCSGwf/mcPA/WYvkAQgAEhMTzXZ55eTkmNwuKCho8lgeHh7Yu3evlUpmX5xGTuYo4bIiRIbB/wZlZV64fNkH3t4lJr//HPxP1iCLAES1bD2ziAGLiOSs7rnv8OEBDSZqGC4zw8H/ZA0MQDJjy281Slqnh4gcV1mZlzH8ALUzHz/5ZBzCws6yJZSshgFIYRhuHANb60jJmlv+gcgaGICIZIitdaRkXP6B7IEBiEimGG5IqbhYK9kDAxAREckOl38gW2MAIiIiWeLyD2RLkq8ETWQv588DX35Z+y8RyQ8H/5M9sQWIFGHjRmDWLECvB9Rq4K23gBkzpC4VEdXFwf9kTwxA5NRKSkpQUHADs2b5Qq9XAagNQbNnC0RGXkBISDueTIlkhH+PZC8MQOS0DMvq5+eHQK9PMLmvpkaFtWv/gdDQn7msPhGRAnEMEDktQzO6YU2RuuquKcJl9YmIlIcBiJyeYU0RQwjimiJERMQuMFIErilCRER1MQCRYnBNESIiMmAXGBERESkOAxAREREpDgMQERERKQ4DEDktLqtPRETmcBA0OS0uq09EROYwAJFTY7ghIqLGsAuMiIiIFIctQERE5LBKSkrYzU0WYQAiasT588CZM0BEBNC1q9SlIaLGGC54bFBW5oXLl33g7V1isugpL3hMjWEAIvofwzfJrVs9MH++Fnq9Cmq1wMqVZZgy5b/8JkkkM3Vbfg4fHoBPPhkHIdTG6/1FRR1psB+RAQMQEf74JllW5oX09LkQQgUA0OtVmDevI379dRO02gp+kySSobIyL2P4AQAh1Pjkk3EICzvLy9+QWRwETYQ/viFevuxjPIkaCKHG5cveJvsRkXw093dL1BgGIKI6vL1LoFLpTbapVHp4e1+WqERE1Bz+3ZIlGICI6tBqKzB+/KfGk6lhLAGb0Ynki3+3ZAmOAVIYThltXlTUEYSFncXly97w9r7MkyhRHXXPIb/9pkZ+fjuEht5AYGBt+JDqHMK/W2otBiAF4ZTRltNqK3gCJaqn7jmkqVlXUp1D+HdLrcEApCCcMkpEbWE4NzQ368pe5xBe8JjaggFIgThllIjaoqlZV/Y8h/CCx9QWDEAKJJeTl5zwmyRRyxlmXdU9j0g160pu4aampgbXr1+XuhhOy8XFBRqNxirHYgBSIDmdvOSC3ySJWs4w66p+N7pSv0ABgBACRUVFKC0tlbooTq9Tp07w9/eHSqVq03EYgBSIJ6/GMdwQtRxnXZkyhB9fX1+0b9++zR/O1JAQAlevXsWFCxcAAAEBAW06HgOQQvHkRURtZYtZV464VEdNTY0x/MitbM7Gw8MDAHDhwgX4+vq2qTuMAUjBOGWUiOTEUZfqMIz5ad++vcQlUQbD63z9+vU2BSBZrAS9fv16hISEwN3dHTExMTh06JDZfd9++20MHz4cN910E2666SbExsY22F8IgZSUFAQEBMDDwwOxsbE4c+aMrashexzoS0RtYetzSP2lOtLT5yIzMwHp6XNx+PCARveTE3Z72Ye1XmfJW4C2b9+OpKQkbNiwATExMUhPT4dOp8Pp06fh6+vbYP+cnBxMnjwZQ4cOhbu7O1asWIG7774bP/zwA4KCggAAK1euxJo1a5CZmYnQ0FC8+OKL0Ol0OHHiBNzd3e1dRdngQF8iagt7nUO4VAfZg+QBaPXq1Zg5cyamT58OANiwYQN2796NTZs2YcGCBQ32f++990xu/9///R927NiB7OxsTJ06FUIIpKen44UXXsC9994LAHjnnXfg5+eHXbt2YdKkSbavlIwx3BBRW9jjHMKlOsgeJO0Cq66uRm5uLmJjY43b1Go1YmNjceDAgRYd4+rVq7h+/Tq8vb0BAPn5+SgqKjI5plarRUxMjNljVlVVoby83OSHiIikwau728+0adOgUqmgUqng4uICPz8/3HXXXdi0aRP0en3zB/ifjIwMdOrUyXYFtQFJA9ClS5dQU1MDPz8/k+1+fn4oKipq0TGee+45BAYGGgOP4XGtOWZaWhq0Wq3xJzg4uLVVISIiK1Hi1d1LSkpQWFho9qekpMRmzx0XF4fCwkIUFBTgH//4B+644w7MmTMH48aNw40bN2z2vFKTvAusLZYvX45t27YhJyenTWN7kpOTkZSUZLxdXl7OEEREJCElLdVRf/abObaa/ebm5gZ/f38AQFBQEKKionDbbbfhzjvvREZGBh577DGsXr0amzdvxk8//QRvb2+MHz8eK1euRIcOHZCTk2McxmIYoLxo0SIsXrwYW7ZswWuvvYbTp0/D09MTo0ePRnp6eqNjfO1N0hagzp07Q6PRoLi42GR7cXGx8c0wZ9WqVVi+fDk+++wz9OvXz7jd8LjWHNPNzQ0dO3Y0+SEiImlptRUIDf3ZqcMP0PJZbfac/TZ69Gj0798fO3fuBFA7PGXNmjX44YcfkJmZiX/+85+YP38+AGDo0KFIT09Hx44djS1Wzz77LIDaqepLly7Fd999h127dqGgoADTpk2zWz2aYpUAlJ+fb1EzmaurK6Kjo5GdnW3cptfrkZ2djSFDhph93MqVK7F06VJkZWVh4MCBJveFhobC39/f5Jjl5eU4ePBgk8ckIiJpcakOeenVqxcKCgoAAHPnzsUdd9yBkJAQjB49GsuWLcMHH3wAoPb90Gq1UKlU8Pf3h7+/Pzp06AAAePTRRzFmzBj06NEDt912G9asWYN//OMfuHLlilTVMrJKF1jPnj3x3Xff4ZZbbmn1Y5OSkpCQkICBAwdi8ODBSE9PR2VlpbE5berUqQgKCkJaWhoAYMWKFUhJScHWrVsREhJiHNfToUMHdOjQASqVCnPnzsWyZcsQERFhnAYfGBiICRMmWKO6RERkA1yqQ16EEMYurS+++AJpaWk4deoUysvLcePGDVy7dg1Xr15tcgHI3NxcLF68GN999x1+//1348Dqc+fOoXfv3naphzmtCkD33Xdfo9tramrw9NNPw8vLCwCMTWYtER8fj4sXLyIlJQVFRUWIjIxEVlaWcRDzuXPnoFb/0VD1xhtvoLq6Gvfff7/JcQz9jQAwf/58VFZWYtasWSgtLcWwYcOQlZWl6DWAiIgcAcONfJw8eRKhoaEoKCjAuHHj8MQTT+Cll16Ct7c39u3bhxkzZqC6utpsAKqsrIROp4NOp8N7772HLl264Ny5c9DpdLJYzLJVAWjXrl0YMWIEQkNDG9zXoUMHaLVaiwqRmJiIxMTERu/LyckxuW1ojmuKSqXCkiVLsGTJEovKQ0REpGT//Oc/8f333+Mvf/kLcnNzodfr8corrxgbJAzdXwaurq6oqakx2Xbq1CmUlJRg+fLlxolF//nPf+xTgRZoVQDaunUr5s2bh4SEBGMXFQC8++67eOmllyRvziIiIqLWqaqqQlFREWpqalBcXIysrCykpaVh3LhxmDp1Ko4fP47r169j7dq1GD9+PPbv348NGzaYHCMkJARXrlxBdnY2+vfvj/bt26Nbt25wdXXF2rVr8fjjj+P48eNYunSpRLVsqFWDoCdNmoSvvvoKGzduxMSJE/H777/bqlwkE1KuTUFERLaXlZWFgIAAhISEIC4uDl9++SXWrFmDjz/+GBqNBv3798fq1auxYsUK3HrrrXjvvfeM43INhg4discffxzx8fHo0qULVq5ciS5duiAjIwMffvghevfujeXLl2PVqlUS1bIhlRBCtPZBer0eqamp2Lx5M95++22MHz8eR48edZoWoPLycmi1WpSVlSl6SryjXplZrkpKSji4k8gJXbt2Dfn5+QgNDbVorKnU6wA5mqZe79Z8fls0C0ytViM1NRV33XUXpk6d2qDfj5xD/SszGy5OaFiVNSrqSIP9qHEMk0RkDme/SaNN0+CHDRuGY8eOIS8vD2FhYdYqE8kMr8zcdgyT0qrb+vbbb2rk57dDaOgNBAbWTsnlhwtJjb9/9tfmdYA6dOiA/v37W6MsJFO8MrP1MEzaX93Wt6bCJ1vfiJSlVQFowIABxkWRmnL48GGLC0TyY7gyc90QxCszW4Zh0v4MLT/NhU+2vhEpS6sCUN2VlIUQSEtLw+OPPw5vb29rl4tkxHBl5vrfnPmB3XoMk9Jh+CSiuloVgBYtWmRy+5VXXsGcOXPQo0cPqxaK5EdJV2a2JYZJ6TB8ElFdVrkWGCmDVlvBD2orYJiUBsMnEdXFAERm8crMtsMwKQ2GTyIyYAAis7g2hfUwTMoHwycRAa0MQGvWrDG5fePGDWRkZKBz584m259++um2l4xkgeHGOhgmiUiJcnJycMcdd+D3339Hp06dWvSYkJAQzJ07F3PnzrVp2VoVgF599VWT2/7+/tiyZYvJNpVKxQBE1AiGG2mw9Y3IvGnTpiEzMxOzZ89ucIHTJ598Eq+//joSEhKQkZEhTQFtqFUBKD8/31blICKyCba+ETUtODgY27Ztw6uvvgoPDw8Atdfb2rp1K7p16yZx6WynVVeD/+c//4nevXujvLy8wX1lZWXo06cPvvrqK6sVjojIGnx8fBAQEGD2h+GHlCwqKgrBwcHYuXOncdvOnTvRrVs3DBgwwLitqqoKTz/9NHx9feHu7o5hw4bh22+/NTnWnj17cPPNN8PDwwN33HEHCgoKGjzfvn37MHz4cHh4eCA4OBhPP/00KisrbVY/c1oVgNLT0zFz5sxGr7Cq1Woxe/ZsrF692mqFIyIiUprz54Evv6z9114effRRbN682Xh706ZNmD59usk+8+fPx44dO5CZmYnDhw8jPDwcOp0Oly/XrqX1yy+/4L777sP48eNx9OhRPPbYY1iwYIHJMfLy8hAXF4eJEyfi2LFj2L59O/bt24fExETbV7KeVgWg7777DnFxcWbvv/vuu5Gbm9vmQhERESnRxo1A9+7A6NG1/27caJ/nffjhh7Fv3z78/PPP+Pnnn7F//348/PDDxvsrKyvxxhtv4OWXX8aYMWPQu3dvvP322/Dw8MDG/xXyjTfeQFhYGF555RX07NkTDz30EKZNm2byPGlpaXjooYcwd+5cREREYOjQoVizZg3eeecdXLt2zT6V/Z9WjQEqLi6Gi4uL+YO1a4eLFy+2uVBERERKc/48MGsWoNfX3tbrgdmzAZ0O6NrVts/dpUsXjB07FhkZGRBCYOzYsSYzvPPy8nD9+nXcfvvtxm0uLi4YPHgwTp48CQA4efIkYmJiTI47ZMgQk9vfffcdjh07hvfee8+4TQgBvV6P/Px83HLLLbaoXqNaFYCCgoJw/PhxhIeHN3r/sWPHEBAQYJWCERERWVtJSYlsB8SfOfNH+DGoqQHOnrV9AAJqu8EMXVHr16+3yXNcuXIFs2fPbnS2uL0HXLcqAP3pT3/Ciy++iLi4OLi7u5vc99///heLFi3CuHHjrFpAIiIiaygpKcG6deuMt8vKvHD5sg+8vUtMFsdMTEyUJARFRABqtWkI0mgAM20OVhcXF4fq6mqoVCrodDqT+8LCwuDq6or9+/eje/fuAIDr16/j22+/Na7Xc8stt+Dvf/+7yeO++eYbk9tRUVE4ceKE2YYUe2pVAHrhhRewc+dO3HzzzUhMTETPnj0BAKdOncL69etRU1ODhQsX2qSgREREbVG35efw4QENrgsXFXWkwX721LUr8NZbtd1eNTW14efNN+3T+gMAGo3G2J2l0WhM7vP09MQTTzyBefPmwdvbG926dcPKlStx9epVzJgxAwDw+OOP45VXXsG8efPw2GOPITc3t8H6Qc899xxuu+02JCYm4rHHHoOnpydOnDiBzz//3CSc2kOrApCfnx++/vprPPHEE0hOToYQAgCMaXH9+vXw8/OzSUGJyHnV7Zb47Tc18vPbITT0BgIDa78Kc50esqayMi9j+AEAIdT45JNxCAs7K/llUmbMqB3zc/ZsbcuPvcKPQWOzvA2WL18OvV6PRx55BBUVFRg4cCD27t2Lm266CUBtF9aOHTvwl7/8BWvXrsXgwYPx17/+FY8++qjxGP369cO//vUvLFy4EMOHD4cQAmFhYYiPj7d53epTCUOKaaXff/8dZ8+ehRACERERxhfAGZSXl0Or1aKsrKzJXwYiaru63RJNfSuXqluCnEdhYSHeeust5OeHIDMzocH9CQkZCA39GbNmzWrVeNZr164hPz8foaGhDYaHkPU19Xq35vPb4ouh3nTTTRg0aJClDyciAvBHd0Nz38ql6pYg5+PtXQKVSm/8XQMAlUoPb+/LEpaK7K1V6wAREdnK5cs+Jh9IQG0IunzZW6ISkbPSaiswfvynUKlqu1gNrY1Sd3+RfVncAkREZE38Vk62Vlpaavx/VNQR+PoW4ZdfuiE4+By6di002Y9Lujg/BiAikgXDt/L6Y4D4rZys5caNG8b/NzXerO5+5LwYgIhINqKijiAs7CwuX/aGt/dlhh+yKsOVDJobb9bUFQ+aYuGcImola73ODEBEJCtabQWDD9mEVqsF0PR4s9rfP22rjmsITFevXoWHh4d1CktmXb16FQAsDqoGDEBERKQo1h5vptFo0KlTJ1y4cAEA0L59e6hUKquUlf4ghMDVq1dx4cIFdOrUqcFija3FAEREknJ1dbXqfkTNscV4M39/fwAwhiCynU6dOhlf77ZgACIiSfn4+CAxMVG2F6gk52Tt8WYqlQoBAQHw9fXF9evXrVRKqs/FxaXNLT8GDEBEJDmGG5KCLcabaTQaq31Ak20xABEROZG611VrjJJb09jdSnUxABEROYm611UDaqd7X77sA2/vEpOWDqVeV43drVQXAxARkZOo+8He1EJ/Sr6uGsMNGfBaYERETsbcQn9lZV4Sl4xIPhiAiIicDC8sS9Q8yQPQ+vXrERISAnd3d8TExODQoUNm9/3hhx8wceJEhISEQKVSIT09vcE+ixcvhkqlMvnp1auXDWtARCQvhoX+6uKFZYlMSRqAtm/fjqSkJCxatAiHDx9G//79odPpzC4kdfXqVfTo0QPLly9vchGkPn36oLCw0Pizb98+W1WBiEh2DAv9GUIQLyxL1JCkg6BXr16NmTNnYvr06QCADRs2YPfu3di0aRMWLFjQYP9BgwZh0KBBANDo/Qbt2rWzyiqRRESOiheWJWqaZAGouroaubm5SE5ONm5Tq9WIjY3FgQMH2nTsM2fOIDAwEO7u7hgyZAjS0tLQrVs3s/tXVVWhqqrKeLu8vLxNz0/UGK7PQvbGC8uSLTn6OU2yAHTp0iXU1NTAz8/PZLufnx9OnTpl8XFjYmKQkZGBnj17orCwEKmpqRg+fDiOHz8OL6/GZ0CkpaUhNTXV4uckak799VnMUer6LGQdXOiP7MUZzmlOtw7QmDFjjP/v168fYmJi0L17d3zwwQeYMWNGo49JTk5GUlKS8XZ5eTmCg4NtXlZSjvrfkswtUKfk9Vmo7bjQH9lLS89Vcj6nSRaAOnfuDI1Gg+LiYpPtxcXFVh2/06lTJ9x88804e/as2X3c3Nzg5uZmteckakpTC9QRtZWtw42jd3uQbZj7UidnkgUgV1dXREdHIzs7GxMmTAAA6PV6ZGdnIzEx0WrPc+XKFeTl5eGRRx6x2jGJLGVugbqwsLMOc9Ig5eKlNqgxjvqlTtIusKSkJCQkJGDgwIEYPHgw0tPTUVlZaZwVNnXqVAQFBSEtLQ1AbVPaiRMnjP//9ddfcfToUXTo0AHh4eEAgGeffRbjx49H9+7d8dtvv2HRokXQaDSYPHmyNJUkqqOpBersHYD4TZ5ai5faoPoc+UudpAEoPj4eFy9eREpKCoqKihAZGYmsrCzjwOhz585Brf7jw+K3337DgAEDjLdXrVqFVatWYeTIkcjJyQEAnD9/HpMnT0ZJSQm6dOmCYcOG4ZtvvkGXLl3sWjeixhgWqKsbgqRYoM4ZBjCSdBz5Q4+so7S0FEDzX+pKS0sREBAgQQmbJ/kg6MTERLNdXoZQYxASEgIhRJPH27Ztm7WKRmR1hgXq6n9ztveHBgdlU1vIqSWTpHHjxg0AzX+pM+wnR5IHICKlkdsCdY7af0/SkUtLJklPLl/qLCH5tcCIlKD+uitabQVCQ39ucJKw9/osvGo4WYKX2iAXFxeT24bOmfqdNPX3kxO2ABHZgVzXZ2FXBllKbi2ZZF9arRbAH1+i/mhPMR0PZthPjhiAiOxEjoOJ2ZVBbcFLbZAjf4liACJSMEfuvyf7s+RSG1xuwbk58pcoBiAihWNXBrVUa7tyuXCi83PkL1EMQEQK1Nig7MZOWLxoJtXXmqDChROdV91zQ1NfouR8DmEAIlIguQ7KJufEhROdjzOcQxiAiBRKzicmci6OPFCWzHP0cwjXASIiIpsyDJSty1EGypLzYgAiIiKb4sKJJEfsAiMiIpvjbEP5U9qSBQxARERkF1w4Ub7qL1lgjjMtWcAA5OCUltiJyHFYsnAiSaP+54i5NZucackCBiAHpsTETkSOwxmmSitRU2s2ORMGIAfW0iTuTImdiBwLw41jUdKaTZwFRkRERACaXrPJ2TAAEREREQBlrdnELjAiIlIMThxpmiNf3LS1GICciLlR+0RExKvTt5RS1mxiAHISShm1T0RkKV6d3rz6SxGYW7PJmZYsYAByAkoatU9E1FY8ZzakxCULGIAcmCGJN3elZXsmdvavE5Hc8er0jVPauZkByIEZEntBwQ1s2SKg16uM92k0Ak89NQYhIe3s9kvNhRmJyBEYZjrVDUHOOtOJzOM0eAfn4+OD6Gg/vPWWChpN7TaNBnjzTRWio/3sGjS4MCMROQJenZ4AtgA5jRkzAJ0OOHsWCA8HunaVukRERPKllJlOZB4DkBPp2pXBh4iopXh1emVjFxjZTFmZF/LzQ1BW5iV1UYiIeHV6MsEWILIJrktERHKjxKneZB4DEFkd19ggIrliuCEDdoGR1SnpasJEROSY2AJEVmPoN29ujQ259q9zEUciIuVgACKrqdu/HhRUjuee06KmRgWNRmDFinJMmTJZtiGCizgSESkLAxBZlSEcPPMMEB9vWJdIha5dOwHoJGXRmsRFHImIlIUBiGzGkdclKivzwuXLPvD2LuHAbSIiJ8QARFQPp/ATEVmXHMdYMgAR1cEp/ERE1iXXMZacBk9UB6fwExFZl1zHWEoegNavX4+QkBC4u7sjJiYGhw4dMrvvDz/8gIkTJyIkJAQqlQrp6eltPiZRXYYp/HXVncJPRERtI5fLJEkagLZv346kpCQsWrQIhw8fRv/+/aHT6XDhwoVG97969Sp69OiB5cuXw9/f3yrHJKpLq63A+PGfGkOQYQwQu7+IiNru8OEBSE+fi8zMBKSnz8XhwwMkK4ukY4BWr16NmTNnYvr06QCADRs2YPfu3di0aRMWLFjQYP9BgwZh0KBBANDo/ZYckwgwXZwxKuoIwsLO4vJlb3h7XzYJP3JdxJGISO7kNsZSsgBUXV2N3NxcJCcnG7ep1WrExsbiwIEDsjkmKQMvkkhEZFtNjbFUVAC6dOkSampq4OfnZ7Ldz88Pp06dsusxq6qqUFVVZbxdXl5u0fOTY2O4ISKyneYuk2Rvkg+CloO0tDRotVrjT3BwsNRFIiIicipyG2MpWQtQ586dodFoUFxcbLK9uLjY7ABnWx0zOTkZSUlJxtvl5eUMQURkM3JcFI7IVuQ6xlKyAOTq6oro6GhkZ2djwoQJAAC9Xo/s7GwkJiba9Zhubm5wc3Oz6DmJiFqj/qJw5i67wgvvkrOQ6xhLSWeBJSUlISEhAQMHDsTgwYORnp6OyspK4wyuqVOnIigoCGlpaQBqBzmfOHHC+P9ff/0VR48eRYcOHRAeHt6iYxIRSanuh0BTl13hhXfJmcgxzEsagOLj43Hx4kWkpKSgqKgIkZGRyMrKMg5iPnfuHNTqP4Yp/fbbbxgw4I81A1atWoVVq1Zh5MiRyMnJadExiYjkQG5TgomURvJrgSUmJprtnjKEGoOQkBAIIdp0TCIiOZDblGCyP44Fk5bkAYiISInkNiWY7EuuFwhVEk6DJyKSgNymBJN91W/5MXd9LI4Fsx22ABERSaSpKcGkHE0NhifbYQAishD778katNoKBh8Fs+VgeJ6jmsYARGQB9t+TpVq62BsvvKsMthoMz3NU8xiA7IAp3Pm0tF+e/fdUn1wXhSNp2GowfGNjjBpbcFPJ5ygGIBtjCiei+vi3TgaGwfD1xwBZs1uUY4waxwBkY2wpUAZz366IiJpjy8HwXHDTPAYgojbitysiaq36Y7zMDYZv61gwLrhpHgMQURvw2xURWcJeY8G44KZ5DEBEbWDLb1dyGzwvt/IQOTp7/L3YY4yRo2IAImoDW327ktvgebmVh4hajgtuNo4BiMgChn755r5dWdp/L7cprHIrD5EBWyYbZ68xRo6MAcjOOFvIOdTvv09JuYiCgnYICbmBwMBBAAZZ7cQrt0HWcisPKVf9lklz51cltkxyvanmMQDZWN103dQHh5JTuKOqe+IICACio63/HHIbZC238pCy1f1wb+r8qtSWSSWHm5ZgALIxQwovKLiBJUt8IYQKQO0Hx+7d45GSEoOQkHb8RaVGyW0Kq9zKQwQwmJNl1M3vQm3l4+OD8nI/6PUqk+01NSpUVPgx/JBZhkHWdUk5hVVu5SECmg7mROawBchOIiIAtRrQ1/ns0GiA8HDT/Tigj+qS2xRWuZWHCOBaN2QZBiA76doVeOstYPZsoKamNvy8+WbtdgNONabGyG0Kq9zKQ8RgTpZgALKjGTMAnQ44e7a25adu+AF43TD6g9ymsMqtPET1MZhTazEA2VnXrg2DD1F9cpvCKrfyyA27ruXBXDAnagwDEJFMye0DU27lkQuuRSOdlrY4smWSGsMARETUBlyLRjpsmaS2YAAiIrICrkUjDYYbshTXASIisgKuRUPkWBiAZKyszAv5+SEoK/OSuihE1AwuEknkWNgFJiO8bhiR4+JaNESOhQFIRnjdMMfCqc9UH9eiIXIcDEAy4+Pjg2PHTC+ZAdS9bpg05SJTXLXbupwpTHItGiLHwAAkQy29bhhJh6t2W4+jr6PDtWiIHBMDkAy15LphJC/mPrSpeY6+jg7XoiFyTAxAMtXcdcNIPpr60KaWc+R1dBhuiBwPA5CM8bph8ienD21HH0fT1Do6cg9AROR4GICI2kAuH9r2GJRt64BlWEen7uvJdXSIyFYYgIjaQC4f2rYelG2PgcpcR4cs4egtnyQdBiCiNpDrh7a1B2Xba6Ay19Gh1nD0GYQkLQYgIgvUndLc1Ie2FFOfbTko2x5jnriODrWUo88gJGkxABFZQK5Tn20dUGwx5onr6FBbyWkygpI4evcjAxCRheT4h23rQdm2GPMk1zBJjkMukxGUxBlWw5fF1eDXr1+PkJAQuLu7IyYmBocOHWpy/w8//BC9evWCu7s7+vbtiz179pjcP23aNKhUKpOfuLg4W1aBSBZsfUVyw5gnw3NYa8yTj48PAgICzP7I9QRK8mDr33tqyBlWw5e8BWj79u1ISkrChg0bEBMTg/T0dOh0Opw+fRq+vr4N9v/6668xefJkpKWlYdy4cdi6dSsmTJiAw4cP49ZbbzXuFxcXh82bNxtvu7m52aU+5LgcvTkXsM+gbA5UJrmR62QEJXHE1fAlD0CrV6/GzJkzMX36dADAhg0bsHv3bmzatAkLFixosP9rr72GuLg4zJs3DwCwdOlSfP7551i3bh02bNhg3M/NzQ3+/v72qQQ5PEdvzrX3oGwOVCa5kUMwd4YvUZZw1NXwJQ1A1dXVyM3NRXJysnGbWq1GbGwsDhw40OhjDhw4gKSkJJNtOp0Ou3btMtmWk5MDX19f3HTTTRg9ejSWLVtm9hevqqoKVVVVxtvl5eUW1ogclSXNuXI62dl6HA0HKpMjkDKYO/qXKEs58gB0SQPQpUuXUFNTAz8/P5Ptfn5+OHXqVKOPKSoqanT/oqIi4+24uDjcd999CA0NRV5eHp5//nmMGTMGBw4cgEajaXDMtLQ0pKamWqFG5Cyaa86V48nOls+jtIHKcgq3ZJ6cgnn93xdz5xA5j4mxhCMPQJe8C8wWJk2aZPx/37590a9fP4SFhSEnJwd33nlng/2Tk5NNWpXKy8sRHBxsl7KS/LSkOdcZBgC2llI+8Lm4nuOQazB31C4hS8hlNXxLSBqAOnfuDI1Gg+LiYpPtxcXFZsfv+Pv7t2p/AOjRowc6d+6Ms2fPNhqA3NzcOEiaAFjenOuIAwCpcVxcz7HILYQ6cpeQJRx5ALqkAcjV1RXR0dHIzs7GhAkTAAB6vR7Z2dlITExs9DFDhgxBdnY25s6da9z2+eefY8iQIWaf5/z58ygpKUFAQIA1i09OyJLmXCV921MSpX2QkXU4cpdQa8h5NfyWkrwLLCkpCQkJCRg4cCAGDx6M9PR0VFZWGmeFTZ06FUFBQUhLSwMAzJkzByNHjsQrr7yCsWPHYtu2bfjPf/6Dt956CwBw5coVpKamYuLEifD390deXh7mz5+P8PBw6HQ6yepJjqG1zbn8kHReSvkgI+ty5C6h1pBr92NrSB6A4uPjcfHiRaSkpKCoqAiRkZHIysoyDnQ+d+4c1Oo/fpGGDh2KrVu34oUXXsDzzz+PiIgI7Nq1y7gGkEajwbFjx5CZmYnS0lIEBgbi7rvvxtKlSx2im4uDL6XV2uZcfkg6L6V8kJF1OXKXUGs5+meR5AEIqB1MaK7LKycnp8G2Bx54AA888ECj+3t4eGDv3r3WLJ7dyHFmkVJY2pzLD0nnpaQPMrIuOaxJZAmlfQGXRQCiWkqcWSQXljbn8kPSuTnqBxnZX/0vR+bWJJLrmBglfgFnACL6n9b8UTvDAEBqGa56TS3h6GNilLiOEQMQkQUc/WRH5slpcT1yLM7y966Uma0MQOTUbNmnbeuTndL64+WC4ZaUTEkzWxmAyGk5cp+2I5fdGfA1JaVS0sxWdfO7EDkmRx5U7shlJyLHZZjZWpezzmxlC5CM8fIKZCCH3wV2yTknW7+v/L1xLEqa2coAJCN1B1U2NQiNgy8tI4cQYQk5DEjkBUKdk63fV/7eOCalLP/AACQjhsGXBQU3sGSJL4RQAajtf929ezxSUmIQEtKOJ4oWKi0tNf6/qRBRWloq2+vEyWVAIi8Q6pxs/b7y98ZxOPo6RpZgAJIZHx8fHDsG6E27YFFTo0JFhR+YfVruxo0bAJoPEYb95EhuAxLlEsjIumz9vvL3Rv6UOPuRAUiGIiIAtdo0BGk0QHi4dGVyZHILEa0ht0ttOPJrSebZ+n3l741jcKZw0xIMQDLUtSvw1lvA7NlATU1t+Hnzzdrt1HpyCxGtIbcBiY78WpJ5tn5fHfX3hgO4nRsDkEzNmAHodMDZs7UtPww/refi4gKgNkT063cM333XH4AKgEC/fseMIcKwn5zI9VIbcgtkZB22fl8d8feGA7idHwOQjHXtyuDTFlqtFkDtievYsX6oDT8AoMKxY/0wevQ//zfQTytZGc2Rc3+8UmaIKI2t31dH+73hAG7nxwBETs9Rxx/I+Vulo10glF0ZLWPr99XRfm8ADuB2ZgxA5PQcdfyBnDjyBULZlWGerd9XR/69MXDUL1AAg39zGIDIaRlOqs2NP5DzyVcu5Nwl1xxH78qo+yH2229q5Oe3Q2joDQQG1k4TbesFfW35vjry741Ba75AySlw8HqCzWMAIqdV/+SbknIRBQXtEBJyA4GBgwAMkv3JV04c/XVyxK6Muh9iTYW3tnyI2fp9dfTfm5YO4JZb4KgfxMy1fMo1+NsDAxA5tbonmoAAIDpawsKQ1VjSKuKIXRmGOjYX3pT8IWYPLRnALefAIYfL6cgRAxARORRLW0UceSyYI4Y3Z9OaAdxyChyO2PJpLwxARORQLG0Vac1aNLYcd2PJ8R05vDkqSwdwyy1wyCU8y2l8lAEDEBE5JEtO7C3pyrD1uJvWHN/AERcSdHSWDuCWS+AwkEN4ltv4KAMGICJySJae2JvryrD1uBtLj+9oCwk6A0s+jOUQOOqSQ3hu6d+KvcdHMQARkUNq6Ynd0q4MOV4g1BEXElQaOQSO+hieG8cAREQOqyUndku7MniBULKUHAJH/UBvLjxLsQ6auRly9sYAREQOrSWtIpZ0ZcjhAqHOsJKyUsgtcMh1EUo5zZBjACIiMkPqC4TK9UOMGpLjeyW33wu5zZBjACIih2LvVhGpLxAqtw8xMo/vVdPkNkOOAYiIHIocv2kTUfPkNu6NAYiIHI4tww2vkE5kXXK9MLVKCCHs+owOoLy8HFqtFmVlZejYsaPUxSEiO7P1qrVyXBWXyJbqr37+x4WprbO6ukFrPr/ZAkREVA+vkE5kXXK8MLW6+V2IiIiInAsDEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKY4sAtD69esREhICd3d3xMTE4NChQ03u/+GHH6JXr15wd3dH3759sWfPHpP7hRBISUlBQEAAPDw8EBsbizNnztiyCkRERORAJA9A27dvR1JSEhYtWoTDhw+jf//+0Ol0uHDhQqP7f/3115g8eTJmzJiBI0eOYMKECZgwYQKOHz9u3GflypVYs2YNNmzYgIMHD8LT0xM6nQ7Xrl2zV7WIiIhIxiS/FEZMTAwGDRqEdevWAQD0ej2Cg4Px1FNPYcGCBQ32j4+PR2VlJT799FPjtttuuw2RkZHYsGEDhBAIDAzEM888g2effRYAUFZWBj8/P2RkZGDSpEnNlomXwiAiInI8rfn8lrQFqLq6Grm5uYiNjTVuU6vViI2NxYEDBxp9zIEDB0z2BwCdTmfcPz8/H0VFRSb7aLVaxMTEmD1mVVUVysvLTX6IiIjIeUl6LbBLly6hpqYGfn5+Jtv9/Pxw6tSpRh9TVFTU6P5FRUXG+w3bzO1TX1paGlJTUxtsZxAiIiJyHIbP7ZZ0bvFiqACSk5ORlJRkvP3rr7+id+/eCA4OlrBUREREZImKigpotdom95E0AHXu3BkajQbFxcUm24uLi+Hv79/oY/z9/Zvc3/BvcXExAgICTPaJjIxs9Jhubm5wc3Mz3u7QoQN++eUXeHl5QaVStbpeTSkvL0dwcDB++eUXpxxfxPo5PmevI+vn+Jy9jqyf5YQQqKioQGBgYLP7ShqAXF1dER0djezsbEyYMAFA7SDo7OxsJCYmNvqYIUOGIDs7G3PnzjVu+/zzzzFkyBAAQGhoKPz9/ZGdnW0MPOXl5Th48CCeeOKJFpVLrVaja9euFterJTp27OiUv9gGrJ/jc/Y6sn6Oz9nryPpZprmWHwPJu8CSkpKQkJCAgQMHYvDgwUhPT0dlZSWmT58OAJg6dSqCgoKQlpYGAJgzZw5GjhyJV155BWPHjsW2bdvwn//8B2+99RYAQKVSYe7cuVi2bBkiIiIQGhqKF198EYGBgcaQRURERMomeQCKj4/HxYsXkZKSgqKiIkRGRiIrK8s4iPncuXNQq/+YrDZ06FBs3boVL7zwAp5//nlERERg165duPXWW437zJ8/H5WVlZg1axZKS0sxbNgwZGVlwd3d3e71IyIiIvmRPAABQGJiotkur5ycnAbbHnjgATzwwANmj6dSqbBkyRIsWbLEWkW0Gjc3NyxatMhkzJEzYf0cn7PXkfVzfM5eR9bPPiRfCJGIiIjI3iS/FAYRERGRvTEAERERkeIwABEREZHiMAARERGR4jAAtdH69esREhICd3d3xMTE4NChQ03un56ejp49e8LDwwPBwcH4y1/+gmvXrrXpmLZk7fotXrwYKpXK5KdXr162rkaTWlPH69evY8mSJQgLC4O7uzv69++PrKysNh3T1qxdPzm9h//+978xfvx4BAYGQqVSYdeuXc0+JicnB1FRUXBzc0N4eDgyMjIa7COn988WdXTk97CwsBBTpkzBzTffDLVabbIobl0ffvghevXqBXd3d/Tt2xd79uyxfuFbwBb1y8jIaPD+SbnMS2vruHPnTtx1113o0qULOnbsiCFDhmDv3r0N9rP536Egi23btk24urqKTZs2iR9++EHMnDlTdOrUSRQXFze6/3vvvSfc3NzEe++9J/Lz88XevXtFQECA+Mtf/mLxMW3JFvVbtGiR6NOnjygsLDT+XLx40V5VaqC1dZw/f74IDAwUu3fvFnl5eeL1118X7u7u4vDhwxYf05ZsUT85vYd79uwRCxcuFDt37hQAxEcffdTk/j/99JNo3769SEpKEidOnBBr164VGo1GZGVlGfeR0/snhG3q6MjvYX5+vnj66adFZmamiIyMFHPmzGmwz/79+4VGoxErV64UJ06cEC+88IJwcXER33//vW0q0QRb1G/z5s2iY8eOJu9fUVGRbSrQAq2t45w5c8SKFSvEoUOHxI8//iiSk5OFi4uL3c+jDEBtMHjwYPHkk08ab9fU1IjAwECRlpbW6P5PPvmkGD16tMm2pKQkcfvtt1t8TFuyRf0WLVok+vfvb5PyWqK1dQwICBDr1q0z2XbfffeJhx56yOJj2pIt6ie399CgJSfe+fPniz59+phsi4+PFzqdznhbTu9ffdaqoyO/h3WNHDmy0YDw4IMPirFjx5psi4mJEbNnz25jCdvGWvXbvHmz0Gq1ViuXNbW2jga9e/cWqampxtv2+DtkF5iFqqurkZubi9jYWOM2tVqN2NhYHDhwoNHHDB06FLm5ucZmvJ9++gl79uzBn/70J4uPaSu2qJ/BmTNnEBgYiB49euChhx7CuXPnbFeRJlhSx6qqqgZNzR4eHti3b5/Fx7QVW9TPQC7vYWsdOHDA5PUAAJ1OZ3w95PT+Waq5Oho46nvYEi19DRzZlStX0L17dwQHB+Pee+/FDz/8IHWRLKbX61FRUQFvb28A9vs7ZACy0KVLl1BTU2O8ZIeBn58fioqKGn3MlClTsGTJEgwbNgwuLi4ICwvDqFGj8Pzzz1t8TFuxRf0AICYmBhkZGcjKysIbb7yB/Px8DB8+HBUVFTatT2MsqaNOp8Pq1atx5swZ6PV6fP7559i5cycKCwstPqat2KJ+gLzew9YqKipq9PUoLy/Hf//7X1m9f5Zqro6AY7+HLWHuNXCU97A5PXv2xKZNm/Dxxx/j3XffhV6vx9ChQ3H+/Hmpi2aRVatW4cqVK3jwwQcB2O88ygBkRzk5OfjrX/+K119/HYcPH8bOnTuxe/duLF26VOqiWUVL6jdmzBg88MAD6NevH3Q6Hfbs2YPS0lJ88MEHEpa85V577TVERESgV69ecHV1RWJiIqZPn25yvTpH1pL6Ofp7SHwPHd2QIUMwdepUREZGYuTIkdi5cye6dOmCN998U+qitdrWrVuRmpqKDz74AL6+vnZ9bllcC8wRde7cGRqNBsXFxSbbi4uL4e/v3+hjXnzxRTzyyCN47LHHAAB9+/Y1XrR14cKFFh3TVmxRv8ZCQqdOnXDzzTfj7Nmz1q9EMyypY5cuXbBr1y5cu3YNJSUlCAwMxIIFC9CjRw+Lj2krtqhfY6R8D1vL39+/0dejY8eO8PDwgEajkc37Z6nm6tgYR3oPW8Lca+Ao72Frubi4YMCAAQ73/m3btg2PPfYYPvzwQ5PuLnudR53ja6sEXF1dER0djezsbOM2vV6P7OxsDBkypNHHXL16tUEI0Gg0AAAhhEXHtBVb1K8xV65cQV5eHgICAqxU8pZry+vt7u6OoKAg3LhxAzt27MC9997b5mNamy3q1xgp38PWGjJkiMnrAQCff/658fWQ0/tnqebq2BhHeg9bwpLXwJHV1NTg+++/d6j37/3338f06dPx/vvvY+zYsSb32e3v0GrDqRVo27Ztws3NTWRkZIgTJ06IWbNmiU6dOhmnIz7yyCNiwYIFxv0XLVokvLy8xPvvvy9++ukn8dlnn4mwsDDx4IMPtviYjl6/Z555RuTk5Ij8/Hyxf/9+ERsbKzp37iwuXLhg9/oJ0fo6fvPNN2LHjh0iLy9P/Pvf/xajR48WoaGh4vfff2/xMe3JFvWT03tYUVEhjhw5Io4cOSIAiNWrV4sjR46In3/+WQghxIIFC8Qjjzxi3N8wRXzevHni5MmTYv369Y1Og5fL+yeEberoyO+hEMK4f3R0tJgyZYo4cuSI+OGHH4z379+/X7Rr106sWrVKnDx5UixatEiyafC2qF9qaqrYu3evyMvLE7m5uWLSpEnC3d3dZB97am0d33vvPdGuXTuxfv16k6n8paWlxn3s8XfIANRGa9euFd26dROurq5i8ODB4ptvvjHeN3LkSJGQkGC8ff36dbF48WIRFhYm3N3dRXBwsPjzn/9s8uHS3DHtzdr1i4+PFwEBAcLV1VUEBQWJ+Ph4cfbsWTvWqKHW1DEnJ0fccsstws3NTfj4+IhHHnlE/Prrr606pr1Zu35yeg+//PJLAaDBj6FOCQkJYuTIkQ0eExkZKVxdXUWPHj3E5s2bGxxXTu+fLero6O9hY/t3797dZJ8PPvhA3HzzzcLV1VX06dNH7N692z4VqscW9Zs7d67x99PPz0/86U9/MllDx95aW8eRI0c2ub+Brf8OVUKY6ZsgIiIiclIcA0RERESKwwBEREREisMARERERIrDAERERESKwwBEREREisMARERERIrDAERERESKwwBEROQAcnJyoFKpUFpaKnVRiJwCAxARmZg2bRpUKhWWL19usn3Xrl1QqVTG20IIvP322xgyZAg6duyIDh06oE+fPpgzZ06LL8p49epVJCcnIywsDO7u7ujSpQtGjhyJjz/+2LhPSEgI0tPTrVI3WzO8diqVCi4uLggNDcX8+fNx7dq1Vh1n1KhRmDt3rsm2oUOHorCwEFqt1oolJlIuBiAiasDd3R0rVqzA77//3uj9QghMmTIFTz/9NP70pz/hs88+w4kTJ7Bx40a4u7tj2bJlLXqexx9/HDt37sTatWtx6tQpZGVl4f7770dJSYk1q2NXcXFxKCwsxE8//YRXX30Vb775JhYtWtTm47q6usLf398khBJRG1j1whpE5PASEhLEuHHjRK9evcS8efOM2z/66CNhOGW8//77AoD4+OOPGz2GXq9v0XNptVqRkZFh9v7Grhlk8NVXX4lhw4YJd3d30bVrV/HUU0+JK1euGO9/5513RHR0tOjQoYPw8/MTkydPFsXFxcb7DdcvysrKEpGRkcLd3V3ccccdori4WOzZs0f06tVLeHl5icmTJ4vKysoW1SchIUHce++9Jtvuu+8+MWDAAOPtS5cuiUmTJonAwEDh4eEhbr31VrF161aTY9Svc35+vrG8da+t97e//U307t1buLq6iu7du4tVq1a1qJxEJARbgIioAY1Gg7/+9a9Yu3Ytzp8/3+D+999/Hz179sQ999zT6ONb2krh7++PPXv2oKKiotH7d+7cia5du2LJkiUoLCxEYWEhACAvLw9xcXGYOHEijh07hu3bt2Pfvn1ITEw0Pvb69etYunQpvvvuO+zatQsFBQWYNm1ag+dYvHgx1q1bh6+//hq//PILHnzwQaSnp2Pr1q3YvXs3PvvsM6xdu7ZF9anv+PHj+Prrr+Hq6mrcdu3aNURHR2P37t04fvw4Zs2ahUceeQSHDh0CALz22msYMmQIZs6caaxzcHBwg2Pn5ubiwQcfxKRJk/D9999j8eLFePHFF5GRkWFRWYkUR+oERkTyUrcV47bbbhOPPvqoEMK0BahXr17innvuMXncnDlzhKenp/D09BRBQUEteq5//etfomvXrsLFxUUMHDhQzJ07V+zbt89kn+7du4tXX33VZNuMGTPErFmzTLZ99dVXQq1Wi//+97+NPte3334rAIiKigohxB8tQF988YVxn7S0NAFA5OXlGbfNnj1b6HS6FtUnISFBaDQa4enpKdzc3AQAoVarxd/+9rcmHzd27FjxzDPPGG+PHDlSzJkzx2Sf+i1AU6ZMEXfddZfJPvPmzRO9e/duUVmJlI4tQERk1ooVK5CZmYmTJ082u+/ChQtx9OhRpKSk4MqVKy06/ogRI/DTTz8hOzsb999/P3744QcMHz4cS5cubfJx3333HTIyMtChQwfjj06ng16vR35+PoDaFpLx48ejW7du8PLywsiRIwEA586dMzlWv379jP/38/ND+/bt0aNHD5NtFy5caFF9AOCOO+7A0aNHcfDgQSQkJGD69OmYOHGi8f6amhosXboUffv2hbe3Nzp06IC9e/c2KFdzTp48idtvv91k2+23344zZ86gpqamVcciUiIGICIya8SIEdDpdEhOTjbZHhERgdOnT5ts69KlC8LDw+Hr69uq53BxccHw4cPx3HPP4bPPPsOSJUuwdOlSVFdXm33MlStXMHv2bBw9etT489133+HMmTMICwtDZWUldDodOnbsiPfeew/ffvstPvroIwBocFwXFxfj/w2zt+pSqVTQ6/Utro+npyfCw8PRv39/bNq0CQcPHsTGjRuN97/88st47bXX8Nxzz+HLL7/E0aNHodPpmqwvEVlfO6kLQETytnz5ckRGRqJnz57GbZMnT8aUKVPw8ccf495777Xq8/Xu3Rs3btzAtWvX4OrqCldX1wYtGlFRUThx4gTCw8MbPcb333+PkpISLF++3Dh+5j//+Y9Vy9kSarUazz//PJKSkjBlyhR4eHhg//79uPfee/Hwww8DAPR6PX788Uf07t3b+LjG6lzfLbfcgv3795ts279/P26++WZoNBrrV4bIybAFiIia1LdvXzz00ENYs2aNcdukSZNw//33Y9KkSViyZAkOHjyIgoIC/Otf/8L27dtb/AE8atQovPnmm8jNzUVBQQH27NmD559/HnfccQc6duwIoHYdoH//+9/49ddfcenSJQDAc889h6+//hqJiYk4evQozpw5g48//tg4CLpbt25wdXXF2rVr8dNPP+Hvf/97s91qtvLAAw9Ao9Fg/fr1AGpbzz7//HN8/fXXOHnyJGbPno3i4mKTx4SEhBhf00uXLjXaAvXMM88gOzsbS5cuxY8//ojMzEysW7cOzz77rF3qReToGICIqFlLliwx+RBWqVTYvn070tPTsWfPHtx5553o2bMnHn30UQQHB2Pfvn0tOq5Op0NmZibuvvtu3HLLLXjqqaeg0+nwwQcfmDx3QUEBwsLC0KVLFwC143b+9a9/4ccff8Tw4cMxYMAApKSkIDAwEEBtd1xGRgY+/PBD9O7dG8uXL8eqVaus+Iq0XLt27ZCYmIiVK1eisrISL7zwAqKioqDT6TBq1Cj4+/tjwoQJJo959tlnodFo0Lt3b3Tp0qXR8UFRUVH44IMPsG3bNtx6661ISUnBkiVLGp3pRkQNqYQQQupCEBEREdkTW4CIiIhIcRiAiMhm6k5Tr//z1VdfSV28Vjl37lyT9WntNHYikha7wIjIZpq6KGpQUBA8PDzsWJq2uXHjBgoKCszeHxISgnbtOLGWyFEwABEREZHisAuMiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBTn/wHUz6u5ZkyWHAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVEdJREFUeJzt3XtcVGX+B/DPMHITYRAQGBFFRbPMG3hJu2hGoSnF2pZZmZpmtrJGlKWZl9YKr4S3NF1vW5mu6baWraakv93UVgPd0tTSIDUBFXRAKEDm+f1BMzLADMztnJk5n/frxUuZOXPmOSdyPjyX76MSQggQERERKYiX3A0gIiIikhoDEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQEZEL27BhA1QqFfLy8uRuCpFHYQAiUrgjR44gJSUFXbt2RUBAANq2bYvHHnsMP/zwQ71jBw0aBJVKBZVKBS8vLwQFBeGWW27B6NGjsWfPHqve99NPP8XAgQMRHh6O5s2bo0OHDnjsscewa9cuR11aPW+//TY++eSTeo8fPHgQc+bMwbVr15z23nXNmTPHeC9VKhWaN2+O2267Da+//jpKSkoc8h6bNm1CZmamQ85F5GkYgIgUbv78+di2bRvuu+8+LFmyBBMnTsS///1vxMXF4fjx4/WOb9OmDd5//3387W9/w8KFC/HQQw/h4MGDeOCBBzBy5EhUVVU1+p6LFi3CQw89BJVKhenTp+Odd97BI488gh9//BGbN292xmUCsByA3njjDUkDkMHKlSvx/vvvIyMjA126dMFbb72FIUOGwBHbNDIAEZnXTO4GEJG80tLSsGnTJvj4+BgfGzlyJLp164Z58+bhgw8+MDleo9HgqaeeMnls3rx5mDJlCt59913ExMRg/vz5Zt/vxo0bmDt3Lu6//3588cUX9Z6/dOmSnVfkOsrLy9G8eXOLx/zxj39EWFgYAGDSpEl45JFHsH37dnz99dfo37+/FM0kUiT2ABEp3IABA0zCDwB06tQJXbt2xcmTJ5t0DrVajaVLl+K2227D8uXLodPpzB575coVlJSU4M4772zw+fDwcJPvf/vtN8yZMwedO3eGn58ftFotRowYgbNnzxqPWbRoEQYMGIDQ0FD4+/sjPj4eH3/8scl5VCoVysrKsHHjRuOw09ixYzFnzhxMnToVANC+fXvjc7Xn3HzwwQeIj4+Hv78/QkJC8Pjjj+P8+fMm5x80aBBuv/12ZGdn45577kHz5s3x2muvNen+1TZ48GAAQG5ursXj3n33XXTt2hW+vr5o3bo1Jk+ebNKDNWjQIOzcuRM///yz8ZpiYmKsbg+Rp2IPEBHVI4RAYWEhunbt2uTXqNVqjBo1CjNnzsRXX32FYcOGNXhceHg4/P398emnn+LPf/4zQkJCzJ6zuroaw4cPR1ZWFh5//HG88MILKC0txZ49e3D8+HF07NgRALBkyRI89NBDePLJJ1FZWYnNmzfj0UcfxWeffWZsx/vvv48JEyagb9++mDhxIgCgY8eOCAgIwA8//ICPPvoI77zzjrE3plWrVgCAt956CzNnzsRjjz2GCRMm4PLly1i2bBnuueceHD16FMHBwcb2FhUVYejQoXj88cfx1FNPISIiosn3z8AQ7EJDQ80eM2fOHLzxxhtISEjA888/j9OnT2PlypU4cuQIDhw4AG9vb8yYMQM6nQ4XLlzAO++8AwBo0aKF1e0h8liCiKiO999/XwAQa9euNXl84MCBomvXrmZf949//EMAEEuWLLF4/lmzZgkAIiAgQAwdOlS89dZbIjs7u95x69atEwBERkZGvef0er3x7+Xl5SbPVVZWittvv10MHjzY5PGAgAAxZsyYeudauHChACByc3NNHs/LyxNqtVq89dZbJo9/9913olmzZiaPDxw4UAAQq1atMnvdtc2ePVsAEKdPnxaXL18Wubm54r333hO+vr4iIiJClJWVCSGEWL9+vUnbLl26JHx8fMQDDzwgqqurjedbvny5ACDWrVtnfGzYsGGiXbt2TWoPkdJwCIyITJw6dQqTJ09G//79MWbMGKtea+hhKC0ttXjcG2+8gU2bNqFXr17YvXs3ZsyYgfj4eMTFxZkMu23btg1hYWH485//XO8cKpXK+Hd/f3/j369evQqdToe7774bOTk5VrW/ru3bt0Ov1+Oxxx7DlStXjF+RkZHo1KkT9u3bZ3K8r68vxo0bZ9V73HLLLWjVqhXat2+P5557DrGxsdi5c6fZuUN79+5FZWUlUlNT4eV185/wZ599FkFBQdi5c6f1F0qkQBwCIyKjgoICDBs2DBqNBh9//DHUarVVr79+/ToAIDAwsNFjR40ahVGjRqGkpAT//e9/sWHDBmzatAlJSUk4fvw4/Pz8cPbsWdxyyy1o1szyP1WfffYZ3nzzTRw7dgwVFRXGx2uHJFv8+OOPEEKgU6dODT7v7e1t8n1UVFS9+VSN2bZtG4KCguDt7Y02bdoYh/XM+fnnnwHUBKfafHx80KFDB+PzRGQZAxARAQB0Oh2GDh2Ka9eu4T//+Q9at25t9TkMy+ZjY2Ob/JqgoCDcf//9uP/+++Ht7Y2NGzfiv//9LwYOHNik1//nP//BQw89hHvuuQfvvvsutFotvL29sX79emzatMnqa6hNr9dDpVLhX//6V4NhsO6cmto9UU11zz33GOcdEZF0GICICL/99huSkpLwww8/YO/evbjtttusPkd1dTU2bdqE5s2b46677rKpHb1798bGjRuRn58PoGaS8n//+19UVVXV620x2LZtG/z8/LB79274+voaH1+/fn29Y831CJl7vGPHjhBCoH379ujcubO1l+MU7dq1AwCcPn0aHTp0MD5eWVmJ3NxcJCQkGB+ztweMyJNxDhCRwlVXV2PkyJE4dOgQtm7dalPtmerqakyZMgUnT57ElClTEBQUZPbY8vJyHDp0qMHn/vWvfwG4ObzzyCOP4MqVK1i+fHm9Y8XvhQLVajVUKhWqq6uNz+Xl5TVY8DAgIKDBYocBAQEAUO+5ESNGQK1W44033qhXmFAIgaKiooYv0okSEhLg4+ODpUuXmrRp7dq10Ol0JqvvAgICLJYkIFIy9gARKdxLL72EHTt2ICkpCcXFxfUKH9YteqjT6YzHlJeX48yZM9i+fTvOnj2Lxx9/HHPnzrX4fuXl5RgwYADuuOMODBkyBNHR0bh27Ro++eQT/Oc//0FycjJ69eoFAHj66afxt7/9DWlpaTh8+DDuvvtulJWVYe/evfjTn/6Ehx9+GMOGDUNGRgaGDBmCJ554ApcuXcKKFSsQGxuLb7/91uS94+PjsXfvXmRkZKB169Zo3749+vXrh/j4eADAjBkz8Pjjj8Pb2xtJSUno2LEj3nzzTUyfPh15eXlITk5GYGAgcnNz8Y9//AMTJ07Eyy+/bNf9t1arVq0wffp0vPHGGxgyZAgeeughnD59Gu+++y769Olj8t8rPj4eW7ZsQVpaGvr06YMWLVogKSlJ0vYSuSw5l6ARkfwMy7fNfVk6tkWLFqJTp07iqaeeEl988UWT3q+qqkqsWbNGJCcni3bt2glfX1/RvHlz0atXL7Fw4UJRUVFhcnx5ebmYMWOGaN++vfD29haRkZHij3/8ozh79qzxmLVr14pOnToJX19f0aVLF7F+/XrjMvPaTp06Je655x7h7+8vAJgsiZ87d66IiooSXl5e9ZbEb9u2Tdx1110iICBABAQEiC5duojJkyeL06dPm9wbSyUC6jK07/LlyxaPq7sM3mD58uWiS5cuwtvbW0RERIjnn39eXL161eSY69eviyeeeEIEBwcLAFwST1SLSggHbDhDRERE5EY4B4iIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHhRAboNfrcfHiRQQGBrKUPBERkZsQQqC0tBStW7eGl5flPh4GoAZcvHgR0dHRcjeDiIiIbHD+/Hm0adPG4jEMQA0IDAwEUHMDLe1pRERERK6jpKQE0dHRxs9xSxiAGmAY9goKCmIAIiIicjNNmb7CSdBERESkOAxAREREpDgMQERERKQ4nANERETkINXV1aiqqpK7GR7L29sbarXaIediACIiIrKTEAIFBQW4du2a3E3xeMHBwYiMjLS7Th8DEBERkZ0M4Sc8PBzNmzdnEV0nEEKgvLwcly5dAgBotVq7zscAREREZIfq6mpj+AkNDZW7OR7N398fAHDp0iWEh4fbNRzGSdBERER2MMz5ad68ucwtUQbDfbZ3rhUDEBERkQNw2EsajrrPHAIjSRUVFaGystLs8z4+PuxCJiIip2MAIskUFRVh+fLljR6XkpLCEERERE7FITCSjKWeH1uOIyIi+4wdOxYqlQoqlQre3t6IiIjA/fffj3Xr1kGv1zf5PBs2bEBwcLDzGuoE7AEiIiKSmZzTA4YMGYL169ejuroahYWF2LVrF1544QV8/PHH2LFjB5o188yo4JlXRURE5Cbknh7g6+uLyMhIAEBUVBTi4uJwxx134L777sOGDRswYcIEZGRkYP369fjpp58QEhKCpKQkLFiwAC1atMD+/fsxbtw4ADcnKM+ePRtz5szB+++/jyVLluD06dMICAjA4MGDkZmZifDwcIdfh7U4BEZERCQjV5weMHjwYPTo0QPbt28HAHh5eWHp0qU4ceIENm7ciC+//BKvvPIKAGDAgAHIzMxEUFAQ8vPzkZ+fj5dffhlAzVL1uXPn4n//+x8++eQT5OXlYezYsZJdhyXsASLZ6HSBKC4ORUhIETSaUrmbQ0REtXTp0gXffvstACA1NdX4eExMDN58801MmjQJ7777Lnx8fKDRaKBSqYw9SQbPPPOM8e8dOnTA0qVL0adPH1y/fh0tWrSQ5DrMYQAiWeTk9MKnnw6HEF5QqfRISvoMcXFH5W4WERH9TghhHNLau3cv0tPTcerUKZSUlODGjRv47bffUF5ebrEAZHZ2NubMmYP//e9/uHr1qnFi9blz53DbbbdJch3mcAiMJKfTBRrDDwAI4YVPPx0OnS5Q5pYREZHByZMn0b59e+Tl5WH48OHo3r07tm3bhuzsbKxYsQKA5WG5srIyJCYmIigoCB9++CGOHDmCf/zjH42+TirsASLJ+Pj4AACKi0ON4cdACC8UF4dAoyk1HkdERPL48ssv8d133+HFF19EdnY29Ho9Fi9eDC+vmn+7//73v5sc7+Pjg+rqapPHTp06haKiIsybNw/R0dEAgG+++UaaC2gCBiCSTGhoKFJSUpCXdwPvvy+g198sZ65WC/z5z0MRE9OMRRCJiCRUUVGBgoICk2Xw6enpGD58OJ5++mkcP34cVVVVWLZsGZKSknDgwAGsWrXK5BwxMTG4fv06srKy0KNHDzRv3hxt27aFj48Pli1bhkmTJuH48eOYO3euTFdZH4fASFKhoaGIj4/A6tUqGDbxVauB995TIT4+guGHiEhiu3btglarRUxMDIYMGYJ9+/Zh6dKl+Oc//wm1Wo0ePXogIyMD8+fPx+23344PP/wQ6enpJucYMGAAJk2ahJEjR6JVq1ZYsGABWrVqhQ0bNmDr1q247bbbMG/ePCxatEimq6xPJYQQcjfC1ZSUlECj0UCn0yEoKEju5nisCxeAM2eA2FigTRu5W0NEZJvffvsNubm5aN++Pfz8/Kx+vdx1gNyNpfttzec3h8BINm3aMPgQERmmB3CjaGkxABEREcmM4UZ6nANEREREisMARERERIrDITCSdRdiIiIiOTAAKRxXHxARkRJxCEzhXHEXYiIiImdjACIiIiLF4RAY2Yxzh4iIyF0xAJEJnS4QxcWhCAkpgkZTavY4zh0iIqLG7N+/H/feey+uXr2K4ODgJr0mJiYGqampSE1NdWrbOARGRjk5vZCZmYqNG8cgMzMVOTm9zB7LuUNERO5v7NixUKlUmDRpUr3nJk+eDJVKhbFjx0rfMAkwABGAmp6fTz8dDiFqfiSE8MKnnw6HThcoc8uIiMiZoqOjsXnzZvz666/Gx3777Tds2rQJbdu2lbFlzsUARACA4uJQY/gxEMILxcUhMrWIiIikEBcXh+joaGzfvt342Pbt29G2bVv06nVzJKCiogJTpkxBeHg4/Pz8cNddd+HIkSMm5/r888/RuXNn+Pv7495770VeXl699/vqq69w9913w9/fH9HR0ZgyZQrKysqcdn3mMAApnI+PDwAgJKQIKpXe5DmVSo+QkGKT48zR6QKRmxvDHiMiIjtduADs21fzp1SeeeYZrF+/3vj9unXrMG7cOJNjXnnlFWzbtg0bN25ETk4OYmNjkZiYiOLims+J8+fPY8SIEUhKSsKxY8cwYcIETJs2zeQcZ8+exZAhQ/DII4/g22+/xZYtW/DVV18hJSXF+RdZBydBK1ztXYijokrw6qsaVFeroFYLzJ9fgieeGNXoaq6cnF7G4TOVSo+kpM8QF3dUwqsgIvIMa9cCEycCej3g5QWsXg2MH+/8933qqacwffp0/PzzzwCAAwcOYPPmzdi/fz8AoKysDCtXrsSGDRswdOhQAMCaNWuwZ88erF27FlOnTsXKlSvRsWNHLF68GABwyy234LvvvsP8+fON75Oeno4nn3zSOMG5U6dOWLp0KQYOHIiVK1fCz8/P+Rf7OwYgMoabl14CRo4EzpwBYmNVaNMmGECwxdeamzvUseMZi6vIyHYsP0DkmS5cuBl+gJo/n3sOSEwE2rRx7nu3atUKw4YNw4YNGyCEwLBhwxAWFmZ8/uzZs6iqqsKdd95pfMzb2xt9+/bFyZMnAQAnT55Ev379TM7bv39/k+//97//4dtvv8WHH35ofEwIAb1ej9zcXNx6663OuLwGMQCRiTZtrPsfzdLcIQYgx2P5ASLP9eOPN8OPQXV1zS+lzg5AQM0wmGEoasWKFU55j+vXr+O5557DlClT6j0n9YRrBiCySd25Q7VDkDVzh8g6LD9A5Lk6daoZ9qodgtRqIDZWmvcfMmQIKisroVKpkJiYaPJcx44d4ePjgwMHDqBdu3YAgKqqKhw5csQ4nHXrrbdix44dJq/7+uuvTb6Pi4vD999/j1ipLsoCBiCyiSPmDpH9mlq4kohcX5s2NXN+nnuupudHrQbee0+a3h8AUKvVxuEstVpt8lxAQACef/55TJ06FSEhIWjbti0WLFiA8vJyjP99ktKkSZOwePFiTJ06FRMmTEB2djY2bNhgcp5XX30Vd9xxB1JSUjBhwgQEBATg+++/x549e5rUu+1IDEBkM3vmDpH9OPmcyPOMH18z56fm31Ppwo9BUFCQ2efmzZsHvV6P0aNHo7S0FL1798bu3bvRsmVLADVDWNu2bcOLL76IZcuWoW/fvnj77bfxzDPPGM/RvXt3/N///R9mzJiBu+++G0IIdOzYESNHjnT6tdWlEkIIyd/VxZWUlECj0UCn01n8YSCSWn5+PlavXg2dLhCZman1hh5TUzOh0ZRi4sSJ0Gq1MraUSDl+++035Obmon379pKuYlIqS/fbms9v1gEickMsXElEZB8OgZHNuBxbPo1NPiciIssYgMgm7rAc25MDmkZTiqSkz+rNAXL0RGhPvodEpGwMQGQTV1+O7Q4BzRa1ywrExR1Fx45nUFwcgpCQYpPw44jyA556D4mIAAYgcnPmeiiuXLnSpNe7W72c2uUHzHFUr0zd9zC35N7d7iGRs3BNkTQcdZ8ZgMgh5KhH09QeCk8jR28Ll9wTmeft7Q0AKC8vh7+/v8yt8Xzl5eUAbt53WzEAkd3k+nBkz4M0uN8bkWVqtRrBwcG4dOkSAKB58+ZQqVQyt8rzCCFQXl6OS5cuITg4uF6xRmsxAJFd3OXDkRWTbcf93ogaFxkZCQDGEETOExwcbLzf9mAAIru40oejuZDD4Rv7cMk9UeNUKhW0Wi3Cw8NRVVUld3M8lre3t909PwYMQDJyhyXGjU0ydpUPR3Mhx116qFyZVEvuiTyBWq122Ac0ORcDkEzcYYlxU9rY2IejFLvBWwo5rtRD5c4sLbknInJHDEAycfU6Ota895tvtsesWZeRl9cMMTE30Lp1HwB9JOvBshRyGuuhkiKguau690ajKW0w+PAeEpE7YgByEe48STcsLAxabQTi4+V5f0shR6MpxezZFzF3bhSqq1VQqwXmzy/BE0+McokhRlcmZc0hIiKpyb4Z6ooVKxATEwM/Pz/069cPhw8fNnvsiRMn8MgjjyAmJgYqlQqZmZn1jvn3v/+NpKQktG7dGiqVCp988onzGu8gOTm9kJmZio0bxyAzMxU5Ob3kblKDdLpA5ObGQKcLlLspAG72PBiG4VQqPQDUG4ZLSfFHXp4K+/YBeXkqvPRSMLRaLT+4myA0NBRardbsF+8hEbkrWXuAtmzZgrS0NKxatQr9+vVDZmYmEhMTcfr0aYSHh9c7vry8HB06dMCjjz6KF198scFzlpWVoUePHnjmmWcwYsQIZ19CkzQ0kdgwidhdJum64kqquj0UjQ3DtWkjY2OJiMilyBqAMjIy8Oyzz2LcuHEAgFWrVmHnzp1Yt24dpk2bVu/4Pn36oE+fPgDQ4PMAMHToUAwdOtR5jbZSYxOJ3WGSriuHtNo9EFotZBuGIyIi9yJbAKqsrER2djamT59ufMzLywsJCQk4dOiQpG2pqKhARUWF8fuSkhKHnbux/ZRsWUYu9fJ5dwhpRERE1pAtAF25cgXV1dWIiIgweTwiIgKnTp2StC3p6el44403nP4+5oaRrKmxIsfyeVep9eOu3KHeExGR0nAVGIDp06cjLS3N+H1JSQmio6Md+h6WhpEs1Vipu8RYyh26604ylrPWj7tyh3pPRERKJFsACgsLg1qtRmFhocnjhYWFDtnjwxq+vr7w9fV16ns0Now0btz9CAsLM3m+sZ4BZ09MtnaSMdXnDvWeiIiUSLYA5OPjg/j4eGRlZSE5ORkAoNfrkZWVhZSUFLma5TSNDSPV1NLRNvl8Uk1M5iRjx3Lnek9ERJ5E1iGwtLQ0jBkzBr1790bfvn2RmZmJsrIy46qwp59+GlFRUUhPTwdQ81vy999/b/z7L7/8gmPHjqFFixaIjY0FAFy/fh1nzpwxvkdubi6OHTuGkJAQtG3bVuIrvMnR+ylxYrL7ccVSAkRESiVrABo5ciQuX76MWbNmoaCgAD179sSuXbuME6PPnTsHL6+bH/IXL15Er143iwQuWrQIixYtwsCBA7F//34AwDfffIN7773XeIxhbs+YMWOwYcMG519UHdeuXTP+3dJcn2vXrlnVA8SJydKzZzKzK5cSICJSItknQaekpJgd8jKEGoOYmBgIISyeb9CgQY0eIyWVStXQo008zjzu0C0teyczs8eOiMi1yB6APJ1GozH+3dIQSO3jmoo7dEvH3snM7LEjInItsu8FphTmhkCs3VeroR2627f/uV744dJ019LYfmVERCQt9gBJxFFDINyh2zU0dTVX7SBqTb0nIiJyLgYgiVg7BMLqwa7LmtVcDKxERK6JAUgi1kxaZvVg12XLai7+NyIicj0MQBJq6qRlKbe7IOtwNRcRkWdgAHKyhiYtN/RBaW4OCIvnuQadTgeg8aFMnU5nVT0nIiKSBwOQk9kzB4TF81yHobZUY0OZrlSDioiIzGMAkoCtc0A43OI6goODjX+PizuK8PACnDvXFm3bnkObNvkNHkdERK6LAciFsXiea+KwJBGR+2MhRBfG4nmux1EFLYmISF7sAXJx3O7CtXBYkojIMzAAuSB7V46R83BYkojIMzAAuSBWD246qStmW1PQkoiIXBcDkItiuGmclBWzuaeXKW7VQkTujgGI3FZTK2E7omK2J/fKWRtmuFULEXkCBiDyGE3dod1Wtn6Yu3JviS1hhlu1EJEnYAAij+CqtXlcvbfE3jDjqvediKgxDEBkkSv3Xhi48pYhUg7T2cvaMOPK952IqDEMQGSWq/deGLhTbR5nD9PZypYw4073nYioLgYgMstd5nq4S20eVx4usiXMuMt9JyJqCLfCoCbJyemFzMxUbNw4BpmZqcjJ6SV3k4zcYcsQV99CwxBmamsszLjDfZfDhQvAvn01fxKR62IPEDXKVed6uFNtHlcfLrK1wCO3aqlhmCu3aZM/XnlFA71eBS8vgQULdHjiiV9dYq4cEZliAKJGueqHtzvV5nGH4aKmhhlu1WLKMFdOpwtEZmYqhFABAPR6FaZODcIvv6yDRlMq+1w5IjLFAESNcuUPb3f5QHHVLTRsCTPuFDytVXvV48WLXsjNbYb27W+gdeuaYb6GrstwfGO/KMg9V46ITDEAkVk6nQ5A4x/eOp0OWq1Wzqa6LHcaprOGO4abxtRe9Whpwrq5nhxX/kWBiOpjACKzqqqqjH+PizuK8PACnDvXFm3bnkObNvkNHkemXL23xJ3qFDmb4Robm/Nm7l64ai8fETWMAYjMatbs5o+Hpd+Iax9H9blTb4mr1imSkj1z3jgpnMh98JOLzAoODgbQ+G/EhuPIvblynSIp2TuUZW4eFRG5FtYBokZZ+o2YPIOr1ymSEusbESkDe4CoUZzc6flctdSBPWxZ0WXAoSwiz8cARI3i5E7P52kh194VXUDTh7KauoLP3Vb6EXk6BiAXZc9vr87A34g9m6eFXHtXdFnD1Vf6EVHDGIBckCN+e23onNb+A82Kv57PU+sUGVgztGdPTw7DDZH7YQByQY7+7bV2oDKct6GlznUDFX+z9Xye/t/YmqE9T78XRGSKAciFOWpiau1/0C31KDX0Dz//sXc9tvTmWeLJ/42tHdrz5HtBRKYYgFyYoyemuuqu7tR0dXvzzOHGmzdx/hoRNYR1gFyYo+uRsJ6P++PWFbbRaErRvv3PDD9EZMQeIBfnyN9ePW2pM3HrCiIiWzEAuQFHldb3tKXOSsetK8xjbR4iagwDkMJwPoRn4Hwuy7iii4gawwDkgpz92ys3a3R/nrh1haMx3BCRJQxALqix3151Oh2EEKisrER2dmGjVaI5HOB5OJ+LiMg+DEAuytxvr0VFRdiyZQuApleJ5nCA5+F8LiIi+zAAuRlbq0Qz3HgGT9+6gohIKgxAbopzQJSJvXlERI7BACSxCxeAH38EOnUC2rSx/TycA6JcDDdERPZjJWgJFBUVIT8/H4sXX0O7dgKDBwPt2gksXnwN+fn5KCoqsvqcjq4STUREpCTsAXIyw95NOl0gMjNTIYQKAKDXqzB1ahB++WUdNJpSm/ZuYk0faTl6E1IiIpIPA5CTGT4wG5uzY+veTazpIw1uQkpE5Fk4BCYRw5yd2jhnx31wE1IiIs/CHiCJOKpuC4saNp0zh6y4CSkRkXtjAJKQI+bscBl00zhzyIqbkBIRuT8GIIk5Ys6O0sNNU9QNiOZ6bKwdsuImpEREnoEBiDyeI3tsWICSiMgzcBI0eTRzPTY6XaBN5+NkdiIiz8AA5GSctCwvSz02tmABSiIiz8AhMCfjpGV5OWrLEG5CSkTkWVwiAK1YsQILFy5EQUEBevTogWXLlqFv374NHnvixAnMmjUL2dnZ+Pnnn/HOO+8gNTXVrnM6G8NN0zhj2bqjyg8wyBIReRbZA9CWLVuQlpaGVatWoV+/fsjMzERiYiJOnz6N8PDweseXl5ejQ4cOePTRR/Hiiy865Jwkv7rL1s2t2pJzyxCGG+fiViNEJCXZA1BGRgaeffZZjBs3DgCwatUq7Ny5E+vWrcO0adPqHd+nTx/06dMHABp83pZzkvxqf/BZWrXV1GXrdYeizJUf4JCVa+BWI0QkNVkDUGVlJbKzszF9+nTjY15eXkhISMChQ4ckO2dFRQUqKiqM35eUlNj03mQ/R9XZ4ZCVe3FW3SYiInNkDUBXrlxBdXU1IiIiTB6PiIjAqVOnJDtneno63njjDZvejxzLkXV2GG7cEyttE5EUuAwewPTp06HT6Yxf58+fl7tJisU6O8rm6LpNRETmyBqAwsLCoFarUVhYaPJ4YWEhIiMjJTunr68vgoKCTL5IHqyzo2yOrttERGSOrENgPj4+iI+PR1ZWFpKTkwEAer0eWVlZSElJcZlzkrQctWqL3I+j6jYRETVG9lVgaWlpGDNmDHr37o2+ffsiMzMTZWVlxhVcTz/9NKKiopCeng6gZhLk999/b/z7L7/8gmPHjqFFixaIjY1t0jnJ9Tli01hqGldafu6ouk1ERI2RPQCNHDkSly9fxqxZs1BQUICePXti165dxknM586dg5fXzd8GL168iF69ehm/X7RoERYtWoSBAwdi//79TTonuR5uGSIPV1x+zh5AIpKCSggh5G6EqykpKYFGo4FOp+N8IAm5Uk+EUuTn52P16tWNHjdx4kRotVqntcMVgxgRuR9rPr9l7wEiMuAHm/zM1d9xNtZtIiKpMQAR1aLkXii56+946n2VSu2f3YsXvZCb2wzt299A69Y1Kyo9+WeXyBYMQES/c+Z+ZK7OURW4SR61f3YtBVlP/NklshUDENHvHL0fmTtxZAVukp7hZ7KxIOuJP7tEtmIlaKI6lFiNmBW4PQMLSRI1HQMQUR1K/BBhBW73dOECsG9fzZwfgEGWyBocAiOqQ0nViGvXVbJUf4f1l1yHYbLzpk3+eOUVDfR6Fby8wjF8eC/ExR1lIUmiJmIAIqpDSdWIufzcvRgmO+t0gcjMTIUQKgCAXq8yzvVhIUmipmEAImqAkj5EGG7chyGoNjZpnVvJEDWOAYjIDH6IkKtS0jAtkbNwEjTR77gfGbkLWyet82eX6Cb2ABH9jvNhyJ1YGqYdMWIEwsLCTI7nzy6RKQYgolr4AUHuxNwwbVhYmFM3ryXyBBwCIyIiIsVhACIiIiLFYQAiInITnKhP5DicA0RE5CY8daK+obo1ULOtR25uM7RvfwOtW9escnPHayLXxwBERORGPC0IGKpbA0BOTq96Fdjj4o4CAFJSUjzu2kleHAIjIiLZGHp+dLpAY/gBaipbf/rpcOh0gSbHETkKe4CISDK1hzoawqEO5Wpsew8iR2MAIiJJ1B7qsIRDHcrE7T1IahwCIyJJ1O350ekCkZsbYxziMHccKYOt23sQ2Yo9QETkUOaGua5cuWL8u6XJrqRclrb3IHI0BiAicpimDHOZm+zaseMZfuCR2e09iByNQ2BE5DBNGeayNNmViEgq7AEiIqcwN8zFya5UG6tbk1wYgIjI4Rob5kpK+qxeOOKwhzJ5anVrcn0MQETkcI3VdOFkV6qN4YbkwABERA7XlGEuc5NdOdRBRFJgACIih2tsmGvEiBEICwur9zoOdRCRVBiAiMgpLA1zhYWFQavVytg6IlI6BiAicpi6w1cc5iIiV8UAREQOwxU95Cq48S41hgGIiByKHyokt7oVyXW6QBQXhyIkpMikR5Ib7yobAxAREXmU2j0/lvad48a7ysYARERkJw632MdZ94/7zpElDEBERHZQ4nBL7cBy8aIXcnOboX37G2jdWg/AusDizPvXWEFOUjYGICIiOzhjuMWVe5RqBxZL19vUwOLM4SruO0eW2BSAtm7dio8++gg//PADAKBz58544okn8Mc//tGhjSMicheOGm6p2yNijlw9SoYg0tj1WhtYnDFcxX3nyBKrApBer8eoUaOwdetWdO7cGV26dAEAnDhxAiNHjsSjjz6Kjz76CCqVyimNJSJyVY4abqkbHMwNCck9gdfRw0vOGq7ivnNkjlUBaMmSJdi7dy927NiB4cOHmzy3Y8cOjBs3DkuWLEFqaqoj20hE5PKcMdxiaUhIbo6+XmcOV5kryEnK5tX4ITetX78eCxcurBd+AOChhx7CggULsG7dOoc1jojIXRiGW1SqmonA9g63mBsS0ukCHdZmezj6eh15vqZWGmdFcmWzqgfoxx9/REJCgtnnExISkJKSYnejiIjckSOHW6wdEpJj4rSjh5ccdT5WJKemsCoA+fv749q1a2jbtm2Dz5eUlMDPz88hDSMisodcK6kcNdxizZCQnBOnHT285KjzMdxQY6wKQP3798fKlSuxcuXKBp9fsWIF+vfv75CGERHZSspA4KzhFmtWMLnLxOmGcLiK5GJVAJoxYwYGDRqEoqIivPzyy+jSpQuEEDh58iQWL16Mf/7zn9i3b5+z2kpE1CRSBgJnDrfYMiRk7cRpa3vKHB1YOFxFcrEqAA0YMABbtmzBxIkTsW3bNpPnWrZsiY8++gh33nmnQxtIRGQPKVZSOfLDuW5wMDck1FDAsLaWji1VmJ0RWBhuSA5WF0L8wx/+gMTEROzevRs//vgjgJpCiA888ACaN2/u8AYSEdnKHfeCsidgWDtx2tYqzAws5AmsCkBffvklUlJS8PXXX+MPf/iDyXM6nQ5du3bFqlWrcPfddzu0kUREtnDXvaBsDRi21tJxx6BIZC+r6gBlZmbi2WefRVBQUL3nNBoNnnvuOWRkZDiscURE9jAEgto8eS8oW2vpWAqKRJ7Kqh6g//3vf5g/f77Z5x944AEsWrTI7kYRETmCEveCsmXiNDcNJSWyKgAVFhbC29vb/MmaNcPly5ftbhQRkaMoYS8oeyZOG45XWlAksioARUVF4fjx44iNjW3w+W+//RZardYhDSMispW9gcDdOGJllhKCIlFtVgWgBx98EDNnzsSQIUPqVXz+9ddfMXv27Ab3CSMikpISa8s44lq4aSgpiVUB6PXXX8f27dvRuXNnpKSk4JZbbgEAnDp1CitWrEB1dTVmzJjhlIYSEVnDk8KNsyixCrNcW6SQ61EJIYQ1L/j555/x/PPPY/fu3TC8VKVSITExEStWrED79u2d0lAplZSUQKPRQKfTNbjijYjIUygpENhS+JHcizWf31YXQmzXrh0+//xzXL16FWfOnIEQAp06dULLli1tbjAREcnDFT7opQphthZ+JM9kdQAyaNmyJfr06ePIthARKYaSel4skWMnexZ+JMCOAERERLaR40PfVcmxk727Vggnx7KqErSzrFixAjExMfDz80O/fv1w+PBhi8dv3boVXbp0gZ+fH7p164bPP//c5PnCwkKMHTsWrVu3RvPmzTFkyBDjvmVERHJr6EM/NzcGOl2gxeM8XU5OL2RmpmLjxjHIzExFTk4vp7yP0iqEU8NkD0BbtmxBWloaZs+ejZycHPTo0QOJiYm4dOlSg8cfPHgQo0aNwvjx43H06FEkJycjOTkZx48fBwAIIZCcnIyffvoJ//znP3H06FG0a9cOCQkJKCsrk/LSiIgaJdWHvqszNyxVNxQ6gq1bhpBnkX0ILCMjA88++yzGjRsHAFi1ahV27tyJdevWYdq0afWOX7JkCYYMGYKpU6cCAObOnYs9e/Zg+fLlWLVqFX788Ud8/fXXOH78OLp27QoAWLlyJSIjI/HRRx9hwoQJ0l0cEZEFnItyk9TDUlIUfuQ8L9cmawCqrKxEdnY2pk+fbnzMy8sLCQkJOHToUIOvOXToENLS0kweS0xMxCeffAIAqKioAACTQo1eXl7w9fXFV1991WAAqqioML4OqFlGR0TkbJyLcpMc+5E5s/Aj53m5PlmHwK5cuYLq6mpERESYPB4REYGCgoIGX1NQUGDx+C5duqBt27aYPn06rl69isrKSsyfPx8XLlxAfn5+g+dMT0+HRqMxfkVHRzvg6oiILONclJukGJaSsvBjU+dvKW2elyuRfQjM0by9vbF9+3aMHz8eISEhUKvVSEhIwNChQ2Gu5uP06dNNepVKSkoYgojI6bgJqSlnD0spcYsUMk/WABQWFga1Wo3CwkKTxwsLCxEZGdngayIjIxs9Pj4+HseOHYNOp0NlZSVatWqFfv36oXfv3g2e09fXF76+vnZeDRGR9ZS+CanUG9faGm7snc9jbnk/yUfWAOTj44P4+HhkZWUhOTkZAKDX65GVlYWUlJQGX9O/f39kZWUhNTXV+NiePXvQv3//esdqNBoAwI8//ohvvvkGc+fOdfg1EBFZS2m71VviDr0y9s7nsVR1muQj+xBYWloaxowZg969e6Nv377IzMxEWVmZcVXY008/jaioKKSnpwMAXnjhBQwcOBCLFy/GsGHDsHnzZnzzzTdYvXq18Zxbt25Fq1at0LZtW3z33Xd44YUXkJycjAceeECWayQiqs0dPvSl5OrXaU+xRq70c12yB6CRI0fi8uXLmDVrFgoKCtCzZ0/s2rXLONH53Llz8PK6OVd7wIAB2LRpE15//XW89tpr6NSpEz755BPcfvvtxmPy8/ORlpaGwsJCaLVaPP3005g5c6bk10ZEZI6rf+hTw5ram3Pt2jUAja/0u3btGrRarRRNpzpkD0BATbehuSGv/fv313vs0UcfxaOPPmr2fFOmTMGUKVMc1TwiIqpFqfVtrOnNuXHjBoDGl/cbjiPpuUQAIiIi+0gVSpRc38aauk3e3t4AGl/pZziOpMcARETk5qQMJXJsXuoqrCnWaFiEY2CowlK3Gkvd40g6DEBERG5OrlCitNVNttRtMgyb3aw7zEnQroIBiIjIg0gVSpS6usnauk3c7sR1MQAREXmIxkLJlStXGnydLfODGvtgd+R7yc2euk1y7HFGTcMARETkIRoLJdu3bzf7WmvnBzX2we7I95KbPXWbuN2J62IAIiLyEE3pbXDU/KCmfLB70gRpawNb7d4gS8NmSqj27aoYgIiIPERjocTR84MsfbArbYJ0Xaz27foYgIiIPIi5UOKoSctNmQ+j1AnSdTHcuDYGICIiN9eUUOKo1UiWejauXLmC7du3c+VTEyi1mrYrYQAiInJzTQkljlyN1NgHM1c+WabkatquxKvxQ4iIyNWFhoZCq9XW+woLCwNwc36QSqUHAKeuRpLyvdxRUyeBu+NkcXfCHiAiIoWwtoifu7wXkS0YgIiIPJg9Rfxc+b08iblyAeRcDEBERB5MyuXYXPptPaWXC5ATAxARkYeTMnAw3DSdlFuXUH0MQERERDKQcusSqo+rwIiIiGRgKBdQW1PLBXCFmP0YgIiIiCRkmATelHIBOl0gcnNjoNMFytJWT8YhMCIiIiewVO35scceg0qlwsSJGsyadRl5ec0QE3MDPj7tsX17zSRoTpB2LgYgIiIiB7Om2nN8fCji42u+z8+v6Q3ifmrOxwBERETkYE2do3Px4kWTYw0rv7ifmvMxABERETmZuWKH5lZ6cT8152MAIiIiciJb5vIYJkjXfR17fxyHAYiIiMhJ7JnLY2k/NW4nYj8GICIi8jiWVmAB0lVTbspcHnPDYyNGjEBYWFi9c7IStGMwABERkUdp6gqsxx57DMHBwSaPOTpcNDaXx9LwWFhYGLRarcPaQqYYgIiIyKPU7fkx18Py97//vcHXO3KbCUtzebjUXV4MQERE5LEs9bCYC0aO2Gai9hwdc3N5uNRdXgxARETkkSz1sJw9G+vUKsuhoaFISUlpMExduXIF27dv51J3mTEAERGRRzLXw3L+fBtJhp7MDaPV3QvM3FJ3rvRyLgYgIiLySOZ6WACVrENPdXuHau8F1rp1HwB9uNJLAgxARETkkcz1sERHn5d96Kl2uNFqYdwLjKTDAERERB7L3ARkVlkmBiAiIvIodefOaDSl9cKNpSrLpAwMQERE5FHMrcDS6XTYsmWL8fuGghHAycdKoRJCCLkb4WpKSkqg0Wig0+kQFBQkd3OIiMhBXGWLDHIOaz6/2QNERESKwXBDBgxAREREYO+Q0jAAERGR4jV1A1VH7hMmFQa7hjEAERGR4jV1/y9H7BMmJU8OdvZiACIiIqrD3EapUnBkj42nBjtHYAAiIiKqxdIO8s7m7B4bOYOdq2EAIiIi+p2lHeSlCAzO7LGRM9i5Iq/GDyEiIlIGczvIFxeHyNQixzAX7HS6QJlbJh8GICIiot8ZdpCvTeqNUmvT6QKRmxtjd1Dx1GBnDw6BERER/c7cDvJyzJdx5JCVIdjVDkFyBjtXwABERESKV3v/L0sbpUq1T5ij5yK5UrBzFQxARESkeOY2UK1NyoKBloasrAktrhbsXAkDEBEREVxrnzBHDVm5WrBzJQxARERELsLQE9PYkJU1PTZKDDdNoRJCCLkb4WpKSkqg0Wig0+kQFBQkd3OIiEhBaleCvnjRC3l5zRATcwOtW9esTlNqj01TWPP5zR4gIiIiF1I73Gi1QHy8jI3xYKwDRERERIrDAERERESKwyEwIiIiJ3Dkru7keAxAREREDubsXd3JfgxAREREDubMXd2txZ6ohrlEAFqxYgUWLlyIgoIC9OjRA8uWLUPfvn3NHr9161bMnDkTeXl56NSpE+bPn48HH3zQ+Pz169cxbdo0fPLJJygqKkL79u0xZcoUTJo0SYrLISIicgnsiTJP9knQW7ZsQVpaGmbPno2cnBz06NEDiYmJuHTpUoPHHzx4EKNGjcL48eNx9OhRJCcnIzk5GcePHzcek5aWhl27duGDDz7AyZMnkZqaipSUFOzYsUOqyyIiIjJy1K7u1nKlnihXI3sAysjIwLPPPotx48bhtttuw6pVq9C8eXOsW7euweOXLFmCIUOGYOrUqbj11lsxd+5cxMXFmSTcgwcPYsyYMRg0aBBiYmIwceJE9OjRA4cPH5bqsoiIiADU7OqemZmKjRvHIDMzFTk5veRuEkHmAFRZWYns7GwkJCQYH/Py8kJCQgIOHTrU4GsOHTpkcjwAJCYmmhw/YMAA7NixA7/88guEENi3bx9++OEHPPDAA865ECIiogaY29Vd6p6g2u2RoyfKFck6B+jKlSuorq5GRESEyeMRERE4depUg68pKCho8PiCggLj98uWLcPEiRPRpk0bNGvWDF5eXlizZg3uueeeBs9ZUVGBiooK4/clJSW2XhIREZGRo3Z1d4ScnF719haLizsqaRtciexDYM6wbNkyfP3119ixYweys7OxePFiTJ48GXv37m3w+PT0dGg0GuNXdHS0xC0mIiJPZNjVvTZbdnW3l6v1RLkCWQNQWFgY1Go1CgsLTR4vLCxEZGRkg6+JjIy0ePyvv/6K1157DRkZGUhKSkL37t2RkpKCkSNHYtGiRQ2ec/r06dDpdMav8+fPO+DqiIhIqeru6m4IQfbs6m4PSz1RSiXrEJiPjw/i4+ORlZWF5ORkAIBer0dWVhZSUlIafE3//v2RlZWF1NRU42N79uxB//79AQBVVVWoqqqCl5fpf2i1Wg293jSFG/j6+sLX19f+CyIiIkLNhqYpKSnG1VWzZl2utat7HwB9JK2/Y+iJqh2C5OiJciWy1wFKS0vDmDFj0Lt3b/Tt2xeZmZkoKyvDuHHjAABPP/00oqKikJ6eDgB44YUXMHDgQCxevBjDhg3D5s2b8c0332D16tUAgKCgIAwcOBBTp06Fv78/2rVrh//7v//D3/72N2RkZMh2nUREpCyusKt73Z6ounOApO6JciUqIYSQuxHLly83FkLs2bMnli5din79+gGAcSn7hg0bjMdv3boVr7/+urEQ4oIFC0wKIRYUFGD69On44osvUFxcjHbt2mHixIl48cUXoVKpGm1PSUkJNBoNdDodgoKCHH69REREUqldCfriRa9aPVE1oyKeVAnams9vlwhAroYBiIiIyP1Y8/ntkavAiIiIiCxhACIiIiLFYQAiIiIixWEAIiIiIsVhACIiIiLFYQAiIiIixWEAIiIiIsVhACIiIiLFkX0rDCIiIpJH7SrRDfGkKtF1MQAREREpUFFREZYvX97ocSkpKR4ZgjgERkREpECWen5sOc7dMAARERGRw124AOzbV/OnK2IAIiIiIuh0gcjNjYFOF2j3udauBdq1AwYPrvlz7VoHNNDBOAeIiIhI4XJyeuHTT4dDCC+oVHokJX2GuLijNp3rwgVg4kRAr6/5Xq8HnnsOSEwE2rRxYKPtxB4gIiIiBdPpAo3hBwCE8MKnnw63qSeoqKgIX39dZAw/BtXVwH//W4SioiJHNNkhGICIiIgUrLg41Bh+DITwQnFxiFXnMawqO3hwI1Qq0wSkUulx4MBGLF++HEVFRS4xP4gBiIiISMFCQooaDCwhIcVWncewWkyjKUVS0mfGcxqG1DSaUgDAhg1ql5gfxDlARERECuTj4wPgZmCpOwfIEFgMx1kjLu4oOnY8g+LiEISEFBvPpdMF4i9/0bjE/CAGICIiIgUKDQ1FSkqKsedm1qzLyMtrhpiYGwgI6IyqqvZo1qwZKisrkZ+fb/LapleIVpl8V1wcCr3e9LHqauDMGQYgIiIikkjtEKPVAvHxhrk8Wxp9raUK0eZWlYWEFMHLS5iEILUaiI21/1qsxTlAREREZFS38rO5+kDmKkRbWlWm0ZRiwQId1OqaY9Vq4L335Fkezx4gIiIiapAt9YEsrSrTaErxxBO/YuTIYJw5U9PzI1dtIPYAERERUT3W1gfS6XQAGl9VlpeXB7U6H7fckg+1Oh/5+TVfUtcIYg8QERER1dNYT05dQggAja8q++KLL8y+p5Q7zzMAERERUT2GnpzaIchSfaDg4GDj380tg2+MlDvPMwAREREpVFFRUb3QceXKFQCN9+Q0RqMpbfKxcmAAIiIiUiDD1hWW2NqT4w4YgIiIiBSoqcNN5npybKkQ7UoYgIiIiMisESNGICwszOSxpleCdl0MQERERASdLhDFxaEICSky6fEJCwuDVquVsWXOwQBERESkcLYUPKzL3YbEGICIiIgUzFzBw44dz1g16bnu5qq1Xbt2DX//+98bPYeUIYoBiIiISMGsLXhoibl5QVqt1mw4MpB6XhEDEBERkYJZW/DQVq42aZp7gRERESmQYbjJUPDQsH9X3YKH7ja3p6lUwrB5BxmVlJRAo9FAp9MhKChI7uYQERE5Re1K0BcveiEvrxliYm6gdeuaMORuy92t+fzmEBgREZFC1Q43Wi0QHy9jYyTGITAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIpLUhQvAvn01f8qFAYiIiIicrqioCPn5+Vi8+BratRMYPBho105g8eJryM/PR1FRkaTtaSbpuxEREZHiFBUVYfny5dDpApGZmQohVAAAvV6FqVOD8Msv66DRlCIlJQWhoaGStIk9QERERORUlZWVAIDi4lAIYRo9hPBCcXGIyXFSYAAiIiIiSYSEFEGl0ps8plLpERJSLHlbXCIArVixAjExMfDz80O/fv1w+PBhi8dv3boVXbp0gZ+fH7p164bPP//c5HmVStXg18KFC515GURERGSBRlOKpKTPjCFIpdIjKekzaDSlkrdF9jlAW7ZsQVpaGlatWoV+/fohMzMTiYmJOH36NMLDw+sdf/DgQYwaNQrp6ekYPnw4Nm3ahOTkZOTk5OD2228HAOTn55u85l//+hfGjx+PRx55RJJrIiIioobFxR1Fx45nUFwcgpCQYlnCDwCohBBClnf+Xb9+/dCnTx8sX74cAKDX6xEdHY0///nPmDZtWr3jR44cibKyMnz22WfGx+644w707NkTq1atavA9kpOTUVpaiqysrCa1qaSkBBqNBjqdDkFBQTZcFRERERnk5+dj9erVjR43ceJEaLVam9/Hms9vWYfAKisrkZ2djYSEBONjXl5eSEhIwKFDhxp8zaFDh0yOB4DExESzxxcWFmLnzp0YP3682XZUVFSgpKTE5IuIiIg8l6wB6MqVK6iurkZERITJ4xERESgoKGjwNQUFBVYdv3HjRgQGBmLEiBFm25Geng6NRmP8io6OtvJKiIiIyJ24xCRoZ1q3bh2efPJJ+Pn5mT1m+vTp0Ol0xq/z589L2EIiIiLP5uPj49DjHEHWSdBhYWFQq9UoLCw0ebywsBCRkZENviYyMrLJx//nP//B6dOnsWXLFovt8PX1ha+vr5WtJyIioqYIDQ1FSkqKxTo/Pj4+khVBBGTuAfLx8UF8fLzJ5GS9Xo+srCz079+/wdf079+/3mTmPXv2NHj82rVrER8fjx49eji24URERGSV0NBQaLVas19Shh/ABZbBp6WlYcyYMejduzf69u2LzMxMlJWVYdy4cQCAp59+GlFRUUhPTwcAvPDCCxg4cCAWL16MYcOGYfPmzfjmm2/qzS4vKSnB1q1bsXjxYsmviYiIiFyb7AFo5MiRuHz5MmbNmoWCggL07NkTu3btMk50PnfuHLy8bnZUDRgwAJs2bcLrr7+O1157DZ06dcInn3xirAFksHnzZgghMGrUKEmvh4iIiFyf7HWAXBHrABEREbkfaz6/Ze8BIiIiIs9QVFTkUhOdLWEAIiIiIrsVFRUZd3WwJCUlxSVCkMfXASIiIiLnq9vzo9MFIjc3BjpdoMXj5MIeICIiInKonJxe+PTT4RDCy7jje1zcUbmbZYI9QEREROQwOl2gMfwAgBBe+PTT4fV6guTGAEREREQOU1wcagw/BkJ4obg4RKYWNYwBiIiIiBwmJKQIKpXe5DGVSo+QkGKZWtQwBiAiIiJyGI2mFElJnxlDkGEOkEZTKnPLTHESNBERETlUXNxRdOx4BsXFIQgJKXa58AMwABEREZED+Pj4mHyv0ZQ2GHzqHicXBiAiIiKyW2hoKFJSUlgJmoiIiJTFVcJNU3ASNBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4rQTdACAEAKCkpkbklRERE1FSGz23D57glDEANKC2t2bwtOjpa5pYQERGRtUpLS6HRaCweoxJNiUkKo9frcfHiRQQGBkKlUln9+pKSEkRHR+P8+fMICgpyQgvdA+/DTbwXNXgfavA+3MR7UYP3oYa990EIgdLSUrRu3RpeXpZn+bAHqAFeXl5o06aN3ecJCgpS9A+yAe/DTbwXNXgfavA+3MR7UYP3oYY996Gxnh8DToImIiIixWEAIiIiIsVhAHICX19fzJ49G76+vnI3RVa8DzfxXtTgfajB+3AT70UN3ocaUt4HToImIiIixWEPEBERESkOAxAREREpDgMQERERKQ4DEBERESkOA5CNVqxYgZiYGPj5+aFfv344fPiw2WNPnDiBRx55BDExMVCpVMjMzJSuoU5mzX1Ys2YN7r77brRs2RItW7ZEQkKCxePdjTX3Yvv27ejduzeCg4MREBCAnj174v3335ewtc5jzX2obfPmzVCpVEhOTnZuAyVizX3YsGEDVCqVyZefn5+ErXUua38mrl27hsmTJ0Or1cLX1xedO3fG559/LlFrncea+zBo0KB6PxMqlQrDhg2TsMXOYe3PQ2ZmJm655Rb4+/sjOjoaL774In777Tf7GyLIaps3bxY+Pj5i3bp14sSJE+LZZ58VwcHBorCwsMHjDx8+LF5++WXx0UcficjISPHOO+9I22AnsfY+PPHEE2LFihXi6NGj4uTJk2Ls2LFCo9GICxcuSNxyx7P2Xuzbt09s375dfP/99+LMmTMiMzNTqNVqsWvXLolb7ljW3geD3NxcERUVJe6++27x8MMPS9NYJ7L2Pqxfv14EBQWJ/Px841dBQYHErXYOa+9FRUWF6N27t3jwwQfFV199JXJzc8X+/fvFsWPHJG65Y1l7H4qKikx+Ho4fPy7UarVYv369tA13MGvvw4cffih8fX3Fhx9+KHJzc8Xu3buFVqsVL774ot1tYQCyQd++fcXkyZON31dXV4vWrVuL9PT0Rl/brl07jwlA9twHIYS4ceOGCAwMFBs3bnRWEyVj770QQohevXqJ119/3RnNk4wt9+HGjRtiwIAB4q9//asYM2aMRwQga+/D+vXrhUajkah10rL2XqxcuVJ06NBBVFZWStVESdj7b8Q777wjAgMDxfXr153VRElYex8mT54sBg8ebPJYWlqauPPOO+1uC4fArFRZWYns7GwkJCQYH/Py8kJCQgIOHTokY8uk5Yj7UF5ejqqqKoSEhDirmZKw914IIZCVlYXTp0/jnnvucWZTncrW+/CXv/wF4eHhGD9+vBTNdDpb78P169fRrl07REdH4+GHH8aJEyekaK5T2XIvduzYgf79+2Py5MmIiIjA7bffjrfffhvV1dVSNdvhHPHv5dq1a/H4448jICDAWc10Olvuw4ABA5CdnW0cJvvpp5/w+eef48EHH7S7PdwM1UpXrlxBdXU1IiIiTB6PiIjAqVOnZGqV9BxxH1599VW0bt3a5H8Gd2TrvdDpdIiKikJFRQXUajXeffdd3H///c5urtPYch+++uorrF27FseOHZOghdKw5T7ccsstWLduHbp37w6dTodFixZhwIABOHHihEM2ZpaLLffip59+wpdffoknn3wSn3/+Oc6cOYM//elPqKqqwuzZs6VotsPZ++/l4cOHcfz4caxdu9ZZTZSELffhiSeewJUrV3DXXXdBCIEbN25g0qRJeO211+xuDwMQyWLevHnYvHkz9u/f71GTPa0RGBiIY8eO4fr168jKykJaWho6dOiAQYMGyd00SZSWlmL06NFYs2YNwsLC5G6OrPr374/+/fsbvx8wYABuvfVWvPfee5g7d66MLZOeXq9HeHg4Vq9eDbVajfj4ePzyyy9YuHCh2wYge61duxbdunVD37595W6K5Pbv34+3334b7777Lvr164czZ87ghRdewNy5czFz5ky7zs0AZKWwsDCo1WoUFhaaPF5YWIjIyEiZWiU9e+7DokWLMG/ePOzduxfdu3d3ZjMlYeu98PLyQmxsLACgZ8+eOHnyJNLT0902AFl7H86ePYu8vDwkJSUZH9Pr9QCAZs2a4fTp0+jYsaNzG+0Ejvg3wtvbG7169cKZM2ec0UTJ2HIvtFotvL29oVarjY/deuutKCgoQGVlJXx8fJzaZmew52eirKwMmzdvxl/+8hdnNlESttyHmTNnYvTo0ZgwYQIAoFu3bigrK8PEiRMxY8YMeHnZPpOHc4Cs5OPjg/j4eGRlZRkf0+v1yMrKMvkNztPZeh8WLFiAuXPnYteuXejdu7cUTXU6R/1M6PV6VFRUOKOJkrD2PnTp0gXfffcdjh07Zvx66KGHcO+99+LYsWOIjo6WsvkO44ifh+rqanz33XfQarXOaqYkbLkXd955J86cOWMMwwDwww8/QKvVumX4Aez7mdi6dSsqKirw1FNPObuZTmfLfSgvL68XcgzhWNi7land06gVaPPmzcLX11ds2LBBfP/992LixIkiODjYuGx19OjRYtq0acbjKyoqxNGjR8XRo0eFVqsVL7/8sjh69Kj48ccf5boEh7D2PsybN0/4+PiIjz/+2GR5Z2lpqVyX4DDW3ou3335bfPHFF+Ls2bPi+++/F4sWLRLNmjUTa9askesSHMLa+1CXp6wCs/Y+vPHGG2L37t3i7NmzIjs7Wzz++OPCz89PnDhxQq5LcBhr78W5c+dEYGCgSElJEadPnxafffaZCA8PF2+++aZcl+AQtv6/cdddd4mRI0dK3VynsfY+zJ49WwQGBoqPPvpI/PTTT+KLL74QHTt2FI899pjdbWEAstGyZctE27ZthY+Pj+jbt6/4+uuvjc8NHDhQjBkzxvh9bm6uAFDva+DAgdI33MGsuQ/t2rVr8D7Mnj1b+oY7gTX3YsaMGSI2Nlb4+fmJli1biv79+4vNmzfL0GrHs+Y+1OUpAUgI6+5Damqq8diIiAjx4IMPipycHBla7RzW/kwcPHhQ9OvXT/j6+ooOHTqIt956S9y4cUPiVjuetffh1KlTAoD44osvJG6pc1lzH6qqqsScOXNEx44dhZ+fn4iOjhZ/+tOfxNWrV+1uh0oIe/uQiIiIiNwL5wARERGR4jAAERERkeIwABEREZHiMAARERGR4jAAERERkeIwABEREZHiMAARERGR4jAAERHJaOzYsUhOTpa7GUSKwwBERA0aO3YsVCqV8Ss0NBRDhgzBt99+K3fTHKL2tRm+7rrrLqe9X15eHlQqFY4dO2by+JIlS7BhwwanvS8RNYwBiIjMGjJkCPLz85Gfn4+srCw0a9YMw4cPl7tZDrN+/Xrj9eXn52PHjh0NHldVVeW0Nmg0GgQHBzvt/ETUMAYgIjLL19cXkZGRiIyMRM+ePTFt2jScP38ely9fxuDBg5GSkmJy/OXLl+Hj42Pc7TkmJgZz587FqFGjEBAQgKioKKxYscLkNRkZGejWrRsCAgIQHR2NP/3pT7h+/brx+Z9//hlJSUlo2bIlAgIC0LVrV3z++ecAgKtXr+LJJ59Eq1at4O/vj06dOmH9+vVNvr7g4GDj9UVGRiIkJMTYU7NlyxYMHDgQfn5++PDDD1FUVIRRo0YhKioKzZs3R7du3fDRRx+ZnE+v12PBggWIjY2Fr68v2rZti7feegsA0L59ewBAr169oFKpMGjQIAD1h8AqKiowZcoUhIeHw8/PD3fddReOHDlifH7//v1QqVTIyspC79690bx5cwwYMACnT59u8nUTEQMQETXR9evX8cEHHyA2NhahoaGYMGECNm3ahIqKCuMxH3zwAaKiojB48GDjYwsXLkSPHj1w9OhRTJs2DS+88AL27NljfN7LywtLly7FiRMnsHHjRnz55Zd45ZVXjM9PnjwZFRUV+Pe//43vvvsO8+fPR4sWLQAAM2fOxPfff49//etfOHnyJFauXImwsDCHXK+hrSdPnkRiYiJ+++03xMfHY+fOnTh+/DgmTpyI0aNH4/Dhw8bXTJ8+HfPmzTO2a9OmTYiIiAAA43F79+5Ffn4+tm/f3uD7vvLKK9i2bRs2btyInJwcxMbGIjExEcXFxSbHzZgxA4sXL8Y333yDZs2a4ZlnnnHIdRMpht3bqRKRRxozZoxQq9UiICBABAQECABCq9WK7OxsIYQQv/76q2jZsqXYsmWL8TXdu3cXc+bMMX7frl07MWTIEJPzjhw5UgwdOtTs+27dulWEhoYav+/WrZvJOWtLSkoS48aNs+n6AAg/Pz/j9QUEBIh//OMfIjc3VwAQmZmZjZ5j2LBh4qWXXhJCCFFSUiJ8fX3FmjVrGjzWcN6jR4+aPD5mzBjx8MMPCyGEuH79uvD29hYffvih8fnKykrRunVrsWDBAiGEEPv27RMAxN69e43H7Ny5UwAQv/76qzW3gEjR2ANERGbde++9OHbsGI4dO4bDhw8jMTERQ4cOxc8//ww/Pz+MHj0a69atAwDk5OTg+PHjGDt2rMk5+vfvX+/7kydPGr/fu3cv7rvvPkRFRSEwMBCjR49GUVERysvLAQBTpkzBm2++iTvvvBOzZ882mYT9/PPPY/PmzejZsydeeeUVHDx40Krre+edd4zXd+zYMdx///3G53r37m1ybHV1NebOnYtu3bohJCQELVq0wO7du3Hu3DkAwMmTJ1FRUYH77rvPqjbUdvbsWVRVVeHOO+80Pubt7Y2+ffua3DMA6N69u/HvWq0WAHDp0iWb35tIaRiAiMisgIAAxMbGIjY2Fn369MFf//pXlJWVYc2aNQCACRMmYM+ePbhw4QLWr1+PwYMHo127dk0+f15eHoYPH47u3btj27ZtyM7ONs4RqqysNL7HTz/9hNGjR+O7775D7969sWzZMgAwhrEXX3wRFy9exH333YeXX365ye8fGRlpvL7Y2FgEBASYXHttCxcuxJIlS/Dqq69i3759OHbsGBITE43t9Pf3b/L7OoK3t7fx7yqVCkDNHCQiahoGICJqMpVKBS8vL/z6668AgG7duqF3795Ys2YNNm3a1OA8lK+//rre97feeisAIDs7G3q9HosXL8Ydd9yBzp074+LFi/XOER0djUmTJmH79u146aWXjAEMAFq1aoUxY8bggw8+QGZmJlavXu3ISzY6cOAAHn74YTz11FPo0aMHOnTogB9++MH4fKdOneDv72+cAF6Xj48PgJqeJHM6duwIHx8fHDhwwPhYVVUVjhw5gttuu81BV0JEANBM7gYQkeuqqKhAQUEBgJoVV8uXL8f169eRlJRkPGbChAlISUlBQEAA/vCHP9Q7x4EDB7BgwQIkJydjz5492Lp1K3bu3AkAiI2NRVVVFZYtW4akpCQcOHAAq1atMnl9amoqhg4dis6dO+Pq1avYt2+fMUDNmjUL8fHx6Nq1KyoqKvDZZ58Zn3O0Tp064eOPP8bBgwfRsmVLZGRkoLCw0BhM/Pz88Oqrr+KVV16Bj48P7rzzTly+fBknTpzA+PHjER4eDn9/f+zatQtt2rSBn58fNBqNyXsEBATg+eefx9SpUxESEoK2bdtiwYIFKC8vx/jx451yXURKxR4gIjJr165d0Gq10Gq16NevH44cOYKtW7cal3ADwKhRo9CsWTOMGjUKfn5+9c7x0ksv4ZtvvkGvXr3w5ptvIiMjA4mJiQCAHj16ICMjA/Pnz8ftt9+ODz/8EOnp6Savr66uxuTJk3HrrbdiyJAh6Ny5M959910ANb0q06dPR/fu3XHPPfdArVZj8+bNTrkXr7/+OuLi4pCYmIhBgwYhMjKyXgXnmTNn4qWXXsKsWbNw6623YuTIkcZ5Oc2aNcPSpUvx3nvvoXXr1nj44YcbfJ958+bhkUcewejRoxEXF4czZ85g9+7daNmypVOui0ipVEIIIXcjiMh95eXloWPHjjhy5Aji4uJMnouJiUFqaipSU1PlaRwRkRkcAiMim1RVVaGoqAivv/467rjjjnrhh4jIlXEIjIhscuDAAWi1Whw5cqTevB25vf3222jRokWDX0OHDpW7eUTkAjgERkQep7i4uF7lZAN/f39ERUVJ3CIicjUMQERERKQ4HAIjIiIixWEAIiIiIsVhACIiIiLFYQAiIiIixWEAIiIiIsVhACIiIiLFYQAiIiIixWEAIiIiIsX5f6QfVmtxDnYHAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVBhJREFUeJzt3XlcVOX+B/DPzMgAKowXVBZFUdzScsMlLMO8FJZS3ha3SjPNur9IibI0yyXvvbiHqWXdl4otLplmml7NuFq5tIFm5m5QmoAKOSCkKPP8/uDOxMDMMANz5pyZ83m/Xrx0zjxz5nlmYM53nuX7aIQQAkREREQqopW7AkRERESexgCIiIiIVIcBEBEREakOAyAiIiJSHQZAREREpDoMgIiIiEh1GAARERGR6jAAIiIiItVhAERERESqwwCIiEjBMjIyoNFokJubK3dViHwKAyAilfvuu++QnJyMLl26oFGjRmjVqhWGDRuGkydP1ig7YMAAaDQaaDQaaLVaBAcHo2PHjnjsscewa9cul55369atiI+PR/PmzdGwYUO0bdsWw4YNw44dO9zVtBr+9a9/YfPmzTWO79+/HzNnzsTly5cle+7qZs6caXktNRoNGjZsiM6dO+OVV15BcXGxW55jzZo1SE9Pd8u5iHwNAyAilZs7dy42btyIv/71r1i8eDEmTJiAL7/8Ej179sSRI0dqlG/ZsiXee+89vPvuu5g/fz7uu+8+7N+/H3fffTeGDx+O69ev1/qcCxYswH333QeNRoOpU6fi9ddfx4MPPohTp05h3bp1UjQTgOMAaNasWR4NgMzeeustvPfee1i0aBE6deqEf/7znxg0aBDcsU0jAyAi+xrIXQEikldqairWrFkDvV5vOTZ8+HDccsstmDNnDt5//32r8gaDAY8++qjVsTlz5mDixIl48803ER0djblz59p9vhs3bmD27Nm466678Nlnn9W4/8KFC/VskXKUlZWhYcOGDss89NBDaNq0KQDg6aefxoMPPohNmzbh66+/RlxcnCeqSaRK7AEiUrl+/fpZBT8A0L59e3Tp0gXHjh1z6hw6nQ5vvPEGOnfujKVLl8JoNNote+nSJRQXF+O2226zeX/z5s2tbl+9ehUzZ85Ehw4dEBAQgIiICDzwwAM4c+aMpcyCBQvQr18/hIaGIjAwELGxsfjoo4+szqPRaFBaWorVq1dbhp0ef/xxzJw5E5MnTwYAtGnTxnJf1Tk377//PmJjYxEYGIiQkBCMGDECZ8+etTr/gAEDcPPNNyMrKwt33HEHGjZsiJdfftmp16+qgQMHAgBycnIclnvzzTfRpUsX+Pv7IzIyEs8884xVD9aAAQOwbds2/PLLL5Y2RUdHu1wfIl/FHiAiqkEIgYKCAnTp0sXpx+h0OowcORKvvvoq9u7di8GDB9ss17x5cwQGBmLr1q149tlnERISYvecFRUVGDJkCDIzMzFixAhMmjQJJSUl2LVrF44cOYKYmBgAwOLFi3HffffhkUceQXl5OdatW4eHH34Yn376qaUe7733HsaPH48+ffpgwoQJAICYmBg0atQIJ0+exNq1a/H6669bemOaNWsGAPjnP/+JV199FcOGDcP48eNx8eJFLFmyBHfccQcOHjyIJk2aWOpbWFiIe+65ByNGjMCjjz6KsLAwp18/M3NgFxoaarfMzJkzMWvWLCQkJODvf/87Tpw4gbfeegvfffcd9u3bBz8/P0ybNg1GoxHnzp3D66+/DgBo3Lixy/Uh8lmCiKia9957TwAQK1assDoeHx8vunTpYvdxH3/8sQAgFi9e7PD806dPFwBEo0aNxD333CP++c9/iqysrBrlVq5cKQCIRYsW1bjPZDJZ/l9WVmZ1X3l5ubj55pvFwIEDrY43atRIjBkzpsa55s+fLwCInJwcq+O5ublCp9OJf/7zn1bHf/zxR9GgQQOr4/Hx8QKAWL58ud12VzVjxgwBQJw4cUJcvHhR5OTkiLffflv4+/uLsLAwUVpaKoQQYtWqVVZ1u3DhgtDr9eLuu+8WFRUVlvMtXbpUABArV660HBs8eLBo3bq1U/UhUhsOgRGRlePHj+OZZ55BXFwcxowZ49JjzT0MJSUlDsvNmjULa9asQY8ePbBz505MmzYNsbGx6Nmzp9Ww28aNG9G0aVM8++yzNc6h0Wgs/w8MDLT8//fff4fRaET//v2RnZ3tUv2r27RpE0wmE4YNG4ZLly5ZfsLDw9G+fXvs3r3bqry/vz/Gjh3r0nN07NgRzZo1Q5s2bfDUU0+hXbt22LZtm925Q59//jnKy8uRkpICrfbPj/Ann3wSwcHB2LZtm+sNJVIhDoERkUV+fj4GDx4Mg8GAjz76CDqdzqXHX7lyBQAQFBRUa9mRI0di5MiRKC4uxjfffIOMjAysWbMGSUlJOHLkCAICAnDmzBl07NgRDRo4/qj69NNP8Y9//AOHDh3CtWvXLMerBkl1cerUKQgh0L59e5v3+/n5Wd1u0aJFjflUtdm4cSOCg4Ph5+eHli1bWob17Pnll18AVAZOVen1erRt29ZyPxE5xgCIiAAARqMR99xzDy5fvoyvvvoKkZGRLp/DvGy+Xbt2Tj8mODgYd911F+666y74+flh9erV+OabbxAfH+/U47/66ivcd999uOOOO/Dmm28iIiICfn5+WLVqFdasWeNyG6oymUzQaDT4z3/+YzMYrD6npmpPlLPuuOMOy7wjIvIcBkBEhKtXryIpKQknT57E559/js6dO7t8joqKCqxZswYNGzbE7bffXqd69OrVC6tXr0ZeXh6AyknK33zzDa5fv16jt8Vs48aNCAgIwM6dO+Hv7285vmrVqhpl7fUI2TseExMDIQTatGmDDh06uNocSbRu3RoAcOLECbRt29ZyvLy8HDk5OUhISLAcq28PGJEv4xwgIpWrqKjA8OHDceDAAWzYsKFOuWcqKiowceJEHDt2DBMnTkRwcLDdsmVlZThw4IDN+/7zn/8A+HN458EHH8SlS5ewdOnSGmXF/xIF6nQ6aDQaVFRUWO7Lzc21mfCwUaNGNpMdNmrUCABq3PfAAw9Ap9Nh1qxZNRITCiFQWFhou5ESSkhIgF6vxxtvvGFVpxUrVsBoNFqtvmvUqJHDlAREasYeICKVe/7557FlyxYkJSWhqKioRuLD6kkPjUajpUxZWRlOnz6NTZs24cyZMxgxYgRmz57t8PnKysrQr18/3HrrrRg0aBCioqJw+fJlbN68GV999RWGDh2KHj16AABGjx6Nd999F6mpqfj222/Rv39/lJaW4vPPP8f//d//4f7778fgwYOxaNEiDBo0CKNGjcKFCxewbNkytGvXDocPH7Z67tjYWHz++edYtGgRIiMj0aZNG/Tt2xexsbEAgGnTpmHEiBHw8/NDUlISYmJi8I9//ANTp05Fbm4uhg4diqCgIOTk5ODjjz/GhAkT8MILL9Tr9XdVs2bNMHXqVMyaNQuDBg3CfffdhxMnTuDNN99E7969rd6v2NhYrF+/HqmpqejduzcaN26MpKQkj9aXSLHkXIJGRPIzL9+29+OobOPGjUX79u3Fo48+Kj777DOnnu/69evi3//+txg6dKho3bq18Pf3Fw0bNhQ9evQQ8+fPF9euXbMqX1ZWJqZNmybatGkj/Pz8RHh4uHjooYfEmTNnLGVWrFgh2rdvL/z9/UWnTp3EqlWrLMvMqzp+/Li44447RGBgoABgtSR+9uzZokWLFkKr1dZYEr9x40Zx++23i0aNGolGjRqJTp06iWeeeUacOHHC6rVxlCKgOnP9Ll686LBc9WXwZkuXLhWdOnUSfn5+IiwsTPz9738Xv//+u1WZK1euiFGjRokmTZoIAFwST1SFRgg3bDhDRERE5EU4B4iIiIhUhwEQERERqQ4DICIiIlIdBkBERESkOgyAiIiISHUYABEREZHqMBGiDSaTCefPn0dQUBBTyRMREXkJIQRKSkoQGRkJrdZxHw8DIBvOnz+PqKgouatBREREdXD27Fm0bNnSYRkGQDYEBQUBqHwBHe1pRERERMpRXFyMqKgoy3XcEQZANpiHvYKDgxkAEREReRlnpq9wEjQRERGpDgMgIiIiUh0GQERERKQ6nANERETkJhUVFbh+/brc1fBZfn5+0Ol0bjkXAyAiIqJ6EkIgPz8fly9flrsqPq9JkyYIDw+vd54+BkBERET1ZA5+mjdvjoYNGzKJrgSEECgrK8OFCxcAABEREfU6HwMgIiKieqioqLAEP6GhoXJXx6cFBgYCAC5cuIDmzZvXaziMk6CJiIjqwTznp2HDhjLXRB3Mr3N951oxACIiInIDDnt5hrteZw6BKVBhYSHKy8vt3q/X69nNSkREVA8MgBSmsLAQS5curbVccnIygyAiIqI64hCYwjjq+alLOSIiInsef/xxaDQaaDQa+Pn5ISwsDHfddRdWrlwJk8nk9HkyMjLQpEkT6SoqAfYAERERyUzOqQ+DBg3CqlWrUFFRgYKCAuzYsQOTJk3CRx99hC1btqBBA98MFXyzVURERF5C7qkP/v7+CA8PBwC0aNECPXv2xK233oq//vWvyMjIwPjx47Fo0SKsWrUKP//8M0JCQpCUlIR58+ahcePG2LNnD8aOHQvgzwnKM2bMwMyZM/Hee+9h8eLFOHHiBBo1aoSBAwciPT0dzZs3d3s7XMUhMCIiIhkpcerDwIED0a1bN2zatAkAoNVq8cYbb+Cnn37C6tWr8d///hcvvvgiAKBfv35IT09HcHAw8vLykJeXhxdeeAFA5VL12bNn44cffsDmzZuRm5uLxx9/3GPtcIQ9QApnNAahqCgUISGFMBhK5K4OERGpRKdOnXD48GEAQEpKiuV4dHQ0/vGPf+Dpp5/Gm2++Cb1eD4PBAI1GY+lJMnviiScs/2/bti3eeOMN9O7dG1euXEHjxo090g57GAApWHZ2D2zdOgRCaKHRmJCU9Cl69jwod7WIiEgFhBCWIa3PP/8caWlpOH78OIqLi3Hjxg1cvXoVZWVlDhNAZmVlYebMmfjhhx/w+++/WyZW//rrr+jcubNH2mEPh8AUymgMsgQ/ACCEFlu3DoHRGCRzzYiISA2OHTuGNm3aIDc3F0OGDEHXrl2xceNGZGVlYdmyZQAcD8uVlpYiMTERwcHB+OCDD/Ddd9/h448/rvVxnsIeIIXR6/UAgKKiUEvwYyaEFkVFITAYSizliIiI3O2///0vfvzxRzz33HPIysqCyWTCwoULodVWXpc+/PBDq/J6vR4VFRVWx44fP47CwkLMmTMHUVFRAIDvv//eMw1wAgMghQkNDUVycjJyc2/gvfcETKY/U37rdALPPnsPoqMbMAkiERG5xbVr15Cfn2+1DD4tLQ1DhgzB6NGjceTIEVy/fh1LlixBUlIS9u3bh+XLl1udIzo6GleuXEFmZia6deuGhg0bolWrVtDr9ViyZAmefvppHDlyBLNnz5aplTVxCEyBQkNDERsbhnfe0cC80a1OB7z9tgaxsWEMfoiIyG127NiBiIgIREdHY9CgQdi9ezfeeOMNfPLJJ9DpdOjWrRsWLVqEuXPn4uabb8YHH3yAtLQ0q3P069cPTz/9NIYPH45mzZph3rx5aNasGTIyMrBhwwZ07twZc+bMwYIFC2RqZU0aIYSQuxJKU1xcDIPBAKPRiODgYFnrcu4ccPo00K4d0LKlrFUhIiIbrl69ipycHLRp0wYBAQEuP17uPEDextHr7cr1m0NgCteyJQMfIiJfZp76wE2wPYsBEBERkcwY3Hge5wARERGR6jAAIiIiItXhEBj5NDl3WCYiIuViAEQ+iysriIjIHg6Bkc9S4g7LRESkDAyAiIiISHUYABEREZHqMAAin2U0GqvdDkJOTjSMxiCH5YiIyD327NkDjUaDy5cvO/2Y6OhopKenS1YnMwZA5LOuX79u+X92dg+kp6dg9eoxSE9PQXZ2D5vliIjU5PHHH4dGo8HTTz9d475nnnkGGo0Gjz/+uOcr5gEMgMjnGY1B2Lp1CISo/HUXQoutW4fU6AkiIlKjqKgorFu3Dn/88Yfl2NWrV7FmzRq0atVKxppJiwEQ+byiolBL8GMmhBZFRSEy1YiISDl69uyJqKgobNq0yXJs06ZNaNWqFXr0+LO3/Nq1a5g4cSKaN2+OgIAA3H777fjuu++szrV9+3Z06NABgYGBuPPOO5Gbm1vj+fbu3Yv+/fsjMDAQUVFRmDhxIkpLSyVrnz0MgMhnNWhQmeYqJKQQGo3J6j6NxoSQkCKrckRESnDuHLB7d+W/nvLEE09g1apVltsrV67E2LFjrcq8+OKL2LhxI1avXo3s7Gy0a9cOiYmJKCqq/Cw9e/YsHnjgASQlJeHQoUMYP348pkyZYnWOM2fOYNCgQXjwwQdx+PBhrF+/Hnv37kVycrL0jayGARD5rCZNmgAADIYSdO16GID43z0CXbsehsFQYlWOiEhuK1YArVsDAwdW/rtihWee99FHH8XevXvxyy+/4JdffsG+ffvw6KOPWu4vLS3FW2+9hfnz5+Oee+5B586d8e9//xuBgYFY8b9KvvXWW4iJicHChQvRsWNHPPLIIzXmD6WlpeGRRx5BSkoK2rdvj379+uGNN97Au+++i6tXr3qmsf/Dr74KxO0b3MtoDMLhw10BaP53RIPDh7ti4MD/WoIgIiK5nTsHTJgAmP7XYW0yAU89BSQmAi1bSvvczZo1w+DBg5GRkQEhBAYPHoymTZta7j9z5gyuX7+O2267zXLMz88Pffr0wbFjxwAAx44dQ9++fa3OGxcXZ3X7hx9+wOHDh/HBBx9YjgkhYDKZkJOTg5tuukmK5tnEAEhhuH2D+zmaA8QAiIiU4tSpP4Mfs4oK4PRp6QMgoHIYzDwUtWzZMkme48qVK3jqqacwceLEGvd5esI1AyCF4fYN7qPX6wH8OQeoahBUdQ6QuRwRkZzatwe0WusgSKcD2rXzzPMPGjQI5eXl0Gg0SExMtLovJiYGer0e+/btQ+vWrQFUphD57rvvkJKSAgC46aabsGXLFqvHff3111a3e/bsiaNHj6KdpxrlAAMghTMag1BUFIqQkEL2VrgoNDQUycnJKC8vR4sWxXjpJQMqKjTQ6QTmzi3GqFEjOZxIRIrRsiXwzjuVw14VFZXBz9tve6b3BwB0Op1lOEun01nd16hRI/z973/H5MmTERISglatWmHevHkoKyvDuHHjAABPP/00Fi5ciMmTJ2P8+PHIyspCRkaG1Xleeukl3HrrrUhOTsb48ePRqFEjHD16FLt27XJq9MOdGAApWHZ2D0v+Go3GhKSkT9Gz50G5q+VVzMHN888Dw4dXdiW3a6dBy5ZNADSRs2pERDWMG1c556fys8pzwY9ZcHCw3fvmzJkDk8mExx57DCUlJejVqxd27tyJv/zlLwAqh7A2btyI5557DkuWLEGfPn3wr3/9C0888YTlHF27dsUXX3yBadOmoX///hBCICYmBsOHD5e8bdVphBCi9mLqUlxcDIPBAKPR6PCXQQp5eXl45513YDQGIT09pcawTUpKOgyGEkyYMAEREREerRsREdV09epV5OTkoE2bNggICJC7Oj7P0evtyvWby+AVisn7iIiIpMMhMIWqbeIu+T6mQyAikg4DIA+oy4XMYChBUtKnNeYAcSK0dJQUcDAdAhGRtBgASczVC1nVJdk9ex5ETMxpFBWFICSkyCr44dJt91JawMF0CERE0mIAJLHqFyh7y9rN5aou3baHQx/uV5eAQ0k9RkQkP64p8gx3vc4MgDzI2WXtvGgqn6d7jJgPiki5/Pz8AABlZWUIDAyUuTa+r6ysDMCfr3tdMQDyEKMxyBL8AJUrurZuHYKYmNO8oHkhTw5RMR8UkbLpdDo0adIEFy5cAAA0bNgQGo2mlkeRq4QQKCsrw4ULF9CkSZMayRpdxQDIQ7gflXdRSo8LA2ci7xAeHg4AliCIpNOkSRPL610fDIA8hMvavUddelykCpgYOBN5B41Gg4iICDRv3hzXr1+Xuzo+y8/Pr949P2YMgDyEy9q9Q116XKQcolJS4KykSd9KqgtRVTqdzm0XaJIWAyAPcrSsnZTB1R4XqYaozGkOagucPZUOQUlpApRUFyLyXgyAJFb9AmUwlNi8MDKvj7zMr39tPS7V3yephqiqp0OYPv0icnMbIDr6BiIjewPo7dFeDiXlJVJSXYjIezEAkhjz+niHqu9TixbFeOklAyoqNNDpBObOLcaoUSNtvk9SDlFVfa6ICCA2tt6n9ElKmbBORN5F9s1Qly1bhujoaAQEBKBv37749ttv7Zb96aef8OCDDyI6OhoajQbp6ek1ynz55ZdISkpCZGQkNBoNNm/eLF3lnRQaGoqIiAi7Pwx+lMH8Pj3/fBPk5mqwezeQm6vB8883qfE+VR+i0mhMACDbEJWnGY1ByMmJhtEYJGs9srN7ID09BatXj0F6egqys3vIWh8i8h6y9gCtX78eqampWL58Ofr27Yv09HQkJibixIkTaN68eY3yZWVlaNu2LR5++GE899xzNs9ZWlqKbt264YknnsADDzwgdRPIR7VsWfljj9KGqDxJKXmJpEwRwEnWRL5P1gBo0aJFePLJJzF27FgAwPLly7Ft2zasXLkSU6ZMqVG+d+/e6N27NwDYvB8A7rnnHtxzzz3SVZrof9Q4RKWkvERSzb/iJGsidZAtACovL0dWVhamTp1qOabVapGQkIADBw54tC7Xrl3DtWvXLLeLi4s9+vxE3kJJeYlcmX/lSo+Oq/v3EZF3ki0AunTpEioqKhAWFmZ1PCwsDMePH/doXdLS0jBr1iyPPid5PzUOkygpL5GzubXq06OjlOE+InI/rgIDMHXqVKSmplpuFxcXIyoqSsYakdKpbZhESXmJqj6Ho9xa5nJ17dFR0nAfEbmfbAFQ06ZNodPpUFBQYHW8oKDALXt8uMLf3x/+/v4efU7ybmrLRaOkSd/1SS3hSo+Okob7iMj9ZAuA9Ho9YmNjkZmZiaFDhwIATCYTMjMzkZycLFe1iOpEDblolDTpuy6Blqs9Okoa7iMi95N1CCw1NRVjxoxBr1690KdPH6Snp6O0tNSyKmz06NFo0aIF0tLSAFR+mz569Kjl/7/99hsOHTqExo0bo127dgCAK1eu4PTp05bnyMnJwaFDhxASEoJWrVp5uIWkBpwn4h1c7dGRcv8+Nc4fI1IaWQOg4cOH4+LFi5g+fTry8/PRvXt37NixwzIx+tdff4VW++cH1vnz59Gjx5+JzhYsWIAFCxYgPj4ee/bsAQB8//33uPPOOy1lzHN7xowZg4yMDOkbRaqipHkivKg6VpceHSn271Pb/DEipZJ9EnRycrLdIS9zUGMWHR0NIYTD8w0YMKDWMkTuopR5Iryo1s7ZHh2p9+/jMnsiZZA9ACLyZkqZJ6K2Sdl15UyPjif37+PwKZF8GAAR1YOU80TIPerSo+OJXjIlDZ8SqREDIKI6cDUXjaepYVWaszzZo+MKpQyfEqkVAyCiOlDqRRXgsIotSpz3JNVWHkTkHAZARHWkxAsOh1W8hye28iAi+xgAEfkQKYdV2Avhfs5MyuaqMSJpMAAi8iFSrUpjL4T71GeZPYc3idyHARCRD5B6s1Ius3efus4f4/AmkXsxACLyAZ7erJSrzOqnLu8DV40RuRcDICIf4anNSjkMIw+lJN0k8hXa2osQEVWyNwxjNAbJXDPfZx7e1GhMAMCkm0T1xB4gInIah2HkJcXmrERqxQCIiJzGYRjPk3pzViK1YgBERE5Ty95nSsp5pOSs40TejAEQUR0p6SIpNaXvfeZOSsx55Cu/R0RKwgCIqA48cZFUUoClpl4I5jwiUgcGQER1IPX2BGrrhVBSsFcdcx4R+SYGQET1JEVeHDXt/6TEYM+MOY+IfBcDIKJ68MT2BL5+EVbqkJNatp5Qcu8bkZQYABHVg9R5cdRyEa5KKUNOash5pOTeNyKpMQAiqgep8+Ko4SJclZJ6u9SQ80hNQ61E1XErDB9y7hywe3flv+QZUm9PYL4IV+VrF2EzpW2zobatJ7KzeyA9PQWrV49BenoKsrN7yF0lIkmxB8jLmcfv16wJxIsvGmAyaaDVCsybZ8SoUX9w/N4DpNyeQC2JBwHl9HapKeeRmRqHWokYAHkx8/i90RiE9PQUCKEBAJhMGkyeHIzfflsJg6GE4/cS8OT2BGrZ/0kpQ05qynlkppTgk8iTGAB5MfMHdG0fXp4cv6+6ouT8eS1ychqgTZsbiIysHEbwlQuH1BdJJe7/JPVqISX1dvnC76grpAw+ucqMlIoBkA9QyjfnqitKHE1m9ZUeKSnboLReCClXC6lxyElppAo+ucqMlIwBkA9Qyjdn88W6tvkEXFHiHCVdEKTM1aO0YE+tpBhq5SozUjIGQD5CSfNEOJ/A97k7Vw+DG3l4cqhVSSkOiAAGQD7F3oeXpyllSI6kwQuZ7/BU7xtXmZESMQAit1PKkBy5Hy9kvscTvW/sFSYlYgBEklDSkJyz1LKCrT54IaO6YK8wKREDIC/m7Li8XKtnlDIk5wy1rWCrK17IqC7YK0xKxADIi3H1jPtwBZtzeCGjuvLGXmFXsRfZuzAA8nJK+mNSeo+UMzjEYxtz9VBdKDGhp6ucTeTIXmTvwwCI3MYXeqQ4xGObL7y35Hne/ntTPZGjvfQPVdvIXmTvwQCI3EqpH2TO4hCPfd7+3kqJ2z3Y583trvqeOurVqVqOvcjegwEQUTVqmKtA7sPtHnyfK+kf2IvsPbS1FyFSH4OhBG3a/MLgh2ol5TYhpAyOenWqM/ciazSVE5/Zi6xc7AEiInIjd28TQvJztVeHvcjegQEQEXxjBRvJj9uE+Ka6zA30pjxoasUAiAjev1qF5MdtQnwbe3V8DwMgov9hcEP1wdU/vs9Rrw57kb0PAyAiIjfg6h/f40pQo8ReZGamdowBEBGRGzCHlO9xNahRUjDBzNS1YwBERFQP3CbEt3lrcMDM1LVjAEREVA9KHPogMuPcNPsYABER1RODG1Iqpc5NO3cOOHUKaN8eaNlSnjowEzQREZGPUlJm6sLCQuTl5WHhwsto3Vpg4ECgdWuBhQsvIy8vD4WFhR6tD3uAiIjIa3Ej2topIYeReVK20RiE9PQUCKEBAJhMGkyeHIzfflsJg6HEo5OyGQAREZFX4ka0zpM7M7U5SK1tTpInJ2VzCIyIiLwSN6L1PuY5SVXJNSeJPUBEROQT5N6IVknDcUrNTK2kfFkMgIiIyOvJvRGt0objlJyeQQlzkgAGQERE5OWUsBFt9UDDXm+UJ4fjlDzvSe45SQADICIi8nJKS/Ynd28UOYeToImIyKspaWKtvd4oozHI43UhxxgAERGRV1NSsj9HvVFqpsRJ2RwCIyIir6TEjWiVuvWE3JQ4KVsRAdCyZcswf/585Ofno1u3bliyZAn69Oljs+xPP/2E6dOnIysrC7/88gtef/11pKSk1OucRETkfZR4UVXSMm9XSb2MX2mTsmUPgNavX4/U1FQsX74cffv2RXp6OhITE3HixAk0b968RvmysjK0bdsWDz/8MJ577jm3nJOIyJOUlC/G2ynxdVLKMm9XVF/Gb28Vmy9l1ZY9AFq0aBGefPJJjB07FgCwfPlybNu2DStXrsSUKVNqlO/duzd69+4NADbvr8s5iYg8RWn5Ysg9qg+z2Vvm7enEg86qGpA7WsXmS1m1ZQ2AysvLkZWVhalTp1qOabVaJCQk4MCBAx4757Vr13Dt2jXL7eLi4jo9NxFRbZSYL4bqT4nDcXWhhJxKniJrAHTp0iVUVFQgLCzM6nhYWBiOHz/usXOmpaVh1qxZdXo+IqK6Yr4Y36L04MYZSsupJCUugwcwdepUGI1Gy8/Zs2flrhIR+TjmiyElUlJOJanJGgA1bdoUOp0OBQUFVscLCgoQHh7usXP6+/sjODjY6oeISErMF0NKpKScSlKTdQhMr9cjNjYWmZmZGDp0KADAZDIhMzMTycnJijknEZG7MV8MKZU3rmKrC9lXgaWmpmLMmDHo1asX+vTpg/T0dJSWllpWcI0ePRotWrRAWloagMqJgUePHrX8/7fffsOhQ4fQuHFjtGvXzqlzEhHJzZvzxSgJUwpIQwmblUpN9gBo+PDhuHjxIqZPn478/Hx0794dO3bssExi/vXXX6HV/vkN6fz58+jRo4fl9oIFC7BgwQLEx8djz549Tp2TiEgJ1PJNWypMKeA+StyqQmoaIYSQuxJKU1xcDIPBAKPRyPlARORWvGi7T15eHt55551ay02YMAEREREeqJF384XeNFeu37L3ABERqYmv5ItRIns5lcg5avudYwBE5CFVv12dP69FTk4DtGlzA5GRlasteNFTD77P7secSp7n7T1GDICIPKDqsIejD2oOexC5Tk3Zi5XCF/YOYwBE5AHmb0m1fVBz+wMi16kpe7FS+MLeYcwETeRBTH5H5H5qyl6sNN6c0ZwBEJEHKfWD+tw5YPfuyn+JvI2ashcrjTd/qeMQGJEHKSn5nXkC45o1gXjxRQNMJg20WoF584wYNeoPxU9gJKqak8ZRTiVfyl2jNN6c0ZwBEJGHKSH5nXkCo9EYhPT0FAihAQCYTBpMnhyM335bCYOhRNETGImYUkB+SvpS5yoGQEQykDvNvPmCUdvkUSVPYCQCmFJACZTwpa4uGAARqZg3d18TkXLI/aWuLjgJmsgDlLrPDiePElFdKPUzzRXsASLyACXPVfDW7msiko+SP9OcxQCIyEOU/EHgjd3XRCQvJX+mOYNDYERERKQ6DICIiIhIdRgAEamQL0xgJCKqD84BIofM2YIB4Px5LXJyGqBNmxuIjKxcNaT0SW5kmy9MYCQiqg8GQGSXOVsw4Hi3X2YL9k58z4hIzTgERnaZewdq2+2X2YKJiMjbsAeIalXbdglEROS6qlMMbOEwtLQYAFGtuF0CEZF7VZ1i4AinGEiHQ2BUK26XQETkXtV7fozGIOTkRFumFtgrR+7DHiByCrdLICKShqNFJvXBITbHGACR07hdAhGRe9lbZBITc7pen7ccYqsdh8CIiIhk4miRSX1wiK127AEiu5gtmIhIWp5YZCLVEJu3YwBEdjFbMBGRtMyLTKoHKO6abiDVEJsvYABEDjG4ISKSlpSLTJjHzT4GQERERB5WfeqAvUUm9Z1iwDxu9jEAIiIi8jBPTTGQeojNmzEAIiIikoGnphgwj5ttDICIiIh8jKeG2LwZAyCVYWZQIiLfx1W8tWMApCLVM4MajUEoKgpFSEih1TcDNWcGJSLyFfwcd4wBkIpU/SbgKDGWmjODEhGROjAAUiEmxpIHhx+J5Me/QzJjAKRCTIzleRx+dKzqRen8eS1ychqgTZsbiIw0AeBFidyDf4dUFQMgFWJiLM/j8KN9VS9Kjl4bXpS8k5J6XPh3SFXVKQDasGED1q5di5MnTwIAOnTogFGjRuGhhx5ya+VIGkyMJR8OP9ZkvtjU9trwouR9qve42OPp4JZ/hwS4GACZTCaMHDkSGzZsQIcOHdCpUycAwE8//YThw4fj4Ycfxtq1a6HRaCSpLLkPE2PJg8OP9vG18T3Vg1Z7Q06eDm75u0aAiwHQ4sWL8fnnn2PLli0YMmSI1X1btmzB2LFjsXjxYqSkpLizjiQRe4mxSDocfrSPr41vczTk5Gn8XSMA0NZe5E+rVq3C/PnzawQ/AHDfffdh3rx5WLlypdsqR+7lbMZPNWcGlZp5+FGjqZzcy+HHP/G18V32hpyMxiBZ6sPfNQJc7AE6deoUEhIS7N6fkJCA5OTkeleKpMHMoMrA4Uf7+NooX10mNStxyIm/a+RSABQYGIjLly+jVatWNu8vLi5GQECAWypG0mBwowwcfrSPr41y1XVSs1KHnPi75llKWhEIuBgAxcXF4a233sJbb71l8/5ly5YhLi7OLRUj8iUcfiRfUNdJzUpZecq/Q/kocUWgSwHQtGnTMGDAABQWFuKFF15Ap06dIITAsWPHsHDhQnzyySfYvXu3VHUl8locfrSPFyX38tS3bFcnNSthyIl/h/JR4opAlwKgfv36Yf369ZgwYQI2btxodd9f/vIXrF27FrfddptbK0jkK/ihahsvSu7jqUzHzubRqR602hty8mRwy98j+SllRaDLiRD/9re/ITExETt37sSpU6cAVCZCvPvuu9GwYUO3V5CIfB8vSu7hqUzHzk5qZnBL1SkpCaVLAdB///tfJCcn4+uvv8bf/vY3q/uMRiO6dOmC5cuXo3///m6tJBEROU/qi4wrk5oZ3FBVSloR6FIeoPT0dDz55JMIDg6ucZ/BYMBTTz2FRYsWua1yRETkOkcXGXdgHh2qK3PwXJVcKwJd6gH64YcfMHfuXLv333333ViwYEG9K0VERHXniWXnSpjUTN5HKSsCARcDoIKCAvj5+dk/WYMGuHjxYr0rRUREdSfVRUaJk5rJ+ygleHYpAGrRogWOHDmCdu3a2bz/8OHDiIiIcEvFiIio7qS4yHBSM9WVEoNnlwKge++9F6+++ioGDRpUI+PzH3/8gRkzZtjcJ4yIiDxPikzHDG6oLpQYPLsUAL3yyivYtGkTOnTogOTkZHTs2BEAcPz4cSxbtgwVFRWYNm2aJBUlkprS0rQTuYpJJUnJlPb5qRFCCFce8Msvv+Dvf/87du7cCfNDNRoNEhMTsWzZMrRp00aSinpScXExDAYDjEajzRVv5Hs8lUCOSGoM5EnNXLl+u5wIsXXr1ti+fTt+//13nD59GkIItG/fHn/5y1/qXGEiuXkqgRzJQ01Bga+0g0hqLgdAZn/5y1/Qu3dvd9aFSHZKylJK7qHETRiJlEhNXxSAegRARL5ISVlKyT2UuAkjkdKo8YuCS5mgpbJs2TJER0cjICAAffv2xbfffuuw/IYNG9CpUycEBATglltuwfbt263uLygowOOPP47IyEg0bNgQgwYNsuxbRuSIkrKUkvtlZ/dAenoKVq8eg/T0FGRn95C7SkSKYOuLQk5ONIzGIIflvJnsAdD69euRmpqKGTNmIDs7G926dUNiYiIuXLhgs/z+/fsxcuRIjBs3DgcPHsTQoUMxdOhQHDlyBAAghMDQoUPx888/45NPPsHBgwfRunVrJCQkoLS01JNNIy/EFP++y97wZvUPeCK1U8sXBdmHwBYtWoQnn3wSY8eOBQAsX74c27Ztw8qVKzFlypQa5RcvXoxBgwZh8uTJAIDZs2dj165dWLp0KZYvX45Tp07h66+/xpEjR9ClSxcAwFtvvYXw8HCsXbsW48eP91zj6kht47BKo5QspeReHN4kqp2a5kHKGgCVl5cjKysLU6dOtRzTarVISEjAgQMHbD7mwIEDSE1NtTqWmJiIzZs3AwCuXbsGAFaJGrVaLfz9/bF3716bAdC1a9csjwMql9HJRY3jsEokRQI5kpcn9sci8nZq+qIg6xDYpUuXUFFRgbCwMKvjYWFhyM/Pt/mY/Px8h+U7deqEVq1aYerUqfj9999RXl6OuXPn4ty5c8jLy7N5zrS0NBgMBstPVFSUG1pXN86Or/rSOKwSMIGc7+PwJlHt1DQPUvYhMHfz8/PDpk2bMG7cOISEhECn0yEhIQH33HMP7OV8nDp1qlWvUnFxsaxBEHmeEtO0k/txeJPIMSXt1i41WQOgpk2bQqfToaCgwOp4QUEBwsPDbT4mPDy81vKxsbE4dOgQjEYjysvL0axZM/Tt2xe9evWyeU5/f3/4+/vXszXSsLdkl5zjynwqBje+SYmbMBIpmVq+KMgaAOn1esTGxiIzMxNDhw4FAJhMJmRmZiI5OdnmY+Li4pCZmYmUlBTLsV27diEuLq5GWYPBAAA4deoUvv/+e8yePdvtbZCSo4zEVDvOpyKAvXtEzlDjFwXZh8BSU1MxZswY9OrVC3369EF6ejpKS0stq8JGjx6NFi1aIC0tDQAwadIkxMfHY+HChRg8eDDWrVuH77//Hu+8847lnBs2bECzZs3QqlUr/Pjjj5g0aRKGDh2Ku+++W5Y21oVUM/HVtMKMCfDIzFd+p4mkosYvCrIHQMOHD8fFixcxffp05Ofno3v37tixY4dlovOvv/4KrfbPudr9+vXDmjVr8Morr+Dll19G+/btsXnzZtx8882WMnl5eUhNTUVBQQEiIiIwevRovPrqqx5vW31IMRNfzT0i7E0jInLM1z73ayN7AARUXnDtDXnt2bOnxrGHH34YDz/8sN3zTZw4ERMnTnRX9WQhxZJdta4wU1NeCyJyTE294OSYIgIg+pN5fLW2mfjuGIdVywRrNeW1ICL71NwLLgVvDyYZAClM9XHY6dMvIje3AaKjbyAysjeA3m75pVLTkBAT4BERwHmB7uQLwSQDIAWq+ssSEQHExrr3/GobElJTXgsico6avgRKwReCSQZAKqTGISG15LUgotqp7Uug1Lw1mJR9N3jyPLWkOreV16JNm19qfMD5Ul4LIqqdoy+B5Bp7waTRGCRzzWrHHiAVUsuQkBrzWhCRfUajEUDt8wKNRiMiIiJkqaO3ML+WtY0oKPm1ZACkIlV7OhwNCflSjwiDGyIyu379OoA/vwRu2TIElQMh1l8CzeXIPvNrVFswqeTXkgGQirBHhIjoTxoNIETlv1Q3BkMJunY9jB9+6AZAA0Cga9fDXjGiwABIZRjcEJFaNWhQecmrbRK0uRzVzmgMwuHDXVEZ/ACABocPd8XAgf9VfBDEd5ncytsTYxGR72rSpAmA2uetmMuRfeYgsbbXUsnBpHJrRl7HFxJjEZHvY3LU+jMHibW9lkoOJrkMntxGrXuNEZF3MU+CNqcD8dWVsJ7gza8le4CIiEh1mBzVfbz1tWQARJJRy2arROQdbCVHtfXZ5EupQKTiC68lAyCShLemRici38VUIO7jC68lAyByqC6rurjPDhEplZIvyN7G219LBkBkV11Xdalxs1UiIvIuXAVGdtV1VZdaNlslIiLvxQCInGY0BiEnJ9ruLr/myW61LYtU8qQ4IiJSBw6BkVOcmdRcfVLc9OkXkZvbANHRNxAZ2RtAb8VPilMSZtUmIpIOAyCqlSuTmqtekCMigNhYj1bVZzCrNhGRtBgAUa04qdk2KXtomFWbiEhaDICoVtw3pyZP99AwqSQRkXsxAKJamSc1V58DpOYLsSd7aJhUkojI/RgAkV1VV2s52uuFq7qkw6SSRETSYABEdvlCqnNPkWqIivOvSG24+pE8hQEQOcQPmtpJOUTF+VekNFIGKFz9SJ7EAIioHqQeouL8K1ISqQOU6oGVvZ5Vrn4kd2AARFQPUg1Rcf4VKZEnAxRO/iepMQAiqgephqg4/4qUTsoAhZP/yRMYABHVQfV9z+wNUdWnh4bBDSmV1AEKJ/+TJzAAIqoD7ntGaiZ1gMLJ/+QJDICI6oj7npFaSR2gcPI/eQIDICIicoknAhRHk/+J3IEBEBERuUyKAKX6nDmDocTmebn6kdyBARARETlF6gCFqx/JkzRCCCF3JZSmuLgYBoMBRqMRwcHBcleHiEgxuFUFKZkr12/2ABERkdMY3JCvYABEREReiz1SVFcMgFSGHxZE5Cu4eSrVBwMgFeGHBRH5Emf3HOPmqWQLAyAV4YcF1Qd7D0np7G3OSmQLAyAV44cFOYu9h6R03D2eXMUASKX4YUGuYO8hKRl3j6e60NZehHyNvQ8LozFI5poREbnO0easRPYwAFIhflhQfRmNQcjJiWbQTIpg3py1Ku4eT7XhEJgKSb2TM/k2Dp+S0nD3eKoLBkAqxA8LqivOtSAlqbrnmKPNWbl5KtnCAEhF+GFB9eVo+JQBEHkaN0+l+mAApCL8sKD64vApKQ0/r6iuGACpDD8sqC7MvYK1DZ+y95CIvIVGCCHkroTSFBcXw2AwwGg0Ijg4WO7qEClC1UzQ589rkZvbANHRNxAZWbn6hr2HRCQ3V67f7AEiIqdUDW4iIoDYWBkrQ0RUT8wDRERERKrDAIiIiIhUh0NgRESkGFXnmtnCuWbkLgyAiIhIEQoLC7F06dJayyUnJzMIonpjAETkIfxmS+SYo7+PupQjckQRAdCyZcswf/585Ofno1u3bliyZAn69Oljt/yGDRvw6quvIjc3F+3bt8fcuXNx7733Wu6/cuUKpkyZgs2bN6OwsBBt2rTBxIkT8fTTT3uiOUQ18JstEZGyyD4Jev369UhNTcWMGTOQnZ2Nbt26ITExERcuXLBZfv/+/Rg5ciTGjRuHgwcPYujQoRg6dCiOHDliKZOamoodO3bg/fffx7Fjx5CSkoLk5GRs2bLFU80issJvtkSuMxqDkJMTDaMxSO6qkA+SPQBatGgRnnzySYwdOxadO3fG8uXL0bBhQ6xcudJm+cWLF2PQoEGYPHkybrrpJsyePRs9e/a0+na9f/9+jBkzBgMGDEB0dDQmTJiAbt264dtvv/VUs4iIqB6ys3sgPT0Fq1ePQXp6CrKze8hdJfIxsgZA5eXlyMrKQkJCguWYVqtFQkICDhw4YPMxBw4csCoPAImJiVbl+/Xrhy1btuC3336DEAK7d+/GyZMncffdd0vTECIX8ZstkX1GY5BluxWgcsPdrVuH8O+F3ErWOUCXLl1CRUUFwsLCrI6HhYXh+PHjNh+Tn59vs3x+fr7l9pIlSzBhwgS0bNkSDRo0gFarxb///W/ccccdNs957do1XLt2zXK7uLi4rk0iqlV2do8ae2n17HlQ7moRKUZRUajVhrtAZRBUVBRi2XeOqL5kHwKTwpIlS/D1119jy5YtyMrKwsKFC/HMM8/g888/t1k+LS0NBoPB8hMVFeXhGpNa8JstUe1CQgqh0Zisjmk0JoSEFMlUI/JFsgZATZs2hU6nQ0FBgdXxgoIChIeH23xMeHi4w/J//PEHXn75ZSxatAhJSUno2rUrkpOTMXz4cCxYsMDmOadOnQqj0Wj5OXv2rBtaR1STo2+2RGqn1+sBAAZDCZKSPrUEQeaeUnPvj7kcUX3IOgSm1+sRGxuLzMxMDB06FABgMpmQmZmJ5ORkm4+Ji4tDZmYmUlJSLMd27dqFuLg4AMD169dx/fp1aLXWFxmdTgeTyfobhZm/vz/8/f3r3yCiWpi/2VYNgvjNlqhSaGgokpOTLashp0+/iNzcBoiOvoHIyN4AejNfFrmN7HmAUlNTMWbMGPTq1Qt9+vRBeno6SktLMXbsWADA6NGj0aJFC6SlpQEAJk2ahPj4eCxcuBCDBw/GunXr8P333+Odd94BAAQHByM+Ph6TJ09GYGAgWrdujS+++ALvvvsuFi1aJFs7Sd2qf7OtPgeI32yJKlUNbiIigNhYGStDPk0jhBByV2Lp0qWWRIjdu3fHG2+8gb59+wKAZSl7RkaGpfyGDRvwyiuvWBIhzps3zyoRYn5+PqZOnYrPPvsMRUVFaN26NSZMmIDnnnsOGo2m1voUFxfDYDDAaDQiODjY7e0ldaqaCfr8eW2Vb7aVPZP8ZktEVD+uXL8VEQApDQMgIiIi7+PK9dsnV4EREREROcIAiIiIiFSHARARERGpDgMgIiIiUh0GQERERKQ6DICIiIhIdRgAERERkeowACIiIiLVkX0rDCLyTVUzX9vCzNdEJCcGQETkdoWFhVi6dGmt5ZKTkxkEEZEsOARGRG7nqOenLuWIiNyNARA57dw5YPfuyn+JiIi8GQMgcsqKFUDr1sDAgZX/rlghd43ImxiNQcjJiYbRGCR3VYiIAHAOEDnh3DlgwgTAZKq8bTIBTz0FJCYCLVvKWzdSvuzsHti6dQiE0EKjMSEp6VP07HlQ7moRkcqxB4gcKiwsxNdfF1qCH7OKCuCbbwpRWFgoT8XIKxiNQZbgBwCE0GLr1iHsCSIi2TEA8iHunqNjXsmzf/9qaDTWEZBGY8K+fauxdOlSBkFkV1FRqCX4MRNCi6KiEJlqRERUiQGQj5Bijo55hY7BUIKkpE8tQZB5GMNgKLEqR1RdSEihzeA5JKRIphoREVXiHCAf4Ik5Oj17HkRMzGkUFYUgJKTIEvwQ2aLX6wH8GTxXnwNk/v0xlyMi8jQGQD7g1CnYnKNz+rR7JykbDCWKCnzOnatse/v2nIytNKGhoXj00UdRVlaGBx4AkpNP4OxZf0RFXUN4eBsAbdCwYUMmQSQi2TAA8gHt2wNarXUQpNMB7drJVyeprVjxZ6+XVgu88w4wbpzctSKzwsJCvP/++zWOnz1rfZuZoIlILpwD5ANatqwMAHS6yts6HfD2277bK2JvyI8JGpWj+rwwe3mAOH+MiOTCHiAfMW5c5Zyf06cre358NfipXJYPmEzWvQbmZfmBgWCPgsIwDxARKREDIC9XdcdtnQ7o2LHyeF5e5b++tOO2eVm+0RgEjSbFanm1eVn+kSMlHFZREHt5gGJiTitqPhkRqQ8DIC8m9Y7bzq7Q8dRKnurL8u2tLOKwinI4ygPEAIiI5MQAyItJveN2aGgokpOTHT5erh4mLsv3DuY8QNV765gHiIjkxgCIHFLyUJLSluVTTbX11pH7VR0Wt8WXhsWJ6oMBEBFJir11niP1sDiRL2EARERuV31emL3eOmaCdi+ph8WJfAkDICJyOyXPHyMiAhgAEZFEGNzIz2gMQlFRKEJCCjn0SFQNAyDyGkpblk+kZExASeQYAyAvpraAgMMqRM5hAkqi2jEA8mJqDAh8qS1EUmECSqLaMQDycgwIiKg6JqAkqh13gyci8hHm4W5zAkqNxgQANRJQ+sqwOFF9aIQQQu5KKE1xcTEMBgOMRiOCg4Plrg4RkdOqZoI+f16L3NwGiI6+gcjIymDI14bFiapy5frNITAiIh9SNbiJiABiY2WsDJGCcQiMiIiIVIcBEBEREakOAyAiIiJSHQZAREREpDoMgIiIiEh1GAARERGR6jAAIiIiItVhAERERESqwwCIiIiIVIcBEBEREakOAyAiIiJSHQZAREREpDoMgIiIiEh1GAARERGR6jAAIiIiItVhAERERESqwwCIiIiIVIcBEBGpyrlzwO7dlf8SkXoxACIin1dYWIi8vDwsXHgZrVsLDBwItG4tsHDhZeTl5aGwsFDuKhKRhzWQuwJERFIqLCzE0qVLYTQGIT09BUJoAAAmkwaTJwfjt99WwmAoQXJyMkJDQ2WuLRF5CnuAiMinlZeXAwCKikIhhPVHnhBaFBWFWJUjInVgAEREqhASUgiNxmR1TKMxISSkSKYaEZGcFBEALVu2DNHR0QgICEDfvn3x7bffOiy/YcMGdOrUCQEBAbjllluwfft2q/s1Go3Nn/nz50vZDCJSMIOhBElJn1qCII3GhKSkT2EwlMhcMyKSg+xzgNavX4/U1FQsX74cffv2RXp6OhITE3HixAk0b968Rvn9+/dj5MiRSEtLw5AhQ7BmzRoMHToU2dnZuPnmmwEAeXl5Vo/5z3/+g3HjxuHBBx/0SJuISJl69jyImJjTKCoKQUhIEYMfIhXTCCGEnBXo27cvevfujaVLlwIATCYToqKi8Oyzz2LKlCk1yg8fPhylpaX49NNPLcduvfVWdO/eHcuXL7f5HEOHDkVJSQkyMzOdqlNxcTEMBgOMRiOCg4Pr0CoiUoq8vDy88847tZabMGECIiIiPFAjIpKKK9dvWYfAysvLkZWVhYSEBMsxrVaLhIQEHDhwwOZjDhw4YFUeABITE+2WLygowLZt2zBu3Di79bh27RqKi4utfoiIiMh3yRoAXbp0CRUVFQgLC7M6HhYWhvz8fJuPyc/Pd6n86tWrERQUhAceeMBuPdLS0mAwGCw/UVFRLraEiIiIvIkiJkFLaeXKlXjkkUcQEBBgt8zUqVNhNBotP2fPnvVgDYlISnq93q3liMg3yDoJumnTptDpdCgoKLA6XlBQgPDwcJuPCQ8Pd7r8V199hRMnTmD9+vUO6+Hv7w9/f38Xa09E3iA0NBTJyckO8/zo9XomQSRSGVl7gPR6PWJjY60mJ5tMJmRmZiIuLs7mY+Li4mpMZt61a5fN8itWrEBsbCy6devm3ooTkVcJDQ1FRESE3R8GP0TqI/sy+NTUVIwZMwa9evVCnz59kJ6ejtLSUowdOxYAMHr0aLRo0QJpaWkAgEmTJiE+Ph4LFy7E4MGDsW7dOnz//fc1VnkUFxdjw4YNWLhwocfbRERERMomewA0fPhwXLx4EdOnT0d+fj66d++OHTt2WCY6//rrr9Bq/+yo6tevH9asWYNXXnkFL7/8Mtq3b4/NmzdbcgCZrVu3DkIIjBw50qPtISIiIuWTPQ+QEjEPEBERkfdx5fotew8QERGRGhUWFnJyvowYABEREXlYYWGhZQcER5KTkxkEScTn8wAREREpTfWeH6MxCDk50TAagxyWI/dhDxAREZGMsrN7YOvWIRBCC43GhKSkT9Gz50G5q+Xz2ANEREQkE6MxyBL8AIAQWmzdOqRGTxC5HwMgIiIimRQVhVqCHzMhtCgqCpGpRurBAIiIiEgmISGF0GhMVsc0GhNCQopkqpF6MAAiIiKSicFQgqSkTy1BkHkOkMFQInPNfB8nQRMREcmoZ8+DiIk5jaKiEISEFDH48RAGQERERB6m1+utbhsMJTYDn+rlyH0YABEREXlYaGgokpOTmQlaRgyAiIiIZMDgRl6cBE1ERESqwwCIiIiIVIcBEBEREakOAyAiIiJSHQZAREREpDoMgIiIiEh1GAARERGR6jAAIiIiItVhAERERESqw0zQNgghAADFxcUy14SIiIicZb5um6/jjjAAsqGkpHJDuqioKJlrQkRERK4qKSmBwWBwWEYjnAmTVMZkMuH8+fMICgqCRqNx67mLi4sRFRWFs2fPIjg42K3nVgK2z/v5eht9vX2A77eR7fN+UrVRCIGSkhJERkZCq3U8y4c9QDZotVq0bNlS0ucIDg722V9sgO3zBb7eRl9vH+D7bWT7vJ8Ubayt58eMk6CJiIhIdRgAERERkeowAPIwf39/zJgxA/7+/nJXRRJsn/fz9Tb6evsA328j2+f9lNBGToImIiIi1WEPEBEREakOAyAiIiJSHQZAREREpDoMgIiIiEh1GADV07JlyxAdHY2AgAD07dsX3377rcPy6enp6NixIwIDAxEVFYXnnnsOV69erdc5pebuNs6cORMajcbqp1OnTlI3wy5X2nf9+nW89tpriImJQUBAALp164YdO3bU65xSc3f7lPT+ffnll0hKSkJkZCQ0Gg02b95c62P27NmDnj17wt/fH+3atUNGRkaNMkp6/6Rooze/h3l5eRg1ahQ6dOgArVaLlJQUm+U2bNiATp06ISAgALfccgu2b9/u/so7QYr2ZWRk1Hj/AgICpGmAE1xt46ZNm3DXXXehWbNmCA4ORlxcHHbu3FmjnOR/h4LqbN26dUKv14uVK1eKn376STz55JOiSZMmoqCgwGb5Dz74QPj7+4sPPvhA5OTkiJ07d4qIiAjx3HPP1fmcUpOijTNmzBBdunQReXl5lp+LFy96qklWXG3fiy++KCIjI8W2bdvEmTNnxJtvvikCAgJEdnZ2nc8pJSnap6T3b/v27WLatGli06ZNAoD4+OOPHZb/+eefRcOGDUVqaqo4evSoWLJkidDpdGLHjh2WMkp6/4SQpo3e/B7m5OSIiRMnitWrV4vu3buLSZMm1Sizb98+odPpxLx588TRo0fFK6+8Ivz8/MSPP/4oTSMckKJ9q1atEsHBwVbvX35+vjQNcIKrbZw0aZKYO3eu+Pbbb8XJkyfF1KlThZ+fn8c/RxkA1UOfPn3EM888Y7ldUVEhIiMjRVpams3yzzzzjBg4cKDVsdTUVHHbbbfV+ZxSk6KNM2bMEN26dZOkvq5ytX0RERFi6dKlVsceeOAB8cgjj9T5nFKSon1Kev+qcuaD98UXXxRdunSxOjZ8+HCRmJhoua2k9686d7XRm9/DquLj420GCMOGDRODBw+2Ota3b1/x1FNP1bOG9eOu9q1atUoYDAa31cudXG2jWefOncWsWbMstz3xd8ghsDoqLy9HVlYWEhISLMe0Wi0SEhJw4MABm4/p168fsrKyLN14P//8M7Zv34577723zueUkhRtNDt16hQiIyPRtm1bPPLII/j111+la4gddWnftWvXanQ1BwYGYu/evXU+p1SkaJ+ZEt6/ujhw4IDV6wEAiYmJltdDSe9fXdXWRjNvfQ+d4exr4M2uXLmC1q1bIyoqCvfffz9++uknuatUZyaTCSUlJQgJCQHgub9DBkB1dOnSJVRUVCAsLMzqeFhYGPLz820+ZtSoUXjttddw++23w8/PDzExMRgwYABefvnlOp9TSlK0EQD69u2LjIwM7NixA2+99RZycnLQv39/lJSUSNqe6urSvsTERCxatAinTp2CyWTCrl27sGnTJuTl5dX5nFKRon2Act6/usjPz7f5ehQXF+OPP/5Q1PtXV7W1EfDu99AZ9l4Db3kPa9OxY0esXLkSn3zyCd5//32YTCb069cP586dk7tqdbJgwQJcuXIFw4YNA+C5z1EGQB60Z88e/Otf/8Kbb76J7OxsbNq0Cdu2bcPs2bPlrprbONPGe+65Bw8//DC6du2KxMREbN++HZcvX8aHH34oY82ds3jxYrRv3x6dOnWCXq9HcnIyxo4dC63WN/6UnGmfN79/VInvoXeLi4vD6NGj0b17d8THx2PTpk1o1qwZ3n77bbmr5rI1a9Zg1qxZ+PDDD9G8eXOPPncDjz6bD2natCl0Oh0KCgqsjhcUFCA8PNzmY1599VU89thjGD9+PADglltuQWlpKSZMmIBp06bV6ZxSkqKNtgKFJk2aoEOHDjh9+rT7G+FAXdrXrFkzbN68GVevXkVhYSEiIyMxZcoUtG3bts7nlIoU7bNFrvevLsLDw22+HsHBwQgMDIROp1PM+1dXtbXRFm96D51h7zXwlvfQVX5+fujRo4fXvX/r1q3D+PHjsWHDBqvhLk99jvrG11YZ6PV6xMbGIjMz03LMZDIhMzMTcXFxNh9TVlZWIwDQ6XQAACFEnc4pJSnaaMuVK1dw5swZREREuKnmzqnP6x0QEIAWLVrgxo0b2LhxI+6///56n9PdpGifLXK9f3URFxdn9XoAwK5duyyvh5Lev7qqrY22eNN76Iy6vAberKKiAj/++KNXvX9r167F2LFjsXbtWgwePNjqPo/9HbptOrUKrVu3Tvj7+4uMjAxx9OhRMWHCBNGkSRPLcsTHHntMTJkyxVJ+xowZIigoSKxdu1b8/PPP4rPPPhMxMTFi2LBhTp/T06Ro4/PPPy/27NkjcnJyxL59+0RCQoJo2rSpuHDhguLb9/XXX4uNGzeKM2fOiC+//FIMHDhQtGnTRvz+++9On9OTpGifkt6/kpIScfDgQXHw4EEBQCxatEgcPHhQ/PLLL0IIIaZMmSIee+wxS3nzEvHJkyeLY8eOiWXLltlcBq+U908Iadroze+hEMJSPjY2VowaNUocPHhQ/PTTT5b79+3bJxo0aCAWLFggjh07JmbMmCHbMngp2jdr1iyxc+dOcebMGZGVlSVGjBghAgICrMp4kqtt/OCDD0SDBg3EsmXLrJbyX7582VLGE3+HDIDqacmSJaJVq1ZCr9eLPn36iK+//tpyX3x8vBgzZozl9vXr18XMmTNFTEyMCAgIEFFRUeL//u//rC4utZ1TDu5u4/Dhw0VERITQ6/WiRYsWYvjw4eL06dMebJE1V9q3Z88ecdNNNwl/f38RGhoqHnvsMfHbb7+5dE5Pc3f7lPT+7d69WwCo8WNu05gxY0R8fHyNx3Tv3l3o9XrRtm1bsWrVqhrnVdL7J0Ubvf09tFW+devWVmU+/PBD0aFDB6HX60WXLl3Etm3bPNOgaqRoX0pKiuX3MywsTNx7771WOXQ8zdU2xsfHOyxvJvXfoUYIO+MSRERERD6Kc4CIiIhIdRgAERERkeowACIiIiLVYQBEREREqsMAiIiIiFSHARARERGpDgMgIiIiUh0GQEREXmLPnj3QaDS4fPmy3FUh8noMgIiohscffxwajQZz5syxOr5582ZoNBrLbSEE/v3vfyMuLg7BwcFo3LgxunTpgkmTJjm9MWNZWRmmTp2KmJgYBAQEoFmzZoiPj8cnn3xiKRMdHY309HS3tE1q5tdOo9HAz88Pbdq0wYsvvoirV6+6dJ4BAwYgJSXF6li/fv2Ql5cHg8HgxhoTqRMDICKyKSAgAHPnzsXvv/9u834hBEaNGoWJEyfi3nvvxWeffYajR49ixYoVCAgIwD/+8Q+nnufpp5/Gpk2bsGTJEhw/fhw7duzAQw89hMLCQnc2x6MGDRqEvLw8/Pzzz3j99dfx9ttvY8aMGfU+r16vR3h4uFUQSkR15NaNNYjIJ4wZM0YMGTJEdOrUSUyePNly/OOPPxbmj421a9cKAOKTTz6xeQ6TyeTUcxkMBpGRkWH3flv7Bpl99dVX4vbbbxcBAQGiZcuW4tlnnxVXrlyx3P/uu++K2NhY0bhxYxEWFiZGjhwpCgoKLPeb9zDasWOH6N69uwgICBB33nmnKCgoENu3bxedOnUSQUFBYuTIkaK0tNSp9owZM0bcf//9VsceeOAB0aNHD8vtS5cuiREjRojIyEgRGBgobr75ZrFmzRqrc1Rvc05OjqW+VffW++ijj0Tnzp2FXq8XrVu3FgsWLHCqnkRqxx4gIrJJp9PhX//6F5YsWYJz587VuH/t2rXo2LEj7rvvPpuPd7aXIjw8HNu3b0dJSYnN+zdt2oSWLVvitddeQ15eHvLy8gAAZ86cwaBBg/Dggw/i8OHDWL9+Pfbu3Yvk5GTLY69fv47Zs2fjhx9+wObNm5Gbm4vHH3+8xnPMnDkTS5cuxf79+3H27FkMGzYM6enpWLNmDbZt24bPPvsMS5Yscao91R05cgT79++HXq+3HLt69SpiY2Oxbds2HDlyBBMmTMBjjz2Gb7/9FgCwePFixMXF4cknn7S0OSoqqsa5s7KyMGzYMIwYMQI//vgjZs6ciVdffRUZGRl1qiuRqsgdgRGR8lTtxbj11lvFE088IYSw7gHq1KmTuO+++6weN2nSJNGoUSPRqFEj0aJFC6ee64svvhAtW7YUfn5+olevXiIlJUXs3bvXqkzr1q3F66+/bnVs3LhxYsKECVbHvvrqK6HVasUff/xh87m+++47AUCUlJQIIf7sAfr8888tZdLS0gQAcebMGcuxp556SiQmJjrVnjFjxgidTicaNWok/P39BQCh1WrFRx995PBxgwcPFs8//7zldnx8vJg0aZJVmeo9QKNGjRJ33XWXVZnJkyeLzp07O1VXIjVjDxAROTR37lysXr0ax44dq7XstGnTcOjQIUyfPh1Xrlxx6vx33HEHfv75Z2RmZuKhhx7CTz/9hP79+2P27NkOH/fDDz8gIyMDjRs3tvwkJibCZDIhJycHQGUPSVJSElq1aoWgoCDEx8cDAH799Verc3Xt2tXy/7CwMDRs2BBt27a1OnbhwgWn2gMAd955Jw4dOoRvvvkGY8aMwdixY/Hggw9a7q+oqMDs2bNxyy23ICQkBI0bN8bOnTtr1Ks2x44dw2233WZ17LbbbsOpU6dQUVHh0rmI1IYBEBE5dMcddyAxMRFTp061Ot6+fXucOHHC6lizZs3Qrl07NG/e3KXn8PPzQ//+/fHSSy/hs88+w2uvvYbZs2ejvLzc7mOuXLmCp556CocOHbL8/PDDDzh16hRiYmJQWlqKxMREBAcH44MPPsB3332Hjz/+GABqnNfPz8/yf/Pqrao0Gg1MJpPT7WnUqBHatWuHbt26YeXKlfjmm2+wYsUKy/3z58/H4sWL8dJLL2H37t04dOgQEhMTHbaXiNyrgdwVICLlmzNnDrp3746OHTtajo0cORKjRo3CJ598gvvvv9+tz9e5c2fcuHEDV69ehV6vh16vr9Gj0bNnTxw9ehTt2rWzeY4ff/wRhYWFmDNnjmX+zPfff+/WejpDq9Xi5ZdfRmpqKkaNGoXAwEDs27cP999/Px599FEAgMlkwsmTJ9G5c2fL42y1ubqbbroJ+/btszq2b98+dOjQATqdzv2NIfIh7AEiolrdcssteOSRR/DGG29Yjo0YMQIPPfQQRowYgddeew3ffPMNcnNz8cUXX2D9+vVOX4AHDBiAt99+G1lZWcjNzcX27dvx8ssv484770RwcDCAyjxAX375JX777TdcunQJAPDSSy9h//79SE5OxqFDh3Dq1Cl88sknlknQrVq1gl6vx5IlS/Dzzz9jy5YttQ6rSeXhhx+GTqfDsmXLAFT2nu3atQv79+/HsWPH8NRTT6GgoMDqMdHR0ZbX9NKlSzZ7oJ5//nlkZmZi9uzZOHnyJFavXo2lS5fihRde8Ei7iLwZAyAicsprr71mdRHWaDRYv3490tPTsX37dvz1r39Fx44d8cQTTyAqKgp79+516ryJiYlYvXo17r77btx000149tlnkZiYiA8//NDquXNzcxETE4NmzZoBqJy388UXX+DkyZPo378/evTogenTpyMyMhJA5XBcRkYGNmzYgM6dO2POnDlYsGCBG18R5zVo0ADJycmYN28eSktL8corr6Bnz55ITEzEgAEDEB4ejqFDh1o95oUXXoBOp0Pnzp3RrFkzm/ODevbsiQ8//BDr1q3DzTffjOnTp+O1116zudKNiKxphBBC7koQEREReRJ7gIiIiEh1GAARkaSqLlOv/vPVV1/JXT2X/Prrrw7b4+oydiKSD4fAiEhSjjZFbdGiBQIDAz1Ym/q5ceMGcnNz7d4fHR2NBg24uJbIGzAAIiIiItXhEBgRERGpDgMgIiIiUh0GQERERKQ6DICIiIhIdRgAERERkeowACIiIiLVYQBEREREqsMAiIiIiFTn/wHRsRj6XYyKMQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXNFJREFUeJzt3XlcVGXfP/DPzMiiBINgrKIQ4L6CS9jiRoEpZfmUWpqapnZLppSWWS5Z4ZKGW5ndbndJ+DPJJ60sJX3uUlIDvUtTE4PKBJQhB5Rim/P7g3tGZmCGGZiZc2bm83695qWcuebMdQ7ofLiu77mOTBAEAURERESkIxe7A0RERERSw4BEREREZIABiYiIiMgAAxIRERGRAQYkIiIiIgMMSEREREQGGJCIiIiIDDAgERERERlgQCIiIiIywIBEROTAtm/fDplMhoKCArG7QuRUGJCIyKSTJ08iOTkZ3bt3h5eXFzp06IDHHnsMP//8c4O2Q4YMgUwmg0wmg1wuh4+PDzp37oyJEyfi4MGDFr3vvn37MHjwYAQEBKBNmza444478Nhjj+HAgQPWOrQG3nzzTezdu7fB9mPHjmHJkiW4fv26zd7b0JIlS3TnUiaToU2bNujWrRteeeUVlJWVWeU90tPTkZaWZpV9ETkbBiQiMmnFihXYs2cPhg8fjrVr12L69On497//jZiYGJw5c6ZB+/bt2+ODDz7Av/71L6xatQoPPvggjh07hvvvvx9jx45FdXV1k+/51ltv4cEHH4RMJsOCBQvw9ttvY8yYMbh48SIyMjJscZgATAekpUuX2jUgab377rv44IMPsGbNGnTp0gVvvPEGEhMTYY3baDIgERnXSuwOEJG0paSkID09He7u7rptY8eORc+ePbF8+XJ8+OGHeu2VSiUmTJigt2358uWYPXs23nnnHYSHh2PFihVG36+mpgbLli3Dfffdh6+++qrB81evXm3hEUlHRUUF2rRpY7LN//zP/6Bdu3YAgJkzZ2LMmDHIzMzEd999h7i4OHt0k8glcQSJiEwaNGiQXjgCgOjoaHTv3h3nzp0zax8KhQLr1q1Dt27dsGHDBqjVaqNtS0pKUFZWhrvuuqvR5wMCAvS+/vvvv7FkyRJ06tQJnp6eCA4OxiOPPIJLly7p2rz11lsYNGgQ/P390bp1a8TGxuLjjz/W249MJsPNmzexY8cO3bTW5MmTsWTJEsybNw8AEBERoXuufs3Phx9+iNjYWLRu3Rp+fn4YN24cfv/9d739DxkyBD169EBOTg7uvfdetGnTBi+//LJZ56++YcOGAQDy8/NNtnvnnXfQvXt3eHh4ICQkBLNmzdIbARsyZAg+++wz/Prrr7pjCg8Pt7g/RM6KI0hEZDFBEFBcXIzu3bub/RqFQoHx48fj1VdfxbfffouRI0c22i4gIACtW7fGvn378Oyzz8LPz8/oPmtrazFq1ChkZWVh3LhxeO6551BeXo6DBw/izJkziIyMBACsXbsWDz74IJ544glUVVUhIyMDjz76KPbv36/rxwcffIBp06ZhwIABmD59OgAgMjISXl5e+Pnnn/HRRx/h7bff1o3m3H777QCAN954A6+++ioee+wxTJs2DdeuXcP69etx77334tSpU/D19dX1V6VSYcSIERg3bhwmTJiAwMBAs8+fljb4+fv7G22zZMkSLF26FPHx8XjmmWdw4cIFvPvuuzh58iSOHj0KNzc3LFy4EGq1GpcvX8bbb78NALjtttss7g+R0xKIiCz0wQcfCACELVu26G0fPHiw0L17d6Ov++STTwQAwtq1a03uf9GiRQIAwcvLSxgxYoTwxhtvCDk5OQ3abd26VQAgrFmzpsFzGo1G9/eKigq956qqqoQePXoIw4YN09vu5eUlTJo0qcG+Vq1aJQAQ8vPz9bYXFBQICoVCeOONN/S2//jjj0KrVq30tg8ePFgAIGzatMnocde3ePFiAYBw4cIF4dq1a0J+fr7w3nvvCR4eHkJgYKBw8+ZNQRAEYdu2bXp9u3r1quDu7i7cf//9Qm1trW5/GzZsEAAIW7du1W0bOXKk0LFjR7P6Q+RqOMVGRBY5f/48Zs2ahbi4OEyaNMmi12pHKMrLy022W7p0KdLT09G3b198+eWXWLhwIWJjYxETE6M3rbdnzx60a9cOzz77bIN9yGQy3d9bt26t+/uff/4JtVqNe+65B7m5uRb131BmZiY0Gg0ee+wxlJSU6B5BQUGIjo7G4cOH9dp7eHhgypQpFr1H586dcfvttyMiIgIzZsxAVFQUPvvsM6O1S4cOHUJVVRXmzJkDufzWf/FPP/00fHx88Nlnn1l+oEQuiFNsRGS2oqIijBw5EkqlEh9//DEUCoVFr79x4wYAwNvbu8m248ePx/jx41FWVobjx49j+/btSE9PR1JSEs6cOQNPT09cunQJnTt3RqtWpv8r279/P15//XWcPn0alZWVuu31Q1RzXLx4EYIgIDo6utHn3dzc9L4ODQ1tUM/VlD179sDHxwdubm5o3769btrQmF9//RVAXbCqz93dHXfccYfueSIyjQGJiMyiVqsxYsQIXL9+Hd988w1CQkIs3od2WYCoqCizX+Pj44P77rsP9913H9zc3LBjxw4cP34cgwcPNuv133zzDR588EHce++9eOeddxAcHAw3Nzds27YN6enpFh9DfRqNBjKZDF988UWjYdGwpqf+SJa57r33Xl3dExHZDwMSETXp77//RlJSEn7++WccOnQI3bp1s3gftbW1SE9PR5s2bXD33Xc3qx/9+vXDjh07UFhYCKCuiPr48eOorq5uMFqjtWfPHnh6euLLL7+Eh4eHbvu2bdsatDU2omRse2RkJARBQEREBDp16mTp4dhEx44dAQAXLlzAHXfcodteVVWF/Px8xMfH67a1dASNyJmxBomITKqtrcXYsWORnZ2N3bt3N2vtndraWsyePRvnzp3D7Nmz4ePjY7RtRUUFsrOzG33uiy++AHBr+mjMmDEoKSnBhg0bGrQV/ruQokKhgEwmQ21tre65goKCRheE9PLyanQxSC8vLwBo8NwjjzwChUKBpUuXNli4URAEqFSqxg/ShuLj4+Hu7o5169bp9WnLli1Qq9V6Vw96eXmZXHKByJVxBImITHr++efx6aefIikpCaWlpQ0WhjRcFFKtVuvaVFRUIC8vD5mZmbh06RLGjRuHZcuWmXy/iooKDBo0CHfeeScSExMRFhaG69evY+/evfjmm28wevRo9O3bFwDw5JNP4l//+hdSUlJw4sQJ3HPPPbh58yYOHTqEf/zjH3jooYcwcuRIrFmzBomJiXj88cdx9epVbNy4EVFRUfjhhx/03js2NhaHDh3CmjVrEBISgoiICAwcOBCxsbEAgIULF2LcuHFwc3NDUlISIiMj8frrr2PBggUoKCjA6NGj4e3tjfz8fHzyySeYPn06XnjhhRadf0vdfvvtWLBgAZYuXYrExEQ8+OCDuHDhAt555x30799f7/sVGxuLXbt2ISUlBf3798dtt92GpKQku/aXSLLEvISOiKRPe3m6sYeptrfddpsQHR0tTJgwQfjqq6/Mer/q6mrh/fffF0aPHi107NhR8PDwENq0aSP07dtXWLVqlVBZWanXvqKiQli4cKEQEREhuLm5CUFBQcL//M//CJcuXdK12bJlixAdHS14eHgIXbp0EbZt26a7jL6+8+fPC/fee6/QunVrAYDeJf/Lli0TQkNDBblc3uCS/z179gh333234OXlJXh5eQldunQRZs2aJVy4cEHv3JhaAsGQtn/Xrl0z2c7wMn+tDRs2CF26dBHc3NyEwMBA4ZlnnhH+/PNPvTY3btwQHn/8ccHX11cAwEv+ieqRCYIVbuhDRERE5ERYg0RERERkgAGJiIiIyAADEhEREZEBBiQiIiIiAwxIRERERAYYkIiIiIgMcKHIZtJoNLhy5Qq8vb25XD8REZGDEAQB5eXlCAkJgVxufJyIAamZrly5grCwMLG7QURERM3w+++/o3379kafZ0BqJm9vbwB1J9jUfaWIiIhIOsrKyhAWFqb7HDeGAamZtNNqPj4+DEhEREQOpqnyGBZpExERERlgQCIiIiIywIBEREREZIA1SERERHZUW1uL6upqsbvhtNzc3KBQKFq8HwYkIiIiOxAEAUVFRbh+/brYXXF6vr6+CAoKatE6hQxIREREdqANRwEBAWjTpg0XGbYBQRBQUVGBq1evAgCCg4ObvS8GJCIiIhurra3VhSN/f3+xu+PUWrduDQC4evUqAgICmj3dxiJtIiIiG9PWHLVp00bknrgG7XluSa0XAxIREZGdcFrNPqxxnhmQiIiIiAwwIBEREREZED0gbdy4EeHh4fD09MTAgQNx4sQJk+13796NLl26wNPTEz179sTnn3+u9/zkyZMhk8n0HomJiXptwsPDG7RZvny51Y+tOS5fBg4frvuTiIhIbPU/V93c3BAYGIj77rsPW7duhUajMXs/27dvh6+vr+06amWiBqRdu3YhJSUFixcvRm5uLnr37o2EhATd5XmGjh07hvHjx2Pq1Kk4deoURo8ejdGjR+PMmTN67RITE1FYWKh7fPTRRw329dprr+m1efbZZ21yjJbYsgXo2BEYNqzuzy1bxO4RERFJgUql0vvMMnyoVCqbvr/2c7WgoABffPEFhg4diueeew6jRo1CTU2NTd9bLKJe5r9mzRo8/fTTmDJlCgBg06ZN+Oyzz7B161a89NJLDdqvXbsWiYmJmDdvHgBg2bJlOHjwIDZs2IBNmzbp2nl4eCAoKMjke3t7ezfZxp4uXwamTwe0YVyjAWbMABISgPbtxe0bERGJR6VSYcOGDU22S05OttkSAvU/V0NDQxETE4M777wTw4cPx/bt2zFt2jSsWbMG27Ztwy+//AI/Pz8kJSVh5cqVuO2223DkyBHdZ722gHrx4sVYsmQJPvjgA6xduxYXLlyAl5cXhg0bhrS0NAQEBNjkWMwl2ghSVVUVcnJyEB8ff6szcjni4+ORnZ3d6Guys7P12gNAQkJCg/ZHjhxBQEAAOnfujGeeeabRZL18+XL4+/ujb9++WLVqlagJWKVS4bvvVDAcqaytBY4fV9n8NwMiIpKuqqoqq7azlmHDhqF3797IzMwEUPcZvm7dOpw9exY7duzA119/jfnz5wMABg0ahLS0NPj4+OhGvV544QUAdZfiL1u2DP/5z3+wd+9eFBQUYPLkyXY9lsaINoJUUlKC2tpaBAYG6m0PDAzE+fPnG31NUVFRo+2Liop0XycmJuKRRx5BREQELl26hJdffhkjRoxAdna2brGo2bNnIyYmBn5+fjh27BgWLFiAwsJCrFmzxmh/KysrUVlZqfu6rKzM4mNujPY3A7XaGzLZHAjCrcwqk2lw9OgOnDlTbtPfDIiIiJqjS5cu+OGHHwAAc+bM0W0PDw/H66+/jpkzZ+Kdd96Bu7s7lEolZDJZg9mbp556Svf3O+64A+vWrUP//v1x48YN3HbbbXY5jsY43Ura48aN0/29Z8+e6NWrFyIjI3HkyBEMHz4cAJCSkqJr06tXL7i7u2PGjBlITU2Fh4dHo/tNTU3F0qVLrd5fbeJXKsuRlLQf+/aNgiDIIZNpkJS0H0pluV47IiIiqRAEQTdldujQIaSmpuL8+fMoKytDTU0N/v77b1RUVJhcIDMnJwdLlizBf/7zH/z555+6wu/ffvsN3bp1s8txNEa0KbZ27dpBoVCguLhYb3txcbHR2qCgoCCL2gN1abRdu3bIy8sz2mbgwIGoqalBQUGB0TYLFiyAWq3WPX7//XejbZsrJuYU5sxJw6RJ2zFnThpiYk5Z/T2IiIis5dy5c4iIiEBBQQFGjRqFXr16Yc+ePcjJycHGjRsBmP4F/+bNm0hISICPjw927tyJkydP4pNPPmnydfYgWkByd3dHbGwssrKydNs0Gg2ysrIQFxfX6Gvi4uL02gPAwYMHjbYHgMuXL0OlUpm8Yd3p06chl8tNFoR5eHjAx8dH72ELSmU5IiJ+1Y0cERERSdHXX3+NH3/8EWPGjEFOTg40Gg1Wr16NO++8E506dcKVK1f02ru7u6O2tlZv2/nz56FSqbB8+XLcc8896NKli9Er2e1N1Cm2lJQUTJo0Cf369cOAAQOQlpaGmzdv6irdn3zySYSGhiI1NRUA8Nxzz2Hw4MFYvXo1Ro4ciYyMDHz//ffYvHkzAODGjRtYunQpxowZg6CgIFy6dAnz589HVFQUEhISANQVeh8/fhxDhw6Ft7c3srOzMXfuXEyYMAFt27YV50QQERFJWGVlJYqKilBbW4vi4mIcOHAAqampGDVqFJ588kmcOXMG1dXVWL9+PZKSknD06FG9q8uBurqkGzduICsrC71790abNm3QoUMHuLu7Y/369Zg5cybOnDmDZcuWiXSU+kRdB2ns2LF46623sGjRIvTp0wenT5/GgQMHdIXYv/32GwoLC3XtBw0ahPT0dGzevBm9e/fGxx9/jL1796JHjx4AAIVCgR9++AEPPvggOnXqhKlTpyI2NhbffPONrrbIw8MDGRkZGDx4MLp374433ngDc+fO1YUsIiIi0nfgwAEEBwcjPDwciYmJOHz4MNatW4f//d//hUKhQO/evbFmzRqsWLECPXr0wM6dO3WDG1qDBg3CzJkzMXbsWNx+++1YuXIlbr/9dmzfvh27d+9Gt27dsHz5crz11lsiHaU+mSAIgtidcERlZWVQKpVQq9Utmm4rLCw0K5xNnz7d5DQhERFJ199//438/HxERETA09PTotdKYR0kR2PqfJv7+e10V7ERERE5E39/fyQnJ5ssWnZ3d2c4sjIGJJG5u7tbtR0RETkfhh/7Y0ASGX8zICIikh4GJAmwZfi5fBm4eBGIjuY93YiIiMwl6lVsZBvauz6vXn0dHTsKGDYM6NhRwOrV1+1y12ciIiJHxxEkJ1P/3m5paXMgCHVLwGs0Msyb54M//tgKpZL3diMiIjKFI0hORlvLVFrqr3fjWwAQBDlKS/302hEREVFDDEhOys9PBZlMo7dNJtPAz69UpB4RERE5DgYkJ6VUliMpab8uJMlkGiQl7ec93oiIiMzAGiQnFhNzCpGReSgt9YOfXynDERERSc6RI0cwdOhQ/Pnnn/D19TXrNeHh4ZgzZw7mzJljs35xBMnJKZXliIj4leGIiIiaZfLkyZDJZJg5c2aD52bNmgWZTIbJkyfbv2M2xoBEREREJoWFhSEjIwN//fWXbtvff/+N9PR0dOjQQcSe2Q4DkgPTrndUWFiInJxifPyxCmfOXBe7W0RE5GRiYmIQFhaGzMxM3bbMzEx06NABffv21W2rrKzE7NmzERAQAE9PT9x99904efKk3r4+//xzdOrUCa1bt8bQoUNRUFDQ4P2+/fZb3HPPPWjdujXCwsIwe/Zs3Lx502bH1xgGJAelXe9o8+bNmDnzJPr3vx2PPuqPhITOyM3t2+TrHf3ebpcvA4cP1/1JRORKxPr/76mnnsK2bdt0X2/duhVTpkzRazN//nzs2bMHO3bsQG5uLqKiopCQkIDS0rorqH///Xc88sgjSEpKwunTpzFt2jS89NJLevu4dOkSEhMTMWbMGPzwww/YtWsXvv32WyQnJ9v+IOthkbaD0q5jpFZ7Y9++Ubo1jwRBjn37RiEyMg9KZTkeeeQRtGvXTu+1jnpvN5VKhaqqKqSnt8b8+UpoNDLI5QJWrlTj8cf/ctjjIiIy15YtwPTpgEYDyOXA5s3A1Kn2ee8JEyZgwYIF+PXXXwEAR48eRUZGBo4cOQIAuHnzJt59911s374dI0aMAAC8//77OHjwILZs2YJ58+bh3XffRWRkJFavXg0A6Ny5M3788UesWLFC9z6pqal44okndAXY0dHRWLduHQYPHox3330Xnp6edjleBiQHZ2pBSKWyHO3atUNwcLBIvbMerhBORK7u8uVb4Qio+3PGDCAhwT732rz99tsxcuRIbN++HYIgYOTIkXq/gF+6dAnV1dW46667dNvc3NwwYMAAnDt3DgBw7tw5DBw4UG+/cXFxel//5z//wQ8//ICdO3fqtgmCAI1Gg/z8fHTt2tUWh9cAA5KD0y4IWT8kOeOCkOasEK5UlnOFcCJyWhcv3gpHWrW1QF6e/W5G/tRTT+mmujZu3GiT97hx4wZmzJiB2bNnN3jOngXhrEFycK62ICRXCCciVxUdXTetVp9CAURF2a8PiYmJqKqqQnV1NRISEvSei4yMhLu7O44eParbVl1djZMnT6Jbt24AgK5du+LEiRN6r/vuu+/0vo6JicFPP/2EqKioBg971s9yBMkJuNKCkNpAqK27cvZASESk1b59Xc3RjBl1I0cKBfDee/YbPQIAhUKhmy5TKBR6z3l5eeGZZ57BvHnz4Ofnhw4dOmDlypWoqKjA1P8WSs2cOROrV6/GvHnzMG3aNOTk5GD79u16+3nxxRdx5513Ijk5GdOmTYOXlxd++uknHDx4EBs2bLDLcQIMSE5DqSxvcUjQFkEbI5UiaFcKhERE9U2dWldzlJdXN3Jkz3Ck5ePjY/S55cuXQ6PRYOLEiSgvL0e/fv3w5Zdfom3btgDqpsj27NmDuXPnYv369RgwYADefPNNPPXUU7p99OrVC//3f/+HhQsX4p577oEgCIiMjMTYsWNtfmz1yQRBEOz6jk6irKwMSqUSarXa5A+LrRQWFmLz5s1Ntps+fbpZRdraImgttdobpaX+8PNT6QUQsYqgrX28LVE/SF65Ikd+fitERNQgJKRu6k8qQZKIpOPvv/9Gfn4+IiIi7HYVliszdb7N/fzmCJKDMnce1tx29UeOcnP7NpjCiok51aCdK6ofJE2dJ15NR0Tk2BiQHJS/vz+Sk5OtPiXW1LpKrs7c9adcPUgSETk6BiQHZosRiqYuoxeLtUfMWkqq54mIiKyDAYn0SHVdJVuNmDWXVM8TERFZBwMS6ZHyZfRSqumR8nkiIunidVH2YY3zzIBEDfAyevPwPBGRudzc3AAAFRUVaN26tci9cX4VFRUAbp335mBAokZZY10lV8DzRETmUCgU8PX1xdWrVwEAbdq0gUwmE7lXzkcQBFRUVODq1avw9fVtsJilJRiQCID0iqCJiJxNUFAQAOhCEtmOr6+v7nw3FwMSAZBeEbRUMUgSUXPJZDIEBwcjICAA1dXVYnfHabm5ubVo5EiLK2k3k9graVPLNffWKo5ySxYiImqIK2kTmWB4axVjGlsRm+GHiMj5yZtuQuR8DEeA1Gpv5OeHQ632NtmOiIhcA0eQyOWZuqcaERG5JgYkahFHr8fhveeIiKgxDEjUbC2p45EK3lONiIgawxokajZnqOPR3lOtPt5TjYiIOIJEVuGodTy8pxoRETWGAYlazNHreHhPNSIiMsSA5MCkUiDtiHU8hitdG7unGlfEJiJyTQxIEtCcoCOlAmltHU/9kCT1Oh7eWoWIiExhQBJZc4OOuYXPtiyQvn79OoCm63iuX7+O4OBgm/WjuRh+iIjIGAYkkUkh6DRXTU2N7u+m6njqtyMiInIEvMzfSRi7xN6W3NzcGtkqM7MdERGRdHEESWLUam+UlvrDz09ldoGzWJfYK5VKs/pQv52zk0rhPBERtQwDkoQ0J+hI4RJ7KfRBCqRUOE9ERC3DKTaJMBYympoyM3WJvb1IoQ9S4Mj1ZEREpI8BSSKaGzKkcKsMKfRBisSoCyMiIutgQBKZWq0G0HTI0LbT0i5gqL3EXvtaw0vs7bHQYVN9cEW5uX2RljYHO3ZMQlraHOTm9hW7S0REZAHWIIlMEAQATa8lpG2nZbjQ4aJF11BQ0Arh4TUICekPoL/NC4Lrhy9Tl/m72mrUrMkiInJ8DEgi8/X11f3dVMio306rfvgJDgZiY23Z04a4GnXjHPHWK0REpI8BSZIariUkVa4WfszhiLdesTcuh0BEUseAJCFirWdE1tXUdKmr43IIROQIGJAkgnUrjo81WeYxHDkytjgql0MgIjExIEmENetWOH0hDtZkWY6jpkQkVQxIEtFU3UpJSUmjrzP8wOX0hbh4Ts3HUVMikjIGJJEZrmdkrG4lMzPT6D7qhx2u5kyOQuyr/TjSSkSmMCCJzNR6Ru7uEcjMbHq6gWGHHJGYV/txpJWImsKAJAHG1jMqLNQYeQWR4xPzaj8WihNRUxiQnJyx//iJpMDU1X6N1d3ZYtqLheJE1BgGJAdiadjhf/xkDdau1TFc5kCpLG/059lY3Z01p71YKE5ExjAgOQhLww7/4ydrsEWtjrHlEEpKSkxejKBlzWkvsQvFiUi6GJAcQHPCDv/jJ2uw1VWR5oQpe0wP87YwRGQMA5IDsCTsaKcvmvqP39VXcyZps9f0MG8LQ0TGMCBJWHPCTv3pi9DQMrz4ohK1tTIoFAJWrCjD44+P5/ou1Gz2GNWx9/SwqUJxInJdDEgS1tywo/36+eeBsWOBvDwgKkqG9u19Afja/TjExgUBrcNeozr2mB42t1CcI61Erkv0gLRx40asWrUKRUVF6N27N9avX48BAwYYbb979268+uqrKCgoQHR0NFasWIEHHnhA9/zkyZOxY8cOvdckJCTgwIEDuq9LS0vx7LPPYt++fZDL5RgzZgzWrl2L2267zfoH2EItDTvt29c9XBUXBLQOe47q2KMuiPfNI6KmyJtuYju7du1CSkoKFi9ejNzcXPTu3RsJCQm4evVqo+2PHTuG8ePHY+rUqTh16hRGjx6N0aNH48yZM3rtEhMTUVhYqHt89NFHes8/8cQTOHv2LA4ePIj9+/fj3//+N6ZPn26z47SW9u2BIUNcO/BYirdesQ5TozrWpq0LksnqFkq1VV2Qv78/goODjT4Yjohcm6gjSGvWrMHTTz+NKVOmAAA2bdqEzz77DFu3bsVLL73UoP3atWuRmJiIefPmAQCWLVuGgwcPYsOGDdi0aZOunYeHB4KCghp9z3PnzuHAgQM4efIk+vXrBwBYv349HnjgAbz11lsICQmx9mESOTx7jOrUn84yVRfEaS8isgfRAlJVVRVycnKwYMEC3Ta5XI74+HhkZ2c3+prs7GykpKTobUtISMDevXv1th05cgQBAQFo27Ythg0bhtdff13322B2djZ8fX114QgA4uPjIZfLcfz4cTz88MONvndlZSUqKyt1X5eVlVl0vCQNXFncMubeTNkaoYXTXkQkJaIFpJKSEtTW1iIwMFBve2BgIM6fP9/oa4qKihptX1RUpPs6MTERjzzyCCIiInDp0iW8/PLLGDFiBLKzs6FQKFBUVISAgAC9fbRq1Qp+fn56+zGUmpqKpUuXWnqYJCFcWdxypm6mHBLSH0B/q4YWhh8ikgrRi7Stbdy4cbq/9+zZE7169UJkZCSOHDmC4cOHN3u/CxYs0Bu9KisrQ1hYWIv6SvbDlcWbz9jNlImInJloRdrt2rWDQqFAcXGx3vbi4mKj9UNBQUEWtQeAO+64A+3atUNeXp5uH4ZF4DU1NSgtLTW5Hw8PD/j4+Og9yHHYs8iYiIgcn2gByd3dHbGxscjKytJt02g0yMrKQlxcXKOviYuL02sPAAcPHjTaHgAuX74MlUqF4OBg3T6uX7+OnJwcXZuvv/4aGo0GAwcObMkhuSSVSqV3xaDhQ6VSid1FALeKjOvjLSWIiMgYUafYUlJSMGnSJPTr1w8DBgxAWloabt68qbuq7cknn0RoaChSU1MBAM899xwGDx6M1atXY+TIkcjIyMD333+PzZs3AwBu3LiBpUuXYsyYMQgKCsKlS5cwf/58REVFISEhAQDQtWtXJCYm4umnn8amTZtQXV2N5ORkjBs3jlewWcgR1hiyZ5ExERE5D1ED0tixY3Ht2jUsWrQIRUVF6NOnDw4cOKArxP7tt98gl98a5Bo0aBDS09Pxyiuv4OWXX0Z0dDT27t2LHj16AAAUCgV++OEH7NixA9evX0dISAjuv/9+LFu2DB4eHrr97Ny5E8nJyRg+fLhuoch169bZ9+CdgCOsMWTvImMiInIOMkEQBLE74YjKysqgVCqhVqtdth6psLBQN3pnyvTp03VTnERERGIy9/Nb1JW0iYiIiKSIAYmsRq32Rn5+ONRqb7G7QkRE1CJOtw4SiYOLMEqHSqXiatROgt9LIvEwIFGLcRFG6XCEKwvJPPxeEomLU2zUYlyEUToc4cpCMg+/l0TiYkCiZtOuHdTUIoxcY0g8rAtzHvxeEtkXp9io2eqvMRQaWoYXX1SitlYGhULAihVlePzx8ayREBHrwpwHv5dE9seARC2iDT/PPw+MHQvk5QFRUTK0b+8LwFfMrrk01oU5D34vicTBgERW07593UOLV+CIx1RdGD9UHQu/l0TiYEAim+AVOOazRZDU1oXV/2DlzXkdE7+XROJgQCKb4BU45rFVkGzq5rzkOKz5veSoLpH5GJCIRGTtIFn/isGYmFOIjMxDaakf/PxK9T5QeWWh9Fn7e8lRXSLLMCCRXajV3igt9Yefn8qpRzFa+ht6S89T/SsLm9sHsr7m/FxY+3vJUV0iyzAgkc25yiXKLf0N3VrnieFHWlryc2HL76Wr/NJC1FwMSGRTrnSJckt+Q3el8+RqpDhyYyqMl5SUNPoajjySq2FAIpty5UuULfkN3ZXPE9lXU2E8MzPT6GtZn0SuhAGJbMpVL1G2dLrMVc+TJZzlCiyxp7ZaEsZZn0SuhAGJbEJ7ZU1Tlyg749VUzZku42X5pjnLFVhSqMczJ4yLHeKIpIABiWzC8AqcRYuuoaCgFcLDaxAS0h9Af4f5jd9SlvyGzsvyzSPFOh5LSaXOrKkwLoUQRyQFDEhkM/XDT3AwEBsrYmfsyJLpMl6W7zrErjMzJ4xLJcQRSQEDEpnFWeo/bOn69esAmv4N/fr16wgODta9ztXPW3M44hSQ2HVmpsJ4SUkJMjMzRQ9xRFLCgERNcpb6D1uTyWS6v5uaLqvfjiznaFNAUqrHa+rfp9ghjkhKGJCoSc5Q/2EPSqWyka0Nw1Dj7cgcjjgF5Ej1eLxYgOgWBiSymLnTG1KZlhOjH442yuEoHHUKSOr1eLxYgKghBiSyiLkf/FKZlhOjH444yuEoOAVkG7xYgKghBiQymyUf/FKZlhOjH446yiFlUqrjcVYMP0T6GJDIbC354JfKVUf26AdHOazPkep4iMg5MCCR2Zr7wS+Vehx79YOFrrYh9ToeInIuDEhktuZ88EulHqepfjR2B3NLRySctdBVKsX2RET2xIBETWrJB79U6nGa6oexO5hbUrztjIWuUim2JyKyNwYkalJLPvilUo/TVD+M1SZZWrztbCHB8PitdZ6oZTiqR2R7DEhklub+ZyuVehxT/ZBKjZTU8TxJA0f1iOyDAYlsQir1OE31Qyo1UlLH8yQdUllCg8jZMSCRTUilHsdYP6R0c05HmC6RwnkiIrInBiSyGbE/1LVM9UPsGilHmS4R+zyRcVJZY4zI2TAgkUsTu0bKUYqgxT5P1DjWhRHZDgMSuTxTNVL2JPUPO6mcJ6rDujAi22JAIpdkWByuVJY3+qFir0UdpfphJ7XzRLewLozIthiQyCVJpYhcS6ofdv7+/pgwYQIqKiqMtmnTpo1k6s1cCevCiGyLAYlclpQ+1KX6YadSqfDhhx/qvjZWIyV2Ebkr0Y7WNVUXxlE9opZhQCKSAKkWQdcfYTNVIyV2EbkrMRz9XLToGgoKWiE8vAYhIf0B9Dc6+ukIS0oQSQUDEpFESLkIWqo1Uq6qfogJDgZiY5t+jaMsKUEkFQxIRCJylCJoqdZIkfm4AjeRZRiQiEQktWJxY6RaI0VEZCsMSEQiEzv8mEOqNVLUfLZegZv1TuToGJCIyCxSrpEiy9h6UVLWO5EzkDfdhIiojlJZjoiIXxmOHJixgnu12ttq78F6J3IGDEhEZJS5xeFiF5GT+UwV3BPRLZxiIyKjHKWInMwnRsG9sXqnkpKSRtvzZ4qkgAGJiExq7gcVi3SlRawVuE3VO2VmZhp9HeuTSGwMSERkdYZFurxFifhasgJ3c7VkgVHWJ5HYGJCIyOp4ixJpas4K3C3BBUbJkbFImyTr8mXg8OG6P8kx2eOKKZIubb1TfYb1Tmq1N/Lzw/kzQZLDESSSFG3dSnp6a8yfr4RGI4NcLmDlSjUef/wv1q04GI4gOL7m1JKZW+9k6/WYiFqCAYkkQ1u3olZ7Iy1tDgRBBgDQaGSYN88Hf/yxFUplOetWHAhvUeLYmrvgo6l6J3f3CGRmnuINkEnyGJBIMrT/mTY16sC6FcfBW5Q4tpYs+Gis3qmwsG7KjaOLJHUMSCQ5HHVwLrxFCTWG/85J6likTZKjHXXQFndy1MHx8RYlzsEaBdWG9UnG/p1zdXYSG0eQSJI46uDYeIsS52Otgmox1mMiag4GJJIspbKcwchB8RYlzsXaBdX2Xo+JqDkYkIjIJhh+nAcLqskVsQaJiIhMMmfBRyJnw4BEksG6FSJpYUE1uTKZIAiC2J1wRGVlZVAqlVCr1fDx8RG7O06Dd4Ankpb6/yavXJHXK6iuC0v8N0mOxtzPb9YgkaTwP1oiaWFBNbkqTrERERERGRA9IG3cuBHh4eHw9PTEwIEDceLECZPtd+/ejS5dusDT0xM9e/bE559/brTtzJkzIZPJkJaWprc9PDwcMplM77F8+XJrHA4ROaDLl4HDh+v+JCICRA5Iu3btQkpKChYvXozc3Fz07t0bCQkJuHr1aqPtjx07hvHjx2Pq1Kk4deoURo8ejdGjR+PMmTMN2n7yySf47rvvEBIS0ui+XnvtNRQWFuoezz77rFWPjYikTaVSobCwEKtXX0fHjgKGDQM6dhSwevV1FBYWQqVSid1FIhKRqAFpzZo1ePrppzFlyhR069YNmzZtQps2bbB169ZG269duxaJiYmYN28eunbtimXLliEmJqbB3ab/+OMPPPvss9i5cyfc3Nwa3Ze3tzeCgoJ0Dy8vL6sfH5HYODLSOO1d6let+gjz5vlAo5EBADQaGebN88GqVR9hw4YNDElELky0gFRVVYWcnBzEx8ff6oxcjvj4eGRnZzf6muzsbL32AJCQkKDXXqPRYOLEiZg3bx66d+9u9P2XL18Of39/9O3bF6tWrUJNTY3J/lZWVqKsrEzvQSRlW7YAHTvivyMjdV9THe1VWaYWQKzfjohcj2gBqaSkBLW1tQgMDNTbHhgYiKKiokZfU1RU1GT7FStWoFWrVpg9e7bR9549ezYyMjJw+PBhzJgxA2+++Sbmz59vsr+pqalQKpW6R1hYWFOHSCSay5eB6dMBzX/X9tNogBkzOJJkiAsgEpExTnWZf05ODtauXYvc3FzIZDKj7VJSUnR/79WrF9zd3TFjxgykpqbCw8Oj0dcsWLBA73VlZWUMSSRZFy/eCkdatbVAXh7Qvr04fZIi7QKIhjdh5e0ziMiigFRdXY2FCxciMzMTfn5+mDlzJp566ind88XFxQgJCUFtbW2T+2rXrh0UCgWKi4v1thcXFyMoKKjR1wQFBZls/8033+Dq1avo0KGD7vna2lo8//zzSEtLQ0FBQaP7HThwIGpqalBQUIDOnTs32sbDw8NoeCKSmuhoQC7XD0kKBRAVJV6fpCom5hQiI/NQWuoHP79ShiMiAmDhFNsbb7yBf/3rX5g5cybuv/9+pKSkYMaMGXptzF2Y293dHbGxscjKytJt02g0yMrKQlxcXKOviYuL02sPAAcPHtS1nzhxIn744QecPn1a9wgJCcG8efPw5ZdfGu3L6dOnIZfLERAQYFbfiaRMpVJBoSjEypXXoVDU/XtUKASsWHEdCgWvzmqMUlmOiIhfnSIcaa/OM/bg95/IPBaNIO3cuRP//Oc/MWrUKADA5MmTMWLECEyZMkV35ZmpqS1DKSkpmDRpEvr164cBAwYgLS0NN2/exJQpUwAATz75JEJDQ5GamgoAeO655zB48GCsXr0aI0eOREZGBr7//nts3rwZQN2Kr4YrMbu5uSEoKEg3MpSdnY3jx49j6NCh8Pb2RnZ2NubOnYsJEyagbdu2lpwOIsnRXp2lNXu2t25k5MaNcvz3nwqSk5O5arkTMvz+G8PvP1HTLApIf/zxB3r06KH7OioqCkeOHMGwYcMwceJErFy50qI3Hzt2LK5du4ZFixahqKgIffr0wYEDB3SF2L/99hvk8luDXIMGDUJ6ejpeeeUVvPzyy4iOjsbevXv1+tQUDw8PZGRkYMmSJaisrERERATmzp2rV19E5KgMr7pSKssbHRXh1VnOyfD7qlZ7o7TUH35+Kr2fA37/iZpmUUAKCgrCpUuXEB4ertsWGhqKw4cPY+jQoZg8ebLFHUhOTkZycnKjzx05cqTBtkcffRSPPvqo2fs3rDuKiYnBd999Z0kXicjJmHv3eUe+S31ubt8GxecxMafE7haRw7AoIA0bNgzp6ekYPny43vaQkBB8/fXXGDJkiDX7RkRkE/7+/khOTjY5kuLId6lXq7114QioW9tp375RiIzMc4o6K2tQqVRO+/0n67AoIL366qs4f/58o8+Fhobi//7v/3Dw4EGrdIyIHMvly3XLC0RHO8ZSAs784WdqAUwGJNZqkXksuoqtY8eOSEhIMPp8SEgIJk2a1OJOEZFj4ard0sIFME0ztwaLtVqurVkrae/evRuPPPIIevTogR49euCRRx7Bxx9/bO2+EZED4Krd0qNdAFMbkrgApmlqtTfy88OhVnuL3RWSEIum2DQaDcaPH4/du3ejU6dO6NKlCwDg7NmzGDt2LB599FF89NFHFl3qT0SOjat2S5PYC2A6So0Pi9nJGIsC0tq1a3Ho0CF8+umnurWQtD799FNMmTIFa9euxZw5c6zZRyIykxhXZ3HVbukw/L4aW+bB1lfnOUqND4vZyRSLAtK2bduwatWqBuEIAB588EGsXLmSAYlIRGJcndW+PbB5c920Wm1tXTh67z3XGD2SWmG6VK7Oc5QaHxazkykWBaSLFy8iPj7e6PPx8fFG1zQiIvuw52/k2mmUBx4Ajh+Xo6CgFcLDaxASokFhoXSmUWxhy5ZbtVdyeV1InDpV7F4599V51qYtZq8fkpoqZneUqUNqOYsCUuvWrXH9+nW9m8HWV1ZWBk9PT6t0jIikzdg0ypkz+l+LPY1iC8YK0xMSpDGSJDXGVvQWm7aY3bAGyVgfHWXqkKzDooAUFxeHd999F++++26jz2/cuNHojWaJyLk4yjSKtalUKnz3HaDR6H8A1tYCx4+r0Lq1dEdxxBj9kGIRdP0aLFPF7Ia1Wq76M++qLApICxcuxJAhQ6BSqfDCCy+gS5cuEAQB586dw+rVq/G///u/OHz4sK36SkQkKu0IglrtDZlsToOpmaNHd+DMmXJJjiAYjn4YG9WxZt+lWgTdVK2WWq2GIAioqqpCYWGhbntJSYm9ukgSYFFAGjRoEHbt2oXp06djz549es+1bdsWH330Ee666y6rdpCISCq0H6hNTc1IcQShfp9MjepYs+/WLIK29uiXsbYqlQq7du0yax9SnTok67AoIAHAww8/jISEBHz55Ze4ePEiAKBTp064//770aZNG6t3kIhIisReZ6i57Dmq05wi6MbYs/bH3IAoxalDsi6LVtL++uuv0a1bN9TU1ODhhx/G/PnzMX/+fIwePRrV1dXo3r07vvnmG1v1lYhIUpTKckRE/Oow4QgwPapjLdranaZW9DZ3PSap1f4YC5lcidu5WDSClJaWhqeffho+Pj4NnlMqlZgxYwbWrFmDe+65x2odJCIi67HWqI4phjU+ixZdq7cERH8A/R3mcvjGptG4fpJrsCgg/ec//8GKFSuMPn///ffjrbfeanGniIjINiy9tL256oef4GAgNtZ6+7ZX7Y+xaTR7hEwSn0UBqbi4GG5ubsZ31qoVrl271uJOEZH0iXFbE7IOR62fAuxX+9NUrZapkMmfeedgUUAKDQ3FmTNnEGXkJks//PADgoODrdIxIpI2qdzWgprH2H3apMyeBeZNTaO9/nqEQ08dUtMsCkgPPPAAXn31VSQmJjZYMfuvv/7C4sWLG71PGxE5J1f7IHDkUTNH7ruWPWt/mppGa9euHYKDA606dUjSYlFAeuWVV5CZmYlOnTohOTkZnTt3BgCcP38eGzduRG1tLRYuXGiTjhIRic2RR80cue9a9qj9MbwCj9NorsuigBQYGIhjx47hmWeewYIFCyAIAgBAJpMhISEBGzduRGBgoE06SkQkBS0NEJcvAxcvAtHR9r9vm5TDjyn2DC3OdAUetYxM0KYcC/3555/Iy8uDIAiIjo5G27Ztrd03SSsrK4NSqYRarW502QMiIkNbtty6ya1cDmzeDEydKnavHEP9lbSvXJHXCy11aywxtJC5zP38bnZAcnUMSERkicuXgY4d68KRlkIBFBTYfySJyJWZ+/lt0UraRETUPBcv6ocjAKitBfLyxOkPEZnGgEREZAfR0XXTavUpFICRVVOISGQMSERENqZSqaBQFGLlyutQKOqqGhQKAStWXIdCUQiVSiVyD4nIEGuQmok1SERkDsM70dfdJqPhCtbWuBM9ETXN3M9viy7zJyIiyxiuO2RsBWt73YmepKX+1XmN4dV54mFAIiIiEoHh6KIxHF0UB2uQiIiIRGDuqCFHF8XBgERERCQBarU38vPDoVZ7i90VAqfYiIiIRJeb27fBLVRiYk6J3S2XxhEkIiIiEanV3rpwBACCIMe+faM4kiQyBiQiIiIRlZb668KRliDIUVrqJ1KPCGBAIiKyKXPvMG+NO9GTY/LzU0Em078PjUymgZ9fqUg9IoA1SERENuXv74/k5GSuddNCzrxekFJZjqSk/Q1qkBpbL4vshwGJiMjGHPWDWyqcdb2g+qOGMTGnEBmZ1+gq6xxdFAcDEhERSZrhyFHd7Vr84een0gsSjrZeEEcXpY0BiYiIHIazXQ7P8CNdLNImIiKHwMvhyZ4YkIiIyCHwcniyJwYkIiJyCLwcnuyJAYmIiByC9nJ4bUji5fBkSyzSJiIih2Hqcngia2JAIiIiSTNcB0ipLG80GHG9ILImBiQiIpI0rhdEYmBAIiIiyWP4IXtjkTYRERGRAQYkIiIiIgMMSEREREQGGJCIiIiIDDAgERERERlgQCIiIiIywIBEREREZIABiYiIiMgAAxIRERGRAQYkIiIiIgMMSERE5FAuXwYOH677k8hWGJCIiEjyVCoVCgsLsXr1dXTsKGDYMKBjRwGrV19HYWEhVCqV2F0kJ8Ob1RIRkaSpVCps2LABarU30tLmQBBkAACNRoZ583zwxx9boVSWIzk52So3tVWpVKiqqjL6vLu7O2+e6wIYkIiISNK0YaW01B+CoD/xIQhylJb6QaksNxlqzKUNY02xVhgj6eIUGxEROQQ/PxVkMo3eNplMAz+/Uqu9h7khyxphjKSNAYmIiByCUlmOpKT9upAkk2mQlLQfSmW5zd5TrfZGfn441Gpvm70HSROn2IiIyGHExJxCZGQeSkv94OdXatNwlJvbF/v2jYIgyHVhLCbmlM3ej6SFI0hERORQlMpyRET8avORI204AupqnfbtG8WRJBciekDauHEjwsPD4enpiYEDB+LEiRMm2+/evRtdunSBp6cnevbsic8//9xo25kzZ0ImkyEtLU1ve2lpKZ544gn4+PjA19cXU6dOxY0bN6xxOERE5ARMFYSTaxA1IO3atQspKSlYvHgxcnNz0bt3byQkJODq1auNtj927BjGjx+PqVOn4tSpUxg9ejRGjx6NM2fONGj7ySef4LvvvkNISEiD55544gmcPXsWBw8exP79+/Hvf/8b06dPt/rxERGRY7JHQThJm6gBac2aNXj66acxZcoUdOvWDZs2bUKbNm2wdevWRtuvXbsWiYmJmDdvHrp27Yply5YhJiamwSWZf/zxB5599lns3LkTbm5ues+dO3cOBw4cwD//+U8MHDgQd999N9avX4+MjAxcuXLFZsdKRETN4+7ubtV25hCjIJykRbQi7aqqKuTk5GDBggW6bXK5HPHx8cjOzm70NdnZ2UhJSdHblpCQgL179+q+1mg0mDhxIubNm4fu3bs3ug9fX1/069dPty0+Ph5yuRzHjx/Hww8/3Oh7V1ZWorKyUvd1WVmZWcdJREQt4+/vj+TkZLss3lg/ZJkqCLdmGCNpEi0glZSUoLa2FoGBgXrbAwMDcf78+UZfU1RU1Gj7oqIi3dcrVqxAq1atMHv2bKP7CAgI0NvWqlUr+Pn56e3HUGpqKpYuXWrymIiIyDbstSijPcMYSZtTXeafk5ODtWvXIjc3FzKZzKr7XrBggd7oVVlZGcLCwqz6HkREJD6GHwJEDEjt2rWDQqFAcXGx3vbi4mIEBQU1+pqgoCCT7b/55htcvXoVHTp00D1fW1uL559/HmlpaSgoKEBQUFCDIvCamhqUlpYafV8A8PDwgIeHh0XHSEREZArv+yZdogUkd3d3xMbGIisrC6NHjwZQVz+UlZWF5OTkRl8TFxeHrKwszJkzR7ft4MGDiIuLAwBMnDgR8fHxeq9JSEjAxIkTMWXKFN0+rl+/jpycHMTGxgIAvv76a2g0GgwcONDKR0lERK6gOUGH932TNlGn2FJSUjBp0iT069cPAwYMQFpaGm7evKkLM08++SRCQ0ORmpoKAHjuuecwePBgrF69GiNHjkRGRga+//57bN68GUDdsKjhD5GbmxuCgoLQuXNnAEDXrl2RmJiIp59+Gps2bUJ1dTWSk5Mxbty4RpcEICIiMqW5QYf3fZM2UQPS2LFjce3aNSxatAhFRUXo06cPDhw4oCvE/u233yCX31qJYNCgQUhPT8crr7yCl19+GdHR0di7dy969Ohh0fvu3LkTycnJGD58OORyOcaMGYN169ZZ9diIiEi6rDm1Ze+g4yzTcpcvAxcvAtHRQPv2YvemIdGLtJOTk41OqR05cqTBtkcffRSPPvqo2fsvKChosM3Pzw/p6elm74OIiJyH4YiPWu2N0lJ/+Pmp9C7lt/fUlrF+1Ocs03JbtgDTpwMaDSCXA5s3A1Onit0rfaIHJCIiInuqP/pi6oa0zR3xMSfoGDL3xrjOMC13+fKtcATU/TljBpCQIK2RJAYkIiJyScZuSBsZmdfsFbPNDTq27oeUXbx4Kxxp1dYCeXkMSERERKIzdUPa5gST5gYda/fDmmxR7xQdXTetVj8kKRRAVFRze2kbDEhEROSStDekrR9OWnJD2uYGnZb0oznTeeayVa1W+/Z1NUczZtSNHCkUwHvvSWv0CGBAIiIiF6W9Ia3hlFhzg4alQUd7P7em+mHsvm/Nmc6zhC1rtaZOras5ysurGzmSWjgCGJCIiMiFmbohrbmaG3QM7/u2aNE1FBS0Qnh4DUJC+gPob3QKy551S7Z6r/btpRmMtBiQiIjIpSmV5S36oG9J0Km/LTgY+O8NHppkz7olKddI2RIDEhERuRRjU1bNbQc0P+iY0liBtFqtBtD0dJ4lfW+KNWu1HGmRSwYkIiJyKYYjPo0R+4O6qQUhtdN5+/cnQaORQaEQsGJFGR5/fLzV+26tWi1HW+SSAYmIiFyOFD6ATTGn8Dkm5hQWLRqI8vJAREXJ0L69LwBfm/THGrVajrbIJQMSERGRgwoJ0SA42D7v1dJaLUcjb7oJERERiUmt9kZ+fjjUam+7vactarUcCUeQiIiIJMzW6x0Z4wi1WrbEgERERCRRYt+nzVnDjzk4xUZERCRRptYgIttiQCIiIpIo7RpE9bXkfnFkPgYkIiIiiTG8fYk2JJl7nzYpcrSib5kgCILYnXBEZWVlUCqVUKvV8PHxEbs7RETkZOqvOn3lirze7UvqwpIjFkhLYSVtcz+/WaRNREQkQba4fYnYHCnQcYqNiIiIyAADEhEREZEBBiQiIiIiA6xBIiIikiApFDS7MgYkIiIikRgLQWq1Grt27Wry9cnJyTYNSa4c0hiQiIiIRKBSqbBhw4YW7cNUeGkpc/tn65AmFtYgERERicAw3KjV3sjPD4da7d2grannbMXc8GXLkCYmjiARERGJLDe3r+6mtNrVsmNiTjX5nD2p1d4oLfWHn5/KLjfKFRsDEhERkYjUam9dAALqbka7b98oREbmAYDR5+wZUqQS0uyJU2xEREQiKi311wUgLUGQo7TUz+Rz9mIswNlzuk8MHEEiIiISkZ+fCjKZRi8IyWQa+PmV6v5u7DlrMHalWklJCQDTAc6Zp9oYkIiIiESgVqsBAEplOZKS9jeYwtKGD1PPtZQ5V6o1FeCcFQMSERGRCKqrq3V/j4k5hYCAIvz2Wwd06PAb2rcv1HsuMjIPpaV+8PMr1QtH169fb7BfS9YmMucKtKYCnHakqSX9kCIGJCIiIhG0anXrI9hUEfR9992HiIgIAA0XkPx//+//Nbpva69NZCqkZWZmGr3CzZHXSGJAIiIiEoGvry8A01exKZXliIiIQHBwsEX7bu7aRMaCziOPPIJ27drpvi4pKUFmZiYA0+HOkddIYkAiIiISUUuKoK25NpGpoNOuXbtGQ1pT4c6RMSARERGJqLlF0NZcm6i5QceZr3DjOkhEREQi0hZBy2QaADDrSjVrr03U3PWWtOGuPme5wo0jSERERCIzVQTdGGuP3DR3FKupK9wcGQMSERGRCNzd3fW+VirLGw0Whu0A661NpN13U0GnsT5oWRruHAUDEhERkQj8/f2RnJxs8kovY2sJWWvkxrAPixZdQ0FBK4SH1yAkpD+A/matZ2Qs3DkyBiQiIiKRWLpGUP2RHFMjN6ZGfEz1ITgYiI21rB/WaCdFMkEQBLE74YjKysqgVCqhVqvh4+MjdneIiMhFGLt3mpa9VrCWSj8sZe7nN0eQiIiIHIhUQodU+mErvMyfiIiIyAADEhEREZEBBiQiIiKSlMuXgcOH6/4UCwMSERERScaWLUDHjsCwYXV/btkiTj8YkIiIiEgSLl8Gpk8HNP+9e4lGA8yYIc5IEgMSERERScLFi7fCkVZtLZCXZ/++MCARERGR6FQqFXx8iiGX6y/PqFAI8PYuhkqlsmt/uA4SERERiUqlUmHDhg0AgFGj+urdQmXkyP3Yv/8UACA5Odlu6y8xIBEREZGo6q/IbeoWKqZW7rY2BiQiIiKSFCnc/JYBiYiIyIU56j3VbI0BiYiIyEXVr/0xxZ61P1LBq9iIiIhclLk1Pfas/ZEKBiQiIiICAKjV3sjPD4da7S12V0THKTYiIiJCbq7+5fVJSfsRE3NK7G6JhiNIRERELk6t9taFIwAQBDn27Rtlt5Ekd3d3q7azBo4gERERubjSUn9dONISBDlKS/3scrm9v78/kpOTJXU1HQMSERGRi/PzU0Em0+iFJJlMAz+/Urv1QWpXyXGKjYiIyMUpleVIStoPmazuTrHaGiSxF2sUE0eQiIiIXFT9mh5Tt/iwZ+2PVDAgERERuSgp1v5IBQMSERGRC3PF8GMO1iARERERGRA9IG3cuBHh4eHw9PTEwIEDceLECZPtd+/ejS5dusDT0xM9e/bE559/rvf8kiVL0KVLF3h5eaFt27aIj4/H8ePH9dqEh4dDJpPpPZYvX271YyMiIiLHJGpA2rVrF1JSUrB48WLk5uaid+/eSEhIwNWrVxttf+zYMYwfPx5Tp07FqVOnMHr0aIwePRpnzpzRtenUqRM2bNiAH3/8Ed9++y3Cw8Nx//3349q1a3r7eu2111BYWKh7PPvsszY9ViIiInIcMkEQBLHefODAgejfv7/uTsIajQZhYWF49tln8dJLLzVoP3bsWNy8eRP79+/XbbvzzjvRp08fbNq0qdH3KCsrg1KpxKFDhzB8+HAAdSNIc+bMwZw5c5rdd+1+1Wo1fHx8mr0fIiIish9zP79FG0GqqqpCTk4O4uPjb3VGLkd8fDyys7MbfU12drZeewBISEgw2r6qqgqbN2+GUqlE79699Z5bvnw5/P390bdvX6xatQo1NTUm+1tZWYmysjK9BxERETkn0a5iKykpQW1tLQIDA/W2BwYG4vz5842+pqioqNH2RUVFetv279+PcePGoaKiAsHBwTh48CDatWune3727NmIiYmBn58fjh07hgULFqCwsBBr1qwx2t/U1FQsXbrU0sMkIiIiB+SUl/kPHToUp0+fRklJCd5//3089thjOH78OAICAgAAKSkpura9evWCu7s7ZsyYgdTUVHh4eDS6zwULFui9rqysDGFhYbY9ECIiIieiUql0ay5duSJHfn4rRETUICSkbgVvKa25JFpAateuHRQKBYqLi/W2FxcXIygoqNHXBAUFmdXey8sLUVFRiIqKwp133ono6Ghs2bIFCxYsaHS/AwcORE1NDQoKCtC5c+dG23h4eBgNT0RERGSaSqXS1Rzn5vbFvn2jIAhy3W1NYmJOAQCSk5MlEZJEq0Fyd3dHbGwssrKydNs0Gg2ysrIQFxfX6Gvi4uL02gPAwYMHjbavv9/Kykqjz58+fRpyuVw3wkRERETWpR05Uqu9deEIAARBjn37RkGt9tZrJzZRp9hSUlIwadIk9OvXDwMGDEBaWhpu3ryJKVOmAACefPJJhIaGIjU1FQDw3HPPYfDgwVi9ejVGjhyJjIwMfP/999i8eTMA4ObNm3jjjTfw4IMPIjg4GCUlJdi4cSP++OMPPProowDqCr2PHz+OoUOHwtvbG9nZ2Zg7dy4mTJiAtm3binMiiIiIXERpqb8uHGkJghylpX6SujmuqAFp7NixuHbtGhYtWoSioiL06dMHBw4c0BVi//bbb5DLb53EQYMGIT09Ha+88gpefvllREdHY+/evejRowcAQKFQ4Pz589ixYwdKSkrg7++P/v3745tvvkH37t0B1E2VZWRkYMmSJaisrERERATmzp2rV19EREREtuHnp4JMptELSTKZBn5+pSL2qiFR10FyZFwHiYiIyHyFhYW6GR9TNUjTp09HcHCwzfph7ue3U17FRkRERNIVE3MKkZF5KC31g59fqaSm1rQYkIiIiMjulMpySQYjLdFvVktERESuR632Rn5+uO7qNanhCBIRERHZXEVFhe7vpmqQ6rcTE0eQiIiIyObatGkDoOl1kLTtxMaARERERHZjah0kKWFAIiIiIrvRroNUnxTXQWJAIiIiIrtRKsuRlLRfF5K0NUhSu6KNRdpERERkV1wHiYiIiKgRXAeJiIiIyMEwIBEREZHNubu7W7WdrXGKjYiIiGzO398fycnJqKqqMtrG3d0d/v7+duyVcQxIREREZBdSCT/m4BQbERERScrly8Dhw3V/ioUBiYiIiCRjyxagY0dg2LC6P7dsEacfDEhEREQkOpVKhZycYkyfLkDz34W2NRpgxgwBOTnFUKlUdu0Pa5CIiIhIVCqVChs2bEB+fjg0mkl6z9XWyrB+/ReIiPgVycnJdqtj4ggSERERiUp7ZVtT92kzdQWctTEgERERkSRI6T5tnGIjIiIiyZDKfdoYkIiIiEhSpHCfNk6xERERERlgQCIiIiIywIBEREREZIABiYiIiETl7u5u1XbWwCJtIiIiEpW/vz+Sk5NNrnPk7u5u15vdMiARERGR6OwZfszBKTYiIiIiAwxIRERERAYYkIiIiIgMMCARERERGWBAIiIiIjLAgERERERkgAGJiIiIyAADEhEREZEBBiQiIiIiA1xJu5kEQQAAlJWVidwTIiIiMpf2c1v7OW4MA1IzlZeXAwDCwsJE7gkRERFZqry8HEql0ujzMqGpCEWN0mg0uHLlCry9vSGTySx6bVlZGcLCwvD777/Dx8fHRj10DDwXdXge6vA83MJzUYfnoQ7Pwy0tPReCIKC8vBwhISGQy41XGnEEqZnkcjnat2/fon34+Pi4/A+6Fs9FHZ6HOjwPt/Bc1OF5qMPzcEtLzoWpkSMtFmkTERERGWBAIiIiIjLAgCQCDw8PLF68GB4eHmJ3RXQ8F3V4HurwPNzCc1GH56EOz8Mt9joXLNImIiIiMsARJCIiIiIDDEhEREREBhiQiIiIiAwwIBEREREZYECykY0bNyI8PByenp4YOHAgTpw4YbTt2bNnMWbMGISHh0MmkyEtLc1+HbUDS87F+++/j3vuuQdt27ZF27ZtER8fb7K9I7HkPGRmZqJfv37w9fWFl5cX+vTpgw8++MCOvbUdS85DfRkZGZDJZBg9erRtO2hHlpyL7du3QyaT6T08PT3t2FvbsfRn4vr165g1axaCg4Ph4eGBTp064fPPP7dTb23HkvMwZMiQBj8PMpkMI0eOtGOPbcfSn4m0tDR07twZrVu3RlhYGObOnYu///67ZZ0QyOoyMjIEd3d3YevWrcLZs2eFp59+WvD19RWKi4sbbX/ixAnhhRdeED766CMhKChIePvtt+3bYRuy9Fw8/vjjwsaNG4VTp04J586dEyZPniwolUrh8uXLdu65dVl6Hg4fPixkZmYKP/30k5CXlyekpaUJCoVCOHDggJ17bl2Wnget/Px8ITQ0VLjnnnuEhx56yD6dtTFLz8W2bdsEHx8fobCwUPcoKiqyc6+tz9LzUFlZKfTr10944IEHhG+//VbIz88Xjhw5Ipw+fdrOPbcuS8+DSqXS+1k4c+aMoFAohG3bttm34zZg6bnYuXOn4OHhIezcuVPIz88XvvzySyE4OFiYO3dui/rBgGQDAwYMEGbNmqX7ura2VggJCRFSU1ObfG3Hjh2dKiC15FwIgiDU1NQI3t7ewo4dO2zVRbto6XkQBEHo27ev8Morr9iie3bTnPNQU1MjDBo0SPjnP/8pTJo0yWkCkqXnYtu2bYJSqbRT7+zH0vPw7rvvCnfccYdQVVVlry7aRUv/j3j77bcFb29v4caNG7bqot1Yei5mzZolDBs2TG9bSkqKcNddd7WoH5xis7Kqqirk5OQgPj5et00ulyM+Ph7Z2dki9sz+rHEuKioqUF1dDT8/P1t10+Zaeh4EQUBWVhYuXLiAe++915ZdtanmnofXXnsNAQEBmDp1qj26aRfNPRc3btxAx44dERYWhoceeghnz561R3dtpjnn4dNPP0VcXBxmzZqFwMBA9OjRA2+++SZqa2vt1W2rs8b/lVu2bMG4cePg5eVlq27aRXPOxaBBg5CTk6Obhvvll1/w+eef44EHHmhRX3izWisrKSlBbW0tAgMD9bYHBgbi/PnzIvVKHNY4Fy+++CJCQkL0/rE4muaeB7VajdDQUFRWVkKhUOCdd97BfffdZ+vu2kxzzsO3336LLVu24PTp03boof0051x07twZW7duRa9evaBWq/HWW29h0KBBOHv2bItvnC2W5pyHX375BV9//TWeeOIJfP7558jLy8M//vEPVFdXY/HixfbottW19P/KEydO4MyZM9iyZYutumg3zTkXjz/+OEpKSnD33XdDEATU1NRg5syZePnll1vUFwYkkqzly5cjIyMDR44ccZpiVEt4e3vj9OnTuHHjBrKyspCSkoI77rgDQ4YMEbtrdlFeXo6JEyfi/fffR7t27cTujuji4uIQFxen+3rQoEHo2rUr3nvvPSxbtkzEntmXRqNBQEAANm/eDIVCgdjYWPzxxx9YtWqVwwakltqyZQt69uyJAQMGiN0VURw5cgRvvvkm3nnnHQwcOBB5eXl47rnnsGzZMrz66qvN3i8DkpW1a9cOCoUCxcXFetuLi4sRFBQkUq/E0ZJz8dZbb2H58uU4dOgQevXqZctu2lxzz4NcLkdUVBQAoE+fPjh37hxSU1MdNiBZeh4uXbqEgoICJCUl6bZpNBoAQKtWrXDhwgVERkbattM2Yo3/J9zc3NC3b1/k5eXZoot20ZzzEBwcDDc3NygUCt22rl27oqioCFVVVXB3d7dpn22hJT8PN2/eREZGBl577TVbdtFumnMuXn31VUycOBHTpk0DAPTs2RM3b97E9OnTsXDhQsjlzasmYg2Slbm7uyM2NhZZWVm6bRqNBllZWXq//bmC5p6LlStXYtmyZThw4AD69etnj67alLV+JjQaDSorK23RRbuw9Dx06dIFP/74I06fPq17PPjggxg6dChOnz6NsLAwe3bfqqzxM1FbW4sff/wRwcHBtuqmzTXnPNx1113Iy8vThWUA+PnnnxEcHOyQ4Qho2c/D7t27UVlZiQkTJti6m3bRnHNRUVHRIARpA7TQktvNtqjEmxqVkZEheHh4CNu3bxd++uknYfr06YKvr6/uktyJEycKL730kq59ZWWlcOrUKeHUqVNCcHCw8MILLwinTp0SLl68KNYhWI2l52L58uWCu7u78PHHH+tdwlpeXi7WIViFpefhzTffFL766ivh0qVLwk8//SS89dZbQqtWrYT3339frEOwCkvPgyFnuorN0nOxdOlS4csvvxQuXbok5OTkCOPGjRM8PT2Fs2fPinUIVmHpefjtt98Eb29vITk5Wbhw4YKwf/9+ISAgQHj99dfFOgSraO6/jbvvvlsYO3asvbtrU5aei8WLFwve3t7CRx99JPzyyy/CV199JURGRgqPPfZYi/rBgGQj69evFzp06CC4u7sLAwYMEL777jvdc4MHDxYmTZqk+zo/P18A0OAxePBg+3fcBiw5Fx07dmz0XCxevNj+HbcyS87DwoULhaioKMHT01No27atEBcXJ2RkZIjQa+uz5DwYcqaAJAiWnYs5c+bo2gYGBgoPPPCAkJubK0Kvrc/Sn4ljx44JAwcOFDw8PIQ77rhDeOONN4Samho799r6LD0P58+fFwAIX331lZ17anuWnIvq6mphyZIlQmRkpODp6SmEhYUJ//jHP4Q///yzRX2QCUJLxp+IiIiInA9rkIiIiIgMMCARERERGWBAIiIiIjLAgERERERkgAGJiIiIyAADEhEREZEBBiQiIiIiAwxIREQSN3nyZIwePVrsbhC5FAYkImq2yZMnQyaT6R7+/v5ITEzEDz/8IHbXrKL+sWkfd999t83er6CgADKZDKdPn9bbvnbtWmzfvt1m70tEDTEgEVGLJCYmorCwEIWFhcjKykKrVq0watQosbtlNdu2bdMdX2FhIT799NNG21VXV9usD0qlEr6+vjbbPxE1xIBERC3i4eGBoKAgBAUFoU+fPnjppZfw+++/49q1axg2bBiSk5P12l+7dg3u7u66u3WHh4dj2bJlGD9+PLy8vBAaGoqNGzfqvWbNmjXo2bMnvLy8EBYWhn/84x+4ceOG7vlff/0VSUlJaNu2Lby8vNC9e3d8/vnnAIA///wTTzzxBG6//Xa0bt0a0dHR2LZtm9nH5+vrqzu+oKAg+Pn56UZ6du3ahcGDB8PT0xM7d+6ESqXC+PHjERoaijZt2qBnz5746KOP9Pan0WiwcuVKREVFwcPDAx06dMAbb7wBAIiIiAAA9O3bFzKZDEOGDAHQcIqtsrISs2fPRkBAADw9PXH33Xfj5MmTuuePHDkCmUyGrKws9OvXD23atMGgQYNw4cIFs4+byNUxIBGR1dy4cQMffvghoqKi4O/vj2nTpiE9PR2VlZW6Nh9++CFCQ0MxbNgw3bZVq1ahd+/eOHXqFF566SU899xzOHjwoO55uVyOdevW4ezZs9ixYwe+/vprzJ8/X/f8rFmzUFlZiX//+9/48ccfsWLFCtx2220AgFdffRU//fQTvvjiC5w7dw7vvvsu2rVrZ5Xj1fb13LlzSEhIwN9//43Y2Fh89tlnOHPmDKZPn46JEyfixIkTutcsWLAAy5cv1/UrPT0dgYGBAKBrd+jQIRQWFiIzM7PR950/fz727NmDHTt2IDc3F1FRUUhISEBpaaleu4ULF2L16tX4/vvv0apVKzz11FNWOW4il9CiW90SkUubNGmSoFAoBC8vL8HLy0sAIAQHBws5OTmCIAjCX3/9JbRt21bYtWuX7jW9evUSlixZovu6Y8eOQmJiot5+x44dK4wYMcLo++7evVvw9/fXfd2zZ0+9fdaXlJQkTJkypVnHB0Dw9PTUHZ+Xl5fwySefCPn5+QIAIS0trcl9jBw5Unj++ecFQRCEsrIywcPDQ3j//fcbbavd76lTp/S2T5o0SXjooYcEQRCEGzduCG5ubsLOnTt1z1dVVQkhISHCypUrBUEQhMOHDwsAhEOHDunafPbZZwIA4a+//rLkFBC5LI4gEVGLDB06FKdPn8bp06dx4sQJJCQkYMSIEfj111/h6emJiRMnYuvWrQCA3NxcnDlzBpMnT9bbR1xcXIOvz507p/v60KFDGD58OEJDQ+Ht7Y2JEydCpVKhoqICADB79my8/vrruOuuu7B48WK9IvFnnnkGGRkZ6NOnD+bPn49jx45ZdHxvv/227vhOnz6N++67T/dcv3799NrW1tZi2bJl6NmzJ/z8/HDbbbfhyy+/xG+//QYAOHfuHCorKzF8+HCL+lDfpUuXUF1djbvuuku3zc3NDQMGDNA7ZwDQq1cv3d+Dg4MBAFevXm32exO5EgYkImoRLy8vREVFISoqCv3798c///lP3Lx5E++//z4AYNq0aTh48CAuX76Mbdu2YdiwYejYsaPZ+y8oKMCoUaPQq1cv7NmzBzk5OboapaqqKt17/PLLL5g4cSJ+/PFH9OvXD+vXrwcAXVibO3curly5guHDh+OFF14w+/2DgoJ0xxcVFQUvLy+9Y69v1apVWLt2LV588UUcPnwYp0+fRkJCgq6frVu3Nvt9rcHNzU33d5lMBqCuBoqImsaARERWJZPJIJfL8ddffwEAevbsiX79+uH9999Henp6o3Uw3333XYOvu3btCgDIycmBRqPB6tWrceedd6JTp064cuVKg32EhYVh5syZyMzMxPPPP68LaABw++23Y9KkSfjwww+RlpaGzZs3W/OQdY4ePYqHHnoIEyZMQO/evXHHHXfg559/1j0fHR2N1q1b6wrUDbm7uwOoG4kyJjIyEu7u7jh69KhuW3V1NU6ePIlu3bpZ6UiIqJXYHSAix1ZZWYmioiIAdVeMbdiwATdu3EBSUpKuzbRp05CcnAwvLy88/PDDDfZx9OhRrFy5EqNHj8bBgwexe/dufPbZZwCAqKgoVFdXY/369UhKSsLRo0exadMmvdfPmTMHI0aMQKdOnfDnn3/i8OHDuoC1aNEixMbGonv37qisrMT+/ft1z1lbdHQ0Pv74Yxw7dgxt27bFmjVrUFxcrAsunp6eePHFFzF//ny4u7vjrrvuwrVr13D27FlMnToVAQEBaN26NQ4cOID27dvD09MTSqVS7z28vLzwzDPPYN68efDz80OHDh2wcuVKVFRUYOrUqTY5LiJXxBEkImqRAwcOIDg4GMHBwRg4cCBOnjyJ3bt36y5RB4Dx48ejVatWGD9+PDw9PRvs4/nnn8f333+Pvn374vXXX8eaNWuQkJAAAOjduzfWrFmDFStWoEePHti5cydSU1P1Xl9bW4tZs2aha9euSExMRKdOnfDOO+8AqBuVWbBgAXr16oV7770XCoUCGRkZNjkXr7zyCmJiYpCQkIAhQ4YgKCiowQrYr776Kp5//nksWrQIXbt2xdixY3V1Qa1atcK6devw3nvvISQkBA899FCj77N8+XKMGTMGEydORExMDPLy8vDll1+ibdu2NjkuIlckEwRBELsTROTcCgoKEBkZiZMnTyImJkbvufDwcMyZMwdz5swRp3NERI3gFBsR2Ux1dTVUKhVeeeUV3HnnnQ3CERGRVHGKjYhs5ujRowgODsbJkycb1A2J7c0338Rtt93W6GPEiBFid4+IRMYpNiJySaWlpQ1WntZq3bo1QkND7dwjIpISBiQiIiIiA5xiIyIiIjLAgERERERkgAGJiIiIyAADEhEREZEBBiQiIiIiAwxIRERERAYYkIiIiIgMMCARERERGfj/sWgZHkZaI1UAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXE5JREFUeJzt3Xtc09X/B/DXNhkowgxULoqCiOJdwUtYhhcKykt+Na9paualX3ijtNTyWnk3vJX5/Xr79hU10+zr5auZaZmSFmpmaalBZgLqyIGaF9j5/UFbbGywwS6fba/n47EH8NnZZ+dsY3vvnPc5RyaEECAiIiIiPbmzK0BEREQkNQyQiIiIiIwwQCIiIiIywgCJiIiIyAgDJCIiIiIjDJCIiIiIjDBAIiIiIjLCAImIiIjICAMkIiIiIiMMkIiIXNiGDRsgk8mQlZXl7KoQuRUGSERUpm+++QbJyclo1qwZfH19Ua9ePfTv3x8///xzqbKdO3eGTCaDTCaDXC6Hv78/GjdujKFDh+LAgQNW3e+uXbsQHx+P2rVro1q1amjQoAH69++Pffv22apppbz99tvYuXNnqePHjh3DrFmzcPPmTbvdt7FZs2bpH0uZTIZq1aqhadOmeP3115Gfn2+T+0hLS0NqaqpNzkXkbhggEVGZFixYgO3bt6Nbt25YtmwZRo8ejS+//BIxMTE4e/ZsqfJ169bFBx98gH//+99YtGgRevXqhWPHjuGJJ57AgAED8ODBg3Lvc/HixejVqxdkMhmmTp2Kd955B3379sWFCxewZcsWezQTQNkB0uzZsx0aIOm89957+OCDD7B06VJER0fjrbfeQlJSEmyxjSYDJCLzqji7AkQkbSkpKUhLS4NSqdQfGzBgAFq0aIH58+fjP//5j0F5lUqFIUOGGBybP38+xo8fj3fffRfh4eFYsGCB2fsrLCzE3Llz8fjjj+PTTz8tdf21a9cq2SLpuHPnDqpVq1ZmmWeeeQY1a9YEAIwdOxZ9+/bFjh078PXXXyMuLs4R1STySOxBIqIydezY0SA4AoCoqCg0a9YM586ds+gcCoUCy5cvR9OmTbFy5UpoNBqzZW/cuIH8/Hw88sgjJq+vXbu2wd93797FrFmz0KhRI/j4+CAkJAR9+vTBpUuX9GUWL16Mjh07IjAwEFWrVkVsbCw++ugjg/PIZDLcvn0bGzdu1A9rDR8+HLNmzcLkyZMBABEREfrrSub8/Oc//0FsbCyqVq2KgIAADBw4EL/99pvB+Tt37ozmzZsjIyMDjz32GKpVq4Zp06ZZ9PiV1LVrVwBAZmZmmeXeffddNGvWDN7e3ggNDcVLL71k0APWuXNn7NmzB7/++qu+TeHh4VbXh8hdsQeJiKwmhEBubi6aNWtm8W0UCgUGDRqEN954A1999RW6d+9uslzt2rVRtWpV7Nq1C+PGjUNAQIDZcxYVFaFHjx44ePAgBg4ciAkTJqCgoAAHDhzA2bNnERkZCQBYtmwZevXqhWeffRb379/Hli1b0K9fP+zevVtfjw8++AAvvPAC2rdvj9GjRwMAIiMj4evri59//hmbN2/GO++8o+/NqVWrFgDgrbfewhtvvIH+/fvjhRdewPXr17FixQo89thjOHXqFGrUqKGvr1qtxpNPPomBAwdiyJAhCAoKsvjx09EFfoGBgWbLzJo1C7Nnz0ZCQgJefPFF/PTTT3jvvffwzTff4OjRo/Dy8sL06dOh0Whw5coVvPPOOwCA6tWrW10fIrcliIis9MEHHwgAYu3atQbH4+PjRbNmzcze7uOPPxYAxLJly8o8/4wZMwQA4evrK5588knx1ltviYyMjFLl1q1bJwCIpUuXlrpOq9Xqf79z547Bdffv3xfNmzcXXbt2NTju6+srhg0bVupcixYtEgBEZmamwfGsrCyhUCjEW2+9ZXD8+++/F1WqVDE4Hh8fLwCI1atXm213STNnzhQAxE8//SSuX78uMjMzxfvvvy+8vb1FUFCQuH37thBCiPXr1xvU7dq1a0KpVIonnnhCFBUV6c+3cuVKAUCsW7dOf6x79+6ifv36FtWHyNNwiI2IrHL+/Hm89NJLiIuLw7Bhw6y6ra6HoqCgoMxys2fPRlpaGtq0aYP9+/dj+vTpiI2NRUxMjMGw3vbt21GzZk2MGzeu1DlkMpn+96pVq+p//+OPP6DRaNCpUyecPHnSqvob27FjB7RaLfr3748bN27oL8HBwYiKisKhQ4cMynt7e2PEiBFW3Ufjxo1Rq1YtREREYMyYMWjYsCH27NljNnfps88+w/379zFx4kTI5X+/xY8aNQr+/v7Ys2eP9Q0l8kAcYiMii+Xk5KB79+5QqVT46KOPoFAorLr9rVu3AAB+fn7llh00aBAGDRqE/Px8HD9+HBs2bEBaWhp69uyJs2fPwsfHB5cuXULjxo1RpUrZb2W7d+/Gm2++idOnT+PevXv64yWDqIq4cOEChBCIiooyeb2Xl5fB33Xq1CmVz1We7du3w9/fH15eXqhbt65+2NCcX3/9FUBxYFWSUqlEgwYN9NcTUdkYIBGRRTQaDZ588kncvHkTR44cQWhoqNXn0C0L0LBhQ4tv4+/vj8cffxyPP/44vLy8sHHjRhw/fhzx8fEW3f7IkSPo1asXHnvsMbz77rsICQmBl5cX1q9fj7S0NKvbUJJWq4VMJsP//vc/k8GicU5PyZ4sSz322GP6vCcichwGSERUrrt376Jnz574+eef8dlnn6Fp06ZWn6OoqAhpaWmoVq0aHn300QrVo23btti4cSOys7MBFCdRHz9+HA8ePCjVW6Ozfft2+Pj4YP/+/fD29tYfX79+famy5nqUzB2PjIyEEAIRERFo1KiRtc2xi/r16wMAfvrpJzRo0EB//P79+8jMzERCQoL+WGV70IjcGXOQiKhMRUVFGDBgANLT07Ft27YKrb1TVFSE8ePH49y5cxg/fjz8/f3Nlr1z5w7S09NNXve///0PwN/DR3379sWNGzewcuXKUmXFXwspKhQKyGQyFBUV6a/LysoyuSCkr6+vycUgfX19AaDUdX369IFCocDs2bNLLdwohIBarTbdSDtKSEiAUqnE8uXLDeq0du1aaDQag9mDvr6+ZS65QOTJ2INERGV6+eWX8d///hc9e/ZEXl5eqYUhjReF1Gg0+jJ37tzBxYsXsWPHDly6dAkDBw7E3Llzy7y/O3fuoGPHjnj44YeRlJSEsLAw3Lx5Ezt37sSRI0fQu3dvtGnTBgDw3HPP4d///jdSUlJw4sQJdOrUCbdv38Znn32G//u//8PTTz+N7t27Y+nSpUhKSsLgwYNx7do1rFq1Cg0bNsSZM2cM7js2NhafffYZli5ditDQUERERKBDhw6IjY0FAEyfPh0DBw6El5cXevbsicjISLz55puYOnUqsrKy0Lt3b/j5+SEzMxMff/wxRo8ejVdeeaVSj7+1atWqhalTp2L27NlISkpCr1698NNPP+Hdd99Fu3btDJ6v2NhYbN26FSkpKWjXrh2qV6+Onj17OrS+RJLlzCl0RCR9uunp5i5lla1evbqIiooSQ4YMEZ9++qlF9/fgwQPxz3/+U/Tu3VvUr19feHt7i2rVqok2bdqIRYsWiXv37hmUv3Pnjpg+fbqIiIgQXl5eIjg4WDzzzDPi0qVL+jJr164VUVFRwtvbW0RHR4v169frp9GXdP78efHYY4+JqlWrCgAGU/7nzp0r6tSpI+Ryeakp/9u3bxePPvqo8PX1Fb6+viI6Olq89NJL4qeffjJ4bMpaAsGYrn7Xr18vs5zxNH+dlStXiujoaOHl5SWCgoLEiy++KP744w+DMrdu3RKDBw8WNWrUEAA45Z+oBJkQNtjQh4iIiMiNMAeJiIiIyAgDJCIiIiIjDJCIiIiIjDBAIiIiIjLCAImIiIjICAMkIiIiIiNcKLKCtFotrl69Cj8/Py7XT0RE5CKEECgoKEBoaCjkcvP9RAyQKujq1asICwtzdjWIiIioAn777TfUrVvX7PUMkCrIz88PQPEDXNa+UkRERCQd+fn5CAsL03+Om8MAqYJ0w2r+/v4MkIiIiFxMeekxTNImIiIiMsIAiYiIiMgIAyQiIiIiI8xBsiOtVov79+87uxpuTalUljlNk4iIqCIYINnJ/fv3kZmZCa1W6+yquDW5XI6IiAgolUpnV4WIiNwIAyQ7EEIgOzsbCoUCYWFh7OGwE91indnZ2ahXrx4X7CQiIpthgGQHhYWFuHPnDkJDQ1GtWjVnV8et1apVC1evXkVhYSG8vLycXR0iInIT7Nqwg6KiIgDgsI8D6B5j3WNORERkCwyQ7IhDPvbHx5iIiOyBARIRERGREQZIREREREacHiCtWrUK4eHh8PHxQYcOHXDixIkyy2/btg3R0dHw8fFBixYtsHfvXoPrhw8fDplMZnBJSkoyKBMeHl6qzPz5823eNldT8rHz8vJCUFAQHn/8caxbt86q5Qo2bNiAGjVq2K+iRETk1q5cAQ4dKv7pLE4NkLZu3YqUlBTMnDkTJ0+eRKtWrZCYmIhr166ZLH/s2DEMGjQII0eOxKlTp9C7d2/07t0bZ8+eNSiXlJSE7Oxs/WXz5s2lzjVnzhyDMuPGjbNLGytCrVYb1M34olar7XbfuscuKysL//vf/9ClSxdMmDABPXr0QGFhod3ul4iICADWrgXq1we6di3+uXatc+rh1Gn+S5cuxahRozBixAgAwOrVq7Fnzx6sW7cOr732Wqnyy5YtQ1JSEiZPngwAmDt3Lg4cOICVK1di9erV+nLe3t4IDg4u8779/PzKLeMMarUaK1euLLdccnIyAgMDbX7/JR+7OnXqICYmBg8//DC6deuGDRs24IUXXsDSpUuxfv16/PLLLwgICEDPnj2xcOFCVK9eHYcPH9Y/n7oE6pkzZ2LWrFn44IMPsGzZMvz000/w9fVF165dkZqaitq1a9u8HURE5HquXAFGjwZ0gxZaLTBmDJCYCNSt69i6OK0H6f79+8jIyEBCQsLflZHLkZCQgPT0dJO3SU9PNygPAImJiaXKHz58GLVr10bjxo3x4osvmuxxmT9/PgIDA9GmTRssWrRIMr0jlm5N4sgtTLp27YpWrVphx44dAIqfp+XLl+OHH37Axo0b8fnnn2PKlCkAgI4dOyI1NRX+/v76Hq9XXnkFAPDgwQPMnTsX3333HXbu3ImsrCwMHz7cYe0gIiLpUqvV+PprNYwzOoqKgOPH1XYdPTHFaT1IN27cQFFREYKCggyOBwUF4fz58yZvk5OTY7J8Tk6O/u+kpCT06dMHERERuHTpEqZNm4Ynn3wS6enpUCgUAIDx48cjJiYGAQEBOHbsGKZOnYrs7GwsXbrUbH3v3buHe/fu6f/Oz8+3us2uLDo6GmfOnAEATJw4UX88PDwcb775JsaOHYt3330XSqUSKpUKMpmsVA/d888/r/+9QYMGWL58Odq1a4dbt26hevXqDmkHERFJj270RKPxg0w2EUL83X8jk2lx9OhGnD1bYLfRE1PcbiXtgQMH6n9v0aIFWrZsicjISBw+fBjdunUDAKSkpOjLtGzZEkqlEmPGjMG8efPg7e1t8rzz5s3D7Nmz7Vt5CRNC6IfMPvvsM8ybNw/nz59Hfn4+CgsLcffuXdy5c6fMlcMzMjIwa9YsfPfdd/jjjz/0id+XL19G06ZNHdIOIiKSHt2oiEpVgJ49d2PXrh4QQg6ZTIuePXdDpSowKOcIThtiq1mzJhQKBXJzcw2O5+bmms0NCg4Otqo8UNxTUbNmTVy8eNFsmQ4dOqCwsBBZWVlmy0ydOhUajUZ/+e2338yWdUfnzp1DREQEsrKy0KNHD7Rs2RLbt29HRkYGVq1aBaDsF+7t27eRmJgIf39/bNq0Cd988w0+/vjjcm9HRESeJSbmFCZOTMWwYRswcWIqYmJOOaUeTguQlEolYmNjcfDgQf0xrVaLgwcPIi4uzuRt4uLiDMoDwIEDB8yWB4ArV65ArVYjJCTEbJnTp09DLpeXmSzs7e0Nf39/g4un+Pzzz/H999+jb9++yMjIgFarxZIlS/Dwww+jUaNGuHr1qkF5pVJZauuP8+fPQ61WY/78+ejUqROio6PNzlYkIiLPplIVICLiV33PkTM4dYgtJSUFw4YNQ9u2bdG+fXukpqbi9u3b+llQzz33HOrUqYN58+YBACZMmID4+HgsWbIE3bt3x5YtW/Dtt99izZo1AIBbt25h9uzZ6Nu3L4KDg3Hp0iVMmTIFDRs2RGJiIoDiRO/jx4+jS5cu8PPzQ3p6OiZNmoQhQ4bgoYcecs4DISH37t1DTk4OioqKkJubi3379mHevHno0aMHnnvuOZw9exYPHjzAihUr0LNnTxw9etRgBiFQnJd069YtHDx4EK1atUK1atVQr149KJVKrFixAmPHjsXZs2cxd+5cJ7WSiIiobE5dB2nAgAFYvHgxZsyYgdatW+P06dPYt2+fPhH78uXLyM7O1pfv2LEj0tLSsGbNGrRq1QofffQRdu7ciebNmwMAFAoFzpw5g169eqFRo0YYOXIkYmNjceTIEX1ukbe3N7Zs2YL4+Hg0a9YMb731FiZNmqQPsjzdvn37EBISgvDwcCQlJeHQoUNYvnw5PvnkEygUCrRq1QpLly7FggUL0Lx5c2zatEkfwOp07NgRY8eOxYABA1CrVi0sXLgQtWrVwoYNG7Bt2zY0bdoU8+fPx+LFi53USiIiorLJhBDC2ZVwRfn5+VCpVNBoNKWG2+7evYvMzExERETAx8fHqvM6ex0kV1OZx5qIiKQhOzvboo6K0aNHl5kyY4myPr9LcrtZbK4uMDAQycnJZSYuK5VKBkdERER2xABJghj8EBGRJ1EqlTYtZwsMkIiIiMippDh6wgCJiIiIcOUKcOECEBXl+H3PAOmNnjh1FhsRERE5j1qtRnZ2NpYsuYn69QW6dgXq1xdYsuQmsrOzHb7/mZSwB4mIiMgDldz/LDV1IoQo3k5Kq5Vh8mR//P77OqhUjt3/TErYg0REROSBdPk+eXmBBpvDAoAQcuTlBRiU8zQMkIiIiDxYQIAaMpnW4JhMpkVAQJ6TaiQNDJCIiIg8mEpVgJ49d+uDJJlMi549dzt1HzQpYA4SOczhw4fRpUsX/PHHH6hRo4ZFtwkPD8fEiRMxceJEu9aNiMiTxcScQmTkReTlBSAgIM/jgyOAPUhUwvDhwyGTyTB27NhS17300kuQyWQYPny44ytGRER2p1IVICLiVwZHf2GARAbCwsKwZcsW/Pnnn/pjd+/eRVpaGurVq+fEmhERETkOAyQyEBMTg7CwMOzYsUN/bMeOHahXrx7atGmjP3bv3j2MHz8etWvXho+PDx599FF88803Bufau3cvGjVqhKpVq6JLly7IysoqdX9fffUVOnXqhKpVqyIsLAzjx4/H7du37dY+IiJn0q07lJ2djYyMXHz0kRoZGbn6Y5687pDUMECSuCtXgEOHin86yvPPP4/169fr/163bh1GjBhhUGbKlCnYvn07Nm7ciJMnT6Jhw4ZITExEXl7xrIfffvsNffr0Qc+ePXH69Gm88MILeO211wzOcenSJSQlJaFv3744c+YMtm7diq+++grJycn2byQRkYPp1h1as2YNxo79Bu3a1UK/foFo164Wxo79BmvWrMHKlSsdFiRVZv8zZ3w2ORqTtCVs7Vpg9GhAqwXkcmDNGmDkSPvf75AhQzB16lT8+uuvAICjR49iy5YtOHz4MADg9u3beO+997BhwwY8+eSTAIB//vOfOHDgANauXYvJkyfjvffeQ2RkJJYsWQIAaNy4Mb7//nssWLBAfz/z5s3Ds88+q0/AjoqKwvLlyxEfH4/33nsPPj4+9m8sEZGD6NYT0mj8sGtXD/3aQ0LIsWtXD0RGXoRKVeCwdYes3f9MrVbj/v37SEuriilTVNBqZZDLBRYu1GDw4D8dvleavTFAkqgrV/4OjoDin2PGAImJ9t8jp1atWujevTs2bNgAIQS6d++OmjVr6q+/dOkSHjx4gEceeUR/zMvLC+3bt8e5c+cAAOfOnUOHDh0MzhsXF2fw93fffYczZ85g06ZN+mNCCGi1WmRmZqJJkyb2aB4RkVOVtTCjoxOkLQ1oPHHVbQZIEnXhwt/BkU5REXDxomM2EXz++ef1Q12rVq2yy33cunULY8aMwfjx40tdx4RwInJXuoUZSwZJUl+Y0ZJVtx3Z++UIzEGSqKio4mG1khQKoGFDx9x/UlIS7t+/jwcPHiAxMdHgusjISCiVShw9elR/7MGDB/jmm2/QtGlTAECTJk1w4sQJg9t9/fXXBn/HxMTgxx9/RMOGDUtdLB0bJyJyNa68MKMnrbrNHiSJqlu3OOdozJjiniOFAnj/fcf0HgGAQqHQD5cpFAqD63x9ffHiiy9i8uTJCAgIQL169bBw4ULcuXMHI/9Kkho7diyWLFmCyZMn44UXXkBGRgY2bNhgcJ5XX30VDz/8MJKTk/HCCy/A19cXP/74Iw4cOICVK1c6pJ1ERM7gqgsz6oI7XQ6VKwV31mKAJGEjRxbnHF28WNxz5KjgSMff39/sdfPnz4dWq8XQoUNRUFCAtm3bYv/+/XjooYcAFA+Rbd++HZMmTcKKFSvQvn17vP3223j++ef152jZsiW++OILTJ8+HZ06dYIQApGRkRgwYIDd20ZEZAu6xGVzykpcVqkKXDKwcNXgzloyIYRwdiVcUX5+PlQqFTQaTalA4u7du8jMzERERARnYtkZH2sichZd4rKORuOHvLxABASoDYIGXeJydnY21qxZU+55R48ejZCQELvUuaIqUveSwePVq3JkZlZBREQhQkOLh+icNeutrM/vktiDREREVAEle45OnmxTatgpJuaUQbnKrDvkakoGj2U9NlKe9cYAiYiIqBLKW9dIx9p1h1yZ1NZ8qggGSERERJVgzbpGrhr8VLT3S0prPlmLARIREVEluOK6RtaqaO+XKz82DJDsiPnv9sfHmIiczVOmvlek98uVHxsGSHagWzfo/v37qFq1qpNr495032aM12oiInIkT5n6XhGu+tgwQLKDKlWqoFq1arh+/Tq8vLwgN14Sm2xCq9Xi+vXrqFatGqpU4UuZiJzLVdc1cgRXfGz4qWIHMpkMISEhyMzMxK+//urs6rg1uVyOevXqQSaTObsqRORhPGnavidigGQnSqUSUVFRkp7C6A6USiV76IjIKTxp2r613CF45EraFWTpSpxEREQ6ldmaxNVIta1cSZuIiEhCjLcmMUfKq0tbw9XbwLEJIiIiBzDuTdFo/JCZGQ6Nxq/McuQc7EEiIiJysLL2JyNpYIBEREROJdVcFXuxdO82ci4GSERE5DSelpcDuPb+ZJ6EOUhEROQ0npiXo9ufrCRX2Z/Mk7AHiYiIJMFT8nJceX8yT8IAiYiInM7T8nJcdX8yT8IAiYjIxblDkrMn5OUYrxptbn8yKa8u7UkYIBERSYw1AY8jkpwdEYDp8nJKBknulpfDrUlcCwMkIiIJsTbgsTR5uaJJzo6aZeYpeTkMflwHAyQiIgmxd8BjLUfWh3k5JCUMkIiI3IhG44e8vEAEBKjtEmDY+vzMyyGpYoBERCRh1gQk9p4mb4/z2zsvxx0S2Mk5GCAREUmUNQGJvafJ2/P89gpQPHGVbrIdrqRNRCRB5gIS4xWmdcqaJm8L9j6/PUgtn4tcC3uQiIgqwN5DN9auC2TvafLuMA3f3vlZ5F4YIBERWckRQzeWBiS65OXypslXNsnZ1afhe8o2JmQ7DJCIiKxkz6EbawMe4yTnGTOuIyurCsLDCxEa2g5Au0r1ZpUMrMqahi/lWWaeto0J2QYDJCIiCalIwFPy95AQIDbWfvUxReozwTxhGxOyPQZIRESVZOvcFnsGPBUh5eDHEu6QP2UvXAbBPAZIRESVwNwW6XP1/Cl74TIIZWOARERUQcxtkTZ3yJ+yJ+OeI3M9oZ66DAIDJCIiVGyogbkt0uYO+VOOwp7Q0hggEZFbsibgqehQA3NbpI/BT/nYE2oaAyQicjvWBjzWTtt31NpDRI4glZ5QqSWMM0AiIrdj7y0m7L32EJEjSaEnVIoJ4wyQiIgqQGpT8YkqSgqz/KSYMM4AiYjICPfsIqlw1LBTWbP8HE0qCeMMkIjI7VkT8EjlzZlsQ2p5Ldaw97CTcY6cSlVg8v/Dkbl0UkoYZ4BERG7NmoBHSm/OVHlSzGuxhqNz6UxxdAAplYRxgAESEbkxawMeKb05U+XZO8BwNHsM/UotMJRCwrgOAyQicluWBjy6IYTy3pw5bZ+cxVOGfqWQMK7DAImI3I61AU/JoYY6dfLx6qsqFBXJoFAILFiQj8GDB0k6V4Us46rJ95429CuVhHEGSETkdioS8Oh+f/llYMAA4OJFoGFDGerWrQGgRqn7cOXkX0/kyj0wnjD0K8WEcacHSKtWrcKiRYuQk5ODVq1aYcWKFWjfvr3Z8tu2bcMbb7yBrKwsREVFYcGCBXjqqaf01w8fPhwbN240uE1iYiL27dun/zsvLw/jxo3Drl27IJfL0bdvXyxbtgzVq1e3fQOJyCmsDXhKqlu3+GKOqyf/ehpX74GRUl6OvUgxYVxefhH72bp1K1JSUjBz5kycPHkSrVq1QmJiIq5du2ay/LFjxzBo0CCMHDkSp06dQu/evdG7d2+cPXvWoFxSUhKys7P1l82bNxtc/+yzz+KHH37AgQMHsHv3bnz55ZcYPXq03dpJRM5Vty7QuXPZQY813C35192V1QPjCnR5OTKZFgCcmpdjT4GBgQgJCTF7cfSXDaf2IC1duhSjRo3CiBEjAACrV6/Gnj17sG7dOrz22mulyi9btgxJSUmYPHkyAGDu3Lk4cOAAVq5cidWrV+vLeXt7Izg42OR9njt3Dvv27cM333yDtm3bAgBWrFiBp556CosXL0ZoaKitm0lERE7kqj0wJYeTysrL4eQB+3BagHT//n1kZGRg6tSp+mNyuRwJCQlIT083eZv09HSkpKQYHEtMTMTOnTsNjh0+fBi1a9fGQw89hK5du+LNN9/UR57p6emoUaOGPjgCgISEBMjlchw/fhz/+Mc/TN73vXv3cO/ePf3f+fn5VrWXiNyXqyb/ujtX31RYisNOnsRpAdKNGzdQVFSEoKAgg+NBQUE4f/68ydvk5OSYLJ+Tk6P/OykpCX369EFERAQuXbqEadOm4cknn0R6ejoUCgVycnJQu3Ztg3NUqVIFAQEBBucxNm/ePMyePdvaZhKRm3Pl5F935w6bCku5bu7O6UnatjZw4ED97y1atEDLli0RGRmJw4cPo1u3bhU+79SpUw16r/Lz8xEWFlapuhKRa3P15F9PwE2FqaKclqRds2ZNKBQK5ObmGhzPzc01mz8UHBxsVXkAaNCgAWrWrImLFy/qz2GcBF5YWIi8vLwyz+Pt7Q1/f3+DCxF5NldP/iUi85wWICmVSsTGxuLgwYP6Y1qtFgcPHkRcXJzJ28TFxRmUB4ADBw6YLQ8AV65cgVqtRkhIiP4cN2/eREZGhr7M559/Dq1Wiw4dOlSmSUQeTa1WG8weNb6o1WpnV9HmdMm/JblC8i8Rlc+pQ2wpKSkYNmwY2rZti/bt2yM1NRW3b9/Wz2p77rnnUKdOHcybNw8AMGHCBMTHx2PJkiXo3r07tmzZgm+//RZr1qwBANy6dQuzZ89G3759ERwcjEuXLmHKlClo2LAhEhMTAQBNmjRBUlISRo0ahdWrV+PBgwdITk7GwIEDOYONqII8bV0gV0/+JaLyOTVAGjBgAK5fv44ZM2YgJycHrVu3xr59+/SJ2JcvX4Zc/ncnV8eOHZGWlobXX38d06ZNQ1RUFHbu3InmzZsDABQKBc6cOYONGzfi5s2bCA0NxRNPPIG5c+fC29tbf55NmzYhOTkZ3bp10y8UuXz5csc2nsiNeNq6QO6Q/EtEZZMJIYSzK+GK8vPzoVKpoNFomI9EHi87O1vfk1uW0aNH64e7iYicwdLPb6eupE1EREQkRQyQiMjmNBo/ZGaGQ6Pxc3ZViIgqxO3WQSIi5+LCiaWp1Wquhkwuz9NexwyQiMhmuHBiaZ42w4/ckye+jjnERkQ2w4UTS/O0GX7knjzxdcwAiYgqTbfeT3kLJ3JdIOZnkXvwhNcxh9iIqNJKrgtUp04+Xn1VhaIiGRQKgQUL8jF48CC3y0+oCOZnkTvwlNcxAyQisgld8PPyy8CAAcDFi0DDhjLUrVsDQA1nVk0SmJ9F7sCTXscMkIhcmFRnldStW3yhv5WVn+VuHyzkvjzpdcwAichFedqsEqkGg5bS5WeV/HDhxrbkajzpdcwAichFedKsEncIBsvb2JbIFVjzOnb1LzUMkIhI8lw5GCw5cy8m5hQiIy8iLy8AAQF5Bh8qnOFHUmbt69gdvtQwQCJyExqNH/LyAhEQoHZKr4Qjvy06u63WKDnDzxypf5P2JK7e62Ev1r6OXflLjQ4DJCI34Oxpt478tujstlaEJ36guiJ36PWwp8q02ZW+1OgwQCJycVKYduuob4tSaCu5L3fo9ZAiV/xSA3AlbSKXJ8XtPey1yq4U20pEpWk0mr9+mv5So3tv0JWTIvYgEbk4qU27tee3Ram11V6YByMNrjgsJBUPHjwAUP66SbpyUsQAichF6WaLlDft1pGzo+w9BOYJU+WZByMNrjosJDWu/KWGARKRizKeVTJjxnVkZVVBeHghQkPbAWjn8J4Ge62y60lT5ZkH43zMdbMdlaoALVuewXfftQIgAyDQsuUZl3gcGSARubCSwU9ICBAba76sI4Zt7PVtkVPlyZE8aTsNe6lSpTi80Gj8cOZMSxQHRwAgw5kzLdG16+dQqQr05aRIujUjcgBPyfVw1LCNPYfA3OF5qAjmwTieKw8LSUWNGjUAlB9s6spJEQMk8lielOth72EbTxoCcyTmwTiWFPP6XJ0rB5sMkMhjeXKuh617JTgEZnvMg3E8Keb1uTpXnljBAInoL/YYypDiEJ69eiX4oWFbzINxDmvy+sg8d+hVZoBEHqvkAmVlBQ0ajQYhISFWn1+KQ3jslXAdrjw0QeQOvcoMkMhj6RYoKy9oqOhCZlIcwmOvhPQxD4bchZSDH0swQCKP56igQQqzkdgrIX3MgyGSBgZI5PECAtQAtDDcmtC2QYNUZiO5csKkJ2EeDJHzMUAiAvD3ImZ//SUzXaoiSddSyPtxRMKkFBPSiYgqigESeSzdCq55eYEwDpBKDrHpylU06VoKeT/2TpiUYkI6EVFlMEAij6VbwbW8vBxdOePgwlxOkXE5qeT92DMwqehjQwSw95GkiQESebyK5OVYk1PkaXk/Usm3ItfA3keSKgZI5LEqmpdjaU6ROyyUZi0p5FuRa5HichhEAAMk8mAVzcuxNKcoMDAQQ4YMwZ07d8yev1q1am71rVgK+VZERLbAAIk8WkWCE0tzitRqNf7zn/+Uez53GjqQSr4VuS4prBdGBDBAIrKapTlFnpi47Gn5VmRbzF8jKWGARFQBZeUUmeJJb/zWPjZEAPPXSHoYIBFZyDiZWqUqMPnGXdGkbldW0ceGSIf5ayQ1DJCILGTvpO6KkMr6Me6wczc5F/PXSGoYIBFZwZ5J3dYyXj/GXI6To5LAGfxQReh6FcvLX2PvIzkaAyQiO7NX4nLJ3pqycpzcKQmcXIM1PZvGvY8zZlxHVlYVhIcXIjS0HYB27H0kp2CAROQA9kxc9oQcJ3IdFVkZu2TwExICxMbarXpEFmOARGQnjkpcZnIrSQlXxiZ3wQCJyE4clbjM5FYiIttjgERkR47Im+DijCRlrrYytlRmhpLzMUAicgNcnJGkyNUWSK1I/hS5L3n5RYjIFahUBYiI+JXBEUmCuckDGo2fk2tmHvOnqCQGSEQuytLkbq4fQ85Q1uQBIlfAITYiF8XVq0nK3GHygKvlT5FtMUAisiN7J3wy+CGpceWVsTUajf73svKnNBoNQkJCnFVNchAGSER2IrWtQIgcwZVXxn7w4AGA8hdf1ZUj98YAichOuBUIeSpXXxmbi68SwCRtl3flCnDoUPFPkiZXnM1D5Ml0+VMluVr+FFUee5BckC6vJS2tKqZMUUGrlUEuF1i4UIPBg/+UbPe1p+K3UZIaLoZoWpUqxR+JKlUBWrY8g+++awVABkCgZcsz+v9XXTlyb3yWXYwur0Wj8UNq6kQIIQMAaLUyTJ7sj99/XweVqoB5LRLiDrN5yH1wMUTzatSoAaC41/fMmZYoDo4AQIYzZ1qia9fPoVIV6MuRe+MQm4vRfesrb40R5rVIh242j67LnluBkDNxMcTycQ0nAtiD5LLYK+FauBUIkevg+ysB7EFyWeyVcD3cCoSkSKPxQ2ZmOCcNoPQaTubeX6W4hhPZHnuQXBh7JaSNW4GQ1LnaZrL25sprOJHtMUBycSpVAQMjieJWICRl5S2G6KlcfQ0nsh0GSER2xOCHpIrLTxCVjTlIREQeiIshEpWNAZKLYV4LEVUGE5GJLCMTQghnV8IV5efnQ6VSQaPRwN/f36H3zVVwiagySr6HXL0qL5GIXBws8T2E3Jmln9/MQXJBfOMiospgIjJR+TjERkRERGTE6QHSqlWrEB4eDh8fH3To0AEnTpwos/y2bdsQHR0NHx8ftGjRAnv37jVbduzYsZDJZEhNTTU4Hh4eDplMZnCZP3++LZpDHuTKFeDQoeKfRETkXpwaIG3duhUpKSmYOXMmTp48iVatWiExMRHXrl0zWf7YsWMYNGgQRo4ciVOnTqF3797o3bs3zp49W6rsxx9/jK+//hqhoaEmzzVnzhxkZ2frL+PGjbNp28g9qdVqZGdnY8mSm6hfX6BrV6B+fYElS24iOzsbarXa2VUkIiIbcGqAtHTpUowaNQojRoxA06ZNsXr1alSrVg3r1q0zWX7ZsmVISkrC5MmT0aRJE8ydOxcxMTGldqb+/fffMW7cOGzatAleXl4mz+Xn54fg4GD9xdfX1+btcwT2YjiObhf0RYs2Y/Jkf2i1xTt9a7UyTJ7sj0WLNmPlypUMkoiI3IDTAqT79+8jIyMDCQkJf1dGLkdCQgLS09NN3iY9Pd2gPAAkJiYalNdqtRg6dCgmT56MZs2amb3/+fPnIzAwEG3atMGiRYtQWFhYZn3v3buH/Px8g4uzrV0L1K+Pv3oxiv8m+9HN+ilvp29P3gWdiMhdOC1AunHjBoqKihAUFGRwPCgoCDk5OSZvk5OTU275BQsWoEqVKhg/frzZ+x4/fjy2bNmCQ4cOYcyYMXj77bcxZcqUMus7b948qFQq/SUsLKy8JtrVlSvA6NGA9q913rRaYMwY9iQ5AhfYIyJyf241zT8jIwPLli3DyZMnIZPJzJZLSUnR/96yZUsolUqMGTMG8+bNg7e3t8nbTJ061eB2+fn5Tg2SLlz4OzjSKSoCLl4E6tZ1Tp08hW6BPeNNPrk9AxGR+7AqQHrw4AGmT5+OHTt2ICAgAGPHjsXzzz+vvz43NxehoaEoKioq91w1a9aEQqFAbm6uwfHc3FwEBwebvE1wcHCZ5Y8cOYJr166hXr16+uuLiorw8ssvIzU1FVlZWSbP26FDBxQWFiIrKwuNGzc2Wcbb29ts8OQMUVGAXG4YJCkUQMOGzquTJ4mJOYXIyIvIywtAQEAegyMiIjdj1RDbW2+9hX//+98YO3YsnnjiCaSkpGDMmDEGZSxdmFupVCI2NhYHDx7UH9NqtTh48CDi4uJM3iYuLs6gPAAcOHBAX37o0KE4c+YMTp8+rb+EhoZi8uTJ2L9/v9m6nD59GnK5HLVr17ao7s6mVquhUGRj4cKbUCiKH2+FQmDBgptQKDiTylFUqgJERPzqtsGRbsaeuQtfZ0TkzqzqQdq0aRP+9a9/oUePHgCA4cOH48knn8SIESP0M8/KGtoylpKSgmHDhqFt27Zo3749UlNTcfv2bYwYMQIA8Nxzz6FOnTqYN28eAGDChAmIj4/HkiVL0L17d2zZsgXffvst1qxZA6B4dVjjVaa9vLwQHBys7xlKT0/H8ePH0aVLF/j5+SE9PR2TJk3CkCFD8NBDD1nzcDiFbiaVzvjxfvpejFu3CvDXQ4Hk5GSuuE0VZvw6M4evMyJyV1YFSL///juaN2+u/7thw4Y4fPgwunbtiqFDh2LhwoVW3fmAAQNw/fp1zJgxAzk5OWjdujX27dunT8S+fPky5PK/O7k6duyItLQ0vP7665g2bRqioqKwc+dOgzqVx9vbG1u2bMGsWbNw7949REREYNKkSQb5RVJmPENKpSow2YPBmVRUGcavH43GD3l5gQgIUBu83vg6IyJ3ZVWAFBwcjEuXLiE8PFx/rE6dOjh06BC6dOmC4cOHW12B5ORkJCcnm7zu8OHDpY7169cP/fr1s/j8xnlHMTEx+Prrr62pIhEAy3c3d7dd0E+ebFMqIT0m5pSzq0VEZFdWBUhdu3ZFWloaunXrZnA8NDQUn3/+OTp37mzLuhFJSmBgIJKTk8vsNXG3XdA1Gj99cAQUr/e0a1cPREZedNvcK5I2tVrtUf+D5DxWBUhvvPEGzp8/b/K6OnXq4IsvvsCBAwdsUjFPdeVK8RT+qChO15ciT3vjLWtRTAZI5GjMjSNHsmoWW/369ZGYmGj2+tDQUAwbNqzSlfJUXBmbpIaLYpKUWJrzxtw4soUKraS9bds29OnTB82bN0fz5s3Rp08ffPTRR7aum0fhytgkRbpFMXVBEhfFJCnRaPyQmRkOjcbP2VUhN2TVEJtWq8WgQYOwbds2NGrUCNHR0QCAH374AQMGDEC/fv2wefNmq6b6UzGujE1SJZVFMZl7QiVx8gDZm1UB0rJly/DZZ5/hv//9r34tJJ3//ve/GDFiBJYtW4aJEyfaso4ewdKVsT11JhU5lvHrx9xyEo56nTH3hEri5AFyBKsCpPXr12PRokWlgiMA6NWrFxYuXMgAqYLq1gXWrCkeVisqKg6O3n+/dO+Ru82kYlK6NEntdcbcEyqJkwfIEawKkC5cuICEhASz1yckJJhd04jM0w0dPPUUcPy4HFlZVRAeXojQUC2ys0t/ELlK8FOetWv/zruSy4sDxJEjnV0r0nGX1xm5H93kgZJBkrnJAxyapYqyKkCqWrUqbt68abAZbEn5+fnw8fGxScU8hbmhg7NnDf92t6EDc0npiYnsSaLymVvZmzyDbvKAcQ6S8WuBQ7NUGVYFSHFxcXjvvffw3nvvmbx+1apVZjeaJdM8cehArVbj668BrdbwDamoCDh+XI2qVT2394LfdsvH5FzPVTLnrazJA7pynvj+SrZjVYA0ffp0dO7cGWq1Gq+88gqio6MhhMC5c+ewZMkSfPLJJzh06JC96kpuQPeNTqPxg0w2sVQX+dGjG3H2bIFHfqMz/rZrrpfEEx8bHSbnugZ7BfpSy40j92ZVgNSxY0ds3boVo0ePxvbt2w2ue+ihh7B582Y88sgjNq0guRfdG1t5XeSe+I2uZJvL6iXxxMdGx57Juey9sw17D2tV5jng0CxZw6oACQD+8Y9/IDExEfv378eFCxcAAI0aNcITTzyBatWq2byC5L6ksr6O1LCXxDxrknOtwVwV25HqsBaHZslaVq2k/fnnn6Np06YoLCzEP/7xD0yZMgVTpkxB79698eDBAzRr1gxHjhyxV13JDalUBYiI+NXjP/hLKquXxFPpckrKW9m7ousySfVDnWzD3JcOrsBNZbGqByk1NRWjRo2Cv79/qetUKhXGjBmDpUuXolOnTjarIJGnsVcviSszzj2ZMeN6ieUw2gFoxyEwiZLCsBbXTaKKsCpA+u6777BgwQKz1z/xxBNYvHhxpStF5MksncLsaUoGPyEhQGys/e5LCh/q7kAqw1r80kEVYVWAlJubCy8vL/Mnq1IF169fr3SlPAm3DiFTmJ/lPFL5UHd1UsilMx6aNfelg++vZIpVAVKdOnVw9uxZNDTeIOwvZ86cQUhIiE0q5ik4bZXMMbf/GdmPFD7U3YUUhrU4NEuVYVWA9NRTT+GNN95AUlJSqRWz//zzT8ycOdPkPm1UNk/652SPmXl8bJxPCh/q7kIqw1qOHJol92JVgPT6669jx44daNSoEZKTk9G4cWMAwPnz57Fq1SoUFRVh+vTpdqkouQf2mJnHx8b5pPKh7so4rEXuwqoAKSgoCMeOHcOLL76IqVOnQggBAJDJZEhMTMSqVasQFBRkl4qSbVy5Aly4AERFOW/PM37Am8fHxjn4oW47HNYidyETuijHSn/88QcuXrwIIQSioqLw0EMP2bpukpafnw+VSgWNRmNy2QMpWrv27w1i5XJgzRpg5Ehn14pIGkqupH31qrzEh3rxmkv8UCdyD5Z+flc4QPJ0rhYgXbkC1K9fHBzpKBRAVpbzepKIiIgczdLPb6tW0ibXdeGCYXAEAEVFwMWLzqkPERGRlDFA8hBRUcXDaiUpFICZFRuIiIg8GgMkD6BWq6FQZGPhwptQKIpHVBUKgQULbkKhyIZarXZyDYmIiKSFOUgV5Co5SMa7lBdvoVB6dWbuUk5ERJ7A0s9vq6b5k+sxXlPH3OrM3KWciFxBydmGpnC2IdkKAyQiInIJxj3i5rBHnGyBOUhEROQSLO3pZo842QIDJCIickkajR8yM8Oh0fg5uyrkhjjERkRELufkyTaltoSJiTnl7GqRG2EPEhERuRSNxk8fHAGAEHLs2tWDPUlkUwyQiIjIpeTlBeqDIx0h5MjLC3BSjcgdMUByc5buPs5dyonIVQQEqCGTGe6dJJNpERCQ56QakTtiDpKbCwwMRHJyMtcNcRFc44WofCpVAXr23F0qB8nUGm9EFcUAyQPwA9U1cI0XorKV7OmOiTmFyMiLJncGYI842QIDJCKJMO45Kt4WJhABAWqDN3+u8UKeij3i5EgMkIgkiFOYiUxj8EOOwiRtIonhFGYiIudjgEQkMZzCTETkfAyQiCSGU5iJiJyPARKRxOimMOuCJE5hJiJyPCZpE0lQWVOYiYjI/hggEUmE8dotKlWBycCIa7wQEdkfAyQiieAaL0RE0sEAiUhCGPwQEUkDk7SJiIiIjDBAIiIiIjLCAImIiIjICAMkIiIiIiMMkIiIiIiMMEAiIiIiMsIAiYiIiMgIAyQiIiIiIwyQiIiIiIwwQCIiIiIywgCJbOrKFeDQoeKfRERErooBElWaWq1GdnY2liy5ifr1Bbp2BerXF1iy5Cays7OhVqudXUUiIiKrcLNaqhS1Wo2VK1dCo/FDaupECCEDAGi1Mkye7I/ff18HlaoAycnJbrERq1qtxv37981er1Qq3aKdRESejgESVYouWMjLC4QQhh2SQsiRlxcAlaqgzKDCVeiCwfK4SzBIROTJOMRGNhEQoIZMpjU4JpNpERCQ56Qa2Z6lQZ47BINERJ6OARLZhEpVgJ49d+uDJJlMi549d0OlKnByzexHo/FDZmY4NBo/Z1eFiIhsjENsZDMxMacQGXkReXkBCAjIc+vg6OTJNti1qweEkOuDwZiYU86uFhER2Qh7kMimVKoCRET86tbBkUbjpw+OgOJcq127erAniYjIjTg9QFq1ahXCw8Ph4+ODDh064MSJE2WW37ZtG6Kjo+Hj44MWLVpg7969ZsuOHTsWMpkMqampBsfz8vLw7LPPwt/fHzVq1MDIkSNx69YtWzSHPEBZCelEROQenBogbd26FSkpKZg5cyZOnjyJVq1aITExEdeuXTNZ/tixYxg0aBBGjhyJU6dOoXfv3ujduzfOnj1bquzHH3+Mr7/+GqGhoaWue/bZZ/HDDz/gwIED2L17N7788kuMHj3a5u0j9+QJCelERJ7OqQHS0qVLMWrUKIwYMQJNmzbF6tWrUa1aNaxbt85k+WXLliEpKQmTJ09GkyZNMHfuXMTExJSaev37779j3Lhx2LRpE7y8vAyuO3fuHPbt24d//etf6NChAx599FGsWLECW7ZswdWrV+3WVnelVCptWs4VeGJCOhGRp3Fakvb9+/eRkZGBqVOn6o/J5XIkJCQgPT3d5G3S09ORkpJicCwxMRE7d+7U/63VajF06FBMnjwZzZo1M3mOGjVqoG3btvpjCQkJkMvlOH78OP7xj3+YvO979+7h3r17+r/z8/Mtaqe7CwwMRHJyskcsnlgyyCsrId2dgkEiIk/ltADpxo0bKCoqQlBQkMHxoKAgnD9/3uRtcnJyTJbPycnR/71gwQJUqVIF48ePN3uO2rVrGxyrUqUKAgICDM5jbN68eZg9e3aZbfJU7hD8WMKTgkEiIk/nVtP8MzIysGzZMpw8eRIymcym5546dapB71V+fj7CwsJseh8kfQx+iIg8g9MCpJo1a0KhUCA3N9fgeG5uLoKDg03eJjg4uMzyR44cwbVr11CvXj399UVFRXj55ZeRmpqKrKwsBAcHl0oCLywsRF5entn7BQBvb294e3tb1UYie+PecERE9uG0AEmpVCI2NhYHDx5E7969ARTnDx08eBDJyckmbxMXF4eDBw9i4sSJ+mMHDhxAXFwcAGDo0KFISEgwuE1iYiKGDh2KESNG6M9x8+ZNZGRkIDY2FgDw+eefQ6vVokOHDjZuJUmdKwcY3BuOiMh+nDrElpKSgmHDhqFt27Zo3749UlNTcfv2bX0w89xzz6FOnTqYN28eAGDChAmIj4/HkiVL0L17d2zZsgXffvst1qxZA6B4+MP4g8DLywvBwcFo3LgxAKBJkyZISkrCqFGjsHr1ajx48ADJyckYOHCgySUByH25eoDBveGIiOzHqQHSgAEDcP36dcyYMQM5OTlo3bo19u3bp0/Evnz5MuTyv1ci6NixI9LS0vD6669j2rRpiIqKws6dO9G8eXOr7nfTpk1ITk5Gt27dIJfL0bdvXyxfvtymbXNlrtyrYg0GGLblKa8bIme5cgW4cAGIigLq1nV2bdyf05O0k5OTzQ6pHT58uNSxfv36oV+/fhafPysrq9SxgIAApKWlWXwOT2Lcq6LR+CEvLxABAWqDqexS7VXxZOaeK0dw9d44IqlbuxYYPRrQagG5HFizBhg50tm1cm9OD5BIWkr2AJS1Ias79qo4M8CoLGdvnsveOCL7uXLl7+AIKP45ZgyQmMieJHtigEQmmduQNTLyossFD5ZwdoBRGZ72XBF5mgsX/g6OdIqKgIsXGSDZEwMkMqmsDVnd7UPX1QMMT3quyDaYL+ZaoqKKh9VKBkkKBdCwofPq5AkYIJFJug1ZS37wuuuGrK4eYEjxuXLl4Up3xzxD11O3bnHO0ZgxxT1HCgXw/vvsPbI3Bkhkkm5DVuNhJ3f8sJNigGEJ3Z5v5T1Xjt4bzpWHKz2BJ+cZurKRI4tzji5eLO45YnBkfwyQyKyyNmR1B1INMCxlvDfcjBnXkZVVBeHhhQgNbQegncOHSlx9uNKT8LlyPXXrMjByJAZIVCaVqsBt3yylGGBYq2TdQkKAvxaHdxpXH670JHyuiMrGAIkMWNpbItVeFWvZO8DwlGRY3euhvOFKd3nduANXHVr2NJ7yHiJFDJDIgHGviin8h7SMJy2eWPJ1U6dOPl59VYWiIhkUCoEFC/IxePAgvm4kxpPyDF2VJ72HSBEDJCqF/2i24WmLJ+peNy+/DAwYoEsmlaFu3RoAajizamSGu+cZujpPew+RGgZIRGRzTCZ1He6cZ0hUGfLyixCRLWg0fsjMDIdG4+fsqpAH87Q8Q6KKYg8SkQNwbSCSCuYZElmGARKRnXG9GZIaBj9E5eMQG5GdlbXeDBERSRMDJCI70603UxLXmyEikjYGSER2YryViS5IcpWtTIjIuZhQ71wyIYRwdiVcUX5+PlQqFTQaDfz9/Z1dHZKokqvgXr0qL7GVSXGwxGRYIioLV9K2PUs/v5mkTWRHUtsrjYhcC4Mf5+EQGxEREZERBkhERERERhggERERERlhDhI5HJMOiYhI6hggUSn2DGDUajVWrlxZbrnk5GQGSW6OgTIRSRkDJDJg7wCmrA/EipQj18RAmYikjjlIZMA4MDG3A72tAhjucO+ZGCgTkdSxB4nMsvcO9NzhnnQ0Gj/k5QUiIEDNDXyJSBIYIJFJ9t6Bnjvckw4DZSKSIg6xkUn23oGeO9wTYD5Q5pArETkbe5BckCNm/+h2oC8ZxNhyB3p7n99VedrMrrICZfYkEpEzMUByMY6a/aPbgd546MNWH1r2Pr8r8sSZXQyUiUiqGCC5GFOzzEwlt9pi9k9MzClERl5EXl4AAgLyzAYv1vR6KJVKi85fspyn8MSZXQyUiUiqGCC5MHsktxoHJipVgckPK105a3s9AgMDkZyc7FHDSFTanTt39L/HxJxC7do5uHy5HurVu4y6dbNNliMiciQGSC7KXrPArA1gKtLrweDHMu489b1atWr638sK9EuWIyJyJAZILsqeya2VCWDc+UPdkTxl6juXeyAiqWKA5KKkmNzqKR/q9uZJQQNnsRGRVHEdJBelS26VybQA4PTkVq5nYzuetEaULtAvydmBPhERwB4kl2bpLDNHYE+A7Uixd9BeOIuNiKSKAZKLsXaWmaN40oe6veies/KCBndbAkFKgT4RkQ4DJBcj1Wny7AmoPOPndsaM68jKqoLw8EKEhrYD0M5tl0AwF+gTETkLAyQXJKUPSC78aFsln9uQECA21omVsSNLXw983RCRs8iEEMLZlXBF+fn5UKlU0Gg08Pf3d3Z1nMrT9g8j2+DrhoicwdLPb/YgUaXxQ4wqgq8bIpIyTvMnIiIiMsIAiYiIiMgIAyQiIiNXrgCHDhX/JCLPxACJiKiEtWuB+vWBrl2Lf65d6+waEZEzMEAiIvrLlSvA6NGA9q/dT7RaYMwY9iQReSIGSEREf7lw4e/gSKeoCLh40Tn1ISLnYYBERITidZn8/XMhlxsuDadQCPj55UKtVjupZkTkDFwHiYg8nlqtxsqVKwEAPXq0Mdgyp3v33di9+xQAIDk5mes3EXkIBkhE5PFKruhd1pY5Za38TUTuhQESEZERbp5LRAyQqBTukUVERJ6OARIZKJmLURbmYhARkTvjLDYyYGmOBXMxiIjInTFAojJpNH7IzAyHRuPn7KoQERE5DIfYyKyTJw2nO/fsuRsxMaecXS0iIiK7Yw8SmaTR+OmDIwAQQo5du3qwJ4ncklKptGk5InJ97EEik/LyAvXBkY4QcuTlBXD6M7mdwMBAJCcnc/YmEekxQCKTAgLUkMm0BkGSTKZFQECeE2tFZD8MfoioJA6xkUkqVQF69twNmax4505dDhJ7j4iIyBOwB4kMlMyxKGvLBeZiEBGRO2OARAaYi0FERMQAiUxg8ENERJ6OOUhERERERpweIK1atQrh4eHw8fFBhw4dcOLEiTLLb9u2DdHR0fDx8UGLFi2wd+9eg+tnzZqF6Oho+Pr64qGHHkJCQgKOHz9uUCY8PBwymczgMn/+fJu3jYiIiFyTUwOkrVu3IiUlBTNnzsTJkyfRqlUrJCYm4tq1aybLHzt2DIMGDcLIkSNx6tQp9O7dG71798bZs2f1ZRo1aoSVK1fi+++/x1dffYXw8HA88cQTuH79usG55syZg+zsbP1l3Lhxdm0rERERuQ6ZEEI46847dOiAdu3a6XeP12q1CAsLw7hx4/Daa6+VKj9gwADcvn0bu3fv1h97+OGH0bp1a6xevdrkfeTn50OlUuGzzz5Dt27dABT3IE2cOBETJ06scN1159VoNPD396/weYiIiMhxLP38dloP0v3795GRkYGEhIS/KyOXIyEhAenp6SZvk56eblAeABITE82Wv3//PtasWQOVSoVWrVoZXDd//nwEBgaiTZs2WLRoEQoLC8us771795Cfn29wISIiIvfktFlsN27cQFFREYKCggyOBwUF4fz58yZvk5OTY7J8Tk6OwbHdu3dj4MCBuHPnDkJCQnDgwAHUrFlTf/348eMRExODgIAAHDt2DFOnTkV2djaWLl1qtr7z5s3D7NmzrW0mERERuSC3nObfpUsXnD59Gjdu3MA///lP9O/fH8ePH0ft2rUBACkpKfqyLVu2hFKpxJgxYzBv3jx4e3ubPOfUqVMNbpefn4+wsDD7NoSsplar9Ws4Xb0qR2ZmFUREFCI0tHhFcK7hRERElnBagFSzZk0oFArk5uYaHM/NzUVwcLDJ2wQHB1tU3tfXFw0bNkTDhg3x8MMPIyoqCmvXrsXUqVNNnrdDhw4oLCxEVlYWGjdubLKMt7e32eCJpEGtVuvz2U6ebINdu3pACLl+m5SYmFMAgOTkZAZJRERUJqflICmVSsTGxuLgwYP6Y1qtFgcPHkRcXJzJ28TFxRmUB4ADBw6YLV/yvPfu3TN7/enTpyGXy/U9TOSadD1HGo2fPjgCACHk2LWrBzQaP4NyRERE5jh1iC0lJQXDhg1D27Zt0b59e6SmpuL27dsYMWIEAOC5555DnTp1MG/ePADAhAkTEB8fjyVLlqB79+7YsmULvv32W6xZswYAcPv2bbz11lvo1asXQkJCcOPGDaxatQq///47+vXrB6A40fv48ePo0qUL/Pz8kJ6ejkmTJmHIkCF46KGHnPNAkE3l5QXqgyMdIeTIywvgZrtERGQRpwZIAwYMwPXr1zFjxgzk5OSgdevW2Ldvnz4R+/Lly5DL//6g69ixI9LS0vD6669j2rRpiIqKws6dO9G8eXMAgEKhwPnz57Fx40bcuHEDgYGBaNeuHY4cOYJmzZoBKB4q27JlC2bNmoV79+4hIiICkyZNMsgvItcWEKCGTKY1CJJkMi0CAvKcWCsiInIlTl0HyZVxHSTpyc7O1vcmlpWDNHr0aISEhDizqkRE5CSWfn675Sw2opiYU4iMvIi8vAAEBORxaI2IiKzCAInclkpVwMCIiIgqhAESVRrXHiIiInfDAIkqRUprDymVSpuWIyIiz8UAiSqlvLWHIiMvQqUqcMjaQ4GBgUhOTi7zvtibRURElmCARDYhlbWHGPwQEZEtOG0lbXIvurWHSuLaQ0RE5KoYIJFNqFQF6Nlztz5I0uUgcRYZERG5Ig6xkc1w7SEiInIXDJDIprj2EBERuQMOsREREREZYYBElcK1h4iIyB1xiI0qhWsPERGRO2KARJXG4IeIiNwNh9g8zJUrwKFDxT+JiIjINAZIHmTtWqB+faBr1+Kfa9c6u0ZERETSxADJA6jVamRk5GL0aAHtX4tda7XAmDECGRm5UKvVzq0gERGRxDAHyc2p1WqsXLkSmZnh0GqHGVxXVCTDihX/Q0TEr0hOTmYuERER0V/Yg+TmdLPLytsrraxZaERERJ6GAZKH4F5pREREluMQmwfhXmlERESWYYDkYbhXGhERUfk4xEZERERkhAESERERkREGSERERERGGCC5OaVSadNyREREnoBJ2m4uMDAQycnJZa5zpFQquUgkERFRCQyQPACDHyIiIutwiI2IiIjICAMkIiIiIiMMkIiIiIiMMEAiIiIiMsIAiYiIiMgIAyQiIiIiIwyQiIiIiIwwQCIiIiIywgCJiIiIyAhX0q4gIQQAID8/38k1ISIiIkvpPrd1n+PmMECqoIKCAgBAWFiYk2tCRERE1iooKIBKpTJ7vUyUF0KRSVqtFlevXoWfnx9kMpnNzpufn4+wsDD89ttv8Pf3t9l5pcTd28j2uT53byPb5/rcvY32bJ8QAgUFBQgNDYVcbj7TiD1IFSSXy1G3bl27nd/f398tX/QluXsb2T7X5+5tZPtcn7u30V7tK6vnSIdJ2kRERERGGCARERERGWGAJDHe3t6YOXMmvL29nV0Vu3H3NrJ9rs/d28j2uT53b6MU2sckbSIiIiIj7EEiIiIiMsIAiYiIiMgIAyQiIiIiIwyQiIiIiIwwQHKAVatWITw8HD4+PujQoQNOnDhRZvnU1FQ0btwYVatWRVhYGCZNmoS7d+9W6pz2ZOv2zZo1CzKZzOASHR1t72aYZU37Hjx4gDlz5iAyMhI+Pj5o1aoV9u3bV6lzOoKt2yil5/DLL79Ez549ERoaCplMhp07d5Z7m8OHDyMmJgbe3t5o2LAhNmzYUKqMVJ5De7RPSs8fYH0bs7OzMXjwYDRq1AhyuRwTJ040WW7btm2Ijo6Gj48PWrRogb1799q+8hawR/s2bNhQ6jn08fGxTwPKYW37duzYgccffxy1atWCv78/4uLisH///lLl7P4/KMiutmzZIpRKpVi3bp344YcfxKhRo0SNGjVEbm6uyfKbNm0S3t7eYtOmTSIzM1Ps379fhISEiEmTJlX4nPZkj/bNnDlTNGvWTGRnZ+sv169fd1STDFjbvilTpojQ0FCxZ88ecenSJfHuu+8KHx8fcfLkyQqf097s0UYpPYd79+4V06dPFzt27BAAxMcff1xm+V9++UVUq1ZNpKSkiB9//FGsWLFCKBQKsW/fPn0ZKT2H9miflJ4/IaxvY2Zmphg/frzYuHGjaN26tZgwYUKpMkePHhUKhUIsXLhQ/Pjjj+L1118XXl5e4vvvv7dPI8pgj/atX79e+Pv7GzyHOTk59mlAOaxt34QJE8SCBQvEiRMnxM8//yymTp0qvLy8HP4+ygDJztq3by9eeukl/d9FRUUiNDRUzJs3z2T5l156SXTt2tXgWEpKinjkkUcqfE57skf7Zs6cKVq1amWX+lrL2vaFhISIlStXGhzr06ePePbZZyt8TnuzRxul9ByWZMmb85QpU0SzZs0Mjg0YMEAkJibq/5bac6hjq/ZJ9fkTwrI2lhQfH28ygOjfv7/o3r27wbEOHTqIMWPGVLKGlWOr9q1fv16oVCqb1ctWrG2fTtOmTcXs2bP1fzvif5BDbHZ0//59ZGRkICEhQX9MLpcjISEB6enpJm/TsWNHZGRk6LsKf/nlF+zduxdPPfVUhc9pL/Zon86FCxcQGhqKBg0a4Nlnn8Xly5ft1xAzKtK+e/fulerGrlq1Kr766qsKn9Oe7NFGHSk8hxWRnp5u8HgAQGJiov7xkNpzaK3y2qfjqs+fpSx9HFzZrVu3UL9+fYSFheHpp5/GDz/84OwqVYhWq0VBQQECAgIAOO5/kAGSHd24cQNFRUUICgoyOB4UFIScnByTtxk8eDDmzJmDRx99FF5eXoiMjETnzp0xbdq0Cp/TXuzRPgDo0KEDNmzYgH379uG9995DZmYmOnXqhIKCAru2x1hF2peYmIilS5fiwoUL0Gq1OHDgAHbs2IHs7OwKn9Oe7NFGQDrPYUXk5OSYfDzy8/Px559/Su45tFZ57QNc+/mzlLnHwRWeQ0s0btwY69atwyeffIL//Oc/0Gq16NixI65cueLsqllt8eLFuHXrFvr37w/Ace+jDJAk5vDhw3j77bfx7rvv4uTJk9ixYwf27NmDuXPnOrtqNmFJ+5588kn069cPLVu2RGJiIvbu3YubN2/iww8/dGLNLbNs2TJERUUhOjoaSqUSycnJGDFiBORy9/lXs6SNrvwcEp8/dxAXF4fnnnsOrVu3Rnx8PHbs2IFatWrh/fffd3bVrJKWlobZs2fjww8/RO3atR1631Ucem8epmbNmlAoFMjNzTU4npubi+DgYJO3eeONNzB06FC88MILAIAWLVrg9u3bGD16NKZPn16hc9qLPdpnKpCoUaMGGjVqhIsXL9q+EWWoSPtq1aqFnTt34u7du1Cr1QgNDcVrr72GBg0aVPic9mSPNprirOewIoKDg00+Hv7+/qhatSoUCoWknkNrldc+U1zp+bOUucfBFZ7DivDy8kKbNm1c6jncsmULXnjhBWzbts1gOM1R76Pu87VWgpRKJWJjY3Hw4EH9Ma1Wi4MHDyIuLs7kbe7cuVMqSFAoFAAAIUSFzmkv9mifKbdu3cKlS5cQEhJio5pbpjKPtY+PD+rUqYPCwkJs374dTz/9dKXPaQ/2aKMpznoOKyIuLs7g8QCAAwcO6B8PqT2H1iqvfaa40vNnqYo8Dq6sqKgI33//vcs8h5s3b8aIESOwefNmdO/e3eA6h/0P2izdm0zasmWL8Pb2Fhs2bBA//vijGD16tKhRo4Z+uuXQoUPFa6+9pi8/c+ZM4efnJzZv3ix++eUX8emnn4rIyEjRv39/i8/p6u17+eWXxeHDh0VmZqY4evSoSEhIEDVr1hTXrl2TfPu+/vprsX37dnHp0iXx5Zdfiq5du4qIiAjxxx9/WHxOR7NHG6X0HBYUFIhTp06JU6dOCQBi6dKl4tSpU+LXX38VQgjx2muviaFDh+rL66bBT548WZw7d06sWrXK5DR/qTyH9miflJ4/IaxvoxBCXz42NlYMHjxYnDp1Svzwww/6648ePSqqVKkiFi9eLM6dOydmzpzptGn+9mjf7Nmzxf79+8WlS5dERkaGGDhwoPDx8TEo4yjWtm/Tpk2iSpUqYtWqVQbLFNy8eVNfxhH/gwyQHGDFihWiXr16QqlUivbt24uvv/5af118fLwYNmyY/u8HDx6IWbNmicjISOHj4yPCwsLE//3f/xl8+JR3TkezdfsGDBggQkJChFKpFHXq1BEDBgwQFy9edGCLDFnTvsOHD4smTZoIb29vERgYKIYOHSp+//13q87pDLZuo5Sew0OHDgkApS66Ng0bNkzEx8eXuk3r1q2FUqkUDRo0EOvXry91Xqk8h/Zon5SePyEq1kZT5evXr29Q5sMPPxSNGjUSSqVSNGvWTOzZs8cxDTJij/ZNnDhR//oMCgoSTz31lME6Qo5kbfvi4+PLLK9j7/9BmRBmxjWIiIiIPBRzkIiIiIiMMEAiIiIiMsIAiYiIiMgIAyQiIiIiIwyQiIiIiIwwQCIiIiIywgCJiIiIyAgDJCIiN3H48GHIZDLcvHnT2VUhcnkMkIjIasOHD4dMJsP8+fMNju/cuRMymUz/txAC//znPxEXFwd/f39Ur14dzZo1w4QJEyzeNPPOnTuYOnUqIiMj4ePjg1q1aiE+Ph6ffPKJvkx4eDhSU1Nt0jZ70z12MpkMXl5eiIiIwJQpU3D37l2rztO5c2dMnDjR4FjHjh2RnZ0NlUplwxoTeSYGSERUIT4+PliwYAH++OMPk9cLITB48GCMHz8eTz31FD799FP8+OOPWLt2LXx8fPDmm29adD9jx47Fjh07sGLFCpw/fx779u3DM888A7VabcvmOFRSUhKys7Pxyy+/4J133sH777+PmTNnVvq8SqUSwcHBBkEqEVWQTTcuISKPMGzYMNGjRw8RHR0tJk+erD/+8ccfC93byubNmwUA8cknn5g8h1artei+VCqV2LBhg9nrTe3bpHPkyBHx6KOPCh8fH1G3bl0xbtw4cevWLf31//73v0VsbKyoXr26CAoKEoMGDRK5ubn663V7SO3bt0+0bt1a+Pj4iC5duojc3Fyxd+9eER0dLfz8/MSgQYPE7du3LWrPsGHDxNNPP21wrE+fPqJNmzb6v2/cuCEGDhwoQkNDRdWqVUXz5s1FWlqawTmM25yZmamvb8m9DT/66CPRtGlToVQqRf369cXixYstqieRp2MPEhFViEKhwNtvv40VK1bgypUrpa7fvHkzGjdujF69epm8vaW9HMHBwdi7dy8KCgpMXr9jxw7UrVsXc+bMQXZ2NrKzswEAly5dQlJSEvr27YszZ85g69at+Oqrr5CcnKy/7YMHDzB37lx899132LlzJ7KysjB8+PBS9zFr1iysXLkSx44dw2+//Yb+/fsjNTUVaWlp2LNnDz799FOsWLHCovYYO3v2LI4dOwalUqk/dvfuXcTGxmLPnj04e/YsRo8ejaFDh+LEiRMAgGXLliEuLg6jRo3StzksLKzUuTMyMtC/f38MHDgQ33//PWbNmoU33ngDGzZsqFBdiTyKsyM0InI9JXtBHn74YfH8888LIQx7kKKjo0WvXr0MbjdhwgTh6+srfH19RZ06dSy6ry+++ELUrVtXeHl5ibZt24qJEyeKr776yqBM/fr1xTvvvGNwbOTIkWL06NEGx44cOSLkcrn4888/Td7XN998IwCIgoICIcTfPUifffaZvsy8efMEAHHp0iX9sTFjxojExESL2jNs2DChUCiEr6+v8Pb2FgCEXC4XH330UZm36969u3j55Zf1f8fHx4sJEyYYlDHuQRo8eLB4/PHHDcpMnjxZNG3a1KK6Enky9iARUaUsWLAAGzduxLlz58otO336dJw+fRozZszArVu3LDr/Y489hl9++QUHDx7EM888gx9++AGdOnXC3Llzy7zdd999hw0bNqB69er6S2JiIrRaLTIzMwEU97D07NkT9erVg5+fH+Lj4wEAly9fNjhXy5Yt9b8HBQWhWrVqaNCggcGxa9euWdQeAOjSpQtOnz6N48ePY9iwYRgxYgT69u2rv76oqAhz585FixYtEBAQgOrVq2P//v2l6lWec+fO4ZFHHjE49sgjj+DChQsoKiqy6lxEnoYBEhFVymOPPYbExERMnTrV4HhUVBR++ukng2O1atVCw4YNUbt2bavuw8vLC506dcKrr76KTz/9FHPmzMHcuXNx//59s7e5desWxowZg9OnT+sv3333HS5cuIDIyEjcvn0biYmJ8Pf3x6ZNm/DNN9/g448/BoBS5/Xy8tL/rpt9VpJMJoNWq7W4Pb6+vmjYsCFatWqFdevW4fjx41i7dq3++kWLFmHZsmV49dVXcejQIZw+fRqJiYlltpeIbKuKsytARK5v/vz5aN26NRo3bqw/NmjQIAwePBiffPIJnn76aZveX9OmTVFYWIi7d+9CqVRCqVSW6hGJiYnBjz/+iIYNG5o8x/fffw+1Wo358+fr83e+/fZbm9bTEnK5HNOmTUNKSgoGDx6MqlWr4ujRo3j66acxZMgQAIBWq8XPP/+Mpk2b6m9nqs3GmjRpgqNHjxocO3r0KBo1agSFQmH7xhC5EfYgEVGltWjRAs8++yyWL1+uPzZw4EA888wzGDhwIObMmYPjx48jKysLX3zxBbZu3WrxB3Tnzp3x/vvvIyMjA1lZWdi7dy+mTZuGLl26wN/fH0DxOkhffvklfv/9d9y4cQMA8Oqrr+LYsWNITk7G6dOnceHCBXzyySf6JO169epBqVRixYoV+OWXX/Df//633GE7e+nXrx8UCgVWrVoFoLj37cCBAzh27BjOnTuHMWPGIDc31+A24eHh+sf0xo0bJnuwXn75ZRw8eBBz587Fzz//jI0bN2LlypV45ZVXHNIuIlfGAImIbGLOnDkGH9IymQxbt25Famoq9u7di27duqFx48Z4/vnnERYWhq+++sqi8yYmJmLjxo144okn0KRJE4wbNw6JiYn48MMPDe47KysLkZGRqFWrFoDivKEvvvgCP//8Mzp16oQ2bdpgxowZCA0NBVA83LdhwwZs27YNTZs2xfz587F48WIbPiKWq1KlCpKTk7Fw4ULcvn0br7/+OmJiYpCYmIjOnTsjODgYvXv3NrjNK6+8AoVCgaZNm6JWrVom85NiYmLw4YcfYsuWLWjevDlmzJiBOXPmmJypR0SGZEII4exKEBEREUkJe5CIiIiIjDBAIiKnKjkN3/hy5MgRZ1fPKpcvXy6zPdZO0yci5+EQGxE5VVmb1tapUwdVq1Z1YG0qp7CwEFlZWWavDw8PR5UqnDxM5AoYIBEREREZ4RAbERERkREGSERERERGGCARERERGWGARERERGSEARIRERGREQZIREREREYYIBEREREZYYBEREREZOT/AUdavhB0PG1UAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWmtJREFUeJzt3XtYlGXiPvB7OAwgwnBQzqMgmFarIKCkecooLMXs8IusFC1zLakQU3NdUVcNNTNSPGyWh/WwuiXtV63FlHB3U0sTtTQlJVRUQIEcEBKQeX5/sDMywAwMzAnm/lwXl8z7PvPO876R3D5HiRBCgIiIiMiK2Ji7AkRERESmxgBEREREVocBiIiIiKwOAxARERFZHQYgIiIisjoMQERERGR1GICIiIjI6jAAERERkdVhACIiIiKrwwBERGShNm/eDIlEgkuXLpm7KkQdDgMQkRU7fvw4EhIS8OCDD8LZ2RndunXD888/j19++aVR2eHDh0MikUAikcDGxgaurq7o1asXxo8fjwMHDuj1uXv37sWwYcPg5eWFTp06oUePHnj++eeRkZFhqFtr5L333sM///nPRsePHDmCBQsW4NatW0b77IYWLFigfpYSiQSdOnXCAw88gD//+c8oKyszyGfs2LEDqampBrkWUUfEAERkxZYtW4bdu3fj0UcfxUcffYQpU6bgP//5D8LDw3HmzJlG5QMCArB161b87W9/w/vvv48xY8bgyJEjePzxxxEXF4eamppmP3PFihUYM2YMJBIJ5syZgw8//BDPPvssLly4gJ07dxrjNgHoDkALFy40aQBSWbduHbZu3YqVK1eid+/eWLJkCUaOHAlDbNHIAESkm525K0BE5pOUlIQdO3ZAKpWqj8XFxaFPnz5YunQptm3bplFeJpPh5Zdf1ji2dOlSvPXWW1i7di0CAwOxbNkyrZ939+5dLFq0CI899hi+/vrrRudv3LjRxjuyHJWVlejUqZPOMs899xy6dOkCAJg6dSqeffZZpKen47vvvsPAgQNNUU0iq8UWICIrNmjQII3wAwA9e/bEgw8+iHPnzrXoGra2tli1ahUeeOABpKWlQaFQaC1bXFyMsrIyPPzww02e9/Ly0nh9584dLFiwAPfddx8cHR3h6+uLZ555Brm5ueoyK1aswKBBg+Dp6QknJydERETg888/17iORCJBRUUFtmzZou52mjhxIhYsWICZM2cCAIKCgtTn6o+52bZtGyIiIuDk5AQPDw+88MILyM/P17j+8OHD8Yc//AEnTpzA0KFD0alTJ/zpT39q0fOrb8SIEQCAvLw8neXWrl2LBx98EA4ODvDz88O0adM0WrCGDx+OL7/8EpcvX1bfU2BgoN71IerI2AJERBqEECgqKsKDDz7Y4vfY2tpi3LhxmDdvHr799luMGjWqyXJeXl5wcnLC3r178eabb8LDw0PrNWtrazF69GhkZmbihRdewNtvv43y8nIcOHAAZ86cQXBwMADgo48+wpgxY/DSSy+huroaO3fuxP/7f/8P+/btU9dj69atmDx5MgYMGIApU6YAAIKDg+Hs7IxffvkFf//73/Hhhx+qW2O6du0KAFiyZAnmzZuH559/HpMnT8bNmzexevVqDB06FCdPnoSbm5u6viUlJXjiiSfwwgsv4OWXX4a3t3eLn5+KKth5enpqLbNgwQIsXLgQ0dHReP3115GTk4N169bh+PHjOHz4MOzt7TF37lwoFApcvXoVH374IQCgc+fOeteHqEMTRET1bN26VQAQn376qcbxYcOGiQcffFDr+7744gsBQHz00Uc6r5+cnCwACGdnZ/HEE0+IJUuWiBMnTjQqt3HjRgFArFy5stE5pVKp/r6yslLjXHV1tfjDH/4gRowYoXHc2dlZxMfHN7rW+++/LwCIvLw8jeOXLl0Stra2YsmSJRrHf/rpJ2FnZ6dxfNiwYQKAWL9+vdb7rm/+/PkCgMjJyRE3b94UeXl54q9//atwcHAQ3t7eoqKiQgghxKZNmzTqduPGDSGVSsXjjz8uamtr1ddLS0sTAMTGjRvVx0aNGiW6d+/eovoQWSN2gRGR2vnz5zFt2jQMHDgQ8fHxer1X1cJQXl6us9zChQuxY8cO9OvXD/v378fcuXMRERGB8PBwjW633bt3o0uXLnjzzTcbXUMikai/d3JyUn//22+/QaFQYMiQIcjOztar/g2lp6dDqVTi+eefR3FxsfrLx8cHPXv2RFZWlkZ5BwcHTJo0Sa/P6NWrF7p27YqgoCD88Y9/REhICL788kutY4cOHjyI6upqJCYmwsbm3l/fr732GlxdXfHll1/qf6NEVopdYEQEACgsLMSoUaMgk8nw+eefw9bWVq/33759GwDg4uLSbNlx48Zh3LhxKCsrw/fff4/Nmzdjx44diI2NxZkzZ+Do6Ijc3Fz06tULdna6/5rat28fFi9ejFOnTqGqqkp9vH5Iao0LFy5ACIGePXs2ed7e3l7jtb+/f6PxVM3ZvXs3XF1dYW9vj4CAAHW3njaXL18GUBec6pNKpejRo4f6PBE1jwGIiKBQKPDEE0/g1q1b+O9//ws/Pz+9r6GaNh8SEtLi97i6uuKxxx7DY489Bnt7e2zZsgXff/89hg0b1qL3//e//8WYMWMwdOhQrF27Fr6+vrC3t8emTZuwY8cOve+hPqVSCYlEgn/9619NhsGGY2rqt0S11NChQ9XjjojItBiAiKzcnTt3EBsbi19++QUHDx7EAw88oPc1amtrsWPHDnTq1AmDBw9uVT0iIyOxZcsWFBQUAKgbpPz999+jpqamUWuLyu7du+Ho6Ij9+/fDwcFBfXzTpk2NymprEdJ2PDg4GEIIBAUF4b777tP3doyie/fuAICcnBz06NFDfby6uhp5eXmIjo5WH2trCxhRR8cxQERWrLa2FnFxcTh69Cg+++yzVq09U1tbi7feegvnzp3DW2+9BVdXV61lKysrcfTo0SbP/etf/wJwr3vn2WefRXFxMdLS0hqVFf9bKNDW1hYSiQS1tbXqc5cuXWpywUNnZ+cmFzt0dnYGgEbnnnnmGdja2mLhwoWNFiYUQqCkpKTpmzSi6OhoSKVSrFq1SqNOn376KRQKhcbsO2dnZ51LEhBZO7YAEVmxGTNmYM+ePYiNjUVpaWmjhQ8bLnqoUCjUZSorK3Hx4kWkp6cjNzcXL7zwAhYtWqTz8yorKzFo0CA89NBDGDlyJORyOW7duoV//vOf+O9//4uxY8eiX79+AIAJEybgb3/7G5KSknDs2DEMGTIEFRUVOHjwIN544w089dRTGDVqFFauXImRI0fixRdfxI0bN7BmzRqEhITgxx9/1PjsiIgIHDx4ECtXroSfnx+CgoIQFRWFiIgIAMDcuXPxwgsvwN7eHrGxsQgODsbixYsxZ84cXLp0CWPHjoWLiwvy8vLwxRdfYMqUKXjnnXfa9Pz11bVrV8yZMwcLFy7EyJEjMWbMGOTk5GDt2rXo37+/xn+viIgI7Nq1C0lJSejfvz86d+6M2NhYk9aXyKKZcwoaEZmXavq2ti9dZTt37ix69uwpXn75ZfH111+36PNqamrEhg0bxNixY0X37t2Fg4OD6NSpk+jXr594//33RVVVlUb5yspKMXfuXBEUFCTs7e2Fj4+PeO6550Rubq66zKeffip69uwpHBwcRO/evcWmTZvU08zrO3/+vBg6dKhwcnISADSmxC9atEj4+/sLGxubRlPid+/eLQYPHiycnZ2Fs7Oz6N27t5g2bZrIycnReDa6lghoSFW/mzdv6izXcBq8Slpamujdu7ewt7cX3t7e4vXXXxe//fabRpnbt2+LF198Ubi5uQkAnBJP1IBECANsOkNERETUjnAMEBEREVkdBiAiIiKyOgxAREREZHUYgIiIiMjqMAARERGR1WEAIiIiIqvDhRCboFQqcf36dbi4uHA5eSIionZCCIHy8nL4+fnBxkZ3Gw8DUBOuX78OuVxu7moQERFRK+Tn5yMgIEBnGQagJri4uACoe4C69jUiIiIiy1FWVga5XK7+Pa4LA1ATVN1erq6uDEBERETtTEuGr3AQNBEREVkdBiAiIiKyOgxAREREZHU4BoiIiMhAamtrUVNTY+5qdFj29vawtbU1yLUYgIiIiNpICIHCwkLcunXL3FXp8Nzc3ODj49PmdfoYgIiIiNpIFX68vLzQqVMnLqJrBEIIVFZW4saNGwAAX1/fNl2PAYiIiKgNamtr1eHH09PT3NXp0JycnAAAN27cgJeXV5u6wzgImoiIqA1UY346depk5ppYB9VzbutYKwYgIiIiA2C3l2kY6jmzC8wESkpKUF1d3ej4rVu3cPfuXdjb20MmkzU6L5VK2ZxKRERkBAxARlZSUoK0tLRWvz8hIYEhiIiIyMDYBWZkqtHqrdVUyxEREZEhTJw4ERKJBBKJBPb29vD29sZjjz2GjRs3QqlUtvg6mzdvhpubm/EqagRsATKyu3fvarxWKFxQWuoJD48SyGTlZqoVERFZEm1DJVSMOSRi5MiR2LRpE2pra1FUVISMjAy8/fbb+Pzzz7Fnzx7Y2XXMqNAx78pCZWf3w969oyGEDSQSJWJj9yE8/CQABiMiImvV0qESxhoS4eDgAB8fHwCAv78/wsPD8dBDD+HRRx/F5s2bMXnyZKxcuRKbNm3Cr7/+Cg8PD8TGxmL58uXo3LkzDh06hEmTJgG4N0B5/vz5WLBgAbZu3YqPPvoIOTk5cHZ2xogRI5CamgovLy+D34e+GIBMRKFwwZ49sQDqfjiEsMHevaMRHHwRubkhWoNRcXFxo2vdunULEomkyYHTgP7/UjDnvzyIiKxdS4c6mHJIxIgRIxAaGor09HRMnjwZNjY2WLVqFYKCgvDrr7/ijTfewKxZs7B27VoMGjQIqampSE5ORk5ODgCgc+fOAOqmqi9atAi9evXCjRs3kJSUhIkTJ+Krr74y2b1owwBkIvn5cqjCj4oQNsjJ6Yl//WsUhLBRH1MFI5msHOnp6a36vJb+S8Hc//IgIiLL1Lt3b/z4448AgMTERPXxwMBALF68GFOnTsXatWshlUohk8kgkUjULUkqr7zyivr7Hj16YNWqVejfvz9u376tDknmwkHQZlZR0VkdflSEsEFpqUebrmvof1FwMDYRkXURQqi7tA4ePIhHH30U/v7+cHFxwfjx41FSUoLKykqd1zhx4gRiY2PRrVs3uLi4YNiwYQCAK1euGL3+zWEAMhG5PB9AwxH1SvTseQESieZxiUQJD49S9WuFwgV5eYFQKFwaXVfXOSIiotY6d+4cgoKCcOnSJYwePRp9+/bF7t27ceLECaxZswaA7n8cV1RUICYmBq6urti+fTuOHz+OL774otn3mQq7wIzM3t4eACCTlWPMmH3Ys2c06nKnEmPG7ENAQAFiY/c1GgOkGgita+C0rnOt1dLB2Bw3RETUcX3zzTf46aefMH36dJw4cQJKpRIffPABbGzq2k3+8Y9/aJSXSqWora3VOHb+/HmUlJRg6dKlkMvlAIAffvjBNDfQAgxARta1a1f19+HhJxEcfBGlpR7w8ChVB4zw8JOYPv0BlJS4IzDwLqTSIKSnn4RC4aIOOIDm+CAAWs+1dhZZSwNVW8YNMTgREVmWqqoqFBYWakyDT0lJwejRozFhwgScOXMGNTU1WL16NWJjY3H48GGsX79e4xqBgYG4ffs2MjMzERoaik6dOqFbt26QSqVYvXo1pk6dijNnzmDRokVmusvGGICMzNPTEwkJCepf+tev2yAvzw5BQXfh51fX9dXwl35BQd3x0lJPHeODJFrPtSYA6QpbMlm5xmy0pmamNaVh0OGAayIiy5ORkQFfX1/Y2dnB3d0doaGhWLVqFeLj42FjY4PQ0FCsXLkSy5Ytw5w5czB06FCkpKRgwoQJ6msMGjQIU6dORVxcHEpKStTT4Ddv3ow//elPWLVqFcLDw7FixQqMGTPGjHd7DwOQCe3Y4YRZs2RQKiWwsRFYvlyBF1/8vVE5hUIBAPDwKIFEotQIOvXHB+k6py9dYau1s9Fu3boFX19f9WsOuCYiakwqlRq0nD42b96MzZs3N1tu+vTpmD59usax8ePHa7xet24d1q1bp3Fs3LhxGDdunMYxIUTrKmtgDEBGpmr1UChckJqaCCHqRtQrlRLMnOmKa9c2QiYr12j1qKmpAVA3bqhv3x9x+nQo6qbQC/Tt+6O6hUfX2CF9NRe2dNE2bqjhKthERNRYw56CpnB4gOExABmZ6ge6uRaW+j/4qmXHFQoX/PhjX9xbP0iCH3/sixEjvoFMVq51TBGg/78oZLLyZgNVU0HHGAOxiYisDcON6TEAmYg+LSyqDeWaC02PPPIIqqq64soVB3TrVgUfn7oWl06dOrX4f6aG//JITr6JS5fsNAZjA00HneDgi20aiM3tP4iIyFwYgEykJS0sDTUXmj744Bb27h3cZOtLw4HELZ195esLRETUHVMNxtY2QPrZZ3e3eiA2W46IiMicGIBMSFeXVVN0habmZm3VDzsNZ19pa3nRNvtKW0tUZaUjAAHNLT4E7O11D2Juru5ERETGxgBkYjJZuV6/5LWFpua6x+qrH4Z0tbw0bCFqbjZap0530HB/M0CCmpq6cUWqRSAb0qfuRERExsCtMNoBmawcQUGXNcKBKpTU19ysLW0tL9q20fjtt9/Un9+374+oa+0BVLPR5PJ8nXVouFu9asB1c3U3xlRPIiKi+hiALFBLAoCqe0wVJFoypkj3woqNqdZqUChccPq05my0utfQWYeG96EacD1z5ji8/34ZbG3rrm9rK/D++2WYOXMcF0EkIiKTYBeYkbVmgStda0IUFxerFyXUd0yRvmv9uLjUtQzl58vROCvbID8/AOHhJzF+vBckkp4IDLwLP7/+APprXbNCdWzGDCAuDrh4EQgJkSAgwA2Am876ExERGQoDkJG1doGrlraC6DOmqDUz0VqiVy9n9Omjf6tNQEDdV1twbzEiIst16NAhPPLII/jtt9/US7w0JzAwEImJiUhMTDRq3RiATMCSfgHr22oEAHJ5PhrO9pJIlJDLrxqvoi3AvcWIiNpm4sSJ2LJlC/74xz822uB02rRpWLt2LeLj41u0XUZ7wzFA7Ywh9oxpalC1LjJZOcaM2avXeCNTaDxrzQV5eYGNBnVfv34dBQUFjb5KSkpMWV0iIoskl8uxc+dO/P77vb0p79y5gx07dqBbt25mrJlxsQWonWlNl5ohQlNrWo5MSdf0fl0bubJ1iIisXXh4OHJzc5Geno6XXnoJQN3fm926dUNQUJC6XFVVFWbOnImdO3eirKwMkZGR+PDDD9G/f391ma+++gqJiYnIz8/HQw89hPj4+Eaf9+2332LOnDn44Ycf0KVLFzz99NNISUmBs7Oz8W+2HgagdkjfX9itHYek2pNMRdt4o4blTK0lCytqW/yRO88TkaW5ehW4cAHo2bPt4yRb6pVXXsGmTZvUAWjjxo2YNGkSDh06pC4za9Ys7N69G1u2bEH37t2xfPlyxMTE4OLFi/Dw8EB+fj6eeeYZTJs2DVOmTMEPP/yAGTNmaHxObm4uRo4cicWLF2Pjxo24efMmEhISkJCQgE2bNpnmZv+HAchKtKaVw8vLy6DljKW5hRW57QYRtReffgpMmQIolYCNDfDxx8Crrxr/c19++WXMmTMHly9fBgAcPnwYO3fuVAegiooKrFu3Dps3b8YTTzwBANiwYQMOHDiATz/9FDNnzsS6desQHByMDz74AADQq1cv/PTTT1i2bJn6c1JSUvDSSy+pBzj37NkTq1atwrBhw7Bu3To4Ojoa/2b/hwGItGpty5GpNLdStYdHKbfdIKJ24+rVe+EHqPvzj38EYmKM3xLUtWtXjBo1Cps3b4YQAqNGjUKXLl3U53Nzc1FTU4OHH35Yfcze3h4DBgzAuXPnAADnzp1DVFSUxnUHDhyo8fr06dP48ccfsX37dvUxIQSUSiXy8vJw//33G+P2msQARDpZ8viYmpoaAPem9+/ZMxp14/rvDdLOywvkthtE1C5cuHAv/KjU1tatl2aKrrBXXnkFCQkJAIA1a9YY5TNu376NP/7xj3jrrbcanTP1gGsGIOowJBJAiLo/VfRd/JGIyFx69qzr9qofgmxtgZAQ03z+yJEjUV1dDYlEgpiYGI1zwcHBkEqlOHz4MLp37w6g7h+hx48fV3dn3X///dizZ4/G+7777juN1+Hh4fj5558RYqqb0oHT4KndUg2+1rXHWWu2DCEiMoeAgLoxP7a2da9tbYG//tV0A6FtbW1x7tw5/Pzzz7BVVeJ/nJ2d8frrr2PmzJnIyMjAzz//jNdeew2VlZV49X+DlKZOnYoLFy5g5syZyMnJwY4dOxqtHzR79mwcOXIECQkJOHXqFC5cuID/+7//U7c8mRJbgMhi6Luqs2pV0eYGQVv6FH4iIpVXX60b81O3TZDpwo+Kq6ur1nNLly6FUqnE+PHjUV5ejsjISOzfvx/u7u4A6rqwdu/ejenTp2P16tUYMGAA3nvvPbzyyivqa/Tt2xf//ve/MXfuXAwZMgRCCAQHByMuLs7o99aQRKh2vCS1srIyyGQyKBQKnT8MZDgNV3XWNm29/ro9BQUF+Pjjj6FQuCA1NbFRN1diYmqzYUefdYC47QYRNeXOnTvIy8tDUFCQSWcxWStdz1uf399sASKLUD9Y6Jq23lQAaW6Ps2eeeUZjNoOKPoGF224QEXUsDEBkUVo7bV1XN1eXLl3g6+vbpno1te0GF1YkImq/GIDIojQ3nqe+hlt3aFupuqVbgeiiWnMIqGuhqj/lfsyYey1UCoWizWGLiIiMjwGILIo+09abW6jx1q1bkEgkqK6uRkFBQaPz+nSBqdYcUihc6oUfALDBnj33WqhU5VQ4boiIyDIxAJFFaW48T0PawkNJSQn+8Y9/qF+3ZFB1S+Tny9F49Qgb5OcHQCY716gOHDdEZD04p8g0DPWcLWIdoDVr1iAwMBCOjo6IiorCsWPHtJZNT09HZGQk3Nzc4OzsjLCwMGzdulV9vqamBrNnz0afPn3g7OwMPz8/TJgwAdevXzfFrZABhIefRGJiKuLjNyMxMbVV+3Y1HFSdmpqILVvikZqaiOzsfk2WM7Smxg3l5QVCoXDRWY6I2hd7e3sAQGVlpZlrYh1Uz1n13FvL7C1Au3btQlJSEtavX4+oqCikpqYiJiYGOTk5TW6y6eHhgblz56J3796QSqXYt28fJk2aBC8vL8TExKCyshLZ2dmYN28eQkND8dtvv+Htt9/GmDFj8MMPP5jhDqk1tI3n0Zeh9wKTy/MBCAD3lpuWSJSQy6/qfB83ZCXquGxtbeHm5oYbN24AADp16gRJ/SXpySCEEKisrMSNGzfg5ubWaLFGfZk9AK1cuRKvvfYaJk2aBABYv349vvzyS2zcuBHvvvtuo/LDhw/XeP32229jy5Yt+PbbbxETEwOZTIYDBw5olElLS8OAAQNw5coVk+81Qi3T0oHK+g5o1mdQdUvIZOUYM2Zvi7voAMOHMCKyPD4+PgCgDkFkPG5uburn3RZmDUDV1dU4ceIE5syZoz5mY2OD6OhoHD16tNn3CyHwzTffICcnB8uWLdNaTqFQQCKRqFcObqiqqgpVVVXq12VlZS2/CTIIY+08b6i9wFTbbgC6p9zXL3fr1i0AzYewW7du6TVzjAOriSyPRCKBr68vvLy8Gk2GIMOxt7dvc8uPilkDUHFxMWpra+Ht7a1x3NvbG+fPn9f6PoVCAX9/f1RVVcHW1hZr167FY4891mTZO3fuYPbs2Rg3bpzWVSFTUlKwcOHC1t8IGYQxfmnrO6han+s2d427d+8CqAthTXWbqUKYqlxLcGA1kWWztbU12C9oMi6zd4G1houLC06dOoXbt28jMzMTSUlJ6NGjR6PusZqaGjz//PMQQmDdunVarzdnzhwkJSWpX5eVlUEulxur+mRi+uwFpq11RdWao6JtVpn2fn/NANTaSQxckJGIyDDMGoC6dOkCW1tbFBUVaRwvKirS2b9nY2ODkJAQAEBYWBjOnTuHlJQUjQCkCj+XL1/GN998o3NPEAcHBzg4OLTtZsiitaTFpqWtK7oGNMtkskblS0s90dTU+daOQ2pJPYiISDezToOXSqWIiIhAZmam+phSqURmZiYGDhzY4usolUqNMTyq8HPhwgUcPHiQXQFWqDWDqlsybV3bgOaGU9uBe1M0VeOQ6qvfBdaaqZz61IOIiBozexdYUlIS4uPjERkZiQEDBiA1NRUVFRXqWWETJkyAv78/UlJSANSN14mMjERwcDCqqqrw1VdfYevWreourpqaGjz33HPIzs7Gvn37UFtbi8LCQgB1U+gNsS0CWb62DqrW1rqiz6wyVWtQc+OQmmo1ao6hZ7cREVkbsweguLg43Lx5E8nJySgsLERYWBgyMjLUA6OvXLkCG5t7f9FXVFTgjTfewNWrV+Hk5ITevXtj27ZtiIuLAwBcu3YNe/bsAVDXPVZfVlZWo3FC1HG1tuVP17T11s4q02ccUksYanYbEZG1MnsAAupmrCQkJDR57tChQxqvFy9ejMWLF2u9VmBgIJcjpzbR1boSFHS51bPKDLW4o+paxpjdRkRkLSwiABFZkuZaV1rammOsxR1VDN2qRERkTRiAiBpoSeuKttac+mHGGIs7NgxLLakHERE1xgBE1ARdrSvPPPMMunTp0ug9TYUZQ89A9PT0xMsvv6xz08VOnTpx5iMRUTMYgIj+p6WtK35+fmYLGCUlJdi2bZv6tbaFELkSNBGRbgxARP9jrP3IDKl+3XQthGiolaC57xgRdVQMQET1tJdf5qbYYb7hythsbSKijoQBiKgdMuRCiNpaeYqLi9Xfm6K1iYjIlBiAiNohQy2E2JJWHlO0NhERmRoDEFE7ZKiFEBuOKdqzZzTqtghUYswY/bf/ICJqLxiAiNopQyyEqFAo/venS73wAwA22LOnbdt/EBFZMrPuBk9EbSOTlSMo6HKrW2JqamoAAPn5cjT+68AG+fkB6tYm1Y723HaDiDoCtgARtSPG3l5DG267QUQdDQMQUTtirLWK5PJ8AAKARH1MIlFCLr+qfq1tYcgzZ27h8GEpgoLuws9P2eo6EBGZEgMQUTtjjGAhk5VjzJi9eg+qzs7uh4ULezU5PZ7rAxGRJWMAIiIAuru5HnnkEfTs2RNA3fpA6enpzU6P5/pARGTJGICIrJidneZfAdq6ubp27QpfX1+NY5weT0TtGWeBEVkxiUTSfCEt5VTT4zXLcXo8EbUPDEBEVkwIofFaoXBBXl4gFAoXneUAcHo8EbVr7AIjsmJubm7q73Xt91W/XH2cHk9E7RVbgIhI64Dmhi1BTWnrYoxERObAAEREOgc0ExF1RAxARKTXgGZzrUZNRGRIHANERHrtLm+s1aiJiEyJAYiIAOg3oJnhhojaOwYgIivWsJtK20KI7M4ioo6GAYjIirE7i4isFQMQkZVjuCEia8RZYERERGR12AJERAZVUlKid5daa95DRNQWDEBEZDAlJSVIS0trtlxCQoI60DR8j0LhgtJST3h4lGgMyK7/HiKitmIAIiKD0dWKU9/169fVZYuLi9XHde1H1tJrExG1BAMQERmNttac9PT0Jss2tR9ZcPBF7jNGRAbHAERERqGrNacpuvYjYwAiIkPjLDAiMriW7C6vULggLy9QfUyf/cj0dfUqkJVV9ycREcAWICIyguZac7S1DrV0P7KWUM0s27HDCbNmyaBUSmBjI7B8uQIvvvg7Z5YRWTkGICIyOFVrTv0QpGrN0TXWR5/9yHRRzSxTKFyQmpoIISQAAKVSgpkzXXHt2kbIZOWcWUZkxdgFRkQGp9pdXtWlVb81R1frkOq9QUGX2zTuRzVjrLnP4swyIuvFFiAiMpj6m6Zqa83R1TrU0mu3VGs/i4g6PgYgIjIYXZurFhcXIz09Xd06pG2szzPPPIMuXbpovLe143Wa+ywisl4MQERkUNqCSktahwDAz8/PoONyWjuu6OpV4MIFoGdPICDAYNUhIgvBAEREJqGrdUjFWDOzZLLyFgUfzhwjsh4MQERkMpYcHjhzjMi6cBYYERE4c4zI2jAAEVGH09IZY02VM+aK1ERkOdgFRkQdTlvGG3HmGJF1sIgWoDVr1iAwMBCOjo6IiorCsWPHtJZNT09HZGQk3Nzc4OzsjLCwMGzdulWjjBACycnJ8PX1hZOTE6Kjo3HhwgVj3wYRWRBPT0/4+vpq/dI1jic8/CQSE1MRH78ZiYmpOjdxJaL2yewBaNeuXUhKSsL8+fORnZ2N0NBQxMTE4MaNG02W9/DwwNy5c3H06FH8+OOPmDRpEiZNmoT9+/eryyxfvhyrVq3C+vXr8f3338PZ2RkxMTG4c+eOqW6LiNo5Q6xITUSWSyKEEOasQFRUFPr374+0tDQAgFKphFwux5tvvol33323RdcIDw/HqFGjsGjRIggh4OfnhxkzZuCdd94BACgUCnh7e2Pz5s144YUXmr1eWVkZZDIZFAoFXF1dW39zRGQ2qint2jTsAisoKMDHH3/c7HWnTJkCX19free5fhCR+ejz+9usY4Cqq6tx4sQJzJkzR33MxsYG0dHROHr0aLPvF0Lgm2++QU5ODpYtWwYAyMvLQ2FhIaKjo9XlZDIZoqKicPTo0SYDUFVVFaqqqtSvy8rK2nJbRGRmqintzTHUlHauH0TU/pg1ABUXF6O2thbe3t4ax729vXH+/Hmt71MoFPD390dVVRVsbW2xdu1aPPbYYwCAwsJC9TUaXlN1rqGUlBQsXLiwLbdCRBakpVPV65dr7cwxrh9E1D61y1lgLi4uOHXqFG7fvo3MzEwkJSWhR48eGD58eKuuN2fOHCQlJalfl5WVQS6XG6i2RNQetHbmWEvWD5LJyrl+EJGFMWsA6tKlC2xtbVFUVKRxvKioCD4+PlrfZ2Njg5CQEABAWFgYzp07h5SUFAwfPlz9vqKiIo1++qKiIoSFhTV5PQcHBzg4OLTxbojIUikULigt9YSHR4nOQc1taaHhzvNE7YtZZ4FJpVJEREQgMzNTfUypVCIzMxMDBw5s8XWUSqV6DE9QUBB8fHw0rllWVobvv/9er2sSUceQnd0PqamJ2LIlHqmpicjO7meUz1GtH6RaRJHrBxFZNrN3gSUlJSE+Ph6RkZEYMGAAUlNTUVFRgUmTJgEAJkyYAH9/f6SkpACoG68TGRmJ4OBgVFVV4auvvsLWrVuxbt06AIBEIkFiYiIWL16Mnj17IigoCPPmzYOfnx/Gjh1rrtskIjNQKFzUCxoCdV1Se/eORnDwRaMEk9buPE9Epmf2ABQXF4ebN28iOTkZhYWFCAsLQ0ZGhnoQ85UrV2Bjc6+hqqKiAm+88QauXr0KJycn9O7dG9u2bUNcXJy6zKxZs1BRUYEpU6bg1q1bGDx4MDIyMuDo6Gjy+yMi82luXI4xtHTneSIyL7MHIKBuKmpCQkKT5w4dOqTxevHixVi8eLHO60kkEvzlL3/BX/7yF0NVkYjaIY7LISJtzL4SNBGRoammqjc3LqelU9+JqOOxiBYgIiJDajilPTn5Ji5dskNg4F34+fUH0N9gixO2Zed5IjIfs2+FYYm4FQYR6UPfbTeIyDj0+f3NLjAiIiKyOuwCIyJqA1PvO0ZEhsEWICKiNmjNvmNEZH4MQEREBqRQuCAvLxAKhYu5q0JEOrALjIjIQLKz+6lXnlZNuQ8PP2nuahFRE9gCRERkANq23WBLEJFlYgAiIjIAXdtuEJHlYQAiIjIA1bYb9XHbDSLLxQBERGQAzW27QUSWhYOgiYjaoP4WF+HhJxEcfBGlpR7w8CjVCD/cCoPIsjAAERG1QcN9x5rCrTCILA8DEBFRGzHcELU/DEBERGagawPVW7duQSKRQCaT6Tx3/boN8vLsEBR0F35+dWOP2NpE1DIMQEREJtbS/cN00bXoIvcdI2oeZ4EREZlYW/cFa27RRe47RtQ8BiAiIgvW1N5iXHSRqO3YBUZEZGYKhQtKSz3h4VGiMXVeWzeXatHF+iGo/qKLZ87cwuHDUo4NItKBAYiIyIy0hRxt3VzBwRfViy42fJ9MVo7s7H5YuLAXxwYRNYMBiIjITHSFHF3dXDJZeZOLLjYXmjg2iOgeBiAiIjPRFXKa6+YC6rbfqN9l1lxoIqJ7OAiaiMhMdG2g2pq9xbghK1HLsQWIiMjEVPuC6RrLA+jeW6wpzV2PiO6RCCGEuSthacrKyiCTyaBQKODq6mru6hBRB1R/Jejr121w6ZIdAgPrZm21dCVoleLiYqSnp6tf180qaxyapkyZAl9fXyPeFZF56fP7my1ARERmUH82lq8vEBGBeq+1h5SmzikUCo3XDccG1S/HAERUh2OAiIjauZqaGo3XTS2e2FQ5ImvGFiAionbOzu7eX+W69girX47I2rEFiIionXNzcwPQ/B5hqnJExABERNTu3bp1C0Dze4SpyhERAxARUbt39+5dAM2vA6QqR0QMQEREHUZrFk8kslYcEUdE1IHou3gikbViACIiaufs7e2bOCppdKS8vBwFBQUaxxQKBYQQWgdIS6VS7iBPHRIDEBFRO1d/VWhd0+APHDjQqusnJCQwBFGHwzFAREQdRHPT4Fvy/qYWUFRt2UHUkbAFiIiog9A1Db65sUC6Wo6IOiK2ABERtXOq3eWbmwavTVtbjojaI7YAERG1c56enkhISEB1dTX8/cswe7YMtbUS2NoKzJt3HcC91p+6neI94eFRom4VakvLEVF7xQBERNQBqAYpz5gBxMUBFy8CISES2Nra4uOP68po6+ZStRzVD0EtaTkias/YBUZE1MEEBADDh9f9qaKrm4sLKJI1YgsQEZEVaK6biwsokrVhACIi6sAaDpDW1c0lk5U3GXxU11ApKSnROTWeiydSe8AARETUgekaIL1sWRlGjXpSr5WgS0pKkJaWpn7d1KBqgIsnkuUz+xigNWvWIDAwEI6OjoiKisKxY8e0lt2wYQOGDBkCd3d3uLu7Izo6ulH527dvIyEhAQEBAXBycsIDDzyA9evXG/s2iIgslqenJ3x9fTFjhhsuXZIgKwu4dEmCGTPc0Lt3b9x///3w9fVt8qthiKnf8pOd3Q+pqYnYsiUeqamJyM7u12Q5Iktk1gC0a9cuJCUlYf78+cjOzkZoaChiYmJw48aNJssfOnQI48aNQ1ZWFo4ePQq5XI7HH38c165dU5dJSkpCRkYGtm3bhnPnziExMREJCQnYs2ePqW6LiMhiNTVAujW4dhC1d2YNQCtXrsRrr72GSZMmqVtqOnXqhI0bNzZZfvv27XjjjTcQFhaG3r1745NPPoFSqURmZqa6zJEjRxAfH4/hw4cjMDAQU6ZMQWhoqM6WJSIi0o+uQdVE7YHZAlB1dTVOnDiB6Ojoe5WxsUF0dDSOHj3aomtUVlaipqYGHh73/ocbNGgQ9uzZg2vXrkEIgaysLPzyyy94/PHHtV6nqqoKZWVlGl9ERNSYQqEA0Pyq06pyRJbKbAGouLgYtbW18Pb21jju7e2NwsLCFl1j9uzZ8PPz0whRq1evxgMPPICAgABIpVKMHDkSa9aswdChQ7VeJyUlBTKZTP0ll8tbd1NERB1cTU0NADS7dpCqHJGlarezwJYuXYqdO3fi0KFDcHR0VB9fvXo1vvvuO+zZswfdu3fHf/7zH0ybNq1RUKpvzpw5SEpKUr8uKytjCCIiagbXDqL2zGwBqEuXLrC1tUVRUZHG8aKiIvj4+Oh874oVK7B06VIcPHgQffv2VR///fff8ac//QlffPEFRo0aBQDo27cvTp06hRUrVmgNQA4ODnBwcGjjHRERWSuJuStApDezBSCpVIqIiAhkZmZi7NixAKAe0JyQkKD1fcuXL8eSJUuwf/9+REZGapyrqalBTU0NbGw0e/ZsbW2hVGr2VRMRkf7s7O792tC2t1jDckSWyKw/oUlJSYiPj0dkZCQGDBiA1NRUVFRUYNKkSQCACRMmwN/fHykpKQCAZcuWITk5GTt27EBgYKB6rFDnzp3RuXNnuLq6YtiwYZg5cyacnJzQvXt3/Pvf/8bf/vY3rFy50mz3SUTUUagWTNQ2DT44+CJksnLcvXsXBQUFjd7PVaLJUpg1AMXFxeHmzZtITk5GYWEhwsLCkJGRoR4YfeXKFY3WnHXr1qG6uhrPPfecxnXmz5+PBQsWAAB27tyJOXPm4KWXXkJpaSm6d++OJUuWYOrUqSa7LyKijq65vcXS09O1vperRJMlMHsbZUJCgtYur0OHDmm8vnTpUrPX8/HxwaZNmwxQMyIi0qYle4tpw1WiyRKYfSsMIiJqP1QbozY3DZ7I0pm9BYiIiNqP+purAkBy8k1cumSHwMC7kEqDkJ5+Ul1W20apRJaAAYiIiPRSf/yOry8QEVH3fUHBvdm2umaINVRSUqKzW4wDp8kYGICIiMigmpshVl9JSQnS0tKavSYHTpOhcQwQEREZlD4bpTZs+VEoXJCXF9hoV3kOnCZDYwsQEREZlD4zxG7duqX+Xle32a1bt+Dr62v0upP10LsF6KuvvsLkyZMxa9YsnD9/XuPcb7/9hhEjRhisckRE1H60dIaYqhwA3L17F0Bdy8+ePbGNus1ULUGqckSGolcL0I4dOzBhwgSMHDkSOTk5WL16NT755BO89NJLAOqaKP/9738bpaJERGTZdM0Q8/PrD6B/owHN5eV1oSg/X46Ge4oJYYP8/ADIZOfU5YgMRa8A9P7772PlypV46623AAD/+Mc/8Morr+DOnTt49dVXjVJBIiJqP7TNENOmpS07bAEiQ9MrAF24cAGxsbHq188//zy6du2KMWPGoKamBk8//bTBK0hERB2fXJ4PQAnNkRlKyOVXzVQj6uj0CkCurq4oKipCUFCQ+tgjjzyCffv2YfTo0bh6lT+oRETUWppdYBKJlmJEBqDXIOgBAwbgX//6V6Pjw4YNw969e5GammqoehERkRWwt7cHUDd1vqkxQKqp86pyRIaiVwCaPn06HB0dmzw3fPhw7N27FxMmTDBIxYiIqOPr3LkzgHtT5+urP3VeVY7IUPTqAuvXrx/69euHsrKyJs9HREQgorkRb0RERP9jZ1f3a0g1db7hOkCqqfOqckSGotdPlJubGyQt6JStra1tdYWIiMh6uLm5qb8PDz+J4OCLKC31gIdHqca2GfXLERmCXgEoKytL/b0QAk8++SQ++eQT+Pv7G7xiRETU8dVfFBGoawlqauf4huWI2koihBCtfbOLiwtOnz6NHj16GLJOZldWVgaZTAaFQgFXV1dzV4eIqEPjbvBkKPr8/manKhERmRXDDZkDd4MnIiIiq9PmANSSQdFERERElkSvLrBnnnlG4/WdO3cwdepUODs7axxPT09ve82IiIiIjESvACSTyTRev/zyywatDBEREZEp6BWANm3aZKx6EBEREZkMZ4EREVGHw6n11BwGICIi6lBKSkqQlpbWbLmEhASGICvGafBERNSh6Gr5aU056pgYgIiIqENTKFyQlxcIhcLF3FUhC8IuMCIi6rCys/s12mE+PPykuatFFoAtQERE1CEpFC7q8AMAQthg797RbAkiAAxARETUQZWWeqrDj4oQNigt9TBTjciSMAAREVGHolAoAAAeHiWQSJQa5yQSJTw8SjXKkXXiGCAiIupQampqAAAyWTliY/c1GgMkk5UDAG7cuNFohwOuD2Q9GICIiKhDsbO796stPPwkgoMvorTUAx4eperwAwBZWVnIyspq9H6uD2Qd2AVGREQdipubWxNHJS1+P9cHsg5sASIiog5L1zR4hcIFpaWe8PAo0WgZIuvAAERERB2StmnwwcEXkZsbwvWBrBy7wIiIqEPSNg0+Pz9A5/pAnB1mHRiAiIioQ9I2DR6Q6FwfSDWLjDo2BiAiIupQpFIpgHvT4FUhSNXVJZfn61wfiKwDxwAREVGH4unpiYSEBPVsruTkm7h0yQ5CXMDZs3XjfGJj92HPntGoawfQXB+IrAMDEBERdTj11/Hx9QUiIoBz527g7Nl7ZSQSQIi6P+urv44QdVzsAiMiIqugWh+ouU1Sm15HiDoaBiAiIrIq3CSVAHaBERGRlVHNDqsfguoPgi4uLm7yfdwnrGMxewvQmjVrEBgYCEdHR0RFReHYsWNay27YsAFDhgyBu7s73N3dER0d3WT5c+fOYcyYMZDJZHB2dkb//v1x5coVY94GERFZuOZmh6kGQaenp+Pjjz9u9JWWloaSkhKz1Z8My6wtQLt27UJSUhLWr1+PqKgopKamIiYmBjk5OfDy8mpU/tChQxg3bhwGDRoER0dHLFu2DI8//jjOnj0Lf39/AEBubi4GDx6MV199FQsXLoSrqyvOnj0LR0dHU98eERFZEG2zwwID70IqDUJ6evMrQXOfsI5DIoQQ5vrwqKgo9O/fH2lpaQAApVIJuVyON998E++++26z76+trYW7uzvS0tIwYcIEAMALL7wAe3t7bN26tdX1Kisrg0wmg0KhgKura6uvQ0RE7UNBQQE+/vjjZstNmTIFvr6+JqgRtYY+v7/N1gVWXV2NEydOIDo6+l5lbGwQHR2No0ePtugalZWVqKmpgYdH3cA1pVKJL7/8Evfddx9iYmLg5eWFqKgo/POf/zTGLRARkZUpLi5GQUFBoy92jbU/ZusCKy4uRm1tLby9vTWOe3t74/z58y26xuzZs+Hn56cOUTdu3MDt27exdOlSLF68GMuWLUNGRgaeeeYZZGVlYdiwYU1ep6qqClVVVerXZWVlrbwrIiLqCLTtFJ+enq71PQkJCRwk3Y6021lgS5cuxc6dO3Ho0CH1+B6lsm5A21NPPYXp06cDAMLCwnDkyBGsX79eawBKSUnBwoULTVNxIiKyaNnZ/Vq1UzzHB7UvZusC69KlC2xtbVFUVKRxvKioCD4+Pjrfu2LFCixduhRff/01+vbtq3FNOzs7PPDAAxrl77//fp2zwObMmQOFQqH+ys/Pb8UdERFRe9fcIomqMnl5gRrHqP0xWwuQVCpFREQEMjMzMXbsWAB1LTiZmZlISEjQ+r7ly5djyZIl2L9/PyIjIxtds3///sjJydE4/ssvv6B79+5ar+ng4AAHB4fW3wwREXUIuhZJlMnKW906RJbHrF1gSUlJiI+PR2RkJAYMGIDU1FRUVFRg0qRJAIAJEybA398fKSkpAIBly5YhOTkZO3bsQGBgIAoLCwEAnTt3RufOnQEAM2fORFxcHIYOHYpHHnkEGRkZ2Lt3Lw4dOmSWeyQiIsunWiNI1yKJ2lqHgoMvciPVdsisASguLg43b95EcnIyCgsLERYWhoyMDPXA6CtXrsDG5t4P4bp161BdXY3nnntO4zrz58/HggULAABPP/001q9fj5SUFLz11lvo1asXdu/ejcGDB5vsvoiIqH2pv0aQv38ZZs+WobZWAltbgXnzrgMoR15eoM7WIWpfzLoOkKXiOkBERNbt6lXg4kUgJASwta1bI0ihcEFqamKj1qHExFTIZOVcI8gCtIt1gIiIiCxVQAAwfHjdnyrNbaFB7Uu7nQZPRERkCqrxQQAQHn4SwcEXUVrqAQ+PUo3wU78cWT4GICIiIh0a7iHWFO4U3/4wABERETWD4abj4RggIiIisjoMQERERGR1GICIiIjI6jAAERERkdXhIGgiIiIjyM3NRWVlpdbznTp1QnBwsAlrRPUxABERERlYbm4utm3b1my5l19+mSHITNgFRkREZGBFRUUGLUeGxwBERERkYHfv3jVoOTI8BiAiIiKyOhwDREREZGANBz/n5ITgwoX70LPnL+jV66LWcmQ6DEBEREQGVltbq/7+k08m4epVOQAJfvghEgEB+Zg8eVOjcmRa7AIjIiIykpycEHX4qSPB1aty5OSEmLNaBAYgIiIio7lw4T7cCz8qEly82NMc1aF62AVGRERkYFKpFADQs+cv+OGHSGiGIIGQkAsAgJqaGhQUFDT5fu5Ab1wMQERERAYml8sBAD4+Ta3zI9THT58+jdOnTzd5jYSEBIYgI2IXGBERkYHJZDIAQGmpJxp3gdmgtNSj2WvcvHnT8BUjNQYgIiIiI/HwKIFEotQ4JpEo4eFR2ux7a2pqjFUtAgMQERGRwanGAMlk5YiN3acOQRKJErGx+yCTlZuzegSOASIiIjI4T09PJCQkoLq6GgCQnHwTly7ZITDwLioq3JCVda/s1au+uHKlO7p1u4yAgMYDosk4GICIiIiMoP4AZl9fICKi7vuffrqhPv7FF0/h9OlQ1I0TEggNPY2nn/4/01bUSrELjIiIyAyuXvWtF34AQILTp0Nx9aqvOatlNRiAiIiIzODKle5oapHE/Pxu5qiO1WEXGBERkQnZ2dX96u3W7TIAgYaLJMrlVwAA5eXlXCTRiBiAiIiITMjLywsAEBBQgNDQ043GAKkGQh84cEDrNbhIYtsxABEREZlQ/RliU6YAJ08W4/hxKfr3r4Zcbov09OavoZpdRq3HAERERGRiDWeIPflk3ffnz5e06P0KhQK+vhws3RYcBE1ERGQhWrr6M1eJbjsGICIiIgt19aovjhx5iFPjjYBdYERERBaIiyQaF1uAiIiILAwXSTQ+BiAiIiILw0USjY8BiIiIyEI0XiSxvnuLJKrKUesxABEREVkINzc3APcWSbwXgjQXSVSVo9ZjhCQiIrIQUqlU/f3TT/8f+vc/hvz8bpDLr6jDT8Ny1DoSIUTDNjarV1ZWBplMBoVCAVdXV3NXh4iIrEhJSYnOlZ65F5h2+vz+ZgsQERGRBWG4MQ2OASIiIiKrwwBEREREVocBiIiIiKwOAxARERFZHQYgIiIisjoWEYDWrFmDwMBAODo6IioqCseOHdNadsOGDRgyZAjc3d3h7u6O6OhoneWnTp0KiUSC1NRUI9SciIiI2iOzB6Bdu3YhKSkJ8+fPR3Z2NkJDQxETE4MbN240Wf7QoUMYN24csrKycPToUcjlcjz++OO4du1ao7JffPEFvvvuO/j5+Rn7NoiIiKgdMXsAWrlyJV577TVMmjQJDzzwANavX49OnTph48aNTZbfvn073njjDYSFhaF379745JNPoFQqkZmZqVHu2rVrePPNN7F9+3bY29ub4laIiIionTBrAKqursaJEycQHR2tPmZjY4Po6GgcPXq0RdeorKxETU0NPDw81MeUSiXGjx+PmTNn4sEHHzR4vYmIiKh9M+tK0MXFxaitrYW3t7fGcW9vb5w/f75F15g9ezb8/Pw0QtSyZctgZ2eHt956q0XXqKqqQlVVlfp1WVlZi95HRERE7VO73gpj6dKl2LlzJw4dOgRHR0cAwIkTJ/DRRx8hOzsbEomkRddJSUnBwoULjVlVIiIisiBm7QLr0qULbG1tUVRUpHG8qKgIPj4+Ot+7YsUKLF26FF9//TX69u2rPv7f//4XN27cQLdu3WBnZwc7OztcvnwZM2bMQGBgYJPXmjNnDhQKhforPz+/zfdGRERElsusAUgqlSIiIkJjALNqQPPAgQO1vm/58uVYtGgRMjIyEBkZqXFu/Pjx+PHHH3Hq1Cn1l5+fH2bOnIn9+/c3eT0HBwe4urpqfBEREVHHZfYusKSkJMTHxyMyMhIDBgxAamoqKioqMGnSJADAhAkT4O/vj5SUFAB143uSk5OxY8cOBAYGorCwEADQuXNndO7cGZ6eno120rW3t4ePjw969epl2psjIiIii2T2ABQXF4ebN28iOTkZhYWFCAsLQ0ZGhnpg9JUrV2Bjc6+hat26daiursZzzz2ncZ358+djwYIFpqw6ERERtVMSIYQwdyUsTVlZGWQyGRQKBbvDiIiI2gl9fn+bfSFEIiIiIlMzexcYERERGU9JSQmqq6u1npdKpY3GzloDBiAiIqIOqqSkBGlpac2WS0hIsLoQxC4wIiKiDkrbxuKtLdeRMAARERF1UHfv3tV4ffWqL44ceQhXr/rqLGcN2AVGRERkBb744imcPh0KQAJAIDT0NJ5++v/MXS2zYQsQERFRB3f1qm+98AMAEpw+HdqoJciaMAARERF1cFeudMe98KMiQX5+N3NUxyIwABEREXVw3bpdBtBw3WMBufyKOapjERiAiIiIOriAgAKEhp7GvRBUNwYoIKDAnNUyKw6CJiIi6qDs7e3V3z/99P+hf/9jyM/vBrn8ikb4qV/OWjAAERERdVBdu3bVeB0QUNBkq0/DctaAAYiIiKiD8vT0REJCArfCaAIDEBERUQemK9yo9gkrKGh6LFBHDkcMQERERFao4T5hCoULSks94eFRApmsXH28o+4TxgBERERkherv/5Wd3Q97946GEDaQSJSIjd2H8PCT6nIdMQBxGjwREZEVUu3/pVC4YM+eWAhRFwmEsMHevaOhULholOtoGICIiIisWH6+HA1XiRbCBvn5AeapkIkwABEREZHVYQAiIiKyYnJ5PgBlg6NKyOVXzVEdk2EAIiIismIyWTnGjNmHeyFIiTFj9mnMBOuIOAuMiIjIyoWHn0Rw8EWUlnrAw6O0w4cfgAGIiIjIKjXc/0smK28y+HTUfcLYBUZERGSFWrr/V0fdJ0wihBDmroSlKSsrg0wmg0KhgKurq7mrQ0REZBSqrTC0kUql+P13T1y4APTsCQRY+Mx4fX5/swuMiIjISmlb4VkVjDZvtsWsWQJKpQQ2NgLLlyvw4ou/d4g9whiAiIiISE21R5hC4YLU1EQIUbdIolIpwcyZrrh2bSNksvJ2v0cYxwARERGRmqpLrLTUU709hooQNigt9dAo114xABEREVEjHh4lkEg0F0iUSJTw8Cg1U40MiwGIiIiIGpHJyhEbu08dglS7xHeUNYI4BoiIiIia1JEXSGQAIiIiIq20LZDY3rELjIiIiKwOAxARERFZHQYgIiIiUpNKpQYtZ6k4BoiIiIjUPD09kZCQ0OwWGe15EUSAAYiIiIgaaO/hpiXYBUZERERWhwGIiIiIrA4DEBEREVkdBiAiIiKyOgxAREREZHUYgIiIiMjqMAARERGR1WEAIiIiIoM7fhxYubLuT0tkEQFozZo1CAwMhKOjI6KionDs2DGtZTds2IAhQ4bA3d0d7u7uiI6O1ihfU1OD2bNno0+fPnB2doafnx8mTJiA69evm+JWiIiIrN7EicCAAcCMGXV/Tpxo7ho1ZvYAtGvXLiQlJWH+/PnIzs5GaGgoYmJicOPGjSbLHzp0COPGjUNWVhaOHj0KuVyOxx9/HNeuXQMAVFZWIjs7G/PmzUN2djbS09ORk5ODMWPGmPK2iIiIrNLx48CWLZrHtmyxvJYgiRBCmLMCUVFR6N+/P9LS0gAASqUScrkcb775Jt59991m319bWwt3d3ekpaVhwoQJTZY5fvw4BgwYgMuXL6Nbt27NXrOsrAwymQwKhQKurq763RAREZEVW7myruWnoQ8/BBITjfvZ+vz+NmsLUHV1NU6cOIHo6Gj1MRsbG0RHR+Po0aMtukZlZSVqamrg4eGhtYxCoYBEIoGbm1tbq0xEREQ63Hdf08dDQkxbj+aYNQAVFxejtrYW3t7eGse9vb1RWFjYomvMnj0bfn5+GiGqvjt37mD27NkYN26c1jRYVVWFsrIyjS8iIiLST25uLoqKfm3y3I0bvyI3N9fENdLO7GOA2mLp0qXYuXMnvvjiCzg6OjY6X1NTg+effx5CCKxbt07rdVJSUiCTydRfcrncmNUmIiLqcHJzc7Ft2zacPftPSCRKjXMSiRJnzvwT27Zts5gQZNYA1KVLF9ja2qKoqEjjeFFREXx8fHS+d8WKFVi6dCm+/vpr9O3bt9F5Vfi5fPkyDhw4oLMvcM6cOVAoFOqv/Pz81t0QERGRlaqsrAQAyGTliI3dpw5BEokSsbH7IJOVa5QzNztzfrhUKkVERAQyMzMxduxYAHWDoDMzM5GQkKD1fcuXL8eSJUuwf/9+REZGNjqvCj8XLlxAVlYWPD09ddbDwcEBDg4ObboXIiIia1ZeXq7+Pjz8JIKDL6K01AMeHqXq8NOwnDmZNQABQFJSEuLj4xEZGYkBAwYgNTUVFRUVmDRpEgBgwoQJ8Pf3R0pKCgBg2bJlSE5Oxo4dOxAYGKgeK9S5c2d07twZNTU1eO6555CdnY19+/ahtrZWXcbDwwNSqdQ8N0pERNSB3b17V+O1TFauEXy0lTMXsweguLg43Lx5E8nJySgsLERYWBgyMjLUA6OvXLkCG5t7PXXr1q1DdXU1nnvuOY3rzJ8/HwsWLMC1a9ewZ88eAEBYWJhGmaysLAwfPtyo90NERESWz+zrAFkirgNERESkn//85z/IyspqtpyPTywqKsIxZAjQv79h66DP72+ztwARERGRdfjii6dw+nSo+nV8PLB5s3nq0q6nwRMREVH7cPWq7//Cj0R9zJxbZDAAERERUZs5OTnpPH/lSnfUDz8qhw8bqULNYAAiIiKiNgsICNB5vlu3ywAaDzt++GEjVagZDEBERETUZs0tMxMQUIDQ0NOoH4Li4w0/ELqlOAusCZwFRkREpL+SkhJUV1drPS+VSvHrr544fLiu5cecs8AYgJrAAERERGQ4LQlGze3a0BKcBk9EREQWoaSkBGlpac2WS0hIMEgIaimOASIiIiKjuXnzpkHLGQoDEBERERlNTU2NQcsZCgMQERERWR0GICIiIrI6DEBERERkdRiAiIiIyOowABEREZHVYQAiIiIio7Gza9mSgy0tZygMQERERGQ0Xl5eBi1nKFwJmoiIiIzG09MTCQkJJtkKQx8MQERERGRUpg43LcEuMCIiIrI6DEBERERkdRiAiIiIyOowABEREZHVYQAiIiIiq8MARERERFaHAYiIiIisDgMQERERWR0GICIiIrI6XAm6CUIIAEBZWZmZa0JEREQtpfq9rfo9rgsDUBPKy8sBAHK53Mw1ISIiIn2Vl5dDJpPpLCMRLYlJVkapVOL69etwcXGBRCLR+/1lZWWQy+XIz8+Hq6urEWrYPvA53MNnUYfPoQ6fwz18FnX4HOq09TkIIVBeXg4/Pz/Y2Oge5cMWoCbY2NggICCgzddxdXW16h9kFT6He/gs6vA51OFzuIfPog6fQ522PIfmWn5UOAiaiIiIrA4DEBEREVkdBiAjcHBwwPz58+Hg4GDuqpgVn8M9fBZ1+Bzq8Dncw2dRh8+hjimfAwdBExERkdVhCxARERFZHQYgIiIisjoMQERERGR1GICIiIjI6jAAtdKaNWsQGBgIR0dHREVF4dixY1rLnj17Fs8++ywCAwMhkUiQmppquooamT7PYcOGDRgyZAjc3d3h7u6O6OhoneXbE32eQ3p6OiIjI+Hm5gZnZ2eEhYVh69atJqytcenzLOrbuXMnJBIJxo4da9wKmog+z2Hz5s2QSCQaX46OjiasrfHo+/Nw69YtTJs2Db6+vnBwcMB9992Hr776ykS1NS59nsXw4cMb/UxIJBKMGjXKhDU2Dn1/JlJTU9GrVy84OTlBLpdj+vTpuHPnTtsrIkhvO3fuFFKpVGzcuFGcPXtWvPbaa8LNzU0UFRU1Wf7YsWPinXfeEX//+9+Fj4+P+PDDD01bYSPR9zm8+OKLYs2aNeLkyZPi3LlzYuLEiUImk4mrV6+auOaGpe9zyMrKEunp6eLnn38WFy9eFKmpqcLW1lZkZGSYuOaGp++zUMnLyxP+/v5iyJAh4qmnnjJNZY1I3+ewadMm4erqKgoKCtRfhYWFJq614en7HKqqqkRkZKR48sknxbfffivy8vLEoUOHxKlTp0xcc8PT91mUlJRo/DycOXNG2Nraik2bNpm24gam73PYvn27cHBwENu3bxd5eXli//79wtfXV0yfPr3NdWEAaoUBAwaIadOmqV/X1tYKPz8/kZKS0ux7u3fv3mECUFuegxBC3L17V7i4uIgtW7YYq4om0dbnIIQQ/fr1E3/+85+NUT2Tas2zuHv3rhg0aJD45JNPRHx8fIcIQPo+h02bNgmZTGai2pmOvs9h3bp1okePHqK6utpUVTSZtv498eGHHwoXFxdx+/ZtY1XRJPR9DtOmTRMjRozQOJaUlCQefvjhNteFXWB6qq6uxokTJxAdHa0+ZmNjg+joaBw9etSMNTMtQzyHyspK1NTUwMPDw1jVNLq2PgchBDIzM5GTk4OhQ4cas6pG19pn8Ze//AVeXl549dVXTVFNo2vtc7h9+za6d+8OuVyOp556CmfPnjVFdY2mNc9hz549GDhwIKZNmwZvb2/84Q9/wHvvvYfa2lpTVdsoDPH35aeffooXXngBzs7Oxqqm0bXmOQwaNAgnTpxQd5P9+uuv+Oqrr/Dkk0+2uT7cDFVPxcXFqK2thbe3t8Zxb29vnD9/3ky1Mj1DPIfZs2fDz89P43+G9qa1z0GhUMDf3x9VVVWwtbXF2rVr8dhjjxm7ukbVmmfx7bff4tNPP8WpU6dMUEPTaM1z6NWrFzZu3Ii+fftCoVBgxYoVGDRoEM6ePWuQjZnNoTXP4ddff8U333yDl156CV999RUuXryIN954AzU1NZg/f74pqm0Ubf378tixYzhz5gw+/fRTY1XRJFrzHF588UUUFxdj8ODBEELg7t27mDp1Kv70pz+1uT4MQGQWS5cuxc6dO3Ho0KEOM9hTHy4uLjh16hRu376NzMxMJCUloUePHhg+fLi5q2Yy5eXlGD9+PDZs2IAuXbqYuzpmNXDgQAwcOFD9etCgQbj//vvx17/+FYsWLTJjzUxLqVTCy8sLH3/8MWxtbREREYFr167h/fffb9cBqK0+/fRT9OnTBwMGDDB3VUzu0KFDeO+997B27VpERUXh4sWLePvtt7Fo0SLMmzevTddmANJTly5dYGtri6KiIo3jRUVF8PHxMVOtTK8tz2HFihVYunQpDh48iL59+xqzmkbX2udgY2ODkJAQAEBYWBjOnTuHlJSUdh2A9H0Wubm5uHTpEmJjY9XHlEolAMDOzg45OTkIDg42bqWNwBB/R9jb26Nfv364ePGiMapoEq15Dr6+vrC3t4etra362P3334/CwkJUV1dDKpUatc7G0pafiYqKCuzcuRN/+ctfjFlFk2jNc5g3bx7Gjx+PyZMnAwD69OmDiooKTJkyBXPnzoWNTetH8nAMkJ6kUikiIiKQmZmpPqZUKpGZmanxL7iOrrXPYfny5Vi0aBEyMjIQGRlpiqoalaF+HpRKJaqqqoxRRZPR91n07t0bP/30E06dOqX+GjNmDB555BGcOnUKcrnclNU3GEP8TNTW1uKnn36Cr6+vsappdK15Dg8//DAuXryoDsIA8Msvv8DX17fdhh+gbT8Tn332GaqqqvDyyy8bu5pG15rnUFlZ2SjkqAKyaOtWpm0eRm2Fdu7cKRwcHMTmzZvFzz//LKZMmSLc3NzU01bHjx8v3n33XXX5qqoqcfLkSXHy5Enh6+sr3nnnHXHy5Elx4cIFc92CQej7HJYuXSqkUqn4/PPPNaZ3lpeXm+sWDELf5/Dee++Jr7/+WuTm5oqff/5ZrFixQtjZ2YkNGzaY6xYMRt9n0VBHmQWm73NYuHCh2L9/v8jNzRUnTpwQL7zwgnB0dBRnz5411y0YhL7P4cqVK8LFxUUkJCSInJwcsW/fPuHl5SUWL15srlswmNb+vzF48GARFxdn6uoajb7PYf78+cLFxUX8/e9/F7/++qv4+uuvRXBwsHj++efbXBcGoFZavXq16Natm5BKpWLAgAHiu+++U58bNmyYiI+PV7/Oy8sTABp9DRs2zPQVNzB9nkP37t2bfA7z5883fcUNTJ/nMHfuXBESEiIcHR2Fu7u7GDhwoNi5c6cZam0c+jyLhjpKABJCv+eQmJioLuvt7S2efPJJkZ2dbYZaG56+Pw9HjhwRUVFRwsHBQfTo0UMsWbJE3L1718S1Ng59n8X58+cFAPH111+buKbGpc9zqKmpEQsWLBDBwcHC0dFRyOVy8cYbb4jffvutzfWQCNHWNiQiIiKi9oVjgIiIiMjqMAARERGR1WEAIiIiIqvDAERERERWhwGIiIiIrA4DEBEREVkdBiAiIiKyOgxARERmNHHiRIwdO9bc1SCyOgxARNSkiRMnQiKRqL88PT0xcuRI/Pjjj+aumkHUvzfV1+DBg432eZcuXYJEIsGpU6c0jn/00UfYvHmz0T6XiJrGAEREWo0cORIFBQUoKChAZmYm7OzsMHr0aHNXy2A2bdqkvr+CggLs2bOnyXI1NTVGq4NMJoObm5vRrk9ETWMAIiKtHBwc4OPjAx8fH4SFheHdd99Ffn4+bt68iREjRiAhIUGj/M2bNyGVStW7PQcGBmLRokUYN24cnJ2d4e/vjzVr1mi8Z+XKlejTpw+cnZ0hl8vxxhtv4Pbt2+rzly9fRmxsLNzd3eHs7IwHH3wQX331FQDgt99+w0svvYSuXbvCyckJPXv2xKZNm1p8f25ubur78/HxgYeHh7qlZteuXRg2bBgcHR2xfft2lJSUYNy4cfD390enTp3Qp08f/P3vf9e4nlKpxPLlyxESEgIHBwd069YNS5YsAQAEBQUBAPr16weJRILhw4cDaNwFVlVVhbfeegteXl5wdHTE4MGDcfz4cfX5Q4cOQSKRIDMzE5GRkejUqRMGDRqEnJycFt83ETEAEVEL3b59G9u2bUNISAg8PT0xefJk7NixA1VVVeoy27Ztg7+/P0aMGKE+9v777yM0NBQnT57Eu+++i7fffhsHDhxQn7exscGqVatw9uxZbNmyBd988w1mzZqlPj9t2jRUVVXhP//5D3766ScsW7YMnTt3BgDMmzcPP//8M/71r3/h3LlzWLduHbp06WKQ+1XV9dy5c4iJicGdO3cQERGBL7/8EmfOnMGUKVMwfvx4HDt2TP2eOXPmYOnSpep67dixA97e3gCgLnfw4EEUFBQgPT29yc+dNWsWdu/ejS1btiA7OxshISGIiYlBaWmpRrm5c+figw8+wA8//AA7Ozu88sorBrlvIqvR5u1UiahDio+PF7a2tsLZ2Vk4OzsLAMLX11ecOHFCCCHE77//Ltzd3cWuXbvU7+nbt69YsGCB+nX37t3FyJEjNa4bFxcnnnjiCa2f+9lnnwlPT0/16z59+mhcs77Y2FgxadKkVt0fAOHo6Ki+P2dnZ/HFF1+IvLw8AUCkpqY2e41Ro0aJGTNmCCGEKCsrEw4ODmLDhg1NllVd9+TJkxrH4+PjxVNPPSWEEOL27dvC3t5ebN++XX2+urpa+Pn5ieXLlwshhMjKyhIAxMGDB9VlvvzySwFA/P777/o8AiKrxhYgItLqkUcewalTp3Dq1CkcO3YMMTExeOKJJ3D58mU4Ojpi/Pjx2LhxIwAgOzsbZ86cwcSJEzWuMXDgwEavz507p3598OBBPProo/D394eLiwvGjx+PkpISVFZWAgDeeustLF68GA8//DDmz5+vMQj79ddfx86dOxEWFoZZs2bhyJEjet3fhx9+qL6/U6dO4bHHHlOfi4yM1ChbW1uLRYsWoU+fPvDw8EDnzp2xf/9+XLlyBQBw7tw5VFVV4dFHH9WrDvXl5uaipqYGDz/8sPqYvb09BgwYoPHMAKBv377q7319fQEAN27caPVnE1kbBiAi0srZ2RkhISEICQlB//798cknn6CiogIbNmwAAEyePBkHDhzA1atXsWnTJowYMQLdu3dv8fUvXbqE0aNHo2/fvti9ezdOnDihHiNUXV2t/oxff/0V48ePx08//YTIyEisXr0aANRhbPr06bh+/ToeffRRvPPOOy3+fB8fH/X9hYSEwNnZWePe63v//ffx0UcfYfbs2cjKysKpU6cQExOjrqeTk1OLP9cQ7O3t1d9LJBIAdWOQiKhlGICIqMUkEglsbGzw+++/AwD69OmDyMhIbNiwATt27GhyHMp3333X6PX9998PADhx4gSUSiU++OADPPTQQ7jvvvtw/fr1RteQy+WYOnUq0tPTMWPGDHUAA4CuXbsiPj4e27ZtQ2pqKj7++GND3rLa4cOH8dRTT+Hll19GaGgoevTogV9++UV9vmfPnnByclIPAG9IKpUCqGtJ0iY4OBhSqRSHDx9WH6upqcHx48fxwAMPGOhOiAgA7MxdASKyXFVVVSgsLARQN+MqLS0Nt2/fRmxsrLrM5MmTkZCQAGdnZzz99NONrnH48GEsX74cY8eOxYEDB/DZZ5/hyy+/BACEhISgpqYGq1evRmxsLA4fPoz169drvD8xMRFPPPEE7rvvPvz222/IyspSB6jk5GRERETgwQcfRFVVFfbt26c+Z2g9e/bE559/jiNHjsDd3R0rV65EUVGROpg4Ojpi9uzZmDVrFqRSKR5++GHcvHkTZ8+exauvvgovLy84OTkhIyMDAQEBcHR0hEwm0/gMZ2dnvP7665g5cyY8PDzQrVs3LF++HJWVlXj11VeNcl9E1ootQESkVUZGBnx9feHr64uoqCgcP34cn332mXoKNwCMGzcOdnZ2GDduHBwdHRtdY8aMGfjhhx/Qr18/LF68GCtXrkRMTAwAIDQ0FCtXrsSyZcvwhz/8Adu3b0dKSorG+2trazFt2jTcf//9GDlyJO677z6sXbsWQF2rypw5c9C3b18MHToUtra22Llzp1GexZ///GeEh4cjJiYGw4cPh4+PT6MVnOfNm4cZM2YgOTkZ999/P+Li4tTjcuzs7LBq1Sr89a9/hZ+fH5566qkmP2fp0qV49tlnMX78eISHh+PixYvYv38/3N3djXJfRNZKIoQQ5q4EEbVfly5dQnBwMI4fP47w8HCNc4GBgUhMTERiYqJ5KkdEpAW7wIioVWpqalBSUoI///nPeOihhxqFHyIiS8YuMCJqlcOHD8PX1xfHjx9vNG7H3N577z107ty5ya8nnnjC3NUjIgvALjAi6nBKS0sbrZys4uTkBH9/fxPXiIgsDQMQERERWR12gREREZHVYQAiIiIiq8MARERERFaHAYiIiIisDgMQERERWR0GICIiIrI6DEBERERkdRiAiIiIyOr8f4zMM4phhw3AAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWHRJREFUeJzt3XtYVNX+P/D3MDKACEN44a4gmqalCF7SUqxDYcc0v+URtZQsU0+RGR1T84T3APMY5bU6KWaaVtLF9KBGUnkp+4lmlnkLNU1QoQaEIxCzfn9wZmJgBgaYmb1n9vv1PDw6e9bsWWsue39mrbU/SyWEECAiIiJSEDepK0BERETkaAyAiIiISHEYABEREZHiMAAiIiIixWEARERERIrDAIiIiIgUhwEQERERKQ4DICIiIlIcBkBERESkOAyAiIhkKjMzEyqVCufOnZO6KkQuhwEQkYJ9++23SEpKQs+ePeHt7Y2OHTtizJgxOHXqVL2yQ4cOhUqlgkqlgpubG3x9fdGtWzdMmDABe/bsadLzbt++HbGxsejQoQNat26Nzp07Y8yYMcjOzrZV0+p56aWX8NFHH9XbfuDAAcyfPx+///673Z67rvnz5xtfS5VKhdatW6NHjx745z//iZKSEps8x+bNm5GRkWGTfRG5IgZARAqWnp6Obdu24S9/+QteffVVTJkyBV9++SWio6Nx/PjxeuVDQ0OxceNGvP3223j55ZcxcuRIHDhwAPfeey8SEhJQVVXV6HMuW7YMI0eOhEqlwpw5c/DKK6/goYcewunTp7FlyxZ7NBNAwwHQggULHBoAGaxZswYbN27E8uXL0b17dyxZsgTDhg2DLZZoZABE1LBWUleAiKSTnJyMzZs3Q6PRGLclJCTgtttuQ1paGt555x2T8lqtFo888ojJtrS0NEyfPh2rV69GeHg40tPTLT7fH3/8gUWLFuGee+7B7t27691/5cqVFrZIPsrLy9G6desGy4wePRrt2rUDAEybNg0PPfQQsrKy8PXXX2PgwIGOqCaRYrEHiEjBBg0aZBL8AEDXrl3Rs2dPnDhxwqp9qNVqvPbaa+jRowdWrlwJnU5nsey1a9dQUlKCO+64w+z9HTp0MLl948YNzJ8/HzfffDM8PT0RFBSEBx98EGfPnjWWWbZsGQYNGoS2bdvCy8sLMTEx+OCDD0z2o1KpUFZWhg0bNhiHnR599FHMnz8fM2fOBABEREQY76s95+add95BTEwMvLy84O/vj7Fjx+KXX34x2f/QoUNx66234vDhwxgyZAhat26NF154warXr7a7774bAJCfn99gudWrV6Nnz57w8PBAcHAwnnrqKZMerKFDh2LHjh04f/68sU3h4eFNrg+RK2MPEBGZEEKgsLAQPXv2tPoxarUa48aNw4svvoh9+/Zh+PDhZst16NABXl5e2L59O55++mn4+/tb3Gd1dTXuv/9+5OTkYOzYsXjmmWdQWlqKPXv24Pjx44iMjAQAvPrqqxg5ciQefvhhVFZWYsuWLfjb3/6GTz/91FiPjRs3YvLkyejfvz+mTJkCAIiMjIS3tzdOnTqFd999F6+88oqxN6Z9+/YAgCVLluDFF1/EmDFjMHnyZFy9ehUrVqzAkCFDcOTIEfj5+RnrW1RUhPvuuw9jx47FI488goCAAKtfPwNDYNe2bVuLZebPn48FCxYgLi4Of//733Hy5EmsWbMG3377Lfbv3w93d3fMnTsXOp0OFy9exCuvvAIAaNOmTZPrQ+TSBBFRLRs3bhQAxFtvvWWyPTY2VvTs2dPi4z788EMBQLz66qsN7j8lJUUAEN7e3uK+++4TS5YsEYcPH65Xbt26dQKAWL58eb379Hq98f/l5eUm91VWVopbb71V3H333Sbbvb29RWJiYr19vfzyywKAyM/PN9l+7tw5oVarxZIlS0y2f//996JVq1Ym22NjYwUAsXbtWovtrm3evHkCgDh58qS4evWqyM/PF6+//rrw8PAQAQEBoqysTAghxPr1603qduXKFaHRaMS9994rqqurjftbuXKlACDWrVtn3DZ8+HDRqVMnq+pDpEQcAiMio59++glPPfUUBg4ciMTExCY91tDDUFpa2mC5BQsWYPPmzejTpw927dqFuXPnIiYmBtHR0SbDbtu2bUO7du3w9NNP19uHSqUy/t/Ly8v4/99++w06nQ6DBw9GXl5ek+pfV1ZWFvR6PcaMGYNr164Z/wIDA9G1a1fs3bvXpLyHhwcmTZrUpOfo1q0b2rdvj4iICEydOhVdunTBjh07LM4d+uyzz1BZWYkZM2bAze3Pw/cTTzwBX19f7Nixo+kNJVIoDoEREQCgoKAAw4cPh1arxQcffAC1Wt2kx1+/fh0A4OPj02jZcePGYdy4cSgpKcE333yDzMxMbN68GSNGjMDx48fh6emJs2fPolu3bmjVquHD1KefforFixfj6NGjqKioMG6vHSQ1x+nTpyGEQNeuXc3e7+7ubnI7JCSk3nyqxmzbtg2+vr5wd3dHaGiocVjPkvPnzwOoCZxq02g06Ny5s/F+ImocAyAigk6nw3333Yfff/8dX331FYKDg5u8D8Nl8126dLH6Mb6+vrjnnntwzz33wN3dHRs2bMA333yD2NhYqx7/1VdfYeTIkRgyZAhWr16NoKAguLu7Y/369di8eXOT21CbXq+HSqXCf/7zH7PBYN05NbV7oqw1ZMgQ47wjInIsBkBECnfjxg2MGDECp06dwmeffYYePXo0eR/V1dXYvHkzWrdujTvvvLNZ9ejbty82bNiAy5cvA6iZpPzNN9+gqqqqXm+LwbZt2+Dp6Yldu3bBw8PDuH39+vX1ylrqEbK0PTIyEkIIRERE4Oabb25qc+yiU6dOAICTJ0+ic+fOxu2VlZXIz89HXFyccVtLe8CIXB3nABEpWHV1NRISEnDw4EG8//77zco9U11djenTp+PEiROYPn06fH19LZYtLy/HwYMHzd73n//8B8CfwzsPPfQQrl27hpUrV9YrK/6XKFCtVkOlUqG6utp437lz58wmPPT29jab7NDb2xsA6t334IMPQq1WY8GCBfUSEwohUFRUZL6RdhQXFweNRoPXXnvNpE5vvfUWdDqdydV33t7eDaYkIFI69gARKdhzzz2HTz75BCNGjEBxcXG9xId1kx7qdDpjmfLycpw5cwZZWVk4e/Ysxo4di0WLFjX4fOXl5Rg0aBBuv/12DBs2DGFhYfj999/x0Ucf4auvvsKoUaPQp08fAMDEiRPx9ttvIzk5GYcOHcLgwYNRVlaGzz77DE8++SQeeOABDB8+HMuXL8ewYcMwfvx4XLlyBatWrUKXLl1w7Ngxk+eOiYnBZ599huXLlyM4OBgREREYMGAAYmJiAABz587F2LFj4e7ujhEjRiAyMhKLFy/GnDlzcO7cOYwaNQo+Pj7Iz8/Hhx9+iClTpuAf//hHi17/pmrfvj3mzJmDBQsWYNiwYRg5ciROnjyJ1atXo1+/fibvV0xMDLZu3Yrk5GT069cPbdq0wYgRIxxaXyJZk/ISNCKSluHybUt/DZVt06aN6Nq1q3jkkUfE7t27rXq+qqoq8eabb4pRo0aJTp06CQ8PD9G6dWvRp08f8fLLL4uKigqT8uXl5WLu3LkiIiJCuLu7i8DAQDF69Ghx9uxZY5m33npLdO3aVXh4eIju3buL9evXGy8zr+2nn34SQ4YMEV5eXgKAySXxixYtEiEhIcLNza3eJfHbtm0Td955p/D29hbe3t6ie/fu4qmnnhInT540eW0aShFQl6F+V69ebbBc3cvgDVauXCm6d+8u3N3dRUBAgPj73/8ufvvtN5My169fF+PHjxd+fn4CAC+JJ6pDJYQNFp0hIiIiciKcA0RERESKwwCIiIiIFIcBEBERESkOAyAiIiJSHAZAREREpDgMgIiIiEhxmAjRDL1ej19//RU+Pj5MJ09EROQkhBAoLS1FcHAw3Nwa7uNhAGTGr7/+irCwMKmrQURERM3wyy+/IDQ0tMEyDIDM8PHxAVDzAja0rhERERHJR0lJCcLCwozn8YYwADLDMOzl6+vLAIiIiMjJWDN9hZOgiYiISHEYABEREZHiMAAiIiIixWEARERERIrDAIiIiIgUhwEQERERKQ4DICIiIlIcBkBERESkOAyAiIiISHGYCZqInE5RUREqKyst3q/RaNC2bVvZ7p+IpMcAiIicSlFREVauXNlouaSkpGYFKfbev+E5GGARSYsBEBE5lYYCh+aUc/T+HRFgEVHjOAeIiKgBOp0P8vPDodM1vrq0NewdYBGRddgDREROTafzQXFxW/j7F0GrLbXpvvPy+mD79vshhBtUKj1GjPgU0dFHbPoc9qw/EVnGAIhcGudauDZrA5TmfA50Oh/jvgFACDds334/IiPP2CxQsab+/AwT2QcDIHJZnGvh2qwNUJr7OSgubmvct4EQbigu9rdJAGRN/fkZJrIfzgEil8W5Fq6toQCltuZ+Dvz9i6BS6U22qVR6+PsXN6O29VlTf36GieyHARAROaXmBijWTmrWaksxYsSnxucwDFHZavirOfW39YRsIiXjEBgpBiebugaNRgPgzwCl7hwaw3trKFebNXNuaj8uOvoIIiPPoLjYH/7+xSafG3P7b4rG6t+cuhOR9RgAyQwnPNqOTqcz/r+hk4dOp0NQUJBU1aQmatu2LZKSkozfk5SUqzh3rhXCw/9AcHA/AP1aNKm57v7Nacn3sCkBlqEOjpiQTaQ0DIBkhBMebauqqgpA4ycPQzm5kVswLKf61H6eoCAgJqbxxzRlUrM929GUAOvy5csA7D8hm2xDTt8RObt4ETh9GujaFQgNla4eDIBkhBMe7cMZTx5yC4blVp/mMMy5qf1ZsOWk5qZo6mskp7qTeXW/I5aG3OX8HbEnQ3C4ebMXnn9eC71eBTc3gaVLdRg//r+SBIcMgMjlOePJQ27BsNzq0xxNnXMjJ85cd6Wo/dlvaMhdzt8RezEEhzqdDzIyZkAIFQBAr1dh5kxfXLq0DlptqcODQwZA5LJatar5eGu1pejV6xi++643ABUAgV69jhlPHoZyZD1nmlDuqEnN9uDMdVcqzteqzxD0NdYb7+jgkEd+GXOmk4wc+fn5Aah5HY8d64Wa4AcAVDh2rBfuvvtzaLWlxnJyJqfPgrNdjWTvSc325Mx1Vyo5DbnXnpP0669uyM9vhYiIPxAcXJN+wdGfHbn1xjMAkilnO8nImZwOSM0hp8+Cs/66deYAwZnr7uyaM6lZLif52nOSGjqGOHLYSW5DuQyAZMhZTzJyJZcDUnPI7bPg7MEk1ccrl8xr7qRmuZzkrU2h4Ohhp4aGch2NAZAM8SRjGy1JmCcXcvssOHMwSfU54solZw2wWjKpWU4nebkdQ4CaY7IczmUMgGTEcCJu7CQj5xO2nDQ3YZ6cyC3gkMuvW7INe1+55AqXhje3F1YuJ3m5HUPkhAGQjNQ+YYeElGDWLC2qq1VQqwXS00swfvw42Z+w5aY5CfPkQG69V7waybXZa6jVFS4Nt7YHxdrPvqO/I/zRYhkDIJkxnLCfew5ISADOnAG6dFEhNNQPgJ+UVSMHklvvFa9Gcm32HiaR21y2prC2B0XO3xGph+TkGhwyAJKx0FBp04RTw+w9t0FuvVcMblyXvYdJ5DgPxVpN6UGR83dEyiE5uQaHDICImsEVloYgMrD3MImzz0ORugfFFcjxOMgAiOh/mtKjU7ecpcmdcp7bQFSbPU/yrjAPRS6Tmq0l12EnOWEARISW9ejIKVEhUUvY8yTvbL0ozh5AyHXYSU4YABGh+T06zjy5k8jRJ3ln6kVxhQBCznWTAwZARHU0pUfHmSd3kmXOmryvqex9kneFXhRyXQyAiGppao+Os0/upPqUNsHdnm1whV4Ucl0MgIhqaWqPjitM7iRTnOBuWwxuSK4YABHV0pweHWeb3EnW4wR3Itfl1ngRIuUw9OioVHoAsNijU3fOglZbioiI842WI+dhaThUp/ORuGZEZAvsASKqw5oeHc5tcH2c4E5Ko5TJ/wYMgIhgvkfH3Emudjm5HQiUdvCyN05wJyWpO/nf0tw3V5n8DzAAIgLg/D06SrtyyRE4wZ2UpPaxr6G5b640+Z8BENH/OHNg4Igrl5TYw8QJ7qQ0SkruygCIyMXY48olJXWPN2c4lMhVKGnuGwMgomaSY4+IvX69Kal73NmHQ0k6cjwmNJWS5r4xACJqBrnOubH3rzeldI/L/SRF8uMqvaRKmvsmizxAq1atQnh4ODw9PTFgwAAcOnTIYtmsrCz07dsXfn5+8Pb2RlRUFDZu3Gi8v6qqCrNmzcJtt90Gb29vBAcHY+LEifj1118d0RRSCHNzbvLzw+vliHF0j4jh11tttvz11lCARaRkdXtJMzJmYMOGRGRkzEBeXh+z5eQqOvoIZszIQGJiJmbMyHDZ5J+SB0Bbt25FcnIy5s2bh7y8PPTu3Rvx8fG4cuWK2fL+/v6YO3cuDh48iGPHjmHSpEmYNGkSdu3aBQAoLy9HXl4eXnzxReTl5SErKwsnT57EyJEjHdksUpCGDnaOZm0ix+ayd4BF5OxcJYGmpeSurkTyIbDly5fjiSeewKRJkwAAa9euxY4dO7Bu3TrMnj27XvmhQ4ea3H7mmWewYcMG7Nu3D/Hx8dBqtdizZ49JmZUrV6J///64cOECOnbsaLe2kPLIcUjInlcu2at73BXmThABzjuJ2NpJ/a40+V/SAKiyshKHDx/GnDlzjNvc3NwQFxeHgwcPNvp4IQQ+//xznDx5Eunp6RbL6XQ6qFQq+Pn5mb2/oqICFRUVxtslJSXWN8LGeCJwLnI52DnyyiVbB1iuMneCpCG3Y6azTiJW4uR/SQOga9euobq6GgEBASbbAwIC8NNPP1l8nE6nQ0hICCoqKqBWq7F69Wrcc889ZsveuHEDs2bNwrhx4+Dr62u2TGpqKhYsWND8htiIXCfWkmVyOdg5+uBlKcBqDiVdYUa2JcdjpjNPIlbaeUXyIbDm8PHxwdGjR3H9+nXk5OQgOTkZnTt3rjc8VlVVhTFjxkAIgTVr1ljc35w5c5CcnGy8XVJSgrCwMHtV3yJHJLMj25LTwc6eBy9HdI/LcTiR5E2ux0ylJNCUW+9bU0kaALVr1w5qtRqFhYUm2wsLCxEYGGjxcW5ubujSpQsAICoqCidOnEBqaqpJAGQIfs6fP4/PP//cYu8PAHh4eMDDw6NljbExeySzI/tQwsHOET1MchlOJOckt2OmLXtJ5UiOvW9NJWkApNFoEBMTg5ycHIwaNQoAoNfrkZOTg6SkJKv3o9frTebwGIKf06dPY+/evbJ98S3hL2H5U2K2YHt/j+QynEjORw7HTKVNIpZr71tTSD4ElpycjMTERPTt2xf9+/dHRkYGysrKjFeFTZw4ESEhIUhNTQVQM1+nb9++iIyMREVFBXbu3ImNGzcah7iqqqowevRo5OXl4dNPP0V1dTUKCgoA1FxC7wwfPv4Slj8lThi0NzkNJ5JzkcMxU8nHBLn1vllL8gAoISEBV69eRUpKCgoKChAVFYXs7GzjxOgLFy7Aze3PD3ZZWRmefPJJXLx4EV5eXujevTveeecdJCQkAAAuXbqETz75BEDN8Fhte/furTdPSI74S9g5uOKBTGpKGE4k25PLMVOJxwQ59L41l+QBEFAzRmhpyCs3N9fk9uLFi7F48WKL+woPD4cQwpbVczj+EiYlc/W5E2R7PGZKRw69b80liwCI6uMvYVIKpc2dIPvgMVMacul9aw4GQDKixIm1REqeO0Etw2Om9Jy5940BkIzwREBK5eyfaWfPh+KseMyUB2ftfWMAJDP8ohI5Fy7lIS2+ptJwhd43BkAOwF+HRK6LS3mQErlC7xsDIDvjr0MiZXDmy4GJmsPZz1kMgOyMvw6pudhz6Fyc+XJgIiViAOQg/HVITcGeQ+fjzJcDEykRAyAH4a9Dago59hzW7pH69Vc35Oe3QkTEHwgO1gNgj5QzXw5MpEQMgByEvw6pOeTSc1i7R6qhgEzpPVLOejkwkRK5NV6EbMHw61Clqvm1zF+HZI2Geg4dydDzYykg0+l8TMopmVZbioiI8/xuE8kce4AciL8Oqank1nPIodz6uJQHkXNiAORgXOjRdThiTozc5pXILSCTA1fIh0KkRAyA7Iy/Dl2TI+fEyKnnUG4BmVwwuCFyPgyA7Iy/Dl1TY3NiDJOUbTUnRk49h3IKyIiImosBkAMwuHFd9poTI/eeQzkFZKRsTBhKzcUAiKgF7DUnhj2HRI2rmzDUEqWnZyDzGAARtYA958TI6YAt9x4pUqa6PxAsZUxnegYyhwEQUQspYU4Me6RI7hq6GIHIHAZARDaghDkxDG5IruSSMZ2cCzNBExGRU5NLxnRyLgyAiJqBc2KI5MNwMUJtSk/QSY3jEBhRM3BODJF8MEEnNQcDIKJmYnBDJB9KuBiBbIsBEBEROaW6Q8yWLkbgUDSZwwCIiIicEoeiqSUYABERkdNicEPNxavAiIiISHHYA0RE5GBcwJMcgZ+zhjEAIiJyoLoLeFpav4oLeFJLcKHYxjEAIiJyoNq/yBtav4oLeLo+e/bQWPv5UfLnjAEQEZEEuH6Vsjm6h8ZST6OSMQAiIpJAQ+tX8QTl+hzZQ9NQT6OS8SowIjMuXgT27q35l8geuH4V1abT+SA/Pxw6nY/N92uup9HWz+OM2ANE9D+G8fjNm73w/PNa6PUquLkJLF2qw/jx/1X8FRNkW1y/igzs2UPDnkbLGAAR4c/xeJ3OBxkZMyCECgCg16swc6YvLl1aB622VNFXTJDtcf0qsvdcMENPY+0giD2NNTgERoQ/x9kb+rVUuxyRrWi1pYiIOM/gR6EaO+a0lKGn0TDcyp7GP7EHiKgW/loie7N2YU4u4KkM9jrm1P78NNTTqOTPGQMgolo4L4PsjQt4Um32Oubwc9Y4BkBkNxcvAqdPA127AqGhUtfGepyXQfam5JMO1XBEDw0/Zw1jAEQ25SpXUmm1pQx8iMhu2EMjPQZAZDO8koqIyHo8DkqLV4GRzfBKKiIichYMgMjmnDHDLa/MISJSFg6Bkc0545VUHI8nIlIWWfQArVq1CuHh4fD09MSAAQNw6NAhi2WzsrLQt29f+Pn5wdvbG1FRUdi4caNJGSEEUlJSEBQUBC8vL8TFxeH06dP2bgbVEh19BDNmZCAxMRMzZmQ4xcJ7bdu2RVBQkMU/Bj9ERK5D8gBo69atSE5Oxrx585CXl4fevXsjPj4eV65cMVve398fc+fOxcGDB3Hs2DFMmjQJkyZNwq5du4xlli5ditdeew1r167FN998A29vb8THx+PGjRuOahaBGW6JiEi+VEIIIWUFBgwYgH79+mHlypUAAL1ej7CwMDz99NOYPXu2VfuIjo7G8OHDsWjRIgghEBwcjOeeew7/+Mc/AAA6nQ4BAQHIzMzE2LFjG91fSUkJtFotdDodfH19m984B5M6787ly5fxxhtvNFpuypQpCAoKckCNiIhIDgwpUiyx1RSDppy/JZ0DVFlZicOHD2POnDnGbW5uboiLi8PBgwcbfbwQAp9//jlOnjyJ9PR0AEB+fj4KCgoQFxdnLKfVajFgwAAcPHjQbABUUVGBiooK4+2SkpKWNMuhXCXvDhERuSZDipTGODpFiqQB0LVr11BdXY2AgACT7QEBAfjpp58sPk6n0yEkJAQVFRVQq9VYvXo17rnnHgBAQUGBcR9192m4r67U1FQsWLCgJU2RhNzy7vBKKiIiqsva1CeOTpHilFeB+fj44OjRo7h+/TpycnKQnJyMzp07Y+jQoc3a35w5c5CcnGy8XVJSgrCwMBvV1n6sybuj1ZY67EPFK6mIiMhZSBoAtWvXDmq1GoWFhSbbCwsLERgYaPFxbm5u6NKlCwAgKioKJ06cQGpqKoYOHWp8XGFhock8k8LCQkRFRZndn4eHBzw8PFrYGunIaQVzBjdERNQQnc4HxcVt4e9fJOlFMpJeBabRaBATE4OcnBzjNr1ej5ycHAwcONDq/ej1euMcnoiICAQGBprss6SkBN98802T9ulMDHl3DMkHnSHvDhERKU9eXh9kZMzAhg2JyMiYgby8PpLVRfIhsOTkZCQmJqJv377o378/MjIyUFZWhkmTJgEAJk6ciJCQEKSmpgKoma/Tt29fREZGoqKiAjt37sTGjRuxZs0aAIBKpcKMGTOwePFidO3aFREREXjxxRcRHByMUaNGSdVMu+MK5kREJGc6nY8xQS5QM1Vj+/b7ERl5RpJzluQBUEJCAq5evYqUlBQUFBQgKioK2dnZxknMFy5cgJvbnx1VZWVlePLJJ3Hx4kV4eXmhe/fueOedd5CQkGAs8/zzz6OsrAxTpkzB77//jjvvvBPZ2dnw9PR0ePsciSuYExGRXDU2X9XRJA+AgJpL35KSkszel5uba3J78eLFWLx4cYP7U6lUWLhwIRYuXGirKhIREVELyGm+KiCDTNBERETkugypTxqbr+roFCmy6AGi5mHeHSIikru6KVJSUq7i3LlWCA//A8HB/QD0kyRFiuRLYciRMy2F4aj04kRERHLnNEthUMsxuCEish5/NJIBAyAiIlIEua5JRdLgJGgiIlIEua5JRdJgAERERIqk0/kgPz8cOp2P1FUhCXAIjIiIFCcvr48xK7Hhcuzo6CNSV4sciD1ARESkKJaWZGBPkLIwACIiIkVpaEkGUg4GQEREpCiGJRlqk3JJBpIGAyAiIlKUxpZkIGXgJGgiIlKE2ssCRUcfQWTkGRQX+8Pfv9gk+OHyQcrAAIiIiBSh7ppU5jATtHIwACIiIsVgcEMGDICIFKr2mki//uqG/PxWiIj4A8HBNfMi+EuYbIFrbzkPpb1XDICIFKj2mkgNJYTjmkjUElx7y3ko8b3iVWBECmT4lddYQjiuiUQtwbW3nIcS3ysGQEQKxoRw5Ehce4vkhENgRA4ixzk3hoRwtYMgJoQje+DaW85Fp/NBcXFb+PsXuWx+JAZARA4g1zk3hoRwdevjqgc8koalodbIyDP8rMmQUoJVBkBEDtDYnBvDiUCK8fWGEsIR2UJDQ638vMmLkoJVBkBEDiTXE4FWW+pyBzeSDw61Og+5HqPsgZOgiRyIizCSEnHtLeehpGMUe4CIHEguc26sXeuIayJRS3DtLedheA8aO0a50nulEkIIqSshNyUlJdBqtdDpdPD19ZW6OuQCLl++jDfeeMN4u+YKi/ongilTpiAoKMghdVJa1leyjaZ+bvg5cx51r1Q9d64VwsOdKzt8U87f7AEikoAc5tzI/UBG8tOcbMH8nDmP2u9VUBAQEyNhZRyAc4CIiMgqdXtyLCU2dKVsweS62ANE5ACcc0OuRim5Ysh1MQAicoC2bdsiKSmJcyHIJSgpVwxZ5uzzuxgAETmInA8ERE2hpFwxZJ4rrB7POUBERNQkSsoVQ+a5wurxDICIiKhJmNiQXAGHwIiIqMm4hhw5OwZAREQuxJ4TU+tepWgpnxWvZlSemuSubeHvX+Q0wTADICIiF2Hviam8mpEMdDqd8f8NpUTQ6XQOy27fVAyAiIhchLlEheZ+lbdkYiqDGwKAqqoqAI2nRDCUkyMGQERELoiJCskRnDklAq8CIyJyMZZ+ldddsoKouVq1quk/aSwlgqGcHDEAIiJyMQ39KieyBT8/PwB/pkQADEGQaUoEQzk5YgBERORimKiQHE2lMv3XGTAAIiJyMUxUSI7izMOt8h2cIyKiZmOiQnIEZ54EzQCIiCTn7KtKywUTFUqvurpa1pd+25K3tzfCw8sRHl5uEgSpVHqEh/8X3t7eAIAbN27Y7Dnd3d2hVqttsi+VEELYZE8upKSkBFqtFjqdDr6+vlJXh8il1U3eZyl3jZxXlZYTBpPSEEKgoKAAv//+u9RVcZjq6moAQFmZCr/99mcAdNNNenh714QWtgpWavPz80NgYCBUZiYcNeX8LXkP0KpVq/Dyyy+joKAAvXv3xooVK9C/f3+zZd988028/fbbOH78OAAgJiYGL730kkn569evY/bs2fjoo49QVFSEiIgITJ8+HdOmTXNIe4ioaWqfrBvKXSPnVaXlhMGNNAzBT4cOHdC6dWuzJ2dXVlkJVFUB7u6AvToYhRAoLy/HlStXAKDFGaYlDYC2bt2K5ORkrF27FgMGDEBGRgbi4+Nx8uRJdOjQoV753NxcjBs3DoMGDYKnpyfS09Nx77334ocffkBISAgAIDk5GZ9//jneeecdhIeHY/fu3XjyyScRHByMkSNHOrqJRGSlxjLKEslVdXW1MfhRagDq6emY5/Hy8gIAXLlyBR06dGhRD5OkV4EtX74cTzzxBCZNmoQePXpg7dq1aN26NdatW2e2/KZNm/Dkk08iKioK3bt3x7///W/o9Xrk5OQYyxw4cACJiYkYOnQowsPDMWXKFPTu3RuHDh1yVLOIqBmYu4YcoaioCJcvX7b4V1RU1OR9Gub8tG7d2tbVJTMMr3NL51pJ1gNUWVmJw4cPY86cOcZtbm5uiIuLw8GDB63aR3l5OaqqquDv/+cBctCgQfjkk0/w2GOPITg4GLm5uTh16hReeeUVi/upqKhARUWF8XZJSUkzWkRELWHIXVN3MiVz15Ct2HuxWKUNe0nFVq+zZD1A165dQ3V1NQICAky2BwQEoKCgwKp9zJo1C8HBwYiLizNuW7FiBXr06IHQ0FBoNBoMGzYMq1atwpAhQyzuJzU1FVqt1vgXFhbWvEYRUbMxdw3Zm7XzyDjfTBkknwTdXGlpadiyZQtyc3PhWWvwccWKFfj666/xySefoFOnTvjyyy/x1FNP1QuUapszZw6Sk5ONt0tKShgEEUmAuWuIyFEk6wFq164d1Go1CgsLTbYXFhYiMDCwwccuW7YMaWlp2L17N3r16mXc/t///hcvvPACli9fjhEjRqBXr15ISkpCQkICli1bZnF/Hh4e8PX1NfkjImlotaWIiDjP4IfsTqfzQX5+uFNkLbaXRx99FCqVCiqVCu7u7ggICMA999yDdevWQa/XN76D/8nMzJT1ul/mSNYDpNFoEBMTg5ycHIwaNQoAjBOak5KSLD5u6dKlWLJkCXbt2oW+ffua3FdVVYWqqiq4uZnGdWq1uklvJBE5jrVJ+Zi8j2ypoZQLUpAyf9OwYcOwfv16VFdXo7CwENnZ2XjmmWfwwQcf4JNPPpH1iu4tIWmrkpOTkZiYiL59+6J///7IyMhAWVkZJk2aBACYOHEiQkJCkJqaCgBIT09HSkoKNm/ejPDwcONcoTZt2qBNmzbw9fVFbGwsZs6cCS8vL3Tq1AlffPEF3n77bSxfvlyydhKRZW3btkVSUhKT95HDyC3lgr0nZzfGw8PDOPISEhKC6Oho3H777fjLX/6CzMxMTJ48GcuXL8f69evx888/w9/fHyNGjMDSpUvRpk0b5ObmGs/bhgnK8+bNw/z587Fx40a8+uqrOHnyJLy9vXH33XcjIyPDbKobR5M0AEpISMDVq1eRkpKCgoICREVFITs72zgx+sKFCya9OWvWrEFlZSVGjx5tsh/DCw0AW7ZswZw5c/Dwww+juLgYnTp1wpIlS5gIkUjGGNyQI+h0OgCNr1+l0+lanGSvKeQ4Ofvuu+9G7969kZWVhcmTJ8PNzQ2vvfYaIiIi8PPPP+PJJ5/E888/j9WrV2PQoEHIyMhASkoKTp48CaCmYwKoGZlZtGgRunXrhitXriA5ORmPPvoodu7c6bC2WCJ5v1ZSUpLFIa/c3FyT2+fOnWt0f4GBgVi/fr0NakZERK7EkDemsZQLSlnLqzHdu3fHsWPHAAAzZswwbg8PD8fixYsxbdo0rF69GhqNBlqtFiqVqt4c3scee8z4/86dO+O1115Dv379cP36dWOQJBVJEyESERE5imEuS2MpF1x1zktTCSGMQ1qfffYZ/vKXvyAkJAQ+Pj6YMGECioqKUF5e3uA+Dh8+jBEjRqBjx47w8fFBbGwsgJoRHqnxXSYiIkWofZVSdPQRdOhQgAsXOqJjxwsIDb1stpySnThxAhERETh37hzuv/9+/P3vf8eSJUvg7++Pffv24fHHH0dlZaXFDNhlZWWIj49HfHw8Nm3ahPbt2+PChQuIj4+XRa4lBkDUIK4sTUSuSG5XgcnN559/ju+//x7PPvssDh8+DL1ej3/961/GebnvvfeeSXmNRmNcHd7gp59+QlFREdLS0oy59f7f//t/jmmAFRgAkUVSX5lARGQPcrsKTGoVFRUoKCgwuQw+NTUV999/PyZOnIjjx4+jqqoKK1aswIgRI7B//36sXbvWZB/h4eG4fv06cnJy0Lt3b7Ru3RodO3aERqPBihUrMG3aNBw/fhyLFi2SqJX1cQ4QWVS358dS0jA5dGU6A3sswkhETceFd01lZ2cjKCgI4eHhGDZsGPbu3YvXXnsNH3/8MdRqNXr37o3ly5cjPT0dt956KzZt2mRMT2MwaNAgTJs2DQkJCWjfvj2WLl2K9u3bIzMzE++//z569OiBtLS0BpMSOxp7gMgq7C5umbq9aTqdD4qL28Lfv8jkFyd704jsT24L70qZDDQzMxOZmZmNlnv22Wfx7LPPmmybMGGCye01a9ZgzZo1JtvGjRuHcePGmWwTQjSvsjbW5ABo586dyMrKgr+/Px577DF0797deN9vv/2Ghx56CJ9//rlNK0nSYndxy9XuJWsomGRvmn1wLhsBfwYQhqvA6n4PDcczR2cdZzJQaTQpANq8eTMmTpyIYcOG4eTJk1ixYgX+/e9/4+GHHwZQc/D+4osv7FJRkk5jScPIegwmHY9z2cigbqCRknIV5861Qnj4HwgO7gegn2SBBj97jtekAOjll1/G8uXLMX36dAA1s8Afe+wx3LhxA48//rhdKkjSk1t3sTNjMOl45uaymRt+ZO+bMtQONIKCgJgYCStDkmpSAHT69GmMGDHCeHvMmDFo3749Ro4ciaqqKvzf//2fzStI0musu5isx2BSWpzLRkQGTQqAfH19UVhYiIiICOO2u+66C59++inuv/9+XLx40eYVJHmIjj6CyMgzKC72h79/MYOfZmIwKR0OPxJRbU0KgPr374///Oc/uP322022x8bGYvv27bj//vttWjmSVt2JgFptqdkThaMnDDo7BpPS4PAjEdXWpADo2WefxYEDB8zeN3ToUGzfvh1vv/22TSpG0uOVCfZjKZgk++HwIxHV1qQAqE+fPujTpw9KSkrM3h8TE4MYzihzKQxubEPKPB9Ug8OPRFRbkwIgPz8/48qwDam7HgiR0rE3TR44/EhEBk0KgPbu3Wv8vxACf/3rX/Hvf/8bISEhNq8YkathcCMNzmUjkk5ubi7uuusu/Pbbb/Dz87PqMeHh4ZgxYwZmzJhh17o1KQCKjY01ua1Wq3H77bejc+fONq0UEZGtsPeNyLJHH30UGzZswNSpU+stcPrUU09h9erVSExMtGq5DGfDtcCIyOUxuCGyLCwsDFu2bMErr7wCLy8vAMCNGzewefNmdOzYUeLa2Q9XgyciIlKw6OhohIWFISsry7gtKysLHTt2RJ8+fYzbKioqMH36dHTo0AGenp6488478e2335rsa+fOnbj55pvh5eWFu+66C+fOnav3fPv27cPgwYPh5eWFsLAwTJ8+HWVlZXZrnyUtDoCsmRRNRERE1rl4Edi7t+ZfR3nsscewfv164+1169Zh0qRJJmWef/55bNu2DRs2bEBeXh66dOmC+Ph4FBfXpJL45Zdf8OCDD2LEiBE4evQoJk+ejNmzZ5vs4+zZsxg2bBgeeughHDt2DFu3bsW+ffuQlJRk/0bW0aQhsAcffNDk9o0bNzBt2jR4e3ubbK8dRRIREZF13noLmDIF0OsBNzfgjTcARyy1+cgjj2DOnDk4f/48AGD//v3YsmULcnNzAQBlZWVYs2YNMjMzcd999wEA3nzzTezZswdvvfUWZs6ciTVr1iAyMhL/+te/AADdunXD999/j/T0dOPzpKam4uGHHzZOcO7atStee+01xMbGYs2aNfD09LR/Y/+nSQGQVqs1uf3II4/YtDJERERKdfHin8EPUPPv1KlAfDwQGmrf527fvj2GDx+OzMxMCCEwfPhwtGvXznj/2bNnUVVVhTvuuMO4zd3dHf3798eJEycAACdOnMCAAQNM9jtw4ECT29999x2OHTuGTZs2GbcJIaDX65Gfn49bbrnFHs0zq0kBUO3uMSIiIrKd06f/DH4MqquBM2fsHwABNcNghqGoVatW2eU5rl+/jqlTp2L69On17nP0hGteBaYwRUVFvByYiEiGunatGfaqHQSp1UCXLo55/mHDhqGyshIqlQrx8fEm90VGRkKj0WD//v3o1KkTAKCqqgrffvutcTjrlltuwSeffGLyuK+//trkdnR0NH788Ud0cVSjGsAASEGKioqwcuXKRsslJSUxCCIicrDQ0Jo5P1On1vT8qNXA6687pvcHqMntZxjOUqvVJvd5e3vj73//O2bOnAl/f3907NgRS5cuRXl5OR7/3ySladOm4V//+hdmzpyJyZMn4/Dhw/XyB82aNQu33347kpKSMHnyZHh7e+PHH3/Enj17rDo/2RIDIAVpqOenOeWIiMi2Hn+8Zs7PmTM1PT+OCn4MfH19Ld6XlpYGvV6PCRMmoLS0FH379sWuXbtw0003AagZwtq2bRueffZZrFixAv3798dLL72Exx57zLiPXr164YsvvsDcuXMxePBgCCEQGRmJhIQEu7etLpUQQjj8WWWupKQEWq0WOp2uwQ+Ds7l8+TLeeOMN422dzgfFxW3h719ksjTAlClTEBQUJEUViYiczo0bN5Cfn4+IiAiHXsWkVA293k05f7MHSKHy8vrUWxU7OvqI1NUiIiJyCGaCViCdzscY/ACAEG7Yvv1+6HQ+EteMiIjIMdgDpEDFxW2NwY+BEG4oLvY3u0o2EZGj8EpVchQGQArk718ElUpvEgSpVHr4+xdLWCsiUjpeqUqOxABIgbTaUowY8Wm9OUBK7/3hL08iaTn7laq8psgxbPU6MwBSEI1GY/x/dPQRREaeQXGxP/z9i02Cn9rllIK/PImoudzd3QEA5eXl8PLykrg2rq+8vBzAn697czEAUpC2bdsiKSmJvRxmOPsvTyJXZClVh9yo1Wr4+fnhypUrAIDWrVtDpVJJXCvXI4RAeXk5rly5Aj8/v3rJGpuKAZDCKDG4aQ5nOfASuSpnS9URGBgIAMYgiOzHz8/P+Hq3BAMgojqc7cBL5EiOmCtnKVVHZOQZ2f4gUalUCAoKQocOHVBVVSV1dVyWu7t7i3t+DBgAEdXijAdeIkdx1Fw5Z07VoVarbXaCJvtiIkSiWho68BIpnaPmyhlSddTGVB1kawyAiGrhgZdIOoYrUA2pOgzfxbqpOpR4pSrZHofAiGphjiQi69n6YoG6V6qmpFzFuXOtEB7+B4KD+wHop9grVcn2GAARgTmSiJrKXhcL1A5ugoKAmJgW75LILAZARGCOJKKm4MUC5AoYABH9D4MbIus481VaRAYMgIiIqEnktKAy1/Cj5pI8AFq1ahVefvllFBQUoHfv3lixYgX69+9vtuybb76Jt99+G8ePHwcAxMTE4KWXXqpX/sSJE5g1axa++OIL/PHHH+jRowe2bduGjh072r09RESuqu5VWpYuFnDUXDmu4UctIWkAtHXrViQnJ2Pt2rUYMGAAMjIyEB8fj5MnT6JDhw71yufm5mLcuHEYNGgQPD09kZ6ejnvvvRc//PADQkJCAABnz57FnXfeiccffxwLFiyAr68vfvjhB3h6ejq6eURELkVuV2lxDT9qCZWw1bryzTBgwAD069fPGMHr9XqEhYXh6aefxuzZsxt9fHV1NW666SasXLkSEydOBACMHTsW7u7u2LhxY7PrVVJSAq1WC51OB19f32bvh4iI7Ofy5ct44403Gi03ZcoUBAUFOaBGJLWmnL8lS4RYWVmJw4cPIy4u7s/KuLkhLi4OBw8etGof5eXlqKqqgr9/TZZevV6PHTt24Oabb0Z8fDw6dOiAAQMG4KOPPrJHE8gJFBUV4fLlyxb/ioqKpK4iERFJQLIhsGvXrqG6uhoBAQEm2wMCAvDTTz9ZtY9Zs2YhODjYGERduXIF169fR1paGhYvXoz09HRkZ2fjwQcfxN69exEbG2t2PxUVFaioqDDeLikpaWarSE44P4BIWWydmJFcm+SToJsrLS0NW7ZsQW5urnF+j15fkzb9gQcewLPPPgsAiIqKwoEDB7B27VqLAVBqaioWLFjgmIqTw3B+AJFy2CsxI7kuyYbA2rVrB7VajcLCQpPthYWFCAwMbPCxy5YtQ1paGnbv3o1evXqZ7LNVq1bo0aOHSflbbrkFFy5csLi/OXPmQKfTGf9++eWXZrSI5E6n80F+fjh0Oh+pq0JENmQpMSO/69QQyXqANBoNYmJikJOTg1GjRgGo6cHJyclBUlKSxcctXboUS5Yswa5du9C3b996++zXrx9Onjxpsv3UqVPo1KmTxX16eHjAw8Oj+Y0h2eOvQyLXxcSM1BySDoElJycjMTERffv2Rf/+/ZGRkYGysjJMmjQJADBx4kSEhIQgNTUVAJCeno6UlBRs3rwZ4eHhKCgoAAC0adMGbdq0AQDMnDkTCQkJGDJkCO666y5kZ2dj+/btyM3NlaSNJD2m7SdyTYZ8Q40lZuQafmSOpAFQQkICrl69ipSUFBQUFCAqKgrZ2dnGidEXLlyAm9ufH+g1a9agsrISo0ePNtnPvHnzMH/+fADA//3f/2Ht2rVITU3F9OnT0a1bN2zbtg133nmnw9pF8sJfh0SuqXZeopCQEsyapUV1tQpqtUB6egnGjx/HTNBkkaR5gOSKeYBcgyFHiE7ng4yMGfV+Hc6YkQGttpQ5QohcxMWLwJkzQJcuQGio1LUhKThFHiAiRzGk7Vepaq4SrJu2n4hcQ2goMHQogx+yjtNeBk/UmNrj/tHRRxAZeQbFxf7w9y82CX44P4CISHkYAJHLqrtukTmcH0BEpEwMgMilMbghIiJzOAeIiIiIFIcBEBERESkOAyAiIiJSHAZAREREpDicBC0zRUVFdr1qyd77JyIicgYMgGSkqKgIK1eubLRcUlJSs4IUe++fbIvBKhGR/TAAkpGGTnbNKefo/ZPtMFglIrIvzgEikiEGq0RE9sUeICIikg0O/ZKjMACSMZ3OB8XFbeHvX2SXhTvtvX+yHb5XpAQc+iVHYgAkU3l5fbB9+/0Qws24enl09BGn2T/ZDt8rUgoO/ZIjcQ6QDOl0PsYTHgAI4Ybt2++HTufjFPsn2+F7RURkHwyAZKi4uK3xhGcghBuKi/2dYv9kO3yvSMl0Oh/k54cz4Ce74BCYjGg0GgCAv38RVCq9yYlPpdLD37/YpJzc9g9wAqOtNfZeEbkqDv2SvTEAkpG2bdsiKSkJlZWVCAkpwaxZWlRXq6BWC6Snl2D8+HEtCiDsvX+lTWC0Z7BnCEK12lKMGPFpvROBYSJ0S4JVIrmyNPQbGXmGFwGQzTAAkhnDCfO554CEBODMGaBLFxVCQ/0A+Ml6/0qawGjvYK92sAoAKSlXce5cK4SH/4Hg4H4A+rE3jVxWQ0O/DIDIVhgAyVhoaM2fs+7flTki2Ksd3AQFATExzd4VkVPh0C85AidBExGRLNQd+lWp9ADAoV+yC/YAkd0oKXmfktpKZC8c+iVHYgBEdqGkKziU1FYie+PQLzkKh8DI5pSUvE9JbSUiciUMgMjmlJS8T0ltJSJyJRwCowY1JdeNIxItyg2vViEick4MgMiipua6sXeiRTlhokIiIuemEkIIqSshNyUlJdBqtdDpdPD19ZW6OpK5fPky3njjjUbLTZkyBUFBQfW2X7xoSLTomvmGaveO/fqrW62rVWou3XWVYM+Ay5wQkdw15fzNHiCyG1dPtKikq1WUtswJEbk+ToImokYpaZkTIlIGBkBkNZ3OB/n54bzEm/hZICKnxyEwsgqT/ZEBPwtE5ArYA0SNYrI/MuBngYhcBQMgahST/ZEBPwtE5CoYAJFFdRMb1uaqiQ2pYY19FoiInAXnAJFFSkpsSNZpLPEjEZGzYABEDTIEN889ByQkGBIbqhAa6gfAT8qqkQPV7uWLjj6CyMgzKC72h79/sUnww95AInIWzARtBjNBE9XHTNBEJHfMBE1ENsfghohcCSdBExERkeIwACIiIiLFYQBEREREisMAiIiIiBSHARAREREpjiwCoFWrViE8PByenp4YMGAADh06ZLHsm2++icGDB+Omm27CTTfdhLi4uAbLT5s2DSqVChkZGXaoORERETkjyQOgrVu3Ijk5GfPmzUNeXh569+6N+Ph4XLlyxWz53NxcjBs3Dnv37sXBgwcRFhaGe++9F5cuXapX9sMPP8TXX3+N4OBgezeDiIiInIjkAdDy5cvxxBNPYNKkSejRowfWrl2L1q1bY926dWbLb9q0CU8++SSioqLQvXt3/Pvf/4Zer0dOTo5JuUuXLuHpp5/Gpk2b4O7u7oimEBERkZOQNACqrKzE4cOHERcXZ9zm5uaGuLg4HDx40Kp9lJeXo6qqCv7+f65GrdfrMWHCBMycORM9e/a0eb2JiIjIuUmaCfratWuorq5GQECAyfaAgAD89NNPVu1j1qxZCA4ONgmi0tPT0apVK0yfPt2qfVRUVKCiosJ4u6SkxKrHERERkXNy6qUw0tLSsGXLFuTm5sLT0xMAcPjwYbz66qvIy8uDSqWyaj+pqalYsGCBPatKREREMiLpEFi7du2gVqtRWFhosr2wsBCBgYENPnbZsmVIS0vD7t270atXL+P2r776CleuXEHHjh3RqlUrtGrVCufPn8dzzz2H8PBws/uaM2cOdDqd8e+XX35pcduIiIhIviQNgDQaDWJiYkwmMBsmNA8cONDi45YuXYpFixYhOzsbffv2NblvwoQJOHbsGI4ePWr8Cw4OxsyZM7Fr1y6z+/Pw8ICvr6/JHxEREbkuyYfAkpOTkZiYiL59+6J///7IyMhAWVkZJk2aBACYOHEiQkJCkJqaCqBmfk9KSgo2b96M8PBwFBQUAADatGmDNm3aoG3btvVWrXZ3d0dgYCC6devm2MYRERGRLEkeACUkJODq1atISUlBQUEBoqKikJ2dbZwYfeHCBbi5/dlRtWbNGlRWVmL06NEm+5k3bx7mz5/vyKoTERGRk1IJIYTUlZCbkpISaLVa6HQ6DocRERE5iaacvyVPhEhERETkaJIPgZFjFRUVobKy0uL9Go2m3hwqIiIiV8MASEGKioqwcuXKRsslJSUxCLIDBp9ERPLBAEhBGjr5NqccWY/BJxGRvHAOkILpdD7Izw+HTucjdVVcXt2g0tJrz+CTiMgx2AOkUHl5fbB9+/0Qwg0qlR4jRnyK6OgjUldLEfjaExFJjz1ACqTT+RhPwAAghBu2b7+fPUEOwNeeiEgeGAApUHFxW+MJ2EAINxQX+0tUI+Xga09EJA8MgBTI378IKpXeZJtKpYe/f7FENVIOvvZERPLAAEiBtNpSjBjxqfFEbJiHotWWSlwz18fXnohIHjgJWkE0Go3x/9HRRxAZeQbFxf7w9y82OQHXLke219BrT0REjsEASEHatm2LpKQkJuOTQN2gUqstNRv4MPgkInIMLoZqBhdDJXtgJmgiIvtqyvmbPUBEDqKk4IbBHhHJHQMgIrKpust+6HQ+KC5uC3//IpNhPy77YR8MPomswwCIiGyq9sm3oazXXPbD9hh8ElmPARAR2YWlrNeRkWd45ZudMPgksh7zABGRXTDrtXS45ApR4xgAEZFdMOu1dBh8EjWOARAR2QWzXkuHwSdR4zgHiIjshlmvpWEIPuvOAeLrT/QnBkBEZFeWsl6TfTH4JGoYAyAisilrl/Pgsh/2x+CTyDIGQERkU1xzTjoMPomsx7XAzOBaYES2c/EicPo00LUrEBoqdW1cHzNBk5JxLTAikpThJLx5sxeef14LvV4FNzeBpUt1GD/+vzwJ2xFfVyLrMAAiIpsyLMeg0/kgI2MGhFABAPR6FWbO9MWlS+ug1ZZyOQYikhTzABGRTRmGXxpLxsflGIhISgyAiMgumIyPiOSMARAR2QUzQRORnHEOEBHZDZPxEZFcMQAiIrtiMj4ikiMOgREREZHiMAAiIiIixWEAREQ2xeUYiMgZcA4QEdkU1wIjImfAAIiIbI7BDRHJHYfAiIiISHEYABEREZHiMAAiIiIixWEARERERIrDAIiIiIgUhwEQERERKQ4DICIiIlIcBkBktYsXgb17a/6VA7nVh4iInIcsAqBVq1YhPDwcnp6eGDBgAA4dOmSx7JtvvonBgwfjpptuwk033YS4uDiT8lVVVZg1axZuu+02eHt7Izg4GBMnTsSvv/7qiKa4rLfeAjp1Au6+u+bft95ifYiIyHlJHgBt3boVycnJmDdvHvLy8tC7d2/Ex8fjypUrZsvn5uZi3Lhx2Lt3Lw4ePIiwsDDce++9uHTpEgCgvLwceXl5ePHFF5GXl4esrCycPHkSI0eOdGSzXMrFi8CUKYBeX3NbrwemTpWu50Vu9SEiain2aDueSgghpKzAgAED0K9fP6xcuRIAoNfrERYWhqeffhqzZ89u9PHV1dW46aabsHLlSkycONFsmW+//Rb9+/fH+fPn0bFjx0b3WVJSAq1WC51OB19f36Y1yAXt3VvT02Ju+9ChDq+O7OpDRNQSb7315486NzfgjTeAxx+XulbOqSnnb0l7gCorK3H48GHExcUZt7m5uSEuLg4HDx60ah/l5eWoqqqCv7+/xTI6nQ4qlQp+fn4trbIide1a86WsTa0GunRhfYiIWoI92tKRNAC6du0aqqurERAQYLI9ICAABQUFVu1j1qxZCA4ONgmiartx4wZmzZqFcePGWYwGKyoqUFJSYvJHNYqKiqBWX8bSpb9Dra7pLFSrBdLTf4dafRlFRUWKrg8RUUucPv1n8GNQXQ2cOSNNfZTEqVeDT0tLw5YtW5CbmwtPT89691dVVWHMmDEQQmDNmjUW95OamooFCxbYs6pOqaioyDg0CQDTp/uguNgf/v7FuH69FG+8UbM9KSnJIat/y60+REQtZejRrh0EsUfbMSTtAWrXrh3UajUKCwtNthcWFiIwMLDBxy5btgxpaWnYvXs3evXqVe9+Q/Bz/vx57Nmzp8GxwDlz5kCn0xn/fvnll+Y1yMVUVlaa3NZqSxERcR5abWmD5ZRSHyKilmCPtrQk7QHSaDSIiYlBTk4ORo0aBaBmEnROTg6SkpIsPm7p0qVYsmQJdu3ahb59+9a73xD8nD59Gnv37m20N8DDwwMeHh4tagsREZG12KMtPcmHwJKTk5GYmIi+ffuif//+yMjIQFlZGSZNmgQAmDhxIkJCQpCamgoASE9PR0pKCjZv3ozw8HDjXKE2bdqgTZs2qKqqwujRo5GXl4dPP/0U1dXVxjL+/v7QaDTSNJSIiOh/zPVo1+3NNleObEfyACghIQFXr15FSkoKCgoKEBUVhezsbOPE6AsXLsCt1iU/a9asQWVlJUaPHm2yn3nz5mH+/Pm4dOkSPvnkEwBAVFSUSZm9e/diKK+TJiIiUjzJAyCgpovP0pBXbm6uye1z5841uK/w8HBInNpIMhcv1lxR0LUrEBoqdW2I5InfEyICZJAJmmyDS0MQNY7fEyIyYADkAphIi6hx/J4QUW0MgFyAvRJpWTth3FETy+VWH3IuTDhHRLXJYg4QtYy9Emm1bdsWSUlJDV6FoNFoHHaJptzqQ86FCeeIqDYGQC4gNLRm8bypU2t+0arVwOuv22aCp9yCCbnVh5yHPb8nRE3FHm3pSb4avBw562rwFy/WdOd36cKDOpEl/J6QXBQVFbFH28aacv5mD5CTq/0FUquBbt1qtl++XPMvv0BEpkJDGfiQPPDYLC0GQE6sbip1S5hKnZSOv7SJqC4GQE7M2hTpTKVOSsYfCkRkDi+DJyKXxh8KRGQOAyAiIiJSHAZAREREpDgMgIiIiEhxGAARERGR4jAAIiIiIsVhAOTEmEqdiIioeZgHyIlxcVCixvGHAhGZw7XAzHDWtcCIyDxmgiZSBq4FRkRUC4MbIqqLc4CIiIhIcRgAERERkeIwACIiIiLFYQBEREREisMAiIiIiBSHARAREREpDgMgIiIiUhwGQERERKQ4DICIiIhIcZgJ2gzD6iAlJSUS14SIiIisZThvW7PKFwMgM0pLSwEAYWFhEteEiIiImqq0tBRarbbBMlwM1Qy9Xo9ff/0VPj4+UKlUNt13SUkJwsLC8Msvv7jkQqtsn/Nz9Tayfc7P1dvI9jWfEAKlpaUIDg6Gm1vDs3zYA2SGm5sbQkND7focvr6+LvnBNmD7nJ+rt5Htc36u3ka2r3ka6/kx4CRoIiIiUhwGQERERKQ4DIAczMPDA/PmzYOHh4fUVbELts/5uXob2T7n5+ptZPscg5OgiYiISHHYA0RERESKwwCIiIiIFIcBEBERESkOAyAiIiJSHAZALbRq1SqEh4fD09MTAwYMwKFDhxosn5GRgW7dusHLywthYWF49tlncePGjRbt055s3b758+dDpVKZ/HXv3t3ezWhQU9pYVVWFhQsXIjIyEp6enujduzeys7NbtE97s3X75PQefvnllxgxYgSCg4OhUqnw0UcfNfqY3NxcREdHw8PDA126dEFmZma9MnJ6/+zRRmd+Dy9fvozx48fj5ptvhpubG2bMmGG23Pvvv4/u3bvD09MTt912G3bu3Gn7ylvBHu3LzMys9/55enrapwFWaGobs7KycM8996B9+/bw9fXFwIEDsWvXrnrl7P49FNRsW7ZsERqNRqxbt0788MMP4oknnhB+fn6isLDQbPlNmzYJDw8PsWnTJpGfny927dolgoKCxLPPPtvsfdqTPdo3b9480bNnT3H58mXj39WrVx3VpHqa2sbnn39eBAcHix07doizZ8+K1atXC09PT5GXl9fsfdqTPdonp/dw586dYu7cuSIrK0sAEB9++GGD5X/++WfRunVrkZycLH788UexYsUKoVarRXZ2trGMnN4/IezTRmd+D/Pz88X06dPFhg0bRFRUlHjmmWfqldm/f79Qq9Vi6dKl4scffxT//Oc/hbu7u/j+++/t04gG2KN969evF76+vibvX0FBgX0aYIWmtvGZZ54R6enp4tChQ+LUqVNizpw5wt3d3eHHUQZALdC/f3/x1FNPGW9XV1eL4OBgkZqaarb8U089Je6++26TbcnJyeKOO+5o9j7tyR7tmzdvnujdu7dd6tscTW1jUFCQWLlypcm2Bx98UDz88MPN3qc92aN9cnsPDaw58D7//POiZ8+eJtsSEhJEfHy88bac3r+6bNVGZ34Pa4uNjTUbIIwZM0YMHz7cZNuAAQPE1KlTW1jDlrFV+9avXy+0Wq3N6mVLTW2jQY8ePcSCBQuMtx3xPeQQWDNVVlbi8OHDiIuLM25zc3NDXFwcDh48aPYxgwYNwuHDh43deD///DN27tyJv/71r83ep73Yo30Gp0+fRnBwMDp37oyHH34YFy5csF9DGtCcNlZUVNTravby8sK+ffuavU97sUf7DOTyHjbVwYMHTV4PAIiPjze+HnJ6/5qrsTYaOOt7aA1rXwNndv36dXTq1AlhYWF44IEH8MMPP0hdpWbT6/UoLS2Fv78/AMd9DxkANdO1a9dQXV2NgIAAk+0BAQEoKCgw+5jx48dj4cKFuPPOO+Hu7o7IyEgMHToUL7zwQrP3aS/2aB8ADBgwAJmZmcjOzsaaNWuQn5+PwYMHo7S01K7tMac5bYyPj8fy5ctx+vRp6PV67NmzB1lZWbh8+XKz92kv9mgfIK/3sKkKCgrMvh4lJSX473//K6v3r7kaayPg3O+hNSy9Bs7yHjamW7duWLduHT7++GO888470Ov1GDRoEC5evCh11Zpl2bJluH79OsaMGQPAccdRBkAOlJubi5deegmrV69GXl4esrKysGPHDixatEjqqtmENe2777778Le//Q29evVCfHw8du7cid9//x3vvfeehDW33quvvoquXbuie/fu0Gg0SEpKwqRJk+Dm5hpfJWva5+zvIfE9dHYDBw7ExIkTERUVhdjYWGRlZaF9+/Z4/fXXpa5ak23evBkLFizAe++9hw4dOjj0uVs59NlcSLt27aBWq1FYWGiyvbCwEIGBgWYf8+KLL2LChAmYPHkyAOC2225DWVkZpkyZgrlz5zZrn/Zij/aZCxL8/Pxw880348yZM7ZvRCOa08b27dvjo48+wo0bN1BUVITg4GDMnj0bnTt3bvY+7cUe7TNHyvewqQIDA82+Hr6+vvDy8oJarZbN+9dcjbXRHGd6D61h6TVwlvewqdzd3dGnTx+ne/+2bNmCyZMn4/333zcZ7nLUcdQ1frZKQKPRICYmBjk5OcZter0eOTk5GDhwoNnHlJeX1wsC1Go1AEAI0ax92os92mfO9evXcfbsWQQFBdmo5tZryevt6emJkJAQ/PHHH9i2bRseeOCBFu/T1uzRPnOkfA+bauDAgSavBwDs2bPH+HrI6f1rrsbaaI4zvYfWaM5r4Myqq6vx/fffO9X79+6772LSpEl49913MXz4cJP7HPY9tNl0agXasmWL8PDwEJmZmeLHH38UU6ZMEX5+fsbLESdMmCBmz55tLD9v3jzh4+Mj3n33XfHzzz+L3bt3i8jISDFmzBir9+ns7XvuuedEbm6uyM/PF/v37xdxcXGiXbt24sqVKw5vnxBNb+PXX38ttm3bJs6ePSu+/PJLcffdd4uIiAjx22+/Wb1PR7JH++T0HpaWloojR46II0eOCABi+fLl4siRI+L8+fNCCCFmz54tJkyYYCxvuER85syZ4sSJE2LVqlVmL4OXy/snhH3a6MzvoRDCWD4mJkaMHz9eHDlyRPzwww/G+/fv3y9atWolli1bJk6cOCHmzZsn2WXw9mjfggULxK5du8TZs2fF4cOHxdixY4Wnp6dJGUdqahs3bdokWrVqJVatWmVyKf/vv/9uLOOI7yEDoBZasWKF6Nixo9BoNKJ///7i66+/Nt4XGxsrEhMTjberqqrE/PnzRWRkpPD09BRhYWHiySefNDm5NLZPR7N1+xISEkRQUJDQaDQiJCREJCQkiDNnzjiwRfU1pY25ubnilltuER4eHqJt27ZiwoQJ4tKlS03ap6PZun1yeg/37t0rANT7M7QpMTFRxMbG1ntMVFSU0Gg0onPnzmL9+vX19iun988ebXT299Bc+U6dOpmUee+998TNN98sNBqN6Nmzp9ixY4djGlSHPdo3Y8YM4+czICBA/PWvfzXJoeNoTW1jbGxsg+UN7P09VAlhYWyCiIiIyEVxDhAREREpDgMgIiIiUhwGQERERKQ4DICIiIhIcRgAERERkeIwACIiIiLFYQBEREREisMAiIjICeTm5kKlUuH333+XuipELoEBEBGZePTRR6FSqZCWlmay/aOPPoJKpTLeFkLgzTffxMCBA+Hr64s2bdqgZ8+eeOaZZ6xelLG8vBxz5sxBZGQkPD090b59e8TGxuLjjz82lgkPD0dGRoZN2mZvhtdOpVLB3d0dEREReP7553Hjxo0m7Wfo0KGYMWOGybZBgwbh8uXL0Gq1NqwxkXIxACKiejw9PZGeno7ffvvN7P1CCIwfPx7Tp0/HX//6V+zevRs//vgj3nrrLXh6emLx4sVWPc+0adOQlZWFFStW4KeffkJ2djZGjx6NoqIiWzbHoYYNG4bLly/j559/xiuvvILXX38d8+bNa/F+NRoNAgMDTYJQImoBmy6sQUROLzExUdx///2ie/fuYubMmcbtH374oTAcMt59910BQHz88cdm96HX6616Lq1WKzIzMy3eb27NIIOvvvpK3HnnncLT01OEhoaKp59+Wly/ft14/9tvvy1iYmJEmzZtREBAgBg3bpwoLCw03m9Yvyg7O1tERUUJT09Pcdddd4nCwkKxc+dO0b17d+Hj4yPGjRsnysrKrGpPYmKieOCBB0y2Pfjgg6JPnz7G29euXRNjx44VwcHBwsvLS9x6661i8+bNJvuo2+b8/HxjfWuvrffBBx+IHj16CI1GIzp16iSWLVtmVT2JSAj2ABFRPWq1Gi+99BJWrFiBixcv1rv/3XffRbdu3TBy5Eizj7e2lyIwMBA7d+5EaWmp2fuzsrIQGhqKhQsX4vLly7h8+TIA4OzZsxg2bBgeeughHDt2DFu3bsW+ffuQlJRkfGxVVRUWLVqE7777Dh999BHOnTuHRx99tN5zzJ8/HytXrsSBAwfwyy+/YMyYMcjIyMDmzZuxY8cO7N69GytWrLCqPXUdP34cBw4cgEajMW67ceMGYmJisGPHDhw/fhxTpkzBhAkTcOjQIQDAq6++ioEDB+KJJ54wtjksLKzevg8fPowxY8Zg7Nix+P777zF//ny8+OKLyMzMbFZdiRRH6giMiOSldi/G7bffLh577DEhhGkPUPfu3cXIkSNNHvfMM88Ib29v4e3tLUJCQqx6ri+++EKEhoYKd3d30bdvXzFjxgyxb98+kzKdOnUSr7zyism2xx9/XEyZMsVk21dffSXc3NzEf//7X7PP9e233woAorS0VAjxZw/QZ599ZiyTmpoqAIizZ88at02dOlXEx8db1Z7ExEShVquFt7e38PDwEACEm5ub+OCDDxp83PDhw8Vzzz1nvB0bGyueeeYZkzJ1e4DGjx8v7rnnHpMyM2fOFD169LCqrkRKxx4gIrIoPT0dGzZswIkTJxotO3fuXBw9ehQpKSm4fv26VfsfMmQIfv75Z+Tk5GD06NH44YcfMHjwYCxatKjBx3333XfIzMxEmzZtjH/x8fHQ6/XIz88HUNNDMmLECHTs2BE+Pj6IjY0FAFy4cMFkX7169TL+PyAgAK1bt0bnzp1Ntl25csWq9gDAXXfdhaNHj+Kbb75BYmIiJk2ahIceesh4f3V1NRYtWoTbbrsN/v7+aNOmDXbt2lWvXo05ceIE7rjjDpNtd9xxB06fPo3q6uom7YtIiRgAEZFFQ4YMQXx8PObMmWOyvWvXrjh58qTJtvbt26NLly7o0KFDk57D3d0dgwcPxqxZs7B7924sXLgQixYtQmVlpcXHXL9+HVOnTsXRo0eNf9999x1Onz6NyMhIlJWVIT4+Hr6+vti0aRO+/fZbfPjhhwBQb7/u7u7G/xuu3qpNpVJBr9db3R5vb2906dIFvXv3xrp16/DNN9/grbfeMt7/8ssv49VXX8WsWbOwd+9eHD16FPHx8Q22l4hsr5XUFSAieUtLS0NUVBS6detm3DZu3DiMHz8eH3/8MR544AGbPl+PHj3wxx9/4MaNG9BoNNBoNPV6NKKjo/Hjjz+iS5cuZvfx/fffo6ioCGlpacb5M//v//0/m9bTGm5ubnjhhReQnJyM8ePHw8vLC/v378cDDzyARx55BACg1+tx6tQp9OjRw/g4c22u65ZbbsH+/ftNtu3fvx8333wz1Gq17RtD5GLYA0REDbrtttvw8MMP47XXXjNuGzt2LEaPHo2xY8di4cKF+Oabb3Du3Dl88cUX2Lp1q9Un4KFDh+L111/H4cOHce7cOezcuRMvvPAC7rrrLvj6+gKoyQP05Zdf4tKlS7h27RoAYNasWThw4ACSkpJw9OhRnD59Gh9//LFxEnTHjh2h0WiwYsUK/Pzzz/jkk08aHVazl7/97W9Qq9VYtWoVgJresz179uDAgQM4ceIEpk6disLCQpPHhIeHG1/Ta9eume2Beu6555CTk4NFixbh1KlT2LBhA1auXIl//OMfDmkXkbNjAEREjVq4cKHJSVilUmHr1q3IyMjAzp078Ze//AXdunXDY489hrCwMOzbt8+q/cbHx2PDhg249957ccstt+Dpp59GfHw83nvvPZPnPnfuHCIjI9G+fXsANfN2vvjiC5w6dQqDBw9Gnz59kJKSguDgYAA1w3GZmZl4//330aNHD6SlpWHZsmU2fEWs16pVKyQlJWHp0qUoKyvDP//5T0RHRyM+Ph5Dhw5FYGAgRo0aZfKYf/zjH1Cr1ejRowfat29vdn5QdHQ03nvvPWzZsgW33norUlJSsHDhQrNXuhFRfSohhJC6EkRERESOxB4gIiIiUhwGQERkN7UvU6/799VXX0ldvSa5cOFCg+1p6mXsRCQtDoERkd00tChqSEgIvLy8HFiblvnjjz9w7tw5i/eHh4ejVSteWEvkLBgAERERkeJwCIyIiIgUhwEQERERKQ4DICIiIlIcBkBERESkOAyAiIiISHEYABEREZHiMAAiIiIixWEARERERIrz/wGPXadjrSJv4gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVSFJREFUeJzt3XlcVOXCB/DfMLKJMAjKKgqCqeUGqLiUWNlFr2K+17dM09SrmSWZUm4tLlcTt5Rccrtut+TqLak3rTQl7d7M0lDeck0MygVQhxxUCpB53j94Z2KAAQZm5pyZ8/t+PvOROXPmzHMOI/ObZ1UJIQSIiIiIFMRF6gIQERER2RsDEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQEZGMbd++HSqVCrm5uVIXhcipMAARKdyJEyeQlJSEBx54AF5eXmjdujWefPJJ/Pjjj9X27d+/P1QqFVQqFVxcXODj44P27dtjzJgxOHjwoEWvu3fvXsTHxyMgIABNmzZF27Zt8eSTT2L//v3WOrVqFi9ejI8++qja9q+//hrz58/HrVu3bPbaVc2fP994LVUqFZo2bYr7778fr7/+OoqKiqzyGmlpaUhNTbXKsYicDQMQkcItXboUe/bswaOPPoq3334bkyZNwr///W/ExMTg9OnT1fZv1aoV3n33XfzjH//A8uXLMXToUHz99df405/+hBEjRqCsrKzO11yxYgWGDh0KlUqFOXPmYNWqVRg+fDguXryIXbt22eI0AdQegBYsWGDXAGSwfv16vPvuu1i5ciU6dOiAN998EwMHDoQ1lmlkACIyr4nUBSAiaSUnJyMtLQ1ubm7GbSNGjEDnzp2xZMkSvPfeeyb7azQajB492mTbkiVLMHXqVLzzzjsIDw/H0qVLzb7evXv3sHDhQjz22GP4/PPPqz1+/fr1Rp6RfBQXF6Np06a17vPf//3faNGiBQBg8uTJGD58ONLT0/HNN9+gd+/e9igmkSKxBohI4fr06WMSfgCgXbt2eOCBB3Du3Ll6HUOtVmP16tW4//77sXbtWuh0OrP73rx5E0VFRejbt2+NjwcEBJjc//333zF//nzcd9998PDwQHBwMP7yl7/g0qVLxn1WrFiBPn36wN/fH56enoiNjcUHH3xgchyVSoW7d+9ix44dxmancePGYf78+ZgxYwYAICIiwvhY5T437733HmJjY+Hp6Qk/Pz889dRTuHz5ssnx+/fvj06dOiEzMxP9+vVD06ZN8eqrr9br+lX2yCOPAABycnJq3e+dd97BAw88AHd3d4SEhGDKlCkmNVj9+/fHJ598gp9//tl4TuHh4RaXh8hZsQaIiKoRQqCgoAAPPPBAvZ+jVqsxcuRIvPHGG/jqq68wePDgGvcLCAiAp6cn9u7dixdffBF+fn5mj1leXo4hQ4YgIyMDTz31FF566SXcvn0bBw8exOnTpxEZGQkAePvttzF06FA8/fTTKC0txa5du/DEE09g3759xnK8++67mDhxInr27IlJkyYBACIjI+Hl5YUff/wR//znP7Fq1SpjbUzLli0BAG+++SbeeOMNPPnkk5g4cSJu3LiBNWvWoF+/fjh16hR8fX2N5dVqtRg0aBCeeuopjB49GoGBgfW+fgaGYOfv7292n/nz52PBggUYMGAAnn/+eVy4cAHr16/HiRMncPToUbi6uuK1116DTqfDlStXsGrVKgBAs2bNLC4PkdMSRERVvPvuuwKA2LJli8n2+Ph48cADD5h93ocffigAiLfffrvW48+dO1cAEF5eXmLQoEHizTffFJmZmdX227p1qwAgVq5cWe0xvV5v/Lm4uNjksdLSUtGpUyfxyCOPmGz38vISY8eOrXas5cuXCwAiJyfHZHtubq5Qq9XizTffNNn+ww8/iCZNmphsj4+PFwDEhg0bzJ53ZfPmzRMAxIULF8SNGzdETk6O2Lhxo3B3dxeBgYHi7t27Qgghtm3bZlK269evCzc3N/GnP/1JlJeXG4+3du1aAUBs3brVuG3w4MGiTZs29SoPkdKwCYyITJw/fx5TpkxB7969MXbsWIuea6hhuH37dq37LViwAGlpaYiOjsaBAwfw2muvITY2FjExMSbNbnv27EGLFi3w4osvVjuGSqUy/uzp6Wn8+ddff4VOp8NDDz2EkydPWlT+qtLT06HX6/Hkk0/i5s2bxltQUBDatWuHw4cPm+zv7u6O8ePHW/Qa7du3R8uWLREREYHnnnsOUVFR+OSTT8z2HTp06BBKS0sxbdo0uLj88Sf82WefhY+PDz755BPLT5RIgdgERkRG+fn5GDx4MDQaDT744AOo1WqLnn/nzh0AgLe3d537jhw5EiNHjkRRURG+/fZbbN++HWlpaUhMTMTp06fh4eGBS5cuoX379mjSpPY/Vfv27cOiRYuQlZWFkpIS4/bKIakhLl68CCEE2rVrV+Pjrq6uJvdDQ0Or9aeqy549e+Dj4wNXV1e0atXK2Kxnzs8//wygIjhV5ubmhrZt2xofJ6LaMQAREQBAp9Nh0KBBuHXrFv7zn/8gJCTE4mMYhs1HRUXV+zk+Pj547LHH8Nhjj8HV1RU7duzAt99+i/j4+Ho9/z//+Q+GDh2Kfv364Z133kFwcDBcXV2xbds2pKWlWXwOlen1eqhUKnz22Wc1hsGqfWoq10TVV79+/Yz9jojIfhiAiAi///47EhMT8eOPP+LQoUO4//77LT5GeXk50tLS0LRpUzz44IMNKkf37t2xY8cO5OXlAajopPztt9+irKysWm2LwZ49e+Dh4YEDBw7A3d3duH3btm3V9jVXI2Rue2RkJIQQiIiIwH333Wfp6dhEmzZtAAAXLlxA27ZtjdtLS0uRk5ODAQMGGLc1tgaMyJmxDxCRwpWXl2PEiBE4duwY3n///QbNPVNeXo6pU6fi3LlzmDp1Knx8fMzuW1xcjGPHjtX42GeffQbgj+ad4cOH4+bNm1i7dm21fcX/TxSoVquhUqlQXl5ufCw3N7fGCQ+9vLxqnOzQy8sLAKo99pe//AVqtRoLFiyoNjGhEAJarbbmk7ShAQMGwM3NDatXrzYp05YtW6DT6UxG33l5edU6JQGRkrEGiEjhXn75ZXz88cdITExEYWFhtYkPq056qNPpjPsUFxcjOzsb6enpuHTpEp566iksXLiw1tcrLi5Gnz590KtXLwwcOBBhYWG4desWPvroI/znP//BsGHDEB0dDQB45pln8I9//APJyck4fvw4HnroIdy9exeHDh3CCy+8gMcffxyDBw/GypUrMXDgQIwaNQrXr1/HunXrEBUVhe+//97ktWNjY3Ho0CGsXLkSISEhiIiIQFxcHGJjYwEAr732Gp566im4uroiMTERkZGRWLRoEebMmYPc3FwMGzYM3t7eyMnJwYcffohJkybhlVdeadT1t1TLli0xZ84cLFiwAAMHDsTQoUNx4cIFvPPOO+jRo4fJ7ys2Nha7d+9GcnIyevTogWbNmiExMdGu5SWSLSmHoBGR9AzDt83datu3WbNmol27dmL06NHi888/r9frlZWVic2bN4thw4aJNm3aCHd3d9G0aVMRHR0tli9fLkpKSkz2Ly4uFq+99pqIiIgQrq6uIigoSPz3f/+3uHTpknGfLVu2iHbt2gl3d3fRoUMHsW3bNuMw88rOnz8v+vXrJzw9PQUAkyHxCxcuFKGhocLFxaXakPg9e/aIBx98UHh5eQkvLy/RoUMHMWXKFHHhwgWTa1PbFAFVGcp348aNWverOgzeYO3ataJDhw7C1dVVBAYGiueff178+uuvJvvcuXNHjBo1Svj6+goAHBJPVIlKCCssOENERETkQNgHiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUR/IAtG7dOoSHh8PDwwNxcXE4fvy42X3PnDmD4cOHIzw8HCqVCqmpqTXud/XqVYwePRr+/v7w9PRE586d8d1339noDIiIiMjRSDoRomGCrg0bNiAuLg6pqalISEjAhQsXEBAQUG3/4uJitG3bFk888QSmT59e4zF//fVX9O3bFw8//DA+++wztGzZEhcvXkTz5s3rXS69Xo9r167B29ubU8kTERE5CCEEbt++jZCQELi41FHHI+UkRD179hRTpkwx3i8vLxchISEiJSWlzue2adNGrFq1qtr2WbNmiQcffLBR5bp8+XKtE8PxxhtvvPHGG2/yvV2+fLnOz3rJaoBKS0uRmZmJOXPmGLe5uLhgwIABZtcJqo+PP/4YCQkJeOKJJ/Dll18iNDQUL7zwAp599lmzzykpKUFJSYnxvvj/uSEvX75c65pGREREJB9FRUUICwuDt7d3nftKFoBu3ryJ8vJyBAYGmmwPDAzE+fPnG3zcn376CevXr0dycjJeffVVnDhxAlOnToWbmxvGjh1b43NSUlKwYMGCatt9fHwYgIiIiBxMfbqvSN4J2tr0ej1iYmKwePFiREdHY9KkSXj22WexYcMGs8+ZM2cOdDqd8Xb58mU7lpiIiIjsTbIA1KJFC6jVahQUFJhsLygoQFBQUIOPGxwcjPvvv99kW8eOHfHLL7+YfY67u7uxtoe1PkRERM5PsgDk5uaG2NhYZGRkGLfp9XpkZGSgd+/eDT5u3759ceHCBZNtP/74I9q0adPgYxIREZFzkXQYfHJyMsaOHYvu3bujZ8+eSE1Nxd27dzF+/HgAwDPPPIPQ0FCkpKQAqOg4ffbsWePPV69eRVZWFpo1a4aoqCgAwPTp09GnTx8sXrwYTz75JI4fP45NmzZh06ZN0pwkEREpRnl5OcrKyqQuhtNydXWFWq22yrFUwjDkSSJr167F8uXLkZ+fj27dumH16tWIi4sDAPTv3x/h4eHYvn07ACA3NxcRERHVjhEfH48jR44Y7+/btw9z5szBxYsXERERgeTk5FpHgVVVVFQEjUYDnU7H5jAiIqqTEAL5+fm4deuW1EVxer6+vggKCqqxo7Mln9+SByA5YgAiIiJL5OXl4datWwgICEDTpk05ia4NCCFQXFyM69evw9fXF8HBwdX2seTzW9ImMCIiIkdXXl5uDD/+/v5SF8epeXp6AgCuX7+OgICARjWHOd0weCIiInsy9Plp2rSpxCVRBsN1bmxfKwYgIiIiK2Czl31Y6zqzCcwOtFotSktLzT7u5ubGalMiIiI7YgCyMa1Wi7Vr19a5X1JSEkMQERGRnbAJzMZqq/lpyH5ERETWMm7cOKhUKqhUKri6uiIwMBCPPfYYtm7dCr1eX+/jbN++Hb6+vrYrqA2wBsjOdDpvFBb6w89PC43mttTFISIiGZCyq8TAgQOxbds2lJeXo6CgAPv378dLL72EDz74AB9//DGaNHHOqOCcZyVTJ09GY+/eIRDCBSqVHomJ+xATc0rqYhERkYSk7irh7u5uXIMzNDQUMTEx6NWrFx599FFs374dEydOxMqVK7Ft2zb89NNP8PPzQ2JiIpYtW4ZmzZrhyJEjxhUcDB2U582bh/nz5+Pdd9/F22+/jQsXLsDLywuPPPIIUlNTERAQYPXzsBSbwOxEp/M2hh8AEMIFe/cOgU7nLXHJiIhISnLsKvHII4+ga9euSE9PBwC4uLhg9erVOHPmDHbs2IEvvvgCM2fOBAD06dMHqamp8PHxQV5eHvLy8vDKK68AqBiqvnDhQvzv//4vPvroI+Tm5mLcuHF2O4/asAbITgoL/Y3hx0AIFxQW+rEpjIiIZKdDhw74/vvvAQDTpk0zbg8PD8eiRYswefJkvPPOO3Bzc4NGo4FKpTLWJBn89a9/Nf7ctm1brF69Gj169MCdO3fQrFkzu5yHOawBshM/Py1UKtMOZSqVHn5+hRKViIiIyDwhhLFJ69ChQ3j00UcRGhoKb29vjBkzBlqtFsXFxbUeIzMzE4mJiWjdujW8vb0RHx8PAPjll19sXv66MADZiUZzG4mJ+4whyNAHiLU/REQkR+fOnUNERARyc3MxZMgQdOnSBXv27EFmZibWrVsHoPZmubt37yIhIQE+Pj7YuXMnTpw4gQ8//LDO59kLm8BszM3NzfhzTMwpREZmo7DQD35+hSbhp/J+REREUvriiy/www8/YPr06cjMzIRer8dbb70FF5eKepN//etfJvu7ubmhvLzcZNv58+eh1WqxZMkShIWFAQC+++47+5xAPTAA2Zi/vz+SkpI4EzQREclSSUkJ8vPzTYbBp6SkYMiQIXjmmWdw+vRplJWVYc2aNUhMTMTRo0exYcMGk2OEh4fjzp07yMjIQNeuXdG0aVO0bt0abm5uWLNmDSZPnozTp09j4cKFEp1ldWwCswN/f38EBwebvTH8EBGRVPbv34/g4GCEh4dj4MCBOHz4MFavXo3/+Z//gVqtRteuXbFy5UosXboUnTp1ws6dO5GSkmJyjD59+mDy5MkYMWIEWrZsiWXLlqFly5bYvn073n//fdx///1YsmQJVqxYIdFZVqcSQgipCyE3RUVF0Gg00Ol08PHxkbo4REQkY7///jtycnIQEREBDw8Pi58v9TxAjqa2623J5zebwIiIiCTErhLSYAAiIiKSGMON/bEPEBERESkOAxAREREpDpvAHJCUqwYTERE5AwYgB1N1tIBO543CQn/4+WlNJlbkaAEiIiLzGIAcTOWan5Mno40rzBuW1oiJOVVtPyIiIjLFPkAOSqfzNoYfoGJl+b17h0Cn85a4ZERERPLHAOSgCgv9jeHHQAgXFBb6SVQiIiIix8EA5KD8/LTGleUNVCo9/PwKJSoRERGRqSNHjkClUuHWrVv1fk54eDhSU1NtViYDBiAHpdHcRmLiPmMIMvQBqtwR2tFotVrk5eWZvWm1WqmLSETkVMaNGweVSoXJkydXe2zKlClQqVQYN26c/QtmB+wE7cBiYk4hMjIbhYV+8PMrdPjww7VwiIjsLywsDLt27cKqVavg6ekJoGK9rbS0NLRu3Vri0tkOa4AcnEZzGxERPzt0+AGqj1rT6byRkxNerVM3R7cREVlXTEwMwsLCkJ6ebtyWnp6O1q1bIzo62ritpKQEU6dORUBAADw8PPDggw/ixIkTJsf69NNPcd9998HT0xMPP/wwcnNzq73eV199hYceegienp4ICwvD1KlTcffuXZudnzkMQA7Gzc3NqvvJ0cmT0UhNnYYdO8YiNXUaTp6MrvtJRERO4soV4PDhin/t5a9//Su2bdtmvL9161aMHz/eZJ+ZM2diz5492LFjB06ePImoqCgkJCSgsLCi7+nly5fxl7/8BYmJicjKysLEiRMxe/Zsk2NcunQJAwcOxPDhw/H9999j9+7d+Oqrr5CUlGT7k6yCTWAOxtlXDTY3vD8yMtsutVycZZuIpLRlCzBpEqDXAy4uwKZNwIQJtn/d0aNHY86cOfj5558BAEePHsWuXbtw5MgRAMDdu3exfv16bN++HYMGDQIAbN68GQcPHsSWLVswY8YMrF+/HpGRkXjrrbcAAO3bt8cPP/yApUuXGl8nJSUFTz/9NKZNmwYAaNeuHVavXo34+HisX78eHh4etj/Z/8cAJFNK/SCubXi/rQMQ+yERkZSuXPkj/AAV/z73HJCQALRqZdvXbtmyJQYPHozt27dDCIHBgwejRYsWxscvXbqEsrIy9O3b17jN1dUVPXv2xLlz5wAA586dQ1xcnMlxe/fubXL/f//3f/H9999j586dxm1CCOj1euTk5KBjx462OL0aMQDJkJI/iA3D+yuHIHsN76+pH1JNy4ywHxIR2cLFi3+EH4PyciA72/YBCKhoBjM0Ra1bt84mr3Hnzh0899xzmDp1arXH7N3hmgFIhpT8QWwY3l91iQ97d/KubZkRIiJbaNeuotmrcghSq4GoKPu8/sCBA1FaWgqVSoWEhASTxyIjI+Hm5oajR4+iTZs2AICysjKcOHHC2JzVsWNHfPzxxybP++abb0zux8TE4OzZs4iy10nVggFI5pT4QSz18H6p+yERkTK1alXR5+e55ypqftRqYONG+9T+AIBarTY2Z6nVapPHvLy88Pzzz2PGjBnw8/ND69atsWzZMhQXF2PC/3dSmjx5Mt566y3MmDEDEydORGZmJrZv325ynFmzZqFXr15ISkrCxIkT4eXlhbNnz+LgwYP1avmwJo4CkzElrfdVddSaueH99hjdxmVGiEgqEyYAubkVo8Byc+3TAboyHx8f+Pj41PjYkiVLMHz4cIwZMwYxMTHIzs7GgQMH0Lx5cwAVTVh79uzBRx99hK5du2LDhg1YvHixyTG6dOmCL7/8Ej/++CMeeughREdHY+7cuQgJCbH5uVXFGiAZk7JDsL3JaXSblP2QiIhatbJfrU/VGpqqPvroI+PPHh4eWL16NVavXm12/yFDhmDIkCEm26oOp+/Rowc+//xzs8eoae4gW2AAkjGlfRDLpUO3XPohERGR7TAAyRg/iKUjdT8kIiKyLQYgmbPWB7FS5xWyRE39kGq63o48yzYREVVgAJIha38QV51XyNywemecV8gScuqHREREtsUAJEPW/iCufJzahtU747xClmK4IaKGEkJIXQRFsNZ1ZgCSKVt8EHN+GyIi63N1dQUAFBcXw9PTU+LSOL/i4mIAf1z3hmIAUhAlDasnIrIXtVoNX19fXL9+HQDQtGlTqFQqiUvlfIQQKC4uxvXr1+Hr61ttskZLMQApiNKG1RMR2UtQUBAAGEMQ2Y6vr6/xejcGA5CCcFg9EZFtqFQqBAcHIyAgAGVlZVIXx2m5uro2uubHgAFIYTi/DRGR7ajVaqt9QJNtMQApkLlh9URERErBAKQA9Z0vyNkm+OPkj0REZA4DkAIocYI/Tv5IRES1YQBSCKV9yHPyRyIiqo1L3bsQOS5zkz/qdN4Sl4yIiKTEAEROrbbJH4mISLkYgMipGSZ/rIyTPxIREQMQOTXD5I+GEMTJH4mICGAnaFIATv5IRERVMQCRInDyRyIiqoxNYOSUlDr5IxER1Q9rgMgpKXHyRyIiqj8GIHJaDDdERGQOAxDVqvJ6WteuuSAnpwkiIu4hJKRiVBVrUYiIyBExAJFZldfTqm05Ca6nRUREjoYBiMwy1PyYW04iMjIbGs1trqdFJirXGtbEXrWGcikHEckTAxDVqbblJDi0nCqrXGtYG1vXGsqlHEQkXxwGT3XichJUX/WtDbR1raFcykFE8sUARHXichLUUDqdN3JywqHTeUtdFCIiE2wCo3rhchIcEWep2jrOExFJjQGI6k3Jy0lwRJxl6uo4T0QkNTaBEdVDXSPiDE087FNSobaO81JgUxwRVcUaIDKruLjY5L5O543CQn/4+WlNvsVX3c+ZcURc/Rg6zle+VlJ1nGdTHBHVRBY1QOvWrUN4eDg8PDwQFxeH48ePm933zJkzGD58OMLDw6FSqZCamlrrsZcsWQKVSoVp06ZZt9AK0LRpU+PPJ09GIzV1GnbsGIvU1Gk4eTK6xv2cHUfE1Y9cOs7XVWNHRMoleQ3Q7t27kZycjA0bNiAuLg6pqalISEjAhQsXEBAQUG3/4uJitG3bFk888QSmT59e67FPnDiBjRs3okuXLrYqvs3IaRI39uf4g+GDvWqNgtKugzlubm7Gn2vrOF95P1uWo64aO1uXg4jkS/IAtHLlSjz77LMYP348AGDDhg345JNPsHXrVsyePbva/j169ECPHj0AoMbHDe7cuYOnn34amzdvxqJFi2xTeBuR2yRubPYxxRFx5vn7+yMpKclseL916xZUKhVKS0uRl5dX7XFrBXtDOXJz7+HddwX0epXxMbVa4MUXByE8vAk7rBMpmKQBqLS0FJmZmZgzZ45xm4uLCwYMGIBjx4416thTpkzB4MGDMWDAgDoDUElJCUpKSoz3i4qKGvXaVVlam1N1X3N9b+zV4VZO/TnkQskj4upiLlRotVr861//qvP51gr2/v7+8PcHNm0CnnsOKC8H1Gpg40YVYmMDG318InJskgagmzdvory8HIGBpn+MAgMDcf78+QYfd9euXTh58iROnDhRr/1TUlKwYMGCBr9ebRpbmyOHDpxs9iFrkGp25gkTgIQEIDsbiIoCWrWy6uGJyEFJ3gRmbZcvX8ZLL72EgwcPwsPDo17PmTNnDpKTk433i4qKEBYWZpXyNOaPvpz63ii92ae+fUXYp6T+zNVs2kKrVgw+RGRK0gDUokULqNVqFBQUmGwvKChAUFBQg46ZmZmJ69evIyYmxritvLwc//73v7F27VqUlJRArVabPMfd3R3u7u4Nej1LWfJHX259b5Tc7FNX3xaAM0FbQg41m0SkbJIGIDc3N8TGxiIjIwPDhg0DAOj1emRkZCApKalBx3z00Ufxww8/mGwbP348OnTogFmzZlULP/Zk6R99qfvesNbDFMONdcipZpOIlEvyJrDk5GSMHTsW3bt3R8+ePZGamoq7d+8aR4U988wzCA0NRUpKCoCKpqKzZ88af7569SqysrLQrFkzREVFwdvbG506dTJ5DS8vL/j7+1fbbk8N+aMvdd8b1nqQLcitZpOIlEnyADRixAjcuHEDc+fORX5+Prp164b9+/cbO0b/8ssvcHH544/ltWvXEB39xyR8K1aswIoVKxAfH48jR47Yu/j11tA/+lL3vWG4IWuTumaTiAiQQQACKkZAmWvyqhpqwsPDIYSw6PhyCEaW/NGv2qRkru+NUpqeyLbsPemm1DWbRESATAKQEljyR59NT2QvVadpMNdJ3xpz88hllmgiIoAByOYa+kef4YbsoXLIrq2TvjXm5mGwJyI5YQCyMyUPJSf5stfILIYbIpILWawG78ykmv2WyBK1ddInInJGDEB2ptN5IycnHDqdt9RFITIydNKvjCOziMiZsQnMjjj7LckVR2YRkdIwANkJZ78luZN6zimlsff0A0RkigHITjj7LTkCdtK3j6rTD5hjjekHiKhm7ANkJ+xjQXLE9d6kwcERRNJjDZCdWLOPBavOyVo4Nw8RKRUDkI1Ze/ZbVp2TtfF9QkRKxABkY7V9w7516xbu3bsHV1dXlJaWIi8vz+Txmr55Vz2OuaULWHVOpCysGSayDAOQHdT0R0er1eJf//pXnc+trSaHw+qJnIO5LzL1xZphIssxAEmksZ0gOayeyDlY44sMO1UTWY6jwGTC0hmiuXQBkeMz90WGM8UT2R5rgGSgId8ADcPqK4cgDqsncgyGQQ91zQ9m7ekHbt68abY8bBojpWEAklhDm7K4dAGR4zIMjsjNvYd33xXQ61XGx9RqgRdfHITw8CZWDyXp6elmH2P/IFIaBiCJNWaGaC5dYDry5do1F+TkNEFExD2EhFRMOslvtiRX/v7+8PcHNm0CnnsOKC8H1Gpg40YVYmMD7V4e9g8ipWEAkpilTVlVq8TNLV2ghJl7K498qa0Zkd9sSc4mTAASEoDsbCAqCmjVqvHHbOyoMiIlYACSmKVNWZy59w+Ga1BXMyK/2ZLctWplneADcHoMovpiAJJIY2aIVkK4sQQXmiWlM/yd4PQYRPXHACQR1uRYD0fEkdIZ/p4cPgysWsUvA0T1wQAkIYYb6+CIOKKKvye9egEuLoBe/8d2tVqYfBlg/yCiCgxA5BQ4Io6ooh9R1VFlS5fqcOdOxf8H9g8i+gMDEDkNcyPiiGxNTguRVh1V5ulZjrVr6+4fpISRo0SVMQARETWCHBciNR1VVnv/oL59x6J/fzbJk/IwAJHDqu83Vn6zJVtyhIVIzfcPAuLiKiZkJFIaBiByWEodScfZr+VNrp2Ma+oftHGj9eYfInI0DEDk0JT2Qc/Zr+VN7p2MbTHrNJGjcql7FyKSi7pmv9bpvE32I/up63ciF61aAf37M/wQMQAROaDaZr8mafB3QuRY2ARGtZLT8F76A2e/lh/+TogcCwMQmSXH4b1UgbNfyw9/J0SOhQGIzHKE4b1Kxtmv5aExCxsTkXQYgKje5Dq8V8k4+7X0lDodA5GjYwCiepH78F4iKTHcEDkejgKjOjnK8F4l4OzXRETWwRogqlNtw3vZ/GJfbG4hIrIOBiCqE4f3ygvDDRFR4zEAUZ04vNd6rlwBLl4E2rXjTLxVcY0zIrInBiAyi8N7rcPwwZ6W5omZMzXQ61VwcRFYtkyHUaN+4wc7uMYZEdkfAxCZxf4mjWf4YNfpvJGaOg1CqAAAer0KM2b44OrVrdBobiv+g72uNc4iI7Oh0dzmnFNEZDUMQFQrJX8oW4PhA7uujuT8YK/ADvdEZC8cBk9kB4aO5JWxI3l1vE5EZC+sASKyA3Ykrx9epwpchJjI9hiAiOqpsaOUuHZX/Sj9OnERYiL7YACiBlPSt1RrjVLi2l31o+TrxEWIieyDAYgaRGnfUjlKiaTCRYiJbIMBiBpEqd9SOUrJNrjGWc24CDGR7TAAkVUo5VuqpcuC8IO9fjjnVHV11TYSUeMwAFGjKelbqqWjlPjBXn+8BqZY20hkWwxA1ChK/JZq6SglfrBTQ3ARYiLbYgCiRlHqt1Qlj1Ii+5DznEhKGgFKzosBiBqF31KJrEvuixArbQQoOS8GIGoUOX9LtaaqHzbmOn0rvTMzNV5D+43Zq1ZGqSNAyfkwAFGDyP1bqi0pqdM3ScPSoMJaGSLLMQBRgyhtdBMnQiQ5k2OtzM2bN2vc7kx/F8ixMQBRgynxj5hSO32TY7HnvFzmXis9Pd3sc1gTRXLAAERkAWfs9N3YRV5JXuzZRNvQ12JNKckBAxCRBZyt07e1FnklebDnvFxKnAOMnAsDEJGFLJ0IUc7Yt8m52LOJtj6vpZQlcsgxMQCRQ5NqQjZnmwiRfZucgz2aaA0jO+t6LY6WJLljACKHndWVQ3+txxn7NimRPZpoK48ADQ0twqxZGpSXq6BWC7zxxjUAt9k8Rg6BAUjhHDlEVA1t5qrbrdF84+yrujtb3yalsfe8XIa/BS+/DIwYAWRnA1FRKqjVamzaxBpFcgwMQArXmPlD5FRzZOvqdiXMe+RMfZuURsr3Z6tWFTcAyMur+Jc1iuQIGICoQeRUc2Sv6nZHDjf15Wx9m5REDu9PQw1TXTWKjlpTSs6FAYhM1HfUhpxmnmV1O5E8VK2Jmjv3BnJzmyA8/B5CQnoA6OHwNaXkPBiAyMhRR23UVd3OKfnNc/a+TWR/lf9PBQcDsbESFoaoFgxABKDxzUhSzvdRV3U7p+Q3Twl9m4iIasIARAAa14wkh5qjujrw2nKEmKNjuFE2OQ1mILInBiAC0PBRG1LO91G1WcZcB16pAxo/YEiu5DSYgcjeZBGA1q1bh+XLlyM/Px9du3bFmjVr0LNnzxr3PXPmDObOnYvMzEz8/PPPWLVqFaZNm2ayT0pKCtLT03H+/Hl4enqiT58+WLp0Kdq3b2+Hs3EsjR21IWUH5Nqab27evIn09HTJJ2Sr+gFjriZKyg8YLoaqXPacS4tIbiQPQLt370ZycjI2bNiAuLg4pKamIiEhARcuXEBAQEC1/YuLi9G2bVs88cQTmD59eo3H/PLLLzFlyhT06NED9+7dw6uvvoo//elPOHv2LLy8vGx9Sg6lsaM2pJ7vo64PZqlHiFX+4KitJkqqDxguhkoGUteUEtmb5AFo5cqVePbZZzF+/HgAwIYNG/DJJ59g69atmD17drX9e/TogR49egBAjY8DwP79+03ub9++HQEBAcjMzES/fv2sfAaOryGjNhxlvg+pA5qB1DVR5nAxVALk+/4ksiVJA1BpaSkyMzMxZ84c4zYXFxcMGDAAx44ds9rr6HQ6AICfn1+Nj5eUlKCkpMR4v6ioyGqv7awcZb4PuSzxIHVNVF3kXj6yLf7+SYkkDUA3b95EeXk5AgMDTbYHBgbi/PnzVnkNvV6PadOmoW/fvujUqVON+6SkpGDBggVWeT0lcZT5PuSwxINcaqLMkXv5yLb4+yclcql7F8c2ZcoUnD59Grt27TK7z5w5c6DT6Yy3y5cv27GEZAs1jRCLiPi5WvixVxOdoSZKparoWCy3xUblXj6yLf7+SYkkrQFq0aIF1Go1CgoKTLYXFBQgKCio0cdPSkrCvn378O9//xutDKv11cDd3R3u7u6Nfj2SDzlO8CeHmqjayL18ZFv8/ZPSSBqA3NzcEBsbi4yMDAwbNgxARZNVRkYGkpKSGnxcIQRefPFFfPjhhzhy5AgiIiKsVGJyJFL3P6qJ3BcblXv5yLrqO5eW1IMZiGxB8lFgycnJGDt2LLp3746ePXsiNTUVd+/eNY4Ke+aZZxAaGoqUlBQAFR2nz549a/z56tWryMrKQrNmzRAVFQWgotkrLS0N//M//wNvb2/k5+cDADQaDTw9PSU4S1IqrrVFcibHmlIie5E8AI0YMQI3btzA3LlzkZ+fj27dumH//v3GjtG//PILXFz+6Kp07do1REdHG++vWLECK1asQHx8PI4cOQIAWL9+PQCgf//+Jq+1bds2jBs3zqbnQ1SZ3D9gGNCI4YaUSiWEEFIXQm6Kioqg0Wig0+ng4+MjdXGIbIpLdRCRs7Dk81vyGiAikhbDDREpUYMD0K1bt5CdnQ0AiIqKgq+vr7XKREQO5MoV4OJFoF07oJbBlkREsmJxAMrNzcWUKVNw4MABGFrPVCoVBg4ciLVr1yI8PNzaZSQimTE0m6WleWLmTA30ehVcXASWLdNh1Kjf2GxGkmPTLtXFogB0+fJl9OrVC66urli4cCE6duwIADh79izWr1+P3r1748SJE7XOuUNEjs2wgKpO543U1GkQQgUA0OtVmDHDB1evboVGc5sLqJJkKi/yWxu+R5XNogA0f/58tG/fHgcOHICHh4dx+7BhwzB9+nQMHDgQ8+fPx9///nerF5SI5MHwrbqu9aO4gCpJpb7vPb5Hlc2iALR//37s3r3bJPwYeHp6YuHChXjqqaesVjgiki+uH0VEjsyitcBu3rxZax+ftm3borCQf/yIlIDrR5Gj0Om8kZMTDp3OW+qikIxYVAMUHByMs2fPmu3jc/r0aaus4UVEjoHrR5HcnTwZjb17h0AIF2NIj4k5JXWxSAYsCkDDhg3DK6+8goyMDLRs2dLksevXr2PWrFnGNb2ISBm4fhjJlU7nbQw/QEUftb17hyAyMrvG9yxHjimLRQFo3rx5+PTTTxEZGYnRo0ejQ4cOEELg3LlzSEtLQ1BQEObOnWurshIREdVbXR31K+PIMeWxKAA1b94c3377LV599VXs2rULt27dAgD4+vpi1KhRWLx4Mfz8/GxRTiIiIotY0lGfI8eUx6JO0EBFCFq/fj20Wi3y8/ORn58PrVaLDRs2MPwQKQAXUCW5M7z36uqoz/eosjV4KQyVSoWAgABrloWIHIDcV7gnqvoenTv3BnJzmyA8/B5CQnoA6FHne1Sn80ZhoT/8/LTs4+akLA5An376KdLT0+Hn54fx48cbZ4MGgF9//RXDhw/HF198YdVCEpG8MNyQ3FV+jwYHA7Gx9X8uR44pg0VNYGlpaRg6dCjy8/Nx7NgxxMTEYOfOncbHS0tL8eWXX1q9kERERNag1WqRl5dX7Xbz5k0A5keOcQ4h52NRDdDy5cuxcuVKTJ06FQDwr3/9C3/961/x+++/Y8KECTYpIBERkTXUZ6SXJSPHyLFZFIAuXryIxMRE4/0nn3wSLVu2xNChQ1FWVob/+q//snoByblwng0ikkp9RnBxiRflsCgA+fj4oKCgABEREcZtDz/8MPbt24chQ4bgypUrVi8gOQ/Os0FSuXIFuHgRaNcOMDORvcOo/CXi2jUX5OQ0QUTEPYSEVIx04peIxjGMHKvaB4gjx5yPRQGoZ8+e+Oyzz9CrVy+T7fHx8di7dy+GDBli1cKRc+E8G2RPhqCQluaJmTM10OtVcHERWLZMh1GjfnPIoFD5S0RtHXX5JaJ+zI30WrQookEjx8ixWBSApk+fjq+//rrGx/r374+9e/fiH//4h1UKRkTUUIagoNN5IzV1GoRQAQD0ehVmzPDB1atbodHcdrigYPhyUNcSD/wSUbfaAmSLFi0QHBxo0cgxcjwWBaDo6GhER0ejqKioxsdjY2MRy3cMEUnMEADq6tDqqEGBHXUbx9I1wsg5WRSAfH19oVKp6tyvvLy8wQUiIrIWZ+3QKvV5OfpgBgZIAiwMQIcPHzb+LITAn//8Z/z9739HaGio1QtGzo8zrZKt1dWh1VFJeV5VBzOY+38s5+ZFqQMkyYNFASg+Pt7kvlqtRq9evdC2bVurFoqcH2daJXuJiTmFyMhsFBb6wc+v0OHDj4FU51W55qe2/8dybF6sukYYR3opW4PXAiNqKLa/k71pNLed8r0l5XlZ8/+xvZrUrLFGGDkPBiCyG8O3qrra3/nti0j+rNWPxt5Nao1ZI4ycS6MDUH06RRMBf3z7ys29h3ffFdDr/3jvqNUCL744COHhTfjti8iM+n45sMeXCGv1o3HkJjVybBYFoL/85S8m93///XdMnjwZXl5eJtvT09MbXzJySv7+/vD3BzZtAp57DigvB9RqYONGFWJjA6UuHjkJOQUFa6rahFMTezXhWLsjtjM2jTv6aDlnZ1EA0mg0JvdHjx5t1cKQckyYACQkANnZQFSU4y9PQPIip6BgbXIqszU7Yjvb0HQu/SN/FgWgbdu22aocpECtWjH4kO3wQ8U+rNUR29mGpnPpH/lzqXsXIiKiCrZqXjQ0qalUFYu6OsucTQY6nTdycsKh03lLXRT6fxwFRkRE9WbL5kVnnbOJ857JEwMQkYNhx0qqSeX3xbVrLsjJaYKIiHsICamoUbHm+8KW7y9nm7PJGTt3OwsGICIHwo6VVJPK74vaahvk+L5w1hF7Bs7WuduZMAAROZCqNT/mJo1jx0plMfy+66ptkOP7wplH7AHO17nbmTAAETko9iugqhy1tsFRw019OOuCvM6AAYjIAbFfAdWEtQ3yUbnJrrbO3Y7atOcMGICIHJCjftMn22Jtg3w4e9OeM2AAInJA/KZP5jjrUHJHxHAjbwxARA6I3/Rtw55DyW3J2YaSE9kCAxCRg+I3fety5KHkRGQ5LoVB5ECqdpjUaG4jIuLnauGHHSstV9dQcsMSBnIcSu7sc+kQ2QJrgIgcCDtW2p4jdjDn+4LIcgxARA7Gnh9iSlx2w1E7mDvb74HI1hiAiKhGVZfdMDfrtLP1iWEHcyJlYAAiohpVrvmprVOwHPvENBY7mBM5P3aCJqJa1dUp2FmZ62BORM6BAYiIalVbp2AiIkfFAEREtTJ0Cq7METoFW4pDyYmUhX2AiKhWSukUzKHkRMrCAEREdVJKp2CGGyLlYAAionrh+lJE5EzYB4iIasQ+MUTkzFgDREQ1Yp8YInJmDEBEZBbDDdmDEpdcIekxABERkWSqLrlijrMtuULSYwAiImqkyjUY1665ICenCSIi7iEkpGL+JNZgmFe15sfcmnPOuOQKSYsBiIioESrXYNS2ZhprMOpW2/UjsjaOAiMiagRDzURda6axBqN2Sl1zjqTDAEREZAVcM61xeP3I3hiAiIisQClrptkKrx/ZGwMQEZEVGNZMM3yIO+uaabbC60f2xk7QRERWopQ102yF14/siQGIiMiKuGaaZaoupWLu+nHJFbI2BiAiIpIMl1whqTAAERE1AheNbTyGG+d05Qpw8SLQrh3QqpXUpamOAYiIqBFYg0FU3ZYtwKRJgF4PuLgAmzYBEyZIXSpTKiGEkLoQclNUVASNRgOdTgcfHx+pi0NEROQwrlwB2rSpCD8GajWQm2v7miBLPr85DJ6IiIis5uJF0/ADAOXlQHa2NOUxhwGIiIiIrKZdu4pmr8rUaiAqSprymMMARERERFbTqlVFnx+1uuK+Wg1s3Ci/jtCyCEDr1q1DeHg4PDw8EBcXh+PHj5vd98yZMxg+fDjCw8OhUqmQmpra6GMSERGR9UyYUNHn5/Dhin/l1gEakEEA2r17N5KTkzFv3jycPHkSXbt2RUJCAq5fv17j/sXFxWjbti2WLFmCoKAgqxyTiIiIGk+r1SIvLw95eXlQq/PQvn3Fv4ZtWq1W6iIaST4KLC4uDj169MDatWsBAHq9HmFhYXjxxRcxe/bsWp8bHh6OadOmYdq0aVY7JsBRYERERJbSarXGz93aJCUl2WxaCIcZBVZaWorMzEwMGDDAuM3FxQUDBgzAsWPH7HbMkpISFBUVmdyIiIio/mqbC6sh+9mapAHo5s2bKC8vR2BgoMn2wMBA5Ofn2+2YKSkp0Gg0xltYWFiDXpuIiIgcg+R9gORgzpw50Ol0xtvly5elLhIRERHZkKRLYbRo0QJqtRoFBQUm2wsKCsx2cLbFMd3d3eHu7t6g1yMiIseh1Wq5bIkZcl+7y9okDUBubm6IjY1FRkYGhg0bBqCiw3JGRgaSkpJkc0wiInJ8cuikKzeGQJiW5omZMzXQ61VwcRFYtkyHUaN+c+pAKPliqMnJyRg7diy6d++Onj17IjU1FXfv3sX48eMBAM888wxCQ0ORkpICoKLz1NmzZ40/X716FVlZWWjWrBmi/n+aybqOSUREyuNonXRtzRAIdTpvpKZOgxAqAIBer8KMGT64enUrNJrbThsIJQ9AI0aMwI0bNzB37lzk5+ejW7du2L9/v7ET8y+//AKXSnNqX7t2DdHR0cb7K1aswIoVKxAfH48jR47U65hEREQ6nTcKC/3h56eFRnNb6uLYnSHoFRb6QwjTLsFCuKCw0A8azW2nDYSSByCgorrRXPOUIdQYhIeHoz5TF9V2TCIikg8p+uWcPBmNvXuHQAgXqFR6JCbuQ0zMKau+hqPw89NCpdKbhCCVSg8/v0KLjuPm5mbV/WxNFgGIiIiUSYp+OTqdtzH8ABW1HXv3DkFkZLYia4I0mttITNxXLRBaei38/f2RlJTkMJ3MGYCIiEgyVT8szTVLWbMZpq4mHyWKiTmFyMhsFBb6wc+vsMHXQS7hpj4YgIiISBbs1SxlrSafujS0aU+qofoazW1FBUAGICIikpw9m6Ws1eRTm4Y27XGovv0wABERkeTs0SxVufNtbU0+1uik29Ah91I0CSoVAxAREUnOHs1SUnbSbciQe1s3CTraqC1rYwAiIiLJ2aNZCpCmk25Dgow9mgQdbdSWtTEAERGRLFhrJJItNLRjckODjL1GqjlruKkPBiAiIpJM1eYVcyORpGyGaUzH5IYGGXuNVFMyBiAiIpKMIzTDNGYNsYYGGXs1CSoZAxAREUnK0ZphLOnQ3JggI+cmQWfAAERERFRP9e3Q3NAh947QJOgsGICIiIjqwZIOzQ1t2nOEJkFnwQBERERUD5Z2aG5oSGG4sQ8GICIicjq2WE/LmiOzpFrvi/7AAERERE7FVutpWWtkFtf7kgcGICIiciqNGbZeE2uvIWbt8lHDMAAREZFTa8g6XJXZumNyY8tHDcMARERETstaC4raqinK1gueknkude9CRETkeMwNW9fpvCUuWQW5l8/ZMQAREZFTqm3YuhzIvXzOjgGIiIickmHYemVyWlBU7uVzdgxARETklAzD1g0hQ24LisqhfFqtFnl5ecjLy0NmZgE++ECLzMwC4zatVmu3stgbO0ETEZFTsfawdWuTS/kqz0dUW2dsZ52PiAGIiIicitzX05JL+QyvX9caZ846HxEDEBEROR2511jIqXyWrnHmLNgHiIiISMGU2hmbAYiIiEjB5NAZWwpsAiMiIlK42jpjX7vmgvPngXbtgFatJCyklTEAERERETSa29VqfU6ejMbf/hYAvR5wcRFYtkyHUaN+k7QTubUwABEREVE1f4wOUwEA9HoVZszwwdWrW6HR3Hb44fHsA0RERKRAdc0zVNdSHY4+PJ41QERERHam1WrtNg9Qba81YsQICCHg6+tr3Hbz5k2kp6cbR4dVDkHONDqMAYiIiMiOKs/AXBtrNDE15rUMo8OqzhDtLKPDGICIiIhswFzNy82bN+v1fGs0MdX3GOb2q210mKNjACIiIrKy+ta82JtO543CQn/4+WnrHWZqGh3mDBiAiIiIrMyS2puGhJKGqG3BU3u7cgW4eFHauYUYgIiIiCRir1BS14Kn9rRlCzBpEv5/biFg0yZgwgS7FgEAh8ETERFJwlwo0em8rf5adQ1pr6yu4fGW7lfZlSt/hB+g4t/nnqvYbm+sASIiIrKxmpq57LkKuyVD2v39/ZGUlGSTYfoXL/4RfgzKy4HsbPs3hTEAERER2ZC5Zq66Qom50WINCR+WDmm31QzP7dpVNHtVDkFqNRAVZZOXqxUDEBERkY3U1femtlCSnp5u9rj1nSOocjNVbUPaG9KcZSmtVgu1uhTLlnli1iwNystVUKsFli7VQa3+DVqtfdcXYwAiIiKyMp1OB6DuZq7Zs1ti7twbyM1tgvDwe3Bzi0B6et2doOs7ysyWzVmWqDotwNSp3sYgdufObWzaVLHdnuuLMQARERFZmRACQN19b3x9fdGxYyBiYysey8vTVztWY8lhwdKqAczc3EL2XF+Mo8CIiIiszLC2lqGZS6WqCDZVm7kqr8FF9sUaICIiIhtqzHIS9pokUYkYgIiIiGysIctJyGnmZmfEJjAiIiIb0+m8kZMTXu9JDu05SaJSsQaIiIjIhhpSk2PPSRKVijVARERENmJpTY5hPh7D6LHKKo8es8e8Pc6ONUBERERWZggoddXkVA0yleftCQ0tqjJhYBFGjRppl3l7rM2W64s1lEoYJisgo6KiImg0Guh0Ovj4+EhdHCIickBarRa5uffQs2cA9HqVcbtaLfDtt9cRHt6kziBz5UrFOllRUfZfK8vatFqtzSdktOTzmzVARERENuDv7w9/f2DTpooVz8vLK9a92rhRhdjYwHodo1Urxw8+BnKrtWIAIiIisqEJE4CEBOepyXEWDEBEREQ25kw1Oc6Co8CIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcdgJmoiIyInZY/4dR8QARERE5KS0Wi3Wrl1b535JSUmKC0FsAiMiInJStdX8NGQ/Z8IARERERIrDAERERESKwwBERESkEDqdN3JywqHTeUtdFMmxEzQREZECnDwZjb17h0AIF6hUeiQm7kNMzCmpiyUZ1gARERE5OZ3O2xh+AEAIF+zdO0TRNUEMQERERE6usNDfGH4MhHBBYaGfRCWSHgMQERGRk3JzcwMA+PlpoVLpTR5TqfTw8ys02U9J2AeIiIjISfn7+yMpKQmlpaUIDS3CrFkalJeroFYLLF1ahFGjRip2JmhZ1ACtW7cO4eHh8PDwQFxcHI4fP17r/u+//z46dOgADw8PdO7cGZ9++qnJ43fu3EFSUhJatWoFT09P3H///diwYYMtT4GIiEiW/P39ERwcjJdf9kVurgqHDwO5uSq8/LIvgoODFRl+ABnUAO3evRvJycnYsGED4uLikJqaioSEBFy4cAEBAQHV9v/6668xcuRIpKSkYMiQIUhLS8OwYcNw8uRJdOrUCQCQnJyML774Au+99x7Cw8Px+eef44UXXkBISAiGDh1q71MkIiKShVatKm62UnndsWvXXJCT0wQREfcQElLR/Can2iaVEEJIWYC4uDj06NHDuFaJXq9HWFgYXnzxRcyePbva/iNGjMDdu3exb98+47ZevXqhW7duxlqeTp06YcSIEXjjjTeM+8TGxmLQoEFYtGhRnWUqKiqCRqOBTqeDj49PY0+RiIjI6VVed6y2Ife2XHfMks9vSZvASktLkZmZiQEDBhi3ubi4YMCAATh27FiNzzl27JjJ/gCQkJBgsn+fPn3w8ccf4+rVqxBC4PDhw/jxxx/xpz/9qcZjlpSUoKioyORGRERE9Weo+alryL1c1h2TNADdvHkT5eXlCAwMNNkeGBiI/Pz8Gp+Tn59f5/5r1qzB/fffj1atWsHNzQ0DBw7EunXr0K9fvxqPmZKSAo1GY7yFhYU18syIiIiUyVGG3MuiE7S1rVmzBt988w0+/vhjZGZm4q233sKUKVNw6NChGvefM2cOdDqd8Xb58mU7l5iIiMg51DXkXi4k7QTdokULqNVqFBQUmGwvKChAUFBQjc8JCgqqdf/ffvsNr776Kj788EMMHjwYANClSxdkZWVhxYoV1ZrPAMDd3R3u7u7WOCUiIiJF02huIzFxX7U+QBrNbamLZkLSAOTm5obY2FhkZGRg2LBhACo6QWdkZCApKanG5/Tu3RsZGRmYNm2acdvBgwfRu3dvAEBZWRnKysrg4mJauaVWq6HXmyZSIiIisr6YmFOIjMxGYaEf/PwKZRd+ABkMg09OTsbYsWPRvXt39OzZE6mpqbh79y7Gjx8PAHjmmWcQGhqKlJQUAMBLL72E+Ph4vPXWWxg8eDB27dqF7777Dps2bQIA+Pj4ID4+HjNmzICnpyfatGmDL7/8Ev/4xz+wcuVKyc6TiIhISTSa27IMPgaSB6ARI0bgxo0bmDt3LvLz89GtWzfs37/f2NH5l19+ManN6dOnD9LS0vD666/j1VdfRbt27fDRRx8Z5wACgF27dmHOnDl4+umnUVhYiDZt2uDNN9/E5MmT7X5+REREJD+SzwMkR5wHiIiIyDKV5wGqjVzmAZK8BoiIiIgcn7+/P0aPHo3i4mKz+zRt2lQ2M0EzABEREVGjabVavPfee8b7Op03Cgv94eenNekLZMsaIEswABEREVGjVZ7hubalMDgTNBERETmdupbCkAsGICIiIrIaLoVBREREiuMoS2EwABEREZHVGJbCMIQgLoVBREREisClMIiIiEiR5L4UBpvAiIiIqNHc3Nysup+tsQaIiIiIGs3f3x9JSUm1zvPj5uYmi0kQAQYgIiIishK5hJv6YBMYERERKQ5rgIiIiMjmtFqtrJrHGICIiIjIprRaLdauXWu8L4eFUhmAiIiIyKbkuFAq+wARERGRXchpoVQGICIiIrILOS2UygBEREREdiGnhVIZgIiIiMgu5LRQKjtBExERkd3IZaFUBiAiIiKyKzkslMomMCIiIrIpOS6UyhogIiIisik5LpTKAEREREQ2J7eFUtkERkRERIrDAERERESKwwBEREREisMARERERIrDAERERESKwwBEREREisMARERERIrDAERERESKwwBEREREisOZoGsghAAAFBUVSVwSIiIiqi/D57bhc7w2DEA1uH27YoXasLAwiUtCRERElrp9+zY0Gk2t+6hEfWKSwuj1ely7dg3e3t5QqVQWP7+oqAhhYWG4fPkyfHx8bFBCx8Dr8Adeiwq8DhV4Hf7Aa1GB16FCY6+DEAK3b99GSEgIXFxq7+XDGqAauLi4oFWrVo0+jo+Pj6LfyAa8Dn/gtajA61CB1+EPvBYVeB0qNOY61FXzY8BO0ERERKQ4DEBERESkOAxANuDu7o558+bB3d1d6qJIitfhD7wWFXgdKvA6/IHXogKvQwV7Xgd2giYiIiLFYQ0QERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DUAOtW7cO4eHh8PDwQFxcHI4fP2523zNnzmD48OEIDw+HSqVCamqq/QpqY5Zch82bN+Ohhx5C8+bN0bx5cwwYMKDW/R2NJdciPT0d3bt3h6+vL7y8vNCtWze8++67diyt7VhyHSrbtWsXVCoVhg0bZtsC2okl12H79u1QqVQmNw8PDzuW1rYsfU/cunULU6ZMQXBwMNzd3XHffffh008/tVNpbceS69C/f/9q7wmVSoXBgwfbscS2Yen7ITU1Fe3bt4enpyfCwsIwffp0/P77740viCCL7dq1S7i5uYmtW7eKM2fOiGeffVb4+vqKgoKCGvc/fvy4eOWVV8Q///lPERQUJFatWmXfAtuIpddh1KhRYt26deLUqVPi3LlzYty4cUKj0YgrV67YueTWZ+m1OHz4sEhPTxdnz54V2dnZIjU1VajVarF//347l9y6LL0OBjk5OSI0NFQ89NBD4vHHH7dPYW3I0uuwbds24ePjI/Ly8oy3/Px8O5faNiy9FiUlJaJ79+7iz3/+s/jqq69ETk6OOHLkiMjKyrJzya3L0uug1WpN3g+nT58WarVabNu2zb4FtzJLr8POnTuFu7u72Llzp8jJyREHDhwQwcHBYvr06Y0uCwNQA/Ts2VNMmTLFeL+8vFyEhISIlJSUOp/bpk0bpwlAjbkOQghx79494e3tLXbs2GGrItpNY6+FEEJER0eL119/3RbFs5uGXId79+6JPn36iL///e9i7NixThGALL0O27ZtExqNxk6lsy9Lr8X69etF27ZtRWlpqb2KaBeN/RuxatUq4e3tLe7cuWOrItqFpddhypQp4pFHHjHZlpycLPr27dvosrAJzEKlpaXIzMzEgAEDjNtcXFwwYMAAHDt2TMKS2Zc1rkNxcTHKysrg5+dnq2LaRWOvhRACGRkZuHDhAvr162fLotpUQ6/D3/72NwQEBGDChAn2KKbNNfQ63LlzB23atEFYWBgef/xxnDlzxh7FtamGXIuPP/4YvXv3xpQpUxAYGIhOnTph8eLFKC8vt1exrc4afy+3bNmCp556Cl5eXrYqps015Dr06dMHmZmZxmayn376CZ9++in+/Oc/N7o8XAzVQjdv3kR5eTkCAwNNtgcGBuL8+fMSlcr+rHEdZs2ahZCQEJP/DI6ooddCp9MhNDQUJSUlUKvVeOedd/DYY4/Zurg205Dr8NVXX2HLli3IysqyQwntoyHXoX379ti6dSu6dOkCnU6HFStWoE+fPjhz5oxVFmaWSkOuxU8//YQvvvgCTz/9ND799FNkZ2fjhRdeQFlZGebNm2ePYltdY/9eHj9+HKdPn8aWLVtsVUS7aMh1GDVqFG7evIkHH3wQQgjcu3cPkydPxquvvtro8jAAkSSWLFmCXbt24ciRI07V2dMS3t7eyMrKwp07d5CRkYHk5GS0bdsW/fv3l7podnH79m2MGTMGmzdvRosWLaQujqR69+6N3r17G+/36dMHHTt2xMaNG7Fw4UIJS2Z/er0eAQEB2LRpE9RqNWJjY3H16lUsX77cYQNQY23ZsgWdO3dGz549pS6K3R05cgSLFy/GO++8g7i4OGRnZ+Oll17CwoUL8cYbbzTq2AxAFmrRogXUajUKCgpMthcUFCAoKEiiUtlfY67DihUrsGTJEhw6dAhdunSxZTHtoqHXwsXFBVFRUQCAbt264dy5c0hJSXHYAGTpdbh06RJyc3ORmJho3KbX6wEATZo0wYULFxAZGWnbQtuANf5GuLq6Ijo6GtnZ2bYoot005FoEBwfD1dUVarXauK1jx47Iz89HaWkp3NzcbFpmW2jMe+Lu3bvYtWsX/va3v9myiHbRkOvwxhtvYMyYMZg4cSIAoHPnzrh79y4mTZqE1157DS4uDe/Jwz5AFnJzc0NsbCwyMjKM2/R6PTIyMky+wTm7hl6HZcuWYeHChdi/fz+6d+9uj6LanLXeE3q9HiUlJbYool1Yeh06dOiAH374AVlZWcbb0KFD8fDDDyMrKwthYWH2LL7VWOP9UF5ejh9++AHBwcG2KqZdNORa9O3bF9nZ2cYwDAA//vgjgoODHTL8AI17T7z//vsoKSnB6NGjbV1Mm2vIdSguLq4WcgzhWDR2KdNGd6NWoF27dgl3d3exfft2cfbsWTFp0iTh6+trHLY6ZswYMXv2bOP+JSUl4tSpU+LUqVMiODhYvPLKK+LUqVPi4sWLUp2CVVh6HZYsWSLc3NzEBx98YDK88/bt21KdgtVYei0WL14sPv/8c3Hp0iVx9uxZsWLFCtGkSROxefNmqU7BKiy9DlU5yygwS6/DggULxIEDB8SlS5dEZmameOqpp4SHh4c4c+aMVKdgNZZei19++UV4e3uLpKQkceHCBbFv3z4REBAgFi1aJNUpWEVD/288+OCDYsSIEfYurs1Yeh3mzZsnvL29xT//+U/x008/ic8//1xERkaKJ598stFlYQBqoDVr1ojWrVsLNzc30bNnT/HNN98YH4uPjxdjx4413s/JyREAqt3i4+PtX3Ars+Q6tGnTpsbrMG/ePPsX3AYsuRavvfaaiIqKEh4eHqJ58+aid+/eYteuXRKU2vosuQ5VOUsAEsKy6zBt2jTjvoGBgeLPf/6zOHnypASltg1L3xNff/21iIuLE+7u7qJt27bizTffFPfu3bNzqa3P0utw/vx5AUB8/vnndi6pbVlyHcrKysT8+fNFZGSk8PDwEGFhYeKFF14Qv/76a6PLoRKisXVIRERERI6FfYCIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIgkNG7cOAwbNkzqYhApDgMQEdVo3LhxUKlUxpu/vz8GDhyI77//XuqiWUXlczPcHnzwQZu9Xm5uLlQqFbKysky2v/3229i+fbvNXpeIasYARERmDRw4EHl5ecjLy0NGRgaaNGmCIUOGSF0sq9m2bZvx/PLy8vDxxx/XuF9ZWZnNyqDRaODr62uz4xNRzRiAiMgsd3d3BAUFISgoCN26dcPs2bNx+fJl3LhxA4888giSkpJM9r9x4wbc3NyMqz2Hh4dj4cKFGDlyJLy8vBAaGop169aZPGflypXo3LkzvLy8EBYWhhdeeAF37twxPv7zzz8jMTERzZs3h5eXFx544AF8+umnAIBff/0VTz/9NFq2bAlPT0+0a9cO27Ztq/f5+fr6Gs8vKCgIfn5+xpqa3bt3Iz4+Hh4eHti5cye0Wi1GjhyJ0NBQNG3aFJ07d8Y///lPk+Pp9XosW7YMUVFRcHd3R+vWrfHmm28CACIiIgAA0dHRUKlU6N+/P4DqTWAlJSWYOnUqAgIC4OHhgQcffBAnTpwwPn7kyBGoVCpkZGSge/fuaNq0Kfr06YMLFy7U+7yJiAGIiOrpzp07eO+99xAVFQV/f39MnDgRaWlpKCkpMe7z3nvvITQ0FI888ohx2/Lly9G1a1ecOnUKs2fPxksvvYSDBw8aH3dxccHq1atx5swZ7NixA1988QVmzpxpfHzKlCkoKSnBv//9b/zwww9YunQpmjVrBgB44403cPbsWXz22Wc4d+4c1q9fjxYtWljlfA1lPXfuHBISEvD7778jNjYWn3zyCU6fPo1JkyZhzJgxOH78uPE5c+bMwZIlS4zlSktLQ2BgIAAY9zt06BDy8vKQnp5e4+vOnDkTe/bswY4dO3Dy5ElERUUhISEBhYWFJvu99tpreOutt/Ddd9+hSZMm+Otf/2qV8yZSjEYvp0pETmns2LFCrVYLLy8v4eXlJQCI4OBgkZmZKYQQ4rfffhPNmzcXu3fvNj6nS5cuYv78+cb7bdq0EQMHDjQ57ogRI8SgQYPMvu77778v/P39jfc7d+5scszKEhMTxfjx4xt0fgCEh4eH8fy8vLzEhx9+KHJycgQAkZqaWucxBg8eLF5++WUhhBBFRUXC3d1dbN68ucZ9Dcc9deqUyfaxY8eKxx9/XAghxJ07d4Srq6vYuXOn8fHS0lIREhIili1bJoQQ4vDhwwKAOHTokHGfTz75RAAQv/32myWXgEjRWANERGY9/PDDyMrKQlZWFo4fP46EhAQMGjQIP//8Mzw8PDBmzBhs3boVAHDy5EmcPn0a48aNMzlG7969q90/d+6c8f6hQ4fw6KOPIjQ0FN7e3hgzZgy0Wi2Ki4sBAFOnTsWiRYvQt29fzJs3z6QT9vPPP49du3ahW7dumDlzJr7++muLzm/VqlXG88vKysJjjz1mfKx79+4m+5aXl2PhwoXo3Lkz/Pz80KxZMxw4cAC//PILAODcuXMoKSnBo48+alEZKrt06RLKysrQt29f4zZXV1f07NnT5JoBQJcuXYw/BwcHAwCuX7/e4NcmUhoGICIyy8vLC1FRUYiKikKPHj3w97//HXfv3sXmzZsBABMnTsTBgwdx5coVbNu2DY888gjatGlT7+Pn5uZiyJAh6NKlC/bs2YPMzExjH6HS0lLja/z0008YM2YMfvjhB3Tv3h1r1qwBAGMYmz59Oq5du4ZHH30Ur7zySr1fPygoyHh+UVFR8PLyMjn3ypYvX463334bs2bNwuHDh5GVlYWEhARjOT09Pev9utbg6upq/FmlUgGo6INERPXDAERE9aZSqeDi4oLffvsNANC5c2d0794dmzdvRlpaWo39UL755ptq9zt27AgAyMzMhF6vx1tvvYVevXrhvvvuw7Vr16odIywsDJMnT0Z6ejpefvllYwADgJYtW2Ls2LF47733kJqaik2bNlnzlI2OHj2Kxx9/HKNHj0bXrl3Rtm1b/Pjjj8bH27VrB09PT2MH8Krc3NwAVNQkmRMZGQk3NzccPXrUuK2srAwnTpzA/fffb6UzISIAaCJ1AYhIvkpKSpCfnw+gYsTV2rVrcefOHSQmJhr3mThxIpKSkuDl5YX/+q//qnaMo0ePYtmyZRg2bBgOHjyI999/H5988gkAICoqCmVlZVizZg0SExNx9OhRbNiwweT506ZNw6BBg3Dffffh119/xeHDh40Bau7cuYiNjcUDDzyAkpIS7Nu3z/iYtbVr1w4ffPABvv76azRv3hwrV65EQUGBMZh4eHhg1qxZmDlzJtzc3NC3b1/cuHEDZ86cwYQJExAQEABPT0/s378frVq1goeHBzQajclreHl54fnnn8eMGTPg5+eH1q1bY9myZSguLsaECRNscl5ESsUaICIya//+/QgODkZwcDDi4uJw4sQJvP/++8Yh3AAwcuRINGnSBCNHjoSHh0e1Y7z88sv47rvvEB0djUWLFmHlypVISEgAAHTt2hUrV67E0qVL0alTJ+zcuRMpKSkmzy8vL8eUKVPQsWNHDBw4EPfddx/eeecdABW1KnPmzEGXLl3Qr18/qNVq7Nq1yybX4vXXX0dMTAwSEhLQv39/BAUFVZvB+Y033sDLL7+MuXPnomPHjhgxYoSxX06TJk2wevVqbNy4ESEhIXj88cdrfJ0lS5Zg+PDhGDNmDGJiYpCdnY0DBw6gefPmNjkvIqVSCSGE1IUgIseVm5uLyMhInDhxAjExMSaPhYeHY9q0aZg2bZo0hSMiMoNNYETUIGVlZdBqtXj99dfRq1evauGHiEjO2ARGRA1y9OhRBAcH48SJE9X67Uht8eLFaNasWY23QYMGSV08IpIBNoERkdMpLCysNnOygaenJ0JDQ+1cIiKSGwYgIiIiUhw2gREREZHiMAARERGR4jAAERERkeIwABEREZHiMAARERGR4jAAERERkeIwABEREZHiMAARERGR4vwfgzJ5orPePz8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVMVJREFUeJzt3XlcVOXiP/DPMDKAyHJBQRAUBNPUUiHFpcLKwlLMX5aaLWqWeq+4UWbYzSUr1EzJJZf7TbFupJVmuVzNSFvM0otaueQW5AaokANKKjLP7w/uTAwwKzNzzsz5vF8vXsKZM2eeZwaczzyrSgghQERERKQgXlIXgIiIiMjVGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIZCw7OxsqlQoFBQVSF4XIozAAESncvn37kJaWhg4dOsDf3x8tW7bE4MGDcfz48Trn9u7dGyqVCiqVCl5eXggMDETbtm3x1FNPYceOHTY97qZNm5CcnIywsDA0btwYrVu3xuDBg7Ft2zZHVa2ON954Axs3bqxz/Pvvv8fMmTNx+fJlpz12bTNnzjQ8lyqVCo0bN0b79u3xz3/+E2VlZQ55jJycHGRlZTnkWkSehgGISOHmzp2L9evX47777sPbb7+N0aNH45tvvkFCQgIOHTpU5/yoqCi8//77eO+99/Dmm29iwIAB+P777/HAAw9gyJAhqKystPiY8+fPx4ABA6BSqZCRkYGFCxdi0KBBOHHiBNauXeuMagIwH4BmzZrl0gCkt2zZMrz//vtYsGAB2rVrh9dffx19+/aFI7ZpZAAiMq2R1AUgImmlp6cjJycHGo3GcGzIkCG47bbbMGfOHPz73/82Oj8oKAhPPvmk0bE5c+ZgwoQJeOeddxATE4O5c+eafLybN29i9uzZuP/++/HFF1/Uuf3ChQsNrJF8VFRUoHHjxmbPefTRR9G0aVMAwNixYzFo0CBs2LABP/zwA3r06OGKYhIpEluAiBSuZ8+eRuEHANq0aYMOHTrg6NGjVl1DrVZj0aJFaN++PZYsWQKtVmvy3EuXLqGsrAy9evWq9/awsDCjn69du4aZM2filltuga+vLyIiIvDII4/g1KlThnPmz5+Pnj17IjQ0FH5+fkhMTMQnn3xidB2VSoWrV69izZo1hm6nESNGYObMmZgyZQoAIDY21nBbzTE3//73v5GYmAg/Pz+EhIRg6NChOHPmjNH1e/fujY4dOyIvLw933303GjdujGnTpln1/NV07733AgDy8/PNnvfOO++gQ4cO8PHxQWRkJMaNG2fUgtW7d29s2bIFv//+u6FOMTExNpeHyFOxBYiI6hBCoLi4GB06dLD6Pmq1Go8//jheeeUVfPfdd+jXr1+954WFhcHPzw+bNm3C+PHjERISYvKaVVVV6N+/P3JzczF06FBMnDgR5eXl2LFjBw4dOoS4uDgAwNtvv40BAwbgiSeewI0bN7B27Vo89thj2Lx5s6Ec77//Pp599ll069YNo0ePBgDExcXB398fx48fx4cffoiFCxcaWmOaNWsGAHj99dfxyiuvYPDgwXj22Wdx8eJFLF68GHfffTcOHDiA4OBgQ3lLSkrw4IMPYujQoXjyyScRHh5u9fOnpw92oaGhJs+ZOXMmZs2ahT59+uDvf/87jh07hmXLlmHfvn3YvXs3vL298fLLL0Or1eLs2bNYuHAhAKBJkyY2l4fIYwkiolref/99AUC8++67RseTk5NFhw4dTN7v008/FQDE22+/bfb606dPFwCEv7+/ePDBB8Xrr78u8vLy6py3atUqAUAsWLCgzm06nc7wfUVFhdFtN27cEB07dhT33nuv0XF/f38xfPjwOtd68803BQCRn59vdLygoECo1Wrx+uuvGx3/5ZdfRKNGjYyOJycnCwBi+fLlJutd04wZMwQAcezYMXHx4kWRn58vVqxYIXx8fER4eLi4evWqEEKI1atXG5XtwoULQqPRiAceeEBUVVUZrrdkyRIBQKxatcpwrF+/fqJVq1ZWlYdIadgFRkRGfv31V4wbNw49evTA8OHDbbqvvoWhvLzc7HmzZs1CTk4OunTpgu3bt+Pll19GYmIiEhISjLrd1q9fj6ZNm2L8+PF1rqFSqQzf+/n5Gb7/448/oNVqcdddd2H//v02lb+2DRs2QKfTYfDgwbh06ZLhq3nz5mjTpg127txpdL6Pjw9Gjhxp02O0bdsWzZo1Q2xsLMaMGYP4+Hhs2bLF5NihL7/8Ejdu3MCkSZPg5fXXf+HPPfccAgMDsWXLFtsrSqRA7AIjIoOioiL069cPQUFB+OSTT6BWq226/5UrVwAAAQEBFs99/PHH8fjjj6OsrAw//vgjsrOzkZOTg9TUVBw6dAi+vr44deoU2rZti0aNzP9XtXnzZrz22ms4ePAgrl+/bjheMyTZ48SJExBCoE2bNvXe7u3tbfRzixYt6oynsmT9+vUIDAyEt7c3oqKiDN16pvz+++8AqoNTTRqNBq1btzbcTkTmMQAREQBAq9XiwQcfxOXLl/Htt98iMjLS5mvop83Hx8dbfZ/AwEDcf//9uP/+++Ht7Y01a9bgxx9/RHJyslX3//bbbzFgwADcfffdeOeddxAREQFvb2+sXr0aOTk5NtehJp1OB5VKhf/85z/1hsHaY2pqtkRZ6+677zaMOyIi12EAIiJcu3YNqampOH78OL788ku0b9/e5mtUVVUhJycHjRs3xp133mlXOe644w6sWbMGhYWFAKoHKf/444+orKys09qit379evj6+mL79u3w8fExHF+9enWdc021CJk6HhcXByEEYmNjccstt9haHado1aoVAODYsWNo3bq14fiNGzeQn5+PPn36GI41tAWMyJNxDBCRwlVVVWHIkCHYs2cPPv74Y7vWnqmqqsKECRNw9OhRTJgwAYGBgSbPraiowJ49e+q97T//+Q+Av7p3Bg0ahEuXLmHJkiV1zhX/WyhQrVZDpVKhqqrKcFtBQUG9Cx76+/vXu9ihv78/ANS57ZFHHoFarcasWbPqLEwohEBJSUn9lXSiPn36QKPRYNGiRUZlevfdd6HVao1m3/n7+5tdkoBIydgCRKRwzz//PD7//HOkpqaitLS0zsKHtRc91Gq1hnMqKipw8uRJbNiwAadOncLQoUMxe/Zss49XUVGBnj17onv37ujbty+io6Nx+fJlbNy4Ed9++y0GDhyILl26AACefvppvPfee0hPT8fevXtx11134erVq/jyyy/xj3/8Aw8//DD69euHBQsWoG/fvhg2bBguXLiApUuXIj4+Hj///LPRYycmJuLLL7/EggULEBkZidjYWCQlJSExMREA8PLLL2Po0KHw9vZGamoq4uLi8NprryEjIwMFBQUYOHAgAgICkJ+fj08//RSjR4/GCy+80KDn31bNmjVDRkYGZs2ahb59+2LAgAE4duwY3nnnHXTt2tXo9UpMTMS6deuQnp6Orl27okmTJkhNTXVpeYlkS8opaEQkPf30bVNf5s5t0qSJaNOmjXjyySfFF198YdXjVVZWin/9619i4MCBolWrVsLHx0c0btxYdOnSRbz55pvi+vXrRudXVFSIl19+WcTGxgpvb2/RvHlz8eijj4pTp04Zznn33XdFmzZthI+Pj2jXrp1YvXq1YZp5Tb/++qu4++67hZ+fnwBgNCV+9uzZokWLFsLLy6vOlPj169eLO++8U/j7+wt/f3/Rrl07MW7cOHHs2DGj58bcEgG16ct38eJFs+fVngavt2TJEtGuXTvh7e0twsPDxd///nfxxx9/GJ1z5coVMWzYMBEcHCwAcEo8UQ0qIRyw4QwRERGRG+EYICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHMkD0NKlSxETEwNfX18kJSVh7969Js89fPgwBg0ahJiYGKhUKmRlZdV73rlz5/Dkk08iNDQUfn5+uO222/Df//7XSTUgIiIidyPpQoj6BbqWL1+OpKQkZGVlISUlBceOHUNYWFid8ysqKtC6dWs89thjmDx5cr3X/OOPP9CrVy/cc889+M9//oNmzZrhxIkT+Nvf/mZ1uXQ6Hc6fP4+AgAAuJU9EROQmhBAoLy9HZGQkvLwstPFIuQhRt27dxLhx4ww/V1VVicjISJGZmWnxvq1atRILFy6sc3zq1KnizjvvbFC5zpw5Y3ZhOH7xi1/84he/+CXfrzNnzlh8r5esBejGjRvIy8tDRkaG4ZiXlxf69Oljcp8ga3z++edISUnBY489hq+//hotWrTAP/7xDzz33HMm73P9+nVcv37d8LP439qQZ86cMbunEREREclHWVkZoqOjERAQYPFcyQLQpUuXUFVVhfDwcKPj4eHh+PXXX+2+7m+//YZly5YhPT0d06ZNw759+zBhwgRoNBoMHz683vtkZmZi1qxZdY4HBgYyABEREbkZa4avSD4I2tF0Oh0SEhLwxhtvoEuXLhg9ejSee+45LF++3OR9MjIyoNVqDV9nzpxxYYmJiIjI1SQLQE2bNoVarUZxcbHR8eLiYjRv3tzu60ZERKB9+/ZGx2699VacPn3a5H18fHwMrT1s9SEiIvJ8kgUgjUaDxMRE5ObmGo7pdDrk5uaiR48edl+3V69eOHbsmNGx48ePo1WrVnZfk4iIiDyLpNPg09PTMXz4cNxxxx3o1q0bsrKycPXqVYwcORIA8PTTT6NFixbIzMwEUD1w+siRI4bvz507h4MHD6JJkyaIj48HAEyePBk9e/bEG2+8gcGDB2Pv3r1YuXIlVq5c6fDyV1VVobKy0uHXpWre3t5Qq9VSF4OIiDyQSuinPElkyZIlePPNN1FUVITOnTtj0aJFSEpKAgD07t0bMTExyM7OBgAUFBQgNja2zjWSk5Oxa9cuw8+bN29GRkYGTpw4gdjYWKSnp5udBVZbWVkZgoKCoNVq6+0OE0KgqKgIly9ftqmuZLvg4GA0b96c6zEREZFFlt6/a5I8AMmRpSewsLAQly9fRlhYGBo3bsw3ZycQQqCiogIXLlxAcHAwIiIipC4SERHJnC0BSNIuMHdUVVVlCD+hoaFSF8ej+fn5AQAuXLiAsLAwdocREZHDeNw0eGfTj/lp3LixxCVRBv3zzLFWRETkSAxAdmK3l2vweSYiImdgFxgRERE5XUlJCW7cuGHydo1G49KhJQxARERE5FQlJSVYsmSJxfPS0tJcFoLYBaYgI0aMgEqlgkqlgre3N8LDw3H//fdj1apV0Ol0Vl8nOzsbwcHBzisoERF5FHMtP/ac5whsAZKAlM2Affv2xerVq1FVVYXi4mJs27YNEydOxCeffILPP/8cjRrxV4KIiJxLqw1AaWkoQkJKEBRULkkZ+G7nYlI3A/r4+Bj2WmvRogUSEhLQvXt33HfffcjOzsazzz6LBQsWYPXq1fjtt98QEhKC1NRUzJs3D02aNMGuXbsMK3XrByjPmDEDM2fOxPvvv4+3334bx44dg7+/P+69915kZWUhLCzM4fUgIiL3tH9/F2za1B9CeEGl0iE1dTMSEg64vBzsAnMxOTYD3nvvvejUqRM2bNgAAPDy8sKiRYtw+PBhrFmzBl999RVefPFFAEDPnj2RlZWFwMBAFBYWorCwEC+88AKA6qnqs2fPxk8//YSNGzeioKAAI0aMcFk9iIhI3rTaAEP4AQAhvLBpU39otQEuLwtbgAgA0K5dO/z8888AgEmTJhmOx8TE4LXXXsPYsWPxzjvvQKPRICgoCCqVytCSpPfMM88Yvm/dujUWLVqErl274sqVK2jSpIlL6kFERPJVWhpqCD96QnihtDTE5V1hbAEiANVbT+i7tL788kvcd999aNGiBQICAvDUU0+hpKQEFRUVZq+Rl5eH1NRUtGzZEgEBAUhOTgYAnD592unlJyIi+QsJKYFKZTzpRqXSISSk1OVlYQAiAMDRo0cRGxuLgoIC9O/fH7fffjvWr1+PvLw8LF26FID5brmrV68iJSUFgYGB+OCDD7Bv3z58+umnFu9HRETKERRUjtTUzYYQpB8DJMVAaHaBEb766iv88ssvmDx5MvLy8qDT6fDWW2/By6s6H3/00UdG52s0GlRVVRkd+/XXX1FSUoI5c+YgOjoaAPDf//7XNRUgIiJZ02g0hu8TEg4gLu4kSktDEBJSahR+ap7nbAxACnP9+nUUFRUZTYPPzMxE//798fTTT+PQoUOorKzE4sWLkZqait27d2P58uVG14iJicGVK1eQm5uLTp06oXHjxmjZsiU0Gg0WL16MsWPH4tChQ5g9e7ZEtSQiIjkJDQ1FWlqarFaCZheYwmzbtg0RERGIiYlB3759sXPnTixatAifffYZ1Go1OnXqhAULFmDu3Lno2LEjPvjgA2RmZhpdo2fPnhg7diyGDBmCZs2aYd68eWjWrBmys7Px8ccfo3379pgzZw7mz58vUS2JiEhuQkNDERERYfLLleEHAFRCCOHSR3QDZWVlCAoKglarRWBgoNFt165dQ35+PmJjY+Hr62vztaVeB8jdNPT5JiIi5TD3/l0bu8BcTI7NgERERErDACQBhhsiIiJpcQwQERERKQ4DEBERESkOu8CIiIg8UElJCcebmsEARERE5GFqzzjWagNQWhqKkJASo4UHlTzjmAGIiIjIw9Rs+dm/v4thB3b91hMJCQfqnKc0HANERETkobTaAEP4Aap3Xt+0qT+02gCJSyY9BiAiIiIPVVoaagg/ekJ4obQ0RKISyQcDEDnMrl27oFKpcPnyZavvExMTg6ysLKeViYhIyUJCSgw7r+upVDqEhJRKVCL5YABSkBEjRkClUmHs2LF1bhs3bhxUKhVGjBjh+oIREZFTBAWVIzV1syEE6ccA1RwIrVdSUoLCwkKTXyUlJa4uvlNxELTCREdHY+3atVi4cCH8/PwAVO+3lZOTg5YtW0pcOiIicrSEhAOIizuJ0tIQhISUmgw/Stunki1ACpOQkIDo6Ghs2LDBcGzDhg1o2bIlunTpYjh2/fp1TJgwAWFhYfD19cWdd96Jffv2GV1r69atuOWWW+Dn54d77rkHBQUFdR7vu+++w1133QU/Pz9ER0djwoQJuHr1qtPqR0REdQUFlSM29vd6ww9QdzaYVhuA/PyYOoOlPWnWGAOQxM6eBXburP7XVZ555hmsXr3a8POqVaswcuRIo3NefPFFrF+/HmvWrMH+/fsRHx+PlJQUlJZW9xufOXMGjzzyCFJTU3Hw4EE8++yzeOmll4yucerUKfTt2xeDBg3Czz//jHXr1uG7775DWlqa8ytJRKRgGo3G7vP27++CrKxJWLNmOLKyJmH//i713NP9sQtMQu++C4weDeh0gJcXsHIlMGqU8x/3ySefREZGBn7//XcAwO7du7F27Vrs2rULAHD16lUsW7YM2dnZePDBBwEA//rXv7Bjxw68++67mDJlCpYtW4a4uDi89dZbAIC2bdvil19+wdy5cw2Pk5mZiSeeeAKTJk0CALRp0waLFi1CcnIyli1bBl9fX+dXlohIgUJDQ5GWlmbzStCmps3HxZ2s03rk7itNMwBJ5OzZv8IPUP3vmDFASgoQFeXcx27WrBn69euH7OxsCCHQr18/NG3a1HD7qVOnUFlZiV69ehmOeXt7o1u3bjh69CgA4OjRo0hKSjK6bo8ePYx+/umnn/Dzzz/jgw8+MBwTQkCn0yE/Px+33nqrM6pHRCQJuQUCex7L3LT5mgHIE8YMMQBJ5MSJv8KPXlUVcPKk8wMQUN0Npu+KWrp0qVMe48qVKxgzZgwmTJhQ5zYOuCYiT+IJgQD4a9p8zRBU37T5+sYM1bfVhpzHDDEASaRNm+pur5ohSK0G4uNd8/h9+/bFjRs3oFKpkJKSYnRbXFwcNBoNdu/ejVatWgEAKisrsW/fPkN31q233orPP//c6H4//PCD0c8JCQk4cuQI4l1VKSIiiXhCIAD+mjZfe+sMU4OnAfNbbcgZA5BEoqKqx/yMGVPd8qNWAytWuKb1BwDUarWhO0utVhvd5u/vj7///e+YMmUKQkJC0LJlS8ybNw8VFRUY9b9BSmPHjsVbb72FKVOm4Nlnn0VeXh6ys7ONrjN16lR0794daWlpePbZZ+Hv748jR45gx44dVn1SIiJyR+4aCPSsmTavZ8uYIbnhLDAJjRoFFBRUzwIrKHDNAOiaAgMDERgYWO9tc+bMwaBBg/DUU08hISEBJ0+exPbt2/G3v/0NQHUX1vr167Fx40Z06tQJy5cvxxtvvGF0jdtvvx1ff/01jh8/jrvuugtdunTB9OnTERkZ6fS6ERFJwV333qo9G8zUtPna57nzVhtsAZJYVJTrWn1qt9DUtnHjRsP3vr6+WLRoERYtWmTy/P79+6N///5Gx2pPp+/atSu++OILk9eob+0gIiJ3Ze0gYrmxd9aYtWOG5IgBiIiIyEHcORDYMzjbnjFDcsEARERE5CDuHAjsZcuYITlhACIiIjLBnrV93DUQ2KK+MUP11dPaFamlwABERERUj9pr+5ia2p6WluYRgcAW9o4ZkhMGIDsJIaQugiLweSYiqdR8czc3tf3GjRuIiIhw+0BgK3evCwOQjby9vQEAFRUV8PPzk7g0nq+iogLAX887EZGrWbvWjbsHAqVhALKRWq1GcHAwLly4AABo3LgxVCqVxKXyPEIIVFRU4MKFCwgODq6zWCMRkau469R2Mo8ByA7NmzcHAEMIIucJDg42PN9ERFJw56ntZBoDkB1UKhUiIiIQFhaGyspKqYvjsby9vdnyQ0SSU+LUdiVgAGoAtVrNN2giIgVQwtR2pWEAIiIisoKpqe3knhiAiIiI6mHtmj368+xZNJGkwwBERERUD1sW+7Nl0USGIHlgACIiIjLB2rBiy6KJJA9elk8hIiIia5haNFGrDZC4ZFQbAxAREZGDmFs0keSFAYiIiMhB9Ism1sRFE+WJAYiIiMhB9Ism6kMQF02ULw6CJiIiciAumugeGICIiIgcjIsmyh+7wIiIiBrI1kUTSXpsASIiImogWxZNJHlgACIiInIAhhv3wgBEREROU3N/rPPnvZCf3wixsTcRGVk9S4qtIiQVBiAiInKKmvtjmdsegvtjkRQYgIiIyCn0LT+mtoeIizuJoKBy7o/lJHLbnV5u5WEAIiIipzK3PQSnijtH7d3pTXFV65vcygNwGjwRETkZt4dwPWtb1VzV+ia38gAMQERE5GTcHkJ6Wm0A8vNjuCt9DewCIyIip3PW9hCcZWaZuQHoSsYARERELuHo7SE4y8wySwPQlYwBiIhIweQ2M8cWnGVmmVwHoGu1ASgtDUVISIlk5WAAIiJSqNozc0y9KdnbguKq/bHk+iYvB/oB6DWfH6kHoMulS04WAWjp0qV48803UVRUhE6dOmHx4sXo1q1bvecePnwY06dPR15eHn7//XcsXLgQkyZNMnntOXPmICMjAxMnTkRWVpZzKkBE5IZqtoyYe1OytwXFVftjyfFNXi70A9Brv7ZSBUM5dclJHoDWrVuH9PR0LF++HElJScjKykJKSgqOHTuGsLCwOudXVFSgdevWeOyxxzB58mSz1963bx9WrFiB22+/3VnFJyJyOmd3UznzTckV3Wdye5OXg5qtauYGoLtqd3r941hqrXNVeQAZBKAFCxbgueeew8iRIwEAy5cvx5YtW7Bq1Sq89NJLdc7v2rUrunbtCgD13q535coVPPHEE/jXv/6F1157zTmFJyJyMlcsIOcJXUjOmmXmTM4MtnLbnV5fnoKCm3j/fQGdTmW4Ta0WGD/+QcTENFLOStA3btxAXl4eMjIyDMe8vLzQp08f7Nmzp0HXHjduHPr164c+ffpYDEDXr1/H9evXDT+XlZU16LGJiMyx5Y2v9nmmxuk0ZKCvp3QhOXqWmTO5ItjKbfB6aGgoQkOBlSuBMWOAqipArQZWrFAhMTHc5eWRNABdunQJVVVVCA83rnh4eDh+/fVXu6+7du1a7N+/H/v27bPq/MzMTMyaNcvuxyMislZD3vicNXiUXUiuJ8eVkV1l1CggJQU4eRKIjweioqQph+RdYI525swZTJw4ETt27ICvr69V98nIyEB6errh57KyMkRHRzuriESkYPa+8Tl78Kg7diG5apaZK8hhWrgrRUVJF3z0JA1ATZs2hVqtRnFxsdHx4uJiNG/e3K5r5uXl4cKFC0hISDAcq6qqwjfffIMlS5bg+vXrUKvVRvfx8fGBj4+PXY9HRNQQ1r7xuWKcjjt1IQHyG+diL7lMC1caSQOQRqNBYmIicnNzMXDgQACATqdDbm4u0tLS7Lrmfffdh19++cXo2MiRI9GuXTtMnTq1TvghIpKKLW98zhin4wktKHIPN5bIaVq40kjeBZaeno7hw4fjjjvuQLdu3ZCVlYWrV68aZoU9/fTTaNGiBTIzMwFUNwsfOXLE8P25c+dw8OBBNGnSBPHx8QgICEDHjh2NHsPf3x+hoaF1jhMRScXWNz5njNPxlBYUd+YJM/DcleQBaMiQIbh48SKmT5+OoqIidO7cGdu2bTMMjD59+jS8vP765Th//jy6dOli+Hn+/PmYP38+kpOTsWvXLlcXn4jILva88TljnA7DjbQ8ZQaeO5I8AAHVsx1MdXnVDjUxMTEQQth0fQYjIpIba9/4anc/mRqnI+duKmdy573MAM7Ak5IsAhARkdJY+8bHbirTnL2XmTPJbaVmJWIAIiKqxZmtCva88cntzVsunL2XmTMx2EqPAYiIqAZnr9DLNz7Hc9eZVHyNpcUARERUgytW6OUbn2NxJhXZw8vyKUREyqXVBiA/PwZabYDURSET9APKa+JMKrKELUBERCZwhV73wJlUZA8GICKierjruBKlcse9zOTG3ZcUsBUDEBFRPTiuxP24215mcuLswf9yxDFARET14LgS+fOEvczkwhWD/+WGLUBE5PHsadrnuBL545IC1BAMQETk0Wxt2ucKve6F4YbsxQBERG7Hlhad2ueZ2i5Bfx5bFYis4+6DphmAiMitNGSwprXT2uX8nzaRK5j6oKDnCYOmGYCIyK3YO1iT09qJrGPNBwVPGDTNWWBE5NasXanZ3LR2Iqpm6oOCJ66EzhYgInJbtqzUrJ/WXjMEcVo7UTX9oH5L61950uB/tgARkVuy9ZOqflq7fm0fTmsn+ot+8P/48X3h5SWMblOrBcaPf9BoPI9Wq7XqutaeJwW2ABGRW7JnpWZrt0uoObvl/Hkv5Oc3QmzsTURGVocnuc9uIbJHaGgoQkOBlSuBMWOAqipArQZWrFAhMTHc6NzKykqrrmnteVJgACIit2Rtl1btJntT2yXoz6s5u8VcF5ucZ7cQNcSoUUBKCnDyJBAfD0RFWb6PpVljcsQARERuydqVmm1d10d/nqVZY3Ke3ULUUFFR1gUfwLaxeHLCAEREbsWelZrtaanhZqhEpjVqVB0fLH1Q0J8nR/ItGRFRPVy1UjNnjRGZFhwcDMDyBwX9eXLEAEREbscVY2+4GSqRZe78QYEBiIjIBGtnjREpVVBQOW6//Wf89FMnACoAArff/rNb/K0wABERmWFq1hi5J3ffwFMu9GPstNoA/Pzz7agOPwCgws8/34577/1K9gsnMgAREZEieMIGnnKhH4u3cyewcGHdMUC9eg1H797y3liYAYiIqAZrP7HK+ZMt1c8TNvCUk9DQUHTvDnh5ATrdX8fVaiApqXpRRTljACIiqsGeWWZcOdo9uePifXITFVXfytHWryEkJQYgIqJabAkrXDnaPbnr4n1yZM/K0XLAzVCJiBrA0srR+s1Z2a0iH7ZupEuWRUUBvXu7T/gBGICIiBzC3IJwJC98rQhgFxgRWYnTh81z5wXhlIavFQEMQERkBU4ftowrR7sPvlYEMAARkRU4fdg6XDla3uzZSJc8FwMQEdmM04dN48rR8uWqjXTJPTAAEZFNOH2Y3BnDDelxFhgRWY3Th+viytFE7oktQERkNXPTh5Xa7cNuFSL3xABERFbj9OH6MdwQuR8GICKymiumD589C5w4AbRp416rytqCe4cRSY8BiIgscvb0YX0gyMnxw4svBkGnU8HLS2DePC2GDfvTowIB9w4jkgcGICKyyJnjXPSBQKsNQFbWJAihAgDodCpMmRKIc+dWISio3GMCgaW9w+LiTiIoqFzxayoRORsDEBFZxVnhQ/9Gb2mAtacFAg4oJ5IWp8ETkSzoB1jX5MkDrJVWXyK5YQsQEcmC0vZnUkp9uYkuyRUDEBFZxRUzl5S2l5an15eb6JKcMQARyZScPjm7cuaS0vbS8uT6chNdkjMGICIZktsnZ85cIkfgJrokJwxARDIk10/OnLnUcErdO4yb6JLcMAARuQG5fHJ2xlYYSgsEStw7zFLLIZEUGICIZE5On5ydMXNJiYHAk+piDbYckhwxABHJmBw/OTtj5pLSAoHScBNdkiMGICIZk+snZ0+euUSOJ6c1j+Q0u5KkxQBEJGP85EzuzNmb6NpKbrMrSVoMQEQyZssnZ2cuVKi0gcpkmi0tKHIb3yXX2ZUkDQYgIhmy9ZOzsxcqlNsbGUnDnhYU/k6QXDEAEcmQrYHDFQsV8o2M2IJCnoQBiEim7Akcch00TZ5JLutTWUur1db6uf7ya7VaREREuLp45GIMQEQexJmDpl2xGSq5DzmtT2WtyspKw/fmyl/zPPJcDEBEHsRZ041duRkqyZ8c16eyhbuXnxyDAYjIwzhjoUJuhko1uXtXq7uXnxyDAYjITnJeUM1ZCxXyjYMA912fqlGj6re8kJASADoANX+X/yq//jzybHyVyaM5K6QodUE1d33jI8eS08rOtggODq7xk8roNpXK1HnkqRiAyGM5M6TUDlWmZpO4qkvIVQsVuusbHzmG3FZ2tldpaShqByC2ZCoPAxB5LFetWSKH2TCuXKjQGWOMyD14yoKYbMkkgAGIPFjtNT/MnWfvmh9ymk3iyjcdboaqXHIPN+boW6YstWTKvQWLHIMBiDxW7bU8THVTNWTNDw4KJnIftVuwpk+/iIKCRoiJuYnIyK4AurpFCxY5BgMQKYI13VT2DJhWSlM6N0MlT1HzbzgiAkhMlLAwJCkGIPJ41nRT2TtgWimDgj1l7AcRkR4DEHk8a7qpGjKrSymDghlu3IOc16cikhMGIPJ43t7XAQgYT3sV8Pau/03Cmu6y2l09pgYFs0uIXEmp61MR2cPL8inOt3TpUsTExMDX1xdJSUnYu3evyXMPHz6MQYMGISYmBiqVCllZWXXOyczMRNeuXREQEICwsDAMHDgQx44dc2INSI70q7lWVvqg9pofgAqVlRqj8wDT3WVabYDZx9JqA5CfH2PxPFuUlJSgsLAQhYWFyMsrxieflCAvr9hwrKSkxGGPRZ6hvpbM+n4vuWUJkQxagNatW4f09HQsX74cSUlJyMrKQkpKCo4dO4awsLA651dUVKB169Z47LHHMHny5Hqv+fXXX2PcuHHo2rUrbt68iWnTpuGBBx7AkSNH4O/v7+wqkUzoV3O1NFC55qqv1s7qqvkGYq7FyN43Gm4+Sg0lh/WpiORM8hagBQsW4LnnnsPIkSPRvn17LF++HI0bN8aqVavqPb9r16548803MXToUPj4+NR7zrZt2zBixAh06NABnTp1QnZ2Nk6fPo28vDxnVoVkpvaaHyqVDgDMrvmhD0s1mZvVZW+LkSWWNh/VX5+f5Kk+zvq9JPIkkrYA3bhxA3l5ecjIyDAc8/LyQp8+fbBnzx6HPY5+QbyQkJB6b79+/TquX79u+LmsrMxhj03SsWXNj8LCQgC2z+py9jpAXGeI7MHfGyLLJA1Aly5dQlVVFcLDw42Oh4eH49dff3XIY+h0OkyaNAm9evVCx44d6z0nMzMTs2bNcsjjkbzYs+aHLbO6nL0OkFLWGSLH4u8NkWWSd4E527hx43Do0CGsXbvW5DkZGRnQarWGrzNnzriwhCQH9c3qio39vU74qe88c91rDeXs65Nn4u8NkWWStgA1bdoUarUaxcXFRseLi4vRvHnzBl8/LS0NmzdvxjfffIOoqCiT5/n4+JgcT0TK0JCF/py9DpBS1hkix+LvDZF5kgYgjUaDxMRE5ObmYuDAgQCqu6xyc3ORlpZm93WFEBg/fjw+/fRT7Nq1C7GxsQ4qMXmyhsymcvbmoNx8lKzB9amIrCf5NPj09HQMHz4cd9xxB7p164asrCxcvXoVI0eOBAA8/fTTaNGiBTIzMwFUD5w+cuSI4ftz587h4MGDaNKkCeLj4wFUd3vl5OTgs88+Q0BAAIqKigAAQUFB8PPzk6CW5Gm4NxbJEbcsIbKe5AFoyJAhuHjxIqZPn46ioiJ07twZ27ZtMwyMPn36NLy8/hqqdP78eXTp0sXw8/z58zF//nwkJydj165dAIBly5YBAHr37m30WKtXr8aIESOcWh9SBme/0TBgkb0YboisoxJCCKkLITdlZWUICgqCVqtFYGCg1MUhheKeTkREtrHl/VvyFiAiqh/DDRGR89gdgC5fvoyTJ08CAOLj4422EyBSmrNngRMngDZtADMTDomISCZsDkAFBQUYN24ctm/fDn3vmUqlQt++fbFkyRLExMQ4uoxEsqTvosrJ8cOLLwZBp1PBy0tg3jwthg37k11URHZg1y+5ik0B6MyZM+jevTu8vb0xe/Zs3HrrrQCAI0eOYNmyZejRowf27dtnds0dIk+g36xUqw1AVtYkCFG927xOp8KUKYE4d24VgoLKuVkpkQ1qbgJsDv+uyBFsCkAzZ85E27ZtsX37dvj6+hqODxw4EJMnT0bfvn0xc+ZM/N///Z/DC0okJ/pPqJb2XOJmpUTWs/bvhX9X5Ag2BaBt27Zh3bp1RuFHz8/PD7Nnz8bQoUMdVjgiueOeS0RE7smmvcAuXbpkdoxP69atUVrK//hJObjnEpHzaLUByM+PgVYbIHVRyAPZ1AIUERGBI0eOmBzjc+jQIYfs4UXkTrjnEpHj7d/fBZs29YcQXoYPFgkJB6QuFnkQmwLQwIED8cILLyA3NxfNmjUzuu3ChQuYOnWqYU8vIiXhXl1EjqPVBhjCD1A9rm7Tpv6IiztZ5++Ms8bIXjYFoBkzZmDr1q2Ii4vDk08+iXbt2kEIgaNHjyInJwfNmzfH9OnTnVVWIiJSAEuTC/Q4a4wawqYA9Le//Q0//vgjpk2bhrVr1+Ly5csAgODgYAwbNgxvvPEGQkJCnFFOIiJSCGsnF3DWGDWETYOggeoQtGzZMpSUlKCoqAhFRUUoKSnB8uXLGX5IMbhZKZHj6f9eLE0u4N8VOYLdW2GoVCqEhYU5sixEbsPZu8ETKVHtv6vp0y+ioKARYmJuIjKyK4CuZv+utNoAlJaGIiSkhGPyyCKbA9DWrVuxYcMGhISEYOTIkYbVoAHgjz/+wKBBg/DVV185tJBEcsRwQ+R4Nf+uIiKAxETr7sdZY2Qrm7rAcnJyMGDAABQVFWHPnj1ISEjABx98YLj9xo0b+Prrrx1eSCIikoeSkhIUFhaa/CopKXF5mUzNGuP6QWSOTS1Ab775JhYsWIAJEyYAAD766CM888wzuHbtGkaNGuWUAhIRkTzIddaVtbPGiGqyKQCdOHECqamphp8HDx6MZs2aYcCAAaisrMT/+3//z+EFVCKua0FEciTXWVfckobsYVMACgwMRHFxMWJjYw3H7rnnHmzevBn9+/fH2bNnHV5ApZHrJyylOXsWOHECaNMGMLHwudurGbTPn/dCfn4jxMbeRGRk9cwbBm2Su9qzxmqPAeKsMTLHpgDUrVs3/Oc//0H37t2NjicnJ2PTpk3o37+/QwunRHL9hKUE+kCQk+OHF18Mgk6ngpeXwLx5Wgwb9qdHBYKaQdvc4FEGbTJH6llXDZ01RspmUwCaPHkyvv/++3pv6927NzZt2oT33nvPIQUjciV9INBqA5CVNQlCqAAAOp0KU6YE4ty5VQgKKveYQKB/w7C05QCDNpkil1lX9s4aI7IpAHXp0gVdunRBWVlZvbcnJiYikb995Ib0b/SWBlN6WiDg4FGyhy17dRHJlU0BKDg4GCqVyuJ5VVVVdheISEpKG0wpl/py4L97YXAmT2BTANq5c6fheyEEHnroIfzf//0fWrRo4fCCUTWp+9iVxtJgSk8jh/rWHvhv6nfeU7ofPYFcgjNRQ9gUgJKTk41+VqvV6N69O1q3bu3QQlE1ufSxK01CwgHExZ1EaWkIQkJKPTb86Eld35otP+Z+5z2t+9EdcdYVeRK79wIj52Ifu7SCgsoV9TzLob7O/J1nF5tjcNYVeRIGIJnRf3Ky1MfOT1jkaZw1roRdbI7FWVfkKRocgKwZFE3W03/CKii4ifffF9Dp/np+1WqB8eMfRExMI/5HTQ1ibYB2ZdB21rgSdrERUX1sCkCPPPKI0c/Xrl3D2LFj4e/vb3R8w4YNDS+ZgoWGhiI0FFi5EhgzBqiqAtRqYMUKFRITw6UunkeSYyBwptpdGfVxdVeGswdks1vZPbC7klzFpgAUFBRk9POTTz7p0MKQsVGjgJQU4ORJID7ec7dkkAM5BgJnk2NdnDkgm1O35Y9bAZEr2RSAVq9e7axykAlRUQw+rsL/UOXBWQOyOXVb/rgVELmSl+VTiIicx1Xdj/ouNpWqerNXT1/jyRNotQHIz4+BVhsgdVHIA3EWGBFJypXdj1KveUTW4zpo5GwMQDLEQYCeqebrev68F/LzGyE29iYiI6tbJJT8urp6sDWDj7xxwDq5AgOQzHAQoGeq+bqa+2TL19XxlDbDzxNwwDq5AgOQzNRu+TG1aBsHAboX/etl6ZMtX1fHU+IMP3fHAevkCgxAMsY+cM/DT7bSYLhxL3LYpJc8HwOQTLEP3DPxky2RaTW7Ic0NWGd3JTkCA5BMsaXAM/GTLZFp7K4kV2IAkim2FHguTsUmMo3hhlyFAUim3LWlgFO9rcOp2ERE0mIAkjF3ayngVG8iInIX3ApDZmoP7gsKKkds7O91wo8cBwFamuqtX85eiVO9uRYNEZG8sAVIZjxhECAHcNflCa8rEZEnYQByAVu3tnD3N0EO4K6fu7+uRESehAHIyWpvbWFqZWdPGhfjrgO4iYhIORiAnKxmy4+5gcGeNi7G3QZwExGRsnAQtItYGhjsiUwN4CYiIpIaA5CLmBsYTERERK7FAOQi+oHBNXnawGBO9SYiInfBMUAuooSBwZzqTURE7oIByIWUMDCY4YaIiNwBA5CLcQ8oIiIi6XEMkJNxXAwREZH8sAXIyTguhoiISH4YgFyA4YYA27dEISIi52EAInKB2luimOJJW6IQEckZA5Cbq9mqcP68F/LzGyE29iYiI6vXHGKrgjzUbvkxtSecp22JQkQkVwxAbqxmq4K5fcbYqiAv5l4rIiJyDc4Cc2P61gJL+4yxVUE+lLgnHBGRHDEAeQDuM+Y++FoREckDA5AHUMI+Y56CrxURkTwwAHkA/T5j+jdWT9xnzFPwtSIikgcOgvYQSthnzFPwtSIikh4DkAfhPmPyVXurE1OvFbdEISJyDQYgIhfglihERPLCAOTGuNGqe2G4ISJTzp4FTpwA2rQBoqKkLo0yMAC5MbYqEBG5v3ffBUaPBnQ6wMsLWLkSGDVK6lJ5PpUQQkhdCLkpKytDUFAQtFotAgMDpS4OERF5qLNngVatqsOPnloNFBSwJcgetrx/cxo8ERGRRE6cMA4/AFBVBZw8KU15lIQBiIiISCJt2lR3e9WkVgPx8dKUR0kYgIiIiCQSFVU95ketrv5ZrQZWrGD3lyvIIgAtXboUMTEx8PX1RVJSEvbu3Wvy3MOHD2PQoEGIiYmBSqVCVlZWg69JREQklVGjqsf87NxZ/S8HQLuG5AFo3bp1SE9Px4wZM7B//3506tQJKSkpuHDhQr3nV1RUoHXr1pgzZw6aN2/ukGsSERG5WklJCQoLC1FYWAi1uhBt21b/qz9WUlIidRE9muSzwJKSktC1a1csWbIEAKDT6RAdHY3x48fjpZdeMnvfmJgYTJo0CZMmTXLYNQHOAiMiIucqKSkxvEeZk5aWxqVMbOA2s8Bu3LiBvLw89OnTx3DMy8sLffr0wZ49e1x2zevXr6OsrMzoi4iIyFnMrd9mz3lkO0kD0KVLl1BVVYXw8HCj4+Hh4SgqKnLZNTMzMxEUFGT4io6OtuuxiYiIyD1IPgZIDjIyMqDVag1fZ86ckbpIRERE5ESSboXRtGlTqNVqFBcXGx0vLi42OcDZGdf08fGBj4+PXY9HnqOkpITbipBH4f5SRKZJGoA0Gg0SExORm5uLgQMHAqgesJybm4u0tDTZXJM8HwckkqfQB/mcHD+8+GIQdDoVvLwE5s3TYtiwPxnkif5H8s1Q09PTMXz4cNxxxx3o1q0bsrKycPXqVYwcORIA8PTTT6NFixbIzMwEUD0g7MiRI4bvz507h4MHD6JJkyaI/9/SmZauSVQbBySSJ9AHea02AFlZkyCECgCg06kwZUogzp1bhaCgcgZ5IsggAA0ZMgQXL17E9OnTUVRUhM6dO2Pbtm2GQcynT5+GV411ws+fP48uXboYfp4/fz7mz5+P5ORk7Nq1y6prElmi1QagtDQUISElCAoql7o4RFbRB/TS0lAIYTzEUwgvlJaGICionEGeCDIIQEB1t4Kp7il9qNGLiYmBNUsXmbsmWU+J42L27++CTZv6QwgvqFQ6pKZuRkLCAamLRWS1kJASqFQ6oxCkUukQElIqYamoJo1G49DzyHayCEAkT0ocF6PVBhjCD1D9qXnTpv6IizvJliByG0FB5UhN3VwnyPN3WD5CQ0ORlpamuA+YcsIARCbV/sM01S3kSc3plroOiNxFQsIBxMWdRGlpCEJCSvn7K0MMN9JiACKrKKVbSE5dB3LrfpRbeciyoKByBh8iExiAyCIldQvJpetAbt2PcisPEVFDMQCRRUroFqo50NBc14GrBiTKbVq+ErtDicizMQCRRXLqFnIWuQ9IlNO0fKV0h7ojziwish4DEFkkl24hZ5Nr142cAoeSukPdkdyDPJGcMACRVdx1Rom7D9yVW+BQQneou5Pz7zORnDAAkUm1m8lNzSiRa3O6JwzclVvgUEJ3KBEpAwMQmeTuzelyG0hsD7kFDqV0hxKR52MAIrPkGm7sIaeBxNaSY+Bw1+5QIqKaGIBIEeQ0kNgacpuW7+7doUREtTEAkceT20Bia8it+1Fu5SEiaigGIPJ4chtIbC25hQm5lYeIqCEYgBTG3aeF28NZA4mV+FwSEXkKBiAF8YRp4fZwxkBipT6XRESeggFIQTxhWrgtnDmQWGnPJRGRp2EAUjB3nBZuC1cO3PX055KIyNMwACmUu00Lt5crup+U8lwSEXkSL8unkKcxNS1cqw2QuGTuh88lEZF7YgBSIHPTwsk2fC6JiNwTA5AC6aeF18QNLe3D55KIyD0xACmQflq4/o1bDvtLuSs+l6aVlJSgsLAQhYWFyMsrxieflCAvr9hwrKSkROoiEpGCcRC0gshtfyl3xufSvJrrJJkbJM51kohIKgxACsL9nByHz6V5+ufF0j5sXCeJiKTCAKQwSn1DdgY+l5a56z5sROT5OAaIiJyGg8SJSK4YgIjIaThInIjkil1gRORUCQkHEBZWhNOnW6Jly9OIiiqUukhERAxARORc3CqEiOSIXWBE5HBarfZ//5rfKkR/HhGRqzEAEZHDCSEAWN4qRH8eEZGrsQuMHKqkpIRr45igpOcmODgYwF+zwGqGoJqzwPTnERG5GgMQOUzN1X/NUeLqv0p9bvSzwGqPAeIsMCKSGgOQwjizFcLaVX2VuPqvkp8bc1uFEBFJhQFIQZTaCiFHWm0ASktDERJSoohAEBRUroh6EpH7YABSEFe3QijtTd5anBYurbNngRMngDZtgKgoqUtDRFJhACKn4Jt8/SxtDkrO9e67wOjRgE4HeHkBK1cCo0ZJXSoikgKnwZPDWVr7RcksTQv3FBqNxqHnOcLZs3+FH6D63zFjqo8TkfKwBUjBnNVFxR3ATbM0LdxThIaGIi0tTVbT/k+c+Cv86FVVASdPsiuMSIkYgBTK2i4qe2aNKeVN3h5KmhYut4H0bdpUd3vVDEFqNRAfL12ZiEg6DEAy5OwF86wdh2LrrDF9d4alN3lXdnvIRc06m5sWrsTnxhVKSkqgVt/AvHl+mDo1CFVVKqjVAnPnaqFW/4mSEs9ZhJKIrMMAJDOumKpubReVrbPGand7TJ9+EQUFjRATcxORkV0BdPWo1Y5tIccuIaWo/Tc1YUKAIXxeuVKOlSurj3P5ByJlYQCSGWdOVde3LljqompIK0TNN5CICCAx0e5LeRy+uUqj9t+KqTWJPHERSiIyjQFIQWq2QrRoUVarK6AMw4Y9zlYIIiJSBAYghdGHm+efB4YMqZ4BEx+vQlRUMIBgs/flwoZEROQpGIAULCrK+um/XNiQiIg8CRdClDmtNgD5+TGSLiLIhQ2JiMjTsAVIxuTS6sKFDYmIyNOwBUim5NDqUnvWWE2OmjVGREQkBbYAyYw+TFhqdXFF6OCsMfIEctyXjIikpxJCCKkLITdlZWUICgqCVqtFYGCgyx+/pKQEBQU30a1bGHQ6leG4Wi3w448XEBPTSJLQcfasftYY904i9+Ls1dWJSB5sef9mC5AMhYaGIjQUWLmyerfqqqrqPYtWrFAhMTFcsnLZMmuMSE4YboioNgYgGRs1CkhJYasLERGRozEAyRxbXYiIiByPs8CIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcTgIWmG4HgoREREDkKKUlJRgyZIlFs9LS0tjCCIiIo/GLjAFMdfyY895RERE7ooBiIiIiBSHAYiIiIgUhwFIwbTaAOTnx0CrDZC6KERERC7FQdAKtX9/F2za1B9CeEGl0iE1dTMSEg5IXSwiIiKXYAuQAmm1AYbwAwBCeGHTpv5sCSIiIsVgAFKg0tJQQ/jRE8ILpaUhEpWIiIjItRiAFESj0QAAQkJKoFLpjG5TqXQICSk1Oo+IiMhTcQyQgoSGhiItLQ03btxAixZlmDo1CFVVKqjVAnPnlmHYsMe5EjQRESmCLFqAli5dipiYGPj6+iIpKQl79+41e/7HH3+Mdu3awdfXF7fddhu2bt1qdPuVK1eQlpaGqKgo+Pn5oX379li+fLkzq+A2QkNDERERgeefD0ZBgQo7dwIFBSo8/3wwIiIiGH6IiEgRJG8BWrduHdLT07F8+XIkJSUhKysLKSkpOHbsGMLCwuqc//333+Pxxx9HZmYm+vfvj5ycHAwcOBD79+9Hx44dAQDp6en46quv8O9//xsxMTH44osv8I9//AORkZEYMGCAq6soW1FR1V/upOZeZufPeyE/vxFiY28iMrK6S48tWEREZA2VEEJIWYCkpCR07drVsEeVTqdDdHQ0xo8fj5deeqnO+UOGDMHVq1exefNmw7Hu3bujc+fOhlaejh07YsiQIXjllVcM5yQmJuLBBx/Ea6+9ZrFMZWVlCAoKglarRWBgYEOrSA5Scy8zc9P4uZcZEZEy2fL+LWkX2I0bN5CXl4c+ffoYjnl5eaFPnz7Ys2dPvffZs2eP0fkAkJKSYnR+z5498fnnn+PcuXMQQmDnzp04fvw4HnjggXqvef36dZSVlRl9kfzoW34sTePnXmZERGSJpAHo0qVLqKqqQnh4uNHx8PBwFBUV1XufoqIii+cvXrwY7du3R1RUFDQaDfr27YulS5fi7rvvrveamZmZCAoKMnxFR0c3sGbkTJzGT0REDSWLQdCOtnjxYvzwww/4/PPPkZeXh7feegvjxo3Dl19+We/5GRkZ0Gq1hq8zZ864uMRkC0vT+ImIiCyRdBB006ZNoVarUVxcbHS8uLgYzZs3r/c+zZs3N3v+n3/+iWnTpuHTTz9Fv379AAC33347Dh48iPnz59fpPgMAHx8f+Pj4OKJK5AJBQeVITd1cZwxQUFC51EUjIiI3IWkA0mg0SExMRG5uLgYOHAigehB0bm4u0tLS6r1Pjx49kJubi0mTJhmO7dixAz169AAAVFZWorKyEl5exo1barUaOp1xqwG5r4SEA4iLO4nS0hCEhJQy/BARkU0knwafnp6O4cOH44477kC3bt2QlZWFq1evYuTIkQCAp59+Gi1atEBmZiYAYOLEiUhOTsZbb72Ffv36Ye3atfjvf/+LlStXAgACAwORnJyMKVOmwM/PD61atcLXX3+N9957DwsWLJCsnuR4QUHlDD5ERGQXyQPQkCFDcPHiRUyfPh1FRUXo3Lkztm3bZhjofPr0aaPWnJ49eyInJwf//Oc/MW3aNLRp0wYbN240rAEEAGvXrkVGRgaeeOIJlJaWolWrVnj99dcxduxYl9ePiIiI5EfydYDkiOsAyVPNdYDM4TpARETKZMv7t+QtQCRvNVdero8rV16uuZeZHMpDRETuiwGITKrd4qLVBqC0NBQhISVGY29c2eLCcENERI7AAEQm1WxpMbf1BFdeJiIid+ORCyGSY1naeoKIiMjdMACRRdx6goiIPA0DEFnErSeIiMjTMACRRfqtJ/QhiFtPEBGRu+MgaLIKt54gIiJPwgBEVuPWE0RE5CnYBUYmaTQah55HREQkF2wBIpO48jIREXkqBiAyi+GGiIg8EbvAiIiISHHYAuTm5LRZKRERkbtgAHJjctyslIiIyB0wALkxblZKRERkH44B8gDcrJSIiMg2DEAegJuVEhER2YYByANws1IiIiLbMAB5AG5WSkREZBsOgvYQ3KyUiIjIegxAHoSblRIREVmHXWBujJuVEhER2YctQG6Mm5USERHZhwHIzTHcEBER2Y5dYERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDhcCboeQggAQFlZmcQlISIiImvp37f17+PmMADVo7y8ekf16OhoiUtCREREtiovL0dQUJDZc1TCmpikMDqdDufPn0dAQABUKpVDr11WVobo6GicOXMGgYGBDr22HLB+7s/T6+jp9QM8v46sn/tzVh2FECgvL0dkZCS8vMyP8mELUD28vLwQFRXl1McIDAz02F9sgPXzBJ5eR0+vH+D5dWT93J8z6mip5UePg6CJiIhIcRiAiIiISHEYgFzMx8cHM2bMgI+Pj9RFcQrWz/15eh09vX6A59eR9XN/cqgjB0ETERGR4rAFiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAaiBli5dipiYGPj6+iIpKQl79+41e35WVhbatm0LPz8/REdHY/Lkybh27VqDrulsjq7jzJkzoVKpjL7atWvn7GqYZEv9Kisr8eqrryIuLg6+vr7o1KkTtm3b1qBrOpuj6yen1++bb75BamoqIiMjoVKpsHHjRov32bVrFxISEuDj44P4+HhkZ2fXOUdOr58z6ujOr2FhYSGGDRuGW265BV5eXpg0aVK953388cdo164dfH19cdttt2Hr1q2OL7wVnFG/7OzsOq+fr6+vcypgBVvruGHDBtx///1o1qwZAgMD0aNHD2zfvr3OeU7/OxRkt7Vr1wqNRiNWrVolDh8+LJ577jkRHBwsiouL6z3/gw8+ED4+PuKDDz4Q+fn5Yvv27SIiIkJMnjzZ7ms6mzPqOGPGDNGhQwdRWFho+Lp48aKrqmTE1vq9+OKLIjIyUmzZskWcOnVKvPPOO8LX11fs37/f7ms6kzPqJ6fXb+vWreLll18WGzZsEADEp59+avb83377TTRu3Fikp6eLI0eOiMWLFwu1Wi22bdtmOEdOr58QzqmjO7+G+fn5YsKECWLNmjWic+fOYuLEiXXO2b17t1Cr1WLevHniyJEj4p///Kfw9vYWv/zyi3MqYYYz6rd69WoRGBho9PoVFRU5pwJWsLWOEydOFHPnzhV79+4Vx48fFxkZGcLb29vl/48yADVAt27dxLhx4ww/V1VVicjISJGZmVnv+ePGjRP33nuv0bH09HTRq1cvu6/pbM6o44wZM0SnTp2cUl5b2Vq/iIgIsWTJEqNjjzzyiHjiiSfsvqYzOaN+cnr9arLmP94XX3xRdOjQwejYkCFDREpKiuFnOb1+tTmqju78GtaUnJxcb0AYPHiw6Nevn9GxpKQkMWbMmAaWsGEcVb/Vq1eLoKAgh5XLkWyto1779u3FrFmzDD+74u+QXWB2unHjBvLy8tCnTx/DMS8vL/Tp0wd79uyp9z49e/ZEXl6eoRnvt99+w9atW/HQQw/ZfU1nckYd9U6cOIHIyEi0bt0aTzzxBE6fPu28iphgT/2uX79ep6nZz88P3333nd3XdBZn1E9PDq+fPfbs2WP0fABASkqK4fmQ0+tnL0t11HPX19Aa1j4H7uzKlSto1aoVoqOj8fDDD+Pw4cNSF8luOp0O5eXlCAkJAeC6v0MGIDtdunQJVVVVCA8PNzoeHh6OoqKieu8zbNgwvPrqq7jzzjvh7e2NuLg49O7dG9OmTbP7ms7kjDoCQFJSErKzs7Ft2zYsW7YM+fn5uOuuu1BeXu7U+tRmT/1SUlKwYMECnDhxAjqdDjt27MCGDRtQWFho9zWdxRn1A+Tz+tmjqKio3uejrKwMf/75p6xeP3tZqiPg3q+hNUw9B+7yGlrStm1brFq1Cp999hn+/e9/Q6fToWfPnjh79qzURbPL/PnzceXKFQwePBiA6/4fZQByoV27duGNN97AO++8g/3792PDhg3YsmULZs+eLXXRHMaaOj744IN47LHHcPvttyMlJQVbt27F5cuX8dFHH0lYcuu8/fbbaNOmDdq1aweNRoO0tDSMHDkSXl6e8adkTf3c+fWjanwN3VuPHj3w9NNPo3PnzkhOTsaGDRvQrFkzrFixQuqi2SwnJwezZs3CRx99hLCwMJc+diOXPpoHadq0KdRqNYqLi42OFxcXo3nz5vXe55VXXsFTTz2FZ599FgBw22234erVqxg9ejRefvllu67pTM6oY31BITg4GLfccgtOnjzp+EqYYU/9mjVrho0bN+LatWsoKSlBZGQkXnrpJbRu3druazqLM+pXH6leP3s0b9683ucjMDAQfn5+UKvVsnn97GWpjvVxp9fQGqaeA3d5DW3l7e2NLl26uN3rt3btWjz77LP4+OOPjbq7XPX/qGd8bJWARqNBYmIicnNzDcd0Oh1yc3PRo0ePeu9TUVFRJwCo1WoAgBDCrms6kzPqWJ8rV67g1KlTiIiIcFDJrdOQ59vX1xctWrTAzZs3sX79ejz88MMNvqajOaN+9ZHq9bNHjx49jJ4PANixY4fh+ZDT62cvS3Wsjzu9htaw5zlwZ1VVVfjll1/c6vX78MMPMXLkSHz44Yfo16+f0W0u+zt02HBqBVq7dq3w8fER2dnZ4siRI2L06NEiODjYMB3xqaeeEi+99JLh/BkzZoiAgADx4Ycfit9++0188cUXIi4uTgwePNjqa7qaM+r4/PPPi127don8/Hyxe/du0adPH9G0aVNx4cIF2dfvhx9+EOvXrxenTp0S33zzjbj33ntFbGys+OOPP6y+pis5o35yev3Ky8vFgQMHxIEDBwQAsWDBAnHgwAHx+++/CyGEeOmll8RTTz1lOF8/RXzKlCni6NGjYunSpfVOg5fL6yeEc+rozq+hEMJwfmJiohg2bJg4cOCAOHz4sOH23bt3i0aNGon58+eLo0ePihkzZkg2Dd4Z9Zs1a5bYvn27OHXqlMjLyxNDhw4Vvr6+Rue4kq11/OCDD0SjRo3E0qVLjabyX7582XCOK/4OGYAaaPHixaJly5ZCo9GIbt26iR9++MFwW3Jyshg+fLjh58rKSjFz5kwRFxcnfH19RXR0tPjHP/5h9OZi6ZpScHQdhwwZIiIiIoRGoxEtWrQQQ4YMESdPnnRhjYzZUr9du3aJW2+9Vfj4+IjQ0FDx1FNPiXPnztl0TVdzdP3k9Prt3LlTAKjzpa/T8OHDRXJycp37dO7cWWg0GtG6dWuxevXqOteV0+vnjDq6+2tY3/mtWrUyOuejjz4St9xyi9BoNKJDhw5iy5YtrqlQLc6o36RJkwy/n+Hh4eKhhx4yWkPH1WytY3Jystnz9Zz9d6gSwkS/BBEREZGH4hggIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiN7Fr1y6oVCpcvnxZ6qIQuT0GICKqY8SIEVCpVJgzZ47R8Y0bN0KlUhl+FkLgX//6F3r06IHAwEA0adIEHTp0wMSJE63emLGiogIZGRmIi4uDr68vmjVrhuTkZHz22WeGc2JiYpCVleWQujmb/rlTqVTw9vZGbGwsXnzxRVy7ds2m6/Tu3RuTJk0yOtazZ08UFhYiKCjIgSUmUiYGICKql6+vL+bOnYs//vij3tuFEBg2bBgmTJiAhx56CF988QWOHDmCd999F76+vnjttdesepyxY8diw4YNWLx4MX799Vds27YNjz76KEpKShxZHZfq27cvCgsL8dtvv2HhwoVYsWIFZsyY0eDrajQaNG/e3CiEEpGdHLqxBhF5hOHDh4v+/fuLdu3aiSlTphiOf/rpp0L/38aHH34oAIjPPvus3mvodDqrHisoKEhkZ2ebvL2+fYP0vv32W3HnnXcKX19fERUVJcaPHy+uXLliuP29994TiYmJokmTJiI8PFw8/vjjori42HC7fg+jbdu2ic6dOwtfX19xzz33iOLiYrF161bRrl07ERAQIB5//HFx9epVq+ozfPhw8fDDDxsde+SRR0SXLl0MP1+6dEkMHTpUREZGCj8/P9GxY0eRk5NjdI3adc7PzzeUt+beep988olo37690Gg0olWrVmL+/PlWlZNI6dgCRET1UqvVeOONN7B48WKcPXu2zu0ffvgh2rZtiwEDBtR7f2tbKZo3b46tW7eivLy83ts3bNiAqKgovPrqqygsLERhYSEA4NSpU+jbty8GDRqEn3/+GevWrcN3332HtLQ0w30rKysxe/Zs/PTTT9i4cSMKCgowYsSIOo8xc+ZMLFmyBN9//z3OnDmDwYMHIysrCzk5OdiyZQu++OILLF682Kr61Hbo0CF8//330Gg0hmPXrl1DYmIitmzZgkOHDmH06NF46qmnsHfvXgDA22+/jR49euC5554z1Dk6OrrOtfPy8jB48GAMHToUv/zyC2bOnIlXXnkF2dnZdpWVSFGkTmBEJD81WzG6d+8unnnmGSGEcQtQu3btxIABA4zuN3HiROHv7y/8/f1FixYtrHqsr7/+WkRFRQlvb29xxx13iEmTJonvvvvO6JxWrVqJhQsXGh0bNWqUGD16tNGxb7/9Vnh5eYk///yz3sfat2+fACDKy8uFEH+1AH355ZeGczIzMwUAcerUKcOxMWPGiJSUFKvqM3z4cKFWq4W/v7/w8fERAISXl5f45JNPzN6vX79+4vnnnzf8nJycLCZOnGh0Tu0WoGHDhon777/f6JwpU6aI9u3bW1VWIiVjCxARmTV37lysWbMGR48etXjuyy+/jIMHD2L69Om4cuWKVde/++678dtvvyE3NxePPvooDh8+jLvuuguzZ882e7+ffvoJ2dnZaNKkieErJSUFOp0O+fn5AKpbSFJTU9GyZUsEBAQgOTkZAHD69Gmja91+++2G78PDw9G4cWO0bt3a6NiFCxesqg8A3HPPPTh48CB+/PFHDB8+HCNHjsSgQYMMt1dVVWH27Nm47bbbEBISgiZNmmD79u11ymXJ0aNH0atXL6NjvXr1wokTJ1BVVWXTtYiUhgGIiMy6++67kZKSgoyMDKPjbdq0wbFjx4yONWvWDPHx8QgLC7PpMby9vXHXXXdh6tSp+OKLL/Dqq69i9uzZuHHjhsn7XLlyBWPGjMHBgwcNXz/99BNOnDiBuLg4XL16FSkpKQgMDMQHH3yAffv24dNPPwWAOtf19vY2fK+fvVWTSqWCTqezuj7+/v6Ij49Hp06dsGrVKvz444949913Dbe/+eabePvttzF16lTs3LkTBw8eREpKitn6EpFjNZK6AEQkf3PmzEHnzp3Rtm1bw7HHH38cw4YNw2effYaHH37YoY/Xvn173Lx5E9euXYNGo4FGo6nTopGQkIAjR44gPj6+3mv88ssvKCkpwZw5cwzjZ/773/86tJzW8PLywrRp05Ceno5hw4bBz88Pu3fvxsMPP4wnn3wSAKDT6XD8+HG0b9/ecL/66lzbrbfeit27dxsd2717N2655Rao1WrHV4bIg7AFiIgsuu222/DEE09g0aJFhmNDhw7Fo48+iqFDh+LVV1/Fjz/+iIKCAnz99ddYt26d1W/AvXv3xooVK5CXl4eCggJs3boV06ZNwz333IPAwEAA1esAffPNNzh37hwuXboEAJg6dSq+//57pKWl4eDBgzhx4gQ+++wzwyDoli1bQqPRYPHixfjtt9/w+eefW+xWc5bHHnsMarUaS5cuBVDderZjxw58//33OHr0KMaMGYPi4mKj+8TExBie00uXLtXbAvX8888jNzcXs2fPxvHjx7FmzRosWbIEL7zwgkvqReTOGICIyCqvvvqq0ZuwSqXCunXrkJWVha1bt+K+++5D27Zt8cwzzyA6OhrfffedVddNSUnBmjVr8MADD+DWW2/F+PHjkZKSgo8++sjosQsKChAXF4dmzZoBqB638/XXX+P48eO466670KVLF0yfPh2RkZEAqrvjsrOz8fHHH6N9+/aYM2cO5s+f78BnxHqNGjVCWloa5s2bh6tXr+Kf//wnEhISkJKSgt69e6N58+YYOHCg0X1eeOEFqNVqtG/fHs2aNat3fFBCQgI++ugjrF27Fh07dsT06dPx6quv1jvTjYiMqYQQQupCEBEREbkSW4CIiIhIcRiAiMipak5Tr/317bffSl08m5w+fdpsfWydxk5E0mEXGBE5lblNUVu0aAE/Pz8XlqZhbt68iYKCApO3x8TEoFEjTq4lcgcMQERERKQ47AIjIiIixWEAIiIiIsVhACIiIiLFYQAiIiIixWEAIiIiIsVhACIiIiLFYQAiIiIixWEAIiIiIsX5/wXur1RiiTjdAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW3dJREFUeJzt3Xtck/XiB/DPNhggwmAYVxEULLVUBJQ0L2QUehS1y0+y8pZGlmhGmXostaOG90jxkh5vaaaV1CutoyXpOZWWHpRjmpkaqCiijBwICcie3x+0yYCNjV3ZPu/Xay/Zs++efZ/ncNin71UkCIIAIiIiIicitnUFiIiIiKyNAYiIiIicDgMQEREROR0GICIiInI6DEBERETkdBiAiIiIyOkwABEREZHTYQAiIiIip8MARERERE6HAYiIyE5t2bIFIpEI+fn5tq4KkcNhACJyYseOHUNqairuv/9+eHp6ol27dhg5ciR+++23BmXj4+MhEokgEokgFovh7e2N++67D6NHj8Y333xj1Ofu2bMHAwYMgL+/P1q1aoUOHTpg5MiR2Ldvn7kurYF33nkHn3/+eYPjhw8fxrx583Dz5k2LfXZ98+bN09xLkUiEVq1aoUuXLnjzzTdRWlpqls/YsWMHMjIyzHIuIkfEAETkxBYvXozdu3fjkUcewXvvvYeUlBT85z//QXR0NE6dOtWgfNu2bbFt2zZ88MEHWLp0KYYNG4bDhw/jscceQ3JyMqqrq5v8zGXLlmHYsGEQiUSYNWsW3n33XTz55JM4d+4cdu7caYnLBKA/AL399ttWDUBqa9euxbZt27BixQp06tQJCxcuxKBBg2COLRoZgIj0c7F1BYjIdtLS0rBjxw5IpVLNseTkZHTt2hWLFi3C9u3btcrLZDI899xzWscWLVqEqVOnYs2aNQgPD8fixYt1ft6dO3cwf/58PProo/j6668bvH79+nUTr8h+VFRUoFWrVnrLPPXUU2jTpg0AYNKkSXjyySeRlZWFH3/8Eb1797ZGNYmcFluAiJxYnz59tMIPAHTs2BH3338/zpw5Y9A5JBIJVq5ciS5duiAzMxNKpVJn2eLiYpSWluKhhx5q9HV/f3+t57dv38a8efNw7733wt3dHUFBQXjiiSdw4cIFTZlly5ahT58+8PPzg4eHB2JiYvDpp59qnUckEqG8vBxbt27VdDuNGzcO8+bNw/Tp0wEA7du317xWd8zN9u3bERMTAw8PD8jlcjz99NO4fPmy1vnj4+PxwAMPICcnB/3790erVq3w97//3aD7V9fAgQMBAHl5eXrLrVmzBvfffz/c3NwQHByMyZMna7VgxcfH48svv8TFixc11xQeHm50fYgcGVuAiEiLIAgoKirC/fffb/B7JBIJRo0ahbfeegvff/89hgwZ0mg5f39/eHh4YM+ePZgyZQrkcrnOc9bU1GDo0KHIzs7G008/jVdeeQVlZWX45ptvcOrUKURERAAA3nvvPQwbNgzPPvssqqqqsHPnTvzf//0f9u7dq6nHtm3bMHHiRPTq1QspKSkAgIiICHh6euK3337DRx99hHfffVfTGnPPPfcAABYuXIi33noLI0eOxMSJE3Hjxg2sWrUK/fv3x4kTJ+Dj46Opr0KhwODBg/H000/jueeeQ0BAgMH3T00d7Pz8/HSWmTdvHt5++20kJCTgpZdewtmzZ7F27VocO3YMP/zwA1xdXTF79mwolUoUFBTg3XffBQC0bt3a6PoQOTSBiKiObdu2CQCEjRs3ah0fMGCAcP/99+t832effSYAEN577z29558zZ44AQPD09BQGDx4sLFy4UMjJyWlQbtOmTQIAYcWKFQ1eU6lUmp8rKiq0XquqqhIeeOABYeDAgVrHPT09hbFjxzY419KlSwUAQl5entbx/Px8QSKRCAsXLtQ6/vPPPwsuLi5axwcMGCAAENatW6fzuuuaO3euAEA4e/ascOPGDSEvL094//33BTc3NyEgIEAoLy8XBEEQNm/erFW369evC1KpVHjssceEmpoazfkyMzMFAMKmTZs0x4YMGSKEhYUZVB8iZ8QuMCLS+PXXXzF58mT07t0bY8eONeq96haGsrIyveXefvtt7NixAz169MD+/fsxe/ZsxMTEIDo6Wqvbbffu3WjTpg2mTJnS4BwikUjzs4eHh+bnP/74A0qlEv369cPx48eNqn99WVlZUKlUGDlyJIqLizWPwMBAdOzYEQcPHtQq7+bmhvHjxxv1Gffddx/uuecetG/fHi+++CIiIyPx5Zdf6hw7dODAAVRVVWHatGkQi+/++X7hhRfg7e2NL7/80vgLJXJS7AIjIgDAtWvXMGTIEMhkMnz66aeQSCRGvf/WrVsAAC8vrybLjho1CqNGjUJpaSl++uknbNmyBTt27EBSUhJOnToFd3d3XLhwAffddx9cXPT/mdq7dy8WLFiA3NxcVFZWao7XDUnNce7cOQiCgI4dOzb6uqurq9bzkJCQBuOpmrJ79254e3vD1dUVbdu21XTr6XLx4kUAtcGpLqlUig4dOmheJ6KmMQAREZRKJQYPHoybN2/iu+++Q3BwsNHnUE+bj4yMNPg93t7eePTRR/Hoo4/C1dUVW7duxU8//YQBAwYY9P7vvvsOw4YNQ//+/bFmzRoEBQXB1dUVmzdvxo4dO4y+hrpUKhVEIhH+9a9/NRoG64+pqdsSZaj+/ftrxh0RkXUxABE5udu3byMpKQm//fYbDhw4gC5duhh9jpqaGuzYsQOtWrVC3759m1WP2NhYbN26FYWFhQBqByn/9NNPqK6ubtDaorZ79264u7tj//79cHNz0xzfvHlzg7K6WoR0HY+IiIAgCGjfvj3uvfdeYy/HIsLCwgAAZ8+eRYcOHTTHq6qqkJeXh4SEBM0xU1vAiBwdxwARObGamhokJyfjyJEj+OSTT5q19kxNTQ2mTp2KM2fOYOrUqfD29tZZtqKiAkeOHGn0tX/9618A7nbvPPnkkyguLkZmZmaDssJfCwVKJBKIRCLU1NRoXsvPz290wUNPT89GFzv09PQEgAavPfHEE5BIJHj77bcbLEwoCAIUCkXjF2lBCQkJkEqlWLlypVadNm7cCKVSqTX7ztPTU++SBETOji1ARE7stddewxdffIGkpCSUlJQ0WPiw/qKHSqVSU6aiogLnz59HVlYWLly4gKeffhrz58/X+3kVFRXo06cPHnzwQQwaNAihoaG4efMmPv/8c3z33XcYMWIEevToAQAYM2YMPvjgA6SlpeHo0aPo168fysvLceDAAbz88ssYPnw4hgwZghUrVmDQoEF45plncP36daxevRqRkZE4efKk1mfHxMTgwIEDWLFiBYKDg9G+fXvExcUhJiYGADB79mw8/fTTcHV1RVJSEiIiIrBgwQLMmjUL+fn5GDFiBLy8vJCXl4fPPvsMKSkpeP311026/8a65557MGvWLLz99tsYNGgQhg0bhrNnz2LNmjXo2bOn1v9eMTEx2LVrF9LS0tCzZ0+0bt0aSUlJVq0vkV2z5RQ0IrIt9fRtXQ99ZVu3bi107NhReO6554Svv/7aoM+rrq4WNmzYIIwYMUIICwsT3NzchFatWgk9evQQli5dKlRWVmqVr6ioEGbPni20b99ecHV1FQIDA4WnnnpKuHDhgqbMxo0bhY4dOwpubm5Cp06dhM2bN2ummdf166+/Cv379xc8PDwEAFpT4ufPny+EhIQIYrG4wZT43bt3C3379hU8PT0FT09PoVOnTsLkyZOFs2fPat0bfUsE1Keu340bN/SWqz8NXi0zM1Po1KmT4OrqKgQEBAgvvfSS8Mcff2iVuXXrlvDMM88IPj4+AgBOiSeqRyQIZth0hoiIiKgF4RggIiIicjoMQEREROR0GICIiIjI6TAAERERkdNhACIiIiKnwwBERERETocLITZCpVLh6tWr8PLy4nLyRERELYQgCCgrK0NwcDDEYv1tPAxAjbh69SpCQ0NtXQ0iIiJqhsuXL6Nt27Z6yzAANcLLywtA7Q3Ut68RERER2Y/S0lKEhoZqvsf1YQBqhLrby9vbmwGIiIiohTFk+AoHQRMREZHTYQAiIiIip8MARERERE6HY4CIiIjMpKamBtXV1bauhsNydXWFRCIxy7kYgIiIiEwkCAKuXbuGmzdv2roqDs/HxweBgYEmr9PHAERERGQidfjx9/dHq1atuIiuBQiCgIqKCly/fh0AEBQUZNL5GICIiIhMUFNTowk/fn5+tq6OQ/Pw8AAAXL9+Hf7+/iZ1h3EQNBERkQnUY35atWpl45o4B/V9NnWsFQMQERGRGbDbyzrMdZ8ZgIiIiMjpcAwQWZVCoUBVVZXO16VSKfvQiYjI4hiAyGoUCgUyMzM1z5VKL5SU+EEuV0AmK9McT01NZQgiIrKCcePGYevWrQAAFxcXyOVydOvWDaNGjcK4ceMgFhvWUbRlyxZMmzatRS0DwABEVmuVqfsZx4/3wJ49QyEIYohEKiQl7UV09IkG5YiInIEtW8cHDRqEzZs3o6amBkVFRdi3bx9eeeUVfPrpp/jiiy/g4uKYUcExr4oMVr9VRhdztsoolV6a8AMAgiDGnj1DERFxXqsliIjIGdji73Bdbm5uCAwMBACEhIQgOjoaDz74IB555BFs2bIFEydOxIoVK7B582b8/vvvkMvlSEpKwpIlS9C6dWscOnQI48ePB3B3gPLcuXMxb948bNu2De+99x7Onj0LT09PDBw4EBkZGfD39zf7dRiLg6CdXP3/4lAqvZCXFw6l0ktvOVOUlPhpwo+aIIhRUiI322cQEbUUhv59tWbr+MCBA9G9e3dkZWUBAMRiMVauXInTp09j69at+Pbbb/HGG28AAPr06YOMjAx4e3ujsLAQhYWFeP311wHUTlWfP38+/ve//+Hzzz9Hfn4+xo0bZ7Xr0IctQKShr1vKnORyBUQilVYIEolUkMtLzP5ZRETUPJ06dcLJkycBANOmTdMcDw8Px4IFCzBp0iSsWbMGUqkUMpkMIpFI05Kk9vzzz2t+7tChA1auXImePXvi1q1baN26tVWuQxcGIAJgfLeUKf3VMlkZkpL2Nghb7P4iIrIfgiBourQOHDiA9PR0/PrrrygtLcWdO3dw+/ZtVFRU6F0AMicnB/PmzcP//vc//PHHH1CpVACAS5cuoUuXLla5Dl0YgAiA/m6p+sHEHP3V0dEnEBFxHiUlcsjlJQw/RER25syZM2jfvj3y8/MxdOhQvPTSS1i4cCHkcjm+//57TJgwAVVVVToDUHl5ORITE5GYmIgPP/wQ99xzDy5duoTExES7mOzCAGRD9rQmjjHdUo2NG2psOntTv+AyWRmDDxGRHfr222/x888/49VXX0VOTg5UKhWWL1+umRb/8ccfa5WXSqWoqanROvbrr79CoVBg0aJFCA0NBQD897//tc4FGIAByAoaCzo3b95s8AvUGGutidPcbiljxg1JpVKD6mJoOSIiMl1lZSWuXbumNQ0+PT0dQ4cOxZgxY3Dq1ClUV1dj1apVSEpKwg8//IB169ZpnSM8PBy3bt1CdnY2unfvjlatWqFdu3aQSqVYtWoVJk2ahFOnTmH+/Pk2usqGGIAszNDuIl2s2UxobLeUseOG/Pz8kJqaajetXkREBOzbtw9BQUFwcXGBr68vunfvjpUrV2Ls2LEQi8Xo3r07VqxYgcWLF2PWrFno378/0tPTMWbMGM05+vTpg0mTJiE5ORkKhUIzDX7Lli34+9//jpUrVyI6OhrLli3DsGHDbHi1dzEAWZg99HPqU7+1RVe3VGOtMsaMG1JjuCEi0mbL1vEtW7Zgy5YtTZZ79dVX8eqrr2odGz16tNbztWvXYu3atVrHRo0ahVGjRmkdEwSheZU1MwYgJ2dKqwynsxMRmY6t47bBAGRhhu6LomsgcWPMPXi6uf+n4nR2IiLzYLixPgYgC7tz506TZYwZSGzrJdMB7VAXHX0C/v7XcPlyO4SGXkLbtoVa5YKCgixSByIiIlMwAFlZ/ZYeYwcSW3vJdF0z2NT0hTf1AlpERET2hgHIihoLC76+fxg9kNhammptaiq8yWQya1WViIjIKNwM1Up0hQVX10qIRCqtsnUHEjc16l/X5qXm0NRGqdzUlIiIWiq2AFmYq6srAN1hobpaiqSkvdi7NwkqlQgSiYDFi0vxt78NhkgkQlVVFQoL746rKS4u1vxsrc1LdX1WRMR5zgIjIqIWiQHIwtTdQHK5AoAA4O64GHVYaN/+IubMiUNZWQAiI0Xw8KhBZqb+VaKNHTtkCl2fNW1aBmeBERFRi8QAZFXaAajuWlDBwSqoJ0wVFjY9gLk5ixA2l77P4qamRETUEnEMkIWpx/CUlPih4e2+O17G2BU+1YsQ1mWp7qemPksmK0P79hdtEn4UCgUKCwtRWFiInJwifPqpAjk5RZpjCoXC6nUiIqJahw4dgkgkMnhNPKB2X7GMjAyL1UmNAcjC1Ct8TpkyCGKx9vLfEomAKVMGN7lmT2MDndWLEKqDSf3uJ3Mumd7UZ+li6U1N1bPU1q9fj0mTjqFnz3vwf//nh54978GkScewfv16ZGZm4syZMwxHRESNGDduHEQiESZNmtTgtcmTJ0MkEmHcuHHWr5gVsAvMCvz8/ODnB6xfD7z4IlBTA0gkwPvvixATE6D3vfoGOi9Y0B5z5txAfr4LwsPvIDi4J4CeFlkyXV9X1xNPPIE2bdpolbfGsu3qWWpNjYeaOfOczntoyQUjiYhagtDQUOzcuRPvvvsuPDw8AAC3b9/Gjh070K5dOxvXznLYAmRFEyYA+fnAwYO1/06YoL+8ri92dUtQmzZtEBMTgCef9ENMTACCgoIQFBRkti/0xjZKbayrKzg4WPPZ5q6DIfSNUWrqHtr7ZrVERJYWHR2N0NBQZGVlaY5lZWWhXbt26NGjh+ZYZWUlpk6dCn9/f7i7u6Nv3744duyY1rm++uor3HvvvfDw8MDDDz+M/Pz8Bp/3/fffo1+/fvDw8EBoaCimTp2K8vJyi12fLnYRgFavXo3w8HC4u7sjLi4OR48e1Vk2KysLsbGx8PHxgaenJ6KiorBt2zad5SdNmgSRSGSV/kRDtG0LxMfX/tsUW6+zo+6+S0lJ0fmwhxYUfWOUbH0PiYiMVVBQ+x/KBQXW+8znn38emzdv1jzftGkTxo8fr1XmjTfewO7du7F161YcP34ckZGRSExMRElJ7XjQy5cv44knnkBSUhJyc3MxceJEzJw5U+scFy5cwKBBg/Dkk0/i5MmT2LVrF77//nukpqZa/iLrsXkA2rVrF9LS0jB37lwcP34c3bt3R2JiIq5fv95oeblcjtmzZ+PIkSM4efIkxo8fj/Hjx2P//v0Nyn722Wf48ccfERwcbOnLsAhrDnTWxc/Pr0Hrjq1aenTRN0bJHu4hEZGhNm4EwsKAgQNr/9240Tqf+9xzz+H777/HxYsXcfHiRfzwww947rnnNK+Xl5dj7dq1WLp0KQYPHowuXbpgw4YN8PDwwMa/Krl27VpERERg+fLluO+++/Dss882GD+Unp6OZ599FtOmTUPHjh3Rp08frFy5Eh988AFu375tnYv9i83HAK1YsQIvvPCCJmmuW7cOX375JTZt2tQgOQJAfHy81vNXXnkFW7duxffff4/ExETN8StXrmDKlCnYv38/hgwZYtFrMDd111NTu61bepBxS6JrjBJ3rCeilqKgAEhJAVR//TebSlU7bjQx0bBeA1Pcc889GDJkCLZs2QJBEDBkyBCtsZ0XLlxAdXU1HnroIc0xV1dX9OrVC2fOnAEAnDlzBnFxcVrn7d27t9bz//3vfzh58iQ+/PBDzTFBEKBSqZCXl4fOnTtb4vIaZdMAVFVVhZycHMyaNUtzTCwWIyEhAUeOHGny/YIg4Ntvv8XZs2exePFizXGVSoXRo0dj+vTpuP/++5s8T2VlJSorKzXPS0tLjbwS81J3PanHp1hroHNLV7v/WMNgw7WKiKglOHfubvhRq6kBzp+3fAACarvB1F1Rq1evtshn3Lp1Cy+++CKmTp3a4DVrD7i2aQAqLi5GTU0NAgK0Z0IFBATg119/1fk+pVKJkJAQVFZWQiKRYM2aNXj00Uc1ry9evBguLi6N3uDGpKen4+23327eRVhI3XATFATExNiwMg5AVzgiIrIXHTsCYrF2CJJIgMhI63z+oEGDUFVVBZFIpNWjAgARERGQSqX44YcfEBYWBgCorq7GsWPHMG3aNABA586d8cUXX2i978cff9R6Hh0djV9++QWR1rooPWzeBdYcXl5eyM3Nxa1bt5CdnY20tDR06NAB8fHxyMnJwXvvvYfjx49DJBI1fTIAs2bNQlpamuZ5aWkpQkNDLVX9FkWhUOidKWXLlih2ARKRI2nbtrHlUqzT+gMAEolE050lkUi0XvP09MRLL72E6dOnQy6Xo127dliyZAkqKiow4a8pzZMmTcLy5csxffp0TJw4ETk5OdiyZYvWeWbMmIEHH3wQqampmDhxIjw9PfHLL7/gm2++QWZmplWuU82mAahNmzaQSCQoKirSOl5UVITAwECd7xOLxZr0GBUVhTNnziA9PR3x8fH47rvvcP36da2mtJqaGrz22mvIyMhodEqem5sb3NzczHNRZmIPwUO90GBTbDUTrH5XYV1KpRK7du1q8hwtPUQVFNQ2m3fsaL0/kkRkORMm1I75OX++tuXH2v+/9vb21vnaokWLNENMysrKEBsbi/3798PX1xdAbRfW7t278eqrr2LVqlXo1asX3nnnHTz//POac3Tr1g3//ve/MXv2bPTr1w+CICAiIgLJyckWv7b6RIIgCE0Xs5y4uDj06tULq1atAlA7fqddu3ZITU1tdBB0Y55//nn8/vvvOHTokGZrhLoSExMxevRojB8/Hvfdd1+T5ystLYVMJoNSqdT7y2Ap9hI8CgsLsX79+ibLpaSkIEi9kZkdsYcQaQnq69qxwwNvvCGDSiWCWCxgyRIlnnnmzxZ7XUQt1e3bt5GXl4f27dvD3d3d1tVxePrutzHf3zbvAktLS8PYsWMRGxuLXr16ISMjA+Xl5ZpZYWPGjEFISAjS09MB1I7XiY2NRUREBCorK/HVV19h27ZtWLt2LQD1qsvaf/xdXV0RGBhoUPixB4YuzmftRfyUSi+UlPhBLle0iPE0jhgC1OFYqfRCRsY0CEJtN69KJcL06d64cmUTZLIyu1ifiYjIntk8ACUnJ+PGjRuYM2cOrl27hqioKOzbt08zMPrSpUsQi+8uV1ReXo6XX34ZBQUF8PDwQKdOnbB9+3abNJ85OqVSqflZ35YcSqXSLluAHJE69Opb4FEmK+MK10RETbB5AAJqu3J0rQJ56NAhrecLFizAggULjDp/Y+N+WhJztLw0pzuourpa8/n69tpSl3Mmth57o17gsW4I4gKPRESGs4sA5OhMGYuir+XFmM83ZUxRU60NtmTNcT7NGXtTt35Xr4qRl+eC9u3vIDhYZVL9uMAjEZFpGIAszJTw0VTLS3FxcaPnqv+lauqYIrlcAUAF7Z1TbN/aUP/e6mopM8d4mOaMvalbP31Btrn14wKPRPbFxnOKnIa57jMDkIWZEj6aanmpu3Nvffq+VJvXpaa9ppKBSyxZVN17pi9gmGM8THPG3qh/birImlI/LvBIZHuurq4AgIqKCnh4eNi4No6voqICwN373lwMQHbMlHEeur5UjelSc3Gp/fUoKfFD/QBU90tfXc5WmgoY5vmM2gHhTbWGNTYg3J67EInIdBKJBD4+PppNvFu1amXwQrxkOEEQUFFRgevXr8PHx6fBYo3GYgCyMkNaXwzdDNXQ89Uta0xQ8PHxAdB0EFOXsxVrBAztgd66W8MaGxDOActEjk+9eK86BJHl+Pj46F0s2VAMQFZkaOuLvs1QpdL2yMo6YdT51JobFOx9wK01A0ZTrWGNMef9M3Tl6pa+wjVRSyMSiRAUFAR/f3+nnBlrLa6uria3/KgxAFmJsa0vujZDLSxUNet8gPFBoe6XqL4Bt7b+srVmQGtu2DLXgGV923+oWWolaFtP/SdqCSQSidm+oMmyGICsxNzdNM05n7FBwZZftsay1owoU8KWuQYsW/N+c9sNInJUDEBWYu5uGmPOZ0pLTkv6crPWjChnmX7ObTeIyJExAFmYoQOaje1GMqYloiW15BjDmuNh6s900xW26pZr6eN1uO0GETkyBiAL0zegOTi4J4CeRoWP5rbmtLRwYwhrBjtDZ7rVLVe/fuZcCdqaOIuNiBwRA5AV6BrQ3NxzOWJrTnNZ6zpNbc3RNYamJbD3WYBERM3BANQCOUu4sSfNCZ6ONIbGWcY9EZHzYAAiMpCxIcXRxtBw2w0iciTiposQkSnUY2jq4hgaIiLbYgAisjD1GBp1COIYGiIi22MXGJEVtMQxNC19Gj8RkT4MQERW0tLG0HDGIRE5MgYgshvqbRd04Zet9fF+E5GjYgAiu6CeMq6mVHqhpMQPcrlCq9XEmCnjDFRERKQLAxDZhbpB5fjxHg0W3YuOPtGgnD6WCFTGaoljaLjjOxE5CwYgsitKpZcm/AC16+Xs2TMUERHnjRo/Y+5A1RwtZQwNd3wnImfEAER2palFA41lrkAFaHepGbqvl70HB0darZqIyBgMQGRXzL3xprkCVd0uNX0tSi0tKJhjtWp2mxFRS8SFEMmumHvRQHOtwqwOALpalJRKL61y1lJQABw8WPuvKZp7nzZuBMLCgIEDa//duNG0ehARWQtbgMjumHPRQHPvZG7uLrrmsMSYHZmsDN26ncT//tcdgAiAgG7dTuq8JoVCgfz8O0hJ8YdKpe42A158UUBU1HWEh7u0qJYwInI+DEBkl8y5aKA5A5W5u+iMZe4xO0ql8q9/vXDyZDfUhh8AEOHkyW4YOPBbyGRlUCqVCAoK0qpDXl44VKqxWuerqRFh1ap/oX37iy2uO5CInAu7wMguWHrKuExWhvbtL5ocqmy9r5chY3bqlmtKdXW1QedTl6t77qa6zVrKLvdE5JzYAkR2wdxTxi0ZqOxhXy9zt0Q153zm7l4kIrImBiCyG+bsLrH0Gjy23tfL3OGjueezhzBIRNQcDEDksBx9/Ik5woeLy90/AfrOV7dcfbYOg0REzcEARFSHrsUOPT2VBr3f2ttamBo+fHx8DDpf/XJERC0dAxDRX/QvdvgToqNry40cObLRQMAtI4iIWg4GIKK/NLXYoXr7DB8fH82UcCIiapk4DZ6onqamhNuSuWe3NadcS9zlnoioPrYAEdVj68UO9TH37LbmnK+l7HJPRKQPAxBRPfa+vo25g0VzzsdwQ0QtHQMQUSO4vg0RkWNjACLSgevbEBE5Lg6CJiIiIqfDAET0F85uIiJyHuwCI/oLZzcRETkPBiCiOhhuiIicA7vAiIiIyOnYRQBavXo1wsPD4e7ujri4OBw9elRn2aysLMTGxsLHxweenp6IiorCtm3bNK9XV1djxowZ6Nq1Kzw9PREcHIwxY8bg6tWr1rgUohZHoVCgsLAQhYWFyMkpwqefKpCTU6Q5plAobF1FkxUUAAcP1v5LRATYQRfYrl27kJaWhnXr1iEuLg4ZGRlITEzE2bNn4e/v36C8XC7H7Nmz0alTJ0ilUuzduxfjx4+Hv78/EhMTUVFRgePHj+Ott95C9+7d8ccff+CVV17BsGHD8N///tcGV0hkv/RvALsX0dEnAACpqaktrntQoVCgqqoKO3Z44I03ZFCpRBCLBSxZosQzz/zJ8VxETk4kCIJgywrExcWhZ8+emj/CKpUKoaGhmDJlCmbOnGnQOaKjozFkyBDMnz+/0dePHTuGXr164eLFi2jXrl2T5ystLYVMJoNSqYS3t7fhF0PUwhQWFmL9+vVQKr2QkTGtwfYf06ZlQCYrQ0pKSovaAFYd7Jq6rpYY7IhIN2O+v23aBVZVVYWcnBwkJCRojonFYiQkJODIkSNNvl8QBGRnZ+Ps2bPo37+/znJKpRIikQg+Pj6Nvl5ZWYnS0lKtB5EzsecNYJtDPZOvqevSN+OP3WZEjs2mAai4uBg1NTUICAjQOh4QEIBr167pfJ9SqUTr1q0hlUoxZMgQrFq1Co8++mijZW/fvo0ZM2Zg1KhROtNgeno6ZDKZ5hEaGtr8iyJqgdQbwNZlLxvAmsLY61KPh1q+/CbCwgQMHAiEhQlYvvymw4yHIqJadjEI2lheXl7Izc3FsWPHsHDhQqSlpeHQoUMNylVXV2PkyJEQBAFr167Veb5Zs2ZBqVRqHpcvX7Zg7Ynsj3oDWHVYsLcNYJvLmOtSd5stXfoRpk/3hkolAgCoVCJMn+6NpUs/QmZmJkMQkYOw6SDoNm3aQCKRoKioSOt4UVERAgMDdb5PLBYjMjISABAVFYUzZ84gPT0d8fHxmjLq8HPx4kV8++23evsC3dzc4ObmZtrFELVwjroBrKHXZUi3mUxWprfbjIhaDpsGIKlUipiYGGRnZ2PEiBEAagdBZ2dnIzU11eDzqFQqVFZWap6rw8+5c+dw8OBBDnIkMpCtNoBVz9gCgKtXxcjLc0H79ncQHFzbcmPqjC1jrkvdbVZ/4HRL7w4kIm02nwaflpaGsWPHIjY2Fr169UJGRgbKy8sxfvx4AMCYMWMQEhKC9PR0ALXjdWJjYxEREYHKykp89dVX2LZtm6aLq7q6Gk899RSOHz+OvXv3oqamRjOeSC6Xcx8nIjtjb1Px1d1m9evhKC1iRFTL5gEoOTkZN27cwJw5c3Dt2jVERUVh3759moHRly5dglh897/EysvL8fLLL6OgoAAeHh7o1KkTtm/fjuTkZADAlStX8MUXXwCo7R6r6+DBg1rdZETOzh42gFW3/CiVXprQAdR2O+3ZMxQREeet3vVkbHegpVuwiMj8bB6AgNr/stPV5VV/cPOCBQuwYMECnecKDw+HjZc2Imox7GkD2KbG3hjDHMHO0G4ze2vBIiLD2EUAIiLbsZcvZXOOvbFmsLPHFiwiahoDEBHZBXOPvbF2sDNnCxYRWR4DEBHZDVtOxTe124yzx4haFgYgIrIrtpqKb2q3GWePEbUsDEBERH8xtdvMUReTJHJEDEBEZFP2MBXfnGzVgkVExmEAIiKzMnZNHHuaik9EzoMBiIjMxtA1cZKTk1Fe7usQCwY6WgsWkbNgACIiszF0TZwZM35zmAUD2YJF1DIxABGR2elbEweAwy0YyHBD1PKImy5CRGQc9Zo4danXxGkqHBERWQMDEBGZnXpNHHUIqrsmjr5wRERkLewCIyKL0LUmDhcMJCJ7wABERBaja00cLhhIRLbGAERENsEFA4nIljgGiIjMhmvdEFFLwRYgIjIbfWvi3Lx5Ex9//HGT52CIIiJrEAmCINi6EvamtLQUMpkMSqUS3t7etq4OkcOou01GY7hgIBGZwpjvb7YAEZHVMNwQkb3gGCAiIiJyOgxARERE5HQYgIiIiMjpMAARERGR02EAIiIiIqfDAEREREROhwGIiIiInA4DEBE5vIIC4ODB2n+JiAAGICJyUAqFAoWFhVi+/CbCwgQMHAiEhQlYvvwmCgsLoVAobF1FIrIhrgRNRA5HoVAgMzMTSqUXMjKmQRBEAACVSoTp071x5comyGRlSE1N5erURE6KLUBE5HDU+42VlPhBELT/zAmCGCUlcq1yROR8GICIyGHJ5QqIRCqtYyKRCnJ5iY1qRET2gl1gROSwZLIyJCXtxZ49QyEIYohEKiQl7YVMVmbrqjWbQqHQ23IllUrZrUdkAAYgInJo0dEnEBFxHiUlcsjlJRYJP9YKJeqxTU1JTk6GTCazSB2IHAUDEBE5PJmszGKtPvVDiVLphZISP8jlCq3PNMeA6/ohS9dn7dq1q9H3c9A30V0MQEREJqgbSo4f79Gguy06+kSDcuag77N0BSMO+ia6iwGIiMgMlEovTSABameb7dkzFBER583e+qTvsy5ciNQZjIjoLs4CIyKHI5VKzVrOEE1NuTcnXZ91+XLbRoORUull9joQtXRsASIih+Pn54fU1FSrzpZST7mvG0wsNeVe12cBIp0hrCXPfCOyBAYgInJI1h7sa80p97o+KzT0stVCGFFLxwBERGQm1phy39RnOdq6R0SWwgBERGRGlpxyX3/MUmOfZc0QRtSSMQAREZnAmgOudY1tunnzJj7++GPNc10hzJyDvolaOpEgCIKtK2FvSktLIZPJoFQq4e3tbevqEJGdM/dK0M05H7fIIDLu+5stQEREJjJnsDB0u4v6qzoz3BAZxy7WAVq9ejXCw8Ph7u6OuLg4HD16VGfZrKwsxMbGwsfHB56enoiKisK2bdu0ygiCgDlz5iAoKAgeHh5ISEjAuXPnLH0ZREQma2y7i7y88AZr+XBVZyLT2LwFaNeuXUhLS8O6desQFxeHjIwMJCYm4uzZs/D3929QXi6XY/bs2ejUqROkUin27t2L8ePHw9/fH4mJiQCAJUuWYOXKldi6dSvat2+Pt956C4mJifjll1/g7u5u7UskImoWfdtdEJFpbN4CtGLFCrzwwgsYP348unTpgnXr1qFVq1bYtGlTo+Xj4+Px+OOPo3PnzoiIiMArr7yCbt264fvvvwdQ2/qTkZGBN998E8OHD0e3bt3wwQcf4OrVq/j888+teGVERM2na7sLrupMZB42DUBVVVXIyclBQkKC5phYLEZCQgKOHDnS5PsFQUB2djbOnj2L/v37AwDy8vJw7do1rXPKZDLExcXpPGdlZSVKS0u1HkREtmTNrTWInJFNu8CKi4tRU1ODgIAAreMBAQH49ddfdb5PqVQiJCQElZWVkEgkWLNmDR599FEAwLVr1zTnqH9O9Wv1paen4+233zblUoiIjKJr1lZxcTEA626tQeSMbD4GqDm8vLyQm5uLW7duITs7G2lpaejQoQPi4+Obdb5Zs2YhLS1N87y0tBShoaFmqi0Rkbb6M72USi+UlPhBLldo1u+x5tYaRM7IpgGoTZs2kEgkKCoq0jpeVFSEwMBAne8Ti8WIjIwEAERFReHMmTNIT09HfHy85n1FRUUICgrSOmdUVFSj53Nzc4Obm5uJV0NEZJi6LT/6Bjobs6oz1wEiMo5NA5BUKkVMTAyys7MxYsQIAIBKpUJ2djZSU1MNPo9KpUJlZSUAoH379ggMDER2drYm8JSWluKnn37CSy+9ZO5LICJqNl0DnSMizmu1BDW1qnNz1w4icmY27wJLS0vD2LFjERsbi169eiEjIwPl5eUYP348AGDMmDEICQlBeno6gNrxOrGxsYiIiEBlZSW++uorbNu2DWvXrgUAiEQiTJs2DQsWLEDHjh010+CDg4M1IYuIyB7oG+gsk5XhiSeeQJs2bRq8r35rTmNrB9XvUmusHJEzs3kASk5Oxo0bNzBnzhxcu3YNUVFR2Ldvn2YQ86VLlyAW3/0DUV5ejpdffhkFBQXw8PBAp06dsH37diQnJ2vKvPHGGygvL0dKSgpu3ryJvn37Yt++fVwDiIjsSlMDndu0aaPVlW8Irh1EZBjuBdYI7gVGRJZUWFiI9evXA9AfWFJSUgwKQOrzKZVeyMiY1iBQTZuWAZmszODzEbVU3AuMiKiFMGagc1Oa6lIjorsYgIiIbEzXQGdjce0gIsPZfCsMIiJnU3cGlznKqanXDhKJVADAtYOI9GALEBGRlfn5+SE1NdUi6/YY26XG9YPIWTEAERHZgDlDRf2WIkPWDgK4fhA5NwYgIqIWrrktSoauC8T1g8gRMQARETkAc7TQ6FpAsT52m5EjYAAiInIApoYSQxdQZLcZOQoGICKiFs7UUGLInmRq7DYjR8EARETUwpm6F5gpCyga2m2mD7vUyBYYgIiIHEhz9gJr7gKK5th3jF1qZCtcCJGIyEHo6spSKr30vq85Cyg297PqY5ca2QpbgIiIHERTXVnFxcVarymVSs3P+hZQbGxFau47Ri0dAxARkYNoqisrKytL53tHjhwJHx+fBsd1jb/hvmPU0rELjIjIQRjSlaVUeiEvL7xBV5WPjw+CgoIaPHSNu7HUvmO66kdkbmwBIiJyIPq6sswxaLlud5ix3WZNMUf9iAzFAERE1MIZsheYMWv96GOpjVzNVT8iQzEAERG1cPpCSXFxMbKyssw6aNkS09E5qJqsjQGIiMgBNBVK7HXQckVFBYCm66cuR2QuHARNROQELDVo2VStWrUC0HT91OWIzIUtQERETkLfoGVjWGrrCnPVj8gQRgegr776CllZWZDL5Xj++efRqVMnzWt//PEHnnzySXz77bdmrSQRETWPIQOkGyuni6W3rtBVPyJzMyoA7dixA2PGjMGgQYNw9uxZrFq1Cv/85z/x7LPPAqhdqvzf//63RSpKRETGM/esLUtvXWGOzVWJDGFUAFq6dClWrFiBqVOnAgA+/vhjPP/887h9+zYmTJhgkQoSEZFpLLmJqDkDC9cBImsyKgCdO3cOSUlJmucjR47EPffcg2HDhqG6uhqPP/642StIRET2yZyBhesAkbUZFYC8vb1RVFSE9u3ba449/PDD2Lt3L4YOHYqCggKzV5CIiOyPuQML1wEiazMqAPXq1Qv/+te/8OCDD2odHzBgAPbs2YOhQ4eatXJERGSfjN15Xq3+eCP14Oum1gFqztYaRPoYFYBeffVVHD58uNHX4uPjsWfPHnzwwQdmqRgREdkvU3aeb2yGmHodoPpdamz9IUsxKgANGDAAAwYM0Pn6ww8/jIcfftjkShERkX0zJbDUnSFW92d96wA1d1YZkS5GBSCxWAyRSKS3jEgkwp07d0yqFBER2SdDd4MHmjdDzFzrAFlqsUZyHEYFoM8++0zna0eOHMHKlSuhUqlMrhQREdknQzZeBZo/Q8wc0+otvVgjOQajAtDw4cMbHDt79ixmzpyJPXv24Nlnn8U//vEPs1WOiIjsT1OhobkzxMw1rd7SizWSY2j2ZqhXr17FCy+8gK5du+LOnTvIzc3F1q1bERYWZs76ERFRC6NvhpguukKTUull0bqS8zI6ACmVSsyYMQORkZE4ffo0srOzsWfPHjzwwAOWqB8REbUw6hliddWdIdaY5oQmIlMYFYCWLFmCDh06YO/evfjoo49w+PBh9OvXz1J1IyKiFkg9Q0wdggyZIdac0GQopdILeXnhbE0iLUaNAZo5cyY8PDwQGRmJrVu3YuvWrY2W07f+AxEROSZDZ4jVLaf+ualp9c1dCJH7i5EuRgWgMWPGNDkNnoiInFNzdp6v/545c24gP98F4eF3EBzcE0DPZk9Z5/5ipI9RAWjLli0WqgYRETmC5gSVuu8JCgJiYsxTF+4vRvo0exYYERGRPaq/v1hd3F+M1IxqASIiIrJ3dbvVQkJKMWOGDDU1IkgkAhYvLsUzz4ziStAEkSAIgq0rYW9KS0shk8mgVCrh7e1t6+oQEZEJCgqA8+eByEigbVtb14YsyZjvb7YAERGRQ2vblsGHGmIAIiIip8FNUkmNAYiIiJwCN0mlumw+C2z16tUIDw+Hu7s74uLicPToUZ1lN2zYgH79+sHX1xe+vr5ISEhoUP7WrVtITU1F27Zt4eHhgS5dumDdunWWvgwiIrJz3CSV6rJpANq1axfS0tIwd+5cHD9+HN27d0diYiKuX7/eaPlDhw5h1KhROHjwII4cOYLQ0FA89thjuHLliqZMWloa9u3bh+3bt+PMmTOYNm0aUlNT8cUXX1jrsoiIiMjO2TQArVixAi+88ALGjx+vaalp1aoVNm3a1Gj5Dz/8EC+//DKioqLQqVMn/POf/4RKpUJ2dramzOHDhzF27FjEx8cjPDwcKSkp6N69u96WJSIiInIuNgtAVVVVyMnJQUJCwt3KiMVISEjAkSNHDDpHRUUFqqurIZff3S24T58++OKLL3DlyhUIgoCDBw/it99+w2OPPabzPJWVlSgtLdV6EBERkeOyWQAqLi5GTU0NAgICtI4HBATg2rVrBp1jxowZCA4O1gpRq1atQpcuXdC2bVtIpVIMGjQIq1evRv/+/XWeJz09HTKZTPMIDQ1t3kUREVGLwV3inVuLnQW2aNEi7Ny5E4cOHYK7u7vm+KpVq/Djjz/iiy++QFhYGP7zn/9g8uTJDYJSXbNmzUJaWprmeWlpKUMQEZED4y7xZLMA1KZNG0gkEhQVFWkdLyoqQmBgoN73Llu2DIsWLcKBAwfQrVs3zfE///wTf//73/HZZ59hyJAhAIBu3bohNzcXy5Yt0xmA3Nzc4ObmZuIVERFRS8Bd4gmwYReYVCpFTEyM1gBm9YDm3r1763zfkiVLMH/+fOzbtw+xsbFar1VXV6O6uhpisfZlSSQSqFTaG+IREZFzUW9+qm+X+LrlyLHZtAssLS0NY8eORWxsLHr16oWMjAyUl5dj/PjxAIAxY8YgJCQE6enpAIDFixdjzpw52LFjB8LDwzVjhVq3bo3WrVvD29sbAwYMwPTp0+Hh4YGwsDD8+9//xgcffIAVK1bY7DqJiMj21Juk5uffwbZtAlQqkeY1iUTAlCmDER7uwkUQnYRNA1BycjJu3LiBOXPm4Nq1a4iKisK+ffs0A6MvXbqk1Zqzdu1aVFVV4amnntI6z9y5czFv3jwAwM6dOzFr1iw8++yzKCkpQVhYGBYuXIhJkyZZ7bqIiMg++fn5wc8PWL8eePFFoKYGkEiA998XISYmoOkTkMPgbvCN4G7wREQtmyF7fv35px93iXcw3A2eiIicljF7fsXHs7vLWdl8LzAiIiJz4p5fZAi2ABERETXBkC41Dp5uWRiAiIiI9DCmS40hqOVgACIiIoemVHqhpMQPcrlCa6HD4uLiBmUba8lhl5pjYgAiIiKHpW/Li6ysrEbfw5Yc58BB0ERE5JB0bXnR1OanbMlxDgxARETkkJra8oKcGwMQERE5FPVeXnK5AiKR9j6QIpEKcnmJSedXKr2QlxfeZEsS2TeOASIiIoei3vOrqqoKISGlmDFDhpoaEcRiAUOH7jVpx3d9Y4qoZWELEBERORw/Pz8EBQXhtdd8kJ8vwsGDwNGj17XCirEtOc0dU0T2iS1ARETk0Nq2rX0UFt7tDjOmJUfdpaZvTJFMVqYpRy0DAxARETkVXS05ERHnG+0eU3ep5effwbZtAlQqkeY1iUTAlCmDER7u0mDqPFePtm8MQERE5BRMacnx8/ODnx+wfj3w4otATQ0gkQDvvy9CTExAg/JcPdr+MQAREZFTaKolZ+zYhxAU9CCqqqpQWFjY4P1SqRQTJvghMRE4fx6IjKztWmsMV4+2fwxARETkNHS15CxfXo7//GdHk+9PTU1F27Z+OoOP2s2bNw2qz82bNxEUFGRQWTIvzgIjIiKnM2ECkJ8PHDxY++/IkYZNjTe0xebOnTtmLUfmxxYgIiJySurZYQDQSI+XWenakJVshwGIiIjIgrh4on1iFxgREVE95trugosn2i+2ABEREdVhzhabpqbck+2wBYiIiOgv5mqxcXV1/evfSgBCvVcFuLpWaZUj62MAIiIi+ou+FhtjyGQyAEB1tRsAUb1XRaiulmqVI+tjACIiIqenXv1ZLldAJFJpvSYSqSCXl2iVa0pFRYVB51OXI+vjGCAiInJ66lWiq6qqEBJSihkzZKipEUEiEbB4cSmeeWaUUXt3tWrVCgAgk5UhKWlvgzFF6vE/FRUVOled5hYZliUSBKF+56TTKy0thUwmg1KphLe3t62rQ0REVlZQ0PR2F/oUFhZi/fr1mue16wDJIZeXGDz4mfuEGc+Y72+2ABEREdVTd5FEc5DJyoye9cV9wiyLY4CIiIjI6TAAERERWZi5FlYk82EXGBERkQVxKwz7xBYgIiIiCzFkYUVdrUNKpdKqdXU2bAEiIiIyM/V6QU1thaGvdai6utrq9XYmbAEiIiIyM/W6QlOmDIJYrL3ajFgsQC4v4UapNsYWICIiIgvw8/ODnx+wfj3w4otATQ0gkQDz5hWipqYMeXnheluHysrKuEiiBTEAERERWdCECUBi4t2FFSUSEdavv7tNRt0QVHebjG+++UbnOblIounYBUZERGRhbdsC8fHaiyvKZGXo1u0k7u4WL6Bbt5MGLZjIRRJNxxYgIiIiC1AoFI0GleLiYgC1s79OnuyGu7vFi3DyZDcMHPit0atGk/EYgIiIiMxMoVAgMzNTb5mmZogB6j3E/CCXKxiKzIwBiIiIyMwM6aJqagwQF1C0LI4BIiIisgGZrAxz516FRFI7BkgiETB37lXIZGWcIm8FDEBEREQ2kpIiQX6+CAcPAvn5IqSkSADo7x4j82AXGBERkQ21bXt3dph62Z+musfIdGwBIiIisjBDd4NXb6Ehk5UhKWkvRCIVAGjGAKkHQqvLUfOxBYiIiMiCmjuYOTr6BCIizqOkRA65vISzwMzM5i1Aq1evRnh4ONzd3REXF4ejR4/qLLthwwb069cPvr6+8PX1RUJCQqPlz5w5g2HDhkEmk8HT0xM9e/bEpUuXLHkZREREDRg7mLn+7DGZrAzt219sEH64EKLpbBqAdu3ahbS0NMydOxfHjx9H9+7dkZiYiOvXrzda/tChQxg1ahQOHjyII0eOIDQ0FI899hiuXLmiKXPhwgX07dsXnTp1wqFDh3Dy5Em89dZbcHd3t9ZlERGRkzNkN/i65cj6RIIgCE0Xs4y4uDj07NlTs1iUSqVCaGgopkyZgpkzZzb5/pqaGvj6+iIzMxNjxowBADz99NNwdXXFtm3bml2v0tJSyGQyKJVKeHt7N/s8RETkvBQKBfLz76BXL3+oVCLNcYlEwE8/XUd4uEuD/bwKCwuxfv36Js+dkpKCoKAgs9e5pTPm+9tmLUBVVVXIyclBQkLC3cqIxUhISMCRI0cMOkdFRQWqq6shl9cmaZVKhS+//BL33nsvEhMT4e/vj7i4OHz++ed6z1NZWYnS0lKtBxERkSn8/PwQExOA9etFkNTObodEArz/vggxMQHczNTGbBaAiouLUVNTg4CAAK3jAQEBuHbtmkHnmDFjBoKDgzUh6vr167h16xYWLVqEQYMG4euvv8bjjz+OJ554Av/+9791nic9PR0ymUzzCA0Nbf6FERER1TFhApCfj7/W+ql9bihDZ4+R8VrsLLBFixZh586dOHTokGZ8j0pVO11w+PDhePXVVwEAUVFROHz4MNatW4cBAwY0eq5Zs2YhLS1N87y0tJQhiIiIzKbuWj+G4lYYlmWzFqA2bdpAIpGgqKhI63hRURECAwP1vnfZsmVYtGgRvv76a3Tr1k3rnC4uLujSpYtW+c6dO+udBebm5gZvb2+tBxERka1wKwzLs1kAkkqliImJQXZ2tuaYSqVCdnY2evfurfN9S5Yswfz587Fv3z7ExsY2OGfPnj1x9uxZreO//fYbwsLCzHsBREREZsbZY9Zj0y6wtLQ0jB07FrGxsejVqxcyMjJQXl6O8ePHAwDGjBmDkJAQpKenAwAWL16MOXPmYMeOHQgPD9eMFWrdujVat24NAJg+fTqSk5PRv39/PPzww9i3bx/27NmDQ4cO2eQaiYiIDOXn54fU1FTk59/Btm1Cg9ljU6YMbnT2GBnPpgEoOTkZN27cwJw5c3Dt2jVERUVh3759moHRly5dglh8NwGvXbsWVVVVeOqpp7TOM3fuXMybNw8A8Pjjj2PdunVIT0/H1KlTcd9992H37t3o27ev1a6LiIioufz8/ODnB6xfD7z4IlBToz17jMzDpusA2SuuA0RERPagoAA4fx6IjDR+ELUzMub7u8XOAiMiInJ0zZk9Roax+V5gRERERNbGAEREREROhwGIiIiInA4DEBERETkdBiAiIiJyOgxARERE5HQ4DZ6IiMiBKRQKVFVV6XxdKpU65crSDEBEREQOSqFQIDMzU/NcqfRCSYkf5HIFZLIyzfHU1FSnC0EMQERERA6qbsvP8eM9NDvMi0QqJCXtRXT0iQblnAXHABERETk4pdJLE36A2p3l9+wZCqXSy8Y1sx0GICIiIgdXUuKnCT9qgiBGSYncRjWyPQYgIiIiByeXKyASqbSOiUQqyOUlNqqR7TEAEREROTiZrAxJSXs1IUg9BqjuQGhnw0HQRERETiA6+gQiIs6jpEQOubzEqcMPwABERETksG7evKn1XCYrazT43Lx5E0FBQVaqlX1gFxgREZGDEolEWs+VSi/k5YU3mP1Vv5wzYAsQERGRg5LJZJqf9a0DVLecs2ALEBERkYPjOkANMQARERE5OK4D1BADEBERkYPjOkANMQARERE5OK4D1BAHQRMRETkBrgOkjQGIiIjIQUmlUq3nutYBql/OGTAAEREROSg/Pz+kpqaiqqpKZxmpVAo/Pz8r1so+MAARERE5MGcMN4bgIGgiIiJyOgxARERE5HTYBUZEROSkFAqF044PYgAiIiJyQgqFApmZmU2WS01NdcgQxC4wIiIiJ1S/5UfXTvH6WohaMrYAEREROTl9O8U7KrYAEREROTFn3SmeAYiIiMiJOetO8QxARERETsxZd4pnACIiInJizrpTPAdBExEROaGbN29qfo6OPgF//2u4fLkdQkMvoW3bQq1yQUFBNqihZTEAEREROSGRSKT5Wd8ssLrlHAm7wIiIiJyQTCYD0PQsMHU5R8MARERE5MSamgV29aoYBw8CBQW2qJ3lMAARERE5MX2zwI4f74FevfwxcCAQFiZg+fKbKCwshEKhsFFtzYcBiIiIyInpmgUGAHv2DIVKVTsGSKUSYfp0byxd+hEyMzNbfAjiIGgiIiInFx19AhER51FSIodcXgKZrAx5eeE6u8ZksrIWv0eYXbQArV69GuHh4XB3d0dcXByOHj2qs+yGDRvQr18/+Pr6wtfXFwkJCXrLT5o0CSKRCBkZGRaoORERkWOQycrQvv1Fzfo/jr5Aos0D0K5du5CWloa5c+fi+PHj6N69OxITE3H9+vVGyx86dAijRo3CwYMHceTIEYSGhuKxxx7DlStXGpT97LPP8OOPPyI4ONjSl0FERNSiSKVSva87+gKJIkEQBFtWIC4uDj179kRmZiYAQKVSITQ0FFOmTMHMmTObfH9NTQ18fX2RmZmJMWPGaI5fuXIFcXFx2L9/P4YMGYJp06Zh2rRpBtWptLQUMpkMSqUS3t7ezbouIiIie6dQKBp0ZRUXFyMrK0vzXKn00uoaU0tJSbG7BRKN+f626Rigqqoq5OTkYNasWZpjYrEYCQkJOHLkiEHnqKioQHV1NeTyu5u2qVQqjB49GtOnT8f9999v9noTERE5Aj8/vybLyGRlzWr1KSgAzp0DOnYE2rZtTu0sy6ZdYMXFxaipqUFAQIDW8YCAAFy7ds2gc8yYMQPBwcFISEjQHFu8eDFcXFwwdepUg85RWVmJ0tJSrQcRERE1z8aNQFgY/po+X/vc3th8DJApFi1ahJ07d+Kzzz6Du7s7ACAnJwfvvfcetmzZYvDy3enp6ZDJZJpHaGioJatNRETksAoKgJQUQPXX+GmVCnjxRftbSNGmAahNmzaQSCQoKirSOl5UVITAwEC97122bBkWLVqEr7/+Gt26ddMc/+6773D9+nW0a9cOLi4ucHFxwcWLF/Haa68hPDy80XPNmjULSqVS87h8+bLJ10ZERNQSNTU4uqly587dDT9qNTXA+fOm1sy8bDoGSCqVIiYmBtnZ2RgxYgSA2vE72dnZSE1N1fm+JUuWYOHChdi/fz9iY2O1Xhs9erRWdxgAJCYmYvTo0Rg/fnyj53Nzc4Obm5tpF0NEROQA/Pz8kJqaqnedH6lUqnP8UMeOgFisHYIkEiAy0tw1NY3NF0JMS0vD2LFjERsbi169eiEjIwPl5eWasDJmzBiEhIQgPT0dQO34njlz5mDHjh0IDw/XjBVq3bo1WrduDT8/vwb/o7i6uiIwMBD33XefdS+OiIioBTJkcLQubdsCo0cDW7fePfbcc/Y3ENrmY4CSk5OxbNkyzJkzB1FRUcjNzcW+ffs0A6MvXbqEwsJCTfm1a9eiqqoKTz31FIKCgjSPZcuW2eoSiIiI6C8FBcC2bdrHtm+3vzFANl8HyB5xHSAiIqLmOXiwdvZXY8fj4y372cZ8f9u8BYiIiIgch3oMUF11xwAVFNSGIVu3CDEAERERkVkoFApIJIVYsuQmJJLaDiaJRMDixTchkRTivfdu2c36QOwCawS7wIiIiIyjUCg021oBDbfQUCq9kJExTWuHeYkEyM833wDpFrMVBhERETmG+tPm62+hUVLipxV+gLvrA9lihhi7wIiIiMji5HKFZmd5NVuuD8QARERERCZTKpV6X5fJypCUtBdisXpsEPD++7ZbH4hdYERERGSy6urqJstER59AampHuLp2RmSkbRdHZAAiIiIiqwkMvIOuXW1dC3aBERERkRNiACIiIiKnwwBEREREJnNxMWxUjaHlLI0BiIiIiEzm4+Nj1nKWxgBERERETsc+2qGIiIioRZNKpQaVa2y9IKlUCj8/P3NXSS/uBdYI7gVGRERkPIVC0WBLjJs3b+Ljjz9u8r2pqakmhyDuBUZERERWVzfAFBQA584B3t6GjbapH5wsjWOAiIiIyKw2bgTCwoCBA4Fevfxx/HgPW1epAQYgIiIiMpuCAiAlBVD9te+pSiXCnj1DoVR6AQCUSi/k5YVrntsKu8CIiIjIbM6duxt+1ARBjJISOS5ciMSePUMhCGKIRCokJe1FdPQJm9STLUBERERkNh07AuJ66UIkUsHVtUoTfoDaUFS3ZcjaGICIiIjIbNq2BdavBySS2ucSiYCkpL2ornbThB81dcuQLbALjIiIiMxCPQ3+b38DfvpJjPx8F3h7X8fhwyegVHpBJFJphSCRSAW5vMQmdWUAIiIiIpMpFApkZmbqfF0mK0NS0t4GY4BksjIAhi+kaC4MQERERGQyQ9bxiY4+gdTUjigt9Ud4+B0EB/cE0NMmK0EzABEREZHVPPCAD4KCrBt2GsMARERERFZTXFzc4BhbgIiIiMihZWVlNXrcHHuBGYPT4ImIiMjmuBcYERERkYUxABEREZHTYQAiIiIik1l7HR9TcRA0ERERmczPzw+pqakNxvIUFxfrHPhsSwxAREREZBbWnspuCnaBERERkdNhACIiIiKLMXRsEPcCIyIiIoeha2xQXVwJmoiIiByOPY4NYhcYEREROR0GICIiInI6DEBERETkdBiAiIiIyOkwABEREZHTYQAiIiIip8MARERERE6HAYiIiIicDgMQEREROR2uBN0IQRAAAKWlpTauCRERERlK/b2t/h7XhwGoEWVlZQCA0NBQG9eEiIiIjFVWVgaZTKa3jEgwJCY5GZVKhatXr8LLywsikcjo95eWliI0NBSXL1+Gt7e3BWrYMvA+3MV7UYv3oRbvw128F7V4H2qZeh8EQUBZWRmCg4MhFusf5cMWoEaIxWK0bdvW5PN4e3s79S+yGu/DXbwXtXgfavE+3MV7UYv3oZYp96Gplh81DoImIiIip8MARERERE6HAcgC3NzcMHfuXLi5udm6KjbF+3AX70Ut3odavA938V7U4n2oZc37wEHQRERE5HTYAkREREROhwGIiIiInA4DEBERETkdBiAiIiJyOgxAzbR69WqEh4fD3d0dcXFxOHr0qM6yp0+fxpNPPonw8HCIRCJkZGRYr6IWZsx92LBhA/r16wdfX1/4+voiISFBb/mWxJj7kJWVhdjYWPj4+MDT0xNRUVHYtm2bFWtrWcbci7p27twJkUiEESNGWLaCVmLMfdiyZQtEIpHWw93d3Yq1tRxjfx9u3ryJyZMnIygoCG5ubrj33nvx1VdfWam2lmXMvYiPj2/wOyESiTBkyBAr1tgyjP2dyMjIwH333QcPDw+Ehobi1Vdfxe3bt02viEBG27lzpyCVSoVNmzYJp0+fFl544QXBx8dHKCoqarT80aNHhddff1346KOPhMDAQOHdd9+1boUtxNj78MwzzwirV68WTpw4IZw5c0YYN26cIJPJhIKCAivX3LyMvQ8HDx4UsrKyhF9++UU4f/68kJGRIUgkEmHfvn1Wrrn5GXsv1PLy8oSQkBChX79+wvDhw61TWQsy9j5s3rxZ8Pb2FgoLCzWPa9euWbnW5mfsfaisrBRiY2OFv/3tb8L3338v5OXlCYcOHRJyc3OtXHPzM/ZeKBQKrd+HU6dOCRKJRNi8ebN1K25mxt6HDz/8UHBzcxM+/PBDIS8vT9i/f78QFBQkvPrqqybXhQGoGXr16iVMnjxZ87ympkYIDg4W0tPTm3xvWFiYwwQgU+6DIAjCnTt3BC8vL2Hr1q2WqqJVmHofBEEQevToIbz55puWqJ5VNede3LlzR+jTp4/wz3/+Uxg7dqxDBCBj78PmzZsFmUxmpdpZj7H3Ye3atUKHDh2Eqqoqa1XRakz9O/Huu+8KXl5ewq1btyxVRasw9j5MnjxZGDhwoNaxtLQ04aGHHjK5LuwCM1JVVRVycnKQkJCgOSYWi5GQkIAjR47YsGbWZY77UFFRgerqasjlcktV0+JMvQ+CICA7Oxtnz55F//79LVlVi2vuvfjHP/4Bf39/TJgwwRrVtLjm3odbt24hLCwMoaGhGD58OE6fPm2N6lpMc+7DF198gd69e2Py5MkICAjAAw88gHfeeQc1NTXWqrZFmOPv5caNG/H000/D09PTUtW0uObchz59+iAnJ0fTTfb777/jq6++wt/+9jeT68PNUI1UXFyMmpoaBAQEaB0PCAjAr7/+aqNaWZ857sOMGTMQHBys9X+Glqa590GpVCIkJASVlZWQSCRYs2YNHn30UUtX16Kacy++//57bNy4Ebm5uVaooXU05z7cd9992LRpE7p16walUolly5ahT58+OH36tFk2ZraF5tyH33//Hd9++y2effZZfPXVVzh//jxefvllVFdXY+7cudaotkWY+vfy6NGjOHXqFDZu3GipKlpFc+7DM888g+LiYvTt2xeCIODOnTuYNGkS/v73v5tcHwYgsolFixZh586dOHTokMMM9jSGl5cXcnNzcevWLWRnZyMtLQ0dOnRAfHy8ratmNWVlZRg9ejQ2bNiANm3a2Lo6NtW7d2/07t1b87xPnz7o3Lkz3n//fcyfP9+GNbMulUoFf39/rF+/HhKJBDExMbhy5QqWLl3aogOQqTZu3IiuXbuiV69etq6K1R06dAjvvPMO1qxZg7i4OJw/fx6vvPIK5s+fj7feesukczMAGalNmzaQSCQoKirSOl5UVITAwEAb1cr6TLkPy5Ytw6JFi3DgwAF069bNktW0uObeB7FYjMjISABAVFQUzpw5g/T09BYdgIy9FxcuXEB+fj6SkpI0x1QqFQDAxcUFZ8+eRUREhGUrbQHm+Bvh6uqKHj164Pz585aoolU05z4EBQXB1dUVEolEc6xz5864du0aqqqqIJVKLVpnSzHld6K8vBw7d+7EP/7xD0tW0Sqacx/eeustjB49GhMnTgQAdO3aFeXl5UhJScHs2bMhFjd/JA/HABlJKpUiJiYG2dnZmmMqlQrZ2dla/wXn6Jp7H5YsWYL58+dj3759iI2NtUZVLcpcvw8qlQqVlZWWqKLVGHsvOnXqhJ9//hm5ubmax7Bhw/Dwww8jNzcXoaGh1qy+2Zjjd6KmpgY///wzgoKCLFVNi2vOfXjooYdw/vx5TRAGgN9++w1BQUEtNvwApv1OfPLJJ6isrMRzzz1n6WpaXHPuQ0VFRYOQow7IgqlbmZo8jNoJ7dy5U3BzcxO2bNki/PLLL0JKSorg4+OjmbY6evRoYebMmZrylZWVwokTJ4QTJ04IQUFBwuuvvy6cOHFCOHfunK0uwSyMvQ+LFi0SpFKp8Omnn2pN7ywrK7PVJZiFsffhnXfeEb7++mvhwoULwi+//CIsW7ZMcHFxETZs2GCrSzAbY+9FfY4yC8zY+/D2228L+/fvFy5cuCDk5OQITz/9tODu7i6cPn3aVpdgFsbeh0uXLgleXl5CamqqcPbsWWHv3r2Cv7+/sGDBAltdgtk09/8bffv2FZKTk61dXYsx9j7MnTtX8PLyEj766CPh999/F77++mshIiJCGDlypMl1YQBqplWrVgnt2rUTpFKp0KtXL+HHH3/UvDZgwABh7Nixmud5eXkCgAaPAQMGWL/iZmbMfQgLC2v0PsydO9f6FTczY+7D7NmzhcjISMHd3V3w9fUVevfuLezcudMGtbYMY+5FfY4SgATBuPswbdo0TdmAgADhb3/7m3D8+HEb1Nr8jP19OHz4sBAXFye4ubkJHTp0EBYuXCjcuXPHyrW2DGPvxa+//ioAEL7++msr19SyjLkP1dXVwrx584SIiAjB3d1dCA0NFV5++WXhjz/+MLkeIkEwtQ2JiIiIqGXhGCAiIiJyOgxARERE5HQYgIiIiMjpMAARERGR02EAIiIiIqfDAEREREROhwGIiIiInA4DEBGRDY0bNw4jRoywdTWInA4DEBE1aty4cRCJRJqHn58fBg0ahJMnT9q6amZR99rUj759+1rs8/Lz8yESiZCbm6t1/L333sOWLVss9rlE1DgGICLSadCgQSgsLERhYSGys7Ph4uKCoUOH2rpaZrN582bN9RUWFuKLL75otFx1dbXF6iCTyeDj42Ox8xNR4xiAiEgnNzc3BAYGIjAwEFFRUZg5cyYuX76MGzduYODAgUhNTdUqf+PGDUilUs1uz+Hh4Zg/fz5GjRoFT09PhISEYPXq1VrvWbFiBbp27QpPT0+Ehobi5Zdfxq1btzSvX7x4EUlJSfD19YWnpyfuv/9+fPXVVwCAP/74A88++yzuueceeHh4oGPHjti8ebPB1+fj46O5vsDAQMjlck1Lza5duzBgwAC4u7vjww8/hEKhwKhRoxASEoJWrVqha9eu+Oijj7TOp1KpsGTJEkRGRsLNzQ3t2rXDwoULAQDt27cHAPTo0QMikQjx8fEAGnaBVVZWYurUqfD394e7uzv69u2LY8eOaV4/dOgQRCIRsrOzERsbi1atWqFPnz44e/aswddNRAxARGSgW7duYfv27YiMjISfnx8mTpyIHTt2oLKyUlNm+/btCAkJwcCBAzXHli5diu7du+PEiROYOXMmXnnlFXzzzTea18ViMVauXInTp09j69at+Pbbb/HGG29oXp88eTIqKyvxn//8Bz///DMWL16M1q1bAwDeeust/PLLL/jXv/6FM2fOYO3atWjTpo1Zrldd1zNnziAxMRG3b99GTEwMvvzyS5w6dQopKSkYPXo0jh49qnnPrFmzsGjRIk29duzYgYCAAADQlDtw4AAKCwuRlZXV6Oe+8cYb2L17N7Zu3Yrjx48jMjISiYmJKCkp0So3e/ZsLF++HP/973/h4uKC559/3izXTeQ0TN5OlYgc0tixYwWJRCJ4enoKnp6eAgAhKChIyMnJEQRBEP7880/B19dX2LVrl+Y93bp1E+bNm6d5HhYWJgwaNEjrvMnJycLgwYN1fu4nn3wi+Pn5aZ537dpV65x1JSUlCePHj2/W9QEQ3N3dNdfn6ekpfPbZZ0JeXp4AQMjIyGjyHEOGDBFee+01QRAEobS0VHBzcxM2bNjQaFn1eU+cOKF1fOzYscLw4cMFQRCEW7duCa6ursKHH36oeb2qqkoIDg4WlixZIgiCIBw8eFAAIBw4cEBT5ssvvxQACH/++acxt4DIqbEFiIh0evjhh5Gbm4vc3FwcPXoUiYmJGDx4MC5evAh3d3eMHj0amzZtAgAcP34cp06dwrhx47TO0bt37wbPz5w5o3l+4MABPPLIIwgJCYGXlxdGjx4NhUKBiooKAMDUqVOxYMECPPTQQ5g7d67WIOyXXnoJO3fuRFRUFN544w0cPnzYqOt79913NdeXm5uLRx99VPNabGysVtmamhrMnz8fXbt2hVwuR+vWrbF//35cunQJAHDmzBlUVlbikUceMaoOdV24cAHV1dV46KGHNMdcXV3Rq1cvrXsGAN26ddP8HBQUBAC4fv16sz+byNkwABGRTp6enoiMjERkZCR69uyJf/7znygvL8eGDRsAABMnTsQ333yDgoICbN68GQMHDkRYWJjB58/Pz8fQoUPRrVs37N69Gzk5OZoxQlVVVZrP+P333zF69Gj8/PPPiI2NxapVqwBAE8ZeffVVXL16FY888ghef/11gz8/MDBQc32RkZHw9PTUuva6li5divfeew8zZszAwYMHkZubi8TERE09PTw8DP5cc3B1ddX8LBKJANSOQSIiwzAAEZHBRCIRxGIx/vzzTwBA165dERsbiw0bNmDHjh2NjkP58ccfGzzv3LkzACAnJwcqlQrLly/Hgw8+iHvvvRdXr15tcI7Q0FBMmjQJWVlZeO211zQBDADuuecejB07Ftu3b0dGRgbWr19vzkvW+OGHHzB8+HA899xz6N69Ozp06IDffvtN83rHjh3h4eGhGQBen1QqBVDbkqRLREQEpFIpfvjhB82x6upqHDt2DF26dDHTlRARALjYugJEZL8qKytx7do1ALUzrjIzM3Hr1i0kJSVpykycOBGpqanw9PTE448/3uAcP/zwA5YsWYIRI0bgm2++wSeffIIvv/wSABAZGYnq6mqsWrUKSUlJ+OGHH7Bu3Tqt90+bNg2DBw/Gvffeiz/++AMHDx7UBKg5c+YgJiYG999/PyorK7F3717Na+bWsWNHfPrppzh8+DB8fX2xYsUKFBUVaYKJu7s7ZsyYgTfeeANSqRQPPfQQbty4gdOnT2PChAnw9/eHh4cH9u3bh7Zt28Ld3R0ymUzrMzw9PfHSSy9h+vTpkMvlaNeuHZYsWYKKigpMmDDBItdF5KzYAkREOu3btw9BQUEICgpCXFwcjh07hk8++UQzhRsARo0aBRcXF4waNQru7u4NzvHaa6/hv//9L3r06IEFCxZgxYoVSExMBAB0794dK1aswOLFi/HAAw/gww8/RHp6utb7a2pqMHnyZHTu3BmDBg3CvffeizVr1gCobVWZNWsWunXrhv79+0MikWDnzp0WuRdvvvkmoqOjkZiYiPj4eAQGBjZYwfmtt97Ca6+9hjlz5qBz585ITk7WjMtxcXHBypUr8f777yM4OBjDhw9v9HMWLVqEJ598EqNHj0Z0dDTOnz+P/fv3w9fX1yLXReSsRIIgCLauBBG1XPn5+YiIiMCxY8cQHR2t9Vp4eDimTZuGadOm2aZyREQ6sAuMiJqluroaCoUCb775Jh588MEG4YeIyJ6xC4yImuWHH35AUFAQjh071mDcjq298847aN26daOPwYMH27p6RGQH2AVGRA6npKSkwcrJah4eHggJCbFyjYjI3jAAERERkdNhFxgRERE5HQYgIiIicjoMQEREROR0GICIiIjI6TAAERERkdNhACIiIiKnwwBERERETocBiIiIiJzO/wNrh5xHvoSw9QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWvFJREFUeJzt3XlcVOXiBvBnZlhFGAUV2QRFk7SUQCUt10th17RudUUtNbLUCpfompk3l7SLmhnuZT8Vs0y7iZXLxYq0cim9mG2aW6BhgAo5ICTgzPv7gzsjAwzMwCxn5jzfz4ePcubM4X1nYOaZd1UIIQSIiIiIZETp6AIQERER2RsDEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQEZFEpaenQ6FQIDc319FFIXI5DEBEMnb06FEkJyeje/fu8PHxQYcOHTBy5EicPn26zrmDBg2CQqGAQqGAUqmEn58funbtirFjx+Kzzz6z6Ofu3LkTAwcORLt27dCiRQt06tQJI0eORGZmprWqVse//vUvfPTRR3WOHzp0CPPmzcPVq1dt9rNrmzdvnuGxVCgUaNGiBbp164Z//vOfKCkpscrP2LJlC9LS0qxyLSJXxABEJGOLFy/G9u3b8Ze//AXLly/HxIkT8dVXXyEmJgY//fRTnfNDQ0OxefNmvPPOO3jttdcwYsQIHDp0CPfeey8SExNRVVXV6M9cunQpRowYAYVCgVmzZuGNN97Aww8/jDNnzmDr1q22qCaAhgPQ/Pnz7RqA9NauXYvNmzdj2bJliIqKwquvvoqhQ4fCGls0MgARNczN0QUgIsdJSUnBli1b4OHhYTiWmJiI22+/HYsWLcK7775rdL5arcZjjz1mdGzRokWYOnUq1qxZg4iICCxevNjkz7tx4wYWLFiAe+65B59++mmd2y9dutTMGklHeXk5WrRo0eA5jzzyCNq0aQMAmDx5Mh5++GFkZGTgm2++Qd++fe1RTCLZYgsQkYz169fPKPwAQJcuXdC9e3ecPHnSrGuoVCqsWLEC3bp1w6pVq6DRaEyee+XKFZSUlOCuu+6q9/Z27doZfX/9+nXMmzcPt9xyC7y8vBAUFISHHnoI586dM5yzdOlS9OvXDwEBAfD29kZsbCw+/PBDo+soFAqUlZVh06ZNhm6nxx9/HPPmzcOMGTMAAB07djTcVnPMzbvvvovY2Fh4e3vD398fo0aNwm+//WZ0/UGDBuG2225DdnY2BgwYgBYtWuCll14y6/GraciQIQCAnJycBs9bs2YNunfvDk9PTwQHB+PZZ581asEaNGgQdu/ejfPnzxvqFBERYXF5iFwZW4CIyIgQAoWFhejevbvZ91GpVBg9ejRefvllHDhwAMOGDav3vHbt2sHb2xs7d+7ElClT4O/vb/KaWq0W999/P7KysjBq1ChMmzYNpaWl+Oyzz/DTTz8hMjISALB8+XKMGDECjz76KCorK7F161b8/e9/x65duwzl2Lx5M5588kn06dMHEydOBABERkbCx8cHp0+fxvvvv4833njD0BrTtm1bAMCrr76Kl19+GSNHjsSTTz6Jy5cvY+XKlRgwYAC+++47tGrVylDeoqIi3HfffRg1ahQee+wxBAYGmv346emDXUBAgMlz5s2bh/nz5yM+Ph5PP/00Tp06hbVr1+Lo0aM4ePAg3N3dMXv2bGg0GuTl5eGNN94AALRs2dLi8hC5NEFEVMPmzZsFALF+/Xqj4wMHDhTdu3c3eb8dO3YIAGL58uUNXn/OnDkCgPDx8RH33XefePXVV0V2dnad8zZs2CAAiGXLltW5TafTGf5fXl5udFtlZaW47bbbxJAhQ4yO+/j4iPHjx9e51muvvSYAiJycHKPjubm5QqVSiVdffdXo+I8//ijc3NyMjg8cOFAAEG+++abJetc0d+5cAUCcOnVKXL58WeTk5Ii33npLeHp6isDAQFFWViaEEGLjxo1GZbt06ZLw8PAQ9957r9BqtYbrrVq1SgAQGzZsMBwbNmyYCA8PN6s8RHLELjAiMvjll1/w7LPPom/fvhg/frxF99W3MJSWljZ43vz587Flyxbccccd2Lt3L2bPno3Y2FjExMQYdbtt374dbdq0wZQpU+pcQ6FQGP7v7e1t+P8ff/wBjUaD/v3749ixYxaVv7aMjAzodDqMHDkSV65cMXy1b98eXbp0wb59+4zO9/T0RFJSkkU/o2vXrmjbti06duyISZMmoXPnzti9e7fJsUOff/45KisrMX36dCiVN1++n3rqKfj5+WH37t2WV5RIptgFRkQAgIKCAgwbNgxqtRoffvghVCqVRfe/du0aAMDX17fRc0ePHo3Ro0ejpKQE3377LdLT07FlyxYMHz4cP/30E7y8vHDu3Dl07doVbm4Nv0zt2rULCxcuxPHjx1FRUWE4XjMkNcWZM2cghECXLl3qvd3d3d3o+5CQkDrjqRqzfft2+Pn5wd3dHaGhoYZuPVPOnz8PoDo41eTh4YFOnToZbieixjEAERE0Gg3uu+8+XL16FV9//TWCg4MtvoZ+2nznzp3Nvo+fnx/uuece3HPPPXB3d8emTZvw7bffYuDAgWbd/+uvv8aIESMwYMAArFmzBkFBQXB3d8fGjRuxZcsWi+tQk06ng0KhwH/+8596w2DtMTU1W6LMNWDAAMO4IyKyLwYgIpm7fv06hg8fjtOnT+Pzzz9Ht27dLL6GVqvFli1b0KJFC9x9991NKkevXr2wadMm5OfnA6gepPztt9+iqqqqTmuL3vbt2+Hl5YW9e/fC09PTcHzjxo11zjXVImTqeGRkJIQQ6NixI2655RZLq2MT4eHhAIBTp06hU6dOhuOVlZXIyclBfHy84VhzW8CIXB3HABHJmFarRWJiIg4fPox///vfTVp7RqvVYurUqTh58iSmTp0KPz8/k+eWl5fj8OHD9d72n//8B8DN7p2HH34YV65cwapVq+qcK/63UKBKpYJCoYBWqzXclpubW++Chz4+PvUudujj4wMAdW576KGHoFKpMH/+/DoLEwohUFRUVH8lbSg+Ph4eHh5YsWKFUZnWr18PjUZjNPvOx8enwSUJiOSOLUBEMvb888/jk08+wfDhw1FcXFxn4cPaix5qNBrDOeXl5Th79iwyMjJw7tw5jBo1CgsWLGjw55WXl6Nfv3648847MXToUISFheHq1av46KOP8PXXX+PBBx/EHXfcAQAYN24c3nnnHaSkpODIkSPo378/ysrK8Pnnn+OZZ57BAw88gGHDhmHZsmUYOnQoxowZg0uXLmH16tXo3LkzfvjhB6OfHRsbi88//xzLli1DcHAwOnbsiLi4OMTGxgIAZs+ejVGjRsHd3R3Dhw9HZGQkFi5ciFmzZiE3NxcPPvggfH19kZOTgx07dmDixIn4xz/+0azH31Jt27bFrFmzMH/+fAwdOhQjRozAqVOnsGbNGvTu3dvo+YqNjcW2bduQkpKC3r17o2XLlhg+fLhdy0skaY6cgkZEjqWfvm3qq6FzW7ZsKbp06SIee+wx8emnn5r186qqqsTbb78tHnzwQREeHi48PT1FixYtxB133CFee+01UVFRYXR+eXm5mD17tujYsaNwd3cX7du3F4888og4d+6c4Zz169eLLl26CE9PTxEVFSU2btxomGZe0y+//CIGDBggvL29BQCjKfELFiwQISEhQqlU1pkSv337dnH33XcLHx8f4ePjI6KiosSzzz4rTp06ZfTYNLREQG368l2+fLnB82pPg9dbtWqViIqKEu7u7iIwMFA8/fTT4o8//jA659q1a2LMmDGiVatWAgCnxBPVohDCCpvOEBERETkRjgEiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZ4UKI9dDpdPj999/h6+vL5eSJiIichBACpaWlCA4OhlLZcBsPA1A9fv/9d4SFhTm6GERERNQEv/32G0JDQxs8hwGoHr6+vgCqH8CG9jUiIiIi6SgpKUFYWJjhfbwhDED10Hd7+fn5MQARERE5GXOGr3AQNBEREckOAxARERHJDgMQERERyQ7HABEREVmJVqtFVVWVo4vhstzd3aFSqaxyLQYgIiKiZhJCoKCgAFevXnV0UVxeq1at0L59+2av08cARERE1Ez68NOuXTu0aNGCi+jagBAC5eXluHTpEgAgKCioWddjACIiImoGrVZrCD8BAQGOLo5L8/b2BgBcunQJ7dq1a1Z3GAdBExERNYN+zE+LFi0cXBJ50D/OzR1rxQBERERkBez2sg9rPc4MQERERCQ7HAMkMUVFRaisrDR5u4eHB/uYiYiImokBSEKKioqwatUqw/cajS+KiwPg718EtbrUcDw5OZkhiIiImu3xxx/Hpk2bAABubm7w9/dHjx49MHr0aDz++ONQKs3rKEpPT8f06dOdahkABiAJqdnyc+zYHdi5834IoYRCocPw4bsQE/NdnfOoYWxRIyJn4MjXqqFDh2Ljxo3QarUoLCxEZmYmpk2bhg8//BCffPIJ3NxcMyq4Zq2cnEbjawg/ACCEEjt33o/IyLNGLUHUsNotaqawRY2IHMnRr1Wenp5o3749ACAkJAQxMTG488478Ze//AXp6el48sknsWzZMmzcuBG//vor/P39MXz4cCxZsgQtW7bE/v37kZSUBODmAOW5c+di3rx52Lx5M5YvX45Tp07Bx8cHQ4YMQVpaGtq1a2f1eliKg6AlqLg4wBB+9IRQorjY30Elck61P01pNL7IyYmARuPb4HlERPZk7muQPV+rhgwZgp49eyIjIwMAoFQqsWLFCvz888/YtGkTvvjiC7zwwgsAgH79+iEtLQ1+fn7Iz89Hfn4+/vGPfwConqq+YMECfP/99/joo4+Qm5uLxx9/3G71aAhbgCTI378ICoXOKAQpFDr4+xc7sFTOraEuRSIiqisqKgo//PADAGD69OmG4xEREVi4cCEmT56MNWvWwMPDA2q1GgqFwtCSpPfEE08Y/t+pUyesWLECvXv3xrVr19CyZUu71MMUtgBJkFpdiuHDd0Gh0AGA4Q2b3V9NY6pLsXZLEBER3SSEMHRpff755/jLX/6CkJAQ+Pr6YuzYsSgqKkJ5eXmD18jOzsbw4cPRoUMH+Pr6YuDAgQCACxcu2Lz8jWELkETFxHyHyMizKC72h79/McNPE2g0GgANdymq1aXQaDTN3lOGiMjVnDx5Eh07dkRubi7uv/9+PP3003j11Vfh7++PAwcOYMKECaisrDS5AnZZWRkSEhKQkJCA9957D23btsWFCxeQkJAgiaEHDEASplaXMvg0g36Z9Ma6FJu7nDrZH2f3EdnWF198gR9//BHPPfccsrOzodPp8PrrrxumxX/wwQdG53t4eECr1Rod++WXX1BUVIRFixYhLCwMAPDf//7XPhUwAwOQhHh4eFj1PKqmVpeiR48f8P33PQEoAAj06PEDw6WTsseMGQYskpOKigoUFBQYTYNPTU3F/fffj3HjxuGnn35CVVUVVq5cieHDh+PgwYN48803ja4RERGBa9euISsrCz179kSLFi3QoUMHeHh4YOXKlZg8eTJ++uknLFiwwEG1rIsBSEICAgKQnJzMF14r02h88cMPPVAdfgBAgR9+6IEhQ75gCHJCtp4x4+gpyUT2lpmZiaCgILi5uaF169bo2bMnVqxYgfHjx0OpVKJnz55YtmwZFi9ejFmzZmHAgAFITU3FuHHjDNfo168fJk+ejMTERBQVFRmmwaenp+Oll17CihUrEBMTg6VLl2LEiBEOrO1NDEASwxdU69Ev3tXYGCBXXeSLmkaKU5LJtTmy9T89PR3p6emNnvfcc8/hueeeMzo2duxYo+/Xrl2LtWvXGh0bPXo0Ro8ebXRMCNG0wloZX/nJZbVq1QpA42OA9OcR2Qu72Kgmtv47BgMQuTz9sgK11wGSevcX3yTNY2rPvJqk9Fiyi43qw+fa/hiASBacbVkBboxrHnMWuJRa4GAXG5E0MACRy6rdX25qWQEpzqqT4sa4UmpFAczfM6+5gcOcFiYicj4MQOSyXKFfXSob40qtFQVofHC7NXALFSLXxQBELk3K4cYc9niTN0d9G8vW1ypijxYpfYtdY4PbTbXsmduiI5XwSUS2wQBEJGFS3BjX0a0iNVv2QkJKMHOmGlqtAiqVwOLFJRgzZrTJlj1zyq4PTo2FT2t1nTYWyKTW9UjkKhiAiCRMajPYpNIqon/Df/55IDEROHsW6NxZgdDQVgBa1Xsfc8uuD1i5uTewebOATqcw3KZSCUyZch8iItysEjoaC2RS7HokchUMQEQSJ6UZbFLpkqspNLT6qzGWlD0gIAABAcC6dcCkSYBWC6hUwFtvKRAbG2iVcpsTyDhjjMh2GICImqhm18TvvyuRk+OGjh1vIDhYB8C6XRNS2RhXil1y5mpK2SdMABIS9C1M5gWtxljSxcZgQ85u//79GDx4MP744w+zF52NiIjA9OnTMX36dJuWTdn4KUTyUFRUhPz8fOTn5yM7uxAffliE7OxCw7GioiKjc1etWoV169Zh8uSj6N27Lf7+9wD07t0Wkycfxbp167Bq1Sqj+1hCqhvj6rvkFIrqkOfoLjlz6B+jxspu6rEMDQUGDbJO+AFudrFNmTIUSqXxlgD6LjZTXVoajS9yciKg0fhapzAke48//jgUCgUmT55c57Znn30WCoUCjz/+uP0LZgdsASKC8ViLhsZl6N+Y9J/MG+vGaOoneClP4ZdSl5w5aj+Wc+ZcRm6uGyIibiA4uDeA3nZ/LJvSxebowefkusLCwrB161a88cYb8Pb2BgBcv34dW7ZsQYcOHRxcOtthCxAR0Gig0X/irh1IGurGaK6AgAAEBQWZ/LLnG3Z9i0p27Hi+TviR4qKSgPFjGRsbiIcfDkBsbKBDHsuaJkwAcnOBffuq/50wof7zGvu9JGqOmJgYhIWFISMjw3AsIyMDHTp0wB133GE4VlFRgalTp6Jdu3bw8vLC3XffjaNHjxpda8+ePbjlllvg7e2NwYMHIzc3t87PO3DgAPr37w9vb2+EhYVh6tSpKCsrs1n9TJFEAFq9ejUiIiLg5eWFuLg4HDlyxOS5GRkZ6NWrF1q1agUfHx9ER0dj8+bNJs+fPHkyFAoF0tLSbFBycjWWBhr9uJKanGVMjCX0rSgTJ040+cWZSE1jThebLYM2SU9eXnUozsuz38984oknsHHjRsP3GzZsQFJSktE5L7zwArZv345Nmzbh2LFj6Ny5MxISElBcXP1699tvv+Ghhx7C8OHDcfz4cTz55JN48cUXja5x7tw5DB06FA8//DB++OEHbNu2DQcOHEBycrLtK1mLwwPQtm3bkJKSgrlz5+LYsWPo2bMnEhIScOnSpXrP9/f3x+zZs3H48GH88MMPSEpKQlJSEvbu3Vvn3B07duCbb75BcHCwratBLsLSQOOMY2KaSkotUnIjl6BNwPr1QHg4MGRI9b/r19vn5z722GM4cOAAzp8/j/Pnz+PgwYN47LHHDLeXlZVh7dq1eO2113DfffehW7duePvtt+Ht7Y31/yvk2rVrERkZiddffx1du3bFo48+Wmf8UGpqKh599FFMnz4dXbp0Qb9+/bBixQq88847uH79un0q+z8OHwO0bNkyPPXUU4ak+eabb2L37t3YsGFDneQIAIMGDTL6ftq0adi0aRMOHDiAhIQEw/GLFy9iypQp2Lt3L4YNG2bTOpDraMq6O842JoacR+0B3KZ+L6Xa9UiWycsDJk4EdP/Lujpd9RixhATrDcI3pW3bthg2bBjS09MhhMCwYcPQpk0bw+3nzp1DVVUV7rrrLsMxd3d39OnTBydPngQAnDx5EnFxcUbX7du3r9H333//PX744Qe89957hmNCCOh0OuTk5ODWW2+1RfXq5dAAVFlZiezsbMyaNctwTKlUIj4+HocPH270/kIIfPHFFzh16hQWL15sOK7T6TB27FjMmDED3bt3b/Q6FRUVqKioMHxfUlJiYU3IlTQl0Ehlmjq5FikO4CbbOXPmZvjR02qrl2GwdQACqrvB9F1Rq1evtsnPuHbtGiZNmoSpU6fWuc3eA64dGoCuXLkCrVaLwEDjWQ+BgYH45ZdfTN5Po9EgJCQEFRUVUKlUWLNmDe655x7D7YsXL4abm1u9D3B9UlNTMX/+/KZVglwSAw1JRc1wExQExMY6sDBkU126AEqlcQhSqarXoLKHoUOHorKyEgqFwqhHBQAiIyPh4eGBgwcPIjw8HABQVVWFo0ePGtbrufXWW/HJJ58Y3e+bb74x+j4mJgYnTpxAZ3tVqgEO7wJrCl9fXxw/fhzXrl1DVlYWUlJS0KlTJwwaNAjZ2dlYvnw5jh07BoVC0fjFAMyaNQspKSmG70tKShAWFmar4pMLkOo6PUSW4l5j0hEaWt/SCPZp/QEAlUpl6M5SqVRGt/n4+ODpp5/GjBkz4O/vjw4dOmDJkiUoLy/HhP9NX5w8eTJef/11zJgxA08++SSys7ORnp5udJ2ZM2fizjvvRHJyMp588kn4+PjgxIkT+Oyzz8za9sWaHBqA2rRpA5VKhcLCQqPjhYWFaN++vcn7KZVKQ3qMjo7GyZMnkZqaikGDBuHrr7/GpUuXjJrStFotnn/+eaSlpdU7Jc/T0xOenp7WqZQV5eVVN4l26WK/PwC5sjTQSHmdHiJzca8x67px40aDrwlKpRJubg2/7dpi9XFL+Pn5mbxt0aJFhiEmpaWl6NWrF/bu3YvWrVsDqO7C2r59O5577jmsXLkSffr0wb/+9S888cQThmv06NEDX375JWbPno3+/ftDCIHIyEgkJibavG61KYQQovHTbCcuLg59+vTBypUrAVSP3+nQoQOSk5PrHQRdnyeeeAK//vor9u/fb1jNt6aEhASMHTsWSUlJ6Nq1a6PXKykpgVqthkajafCXwRb0n8a2bPHGCy+oodMpoFQKLFmiwZgxf/JN1Yb4SZjkJj8/H+vWrWv0vIkTJyIoKMgOJXJO169fx9mzZ+Hn59dowGnXrl2j51DDrl+/jpycHHTs2BFeXl5Gt1ny/u3wZyElJQXjx49Hr1690KdPH6SlpaGsrMwwK2zcuHEICQlBamoqgOrxOr169UJkZCQqKiqwZ88ebN68GWvXrgWgX2HV+E3K3d0d7du3Nyv8OJL+05hG44u0tOkQoroLT6dTYMYMP1y8uAFqdSk/jdkIH1OSO43GF8XFAfD3L7LaGDh+sDCmqz3KmRzG4QEoMTERly9fxpw5c1BQUIDo6GhkZmYaBkZfuHABSuXN5YrKysrwzDPPIC8vD97e3oiKisK7777rkOYza9O/SDS2SSI3SCQia7PFVhvsYiMpc3gAAqp/+U2tArl//36j7xcuXIiFCxdadP36xv1ImTPvuE3SwPFjZInG9rRrKnM/rEn1Q11zWq+0WiVu3HCDm9sNqFRs9ZEiSQQgMtaUxfjI/mq+OP7+uxI5OW7o2PEGgoOrX+zs3bTP8WPWI7dum8Zana3FFl1stmJJ65WPj4/RsfLyFrh6VQ1AAUCgVSsNWrQot01BncSNGzca7P4zZ4C4tTEASRRXF5Y2S3ePt1d5OH6s+Wq/8Zl603alx9Ierc7Otpu9Ja1X+gAkhIBWq6wRfgBAgatX1fD0vG73liCphI4bN26Y3N6qJnMHiFtr7hYDkIRxMT7pamz3eH3Xgb2a9u0xfkxqLV62UvMxauhNW6rdNk1h61ZnW3Wx2VNDrVfu7u4QQqCqqgoqlQ9uhh89BW7ccINKZb/fGWuHjuYwd+C3ueeVl1e3prm7uze5TAADEFGz2KvrwFy2+iQvtRYve3CFN+3G1Fz/qqFW5+Yu6Cm1vxNLNdZ6pVKp4OnpieLiYrRqpQTQAsZ7jQsAf+LGDYHr16/bZSZYZWUlbty40eh55eXlNl+w1dyyNPbYCCFQXl6OS5cuoVWrVnUWa7QUAxBRM0htwLqtPslLrcXLHpz9Tdsc9lrQU2p/J5YwNwj7+/vj6NGjCA+vhFb7B/780xv6MUDe3n+iqqr6MS4pKWn2G7c5tFotSktvlk+nU0KnU0Kp1EGpvBky7FEea5elVatWDS6WbC4GIAnh9grOR4oD1m05fkwOoUDPmd+0LWGPFjsp/p2Yy9zf+TZt2mDo0KGGVoxLlxS4eFGFkBAt2rZtCaC6y0a/arKtXbp0CZmZmQCAEye6Yd++QYbHfvDg/ejW7QQAYOTIkWjXrp3TlMXd3d1qgY0ByM4amp7M7RWckxQHrNtq/JhcQgHg3G/aUmGvLjZbsuR3vuZrc1iYYzeudXd3R1lZGTQaX6SnDzUqf3r6UEyf/gvU6lK4u7vXWU3ZlctSEwOQHVgyPZnhxjnJZcC63EKBFMOtM3GFD3XO/jsvpVZbKZUFYACyOU5PJlcjt1Agl3BrK876uuYKrVeAtFptpVQWgAHI5ri9hWuS2ngte5fHlUOB1J5bcgxXaL0CpNGCpf9baaws9v6bYgCyE6klX2oeqb04Sq08zeHobTxc6bGk5nHm51hKLVi1/6bmzLmM3Fw3RETcQHBwbwC9HfI3xQBkJ1JI4WRdUntxtGV5bN0qIrVtPKT23BJZSmpBvubPCQpy7ABxPQYgO5Lb2AlyHbZ8MeU4OSLb4N9LwxiA7MyVx06Qa7PViynHyRGRIygbP4WIyPb04+Rq4jg5IrIVBiAikgT9ODl9COI4OSKyJXaB2Rin1BKZj+PkiMheGIBsTGoj8YmkjuPkiMgeGIDsgOGGiIikTr8chSmu9mGdAYiIiMgKnDlA6Jej0NNofFFcHAB//yKjFllXWo6CAYjICTh6dWRb4jg5cgXOHiBqBrdjx+6os2hvTMx3dc5zdgxARBIltdWRbYXj5MgVuEqA0Gh8DWUHqtfi2rnzfkRGnnW5sXkMQEQSJLfVkV2hDuQYNbudfv9diZwcN3TseAPBwdXLKdg7PDt7gGhsQVJXwgBEZAXW7qLi6shEjavZ7dRQq4s9Pyg4e4CQ08bdXAiRqJnWrwfCw4EhQ6r/Xb/eeteW6urIeXnAvn3V/5IxPjb2o/8AYKrVRaPxNTrPHqT6N2suOS1IyhYgoiYqKipCbu4NTJzYDjqdvosKmDRJIDr6EiIi3Jr9qVP/YlT7k60jXozkMiapKfjYOJaUWl2k9DfbVHJZkJQBiKgJ9E3vOTkR0OnGG92m1SqwcuV/0LHjeas0vUvhxUhuY5IswcfG8aTWbSOFv9nmksOCpOwCI2oCfZN6Y83d1mp6V6tL0bHjeYe9IJkzJqnmeXLCx8bxpNht4+i/WUvJcTkKtgARNYMrNHdbQmqftKWEj41jObrVxdkDhByXo2AAImomR7/w2pPcAp8l+Ng4niO7bVwhQEi5bLbAAERkBdZ+4ZXyp0k5BT5L8bGRN7kFCGfHAEQkQVL/NCmHAZJNxcfGfqT8QUEOpLYIpaUYgIgkSsovHERSIPUPCq5MiotQWooBiIiInJZU31xdXWOLUOq3/pDy7EdOgydqArk1vcutvpbgY0Ny1tjyD1LGFiCiJpBb07vc6msJPjYkZ868/AMDEFETye0NTW71tQQfG5IrZ17+gQGIiIiImsxZl39gACIiIqJmccblHzgImoiIiGSHAYiIiIgs4gqzH9kFRkRERBZxhdmPDEBERERkMSmHG3OwC4yIiIhkRxIBaPXq1YiIiICXlxfi4uJw5MgRk+dmZGSgV69eaNWqFXx8fBAdHY3Nmzcbbq+qqsLMmTNx++23w8fHB8HBwRg3bhx+//13e1SFXEReHrBvX/W/RCRdRUVFyM/PR35+PrKzC/Hhh0XIzi40HCsqKnJ0EUmiHN4Ftm3bNqSkpODNN99EXFwc0tLSkJCQgFOnTqFdu3Z1zvf398fs2bMRFRUFDw8P7Nq1C0lJSWjXrh0SEhJQXl6OY8eO4eWXX0bPnj3xxx9/YNq0aRgxYgT++9//OqCG5Cz0Oxtv2eKNF15QQ6dTQKkUWLJEgzFj/pR8fzaR3LjChpzkOAohhHBkAeLi4tC7d2/DL7FOp0NYWBimTJmCF1980axrxMTEYNiwYViwYEG9tx89ehR9+vTB+fPn0aFDh0avV1JSArVaDY1GAz8/P/MrQ05L/0Kq0fgiLW16nWXdp09Pg1pdyhdSIgnJz8/HunXrGv27nThxIoKCghxYUrIXS96/HdoFVllZiezsbMTHxxuOKZVKxMfH4/Dhw43eXwiBrKwsnDp1CgMGDDB5nkajgUKhQKtWreq9vaKiAiUlJUZf1HzO1I2kn8nQ2MZ+Ut7ZmEiunHlDTnIchwagK1euQKvVIjAw0Oh4YGAgCgoKTN5Po9GgZcuW8PDwwLBhw7By5Urcc8899Z57/fp1zJw5E6NHjzaZBlNTU6FWqw1fYWFhTa+UzOn7419//SrCwwWGDAHCwwVef/2qU/TH6zf2q8lZNvYjkiv+3VJTSGIQtKV8fX1x/PhxHD16FK+++ipSUlKwf//+OudVVVVh5MiREEJg7dq1Jq83a9YsaDQaw9dvv/1mw9K7Ln030muvvY8ZM/yg0ykAADqdAjNm+OG1197HqlWrJB2C9Bv76V9MnWljPyK54t8tNYVDB0G3adMGKpUKhYWFRscLCwvRvn17k/dTKpXo3LkzACA6OhonT55EamoqBg0aZDhHH37Onz+PL774osG+QE9PT3h6ejavMmRWN5JaXSr5biRn3diPSM74d0uWcmgA8vDwQGxsLLKysvDggw8CqB4EnZWVheTkZLOvo9PpUFFRYfheH37OnDmDffv2cdCqnembo2sPSHSm5mhn3NiPnId+xiEA/P67Ejk5bujY8QaCg6tbMDjjsGn4d0uWcPg0+JSUFIwfPx69evVCnz59kJaWhrKyMiQlJQEAxo0bh5CQEKSmpgKoHq/Tq1cvREZGoqKiAnv27MHmzZsNXVxVVVV45JFHcOzYMezatQtardYwnsjf31/S+5K4Cn1zdO0pqXxhIuLUbSKpcHgASkxMxOXLlzFnzhwUFBQgOjoamZmZhoHRFy5cgFJ5syWhrKwMzzzzDPLy8uDt7Y2oqCi8++67SExMBABcvHgRn3zyCYDq7rGa9u3bZ9RN5gqk+kmSzdFE9dP/vWo0vobwA1R3E+/ceT8iI886RVexFLjChpzkOA4PQED1Jx1TXV61BzcvXLgQCxcuNHmtiIgIOHhpI7uR+idJZ2qO5gsp2VtjY+Woca6wISc5jiQCEDUNP0laD19Iyd5cYaycFPBvkpqKAcgF8JOkdfCFlOyJY+WIHIsByAVI5ZMku5GILMOxckSOwwDkAqTySZLdSESWc6axckSuhAHIRUjlkyTDDREROQMGIBfCT5JE0seuYiJpYAAiIrIjdhWTvUh1nTipYAByYvwkSeSc5PymQzfZMqBIfZ04KWAAcmL8JElE5JxsHVC4TlzjGICcHMMNEZHzsVdA4TpxpikbP4WIiIhsoaGAYg36deJq4orj1RiAiIiIHMTWAUW/Tpz+Z3DF8ZvYBUZEROQg9ljIVirrxEkNAxAREZED2SOgcJ24uhiAiIiIHIwBxf44BoiIiMjFcJ24xrEFiIiIyM5sHVC4TlzjFEII4ehCSE1JSQnUajU0Gg38/PwcXRwiInJBNVeCro/cA0pTWPL+zRYgIiIiB2C4cSyOASIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIiu8nLA/btq/7XkRiAiIiIyKaKioqQn5+P11+/ivBwgSFDgPBwgddfv4r8/HwUFRXZvUxcCZqIiIhspqioCKtWrYJG44u0tOkQQgEA0OkUmDHDDxcvboBaXYrk5GS7ro7NFiAiIiKyGf1+Z8XFARDCOHYIoURxsb/RefbCAEREREQ25+9fBIVCZ3RModDB37/YIeVhFxiRTHEnaiKyJ7W6FMOH78LOnfdDCCUUCh2GD98FtbrUIeVhACKyEykFDn2ffGPs3SdPZGtS+juUo5iY7xAZeRbFxf7w9y92WPgBGICI7EJqgaP2G4BG44vi4gD4+xcZvSDZu0+eyJZq/x2a+r1n8LcttbrUocFHjwGIyA6kHDiOHbujTpN0TMx3di8Hka3V/Ptq6PeewV8eGICI7ExKgUOj8TWUBaiekbFz5/2IjDwriU9oRLbA33sCOAuMyK5MvfBqNL4OKU9j01KJXBF/7+3Lw8PDqudZC1uAiOyooRdeR3zy1E9LrVkmR05LJbIH/t7bV0BAAJKTkyU3+JwBiMiOpPbCK7VpqUT2wN97+5PioHIGICI7kuILr5SmpRLZC3/viQGIyM6k8MJbu6/d1LRUe/fJE9mTVKZjk2MwABHZgdQCh1T75IlsSaqDcckxFEII4ehCSE1JSQnUajU0Gg38/PwcXRxyEVyBluRIar/3UisPWZcl799sASKyE76oktxIbQV0gH+HdJMk1gFavXo1IiIi4OXlhbi4OBw5csTkuRkZGejVqxdatWoFHx8fREdHY/PmzUbnCCEwZ84cBAUFwdvbG/Hx8Thz5oytq0FERDXUtwJ6Tk5EnXWvuPIyOYLDW4C2bduGlJQUvPnmm4iLi0NaWhoSEhJw6tQptGvXrs75/v7+mD17NqKiouDh4YFdu3YhKSkJ7dq1Q0JCAgBgyZIlWLFiBTZt2oSOHTvi5ZdfRkJCAk6cOAEvLy97V5GISPaktAI6ESCBFqBly5bhqaeeQlJSErp164Y333wTLVq0wIYNG+o9f9CgQfjb3/6GW2+9FZGRkZg2bRp69OiBAwcOAKhu/UlLS8M///lPPPDAA+jRowfeeecd/P777/joo4/sWDMiIgKktwI6EeDgAFRZWYns7GzEx8cbjimVSsTHx+Pw4cON3l8IgaysLJw6dQoDBgwAAOTk5KCgoMDommq1GnFxcSavWVFRgZKSEqMvIiKyDm49QVLk0C6wK1euQKvVIjAw0Oh4YGAgfvnlF5P302g0CAkJQUVFBVQqFdasWYN77rkHAFBQUGC4Ru1r6m+rLTU1FfPnz29OVYiIyASprYBO9ZPbDDmHjwFqCl9fXxw/fhzXrl1DVlYWUlJS0KlTJwwaNKhJ15s1axZSUlIM35eUlCAsLMxKpSUikjcproBOxmrP2NNofFFcHAB//yKj58meM/ZszaEBqE2bNlCpVCgsLDQ6XlhYiPbt25u8n1KpROfOnQEA0dHROHnyJFJTUzFo0CDD/QoLCxEUFGR0zejo6Hqv5+npCU9Pz2bWhojI9TW1lUAKK6CTaTWf04YGrLvSjD2HBiAPDw/ExsYiKysLDz74IABAp9MhKysLycnJZl9Hp9OhoqICANCxY0e0b98eWVlZhsBTUlKCb7/9Fk8//bS1q0BEJBuWrusjtRXQqXGmBqxHRp51udDq8C6wlJQUjB8/Hr169UKfPn2QlpaGsrIyJCUlAQDGjRuHkJAQpKamAqger9OrVy9ERkaioqICe/bswebNm7F27VoAgEKhwPTp07Fw4UJ06dLFMA0+ODjYELKIiMhy9a3rU183if48brnifBoasM4AZGWJiYm4fPky5syZg4KCAkRHRyMzM9MwiPnChQtQKm8+GWVlZXjmmWeQl5cHb29vREVF4d1330ViYqLhnBdeeAFlZWWYOHEirl69irvvvhuZmZlcA4iIyErMXdeH4ca5yGnAOvcCqwf3AiMiqis/Px/r1q2DRuOLtLTpdd4kp09Pg1pdiokTJxqNwSTp0z+3QMPhVurPLfcCIyIim5FTN4kcyWXAOgMQERFZRE7dJHJlasC6K3H4VhhERORc9Ov6KBQ6AOC6Pi7A3Jl4rjRjjy1AREQuxF6r+cqlm0Qu5DhjjwGIiMhFWLpOj6W4ro9rc6VwYw4GICIiF2HuKr1NXc1Xjq0E5LoYgIjI4eS2CaO9mFqosDn4PJCrYAAiIoeydbeNXJm7UCFRUzn7BxcGICJyKFt328iRnPZzIsdwhQ8uDEDUIGdP+OR8bNFtIzdcqJBszdJ94aSIAYhMcoWET86F3TbWwYUKyZ6c9e+WCyGSSeyaIHsy1W2j0fg6uGTOhwsVkr04898tW4CISBLYbdN8NdffaWihQq7TQ9bizH+3DEBEJAnstmk+rtND9qLRaAA0/ner0Wgku3s8AxCZjYNTyZb03Ta1xxLwd80yDDdkD1VVVQBu/t1+8sn9qB5VY/x3qz9PihiAyCzOOsiNpI/dNkTOT6EAhKj+11kwAFGjuKYI2RK7bYicj5tbdXxo7P1Bf54USbdkJBnOPMhNSrimkmlyrTeRs2rVqhWAxt8f9OdJEQMQmaTvcmhskBu7JhrHNZWIyBU58+QFBiAyqWbXREhICWbOVEOrVUClEli8uARjxoyWdauFJbimEhG5ImeevMAARA3Sh5vnnwcSE4GzZ4HOnRUIDW0FoJUji0ZEZDF2RVtfQ5MXpMziALRnzx5kZGTA398fTzzxBKKiogy3/fHHH3j44YfxxRdfWLWQJA2hodVfRETOiF3R1lN76INaXVpv8JHyEAmLAtCWLVswbtw4DB06FKdOncLKlSvxf//3f3j00UcBVDfff/nllzYpKJEr4ZpKRPbHrmjrcYXZmxYFoNdeew3Lli3D1KlTAQAffPABnnjiCVy/fh0TJkywSQGJXA3XVCKSBn4QaR4phxtzWBSAzpw5g+HDhxu+HzlyJNq2bYsRI0agqqoKf/vb36xeQCJXwjWViKSBH0TIogDk5+eHwsJCdOzY0XBs8ODB2LVrF+6//37k5eVZvYBEroRrKhE5Hj+IEGBhAOrTpw/+85//4M477zQ6PnDgQOzcuRP333+/VQtH5Cq4ppJjceYP1cQPIgRYGICee+45HDp0qN7bBg0ahJ07d+Kdd96xSsGIXAnXVHIczvwhPVfYwZysx6IANHDgQAwcONDk7YMHD8bgwYObXSgiV8Q1lRyDM39Ir/YO5qYW75PyDuZkPRYFIKVSCUUjW70qFArcuHGjWYUi22FXgDRwTSUi+6u5MWdMzHdo164AFy50QIcOFxAaml/veeS6LHqWd+zYYfK2w4cPY8WKFdDpdM0uFNkGuwKIOPVZzmpuzNnQLDApb+BJ1mNRAHrggQfqHDt16hRefPFF7Ny5E48++iheeeUVqxWOrItdASR3nPpMAGeBUTVl46fU7/fff8dTTz2F22+/HTdu3MDx48exadMmhIeHW7N8RERWYepNT6PxdXDJyN4amgVG8mFxANJoNJg5cyY6d+6Mn3/+GVlZWdi5cyduu+02W5SPiMgq+KZHevpZYDXVnAVG8mBRAFqyZAk6deqEXbt24f3338ehQ4fQv39/W5WNbEyj8UVOTgQ/AZMs8E2P9PSzwPS/D7VngZE8WDQG6MUXX4S3tzc6d+6MTZs2YdOmTfWel5GRYZXCke1wLATJhX5xycamPnMRStdX8zmOifkOkZFnUVzsD3//YqPww98FebAoAI0bN67RafAkfRwASHJSe9fqOXMuIzfXDRERNxAc3BtAby7/IBOusIM5WY9FASg9Pd1GxSB74jLwJDc139CCgoDYWAcWhhyK4Yb0mjwLjJxP7f2oauJ+VEREJCdc7lJGuB8VERFRNYUQQji6EFJTUlICtVoNjUYDPz8/RxfHZvLy9PtRcVsGIiJyfpa8f7MFSMa4HxUREckVAxDR/3CjWCIi+WAAIgI3iiUikhuHzwJbvXo1IiIi4OXlhbi4OBw5csTkuW+//Tb69++P1q1bo3Xr1oiPj69z/rVr15CcnIzQ0FB4e3ujW7duePPNN21dDXJy3CiWiEheHBqAtm3bhpSUFMydOxfHjh1Dz549kZCQgEuXLtV7/v79+zF69Gjs27cPhw8fRlhYGO69915cvHjRcE5KSgoyMzPx7rvv4uTJk5g+fTqSk5PxySef2KtaREREJHEODUDLli3DU089haSkJENLTYsWLbBhw4Z6z3/vvffwzDPPIDo6GlFRUfi///s/6HQ6ZGVlGc45dOgQxo8fj0GDBiEiIgITJ05Ez549G2xZIiIiInlxWACqrKxEdnY24uPjbxZGqUR8fDwOHz5s1jXKy8tRVVUFf/+buzn369cPn3zyCS5evAghBPbt24fTp0/j3nvvNXmdiooKlJSUGH0RERGR63JYALpy5Qq0Wi0CAwONjgcGBqKgoMCsa8ycORPBwcFGIWrlypXo1q0bQkND4eHhgaFDh2L16tUYMGCAyeukpqZCrVYbvsLCwppWKXIZGo0vcnIioNH4OrooRERkA047C2zRokXYunUr9u/fDy8vL8PxlStX4ptvvsEnn3yC8PBwfPXVV3j22WfrBKWaZs2ahZSUFMP3JSUlDEEyduzYHXV2DI+J+c7RxSIiIityWABq06YNVCoVCgsLjY4XFhaiffv2Dd536dKlWLRoET7//HP06NHDcPzPP//ESy+9hB07dmDYsGEAgB49euD48eNYunSpyQDk6ekJT0/PZtaIXIFG42sIP0D1JrE7d96PyMiz3CiWiMiFOKwLzMPDA7GxsUYDmPUDmvv27WvyfkuWLMGCBQuQmZmJXr16Gd1WVVWFqqoqKJXG1VKpVNDpjDf/JKpJvwFscXGAIfzoCaFEcbG/0XlEROTcHNoFlpKSgvHjx6NXr17o06cP0tLSUFZWhqSkJADAuHHjEBISgtTUVADA4sWLMWfOHGzZsgURERGGsUItW7ZEy5Yt4efnh4EDB2LGjBnw9vZGeHg4vvzyS7zzzjtYtmyZw+pJ0qffKDY39wY2bxbQ6RSG21QqgSlT7kNEhBsXQSQichEODUCJiYm4fPky5syZg4KCAkRHRyMzM9MwMPrChQtGrTlr165FZWUlHnnkEaPrzJ07F/PmzQMAbN26FbNmzcKjjz6K4uJihIeH49VXX8XkyZPtVi9yTgEBAQgIANatAyZNArRaQKUC3npLgdjYwMYvQEREToO7wddDLrvBk2l5ecDZs0DnztwwlsieuCcfNQd3gydqptBQBh8ie+OefGRPDt8LjIiICOCefGRfbAEil8bmdCIiqg8DELksNqcTEZEpDEDksticTmR99mxV1Wh8UVwcAH//Ii5ESlbHAERERGaxZ6sqt6QhW+MgaCIiMou9WlVNbUnDzYnJmhiAiIhIUhrbkobIGhiASDY0Gl/k5ETwUySRROn32vP3L4JCYbx/o0Khg79/sdF5RM3BMUAkCxxPQCR9+j35KisrERJSgpkz1dBqFVCpBBYvLsGYMaO5dAVZDQMQuTxT4wkiI89yZglRM9hilpY+3Dz/PJCYqN+SRoHQ0FYAWlnlZxABDEDkwvTN5A2NJ1CrS9mcTtQE9mhV5ZY0ZEsMQBLDlYutR9+cnpt7A5s3C+h0CsNtKpXAlCn3ISLCjY8nkYXYqkqugAFIQrhysfUFBAQgIABYtw6YNAnQagGVCnjrLQViYwMdXTwip8JWVXIlDEASYo81NuTawjRhApCQoB9PwGZ1oqaQYquqXF/TqPkYgGRE7i1MHE9A1HxSalWV+2saNQ8DkIxwbywishYptKryNY2agwFIwrgRIBFJGVtVyZkxAEkUF+4jIiKyHW6FIUH22giQW0MQkSvhaxpZgi1AEtTYFFNrYAsTEbkSvqaRpdgCJCH22gjQXi1MRET2wNc0agq2AEmIvTYCtEcLEzUf1zchMg9f06gpGIAkxpYbAdZuYar5gmHNFiZqPq5vQtQ4vqZRczAASZi1p5jao4WJrRbWwfVNiBpnr1Zzck0MQDJjyxYmtloQkb3Z8jWNXBsDkIxZu4WJrRZE5EhcmJEswVlgREREJDsMQEROgAu8ERFZF7vAiJrIXgO+ucAbEZH1MQCRzbjyZq72GvBtaoG3yMizLveYEhHZEwMQ2YSrt1rYesC3ft2SxhZ44/omRERNwwBEVsdWi+bTr2+Sm3sDmzcL6HQKw20qlcCUKfchIsKNywkQETURAxA1yJJxLmy1sK6AgAAEBADr1gGTJgFaLaBSAW+9pUBsbKCji0dE5NQYgMgkS8e5yLnVwpbjnSZMABIS9Au8cZ0TIiJrYAAik5oyzkWOrRb2GO/EBd6IiKyLAYhsQi6tFhzvRGRd3E+Q7IUBiMxmaTePHFotGhvvRETm436CZE8MQGQWV5/Wbin9QG5//yIoFDqjEKRQ6ODvX2x0HhE1jvsJkj0xAFGj2M1Tl37Ad2VlJUJCSjBzphparQIqlcDixSUYM2Y0m+qJiCSMAYgaxW6e+unDzfPPA4mJ+vFOCoSGtgLQypFFIyKiRjAAUaMa6+YheYx3IiJyJQxAZJJ+/IpaXYrhw3fVGQOkb/3hOBd54OwcsjdX3k+QHI8BiEyqOc4FAObMuYzcXDdERNxAcHBvAL35picTnJ1D9saJF2RrysZPsa3Vq1cjIiICXl5eiIuLw5EjR0ye+/bbb6N///5o3bo1Wrdujfj4+HrPP3nyJEaMGAG1Wg0fHx/07t0bFy5csGU1XFZAQACCgoIQFBSE2NhAPPxwAGJjAw3H+GYnD5ydQ/ZkauKFRuPr4JKRK3FoANq2bRtSUlIwd+5cHDt2DD179kRCQgIuXbpU7/n79+/H6NGjsW/fPhw+fBhhYWG49957cfHiRcM5586dw913342oqCjs378fP/zwA15++WV4eXnZq1pERNQE5uwnWPM8ouZQCCGEo354XFwcevfubWha1+l0CAsLw5QpU/Diiy82en+tVovWrVtj1apVGDduHABg1KhRcHd3x+bNm5tcrpKSEqjVamg0Gvj5+TX5OkSuIj8/H+vWrWv0vIkTJyIoKMgOJSJXVVRUhNzcG+jTp12d/QS//faSy+4nSNZhyfu3w1qAKisrkZ2djfj4+JuFUSoRHx+Pw4cPm3WN8vJyVFVVwd+/+lOBTqfD7t27ccsttyAhIQHt2rVDXFwcPvroowavU1FRgZKSEqMvIiKyv4CA6m72desUUKmqj9XcT5Dhh6zFYQHoypUr0Gq1CAw03iAzMDAQBQUFZl1j5syZCA4ONoSoS5cu4dq1a1i0aBGGDh2KTz/9FH/729/w0EMP4csvvzR5ndTUVKjVasNXWFhY0ytGJAMajS9yciI4JoNsZsIEIDcX2Lev+t8JExxdInI1TjsLbNGiRdi6dSv2799vGN+j0+kAAA888ACee+45AEB0dDQOHTqEN998EwMHDqz3WrNmzUJKSorh+5KSEoYgIhM4O4fshetrkS05rAWoTZs2UKlUKCwsNDpeWFiI9u3bN3jfpUuXYtGiRfj000/Ro0cPo2u6ubmhW7duRuffeuutDc4C8/T0hJ+fn9EXEdXF2TlE5CocFoA8PDwQGxuLrKwswzGdToesrCz07dvX5P2WLFmCBQsWIDMzE7169apzzd69e+PUqVNGx0+fPo3w8HDrVoBIRjg7h4hcjUO7wFJSUjB+/Hj06tULffr0QVpaGsrKypCUlAQAGDduHEJCQpCamgoAWLx4MebMmYMtW7YgIiLCMFaoZcuWaNmyJQBgxowZSExMxIABAzB48GBkZmZi586d2L9/v0PqSOQK9Iti5ubewObNos7snClT7uPsHCJyKg4NQImJibh8+TLmzJmDgoICREdHIzMz0zAw+sKFC1Aqb37aXLt2LSorK/HII48YXWfu3LmYN28eAOBvf/sb3nzzTaSmpmLq1Kno2rUrtm/fjrvvvttu9SJyRQEBAQgIANatAyZNArRa49k5RETOxKHrAEkV1wEialheHnD2LNC5MwepEpF0WPL+7bSzwIjIcTg7h4icncP3AiMiIiKyNwYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdToOXmaKiIlRWVpq83cPDg6v5EhGRy2MAkpGioiKsWrXK8L1G44vi4gD4+xdBrS41HE9OTmYIIiIil8YAJCM1W36OHbvDsKu3QqHD8OG7EBPzXZ3ziIiIXBHHAMmQRuNrCD9A9W7eO3feD43G18ElIyIisg8GIBkqLg4whB89IZQoLvZ3UImIiIjsiwFIhvz9i6BQ6IyOKRQ6+PsXO6hERERE9sUAJENqdSmGD99lCEH6MUA1B0ITERG5Mg6ClqmYmO8QGXkWxcX+8PcvZvixAy5BQEQkHQxAMqZWlzL42EntJQhM4RIERET2wS4wGfHw8LDqeWS+2i0/Go0vcnIi6sy84xIERET2wRYgGQkICEBycjK7YRysoTWYiIjIPhiAZIbhxrFMrcEUGXmW3ZFERHbELjAiO+IaTERE0sAARGRHXIOJiEgaGICI7IhrMBERSQPHABHZGddgIiJyPAYgIjuovbSAqTWYuAQBEZF9MAAR2QGXICAikhYGICI7YbghIpIODoImIiIi2WEAIiIiItlhFxgRWV1REXe+JyJpYwAiIqsqKuLO90QkfewCIyKrqt3yo9Fw53sikh62ABGRzXDneyKSKrYAEZFNaDT173xfuyWIiMgRGICIyCa48z0RSRkDEBHZBHe+JyIp4xggIrIJtbp65/vaY4C4+attcQkCIvMwABGRzcTEcOd7e6q9BIFG44vi4gD4+xcZPfZcgoCIAYiIrKz2jvZqNXe+t5eaLT8NzcDjEgREDEBEZGUBAdz53tFMzcCLjDzLVjii/2EAIiKrqxlu8vKAM2eALl2A0FAHFkpGGpqBxwBEVI2zwIjI6oqKipCfn4/XX7+K8HCBIUOA8HCB11+/ivz8fBQVFTm6iC6NM/CIGscWICKyKv1AXI3GF2lp0yGEAgCg0ykwY4YfLl7cALW6lANxbYgz8IgaxwBERFalH/vTWDcMB+LaFmfgETVMEl1gq1evRkREBLy8vBAXF4cjR46YPPftt99G//790bp1a7Ru3Rrx8fENnj958mQoFAqkpaXZoOREZAq7YRxPrS5Fx47nGX6I6uHwALRt2zakpKRg7ty5OHbsGHr27ImEhARcunSp3vP379+P0aNHY9++fTh8+DDCwsJw77334uLFi3XO3bFjB7755hsEBwfbuhpEVIu+G0YfgtgNY3vmLi3AJQiIAIUQQjiyAHFxcejdu7dh8S6dToewsDBMmTIFL774YqP312q1aN26NVatWoVx48YZjl+8eBFxcXHYu3cvhg0bhunTp2P69OlmlamkpARqtRoajQZ+fn5NqheRXOXn52PdunWG76sX46vbDTNx4kQEBQU5oogujStBk5xZ8v7t0DFAlZWVyM7OxqxZswzHlEol4uPjcfjwYbOuUV5ejqqqKvj739xgUafTYezYsZgxYwa6d+9u9XLLFaczU1OYWgiRbIPhhsg8Du0Cu3LlCrRaLQIDA42OBwYGoqCgwKxrzJw5E8HBwYiPjzccW7x4Mdzc3DB16lSzrlFRUYGSkhKjLzK2fj0QHo7/TWeu/p6IiMhZOXwMUHMsWrQIW7duxY4dO+Dl5QUAyM7OxvLly5Geng6FQmHWdVJTU6FWqw1fYWFhtiy208nLAyZOBHT/G8+q0wGTJlUfJyIickYODUBt2rSBSqVCYWGh0fHCwkK0b9++wfsuXboUixYtwqeffooePXoYjn/99de4dOkSOnToADc3N7i5ueH8+fN4/vnnERERUe+1Zs2aBY1GY/j67bffml03V3LmzM3wo6fVAmfPOqY8JG0ciEtEzsChY4A8PDwQGxuLrKwsPPjggwCqx+9kZWUhOTnZ5P2WLFmCV199FXv37kWvXr2Mbhs7dqxRdxgAJCQkYOzYsUhKSqr3ep6envD09GxeZVxYly6AUmkcglQqoHNnx5UJ4JgkqeJeYETkDBy+EGJKSgrGjx+PXr16oU+fPkhLS0NZWZkhrIwbNw4hISFITU0FUD2+Z86cOdiyZQsiIiIMY4VatmyJli1bIiAgoM4Lq7u7O9q3b4+uXbvat3IuIjQUWLeuuttLq60OP2+95djQsX79zW45pbK6fBMmOK48ZIzhhoikzuEBKDExEZcvX8acOXNQUFCA6OhoZGZmGgZGX7hwAUrlzZ66tWvXorKyEo888ojRdebOnYt58+bZs+iyMmECkJBQ3e3VubNjw4+pMUkJCWwJIiIi8zh8HSAp4jpA0rZvX/VstPqODxpk9+IQEZFEWPL+7dSzwMhYXl51CHD12Vn6MUk1SWFMEhEROQ+Hd4GRddhqTIwUV5WV4pgkIiJyLuwCq4ezdYHl5VUvTlh7llZubvNCQVFRkWGLkoYkJyc7ZNBrXp40xiQREZE0OM1WGGQdDa3T05xg0FDLT1POs7bQUAYfIiJqGgYgFyDVdXpsQYpdckRE5HwYgFyAXMbESL1LjoiInAcDkIuQ0jo9tiL1LjkiInIeDEAuhGNiiIiIzMN1gIiIiEh2GICIiIhIdhiAyCQPDw+rnkdERCQVHANEJgUEBCA5OZnTzomIyOUwAFGDGG6IiMgVMQA5OTktDMguOSIishYGICcmt4UB2SVHRETWwgDkxOS4MCDDDRG5ory86n0du3Them72wllgREREDrR+PRAeDgwZUv3v+vWOLpE8MAARkazk5QH79lX/S+RoeXnAxIk3N7PW6ar3deTvp+0xABGRbPCTNknNmTM3w4+eVlu9ryPZFgMQEckCP2mTFHXpAihrvROrVNWbWpNtMQARkSzwkzZJUWgosG5ddegBqv996y0OhLYHzgIjIlnQf9KuGYL4SZscSb+O21//Cnz7rRK5uW6IiLiB4GAd8vO5rIetMQA5MS4MSGQ+/SftSZOqW374SZscydQ6bj/9ZPy9q6zjJkUMQE6MCwMSWWbCBCAhobrbq3Nnhh9yHDmu4yY1DEBOjuGGyDKhoQw+RMQAREQyIKc984jIPAxAROTS5LZnHhGZh9PgicilcawFEdWHAYiIiIhkhwGIiIiIZIcBiIiIyM64jpvjcRA0ERGRnXEdN8djACIiInIAhhvHYhcYERERyQ4DEBG5NI61IKL6sAuMiFwax1oQUX0YgIjI5THcEFFt7AIjIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZ4UrQ9RBCAABKSkocXBIiIiIyl/59W/8+3hAGoHqUlpYCAMLCwhxcEiIiIrJUaWkp1Gp1g+cohDkxSWZ0Oh1+//13+Pr6QqFQWPXaJSUlCAsLw2+//QY/Pz+rXlsKWD/n5+p1ZP2cn6vXkfVrOiEESktLERwcDKWy4VE+bAGqh1KpRGhoqE1/hp+fn0v+Yuuxfs7P1evI+jk/V68j69c0jbX86HEQNBEREckOAxARERHJDgOQnXl6emLu3Lnw9PR0dFFsgvVzfq5eR9bP+bl6HVk/++AgaCIiIpIdtgARERGR7DAAERERkewwABEREZHsMAARERGR7DAANdPq1asREREBLy8vxMXF4ciRIw2en5aWhq5du8Lb2xthYWF47rnncP369WZd05asXb958+ZBoVAYfUVFRdm6Gg2ypI5VVVV45ZVXEBkZCS8vL/Ts2ROZmZnNuqatWbt+UnoOv/rqKwwfPhzBwcFQKBT46KOPGr3P/v37ERMTA09PT3Tu3Bnp6el1zpHS82eLOjrzc5ifn48xY8bglltugVKpxPTp0+s979///jeioqLg5eWF22+/HXv27LF+4c1gi/qlp6fXef68vLxsUwEzWFrHjIwM3HPPPWjbti38/PzQt29f7N27t855Nv87FNRkW7duFR4eHmLDhg3i559/Fk899ZRo1aqVKCwsrPf89957T3h6eor33ntP5OTkiL1794qgoCDx3HPPNfmatmSL+s2dO1d0795d5OfnG74uX75sryrVYWkdX3jhBREcHCx2794tzp07J9asWSO8vLzEsWPHmnxNW7JF/aT0HO7Zs0fMnj1bZGRkCABix44dDZ7/66+/ihYtWoiUlBRx4sQJsXLlSqFSqURmZqbhHCk9f0LYpo7O/Bzm5OSIqVOnik2bNono6Ggxbdq0OuccPHhQqFQqsWTJEnHixAnxz3/+U7i7u4sff/zRNpVogC3qt3HjRuHn52f0/BUUFNimAmawtI7Tpk0TixcvFkeOHBGnT58Ws2bNEu7u7nZ/HWUAaoY+ffqIZ5991vC9VqsVwcHBIjU1td7zn332WTFkyBCjYykpKeKuu+5q8jVtyRb1mzt3rujZs6dNytsUltYxKChIrFq1yujYQw89JB599NEmX9OWbFE/qT2Heua88L7wwguie/fuRscSExNFQkKC4XspPX+1WauOzvwc1jRw4MB6A8LIkSPFsGHDjI7FxcWJSZMmNbOEzWOt+m3cuFGo1WqrlcuaLK2jXrdu3cT8+fMN39vj75BdYE1UWVmJ7OxsxMfHG44plUrEx8fj8OHD9d6nX79+yM7ONjTj/frrr9izZw/++te/NvmatmKL+umdOXMGwcHB6NSpEx599FFcuHDBdhVpQFPqWFFRUaep2dvbGwcOHGjyNW3FFvXTk8pzaKnDhw8bPR4AkJCQYHg8pPT8NVVjddRz1ufQHOY+Bs7s2rVrCA8PR1hYGB544AH8/PPPji5Sk+l0OpSWlsLf3x+A/f4OGYCa6MqVK9BqtQgMDDQ6HhgYiIKCgnrvM2bMGLzyyiu4++674e7ujsjISAwaNAgvvfRSk69pK7aoHwDExcUhPT0dmZmZWLt2LXJyctC/f3+UlpbatD71aUodExISsGzZMpw5cwY6nQ6fffYZMjIykJ+f3+Rr2oot6gdI6zm0VEFBQb2PR0lJCf78809JPX9N1VgdAed+Ds1h6jFwluewMV27dsWGDRvw8ccf491334VOp0O/fv2Ql5fn6KI1ydKlS3Ht2jWMHDkSgP1eRxmA7Gj//v3417/+hTVr1uDYsWPIyMjA7t27sWDBAkcXzSrMqd99992Hv//97+jRowcSEhKwZ88eXL16FR988IEDS26+5cuXo0uXLoiKioKHhweSk5ORlJQEpdI1/pTMqZ+zP4fE59DZ9e3bF+PGjUN0dDQGDhyIjIwMtG3bFm+99Zaji2axLVu2YP78+fjggw/Qrl07u/5sN7v+NBfSpk0bqFQqFBYWGh0vLCxE+/bt673Pyy+/jLFjx+LJJ58EANx+++0oKyvDxIkTMXv27CZd01ZsUb/6QkKrVq1wyy234OzZs9avRCOaUse2bdvio48+wvXr11FUVITg4GC8+OKL6NSpU5OvaSu2qF99HPkcWqp9+/b1Ph5+fn7w9vaGSqWSzPPXVI3VsT7O9Byaw9Rj4CzPoaXc3d1xxx13ON3zt3XrVjz55JP497//bdTdZa/XUdf42OoAHh4eiI2NRVZWluGYTqdDVlYW+vbtW+99ysvL64QAlUoFABBCNOmatmKL+tXn2rVrOHfuHIKCgqxUcvM15/H28vJCSEgIbty4ge3bt+OBBx5o9jWtzRb1q48jn0NL9e3b1+jxAIDPPvvM8HhI6flrqsbqWB9neg7N0ZTHwJlptVr8+OOPTvX8vf/++0hKSsL777+PYcOGGd1mt79Dqw2nlqGtW7cKT09PkZ6eLk6cOCEmTpwoWrVqZZiOOHbsWPHiiy8azp87d67w9fUV77//vvj111/Fp59+KiIjI8XIkSPNvqaz1+/5558X+/fvFzk5OeLgwYMiPj5etGnTRly6dMnu9RPC8jp+8803Yvv27eLcuXPiq6++EkOGDBEdO3YUf/zxh9nXtCdb1E9Kz2Fpaan47rvvxHfffScAiGXLlonvvvtOnD9/XgghxIsvvijGjh1rOF8/RXzGjBni5MmTYvXq1fVOg5fK8yeEberozM+hEMJwfmxsrBgzZoz47rvvxM8//2y4/eDBg8LNzU0sXbpUnDx5UsydO9dh0+BtUb/58+eLvXv3inPnzons7GwxatQo4eXlZXSOPVlax/fee0+4ubmJ1atXG03lv3r1quEce/wdMgA108qVK0WHDh2Eh4eH6NOnj/jmm28Mtw0cOFCMHz/e8H1VVZWYN2+eiIyMFF5eXiIsLEw888wzRm8ujV3T3qxdv8TERBEUFCQ8PDxESEiISExMFGfPnrVjjeqypI779+8Xt956q/D09BQBAQFi7Nix4uLFixZd096sXT8pPYf79u0TAOp86es0fvx4MXDgwDr3iY6OFh4eHqJTp05i48aNda4rpefPFnV09uewvvPDw8ONzvnggw/ELbfcIjw8PET37t3F7t277VOhWmxRv+nTpxt+PwMDA8Vf//pXozV07M3SOg4cOLDB8/Vs/XeoEMJE3wQRERGRi+IYICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiewf/9+KBQKXL161dFFIXIJDEBEZOTxxx+HQqHAokWLjI5/9NFHUCgUhu+FEHj77bfRt29f+Pn5oWXLlujevTumTZtm9qaM5eXlmDVrFiIjI+Hl5YW2bdti4MCB+Pjjjw3nREREIC0tzSp1szX9Y6dQKODu7o6OHTvihRdewPXr1y26zqBBgzB9+nSjY/369UN+fj7UarUVS0wkXwxARFSHl5cXFi9ejD/++KPe24UQGDNmDKZOnYq//vWv+PTTT3HixAmsX78eXl5eWLhwoVk/Z/LkycjIyMDKlSvxyy+/IDMzE4888giKioqsWR27Gjp0KPLz8/Hrr7/ijTfewFtvvYW5c+c2+7oeHh5o3769UQglomaw6sYaROT0xo8fL+6//34RFRUlZsyYYTi+Y8cOoX/JeP/99wUA8fHHH9d7DZ1OZ9bPUqvVIj093eTt9e0ZpPf111+Lu+++W3h5eYnQ0FAxZcoUce3aNcPt77zzjoiNjRUtW7YUgYGBYvTo0aKwsNBwu37/oszMTBEdHS28vLzE4MGDRWFhodizZ4+IiooSvr6+YvTo0aKsrMys+owfP1488MADRsceeughcccddxi+v3Llihg1apQIDg4W3t7e4rbbbhNbtmwxukbtOufk5BjKW3NvvQ8//FB069ZNeHh4iPDwcLF06VKzyklEQrAFiIjqUKlU+Ne//oWVK1ciLy+vzu3vv/8+unbtihEjRtR7f3NbKdq3b489e/agtLS03tszMjIQGhqKV155Bfn5+cjPzwcAnDt3DkOHDsXDDz+MH374Adu2bcOBAweQnJxsuG9VVRUWLFiA77//Hh999BFyc3Px+OOP1/kZ8+bNw6pVq3Do0CH89ttvGDlyJNLS0rBlyxbs3r0bn376KVauXGlWfWr76aefcOjQIXh4eBiOXb9+HbGxsdi9ezd++uknTJw4EWPHjsWRI0cAAMuXL0ffvn3x1FNPGeocFhZW59rZ2dkYOXIkRo0ahR9//BHz5s3Dyy+/jPT09CaVlUh2HJ3AiEhaarZi3HnnneKJJ54QQhi3AEVFRYkRI0YY3W/atGnCx8dH+Pj4iJCQELN+1pdffilCQ0OFu7u76NWrl5g+fbo4cOCA0Tnh4eHijTfeMDo2YcIEMXHiRKNjX3/9tVAqleLPP/+s92cdPXpUABClpaVCiJstQJ9//rnhnNTUVAFAnDt3znBs0qRJIiEhwaz6jB8/XqhUKuHj4yM8PT0FAKFUKsWHH37Y4P2GDRsmnn/+ecP3AwcOFNOmTTM6p3YL0JgxY8Q999xjdM6MGTNEt27dzCorkdyxBYiITFq8eDE2bdqEkydPNnru7Nmzcfz4ccyZMwfXrl0z6/oDBgzAr7/+iqysLDzyyCP4+eef0b9/fyxYsKDB+33//fdIT09Hy5YtDV8JCQnQ6XTIyckBUN1CMnz4cHTo0AG+vr4YOHAgAODChQtG1+rRo4fh/4GBgWjRogU6depkdOzSpUtm1QcABg8ejOPHj+Pbb7/F+PHjkZSUhIcffthwu1arxYIFC3D77bfD398fLVu2xN69e+uUqzEnT57EXXfdZXTsrrvuwpkzZ6DVai26FpEcMQARkUkDBgxAQkICZs2aZXS8S5cuOHXqlNGxtm3bonPnzmjXrp1FP8Pd3R39+/fHzJkz8emnn+KVV17BggULUFlZafI+165dw6RJk3D8+HHD1/fff48zZ84gMjISZWVlSEhIgJ+fH9577z0cPXoUO3bsAIA613V3dzf8Xz97qyaFQgGdTmd2fXx8fNC5c2f07NkTGzZswLfffov169cbbn/ttdewfPlyzJw5E/v27cPx48eRkJDQYH2JyPrcHF0AIpK2RYsWITo6Gl27djUcGz16NMaMGYOPP/4YDzzwgFV/Xrdu3XDjxg1cv34dHh4e8PDwqNOiERMTgxMnTqBz5871XuPHH39EUVERFi1aZBg/89///teq5TSHUqnESy+9hJSUFIwZMwbe3t44ePAgHnjgATz22GMAAJ1Oh9OnT6Nbt26G+9VX59puvfVWHDx40OjYwYMHccstt0ClUlm/MkQuhi1ARNSg22+/HY8++ihWrFhhODZq1Cg88sgjGDVqFF555RV8++23yM3NxZdffolt27aZ/QY8aNAgvPXWW8jOzkZubi727NmDl156CYMHD4afnx+A6nWAvvrqK1y8eBFXrlwBAMycOROHDh1CcnIyjh8/jjNnzuDjjz82DILu0KEDPDw8sHLlSvz666/45JNPGu1Ws5W///3vUKlUWL16NYDq1rPPPvsMhw4dwsmTJzFp0iQUFhYa3SciIsLwmF65cqXeFqjnn38eWVlZWLBgAU6fPo1NmzZh1apV+Mc//mGXehE5OwYgImrUK6+8YvQmrFAosG3bNqSlpWHPnj34y1/+gq5du+KJJ55AWFgYDhw4YNZ1ExISsGnTJtx777249dZbMWXKFCQkJOCDDz4w+tm5ubmIjIxE27ZtAVSP2/nyyy9x+vRp9O/fH3fccQfmzJmD4OBgANXdcenp6fj3v/+Nbt26YdGiRVi6dKkVHxHzubm5ITk5GUuWLEFZWRn++c9/IiYmBgkJCRg0aBDat2+PBx980Og+//jHP6BSqdCtWze0bdu23vFBMTEx+OCDD7B161bcdtttmDNnDl555ZV6Z7oRUV0KIYRwdCGIiIiI7IktQERERCQ7DEBEZDM1p6nX/vr6668dXTyLXLhwocH6WDqNnYgci11gRGQzDW2KGhISAm9vbzuWpnlu3LiB3Nxck7dHRETAzY0Ta4mcBQMQERERyQ67wIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdv4fzfEXJYO178oAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWLhJREFUeJzt3XtcU/XjP/DXxl2EKSg3QUAgNe+gJlpqlqEp5bc+ZlpeSlMLKtOyzDJviZdSU9O0EPyUZD8TrbS8JvVJu5iXT94yMdBUNB06UBNhO78/9tncgA0Gu5yd83o+HjxsZ2fb+7xj24v3VSEIggAiIiIiiVC6ugBERERE9sRwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDROQi2dnZUCgUKCwsdHVRiCSF4YZIwvbt24f09HS0adMG/v7+aN68OR577DH88ccfVc7t3bs3FAoFFAoFlEolAgMD0bJlSwwfPhw7duyw6XW/+uor9OrVCyEhIWjQoAFatGiBxx57DFu3brXXpVUxZ84cbNq0qcrxvXv3Yvr06bh69arDXruy6dOnG+tSoVCgQYMGuPPOO/HGG2+gpKTELq+Rk5ODxYsX2+W5iKSG4YZIwubNm4cNGzbgvvvuw3vvvYexY8fi+++/R2JiIo4cOVLl/MjISHz88cf497//jQULFuChhx7C3r178cADD2DIkCEoLy+v8TXfeecdPPTQQ1AoFJgyZQoWLVqERx99FCdPnsS6desccZkArIebGTNmODXcGKxYsQIff/wxFi5ciFatWuHtt99Gv379YI8t/RhuiCzzdHUBiMhxJk6ciJycHHh7exuPDRkyBO3atcPcuXPxySefmJ2vUqnw5JNPmh2bO3cuXnjhBSxfvhwxMTGYN2+exderqKjArFmz0LdvX2zfvr3K/X///Xc9r0g8bty4gQYNGlg951//+heaNGkCABg/fjweffRR5Obm4qeffkJycrIzikkkS2y5IZKw7t27mwUbAEhISECbNm1w/PjxWj2Hh4cHlixZgjvvvBPLli2DRqOxeO7ly5dRUlKCHj16VHt/SEiI2e2bN29i+vTpuOOOO+Dr64vw8HA88sgjOHXqlPGcd955B927d0dwcDD8/PyQlJSEzz//3Ox5FAoFrl+/jjVr1hi7gkaNGoXp06fjlVdeAQDExsYa7zMd4/LJJ58gKSkJfn5+CAoKwuOPP46//vrL7Pl79+6Ntm3bYv/+/ejZsycaNGiA119/vVb1Z6pPnz4AgIKCAqvnLV++HG3atIGPjw8iIiKQlpZm1vLUu3dvbNmyBadPnzZeU0xMjM3lIZIqttwQyYwgCLh48SLatGlT68d4eHhg6NChePPNN/HDDz9gwIAB1Z4XEhICPz8/fPXVV3j++ecRFBRk8Tm1Wi0GDhyIXbt24fHHH8eLL76I0tJS7NixA0eOHEFcXBwA4L333sNDDz2EJ554Ardu3cK6deswePBgbN682ViOjz/+GGPGjEHXrl0xduxYAEBcXBz8/f3xxx9/4NNPP8WiRYuMrShNmzYFALz99tt488038dhjj2HMmDG4dOkSli5dip49e+LgwYNo1KiRsbxqtRr9+/fH448/jieffBKhoaG1rj8DQ2gLDg62eM706dMxY8YM3H///Xj22Wdx4sQJrFixAvv27cOePXvg5eWFqVOnQqPR4OzZs1i0aBEAoGHDhjaXh0iyBCKSlY8//lgAIGRmZpod79Wrl9CmTRuLj9u4caMAQHjvvfesPv+0adMEAIK/v7/Qv39/4e233xb2799f5bzVq1cLAISFCxdWuU+n0xn/+8aNG2b33bp1S2jbtq3Qp08fs+P+/v7CyJEjqzzXggULBABCQUGB2fHCwkLBw8NDePvtt82OHz58WPD09DQ73qtXLwGA8MEHH1i8blNvvfWWAEA4ceKEcOnSJaGgoEBYuXKl4OPjI4SGhgrXr18XBEEQsrKyzMr2999/C97e3sIDDzwgaLVa4/MtW7ZMACCsXr3aeGzAgAFCdHR0rcpDJDfsliKSkd9//x1paWlITk7GyJEjbXqsoWWgtLTU6nkzZsxATk4OOnXqhG3btmHq1KlISkpCYmKiWVfYhg0b0KRJEzz//PNVnkOhUBj/28/Pz/jfV65cgUajwT333IMDBw7YVP7KcnNzodPp8Nhjj+Hy5cvGn7CwMCQkJGD37t1m5/v4+OCpp56y6TVatmyJpk2bIjY2FuPGjUN8fDy2bNlicazOzp07cevWLUyYMAFK5e2P52eeeQaBgYHYsmWL7RdKJEOyDjfff/89UlNTERERAYVCUe1MC3vKyMhAly5dEBAQgJCQEAwaNAgnTpwwO+fmzZtIS0tDcHAwGjZsiEcffRQXL150aLlIHi5cuIABAwZApVLh888/h4eHh02Pv3btGgAgICCgxnOHDh2K//znP7hy5Qq2b9+OYcOG4eDBg0hNTcXNmzcB6LtoWrZsCU9P673jmzdvRrdu3eDr64ugoCA0bdoUK1assDr2pzZOnjwJQRCQkJCApk2bmv0cP368yuDnZs2aVRm/VJMNGzZgx44dyMvLQ35+Po4cOYKkpCSL558+fRqAPhSZ8vb2RosWLYz3E5F1sh5zc/36dXTo0AFPP/00HnnkEYe/3nfffYe0tDR06dIFFRUVeP311/HAAw/g2LFj8Pf3BwC89NJL2LJlC9avXw+VSoX09HQ88sgj2LNnj8PLR9Kl0WjQv39/XL16Ff/5z38QERFh83MYpo7Hx8fX+jGBgYHo27cv+vbtCy8vL6xZswY///wzevXqVavH/+c//8FDDz2Enj17Yvny5QgPD4eXlxeysrKQk5Nj8zWY0ul0UCgU+Oabb6oNepXHsJi2INVWz549jeN8iMh5ZB1u+vfvj/79+1u8v6ysDFOnTsWnn36Kq1evom3btpg3bx569+5dp9ervIBZdnY2QkJCjDMwNBoNMjMzkZOTY5xVkZWVhdatW+Onn35Ct27d6vS6JG83b95Eamoq/vjjD+zcuRN33nmnzc+h1WqRk5ODBg0a4O67765TOTp37ow1a9agqKgIgH7A788//4zy8nJ4eXlV+5gNGzbA19cX27Ztg4+Pj/F4VlZWlXNNu7JqczwuLg6CICA2NhZ33HGHrZfjENHR0QCAEydOoEWLFsbjt27dQkFBAe6//37jMUvXRUQy75aqSXp6On788UesW7cOv/32GwYPHox+/frh5MmTdnl+Q7O6YUbJ/v37UV5ebvYB1qpVKzRv3hw//vijXV6T5EWr1WLIkCH48ccfsX79+jqtraLVavHCCy/g+PHjeOGFFxAYGGjx3Bs3blj8Xf3mm28A3O5yefTRR3H58mUsW7asyrnC/xa58/DwgEKhgFarNd5XWFhYbReyv79/tQv1GVpFK9/3yCOPwMPDAzNmzKiyqJ4gCFCr1dVfpAPdf//98Pb2xpIlS8zKlJmZCY1GYzZLzd/fv95dc0RSJeuWG2vOnDmDrKwsnDlzxtiE//LLL2Pr1q3IysrCnDlz6vX8Op0OEyZMQI8ePdC2bVsA+jER3t7eZtNPASA0NBQXLlyo1+uRPE2aNAlffvklUlNTUVxcXGXRvsoL9mk0GuM5N27cQH5+PnJzc3Hq1Ck8/vjjmDVrltXXu3HjBrp3745u3bqhX79+iIqKwtWrV7Fp0yb85z//waBBg9CpUycAwIgRI/Dvf/8bEydOxC+//IJ77rkH169fx86dO/Hcc8/h4YcfxoABA7Bw4UL069cPw4YNw99//433338f8fHx+O2338xeOykpCTt37sTChQsRERGB2NhY3HXXXcYxLlOnTsXjjz8OLy8vpKamIi4uDrNnz8aUKVNQWFiIQYMGISAgAAUFBdi4cSPGjh2Ll19+uV71b6umTZtiypQpmDFjBvr164eHHnoIJ06cwPLly9GlSxez/19JSUn47LPPMHHiRHTp0gUNGzZEamqqU8tLJFqunKolJgCEjRs3Gm9v3rzZOJ3V9MfT01N47LHHBEEQhOPHjwsArP68+uqr1b7e+PHjhejoaOGvv/4yHlu7dq3g7e1d5dwuXboIkydPtu8FkywYpjBb+rF2bsOGDYWEhAThySefFLZv316r1ysvLxc+/PBDYdCgQUJ0dLTg4+MjNGjQQOjUqZOwYMECoayszOz8GzduCFOnThViY2MFLy8vISwsTPjXv/4lnDp1ynhOZmamkJCQIPj4+AitWrUSsrKyjFOtTf3+++9Cz549BT8/PwGA2bTwWbNmCc2aNROUSmWVaeEbNmwQ7r77buN7vFWrVkJaWppw4sQJs7qxNk2+MkP5Ll26ZPW8ylPBDZYtWya0atVK8PLyEkJDQ4Vnn31WuHLlitk5165dE4YNGyY0atRIAMBp4UQmFIJgh01OJEChUGDjxo0YNGgQAOCzzz7DE088gaNHj1YZbNiwYUOEhYXh1q1b+PPPP60+b3BwsHHBMIP09HR88cUX+P777xEbG2s8/u233+K+++7DlStXzFpvoqOjMWHCBLz00kv1u0giIiIZYLeUBZ06dYJWq8Xff/+Ne+65p9pzvL290apVq1o/pyAIeP7557Fx40bk5eWZBRtA38zs5eWFXbt24dFHHwWgH1h45swZ7kNDRERUS7ION9euXUN+fr7xdkFBAQ4dOoSgoCDccccdeOKJJzBixAi8++676NSpEy5duoRdu3ahffv2FpeftyYtLQ05OTn44osvEBAQYBxHo1Kp4OfnB5VKhdGjR2PixIkICgpCYGAgnn/+eSQnJ3OmFBERUS3JulsqLy8P9957b5XjI0eORHZ2NsrLyzF79mz8+9//xrlz59CkSRN069YNM2bMQLt27Wx+PUtTN7OysjBq1CgA+mm7kyZNwqeffoqysjKkpKRg+fLlCAsLs/n1iIiI5EjW4YaIiIikh+vcEBERkaQw3BAREZGkyG5AsU6nw/nz5xEQEMDly4mIiNyEIAgoLS1FREQElErrbTOyCzfnz59HVFSUq4tBREREdfDXX38hMjLS6jmyCzcBAQEA9JVjbY8cIiIiEo+SkhJERUUZv8etkV24MXRFBQYGMtwQERG5mdoMKeGAYiIiIpIUhhsiIiKSFIYbIiIikhTZjbkhIiKqC51Oh1u3brm6GJLm7e1d4zTv2mC4ISIiqsGtW7dQUFAAnU7n6qJImlKpRGxsLLy9vev1PAw3REREVgiCgKKiInh4eCAqKsouLQtUlWGR3aKiIjRv3rxeC+0y3BAREVlRUVGBGzduICIiAg0aNHB1cSStadOmOH/+PCoqKuDl5VXn52H8JCIiskKr1QJAvbtKqGaGOjbUeV0x3BAREdUC9yN0PHvVMbul6kmtVlsdPe/t7Y3g4GAnloiIiEjeGG7qQa1WY9myZTWel56ezoBDRETkJOyWqofarnfAdRGIiMjZRo0aBYVCAYVCAS8vL4SGhqJv375YvXq1TVPas7Oz0ahRI8cV1AHYckNERORArhy+0K9fP2RlZUGr1eLixYvYunUrXnzxRXz++ef48ssv4ekpzRggzasiIiISAVcPX/Dx8UFYWBgAoFmzZkhMTES3bt1w3333ITs7G2PGjMHChQuRlZWFP//8E0FBQUhNTcX8+fPRsGFD5OXl4amnngJwe7DvW2+9henTp+Pjjz/Ge++9hxMnTsDf3x99+vTB4sWLERISYvfrsBW7pYiIiBxEjMMX+vTpgw4dOiA3NxeAflXgJUuW4OjRo1izZg2+/fZbTJ48GQDQvXt3LF68GIGBgSgqKkJRURFefvllAEB5eTlmzZqF//73v9i0aRMKCwsxatQop12HNWy5ISIikplWrVrht99+AwBMmDDBeDwmJgazZ8/G+PHjsXz5cnh7e0OlUkGhUBhbgAyefvpp43+3aNECS5YsQZcuXXDt2jU0bNjQKddhCVtuiIiIZEYQBGM3086dO3HfffehWbNmCAgIwPDhw6FWq3Hjxg2rz7F//36kpqaiefPmCAgIQK9evQAAZ86ccXj5a8JwY0caTQAKCmKg0QS4uihEREQWHT9+HLGxsSgsLMTAgQPRvn17bNiwAfv378f7778PwHpX2fXr15GSkoLAwECsXbsW+/btw8aNG2t8nLOwW6oeTJfiPnCgE776aiAEQQmFQofU1M1ITDxY5TwiIiJX+vbbb3H48GG89NJL2L9/P3Q6Hd59913jhqD/7//9P7Pzvb29q2yH8Pvvv0OtVmPu3LmIiooCAPz666/OuYBaYLiph+DgYKSnp6OwsAIzZ4ZAEPRNfIKgxJYtqZg27S7ExHhyAT8iInKJsrIyXLhwwWwqeEZGBgYOHIgRI0bgyJEjKC8vx9KlS5Gamoo9e/bggw8+MHuOmJgYXLt2Dbt27UKHDh3QoEEDNG/eHN7e3li6dCnGjx+PI0eOYNasWS66yqrYLVVPwcHBKCkJhU5nvh+GVqtAaWkogw0REbnM1q1bER4ejpiYGPTr1w+7d+/GkiVL8MUXX8DDwwMdOnTAwoULMW/ePLRt2xZr165FRkaG2XN0794d48ePx5AhQ9C0aVPMnz8fTZs2RXZ2NtavX48777wTc+fOxTvvvOOiq6xKIQiC4OpCOFNJSQlUKhU0Gg0CAwPt8pxnzwLR0YDpgo8eHkBhIRAZaZeXICIiF7l58yYKCgoQGxsLX19fmx7r6nVu3I21urbl+5vdUnYQGQmsWgWMGwdotfpgs3Ilgw0RkdwZhi9wg2XnYrixk9GjgZQUID8fiI9nsCEiIj0GF+djuLGjyEiGGiIiIlfjgGIiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKyWV5eHhQKBa5evVrrx8TExGDx4sUOK5MBww0REZEEjRo1CgqFAuPHj69yX1paGhQKBUaNGuX8gjkBww0REZFERUVFYd26dfjnn3+Mx27evImcnBw0b97chSVzLIYbkVGr1SgqKrL4o1arXV1EIiJyE4mJiYiKikJubq7xWG5uLpo3b45OnToZj5WVleGFF15ASEgIfH19cffdd2Pfvn1mz/X111/jjjvugJ+fH+69914UFhZWeb0ffvgB99xzD/z8/BAVFYUXXngB169fd9j1WcLtF0REyrvHqtVqUWwcJ5ZyEJE8nT0LnDwJJCQ4b7uep59+GllZWXjiiScAAKtXr8ZTTz2FvLw84zmTJ0/Ghg0bsGbNGkRHR2P+/PlISUlBfn4+goKC8Ndff+GRRx5BWloaxo4di19//RWTJk0ye51Tp06hX79+mD17NlavXo1Lly4hPT0d6enpyMrKcs7F/g/DjYhY+9Kty3liIZbQJpZyEJE8ZWYCY8cCOh2gVAKrVuk3XXa0J598ElOmTMHp06cBAHv27MG6deuM4eb69etYsWIFsrOz0b9/fwDAhx9+iB07diAzMxOvvPIKVqxYgbi4OLz77rsAgJYtW+Lw4cOYN2+e8XUyMjLwxBNPYMKECQCAhIQELFmyBL169cKKFSvg6+vr+Iv9H4YbcjixhDaxlIOI5Ofs2dvBBtD/O24ckJLi+Bacpk2bYsCAAcjOzoYgCBgwYACaNGlivP/UqVMoLy9Hjx49jMe8vLzQtWtXHD9+HABw/Phx3HXXXWbPm5ycbHb7v//9L3777TesXbvWeEwQBOh0OhQUFKB169aOuLxqMdyImEYTgOLiYAQFqaFSlbq6OEREVEcnT94ONgZaLZCf75zuqaeffhrp6ekAgPfff98hr3Ht2jWMGzcOL7zwQpX7nD14meFGpA4c6ISvvhoIQVBCodAhNXUzEhMPurpYdsHQRkRyk5Cg74oyDTgeHkB8vHNev1+/frh16xYUCgVSUlLM7ouLi4O3tzf27NmD6OhoAEB5eTn27dtn7GJq3bo1vvzyS7PH/fTTT2a3ExMTcezYMcQ766Ks4GwpEdJoAozBBgAEQYmvvhoIjSbAxSWrvwMHOmHx4glYs2YkFi+egAMHOtX8IAfRaAJQUBAjiXolInGLjNSPsfHw0N/28ABWrnTeoGIPDw8cP34cx44dg4ehEP/j7++PZ599Fq+88gq2bt2KY8eO4ZlnnsGNGzcw+n+DgsaPH4+TJ0/ilVdewYkTJ5CTk4Ps7Gyz53n11Vexd+9epKen49ChQzh58iS++OILY4uRM7HlRoSKi4ONwcZAEJQoLg5y65YOS6EtLi7f6dcl5ZYxIhKn0aP1Y2zy8/UtNs4KNgaBgYEW75s7dy50Oh2GDx+O0tJSdO7cGdu2bUPjxo0B6LuVNmzYgJdeeglLly5F165dMWfOHDz99NPG52jfvj2+++47TJ06Fffccw8EQUBcXByGDBni8GurjOFGhIKC1FAodGYBR6HQISio2IWlqj+xhDYxhSwikpfISOeFmsotK5Vt2rTJ+N++vr5YsmQJlixZYvH8gQMHYuDAgWbHnnrqKbPbXbp0wfbt2y0+R3Vr4zgCu6VExNvbGwCgUpUiNXUzFAp956yhZcHwxWs4z90YQpspV4Q2ayGLiIjcH1tuRCQ4OBjp6enGqcjTpl1CYaEnYmIqEBHRBUAXt1xkrnJoq9wd5KzQZnj+mlrG3DU8EhGRnkIQBMHVhXCmkpISqFQqaDQaq/2PZF+mKwOfP680CW36lhxnr1Cck+OHV19VQatVwMNDwLx5Ggwb9o9bhkcicqybN2+ioKAAsbGxTl2ITo6s1bUt399suSGnMA0M4eFAUpJryzFpEjBkiGFgnwKRkY0ANHJNoYiIyK4Ybki2nDmwj4jcn8w6OlzCXnXMAcVERERWGNaF4dYsjmeo48pr8djKpS03K1aswIoVK4xTw9q0aYNp06YZN+6qLDs7u8q0Mx8fH9y8edPRRSUiIpny9PREgwYNcOnSJXh5eUGpZLuAI+h0Oly6dAkNGjSAp2f94olLw01kZCTmzp2LhIQECIKANWvW4OGHH8bBgwfRpk2bah8TGBiIEydOGG8rFApnFZeIiGRIoVAgPDwcBQUFxp21yTGUSiWaN29e7+92l4ab1NRUs9tvv/02VqxYgZ9++sliuFEoFAgLC3NG8YiIiADoZ3QmJCSwa8rBvL297dIyJpoBxVqtFuvXr8f169erbKNu6tq1a4iOjoZOp0NiYiLmzJljMQgRERHZi1Kp5FRwN+HycHP48GEkJyfj5s2baNiwITZu3Ig777yz2nNbtmyJ1atXo3379tBoNHjnnXfQvXt3HD16FJEWpr2UlZWhrKzMeLukpMQh10FERETi4PJF/G7duoUzZ85Ao9Hg888/x0cffYTvvvvOYsAxVV5ejtatW2Po0KGYNWtWtedMnz4dM2bMqHKci/gRERG5D1sW8XN5uKns/vvvR1xcHFauXFmr8wcPHgxPT098+umn1d5fXctNVFSUS8ON6Wq91eEquUTW8T1EJD9uvUKxTqczCyPWaLVaHD58GA8++KDFc3x8fODj42Ov4tWbWq3GsmXLajwvPT2dH85E1eB7iIhq4tJwM2XKFPTv3x/NmzdHaWkpcnJykJeXh23btgEARowYgWbNmiEjIwMAMHPmTHTr1g3x8fG4evUqFixYgNOnT2PMmDGuvAybVP5rU6MJQHFxMIKC1MYNJKs7j4j0avve4HuISL5cGm7+/vtvjBgxAkVFRVCpVGjfvj22bduGvn37AgDOnDljNiXsypUreOaZZ3DhwgU0btwYSUlJ2Lt3b63G54jRgQOdquyQnZh40NXFIiIicmsuDTeZmZlW78/LyzO7vWjRIixatMiBJXIejSbAGGwAQBCU+OqrgYiLyzdrwSEiIiLbcA1pFykuDjYGGwNBUKK4OMhFJSIiIpIGhhsXCQpSQ6HQmR1TKHQICip2UYmIiIikgeHGRVSqUqSmbjYGHMOYG3ZJERER1Y/opoLLSWLiQcTF5aO4OAhBQcUMNkRERHbAcONk3t7eZrdVqtJqQ03l84hIr7bvDb6HiORLdCsUO5otKxw6iiNXVz17Fjh5EkhIACxst0Xk9kzfQ+fPK1FQ4InY2ApEROi7eblCMZH0uPUKxXJg7w9dwwd9To4fJk9WQadTQKkUMH++BsOG/cMPepIcw+9zZiYwdiyg0wFKJbBqFTB6tIsLR0Qux5YbN2dYil6jCcDixRPMppcrFDpMmLAYKlUpl6InuxDTnk5nzwLR0fpgY+DhARQWstWSSIrYciMjhi8aa+vmqFSlkluKnt0Szie2PZ1OnjQPNgCg1QL5+Qw3RHLHcCMRhnVzKrfcSHHdHNMvWWtbWLC1yr7EtqdTQoK+K6pyy018vFNenohEjOvcSISc1s0xfHla2sJCowkwO4+kKTJSP8bGw0N/28MDWLmSrTZExJYbSZHbujk1dcWR9I0eDaSk6Lui4uMZbIhIj+FGYiytmyNFcuqKEyONJgDFxcEIClK79HcuMpKhhojMMdyQ2zJ0xVUecyOXcOdK1sY6ERG5GsMNuTW5dcWJgaWxTnFx+ax/IhIFhhs3x6Xo5dUVJwYc60REYsdw4+aCg4ORnp4umoXVSLoMAbmmsU5SDtJE5B4YbiRAbsGFrVWuYRqkmzUrwauvqqDVKuDhIWDevBIMGzaUQZqIRIHbL5BbEtM2AHJ19iynYBOR83D7BZI8BhfX4xRsIhIrrlBMREREksJwQ0RERJLCcENERESSwjE3RGQXHOR9G+uCyLUYboio3tRqNZYtW1bjeenp6ZL/UndEXTAsEdmG4YaI6q3yF6+lTTWtfUFLRW2vsbbnMTgS2Y7hhojsiptq2ldtQ9D58+erPZetOiRHDDdEZDfcVNN1cnNzLd7HVh2SG86WIiK7sbapJrmOHLoDiUwx3BCR3Rg21TRluqkmEZEzMNwQVXL2LLB7t/5fso1KVYrU1M3GgGMYc8MuKSJyJo65ITKRmQmMHQvodIBSCaxaBYwe7epSuZfExIOIi8tHcXEQgoKKZR9sLM0cIyLHYbghgn66bWFhBcaODYFOpwCgDzjjxgno2PFvxMR4ckCmFd7e3ma3VarSar/IK58nRabXaG3mmBzqgshVGG4IgL4L5uRJICFBfjs9G9YRKSiIgU430uw+rVaBpUu/QWzsac44sSI4OBjp6elcaA6366KwsAIzZ4ZAEPRhWRCU2LIlFdOm3WVTWK4cgtgSRFQzhhuSfVeM4QvZMBjWdLaP6WBYzjixTg7BpbaCg4Px22/695QprVaB0tJQ2FJVpsExJ8cPM2eqoNMpoFQKmDbtHIBMu5adSAo4oFjG1Go19u+/iLFjBeOHsKErZv/+i1Cr1a4toJNxMCzZU0KC/o8FUx4eQHy87c8VHBwMrTYckyc3Muk2VWDWrGbQaAJqfDy7wEhu2HIjU+yKqR4Hw5K9REbqW0HHjQO0Wn2wWbmy7t2+J09W3xLUq9dodO16AwBw/rwSBQWeiI2tQESE/mS5dAcSmWK4kSl2xVhmaTAska1GjwZSUoD8fH2LTX3GsxlagkwDjocHkJSkQni4Svbdy0Sm2C0lc+yKIXKsyEigd+/6D9Q3tAR5eOhvm7YEnT17O9gAhu5lrtVE8sWWG2JXDJGbsNQSVH2Xlf48uc1+JAIYbuh/2BVD5B4iI6sGFktdVnUZvEwkBeyWItmr7UwSzjghsbLWZUUkR2y5IdmTywJ0cl6oUQ7sOXiZyN0x3BBBugvQqdVq4+JvkyffXvxt/nwNhg37RxKhjW6rrsuKSI4YbmSKXTHSZ1jLSKMJwOLFE4zbAOh0CrzySiDOnVsNlapUdmsZEZH0MdzIlFy6YuTM8P+2uDjYbB0jQL/PUXFxEFSqUlmuZURE0sZwI2OmwYXjMaSrpoUaiYikhrOlCJmZQHQ00KeP/t9M7sMnKVyokYjkhi03MmdpZdOUFLbgSAkXaiQiOWG4kTmubCofXKiRiOSC3VIyplarERh4EUqlYHbcw0NAQMBFqNVqF5WMiIio7thyI1OGacIAMHBgJ3z11UAIghIKhQ4DBmzG5s0HAYDThImIyO0w3MiU6fRfa+MxOE3YfXEtIyKSK4YbAsDxGFLEtYyISK4YbogkjMGFiOSIA4qJiIhIUlwablasWIH27dsjMDAQgYGBSE5OxjfffGP1MevXr0erVq3g6+uLdu3a4euvv3ZSaYmIiMgduDTcREZGYu7cudi/fz9+/fVX9OnTBw8//DCOHj1a7fl79+7F0KFDMXr0aBw8eBCDBg3CoEGDcOTIESeX3H7OngV279b/S0RERPWnEARBqPk05wkKCsKCBQswevToKvcNGTIE169fx+bNm43HunXrho4dO+KDDz6o1fOXlJRApVJBo9EgMDDQbuW2hVqtxq1bt5CT44fJk1XQ6RRQKgXMn6/BsGH/OGWQZ1FREVatWlXjeWPHjkV4eLhDy0IkZob3qyUclE3kHLZ8f4tmQLFWq8X69etx/fp1JCcnV3vOjz/+iIkTJ5odS0lJwaZNmyw+b1lZGcrKyoy3S0pK7FLeujKsL6PRBGDx4gkQBAUAQKdT4JVXAnHu3GqoVKUOX1+G04SJama6HhQAaDQBKC4ORlCQ2mx2IdeDIhIXl4ebw4cPIzk5GTdv3kTDhg2xceNG3HnnndWee+HCBYSGhpodCw0NxYULFyw+f0ZGBmbMmGHXMteH4S/A4uJgs12aAUAQlCguDoJKVerw9WU4TZioZqbvjwMHzBe7TE3djMTEg1XOIyLXc3m4admyJQ4dOgSNRoPPP/8cI0eOxHfffWcx4NhqypQpZq09JSUliIqKsstz10dQkBoKhc4s4CgUOgQFFTutDAwuRLWj0QQYgw2g/0Pkq68GIi4un+tDEYmQy6eCe3t7Iz4+HklJScjIyECHDh3w3nvvVXtuWFgYLl68aHbs4sWLCAsLs/j8Pj4+xtlYhh8xUKlKkZq6GQqFftdKw1+C/KAkEh9rLa1EJD4ub7mpTKfTmY2RMZWcnIxdu3ZhwoQJxmM7duywOEbHGUwHG54/r0RBgSdiYysQEaEPLda6dqxte0BE4iGGllYiqj2XhpspU6agf//+aN68OUpLS5GTk4O8vDxs27YNADBixAg0a9YMGRkZAIAXX3wRvXr1wrvvvosBAwZg3bp1+PXXX2s168cRTAcbWuuPtzbYkNseEImfoaW18nuc710icXJpuPn7778xYsQIFBUVQaVSoX379ti2bRv69u0LADhz5gyUytt/KXXv3h05OTl444038PrrryMhIQGbNm1C27ZtXVJ+Q4tNTf3xHGxI5P7Y0krkPlwabjIzM63en5eXV+XY4MGDMXjwYAeVqG5qmvlERNLAllYi9+DyAcVSYOiPN2WpP57ryxC5D75fidyT6AYUuyNb+uO5vgyR++D7lcg9MdzYiS398fwgJHIffL8SuR+GGztifzwREZHrccwNERERSQrDTT1wsCEREZH4sFuqHjjYkIiISHwYbuqJwYWIiEhc2C1FREREksKWm3oy3TizOuyWIiIici6Gm3ow3TgT0O8xVVwcjKAgtdmUcGsbZxIREZF9MdzUg2mLjbVdwblxJhERkfMw3NhBTbuCExG5C3a1kxQw3NgBdwUnIimo3NVuCbvaSewYbuzAsCu4acCxtCs4EZFY1bYL/fz589Wey1YdEguGGzuwZVdwIiJ3l5uba/E+tuqQGDDc2Iktu4ITkXyZjmk5f16JggJPxMZWICJCB0BcrR+WZoBawwkUJAYMN3bEXcEd5+xZ4ORJICEBiIx0dWmI6sZ0TIu1GZZiaP2wVj4isWO4qQdHbJzpTn/VOUtmJjB2LKDTAUolsGoVMHq0q0tFZDvDe7umGZaubv2ozQzQurTqEDkLw0092HvjTHf6q85Zzp69HWwA/b/jxgEpKWzBIfcl9hmWNZWPrTokdgw39WTPkOEuf9U508mTt4ONgVYL5OdLP9ywK066xD7D0lr5uK4XuQNunClC1v5qkhO1Wo3AwItQKgWz4x4eAgICLkKtVruoZI6XmQlERwN9+uj/zcx0dYnIngwzLBUKfXIXywxLQxe6tfLx84ncAVtuREjsf9U5g2kX3cCB5k3gAwZsxubN0u2iY1ecPIhxhmXlrvZp0y6hsNATMTEV8PaORW7uQX4+kVtguBEhrptjPp3U2peAFLvo5NwVJzdinGFp+sdCeDiQlKT/b7Va/3VR0+eTLRMoiByF4caB6jPzSYx/1bmSGL8EHEHfFVcBpTIEOp3CeFzfFfc31GpPybVUkXuw1qoTEdEFQBdZzuYkcWK4cRB7zHySyxc66cmlK07OA6UdsXyEM1lq1SESG4YbB+HMJ7KVHLri5L5mUV2Xj+BO3US2YbhxMFvWs3D3v+rIvqTWcseB0nq2hpDKO3VbWjzP3Vv0iOyJ4cbBbJlZYO9FAYnEhAOl68b088BaF7c7t+gR2RvDjYPZOvOJwYWkiAOl64+L5xHVHsONE3Dmk+3YRScdchko7Whi37KBSEwYbpxEauMnHI1ddNIhh4HSzsDF84hqj+GGRIvBRZoY9OuGi3sS1R7DjYOwW4Vsxd8Zqgm7uIlqh+HGQditQrbi7wzVBlu+iGrGcONA/BIiW/F3hipjix6R7RhuiIhEjC16RLZjuCEiEjkGFyLbKGs+hYio7titQkTOxpYbInIodqsQkbMx3BCRwzG4EJEzMdwQEZFbUavVbAkkqxhuiOzk7Fn9ztcJCdzlmsRBiiHAdK8yayrvVSbFuiDLGG6I7CAzExg7FtDpAKUSWLUKGD3a1aUiOascAjSaABQXByMoSG22CKC7bVha2z3ITM+rayAi98VwQ1RPZ8/eDjaA/t9x44CUFLbgkOuYfrkfONCpyp5UiYkHq5znjiyFNlN1CUTk3hhuiOpBrVbjp58Anc78rz2tFvj5ZzX8/DiYllxLowkwBhsAEAQlvvpqIOLi8t1+GwdroY3kjeFGxtgHXT+Gpm6NJgAKxQTjlwcAKBQ67NmzBkeOlLKpm1yquDjY7HcT0Aec4uIgtw439QlttWntIffGcCNTUu2PdyZDMFSpSpGaurnKX5CGemRTN7lSUJAaCoWuSvgOCip2Yanqr66hja098lCncHP27Fk0atQIDRs2NDteXl6OH3/8ET179rRL4chx5NIf7yyJiQcRF5eP4uIgBAUV869BEo2awre7qktok3IXHZmzKdwUFRXh4Ycfxv79+6FQKDBs2DAsX77cGHKKi4tx7733QqvVOqSwZH98s9uPSlXKOiNRkmL4rktok2oXHVVlU7h57bXXoFQq8fPPP+Pq1at47bXXcO+992L79u1o3LgxAEAQBIcUlByDb3YieZBK+Dbdg8xaaKturzKpdtFRVTaFm507d2Ljxo3o3LkzAGDPnj0YPHgw+vTpg127dgEAFAqF/UtJDsM3O5E0SXXD0rrsVWa4xppae9ytLsgym8KNRqMxttAAgI+PD3JzczF48GDce++9+OSTT+xeQHIsqfbHE8mdlDcstbXMleti2rRLKCz0RExMBSIiugDo4rZ1QdWzKdy0aNECv/32GxISEm4/gacn1q9fj8GDB2PgwIF2LyA5nhT74+uD2yiQVPDL+jbTuggPB5KSXFgYcjhlzafc1r9/f6xatarKcUPA6dixo73KRU6mUpUiNva07INNZiYQHQ306aP/NzPT8rlSbfYnInJ3CsGGEcAVFRW4ceMGAgMDAQCXL18GADRp0sR4/7lz5xAdHV2r58vIyEBubi5+//13+Pn5oXv37pg3bx5atmxp8THZ2dl46qmnzI75+Pjg5s2btXrNkpISqFQqaDQa43XIEfdaqersWX2gMWyjAAAeHkBhoeUWHC6ESETkHLZ8f9vULeXp6QmdToe0tDR89tlnuHLlCgCgcePGePzxxzF79uxaBxsA+O6775CWloYuXbqgoqICr7/+Oh544AEcO3YM/v7+Fh8XGBiIEydOGG9zELPtpNwfXxd13UZBLvVD5C74BwcBNoab4uJiJCcn49y5c3jiiSfQunVrAMCxY8eQnZ2NXbt2Ye/evWaDjq3ZunWr2e3s7GyEhIRg//79VhcCVCgUCAsLs6XoVA2+wfW4jQKRNLBFmgxsCjczZ86Et7c3Tp06hdDQ0Cr3PfDAA5g5cyYWLVpUp8JoNBoAQFBQkNXzrl27hujoaOh0OiQmJmLOnDlo06ZNteeWlZWhrKzMeLukpKROZSPp4jYKRNJQ+T1qaVsZvpelz6Zws2nTJqxcubJKsAGAsLAwzJ8/H+PHj69TuNHpdJgwYQJ69OiBtm3bWjyvZcuWWL16Ndq3bw+NRoN33nkH3bt3x9GjRxFZzcCIjIwMzJgxw+bykDxx5hiRNHAPKXmzefsFSy0kANC2bVtcuHChTgVJS0vDkSNH8MMPP1g9Lzk5GcnJycbb3bt3R+vWrbFy5UrMmjWryvlTpkzBxIkTjbdLSkoQFRVVpzKSPEhlJVciuXLGtjIc2yNuNoWbJk2aoLCwsNoWEgAoKCiosUupOunp6di8eTO+//57i89tiZeXFzp16oT8/Pxq7/fx8YGPj4/NZSKSGq7fQ3Lh6G1lOLZH/Gxa5yYlJQVTp06tNq2WlZXhzTffRL9+/Wr9fIIgID09HRs3bsS3336L2NhYW4oDANBqtTh8+DDCw8NtfiyRXNiyfg+RuzNsK2PKntvKVDe2p6AgBhpNgNXzyHlsHlDcuXNnJCQkIC0tDa1atYIgCDh+/DiWL1+OsrIyfPzxx7V+vrS0NOTk5OCLL75AQECAsUtLpVLBz88PADBixAg0a9YMGRkZxjJ069YN8fHxuHr1KhYsWIDTp09jzJgxtlwKkSyo1WoUFlZg7NgQ6HT6JRN0OmDcOAEdO/6NmBhP/mVJkuPMbWU4tkecbAo3kZGR+PHHH/Hcc89hypQpxh3AFQoF+vbti2XLltk0nmXFihUAgN69e5sdz8rKwqhRowAAZ86cgVJ5u4HpypUreOaZZ3DhwgU0btwYSUlJ2Lt3L+68805bLoVI8gxN5wUFMdDpRprdp9UqsHTpN4iNPc2mc5IkZ0wOcMbYHqobm8INAMTGxuKbb77BlStXcPLkSQBAfHx8ncba1GZx5Ly8PLPbixYtqvNUc6LqSHUbBUOTeE07v7PpnKSi8nvU0uQAe72XHT22h+rO5nBj0LhxY3Tt2tWeZSERkdNMgMqrNZ8/r0RBgSdiYysQEaHvt3fn6+XO7yQXzl55vaY/HMh16hxuSLrkPBMgJ8cPkyeroNMpoFQKmD9fg2HD/nF1seqN6/eQXDjzM4l/OIgXww1VIbdVPk23X1i8eAIEwTDwVoFXXgnEuXOroVK5//YLXL+HyP74h4M4MdyQVXKYCWAIaTX1n0slzBFR/Th7bA/ZjuGGLJLbTAD2nxNRbTh7bA/ZjuGGLJLbTAD2nxNRbTG4iBvDDVkkx5YMKfWfS3WKOxFRTRhuyCK5tmRIZeAtm86JyFHEvlcdww1ZJaWWDDlicCEie8vMBMaO1W/lolQCq1YBo0e7ulTmbNo4k+ShupkAsbGnqwQbdmcQEcnL2bO3gw1g2KtOf1xM2HJDVcitO4NjU4iIaufkydvBxkCrBfLzxdU9xXBD1ZJKcKkNuYU5IqK6SkjQd0WZBhwPDyA+3nVlqg7DDRHkFeaIiOpCrVbDw+MW5s/3w6uvqqDVKuDhIWDePA08PP6BWi2ePwIVQm225paQkpISqFQqaDQaBAYGuro4REREold5z0H9tjxVJ5o4cpsaW76/2XJDJBNin7pJROJVudve0pIZYtmmhuGGREutVnMcTD0Z6tDSbuesQyKSIoYbEqXKTaCWuPtO3Y4kl93OSfz4hwo5G8MNiVLlD0J9/24wgoLUZk2hYmkCFSPudk5iUP1YjarvZYZssieGGxK9Awc6VdkCIjHxoKuL5TbkuEcYiYdpeLb2XmbIJnviCsUkahpNgPHDENC3OHz11UBoNAEuLpn7MOwRplDoF6aQyx5hJC58L5MzseWGRK2mLhWqHe4RRrVlOj7m/HklCgo8ERtbgYgIfTiu6/gYvpfJmRhuJM7dB/LV1KVy+fLlah/nrOty1BeBI0hlt3NyHNPxMda6kOoyPobdo+7N3bapYbiRMCnMODJ0qVT+kDV8Sefm5lp8rKOvy5FfBESuYAjqlrqQ4uLy6zwIvab3Mombu21Tw3AjYbX9AKruPDG1+NS1S8XRAxQd+UVA5EqO6kJi96h7E0twqQ2GG6pCDC0+lZs2xdylItaxBO7WjEzi4cguJDG/l0k6GG6oivq0+NiLtSbQy5cvm3VHWVo3w1nEOpbA3ZqRSTzs2YXEkE2uwHBDolWbL10xrIEj5rEEDC7uy9V7gdmrC4khm1yB4YbcVk1jXZyJYwnIHsS2F5i9upAYXMjZGG5kxNXdN/YmtrEuUh1L4OoWBLngXmBE9sNwIxP16b4RaygS61gXKRBbC4IciGEvMI6PIalguJEwwwdQTd031j6oxDCmpTJDeWsa6+LoD2CpfhGwBcG1XBnaOT6GpILhRsIMH1S7dwOLFlX9S7BHj5Ho3dtyf7iYxrSYqvwBPG3aJRQWeiImpgIREV0AdHHKB7BUvwjE0IIgZ64eoO5uv69E1WG4kbjg4GB06wYolYBOd/u4hwdw113BqO5zzNDSUNOXmytbJEw/gMPDgaQk15dDatjt5zocoE5UP9wVXAYiI4FVq/SBBtD/u3Kl5cGhhhaJ55/vB6VSMLvPw0PA88/3Z5eEDHA3cddSqUoRG3ua9U1UB2y5kYnRo4GUFCA/H4iPr3nWS3CwvlVn1Spg3DhAqzWEIgWSkkKdU2hyObYgEJE7YriRkchI26fy2hqKSHqkOsWdiKSL4YZqVJdQRES2kersOyJXYLghIhIBqc6+I3IFhhsiMsMWBNdhcCFHkdtK4ww3RGSGLQhE0pKZCYwdq18ORKnUTxQZPdrVpXIshhsiqoLBhcj9qdVqFBZWYOzYEOh0hpXGgXHjBHTs+DdiYjwl+15nuCEit2PY+woAzp9XoqDAE7GxFYiI0K/Jw5YlkjvDNioFBTHQ6Uaa3afVKrB06TeIjT0t2TXLGG6IyK0YPrQB63ufSfVDm6g2DOG/ppXGpbqNClcoJiK3YvgwtrT3mUYTYHYekZzJdaVxttwQkVuqae8zKWE3HNWHHFcaZ7ghIrckl4092Q1H9iC3lcbZLUVEbkkuze3shiOyHVtuiMhtyam5XU7dcET1xXBDRG5NLs3tcumGI7IHdksREbkBuXTDkX3IfRsVttwQkVuR84e2nLrhqH7kvo0Kww0RuRW5f2jLpRuO6k+q74HaYLghIrcj5w9tIqoZx9wQEYmYnLvhiOqKLTdERCIm9244orpwactNRkYGunTpgoCAAISEhGDQoEE4ceJEjY9bv349WrVqBV9fX7Rr1w5ff/21E0pLROQawcHBCA8Pt/jDYENkzqXh5rvvvkNaWhp++ukn7NixA+Xl5XjggQdw/fp1i4/Zu3cvhg4ditGjR+PgwYMYNGgQBg0ahCNHjjix5ERERCRWCkEQBFcXwuDSpUsICQnBd999h549e1Z7zpAhQ3D9+nVs3rzZeKxbt27o2LEjPvjggxpfo6SkBCqVChqNBoGBgXYrOxERETmOLd/fohpzo9FoAABBQUEWz/nxxx8xceJEs2MpKSnYtGmTI4tGRER1ZLqreXU4ZojsTTThRqfTYcKECejRowfatm1r8bwLFy4gNDTU7FhoaCguXLhQ7fllZWUoKysz3i4pKbFPgYmIqEamu5oD+g1Ai4uDERSkNluvh7uakz2JJtykpaXhyJEj+OGHH+z6vBkZGZgxY4Zdn5OIiGrHtMXmwIFOxp3NDdtHJCYerHIeUX2JYp2b9PR0bN68Gbt370ZkZKTVc8PCwnDx4kWzYxcvXkRYWFi150+ZMgUajcb489dff9mt3EREVDsaTYAx2AD6Hc2/+mogNJoAF5eMpMilLTeCIOD555/Hxo0bkZeXh9jY2Bofk5ycjF27dmHChAnGYzt27EBycnK15/v4+MDHx8deRSYr2K9ORJYUFweb7WgO6ANOcXEQt5Mgu3NpuElLS0NOTg6++OILBAQEGMfNqFQq+Pn5AQBGjBiBZs2aISMjAwDw4osvolevXnj33XcxYMAArFu3Dr/++itWrVrlsuugqv3qlrBfnUiegoLUUCh0ZgFHodAhKKjYhaUiqXJpt9SKFSug0WjQu3dvswWpPvvsM+M5Z86cQVFRkfF29+7dkZOTg1WrVqFDhw74/PPPsWnTJquDkMnxattfzn51InlSqUqRmroZCoUOAIxjbthqQ47g8m6pmuTl5VU5NnjwYAwePNgBJSIiqWK3qeslJh5EXFw+iouDEBRUzGBDDiOa2VJERI7CblPxUKlKZR1qGLKdg+GGiCSv8peJpbVW2G1qf9zV/Dau+eM8DDdEJCvW1loh++Ou5rdxzR/nYbghItmwtNZKXFy+rLtKHE0OwcUW/D10PFEs4kdE5AzW1lohchb+Hjoeww3ZBfvVyR0Y1loxxbVWyNn4e+h47JYiu2C/un1wJoVjGdZaqTzWgV0B5Ez8PXQ8hhuyG37p1g+nKzsH11ohMeDvoWMx3BCJBFd5dpzK3aGW1lphtynVlj1aWeW+5o8jMdwQkeSx25Tsqa6trByb6DwMN+QQZ88CJ08CCQlAZKSrS0PEblOyn7ouCsmQ7TwMN2R3mZnA2LGATgcolcCqVcDo0a4uFRHJgbMH5du6KKQzg4tpXZw/r0RBgSdiYysQEaGfqSXlIMVwQ3Z19uztYAPo/x03DkhJYQsOETmWswfli3kxPtO6sBbAHDFBQQwt91znhuzq5MnbwcZAqwXy811THiKSj+q6iwoKYqDRBFg9r67EvBif4RotBTBDndh7gkJmJhAdDfTpo/83M9OuT19rbLkhu0pI0HdFmQYcDw8gPt51ZXJXlvrxiahmzthDzLAYn2nAEdtifNYCmOFzxV4tLWJquWe4IbuKjNSPsRk3Tt9i4+EBrFzJLqnaMJ0hYe2D2V4zKbhgIEmVs7qL3GExvpoC2KpVWsycKUCnU0CpFDB/vgbDhv1Tp/e/tZZ7hhtye6NH65N6fr6+xYbBpnYMMykKCyswc2YIBEEBQP/BvGVLKqZNuwsxMZ52CRxcMLD2GALdT21aK+xF7IvxWQtgGk0AFi+OMH7W6HQKvPJKIM6dWw2VqtTm97+YWu4ZbsghIiMZauoiODgYv/1W3V8/CpSWhsJe36FcMLB2GALdk6O7i9xtUUhLAaymEGjr+19MLfcMN0QiI6a/fuSOIdA9Obq7yB3Xq6kugNkzBBpaOB98EPj5ZyUKCz0RE6Ofdl5U5Pz6YLghEhkx/fVD5K4c3V0kpuBSV/YKgZZaOI8cMb/tzBZOhhsiEeK4JSLbiaW7SAzjtGp7jfYIgWJs4WS4IRIpjlsSH07PFzcxdBeJZZyWtbq4fPkycnNzjbeluIEnww0RUS04Y90Uqr+6BAZ7trSIqRVDCl1ndcVwQ0RskaiBmJfZp/pxdEsL31uuwXBDJEPOXjDQ3Tlz3RRyrrru8F0bYm3tq+372p3f/ww3RDLkzAUD3Znhw72mKbPu/CVAt9kzjIi5tU8MY5McjeGGSKactWCgOzP9EmjWrASvvqqCVquAh4eAefNKMGzYULf/EnAGMcweqom9w4jYW/tcXd+OxnBDJGNcMLBmhi+BSZOAIUMM0/MViIxsBKCRK4vmFsQye6gm9g4j7rCppr2IsZuL4YZIxrhgoG04Pd92Ypo9ZI29w4g7bKppL2Ls5mK4IZI5LhhIZL8wYto6YW2BPKmN0xJbNxfDDRGxRYKcRsxTo+2xWq+zWzHcYTyTKzDcEBGRU4hxarQjtmxwVpioPJ7JUnB09XgmV2C4ISIihxPr1GgxjhepLdMyWwuOrh7P5AoMN0RE5HBinhotxuBiC7EGR1dS1nwKERFR/RhmI5mS6tRoZ7MWHOWK4YaIiBzGMFbFMBvJEHAqz0aS2uwhZ2JwrIrdUkRE5DCVx7RMm3YJhYWeiImpQEREFwBdbB7TwhlC5uS0pk5tMdwQEZFDmQaN8HAgKanuz+UuKx47mz2msUsJww0REbkNd1nx2BUsTWOXI465ISIickNi3NNJLNhyQ0RE5IbceY0eR2O4ISIityXm7RycQY7BpTYYboiIyC2JcTsHEgeGGyIicjtiXpWXU9Vdj+GGiIjcjli3c+BUdXHgbCkiInIbhpk/Na3K66oZQpyqLg5suSEiIrdhOkOoWbMSvPqqClqtAh4eAubNK8GwYUPZ7UMMN0RE5F4MwWXSJGDIECA/H4iPVyAyshGARq4sWhVyn83lKgw3RETktiIj9T/OZmnQ8OXLl43/zdlcrsNwQ0REZIPaDBoW82wuOWC4ISIiskFtBgPXNJvLtIXHFMcL2QfDDRERkZ0ZZnOZBhzT2Vy5ubkWH8tp4vXHqeBERER2plKVIjV1s3G6umHMTW26pDhNvP7YckNEROQAs2fHYtq0Sygs9ERMTAW8vWORm8sBxc7AcENERFQPlqZ7N2nSBOHhoUhK0t8uKtJZeAayN4YbIiKiOqrPdG+ugeM4Lh1z8/333yM1NRURERFQKBTYtGmT1fPz8vKgUCiq/Fy4cME5BSYiIvofS9O9NZqAGh974EAnLF48AWvWjMTixRNw4EAnRxdXVlwabq5fv44OHTrg/ffft+lxJ06cQFFRkfEnJCTEQSUkIiIyd+PGDQDWp3ubnldZfUIR1Y5Lu6X69++P/v372/y4kJAQNGrUyP4FIiIiqkGDBg0A1Dzd23BeZWLd0VxK3HIqeMeOHREeHo6+fftiz549Vs8tKytDSUmJ2Q8REVF92TrdW+w7mkuJWw0oDg8PxwcffIDOnTujrKwMH330EXr37o2ff/4ZiYmJ1T4mIyMDM2bMcHJJiYhIDhITDyIuLh/FxUEICiq22vLCHc2dRyEIguDqQgCAQqHAxo0bMWjQIJse16tXLzRv3hwff/xxtfeXlZWhrKzMeLukpARRUVHQaDQIDAysT5GJiEiGioqKsGrVqhrPGzt2LMLDwy3ef/asYUdz12z+aStLm4UaODqYlZSUQKVS1er7261abqrTtWtX/PDDDxbv9/HxgY+PjxNLREREVDNX7WheF5U3C7U0jV0sW0e4fbg5dOiQ1WRMREQkVc5qTTF9DWtr+4hl6wiXhptr164hPz/feLugoACHDh1CUFAQmjdvjilTpuDcuXP497//DQBYvHgxYmNj0aZNG9y8eRMfffQRvv32W2zfvt1Vl0BERDLnqsX4KremWGLP1hRL09jj4vJFNdPLpeHm119/xb333mu8PXHiRADAyJEjkZ2djaKiIpw5c8Z4/61btzBp0iScO3cODRo0QPv27bFz506z5yAiInIk09lM1loxHD3rqbatJPZsTXGXaewuDTe9e/eGtfHM2dnZZrcnT56MyZMnO7hURERElhlmPRUWVmDmzBAIggKA/kt+y5ZUTJt2F2JiPEUx9sTealrbRyzccp0bIiIiVwoODkZJSSh0OoXZca1WgdLSUEkGG8D2tX1cxe0HFBMREblCQgKgVAI6k/X4PDz0U7tdwVljf2xZ28dVGG6IiIjqIDISWLUKGDcO0Gr1wWblStdM767P7uR1oVKVijLUGDDcEBER1dHo0UBKimsX43PGDKbaDo4Wy9YRDDdERET14OrF+Jwxg8l06whLxLR1BMMNERGRG6q8EaelGUz2ak0RS3CpDYYbIiIiN+TsjThdvbeULUSzcaaz2LLxFhERkbtw5EacrlgNuTJZbZxJREREjh3744rVkOuDi/gRERGRTTSaABQUxECjCXB1UarFlhsiIiKqNWevqVMXbLkhIiKiWrG0po7YWnAYboiIiKhWrK2pIyYMN0RERFQrhjV1THFXcCIiInJb3BWciIiIJMF0lWNru4JzbykiIiJyC9xbioiIiCTHWnAxbM1QVFRU7f3ODj4MN0RERFRnYtiaoTIOKCYiIqI6E+PWDAw3REREJCkMN0RERGQ3Yth3imNuiIiIyC7Esu8UW26IiIio3sS07xTDDREREdWbmPadYrghIiKiehPTvlMMN0RERFRnhi0Xatp3yplbMygEQRCc9moiUFJSApVKBY1Gg8DAQFcXh4iIyO0ZVigGgPPnlSgs9ERMTAUiIvRBxx4rFNvy/c3ZUkRERFQvpsElPBxISnJhYcBuKSIiIpIYhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFNntLWXYJ7SkpMTFJSEiIqLaMnxv12a/b9mFm9JS/dbrUVFRLi4JERER2aq0tBQqlcrqOQqhNhFIQnQ6Hc6fP4+AgAAoFAqbH19SUoKoqCj89ddfNW65LmWsh9tYF3qsBz3Ww22sCz3Wg15960EQBJSWliIiIgJKpfVRNbJruVEqlYiMjKz38wQGBsr6l9SA9XAb60KP9aDHeriNdaHHetCrTz3U1GJjwAHFREREJCkMN0RERCQpDDc28vHxwVtvvQUfHx9XF8WlWA+3sS70WA96rIfbWBd6rAc9Z9aD7AYUExERkbSx5YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGmGu+//z5iYmLg6+uLu+66C7/88ovFc48ePYpHH30UMTExUCgUWLx4sfMK6mC21MOHH36Ie+65B40bN0bjxo1x//33Wz3f3dhSF7m5uejcuTMaNWoEf39/dOzYER9//LETS+s4ttSDqXXr1kGhUGDQoEGOLaCT2FIP2dnZUCgUZj++vr5OLK1j2fo7cfXqVaSlpSE8PBw+Pj6444478PXXXzuptI5jSz307t27yu+EQqHAgAEDnFhix7D192Hx4sVo2bIl/Pz8EBUVhZdeegk3b96sf0EEMrNu3TrB29tbWL16tXD06FHhmWeeERo1aiRcvHix2vN/+eUX4eWXXxY+/fRTISwsTFi0aJFzC+wgttbDsGHDhPfff184ePCgcPz4cWHUqFGCSqUSzp496+SS25+tdbF7924hNzdXOHbsmJCfny8sXrxY8PDwELZu3erkktuXrfVgUFBQIDRr1ky45557hIcfftg5hXUgW+shKytLCAwMFIqKiow/Fy5ccHKpHcPWuigrKxM6d+4sPPjgg8IPP/wgFBQUCHl5ecKhQ4ecXHL7srUe1Gq12e/DkSNHBA8PDyErK8u5BbczW+th7dq1go+Pj7B27VqhoKBA2LZtmxAeHi689NJL9S4Lw00lXbt2FdLS0oy3tVqtEBERIWRkZNT42OjoaMmEm/rUgyAIQkVFhRAQECCsWbPGUUV0mvrWhSAIQqdOnYQ33njDEcVzmrrUQ0VFhdC9e3fho48+EkaOHCmJcGNrPWRlZQkqlcpJpXMuW+tixYoVQosWLYRbt245q4hOUd/PiEWLFgkBAQHCtWvXHFVEp7C1HtLS0oQ+ffqYHZs4caLQo0ePepeF3VImbt26hf379+P+++83HlMqlbj//vvx448/urBkzmWPerhx4wbKy8sRFBTkqGI6RX3rQhAE7Nq1CydOnEDPnj0dWVSHqms9zJw5EyEhIRg9erQziulwda2Ha9euITo6GlFRUXj44Ydx9OhRZxTXoepSF19++SWSk5ORlpaG0NBQtG3bFnPmzIFWq3VWse3OHp+XmZmZePzxx+Hv7++oYjpcXeqhe/fu2L9/v7Hr6s8//8TXX3+NBx98sN7lkd3GmdZcvnwZWq0WoaGhZsdDQ0Px+++/u6hUzmePenj11VcRERFh9ovujupaFxqNBs2aNUNZWRk8PDywfPly9O3b19HFdZi61MMPP/yAzMxMHDp0yAkldI661EPLli2xevVqtG/fHhqNBu+88w66d++Oo0eP2mUTX1epS138+eef+Pbbb/HEE0/g66+/Rn5+Pp577jmUl5fjrbfeckax7a6+n5e//PILjhw5gszMTEcV0SnqUg/Dhg3D5cuXcffdd0MQBFRUVGD8+PF4/fXX610ehhuyu7lz52LdunXIy8uT1MBJWwQEBODQoUO4du0adu3ahYkTJ6JFixbo3bu3q4vmFKWlpRg+fDg+/PBDNGnSxNXFcank5GQkJycbb3fv3h2tW7fGypUrMWvWLBeWzPl0Oh1CQkKwatUqeHh4ICkpCefOncOCBQvcNtzUV2ZmJtq1a4euXbu6uihOl5eXhzlz5mD58uW46667kJ+fjxdffBGzZs3Cm2++Wa/nZrgx0aRJE3h4eODixYtmxy9evIiwsDAXlcr56lMP77zzDubOnYudO3eiffv2jiymU9S1LpRKJeLj4wEAHTt2xPHjx5GRkeG24cbWejh16hQKCwuRmppqPKbT6QAAnp6eOHHiBOLi4hxbaAewx2eEl5cXOnXqhPz8fEcU0WnqUhfh4eHw8vKCh4eH8Vjr1q1x4cIF3Lp1C97e3g4tsyPU53fi+vXrWLduHWbOnOnIIjpFXerhzTffxPDhwzFmzBgAQLt27XD9+nWMHTsWU6dOhVJZ95EzHHNjwtvbG0lJSdi1a5fxmE6nw65du8z+8pK6utbD/PnzMWvWLGzduhWdO3d2RlEdzl6/EzqdDmVlZY4oolPYWg+tWrXC4cOHcejQIePPQw89hHvvvReHDh1CVFSUM4tvN/b4fdBqtTh8+DDCw8MdVUynqEtd9OjRA/n5+cagCwB//PEHwsPD3TLYAPX7nVi/fj3Kysrw5JNPOrqYDleXerhx40aVAGMIvkJ9t72s95BkiVm3bp3g4+MjZGdnC8eOHRPGjh0rNGrUyDh1c/jw4cJrr71mPL+srEw4ePCgcPDgQSE8PFx4+eWXhYMHDwonT5501SXYha31MHfuXMHb21v4/PPPzaY4lpaWuuoS7MbWupgzZ46wfft24dSpU8KxY8eEd955R/D09BQ+/PBDV12CXdhaD5VJZbaUrfUwY8YMYdu2bcKpU6eE/fv3C48//rjg6+srHD161FWXYDe21sWZM2eEgIAAIT09XThx4oSwefNmISQkRJg9e7arLsEu6vreuPvuu4UhQ4Y4u7gOY2s9vPXWW0JAQIDw6aefCn/++aewfft2IS4uTnjsscfqXRaGm2osXbpUaN68ueDt7S107dpV+Omnn4z39erVSxg5cqTxdkFBgQCgyk+vXr2cX3A7s6UeoqOjq62Ht956y/kFdwBb6mLq1KlCfHy84OvrKzRu3FhITk4W1q1b54JS258t9VCZVMKNINhWDxMmTDCeGxoaKjz44IPCgQMHXFBqx7D1d2Lv3r3CXXfdJfj4+AgtWrQQ3n77baGiosLJpbY/W+vh999/FwAI27dvd3JJHcuWeigvLxemT58uxMXFCb6+vkJUVJTw3HPPCVeuXKl3ORSCUN+2HyIiIiLx4JgbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiBxo1ahQGDRrk6mIQyQrDDZFMjRo1CgqFwvgTHByMfv364bfffnN10ezC9NoMP3fffbfDXq+wsBAKhQKHDh0yO/7ee+8hOzvbYa9LRFUx3BDJWL9+/VBUVISioiLs2rULnp6eGDhwoKuLZTdZWVnG6ysqKsKXX35Z7Xnl5eUOK4NKpUKjRo0c9vxEVBXDDZGM+fj4ICwsDGFhYejYsSNee+01/PXXX7h06RL69OmD9PR0s/MvXboEb29v486/MTExmDVrFoYOHQp/f380a9YM77//vtljFi5ciHbt2sHf3x9RUVF47rnncO3aNeP9p0+fRmpqKho3bgx/f3+0adMGX3/9NQDgypUreOKJJ9C0aVP4+fkhISEBWVlZtb6+Ro0aGa8vLCwMQUFBxhaWzz77DL169YKvry/Wrl0LtVqNoUOHolmzZmjQoAHatWuHTz/91Oz5dDod5s+fj/j4ePj4+KB58+Z4++23AQCxsbEAgE6dOkGhUKB3794AqnZLlZWV4YUXXkBISAh8fX1x9913Y9++fcb78/LyoFAosGvXLnTu3BkNGjRA9+7dceLEiVpfN5HcMdwQEQDg2rVr+OSTTxAfH4/g4GCMGTMGOTk5KCsrM57zySefoFmzZujTp4/x2IIFC9ChQwccPHgQr732Gl588UXs2LHDeL9SqcSSJUtw9OhRrFmzBt9++y0mT55svD8tLQ1lZWX4/vvvcfjwYcybNw8NGzYEALz55ps4duwYvvnmGxw/fhwrVqxAkyZN7HK9hrIeP34cKSkpuHnzJpKSkrBlyxYcOXIEY8eOxfDhw/HLL78YHzNlyhTMnTvXWK6cnByEhoYCgPG8nTt3oqioCLm5udW+7uTJk7FhwwasWbMGBw4cQHx8PFJSUlBcXGx23tSpU/Huu+/i119/haenJ55++mm7XDeRLNR7600icksjR44UPDw8BH9/f8Hf318AIISHhwv79+8XBEEQ/vnnH6Fx48bCZ599ZnxM+/bthenTpxtvR0dHC/369TN73iFDhgj9+/e3+Lrr168XgoODjbfbtWtn9pymUlNThaeeeqpO1wdA8PX1NV6fv7+/sHHjRqGgoEAAICxevLjG5xgwYIAwadIkQRAEoaSkRPDx8RE+/PDDas81PO/BgwfNjpvuhn7t2jXBy8tLWLt2rfH+W7duCREREcL8+fMFQRCE3bt3CwCEnTt3Gs/ZsmWLAED4559/bKkCItliyw2RjN177704dOgQDh06hF9++QUpKSno378/Tp8+DV9fXwwfPhyrV68GABw4cABHjhzBqFGjzJ4jOTm5yu3jx48bb+/cuRP33XcfmjVrhoCAAAwfPhxqtRo3btwAALzwwguYPXs2evTogbfeestsQPOzzz6LdevWoWPHjpg8eTL27t1r0/UtWrTIeH2HDh1C3759jfd17tzZ7FytVotZs2ahXbt2CAoKQsOGDbFt2zacOXMGAHD8+HGUlZXhvvvus6kMpk6dOoXy8nL06NHDeMzLywtdu3Y1qzMAaN++vfG/w8PDAQB///13nV+bSE4YbohkzN/fH/Hx8YiPj0eXLl3w0Ucf4fr16/jwww8BAGPGjMGOHTtw9uxZZGVloU+fPoiOjq718xcWFmLgwIFo3749NmzYgP379xvH5Ny6dcv4Gn/++SeGDx+Ow4cPo3Pnzli6dCkAGIPWSy+9hPPnz+O+++7Dyy+/XOvXDwsLM15ffHw8/P39za7d1IIFC/Dee+/h1Vdfxe7du3Ho0CGkpKQYy+nn51fr17UHLy8v438rFAoA+jE/RFQzhhsiMlIoFFAqlfjnn38AAO3atUPnzp3x4YcfIicnp9pxHz/99FOV261btwYA7N+/HzqdDu+++y66deuGO+64A+fPn6/yHFFRURg/fjxyc3MxadIkY7gCgKZNm2LkyJH45JNPsHjxYqxatcqel2y0Z88ePPzww3jyySfRoUMHtGjRAn/88Yfx/oSEBPj5+RkHU1fm7e0NQN8CZElcXBy8vb2xZ88e47Hy8nLs27cPd955p52uhIg8XV0AInKdsrIyXLhwAYB+ZtKyZctw7do1pKamGs8ZM2YM0tPT4e/vj//7v/+r8hx79uzB/PnzMWjQIOzYsQPr16/Hli1bAADx8fEoLy/H0qVLkZqaij179uCDDz4we/yECRPQv39/3HHHHbhy5Qp2795tDEfTpk1DUlIS2rRpg7KyMmzevNl4n70lJCTg888/x969e9G4cWMsXLgQFy9eNIYOX19fvPrqq5g8eTK8vb3Ro0cPXLp0CUePHsXo0aMREhICPz8/bN26FZGRkfD19YVKpTJ7DX9/fzz77LN45ZVXEBQUhObNm2P+/Pm4ceMGRo8e7ZDrIpIjttwQydjWrVsRHh6O8PBw3HXXXdi3bx/Wr19vnMYMAEOHDoWnpyeGDh0KX1/fKs8xadIk/Prrr+jUqRNmz56NhQsXIiUlBQDQoUMHLFy4EPPmzUPbtm2xdu1aZGRkmD1eq9UiLS0NrVu3Rr9+/XDHHXdg+fLlAPStIVOmTEH79u3Rs2dPeHh4YN26dQ6pizfeeAOJiYlISUlB7969ERYWVmVl4TfffBOTJk3CtGnT0Lp1awwZMsQ4DsbT0xNLlizBypUrERERgYcffrja15k7dy4effRRDB8+HImJicjPz8e2bdvQuHFjh1wXkRwpBEEQXF0IIhKvwsJCxMXFYd++fUhMTDS7LyYmBhMmTMCECRNcUzgiomqwW4qIqlVeXg61Wo033ngD3bp1qxJsiIjEit1SRFStPXv2IDw8HPv27asyTsbV5syZg4YNG1b7079/f1cXj4hcjN1SROR2iouLq6zoa+Dn54dmzZo5uUREJCYMN0RERCQp7JYiIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIkn5/9YjmXqHmAI5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWSBJREFUeJzt3Xd409XiBvA3SSfQprbSRQstpTJltKIUhQKKBaHCo7IVUBS4vxZBEBS5IkNliIKAINxbKI6CIksBGXItytCrDJlii62sMkwhLSClJOf3R25i0jZp0mZ8k7yf5+kDSU6+OScB8nKmTAghQEREROQh5K6uABEREZE9MdwQERGRR2G4ISIiIo/CcENEREQeheGGiIiIPArDDREREXkUhhsiIiLyKAw3RERE5FEYboiIiMijMNwQEblIdnY2ZDIZCgsLXV0VIo/CcEPkwX766SdkZmaiZcuWqFu3Lho2bIj+/fvjt99+q1S2S5cukMlkkMlkkMvlCA4ORtOmTfHMM89g586dNr3uV199hdTUVISHh6NOnTpo3Lgx+vfvj23bttmraZW8/fbb2LhxY6X79+3bh2nTpuHatWsOe+2Kpk2bZngvZTIZ6tSpgxYtWuCf//wnSkpK7PIaOTk5WLBggV2uReRpGG6IPNicOXOwbt06PPzww3j//fcxcuRIfPfdd0hKSsKxY8cqlY+JicHHH3+Mjz76CO+88w4ef/xx7Nu3D48++igGDBiA8vLyal9z3rx5ePzxxyGTyTB58mTMnz8fTz75JPLy8rBmzRpHNBOA5XAzffp0p4YbvaVLl+Ljjz/Ge++9h2bNmuGtt95Cjx49YI8j/RhuiMzzcXUFiMhxxo8fj5ycHPj5+RnuGzBgAO69917Mnj0bn3zyiUl5pVKJp59+2uS+2bNn48UXX8SSJUsQFxeHOXPmmH29O3fuYObMmejevTt27NhR6fHLly/XskXScfPmTdSpU8dimaeeegp33303AGD06NF48sknsX79evzwww9ISUlxRjWJvBJ7bog8WMeOHU2CDQAkJiaiZcuWOHnypFXXUCgUWLhwIVq0aIHFixdDrVabLfvnn3+ipKQEDz74YJWPh4eHm9y+desWpk2bhnvuuQcBAQGIiorCE088gdOnTxvKzJs3Dx07dkRYWBgCAwORnJyML774wuQ6MpkMN27cwKpVqwxDQcOHD8e0adMwceJEAEB8fLzhMeM5Lp988gmSk5MRGBiI0NBQDBw4EGfPnjW5fpcuXdCqVSscOHAAnTt3Rp06dfDaa69Z9f4Z69atGwCgoKDAYrklS5agZcuW8Pf3R3R0NDIyMkx6nrp06YItW7bgjz/+MLQpLi7O5voQeSr23BB5GSEELl26hJYtW1r9HIVCgUGDBuH111/Hnj170KtXryrLhYeHIzAwEF999RXGjBmD0NBQs9fUaDTo3bs3du3ahYEDB2Ls2LEoLS3Fzp07cezYMSQkJAAA3n//fTz++OMYMmQIbt++jTVr1qBfv37YvHmzoR4ff/wxnn/+edx///0YOXIkACAhIQF169bFb7/9htWrV2P+/PmGXpT69esDAN566y28/vrr6N+/P55//nlcuXIFixYtQufOnXHo0CGEhIQY6qtSqdCzZ08MHDgQTz/9NCIiIqx+//T0oS0sLMxsmWnTpmH69Ol45JFH8I9//AOnTp3C0qVL8dNPP2Hv3r3w9fXFlClToFarce7cOcyfPx8AUK9ePZvrQ+SxBBF5lY8//lgAEFlZWSb3p6amipYtW5p93oYNGwQA8f7771u8/tSpUwUAUbduXdGzZ0/x1ltviQMHDlQqt2LFCgFAvPfee5Ue02q1ht/fvHnT5LHbt2+LVq1aiW7dupncX7duXTFs2LBK13rnnXcEAFFQUGByf2FhoVAoFOKtt94yuf/o0aPCx8fH5P7U1FQBQHz44Ydm223sjTfeEADEqVOnxJUrV0RBQYFYtmyZ8Pf3FxEREeLGjRtCCCFWrlxpUrfLly8LPz8/8eijjwqNRmO43uLFiwUAsWLFCsN9vXr1Eo0aNbKqPkTehsNSRF7k119/RUZGBlJSUjBs2DCbnqvvGSgtLbVYbvr06cjJyUG7du2wfft2TJkyBcnJyUhKSjIZClu3bh3uvvtujBkzptI1ZDKZ4feBgYGG31+9ehVqtRqdOnXCwYMHbap/RevXr4dWq0X//v3x559/Gn4iIyORmJiIb7/91qS8v78/nn32WZteo2nTpqhfvz7i4+MxatQoNGnSBFu2bDE7V+ebb77B7du3MW7cOMjlf//z/MILLyA4OBhbtmyxvaFEXsirw813332H9PR0REdHQyaTVbnSwp5mzZqF9u3bIygoCOHh4ejbty9OnTplUubWrVvIyMhAWFgY6tWrhyeffBKXLl1yaL3IO1y8eBG9evWCUqnEF198AYVCYdPzr1+/DgAICgqqtuygQYPw/fff4+rVq9ixYwcGDx6MQ4cOIT09Hbdu3QKgG6Jp2rQpfHwsj45v3rwZHTp0QEBAAEJDQ1G/fn0sXbrU4twfa+Tl5UEIgcTERNSvX9/k5+TJk5UmPzdo0KDS/KXqrFu3Djt37kRubi7y8/Nx7NgxJCcnmy3/xx9/ANCFImN+fn5o3Lix4XEissyr59zcuHEDbdq0wXPPPYcnnnjC4a+3e/duZGRkoH379rhz5w5ee+01PProozhx4gTq1q0LAHjppZewZcsWrF27FkqlEpmZmXjiiSewd+9eh9ePPJdarUbPnj1x7do1fP/994iOjrb5Gvql402aNLH6OcHBwejevTu6d+8OX19frFq1Cj/++CNSU1Otev7333+Pxx9/HJ07d8aSJUsQFRUFX19frFy5Ejk5OTa3wZhWq4VMJsPXX39dZdCrOIfFuAfJWp07dzbM8yEi5/HqcNOzZ0/07NnT7ONlZWWYMmUKVq9ejWvXrqFVq1aYM2cOunTpUqPXq7iBWXZ2NsLDww0rMNRqNbKyspCTk2NYVbFy5Uo0b94cP/zwAzp06FCj1yXvduvWLaSnp+O3337DN998gxYtWth8DY1Gg5ycHNSpUwcPPfRQjepx3333YdWqVSgqKgKgm/D7448/ory8HL6+vlU+Z926dQgICMD27dvh7+9vuH/lypWVyhoPZVlzf0JCAoQQiI+Pxz333GNrcxyiUaNGAIBTp06hcePGhvtv376NgoICPPLII4b7zLWLiLx8WKo6mZmZ2L9/P9asWYMjR46gX79+6NGjB/Ly8uxyfX23un5FyYEDB1BeXm7yD1izZs3QsGFD7N+/3y6vSd5Fo9FgwIAB2L9/P9auXVujvVU0Gg1efPFFnDx5Ei+++CKCg4PNlr1586bZP6tff/01gL+HXJ588kn8+eefWLx4caWy4n+b3CkUCshkMmg0GsNjhYWFVQ4h161bt8qN+vS9ohUfe+KJJ6BQKDB9+vRKm+oJIaBSqapupAM98sgj8PPzw8KFC03qlJWVBbVabbJKrW7durUemiPyVF7dc2PJmTNnsHLlSpw5c8bQhf/yyy9j27ZtWLlyJd5+++1aXV+r1WLcuHF48MEH0apVKwC6ORF+fn4my08BICIiAhcvXqzV65F3mjBhAr788kukp6ejuLi40qZ9FTfsU6vVhjI3b95Efn4+1q9fj9OnT2PgwIGYOXOmxde7efMmOnbsiA4dOqBHjx6IjY3FtWvXsHHjRnz//ffo27cv2rVrBwAYOnQoPvroI4wfPx7//e9/0alTJ9y4cQPffPMN/u///g99+vRBr1698N5776FHjx4YPHgwLl++jA8++ABNmjTBkSNHTF47OTkZ33zzDd577z1ER0cjPj4eDzzwgGGOy5QpUzBw4ED4+voiPT0dCQkJePPNNzF58mQUFhaib9++CAoKQkFBATZs2ICRI0fi5ZdfrtX7b6v69etj8uTJmD59Onr06IHHH38cp06dwpIlS9C+fXuTzys5ORmfffYZxo8fj/bt26NevXpIT093an2JJMuVS7WkBIDYsGGD4fbmzZsNy1mNf3x8fET//v2FEEKcPHlSALD488orr1T5eqNHjxaNGjUSZ8+eNdz36aefCj8/v0pl27dvLyZNmmTfBpNX0C9hNvdjqWy9evVEYmKiePrpp8WOHTuser3y8nLxr3/9S/Tt21c0atRI+Pv7izp16oh27dqJd955R5SVlZmUv3nzppgyZYqIj48Xvr6+IjIyUjz11FPi9OnThjJZWVkiMTFR+Pv7i2bNmomVK1callob+/XXX0Xnzp1FYGCgAGCyLHzmzJmiQYMGQi6XV1oWvm7dOvHQQw8Z/o43a9ZMZGRkiFOnTpm8N5aWyVekr9+VK1cslqu4FFxv8eLFolmzZsLX11dERESIf/zjH+Lq1asmZa5fvy4GDx4sQkJCBAAuCycyIhPCDoeceACZTIYNGzagb9++AIDPPvsMQ4YMwfHjxytNNqxXrx4iIyNx+/Zt/P777xavGxYWZtgwTC8zMxObNm3Cd999h/j4eMP9//nPf/Dwww/j6tWrJr03jRo1wrhx4/DSSy/VrpFERERegMNSZrRr1w4ajQaXL19Gp06dqizj5+eHZs2aWX1NIQTGjBmDDRs2IDc31yTYALpuZl9fX+zatQtPPvkkAN3EwjNnzvAcGiIiIit5dbi5fv068vPzDbcLCgpw+PBhhIaG4p577sGQIUMwdOhQvPvuu2jXrh2uXLmCXbt2oXXr1ma3n7ckIyMDOTk52LRpE4KCggzzaJRKJQIDA6FUKjFixAiMHz8eoaGhCA4OxpgxY5CSksKVUkRERFby6mGp3NxcdO3atdL9w4YNQ3Z2NsrLy/Hmm2/io48+wvnz53H33XejQ4cOmD59Ou69916bX8/c0s2VK1di+PDhAHTLdidMmIDVq1ejrKwMaWlpWLJkCSIjI21+PSIiIm/k1eGGiIiIPA/3uSEiIiKPwnBDREREHsXrJhRrtVpcuHABQUFB3L6ciIjITQghUFpaiujoaMjllvtmvC7cXLhwAbGxsa6uBhEREdXA2bNnERMTY7GM14WboKAgALo3x9IZOURERCQdJSUliI2NNXyPW+J14UY/FBUcHMxwQ0RE5GasmVLCCcVERETkURhuiIiIyKMw3BAREZFH8bo5N9bSaDQoLy93dTU8lq+vb6XT1omIiOyB4aYCIQQuXryIa9euuboqHi8kJASRkZHcb4iIiOyK4aYCfbAJDw9HnTp1+MXrAEII3Lx5E5cvXwYAREVFubhGRETkSRhujGg0GkOwCQsLc3V1PFpgYCAA4PLlywgPD+cQFRER2Q0nFBvRz7GpU6eOi2viHfTvM+c2ERGRPTHcVIFDUc7B95mIiByBw1JERERUKyqVCrdv3zb7uJ+fn1OnezDcEBERUY2pVCosXry42nKZmZlOCzgclvIQw4cPh0wmg0wmg6+vLyIiItC9e3esWLECWq3W6utkZ2cjJCTEcRUlIiKPYqnHpibl7IE9N3bmyq65Hj16YOXKldBoNLh06RK2bduGsWPH4osvvsCXX34JHx9+3ERE5Pn4bWdHru6a8/f3R2RkJACgQYMGSEpKQocOHfDwww8jOzsbzz//PN577z2sXLkSv//+O0JDQ5Geno65c+eiXr16yM3NxbPPPgvg78m+b7zxBqZNm4aPP/4Y77//Pk6dOoW6deuiW7duWLBgAcLDw+3eDiIiotrgsJQdSbFrrlu3bmjTpg3Wr18PAJDL5Vi4cCGOHz+OVatW4T//+Q8mTZoEAOjYsSMWLFiA4OBgFBUVoaioCC+//DIA3XLtmTNn4pdffsHGjRtRWFiI4cOHO60dRERE1mLPjRdo1qwZjhw5AgAYN26c4f64uDi8+eabGD16NJYsWQI/Pz8olUrIZDJDD5Dec889Z/h948aNsXDhQrRv3x7Xr19HvXr1nNIOIiIia7DnxgsIIQzDTN988w0efvhhNGjQAEFBQXjmmWegUqlw8+ZNi9c4cOAA0tPT0bBhQwQFBSE1NRUAcObMGYfXn4iIyBYMN17g5MmTiI+PR2FhIXr37o3WrVtj3bp1OHDgAD744AMAlofKbty4gbS0NAQHB+PTTz/FTz/9hA0bNlT7PCIi8j5qdRAKCuKgVge5rA4clvJw//nPf3D06FG89NJLOHDgALRaLd59913I5bpc+/nnn5uU9/Pzg0ajMbnv119/hUqlwuzZsxEbGwsA+Pnnn53TACIikjQ/Pz/D7w8ebIevvuoNIeSQybRIT9+MpKRDlco5GsONBykrK8PFixdNloLPmjULvXv3xtChQ3Hs2DGUl5dj0aJFSE9Px969e/Hhhx+aXCMuLg7Xr1/Hrl270KZNG9SpUwcNGzaEn58fFi1ahNGjR+PYsWOYOXOmi1pJRERSEhYWhszMTBQW3sGMGeEQQjcNQgg5tmxJx9SpDyAuzsepOxRzWMqDbNu2DVFRUYiLi0OPHj3w7bffYuHChdi0aRMUCgXatGmD9957D3PmzEGrVq3w6aefYtasWSbX6NixI0aPHo0BAwagfv36mDt3LurXr4/s7GysXbsWLVq0wOzZszFv3jwXtZKIiKQmLCwMJSUR0GpNzwzUaGQoLY1warABAJkQQjj1FV2spKQESqUSarUawcHBJo/dunULBQUFiI+PR0BAgM3XdvU+N+6mtu83ERFJx7lzQKNGgPGm+AoFUFgIxMTU/vqWvr8r4rCUHem75qR0eBgREZEzxMQAy5cDo0YBGo0u2CxbZp9gYyuGGztjcCEiIm81YgSQlgbk5wNNmrgm2AAMN0RERGRHMTGuCzV6nFBMREREHoXhhoiIiDwKww0RERF5FIYbIiIi8igMN0RERORRGG6IiIjIozDckFVyc3Mhk8lw7do1q58TFxeHBQsWOKxOREREVWG48RDDhw+HTCbD6NGjKz2WkZEBmUyG4cOHO79iRERETsZw40FiY2OxZs0a/PXXX4b7bt26hZycHDRs2NCFNSMiInIehhsPkpSUhNjYWKxfv95w3/r169GwYUO0a9fOcF9ZWRlefPFFhIeHIyAgAA899BB++uknk2tt3boV99xzDwIDA9G1a1cUFhZWer09e/agU6dOCAwMRGxsLF588UXcuHHDYe0jIiIdlUqFoqIisz8qlcrVVXQpHr/gQOfOAXl5QGKi87aifu6557By5UoMGTIEALBixQo8++yzyM3NNZSZNGkS1q1bh1WrVqFRo0aYO3cu0tLSkJ+fj9DQUJw9exZPPPEEMjIyMHLkSPz888+YMGGCyeucPn0aPXr0wJtvvokVK1bgypUryMzMRGZmJlauXOmcxhIReSGVSoXFixdXWy4zM9Nw3qFKpbLpUGdby0sNw42DZGUBI0fqjn6Xy3UnpY4Y4fjXffrppzF58mT88ccfAIC9e/dizZo1hnBz48YNLF26FNnZ2ejZsycA4F//+hd27tyJrKwsTJw4EUuXLkVCQgLeffddAEDTpk1x9OhRzJkzx/A6s2bNwpAhQzBu3DgAQGJiIhYuXIjU1FQsXboUAQEBjm8sEZEXshQ6qipnaxiqSXiSGoYbBzh37u9gA+h+HTVKd1Kqo3tw6tevj169eiE7OxtCCPTq1Qt333234fHTp0+jvLwcDz74oOE+X19f3H///Th58iQA4OTJk3jggQdMrpuSkmJy+5dffsGRI0fw6aefGu4TQkCr1aKgoADNmzd3RPOIiMhGtoYhW8tLEcONA+Tl/R1s9DQa3RHwzhieeu6555CZmQkA+OCDDxzyGtevX8eoUaPw4osvVnqMk5eJiJxHrQ5CcXEYQkNVUCpLXV0dSWC4cYDERN1QlHHAUSiAJk2c8/o9evTA7du3IZPJkJaWZvJYQkIC/Pz8sHfvXjRq1AgAUF5ejp9++skwxNS8eXN8+eWXJs/74YcfTG4nJSXhxIkTaOKsRhERUSUHD7bDV1/1hhByyGRapKdvRlLSIYvP8YYwxNVSDhATo5tjo1DobisUwLJlzptUrFAocPLkSZw4cQIKfSX+p27duvjHP/6BiRMnYtu2bThx4gReeOEF3Lx5EyP+Nylo9OjRyMvLw8SJE3Hq1Cnk5OQgOzvb5DqvvPIK9u3bh8zMTBw+fBh5eXnYtGmToceIiIgcS60OMgQbABBCjq++6g21Osjscw4ebIcFC8Zh1aphWLBgHA4ebGe2rPHrFBTEWbyu1LDnxkFGjNDNscnP1/XYOCvY6AUHB5t9bPbs2dBqtXjmmWdQWlqK++67D9u3b8ddd90FQDestG7dOrz00ktYtGgR7r//frz99tt47rnnDNdo3bo1du/ejSlTpqBTp04QQiAhIQEDBgxweNuIiAgoLg4zBBs9IeQoLg6tskfGXBhKSMg324NTk54hKWC4caCYGOeFmoo9KxVt3LjR8PuAgAAsXLgQCxcuNFu+d+/e6N27t8l9zz77rMnt9u3bY8eOHWavUdXeOEREZB+hoSrIZFqTgCOTaREaWlxleWeEIangsBQREZEb8fPzAwAolaVIT98MmUw3wVPfs6IPHvpyevowZKymYUjq2HNDRETkRsLCwpCZmWlYij116hUUFvogLu4OoqPbA2hvsslexTBUcZipYhjS/1pdz1DF8CQlMiGEcHUlnKmkpARKpRJqtbrSvJRbt26hoKAA8fHx3ITOCfh+ExE5h/GOwxcuyI3CkK4nx9wOxTk5gXjlFSU0GhkUCoE5c9QYPPgvl+xQbOn7uyL23BAREXk44yASFQUkJ1tXfsIEYMAA/eIYGWJiQgCEOKye9sJwUwUv68xyGb7PRETS58zFMfbCCcVGfH19AQA3b950cU28g/591r/vRERE9uDSnpulS5di6dKlhiXDLVu2xNSpUw0HOlaUnZ1daTmyv78/bt26ZZf6KBQKhISE4PLlywCAOnXqQCaT2eXa9DchBG7evInLly8jJCSk0kaDREREteHScBMTE4PZs2cjMTERQgisWrUKffr0waFDh9CyZcsqnxMcHIxTp04Zbts7fERGRgKAIeCQ44SEhBjebyIiIntxabhJT083uf3WW29h6dKl+OGHH8yGG5lM5tAvRJlMhqioKISHh6O8vNxhr+PtfH192WNDREQOIZkJxRqNBmvXrsWNGzeQkpJittz169fRqFEjaLVaJCUl4e233zYbhGpDoVDwy5eIiMgNuTzcHD16FCkpKbh16xbq1auHDRs2oEWLFlWWbdq0KVasWIHWrVtDrVZj3rx56NixI44fP44YM1O5y8rKUFZWZrhdUlLikHYQERGRNLh8E7/bt2/jzJkzUKvV+OKLL/Dvf/8bu3fvNhtwjJWXl6N58+YYNGgQZs6cWWWZadOmYfr06ZXut2YTICIiIpIGWzbxc3m4qeiRRx5BQkICli1bZlX5fv36wcfHB6tXr67y8ap6bmJjYxluiIjIJsa7/FbFFbv2SoUz3hu33qFYq9WahBFLNBoNjh49iscee8xsGX9/f/j7+9urekRE5IVUKhUWL15cbbnMzEyvCzhSfG9cGm4mT56Mnj17omHDhigtLUVOTg5yc3Oxfft2AMDQoUPRoEEDzJo1CwAwY8YMdOjQAU2aNMG1a9fwzjvv4I8//sDzzz/vymYQEZGHq9groVYHobg4DKGhKsPBk1WV8wbWttmZ741Lw83ly5cxdOhQFBUVQalUonXr1ti+fTu6d+8OADhz5gzk8r83Ub569SpeeOEFXLx4EXfddReSk5Oxb98+q+bnEBER2cPBg+0qnaydlHTI1dUiIy4NN1lZWRYfz83NNbk9f/58zJ8/34E1IiIiMk+tDjIEGwAQQo6vvuqNhIR8kx4cci2eLUVERGSl4uIwQ7DRE0KO4uJQF9WIqsJwQ0REZKXQUBVkMq3JfTKZFqGhxS6qEVWF4YaIiMhKSmUp0tM3GwKOfs4Nh6SkRXJLwYmIiKQsKekQEhLyUVwcitDQYgYbCWK4ISIiqoafn5/JbaWytMpQU7GcN7C2zc58byS3Q7Gj2bLDIREReYdz54C8PCAxETBzVCF3KLbA+L25cEGOggIfxMffQXS0bvjO63coJiIicgb9F3JOTiAmTVJCq5VBLheYO1eNwYP/qvSF7K3BxRr69yYrCxg5EtBqAbkcWL4cGDHC+fVhzw0REXkd/ZEBanUQFiwYZ7K8WybTYty4BVAqSyV7nIIUe5HOnQMaNdIFGz2FAigsNN8bZgv23BAREVmgDwaW9q1RKktNAoQzhl6sIcWznADdsJ7WdJU8NBogP98+4cYWDDdEROS19PvWVOy5qbhvjXGgsHT8gjMChRTPcgJ085Xk8so9N02aOLUaALjPDREReTFr963RBwVzxy+o1UEm5bxRTIxujo1CobutUADLljm/1wZgzw0REXk5W/atqW4Yy9uNGAGkpemGopo0cU2wARhuiIiIzO5bU5G1w1jOpFYHobg4DKGhKkkErJgY14UaPYYbIiIiK+mHsSrOuXFVqLA0/8ebMdwQERHZQCrHL5ib/5OQkC+JHhxXYrghIiKvU9sjA6wdxnIkzv8xj+GGiIi8TlhYGDIzMyW3EZ419IGruvk/3njOlR7DDREReSVbgouUDoc0DmYNGpTglVeU0GhkUCgE5swpweDBgyQbzJyFxy8QERFZQYpHHgC6Yw9cvfTaGXj8AhERkZ1JtSdECkuvpYY7FBMREZFHYbghIiIij8JwQ0RERB6Fc26IiIjsTGqTj6VWH0djuCEiIrIjlUqFxYsXV1suMzPTKYGiJvVx9zDEcENERGRHFUOBuYMtLYUHR9anunJSC2c1wXBDRETkIO54sKWtYUiKOKGYiIjIAcwdbKlWB7m4Zpap1Wq7lnMFhhsiIiIHsHSwpZSVl5fbtZwrMNwQERE5gP5gS2PGB1uS4zDcEBGR5J07B3z7re5Xd6FUliI9fbMh4Ojn3BhPKibH4IRiIiKStKwsYORIQKsF5HJg+XJgxAhX18o6SUmHkJCQj+LiUISGFksi2JhbveVJGG6IiEiSVCoVCgvvYOTIcGi1MgC6gDNqlEDbtpcRF+cjyaXIfn5+JreVytIqQ0TFcs6oj6XVW86qjzMw3BARUa2dOwfk5QGJifY5oVq/10pBQRy02mEmj2k0Mixa9DXi4/+Q5F4rYWFhyMzMlMwmePr6FBbewYwZ4RBCFxSFkGPLlnRMnfqASVD08TGNBuZ6eiqWkxLp1oyIiNyCI4aN9MFAPynXeNWR8aRcqe61IsXAdeSI7jMyptHIUFoaAePqhoSEGH5vqafHuJzUcEIxERHViEqlwoEDlzBypDB8aeqHjQ4cuASVSlXr1+CkXPtJTNSFT2MKBdCkiel9+uGp6vbpkfIwFntuiIjIZs4cNpLipFx3FBOj61UbNQrQaHTBZtmyysOI+mGsb78F5s+vvE/Pgw8OQ5cu0uudMsZwQ0RENnP2sJG5SblkmxEjgLQ0ID9f12Njbn5UWFgYOnQAZDJAiL/vl8mABx4Ig4RzDQAOSxERUS1w2Mj9xMQAXbrUbOK3TGb36jgEe26IiKhWOGzkmfLyTHttAN2cqvx8+6yIcySGGyIiqjUOG3ke/QRk4xVWVU1AliIOSxERkeRYuxJHyit23J1+ArJCobttbgKyFLHnhoiIJKfiRngXLshRUOCD+Pg7iI7WdSU4cyM8b2XtBGSpYbghIiJJy8kJxKRJSmi1MsjlAnPnqjF48F+urpbXiIlxn1Cjx3BDREQ2c/SwkX4fHbU6CAsWjDMcGaDVyjBxYjDOn18BpbJUkscvkOsx3BARkc0cfX6S/rrFxWEme+gAuo3kiotDoVSWSvb4BXIthhsiIi9g74MtAefsUFvdJoFEVeFqKSIiD5eVBTRqBHTrpvs1K8vVNbIeNwmkmmDPDRGRBzt37u8TuwH9wZa6FTDuMkmUmwSSrRhuiIg8WF6e6SZsgO7QRHfYZdYYNwkkW3BYiojIQ6lUKgQHX4JcbrqHvkIhEBR0CSqVykU1I3Is9twQEXkg/VJqAOjdux2++qo3hJBDJtOiV6/N2Lz5EABwKTV5JIYbIiIPZLxE2tKcFakupebxC1QbDDdERF7A3easOHofHfJsDDdERCRJDC5UU5xQTERERB7FpeFm6dKlaN26NYKDgxEcHIyUlBR8/fXXFp+zdu1aNGvWDAEBAbj33nuxdetWJ9WWiIiI3IFLw01MTAxmz56NAwcO4Oeff0a3bt3Qp08fHD9+vMry+/btw6BBgzBixAgcOnQIffv2Rd++fXHs2DEn15yIyP7OnQO+/Vb3KxHVnEwIIaov5jyhoaF45513MGLEiEqPDRgwADdu3MDmzZsN93Xo0AFt27bFhx9+aNX1S0pKoFQqoVarERwcbLd6ExHVhEqlwu3bt5GTE4hJk5TQamWQywXmzlVj8OC/ajxptqioCMuXL6+23MiRIxEVFVWTqkuO/r00hxOQ3Zst39+SmVCs0Wiwdu1a3LhxAykpKVWW2b9/P8aPH29yX1paGjZu3Gj2umVlZSgrKzPcLikpsUt9iYhqS78XjVodhAULxkEIGQBAq5Vh4sRgnD+/AkplaY32ovG2pdTG+/oAgFodhOLiMISGqkxWiXFfH+/g8nBz9OhRpKSk4NatW6hXrx42bNiAFi1aVFn24sWLiIiIMLkvIiICFy9eNHv9WbNmYfr06XatMxGRPeh7GYqLw0xOvQYAIeQoLg6FUllao71ovG0ptXE7Dx403bQwPX0zkpIOVSpHnsvl4aZp06Y4fPgw1Go1vvjiCwwbNgy7d+82G3BsNXnyZJPenpKSEsTGxtrl2kRE9hAaqoJMpjUJODKZFqGhxbW6rqcEF1uo1UGGYAPoQuJXX/VGQkK+W+3zQ7Xj8qXgfn5+aNKkCZKTkzFr1iy0adMG77//fpVlIyMjcenSJZP7Ll26hMjISLPX9/f3N6zG0v8QEUmJUlmK9PTNkMl0J1zqexv4ZWw7S71g5D1c3nNTkVarNZkjYywlJQW7du3CuHHjDPft3LnT7BwdIiJnM57UeuGCHAUFPoiPv4PoaF1wMTcUZOmIBLKeo3rByL24NNxMnjwZPXv2RMOGDVFaWoqcnBzk5uZi+/btAIChQ4eiQYMGmDVrFgBg7NixSE1NxbvvvotevXphzZo1+Pnnn61aEUBE5GjGk1otzfswN6nV3Y5IkCJ9L1jF957vq3dxabi5fPkyhg4diqKiIiiVSrRu3Rrbt29H9+7dAQBnzpyBXP53+u7YsSNycnLwz3/+E6+99hoSExOxceNGtGrVylVNICIy0PfYVDfvg5NaHYu9YOTScJOVlWXx8dzc3Er39evXD/369XNQjYiIaq+61U/keOwF824un1BMRORp9PM+jFU178Pb9qJxJL6XZExyE4qJiNydtfM+vG0vGkfie0nGGG6IiBzA2nkf/LK1H76XpMdwQ0TkIJz3QeQanHNDREREHoXhhojITjiplUgaOCxFRGQnnNRKJA0MN0REdsTgQuR6HJYiIiIij8KeGyLyKsYHW1aFw0ZE7o/hhoi8hvHBloDuDKji4jCEhqpMlmybO9iSiNwDww0ReQ3jHhtLp3bzYEsi98ZwQ0Rep7pTu8k9cciR9BhuiMjr8NRuz1NxyNEcDjl6B66WIiKvY+2p3eQ+rB1K5JCjd2C4ISKvoz+1Wx9wzJ3aTe5DrVbbtRy5Nw5LEZFXsvbUbjLPeI7LhQtyFBT4ID7+DqKjdaHRmXNcysvLTW6bWwlXsRx5JoYbIvJyMldXwC0Zz3GxtPLMFXNcLNWHvAPDDRG5NVt6D4wPrLT0BciDLaunf8+rW3nm7DkuXAlHAMMNEbkxW3sP9AdbFhbewYwZ4RBC12sjhBxbtqRj6tQHEBfnw9U0NpDayjOp1YdcgxOKichtVdd7oFYHmZQDdAdblpREQKs1HY7SaGQoLY2wGGzOnQO+/Vb3K+lIbeWZr28ZAFHhXgFfX66S8iYMN0Tk9iz9b70ilUqF4OBLkMtNvwAVCoGgoEtQqVRVvkZWFtCoEdCtm+7XrCz71d+dSWXlmY+PbiCivNwfledRyVBe7mdSjjwbP2Uicnv63gPjgFNV74HxMFbv3qbDWL16bcbmzVVPgj13Dhg5EtD+r4NCqwVGjQLS0oCYGAc3zg1IYeVZSEgIgOr/LOjLkWdjuCEit6fvPag456bil6zx8JSlL+SKk2Dz8v4ONnoaDZCfz3Cjp1SWunROi34SeHV/FjhZ3Dsw3BCRpNR075Sa9B5Y84WsG8a6A7k83GSejm4Y6zJUKk5AlgL9ZHH9n52pU6+gsNAHcXF3EB3dHkB7ni3lRRhuiEgyart3ir17D2o6jKV37pyu1ycx0fN6eKztAXFmT4nxZxAVBSQnO+2lSWIYbohIMqS2d0pNh7EA3YRj/TwduRxYvhwYMcIp1a4xW07VrthTUl15ImdiuCEiybF2rxJn9x5Y2zPkjhOQK56qbe74AuNeKgYXkiqGGyKSHGtXP0m198AdJyAbv4eWhgR5qja5A4YbIpIca1c/AdLrPXD3Ccg8voA8AcMNEUmSI/ZOcfQwVm0nIEsBjy8gT8BwQ0SSZe/VT44exqrNBGSpsHZIkEjKGG6IyKs4s8fE1Rvb1YQtQ4JEUsVwQ0SSIbW9U6RWH2eRwnEKRLXBcENEkiG11U9Sq48zuWOvE5Eeww0RSYrUgoLU6uMo3tpLRZ6J4YaIiLy6l4o8D8MNEREB8J5eKvJ88uqLEBGRNTi0QyQN7LkhIrITDu0QSQPDDRGRHTG4ELkeww0RETmFSqVirxY5BcMNETnVuXO6U7MTE6V7QraUuWtAMD53yxLjc7fcta3kegw3ROQ0WVnAyJGAVgvI5cDy5cCIEa6ulfuoGBDU6iAUF4chNFRlsuGeFA/mtPY8LX25moQhIj2GGyJyinPn/g42gO7XUaOAtDT24FjLOCAcPNiu0vlPSUmHKpWTKnPBTM/WMERkjOGGiBxOpVLhhx8Ardb0f9gaDfDjjyoEBnIiri3U6iBDsAEAIeT46qveSEjId4sjEywFMyJ7YLghIofObdAPL6jVQZDJxhm+kAFAJtNi795VOHaslMMLNiguDjN5HwFdwCkuDpV8uKlpMKuup4fIGMMNkZdz9DwOfWhSKkuRnr650v/Y9a/B4QXrhYaqIJNpKwXF0NBiF9bKOjUJZuzpIVvVKNycO3cOISEhqFevnsn95eXl2L9/Pzp37myXyhGR4zlzHkdS0iEkJOSjuDgUoaHF/B94DVUXFKXM1mDm7kNw5Bo2hZuioiL06dMHBw4cgEwmw+DBg7FkyRJDyCkuLkbXrl2h0WgcUlkichxnfYkolaX8UrIDdw2KtgYzdx6CI9exKdy8+uqrkMvl+PHHH3Ht2jW8+uqr6Nq1K3bs2IG77roLACCEcEhFicix+CXiftwpKBqfp2UpmFU8d8udh+DIdWwKN9988w02bNiA++67DwCwd+9e9OvXD926dcOuXbsAADKZzP61JCKH45eI9LnzwZy2nrulb0N1PT1SbCu5nk3hRq1WG3poAMDf3x/r169Hv3790LVrV3zyySd2ryAROYc7z+PwFu5+MKct9arY1qlTr6Cw0AdxcXcQHd0eQHtJt5Vcy6Zw07hxYxw5cgSJiYl/X8DHB2vXrkW/fv3Qu3dvu1eQiJwnKekQwsMv4syZhmjY8AxiYopcXSWqwJu+zI3bGhUFJCe7sDLkVuTVF/lbz549sXz58kr36wNO27Zt7VUvInKBgwfbISvreezY0QNZWc/j4MF2tb6mOw+lEJF7sqnn5q233sLNmzcNt//8808AwN133w0fHx+sW7cO58+ft/p6s2bNwvr16/Hrr78iMDAQHTt2xJw5c9C0aVOzz8nOzsazzz5rcp+/vz9u3bplS1OI6H/0oaK61VI1DR/uPpRCRO7HpnDj4+MDrVaLjIwMfPbZZ7h69SoA4K677sLAgQPx5ptvolGjRlZfb/fu3cjIyED79u1x584dvPbaa3j00Udx4sQJ1K1b1+zzgoODcerUKcNtTmImqrmwsDA8/fTTyM2VVblaqlWrvkhNFbUKHwwu7oGncJOnsCncFBcXIyUlBefPn8eQIUPQvHlzAMCJEyeQnZ2NXbt2Yd++fSaTji3Ztm2bye3s7GyEh4fjwIEDFjcClMlkiIyMtKXqRGSGSqXCJ598YvZ4hGPHNuLsWR6P4Ol4Cjd5EpvCzYwZM+Dn54fTp08jIiKi0mOPPvooZsyYgfnz59eoMmq1GgAQGhpqsdz169fRqFEjaLVaJCUl4e2330bLli2rLFtWVoaysjLD7ZKSkhrVjchT8XgEAip/vuaO4eCfA3IHNoWbjRs3YtmyZZWCDQBERkZi7ty5GD16dI3CjVarxbhx4/Dggw+iVatWZss1bdoUK1asQOvWraFWqzFv3jx07NgRx48fR0xMTKXys2bNwvTp022uD5E3ctddb8m+eJYTuTubj18w10MCAK1atcLFixdrVJGMjAwcO3YMe/bssVguJSUFKSkphtsdO3ZE8+bNsWzZMsycObNS+cmTJ2P8+PGG2yUlJYiNja1RHYm8gTvtekv258hjODinh5zFpnBz9913o7CwsMoeEgAoKCiodkipKpmZmdi8eTO+++47s9c2x9fXF+3atUN+fn6Vj/v7+8Pf39/mOhF5K3PDEeQdHHUMB+f0kDPZFG7S0tIwZcoU7Ny5s9Ky0LKyMrz++uvo0aOH1dcTQmDMmDHYsGEDcnNzER8fb0t1AAAajQZHjx7FY489ZvNzicgUhyPIUcdwcE4POZPNE4rvu+8+JCYmIiMjA82aNYMQAidPnsSSJUtQVlaGjz/+2OrrZWRkICcnB5s2bUJQUJBhSEupVCIwMBAAMHToUDRo0ACzZs0y1KFDhw5o0qQJrl27hnfeeQd//PEHnn/+eVuaQkQVOOtUcJI2ZxzDwRBNjmZTuImJicH+/fvxf//3f5g8ebLhBHCZTIbu3btj8eLFNs1nWbp0KQCgS5cuJvevXLkSw4cPBwCcOXMGcvnf/4O4evUqXnjhBVy8eBF33XUXkpOTsW/fPrRo0cKWphDR/1y7dg1A9cMR165dQ1RUlAtqSM7myInlDNHkDDaFGwCIj4/H119/jatXryIvLw8A0KRJkxrNtdGHI0tyc3NNbs+fP7/GS82JqDL9JpjVDUdws0zPVnGqgbmJ5bU9JsNRc3qIjNkcbvTuuusu3H///fasC5HXqM2qkXPngLw8IDERsHH+fZWUSuX/frU8HKEvR57JWcdkOGpOD5GxGocbIqqZmqwa0YehnJxATJqkhFYrg1wuMHeuGoMH/2W3JbTc58a7OWOVkjPm9BAx3BA5ma2rRvRhSK0OwoIF4yCEbnhIq5Vh4sRgnD+/Akql/Y5H4D435GgM0eRoDDdELmTNqhF9yKlurgKX0JKUOWtODxHAcEPkMrauGuFcBXJnzprTQwQw3BC5jK2rRjhXgdwdgws5C8MNkYvUpCfGEXMVrB0G4HABEbkLhhsiF6lpT4y9J/xyuIDIsey9fQNVj+GGyIWksmqEwYXIMbKygJEjAa0WkMuB5cuBESNcXSvPJ6++CBHZU1WrRuLj/6gUbDgMROTezp37O9gAul9HjdLdT47FnhsiJ7N1GIhzYojcU17e38FGT6MB8vM5POVoDDdELmDLMBDnxBC5p8RE3VCUccBRKIAmTVxXJ2/BcEPkBhhciNyLSqWCQnEbc+cG4pVXlNBoZFAoBObMUUOh+AsqFf9D4kgyYc3R3B6kpKQESqUSarUawcHBrq4OERF5mIrnx+mOWKm8aMBeR6Z4C1u+v9lzQ+RiXCZK5FkqDiGb276BR6Y4DsMNURX0p3CbU9s5Ls465ZuIyBsx3BBVULFL2Zyadik7+5RvT+foIEpE7ofhhqiCil+UuvHyMISGqky6lmvapcxTvu2n6rkNlT8rBkUi78JwQ2TBwYPtKh2PkJR0yC7X5inftWccAC19VgyKRN6FOxQTmaFWBxm+LAFdr8pXX/WGWh1kl+vrz5aSyXSbYPCU75pz9GdFRO6FPTdEZlQ3bGQPUjlbytGM58VcuCBHQYEP4uPvIDpaF+xqOy/GGZ8VEbkPhhtyW7ZOJLW1vLOGjex9yrfUGM+LsTR0VJt5MRziIynhkSmux3BDbsnWFU22lFer1QB0oaN16yP45Zc2AGQABFq3PmIIImq1GlFRUbVphlfQB0pzQ0cJCfm1nkCtH+KrGJw8OTSSdPHIFNdjuCG3ZO0Xob6cLeXLy8sB6L6MjxxpDV2wAQAZjhxpjW7d/gOlstRQjqzj6KEjbxniI/fA4OJanFBMbknfu2KvcsZ8fHSZ39KXsXE5W3lrl7V+6MiYvYeOlMpSxMf/wWBD5OXYc0NuydpeE3PlzO2HAgAhISEAqp/HoS9nK2/tsnbE0JG3BkUisozhhryOtXvXOHIehzODi5TOrrL30JG3BkUisozhhrxKdZNaK3LXeRxSPrvK3qvDGFyIqCKGG/IIloaZjNV8UqvMwmPSwrOriMjbMdyQ2zt4sB2+/LI3dPPjtXj8cfNHJNi6H4ojj19wFKmdXcV5MUTkbAw35Jb0K5XU6iCjYAMAcnz55d/DTPpy+i/O6ubR+Pn54dq1a4ZrWxrCunnzptPaWxNS2diO82KIyNkYbsgt6VcqnT0bi8o7Gshx9mwMlMqThnIVv2CnTr2CwkIfxMXdQXR0ewDtDV+w1vZ81KlTx3ENtAMpbWzH4EJEzsRwQ26pJkMdxl+wUVFAcrLl50ql56M23HVCNBFRbTDckFvS98QUFt7BunXCMGkWAGQygVdfTUVc3MO16jGQUs9HbXj62VVERBUx3JDbCgsLQ1gY8K9/AaNGARoNoFAAy5bJkJwcYZfXYM8HEZH7YbghtzdiBJCWBuTnA02a2H+jOvZ8EBG5F4Yb8ggxMa7ffVcquPSaiLwdww2Rh+HSayLydgw3RBV4Qs8Hg4t3kNK5YURSwnBDVAF7PsgdZGUBI0cCWi0glwPLl+vmnxERww1RlRhcSKpUKhUKC+9g5MhwaLX6c8OAUaME2ra9jLg4H/75Ja/HcENeQ39SNgBcuCBHQYEP4uPvIDpaC4C9MSR9+kNRCwrioNUOM3lMo5Fh0aKvER//Bw9FJa/HcENeQf+lAFg+DJNfCiRl+nBe3e7ZzjoUlUiqKh7KQ+SR9P/YmzsMU60OMilHJGX63bNlMl2vo7vunk3kKOy5Ia9S3WGYNcUhL3I27p5NZB7DDXkVRxyGySEvchXunk1UNQ5LkVdxRHc+h7yIiKSFPTfkdRzVne+oIS8iIrINww15JUd05ztiyIuIiGzHYSkiO+EKFnI0TzgahMgZ2HNDXsFZXwpcwUKOxKNBiKzDcENewZlfClzBQo7E4EJUPYYb8hr8UiAi8g6cc0NUS5wHQUQkLey5IaolzoMgIpIWl/bczJo1C+3bt0dQUBDCw8PRt29fnDp1qtrnrV27Fs2aNUNAQADuvfdebN261Qm1JTIvLCwMUVFRZn8YbIiInMel4Wb37t3IyMjADz/8gJ07d6K8vByPPvoobty4YfY5+/btw6BBgzBixAgcOnQIffv2Rd++fXHs2DEn1pyIiIikSiaEEK6uhN6VK1cQHh6O3bt3o3PnzlWWGTBgAG7cuIHNmzcb7uvQoQPatm2LDz/8sNrXKCkpgVKphFqtRnBwsN3qTkRERI5jy/e3pObcqNVqAEBoaKjZMvv378f48eNN7ktLS8PGjRsdWTUii4xPBa8K59wQETmPZMKNVqvFuHHj8OCDD6JVq1Zmy128eBEREREm90VERODixYtVli8rK0NZWZnhdklJiX0qTPQ/xqeCA7oDNIuLwxAaqjLZ74anghMROYdkwk1GRgaOHTuGPXv22PW6s2bNwvTp0+16TSJjxj02Bw+2M5wMrj9+ISnpUKVyRETkOJLY5yYzMxObN2/Gt99+i5iYGItlIyMjcenSJZP7Ll26hMjIyCrLT548GWq12vBz9uxZu9WbyJhaHWQINoDuRPCvvuoNtTrIxTUjIvIuLu25EUJgzJgx2LBhA3JzcxEfH1/tc1JSUrBr1y6MGzfOcN/OnTuRkpJSZXl/f3/4+/vbq8q1xrkZnqu4OMzkRHBAF3CKi0N5HAMRkRO5NNxkZGQgJycHmzZtQlBQkGHejFKpRGBgIABg6NChaNCgAWbNmgUAGDt2LFJTU/Huu++iV69eWLNmDX7++WcsX77cZe2wVsW5GeZwboZ7Cg1VQSbTmgQcmUyL0NBiF9aKiMj7uHRYaunSpVCr1ejSpYvJhmefffaZocyZM2dQVFRkuN2xY0fk5ORg+fLlaNOmDb744gts3LjR4iRkqbB2zgXnZrgnpbIU6embIZNpAcAw54a9NkREzuXyYanq5ObmVrqvX79+6NevnwNqRJZwSK16SUmHkJCQj+LiUISGFjPYEBG5gGRWS5G0cUjNekplqduFGgZXIvIkDDdklYpffOb2cvHGITV3PxWc+/QQkadhuCGbWdrLxRu5+6ng3KeHiDwNww3ZxNxeLgkJ+W43FGNPUg0utuBnS0SeQhKb+JH7sLSXC7k3frZE5CkYbpzI3edmAH/v5WKMe7l4Bn62ROQpOCzlRGFhYXj66adx8+ZNs2Xq1Kkj6SEO/V4uFedlcNjC/fGzJSJPwXDjRCqVCp988km15aS+KoV7uXgufrZE5AkYbpzInXcorjhUZm4vFykPqUmJlPeVccd9eoiIjDHckFXcfbmzlEhtQ0RPmAtGRGSM4caFzG2WJlUMLvYhtQ0RGVyJyNMw3LgIN8JzPikOBUnlz4Gt7TZ+Ly9ckKOgwAfx8XcQHa1bbcUwRESuxHDjAtwszfmkNhQEuO+fA+P30lI4c8XE+HPngLw8IDERiIlx6ksTkYRwnxsX4GZpzlfVUFBBQRzU6iCL5RzJXf8c6N8jc+FM/546e2J8VhbQqBHQrZvu16wsp748EUkIe25cQL9ZmvEXGzdLcx6pDAW5+58DS+HM2T1P584BI0cC2v/tQajVAqNGAWlp7MEh8kbsuakllUqFoqIisz8qlcpQVr/aRKksRevWRwCI/z0i0Lr1EcMXAlelOE51vQ3OpN80T78rsLttmhcaqgKgrXCva8JZXt7fwUZPowHy851eFSKSAPbc1IKt8zj0q1IKC+9gxoxwALL/lZDh2LE2yMqKQlycj8k8BSlOgnVnUuptANxz0zy1Wm10S2bymExmWi4qKsopdUpMBORy04CjUABNmjjl5YlIYhhuaqEmm/KFhYXhyJGq/pcpQ2lpBIxzihQnwbo7KQwFufuGiOXl5QB0QbFiuDEOivpyzhATAyxfrhuK0mh0wWbZMg5JEXkrhhsXsPZ/me68o7FUSeH8JE/ZV0YKQRH4u3fzsceAH3+Uo7DQB3FxumXpRUXu8V4SkX0x3LgA/5fpWlIYCvKEL1spBEVzvZvHjpneZu8mkXdhuHGRESN0Kzny83U9Ngw2jmXrUBDnOpnn4/P3PxuWgqJxOUdh7yYRVYXhxoViYmwLNe52XIOU2DIUxLlOloWEhJjcNhcUK5YjInIWhhs3IZW9WaTE1t4Va4MIewOIiNwbw40dOapnxV236XckZ/ausMeMiMi9MNzUgvE8Dks9K7Vd0iu1vVmkwFkna7PHrDJr/zxLdSk7EXk+hptaqLgpnxC6PT+EkGPLlnRMnfpApU35bKH/cqhuya23f4k4KoCwx6xqnrKUnYg8F8NNLdmyKV9Nrq3/EmnQoASvvKKERiODQiEwZ04JBg8eVKsvEU9YEeTIAMIeM/Ok/ueCiLwbw40dOHLrd/2XyIQJwIAB+qXjMsTEhAAIqfF1PWVFkCMDiFQ2qSPzOERGRFVhuLEDZ23KZ+vScUs8ZUWQIwOIFDapI8s4REZEVWG4sRNuyucajgggxv/Lt7RJHXsDpIHBhYgqYrixI3v2rDibOy93tvdxCjXpDfCE+UtERJ6C4Ybccrmzo0/WtiWIVJy/ZC4oSn3+EhGRp2C48XLuutxZSnMtjOtgKShKff4SEZGnYLjxcu683FlqvSDuGhSJiDyNvPoi5Mn0q42McblzzVgKikRE5DwMN15KPxdFv9pIH3AqrjbiiiDrMSgSEUkDh6U8iC0rdirOWZk69QoKC30QF3cH0dHtAbTnCh8bcV8cIiJpYLjxEDXZcdg4uERFAcnJDque17D3snQiIrIdw42H8JQdhz2BuWXpRETkHJxzQ1RLPN+IiEha2HNDVEtS2nOHiIgYbjyWOx+n4I4YXIiIpIPhxgO543EKRERE9sJw42EcuUsuD4ckIiJ3wHDjYRx1nEJNlpoTERG5AldLeQj9Spzqdsmt6YodLjUnIiJ3wZ4bD2G8YqdBgxK88ooSGo0MCoXAnDklGDx4EIeNiIjIKzDceBB9cJkwARgwAMjPB5o0kSEmJgRAiF1fi6uxiIhIqhhuPIjxhF+FAmjaVHd/UZHuV3v13HA1FhERSRnDjYdw1oRfR67GIiIisgeGGw9Rkwm/NVna7ajVWERERPbCcOOlatrTo1+NZRxwjFdjERERuRqXgnspW3t69EvIlcpSpKdvNiw318+50ffa8HBIIiJyNfbckFUqHg45deoVFBb6IC7uDqKj2wNoz6XmREQkCQw3HsoRS7WNg0tUFJCcbJfLEhER2RXDjQeqyVJt7ltDRESewqXh5rvvvsM777yDAwcOoKioCBs2bEDfvn3Nls/NzUXXrl0r3V9UVITIyEgH1tR+HH34ZE2WanPfGiIi8iQuDTc3btxAmzZt8Nxzz+GJJ56w+nmnTp1CcHCw4XZ4eLgjqmd3jtyLRj+Rt7ql2hUn/HLfGiIi8jQuDTc9e/ZEz549bX5eeHg4QkJC7F8hB3Pk4ZP6Cb+FhXfw8ccCWq3M8JhCITBmTE/Exflw3xoiIvJ4brkUvG3btoiKikL37t2xd+9ei2XLyspQUlJi8uOpwsLCkJwcgeXLZVAodPcpFMCyZTIkJ0eYBBtHnyJORETkKm41oTgqKgoffvgh7rvvPpSVleHf//43unTpgh9//BFJSUlVPmfWrFmYPn26k2vqWiNGAGlp+oMzgZiYymV4ijgREXkqmRBCuLoSACCTyaqdUFyV1NRUNGzYEB9//HGVj5eVlaGsrMxwu6SkBLGxsVCr1SbzdpyhqKgIy5cvr7bcyJEjERUV5YQa/e3cOcthyBkcPdmaiIjcV0lJCZRKpVXf327Vc1OV+++/H3v27DH7uL+/P/z9/Z1YI/cUE+O6UANUnmxtbml6bQ/+JCIiz+f24ebw4cNO7+WQKnfu+TCut6Wl6TWZbE1ERN7FpeHm+vXryM/PN9wuKCjA4cOHERoaioYNG2Ly5Mk4f/48PvroIwDAggULEB8fj5YtW+LWrVv497//jf/85z/YsWOHq5pQK/bcOM+Ry8ydiUvTiYiotlwabn7++WeTTfnGjx8PABg2bBiys7NRVFSEM2fOGB6/ffs2JkyYgPPnz6NOnTpo3bo1vvnmmyo39pMi45VHlnonarJCyZHLzJ2JS9OJiKi2XBpuunTpAkvzmbOzs01uT5o0CZMmTXJwrRzHeC+aGTPCIYRuLxoh5NiyJR1Tpz5Q5V403kS/NN044BgvTSciIqqOW+5z487CwsJQUhJhsskeAGg0MpSWRnh1sAEApbIU6embDXvv6Hu12GtDRETWcvsJxe4oMRGQywGt0d55CoVuGba9uPNBmElJh5CQkI/i4lCEhha7Xf2JiMi1GG5cICYGWL4cGDUK0Gj0uwjbbym2JxyEqVSWMtQQEVGNMNy4iDW7CNeEu642snYSNY+DICKi6jDcuJAjNs5z19VGxsdBmCPlfXqIiEg6GG48RMWDMM2tNpJyzweDCxER2QPDjYeoyUGY7ryjMRERkTmSOTjTWWw5eMudVXcQpqfsaExERN7Bqw7OpKpVN5/HU3Y0JiIiqoib+BEA3SqrgoI4qNVBrq4KERFRrbDnhjxiXxwiIiI99tx4OXP74rAHh4iI3BXDjZeztC8OERGRO2K48XL6fXGM8RRuIiJyZww3Xo6ncBMRkafhhGIvZbxTsaVTuKW8ozEREVFVGG68FM9yIiIiT8VwI3GOPCKBwYWIiDwRw42E8YgEIiIi23FCsYTxiAQiIiLbMdwQERGRR2G4cSM8/4mIiKh6nHPjJnj+ExERkXXYc+MGeP4TERGR9Rhu3ADPfyIiIrIew40b4PlPRERE1mO4kTD90QfVnf/EIxKIiIj+JhNCCFdXwplKSkqgVCqhVqsRHBzs6upUy3iH4gsX5Cgs9EFc3B1ER+uCDo9IICIib2DL9zdXS0mccXCJigKSk11YGSIiIjfAYSkiIiLyKAw3RERE5FEYboiIiMijMNwQERGRR2G4ISIiIo/CcENEREQeheGGiIiIPArDDREREXkUhhsiIiLyKAw3RERE5FEYboiIiMijeN3ZUvpzQktKSlxcEyIiIrKW/nvbmvO+vS7clJaWAgBiY2NdXBMiIiKyVWlpKZRKpcUyMmFNBPIgWq0WFy5cQFBQEGQymV2vXVJSgtjYWJw9e7ba49jdkae3D/D8NrJ97s/T28j2uT9HtVEIgdLSUkRHR0Mutzyrxut6buRyOWJiYhz6GsHBwR77hxbw/PYBnt9Gts/9eXob2T7354g2Vtdjo8cJxURERORRGG6IiIjIozDc2JG/vz/eeOMN+Pv7u7oqDuHp7QM8v41sn/vz9Dayfe5PCm30ugnFRERE5NnYc0NEREQeheGGiIiIPArDDREREXkUhhsiIiLyKAw3FnzwwQeIi4tDQEAAHnjgAfz3v/+1WH7BggVo2rQpAgMDERsbi5deegm3bt2q1TUdzd5tnDZtGmQymclPs2bNHN0Ms2xpX3l5OWbMmIGEhAQEBASgTZs22LZtW62u6Wj2bp+UPr/vvvsO6enpiI6Ohkwmw8aNG6t9Tm5uLpKSkuDv748mTZogOzu7UhkpfX6OaKM7f4ZFRUUYPHgw7rnnHsjlcowbN67KcmvXrkWzZs0QEBCAe++9F1u3brV/5a3giPZlZ2dX+vwCAgIc0wAr2NrG9evXo3v37qhfvz6Cg4ORkpKC7du3Vyrn8L+Hgqq0Zs0a4efnJ1asWCGOHz8uXnjhBRESEiIuXbpUZflPP/1U+Pv7i08//VQUFBSI7du3i6ioKPHSSy/V+JqO5og2vvHGG6Jly5aiqKjI8HPlyhVnNcmEre2bNGmSiI6OFlu2bBGnT58WS5YsEQEBAeLgwYM1vqYjOaJ9Uvr8tm7dKqZMmSLWr18vAIgNGzZYLP/777+LOnXqiPHjx4sTJ06IRYsWCYVCIbZt22YoI6XPTwjHtNGdP8OCggLx4osvilWrVom2bduKsWPHViqzd+9eoVAoxNy5c8WJEyfEP//5T+Hr6yuOHj3qmEZY4Ij2rVy5UgQHB5t8fhcvXnRMA6xgaxvHjh0r5syZI/773/+K3377TUyePFn4+vo6/d9Rhhsz7r//fpGRkWG4rdFoRHR0tJg1a1aV5TMyMkS3bt1M7hs/frx48MEHa3xNR3NEG9944w3Rpk0bh9TXVra2LyoqSixevNjkvieeeEIMGTKkxtd0JEe0T0qfnzFr/lGdNGmSaNmypcl9AwYMEGlpaYbbUvr8KrJXG935MzSWmppa5Zd///79Ra9evUzue+CBB8SoUaNqWcPasVf7Vq5cKZRKpd3qZU+2tlGvRYsWYvr06Ybbzvh7yGGpKty+fRsHDhzAI488YrhPLpfjkUcewf79+6t8TseOHXHgwAFD19rvv/+OrVu34rHHHqvxNR3JEW3Uy8vLQ3R0NBo3bowhQ4bgzJkzjmuIGTVpX1lZWaXu38DAQOzZs6fG13QUR7RPTwqfX03s37/f5P0AgLS0NMP7IaXPr6aqa6Oeu36G1rD2PXBn169fR6NGjRAbG4s+ffrg+PHjrq5SjWm1WpSWliI0NBSA8/4eMtxU4c8//4RGo0FERITJ/REREbh48WKVzxk8eDBmzJiBhx56CL6+vkhISECXLl3w2muv1fiajuSINgLAAw88gOzsbGzbtg1Lly5FQUEBOnXqhNLSUoe2p6KatC8tLQ3vvfce8vLyoNVqsXPnTqxfvx5FRUU1vqajOKJ9gHQ+v5q4ePFile9HSUkJ/vrrL0l9fjVVXRsB9/4MrWHuPXCXz7A6TZs2xYoVK7Bp0yZ88skn0Gq16NixI86dO+fqqtXIvHnzcP36dfTv3x+A8/4dZbixk9zcXLz99ttYsmQJDh48iPXr12PLli2YOXOmq6tmN9a0sWfPnujXrx9at26NtLQ0bN26FdeuXcPnn3/uwppb5/3330diYiKaNWsGPz8/ZGZm4tlnn4Vc7hl/Taxpnzt/fqTDz9C9paSkYOjQoWjbti1SU1Oxfv161K9fH8uWLXN11WyWk5OD6dOn4/PPP0d4eLhTX9vHqa/mJu6++24oFApcunTJ5P5Lly4hMjKyyue8/vrreOaZZ/D8888DAO69917cuHEDI0eOxJQpU2p0TUdyRBurCgEhISG45557kJ+fb/9GWFCT9tWvXx8bN27ErVu3oFKpEB0djVdffRWNGzeu8TUdxRHtq4qrPr+aiIyMrPL9CA4ORmBgIBQKhWQ+v5qqro1VcafP0Brm3gN3+Qxt5evri3bt2rnd57dmzRo8//zzWLt2rckQlLP+HfWM/5LamZ+fH5KTk7Fr1y7DfVqtFrt27UJKSkqVz7l582alL3eFQgEAEELU6JqO5Ig2VuX69es4ffo0oqKi7FRz69Tm/Q4ICECDBg1w584drFu3Dn369Kn1Ne3NEe2riqs+v5pISUkxeT8AYOfOnYb3Q0qfX01V18aquNNnaI2avAfuTKPR4OjRo271+a1evRrPPvssVq9ejV69epk85rS/h3abmuxh1qxZI/z9/UV2drY4ceKEGDlypAgJCTEsyXvmmWfEq6++aij/xhtviKCgILF69Wrx+++/ix07doiEhATRv39/q6/pbI5o44QJE0Rubq4oKCgQe/fuFY888oi4++67xeXLlyXfvh9++EGsW7dOnD59Wnz33XeiW7duIj4+Xly9etXqazqTI9onpc+vtLRUHDp0SBw6dEgAEO+99544dOiQ+OOPP4QQQrz66qvimWeeMZTXL5OeOHGiOHnypPjggw+qXAoulc9PCMe00Z0/QyGEoXxycrIYPHiwOHTokDh+/Ljh8b179wofHx8xb948cfLkSfHGG2+4bCm4I9o3ffp0sX37dnH69Glx4MABMXDgQBEQEGBSxplsbeOnn34qfHx8xAcffGCynP3atWuGMs74e8hwY8GiRYtEw4YNhZ+fn7j//vvFDz/8YHgsNTVVDBs2zHC7vLxcTJs2TSQkJIiAgAARGxsr/u///s/ki6O6a7qCvds4YMAAERUVJfz8/ESDBg3EgAEDRH5+vhNbZMqW9uXm5ormzZsLf39/ERYWJp555hlx/vx5m67pbPZun5Q+v2+//VYAqPSjb9OwYcNEampqpee0bdtW+Pn5icaNG4uVK1dWuq6UPj9HtNHdP8Oqyjdq1MikzOeffy7uuece4efnJ1q2bCm2bNninAZV4Ij2jRs3zvDnMyIiQjz22GMme8Q4m61tTE1NtVhez9F/D2VCmBlPICIiInJDnHNDREREHoXhhoiIiDwKww0RERF5FIYbIiIi8igMN0RERORRGG6IiIjIozDcEBERkUdhuCEikoDc3FzIZDJcu3bN1VUhcnsMN0ReZvjw4ZDJZJg9e7bJ/Rs3boRMJjPcFkLgX//6F1JSUhAcHIx69eqhZcuWGDt2rNWH+N28eROTJ09GQkICAgICUL9+faSmpmLTpk2GMnFxcViwYIFd2uZo+vdOJpPB19cX8fHxmDRpEm7dumXTdbp06YJx48aZ3NexY0cUFRVBqVTascZE3onhhsgLBQQEYM6cObh69WqVjwshMHjwYLz44ot47LHHsGPHDpw4cQJZWVkICAjAm2++adXrjB49GuvXr8eiRYvw66+/Ytu2bXjqqaegUqns2Ryn6tGjB4qKivD7779j/vz5WLZsGd54441aX9fPzw+RkZEmAZOIasiuhzkQkeQNGzZM9O7dWzRr1kxMnDjRcP+GDRuE/p+E1atXCwBi06ZNVV5Dq9Va9VpKpVJkZ2ebfbyqc2j0vv/+e/HQQw+JgIAAERMTI8aMGSOuX79uePyjjz4SycnJol69eiIiIkIMGjRIXLp0yfC4/kycbdu2ibZt24qAgADRtWtXcenSJbF161bRrFkzERQUJAYNGiRu3LhhVXuGDRsm+vTpY3LfE088Idq1a2e4/eeff4qBAweK6OhoERgYKFq1aiVycnJMrlGxzQUFBYb6Gp/V9sUXX4gWLVoIPz8/0ahRIzFv3jyr6knk7dhzQ+SFFAoF3n77bSxatAjnzp2r9Pjq1avRtGlTPP7441U+39rehcjISGzduhWlpaVVPr5+/XrExMRgxowZKCoqQlFREQDg9OnT6NGjB5588kkcOXIEn332Gfbs2YPMzEzDc8vLyzFz5kz88ssv2LhxIwoLCzF8+PBKrzFt2jQsXrwY+/btw9mzZ9G/f38sWLAAOTk52LJlC3bs2IFFixZZ1Z6Kjh07hn379sHPz89w361bt5CcnIwtW7bg2LFjGDlyJJ555hn897//BQC8//77SElJwQsvvGBoc2xsbKVrHzhwAP3798fAgQNx9OhRTJs2Da+//jqys7NrVFcir+LqdEVEzmXc+9ChQwfx3HPPCSFMe26aNWsmHn/8cZPnjR07VtStW1fUrVtXNGjQwKrX2r17t4iJiRG+vr7ivvvuE+PGjRN79uwxKdOoUSMxf/58k/tGjBghRo4caXLf999/L+Ryufjrr7+qfK2ffvpJABClpaVCiL97br755htDmVmzZgkA4vTp04b7Ro0aJdLS0qxqz7Bhw4RCoRB169YV/v7+AoCQy+Xiiy++sPi8Xr16iQkTJhhup6amirFjx5qUqdhzM3jwYNG9e3eTMhMnThQtWrSwqq5E3ow9N0RebM6cOVi1ahVOnjxZbdkpU6bg8OHDmDp1Kq5fv27V9Tt37ozff/8du3btwlNPPYXjx4+jU6dOmDlzpsXn/fLLL8jOzka9evUMP2lpadBqtSgoKACg69lIT09Hw4YNERQUhNTUVADAmTNnTK7VunVrw+8jIiJQp04dNG7c2OS+y5cvW9UeAOjatSsOHz6MH3/8EcOGDcOzzz6LJ5980vC4RqPBzJkzce+99yI0NBT16tXD9u3bK9WrOidPnsSDDz5oct+DDz6IvLw8aDQam65F5G0Yboi8WOfOnZGWlobJkyeb3J+YmIhTp06Z3Fe/fn00adIE4eHhNr2Gr68vOnXqhFdeeQU7duzAjBkzMHPmTNy+fdvsc65fv45Ro0bh8OHDhp9ffvkFeXl5SEhIwI0bN5CWlobg4GB8+umn+Omnn7BhwwYAqHRdX19fw+/1q5yMyWQyaLVaq9tTt25dNGnSBG3atMGKFSvw448/Iisry/D4O++8g/fffx+vvPIKvv32Wxw+fBhpaWkW20tE9uXj6goQkWvNnj0bbdu2RdOmTQ33DRo0CIMHD8amTZvQp08fu75eixYtcOfOHdy6dQt+fn7w8/Or1BORlJSEEydOoEmTJlVe4+jRo1CpVJg9e7ZhvsrPP/9s13paQy6X47XXXsP48eMxePBgBAYGYu/evejTpw+efvppAIBWq8Vvv/2GFi1aGJ5XVZsrat68Ofbu3Wty3969e3HPPfdAoVDYvzFEHoQ9N0Re7t5778WQIUOwcOFCw30DBw7EU089hYEDB2LGjBn48ccfUVhYiN27d+Ozzz6z+su1S5cuWLZsGQ4cOIDCwkJs3boVr732Grp27Yrg4GAAun1uvvvuO5w/fx5//vknAOCVV17Bvn37kJmZicOHDyMvLw+bNm0yTChu2LAh/Pz8sGjRIvz+++/48ssvqx3qcpR+/fpBoVDggw8+AKDr9dq5cyf27duHkydPYtSoUbh06ZLJc+Li4gzv6Z9//lllz9GECROwa9cuzJw5E7/99htWrVqFxYsX4+WXX3ZKu4jcGcMNEWHGjBkmX7AymQyfffYZFixYgK1bt+Lhhx9G06ZN8dxzzyE2NhZ79uyx6rppaWlYtWoVHn30UTRv3hxjxoxBWloaPv/8c5PXLiwsREJCAurXrw9AN09m9+7d+O2339CpUye0a9cOU6dORXR0NADdEFl2djbWrl2LFi1aYPbs2Zg3b54d3xHr+fj4IDMzE3PnzsWNGzfwz3/+E0lJSUhLS0OXLl0QGRmJvn37mjzn5ZdfhkKhQIsWLVC/fv0q5+MkJSXh888/x5o1a9CqVStMnToVM2bMqHJFGBGZkgkhhKsrQURERGQv7LkhIiIij8JwQ0Q1ZrxUu+LP999/7+rq2eTMmTMW22PrUm4ich0OSxFRjVk6QLNBgwYIDAx0Ym1q586dOygsLDT7eFxcHHx8uMCUyB0w3BAREZFH4bAUEREReRSGGyIiIvIoDDdERETkURhuiIiIyKMw3BAREZFHYbghIiIij8JwQ0RERB6F4YaIiIg8yv8DhsnXGzRCKG8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 10ms/step" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATmNJREFUeJzt3XlYVGX/BvB7QBYRARcWFxSX3NIUN4LKLQxNUevtjVdNxC1zV0qFXEY0BVMRTdJyw0xFy42UQCXJjbQULVNwAzUFxA0Qkm3O7w9+To0z6AzOzJnl/lzXXDTPnHPmO0dzbp7lHIkgCAKIiIiITISF2AUQERERaRPDDREREZkUhhsiIiIyKQw3REREZFIYboiIiMikMNwQERGRSWG4ISIiIpPCcENEREQmheGGiIiITArDDREZJIlEgnnz5oldhlxQUBA8PDzELoOI1MBwQ0Rqi4mJgUQikT9sbW3RokULTJw4ETk5OTp97xMnTmDevHl4+PChVo/bo0cPhc9Uu3ZtdOnSBRs2bIBMJtPKeyxatAh79uzRyrGI6PmqiV0AERmf+fPno0mTJnj8+DGOHTuG1atXIz4+HufPn4ednZ1W3uPvv/9GtWr//BN14sQJhIWFISgoCE5OTlp5jycaNmyI8PBwAEBubi6++eYbjBo1CpcuXUJERMQLH3/RokV47733MGjQoBc+FhE9H8MNEWmsb9++6Ny5MwBg9OjRqFOnDiIjI7F3714MHjy4yseVyWQoKSmBra0tbG1ttVXuczk6OuKDDz6QPx87dixatmyJVatWYcGCBbCystJbLUT04jgsRUQvrFevXgCAjIwMAMDSpUvh4+ODOnXqoHr16ujUqRO+//57pf0kEgkmTpyILVu24OWXX4aNjQ0SEhLkrz2ZczNv3jxMnz4dANCkSRP5EFJmZia6d++O9u3bq6yrZcuW8PPz0/jz2NnZ4dVXX0VhYSFyc3Mr3a6wsBAff/wx3N3dYWNjg5YtW2Lp0qUQBEHhMxYWFmLTpk3yuoOCgjSuiYjUx54bInphV69eBQDUqVMHALBixQoMGDAAQ4cORUlJCWJjY/Hf//4X+/btQ79+/RT2/emnn7Bjxw5MnDgRdevWVTlp991338WlS5ewbds2LF++HHXr1gUAODs7Y9iwYRgzZgzOnz+Ptm3byvf59ddfcenSJcyePbtKn+natWuwtLSsdAhMEAQMGDAAhw8fxqhRo9ChQwckJiZi+vTpuHXrFpYvXw4A2Lx5M0aPHo2uXbviww8/BAA0a9asSjURkZoEIiI1bdy4UQAgHDp0SMjNzRVu3rwpxMbGCnXq1BGqV68u/PXXX4IgCEJRUZHCfiUlJULbtm2FXr16KbQDECwsLIQ///xT6b0ACFKpVP58yZIlAgAhIyNDYbuHDx8Ktra2wsyZMxXaJ0+eLNSoUUN49OjRMz9T9+7dhVatWgm5ublCbm6ucPHiRWHy5MkCAMHf31++3fDhw4XGjRvLn+/Zs0cAIHz22WcKx3vvvfcEiUQiXLlyRd5Wo0YNYfjw4c+sg4i0h8NSRKQxX19fODs7w93dHf/73/9gb2+P3bt3o0GDBgCA6tWry7d98OAB8vLy8MYbb+DMmTNKx+revTvatGlT5VocHR0xcOBAbNu2TT4cVF5eju3bt2PQoEGoUaPGc4+RlpYGZ2dnODs7o3Xr1vjiiy/Qr18/bNiwodJ94uPjYWlpicmTJyu0f/zxxxAEAT/++GOVPxMRvRgOSxGRxqKjo9GiRQtUq1YNrq6uaNmyJSws/vldad++ffjss89w9uxZFBcXy9slEonSsZo0afLC9QQGBmL79u04evQounXrhkOHDiEnJwfDhg1Ta38PDw+sXbtWvrz9pZdegouLyzP3uX79OurXr4+aNWsqtLdu3Vr+OhGJg+GGiDTWtWtX+Wqppx09ehQDBgxAt27d8OWXX6JevXqwsrLCxo0bsXXrVqXt/93LU1V+fn5wdXXFt99+i27duuHbb7+Fm5sbfH191dq/Ro0aam9LRIaPw1JEpFU7d+6Era0tEhMTMXLkSPTt21crwUFVr88TlpaWGDJkCL7//ns8ePAAe/bsweDBg2FpafnC71uZxo0b4/bt2ygoKFBoT0tLk7/+xLNqJyLtY7ghIq2ytLSERCJBeXm5vC0zM/OFr9D7ZO5MZVcoHjZsGB48eICxY8fi0aNHCtet0YW3334b5eXlWLVqlUL78uXLIZFI0LdvX3lbjRo1tH5lZSKqHIeliEir+vXrh8jISPTp0wdDhgzBnTt3EB0djebNm+P333+v8nE7deoEAJg1axb+97//wcrKCv7+/vLQ4+npibZt2+K7775D69at0bFjR618nsr4+/ujZ8+emDVrFjIzM9G+fXscOHAAe/fuxdSpUxWWe3fq1AmHDh1CZGQk6tevjyZNmsDLy0un9RGZM/bcEJFW9erVC+vXr0d2djamTp2Kbdu2YfHixXjnnXde6LhdunTBggULcO7cOQQFBWHw4MFKF9gLDAwEALUnEr8ICwsLxMXFYerUqdi3bx+mTp2KCxcuYMmSJYiMjFTYNjIyEp06dcLs2bMxePBgrF69Wuf1EZkziSD861KaRERGbMWKFZg2bRoyMzPRqFEjscshIpEw3BCRSRAEAe3bt0edOnVw+PBhscshIhFxzg0RGbXCwkLExcXh8OHD+OOPP7B3716xSyIikbHnhoiMWmZmJpo0aQInJyeMHz8eCxcuFLskIhIZww0RERGZFK6WIiIiIpPCcENEREQmxewmFMtkMty+fRs1a9bkJdGJiIiMhCAIKCgoQP369RVu1KuK2YWb27dvw93dXewyiIiIqApu3ryJhg0bPnMbsws3NWvWBFBxchwcHESuhoiIiNSRn58Pd3d3+ff4s5hduHkyFOXg4MBwQ0REZGTUmVLCCcVERERkUhhuiIiIyKQw3BAREZFJMbs5N+oqLy9HaWmp2GWQHlhbWz93WSERERkPhpunCIKA7OxsPHz4UOxSSE8sLCzQpEkTWFtbi10KERFpAcPNU54EGxcXF9jZ2fFCfybuyUUds7Ky0KhRI/55ExGZAIabfykvL5cHmzp16ohdDumJs7Mzbt++jbKyMlhZWYldDhERvSBONPiXJ3Ns7OzsRK6E9OnJcFR5ebnIlRARkTYw3KjAoQnzwj9vIiLTwnBDREREJoXhhoiIiEwKw42JCAoKgkQigUQigZWVFVxdXdG7d29s2LABMplM7ePExMTAyclJd4USERHpGMONCenTpw+ysrKQmZmJH3/8ET179sSUKVPQv39/lJWViV0eERGZgXv37on+ncNwY0JsbGzg5uaGBg0aoGPHjvj000+xd+9e/Pjjj4iJiQEAREZGol27dqhRowbc3d0xfvx4PHr0CACQnJyMESNGIC8vT94LNG/ePADA5s2b0blzZ9SsWRNubm4YMmQI7ty5I9InJSIiQ1NUVISwsDCsWrUKP/zwg6i1MNw8hyAIKCkpEeUhCMIL19+rVy+0b98eu3btAlBxNd6VK1fizz//xKZNm/DTTz9hxowZAAAfHx9ERUXBwcEBWVlZyMrKwieffAKgYpn8ggULcO7cOezZsweZmZkICgp64fqIiMj4Xbx4EUuWLJE/d3R0FLEaXsTvuUpLSxEeHi7Ke4eGhmrllgCtWrXC77//DgCYOnWqvN3DwwOfffYZPvroI3z55ZewtraGo6MjJBIJ3NzcFI4xcuRI+X83bdoUK1euRJcuXfDo0SPY29u/cI1ERGScvvnmG2RkZMifv/baa+jVq5eIFTHcmAVBEOTXcjl06BDCw8ORlpaG/Px8lJWV4fHjxygqKnrmxQtPnz6NefPm4dy5c3jw4IF8kvKNGzfQpk0bvXwOIiIyHIWFhVi6dKlC29ixY5V+ORYDw81zWFlZITQ0VLT31oaLFy+iSZMmyMzMRP/+/TFu3DgsXLgQtWvXxrFjxzBq1CiUlJRUGm4KCwvh5+cHPz8/bNmyBc7Ozrhx4wb8/PxQUlKilRqJiMh4nD9/Hjt37pQ/t7S0RGhoKCwtLUWs6h8MN88hkUiM+m7RP/30E/744w9MmzYNp0+fhkwmw7Jly2BhUTHdaseOHQrbW1tbK92GIC0tDffu3UNERATc3d0BAL/99pt+PgARERkMQRCwYcMG/PXXX/K2Hj16oHv37iJWpYzhxoQUFxcjOzsb5eXlyMnJQUJCAsLDw9G/f38EBgbi/PnzKC0txRdffAF/f38cP34ca9asUTiGh4cHHj16hKSkJLRv3x52dnZo1KgRrK2t8cUXX+Cjjz7C+fPnsWDBApE+JRERiaGgoACRkZEKbePGjYOLi4tIFVWOq6VMSEJCAurVqwcPDw/06dMHhw8fxsqVK7F3715YWlqiffv2iIyMxOLFi9G2bVts2bJFabK0j48PPvroIwQEBMDZ2Rmff/45nJ2dERMTg++++w5t2rRBRESE0jgrERGZrrNnzyoEG1tbW8yZM0dlsImLA3x8Kn6KRSJoY72xEcnPz4ejoyPy8vLg4OCg8Nrjx4+RkZGBJk2awNbWVqQKSd/4505EpJogCPjqq6+Qk5Mjb3vzzTfx+uuvV7qPjw+QkgJ4ewMnTmivlmd9fz+Nw1JERESkJC8vD1FRUQptEydORJ06dZ65X0gIEBFR8VMsDDdERESk4PTp09i3b5/8ub29PaZNmyZfjPIsAwZUPMTEcENEREQAKoahVq1ahfv378vb/Pz88Oqrr4pYleYYboiIiAgPHjzAypUrFdomT56MWrVqiVRR1THcEBERmbmTJ08iISFB/rx27dqYOHGi/Or2xobhhoiIyEwJgoCoqCjk5+fL2/r164fOnTuLWNWLY7ghIiIyQ/fu3cOqVasU2qZOnSr6Hb21geGGiIjIzBw/fhyHDh2SP3d1dcXYsWONdhjqaQw3REREZkImk2HJkiV4/PixvG3gwIHo0KGDeEXpAG+/QBoJCgrCoEGD5M979OiBqVOnvtAxtXEMIiJ6ttzcXCxYsEAh2AQHB5tcsAHYc2MygoKCsGnTJgCAlZUVGjVqhMDAQHz66aeoVk13f8y7du2ClZWVWtsmJyejZ8+eePDgAZycnKp0DCIi0tyRI0dw+PBh+fMGDRpg1KhRJjMM9TSGGxPSp08fbNy4EcXFxYiPj8eECRNgZWWF0NBQhe1KSkpgbW2tlfesXbu2QRyDiIiUlZeXIzw8HOXl5fK2d999F+3atROxKt3jsJQJsbGxgZubGxo3boxx48bB19cXcXFx8qGkhQsXon79+mjZsiUA4ObNm3j//ffh5OSE2rVrY+DAgcjMzJQfr7y8HMHBwXByckKdOnUwY8YMPH2f1aeHlIqLizFz5ky4u7vDxsYGzZs3x/r165GZmYmePXsCAGrVqgWJRIKgoCCVx3jw4AECAwNRq1Yt2NnZoW/fvrh8+bL89ZiYGDg5OSExMRGtW7eGvb09+vTpg6ysLPk2ycnJ6Nq1K2rUqAEnJye89tpruH79upbONBGR4cvJycFnn32mEGw+/vhjkw82AMONSatevTpKSkoAAElJSUhPT8fBgwexb98+lJaWws/PDzVr1sTRo0dx/PhxeUh4ss+yZcsQExODDRs24NixY7h//z527979zPcMDAzEtm3bsHLlSly8eBFfffUV7O3t4e7ujp07dwIA0tPTkZWVhRUrVqg8RlBQEH777TfExcUhJSUFgiDg7bffRmlpqXyboqIiLF26FJs3b8aRI0dw48YNfPLJJwCAsrIyDBo0CN27d8fvv/+OlJQUfPjhhybb/UpE9LSkpCSsWbNG/tzDwwNSqRT29vYiVqU/HJYyQYIgICkpCYmJiZg0aRJyc3NRo0YNrFu3Tj4c9e2330Imk2HdunXyL/2NGzfCyckJycnJeOuttxAVFYXQ0FC8++67AIA1a9YgMTGx0ve9dOkSduzYgYMHD8LX1xcA0LRpU/nrT4afXFxcFObc/Nvly5cRFxeH48ePw8fHBwCwZcsWuLu7Y8+ePfjvf/8LACgtLcWaNWvQrFkzABV3qp0/fz4AID8/H3l5eejfv7/89datW2t+IomIjExJSQnCw8MV2v773/+iTZs2IlUkDvbc6FBcHODjU/FTH/bt2wd7e3vY2tqib9++CAgIwLx58wAA7dq1U5hnc+7cOVy5cgU1a9aEvb097O3tUbt2bTx+/BhXr15FXl4esrKy4OXlJd+nWrVqz7xq5dmzZ2FpaYnu3btX+TNcvHgR1apVU3jfOnXqoGXLlrh48aK8zc7OTh5cAKBevXq4c+cOgIoQFRQUBD8/P/j7+2PFihUKQ1ZERKbo9OnTSsFm+vTpZhdsAPbc6FREBJCSUvFTH7d/79mzJ1avXg1ra2vUr19fYZVUjRo1FLZ99OgROnXqhC1btigdx9nZuUrvX7169SrtVxVPr66SSCQK84E2btyIyZMnIyEhAdu3b8fs2bNx8OBBo7uzLRGROsLCwpTapFKpCJUYBlF7bo4cOQJ/f3/Ur18fEokEe/bseeb2u3btQu/eveHs7AwHBwd4e3s/c5hEbCEhgLd3xU99qFGjBpo3b45GjRo9d/l3x44dcfnyZbi4uKB58+YKD0dHRzg6OqJevXo4efKkfJ+ysjKcPn260mO2a9cOMpkMP//8s8rXn/Qc/Xty29Nat26NsrIyhfe9d+8e0tPTNf7tw9PTE6GhoThx4gTatm2LrVu3arQ/EZGhe/z4sVKwqVOnExITpXobNTBEooabwsJCtG/fHtHR0Wptf+TIEfTu3Rvx8fE4ffo0evbsCX9/f6Smpuq40qoZMAA4cUI/vTaaGjp0KOrWrYuBAwfi6NGjyMjIQHJyMiZPnoy//voLADBlyhRERERgz549SEtLw/jx4/Hw4cNKj+nh4YHhw4dj5MiR2LNnj/yYO3bsAAA0btwYEokE+/btQ25uLh49eqR0jJdeegkDBw7EmDFjcOzYMZw7dw4ffPABGjRogIEDB6r12TIyMhAaGoqUlBRcv34dBw4cwOXLlznvhohMyi+//ILFixcrtE2ZMgVbt/aXjxqYK1GHpfr27Yu+ffuqvX1UVJTC80WLFmHv3r344Ycf4OnpqeXqTJudnR2OHDmCmTNn4t1330VBQQEaNGiAN998Ew4ODgAqlgxmZWVh+PDhsLCwwMiRI/HOO+8gLy+v0uOuXr0an376KcaPH4979+6hUaNG+PTTTwFUXDQqLCwMISEhGDFiBAIDAxETE6N0jI0bN2LKlCno378/SkpK0K1bN8THx6t9oT87OzukpaVh06ZNuHfvHurVq4cJEyZg7Nixmp8oIiID9KxhqJCQimCjr1EDQyQRnr5wiUgkEgl2796tcGn/55HJZPDw8MCMGTMwceJEldsUFxejuLhY/jw/Px/u7u7Iy8uTf4k/8fjxY2RkZKBJkyawtbWt0ucg48M/dyIyFnl5eUq/6Ht7e+Ott94SpyA9ys/Ph6Ojo8rv76cZ9YTipUuX4tGjR3j//fcr3SY8PFxlwiUiIjIm3377La5evarQNm3atOd+0Zsjo10KvnXrVoSFhWHHjh1wcXGpdLvQ0FDk5eXJHzdv3tRjlURERC8uLCxMKdhIpVIGm0oYZc9NbGwsRo8eje+++05+sbjK2NjYwMbGRk+VERERac/9+/fxxRdfKLTZ2zfGzp1B8PQ0zAUrhsDows22bdswcuRIxMbGol+/fmKXQ0REpBPr1q3DrVu3FNomT56Mfv1q6fUaasZI1HDz6NEjXLlyRf48IyMDZ8+eRe3atdGoUSOEhobi1q1b+OabbwBUDEUNHz4cK1asgJeXF7KzswFUXDzO0dFRa3UZyBxr0hP+eRORoeFqqBcj6mqp5ORk+Z2i/2348OGIiYlBUFAQMjMzkZycDKDi7tGqLhD3ZHt1PGu2dXl5OS5dugQXFxfUqVNH489DxikvLw+3b99G8+bN1V5uTkSkC3fu3MHq1asV2lq1aoWAgACRKjIcmqyWMpil4PryvJOTlZWFhw8fwsXFBXZ2dryTtImTyWS4ffs2rKys0KhRI/55E5FovvjiC9y/f1+hLTg4GDVr1hSpIsNiNkvBdcHNzQ0A5DdhJNNnYWHBYENEouK9obSL4eYpEokE9erVg4uLC0pLS8Uuh/TA2toaFhZGe1UEIjJit27dwrp16xTaOnTooPbtZkg1hptKWFpawtLSUuwyiIjIRC1evBiPHz9WaJs+fTrs7OxEqsh0MNwQERHpGYehdIvhhoiISE+uX7+utLrXy8sLffr0EacgE8VwQ0REpAeqemtmzpzJG/bqAMMNERGRDgmCgPnz5yu1cxhKdxhuiIiIdOTy5cvYunWrQlu3bt1UXsCWtIfhhoiISAdUDUOFhobC2tpahGrMC8MNERGRFnEYSnwMN0RERFryyy+/IDExUaEtLa03tm3zEaki88RwQ0REpAWqhqEOHvwUM2bwhrz6xnBDRET0AmQyGRYsWKDULpVKwZEocTDcEBERVVFycjJ+/vlnhTYfHx/07t1bpIoIYLghIiKqElXDULNnz+Z9CQ0Aww0REZEGysrKsHDhQqV2roYyHAw3REREakpISMDJkycV2nr16oU33nhDpIpIFYYbIiKiZ4iLAyIiAD8/5WGoOXPmwMLCQoSq6FkYboiIiJ5hyZIS+PmFK7VzGMpwMdwQERFVYu3atfD1va3Q9vbbb6NLly4iVUTqYLghIiJSQdVqqLlz50IikYhQDWmC4YaIiOhfioqKsGTJEqV2T08pmGuMA8MNERHR/4uKikJeXp5CW1raW4iN9Ya3NzBggEiFkUYYboiIiFD5MNQPP0hw/ToQEiJCUVQlDDdERGTWHjx4gJUrVyq1P1kNNWAAe2yMDcMNERGZLVW9NX/+2R87dnQSoRrSFl55iIiIzJKqYJOYKMUHHzDYGDv23BARkVm5ffs21q5dq9QulUrB6/KZBoYbIiIyG6p6a9LS3sLgwd4iVEO6wnBDREQmLy4OSE1VPQyVkgJcv85Jw6aE4YaIiEza5cuXkZq6ValdKpXC07Pipphc5m1aGG6IiMhkqRqGGjhwIDp06ACAy7xNFcMNERGZJFXBhnfyNg8MN0REZFLOnTuHPXv2KLUz2JgPhhsiIjIZqnpr3n33XbRr106EakgsDDdERGSU4uIqJgP37AkcPgz4+XEYiiow3BARkVGKiABSUoDq1Y/Bzy9J6XUGG/PFcENEREYpJET1tWuGDh2K5s2bi1ARGQqGGyIiMkqqgg17awjgjTOJiMjI/PDDD5Xe9JIIYM8NEREZEVWh5qWXgrBqVWNeZZjk2HNDREQGKS4O8PGp+AlUflG+IUMa48QJXmmY/sGeGyIiMkhPVkMdPrwOqam3lF7n/BqqDMMNEREZpMpWQ6WkjMH48fVFqIiMBcMNEREZHEEQkJo6X6mdvTWkDoYbIiIyKKrm1gAMNqQ+hhsiIjIYqoLNpEmTULt2bRGqIWPFcENERKKTyWRYsGCBUjt7a6gqGG6IiEhUHIYibWO4ISIi0agKNsHBwahZs6YI1ZCpYLghIiK9Kysrw8KFC5Xa2VtD2iDqFYqPHDkCf39/1K9fHxKJBHv27HnuPsnJyejYsSNsbGzQvHlzxMTE6LxOIiLSnrCwMAYb0ilRw01hYSHat2+P6OhotbbPyMhAv3790LNnT5w9exZTp07F6NGjkZiYqONKiYhIG1QNQ82cOZPBhrRK1GGpvn37om/fvmpvv2bNGjRp0gTLli0DALRu3RrHjh3D8uXL4efnp6syiYjoBT1+/BiLFy9WameoIV0wqjk3KSkp8PX1VWjz8/PD1KlTK92nuLgYxcXF8uf5+fm6Ko+IiFTgaijSN6MKN9nZ2XB1dVVoc3V1RX5+Pv7++29Ur15daZ/w8PBK/8ciIiLdUvXv76xZs1CtmlF9/ZCREXXOjT6EhoYiLy9P/rh586bYJRERmbz8/HyVwUYqlTLYkM4Z1d8wNzc35OTkKLTl5OTAwcFBZa8NANjY2MDGxkYf5RERETgMReIzqnDj7e2N+Ph4hbaDBw/C29tbpIqIiOjfVAWbOXPmwMLC5AcKyICI+rft0aNHOHv2LM6ePQugYqn32bNncePGDQAVQ0qBgYHy7T/66CNcu3YNM2bMQFpaGr788kvs2LED06ZNE6N8IiL6f7m5uZUOQzHYkL6J2nPz22+/oWfPnvLnwcHBAIDhw4cjJiYGWVlZ8qADAE2aNMH+/fsxbdo0rFixAg0bNsS6deu4DJyISEQchiJDIxEEQRC7CH3Kz8+Ho6Mj8vLy4ODgIHY5RERGIS4OiIgAQkKAAQP+aVcVbObOnQuJRKLH6sgcaPL9zb5CIiJ6rogIICWl4icA3Lx5s9JhKAYbEptRTSgmIiJxhIT803OjKtTUrl0bkyZNEqEyImUMN0RE9FwDBlQ8KuutITIkDDdERPRc6enpiI2NVWpnsCFDxHBDRETPpKq3plmzZvjggw9EqIbo+RhuiIioUhyGImPEcENERErWrz+Fv/76UamdwYaMAcMNEREpUNVb8/LLL+O9994ToRoizTHcEBGRHIehyBQw3BAREeLj4/Hrr78qtTPYkDFiuCEiMnOqems6d+6Mfv36iVAN0YtjuCEiMjP/vk9UaiqHocj0MNwQEZmZiAjAw2MbUlMvKb3GYEOmgOGGiMjM+Pkp99a8+eabeP3110Wohkj7GG6IiMwIV0OROWC4ISIyA8uWLcOjR4+U2hlsyBQx3BARmThVvTX9+/dHp06dRKiGSPcYboiITBiHocgcMdwQEZkgVaEGYLAh88BwQ0RkYlQFm8GDB6NFixYiVEOkfww3REQmQhAEzJ8/X6mdvTVkbhhuiIhMAIehiP7BcENEZORUBZsWLUZj8OAGIlRDJD6GGyIiIyWTybBgwQKldvbWkLnTONxYWloiKysLLi4uCu337t2Di4sLysvLtVYcERGpxmEoosppHG4EQVDZXlxcDGtr6xcuiIiInk1VsJkwYQLq1q0rQjVEhkftcLNy5UoAgEQiwbp162Bvby9/rby8HEeOHEGrVq20XyEREQEASktLsWjRIqV29tYQKVI73CxfvhxARc/NmjVrYGlpKX/N2toaHh4eWLNmjfYrJCIiDkMRaUDtcJORkQEA6NmzJ3bt2oVatWrprCgiIvqHqmBz+PDHSE62V7E1EWk85+bw4cO6qIOIiJ5SVFSEJUuWKLUnJkoREiJCQURGQuNwM3LkyGe+vmHDhioXQ0REFZ41DMWRKKJn0zjcPHjwQOF5aWkpzp8/j4cPH6JXr15aK4yIyFypCjahoaFckUqkJo3Dze7du5XaZDIZxo0bh2bNmmmlKCIicxAXB0REACEhwIABFb88PlmZ+m+cNEykGYlQ2YVrNJSeno4ePXogKytLG4fTmfz8fDg6OiIvLw8ODg5il0NEZuhJqHnwAEhLA7y9AT8/roYiehZNvr+1dvuFq1evoqysTFuHIyIyWRERQEoK0LJl5cFmzpw5sLCwEKE6IuOncbgJDg5WeC4IArKysrB//34MHz5ca4UREZmqkJCKgDNp0l+4dGm90uuenlIw1xBVncbhJjU1VeG5hYUFnJ2dsWzZsueupCIioor5NampYbh0Sfk1DkMRvThe54aISM9UrYaaO3cuJBKJCNUQmZ4qz7m5c+cO0tPTAQAtW7ZUuks4EREpOn/+PHbu3KnUzt4aIu3SONzk5+djwoQJ2LZtG2QyGQDA0tISAQEBiI6OhqOjo9aLJCIydrw3FJH+aDxlbcyYMTh58iT279+Phw8f4uHDh9i3bx9+++03jB07Vhc1EhEZlbg4wMen4iegOthUXGmYwYZIFzS+zk2NGjWQmJiI119/XaH96NGj6NOnDwoLC7VaoLbxOjdEpCtPX79myJBjaNEiSWk7hhoizen0Ojd16tRROfTk6OjIO4UTkdmKiwMCAoDHj4EGDYB58zgMRSQWjcPN7NmzERwcjM2bN8PNzQ0AkJ2djenTp2POnDlaL5CIyBhERFQEGwAYM0b1MBQR6YfGw1Kenp64cuUKiouL0ahRIwDAjRs3YGNjg5deeklh2zNnzmivUi3hsBQR6UJcHLB79y54ePyh9BqDDdGL0+mw1MCBA3ktBiKip6SmhsHDQ7mdwYZI/7R240xjwZ4bItK2ylZDEZH2aPL9rfFS8KZNm+LevXtK7Q8fPkTTpk01PRwRkdF5stQ7ImIVgw2RAdJ4WCozMxPl5eVK7cXFxfjrr7+0UhQRkSGLiKi4k3dxsWJ79erVMWPGDHGKIiI5tcNN3JOrUQFITExUWA5eXl6OpKQkNGnSRLvVEREZiCfXsOnZsyLYPI29NUSGQ+05NxYWFSNYEokET+9iZWUFDw8PLFu2DP3799d+lVrEOTdEVBU+PqpDDcBgQ6QPOplzI5PJIJPJ0KhRI9y5c0f+XCaTobi4GOnp6VUKNtHR0fDw8ICtrS28vLxw6tSpZ24fFRWFli1bonr16nB3d8e0adPw+MnFJYiIdERVsPHw8GCwITJAGs+5ycjI0Nqbb9++HcHBwVizZg28vLwQFRUFPz8/pKenq7zL+NatWxESEoINGzbAx8cHly5dQlBQECQSCSIjI7VWFxHRv3HSMJFx0Xgp+Pz585/5+ty5c9U+lpeXF7p06YJVq1YBqOgdcnd3x6RJkxASEqK0/cSJE3Hx4kUkJf1zr5aPP/4YJ0+exLFjx9R6Tw5LEZG6eCdvIsOh04v47d69W+F5aWkpMjIyUK1aNTRr1kztcFNSUoLTp08jNDRU3mZhYQFfX1+kpKSo3MfHxwfffvstTp06ha5du+LatWuIj4/HsGHDKn2f4uJiFP9rSUN+fr5a9RGReVMVbDw9PTFgwAARqiEiTWgcblJTU5Xa8vPzERQUhHfeeUft49y9exfl5eVwdXVVaHd1dUVaWprKfYYMGYK7d+/i9ddfhyAIKCsrw0cffYRPP/200vcJDw+v9LcvIiJVOAxFZNw0voifKg4ODggLC9P5jTOTk5OxaNEifPnllzhz5gx27dqF/fv3Y8GCBZXuExoairy8PPnj5s2bOq2RiIxXWFgYgw2RCdC456YyT8KDuurWrQtLS0vk5OQotOfk5MjvNv60OXPmYNiwYRg9ejQAoF27digsLMSHH36IWbNmyZer/5uNjQ1sbGw0+CREZI5UhZrevXvDx8dHhGqI6EVoHG5Wrlyp8FwQBGRlZWHz5s3o27ev2sextrZGp06dkJSUhEGDBgGomFCclJSEiRMnqtynqKhIKcBYWlrK6yAi0pQgCCoXSrC3hsh4aRxuli9frvDcwsICzs7OGD58uMLkYHUEBwdj+PDh6Ny5M7p27YqoqCgUFhZixIgRAIDAwEA0aNAA4eHhAAB/f39ERkbC09MTXl5euHLlCubMmQN/f395yCEiUhdXQxGZJlGvcxMQEIDc3FzMnTsX2dnZ6NChAxISEuSTjG/cuKHQUzN79mxIJBLMnj0bt27dgrOzM/z9/bFw4UKt1URE5kFVsHnvvffw8ssvi1ANEWmTxte5ASruAH7lyhUAQPPmzeHk5KTtunSG17khMm8ymUzlIgT21hAZNp1d5yYzMxMTJkxAYmKifI6LRCJBnz59sGrVKnh4eFS5aCIiXeMwFJF5UDvc3Lx5E6+++iqsrKywYMECtG7dGgBw4cIFrF69Gt7e3vj111/RsGFDnRVLRFQVcXFAaqpysHnppZEYMsRdhIqISJfUHpYaNWoUrly5gsTERNja2iq89vfff6NPnz546aWXsG7dOp0Uqi0cliIyLyUlJfJFCf82b54U3t7AiRMiFEVEGtPJsFRCQgK2b9+uFGwAoHr16liwYAH+97//aV4tEZGOVDYM5elZEWxU3MKOiEyA2uHm7t27z5xT07RpU9y/f18bNRERvTBVwWbSpEmoXbs2AIC3iCIyXWqHm3r16uHChQuVzqk5f/58pVcWJiLSl4KCAkRGRiq1c9IwkflQO9wMGjQIn3zyCZKSkuDs7Kzw2p07dzBz5kz5lYaJiMTA1VBEBGgwofjBgwfw8vJCdnY2PvjgA7Rq1QqCIODixYvYunUr3Nzc8Msvv8i7fA0VJxQTmSZVwWb69Omws7MToRoi0jadTCiuVasWTp48iU8//RSxsbF4+PAhAMDJyQlDhgzBokWLDD7YEJHpiIsDIiKAKVPuIC1ttdLr7K0hMl9VukKxIAjIzc0FADg7O0MikWi9MF1hzw2RafDxAfz8OAxFZC50doXiJyQSCVxcXKpUHBFRVT3prQkJUR1sZs2ahWrVqvTPGhGZEP4rQERGIyICyMm5htTUzUqvsbeGiJ5guCEio8FhKCJSB8MNERkFVauh5s6da1Rz/ohIPxhuiMigpaamIi4uTqmdvTVEVBm1ws3KlSvVPuDkyZOrXAwR0b/xonxEVBVqLQVv0qSJegeTSHDt2rUXLkqXuBScyLA9WRGlan4NQw2R+dL6UvCMjAytFEZE9Dw7dx6Cn99xpXYGGyJSl0VVdywpKUF6ejrKysq0WQ8RmbGwsDA0bcpgQ0QvRuMJxUVFRZg0aRI2bdoEALh06RKaNm2KSZMmoUGDBggJCdF6kURk+lTNr2GoIaKq0LjnJjQ0FOfOnUNycjJsbW3l7b6+vti+fbtWiyMi07d8+TYGGyLSKo17bvbs2YPt27fj1VdfVbi+xMsvv4yrV69qtTgiMm1cDUVEuqBxuMnNzVV5X6nCwkJeTIuI1MbeGiLSFY3DTefOnbF//35MmjQJAOSBZt26dfD29tZudURkciIiolFcfFepncGGiLRF43CzaNEi9O3bFxcuXEBZWRlWrFiBCxcu4MSJE/j55591USMRmQhVvTUWFhaYM2eOCNUQkanSeELx66+/jrNnz6KsrAzt2rXDgQMH4OLigpSUFHTq1EkXNRKRCahsGIrBhoi0Ta0rFJsSXqGYSL84aZiItEHrVyjOz89X+80ZGIjoCVXBpn79+hgzZowI1RCRuVAr3Dg5Oam9Eqq8vPyFCiIi08DVUEQkFrXCzeHDh+X/nZmZiZCQEAQFBclXR6WkpGDTpk0IDw/XTZVEZDQ4DEVEYtN4zs2bb76J0aNHY/DgwQrtW7duxddff43k5GRt1qd1nHNDpDuqgk2HDh0wcOBAEaohIlOiyfe3xqulUlJS0LlzZ6X2zp0749SpU5oejohMRGXDUAw2RKRvGl/nxt3dHWvXrsXnn3+u0L5u3Tq4u7trrTAiMg4chiIiQ6NxuFm+fDn+85//4Mcff4SXlxcA4NSpU7h8+TJ27typ9QKJyHCpCjZvvvkmXn/9dRGqISKqoPGw1Ntvv43Lly/D398f9+/fx/379+Hv749Lly7h7bff1kWNRGSAVAWbxEQpgw0RiU7jnhsAaNiwIRYtWqTtWojICFQ2DJWYKEVIiJ6LISJSoUrh5uHDh1i/fj0uXrwIAHj55ZcxcuRIODo6arU4IjIsqoLNoEGD0L59e3CKDREZCo2HpX777Tc0a9YMy5cvlw9LRUZGolmzZjhz5owuaiQikQmCUOlqqPbt24tQERFR5TS+zs0bb7yB5s2bY+3atahWraLjp6ysDKNHj8a1a9dw5MgRnRSqLbzODZFmuBqKiAyBJt/fGoeb6tWrIzU1Fa1atVJov3DhAjp37oyioiLNK9Yjhhsi9akKNuvXj4CdXSOkpYlQEBGZLZ1exM/BwQE3btxQar958yZq1qyp6eGIyACVlpaqDDaenlI0bNgIT13miojIoGg8oTggIACjRo3C0qVL4ePjAwA4fvw4pk+frnRLBiIyPs8bhhowQJ/VEBFpTuNws3TpUkgkEgQGBqKsrAwAYGVlhXHjxiEiIkLrBRKR/qgKNhMnTkSdOnVEqIaIqGo0nnPzRFFREa5evQoAaNasGezs7LRamK5wzg2RssLCQixdulSpnZOGichQaPL9XaXr3ACAnZ0d2rVrV9XdichAcDUUEZkatcPNyJEj1dpuw4YNVS6GiPRLVbD55JNPUKNGDRGqISLSDrXDTUxMDBo3bgxPT09UcSSLiAzE3bt3ER0drdTO3hoiMgVqh5tx48Zh27ZtyMjIwIgRI/DBBx+gdu3auqyNiHSAw1BEZOo0mlBcXFyMXbt2YcOGDThx4gT69euHUaNG4a233oJEItFlnVrDCcVkzlQFm1mzZsmvNk5EZKh0eoXiJ65fv46YmBh88803KCsrw59//gl7e/sqFaxPDDdkjp78//o09tYQkbHQy2opCwsLSCQSCIKA8vLyqh6GiHSMw1BEZG40uv1CcXExtm3bht69e6NFixb4448/sGrVKty4caPKvTbR0dHw8PCAra0tvLy8cOrUqWdu//DhQ0yYMAH16tWDjY0NWrRogfj4+Cq9N5GpUxVs5s6dy2BDRCZN7Z6b8ePHIzY2Fu7u7hg5ciS2bduGunXrvtCbb9++HcHBwVizZg28vLwQFRUFPz8/pKenw8XFRWn7kpIS9O7dGy4uLvj+++/RoEEDXL9+HU5OTi9UB5Gp+f3337F7926ldoYaIjIHas+5sbCwQKNGjeDp6fnMycO7du1S+829vLzQpUsXrFq1CgAgk8ng7u6OSZMmISQkRGn7NWvWYMmSJUhLS4OVlZXa7/NvnHNDpo7DUERkinQy5yYwMFCrK6JKSkpw+vRphIaGytssLCzg6+uLlJQUlfvExcXB29sbEyZMwN69e+Hs7IwhQ4Zg5syZsLS0VLlPcXExiouL5c/z8/O19hmIDI2qYDNvnhTe3gCzDRGZC40u4qdNd+/eRXl5OVxdXRXaXV1dkZaWpnKfa9eu4aeffsLQoUMRHx+PK1euYPz48SgtLa30t9Lw8PBKf5MlMhXHjx/HoUOHlNrXrpWiZUtARUcoEZHJMqqLW8hkMri4uODrr7+GpaUlOnXqhFu3bmHJkiWVhpvQ0FAEBwfLn+fn58Pd3V1fJRPp3LOGodhbQ0TmSLRwU7duXVhaWiInJ0ehPScnB25ubir3qVevHqysrBSGoFq3bo3s7GyUlJTA2tpaaR8bGxvY2Nhot3giA6Eq2HBuDRGZO42WgmuTtbU1OnXqhKSkJHmbTCZDUlISvL29Ve7z2muv4cqVK5DJZPK2S5cuoV69eiqDDZGp+uGHHxhsiIgqIVq4AYDg4GCsXbsWmzZtwsWLFzFu3DgUFhZixIgRAComMf97wvG4ceNw//59TJkyBZcuXcL+/fuxaNEiTJgwQayPQKR3YWFhOHPmjFI7gw0RUQVR59wEBAQgNzcXc+fORXZ2Njp06ICEhAT5JOMbN27AwuKf/OXu7o7ExERMmzYNr7zyCho0aIApU6Zg5syZYn0EIr1ibw0R0fNV+d5SxorXuSFjtGHDBty8eVOpncGGiMyFXu4tRUT6oaq3plq1apg1a5YI1RARGT6GGyIDxmEoIiLNMdwQGaDKrl3j6clgQ0T0PAw3RAZGVbApKHDBsmXj4O0NDBggQlFEREZE1KXgRKRIVbBJTJSiW7eKYMPbKBARPR97bogMQGXDUImJUoSEVPTWsMeGiEg9DDdEIlMVbJycXsaUKe/x3lBERFXAYSkiEakKNvPmSbF9+3siVENEZBrYc0MkgsqGoUpKpJxbQ0T0ghhuiPRMVbC5fLkntmzpBm9v4MQJEYoiIjIhDDdEelTZRfni4oBr19hjQ0SkDby3FJEePGs1FHtqiIiej/eWIjIgqoKNh8d7+Oqrl9lTQ0SkAww3RDoiCALmz5+v1P7k3lDDh+u7IiIi88BwQ6QDlQ1D8aaXRES6x3BDpGWqgs2IESPQqFEjEaohIjI/DDdEWlJWVoaFCxcqtbO3hohIvxhuiLSAw1BERIaD4YboBakKNhMmTEDdunVFqIaIiBhuiKro77//xueff67Uzt4aIiJxMdwQVUFlw1Cengw2RERiY7gh0pCqYBMdPR25uXbw9gYGDBChKCIikmO4IVLTgwcPsHLlSqX2xEQpcnMBe3veG4qIyBAw3BCp4VmroTw9gYiIimDDXhsiIvEx3BA9h6pgc/Dgp5gxwwpARaBhqCEiMhwWYhdAZKj++usvlcEmMVGK48etEBEhQlFERPRc7LkhUkHdYSgiIjI8DDdET1EVbObMmQMLi4qOTg5DEREZNoYbov936dIlbNu2TamdF+UjIjIuDDdE4L2hiIhMCcMNmT1VwYahhojIeDHckNk6efIkEhISlNoTEysmDXNeDRGRcWK4IbNU2TDUtm1SpKdXrIZiuCEiMk4MN2R2Krt2TUoK0KoV4O3NZd5ERMaM4YbMRkJCAk6ePKnUzlsoEBGZFoYbMgvPWw3Fa9cQEZkOhhsyeVwNRURkXhhuyGTt3LkT58+fV2pnsCEiMm0MN2SSVPXW5OU5oXr1KSJUQ0RE+sRwQyZHVbBZulSKR48Ae3tg4UIRiiIiIr1huCGT8fXXXyMrK0upXSqVoqQEWLkSmDxZhMKIiEivJIIgCGIXoU/5+flwdHREXl4eHBwcxC6HtERVb81LL72EIUOGiFANERFpmybf3+y5IaPH1VBERPRvDDdktJYsWYKioiKldgYbIiLzxnBDRklVb42Xlxf69OkjQjVERGRILMQugEhTld0bqqSEwYaIiNhzQ0akslsoPLnpJe/kTUREAMMNGQlVwaZfv37o3Lmzwk0viYiIGG7I4D1vNRRveklERP/GcEMG63l38iYiIlKF4YYMkqpgM3jwYLRo0UKEaoiIyJgYxGqp6OhoeHh4wNbWFl5eXjh16pRa+8XGxkIikWDQoEG6LZD0RhAElcHG01PKYENERGoRvedm+/btCA4Oxpo1a+Dl5YWoqCj4+fkhPT0dLi4ule6XmZmJTz75BG+88YYeqyVdqmwYat48Kby9Oa+GiIjUI3rPTWRkJMaMGYMRI0agTZs2WLNmDezs7LBhw4ZK9ykvL8fQoUMRFhaGpk2b6rFa0hVVwWb06NHw9KwINlwJRURE6hK156akpASnT59GaGiovM3CwgK+vr5ISUmpdL/58+fDxcUFo0aNwtGjR5/5HsXFxSguLpY/z8/Pf/HCSWvKy8vx2WefKbU/mTTcoAF7bIiISDOihpu7d++ivLwcrq6uCu2urq5IS0tTuc+xY8ewfv16nD17Vq33CA8Pr3S4g8TF1VBERKQLog9LaaKgoADDhg3D2rVrUbduXbX2CQ0NRV5envxx8+ZNHVdJ6lAVbNq0mYzERCni4kQoiIiITIaoPTd169aFpaUlcnJyFNpzcnLg5uamtP3Vq1eRmZkJf39/eZtMJgMAVKtWDenp6WjWrJnCPjY2NrCxsdFB9VQVxcXFiIiIUGqXSqXw8QFvo0BERC9M1HBjbW2NTp06ISkpSb6cWyaTISkpCRMnTlTavlWrVvjjjz8U2mbPno2CggKsWLEC7u7u+iibquh5w1AhIbyNAhERvTjRl4IHBwdj+PDh6Ny5M7p27YqoqCgUFhZixIgRAIDAwEA0aNAA4eHhsLW1Rdu2bRX2d3JyAgCldjIsqoLN9OnTYWdnJ3/O2ygQEZE2iB5uAgICkJubi7lz5yI7OxsdOnRAQkKCfJLxjRs3YGFhVFOD6F8KCgoQGRmp1M5Jw0REpCsSQRAEsYvQp/z8fDg6OiIvLw8ODg5il2PSKhuG8vSUsoeGiIg0osn3t+g9N2SaVAWbgwc/xfHjVrzaMBER6RTDDWnV3bt3ER0drdQulUrh6ckJw0REpHsMN6Q1z1sNxQnDRESkDww3pBWqgs2cOXM4GZyIiPSO4YZeyI0bN7Bx40aldk9PKZhriIhIDAw3VGWVDUPNmyflpGEiIhINww1ViapgM3fuXPzwgwTe3pw0TERE4mG4IY2kp6cjNjZWqd3TUwqJhJOGiYhIfAw3pDYOQxERkTHglE9Si6pgk5gohaenlMNQRERkUNhzQ8/022+/Yf/+/UrtiYlShIRwGIqIiAwPww1VSlVvjYODA6ZNmwbe95KIiAwVww2ppCrY8E7eRERkDBhuSMHRo0fx008/KbV7ejLYEBGRcWC4ITlVvTVNmjRBYGCgCNUQERFVDcMNAah8NdSJEyIUQ0RE9AIYbsxcYmIifvnlFxXtUi7vJiIio8RwY8ZU9dZ4eXmhT58+XA1FRERGi+HGTKkKNp6eUvTpI0IxREREWsRwY0bi4oAfftiLhg3PKr3GZd5ERGQqGG7MSGpqGBo2VGy7cOFtbN/eRZyCiIiIdID3ljITqoahtm2TYuhQBhsiIjIt7LkxcXFxcUhNTVVql0qlnDRMREQmieHGRMXFVQxDPe3UqSCMHdtYhIqIiIj0g+HGRKkKNpw0TERE5oDhxsR8+WUicnOVL8rHYENEROaC4caEqJo0PH78eDg7O4tQDRERkTgYbkzA3r0Czp6dr9TO3hoiIjJHDDdG7tixYzh7NkmpncGGiIjMFcONEVM1DPXJJ5+gRo0aIlRDRERkGBhujJAgCJg/n8NQREREqjDcGJmDBw/ixIkTCm2NGjXCiBEjRKqIiIjIsDDcGIG4OCAiAvDzUx6GCg0NhbW1tQhVERERGSaGGyOweLEMfn4LlNo5DEVERKSM4cZAPemtCQr6GW+9lazwWqtWrRAQECBOYURERAaO4cZAPRmGyspSbJ81axaqVeMfGxERUWX4LWmAysvL4ef3mVI7h6GIiIiej+HGwJw6dQo//vijQlvPnj3RrVs3kSoiIiIyLgw3BkTVRfnmzJkDCwsLEaohIiIyTgw3BqCsrAwLFy5UaucwFBERkeYYbkTwZCVUSAhQu/YxJCUp3hvq/fffR+vWrUWqjoiIyLgx3IggIgJISQFSU5WHoebOnQuJRCJCVURERKaBkzn0IC4O8PGp+AkA06eXYN485WAjlUoZbIiIiF4Qe2704ElPTUQE4OHxO37/fbfC6x988AGaNWsmUnVERESmheFGD0JC/rko327FXMNhKCIiIi1juNGDPn1KkJoartDWoEEDjB49WqSKiIiITBfDjY5lZWXh66+/VmibMGEC6tatK1JFREREpo0TirXo6YnDBw4cUAo2UqmUwYaIiEiH2HOjRU8mDn/+eRlSUxUvyhcQEIBWrVqJVBkREZH5YLjRopAQYPXqv/Dqq+sV2mfMmIHq1auLVBUREZF5MYhhqejoaHh4eMDW1hZeXl44depUpduuXbsWb7zxBmrVqoVatWrB19f3mdvrU7Vq8QrBplWrVpBKpQw2REREeiR6uNm+fTuCg4MhlUpx5swZtG/fHn5+frhz547K7ZOTkzF48GAcPnwYKSkpcHd3x1tvvYVbt27puXJFWVlZ+PXXX+XPhw4dioCAABErIiIiMk8SQRAEMQvw8vJCly5dsGrVKgCATCaDu7s7Jk2ahJCQkOfuX15ejlq1amHVqlUIDAx87vb5+flwdHREXl4eHBwcXrj+J4qLixEREQEAmDlzJmxtbbV2bCIiInOnyfe3qHNuSkpKcPr0aYSGhsrbLCws4Ovri5SUFLWOUVRUhNLSUtSuXVtXZarFxsaGd/EmIiIyAKKGm7t376K8vByurq4K7a6urkhLS1PrGDNnzkT9+vXh6+ur8vXi4mIUFxfLn+fn51e9YCIiIjJ4os+5eRERERGIjY3F7t27Kx0GCg8Ph6Ojo/zh7u6u5yqJiIhIn0QNN3Xr1oWlpSVycnIU2nNycuDm5vbMfZcuXYqIiAgcOHAAr7zySqXbhYaGIi8vT/64efOmVmonIiIiwyRquLG2tkanTp2QlJQkb5PJZEhKSoK3t3el+33++edYsGABEhIS0Llz52e+h42NDRwcHBQeREREZLpEv4hfcHAwhg8fjs6dO6Nr166IiopCYWEhRowYAQAIDAxEgwYNEB5ecePJxYsXY+7cudi6dSs8PDyQnZ0NALC3t4e9vb1on4OIiIgMg+jhJiAgALm5uZg7dy6ys7PRoUMHJCQkyCcZ37hxAxYW/3QwrV69GiUlJXjvvfcUjiOVSjFv3jx9lk5EREQGSPTr3Oibrq5zQ0RERLqjyfe3Ua+WIiIiInoaww0RERGZFIYbIiIiMikMN0RERGRSGG6IiIjIpDDcEBERkUlhuCEiIiKTIvpF/PTtyWV9eHdwIiIi4/Hke1udy/OZXbgpKCgAAN4dnIiIyAgVFBTA0dHxmduY3RWKZTIZbt++jZo1a0IikbzQsfLz8+Hu7o6bN2/yascviOdSe3gutYfnUrt4PrXHHM+lIAgoKChA/fr1FW7LpIrZ9dxYWFigYcOGWj0m7zauPTyX2sNzqT08l9rF86k95nYun9dj8wQnFBMREZFJYbghIiIik8Jw8wJsbGwglUphY2MjdilGj+dSe3gutYfnUrt4PrWH5/LZzG5CMREREZk29twQERGRSWG4ISIiIpPCcENEREQmheGGiIiITArDzXNER0fDw8MDtra28PLywqlTpyrddu3atXjjjTdQq1Yt1KpVC76+vs/c3txoci7/LTY2FhKJBIMGDdJtgUZE03P58OFDTJgwAfXq1YONjQ1atGiB+Ph4PVVr2DQ9l1FRUWjZsiWqV68Od3d3TJs2DY8fP9ZTtYbryJEj8Pf3R/369SGRSLBnz57n7pOcnIyOHTvCxsYGzZs3R0xMjM7rNAaanstdu3ahd+/ecHZ2hoODA7y9vZGYmKifYg0Uw80zbN++HcHBwZBKpThz5gzat28PPz8/3LlzR+X2ycnJGDx4MA4fPoyUlBS4u7vjrbfewq1bt/RcueHR9Fw+kZmZiU8++QRvvPGGnio1fJqey5KSEvTu3RuZmZn4/vvvkZ6ejrVr16JBgwZ6rtzwaHout27dipCQEEilUly8eBHr16/H9u3b8emnn+q5csNTWFiI9u3bIzo6Wq3tMzIy0K9fP/Ts2RNnz57F1KlTMXr0aLP/UgY0P5dHjhxB7969ER8fj9OnT6Nnz57w9/dHamqqjis1YAJVqmvXrsKECRPkz8vLy4X69esL4eHhau1fVlYm1KxZU9i0aZOuSjQaVTmXZWVlgo+Pj7Bu3Tph+PDhwsCBA/VQqeHT9FyuXr1aaNq0qVBSUqKvEo2GpudywoQJQq9evRTagoODhddee02ndRobAMLu3bufuc2MGTOEl19+WaEtICBA8PPz02Flxkedc6lKmzZthLCwMO0XZCTYc1OJkpISnD59Gr6+vvI2CwsL+Pr6IiUlRa1jFBUVobS0FLVr19ZVmUahqudy/vz5cHFxwahRo/RRplGoyrmMi4uDt7c3JkyYAFdXV7Rt2xaLFi1CeXm5vso2SFU5lz4+Pjh9+rR86OratWuIj4/H22+/rZeaTUlKSorCuQcAPz8/tf99pcrJZDIUFBSY9XeP2d04U113795FeXk5XF1dFdpdXV2Rlpam1jFmzpyJ+vXrK/0PbG6qci6PHTuG9evX4+zZs3qo0HhU5Vxeu3YNP/30E4YOHYr4+HhcuXIF48ePR2lpKaRSqT7KNkhVOZdDhgzB3bt38frrr0MQBJSVleGjjz7isFQVZGdnqzz3+fn5+Pvvv1G9enWRKjN+S5cuxaNHj/D++++LXYpo2HOjIxEREYiNjcXu3btha2srdjlGpaCgAMOGDcPatWtRt25dscsxejKZDC4uLvj666/RqVMnBAQEYNasWVizZo3YpRmd5ORkLFq0CF9++SXOnDmDXbt2Yf/+/ViwYIHYpREBqJgXFhYWhh07dsDFxUXsckTDnptK1K1bF5aWlsjJyVFoz8nJgZub2zP3Xbp0KSIiInDo0CG88soruizTKGh6Lq9evYrMzEz4+/vL22QyGQCgWrVqSE9PR7NmzXRbtIGqyt/LevXqwcrKCpaWlvK21q1bIzs7GyUlJbC2ttZpzYaqKudyzpw5GDZsGEaPHg0AaNeuHQoLC/Hhhx9i1qxZsLDg74vqcnNzU3nuHRwc2GtTRbGxsRg9ejS+++47sx8x4P+JlbC2tkanTp2QlJQkb5PJZEhKSoK3t3el+33++edYsGABEhIS0LlzZ32UavA0PZetWrXCH3/8gbNnz8ofAwYMkK+qcHd312f5BqUqfy9fe+01XLlyRR4QAeDSpUuoV6+e2QYboGrnsqioSCnAPAmNAm/TpxFvb2+Fcw8ABw8efOa/r1S5bdu2YcSIEdi2bRv69esndjniE3tGsyGLjY0VbGxshJiYGOHChQvChx9+KDg5OQnZ2dmCIAjCsGHDhJCQEPn2ERERgrW1tfD9998LWVlZ8kdBQYFYH8FgaHoun8bVUv/Q9FzeuHFDqFmzpjBx4kQhPT1d2Ldvn+Di4iJ89tlnYn0Eg6HpuZRKpULNmjWFbdu2CdeuXRMOHDggNGvWTHj//ffF+ggGo6CgQEhNTRVSU1MFAEJkZKSQmpoqXL9+XRAEQQgJCRGGDRsm3/7atWuCnZ2dMH36dOHixYtCdHS0YGlpKSQkJIj1EQyGpudyy5YtQrVq1YTo6GiF756HDx+K9RFEx3DzHF988YXQqFEjwdraWujatavwyy+/yF/r3r27MHz4cPnzxo0bCwCUHlKpVP+FGyBNzuXTGG4UaXouT5w4IXh5eQk2NjZC06ZNhYULFwplZWV6rtowaXIuS0tLhXnz5gnNmjUTbG1tBXd3d2H8+PHCgwcP9F+4gTl8+LDKf/+enL/hw4cL3bt3V9qnQ4cOgrW1tdC0aVNh48aNeq/bEGl6Lrt37/7M7c2RRBDYl0pERESmg3NuiIiIyKQw3BAREZFJYbghIiIik8JwQ0RERCaF4YaIiIhMCsMNERERmRSGGyIiIjIpDDdERJXw8PBAVFSU2GUQkYYYbohII7m5uRg3bhwaNWoEGxsbuLm5wc/PD8ePHwcASCQS7NmzR9wi1dSjRw9IJBKlR1lZmdilEdEL4F3BiUgj//nPf1BSUoJNmzahadOmyMnJQVJSEu7duyd2aVUyZswYzJ8/X6GtWjX+00hkzNhzQ0Rqe/jwIY4ePYrFixejZ8+eaNy4Mbp27YrQ0FAMGDAAHh4eAIB33nkHEolE/hwA9u7di44dO8LW1hZNmzZFWFiYQg9JZGQk2rVrhxo1asDd3R3jx4/Ho0eP5K/HxMTAyckJ+/btQ8uWLWFnZ4f33nsPRUVF2LRpEzw8PFCrVi1MnjwZ5eXlan8mOzs7uLm5KTwqc+PGDQwcOBD29vZwcHDA+++/j5ycHABAXl4eLC0t8dtvvwGouMN47dq18eqrr8r3//bbb836rvZE+sJwQ0Rqs7e3h729Pfbs2YPi4mKl13/99VcAwMaNG5GVlSV/fvToUQQGBmLKlCm4cOECvvrqK8TExGDhwoXyfS0sLLBy5Ur8+eef2LRpE3766SfMmDFD4fhFRUVYuXIlYmNjkZCQgOTkZLzzzjuIj49HfHw8Nm/ejK+++grff/+91j+7TCbDwIEDcf/+ffz88884ePAgrl27hoCAAACAo6MjOnTogOTkZADAH3/8AYlEgtTUVHlI+/nnn9G9e3et10ZETxH7zp1EZFy+//57oVatWoKtra3g4+MjhIaGCufOnZO/DkDYvXu3wj5vvvmmsGjRIoW2zZs3C/Xq1av0fb777juhTp068ucbN24UAAhXrlyRt40dO1aws7MTCgoK5G1+fn7C2LFj1fos3bt3F6ysrIQaNWrIH8HBwfLXGzduLCxfvlwQBEE4cOCAYGlpKdy4cUP++p9//ikAEE6dOiUIgiAEBwcL/fr1EwRBEKKiooSAgAChffv2wo8//igIgiA0b95c+Prrr9WqjYiqjj03RKSR//znP7h9+zbi4uLQp08fJCcno2PHjoiJial0n3PnzmH+/Pnynh97e3uMGTMGWVlZKCoqAgAcOnQIb775Jho0aICaNWti2LBhuHfvnvx1oGIIqVmzZvLnrq6u8PDwgL29vULbnTt31P48Q4cOxdmzZ+WP0NBQldtdvHgR7u7uCsNKbdq0gZOTEy5evAgA6N69O44dO4by8nL8/PPP6NGjB3r06IHk5GTcvn0bV65cQY8ePdSujYiqhuGGiDRma2uL3r17Y86cOThx4gSCgoIglUor3f7Ro0cICwtTCBF//PEHLl++DFtbW2RmZqJ///545ZVXsHPnTpw+fRrR0dEAgJKSEvlxrKysFI4rkUhUtslkMrU/i6OjI5o3by5/1K1bV+19n9atWzcUFBTgzJkzOHLkiEK4+fnnn1G/fn289NJLVT4+EamHSwKI6IW1adNGvvzbyspKaUJvx44dkZ6ejubNm6vc//Tp05DJZFi2bBksLCp+59qxY4dOa9ZU69atcfPmTdy8eVPee3PhwgU8fPgQbdq0AQA4OTnhlVdewapVq2BlZYVWrVrBxcUFAQEB2LdvH+fbEOkJe26ISG337t1Dr1698O233+L3339HRkYGvvvuO3z++ecYOHAggIoL3yUlJSE7OxsPHjwAAMydOxfffPMNwsLC8Oeff+LixYuIjY3F7NmzAQDNmzdHaWkpvvjiC1y7dg2bN2/GmjVrRPucqvj6+qJdu3YYOnQozpw5g1OnTiEwMBDdu3dH586d5dv16NEDW7ZskQeZ2rVro3Xr1ti+fTvDDZGeMNwQkdrs7e3h5eWF5cuXo1u3bmjbti3mzJmDMWPGYNWqVQCAZcuW4eDBg3B3d4enpycAwM/PD/v27cOBAwfQpUsXvPrqq1i+fDkaN24MAGjfvj0iIyOxePFitG3bFlu2bEF4eLhon1MViUSCvXv3olatWujWrRt8fX3RtGlTbN++XWG77t27o7y8XGFuTY8ePZTaiEh3JIIgCGIXQURERKQt7LkhIiIik8JwQ0Qm6ejRowpLz59+EJHp4rAUEZmkv//+G7du3ar09cpWbhGR8WO4ISIiIpPCYSkiIiIyKQw3REREZFIYboiIiMikMNwQERGRSWG4ISIiIpPCcENEREQmheGGiIiITArDDREREZmU/wPwuMM0a078lgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZC5JREFUeJzt3XlcVOX+B/DPgDCsA26AKCpKueSOimPlSqLiVnZTM4UkTQNLKQXMxKWCqy1qmlam2L3ulcZ1I0LRlLkuBCkulIZiyahXhRFUEHh+f/Dj5DiDDjgwA/N5v168cJ7zzJnvHCfn03me8xyZEEKAiIiIiB7KytQFEBEREdUGDE1EREREBmBoIiIiIjIAQxMRERGRARiaiIiIiAzA0ERERERkAIYmIiIiIgMwNBEREREZgKGJiIiIyAAMTURkUWQyGebPn2/qMiTBwcFo2bKlqcsgIgMwNBGRycXFxUEmk0k/dnZ2ePLJJxEWFoYrV65U62unpKRg/vz5yM3NNep++/Xrp/WeGjRogB49emDt2rUoLS01ymt8+OGH2LFjh1H2RUSPVs/UBRARlVu4cCG8vb1x9+5dHDp0CKtWrcLu3buRkZEBBwcHo7zGnTt3UK/e3//0paSkYMGCBQgODoarq6tRXqNcs2bNEBMTAwC4du0avvnmG4SEhOC3335DbGzsY+//ww8/xIsvvohRo0Y99r6I6NEYmojIbAwZMgTdu3cHALz22mto2LAhPvnkE/zwww8YN25clfdbWlqKoqIi2NnZwc7OzljlPpKLiwteeeUV6fHrr7+ONm3aYMWKFVi0aBFsbGxqrBYienwcniMiszVgwAAAQFZWFgDgo48+Qu/evdGwYUPY29vD19cX3377rc7zZDIZwsLCsGHDBjz11FOQy+XYu3evtK18TtP8+fMxa9YsAIC3t7c0lHbhwgX07dsXnTt31ltXmzZtEBAQUOn34+DggF69eqGgoADXrl2rsF9BQQHefvtteHl5QS6Xo02bNvjoo48ghNB6jwUFBVi/fr1Ud3BwcKVrIiLD8UwTEZmt8+fPAwAaNmwIAFi2bBlGjBiB8ePHo6ioCJs3b8Y//vEP7Ny5E4GBgVrP3bdvH7Zu3YqwsDA0atRI72TrF154Ab/99hs2bdqETz/9FI0aNQIANG7cGBMmTMDkyZORkZGBDh06SM85duwYfvvtN8ydO7dK7+mPP/6AtbV1hUOBQgiMGDEC+/fvR0hICLp06YKEhATMmjULf/31Fz799FMAwL/+9S+89tpr6NmzJ6ZMmQIAaN26dZVqIiIDCSIiE1u3bp0AIH766Sdx7do1cenSJbF582bRsGFDYW9vL/78808hhBC3b9/Wel5RUZHo0KGDGDBggFY7AGFlZSVOnTql81oARHR0tPR4yZIlAoDIysrS6pebmyvs7OxERESEVvubb74pHB0dRX5+/kPfU9++fUXbtm3FtWvXxLVr18SZM2fEm2++KQCI4cOHS/2CgoJEixYtpMc7duwQAMT777+vtb8XX3xRyGQyce7cOanN0dFRBAUFPbQOIjIeDs8Rkdnw9/dH48aN4eXlhbFjx8LJyQnbt29H06ZNAQD29vZS35s3byIvLw/PPvssfvnlF5199e3bF+3bt69yLS4uLhg5ciQ2bdokDYuVlJRgy5YtGDVqFBwdHR+5j7Nnz6Jx48Zo3Lgx2rVrh88++wyBgYFYu3Zthc/ZvXs3rK2t8eabb2q1v/322xBCYM+ePVV+T0T0eDg8R0RmY+XKlXjyySdRr149uLu7o02bNrCy+vv/7Xbu3In3338f6enpKCwslNplMpnOvry9vR+7nokTJ2LLli34+eef0adPH/z000+4cuUKJkyYYNDzW7Zsia+++kpaRuGJJ56Am5vbQ59z8eJFeHp6wtnZWau9Xbt20nYiMg2GJiIyGz179pSunnvQzz//jBEjRqBPnz74/PPP0aRJE9jY2GDdunXYuHGjTv/7z0pVVUBAANzd3fHvf/8bffr0wb///W94eHjA39/foOc7Ojoa3JeIzB+H54ioVvjuu+9gZ2eHhIQETJo0CUOGDDFKINF3lqqctbU1Xn75ZXz77be4efMmduzYgXHjxsHa2vqxX7ciLVq0wOXLl3Hr1i2t9rNnz0rbyz2sdiIyPoYmIqoVrK2tIZPJUFJSIrVduHDhsVfELp+bVNGK4BMmTMDNmzfx+uuvIz8/X2vdpeowdOhQlJSUYMWKFVrtn376KWQyGYYMGSK1OTo6Gn0lcyKqGIfniKhWCAwMxCeffILBgwfj5ZdfxtWrV7Fy5Ur4+PjgxIkTVd6vr68vAODdd9/F2LFjYWNjg+HDh0thqmvXrujQoQO2bduGdu3aoVu3bkZ5PxUZPnw4+vfvj3fffRcXLlxA586d8eOPP+KHH37AjBkztJYV8PX1xU8//YRPPvkEnp6e8Pb2hp+fX7XWR2TJeKaJiGqFAQMG4Ouvv4ZarcaMGTOwadMm/POf/8Tzzz//WPvt0aMHFi1ahF9//RXBwcEYN26czsKTEydOBACDJ4A/DisrK8THx2PGjBnYuXMnZsyYgdOnT2PJkiX45JNPtPp+8skn8PX1xdy5czFu3DisWrWq2usjsmQyIe5bYpaIiHQsW7YMM2fOxIULF9C8eXNTl0NEJsLQRET0EEIIdO7cGQ0bNsT+/ftNXQ4RmRDnNBER6VFQUID4+Hjs378fJ0+exA8//GDqkojIxHimiYhIjwsXLsDb2xuurq5444038MEHH5i6JCIyMYYmIiIiIgPw6jkiIiIiAzA0ERERERmAE8GNpLS0FJcvX4azszNvbUBERFRLCCFw69YteHp6at0gXB+GJiO5fPkyvLy8TF0GERERVcGlS5fQrFmzh/ZhaDISZ2dnAGUHXaFQmLgaIiIiMoRGo4GXl5f0Pf4wDE1GUj4kp1AoGJqIiIhqGUOm1nAiOBEREZEBGJqIiIiIDMDQRERERGQAzmmqYSUlJbh3756py6AaYGtr+8jLV4mIqPZgaKohQgio1Wrk5uaauhSqIVZWVvD29oatra2pSyEiIiNgaKoh5YHJzc0NDg4OXACzjitf7DQnJwfNmzfn3zcRUR3A0FQDSkpKpMDUsGFDU5dDNaRx48a4fPkyiouLYWNjY+pyiIjoMXHCRQ0on8Pk4OBg4kqoJpUPy5WUlJi4EiIiMgaGphrEIRrLwr9vIqK6haGJiIiIyAAMTUREREQGYGiihwoODoZMJoNMJoONjQ3c3d3x3HPPYe3atSgtLTV4P3FxcXB1da2+QomIiKqZ2YSm2NhYyGQyzJgxQ2q7e/cuQkND0bBhQzg5OWH06NG4cuWK1vOys7MRGBgIBwcHuLm5YdasWSguLtbqk5ycjG7dukEul8PHxwdxcXE6r79y5Uq0bNkSdnZ28PPzw9GjR6vjbdZKgwcPRk5ODi5cuIA9e/agf//+eOuttzBs2DCdY01ERGRsQgicPn3a5BfWmEVoOnbsGL744gt06tRJq33mzJn4z3/+g23btuHAgQO4fPkyXnjhBWl7SUkJAgMDUVRUhJSUFKxfvx5xcXGYN2+e1CcrKwuBgYHo378/0tPTMWPGDLz22mtISEiQ+mzZsgXh4eGIjo7GL7/8gs6dOyMgIABXr16t/jdfC8jlcnh4eKBp06bo1q0b5syZgx9++AF79uyRAugnn3yCjh07wtHREV5eXnjjjTeQn58PoCy0vvrqq8jLy5POWs2fPx8A8K9//Qvdu3eHs7MzPDw88PLLL/O4ExGR5MaNG1i4cCG2bduG999/37TFCBO7deuWeOKJJ0RiYqLo27eveOutt4QQQuTm5gobGxuxbds2qe+ZM2cEAKFSqYQQQuzevVtYWVkJtVot9Vm1apVQKBSisLBQCCHE7NmzxVNPPaX1mmPGjBEBAQHS4549e4rQ0FDpcUlJifD09BQxMTEGv4+8vDwBQOTl5elsu3Pnjjh9+rS4c+eO1FZaWioKCwtr/Ke0tNTg9ySEEEFBQWLkyJF6t3Xu3FkMGTJECCHEp59+Kvbt2yeysrJEUlKSaNOmjZg2bZoQQojCwkKxdOlSoVAoRE5OjsjJyRG3bt0SQgjx9ddfi927d4vz588LlUollEqltM/aTt/fOxERGe7w4cNi/vz50s/evXuN/hoP+/5+kMkXtwwNDUVgYCD8/f21EmRqairu3bsHf39/qa1t27Zo3rw5VCoVevXqBZVKhY4dO8Ld3V3qExAQgGnTpuHUqVPo2rUrVCqV1j7K+5QPAxYVFSE1NRVRUVHSdisrK/j7+0OlUlVYd2FhIQoLC6XHGo2mUu/73r17iImJqdRzjCEqKspot/Vo27YtTpw4AQBaw6otW7bE+++/j6lTp+Lzzz+Hra0tXFxcIJPJ4OHhobWPSZMmSX9u1aoVli9fjh49eiA/Px9OTk5GqZOIiGqX0tJSfPTRR7hz547UNmLECHTt2tWEVZl4RfDNmzfjl19+wbFjx3S2qdVq2Nra6kwednd3h1qtlvrcH5jKt5dve1gfjUaDO3fu4ObNmygpKdHb5+zZsxXWHhMTgwULFhj2RusoIYS0FtFPP/2EmJgYnD17FhqNBsXFxbh79y5u37790EU9U1NTMX/+fPz666+4efOmNLk8Ozsb7du3r5H3QURE5uPatWv4/PPPtdrCw8Ph7Oxsoor+ZrLQdOnSJbz11ltITEyEnZ2dqcqosqioKISHh0uPNRoNvLy8DH6+jY2N1tmtmmLM23mcOXMG3t7euHDhAoYNG4Zp06bhgw8+QIMGDXDo0CGEhISgqKiowtBUUFCAgIAABAQEYMOGDWjcuDGys7MREBCAoqIio9VJRES1w8GDB7F//37pcdOmTRESEmI2iwWbLDSlpqbi6tWr6Natm9RWUlKCgwcPYsWKFUhISEBRURFyc3O1zjZduXJFGuLx8PDQucqt/Oq6+/s8eMXdlStXoFAoYG9vD2tra1hbW+vt8+BQ0v3kcjnkcnnl3/j/k8lkRhsmM4V9+/bh5MmTmDlzJlJTU1FaWoqPP/4YVlZl1xZs3bpVq7+tra3OVQ9nz57F9evXERsbKwXO48eP18wbICIis1FSUoLY2FitK7Kff/55nQvETM1kV88NHDgQJ0+eRHp6uvTTvXt3jB8/XvqzjY0NkpKSpOdkZmYiOzsbSqUSAKBUKnHy5Emtq60SExOhUCikoR2lUqm1j/I+5fuwtbWFr6+vVp/S0lIkJSVJfSxdYWEh1Go1/vrrL/zyyy/48MMPMXLkSAwbNgwTJ06Ej48P7t27h88++wx//PEH/vWvf2H16tVa+2jZsiXy8/ORlJSE//3vf7h9+zaaN28OW1tb6Xnx8fFYtGiRid4lERGZwpUrV/D+++9rBaa3337b7AITANNfPXe/+6+eE0KIqVOniubNm4t9+/aJ48ePC6VSKZRKpbS9uLhYdOjQQQwaNEikp6eLvXv3isaNG4uoqCipzx9//CEcHBzErFmzxJkzZ8TKlSuFtbW11gz8zZs3C7lcLuLi4sTp06fFlClThKurq9ZVeY9S2avnaougoCABQAAQ9erVE40bNxb+/v5i7dq1oqSkROr3ySefiCZNmgh7e3sREBAgvvnmGwFA3Lx5U+ozdepU0bBhQwFAREdHCyGE2Lhxo2jZsqWQy+VCqVSK+Ph4AUCkpaXV7ButBrX5752IqCYkJSVpXR0XFxdX4zVU5uo5mRBCmDCzaenXrx+6dOmCpUuXAihb3PLtt9/Gpk2bUFhYiICAAHz++edaw2YXL17EtGnTkJycDEdHRwQFBSE2Nhb16v098picnIyZM2fi9OnTaNasGd577z0EBwdrvfaKFSuwZMkSqNVqdOnSBcuXL4efn5/BtWs0Gri4uCAvLw8KhUJr2927d5GVlQVvb+9aOX+LqoZ/70RE+pWUlOisufSPf/zDJBcAPez7+0FmFZpqM4YmehD/3omIdF2+fBlfffWVVtusWbMeeqV1dapMaDKLFcGJiIio7vvxxx+1ApOPjw+io6MNCkzx8UDv3mW/TcXki1sSERFR3VZcXIwPPvhAq23s2LFo06aNwfuIjQVUqrLfI0YYu0LDMDQRERFRtfnzzz/x9ddfa7XNnj0b9vb2ldpPZGRZYIqMNGZ1lcPQRERERNVi9+7dWnf9aNeuHV566aUq7WvECNOdYSrH0ERERERGde/ePXz44YdabePHj4ePj4+JKjIOhiYiIiIymosXLyIuLk6rLTIy8rHuomEuGJqIiIjIKH744Qekp6dLjzt16oTnn3/edAUZGUMTERERPZaioiLExMRotU2cOBHe3t4mqqh6cJ0mMgvBwcEYNWqU9Lhfv36YMWPGY+3TGPsgIqKH++OPP3QCU1RUVJ0LTADPNNEjBAcHY/369QAAGxsbNG/eHBMnTsScOXO0blVjbN9//z1sbGwM6pucnIz+/fvj5s2bcHV1rdI+iIio8r777jtkZGRIj7t27YoRpr7ErRoxNNEjDR48GOvWrUNhYSF2796N0NBQ2NjYICoqSqtfUVERbG1tjfKaDRo0MIt9EBGRrrt37+Kf//ynVturr76K5s2bm6iimsHhOXokuVwODw8PtGjRAtOmTYO/vz/i4+OlIbUPPvgAnp6e0squly5dwksvvQRXV1c0aNAAI0eOxIULF6T9lZSUIDw8HK6urmjYsCFmz56NB2+B+ODQWmFhISIiIuDl5QW5XA4fHx98/fXXuHDhAvr37w8AqF+/PmQymXQz5gf3cfPmTUycOBH169eHg4MDhgwZgt9//13aHhcXB1dXVyQkJKBdu3ZwcnLC4MGDkZOTI/VJTk5Gz5494ejoCFdXVzz99NO4ePGikY40EZH5O3TokE5gmjNnTp0PTABDE1WBvb09ioqKAABJSUnIzMxEYmIidu7ciXv37iEgIADOzs74+eefcfjwYSl8lD/n448/RlxcHNauXYtDhw7hxo0b2L59+0Nfc+LEidi0aROWL1+OM2fO4IsvvoCTkxO8vLzw3XffAQAyMzORk5ODZcuW6d1HcHAwjh8/jvj4eKhUKgghMHToUNy7d0/qc/v2bXz00Uf417/+hYMHDyI7OxvvvPMOgLLbAIwaNQp9+/bFiRMnoFKpMGXKFMhkssc+pkREtcGCBQuQlJQkPe7Zsyeio6MtZioEh+fIYEIIJCUlISEhAdOnT8e1a9fg6OiINWvWSMNy//73v1FaWoo1a9ZIYWLdunVwdXVFcnIyBg0ahKVLlyIqKgovvPACAGD16tVISEio8HV/++03bN26FYmJifD39wcAtGrVStpePgzn5uamNafpfr///jvi4+Nx+PBh9O7dGwCwYcMGeHl5YceOHfjHP/4BoGxBttWrV6N169YAgLCwMCxcuBBA2Z2w8/LyMGzYMGl7u3btKn8giYhqmRs3buCzzz7TagsODkaLFi1MVJFp8ExTLVTTd3reuXMnnJycYGdnhyFDhmDMmDGYP38+AKBjx45a85h+/fVXnDt3Ds7OznBycoKTkxMaNGiAu3fv4vz588jLy0NOTg78/Pyk59SrVw/du3ev8PXT09NhbW2Nvn37Vvk9nDlzBvXq1dN63YYNG6JNmzY4c+aM1Obg4CAFIgBo0qQJrl69CqAsnAUHByMgIADDhw/HsmXLtIbuiIjqoiVLlugEpsjISIsLTADPNNVKNX2n5/79+2PVqlWwtbWFp6en1lVzjo6OWn3z8/Ph6+uLDRs26OyncePGVXr9yt7U8XE8eIpZJpNpzbdat24d3nzzTezduxdbtmzB3LlzkZiYiF69etVYjURENWXBggU6bdHR0SaoxDzwTFMtFBkJKJU1d6dnR0dH+Pj4oHnz5o9cZqBbt274/fff4ebmBh8fH60fFxcXuLi4oEmTJjhy5Ij0nOLiYqSmpla4z44dO6K0tBQHDhzQu738TFdJSUmF+2jXrh2Ki4u1Xvf69evIzMxE+/btH/qeHtS1a1dERUUhJSUFHTp0wMaNGyv1fCIic5edna0TmMrnL1kyhqZaaMQIICXF9Hd71mf8+PFo1KgRRo4ciZ9//hlZWVlITk7Gm2++iT///BMA8NZbbyE2NhY7duzA2bNn8cYbbyA3N7fCfbZs2RJBQUGYNGkSduzYIe1z69atAIAWLVpAJpNh586duHbtGvLz83X28cQTT2DkyJGYPHkyDh06hF9//RWvvPIKmjZtipEjRxr03rKyshAVFQWVSoWLFy/ixx9/xO+//855TURUpyxYsADr1q3TaouIiMCQIUMA1PwUEXPC0ERG5eDggIMHD6J58+Z44YUX0K5dO4SEhODu3btQKBQAgLfffhsTJkxAUFAQlEolnJ2dH3lvolWrVuHFF1/EG2+8gbZt22Ly5MkoKCgAADRt2hQLFixAZGQk3N3dERYWpncf69atg6+vL4YNGwalUgkhBHbv3m3wVR8ODg44e/YsRo8ejSeffBJTpkxBaGgoXn/99UocISIi8ySEqHA4zs7OTnp8/xQRSyMTDy6QQ1Wi0Wjg4uKCvLw8KRyUu3v3LrKysuDt7a31waO6jX/vRFRbnDt3Tmcu6rPPPosBAwYAKDurFBv797SQ8j+b44hHZT3s+/tBnAhORERkwfSdXYqKitK6Mvr+s0vmOj2kJnB4joiIyAI9bDjuwVti1fQFSOaKZ5qIiIgszJkzZ6SLacr5+/vj6aef1tt/xAjLPbt0P4YmIiIiC6Lv7NK77777yCVliKGpRnHOvWXh3zcRmZPS0lIsWrRIp93S116qDIamGlB+Sfvt27drdHVrMq3yGxRbW1ubuBIisnS//vorduzYodU2dOhQ9OjRwzQF1VIMTTXA2toarq6u0j3MHBwcpJvZUt1UWlqKa9euwcHBgae8icik9A3HzZ07l/9DVwX817yGeHh4AIAUnKjus7KyQvPmzRmQicgkSkpK8P777+u0cziu6hiaaohMJkOTJk3g5uaGe/fumbocqgG2trawsuKqHkRU83788UeoVCqttueffx6dOnUyUUV1A0NTDbO2tuYpUSIiqjb6huPmzZvHs95GwNBERERUBxQVFSEmJkanncNxxsPQREREVMutXbsWly5d0mobMmQIevbsaaKK6iZOuCAiIqrFFixYoBOYunSZB7W6J3r3LrvZLhkHzzQRERHVQvn5+fj444912ufPj4ZSWfbn8pvs8hYoxsHQREREVMvom+zt7++P69ef1rqxbmwsb7JrTAxNREREtcijro67/6wSzzAZF+c0ERER1QLXr1/XG5i6do3G00/LOHepBvBMExERkZnTF5ayspR44YVBiI3l3KWawtBERERkxvQFpoSEaKhUwG+/lc1Z4tylmsHQREREZIZycnLw5Zdf6rRHR0eja9e/g9KIETzDVFMYmoiIiMyMvrNLAwcOxDPPPAOAQclUGJqIiIjMiL7AxFuhmAeGJiIiIjNw4cIFrF+/Xqedgcl8MDQRERGZmL6zS8OHD0e3bt1MUA1VhKGJiIjIhCpae4l5yfyYdHHLVatWoVOnTlAoFFAoFFAqldizZ4+0vV+/fpDJZFo/U6dO1dpHdnY2AgMD4eDgADc3N8yaNQvFxcVafZKTk9GtWzfI5XL4+PggLi5Op5aVK1eiZcuWsLOzg5+fH44ePVot75mIiAgAzp49qzcwzZ8fjdhYExREj2TSM03NmjVDbGwsnnjiCQghsH79eowcORJpaWl46qmnAACTJ0/GwoULpec4ODhIfy4pKUFgYCA8PDyQkpKCnJwcTJw4ETY2Nvjwww8BAFlZWQgMDMTUqVOxYcMGJCUl4bXXXkOTJk0QEBAAANiyZQvCw8OxevVq+Pn5YenSpQgICEBmZibc3Nxq8IgQEZEl0BeWXnrpJfz+ezute8eReZEJIYSpi7hfgwYNsGTJEoSEhKBfv37o0qULli5dqrfvnj17MGzYMFy+fBnu7u4AgNWrVyMiIgLXrl2Dra0tIiIisGvXLmRkZEjPGzt2LHJzc7F3714AgJ+fH3r06IEVK1YAAEpLS+Hl5YXp06cj0sBPrkajgYuLC/Ly8qBQKB7jCBARUV0VHw+kpfHqOHNSme9vs7n3XElJCTZv3oyCggIolUqpfcOGDWjUqBE6dOiAqKgo3L59W9qmUqnQsWNHKTABQEBAADQaDU6dOiX18ff313qtgIAAqFQqAEBRURFSU1O1+lhZWcHf31/qo09hYSE0Go3WDxERUUXWrDnCwFTLmXwi+MmTJ6FUKnH37l04OTlh+/btaN++PQDg5ZdfRosWLeDp6YkTJ04gIiICmZmZ+P777wEAarVaKzABkB6r1eqH9tFoNLhz5w5u3ryJkpISvX3Onj1bYd0xMTF6T68SERE9SN/3xcSJE+Ht7W2CaqiqTB6a2rRpg/T0dOTl5eHbb79FUFAQDhw4gPbt22PKlClSv44dO6JJkyYYOHAgzp8/j9atW5uwaiAqKgrh4eHSY41GAy8vLxNWRERE5qiie8fxBFPtY/LQZGtrCx8fHwCAr68vjh07hmXLluGLL77Q6evn5wcAOHfuHFq3bg0PDw+dq9yuXLkCAPDw8JB+l7fd30ehUMDe3h7W1tawtrbW26d8H/rI5XLI5fJKvlsiIrIUu3fvxrFjx3TaExKiOdG7ljKbOU3lSktLUVhYqHdbeno6AKBJkyYAAKVSiZMnT+Lq1atSn8TERCgUCmmIT6lUIikpSWs/iYmJ0rwpW1tb+Pr6avUpLS1FUlKS1twqIiIiQ8THl51dejAwTZw4EdHR0UhJ4X3jaiuTnmmKiorCkCFD0Lx5c9y6dQsbN25EcnIyEhIScP78eWzcuBFDhw5Fw4YNceLECcycORN9+vRBp06dAACDBg1C+/btMWHCBCxevBhqtRpz585FaGiodBZo6tSpWLFiBWbPno1JkyZh37592Lp1K3bt2iXVER4ejqCgIHTv3h09e/bE0qVLUVBQgFdffdUkx4WIiGovTvauu0wamq5evYqJEyciJycHLi4u6NSpExISEvDcc8/h0qVL+Omnn6QA4+XlhdGjR2Pu3LnS862trbFz505MmzYNSqUSjo6OCAoK0lrXydvbG7t27cLMmTOxbNkyNGvWDGvWrJHWaAKAMWPG4Nq1a5g3bx7UajW6dOmCvXv36kwOJyIiqsjatWtx6dIlnXYGprrD7NZpqq24ThMRkeXSN9l78uTJ8PT0NEE1VBmV+f42+URwIiKi2koIoTW6UY5nl+omhiYiIqIq+OSTT3Dr1i2ddgamuouhiYiIqJL0DceFhYWhYcOGJqiGagpDExERkYE4HGfZGJqIiIgMUNGtsxiYLAdDExER0SPoC0zh4eFwdnY2QTVkKgxNREREFSgpKcH777+v086zS5aJoYmIiEgPDsfRgxiaiIiIHqAvMEVERMDOzs4E1ZC5YGgiIiL6f4WFhYiNjdVp59klAhiaiIiIAHA4jh6NoYmIiCxKfDwQGwtERgIjRpS16QtM7777LurV49ck/c3K1AUQERHVpNmzAZWq7Hd+fr7ewBQdHc3ARDr4iSAiIosik5X9HjduAT7+WHc7h+OoIgxNRERkUf75TyAtTffs0nvvvQcrKw7AUMUYmoiIyGJcv34daWkrdNp5dokMwdBEREQWQd/cJTs7O0RERJigGqqNGJqIiKjOKr9SLiBANzDNmzcPsvIJTkQGYGgiIqI6a9WqvxAQsEanncNxVBUMTUREVCctWLAAvXpptykUCsycOdM0BVGtx9BERER1TkVrLxE9DoYmIiKqM86ePYstW7botDMwkTEwNBERUZ2g7+ySm5sbpk2bZoJqqC5iaCIiolqPw3FUExiaiIio1jp+/Dh27dql087ARNWBoYmIiGolfWeX2rVrh5deeskE1ZAlYGgiIqJah8NxZAoMTUREZPbKV/YOCtoPtfqgznYGJqoJDE1ERGTW4uOB8eOBd95ZALVae5ufnx8GDx5smsLI4jA0ERGRWYuNLQtMD+LZJappVqYugIiIKD4e6N277Pf9tm7dqvdmuwxMZAo800RERCYXGwuoVGXDcBs2ACNG6J/s/dxzz6F3794mqJCIoYmIiMxAZGRZYMrPLwtQaWk8u0Tmh6GJiIhMbsSIsjNMBw+ugrPzVZ3tDExkDhiaiIjILKSlLYCzs3bbiBEj0LVrV9MURPQATgQnIqIa9+DE74oWq2RgInPCM01ERFTjyid+p6UtQFqa7nYOx5E5YmgiIqIaFxmpf7L3mDFj0LZtWxNURPRoDE1ERFTjeHUc1UYMTUREVGP0zV0CGJiodmBoIiKiGqEvMAUHB6NFixYmqIao8hiaiIioWgkhsHDhQp12nl2i2oahiYiIqg2H46guYWgiIqJqoS8wTZs2DW5ubiaohujxMTQREZFRFRcX44MPPtBp59klqu1MuiL4qlWr0KlTJygUCigUCiiVSuzZs0fafvfuXYSGhqJhw4ZwcnLC6NGjceXKFa19ZGdnIzAwEA4ODnBzc8OsWbNQXFys1Sc5ORndunWDXC6Hj48P4uLidGpZuXIlWrZsCTs7O/j5+eHo0aPV8p6JiOqyBQsWMDBRnWXS0NSsWTPExsYiNTUVx48fx4ABAzBy5EicOnUKADBz5kz85z//wbZt23DgwAFcvnwZL7zwgvT8kpISBAYGoqioCCkpKVi/fj3i4uIwb948qU9WVhYCAwPRv39/pKenY8aMGXjttdeQkJAg9dmyZQvCw8MRHR2NX375BZ07d0ZAQACuXtW9aSQREemnbzhu5syZDExUZ8iEEMLURdyvQYMGWLJkCV588UU0btwYGzduxIsvvggAOHv2LNq1aweVSoVevXphz549GDZsGC5fvgx3d3cAwOrVqxEREYFr167B1tYWERER2LVrFzIyMqTXGDt2LHJzc7F3714AgJ+fH3r06IEVK1YAAEpLS+Hl5YXp06cjMjLSoLo1Gg1cXFyQl5cHhUJhzENCRGTWbt++jSVLlui0MyxRbVCZ72+zuWFvSUkJNm/ejIKCAiiVSqSmpuLevXvw9/eX+rRt2xbNmzeHSqUCAKhUKnTs2FEKTAAQEBAAjUYjna1SqVRa+yjvU76PoqIipKamavWxsrKCv7+/1EefwsJCaDQarR8iIkuzYMECBiayGCafCH7y5EkolUrcvXsXTk5O2L59O9q3b4/09HTY2trC1dVVq7+7uzvUajUAQK1WawWm8u3l2x7WR6PR4M6dO7h58yZKSkr09jl79myFdcfExFR4KS0RkSXQ929gREQE7OzsTFANUfUz+ZmmNm3aID09HUeOHMG0adMQFBSE06dPm7qsR4qKikJeXp70c+nSJVOXRERUI27evKk3MEVHRzMwUZ1m8jNNtra28PHxAQD4+vri2LFjWLZsGcaMGYOioiLk5uZqnW26cuUKPDw8AAAeHh46V7mVX113f58Hr7i7cuUKFAoF7O3tYW1tDWtra719yvehj1wuh1wur9qbJiKqJeLjgdhYIDISGDGCi1WSZTP5maYHlZaWorCwEL6+vrCxsUFSUpK0LTMzE9nZ2VAqlQAApVKJkydPal3llpiYCIVCgfbt20t97t9HeZ/yfdja2sLX11erT2lpKZKSkqQ+RESWKjYWUKnKfusLTHPnzmVgIoth0jNNUVFRGDJkCJo3b45bt25h48aNSE5ORkJCAlxcXBASEoLw8HA0aNAACoUC06dPh1KpRK9evQAAgwYNQvv27TFhwgQsXrwYarUac+fORWhoqHQWaOrUqVixYgVmz56NSZMmYd++fdi6dSt27dol1REeHo6goCB0794dPXv2xNKlS1FQUIBXX33VJMeFiMhcREYCn39+GUrlVzrbGJbI0pg0NF29ehUTJ05ETk4OXFxc0KlTJyQkJOC5554DAHz66aewsrLC6NGjUVhYiICAAHz++efS862trbFz505MmzYNSqUSjo6OCAoK0roxpLe3N3bt2oWZM2di2bJlaNasGdasWYOAgACpz5gxY3Dt2jXMmzcParUaXbp0wd69e3UmhxMRWZq0tAXQd9KdgYkskdmt01RbcZ0mIqpr9A3HzZs3DzKZzATVEFWPynx/m3wiOBERmZfff/8dGzdu1Gnn2SWydJWeCG5tba339iLXr1+HtbW1UYoiIqLqFR8P9O4NvPtu2e/4+LL2BQsWMDARVaDSZ5oqGs0rLCyEra3tYxdERETVr/yquPR04M4dICKibP7SgxiWiP5mcGhavnw5AEAmk2HNmjVwcnKStpWUlODgwYNo27at8SskIiKji4wsC07Z2YC7eypGjNip04eBiUibwRPBvb29AQAXL15Es2bNtIbibG1t0bJlSyxcuBB+fn7VU6mZ40RwIqqNuFglWbpqmQielZUFAOjfvz++//571K9f//GqJCKiGvHgqt7lKroVChHpxyUHjIRnmojIHMXHA+PHA/n5gFIJpKQA8fHxSEtL0+nLwESWqFqXHJg0adJDt69du7ayuyQiomoSG1sWmJycys40cTiOqOoqHZpu3ryp9fjevXvIyMhAbm4uBgwYYLTCiIjo8ZVP+I6M5NVxRI+r0qFp+/btOm2lpaWYNm0aWrdubZSiiIjIOEaMAK5d+xppaX/qbGNgIqoco81pyszMRL9+/ZCTk2OM3dU6nNNEROZI33Ccg4MDZs2aZYJqiMxPZb6/K70ieEXOnz+P4uJiY+2OiIgMUL6yd/mK3ver6Oo4Biaiqqn08Fx4eLjWYyEEcnJysGvXLgQFBRmtMCIierTZs4HMzLLf5csJfPTRRygoKNDpy+E4osdT6dD04GWqVlZWaNy4MT7++ONHXllHRETGJZNp/9Z3dunJJ5/EuHHjarAqorqJ6zQZCec0EZEp3L9wJa+OI6q8GpnTdPXqVfz888/4+eefcfXq1aruhoiIDFDR3KURI4CAgAUMTEQ1oNKhSaPRYMKECfD09ETfvn3Rt29fNG3aFK+88gry8vKqo0YiIosXGwuoVGW/76dvOE6pVDIwEVWDSoemyZMn48iRI9i1axdyc3ORm5uLnTt34vjx43j99dero0YiIosXGVl2G5TIyL/bKro6btCgQTVYGZHlqPScJkdHRyQkJOCZZ57Rav/5558xePBgvVdsWALOaSKimsJboRAZT7Xee65hw4ZwcXHRaXdxcUH9+vUruzsiIqoEfYFp4MCBOv8jS0TGV+nhublz5yI8PBxqtVpqU6vVmDVrFt577z2jFkdEZKn0TfyuaDiOgYmoZlR6eK5r1644d+4cCgsL0bx5cwBAdnY25HI5nnjiCa2+v/zyi/EqNXMcniMiY+rdu2zit1JZdnWcPhyOI3p81To8N3LkSMjKV1EjIqJqERlZdqWcvsA0evRodOjQwQRVEVk2Lm5pJDzTRETGJITAwoULddp5donIuKp1cctWrVrh+vXrOu25ublo1apVZXdHRGSxKlqwcsGCBQxMRGao0sNzFy5cQElJiU57YWEh/vzzT6MURURkCe5fsLL8Zrv6JnsHBwejRYsWNVwdET3I4NAUf9//CiUkJGgtO1BSUoKkpCR4e3sbtzoiojqsfN5SZCRw7949fPjhhzp9eHaJyHwYPKfJyqpsJE8mk+HBp9jY2KBly5b4+OOPMWzYMONXWQtwThMRVRUXqyQynWq5eq60tBQA4O3tjWPHjqFRo0aPVyUREekNTGFhYWjYsKEJqiGih6n0nKasrKzqqIOIyKIUFBTgo48+0mnn2SUi81Xp0KTvio77zZs3r8rFEBFZAg7HEdVOlQ5N27dv13p87949ZGVloV69emjdujVDExHRQ+gLTO+88w4cHR1NUA0RVUalQ1NaWppOm0ajQXBwMJ5//nmjFEVEVNf873//w8qVK3XaeXaJqPYw2orgJ0+exPDhw3HhwgVj7K7W4dVzRFQRDscRma9qvfdcRfLy8pCXl2es3RER1Qn6AtO7776LevWM9s8vEdWQSv9Xu3z5cq3HQgjk5OTgX//6F4YMGWK0woiIaoP4+L8XqCxf1Rsou3vC+vXrdfrz7BJR7VXp4bkHV/22srJC48aNMWDAAERFRcHZ2dmoBdYWHJ4jsky9e5fdCkWpBFJSyto4HEdUe1Tr8BzXaSIi+lv//sDJk2W/Af2Bad68eZDJZDVcGREZW5UG1XNzc3Hu3DkAgI+PD1xdXY1ZExFRrbF/P5CfD5w9+ysWLNihs51nl4jqjkqFpgsXLiA0NBQJCQnS/edkMhkGDx6MFStWoGXLltVRIxGR2YqMBNLSOBxHZAkMDk2XLl1Cr169YGNjg0WLFqFdu3YAgNOnT2PVqlVQKpU4duwYmjVrVm3FEhGZG32BiWGJqG4yeCJ4SEgIzp07h4SEBNjZ2Wltu3PnDgYPHownnngCa9asqZZCzR0nghNZlgMHDiA5OVmnnYGJqHaplonge/fuxZYtW3QCEwDY29tj0aJFGDt2bOWrJSKqBe5fWoDDcUSWyeDQ9L///e+hc5ZatWqFGzduGKMmIiKzExtbtrQAh+OILJfBoalJkyY4ffp0hXOWMjIy4OHhYbTCiIjMydix3yMg4KROOwMTkeWwMrTjqFGj8M477+DatWs6265evYqIiAiMGjWqUi8eExODHj16wNnZGW5ubhg1ahQyMzO1+vTr1w8ymUzrZ+rUqVp9srOzERgYCAcHB7i5uWHWrFkoLi7W6pOcnIxu3bpBLpfDx8cHcXFxOvWsXLkSLVu2hJ2dHfz8/HD06NFKvR8iqpsWLFiAmzcZmIgsncFnmqKjo7F79260bt0ar7zyCtq2bQshBM6cOYONGzfCw8MD8+bNq9SLHzhwAKGhoejRoweKi4sxZ84cDBo0CKdPn4ajo6PUb/LkyVi4cKH02MHBQfpzSUkJAgMD4eHhgZSUFOTk5GDixImwsbHBhx9+CKBsQc7AwEBMnToVGzZsQFJSEl577TU0adIEAQEBAIAtW7YgPDwcq1evhp+fH5YuXYqAgABkZmbCzc2tUu+LiOoOfYtVMiwRWaZK3Ubl5s2bmDNnDrZs2YLc3FwAgKurK1566SV8+OGHaNCgwWMVc+3aNbi5ueHAgQPo06cPgLIzTV26dMHSpUv1PmfPnj0YNmwYLl++DHd3dwDA6tWrERERgWvXrsHW1hYRERHYtWsXMjIypOeNHTsWubm52Lt3LwDAz88PPXr0wIoVKwAApaWl8PLywvTp0xEZGfnI2nn1HFHdsmLFCly/fl2nnYGJqG6pzPe3wcNzAFC/fn2sWrUK169fh1qthlqtxvXr17F69erHDkwAkJeXBwA6+9qwYQMaNWqEDh06ICoqCrdv35a2qVQqdOzYUQpMABAQEACNRoNTp05Jffz9/bX2GRAQAJVKBQAoKipCamqqVh8rKyv4+/tLfR5UWFgIjUaj9UNEtVd8fNl95OLjy84uMTAR0YOqdBsVmUxm9CGr0tJSzJgxA08//TQ6dOggtb/88sto0aIFPD09ceLECURERCAzMxPff/89AECtVmsFJgDSY7Va/dA+Go0Gd+7cwc2bN1FSUqK3z9mzZ/XWGxMTU+FNOYmo9uHVcUT0KFUKTdUhNDQUGRkZOHTokFb7lClTpD937NgRTZo0wcCBA3H+/Hm0bt26psuUREVFITw8XHqs0Wjg5eVlsnqIqOri44GAgAX4/ymOWhiYiKicWYSmsLAw7Ny5EwcPHnzkbVj8/PwAAOfOnUPr1q3h4eGhc5XblStXAEBaAsHDw0Nqu7+PQqGAvb09rK2tYW1trbdPRcsoyOVyyOVyw98kEZktfWeX6tevjzfffNME1RCRuarUnCZjE0IgLCwM27dvx759++Dt7f3I56SnpwMoWzcKAJRKJU6ePImrV69KfRITE6FQKNC+fXupT1JSktZ+EhMToVQqAQC2trbw9fXV6lNaWoqkpCSpDxHVTRVdHcfAREQPMumZptDQUGzcuBE//PADnJ2dpTlILi4usLe3x/nz57Fx40YMHToUDRs2xIkTJzBz5kz06dMHnTp1AgAMGjQI7du3x4QJE7B48WKo1WrMnTsXoaGh0pmgqVOnYsWKFZg9ezYmTZqEffv2YevWrdi1a5dUS3h4OIKCgtC9e3f07NkTS5cuRUFBAV599dWaPzBEVO0qmpPI4TgiqohBSw4sX77c4B1W5v/OZDKZ3vZ169YhODgYly5dwiuvvIKMjAwUFBTAy8sLzz//PObOnat1WeDFixcxbdo0JCcnw9HREUFBQYiNjUW9en9nwuTkZMycOVNa1fy9995DcHCw1uuuWLECS5YsgVqtRpcuXbB8+XJpOPBRuOQAUe2hLzC1a9cOL730kgmqISJTqsz3t0GhyZBhM6AsBP3xxx+GVVnHMDQRmbfyG+4GBPDqOCL6W2W+vw0ansvKyjJKYUREppKWxqvjiOjxVHlOU1FREbKystC6dWutYTAiInOjbzjumWeewcCBA01QDRHVVpW+eu727dsICQmBg4MDnnrqKWRnZwMApk+fjtjYWKMXSET0OCq6Oo6BiYgqq9KhKSoqCr/++iuSk5NhZ2cntfv7+2PLli1GLY6IqKoWLFjAm+0SkVFVelxtx44d2LJlC3r16qV19dtTTz2F8+fPG7U4IqKq0BeWRowYga5du5qgGiKqKyodmq5du6b3vnMFBQUVLiFARFQThBBYuHChTjvPLhGRMVQ6NHXv3h27du3C9OnTAfy91tKaNWu4ejYRmQwXqySi6lbp0PThhx9iyJAhOH36NIqLi7Fs2TKcPn0aKSkpOHDgQHXUSET0UPoC04QJE9CqVSsTVENEdVWlJ4I/88wzSE9PR3FxMTp27Igff/wRbm5uUKlU8PX1rY4aiYj0Ki4urnCyNwMTERmbQSuC06NxRXCimsXhOCIyBqOvCK7RaAx+cQYGIqpu+gLTtGnT9F6kQkRkLAaFJldXV4OvjCspKXmsgoiIKnL79m0sWbJEp51nl4ioJhgUmvbv3y/9+cKFC4iMjERwcLB0tZxKpcL69esRExNTPVUSkcXjcBwRmVql5zQNHDgQr732GsaNG6fVvnHjRnz55ZdITk42Zn21Buc0ERlPfDwQGwv07w/s3w8EBOgGprfffhtOTk4mqI6I6pLKfH9X+uo5lUqF7t2767R3794dR48erezuiIh0xMYCKhXwzTfX9Qam6OhoBiYiqnGVXqfJy8sLX331FRYvXqzVvmbNGnh5eRmtMCKyXJGRQFqa/uG4rl05HEdEplHp0PTpp59i9OjR2LNnD/z8/AAAR48exe+//47vvvvO6AUSkeXRF5jmzJkDGxsbE1RDRFSm0sNzQ4cOxe+//47hw4fjxo0buHHjBoYPH47ffvsNQ4cOrY4aichCXLp0qcLFKhmYiMjUuLilkXAiONHj4dVxRGQKRl/c8kG5ubn4+uuvcebMGQDAU089hUmTJsHFxaUquyMiC6cvML333nuwsqr0yXAiompT6X+Rjh8/jtatW+PTTz+Vhuc++eQTtG7dGr/88kt11EhEddSpU6cqHI5jYCIic1Pp4blnn30WPj4++Oqrr1CvXtmJquLiYrz22mv4448/cPDgwWop1NxxeI6ocjgcR0TmoDLf35UOTfb29khLS0Pbtm212k+fPo3u3bvj9u3bla+4DmBoIjJcRWeXiIhqWrXOaVIoFMjOztYJTZcuXYKzs3Nld0dEFuTw4cP46aefdNoZmIioNqh0aBozZgxCQkLw0UcfoXfv3gDK/iGcNWuWzq1ViIjKcTiOiGq7Soemjz76CDKZDBMnTkRxcTEAwMbGBtOmTUNsbKzRCySi2o/DcURUF1R5nabbt2/j/PnzAIDWrVvDwcHBqIXVNpzTRKTrP//5j96rahmYiMhcVPs6TQDg4OCAjh07VvXpRFRHxceX3XBX3412AQYmIqq9DA5NkyZNMqjf2rVrq1wMEdV+FQUmhiUiqu0MDk1xcXFo0aIFunbtCt55hYj0+frrrxEQ8KdOe9euDExEVPsZHJqmTZuGTZs2ISsrC6+++ipeeeUVNGjQoDprI6JahFfHEVFdV6mJ4IWFhfj++++xdu1apKSkIDAwECEhIRg0aBBkMll11mn2OBGcLBmvjiOi2qpaVwQvd/HiRcTFxeGbb75BcXExTp06BScnpyoVXBcwNJGliY8Hjh//ANbWxTrbGJiIqLaokavnrKysIJPJIIRASUlJVXdDRLVUWtoCWFtrtzVo0ADTp083TUFERNWsUrcRLywsxKZNm/Dcc8/hySefxMmTJ7FixQpkZ2db9FkmIkujbziua9doBiYiqtMMPtP0xhtvYPPmzfDy8sKkSZOwadMmNGrUqDprIyIzw8neRGTJDJ7TZGVlhebNm6Nr164PnfT9/fffG6242oRzmqiu0xeYOnbsiBdeeMEE1RARGUe1zGmaOHGixV8hR2SpeHUcEVElF7ckIsvC4Tgior9V+eo5Iqrb9AWmvn37ol+/fjVfDBGRGWBoIiIdHI4jItLF0EREEg7HERFVjKGJiADoD0yjRo1C586dTVANEZH5qdTilkRU9wgh9AamhIRoXLzIwEREVI5nmogsWEXDcQkJ0VCpgNhYYMSIGi6KiMhMmfRMU0xMDHr06AFnZ2e4ublh1KhRyMzM1Opz9+5dhIaGomHDhnBycsLo0aNx5coVrT7Z2dkIDAyEg4MD3NzcMGvWLBQXa99ENDk5Gd26dYNcLoePj4/eJRRWrlyJli1bws7ODn5+fjh69KjR3zORudAXmNavn4iEhGhERgJKJRAZaYLCiIjMlElD04EDBxAaGor//ve/SExMxL179zBo0CAUFBRIfWbOnIn//Oc/2LZtGw4cOIDLly9rrUBcUlKCwMBAFBUVISUlBevXr0dcXBzmzZsn9cnKykJgYCD69++P9PR0zJgxA6+99hoSEhKkPlu2bEF4eDiio6Pxyy+/oHPnzggICMDVq1dr5mAQ1ZCSkpIK7x3n4eGNyMiys0spKTzLRER0P4Nvo1ITrl27Bjc3Nxw4cAB9+vRBXl4eGjdujI0bN+LFF18EAJw9exbt2rWDSqVCr169sGfPHgwbNgyXL1+Gu7s7AGD16tWIiIjAtWvXYGtri4iICOzatQsZGRnSa40dOxa5ubnYu3cvAMDPzw89evTAihUrAAClpaXw8vLC9OnTEWnA/27zNipUG/DqOCIibZX5/jarieB5eXkAgAYNGgAAUlNTce/ePfj7+0t92rZti+bNm0OlUgEAVCoVOnbsKAUmAAgICIBGo8GpU6ekPvfvo7xP+T6KioqQmpqq1cfKygr+/v5SnwcVFhZCo9Fo/RCZM32B6Y033mBgIiIykNmEptLSUsyYMQNPP/00OnToAABQq9WwtbWFq6urVl93d3eo1Wqpz/2BqXx7+baH9dFoNLhz5w7+97//oaSkRG+f8n08KCYmBi4uLtKPl5dX1d44UTW7e/duhYtVNm7c2AQVERHVTmZz9VxoaCgyMjJw6NAhU5dikKioKISHh0uPNRoNgxOZHQ7HEREZj1mEprCwMOzcuRMHDx5Es2bNpHYPDw8UFRUhNzdX62zTlStX4OHhIfV58Cq38qvr7u/z4BV3V65cgUKhgL29PaytrWFtba23T/k+HiSXyyGXy6v2holqgL7A9Pbbb8PJyckE1RAR1X4mHZ4TQiAsLAzbt2/Hvn374O3trbXd19cXNjY2SEpKktoyMzORnZ0NpVIJAFAqlTh58qTWVW6JiYlQKBRo37691Of+fZT3Kd+Hra0tfH19tfqUlpYiKSlJ6kNUW+Tl5VU4HMfARERUdSY90xQaGoqNGzfihx9+gLOzszR/yMXFBfb29nBxcUFISAjCw8PRoEEDKBQKTJ8+HUqlEr169QIADBo0CO3bt8eECROwePFiqNVqzJ07F6GhodKZoKlTp2LFihWYPXs2Jk2ahH379mHr1q3YtWuXVEt4eDiCgoLQvXt39OzZE0uXLkVBQQFeffXVmj8wRFXE4Tgioupj0iUHZDKZ3vZ169YhODgYQNkk1rfffhubNm1CYWEhAgIC8Pnnn2sNm128eBHTpk1DcnIyHB0dERQUhNjYWNSr93cmTE5OxsyZM3H69Gk0a9YM7733nvQa5VasWIElS5ZArVajS5cuWL58Ofz8/Ax6L1xygExNX2CKioqCra2tCaohIqodKvP9bVbrNNVmDE1kKmq1Gl988YVOO88uERE9Wq1dp4mIKmfBggV6A9NXX0WjbVsgPt4ERRER1VFmcfUcEVWevuG4hIT3oFL9/f9CvOEuEZHxMDQR1TK///47Nm7cqNNefqPdiAjg1i3AyYk33CUiMiaGJqJapKKr48oD04gRPLNERFRdGJqIagl9gWnevHmQyWTgnG8iourH0ERk5tLS0hCvZ0Y3r44jIqpZDE1EZoyLVRIRmQ8uOUBkpvQFpvnzo5GQwMBERGQKPNNEZGb279+PgwcP6rQXFUXDyQno398ERREREUMTkTl52HBc795Afj6wf38NF0VERAAYmojMhr7AdP/cpcjIssUqufYSEZFpMDQRmdh3332HjIwMnfYHJ3tzDSYiItNiaCIyIX1nl2xsbDBnzhwTVENERA/D0ERkIo8ajiMiIvPC0ERUw5YvX46bN2/qtDMwERGZN4Ymohqk7+xSs2bNEBISYoJqiIioMhiaiGoIh+OIiGo3hiaiasZboRAR1Q28jQpRNdIXmDp06ICuXcsWq9RzH14iIjJTPNNEVE0eNhzXuzegUpUtVsm1l4iIageGJiIjM2Q4jqt7ExHVPgxNREakLzD17dsX/fr102rj6t5ERLUPQxORkfDqOCKiuo2hiegx8eo4IiLLwNBE9Bj0BaaRI0eiS5cuNV8MERFVK4YmoioQQmDhwoU67Ty7RERUdzE0EVUSh+OIiCwTQxNRJegLTOPHj4ePj48JqiEioprE0ERkgNLSUixatEinnWeXiIgsB0MT0SM8ajguPv7vhSq59hIRUd3F0ET0EPoC09SpU+Hu7i49jo3lLVGIiCwBb9hLpEdhYaHewJSQEI0jR9y12iIjAaWSt0QhIqrrZEIIYeoi6gKNRgMXFxfk5eVBoVCYuhx6DBUNxyUkREOlKgtIKSk1XBQREVWLynx/c3iO6D76AlN4eDicnZ3RtStvsktEZMkYmogA5Ofn4+OPP9Zpv//qON5kl4jIsjE0kcXjYpVERGQIhiayaPoCU1RUFGxtbU1QDRERmTNePUcW6fr163oDU3R0NGxtbREfD/TuXbYGExEREcAzTWSBKhqO69o1Gr17l0305tpLRET0IJ5pIouiLzB16fIeEhKiERHxd1Di2ktERPQgnmkii/Dnn3/i66+/1mmPji47u6RSAW3a/B2UeKUcERE9iKGJ6rxHXR1XPhzHe8cREdHDMDRRnaYvMM2bNw8ymUx6zLNKRERkCIYmqpMyMzOxefNmnXauvURERFXFieBU5yxYsOChgYnLCRARUVWYNDQdPHgQw4cPh6enJ2QyGXbs2KG1PTg4GDKZTOtn8ODBWn1u3LiB8ePHQ6FQwNXVFSEhIcjPz9fqc+LECTz77LOws7ODl5cXFi9erFPLtm3b0LZtW9jZ2aFjx47YvXu30d8vVb+K1l66/wzT/csJEBERGcqkoamgoACdO3fGypUrK+wzePBg5OTkSD+bNm3S2j5+/HicOnUKiYmJ2LlzJw4ePIgpU6ZI2zUaDQYNGoQWLVogNTUVS5Yswfz58/Hll19KfVJSUjBu3DiEhIQgLS0No0aNwqhRo5CRkWH8N03V4vjx4xUGpgdxOQEiIqoKmRBCmLoIAJDJZNi+fTtGjRoltQUHByM3N1fnDFS5M2fOoH379jh27Bi6d+8OANi7dy+GDh2KP//8E56enli1ahXeffddqNVq6dYYkZGR2LFjB86ePQsAGDNmDAoKCrBz505p37169UKXLl2wevVqg+rXaDRwcXFBXl4eFApFFY4AVZW+sGRlZYX33nvPBNUQEVFtUpnvb7Of05ScnAw3Nze0adMG06ZNw/Xr16VtKpUKrq6uUmACAH9/f1hZWeHIkSNSnz59+mjdSywgIACZmZm4efOm1Mff31/rdQMCAqBSqSqsq7CwEBqNRuuHal5FZ5cYmIiIyNjM+uq5wYMH44UXXoC3tzfOnz+POXPmYMiQIVCpVLC2toZarYabm5vWc+rVq4cGDRpArVYDANRqNby9vbX6uLu7S9vq168PtVottd3fp3wf+sTExFS4/g9Vv6SkJBw6dEinnVfHERFRdTHr0DR27Fjpzx07dkSnTp3QunVrJCcnY+DAgSasDIiKikJ4eLj0WKPRwMvLy4QVWQ59YdXNzQ3Tpk0zQTVERGQpzDo0PahVq1Zo1KgRzp07h4EDB8LDwwNXr17V6lNcXIwbN27Aw8MDAODh4YErV65o9Sl//Kg+5dv1kcvlkMvlj/2eqHIMnexNRERkbGY/p+l+f/75J65fv44mTZoAAJRKJXJzc5Gamir12bdvH0pLS+Hn5yf1OXjwIO7duyf1SUxMRJs2bVC/fn2pT1JSktZrJSYmQqlUVvdbIgN9++23egNTQkI011siIqIaYdLQlJ+fj/T0dKSnpwMAsrKykJ6ejuzsbOTn52PWrFn473//iwsXLiApKQkjR46Ej48PAgICAADt2rXD4MGDMXnyZBw9ehSHDx9GWFgYxo4dC09PTwDAyy+/DFtbW4SEhODUqVPYsmULli1bpjW09tZbb2Hv3r34+OOPcfbsWcyfPx/Hjx9HWFhYjR8T0rVgwQKcOnVKq619+/bYvDkaKhUQEWGiwoiIyKKYdMmB5ORk9O/fX6c9KCgIq1atwqhRo5CWlobc3Fx4enpi0KBBWLRokdak7Rs3biAsLAz/+c9/YGVlhdGjR2P58uVwcnKS+pw4cQKhoaE4duwYGjVqhOnTpyPigW/abdu2Ye7cubhw4QKeeOIJLF68GEOHDjX4vXDJgerxsOG4tm2BzEygTRvg/1ePICIiqpTKfH+bzTpNtR1Dk3F9+eWXyMnJ0WmPji4bjouNBfr3B/bvL1ukkjfcJSKiqqjM93etmghOlkHf2aWnn35aWkur/DYoAJCSUpOVERGRJWNoIrNiyNVxkZFlwYm3QSEioprE0ERm4YMPPkBxcbFOu77lBEaM4HAcERHVPIYmMjl9Z5eGDh2KHj16mKAaIiIi/WrVOk1U9+gLTF27RuOtt3pw/SUiIjIrPNNEJlHRffuio6PRu3fZRO/YWA7DERGR+WBoohqnLzCNGTMGbdu2BcCJ3kREZJ4YmqjGCCGwcOFCnfYHJ3tzojcREZkjhiaqERUNxyUkRKNrV4YkIiIyf5wITtVOX2CaPHkyEhKipblLRERE5o6hiapNaWlphYtVenp6IjISUCo5d4mIiGoHDs9RtXjY1XHlOHeJiIhqE4YmMjp9gamoaDo++KCBCaohIiIyDg7PkdEUFxfrDUzz50dj+XIGJiIiqt14pomMoqLhuK++ioaTE/DmmzVcEBERkZExNNFj0xeYvv9+FhwdHfD555y3REREdQNDE1XZ3bt38c9//lOn/aOPorFhA8MSERHVLQxNVCUPW6ySgYmIiOoihiaqNH2B6d1330W9evXwwB1RiIiI6gyGJjLYd9/lIyPjY532B+8dR0REVBcxNJFBKhqO69qVgYmIiCwDQxM9kr7A9N5778HKist8ERGR5eC3HgEA4uOB3r3Lfpc/HjAgt8J7xzEwERGRpeGZJgIAxMYCKlXZbwBIS1uAvn21+zRu3BhvvPFGzRdHRERkBhiaCAAQGVkWmCIjywLTg+bNmweZTGaCyoiIiMwDx1gsXPmwHADs3HlDb2CKjo5mYCIiIovHM00WbvZsIDOz7OxSWpr2tk6dOuH55583TWFERERmhqHJwslkwPz5+s8uERER0d8YmixYXl4exo5dqtPOwERERKSLoclCrVy5Ev/73/+02oYOHYoePXqYqCIiIiLzxtBkgSpae4mIiIgqxtBkQW7cuIHPPvtMp52BiYiI6NEYmizEkiVLcPv2ba22SZMmwcvLy0QVERER1S5cp6mWu//2Jw/eCqXcggULdAJTdHQ0AxMREVEl8ExTLRYfD4wfD+Tn/337k/JboYwYAVy9ehWrVq3SeR6H44iIiCqPoakWi40tC0xOTmW3Pylvi4zUP9n79ddfh4eHRw1XSUREVDdweK4WqGjYLTISUCqBDRvKziyNGAGkpOi/d1x0dDQDExER0WOQCSGEqYuoCzQaDVxcXJCXlweFQmHUfffuXTbsplSWhaKK/PXXX1izZo1Wm42NDebMmWPUeoiIiOqKynx/c3iuFoiM/HvYrSKrVq3C1atXtdpCQ0PRqFGjaq6OiIjIMjA01QLlQ28V4WKVRERE1Y+hqRa7efMmli9frtXWoUMHjB492kQVERER1V0MTbXU8ePHsWvXLq22t99+G05OTiaqiIiIqG5jaKqFNmzYgHPnzmm1cTiOiIioejE01SK3b9/GkiVLtNpGjhyJLl26mKYgIiIiC8LQVEucPn0a27Zt02qbO3curK2tTVQRERGRZTHp4pYHDx7E8OHD4enpCZlMhh07dmhtF0Jg3rx5aNKkCezt7eHv74/ff/9dq8+NGzcwfvx4KBQKuLq6IiQkBPn5+Vp9Tpw4gWeffRZ2dnbw8vLC4sWLdWrZtm0b2rZtCzs7O3Ts2BG7d+82+vutqvXr12sFpmeffRbR0dEMTERERDXIpKGpoKAAnTt3xsqVK/VuX7x4MZYvX47Vq1fjyJEjcHR0REBAAO7evSv1GT9+PE6dOoXExETs3LkTBw8exJQpU6TtGo0GgwYNQosWLZCamoolS5Zg/vz5+PLLL6U+KSkpGDduHEJCQpCWloZRo0Zh1KhRyMjIqL43b6DLly/jwoUL0uOpU6diwIABpiuIiIjIUgkzAUBs375delxaWio8PDzEkiVLpLbc3Fwhl8vFpk2bhBBCnD59WgAQx44dk/rs2bNHyGQy8ddffwkhhPj8889F/fr1RWFhodQnIiJCtGnTRnr80ksvicDAQK16/Pz8xOuvv25w/Xl5eQKAyMvLM/g5hsjPzxf//ve/xYoVK0RxcbFR901ERGTpKvP9bbb3nsvKyoJarYa/v7/U5uLiAj8/P6hUKgCASqWCq6srunfvLvXx9/eHlZUVjhw5IvXp06cPbG1tpT4BAQHIzMzEzZs3pT73v055n/LX0aewsBAajUbrpzo4Ojpi/PjxCA0N5XAcERGRCZltaFKr1QAAd3d3rXZ3d3dpm1qthpubm9b2evXqoUGDBlp99O3j/teoqE/5dn1iYmLg4uIi/Xh5eVX2LRIREVEtYrahydxFRUUhLy9P+rl06ZKpSyIiIqJqZLahycPDAwBw5coVrfYrV65I2zw8PHRuUltcXIwbN25o9dG3j/tfo6I+5dv1kcvlUCgUWj9ERERUd5ltaPL29oaHhweSkpKkNo1GgyNHjkCpVAIAlEolcnNzkZqaKvXZt28fSktL4efnJ/U5ePAg7t27J/VJTExEmzZtUL9+fanP/a9T3qf8dYiIiIhMGpry8/ORnp6O9PR0AGWTv9PT05GdnQ2ZTIYZM2bg/fffR3x8PE6ePImJEyfC09MTo0aNAgC0a9cOgwcPxuTJk3H06FEcPnwYYWFhGDt2LDw9PQEAL7/8MmxtbRESEoJTp05hy5YtWLZsGcLDw6U63nrrLezduxcff/wxzp49i/nz5+P48eMICwur6UNCRERE5qoGruar0P79+wUAnZ+goCAhRNmyA++9955wd3cXcrlcDBw4UGRmZmrt4/r162LcuHHCyclJKBQK8eqrr4pbt25p9fn111/FM888I+RyuWjatKmIjY3VqWXr1q3iySefFLa2tuKpp54Su3btqtR7qa4lB4iIiKj6VOb7WyaEECbMbHWGRqOBi4sL8vLyOL+JiIiolqjM97fZzmkiIiIiMicMTUREREQGYGgiIiIiMgBDExEREZEBGJqIiIiIDMDQRERERGQAhiYiIiIiA9QzdQF1RflyVxqNxsSVEBERkaHKv7cNWbaSoclIbt26BQDw8vIycSVERERUWbdu3YKLi8tD+3BFcCMpLS3F5cuX4ezsDJlM9tj702g08PLywqVLl7jC+CPwWBmOx8pwPFaG47EyHI9V5dTE8RJC4NatW/D09ISV1cNnLfFMk5FYWVmhWbNmRt+vQqHgf1gG4rEyHI+V4XisDMdjZTgeq8qp7uP1qDNM5TgRnIiIiMgADE1EREREBmBoMlNyuRzR0dGQy+WmLsXs8VgZjsfKcDxWhuOxMhyPVeWY2/HiRHAiIiIiA/BMExEREZEBGJqIiIiIDMDQRERERGQAhiYiIiIiAzA0GcnBgwcxfPhweHp6QiaTYceOHVrbhRCYN28emjRpAnt7e/j7++P333/X6nPjxg2MHz8eCoUCrq6uCAkJQX5+vlafEydO4Nlnn4WdnR28vLywePFinVq2bduGtm3bws7ODh07dsTu3buN/n4f16OOV3BwMGQymdbP4MGDtfpYwvGKiYlBjx494OzsDDc3N4waNQqZmZlafe7evYvQ0FA0bNgQTk5OGD16NK5cuaLVJzs7G4GBgXBwcICbmxtmzZqF4uJirT7Jycno1q0b5HI5fHx8EBcXp1PPypUr0bJlS9jZ2cHPzw9Hjx41+nuuKkOOVb9+/XQ+V1OnTtXqYwnHCgBWrVqFTp06SYsGKpVK7NmzR9rOz9XfHnWs+LnSLzY2FjKZDDNmzJDaav3nSpBR7N69W7z77rvi+++/FwDE9u3btbbHxsYKFxcXsWPHDvHrr7+KESNGCG9vb3Hnzh2pz+DBg0Xnzp3Ff//7X/Hzzz8LHx8fMW7cOGl7Xl6ecHd3F+PHjxcZGRli06ZNwt7eXnzxxRdSn8OHDwtra2uxePFicfr0aTF37lxhY2MjTp48We3HoDIedbyCgoLE4MGDRU5OjvRz48YNrT6WcLwCAgLEunXrREZGhkhPTxdDhw4VzZs3F/n5+VKfqVOnCi8vL5GUlCSOHz8uevXqJXr37i1tLy4uFh06dBD+/v4iLS1N7N69WzRq1EhERUVJff744w/h4OAgwsPDxenTp8Vnn30mrK2txd69e6U+mzdvFra2tmLt2rXi1KlTYvLkycLV1VVcuXKlZg7GIxhyrPr27SsmT56s9bnKy8uTtlvKsRJCiPj4eLFr1y7x22+/iczMTDFnzhxhY2MjMjIyhBD8XN3vUceKnytdR48eFS1bthSdOnUSb731ltRe2z9XDE3V4MEQUFpaKjw8PMSSJUukttzcXCGXy8WmTZuEEEKcPn1aABDHjh2T+uzZs0fIZDLx119/CSGE+Pzzz0X9+vVFYWGh1CciIkK0adNGevzSSy+JwMBArXr8/PzE66+/btT3aEwVhaaRI0dW+BxLPV5Xr14VAMSBAweEEGWfIxsbG7Ft2zapz5kzZwQAoVKphBBlAdXKykqo1Wqpz6pVq4RCoZCOzezZs8VTTz2l9VpjxowRAQEB0uOePXuK0NBQ6XFJSYnw9PQUMTExxn+jRvDgsRKi7Mvt/n/AH2Spx6pc/fr1xZo1a/i5MkD5sRKCn6sH3bp1SzzxxBMiMTFR69jUhc8Vh+dqQFZWFtRqNfz9/aU2FxcX+Pn5QaVSAQBUKhVcXV3RvXt3qY+/vz+srKxw5MgRqU+fPn1ga2sr9QkICEBmZiZu3rwp9bn/dcr7lL9ObZKcnAw3Nze0adMG06ZNw/Xr16Vtlnq88vLyAAANGjQAAKSmpuLevXta76Ft27Zo3ry51merY8eOcHd3l/oEBARAo9Hg1KlTUp+HHYeioiKkpqZq9bGysoK/v3+tOVblNmzYgEaNGqFDhw6IiorC7du3pW2WeqxKSkqwefNmFBQUQKlU8nP1EA8eq3L8XP0tNDQUgYGBOu+nLnyueMPeGqBWqwFA60NQ/rh8m1qthpubm9b2evXqoUGDBlp9vL29dfZRvq1+/fpQq9UPfZ3aYvDgwXjhhRfg7e2N8+fPY86cORgyZAhUKhWsra0t8niVlpZixowZePrpp9GhQwcAZe/D1tYWrq6uWn0f/Gzpe4/l2x7WR6PR4M6dO7h58yZKSkr09jl79qzR3qOx6DtWAPDyyy+jRYsW8PT0xIkTJxAREYHMzEx8//33ACzvWJ08eRJKpRJ3796Fk5MTtm/fjvbt2yM9PZ2fqwdUdKwAfq7ut3nzZvzyyy84duyYzra68O8VQxOZpbFjx0p/7tixIzp16oTWrVsjOTkZAwcONGFlphMaGoqMjAwcOnTI1KWYvYqO1ZQpU6Q/d+zYEU2aNMHAgQNx/vx5tG7duqbLNLk2bdogPT0deXl5+PbbbxEUFIQDBw6YuiyzVNGxat++PT9X/+/SpUt46623kJiYCDs7O1OXUy04PFcDPDw8AEDnCoErV65I2zw8PHD16lWt7cXFxbhx44ZWH337uP81KupTvr22atWqFRo1aoRz584BsLzjFRYWhp07d2L//v1o1qyZ1O7h4YGioiLk5uZq9X/ws1XV46BQKGBvb49GjRrB2tq6Vh8rffz8/ABA63NlScfK1tYWPj4+8PX1RUxMDDp37oxly5bxc6VHRcdKH0v9XKWmpuLq1avo1q0b6tWrh3r16uHAgQNYvnw56tWrB3d391r/uWJoqgHe3t7w8PBAUlKS1KbRaHDkyBFpTFypVCI3NxepqalSn3379qG0tFT6D1CpVOLgwYO4d++e1CcxMRFt2rRB/fr1pT73v055n/vH3mujP//8E9evX0eTJk0AWM7xEkIgLCwM27dvx759+3SGG319fWFjY6P1HjIzM5Gdna312Tp58qRWyExMTIRCoZCGFx51HGxtbeHr66vVp7S0FElJSbXmWOmTnp4OAFqfK0s4VhUpLS1FYWEhP1cGKD9W+ljq52rgwIE4efIk0tPTpZ/u3btj/Pjx0p9r/efqsaaRk+TWrVsiLS1NpKWlCQDik08+EWlpaeLixYtCiLIlB1xdXcUPP/wgTpw4IUaOHKl3yYGuXbuKI0eOiEOHDoknnnhC6xL63Nxc4e7uLiZMmCAyMjLE5s2bhYODg84l9PXq1RMfffSROHPmjIiOjjarS+jLPex43bp1S7zzzjtCpVKJrKws8dNPP4lu3bqJJ554Qty9e1fahyUcr2nTpgkXFxeRnJysdTnz7du3pT5Tp04VzZs3F/v27RPHjx8XSqVSKJVKaXv5JbyDBg0S6enpYu/evaJx48Z6L+GdNWuWOHPmjFi5cqXeS3jlcrmIi4sTp0+fFlOmTBGurq5aV7mY0qOO1blz58TChQvF8ePHRVZWlvjhhx9Eq1atRJ8+faR9WMqxEkKIyMhIceDAAZGVlSVOnDghIiMjhUwmEz/++KMQgp+r+z3sWPFz9XAPXllY2z9XDE1Gsn//fgFA5ycoKEgIUbbswHvvvSfc3d2FXC4XAwcOFJmZmVr7uH79uhg3bpxwcnISCoVCvPrqq+LWrVtafX799VfxzDPPCLlcLpo2bSpiY2N1atm6dat48sknha2trXjqqafErl27qu19V9XDjtft27fFoEGDROPGjYWNjY1o0aKFmDx5ss6H3RKOl75jBECsW7dO6nPnzh3xxhtviPr16wsHBwfx/PPPi5ycHK39XLhwQQwZMkTY29uLRo0aibffflvcu3dPq8/+/ftFly5dhK2trWjVqpXWa5T77LPPRPPmzYWtra3o2bOn+O9//1sdb7tKHnWssrOzRZ8+fUSDBg2EXC4XPj4+YtasWVrr6QhhGcdKCCEmTZokWrRoIWxtbUXjxo3FwIEDpcAkBD9X93vYseLn6uEeDE21/XMlE0KIxztXRURERFT3cU4TERERkQEYmoiIiIgMwNBEREREZACGJiIiIiIDMDQRERERGYChiYiIiMgADE1EREREBmBoIiKzdvjwYXTs2BE2NjYYNWqUqcshIgvG0ERE1SY4OBgymQwymQw2Njbw9vbG7NmzcffuXYP3ER4eji5duiArKwtxcXHVV2wNiouLk46LtbU16tevDz8/PyxcuBB5eXmV3p9MJsOOHTuMXygRaWFoIqJqNXjwYOTk5OCPP/7Ap59+ii+++ALR0dEGP//8+fMYMGAAmjVrBldX1yrVUFRUVKXnVYUQAsXFxY/sp1AokJOTgz///BMpKSmYMmUKvvnmG3Tp0gWXL1+ugUqJqLIYmoioWsnlcnh4eMDLywujRo2Cv78/EhMTAZTdeTwmJgbe3t6wt7dH586d8e233wIALly4AJlMhuvXr2PSpEmQyWTSmaYDBw6gZ8+ekMvlaNKkCSIjI7WCSr9+/RAWFoYZM2agUaNGCAgIQHJyMmQyGRISEtC1a1fY29tjwIABuHr1Kvbs2YN27dpBoVDg5Zdfxu3bt6V9PaxGANJ+9+zZA19fX8jlchw6dOiRx0Umk8HDwwNNmjRBu3btEBISgpSUFOTn52P27NlSv5YtW2Lp0qVaz+3SpQvmz58vbQeA559/HjKZDC1btsSFCxdgZWWF48ePaz1v6dKlaNGiBUpLSx9ZHxHpYmgiohqTkZGBlJQU2NraAgBiYmLwzTffYPXq1Th16hRmzpyJV155BQcOHICXlxdycnKgUCiwdOlS5OTkYMyYMfjrr78wdOhQ9OjRA7/++itWrVqFr7/+Gu+//77Wa61fvx62trY4fPgwVq9eLbXPnz8fK1asQEpKCi5duoSXXnoJS5cuxcaNG7Fr1y78+OOP+Oyzz6T+D6vxfpGRkYiNjcWZM2fQqVOnKh0fNzc3jB8/HvHx8SgpKTHoOceOHQMArFu3Djk5OTh27BhatmwJf39/rFu3TqvvunXrEBwcDCsr/tNPVCWPfctfIqIKBAUFCWtra+Ho6CjkcrkAIKysrMS3334r7t69KxwcHERKSorWc0JCQsS4ceOkxy4uLlp3MJ8zZ45o06aNKC0tldpWrlwpnJycRElJiRCi7M7qXbt21drv/v37BQDx008/SW0xMTECgDh//rzU9vrrr4uAgAAhhDCoxvL97tixw+Djsm7dOuHi4qJ326pVqwQAceXKFSGEEC1atBCffvqpVp/OnTuL6Oho6TEAsX37dq0+W7ZsEfXr1xd3794VQgiRmpoqZDKZyMrKMrhOItJWz5SBjYjqvv79+2PVqlUoKCjAp59+inr16mH06NE4deoUbt++jeeee06rf1FREbp27Vrh/s6cOQOlUgmZTCa1Pf3008jPz8eff/6J5s2bAwB8fX31Pv/+s0Du7u5wcHBAq1attNqOHj0KADh37pzBNXbv3v1hh8FgQggA0Hp/VTFq1CiEhoZi+/btGDt2LOLi4tC/f39pOI+IKo+hiYiqlaOjI3x8fAAAa9euRefOnfH111+jQ4cOAIBdu3ahadOmWs+Ry+VGeV19bGxspD+XX9V3P5lMJs35yc/PN7jGil6vss6cOQOFQoGGDRsCAKysrKQgVe7evXuP3I+trS0mTpyIdevW4YUXXsDGjRuxbNkyo9RIZKkYmoioxlhZWWHOnDkIDw/Hb7/9BrlcjuzsbPTt29fgfbRr1w7fffcdhBDS2ZjDhw/D2dkZzZo1M2q97du3r1KNVXX16lVs3LgRo0aNkuYdNW7cGDk5OVIfjUaDrKwsrefZ2NjonQP12muvoUOHDvj8889RXFyMF154oXrfAFEdx9BERDXqH//4B2bNmoUvvvgC77zzDmbOnInS0lI888wzyMvLw+HDh6FQKBAUFKT3+W+88QaWLl2K6dOnIywsDJmZmYiOjkZ4eLjRJzg7OztXqUZDCCGgVqshhEBubi5UKhU+/PBDuLi4IDY2Vuo3YMAAxMXFYfjw4XB1dcW8efNgbW2tta+WLVsiKSkJTz/9NORyOerXrw+gLGD26tULERERmDRpEuzt7atcLxExNBFRDatXrx7CwsKwePFiZGVloXHjxoiJicEff/wBV1dXdOvWDXPmzKnw+U2bNsXu3bsxa9YsdO7cGQ0aNEBISAjmzp1bLfUuWrSo0jUaQqPRoEmTJpDJZFAoFGjTpg2CgoLw1ltvQaFQSP2ioqKQlZWFYcOGwcXFBYsWLdI50/Txxx8jPDwcX331FZo2bYoLFy5I28qXMpg0adJj1UtEgEw8OFhORER1xqJFi7Bt2zacOHHC1KUQ1XpcrIOIqA7Kz89HRkYGVqxYgenTp5u6HKI6gaGJiMjInnrqKTg5Oen92bBhQ43UEBYWBl9fX/Tr149Dc0RGwuE5IiIju3jxYoXLAri7u8PZ2bmGKyIiY2BoIiIiIjIAh+eIiIiIDMDQRERERGQAhiYiIiIiAzA0ERERERmAoYmIiIjIAAxNRERERAZgaCIiIiIyAEMTERERkQH+DymFzvHajEUgAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZqhJREFUeJzt3XtclFXiBvBnuA6ggopyMZRJQd10hUAR1rxFi4YXKlukTUBJS8s0vAFxEdMwwjTUJEslTQVdXSTXUEPNNie8oWYqeYG8DmoKJCYovL8/+PGu4wwICLwzw/P9fObDct7zvnMOuMPTOec9r0wQBAFEREREVC9GUjeAiIiISB8xRBERERE1AEMUERERUQMwRBERERE1AEMUERERUQMwRBERERE1AEMUERERUQMwRBERERE1AEMUERERUQMwRBFRiyeTyTB37lypmyEKDQ2Fs7Oz1M0gosdgiCIinZSamgqZTCa+5HI5XF1d8c4776CwsLBJ3/vAgQOYO3cuioqKGvW6gwcPVutTu3bt0LdvX6xevRqVlZWN8h4ffvghMjIyGuVaRFQ7E6kbQERUm3nz5kGhUODevXv473//ixUrVmDHjh04efIkLC0tG+U9/vzzT5iY/O/j8MCBA4iPj0doaChsbGwa5T2qPfXUU0hISAAA3LhxA2vXrkVYWBh+/fVXLFy48Imv/+GHH2LMmDEICAh44msRUe0YoohIpw0fPhyenp4AgDfeeAPt27fHJ598gm3btiEoKKjB162srER5eTnkcjnkcnljNfexrK2t8frrr4vfv/nmm+jevTuWLVuGDz74AKamps3WFiJ6MpzOIyK9MnToUABAfn4+ACApKQk+Pj5o3749LCws4OHhgX/9618a58lkMrzzzjtYv349nnnmGZibmyMrK0s8Vr0mau7cuZg1axYAQKFQiFNvBQUFGDRoEPr06aO1Xd27d4efn1+9+2NpaYn+/fujtLQUN27cqLFeaWkpZsyYAScnJ5ibm6N79+5ISkqCIAhqfSwtLcVXX30ltjs0NLTebSKiuuFIFBHplfPnzwMA2rdvDwD49NNPMWrUKPzzn/9EeXk50tLS8Oqrr2L79u3w9/dXO3fPnj3YtGkT3nnnHdja2mpdvP3yyy/j119/xcaNG7F48WLY2toCADp06IBx48Zh4sSJOHnyJHr16iWec+jQIfz666+Ijo5uUJ8uXLgAY2PjGqcOBUHAqFGjsHfvXoSFhcHNzQ07d+7ErFmzcOXKFSxevBgAsG7dOrzxxhvo168fJk2aBADo2rVrg9pERHUgEBHpoDVr1ggAhO+++064ceOGcOnSJSEtLU1o3769YGFhIVy+fFkQBEG4e/eu2nnl5eVCr169hKFDh6qVAxCMjIyEX375ReO9AAhxcXHi9x9//LEAQMjPz1erV1RUJMjlcmHOnDlq5e+++65gZWUl3Llzp9Y+DRo0SOjRo4dw48YN4caNG8Lp06eFd999VwAgjBw5UqwXEhIidOnSRfw+IyNDACDMnz9f7XpjxowRZDKZcO7cObHMyspKCAkJqbUdRNQ4OJ1HRDrN19cXHTp0gJOTE8aOHYtWrVrh3//+Nzp16gQAsLCwEOvevn0bxcXFeO6553D06FGNaw0aNAh/+ctfGtwWa2trjB49Ghs3bhSn0SoqKpCeno6AgABYWVk99hpnzpxBhw4d0KFDB/Ts2RNLly6Fv78/Vq9eXeM5O3bsgLGxMd5991218hkzZkAQBHz77bcN7hMRNRyn84hIpy1fvhyurq4wMTGBnZ0dunfvDiOj//333/bt2zF//nwcO3YMZWVlYrlMJtO4lkKheOL2BAcHIz09HT/88AMGDhyI7777DoWFhRg3blydznd2dsYXX3whbtvg4uKCjh071nrOb7/9BkdHR7Ru3VqtvGfPnuJxImp+DFFEpNP69esn3p33qB9++AGjRo3CwIED8dlnn8HBwQGmpqZYs2YNNmzYoFH/4VGrhvLz84OdnR2+/vprDBw4EF9//TXs7e3h6+tbp/OtrKzqXJeIdBun84hIb23ZsgVyuRw7d+7EhAkTMHz48EYJKNpGsaoZGxvjtddew7/+9S/cvn0bGRkZCAoKgrGx8RO/b026dOmCq1ev4o8//lArP3PmjHi8Wm1tJ6LGxRBFRHrL2NgYMpkMFRUVYllBQcET79hdvbapph3Lx40bh9u3b+PNN9/EnTt31PZ9agovvvgiKioqsGzZMrXyxYsXQyaTYfjw4WKZlZVVo++0TkTacTqPiPSWv78/PvnkEwwbNgyvvfYarl+/juXLl6Nbt244ceJEg6/r4eEBAHj//fcxduxYmJqaYuTIkWK4cnd3R69evbB582b07NkTzz77bKP0pyYjR47EkCFD8P7776OgoAB9+vTBrl27sG3bNkyfPl1tGwMPDw989913+OSTT+Do6AiFQgEvL68mbR9RS8WRKCLSW0OHDsWqVaugUqkwffp0bNy4ER999BFeeumlJ7pu37598cEHH+D48eMIDQ1FUFCQxkaYwcHBAFDnBeVPwsjICJmZmZg+fTq2b9+O6dOn49SpU/j444/xySefqNX95JNP4OHhgejoaAQFBWHFihVN3j6ilkomCA9td0tERHXy6aef4r333kNBQQE6d+4sdXOISAIMUURE9SQIAvr06YP27dtj7969UjeHiCTCNVFERHVUWlqKzMxM7N27Fz///DO2bdsmdZOISEIciSIiqqOCggIoFArY2NhgypQpWLBggdRNIiIJMUQRERERNQDvziMiIiJqAIYoIiIiogbgwvImVFlZiatXr6J169Z8FAMREZGeEAQBf/zxBxwdHdUeeP4ohqgmdPXqVTg5OUndDCIiImqAS5cu4amnnqrxOENUE2rdujWAql9CmzZtJG4NERER1UVJSQmcnJzEv+M1YYhqQtVTeG3atGGIIiIi0jOPW4rDheVEREREDcAQRURERNQADFFEREREDcA1URKrqKjA/fv3pW4GNQNTU1MYGxtL3QwiImokDFESEQQBKpUKRUVFUjeFmpGNjQ3s7e25bxgRkQFgiJJIdYDq2LEjLC0t+UfVwAmCgLt37+L69esAAAcHB4lbRERET4ohSgIVFRVigGrfvr3UzaFmYmFhAQC4fv06OnbsyKk9IiI9x4XlEqheA2VpaSlxS6i5Vf/OuQ6OiEj/MURJiFN4LQ9/50REhoMhioiIiKgBGKKIiIiIGoAhiuolNDQUMpkMMpkMpqamsLOzwwsvvIDVq1ejsrKyztdJTU2FjY1N0zWUiIioielEiFq+fDmcnZ0hl8vh5eWFgwcP1lp/8+bN6NGjB+RyOXr37o0dO3aoHRcEAbGxsXBwcICFhQV8fX1x9uxZrdcqKyuDm5sbZDIZjh07Jpbv27cPo0ePhoODA6ysrODm5ob169c/cV8NwbBhw3Dt2jUUFBTg22+/xZAhQzBt2jSMGDECDx48kLp5RETUAlRWVqKiokLSNkgeotLT0xEeHo64uDgcPXoUffr0gZ+fn7ifzqMOHDiAoKAghIWFITc3FwEBAQgICMDJkyfFOomJiUhOTkZKSgpycnJgZWUFPz8/3Lt3T+N6s2fPhqOjo9b3+etf/4otW7bgxIkTGD9+PIKDg7F9+/bG67yeMjc3h729PTp16oRnn30WUVFR2LZtG7799lukpqYCAD755BP07t0bVlZWcHJywpQpU3Dnzh0AVQF1/PjxKC4uFke15s6dCwBYt24dPD090bp1a9jb2+O1116r8d8CERG1TN9++y0++OADfPnll5K2QyYIgiBlA7y8vNC3b18sW7YMQFWydHJywtSpUxEREaFRPzAwEKWlpWphpn///nBzc0NKSgoEQYCjoyNmzJiBmTNnAgCKi4thZ2eH1NRUjB07Vjzv22+/RXh4OLZs2YJnnnkGubm5cHNzq7Gt/v7+sLOzw+rVq+vUt5KSElhbW6O4uBht2rQRy+/du4f8/HwoFArI5XIAVaNnUt32bmpqWue7xkJDQ1FUVISMjAyNY25ubnB0dMSOHTuwZMkS9OnTBwqFAhcuXMCUKVMwdOhQfPbZZygvL8eKFSsQGxuLvLw8AECrVq3QqlUrrF69Gg4ODujevTuuX7+O8PBw2NjYaIw26ittv3siIqqbP//8E4mJiWplsbGxjX7nc01/vx8l6Wab5eXlOHLkCCIjI8UyIyMj+Pr6QqlUaj1HqVQiPDxcrczPz0/8o56fnw+VSgVfX1/xuLW1Nby8vKBUKsUQVVhYiIkTJyIjI6PO+zUVFxejZ8+eNR4vKytDWVmZ+H1JSUmdrgtU7RuUkJBQ5/qNKTIyEmZmZk98nR49euDEiRMAgOnTp4vlzs7OmD9/Pt566y189tlnMDMzg7W1NWQyGezt7dWuMWHCBPF/P/3000hOTkbfvn1x584dtGrV6onbSERE+unHH3/Ed999p1Y2Z84cSbeOkXQ67+bNm6ioqICdnZ1auZ2dHVQqldZzVCpVrfWrv9ZWRxAEhIaG4q233oKnp2ed2rpp0yYcOnQI48ePr7FOQkICrK2txZeTk1Odrm0oBEEQ/zF/9913eP7559GpUye0bt0a48aNw++//467d+/Weo0jR45g5MiR6Ny5M1q3bo1BgwYBAC5evNjk7SciIt0UHx+vFqDkcjni4uIkH9FvkY99Wbp0Kf744w+1EbDa7N27F+PHj8cXX3yBZ555psZ6kZGRaqNkJSUldQ5SpqamdW5PYzM1NW2U65w+fRoKhQIFBQUYMWIEJk+ejAULFqBdu3b473//i7CwMJSXl9c48ldaWgo/Pz/4+flh/fr16NChAy5evAg/Pz+Ul5c3ShuJiEh/lJaWIikpSa3sb3/7G3x9fZGZCSxcCEREAKNGSdM+SUOUra0tjI2NUVhYqFZeWFioMc1Tzd7evtb61V8LCwvVHvJaWFgornfas2cPlEolzM3N1a7j6emJf/7zn/jqq6/Esu+//x4jR47E4sWLERwcXGt/zM3NNa5ZVzKZrFGm1KSyZ88e/Pzzz3jvvfdw5MgRVFZWYtGiRTAyqhrs3LRpk1p9MzMzjbsqzpw5g99//x0LFy4Uw+fhw4ebpwNERKRT9u7di/3796uVzZgxA3v2tIKPD3D7NnDmTFWQkipESTqdZ2ZmBg8PD2RnZ4tllZWVyM7Ohre3t9ZzvL291eoDwO7du8X6CoUC9vb2anVKSkqQk5Mj1klOTsbx48dx7NgxHDt2TFy0nJ6ejgULFojn7du3D/7+/vjoo48wadKkxum0ASgrK4NKpcKVK1dw9OhRfPjhhxg9ejRGjBiB4OBgdOvWDffv38fSpUtx4cIFrFu3DikpKWrXcHZ2xp07d5CdnY2bN2/i7t276Ny5M8zMzMTzMjMz8cEHH0jUSyIikkp8fLxGgIqLi0OrVq2wcCGgVAKCAHh7V41ESUaQWFpammBubi6kpqYKp06dEiZNmiTY2NgIKpVKEARBGDdunBARESHW//HHHwUTExMhKSlJOH36tBAXFyeYmpoKP//8s1hn4cKFgo2NjbBt2zbhxIkTwujRowWFQiH8+eefWtuQn58vABByc3PFsj179giWlpZCZGSkcO3aNfH1+++/17lvxcXFAgChuLhYrfzPP/8UTp06VWN7dFlISIgAQAAgmJiYCB06dBB8fX2F1atXCxUVFWK9Tz75RHBwcBAsLCwEPz8/Ye3atQIA4fbt22Kdt956S2jfvr0AQIiLixMEQRA2bNggODs7C+bm5oK3t7eQmZmp8bvRZ/r8uyciamqXL18W5s6dq/b6/vvv1eps2yYI3t5VX5tKTX+/HyX5FgcAsGzZMnz88cdQqVRwc3NDcnIyvLy8AACDBw+Gs7OzuP8QULXZZnR0NAoKCuDi4oLExES8+OKL4nFBEBAXF4eVK1eiqKgIAwYMwGeffQZXV1et719QUACFQqG2xUFoaKjatF61QYMGYd++fXXqV322OKCWgb97IiLt4uPjNcqmT58Oa2vrZm9LXbc40IkQZagYouhR/N0TEWnSFqDc3eMkWziuF/tEERERUct15swZpKena5S7u8fhn/8E7tyRduH44zBEERERUbPTNvrUs+c7WLKkPTZurApQrVpJvHD8MSR/dh4RERG1LNoCVFxcHJYsaQ+lEpDJqu68W79ed0ehAI5EERERUTNRKpXYtWuXWlllpQweHrEAqkadpN5Asz4YooiIiKjJaRt9Sk5+F7dutYW3d1Voqn7pC4YoIiIialLaAlRSUhzu3AGMjHR73VNtGKKIiIioSaSlpSEvL0+j3N09Du++CyQnA+++q1+jTw9jiCIiIqJGp2306fvvp2PvXmt4ewMHDgAPPWlNL/HuPNJJoaGhCAgIEL8fPHgwpk+f/kTXbIxrEBFR7QRB0Bqgdu6Mw/Tp1tI/764RcSSK6uXhx+GYmpqic+fOCA4ORlRUFExMmu6f09atW2Fqalqnuvv27cOQIUNw+/Zt2NjYNOgaRERUf59//jlUKpVG+c6dceIdd/o6dacNQxTV27Bhw7BmzRqUlZVhx44dePvtt2FqaorIyEi1euXl5TAzM2uU92zXrp1OXIOIiLTTNvo0Y8YMtGrVCnFxEjSoGXA6j+rN3Nwc9vb26NKlCyZPngxfX19kZmaKU3ALFiyAo6MjunfvDgC4dOkS/vGPf8DGxgbt2rXD6NGjUVBQIF6voqIC4eHhsLGxQfv27TF79mw8+kjHR6fiysrKMGfOHDg5OcHc3BzdunXDqlWrUFBQgCFDhgAA2rZtC5lMhtDQUK3XuH37NoKDg9G2bVtYWlpi+PDhOHv2rHg8NTUVNjY22LlzJ3r27IlWrVph2LBhuHbtmlhn37596NevH6ysrGBjY4O//e1v+O233xrpJ01EpPsqKipq3DyzVatWErSo+TBE0ROzsLBAeXk5ACA7Oxt5eXnYvXs3tm/fjvv378PPzw+tW7fGDz/8gB9//FEMI9XnLFq0CKmpqVi9ejX++9//4tatW/j3v/9d63sGBwdj48aNSE5OxunTp/H555+jVatWcHJywpYtWwAAeXl5uHbtGj799FOt1wgNDcXhw4eRmZkJpVIJQRDw4osv4v79+2Kdu3fvIikpCevWrcP+/ftx8eJFzJw5EwDw4MEDBAQEYNCgQThx4gSUSiUmTZoEmUz2xD9TIiJ9EB8fj/nz52uUxxnq0NMjOJ1HDSYIArKzs7Fz505MnToVN27cgJWVFb788ktxGu/rr79GZWUlvvzySzFcrFmzBjY2Nti3bx/+/ve/Y8mSJYiMjMTLL78MAEhJScHOnTtrfN9ff/0VmzZtwu7du+Hr6wsAePrpp8Xj1dN2HTt2VFsT9bCzZ88iMzMTP/74I3x8fAAA69evh5OTEzIyMvDqq68CAO7fv4+UlBR07doVAPDOO+9g3rx5AKqe8l1cXIwRI0aIx3v27Fn/HyQRkR7SvnlmBNasMZegNdLgSJQByMwEfHyqvjaH7du3o1WrVpDL5Rg+fDgCAwMxd+5cAEDv3r3V1kEdP34c586dQ+vWrdGqVSu0atUK7dq1w71793D+/HkUFxfj2rVr8PLyEs8xMTGBp6dnje9/7NgxGBsbY9CgQQ3uw+nTp2FiYqL2vu3bt0f37t1x+vRpsczS0lIMSADg4OCA69evA6gKa6GhofDz88PIkSPx6aefqk31EREZovLy8hrvvluzxtygFo4/DkeiDMDChYBSWfW1Of7xDhkyBCtWrICZmRkcHR3V7sqzsrJSq3vnzh14eHhg/fr1Gtfp0KFDg97fwsKiQec1xKN388lkMrX1WmvWrMG7776LrKwspKenIzo6Grt370b//v2brY1ERM1FW3gCqqbvWsgMnhqORBmAiAg0674bVlZW6NatGzp37vzYbQ2effZZnD17Fh07dkS3bt3UXtbW1rC2toaDgwNycnLEcx48eIAjR47UeM3evXujsrIS33//vdbj1SNhFRUVNV6jZ8+eePDggdr7/v7778jLy8Nf/vKXWvv0KHd3d0RGRuLAgQPo1asXNmzYUK/ziYj0gbYAFRUV1WLWP2nDEGUARo2q2vlVF4dQ//nPf8LW1hajR4/GDz/8gPz8fOzbtw/vvvsuLl++DACYNm0aFi5ciIyMDJw5cwZTpkxBUVFRjdd0dnZGSEgIJkyYgIyMDPGamzZtAgB06dIFMpkM27dvx40bN3Dnzh2Na7i4uGD06NGYOHEi/vvf/+L48eN4/fXX0alTJ4wePbpOfcvPz0dkZCSUSiV+++037Nq1C2fPnuW6KCIyKHfv3q3x7ruWvvceQxQ1KUtLS+zfvx+dO3fGyy+/jJ49eyIsLAz37t1DmzZtAFTtIzJu3DiEhITA29sbrVu3xksvvVTrdVesWIExY8ZgypQp6NGjByZOnIjS0lIAQKdOnRAfH4+IiAjY2dnhnXfe0XqNNWvWwMPDAyNGjIC3tzcEQcCOHTvq/KFgaWmJM2fO4JVXXoGrqysmTZqEt99+G2+++WY9fkJERLorPj4eH3/8sUZ5Sx59ephMeHRDHmo0JSUlsLa2RnFxsRgYAODevXvIz8+HQqGAXC6XsIXU3Pi7JyJ9oW30KSYmBkZGhj/+UtPf70dxYTkRERGJbt26haVLl2qUc/RJE0MUERERAaj57jt3dwYobRiiiIiIWrjMTCA3VzNAxcbG8ikMtWCIIiIiasHWr8/HuXNrNco5ffd4DFES4pr+loe/cyLSJZy+ezIMURKovoX+7t27zbr7Nknv7t27ADR3Qiciak41Td9x9Kl+GKIkYGxsDBsbG/EZbJaWlpxzNnCCIODu3bu4fv06bGxsYGxsLHWTiKgFyswE1q8/iL/85VuNYwxQ9ccQJRF7e3sAEIMUtQw2Njbi756IqLnl5sZD25OtGKAahiFKIjKZDA4ODujYsSPu378vdXOoGZiamnIEiogkU9OjW6jhGKIkZmxszD+sRETUZHbs2IFDhw5plDNAPTmGKCIiIgNV0913DFCNgyGKiIjIAHH6runpxFMEly9fDmdnZ8jlcnh5eeHgwYO11t+8eTN69OgBuVyO3r17Y8eOHWrHBUFAbGwsHBwcYGFhAV9fX5w9e1brtcrKyuDm5gaZTIZjx46pHTtx4gSee+45yOVyODk5ITEx8Yn6SURE1NTWrVvHANVMJA9R6enpCA8PR1xcHI4ePYo+ffrAz8+vxrvWDhw4gKCgIISFhSE3NxcBAQEICAjAyZMnxTqJiYlITk5GSkoKcnJyYGVlBT8/P9y7d0/jerNnz4ajo6NGeUlJCf7+97+jS5cuOHLkCD7++GPMnTsXK1eubLzOExERNaL4+HhcuHBBrczGxoYBqonIBIm3UPby8kLfvn2xbNkyAEBlZSWcnJwwdepUREREaNQPDAxEaWkptm/fLpb1798fbm5uSElJgSAIcHR0xIwZMzBz5kwAQHFxMezs7JCamoqxY8eK53377bcIDw/Hli1b8MwzzyA3Nxdubm4AgBUrVuD999+HSqWCmZkZACAiIgIZGRk4c+ZMnfpWUlICa2trFBcXo02bNg36+RAREdUmMxNYuBDw8+PoU2Op699vSUeiysvLceTIEfj6+oplRkZG8PX1hVKp1HqOUqlUqw8Afn5+Yv38/HyoVCq1OtbW1vDy8lK7ZmFhISZOnIh169bB0tJS6/sMHDhQDFDV75OXl4fbt283rMNERESN7KefkrQGKD66pelJurD85s2bqKiogJ2dnVq5nZ1djaM9KpVKa32VSiUery6rqY4gCAgNDcVbb70FT09PFBQUaH0fhUKhcY3qY23bttU4p6ysDGVlZeL3JSUlWvtARETUGOLj42Furl7m6uqKoKAgaRrUwrTIu/OWLl2KP/74A5GRkY163YSEhBpvJyUiImpMXDwuPUmn82xtbWFsbIzCwkK18sLCwhofjWFvb19r/eqvtdXZs2cPlEolzM3NYWJigm7dugEAPD09ERISUuv7PPwej4qMjERxcbH4unTpUu0/ACIionqKj49ngNIRkoYoMzMzeHh4IDs7WyyrrKxEdnY2vL29tZ7j7e2tVh8Adu/eLdZXKBSwt7dXq1NSUoKcnByxTnJyMo4fP45jx47h2LFj4hYJ6enpWLBggfg++/fvV3sky+7du9G9e3etU3kAYG5ujjZt2qi9iIiIGou28OTt7c0AJRHJp/PCw8MREhICT09P9OvXD0uWLEFpaSnGjx8PAAgODkanTp2QkJAAAJg2bRoGDRqERYsWwd/fH2lpaTh8+LC49YBMJsP06dMxf/58uLi4QKFQICYmBo6OjggICAAAdO7cWa0NrVq1AgB07doVTz31FADgtddeQ3x8PMLCwjBnzhycPHkSn376KRYvXtwcPxYiIiLxzruIiKqHBz+K4UlakoeowMBA3LhxA7GxsVCpVHBzc0NWVpa4iPvixYswMvrfgJmPjw82bNiA6OhoREVFwcXFBRkZGejVq5dYZ/bs2SgtLcWkSZNQVFSEAQMGICsrC3K5vM7tsra2xq5du/D222/Dw8MDtra2iI2NxaRJkxqv80RERLWo3rogN1fzGAOU9CTfJ8qQcZ8oIiJqqMxM7aNPw4cPR79+/SRoUctR17/fko9EERERkSZO3+k+higiIiIdUNvO4wADlC5iiCIiItIBs2cDQUGaASowMBA9evSQoEX0OAxRREREEhMEAUFB8zTKOfqk2xiiiIiIJMDpO/3HEEVERNTM3n+/KkDFxmoGqAkTJsDJyUmCVlF9MUQRERE1s88+u4/Y2A81yjn6pF8YooiIiJpRfHw8pk/XLGeA0j8MUURERM1E27Pvpk6dinbt2knQGnpSDFFERERNrLS0FElJSRrlHH3SbwxRRERETaSmR7cADFCGgCGKiIioiWgLUDNnzoSVlZUEraHGxhBFRETUyG7duoWlS5dqlHP0ybAwRBERETUibYvHAQYoQ8QQRURE1Ei0Baj3338fJib8c2uI+FslIiJ6QpcuXcLq1as1yjn6ZNgYooiIiJ4Ap+9aLoYoIiKiBtIWoGJjYyGTySRoDTU3higiIqJ6+uWXX/Cvf/1Lo5yjTy0LQxQREVE9cPqOqjFEERER1ZG2AMXw1HIxRBERET3GgQMHsHv3bo1yBqiWjSGKiIioFpy+o5owRBERET0kMxNYuBCIiND+7DuGJ6rGEEVERPSQhQuB9u2/QW7uUY1jDFD0MCOpG0BERCS1zEzAx6fqq59fPDw9GaDo8TgSRURELd7ChYBSyek7qh+GKCIiavFefnkN/PwuapQzQFFtGKKIiKhF03b3nbGxMaKjoyVoDekThigiImpxqu/A8/Pj9B01HEMUERG1OAcPLoSfX5lGOQMU1QdDFBERtQgPjz6Zmqofc3R0xMSJE6VpGOkthigiImoROH1HjU3yfaKWL18OZ2dnyOVyeHl54eDBg7XW37x5M3r06AG5XI7evXtjx44dascFQUBsbCwcHBxgYWEBX19fnD17Vq3OqFGj0LlzZ8jlcjg4OGDcuHG4evWqWp2dO3eif//+aN26NTp06IBXXnkFBQUFjdJnIiJqXvHx8QxQ1OgkDVHp6ekIDw9HXFwcjh49ij59+sDPzw/Xr1/XWv/AgQMICgpCWFgYcnNzERAQgICAAJw8eVKsk5iYiOTkZKSkpCAnJwdWVlbw8/PDvXv3xDpDhgzBpk2bkJeXhy1btuD8+fMYM2aMeDw/Px+jR4/G0KFDcezYMezcuRM3b97Eyy+/3HQ/DCIialTVG2hqu/uuT58+DFD0xGSCIAhSvbmXlxf69u2LZcuWAQAqKyvh5OSEqVOnIiIiQqN+YGAgSktLsX37drGsf//+cHNzQ0pKCgRBgKOjI2bMmIGZM2cCAIqLi2FnZ4fU1FSMHTtWazsyMzMREBCAsrIymJqa4l//+heCgoJQVlYGI6OqnPnNN99g9OjRYp26KCkpgbW1NYqLi9GmTZt6/WyIiOjJ+Phw+o4apq5/vyUbiSovL8eRI0fg6+v7v8YYGcHX1xdKpVLrOUqlUq0+APj5+Yn18/PzoVKp1OpYW1vDy8urxmveunUL69evh4+PjxiOPDw8YGRkhDVr1qCiogLFxcVYt24dfH19aw1QZWVlKCkpUXsREVHz4/QdNQfJQtTNmzdRUVEBOzs7tXI7OzuoVCqt56hUqlrrV3+tyzXnzJkDKysrtG/fHhcvXsS2bdvEYwqFArt27UJUVBTMzc1hY2ODy5cvY9OmTbX2KSEhAdbW1uLLycmp1vpERNT4tE3fDR06lAGKGp3kC8ulMmvWLOTm5mLXrl0wNjZGcHAwqmc2VSoVJk6ciJCQEBw6dAjff/89zMzMMGbMGNQ2+xkZGYni4mLxdenSpebqDhERQXuAiouLw3PPPSdBa8jQSbbFga2tLYyNjVFYWKhWXlhYCHt7e63n2Nvb11q/+mthYSEcHBzU6ri5uWm8v62tLVxdXdGzZ084OTnhp59+gre3N5YvXw5ra2skJiaK9b/++ms4OTkhJycH/fv319o+c3NzmJub1+0HQEREjUZbeAI4fUdNS7KRKDMzM3h4eCA7O1ssq6ysRHZ2Nry9vbWe4+3trVYfAHbv3i3WVygUsLe3V6tTUlKCnJycGq9Z/b5A1ZomALh79664oLyasbGxWl0iItIN2gLUmDFjGKCoyUm62WZ4eDhCQkLg6emJfv36YcmSJSgtLcX48eMBAMHBwejUqRMSEhIAANOmTcOgQYOwaNEi+Pv7Iy0tDYcPH8bKlSsBADKZDNOnT8f8+fPh4uIChUKBmJgYODo6IiAgAACQk5ODQ4cOYcCAAWjbti3Onz+PmJgYdO3aVQxa/v7+WLx4MebNm4egoCD88ccfiIqKQpcuXeDu7t78PygiItKwbZuAY8fmaZQzPFFzkTREBQYG4saNG4iNjYVKpYKbmxuysrLEheEXL15UGxHy8fHBhg0bEB0djaioKLi4uCAjIwO9evUS68yePRulpaWYNGkSioqKMGDAAGRlZUEulwMALC0tsXXrVsTFxaG0tBQODg4YNmwYoqOjxam4oUOHYsOGDUhMTERiYiIsLS3h7e2NrKwsWFhYNONPiIiIHpWZCeTmcvqOpCfpPlGGjvtEERE1Pm3Td+PHj0fnzp0laA0Zorr+/eaz84iISC88ePAACxYs0Cjn6BNJhSGKiIh0Hu++I13EEEVERDpNW4CaMmUKOnToIEFriP6HIYqIiHTSn3/+qbZfXzWOPpGuYIgiIiKdw+k70gcMUUREpFO0BaiZM2fCyspKgtYQ1YwhioiIdMLt27eRnJysUc7RJ9JVDFFERCQ5Tt+RPmKIIiIiSWkLUFFRUTA1NZWgNUR1xxBFRESSuHz5MlatWqVRztEn0hcMUURE1Ow4fUeGgCGKiIialbYAFRMTo/bAeSJ9wBBFRETN4syZM0hPT9co5+gT6SuGKCIianKcviNDxBBFRERNSluAYngiQ8AQRURETSInJwdZWVka5QxQZCgYooiIqNFx+o5aAoYoIiJqVJy+o5aCIYqIiBrFt99+i4MHD2qUM0CRoWKIIiKiJ8bpO2qJGKKIiOiJcPqOWiqGKCIiapB169bhwoULGuXu7gxQ1DIwRBERUb1x+o6IIYqIiOooMxNYuBDw8+P0HRHAEEVERHX0009J8PMr1ShngKKWiiGKiIhqlZkJ5ObGw9xcvbxjx46YPHmyNI0i0gH1DlHGxsa4du0aOnbsqFb++++/o2PHjqioqGi0xhERkfRyczl9R6RNvUOUIAhay8vKymBmZvbEDSIiIt1Q0+Jx3n1HVKXOISo5ORkAIJPJ8OWXX6JVq1bisYqKCuzfvx89evRo/BYSEVGz0xag3NzcMHr0aAlaQ6Sb6hyiFi9eDKBqJColJQXGxsbiMTMzMzg7OyMlJaXxW0hERM2Km2cS1U2dQ1R+fj4AYMiQIdi6dSvatm3bZI0iIqLmx72fiOqn3mui9u7d2xTtICIiCWkLUEOHDsVzzz0nQWuI9EO9Q9SECRNqPb569eoGN4aIiJofp++IGsaovifcvn1b7XX9+nXs2bMHW7duRVFRUb0bsHz5cjg7O0Mul8PLywsHDx6stf7mzZvRo0cPyOVy9O7dGzt27FA7LggCYmNj4eDgAAsLC/j6+uLs2bNqdUaNGoXOnTtDLpfDwcEB48aNw9WrVzWuk5SUBFdXV5ibm6NTp05YsGBBvftHRKSr4uPjGaCInkC9R6L+/e9/a5RVVlZi8uTJ6Nq1a72ulZ6ejvDwcKSkpMDLywtLliyBn58f8vLyNPahAoADBw4gKCgICQkJGDFiBDZs2ICAgAAcPXoUvXr1AgAkJiYiOTkZX331FRQKBWJiYuDn54dTp05BLpcDqFrXFRUVBQcHB1y5cgUzZ87EmDFjcODAAfG9pk2bhl27diEpKQm9e/fGrVu3cOvWrXr1j4hIV2kLTy+//DJ69+4tQWuI9JNMqGnjp3rKy8vD4MGDce3atTqf4+Xlhb59+2LZsmUAqsKYk5MTpk6dioiICI36gYGBKC0txfbt28Wy/v37w83NDSkpKRAEAY6OjpgxYwZmzpwJACguLoadnR1SU1MxduxYre3IzMxEQEAAysrKYGpqitOnT+Ovf/0rTp48ie7du9fnx6CmpKQE1tbWKC4uRps2bRp8HSKixiIIAubNm6dRztEnov+p69/vek/n1eT8+fN48OBBneuXl5fjyJEj8PX1/V9jjIzg6+sLpVKp9RylUqlWHwD8/PzE+vn5+VCpVGp1rK2t4eXlVeM1b926hfXr18PHxwempqYAgG+++QZPP/00tm/fDoVCAWdnZ7zxxhuPHYkqKytDSUmJ2ouISFfEx8czQBE1onpP54WHh6t9LwgCrl27hv/85z8ICQmp83Vu3ryJiooK2NnZqZXb2dnhzJkzWs9RqVRa66tUKvF4dVlNdarNmTMHy5Ytw927d9G/f3+10a0LFy7gt99+w+bNm7F27VpUVFTgvffew5gxY7Bnz54a+5SQkFDjLcJERFLS9tl08GAI3nzTufkbQ2Qg6h2icnNz1b43MjJChw4dsGjRosfeuadLZs2ahbCwMPz222+Ij49HcHAwtm/fDplMhsrKSpSVlWHt2rVwdXUFAKxatQoeHh7Iy8urcYovMjJSLWSWlJTAycmpWfpDRKRNRUUF5s+fr1HO0SeiJyfZPlG2trYwNjZGYWGhWnlhYSHs7e21nmNvb19r/eqvhYWFcHBwUKvj5uam8f62trZwdXVFz5494eTkhJ9++gne3t5wcHCAiYmJGKAAoGfPngCAixcv1hiizM3NYf7oY86JiCTCzTOJmlaD10Rdv34dP/zwA3744Qdcv3693uebmZnBw8MD2dnZYlllZSWys7Ph7e2t9Rxvb2+1+gCwe/dusb5CoYC9vb1anZKSEuTk5NR4zer3BarWNAHA3/72Nzx48ADnz58X6/z6668AgC5dutSnm0REktAWoKZMmcIARdSI6j0SVVJSgrfffhsbN24Uw4exsTECAwOxfPlyWFtb1/la4eHhCAkJgaenJ/r164clS5agtLQU48ePBwAEBwejU6dOSEhIAFC17cCgQYOwaNEi+Pv7Iy0tDYcPH8bKlSsBVD0cefr06Zg/fz5cXFzELQ4cHR0REBAAAMjJycGhQ4cwYMAAtG3bFufPn0dMTAy6du0qBi1fX188++yzmDBhApYsWYLKykq8/fbbeOGFF9RGp4iIdE1ZWRkWLlyoUc7wRNT46h2iJk6ciNzcXPznP/8RQ4dSqcS0adPw5ptvIi0trc7XCgwMxI0bNxAbGwuVSgU3NzdkZWWJC8MvXrwII6P/DZb5+Phgw4YNiI6ORlRUFFxcXJCRkSHuEQUAs2fPRmlpKSZNmoSioiIMGDAAWVlZ4h5RlpaW2Lp1K+Li4lBaWgoHBwcMGzYM0dHR4lSckZERvvnmG0ydOhUDBw6ElZUVhg8fjkWLFtX3x0VE1Gw4fUfUvOq9T5SVlRV27tyJAQMGqJX/8MMPGDZsGEpLSxu1gfqM+0QRUXPRFqD27p2J8HArjBolQYOI9Fhd/37XeySqffv2WqfsrK2t0bZt2/pejoiInkBJSQkWL16sUR4XFwcOQBE1rXqHqOjoaISHh2PdunXi3XAqlQqzZs1CTExMozeQiIi04/QdkbTqPZ3n7u6Oc+fOoaysDJ07dwZQtXbJ3NwcLi4uanWPHj3aeC3VQ5zOI6Kmoi1ARUZGwszMTILWEBmWJpvOGz16NGQy2RM1joiIGqawsBApKSka5Rx9Imp+jfYAYtLEkSgiakycviNqHk02EvX000/j0KFDaN++vVp5UVERnn32WVy4cKH+rSUiolppC1AxMTFq28AQUfOqd4gqKChARUWFRnlZWRkuX77cKI0iIqIq58+fx9dff61RztEnIunVOURlZmaK/3vnzp1q2xxUVFQgOzsbCoWicVtHRNSCcfqOSLfVOURVPzZFJpMhJCRE7ZipqSmcnZ25ozcRUSPRFqBiY2N5Yw+RDqlziKp+Tp5CocChQ4dga2vbZI0iImqpjh07hm3btmmUu7vHgfmJSLfUe01Ufn5+U7SDiKjF4/QdkX6pd4iaN29ercdjY2Mb3BgiopZKW4BieCLSbfUOUf/+97/Vvr9//z7y8/NhYmKCrl27MkQREdVDVlYWcnJyNMoZoIh0X71DVG5urkZZSUkJQkND8dJLLzVKo4iIWoKapu/KyxmgiPRBo+1Y/vPPP2PkyJEoKChojMsZBO5YTkQ10Ragdu6Mg1IJeHsDBw5I0CgiAtCEO5bXpLi4GMXFxY11OSIig5Seno4zZ85olMfFxcHdHVi4EIiIkKBhRFRv9Q5RycnJat8LgoBr165h3bp1GD58eKM1jIjI0Dzu7rtRo6peRKQf6h2iFi9erPa9kZEROnTogJCQEERGRjZaw4iIDElN03ectiPSX9wnioioCX3++edQqVQa5WlpcfjoIwkaRESNpkFrooqKinDu3DkAQLdu3WBjY9OYbSIiMgjaRp+KijphyZI34O3NqTsifWdUn8oFBQXw9/eHra0tvLy84OXlBVtbW4wYMYJ35RERPaSmzTOHDKkKUFw8TqT/6rzFwaVLl9C3b1+YmppiypQp6NmzJwDg1KlTWLFiBR48eIBDhw7hqaeeatIG6xNucUDU8sybNw/aPla5eSaR/qjr3+86h6iwsDCcO3cOO3fuhFwuVzv2559/YtiwYXBxccGXX375ZC03IAxRRC2LttGnPn36ICAgoPkbQ0QN1uj7RGVlZSE9PV0jQAGAhYUFPvjgA4wdO7ZhrSUi0nN89h1Ry1PnEHXz5k04OzvXePzpp5/GrVu3GqNNRER643F7PxGR4arzwnIHBwecOnWqxuMnT56Evb19ozSKiEgfaAtQeXm+cHdngCJqCeocogICAjBz5kzcuHFD49j169cxZ84czvsTUYuhLUC5u8dhw4a/cesCohaizgvLb9++DS8vL6hUKrz++uvo0aMHBEHA6dOnsWHDBtjb2+Onn35Cu3btmrrNeoMLy4kMT03Td3PnxvHBwUQGotEXlrdt2xY5OTmIiopCWloaioqKAAA2NjZ47bXX8OGHHzJAEZFB0xagAgIC8Ntvfbj3E1ELVOeRqIcJgiBO63Xo0AEymazRG2YIOBJFZBgEQcC8efM0yrl4nMgwNfpI1MNkMhk6duzY4MYREekL3n1HRDVpUIgiImoJtAWo4OBgKBQKCVpDRLqmXs/OIyJqCSorK7UGqLS0OPz8MwMUEVXRiRC1fPlyODs7Qy6Xw8vLCwcPHqy1/ubNm9GjRw/I5XL07t0bO3bsUDsuCAJiY2Ph4OAACwsL+Pr64uzZs2p1Ro0ahc6dO0Mul8PBwQHjxo3D1atXtb7fuXPn0Lp1a9jY2DxRP4lI98XHx+ODDz7QKJ87Nw5nzgALF0rQKCLSSZKHqPT0dISHhyMuLg5Hjx5Fnz594Ofnh+vXr2utf+DAAQQFBSEsLAy5ubkICAhAQEAATp48KdZJTExEcnIyUlJSkJOTAysrK/j5+eHevXtinSFDhmDTpk3Iy8vDli1bcP78eYwZM0bj/e7fv4+goCA899xzjd95ItIp2kafJk+eDHf3OHTvDvTowTvwiOh/6nR3XnJycp0v+O6779arAV5eXujbty+WLVsGoGoY3cnJCVOnTkWElk+rwMBAlJaWYvv27WJZ//794ebmhpSUFAiCAEdHR8yYMQMzZ84EABQXF8POzg6pqak1Pt8vMzMTAQEBKCsrg6mpqVg+Z84cXL16Fc8//zymT58ubu1QF7w7j0g/lJWVYaGWISYuHidqmRr17rzFixfX6U1lMlm9QlR5eTmOHDmCyMhIsczIyAi+vr5QKpVaz1EqlQgPD1cr8/PzQ0ZGBgAgPz8fKpUKvr6+4nFra2t4eXlBqVRqDVG3bt3C+vXr4ePjoxag9uzZg82bN+PYsWPYunXrY/tTVlaGsrIy8fuSkpLHnkNE0uLdd0TUUHUKUfn5+U3y5jdv3kRFRQXs7OzUyu3s7HDmzBmt56hUKq31VSqVeLy6rKY61ebMmYNly5bh7t276N+/v9ro1u+//47Q0FB8/fXXdR5FSkhIqPEDmYh0j7b/v+7bF4733mstQWuISN80eE1UeXk58vLy8ODBg8ZsT7OaNWsWcnNzsWvXLhgbGyM4OBjVs5sTJ07Ea6+9hoEDB9b5epGRkSguLhZfly5daqqmE9ET+OOPP7QGqJ0747BvX2suHieiOqn3PlF3797F1KlT8dVXXwEAfv31Vzz99NOYOnUqOnXqpHUdU01sbW1hbGyMwsJCtfLCwkLY29trPcfe3r7W+tVfCwsL4eDgoFbHzc1N4/1tbW3h6uqKnj17wsnJCT/99BO8vb2xZ88eZGZmIikpCUDVHX+VlZUwMTHBypUrMWHCBI22mZubw9zcvM79J6LmV9v0nbt71d13XDxORHVR75GoyMhIHD9+HPv27YNcLhfLfX19kZ6eXq9rmZmZwcPDA9nZ2WJZZWUlsrOz4e3trfUcb29vtfoAsHv3brG+QqGAvb29Wp2SkhLk5OTUeM3q9wUgrmlSKpU4duyY+Jo3bx5at26NY8eO4aWXXqpXP4lIN2gLUBEREeL6p1Gjqh4gPGpUc7eMiPRRvUeiMjIykJ6ejv79+6s9M++ZZ57B+fPn692A8PBwhISEwNPTE/369cOSJUtQWlqK8ePHA6jaHbhTp05ISEgAAEybNg2DBg3CokWL4O/vj7S0NBw+fBgrV64EULW4ffr06Zg/fz5cXFygUCgQExMDR0dHBAQEAABycnJw6NAhDBgwAG3btsX58+cRExODrl27ikGrZ8+eau08fPgwjIyM0KtXr3r3kYikdePGDXz22Wca5Vw8TkRPot4h6saNG1qfm1daWtqgBxEHBgbixo0biI2NhUqlgpubG7KyssSF4RcvXoSR0f8GzHx8fLBhwwZER0cjKioKLi4uyMjIUAs3s2fPRmlpKSZNmoSioiIMGDAAWVlZ4siZpaUltm7diri4OJSWlsLBwQHDhg1DdHQ0p+OIDAzvviOiplKnfaIeNnDgQLz66quYOnUqWrdujRMnTkChUGDq1Kk4e/YssrKymqqteof7RBFJS1uAiomJUfsPMyKiRzXqPlEP+/DDDzF8+HCcOnUKDx48wKeffopTp07hwIED+P7775+o0UREjSE/Px9r167VKOfoExE1pnr/59iAAQNw7NgxPHjwAL1798auXbvQsWNHKJVKeHh4NEUbiYjqLD4+ngGKiJpFvafzqO44nUfUvLRN38XGxjZovSYRtVyNOp1Xn8eXMCwQUXM7ceIE/v3vf2uUc/SJiJpSnUKUjY1Nnf9LrqKi4okaRERUH7z7joikUqcQtXfvXvF/FxQUICIiAqGhoeKeSkqlEl999ZW4lxMRUXPQFqAYnoioudR7TdTzzz+PN954A0FBQWrlGzZswMqVK7Fv377GbJ9e45oooqaxf/9+tf+4q+buHsfdxonoidX173e9785TKpXw9PTUKPf09MTBgwfrezkionqJj4/XGqDmzo3jg4OJqFnVO0Q5OTnhiy++0Cj/8ssv4eTk1CiNIiLSpqbpO3f3OHh788HBRNS86r3Z5uLFi/HKK6/g22+/hZeXFwDg4MGDOHv2LLZs2dLoDSQi2rZtG44dO6ZR/vCDgzmNR0TNrd4jUS+++CLOnj2LkSNH4tatW7h16xZGjhyJX3/9FS+++GJTtJGIWrD4+PhaAxQRkVS42WYT4sJyoifDu++ISApN9uw8ACgqKsKqVatw+vRpAMAzzzyDCRMmwNraumGtJSJ6yJdffokrV65olDNAEZEuqfd03uHDh9G1a1csXrxYnM775JNP0LVrVxw9erQp2khELUh8fLxGgLKzs2OAIiKdU+/pvOeeew7dunXDF198AROTqoGsBw8e4I033sCFCxewf//+JmmoPuJ0HlH9cPqOiHRBXf9+1ztEWVhYIDc3Fz169FArP3XqFDw9PXH37t2GtdgAMUQR1c2iRYtw584djXIGKCKSQpOtiWrTpg0uXryoEaIuXbqE1q1b17+lRNSiaRt96tWrF1555RUJWkNEVHf1DlGBgYEICwtDUlISfHx8AAA//vgjZs2apfEoGCKi2nD6joj0Wb1DVFJSEmQyGYKDg/HgwQMAgKmpKSZPnoyFfOYCEdWBtvAEVD37zsenaudxbp5JRLquwftE3b17F+fPnwcAdO3aFZaWlo3aMEPANVFEmrQFqCFDhmDgwIHw8QGUSsDbGzhwQILGERGhifeJAgBLS0v07t27oacTUQv0uOm7iAhg4UI+A4+I9EOdQ9SECRPqVG/16tUNbgwRGaaapu927oyDu/v/pu74DDwi0id1DlGpqano0qUL3N3dwSfFEFFdaQtQr7zyCiZN6gWlsmrkicGJiPRRnUPU5MmTsXHjRuTn52P8+PF4/fXX0a5du6ZsGxHpMUEQMG/ePI1yd/c4TJoEDBlS9T2n7ohIX9VrYXlZWRm2bt2K1atX48CBA/D390dYWBj+/ve/QyaTNWU79RIXllNLVdP0XVxcHBePE5HOa7Idy6v99ttvSE1Nxdq1a/HgwQP88ssvaNWqVYMbbIgYoqgl0hagQkND0aVLFwBAZub/Fo9zGo+IdFGT351nZGQEmUwGQRBQUVHR0MsQkYGorKzEBx98oFH+6OaZXDxORIaiXiHq4em8//73vxgxYgSWLVuGYcOGwcjIqKnaSEQ6rrbpOyIiQ1XnEDVlyhSkpaXByckJEyZMwMaNG2Fra9uUbSMiPaAtQE2ZMgUdOnSQoDVERM2nzmuijIyM0LlzZ7i7u9e6iHzr1q2N1jh9xzVRZMju37+PDz/8UKOco09EpO8afU1UcHAw78AjIgCcviMiAuq52SYRkbYANWPGDN6dS0Qtjk6sBl++fDmcnZ0hl8vh5eWFgwcP1lp/8+bN6NGjB+RyOXr37o0dO3aoHRcEAbGxsXBwcICFhQV8fX1x9uxZtTqjRo1C586dIZfL4eDggHHjxuHq1avi8X379mH06NFwcHCAlZUV3NzcsH79+sbrNJGe+fPPP7UGKHf3OPz9762QmSlBo4iIJCR5iEpPT0d4eDji4uJw9OhR9OnTB35+frh+/brW+gcOHEBQUBDCwsKQm5uLgIAABAQE4OTJk2KdxMREJCcnIyUlBTk5ObCysoKfnx/u3bsn1hkyZAg2bdqEvLw8bNmyBefPn8eYMWPU3uevf/0rtmzZghMnTmD8+PEIDg7G9u3bm+6HQaSj4uPjkZiYqFG+c2cc5syB+PgWIqKWpMGbbTYWLy8v9O3bF8uWLQNQtdeMk5MTpk6diggtz4MIDAxEaWmpWpjp378/3NzckJKSAkEQ4OjoiBkzZmDmzJkAgOLiYtjZ2SE1NRVjx47V2o7MzEwEBASgrKwMpqamWuv4+/vDzs6uzg9Z5sJyMgTaRp/++tdIBAeb4c4doHt3oF07bp5JRIajrn+/JR2JKi8vx5EjR+Dr6yuWGRkZwdfXF0qlUus5SqVSrT4A+Pn5ifXz8/OhUqnU6lhbW8PLy6vGa966dQvr16+Hj49PjQEKqApjfF4gtRRFRUVaA1RcXBw+/rgqQLVqBSQmVj2+hQGKiFoaSUPUzZs3UVFRATs7O7VyOzs7qFQqreeoVKpa61d/rcs158yZAysrK7Rv3x4XL17Etm3bamzrpk2bcOjQIYwfP77GOmVlZSgpKVF7Eemj+Ph4fPrppxrl1XffRURUPftu/XqGJyJquSRfEyWlWbNmITc3F7t27YKxsTGCg4OhbXZz7969GD9+PL744gs888wzNV4vISEB1tbW4svJyakpm0/UJLSNPsXExKhtXzBqFEefiIgkDVG2trYwNjZGYWGhWnlhYSHs7e21nmNvb19r/eqvdbmmra0tXF1d8cILLyAtLQ07duzATz/9pFbn+++/x8iRI7F48WIEBwfX2p/IyEgUFxeLr0uXLtVan0iXqFSqGqfv+FgnIiJNkn4ympmZwcPDA9nZ2WJZZWUlsrOz4e3trfUcb29vtfoAsHv3brG+QqGAvb29Wp2SkhLk5OTUeM3q9wWqpuSq7du3D/7+/vjoo48wadKkx/bH3Nwcbdq0UXsR6YP4+Hh8/vnnGuXcPJOIqGb1egBxUwgPD0dISAg8PT3Rr18/LFmyBKWlpeLao+DgYHTq1AkJCQkAgGnTpmHQoEFYtGgR/P39kZaWhsOHD2PlypUAAJlMhunTp2P+/PlwcXGBQqFATEwMHB0dERAQAADIycnBoUOHMGDAALRt2xbnz59HTEwMunbtKgatvXv3YsSIEZg2bRpeeeUVcT2VmZkZF5eTQdE2+hQbG8snFBARPYbkISowMBA3btxAbGwsVCoV3NzckJWVJS4Mv3jxotpUgo+PDzZs2IDo6GhERUXBxcUFGRkZ6NWrl1hn9uzZKC0txaRJk1BUVIQBAwYgKysLcrkcAGBpaYmtW7ciLi4OpaWlcHBwwLBhwxAdHQ1zc3MAwFdffYW7d+8iISFBDHAAMGjQIOzbt68ZfjJETevSpUtat+vYuTMO7u5c70RE9DiS7xNlyLhPFOmqmp59t3NnHJTKqjvvDhxo5kYREemIRn8AMREZhpoWjwOAu3vVzuNa9rklIqJHMEQRtRB5eXlIS0vTKH94+q76RUREj8cQRdQCaBt96tixI9atmyw+947hiYiofhiiiAxcbdN3nTpx+o6IqKEYoogM1PHjx5GRkaFR/ujO4xyBIiJqGIYoIgOkbfTpyhU3jBgxWoLWEBEZJoYoIgOjLUBVb11w8iRHnoiIGgtDFJGBOHjwIL799luN8ri4OG5dQETUBBiiiAyAttGn5557DkOHDgXAtU9ERE2Bj2Yn0nM1Td/duTNUgtYQEbUcHIki0lN79uzBDz/8oFFevf6Jez8RETUthigiPaRt9GnUqFFwd3fn+iciombCEEWkZ2rbPBPg+icioubCNVFEeiIjI0NrgHJ3j4OPD5CZKUGjiIhaMI5EEekBbeEpKCgIrq6u8PEB10AREUmAI1FEOq6m6TtXV1cAVWufvL25BoqIqLlxJIpIR3311VcoKCjQKH94/RPANVBERFJhiCLSQdpGnyZMmAAnJycJWkNERNowRBHpmMfdfUdERLqBIYpIRyQnJ+P27dsa5Tt3Vj37jlN2RES6hQvLiXRAfHy8RoCaMmWK2u7jRESkWxiiiCQkCEKN03cdOnTgnXdERDqM03lEEtEWngDuPk5EpC8YoogkoC1Avffee2jTpo0ErSEiooZgiCJqRhUVFZg/f75GOe++IyLSPwxRRM2kLtN3RESkPxiiiJqBtgA1e/ZsWFhYSNAaIiJqDAxRRE2ovLwcCQkJGuUcfSIi0n8MUURNhNN3RESGjSGKqAloC1BRUVEwNTWVoDVERNQUGKKIGlFpaSmSkpI0yjn6RERkeBiiiBoJp++IiFoWhiiiRqAtQMXExMDIiE9WIiIyVDrxCb98+XI4OztDLpfDy8sLBw8erLX+5s2b0aNHD8jlcvTu3Rs7duxQOy4IAmJjY+Hg4AALCwv4+vri7NmzanVGjRqFzp07Qy6Xw8HBAePGjcPVq1fV6pw4cQLPPfcc5HI5nJyckJiY2DgdJoNRVFRU47PvGKCIiAyb5J/y6enpCA8PR1xcHI4ePYo+ffrAz88P169f11r/wIEDCAoKQlhYGHJzcxEQEICAgACcPHlSrJOYmIjk5GSkpKQgJycHVlZW8PPzw71798Q6Q4YMwaZNm5CXl4ctW7bg/PnzGDNmjHi8pKQEf//739GlSxccOXIEH3/8MebOnYuVK1c23Q+D9Ep8fDw+/fRTtTJTU1NO3xERtRAyQRAEKRvg5eWFvn37YtmyZQCAyspKODk5YerUqYjQ8uj6wMBAlJaWYvv27WJZ//794ebmhpSUFAiCAEdHR8yYMQMzZ84EABQXF8POzg6pqakYO3as1nZkZmYiICAAZWVlMDU1xYoVK/D+++9DpVLBzMwMABAREYGMjAycOXOmTn0rKSmBtbU1iouL+Uw0A6Nt9Ck2NhYymUyC1hARUWOq699vSUeiysvLceTIEfj6+oplRkZG8PX1hVKp1HqOUqlUqw8Afn5+Yv38/HyoVCq1OtbW1vDy8qrxmrdu3cL69evh4+Mj3oKuVCoxcOBAMUBVv09eXh5u376t9TplZWUoKSlRe5FhuX79eo3TdwxQREQti6Qh6ubNm6ioqICdnZ1auZ2dHVQqldZzVCpVrfWrv9blmnPmzIGVlRXat2+PixcvYtu2bY99n4ff41EJCQmwtrYWX05OTlrrkX6Kj4/HihUr1Mo6dOjA6TsiohZK8jVRUpo1axZyc3Oxa9cuGBsbIzg4GE8yuxkZGYni4mLxdenSpUZsLUlJ2+iTu3scpkyZIkFriIhIF0i6xYGtrS2MjY1RWFioVl5YWAh7e3ut59jb29dav/prYWEhHBwc1Oq4ublpvL+trS1cXV3Rs2dPODk54aeffoK3t3eN7/PwezzK3Nwc5ubmj+k16ZPLly9j1apVGuUcfSIiIklHoszMzODh4YHs7GyxrLKyEtnZ2fD29tZ6jre3t1p9ANi9e7dYX6FQwN7eXq1OSUkJcnJyarxm9fsCVeuaqt9n//79uH//vtr7dO/eHW3btq1nT0kfxcfHawSoPn36MEAREREAHdhsMzw8HCEhIfD09ES/fv2wZMkSlJaWYvz48QCA4OBgdOrUCQkJCQCAadOmYdCgQVi0aBH8/f2RlpaGw4cPi1sPyGQyTJ8+HfPnz4eLiwsUCgViYmLg6OiIgIAAAEBOTg4OHTqEAQMGoG3btjh//jxiYmLQtWtXMWi99tpriI+PR1hYGObMmYOTJ0/i008/xeLFi5v/h0TNrqbF40RERNUkD1GBgYG4ceMGYmNjoVKp4ObmhqysLHER98WLF9U2LfTx8cGGDRsQHR2NqKgouLi4ICMjA7169RLrzJ49G6WlpZg0aRKKioowYMAAZGVlQS6XAwAsLS2xdetWxMXFobS0FA4ODhg2bBiio6PF6Thra2vs2rULb7/9Njw8PGBra4vY2FhMmjSpGX861NzOnj2LDRs2aJQzQBER0aMk3yfKkHGfKP2ibfRpwIABeP755yVoDRERSaWuf78lH4ki0gWcviMiovpiiKIW7dSpU9i8ebNGubs7AxQREdWOIYpaLG2jTyNHjsSzzz4rQWuIiEjfMERRi8TpOyIielIMUdSiHDlyRO3h1dUYoIiIqL4YoqjF0Db6FBgYiB49ekjQGiIi0ncMUdQicPqOiIgaG0MUGbT9+/dj7969GuUMUERE9KQYoshgaRt9Cg0NRZcuXSRoDRERGRqGKDJInL4jIqKmxhBFBmXHjh04dOiQRjkDFBERNTaGKDIY2kafJk2aBAcHBwlaQ0REho4higwCp++IiKi5MUSRXtu+fTuOHDmiUc4ARURETY0hivSWttGnqVOnol27dhK0hoiIWhqGKNI7giBg3rx5GuXu7nFgfiIioubCEEV6JS0tDXl5eRrlnL4jIqLmxhBFekPb9N3MmTNhZWUlQWuIiKilY4ginVdZWYkPPvhAo5yjT0REJCWGKNJp6enpOHPmjEY5AxQREUmNIYp0lrbpu4iICJibm0vQGiIiInUMUaRzHjx4gAULFmiUu7vHgfmJiIh0BUMU6YTMTGDhQuDll1ejtPSS2rGnnnoKYWFhErWMiIhIO4Yo0gkLFwJ+fvEoLVUvf//992Fiwn+mRESke/jXiSR3//59+Pl9qFHOxeNERKTLGKJIUuvWrcOFCxfUynr27Il//OMfErWIiIiobhiiSDLa7r6LiYmBkZGRBK0hIiKqH4Yoanb37t3DRx99pFHO6TsiItInDFHUrFJSUlBYWKhWNnjwYAwaNEiiFhERETUMQxQ1G23Td7GxsZDJZBK0hoiI6MkwRFGTu3PnDhYtWqRRzuk7IiLSZwxRVC/Vm2JGRACjRj2+flJSEkof2fxp2LBh8PLyaqIWEhERNQ+GKKqXhQsBpbLq6+NClLbpO44+ERGRoZD8XvLly5fD2dkZcrkcXl5eOHjwYK31N2/ejB49ekAul6N3797YsWOH2nFBEBAbGwsHBwdYWFjA19cXZ8+eFY8XFBQgLCwMCoUCFhYW6Nq1K+Li4lBeXq52nZ07d6J///5o3bo1OnTogFdeeQUFBQWN1m99FREBeHtXfa1JcXExAxQRERk8SUNUeno6wsPDERcXh6NHj6JPnz7w8/PD9evXtdY/cOAAgoKCEBYWhtzcXAQEBCAgIAAnT54U6yQmJiI5ORkpKSnIycmBlZUV/Pz8cO/ePQDAmTNnUFlZic8//xy//PILFi9ejJSUFERFRYnXyM/Px+jRozF06FAcO3YMO3fuxM2bN/Hyyy837Q9ER2VmAj4+VV9HjQIOHKh5FCo+Ph5LlixRKwsICGCAIiIigyMTBEGQ6s29vLzQt29fLFu2DABQWVkJJycnTJ06FRFahjoCAwNRWlqK7du3i2X9+/eHm5sbUlJSIAgCHB0dMWPGDMycORNA1aiInZ0dUlNTMXbsWK3t+Pjjj7FixQpx5+x//etfCAoKQllZmbjx4zfffIPRo0ejrKwMpqamdepfSUkJrK2tUVxcjDZt2tT9B6NjfHyqpvC8vasCVE04+kRERIagrn+/JRuJKi8vx5EjR+Dr6/u/xhgZwdfXF0qlUus5SqVSrT4A+Pn5ifXz8/OhUqnU6lhbW8PLy6vGawJVQatdu3bi9x4eHjAyMsKaNWtQUVGB4uJirFu3Dr6+vrUGqLKyMpSUlKi9DMHjpvBu3rzJAEVERC2OZAvLb968iYqKCtjZ2amV29nZ4cyZM1rPUalUWuurVCrxeHVZTXUede7cOSxduhRJSUlimUKhwK5du/CPf/wDb775JioqKuDt7a2x/upRCQkJWsOEvhs1qvbpu0eNHTsW3bt3b+JWERERSUvyheVSunLlCoYNG4ZXX30VEydOFMtVKhUmTpyIkJAQHDp0CN9//z3MzMwwZswY1Db7GRkZieLiYvF16dKl5uiGZGoafWKAIiKilkCyEGVrawtjY2ONR4AUFhbC3t5e6zn29va11q/+WpdrXr16FUOGDIGPjw9Wrlypdmz58uWwtrZGYmIi3N3dMXDgQHz99dfIzs5GTk5OjX0yNzdHmzZt1F665OEF4k/i6tWrnL4jIqIWT7IQZWZmBg8PD2RnZ4tllZWVyM7Ohre3t9ZzvL291eoDwO7du8X6CoUC9vb2anVKSkqQk5Ojds0rV65g8ODB8PDwwJo1a8TF49Xu3r2rUWZsbCy2UV89vMdTQ8XHx+OLL75QKwsODmaAIiKiFkfS6bzw8HB88cUX+Oqrr3D69GlMnjwZpaWlGD9+PICqP86RkZFi/WnTpiErKwuLFi3CmTNnMHfuXBw+fBjvvPMOAEAmk2H69OmYP38+MjMz8fPPPyM4OBiOjo4ICAgA8L8A1blzZyQlJeHGjRtQqVRqa6b8/f1x6NAhzJs3D2fPnsXRo0cxfvx4dOnSBe7u7s33A2pkddnjqTY1jT4pFIonbBkREZH+kXTH8sDAQNy4cQOxsbFQqVRwc3NDVlaWuDD84sWLaiNCPj4+2LBhA6KjoxEVFQUXFxdkZGSgV69eYp3Zs2ejtLQUkyZNQlFREQYMGICsrCzI5XIAVSNX586dw7lz5/DUU0+ptad6vdPQoUOxYcMGJCYmIjExEZaWlvD29kZWVhYsLCya+sfSZGpbIF6ba9euaUx5Apy+IyKilk3SfaIMnSHsE7Vy5Upcu3ZNrWzy5Mno2LGjRC0iIiJqWnX9+81n51GNuHiciIioZgxRpKGwsBApKSlqZa6urggKCpKoRURERLqHIYrUfPrppygqKlIrCw8PR+vWraVpEBERkY5iiCIRp++IiIjqjiGKcPnyZaxatUqtzM3NDaNHj5aoRURERLqPIaqFW7hwIcrKytTKZs2aBUtLS4laREREpB8YolowTt8RERE1HENUC1RQUICvvvpKrczLywvDhg2TqEVERET6hyGqhdE2+hQREQFzc3MJWkNERKS/GKJaCEEQMG/ePI1yTt8RERE1DENUC6Dt2XeDBg3C4MGDpWkQERGRATB6fBXSNZmZgI9P1dfHla9bt04jQEVFRTFAERERPSE+gLgJNdUDiH18AKUS8PYGDhzQXv7jj5rTdxYWFpg9e3ajtYOIiMgQ8QHEBiwiAli4sOqrtvKpUy9h3rzVaseCgoLg6urajK0kIiIybAxRemjUqKqXtvLCwi/w669X1cqjo6NhbGzcTK0jIiJqGRiiDIS2u+/atm2Ld999V6IWERERGTaGKANw+/ZtJCcnq5WNGzcOTz/9tEQtIiIiMnwMUXouJycHWVlZamUxMTEwMuKNl0RERE2JIUpPCYKAJUuWoKSkRCzz9/eHp6enhK0iIiJqORii9NDvv/+OZcuWqZVNnz4d1tbWErWIiIio5WGI0kMPByg7Ozu8+eabkMlkEraIiIio5WGI0kN9+vTB8ePHMXr0aLi5uUndHCIiohaJO5Y3oabasZyIiIiaTl3/fvMWLiIiIqIGYIgiIiIiagCGKCIiIqIGYIgiIiIiagCGKCIiIqIGYIgiIiIiagCGKCIiIqIGYIgiIiIiagCGKCIiIqIGYIgiIiIiagDJQ9Ty5cvh7OwMuVwOLy8vHDx4sNb6mzdvRo8ePSCXy9G7d2/s2LFD7bggCIiNjYWDgwMsLCzg6+uLs2fPiscLCgoQFhYGhUIBCwsLdO3aFXFxcSgvL9e4TlJSElxdXWFubo5OnTphwYIFjddxIiIi0muShqj09HSEh4cjLi4OR48eRZ8+feDn54fr169rrX/gwAEEBQUhLCwMubm5CAgIQEBAAE6ePCnWSUxMRHJyMlJSUpCTkwMrKyv4+fnh3r17AIAzZ86gsrISn3/+OX755RcsXrwYKSkpiIqKUnuvadOm4csvv0RSUhLOnDmDzMxM9OvXr+l+GERERKRXJH0AsZeXF/r27Ytly5YBACorK+Hk5ISpU6ciIiJCo35gYCBKS0uxfft2sax///5wc3NDSkoKBEGAo6MjZsyYgZkzZwIAiouLYWdnh9TUVIwdO1ZrOz7++GOsWLECFy5cAACcPn0af/3rX3Hy5El07969wf3jA4iJiIj0j84/gLi8vBxHjhyBr6/v/xpjZARfX18olUqt5yiVSrX6AODn5yfWz8/Ph0qlUqtjbW0NLy+vGq8JVAWtdu3aid9/8803ePrpp7F9+3YoFAo4OzvjjTfewK1bt2rtU1lZGUpKStReREREZJhMpHrjmzdvoqKiAnZ2dmrldnZ2OHPmjNZzVCqV1voqlUo8Xl1WU51HnTt3DkuXLkVSUpJYduHCBfz222/YvHkz1q5di4qKCrz33nsYM2YM9uzZU2OfEhISEB8fr1HOMEVERKQ/qv9uP26yTrIQpQuuXLmCYcOG4dVXX8XEiRPF8srKSpSVlWHt2rVwdXUFAKxatQoeHh7Iy8urcYovMjIS4eHhatf/y1/+Aicnp6btCBERETW6P/74A9bW1jUelyxE2drawtjYGIWFhWrlhYWFsLe313qOvb19rfWrvxYWFsLBwUGtjpubm9p5V69exZAhQ+Dj44OVK1eqHXNwcICJiYkYoACgZ8+eAICLFy/WGKLMzc1hbm4uft+qVSucOnUKf/nLX3Dp0iWDXhdVUlICJycng+8nwL4aopbST4B9NVQtpa/N1U9BEPDHH3/A0dGx1nqShSgzMzN4eHggOzsbAQEBAKpGgLKzs/HOO+9oPcfb2xvZ2dmYPn26WLZ79254e3sDABQKBezt7ZGdnS2GppKSEuTk5GDy5MniOVeuXMGQIUPg4eGBNWvWwMhIfWnY3/72Nzx48ADnz59H165dAQC//vorAKBLly517qORkRE6deoEAGjTpo1B/8Ou1lL6CbCvhqil9BNgXw1VS+lrc/SzthGoapJO54WHhyMkJASenp7o168flixZgtLSUowfPx4AEBwcjE6dOiEhIQFA1bYDgwYNwqJFi+Dv74+0tDQcPnxYHEmSyWSYPn065s+fDxcXFygUCsTExMDR0VEMaleuXMHgwYPRpUsXJCUl4caNG2J7qkeyfH198eyzz2LChAlYsmQJKisr8fbbb+OFF15QG50iIiKilkvSEBUYGIgbN24gNjYWKpUKbm5uyMrKEheGX7x4UW2UyMfHBxs2bEB0dDSioqLg4uKCjIwM9OrVS6wze/ZslJaWYtKkSSgqKsKAAQOQlZUFuVwOoGrk6ty5czh37hyeeuoptfZULyAzMjLCN998g6lTp2LgwIGwsrLC8OHDsWjRoqb+kRAREZG+EKhJ3bt3T4iLixPu3bsndVOaVEvppyCwr4aopfRTENhXQ9VS+qpr/ZR0s00iIiIifSX5s/OIiIiI9BFDFBEREVEDMEQRERERNQBDFBEREVEDMEQ9ZPny5XB2doZcLoeXlxcOHjxYa/3NmzejR48ekMvl6N27N3bs2KF2XBAExMbGwsHBARYWFvD19cXZs2fF4wUFBQgLC4NCoYCFhQW6du2KuLg4lJeXa1wnKSkJrq6uMDc3R6dOnbBgwQKD7OvOnTvRv39/tG7dGh06dMArr7yCgoICveorAIwaNQqdO3eGXC6Hg4MDxo0bh6tXr6rVOXHiBJ577jnI5XI4OTkhMTHxifqpq33dt28fRo8eDQcHB1hZWcHNzQ3r1683uH4+7Ny5c2jdujVsbGyeqJ+A7vbVED6X6trXxv5ckqKf1crKyuDm5gaZTIZjx46pHTOUz6RqNfW1UT+TJLknUAelpaUJZmZmwurVq4VffvlFmDhxomBjYyMUFhZqrf/jjz8KxsbGQmJionDq1CkhOjpaMDU1FX7++WexzsKFCwVra2shIyNDOH78uDBq1ChBoVAIf/75pyAIgvDtt98KoaGhws6dO4Xz588L27ZtEzp27CjMmDFD7b2mTp0qdO/eXdi2bZtw4cIF4fDhw8KuXbsMrq8XLlwQzM3NhcjISOHcuXPCkSNHhIEDBwru7u561VdBEIRPPvlEUCqVQkFBgfDjjz8K3t7egre3t3i8uLhYsLOzE/75z38KJ0+eFDZu3ChYWFgIn3/+ucH1dcGCBUJ0dLTw448/CufOnROWLFkiGBkZCd98841B9bNaeXm54OnpKQwfPlywtrZuUB/1oa+G8LlUl7429ueSVP2s9u677wrDhw8XAAi5ubliuSF9Jj2ur435mcQQ9f/69esnvP322+L3FRUVgqOjo5CQkKC1/j/+8Q/B399frczLy0t48803BUEQhMrKSsHe3l74+OOPxeNFRUWCubm5sHHjxhrbkZiYKCgUCvH7U6dOCSYmJsKZM2ca1C9tdLWvmzdvFkxMTISKigqxLDMzU5DJZEJ5eXn9Ovn/dKWv27ZtU+vHZ599JrRt21YoKysT68yZM0fo3r17/Tv5/3S1r9q8+OKLwvjx4+vUr0fpej9nz54tvP7668KaNWueOETpal8N+XPp0b429ueSlP3csWOH0KNHD+GXX37RCBaG9plUW1+1aehnEqfzAJSXl+PIkSPw9fUVy4yMjODr6wulUqn1HKVSqVYfAPz8/MT6+fn5UKlUanWsra3h5eVV4zUBoLi4GO3atRO//+abb/D0009j+/btUCgUcHZ2xhtvvIFbt24ZXF89PDxgZGSENWvWoKKiAsXFxVi3bh18fX1hamqqt329desW1q9fDx8fH7EfSqUSAwcOhJmZmdr75OXl4fbt2wbVV20e/d3Xla73c8+ePdi8eTOWL19e7749Spf7aqifS9r62pifS1L2s7CwEBMnTsS6detgaWmp9X0M5TPpcX3VpqGfSQxRAG7evImKigrxcTPV7OzsoFKptJ6jUqlqrV/9tT7XPHfuHJYuXYo333xTLLtw4QJ+++03bN68GWvXrkVqaiqOHDmCMWPG1K+T/0+X+6pQKLBr1y5ERUXB3NwcNjY2uHz5MjZt2lS/Tv4/qfs6Z84cWFlZoX379rh48SK2bdv22Pd5+D3qQ5f7+qhNmzbh0KFD4jMy60OX+/n7778jNDQUqampjfJgVF3uq6F9LtXW18b8XJKqn4IgIDQ0FG+99RY8PT3r9T4Pv0d96HJfH/Ukn0kMUTriypUrGDZsGF599VVMnDhRLK+srERZWRnWrl2L5557DoMHD8aqVauwd+9e5OXlSdjihqupryqVChMnTkRISAgOHTqE77//HmZmZhgzZoz4XEN9MmvWLOTm5mLXrl0wNjZGcHCwXvajLura171792L8+PH44osv8Mwzz0jQ0idTWz8nTpyI1157DQMHDpS4lY2jtr4a2udSbX01hM+lpUuX4o8//kBkZKTUTWly9e3rk34mMUQBsLW1hbGxMQoLC9XKCwsLYW9vr/Uce3v7WutXf63LNa9evYohQ4bAx8cHK1euVDvm4OAAExMTuLq6imU9e/YEUPWA5vrS5b4uX74c1tbWSExMhLu7OwYOHIivv/4a2dnZyMnJ0bu+2trawtXVFS+88ALS0tKwY8cO/PTTT7W+z8PvUR+63Ndq33//PUaOHInFixcjODi43n2sfh9d7eeePXuQlJQEExMTmJiYICwsDMXFxTAxMcHq1asNqq+G9rlUW18b83NJqn7u2bMHSqUS5ubmMDExQbdu3QAAnp6eCAkJqfV9Hn4PQ+lrtcb4TGKIAmBmZgYPDw9kZ2eLZZWVlcjOzoa3t7fWc7y9vdXqA8Du3bvF+gqFAvb29mp1SkpKkJOTo3bNK1euYPDgwfDw8MCaNWtgZKT+K/nb3/6GBw8e4Pz582LZr7/+CgDo0qWLQfX17t27GmXGxsZiG/Wpr4+qbn9ZWZn4Pvv378f9+/fV3qd79+5o27ZtPXuq230Fqm4p9vf3x0cffYRJkybVu3/VdLmfSqUSx44dE1/z5s1D69atcezYMbz00ksG1VdD+lx61KN9bczPJan6mZycjOPHj4v/Nqu3DUhPTxe3pTCUz6S69BVovM8k3p33/9LS0gRzc3MhNTVVOHXqlDBp0iTBxsZGUKlUgiAIwrhx44SIiAix/o8//iiYmJgISUlJwunTp4W4uDitt2La2NgI27ZtE06cOCGMHj1a7VbMy5cvC926dROef/554fLly8K1a9fEV7WKigrh2WefFQYOHCgcPXpUOHz4sODl5SW88MILBtfX7OxsQSaTCfHx8cKvv/4qHDlyRPDz8xO6dOki3L17V2/6+tNPPwlLly4VcnNzhYKCAiE7O1vw8fERunbtKj55vKioSLCzsxPGjRsnnDx5UkhLSxMsLS2f+HZiXezrnj17BEtLSyEyMlLt9/77778bVD8f1Rh35+lqXw3lc6kufW3szyUp+vmo/Px8jTvWDOUzqS59bczPJIaohyxdulTo3LmzYGZmJvTr10/46aefxGODBg0SQkJC1Opv2rRJcHV1FczMzIRnnnlG+M9//qN2vLKyUoiJiRHs7OwEc3Nz4fnnnxfy8vLE42vWrBEAaH097MqVK8LLL78stGrVSrCzsxNCQ0Mb/AdI1/u6ceNGwd3dXbCyshI6dOggjBo1Sjh9+rRe9fXEiRPCkCFDhHbt2gnm5uaCs7Oz8NZbbwmXL19Wu87x48eFAQMGCObm5kKnTp2EhQsXPlE/dbWvISEhWn/vgwYNMqh+PqoxQpQu99UQPpfq2tfG/lxq7n4+SluwEATD+EyqS18b8zNJJgh6sjKOiIiISIdwTRQRERFRAzBEERERETUAQxQRERFRAzBEERERETUAQxQRERFRAzBEERERETUAQxQRERFRAzBEERERETUAQxQRUS2USiWMjY3h7++vVl5QUACZTCa+2rVrh0GDBuGHH36QqKVE1NwYooiIarFq1SpMnToV+/fvx9WrVzWOf/fdd7h27Rr2798PR0dHjBgxQuMp80RkmBiiiIhqcOfOHaSnp2Py5Mnw9/dHamqqRp327dvD3t4evXr1QlRUlPhUeSIyfAxRREQ12LRpE3r06IHu3bvj9ddfx+rVq1HT40b//PNPrF27FgBgZmbWnM0kIomYSN0AIiJdtWrVKrz++usAgGHDhqG4uBjff/89Bg8eLNbx8fGBkZER7t69C0EQ4OHhgeeff16iFhNRc+JIFBGRFnl5eTh48CCCgoIAACYmJggMDMSqVavU6qWnpyM3NxdbtmxBt27dkJqaClNTUymaTETNjCNRRERarFq1Cg8ePICjo6NYJggCzM3NsWzZMrHMyckJLi4ucHFxwYMHD/DSSy/h5MmTMDc3l6LZRNSMOBJFRPSIBw8eYO3atVi0aBGOHTsmvo4fPw5HR0ds3LhR63ljxoyBiYkJPvvss2ZuMRFJgSGKiOgR27dvx+3btxEWFoZevXqpvV555RWNKb1qMpkM7777LhYuXIi7d+82c6uJqLkxRBERPWLVqlXw9fWFtbW1xrFXXnkFhw8fRklJidZzQ0JCcP/+fbUpPyIyTDKhpvt1iYiIiKhGHIkiIiIiagCGKCIiIqIGYIgiIiIiagCGKCIiIqIGYIgiIiIiagCGKCIiIqIGYIgiIiIiagCGKCIiIqIGYIgiIiIiagCGKCIiIqIGYIgiIiIiagCGKCIiIqIG+D8skHWUyKB83wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAHHCAYAAAB5gsZZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWAlJREFUeJzt3XlYVGX/P/D3sC8KqOyKgkqi6SUGipBPapGjaUpZD1qukUvuoRmYgriEuT+oyWPl0qKQZciDBhlaWfLFVLTclyA0HcQURsdkPb8/+DE1zoAMM8OZGd6v6+Ii7nOfM59zrHh7n/vcRyIIggAiIiIiajQLsQsgIiIiMnUMVEREREQ6YqAiIiIi0hEDFREREZGOGKiIiIiIdMRARURERKQjBioiIiIiHTFQEREREemIgYqIiIhIRwxURGTWJBIJFi9eLHYZShMmTICvr6/YZRCRnjFQEVGT2759OyQSifLLzs4Ojz32GGbMmIGioiKDfvaRI0ewePFilJSU6PW4AwYMUDmn1q1bo3fv3ti6dSuqq6v18hnvvvsu0tLS9HIsItIvK7ELIKLma8mSJfDz88ODBw/w448/YvPmzdi/fz9Onz4NBwcHvXzGX3/9BSurv/9Xd+TIESQkJGDChAlwcXHRy2fUateuHRITEwEAxcXF+PjjjxEVFYWLFy9ixYoVOh//3XffxUsvvYSIiAidj0VE+sVARUSiGTJkCIKDgwEAr7/+Otq0aYO1a9di7969GD16dKOPW11djfLyctjZ2cHOzk5f5T6Ss7MzxowZo/x5ypQp6NKlCzZu3IilS5fC2tq6yWohoqbFW35EZDSefvppAEB+fj4AYPXq1QgLC0ObNm1gb2+PoKAgfPHFF2r7SSQSzJgxA5999hkef/xx2NraIjMzU7mtdg7V4sWL8dZbbwEA/Pz8lLfnCgoK0L9/f/Ts2VNjXV26dIFUKtX6fBwcHNC3b18oFAoUFxfX2U+hUGDu3Lnw8fGBra0tunTpgtWrV0MQBJVzVCgU2LFjh7LuCRMmaF0TERkGR6iIyGhcuXIFANCmTRsAwH/+8x8MHz4cr776KsrLy5GSkoKXX34ZGRkZGDp0qMq+Bw8exOeff44ZM2bA1dVV48TvF198ERcvXsSuXbuwbt06uLq6AgDc3NwwduxYTJo0CadPn0b37t2V+/z888+4ePEiFi5c2Khz+u2332BpaVnn7UVBEDB8+HAcOnQIUVFRCAwMRFZWFt566y388ccfWLduHQDgk08+weuvv44+ffpg8uTJAIBOnTo1qiYiMgCBiKiJbdu2TQAgfPvtt0JxcbFw9epVISUlRWjTpo1gb28vXLt2TRAEQbh//77KfuXl5UL37t2Fp59+WqUdgGBhYSGcOXNG7bMACPHx8cqfV61aJQAQ8vPzVfqVlJQIdnZ2wttvv63SPmvWLMHR0VG4d+9evefUv39/ISAgQCguLhaKi4uFc+fOCbNmzRIACM8//7yy3/jx44UOHToof05LSxMACMuWLVM53ksvvSRIJBLh8uXLyjZHR0dh/Pjx9dZBROLgLT8iEk14eDjc3Nzg4+ODUaNGoUWLFvjqq6/Qtm1bAIC9vb2y7507d1BaWop//etfOHHihNqx+vfvj27dujW6FmdnZ4wYMQK7du1S3mqrqqpCamoqIiIi4Ojo+MhjnD9/Hm5ubnBzc0PXrl2xYcMGDB06FFu3bq1zn/3798PS0hKzZs1SaZ87dy4EQcDXX3/d6HMioqbDW35EJJpNmzbhscceg5WVFTw8PNClSxdYWPz997yMjAwsW7YMJ0+eRFlZmbJdIpGoHcvPz0/nesaNG4fU1FQcPnwYTz31FL799lsUFRVh7NixDdrf19cXH3zwgXIpCH9/f7i7u9e7z++//w5vb2+0bNlSpb1r167K7URk/BioiEg0ffr0UT7l97DDhw9j+PDheOqpp/D+++/Dy8sL1tbW2LZtG3bu3KnW/5+jWY0llUrh4eGBTz/9FE899RQ+/fRTeHp6Ijw8vEH7Ozo6NrgvEZkX3vIjIqP05Zdfws7ODllZWXjttdcwZMgQvYQVTaNbtSwtLfHKK6/giy++wJ07d5CWlobRo0fD0tJS58+tS4cOHXD9+nXcvXtXpf38+fPK7bXqq52IxMVARURGydLSEhKJBFVVVcq2goICnVcKr50LVddK6WPHjsWdO3cwZcoU3Lt3T2VdKUN47rnnUFVVhY0bN6q0r1u3DhKJBEOGDFG2OTo66n2FdyLSD97yIyKjNHToUKxduxaDBw/GK6+8gps3b2LTpk3o3Lkzfvnll0YfNygoCADwzjvvYNSoUbC2tsbzzz+vDFq9evVC9+7dsXv3bnTt2hVPPPGEXs6nLs8//zwGDhyId955BwUFBejZsye++eYb7N27F3PmzFFZGiEoKAjffvst1q5dC29vb/j5+SEkJMSg9RFRw3CEioiM0tNPP42PPvoIMpkMc+bMwa5du/Dee+/hhRde0Om4vXv3xtKlS3Hq1ClMmDABo0ePVlt0c9y4cQDQ4MnourCwsEB6ejrmzJmDjIwMzJkzB2fPnsWqVauwdu1alb5r165FUFAQFi5ciNGjR2Pz5s0Gr4+IGkYiCP9YipeIiPCf//wHb775JgoKCtC+fXuxyyEiE8BARUT0D4IgoGfPnmjTpg0OHTokdjlEZCI4h4qICDXv00tPT8ehQ4fw66+/Yu/evWKXREQmhCNURESoeYLQz88PLi4umDZtGpYvXy52SURkQhioiIiIiHTEp/yIiIiIdMRARURERKQjTkpvpOrqaly/fh0tW7bk6yCIiIhMhCAIuHv3Lry9vVVexq4rBqpGun79Onx8fMQug4iIiBrh6tWraNeund6Ox0DVSC1btgRQ8wfi5OQkcjVERETUEHK5HD4+Psrf4/oieqDatGkTVq1aBZlMhp49e2LDhg3o06dPnf13796NRYsWoaCgAP7+/njvvffw3HPPKbfv2bMHycnJOH78OG7fvo28vDwEBgYqt9++fRvx8fH45ptvUFhYCDc3N0RERGDp0qVwdnZucN21t/mcnJwYqIiIiEyMvqfriDopPTU1FdHR0YiPj8eJEyfQs2dPSKVS3Lx5U2P/I0eOYPTo0YiKikJeXh4iIiIQERGB06dPK/soFAr069cP7733nsZjXL9+HdevX8fq1atx+vRpbN++HZmZmYiKijLIORIREZH5E3UdqpCQEPTu3RsbN24EUDPR28fHBzNnzkRMTIxa/8jISCgUCmRkZCjb+vbti8DAQCQnJ6v0rV2k7+ERKk12796NMWPGQKFQwMqqYYN2crkczs7OKC0t5QgVERGRiTDU72/RRqjKy8tx/PhxhIeH/12MhQXCw8ORk5OjcZ+cnByV/gAglUrr7N9QtRe1vjBVVlYGuVyu8kVEREQEiDiH6tatW6iqqoKHh4dKu4eHB86fP69xH5lMprG/TCbTqY6lS5di8uTJ9fZLTExEQkKC1sevqqpCRUVFY8sjE2FtbQ1LS0uxyyAiIpGIPildTHK5HEOHDkW3bt2wePHievvGxsYiOjpaZd/6lk0QBAEymQwlJSV6qpaMnYuLCzw9PbkuGRFRMyRaoHJ1dYWlpSWKiopU2ouKiuDp6alxH09PT6361+fu3bsYPHgwWrZsia+++grW1tb19re1tYWtrW2Dj18bptzd3eHg4MBfsmZMEATcv39f+TCFl5eXyBUREVFTEy1Q2djYICgoCNnZ2YiIiABQMyk9OzsbM2bM0LhPaGgosrOzMWfOHGXbgQMHEBoaqtVny+VySKVS2NraIj09HXZ2do09DY2qqqqUYapNmzZ6PTYZJ3t7ewDAzZs34e7uztt/RETNjKi3/KKjozF+/HgEBwejT58+WL9+PRQKBSZOnAgAGDduHNq2bYvExEQAwOzZs9G/f3+sWbMGQ4cORUpKCo4dO4YtW7Yoj3n79m0UFhbi+vXrAIALFy4AqBnd8vT0hFwux6BBg3D//n18+umnKhPM3dzc9PKLsHbOlIODg87HItNR++ddUVHBQEVE1MyIGqgiIyNRXFyMuLg4yGQyBAYGIjMzUznxvLCwUOU9O2FhYdi5cycWLlyIBQsWwN/fH2lpaejevbuyT3p6ujKQAcCoUaMAAPHx8Vi8eDFOnDiB3NxcAEDnzp1V6snPz4evr6/ezo+3+ZoX/nkTETVfoq5DZcrqW8fiwYMHyM/Ph5+fn95vJ5Lx4p87EZHxM7t1qIiIiIjMBQMVqZgwYQIkEgkkEgmsra3h4eGBZ599Flu3bkV1dXWDj7N9+3a4uLgYrlAiIiIjwkBFagYPHowbN26goKAAX3/9NQYOHIjZs2dj2LBhqKysFLs8IiIyc4Ig4K+//hK7DK0wUJEaW1tbeHp6om3btnjiiSewYMEC7N27F19//TW2b98OAFi7di169OgBR0dH+Pj4YNq0abh37x4A4LvvvsPEiRNRWlqqHO2qXTj1k08+QXBwMFq2bAlPT0+88sordb4Mm4iImp8LFy5gyZIlWLlyJa5evSp2OQ3GQNUEBEFAeXm5KF/6eubg6aefRs+ePbFnzx4ANe9dTEpKwpkzZ7Bjxw4cPHgQ8+fPB1DzNOb69evh5OSEGzdu4MaNG5g3bx6AmiUFli5dilOnTiEtLQ0FBQWYMGGCXmokIiLTJQgCduzYgZSUFGVb7Rp/pqBZv3qmqVRUVCjX0mpqsbGxsLGx0cuxAgIC8MsvvwCAyuKqvr6+WLZsGaZOnYr3338fNjY2cHZ2hkQiUVvF/rXXXlP+c8eOHZGUlITevXvj3r17aNGihV7qJCIi0yKXy7Fu3TqVtkmTJsHV1VWkirTHQEUNJgiCcq2lb7/9FomJiTh//jzkcjkqKyvx4MED3L9/v94FTY8fP47Fixfj1KlTuHPnjnKie2FhIbp169Yk50FERMbj2LFj2Ldvn/JnGxsbzJ8/3+QWSGagagLW1taIjY0V7bP15dy5c/Dz80NBQQGGDRuGN954A8uXL0fr1q3x448/IioqCuXl5XUGKoVCAalUCqlUis8++wxubm4oLCyEVCpFeXm53uokIiLjV11djfXr1+Pu3bvKtmeffRZhYWEiVtV4DFRNQCKR6O22m1gOHjyIX3/9FW+++SaOHz+O6upqrFmzRrmS/eeff67S38bGBlVVVSpt58+fx59//okVK1bAx8cHQM3fTIiIqHm5efMmNm/erNI2a9YstGrVSqSKdMdARWrKysogk8lQVVWFoqIiZGZmIjExEcOGDcO4ceNw+vRpVFRUYMOGDXj++efx008/ITk5WeUYvr6+uHfvHrKzs9GzZ084ODigffv2sLGxwYYNGzB16lScPn0aS5cuFeksiYhIDAkJCSo/e3l5YdKkSSb/+i4+5UdqMjMz4eXlBV9fXwwePBiHDh1CUlIS9u7dC0tLS/Ts2RNr167Fe++9h+7du+Ozzz5Tm3QfFhaGqVOnIjIyEm5ubli5ciXc3Nywfft27N69G926dcOKFSuwevVqkc6SiIia0l9//aUWpkaOHInJkyebfJgC+C6/RuO7/Ohh/HMnItLsu+++w/fff6/SNmPGDLRp06bJa+G7/IiIiMjkJCQkqIWp+Pj4esNUejoQFlbz3VRwDhURERHp3Z9//omNGzeqtA0YMAD9+/d/5L4rVgA5OTXfhw83VIX6xUBFREREepWSkoILFy6otM2fP7/BK5/HxNSEqZgYQ1RnGLzlR0RERHohCAISEhLUwlR8fLxKmHrULb3hw4EjR0xndArgCBURERHpwYkTJ/C///1Ppe2ll17C448/rtbXFG/pPQoDFREREenk4eUQAGDhwoV1vj7GFG/pPQoDFRERETXK/fv3sWrVKrX2+Pj4evcbPtx8RqZqMVARERGR1pKTk1FUVKTSFhkZiYCAAJEqEhcDFREREWlF0y2+uLg4s1jxvLH4lB+JYsKECYiIiFD+PGDAAMyZM0enY+rjGEREVLfr169rDFPx8fHNOkwBHKGih0yYMAE7duwAAFhbW6N9+/YYN24cFixYACsrw/3rsmfPHlhbWzeo73fffYeBAwfizp07cHFxadQxiIhIO5qCVFRUFNq1a4f09JpJ5gMHAocO1Uw2N7c5Uo/CQEVqBg8ejG3btqGsrAz79+/H9OnTYW1tjdjYWJV+5eXlsLGx0ctntm7d2iiOQURE6uoalapVuwzCr78C9+6Z13IIDcVbfqTG1tYWnp6e6NChA9544w2Eh4cjPT1deZtu+fLl8Pb2RpcuXQAAV69exb///W+4uLigdevWGDFiBAoKCpTHq6qqQnR0NFxcXNCmTRvMnz8fD7+T++HbdWVlZXj77bfh4+MDW1tbdO7cGR999BEKCgowcOBAAECrVq0gkUgwYcIEjce4c+cOxo0bh1atWsHBwQFDhgzBpUuXlNu3b98OFxcXZGVloWvXrmjRogUGDx6MGzduKPt899136NOnDxwdHeHi4oInn3wSv//+u56uNBGRcTtx4oRamHJzc1N7ii8mBggNBWbNqvluTsshNBRHqOiR7O3t8eeffwIAsrOz4eTkhAMHDgAAKioqIJVKERoaisOHD8PKygrLli3D4MGD8csvv8DGxgZr1qzB9u3bsXXrVnTt2hVr1qzBV199haeffrrOzxw3bhxycnKQlJSEnj17Ij8/H7du3YKPjw++/PJLjBw5EhcuXICTk1OdrzKYMGECLl26hPT0dDg5OeHtt9/Gc889h7NnzypvDd6/fx+rV6/GJ598AgsLC4wZMwbz5s3DZ599hsrKSkRERGDSpEnYtWsXysvLcfTo0WY/T4CImgdNo1Lz5s2Do6OjWrs5LoOgLQYqqpMgCMjOzkZWVhZmzpyJ4uJiODo64sMPP1Te6vv0009RXV2NDz/8UBk0tm3bBhcXF3z33XcYNGgQ1q9fj9jYWLz44osAah61zcrKqvNzL168iM8//xwHDhxAeHg4AKBjx47K7bW39tzd3VXmUP1TbZD66aefEBYWBgD47LPP4OPjg7S0NLz88ssAagJhcnIyOnXqBACYMWMGlixZAgCQy+UoLS3FsGHDlNu7du2q/YUkIjIhFRUVePfdd9XaH7W2VHPHQGXkaif6NeUEv4yMDLRo0QIVFRWorq7GK6+8gsWLF2P69Ono0aOHyrypU6dO4fLly2jZsqXKMR48eIArV66gtLQUN27cQEhIiHKblZUVgoOD1W771Tp58iQsLS0b9Ebyupw7dw5WVlYqn9umTRt06dIF586dU7Y5ODgowxIAeHl54ebNmwBqgtuECRMglUrx7LPPIjw8HP/+97/h5eXV6LqIiIzZli1bVKY9AEBoaCgGDRokUkWmg4HKyInxvqOBAwdi8+bNsLGxgbe3t8rTfQ8P9d67dw9BQUH47LPP1I7j5ubWqM9v6NvI9eHhpwIlEolK0Nu2bRtmzZqFzMxMpKamYuHChThw4AD69u3bZDUSETUFTbf4Fi1aBAsLTrduCF4lI1c70a8pJ/g5Ojqic+fOaN++/SOXSnjiiSdw6dIluLu7o3Pnzipfzs7OcHZ2hpeXF3Jzc5X7VFZW4vjx43Ues0ePHqiursb333+vcXvtCFlVVVWdx+jatSsqKytVPvfPP//EhQsX0K1bt3rP6WG9evVCbGwsjhw5gu7du2Pnzp1a7U9EZMxu3bpV51N8DFMNxytl5IYPB44cMd7Jfq+++ipcXV0xYsQIHD58GPn5+fjuu+8wa9YsXLt2DQAwe/ZsrFixAmlpaTh//jymTZuGkpKSOo/p6+uL8ePH47XXXkNaWprymJ9//jkAoEOHDpBIJMjIyEBxcTHu3bundgx/f3+MGDECkyZNwo8//ohTp05hzJgxaNu2LUaMGNGgc8vPz0dsbCxycnLw+++/45tvvsGlS5c4j4qIzEZCQgI2bdqk0jZs2DDOl2oEBirSiYODA3744Qe0b98eL774Irp27YqoqCg8ePAATk5OAIC5c+di7NixGD9+PEJDQ9GyZUu88MIL9R538+bNeOmllzBt2jQEBARg0qRJUCgUAIC2bdsiISEBMTEx8PDwwIwZMzQeY9u2bQgKCsKwYcMQGhoKQRCwf//+Bi/+6eDggPPnz2PkyJF47LHHMHnyZEyfPh1TpkzR4goRERmnukalgoKCRKjG9EmEumYGU73kcjmcnZ1RWlqqDA61Hjx4gPz8fPj5+cHOzk6kCqmp8c+diEzBr7/+ij179qi1N5dRqfp+f+uCk9KJiIiaCU2jUlOmTIGnp6cI1ZgX3vIjIiIyc4Ig1HmLT1OYSk8HwsJqvlPDcISKiIjIjO3duxcnT55UaXN2dlZ5VdfDxFiyx9QxUBEREZkpTaNSMTExsLW1rXe/mJi/F5WmhmGgMiDO929e+OdNRMZCoVBg9erVau0NnXjOd/Npj4HKAP754t2mXPWbxHX//n0A6quvExE1peXLl6OyslKlja+PMTwGKgOwtLSEi4uL8p1wDg4OyhcHk/kRBAH379/HzZs34eLiAktLS7FLIqJmStMtvri4OP4OagIMVAZS+9REbagi8+fi4sJHj4lIFIWFhdi2bZtae3NZW8oYMFAZiEQigZeXF9zd3VFRUSF2OWRg1tbWHJkiIlFoGpV65ZVX4O/vL0I1zRcDlYFZWlryFy0RERlEXWtLUdNjoCIiIjIxR44cwYEDB9TaGabEw0BFRERkQjSNSs2ZMwfOzs4iVEO1GKiIiIhMQEVFBd599121do5KGQcGKiIiIiO3evVqKBQKlbYWLTpg7twJ4hREahioiIiIjJimW3zvvPMOrKz4K9yY8E+DiIjICBUXF+P9999Xa+ctPuNkIXYBmzZtgq+vL+zs7BASEoKjR4/W23/37t0ICAiAnZ0devTogf3796ts37NnDwYNGoQ2bdpAIpGovWEbAB48eIDp06ejTZs2aNGiBUaOHImioiJ9nhYREVGjJSQkqIWpp556imHKiIkaqFJTUxEdHY34+HicOHECPXv2hFQqrXN18SNHjmD06NGIiopCXl4eIiIiEBERgdOnTyv7KBQK9OvXD++9916dn/vmm2/if//7H3bv3o3vv/8e169fx4svvqj38yMiItJWXWtLDRw4UIRqqKEkgiAIYn14SEgIevfujY0bNwIAqqur4ePjg5kzZyImJkatf2RkJBQKBTIyMpRtffv2RWBgIJKTk1X6FhQUwM/PD3l5eQgMDFS2l5aWws3NDTt37sRLL70EADh//jy6du2KnJwc9O3bt0G1y+VyODs7o7S0FE5OTtqeOhERkYq8vDykp6ertXNUSr8M9ftbtDlU5eXlOH78OGJjY5VtFhYWCA8PR05OjsZ9cnJyEB0drdImlUqRlpbW4M89fvw4KioqEB4ermwLCAhA+/bt6w1UZWVlKCsrU/4sl8sb/JlERET10TQqNX78ePj6+jZ9MdQoot3yu3XrFqqqquDh4aHS7uHhAZlMpnEfmUymVf+6jmFjYwMXFxetjpOYmAhnZ2fll4+PT4M/k4iISBNBEOq8xccwZVr4lF8DxcbGqoyOyeVyhioiImqU9HQgMzMFHh4X1LbxFp9pEi1Qubq6wtLSUu3puqKiInh6emrcx9PTU6v+dR2jvLwcJSUlKqNUjzqOra0tbG1tG/w5REREdcnLS8BDN1zw1ltvwcHBQZyCSGei3fKzsbFBUFAQsrOzlW3V1dXIzs5GaGioxn1CQ0NV+gPAgQMH6uyvSVBQEKytrVWOc+HCBRQWFmp1HCIiIm3du3evzlt8DFOmTdRbftHR0Rg/fjyCg4PRp08frF+/HgqFAhMnTgQAjBs3Dm3btkViYiIAYPbs2ejfvz/WrFmDoUOHIiUlBceOHcOWLVuUx7x9+zYKCwtx/fp1ADVhCagZmfL09ISzszOioqIQHR2N1q1bw8nJCTNnzkRoaGiDn/AjIiLSlqYg1alTJ4wZM0aEakjfRA1UkZGRKC4uRlxcHGQyGQIDA5GZmamceF5YWAgLi78H0cLCwrBz504sXLgQCxYsgL+/P9LS0tC9e3dln/T0dGUgA4BRo0YBqEn/ixcvBgCsW7cOFhYWGDlyJMrKyiCVSjWuRktERKQPmsJUXFwcJBKJCNWQIYi6DpUp4zpURET0KGfPnsXu3bvV2jnxXDxmtw4VERGROdM0KnX58lN4+WWueG6OGKiIiIj0rK6J52S+GKiIiIh0lJ4OrFgBjBy5Hffu/a62nWHK/DFQERER6WjFCkAqTcC9e6rtjz32OkaPbitOUdSkGKiIiIh0UF5eDqk0Ua2do1LNCwMVERFRI2maKwUwTDVHDFRERESNoClMxcTE8DVlzRQDFRERkRYKCwuxbds2tXaOSjVvDFREREQNpGlUytHREfPmzROhGjImDFREREQNwLWlqD4MVERERPXYv38/fv75Z7V2hin6JwYqIiKiOmgalXr22WcRFhYmQjVkzBioiIiIHiIIApYsWaLWzlEpqgsDFRER0T9wbSlqDAYqIiKi/09TmJo+fTpcXV1FqIZMCQMVERE1e3K5HOvWrVNr56gUNRQDFRERNWu8xUf6wEBFRETNlqYwtWjRIlhYWIhQDZkyBioiImp2Tp06hbS0NLV2jkpRYzFQERFRs6JpVKpLly4YNWqUCNWQuWCgIiKiZoOvjyFDYaAiIiKz99FHH+HatWtq7QxTpC8MVEREZNY0jUpFRkYiICBAhGrIXDFQERGRWaqsrMTy5cvV2jkqRYbAQEVERGaHa0tRU2OgIiIis6IpTL311ltwcHAQoRpqLhioiIjILFy/fh0ffPCBWjtHpagpMFAREZHJ0zQqZWFhgUWLFolQDTVHDFRERGTSuLYUGQMGKiIiMknffvstfvrpJ7V2hikSAwMVERGZHE2jUk899RQGDhwoQjVEAF+nTURERi09HQgLq/kuCEKdt/gYpkhMHKEiIiKjtmIFkJMD5OUlIC9PfTtv8ZExYKAiIiKjFhNTE6YeNmnSJHh7e4tQEZE6BioiIjJa9+7dQ17eGrV2jkqRsWGgIiIio8TXx5ApYaAiIiKjoylMvfPOO7Cy4q8tMk78N5OIiIzGL7/8gq+++kqtnaNSZOwYqIiIyChoGpVyd3fHG2+8IUI1RNphoCIiIlGkp9csiTBwIGBjw9fHkGljoCIiIlGsWAH07p0EG5s7atsYpsjUMFAREZEopFL1Uanhw4ejV69eIlRDpBsGKiIialJVVVVYtmyZWjtHpciUMVAREVGT4dpSZK4YqIiIqEloClOzZ8+Gi4tL0xdDpGcMVEREZFBXr17F1q1b1do5KkXmhIGKiIgMhrf4qLlgoCIiIoPQFKbi4uIgkUhEqIbIsCzELmDTpk3w9fWFnZ0dQkJCcPTo0Xr77969GwEBAbCzs0OPHj2wf/9+le2CICAuLg5eXl6wt7dHeHg4Ll26pNLn4sWLGDFiBFxdXeHk5IR+/frh0KFDej83IqLmIj0dCAur+f75559rDFPx8fEMU2S2RA1UqampiI6ORnx8PE6cOIGePXtCKpXi5s2bGvsfOXIEo0ePRlRUFPLy8hAREYGIiAicPn1a2WflypVISkpCcnIycnNz4ejoCKlUigcPHij7DBs2DJWVlTh48CCOHz+Onj17YtiwYZDJZAY/ZyIic7RiBZCTA+TlJeDcuXMq24qLO/MWH5k9iSAIglgfHhISgt69e2Pjxo0AgOrqavj4+GDmzJmIiYlR6x8ZGQmFQoGMjAxlW9++fREYGIjk5GQIggBvb2/MnTsX8+bNAwCUlpbCw8MD27dvx6hRo3Dr1i24ubnhhx9+wL/+9S8AwN27d+Hk5IQDBw4gPDy8QbXL5XI4OzujtLQUTk5Oul4KIiKTlp5eE6YelpISj/feA4YPF6EoIg0M9ftbtBGq8vJyHD9+XCXAWFhYIDw8HDk5ORr3ycnJUQs8UqlU2T8/Px8ymUylj7OzM0JCQpR92rRpgy5duuDjjz+GQqFAZWUl/vvf/8Ld3R1BQUF11ltWVga5XK7yRURENXOlNIWp+Ph4nDvHMEXNg2iT0m/duoWqqip4eHiotHt4eOD8+fMa95HJZBr7196qq/1eXx+JRIJvv/0WERERaNmyJSwsLODu7o7MzEy0atWqznoTExPrfFqFiKi50vT/xVGjRqFLly4iVEMkHtEnpTc1QRAwffp0uLu74/Dhwzh69CgiIiLw/PPP48aNG3XuFxsbi9LSUuXX1atXm7BqIiLjUDv5/Msv79Y58Zxhipoj0UaoXF1dYWlpiaKiIpX2oqIieHp6atzH09Oz3v6134uKiuDl5aXSJzAwEABw8OBBZGRk4M6dO8p7p++//z4OHDiAHTt2aJy7BQC2trawtbXV/kSJiMzIihU1LzX+x7NASpx4Ts2ZaCNUNjY2CAoKQnZ2trKturoa2dnZCA0N1bhPaGioSn8AOHDggLK/n58fPD09VfrI5XLk5uYq+9y/fx9AzXytf7KwsEB1dbXuJ0ZEZMakUvVRqZiYGIYpavZEXdgzOjoa48ePR3BwMPr06YP169dDoVBg4sSJAIBx48ahbdu2SExMBFDzzqf+/ftjzZo1GDp0KFJSUnDs2DFs2bIFQM38qDlz5mDZsmXw9/eHn58fFi1aBG9vb0RERACoCWWtWrXC+PHjERcXB3t7e3zwwQfIz8/H0KFDRbkORETGLjc3F5mZmWrtDFJENUQNVJGRkSguLkZcXBxkMhkCAwORmZmpnFReWFioMpIUFhaGnTt3YuHChViwYAH8/f2RlpaG7t27K/vMnz8fCoUCkydPRklJCfr164fMzEzY2dkBqLnVmJmZiXfeeQdPP/00Kioq8Pjjj2Pv3r3o2bNn014AIiITwNfHED2aqOtQmTKuQ0VEzUFdE8+JTJWhfn/zXX5ERKSGo1JE2mGgIiIiFZrCVHBwMOeZEtWDgYqIiADUPGm9dOlStXaOShE9GgMVERHxFh+RjhioiIiaOU1haurUqWqv8SKiujFQERE1U9euXcNHH32k1s5RKSLtMVARETVDvMVHpF9aBypLS0vcuHED7u7uKu1//vkn3N3dUVVVpbfiiIhI/zSFqbi4OEgkEhGqITIPWgequtYBLSsrg42Njc4FERGRYXz55Zc4reGtxhyVItJdgwNVUlISgJr35X344Ydo0aKFcltVVRV++OEHBAQE6L9CIiLSmaZRKUdHR8ybN0+EaojMT4MD1bp16wDUjFAlJyfD0tJSuc3Gxga+vr5ITk7Wf4VERKQTvj6GyPAaHKjy8/MBAAMHDsSePXvQqlUrgxVFRES648Rzoqaj9RyqQ4cOGaIOIiLSI01hasSIEQgMDGz6YoiaAa0D1WuvvVbv9q1btza6GCIi0s39+/exatUqtXaOShEZltaB6s6dOyo/V1RU4PTp0ygpKcHTTz+tt8KIiEg7vMVHJB6tA9VXX32l1lZdXY033ngDnTp10ktRRESkHU1h6q233oKDg4MI1RA1PxKhroWltHThwgUMGDAAN27c0MfhjJ5cLoezszNKS0vh5OQkdjlE1Ezl5eUhPT1drZ2jUkSaGer3t95ePXPlyhVUVlbq63BERPQIvMVHZDy0DlTR0dEqPwuCgBs3bmDfvn0YP3683gojIiJ16enAihWAVMq1pYiMidaBKi8vT+VnCwsLuLm5Yc2aNY98ApCIiHTzf/+3GlKpQq2dYYpIXFyHiojIRCQkJMDWVrWtR48eePHFF8UpiIiUGj2H6ubNm7hw4QIAoEuXLnB3d9dbUURE9DdBELBkyRK1do5KERkPrQOVXC7H9OnTsWvXLlRXVwMALC0tERkZiU2bNsHZ2VnvRRIRNVeceE5kGiy03WHSpEnIzc3Fvn37UFJSgpKSEmRkZODYsWOYMmWKIWokImqWNIWpiRMnMkwRGSGt16FydHREVlYW+vXrp9J++PBhDB48GAqF+mRJc8R1qIhI32qf4Js16wYuXNiitr1Xr3gMHy5CYURmxGjWoWrTpo3G23rOzs5o1aqVXooiImqOapdD+P/TU1VwVIrIuGkdqBYuXIjo6Gh88skn8PT0BADIZDK89dZbWLRokd4LJCJqLjStLbVo0SJYWGg9O4OImpjWt/x69eqFy5cvo6ysDO3btwcAFBYWwtbWFv7+/ip9T5w4ob9KjQxv+RGRvnzxxRc4c+aMWjtHpYj0z2hu+Y0YMQISiURvBRARNWd8io/IPOjt5cjNDUeoiEhXmsIUgxSRYRnq97fWN+Y7duyIP//8U629pKQEHTt21EtRRETmLCEhQWOYysqKR3q6CAURkc60DlQFBQWoqqpSay8rK8O1a9f0UhQRkbnSFKQGDhyIrKx45OTUPOlHRKanwXOo0v/x16asrCyVpROqqqqQnZ0NPz8//VZHRGQG0tOB1asf4Jln3lPbVnuLLyamJkzFxDR1dUSkDw2eQ1X72K5EIsHDu1hbW8PX1xdr1qzBsGHD9F+lEeIcKiJqKE48JzIeoj/lV/vePj8/P/z8889wdXXVWxFEROZKU5h68803+RcxIjOj9bIJ+fn5hqiDiMisHD9+HBkZGWrtHJUiMk9aB6olS5bUuz0uLq7RxRARmQPe4iNqfrQOVF999ZXKzxUVFcjPz4eVlRU6derEQEVEzRrXliJqnrQOVHl5eWptcrkcEyZMwAsvvKCXooiITA1HpYiaN72tlP7rr7/i+eefR0FBgT4OZ/T4lB8R1dIUplq3bo2ZM2eKUA0R1Uf0p/wepbS0FKWlpfo6HBGR0RMEQeO8Uo5KETU/WgeqpKQklZ8FQcCNGzfwySefYMiQIXorjIjImPEWHxH9k9aBat26dSo/W1hYwM3NDePHj0dsbKzeCiMiMlaawtSoUaPQpUsXEaohImPAdaiIiBqoqKgIycnJau0clSKiRs2hKikpweXLlwEAnTt3houLiz5rIiIyOrzFR0T10SpQFRQUYPr06cjKylK+z08ikWDw4MHYuHEjfH19DVEjEZGoNIWpd955B1ZWenuuh4hMXIP/b3D16lX07dsX1tbWWLp0Kbp27QoAOHv2LDZv3ozQ0FD8/PPPaNeuncGKJSJqSnv37sXJkyfV2jkqRUQPa/A6VFFRUbh8+TKysrJgZ2ensu2vv/7C4MGD4e/vjw8//NAghRobrkNFZN54i4/IPIm+DlVmZiZSU1PVwhQA2NvbY+nSpRg1apTeCiMiEgtfH0NE2rJoaMdbt27VO0eqY8eOuH37ttYFbNq0Cb6+vrCzs0NISAiOHj1ab//du3cjICAAdnZ26NGjB/bv36+yXRAExMXFwcvLC/b29ggPD8elS5fUjrNv3z6EhITA3t4erVq1QkREhNa1E5F5SUhIYJgiokZpcKDy8vLC2bNn69x++vRpeHp6avXhqampiI6ORnx8PE6cOIGePXtCKpXi5s2bGvsfOXIEo0ePRlRUFPLy8hAREYGIiAicPn1a2WflypVISkpCcnIycnNz4ejoCKlUigcPHij7fPnllxg7diwmTpyIU6dO4aeffsIrr7yiVe1EZD7S0zWPSgUGBjJMEVGDNHgO1Zw5c3Dw4EFkZ2fDzc1NZdvNmzfx7LPPYuDAgVi/fn2DPzwkJAS9e/fGxo0bAQDV1dXw8fHBzJkzERMTo9Y/MjISCoUCGRkZyra+ffsiMDAQycnJEAQB3t7emDt3LubNmweg5pU4Hh4e2L59O0aNGoXKykr4+voiISEBUVFRDa71YZxDRWQeysvLkZiYqNaelRWPmBhgxQogJgYYPlyE4ohI7wz1+7vBI1Tx8fF48OABOnXqhGnTpiEpKQn/+c9/MHXqVHTu3Bl//fUX4uLiGvzB5eXlOH78OMLDw/8uxsIC4eHhyMnJ0bhPTk6OSn8AkEqlyv75+fmQyWQqfZydnRESEqLsc+LECfzxxx+wsLBAr1694OXlhSFDhqiMcmlSVlYGuVyu8kVEpi0hIeGRYSonp+Y7EVF9GjwpvVWrVsjNzcWCBQuQkpKCkpISAICLiwteeeUVvPvuu2jdunWDP/jWrVuoqqqCh4eHSruHhwfOnz+vcR+ZTKaxv0wmU26vbaurz2+//QYAWLx4MdauXQtfX1+sWbMGAwYMwMWLF+s8h8TExDqf+iEi06Ppv+dp06bBzc0N/7zLVztCRURUH61WpWvVqhU2b96M999/H8XFxQAANzc3SCQSgxRnCNXV1QBqFuUbOXIkAGDbtm1o164ddu/ejSlTpmjcLzY2FtHR0cqf5XI5fHx8DF8wEenVr7/+ij179qi1a5orNXw4b/URUcM0aplfiUQCd3d3nT7Y1dUVlpaWKCoqUmkvKiqqc3K7p6dnvf1rvxcVFcHLy0ulT2BgIAAo27t166bcbmtri44dO6KwsLDOem1tbWFra9vAsyMiY8S1pYjIUBo8h0rfbGxsEBQUhOzsbGVbdXU1srOzERoaqnGf0NBQlf4AcODAAWV/Pz8/eHp6qvSRy+XIzc1V9gkKCoKtrS0uXLig7FNRUYGCggJ06NBBb+dHRMZFU5iKi4tjmCIivRD1RVTR0dEYP348goOD0adPH6xfvx4KhQITJ04EAIwbNw5t27ZVThqdPXs2+vfvjzVr1mDo0KFISUnBsWPHsGXLFgA1I2dz5szBsmXL4O/vDz8/PyxatAje3t7KdaacnJwwdepUxMfHw8fHBx06dMCqVasAAC+//HLTXwQiMqjly5ejsrJSrZ1Bioj0SdRAFRkZieLiYsTFxUEmkyEwMBCZmZnKSeWFhYWwsPh7EC0sLAw7d+7EwoULsWDBAvj7+yMtLQ3du3dX9pk/fz4UCgUmT56MkpIS9OvXD5mZmSorvK9atQpWVlYYO3Ys/vrrL4SEhODgwYNo1apV0508ERkcb/ERUVNp8DpUpIrrUBEZN654TkSaiPouv6SkpAYfcNasWY0uhohIVxyVIiIxNGiEys/Pr2EHk0iU6zyZO45QERkfTWFqxIgRyqd8iYhEHaHKz8/X2wcSEenbn3/+qXyF1T9xVIqImkqjJ6WXl5cjPz8fnTp1gpWVqHPbiagZ4y0+IjIGWieh+/fvY+bMmdixYwcA4OLFi+jYsSNmzpyJtm3banypMRGRvqWnA3l56mEqJiaGi/ASUZPTemHP2NhYnDp1Ct99953KUgTh4eFITU3Va3FERJrs3btXY5iKj49nmCIiUWg9QpWWlobU1FT07dtX5R1+jz/+OK5cuaLX4oiIHsZbfERkjLQOVMXFxRrf46dQKEzqJclEZHq4thQRGSutA1VwcDD27duHmTNnAoAyRH344Yd1voOPiEgXHJUiImOndaB69913MWTIEJw9exaVlZX4z3/+g7Nnz+LIkSP4/vvvDVEjETVjmsJUx44dMXbsWBGqISLSTOtJ6f369cPJkydRWVmJHj164JtvvoG7uztycnIQFBRkiBqJqBlKS6vUGKZ69YpnmCIio8N3+TUSV0onMhze4iMiQxF1pXS5XN7gAzJcEJEuNIWpSZMmwdvbW4RqiIgapkGBysXFpcFP8FVVVelUEBE1T5cuXcLOnTvV2jkqRUSmoEGB6tChQ8p/LigoQExMDCZMmKB8qi8nJwc7duxAYmKiYaokIrPGW3xEZOq0nkP1zDPP4PXXX8fo0aNV2nfu3IktW7bgu+++02d9RotzqIj0Q1OYiouL47p2RGQQhvr9rXWgcnBwwKlTp+Dv76/SfvHiRQQGBuL+/ft6K86YMVAR6Wbz5s24efOmWjtHpYjIkAz1+1vrZRN8fHzwwQcfqLV/+OGH8PHx0UtRRGTeEhISGKaIyKxovbDnunXrMHLkSHz99dcICQkBABw9ehSXLl3Cl19+qfcCici88PUxRGSOGrUO1bVr1/D+++/j/PnzAICuXbti6tSpzWqEirf8iBouPR3Iy+PEcyISn6jrUD2sXbt2ePfdd/VWBBGZN01h6rnnnkPv3r1FqIaISP8aFahKSkrw0Ucf4dy5cwCAxx9/HK+99hqcnZ31WhwRmba7d+9i7dq1au0clSIic6P1Lb9jx45BKpXC3t4effr0AQD8/PPP+Ouvv/DNN9/giSeeMEihxoa3/Ijqx7WliMgYGc2yCf/617/QuXNnfPDBB7CyqhngqqysxOuvv47ffvsNP/zwg96KM2YMVER10xSm5s+fD3t7exGqISL6m9EEKnt7e+Tl5SEgIECl/ezZswgODuY6VETN2I8//ojs7Gy1do5KEZGxMJpJ6U5OTigsLFQLVFevXkXLli31VhgRmRbe4iOi5kzrQBUZGYmoqCisXr0aYWFhAICffvoJb731ltrraIioeeDaUkTU3GkdqFavXg2JRIJx48ahsrISAGBtbY033ngDK1as0HuBRGS8OCpFRFSjUQt7AsD9+/dx5coVAECnTp3g4OCg18KMHedQUXOnKUz5+/vjlVdeEaEaIqKGMZo5VLUcHBzQo0cPvRVCRKahuroaS5cuVWvnqBQRNWcNDlSvvfZag/pt3bq10cUQkXGr6xZfeTnDFBE1bw0OVNu3b0eHDh3Qq1cvNPIuIRGZME1hKjd3Ir7+uj1CQ0UoiIjIiDQ4UL3xxhvYtWsX8vPzMXHiRIwZMwatW7c2ZG1EZAR27vwdly5tV2uPj49HejpQUgLExDR5WURERkWrSellZWXYs2cPtm7diiNHjmDo0KGIiorCoEGDIJFIDFmn0eGkdGoO+BQfEZkbo1kpvdbvv/+O7du34+OPP0ZlZSXOnDmDFi1a6K0wY8dAReZOU5hatGgRLCwsRKiGiEg/jO4pPwsLC0gkEgiCgKqqKr0VRETi2r59O37//Xe19qyseHBgiohIM63+qllWVoZdu3bh2WefxWOPPYZff/0VGzduRGFhYbManSIyVwkJCXWGKc6TIiKqW4NHqKZNm4aUlBT4+Pjgtddew65du+Dq6mrI2oioCdX3+hiOTBER1a/Bc6gsLCzQvn179OrVq94J6Hv27NFbccaMc6jIXHDiORE1J6LPoRo3blyze5KPyJylpwN5eephasCAAejfv78IFRERmS6tFvYkIvNw//595OWtUmvnqBQRUeM0+ik/IjJNvMVHRKR/DFREzYimMPXmm29yHiARkY4YqIiagdzcXGRmZqq1c1SKiEg/GKiIzBxv8RERGR4DFZEZq29tKSIi0h8GKiIzxFEpIqKmxUBFZGY0hSlXV1dMnz5dhGqIiJoHo3ht/KZNm+Dr6ws7OzuEhITg6NGj9fbfvXs3AgICYGdnhx49emD//v0q2wVBQFxcHLy8vGBvb4/w8HBcunRJ47HKysoQGBgIiUSCkydP6uuUiJqcIAgaw1SvXvEMU0REBiZ6oEpNTUV0dDTi4+Nx4sQJ9OzZE1KpFDdv3tTY/8iRIxg9ejSioqKQl5eHiIgIRERE4PTp08o+K1euRFJSEpKTk5GbmwtHR0dIpVI8ePBA7Xjz58+Ht7e3wc6PqCkkJCRgyZIlau3x8fEYPlyEgoiImpkGv8vPUEJCQtC7d29s3LgRAFBdXQ0fHx/MnDkTMRpebx8ZGQmFQoGMjAxlW9++fREYGIjk5GQIggBvb2/MnTsX8+bNAwCUlpbCw8MD27dvx6hRo5T7ff3114iOjsaXX36Jxx9/HHl5eQgMDGxQ3XyXHxkLTaNSo0aNQpcuXUSohojIuBnq97eoI1Tl5eU4fvw4wsPDlW0WFhYIDw9HTk6Oxn1ycnJU+gOAVCpV9s/Pz4dMJlPp4+zsjJCQEJVjFhUVYdKkSfjkk0/g4ODwyFrLysogl8tVvojEdO3atTqf4mOYIiJqWqIGqlu3bqGqqgoeHh4q7R4eHpDJZBr3kclk9fav/V5fH0EQMGHCBEydOhXBwcENqjUxMRHOzs7KLx8fnwbtR2QICQkJ+Oijj9Ta+RQfEZE4muVTfhs2bMDdu3cRGxvb4H1iY2MRHR2t/FkulzNUkSg0jUq98847sLJqlv85ExEZBVH/D+zq6gpLS0sUFRWptBcVFcHT01PjPp6envX2r/1eVFQELy8vlT6186MOHjyInJwc2NraqhwnODgYr776Knbs2KH2uba2tmr9iZrS9u3b8fvvv6u1c1SKiEh8ot7ys7GxQVBQELKzs5Vt1dXVyM7ORmhoqMZ9QkNDVfoDwIEDB5T9/fz84OnpqdJHLpcjNzdX2ScpKQmnTp3CyZMncfLkSeWyC6mpqVi+fLlez5FIHxISEhimiIiMmOj3CKKjozF+/HgEBwejT58+WL9+PRQKBSZOnAgAGDduHNq2bYvExEQAwOzZs9G/f3+sWbMGQ4cORUpKCo4dO4YtW7YAACQSCebMmYNly5bB398ffn5+WLRoEby9vREREQEAaN++vUoNLVq0AAB06tQJ7dq1a6IzJ2qYhr4+Jj0dWLECiIkBl0ogImpiogeqyMhIFBcXIy4uDjKZDIGBgcjMzFROKi8sLISFxd8DaWFhYdi5cycWLlyIBQsWwN/fH2lpaejevbuyz/z586FQKDB58mSUlJSgX79+yMzMhJ2dXZOfH1Fjafv6mBUrgJycmu8MVERETUv0dahMFdehIkPSFKYCAwMxYsSIOvfhCBUR0aMZ6ve36CNURPS3Bw8e4L333lNrb8hcqeHDGaSIiMTCQEVkJLS9xUdERMaDgYrICGgKU9OnT4erq6sI1RARkbYYqIhE9PPPPyuX7fgnjkoREZkWUdehImrOEhIS6g1T6elAWFjNdyIiMm4coSISQUPWluIyCEREpoOBiqgJaTPxPCbm72UQiIjIuDFQETURbZ/i4zIIRESmg4GKyMAEQcCSJUvU2jnxnIjIfDBQERkQ15YiImoe+JQfkYFoClM+Ps8jKyueT+4REZkZjlAR6ZlMJsN///tftfb4+HiEhfHJPSIic8RARaRHj7rFxyf3iIjMEwMVkZ5oClPffhuLw4dtlD/zyT0iIvPEQEWko127duHixYtq7VlZ8RyJIiJqJhioiHRQ3y0+PshHRNR8MFARNVJDXh9DRETNAwMVkZa4thQRET2MgYpIC5rCVMeOHTF27FgRqiEiImPBQEXUAGlpFTh16l21do5KERERwEBF9Ei8xUdERI/CQEVUD01hatKkSfD29hahGiIiMlYMVEQanDp1CmlpaWrtHJUiIiJNGKiIHsJbfEREpC0GKqJ/0BSm4uLiIJFIRKiGiIhMBQMVEYAlS5ZAEAS1do5KERFRQzBQUbPHW3xERKQrBipq1vj6GCIi0gcGKmqWOCpFRET6xEBFzY6mMDVo0CCEhoaKUA0REZkDBipqNu7cuYOkpCS19vLyeDBLERGRLhioqFmo6xbf4sUMU0REpDsGKjJ7msLU/PnzceCAPUJDgZgYEYoiIiKzwkBFZiszMxO5ublq7bUTz4cPr/kiIiLSFQMVmSU+xUdERE2JgYrMDteWIiKipsZARWaDo1JERCQWC7ELINIHTWHq5s0O6NVLNUylpwNhYTXfiYiI9IUjVGTSqqqqsGzZMrX2ukalVqwAcnJqvnNCOhER6QsDFZmsxtzii4mpCVNcKoGIiPSJgYpMkqYw9dprr8HHx6fe/bhUAhERGQIDFZmUK1eu4NNPP1Vr58RzIiISEwMVmQw+xUdERMaKgYqMWnp6zZwnqVQ9TMXFxUEikYhQFRERkSoGKjJqhw59BKn0mlo7R6WIiMiYMFCR0UpISICLi3o7wxQRERkbBioySnx9DBERmRIGKjIq9U08r51PFRPDpQ+IiMi4MFCR0dAUpoYMGYI+ffoA4CrnRERkvIziXX6bNm2Cr68v7OzsEBISgqNHj9bbf/fu3QgICICdnR169OiB/fv3q2wXBAFxcXHw8vKCvb09wsPDcenSJeX2goICREVFwc/PD/b29ujUqRPi4+NRXl5ukPOj+ikUijpv8dWGKaBmZCo0lKucExGR8RE9UKWmpiI6Ohrx8fE4ceIEevbsCalUips3b2rsf+TIEYwePRpRUVHIy8tDREQEIiIicPr0aWWflStXIikpCcnJycjNzYWjoyOkUikePHgAADh//jyqq6vx3//+F2fOnMG6deuQnJyMBQsWNMk5098SEhKwevVqtXZN86WGDweOHOHoFBERGR+JIAiCmAWEhISgd+/e2LhxIwCguroaPj4+mDlzJmI0DEVERkZCoVAgIyND2da3b18EBgYiOTkZgiDA29sbc+fOxbx58wAApaWl8PDwwPbt2zFq1CiNdaxatQqbN2/Gb7/91qC65XI5nJ2dUVpaCicnJ21Pu9lLTwfy8tRHpebNmwdHR0cRKiIioubAUL+/RR2hKi8vx/HjxxEeHq5ss7CwQHh4OHJycjTuk5OTo9IfAKRSqbJ/fn4+ZDKZSh9nZ2eEhITUeUygJnS1bt26zu1lZWWQy+UqX9Q4hw8f1him4uPjGaaIiMgkiRqobt26haqqKnh4eKi0e3h4QCaTadxHJpPV27/2uzbHvHz5MjZs2IApU6bUWWtiYiKcnZ2VX496CS9plpCQgIMHD6q1c0kEIiIyZc3+Kb8//vgDgwcPxssvv4xJkybV2S82NhbR0dHKn+VyOUOVlri2FBERmStRA5WrqyssLS1RVFSk0l5UVARPT0+N+3h6etbbv/Z7UVERvLy8VPoEBgaq7Hf9+nUMHDgQYWFh2LJlS7212trawtbWtkHnRar4UmMiIjJ3ot7ys7GxQVBQELKzs5Vt1dXVyM7ORmhoqMZ9QkNDVfoDwIEDB5T9/fz84OnpqdJHLpcjNzdX5Zh//PEHBgwYgKCgIGzbtg0WFqI/8Gh23nlHc5jy8PBgmCIiIrMi+i2/6OhojB8/HsHBwejTpw/Wr18PhUKBiRMnAgDGjRuHtm3bIjExEQAwe/Zs9O/fH2vWrMHQoUORkpKCY8eOKUeYJBIJ5syZg2XLlsHf3x9+fn5YtGgRvL29ERERAeDvMNWhQwesXr0axcXFynrqGhkj7QiCABubJWrtDFJERGSORA9UkZGRKC4uRlxcHGQyGQIDA5GZmamcVF5YWKgyehQWFoadO3di4cKFWLBgAfz9/ZGWlobu3bsr+8yfPx8KhQKTJ09GSUkJ+vXrh8zMTNjZ2QGoGdG6fPkyLl++jHbt2qnUI/IqEmaBt/iIiKi5EX0dKlPFdag00xSmxowZg06dOolQDRERkSpD/f4WfYSKzMP169fxwQcfqLVzVIqIiJoDBirSGW/xERFRc8dARTrRFKYWLlwIS0tLEaohIiISBwMVaS09Hdi//wt4eZ1R28ZRKSIiao4YqEhreXkJ+MeaqUq9ejFMERFR88RARY+Ung68/TYgCMDo0eq3+LKy4pGTA4SGAsOHi1AgERGRyBio6JFWrABGjap74nmvXjV9YmKauDAiIiIjwUBFjySVqoep8PBwPPnkkwBqRqU4MkVERM0ZX2BHdSorK9P4FF9WVrwyTBERERFHqKgOda0tlZUVz1t7RERED2GgIjWawtTcuXPRokULcFUEIiIidQxUpHT+/HmkpqaqtXNtKSIiovoxUBEAvj6GiIhIFwxUpDFMMUgRERE1HANVM/bpp5/iypUrau0MU0RERNphoGpG0tP/XoAzL099VEom64bNm18WoTIiIiLTxnWompH584GcHEFjmFq9Oh6tWzNMERERNQZHqMzcP0elNL2HD6hZW+rePeDQoSYujoiIyEwwUJm5FSuAnBzNt/iioqLQrl07vouPiIhIRxJBEASxizBFcrkczs7OKC0thZOTk9jlqPjnqFR5uRxnzqxT68OJ50RE1BwZ6vc3R6jMUH2jUgDDFBERkb4xUJmhup7iW7hwISwtLUWoiIiIyLwxUJmZy5cvIy/vM7V2jkoREREZDgOVGdG04nlhYTBGjBgqQjVERETNBwOVmeDrY4iIiMTDQGXisrOz8eOPP6q1M0wRERE1HQYqE1S7LIJUqj4qNW7cOPj5+YlQFRERUfPFQGWC3nuvClLpMrX2Xr3iwSxFRETU9BioTMzmzZsxaNBNtfbFi+MRGgoMHy5CUURERM0cA5WRq729N3AgYGOjfovv7bffxjff2CE0lK+OISIiEgsDlZFbsQI4efI+pNJVattqJ54PH86RKSIiIjExUBmhf76L75VX0iGV5qls79evH5555hmRqiMiIqKHMVAZobffBs6f1/z6mLi4OEgkEhGqIiIiorpYiF0AqWvR4hYWL1YNUw8etESvXvH43/8kCAurGcUiIiIi48ARKiNz7do1DBv2kUrbjz9Ow7ffuiE0tObnnJyaW4KcN0VERGQcGKiMzNGjR1V+jo+PR3o6oFD8/RRf7fwqIiIiMg4SQRAEsYswRXK5HM7OzigtLYWTk5Pejnv9+nUcPHgQTz75JFc8JyIi0jND/f7mCJUREQQB3t7eGDNmjNilEBERkRY4KZ2IiIhIRwxURoTLIRAREZkmBioiIiIiHTFQGZn0dHCdKSIiIhPDQGVkVqz4e50pIiIiMg0MVEYmJgYIDeU6U0RERKaEyyYYmeHDuQI6ERGRqeEIFREREZGOGKiIiIiIdMRARURERKQjowhUmzZtgq+vL+zs7BASEqL2guCH7d69GwEBAbCzs0OPHj2wf/9+le2CICAuLg5eXl6wt7dHeHg4Ll26pNLn9u3bePXVV+Hk5AQXFxdERUXh3r17ej83IiIiMn+iB6rU1FRER0cjPj4eJ06cQM+ePSGVSnHz5k2N/Y8cOYLRo0cjKioKeXl5iIiIQEREBE6fPq3ss3LlSiQlJSE5ORm5ublwdHSEVCrFgwcPlH1effVVnDlzBgcOHEBGRgZ++OEHTJ482eDnS0REROZHIgiCIGYBISEh6N27NzZu3AgAqK6uho+PD2bOnIkYDWsHREZGQqFQICMjQ9nWt29fBAYGIjk5WfmC4blz52LevHkAgNLSUnh4eGD79u0YNWoUzp07h27duuHnn39GcHAwACAzMxPPPfccrl27Bm9v70fWbai3VRMREZHhGOr3t6gjVOXl5Th+/DjCw8OVbRYWFggPD0dOTo7GfXJyclT6A4BUKlX2z8/Ph0wmU+nj7OyMkJAQZZ+cnBy4uLgowxQAhIeHw8LCArm5uXo7PyIiImoeRF2H6tatW6iqqoKHh4dKu4eHB86fP69xH5lMprG/TCZTbq9tq6+Pu7u7ynYrKyu0bt1a2edhZWVlKCsrU/4sl8sfdXpERETUTIg+h8pUJCYmwtnZWfnl4+MjdklERERkJEQNVK6urrC0tERRUZFKe1FRETw9PTXu4+npWW//2u+P6vPwpPfKykrcvn27zs+NjY1FaWmp8uvq1asNPEsiIiIyd6IGKhsbGwQFBSE7O1vZVl1djezsbISGhmrcJzQ0VKU/ABw4cEDZ38/PD56enip95HI5cnNzlX1CQ0NRUlKC48ePK/scPHgQ1dXVCAkJ0fi5tra2cHJyUvkiIiIiAozgXX7R0dEYP348goOD0adPH6xfvx4KhQITJ04EAIwbNw5t27ZFYmIiAGD27Nno378/1qxZg6FDhyIlJQXHjh3Dli1bAAASiQRz5szBsmXL4O/vDz8/PyxatAje3t6IiIgAAHTt2hWDBw/GpEmTkJycjIqKCsyYMQOjRo1q0BN+RERERP8keqCKjIxEcXEx4uLiIJPJEBgYiMzMTOWk8sLCQlhY/D2QFhYWhp07d2LhwoVYsGAB/P39kZaWhu7duyv7zJ8/HwqFApMnT0ZJSQn69euHzMxM2NnZKft89tlnmDFjBp555hlYWFhg5MiRSEpKaroTJyIiIrMh+jpUpqq0tBQuLi64evUqb/8RERGZCLlcDh8fH5SUlMDZ2VlvxxV9hMpU3b17FwD4tB8REZEJunv3rl4DFUeoGqm6uhrXr19Hy5YtIZFIxC7HJNX+LYGjfI3Ha6g7XkP94HXUHa+hfjzqOgqCgLt378Lb21tlSpGuOELVSBYWFmjXrp3YZZgFPjWpO15D3fEa6gevo+54DfWjvuuoz5GpWlzYk4iIiEhHDFREREREOmKgItHY2toiPj4etra2YpdisngNdcdrqB+8jrrjNdQPsa4jJ6UTERER6YgjVEREREQ6YqAiIiIi0hEDFREREZGOGKiIiIiIdMRARY22adMm+Pr6ws7ODiEhITh69Gi9/Xfv3o2AgADY2dmhR48e2L9/v8p2QRAQFxcHLy8v2NvbIzw8HJcuXVJuLygoQFRUFPz8/GBvb49OnTohPj4e5eXlBjm/ptDU1/CfysrKEBgYCIlEgpMnT+rrlEQh1nXct28fQkJCYG9vj1atWiEiIkKfp9WkxLiGFy9exIgRI+Dq6gonJyf069cPhw4d0vu5NSV9X8c9e/Zg0KBBaNOmTZ3/rT548ADTp09HmzZt0KJFC4wcORJFRUX6PK0m1dTX8Pbt25g5cya6dOkCe3t7tG/fHrNmzUJpaal2hQtEjZCSkiLY2NgIW7duFc6cOSNMmjRJcHFxEYqKijT2/+mnnwRLS0th5cqVwtmzZ4WFCxcK1tbWwq+//qrss2LFCsHZ2VlIS0sTTp06JQwfPlzw8/MT/vrrL0EQBOHrr78WJkyYIGRlZQlXrlwR9u7dK7i7uwtz585tknPWNzGu4T/NmjVLGDJkiABAyMvLM9RpGpxY1/GLL74QWrVqJWzevFm4cOGCcObMGSE1NdXg52sIYl1Df39/4bnnnhNOnTolXLx4UZg2bZrg4OAg3Lhxw+DnbAiGuI4ff/yxkJCQIHzwwQd1/rc6depUwcfHR8jOzhaOHTsm9O3bVwgLCzPUaRqUGNfw119/FV588UUhPT1duHz5spCdnS34+/sLI0eO1Kp2BipqlD59+gjTp09X/lxVVSV4e3sLiYmJGvv/+9//FoYOHarSFhISIkyZMkUQBEGorq4WPD09hVWrVim3l5SUCLa2tsKuXbvqrGPlypWCn5+fLqciGjGv4f79+4WAgADhzJkzJh+oxLiOFRUVQtu2bYUPP/xQ36cjCjGuYXFxsQBA+OGHH5R95HK5AEA4cOCA3s6tKen7Ov5Tfn6+xv9WS0pKBGtra2H37t3KtnPnzgkAhJycHB3ORhxiXENNPv/8c8HGxkaoqKhocO285UdaKy8vx/HjxxEeHq5ss7CwQHh4OHJycjTuk5OTo9IfAKRSqbJ/fn4+ZDKZSh9nZ2eEhITUeUwAKC0tRevWrXU5HVGIeQ2LioowadIkfPLJJ3BwcNDnaTU5sa7jiRMn8Mcff8DCwgK9evWCl5cXhgwZgtOnT+v7FA1OrGvYpk0bdOnSBR9//DEUCgUqKyvx3//+F+7u7ggKCtL3aRqcIa5jQxw/fhwVFRUqxwkICED79u21Oo4xEOsaalJaWgonJydYWTX8lccMVKS1W7duoaqqCh4eHirtHh4ekMlkGveRyWT19q/9rs0xL1++jA0bNmDKlCmNOg8xiXUNBUHAhAkTMHXqVAQHB+vlXMQk1nX87bffAACLFy/GwoULkZGRgVatWmHAgAG4ffu27ifWhMS6hhKJBN9++y3y8vLQsmVL2NnZYe3atcjMzESrVq30cm5NyRDXsSFkMhlsbGzg4uKi03GMgVjXUFMdS5cuxeTJk7Xaj4GKTNIff/yBwYMH4+WXX8akSZPELsdkbNiwAXfv3kVsbKzYpZi06upqAMA777yDkSNHIigoCNu2bYNEIsHu3btFrs40CIKA6dOnw93dHYcPH8bRo0cRERGB559/Hjdu3BC7PGqm5HI5hg4dim7dumHx4sVa7ctARVpzdXWFpaWl2lMkRUVF8PT01LiPp6dnvf1rvzfkmNevX8fAgQMRFhaGLVu26HQuYhHrGh48eBA5OTmwtbWFlZUVOnfuDAAIDg7G+PHjdT+xJibWdfTy8gIAdOvWTbnd1tYWHTt2RGFhoQ5n1PTE/HcxIyMDKSkpePLJJ/HEE0/g/fffh729PXbs2KGXc2tKhriODeHp6Yny8nKUlJTodBxjINY1rHX37l0MHjwYLVu2xFdffQVra2ut9megIq3Z2NggKCgI2dnZyrbq6mpkZ2cjNDRU4z6hoaEq/QHgwIEDyv5+fn7w9PRU6SOXy5Gbm6tyzD/++AMDBgxQjghYWJjmv8JiXcOkpCScOnUKJ0+exMmTJ5WPF6empmL58uV6PcemINZ1DAoKgq2tLS5cuKDsU1FRgYKCAnTo0EFv59cUxLqG9+/fBwC1/4YtLCyUI4CmxBDXsSGCgoJgbW2tcpwLFy6gsLBQq+MYA7GuIVDz7+egQYNgY2OD9PR02NnZaX8CDZ6+TvQPKSkpgq2trbB9+3bh7NmzwuTJkwUXFxdBJpMJgiAIY8eOFWJiYpT9f/rpJ8HKykpYvXq1cO7cOSE+Pl7jY9YuLi7C3r17hV9++UUYMWKEymPW165dEzp37iw888wzwrVr14QbN24ov0yRGNfwYdo89WKsxLqOs2fPFtq2bStkZWUJ58+fF6KiogR3d3fh9u3bTXfyeiLGNSwuLhbatGkjvPjii8LJkyeFCxcuCPPmzROsra2FkydPNu0F0BNDXMc///xTyMvLE/bt2ycAEFJSUoS8vDyV/+9NnTpVaN++vXDw4EHh2LFjQmhoqBAaGtp0J65HYlzD0tJSISQkROjRo4dw+fJlld8tlZWVDa6dgYoabcOGDUL79u0FGxsboU+fPsL//d//Kbf1799fGD9+vEr/zz//XHjssccEGxsb4fHHHxf27dunsr26ulpYtGiR4OHhIdja2grPPPOMcOHCBeX2bdu2CQA0fpmqpr6GDzOHQCUI4lzH8vJyYe7cuYK7u7vQsmVLITw8XDh9+rTBztHQxLiGP//8szBo0CChdevWQsuWLYW+ffsK+/fvN9g5NgV9X8e6/r8XHx+v7PPXX38J06ZNE1q1aiU4ODgIL7zwgsn+RVMQmv4aHjp0qM7fLfn5+Q2uWyIIgqD9uBYRERER1TLNCShERERERoSBioiIiEhHDFREREREOmKgIiIiItIRAxURERGRjhioiIiIiHTEQEVERESkIwYqIiIiIh0xUBGRWZLJZJg5cyY6duwIW1tb+Pj44Pnnn0d2djZu376NmTNnokuXLrC3t0f79u0xa9YslJaWKvcvKCiARCLByZMn1Y49YMAAzJkzR6Xt3LlzGD58OJydneHo6IjevXub3IuSiajxrMQugIhI3woKCvDkk0/CxcUFq1atQo8ePVBRUYGsrCxMnz4dX3zxBa5fv47Vq1ejW7du+P333zF16lRcv34dX3zxhdafd+XKFfTr1w9RUVFISEiAk5MTzpw507gXrBKRSeKrZ4jI7Dz33HP45ZdfcOHCBTg6OqpsKykpgYuLi9o+u3fvxpgxY6BQKGBlZYWCggL4+fkhLy8PgYGBKn0HDBiAwMBArF+/HgAwatQoWFtb45NPPjHQGRGRseMtPyIyK7dv30ZmZiamT5+uFqYAaAxTAFBaWgonJydYWWk3cF9dXY19+/bhscceg1Qqhbu7O0JCQpCWltaI6onIVDFQEZFZuXz5MgRBQEBAQIP3uXXrFpYuXYrJkyerbQsLC0OLFi1Uvg4fPqzcfvPmTdy7dw8rVqzA4MGD8c033+CFF17Aiy++iO+//14v50RExo9zqIjIrGg7i0Eul2Po0KHo1q0bFi9erLY9NTUVXbt2VWl79dVXlf9cXV0NABgxYgTefPNNAEBgYCCOHDmC5ORk9O/fX8szICJTxEBFRGbF398fEokE58+ff2Tfu3fvYvDgwWjZsiW++uorWFtbq/Xx8fFB586dVdrs7e2V/+zq6gorKyt069ZNpU/Xrl3x448/NvIsiMjU8JYfEZmV1q1bQyqVYtOmTVAoFGrbS0pKANSMTA0aNAg2NjZIT09v9BN5NjY26N27Ny5cuKDSfvHiRXTo0KFRxyQi08NARURmZ9OmTaiqqkKfPn3w5Zdf4tKlSzh37hySkpIQGhqqDFMKhQIfffQR5HI5ZDIZZDIZqqqqtP68t956C6mpqfjggw9w+fJlbNy4Ef/73/8wbdo0A5wdERkj3vIjIrPTsWNHnDhxAsuXL8fcuXNx48YNuLm5ISgoCJs3b8aJEyeQm5sLAGq38/Lz8+Hr66vV573wwgtITk5GYmIiZs2ahS5duuDLL79Ev3799HVKRGTkuA4VERERkY54y4+IiIhIRwxURERERDpioCIiIiLSEQMVERERkY4YqIiIiIh0xEBFREREpCMGKiIiIiIdMVARERER6YiBioiIiEhHDFREREREOmKgIiIiItIRAxURERGRjv4feDFNtaSlCTIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV5NJREFUeJzt3XlcVFXjP/DPgMKwCKjIZii45P4IoSA8llo8oY+GtJiSKSqpuRuagimIS5JLmUtSmeJTqWQl8TWFiDQtETfMXNOCcBvEFEhUQDi/P/xxc5wBh3HgzsDn/XrNC+fcc+89czXm0znnnqsQQggQERERUY2Yyd0AIiIiIlPEEEVERESkB4YoIiIiIj0wRBERERHpgSGKiIiISA8MUURERER6YIgiIiIi0gNDFBEREZEeGKKIiIiI9MAQRUQNnkKhwPz58+VuhmTUqFHw8PCQuxlE9BAMUURklBISEqBQKKSXUqnE448/jsmTJyMvL69Wz71//37Mnz8fBQUFBj1u37591T5Ts2bN0LNnT2zYsAEVFRUGOcfbb7+NpKQkgxyLiKrXSO4GEBFVZ8GCBfD09MSdO3fw008/Yd26ddi5cydOnDgBa2trg5zj9u3baNTon1+H+/fvR2xsLEaNGgUHBweDnKPSY489hiVLlgAA8vPz8b///Q/h4eH47bffEBcX98jHf/vtt/HSSy8hJCTkkY9FRNVjiCIiozZgwAD06NEDAPDaa6+hefPmePfdd/HNN98gNDRU7+NWVFSgtLQUSqUSSqXSUM19KHt7e7z66qvS+/Hjx6NDhw5Ys2YNFi5ciMaNG9dZW4jo0XA4j4hMytNPPw0AyM7OBgAsX74cAQEBaN68OaysrODj44Mvv/xSYz+FQoHJkyfj888/R5cuXWBpaYmUlBRpW+WcqPnz5+PNN98EAHh6ekpDbzk5OejTpw+6d++utV0dOnRAUFBQjT+PtbU1evXqheLiYuTn51dZr7i4GDNmzIC7uzssLS3RoUMHLF++HEIItc9YXFyMTZs2Se0eNWpUjdtERLphTxQRmZTff/8dANC8eXMAwPvvv4/g4GAMHz4cpaWl2Lp1K4YMGYIdO3Zg4MCBavv+8MMP+OKLLzB58mQ4Ojpqnbz9wgsv4LfffsOWLVvw3nvvwdHREQDQokULjBgxAmPHjsWJEyfQtWtXaZ9Dhw7ht99+w9y5c/X6TH/88QfMzc2rHDoUQiA4OBi7d+9GeHg4vLy8kJqaijfffBOXLl3Ce++9BwD49NNP8dprr8HX1xfjxo0DALRt21avNhGRDgQRkRHauHGjACC+//57kZ+fLy5cuCC2bt0qmjdvLqysrMTFixeFEELcunVLbb/S0lLRtWtX8fTTT6uVAxBmZmbi5MmTGucCIGJiYqT3y5YtEwBEdna2Wr2CggKhVCrF7Nmz1cqnTp0qbGxsxM2bN6v9TH369BEdO3YU+fn5Ij8/X5w+fVpMnTpVABDPPfecVC8sLEy0bt1aep+UlCQAiEWLFqkd76WXXhIKhUKcP39eKrOxsRFhYWHVtoOIDIPDeURk1AIDA9GiRQu4u7tj2LBhsLW1xfbt29GyZUsAgJWVlVT3xo0bKCwsxJNPPomjR49qHKtPnz7o3Lmz3m2xt7fH4MGDsWXLFmkYrby8HImJiQgJCYGNjc1Dj3HmzBm0aNECLVq0QKdOnbB69WoMHDgQGzZsqHKfnTt3wtzcHFOnTlUrnzFjBoQQ2LVrl96fiYj0x+E8IjJqa9euxeOPP45GjRrB2dkZHTp0gJnZP///t2PHDixatAjHjh1DSUmJVK5QKDSO5enp+cjtGTlyJBITE7Fv3z489dRT+P7775GXl4cRI0botL+Hhwc+/vhjadmG9u3bw8nJqdp9/vzzT7i5uaFJkyZq5Z06dZK2E1HdY4giIqPm6+sr3Z33oH379iE4OBhPPfUUPvjgA7i6uqJx48bYuHEjNm/erFH//l4rfQUFBcHZ2RmfffYZnnrqKXz22WdwcXFBYGCgTvvb2NjoXJeIjBuH84jIZH311VdQKpVITU3FmDFjMGDAAIMEFG29WJXMzc3xyiuv4Msvv8SNGzeQlJSE0NBQmJubP/J5q9K6dWtcvnwZf//9t1r5mTNnpO2Vqms7ERkWQxQRmSxzc3MoFAqUl5dLZTk5OY+8Ynfl3KaqViwfMWIEbty4gfHjx+PmzZtq6z7Vhv/+978oLy/HmjVr1Mrfe+89KBQKDBgwQCqzsbEx+ErrRKQdh/OIyGQNHDgQ7777Lvr3749XXnkFV69exdq1a9GuXTscP35c7+P6+PgAAN566y0MGzYMjRs3xnPPPSeFK29vb3Tt2hXbtm1Dp06d8MQTTxjk81TlueeeQ79+/fDWW28hJycH3bt3x3fffYdvvvkG06dPV1vGwMfHB99//z3effdduLm5wdPTE35+frXaPqKGij1RRGSynn76aXzyySdQqVSYPn06tmzZgnfeeQfPP//8Ix23Z8+eWLhwIX755ReMGjUKoaGhGgthjhw5EgB0nlD+KMzMzJCcnIzp06djx44dmD59Ok6dOoVly5bh3XffVav77rvvwsfHB3PnzkVoaCjWrVtX6+0jaqgUQty33C0REenk/fffxxtvvIGcnBy0atVK7uYQkQwYooiIakgIge7du6N58+bYvXu33M0hIplwThQRkY6Ki4uRnJyM3bt349dff8U333wjd5OISEbsiSIi0lFOTg48PT3h4OCAiRMnYvHixXI3iYhkxBBFREREpAfenUdERESkB4YoIiIiIj1wYnktqqiowOXLl9GkSRM+ioGIiMhECCHw999/w83NTe2B5w9iiKpFly9fhru7u9zNICIiIj1cuHABjz32WJXbGaJqUZMmTQDc+0uws7OTuTVERESki6KiIri7u0vf41VhiKpFlUN4dnZ2DFFEREQm5mFTcTixnIiIiEgPDFFEREREemCIIiIiItID50TJrLy8HGVlZXI3g+pA48aNYW5uLncziIjIQBiiZCKEgEqlQkFBgdxNoTrk4OAAFxcXrhtGRFQPMETJpDJAOTk5wdraml+q9ZwQArdu3cLVq1cBAK6urjK3iIiIHhVDlAzKy8ulANW8eXO5m0N1xMrKCgBw9epVODk5cWiPiMjEcWK5DCrnQFlbW8vcEqprlX/nnAdHRGT6GKJkxCG8hod/50RE9QdDFBEREZEeGKKIiIiI9MAQRTUyatQoKBQKKBQKNG7cGM7OzvjPf/6DDRs2oKKiQufjJCQkwMHBofYaSkREVMsYoqjG+vfvjytXriAnJwe7du1Cv379MG3aNAwaNAh3796Vu3lERNQAlJeXo7S0VNY2MERRjVlaWsLFxQUtW7bEE088gTlz5uCbb77Brl27kJCQAAB499130a1bN9jY2MDd3R0TJ07EzZs3AQB79uzB6NGjUVhYKPVqzZ8/HwDw6aefokePHmjSpAlcXFzwyiuvSGsrERERAcCuXbuwaNEiLFmyRNZ2MEQZCSEESktLZXkJIR65/U8//TS6d++Or7/+GgBgZmaGVatW4eTJk9i0aRN++OEHzJo1CwAQEBCAlStXws7ODleuXMGVK1cwc+ZMAPdu/V+4cCF++eUXJCUlIScnB6NGjXrk9hERkekrLS1FbGwsDh48KJUZ4jtMX1xs00iUlZXJlqijoqJgYWHxyMfp2LEjjh8/DgCYPn26VO7h4YFFixbh9ddfxwcffAALCwvY29tDoVDAxcVF7RhjxoyR/tymTRusWrUKPXv2xM2bN2Fra/vIbSQiItOUnZ2N//3vf2pls2fPlnXpGKPoiVq7di08PDygVCrh5+enljC12bZtGzp27AilUolu3bph586datuFEIiOjoarqyusrKwQGBiIc+fOSdtzcnIQHh4OT09PWFlZoW3btoiJiVEbW83JyZGGmu5/HThwwLAfvh4RQkj/mL///ns888wzaNmyJZo0aYIRI0bgr7/+wq1bt6o9xpEjR/Dcc8+hVatWaNKkCfr06QMAyM3NrfX2ExGRcfrqq6/UAtS//vUvxMTEQKlUytgqI+iJSkxMREREBOLj4+Hn54eVK1ciKCgIZ8+ehZOTk0b9/fv3IzQ0FEuWLMGgQYOwefNmhISE4OjRo+jatSsAYOnSpVi1ahU2bdoET09PzJs3D0FBQTh16hSUSiXOnDmDiooKfPjhh2jXrh1OnDiBsWPHori4GMuXL1c73/fff48uXbpI72vrMS2NGzdGVFRUrRxbl3MbwunTp+Hp6YmcnBwMGjQIEyZMwOLFi9GsWTP89NNPCA8PR2lpaZUrtRcXFyMoKAhBQUH4/PPP0aJFC+Tm5iIoKEj2yYNERFT37ty5g3feeUetbNSoUWjdurVMLXqAkJmvr6+YNGmS9L68vFy4ubmJJUuWaK3/8ssvi4EDB6qV+fn5ifHjxwshhKioqBAuLi5i2bJl0vaCggJhaWkptmzZUmU7li5dKjw9PaX32dnZAoDIysrS52MJIYQoLCwUAERhYaFa+e3bt8WpU6fE7du39T62XMLCwsTgwYM1ytPT0wUAsWHDBvHll1+Kxo0bi/Lycmn7woULBQBx48YNIYQQn3/+ubC1tVU7xuHDhwUAkZubK5V9+umnj/z3YExM+e+eiKgunT59WsyfP1/tVVpaWifnrur7+0GyDueVlpbiyJEjCAwMlMrMzMwQGBiIjIwMrftkZGSo1QeAoKAgqX52djZUKpVaHXt7e/j5+VV5TAAoLCxEs2bNNMqDg4Ph5OSE3r17Izk5udrPU1JSgqKiIrVXfVRSUgKVSoVLly7h6NGjePvttzF48GAMGjQII0eORLt27VBWVobVq1fjjz/+wKeffor4+Hi1Y3h4eODmzZtIT0/HtWvXcOvWLbRq1QoWFhbSfsnJyVi4cKFMn5KIiOQSGxuLxMRE6X2vXr0QExNjsJETQ5E1RF27dg3l5eVwdnZWK3d2doZKpdK6j0qlqrZ+5c+aHPP8+fNYvXo1xo8fL5XZ2tpixYoV2LZtG7799lv07t0bISEh1QapJUuWwN7eXnq5u7tXWdeUpaSkwNXVFR4eHujfvz92796NVatW4ZtvvoG5uTm6d++Od999F++88w66du2Kzz//XGPSfEBAAF5//XUMHToULVq0wNKlS9GiRQskJCRg27Zt6Ny5M+Li4jSGV4mIqP7Ky8tDbGysWtm4ceMQFBQkU4uqJ/ucKLldunQJ/fv3x5AhQzB27Fip3NHREREREdL7nj174vLly1i2bBmCg4O1HisqKkptn6KionoXpBISEqS1oKrzxhtv4I033lArGzFihNr7devWYd26dWploaGhCA0NVSsTMt6+SkREdePTTz/FH3/8oVY2Z84co+t9up+sIcrR0RHm5ubIy8tTK8/Ly9O49b2Si4tLtfUrf+bl5cHV1VWtjpeXl9p+ly9fRr9+/RAQEICPPvrooe318/NDWlpaldstLS1haWn50OMQERHRPUIILFiwQK2scePGmDNnjkwt0p2sw3kWFhbw8fFBenq6VFZRUYH09HT4+/tr3cff31+tPgCkpaVJ9T09PeHi4qJWp6ioCJmZmWrHvHTpEvr27QsfHx9s3LgRZmYPvxTHjh1TC2ZERESkv5ycHI0ANWzYMJMIUIARDOdFREQgLCwMPXr0gK+vL1auXIni4mKMHj0aADBy5Ei0bNlSmlMzbdo09OnTBytWrMDAgQOxdetWHD58WOpJUigUmD59OhYtWoT27dtLSxy4ubkhJCQEwD8BqnXr1li+fDny8/Ol9lT2ZG3atAkWFhbw9vYGAHz99dfYsGED1q9fX1eXhoiIqN5atWoVbty4oVY2b948nTo1jIXsIWro0KHIz89HdHQ0VCoVvLy8kJKSIk0Mz83NVbugAQEB2Lx5M+bOnYs5c+agffv2SEpKktaIAoBZs2ahuLgY48aNQ0FBAXr37o2UlBRpUa60tDScP38e58+fx2OPPabWnvvn3yxcuBB//vknGjVqhI4dOyIxMREvvfRSbV4OIiKieq28vByLFi1SK3N2dsbrr79eo+MkJwNxcUBkJFDFVOVapxCctVtrioqKYG9vj8LCQtjZ2Unld+7cQXZ2Njw9PWVfbZXqFv/uiagh27dvH3744Qe1sjFjxuh1E1ZAAJCRAfj7A/v3G6qF91T1/f0g0+kzIyIiIpMVGxurEaCio6O1Bqjk5HshqbrlGSMj7wWoyEhDt1R3sg/nERERUf118+ZNrFixQq3M3t5e7UH1D4qLu9fLFBdX9VBdcLB8w3iVGKKIiIioVqxbtw5Xr15VK9Pl2XeRkf/MdzJmDFFERERkcA+uPA4AMTExOu1rDL1MuuCcKDJKo0aNkpakAIC+fftW2/WrC0Mcg4iIqnf16tVHClCmhD1RVCOjRo3Cpk2bANxbUbZVq1YYOXIk5syZg0aNau+f09dff63z0v979uxBv379cOPGDTg4OOh1DCIiqjlt4Sk8PFxjOaH6giGKaqx///7YuHEjSkpKsHPnTkyaNAmNGzdGVFSUWr3S0lJYWFgY5JzNmjUzimMQEZF2DaX36X4czqMas7S0hIuLC1q3bo0JEyYgMDAQycnJ0hDc4sWL4ebmhg4dOgAALly4gJdffhkODg5o1qwZBg8ejJycHOl45eXliIiIgIODA5o3b45Zs2ZpPHT4waG4kpISzJ49G+7u7rC0tES7du3wySefICcnB/369QMANG3aFAqFAqNGjdJ6jBs3bmDkyJFo2rQprK2tMWDAAJw7d07anpCQAAcHB6SmpqJTp06wtbVF//79ceXKFanOnj174OvrCxsbGzg4OODf//43/vzzTwNdaSIi45edna0RoCwsLLQGKF2WLjAlDFH0yKysrFBaWgoASE9Px9mzZ5GWloYdO3agrKwMQUFBaNKkCfbt24eff/5ZCiOV+6xYsQIJCQnYsGEDfvrpJ1y/fh3bt2+v9pwjR47Eli1bsGrVKpw+fRoffvghbG1t4e7ujq+++goAcPbsWVy5cgXvv/++1mOMGjUKhw8fRnJyMjIyMiCEwH//+1+UlZVJdW7duoXly5fj008/xd69e5Gbm4uZM2cCAO7evYuQkBD06dMHx48fR0ZGBsaNGweFQvHI15SIyBTExsbif//7n1rZ1KlTNUYmgHvBafjwf5YuqA84nEd6E0IgPT0dqampmDJlCvLz82FjY4P169dLw3ifffYZKioqsH79eilcbNy4EQ4ODtizZw+effZZrFy5ElFRUXjhhRcAAPHx8UhNTa3yvL/99hu++OILpKWlITAwEADQpk0baXvlsJ2Tk5PanKj7nTt3DsnJyfj5558REBAAAPj888/h7u6OpKQkDBkyBABQVlaG+Ph4tG3bFgAwefJk6WGZRUVFKCwsxKBBg6TtnTp1qvmFJCIyQTUdvouLA27eBGxtjX/pAl2xJ6oeqOvu0R07dsDW1hZKpRIDBgzA0KFDMX/+fABAt27d1OZB/fLLLzh//jyaNGkCW1tb2NraolmzZrhz5w5+//13FBYW4sqVK/Dz85P2adSoEXr06FHl+Y8dOwZzc3P06dNH789w+vRpNGrUSO28zZs3R4cOHXD69GmpzNraWgpIAODq6iqtedKsWTOMGjUKQUFBeO655/D++++rDfUREdVHP/30k0aAat269UPnP1WuMP7556axfIEu2BNVD+iysqsh9evXD+vWrYOFhQXc3NzU7sqzsbFRq3vz5k34+Pjg888/1zhOixYt9Dq/lZWVXvvp48G7+RQKhdp8rY0bN2Lq1KlISUlBYmIi5s6di7S0NPTq1avO2khEVFe09T7NmjVLp9/LprL2U02wJ6oeqOvnB9nY2KBdu3Zo1arVQ5c1eOKJJ3Du3Dk4OTmhXbt2ai97e3vY29vD1dUVmZmZ0j53797FkSNHqjxmt27dUFFRgR9//FHr9sqesPLy8iqP0alTJ9y9e1ftvH/99RfOnj2Lzp07V/uZHuTt7Y2oqCjs378fXbt2xebNm2u0PxGRsauoqKhy+K4u/8fW2DBE1QPBwfeeYG2MCX/48OFwdHTE4MGDsW/fPmRnZ2PPnj2YOnUqLl68CACYNm0a4uLikJSUhDNnzmDixIkoKCio8pgeHh4ICwvDmDFjkJSUJB3ziy++AHCvW1mhUGDHjh3Iz8/HzZs3NY7Rvn17DB48GGPHjsVPP/2EX375Ba+++ipatmyJwYMH6/TZsrOzERUVhYyMDPz555/47rvvcO7cOc6LIqJ6Zfv27Vi4cKFamaenZ71fvkAXDFFUq6ytrbF37160atUKL7zwAjp16oTw8HDcuXMHdnZ2AIAZM2ZgxIgRCAsLg7+/P5o0aYLnn3++2uOuW7cOL730EiZOnIiOHTti7NixKC4uBgC0bNkSsbGxiIyMhLOzMyZPnqz1GBs3boSPjw8GDRoEf39/CCGwc+dOnRfktLa2xpkzZ/Diiy/i8ccfx7hx4zBp0iSMHz++BleIiMh4xcbG4vjx42plb731FkaOHClTi4yLQjy4IA8ZTFFREezt7VFYWCgFBgC4c+cOsrOz4enpCaVSKWMLqa7x756ITEFJSQnitKxD0FB6n6r6/n4QJ5YTERGR5IMPPkB+fr5aWa9evRAUFCRTi4wXQxQREREB0H73XXR0NBcRrgJDFBERUQNXUFCg9ekODWX4Tl8MUURERA2Ytt6nQYMGwcfHp8p9kpPvrU0YGWmcd4bXFd6dJyPO6W94+HdORMakqrWfqgtQgPoizw0ZQ5QMKm+hv3XrlswtobpW+Xeu6zIKRES14eLFizV+9t396nqRZ2PF4TwZmJubw8HBQXoGm7W1NSft1XNCCNy6dQtXr16Fg4MDzM3N5W4SETVQ2sLTiBEj1B7k/jD18REu+mCIkomLiwsASEGKGgYHBwfp756IqK49Su8TaWKIkolCoYCrqyucnJxQVlYmd3OoDjRu3Jg9UEQki5MnT+LLL7/UKGeAejQMUTIzNzfnFysREdUabb1PEydORIsWLWRoTf3CEEVERFQPCSGwYMECjXL2PhkOQxQREVE9s2/fPvzwww9qZUqlErNnz5apRfUTQxQREVE9om34bubMmbCxsZGhNfUbQxQREVE9UF5ejkWLFmmUc/iu9jBEERERmbhPPvkEFy9eVCu7fr0pDh2aCmao2sMQRUREZMK0Dd917z4HS5c2bvAritc2higiIiITdPv2bSxdulSjvHL4LiSkjhvUADFEERERmRhtvU/dunXDCy+8IENrGi6GKCIiIhOiLUBFR0fzGawyYIgiIiIyAdeuXcPatWs1ynn3nXwYooiIiIyctt6nwMBA/Pvf/5ahNVSJIYqIiMiIaQtQ7H0yDgxRRERERuiPP/7Ap59+qlHOAGU8GKKIiIiMjLbep6FDh6Jjx44ytIaqwhBFRERkRDh8ZzoYooiIiIzA7t27sXfvXo1yb28GKGPFEEVERCQzbb1Pr732Glq2bClDa0hXDFFEREQyEUJgwYIFGuUcvjMNDFFEREQyWL9+PS5duqRRzuE708EQRUREVMe0Dd9NmzYNDg4Odd8Y0htDFBERUR0pKyvD22+/rVHO4TvTxBBFRERUB7T1PgFAamoMmKFME0MUERFRLdMWoP71rygsW2aByEgZGkQGwRBFRERUS27cuIFVq1ZplFcO3z3/fF23iAyJIYqIiKgWVDV8x/lP9QdDFBERkYFpC1DR0dFQKBQytIZqC0MUERGRgfz+++/47LPPNMrZ+1Q/MUQREREZgLbeJw8PD4SFhcnQGqoLDFFERESPSFuAYu9T/ccQRUREpKeff/4Z33//vUY5A1TDwBBFRESkB229T3379kWfPn1kaA3JgSGKiIiohjh8RwBgJncDAGDt2rXw8PCAUqmEn58fDh48WG39bdu2oWPHjlAqlejWrRt27typtl0IgejoaLi6usLKygqBgYE4d+6ctD0nJwfh4eHw9PSElZUV2rZti5iYGJSWlqod5/jx43jyySehVCrh7u6OpUuXGu5DExGRydm8eTMDFElkD1GJiYmIiIhATEwMjh49iu7duyMoKAhXr17VWn///v0IDQ1FeHg4srKyEBISgpCQEJw4cUKqs3TpUqxatQrx8fHIzMyEjY0NgoKCcOfOHQDAmTNnUFFRgQ8//BAnT57Ee++9h/j4eMyZM0c6RlFREZ599lm0bt0aR44cwbJlyzB//nx89NFHtXtBiIjIKMXGxqr9DzkAvPLKKwxQDZhCCCHkbICfnx969uyJNWvWAAAqKirg7u6OKVOmIFLLA4WGDh2K4uJi7NixQyrr1asXvLy8EB8fDyEE3NzcMGPGDMycORMAUFhYCGdnZyQkJGDYsGFa27Fs2TKsW7cOf/zxBwBg3bp1eOutt6BSqWBhYQEAiIyMRFJSEs6cOaPTZysqKoK9vT0KCwthZ2en+0UhIiKjIYTAggULNMoZnuovXb+/Ze2JKi0txZEjRxAYGCiVmZmZITAwEBkZGVr3ycjIUKsPAEFBQVL97OxsqFQqtTr29vbw8/Or8pjAvaDVrFkztfM89dRTUoCqPM/Zs2dx48YNrccoKSlBUVGR2ouIiExXbGwsAxRVSdYQde3aNZSXl8PZ2Vmt3NnZGSqVSus+KpWq2vqVP2tyzPPnz2P16tUYP378Q89z/zketGTJEtjb20svd3d3rfWIiMj4aZv7NGXKFAYoksg+J0puly5dQv/+/TFkyBCMHTv2kY4VFRWFwsJC6XXhwgUDtZKIiOpKaWlplZPH7x+xIJJ1iQNHR0eYm5sjLy9PrTwvLw8uLi5a93Fxcam2fuXPvLw8uLq6qtXx8vJS2+/y5cvo168fAgICNCaMV3We+8/xIEtLS1haWmrdRkRExk9beAI4fEfaydoTZWFhAR8fH6Snp0tlFRUVSE9Ph7+/v9Z9/P391eoDQFpamlTf09MTLi4uanWKioqQmZmpdsxLly6hb9++8PHxwcaNG2Fmpn4p/P39sXfvXpSVlamdp0OHDmjatKn+H5qIiIyStgAVFRXFAEVVkn04LyIiAh9//DE2bdqE06dPY8KECSguLsbo0aMBACNHjkRUVJRUf9q0aUhJScGKFStw5swZzJ8/H4cPH8bkyZMBAAqFAtOnT8eiRYuQnJyMX3/9FSNHjoSbmxtCQkIA/BOgWrVqheXLlyM/Px8qlUptrtMrr7wCCwsLhIeH4+TJk0hMTMT777+PiIiIurs4RERU665fv17l8N39NxcRPUj2FcuHDh2K/Px8REdHQ6VSwcvLCykpKdIk7tzcXLVeooCAAGzevBlz587FnDlz0L59eyQlJaFr165SnVmzZqG4uBjjxo1DQUEBevfujZSUFCiVSgD3epTOnz+P8+fP47HHHlNrT+WKD/b29vjuu+8wadIk+Pj4wNHREdHR0Rg3blxtXxIiIqojHL6jRyH7OlH1GdeJIiIyXtoCVHR0NBQKhQytIWOi6/e37D1RREREden8+fP4/PPPNcrZ+0Q1xRBFREQNhrbepzZt2mDEiBEytIZMHUMUERE1CHxwMBkaQxQREdVr+/btww8//KBRzgBFj4ohioiI6p3kZCAuDggK0ux9evrpp/Hkk0/K0CqqbxiiiIio3qkqQLH3iQyJIYqIiExeZc9TZCSgUn2EoKArGnUYoMjQGKKIiMjkxcUBGRlAVpZm79Orr76Ktm3bytAqqu8YooiIyOTNni1w7NgCjXL2PlFtYogiIiKTxke3kFwYooiIyGRpC1CTJ09G8+bNZWgNNTQMUUREZHJKSkoQFxenUc7eJ6pLDFFERGRSOHxHxoIhioiIjF51i2dGRUXBwsJChlZRQ8cQRURERqsyPJWVXcOgQWs1trP3ieTEEEVEREarqt4ngAGK5McQRURERktbgIqOjoZCoZChNUTqGKKIiMjoHDt2DN98841GOXufyJgwRBERkVHRdvdds2bNMGXKFBlaQ1Q1higiIjIa2gIUe5/IWDFEERGR7LZv347jx49rlDNAkTFjiCIiIlkkJwOzZgGhoZq9T0888QSee+45GVpFpDuGKCIikkVcnPYAxd4nMhUMUUREVCcqF86MjASysmIRFKRZhwGKTAlDFBER1Ym4OCAj416AetALL7yAbt26ydAqIv0xRBERUZ2YPVvg2LEFGuXsfSJTxRBFRES1TtvSBQADFJk2higiIqpV2gLU66+/DmdnZxlaQ2Q4DFFERFQrbt26hWXLlmmUs/eJ6guGKCIiMqjkZO2TxwEGKKpfGKKIiMigtAWo2bNnQ6lUytAaotrDEEVERAZx4cIFbNiwQaOcvU9UXzFEERHRI+Pdd9QQMUQREdEj0RagoqOjoVAoZGgNUd1hiCIiIr3s378faWlpGuXsfaKGgiGKiIhqjMN3RAxRRERUQ9oCFMMTNUQMUUREpJONGzciNzdXo5wBihoqhigiInoobb1PXbp0wUsvvSRDa4iMA0MUERFplZwMxMUBQUEcviPSxqymO5ibm+Pq1asa5X/99RfMzc0N0igiIpJfVlYsAxRRNWrcEyWE0FpeUlICCwuLR24QERHJT9vwXXBwMLy9vWVoDZFx0jlErVq1CgCgUCiwfv162NraStvKy8uxd+9edOzY0fAtJCKiOlNRUYGFCxdqlLP3iUiTziHqvffeA3CvJyo+Pl5t6M7CwgIeHh6Ij483fAuJiKhOcO0noprROURlZ2cDAPr164evv/4aTZs2rbVGERFR3dIWoF5//XU4OzvL0Boi01DjOVG7d++ujXYQEZEMiouLsXz5co1y9j4RPVyNQ9SYMWOq3b5hwwa9G0NERHWHw3dEj6bGIerGjRtq78vKynDixAkUFBTg6aefNljDiIio9mgLUJGRkbC0tJShNUSmqcYhavv27RplFRUVmDBhAtq2bWuQRhERUe34888/kZCQoFHO3ieimlOIqhZ+qqGzZ8+ib9++uHLliiEOVy8UFRXB3t4ehYWFsLOzk7s5RNTAcfiOSDe6fn8b7LEvv//+O+7evWuowxERkQFpC1DR0dFQKBQytIaofqhxiIqIiFB7L4TAlStX8O233yIsLMxgDSMioke3b98+/PDDDxrl7H0ienQ1DlFZWVlq783MzNCiRQusWLHioXfuERFR7ap8aHBk5L1n32nDAEVkGFwnioioHomLAzIytAcohiciw9J7TtTVq1dx9uxZAECHDh3g5ORksEYREVHNVPZA/ec/6xAUdFVjOwMUkeHVOEQVFRVh0qRJ2LJlCyoqKgAA5ubmGDp0KNauXQt7e3uDN5KIiKoXFwcEBWn2Pv3rX//C888/L0OLiOo/s5ruMHbsWGRmZuLbb79FQUEBCgoKsGPHDhw+fBjjx4+vjTYSEdFDaAtQMTExDFBEtajG60TZ2NggNTUVvXv3Vivft28f+vfvj+LiYoM20JRxnSgiqm1c+4nI8HT9/q5xT1Tz5s21DtnZ29ujadOmNT0c1q5dCw8PDyiVSvj5+eHgwYPV1t+2bRs6duwIpVKJbt26YefOnWrbhRCIjo6Gq6srrKysEBgYiHPnzqnVWbx4MQICAmBtbQ0HBwet51EoFBqvrVu31vjzEREZUnIyEBBw76e2APXcc88xQBHVkRqHqLlz5yIiIgIqlUoqU6lUePPNNzFv3rwaHSsxMRERERGIiYnB0aNH0b17dwQFBeHqVc1JkQCwf/9+hIaGIjw8HFlZWQgJCUFISAhOnDgh1Vm6dClWrVqF+Ph4ZGZmwsbGBkFBQbhz545Up7S0FEOGDMGECROqbd/GjRtx5coV6RUSElKjz0dEZGhxccCBAxVV3n33xBNPyNAqooapxsN53t7eOH/+PEpKStCqVSsAQG5uLiwtLdG+fXu1ukePHq32WH5+fujZsyfWrFkD4N4z+Nzd3TFlyhRERkZq1B86dCiKi4uxY8cOqaxXr17w8vJCfHw8hBBwc3PDjBkzMHPmTABAYWEhnJ2dkZCQgGHDhqkdLyEhAdOnT0dBQYHGuRQKBbZv3/5IwYnDeURkaBy+I6p9tfbYl8GDBxvkMQGlpaU4cuQIoqKipDIzMzMEBgYiIyND6z4ZGRkaK6YHBQUhKSkJAJCdnQ2VSoXAwEBpu729Pfz8/JCRkaERoh5m0qRJeO2119CmTRu8/vrrGD16dLWfvaSkBCUlJdL7oqKiGp2PiKg62gLU66+/DmdnZxlaQ0Q1DlHz5883yImvXbuG8vJyjf/4nZ2dcebMGa37qFQqrfUrhxYrf1ZXR1cLFizA008/DWtra3z33XeYOHEibt68ialTp1a5z5IlS6r8v0QiIn0VFRXhvffe0yhn7xORvGocotq0aYNDhw6hefPmauUFBQV44okn8McffxiscXK6f36Xt7c3iouLsWzZsmpDVFRUlFpPWVFREdzd3Wu1nURUv3H4jsh41XhieU5ODsrLyzXKS0pKcPHiRZ2P4+joCHNzc+Tl5amV5+XlwcXFRes+Li4u1dav/FmTY+rKz88PFy9eVBuue5ClpSXs7OzUXkRE+tIWoL7/PhLe3gxQRMZA556o5ORk6c+pqalqyxyUl5cjPT0dnp6eOp/YwsICPj4+SE9PlyZvV1RUID09HZMnT9a6j7+/P9LT0zF9+nSpLC0tDf7+/gAAT09PuLi4ID09HV5eXgDu9QZlZmY+9E68hzl27BiaNm0KS0vLRzoOEdHDnDt3Dps3b9Yoj4mJATugiIyHziGqMugoFAqEhYWpbWvcuDE8PDywYsWKGp08IiICYWFh6NGjB3x9fbFy5UoUFxdj9OjRAICRI0eiZcuWWLJkCQBg2rRp6NOnD1asWIGBAwdi69atOHz4MD766COpbdOnT8eiRYvQvn17eHp6Yt68eXBzc1O7yy43NxfXr19Hbm4uysvLcezYMQBAu3btYGtri//7v/9DXl4eevXqBaVSibS0NLz99tvSHX9ERIZW+ew7bSuPAxy+IzJGOoeoyufkeXp64tChQ3B0dHzkkw8dOhT5+fmIjo6GSqWCl5cXUlJSpInhubm5MDP7Z8QxICAAmzdvxty5czFnzhy0b98eSUlJ6Nq1q1Rn1qxZKC4uxrhx41BQUIDevXsjJSUFSqVSqhMdHY1NmzZJ7729vQEAu3fvRt++fdG4cWOsXbsWb7zxBoQQaNeuHd59912MHTv2kT8zEZE2VQWo6Ohog9wRTUSGV+N1okh3XCeKiHTx7bff4vDhwxrl7H0ikketrRO1YMGCardHR0fX9JBERA0W774jMl01DlHbt29Xe19WVobs7Gw0atQIbdu2ZYgiItKRtgDF8ERkOmocorKysjTKioqKMGrUKDz//PMGaRQRUX22ePFi3L17V6OcAYrItBhsTtSvv/6K5557Djk5OYY4XL3AOVFE9CBtvU8eHh4adz0TkXxqbU5UVQoLC1FYWGiowxER1TscviOqX2ocolatWqX2XgiBK1eu4NNPP8WAAQMM1jAiovqCk8eJ6qcah6gHH4JpZmaGFi1aICwsDFFRUQZrGBFRfaAtQA0YMAC+vr4ytIaIDKnGISo7O7s22kFEVK+Ul5dj0aJFGuXsfSKqP/SaE1VQUIDz588DuPeoFAcHB0O2iYjIpHH4jqhhqFGIysnJwaRJk5CamorKm/oUCgX69++PNWvWwMPDozbaSERkMrQFqPHjx8PFxUWG1hBRbdI5RF24cAG9evVC48aNsXDhQnTq1AkAcOrUKaxbtw7+/v44dOgQHnvssVprLBGRsSooKMD777+vUc7eJ6L6S+d1osLDw3H+/HmkpqaqPcwXAG7fvo3+/fujffv2WL9+fa001BRxnSiihoHDd0T1i8HXiUpJSUFiYqJGgAIAKysrLFy4EMOGDdOvtUREJkpbgIqKioKFhYUMrSGiuqRziLp27Vq1c57atGmD69evG6JNRERG7+TJk/jyyy81ytn7RNRw6ByiXF1dcerUqSrnPJ04cYITJ4moQeDwHREBNQhRISEhmDlzJtLT09GiRQu1bVevXsXs2bMREhJi6PYRERmF5GQgLg4ICtIMUKmpMdi/X4ZGEZGsdJ5YfuPGDfj5+UGlUuHVV19Fx44dIYTA6dOnsXnzZri4uODAgQNo1qxZbbfZZHBiOVH9MWHCF3BxOa1Rnpoag8hIIDhYhkYRUa3Q9ftb5xAF3AtSc+bMQWJiIgoKCgAADg4OePnll/H2228zQD2AIYqofuDwHVHDUishqpIQAvn5+QCAFi1aQKFQ6N/Seowhisj0aQtQDE9E9ZvBlzi4n0KhgJOTk96NIyIydux9IqKH0StEERHVZ9oCVKtWrTB69GgZWkNExoohiojoPhy+IyJdMUQREYHDd0RUcwxRRNTgaQtQAwYMgK+vrwytISJToVOIWrVqlc4HnDp1qt6NISKqS+Xl5Vi0aJFGOXufiEgXOi1x4OnpqdvBFAr88ccfj9yo+oJLHBAZLw7fEVFVDLrEQXZ2tsEaRkQkN20Bavz48Xz+JxHViN5zokpLS5GdnY22bduiUSNOrSIi43f9+nWsXr1ao5y9T0SkD7Oa7nDr1i2Eh4fD2toaXbp0QW5uLgBgypQpiIuLM3gDiYgMITY2lgGKiAyqxiEqKioKv/zyC/bs2QOlUimVBwYGIjEx0aCNIyIyBG3Dd1FRUQxQRPRIajwOl5SUhMTERPTq1UvtmXldunTB77//btDGERE9ioSE4/jzz+0a5QxPRGQINQ5R+fn5Wp+bV1xczAcRE5HR4N13RFTbahyievTogW+//RZTpkwBACk4rV+/Hv7+/oZtHRGRHvjoFiKqCzUOUW+//TYGDBiAU6dO4e7du3j//fdx6tQp7N+/Hz/++GNttJGISCfvvbcZRUXnNMoZoIioNtR4Ynnv3r1x7Ngx3L17F926dcN3330HJycnZGRkwMfHpzbaSET0ULGxsQxQRFSndFqxnPTDFcuJ6gaH74jIkAy6YnlRUZHOJ2ZYIKK6wsnjRCQnnUKUg4ODznfelZeXP1KDiIh0oS1AtWnTBiNGjJChNUTUEOkUonbv3i39OScnB5GRkRg1apR0N15GRgY2bdqEJUuW1E4riYjuw+E7IjIGNZ4T9cwzz+C1115DaGioWvnmzZvx0UcfYc+ePYZsn0njnCgiw+LwHRHVBV2/v2t8d15GRgZ69OihUd6jRw8cPHiwpocjItKJtgAVHBzMAEVEsqlxiHJ3d8fHH3+sUb5+/Xq4u7sbpFFERJXu3r1b5fCdt7e3DC0iIrqnxottvvfee3jxxRexa9cu+Pn5AQAOHjyIc+fO4auvvjJ4A4mo4eLwHREZM73Wibp48SI++OADnDlzBgDQqVMnvP766+yJegDnRBHpT1uAmjRpEhwdHWVoDRE1JLp+f3OxzVrEEEVUc3/99RfWrFmjUc7eJyKqKwZdbPNBBQUF+OSTT3D69GkAQJcuXTBmzBjY29vr11oiavCSk4GsLA7fEZHpqHFP1OHDhxEUFAQrKyv4+voCAA4dOoTbt2/ju+++wxNPPFErDTVF7Iki0p224bs5c+agcePGMrSGiBqyWhvOe/LJJ9GuXTt8/PHHaNToXkfW3bt38dprr+GPP/7A3r17H63l9QhDFNHDnThxQutNKex9IiK51FqIsrKyQlZWFjp27KhWfurUKfTo0QO3bt3Sr8X1EEMUUfV49x0RGaNamxNlZ2eH3NxcjRB14cIFNGnSpOYtJaIGiY9uISJTV+MQNXToUISHh2P58uUICAgAAPz888948803NR4FQ0T0oK+//hq//vqrRjkDFBGZmhqHqOXLl0OhUGDkyJG4e/cuAKBx48aYMGEC4uLiDN5AIqo/OHxHRPWJ3utE3bp1C7///jsAoG3btrC2tjZow+oDzoki+geH74jIVNTqOlEAYG1tjW7duum7OxE1EOx9IqL6SucQNWbMGJ3qbdiwQe/GEFH9oi1Ade3aFS+++KIMrSEiMiydQ1RCQgJat24Nb29v8EkxRPQwHL4jovpO5xA1YcIEbNmyBdnZ2Rg9ejReffVVNGvWrDbbRkQmqKrhu+XLY8AMRUT1iZmuFdeuXYsrV65g1qxZ+L//+z+4u7vj5ZdfRmpq6iP1TK1duxYeHh5QKpXw8/PDwYMHq62/bds2dOzYEUqlEt26dcPOnTvVtgshEB0dDVdXV1hZWSEwMBDnzp1Tq7N48WIEBATA2toaDg4OWs+Tm5uLgQMHwtraGk5OTnjzzTeluxGJSDttAeru3cFYvjwGU6fK0CAiolqkc4gCAEtLS4SGhiItLQ2nTp1Cly5dMHHiRHh4eODmzZs1PnliYiIiIiIQExODo0ePonv37ggKCsLVq1e11t+/fz9CQ0MRHh6OrKwshISEICQkBCdOnJDqLF26FKtWrUJ8fDwyMzNhY2ODoKAg3LlzR6pTWlqKIUOGYMKECVrPU15ejoEDB6K0tBT79+/Hpk2bkJCQgOjo6Bp/RqKG4O7du1UO3y1c6IW//wYWL5ahYUREtUjvJQ4uXLiAjRs3IiEhAaWlpThz5gxsbW1rdAw/Pz/07NkTa9asAQBUVFTA3d0dU6ZMQWRkpEb9oUOHori4GDt27JDKevXqBS8vL8THx0MIATc3N8yYMQMzZ84EABQWFsLZ2RkJCQkYNmyY2vESEhIwffp0FBQUqJXv2rULgwYNwuXLl+Hs7AwAiI+Px+zZs5Gfnw8LCwudPh+XOKCGgHffEVF9o+v3d416okpKSrBlyxb85z//weOPP45ff/0Va9asQW5ubo0DVGlpKY4cOYLAwMB/GmNmhsDAQGRkZGjdJyMjQ60+AAQFBUn1s7OzoVKp1OrY29vDz8+vymNWdZ5u3bpJAaryPEVFRTh58qTOxyGq77QFqMmTJzNAEVGDoPPE8okTJ2Lr1q1wd3fHmDFjsGXLFjg6Oup94mvXrqG8vFwtqACAs7Mzzpw5o3UflUqltb5KpZK2V5ZVVUcXVZ3n/nNoU1JSgpKSEul9UVGRzuckMiXXrl3D2rVrNco5eZyIGhKdQ1R8fDxatWqFNm3a4Mcff8SPP/6otd7XX39tsMaZmiVLllQ5tEFUX1R39x0njxNRQ6JziBo5ciQUCoXBTuzo6Ahzc3Pk5eWplefl5cHFxUXrPi4uLtXWr/yZl5cHV1dXtTpeXl46t83FxUXjLsHK81bVNgCIiopCRESE9L6oqAju7u46n5fI2GkLUG+99RYaNWrEHigianBqtNimIVlYWMDHxwfp6ekICQkBcG9ieXp6OiZPnqx1H39/f6Snp2P69OlSWVpaGvz9/QEAnp6ecHFxQXp6uhSaioqKkJmZWeWdeFWdZ/Hixbh69SqcnJyk89jZ2aFz585V7mdpaQlLS0udz0NkKrKyspCcnKxRzrlPRNSQ6f3sPEOIiIhAWFgYevToAV9fX6xcuRLFxcUYPXo0gHu9Xy1btsSSJUsAANOmTUOfPn2wYsUKDBw4EFu3bsXhw4fx0UcfAQAUCgWmT5+ORYsWoX379vD09MS8efPg5uYmBTXg3hpQ169fR25uLsrLy3Hs2DEAQLt27WBra4tnn30WnTt3xogRI7B06VKoVCrMnTsXkyZNYkiiBod33xERaSdriBo6dCjy8/MRHR0NlUoFLy8vpKSkSJO4c3NzYWb2zw2EAQEB2Lx5M+bOnYs5c+agffv2SEpKQteuXaU6s2bNQnFxMcaNG4eCggL07t0bKSkpUCqVUp3o6Ghs2rRJeu/t7Q0A2L17N/r27Qtzc3Ps2LEDEyZMgL+/P2xsbBAWFoYFCxbU9iUhMip8dAsRUdX0XieKHo7rRJGp2rx5s8ZK/wADFBE1DLp+f8vaE0VExofDd0REumGIIiIJh++IiHTHEEVE7H0iItIDQxRRA6ctQHXu3BlDhgyRoTVERKaDIYqoAePwHRGR/hiiiBogDt8RET06hiiiBkZbgDp+/AV89VU3GVpDRGS6GKKIGojS0lJp9f/7pabGIDJShgYREZk4hiiiBqC64TuO4BER6Ychiqie0xagJk+ejObNm8vQGiKi+oMhiqieUqlU+PDDDzXKOXmciMgwGKKI6iHefUdEVPsYoojqGW0B6q233kKjRo2QnAzExQGRkUBwsAyNIyKqRxiiiOqJjIwMfPfddxrl9/c+xcUBGRn3fjJEERE9GoYoonpA1+G7yMh/eqKIiOjRMEQRmbiaPLolOJg9UEREhsIQRWSiPvzwQ6hUKo1yTh4nIqobDFFEJoh33xERyY8hisjE1GT4joiIag9DFJGJYO8TEZFxMZO7AUT0cNoCVPv27eHtHYOAACA5WYZGERE1cOyJIjJy1Q3fBQRw3SciIrkwRBEZKV2G77juExGRfBiiiIyQtgA1ePBgeHl5qZVx3SciIvkwRBEZkZKSEsTFxWmUc/I4EZHxYYgiMhK8+46IyLQwRBEZAW0BavLkyWjevLkMrSEiIl0wRBHJ6OLFi/jkk080yr29Y8D8RERk3BiiiGRS1fDd/Pkx8PfnhHEiImPHEEUkA20Bau7cufj2W3P4+3PJAiIiU8AQRVSHfvzxR+zZs0ejvHLyOJcsICIyHQxRRHWEd98REdUvfHYeUR3QFqDmz49BaioDFBGRqWJPFFEtWrlyJQoLCzXKvb1jOPeJiMjEMUQR1ZKHDd9x7hMRkWljiCKqBdoCFOc+ERHVLwxRRAbEyeNERA0HQxSRgWgLUO3bt8crr7wiQ2uIiKi2MUQRPSIhBBYsWKBRzt4nIqL6jSGK6BFw+I6IqOHiOlFEetIWoI4fD4G3NwMUEVFDwJ4oohq6c+cO3nnnHY1y9j4RETUsDFFENcDhOyIiqsQQRaQjbQFqypQpaNasmQytISIiuTFEET3ExYsX8cknn2iUs/eJiKhhY4giqkZVw3epqTFghiIiatgYooiqoC1AeXnNwzvvmPHBwURExBBF9KCffvoJ6enpGuWVw3eDB9d1i4iIyBgxRBHdp6rhO679RERED2KIIvr/tAWo+fPvhSd/fyA4uK5bRERExowhihq8Dz74APn5+Rrl3t4x6NABUCjAOVBERKSBIYoatIctnsneJyIiqgpDFDVY2gIU134iIiJdMURRg8NHtxARkSGYyd0AorqkLUA1a+alFqCSk4GAgHs/iYiIqsIQRQ2CEKLKu++2bFFf+CkuDsjIuPeTiIioKhzOo3qvquG7rVvv3X334J13kZH3AhTvyCMiouoohBBC7kbUV0VFRbC3t0dhYSHs7Ozkbk6DpC1AZWUNxZgxHXnnHRERaaXr97dRDOetXbsWHh4eUCqV8PPzw8GDB6utv23bNnTs2BFKpRLdunXDzp071bYLIRAdHQ1XV1dYWVkhMDAQ586dU6tz/fp1DB8+HHZ2dnBwcEB4eDhu3rwpbc/JyYFCodB4HThwwHAfnGrNnTt3qrz7LimJAYqIiB6d7CEqMTERERERiImJwdGjR9G9e3cEBQXh6tWrWuvv378foaGhCA8PR1ZWFkJCQhASEoITJ05IdZYuXYpVq1YhPj4emZmZsLGxQVBQEO7cuSPVGT58OE6ePIm0tDTs2LEDe/fuxbhx4zTO9/333+PKlSvSy8fHx/AXgQwqNjYW77zzjkY5774jIiJDkn04z8/PDz179sSaNWsAABUVFXB3d8eUKVMQqWVSytChQ1FcXIwdO3ZIZb169YKXlxfi4+MhhICbmxtmzJiBmTNnAgAKCwvh7OyMhIQEDBs2DKdPn0bnzp1x6NAh9OjRAwCQkpKC//73v7h48SLc3NyQk5MDT09PZGVlwcvLS6/PxuG8uqet9+mNN97g9SciIp2ZxHBeaWkpjhw5gsDAQKnMzMwMgYGByMjI0LpPRkaGWn0ACAoKkupnZ2dDpVKp1bG3t4efn59UJyMjAw4ODlKAAoDAwECYmZkhMzNT7djBwcFwcnJC7969kcx73o3W5cuXqxy+Y4AiIqLaIOvdedeuXUN5eTmcnZ3Vyp2dnXHmzBmt+6hUKq31VSqVtL2yrLo6Tk5OatsbNWqEZs2aSXVsbW2xYsUK/Pvf/4aZmRm++uorhISEICkpCcFVTKgpKSlBSUmJ9L6oqKjaz0+GwcUziYhIDlzioAqOjo6IiIiQ3vfs2ROXL1/GsmXLqgxRS5YsqfILnWqHtus9b948mJnJPt2PiIjqOVm/aRwdHWFubo68vDy18ry8PLi4uGjdx8XFpdr6lT8fVufBiet3797F9evXqzwvcG/+1vnz56vcHhUVhcLCQul14cKFKuvSo8nMzKxy+I4BioiI6oKs3zYWFhbw8fFBenq6VFZRUYH09HT4+/tr3cff31+tPgCkpaVJ9T09PeHi4qJWp6ioCJmZmVIdf39/FBQU4MiRI1KdH374ARUVFfDz86uyvceOHYOrq2uV2y0tLWFnZ6f2IsOLjY1FSkqKRrm3N4fviIio7sg+nBcREYGwsDD06NEDvr6+WLlyJYqLizF69GgAwMiRI9GyZUssWbIEADBt2jT06dMHK1aswMCBA7F161YcPnwYH330EQBAoVBg+vTpWLRoEdq3bw9PT0/MmzcPbm5uCAkJAQB06tQJ/fv3x9ixYxEfH4+ysjJMnjwZw4YNg5ubGwBg06ZNsLCwgLe3NwDg66+/xoYNG7B+/fo6vkJ0v6p6nyolJ/+z2jjXgiIiotoke4gaOnQo8vPzER0dDZVKBS8vL6SkpEgTw3Nzc9WGZwICArB582bMnTsXc+bMQfv27ZGUlISuXbtKdWbNmoXi4mKMGzcOBQUF6N27N1JSUqBUKqU6n3/+OSZPnoxnnnkGZmZmePHFF7Fq1Sq1ti1cuBB//vknGjVqhI4dOyIxMREvvfRSLV8R0mbTpk3IycnRKH9w8vj9z71jiCIiotok+zpR9RnXiTIMbb1PDg4OmDZtmkY5e6KIiOhR6fr9LXtPFFF1HjZ896DgYIYnIiKqGwxRZJS49hMRERk7higyOtoCVO/evfHMM8/I0BoiIiLtuKAOGQ0hhNYAlZoawwBFRERGhz1RZBSqGr5LTY2BludQExERyY4himSnLUCFhobi8ccfB6dAERGRsWKIItncvn0bS5cu1Sjn5HEiIjIFDFEkC959R0REpo4hiuqctgCVlBSBrKwmMrSGiIhIPwxRVGcuXbqk9dmDqakxqKJjioiIyGgxRFGdqGr4zts7hpPHiYjIJDFEUa3TFqCio6OhUChkaA0REZFhMERRrcnIyMB3332nUc7J40REVB8wRFGt4N13RERU3/GxL2Rw2gKUt3cMUlNjkJwsQ4OIiIhqAXuiyGASExNx5swZjfKYmBgEBAAZGUBcHBAcLEPjiIiIDIw9UWQQsbGxGgGqoKAlvL3vDd9FRgL+/uBz8IiIqN5gTxQ9Mm3Dd6mpMdi//5/3wcHsgSIiovqFIYr0tmjRIpSXl2uUb90ag3fekaFBREREdYghivSirfdp4MCB6NGjBxfPJCKiBoEhimpECIEFCxZolHPpAiIiamgYokhnXPuJiIjoHwxRpBNtAWrs2LFwc3OToTVERETyY4iiapWUlCAuLk6jnL1PRETU0DFEUZU4fEdERFQ1LrZJWmkLUOnps6XFM4mIiBo69kSRJDkZWLPmKv7973Ua27ZujcGZM0B+PhfNJCIiAtgTRffJyorVGqBiYmIgxL0/V/4kIiJq6NgT1cAlJ997KHBQkObwXXR0NBQKBQBg6dJ79fjsOyIionsYohq4998/i6CgrRrl3t4x+P/5CQCffUdERPQghqgGLDY2Fk89pV7m6uqKcePGydMgIiIiE8IQ1UBpu/uOSxcQERHpjiGqgcnKykJycrJGOQMUERFRzTBENSDaep9atQrG6NHeMrSGiIjItDFENRAcviMiIjIshqh6qHLZgshIoEmT3di7d69GHQYoIiKiR8MQVQ/FxQEZGfcWz3zQgQNjsGuXuwytIiIiql8Youqh2bMFjh1boFGemhrDxTKJiIgMhCGqHklOBpKSUtC6dabGtpiYGHAEj4iIyHAYokzc/fOfsrJi0bq1+vYZM2bA1tZWnsYRERHVYwxRJi4uDsjMrEBW1kKNbd7eMWB+IiIiqh1mcjeA9PPWW0CTJkC3bocQHa0eoPLyOmL+/BjExcnUOCIiogaAPVEmatUqYOZMzbvvvLzmQqEwx7Fj4CRyIiKiWsQQZYIqKiowc6bm8N39az8FB9dli4iIiBoehigTtHCheoAaNmwYOnToIFNriIiIGiaGKBPUpEkT/P333wCA6OhoKBQKmVtERETU8DBEmaApU6ZACAELCwu5m0JERNRg8e48E7RrV2P07WuB5GS5W0JERNRwMUSZoMpn43EJAyIiIvkwRJmgyEjA359LGBAREcmJc6JMUHAwlzAgIiKSG3uiiIiIiPTAEEVERESkB4YoIiIiIj0wRBERERHpgSGKiIiISA8MUURERER6YIgiIiIi0oNRhKi1a9fCw8MDSqUSfn5+OHjwYLX1t23bho4dO0KpVKJbt27YuXOn2nYhBKKjo+Hq6gorKysEBgbi3LlzanWuX7+O4cOHw87ODg4ODggPD8fNmzfV6hw/fhxPPvkklEol3N3dsXTpUsN8YCIiIjJ5soeoxMREREREICYmBkePHkX37t0RFBSEq1evaq2/f/9+hIaGIjw8HFlZWQgJCUFISAhOnDgh1Vm6dClWrVqF+Ph4ZGZmwsbGBkFBQbhz545UZ/jw4Th58iTS0tKwY8cO7N27F+PGjZO2FxUV4dlnn0Xr1q1x5MgRLFu2DPPnz8dHH31UexeDiIiITIeQma+vr5g0aZL0vry8XLi5uYklS5Zorf/yyy+LgQMHqpX5+fmJ8ePHCyGEqKioEC4uLmLZsmXS9oKCAmFpaSm2bNkihBDi1KlTAoA4dOiQVGfXrl1CoVCIS5cuCSGE+OCDD0TTpk1FSUmJVGf27NmiQ4cOOn+2wsJCAUAUFhbqvA8RERHJS9fvb1l7okpLS3HkyBEEBgZKZWZmZggMDERGRobWfTIyMtTqA0BQUJBUPzs7GyqVSq2Ovb09/Pz8pDoZGRlwcHBAjx49pDqBgYEwMzNDZmamVOepp56ChYWF2nnOnj2LGzduaG1bSUkJioqK1F5ERERUP8kaoq5du4by8nI4OzurlTs7O0OlUmndR6VSVVu/8ufD6jg5Oaltb9SoEZo1a6ZWR9sx7j/Hg5YsWQJ7e3vp5e7urv2DExERkcmTfU5UfRIVFYXCwkLpdeHCBbmbRERERLWkkZwnd3R0hLm5OfLy8tTK8/Ly4OLionUfFxeXautX/szLy4Orq6taHS8vL6nOgxPX7969i+vXr6sdR9t57j/HgywtLWFpaSm9F0IAAIf1iIiITEjl93bl93iV6mSGVjV8fX3F5MmTpffl5eWiZcuW1U4sHzRokFqZv7+/xsTy5cuXS9sLCwu1Tiw/fPiwVCc1NVXrxPLS0lKpTlRUVI0mll+4cEEA4Isvvvjiiy++TPB14cKFar/nFUI8LGbVrsTERISFheHDDz+Er68vVq5ciS+++AJnzpyBs7MzRo4ciZYtW2LJkiUA7i1x0KdPH8TFxWHgwIHYunUr3n77bRw9ehRdu3YFALzzzjuIi4vDpk2b4OnpiXnz5uH48eM4deoUlEolAGDAgAHIy8tDfHw8ysrKMHr0aPTo0QObN28GABQWFqJDhw549tlnMXv2bJw4cQJjxozBe++9p7YUQnUqKipw+fJlNGnSBAqFohauHt2vqKgI7u7uuHDhAuzs7ORuToPAa173eM3rHq953ZP7mgsh8Pfff8PNzQ1mZtXMfNK5W6UWrV69WrRq1UpYWFgIX19fceDAAWlbnz59RFhYmFr9L774Qjz++OPCwsJCdOnSRXz77bdq2ysqKsS8efOEs7OzsLS0FM8884w4e/asWp2//vpLhIaGCltbW2FnZydGjx4t/v77b7U6v/zyi+jdu7ewtLQULVu2FHFxcYb94GRQXFKi7vGa1z1e87rHa173TOWay94TRWQoRUVFsLe3R2FhIf9vsY7wmtc9XvO6x2te90zlmvPuPCIiIiI9MERRvWFpaYmYmBi1OySpdvGa1z1e87rHa173TOWacziPiIiISA/siSIiIiLSA0MUERERkR4YooiIiIj0wBBFREREpAeGKJLN2rVr4eHhAaVSCT8/Pxw8eLDa+tu2bUPHjh2hVCrRrVs37Ny5U227EALR0dFwdXWFlZUVAgMDce7cObU6169fx/Dhw2FnZwcHBweEh4fj5s2b0vacnBwoFAqN14EDBwz3wWUkxzVfvHgxAgICYG1tDQcHB63nyc3NxcCBA2FtbQ0nJye8+eabuHv37iN9VmNhrNdc27/zrVu3PtJnNRZ1fc1zcnIQHh4OT09PWFlZoW3btoiJiUFpaanacY4fP44nn3wSSqUS7u7uWLp0qeE+tMyM8ZrXye9z2Zb5pAZt69atwsLCQmzYsEGcPHlSjB07Vjg4OIi8vDyt9X/++Wdhbm4uli5dKk6dOiXmzp0rGjduLH799VepTlxcnLC3txdJSUnil19+EcHBwcLT01Pcvn1bqtO/f3/RvXt3ceDAAbFv3z7Rrl07ERoaKm3Pzs4WAMT3338vrly5Ir3uf4aiqZLrmkdHR4t3331XRERECHt7e43z3L17V3Tt2lUEBgaKrKwssXPnTuHo6CiioqIMfg3qmrFecyGEACA2btyo9u/8/mOYKjmu+a5du8SoUaNEamqq+P3338U333wjnJycxIwZM6RjFBYWCmdnZzF8+HBx4sQJsWXLFmFlZSU+/PDD2r0gdcBYr3ld/D5niCJZ+Pr6ikmTJknvy8vLhZubW7UPnh44cKBamZ+fn8aDp5ctWyZtLygo0Prg6UOHDkl1du3apfbg6cr/6LKysgzyOY2JHNf8fhs3btT6hb5z505hZmYmVCqVVLZu3TphZ2cnSkpKavQZjY2xXnMh7oWo7du31/ATGT+5r3mlpUuXCk9PT+l95UPt7/83PXv27Bo91N5YGes1r4vf5xzOozpXWlqKI0eOIDAwUCozMzNDYGAgMjIytO6TkZGhVh8AgoKCpPrZ2dlQqVRqdezt7eHn5yfVycjIgIODA3r06CHVCQwMhJmZGTIzM9WOHRwcDCcnJ/Tu3RvJycmP9oGNgFzXXBcZGRno1q0bnJ2d1c5TVFSEkydP6nwcY2PM17zSpEmT4OjoCF9fX2zYsAHCxJcNNKZrXlhYiGbNmqmd56mnnoKFhYXaec6ePYsbN27U7IMaEWO+5pVq8/c5QxTVuWvXrqG8vFztSxMAnJ2doVKptO6jUqmqrV/582F1nJyc1LY3atQIzZo1k+rY2tpixYoV2LZtG7799lv07t0bISEhJh+k5LrmuqjqPPefwxQZ8zUHgAULFuCLL75AWloaXnzxRUycOBGrV6+u0TGMjbFc8/Pnz2P16tUYP378Q89z/zlMkTFf87r4fd7IYEciqgccHR0REREhve/ZsycuX76MZcuWITg4WMaWERnWvHnzpD97e3ujuLgYy5Ytw9SpU2Vslem7dOkS+vfvjyFDhmDs2LFyN6dBqOqa18Xvc/ZEUZ1zdHSEubk58vLy1Mrz8vLg4uKidR8XF5dq61f+fFidq1evqm2/e/curl+/XuV5AcDPzw/nz5/X4ZMZL7muuS6qOs/95zBFxnzNtfHz88PFixdRUlLySMeRk9zX/PLly+jXrx8CAgLw0Ucf6XSe+89hioz5mmtj6N/nDFFU5ywsLODj44P09HSprKKiAunp6fD399e6j7+/v1p9AEhLS5Pqe3p6wsXFRa1OUVERMjMzpTr+/v4oKCjAkSNHpDo//PADKioq4OfnV2V7jx07BldX15p/UCMi1zXXhb+/P3799Ve1gJuWlgY7Ozt07txZ5+MYG2O+5tocO3YMTZs2NfoHvlZHzmt+6dIl9O3bFz4+Pti4cSPMzNS/Xv39/bF3716UlZWpnadDhw5o2rSp/h9aZsZ8zbUx+O/zWpuyTlSNrVu3CktLS5GQkCBOnTolxo0bJxwcHKQ7tEaMGCEiIyOl+j///LNo1KiRWL58uTh9+rSIiYnRekusg4OD+Oabb8Tx48fF4MGDtS5x4O3tLTIzM8VPP/0k2rdvr7bEQUJCgti8ebM4ffq0OH36tFi8eLEwMzMTGzZsqIOrUrvkuuZ//vmnyMrKErGxscLW1lZkZWWJrKws8ffffwsh/lni4NlnnxXHjh0TKSkpokWLFvVmiQNjvObJycni448/Fr/++qs4d+6c+OCDD4S1tbWIjo6uoytTe+S45hcvXhTt2rUTzzzzjLh48aLa7fSVCgoKhLOzsxgxYoQ4ceKE2Lp1q7C2tq43SxwY4zWvi9/nDFEkm9WrV4tWrVoJCwsL4evrKw4cOCBt69OnjwgLC1Or/8UXX4jHH39cWFhYiC5duohvv/1WbXtFRYWYN2+ecHZ2FpaWluKZZ54RZ8+eVavz119/idDQUGFrayvs7OzE6NGjpS8WIe79R9epUydhbW0t7OzshK+vr9i2bZvhP7xM5LjmYWFhAoDGa/fu3VKdnJwcMWDAAGFlZSUcHR3FjBkzRFlZmcE/vxyM8Zrv2rVLeHl5CVtbW2FjYyO6d+8u4uPjRXl5ea1cg7pW19d848aNWq/3g/0Uv/zyi+jdu7ewtLQULVu2FHFxcYb/8DIxxmteF7/PFUKY+D2tRERERDLgnCgiIiIiPTBEEREREemBIYqIiIhIDwxRRERERHpgiCIiIiLSA0MUERERkR4YooiIiIj0wBBFREREpAeGKCJqkFQqFaZMmYI2bdrA0tIS7u7ueO6556TndY0fPx5t27aFlZUVWrRogcGDB+PMmTPS/jk5OVAoFDh27JjGsfv27Yvp06dL72/evInJkyfjscceg5WVFTp37oz4+Pja/ohEVMsayd0AIqK6lpOTg3//+99wcHDAsmXL0K1bN5SVlSE1NRWTJk3CmTNn4OPjg+HDh6NVq1a4fv065s+fj2effRbZ2dkwNzev0fkiIiLwww8/4LPPPoOHhwe+++47TJw4EW5ubggODq6lT0lEtY0hioganIkTJ0KhUODgwYOwsbGRyrt06YIxY8YAAMaNGyeVe3h4YNGiRejevTtycnLQtm3bGp1v//79CAsLQ9++faVjf/jhhzh48CBDFJEJ43AeETUo169fR0pKCiZNmqQWoCo5ODholBUXF2Pjxo3w9PSEu7t7jc8ZEBCA5ORkXLp0CUII7N69G7/99hueffZZfT4CERkJhigialDOnz8PIQQ6duz40LoffPABbG1tYWtri127diEtLQ0WFhZqdQICAqQ6la99+/ap1Vm9ejU6d+6Mxx57DBYWFujfvz/Wrl2Lp556yqCfjYjqFofziKhBEULoXHf48OH4z3/+gytXrmD58uV4+eWX8fPPP0OpVEp1EhMT0alTJ4397rd69WocOHAAycnJaN26Nfbu3YtJkybBzc0NgYGBj/aBiEg2DFFE1KC0b98eCoVC7U67qtjb28Pe3h7t27dHr1690LRpU2zfvh2hoaFSHXd3d7Rr105tPysrK+nPt2/fxpw5c7B9+3YMHDgQAPCvf/0Lx44dw/LlyxmiiEwYh/OIqEFp1qwZgoKCsHbtWhQXF2tsLygo0LqfEAJCCJSUlNTofGVlZSgrK4OZmfqvW3Nzc1RUVNToWERkXBiiiKjBWbt2LcrLy+Hr64uvvvoK586dw+nTp7Fq1Sr4+/vjjz/+wJIlS3DkyBHk5uZi//79GDJkCKysrPDf//63Rueys7NDnz598Oabb2LPnj3Izs5GQkIC/ve//+H555+vpU9IRHWBw3lE1OC0adMGR48exeLFizFjxgxcuXIFLVq0gI+PD9atWwelUol9+/Zh5cqVuHHjBpydnfHUU09h//79cHJyqvH5tm7diqioKAwfPhzXr19H69atsXjxYrz++uu18OmIqK4oRE1mWRIRERERAA7nEREREemFIYqIiIhIDwxRRERERHpgiCIiIiLSA0MUERERkR4YooiIiIj0wBBFREREpAeGKCIiIiI9MEQRERER6YEhioiIiEgPDFFEREREemCIIiIiItLD/wN0DP3/Ek/kwQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYVRJREFUeJzt3XlcVFXjBvBnBmRVIDcGDIWUXNKEQBFe08yp0SilrFfJBYy0RU3DMjAFcQnc0kyL10oxc0FbiMhAXtQ2CRVRc80SQstBFIHEV9b7+8Mft8YZcMCBO8vz/Xz40Jx77r3nXkwezzn3XJkgCAKIiIiIqEnkUjeAiIiIyBQxRBERERE1A0MUERERUTMwRBERERE1A0MUERERUTMwRBERERE1A0MUERERUTMwRBERERE1A0MUERERUTMwRBGRxZPJZFiwYIHUzRCFh4fD09NT6mYQ0W0wRBGRUUpKSoJMJhO/7OzscO+992L69OkoKipq0XPv378fCxYsQGlpqUGP+9BDD2lcU/v27TFgwABs2LABdXV1BjnHW2+9hZSUFIMci4gaZy11A4iIGrNw4UJ4eXnhxo0b+OGHH/D+++9j165dOH78OBwcHAxyjv/973+wtv77r8P9+/cjLi4O4eHhcHFxMcg56t19992Ij48HABQXF+Pjjz9GREQEfvnlFyQkJNzx8d966y08/fTTCAkJueNjEVHjGKKIyKiNHDkS/v7+AIDnn38eHTp0wNtvv40vv/wSoaGhzT5uXV0dqqqqYGdnBzs7O0M197acnZ0xYcIE8fMLL7yAnj17Yu3atVi0aBHatGnTam0hojvD4TwiMikPP/wwACA/Px8AsGLFCgQFBaFDhw6wt7eHn58fPv30U639ZDIZpk+fji1btuC+++6Dra0t0tPTxW31c6IWLFiA119/HQDg5eUlDr0VFBRg6NCh6N+/v8529ezZEyqVqsnX4+DggEGDBqGiogLFxcUN1quoqMDs2bPh4eEBW1tb9OzZEytWrIAgCBrXWFFRgU2bNontDg8Pb3KbiEg/7IkiIpPy22+/AQA6dOgAAHjnnXcwatQojB8/HlVVVdi+fTueeeYZpKWlITg4WGPfPXv2YMeOHZg+fTo6duyoc/L2U089hV9++QXbtm3DqlWr0LFjRwBAp06dMHHiREyZMgXHjx9H3759xX0OHjyIX375BfPmzWvWNZ07dw5WVlYNDh0KgoBRo0Zh7969iIiIgI+PDzIyMvD666/jjz/+wKpVqwAAmzdvxvPPP4+BAwdi6tSpAIDu3bs3q01EpAeBiMgIbdy4UQAg/Pe//xWKi4uF8+fPC9u3bxc6dOgg2NvbCxcuXBAEQRCuX7+usV9VVZXQt29f4eGHH9YoByDI5XLhxIkTWucCIMTGxoqfly9fLgAQ8vPzNeqVlpYKdnZ2whtvvKFR/sorrwiOjo7CtWvXGr2moUOHCr169RKKi4uF4uJi4dSpU8Irr7wiABCeeOIJsV5YWJjQrVs38XNKSooAQFi8eLHG8Z5++mlBJpMJv/76q1jm6OgohIWFNdoOIjIMDucRkVFTKpXo1KkTPDw8MG7cOLRt2xZffPEFunTpAgCwt7cX6169ehVlZWV48MEHcfjwYa1jDR06FH369Gl2W5ydnTF69Ghs27ZNHEarra1FcnIyQkJC4OjoeNtjnD59Gp06dUKnTp3Qu3dvvPvuuwgODsaGDRsa3GfXrl2wsrLCK6+8olE+e/ZsCIKAb775ptnXRETNx+E8IjJq69atw7333gtra2u4urqiZ8+ekMv//vdfWloaFi9ejCNHjqCyslIsl8lkWsfy8vK64/ZMmjQJycnJ+P777zFkyBD897//RVFRESZOnKjX/p6envjggw/EZRu8vb3RuXPnRvf5/fff4e7ujnbt2mmU9+7dW9xORK2PIYqIjNrAgQPFp/Nu9f3332PUqFEYMmQI3nvvPbi5uaFNmzbYuHEjtm7dqlX/n71WzaVSqeDq6opPPvkEQ4YMwSeffAKFQgGlUqnX/o6OjnrXJSLjxuE8IjJZn332Gezs7JCRkYHnnnsOI0eONEhA0dWLVc/KygrPPvssPv30U1y9ehUpKSkIDQ2FlZXVHZ+3Id26dcOff/6Jv/76S6P89OnT4vZ6jbWdiAyLIYqITJaVlRVkMhlqa2vFsoKCgjtesbt+blNDK5ZPnDgRV69exQsvvIBr165prPvUEh577DHU1tZi7dq1GuWrVq2CTCbDyJEjxTJHR0eDr7RORLpxOI+ITFZwcDDefvttjBgxAs8++ywuXbqEdevWoUePHjh27Fizj+vn5wcAePPNNzFu3Di0adMGTzzxhBiufH190bdvX+zcuRO9e/fGAw88YJDracgTTzyBYcOG4c0330RBQQH69++P3bt348svv8SsWbM0ljHw8/PDf//7X7z99ttwd3eHl5cXAgICWrR9RJaKPVFEZLIefvhhfPTRR1Cr1Zg1axa2bduGpUuX4sknn7yj4w4YMACLFi3C0aNHER4ejtDQUK2FMCdNmgQAek8ovxNyuRypqamYNWsW0tLSMGvWLJw8eRLLly/H22+/rVH37bffhp+fH+bNm4fQ0FC8//77Ld4+IkslE4R/LHdLRER6eeedd/Dqq6+ioKAAXbt2lbo5RCQBhigioiYSBAH9+/dHhw4dsHfvXqmbQ0QS4ZwoIiI9VVRUIDU1FXv37sXPP/+ML7/8UuomEZGE2BNFRKSngoICeHl5wcXFBS+//DKWLFkidZOISEIMUURERETNwKfziIiIiJqBIYqIiIioGTixvAXV1dXhzz//RLt27fgqBiIiIhMhCAL++usvuLu7a7zw/FYMUS3ozz//hIeHh9TNICIiomY4f/487r777ga3M0S1oHbt2gG4+UNwcnKSuDVERESkj/Lycnh4eIi/xxvCENWC6ofwnJycGKKIiIhMzO2m4nBiOREREVEzMEQRERERNQNDFBEREVEzcE6UxGpra1FdXS11M6gVtGnTBlZWVlI3g4iIDIQhSiKCIECtVqO0tFTqplArcnFxgUKh4LphRERmgCFKIvUBqnPnznBwcOAvVTMnCAKuX7+OS5cuAQDc3NwkbhEREd0phigJ1NbWigGqQ4cOUjeHWom9vT0A4NKlS+jcuTOH9oiITBwnlkugfg6Ug4ODxC2h1lb/M+c8OCIi08cQJSEO4Vke/syJiMwHQxQRERFRMzBEERERETUDQxQ1SXh4OGQyGWQyGdq0aQNXV1c88sgj2LBhA+rq6vQ+TlJSElxcXFquoURERC2MIYqabMSIEbh48SIKCgrwzTffYNiwYZg5cyYef/xx1NTUSN08IiKyAHV1daitrZW0DQxR1GS2trZQKBTo0qULHnjgAcydOxdffvklvvnmGyQlJQEA3n77bfTr1w+Ojo7w8PDAyy+/jGvXrgEA9u3bh8mTJ6OsrEzs1VqwYAEAYPPmzfD390e7du2gUCjw7LPPimsrERERAcA333yDRYsW4cMPP5S0HQxRRkIQBFRVVUnyJQjCHbf/4YcfRv/+/fH5558DAORyOdasWYMTJ05g06ZN2LNnD+bMmQMACAoKwurVq+Hk5ISLFy/i4sWLeO211wDcfPR/0aJFOHr0KFJSUlBQUIDw8PA7bh8REZm+6upqxMXF4cCBAwBuLlxtiN9hzcXFNo1EdXU14uPjJTl3dHQ0bGxs7vg4vXr1wrFjxwAAs2bNEss9PT2xePFivPjii3jvvfdgY2MDZ2dnyGQyKBQKjWM899xz4n/fc889WLNmDQYMGIBr166hbdu2d9xGIiIyTQUFBdi0aZNGWVRUlKRLxzBEkcEIgiD+Yf7vf/+L+Ph4nD59GuXl5aipqcGNGzdw/fr1RhcZzc3NxYIFC3D06FFcvXpVnKxeWFiIPn36tMp1EBGRcfniiy/Ef6QDQP/+/RESEiJdg/4fQ5SRaNOmDaKjoyU7tyGcOnUKXl5eKCgowOOPP46XXnoJS5YsQfv27fHDDz8gIiICVVVVDYaoiooKqFQqqFQqbNmyBZ06dUJhYSFUKhWqqqoM0kYiIjIdN27cwNKlSzXKwsPD0a1bN4lapIkhykjIZDKDDKlJZc+ePfj555/x6quvIjc3F3V1dVi5ciXk8pvT7nbs2KFR38bGRuupitOnT+PKlStISEiAh4cHAODQoUOtcwFERGRUfvnlF2zbtk2jbO7cuQb7h78hMERRk1VWVkKtVqO2thZFRUVIT09HfHw8Hn/8cUyaNAnHjx9HdXU13n33XTzxxBP48ccfkZiYqHEMT09PXLt2DVlZWejfvz8cHBzQtWtX2NjY4N1338WLL76I48ePY9GiRRJdJRERSSUuLk7jc0BAAEaMGCFRaxrGp/OoydLT0+Hm5gZPT0+MGDECe/fuxZo1a/Dll1/CysoK/fv3x9tvv42lS5eib9++2LJli9ak+aCgILz44osYO3YsOnXqhGXLlqFTp05ISkrCzp070adPHyQkJGDFihUSXSUREbW24uJirQA1ZcoUowxQACATpHw20MyVl5fD2dkZZWVlcHJyEstv3LiB/Px8eHl5wc7OTsIWUmvjz56ISLft27fjzJkzGmWGenq8qRr6/X0rDucRERGRZARBwMKFC7XKY2NjJWhN00g+nLdu3Tp4enrCzs4OAQEB4gJaDdm5cyd69eoFOzs79OvXD7t27dLYLggCYmJi4ObmBnt7eyiVSpw9e1ajzpIlSxAUFAQHB4fbvr/typUruPvuuyGTyVBaWtqcSyQiIiIdLly4oBWgnnnmGZMIUIDEISo5ORmRkZGIjY3F4cOH0b9/f6hUqgZf87F//36EhoYiIiICeXl5CAkJQUhICI4fPy7WWbZsGdasWYPExETk5OTA0dERKpUKN27cEOtUVVXhmWeewUsvvXTbNkZEROD++++/84slIiIi0fr16/HRRx9plM2bN0/vNQFTU4GgoJvfpSLpnKiAgAAMGDAAa9euBXDzZYIeHh6YMWMGoqKitOqPHTsWFRUVSEtLE8sGDRoEHx8fJCYmQhAEuLu7Y/bs2eJrRMrKyuDq6oqkpCSMGzdO43hJSUmYNWtWgz1M77//PpKTkxETE4Phw4fj6tWrt+25+ifOiaJb8WdPRJaurq5O68lrZ2dnjTdd6CMoCMjOBgIDgf37DdhA6D8nSrKeqKqqKuTm5kKpVP7dGLkcSqUS2dnZOvfJzs7WqA8AKpVKrJ+fnw+1Wq1Rx9nZGQEBAQ0esyEnT57EwoUL8fHHH4trHd1OZWUlysvLNb6IiIjopkOHDmkFqIkTJzY5QAFAVNTNAKWjz6XVSBaiLl++jNraWri6umqUu7q6Qq1W69xHrVY3Wr/+e1OOqUtlZSVCQ0OxfPlydO3aVe/94uPj4ezsLH7VLxhJRERk6eLi4vD1119rlMXExOCee+7RqqvPUN2oUTd7oEaNMnRL9Sf5xHJjFB0djd69e2PChAlN3q+srEz8On/+fAu1kIiIyDRUVlZqrf1kbW2N2NjYBl8enJBwc6guIaE1Wth8ki1x0LFjR1hZWaGoqEijvKioCAqFQuc+CoWi0fr134uKiuDm5qZRx8fHR++21b/C5NNPPwVw84m/+ja/+eabWn8Y6tna2sLW1lbv8xAREZmzbdu24ZdfftEoGzduHHr27NnoflFRNwOUlEN1+pCsJ8rGxgZ+fn7IysoSy+rq6pCVlYXAwECd+wQGBmrUB4DMzEyxvpeXFxQKhUad8vJy5OTkNHhMXT777DMcPXoUR44cwZEjR/Dhhx8CAL7//ntMmzZN7+MQERFZqri4OK0AFRMTc9sABRjHUJ0+JF1sMzIyEmFhYfD398fAgQOxevVqVFRUYPLkyQCASZMmoUuXLuIrQ2bOnImhQ4di5cqVCA4Oxvbt23Ho0CGsX78ewM2X+M6aNQuLFy+Gt7c3vLy8MH/+fLi7uyMkJEQ8b2FhIUpKSlBYWIja2locOXIEANCjRw+0bdsW3bt312jn5cuXAQC9e/du0tN51Hzh4eEoLS1FSkoKAOChhx6Cj48PVq9e3exjGuIYRETUuPLycqxatUqr3FTWfmoKSUPU2LFjUVxcjJiYGKjVavj4+CA9PV2cGF5YWKjxZFxQUBC2bt2KefPmYe7cufD29kZKSgr69u0r1pkzZw4qKiowdepUlJaWYvDgwUhPT9d4nDwmJgabNm0SP/v6+gIA9u7di4ceeqiFr9q0hYeHi/euTZs26Nq1KyZNmoS5c+fC2rrl/jh9/vnner+5e9++fRg2bJjWkhRNOQYRETXdu+++i5KSEo2y0NBQ3HvvvRK1qGXx3XktyBzXiQoPD0dRURE2btyIyspK7Nq1C9OmTcOSJUsQHR2tUbeqqqrZ7zy6tSeqKRoKUcbAlH/2RESN0TVf+J+9T6mpwBtvAIIALFtm3EN1Rr9OFJkuW1tbKBQKdOvWDS+99BKUSiVSU1MRHh6OkJAQLFmyBO7u7uK49/nz5/Hvf/8bLi4uaN++PUaPHo2CggLxeLW1tYiMjISLiws6dOiAOXPm4NZs/9BDD2msI1JZWYk33ngDHh4esLW1RY8ePfDRRx+hoKAAw4YNAwDcddddkMlkCA8P13mMq1evYtKkSbjrrrvg4OCAkSNHarwiKCkpCS4uLsjIyEDv3r3Rtm1bjBgxAhcvXhTr7Nu3DwMHDoSjoyNcXFzwr3/9C7///ruB7jQRkfG7dOnSbQMUcHOi+OnTwJkzxv/Unb4YouiO2dvbo6qqCgCQlZWFM2fOIDMzE2lpaaiuroZKpUK7du3w/fff48cffxTDSP0+K1euRFJSEjZs2IAffvgBJSUl+OKLLxo956RJk7Bt2zasWbMGp06dwn/+8x+0bdsWHh4e+OyzzwAAZ86cwcWLF/HOO+/oPEZ4eDgOHTqE1NRUZGdnQxAEPPbYY6iurhbrXL9+HStWrMDmzZvx3XffobCwUFwNv6amBiEhIRg6dCiOHTuG7OxsTJ06tcFHdomIzE1cXBzef/99jbLnn39e5/ynqCigVy+gZ0/jf+pOX5LOiSLTJggCsrKykJGRgRkzZqC4uBiOjo748MMPxWG8Tz75BHV1dfjwww/FcLFx40a4uLhg3759ePTRR7F69WpER0fjqaeeAgAkJiYiIyOjwfP+8ssv2LFjBzIzM8XV6f+5WFv79u0BAJ07d25wOO/s2bNITU3Fjz/+iKCgIADAli1b4OHhgZSUFDzzzDMAgOrqaiQmJooPG0yfPl18WWZ5eTnKysrw+OOPi9t79+7d9BtJRGSC9Ol9+qdRo4x7CK852BNlBlr7JYxpaWlo27Yt7OzsMHLkSIwdOxYLFiwAAPTr109jHtTRo0fx66+/ol27dmjbti3atm2L9u3b48aNG/jtt99QVlaGixcvIiAgQNzH2toa/v7+DZ7/yJEjsLKywtChQ5t9DadOnYK1tbXGeTt06ICePXvi1KlTYpmDg4PG05pubm7iC7Lbt2+P8PBwqFQqPPHEE3jnnXc0hvqIiMzR6dOntQKUra2tWT59dzvsiTID/1zZtTVS/rBhw/D+++/DxsYG7u7uGk/lOTo6atS9du0a/Pz8sGXLFq3jdOrUqVnnt7e3b9Z+zXHr03wymUxjvtbGjRvxyiuvID09HcnJyZg3bx4yMzMxaNCgVmsjEVFr0dX79Morr+Cuu+6SoDXSY0+UGWjtlzA6OjqiR48e6Nq1622XNXjggQdw9uxZdO7cGT169ND4qn/HoJubG3JycsR9ampqkJub2+Ax+/Xrh7q6Onz77bc6t9f3hNXW1jZ4jN69e6OmpkbjvFeuXMGZM2fQp0+fRq/pVr6+voiOjsb+/fvRt29fbN26tUn7ExGZgoaG7yw1QAEMUWbBmFd2HT9+PDp27IjRo0fj+++/R35+Pvbt24dXXnkFFy5cAHBzEdWEhASkpKTg9OnTePnll1FaWtrgMT09PREWFobnnnsOKSkp4jF37NgBAOjWrRtkMhnS0tJQXFyMa9euaR3D29sbo0ePxpQpU/DDDz/g6NGjmDBhArp06YLRo0frdW35+fmIjo5GdnY2fv/9d+zevRtnz57lvCgiMis//fRTg+++s3QMUdSiHBwc8N1336Fr16546qmn0Lt3b0RERODGjRvi2huzZ8/GxIkTERYWhsDAQLRr1w5PPvlko8d9//338fTTT+Pll19Gr169MGXKFFRUVAAAunTpgri4OERFRcHV1RXTp0/XeYyNGzfCz88Pjz/+OAIDAyEIAnbt2qX3gpwODg44ffo0xowZg3vvvRdTp07FtGnT8MILLzThDhERGa+4uDitB30iIyPx5ptvStQi48LFNluQOS62SXeGP3siMgWCIIhPIv+TpfQ+6bvYJieWExERkWjXrl04ePCgRtndd9+NiIgIiVpkvBiiiIiICIDuyePR0dHNfoWXuWOIIiIisnDV1dV46623tMotZfiuuRiiiIiILNjHH3+M/Px8jTIfHx+9n1S2ZAxREuKcfsvDnzkRGRNdw3fz58+HXM6H9/XBECWB+kfor1+/3qqrb5P0rl+/DkB7JXQiotZUUVGBFStWaJVz+K5pGKIkYGVlBRcXF/EdbA4ODuLLeck8CYKA69ev49KlS3BxcYGVlZXUTSIiC7V8+XLxH3T1hg8fjsGDB0vUItPFECURhUIBAGKQIsvg4uIi/uyJiFqbruG7mJiYJv9DPjX15vtao6KM820ZrYWLbbYgfRbrqq2tRXV1dSu3jKTQpk0b9kARkSSuXLmCtWvXapU3d/guKOjmi+8DA2++dszccLFNE2FlZcVfrERE1GJ09T6NGTMGffv2bfYxo6L+7omyZAxRREREZkpXgDLE5PFRoyx7GK8eQxQREZGZKSwsxMaNG7XK+fSdYTFEERERmRFdvU/h4eHo1q2bBK0xbwxRREREZqKlhu9IN4YoIiIiE3fo0CF8/fXXWuW+vgxQLYkhioiIyITp6n168cUX4erqKkFrLAtDFBERkQkSBAELFy7UKufwXethiCIiIjIx6enpyMnJ0SpngGpdDFFEREQmRNfwXWRkJNq1aydBaywbQxQREZEJqKurw6JFi7TK2fskHYYoIiIiI7d582acO3dOo6xdu3aIjIyUqEUEMEQREREZNV3Dd9HR0bCxsZGgNfRPDFFERERG6IsvKnHsWIJWOYfvjAdDFBERkZHR1fvUs2dPjBs3ToLWUEMYooiIiIyIrgA1f/58yOVyCVpDjWGIIiIiMgJXr17FmjVrtMo5fGe8GKKIiIgkpqv3ycfHB6NHj5agNaQvhigiIiIJ6QpQ7H0yDZIPsK5btw6enp6ws7NDQEAADhw40Gj9nTt3olevXrCzs0O/fv2wa9cuje2CICAmJgZubm6wt7eHUqnE2bNnNeosWbIEQUFBcHBwgIuLi9Y5jh49itDQUHh4eMDe3h69e/fGO++8c8fXSkREVO/cuXM6A1RGBgOUqZA0RCUnJyMyMhKxsbE4fPgw+vfvD5VKhUuXLumsv3//foSGhiIiIgJ5eXkICQlBSEgIjh8/LtZZtmwZ1qxZg8TEROTk5MDR0REqlQo3btwQ61RVVeGZZ57BSy+9pPM8ubm56Ny5Mz755BOcOHECb775JqKjo7F27VrD3gAiIrJIcXFx2Lx5s0aZQjEEGRmxiIqSqFHUZDJBEASpTh4QEIABAwaI4aSurg4eHh6YMWMGonT8KRo7diwqKiqQlpYmlg0aNAg+Pj5ITEyEIAhwd3fH7Nmz8dprrwEAysrK4OrqiqSkJK1HQ5OSkjBr1iyUlpbetq3Tpk3DqVOnsGfPHr2vr7y8HM7OzigrK4OTk5Pe+xERkflJTQUSEgCVisN3xk7f39+S9URVVVUhNzcXSqXy78bI5VAqlcjOzta5T3Z2tkZ9AFCpVGL9/Px8qNVqjTrOzs4ICAho8Jj6KisrQ/v27RutU1lZifLyco0vIiIiANi+/UedAcrXlwHKVEk2sfzy5cuora2Fq6urRrmrqytOnz6tcx+1Wq2zvlqtFrfXlzVUpzn279+P5ORkfP31143Wi4+P1zm+TUREli0uLg49e2qWjRo1Cr6+vtI0iAxC8onlxu748eMYPXo0YmNj8eijjzZaNzo6GmVlZeLX+fPnW6mVRERkrBp6+o4ByvRJ1hPVsWNHWFlZoaioSKO8qKgICoVC5z4KhaLR+vXfi4qK4ObmplHHx8enyW08efIkhg8fjqlTp2LevHm3rW9rawtbW9smn4eIiMzPxx9/jPz8fK1yzn8yH5L1RNnY2MDPzw9ZWVliWV1dHbKyshAYGKhzn8DAQI36AJCZmSnW9/LygkKh0KhTXl6OnJycBo/ZkBMnTmDYsGEICwvDkiVLmrQvERFZtri4OK0ANXHiRAYoMyPpYpuRkZEICwuDv78/Bg4ciNWrV6OiogKTJ08GAEyaNAldunRBfHw8AGDmzJkYOnQoVq5cieDgYGzfvh2HDh3C+vXrAQAymQyzZs3C4sWL4e3tDS8vL8yfPx/u7u4ICQkRz1tYWIiSkhIUFhaitrYWR44cAQD06NEDbdu2xfHjx/Hwww9DpVIhMjJSnE9lZWWFTp06td4NIiIikyIIAhYuXKhVzvBkniQNUWPHjkVxcTFiYmKgVqvh4+OD9PR0cWJ4YWGhxgsXg4KCsHXrVsybNw9z586Ft7c3UlJS0LdvX7HOnDlzUFFRgalTp6K0tBSDBw9Geno67OzsxDoxMTHYtGmT+Ll+XHrv3r146KGH8Omnn6K4uBiffPIJPvnkE7Fet27dUFBQ0FK3g4iITNjChQuha9UgBijzJek6UeaO60QREVkGXZPHZ8yYcdulccg46fv7m+/OIyIiaqbq6mq89dZbWuXsfbIMDFFERETN0NC6gAxQloMhioiIqIl0BaioqCguc2NhGKKIiIj0VF5ejlWrVmmVs/fJMjFEERER6YHDd3QrhigiIqLb0BWgYmJiIJPJJGgNGQuGKCIiogZcuHABH330kVY5e58IYIgiIiLSSVfvk0KhwAsvvCBBa8gYMUQRERHdQleAYu8T3YohioiI6P8dPXoUKSkpWuUMUKQLQxQRERF09z75+/sjODhYgtaQKWCIIiIii8fhO2oOhigiIrJYGRkZ+Omnn7TKGaBIHwxRRERkkXT1Pj3xxBN44IEHJGgNmSKGKCIisjgcviNDYIgiIiKL8eGHH+KPP/7QKmeAouZgiCIiIougq/dp8uTJ6Nq1qwStIXPAEEVERGZNEAQsXLhQq5y9T3SnGKKIiMjspKYCCQmASqXd+wQwQJFhMEQREZHZaShAzZo1C87OzhK0iMyRXOoGEBER3anUVCAo6Ob3yspKnQEqNjaWAYoMij1RRERk8hISgOxsIC8vDnl52ts5fEctgSGKiIhMXlTUzQB1q+joaNjY2EjQIrIEDFFERGTSSkpKkJf3rlY5e5+opTFEERGRydK19hPAAEWtgyGKiIhMkq4AFRMTA5lMJkFryBIxRBERkUn57bff8Mknn2iVs/eJWhtDFBERGa36RTOHDQP27tW99lOnTp3w8ssvS9A6snQMUUREZLTqly74+Wfgtdd0r/1EJBWGKCIiMlpRUcCOHd/B23uv1jYGKJIaQxQRERmtvLw4eHtrlvn5+eHxxx+XpkFE/8AQRURERknX03fsfSJjwhBFRERG5YMPPsCff/6pVc4ARcaGIYqIiIyGrt6nRx55BEFBQRK0hqhxDFFERGQUOHxHpoYhioiIJFG/BpSutZ8ABigyfnKpG0BERJYhNRUICrr5HWg4QE2cOJEBikyC5CFq3bp18PT0hJ2dHQICAnDgwIFG6+/cuRO9evWCnZ0d+vXrh127dmlsFwQBMTExcHNzg729PZRKJc6ePatRZ8mSJQgKCoKDgwNcXFx0nqewsBDBwcFwcHBA586d8frrr6OmpuaOrpWIyJLVL5yZkADU1dXpDFCxsbG45557JGgdUdNJGqKSk5MRGRmJ2NhYHD58GP3794dKpcKlS5d01t+/fz9CQ0MRERGBvLw8hISEICQkBMePHxfrLFu2DGvWrEFiYiJycnLg6OgIlUqFGzduiHWqqqrwzDPP4KWXXtJ5ntraWgQHB6Oqqgr79+/Hpk2bkJSUhJiYGMPeACIiCxIVBQQG3ux9WrRokdZ29j6RqZEJgiBIdfKAgAAMGDAAa9euBXDzXyYeHh6YMWMGoqKitOqPHTsWFRUVSEtLE8sGDRoEHx8fJCYmQhAEuLu7Y/bs2XjttdcAAGVlZXB1dUVSUhLGjRuncbykpCTMmjULpaWlGuXffPMNHn/8cfz5559wdXUFACQmJuKNN95AcXExbGxs9Lq+8vJyODs7o6ysDE5OTnrfFyIic6Vr8vgrr7yCu+66S4LWEOmm7+9vyXqiqqqqkJubC6VS+Xdj5HIolUpkZ2fr3Cc7O1ujPgCoVCqxfn5+PtRqtUYdZ2dnBAQENHjMhs7Tr18/MUDVn6e8vBwnTpzQ+zhERHTTtWvXGnz6jgGKTJVkT+ddvnwZtbW1GkEFAFxdXXH69Gmd+6jVap311Wq1uL2+rKE6+mjoPP88hy6VlZWorKwUP5eXl+t9TiIic6UrPAEcviPTxyUODCg+Pr7BvyyIiCyRrr8T586dizZt2kjQGiLDkmw4r2PHjrCyskJRUZFGeVFRERQKhc59FApFo/XrvzflmE05zz/PoUt0dDTKysrEr/Pnz+t9TiIic3L+/PkGh+8YoMhcSBaibGxs4Ofnh6ysLLGsrq4OWVlZCAwM1LlPYGCgRn0AyMzMFOt7eXlBoVBo1CkvL0dOTk6Dx2zoPD///LPGU4KZmZlwcnJCnz59GtzP1tYWTk5OGl9ERJYmLi4OGzZs0Crn8B2ZG0mH8yIjIxEWFgZ/f38MHDgQq1evRkVFBSZPngwAmDRpErp06YL4+HgAwMyZMzF06FCsXLkSwcHB2L59Ow4dOoT169cDAGQyGWbNmoXFixfD29sbXl5emD9/Ptzd3RESEiKet7CwECUlJSgsLERtbS2OHDkCAOjRowfatm2LRx99FH369MHEiROxbNkyqNVqzJs3D9OmTYOtrW2r3iMiIlOiq/cpJiYGMplMgtYQtSxJQ9TYsWNRXFyMmJgYqNVq+Pj4ID09XZzEXVhYCLn8786yoKAgbN26FfPmzcPcuXPh7e2NlJQU9O3bV6wzZ84cVFRUYOrUqSgtLcXgwYORnp4OOzs7sU5MTAw2bdokfvb19QUA7N27Fw899BCsrKyQlpaGl156CYGBgXB0dERYWBgWLlzY0reEiMgkHThwAN98841WOXufyJxJuk6UueM6UURkCfj0HZkbfX9/8+k8IiJqtoYmjxNZAoYoIiJqsh07duDUqVNa5QxQZEkYooiIqEl09T51794dEyZMkKA1RNJhiCIiIr1x+I7obwxRRESkU2oqkJAAREUBR44shK7nkBigyJIxRBERkU4JCUB2NpCXp937NHz4cAwePFiCVhEZjyaHKCsrK1y8eBGdO3fWKL9y5Qo6d+6M2tpagzWOiIikExWlO0Cx94nopiaHqIaWlaqsrISNjc0dN4iIiKTHtZ+Ibk/vELVmzRoAN1+t8uGHH6Jt27bittraWnz33Xfo1auX4VtIREStSleAmjRpEry8vCRoDZHx0jtErVq1CsDNnqjExERYWVmJ22xsbODp6YnExETDt5CIiFpFTU0NlixZolXO3ici3fQOUfn5+QCAYcOG4fPPP8ddd93VYo0iIqLWxeE7oqZr8pyovXv3tkQ7iIhIIroC1KxZs+Ds7CxBa4hMR5ND1HPPPdfo9g0bNjS7MURE1HrKysqwevVqrXL2PhHpp8kh6urVqxqfq6urcfz4cZSWluLhhx82WMOIiKjlcPiO6M41OUR98cUXWmV1dXV46aWX0L17d4M0ioiIWo6uAPXmm2/C2prrLxM1hUxoaOGnJjpz5gweeughXLx40RCHMwvl5eVwdnZGWVkZnJycpG4OEVm4c+fOYfPmzVrl7H0i0qTv72+D/bPjt99+Q01NjaEOR0REBsThOyLDa3KIioyM1PgsCAIuXryIr7/+GmFhYQZrGBERGYauAMXwRHTnmhyi8vLyND7L5XJ06tQJK1euvO2Te0RE1Hp++OEHZGVlaZUzQBEZBteJIiIyQ7p6n+RyOebPny9Ba4jMU7PnRF26dAlnzpwBAPTs2ROdO3c2WKOIiKhpUlOBhARg2DDAxobDd0Stockhqry8HNOmTcO2bdtQV1cHALCyssLYsWOxbt06rnBLRCSBhATgvvs+hI3NH1rbGKCIWoa8qTtMmTIFOTk5+Prrr1FaWorS0lKkpaXh0KFDeOGFF1qijUREdBsqVRzuvlszQPXp04cBiqgFNXmdKEdHR2RkZGDw4MEa5d9//z1GjBiBiooKgzbQlHGdKCJqDXz6jsiwWmydqA4dOugcsnN2dsZdd93V1MMREVEzce0nImk1eThv3rx5iIyMhFqtFsvUajVef/11PvVBRNTCUlOBoCDdAUqlUjFAEbWiJg/n+fr64tdff0VlZSW6du0KACgsLIStrS28vb016h4+fNhwLTVBHM4jIkMLChKgUi3UKmd4IjKcFhvOGz16NGQy2R01joiImi4uLg4qlXY5AxSRNAz2AmLSxp4oIjIUXcN3kydPFkcEiMhw9P393eQ5Uffccw+uXLmiVV5aWop77rmnqYcjIqJGVFZWNvj0HQMUkbSaPJxXUFCA2tparfLKykpcuHDBII0iIqKGn77z9eXwHZEx0DtEpaamiv+dkZGhscxBbW0tsrKy4OXlZdjWERFZKF0B6tVXX+XUACIjoneICgkJAQDIZDKEhYVpbGvTpg08PT2xcuVKgzaOiMjSFBcX47333tMq5+RxIuOjd4iqf0+el5cXDh48iI4dO7ZYo4iILE1qKpCXx8UziUxJk+dE5efnt0Q7iIgsmq4ANW/ePFhZWUnQGiLSR5ND1MKF2ou8/VNMTEyzG0NEZGmOHj2KlJQUrXL2PhEZvyaHqC+++ELjc3V1NfLz82FtbY3u3bszRBER6YnvviMybU0OUXl5eVpl5eXlCA8Px5NPPmmQRhERmbuG1n4iItPR5MU2dXFyckJcXFyzXkC8bt06eHp6ws7ODgEBAThw4ECj9Xfu3IlevXrBzs4O/fr1w65duzS2C4KAmJgYuLm5wd7eHkqlEmfPntWoU1JSgvHjx8PJyQkuLi6IiIjAtWvXNOpkZGRg0KBBaNeuHTp16oQxY8agoKCgyddHRPRPKSkpDFBEZsIgIQoAysrKUFZW1qR9kpOTERkZidjYWBw+fBj9+/eHSqXCpUuXdNbfv38/QkNDERERgby8PISEhCAkJATHjx8X6yxbtgxr1qxBYmIicnJy4OjoCJVKhRs3boh1xo8fjxMnTiAzMxNpaWn47rvvMHXqVHF7fn4+Ro8ejYcffhhHjhxBRkYGLl++jKeeeqqJd4WI6G9xcXE4evSoVjkDFJFpavK789asWaPxWRAEXLx4EZs3b8bQoUOxdetWvY8VEBCAAQMGYO3atQBuLqPg4eGBGTNmICoqSqv+2LFjUVFRgbS0NLFs0KBB8PHxQWJiIgRBgLu7O2bPno3XXnsNwM1w5+rqiqSkJIwbNw6nTp1Cnz59cPDgQfj7+wMA0tPT8dhjj+HChQtwd3fHp59+itDQUFRWVkIuv5kzv/rqK4wePRqVlZVo06aNXtfHd+cRUT32PhGZDn1/fzd5TtSqVas0PsvlcnTq1AlhYWGIjo7W+zhVVVXIzc3V2Ecul0OpVCI7O1vnPtnZ2YiMjNQoU6lU4pMt+fn5UKvVUCqV4nZnZ2cEBAQgOzsb48aNQ3Z2NlxcXMQABQBKpRJyuRw5OTl48skn4efnB7lcjo0bNyI8PBzXrl3D5s2boVQqGw1QlZWVqKysFD+Xl5frfT+IyDwtXrxY56uyGKCITJ9k60RdvnwZtbW1cHV11Sh3dXXF6dOnde6jVqt11ler1eL2+rLG6nTu3Flju7W1Ndq3by/W8fLywu7du/Hvf/8bL7zwAmpraxEYGKg1/+pW8fHxDT5tQ0SWR9ffB927d8eECRMkaA0RGVqz5kSVlpbi0KFDOHToEEpLSw3cJOmp1WpMmTIFYWFhOHjwIL799lvY2Njg6aefRmOjn9HR0eLcsLKyMpw/f74VW01ExqSh4TsGKCLz0aSeqIKCAkybNg0ZGRlimJDJZBgxYgTWrl0LT09PvY/VsWNHWFlZoaioSKO8qKgICoVC5z4KhaLR+vXfi4qK4ObmplHHx8dHrHPrxPWamhqUlJSI+69btw7Ozs5YtmyZWOeTTz6Bh4cHcnJyMGjQIJ3ts7W1ha2t7e0unYjMGNd+IrIcevdEnT9/HoMGDcKxY8ewaNEifPbZZ/jss8+wcOFCHD16FIGBgbhw4YLeJ7axsYGfnx+ysrLEsrq6OmRlZSEwMFDnPoGBgRr1ASAzM1Os7+XlBYVCoVGnvLwcOTk5Yp3AwECUlpYiNzdXrLNnzx7U1dUhICAAAHD9+nVxQnm9+lcv1L9DkIjoVroClEqlYoAiMlN6P50XERGBX3/9FRkZGbCzs9PY9r///Q8jRoyAt7c3PvzwQ71PnpycjLCwMPznP//BwIEDsXr1auzYsQOnT5+Gq6srJk2ahC5duiA+Ph7AzSUOhg4dioSEBAQHB2P79u146623cPjwYfTt2xcAsHTpUiQkJGDTpk3w8vLC/PnzcezYMZw8eVJs98iRI1FUVITExERUV1dj8uTJ8Pf3F58s3LNnD5RKJRYsWIDQ0FD89ddfmDt3Lk6fPo1Tp07B3t5er+vj03lElkEQBJ2vxGJ4IjJNBn86Lz09HcnJyVoBCgDs7e2xaNEijBs3rkmNHDt2LIqLixETEwO1Wg0fHx+kp6eLE8MLCws1eoSCgoKwdetWzJs3D3PnzoW3tzdSUlLEAAUAc+bMQUVFBaZOnYrS0lIMHjwY6enpGu3esmULpk+fjuHDh0Mul2PMmDEaSzc8/PDD2Lp1K5YtW4Zly5bBwcEBgYGBSE9P1ztAEZFl4PAdkeXSuyfK1tYWv/32G+6++26d2y9cuIAePXpoLGpp6dgTRWTedAWo5557Dh4eHhK0hogMxeA9UW5ubjh58mSDIer48eMNTggnIjInn39+HT//vFyrnL1PRJZF74nlISEheO2111BcXKy17dKlS3jjjTcQEhJiyLYRERmN1FQgKOhm7xMDFBEBTRjOu3r1KgICAqBWqzFhwgT06tULgiDg1KlT2Lp1KxQKBX766Se0b9++pdtsMjicR2Q+goIAlUp7+G758tdw//2O2L9fgkYRUYsw+HDeXXfdhZycHMydOxfbt28XF9l0cXHBs88+i7feeosBiojM0vnz56FSbdAq9/WNxf33Azpe9UlEFqDJLyAGbj7OWz+s16lTJ8hkMoM3zBywJ4rI9PHpOyLL02IvIAZurlJ+6/vniIjMja4ANX/+fK3FeInIMjUrRBERmbPs7Gzs3r1bq5y9T0T0TwxRRET/wOE7ItIXQxQR0f/TFaAYnoioIQxRRGTxPv74Y+Tn52uVM0ARUWP0ClH/fK/c7bzyyivNbgwRUWvj8B0RNZdeSxx4eXnpdzCZDOfOnbvjRpkLLnFAZNw4fEdEuhh0iQNd3dxERKaKvU9EZAjNnhNVVVWF/Px8dO/eHdbWnFpFRKZBV4Dq2bMnxo0bJ0FriMiUNXnFuOvXryMiIgIODg647777UFhYCACYMWMGEhISDN5AIiJDaWj4jgGKiJqjySEqOjoaR48exb59+2BnZyeWK5VKJCcnG7RxRESGEBcXx/lPRGRwTR6HS0lJQXJyMgYNGqTxzrz77rsPv/32m0EbR0R0p3SFp+DgYPj7+0vQGiIyJ00OUcXFxTrfm1dRUcEXEROR0airq8OiRYu0ytn7RESG0uQQ5e/vj6+//hozZswAADE4ffjhhwgMDDRs64iImoFP3xFRa2hyiHrrrbcwcuRInDx5EjU1NXjnnXdw8uRJ7N+/H99++21LtJGISC+pqUBenq6n76Zi3Dg3CVpEROasyRPLBw8ejCNHjqCmpgb9+vXD7t270blzZ2RnZ8PPz68l2khEdFt//fWXzgB18+k7BigiMjy9Viyn5uGK5UStg8N3RGRIBl2xvLy8XO8TMywQUWtpaPhuzpw5sLe3l6BFRGRJ9ApRLi4uej95V1tbe0cNIiLSR0FBAfLyNmmVs/eJiFqLXiFq79694n8XFBQgKioK4eHh4tN42dnZ2LRpE+Lj41umlURE/8DhOyIyBk2eEzV8+HA8//zzCA0N1SjfunUr1q9fj3379hmyfSaNc6KIDE9XgIqJieE6dURkMPr+/m7y03nZ2dk6V/r19/fHgQMHmno4IiK9fP/99w2+uoUBioik0OQQ5eHhgQ8++ECr/MMPP4SHh4dBGkVE9E9xcXHYs2ePVjmH74hISk1ebHPVqlUYM2YMvvnmGwQEBAAADhw4gLNnz+Kzzz4zeAOJyLLxxcFEZKyatU7UhQsX8N577+H06dMAgN69e+PFF19kT9QtOCeKqPk++ugjXLhwQaucAYqIWpq+v7+52GYLYogiah5dvU+Ojo547bXXJGgNEVkagy62eavS0lJ89NFHOHXqFADgvvvuw3PPPQdnZ+fmtZaILF5qKpCQAKhUHL4jItPQ5Inlhw4dQvfu3bFq1SqUlJSgpKQEb7/9Nrp3747Dhw+3RBuJyALk5cUxQBGRSWnycN6DDz6IHj164IMPPoC19c2OrJqaGjz//PM4d+4cvvvuuxZpqCnicB6RfnQN3/n7+yM4OFiC1hCRpWuxOVH29vbIy8tDr169NMpPnjwJf39/XL9+vXktNkMMUUS3x6fviMjYtNicKCcnJxQWFmqFqPPnz6Ndu3ZNbykRWSS+uoWITF2TQ9TYsWMRERGBFStWICgoCADw448/4vXXX9d6FQwRkS66AtQzzzyDPn36SNAaIqLmafLE8hUrVuCpp57CpEmT4OnpCU9PT4SHh+Ppp5/G0qVLm9yAdevWwdPTE3Z2dggICLjtq2N27tyJXr16wc7ODv369cOuXbs0tguCgJiYGLi5ucHe3h5KpRJnz57VqFNSUoLx48fDyckJLi4uiIiIwLVr17SOs2LFCtx7772wtbVFly5dsGTJkiZfHxH9raampsHhOwYoIjI1zV4n6vr16/jtt98AAN27d4eDg0OTj5GcnIxJkyYhMTERAQEBWL16NXbu3IkzZ86gc+fOWvX379+PIUOGID4+Ho8//ji2bt2KpUuX4vDhw+jbty8AYOnSpYiPj8emTZvg5eWF+fPn4+eff8bJkydhZ2cHABg5ciQuXryI//znP6iursbkyZMxYMAAbN26VTzXK6+8gt27d2PZsmXo16+f+CTiI488ovf1cU4U0d84fEdEpsIkFtsMCAjAgAEDsHbtWgBAXV0dPDw8MGPGDERFRWnVHzt2LCoqKpCWliaWDRo0CD4+PkhMTIQgCHB3d8fs2bPFRfnKysrg6uqKpKQkjBs3DqdOnUKfPn1w8OBB8UXK6enpeOyxx3DhwgW4u7vj1KlTuP/++3H8+HH07Nmz2dfHEEV0k64ANX36dHTo0EGC1hARNc7gE8ufe+45vept2LBBr3pVVVXIzc1FdHS0WCaXy6FUKpGdna1zn+zsbERGRmqUqVQqpKSkAADy8/OhVquhVCrF7c7OzggICEB2djbGjRuH7OxsuLi4iAEKAJRKJeRyOXJycvDkk0/iq6++wj333IO0tDSMGDECgiBAqVRi2bJlaN++fYPXVFlZicrKSvFzeXm5XveCyFxdvXoVa9as0Spn7xMRmQO9Q1RSUhK6desGX19fGKLz6vLly6itrYWrq6tGuaurq/hOvlup1Wqd9dVqtbi9vqyxOrcOFVpbW6N9+/ZinXPnzuH333/Hzp078fHHH6O2thavvvoqnn76aZ1vkq8XHx/f4JAFkaXh8B0RmTu9Q9RLL72Ebdu2IT8/H5MnT8aECRMa7ZUxZXV1daisrMTHH3+Me++9F8DNl6H6+fnhzJkzDQ7xRUdHa/SUlZeX86XMZHFSU2+uPn6rHTvm4sSJNhK0iIioZej9dN66detw8eJFzJkzB1999RU8PDzw73//GxkZGc3qmerYsSOsrKxQVFSkUV5UVASFQqFzH4VC0Wj9+u+3q3Pp0iWN7TU1NSgpKRHruLm5wdraWgxQANC7d28AQGFhYYPXZGtrCycnJ40vIkty+vRpnQFqwYJY1NUxQBGReWnSEge2trYIDQ1FZmYmTp48ifvuuw8vv/wyPD09tZYIuB0bGxv4+fkhKytLLKurq0NWVhYCAwN17hMYGKhRHwAyMzPF+l5eXlAoFBp1ysvLkZOTI9YJDAxEaWkpcnNzxTp79uxBXV0dAgICAAD/+te/UFNTIz59CAC//PILAKBbt25Nuk4iSxEXF4fk5GStcl/fWAQGAs1YAYWIyKg1ebHNenK5HDKZDIIgoLa2tlnHiIyMRFhYGPz9/TFw4ECsXr0aFRUVmDx5MgBg0qRJ6NKlC+Lj4wEAM2fOxNChQ7Fy5UoEBwdj+/btOHToENavXw8AkMlkmDVrFhYvXgxvb29xiQN3d3eEhIQAuNmjNGLECEyZMgWJiYmorq7G9OnTMW7cOLi7uwO4OdH8gQcewHPPPYfVq1ejrq4O06ZNwyOPPKLRO0VEN+ma/xQTEwOZTAYAGDWqtVtERNTymhSiKisr8fnnn2PDhg344Ycf8Pjjj2Pt2rUYMWIE5PImr9uJsWPHori4GDExMVCr1fDx8UF6ero4MbywsFDjuEFBQdi6dSvmzZuHuXPnwtvbGykpKeIaUQAwZ84cVFRUYOrUqSgtLcXgwYORnp4urhEFAFu2bMH06dMxfPhwyOVyjBkzRuMJIrlcjq+++gozZszAkCFD4OjoiJEjR2LlypVNvkYic7Z7926dT9Ny8jgRWQK914l6+eWXsX37dnh4eOC5557D+PHj0bFjx5Zun0njOlFkzvj0HRGZK4MvtimXy9G1a1f4+vqKXfS6fP75501vrZliiCJzpStALVgQi549gQZWKCEiMhkGX2xz0qRJjYYnIjJ/77zzDkpLS7XK6yeP63jRABGR2ZL0tS/mjj1RZE509T61b98eM2bMkKA1REQtx+A9UURkuXQFKM59IiJLxxBFRA3i5HEiooYxRBGRTroCVFBQEB555BEJWkNEZHwYoohIgyAIWLhwoVY5e5+IiDQxRBGRiMN3RET6Y4giIgC6A1RoaChfdURE1ACGKCILV1VVJb6f8p/Y+0RE1DiGKCILxuE7IqLmY4gislC6AtTMmTPh4uLS+o0hIjJBDFFEFubSpUt4//33tcrZ+0RE1DQMUUQWpKHhu4yMWDBDERE1DUMUkYXQFaD6938Ty5ZZ88XBRETNwBBFZOZyc3ORlpamVV4/fBcS0soNIiIyEwxRRGaMT98REbUchigiM6UrQDE8EREZDkMUkZlZvToZZWWntcoZoIiIDIshisiMcPiOiKj1MEQRmQl9hu9SU4GEBCAqChg1qrVaRkRknhiiiExcU3qfEhKA7Oyb3xmiiIjujFzqBhBR8+kKUHfddVeDw3dRUUBgILguFBGRAbAnishENefpu1Gj2ANFRGQoDFFEJoaTx4mIjANDFJEJ0RWg/vWvf0GpVErQGiIiy8YQRWQCBEHAwoULtcrZ+0REJB2GKCIj19jwHZcsICKSDkMUkRHTFaAmTJiA7t27A+CSBUREUmKIIjJC169fx/Lly7XKbx2+i4r6uyeKiIhaF0MUkZFpytN3XLKAiEg6DFFERkRXgHr11Vfh5OQkQWuIiKgxDFFERqCwsBAbN27UKufTd0RExoshikhiXDyTiMg08d15RBLSFaB2754PX18GKCIiY8eeKCIJ/PDDD8jKytIqz8iI5ZIFREQmgiGKqJU1Nnzn68slC4iITIVRDOetW7cOnp6esLOzQ0BAAA4cONBo/Z07d6JXr16ws7NDv379sGvXLo3tgiAgJiYGbm5usLe3h1KpxNmzZzXqlJSUYPz48XBycoKLiwsiIiJw7do1nef79ddf0a5dO7i4uNzRdRLpClCxsbHi/KdRo4D9+9kLRURkCiQPUcnJyYiMjERsbCwOHz6M/v37Q6VS4dKlSzrr79+/H6GhoYiIiEBeXh5CQkIQEhKC48ePi3WWLVuGNWvWIDExETk5OXB0dIRKpcKNGzfEOuPHj8eJEyeQmZmJtLQ0fPfdd5g6darW+aqrqxEaGooHH3zQ8BdPFmP9+vU6A1RGBuc+ERGZKpkgCIKUDQgICMCAAQOwdu1aAEBdXR08PDwwY8YMROkY0xg7diwqKiqQlpYmlg0aNAg+Pj5ITEyEIAhwd3fH7Nmz8dprrwEAysrK4OrqiqSkJIwbNw6nTp1Cnz59cPDgQfj7+wMA0tPT8dhjj+HChQtwd3cXj/3GG2/gzz//xPDhwzFr1iyUlpbqfW3l5eVwdnZGWVkZ1/mxYA0N32VkxPKdd0RERkjf39+S9kRVVVUhNzcXSqVSLJPL5VAqlcjOzta5T3Z2tkZ9AFCpVGL9/Px8qNVqjTrOzs4ICAgQ62RnZ8PFxUUMUACgVCohl8uRk5Mjlu3Zswc7d+7EunXr7vxiySI1NnzHYTsiItMm6cTyy5cvo7a2Fq6urhrlrq6uOH36tM591Gq1zvpqtVrcXl/WWJ3OnTtrbLe2tkb79u3FOleuXEF4eDg++eQTvXuRKisrUVlZKX4uLy/Xaz8yP1z7iYjI/Ek+J8pYTZkyBc8++yyGDBmi9z7x8fFwdnYWvzw8PFqwhWSsdAUohULBAEVEZGYkDVEdO3aElZUVioqKNMqLioqgUCh07qNQKBqtX//9dnVunbheU1ODkpISsc6ePXuwYsUKWFtbw9raGhERESgrK4O1tTU2bNigs23R0dEoKysTv86fP6/PbSAzkZra8PDdCy+8IEGLiIioJUkaomxsbODn56ex6GBdXR2ysrIQGBioc5/AwECtRQozMzPF+l5eXlAoFBp1ysvLkZOTI9YJDAxEaWkpcnNzxTp79uxBXV0dAgICANycN3XkyBHxa+HChWjXrh2OHDmCJ598UmfbbG1t4eTkpPFFliEuLg55eboDFBERmSfJF9uMjIxEWFgY/P39MXDgQKxevRoVFRWYPHkyAGDSpEno0qUL4uPjAQAzZ87E0KFDsXLlSgQHB2P79u04dOgQ1q9fDwCQyWSYNWsWFi9eDG9vb3h5eWH+/Plwd3dHSEgIAKB3794YMWIEpkyZgsTERFRXV2P69OkYN26c+GRe7969Ndp56NAhyOVy9O3bt5XuDJkKXb1Pw4YNa9JQMBERmR7JQ9TYsWNRXFyMmJgYqNVq+Pj4ID09XZwYXlhYCLn87w6zoKAgbN26FfPmzcPcuXPh7e2NlJQUjXAzZ84cVFRUYOrUqSgtLcXgwYORnp4OOzs7sc6WLVswffp0DB8+HHK5HGPGjMGaNWta78LJ5NXV1WHRokVa5ex9IiKyDJKvE2XOuE6U+eLTd0RE5kvf39+S90QRmRpdASo8PBzdunWToDVERCQVhigiPf311194++23tcrZ+0REZJkYooj0wOE7IiK6FUMU0W3oClB9+76GMWMcJWgNEREZC4YoogacO3cOmzdv1ipn7xMREQEMUUQ6cfiOiIhuhyGK6Ba6AlRGRgz275dJ0BoiIjJWDFFE/+/bb7/Fvn37tMq3b4/F0qWt3x4iIjJuDFFEaHj4bsGCWAQGAqNGtXKDiIjI6DFEkcXTFaBiY2ORmgoEBgJRURI0ioiIjB5DFFms9evX4+LFi1rl9ZPHR41iDxQRETWMIYosEp++IyKiO8UQRRYlNRXIy9M9fEdERNQUDFFkMdj7REREhiSXugFErUFXgDp5sh+qqhigiIioedgTRWavoafvGpKaCiQk3HwqjxPLiYioIQxRZLaaO3yXkABkZ9/8zhBFREQNYYgis6QrQI0ePRo+Pj633Tcq6u+eKCIiooYwRJFZqa2txeLFi7XKmzJ5nOtDERGRPhiiyGzw6TsiImpNDFFk8hpa++mll15C586dJWgRERFZAoYoMmnl5eXIy1ulVc7eJyIiamkMUWSyOHxHRERSYogik6QrQEVHR8PGxkaC1hARkSViiCKTcu7cOWzevFmrnL1PRETU2hiiyGRw+I6IiIwJQxSZBF0BKiYmBjKZTKOMr2whIqLWwhBFRu27777D3r17tcob6n3iK1uIiKi1MESR0WrO8B1f2UJERK2FIYqMkq4Apc/cJ76yhYiIWgtDFBmVNWvW4OrVq1rlnDxORETGRi51A4jqxcXFaQWoq1ddkJHBAEVERMaHIYqMgq7hO1/fWBw4MJPzm4iIyChxOI8kdbvJ45zfRERExoohiiSjK0D5+/sjODhYgtYQERE1DUMUSaK5T98REREZC4YoalUNDd9VVTFAERGRaTGKieXr1q2Dp6cn7OzsEBAQgAMHDjRaf+fOnejVqxfs7OzQr18/7Nq1S2O7IAiIiYmBm5sb7O3toVQqcfbsWY06JSUlGD9+PJycnODi4oKIiAhcu3ZN3L5v3z6MHj0abm5ucHR0hI+PD7Zs2WK4i7ZAugLUPfeMQ2xsLJYskaBBREREd0DyEJWcnIzIyEjExsbi8OHD6N+/P1QqFS5duqSz/v79+xEaGoqIiAjk5eUhJCQEISEhOH78uFhn2bJlWLNmDRITE5GTkwNHR0eoVCrcuHFDrDN+/HicOHECmZmZSEtLw3fffYepU6dqnOf+++/HZ599hmPHjmHy5MmYNGkS0tLSWu5mmKnq6uoGh+8mTuwpQYuIiIjunEwQBEHKBgQEBGDAgAFYu3YtAKCurg4eHh6YMWMGonQ82z527FhUVFRohJlBgwbBx8cHiYmJEAQB7u7umD17Nl577TUAQFlZGVxdXZGUlIRx48bh1KlT6NOnDw4ePAh/f38AQHp6Oh577DFcuHAB7u7uOtsaHBwMV1dXbNiwQa9rKy8vh7OzM8rKyuDk5NSk+2IumvPqFiIiIinp+/tb0p6oqqoq5ObmQqlUimVyuRxKpRLZ2dk698nOztaoDwAqlUqsn5+fD7VarVHH2dkZAQEBYp3s7Gy4uLiIAQoAlEol5HI5cnJyGmxvWVkZ2rdv3/QLtVC6AlSfPjMZoIiIyCxIOrH88uXLqK2thaurq0a5q6srTp8+rXMftVqts75arRa315c1Vqdz584a262trdG+fXuxzq127NiBgwcP4j//+U+D11NZWYnKykrxc3l5eYN1zdnVq1exZs0arfIFC2IRGAg884wEjSIiIjIwPp2nh71792Ly5Mn44IMPcN999zVYLz4+vsHhK0vR0PX7+t4MUFx9nIiIzIWkIapjx46wsrJCUVGRRnlRUREUCoXOfRQKRaP1678XFRXBzc1No46Pj49Y59aJ6zU1NSgpKdE677fffosnnngCq1atwqRJkxq9nujoaERGRoqfy8vL4eHh0eg+5iI1FcjL0w5Q/fu/iZCQm3/MuPo4ERGZE0nnRNnY2MDPzw9ZWVliWV1dHbKyshAYGKhzn8DAQI36AJCZmSnW9/LygkKh0KhTXl6OnJwcsU5gYCBKS0uRm5sr1tmzZw/q6uoQEBAglu3btw/BwcFYunSpxpN7DbG1tYWTk5PGlyUoKCjQGaAWLIjFsmXs7CQiIvMk+W+4yMhIhIWFwd/fHwMHDsTq1atRUVGByZMnAwAmTZqELl26ID4+HgAwc+ZMDB06FCtXrkRwcDC2b9+OQ4cOYf369QAAmUyGWbNmYfHixfD29oaXlxfmz58Pd3d3hISEAAB69+6NESNGYMqUKUhMTER1dTWmT5+OcePGiU/m7d27F48//jhmzpyJMWPGiHOlbGxsOLn8HxpbPJPDd0REZM4kD1Fjx45FcXExYmJioFar4ePjg/T0dHFieGFhIeTyvzvMgoKCsHXrVsybNw9z586Ft7c3UlJS0LdvX7HOnDlzUFFRgalTp6K0tBSDBw9Geno67OzsxDpbtmzB9OnTMXz4cMjlcowZM0ZjMvSmTZtw/fp1xMfHiwEOAIYOHYp9+/a14B0xHboCVP3k8f37JWgQERFRK5J8nShzZq7rRO3fvx+ZmZla5b6+sUhIuNn7xPlPRERkqvT9/S15TxSZFl29T23btsXs2bMBMDwREZHlYIgivTX06hYiIiJLxBBFt/X555/j559/1ipngCIiIkvGEEWN0tX75Ovri1EctyMiIgsn6TpRZNx0BaiMjFgGKCIiIrAninRYtmwZ/ve//2mVZ2TEct0nIiKi/8cQRRp09T49+eSTuP/++8EpUERERH/jcB4BAARBaPDpu/vvvx+pqUBQ0M135BERERF7oixeQy8OBjSfvktIALKzb37nlCgiIiL2RFm0hgLUe++9iIwMzbG7qCjwXXhERET/wJ4oC1VbW4u8vMVa5b6+sejeXTssjRrFHigiIqJ/YoiyQLrmPgF/D98xLBEREd0eQ5SF0RWgoqKiYGtrK0FriIiITBfnRFmIioqKBhfPZIAiIiJqOvZEWQBd4alNGyekpb3KieJERETNxBBl5nQFqJiYGMhkMsydK0GDiIiIzARDlBlKTQXWrLmCBx9cq7XN1zcWMpkEjSIiIjIzDFFmKC8vDg8+qFnm7++P4OBgaRpERERkhhiizEhDi2fG8qV3REREBsen80xc/TvtkpOLGaCIiIhaEXuiTFxCAtC9+yc4ffo3jfJPPx2Ddu36ghmKiIioZbAnykS9+SbQrh2gUsWhRw/NAOXrG4t27fpy+QIiIqIWxJ4oE7VlSzFee+09jbKSkq4YPnwy33NHRETUChiiTNDRo0cxeXKKRtnMmTPh4uIiSXuIiIgsEUOUCUpJSdH4zMnjRERErY8hygQ9+OCD+P777/HYY49hwIABUjeHiIjIIjFEmaBr1x5GRsbD8PWVuiVERESWi0/nmaCEBCA7++Z3IiIikgZDlAmKigICA8ElDIiIiCTE4TwTxCUMiIiIpMeeKCIiIqJmYIgiIiIiagaGKCIiIqJmYIgiIiIiagaGKCIiIqJmYIgiIiIiagaGKCIiIqJmYIgiIiIiagajCFHr1q2Dp6cn7OzsEBAQgAMHDjRaf+fOnejVqxfs7OzQr18/7Nq1S2O7IAiIiYmBm5sb7O3toVQqcfbsWY06JSUlGD9+PJycnODi4oKIiAhcu3ZNo86xY8fw4IMPws7ODh4eHli2bJlhLpiIiIhMnuQhKjk5GZGRkYiNjcXhw4fRv39/qFQqXLp0SWf9/fv3IzQ0FBEREcjLy0NISAhCQkJw/Phxsc6yZcuwZs0aJCYmIicnB46OjlCpVLhx44ZYZ/z48Thx4gQyMzORlpaG7777DlOnThW3l5eX49FHH0W3bt2Qm5uL5cuXY8GCBVi/fn3L3QwiIiIyHYLEBg4cKEybNk38XFtbK7i7uwvx8fE66//73/8WgoODNcoCAgKEF154QRAEQairqxMUCoWwfPlycXtpaalga2srbNu2TRAEQTh58qQAQDh48KBY55tvvhFkMpnwxx9/CIIgCO+9955w1113CZWVlWKdN954Q+jZs6fe11ZWViYAEMrKyvTeh4iIiKSl7+9vSXuiqqqqkJubC6VSKZbJ5XIolUpkZ2fr3Cc7O1ujPgCoVCqxfn5+PtRqtUYdZ2dnBAQEiHWys7Ph4uICf39/sY5SqYRcLkdOTo5YZ8iQIbCxsdE4z5kzZ3D16lWdbausrER5ebnGFxEREZknSUPU5cuXUVtbC1dXV41yV1dXqNVqnfuo1epG69d/v12dzp07a2y3trZG+/btNeroOsY/z3Gr+Ph4ODs7i18eHh66L5yIiIhMnrXUDTAn0dHRiIyMFD+XlZWha9eu7JEiIiIyIfW/twVBaLSepCGqY8eOsLKyQlFRkUZ5UVERFAqFzn0UCkWj9eu/FxUVwc3NTaOOj4+PWOfWies1NTUoKSnROI6u8/zzHLeytbWFra2t+Ln+h8AeKSIiItPz119/wdnZucHtkoYoGxsb+Pn5ISsrCyEhIQCAuro6ZGVlYfr06Tr3CQwMRFZWFmbNmiWWZWZmIjAwEADg5eUFhUKBrKwsMTSVl5cjJycHL730kniM0tJS5Obmws/PDwCwZ88e1NXVISAgQKzz5ptvorq6Gm3atBHP07NnT9x11116XZ+7uzvOnz+Pdu3aQSaTNenemIPy8nJ4eHjg/PnzcHJykro5kuA94D0AeA/q8T7wHgCmcQ8EQcBff/0Fd3f321aU1Pbt2wVbW1shKSlJOHnypDB16lTBxcVFUKvVgiAIwsSJE4WoqCix/o8//ihYW1sLK1asEE6dOiXExsYKbdq0EX7++WexTkJCguDi4iJ8+eWXwrFjx4TRo0cLXl5ewv/+9z+xzogRIwRfX18hJydH+OGHHwRvb28hNDRU3F5aWiq4uroKEydOFI4fPy5s375dcHBwEP7zn/+0wl0xD3w6kfdAEHgPBIH3oB7vA++BIJjXPZB8TtTYsWNRXFyMmJgYqNVq+Pj4ID09XZzEXVhYCLn87/nvQUFB2Lp1K+bNm4e5c+fC29sbKSkp6Nu3r1hnzpw5qKiowNSpU1FaWorBgwcjPT0ddnZ2Yp0tW7Zg+vTpGD58OORyOcaMGYM1a9aI252dnbF7925MmzYNfn5+6NixI2JiYjTWkiIiIiLLJROE28yaImqm8vJyODs7o6yszGi7bFsa7wHvAcB7UI/3gfcAMK97IPmK5WS+bG1tERsbqzHZ3tLwHvAeALwH9XgfeA8A87oH7IkiIiIiagb2RBERERE1A0MUERERUTMwRBERERE1A0MUERERUTMwRJFo3bp18PT0hJ2dHQICAnDgwIFG6+/cuRO9evWCnZ0d+vXrh127dmlsFwQBMTExcHNzg729PZRKJc6ePatRp6SkBOPHj4eTkxNcXFwQERGBa9euidv37duH0aNHw83NDY6OjvDx8cGWLVsMd9G3MMZ78E+//vor2rVrBxcXlzu6zsYY6z0QBAErVqzAvffeC1tbW3Tp0gVLliwxzEXfwljvQUZGBgYNGoR27dqhU6dOGDNmDAoKCgxyzbeS4h4sWbIEQUFBcHBwaPDPeGFhIYKDg+Hg4IDOnTvj9ddfR01NzR1da2OM8T4cPXoUoaGh8PDwgL29PXr37o133nnnjq+1IcZ4D/7pypUruPvuuyGTyVBaWtqcS2w+adb4JGOzfft2wcbGRtiwYYNw4sQJYcqUKYKLi4tQVFSks/6PP/4oWFlZCcuWLRNOnjwpzJs3T+fK8c7OzkJKSopw9OhRYdSoUTpXju/fv7/w008/Cd9//73Qo0cPjZXjlyxZIsybN0/48ccfhV9//VVYvXq1IJfLha+++spi7kG9qqoqwd/fXxg5cqTg7Oxs8OsXBOO+BzNmzBB69uwpfPnll8K5c+eEQ4cOCbt377aYe3Du3DnB1tZWiI6OFn799VchNzdXGDJkiODr62s29yAmJkZ4++23hcjISJ1/xmtqaoS+ffsKSqVSyMvLE3bt2iV07NhRiI6ONvg9EATjvQ8fffSR8Morrwj79u0TfvvtN2Hz5s2Cvb298O6771rMPfin0aNHCyNHjhQACFevXjXEZeuNIYoEQRCEgQMHCtOmTRM/19bWCu7u7kJ8fLzO+v/+97+F4OBgjbKAgADhhRdeEARBEOrq6gSFQiEsX75c3F5aWirY2toK27ZtEwRBEE6ePCkAEA4ePCjW+eabbwSZTCb88ccfDbb1scceEyZPntz0i7wNY78Hc+bMESZMmCBs3LixxUKUsd6DkydPCtbW1sLp06cNc6GNMNZ7sHPnTsHa2lqora0V66SmpgoymUyoqqq6w6vWJMU9+KeG/ozv2rVLkMvl4mvBBEEQ3n//fcHJyUmorKxs0jXqw1jvgy4vv/yyMGzYML3qNoWx34P33ntPGDp0qJCVlSVJiOJwHqGqqgq5ublQKpVimVwuh1KpRHZ2ts59srOzNeoDgEqlEuvn5+dDrVZr1HF2dkZAQIBYJzs7Gy4uLvD39xfrKJVKyOVy5OTkNNjesrIytG/fvukX2ghjvwd79uzBzp07sW7duju/2AYY8z346quvcM899yAtLQ1eXl7w9PTE888/j5KSEsNc/P8z5nvg5+cHuVyOjRs3ora2FmVlZdi8eTOUSqX4knRDkOoe6CM7Oxv9+vUTXwtWf57y8nKcOHFC7+Pow5jvgy7m9Peivk6ePImFCxfi448/1ng9XGtiiCJcvnwZtbW1Gn8xAYCrqyvUarXOfdRqdaP167/frk7nzp01tltbW6N9+/YNnnfHjh04ePAgJk+erOfV6ceY78GVK1cQHh6OpKSkFn1FgjHfg3PnzuH333/Hzp078fHHHyMpKQm5ubl4+umnm3m1uhnzPfDy8sLu3bsxd+5c2NrawsXFBRcuXMCOHTuaebW6SXUP9NHQef55DkMx5vtwq/379yM5Odng73Y15ntQWVmJ0NBQLF++HF27dtV7P0NjiCKTsXfvXkyePBkffPAB7rvvPqmb02qmTJmCZ599FkOGDJG6KZKpq6tDZWUlPv74Yzz44IN46KGH8NFHH2Hv3r04c+aM1M1rFWq1GlOmTEFYWBgOHjyIb7/9FjY2Nnj66ach8MUTFuv48eMYPXo0YmNj8eijj0rdnFYTHR2N3r17Y8KECZK2gyGK0LFjR1hZWaGoqEijvKioCAqFQuc+CoWi0fr1329X59KlSxrba2pqUFJSonXeb7/9Fk888QRWrVqFSZMmNfEKb8+Y78GePXuwYsUKWFtbw9raGhERESgrK4O1tTU2bNjQzCvWZsz3wM3NDdbW1rj33nvFOr179wZw82ktQzHme7Bu3To4Oztj2bJl8PX1xZAhQ/DJJ58gKyur0eHvppLqHuijofP88xyGYsz3od7JkycxfPhwTJ06FfPmzWvy/rdjzPegfopD/d+Lw4cPF9scGxur93HuFEMUwcbGBn5+fsjKyhLL6urqkJWVhcDAQJ37BAYGatQHgMzMTLG+l5cXFAqFRp3y8nLk5OSIdQIDA1FaWorc3Fyxzp49e1BXV4eAgACxbN++fQgODsbSpUsN3l1dz5jvQXZ2No4cOSJ+LVy4EO3atcORI0fw5JNPGuYGwLjvwb/+9S/U1NTgt99+E+v88ssvAIBu3brdyWVrMOZ7cP36da15H1ZWVmIbDUWqe6CPwMBA/PzzzxqBMzMzE05OTujTp4/ex9GHMd8HADhx4gSGDRuGsLCwFlvqw5jvwWeffYajR4+Kfy9++OGHAIDvv/8e06ZN0/s4d6xVp7GT0dq+fbtga2srJCUlCSdPnhSmTp0quLi4iE/BTJw4UYiKihLr//jjj4K1tbWwYsUK4dSpU0JsbKzOx1hdXFyEL7/8Ujh27JgwevRonY91+/r6Cjk5OcIPP/wgeHt7azzWvWfPHsHBwUGIjo4WLl68KH5duXLFYu7BrVry6TxjvQe1tbXCAw88IAwZMkQ4fPiwcOjQISEgIEB45JFHLOYeZGVlCTKZTIiLixN++eUXITc3V1CpVEK3bt2E69evm8U9+P3334W8vDwhLi5OaNu2rZCXlyfk5eUJf/31lyAIfy9x8OijjwpHjhwR0tPThU6dOrXoEgfGeB9+/vlnoVOnTsKECRM0/l68dOmSxdyDW+3du5dLHJC03n33XaFr166CjY2NMHDgQOGnn34Stw0dOlQICwvTqL9jxw7h3nvvFWxsbIT77rtP+PrrrzW219XVCfPnzxdcXV0FW1tbYfjw4cKZM2c06ly5ckUIDQ0V2rZtKzg5OQmTJ0/W+J8kLCxMAKD1NXToUINfvyAY5z24VUuGKEEw3nvwxx9/CE899ZTQtm1bwdXVVQgPD2+RMC0IxnsPtm3bJvj6+gqOjo5Cp06dhFGjRgmnTp0y7MX/PynuQUP/v+/du1esU1BQIIwcOVKwt7cXOnbsKMyePVuorq42+PXXM8b7EBsbq3N7t27dWuIWGOU9uJVUIUomCJyRSERERNRUnBNFRERE1AwMUURERETNwBBFRERE1AwMUURERETNwBBFRERE1AwMUURERETNwBBFRERE1AwMUURERETNwBBFRBZBrVZjxowZuOeee2BrawsPDw888cQTWu/5EgQBI0eOhEwmQ0pKilheUFAAmUyGI0eOaB37oYcewqxZs8TPn3/+OR599FF06NChwX1u3LiBadOmoUOHDmjbti3GjBmj9VJWIjJuDFFEZPYKCgrg5+eHPXv2YPny5fj555+Rnp6OYcOGab2sdPXq1ZDJZHd0voqKCgwePBhLly5tsM6rr76Kr776Cjt37sS3336LP//8E0899dQdnZeIWpe11A0gImppL7/8MmQyGQ4cOABHR0ex/L777sNzzz0nfj5y5AhWrlyJQ4cOwc3NrdnnmzhxIoCb4U2XsrIyfPTRR9i6dSsefvhhAMDGjRvRu3dv/PTTTxg0aFCzz01ErYc9UURk1kpKSpCeno5p06ZpBKh6Li4uAIDr16/j2Wefxbp166BQKFq0Tbm5uaiuroZSqRTLevXqha5duyI7O7tFz01EhsOeKCIya7/++isEQUCvXr0arffqq68iKCgIo0ePbrReUFAQ5HLNf3/+73//g4+Pj95tUqvVsLGxEQNcPVdXV6jVar2PQ0TSYogiIrMmCMJt66SmpmLPnj3Iy8u7bd3k5GT07t1bo2z8+PHNbh8RmS6GKCIya97e3pDJZDh9+nSDdfbs2YPffvtNq2dozJgxePDBB7Fv3z6xzMPDAz169NCoZ29v36Q2KRQKVFVVobS0VOOcRUVFLT6USESGwzlRRGTW2rdvD5VKhXXr1qGiokJre2lpKaKionDs2DEcOXJE/AKAVatWYePGjQZvk5+fH9q0aaOxvMKZM2dQWFiIwMBAg5+PiFoGe6KIyOytW7cO//rXvzBw4EAsXLgQ999/P2pqapCZmYn3338fp06d0tkD1LVrV3h5eTX5fCUlJSgsLMSff/4J4GZAAm72QCkUCjg7OyMiIgKRkZFo3749nJycMGPGDAQGBvLJPCITwhBFRGbvnnvuweHDh7FkyRLMnj0bFy9eRKdOneDn54f333/f4OdLTU3F5MmTxc/jxo0DAMTGxmLBggUAbvZyyeVyjBkzBpWVlVCpVHjvvfcM3hYiajkyQZ9Zl0RERESkgXOiiIiIiJqBIYqIiIioGRiiiIiIiJqBIYqIiIioGRiiiIiIiJqBIYqIiIioGRiiiIiIiJqBIYqIiIioGRiiiIiIiJqBIYqIiIioGRiiiIiIiJqBIYqIiIioGf4Pino6zrer8fgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUjtJREFUeJzt3XtYVNX+P/D3MAooykWR60EBMTFTMdAJ09QiweP1VCe0ElCPdjQ1D94gFURS0EzJRD1ZXrK85MmIn3kgJSlTjua1DDUlSC1ANGEUktvs3x9+GRtnwBmYmT2X9+t5eHTW7Fl8ZjvBu7XWXlsiCIIAIiIiIitiI3YBRERERMbGAERERERWhwGIiIiIrA4DEBEREVkdBiAiIiKyOgxAREREZHUYgIiIiMjqMAARERGR1WEAIiIiIqvDAEREZksikWDJkiVil6EUExMDX19fscsgIi0wABGRXm3duhUSiUT5ZW9vj0ceeQQzZsxAaWmpQb/30aNHsWTJEpSXl+u13yFDhqi8pw4dOqBfv37YvHkzFAqFXr7H8uXLkZGRoZe+iOjhWoldABFZpqVLl8LPzw93797Ft99+iw0bNmD//v04d+4c2rZtq5fv8ccff6BVq/s/xo4ePYqkpCTExMTA2dlZL9+jwV/+8hekpKQAAMrKyvDhhx9i8uTJ+Omnn5Camtri/pcvX44XXngBY8eObXFfRPRwDEBEZBDDhw9HSEgIAOAf//gHOnbsiNWrV+Pzzz/H+PHjm92vQqFATU0N7O3tYW9vr69yH8rJyQmvvPKK8vGrr76K7t27Y926dUhOTkbr1q2NVgsRtRynwIjIKJ5++mkAQGFhIQBg1apVGDBgADp27Ig2bdogODgY//nPf9ReJ5FIMGPGDHz88cfo2bMn7OzskJWVpXyuYQ3QkiVLMG/ePACAn5+fcrqqqKgIgwcPRp8+fTTW1b17d4SHh+v8ftq2bYsnnngClZWVKCsra/S4yspKzJkzBz4+PrCzs0P37t2xatUqCIKg8h4rKyuxbds2Zd0xMTE610RE2uMIEBEZRUFBAQCgY8eOAIB33nkHo0ePxssvv4yamhrs2rULf//737Fv3z6MGDFC5bVfffUVPvnkE8yYMQOurq4aFxo/99xz+Omnn7Bz506sWbMGrq6uAIBOnTphwoQJmDJlCs6dO4fHHntM+ZrvvvsOP/30ExYtWtSs9/Tzzz9DKpU2Ot0mCAJGjx6NQ4cOYfLkyQgKCkJ2djbmzZuHX3/9FWvWrAEAbN++Hf/4xz/Qv39/TJ06FQDQtWvXZtVERFoSiIj0aMuWLQIA4eDBg0JZWZlw9epVYdeuXULHjh2FNm3aCNeuXRMEQRCqqqpUXldTUyM89thjwtNPP63SDkCwsbERfvzxR7XvBUBITExUPn7rrbcEAEJhYaHKceXl5YK9vb2wYMEClfZZs2YJDg4Owp07d5p8T4MHDxYCAwOFsrIyoaysTDh//rwwa9YsAYAwatQo5XHR0dFCly5dlI8zMjIEAMKbb76p0t8LL7wgSCQS4fLly8o2BwcHITo6usk6iEh/OAVGRAYRFhaGTp06wcfHB+PGjUO7du3w2WefwdvbGwDQpk0b5bG3bt1CRUUFBg0ahFOnTqn1NXjwYDz66KPNrsXJyQljxozBzp07lVNP9fX12L17N8aOHQsHB4eH9nHhwgV06tQJnTp1Qo8ePfDuu+9ixIgR2Lx5c6Ov2b9/P6RSKWbNmqXSPmfOHAiCgP/+97/Nfk9E1DKcAiMig0hPT8cjjzyCVq1awd3dHd27d4eNzf3/59q3bx/efPNNnDlzBtXV1cp2iUSi1pefn1+L64mKisLu3btx+PBhPPXUUzh48CBKS0sxYcIErV7v6+uLTZs2KS/t79atG9zc3Jp8zS+//AIvLy+0b99epb1Hjx7K54lIHAxARGQQ/fv3V14F9qDDhw9j9OjReOqpp7B+/Xp4enqidevW2LJlC3bs2KF2/J9Hi5orPDwc7u7u+Oijj/DUU0/ho48+goeHB8LCwrR6vYODg9bHEpHp4xQYERndp59+Cnt7e2RnZ2PSpEkYPny4XsKFptGjBlKpFC+99BL+85//4NatW8jIyMD48eMhlUpb/H0b06VLF/z222+4ffu2SvuFCxeUzzdoqnYi0j8GICIyOqlUColEgvr6emVbUVFRi3dCbljL09hO0BMmTMCtW7fw6quv4s6dOyr7+hjCX//6V9TX12PdunUq7WvWrIFEIsHw4cOVbQ4ODnrfwZqIGscpMCIyuhEjRmD16tWIiIjASy+9hOvXryM9PR0BAQH4/vvvm91vcHAwAGDhwoUYN24cWrdujVGjRimDUd++ffHYY49hz5496NGjBx5//HG9vJ/GjBo1CkOHDsXChQtRVFSEPn364Msvv8Tnn3+O2bNnq1zqHhwcjIMHD2L16tXw8vKCn58fZDKZQesjsmYcASIio3v66afxwQcfoKSkBLNnz8bOnTuxYsUK/O1vf2tRv/369UNycjLOnj2LmJgYjB8/Xm2TwqioKADQevFzS9jY2CAzMxOzZ8/Gvn37MHv2bOTn5+Ott97C6tWrVY5dvXo1goODsWjRIowfPx4bNmwweH1E1kwiCH/ajpSIyMK98847+Ne//oWioiJ07txZ7HKISCQMQERkNQRBQJ8+fdCxY0ccOnRI7HKISERcA0REFq+yshKZmZk4dOgQfvjhB3z++edil0REIuMIEBFZvKKiIvj5+cHZ2RnTp0/HsmXLxC6JiETGAERERERWh1eBERERkdVhACIiIiKrw0XQGigUCvz2229o3749t6cnIiIyE4Ig4Pbt2/Dy8lK5+bImDEAa/Pbbb/Dx8RG7DCIiImqGq1ev4i9/+UuTxzAAadC+fXsA906go6OjyNUQERGRNuRyOXx8fJS/x5vCAKRBw7SXo6MjAxAREZGZ0Wb5ChdBExERkdVhACIiIiKrwwBEREREVodrgFqgvr4etbW1YpdBBta6dWtIpVKxyyAiIj1iAGoGQRBQUlKC8vJysUshI3F2doaHhwf3hSIishAMQM3QEH7c3NzQtm1b/lK0YIIgoKqqCtevXwcAeHp6ilwRERHpAwOQjurr65Xhp2PHjmKXQ0bQpk0bAMD169fh5ubG6TAiIgvARdA6aljz07ZtW5ErIWNq+Pfmmi8iIsvAANRMnPayLvz3JiKyLAxAREREZHUYgIiIiMjqMABZkZiYGEgkEkgkErRu3Rru7u549tlnsXnzZigUCq372bp1K5ydnQ1XKBERkYExAFmZiIgIFBcXo6ioCP/9738xdOhQvP766xg5ciTq6urELo+IiKyAKVxQwgBkZezs7ODh4QFvb288/vjjeOONN/D555/jv//9L7Zu3QoAWL16NXr16gUHBwf4+Phg+vTpuHPnDgAgNzcXEydOREVFhXI0acmSJQCA7du3IyQkBO3bt4eHhwdeeukl5f45REREcrkcSUlJWL58Oc6fPy9qLSYRgNLT0+Hr6wt7e3vIZDIcP3680WP37t2LkJAQODs7w8HBAUFBQdi+fbvKMX+e6mn4ioiIMFj9giCgpqbG6F+CIOil/qeffhp9+vTB3r17AQA2NjZYu3YtfvzxR2zbtg1fffUV5s+fDwAYMGAA0tLS4OjoiOLiYhQXF2Pu3LkA7iX65ORknD17FhkZGSgqKkJMTIxeaiQiIvN26tQprFmzRvnYzs5OxGpMYCPE3bt3IzY2Fhs3boRMJkNaWhrCw8Nx8eJFuLm5qR3foUMHLFy4EIGBgbC1tcW+ffswceJEuLm5ITw8XHlcREQEtmzZonxsyBNdW1uLlJQUg/XfmPj4eNja2uqlr8DAQHz//fcAgNmzZyvbfX198eabb+Kf//wn1q9fD1tbWzg5OUEikcDDw0Olj0mTJin/7u/vj7Vr16Jfv364c+cO2rVrp5c6iYjIvAiCgPT0dNy8eVPZNmzYMPj7+4tYlQkEoNWrV2PKlCmYOHEiAGDjxo344osvsHnzZsTFxakdP2TIEJXHr7/+OrZt24Zvv/1WJQA1TPWQdgRBUO51c/DgQaSkpODChQuQy+Woq6vD3bt3UVVV1eQGkCdPnsSSJUtw9uxZ3Lp1S7mw+sqVK3j00UeN8j6IiMh03Lp1C2vXrlVpmzlzJjp06CBSRfeJGoBqampw8uRJxMfHK9tsbGwQFhaGvLy8h75eEAR89dVXuHjxIlasWKHyXG5uLtzc3ODi4oKnn34ab775psFuXdG6dWuV92AsrVu31ltf58+fh5+fH4qKijBy5EhMmzYNy5YtQ4cOHfDtt99i8uTJqKmpaTQAVVZWIjw8HOHh4fj444/RqVMnXLlyBeHh4aipqdFbnUREZB7+97//ITs7W/m4Q4cOmDFjhslsLCtqALpx4wbq6+vh7u6u0u7u7o4LFy40+rqKigp4e3ujuroaUqkU69evx7PPPqt8PiIiAs899xz8/PxQUFCAN954A8OHD0deXp7G+zhVV1ejurpa+Vgul+v0PiQSid6mosTw1Vdf4YcffsC//vUvnDx5EgqFAm+//TZsbO4tEfvkk09Ujre1tUV9fb1K24ULF3Dz5k2kpqbCx8cHAHDixAnjvAEiIjIZDb9DqqqqlG0jR45EcHCwiFWpE30KrDnat2+PM2fO4M6dO8jJyUFsbCz8/f2V02Pjxo1THturVy/07t0bXbt2RW5uLp555hm1/lJSUpCUlGSs8kVVXV2NkpIS1NfXo7S0FFlZWUhJScHIkSMRFRWFc+fOoba2Fu+++y5GjRqFI0eOYOPGjSp9+Pr6Ks99nz590LZtW3Tu3Bm2trZ499138c9//hPnzp1DcnKySO+SiIjEcP78ebX/af7Xv/4FR0dHkSpqnKhXgbm6ukIqlaK0tFSlvbS0tMn1OzY2NggICEBQUBDmzJmDF154oclFyP7+/nB1dcXly5c1Ph8fH4+Kigrl19WrV5v3hsxAVlYWPD094evri4iICBw6dAhr167F559/DqlUij59+mD16tVYsWIFHnvsMXz88cdq53bAgAH45z//icjISHTq1AkrV65Ep06dsHXrVuzZswePPvooUlNTsWrVKpHeJRERGdvSpUtVwo+3tzcSEhJMMvwAgETQ17XUzSSTydC/f3+8++67AO4NnXXu3BkzZszQuAhak0mTJuHnn39Gbm6uxuevXbuGzp07IyMjA6NHj35of3K5HE5OTqioqFD7h7t79y4KCwvh5+cHe3t7reoj88d/dyIizWpra7F8+XKVtsDAQERGRhq9lqZ+fz9I9Cmw2NhYREdHIyQkBP3790daWhoqKyuVV4VFRUXB29tbOQqRkpKCkJAQdO3aFdXV1di/fz+2b9+ODRs2AADu3LmDpKQkPP/88/Dw8EBBQQHmz5+PgIAAlavEiIiIqGVOnTqF//f//p9K27Rp0zRuY2NqRA9AkZGRKCsrQ0JCAkpKShAUFISsrCzlwugrV64oF+MC9642mj59Oq5du4Y2bdogMDAQH330kTJpSqVSfP/999i2bRvKy8vh5eWFYcOGITk5WfRNl4iIiCyFprWziYmJIlTSPKJPgZkiToHRg/jvTkR0zx9//IGVK1eqtD3++OMYNWqUVq/PzARSU4G4OECLVSk6MaspMCIiIjIPR44cwcGDB1XaXn/9dTg7O2vdR2oqkJd37099ByBdMAARERHRQ+lryisu7v4IkJgYgIiIiKhRN27cQHp6ukrbwIEDNe6rp43Ro8Ud+WnAAEREREQaaRr1mTNnTpM3uDbkGh99EnUjRCIiIjJNjU15NRV+ANU1PqaMI0BERESk9PPPP2P79u0qbY6OjvjXv/6l1etNZY3PwzAAkd7FxMSgvLwcGRkZAIAhQ4YgKCgIaWlpze5TH30QEVHTNI36zJ49G05OTlr3YSprfB6GU2BWJCYmBhKJRHn3+oCAACxduhR1dXUG/b579+7V+saoubm5kEgkKC8vb3YfRESku8amvHQJP+aEI0BWJiIiAlu2bFHeRuS1115D69atER8fr3JcTU0NbG1t9fI9O3ToYBJ9EBGRuh9++AF79+5VafP19UV0dLRIFRkHR4CsjJ2dHTw8PNClSxdMmzYNYWFhyMzMRExMDMaOHYtly5bBy8sL3bt3BwBcvXoVL774IpydndGhQweMGTMGRUVFyv7q6+sRGxsLZ2dndOzYEfPnz8eDm4sPGTIEs2fPVj6urq7GggUL4OPjAzs7OwQEBOCDDz5AUVERhg4dCgBwcXGBRCJBTEyMxj5u3bqFqKgouLi4oG3bthg+fDguXbqkfH7r1q1wdnZGdnY2evTogXbt2iEiIgLFxcXKY3Jzc9G/f384ODjA2dkZTz75JH755Rc9nWkiItOXlJSkFn7mz5+vEn4yM4EBA4CFC+/9mZlp7CoNgwHIyrVp0wY1NTUAgJycHFy8eBEHDhzAvn37UFtbi/DwcLRv3x6HDx/GkSNHlEGi4TVvv/02tm7dis2bN+Pbb7/F77//js8++6zJ7xkVFYWdO3di7dq1OH/+PP7973+jXbt28PHxwaeffgoAuHjxIoqLi/HOO+9o7CMmJgYnTpxAZmYm8vLyIAgC/vrXv6K2tlZ5TFVVFVatWoXt27fjm2++wZUrVzB37lwAQF1dHcaOHYvBgwfj+++/R15eHqZOnQqJRNLic0pEZOoEQWh0yqtNmzYqbQ1Xda1dax5Xd2mLU2BWShAE5OTkIDs7GzNnzkRZWRkcHBzw/vvvK6e+PvroIygUCrz//vvKYLBlyxY4OzsjNzcXw4YNQ1paGuLj4/Hcc88BADZu3Ijs7OxGv+9PP/2ETz75BAcOHEBYWBgAwN/fX/l8w1SXm5tbo1urX7p0CZmZmThy5AgGDBgAAPj444/h4+ODjIwM/P3vfwcA1NbWYuPGjejatSsAYMaMGVi6dCmAe/eLqaiowMiRI5XP9+jRQ/cTSURkZo4ePYoDBw6otAUFBWHMmDEaj2+4qmvoUODQIdO/uktbDEAiEmOzqH379qFdu3aora2FQqHASy+9hCVLluC1115Dr169VNb9nD17FpcvX0b79u1V+rh79y4KCgpQUVGB4uJiyGQy5XOtWrVCSEiI2jRYgzNnzkAqlWLw4MHNfg/nz59Hq1atVL5vx44d0b17d5w/f17Z1rZtW2W4AQBPT09cv34dwL2gFRMTg/DwcDz77LMICwvDiy++CE9Pz2bXRURk6jSN+rzxxhto3bp1o68xl6u6dMUAJCIxbgg3dOhQbNiwAba2tvDy8kKrVvc/Ag4ODirH3rlzB8HBwfj444/V+unUqVOzvv+DQ6uG9OB/0BKJRCWYbdmyBbNmzUJWVhZ2796NRYsW4cCBA3jiiSeMViMRkTHU1dVh2bJlau3NuZeXpeAaIBHFxQGhocYdTnRwcEBAQAA6d+6sEn40efzxx3Hp0iW4ubkhICBA5cvJyQlOTk7w9PTEsWPHlK+pq6vDyZMnG+2zV69eUCgU+PrrrzU+3zACVV9f32gfPXr0QF1dncr3vXnzJi5evIhHH320yff0oL59+yI+Ph5Hjx7FY489hh07duj0eiIiU7djxw618BMUFGTV4QdgABLV6NHA0aOmO7T48ssvw9XVFWPGjMHhw4dRWFiI3NxczJo1C9euXQMAvP7660hNTUVGRgYuXLiA6dOnq+3h82cNl1ZOmjQJGRkZyj4/+eQTAECXLl0gkUiwb98+lJWV4c6dO2p9dOvWDWPGjMGUKVPw7bff4uzZs3jllVfg7e3d6Bz2gwoLCxEfH4+8vDz88ssv+PLLL3Hp0iWuAyIii5KUlKRyhSwALF68WOuflZaMAYga1bZtW3zzzTfo3LkznnvuOfTo0QOTJ0/G3bt34ejoCODeTfEmTJiA6OhohIaGon379vjb3/7WZL8bNmzACy+8gOnTpyMwMBBTpkxBZWUlAMDb2xtJSUmIi4uDu7s7ZsyYobGPLVu2IDg4GCNHjkRoaCgEQcD+/fubnMd+8L1duHABzz//PB555BFMnToVr732Gl599VUdzhARkWn6448/Gr3Ky8aGv/oBQCI0tlrVisnlcjg5OaGiokL5i77B3bt3UVhYCD8/P9jb24tUIRkb/92JyFysXbsWt27dUmkbMmRIiy4+MRdN/f5+EBdBExERWQhNoz4JCQnc40wDBiAiIiIzV15ernHjWGtf6NwUBiAiIiIzpmnUZ8yYMQgKCjJ+MWaEAYiIiMhMNbbQmR6OAaiZuHbcuvDfm4hMSUlJCf7973+rtTP8aI8BSEcNl1lXVVUZdVdjEldVVRUA9d2liYiMTdOoz8svv4yAgACtXi/GbZhMEQOQjqRSKZydnZX3lGrbti1X11swQRBQVVWF69evw9nZGVKpVOySiMiK6WPKS4zbMJkiBqBm8PDwAABlCCLL5+zsrPx3JyIytoKCAnz00Udq7c2Z8mq4u7ul3NW9ubgRogbabqRUX1+P2tpaI1ZGYmjdujVHfohINJpGfaZOnQpPT08RqjFt3AjRSKRSKX8xEhGRwfAqL8NhACIiIjIxZ8+eRUZGhlo7w4/+MAARERGZEE2jPq+//jqcnZ2NX4wFYwAiIiIyAYIgYOnSpWrtHPUxDAYgIiIike3fvx/fffedSputrRPi42eLU5AVYAAiIiISkaYpr5Ur56JPHwfEx4tQkJVgACIiIhKBQqFAcnKyWnvfvono04f79BgaAxAREZGRbd++HT///LNKm4uLC2bNmgXAundoNhYGICIiIiPSNOX1xhtv8F6DRsYAREREZAQ1NTVISUlRa+dVXuJgACIiIjKwVatWobKyUqWte/fuGDdunEgVEQMQERGRAWma8lq8eDFsbGxEqIYamMTZT09Ph6+vL+zt7SGTyXD8+PFGj927dy9CQkLg7OwMBwcHBAUFYfv27SrHCIKAhIQEeHp6ok2bNggLC8OlS5cM/TaIiIiUbt++3ei9vBh+xCf6CNDu3bsRGxuLjRs3QiaTIS0tDeHh4bh48SLc3NzUju/QoQMWLlyIwMBA2NraYt++fZg4cSLc3NwQHh4OAFi5ciXWrl2Lbdu2wc/PD4sXL0Z4eDjy8/Nhb29v7LdIRERWRlPwCQ0NxbBhw0SohjSRCIIgiFmATCZDv379sG7dOgD39kXw8fHBzJkzEaflJgiPP/44RowYgeTkZAiCAC8vL8yZMwdz584FAFRUVMDd3R1bt27Var5VLpfDyckJFRUVcHR0bP6bIyIiq8M7uItHl9/foo7B1dTU4OTJkwgLC1O22djYICwsDHl5eQ99vSAIyMnJwcWLF/HUU08BAAoLC1FSUqLSp5OTE2QyWaN9VldXQy6Xq3wRERHp4rfffmP4MSOiToHduHED9fX1cHd3V2l3d3fHhQsXGn1dRUUFvL29UV1dDalUivXr1+PZZ58FAJSUlCj7eLDPhucelJKSovFDS0REpA1Nv0N++ukZREYOFKEa0oboa4Cao3379jhz5gzu3LmDnJwcxMbGwt/fH0OGDGlWf/Hx8YiNjVU+lsvl8PHx0VO1RERkyTjqY55EDUCurq6QSqUoLS1VaS8tLYWHh0ejr7OxsUFAQAAAICgoCOfPn0dKSgqGDBmifF1paSk8PT1V+gwKCtLYn52dHezs7Fr4boiIyJqcO3cOn376qVo7w495EHUNkK2tLYKDg5GTk6NsUygUyMnJQWhoqNb9KBQKVFdXAwD8/Pzg4eGh0qdcLsexY8d06pOIiKgxSUlJauEnM3MksrMZfsyF6FNgsbGxiI6ORkhICPr374+0tDRUVlZi4sSJAICoqCh4e3srtw9PSUlBSEgIunbtiurqauzfvx/bt2/Hhg0bAAASiQSzZ8/Gm2++iW7duikvg/fy8sLYsWPFeptERGQhNE159e2biOxs3sHdnIgegCIjI1FWVoaEhASUlJQgKCgIWVlZykXMV65cUdkwqrKyEtOnT8e1a9fQpk0bBAYG4qOPPkJkZKTymPnz56OyshJTp05FeXk5Bg4ciKysLO4BREREzXbgwAEcPXpUrb1hyot3cDcvou8DZIq4DxARETXIzAROn1Yf9ena9RW88kpXESqixujy+1v0ESAiIiJTpin8cKGz+WMAIiIi0mDjxo1qVykDDD+WggGIiIjoAZoWOk+dOlVlexUybwxARERE/0cQBCxdulStnaM+locBiIiICJpHfQCGH0vFAERERFZPU/iZPXs2nJycRKiGjIEBiIiIrFZNTY1yo90/46iP5WMAIiIiq8QpL+vGAERERFZHU/iJj4+Hra2tCNWQGBiAiIjIasjlcqxZs0atnaM+1ocBiIiIrAKnvOjPGICIiMjiaQo/CQkJkEgkIlRDpoABiIiILNZvv/2GTZs2qbVz1IcYgIiIyCJpGvVxc3PDtGnTRKiGTA0DEBERWRxN4YejPvRnDEBERGQx8vPzsWfPHrV2hh96EAMQERFZBE2jPkFBQRgzZowI1ZCpYwAiIiKzxykv0hUDEBERma1vvvkGhw4dUmtn+KGHYQAiIiKzpGnUZ9iwYQgNDRWhGjI3DEBERGR2OOVFLcUAREREZmPPnj3Iz89Xa2f4IV0xABERkVnQNOrz0ksvoVu3biJUQ+aOAYiIiEwep7xI3xiAiIjIZK1evRq3b99Wa2f4oZZiACIiIpOSmQmkpgLh4eqjPtOmTYObm5sIVZGlYQAiIiKTsmKFAuHhyWrtHPUhfWIAIiIik5GUlIRhw9TbGX5I3xiAiIhINA3TXXFxwOnT6lNec+fOhYODgwiVkaVjACIiItGkpgKnT/+B06dXqj3HUR8yJAYgIiISTXh4EsLD1dsZfsjQGICIiEgUmvb2WbhwIVq14q8mMjx+yoiIyKhu3ryJdevWqbVz1IeMiQGIiIiMRtOoD8DwQ8bHAERERAbzsKu8EhISIJFIRKiMrB0DEBER6V1D8Pn9d6C29mecPr1d7RiO+pCYGICIiEjvUlOBvDxgyRL1UR83NzdMmzZNhKqI7mMAIiIivWtsyoujPmQqGICIiEivvv76a5w+navWzvBDpsRG7AIAID09Hb6+vrC3t4dMJsPx48cbPXbTpk0YNGgQXFxc4OLigrCwMLXjY2JiIJFIVL4iIiIM/TaIiKxeUlIScnNzVdp69uzJ8EMmR/QAtHv3bsTGxiIxMRGnTp1Cnz59EB4ejuvXr2s8Pjc3F+PHj8ehQ4eQl5cHHx8fDBs2DL/++qvKcRERESguLlZ+7dy50xhvh4jIamm6xD0xMREvvPCCCNUQNU0iCIIgZgEymQz9+vVTboqlUCjg4+ODmTNnIi4u7qGvr6+vh4uLC9atW4eoqCgA90aAysvLkZGR0aya5HI5nJycUFFRAUdHx2b1QURkLT7++GNcvnxZrZ2jPmRsuvz+FnUNUE1NDU6ePIn4+Hhlm42NDcLCwpCXl6dVH1VVVaitrUWHDh1U2nNzc+Hm5gYXFxc8/fTTePPNN9GxY0eNfVRXV6O6ulr5WC6XN+PdEBFZh8xMYP58QCIBxo1TH/UZPHgwhgwZYvzCiHQg6hTYjRs3UF9fD3d3d5V2d3d3lJSUaNXHggUL4OXlhbCwMGVbREQEPvzwQ+Tk5GDFihX4+uuvMXz4cNTX12vsIyUlBU5OTsovHx+f5r8pIiILl5oKXLyoOfwkJiYy/JBZMOurwFJTU7Fr1y7k5ubC3t5e2T5u3Djl33v16oXevXuja9euyM3NxTPPPKPWT3x8PGJjY5WP5XI5QxAR0Z/8eUdn3sGdLIGoAcjV1RVSqRSlpaUq7aWlpfDw8GjytatWrUJqaioOHjyI3r17N3msv78/XF1dcfnyZY0ByM7ODnZ2drq/ASIiK9GwsaGmvX1efPFF9OjRQ4SqiJpP1CkwW1tbBAcHIycnR9mmUCiQk5OD0NDQRl+3cuVKJCcnIysrCyEhIQ/9PteuXcPNmzfh6empl7qJiKzNggWCxl2dExMTGX7ILIk+BRYbG4vo6GiEhISgf//+SEtLQ2VlJSZOnAgAiIqKgre3N1JSUgAAK1asQEJCAnbs2AFfX1/lWqF27dqhXbt2uHPnDpKSkvD888/Dw8MDBQUFmD9/PgICAhCuacyWiIiaxDu4kyUSPQBFRkairKwMCQkJKCkpQVBQELKyspQLo69cuQIbm/sDVRs2bEBNTY3avhKJiYlYsmQJpFIpvv/+e2zbtg3l5eXw8vLCsGHDkJyczGkuIiIdaQo/U6dO5Yg6mT3R9wEyRdwHiIisXU1NjXLk/c846kOmzGz2ASIiItPDKS+yBgxAREQE4N6l7pqu8pozZw7atWsnQkVEhsMAREREKC8vx+nT76i1c9SHLBUDEBGRleOUF1kjBiAiIiumKfwsWrQIUqlUhGqIjIcBiIjIChUWFuLDDz9Ua+eoD1kLBiAiIivDKS8iBiAiIquiKfww+JA1YgAiIrICx44dQ1ZWllo7ww9ZK1FvhkpERPqXmQkMGHDvT+DeqA/DD5EqjgAREVmY1FQgL+/en5o2NmTwIWpGAJJKpSguLoabm5tK+82bN+Hm5ob6+nq9FUdERLqLiwP27/8Unp7n1J5j+CG6R+cA1Ni9U6urq2Fra9vigoiIqGVOn07Cgzdr9/f3x4QJE8QpiMgEaR2A1q5dCwCQSCR4//33Ve4LU19fj2+++QaBgYH6r5CIiLTGq7yItKN1AFqzZg2AeyNAGzduVNkl1NbWFr6+vti4caP+KyQiood66623UFVVpdbO8EOkmdYBqLCwEAAwdOhQ7N27Fy4uLgYrioiItKdp1Gfw4MEYMmSI8YshMhM6rwE6dOiQIeogIqJm4JQXUfPoHIAmTZrU5PObN29udjFERKQd3s6CqGV0DkC3bt1SeVxbW4tz586hvLwcTz/9tN4KIyIizTSFn3HjxqF79+4iVENknnQOQJ999plam0KhwLRp09C1a1e9FEVEROoUCgWSk5PV2jnqQ6Q7idDYxj46unjxIoYMGYLi4mJ9dCcquVwOJycnVFRUwNHRUexyiIg45UWkBV1+f+vtVhgFBQWoq6vTV3dERPR/NIWf6dOno1OnTiJUQ2QZdA5AsbGxKo8FQUBxcTG++OILREdH660wIiJr98cff2DlypVq7Rz1IWo5nQPQ6dOnVR7b2NigU6dOePvttx96hRgREWmHU15EhsV9gIiITIym8LNgwQLY29uLUA2RZWr2GqDr16/j4sWLAIDu3bur3R2eiIi0k5kJpKYCQ4eWwdZ2vdrzHPUh0j+dA5BcLsdrr72GnTt3QqFQAACkUikiIyORnp4OJycnvRdJRGTJUlOB8HBOeREZk42uL5gyZQqOHTuGL774AuXl5SgvL8e+fftw4sQJvPrqq4aokYjIomkKP4sXL2b4ITIgnfcBcnBwQHZ2NgYOHKjSfvjwYURERKCyslKvBYqB+wARkTH8+OOP+M9//qPWzuBD1DwG3QeoY8eOGqe5nJyceId4IiIt8SovInHpHIAWLVqE2NhYbN++HR4eHgCAkpISzJs3D4sXL9Z7gUREloZ3cCcSn85TYH379sXly5dRXV2Nzp07AwCuXLkCOzs7dOvWTeXYU6dO6a9SI+IUGBHpW2Ym8OmnB+Hvf0TtOYYfIv0w6BTYmDFjIJFIml0cEZG1ycwETp9Ogr+/artUKsWiRYvEKYrIyukcgJYsWWKAMoiILNfp05zyIjI1Ogcgf39/fPfdd+jYsaNKe3l5OR5//HH8/PPPeiuOiMicrV+/HmVlZWrtDD9E4tM5ABUVFaG+vl6tvbq6GteuXdNLUURE5k7TQmc/Pz9ERUWJUA0RPUjrAJSZman8e3Z2tsql8PX19cjJyYGfn59+qyMiMkO8yovI9GkdgMaOHQsAkEgkiI6OVnmudevW8PX1xdtvv63X4oiIzAn39iEyH1rfCkOhUEChUKBz5864fv268rFCoUB1dTUuXryIkSNHNquI9PR0+Pr6wt7eHjKZDMePH2/02E2bNmHQoEFwcXGBi4sLwsLC1I4XBAEJCQnw9PREmzZtEBYWhkuXLjWrNiIibWgKP0OHDmX4ITJROt8LrLCwEK6urnorYPfu3YiNjUViYiJOnTqFPn36IDw8HNevX9d4fG5uLsaPH49Dhw4hLy8PPj4+GDZsGH799VflMStXrsTatWuxceNGHDt2DA4ODggPD8fdu3f1VjcREXDvEvfGpryeeuopESoiIm3ovBHi0qVLm3w+ISFBpwJkMhn69euHdevWAbg30uTj44OZM2ciLi7uoa+vr6+Hi4sL1q1bh6ioKAiCAC8vL8yZMwdz584FAFRUVMDd3R1bt27FuHHjHtonN0IkIm1wyovItBh0I8TPPvtM5XFtbS0KCwvRqlUrdO3aVacAVFNTg5MnTyI+Pl7ZZmNjg7CwMOTl5WnVR1VVFWpra9GhQwcA90aoSkpKEBYWpjzGyckJMpkMeXl5GgNQdXU1qqurlY/lcrnW74GIrJOm8PPyyy8jICBAhGqISFc6B6DTp0+rtcnlcsTExOBvf/ubTn3duHED9fX1cHd3V2l3d3fHhQsXtOpjwYIF8PLyUgaekpISZR8P9tnw3INSUlIa/T85IqI/q6urw7Jly9TaOepDZF50DkCaODo6IikpCaNGjcKECRP00aVWUlNTsWvXLuTm5sLe3r7Z/cTHxyM2Nlb5WC6Xw8fHRx8lEpEF4ZQXkeXQSwAC7q2zqaio0Ok1rq6ukEqlKC0tVWkvLS1V3mm+MatWrUJqaioOHjyI3r17K9sbXldaWgpPT0+VPoOCgjT2ZWdnBzs7O51qJyLroin8zJgxQ21XfCIyDzoHoLVr16o8FgQBxcXF2L59O4YPH65TX7a2tggODkZOTo5ynyGFQoGcnBzMmDGj0detXLkSy5YtQ3Z2NkJCQlSe8/Pzg4eHB3JycpSBRy6X49ixY5g2bZpO9RERVVRUIC0tTa2doz5E5k3nALRmzRqVxzY2NujUqROio6NVFjNrKzY2FtHR0QgJCUH//v2RlpaGyspKTJw4EQAQFRUFb29vpKSkAABWrFiBhIQE7NixA76+vsp1Pe3atUO7du0gkUgwe/ZsvPnmm+jWrRv8/PywePFieHl5KUMWEZE2OOVFZLl0DkCFhYV6LSAyMhJlZWVISEhASUkJgoKCkJWVpVzEfOXKFdjY3N+uaMOGDaipqcELL7yg0k9iYqLyTvXz589HZWUlpk6divLycgwcOBBZWVktWidERNZFU/iJj4+Hra2tCNUQkb7pvA8QcO/O75cvXwYABAQEwNnZWd91iYr7ABFZr6KiImzbtk2tnaM+RKbPYPsAFRUV4bXXXkN2djYacpNEIkFERATWrVsHX1/fZhdNRCQ2TnkRWQ+tA9DVq1fxxBNPoHXr1khOTkaPHj0AAPn5+diwYQNCQ0Px3Xff4S9/+YvBiiUiMhRN4SchIQESiUSEaojI0LSeAps8eTIuX76M7OxstbU0f/zxByIiItCtWze8//77BinUmDgFRmQ98vLy8OWXX6q1c9SHyPwYZAosKysLu3fv1riQuE2bNkhOTtbqPltERKaCU15E1kvrAHTjxo0m1/j4+/vj999/10dNREQG19gd3InIOmgdgDw9PZGfn9/oGp9z5849dPdmIiIxZWYCBw5sh6vrz2rPMfwQWRebhx9yz9ixYzF37lyUlZWpPXf9+nUsWLCAGw0SkUk7fTpJLfwoFDYMP0RWSOtF0Ldu3YJMJkNJSQleeeUVBAYGQhAEnD9/Hjt27ICHhwf+97//oUOHDoau2eC4CJrIsmRm3gs/D8rOTkRcHDB6tAhFEZHe6fL7W6eNEG/duoU33ngDu3fvRnl5OQDA2dkZL774IpYvX24R4QdgACKyJFzoTGQ9DBaAGgiCoJwK69Spk8Xtk8EARGQZNIWfzp07K+81SESWxWA7QTeQSCRwc3NrVnFERMbAq7yIqCnNCkBERKaKU15EpA0GICKyGJrCT1hYGJ588kkRqiEiU8YARERmTxAELF26VK2doz5E1BgGICIya5zyIqLm0CoArV27VusOZ82a1exiiIh0oSn8REVFwc/PT4RqiMicaHUZvLY/TCQSCX7+WX2LeXPDy+CJTFt1dTVSU1PV2jnqQ2Td9H4ZfGFhoV4KIyJqKU55EZE+NHsNUE1NDQoLC9G1a1e0asWlRERkeJrCz+zZs+Hk5CRCNURkzrS+GWqDqqoqTJ48GW3btkXPnj1x5coVAMDMmTM1DkkTEbVUWVlZoxsbMvwQUXPoHIDi4+Nx9uxZ5Obmwt7eXtkeFhaG3bt367U4IqKkpCSsX79erZ1TXkTUEjrPXWVkZGD37t144oknVO4B1rNnTxQUFOi1OCKybppGfRYuXMhpdyJqMZ1/ipSVlWm8D1hlZaXF3RSViMTx4Yf5KCzco9bOUR8i0hedp8BCQkLwxRdfKB83hJ73338foaGh+quMiKxSUlISww8RGZzOI0DLly/H8OHDkZ+fj7q6OrzzzjvIz8/H0aNH8fXXXxuiRiKyEryDOxEZi84jQAMHDsSZM2dQV1eHXr164csvv4Sbmxvy8vIQHBxsiBqJyMKlp+9n+CEio9JqJ2hrw52giYyHGxsSkb7ofSdouVyu9TdnYCAibXHUh4jEolUAcnZ21voKr/r6+hYVRESWb8WK9bh7t0ytneGHiIxFqwB06NAh5d+LiooQFxeHmJgY5VVfeXl52LZtG1JSUgxTJRFZDE2jPm3btsW8efNEqIaIrJXOa4CeeeYZ/OMf/8D48eNV2nfs2IH33nsPubm5+qxPFFwDRGQYnPIiIkPS5fe3zgGobdu2OHv2LLp166bS/tNPPyEoKAhVVVW6V2xiGICI9IsLnYnIGHT5/a3zZfA+Pj7YtGmTWvv7778PHx8fXbsjIgunKfwEBwcz/BCRqHTeCHHNmjV4/vnn8d///hcymQwAcPz4cVy6dAmffvqp3gskIvPFKS8iMlXN2gfo2rVrWL9+PS5cuAAA6NGjB/75z39azAgQp8CIWoZTXkQkBoOuAbIGDEBEzacp/IwdOxZ9+vQRoRoisiZ63wjxQeXl5fjggw9w/vx5AEDPnj0xadIkODk5Nac7IrIACoUCycnJau0c9SEiU6TzCNCJEycQHh6ONm3aoH///gCA7777Dn/88Qe+/PJLPP744wYp1Jg4AkSkG055EZEpMOgU2KBBgxAQEIBNmzahVat7A0h1dXX4xz/+gZ9//hnffPNN8ys3EQxARNrTFH6mTp0KT09PEaohImtm0MvgT5w4gQULFijDDwC0atUK8+fPx4kTJ3QuNj09Hb6+vrC3t4dMJsPx48cbPfbHH3/E888/D19fX0gkEqSlpakds2TJEkgkEpWvwMBAnesioqZVVVU1epUXww8RmTqdA5CjoyOuXLmi1n716lW0b99ep752796N2NhYJCYm4tSpU+jTpw/Cw8Nx/fp1jcdXVVXB398fqamp8PDwaLTfnj17ori4WPn17bff6lQXETUtKSkJb731llo7p7yIyFzovAg6MjISkydPxqpVqzBgwAAAwJEjRzBv3jy122M8zOrVqzFlyhRMnDgRALBx40Z88cUX2Lx5M+Li4tSO79evH/r16wcAGp9v0KpVqyYDEhE1n6ZRn3nz5qFt27YiVENE1Dw6B6BVq1ZBIpEgKioKdXV1AIDWrVtj2rRpSE1N1bqfmpoanDx5EvHx8co2GxsbhIWFIS8vT9eyVFy6dAleXl6wt7dHaGgoUlJS0Llz50aPr66uRnV1tfKxXC5v0fcnskTFxcV477331No56kNE5kjnAGRra4t33nkHKSkpKCgoAAB07dpV5//7u3HjBurr6+Hu7q7S7u7urtxgsTlkMhm2bt2K7t27o7i4GElJSRg0aBDOnTvX6BRdSkpKo1exEBGv8iIiy9OsfYCAezdF7dWrlz5r0Yvhw4cr/967d2/IZDJ06dIFn3zyCSZPnqzxNfHx8YiNjVU+lsvlFrOrNVFLaQo/ixcvho2NzksIiYhMhtYBaNKkSVodt3nzZq2Oc3V1hVQqRWlpqUp7aWmpXtfvODs745FHHsHly5cbPcbOzg52dnZ6+55EluDs2bPIyMhQa+eoDxFZAq3/F27r1q04dOgQysvLcevWrUa/tGVra4vg4GDk5OQo2xQKBXJychAaGqrbu2jCnTt3UFBQwMtyiXSQlJTE8ENEFk3rEaBp06Zh586dKCwsxMSJE/HKK6+gQ4cOLfrmsbGxiI6ORkhICPr374+0tDRUVlYqrwqLioqCt7c3UlJSANxbOJ2fn6/8+6+//oozZ86gXbt2CAgIAADMnTsXo0aNQpcuXfDbb78hMTERUqlU5yvUiKyVpimv7OxEHD0qQjFERAai007Q1dXV2Lt3LzZv3oyjR49ixIgRmDx5MoYNGwaJRNKsAtatW4e33noLJSUlCAoKwtq1ayGTyQAAQ4YMga+vL7Zu3QoAKCoqgp+fn1ofgwcPRm5uLgBg3Lhx+Oabb3Dz5k106tQJAwcOxLJly9C1a1eta+JO0GSN3n33c/z++xm19lWrEvHxx8Do0caviYhIF0a5G/wvv/yCrVu34sMPP0RdXR1+/PFHtGvXrlkFmxoGILI2jV3llZ2diLg4hh8iMg8Gvxs8cG/PHolEAkEQUF9f39xuiEhkjd3O4t6fxq6GiMg4dApAf54C+/bbbzFy5EisW7cOERERvCSWyMysWrUKlZWVau1c6ExE1kDrADR9+nTs2rULPj4+mDRpEnbu3AlXV1dD1kZEBqJp1KdtWy/MmzdFhGqIiIxP6zVANjY26Ny5M/r27dvkgue9e/fqrTixcA0QWTJN4WfJkkSEhoJXehGRWTPIGqCoqKhmX+lFROJrbKFz3773wk8T9xcmIrI4zb4KzJJxBIgsjabwM3DgQDzzzDMiVENEZBhGuQqMiEyfIAhYunSpWjsXOhORtWMAIrJQvIM7EVHjGICILJCm8DNu3Dh0795dhGqIiEwPAxCRBamrq8OyZcvU2jnqQ0SkigGIyEJwyouISHsMQEQWQFP4mTFjBjp27ChCNUREpo8BiMiMVVRUIC0tTa2doz5ERE1jACIyU5zyIiJqPgYgIjOkKfzEx8fD1tZWhGqIiMwPAxCRGSkoKMBHH32k1s5RHyIi3TAAEZkJTnkREemPjdgFENHDaQo/2dkJ6NuX4YeIqDk4AkRkwr766iscPnxYrT0xMREc+CEiaj4GICITxSkvIiLDYQAiMkGawg+DDxGR/nANEJEJee+99xoNP5mZwIABQGamCIUREVkYBiAiE5GUlITi4mK19oaRn9RUIC/v3p9ERNQynAIjMgHaTHnFxd0LP3FxxqqKiMhyMQARiaixhc6aLm8fPfreFxERtRwDEJFINIUfHx8fTJo0SYRqiIisCwMQkQh4lRcRkbgYgIiMiHv7EBGZBgYgIiPRFH6GDBmCwYMHi1ANEZF142XwRAYmCILG8NO3byLi4wdzXx8iIhFwBIjIgJqa8how4P6+Pry6i4jIuBiAiAxEU/h55ZVX0LVrVwDc14eISEwMQER6dvfuXaxYsUKt/cGFztzXh4hIPAxARHrEq7yIiMwDAxCRnmgKP6+//jqcnZ2NXwwRETWJAYiohUpKSvDvf/9brZ2jPkREposBiKgFOOVFRGSeuA8QUTNpCj8HDizUeCNTIiIyLaIHoPT0dPj6+sLe3h4ymQzHjx9v9Ngff/wRzz//PHx9fSGRSJCWltbiPol0debMGY3hJzs7EUeOtEJqqghFERGRTkQNQLt370ZsbCwSExNx6tQp9OnTB+Hh4bh+/brG46uqquDv74/U1FR4eHjopU8iXSQlJeHzzz9Xa09MTERcHBAayn19iIjMgUQQBEGsby6TydCvXz+sW7cOAKBQKODj44OZM2ci7iG/RXx9fTF79mzMnj1bb302kMvlcHJyQkVFBRwdHXV/Y2SReAd3IiLTpsvvb9FGgGpqanDy5EmEhYXdL8bGBmFhYcjLyzOZPokyMjIanfIiIiLzJNpVYDdu3EB9fT3c3d1V2t3d3XHhwgWj9lldXY3q6mrlY7lc3qzvT5ansau8srMTOdVFRGTGeBk8gJSUlEZ/0ZH1amrKizNfRETmTbQA5OrqCqlUitLSUpX20tLSRhc4G6rP+Ph4xMbGKh/L5XL4+Pg0qwYyf8uXL0dtba1aO9f7EBFZDtHWANna2iI4OBg5OTnKNoVCgZycHISGhhq1Tzs7Ozg6Oqp8kXVKSkpi+CEisgKiToHFxsYiOjoaISEh6N+/P9LS0lBZWYmJEycCAKKiouDt7Y2UlBQA9xY55+fnK//+66+/4syZM2jXrh0CAgK06pOoMbzKi4jIeogagCIjI1FWVoaEhASUlJQgKCgIWVlZykXMV65cgY3N/UGq3377DX379lU+XrVqFVatWoXBgwcjNzdXqz6JHsTbWRARWR9R9wEyVdwHyHpoCj+PPPIIxo8fL0I1RETUErr8/uZVYGS1NIWfvn0TMXq0CMUQEZFRMQCR1eGUFxERMQCRVdEUfiIiIiCTyUSohoiIxMIARFZBoVAgOTlZrZ2jPkRE1okBiCwep7yIiOhBDEBk0TRf5TUJ48dzp28iImvGAEQW6c6dO3j77bfV2jnqQ0REAAMQWSBOeRER0cMwAJFF0RR+5s6dCwcHBxGqISIiU8UARBbh6tWr2Lx5s1p7TU0imH2IiOhBDEBk9hqb8lqyJBGhoUYuhoiIzAIDEJk1TeFn8eLF2LfPBqGhQFycCEUREZHJYwAis/Tdd99h//79au0NC51Hjwbv6UVERI1iACKzw6u8iIiopRiAyKxoCj8MPkREpCsbsQsg0sbatXu1Cj+ZmcCAAff+JCIiagwDEJm8pKQk3Lr1g1r7zp3qIz+pqUBe3r0/iYiIGsMARCZN06hP376JyM5OxMqV6sfHxYFXfxER0UNJBEEQxC7C1Mjlcjg5OaGiogKOjo5il2OVUlJSUFNTo9bO9T5ERNQYXX5/cxE0mRxNoz4eHh549dVXRaiGiIgsEQMQmRRe5UVERMbAAEQmgXv7EBGRMTEAkeg0hZ8nn3wSYWFhIlRDRETWgAGIRCMIApYuXarWzlEfIiIyNAYgEgWnvIiISEwMQGR0msKPv/94TJjwiAjVEBGRNWIAIqOpq6vDsmXL1No56kNERMbGAERGoc2UV2bmvVtYxMUBo0cbqzIiIrJGDEBkcJrCz6xZs+Di4qLS9uf7eDEAERGRIfFeYGQwFRUVjW5s+GD4AXgfLyIiMh6OAJFBNOcqr9GjOfJDRETGwQBEeqcp/MTHx8PW1laEaoiIiNQxAJHeFBQU4KOPPlJr51VeRERkahiASC8am/LKzk4E8w8REZkaBiBqMU3hJygoAStWSLigmYiITBIDEDXb4cOH8dVXX6m1N0x5jRlj7IqIiIi0wwBEzcJ7eRERkTljACKdZGYCp09r3tuHiIjIXDAAkdb27NmD/Px8tXaGHyIiMjcmsRN0eno6fH19YW9vD5lMhuPHjzd5/J49exAYGAh7e3v06tUL+/fvV3k+JiYGEolE5SsiIsKQb8HiJSUlqYWf+vpW6NuX4YeIiMyP6CNAu3fvRmxsLDZu3AiZTIa0tDSEh4fj4sWLcHNzUzv+6NGjGD9+PFJSUjBy5Ejs2LEDY8eOxalTp/DYY48pj4uIiMCWLVuUj+3s7IzyfixRY7ezICIiMlcSQRAEMQuQyWTo168f1q1bBwBQKBTw8fHBzJkzEafhGurIyEhUVlZi3759yrYnnngCQUFB2LhxI4B7I0Dl5eXIyMhoVk1yuRxOTk6oqKiAo6Njs/qwBMuXL0dtba1aO8MPERGZIl1+f4s6BVZTU4OTJ08iLCxM2WZjY4OwsDDk5eVpfE1eXp7K8QAQHh6udnxubi7c3NzQvXt3TJs2DTdv3my0jurqasjlcpUva5eUlKQWfnr37s3wQ0REFkHUAHTjxg3U19fD3d1dpd3d3R0lJSUaX1NSUvLQ4yMiIvDhhx8iJycHK1aswNdff43hw4ejvr5eY58pKSlwcnJSfvn4+LTwnZk3TVNe2dmJ+Nvf/iZCNURERPon+hogQxg3bpzy77169ULv3r3RtWtX5Obm4plnnlE7Pj4+HrGxscrHcrncKkNQU7ez4I7ORERkSUQNQK6urpBKpSgtLVVpLy0thYeHh8bXeHh46HQ8APj7+8PV1RWXL1/WGIDs7OysfpG0pvDj4zMCkyaF8F5eRERkcUSdArO1tUVwcDBycnKUbQqFAjk5OQgNDdX4mtDQUJXjAeDAgQONHg8A165dw82bN+Hp6amfwi3I558LGsPPkiWJeP/9EBEqIiIiMjzRp8BiY2MRHR2NkJAQ9O/fH2lpaaisrMTEiRMBAFFRUfD29kZKSgoA4PXXX8fgwYPx9ttvY8SIEdi1axdOnDiB9957DwBw584dJCUl4fnnn4eHhwcKCgowf/58BAQEIDw8XLT3aYoam/Lq2zcRoaHgtBcREVks0QNQZGQkysrKkJCQgJKSEgQFBSErK0u50PnKlSuwsbk/UDVgwADs2LEDixYtwhtvvIFu3bohIyNDuQeQVCrF999/j23btqG8vBxeXl4YNmwYkpOTrX6a6880hZ+jR6ciO/veKNno0cauiIiIyHhE3wfIFFnyPkA1NTXK0bQ/a1jozOBDRETmSpff36KPAJHxNHUHdy50JiIia8IAZCU0hZ+5c+fCwcFBhGqIiIjExQBk4SoqKpCWlqbWzh2diYjImjEAWbCmpryIiIisGQOQhdIUfr78chGOHJGKUA0REZFpYQCyMFeuXMGWLVvU2nk7CyIiovsYgCwIr/IiIiLSDgOQhdAUfrjWh4iISDNR7wVGLZefn//Q8JOZCQwYcO9PIiIi4giQ2Vq4ELC1VQ8+t2+7YNWqWSptqalAXt69P7nTMxEREUeAzJam8LNkSSK++GKWWntcHHhzUyIioj/hCJCZ+f777/HZZ5+ptTd1B/fRoznyQ0RE9GcMQGZE01qfp59+GoMGDQLAkENERKQtBiAzoSn89O2biP/LPkRERKQDBiAT9+9/56Kk5Gu19iVL7k15cdSHiIhIdwxAJkzTqE9UVBR++MGPi5qJiIhagAHIRDW1t4+fH0d+iIiIWoIByMSkp3+BGzdOqLVzV2ciIiL9YQAyAZmZ9zYpDA9XH/WZOXMmOnToIEJVRERElosByASkpgoID1+q1s5RHyIiIsNgABJRZiawdes5hId/qtKuUNggKWmxSFURERFZPgYgEZ0+nYQ+fVTbDh6Mw7x5duIUREREZCV4LzAjW7gQcHRUNLqx4eHDdrzCi4iIyMA4AmRkBw+exZw5GSptI0eORHBwsDgFERERWSEGICOqqKjAX/+aodK2ePFi2NhwII6IiMiYGICM6JdfflF5zKu8iIiIxMEAZES9evXCuXPO2LixE+bObSN2OURERFaLAciIJBIJ1q3rjLw8oK6Ot7MgIiISCxefGFlcHHgjUyIiIpFxBMjIRo/myA8REZHYOAJEREREVocBiIiIiKwOAxARERFZHQYgIiIisjoMQERERGR1GICIiIjI6jAAERERkdVhACIiIiKrwwBEREREVsckAlB6ejp8fX1hb28PmUyG48ePN3n8nj17EBgYCHt7e/Tq1Qv79+9XeV4QBCQkJMDT0xNt2rRBWFgYLl26ZMi3QERERGZE9AC0e/duxMbGIjExEadOnUKfPn0QHh6O69evazz+6NGjGD9+PCZPnozTp09j7NixGDt2LM6dO6c8ZuXKlVi7di02btyIY8eOwcHBAeHh4bh7966x3hYRERGZMIkgCIKYBchkMvTr1w/r1q0DACgUCvj4+GDmzJmI03DH0MjISFRWVmLfvn3KtieeeAJBQUHYuHEjBEGAl5cX5syZg7lz5wIAKioq4O7ujq1bt2LcuHEPrUkul8PJyQkVFRVwdHTU0zslIiIiQ9Ll97eoI0A1NTU4efIkwsLClG02NjYICwtDXl6extfk5eWpHA8A4eHhyuMLCwtRUlKicoyTkxNkMlmjfVZXV0Mul6t8ERERkeUS9W7wN27cQH19Pdzd3VXa3d3dceHCBY2vKSkp0Xh8SUmJ8vmGtsaOeVBKSgqSkpLU2hmEiIiIzEfD721tJrdEDUCmIj4+HrGxscrHv/76Kx599FH4+PiIWBURERE1x+3bt+Hk5NTkMaIGIFdXV0ilUpSWlqq0l5aWwsPDQ+NrPDw8mjy+4c/S0lJ4enqqHBMUFKSxTzs7O9jZ2Skft2vXDlevXkX79u0hkUh0fl+WQi6Xw8fHB1evXrX6tVA8F/fxXNzD83Afz8V9PBf3iXEuBEHA7du34eXl9dBjRQ1Atra2CA4ORk5ODsaOHQvg3iLonJwczJgxQ+NrQkNDkZOTg9mzZyvbDhw4gNDQUACAn58fPDw8kJOToww8crkcx44dw7Rp07Sqy8bGBn/5y1+a/b4sjaOjo9X/h9yA5+I+not7eB7u47m4j+fiPmOfi4eN/DQQfQosNjYW0dHRCAkJQf/+/ZGWlobKykpMnDgRABAVFQVvb2+kpKQAAF5//XUMHjwYb7/9NkaMGIFdu3bhxIkTeO+99wAAEokEs2fPxptvvolu3brBz88PixcvhpeXlzJkERERkXUTPQBFRkairKwMCQkJKCkpQVBQELKyspSLmK9cuQIbm/sXqw0YMAA7duzAokWL8MYbb6Bbt27IyMjAY489pjxm/vz5qKysxNSpU1FeXo6BAwciKysL9vb2Rn9/REREZHpED0AAMGPGjEanvHJzc9Xa/v73v+Pvf/97o/1JJBIsXboUS5cu1VeJVsnOzg6JiYkq66OsFc/FfTwX9/A83MdzcR/PxX2mfi5E3wiRiIiIyNhEvxUGERERkbExABEREZHVYQAiIiIiq8MARERERFaHAciKpKenw9fXF/b29pDJZDh+/HiTx+/ZsweBgYGwt7dHr169sH//fpXnY2JiIJFIVL4iIiIM+Rb0Rpdz8eOPP+L555+Hr68vJBIJ0tLSWtynKdH3uViyZIna5yIwMNCA70B/dDkXmzZtwqBBg+Di4gIXFxeEhYWpHS8IAhISEuDp6Yk2bdogLCwMly5dMvTb0At9nwtr+Xmxd+9ehISEwNnZGQ4ODggKCsL27dtVjrGWz4U250LUz4VAVmHXrl2Cra2tsHnzZuHHH38UpkyZIjg7OwulpaUajz9y5IgglUqFlStXCvn5+cKiRYuE1q1bCz/88IPymOjoaCEiIkIoLi5Wfv3+++/GekvNpuu5OH78uDB37lxh586dgoeHh7BmzZoW92kqDHEuEhMThZ49e6p8LsrKygz8TlpO13Px0ksvCenp6cLp06eF8+fPCzExMYKTk5Nw7do15TGpqamCk5OTkJGRIZw9e1YYPXq04OfnJ/zxxx/GelvNYohzYS0/Lw4dOiTs3btXyM/PFy5fviykpaUJUqlUyMrKUh5jLZ8Lbc6FmJ8LBiAr0b9/f+G1115TPq6vrxe8vLyElJQUjce/+OKLwogRI1TaZDKZ8OqrryofR0dHC2PGjDFIvYak67n4sy5dumj8pd+SPsVkiHORmJgo9OnTR49VGkdL/w3r6uqE9u3bC9u2bRMEQRAUCoXg4eEhvPXWW8pjysvLBTs7O2Hnzp36LV7P9H0uBME6f1406Nu3r7Bo0SJBEKz7cyEIqudCEMT9XHAKzArU1NTg5MmTCAsLU7bZ2NggLCwMeXl5Gl+Tl5encjwAhIeHqx2fm5sLNzc3dO/eHdOmTcPNmzf1/wb0qDnnQow+jcGQdV+6dAleXl7w9/fHyy+/jCtXrrS0XIPSx7moqqpCbW0tOnToAAAoLCxESUmJSp9OTk6QyWQW/7l48Fw0sLafF4IgICcnBxcvXsRTTz0FwHo/F5rORQOxPhcmsRM0GdaNGzdQX1+vvL1IA3d3d1y4cEHja0pKSjQeX1JSonwcERGB5557Dn5+figoKMAbb7yB4cOHIy8vD1KpVP9vRA+acy7E6NMYDFW3TCbD1q1b0b17dxQXFyMpKQmDBg3CuXPn0L59+5aWbRD6OBcLFiyAl5eX8hdEw38rD/vvyNQY4lwA1vXzoqKiAt7e3qiuroZUKsX69evx7LPPArC+z0VT5wIQ93PBAETNNm7cOOXfe/Xqhd69e6Nr167Izc3FM888I2JlJKbhw4cr/967d2/IZDJ06dIFn3zyCSZPnixiZYaTmpqKXbt2ITc31+rvOdjYubCmnxft27fHmTNncOfOHeTk5CA2Nhb+/v4YMmSI2KUZ3cPOhZifC06BWQFXV1dIpVKUlpaqtJeWlsLDw0Pjazw8PHQ6HgD8/f3h6uqKy5cvt7xoA2nOuRCjT2MwVt3Ozs545JFHLPZzsWrVKqSmpuLLL79E7969le0Nr7Omz0Vj50ITS/55YWNjg4CAAAQFBWHOnDl44YUXkJKSAsD6PhdNnQtNjPm5YACyAra2tggODkZOTo6yTaFQICcnB6GhoRpfExoaqnI8ABw4cKDR4wHg2rVruHnzJjw9PfVTuAE051yI0acxGKvuO3fuoKCgwCI/FytXrkRycjKysrIQEhKi8pyfnx88PDxU+pTL5Th27JhFfi6aOheaWNPPC4VCgerqagDW97l40J/PhSZG/VyIsvSajG7Xrl2CnZ2dsHXrViE/P1+YOnWq4OzsLJSUlAiCIAgTJkwQ4uLilMcfOXJEaNWqlbBq1Srh/PnzQmJiospl8Ldv3xbmzp0r5OXlCYWFhcLBgweFxx9/XOjWrZtw9+5dUd6jtnQ9F9XV1cLp06eF06dPC56ensLcuXOF06dPC5cuXdK6T1NliHMxZ84cITc3VygsLBSOHDkihIWFCa6ursL169eN/v50oeu5SE1NFWxtbYX//Oc/Kpfw3r59W+UYZ2dn4fPPPxe+//57YcyYMWZzubM+z4U1/bxYvny58OWXXwoFBQVCfn6+sGrVKqFVq1bCpk2blMdYy+fiYedC7M8FA5AVeffdd4XOnTsLtra2Qv/+/YX//e9/yucGDx4sREdHqxz/ySefCI888ohga2sr9OzZU/jiiy+Uz1VVVQnDhg0TOnXqJLRu3Vro0qWLMGXKFJP/hd9Al3NRWFgoAFD7Gjx4sNZ9mjJ9n4vIyEjB09NTsLW1Fby9vYXIyEjh8uXLRnxHzafLuejSpYvGc5GYmKg8RqFQCIsXLxbc3d0FOzs74ZlnnhEuXrxoxHfUfPo8F9b082LhwoVCQECAYG9vL7i4uAihoaHCrl27VPqzls/Fw86F2J8LiSAIguHHmYiIiIhMB9cAERERkdVhACIiIiKrwwBEREREVocBiIiIiKwOAxARERFZHQYgIiIisjoMQERERGR1GICIiIjI6jAAEZHZKykpwcyZM+Hv7w87Ozv4+Phg1KhRyvsW+fr6Ii0tTe11S5YsQVBQkMY+d+3aBYlEgrFjxxqucCISTSuxCyAiaomioiI8+eSTcHZ2xltvvYVevXqhtrYW2dnZeO2113DhwoVm9Tl37lwMGjTIABUTkSlgACIiszZ9+nRIJBIcP34cDg4OyvaePXti0qRJOvdXX1+Pl19+GUlJSTh8+DDKy8v1WC0RmQpOgRGR2fr999+RlZWF1157TSX8NHB2dta5z6VLl8LNzQ2TJ0/WQ4VEZKo4AkREZuvy5csQBAGBgYEPPXbBggVYtGiRSltNTQ0effRR5eNvv/0WH3zwAc6cOaPvUonIxDAAEZHZEgRB62PnzZuHmJgYlba1a9fim2++AQDcvn0bEyZMwKZNm+Dq6qrPMonIBDEAEZHZ6tatGyQSiVYLnV1dXREQEKDS1qFDB+XfCwoKUFRUhFGjRinbFAoFAKBVq1a4ePEiunbtqqfKiUhsXANERGarQ4cOCA8PR3p6OiorK9We12UBc2BgIH744QecOXNG+TV69GgMHToUZ86cgY+Pjx4rJyKxcQSIiMxaeno6nnzySfTv3x9Lly5F7969UVdXhwMHDmDDhg04f/68Vv3Y29vjscceU2lrWET9YDsRmT8GICIya/7+/jh16hSWLVuGOXPmoLi4GJ06dUJwcDA2bNggdnlEZKIkgi6rCImIiIgsANcAERERkdVhACIiIiKrwwBEREREVocBiIiIiKwOAxARERFZHQYgIiIisjoMQERERGR1GICIiIjI6jAAERERkdVhACIiIiKrwwBEREREVocBiIiIiKzO/wd+Pt/Sg95mcQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASj9JREFUeJzt3XlYlPX+//HXgCyumIriguKWmnqUUAlP5dHjNzRzaTmZLUrZ6lJGywEzccmgcis1PS0up0XNUyqZSUZamnRMxczcTdMK0EpBsUDh/v3hzzlNMxiDM3MzM8/HdXHpvOeem/d9a/Hy8/nc920xDMMQAACAHwkwuwEAAABPIwABAAC/QwACAAB+hwAEAAD8DgEIAAD4HQIQAADwOwQgAADgdwhAAADA7xCAAACA3yEAAfBaFotFEyZMMLsNq4SEBEVFRZndBoByIAABcKmFCxfKYrFYv0JDQ3X55Zdr1KhRysvLc+v33rRpkyZMmKCTJ0+6dL9/+9vfbI6pTp066tq1q+bPn6/S0lKXfI9nn31WK1ascMm+APy5KmY3AMA3TZo0Sc2bN9dvv/2mjRs3au7cuVq9erV27typatWqueR7/Prrr6pS5X//G9u0aZMmTpyohIQE1a5d2yXf44ImTZooNTVVknT8+HH9+9//1vDhw7Vv3z6lpaVd8v6fffZZ3XLLLRo0aNAl7wvAnyMAAXCLvn37qkuXLpKke++9V3Xr1tX06dO1cuVKDRkypML7LS0tVXFxsUJDQxUaGuqqdv9UWFiY7rzzTuvrBx54QG3atNHs2bM1efJkBQUFeawXAJeOKTAAHtGrVy9J0qFDhyRJU6dOVffu3VW3bl1VrVpVMTEx+s9//mP3OYvFolGjRumtt95S+/btFRISojVr1ljfu7AGaMKECXriiSckSc2bN7dOVx0+fFg9evRQp06dHPbVpk0bxcfHO3081apV01VXXaXCwkIdP368zO0KCwv12GOPKTIyUiEhIWrTpo2mTp0qwzBsjrGwsFCLFi2y9p2QkOB0TwDKjxEgAB5x8OBBSVLdunUlSS+++KIGDBigO+64Q8XFxVqyZIn+8Y9/aNWqVerXr5/NZz/55BO98847GjVqlOrVq+dwofFNN92kffv2afHixZoxY4bq1asnSQoPD9ddd92l++67Tzt37lSHDh2sn/nyyy+1b98+jRs3rkLH9O233yowMLDM6TbDMDRgwACtW7dOw4cPV+fOnZWRkaEnnnhCP/zwg2bMmCFJeuONN3TvvfeqW7duuv/++yVJLVu2rFBPAMrJAAAXWrBggSHJ+Pjjj43jx48bR48eNZYsWWLUrVvXqFq1qvH9998bhmEYZ86csflccXGx0aFDB6NXr142dUlGQECA8c0339h9L0lGSkqK9fULL7xgSDIOHTpks93JkyeN0NBQ45///KdN/eGHHzaqV69unD59+qLH1KNHD6Nt27bG8ePHjePHjxu7d+82Hn74YUOS0b9/f+t2w4YNM5o1a2Z9vWLFCkOS8cwzz9js75ZbbjEsFotx4MABa6169erGsGHDLtoHANdhCgyAW/Tu3Vvh4eGKjIzUbbfdpho1amj58uVq3LixJKlq1arWbU+cOKH8/Hxdc8012rZtm92+evTooSuuuKLCvYSFhWngwIFavHixdeqppKRES5cu1aBBg1S9evU/3ceePXsUHh6u8PBwtWvXTrNmzVK/fv00f/78Mj+zevVqBQYG6uGHH7apP/bYYzIMQx9++GGFjwnApWEKDIBbzJkzR5dffrmqVKmiBg0aqE2bNgoI+N+/uVatWqVnnnlG27dvV1FRkbVusVjs9tW8efNL7mfo0KFaunSpNmzYoGuvvVYff/yx8vLydNddd5Xr81FRUXr11Vetl/a3bt1a9evXv+hnvvvuOzVq1Eg1a9a0qbdr1876PgBzEIAAuEW3bt2sV4H90YYNGzRgwABde+21evnll9WwYUMFBQVpwYIFevvtt+22//1oUUXFx8erQYMGevPNN3XttdfqzTffVEREhHr37l2uz1evXr3c2wKo/JgCA+Bx7777rkJDQ5WRkaF77rlHffv2dUm4cDR6dEFgYKBuv/12/ec//9GJEye0YsUKDRkyRIGBgZf8fcvSrFkz/fjjjzp16pRNfc+ePdb3L7hY7wBcjwAEwOMCAwNlsVhUUlJirR0+fPiS74R8YS1PWXeCvuuuu3TixAk98MADOn36tM19fdzh+uuvV0lJiWbPnm1TnzFjhiwWi/r27WutVa9e3eV3sAZQNqbAAHhcv379NH36dPXp00e33367jh07pjlz5qhVq1basWNHhfcbExMjSXrqqad02223KSgoSP3797cGo+joaHXo0EHLli1Tu3btdOWVV7rkeMrSv39/9ezZU0899ZQOHz6sTp066aOPPtLKlSs1ZswYm0vdY2Ji9PHHH2v69Olq1KiRmjdvrtjYWLf2B/gzRoAAeFyvXr30+uuvKzc3V2PGjNHixYv13HPP6cYbb7yk/Xbt2lWTJ0/WV199pYSEBA0ZMsTuJoVDhw6VpHIvfr4UAQEBSk9P15gxY7Rq1SqNGTNGu3bt0gsvvKDp06fbbDt9+nTFxMRo3LhxGjJkiObOnev2/gB/ZjGM392OFAB83IsvvqhHH31Uhw8fVtOmTc1uB4BJCEAA/IZhGOrUqZPq1q2rdevWmd0OABOxBgiAzyssLFR6errWrVunr7/+WitXrjS7JQAmYwQIgM87fPiwmjdvrtq1a2vEiBGaMmWK2S0BMBkBCAAA+B2uAgMAAH6HAAQAAPwOi6AdKC0t1Y8//qiaNWtye3oAALyEYRg6deqUGjVqZPPwZUcIQA78+OOPioyMNLsNAABQAUePHlWTJk0uug0ByIGaNWtKOn8Ca9WqZXI3AACgPAoKChQZGWn9OX4xBCAHLkx71apViwAEAICXKc/yFRZBAwAAv0MAAgAAfocABAAA/A5rgC5BSUmJzp49a3Yb8IDg4OA/vaQSAOA9CEAVYBiGcnNzdfLkSbNbgYcEBASoefPmCg4ONrsVAIALEIAq4EL4qV+/vqpVq8bNEn3chRtj5uTkqGnTpvx5A4APIAA5qaSkxBp+6tata3Y78JDw8HD9+OOPOnfunIKCgsxuBwBwiVjU4KQLa36qVatmcifwpAtTXyUlJSZ3AgBwBQJQBTEN4l/48wYA30IAAgAAfocABAAA/A4ByI8kJCTIYrHIYrEoKChIDRo00P/93/9p/vz5Ki0tLfd+Fi5cqNq1a7uvUQAA3IwA5Gf69OmjnJwcHT58WB9++KF69uypRx55RDfccIPOnTtndnsAAD9QGW4iTADyMyEhIYqIiFDjxo115ZVXauzYsVq5cqU+/PBDLVy4UJI0ffp0dezYUdWrV1dkZKRGjBih06dPS5LWr1+vu+++W/n5+dbRpAkTJkiS3njjDXXp0kU1a9ZURESEbr/9dh07dsykIwUAVDbFxcWaOHGinn32Wf33v/81tRcCkAsYhqHi4mKPfxmG4ZL+e/XqpU6dOum9996TdP6uxy+99JK++eYbLVq0SJ988omefPJJSVL37t01c+ZM1apVSzk5OcrJydHjjz8u6Xyinzx5sr766iutWLFChw8fVkJCgkt6BAB4t0OHDik1NdX62uyra7kRogucPXvW5g/VU5KTk132aIa2bdtqx44dkqQxY8ZY61FRUXrmmWf04IMP6uWXX1ZwcLDCwsJksVgUERFhs4977rnH+vsWLVropZdeUteuXXX69GnVqFHDJX0CALzPu+++q507d1pfR0dHq1u3biZ2RADC/2cYhjWNf/zxx0pNTdWePXtUUFCgc+fO6bffftOZM2cuegPIrVu3asKECfrqq6904sQJ68LqI0eO6IorrvDIcQAAKo/ffvtNzz33nE0tISFBzZo1M6mj/yEAuUBQUJCSk5NN+b6usnv3bjVv3lyHDx/WDTfcoIceekhTpkxRnTp1tHHjRg0fPlzFxcVlBqDCwkLFx8crPj5eb731lsLDw3XkyBHFx8eruLjYZX0CALzDgQMH9NZbb9nUxo4dq6CgIKWnS2lpUlKSNGCAOf0RgFzAYrF49VPCP/nkE3399dd69NFHtXXrVpWWlmratGkKCDi/ROydd96x2T44ONjukRB79uzRzz//rLS0NEVGRkqStmzZ4pkDAABUKkuXLtWePXusr7t27arrr7/e+jotTcrKOv8rAQgeUVRUpNzcXJWUlCgvL09r1qxRamqqbrjhBg0dOlQ7d+7U2bNnNWvWLPXv31+ff/655s2bZ7OPqKgonT59WpmZmerUqZOqVaumpk2bKjg4WLNmzdKDDz6onTt3avLkySYdJQDADL/++quef/55m9rw4cPVpEkTm1pS0v9GgMzCVWB+Zs2aNWrYsKGioqLUp08frVu3Ti+99JJWrlypwMBAderUSdOnT9dzzz2nDh066K233rJb4N29e3c9+OCDGjx4sMLDw/X8888rPDxcCxcu1LJly3TFFVcoLS1NU6dONekoAQCetmfPHrvw89RTT9mFH+n8qM+mTeaN/kiSxXDVtdQ+pKCgQGFhYcrPz1etWrVs3vvtt9906NAhNW/eXKGhoSZ1CE/jzx0Ayvbmm2/q4MGD1tfdu3fX//3f/3m8j4v9/P4jpsAAAECFnDlzRi+88IJN7f7771fDhg1N6qj8CEAAAMBp33zzjf7zn//Y1MaNG6fAwECTOnIOAQgAAJSbYRhauHChjhw5Yq1de+216tmzp4ldOY8ABAAAyuX06dOaNm2aTe2hhx5S/fr1Teqo4ghAAADgT+3YsUPLly+3vg4ODtY///lP6z3jvA0BCAAAlMkwDL366qvKycmx1nr16qVrrrnGxK4uHQEIAAA4VFBQoBkzZtjURo4cqXr16pnUkesQgAAAgJ1t27bp/ffft76uXr26EhMTvXbK648IQAAAwMowDE2aNMmmdt111ykuLs6kjtzDN2IcKpWEhAQNGjTI+vpvf/ubxowZc0n7dMU+AAAX991339mFn9GjR/tc+JEYAfIrCQkJWrRokSQpKChITZs21dChQzV27FhVqeK+vwrvvfeegoKCyrXt+vXr1bNnT504cUK1a9eu0D4AAM6bO3eujh07ZlMbP368LBaLSR25FwHIz/Tp00cLFixQUVGRVq9erZEjRyooKEjJyck22xUXFys4ONgl37NOnTqVYh8AAHulpaWaPHmyTS00tL5WrnxI0dHmPrDUnZgC8zMhISGKiIhQs2bN9NBDD6l3795KT0+3TltNmTJFjRo1Ups2bSRJR48e1a233qratWurTp06GjhwoA4fPmzdX0lJiRITE1W7dm3VrVtXTz75pP74fN0/Tl8VFRXpn//8pyIjIxUSEqJWrVrp9ddf1+HDh613Er3ssstksViUkJDgcB8nTpzQ0KFDddlll6latWrq27ev9u/fb31/4cKFql27tjIyMtSuXTvVqFFDffr0sbmMc/369erWrZuqV6+u2rVr669//au+++47F51pAKj8vvzyS7vwk5CQoJUrH1JWlpSWZlJjHkAA8nNVq1ZVcXGxJCkzM1N79+7V2rVrtWrVKp09e1bx8fGqWbOmNmzYoM8//9waJC58Ztq0aVq4cKHmz5+vjRs36pdffrG5UZYjQ4cO1eLFi/XSSy9p9+7d+te//qUaNWooMjJS7777riRp7969ysnJ0YsvvuhwHwkJCdqyZYvS09OVlZUlwzB0/fXX6+zZs9Ztzpw5o6lTp+qNN97QZ599piNHjujxxx+XJJ07d06DBg1Sjx49tGPHDmVlZen+++/32aFeAPijiRMnavXq1Ta18ePHq1mzZkpKkuLipKQkk5rzAKbA/JRhGMrMzFRGRoZGjx6t48ePq3r16nrttdesU19vvvmmSktL9dprr1mDwYIFC1S7dm2tX79e1113nWbOnKnk5GTddNNNkqR58+YpIyOjzO+7b98+vfPOO1q7dq169+4tSWrRooX1/QtTXfXr17dZA/R7+/fvV3p6uj7//HN1795dkvTWW28pMjJSK1as0D/+8Q9J0tmzZzVv3jy1bNlSkjRq1Cjr4r6CggLl5+frhhtusL7frl07508kAHiZc+fOacqUKXb1lJQU6+8HDPDdqa8LGAEyWXq61L37+V89YdWqVapRo4ZCQ0PVt29fDR48WBMmTJAkdezY0Wbdz1dffaUDBw6oZs2aqlGjhmrUqKE6derot99+08GDB5Wfn6+cnBzFxsZaP1OlShV16dKlzO+/fft2BQYGqkePHhU+ht27d6tKlSo237du3bpq06aNdu/eba1Vq1bNGm4kqWHDhtYFfnXq1FFCQoLi4+PVv39/vfjiizbTYwDgizZu3GgXfpo3H6yMjBSP/RyqLBgBMllamqzzrJ5I2z179tTcuXMVHBysRo0a2Vz9Vb16dZttT58+rZiYGL311lt2+wkPD6/Q969atWqFPlcRf7xqzGKx2KxPWrBggR5++GGtWbNGS5cu1bhx47R27VpdddVVHusRADxl4sSJdrXx48frr3+1ePTnUGXBCJDJPD3PWr16dbVq1UpNmzb900vfr7zySu3fv1/169dXq1atbL7CwsIUFhamhg0b6r///a/1M+fOndPWrVvL3GfHjh1VWlqqTz/91OH7F0agSkpKytxHu3btdO7cOZvv+/PPP2vv3r264oorLnpMfxQdHa3k5GRt2rRJHTp00Ntvv+3U5wGgsisuLnYYflJSUmSxWPxivY8jBCCTDRggbdpUOVP3HXfcoXr16mngwIHasGGDDh06pPXr1+vhhx/W999/L0l65JFHlJaWphUrVmjPnj0aMWKETp48WeY+o6KiNGzYMN1zzz1asWKFdZ/vvPOOJKlZs2ayWCxatWqVjh8/rtOnT9vto3Xr1ho4cKDuu+8+bdy4UV999ZXuvPNONW7cWAMHDizXsR06dEjJycnKysrSd999p48++kj79+9nHRAAn5KZmanU1FSb2p133mm33qey/hxyJwIQylStWjV99tlnatq0qW666Sa1a9dOw4cP12+//aZatWpJkh577DHdddddGjZsmOLi4lSzZk3deOONF93v3Llzdcstt2jEiBFq27at7rvvPhUWFkqSGjdurIkTJyopKUkNGjTQqFGjHO5jwYIFiomJ0Q033KC4uDgZhqHVq1eX+2aJ1apV0549e3TzzTfr8ssv1/3336+RI0fqgQcecOIMAUDlNXHiRG3cuNGmNn78eJu1kf7MYvzxpi1QQUGBwsLClJ+fb/1Bf8Fvv/2mQ4cOqXnz5goNDTWpQ3gaf+4AvEVhYaGmTp1qU7NYLBo/frxJHXnOxX5+/xGLoAEA8BELFizQkSNHbGrbtt2m4cPbmNRR5UUAAgDABzha6JyRkaKsLOn4cf9b4/NnCEAAAHixgoICzZgxw66ekpKi6Ojzl7f72xVe5UEAAgDAS82ePVs///yzTW3o0KFq3ry5JP+4o3NFEYAqiLXj/oU/bwCVTVn39kH5EICcdOEy6zNnznj0rsYw14WHvwYGBprcCQB/l5eXp3nz5tnVCT/OIQA5KTAwULVr17Y+U6patWo8QdzHlZaW6vjx46pWrdqf3j0bANzJ0ajP8OHD1aRJExO68W7837wCIiIiJMkaguD7AgIC1LRpU8IuANOUdZVXdLRE/nEeAagCLBaLGjZsqPr16+vs2bNmtwMPCA4OVkAAN04H4HkHDx7Um2++aVdfvDhFe/f630NMXYUAdAkCAwNZEwIAcBtHoz5ffnmX7r+/BZe4XyICEAAAlZCj8DN1aopOn5Z++cU/H2DqSgQgAAAqkV27dmnZsmV29YyM8+GnRg1GfVyBAAQAQCXhaNTn3nvvVePGjW2mvBj5uXSmr+qcM2eOoqKiFBoaqtjYWG3evLnMbb/55hvdfPPNioqKksVi0cyZM+22+eyzz9S/f381atRIFotFK1ascF/zAAC4SFk3NmzcuLGk86GHaS/XMTUALV26VImJiUpJSdG2bdvUqVMnxcfHl3l5+ZkzZ9SiRQulpaVZL0X/o8LCQnXq1Elz5sxxZ+sAALhEZmYmd3U2gcUw8R7/sbGx6tq1q2bPni3p/A3nIiMjNXr0aCX9yQRnVFSUxowZozFjxpS5jcVi0fLlyzVo0CCn+iooKFBYWJjy8/NVq1Ytpz4LAEB5OQo+a9bcr6yshiZ04/2c+flt2ghQcXGxtm7dqt69e/+vmYAA9e7dW1lZWR7tpaioSAUFBTZfAAC4k6PwM2FCik6cIPx4gmmLoH/66SeVlJSoQYMGNvUGDRpoz549Hu0lNTXV4V9EAABcbeXKldq+fbtdPTo6RXFxXOHlKVwFJik5OVmJiYnW1wUFBYqMjDSxIwCAL3L0j+0RI0YoPDxcEgucPcm0AFSvXj0FBgYqLy/Ppp6Xl1fmAmd3CQkJUUhIiEe/JwDAfxiGoUmTJtnVWehsHtPWAAUHBysmJkaZmZnWWmlpqTIzMxUXF2dWWwAAuNS8efMIP5WQqVNgiYmJGjZsmLp06aJu3bpp5syZKiws1N133y1JGjp0qBo3bqzU1FRJ5xdO79q1y/r7H374Qdu3b1eNGjXUqlUrSdLp06d14MAB6/c4dOiQtm/frjp16qhp06YePkIAgD9zNOX16qsP6+WXLzOhG/yeqQFo8ODBOn78uMaPH6/c3Fx17txZa9assS6MPnLkiM0TuH/88UdFR0dbX0+dOlVTp05Vjx49tH79eknSli1b1LNnT+s2F9b2DBs2TAsXLnT/QQEA/F5ZU14ZGSl6+WXW+lQGpt4HqLLiPkAAgIpKS0tTUVGRXT06OoXg42bO/PzmKjAAAFzE0ZTXunWP69NPqysujpGfyoQABADAJTp37pymTJliV09JSVF0tFRczP19KhsCEAAAl6CsG+leuMprwABGfioj058GDwCAt3IUfj7+OEnR0VziXtkxAgQAgJOKioqUlpZmV4+OThG39/EOBCAAAJxQ1pTXhAkpLHT2IgQgAADKyVH4eeqpp7R6dRUeZOplCEAAAPyJU6dOafr06XZ1Fjp7LwIQAAAX8WdXecE7EYAAACiDo/DTufN4DRxoMaEbuBIBCACAP8jLy9O8efPs6oz6+A4CEAAAv1PWlFdGBpe4+xICEAAA/19ZU17PPWfhCi8fQwACAPi9w4cPa9GiRXb1C1NeAwd6uiO4GwEIAODXHI36VK1aVU8++aQJ3cBTCEAAAL/lKPyw0Nk/EIAAAH5n165dWrZsmV2d8OM/CEAAAL/iaNSncePGuvfee03oBmYhAAEA/AZTXrggwOwGAABwtw0bNjgMPxkZhB9/xQgQAMCnOQo+Bw601pYtt+u550xoCJUCAQgA4LPKGvVJSpLeeMOEhlBpEIAAAD7n/fff17Zt2+zqGRkp2rTJhIZQ6RCAAAA+xfGU15U6eLA/j7OAFQEIAODV0tOltDQpKUnKzi57ymvAABOaQ6VlMQzDMLuJyqagoEBhYWHKz89XrVq1zG4HAHAR3btLrVv/Wy1aHLJ7j0vc/YszP78ZAQIAeKULIz/x8fajPr169dI111xjQlfwFgQgAIBXKiv8MOqD8iAAAQC8TlpamuLji+zqhB+UFwEIAOBVHF3ldfPNN6tDhw4mdANvxaMwAABew1H4Wbw4hfADpzECBACo9BwFH+n8Je7PP+/hZuATCEAAgEorPd3xvX2GDBmiyy+/XCz5QUURgAAAlZJhGMrOnmRXZ6EzXIEABACoVMoa9ZEIP3AdAhAAoFJxFH7uvfdeNW7c2IRu4KsIQACASmHlylJt3z7Zrs6oD9yBAAQAMF1ZV3kRfuAuBCAAgKkchZ9Ro0apbt26JnQDf0EAAgCYoqioSGlpaXZ1Rn3gCQQgAIDHMeUFsxGAAAAe5Sj8rFv3mNavr2FCN/BXBCAAgEecOnVK06dPt6tnZKQoKcmEhuDXCEAAALe72JQXs14wAwEIAOAW6elSWpoUH28ffpKTkxUcHGxCV8B5BCAAgFvMmnVc8fEv29VZ6IzKgAAEAHC5iRMn6uqr7euEH1QWBCAAgEs5Wu/z9NNPKyAgwIRuAMcIQACAS3Jhrc+IEQd18OCbdu8z6oPKiAAEALgkFxY6Hzxo/x7hB5UVAQgAcEkcXeU1fvx4WSwWE7oByocABACokK1bt2rVqlV2dUZ94A0IQAAAp/EsL3g7AhAAwCmOwg/BB96GaxIBAOWybt06h+EnI4PwA+/DCBAA4E+VNeXFg0zhrQhAAICLutiUFzNf8FYEIACAQ0uWLNHevXvt6qz3gS+oFGuA5syZo6ioKIWGhio2NlabN28uc9tvvvlGN998s6KiomSxWDRz5sxL3icAwNbEiRMdhp/oaMIPfIPpAWjp0qVKTExUSkqKtm3bpk6dOik+Pl7Hjh1zuP2ZM2fUokULpaWlKSIiwiX7BAD8T1lTXikpKRowwISGADewGIZhmNlAbGysunbtqtmzZ0uSSktLFRkZqdGjRyvpT1bWRUVFacyYMRozZozL9ilJBQUFCgsLU35+vmrVqlWxAwMAL/Piiy/q5MmTdnWmvOAtnPn5beoIUHFxsbZu3arevXtbawEBAerdu7eysrIqzT4BwNdNnDjRLvxcdtllhB/4LFMXQf/0008qKSlRgwYNbOoNGjTQnj17PLbPoqIiFRUVWV8XFBRU6HsDgDfixobwR1wFJik1NbXMe1wAgK/icRbwZ6ZOgdWrV0+BgYHKy8uzqefl5ZW5wNkd+0xOTlZ+fr716+jRoxX63gDgLRyFn7Zt2xJ+4DdMDUDBwcGKiYlRZmamtVZaWqrMzEzFxcV5bJ8hISGqVauWzRcA+CpH4Sc6OkWDBw82oRvAHKZPgSUmJmrYsGHq0qWLunXrppkzZ6qwsFB33323JGno0KFq3LixUlNTJZ1f5Lxr1y7r73/44Qdt375dNWrUUKtWrcq1TwDwR0x5Af9jegAaPHiwjh8/rvHjxys3N1edO3fWmjVrrIuYjxw5ooCA/w1U/fjjj4qOjra+njp1qqZOnaoePXpo/fr15donAPgbR+Hnr3/9q80Vs4A/Mf0+QJUR9wEC4Eu4ygv+wpmf306PAAUGBionJ0f169e3qf/888+qX7++SkpKnN0lAMANmPICyuZ0ACprwKioqEjBwcGX3BAA4NI5Cj833HCDYmJiTOgGqHzKHYBeeuklSZLFYtFrr72mGjVqWN8rKSnRZ599prZt27q+QwBAuRmGoUmTJtnVGfUBbJU7AM2YMUPS+f+45s2bp8DAQOt7wcHBioqK0rx581zfIQDgotLTpbQ0KT7e8ZRXRkaKyD+ArXIHoEOHDkmSevbsqffee0+XXXaZ25oCAJRfWeGnZcs79PLLrVSOZ0ADfsfpNUDr1q1zRx8AgAooLS1VfPxku/qFKa877/R0R4B3cDoA3XPPPRd9f/78+RVuBgBQflzlBVSc0wHoxIkTNq/Pnj2rnTt36uTJk+rVq5fLGgMA2Lqw1icpScrOtg8/Dz30kN0tSgA45nQAWr58uV2ttLRUDz30kFq2bOmSpgAA9tLSpK1bi5SdnWb3HqM+gHNcdifovXv36m9/+5tycnJcsTtTcSdoAJURU17Axbn1TtBlOXjwoM6dO+eq3QEAfsdR+ElMTFTNmjVN6Abwfk4HoMTERJvXhmEoJydHH3zwgYYNG+ayxgAA0qlTpzR9+nS7OqM+wKVxOgBlZ2fbvA4ICFB4eLimTZv2p1eIAQDKjykvwH24DxAAVEKOwk9ycjLPXARcpMJrgI4dO6a9e/dKktq0acOllwDgAsePH9fLL79sV2fUB3AtpwNQQUGBRo4cqcWLF6u0tFSSFBgYqMGDB2vOnDkKCwtzeZMA4A+Y8gI8J8DZD9x3333673//qw8++EAnT57UyZMntWrVKm3ZskUPPPCAO3oEAJ/nKPw8/fTThB/ATZy+D1D16tWVkZGhq6++2qa+YcMG9enTR4WFhS5t0AzcBwiApxw6dEj//ve/7eoEH8B5br0PUN26dR1Oc4WFhfGEeAAohwuPtHD0BHeJ8AN4gtMBaNy4cUpMTNQbb7yhiIgISVJubq6eeOIJPf300y5vEAB8TVnhZ/z48bJYLCZ0BPgfp6fAoqOjdeDAARUVFalp06aSpCNHjigkJEStW7e22Xbbtm2u69SDmAID4C47duxw+ExFRn2AS+fWKbCBAwfyLxQAqACu8gIqD5c9DNWXMAIEwNUchR+CD+Bazvz8dvoy+BYtWujnn3+2q588eVItWrRwdncA4NM2bNhA+AEqIaenwA4fPqySkhK7elFRkb7//nuXNAUAvoApL6DyKncASk9Pt/4+IyPD5lL4kpISZWZmqnnz5q7tDgC8lKPwk5GRoqQkE5oBYKfca4ACAs7PllksFv3xI0FBQYqKitK0adN0ww03uL5LD2MNEICKWrlypbZv325XZ9QHcD+3XAV24blfzZs315dffql69epdWpcA4GMcjfqcOxekyZPHmtANgItxeg3QoUOH3NEHAHg1prwA7+J0AJo0adJF3x8/fnyFmwEAb/P66687vAAkJSVFzHoBlZfTAeiPdzA9e/asDh06pCpVqqhly5YEIAB+w9GoT5MmTTR8+HATugHgDKcDUHZ2tl2toKBACQkJuvHGG13SFABUdtzbB/BuLrsT9Ndff63+/fvr8OHDrtidqbgKDEBZnn32WZ09e9auTvgBzOfWZ4GVJT8/X/n5+a7aHQBUOo5GfTp37qyBAwea0A2AS+F0AHrppZdsXhuGoZycHL3xxhvq27evyxoDgMqEKS/AtzgdgGbMmGHzOiAgQOHh4Ro2bJiSk5Nd1hgAVAY8zgLwTdwHCADK4Cj89OrVS9dcc40J3QBwpQqtATp58qQOHDggSWrVqpVq167typ4AwHSOwk90dIrIPoBvcCoAHT58WCNHjlRGRob1eWAWi0V9+vTR7NmzFRUV5Y4eAcAj0tOl7GymvAB/UO4AdPToUV111VUKCgrS5MmT1a5dO0nSrl27NHfuXMXFxenLL79UkyZN3NYsALhLWeFnwIABio6ONqEjAO5U7vsADR8+XAcOHFBGRoZCQ0Nt3vv111/Vp08ftW7dWq+99ppbGvUk7gME+BfDMBw+5odRH8C7uOU+QGvWrNHSpUvtwo8kVa1aVZMnT9Ztt93mfLcAYCKu8gL8U7kD0E8//XTRNT4tWrTQL7/84oqeAMAjHIWfu+66Sy1atDChGwCeFFDeDRs2bKhdu3aV+f7OnTsVERHhkqYAwJ1KS0vLvMqL8AP4h3KPAA0aNEiPP/64MjMzFR4ebvPesWPH9M9//lODBg1ydX8A4FJMeQGQnFgEfeLECcXGxio3N1d33nmn2rZtK8MwtHv3br399tuKiIjQF198oTp16ri7Z7djETTgmxyFnxEjRtj9ow6Ad3LLIujLLrtM//3vfzV27FgtWbJEJ0+elCTVrl1bt99+u5599lmfCD8AfE9RUZHS0tLs6oz6AP6r3CNAv2cYho4fPy5JCg8Pl8VicXljZmIECPAdTHkB/sMtI0C/Z7FYVL9+/Qo1BwCe4ij8dOiQqJtvrmlCNwAqkwoFIACozE6dOqXp06fb1aOjUzRggAkNAah0CEAAfApTXgDKgwAEwGc4Cj9/+Uuybrwx2IRuAFRmBCAAXu/YsWOaO3euXZ1RHwBlKVcAeumll8q9w4cffrjCzQCAs5jyAlAR5boMvnnz5uXbmcWib7/99pKbMhuXwQPewVH4efrppxUQUO6n/ADwIS6/DP7QoUMuaQwAXOHbb7/VG2+8YVdn1AdAeVV4DVBxcbEOHTqkli1bqkoVlhIB8AymvAC4gtPJ5cyZMxo9erQWLVokSdq3b59atGih0aNHq3HjxkpKSnJ5kwAgOQ4/48eP97m70QNwP6cnypOTk/XVV19p/fr1Cg0NtdZ79+6tpUuXurQ5AJCkr776ymH4SUlJIfwAqBCnA9CKFSs0e/ZsXX311Tb/42nfvr0OHjxYoSbmzJmjqKgohYaGKjY2Vps3b77o9suWLVPbtm0VGhqqjh07avXq1Tbv5+XlKSEhQY0aNVK1atXUp08f7d+/v0K9ATDXxIkTtWLFCrs6U14ALoXTAej48eMOnwNWWFhYoX+JLV26VImJiUpJSdG2bdvUqVMnxcfH69ixYw6337Rpk4YMGaLhw4crOztbgwYN0qBBg7Rz505J5x/UOmjQIH377bdauXKlsrOz1axZM/Xu3VuFhYVO9wfAPI5GfTIyUhQdTfgBcGmcfhr8tddeq3/84x8aPXq0atasqR07dqh58+YaPXq09u/frzVr1jjVQGxsrLp27arZs2dLkkpLSxUZGanRo0c7XE80ePBgFRYWatWqVdbaVVddpc6dO2vevHnat2+f2rRpo507d6p9+/bWfUZEROjZZ5/Vvffe+6c9cRk8YK5PP/1U69evt6sz6gPgYtz6NPhnn31Wffv21a5du3Tu3Dm9+OKL2rVrlzZt2qRPP/3UqX0VFxdr69atSk5OttYCAgLUu3dvZWVlOfxMVlaWEhMTbWrx8fHWIfKioiJJslmfFBAQoJCQEG3cuNFhACoqKrJ+Tjp/AgGYg6u8AHiC01NgV199tbZv365z586pY8eO+uijj1S/fn1lZWUpJibGqX399NNPKikpUYMGDWzqDRo0UG5ursPP5ObmXnT7tm3bqmnTpkpOTtaJEydUXFys5557Tt9//71ycnIc7jM1NVVhYWHWr8jISKeOA4BrOAo/0dEphB8ALlehG/i0bNlSr776qqt7cYmgoCC99957Gj58uOrUqaPAwED17t1bffv2VVmzfcnJyTajSgUFBYQgwIOWL1+uHTt22NUJPgDcpVwByJkpIWfWzNSrV0+BgYHKy8uzqefl5SkiIsLhZyIiIv50+5iYGG3fvl35+fkqLi5WeHi4YmNj1aVLF4f7DAkJUUhISLn7BuA6jkZ9AgIC9PTTT5vQDQB/Ua4AVLt27XJf4VVSUlLubx4cHKyYmBhlZmZq0KBBks4vWM7MzNSoUaMcfiYuLk6ZmZkaM2aMtbZ27VrFxcXZbRsWFiZJ2r9/v7Zs2aLJkyeXuzcA7lfWvX0AwN3KFYDWrVtn/f3hw4eVlJSkhIQEa+jIysrSokWLlJqa6nQDiYmJGjZsmLp06aJu3bpp5syZKiws1N133y1JGjp0qBo3bmzd9yOPPKIePXpo2rRp6tevn5YsWaItW7bolVdese5z2bJlCg8PV9OmTfX111/rkUce0aBBg3Tdddc53R8A11uwYIGOHDliVyf8APCUcgWgHj16WH8/adIkTZ8+XUOGDLHWBgwYoI4dO+qVV17RsGHDnGpg8ODBOn78uMaPH6/c3Fx17txZa9assS50PnLkiM2Tnbt37663335b48aN09ixY9W6dWutWLFCHTp0sG6Tk5OjxMRE5eXlqWHDhho6dCjD6UAl4WjU5/DhZtq7N0HkHwCe4vR9gKpVq6avvvpKrVu3tqnv27dPnTt31pkzZ1zaoBm4DxDgHmVd5ZWWJiUlSQMGmNAUAJ/h1vsARUZG6tVXX9Xzzz9vU3/ttde4cgqAQ88884zD9YEXprwIPgA8zekANGPGDN1888368MMPFRsbK0navHmz9u/fr3fffdflDQLwbo5GfY4ejdGAATeY0A0AnOf0FJgkff/993r55Ze1Z88eSVK7du304IMP+swIEFNggGuUNeXFiA8Ad3Dm53eFApCvIwABl6asx1lMmJCiuDhp0yYPNwTAL7h1DZAknTx5Uq+//rp2794tSWrfvr3uuece6313APgvR+GnZ8+eOnnyWsXFnV/sDABmc3oEaMuWLYqPj1fVqlXVrVs3SdKXX36pX3/9VR999JGuvPJKtzTqSYwAARXDlBcAM7l1Cuyaa65Rq1at9Oqrr6pKlfMDSOfOndO9996rb7/9Vp999lnFO68kCECAc8qa8iL8APAktwagqlWrKjs7W23btrWp79q1S126dOE+QICfcRR++vfv7xOjwQC8i1vXANWqVUtHjhyxC0BHjx5VzZo1nd0dAC9lGIYmTZpkV+dxFgC8gdMBaPDgwRo+fLimTp2q7t27S5I+//xzPfHEEzaPxwDgu8qa8iL8APAWTgegqVOnymKxaOjQoTp37pwkKSgoSA899JDS0tJc3iCAysVR+Pnkk6F67LHmJnQDABVT4fsAnTlzRgcPHpQktWzZUtWqVXNpY2ZiDRBgr7S0VJMnT7arM+oDoLJw+32ApPMPRe3YsWNFPw7AizDlBcDXlDsA3XPPPeXabv78+RVuBkDl4yj8jBw5UvXq1TOhGwBwjXIHoIULF6pZs2aKjo4WT88AfF9xcbFSU1Pt6oz6APAF5Q5ADz30kBYvXqxDhw7p7rvv1p133qk6deq4szcAJmHKC4CvCyjvhnPmzFFOTo6efPJJvf/++4qMjNStt96qjIwMRoQAH+Io/LzwwmPKyCD8APAd5Q5AkhQSEqIhQ4Zo7dq12rVrl9q3b68RI0YoKipKp0+fdlePADzg9OnTZT7L6y9/qcFDTAH4lApfBRYQECCLxSLDMFRSUuLKngB42J9NefE8LwC+xqkAVFRUpPfee0/z58/Xxo0bdcMNN2j27Nnq06ePAgKcGkwCUEk4Cj/JyckKDg42oRsA8IxyB6ARI0ZoyZIlioyM1D333KPFixdzGSzgxX7++WfNnj3brs5CZwD+oNx3gg4ICFDTpk0VHR0ti8VS5nbvvfeey5ozC3eChq8ra8orIyNFmzZ5uBkAcBG33Al66NChFw0+ALyDo/DTufPTeu65ABY6A/AbFX4WmC9jBAi+6Mcff9Srr75qV2fKC4Cv8MizwAB4D25sCAC2uHQL8HGOws+ECeO5sSEAv8YIEOCjvv32W73xxht29ejoFMXFifU+APwaAQjwQdzYEAAujikwwMc4nvJKYcoLAH6HESDAR+zZs0dLly61qzPlBQD2CECAD3A06nP6dF298MIoSUx5AcAfEYAAL+co/EydmqK33jKhGQDwEgQgwEtt27ZN77//vl09I+N8+GHUBwDKRgACvJCjUZ8rr7xS/fv3F/c2BIA/RwACvIyj8MMdnQHAOQQgwEt8+umnWr9+vV2d8AMAziMAAV7A0ahPz549de2115rQDQB4PwIQUMkx5QUArkcAAiqp999/X9u2bbOrE34A4NIRgIBKyNGoT//+/XXllVea0A0A+B4CEFDJMOUFAO5HAAIqiTfffFMHDx60qxN+AMD1CEBAJeBo1GfIkCG6/PLLTegGAHwfAQgwGVNeAOB5BCDAJIsXL9a+ffvs6oQfAHA/AhBgAkejPq+8cp+aNWvEs7wAwAMIQIAHGYahSZMm2dWXLElRzZpSUpIJTQGAHyIAAR4yd+5cHTt2zK4eHZ3CqA8AeBgBCPAAR1Nen332sD755DLFxUkDBpjQFAD4MQIQ4EZlTXmlpKQoPV369VemvQDADAQgwE1SU1NVXFxsV79wldeAAYz8AIBZCECAGzia8nr88cdVvXp1E7oBAPwRAQhwoXPnzmnKlCl2de7tAwCVCwEIcBFHoz4S4QcAKiMCEOACjsJPUlKSQkJCTOgGAPBnCEDAJSgqKlJaWppdnVEfAKjcCEBABTHlBQDeiwAEVICj8DNu3DgFBgaa0A0AwFkBZjcgSXPmzFFUVJRCQ0MVGxurzZs3X3T7ZcuWqW3btgoNDVXHjh21evVqm/dPnz6tUaNGqUmTJqpataquuOIKzZs3z52HAD9RWFjoMPykpKQQfgDAi5gegJYuXarExESlpKRo27Zt6tSpk+Lj4x0+M0mSNm3apCFDhmj48OHKzs7WoEGDNGjQIO3cudO6TWJiotasWaM333xTu3fv1pgxYzRq1Cilp6d76rDggyZOnKipU6fa1EJCQpjyAgAvZDEMwzCzgdjYWHXt2lWzZ8+WJJWWlioyMlKjR49WkoNnBAwePFiFhYVatWqVtXbVVVepc+fO1lGeDh06aPDgwXr66aet28TExKhv37565pln/rSngoIChYWFKT8/X7Vq1brUQ4QPcDTqM378eFksFhO6AQA44szPb1NHgIqLi7V161b17t3bWgsICFDv3r2VlZXl8DNZWVk220tSfHy8zfbdu3dXenq6fvjhBxmGoXXr1mnfvn267rrr3HMg8Fn5+fkOw090dArhBwC8mKmLoH/66SeVlJSoQYMGNvUGDRpoz549Dj+Tm5vrcPvc3Fzr61mzZun+++9XkyZNVKVKFQUEBOjVV1/Vtdde63CfRUVFKioqsr4uKCio6CHBhzgKPgUFDTR9+oM8wR0AvJxPXgU2a9YsffHFF0pPT1ezZs302WefaeTIkWrUqJHd6JF0/qGVZV3SDP/k6O9D587np7yysniCOwB4O1MDUL169RQYGKi8vDybel5eniIiIhx+JiIi4qLb//rrrxo7dqyWL1+ufv36SZL+8pe/aPv27Zo6darDAJScnKzExETr64KCAkVGRl7SscE7HT9+XC+//LJdfcKEFMXFSZs2MfIDAL7A1DVAwcHBiomJUWZmprVWWlqqzMxMxcXFOfxMXFyczfaStHbtWuv2Z8+e1dmzZxUQYHtogYGBKi0tdbjPkJAQ1apVy+YL/mfixIl24adz586Kjj4ffhj1AQDfYfoUWGJiooYNG6YuXbqoW7dumjlzpgoLC3X33XdLkoYOHarGjRsrNTVVkvTII4+oR48emjZtmvr166clS5Zoy5YteuWVVyRJtWrVUo8ePfTEE0+oatWqatasmT799FP9+9//1vTp0007TlRuZd3b5wJGfQDAt5gegAYPHqzjx49r/Pjxys3NVefOnbVmzRrrQucjR47YjOZ0795db7/9tsaNG6exY8eqdevWWrFihTp06GDdZsmSJUpOTtYdd9yhX375Rc2aNdOUKVP04IMPevz4ULl9//33ev311+3q3NsHAHyb6fcBqoy4D5B/cDTqc/XVV+vvf/+7Cd0AAC6VMz+/TR8BAszwZ1NeAADfRgCCX9m/f7/efvttuzrhBwD8CwEIfsPRqE98fLyuuuoqE7oBAJiJAAS/wJQXAOD3CEDwaTt27NDy5cvt6oQfAPBvBCD4LEejPjfddJM6duxoQjcAgMqEAASfxJQXAOBiCEDwKVlZWfroo4/s6oQfAMDvEYDgMxyN+txxxx1q1aqVCd0AACozAhB8AlNeAABnEIDg1TIzM7Vx40a7OuEHAHAxBCB4LUejPsOHD1eTJk1M6AYA4E0IQPBKTHkBAC5FgNkNAI6kp0vdu5//9fc++ugjwg8A4JIxAoRKKS1Nyso6/+uAAedrjoJPu3YjdOut4R7uDgDg7RgBQqWUlCTFxZ3/1TAMh+FnwoQUzZxJ+AEAOI8AhEppwABp0yappGS5Jk2aZPd+dHSKNSABAOAspsDgUenp56e1kpL+N7VVFkejPomJiapZs6akP/88AABlYQQIHvX7tT1lKWvKKyUlxRp+AAC4FIwAwaOSkv43AuTI8uXLtWPHDrs6V3kBAFyJAASPGjDg/NeFy9x/PxXmaNTnySefVNWqVT3cJQDA1zEFBlP8fiqspKSkzCkvwg8AwB0YAYIpLkyF3X77+3rmmW027zVo0EAPPvigSZ0BAPwBAQimGDBAys6eqJ9/tq2PHTtWQUFB5jQFAPAbTIHB48qa8srISCH8AAA8ghEgeNRHH32krKwsm1rdulfq7bf7c1NDAIDHEIDgMY5GfZ5++mkFBARo1CgTGgIA+C0CENzu3LlzmjJlil2de/sAAMxCAIJbff755/r4449tav/4xz90xRVXmNQRAAAEILhRamqqiouLbWrjx4+XxWIxqSMAAM4jAMHlmPICAFR2BCC41M6dO/Xuu+/a1DZtekAjR0aY1BEAAPYIQHAZx/f2Ga+sLItOnfrfM78AADAbAQiXrLi4WKmpqTa19u3b65ZbblF09MWf/g4AgBkIQLgk2dnZSk9Pt6mNHDlS9erVk/S/p78DAFCZEIBQYWU9wR0AgMqOAASnFRUVKS0tzaYWHR2tAQz1AAC8BAEITtm8ebM+/PBDm9rDDz+syy67zKSOAABwHgEI5caUFwDAVxCA8Kd+/fVXPf/88za12NhY9enTx6SOAAC4NAQgXNTGjRuVmZlpU3v00UdVq1YtkzoCAODSEYBQJqa8AAC+igAEO6dPn9a0adNsatdcc4169eplUkcAALgWAQg2PvnkE23YsMGm9thjj6lGjRomdQQAgOsRgGDFlBcAwF8QgKCCggLNmDHDpvb3v/9dV199tUkdAQDgXgQgP5eRkaEvvvjCpvbkk0+qatWqJnUEAID7EYD8GFNeAAB/RQDyQydOnNBLL71kU+vbt6+6detmUkcAAHgWAcjPpKenKzs726aWlJSkkJAQkzoCAMDzCEB+hCkvAADOIwD5gZ9++klz5syxqQ0YMEDR0dEmdQQAgLkIQD7uP//5j7755hubWnJysoKDg03qCAAA8xGAfJRhGJo0aZJdnSkvAAAIQD4pLy9P8+bNs6nddNNN6tixo0kdAQBQuRCAfMxbb72lAwcO2NSeeuopVanCHzUAABcEmN0AKi49Xere/fyvhmFo4sSJNuEnJCREKSkphB8AAP6An4xeLC1NysqS5s79QdnZr9m8N3jwYLVt29akzgAAqNwIQF4sKUn65JP5uuyyozb1cePGKTAw0KSuAACo/CrFFNicOXMUFRWl0NBQxcbGavPmzRfdftmyZWrbtq1CQ0PVsWNHrV692uZ9i8Xi8OuFF15w52F4lGEYys6eaBN+atWqpZSUFMIPAAB/wvQAtHTpUiUmJiolJUXbtm1Tp06dFB8fr2PHjjncftOmTRoyZIiGDx+u7OxsDRo0SIMGDdLOnTut2+Tk5Nh8zZ8/XxaLRTfffLOnDsutTp48aXeJ+5133qlHH33UpI4AAPAuFsMwDDMbiI2NVdeuXTV79mxJUmlpqSIjIzV69GglJSXZbT948GAVFhZq1apV1tpVV12lzp072136fcGgQYN06tQpZWZmlqungoIChYWFKT8/X7Vq1arAUbnPl19+aTfi9fTTTysgwPQsCwCAqZz5+W3qGqDi4mJt3bpVycnJ1lpAQIB69+6trKwsh5/JyspSYmKiTS0+Pl4rVqxwuH1eXp4++OADLVq0qMw+ioqKVFRUZH1dUFDgxFF4hmEYevHFF5Wfn2+tXX/99eratauJXQEA4J1MHTb46aefVFJSogYNGtjUGzRooNzcXIefyc3NdWr7RYsWqWbNmrrpppvK7CM1NVVhYWHWr8jISCePxL1++eUXTZo0ySb8PPLII4QfAAAqyOfnTebPn6877rhDoaGhZW6TnJys/Px869fRo0fL3NbTsrKyNGvWLOvr8PBwjR8/XrVr1zavKQAAvJypU2D16tVTYGCg8vLybOp5eXmKiIhw+JmIiIhyb79hwwbt3btXS5cuvWgfISEhCgkJcbJ79yotLdW0adN05swZa61///668sorTewKAADfYOoIUHBwsGJiYmwWJ5eWliozM1NxcXEOPxMXF2e3mHnt2rUOt3/99dcVExOjTp06ubZxN/vpp580efJkm/Dz6KOPEn4AAHAR02+EmJiYqGHDhqlLly7q1q2bZs6cqcLCQt19992SpKFDh6px48ZKTU2VdH7tS48ePTRt2jT169dPS5Ys0ZYtW/TKK6/Y7LegoEDLli3TtGnTPH5Ml2LDhg365JNPrK8bNWqke++9VxaLxcSuAADwLaYHoMGDB+v48eMaP368cnNz1blzZ61Zs8a60PnIkSM2l3h3795db7/9tsaNG6exY8eqdevWWrFihTp06GCz3yVLlsgwDA0ZMsSjx1NRpaWlSktL09mzZ621G2+8UX/5y19M7AoAAN9k+n2AKiNP3wcoLy/P7h5Gjz32mGrUqOH27w0AgK/wmvsAQfrkk0+0YcMG6+tmzZpp2LBhTHkBAOBGBCCTlJSU6JlnnrGp3XLLLWrfvr1JHQEA4D8IQCbIycmxW7T9xBNPqFq1aiZ1BACAfyEAedjatWu1adMm6+uWLVvqzjvvNLEjAAD8DwHIg44dO2YTfgYPHqy2bdua2BEAAP7J5x+FUZmEhITo9Om6kqTMzCcJPwAAmIQRIA8KCwvTNdeMUlqalJRkdjcAAPgvApCHDRhw/gsAAJiHKTAAAOB3CEAAAMDvEIAAAIDfIQABAAC/QwACAAB+hwAEAAD8DgEIAAD4HQIQAADwOwQgAADgdwhAAADA7xCAAACA3yEAAQAAv0MAAgAAfoenwTtgGIYkqaCgwOROAABAeV34uX3h5/jFEIAcOHXqlCQpMjLS5E4AAICzTp06pbCwsItuYzHKE5P8TGlpqX788UfVrFlTFovF7HasCgoKFBkZqaNHj6pWrVpmt+M3OO+exzn3PM65OTjvrmUYhk6dOqVGjRopIODiq3wYAXIgICBATZo0MbuNMtWqVYv/UEzAefc8zrnncc7NwXl3nT8b+bmARdAAAMDvEIAAAIDfIQB5kZCQEKWkpCgkJMTsVvwK593zOOeexzk3B+fdPCyCBgAAfocRIAAA4HcIQAAAwO8QgAAAgN8hAAEAAL9DADLZnDlzFBUVpdDQUMXGxmrz5s0X3X7ZsmVq27atQkND1bFjR61evdrmfYvF4vDrhRdecOdheBVXn/PTp09r1KhRatKkiapWraorrrhC8+bNc+cheCVXn/e8vDwlJCSoUaNGqlatmvr06aP9+/e78xC8jjPn/JtvvtHNN9+sqKgoWSwWzZw585L36Y9cfc4/++wz9e/fX40aNZLFYtGKFSvc17y/MWCaJUuWGMHBwcb8+fONb775xrjvvvuM2rVrG3l5eQ63//zzz43AwEDj+eefN3bt2mWMGzfOCAoKMr7++mvrNjk5OTZf8+fPNywWi3Hw4EFPHVal5o5zft999xktW7Y01q1bZxw6dMj417/+ZQQGBhorV6701GFVeq4+76WlpcZVV11lXHPNNcbmzZuNPXv2GPfff7/RtGlT4/Tp0548tErL2XO+efNm4/HHHzcWL15sREREGDNmzLjkffobd5zz1atXG0899ZTx3nvvGZKM5cuXu/cg/AgByETdunUzRo4caX1dUlJiNGrUyEhNTXW4/a233mr069fPphYbG2s88MADZX6PgQMHGr169XJNwz7AHee8ffv2xqRJk2y2ufLKK42nnnrKhZ17N1ef97179xqSjJ07d9rsMzw83Hj11VfdcATex9lz/nvNmjVz+MP4UvbpD9xxzn+PAORaTIGZpLi4WFu3blXv3r2ttYCAAPXu3VtZWVkOP5OVlWWzvSTFx8eXuX1eXp4++OADDR8+3HWNezF3nfPu3bsrPT1dP/zwgwzD0Lp167Rv3z5dd9117jkQL+OO815UVCRJCg0NtdlnSEiINm7c6OpD8DoVOedm7NOXcH68DwHIJD/99JNKSkrUoEEDm3qDBg2Um5vr8DO5ublObb9o0SLVrFlTN910k2ua9nLuOuezZs3SFVdcoSZNmig4OFh9+vTRnDlzdO2117r+ILyQO85727Zt1bRpUyUnJ+vEiRMqLi7Wc889p++//145OTnuORAvUpFzbsY+fQnnx/sQgHzY/Pnzdccdd9j8KxmuN2vWLH3xxRdKT0/X1q1bNW3aNI0cOVIff/yx2a35rKCgIL333nvat2+f6tSpo2rVqmndunXq27evAgL43xqAP1fF7Ab8Vb169RQYGKi8vDybel5eniIiIhx+JiIiotzbb9iwQXv37tXSpUtd17SXc8c5//XXXzV27FgtX75c/fr1kyT95S9/0fbt2zV16lS7aRx/5K6/6zExMdq+fbvy8/NVXFys8PBwxcbGqkuXLq4/CC9TkXNuxj59CefH+/BPJZMEBwcrJiZGmZmZ1lppaakyMzMVFxfn8DNxcXE220vS2rVrHW7/+uuvKyYmRp06dXJt417MHef87NmzOnv2rN2oQ2BgoEpLS118BN7J3X/Xw8LCFB4erv3792vLli0aOHCgaw/AC1XknJuxT1/C+fFCZq/C9mdLliwxQkJCjIULFxq7du0y7r//fqN27dpGbm6uYRiGcddddxlJSUnW7T///HOjSpUqxtSpU43du3cbKSkpdpdkG4Zh5OfnG9WqVTPmzp3r0ePxBu445z169DDat29vrFu3zvj222+NBQsWGKGhocbLL7/s8eOrrNxx3t955x1j3bp1xsGDB40VK1YYzZo1M2666SaPH1tl5ew5LyoqMrKzs43s7GyjYcOGxuOPP25kZ2cb+/fvL/c+/Z07zvmpU6es20gypk+fbmRnZxvfffedx4/P1xCATDZr1iyjadOmRnBwsNGtWzfjiy++sL7Xo0cPY9iwYTbbv/POO8bll19uBAcHG+3btzc++OADu33+61//MqpWrWqcPHnS3e17JVef85ycHCMhIcFo1KiRERoaarRp08aYNm2aUVpa6onD8RquPu8vvvii0aRJEyMoKMho2rSpMW7cOKOoqMgTh+I1nDnnhw4dMiTZffXo0aPc+4Trz/m6descbvPH/17gPIthGIbnx50AAADMwxogAADgdwhAAADA7xCAAACA3yEAAQAAv0MAAgAAfocABAAA/A4BCAAA+B0CEAAA8DsEIAA+KTc3V6NHj1aLFi0UEhKiyMhI9e/f3+ZZTZs2bdL111+vyy67TKGhoerYsaOmT5+ukpISEzsH4AkEIAA+5/Dhw4qJidEnn3yiF154QV9//bXWrFmjnj17auTIkZKk5cuXq0ePHmrSpInWrVunPXv26JFHHtEzzzyj2267TdwkH/BtPAoDgM+5/vrrtWPHDu3du1fVq1e3ee/kyZMKCgpSs2bN1KNHD7377rs277///vsaMGCAlixZosGDB3uybQAexAgQAJ/yyy+/aM2aNRo5cqRd+JGk2rVr66OPPtLPP/+sxx9/3O79/v376/LLL9fixYs90S4AkxCAAPiUAwcOyDAMtW3btsxt9u3bJ0lq166dw/fbtm1r3QaAbyIAAfApzszqswIA8F8EIAA+pXXr1rJYLNqzZ0+Z21x++eWSpN27dzt8f/fu3dZtAPgmAhAAn1KnTh3Fx8drzpw5KiwstHv/5MmTuu6661SnTh1NmzbN7v309HTt379fQ4YM8US7AExCAALgc+bMmaOSkhJ169ZN7777rvbv36/du3frpZdeUlxcnKpXr65//etfWrlype6//37t2LFDhw8f1uuvv66EhATdcsstuvXWW80+DABuxGXwAHxSTk6OpkyZolWrViknJ0fh4eGKiYnRo48+qr/97W+SpA0bNmjKlCnKysrSb7/9ptatW+vuu+/WmDFjFBgYaO4BAHArAhAAAPA7TIEBAAC/QwACAAB+hwAEAAD8DgEIAAD4HQIQAADwOwQgAADgdwhAAADA7xCAAACA3yEAAQAAv0MAAgAAfocABAAA/A4BCAAA+J3/B6M+FnZT7EkIAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAHHCAYAAACr0swBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUZlJREFUeJzt3XlYVNX/B/D3sCsKyK6GgitmqIiK2PebmRS426rmgkpm5k5pYOaApuC+pGlqLpmKWmZEJiHpN5NJE7fcSk3cYnMBBBWEub8/+Dk2zQVncIY7y/v1PDzGmTN3PsN9Bt6dc+65MkEQBBARERGRGiupCyAiIiIyRgxJRERERCIYkoiIiIhEMCQRERERiWBIIiIiIhLBkEREREQkgiGJiIiISARDEhEREZEIhiQiIiIiEQxJRGTWZDIZYmNjpS5DZfjw4fD19ZW6DCLSAkMSEdW4DRs2QCaTqb4cHBzQokULjBs3Djk5OQZ97fT0dMTGxiI/P1+vx33++efV3pOrqys6duyIdevWQalU6uU15syZg127dunlWET0eDZSF0BElmvmzJnw8/PD/fv38csvv2DlypXYvXs3Tp06hdq1a+vlNe7duwcbm0e/6tLT0xEXF4fhw4fDxcVFL6/x0FNPPYX4+HgAQF5eHr744gtERkbizz//REJCwhMff86cOXjttdfQv3//Jz4WET0eQxIRSaZHjx7o0KEDAOCtt96Cm5sbFi1ahG+//RaDBg2q9nGVSiVKS0vh4OAABwcHfZX7WM7OzhgyZIjq+9GjR6Nly5ZYvnw5Zs2aBVtb2xqrhYieHKfbiMhovPDCCwCAS5cuAQAWLFiALl26wM3NDbVq1UJQUBC++uorjefJZDKMGzcOmzdvRuvWrWFvb489e/aoHnu4Jik2NhZTpkwBAPj5+ammxjIzM9G1a1e0bdtWtK6WLVsiLCxM5/dTu3ZtdO7cGcXFxcjLy6u0X3FxMd577z34+PjA3t4eLVu2xIIFCyAIgtp7LC4uxsaNG1V1Dx8+XOeaiEh7HEkiIqNx8eJFAICbmxsAYOnSpejbty8GDx6M0tJSJCYm4vXXX0dycjJ69eql9tyffvoJ27dvx7hx4+Du7i66OPqVV17Bn3/+ia1bt2Lx4sVwd3cHAHh4eGDo0KEYNWoUTp06hWeeeUb1nN9++w1//vknpk+fXq339Ndff8Ha2rrSqT1BENC3b1/s27cPkZGRaNeuHVJSUjBlyhRcv34dixcvBgBs2rQJb731Fjp16oS3334bANC0adNq1UREWhKIiGrY+vXrBQDC3r17hby8POHq1atCYmKi4ObmJtSqVUu4du2aIAiCcPfuXbXnlZaWCs8884zwwgsvqLUDEKysrITTp09rvBYAQS6Xq76fP3++AEC4dOmSWr/8/HzBwcFB+OCDD9TaJ0yYIDg6OgpFRUVVvqeuXbsK/v7+Ql5enpCXlyecPXtWmDBhggBA6NOnj6pfRESE0LhxY9X3u3btEgAIH3/8sdrxXnvtNUEmkwkXLlxQtTk6OgoRERFV1kFE+sPpNiKSTGhoKDw8PODj44OBAweiTp06+Oabb9CwYUMAQK1atVR9b9++jYKCAvz3v//F0aNHNY7VtWtXPP3009WuxdnZGf369cPWrVtV01zl5eXYtm0b+vfvD0dHx8ce49y5c/Dw8ICHhwdatWqFTz75BL169cK6desqfc7u3bthbW2NCRMmqLW/9957EAQBP/zwQ7XfExE9GU63EZFkVqxYgRYtWsDGxgZeXl5o2bIlrKwe/b9bcnIyPv74Yxw/fhwlJSWqdplMpnEsPz+/J65n2LBh2LZtGw4cOIDnnnsOe/fuRU5ODoYOHarV8319fbFmzRrVtgbNmzeHp6dnlc+5fPkyGjRogLp166q1t2rVSvU4EUmDIYmIJNOpUyfV1W3/duDAAfTt2xfPPfccPv30U9SvXx+2trZYv349tmzZotH/n6NO1RUWFgYvLy98+eWXeO655/Dll1/C29sboaGhWj3f0dFR675EZPw43UZERunrr7+Gg4MDUlJSMHLkSPTo0UMvAURsFOoha2trvPnmm/jqq69w+/Zt7Nq1C4MGDYK1tfUTv25lGjdujL///ht37txRaz937pzq8Yeqqp2I9I8hiYiMkrW1NWQyGcrLy1VtmZmZT7zj9MO1RZXtuD106FDcvn0bo0ePRlFRkdq+R4bQs2dPlJeXY/ny5WrtixcvhkwmQ48ePVRtjo6Oet8pnIgqx+k2IjJKvXr1wqJFixAeHo4333wTubm5WLFiBZo1a4aTJ09W+7hBQUEAgA8//BADBw6Era0t+vTpowpPgYGBeOaZZ7Bjxw60atUK7du318v7qUyfPn3QrVs3fPjhh8jMzETbtm3x448/4ttvv8WkSZPULvMPCgrC3r17sWjRIjRo0AB+fn4IDg42aH1ElowjSURklF544QV8/vnnyM7OxqRJk7B161bMnTsXL7/88hMdt2PHjpg1axZOnDiB4cOHY9CgQRobPQ4bNgwAtF6w/SSsrKyQlJSESZMmITk5GZMmTcKZM2cwf/58LFq0SK3vokWLEBQUhOnTp2PQoEFYuXKlwesjsmQyQfjHlq5ERISlS5di8uTJyMzMRKNGjaQuh4gkwpBERPQPgiCgbdu2cHNzw759+6Quh4gkxDVJRESouH9aUlIS9u3bh99//x3ffvut1CURkcQ4kkREhIor5/z8/ODi4oJ3330Xs2fPlrokIpIYQxIRERGRCF7dRkRERCSCIYmIiIhIBBduV5NSqcTff/+NunXr8lYBREREJkIQBNy5cwcNGjRQu6G2GIakavr777/h4+MjdRlERERUDVevXsVTTz1VZR+GpGqqW7cugIofspOTk8TVEBERkTYKCwvh4+Oj+jteFYakano4xebk5MSQREREZGK0WSrDhdtEREREIhiSiIiIiEQwJBERERGJ4JokA1IqlSgtLZW6DKoBtra2sLa2lroMIiLSI4YkAyktLcWlS5egVCqlLoVqiIuLC7y9vblvFhGRmWBIMgBBEJCVlQVra2v4+Pg8drMqMm2CIODu3bvIzc0FANSvX1/iioiISB8YkgygrKwMd+/eRYMGDVC7dm2py6EaUKtWLQBAbm4uPD09OfVGRGQGOMRhAOXl5QAAOzs7iSuhmvQwED948EDiSoiISB8YkgyIa1MsC883EZF5YUgiIiIiEsGQRERERCRC8pC0YsUK+Pr6wsHBAcHBwTh8+HCV/Xfs2AF/f384ODggICAAu3fvVnt8+PDhkMlkal/h4eFqfXx9fTX6JCQk6P29mZp//uxsbW3h5eWFF198EevWrdNpK4MNGzbAxcXFcIUSERHVAElD0rZt2xAVFQW5XI6jR4+ibdu2CAsLU11K/W/p6ekYNGgQIiMjcezYMfTv3x/9+/fHqVOn1PqFh4cjKytL9bV161aNY82cOVOtz/jx4w3yHk3Nw59dZmYmfvjhB3Tr1g0TJ05E7969UVZWJnV5RERENUbSkLRo0SKMGjUKI0aMwNNPP41Vq1ahdu3aWLdunWj/pUuXIjw8HFOmTEGrVq0wa9YstG/fHsuXL1frZ29vD29vb9VXvXr1NI5Vt25dtT6Ojo4GeY+m5uHPrmHDhmjfvj2mTZuGb7/9Fj/88AM2bNgAoOK8BQQEwNHRET4+Pnj33XdRVFQEANi/fz9GjBiBgoIC1ahUbGwsAGDTpk3o0KGD6mf/5ptvVhqIiYjIciUlAV26VPwrJclCUmlpKTIyMhAaGvqoGCsrhIaGQqFQiD5HoVCo9QeAsLAwjf779++Hp6cnWrZsiTFjxuDmzZsax0pISICbmxsCAwMxf/58g46SCIKA0tJSSb4EQXji+l944QW0bdsWO3fuBFBxnpYtW4bTp09j48aN+OmnnzB16lQAQJcuXbBkyRI4OTmpRunef/99ABWXxs+aNQsnTpzArl27kJmZieHDhz9xfUREZF4SEgCFouJfKUm2meSNGzdQXl4OLy8vtXYvLy+cO3dO9DnZ2dmi/bOzs1Xfh4eH45VXXoGfnx8uXryIadOmoUePHlAoFKoN/iZMmID27dvD1dUV6enpiImJQVZWFhYtWlRpvSUlJSgpKVF9X1hYqPV7ffDgAeLj47Xur08xMTF62a/J398fJ0+eBABMmjRJ1e7r64uPP/4Y77zzDj799FPY2dnB2dkZMpkM3t7eascYOXKk6r+bNGmCZcuWoWPHjigqKkKdOnWeuEYiIjIP0dEVASk6Wto6zG7H7YEDB6r+OyAgAG3atEHTpk2xf/9+dO/eHQAQFRWl6tOmTRvY2dlh9OjRiI+Ph729vehx4+PjERcXZ9jijZggCKp9gPbu3Yv4+HicO3cOhYWFKCsrw/3793H37t0qdxjPyMhAbGwsTpw4gdu3b6sWg1+5cgVPP/10jbwPIiIyfn37VnxJTbKQ5O7uDmtra+Tk5Ki15+TkaIxAPOTt7a1Tf6BixMLd3R0XLlxQhaR/Cw4ORllZGTIzM9GyZUvRPjExMWrhqrCwED4+PpW+7j/Z2toiJiZGq776Zmtrq5fjnD17Fn5+fsjMzETv3r0xZswYzJ49G66urvjll18QGRmJ0tLSSkNScXExwsLCEBYWhs2bN8PDwwNXrlxBWFgYSktL9VIjERGZh/v37+PBgweoW7eupHVIFpLs7OwQFBSEtLQ09O/fHwCgVCqRlpaGcePGiT4nJCQEaWlpatM9qampCAkJqfR1rl27hps3b1Z509Hjx4/DysoKnp6elfaxt7evdJTpcWQymUnfouSnn37C77//jsmTJyMjIwNKpRILFy5U3bh3+/btav3t7OxUt2Z56Ny5c7h58yYSEhJU4fLIkSM18waIiMhk7Ny5E7///jsA/S0ZqS5Jp9uioqIQERGBDh06oFOnTliyZAmKi4sxYsQIAMCwYcPQsGFD1XqeiRMnomvXrli4cCF69eqFxMREHDlyBKtXrwYAFBUVIS4uDq+++iq8vb1x8eJFTJ06Fc2aNUNYWBiAisXfhw4dQrdu3VC3bl0oFApMnjwZQ4YMEb0KztKUlJQgOzsb5eXlyMnJwZ49exAfH4/evXtj2LBhOHXqFB48eIBPPvkEffr0wcGDB7Fq1Sq1Y/j6+qKoqAhpaWlo27YtateujUaNGsHOzg6ffPIJ3nnnHZw6dQqzZs2S6F0SEZGxuXfvHubNm6fWZmMj8aogQWKffPKJ0KhRI8HOzk7o1KmT8Ouvv6oe69q1qxAREaHWf/v27UKLFi0EOzs7oXXr1sL333+veuzu3bvCSy+9JHh4eAi2trZC48aNhVGjRgnZ2dmqPhkZGUJwcLDg7OwsODg4CK1atRLmzJkj3L9/X6e6CwoKBABCQUGBxmP37t0Tzpw5I9y7d0+nY0otIiJCACAAEGxsbAQPDw8hNDRUWLdunVBeXq7qt2jRIqF+/fpCrVq1hLCwMOGLL74QAAi3b99W9XnnnXcENzc3AYAgl8sFQRCELVu2CL6+voK9vb0QEhIiJCUlCQCEY8eO1ewbNRBTPe9ERFI7c+aMEBsbq/ZVWlpqkNeq6u/3v8kEQQ/XiFugwsJCODs7o6CgAE5OTmqP3b9/H5cuXYKfnx8cHBwkqpBqGs87EZFuBEHA+vXrcfXqVVVbSEgIXnrpJYO9ZlV/v//N7K5uIyIiIuNXWFiIxYsXq7WNHj26youxahpDEhEREdWoI0eO4Pvvv1d97+DggClTpqguCDIWDElERERUI5RKJZYsWYI7d+6o2l566aUqr1KXEkMSERERGVxeXh4+/fRTtbaJEyfCxcVFmoK0wJBEREREBrVv3z78/PPPqu+9vb3x9ttvq+7kYKwYkoiIiEhvkpIe3XetZ88yzJ49W+3xV155BQEBARJVpxuGJCIiItKbhARAoQBWrbqKY8fWqT32/vvvw9HRUaLKdMeQRERERHoTHQ189923eOqp46o2f39/DBgwQLqiqokhiYiIiPSioKAAx44twVNPPWobMmQImjZtKl1RT8C4NiQgizB8+HDVTY0B4Pnnn1e7aXF16OMYRERUfd999x2WLFmi1hYTE2OyAQngSBL9w/Dhw7Fx40YAgK2tLRo1aoRhw4Zh2rRpBr3J4M6dO2Fra6tV3/3796Nbt264ffu22mWjuhyDiIj0Ky4uTqNNLpdLUIl+MSSRmvDwcKxfvx4lJSXYvXs3xo4dC1tbW8TExKj1Ky0thZ2dnV5e09XV1SiOQUREusnKysLq1avV2nr37o2goCCJKtIvTreRGnt7e3h7e6Nx48YYM2YMQkNDkZSUpJoimz17Nho0aICWLVsCAK5evYo33ngDLi4ucHV1Rb9+/ZCZmak6Xnl5OaKiouDi4gI3NzdMnToV/76n8r+nykpKSvDBBx/Ax8cH9vb2aNasGT7//HNkZmaiW7duAIB69epBJpNh+PDhose4ffs2hg0bhnr16qF27dro0aMHzp8/r3p8w4YNcHFxQUpKClq1aoU6deogPDwcWVlZqj779+9Hp06d4OjoCBcXFzz77LO4fPmynn7SRESmbd26dRoBadq0aWYTkACGJHqMWrVqobS0FACQlpaGP/74A6mpqUhOTsaDBw8QFhaGunXr4sCBAzh48KAqbDx8zsKFC7FhwwasW7cOv/zyC27duoVvvvmmytccNmwYtm7dimXLluHs2bP47LPPUKdOHfj4+ODrr78GAPzxxx/IysrC0qVLRY8xfPhwHDlyBElJSVAoFBAEAT179sSDBw9Ufe7evYsFCxZg06ZN+Pnnn3HlyhW8//77AICysjL0798fXbt2xcmTJ6FQKExi4zMiIkNTKpWIi4vD1atXVW0ODg6Qy+Vmt+yB020kShAEpKWlISUlBePHj0deXh4cHR2xdu1a1TTbl19+CaVSibVr16rCw/r16+Hi4oL9+/fjpZdewpIlSxATE4NXXnkFALBq1SqkpKRU+rp//vkntm/fjtTUVISGhgIAmjRponr84bSap6dnpVvZnz9/HklJSTh48CC6dOkCANi8eTN8fHywa9cuvP766wCABw8eYNWqVapFhePGjcPMmTMBVNyduqCgAL1791Y93qpVK91/kEREZiIpCVi79k8EBW1Vax88eDCaNWsmUVWGxZEkI5eUBHTpUvFvTUhOTkadOnXg4OCAHj16YMCAAYiNjQUABAQEqK1DOnHiBC5cuIC6deuiTp06qFOnDlxdXXH//n1cvHgRBQUFyMrKQnBwsOo5NjY26NChQ6Wvf/z4cVhbW6Nr167Vfg9nz56FjY2N2uu6ubmhZcuWOHv2rKqtdu3aaldd1K9fH7m5uQAqwtjw4cMRFhaGPn36YOnSpWpTcUREluCff4OOHYvTCEgzZsww24AEcCTJ6D3cuTQhAejb1/Cv161bN6xcuRJ2dnZo0KCB2lVt/94ltaioCEFBQdi8ebPGcTw8PKr1+rVq1arW86rj38PCMplMbb3U+vXrMWHCBOzZswfbtm3D9OnTkZqais6dO9dYjUREUkpIAI4du4djx+aptfv6+iIiIkKiqmoOR5KMXHQ0EBJS8W9NcHR0RLNmzdCoUaPHXvbfvn17nD9/Hp6enmjWrJnal7OzM5ydnVG/fn0cOnRI9ZyysjJkZGRUesyAgAAolUr873//E3384UhWeXl5pcdo1aoVysrK1F735s2b+OOPP/D0009X+Z7+LTAwEDExMUhPT8czzzyDLVu26PR8IiJTNmjQt4iOVg9I77zzjkUEJIAhyej17Qukp9fMKJKuBg8eDHd3d/Tr1w8HDhzApUuXsH//fkyYMAHXrl0DAEycOBEJCQnYtWsXzp07h3fffRf5+fmVHvPh/52MHDkSu3btUh1z+/btAIDGjRtDJpMhOTkZeXl5KCoq0jhG8+bN0a9fP4waNQq//PILTpw4gSFDhqBhw4bo16+fVu/t0qVLiImJgUKhwOXLl/Hjjz/i/PnzXJdERBYjLi4Ot24dV2uTy+Xw8vKSpiAJMCRRtdWuXRs///wzGjVqhFdeeQWtWrVCZGQk7t+/DycnJwDAe++9h6FDhyIiIgIhISGoW7cuXn755SqPu3LlSrz22mt499134e/vj1GjRqG4uBgA0LBhQ8TFxSE6OhpeXl4YN26c6DHWr1+PoKAg9O7dGyEhIRAEAbt379b6yovatWvj3LlzePXVV9GiRQu8/fbbGDt2LEaPHq3DT4iIyPTcvHlTY3PIevXqmcXmkLqSCf/etIa0UlhYCGdnZxQUFKgCwUP379/HpUuX4OfnBwcHB4kqpJrG805Epm7FihW4ceOGWtvYsWPh7u4uUUX6V9Xf73/jwm0iIiIy21uLPAmGJCIiIguVlAQsWvQXunXbpNYeEBCg2t/OkjEkERERWahjx+Lw/3d7Upk6dWqNbsdizBiSiIiILIxSqcSsWbM02i19eu3fGJIMiGviLQvPNxGZgh07duDMmTNqbYGBgehrjHvNSIwhyQCsra0BAKWlpRyytCB3794FoLmTNxGRsRBbnD1t2jT+3qoEQ5IB2NjYoHbt2sjLy4OtrS2srLgdlTkTBAF3795Fbm4uXFxcVCGZiMhYFBcXY8GCBRrtnF6rGkOSAchkMtSvXx+XLl3C5cuXpS6HaoiLiwu8vb2lLoOISM3s2bNRVlam1ta1a1c8//zz0hRkQhiSDMTOzg7NmzdHaWmp1KVQDbC1teUIEhEZHbHptRkzZkAmk0lQjelhSDIgKysr7rxMREQ17vr161i7dq1GO6fXdMOQREREZEbERo8GDRqEFi1aSFCNaWNIIiIiMhO8tYh+MSQRERGZuGPHjiEpKUmjnQHpyTAkERERmTCx0aNx48bBzc1NgmrMC0MSERGRCeKtRQyPIYmIiMjEbNq0CX/99ZdGe2AgA5I+MSQRERGZELHptQ8++IBbzhgAQxIREZEJKCoqwsKFCzXaOb1mOAxJRERERk5s9MjFpRUmTnxDgmosB++8SkREZMTEAlJc3Axs28aAZGgcSSIiIjJCly9fxoYNGzTaAwPl6NwZiI6u+ZosDUMSERGRkREbPerWrRuee+45AEDfvjVdkWViSCIiIjIivLWI8WBIIiIiMgJfffUVTp8+rdHOgCQdhiQiIiKJiY0eNWsWgcGDfWu+GFLh1W1EREQSEQRBNCDFxsqxYoVvzRdEajiSREREJAGxcARUBKRatXj1mjFgSCIiIqphYgFpwoQJOHCgHkJCKgISr2CTHkMSERFRDblz5w4WLVqk0f5wcXbfvgxHxoQhiYiIqAZUNr3Gq9eMFxduExERGZhYQPrxx+kIDGRAMmYcSSIiIjKQ06dP46uvvtJol8vl4ACS8WNIIiIiMgCx0aMHD+zRqRMvWzMVDElERER6JhaQUlLkUCiAkBAuzjYVDElERER6snHjRmRmZmq0y+VyBAYCCQnc/8iUMCQRERHpgdjo0cWL/8UXX7wAgJf3myJe3UZERPQEKru1SEqKHK+99oIEFZG+cCSJiIiomqra+4hXr5k+hiQiIqJqEAtII0aMQKNGjSSohgyBIYmIiEgHxcXFWLBggUY7d842PwxJREREWqpsei0lpeLqNS7MNi8MSURERFoQC0hffRWNCxfscf9+xeX9DEnmhSGJiIioClXdWiQlBbh/H6hTh/sfmSOGJCIiokpUdfUaUBGMHm4QyVEk8yMTBEGQughTVFhYCGdnZxQUFMDJyUnqcoiISM/EAlJsrBwhIUB6ugQFkV7o8vdb8s0kV6xYAV9fXzg4OCA4OBiHDx+usv+OHTvg7+8PBwcHBAQEYPfu3WqPDx8+HDKZTO0rPDxcrc+tW7cwePBgODk5wcXFBZGRkSgqKtL7eyMiItOzdu1a0YAUGFgRkDitZjkkDUnbtm1DVFQU5HI5jh49irZt2yIsLAy5ubmi/dPT0zFo0CBERkbi2LFj6N+/P/r3749Tp06p9QsPD0dWVpbqa+vWrWqPDx48GKdPn0ZqaiqSk5Px888/4+233zbY+yQiItMQFxeH69evq7VlZXkjJUWOvn0rRpA4rWY5JJ1uCw4ORseOHbF8+XIAgFKphI+PD8aPH49okag+YMAAFBcXIzk5WdXWuXNntGvXDqtWrQJQMZKUn5+PXbt2ib7m2bNn8fTTT+O3335Dhw4dAAB79uxBz549ce3aNTRo0ECr2jndRkRkXiobPeKaI/NiEtNtpaWlyMjIQGho6KNirKwQGhoKhUIh+hyFQqHWHwDCwsI0+u/fvx+enp5o2bIlxowZg5s3b6odw8XFRRWQACA0NBRWVlY4dOhQpfWWlJSgsLBQ7YuIiExfXFycaECSyzl6ZOkku7rtxo0bKC8vh5eXl1q7l5cXzp07J/qc7Oxs0f7Z2dmq78PDw/HKK6/Az88PFy9exLRp09CjRw8oFApYW1sjOzsbnp6easewsbGBq6ur2nH+LT4+vtKrHIiIyDSJ/V7v168f2rVrV/PFkNExuy0ABg4cqPrvgIAAtGnTBk2bNsX+/fvRvXv3ah83JiYGUVFRqu8LCwvh4+PzRLUSEZE07t+/j7lz52q089Yi9E+ShSR3d3dYW1sjJydHrT0nJwfe3t6iz/H29tapPwA0adIE7u7uuHDhArp37w5vb2+NheFlZWW4detWlcext7eHvb39494WEREZOd5ahLQl2ZokOzs7BAUFIS0tTdWmVCqRlpaGkJAQ0eeEhISo9QeA1NTUSvsDwLVr13Dz5k3Ur19fdYz8/HxkZGSo+vz0009QKpUIDg5+krdERERGTiwgTZ48GSkpcigUFRtDEj0k6RYAUVFRWLNmDTZu3IizZ89izJgxKC4uxogRIwAAw4YNQ0xMjKr/xIkTsWfPHixcuBDnzp1DbGwsjhw5gnHjxgEAioqKMGXKFPz666/IzMxEWloa+vXrh2bNmiEsLAwA0KpVK4SHh2PUqFE4fPgwDh48iHHjxmHgwIFaX9lGRESm5fz585UuznZyckJ0NLgHEmmQdE3SgAEDkJeXhxkzZiA7Oxvt2rXDnj17VIuzr1y5AiurRzmuS5cu2LJlC6ZPn45p06ahefPm2LVrF5555hkAgLW1NU6ePImNGzciPz8fDRo0wEsvvYRZs2apTZVt3rwZ48aNQ/fu3WFlZYVXX30Vy5Ytq9k3T0RENeJxtxYBKqbYOM1G/8bbklQT90kiIjJ+YgFpxowZkMlkElRDxkCXv99md3UbERHRxo0bkZmZqdHOq9dIFwxJRERkVrSZXiPSBkMSERGZjcoWZxNVB0MSERGZPO59RIYg6RYARERET0osIP3nP//h3kf0xDiSREREJqmsrAyzZ8/WaH84vVZcXBGQuPcRVRdDEhERmRzufUQ1gSGJiIhMilhA8vcfgwEDPCWohswZQxIREZmEq1evYt26dRrtsbFyhIQAAwZIUBSZNYYkIiIyepVNr8XGylGnDtcdkWEwJBERkVETC0gfffQRkpOtVDel5dojMgSGJCIiMkrffvstjh8/rtH+cHE2F2aToTEkERGR0eGtRcgYMCQREZFR4a1FyFgwJBERkVHg6BEZG96WhIiIJCcWkE6caIOtWxmQSDocSSIiIskolUrMmjVLo33uXDnu3QP8/SUoiuj/MSQREZEkKpteS0mRY/JkYN8+7n9E0mJIIiKiGicWkB48GIaPP/YDlyCRsWBIIiKiGpObm4uVK1dqtD/cOfvjjyUoiqgSDElERFQjKpteW7OmIiBNmFDDBRE9BkMSEREZnFhAatt2GubNs8Wnn3LnbDJODElERGQwe/fuxcGDBzXaAwPl6NsX6N+/5msi0hZDEhERGURl02uxsXKEhHD0iIwfQxIREeldZbcWSUoCQkJ4aT+ZBpkgCILURZiiwsJCODs7o6CgAE5OTlKXQ0RkFKra+yg9vYaLIRKhy99vjiQREZFeiAUkpbI+UlPf5sgRmSSGJCIieiKCIGDmzJka7Q/XHnEEiUwVQxIREVVbZdNrgYFyrj0ik8eQRERE1SIWkL777jUcOdIaAK9eI9PHkERERDopKCjAkiVLNNoXLJBz12wyKwxJRESktcqm1+RyOW9MS2aHIYmIiLQiFpCmTp2KWrVqSVANkeExJBERUZXS09ORmpqq0S7n0BGZOYYkIiKqVFVXrxGZOyupCyAiIuMkFpBSUuSqm9MSmTuOJBERkZqqRo84w0aWROeRJGtra+Tm5mq037x5E9bW1nopioiIpFFZQIqNlSMhoYaLIZKYziNJld0Pt6SkBHZ2dk9cEBERSUMsIMnlciQlgbtnk0XSOiQtW7YMACCTybB27VrUqVNH9Vh5eTl+/vln+Pv7679CIiIyqMctzu7bl7tnk2XSOiQtXrwYQMVI0qpVq9Sm1uzs7ODr64tVq1bpv0IiIjIYsYAUGhqKZ599VoJqiIyL1iHp0qVLAIBu3bph586dqFevnsGKIiIiw7p37x7mzZun0c69j4ge0XlN0r59+wxRBxER1ZCqbi1CRI/oHJJGjhxZ5ePr1q2rdjFERGRYYgFp4sSJcHFxqfliiIycziHp9u3bat8/ePAAp06dQn5+Pl544QW9FUZERPrz+++/Y+fOnRrtgYFyMB8RidM5JH3zzTcabUqlEmPGjEHTpk31UhQREekPp9eIqkcvtyWxsrJCVFSU6go4IiIyDuK3FpnBe68RaUFvtyW5ePEiysrK9HU4IiJ6Ap988glu3bql0Z6SIodCASQkcO8josfROSRFRUWpfS8IArKysvD9998jIiJCb4UREVH1VDW9FhhYEZC4ezbR48mEyu4zUolu3bqpfW9lZQUPDw+88MILGDlyJGxsLOOeuYWFhXB2dkZBQQGcnJykLoeICEDltxYhogq6/P3mPklERGbgcbcWISLdVXvYJzc3F3/88QcAoGXLlvD09NRbUUREpD2xgHTtWjusXdsPISFce0RUXTqHpMLCQowdOxZbt26FUqkEAFhbW2PAgAFYsWIFnJ2d9V4kERFp2rXrAU6cmKPRLpfLkZQEnD7NtUdET0LnLQBGjRqFQ4cO4fvvv0d+fj7y8/ORnJyMI0eOYPTo0YaokYiI/iUuLq7SgARUjB6lp3MUiehJ6Lxw29HRESkpKfjPf/6j1n7gwAGEh4ejuLhYrwUaKy7cJqKakpT06Iq0vn3Fp9dathyFgQMbSFAdkWkx6MJtNzc30Sk1Z2dn1KtXT9fDERHRYyQkAAoFsGbNBRw7tlnj8dhYOUJCgIEDJSiOyIzpHJKmT5+OqKgobNq0Cd7e3gCA7OxsTJkyBR999JHeCyQisnTR0cCxY5VfvRYSwrVHRIag83RbYGAgLly4gJKSEjRq1AgAcOXKFdjb26N58+ZqfY8ePaq/So0Mp9uIqKaITa999NFHsLLSy52liCyKQafb+vXrB5lMVu3iiIhIO+vWrcPVq1c12rk5JFHN0DkkxcbGGqAMIiL6J24OSSQ9ncdqmzRpgps3b2q05+fno0mTJnopiojIkokFpJQUOWJj5UhIkKAgIgul80hSZmYmysvLNdpLSkpw7do1vRRFRGSJeGNaIuOidUhKSkpS/XdKSoraNgDl5eVIS0uDn5+ffqsjIrIQYgHJx8cHI0eOBFCxPxI3hiSqWVqHpP79+wMAZDIZIiIi1B6ztbWFr68vFi5cqNfiiIjMnVKpxKxZszTauTibSHpah6SH92nz8/PDb7/9Bnd3d4MVRURkCaqaXiMi6em8JunSpUuGqIOIyKKIBaQ333xTY785IpKOziFp5syZVT4+Y8YMnY63YsUKzJ8/H9nZ2Wjbti0++eQTdOrUqdL+O3bswEcffYTMzEw0b94cc+fORc+ePUX7vvPOO/jss8+wePFiTJo0SdXu6+uLy5cvq/WNj49HNFdEEpGB/f3331izZo1GO0ePiIyPziHpm2++Ufv+wYMHuHTpEmxsbNC0aVOdQtK2bdsQFRWFVatWITg4GEuWLEFYWBj++OMPeHp6avRPT0/HoEGDEB8fj969e2PLli3o378/jh49imeeeUajzl9//RUNGojf8HHmzJkYNWqU6vu6detqXTcRUXVweo3ItOh8WxIxhYWFGD58OF5++WUMHTpU6+cFBwejY8eOWL58OYCKdU8+Pj4YP3686KjOgAEDUFxcjOTkZFVb586d0a5dO6xatUrVdv36dQQHByMlJQW9evXCpEmTNEaS/t2mK96WhIgeJynp0WX7YvdemzZtGmxtbSWojMhy6fL3Wy83/nFyckJcXJxON7gtLS1FRkYGQkNDHxVjZYXQ0FAoFArR5ygUCrX+ABAWFqbWX6lUYujQoZgyZQpat25d6esnJCTAzc0NgYGBmD9/PsrKyqqst6SkBIWFhWpfRERVSUgAvLx2iQYkuVzOgERk5PR2d8SCggIUFBRo3f/GjRsoLy+Hl5eXWruXlxeys7NFn5Odnf3Y/nPnzoWNjQ0mTJhQ6WtPmDABiYmJ2LdvH0aPHo05c+Zg6tSpVdYbHx8PZ2dn1ZePj8/j3iIRmbmkJKBLl4p/xYSFxaFduxMa7ZxeIzINOq9JWrZsmdr3giAgKysLmzZtQo8ePfRWWHVkZGRg6dKlOHr0aJU34Y2KilL9d5s2bWBnZ4fRo0cjPj4e9vb2os+JiYlRe15hYSGDEpGFS0gAFIqKf/+90aPY+iOGIyLTonNIWrx4sdr3VlZW8PDwQEREBGJiYrQ+jru7O6ytrZGTk6PWnpOTA29vb9HneHt7V9n/wIEDyM3NRaNGjVSPl5eX47333sOSJUuQmZkpetzg4GCUlZUhMzMTLVu2FO1jb29faYAiIssUHa15qxAuziYyH5Ltk2RnZ4egoCCkpaWpdvNWKpVIS0vDuHHjRJ8TEhKCtLQ0tQXXqampCAkJAQAMHTpUdM3S0KFDMWLEiEprOX78OKysrESvqCMiqsy/bxUiFpBq166NKVOm1GBVRKQvOockAMjPz8eFCxcAAM2aNYOLi0u1XjwqKgoRERHo0KEDOnXqhCVLlqC4uFgVaIYNG4aGDRsiPj4eADBx4kR07doVCxcuRK9evZCYmIgjR45g9erVAAA3Nze4ubmpvYatrS28vb1VI0QKhQKHDh1Ct27dULduXSgUCkyePBlDhgxBvXr1qvU+iMiyCYIguoccR4+ITJtOISkzMxNjx45FSkoKHu4cIJPJEB4ejuXLl8PX11enFx8wYADy8vIwY8YMZGdno127dtizZ49qcfaVK1dgZfVobXmXLl2wZcsWTJ8+HdOmTUPz5s2xa9cujT2SqmJvb4/ExETExsaipKQEfn5+mDx5stp6IyIibXF6jch8ab1P0tWrV9GxY0fY2tri3XffRatWrQAAZ86cwcqVK1FWVobffvsNTz31lEELNhbcJ4mIxAJS3759ERgYKEE1RKQNXf5+ax2SIiMjceHCBaSkpMDBwUHtsXv37iE8PBzNmzfH2rVrq1+5CWFIIrJc+fn5WLp0qUY7R4+IjJ8uf7+1nm7bs2cPtm3bphGQAKBWrVqYNWsWBg4cqHu1REQmhNNrRJZD680kb9y4UeWaoyZNmuDWrVv6qImIyCiJBaSffpqKwEAGJCJzpHVIql+/Ps6cOVPp46dOnap0fyMiImP0uB2zH/r1118r3Rzyf/+rpbGRJBGZB61DUv/+/fH+++8jLy9P47Hc3Fx88MEHqv2OiIhMwT93zK5MXFwcUlJSNNo5vUZk/rReuH379m0EBwcjOzsbQ4YMgb+/PwRBwNmzZ7FlyxZ4e3vj119/haurq6FrNgpcuE1k+pKSHu2YLTYaxFuLEJkfgyzcrlevHg4dOoRp06YhMTER+fn5AAAXFxe8+eabmDNnjsUEJCIyD//eMfuh+Ph4lJaWarSnpMgRGCj+HCIyP1qPJP2TIAiqaTcPD48qbyZrrjiSRGSexEaP7Ozs8N13MVAogJAQID1dgsKISC8MMpL0TzKZjPc5IyKTVdk0W1XTa61ba97MlojMW7VGkogjSUSmrEsXqI0Kce8jIsuhy99vra9uIyIyF9HRFQEpOlo8IDVsGM6AREQMSURkefr2BdLS7uHYMc2AFBsrx7p1wRJURUTGplprkoiITFll02uBgXLVCBMRkVYhadmyZVofcMKECdUuhojI0MQCUuvWk/Daa84AeHk/ET2i1cJtPz8/7Q4mk+Gvv/564qJMARduE5mWs2fPYvv27RrtsbFyXtZPZEH0vgXApUuX9FIYEZEUOL1GRNVR7TVJpaWluHTpEpo2bQobGy5tIiLjJBaQUlJmIDpaVumO20REQDWubrt79y4iIyNRu3ZttG7dGleuXAEAjB8/HglV3SWSiKgGrV+/XjQgLVggh0Ihq/KmtkREQDVCUkxMDE6cOIH9+/fDwcFB1R4aGopt27bptTgiouqIi4tT/Q/cP6WkyFFUBNSpwyk2Ino8nefJdu3ahW3btqFz585q92xr3bo1Ll68qNfiiIh0VdWtRQIDxW9HQkQkRueQlJeXJ3rftuLiYou80S0RGQdtbi3CNUhEpAudp9s6dOiA77//XvX9w2C0du1ahISE6K8yIiItiQWk5557jrcWIaInovNI0pw5c9CjRw+cOXMGZWVlWLp0Kc6cOYP09HT873//M0SNRGSBkpIePzVWVlaG2bNna7QzHBGRPug8kvSf//wHx48fR1lZGQICAvDjjz/C09MTCoUCQUFBhqiRiCxQQgKgUKDSq9Di4uIYkIjIoKq1wVHTpk2xZs0afddCRKQSHf1oJOnfxKbX3n33XXh4eNRAZURkKbQKSYWFhVofkLfoICJ9EFtkffnyZWzYsEGjL0ePiMgQtApJLi4uWl+5Vl5e/kQFERGJ0ebqNSIifdIqJO3bt0/135mZmYiOjsbw4cNVV7MpFAps3LgR8fHxhqmSiCyaWED66KOPYGWl87JKIiKtyQRBEHR5Qvfu3fHWW29h0KBBau1btmzB6tWrsX//fn3WZ7R0uYswEVXPN998g5MnT2q0c/SIiKpLl7/fOv9vmEKhQIcOHTTaO3TogMOHD+t6OCIiUXFxcQxIRCQpna9u8/HxwZo1azBv3jy19rVr18LHx0dvhRGR5arq1iJERDVF55C0ePFivPrqq/jhhx8QHBwMADh8+DDOnz+Pr7/+Wu8FEpHl4OJsIjImOk+39ezZE+fPn0efPn1w69Yt3Lp1C3369MGff/6Jnj17GqJGIrIAYgEpKCiIAYmIJKPzwm2qwIXbRPqhVCoxa9YsjfaUFDnS0yUoiIjMmi5/v6u143Z+fj4+//xznD17FgDQunVrjBw5Es7OztU5HBFZqMqm11JS5KI7bRMR1SSdR5KOHDmCsLAw1KpVC506dQIA/Pbbb7h37x5+/PFHtG/f3iCFGhuOJBE9GbGAFBkZiaeeekqCaojIUujy91vnkPTf//4XzZo1w5o1a2BjUzEQVVZWhrfeegt//fUXfv755+pXbkIYkoiqJy8vD59++qlGO9ceEVFNMGhIqlWrFo4dOwZ/f3+19jNnzqBDhw64e/eu7hWbIIYkIt3x6jUikppB1yQ5OTnhypUrGiHp6tWrqFu3rq6HIyILIRaQPvzwQ9WINBGRsdH5t9OAAQMQGRmJBQsWoEuXLgCAgwcPYsqUKRq3KiEiOnjwIPbu3avRztEjIjJ2OoekBQsWQCaTYdiwYSgrKwMA2NraYsyYMUhISNB7gURkuji9RkSmrNr7JN29excXL14EADRt2hS1a9fWa2HGjmuSiKomFpACA+Xo21eCYoiI/p/B90kCgNq1ayMgIKC6TyciM5WQkICSkhKNdo4eEZGp0TokjRw5Uqt+69atq3YxRGTaxEaPWrdujddee02CaoiInozWIWnDhg1o3LgxAgMDwTuZENE/CYKAmTNnarRz9IiITJnWIWnMmDHYunUrLl26hBEjRmDIkCFwdXU1ZG1EZAK4OJuIzJWVth1XrFiBrKwsTJ06Fd999x18fHzwxhtvICUlhSNLRBZKLCANGTKEAYmIzEK1r267fPkyNmzYgC+++AJlZWU4ffo06tSpo+/6jBavbiNLdufOHSxatEijneGIiIxdjVzdZmVlBZlMBkEQUF5eXt3DEJGJ4fQaEVkKnUJSSUkJdu7ciXXr1uGXX35B7969sXz5coSHh8PKSuuZOyIyUWIBKTo6Gvb29hJUQ0RkWFqHpHfffReJiYnw8fHByJEjsXXrVri7uxuyNiIyEsePH8e3336r0c7RIyIyZ1qvSbKyskKjRo0QGBgImUxWab+dO3fqrThjxjVJZCk4vUZE5sQga5KGDRtWZTgiIvMjFpAYjojIUui0mSQRWYZVq1YhJydHo50BiYgsSbWvbiMi8yQ2etSwYUO89dZbElRDRCQdhiQiUuH0GhHRIwxJRMTF2UREIhiSiCycWEB6+eWX0aZNGwmqISIyHgxJRBbq/v37mDt3rkY7R4+IiCowJBFZIE6vERE9HkMSkYVISgISEoCwMM2A9N5771nUDaqJiLTBkERkIdauPY+wsC0a7Rw9IiISx5BEZAHi4uIQFKTZzoBERFQ5hiQiMye2/mjGjBm8zRAR0WMwJBGZqW+++QYnT57UaOfoERGRdqykLmDFihXw9fWFg4MDgoODcfjw4Sr779ixA/7+/nBwcEBAQAB2795dad933nkHMpkMS5YsUWu/desWBg8eDCcnJ7i4uCAyMhJFRUX6eDtERiEuLk4jIBUXuzIgERHpQNKQtG3bNkRFRUEul+Po0aNo27YtwsLCkJubK9o/PT0dgwYNQmRkJI4dO4b+/fujf//+OHXqlEbfb775Br/++isaNGig8djgwYNx+vRppKamIjk5GT///DPefvttvb8/IimITa+lpMjxn/+Ml6AaIiLTJRMEQZDqxYODg9GxY0csX74cAKBUKuHj44Px48cjOjpao/+AAQNQXFyM5ORkVVvnzp3Rrl07rFq1StV2/fp1BAcHIyUlBb169cKkSZMwadIkAMDZs2fx9NNP47fffkOHDh0AAHv27EHPnj1x7do10VAlprCwEM7OzigoKICTk1N1fwREesO9j4iIHk+Xv9+SjSSVlpYiIyMDoaGhj4qxskJoaCgUCoXocxQKhVp/AAgLC1Prr1QqMXToUEyZMgWtW7cWPYaLi4sqIAFAaGgorKyscOjQoUrrLSkpQWFhodoXkbEQC0g9evRgQCIiegKShaQbN26gvLwcXl5eau1eXl7Izs4WfU52dvZj+8+dOxc2NjaYMGFCpcfw9PRUa7OxsYGrq2ulrwsA8fHxcHZ2Vn35+PhU+f6IakJZWZloQJLL5ejUqZMEFRERmQ+zurotIyMDS5cuxdGjR/V+eXNMTAyioqJU3xcWFjIokaQ4vUZEZFiShSR3d3dYW1sjJydHrT0nJwfe3t6iz/H29q6y/4EDB5Cbm4tGjRqpHi8vL8d7772HJUuWIDMzE97e3hoLw8vKynDr1q1KXxcA7O3tYW9vr9N7JDIUsYA0YcIE1KtXT4JqiIjMk2TTbXZ2dggKCkJaWpqqTalUIi0tDSEhIaLPCQkJUesPAKmpqar+Q4cOxcmTJ3H8+HHVV4MGDTBlyhSkpKSojpGfn4+MjAzVMX766ScolUoEBwfr+20S6dXff/9d6fQaAxIRkX5JOt0WFRWFiIgIdOjQAZ06dcKSJUtQXFyMESNGAACGDRuGhg0bIj4+HgAwceJEdO3aFQsXLkSvXr2QmJiII0eOYPXq1QAANzc3uLm5qb2Gra0tvL290bJlSwBAq1atEB4ejlGjRmHVqlV48OABxo0bh4EDB2p9ZRuRFDi9RkRUsyQNSQMGDEBeXh5mzJiB7OxstGvXDnv27FEtzr5y5QqsrB4NdnXp0gVbtmzB9OnTMW3aNDRv3hy7du3CM888o9Prbt68GePGjUP37t1hZWWFV199FcuWLdPreyPSJ95ahIio5km6T5Ip4z5JVBP27duHn3/+WaOdo0dERNVjEvskEVmKpCSgS5eKf3URFxfHgEREJCGz2gKAyBglJAAKRcW/ffs+vn9SEnDsmPjibCIiqjkcSSIysOhoICSk4t/HmT17tmhASkyU6zwSRURET4ZrkqqJa5JI38QWZ//55wvYsuW/ACqCVnp6TVdFRGRedPn7zek2IokplUrMmjVLo10urxg9ysgAZDLtRqKIiEh/GJKIJFLZ2iMASEmRIzCwYg2TNuuYiIhI/7gmiUgiYgFpzJgxSEmRqxZ6ExGRdBiSiGrY7du3K721iKenp04LvYmIyHA43UZUg7S5tQin2IiIjANDElENEQtI06dPh7W1tQTVEBHR4zAkERnY8ePH8e2332q0c3NIIiLjxpBEZEBio0cymQwzZsyQoBoiItIFQxKRgVS2OJuIiEwDQxKRnn399dc4deqURvs/9z4iIiLjxy0AiPQoLi5OIyC9+OKL3PuIiMgEcSSJSA8EQcDMmTM12h9Or0VHVwQk7n1ERGQ6GJKInhD3PiIiMk8MSURPQCwgjR49Gt7e3hJUQ0RE+sSQRFQN9+7dw7x58zTaefUaEZH5YEgi0pE202tERGT6GJKIdCAWkKZNmwZbW1sJqiEiIkNiSCLSwl9//YVNmzZptHP0iIjIfDEkET2G2OiRvb09onk9PxGRWWNIIqoCby1CRGS5GJKIRPzwww84fPiwRjsDEhGR5WBIIvoXsdGjZ599FqGhoRJUQ0REUmFIIvoHTq8REdFDDElEAD777DNkZ2drtDMgERFZLoYksnhio0c//hiJDz54SoJqiIjIWDAkkcV68OAB5syZo9EeG1sxepSQwJvSEhFZMoYkskiV3VokMVGOhg2BunUBboNERGTZGJLI4ogFpOjoaNjb24NLkIiI6CGGJLIYubm5WLlypUY7F2cTEZEYhiSyCGKjRy4uLpg4caIE1RARkSlgSCKzx72PiIioOqykLoDIUK5duyYakBITGZCIiOjxOJJEZkksHKWl9caBA0Fo2VKCgoiIyOQwJJHZEQtIsbFy+PsDISG8tJ+IiLTDkERmIyMjA8nJyRrtgYFyVTji5pBERKQthiQyC2KjR+PHj4erqysAhiMiItIdQxKZNKVSiVmzZmm08+o1IiJ6UgxJZLJ27dqFEydOqLV5e3tj9OjRElVERETmhCGJTJLY9FpMTAzs7OwkqIaIiMwRQxKZlHv37mHevHka7ZxeIyIifWNIIpMxf/583L17V62tS5cuePHFFyWqiIiIzBlDEpkEsem1GTNmQCaTSVANERFZAoYkMmrZ2dn47LPPNNo5vUZERIbGkESSSkoCEhLEN3oUGz16/fXX8fTTT9dQdUREZMl4g1uSVEICoFBU/PtPYgFJLpczIBERUY3hSBJJKjr60UgSAPz+++/YuXOnRj9OrxERUU1jSCJJ9e37aJpNbPRozJgx8PT0rOGqiIiIGJLICAiCgJkzZ2q0c/SIiIikxJBEktq7dy8OHjyo1ubs7IxJkyZJUxAREdH/Y0giyYhNr33wwQdwcHCQoBoiIiJ1DElU40pLSxEfH6/Rzuk1IiIyJgxJVKO2b9+Os2fPqrW98MIL+O9//ytRRUREROIYkqjG8NYiRERkShiSyOCKioqwcOFCjXZOrxERkTFjSCKD2rJlC86fP6/W1qTJQAwd2lKiioiIiLTDkEQGIza9FhsrR0gIMHSoBAURERHpgCGJ9C47OxufffaZWttTTz0FD49IhIQ8ugUJERGRMWNIIr2aO3cu7t+/r9Y2ceJEuLi4AHh0CxIiIiJjx5BEesFbixARkblhSKIndu7cOWzbtk2trWPHjujZs6dEFRERET05hiR6ImKLs6Ojo2Fvby9BNURERPrDkETVUl5ejo8//lijndNrRERkLqykLmDFihXw9fWFg4MDgoODcfjw4Sr779ixA/7+/nBwcEBAQAB2796t9nhsbCz8/f3h6OiIevXqITQ0FIcOHVLr4+vrC5lMpvaVkJCg9/dmrn755ReNgNS7d28GJCIiMiuShqRt27YhKioKcrkcR48eRdu2bREWFobc3FzR/unp6Rg0aBAiIyNx7Ngx9O/fH/3798epU6dUfVq0aIHly5fj999/xy+//AJfX1+89NJLyMvLUzvWzJkzkZWVpfoaP368Qd+ruYiLi0NaWppa20cffYSgoCCJKiIiIjIMmSAIglQvHhwcjI4dO2L58uUAAKVSCR8fH4wfPx7RIpvpDBgwAMXFxUhOTla1de7cGe3atcOqVatEX6OwsBDOzs7Yu3cvunfvDqBiJGnSpEmYNGlStWt/eNyCggI4OTlV+zim4u7du5g/f75GO0ePiIjIlOjy91uykaTS0lJkZGQgNDT0UTFWVggNDYVCoRB9jkKhUOsPAGFhYZX2Ly0txerVq+Hs7Iy2bduqPZaQkAA3NzcEBgZi/vz5KCsrq7LekpISFBYWqn1Ziq+//lojIA0bNowBiYiIzJpkC7dv3LiB8vJyeHl5qbV7eXnh3Llzos/Jzs4W7Z+dna3WlpycjIEDB+Lu3buoX78+UlNT4e7urnp8woQJaN++PVxdXZGeno6YmBhkZWVh0aJFldYbHx8veiWXuRN7zwxHRERkCczy6rZu3brh+PHjuHHjBtasWYM33ngDhw4dgqenJwAgKipK1bdNmzaws7PD6NGjER8fX+ml6zExMWrPKywshI+Pj2HfiITy8vLw6aefqrW5u7tj7NixElVERERUsyQLSe7u7rC2tkZOTo5ae05ODry9vUWf4+3trVV/R0dHNGvWDM2aNUPnzp3RvHlzfP7554iJiRE9bnBwMMrKypCZmYmWLcXvTm9vb28xe/8sWbIEBQUFam3jxo2Dm5ubRBURERHVPMnWJNnZ2SEoKEjtSimlUom0tDSEhISIPickJETjyqrU1NRK+//zuCUlJZU+fvz4cVhZWalGmixRUhLQpUvF9Nq/A5JcLmdAIiIiiyPpdFtUVBQiIiLQoUMHdOrUCUuWLEFxcTFGjBgBoGJxcMOGDREfHw+g4kapXbt2xcKFC9GrVy8kJibiyJEjWL16NQCguLgYs2fPRt++fVG/fn3cuHEDK1aswPXr1/H6668DqFj8fejQIXTr1g1169aFQqHA5MmTMWTIENSrV0+aH4QRWLPmIsLCvlRra9euHfr16ydRRURERNKSNCQNGDAAeXl5mDFjBrKzs9GuXTvs2bNHtTj7ypUrsLJ6NNjVpUsXbNmyBdOnT8e0adPQvHlz7Nq1C8888wwAwNraGufOncPGjRtx48YNuLm5oWPHjjhw4ABat24NoGLaLDExEbGxsSgpKYGfnx8mT56stt7I0mzYsAEdOlxWa/vggw/g4OAgUUVERETSk3SfJFNmDvskKZVKzJo1S6OdV68REZG50uXvt1le3UaPd+HCBWzevFmtbdCgQWjRooVEFRERERkXhiQLlJCQoLGQ/aOPPlKb2iQiIrJ0DEkW5MGDB5gzZ45am4+PD0aOHClRRURERMaLIclCHDlyBN9//71a29tvv4369etLVBEREZFxY0gyY0lJQEICEBbGW4sQERHpiiHJjC1aVISwsIVqbe3bt0efPn0kqoiIiMh0MCSZqYsXL6JbN/XNISdNmgRnZ2eJKiIiIjItDElmKDExEX/88YdaG6fXiIiIdMOQZEaKi4uxYMECtbbhw4ejcePGElVERERkuhiSzMTvv/+OnTt3qrV9+OGHsLHhKSYiIqoO/gU1cYIg4LPPPkNOTo6q7bnnnkO3bt0krIqIiMj0MSSZsNu3b2PZsmVqbe+++y48PDwkqoiIiMh8MCSZKIVCgR9//FH1vZOTEyZOnMhbixAREekJQ5KJUSqVmDdvntq913r27ImOHTtKWBUREZH5YUgyIdnZ2fjss8/U2iZPngwnJyeJKiIiIjJfDEkm4scff4RCoVB97+PjgxEjRkAmk0lYFRERkfniAhYjk5QEdOlS8S8APHjwAHFxcWoB6Y033sDIkSMZkIiIiAyII0lGJiEBUCgq/g0IuIQvvvhC7fGpU6eiVq1aElVHRERkORiSjEx0dEVAGjBgB7744oyqPSAgAK+88oqElREREVkWhiQj8+KL93Ds2Dzk5z9qi4iIgK+vr1QlERERWSSGJCOzadMmte+nTZsGW1tbiaohIiKyXAxJRqZ58+bIyspCly5d8OKLL0pdDhERkcWSCYIgSF2EKSosLISzszMKCgq4TxEREZGJ0OXvN7cAICIiIhLBkEREREQkgiGJiIiISARDEhEREZEIhiQiIiIiEQxJRERERCIYkoiIiIhEMCQRERERiWBIIiIiIhLBkEREREQkgiGJiIiISARDEhEREZEIhiQiIiIiEQxJRERERCJspC7AVAmCAAAoLCyUuBIiIiLS1sO/2w//jleFIama7ty5AwDw8fGRuBIiIiLS1Z07d+Ds7FxlH5mgTZQiDUqlEn///Tfq1q0LmUwmdTkGV1hYCB8fH1y9ehVOTk5Sl0MieI6MG8+PceP5MW76PD+CIODOnTto0KABrKyqXnXEkaRqsrKywlNPPSV1GTXOycmJv0CMHM+RceP5MW48P8ZNX+fncSNID3HhNhEREZEIhiQiIiIiEQxJpBV7e3vI5XLY29tLXQpVgufIuPH8GDeeH+Mm1fnhwm0iIiIiERxJIiIiIhLBkEREREQkgiGJiIiISARDEhEREZEIhiQLsWLFCvj6+sLBwQHBwcE4fPhwlf137NgBf39/ODg4ICAgALt371Z7PDY2Fv7+/nB0dES9evUQGhqKQ4cOqfXx9fWFTCZT+0pISND7ezMX+j5H//TOO+9AJpNhyZIlau23bt3C4MGD4eTkBBcXF0RGRqKoqEgfb8fsSHF++BnSnr7Pz/DhwzV+9uHh4Wp9+PnRnhTnRy+fH4HMXmJiomBnZyesW7dOOH36tDBq1CjBxcVFyMnJEe1/8OBBwdraWpg3b55w5swZYfr06YKtra3w+++/q/ps3rxZSE1NFS5evCicOnVKiIyMFJycnITc3FxVn8aNGwszZ84UsrKyVF9FRUUGf7+myBDn6KGdO3cKbdu2FRo0aCAsXrxY7bHw8HChbdu2wq+//iocOHBAaNasmTBo0CBDvEWTJtX54WdIO4Y4PxEREUJ4eLjaz/7WrVtqx+HnRztSnR99fH4YkixAp06dhLFjx6q+Ly8vFxo0aCDEx8eL9n/jjTeEXr16qbUFBwcLo0ePrvQ1CgoKBADC3r17VW2NGzfW+KVP4gx1jq5duyY0bNhQOHXqlMb5OHPmjABA+O2331RtP/zwgyCTyYTr16/r4V2ZDynOjyDwM6QtQ5yfiIgIoV+/fpW+Jj8/2pPi/AiCfj4/nG4zc6WlpcjIyEBoaKiqzcrKCqGhoVAoFKLPUSgUav0BICwsrNL+paWlWL16NZydndG2bVu1xxISEuDm5obAwEDMnz8fZWVlT/iOzI+hzpFSqcTQoUMxZcoUtG7dWvQYLi4u6NChg6otNDQUVlZWGlOnlkyq8/MQP0NVM+TvuP3798PT0xMtW7bEmDFjcPPmTbVj8PPzeFKdn4ee9PPDG9yauRs3bqC8vBxeXl5q7V5eXjh37pzoc7Kzs0X7Z2dnq7UlJydj4MCBuHv3LurXr4/U1FS4u7urHp8wYQLat28PV1dXpKenIyYmBllZWVi0aJGe3p15MNQ5mjt3LmxsbDBhwoRKj+Hp6anWZmNjA1dXV41zbcmkOj8AP0PaMNT5CQ8PxyuvvAI/Pz9cvHgR06ZNQ48ePaBQKGBtbc3Pj5akOj+Afj4/DElUbd26dcPx48dx48YNrFmzBm+88QYOHTqk+sURFRWl6tumTRvY2dlh9OjRiI+P59b/BpaRkYGlS5fi6NGjkMlkUpdD/6Lt+eFnSDoDBw5U/XdAQADatGmDpk2bYv/+/ejevbuElRGg3fnRx+eH021mzt3dHdbW1sjJyVFrz8nJgbe3t+hzvL29terv6OiIZs2aoXPnzvj8889hY2ODzz//vNJagoODUVZWhszMzOq9GTNliHN04MAB5ObmolGjRrCxsYGNjQ0uX76M9957D76+vqpj5Obmqh2jrKwMt27dqvR1LZFU50cMP0OaDPk77p+aNGkCd3d3XLhwQXUMfn4eT6rzI6Y6nx+GJDNnZ2eHoKAgpKWlqdqUSiXS0tIQEhIi+pyQkBC1/gCQmppaaf9/HrekpKTSx48fPw4rKyuNIWpLZ4hzNHToUJw8eRLHjx9XfTVo0ABTpkxBSkqK6hj5+fnIyMhQHeOnn36CUqlEcHCwvt+myZLq/IjhZ0hTTf2Ou3btGm7evIn69eurjsHPz+NJdX7EVOvz80TLvskkJCYmCvb29sKGDRuEM2fOCG+//bbg4uIiZGdnC4IgCEOHDhWio6NV/Q8ePCjY2NgICxYsEM6ePSvI5XK1yy+LioqEmJgYQaFQCJmZmcKRI0eEESNGCPb29sKpU6cEQRCE9PR0YfHixcLx48eFixcvCl9++aXg4eEhDBs2rOZ/ACZA3+dIjNiVHuHh4UJgYKBw6NAh4ZdffhGaN2/OS5hFSHF++BnSnr7Pz507d4T3339fUCgUwqVLl4S9e/cK7du3F5o3by7cv39fdRx+frQjxfnR1+eHIclCfPLJJ0KjRo0EOzs7oVOnTsKvv/6qeqxr165CRESEWv/t27cLLVq0EOzs7ITWrVsL33//veqxe/fuCS+//LLQoEEDwc7OTqhfv77Qt29f4fDhw6o+GRkZQnBwsODs7Cw4ODgIrVq1EubMmaP2C4bU6fMciRELSTdv3hQGDRok1KlTR3BychJGjBgh3LlzR19vyazU9PnhZ0g3+jw/d+/eFV566SXBw8NDsLW1FRo3biyMGjVK9Uf9IX5+tFfT50dfnx+ZIAiC9uNORERERJaBa5KIiIiIRDAkEREREYlgSCIiIiISwZBEREREJIIhiYiIiEgEQxIRERGRCIYkIiIiIhEMSUREREQiGJKIyCJkZ2dj/PjxaNKkCezt7eHj44M+ffqo3SMqPT0dPXv2RL169eDg4ICAgAAsWrQI5eXlqj6ZmZmIjIyEn58fatWqhaZNm0Iul6O0tFSKt0VEBmQjdQFERIaWmZmJZ599Fi4uLpg/fz4CAgLw4MEDpKSkYOzYsTh37hy++eYbvPHGGxgxYgT27dsHFxcX7N27F1OnToVCocD27dshk8lw7tw5KJVKfPbZZ2jWrBlOnTqFUaNGobi4GAsWLJD6rRKRHvG2JERk9nr27ImTJ0/ijz/+gKOjo9pj+fn5sLW1RePGjdG1a1d8/fXXao9/99136Nu3LxITEzFgwADR48+fPx8rV67EX3/9ZbD3QEQ1j9NtRGTWbt26hT179mDs2LEaAQkAXFxc8OOPP+LmzZt4//33NR7v06cPWrRoga1bt1b6GgUFBXB1ddVr3UQkPYYkIjJrFy5cgCAI8Pf3r7TPn3/+CQBo1aqV6OP+/v6qPmLH/+STTzB69OgnL5aIjApDEhGZNV1WFOi6+uD69esIDw/H66+/jlGjRulaGhEZOYYkIjJrzZs3Vy24rkyLFi0AAGfPnhV9/OzZs6o+D/3999/o1q0bunTpgtWrV+uvYCIyGgxJRGTWXF1dERYWhhUrVqC4uFjj8fz8fLz00ktwdXXFwoULNR5PSkrC+fPnMWjQIFXb9evX8fzzzyMoKAjr16+HlRV/lRKZI17dRkRm76+//sKzzz4LV1dXzJw5E23atEFZWRlSU1OxcuVKnD17Fl999RUGDhyIkSNHYty4cXByckJaWhqmTJmC7t27q7YAeBiQGjdujI0bN8La2lr1Ot7e3hK+SyLSN4YkIrIIWVlZmD17NpKTk5GVlQUPDw8EBQVh8uTJeP755wEABw4cwOzZs6FQKHD//n00b94cI0aMwKRJk1RhaMOGDRgxYoToa/DXKZF5YUgiIiIiEsGJdCIiIiIRDElEREREIhiSiIiIiEQwJBERERGJYEgiIiIiEsGQRERERCSCIYmIiIhIBEMSERERkQiGJCIiIiIRDElEREREIhiSiIiIiEQwJBERERGJ+D9JkWUacGhikgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT1ZJREFUeJzt3XlcVOX+B/DPsCM7KiCIgpprKgRK+CuXotBUNPOmdBVRy8otwwzIBFETNFNySbuay7UUu+VCVmAiZCZluV4VUQvEDaSrgkACzpzfH17mOs0MzsDMnFk+79eLV80z55z5nuMyH5/nOc+RCIIggIiIiMiCWIldABEREZGhMQARERGRxWEAIiIiIovDAEREREQWhwGIiIiILA4DEBEREVkcBiAiIiKyOAxAREREZHEYgIiIiMjiMAARkcmSSCSYP3++2GXIxcbGIiAgQOwyiEgDDEBEpFObN2+GRCKR/zg4OKBz586YPn06ysrK9PrZhw8fxvz583H79m2dHnfgwIEK5+Tp6Yk+ffpg48aNkMlkOvmMxYsXY/fu3To5FhE9nI3YBRCReVqwYAECAwNx9+5dHDp0CGvXrsU333yD06dPo0WLFjr5jD///BM2Nv/7a+zw4cNISUlBbGws3N3ddfIZDdq2bYvU1FQAQHl5Of75z39i8uTJOH/+PNLS0pp9/MWLF2P06NEYOXJks49FRA/HAEREejFkyBCEhoYCAF5++WW0bNkSy5cvx549exAdHd3k48pkMtTV1cHBwQEODg66Kveh3NzcMG7cOPnrV199FV26dMHq1auxcOFC2NraGqwWImo+DoERkUE89dRTAICioiIAwLJly9CvXz+0bNkSjo6OCAkJwRdffKG0n0QiwfTp0/HZZ5+hR48esLe3R1ZWlvy9hjlA8+fPx5w5cwAAgYGB8uGq4uJiDBgwAL1791ZZV5cuXRAZGan1+bRo0QKPP/44qqurUV5erna76upqzJ49G/7+/rC3t0eXLl2wbNkyCIKgcI7V1dXYsmWLvO7Y2FitayIizbEHiIgM4rfffgMAtGzZEgDw4YcfIioqCn//+99RV1eHjIwM/O1vf8PevXsxdOhQhX0PHDiAzz//HNOnT0erVq1UTjQeNWoUzp8/j+3bt2PFihVo1aoVAKB169YYP348XnnlFZw+fRqPPvqofJ9ffvkF58+fx7vvvtukc/r9999hbW2tdrhNEARERUUhNzcXkydPRlBQELKzszFnzhxcvXoVK1asAABs3boVL7/8Mvr27YspU6YAADp27NikmohIQwIRkQ5t2rRJACDs379fKC8vFy5fvixkZGQILVu2FBwdHYUrV64IgiAINTU1CvvV1dUJjz76qPDUU08ptAMQrKyshDNnzih9FgAhOTlZ/vr9998XAAhFRUUK292+fVtwcHAQ4uPjFdpnzpwpODk5CVVVVY2e04ABA4SuXbsK5eXlQnl5uVBQUCDMnDlTACAMHz5cvt2ECROE9u3by1/v3r1bACAsWrRI4XijR48WJBKJcPHiRXmbk5OTMGHChEbrICLd4RAYEelFREQEWrduDX9/f4wdOxbOzs7YtWsX/Pz8AACOjo7ybW/duoWKigo8+eSTOHbsmNKxBgwYgO7duze5Fjc3N4wYMQLbt2+XDz1JpVLs2LEDI0eOhJOT00OPce7cObRu3RqtW7dGt27dsGrVKgwdOhQbN25Uu88333wDa2trzJw5U6F99uzZEAQB3377bZPPiYiah0NgRKQXa9asQefOnWFjYwNvb2906dIFVlb/+zfX3r17sWjRIpw4cQK1tbXydolEonSswMDAZtcTExODHTt24IcffkD//v2xf/9+lJWVYfz48RrtHxAQgPXr18tv7X/kkUfg5eXV6D6XLl2Cr68vXFxcFNq7desmf5+IxMEARER60bdvX/ldYH/1ww8/ICoqCv3798dHH32ENm3awNbWFps2bcK2bduUtn+wt6ipIiMj4e3tjU8//RT9+/fHp59+Ch8fH0RERGi0v5OTk8bbEpHx4xAYERncl19+CQcHB2RnZ2PSpEkYMmSITsKFqt6jBtbW1njppZfwxRdf4NatW9i9ezeio6NhbW3d7M9Vp3379rh27Rru3Lmj0H7u3Dn5+w0aq52IdI8BiIgMztraGhKJBFKpVN5WXFzc7JWQG+byqFsJevz48bh16xZeffVVVFVVKazrow/PPfccpFIpVq9erdC+YsUKSCQSDBkyRN7m5OSk8xWsiUg9DoERkcENHToUy5cvx+DBg/HSSy/hxo0bWLNmDTp16oRTp041+bghISEAgLlz52Ls2LGwtbXF8OHD5cEoODgYjz76KP71r3+hW7dueOyxx3RyPuoMHz4cgwYNwty5c1FcXIzevXtj37592LNnD2bNmqVwq3tISAj279+P5cuXw9fXF4GBgQgLC9NrfUSWjD1ARGRwTz31FD755BOUlpZi1qxZ2L59O5YsWYLnn3++Wcft06cPFi5ciJMnTyI2NhbR0dFKixTGxMQAgMaTn5vDysoKmZmZmDVrFvbu3YtZs2bh7NmzeP/997F8+XKFbZcvX46QkBC8++67iI6Oxtq1a/VeH5ElkwjCA8uREhGZuQ8//BBvvvkmiouL0a5dO7HLISKRMAARkcUQBAG9e/dGy5YtkZubK3Y5RCQizgEiIrNXXV2NzMxM5Obm4t///jf27NkjdklEJDL2ABGR2SsuLkZgYCDc3d0xdepUvPfee2KXREQiYwAiIiIii8O7wIiIiMjiMAARERGRxeEkaBVkMhmuXbsGFxcXLk9PRERkIgRBwJ07d+Dr66vw8GVVGIBUuHbtGvz9/cUug4iIiJrg8uXLaNu2baPbMACp4OLiAuD+BXR1dRW5GiIiItJEZWUl/P395d/jjWEAUqFh2MvV1ZUBiIiIyMRoMn2Fk6CJiIjI4jAAERERkcVhACIiIiKLwzlAzSCVSlFfXy92GaRntra2sLa2FrsMIiLSIQagJhAEAaWlpbh9+7bYpZCBuLu7w8fHh+tCERGZCQagJmgIP15eXmjRogW/FM2YIAioqanBjRs3AABt2rQRuSIiItIFBiAtSaVSefhp2bKl2OWQATg6OgIAbty4AS8vLw6HERGZAU6C1lLDnJ8WLVqIXAkZUsOvN+d8ERGZBwagJuKwl2XhrzcRkXlhACIiIiKLwwBEREREFocByILExsZCIpFAIpHA1tYW3t7eeOaZZ7Bx40bIZDKNj7N582a4u7vrr1AiIiI9YwCyMIMHD8b169dRXFyMb7/9FoMGDcIbb7yBYcOG4d69e2KXR0REFsAYbihhALIw9vb28PHxgZ+fHx577DG888472LNnD7799lts3rwZALB8+XL07NkTTk5O8Pf3x9SpU1FVVQUAyMvLw8SJE1FRUSHvTZo/fz4AYOvWrQgNDYWLiwt8fHzw0ksvydfPISIiunr1KlJSUrB48WIUFBSIWgsDkA4IgoC6ujqD/wiCoJP6n3rqKfTu3Rs7d+4EAFhZWWHlypU4c+YMtmzZggMHDuDtt98GAPTr1w/p6elwdXXF9evXcf36dbz11lsA7if6hQsX4uTJk9i9ezeKi4sRGxurkxqJiMi0bd68GRs2bJC/PnrUXsRquBCiTtTX1yM1NdXgn5uYmAg7OzudHKtr1644deoUAGDWrFny9oCAACxatAivvfYaPvroI9jZ2cHNzQ0SiQQ+Pj4Kx5g0aZL8/zt06ICVK1eiT58+qKqqgrOzs07qJCIi0yIIAhYsWKDQdv78I8jI6IBx40QqCgxA9F+CIMjXutm/fz9SU1Nx7tw5VFZW4t69e7h79y5qamoaXQDy6NGjmD9/Pk6ePIlbt27JJ1aXlJSge/fuBjkPIiIyHiUlJdi0aZNC26efvoSLFx9Bly4iFfVfDEA6YGtri8TERFE+V1cKCgoQGBiI4uJiDBs2DK+//jree+89eHp64tChQ5g8eTLq6urUBqDq6mpERkYiMjISn332GVq3bo2SkhJERkairq5OZ3USEZFpWLRoEaRSqUJbUNA8ZGRYoUsXYOlSkQr7LwYgHZBIJDobihLDgQMH8O9//xtvvvkmjh49CplMhg8++ABWVveniH3++ecK29vZ2Sn9pj537hz+85//IC0tDf7+/gCAX3/91TAnQERERkMqlWLRokUKba1atcK0adMAACNGiFGVMgYgC1NbW4vS0lJIpVKUlZUhKysLqampGDZsGGJiYnD69GnU19dj1apVGD58OH788UesW7dO4RgBAQGoqqpCTk4OevfujRYtWqBdu3aws7PDqlWr8Nprr+H06dNYuHChSGdJRERi2L9/P3788UeFtk6dJuDvfw8Qp6BG8C4wC5OVlYU2bdogICAAgwcPRm5uLlauXIk9e/bA2toavXv3xvLly7FkyRI8+uij+Oyzz5QmePfr1w+vvfYaxowZg9atW2Pp0qVo3bo1Nm/ejH/961/o3r070tLSsGzZMpHOkoiIDC0lJUUp/KSkzMPChQHiFPQQEkFX91KbkcrKSri5uaGiogKurq4K7929exdFRUUIDAyEg4ODSBWSofHXnYhItfr6eixevFipfcmSZPz5J9C1K2CoJX8a+/7+Kw6BERERkVYyM4G0NOCFFzajquqSwnuRkZF4/PHHERx8f5uEBJGKfAgGICIiItJKfDwwdmwK/vuQALmkpCT5kipRUfd/jBUDEBEREWns1q1bGDt2pVJ7cHAy/pt9TAIDEBEREWkkJSVFqa2wsC+2bx+C8HDj7vH5KwYgIiIiUqthvk9kpHL4mT8/CQ4OEnTtarxzfdRhACIiIiK11qwpRWTkx0rt8+cnw8oKuHsX8PAwrd4fgAGIiIiIVMjMBI4fT0G/fort3t7e8PV9DeHhwKBBQG6u6fX+AAxAREREpMLx48pDXsnJyfL/N7Uen79iACIiIiK5f/7zLIqK/qXU/mD4MQd8FAbpXGxsLEaOHCl/PXDgQMyaNatZx9TFMYiIqHEpKSlK4cfJyd/swg/AHiCLEhsbiy1btgAAbG1t0a5dO8TExOCdd96BjY3+fivs3LkTtra2Gm2bl5eHQYMG4datW3B3d2/SMYiISHuqbnE3x+DTgAHIwgwePBibNm1CbW0tvvnmG0ybNg22trZITExU2K6urg52dnY6+UxPT0+jOAYRESk7fPgwvvvuO6V2cw4/AIfALI69vT18fHzQvn17vP7664iIiEBmZqZ82Oq9996Dr68vunTpAgC4fPkyXnzxRbi7u8PT0xMjRoxAcXGx/HhSqRRxcXFwd3dHy5Yt8fbbb+Ovz9f96/BVbW0t4uPj4e/vD3t7e3Tq1AmffPIJiouLMWjQIACAh4cHJBIJYmNjVR7j1q1biImJgYeHB1q0aIEhQ4bgwoUL8vc3b94Md3d3ZGdno1u3bnB2dsbgwYNx/fp1+TZ5eXno27cvnJyc4O7ujv/7v//DpUuKz7QhIjJnKSkpSuGnTZs2Zh9+AAYgi+fo6Ii6ujoAQE5ODgoLC/Hdd99h7969qK+vR2RkJFxcXPDDDz/gxx9/lAeJhn0++OADbN68GRs3bsShQ4dw8+ZN7Nq1q9HPjImJwfbt27Fy5UoUFBTg448/hrOzM/z9/fHll18CAAoLC3H9+nV8+OGHKo8RGxuLX3/9FZmZmcjPz4cgCHjuuedQX18v36ampgbLli3D1q1bcfDgQZSUlOCtt94CANy7dw8jR47EgAEDcOrUKeTn52PKlCnyZ9gQEZk7dUNeU6ZMEaEaw+MQmIUSBAE5OTnIzs7GjBkzUF5eDicnJ2zYsEE+9PXpp59CJpNhw4YN8mCwadMmuLu7Iy8vD88++yzS09ORmJiIUaNGAQDWrVuH7OxstZ97/vx5fP755/juu+8QEREBAOjQoYP8/YahLi8vL4U5QA+6cOECMjMz8eOPP6Lffxeo+Oyzz+Dv74/du3fjb3/7GwCgvr4e69atQ8eOHQEA06dPx4IFCwAAlZWVqKiowLBhw+Tvd+vWTfsLSURkYjIzM3H8+HGldkvo9XkQe4BElJkJ9Ot3/7+GsnfvXjg7O8PBwQFDhgzBmDFjMH/+fABAz549Feb9nDx5EhcvXoSLiwucnZ3h7OwMT09P3L17F7/99hsqKipw/fp1hIWFyfexsbFBaGio2s8/ceIErK2tMWDAgCafQ0FBAWxsbBQ+t2XLlujSpQsKCgrkbS1atJCHG+B+t+6NGzcA3A9asbGxiIyMxPDhw/Hhhx8qDI8REZmjlJQUpfBz5kx3ZGdbVvgBGIBElZYG5Off/6+hDBo0CCdOnMCFCxfw559/YsuWLXBycgIA+X8bVFVVISQkBCdOnFD4OX/+PF566aUmfb6jo2Ozz0FTf71rTCKRKMxP2rRpE/Lz89GvXz/s2LEDnTt3xk8//WSw+oiIDEnVkFdwcDKuXPmbSa7k3FwMQCJKSADCww27hLiTkxM6deqEdu3aPfTW98ceewwXLlyAl5cXOnXqpPDj5uYGNzc3tGnTBj///LN8n3v37uHo0aNqj9mzZ0/IZDJ8//33Kt9v6IGSSqVqj9GtWzfcu3dP4XP/85//oLCwEN27d2/0nP4qODgYiYmJOHz4MB599FFs27ZNq/2JiIzdpk2b1IafqCjg8GHTX9W5KRiARGTsv/H+/ve/o1WrVhgxYgR++OEHFBUVIS8vDzNnzsSVK1cAAG+88QbS0tKwe/dunDt3DlOnTsXt27fVHjMgIAATJkzApEmTsHv3bvkxP//8cwBA+/btIZFIsHfvXpSXl6OqqkrpGI888ghGjBiBV155BYcOHcLJkycxbtw4+Pn5YcSIERqdW1FRERITE5Gfn49Lly5h3759uHDhAucBEZFZSUlJQUlJiUJbnz59kJycbLTfPYbCAERqtWjRAgcPHkS7du0watQodOvWDZMnT8bdu3fh6uoKAJg9ezbGjx+PCRMmIDw8HC4uLnj++ecbPe7atWsxevRoTJ06FV27dsUrr7yC6upqAICfnx9SUlKQkJAAb29vTJ8+XeUxNm3ahJCQEAwbNgzh4eEQBAHffPONxosltmjRAufOncMLL7yAzp07Y8qUKZg2bRpeffVVLa4QEZHxUneX13PPPSdCNcZHIvx10RZCZWUl3NzcUFFRIf+ib3D37l0UFRUhMDAQDg4OIlVIhsZfdyIyFQsXLoRMJlNqbxjyMmeNfX//FW+DJyIiMhOqen0GDRqE/v37i1CNcWMAIiIiMnGZmcDx45b1LK/mYgAiIiIyYap6fQCGn4dhACIiIjJRqsLPyJEj0bt3bxGqMS0MQE3EueOWhb/eRGRs1N3lRZoxitvg16xZg4CAADg4OCAsLAxHjhxRu+3OnTsRGhoKd3d3ODk5ISgoCFu3bpW/X19fj/j4ePTs2RNOTk7w9fVFTEwMrl27ppNaG26zrqmp0cnxyDQ0/Hpreps9EZG+pKSkMPzogOg9QDt27EBcXBzWrVuHsLAwpKenIzIyEoWFhfDy8lLa3tPTE3PnzkXXrl1hZ2eHvXv3YuLEifDy8kJkZCRqampw7NgxzJs3D71798atW7fwxhtvICoqCr/++muz67W2toa7u7v8mVItWrTgE8TNmCAIqKmpwY0bN+Du7g5ra2uxSyIiC6Yq+HTsOB7jxnVQsTU1RvR1gMLCwtCnTx+sXr0aACCTyeDv748ZM2YgQcNnRDz22GMYOnQoFi5cqPL9X375BX379sWlS5fQrl27hx7vYesICIKA0tLSRlc8JvPi7u4OHx8fhl0iEoUgCFiwYIFSO3t9FJnMOkB1dXU4evQoEhMT5W1WVlaIiIhAfn7+Q/cXBAEHDhxAYWEhlixZona7iooKSCQSuLu7q3y/trYWtbW18teVlZWNfq5EIkGbNm3g5eWF+vr6h9ZJps3W1pY9P0QkGt7lpR+iBqA//vgDUqkU3t7eCu3e3t44d+6c2v0qKirg5+eH2tpaWFtb46OPPsIzzzyjctu7d+8iPj4e0dHRatNgamqq2t9gjbG2tuYXIxER6Y2q76YuXV7B2LG+IlRjXkSfA9QULi4uOHHiBKqqqpCTk4O4uDh06NABAwcOVNiuvr4eL774IgRBwNq1a9UeLzExEXFxcfLXlZWV8Pf311f5REREjdq9+x5OnnxPqZ29ProjagBq1aoVrK2tUVZWptBeVlYGHx8ftftZWVmhU6dOAICgoCAUFBQgNTVVIQA1hJ9Lly7hwIEDjY4F2tvbw97evnknQ0REpAMc8jIMUW+Dt7OzQ0hICHJycuRtMpkMOTk5CA8P1/g4MplMYQ5PQ/i5cOEC9u/fj5YtW+q0biIiIn1QFX7eeOMNhh89EH0ILC4uDhMmTEBoaCj69u2L9PR0VFdXY+LEiQCAmJgY+Pn5ITU1FcD9+TqhoaHo2LEjamtr8c0332Dr1q3yIa76+nqMHj0ax44dw969eyGVSlFaWgrg/i30dnZ24pwoERGRGtXV1Vi2bJlSO4OP/ogegMaMGYPy8nIkJSWhtLQUQUFByMrKkk+MLikpgZXV/zqqqqurMXXqVFy5cgWOjo7o2rUrPv30U4wZMwYAcPXqVWRmZgK4Pzz2oNzcXKV5QkRERGJSN+QVHMzwo0+irwNkjLRZR4CIiKipVIWfOXPmoEWLFiJUY/pMZh0gIiIiS3Tz5k2sWrVKqZ1DXobDAERERGRAvMvLODAAERERGYiq8DN37lzY2PDr2NB4xYmIiPTs6tWr2LBhg1I7e33EwwBERESkRxzyMk4MQERERHqiKvwkJSVBIpGIUA09iAGIiIhIx86cOYMvvvhCqZ29PsaDAYiIiEhHMjOB48c55GUKGICIiIh0RFX4YfAxTgxAREREzZCZCWRkHEaXLt8pvcfwY7wYgIiIiJrh+PEUdOmi3M7wY9wYgIiIiJpI1V1eDD6mgQGIiIhIS1999RWOHTum1M7wYzoYgIiIiLTAhQ3NAwMQERHRQ2RmAmlpQGQkh7zMBQMQERHRQxw4sBGRkZeV2hl+TBcDEBERUSNSUlLg4aHYZmNjg7lz54pTEOkEAxAREZEavMvLfDEAERER/cXixYtRX1+v1M7wYz4YgIiIiB6gqtenbdu2mDx5sgjVkL4wABEREf0Xh7wsBwMQERFZPHVr+wQHM/yYKwYgIiKyaKrCT1BQEEaMGCFCNWQoDEBERGSxOORluRiAiIjI4vBxFsQAREREFkVV+Hn66afxxBNPiFANiYUBiIiILAaHvKgBAxAREZk9DnnRXzEAERGRWVMVfl544QU8+uijIlRDxoIBiIiIzJIgCFiwYIFSO3t9CGAAIiIiM8QhL3oYBiAiIjIbmZnA8ePK4WfixIlo166dCBWRsWIAIiIis3Dv3j0cP/6eUjt7fUgVBiAiIjJ5HPIibVmJXQAREVFzqAo/q1dPQ3Y2ww+pxx4gIiIyKZmZQFoaMHt2NU6fXqb0fnBwMh55BEhIEKE4MhkSQRAEsYswNpWVlXBzc0NFRQVcXV3FLoeIiB7Qrx8QGal6yCs7OxmHDxu4IDIa2nx/sweIiIhMiqrw8+ijs/HBB87s9SGNMQAREZFJuHnzJlatWqXU3jDR+YUXDF0RmTIGICIiMnq8y4t0jQGIiIiMmqrw884778DW1laEashcMAAREZFRKikpwaZNm5Ta2etDusAARERERqPhFnd1d3kx/JCuMAAREZHRUBd+5s2bBysrrt1LusMARERERuH06dOIjPxSqZ29PqQPRhGn16xZg4CAADg4OCAsLAxHjhxRu+3OnTsRGhoKd3d3ODk5ISgoCFu3blXYRhAEJCUloU2bNnB0dERERAQuXLig79MgIqImSklJwZdfMvyQ4YgegHbs2IG4uDgkJyfj2LFj6N27NyIjI3Hjxg2V23t6emLu3LnIz8/HqVOnMHHiREycOBHZ2dnybZYuXYqVK1di3bp1+Pnnn+Hk5ITIyEjcvXvXUKdFREQaUnWXV3JyMsMP6ZXoj8IICwtDnz59sHr1agCATCaDv78/ZsyYgQQNl/R87LHHMHToUCxcuBCCIMDX1xezZ8/GW2+9BQCoqKiAt7c3Nm/ejLFjxz70eHwUBhGR/v3444/Yv3+/UjuDDzWVNt/fovYA1dXV4ejRo4iIiJC3WVlZISIiAvn5+Q/dXxAE5OTkoLCwEP379wcAFBUVobS0VOGYbm5uCAsLU3vM2tpaVFZWKvwQEZH+pKSkMPyQqEQNQH/88QekUim8vb0V2r29vVFaWqp2v4qKCjg7O8POzg5Dhw7FqlWr8MwzzwCAfD9tjpmamgo3Nzf5j7+/f3NOi4iIHpCZef8BppmZ919zyIuMgUneBebi4oITJ06gqqoKOTk5iIuLQ4cOHTBw4MAmHS8xMRFxcXHy15WVlQxBREQ6kpYG5OcDX321B8ePn1B6n8GHxCBqAGrVqhWsra1RVlam0F5WVgYfHx+1+1lZWaFTp04AgKCgIBQUFCA1NRUDBw6U71dWVoY2bdooHDMoKEjl8ezt7WFvb9/MsyEiIlUSEoDjx7mwIRkXUYfA7OzsEBISgpycHHmbTCZDTk4OwsPDNT6OTCZDbW0tACAwMBA+Pj4Kx6ysrMTPP/+s1TGJiEg3VIUfDnmR2EQfAouLi8OECRMQGhqKvn37Ij09HdXV1Zg4cSIAICYmBn5+fkhNTQVwf75OaGgoOnbsiNraWnzzzTfYunUr1q5dCwCQSCSYNWsWFi1ahEceeQSBgYGYN28efH19MXLkSLFOk4jI4mzZsgXFxcVK7cHBDD4kPtED0JgxY1BeXo6kpCSUlpYiKCgIWVlZ8knMJSUlCsufV1dXY+rUqbhy5QocHR3RtWtXfPrppxgzZox8m7fffhvV1dWYMmUKbt++jSeeeAJZWVlwcHAw+PkREVkiVROdAWD+/GSEhwNRUQYuiOgvRF8HyBhxHSAioqZTd5dXw4NOExIYgEg/tPn+Fr0HiIiIzMPSpUvx559/KrU3zPWJimLwIePBAERERM2mqtenTZs2mDJligjVED0cAxARETWLuiEvImPGAERERE2ibqIzww+ZAgYgIiLSmqrw07NnT4waNUqEaoi0xwBERERa4ZAXmQMGICIi0giHvMicMAAREdFDqQo/AwcOxIABA0Sohqj5GICIiKhRHPIic8QAREREKqkb8srOTgbzD5k6BiAiIlKiKvy0b/88/vGPXkhIEKEgIh1jACIiIjlBELBgwQKl9oYhr9hYAxdEpCcMQEREBIB3eZFlYQAiIiKV4ScmJgaBgYEiVEOkfwxAREQWTCqVYtGiRUrt7PUhc8cARERkoTjkRZaMAYiIyAKpCj9Tp05F69atRaiGyPAYgIiILERmJrBs2V08/fQSpffY60OWhgGIiMhCHD+egqefVm5n+CFLxABERGQBVA15zZ49G87OziJUQyQ+BiAiIjNWUVGB9PR0pXb2+pCl0zoAWVtb4/r16/Dy8lJo/89//gMvLy9IpVKdFUdERNrLzATS0oDISNV3eQUHM/wQaR2ABEFQ2V5bWws7O7tmF0RERM2jLvykp7+D27dtER4OREWJUBiREdE4AK1cuRIAIJFIsGHDBoVxY6lUioMHD6Jr1666r5CIiDRWWlqKyMiPldqTk5MRHHw/HPFhpkSARFDXpfMXDcuhX7p0CW3btoW1tbX8PTs7OwQEBGDBggUICwvTT6UGVFlZCTc3N1RUVMDV1VXscoiINMKFDcnSafP9rXEPUFFREQBg0KBB2LlzJzw8PJpXJRER6Yyq8DNv3jxYWVmJUA2R8dN6DlBubq4+6iAioib47bff8Omnnyq1s9eHqHFaB6BJkyY1+v7GjRubXAwREWmOQ15ETad1ALp165bC6/r6epw+fRq3b9/GU089pbPCiIhIPVXhh8GHSHNaB6Bdu3YptclkMrz++uvo2LGjTooiIiLVTpw4gT179ii1M/wQaUfju8AeprCwEAMHDsT169d1cThR8S4wIjJGHPIiapw23986uz3gt99+w71793R1OCIieoCq8JOdncxVnYmaSOshsLi4OIXXgiDg+vXr+PrrrzFhwgSdFUZEREBeXh6+//57pfbk5GSw44eo6bQOQMePH1d4bWVlhdatW+ODDz546B1iRESkOQ55EekP1wEiIjJCvMuLSL+0DkANbty4gcLCQgBAly5dlJ4OT0RE2vv8889RUFCg1M7wQ6RbWk+CrqysxPjx4+Hr64sBAwZgwIAB8PPzw7hx41BRUaGPGomILEJKSopS+JFIrJGdnYzMTJGKIjJTWgegV155BT///DO+/vpr3L59G7dv38bevXvx66+/4tVXX9VHjUREZk/dkFdW1rvIz7//FHci0h2t1wFycnJCdnY2nnjiCYX2H374AYMHD0Z1dbVOCxQD1wEiIkNZu3Ytbty4odTeMOSVmXk//CQkAFFRhq6OyLTo5WnwDVq2bAk3Nzeldjc3Nz4hnohIC6p6fXx9ffHKK6/IX0dFMfgQ6YPWQ2Dvvvsu4uLiUFpaKm8rLS3FnDlzMG/ePJ0WR0RkrtQtbPhg+CEi/dG6B2jt2rW4ePEi2rVrh3bt2gEASkpKYG9vj/Lycnz88cfybY8dO6a7SomIzIC6tX2WLUvGzJkGLobIgmkdgEaMGAGJRKKPWoiIzJqq8BMcHIy0tChUVQFcZo3IcLQOQPPnz9dDGURE5u1hCxs2THQmIsPQOgB16NABv/zyC1q2bKnQfvv2bTz22GP4/fffdVYcEZGp0+RxFpzoTGR4Wk+CLi4uhlQqVWqvra3FlStXtC5gzZo1CAgIgIODA8LCwnDkyBG1265fvx5PPvkkPDw84OHhgYiICKXtq6qqMH36dLRt2xaOjo7o3r071q1bp3VdRETNpSr8PP3001zVmcgIaNwDlPnAMqTZ2dkKt8JLpVLk5OQgMDBQqw/fsWMH4uLisG7dOoSFhSE9PR2RkZEoLCxU+WiNvLw8REdHo1+/fnBwcMCSJUvw7LPP4syZM/Dz8wNw/2n1Bw4cwKeffoqAgADs27cPU6dOha+vL6L4TywiMoDMTOD4cT7Li8iYabwQopXV/c4iiUSCv+5ia2uLgIAAfPDBBxg2bJjGHx4WFoY+ffpg9erVAACZTAZ/f3/MmDEDCRoMhkulUnh4eGD16tWIiYkBADz66KMYM2aMwi35ISEhGDJkCBYtWqRRXVwIkYiaik9wJxKPXhZClMlkAIDAwED88ssvaNWqVbOKrKurw9GjR5GYmChvs7KyQkREBPLz8zU6Rk1NDerr6+Hp6Slv69evHzIzMzFp0iT4+voiLy8P58+fx4oVK9Qep7a2FrW1tfLXlZWVTTgjIrJ0qsLPqFGj0LNnTxGqIaLGaD0JuqioSCcf/Mcff0AqlcLb21uh3dvbG+fOndPoGPHx8fD19UVERIS8bdWqVZgyZQratm0LGxsbWFlZYf369ejfv7/a46Smpqr9VxsR0cMIgoAFCxYotbPXh8h4aR2AVP0hf1BSUlKTi9FGWloaMjIykJeXBwcHB3n7qlWr8NNPPyEzMxPt27fHwYMHMW3aNKWg9KDExETExcXJX1dWVsLf31/v50BEpo9DXkSmSesAtGvXLoXX9fX1KCoqgo2NDTp27KhxAGrVqhWsra1RVlam0F5WVgYfH59G9122bBnS0tKwf/9+9OrVS97+559/4p133sGuXbswdOhQAECvXr1w4sQJLFu2TG0Asre3h729vUZ1ExE1UBV+xo8fjw4dOohQDRFpQ+sAdPz4caW2yspKxMbG4vnnn9f4OHZ2dggJCUFOTg5GjhwJ4P48o5ycHEyfPl3tfkuXLsV7772H7OxshIaGKrxXX1+P+vp6+YTtBtbW1vI5TEREzSWVSlXeVMFeHyLToXUAUsXV1RUpKSkYPnw4xo8fr/F+cXFxmDBhAkJDQ9G3b1+kp6ejuroaEydOBADExMTAz88PqampAIAlS5YgKSkJ27ZtQ0BAgPyBrM7OznB2doarqysGDBiAOXPmwNHREe3bt8f333+Pf/7zn1i+fLkuTpWILByHvIjMg04CEABUVFSgoqJCq33GjBmD8vJyJCUlobS0FEFBQcjKypJPjC4pKVHozVm7di3q6uowevRoheMkJyfLH9GRkZGBxMRE/P3vf8fNmzfRvn17vPfee3jttdead4JEZPFUhZ+PPnoNHTt6g/mHyLRovA5Qg5UrVyq8FgQB169fx9atWzFgwABs27ZNpwWKgesAEdGD7t69iyVLlii1Bwcny5/hxXVWicSnzfe31gHor6s9W1lZoXXr1njqqaeQmJgIFxcX7Ss2MgxARNSAQ15EpkMvCyE20NU6QERExk5V+HnzzTf5DyMiM9CkOUC3b9/GxYsXAQCdOnWCu7u7LmsiIhJVZWWlytXj2etDZD60CkDFxcWYNm0asrOz5c8Dk0gkGDx4MFavXo2AgAB91EhEZDDqhryCgxl+iMyJxgHo8uXLePzxx2Fra4uFCxeiW7duAICzZ89i7dq1CA8Pxy+//IK2bdvqrVgiIn1SFX7270/AoUP2CA/nRGcic6LxJOjJkyfj4sWLyM7OVnj0BHB/BebBgwfjkUcewYYNG/RSqCFxEjSRZSkrK8O6deuU2pOTk5GZCd7pRWQi9HIXmJ+fH3bs2IEnnnhC5fsHDx7E2LFjce3aNe0rNjIMQESWg3d5EZkPvdwF9scffzQ6x6dDhw64efOmxkUSEYlNVfiZN2+e0uN0iMj8aByA2rRpg7Nnz6qd43P69OmHPsSUiMgYFBcXY8uWLUrtwcHJYPYhsgwaB6CRI0firbfeQk5ODlq3bq3w3o0bNxAfHy9/qCkRkbHikBcRAVrMAbp16xbCwsJQWlqKcePGoWvXrhAEAQUFBdi2bRt8fHzw008/wdPTU9816x3nABGZJ1XhJykpCRKJRIRqiEjX9DIHyMPDAz///DPeeecdZGRk4Pbt2wAAd3d3vPTSS1i8eLFZhB8iMj8nT57E7t27ldrZ60NkubR+Fhhw/wGo5eXlAIDWrVub3b+e2ANEZD4aW9iQt7UTmRe9PgsMuL/6s5eXV5OKIyIyFFXhh70+RAQ0MQARERmz77//Hnl5eUrtDD9E1IABiIjMCu/yIiJNMAARkdngkBcRaYoBiIhM3u7du3Hy5EmldoYfIlJHowC0cuVKjQ84c+bMJhdDRKQtVb0+VlZWmDdvngjVEJGp0Og2+MDAQM0OJpHg999/b3ZRYuNt8ESmgUNeRPQgnd8GX1RUpJPCiIh0Yf369bh27ZpSO8MPEWmqyXOA6urqUFRUhI4dO8LGhlOJiMgwVPX6tGnTBlOmTBGhGiIyVVo/97impgaTJ09GixYt0KNHD5SUlAAAZsyYgbS0NJ0XSETUQN2QF8MPEWlL6wCUmJiIkydPIi8vDw4ODvL2iIgI7NixQ6fFEREBwKJFizjfh4h0Suuxq927d2PHjh14/PHHFZ4B1qNHD/z22286LY6ISFXw6dWrF55//nkRqiEic6F1ACovL1f5HLDq6mqzeygqEYmLvT5EpC9aB6DQ0FB8/fXXmDFjBgDIQ8+GDRsQHh6u2+qIyCLxcRZEpG9aB6DFixdjyJAhOHv2LO7du4cPP/wQZ8+exeHDh/H999/ro0YisiCqws+AAQMwcOBAwxdDRGZL60nQTzzxBE6cOIF79+6hZ8+e2LdvH7y8vJCfn4+QkBB91EhEFkLdkBfDDxHpmkYrQVsargRNZFjqhryys5Nx+LCBiyEik6XzlaArKys1/nAGBiLShqrw067dCKxfH4SEBBEKIiKLoFEAcnd31/gOL6lU2qyCiMgyCIKABQsWKLU3THSeONHQFRGRJdEoAOXm5sr/v7i4GAkJCYiNjZXf9ZWfn48tW7YgNTVVP1USkVnhXV5EJDat5wA9/fTTePnllxEdHa3Qvm3bNvzjH/9AXl6eLusTBecAEemPqvAzfvx4dOjQQYRqiMicaPP9rfVdYPn5+QgNDVVqDw0NxZEjR7Q9HBFZCJlMpvYuL4YfIjI0rdcB8vf3x/r167F06VKF9g0bNsDf319nhRGR+VA35BUczCEvIhKH1gFoxYoVeOGFF/Dtt98iLCwMAHDkyBFcuHABX375pc4LJCLTpir8HDr0Ovbv90J4OBAVJUJRRGTxtB4Ce+6553DhwgUMHz4cN2/exM2bNzF8+HCcP38ezz33nD5qJCITVFdXpzL8ZGcnY8aM++GHt7kTkVi4EKIKnARN1DyNLWyYkMBeHyLSD50vhPhXt2/fxieffIKCggIAQI8ePTBp0iS4ubk15XBEZEZUhZ+4uDi4uLiAd7kTkbHQegjs119/RceOHbFixQr5ENjy5cvRsWNHHDt2TB81EpEJqK6uVnuXl4uLiwgVERGpp/UQ2JNPPolOnTph/fr1sLG534F07949vPzyy/j9999x8OBBvRRqSBwCI9JOY3d5cbiLiAxFm+9vrQOQo6Mjjh8/jq5duyq0nz17FqGhoaipqdG+YiPDAESkOVXhZ//+RBw6ZIfwcPBhpkRkMHqdA+Tq6oqSkhKlAHT58mV2cxNZkP/85z9YvXq1UntycjKCgwGplHd5EZHx0noO0JgxYzB58mTs2LEDly9fxuXLl5GRkaHy8RiaWLNmDQICAuDg4ICwsLBGV5Nev349nnzySXh4eMDDwwMREREqty8oKEBUVBTc3Nzg5OSEPn36oKSkROvaiEi1lJQUteEHuH+X1+HDvNuLiIyX1j1Ay5Ytg0QiQUxMDO7duwcAsLW1xeuvv460tDStjrVjxw7ExcVh3bp1CAsLQ3p6OiIjI1FYWAgvLy+l7fPy8hAdHY1+/frBwcEBS5YswbPPPoszZ87Az88PAPDbb7/hiSeewOTJk5GSkgJXV1ecOXMGDg4O2p4qEamgashr3rx5sLLS+t9TRESiafI6QDU1Nfjtt98AAB07dkSLFi20PkZYWBj69Okj/5ekTCaDv78/ZsyYgQQN+s6lUik8PDywevVqxMTEAADGjh0LW1tbbN26Vet6GnAOEJGyK1eu4JNPPlFq5xPcichY6PVhqA1atGiBnj17omfPnk0KP3V1dTh69CgiIiL+V4yVFSIiIpCfn6/RMWpqalBfXw9PT08A9wPU119/jc6dOyMyMhJeXl4ICwvD7t27ta6PiP4nJSWF4YeIzIrGQ2CTJk3SaLuNGzdqtN0ff/wBqVQKb29vhXZvb2+cO3dOo2PEx8fD19dXHqJu3LiBqqoqpKWlYdGiRViyZAmysrIwatQo5ObmYsCAASqPU1tbi9raWvnryspKjT6fyBKoGvJKSkqCRCIRoRoiIt3QOABt3rwZ7du3R3BwMIzh6RlpaWnIyMhAXl6efH6PTCYDAIwYMQJvvvkmACAoKAiHDx/GunXr1Aag1NRUteuYEFmqCxcuYNu2bUrt7PUhInOgcQB6/fXXsX37dhQVFWHixIkYN26cfOipKVq1agVra2uUlZUptJeVlcHHx6fRfZctW4a0tDTs378fvXr1UjimjY0NunfvrrB9t27dcOjQIbXHS0xMRFxcnPx1ZWUl/P39tTkdIrPS2LO8goN5dxcRmT6N5wCtWbMG169fx9tvv42vvvoK/v7+ePHFF5Gdnd2kHiE7OzuEhIQgJydH3iaTyZCTk4Pw8HC1+y1duhQLFy5EVlYWQkNDlY7Zp08fFBYWKrSfP38e7du3V3tMe3t7uLq6KvwQWSp1j7PIzk5Gfj6g5c2eRERGSavb4O3t7REdHY3o6GhcunQJmzdvxtSpU3Hv3j2cOXMGzs7OWn14XFwcJkyYgNDQUPTt2xfp6emorq7GxIkTAQAxMTHw8/NDamoqAGDJkiVISkrCtm3bEBAQgNLSUgCAs7Oz/LPnzJmDMWPGoH///hg0aBCysrLw1VdfIS8vT6vaiCzNsWPH8NVXXym1Nwx5JSTcDz9c3JCIzEGTngYP3L9jSyKRQBAESKXSJh1jzJgxKC8vR1JSEkpLSxEUFISsrCz5xOiSkhKFtUXWrl2Luro6jB49WuE4ycnJmD9/PgDg+eefx7p165CamoqZM2eiS5cu+PLLL/HEE0807USJLEBjz/JqEBXFoS8iMh9arQNUW1uLnTt3YuPGjTh06BCGDRuGiRMnYvDgwWa1CBrXASJLoir8NAx38VleRGRK9PIssKlTpyIjIwP+/v6YNGkStm/fjlatWjW7WCISR25uLg4ePKjU3vAsLw53EZE507gHyMrKCu3atUNwcHCj63/s3LlTZ8WJhT1AZO5U9fq0atUK06ZNE6EaIiLd0EsPUExMDBc+IzID6u7yIiKyJFothEhEpmvXrl04deqUUjvDDxFZoibfBUZEpkNVr0+XLl0wduxYEaohIhIfAxCRmeOQFxGRMgYgIjO1YcMGXL16Vamd4YeIiAGIyCyp6vV5/PHHERkZKUI1RETGhwGIyMxwyIuI6OEYgIjMRGpqKurq6pTaGX6IiJQxABGZAVW9PoMHD0ZYWJgI1RARGT8GICITxyEvIiLtMQARmSh1T3Bn+CEiejgGICITpCr8/O1vf0P37t1FqIaIyPQwABGZGA55ERE1HwMQkYlQN+R1+nQyXFyAmTOB994zcFFERCZKIgiCIHYRxqayshJubm6oqKiAq6ur2OUQqQw/+fkvIzvbD1ZWgEwGODsDd+6IUBwRkZHQ5vubPUBERkwQBCxYsECpPTk5GZmZQGUl4OcHZGXd7wEiIiLNMAARGamH3eUVFXX/h4iItGcldgFEpExV+OnefQays+/3/BARUfMwABEZkXv37qm9y2vFCk/k5wNpaSIURkRkZjgERmQkHjbklZBwP/wkJBiyKiIi88QARGQEVIWft956C05OTvLXnPNDRKQ7DEBEIqqtrUWaijEtLmxIRKRfDEBEIlE35LV9ezKCg9nbQ0SkTwxARCJQFX6+++4d/PijLYD7c30YgIiI9IcBiMiAqqqq8MEHHyi1Jyff7/WJjwcEgROdiYj0jQGIyEC4sCERkfFgACIyAFXhZ968ebCy4lJcRERiYAAi0qObN29i1apVSu28y4uISFwMQER68rAhLyIiEg8DEJEeqAo/SUlJkEgkIlRDRER/xQBEpEOlpaX4+OOPldrZ60NEZFwYgIh0RFWvj6OjN3bvfo0LGxIRGRkGICIdUBV+srOTcfMmUFjIhQ2JiIwNAxBRMxQXF2PLli1K7dnZycjPB7p2BcLDubAhEZGxYQAiaiJVvT6dO3dGdHQ0goPv9/okJLDnh4jIGDEAETWBqvDz4ERnrupMRGTcGICItFBQUIDPP/9cqZ13eRERmRYGICINqer16dOnD5577jkRqiEiouZgACLSwMOGvIiIyLQwABE14pdffsE333yj1M7wQ0Rk2hiAiNRQ1evz1FNP4cknnxShGiIi0iUGICIVOORFRGTeGICIHpCbm4uDBw8qtTP8EBGZFyuxCwCANWvWICAgAA4ODggLC8ORI0fUbrt+/Xo8+eST8PDwgIeHByIiIhrd/rXXXoNEIkF6eroeKidzkpKSohR+oqKiGH6IiMyQ6AFox44diIuLQ3JyMo4dO4bevXsjMjISN27cULl9Xl4eoqOjkZubi/z8fPj7++PZZ5/F1atXlbbdtWsXfvrpJ/j6+ur7NMjEqRvyCg4OFqEaIiLSN4kgCIKYBYSFhaFPnz5YvXo1AEAmk8Hf3x8zZsxAggYPUJJKpfDw8MDq1asRExMjb7969SrCwsKQnZ2NoUOHYtasWZg1a5ZGNVVWVsLNzQ0VFRVwdXVt0nmRacjMzMTx48eV2tnrQ0RkerT5/hZ1DlBdXR2OHj2KxMREeZuVlRUiIiKQn5+v0TFqampQX18PT09PeZtMJsP48eMxZ84c9OjRQ+d1k3lQ1esTHR2Nzp07i1ANEREZkqgB6I8//oBUKoW3t7dCu7e3N86dO6fRMeLj4+Hr64uIiAh525IlS2BjY4OZM2dqdIza2lrU1tbKX1dWVmq0H5ku3uVFRGTZTPousLS0NGRkZCAvLw8ODg4AgKNHj+LDDz/EsWPHIJFINDpOamqqyi9EMj9bt27F77//rtTO8ENEZFlEnQTdqlUrWFtbo6ysTKG9rKwMPj4+je67bNkypKWlYd++fejVq5e8/YcffsCNGzfQrl072NjYwMbGBpcuXcLs2bMREBCg8liJiYmoqKiQ/1y+fLnZ50bGJyUlRSn8TJo0ieGHiMgCidoDZGdnh5CQEOTk5GDkyJEA7s/fycnJwfTp09Xut3TpUrz33nvIzs5GaGiownvjx49XGA4DgMjISIwfPx4TJ05UeTx7e3vY29s372TIqHHIi4iIHiT6EFhcXBwmTJiA0NBQ9O3bF+np6aiurpaHlZiYGPj5+SE1NRXA/fk9SUlJ2LZtGwICAlBaWgoAcHZ2hrOzM1q2bImWLVsqfIatrS18fHzQpUsXw54ciW7VqlW4efOmUjvDDxGRZRM9AI0ZMwbl5eVISkpCaWkpgoKCkJWVJZ8YXVJSAiur/43UrV27FnV1dRg9erTCcZKTkzF//nxDlk5GTlWvz+uvvw4vLy8RqiEiImMi+jpAxojrAJk2QRCwYMECpXb2+hARmTeTWQeISNcWLFgAVZme4YeIiB7EAERmQ9WQ16xZs+Dm5iZCNUREZMwYgMjkSaVSLFq0SKmdvT5ERKQOAxCZNHULWDL8EBFRYxiAyGSpCj9vv/02HB0dRaiGiIhMCQMQmZz6+nosXrxYqZ29PkREpCkGIDIpHPIiIiJdEPVZYETaUBV+Fi16B9nZDD9ERKQd9gCR0bt79y6WLFmi1L59ezI6dQISEkQoioiITBoDEBk1Vb0+Li4uiIuLA0e9iIioqRiAyGipCj/z5s1TeDYcERFRUzAAkdG5c+cOli9frtTOic5ERKQrDEBkVFT1+vj5+eHll18WoRoiIjJXDEBkNFSFn6SkJEgkEhGqISIic8YARKK7efMmVq1apdTOIS8iItIXBiASlapen27duuHFF18UoRoiIrIUDEAkisxM4Phx5fDDXh8iIjIEBiAyuB07ynHu3EdK7Qw/RERkKAxAZFCqhrz69u2LIUOGiFANERFZKgYgMhhV4Ye9PkREJAYGINK70tJSfPzxx0rtDD9ERCQWBiDSK1W9Ps8//zx69eolQjVERET3MQCR3nDIi4iIjBUDEOncpUuXsHnzZqV2hh8iIjIWDECkU6p6faKjo9G5c2cRqiEiIlKNAYh0hkNeRERkKhiAqMkyM4G0NOD118/j99+3K73P8ENERMaKAYiaLC0NiIxMwe+/K7bHxsaiffv24hRFRESkAQYgarLISA55ERGRaWIAIq0VFhYiIyNDqZ3hh4iITAUDEGlF1UTnKVOmoE2bNiJUQ0RE1DQMQKQx3uVFRETmggGIHurUqVPYtWuXUjvDDxERmSoGIGqUql6fN954A+7u7oYvhoiISEcYgEgtDnkREZG5YgAiJUeOHMG3336r0Obo6Ii3335bpIqIiIh0iwGIFKjq9Zk9ezacnZ1FqIaIiEg/GIAIACAIAhYsWKDUziEvIiIyRwxAhIMHDyI3N1ehrXXr1pg6dapIFREREekXA5CFUzXkFR8fDwcHBxGqISIiMgwGIAvFIS8iIrJkDEAWKCsrCz///LNCW2BgIGJiYkSqiIiIyLAYgCyMqiGvxMRE2NnZiVANERGROBiALIRUKsWiRYuU2jnkRURElogByALs2rULp06dUmjr0aMHRo8eLVJFRERE4rISuwAAWLNmDQICAuDg4ICwsDAcOXJE7bbr16/Hk08+CQ8PD3h4eCAiIkJh+/r6esTHx6Nnz55wcnKCr68vYmJicO3aNUOcitFJSUlRCj/vvvsuww8REVk00QPQjh07EBcXh+TkZBw7dgy9e/dGZGQkbty4oXL7vLw8REdHIzc3F/n5+fD398ezzz6Lq1evAgBqampw7NgxzJs3D8eOHcPOnTtRWFiIqKgoQ56W3mVmAv363f+vKvX19Wqf5WVtba3n6oiIiIybRBAEQcwCwsLC0KdPH6xevRoAIJPJ4O/vjxkzZiAhIeGh+0ulUnh4eGD16tVq72L65Zdf0LdvX1y6dAnt2rV76DErKyvh5uaGiooKuLq6andCBtKtG3DuHNC1K1BQoPjeZ599hosXLyq09enTB88995wBKyQiIjIsbb6/RZ0DVFdXh6NHjyIxMVHeZmVlhYiICOTn52t0jJqaGtTX18PT01PtNhUVFZBIJHB3d29uyaLLzATS0oA7d+6//mt8VdXrM2/ePFhZid7ZR0REZDREDUB//PEHpFIpvL29Fdq9vb1x7tw5jY4RHx8PX19fREREqHz/7t27iI+PR3R0tNo0WFtbi9raWvnryspKDc/A8NLSgPx8oEsXIDwcaOgku3v3LpYsWaK0Pe/yIiIiUmbSd4GlpaUhIyMDeXl5Kh/dUF9fjxdffBGCIGDt2rVqj5Oamqqy58QYJSTcD0EJCUDDtKaPP/4YpaWlCtv1798fgwYNEqFCIiIi4ydqAGrVqhWsra1RVlam0F5WVgYfH59G9122bBnS0tKwf/9+9OrVS+n9hvBz6dIlHDhwoNGxwMTERMTFxclfV1ZWwt/fX8uzMYyoqP8FH0D1kFdSUhIkEokBqyIiIjItok4MsbOzQ0hICHJycuRtMpkMOTk5CA8PV7vf0qVLsXDhQmRlZSE0NFTp/Ybwc+HCBezfvx8tW7ZstA57e3u4uroq/Bi76upqtXd5MfwQERE1TvQhsLi4OEyYMAGhoaHo27cv0tPTUV1djYkTJwIAYmJi4Ofnh9TUVADAkiVLkJSUhG3btiEgIEA+9OPs7AxnZ2fU19dj9OjROHbsGPbu3QupVCrfxtPT0ywe+bBv3z6lSeKRkZF4/PHHRaqIiIjItIgegMaMGYPy8nIkJSWhtLQUQUFByMrKkk+MLikpUbiDae3atairq1NayC85ORnz58/H1atXkfnfxXGCgoIUtsnNzcXAgQP1ej76pq7Xh4iIiDQn+jpAxsgY1wGqq6uT94I9iOGHiIjoPpNZB4g08+uvv+Lrr79WaJs0aZLRTtQmIiIydlwdz8DmzgVcXO7/VxMpKSlK4Sc5OZnhh4iIqBk4BKaCPofAXFyAqirA2fl/qzmromphw5CQEAwbNkyn9RAREZkLDoEZsZkzgZUr7/9XnZ9++gnZ2dkKbW+88YZZPMqDiIjIGLAHSAUxJ0HzLi8iIqKmYQ+QCaqpqcH777+v0BYeHo5nn31WpIqIiIjMFwOQETh48CByc3MV2t58802juQWfiIjI3DAAiYxDXkRERIbHACSSO3fuYPny5QptAwYMMPmVqomIiEwBA5AI9u/fjx9//FGh7a233oKTk5NIFREREVkWBiAD45AXERGR+BiADOjChQsKryMiIvB///d/IlVDRERkuRiADOjBIa63334bjo6OIlZDRERkubgQogrG+DR4IiIiapw23998GCoRERFZHAYgIiIisjgMQERERGRxGICIiIjI4jAAERERkcVhACIiIiKLwwBEREREFocBiIiIiCwOAxARERFZHAYgIiIisjgMQERERGRxGICIiIjI4jAAERERkcVhACIiIiKLYyN2AcZIEAQAQGVlpciVEBERkaYavrcbvscbwwCkwp07dwAA/v7+IldCRERE2rpz5w7c3Nwa3UYiaBKTLIxMJsO1a9fg4uICiUQidjlaqayshL+/Py5fvgxXV1exyzFqvFaa47XSHK+V5nittMPr9XCCIODOnTvw9fWFlVXjs3zYA6SClZUV2rZtK3YZzeLq6so/IBritdIcr5XmeK00x2ulHV6vxj2s56cBJ0ETERGRxWEAIiIiIovDAGRm7O3tkZycDHt7e7FLMXq8VprjtdIcr5XmeK20w+ulW5wETURERBaHPUBERERkcRiAiIiIyOIwABEREZHFYQAiIiIii8MAZALWrFmDgIAAODg4ICwsDEeOHFG77fr16/Hkk0/Cw8MDHh4eiIiIUNi+vr4e8fHx6NmzJ5ycnODr64uYmBhcu3bNEKeid7q8Vn/12muvQSKRID09XQ+VG54+rlVBQQGioqLg5uYGJycn9OnTByUlJfo8DYPQ9bWqqqrC9OnT0bZtWzg6OqJ79+5Yt26dvk/DILS5Vjt37kRoaCjc3d3h5OSEoKAgbN26VWEbQRCQlJSENm3awNHREREREbhw4YK+T8MgdHmtzP3vdr0QyKhlZGQIdnZ2wsaNG4UzZ84Ir7zyiuDu7i6UlZWp3P6ll14S1qxZIxw/flwoKCgQYmNjBTc3N+HKlSuCIAjC7du3hYiICGHHjh3CuXPnhPz8fKFv375CSEiIIU9LL3R9rR60c+dOoXfv3oKvr6+wYsUKPZ+J/unjWl28eFHw9PQU5syZIxw7dky4ePGisGfPHrXHNBX6uFavvPKK0LFjRyE3N1coKioSPv74Y8Ha2lrYs2ePoU5LL7S9Vrm5ucLOnTuFs2fPChcvXhTS09MFa2trISsrS75NWlqa4ObmJuzevVs4efKkEBUVJQQGBgp//vmnoU5LL3R9rcz573Z9YQAycn379hWmTZsmfy2VSgVfX18hNTVVo/3v3bsnuLi4CFu2bFG7zZEjRwQAwqVLl5pdr5j0da2uXLki+Pn5CadPnxbat29vFgFIH9dqzJgxwrhx43Req9j0ca169OghLFiwQGG7xx57TJg7d65uihZJc6+VIAhCcHCw8O677wqCIAgymUzw8fER3n//ffn7t2/fFuzt7YXt27frrnAR6PpaqWIuf7frC4fAjFhdXR2OHj2KiIgIeZuVlRUiIiKQn5+v0TFqampQX18PT09PtdtUVFRAIpHA3d29uSWLRl/XSiaTYfz48ZgzZw569Oih87rFoI9rJZPJ8PXXX6Nz586IjIyEl5cXwsLCsHv3bn2cgsHo6/dVv379kJmZiatXr0IQBOTm5uL8+fN49tlndX4OhtLcayUIAnJyclBYWIj+/fsDAIqKilBaWqpwTDc3N4SFhWl8/Y2RPq6VKubwd7s+MQAZsT/++ANSqRTe3t4K7d7e3igtLdXoGPHx8fD19VX4g/agu3fvIj4+HtHR0Sb9cD19XaslS5bAxsYGM2fO1Gm9YtLHtbpx4waqqqqQlpaGwYMHY9++fXj++ecxatQofP/99zo/B0PR1++rVatWoXv37mjbti3s7OwwePBgrFmzptEvM2PX1GtVUVEBZ2dn2NnZYejQoVi1ahWeeeYZAJDv15zrb4z0ca3+ylz+btcnPg3ejKWlpSEjIwN5eXlwcHBQer++vh4vvvgiBEHA2rVrRajQeKi6VkePHsWHH36IY8eOQSKRiFyh8VB1rWQyGQBgxIgRePPNNwEAQUFBOHz4MNatW4cBAwaIVq+Y1P0ZXLVqFX766SdkZmaiffv2OHjwIKZNm9boP1bMlYuLC06cOIGqqirk5OQgLi4OHTp0wMCBA8Uuzehoeq34d7tmGICMWKtWrWBtbY2ysjKF9rKyMvj4+DS677Jly5CWlob9+/ejV69eSu83/AG5dOkSDhw4YPL/QtDHtfrhhx9w48YNtGvXTt4mlUoxe/ZspKeno7i4WKfnYCj6uFatWrWCjY0NunfvrrB9t27dcOjQId0Vb2D6uFZ//vkn3nnnHezatQtDhw4FAPTq1QsnTpzAsmXLTDYANfVaWVlZoVOnTgDuh+aCggKkpqZi4MCB8v3KysrQpk0bhWMGBQXp/iQMRB/XqoG5/d2uTxwCM2J2dnYICQlBTk6OvE0mkyEnJwfh4eFq91u6dCkWLlyIrKwshIaGKr3f8AfkwoUL2L9/P1q2bKmX+g1JH9dq/PjxOHXqFE6cOCH/8fX1xZw5c5Cdna23c9E3fVwrOzs79OnTB4WFhQrt58+fR/v27XV7Agakj2tVX1+P+vp6WFkp/vVrbW0t70kzRU29Vn8lk8lQW1sLAAgMDISPj4/CMSsrK/Hzzz9rdUxjo49rBZjn3+16JeoUbHqojIwMwd7eXti8ebNw9uxZYcqUKYK7u7tQWloqCIIgjB8/XkhISJBvn5aWJtjZ2QlffPGFcP36dfnPnTt3BEEQhLq6OiEqKkpo27atcOLECYVtamtrRTlHXdH1tVLFXO4C08e12rlzp2Brayv84x//EC5cuCCsWrVKsLa2Fn744QeDn58u6eNaDRgwQOjRo4eQm5sr/P7778KmTZsEBwcH4aOPPjL4+emSttdq8eLFwr59+4TffvtNOHv2rLBs2TLBxsZGWL9+vXybtLQ0wd3dXdizZ49w6tQpYcSIEWZzG7wur5U5/92uLwxAJmDVqlVCu3btBDs7O6Fv377CTz/9JH9vwIABwoQJE+Sv27dvLwBQ+klOThYEQRCKiopUvg9AyM3NNeyJ6YEur5Uq5hKABEE/1+qTTz4ROnXqJDg4OAi9e/cWdu/ebaCz0S9dX6vr168LsbGxgq+vr+Dg4CB06dJF+OCDDwSZTGbAs9IPba7V3Llz5b9fPDw8hPDwcCEjI0PheDKZTJg3b57g7e0t2NvbC08//bRQWFhoqNPRK11eK3P/u10fJIIgCPrvZyIiIiIyHpwDRERERBaHAYiIiIgsDgMQERERWRwGICIiIrI4DEBERERkcRiAiIiIyOIwABEREZHFYQAiIiIii8MARERmJzY2FiNHjlRqz8vLg0Qiwe3bt5GXl4cRI0agTZs2cHJyQlBQED777DPDF0tEomAAIiKLdPjwYfTq1QtffvklTp06hYkTJyImJgZ79+4VuzQiMgAbsQsgIhLDO++8o/D6jTfewL59+7Bz504MGzZMpKqIyFDYA0RE9F8VFRXw9PQUuwwiMgD2ABGRWdq7dy+cnZ0V2qRSqdrtP//8c/zyyy/4+OOP9V0aERkBBiAiMkuDBg3C2rVrFdp+/vlnjBs3Tmnb3NxcTJw4EevXr0ePHj0MVSIRiYgBiIjMkpOTEzp16qTQduXKFaXtvv/+ewwfPhwrVqxATEyMocojIpFxDhARWay8vDwMHToUS5YswZQpU8Quh4gMiD1ARGSRcnNzMWzYMLzxxht44YUXUFpaCgCws7PjRGgiC8AeICKySFu2bEFNTQ1SU1PRpk0b+c+oUaPELo2IDEAiCIIgdhFEREREhsQeICIiIrI4DEBERERkcRiAiIiIyOIwABEREZHFYQAiIiIii8MARERERBaHAYiIiIgsDgMQERERWRwGICIiIrI4DEBERERkcRiAiIiIyOIwABEREZHF+X+jI2b3egD5/wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASsFJREFUeJzt3XtclGX+//H3gBxEBTyCBxTN1nNKHkhtM8sNyzJ3O1hbKeZmpaZEtYqZpKbQamoeVstS27K0NjO+lpKRaCrluTwfStNMPJRAHgKE+/eHP2ebZtAZnOGegdfz8eCB9zX33PO5uVPeXdd1X7fFMAxDAAAAuCw/swsAAADwBYQmAAAAJxCaAAAAnEBoAgAAcAKhCQAAwAmEJgAAACcQmgAAAJxAaAIAAHACoQkAAMAJhCYAPstisejFF180uwyr+Ph4RUdHm10GAA8hNAFwqwULFshisVi/goOD9ac//UlDhw7V8ePHPfrZ69ev14svvqicnBy3Hvfmm2+2OacaNWqoY8eOmjdvnoqLi93yGRMnTtTSpUvdciwAnlHJ7AIAlE/jxo1T48aN9dtvv2nt2rWaPXu2Pv30U+3YsUMhISFu+Yzz58+rUqX//TO2fv16jR07VvHx8QoPD3fLZ1zSoEEDpaSkSJJOnjyp//znPxo4cKD27dun1NTUqz7+xIkTde+996pPnz5XfSwAnkFoAuARt99+uzp06CBJ+sc//qGaNWtqypQp+vjjj/Xggw+W+rjFxcUqKChQcHCwgoOD3VXuFYWFhenhhx+2bj/++ONq1qyZZs6cqfHjxysgIKDMagFgDobnAJSJW265RZJ08OBBSdLkyZPVpUsX1axZU5UrV1b79u313//+1+59FotFQ4cO1cKFC9WqVSsFBQVpxYoV1tcuzWl68cUX9dxzz0mSGjdubB1KO3TokLp166a2bds6rKtZs2aKi4tz+XxCQkJ0ww036OzZszp58mSJ+509e1bPPPOMoqKiFBQUpGbNmmny5MkyDMPmHM+ePau33nrLWnd8fLzLNQHwLHqaAJSJ7777TpJUs2ZNSdKrr76q3r1766GHHlJBQYEWLVqk++67T8uWLVOvXr1s3vvFF1/o/fff19ChQ1WrVi2Hk63/9re/ad++fXrvvfc0depU1apVS5JUu3ZtPfLII3rssce0Y8cOtW7d2vqejRs3at++fRo9enSpzun777+Xv79/iUOBhmGod+/eWrVqlQYOHKh27dopPT1dzz33nI4ePaqpU6dKkt5++2394x//UKdOnTRo0CBJ0jXXXFOqmgB4kAEAbjR//nxDkvH5558bJ0+eNI4cOWIsWrTIqFmzplG5cmXjxx9/NAzDMM6dO2fzvoKCAqN169bGLbfcYtMuyfDz8zN27txp91mSjOTkZOv2pEmTDEnGwYMHbfbLyckxgoODjREjRti0Dxs2zKhSpYpx5syZy55Tt27djObNmxsnT540Tp48aezevdsYNmyYIcm46667rPv179/faNSokXV76dKlhiTjpZdesjnevffea1gsFuPAgQPWtipVqhj9+/e/bB0AzMXwHACP6NGjh2rXrq2oqCg98MADqlq1qj766CPVr19fklS5cmXrvqdPn1Zubq7+/Oc/a8uWLXbH6tatm1q2bFnqWsLCwnT33Xfrvffesw6LFRUVafHixerTp4+qVKlyxWPs2bNHtWvXVu3atdWiRQvNmDFDvXr10rx580p8z6effip/f38NGzbMpv2ZZ56RYRhavnx5qc8JQNljeA6AR8yaNUt/+tOfVKlSJUVERKhZs2by8/vf/6ctW7ZML730krZt26b8/Hxru8VisTtW48aNr7qefv36afHixfryyy9100036fPPP9fx48f1yCOPOPX+6OhozZ0717qMwrXXXqs6depc9j0//PCD6tWrp2rVqtm0t2jRwvo6AN9BaALgEZ06dbLePfdHX375pXr37q2bbrpJ//73v1W3bl0FBARo/vz5evfdd+32/32vVGnFxcUpIiJC77zzjm666Sa98847ioyMVI8ePZx6f5UqVZzeF0D5xPAcgDL34YcfKjg4WOnp6Xr00Ud1++23uyWQOOqlusTf319///vf9d///lenT5/W0qVL9eCDD8rf3/+qP7ckjRo10k8//aRff/3Vpn3Pnj3W1y+5XO0AvAOhCUCZ8/f3l8ViUVFRkbXt0KFDV70i9qW5SSWtCP7II4/o9OnTevzxx3XmzBmbdZc84Y477lBRUZFmzpxp0z516lRZLBbdfvvt1rYqVaq4fSVzAO7F8ByAMterVy9NmTJFPXv21N///nedOHFCs2bNUtOmTfXtt9+W+rjt27eXJD3//PN64IEHFBAQoLvuussapmJiYtS6dWt98MEHatGiha6//nq3nE9J7rrrLnXv3l3PP/+8Dh06pLZt2+qzzz7Txx9/rISEBJtlBdq3b6/PP/9cU6ZMUb169dS4cWPFxsZ6tD4ArqGnCUCZu+WWW/Tmm28qOztbCQkJeu+99/Tyyy/rr3/961Udt2PHjho/fry++eYbxcfH68EHH7RbeLJfv36S5PQE8Kvh5+entLQ0JSQkaNmyZUpISNCuXbs0adIkTZkyxWbfKVOmqH379ho9erQefPBBzZ492+P1AXCNxTB+tywtAJRzr776qp5++mkdOnRIDRs2NLscAD6E0ASgwjAMQ23btlXNmjW1atUqs8sB4GOY0wSg3Dt79qzS0tK0atUqbd++XR9//LHZJQHwQfQ0ASj3Dh06pMaNGys8PFyDBw/WhAkTzC4JgA8iNAEAADiBu+cAAACcYHpomjVrlqKjoxUcHKzY2Fht2LChxH137type+65R9HR0bJYLJo2bZrD/Y4ePaqHH35YNWvWVOXKldWmTRtt2rTJQ2cAAAAqAlMngi9evFiJiYmaM2eOYmNjNW3aNMXFxWnv3r0OH4R57tw5NWnSRPfdd5+efvpph8c8ffq0unbtqu7du2v58uWqXbu29u/fr+rVqztdV3FxsX766SdVq1aNRxsAAOAjDMPQr7/+qnr16tk8INydH2CaTp06GUOGDLFuFxUVGfXq1TNSUlKu+N5GjRoZU6dOtWsfMWKEceONN15VXUeOHDEk8cUXX3zxxRdfPvh15MiRq8oBJTGtp6mgoECbN29WUlKStc3Pz089evRQVlZWqY+blpamuLg43XfffVq9erXq16+vwYMH67HHHivxPfn5+crPz7duG/9/bvyRI0cUGhpa6loAAEDZycvLU1RUlKpVq+aR45sWmk6dOqWioiJFRETYtEdERFifAF4a33//vWbPnq3ExESNGjVKGzdu1LBhwxQYGKj+/fs7fE9KSorGjh1r1x4aGkpoAgDAx3hqao3pE8Hdrbi4WNdff70mTpyomJgYDRo0SI899pjmzJlT4nuSkpKUm5tr/Tpy5EgZVgwAAHyBaaGpVq1a8vf31/Hjx23ajx8/rsjIyFIft27dumrZsqVNW4sWLXT48OES3xMUFGTtVaJ3CQAAOGJaaAoMDFT79u2VkZFhbSsuLlZGRoY6d+5c6uN27dpVe/futWnbt2+fGjVqVOpjAgAAmLrkQGJiovr3768OHTqoU6dOmjZtms6ePasBAwZIkvr166f69esrJSVF0sXJ47t27bL++ejRo9q2bZuqVq2qpk2bSpKefvppdenSRRMnTtT999+vDRs26PXXX9frr7/u9vqLiopUWFjo9uPC+wQGBnrm9lUAgM8w/TEqM2fO1KRJk5Sdna127dpp+vTpio2NlSTdfPPNio6O1oIFCyT97/lRf9StWzdlZmZat5ctW6akpCTt379fjRs3VmJi4mXvnvujvLw8hYWFKTc31+FQnWEYys7OVk5OjkvnCt/l5+enxo0bKzAw0OxSAAAluNLv76tlemjyRlf6oR87dkw5OTmqU6eOQkJCWACznLu02GlAQIAaNmzI9QYAL+Xp0GTq8JwvKioqsgammjVrml0Oykjt2rX1008/6cKFCwoICDC7HACACZik4aJLc5hCQkJMrgRl6dKwXFFRkcmVAADMQmgqJYZoKhauNwCA0AQAAOAEQhMAAIATCE0VSHx8vCwWiywWiwICAhQREaG//OUvmjdvnoqLi50+zoIFCxQeHu65QgEA8EKEpgqmZ8+eOnbsmA4dOqTly5ere/fuGj58uO68805duHDB7PIAABWAry4MTWiqYIKCghQZGan69evr+uuv16hRo/Txxx9r+fLl1kVEp0yZojZt2qhKlSqKiorS4MGDdebMGUlSZmamBgwYoNzcXGuv1YsvvihJevvtt9WhQwdVq1ZNkZGR+vvf/64TJ06YdKYAAG9TUFCgsWPHauLEifr666/NLsdlhCY3MAxDBQUFZf7lrnVJb7nlFrVt21ZLliyRdHH16+nTp2vnzp1666239MUXX+if//ynJKlLly6aNm2aQkNDdezYMR07dkzPPvuspIv/5zB+/Hh98803Wrp0qQ4dOqT4+Hi31AgA8G0HDx60PhZNkqZMsSgtzcSCSoHFLd2gsLDQ5j+EspKUlOS2x3o0b95c3377rSQpISHB2h4dHa2XXnpJTzzxhP79738rMDBQYWFhslgsioyMtDnGo48+av1zkyZNNH36dHXs2FFnzpxR1apV3VInAMD3fPjhh9qxY4d1+8cfY/T++5105IjUu7eJhbmI0ARJF3vLLq1F9PnnnyslJUV79uxRXl6eLly4oN9++03nzp277KKemzdv1osvvqhvvvlGp0+ftk4uP3z4sFq2bFkm5wEA8B6//fabXn75ZZu2+Ph4ffNNI+3cKY0caVJhpURocoOAgAAlJSWZ8rnusnv3bjVu3FiHDh3SnXfeqSeffFITJkxQjRo1tHbtWg0cOFAFBQUlhqazZ88qLi5OcXFxWrhwoWrXrq3Dhw8rLi5OBQUFbqsTAOAbDhw4oIULF9q0jRo1SgEBAWrUyLd6mC4hNLmBxWJx2zCZGb744gtt375dTz/9tDZv3qzi4mK98sor8vO7OOXt/ffft9k/MDDQ7nEie/bs0c8//6zU1FRFRUVJkjZt2lQ2JwAA8CqLFy/Wnj17rNsdO3bUHXfcYWJF7kFoqmDy8/OVnZ2toqIiHT9+XCtWrFBKSoruvPNO9evXTzt27FBhYaFmzJihu+66S+vWrdOcOXNsjhEdHa0zZ84oIyNDbdu2VUhIiBo2bKjAwEDNmDFDTzzxhHbs2KHx48ebdJYAADOcP39e//rXv2zaBg4cqAYNGphUkXtx91wFs2LFCtWtW1fR0dHq2bOnVq1apenTp+vjjz+Wv7+/2rZtqylTpujll19W69attXDhQrtJ7l26dNETTzyhvn37qnbt2vrXv/6l2rVra8GCBfrggw/UsmVLpaamavLkySadJQCgrO3du9cuMD3//PPlJjBJksVw133r5UheXp7CwsKUm5ur0NBQm9d+++03HTx4UI0bN1ZwcLBJFaKscd0BoGTvvPOOvvvuO+t2ly5d9Je//KXM67jc7293YHgOAACUyrlz5zRp0iSbtkGDBqlu3bomVeRZhCYAAOCynTt36r///a9N2+jRo+Xv729SRZ5HaAIAAE4zDEMLFizQ4cOHrW033XSTunfvbmJVZYPQBAAAnHLmzBm98sorNm1PPPGEIiIiTKqobBGaAADAFX377bf66KOPrNuBgYEaMWKEdU2/ioDQBAAASmQYhubOnatjx45Z22655Rb9+c9/NrEqcxCaAACAQ3l5eZo6dapN25AhQ1SrVi2TKjIXoQkAANj5/PPPtW7dOut2SEiInnnmmQo1HPdHhCYAAGBlGIbGjRtn03bbbbepc+fOJlXkPSpuXITHxMfHq0+fPtbtm2++WQkJCVd1THccAwBweT/88INdYPryy6cITP8fPU0VSHx8vN566y1JUkBAgBo2bKh+/fpp1KhRqlTJc/8pLFmyRAEBAU7tm5mZqe7du+v06dMKDw8v1TEAAK6bPXu2Tpw4YdOWnv6CRo6kf+USQlMF07NnT82fP1/5+fn69NNPNWTIEAUEBCgpKclmv4KCAgUGBrrlM2vUqOEVxwAA2CsuLtb48eNt2mrXrq3BgwcrOdmkorwU8bGCCQoKUmRkpBo1aqQnn3xSPXr0UFpamnVIbcKECapXr56aNWsmSTpy5Ijuv/9+hYeHq0aNGrr77rt16NAh6/GKioqUmJio8PBw1axZU//85z/1x2dA/3FoLT8/XyNGjFBUVJSCgoLUtGlTvfnmmzp06JB1Rdnq1avLYrEoPj7e4TFOnz6tfv36qXr16goJCdHtt9+u/fv3W19fsGCBwsPDlZ6erhYtWqhq1arq2bOnzS2zmZmZ6tSpk6pUqaLw8HB17dpVP/zwg5t+0gDg/b777ju7wBQfH6/BgwebVJF3IzRVcJUrV1ZBQYEkKSMjQ3v37tXKlSu1bNkyFRYWKi4uTtWqVdOXX36pdevWWcPHpfe88sorWrBggebNm6e1a9fql19+sVn8zJF+/frpvffe0/Tp07V792699tprqlq1qqKiovThhx9Kkvbu3atjx47p1VdfdXiM+Ph4bdq0SWlpacrKypJhGLrjjjtUWFho3efcuXOaPHmy3n77ba1Zs0aHDx/Ws88+K0m6cOGC+vTpo27duunbb79VVlaWBg0aJIvFctU/UwDwBdOmTdM777xj0zZmzBg1atTIpIq8H8NzFZRhGMrIyFB6erqeeuopnTx5UlWqVNEbb7xhHZZ75513VFxcrDfeeMMaJubPn6/w8HBlZmbqtttu07Rp05SUlKS//e1vkqQ5c+YoPT29xM/dt2+f3n//fa1cuVI9evSQJDVp0sT6+qVhuDp16tjMafq9/fv3Ky0tTevWrVOXLl0kSQsXLlRUVJSWLl2q++67T5JUWFioOXPm6JprrpEkDR061DrBMS8vT7m5ubrzzjutr7do0cL1HyQA+JgLFy5owoQJNm0NGjTQwIEDTarId9DTZLK0NKlLl4vfy8KyZctUtWpVBQcH6/bbb1ffvn314osvSpLatGljM4/pm2++0YEDB1StWjVVrVpVVatWVY0aNfTbb7/pu+++U25uro4dO6bY2FjreypVqqQOHTqU+Pnbtm2Tv7+/unXrVupz2L17typVqmTzuTVr1lSzZs20e/dua1tISIg1EElS3bp1rZMca9Soofj4eMXFxemuu+7Sq6++ajN0BwDl0bp16+wC08CBAwlMTqKnyWSpqVJW1sXvvXt7/vO6d++u2bNnKzAwUPXq1bO5a65KlSo2+545c0bt27fXwoUL7Y5Tu3btUn1+5cqVS/W+0vjj3XYWi8VmvtX8+fM1bNgwrVixQosXL9bo0aO1cuVK3XDDDWVWIwCUlbFjx9q1tWs3Rg0aMC3BWfQ0mWzkSKlz54vfy0KVKlXUtGlTNWzY8IrLDFx//fXav3+/6tSpo6ZNm9p8hYWFKSwsTHXr1tXXX39tfc+FCxe0efPmEo/Zpk0bFRcXa/Xq1Q5fv9TTVVRUVOIxWrRooQsXLth87s8//6y9e/eqZcuWlz2nP4qJiVFSUpLWr1+v1q1b691333Xp/QDg7QoKChwGpuTkZN19N4HJFYQmk/XuLa1fXza9TK566KGHVKtWLd1999368ssvdfDgQWVmZmrYsGH68ccfJUnDhw9Xamqqli5dqj179mjw4MHKyckp8ZjR0dHq37+/Hn30US1dutR6zPfff1+S1KhRI1ksFi1btkwnT57UmTNn7I5x7bXX6u6779Zjjz2mtWvX6ptvvtHDDz+s+vXr6+6773bq3A4ePKikpCRlZWXphx9+0Geffab9+/czrwlAubJ48WKlpKTYtD300ENKZi2BUiE0oUQhISFas2aNGjZsqL/97W9q0aKFBg4cqN9++02hoaGSpGeeeUaPPPKI+vfvr86dO6tatWr661//etnjzp49W/fee68GDx6s5s2b67HHHtPZs2clSfXr19fYsWM1cuRIRUREaOjQoQ6PMX/+fLVv31533nmnOnfuLMMw9Omnnzq9AGZISIj27Nmje+65R3/60580aNAgDRkyRI8//rgLPyEA8F5jx47Vnj17bNrGjBmjpk2bmlSR77MYf1xUB8rLy1NYWJhyc3Ot4eCS3377TQcPHlTjxo0VHBxsUoUoa1x3AL7i3LlzmjRpkl17TEyyV45quNPlfn+7AxPBAQAoJxYsWGC3SG/jxverXz+mHrgDoQkAgHKgpMnecB9CEwAAPiwvL09Tp061aycwuR+hCQAAHzVr1iydOnXKpu3hhx+2WdgX7kNoKiXmz1csXG8A3obhuLJHaHLRpVvaz507V6arW8Nclx5Q7O/vb3IlACq6X375RTNmzLBrJzB5HqHJRf7+/goPD7c+wywkJMT6MFuUT8XFxTp58qRCQkKuuIo6AHiSo96lRx99VFFRUSZUU/HwG6AUIiMjJckanFD++fn5qWHDhgRkAKZhOM58hKZSsFgsqlu3rurUqaPCwkKzy0EZCAwMlJ8fC+gDKHs//vij3nzzTbt2AlPZIzRdBX9/f+a4AAA8xlHv0oABA9SwYUMTqgGhCQAAL8RwnPchNAEA4EW+//57vf3223btBCbzEZoAAPASjnqXHn/8cesNSDAXoQkAAC/AcJz3IzQBAGCi//xntw4efN+uncDkfQhNAACYxFHv0tChQ1WzZk0TqsGVEJoAADABw3G+h9AEAEAZWr9+vVauXGnXTmDyfoQmAADKiKPepWHDhql69eomVANXEZoAAPAwwzA0btw4u3Z6l3wLoQkAAA/6/PPPtW7dOrt2ApPvITQBAOAhjobjnnnmGVWtWtWEanC1CE0AALgZw3HlE6EJAAA3SktL09atW23aAgMDlZSUZFJFcBdCEwAAbuJoOG7EiBEKDg42oRq4G6EJAICrkJYmvfxysW67bbzdawzHlS+EJgAArkJm5lzddttPNm21atXSkCFDTKoInkJoAgCglMaOHauwMNu2UaNGKSAgwJyC4FGEJgAAXFRYWKiJEyfatTMcV74RmgAAcIGjyd7h4eEaPny4CdWgLBGaAABwkqPANHr0aPn7+5tQDcqan9kFAADgzdLSpG7dzjkMTOnpyQSmCoSeJgAALmPr1rG65RbbNovFXytWjNbIkebUBHN4RU/TrFmzFB0dreDgYMXGxmrDhg0l7rtz507dc889io6OlsVi0bRp0y577NTUVFksFiUkJLi3aABAueeod+mFF15Qu3ajTagGZjM9NC1evFiJiYlKTk7Wli1b1LZtW8XFxenEiRMO9z937pyaNGmi1NRURUZGXvbYGzdu1GuvvabrrrvOE6UDAMqpDz447TAwJScny8/PT6mpUlaWlJpqQnEwjemhacqUKXrsscc0YMAAtWzZUnPmzFFISIjmzZvncP+OHTtq0qRJeuCBBxQUFFTicc+cOaOHHnpIc+fOVfXq1T1VPgCgnBk7dqx27Zpu0xYUFGSznMDIkVLnzmJ4roIxNTQVFBRo8+bN6tGjh7XNz89PPXr0UFZW1lUde8iQIerVq5fNsQEAuBxHvUtjxozRyD+ko969pfXrL35HxWHqRPBTp06pqKhIERERNu0RERHas2dPqY+7aNEibdmyRRs3bnRq//z8fOXn51u38/LySv3ZAADf89NPP2nu3Ll27SxWid8rd3fPHTlyRMOHD9fKlSudfqp0SkqKw/+7AACUf47+/a9WrZoSExNNqAbezNTQVKtWLfn7++v48eM27cePH7/iJO+SbN68WSdOnND1119vbSsqKtKaNWs0c+ZM5efn262pkZSUZPOXIy8vT1FRUaX6fACA7yhpsjfgiKmhKTAwUO3bt1dGRob69OkjSSouLlZGRoaGDh1aqmPeeuut2r59u03bgAED1Lx5c40YMcLhImRBQUGXnVQOAChftm/friVLlti1x8QQmFAy04fnEhMT1b9/f3Xo0EGdOnXStGnTdPbsWQ0YMECS1K9fP9WvX18pKSmSLk4e37Vrl/XPR48e1bZt21S1alU1bdpU1apVU+vWrW0+o0qVKqpZs6ZdOwCg4nHUu3TmTG1NmjTYhGrgS0wPTX379tXJkyc1ZswYZWdnq127dlqxYoV1cvjhw4fl5/e/m/x++uknxcTEWLcnT56syZMnq1u3bsrMzCzr8gEAPsRRYJo8OVkLF5pQDHyOxTAMw+wivE1eXp7CwsKUm5ur0NBQs8sBAFyldevW6fPPP7drT09P1siRLB1QXnj697fpPU0AAHiSo96lunXratCgQWLON1xBaAIAlFvcHQd3IjQBAMqVtDTp448/UcOGm+xeIzDhahCaAADlytatY9WwoW1bq1atdO+995pTEMoNQhMAoNxgOA6eRGgCAPi8OXPm2D1dQiIwwb0ITQAAn+aod6lTp066/fbbTagG5ZnflXcBAMA7OQpM6enJBCZ4BD1NAACfM27cODlam/nSYpWAJxCaAAA+xVHv0i233KI///nPLFYJjyI0AQB8BnfHwUyEJgCA13MUliQCE8oWoQkA4NUcBaZ7771XrVq1MqEaVGSEJgCA12I4Dt6E0AQA8DqXG45LS5NSU6WRI6Xevcu4MFRorNMEAPAqjgLTxo2PKCbmYg9TaqqUlXXxO1CW6GkCAHgFwzA0btw4u/Y/DseNHPm/niagLFkMR6uDVXB5eXkKCwtTbm6uQkNDzS4HAMq9kobj0tOTtX59GRcDn+Xp39/0NAEATOUoMDVv/oRefTWC3iR4FUITAMAUFy5c0IQJE+zaLw3H9e1b1hUBl0doAgCUqbQ0aetW7o6D7yE0AQDKlKPA9PTTT1vnoPz+7jhCE7wJSw4AAMrE+fPnS1ys8veTdkeOlDp35u44eB96mgAAHufKs+N696aHCd6JniYAgEc5CkwjRoywBqa0NKlLl4vfAW9GaAIAeEROTk6Jw3HBwcHWbVb4hq9geA4A4HauDMexwjd8BaEJAOBWjgLT6NGj5e/v73B/5jDBVxCaAABucezYMb3++ut27Y56lwBfRGgCAJTapYUo4+KcH44DfBUTwQEApVZSYHrxxTFKTycwoXyhpwkAUCp79+5VXNwiu/aYmGQWp0S5RGgCALjsSnfHMbEb5RGhCQDgkpLWXgLKO0ITAMApmzZt0ieffGLXTmBCRUFoAgBckSuLVQLlFaEJAHBZDMcBFxGaAAAOrVixQl9//bVdO4EJFRWhCQBgp6ThuJgYAhMqLkITAMAGw3GAY4QmAIAkaeHChTpw4IBdO4EJuIjHqABABfb881K1ahd7l/4YmEJDQwlMwO/Q0wQAFdj06dKzzzIcBziD0AQAFdSrr76qZ5/NsWsnMAGOEZoAoAJyNNm7adOmeuihh0yoBvANhCYAqGC4Ow4oHUITAFQQPAoFuDqEJgAox9LSpNRUKS7OPjB17dpVPXr0MKEqwDcRmgCgHCspMNG7BLjO5XWa/P39deLECbv2n3/+Wf7+/m4pCgBw9caOHUtgAtzI5Z4mwzActufn5yswMPCqCwIAXD1H85d27uyl99/vYEI1QPngdGiaPn26JMliseiNN95Q1apVra8VFRVpzZo1at68ufsrBAC4xFFgSk9P1siRJhQDlCNOh6apU6dKutjTNGfOHJuhuMDAQEVHR2vOnDnurxAA4JSS7o5LT0/W+vVlXAxQDjkdmg4ePChJ6t69u5YsWaLq1at7rCgAgGscBaZGjf6m119vQw8T4CYWo6RJShVYXl6ewsLClJubq9DQULPLAYASGYahcePG2bUz2RsVkad/f7s8EfzRRx+97Ovz5s0rdTEAAOexWCVQtlwOTadPn7bZLiws1I4dO5STk6NbbrnFbYUBAErmKDDFx8erUaNGJlQDVAwuh6aPPvrIrq24uFhPPvmkrrnmGrcUBQBwbOnSQn3zzUS7dnqXAM9z25ymvXv36uabb9axY8fccThTMacJgDdiOA64PE///nZ5RfCSfPfdd7pw4YK7DgcA+B1HgWnt2sGKiSEwAWXF5eG5xMREm23DMHTs2DF98skn6t+/v9sKA4CK7NKDdp999py2b59k9/rkyck6c0Y6e1bq3duEAoEKyOXQtHXrVpttPz8/1a5dW6+88soV76wDADjn0oN2t2+3fy09PVnDhkmrVok1mIAy5HJoWrVqlSfqAAD8jqMH7T7zzDOqWrWqmMIEmMPl0HTJiRMntHfvXklSs2bNVKdOHbcVBQAV1c8//6yZM2fataenJysmhqE4wEwuh6a8vDwNGTJE7733noqLiyVJ/v7+6tu3r2bNmqWwsDC3FwkAFcHlnh2XlXVxyI7QBJjH5bvnHnvsMX399df65JNPlJOTo5ycHC1btkybNm3S448/7okaAaDccxSYRo0apeTkZI0cKXXuzPwlwGwur9NUpUoVpaen68Ybb7Rp//LLL9WzZ0+dPXvWrQWagXWaAJSVH374QQsWLLBrZ+0lwHVe9+y5mjVrOhyCCwsLU/Xq1d1SFABUBCxWCfgWl4fnRo8ercTERGVnZ1vbsrOz9dxzz+mFF15wa3EAUF45CkyTJ49RQQGBCfBWLvc0zZ49WwcOHFDDhg3VsGFDSdLhw4cVFBSkkydP6rXXXrPuu2XLFvdVCgDlwPbt27VkyRK79vT0i4tVsqoL4L1cDk133323LBaLJ2oBgHKtpOG4mJiLywmkpjLZG/Bmbntg79WYNWuWJk2apOzsbLVt21YzZsxQp06dHO67c+dOjRkzRps3b9YPP/ygqVOnKiEhwWaflJQULVmyRHv27FHlypXVpUsXvfzyy2rWrJlT9TARHIC7OQpMl5YS6NxZWr/ehKKAcsbrHtjbpEkT/fzzz3btOTk5atKkicsFLF68WImJiUpOTtaWLVvUtm1bxcXF6cSJEw73P3funJo0aaLU1FRFRkY63Gf16tUaMmSIvvrqK61cuVKFhYW67bbbysWdfQB8S2ZmpsPAxFICgO9xuafJz89P2dnZdiuAHz9+XFFRUSooKHCpgNjYWHXs2NG6Am5xcbGioqL01FNPaeQV/iWJjo5WQkKCXU/TH508eVJ16tTR6tWrddNNN12xJnqaAFyNSw/bdfQoFIm74wBP8ZolB9LS0qx/Tk9Pt1l2oKioSBkZGWrcuLFLH15QUKDNmzcrKSnJ2ubn56cePXooKyvLpWNdTm5uriSpRo0aDl/Pz89Xfn6+dTsvL89tnw2g4ikpMKWnJzMMB/gwp0NTnz59JEkWi0X9+/e3eS0gIEDR0dF65ZVXXPrwU6dOqaioSBERETbtERER2rNnj0vHKklxcbESEhLUtWtXtW7d2uE+KSkpJU7QBABXLF26VHFx39i1p6cnMwwH+DinQ9Ol58w1btxYGzduVK1atTxWlDsNGTJEO3bs0Nq1a0vcJykpSYmJidbtvLw8RUVFlUV5AMqRyy1WyYgc4PtcXnLg4MGDbvvwWrVqyd/fX8ePH7dpP378eImTvF0xdOhQLVu2TGvWrFGDBg1K3C8oKEhBQUFX/XkAKq6SJnsDKD9cDk3jxo277Otjxoxx+liBgYFq3769MjIyrMN/xcXFysjI0NChQ10tzcowDD311FP66KOPlJmZ6fJcKwBw1muvvWbzhIRLCExA+eNyaProo49stgsLC3Xw4EFVqlRJ11xzjUuhSZISExPVv39/dejQQZ06ddK0adN09uxZDRgwQJLUr18/1a9fXykpKZIuTh7ftWuX9c9Hjx7Vtm3bVLVqVTVt2lTSxSG5d999Vx9//LGqVatm/QctLCxMlStXdvWUAcAhnh0HVCxuWdwyLy9P8fHx+utf/6pHHnnE5ffPnDnTurhlu3btNH36dMXGxkqSbr75ZkVHR1ufAn7o0CGHPUfdunVTZmamJJW4Yvn8+fMVHx/v1Pmw5ACAy2E4DvA+nv797bYVwbdv36677rpLhw4dcsfhTEVoAlASepcA7+U16zRdSW5urnU9JAAojxwFpho1auipp54yoRoAZc3l0DR9+nSbbcMwdOzYMb399tu6/fbb3VYYAHgThuMAuByapk6darPt5+en2rVrq3///jYrewNAecBwHIBLTF2nCQC80eWeHde8eXP17dvXhKoAmK1Uc5pycnJ04MABSVLTpk0VHh7uzpoAwFQlBSZ6l4CKzc+VnQ8dOqRevXqpVq1aio2NVWxsrGrVqqU777yzXNw1BwBjx44lMAFwyOmepiNHjuiGG25QQECAxo8frxYtWkiSdu3apdmzZ6tz587auHHjZR9XAgDezNH8pRtvvFG33nqrCdUA8DZOr9M0cOBAHThwQOnp6QoODrZ57fz58+rZs6euvfZavfHGGx4ptCyxThNQ8XB3HOD7vGadphUrVmjx4sV2gUmSKleurPHjx+uBBx5wa3EA4GncHQfAWU7PaTp16pSio6NLfL1Jkyb65Zdf3FETAJQJR4FpyZI+Sk8nMAGw53Roqlu3rvVBuY7s2LFDkZGRbikKADzJMAyHgSkmJllVqrTVyJEmFAXA6zk9PNenTx89++yzysjIUO3atW1eO3HihEaMGKE+ffq4uz4AcKsrDcf17l2W1QDwJU5PBD99+rRiY2OVnZ2thx9+WM2bN5dhGNq9e7feffddRUZG6quvvlKNGjU8XbPHMREcKJ8cBaZ+/fqpcePGJlQDwN28ZiJ49erV9fXXX2vUqFFatGiRcnJyJEnh4eH6+9//rokTJ5aLwASg/Llw4YImTJhg185kbwCucLqn6fcMw9DJkyclSbVr15bFYnF7YWaipwkoP0oajouJSWYoDihnvKan6fcsFovq1Knj7loAwK0cBaZ1657QypUR6tyZ+UsAXFOq0AQA3uz8+fP617/+ZdeenJystDTpzBlxhxwAlxGaAJQrztwdRw8TgNIgNAEoNxwFpmeeeUZVq1Y1oRoA5Q2hCYDPSkuTRoyQQkJOq3fv6Xavc3ccAHdyKjRNn27/j1FJhg0bVupiAMAVqanSAw/w7DgAZcOpJQecXfjNYrHo+++/v+qizMaSA4BvcDQcN2FCkjp0CNT69SYUBMBUXrHkwMGDB93+wQBQWkePHtUbb7xh1x4Tk6wOHbgzDoBnlHpOU0FBgQ4ePKhrrrlGlSoxNQpA2eDZcQDM4ufqG86dO6eBAwcqJCRErVq10uHDhyVJTz31lFJTU91eIABc4igwvfDCC4qJSVaXLhcnhgOAp7gcmpKSkvTNN98oMzNTwcHB1vYePXpo8eLFbi0OACRp165dDgNTcnKy/Pz8lJoqZWVdnBgOAJ7i8rja0qVLtXjxYt1www02z5xr1aqVvvvuO7cWBwBXGo6TLs5hSk1lLhMAz3I5NJ08edLhc+fOnj1b7h7cC8BcJfUu/RGrfAMoCy4Pz3Xo0EGffPKJdftSUHrjjTfUuXNn91UGoMJav36904EJAMqKyz1NEydO1O23365du3bpwoULevXVV7Vr1y6tX79eq1ev9kSNACoQZ4bjAMAMLvc03Xjjjdq2bZsuXLigNm3a6LPPPlOdOnWUlZWl9u3be6JGABWEo8CUnp6smBgCEwDzObUieEXDiuBA2UpLS9PWrVvt2uldAuAKr1gRPC8vz+kDEjIAuILhOAC+wqnQFB4e7vSdcUVFRVdVEICKo6ThOJ4bB8AbORWaVq1aZf3zoUOHNHLkSMXHx1vvlsvKytJbb72llJQUz1QJoNxIS5O++GKeqlc/Yvdaenoyay0B8Fouz2m69dZb9Y9//EMPPvigTfu7776r119/XZmZme6szxTMaQI8h+E4AJ7i6d/fLoemkJAQffPNN7r22mtt2vft26d27drp3Llzbi3QDIQmwDNYewmAJ3n697fLSw5ERUVp7ty5du1vvPGGoqKi3FIUgPJl0qRJBCYAPs/lxS2nTp2qe+65R8uXL1dsbKwkacOGDdq/f78+/PBDtxcIwLc5CkunT4drw4bhIjMB8CUu9zTdcccd2r9/v+666y798ssv+uWXX3TXXXdp3759uuOOOzxRIwAf5SgwxcQka8OG4Uz4BuBzWNzSAeY0AVeHyd4AzOAVi1v+UU5Ojt58803t3r1bktSqVSs9+uijCgsLc2txAHxHWpqUmirFxdkHphYtWuj+++83oSoAcB+Xe5o2bdqkuLg4Va5cWZ06dZIkbdy4UefPn9dnn32m66+/3iOFliV6mgDXdeniODDRuwSgrHjdkgN//vOf1bRpU82dO1eVKl3sqLpw4YL+8Y9/6Pvvv9eaNWvcXmRZIzQBrmE4DoA38LrQVLlyZW3dulXNmze3ad+1a5c6dOjAOk1ABeMoMN1444269dZbTagGQEXmdXOaQkNDdfjwYbvQdOTIEVWrVs1thQHwfqy9BKAicTk09e3bVwMHDtTkyZPVpUsXSdK6dev03HPP2T1aBUD5xHAcgIrI5dA0efJkWSwW9evXTxcuXJAkBQQE6Mknn1RqaqrbCwTgXRwFpj59+qht27YmVAMAZafU6zSdO3dO3333nSTpmmuuUUhIiFsLMxNzmgB7hmFo3Lhxdu30LgHwFl43p+mSkJAQtWnTxp21APBSJQ3HxcQQmABUHE6HpkcffdSp/ebNm1fqYgB4H0eBqX///oqOji77YgDARE6HpgULFqhRo0aKiYkRT14Byr+ioiK99NJLdu0MxwGoqJwOTU8++aTee+89HTx4UAMGDNDDDz+sGjVqeLI2ACbh7jgAsOfSRPD8/HwtWbJE8+bN0/r169WrVy8NHDhQt912mywWiyfrLFNMBEdF5igwDRkyRLVq1TKhGgBwntetCH7JDz/8oAULFug///mPLly4oJ07d6pq1arurs8UhCZURPn5+Q6XDaF3CYCv8Nq75/z8/GSxWGQYhoqKitxZE4AyxnAcAFyZS6Hp98Nza9eu1Z133qmZM2eqZ8+e8vPz81SNADzIUWB65plnyk3PMQC4i9OhafDgwVq0aJGioqL06KOP6r333mOOA+DD8vLyNHXqVLt2epcAwDGn5zT5+fmpYcOGiomJueyk7yVLlritOLMwpwnlWVqatHUrw3EAyh+vmdPUr1+/cnWHHFBROQpMSUlJCgwMNKEaAPAdLi1uCcB3nTp1SrNmzbJrj4lJFnkJAK6s1HfPAfAd3B0HAFeP0ASUc44C0wsvvMAdrwDgIkITUE4dPnxY8+fPt2undwkASofQBJRDDMcBgPsRmoByxlFgGjNmDHe/AsBVIjQB5cTOnTv13//+166d3iUAcA9mggJeKi1N6tLl4vcrGTt2LIEJADyMnibAS6WmSllZF7/37l3yfo6G4whLAOB+hCbAS40ceTEwjRzp+PWvvvpK6enpdu0EJgDwDEIT4KV69y65h4m74wCg7HnFnKZZs2YpOjpawcHBio2N1YYNG0rcd+fOnbrnnnsUHR0ti8WiadOmXfUxAV9S0nAcgQkAPMv00LR48WIlJiYqOTlZW7ZsUdu2bRUXF6cTJ0443P/cuXNq0qSJUlNTFRkZ6ZZjAr5g+fLlzF8CABNZDMMwzCwgNjZWHTt21MyZMyVJxcXFioqK0lNPPaWRJU3m+P+io6OVkJCghIQEtx1TkvLy8hQWFqbc3FyFhoaW7sQAN3IUlsLDwzV8+HATqgEA7+Tp39+mzmkqKCjQ5s2blZSUZG3z8/NTjx49lJWVVWbHzM/PV35+vnU7Ly+vVJ8NeAK9SwDgHUwNTadOnVJRUZEiIiJs2iMiIrRnz54yO2ZKSkqJE2sBsyxcuFAHDhywaycwAYA5TJ/T5A2SkpKUm5tr/Tpy5IjZJaGCGzt2rF1guvbaawlMAGAiU3uaatWqJX9/fx0/ftym/fjx4yVO8vbEMYOCghQUFFSqzwPcjeE4APBOpvY0BQYGqn379srIyLC2FRcXKyMjQ507d/aaYwJlYc6cOQQmAPBipi9umZiYqP79+6tDhw7q1KmTpk2bprNnz2rAgAGSpH79+ql+/fpKSUmRdHGi965du6x/Pnr0qLZt26aqVauqadOmTh0T8BZpaRdX/Y6Lsw9LXbt2VY8ePUyoCgDgiOmhqW/fvjp58qTGjBmj7OxstWvXTitWrLBO5D58+LD8/P7XIfbTTz8pJibGuj158mRNnjxZ3bp1U2ZmplPHBLxFSYGJ3iUA8D6mr9PkjVinCWVh/PjxKi4utmsnMAFA6ZTrdZqAisrR3KU77rhDHTt2NKEaAIAzWHIAKGOOAlN6ejKBCQC8HD1NQBkpaQHV9PRkOfF0HwCAyQhNQBlwFJj69u2r5s2biylMAOAbCE2ABxmGoXHjxtm1M9kbAHwPoQnwkJKG42JiCEwA4IsITYAHOApMjz32mOrVq2dCNQAAdyA0AW5UXFys8ePH27UzHAcAvo/QBLhJScNxixYlM9kbAMoBQhPgBo4CU8uWwzV1arheftmEggAAbkdoAq5CYWGhJk6caNd+aTjuvvvKuiIAgKcQmoBSKmk4jvlLAFA+EZqAUnAUmJ577jmFhISYUA0AoCzw7DnABefPny/x2XEEJgAo3+hpApzEs+MAoGIjNAFOcBSYRo0apYCAAJYTAIAKgtAEXEZubq6mTZtm185kbwCoeAhNQAm4Ow4A8HuEJsABR4HphRdekJ8f904AQEVFaAJ+59SpU5o1a5ZdO71LAABCE/D/lTQcN3kyz44DABCaAEmOA1NBwRhNn27RsGEmFAQA8DqEJlRoP/74o95880279kvDcRMmlHVFAABvRWhCheWodyk8PFzDhw83oRoAgLcjNKFCchSYmOwNALgcQhMqlLff3qfvv3/Prp3ABAC4EkITKgxHvUuNGzdWv379TKgGAOBrCE2oEBiOAwBcLUITyrUdO3boww8/tGsnMAEAXEVoQrnlqHcpNjZWPXv2NKEaAICvIzSh3EhLk1JTpZEjpa1bGY4DALgXoQnlRmqqVFz8tbZuXWH3GoEJAHC1CE0oN+Li7HuXevTooa5du5pQDQCgvCE0oVzg7jgAgKcRmuDTvvzyS33xxRd27QQmAIC7EZrgsxz1Lt17771q1aqVCdUAAMo7QhN8EsNxAICyRmiCT8nKytJnn31m105gAgB4mp/ZBQDSxTWWunS5+L0kY8eOtQtM7747QDExBCYAgOcRmuAVUlOlrKyL3x1xNBw3eXKy9u1rWOJ7AABwJ4bn4BVGjvzfat6/9/nnn2vdunV2+ycnJysmxvF7AADwBEITvELv3he/fs9R71KLFkM0bVotxcQ4fg8AAJ7C8By8jmEYJd4dN21arcsO4wEA4Cn0NMGrfPzxx9q2bZtd+6W740oaxgMAwNMITfAajnqXnn76aYWGhlq3GZIDAJiF0ATTGYahcePG2bWz9hIAwJsQmmCqTZs26ZNPPrFps1gsGjNmjEkVAQDgGKEJpnE0HNemzT81eXJltWvHMBwAwLtw9xzKXHFxcYl3x02eXJm74wAAXomeJpSptWvXKiMjw6YtNjZWBQU91aWL1L37xTbujgMAeBtCE8qMo96l559/XpUqVVKXLhcfoyJJ69eXcWEAADiB4Tl4XFFRUYnDcZUqXcztI0dKnTvTwwQA8F70NMGjHD07rlu3brr55ptt2lh/CQDg7QhN8BhHvUsvvPCC/Pzo4AQA+B5CE9yusLBQEydOtGtnsUoAgC8jNMGt/u///k9btmyxaYuLi9MNN9xgUkUAALgHoQlu42g4bsyYMbJYLCZUAwCAexGacNXy8/OV6mA1SobjAADlCaEJV+WDDz7Qrl27bNp69+6tmJgYkyoCAMAzCE0oNYbjAAAVCaEJLjt37pwmTZpk185wHACgPCM0wSVvvfWWDh06ZNN23333qWXLluYUBABAGSE0wWklPQoFAICKgNCEK2I4DgAAQhOu4OOPP9a2bdts2h566CE1bdrUnIIAADAJoQklYjgOAID/4cmpsPPrr7/aBabAwOpKT09WWppJRQEAYDJ6mmBj8eLF2rNnj03bk08+qT596igrS0pNlXr3Nqk4AABMRGiC1eWG40aOvBiYRo4s66oAAPAOhCYoJydHr776qk1bvXr19Nhjj1m3e/emhwkAULF5xZymWbNmKTo6WsHBwYqNjdWGDRsuu/8HH3yg5s2bKzg4WG3atNGnn35q8/qZM2c0dOhQNWjQQJUrV1bLli01Z84cT56Cz3rrrbfsAtPQoUNtAhMAAPCC0LR48WIlJiYqOTlZW7ZsUdu2bRUXF6cTJ0443H/9+vV68MEHNXDgQG3dulV9+vRRnz59tGPHDus+iYmJWrFihd555x3t3r1bCQkJGjp0qNKYxWxj7Nixdqt7Jycnq2bNmuYUBACAF7MYhmGYWUBsbKw6duyomTNnSpKKi4sVFRWlp556SiMdTKDp27evzp49q2XLllnbbrjhBrVr187am9S6dWv17dtXL7zwgnWf9u3b6/bbb9dLL710xZry8vIUFham3NxchYaGXu0pep1Tp05p1qxZNm1NmjTRI488YlJFAABcPU///ja1p6mgoECbN29Wjx49rG1+fn7q0aOHsrKyHL4nKyvLZn9JiouLs9m/S5cuSktL09GjR2UYhlatWqV9+/bptttu88yJ+JA5c+bYBaaEhAQCEwAAV2DqRPBTp06pqKhIERERNu0RERF2t71fkp2d7XD/7Oxs6/aMGTM0aNAgNWjQQJUqVZKfn5/mzp2rm266yeEx8/PzlZ+fb93Oy8sr7Sl5rbQ0aetWFqsEAKC0yuXdczNmzNBXX32ltLQ0NWrUSGvWrNGQIUNUr149u14qSUpJSXF4u315kZOTo61bbSd7t2rVSvfee69JFQEA4HtMDU21atWSv7+/jh8/btN+/PhxRUZGOnxPZGTkZfc/f/68Ro0apY8++ki9evWSJF133XXatm2bJk+e7DA0JSUlKTEx0bqdl5enqKioqzo3b7Fs2TJt3rzZpu2ZZ55R1apVTaoIAADfZOqcpsDAQLVv314ZGRnWtuLiYmVkZKhz584O39O5c2eb/SVp5cqV1v0LCwtVWFgoPz/bU/P391dxcbHDYwYFBSk0NNTmqzwYO3asXWBKTk4mMAEAUAqmD88lJiaqf//+6tChgzp16qRp06bp7NmzGjBggCSpX79+ql+/vlJSUiRJw4cPV7du3fTKK6+oV69eWrRokTZt2qTXX39dkhQaGqpu3brpueeeU+XKldWoUSOtXr1a//nPfzRlyhTTzrMs/fzzz9a7ES+588471b59e5MqAgDA95kemvr27auTJ09qzJgxys7OVrt27bRixQrrZO/Dhw/b9Bp16dJF7777rkaPHq1Ro0bp2muv1dKlS9W6dWvrPosWLVJSUpIeeugh/fLLL2rUqJEmTJigJ554oszPr6wtWbJE27dvt2lLSkpSYGCgSRUBAFA+mL5Okzfy1XWaLvfsOAAAyjtP//42vacJV+/EiROaPXu2Tdtf//pXXXfddSZVBABA+UNo8nHvvfee9u3bZ9M2atQoBQQEmFQRAADlE6HJRxmGoXHjxtm0+fv7a/To0SZVBABA+UZo8kGLFh3T3r2v27Tdf//9atGihUkVAQBQ/hGafMzWrVu1d2+aTdvo0aPl7+9vUkUAAFQMhCYfYRiG5syZoxMnTljbKlWqoueff9bEqgAAqDgITT4gNzdX06ZNs2kbOnSoatasaU5BAABUQIQmL7dp0yZ98skn1u3Q0FAlJCTIYrGYWBUAABUPoclLGYahGTNm6PTp09a2nj17KjY21sSqAACouAhNXuj06dOaPn26TduwYcNUvXp1kyoCAACEJi/z1VdfKT093bpds2ZNDRkyhOE4AABMRmjyEsXFxZo6darOnDljbbvzzjvVvn17E6sCAACXEJq8wM8//6yZM2fatCUkJCgsLMykigAAwB8Rmky2du1aZWRkWLcjIyM1aNAghuMAAPAyhCaTFBcX61//+pfy8/OtbX369FHbtm1NrAoAAJSE0GSCEydOaPbs2TZtiYmJqlatmkkVAQCAKyE0lbHXXlut7OxM63ZUVJQGDBjAcBwAAF6O0FSGTp48aROY7rnnHrVu3dq8ggAAgNMITWUoICBAAQFhKizMVevWz6p16ypmlwQAAJxkMQzDMLsIb5OXl6ewsDDl5uYqNDTU7HIAAIATPP3728/tRwQAACiHCE0AAABOIDQBAAA4gdAEAADgBEITAACAEwhNAAAATiA0AQAAOIHQBAAA4ARCEwAAgBMITQAAAE4gNAEAADiB0AQAAOAEQhMAAIATCE0AAABOqGR2Ad7IMAxJUl5ensmVAAAAZ136vX3p97i7EZoc+PXXXyVJUVFRJlcCAABc9euvvyosLMztx7UYnopjPqy4uFg//fSTqlWrJovFYnY5bpWXl6eoqCgdOXJEoaGhZpcDJ3HdfBPXzfdwzXzTpet2+PBhWSwW1atXT35+7p+BRE+TA35+fmrQoIHZZXhUaGgo/yD4IK6bb+K6+R6umW8KCwvz6HVjIjgAAIATCE0AAABOIDRVMEFBQUpOTlZQUJDZpcAFXDffxHXzPVwz31RW142J4AAAAE6gpwkAAMAJhCYAAAAnEJoAAACcQGgCAABwAqGpHJg1a5aio6MVHBys2NhYbdiw4bL7f/DBB2revLmCg4PVpk0bffrppzavnzlzRkOHDlWDBg1UuXJltWzZUnPmzPHkKVRIrly3nTt36p577lF0dLQsFoumTZt21ceE69x9zVJSUtSxY0dVq1ZNderUUZ8+fbR3714PnkHF5Im/a5ekpqbKYrEoISHBvUVXcJ64ZkePHtXDDz+smjVrqnLlymrTpo02bdrkUl2EJh+3ePFiJSYmKjk5WVu2bFHbtm0VFxenEydOONx//fr1evDBBzVw4EBt3bpVffr0UZ8+fbRjxw7rPomJiVqxYoXeeecd7d69WwkJCRo6dKjS0tLK6rTKPVev27lz59SkSROlpqYqMjLSLceEazxxzVavXq0hQ4boq6++0sqVK1VYWKjbbrtNZ8+e9eSpVCieuG6XbNy4Ua+99pquu+46T5ReYXnimp0+fVpdu3ZVQECAli9frl27dumVV15R9erVXSvOgE/r1KmTMWTIEOt2UVGRUa9ePSMlJcXh/vfff7/Rq1cvm7bY2Fjj8ccft263atXKGDdunM0+119/vfH888+7sfKKzdXr9nuNGjUypk6d6tZj4so8cc3+6MSJE4YkY/Xq1VdTKn7HU9ft119/Na699lpj5cqVRrdu3Yzhw4e7qWJ44pqNGDHCuPHGG6+6NnqafFhBQYE2b96sHj16WNv8/PzUo0cPZWVlOXxPVlaWzf6SFBcXZ7N/ly5dlJaWpqNHj8owDK1atUr79u3Tbbfd5pkTqWBKc93MOCb+p6x+vrm5uZKkGjVquO2YFZknr9uQIUPUq1cvu39PcXU8dc3S0tLUoUMH3XfffapTp45iYmI0d+5cl49DaPJhp06dUlFRkSIiImzaIyIilJ2d7fA92dnZV9x/xowZatmypRo0aKDAwED17NlTs2bN0k033eT+k6iASnPdzDgm/qcsfr7FxcVKSEhQ165d1bp1a7ccs6Lz1HVbtGiRtmzZopSUlKstEX/gqWv2/fffa/bs2br22muVnp6uJ598UsOGDdNbb73l0nEqlboClFszZszQV199pbS0NDVq1Ehr1qzRkCFDVK9ePf6vCvCQIUOGaMeOHVq7dq3ZpeAyjhw5ouHDh2vlypUKDg42uxw4qbi4WB06dNDEiRMlSTExMdqxY4fmzJmj/v37O30cQpMPq1Wrlvz9/XX8+HGb9uPHj5c4GS4yMvKy+58/f16jRo3SRx99pF69ekmSrrvuOm3btk2TJ08mNLlBaa6bGcfE/3j65zt06FAtW7ZMa9asUYMGDa76eLjIE9dt8+bNOnHihK6//nprW1FRkdasWaOZM2cqPz9f/v7+V1V3Reapv2t169ZVy5YtbdpatGihDz/80KXjMDznwwIDA9W+fXtlZGRY24qLi5WRkaHOnTs7fE/nzp1t9peklStXWvcvLCxUYWGh/Pxs/9Pw9/dXcXGxm8+gYirNdTPjmPgfT/18DcPQ0KFD9dFHH+mLL75Q48aN3VEu/j9PXLdbb71V27dv17Zt26xfHTp00EMPPaRt27YRmK6Sp/6ude3a1W45j3379qlRo0auHeiqp5LDVIsWLTKCgoKMBQsWGLt27TIGDRpkhIeHG9nZ2YZhGMYjjzxijBw50rr/unXrjEqVKhmTJ082du/ebSQnJxsBAQHG9u3brft069bNaNWqlbFq1Srj+++/N+bPn28EBwcb//73v8v8/MorV69bfn6+sXXrVmPr1q1G3bp1jWeffdbYunWrsX//fqePiavjiWv25JNPGmFhYUZmZqZx7Ngx69e5c+fK/PzKK09ctz/i7jn38sQ127Bhg1GpUiVjwoQJxv79+42FCxcaISEhxjvvvONSbYSmcmDGjBlGw4YNjcDAQKNTp07GV199ZX2tW7duRv/+/W32f//9940//elPRmBgoNGqVSvjk08+sXn92LFjRnx8vFGvXj0jODjYaNasmfHKK68YxcXFZXE6FYYr1+3gwYOGJLuvbt26OX1MXD13XzNHr0sy5s+fX3YnVQF44u/a7xGa3M8T1+z//u//jNatWxtBQUFG8+bNjddff93luiyGYRgu93MBAABUMMxpAgAAcAKhCQAAwAmEJgAAACcQmgAAAJxAaAIAAHACoQkAAMAJhCYAAAAnEJoAAACcQGgC4NPi4+PVp08fu/bMzExZLBbl5OQoMzNTd999t+rWrasqVaqoXbt2Wrhwod17fvnlFyUkJKhRo0YKDAxUvXr19Oijj+rw4cNlcCYAvB2hCUC5t379el133XX68MMP9e2332rAgAHq16+fli1bZt3nl19+0Q033KDPP/9cc+bM0YEDB7Ro0SIdOHBAHTt21Pfff2/iGQDwBjxGBYBPi4+PV05OjpYuXWrTnpmZqe7du+v06dMKDw+3e1+vXr0UERGhefPmSZKefPJJvf322zpw4IAiIyOt+50/f17XXnut2rRpo+XLl3vyVAB4OXqaAFRIubm5qlGjhiSpuLhYixYt0kMPPWQTmCSpcuXKGjx4sNLT0/XLL7+YUSoAL1HJ7AIA4GotW7ZMVatWtWkrKioqcf/3339fGzdu1GuvvSZJOnnypHJyctSiRQuH+7do0UKGYejAgQPq1KmT+woH4FMITQB8Xvfu3TV79mybtq+//loPP/yw3b6rVq3SgAEDNHfuXLVq1crmNWYrALgcQhMAn1elShU1bdrUpu3HH3+022/16tW66667NHXqVPXr18/aXrt2bYWHh2v37t0Oj797925ZLBa7zwBQsTCnCUCFkJmZqV69eunll1/WoEGDbF7z8/PT/fffr3fffVfZ2dk2r50/f17//ve/FRcXZ50DBaBiIjQBKPdWrVqlXr16adiwYbrnnnuUnZ2t7Oxsm4ndEydOVGRkpP7yl79o+fLlOnLkiNasWaO4uDgVFhZq1qxZJp4BAG9AaAJQ7r311ls6d+6cUlJSVLduXevX3/72N+s+NWvW1FdffaXu3bvr8ccf1zXXXKP7779f11xzjTZu3KgmTZqYeAYAvAHrNAEAADiBniYAAAAnEJoAAACcQGgCAABwAqEJAADACYQmAAAAJxCaAAAAnEBoAgAAcAKhCQAAwAmEJgAAACcQmgAAAJxAaAIAAHACoQkAAMAJ/w9SlRNXWX7KcQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT9pJREFUeJzt3XlYVGX/P/D3MKyy4wKiKG65paIgJL9K68HQVFzqCa1E0LQytzATXEA0BcwUd580l9x7cuMxExNBLSnNJTP3EpcU0BIIUJaZ8/uDL1PjzOAMzsyZ5f26Li6be845fM6RmLf3fZ9zSwRBEEBERERkRWzELoCIiIjI2BiAiIiIyOowABEREZHVYQAiIiIiq8MARERERFaHAYiIiIisDgMQERERWR0GICIiIrI6DEBERERkdRiAiMhsSSQSzJo1S+wyFKKjo+Hv7y92GUSkBQYgItKr9evXQyKRKL4cHR3x1FNPYdy4ccjPzzfo9z527BhmzZqFwsJCvR63V69eSufk5eWF7t27Y+3atZDL5Xr5HvPmzcPu3bv1ciwiejxbsQsgIss0e/ZstGjRAg8fPsS3336LlStXYt++fTh37hzq1aunl+/x4MED2Nr+/Wvs2LFjSEpKQnR0NDw8PPTyPWo0bdoUycnJAIC7d+/i888/x6hRo3D58mWkpKQ88fHnzZuHV199FYMGDXriYxHR4zEAEZFB9O3bF0FBQQCAt956C/Xr18fChQuxZ88eDBs2rM7HlcvlqKiogKOjIxwdHfVV7mO5u7vjzTffVLx+++230bZtWyxbtgxz5syBnZ2d0WohoifHITAiMooXX3wRAHDt2jUAwIIFCxAaGor69evDyckJgYGB+PLLL1X2k0gkGDduHDZv3oyOHTvCwcEB+/fvV7xXMwdo1qxZmDJlCgCgRYsWiuGq3Nxc9OzZE126dFFbV9u2bREeHq7z+dSrVw/PPPMMSktLcffuXY3blZaWYvLkyfDz84ODgwPatm2LBQsWQBAEpXMsLS3Fhg0bFHVHR0frXBMRaY89QERkFL/++isAoH79+gCAxYsXIyIiAm+88QYqKiqwbds2/Pvf/8bevXvRr18/pX0PHTqEL774AuPGjUODBg3UTjQeMmQILl++jK1bt2LRokVo0KABAKBhw4YYPnw4Ro8ejXPnzuHpp59W7HPixAlcvnwZM2bMqNM5/fbbb5BKpRqH2wRBQEREBLKysjBq1CgEBAQgIyMDU6ZMwe+//45FixYBADZu3Ii33noLwcHBGDNmDACgVatWdaqJiLQkEBHp0bp16wQAwsGDB4W7d+8KN2/eFLZt2ybUr19fcHJyEm7duiUIgiCUlZUp7VdRUSE8/fTTwosvvqjUDkCwsbERfvnlF5XvBUBITExUvP74448FAMK1a9eUtissLBQcHR2FqVOnKrVPmDBBcHZ2FkpKSmo9p549ewrt2rUT7t69K9y9e1e4cOGCMGHCBAGAMGDAAMV2I0aMEJo3b654vXv3bgGA8NFHHykd79VXXxUkEolw9epVRZuzs7MwYsSIWusgIv3hEBgRGURYWBgaNmwIPz8/DB06FC4uLti1axeaNGkCAHByclJse//+fRQVFeG5557DqVOnVI7Vs2dPdOjQoc61uLu7Y+DAgdi6dati6Ekmk2H79u0YNGgQnJ2dH3uMixcvomHDhmjYsCHat2+PpUuXol+/fli7dq3Gffbt2wepVIoJEyYotU+ePBmCIODrr7+u8zkR0ZPhEBgRGcTy5cvx1FNPwdbWFt7e3mjbti1sbP7+N9fevXvx0Ucf4cyZMygvL1e0SyQSlWO1aNHiieuJiorC9u3bcfToUTz//PM4ePAg8vPzMXz4cK329/f3x+rVqxW39rdp0waNGjWqdZ/r16/D19cXrq6uSu3t27dXvE9E4mAAIiKDCA4OVtwF9qijR48iIiICzz//PFasWIHGjRvDzs4O69atw5YtW1S2/2dvUV2Fh4fD29sbmzZtwvPPP49NmzbBx8cHYWFhWu3v7Oys9bZEZPo4BEZERrdjxw44OjoiIyMDI0eORN++ffUSLtT1HtWQSqV4/fXX8eWXX+L+/fvYvXs3hg0bBqlU+sTfV5PmzZvj9u3b+Ouvv5TaL168qHi/Rm21E5H+MQARkdFJpVJIJBLIZDJFW25u7hM/CblmLo+mJ0EPHz4c9+/fx9tvv42SkhKl5/oYwssvvwyZTIZly5YptS9atAgSiQR9+/ZVtDk7O+v9CdZEpBmHwIjI6Pr164eFCxeiT58+eP3111FQUIDly5ejdevWOHv2bJ2PGxgYCACYPn06hg4dCjs7OwwYMEARjLp27Yqnn34a//3vf9G+fXt069ZNL+ejyYABA/DCCy9g+vTpyM3NRZcuXXDgwAHs2bMHkyZNUrrVPTAwEAcPHsTChQvh6+uLFi1aICQkxKD1EVkz9gARkdG9+OKL+Oyzz5CXl4dJkyZh69atSE1NxeDBg5/ouN27d8ecOXPw008/ITo6GsOGDVN5SGFUVBQAaD35+UnY2NggPT0dkyZNwt69ezFp0iScP38eH3/8MRYuXKi07cKFCxEYGIgZM2Zg2LBhWLlypcHrI7JmEkH4x+NIiYgs3OLFi/H+++8jNzcXzZo1E7scIhIJAxARWQ1BENClSxfUr18fWVlZYpdDRCLiHCAisnilpaVIT09HVlYWfv75Z+zZs0fskohIZOwBIiKLl5ubixYtWsDDwwNjx47F3LlzxS6JiETGAERERERWh3eBERERkdVhACIiIiKrw0nQasjlcty+fRuurq58PD0REZGZEAQBf/31F3x9fZUWX1aHAUiN27dvw8/PT+wyiIiIqA5u3ryJpk2b1roNA5Aarq6uAKovoJubm8jVEBERkTaKi4vh5+en+ByvDQOQGjXDXm5ubgxAREREZkab6SucBE1ERERWhwGIiIiIrA4DEBEREVkdzgF6AjKZDJWVlWKXQQZmZ2cHqVQqdhlERKRHDEB1IAgC8vLyUFhYKHYpZCQeHh7w8fHhc6GIiCwEA1Ad1ISfRo0aoV69evxQtGCCIKCsrAwFBQUAgMaNG4tcERER6QMDkI5kMpki/NSvX1/scsgInJycAAAFBQVo1KgRh8OIiCwAJ0HrqGbOT7169USuhIyp5u+bc76IiCwDA1AdcdjLuvDvm4jIsjAAERERkdVhACIiIiKrwwBkRaKjoyGRSCCRSGBnZwdvb2/07t0ba9euhVwu1/o469evh4eHh+EKJSIiMjAGICvTp08f3LlzB7m5ufj666/xwgsvYOLEiejfvz+qqqrELo+IiMgoGICsjIODA3x8fNCkSRN069YN06ZNw549e/D1119j/fr1AICFCxeiU6dOcHZ2hp+fH8aOHYuSkhIAQHZ2NmJiYlBUVKToTZo1axYAYOPGjQgKCoKrqyt8fHzw+uuvK56fQ0REBADp6UBoaPWfYmIA0gNBEFBRUWH0L0EQ9FL/iy++iC5dumDnzp0AABsbGyxZsgS//PILNmzYgEOHDuHDDz8EAISGhiItLQ1ubm64c+cO7ty5gw8++ABA9S3ic+bMwU8//YTdu3cjNzcX0dHReqmRiIjMX1VVFU6fTkJ4eBI+/fSaqLXwQYh6UFlZieTkZKN/3/j4eNjb2+vlWO3atcPZs2cBAJMmTVK0+/v746OPPsI777yDFStWwN7eHu7u7pBIJPDx8VE6xsiRIxX/3bJlSyxZsgTdu3dHSUkJXFxc9FInERGZp5s3b2Lt2rWK16+99kDEahiA6P8IgqB41s3BgweRnJyMixcvori4GFVVVXj48CHKyspqfQDkyZMnMWvWLPz000+4f/++YmL1jRs30KFDB6OcBxERmZ6kpCSl1+3bt8drr4n7ucAApAd2dnaIj48X5fvqy4ULF9CiRQvk5uaif//+ePfddzF37lx4eXnh22+/xahRo1BRUaExAJWWliI8PBzh4eHYvHkzGjZsiBs3biA8PBwVFRV6q5OIiMxHaWkpFixYoNT25ptvolWrViJV9DcGID2QSCR6G4oSw6FDh/Dzzz/j/fffx8mTJyGXy/HJJ5/AxqZ6itgXX3yhtL29vT1kMplS28WLF/HHH38gJSUFfn5+AIAff/zROCdAREQm59ChQzh69OgjbVOQmGgaS0kxAFmZ8vJy5OXlQSaTIT8/H/v370dycjL69++PqKgonDt3DpWVlVi6dCkGDBiA7777DqtWrVI6hr+/P0pKSpCZmYkuXbqgXr16aNasGezt7bF06VK88847OHfuHObMmSPSWRIRkZgeHfICgIyMRMTFiVCMBrwLzMrs378fjRs3hr+/P/r06YOsrCwsWbIEe/bsgVQqRZcuXbBw4UKkpqbi6aefxubNm1UmeIeGhuKdd95BZGQkGjZsiPnz56Nhw4ZYv349/vvf/6JDhw5ISUlR6fYkIiLLVlBQoBJ+XnzxRSQmJuLYMSAiQqTC1JAI+rqX2oIUFxfD3d0dRUVFcHNzU3rv4cOHuHbtGlq0aAFHR0eRKiRj4987EVHtFi9ejMLCQqW2Dz/8EE5OTkarobbP70dxCIyIiIieiLohr65dE2HE7KMzBiAiIiKqkzNnzmDPnj1KbQEBARg4cKBIFWmPAYiIiIh0pq7XJzY2Fq6uriJUoztOgiYiIiKtCYKgccgrPNxV9DW+tMUeICIiItJKdnY2Dh8+rNTm7u6OSZMmITQUyMkBUlJM624vTRiAiIiI6LHU9fpMmTIFBw/WQ2go8MIL1W2m9Kyf2jAAERERkUZyuVztg20TExMBVPf45ORUtx07ZszKngwDEBEREam1atUq5OfnK7WVlrrh2WffV7yOi6sOQebS81ODAYiIiIhUqBvymjcvHi1a2OPbb6tfR0T8/WVueBcY6V10dDQGDRqkeN2rVy9MmjTpiY6pj2MQEdHjVVRUqA0/W7cmIjDQHhLJ35OdzRl7gKxIdHQ0NmzYAACws7NDs2bNEBUVhWnTpsHW1nA/Cjt37oSdnZ1W22ZnZ+OFF17A/fv34eHhUadjEBFR3agLPvb2nvjf/yZg/vzqnp70dPMc8noUA5CV6dOnD9atW4fy8nLs27cP7733Huzs7BAfH6+0XUVFBezt7fXyPb28vEziGEREpKom0ISHq4afGTNmQCqV4p8fEeY65PUoDoFZGQcHB/j4+KB58+Z49913ERYWhvT0dMWw1dy5c+Hr64u2bdsCAG7evInXXnsNHh4e8PLywsCBA5Gbm6s4nkwmQ2xsLDw8PFC/fn18+OGHeHR93UeHr8rLyzF16lT4+fnBwcEBrVu3xmeffYbc3Fy88H/3UXp6ekIikSA6OlrtMe7fv4+oqCh4enqiXr166Nu3L65cuaJ4f/369fDw8EBGRgbat28PFxcX9OnTB3fu3FFsk52djeDgYDg7O8PDwwP/7//9P1y/fl1PV5qIyPSlpwNjxvylNvxkZCTiq6+kIlRlHCYRgJYvXw5/f384OjoiJCQEx48f17jtzp07ERQUBA8PDzg7OyMgIAAbN27UuP0777wDiUSCtLQ0A1Ru/pycnFBRUQEAyMzMxKVLl/DNN99g7969qKysRHh4OFxdXXH06FF89913iiBRs88nn3yC9evXY+3atfj222/x559/YteuXbV+z6ioKGzduhVLlizBhQsX8J///AcuLi7w8/PDjh07AACXLl3CnTt3sHjxYrXHiI6Oxo8//oj09HTk5ORAEAS8/PLLqKysVGxTVlaGBQsWYOPGjThy5Ahu3LiBDz74AABQVVWFQYMGoWfPnjh79ixycnIwZswYSCSSJ76mRETm4vTpJLz77kKltsaNGyMjI9Ei5vnURvQhsO3btyM2NharVq1CSEgI0tLSEB4ejkuXLqFRo0Yq23t5eWH69Olo164d7O3tsXfvXsTExKBRo0YIDw9X2nbXrl34/vvv4evra6zTMRuCICAzMxMZGRkYP3487t69C2dnZ6xZs0Yx9LVp0ybI5XKsWbNGEQzWrVsHDw8PZGdn46WXXkJaWhri4+MxZMgQANW3TGZkZGj8vpcvX8YXX3yBb775BmFhYQCAli1bKt6vGepq1KiR0hygf7py5QrS09Px3XffITQ0FACwefNm+Pn5Yffu3fj3v/8NAKisrMSqVavQqlUrAMC4ceMwe/ZsAEBxcTGKiorQv39/xfvt27fX/UISEZkpdfN9EhISIJFI4ONjGfN8aiN6D9DChQsxevRoxMTEoEOHDli1ahXq1auHtWvXqt2+V69eGDx4MNq3b49WrVph4sSJ6Ny5M76tuSfv//z+++8YP348Nm/ebLKTZ9PTgdBQGHXdlL1798LFxQWOjo7o27cvIiMjMWvWLABAp06dlOb9/PTTT7h69SpcXV3h4uICFxcXeHl54eHDh/j1119RVFSEO3fuICQkRLGPra0tgoKCNH7/M2fOQCqVomfPnnU+hwsXLsDW1lbp+9avXx9t27bFhQsXFG316tVThBug+l81BQUFAKqDVnR0NMLDwzFgwAAsXrxYaXiMiMhS5eXlqQ0/iYmJin/sRkRUP9TQEub6aCJqD1BFRQVOnjypNAHXxsYGYWFhyKl5rGQtBEHAoUOHcOnSJaSmpira5XI5hg8fjilTpqBjx46PPU55eTnKy8sVr4uLi3U8k7qpeXqmMddNeeGFF7By5UrY29vD19dX6e4vZ2dnpW1LSkoQGBiIzZs3qxynYcOGdfr+Tk5OddqvLh4NvhKJRGl+0rp16zBhwgTs378f27dvx4wZM/DNN9/gmWeeMVqNRETGpC74tGrVCm+++aYI1YhL1B6ge/fuQSaTwdvbW6nd29sbeXl5GvcrKiqCi4sL7O3t0a9fPyxduhS9e/dWvJ+amgpbW1tMmDBBqzqSk5Ph7u6u+PLz86vbCekoLg7o0cO4XYzOzs5o3bo1mjVr9thb37t164YrV66gUaNGaN26tdJXzbVq3LgxfvjhB8U+VVVVOHnypMZjdurUCXK5XGUxvRo1PVAymUzjMdq3b4+qqiql7/vHH3/g0qVL6NChQ63n9KiuXbsiPj4ex44dw9NPP40tW7botD8RkbnQ1OtjjeEHMIEhsLpwdXXFmTNncOLECcydOxexsbHIzs4GAJw8eRKLFy/G+vXrtZ7QGh8fj6KiIsXXzZs3DVj930y9i/GNN95AgwYNMHDgQBw9ehTXrl1DdnY2JkyYgFu3bgEAJk6ciJSUFOzevRsXL17E2LFjUVhYqPGY/v7+GDFiBEaOHIndu3crjvnFF18AAJo3bw6JRIK9e/fi7t27KCkpUTlGmzZtMHDgQIwePRrffvstfvrpJ7z55pto0qQJBg4cqNW5Xbt2DfHx8cjJycH169dx4MABXLlyhfOAiMjiXLlyRWP4sWaiBqAGDRpAKpWqrDOSn58PHx8fjfvZ2NigdevWCAgIwOTJk/Hqq68iOTkZAHD06FEUFBQoejhsbW1x/fp1TJ48Gf7+/mqP5+DgADc3N6Uvqp5Dc+TIETRr1gxDhgxB+/btMWrUKDx8+FBxjSZPnozhw4djxIgR6NGjB1xdXTF48OBaj7ty5Uq8+uqrGDt2LNq1a4fRo0ejtLQUANCkSRMkJSUhLi4O3t7eGDdunNpjrFu3DoGBgejfvz969OgBQRCwb98+red71atXDxcvXsQrr7yCp556CmPGjMF7772Ht99+W4crRERk2pKSklR6tp955hmrDz8AIBEefWiLkYWEhCA4OBhLly4FUD1/p1mzZhg3bhzitBwbGjlyJH777TdkZ2fjjz/+UJnMGh4ejuHDhyMmJkbxfJvaFBcXw93dHUVFRSph6OHDh7h27RpatGgBR0dHLc+SzB3/3onI3Fhjr09tn9+PEv02+NjYWIwYMQJBQUEIDg5GWloaSktLERMTA6D6mTFNmjRR9PAkJycjKCgIrVq1UjzNeOPGjVi5ciWA6ruB6tevr/Q97Ozs4OPjo1X4ISIiMjf/XJ7C1/dHfPXVVyrbWHr40ZXoASgyMhJ3795FQkIC8vLyEBAQgP379ysmRt+4cQM2Nn+P1JWWlmLs2LG4desWnJyc0K5dO2zatAmRkZFinQIREZGoau4qPn06CadPK7/38ssvo3v37uIUZsJEHwIzRRwCo0fx752ITFl6enX4eZS19froMgRmlneBERERUbXPP/9cbfjJyLCu8KMr0YfAzBU7zqwL/76JyJTUtoJ7VdUQZGZ2suhlLPSBAUhHNbdZl5WVGfWpxiSusrIyAKpPlyYiMqaa4HP/PjB0qGr4mTUrET16VD9jjmrHAKQjqVQKDw8PxZpS9erV4wriFkwQBJSVlaGgoAAeHh6QSqVil0REVkxTrw8AbN2aaPTVBcwZA1Ad1DyksSYEkeXz8PCo9eGcRESGVNuQV6tWb2DFitaYP990VxYwRbwLTA1tZ5HLZDJUVlYasTISg52dHXt+iEhUoaECwsNnq7RnZCRyuOsfzOpBiOZMKpXyg5GIiAwqKSkJ4eGq7RkZiRzuegIMQERERCZK3XIWn346Gs2b+7Ln5wnxOUBEREQmID0dCA2t/rOiokJt+Nm6NRFubr7s+dED9gARERGZgNqWswCqn+psZQ92NigGICIiIhMQF6d+OYv333//sRN6SXcMQERERCK7f/8+Tp9eotJubWt5GRMDEBERkQhqe7YPwPBjaAxAREREItAUfqZNm8Zld4yAAYiIiMjIcnNzER6+QaWdvT7GwwBERERkROpubwcYfoyNAYiIiMhI1IWfhIQELqotAgYgIiIiAzt+/Di+/vprlXb2+oiHAYiIiMiAOORlmhiAiIiIDERd+GHwMQ0MQERERHq2Z88enDlzRqWd4cd0MAARERHpSXq6+uUsAIYfU8MARERE9ARqnuj8wguAvT2HvMwFAxAREdETSEkBnntuPuztH6i8x/BjuhiAiIiInoC65Sz8/PwwcuRIEaohbTEAERER1YGm+T7s9TEPDEBERERaSE8Hxo4F/vwTmDqVE53NHQMQERGRFlJSgN9/B2bNUg0/wcHB6Nu3rwhVUV0xABEREWkhLo5DXpaEAYiIiOgxuJyF5WEAIiIiqoW68DNw4EAEBAQYvxjSGwYgIiIiNeRyOebMmaPSzl4fy8AARERE9AgOeVk+BiAiIiL8vaSFugcbjhw5En5+fiJURYbCAERERATgk08eIDx8vko7e30sEwMQERFZvaSkJLz4omo7w4/lYgAiIiKrpm6+T2xsLFxdXUWohoyFAYiIiKxSQUEBVq5cqdLOXh/rwABERERWh3d5EQMQERFZFXXhZ/r06bC15UeiNeHfNhERWYULFy7giy++UGlnr491YgAiIiKLxyEvehQDEBERWTR14SchIQESiUSEashUMAAREZFFys7OxuHDh1Xa2etDAGAjdgEAsHz5cvj7+8PR0REhISE4fvy4xm137tyJoKAgeHh4wNnZGQEBAdi4caPi/crKSkydOhWdOnWCs7MzfH19ERUVhdu3bxvjVIiIyAQkJSUx/FCtRO8B2r59O2JjY7Fq1SqEhIQgLS0N4eHhuHTpEho1aqSyvZeXF6ZPn4527drB3t4ee/fuRUxMDBo1aoTw8HCUlZXh1KlTmDlzJrp06YL79+9j4sSJiIiIwI8//ijCGRIRkTGpG/Ji8KFHSQRBEMQsICQkBN27d8eyZcsAAHK5HH5+fhg/fjzi4uK0Oka3bt3Qr18/zJkzR+37J06cQHBwMK5fv45mzZo99njFxcVwd3dHUVER3NzctD8ZIiIyqvR0YOpUQBCA0aM3oKQkV2Ubhh/rocvnt6hDYBUVFTh58iTCwsIUbTY2NggLC0NOTs5j9xcEAZmZmbh06RKef/55jdsVFRVBIpHAw8ND7fvl5eUoLi5W+iIiItOXkgJcvAgMG5bE8EM6EXUI7N69e5DJZPD29lZq9/b2xsWLFzXuV1RUhCZNmqC8vBxSqRQrVqxA79691W778OFDTJ06FcOGDdOYBpOTkzXeIklERKYrLg44fZpDXqQ70ecA1YWrqyvOnDmDkpISZGZmIjY2Fi1btkSvXr2UtqusrMRrr70GQRDUrvdSIz4+HrGxsYrXxcXF8PPzM1T5RESkB3y2Dz0JUQNQgwYNIJVKkZ+fr9Sen58PHx8fjfvZ2NigdevWAICAgABcuHABycnJSgGoJvxcv34dhw4dqnUs0MHBAQ4ODk92MkREZBTp6ep7fZo1a4aYmBgRKiJzJOocIHt7ewQGBiIzM1PRJpfLkZmZiR49emh9HLlcjvLycsXrmvBz5coVHDx4EPXr19dr3UREJB5NQ14MP6QL0YfAYmNjMWLECAQFBSE4OBhpaWkoLS1V/CBHRUWhSZMmSE5OBlA9XycoKAitWrVCeXk59u3bh40bNyqGuCorK/Hqq6/i1KlT2Lt3L2QyGfLy8gBU30Jvb28vzokSEdET4ZAX6ZPoASgyMhJ3795FQkIC8vLyEBAQgP379ysmRt+4cQM2Nn93VJWWlmLs2LG4desWnJyc0K5dO2zatAmRkZEAgN9//x3p6ekAqofH/ikrK0tlnhAREZmu9PTqO73Cw1XDz7PPPot//etfIlRFlkD05wCZIj4HiIjINISGqg8/7PUhdXT5/Ba9B4iIiOhRNROdw8NV32P4IX1gACIiIpOjbqLzv//9b3To0EGEasgSMQAREZHJkMlk+Oijj1Ta2etD+sYAREREJoF3eZExMQAREZHo1IWfd999F40aNRKhGrIGDEBERCSa0tJSLFiwQKWdvT5kaAxAREQkCg55kZgYgIiIyOjUhZ8pU6agXr16IlRD1ogBiIiIjCI9HVi+PA+hof9ReY+9PmRsDEBERGRwNQ82DA1VfY/hh8TAAERERAan7sGGM2fOVFrrkciYGICIiMhgzp49i127dqm0s9eHxMYAREREBsG7vMiUMQAREZHeqQs/DD5kShiAiIhIb/bv348ffvhBpZ3hh0wNAxAREekFh7zInDAAERHRE+OQF5kbBiAiIqqz//znP8jLy1NpZ/ghU8cAREREdaKu10cqlWLGjBkiVEOkGwYgIiLSGYe8yNwxABERkdY40ZksBQMQERFpRV34adOmDV5//XURqiF6MgxARET0WBzyIkvDAERERBpxyIssFQMQERGppS78vPjii3juuedEqIZIvxiAiIhIiSAImD17tko7e33IkjAAERGRAoe8yFowABEREQD14ef1119HmzZtRKiGyLAYgIiIrFxlZSXmzZun0s5eH7JkDEBERFYqPR04fZpDXmSdGICIiKyUuvDz3nvvoUGDBiJUQ2RcDEBERFamuLgYixYtUmlnrw9ZEwYgIiIrwru8iKoxABERWQl14ScuLg4ODg4iVEMkLgYgIiILd+PGDaxbt06lnb0+ZM10DkBSqRR37txBo0aNlNr/+OMPNGrUCDKZTG/FERHRk+GQF5F6OgcgQRDUtpeXl8Pe3v6JCyIiIv1QF34SEhIgkUhEqIbItGgdgJYsWQIAkEgkWLNmDVxcXBTvyWQyHDlyBO3atdN/hUREpJPTp08jPT1dpb1r10Qw+xBV0zoA1dwyKQgCVq1aBalUqnjP3t4e/v7+WLVqlf4rJCIirXHIi0g7Wgega9euAQBeeOEF7Ny5E56engYrioiIdKcu/DD4EKmn8xygrKwsQ9RBRER19NVXX+HHH39UaWf4IdJM5wA0cuTIWt9fu3ZtnYshIiLdcMiLqG50DkD3799Xel1ZWYlz586hsLAQL774ot4KIyKi2nHIi6judA5Au3btUmmTy+V499130apVK70URUREmq1YsQJ3795VaWf4IdKejV4OYmOD2NhYtYvraWP58uXw9/eHo6MjQkJCcPz4cY3b7ty5E0FBQfDw8ICzszMCAgKwceNGpW0EQUBCQgIaN24MJycnhIWF4cqVK3WqjYjIlCQlJamEHy8vL4YfIh3pJQABwK+//oqqqiqd99u+fTtiY2ORmJiIU6dOoUuXLggPD0dBQYHa7b28vDB9+nTk5OTg7NmziImJQUxMDDIyMhTbzJ8/H0uWLMGqVavwww8/wNnZGeHh4Xj48GGdz4+ISGyahrzGjx8vQjVE5k0iaHq0swaxsbFKrwVBwJ07d/DVV19hxIgRWLZsmU4FhISEoHv37or95HI5/Pz8MH78eMTFxWl1jG7duqFfv36YM2cOBEGAr68vJk+ejA8++AAAUFRUBG9vb6xfvx5Dhw597PGKi4vh7u6OoqIiuLm56XQ+RET6xonORNrR5fNb5zlAp0+fVnptY2ODhg0b4pNPPnnsHWKPqqiowMmTJxEfH690vLCwMOTk5Dx2f0EQcOjQIVy6dAmpqakAqp9XlJeXh7CwMMV27u7uCAkJQU5OjtoAVF5ejvLycsXr4uJinc6DiMhQ1IWfgIAADBw4UIRqiCyHqM8BunfvHmQyGby9vZXavb29cfHiRY37FRUVoUmTJigvL4dUKsWKFSvQu3dvAEBeXp7iGI8es+a9RyUnJ2v8FxYRkVjU/V7q2jUREREiFENkYXQOQDUKCgpw6dIlAEDbtm1VVoc3JFdXV5w5cwYlJSXIzMxEbGwsWrZsiV69etXpePHx8UpDe8XFxfDz89NTtUREuuGQF5Hh6RyAiouL8d5772Hr1q2Qy+UAAKlUisjISCxfvhzu7u5aH6tBgwaQSqXIz89Xas/Pz4ePj4/G/WxsbNC6dWsA1V3BFy5cQHJyMnr16qXYLz8/H40bN1Y6ZkBAgNrjOTg4wMHBQeu6iYgMRV346devH4KCgkSohshy6XwX2OjRo/HDDz/gq6++QmFhIQoLC7F37178+OOPePvtt3U6lr29PQIDA5GZmalok8vlyMzMRI8ePbQ+jlwuV8zhadGiBXx8fJSOWVxcjB9++EGnYxIRGdOePYLGu7wYfoj0T+ceoL179yIjIwPPPvusoi08PByrV69Gnz59dC4gNjYWI0aMQFBQEIKDg5GWlobS0lLExMQAAKKiotCkSRMkJycDqJ6vExQUhFatWqG8vBz79u3Dxo0bsXLlSgCARCLBpEmT8NFHH6FNmzZo0aIFZs6cCV9fXwwaNEjn+oiIDI1DXkTGp3MAql+/vtphLnd39zqtEB8ZGYm7d+8iISEBeXl5CAgIwP79+xWTmG/cuAEbm787qkpLSzF27FjcunULTk5OaNeuHTZt2oTIyEjFNh9++CFKS0sxZswYFBYW4tlnn8X+/fvh6Oioc31ERIakLvxER0ejefPmIlRDZD10fg7Qp59+iv/+97/YuHGjYr5NXl4eRowYgSFDhug8DGaK+BwgIjK0iooKRc/2P7HXh6judPn81jkAde3aFVevXkV5eTmaNWsGoLqXxsHBAW3atFHa9tSpUzqWbhoYgIjIkDjkRWQYBn0Q4sCBAyGRSOpcHBGRNVMXfrKz30dWFv+xRWRMOgegWbNmGaAMIiLLVlhYiMWLF6u0Z2QkQstVf4hIj3QOQC1btsSJEydQv359pfbCwkJ069YNv/32m96KIyKyBLUNeXHUi0gcOgeg3NxcyGQylfby8nLcunVLL0UREVkKdeFn2rRpsLOzE6EaIqqhdQBKT09X/HdGRobSrfAymQyZmZlo0aKFfqsjIjJT169fx/r161XaOdGZyDRoHYBqHiIokUgwYsQIpffs7Ozg7++PTz75RK/FERGZI97lRWT6tA5ANet+tWjRAidOnECDBg0MVhQRkblSF34SEhJ49yyRidF5DtC1a9cMUQcRkVk7ceIE9u3bp9LOXh8i06RzAJo9e3at7yckJNS5GCIic6RpyCsjg3d5EZkqnQPQrl27lF5XVlbi2rVrsLW1RatWrRiAiMiqqAs/XbsmIiUFfL4PkQnTOQCdPn1apa24uBjR0dEYPHiwXooiIjJ127dvx8WLF1Xaa4a8IiKMXRER6cLm8Zs8npubG5KSkjBz5kx9HI6IyKQlJSWpDT8ZGRzvIjIXOvcAaVJUVISioiJ9HY6IyCSpG/KqqEhEVhaHvIjMic4BaMmSJUqvBUHAnTt3sHHjRvTt21dvhRERmZKPP/4YZWVlKu28y4vIPOkcgBYtWqT02sbGBg0bNsSIESMQHx+vt8KIiEyFul4fDw8PTJw4UYRqiEgf+BwgIqJaqAs/XMGdyPzVaQ5QYWEhrl69CgBo3bo1PDw89FkTEZHoanu2T04OkJLCO72IzJlOd4Hl5uaiX79+aNCgAUJCQhASEoIGDRqgf//+yM3NNVCJRETGpS78NGwYjMTE6p6fHj044ZnI3EkEQRC02fDmzZvo3r077OzsMHbsWLRv3x4AcP78eaxcuRJVVVU4ceIEmjZtatCCjaG4uBju7u4oKiqCm5ub2OUQkRGpCz+c6ExkHnT5/NY6AI0aNQpXr15FRkYGHB0dld578OAB+vTpgzZt2mDNmjV1r9xEMAARWR+u4E5k/nT5/NZ6DtD+/fuxfft2lfADAE5OTpgzZw6GDh2qe7VERCJTF36GDBmCTp06iVANERmD1gHo3r178Pf31/h+y5Yt8eeff+qjJiIio5DL5ZgzZ45KO3t9iCyf1gGocePGOH/+vMY5PufOnYOPj4/eCiMiMiQOeRFZN63vAhs0aBA++OAD3L17V+W9goICTJ06FYMGDdJnbUREBqEu/LRt+zYyMhKRni5CQURkdFpPgr5//z5CQkKQl5eHN998E+3atYMgCLhw4QK2bNkCHx8ffP/99/Dy8jJ0zQbHSdBElunhw4dITU1VaU9MTERoKJCTU32L+7FjIhRHRE/MIJOgPT098cMPP2DatGnYtm0bCgsLAVQ/Dv7111/HvHnzLCL8EJFlqu3BhomJ1c/1SUnh832IrIXWPUD/JAiCYiisYcOGkEgkei9MTOwBIrIs6sLP009PxiefuCAujk90JrIUBukB+ieJRIJGjRrVqTgiImO5d+8eli9frtJeM9H5lVeMXRERmYo6BSAiIlPHu7yIqDYMQERkcdSFn+nTp8PWlr/yiKgafxsQkcW4cuUKtmzZotLOXh8iehQDEBFZBE1DXtu2Vd/lRUT0T1oFoCVLlmh9wAkTJtS5GCKiulAXfrZuTcClSxK0bStCQURk8rQKQIsWLdLqYBKJhAGIiIzmu+++w8GDB1XaExMT0bUrn+tDRJrV6TlAlo7PASIyfbzLi4geZfDnAAFARUUFrl27hlatWvHOCiIyKnXhh8GHiHSh9WKoNcrKyjBq1CjUq1cPHTt2xI0bNwAA48ePR0pKit4LJCKqsX37do3hJz0dCA0FFzMlIq3oHIDi4+Px008/ITs7G46Ojor2sLAwbN++Xa/FERHVSEpKwsWLF5XabGxsFD0/KSnVi5ny32FEpA2dx652796N7du345lnnlFaA6xjx4749ddf9VocERGg3ZAXFzMlIl3oHIDu3r2rdh2w0tJSi1sUlYjElZqaiocPH6q0q5vvExHBRU2JSHs6D4EFBQXhq6++UryuCT1r1qxBjx499FcZEVm1pKQklfDTpk0bTnYmIr3QuQdo3rx56Nu3L86fP4+qqiosXrwY58+fx7Fjx3D48GFD1EhEVoZ3eRGRoencA/Tss8/izJkzqKqqQqdOnXDgwAE0atQIOTk5CAwMNESNRGQlkpKSGH6IyCh0DkAA0KpVK6xevRrHjx/H+fPnsWnTJnTq1KlOBSxfvhz+/v5wdHRESEgIjh8/rnHb1atX47nnnoOnpyc8PT0RFhamsn1JSQnGjRuHpk2bwsnJCR06dMCqVavqVBsRGY+64NOrVy+GHyIyCK2GwIqLi7U+oC5PTt6+fTtiY2OxatUqhISEIC0tDeHh4bh06ZLaidbZ2dkYNmwYQkND4ejoiNTUVLz00kv45Zdf0KRJEwBAbGwsDh06hE2bNsHf3x8HDhzA2LFj4evriwjOkCQySez1ISJj02opDBsbG63v8JLJZFp/85CQEHTv3h3Lli0DAMjlcvj5+WH8+PGI0+JeVplMBk9PTyxbtgxRUVEAgKeffhqRkZGYOXOmYrvAwED07dsXH330kVZ1cSkMIuPgchZEpE96XwojKytL8d+5ubmIi4tDdHS04q6vnJwcbNiwAcnJyVoXWVFRgZMnTyI+Pl7RZmNjg7CwMOTk5Gh1jLKyMlRWVsLLy0vRFhoaivT0dIwcORK+vr7Izs7G5cuXa13Qtby8HOXl5YrXuvR4EVHdqAs/Q4cORVsu305ERqBVAOrZs6fiv2fPno2FCxdi2LBhiraIiAh06tQJn376KUaMGKHVN7537x5kMhm8vb2V2r29vVWe9qrJ1KlT4evri7CwMEXb0qVLMWbMGDRt2hS2trawsbHB6tWr8fzzz2s8TnJyssZ/iRKRfslkMrW9sez1ISJj0vk2+JycHLWTioOCgvDWW2/ppShtpKSkYNu2bSpLcixduhTff/890tPT0bx5cxw5cgTvvfeeSlD6p/j4eMTGxipeFxcXw8/Pz+DnQGRtOORFRKZC57vA/Pz8sHr1apX2NWvW6BQaGjRoAKlUivz8fKX2/Px8+Pj41LrvggULkJKSggMHDqBz586K9gcPHmDatGlYuHAhBgwYgM6dO2PcuHGIjIzEggULNB7PwcEBbm5uSl9EpF/qws+7776Lrl0TuYgpERmdzj1AixYtwiuvvIKvv/4aISEhAIDjx4/jypUr2LFjh9bHsbe3R2BgIDIzMzFo0CAA1ZOgMzMzMW7cOI37zZ8/H3PnzkVGRgaCgoKU3qusrERlZSVsbJRznVQqhVwu17o2ItKf0tJStf8AUbeIKW/UJCJj0TkAvfzyy7hy5QpWrFihmKszYMAAvPPOOzoPG8XGxmLEiBEICgpCcHAw0tLSUFpaipiYGABAVFQUmjRpophcnZqaioSEBGzZsgX+/v7Iy8sDALi4uMDFxQVubm7o2bMnpkyZAicnJzRv3hyHDx/G559/joULF+p6qkT0hLQZ8uIipkQkBq1ugzekZcuW4eOPP0ZeXh4CAgKwZMkSRc9Sr1694O/vj/Xr1wMA/P39cf36dZVjJCYmYtasWQCAvLw8xMfH48CBA/jzzz/RvHlzjBkzBu+//77Wt/LzNniiJ6cu/EyZMgX16tUToRoisga6fH7XKQAVFhbis88+w4ULFwAAHTt2xMiRI+Hu7l63ik0MAxBR3eXn56u9UYITnYnI0AwagH788UeEh4fDyckJwcHBAIATJ07gwYMHOHDgALp161b3yk0EAxBR3fAuLyISk0ED0HPPPYfWrVtj9erVsLWtnkJUVVWFt956C7/99huOHDlS98pNBAMQke7UhZ+ZM2eq3JRARGQoBg1ATk5OOH36NNq1a6fUfv78eQQFBaGsrEz3ik0MAxCR9i5cuIAvvvhCpZ29PkRkbHpfCuOf3NzccOPGDZUAdPPmTbi6uup6OCIyYxzyIiJzpXMAioyMxKhRo7BgwQKEhoYCAL777jtMmTJFaXkMIrJsXMGdiMyZzgFowYIFkEgkiIqKQlVVFQDAzs4O7777LlJSUvReIBGZliNHjigtkFyD4YeIzEmdnwNUVlaGX3/9FQDQqlUri3q2B+cAEamnacgrIyMRcXF8kjMRicugc4Bq1KtXD506darr7kRkZjQNeYWGcikLIjI/WgegkSNHarXd2rVr61wMEZmeHTt24Ny5cyrtNUNeXMqCiMyR1gFo/fr1aN68Obp27QqRV88gIiNR1+vj5eWF8ePHK15HRLDnh4jMj9YB6N1338XWrVtx7do1xMTE4M0334SXl5chayMiEWka8kpPB0JDwTk/RGTWdJoEXV5ejp07d2Lt2rU4duwY+vXrh1GjRuGll17SeqFRc8BJ0GTNFi5ciL/++kulvWbIq2bOT48ewLFjxq6OiEgzXT6/dXpGvYODA4YNG4ZvvvkG58+fR8eOHTF27Fj4+/ujpKTkiYomIvElJSWphJ+goCB07Vo92Tk9vbrnp0cPzvkhIvNW57vAbGxsIJFIIAgCZDKZPmsiIhHU9mDDf97pdewYh76IyPzp1ANUXl6OrVu3onfv3njqqafw888/Y9myZbhx4wZcXFwMVSMRGVBSUtJjn+rMXh8isjRa9wCNHTsW27Ztg5+fH0aOHImtW7eiQYMGhqyNiAxMXfAZMGAAunXrptTGO72IyNJoPQnaxsYGzZo1Q9euXWud8Lxz5069FScWToImSycIAmbPnq3SzuUsiMicGeRJ0FFRURZ1pxeRteIK7kREOj4IkYjMm7rwM3LkSPj5+YlQDRGReHSaBE1E5kkmk6kNP127JiIy0g/p6SIURUQkojrfBk9E5qG2IS8uZEpE1ooBiMiCqQs/FRWTsGSJOyoquJApEVkvnZbCsBa8C4zMXVlZGT7++GOV9sTERLi6AiUlgIsLoGbFCyIis2WQu8CIyDw87i6vCROAJUuq/yQislbsAVKDPUBkrtSFn/j4eNjb24tQDRGRcbEHiMjK3L17FytWrFBp57N9iIjUYwAiMnN8sCERke4YgIjMmLrwk5CQwKe2ExE9BgMQkRnKzc3Fhg0bVNrZ60NEpB0GICIzwyEvIqInx6UwiMyIuvCTmJiIrl2rn+rMJS2IiLTDAERkBs6cOaMx/ADVT3OuWdKCiIgej0NgRCZOXfBp3rw5vLyiERpavYwFl7QgItINAxCRCaut1+efC5keO8bFTImIdMEARGSCDh8+jOzsbJX2f050Zq8PEVHdMQARmRh1vT7PPvss/vWvfym1RUSw14eIqK4YgIhMSG1DXkREpD+8C4zIBPzvf//TGH7S08Fb3ImI9Iw9QEQiUxd8Bg0ahC5dugBQvsWdQ15ERPrBHiAiEakLPxkZibh+vYvidVwc0KMHJzsTEemTRBAEQewiTE1xcTHc3d1RVFQENzc3scshC7R27VrcvHlTpT0jIxE5OdWB59gxEQojIjJjunx+cwiMyMjU9fqMGjUKTZs2RdeuvLWdiMgYGICIjEQQBMyePVul/Z93efHWdiIi42AAIjKCOXPmQC6Xq7TzFnciInGIPgl6+fLl8Pf3h6OjI0JCQnD8+HGN265evRrPPfccPD094enpibCwMLXbX7hwAREREXB3d4ezszO6d++OGzduGPI0iDRKSkpSCT8TJkzgCu5ERCISNQBt374dsbGxSExMxKlTp9ClSxeEh4ejoKBA7fbZ2dkYNmwYsrKykJOTAz8/P7z00kv4/fffFdv8+uuvePbZZ9GuXTtkZ2fj7NmzmDlzJhwdHY11WkQAAJlMpvHZPp6enlzBnYhIRKLeBRYSEoLu3btj2bJlAAC5XA4/Pz+MHz8ecVrMApXJZPD09MSyZcsQFRUFABg6dCjs7OywcePGOtfFu8DoSakLPoDykFd6+t8Tnjnvh4joyeny+S1aD1BFRQVOnjyJsLCwv4uxsUFYWBhycnK0OkZZWRkqKyvh5eUFoDpAffXVV3jqqacQHh6ORo0aISQkBLt37671OOXl5SguLlb6IqordeHnww8/VJnvExHBVdyJiMQiWgC6d+8eZDIZvL29ldq9vb2Rl5en1TGmTp0KX19fRYgqKChASUkJUlJS0KdPHxw4cACDBw/GkCFDcPjwYY3HSU5Ohru7u+LLz8+v7idGVuvBgwcah7ycnJxEqIiIiDQx27vAUlJSsG3bNmRnZyvm99RMNB04cCDef/99AEBAQACOHTuGVatWoWfPnmqPFR8fj9jYWMXr4uJihiDSiTZDXkREZDpE6wFq0KABpFIp8vPzldrz8/Ph4+NT674LFixASkoKDhw4gM6dOysd09bWFh06dFDavn379rXeBebg4AA3NzelLyJtqQs/M2bM4F1eREQmTLQAZG9vj8DAQGRmZira5HI5MjMz0aNHD437zZ8/H3PmzMH+/fsRFBSkcszu3bvj0qVLSu2XL19G8+bN9XsCZPX+/PNPjUNeUqmUd3kREZkwUYfAYmNjMWLECAQFBSE4OBhpaWkoLS1FTEwMACAqKgpNmjRBcnIyACA1NRUJCQnYsmUL/P39FXOFXFxc4OLiAgCYMmUKIiMj8fzzz+OFF17A/v378b///Q/Z2dminCNZJnXBRyqVYsaMGYrXcXFc1oKIyFSJvhjqsmXL8PHHHyMvLw8BAQFYsmQJQkJCAAC9evWCv78/1q9fDwDw9/fH9evXVY6RmJiIWbNmKV6vXbsWycnJuHXrFtq2bYukpCQMHDhQ65p4GzzVRl34SUhIgEQiEaEaIiKqocvnt+gByBQxAJE6N2/exNq1a1XaOdGZiMg0cDV4Ij1T1+vj5+eHkSNHilANERE9KQYgosfQNNGZiIjMFwMQkQbnzp3Djh07VNoZfoiIzB8DEJEa6np9AgMD0b9/fxGqISIifWMAInoEh7yIiCwfAxDR/zl69CgOHTqk0s7wQ0RkeRiAiKC+1yc8PBzPPPOMCNUQEZGhMQCR1eOQFxGR9WEAIqu1a9cunD17VqWd4YeIyPIxAJFVUtfrM3ToULRt21aEaoiIyNgYgMiqpKcDp09zyIuIyNoxAJHV2LBhA3Jzc1XaGX6IiKwPAxBZBXVDXqNHj4avr68I1RARkdgYgMiiCYKA2bNnq7Sz14eIyLoxAJHFmj9/Ph48eKDSzvBDREQMQGSR1A15xcbGwtXVVYRqiIjI1DAAkUWpqqrC3LlzVdrZ60NERP/EAEQWQ12vD8DwQ0REqhiAyCKoCz9xcXFwcHAQoRoiIjJ1DEBk1h48eID58+ertLPXh4iIasMARGZLXa9PebkznnnmAxGqISIic8IARGZJXfiZOXMmbGxsRKiGiIjMDQMQmZXCwkIsXrxYpZ1DXkREpAsGIDIb6np9WrZsieHDh4tQDRERmTMGIDIL6sJPQkICJBKJCNUQEZG5YwAik3b79m2sXr1apZ1DXkRE9CQYgMhkqev16d69O15++WURqiEiIkvCAEQmSV34Ya8PERHpCwMQmZTLly9j69atKu0MP0REpE8MQGQy1PX6hIeH45lnnhGhGiIismQMQGQSOORFRETGxABEojpx4gT27dun0s7wQ0REhsQARKJR1+vz2muvoX379iJUQ0RE1oQBiETBIS8iIhITAxAZ1ZEjR5CVlaXSzvBDRETGxABERqOu12fMmDFo3LixCNUQEZE1YwAio+CQFxERmRIGIDKo9PR0nD59WqWd4YeIiMTEAEQGo67XZ+LEifDw8DB+MURERP/AAER6JwgCZs+erdLOXh8iIjIVDECkVzt37sTPP/+s0s7wQ0REpoQBiJ5IejqQkgLExQGnT6sOeU2dOhWOjo4iVEZERKQZAxA9kZQU4PjxKpw+PVflPfb6EBGRqbIRuwAAWL58Ofz9/eHo6IiQkBAcP35c47arV6/Gc889B09PT3h6eiIsLKzW7d955x1IJBKkpaUZoHIaPHg1Zs5UDj++vr4MP0REZNJED0Dbt29HbGwsEhMTcerUKXTp0gXh4eEoKChQu312djaGDRuGrKws5OTkwM/PDy+99BJ+//13lW137dqF77//Hr6+voY+DauUlJSEsrLbSm3Tp0/H6NGjRaqIiIhIO6IHoIULF2L06NGIiYlBhw4dsGrVKtSrVw9r165Vu/3mzZsxduxYBAQEoF27dlizZg3kcjkyMzOVtvv9998xfvx4bN68GXZ2dsY4FatRXl6u8cGGtrYcVSUiItMn6qdVRUUFTp48ifj4eEWbjY0NwsLCkJOTo9UxysrKUFlZCS8vL0WbXC7H8OHDMWXKFHTs2FHvdVuzNWvWqPS2hYaGonfv3iJVREREpDtRA9C9e/cgk8ng7e2t1O7t7Y2LFy9qdYypU6fC19cXYWFhirbU1FTY2tpiwoQJWh2jvLwc5eXlitfFxcVa7Wdt1PX6JCQkQCKRiFANERFR3Zn1eEVKSgq2bduG7Oxsxa3WJ0+exOLFi3Hq1CmtP5iTk5PVfrhTtdLSUixYsEClnROdiYjIXIk6B6hBgwaQSqXIz89Xas/Pz4ePj0+t+y5YsAApKSk4cOAAOnfurGg/evQoCgoK0KxZM9ja2sLW1hbXr1/H5MmT4e/vr/ZY8fHxKCoqUnzdvHnzic/NFKWnA6Gh1X9qa/78+SrhJzw8nOGHiIjMmqg9QPb29ggMDERmZiYGDRoEAIoJzePGjdO43/z58zF37lxkZGQgKChI6b3hw4crDYcB1R/Yw4cPR0xMjNrjOTg4wMHB4clOxgykpAA5OdV/RkQ8fnuu4E5ERJZK9CGw2NhYjBgxAkFBQQgODkZaWhpKS0sVYSUqKgpNmjRBcnIygOr5PQkJCdiyZQv8/f2Rl5cHAHBxcYGLiwvq16+P+vXrK30POzs7+Pj4oG3btsY9ORMTF/f3U5tr8+eff2Lp0qUq7Qw/RERkKUQPQJGRkbh79y4SEhKQl5eHgIAA7N+/XzEx+saNG7Cx+XukbuXKlaioqMCrr76qdJzExETMmjXLmKWbhX8uVRER8fieH3W9Pq+88gqefvppA1VIRERkfBJBEASxizA1xcXFcHd3R1FREdzc3MQu54mEhlYPe/XoARw7Vvu2HPIiIiJzpsvnt+gPQiTDiourDj+1DXvdvn2b4YeIiKyK6ENgZFiPG/ZSF3yioqLQokULA1ZFREQkLvYAmZG63MZeG029Pgw/RERk6RiAzMg/b2N/ElevXuWQFxERWTUOgZkRbW9jr4264PP2228/9sGTREREloQByIxocxt7bdjrQ0REVI0ByApcuXIFW7ZsUWln+CEiImvFAGTh1PX6TJw4ER4eHsYvhoiIyEQwAFkoQRAwe/ZslXb2+hARETEAWaSrV69i8+bNSm2tW7fGG2+8IVJFREREpoUByMKoG/KKj4+Hvb29CNUQERGZJgYgC8EhLyIiIu0xAFmAc+fOYceOHUptvXv3RmhoqEgVERERmTYGIDOnbshr+vTpsLXlXy0REZEm/JQ0U3K5HHPmzFFp55AXERHR4zEAmaETJ05g3759Sm0DBw5EQECAOAURERGZGQYgM6NuyGvmzJmwseG6tkRERNrip6bI0tOB0NDqP2sjk8k0ruXF8ENERKQb9gCJLCUFyMmp/lPTQqe//PILvvzyS6W2yMhItGvXzggVEhERWR52HRjZoz0+cXFAjx7Vf6oze/ZslfCTkJDA8ENERPQEJIIgCGIXYWqKi4vh7u6OoqIiuLm56fXYoaHVPT49egDHjmnerrKyEvPmzVNqa9u2LYYOHarXeoiIiCyFLp/fHAIzsri46uEuTT0+AHDq1Cn873//U2obO3YsGjZsaODqiIiIrAMDkJFFRGie6wOov8uLz/YhIiLSLwYgE/Hw4UOkpqYqtXXt2hURtaUlIiIiqhMGIBOQk5ODAwcOKLVNmDABnp6eIlVERERk2RiARDZ37lxUVVUptXHIi4iIyLAYgERSUVGB5ORkpbbQ0FD07t1bpIqIiIisBwOQCK5du4bPP/9cqS02Nhaurq4iVURERGRdGICMbMeOHTh37pziNSc6ExERGR8DkBEdOHBAKfzExMSgWbNmIlZERERknRiAjMjLy0vx39OmTYOdnZ2I1RAREVkvBiAjCgoKQlBQkNhlEBERWT0uhkpERERWhwGIiIiIrA4DEBEREVkdBiAiIiKyOgxAREREZHUYgIiIiMjqMAARERGR1WEAIiIiIqvDAERERERWhwGIiIiIrA4DEBEREVkdBiAiIiKyOgxAREREZHUYgIiIiMjq2IpdgCkSBAEAUFxcLHIlREREpK2az+2az/HaMACp8ddffwEA/Pz8RK6EiIiIdPXXX3/B3d291m0kgjYxycrI5XLcvn0brq6ukEgkYpdjUoqLi+Hn54ebN2/Czc1N7HJMFq+TdnidtMPrpB1eJ+1Y8nUSBAF//fUXfH19YWNT+ywf9gCpYWNjg6ZNm4pdhklzc3OzuP9xDIHXSTu8TtrhddIOr5N2LPU6Pa7npwYnQRMREZHVYQAiIiIiq8MARDpxcHBAYmIiHBwcxC7FpPE6aYfXSTu8TtrhddIOr1M1ToImIiIiq8MeICIiIrI6DEBERERkdRiAiIiIyOowABEREZHVYQAiLF++HP7+/nB0dERISAiOHz+ucdvVq1fjueeeg6enJzw9PREWFlbr9u+88w4kEgnS0tIMULlxGeI6XbhwAREREXB3d4ezszO6d++OGzduGPI0DE7f16mkpATjxo1D06ZN4eTkhA4dOmDVqlWGPg2D0+U67dy5E0FBQfDw8ICzszMCAgKwceNGpW0EQUBCQgIaN24MJycnhIWF4cqVK4Y+DYPT53WqrKzE1KlT0alTJzg7O8PX1xdRUVG4ffu2MU7FYPT9s/RPlvQ7XIVAVm3btm2Cvb29sHbtWuGXX34RRo8eLXh4eAj5+flqt3/99deF5cuXC6dPnxYuXLggREdHC+7u7sKtW7dUtt25c6fQpUsXwdfXV1i0aJGBz8SwDHGdrl69Knh5eQlTpkwRTp06JVy9elXYs2ePxmOaA0Ncp9GjRwutWrUSsrKyhGvXrgn/+c9/BKlUKuzZs8dYp6V3ul6nrKwsYefOncL58+eFq1evCmlpaYJUKhX279+v2CYlJUVwd3cXdu/eLfz0009CRESE0KJFC+HBgwfGOi290/d1KiwsFMLCwoTt27cLFy9eFHJycoTg4GAhMDDQmKelV4b4WaphSb/D1WEAsnLBwcHCe++9p3gtk8kEX19fITk5Wav9q6qqBFdXV2HDhg1K7bdu3RKaNGkinDt3TmjevLnZ/89jiOsUGRkpvPnmm3qvVUyGuE4dO3YUZs+erbRdt27dhOnTp+unaBE86XUSBEHo2rWrMGPGDEEQBEEulws+Pj7Cxx9/rHi/sLBQcHBwELZu3aq/wo1M39dJnePHjwsAhOvXrz9RrWIx1DWytN/h6nAIzIpVVFTg5MmTCAsLU7TZ2NggLCwMOTk5Wh2jrKwMlZWV8PLyUrTJ5XIMHz4cU6ZMQceOHfVet7EZ4jrJ5XJ89dVXeOqppxAeHo5GjRohJCQEu3fvNsQpGIWhfp5CQ0ORnp6O33//HYIgICsrC5cvX8ZLL72k93Mwhie9ToIgIDMzE5cuXcLzzz8PALh27Rry8vKUjunu7o6QkBCtr72pMcR1UqeoqAgSiQQeHh76KNuoDHWNLO13uCYMQFbs3r17kMlk8Pb2Vmr39vZGXl6eVseYOnUqfH19lf4HTE1Nha2tLSZMmKDXesViiOtUUFCAkpISpKSkoE+fPjhw4AAGDx6MIUOG4PDhw3o/B2Mw1M/T0qVL0aFDBzRt2hT29vbo06cPli9fXuuHmimr63UqKiqCi4sL7O3t0a9fPyxduhS9e/cGAMV+T3LtTY0hrtOjHj58iKlTp2LYsGFmuSiooa6Rpf0O14SrwVOdpaSkYNu2bcjOzoajoyMA4OTJk1i8eDFOnToFiUQicoWmQd11ksvlAICBAwfi/fffBwAEBATg2LFjWLVqFXr27ClavWJRd52A6gD0/fffIz09Hc2bN8eRI0fw3nvvqQQlS+fq6oozZ86gpKQEmZmZiI2NRcuWLdGrVy+xSzMp2l6nyspKvPbaaxAEAStXrhSnWJHUdo2s6Xc4A5AVa9CgAaRSKfLz85Xa8/Pz4ePjU+u+CxYsQEpKCg4ePIjOnTsr2o8ePYqCggI0a9ZM0SaTyTB58mSkpaUhNzdXr+dgDIa4Tg0aNICtrS06dOigtH379u3x7bff6q94IzLEdXrw4AGmTZuGXbt2oV+/fgCAzp0748yZM1iwYIFZBqC6XicbGxu0bt0aQHVYvnDhApKTk9GrVy/Ffvn5+WjcuLHSMQMCAvR/EkZgiOtUoyb8XL9+HYcOHTLL3h/AMNfIEn+Ha8IhMCtmb2+PwMBAZGZmKtrkcjkyMzPRo0cPjfvNnz8fc+bMwf79+xEUFKT03vDhw3H27FmcOXNG8eXr64spU6YgIyPDYOdiSIa4Tvb29ujevTsuXbqk1H758mU0b95cvydgJIa4TpWVlaisrISNjfKvKqlUquhFMzd1vU6PksvlKC8vBwC0aNECPj4+SscsLi7GDz/8oNMxTYkhrhPwd/i5cuUKDh48iPr16+u1bmMyxDWyxN/hGok6BZtEt23bNsHBwUFYv369cP78eWHMmDGCh4eHkJeXJwiCIAwfPlyIi4tTbJ+SkiLY29sLX375pXDnzh3F119//aXxe1jCHQSGuE47d+4U7OzshE8//VS4cuWKsHTpUkEqlQpHjx41+vnpiyGuU8+ePYWOHTsKWVlZwm+//SasW7dOcHR0FFasWGH089MXXa/TvHnzhAMHDgi//vqrcP78eWHBggWCra2tsHr1asU2KSkpgoeHh7Bnzx7h7NmzwsCBAy3iNnh9XqeKigohIiJCaNq0qXDmzBmln7ny8nJRzvFJGeJn6VGW8DtcHQYgEpYuXSo0a9ZMsLe3F4KDg4Xvv/9e8V7Pnj2FESNGKF43b95cAKDylZiYqPH4lvI/jyGu02effSa0bt1acHR0FLp06SLs3r3bSGdjOPq+Tnfu3BGio6MFX19fwdHRUWjbtq3wySefCHK53IhnpX+6XKfp06crfk48PT2FHj16CNu2bVM6nlwuF2bOnCl4e3sLDg4Owr/+9S/h0qVLxjodg9Hndbp27ZranzcAQlZWlhHPSr/0/bP0KEv5Hf4oiSAIglG7nIiIiIhExjlAREREZHUYgIiIiMjqMAARERGR1WEAIiIiIqvDAERERERWhwGIiIiIrA4DEBEREVkdBiAiIiKyOgxARGRxoqOjIZFIkJKSotS+e/duxQrX2dnZGDhwIBo3bgxnZ2cEBARg8+bNYpRLRCJgACIii+To6IjU1FTcv39f7fvHjh1D586dsWPHDpw9exYxMTGIiorC3r17jVwpEYmBS2EQkcWJjo7GH3/8gatXr2LAgAGYP38+gOoeoMGDB0PTr71+/frB29sba9euNWa5RCQC9gARkUWSSqWYN28eli5dilu3bmm1T1FREby8vAxcGRGZAgYgIrJYgwcPRkBAABITEx+77RdffIETJ04gJibGCJURkdgYgIjIoqWmpmLDhg24cOGCxm2ysrIQExOD1atXo2PHjkasjojEwgBERBbt+eefR3h4OOLj49W+f/jwYQwYMACLFi1CVFSUkasjIrHYil0AEZGhpaSkICAgAG3btlVqz87ORv/+/ZGamooxY8aIVB0RiYEBiIgsXqdOnfDGG29gyZIlirasrCz0798fEydOxCuvvIK8vDwAgL29PSdCE1kBDoERkVWYPXs25HK54vWGDRtQVlaG5ORkNG7cWPE1ZMgQEaskImPhc4CIiIjI6rAHiIiIiKwOAxARERFZHQYgIiIisjoMQERERGR1GICIiIjI6jAAERERkdVhACIiIiKrwwBEREREVocBiIiIiKwOAxARERFZHQYgIiIisjoMQERERGR1/j+AtsCYutLHcAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATZtJREFUeJzt3XlYlFX/P/D3gCyyKsjiAoI7uUVmCmYuWWgmollmJZDmYwoqWhlqiWgJPrk8+mRYqdBjuWYgmYq4gBnYLw0VN9xANEHJBARjEe7fH3yZHGcGZ2Bm7lner+uai+bMPfd8Zhrl7TnnPkciCIIAIiIiIiNhJnYBRERERJrEcENERERGheGGiIiIjArDDRERERkVhhsiIiIyKgw3REREZFQYboiIiMioMNwQERGRUWG4ISIiIqPCcENEekkikWDRokVilyEVGhoKLy8vscsgIhUw3BCRyhISEiCRSKQ3a2trdOnSBeHh4bh165ZWXzsjIwOLFi1CcXGxRs87ePBgmffk5OSEvn37YuPGjaitrdXIayxduhRJSUkaORcRPV4zsQsgIsOzePFieHt7o6KiAkePHkVcXBz27NmDM2fOwMbGRiOv8ffff6NZs3/+isrIyEB0dDRCQ0PRokULjbxGvXbt2iEmJgYAUFRUhP/973+YPHkyLl68iNjY2Caff+nSpRg3bhyCgoKafC4iejyGGyJS24gRI/D0008DAN555x04Oztj5cqV2LVrFyZMmNDo89bW1qKqqgrW1tawtrbWVLmP5ejoiLfeekt6f+rUqejatSs+//xzLFmyBBYWFjqrhYiajsNSRNRkQ4cOBQDk5uYCAJYvXw5/f384OzujefPm6NOnD77//nu550kkEoSHh+O7775D9+7dYWVlhX379kkfq59zs2jRInzwwQcAAG9vb+kQUl5eHgYNGoTevXsrrKtr164ICAhQ+/3Y2Nigf//+KC8vR1FRkdLjysvL8d5778HDwwNWVlbo2rUrli9fDkEQZN5jeXk5vvnmG2ndoaGhatdERKpjzw0RNdmVK1cAAM7OzgCA1atXIzAwEG+++SaqqqqwdetWvPrqq9i9ezdGjhwp89xDhw5h+/btCA8PR6tWrRRO2h07diwuXryILVu2YNWqVWjVqhUAwMXFBRMnTsSUKVNw5swZ9OjRQ/qc3377DRcvXsRHH33UqPd09epVmJubKx0CEwQBgYGBOHz4MCZPnownn3wSKSkp+OCDD/DHH39g1apVAIBNmzbhnXfewTPPPIN//etfAICOHTs2qiYiUpFARKSi+Ph4AYBw4MABoaioSLh+/bqwdetWwdnZWWjevLlw48YNQRAE4f79+zLPq6qqEnr06CEMHTpUph2AYGZmJpw9e1butQAIUVFR0vufffaZAEDIzc2VOa64uFiwtrYWPvzwQ5n2mTNnCra2tkJZWVmD72nQoEFCt27dhKKiIqGoqEg4f/68MHPmTAGAMGrUKOlxISEhQvv27aX3k5KSBADCJ598InO+cePGCRKJRLh8+bK0zdbWVggJCWmwDiLSHA5LEZHahg0bBhcXF3h4eOD111+HnZ0dEhMT0bZtWwBA8+bNpcfevXsXJSUlGDhwIH7//Xe5cw0aNAhPPPFEo2txdHTE6NGjsWXLFulwUE1NDbZt24agoCDY2to+9hwXLlyAi4sLXFxc4OPjg//+978YOXIkNm7cqPQ5e/bsgbm5OWbOnCnT/t5770EQBOzdu7fR74mImsakw82RI0cwatQotGnTBhKJROuXasbExKBv376wt7eHq6srgoKCkJOTI3NMRUUFwsLC4OzsDDs7O7zyyitav8SWSF1r165FamoqDh8+jHPnzuHq1asyc1t2796N/v37w9raGk5OTnBxcUFcXBxKSkrkzuXt7d3keoKDg5Gfn4+ff/4ZAHDgwAHcunULEydOVOn5Xl5eSE1NxYEDB3D06FEUFhZi9+7d0uEvRa5du4Y2bdrA3t5ept3Hx0f6OBGJw6TDTXl5OXr37o21a9fq5PXS09MRFhaGY8eOITU1FdXV1XjxxRdRXl4uPWb27Nn48ccfsWPHDqSnp+PmzZsYO3asTuojUtUzzzyDYcOGYfDgwfDx8YGZ2T9/lfz8888IDAyEtbU1vvjiC+zZswepqal44403ZCba1nu4l6exAgIC4Obmhm+//RYA8O2338Ld3R3Dhg1T6fm2trYYNmwYnn/+eQwYMACurq5NromIxGPSE4pHjBiBESNGKH28srISCxYswJYtW1BcXIwePXpg2bJlGDx4cKNer/4qkHoJCQlwdXXFiRMn8Nxzz6GkpAQbNmzA5s2bpVefxMfHw8fHB8eOHUP//v0b9bpEurRz505YW1sjJSUFVlZW0vb4+PgmnVcikSh9zNzcHG+88QYSEhKwbNkyJCUlYcqUKTA3N2/Sazakffv2OHDgAO7duyfTe3PhwgXp46rUTkSaZ9I9N48THh6OzMxMbN26FadPn8arr76K4cOH49KlSxo5f30XvZOTEwDgxIkTqK6ulvnXZrdu3eDp6YnMzEyNvCaRtpmbm0MikaCmpkbalpeX1+Rh3/q5M8pWKJ44cSLu3r2LqVOnoqysTGbdGm146aWXUFNTg88//1ymfdWqVZBIJDL/cLK1tdX4yspEpJxJ99w0JD8/H/Hx8cjPz0ebNm0AAO+//z727duH+Ph4LF26tEnnr62tRUREBAYMGCC9fLWwsBCWlpZyl566ubmhsLCwSa9HpCsjR47EypUrMXz4cLzxxhu4ffs21q5di06dOuH06dONPm+fPn0AAAsWLMDrr78OCwsLjBo1Shp6fH190aNHD+zYsQM+Pj546qmnNPJ+lBk1ahSGDBmCBQsWIC8vD71798b+/fuxa9cuREREyFzu3adPHxw4cAArV65EmzZt4O3tjX79+mm1PiJTxp4bJbKzs1FTU4MuXbrAzs5OektPT5eu6XHhwgWZPWkU3SIjIxWePywsDGfOnMHWrVt1+baItG7o0KHYsGEDCgsLERERgS1btmDZsmUYM2ZMk87bt29fLFmyBKdOnUJoaCgmTJggt8BecHAwAKg8kbgpzMzMkJycjIiICOzevRsRERE4d+4cPvvsM6xcuVLm2JUrV6JPnz746KOPMGHCBMTFxWm9PiJTJhEUzfAzQRKJBImJidK9X7Zt24Y333wTZ8+elRu3t7Ozg7u7O6qqqnD16tUGz+vs7AwXFxeZtvDwcOzatQtHjhyRuVLk0KFDeP7553H37l2Z3pv27dsjIiICs2fPbtqbJDJyq1evxuzZs5GXlwdPT0+xyyEikXBYSglfX1/U1NTg9u3bGDhwoMJjLC0t0a1bN5XPKQgCZsyYgcTERKSlpcldAtunTx9YWFjg4MGDeOWVVwAAOTk5yM/Ph5+fX+PfDJEJEAQBGzZswKBBgxhsiEycSYebsrIyXL58WXo/NzcXJ0+ehJOTE7p06YI333wTwcHBWLFiBXx9fVFUVISDBw+iV69eckvIqyIsLAybN2/Grl27YG9vL51H4+joiObNm8PR0RGTJ0/GnDlz4OTkBAcHB8yYMQN+fn68UopIifLyciQnJ+Pw4cPIzs7Grl27xC6JiMQm4urIojt8+LAAQO5Wv0x6VVWVsHDhQsHLy0uwsLAQWrduLYwZM0Y4ffp0o15P0WsBEOLj46XH/P3338L06dOFli1bCjY2NsKYMWOEgoICDbxbIuOUm5srABBatGghzJ8/X+xyiEgPcM4NERERGRVeLUVERERGheGGiIiIjIrJTSiura3FzZs3YW9vzyXRiYiIDIQgCLh37x7atGkjs5+dIiYXbm7evAkPDw+xyyAiIqJGuH79Otq1a9fgMSYXbuo3uLt+/TocHBxEroaIiIhUUVpaCg8PD5mNapUxuXBTPxTl4ODAcENERGRgVJlSwgnFREREZFQYboiIiMioMNwQERGRUTG5OTeqqqmpQXV1tdhlkA5YWlo+9rJCIiIyHAw3jxAEAYWFhSguLha7FNIRMzMzeHt7w9LSUuxSiIhIAxhuHlEfbFxdXWFjY8OF/oxc/aKOBQUF8PT05P9vIiIjwHDzkJqaGmmwcXZ2Frsc0hEXFxfcvHkTDx48gIWFhdjlEBFRE3GiwUPq59jY2NiIXAnpUv1wVE1NjciVEBGRJjDcKMChCdPC/99ERMaF4YaIiIiMCsMNERERGRWGGyMRGhoKiUQCiUQCCwsLuLm54YUXXsDGjRtRW1ur8nkSEhLQokUL7RVKRESkZQw3RmT48OEoKChAXl4e9u7diyFDhmDWrFl4+eWX8eDBA7HLIyIiE1BdXQ1BEEStgeHGiFhZWcHd3R1t27bFU089hfnz52PXrl3Yu3cvEhISAAArV65Ez549YWtrCw8PD0yfPh1lZWUAgLS0NLz99tsoKSmR9gItWrQIALBp0yY8/fTTsLe3h7u7O9544w3cvn1bpHdKRET6pra2Fv/+97+xdOlS7N+/X9RaGG4eQxAEVFVViXLTRPIdOnQoevfujR9++AFA3Wq8a9aswdmzZ/HNN9/g0KFDmDt3LgDA398f//nPf+Dg4ICCggIUFBTg/fffB1CXxJcsWYJTp04hKSkJeXl5CA0NbXJ9RERk+G7fvo0lS5bg77//BgBUVFSIWg8X8XuM6upqxMTEiPLa8+bN08iWAN26dcPp06cBABEREdJ2Ly8vfPLJJ3j33XfxxRdfwNLSEo6OjpBIJHB3d5c5x6RJk6T/3aFDB6xZswZ9+/ZFWVkZ7OzsmlwjEREZprS0NKSnp0vve3h4IDAwUMSKGG5MgiAI0rVcDhw4gJiYGFy4cAGlpaV48OABKioqcP/+/QYXLzxx4gQWLVqEU6dO4e7du9JJyvn5+XjiiSd08j6IiEh/1NTU4JNPPpFpGzduHLp37y5SRf9guHkMCwsLzJs3T7TX1oTz58/D29sbeXl5ePnllzFt2jR8+umncHJywtGjRzF58mRUVVUpDTfl5eUICAhAQEAAvvvuO7i4uCA/Px8BAQGoqqrSSI1ERGQ4bt68ia+//lqm7YMPPtCbFf4Zbh5DIpEY9G7Rhw4dQnZ2NmbPno0TJ06gtrYWK1asgJlZ3XSr7du3yxxvaWkptw3BhQsXcOfOHcTGxsLDwwMAcPz4cd28ASIi0iv79u3Dr7/+Kr3fuXNnvPHGGyJWJI8Tio1IZWUlCgsL8ccff+D333/H0qVLMXr0aLz88ssIDg5Gp06dUF1djf/+97+4evUqNm3ahHXr1smcw8vLC2VlZTh48CD+/PNP3L9/H56enrC0tJQ+Lzk5GUuWLBHpXRIRkRiqq6sRHR0tE2zeeOMNuWCTnAz4+9f9FAvDjRHZt28fWrduDS8vLwwfPhyHDx/GmjVrsGvXLpibm6N3795YuXIlli1bhh49euC7776Tmyzt7++Pd999F+PHj4eLiwv+/e9/w8XFBQkJCdixYweeeOIJxMbGYvny5SK9SyIi0rVr165h6dKlMm0ffvghOnfuLHdsbCyQmVn3UywSQeyVdnSstLQUjo6OKCkpgYODg8xjFRUVyM3Nhbe3N6ytrUWqkHSN/9+JiJRLSkrCqVOnpPd79uyJsWPHKj0+Obku2ERGApq8aKqh39+P4pwbIiIiklNZWYnYR7pfQkJC4OXl1eDzAgM1G2oag+GGiIiIZFy+fBnfffedTNv8+fM1dhWvtjHcEBERkdTWrVuRk5Mjvd+3b1+89NJLIlakPoYbIiIiwv379/HZZ5/JtL3zzjto27atSBU1HsMNERGRiTt37hx27Ngh07ZgwQI0a2aYMcEwqyYiIqImEwQBCQkJyM/Pl7YNHDgQQ4cOFbGqpmO4ISIiMkH37t3DypUrZdreffdduLm5iVSR5jDcEBERmZiTJ09i165d0vtWVlaYO3eudGseQ8dwQ0REZCIEQUBcXByKioqkbcOGDcOAAQNErErzjCOikc6EhoYiKChIen/w4MGIiIho0jk1cQ4iImpYcXExFi9eLBNswsPDjS7YAOy5MRqhoaH45ptvAAAWFhbw9PREcHAw5s+fr9XZ7j/88IPKizqlpaVhyJAhuHv3Llq0aNGocxARkfp+/fVX7Nu3T3q/RYsWmDlzJiQSiYhVaQ/DjREZPnw44uPjUVlZiT179iAsLAwWFhaYN2+ezHFVVVWwtLTUyGs6OTnpxTmIiEhebW0tVq1ahbKyMmnbyJEj8fTTT4tYlfZxWMqIWFlZwd3dHe3bt8e0adMwbNgwJCcnS4eSPv30U7Rp0wZdu3YFAFy/fh2vvfYaWrRoAScnJ4wePRp5eXnS89XU1GDOnDlo0aIFnJ2dMXfuXDy6z+qjQ0qVlZX48MMP4eHhASsrK3Tq1AkbNmxAXl4ehgwZAgBo2bIlJBIJQkNDFZ7j7t27CA4ORsuWLWFjY4MRI0bg0qVL0scTEhLQokULpKSkwMfHB3Z2dhg+fDgKCgqkx6SlpeGZZ56Bra0tWrRogQEDBuDatWsa+qSJiPTfn3/+iSVLlsgEm4iICKMPNgDDjVFr3rw5qqqqAAAHDx5ETk4OUlNTsXv3blRXVyMgIAD29vb4+eef8csvv0hDQv1zVqxYgYSEBGzcuBFHjx7FX3/9hcTExAZfMzg4GFu2bMGaNWtw/vx5fPnll7Czs4OHhwd27twJAMjJyUFBQQFWr16t8ByhoaE4fvw4kpOTkZmZCUEQ8NJLL6G6ulp6zP3797F8+XJs2rQJR44cQX5+Pt5//30AwIMHDxAUFIRBgwbh9OnTyMzMxL/+9S+j7X4lInrUkSNHsHbtWun91q1bY+HChXB0dBSxKt3hsJQREgQBBw8eREpKCmbMmIGioiLY2tpi/fr10uGob7/9FrW1tVi/fr30l358fDxatGiBtLQ0vPjii/jPf/6DefPmSbe2X7duHVJSUpS+7sWLF7F9+3akpqZi2LBhAIAOHTpIH68ffnJ1dZWZc/OwS5cuITk5Gb/88gv8/f0BAN999x08PDyQlJSEV199FQBQXV2NdevWoWPHjgDqJsUtXrwYAFBaWoqSkhK8/PLL0sd9fHzU/yCJiAxMTU0NYmJiUFNTI20bM2YMevXqJWJVuseeGy1KTgb8/et+6sLu3bthZ2cHa2trjBgxAuPHj8eiRYsAAD179pSZZ3Pq1ClcvnwZ9vb2sLOzg52dHZycnFBRUYErV66gpKQEBQUF6Nevn/Q5zZo1a7A78+TJkzA3N8egQYMa/R7Onz+PZs2aybyus7MzunbtivPnz0vbbGxspMEFqPtXye3btwHUhajQ0FAEBARg1KhRWL16tcyQFRGRMSosLMQnn3wiE2zee+89kws2AHtutCo2FsjMrPsZGKj91xsyZAji4uJgaWmJNm3ayFwlZWtrK3NsWVkZ+vTpI7elPQC4uLg06vWbN2/eqOc1xqNXV0kkEpn5QPHx8Zg5cyb27duHbdu24aOPPkJqair69++vsxqJiHQlOjpa5n6HDh0wceJEkaoRH3tutCgyEvDzq/upC7a2tujUqRM8PT0fe/n3U089hUuXLsHV1RWdOnWSuTk6OsLR0RGtW7fGr7/+Kn3OgwcPcOLECaXn7NmzJ2pra5Genq7w8fqeo4f/VfEoHx8fPHjwQOZ179y5g5ycHDzxxBMNvqdH+fr6Yt68ecjIyECPHj2wefNmtZ5PRKTviouL5YLN+PHjTTrYAAw3WhUYCGRk6KbXRl1vvvkmWrVqhdGjR+Pnn39Gbm4u0tLSMHPmTNy4cQMAMGvWLMTGxiIpKQkXLlzA9OnTUVxcrPScXl5eCAkJwaRJk5CUlCQ95/bt2wEA7du3h0Qiwe7du1FUVCQzg79e586dMXr0aEyZMgVHjx7FqVOn8NZbb6Ft27YYPXq0Su8tNzcX8+bNQ2ZmJq5du4b9+/fj0qVLnHdDREZl+fLlchdmHDkyExcvdhOpIv3BcGOibGxscOTIEXh6emLs2LHw8fHB5MmTUVFRAQcHBwB1Y7UTJ05ESEgI/Pz8YG9vjzFjxjR43ri4OIwbNw7Tp09Ht27dMGXKFJSXlwMA2rZti+joaERGRsLNzQ3h4eEKzxEfH48+ffrg5Zdfhp+fHwRBwJ49e1Re6M/GxgYXLlzAK6+8gi5duuBf//oXwsLCMHXqVDU+ISIi/RUdHS39u7VeSkoUDh1qidhYkYrSIxLh0YVLjFxpaSkcHR1RUlIi/SVer6KiArm5ufD29oa1tbVIFZKu8f87ERmKgoICfPXVV3Lty5dHYfhw4I8/6qZC6OOIQVM19Pv7UZxQTEREZAAenVsDAFOnTkXnzu4oKwP27QPu3ROhMD3EYSkiIiI9pyjYREVFwd3dHTNnAnZ2wMyZIhSmp9hzQ0REpKeuXr2KTZs2ybTZ2dnhvffek97/9NO6G/2D4YaIiEgPKeqtmTVrltIV3ukfDDcKmNgca5PH/99EpG+UDUORahhuHlJ/qfH9+/d1utouiat+o1Bzc3ORKyEiU3f69Gm5DYrbt2+P0NBQcQoyUKKGm7i4OMTFxSEvLw8A0L17dyxcuBAjRoxQeHxCQgLefvttmTYrKytUVFRopB5zc3O0aNFCukeRjY0Nd5I2crW1tSgqKoKNjc1jV3UmItImRb01c+fO5T+2G0HUv83btWuH2NhYdO7cGYIg4JtvvsHo0aORlZWF7t27K3yOg4MDcnJypPc1HT7c3d0BQBpwyPiZmZnB09OTQZaIRCEIAhYvXizXzmGoxhM13IwaNUrm/qeffoq4uDgcO3ZMabiRSCTSAKINEokErVu3hqurK6qrq7X2OqQ/LC0tYWbGVRGISPd++eUXHDhwQKbtySefVHm7GVJMb/rha2pqsGPHDpSXl8PPz0/pcWVlZWjfvj1qa2vx1FNPYenSpUqDUFOYm5tzDgYREWmNomGo+fPnq7zVDCknerjJzs6Gn58fKioqYGdnh8TERKW7P3ft2hUbN25Er169UFJSguXLl8Pf3x9nz55Fu3btFD6nsrISlZWV0vulpaVaeR9ERESqePDgAT5VsDANh6E0R/S9paqqqpCfn4+SkhJ8//33WL9+PdLT05UGnIdVV1fDx8cHEyZMwJIlSxQes2jRIoXpWJW9KYiIiDRpz549+O2332TaBg0ahMGDB4tTkAFRZ28p0cPNo4YNG4aOHTviyy+/VOn4V199Fc2aNcOWLVsUPq6o58bDw4PhhoiIdErRP7Q//vhjzvlTkUFvnFlbWysTRhpSU1OD7OxsvPTSS0qPsbKygpWVlabKIyIiUktFRQWWLVsm185hKO0RNdzMmzcPI0aMgKenJ+7du4fNmzcjLS0NKSkpAIDg4GC0bdsWMTExAIDFixejf//+6NSpE4qLi/HZZ5/h2rVreOedd8R8G0RERApt3rwZly5dkmkbNWoUnnrqKZEqMg2ihpvbt28jODgYBQUFcHR0RK9evZCSkoIXXngBAJCfny/TXXf37l1MmTIFhYWFaNmyJfr06YOMjAyV5ucQERHpkqJhqIULF3JNLR3Quzk32qbOmB0REZG67t69izVr1si1cxiqaQx6zg0REZGhUtRbM2HCBHTp0kWEakwXww0REZEGKAo2vr5RYK7RPYYbIiKiJrh58ya+/vpruXYOQ4mH4YaIiKiRFPXWTJw4ER06dBChGqrHcENERNQIioINe2v0A8MNERGRGi5evKhwVXwGG/3BcENERKQiRb017777Ltzc3ESohpThhhZEREQqUDYMpSjYJCcD/v51P0n32HNDRESkRHIy8O23x9G9+09yjzU0DBUbC2Rm1v0MDNRmhaQIww0REZESWVnR6N5dtm327NmPXSE3MrIu2ERGarE4UorhhoiI6P8kJ9eFkg8/FHDy5GK5x1WdNBwYyB4bMTHcEBER/Z/YWKBz5//h5MlcmXYXFxdMnz5dpKpIXQw3RERE/ycgQH7S8Ny5c9G8eXMRqqHGYrghIiKTV11djaVLl8q1c+0aw8RwQ0REJk3RJd5mZpbYu3cefH05d8YQcZ0bIiIyWYqCzfz587F37zzppdxkeBhuiIjI5JSVlSldlM/CwgKRkYCfHy/lNlQcliIiIpOiKNQ4OzsjPDxcep+Xchs2hhsiIjIZioLNwoULIZFIRKiGtIXhhoiIjN7t27cRFxcn186roYwTww0RERk1Rb01PXr0wCuvvCJCNaQLDDdERGS0lE0aJuPGcENEREbnypUr+Pbbb+XaGWxMA8MNEREZFUW9NUOGDMFzzz0nQjUkBoYbIiIyGhyGIoDhhoiIjMDx48fx008/ybUz2JgmhhsiIjJoinprxo0bh+7du4tQDekDhhsiIjJYHIYiRRhuiIjI4CQmJuL06dNy7Qw2BDDcEBGRgVHUW3Ps2CRMm+YhQjWkjxhuiIjIIAiCgMWLF8u1s7eGHsVwQ0REeu/zzz/HnTt35NoZbEgRhhsiItJrioahZsyYAScnJxGqIUNgJnYBRERE9ZKTAX//up81NTVKr4Z6ONg8/BwiAJAIgiCIXYQulZaWwtHRESUlJXBwcBC7HCIieoi/P5CZCSxaJB9qAMXDUPXP8fMDMjK0XSGJRZ3f3xyWIiIi0SQnA7GxQGQkEBhY9zMrSz7YfPjhh7C2tlb43CFD6u5HRuqiYjIEDDdERCSa2Ni6XpfYWGDYsPvIyvpM7hhlk4brnwuwx4Zkcc4NERGJJjKybjgpICAan32merB5+LnssaFHseeGiIhEExioeBjq448/hpmZ4n9/PzyUxR4bUoQ9N0REJIrCwkKlV0MpCzaA7FAWkSLsuSEiIp1TFGpsbW3x/vvvP/a5kZH/9NwQKcJwQ0REOtXUnbwDA+tuRMow3BARkU6cP38e27dvl2vnFgqkaQw3RESkdYp6a7y8vBASEiJCNWTsGG6IiEjjHr6iSdHVUOytIW1iuCEiIo2LjQUsLdORlZUm9xiDDWkbww0REWlcQIB8b82AAQMwbNgwEaohU8NwQ0REGtXUq6GImorhhoiINCI+Ph75+fly7Qw2pGtcoZiIiNSSnAz4+9f9rBcdHS0XbAIDAxlsSBQMN0REpJZHtz9QNgzl6+ur48qI6nBYioiI1FK//UFAQDQU5Br21pDoGG6IiEgtynbyfvvtt+Hp6SlCRUSyGG6IiEhltbW1WLJkiVw7e2tInzDcEBGRShTNrQEYbEj/MNwQEdFjKQo2ERERcHR0FKEaooaJerVUXFwcevXqBQcHBzg4OMDPzw979+5t8Dk7duxAt27dYG1tjZ49e2LPnj06qpaIyPT8/fffSq+GYrAhfSVquGnXrh1iY2Nx4sQJHD9+HEOHDsXo0aNx9uxZhcdnZGRgwoQJmDx5MrKyshAUFISgoCCcOXNGx5UTERm/6Oho/Pvf/5Zr5zAU6TuJIAiC2EU8zMnJCZ999hkmT54s99j48eNRXl6O3bt3S9v69++PJ598EuvWrVPp/KWlpXB0dERJSQkcHBw0VjcRkTFR1Fszb948WFpailANkXq/v/VmEb+amhps3boV5eXl8PPzU3hMZmam3KZrAQEByMzMVHreyspKlJaWytyIiEhW/arD27bdVjoMxWBDhkL0CcXZ2dnw8/NDRUUF7OzskJiYiCeeeELhsYWFhXBzc5Npc3NzQ2FhodLzx8TEKJ3hT0REdeoX5btwQf4xDkORoRE93HTt2hUnT55ESUkJvv/+e4SEhCA9PV1pwFHXvHnzMGfOHOn90tJSeHh4aOTcRETGIiBA/h+BCxcuhEQiEaEaoqYRPdxYWlqiU6dOAIA+ffrgt99+w+rVq/Hll1/KHevu7o5bt27JtN26dQvu7u5Kz29lZQUrKyvNFk1EZCTOnDmDnTt3yrWzt4YMmd7MualXW1uLyspKhY/5+fnh4MGDMm2pqalK5+gQEZFy0dHRcsGmtlbCYEMGT9Sem3nz5mHEiBHw9PTEvXv3sHnzZqSlpSElJQUAEBwcjLZt2yImJgYAMGvWLAwaNAgrVqzAyJEjsXXrVhw/fhxfffWVmG+DiMjgKJqLmJIShchIEYoh0jBRw83t27cRHByMgoICODo6olevXkhJScELL7wAAMjPz4eZ2T+dS/7+/ti8eTM++ugjzJ8/H507d0ZSUhJ69Ogh1lsgIjIYycnADz+kwts7Q+6xqKgosMOGjIXerXOjbVznhohMlaLeGg8PD0yaNEmEaojUo87vb9EnFBMRkfYpW7uGyBgx3BARGbENGzbgxo0bcu0MNmTMGG6IiIyUot6aAQMGyK30TmRsGG6IiIwQh6HIlDHcEBEZEWXbzTDYkClhuCEiMhKKgs24cePQvXt3EaohEg/DDRGRgRMEAYsXL5ZrZ28NmSqGGyIiA8ZhKCJ5DDdERAZKUbB599134ebmJkI1RPpD7Y0zzc3Ncfv2bbn2O3fuwNzcXCNFERGRclVVVUqvhmKwIWpEz42y3RoqKythaWnZ5IKIiEg5DkMRPZ7K4WbNmjUAAIlEgvXr18POzk76WE1NDY4cOYJu3bppvkIiIgKgONh88MEHsLGxEaEaIv2lcrhZtWoVgLqem3Xr1skMQVlaWsLLywvr1q3TfIVERCZux46/cO7cf+Xa2VtDpJjK4SY3NxcAMGTIEPzwww9o2bKl1ooiIqI6HIYiUp/ac24OHz6sjTqIiOgRioLNxx9/DDMzta8FITIpaoebSZMmNfj4xo0bG10MEREBFy9exJYtW+Ta2VtDpBq1w83du3dl7ldXV+PMmTMoLi7G0KFDNVYYEZEp4jAUUdOpHW4SExPl2mprazFt2jR07NhRI0UREZki7uRNpBkaGbg1MzPDnDlzpFdUERGR6g4ePKgw2Pj6MtgQNYbGZqVduXIFDx480NTpiIiMRnIy4O9f9/NR0dHROHr0qFz7okVRiI3VQXFERkjtYak5c+bI3BcEAQUFBfjpp58QEhKiscKIiIxFbCyQmQlpWImNBSIjgawsxcNQycmAn1/dMUSkPrXDTVZWlsx9MzMzuLi4YMWKFY+9koqIyBRFRv4TaGJjAV/fL5CVVSR3XEpKFHx9gcDAuhsRNY5EULZZlJEqLS2Fo6MjSkpK4ODgIHY5RGSEkpP/CTOPhhRFc2u8vLzw5ZchyMys67HJyNBRoUQGRJ3f32r33NS7ffs2cnJyAABdu3aFq6trY09FRGRUHh6GejjcNHQ1VMuW/wQiImoatcNNaWkpwsLCsGXLFtTW1gIAzM3NMX78eKxduxaOjo4aL5KIyJA8PAwFqLZ2DYeiiDRH7aulpkyZgl9//RU//fQTiouLUVxcjN27d+P48eOYOnWqNmokIjIogYF1Q0uBgYqDzcCBA7l+DZEWqT3nxtbWFikpKXj22Wdl2n/++WcMHz4c5eXlGi1Q0zjnhoi0rW7OjYCAgMVyjzHUEDWOVufcODs7Kxx6cnR05E7hRESou8Q7IEC+ncGGSDfUHpb66KOPMGfOHBQWFkrbCgsL8cEHH+Djjz/WaHFERPpK2cJ8ioahxo8fz2BDpENqD0v5+vri8uXLqKyshKenJwAgPz8fVlZW6Ny5s8yxv//+u+Yq1RAOSxGRJvj7Q+bS7aSkapw6tVTuOIYaIs3Q6rDU6NGjIZFIGl0cEZExePiKKO7kTaRfuIgfEVETKAo24eHhcHZ2FqEaIuOlzu9vtefcdOjQAXfu3JFrLy4uRocOHdQ9HRGRQfrrr7+ULsrHYEMkLrWHpfLy8lBTUyPXXllZiRs3bmikKCIifcZhKCL9pnK4SX7okoCUlBSZy8Frampw8OBBeHt7a7Y6IiI9oyjYzJs3D5aWliJUQ0SKqBxugoKCAAASiQQhISEyj1lYWMDLywsrVqzQaHFERPri4sWL2LJli1w7e2uI9I/K4aZ+Hylvb2/89ttvaNWqldaKIiLSJxyGIjIsas+5yc3N1UYdRER6SVGwWbhwIZfEINJjaoebxYvl90p52MKFCxtdDBGRvjh48CCOHj0q187eGiL9p3a4SUxMlLlfXV2N3NxcNGvWDB07dmS4ISKDx2EoIsOmdrjJysqSaystLUVoaCjGjBmjkaKIiMSibO0aIjIcGluhODs7G6NGjUJeXp4mTqc1XKGYiBT58ssvZTYErsdgQ6QftLq3lDIlJSUoKSnR1OmIiHRGUW+NpaUl5s2bJ0I1RNRUaoebNWvWyNwXBAEFBQXYtGkTRowYobHCiIh0gcNQRMZH7XCzatUqmftmZmZwcXFBSEgI/5VDRHopOfmfHbwDA+vaOGmYyHhxnRsiMnqxsUBmZt1PAMjKkg82vXr14kURREaiUXNuiouLcfnyZQBAp06d0KJFC03WRESkUZGR//TcKAo27K0hMi5m6hycl5eHkSNHolWrVujXrx/69euHVq1a4eWXX9b7q6SIyHQFBgIBAdEKg42vL4MNkbFRuefm+vXr6N+/PywsLLBkyRL4+PgAAM6dO4e4uDj4+fnht99+Q7t27bRWLBFRYyiaX5OZGYSUlN7w8/tnHg4RGQeV17mZPHkyLl++jJSUFFhbW8s89vfff2P48OHo3Lkz1q9fr5VCNYXr3BCZjl27anHy5BK59kWLotCtG9CypewkYyLSX1pZ52bfvn3Ytm2bXLABgObNm2PJkiV4/fXX1a+WiEgLlF0N5esbBT8/hhoiY6ZyuPnzzz/h5eWl9PEOHTrgr7/+0kRNRERNoijYTJ06Fe7u7gAYaoiMncrhpnXr1jh37pzSOTVnzpyR/sVBRCSG8vJyLF++XK6dV0MRmRaVw01QUBDef/99HDx4EC4uLjKP3b59Gx9++CGCgoI0XR8RkUq4KB8R1VN5QvHdu3fRr18/FBYW4q233kK3bt0gCALOnz+PzZs3w93dHceOHYOTk5O2a24STigmMj6Kgs0HH3wAGxsbEaohIm1Q5/e3yuvctGzZEr/++ivefPNNbN26FREREZg9eza2b9+ON954o1HBJiYmBn379oW9vT1cXV0RFBSEnJycBp+TkJAAiUQic1M0yZmIjEtyMuDvX/ez3o0bN5TuDcVgQ2S6VO65eZggCCgqKgIAuLi4QCKRNOrFhw8fjtdffx19+/bFgwcPMH/+fJw5cwbnzp2Dra2twuckJCRg1qxZMiFIIpHAzc1Npddkzw2RYfL3r9tCwc8PyMjgMBSRqdHKpeAPk0gkcHV1bVRxD9u3b5/M/YSEBLi6uuLEiRN47rnnGnx9Tl4mMi0Pb6GgKNgsXLiw0f/QIiLj0qhwoy0lJSUA8NjhrbKyMrRv3x61tbV46qmnsHTpUnTv3l3hsZWVlaisrJTeLy0t1VzBRKQzgYGAu/v/w969e+UeY28NET1Mrb2ltKm2thYREREYMGAAevToofS4rl27YuPGjdi1axe+/fZb1NbWwt/fHzdu3FB4fExMDBwdHaU3Dw8Pbb0FItKi6OhoBhsiUkmj5txow7Rp07B3714cPXpUrf2pqqur4ePjgwkTJmDJEvll1hX13Hh4eHDODZEBUTZpmIhMh9bn3GhaeHg4du/ejSNHjqi98aaFhQV8fX1x+fJlhY9bWVnByspKE2USkY5t27YNFy5ckGtnsCGihqgUbtasWaPyCWfOnKnysYIgYMaMGUhMTERaWhq8vb1Vfm69mpoaZGdn46WXXlL7uUSkvxraG4qIqCEqhZtVq1apdDKJRKJWuAkLC8PmzZuxa9cu2Nvbo7CwEADg6OiI5s2bAwCCg4PRtm1bxMTEAAAWL16M/v37o1OnTiguLsZnn32Ga9eu4Z133lH5dYlIfyQn/3MVVP2eTxyGIqKmUCnc5ObmauXF4+LiAACDBw+WaY+Pj0doaCgAID8/H2Zm/8x7vnv3LqZMmYLCwkK0bNkSffr0QUZGBp544gmt1EhE2hUbW7d+TWwskJXFtWuIqOkaPaG4qqoKubm56NixI5o104upOyrhIn5E+qW+5yYgQD7Y/PlnB/z3vxNFqIqI9I1Wtl+od//+fUyePBk2Njbo3r078vPzAQAzZsxAbGxs4yomIpMVGKg42KSkROGFFxhsiEh9aoebefPm4dSpU0hLS5PZ02nYsGHYtm2bRosjIuMWHR2tdH5NRsY/c3CIiNShdrhJSkrC559/jmeffVZmqfPu3bvjypUrGi2OiIzHoxtfKgo1w4YN4/waImoytSfLFBUVKdxXqry8nPu6EJFS/0wcFpCVtVjucYYaItIUtcPN008/jZ9++gkzZswAAGmgWb9+Pfz8/DRbHREZjchIXg1FRLqhdrhZunQpRowYgXPnzuHBgwdYvXo1zp07h4yMDKSnp2ujRiIyAoqCzcSJE9GhQwcRqiEiY6b2nJtnn30WJ0+exIMHD9CzZ0/s378frq6uyMzMRJ8+fbRRIxEZsIqKCoXza3x9oxhsiEgr9GbjTF3hOjdEuqNsCwUOQxGRujS+cWZpaanKL87AQESA4mATEREBR0dHEaohIlOiUrhp0aKFyldC1dTUNKkgItJvivaCetitW7ewbt06uXb21hCRrqgUbg4fPiz977y8PERGRiI0NFR6dVRmZia++eYb6eaWRGS8Ht4L6tFww2EoItIHas+5ef755/HOO+9gwoQJMu2bN2/GV199hbS0NE3Wp3Gcc0PUNMp6bhQFmwULFhjU3nNEpL/U+f2tdrixsbHBqVOn0LlzZ5n2ixcv4sknn8T9+/fVr1iHGG6INOv06dNITEyUa2dvDRFpklY3zvTw8MDXX38t175+/Xp4eHioezoiMmDR0dEMNkSkd9TuL161ahVeeeUV7N27F/369QMA/L//9/9w6dIl7Ny5U+MFEpF+UrbhJRGR2Bq1zs2NGzfwxRdf4MKFCwAAHx8fvPvuuwbRc8NhKaKm+fHHH/H777/LtTPYEJE2aXXOjaFjuCFSz8MTiLk3FBGJReOL+D2quLgYGzZswPnz5wEA3bt3x6RJk7g4F5ERqr/0W1GwYaghIn2kds/N8ePHERAQgObNm+OZZ54BAPz222/4+++/sX//fjz11FNaKVRT2HNDpJ4lS2JRW1sp185gQ0S6pNVhqYEDB6JTp074+uuvpetXPHjwAO+88w6uXr2KI0eONL5yHWC4IVKdoknDDg4OmD17tgjVEJEp02q4ad68ObKystCtWzeZ9nPnzuHpp5/mOjdERoJXQxGRPtHqnBsHBwfk5+fLhZvr16/D3t5e3dMRkZ5RtoVCSkoUmG2IyBCovYjf+PHjMXnyZGzbtg3Xr1/H9evXsXXrVoVbMhCRYUhOBvz9FQcbZ+enkJIShchIEQojImoEtXtuli9fDolEguDgYDx48AAAYGFhgWnTpiE2NlbjBRKR9tRf5v3XX8CECcqHocLDdV0ZEVHjNXqdm/v37+PKlSsAgI4dO8LGxkajhWkL59wQ/cPfHwgI4No1RKT/tL7ODVC3gWbPnj0b+3Qi0gOKgs3YsWP5Z5uIDJrK4WbSpEkqHbdx48ZGF0NEulFdXY2lS5fKtbO3hoiMgcrhJiEhAe3bt4evry9MbMcGIqOi7GooBhsiMhYqh5tp06Zhy5YtyM3Nxdtvv4233noLTk5O2qyNiDTgcXtDffHFu+jY0Y2XeROR0VD5UvC1a9eioKAAc+fOxY8//ggPDw+89tprSElJYU8OkR6LjQXOn7+rMNj4+kahY0c3XuZNREZFrXVurKysMGHCBKSmpuLcuXPo3r07pk+fDi8vL5SVlWmrRiJqgoCAaERErJFr5zAUERmrRl8tZWZmBolEAkEQUFNTo8maiKiJ6oeiFF0NFRkZCSsrKyQnA2++CZSV1R0bGChCoUREWqBWz01lZSW2bNmCF154AV26dEF2djY+//xz5Ofnw87OTls1EpGavv76isJgExUVBSsrKwB1gaasDLCzA4eliMioqNxzM336dGzduhUeHh6YNGkStmzZglatWmmzNiJqhOjoaDz9tHz7o8NQkZH/TDRmrw0RGROVVyg2MzODp6cnfH19IZFIlB73ww8/aKw4beAKxWTMFF3mvXDhwgb/zBIRGQKtrFAcHBzMvyCJ9FR6ejrS0tLk2jlpmIhMkVqL+BGR/uGifEREshp9tRQRiU9RsGGoISJTx3BDZIA2bNiAGzduyLUz2BARMdwQGRwOQxERNYzhhsiAcBiKiOjxGG6I9NTjNrwEGGyIiBRhuCHSU7GxQGam4mDj4+OD1157TYSqiIj0H8MNkZ5S1mPD3hoiooYx3BDpIU4aJiJqPIYbIj2jKNi89NJL6Nu3rwjVEBEZHoYbIj1QN3m4FgEBS+QeY28NEZF6GG6I9EBWVjQCAuTbGWyIiNTHcEMkMkXDUJMnT0a7du1EqIaIyPAx3BCJpLy8HMuXL5drZ28NEVHTMNwQiYBXQxERaQ/DDZGOKQo277//PmxtbUWohojI+DDcEOnIH3/8gfXr18u1s7eGiEizGG6IdIDDUEREusNwQ6RlioLNxx9/DDMzMxGqISIyfqL+7RoTE4O+ffvC3t4erq6uCAoKQk5OzmOft2PHDnTr1g3W1tbo2bMn9uzZo4NqidRz/PhxhcEmKiqKwYaISItE/Rs2PT0dYWFhOHbsGFJTU1FdXY0XX3wR5eXlSp+TkZGBCRMmYPLkycjKykJQUBCCgoJw5swZHVZO1LDo6Gj89NNPcu0chiIi0j6JIAiC2EXUKyoqgqurK9LT0/Hcc88pPGb8+PEoLy/H7t27pW39+/fHk08+iXXr1j32NUpLS+Ho6IiSkhI4ODhorHaiesp6a4iIqPHU+f2tV3NuSkpKAABOTk5Kj8nMzMScOXNk2gICApCUlKTN0oge6/vvv8fZs2fl2hlsiIh0S2/CTW1tLSIiIjBgwAD06NFD6XGFhYVwc3OTaXNzc0NhYaHC4ysrK1FZWSm9X1paqpmCiR7Cq6GIiPSH3oSbsLAwnDlzBkePHtXoeWNiYpT+4iHSBA5DERHpF70IN+Hh4di9ezeOHDny2M0C3d3dcevWLZm2W7duwd3dXeHx8+bNkxnGKi0thYeHR9OLJpOWnAycOLEEZma1co8x2BARiUvUq6UEQUB4eDgSExNx6NAheHt7P/Y5fn5+OHjwoExbamoq/Pz8FB5vZWUFBwcHmRtRU2VlRcsFm7Zt2zLYEBHpAVF7bsLCwrB582bs2rUL9vb20nkzjo6OaN68OQAgODgYbdu2RUxMDABg1qxZGDRoEFasWIGRI0di69atOH78OL766ivR3geZFg5DERHpN1HDTVxcHABg8ODBMu3x8fEIDQ0FAOTn58sseObv74/Nmzfjo48+wvz589G5c2ckJSU1OAmZSBM4aZiIyDDo1To3usB1bqgxFAWboUOHYuDAgSJUQ0Rkegx2nRsifSMIAhYvXizXzt4aIiL9xXBDpASHoYiIDBPDDZECioLNW2+9hY4dO4pQDRERqYPhhughVVVV0ivzHsbeGiIiw8FwQ/R/OAxFRGQcGG6IoDjYPPHELLz6agvdF0NERE3CcEMm7c6dO/j888/l2n19oxAYKEJBRETUZAw3ZLI4DEVEZJwYbsgkKQo2CxYsQLNm/CNBRGTo+Dc5mZQLFy5g27Ztcu3srSEiMh4MN2QyOAxFRGQaGG7IJHAnbyIi02H2+EOIDNfRo0ebHGySkwF//7qfRESk/9hzQ0YnORmIjQUCAjQzDBUbC2Rm1v3k5eFERPqPPTdkUFTpRVEWbHx9oxo1FBUZCfj51f0kIiL9JxEEQRC7CF0qLS2Fo6MjSkpK4ODgIHY5pCZ//7peFD8/ICND/vHt27fj/Pnzcu2cX0NEZNjU+f3NYSkyKJGRdT0z9b0o9UNQkZFAVpZ8b42HhwcmTZqk4yqJiEhMHJYigxIYWNdjUz/3pX4+jKJgk5ISJRdsODmYiMj4seeGDNqIEUsREFAt156SEqVwjgwnBxMRGT+GGzJYii7xHjp0KAYOHAhlU2weHdYiIiLjw3BDBqmxa9cEBrLHhojI2DHckEHhFgpERPQ4DDdkMBQFm5CQEHh5eem+GCIi0lu8Wor0Xm1trcJgk5IShdOnvXRfEBER6TX23JBeUzYMlZISxaueiIhIIYYb0luKgs2cOXNgb28PX9+6YDNkSN26NZGRDDlERFSHw1KkdyoqKpQOQ9nb2wP4ZzG/w4f/WbeGiIgIYM8N6ZmGhqEUrU3DdWuIiOhR3DiT9IaiYJOaugBz5zbjkBMRkYnjxplkUO7evYs1a9bItUdFRSldaZiIiEgZhhsSFRflIyIiTWO4IdEoCjYLFy6ERCIRoRoiIjIWvFqKdO769etKr4b68UcGGyIiahr23JBOKQo1Pj4++M9/XuOifEREpBEMN6QzDe3kbW3NS7qJiEgzGG5I6y5cuIBt27bJtT88aTgwkD02RESkGQw3pFWKemsCAgLQv39/EaohIiJTwHBDWtPQMBQREZG2MNyQxmVkZCA1NVWuncGGiIh0geGGNEpRb83rr7+Orl27ilANERGZIoYb0hgOQxERkT5guKEmS01NRUZGhlw7gw0REYmB4YaaRFFvzdSpU+Hu7i5CNURERAw31EiCIGDx4sVy7eytISIisTHckNq+++47XL58Wa7d1zcK/v51qwxzQT4iIhILww2pRdEw1HvvvQc7Ozv4+4P7QxERkei4Kzip5MGDB0qvhrKzswNQ12Pj58f9oYiISFzsuaHH2rBhA27cuCHT1qxZMyxYsECmjftDERGRPmC4oQYp6q2ZP38+LCwsRKiGiIjo8RhuSKGKigosW7ZMrt3XNwrMNUREpM8YbkjOp59+igcPHsi0FRR0x5dfjoOfH4eeiIhIvzHckAxFw1ALFy7Ejz9KcPo0JwsTEZH+Y7ghAEBxcTFWr14t116/KB8nCxMRkaFguCGFvTXPPfcchgwZIkI1RERETcNwY+K4kzcRERkbhhsTdfv2bcTFxcm1M9gQEZGhE3WF4iNHjmDUqFFo06YNJBIJkpKSGjw+LS0NEolE7lZYWKibgo1EdHS0XLAZP368dG+o5GSRCiMiItIAUXtuysvL0bt3b0yaNAljx45V+Xk5OTlwcHCQ3nd1ddVGeUZJ0TCUr28UJk0C/voLyMnh3lBERGTYRA03I0aMwIgRI9R+nqurK1q0aKH5goxYXl4evvnmG7n2qKgo6YaX3bpxbygiIjJ8Bjnn5sknn0RlZSV69OiBRYsWYcCAAUqPraysRGVlpfR+aWmpLkrUK4p6ayZNmgQPDw8AdWEmNrbuJ3tsiIjI0BnUruCtW7fGunXrsHPnTuzcuRMeHh4YPHgwfv/9d6XPiYmJgaOjo/RW/wvdVCi7GurhzyEwEMjIYLAhIiLjIBEEQRC7CACQSCRITExEUFCQWs8bNGgQPD09sWnTJoWPK+q58fDwQElJicy8HWNz+fJlfPfdd3LtvBqKiIgMUWlpKRwdHVX6/W2Qw1IPe+aZZ3D06FGlj1tZWcHKykqHFYlPUW9NeHg4nJ2dRaiGiIhItww+3Jw8eRKtW7cWuwy9IAgCFi9eLNfO3hoiIjIlooabsrIyXL58WXo/NzcXJ0+ehJOTEzw9PTFv3jz88ccf+N///gcA+M9//gNvb290794dFRUVWL9+PQ4dOoT9+/eL9Rb0xsmTJ7Fr1y6ZNm9vbwQHB4tUERERkThEDTfHjx+X2b9ozpw5AICQkBAkJCSgoKAA+fn50serqqrw3nvv4Y8//oCNjQ169eqFAwcOmPweSIqGoebOnYvmzZuLUA0REZG49GZCsa6oMyFJ36kyDJWczMu8iYjI8JnUhGJTde3aNSQkJMi0OTs/hfDwUTJtsbF1C/Rx1WEiIjIVDDcGaO3atfjzzz9l2j766COYm5vLHfvwAn1ERESmgOHGgNTW1mLJkiUyba1atUJYWJjS5wQGsseGiIhMC8ONgcjJycHWrVtl2jp3DsXnn7eHhwcDDBERUT2GGwMQExODqqoqmbaFCxdiwAAJ59MQERE9guFGj1VXV2Pp0qUybQ+vXcP5NERERPIYbvTUqVOnkJSUJNM2depUuLu7S+9zPg0REZE8hhs9pGhRvoULF0IikYhQDRERkWFhuNEjFRUVWLZsmUxbz549MXbsWJEqIiIiMjwMN3oiMzNTbo+sGTNmwMnJSaSKiIiIDBPDjR5QNAzFnbyJiIgah+FGRFVVVYiJiZFp69+/PwICAkSqiIiIyPAx3Ijk6tWr2LRpk0xbWtocREXZi1QRERGRcWC4EcH333+Ps2fPSu87OT2JLVtGc70aIiIiDWC40SFFV0O9/fbb8PT0xIwZIhVFRERkZBhudETR3lDz58+HhYWFSBUREREZJ4YbHfj2229x5coV6f1+/fph+PDhIlZERERkvBhutKi8vBzLly+XaZsyZQratGkjUkVERETGj+FGS7Kzs/HDDz9I70skEixYsADm5uYiVkVERGT8GG40TBAEfP311ygoKJC2DRo0CIMHDxavKCIiIhPCcKNBpaWlWLVqlUzb9OnT4eLiIlJFREREpofhRkOqq6tlgo2NjQ3ee+89mJmZiVgVERGR6WG40ZCqqirpf7/44ovw8/MTsRoiIiLTxXCjIba2tujZcy5WrLCEry8nDRMREYmFYyYatHx5c2RkmCM2VuxKiIiITBfDjQZFRgJ+fuAeUURERCLisJQGBQbW3YiIiEg87LkhIiIio8JwQ0REREaF4YaIiIiMCsMNERERGRWGGyIiIjIqDDdERERkVBhuiIiIyKgw3BAREZFRYbghIiIio8JwQ0REREaF4YaIiIiMCsMNERERGRWGGyIiIjIqJrcruCAIAIDS0lKRKyEiIiJV1f/erv893hCTCzf37t0DAHh4eIhcCREREanr3r17cHR0bPAYiaBKBDIitbW1uHnzJuzt7SGRSMQuR2dKS0vh4eGB69evw8HBQexyjBY/Z+3jZ6wb/Jy1j5+xegRBwL1799CmTRuYmTU8q8bkem7MzMzQrl07scsQjYODA/8Q6QA/Z+3jZ6wb/Jy1j5+x6h7XY1OPE4qJiIjIqDDcEBERkVFhuDERVlZWiIqKgpWVldilGDV+ztrHz1g3+DlrHz9j7TG5CcVERERk3NhzQ0REREaF4YaIiIiMCsMNERERGRWGGyIiIjIqDDdG4siRIxg1ahTatGkDiUSCpKSkBo9PS0uDRCKRuxUWFuqmYAMUExODvn37wt7eHq6urggKCkJOTs5jn7djxw5069YN1tbW6NmzJ/bs2aODag1TYz7jhIQEue+xtbW1jio2THFxcejVq5d08Tg/Pz/s3bu3wefwe6wedT9jfo81i+HGSJSXl6N3795Yu3atWs/LyclBQUGB9Obq6qqlCg1feno6wsLCcOzYMaSmpqK6uhovvvgiysvLlT4nIyMDEyZMwOTJk5GVlYWgoCAEBQXhzJkzOqzccDTmMwbqVnh9+Ht87do1HVVsmNq1a4fY2FicOHECx48fx9ChQzF69GicPXtW4fH8HqtP3c8Y4PdYowQyOgCExMTEBo85fPiwAEC4e/euTmoyRrdv3xYACOnp6UqPee2114SRI0fKtPXr10+YOnWqtsszCqp8xvHx8YKjo6PuijJSLVu2FNavX6/wMX6PNaOhz5jfY81iz42Je/LJJ9G6dWu88MIL+OWXX8Qux6CUlJQAAJycnJQek5mZiWHDhsm0BQQEIDMzU6u1GQtVPmMAKCsrQ/v27eHh4fHYfx2TrJqaGmzduhXl5eXw8/NTeAy/x02jymcM8HusSQw3Jqp169ZYt24ddu7ciZ07d8LDwwODBw/G77//LnZpBqG2thYREREYMGAAevToofS4wsJCuLm5ybS5ublxbpMKVP2Mu3btio0bN2LXrl349ttvUVtbC39/f9y4cUOH1Rqe7Oxs2NnZwcrKCu+++y4SExPxxBNPKDyW3+PGUecz5vdYs0xuV3Cq07VrV3Tt2lV639/fH1euXMGqVauwadMmESszDGFhYThz5gyOHj0qdilGS9XP2M/PT+Zfw/7+/vDx8cGXX36JJUuWaLtMg9W1a1ecPHkSJSUl+P777xESEoL09HSlv3xJfep8xvweaxbDDUk988wz/GWtgvDwcOzevRtHjhxBu3btGjzW3d0dt27dkmm7desW3N3dtVmiwVPnM36UhYUFfH19cfnyZS1VZxwsLS3RqVMnAECfPn3w22+/YfXq1fjyyy/ljuX3uHHU+Ywfxe9x03BYiqROnjyJ1q1bi12G3hIEAeHh4UhMTMShQ4fg7e392Of4+fnh4MGDMm2pqakNjrubssZ8xo+qqalBdnY2v8tqqq2tRWVlpcLH+D3WjIY+40fxe9xEYs9oJs24d++ekJWVJWRlZQkAhJUrVwpZWVnCtWvXBEEQhMjISGHixInS41etWiUkJSUJly5dErKzs4VZs2YJZmZmwoEDB8R6C3pv2rRpgqOjo5CWliYUFBRIb/fv35ceM3HiRCEyMlJ6/5dffhGaNWsmLF++XDh//rwQFRUlWFhYCNnZ2WK8Bb3XmM84OjpaSElJEa5cuSKcOHFCeP311wVra2vh7NmzYrwFgxAZGSmkp6cLubm5wunTp4XIyEhBIpEI+/fvFwSB32NNUPcz5vdYsxhujET9pd2P3kJCQgRBEISQkBBh0KBB0uOXLVsmdOzYUbC2thacnJyEwYMHC4cOHRKneAOh6PMFIMTHx0uPGTRokPQzr7d9+3ahS5cugqWlpdC9e3fhp59+0m3hBqQxn3FERITg6ekpWFpaCm5ubsJLL70k/P7777ov3oBMmjRJaN++vWBpaSm4uLgIzz//vPSXriDwe6wJ6n7G/B5rlkQQBEHXvUVERERE2sI5N0RERGRUGG6IiIjIqDDcEBERkVFhuCEiIiKjwnBDRERERoXhhoiIiIwKww0REREZFYYbIiIiE3TkyBGMGjUKbdq0gUQiQVJSklZfLyYmBn379oW9vT1cXV0RFBSEnJwcmWMqKioQFhYGZ2dn2NnZ4ZVXXpHb10wVDDdEZHCuX7+OSZMmoU2bNrC0tET79u0xa9Ys3LlzBwBQXV2NDz/8ED179oStrS3atGmD4OBg3Lx5U+TKifRHeXk5evfujbVr1+rk9dLT0xEWFoZjx44hNTUV1dXVePHFF1FeXi49Zvbs2fjxxx+xY8cOpKen4+bNmxg7dqzar8UVionIoFy9ehV+fn7o0qULPvnkE3h7e+Ps2bP44IMPUFVVhWPHjsHc3Bzjxo3DlClT0Lt3b9y9exezZs1CTU0Njh8/LvZbINI7EokEiYmJCAoKkrZVVlZiwYIF2LJlC4qLi9GjRw8sW7YMgwcP1shrFhUVwdXVFenp6XjuuedQUlICFxcXbN68GePGjQMAXLhwAT4+PsjMzET//v1VPnczjVRIRKQjYWFhsLS0xP79+9G8eXMAgKenJ3x9fdGxY0csWLAAcXFxSE1NlXne559/jmeeeQb5+fnw9PQUo3QigxIeHo5z585h69ataNOmDRITEzF8+HBkZ2ejc+fOTT5/SUkJAMDJyQkAcOLECVRXV2PYsGHSY7p16wZPT0+1ww2HpYjIYPz1119ISUnB9OnTpcGmnru7O958801s27YNijqkS0pKIJFI0KJFCx1VS2S48vPzER8fjx07dmDgwIHo2LEj3n//fTz77LOIj49v8vlra2sRERGBAQMGoEePHgCAwsJCWFpayv0ZdXNzQ2FhoVrnZ7ghIoNx6dIlCIIAHx8fhY/7+Pjg7t27KCoqkmmvqKjAhx9+iAkTJsDBwUEXpRIZtOzsbNTU1KBLly6ws7OT3tLT03HlyhUAdUNGEomkwVtkZKTC84eFheHMmTPYunWrVurnsBQRGRx1pgpWV1fjtddegyAIiIuL02JVRMajrKwM5ubmOHHiBMzNzWUes7OzAwB06NAB58+fb/A8zs7Ocm3h4eHYvXs3jhw5gnbt2knb3d3dUVVVheLiYpnem1u3bsHd3V2t+hluiMhgdOrUCRKJBOfPn8eYMWPkHj9//jxatmwJFxcXAP8Em2vXruHQoUPstSFSka+vL2pqanD79m0MHDhQ4TGWlpbo1q2byucUBAEzZsxAYmIi0tLS4O3tLfN4nz59YGFhgYMHD+KVV14BAOTk5CA/Px9+fn5q1c+rpYjIoAQEBODs2bO4dOmSzLybwsJCdOzYEcHBwYiLi5MGm0uXLuHw4cPSwENEdcrKynD58mUAdWFm5cqVGDJkCJycnODp6Ym33noLv/zyC1asWAFfX18UFRXh4MGD6NWrF0aOHKn2602fPh2bN2/Grl270LVrV2m7o6Oj9M/ytGnTsGfPHiQkJMDBwQEzZswAAGRkZKj3YgIRkQG5ePGi0KpVK2HgwIFCenq6kJ+fL+zdu1fo0aOH0LlzZ+HOnTtCVVWVEBgYKLRr1044efKkUFBQIL1VVlaK/RaI9MLhw4cFAHK3kJAQQRAEoaqqSli4cKHg5eUlWFhYCK1btxbGjBkjnD59ulGvp+i1AAjx8fHSY/7++29h+vTpQsuWLQUbGxthzJgxQkFBgdqvxZ4bIjI4165dQ1RUFPbt24e//voL7u7uCAoKQlRUFJydnZGXlyfX5V3v8OHDGlung4j0E8MNERERGRVeCk5ERERGheGGiIiIjArDDRERERkVhhsiIiIyKgw3REREZFQYboiIiMioMNwQERGRUWG4ISIiIqPCcENERERGheGGiIiIjArDDRERERkVhhsiIiIyKv8fXDy0Hvz/looAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 12ms/step" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAULRJREFUeJzt3XlcVPX+P/DXsCMIqMgaimviBUVFEDXAxHArLfuGS24/l2+LuVWGpqJtqKVyTXOr1FKT9HK7Zl5LcSmTqwiSuzcVwxJQNAcFBGQ+vz/8cnKGRWaY5czM6/l4zCM585kz73MaOO/5fN6fz1EIIQSIiIiISGJj6gCIiIiI5IYJEhEREZEGJkhEREREGpggEREREWlggkRERESkgQkSERERkQYmSEREREQamCARERERaWCCRERERKSBCRIRma0FCxZAoVDUq61CocCCBQsMGk9MTAxiYmJkuz8iqj8mSETUYBs3boRCoZAednZ28Pf3x7hx4/DHH3+YOjzZCQwMVDtfXl5eeOKJJ/DPf/5TL/svKSnBggULcPDgQb3sj8gaMUEiIr1555138OWXX2LNmjUYMGAANm/ejOjoaNy7d88g7zd37lyUlpYaZN+GFhoaii+//BJffvkl3njjDVy7dg3PPfcc1qxZ0+B9l5SUYOHChUyQiBrAztQBEJHlGDBgAMLCwgAAEydOhKenJxYvXoydO3fihRde0Pv72dnZwc7OPP+M+fv748UXX5R+HjNmDNq2bYvly5fjpZdeMmFkRASwB4mIDOiJJ54AAFy6dElt+/nz5/H888+jadOmcHJyQlhYGHbu3KnWpqKiAgsXLkS7du3g5OSEZs2aoXfv3ti7d6/UpqYapLKyMsyYMQPNmzdH48aN8cwzz+D333+vFtu4ceMQGBhYbXtN+9ywYQOefPJJeHl5wdHRER07dsTq1au1OheP4uPjg6CgIOTk5NTZ7vr165gwYQK8vb3h5OSEzp07Y9OmTdLzV65cQfPmzQEACxculIbxDF1/RWRpzPOrFxGZhStXrgAAmjRpIm07c+YMevXqBX9/fyQkJMDFxQVff/01hg4din/84x949tlnATxIVJKSkjBx4kSEh4ejqKgIx48fR1ZWFvr161fre06cOBGbN2/GyJEj0bNnT+zfvx+DBg1q0HGsXr0af/vb3/DMM8/Azs4O3377LV555RWoVCq8+uqrDdp3lYqKCly9ehXNmjWrtU1paSliYmJw8eJFTJkyBa1atcL27dsxbtw43L59G9OmTUPz5s2xevVqvPzyy3j22Wfx3HPPAQA6deqklziJrIYgImqgDRs2CABi37594saNG+Lq1atix44donnz5sLR0VFcvXpVatu3b18REhIi7t27J21TqVSiZ8+eol27dtK2zp07i0GDBtX5vomJieLhP2PZ2dkCgHjllVfU2o0cOVIAEImJidK2sWPHipYtWz5yn0IIUVJSUq1dXFycaN26tdq26OhoER0dXWfMQgjRsmVL8dRTT4kbN26IGzduiF9++UUMHz5cABCvvfZarftLTk4WAMTmzZulbeXl5SIyMlK4urqKoqIiIYQQN27cqHa8RKQdDrERkd7ExsaiefPmCAgIwPPPPw8XFxfs3LkTjz32GADg1q1b2L9/P1544QXcuXMHhYWFKCwsxM2bNxEXF4dff/1VmvXm4eGBM2fO4Ndff633++/evRsAMHXqVLXt06dPb9BxOTs7S/9WKpUoLCxEdHQ0Ll++DKVSqdM+f/jhBzRv3hzNmzdH586dsX37dowePRqLFy+u9TW7d++Gj48PRowYIW2zt7fH1KlTcffuXRw6dEinWIioOg6xEZHerFq1Cu3bt4dSqcTnn3+OH3/8EY6OjtLzFy9ehBAC8+bNw7x582rcx/Xr1+Hv74933nkHQ4YMQfv27REcHIz+/ftj9OjRdQ4V/fbbb7CxsUGbNm3Utj/++OMNOq6ff/4ZiYmJSE9PR0lJidpzSqUS7u7uWu8zIiIC7733HhQKBRo1aoSgoCB4eHjU+ZrffvsN7dq1g42N+nfboKAg6Xki0g8mSESkN+Hh4dIstqFDh6J3794YOXIkLly4AFdXV6hUKgDAG2+8gbi4uBr30bZtWwBAVFQULl26hH/961/44Ycf8Omnn2L58uVYs2YNJk6c2OBYa1tgsrKyUu3nS5cuoW/fvujQoQOWLVuGgIAAODg4YPfu3Vi+fLl0TNry9PREbGysTq8lIsNjgkREBmFra4ukpCT06dMHK1euREJCAlq3bg3gwbBQfZKDpk2bYvz48Rg/fjzu3r2LqKgoLFiwoNYEqWXLllCpVLh06ZJar9GFCxeqtW3SpAlu375dbbtmL8y3336LsrIy7Ny5Ey1atJC2Hzhw4JHx61vLli1x8uRJqFQqtV6k8+fPS88DtSd/RFR/rEEiIoOJiYlBeHg4kpOTce/ePXh5eSEmJgZr165FXl5etfY3btyQ/n3z5k2151xdXdG2bVuUlZXV+n4DBgwAAKxYsUJte3JycrW2bdq0gVKpxMmTJ6VteXl51VaztrW1BQAIIaRtSqUSGzZsqDUOQxk4cCDy8/ORkpIibbt//z4+/vhjuLq6Ijo6GgDQqFEjAKgxASSi+mEPEhEZ1Jtvvon/+Z//wcaNG/HSSy9h1apV6N27N0JCQjBp0iS0bt0aBQUFSE9Px++//45ffvkFANCxY0fExMSgW7duaNq0KY4fP44dO3ZgypQptb5XaGgoRowYgU8++QRKpRI9e/ZEWloaLl68WK3t8OHD8dZbb+HZZ5/F1KlTUVJSgtWrV6N9+/bIysqS2j311FNwcHDA008/jf/93//F3bt3sX79enh5edWY5BnS5MmTsXbtWowbNw6ZmZkIDAzEjh078PPPPyM5ORmNGzcG8KCovGPHjkhJSUH79u3RtGlTBAcHIzg42KjxEpk1U0+jIyLzVzXNPyMjo9pzlZWVok2bNqJNmzbi/v37QgghLl26JMaMGSN8fHyEvb298Pf3F4MHDxY7duyQXvfee++J8PBw4eHhIZydnUWHDh3E+++/L8rLy6U2NU3JLy0tFVOnThXNmjUTLi4u4umnnxZXr16tcdr7Dz/8IIKDg4WDg4N4/PHHxebNm2vc586dO0WnTp2Ek5OTCAwMFIsXLxaff/65ACBycnKkdtpM83/UEga17a+goECMHz9eeHp6CgcHBxESEiI2bNhQ7bVHjhwR3bp1Ew4ODpzyT6QDhRAP9RsTEREREWuQiIiIiDQxQSIiIiLSwASJiIiISAMTJCIiIiINTJCIiIiINDBBIiIiItLAhSJ1pFKpcO3aNTRu3JjL+hMREZkJIQTu3LkDPz+/ajd+fhgTJB1du3YNAQEBpg6DiIiIdHD16lU89thjtT7PBElHVUv6X716FW5ubiaOhoiIiOqjqKgIAQEB0nW8NkyQdFQ1rObm5sYEiYiIyMw8qjyGRdpEREREGpggEREREWlggkRERESkgTVIRERkESorK1FRUWHqMMjE7O3tYWtr2+D9MEEiIiKzJoRAfn4+bt++bepQSCY8PDzg4+PToHUKmSAREZFZq0qOvLy80KhRIy7ea8WEECgpKcH169cBAL6+vjrviwkSERGZrcrKSik5atasmanDIRlwdnYGAFy/fh1eXl46D7exSJuIiMxWVc1Ro0aNTBwJyUnV56EhNWlMkIiIyOxxWI0epo/PAxMkIiIiIg1MkIiIiMjgAgMDkZycbOow6o0JkszkKUtx5FIh8pSlpg6FiIgM7MaNG3j55ZfRokULODo6wsfHB3Fxcfj5558BPBgq+uabb0wbZD3FxMRAoVBUe9y/f9/UoemEs9hkJCUjF7NTT0ElABsFkPRcCOK7tzB1WEREZCDDhg1DeXk5Nm3ahNatW6OgoABpaWm4efOmqUPTyaRJk/DOO++obbOzM89Ugz1IMpGnLJWSIwBQCWBO6mn2JBERWajbt2/jp59+wuLFi9GnTx+0bNkS4eHhmD17Np555hkEBgYCAJ599lkoFArpZwD417/+ha5du8LJyQmtW7fGwoUL1Xpqli1bhpCQELi4uCAgIACvvPIK7t69Kz2/ceNGeHh4YNeuXXj88cfRqFEjPP/88ygpKcGmTZsQGBiIJk2aYOrUqaisrKz3MTVq1Ag+Pj5qj9rk5uZiyJAhcHV1hZubG1544QUUFBQAAJRKJWxtbXH8+HEAgEqlQtOmTdGjRw/p9Zs3b0ZAQEC9Y9MWEySZyCkslpKjKpVC4EphiWkCIiKyQsYsc3B1dYWrqyu++eYblJWVVXs+IyMDALBhwwbk5eVJP//0008YM2YMpk2bhrNnz2Lt2rXYuHEj3n//fem1NjY2WLFiBc6cOYNNmzZh//79mDVrltr+S0pKsGLFCmzbtg179uzBwYMH8eyzz2L37t3YvXs3vvzyS6xduxY7duzQ+7GrVCoMGTIEt27dwqFDh7B3715cvnwZ8fHxAAB3d3eEhobi4MGDAIBTp05BoVDgxIkTUqJ36NAhREdH6z22KkyQZKKVpwtsNGYl2ioUCPTk2h5ERMaQkpGLXov2Y+T6o+i1aD9SMnIN+n52dnbYuHEjNm3aBA8PD/Tq1Qtz5szByZMnAQDNmzcH8NdtM6p+XrhwIRISEjB27Fi0bt0a/fr1w7vvvou1a9dK+54+fTr69OmDwMBAPPnkk3jvvffw9ddfq71/RUUFVq9ejS5duiAqKgrPP/88Dh8+jM8++wwdO3bE4MGD0adPHxw4cKDex/TJJ59IiZ+rqytef/31GtulpaXh1KlT2Lp1K7p164aIiAh88cUXOHTokJQIxsTESAnSwYMH0a9fPwQFBeHw4cPSNiZIVsDX3RlJz4XA9v/WbrBVKPDBc8HwdXc2cWRERJbPVGUOw4YNw7Vr17Bz5070798fBw8eRNeuXbFx48ZaX/PLL7/gnXfeUUtEJk2ahLy8PJSUPBh12LdvH/r27Qt/f380btwYo0ePxs2bN6XngQfDYW3atJF+9vb2RmBgIFxdXdW2Vd22oz5GjRqF7Oxs6TF79uwa2507dw4BAQFqQ2QdO3aEh4cHzp07BwCIjo7G4cOHUVlZiUOHDiEmJkZKmq5du4aLFy8iJiam3rFpyzwrpyxUfPcWiGrfHFcKSxDo2YjJERGRkdRV5mDov8VOTk7o168f+vXrh3nz5mHixIlITEzEuHHjamx/9+5dLFy4EM8991yN+7py5QoGDx6Ml19+Ge+//z6aNm2Kw4cPY8KECSgvL5dWmba3t1d7rUKhqHGbSqWq97G4u7ujbdu29W5fl6ioKNy5cwdZWVn48ccf8cEHH8DHxweLFi1C586d4efnh3bt2unlvWrCBElmfN2dmRgRERlZVZnDw0mSqcocOnbsKE3tt7e3r1Yk3bVrV1y4cKHWRCQzMxMqlQpLly6Fjc2DgSLN4TVTCwoKwtWrV3H16lWpF+ns2bO4ffs2OnbsCODB0GKnTp2wcuVK2Nvbo0OHDvDy8kJ8fDx27dpl0OE1gENsREREJilzuHnzJp588kls3rwZJ0+eRE5ODrZv344lS5ZgyJAhAB4srpiWlob8/Hz8+eefAID58+fjiy++wMKFC3HmzBmcO3cO27Ztw9y5cwEAbdu2RUVFBT7++GNcvnwZX375JdasWWOw49BFbGwsQkJCMGrUKGRlZeHYsWMYM2YMoqOjERYWJrWLiYnBli1bpGSoadOmCAoKQkpKChMkIiIiY4jv3gKHE/rgq0k9cDihj8HXoXN1dUVERASWL1+OqKgoBAcHY968eZg0aRJWrlwJAFi6dCn27t2LgIAAdOnSBQAQFxeHXbt24YcffkD37t3Ro0cPLF++HC1btgQAdO7cGcuWLcPixYsRHByMLVu2ICkpyaDHoi2FQoF//etfaNKkCaKiohAbG4vWrVsjJSVFrV10dDQqKyvVao1iYmKqbTNIjEII8ehmpKmoqAju7u5QKpVwc3MzdThERFbp3r17yMnJQatWreDk5GTqcEgm6vpc1Pf6zR4kIiIiIg1MkIiIiKhOP/30k9qyApoPS8RZbERERFSnsLAwZGdnmzoMo2KCRERERHVydnbW2/pG5oJDbEREZPY434gepo/PAxMkIiIyW1UrPz98Cw2iqs+D5srg2uAQGxERmS1bW1t4eHhI9wtr1KgRFArFI15FlkoIgZKSEly/fh0eHh6wtbXVeV9MkIiIyKz5+PgAgFY3VSXL5uHhIX0udMUEiYiIzJpCoYCvry+8vLxQUVFh6nDIxOzt7RvUc1SFCRIREVkEW1tbvVwYiQAWaRMRERFVwwSJiIiISAMTJCIiIiINTJCIiIiINDBBIiIiItLABImIiIhIAxMkIiIiIg1MkIiIiIg0MEEiIiIi0sAEiYiIiEgDEyQiIiIiDUyQiIiIiDQwQSIiIiLSwASJiIiISIMsEqRVq1YhMDAQTk5OiIiIwLFjx+psv337dnTo0AFOTk4ICQnB7t27pecqKirw1ltvISQkBC4uLvDz88OYMWNw7do1tX3cunULo0aNgpubGzw8PDBhwgTcvXvXIMdHRERE5sXkCVJKSgpmzpyJxMREZGVloXPnzoiLi8P169drbH/kyBGMGDECEyZMwIkTJzB06FAMHToUp0+fBgCUlJQgKysL8+bNQ1ZWFlJTU3HhwgU888wzavsZNWoUzpw5g71792LXrl348ccfMXnyZIMfLxEREcmfQgghTBlAREQEunfvjpUrVwIAVCoVAgIC8NprryEhIaFa+/j4eBQXF2PXrl3Sth49eiA0NBRr1qyp8T0yMjIQHh6O3377DS1atMC5c+fQsWNHZGRkICwsDACwZ88eDBw4EL///jv8/PweGXdRURHc3d2hVCrh5uamy6ETERGRkdX3+m3SHqTy8nJkZmYiNjZW2mZjY4PY2Fikp6fX+Jr09HS19gAQFxdXa3sAUCqVUCgU8PDwkPbh4eEhJUcAEBsbCxsbGxw9erTGfZSVlaGoqEjtQURERJbJpAlSYWEhKisr4e3trbbd29sb+fn5Nb4mPz9fq/b37t3DW2+9hREjRkiZYn5+Pry8vNTa2dnZoWnTprXuJykpCe7u7tIjICCgXsdIRERE5sfkNUiGVFFRgRdeeAFCCKxevbpB+5o9ezaUSqX0uHr1qp6iJCIiIrmxM+Wbe3p6wtbWFgUFBWrbCwoK4OPjU+NrfHx86tW+Kjn67bffsH//frVxRh8fn2pF4Pfv38etW7dqfV9HR0c4OjrW+9iIiIjIfJm0B8nBwQHdunVDWlqatE2lUiEtLQ2RkZE1viYyMlKtPQDs3btXrX1VcvTrr79i3759aNasWbV93L59G5mZmdK2/fv3Q6VSISIiQh+HRkRERGbMpD1IADBz5kyMHTsWYWFhCA8PR3JyMoqLizF+/HgAwJgxY+Dv74+kpCQAwLRp0xAdHY2lS5di0KBB2LZtG44fP45169YBeJAcPf/888jKysKuXbtQWVkp1RU1bdoUDg4OCAoKQv/+/TFp0iSsWbMGFRUVmDJlCoYPH16vGWxERERk2UyeIMXHx+PGjRuYP38+8vPzERoaij179kiF2Lm5ubCx+aujq2fPnti6dSvmzp2LOXPmoF27dvjmm28QHBwMAPjjjz+wc+dOAEBoaKjaex04cAAxMTEAgC1btmDKlCno27cvbGxsMGzYMKxYscLwB0xERESyZ/J1kMwV10EiIiIyP2axDhIRERGRHDFBIiIiItLABImIiIhIAxMkIiIiIg1MkIiIiIg0MEEiIiIi0sAEiYiIiEgDEyQiIiIiDUyQiIiIiDQwQSIiIiLSwASJiIiISAMTJCIiIiINTJCIiIiINDBBIiIiItLABImIiIhIAxMkIiIiIg1MkIiIiIg0MEEiIiIi0sAEiYiIiEgDEyQiIiIiDUyQiIiIiDQwQSIiIiLSwASJiIiISAMTJCIiIiINTJCIiIiINDBBIiIiItLABImIiIhIAxMkIiIiIg1MkIiIiIg0MEEiIiIi0sAEiYiIiEgDEyQiIiIiDUyQiIiIiDQwQSIiIiLSwASJiIiISAMTJCIiIiINTJCIiIiINDBBIiIiItLABImIiIhIAxMkIiIiIg1MkIiIiIg0MEEiIiIi0sAEiYiIiEgDEyQiIiIiDUyQiIiIiDQwQSIiIiLSwASJiIiISAMTJCIiIiINTJCIiIiINDBBIiIiItLABImIiIhIAxMkIiIiIg1MkIiIiIg0MEEiIiIi0sAEiYiIiEgDEyQiIiIiDUyQiIiIiDQwQSIiIiLSwASJiIiISAMTJCIiIiINTJCIiIiINDBBIiIiItLABImIiIhIAxMkIiIiIg1MkIiIiIg0yCJBWrVqFQIDA+Hk5ISIiAgcO3aszvbbt29Hhw4d4OTkhJCQEOzevVvt+dTUVDz11FNo1qwZFAoFsrOzq+0jJiYGCoVC7fHSSy/p87CIiIjITJk8QUpJScHMmTORmJiIrKwsdO7cGXFxcbh+/XqN7Y8cOYIRI0ZgwoQJOHHiBIYOHYqhQ4fi9OnTUpvi4mL07t0bixcvrvO9J02ahLy8POmxZMkSvR4bERERmSeFEEKYMoCIiAh0794dK1euBACoVCoEBATgtddeQ0JCQrX28fHxKC4uxq5du6RtPXr0QGhoKNasWaPW9sqVK2jVqhVOnDiB0NBQtediYmIQGhqK5ORkneIuKiqCu7s7lEol3NzcdNoHWbY8ZSlyCovRytMFvu7Opg6HiIhQ/+u3SXuQysvLkZmZidjYWGmbjY0NYmNjkZ6eXuNr0tPT1doDQFxcXK3t67JlyxZ4enoiODgYs2fPRklJSa1ty8rKUFRUpPYgqk1KRi56LdqPkeuPotei/UjJyDV1SEREpAU7U755YWEhKisr4e3trbbd29sb58+fr/E1+fn5NbbPz8/X6r1HjhyJli1bws/PDydPnsRbb72FCxcuIDU1tcb2SUlJWLhwoVbvQdYpT1mK2amnoPq/vlmVAOaknkZU++bsSSIiMhMmTZBMafLkydK/Q0JC4Ovri759++LSpUto06ZNtfazZ8/GzJkzpZ+LiooQEBBglFjJvOQUFkvJUZVKIXClsMQiEiQOHRKRNTBpguTp6QlbW1sUFBSobS8oKICPj0+Nr/Hx8dGqfX1FREQAAC5evFhjguTo6AhHR8cGvQdZh1aeLrBRQC1JslUoEOjZyHRB6UlKRq7UO2ajAJKeC0F89xamDouISO9MWoPk4OCAbt26IS0tTdqmUqmQlpaGyMjIGl8TGRmp1h4A9u7dW2v7+qpaCsDX17dB+yHydXdG0nMhsFUoADxIjj54Ltjse1tqGzrMU5aaNjAiIgMw+RDbzJkzMXbsWISFhSE8PBzJyckoLi7G+PHjAQBjxoyBv78/kpKSAADTpk1DdHQ0li5dikGDBmHbtm04fvw41q1bJ+3z1q1byM3NxbVr1wAAFy5cAPCg98nHxweXLl3C1q1bMXDgQDRr1gwnT57EjBkzEBUVhU6dOhn5DJAliu/eAlHtm+NKYQkCPRuZfXIEWP7QIRHRw0yeIMXHx+PGjRuYP38+8vPzERoaij179kiF2Lm5ubCx+aujq2fPnti6dSvmzp2LOXPmoF27dvjmm28QHBwstdm5c6eUYAHA8OHDAQCJiYlYsGABHBwcsG/fPikZCwgIwLBhwzB37lwjHTVZA193Z4tKHCx56JCISJPJ10EyV1wHiaxRSkYu5qSeRqUQ0tAha5CIyJzU9/pt8h4kIjIfljh0SERUEyZIRKQVSxs6JCKqicnvxUZEREQkN0yQiIiIiDQwQSIiIiLSwASJiIiISAMTJCIiIiINTJCIiIiINDBBIiIiItLABImIiIhIg04JUosWLTBmzBh89tlnuHTpkr5jIiI9ylOW4silQuQpS00dChGR2dApQfrggw/g5OSExYsXo127dggICMCLL76I9evX49dff9V3jESko5SMXPRatB8j1x9Fr0X7kZKRa+qQiIjMQoNvVpuXl4dDhw5h165dSElJgUqlQmVlpb7iky3erJbkLk9Zil6L9kP10G+4rUKBwwl9eKsQIrJaBr9ZbUlJCQ4fPoyDBw/iwIEDOHHiBIKDgxETE6PrLolIj3IKi9WSIwCoFAJXCkuYIBERPYJOCVLPnj1x4sQJBAUFISYmBgkJCYiKikKTJk30HR8R6aiVpwtsFKjWgxTo2ch0QRERmQmdapDOnz8PFxcXdOjQAR06dEBQUBCTIyKZ8XV3RtJzIbBVKAA8SI4+eC6YvUdERPWgUw2SEAKnTp3CwYMHcejQIfz4449wcHBAdHQ0+vTpg0mTJhkiVllhDRKZizxlKa4UliDQsxGTIyKyevW9fje4SFsIgczMTKxcuRJbtmxhkTYRERHJlkGLtLOysnDw4EEcPHgQhw8fxp07dxASEoLXXnsN0dHROgdNREREJAc6JUjh4eHo0qULoqOjMWnSJERFRcHd3V3fsREREZEVylOWIqewGK08XUxWGqBTgnTr1i0OKxEREZHepWTkYnbqKagEYKMAkp4LQXz3FkaPQ6cEqSo5yszMxLlz5wAAHTt2RNeuXfUXGREREVmVPGWplBwBD5YpmZN6GlHtmxu9J0mnBOn69euIj4/HoUOH4OHhAQC4ffs2+vTpg23btqF58+b6jJGIiIisgJwWuNVpHaTXXnsNd+/exZkzZ3Dr1i3cunULp0+fRlFREaZOnarvGImIiMgKVC1w+zBTLXCrU4K0Z88efPLJJwgKCpK2dezYEatWrcK///1vvQVHRERE1kNOC9zqNMSmUqlgb29fbbu9vT1UKlWDgyIiIiLrFN+9BaLaNzf5Arc69SA9+eSTmDZtGq5duyZt++OPPzBjxgz07dtXb8ERkeXLU5biyKVC5ClLTR0KEcmEr7szIts0M+nq/zr1IK1cuRLPPPMMAgMDERAQAAC4evUqgoODsXnzZr0GSESWSy7TeYmINOl8qxEhBPbt24fz588DAIKCghAbG6vX4OSMtxohapg8ZSl6LdqvNmPFVqHA4YQ+vGccERmMQW81AgAKhQL9+vVDv379dN0FEVkxOU3nJSLSVO8EacWKFfXeKaf6E9GjVE3n1exBeng6rxxuN0BE1qneQ2ytWrWq3w4VCly+fLlBQZkDDrERNVxKRi7mpJ5GpRDSdN6qGiTWJxGRIdT3+q1zDZK1Y4JkedhbYRp5ytJq03lZn0REhmKQGiSVSgUbG51WBiCSNfZWmI6vu3O1pIf1SURkalplO/b29rh+/br085tvvolbt27pPSgiY6rt5ohcl8d05HS7ASKyTlolSJqjcWvXrsXt27f1GQ+R0dXVW0GmIafbDRCRddJ5mj9QPWEiMkf1mU1FxieX2w0QkXViQRFZPfZWyJccbjdARNZJ6x6k+fPno1GjB9+sy8vL8f7778Pd3V2tzbJly/QTHZGRsLeCiIgeplWCFBUVhQsXLkg/9+zZs9qaRwqFQvNlRGahptlUxsalBoiI5EGrBOngwYMGCoOIuNQAEZF8GLQGyc3NzSpW1SZqKC41QEQkLwZNkDjLjah+uNQAEZG8cBYbWZU8ZSmOXCqUXc8MF0YkIpIXJkhkNVIyctFr0X6MXH8UvRbtR0pGrqlDknCpASIieWnQQpFE5qK2Gp+o9s1lk4RwqQEiIvkwaILEKf8kF+Zy81M5LDVARGQscl7axKAJEou0SS54OxEiInmR+9ImBq1B+ve//w1/f39DvgVRvbDGh4hIPsxhaROdepCEENixYwcOHDiA69evQ6VSqT2fmpoKAOjdu3fDIyTSE9b4EBHJgzmUPeiUIE2fPh1r165Fnz594O3tzVojMhus8SEiMj1zKHvQKUH68ssvkZqaioEDB+o7HiIiIrJwVWUPc1JPo1IIWZY96JQgubu7o3Xr1vqOhYiIiKyE3MsedCrSXrBgARYuXIjSUvkUUxEREZF58XV3RmSbZrJLjgAde5BeeOEFfPXVV/Dy8kJgYCDs7e3Vns/KytJLcERERESmoFOCNHbsWGRmZuLFF19kkTZZNTkvckZERLrTKUH67rvv8P3333MaP1k1uS9yRkREutOpBikgIABubm76joXIbJjDImdERHKXpyzFkUuFsvzbqVOCtHTpUsyaNQtXrlzRczhE5qGuRc6IiOjRUjJy0WvRfoxcfxS9Fu1HSkauqUNSo9MQ24svvoiSkhK0adMGjRo1qlakfevWLb0ERyRX5rDIGRGRXNXWCx/Vvrls6jl1SpCSk5P1HAaReTGHRc6IiOTKYm81MnbsWH3HQWR25L7IGRGRXJlDL7xONUgPu3fvHoqKitQeRNZCzoucERHJVVUvvO3/LRMkx154nXqQiouL8dZbb+Hrr7/GzZs3qz1fWVnZ4MCIiIjIcsm9F16nHqRZs2Zh//79WL16NRwdHfHpp59i4cKF8PPzwxdffKH1/latWoXAwEA4OTkhIiICx44dq7P99u3b0aFDBzg5OSEkJAS7d+9Wez41NRVPPfUUmjVrBoVCgezs7Gr7uHfvHl599VU0a9YMrq6uGDZsGAoKCrSOnag2cp6+SkQkB3LuhdcpQfr222/xySefYNiwYbCzs8MTTzyBuXPn4oMPPsCWLVu02ldKSgpmzpyJxMREZGVloXPnzoiLi8P169drbH/kyBGMGDECEyZMwIkTJzB06FAMHToUp0+fltoUFxejd+/eWLx4ca3vO2PGDHz77bfYvn07Dh06hGvXruG5557TKnai2sh9+ioREdVNIYQQj26mztXVFWfPnkWLFi3w2GOPITU1FeHh4cjJyUFISAju3r1b731FRESge/fuWLlyJQBApVIhICAAr732GhISEqq1j4+PR3FxMXbt2iVt69GjB0JDQ7FmzRq1tleuXEGrVq1w4sQJhIaGStuVSiWaN2+OrVu34vnnnwcAnD9/HkFBQUhPT0ePHj0eGXdRURHc3d2hVCq5aCapyVOWotei/dWKDw8n9JHltyQiImtS3+u3Tj1IrVu3Rk5ODgCgQ4cO+PrrrwE86Fny8PCo937Ky8uRmZmJ2NjYvwKysUFsbCzS09NrfE16erpaewCIi4urtX1NMjMzUVFRobafDh06oEWLFlrth6gmXESSiMj86ZQgjR8/Hr/88gsAICEhAatWrYKTkxNmzJiBN998s977KSwsRGVlJby9vdW2e3t7Iz8/v8bX5Ofna9W+tn04ODhUS+bq2k9ZWRln61G9VE1ffZjcpq8SEVHddJrFNmPGDOnfsbGxOH/+PDIzM9G2bVt06tRJb8HJSVJSEhYuXGjqMMgMcBFJw8tTliKnsBitPF14XonIIHRKkB527949tGzZEi1bttT6tZ6enrC1ta02e6ygoAA+Pj41vsbHx0er9rXto7y8HLdv31brRaprP7Nnz8bMmTOln4uKihAQEFDv9yTrIvfpq+YsJSNXukWBjQJIei4E8d1bmDosIrIwOg2xVVZW4t1334W/vz9cXV1x+fJlAMC8efPw2Wef1Xs/Dg4O6NatG9LS0qRtKpUKaWlpiIyMrPE1kZGRau0BYO/evbW2r0m3bt1gb2+vtp8LFy4gNze31v04OjrCzc1N7UFUFzlPXzVXtd2/iUspEJG+6ZQgvf/++9i4cSOWLFkCBwcHaXtwcDA+/fRTrfY1c+ZMrF+/Hps2bcK5c+fw8ssvo7i4GOPHjwcAjBkzBrNnz5baT5s2DXv27MHSpUtx/vx5LFiwAMePH8eUKVOkNrdu3UJ2djbOnj0L4EHyk52dLdUXubu7Y8KECZg5cyYOHDiAzMxMjB8/HpGRkfWawUZEpsECeCIyFp0SpC+++ALr1q3DqFGjYGtrK23v3Lkzzp8/r9W+4uPj8dFHH2H+/PkIDQ1FdnY29uzZIxVi5+bmIi8vT2rfs2dPbN26FevWrUPnzp2xY8cOfPPNNwgODpba7Ny5E126dMGgQYMAAMOHD0eXLl3UlgFYvnw5Bg8ejGHDhiEqKgo+Pj5ITU3V5XQQkZGwAJ6IjEWndZCcnZ1x/vx5tGzZEo0bN8Yvv/yC1q1b4+zZswgPD9dqHSRzxXWQiEwjJSO3WgE8a5CIqL7qe/3WqUi7Y8eO+Omnn6oVZu/YsQNdunTRZZdERPXCAngiMgadEqT58+dj7Nix+OOPP6BSqZCamooLFy7giy++UFvhmojIEHzdnZkYEZFB6VSDNGTIEHz77bfYt28fXFxcMH/+fJw7dw7ffvst+vXrp+8YiYiIiIxKpxokYg0SERGROTL4vdhu3rxZbfvt27fRunVrXXZJREREJBs6JUhXrlxBZWVlte1lZWX4448/GhwUEclXnrIURy4VcnFGIjIYOfyd0apIe+fOndK/v//+e7i7u0s/V1ZWIi0tDYGBgXoLjvSD960ifeFtPojI0OTyd0arGiQbmwcdTgqFApovs7e3R2BgIJYuXYrBgwfrN0oZMpcaJLl80Mj85SlL0WvRfrWVrG0VChxO6MPEm4j0whh/ZwyyDpJKpQIAtGrVChkZGfD09GxYlGRQtd23Kqp9c17QSGt13eaDnyci0gc5/Z3RqgYpPT0du3btQk5OjpQcffHFF2jVqhW8vLwwefJklJWVGSRQ0h7vW0X6xNt8EJGhyenvjFYJ0sKFC3HmzBnp51OnTmHChAmIjY1FQkICvv32WyQlJek9SNKNnD5oZP583Z2R9FwIbBUPPlRVt/lg7xER6Yuc/s5oVYPk6+uLb7/9FmFhYQCAt99+G4cOHcLhw4cBANu3b0diYiLOnj1rmGhlxJxqkHjfKtKnPGUpb/NBRAZlyL8zBqlB+vPPP+Ht7S39fOjQIQwYMED6uXv37rh69aoO4ZKh8L5VpmOpswd5mw8iMjQ5/J3RKkHy9vZGTk4OAgICUF5ejqysLCxcuFB6/s6dO7C3t9d7kNQwcvigWRvOHiQiMm9a1SANHDgQCQkJ+OmnnzB79mw0atQITzzxhPT8yZMn0aZNG70HSWROaps9yIUViYjMh1YJ0rvvvgs7OztER0dj/fr1WL9+PRwcHKTnP//8czz11FN6D5LInHD2oHmSw8q9RCQfWg2xeXp64scff4RSqYSrqytsbW3Vnt++fTtcXV31GiCRuamaPai50BlnD8oXh0SJSJNO92Jzd3evlhwBQNOmTdV6lIiskZymqdKjcUiUiGqiVQ8SEdUPZw+aDzmt3EtE8sEEichAOHvQPHBIlIhqotMQGxGRpeCQKBHVhD1IFsJSFyUkMgYOiRKRJiZIFoAzcIgajkOiRPQwDrGZOc7AISIi0j8mSGaOixISERHpHxMkM1c1A+dhnIFDRETUMEyQzBxn4BAREekfi7QtAGfgEBER6RcTJAvBGThERMbF5VUsGxMkIiIiLXF5FcvHGiQiIrJqecpSHLlUWOPyKDU9x+VVrAN7kIiIyGrV1RNU23O8wbF1YA8SERFZpbp6gup6jsurWAcmSEREZJXq6gl6VC8Rl1exfBxiIyIiq1TVE/RwIvRwT1Bdz3F5FcvHHiQiIrJKdfUE1aeXyNfdGZFtmjE5slAKIYR4dDPSVFRUBHd3dyiVSri5uZk6HCIi0lGesrTWnqC6niPzVN/rN4fYiIjIqtW10C4X4bVeHGIjIiKzUte6RUT6wh4kItIKb69ApsQVrMlYmCARUb3x4kSmVNvaRFHtmzNZJ73jEBsR1Qtvr0CmVtfaRET6xgRJZji2TnLFixOZWitPF2gsYA2FAlzBmgyCQ2wywuELkrNHLapHZBJcqIYMhD1IMsHhC5I73l6BTC2nsLhaPiQA9mKSQbAHSSZ4d2gyB7y9ApmSi4NtjdsbOVjGd33OEJUXJkgyweELMhdcOI9Mpbi8ssbtJeUqI0eifyyxkB/LSLstgK+7M57t4q+2bWgXP16IiCwMJ2LoruqL5MMs4YskSyzkiQmSTOQpS/HPE3+obfvmxDX+glgZXjwtW0pGLnot2o+R64+i16L9SMnINXVIZsVS6+A4Q1SeOMQmE6xBInaxWzYucqgfllgHxxILeWIPkkxYatcx1Q+72C0fewn0x9fdGZFtmllEcgRYbs+YuWMPkkxU/YLMST2NSiH4C2Jl2INo+dhLQHWxxJ4xc8cESUYs4ReE01R1w4un5eOXIHoUzhCVFyZIMmPOvyDGrKGxtESMF0/rYAlfgoishUIIwYXadVBUVAR3d3colUq4ubmZOhyTy1OWotei/dV6QA4n9NH7RcCSi5nzlKW8eBIRGVB9r98s0ia9MFYBqqUXM1ta8SkRkbligkR6YaxZeJwJRERkWFyP7QEmSKQXxpqmyuUQiIgMh4uZ/oU1SDpiDVLNjFFDk5KRW62Y2VJqkIiITMWYtaSmVN/rN2exkd4J6C/nrmm2GmcCEZGxWNqM2bqYYj02OZ9fJkikN/qeXVbX/sx5OQQiayPniyBQe3yWPGO2JsZej03u55c1SKQX+p5dZumz1YishdxrWmqLzxr/BhnzlifmcH7Zg0R6oe+uWd56g8j8yf0GvXXFZ61/g4xVwmAO55cJEumFvrtmeesNIvMn94tgXfFZ898gY5QwmMP55RAb6YW+u2Z5d2si8yf3ZTnqio9/gwzLHM6vLKb5r1q1Ch9++CHy8/PRuXNnfPzxxwgPD6+1/fbt2zFv3jxcuXIF7dq1w+LFizFw4EDpeSEEEhMTsX79ety+fRu9evXC6tWr0a5dO6lNYGAgfvvtN7X9JiUlISEhoV4xc5p/zfQ9zZ+33iAyb3JfluNR8fFvkGGZ4vzW9/pt8gQpJSUFY8aMwZo1axAREYHk5GRs374dFy5cgJeXV7X2R44cQVRUFJKSkjB48GBs3boVixcvRlZWFoKDgwEAixcvRlJSEjZt2oRWrVph3rx5OHXqFM6ePQsnJycADxKkCRMmYNKkSdK+GzduDBcXl3rFzQSJiKh+6roIymGGG5Mg62I2CVJERAS6d++OlStXAgBUKhUCAgLw2muv1dibEx8fj+LiYuzatUva1qNHD4SGhmLNmjUQQsDPzw+vv/463njjDQCAUqmEt7c3Nm7ciOHDhwN4kCBNnz4d06dP1yluJkhERA0j92neZJnM4ma15eXlyMzMRGxsrLTNxsYGsbGxSE9Pr/E16enpau0BIC4uTmqfk5OD/Px8tTbu7u6IiIiots9FixahWbNm6NKlCz788EPcv3+/1ljLyspQVFSk9iAi0hbvc/WAOUzzJutm0llshYWFqKyshLe3t9p2b29vnD9/vsbX5Ofn19g+Pz9fer5qW21tAGDq1Kno2rUrmjZtiiNHjmD27NnIy8vDsmXLanzfpKQkLFy4ULsDJCJ6CHtM/iL3GW5EVjvNf+bMmdK/O3XqBAcHB/zv//4vkpKS4OjoWK397Nmz1V5TVFSEgIAAo8RKROZP7msCGZs5TPMm62bSITZPT0/Y2tqioKBAbXtBQQF8fHxqfI2Pj0+d7av+q80+gQe1UPfv38eVK1dqfN7R0RFubm5qDzI/HN4gU6mrx8QamcM0b7JuJk2QHBwc0K1bN6SlpUnbVCoV0tLSEBkZWeNrIiMj1doDwN69e6X2rVq1go+Pj1qboqIiHD16tNZ9AkB2djZsbGxqnDlHlkHutzwgyyb3NYFMIb57CxxO6IOvJvXA4YQ+VjvcaAks8cunyYfYZs6cibFjxyIsLAzh4eFITk5GcXExxo8fDwAYM2YM/P39kZSUBACYNm0aoqOjsXTpUgwaNAjbtm3D8ePHsW7dOgCAQqHA9OnT8d5776Fdu3bSNH8/Pz8MHToUwINC76NHj6JPnz5o3Lgx0tPTMWPGDLz44oto0qSJSc4DGRaHN8jUqnpMNNfcsfbPH288bf4stbbO5AlSfHw8bty4gfnz5yM/Px+hoaHYs2ePVGSdm5sLG5u/Orp69uyJrVu3Yu7cuZgzZw7atWuHb775RloDCQBmzZqF4uJiTJ48Gbdv30bv3r2xZ88eaQ0kR0dHbNu2DQsWLEBZWRlatWqFGTNmqNUYkWVhQSjJgbHuc1Ufclh/iMyfJX/5NPk6SOaK6yCZlzxlKXot2l+tIPRwQh+z/yUm0palfuMn4ztyqRAj1x+ttv2rST0Q2aaZCSJ6NLNYB4m0Y4ljvMbCglDD4+fTPHD9IdInS66tM/kQG9UPv/E1nJyGNyzNoz6fHM6RDw43kz5Zcm0dEyQzYMljvMZWV0EoL+K6edTnk8m9vJhi/SH+blk2S/3yyQTJDPAbn+HxIq67R63vw+ReXoz9jZ+/W9bBEmcjMkEyA1xx1rDYQ9cwdX0+mdzLk7G+8fN3i8wZi7TNAAuMDYsrHDdMXZ9PSy7gNHe+7s6IbNPMoH9H+LtF5ow9SGbCUsd45YA9dA1X2+fTkgs46dGs+XeLdVfmj+sg6YjrIFmWlIzcahdx1knoT56ylMm9lbLG3y3WXclbfa/fTJB0xATJ8vAiTmQY1vS7xUVp5a++128OsRH9H0uchUEkB9b0u8WJCZaDRdpERER6wokJloMJEhERkZ5w1rHl4BAb6RVnbhCRteOsY8vABIn0hjM3yNrwCwHVxprqriwVEyTSC66YS9aGXwiILBtrkEgvuGIuWZPavhDkKUtNGxgR6Q0TJNILztwga8IvBESWjwkS6QVnbpA14RcCMoQ8ZSmOXCpkT6RMsAaJ9IYzN8ha8B5zpG9yqmnj5IMHeKsRHfFWI0RkTbfQqMKLp/7J6fYkckrUDIW3GiEiMjBrm8ptDRdPU5DL7UkeNRvZ2pJjJkhERPRIXMrDcKpq2jR7kIxd01ZXovbjf29YXXLMIm0iIjOgSwGvPot+OXPPcOQyyaW2yQeNHGysclkL9iAREcmcLkNb+h4Ok0svh6WSwySX2iYfFJdXymII0NiYIBFZOGurG7A0ugxtGWI4jDP3DE8ONW01JWp5ylKrTI6ZIJFR8CJtGiyqNX+6FPAaquhXDr0cZHiaiZq1JsdMkMjgeJE2DRbVWgZdhrYMORwmh14OMj5rTI5ZpG0h5LoCK+9ZZTosqrUMuhTwyqXolyyLr7szIts0s5rPEXuQLICce2jksr6HNWJRreXQ5du7NX7jJ9In9iCZObn30PCeVabDXgTLosu3d2v7xk+kT+xBMnNy76Gx1uI+uWAvAhGRbpggmTlzGEbhRdq0WFRLRKQ9DrGZOVMMo+hSEM6ufiIiMifsQbIAxuyhkXNBOBERkb6wB8lCGKOHRu4F4URERPrCBInqjevqEBHJj1zXwTN3HGKjejOHgnAiImvCsgfDYQ8S1RvX1SEikg+WPRgWe5BIK5yyT0QkD3JfB8/cMUEirXFdHSIi02PZg2FxiI2IiMgMsezBsNiDREREJHN5ylLkFBajlaeLWgLEsgfDYYJEREQkY4+aqcayB8PgEBsREZFMcaaa6TBBIiIikiku0Gs6TJCIiIhkqmqm2sM4U804mCARERHJFGeqmQ6LtImIzFxtM5zIMjxqphr//xsGEyQiIjNmiHtx8YIrP7XNVOO92AyHQ2xERGbKEDOcUjJy0WvRfoxcfxS9Fu1HSkaunqIlfeMMN8NigkREZKb0PcOJF1zzwhluhsUEiYjITOl7hhMvuOaFM9wMiwkSEZGZasgMpzxlKY5cKlTrHeIF17Rq+n9SF85wMyyFEEI8uhlpKioqgru7O5RKJdzc3EwdDhFZsTxlqVb34qqrsDclIxdzUk+jUgjpgsuiX8NrSLG1tv//dWUpxfv1vX4zQdIREyQiMkd5ylL0WrRfbSjNVqHA4YQ+0kXPWBdceqA+/09MzZJmy9X3+s0hNiIiK1KfOiNfd2dEtmkmm4uzpZN77Ze1Fu8zQSIisiKsM5Ifuf8/kXsCZyhMkKyAtoV/RGS5WNgrP3L/fyL3BM5QWIOkI3OpQbKkcWMi0h/WGcmPnP+fWFLxfn2v37zViAWrbdw4qn1z2f3yEZFx1XbrCjItAXn2WTzqfnCWiAmSBatr3NjYH25LmR5KRGQI5tDbb21JNRMkC1Y1bqw5ddTY48bm8ItPRGQq7O2XJxZpWzB9r7KrC2udHkpEVF/1mSXGyTbGxx4kC6fLuLE+e3zkNMxHVBdrGwa2tuOVs0f19rMX3jSYIFkBbcaN9d3VK5dhPqK6WNsFyNqOV+6qevs1Z4n5ujtz+M2EZDHEtmrVKgQGBsLJyQkRERE4duxYne23b9+ODh06wMnJCSEhIdi9e7fa80IIzJ8/H76+vnB2dkZsbCx+/fVXtTa3bt3CqFGj4ObmBg8PD0yYMAF3797V+7GZG30vCCb39T2IrG0Y2NqO11zEd2+Bwwl98NWkHjic0EdKWK11kUY5MHmClJKSgpkzZyIxMRFZWVno3Lkz4uLicP369RrbHzlyBCNGjMCECRNw4sQJDB06FEOHDsXp06elNkuWLMGKFSuwZs0aHD16FC4uLoiLi8O9e/ekNqNGjcKZM2ewd+9e7Nq1Cz/++CMmT55s8OOVO0MsCFbbLz6RHFjbBcjajtec1HSLF2tdpFEOTL5QZEREBLp3746VK1cCAFQqFQICAvDaa68hISGhWvv4+HgUFxdj165d0rYePXogNDQUa9asgRACfn5+eP311/HGG28AAJRKJby9vbFx40YMHz4c586dQ8eOHZGRkYGwsDAAwJ49ezBw4ED8/vvv8PPze2Tc5rJQpC4saUEwokcxhxuF6pO1Ha8l4N9k/TKLm9WWl5cjMzMTsbGx0jYbGxvExsYiPT29xtekp6ertQeAuLg4qX1OTg7y8/PV2ri7uyMiIkJqk56eDg8PDyk5AoDY2FjY2Njg6NGjNb5vWVkZioqK1B6Wij0+ZE2sbRjY2o7XEvBvsmmYtEi7sLAQlZWV8Pb2Vtvu7e2N8+fP1/ia/Pz8Gtvn5+dLz1dtq6uNl5eX2vN2dnZo2rSp1EZTUlISFi5cWM8jM3/WtiAYWTdrWyXY2o7XEvBvsvGZvAbJXMyePRtKpVJ6XL161dQhEZEe1VT/Ycms7XiJtGXSBMnT0xO2trYoKChQ215QUAAfH58aX+Pj41Nn+6r/PqqNZhH4/fv3cevWrVrf19HREW5ubmoPIiIiskwmTZAcHBzQrVs3pKWlSdtUKhXS0tIQGRlZ42siIyPV2gPA3r17pfatWrWCj4+PWpuioiIcPXpUahMZGYnbt28jMzNTarN//36oVCpERETo7fiIiIjIPJl8ociZM2di7NixCAsLQ3h4OJKTk1FcXIzx48cDAMaMGQN/f38kJSUBAKZNm4bo6GgsXboUgwYNwrZt23D8+HGsW7cOAKBQKDB9+nS89957aNeuHVq1aoV58+bBz88PQ4cOBQAEBQWhf//+mDRpEtasWYOKigpMmTIFw4cPr9cMNiIiIrJsJk+Q4uPjcePGDcyfPx/5+fkIDQ3Fnj17pCLr3Nxc2Nj81dHVs2dPbN26FXPnzsWcOXPQrl07fPPNNwgODpbazJo1C8XFxZg8eTJu376N3r17Y8+ePXBycpLabNmyBVOmTEHfvn1hY2ODYcOGYcWKFcY7cCIiIpItk6+DZK4seR0kIiIiS2UW6yARERERyRETJCIiIiINTJCIiIiINDBBIiIiItLABImIiIhIAxMkIiIiIg0mXwfJXFWtjlBUVGTiSIiIiKi+qq7bj1rliAmSju7cuQMACAgIMHEkREREpK07d+7A3d291ue5UKSOVCoVrl27hsaNG0OhUGj9+qKiIgQEBODq1atWvdAkz8MDPA9/4bl4gOfhAZ6Hv/BcPNDQ8yCEwJ07d+Dn56d2pw5N7EHSkY2NDR577LEG78fNzc2qP+hVeB4e4Hn4C8/FAzwPD/A8/IXn4oGGnIe6eo6qsEibiIiISAMTJCIiIiINTJBMxNHREYmJiXB0dDR1KCbF8/AAz8NfeC4e4Hl4gOfhLzwXDxjrPLBIm4iIiEgDe5CIiIiINDBBIiIiItLABImIiIhIAxMkIiIiIg1MkAxo1apVCAwMhJOTEyIiInDs2LFa2545cwbDhg1DYGAgFAoFkpOTjReogWlzHtavX48nnngCTZo0QZMmTRAbG1tne3OizXlITU1FWFgYPDw84OLigtDQUHz55ZdGjNawtDkXD9u2bRsUCgWGDh1q2ACNRJvzsHHjRigUCrWHk5OTEaM1HG0/D7dv38arr74KX19fODo6on379ti9e7eRojUsbc5FTExMtc+EQqHAoEGDjBixYWj7mUhOTsbjjz8OZ2dnBAQEYMaMGbh3717DghBkENu2bRMODg7i888/F2fOnBGTJk0SHh4eoqCgoMb2x44dE2+88Yb46quvhI+Pj1i+fLlxAzYQbc/DyJEjxapVq8SJEyfEuXPnxLhx44S7u7v4/fffjRy5fml7Hg4cOCBSU1PF2bNnxcWLF0VycrKwtbUVe/bsMXLk+qftuaiSk5Mj/P39xRNPPCGGDBlinGANSNvzsGHDBuHm5iby8vKkR35+vpGj1j9tz0NZWZkICwsTAwcOFIcPHxY5OTni4MGDIjs728iR65+25+LmzZtqn4fTp08LW1tbsWHDBuMGrmfanoctW7YIR0dHsWXLFpGTkyO+//574evrK2bMmNGgOJggGUh4eLh49dVXpZ8rKyuFn5+fSEpKeuRrW7ZsaTEJUkPOgxBC3L9/XzRu3Fhs2rTJUCEaRUPPgxBCdOnSRcydO9cQ4RmVLufi/v37omfPnuLTTz8VY8eOtYgESdvzsGHDBuHu7m6k6IxH2/OwevVq0bp1a1FeXm6sEI2moX8nli9fLho3bizu3r1rqBCNQtvz8Oqrr4onn3xSbdvMmTNFr169GhQHh9gMoLy8HJmZmYiNjZW22djYIDY2Funp6SaMzLj0cR5KSkpQUVGBpk2bGipMg2voeRBCIC0tDRcuXEBUVJQhQzU4Xc/FO++8Ay8vL0yYMMEYYRqcrufh7t27aNmyJQICAjBkyBCcOXPGGOEajC7nYefOnYiMjMSrr74Kb29vBAcH44MPPkBlZaWxwjYIffy9/OyzzzB8+HC4uLgYKkyD0+U89OzZE5mZmdIw3OXLl7F7924MHDiwQbHwZrUGUFhYiMrKSnh7e6tt9/b2xvnz500UlfHp4zy89dZb8PPzU/tlMTe6ngelUgl/f3+UlZXB1tYWn3zyCfr162focA1Kl3Nx+PBhfPbZZ8jOzjZChMahy3l4/PHH8fnnn6NTp05QKpX46KOP0LNnT5w5c0YvN842BV3Ow+XLl7F//36MGjUKu3fvxsWLF/HKK6+goqICiYmJxgjbIBr69/LYsWM4ffo0PvvsM0OFaBS6nIeRI0eisLAQvXv3hhAC9+/fx0svvYQ5c+Y0KBYmSCRbixYtwrZt23Dw4EGLKUbVRuPGjZGdnY27d+8iLS0NM2fOROvWrRETE2Pq0Izmzp07GD16NNavXw9PT09Th2NSkZGRiIyMlH7u2bMngoKCsHbtWrz77rsmjMy4VCoVvLy8sG7dOtja2qJbt274448/8OGHH5p1gtRQn332GUJCQhAeHm7qUIzu4MGD+OCDD/DJJ58gIiICFy9exLRp0/Duu+9i3rx5Ou+XCZIBeHp6wtbWFgUFBWrbCwoK4OPjY6KojK8h5+Gjjz7CokWLsG/fPnTq1MmQYRqcrufBxsYGbdu2BQCEhobi3LlzSEpKMusESdtzcenSJVy5cgVPP/20tE2lUgEA7OzscOHCBbRp08awQRuAPv5G2Nvbo0uXLrh48aIhQjQKXc6Dr68v7O3tYWtrK20LCgpCfn4+ysvL4eDgYNCYDaUhn4ni4mJs27YN77zzjiFDNApdzsO8efMwevRoTJw4EQAQEhKC4uJiTJ48GW+//TZsbHSrJmINkgE4ODigW7duSEtLk7apVCqkpaWpfQO0dLqehyVLluDdd9/Fnj17EBYWZoxQDUpfnweVSoWysjJDhGg02p6LDh064NSpU8jOzpYezzzzDPr06YPs7GwEBAQYM3y90cdnorKyEqdOnYKvr6+hwjQ4Xc5Dr169cPHiRSlRBoD//ve/8PX1NdvkCGjYZ2L79u0oKyvDiy++aOgwDU6X81BSUlItCapKoEVDbjfboBJvqtW2bduEo6Oj2Lhxozh79qyYPHmy8PDwkKbljh49WiQkJEjty8rKxIkTJ8SJEyeEr6+veOONN8SJEyfEr7/+aqpD0Attz8OiRYuEg4OD2LFjh9r01Tt37pjqEPRC2/PwwQcfiB9++EFcunRJnD17Vnz00UfCzs5OrF+/3lSHoDfangtNljKLTdvzsHDhQvH999+LS5cuiczMTDF8+HDh5OQkzpw5Y6pD0Attz0Nubq5o3LixmDJlirhw4YLYtWuX8PLyEu+9956pDkFvdP3d6N27t4iPjzd2uAaj7XlITEwUjRs3Fl999ZW4fPmy+OGHH0SbNm3ECy+80KA4mCAZ0McffyxatGghHBwcRHh4uPjPf/4jPRcdHS3Gjh0r/ZyTkyMAVHtER0cbP3A90+Y8tGzZssbzkJiYaPzA9Uyb8/D222+Ltm3bCicnJ9GkSRMRGRkptm3bZoKoDUObc6HJUhIkIbQ7D9OnT5faent7i4EDB4qsrCwTRK1/2n4ejhw5IiIiIoSjo6No3bq1eP/998X9+/eNHLVhaHsuzp8/LwCIH374wciRGpY256GiokIsWLBAtGnTRjg5OYmAgADxyiuviD///LNBMSiEaEj/ExEREZHlYQ0SERERkQYmSEREREQamCARERERaWCCRERERKSBCRIRERGRBiZIRERERBqYIBERERFpYIJERCRz48aNw9ChQ00dBpFVYYJERDobN24cFAqF9GjWrBn69++PkydPmjo0vXj42KoevXv3Ntj7XblyBQqFAtnZ2Wrb//73v2Pjxo0Ge18iqo4JEhE1SP/+/ZGXl4e8vDykpaXBzs4OgwcPNnVYerNhwwbp+PLy8rBz584a21VUVBgsBnd3d3h4eBhs/0RUHRMkImoQR0dH+Pj4wMfHB6GhoUhISMDVq1dx48YNPPnkk5gyZYpa+xs3bsDBwUG6W3dgYCDeffddjBgxAi4uLvD398eqVavUXrNs2TKEhITAxcUFAQEBeOWVV3D37l3p+d9++w1PP/00mjRpAhcXF/ztb3/D7t27AQB//vknRo0ahebNm8PZ2Rnt2rXDhg0b6n18Hh4e0vH5+PigadOmUk9PSkoKoqOj4eTkhC1btuDmzZsYMWIE/P390ahRI4SEhOCrr75S259KpcKSJUvQtm1bODo6okWLFnj//fcBAK1atQIAdOnSBQqFAjExMQCqD7GVlZVh6tSp8PLygpOTE3r37o2MjAzp+YMHD0KhUCAtLQ1hYWFo1KgRevbsiQsXLtT7uImsHRMkItKbu3fvYvPmzWjbti2aNWuGiRMnYuvWrSgrK5PabN68Gf7+/njyySelbR9++CE6d+6MEydOICEhAdOmTcPevXul521sbLBixQqcOXMGmzZtwv79+zFr1izp+VdffRVlZWX48ccfcerUKSxevBiurq4AgHnz5uHs2bP497//jXPnzmH16tXw9PTUy/FWxXru3DnExcXh3r176NatG7777jucPn0akydPxujRo3Hs2DHpNbNnz8aiRYukuLZu3Qpvb28AkNrt27cPeXl5SE1NrfF9Z82ahX/84x/YtGkTsrKy0LZtW8TFxeHWrVtq7d5++20sXboUx48fh52dHf7f//t/ejluIqvQoFvdEpFVGzt2rLC1tRUuLi7CxcVFABC+vr4iMzNTCCFEaWmpaNKkiUhJSZFe06lTJ7FgwQLp55YtW4r+/fur7Tc+Pl4MGDCg1vfdvn27aNasmfRzSEiI2j4f9vTTT4vx48frdHwAhJOTk3R8Li4u4p///KfIyckRAERycvIj9zFo0CDx+uuvCyGEKCoqEo6OjmL9+vU1tq3a74kTJ9S2jx07VgwZMkQIIcTdu3eFvb292LJli/R8eXm58PPzE0uWLBFCCHHgwAEBQOzbt09q89133wkAorS0VJtTQGS12INERA3Sp08fZGdnIzs7G8eOHUNcXBwGDBiA3377DU5OThg9ejQ+//xzAEBWVhZOnz6NcePGqe0jMjKy2s/nzp2Tft63bx/69u0Lf39/NG7cGKNHj8bNmzdRUlICAJg6dSree+899OrVC4mJiWpF4i+//DK2bduG0NBQzJo1C0eOHNHq+JYvXy4dX3Z2Nvr16yc9FxYWpta2srIS7777LkJCQtC0aVO4urri+++/R25uLgDg3LlzKCsrQ9++fbWK4WGXLl1CRUUFevXqJW2zt7dHeHi42jkDgE6dOkn/9vX1BQBcv35d5/cmsiZMkIioQVxcXNC2bVu0bdsW3bt3x6effori4mKsX78eADBx4kTs3bsXv//+OzZs2IAnn3wSLVu2rPf+r1y5gsGDB6NTp074xz/+gczMTKlGqby8XHqPy5cvY/To0Th16hTCwsLw8ccfA4CUrM2YMQPXrl1D37598cYbb9T7/X18fKTja9u2LVxcXNSO/WEffvgh/v73v+Ott97CgQMHkJ2djbi4OClOZ2fner+vPtjb20v/VigUAB7UQBHRozFBIiK9UigUsLGxQWlpKQAgJCQEYWFhWL9+PbZu3VpjHcx//vOfaj8HBQUBADIzM6FSqbB06VL06NED7du3x7Vr16rtIyAgAC+99BJSU1Px+uuvSwkaADRv3hxjx47F5s2bkZycjHXr1unzkCU///wzhgwZghdffBGdO3dG69at8d///ld6vl27dnB2dpYK1DU5ODgAeNATVZs2bdrAwcEBP//8s7StoqICGRkZ6Nixo56OhIjsTB0AEZm3srIy5OfnA3gwY2zlypW4e/cunn76aanNxIkTMWXKFLi4uODZZ5+tto+ff/4ZS5YswdChQ7F3715s374d3333HQCgbdu2qKiowMcff4ynn34aP//8M9asWaP2+unTp2PAgAFo3749/vzzTxw4cEBKsObPn49u3brhb3/7G8rKyrBr1y7pOX1r164dduzYgSNHjqBJkyZYtmwZCgoKpMTFyckJb731FmbNmgUHBwf06tULN27cwJkzZzBhwgR4eXnB2dkZe/bswWOPPQYnJye4u7urvYeLiwtefvllvPnmm2jatClatGiBJUuWoKSkBBMmTDDIcRFZI/YgEVGD7NmzB76+vvD19UVERAQyMjKwfft2aYo6AIwYMQJ2dnYYMWIEnJycqu3j9ddfx/Hjx9GlSxe89957WLZsGeLi4gAAnTt3xrJly7B48WIEBwdjy5YtSEpKUnt9ZWUlXn31VQQFBaF///5o3749PvnkEwAPemVmz56NTp06ISoqCra2tti2bZtBzsXcuXPRtWtXxMXFISYmBj4+PtVWwJ43bx5ef/11zJ8/H0FBQYiPj5fqguzs7LBixQqsXbsWfn5+GDJkSI3vs2jRIgwbNgyjR49G165dcfHiRXz//fdo0qSJQY6LyBophBDC1EEQkWW7cuUK2rRpg4yMDHTt2lXtucDAQEyfPh3Tp083TXBERDXgEBsRGUxFRQVu3ryJuXPnokePHtWSIyIiueIQGxEZzM8//wxfX19kZGRUqxsytQ8++ACurq41PgYMGGDq8IjIxDjERkRW6datW9VWnq7i7OwMf39/I0dERHLCBImIiIhIA4fYiIiIiDQwQSIiIiLSwASJiIiISAMTJCIiIiINTJCIiIiINDBBIiIiItLABImIiIhIAxMkIiIiIg3/H5gXsI9s7zS5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT21JREFUeJzt3Xd4FNX+P/D3poeQbCjphiT0IKGGEoLUaCiiFBWkGJByBQJSpShFWgIqICBFhASlXhR/FxERCKA3JEKkXKWIEoK0FIpsDAkh5fz+4JuRJXU3W2Yn79fz7POQmdndz0yW2XfOnHNGJYQQICIiIlIoK3MXQERERGRMDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0QkC/Pnz4dKparQtiqVCvPnzzdqPV26dEGXLl1k+3pEVHEMO0SkJTY2FiqVSnrY2NjAx8cHw4cPx82bN81dnuz4+/trHS93d3c899xz+Prrrw3y+tnZ2Zg/fz6OHTtmkNcjqooYdoioRAsWLMAXX3yB9evXo2fPnti6dSs6d+6Mhw8fGuX93nvvPeTk5BjltY2tRYsW+OKLL/DFF19g2rRpuHXrFvr374/169dX+rWzs7Px/vvvM+wQVYKNuQsgInnq2bMngoODAQCjRo1C7dq1sXTpUuzduxevvfaawd/PxsYGNjaWeUry8fHB0KFDpZ/feOMN1K9fHytWrMBbb71lxsqICGDLDhFV0HPPPQcASE5O1lr+22+/4ZVXXkHNmjXh4OCA4OBg7N27V2ubvLw8vP/++2jQoAEcHBxQq1YtdOzYEYcOHZK2KanPTm5uLiZPngw3Nzc4OzvjpZdewo0bN4rVNnz4cPj7+xdbXtJrxsTEoFu3bnB3d4e9vT2aNGmCdevW6XQsyuPp6YnAwECkpKSUuV1GRgZGjhwJDw8PODg4oHnz5tiyZYu0/urVq3BzcwMAvP/++9KlMmP3VyJSGsv8M4qITO7q1asAgBo1akjLzp8/j9DQUPj4+GDmzJlwcnLCv//9b/Tt2xdfffUV+vXrB+Bx6IiKisKoUaPQtm1bZGZm4ueff8bp06fx/PPPl/qeo0aNwtatWzF48GB06NABR44cQe/evSu1H+vWrcOzzz6Ll156CTY2Nvjmm28wbtw4FBYWYvz48ZV67SJ5eXm4fv06atWqVeo2OTk56NKlCy5fvozIyEgEBARg9+7dGD58OO7fv4+3334bbm5uWLduHcaOHYt+/fqhf//+AIBmzZoZpE6iKkMQET0hJiZGABCHDx8Wt2/fFtevXxdffvmlcHNzE/b29uL69evStt27dxdBQUHi4cOH0rLCwkLRoUMH0aBBA2lZ8+bNRe/evct833nz5oknT0lnz54VAMS4ceO0ths8eLAAIObNmycti4iIEH5+fuW+phBCZGdnF9suPDxc1K1bV2tZ586dRefOncusWQgh/Pz8xAsvvCBu374tbt++Lf73v/+JQYMGCQBiwoQJpb7eypUrBQCxdetWadmjR49ESEiIqF69usjMzBRCCHH79u1i+0tEuuFlLCIqUVhYGNzc3ODr64tXXnkFTk5O2Lt3L5555hkAwL1793DkyBG89tpr+Pvvv3Hnzh3cuXMHd+/eRXh4OP744w9p9JarqyvOnz+PP/74o8Lvv3//fgDAxIkTtZZPmjSpUvvl6Ogo/Vuj0eDOnTvo3Lkzrly5Ao1Go9drHjx4EG5ubnBzc0Pz5s2xe/duDBs2DEuXLi31Ofv374enpydef/11aZmtrS0mTpyIrKws/PDDD3rVQkTF8TIWEZXok08+QcOGDaHRaLB582b8+OOPsLe3l9ZfvnwZQgjMmTMHc+bMKfE1MjIy4OPjgwULFuDll19Gw4YN0bRpU/To0QPDhg0r83LMn3/+CSsrK9SrV09reaNGjSq1X8ePH8e8efOQmJiI7OxsrXUajQZqtVrn12zXrh0WLVoElUqFatWqITAwEK6urmU+588//0SDBg1gZaX9N2dgYKC0nogMg2GHiErUtm1baTRW37590bFjRwwePBiXLl1C9erVUVhYCACYNm0awsPDS3yN+vXrAwA6deqE5ORk/Oc//8HBgwfx2WefYcWKFVi/fj1GjRpV6VpLm4ywoKBA6+fk5GR0794djRs3xvLly+Hr6ws7Ozvs378fK1askPZJV7Vr10ZYWJhezyUi42PYIaJyWVtbIyoqCl27dsWaNWswc+ZM1K1bF8DjSy8V+aKvWbMmRowYgREjRiArKwudOnXC/PnzSw07fn5+KCwsRHJyslZrzqVLl4ptW6NGDdy/f7/Y8qdbR7755hvk5uZi7969qFOnjrT86NGj5dZvaH5+fvjll19QWFio1brz22+/SeuB0oMcEVUc++wQUYV06dIFbdu2xcqVK/Hw4UO4u7ujS5cu2LBhA1JTU4ttf/v2benfd+/e1VpXvXp11K9fH7m5uaW+X8+ePQEAq1at0lq+cuXKYtvWq1cPGo0Gv/zyi7QsNTW12CzG1tbWAAAhhLRMo9EgJiam1DqMpVevXkhLS8OuXbukZfn5+Vi9ejWqV6+Ozp07AwCqVasGACWGOSKqGLbsEFGFTZ8+Ha+++ipiY2Px1ltv4ZNPPkHHjh0RFBSE0aNHo27dukhPT0diYiJu3LiB//3vfwCAJk2aoEuXLmjdujVq1qyJn3/+GV9++SUiIyNLfa8WLVrg9ddfx9q1a6HRaNChQwfExcXh8uXLxbYdNGgQZsyYgX79+mHixInIzs7GunXr0LBhQ5w+fVra7oUXXoCdnR369OmDf/3rX8jKysLGjRvh7u5eYmAzpjFjxmDDhg0YPnw4Tp06BX9/f3z55Zc4fvw4Vq5cCWdnZwCPO1Q3adIEu3btQsOGDVGzZk00bdoUTZs2NWm9RBbN3MPBiEheioaeJyUlFVtXUFAg6tWrJ+rVqyfy8/OFEEIkJyeLN954Q3h6egpbW1vh4+MjXnzxRfHll19Kz1u0aJFo27atcHV1FY6OjqJx48Zi8eLF4tGjR9I2JQ0Tz8nJERMnThS1atUSTk5Ook+fPuL69eslDsU+ePCgaNq0qbCzsxONGjUSW7duLfE19+7dK5o1ayYcHByEv7+/WLp0qdi8ebMAIFJSUqTtdBl6Xt6w+tJeLz09XYwYMULUrl1b2NnZiaCgIBETE1PsuQkJCaJ169bCzs6Ow9CJ9KAS4on2XCIiIiKFYZ8dIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNE4qCKCwsBC3bt2Cs7Mzp2YnIiKyEEII/P333/D29i52U90nMewAuHXrFnx9fc1dBhEREenh+vXreOaZZ0pdz7ADSNOyX79+HS4uLmauhoiIiCoiMzMTvr6+0vd4aRh28M9dhV1cXBh2iIiILEx5XVDYQZmIiIgUjWGHiIiIFI1hh4iIiBSNfXaILFBhYSEePXpk7jJIgWxtbWFtbW3uMogMimGHyMI8evQIKSkpKCwsNHcppFCurq7w9PTkvGOkGAw7RBZECIHU1FRYW1vD19e3zEm0iHQlhEB2djYyMjIAAF5eXmauiMgwGHaILEh+fj6ys7Ph7e2NatWqmbscUiBHR0cAQEZGBtzd3XlJixSBfxYSWZCCggIAgJ2dnZkrISUrCtJ5eXlmroTIMBh2iCwQ+1KQMfHzRUrDsENERESKxrBDRBbh+PHjCAoKgq2tLfr27WvucojIgjDsEJHRDR8+HCqVCiqVCra2tggICMA777yDhw8fVvg1pkyZghYtWiAlJQWxsbHGK9aEYmNjpeNibW2NGjVqoF27dliwYAE0Go3Or6dSqfD//t//M3yhRJWQqslBQvIdpGpyzFYDR2MRkUn06NEDMTExyMvLw6lTpxAREQGVSoWlS5dW6PnJycl466238Mwzz+hdw6NHj0zWuVsIgYKCAtjYlH2adXFxwaVLlyCEwP3795GQkICoqCjExMTg+PHj8Pb2Nkm9RMawK+kaZu35FYUCsFIBUf2DMLBNHZPXwZYdI5JDmiWSC3t7e3h6esLX1xd9+/ZFWFgYDh06BODxjNBRUVEICAiAo6Mjmjdvji+//BIAcPXqVahUKty9exdvvvkmVCqV1LLzww8/oG3btrC3t4eXlxdmzpyJ/Px86T27dOmCyMhITJo0CbVr10Z4eDiOHTsGlUqF77//Hi1btoSjoyO6deuGjIwMfPfddwgMDISLiwsGDx6M7Oxs6bXKqhGA9LrfffcdWrduDXt7e8THx5d7XFQqFTw9PeHl5YXAwECMHDkSCQkJyMrKwjvvvCNt5+/vj5UrV2o9t0WLFpg/f760HgD69esHlUoFf39/XL16FVZWVvj555+1nrdy5Ur4+flxYkoyqlRNjhR0AKBQALP3nDPLdyJbdoxELmmWqDSpmhyk3HmAgNpO8FI7mvS9z507h4SEBPj5+QEAoqKisHXrVqxfvx4NGjTAjz/+iKFDh8LNzQ0dO3ZEamoqGjVqhAULFmDgwIFQq9W4efMmevXqheHDh+Pzzz/Hb7/9htGjR8PBwUEKAACwZcsWjB07FsePH3+836mpAID58+djzZo1qFatGl577TW89tprsLe3x/bt25GVlYV+/fph9erVmDFjRrk1du7cWXq/mTNn4sMPP0TdunVRo0YNvY6Pu7s7hgwZgs2bN6OgoKBCc90kJSXB3d0dMTEx6NGjB6ytreHm5oawsDDExMQgODhY2jYmJgbDhw/npJRkVCl3HkhBp0iBELh6J9vk5xyGHSMoLc12auhm8l8wUUnMEcb37duH6tWrIz8/H7m5ubCyssKaNWuQm5uLJUuW4PDhwwgJCQEA1K1bF/Hx8diwYQM6d+4s3bpArVbD09MTALB27Vr4+vpizZo1UKlUaNy4MW7duoUZM2Zg7ty50hd5gwYNsGzZMqmOorCzaNEihIaGAgBGjhyJWbNmITk5GXXr1gUAvPLKKzh69ChmzJhRoRqLLFiwAM8//3ylj1fjxo3x999/4+7du3B3dy93ezc3NwD/3OqhyKhRo/DWW29h+fLlsLe3x+nTp/Hrr7/iP//5T6VrJCpLQG0nWKmgFXisVSr41zb9hKiM9UZQVpolMjdzNS137doVZ8+exYkTJxAREYERI0ZgwIABuHz5MrKzs/H888+jevXq0uPzzz9HcnJyqa938eJFhISEaM0JExoaiqysLNy4cUNa1rp16xKf36xZM+nfHh4eqFatmhR0ipYV3TZBlxqfbEGpDCEe/4IqO+dN3759YW1tja+//hrA407RXbt2lS57ERmLl9oRUf2DYP1/n2FrlQpL+jc1yx/9bNkxAjmlWaKnmatp2cnJCfXr1wcAbN68Gc2bN8emTZvQtGlTAMC3334LHx8frefY29sb5H1LYmtrK/27aJTYk1QqldSnJSsrq8I1lvZ+urp48SJcXFxQq1YtAICVlZUUgIpUZIZjOzs7vPHGG4iJiUH//v2xfft2fPzxxwapkag8A9vUQaeGbrh6Jxv+tauZ7eoGw44RFKXZ2XvOoUAIs6ZZoqfJIYxbWVlh9uzZmDJlCn7//XfY29vj2rVrWpeDyhMYGIivvvoKQgip9eP48eNwdnau1IitkjRp0kSvGvWVkZGB7du3o2/fvtLlODc3N+kSHABkZmYiJSVF63m2trbSLUWeNGrUKDRt2hRr165Ffn4++vfvb9wdIHqCl9rR7N9/DDtGIpc0S/Q0uYTxV199FdOnT8eGDRswbdo0TJ48GYWFhejYsSM0Gg2OHz8OFxcXRERElPj8cePGYeXKlZgwYQIiIyNx6dIlzJs3D1OmTDF4x1tnZ2e9aqwIIQTS0tKkoeeJiYlYsmQJ1Go1oqOjpe26deuG2NhY9OnTB66urpg7d26xjsv+/v6Ii4tDaGgo7O3tpQ7SgYGBaN++PWbMmIE333xTutknUVXBsGNEckizRCWRQxi3sbFBZGQkli1bhpSUFLi5uSEqKgpXrlyBq6srWrVqhdmzZ5f6fB8fH+zfvx/Tp09H8+bNUbNmTYwcORLvvfeeUepduHChzjVWRGZmJry8vKBSqeDi4oJGjRohIiICb7/9NlxcXKTtZs2ahZSUFLz44otQq9VYuHBhsZadjz76CFOmTMHGjRvh4+ODq1evSuuKhrS/+eablaqXyBKpxNMXgaugzMxMqNVqaDQarZMLkdw8fPgQKSkpCAgIgIODg7nLIQuycOFC7N69G7/88ku52/JzRpaiot/fHI1FRKRgWVlZOHfuHNasWYMJEyaYuxwis2DYISIykmeffVZrqPqTj23btpmkhsjISLRu3RpdunThJSyqsthnh4jISPbv31/q8HAPDw+T1BAbG6uYG6cS6Ythh4jISIpuh0FE5sXLWEQWiOMKyJj4+SKlYdghsiBF86o8evTIzJWQkhXd7f3pWaWJLBUvYxFZEBsbG1SrVg23b9+Gra0t71pNBiWEQHZ2NjIyMuDq6lqhu60TWQKGHSILolKp4OXlhZSUFPz555/mLocU6uk7pxNZOoYdIgtjZ2eHBg0a8FIWGYWtrS1bdEhxGHaILJCVlRVntiUiqiBe8CciIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFM2vYKSgowJw5cxAQEABHR0fUq1cPCxcu1LoJnRACc+fOhZeXFxwdHREWFoY//vhD63Xu3buHIUOGwMXFBa6urhg5ciSysrJMvTtEREQkQ2YNO0uXLsW6deuwZs0aXLx4EUuXLsWyZcuwevVqaZtly5Zh1apVWL9+PU6cOAEnJyeEh4fj4cOH0jZDhgzB+fPncejQIezbtw8//vgjxowZY45dIiIiIplRiSebUUzsxRdfhIeHBzZt2iQtGzBgABwdHbF161YIIeDt7Y2pU6di2rRpAACNRgMPDw/ExsZi0KBBuHjxIpo0aYKkpCQEBwcDAA4cOIBevXrhxo0b8Pb2LreOzMxMqNVqaDQauLi4GGdniYiIyKAq+v1t1padDh06IC4uDr///jsA4H//+x/i4+PRs2dPAEBKSgrS0tIQFhYmPUetVqNdu3ZITEwEACQmJsLV1VUKOgAQFhYGKysrnDhxwoR7Q0RERHJk1ntjzZw5E5mZmWjcuDGsra1RUFCAxYsXY8iQIQCAtLQ0AICHh4fW8zw8PKR1aWlpcHd311pvY2ODmjVrSts8LTc3F7m5udLPmZmZBtsnIiIikheztuz8+9//xrZt27B9+3acPn0aW7ZswYcffogtW7YY9X2joqKgVqulh6+vr1Hfj4iIiMzHrGFn+vTpmDlzJgYNGoSgoCAMGzYMkydPRlRUFADA09MTAJCenq71vPT0dGmdp6cnMjIytNbn5+fj3r170jZPmzVrFjQajfS4fv26oXeNiIiIZMKsYSc7OxtWVtolWFtbo7CwEAAQEBAAT09PxMXFSeszMzNx4sQJhISEAABCQkJw//59nDp1StrmyJEjKCwsRLt27Up8X3t7e7i4uGg9iIiISJnM2menT58+WLx4MerUqYNnn30WZ86cwfLly/Hmm28CAFQqFSZNmoRFixahQYMGCAgIwJw5c+Dt7Y2+ffsCAAIDA9GjRw+MHj0a69evR15eHiIjIzFo0KAKjcQiIiIiZTNr2Fm9ejXmzJmDcePGISMjA97e3vjXv/6FuXPnStu88847ePDgAcaMGYP79++jY8eOOHDgABwcHKRttm3bhsjISHTv3h1WVlYYMGAAVq1aZY5dIiIiIpkx6zw7csF5doiIiCyPRcyzQ0RERGRsDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREVGmpmhwkJN9BqibH3KUUY2PuAoiIiMiy7Uq6hll7fkWhAKxUQFT/IAxsU8fcZUnYskNERER6S9XkSEEHAAoFMHvPOVm18DDsEBERkd5S7jyQgk6RAiFw9U62eQoqAcMOERER6S2gthOsVNrLrFUq+NeuZp6CSsCwQ0RERHrzUjsiqn8QrFWPE4+1SoUl/ZvCS+1o5sr+wQ7KREREVCkD29RBp4ZuuHonG/61q8kq6AAMO0RERGQAXmpH2YWcIryMRURERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESVlqrJQULyHaRqcsxdSjE25i6AiIiILNuupGuYtedXFArASgVE9Q/CwDZ1zF2WhC07REREpLdUTY4UdACgUACz95yTVQsPww4RERHpLeXOAynoFCkQAlfvZJunoBIw7BAREZHeAmo7wUqlvcxapYJ/7WrmKagEDDtERESkNy+1I6L6B8Fa9TjxWKtUWNK/KbzUjmau7B/soExERESVMrBNHXRq6Iard7LhX7uarIIOwLBDREREBuCldpRdyCnCy1hERESkaGYPOzdv3sTQoUNRq1YtODo6IigoCD///LO0XgiBuXPnwsvLC46OjggLC8Mff/yh9Rr37t3DkCFD4OLiAldXV4wcORJZWVmm3hUiIiKSIbOGnb/++guhoaGwtbXFd999hwsXLuCjjz5CjRo1pG2WLVuGVatWYf369Thx4gScnJwQHh6Ohw8fStsMGTIE58+fx6FDh7Bv3z78+OOPGDNmjDl2iYiIiGRGJYQQ5W9mHDNnzsTx48fx3//+t8T1Qgh4e3tj6tSpmDZtGgBAo9HAw8MDsbGxGDRoEC5evIgmTZogKSkJwcHBAIADBw6gV69euHHjBry9vcutIzMzE2q1GhqNBi4uLobbQSIiIjKain5/m7VlZ+/evQgODsarr74Kd3d3tGzZEhs3bpTWp6SkIC0tDWFhYdIytVqNdu3aITExEQCQmJgIV1dXKegAQFhYGKysrHDixIkS3zc3NxeZmZlaDyIiIlIms4adK1euYN26dWjQoAG+//57jB07FhMnTsSWLVsAAGlpaQAADw8Pred5eHhI69LS0uDu7q613sbGBjVr1pS2eVpUVBTUarX08PX1NfSuERERkUyYNewUFhaiVatWWLJkCVq2bIkxY8Zg9OjRWL9+vVHfd9asWdBoNNLj+vXrRn0/IiIiMh+zhh0vLy80adJEa1lgYCCuXbsGAPD09AQApKena22Tnp4urfP09ERGRobW+vz8fNy7d0/a5mn29vZwcXHRehAREZEymTXshIaG4tKlS1rLfv/9d/j5+QEAAgIC4Onpibi4OGl9ZmYmTpw4gZCQEABASEgI7t+/j1OnTknbHDlyBIWFhWjXrp0J9oKIiIjkzKwzKE+ePBkdOnTAkiVL8Nprr+HkyZP49NNP8emnnwIAVCoVJk2ahEWLFqFBgwYICAjAnDlz4O3tjb59+wJ43BLUo0cP6fJXXl4eIiMjMWjQoAqNxCIiIiJlM+vQcwDYt28fZs2ahT/++AMBAQGYMmUKRo8eLa0XQmDevHn49NNPcf/+fXTs2BFr165Fw4YNpW3u3buHyMhIfPPNN7CyssKAAQOwatUqVK9evUI1cOg5ERGR5ano97fZw44cMOwQERFZHouYZ4eIiIjI2Bh2iIiISNEYdoiIiEjRGHaIiIhI0fQOO/7+/liwYIE0ASARERGRHOkddiZNmoQ9e/agbt26eP7557Fz507k5uYasjYiIiKiSqtU2Dl79ixOnjyJwMBATJgwAV5eXoiMjMTp06cNWSMRERGR3gw2z05eXh7Wrl2LGTNmIC8vD0FBQZg4cSJGjBgBlUpliLcwGs6zQ0REZHkq+v1d6dtF5OXl4euvv0ZMTAwOHTqE9u3bY+TIkbhx4wZmz56Nw4cPY/v27ZV9GyIiIiK96B12Tp8+jZiYGOzYsQNWVlZ44403sGLFCjRu3Fjapl+/fmjTpo1BCiUiIiLSh95hp02bNnj++eexbt069O3bF7a2tsW2CQgIwKBBgypVIBEREVFl6B12rly5Aj8/vzK3cXJyQkxMjL5vQURERFRpeo/G6tq1K+7evVts+f3791G3bt1KFUVERERkKHqHnatXr6KgoKDY8tzcXNy8ebNSRREREREZis6Xsfbu3Sv9+/vvv4darZZ+LigoQFxcHPz9/Q1SHBEREVFl6Rx2+vbtCwBQqVSIiIjQWmdrawt/f3989NFHBimOiIiIqLJ0DjuFhYUAHo+0SkpKQu3atQ1eFBEREZGh6D0aKyUlxZB1EBERERmF3mFnwYIFZa6fO3euvi9NREREZDB6h52vv/5a6+e8vDykpKTAxsYG9erVY9ghqoJSNTlIufMAAbWd4KV2NHc5REQAKhF2zpw5U2xZZmYmhg8fjn79+lWqKCKyPLuSrmHWnl9RKAArFRDVPwgD29Qxd1lERPrPs1MSFxcXvP/++5gzZ44hX5aIZC5VkyMFHQAoFMDsPeeQqskxb2FERDBw2AEAjUYDjUZj6JclIhlLufNACjpFCoTA1TvZ5imIiOgJel/GWrVqldbPQgikpqbiiy++QM+ePStdGBFZjoDaTrBSQSvwWKtU8K9dzXxFERH9H73DzooVK7R+trKygpubGyIiIjBr1qxKF0ZElsNL7Yio/kGYveccCoSAtUqFJf2bspMyEckC59khIoMY2KYOOjV0w9U72fCvXY1Bh4hkQ++wAzy+dHX37l2oVCrUqlXLUDURkYXyUjsy5BCR7OjVQTktLQ1vvPEGatSoAQ8PD7i7u6NGjRp48803kZ6ebugaiYiIiPSmc8tOZmYmOnTogKysLIwYMQKNGzeGEAIXLlzAjh07EB8fj9OnT6N69erGqJeIiIhIJzqHnY8//hjW1tY4f/483NzctNa99957CA0NxapVqzB79myDFUlExsEZj4moKtD5Mta3336L2bNnFws6AODu7o5Zs2bhm2++MUhxRGQ8u5KuITT6CAZvPIHQ6CPYlXTN3CURERmFzmHn999/R4cOHUpd36FDB1y6dKlSRRGRcXHGYyKqSnQOO5mZmXB1dS11vaurKzIzMytTExEZGWc8JqKqROewI4SAlVXpT1OpVBBClLqeiMyvaMbjJxl7xuNUTQ4Sku+w9YiITE7nDspCCDRs2BAqlarU9UQkb6ae8Zh3RCcic9I57MTExBijDiIyMVPNeFxa/6BODd2M8p4cYUZET9M57EREROi0/Y4dO/DSSy/ByclJ17ciIiMzxYzHZfUPMvR7swWJiEqi1wzKuvjXv/7FWZWJqjBT9Q/iCDMiKo3Rww778BBVbUX9g6z/r5+fsfoHcYQZEZWmUjcCJSKqCFP0DypqQXoy8Bh7hBkRWQajt+wQEQGPW3hC6tUyWh8hU7UgEZHlYcsOESmGqUaYEZFlYdghIkUxxQgzIrIsel3GKigowI8//oj79++Xu62fnx9sbW31eRsiIlI4zqytfHL4HevVsmNtbY0XXngBFy9eLPM+WQBw7tw5fd6CiIgUjvMiKZ9cfsd6d1Bu2rQprly5YshaiIioiuC8SMonp9+x3mFn0aJFmDZtGvbt24fU1FRkZmZqPYiURA7NsERKwnmRlE9Ov2O9Oyj36tULAPDSSy9p3RRUCAGVSoWCgoLKV0ckA3JphuU9n0hJOC+S8snpd6x32Dl69Kgh6yCSJVPfxLI0cglcRIbipXZEv5Y++Or0TWlZ35beDPIKUjT31ew951AghFnnvtI77HTu3NmQdRDJkilvYlkauQQuIkNK1eTg6zM3tZb9vzO3MC28ET/XCiKXua8qNYPyf//7XwwdOhQdOnTAzZuPP7RffPEF4uPjDVIckbmZ6iaWZZHTdW8iQ+Hnuuow9uzpFaF32Pnqq68QHh4OR0dHnD59Grm5uQAAjUaDJUuWGKxAInOSwy0I5BC4iAyNn2sypUqNxlq/fj02btyoNWlgaGgoTp8+bZDiiORgYJs6iJ/ZFTtGt0f8zK4m7ysjh8BFZGj8XJMp6d1n59KlS+jUqVOx5Wq1ukIzK5N+OCLHPMx9CwK5XPcmMiR+rslU9A47np6euHz5Mvz9/bWWx8fHo27dupWti0rAETmWxdDB1NyBi8gY+LkmU9A77IwePRpvv/02Nm/eDJVKhVu3biExMRHTpk3DnDlzDFkjgSNyLA2DKRGRfOgddmbOnInCwkJ0794d2dnZ6NSpE+zt7TFt2jRMmDDBkDUS5DEEmiqGwZSISF70DjsqlQrvvvsupk+fjsuXLyMrKwtNmjRB9erVDVkf/R85zURJZWMwJSKSl0rNswMAdnZ2aNKkCdq2bcugYyAl3YeJIxcsB4fUEhHJi94tOw8fPsTq1atx9OhRZGRkoLCwUGs9h5/rp6y+Hhy5YBnkNEU6ERFVIuyMHDkSBw8exCuvvIK2bdtq3QyU9FORvh4cuWAeuo6sYjAlIpIPvcPOvn37sH//foSGhhqyniqNfT3kSd+RVQymRETyoHefHR8fHzg7OxuyliqPfT3kp7TWtif7UxERkbzpHXY++ugjzJgxA3/++ach66nS2AlZfnizQiKiiilpcI1c6H0ZKzg4GA8fPkTdunVRrVo1rftjAcC9e/cqXVxVxL4e8sIh/0RE5ZP7RKp6h53XX38dN2/exJIlS+Dh4cEOygbEvh7ywZFVRERls4SJVPUOOwkJCUhMTETz5s0NWQ+R7AxsUweNPZ2RdPUvtPGvgea+NcxdEhGRbFjC4Bq9++w0btwYOTmGvS4XHR0NlUqFSZMmScsePnyI8ePHo1atWqhevToGDBiA9PR0reddu3YNvXv3RrVq1eDu7o7p06cjPz/foLVR1bUr6Rr6rU3Aom8vot/aBOxKumbukoiIZMMSBtfoHXaio6MxdepUHDt2DHfv3kVmZqbWQ1dJSUnYsGEDmjVrprV88uTJ+Oabb7B792788MMPuHXrFvr37y+tLygoQO/evfHo0SMkJCRgy5YtiI2Nxdy5c/XdNSIJR2MRGZecO7VSxVjC4BqVEEKUv1lxVlaPc9LTfXWEEFCpVCgoKKjwa2VlZaFVq1ZYu3YtFi1ahBYtWmDlypXQaDRwc3PD9u3b8corrwAAfvvtNwQGBiIxMRHt27fHd999hxdffBG3bt2Ch4cHAGD9+vWYMWMGbt++DTs7u3LfPzMzE2q1GhqNBi4uLhWum5QvIfkOBm88UWz5jtHtEVKvlhkqIlIOuXdqJd2kanJMPrimot/fevfZOXr0qL5PLWb8+PHo3bs3wsLCsGjRImn5qVOnkJeXh7CwMGlZ48aNUadOHSnsJCYmIigoSAo6ABAeHo6xY8fi/PnzaNmyZbH3y83NRW5urvSzPi1RVDVwNBaRcVhCp1bSjZwH1+gVdvLy8rBgwQKsX78eDRo0qFQBO3fuxOnTp5GUlFRsXVpaGuzs7ODq6qq13MPDA2lpadI2TwadovVF60oSFRWF999/v1J1U9XA0VhExmEJnVpJOfQKO7a2tvjll18q/ebXr1/H22+/jUOHDsHBwaHSr1dRs2bNwpQpU6SfMzMz4evra7L3J8vCuY+IDI+tpmRKendQHjp0KDZt2lSpNz916hQyMjLQqlUr2NjYwMbGBj/88ANWrVoFGxsbeHh44NGjR7h//77W89LT0+Hp6QkA8PT0LDY6q+jnom2eZm9vDxcXF60HUVm81I4IqVeLQYfIQCyhUysph959dvLz87F582YcPnwYrVu3hpOTk9b65cuXl/sa3bt3x6+//qq1bMSIEWjcuDFmzJgBX19f2NraIi4uDgMGDAAAXLp0CdeuXUNISAgAICQkBIsXL0ZGRgbc3d0BAIcOHYKLiwuaNGmi7+4REZGRsdWUTEXvsHPu3Dm0atUKAPD7779rravobMrOzs5o2rSp1jInJyfUqlVLWj5y5EhMmTIFNWvWhIuLCyZMmICQkBC0b98eAPDCCy+gSZMmGDZsGJYtW4a0tDS89957GD9+POzt7fXdPbIAqZocpNx5gIDaTjxJElkoU3Zq5Tmj6pLFaKyyrFixAlZWVhgwYAByc3MRHh6OtWvXSuutra2xb98+jB07FiEhIXByckJERAQWLFhgkvrIPDhklYh0wXNG1ab3PDtPunHjBgDgmWeeqXRB5sB5dixLqiYHodFHinVsjJ/ZlX+tEVVxJbXe8JyhXBX9/ta7g3JhYSEWLFgAtVoNPz8/+Pn5wdXVFQsXLkRhYaG+L0tUrrKGrBKRccl5xuNdSdcQGn0EgzeeQGj0EenWLjxnkN6Xsd59911s2rQJ0dHRCA0NBQDEx8dj/vz5ePjwIRYvXmywIomexCGrROYh50tBZU1SyHMG6d2ys2XLFnz22WcYO3YsmjVrhmbNmmHcuHHYuHEjYmNjDVgikTYOWSUyPbnfJ668SQp5zqja9G7ZuXfvHho3blxseePGjXHv3r1KFUVUHksYssqRH6Qkcp/xuLzWG0s4Z5Dx6N2y07x5c6xZs6bY8jVr1qB58+aVKoqoIsqa6E+ffgWG7ItQWt8BIktVFCaeJKdLQRVpveHkoFWX3qOxfvjhB/Tu3Rt16tSRJvhLTEzE9evXsX//fjz33HMGLdSYOBrLMpXWcqJPvwJD9kXgyA9Sql1J14rdJ04ufXaKmOPO22Q+Ff3+rtTQ81u3buGTTz7Bb7/9BgAIDAzEuHHj4O3tre9LmgXDjuUpLZzoEzQMHU4Sku9g8MYTxZbvGN0eIfVq6fx6RHLCMEFyUtHvb5367PTv3x+xsbFwcXHB559/joEDB3LUFZlcWaMu9OlXYOi+CBz5QUpmyhmPiQxFpz47+/btw4MHDwA8voeVRqMxSlFEZSkrnOjTr8DQfRE48oOISF50atlp3LgxZs2aha5du0IIgX//+9+lNhu98cYbBimQ6GlltZwUBY2n+xWUFTT0eU55OPKDiEg+dOqzk5CQgClTpiA5ORn37t2Ds7NziTf9VKlUFjX8nH12LE95HSX16VfAvghERJbF6B2UrayskJaWBnd3d72LlAuGHctUVjjhHDdERMpnlA7KT0pJSYGbm5u+TyeqtNI6Ssp5SnsiY2C4Jyqb3pMK+vn5IT4+HkOHDkVISAhu3rwJAPjiiy8QHx9vsAKJdCH3Ke2JDI0TWBKVT++w89VXXyE8PByOjo44c+YMcnNzAQAajQZLliwxWIFEuuDdjakqYbgnqhi9w86iRYuwfv16bNy4Eba2ttLy0NBQnD592iDFEelK7lPaExkSwz1Rxegddi5duoROnToVW65Wq3H//v3K1ESkN85xoxtD3g+MTI/hnqhi9O6g7OnpicuXL8Pf319reXx8POrWrVvZuoj0xjluKoYduS2fMeaIIlIivcPO6NGj8fbbb2Pz5s1QqVS4desWEhMTMXXqVMydO9eQNRLpjFPal62sW27wuFkWhnui8ukddmbOnInCwkJ0794d2dnZ6NSpE+zt7TF9+nSMGjXKkDUSkYEZ+n5gVZVchnwz3FNp5PIZNTe9++yoVCq8++67uHfvHs6dO4effvoJt2/fhlqtRkBAgCFrJCIDY1+PyuOQb5I7fkb/oXPYyc3NxaxZsxAcHIzQ0FDs378fTZo0wfnz59GoUSN8/PHHmDx5sjFqJSIDYUfuyuGQb5I7fka16XwZa+7cudiwYQPCwsKQkJCAV199FSNGjMBPP/2Ejz76CK+++iqsra2NUSsRGRD7euiPlwFJ7vgZ1aZz2Nm9ezc+//xzvPTSSzh37hyaNWuG/Px8/O9//yvxpqBEJF/s66GfosuAT36Z8DIgyQk/o9p0vox148YNtG7dGgDQtGlT2NvbY/LkyQw6JeAcJkTKxMuAlqkqnZP5GdWmc8tOQUEB7Ozs/nkBGxtUr17doEUpAecwIVI2Xga0LFXxnMzP6D9UQghR/mb/sLKyQs+ePWFvbw8A+Oabb9CtWzc4OTlpbbdnzx7DVWlkFb1FfEWlanIQGn2kWPNh/MyuVfrDRkRkDjwnK1dFv791btmJiIjQ+nno0KG6V6dw7BhGRCQfPCeTzmEnJibGGHUoCjuGERHJB8/JpPekglQ6dgwjqriq1GmUzIPnZNK5z44SGbrPTpFUTQ47hhGVoSp2GiXz4TlZeYzWZ4cqjnOYEJWONyMlU+M5ueriZSwiMouyOo0SERkSww4RmQVvRkqWgH3KlIFhh6gKM+eJnJ1GSe5413DlYAdlGK+DMpGcyaVzMDuNkhxxIkLLUNHvb7bsEFVBpXUONlcLT0i9WvwCIVlhnzJlYdghqoJ4IicqG/uUKQvDDpkMO/rJB0/kpFSGOs+wT5mycJ4dMgm59A+hx4pO5LP3nEOBEDyRm1iqJgcpdx4goLYTj7kBGfo8w7uGKwc7KIMdlI2NHf3ki52DTY/B3zh4nqma2EGZZIP9Q+SLnYNNS04dw5WG5xkqC8OOEbGPymPsH0L0WGW+kHk+KRvPM1QWhh0jUfJkVLqedNnRj+gxfb+QlXw+MRSeZ6gs7LMDw/fZUfK148r0N2D/EKLH/4ee7hhe1v8hJZ9PjIHnmaqFdz03o7Kaqi35P19l71LNOw4T6T7CR6nnE2PheYZKwrBjBEVN1U//JWbp14550iUyDF2+kJV6PiEyJfbZMQKlXjsOqO2Ep7obQKUCT7pERqTU8wmRKbFlx0iqzGRUVb7HF5HxVZnzCZGRMOwYkdKuHafceVAs2wiAl7GITEBp5xO54azWysawQxXGvgNEpESc1Vr52GeHKox9B4hIaTirddXAlh3SCfsOEJGScJRp1cCwQzpj3wEiUgpenq8aeBmLiIiqLF6erxrYskNERFWaMS7Pc3SXvDDsEBFRlWfIy/Mc3SU/vIxFRERkIBzdJU8MO0RERAZS1uguMh+GHSIiIgMpGt31JI7uMj+GHSIiIgPh6C55YgdlIiIiA+Lkq/LDsENERGRgnHxVXngZi4iIyMBSNTlISL5jkaOwLLn20rBlh4iIyIAseZ4dS669LGzZISIiMhBLnmfHkmsvD8MOlUiJzZhERMZmyfPsWHLt5eFlrCqupPu3KLUZk8jQeP8jepol30Xdkmsvj1lbdqKiotCmTRs4OzvD3d0dffv2xaVLl7S2efjwIcaPH49atWqhevXqGDBgANLT07W2uXbtGnr37o1q1arB3d0d06dPR35+vil3xSLtSrqG0OgjGLzxBEKjj2BX0jVFN2MSGVJJ/3/MhS2x8mHJ8+xYcu3lMWvLzg8//IDx48ejTZs2yM/Px+zZs/HCCy/gwoULcHJyAgBMnjwZ3377LXbv3g21Wo3IyEj0798fx48fBwAUFBSgd+/e8PT0REJCAlJTU/HGG2/A1tYWS5YsMefuyVppoWbloOalNmMq4QNPlcfWjNL//3Rq6GbyY6JvSyx/j8ZjyfPsWHLtZTFr2Dlw4IDWz7GxsXB3d8epU6fQqVMnaDQabNq0Cdu3b0e3bt0AADExMQgMDMRPP/2E9u3b4+DBg7hw4QIOHz4MDw8PtGjRAgsXLsSMGTMwf/582NnZmWPXZK+0a7NWKpVimzGp8pR8iVOXL/+y+jaY8stB39Cl5N+jXFjyPDuWXHtpZNVBWaPRAABq1qwJADh16hTy8vIQFhYmbdO4cWPUqVMHiYmJAIDExEQEBQXBw8ND2iY8PByZmZk4f/58ie+Tm5uLzMxMrUdVU9r9W1r51VBsMyZVjpIvcep6SUou9z/Sp0Opkn+PRKWRTdgpLCzEpEmTEBoaiqZNmwIA0tLSYGdnB1dXV61tPTw8kJaWJm3zZNApWl+0riRRUVFQq9XSw9fX18B7I39lXZsd2KYO4md2xY7R7RE/syv/4iMAyh2poc+Xv1z6NugTupT6eyQqi2xGY40fPx7nzp1DfHy80d9r1qxZmDJlivRzZmZmlQw8ZV2bVWIzJlWOUkdq6HtJSg59G4pC1+w951AgRIVCl1J/j0RlkUXYiYyMxL59+/Djjz/imWeekZZ7enri0aNHuH//vlbrTnp6Ojw9PaVtTp48qfV6RaO1irZ5mr29Pezt7Q28F5aJoYYqSp8vVktQmS9/Ofz/0TV0KfX3SFQWs4YdIQQmTJiAr7/+GseOHUNAQIDW+tatW8PW1hZxcXEYMGAAAODSpUu4du0aQkJCAAAhISFYvHgxMjIy4O7uDgA4dOgQXFxc0KRJE9PukIFwlATJlRxaMwxNCV/+uoYuJf4eicqiEkKI8jczjnHjxmH79u34z3/+g0aNGknL1Wo1HB0f/+cbO3Ys9u/fj9jYWLi4uGDChAkAgISEBACPh563aNEC3t7eWLZsGdLS0jBs2DCMGjWqwkPPMzMzoVarodFo4OLiYuC91A1HSRCZR6omh1/+RBamot/fZg07KpWqxOUxMTEYPnw4gMeTCk6dOhU7duxAbm4uwsPDsXbtWq1LVH/++SfGjh2LY8eOwcnJCREREYiOjoaNTcUaruQSdlI1OQiNPlKsOT1+ZleefImIiJ5iEWFHLuQSdhKS72DwxhPFlu8Y3R4h9WqZoSIiIiL5quj3t2yGnpN85u4gIiJSEoYdGZHL3B0kT7z/EemDnxsimQw9p39wlASVhB3XSR/83BA9xpYdGfJSOyKkXi0GHQLA6f1JP/zcEP2DYYdI5ji9P+mDnxuifzDsEMkcO66TPvi5IfoHww6RzLHjOumDnxuif3CeHZhnnh3eEoJ0xRl+SR/83JCSVfT7m6OxzIAjJEgfcrjpJFkefm4sB/8INh6GHRMrbYREp4ZuRvtw8z8QEZkCzzX64x/BxsWwY2JljZAwxsmB/4GIyBR4rqm4p0OhOf4IrmoYdkysaITE0zf7NMYICf4HIiJT4Lmm4koKhb41q5n0j+CqiKOxTMyUIyQ4zwYRmQLPNRVTWih0srPmNAFGxpYdMzDVLSFM2YpERFUXzzUVU1oozH5UiKj+QZi95xwKhOA0AUbAsGMmphghUdSKxP9ARGRMPNdUTFmhMKReLd4X0Yg4zw7MM8+OKcl9ng2O4CBSBrmfa+RgV9K1YqGQHbn1V9Hvb4YdKD/syBlHcBBRVWPKUKj0PyY5qSDJHkdwEFFVZKqJHvnH5D84GovMhiM4iIiMo7Q/JlM1OeYtzEwYdshseFdmIiLjKO+PyVRNDhKS71SZ8MOwQ2bDuzITWZ6q9iVpqcr6Y3JX0jWERh/B4I0nEBp9BLuSrpmnSBNiB2Wwg7K5cQQHkWVgHxDLUtLIr04N3RAafaTY8Pf4mV0t8vzLDspkMXhXZiL544ACy1PSBLYJyXeq5K0pGHaIiKhcpr6JMRnG039MVtXZrtlnh4iIysUBBcpQVftKsmWHiIjKxVtCKIep7s8oJww7RERUIVXxS1KpqlpfSYYdIiKqsKr2JUnKwD47VCLOpUFERErBlh0qhnNpEBGRkrBlh7TwfipERJXH1nF5YcsOaeFcGkRElcPWcflhyw5p4VwaRET6Y+u4PDHskJaqOuEUEZEhlHe3cTIPXsaiYjiXBhGRfqrq7Rjkji07VCIvtSNC6tVi0CEi0gFbx+WJLTtERBYuVZODlDsPEFDbiV+qMsDWcflh2CEismAc+SNPnGlaXngZi4jIQnHkD1HFMOwQEVkojvwhqhiGHSoRZ/8kkj/Oi0VUMQw7VMyupGsIjT6CwRtPIDT6CHYlXTN3SURUAo78IaoYlRBClL+ZsmVmZkKtVkOj0cDFxcXc5ZhVqiYHodFHis0RET+zK0+gRDKVqsnhyB/SiVJG8FX0+5ujsUgL741FZHk48kd+5BwmquIIPoYd0sLZP4mIKqe8MGHOIFTaCL5ODd1kF8oMiX12SAv7ABAR6a+86QDM3Seyqo7gY8sOFcPZP4mI9FNemDB3q0pVbb1nyw6ViPfGIiLSXVnTAcihVaWqtt6zZYeIiMhAisLE7D3nUCBEsTAhh1aVqth6z7BDRERkQKWFifKCkClVtRF8DDtEREQGVlqYqIqtKnLAsGNh5Dx3AxERla+qtarIAcOOBamKE0ER6Yp/EBDR0xh2LERVnQiKSBf8g4CISsKh5xZCDkMWieSsvMnciOQuVZODhOQ7/MwaAVt2LERVnQiKqKJ4XzeyZGyVNC627FiIqjoRFFFFlTWZG5GcsVXS+NiyY0E4ZJFMxRI7+cppDhMiXbBV0vgYdiwMhyySsVlyczr/ICBLxG4KxsfLWEQkUUJzOu/rRpaG3RSMjy07RCRhczqRebBV0rgYdohIwuZ087PE/lJkGOymYDy8jEVEEjanm9eupGsIjT6CwRtPIDT6CHYlXTN3SUSKoBJCiPI3U7bMzEyo1WpoNBq4uLiYuxwis0vV5LA53cRSNTkIjT5SrFUtfmZX/g6ISlHR729exiKiYticbnrsL0VkPLyMRUQkA5wUkch4GHaIiGSA/aWIjEcxl7E++eQTfPDBB0hLS0Pz5s2xevVqtG3b1txlERFVGIcfExmHIlp2du3ahSlTpmDevHk4ffo0mjdvjvDwcGRkZJi7NCIinXBSRCLDU0TYWb58OUaPHo0RI0agSZMmWL9+PapVq4bNmzebuzQiIiIyM4sPO48ePcKpU6cQFhYmLbOyskJYWBgSExNLfE5ubi4yMzO1HkRERKRMFh927ty5g4KCAnh4eGgt9/DwQFpaWonPiYqKglqtlh6+vr6mKJWIiIjMwOLDjj5mzZoFjUYjPa5fv27ukoiIiMhILH40Vu3atWFtbY309HSt5enp6fD09CzxOfb29rC3tzdFeURERGRmFt+yY2dnh9atWyMuLk5aVlhYiLi4OISEhJixMiIiIpIDi2/ZAYApU6YgIiICwcHBaNu2LVauXIkHDx5gxIgR5i6NiIiIzEwRYWfgwIG4ffs25s6di7S0NLRo0QIHDhwo1mmZiIiIqh7e9Ry86zkREZElquj3t8X32SEiIiIqC8MOERERKZoi+uxUVtGVPM6kTEREZDmKvrfL65HDsAPg77//BgDOpExERGSB/v77b6jV6lLXs4MyHs/Lc+vWLTg7O0OlUun8/MzMTPj6+uL69etVuoMzj8NjPA7/4LF4jMfhMR6Hf/BYPFbZ4yCEwN9//w1vb29YWZXeM4ctO3h849Bnnnmm0q/j4uJSpT+0RXgcHuNx+AePxWM8Do/xOPyDx+KxyhyHslp0irCDMhERESkaww4REREpGsOOAdjb22PevHlV/uaiPA6P8Tj8g8fiMR6Hx3gc/sFj8ZipjgM7KBMREZGisWWHiIiIFI1hh4iIiBSNYYeIiIgUjWGHiIiIFI1hpwI++eQT+Pv7w8HBAe3atcPJkydL3fb8+fMYMGAA/P39oVKpsHLlStMVagK6HIuNGzfiueeeQ40aNVCjRg2EhYWVub0l0eU47NmzB8HBwXB1dYWTkxNatGiBL774woTVGpcux+JJO3fuhEqlQt++fY1boInochxiY2OhUqm0Hg4ODias1nh0/Tzcv38f48ePh5eXF+zt7dGwYUPs37/fRNUaly7HokuXLsU+EyqVCr179zZhxcah62di5cqVaNSoERwdHeHr64vJkyfj4cOHlStCUJl27twp7OzsxObNm8X58+fF6NGjhaurq0hPTy9x+5MnT4pp06aJHTt2CE9PT7FixQrTFmxEuh6LwYMHi08++UScOXNGXLx4UQwfPlyo1Wpx48YNE1duWLoeh6NHj4o9e/aICxcuiMuXL4uVK1cKa2trceDAARNXbni6HosiKSkpwsfHRzz33HPi5ZdfNk2xRqTrcYiJiREuLi4iNTVVeqSlpZm4asPT9Tjk5uaK4OBg0atXLxEfHy9SUlLEsWPHxNmzZ01cueHpeizu3r2r9Xk4d+6csLa2FjExMaYt3MB0PQ7btm0T9vb2Ytu2bSIlJUV8//33wsvLS0yePLlSdTDslKNt27Zi/Pjx0s8FBQXC29tbREVFlftcPz8/RYWdyhwLIYTIz88Xzs7OYsuWLcYq0SQqexyEEKJly5bivffeM0Z5JqXPscjPzxcdOnQQn332mYiIiFBE2NH1OMTExAi1Wm2i6kxH1+Owbt06UbduXfHo0SNTlWgylT1PrFixQjg7O4usrCxjlWgSuh6H8ePHi27dumktmzJliggNDa1UHbyMVYZHjx7h1KlTCAsLk5ZZWVkhLCwMiYmJZqzM9AxxLLKzs5GXl4eaNWsaq0yjq+xxEEIgLi4Oly5dQqdOnYxZqtHpeywWLFgAd3d3jBw50hRlGp2+xyErKwt+fn7w9fXFyy+/jPPnz5uiXKPR5zjs3bsXISEhGD9+PDw8PNC0aVMsWbIEBQUFpirbKAxxvty0aRMGDRoEJycnY5VpdPochw4dOuDUqVPSpa4rV65g//796NWrV6Vq4Y1Ay3Dnzh0UFBTAw8NDa7mHhwd+++03M1VlHoY4FjNmzIC3t7fWB9/S6HscNBoNfHx8kJubC2tra6xduxbPP/+8scs1Kn2ORXx8PDZt2oSzZ8+aoELT0Oc4NGrUCJs3b0azZs2g0Wjw4YcfokOHDjh//rxBbkpsDvochytXruDIkSMYMmQI9u/fj8uXL2PcuHHIy8vDvHnzTFG2UVT2fHny5EmcO3cOmzZtMlaJJqHPcRg8eDDu3LmDjh07QgiB/Px8vPXWW5g9e3alamHYIZOIjo7Gzp07cezYMcV0xNSFs7Mzzp49i6ysLMTFxWHKlCmoW7cuunTpYu7STObvv//GsGHDsHHjRtSuXdvc5ZhVSEgIQkJCpJ87dOiAwMBAbNiwAQsXLjRjZaZVWFgId3d3fPrpp7C2tkbr1q1x8+ZNfPDBBxYddipr06ZNCAoKQtu2bc1diskdO3YMS5Yswdq1a9GuXTtcvnwZb7/9NhYuXIg5c+bo/boMO2WoXbs2rK2tkZ6errU8PT0dnp6eZqrKPCpzLD788ENER0fj8OHDaNasmTHLNDp9j4OVlRXq168PAGjRogUuXryIqKgoiw47uh6L5ORkXL16FX369JGWFRYWAgBsbGxw6dIl1KtXz7hFG4EhzhO2trZo2bIlLl++bIwSTUKf4+Dl5QVbW1tYW1tLywIDA5GWloZHjx7Bzs7OqDUbS2U+Ew8ePMDOnTuxYMECY5ZoEvochzlz5mDYsGEYNWoUACAoKAgPHjzAmDFj8O6778LKSr/eN+yzUwY7Ozu0bt0acXFx0rLCwkLExcVp/VVWFeh7LJYtW4aFCxfiwIEDCA4ONkWpRmWoz0RhYSFyc3ONUaLJ6HosGjdujF9//RVnz56VHi+99BK6du2Ks2fPwtfX15TlG4whPhMFBQX49ddf4eXlZawyjU6f4xAaGorLly9LoRcAfv/9d3h5eVls0AEq95nYvXs3cnNzMXToUGOXaXT6HIfs7OxigaYoDIvK3MqzUt2bq4CdO3cKe3t7ERsbKy5cuCDGjBkjXF1dpWGiw4YNEzNnzpS2z83NFWfOnBFnzpwRXl5eYtq0aeLMmTPijz/+MNcuGIyuxyI6OlrY2dmJL7/8UmtI5d9//22uXTAIXY/DkiVLxMGDB0VycrK4cOGC+PDDD4WNjY3YuHGjuXbBYHQ9Fk9TymgsXY/D+++/L77//nuRnJwsTp06JQYNGiQcHBzE+fPnzbULBqHrcbh27ZpwdnYWkZGR4tKlS2Lfvn3C3d1dLFq0yFy7YDD6/t/o2LGjGDhwoKnLNRpdj8O8efOEs7Oz2LFjh7hy5Yo4ePCgqFevnnjttdcqVQfDTgWsXr1a1KlTR9jZ2Ym2bduKn376SVrXuXNnERERIf2ckpIiABR7dO7c2fSFG4Eux8LPz6/EYzFv3jzTF25guhyHd999V9SvX184ODiIGjVqiJCQELFz504zVG0cuhyLpykl7Aih23GYNGmStK2Hh4fo1auXOH36tBmqNjxdPw8JCQmiXbt2wt7eXtStW1csXrxY5Ofnm7hq49D1WPz2228CgDh48KCJKzUuXY5DXl6emD9/vqhXr55wcHAQvr6+Yty4ceKvv/6qVA0qISrTLkREREQkb+yzQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENEZELDhw9H3759zV0GUZXCsENEAB5/CatUKulRq1Yt9OjRA7/88ou5SzOIJ/et6NGxY0ejvd/Vq1ehUqlw9uxZreUff/wxYmNjjfa+RFQcww4RSXr06IHU1FSkpqYiLi4ONjY2ePHFF81dlsHExMRI+5eamoq9e/eWuF1eXp7RalCr1XB1dTXa6xNRcQw7RCSxt7eHp6cnPD090aJFC8ycORPXr1/H7du30a1bN0RGRmptf/v2bdjZ2Ul3Nfb398fChQvx+uuvw8nJCT4+Pvjkk0+0nrN8+XIEBQXByckJvr6+GDduHLKysqT1f/75J/r06YMaNWrAyckJzz77LPbv3w8A+OuvvzBkyBC4ubnB0dERDRo0QExMTIX3z9XVVdo/T09P1KxZU2qB2bVrFzp37gwHBwds27YNd+/exeuvvw4fHx9Uq1YNQUFB2LFjh9brFRYWYtmyZahfvz7s7e1Rp04dLF68GAAQEBAAAGjZsiVUKhW6dOkCoPhlrNzcXEycOBHu7u5wcHBAx44dkZSUJK0/duwYVCoV4uLiEBwcjGrVqqFDhw64dOlShfebqKpj2CGiEmVlZWHr1q2oX78+atWqhVGjRmH79u3Izc2Vttm6dSt8fHzQrVs3adkHH3yA5s2b48yZM5g5cybefvttHDp0SFpvZWWFVatW4fz589iyZQuOHDmCd955R1o/fvx45Obm4scff8Svv/6KpUuXonr16gCAOXPm4MKFC/juu+9w8eJFrFu3DrVr1zbI/hbVevHiRYSHh+Phw4do3bo1vv32W5w7dw5jxozBsGHDcPLkSek5s2bNQnR0tFTX9u3b4eHhAQDSdocPH0Zqair27NlT4vu+8847+Oqrr7BlyxacPn0a9evXR3h4OO7du6e13bvvvouPPvoIP//8M2xsbPDmm28aZL+JqoRK3UaUiBQjIiJCWFtbCycnJ+Hk5CQACC8vL3Hq1CkhhBA5OTmiRo0aYteuXdJzmjVrJubPny/97OfnJ3r06KH1ugMHDhQ9e/Ys9X13794tatWqJf0cFBSk9ZpP6tOnjxgxYoRe+wdAODg4SPvn5OQkvv76a5GSkiIAiJUrV5b7Gr179xZTp04VQgiRmZkp7O3txcaNG0vctuh1z5w5o7X8yTu9Z2VlCVtbW7Ft2zZp/aNHj4S3t7dYtmyZEEKIo0ePCgDi8OHD0jbffvutACBycnJ0OQREVRZbdohI0rVrV5w9exZnz57FyZMnER4ejp49e+LPP/+Eg4MDhg0bhs2bNwMATp8+jXPnzmH48OFarxESElLs54sXL0o/Hz58GN27d4ePjw+cnZ0xbNgw3L17F9nZ2QCAiRMnYtGiRQgNDcW8efO0OkiPHTsWO3fuRIsWLfDOO+8gISFBp/1bsWKFtH9nz57F888/L60LDg7W2ragoAALFy5EUFAQatasierVq+P777/HtWvXAAAXL15Ebm4uunfvrlMNT0pOTkZeXh5CQ0OlZba2tmjbtq3WMQOAZs2aSf/28vICAGRkZOj93kRVCcMOEUmcnJxQv3591K9fH23atMFnn32GBw8eYOPGjQCAUaNG4dChQ7hx4wZiYmLQrVs3+Pn5Vfj1r169ihdffBHNmjXDV199hVOnTkl9eh49eiS9x5UrVzBs2DD8+uuvCA4OxurVqwFACl6TJ0/GrVu30L17d0ybNq3C7+/p6SntX/369eHk5KS170/64IMP8PHHH2PGjBk4evQozp49i/DwcKlOR0fHCr+vIdja2kr/VqlUAB73GSKi8jHsEFGpVCoVrKyskJOTAwAICgpCcHAwNm7ciO3bt5fYb+Snn34q9nNgYCAA4NSpUygsLMRHH32E9u3bo2HDhrh161ax1/D19cVbb72FPXv2YOrUqVLYAgA3NzdERERg69atWLlyJT799FND7rLk+PHjePnllzF06FA0b94cdevWxe+//y6tb9CgARwdHaXO2U+zs7MD8LiFqDT16tWDnZ0djh8/Li3Ly8tDUlISmjRpYqA9ISIbcxdARPKRm5uLtLQ0AI9HPq1ZswZZWVno06ePtM2oUaMQGRkJJycn9OvXr9hrHD9+HMuWLUPfvn1x6NAh7N69G99++y0AoH79+sjLy8Pq1avRp08fHD9+HOvXr9d6/qRJk9CzZ080bNgQf/31F44ePSqFpblz56J169Z49tlnkZubi3379knrDK1Bgwb48ssvkZCQgBo1amD58uVIT0+XQoiDgwNmzJiBd955B3Z2dggNDcXt27dx/vx5jBw5Eu7u7nB0dMSBAwfwzDPPwMHBAWq1Wus9nJycMHbsWEyfPh01a9ZEnTp1sGzZMmRnZ2PkyJFG2S+iqogtO0QkOXDgALy8vODl5YV27dohKSkJu3fvloZNA8Drr78OGxsbvP7663BwcCj2GlOnTsXPP/+Mli1bYtGiRVi+fDnCw8MBAM2bN8fy5cuxdOlSNG3aFNu2bUNUVJTW8wsKCjB+/HgEBgaiR48eaNiwIdauXQvgcWvJrFmz0KxZM3Tq1AnW1tbYuXOnUY7Fe++9h1atWiE8PBxdunSBp6dnsZmP58yZg6lTp2Lu3LkIDAzEwIEDpX40NjY2WLVqFTZs2ABvb2+8/PLLJb5PdHQ0BgwYgGHDhqFVq1a4fPkyvv/+e9SoUcMo+0VUFamEEMLcRRCR5bh69Srq1auHpKQktGrVSmudv78/Jk2ahEmTJpmnOCKiEvAyFhFVSF5eHu7evYv33nsP7du3LxZ0iIjkipexiKhCjh8/Di8vLyQlJRXrZ2NuS5YsQfXq1Ut89OzZ09zlEZGZ8TIWEVm8e/fuFZtxuIijoyN8fHxMXBERyQnDDhERESkaL2MRERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaL9f4kRGxIhXijBAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPzFJREFUeJzt3Xt8U/X9x/F32tILhZZLW9pioXIHKci4yUUuikNEJuAmIiI40akwvE7Fy4CpFO9sXtAhFq/ARNiY8wYoMkVnQZiAyARBUMqlCA2lNZT2+/uDX6OlLW3SJOckeT0fjzwezclJ8sk36ck73+/3nOMwxhgBAADYUITVBQAAAFSHoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAKgzmbMmCGHw1GrdR0Oh2bMmOHXegYNGqRBgwbZ9vEA1B5BBQghCxYskMPhcF+ioqLUvHlzTZw4Ud9//73V5dlOZmZmhfZKSUnRueeeq2XLlvnk8YuKijRjxgytXr3aJ48HhCOCChCC/vSnP+nll1/Ws88+q2HDhumVV17RwIED9eOPP/rl+e69914VFxf75bH97eyzz9bLL7+sl19+Wbfffrv27t2r0aNH69lnn63zYxcVFWnmzJkEFaAOoqwuAIDvDRs2TD169JAkTZo0SUlJSXrooYe0fPlyXXbZZT5/vqioKEVFBefmpHnz5rryyivd16+66iq1adNGTzzxhK6//noLKwMg0aMChIVzzz1XkrRjx44Ky7/66iv9+te/VpMmTRQbG6sePXpo+fLlFdYpKSnRzJkz1bZtW8XGxqpp06bq37+/VqxY4V6nqjkqLpdLt9xyi5KTk9WwYUP96le/0nfffVeptokTJyozM7PS8qoeMycnR+edd55SUlIUExOjTp06ae7cuR61RU1SU1PVsWNH7dy587TrHThwQNdcc42aNWum2NhYde3aVS+++KL79l27dik5OVmSNHPmTPfwkr/n5wChJjh/AgHwyK5duyRJjRs3di/bsmWL+vXrp+bNm+uuu+5SfHy8/va3v2nkyJF64403NGrUKEknA0N2drYmTZqkXr16yel0at26dfr88891wQUXVPuckyZN0iuvvKIrrrhCffv21fvvv6/hw4fX6XXMnTtXZ511ln71q18pKipK//znP3XjjTeqrKxMkydPrtNjlyspKdGePXvUtGnTatcpLi7WoEGDtH37dk2ZMkVnnnmmXn/9dU2cOFFHjhzRTTfdpOTkZM2dO1c33HCDRo0apdGjR0uSunTp4pM6gbBhAISMnJwcI8msXLnSHDx40OzZs8csWbLEJCcnm5iYGLNnzx73uueff77JysoyP/74o3tZWVmZ6du3r2nbtq17WdeuXc3w4cNP+7zTp083P9+cbNy40UgyN954Y4X1rrjiCiPJTJ8+3b1swoQJpmXLljU+pjHGFBUVVVpv6NChplWrVhWWDRw40AwcOPC0NRtjTMuWLc0vf/lLc/DgQXPw4EHz3//+11x++eVGkvn9739f7ePNmTPHSDKvvPKKe9nx48dNnz59TIMGDYzT6TTGGHPw4MFKrxeAZxj6AULQkCFDlJycrIyMDP36179WfHy8li9frjPOOEOS9MMPP+j999/XZZddpqNHjyo/P1/5+fk6dOiQhg4dqq+//tq9l1CjRo20ZcsWff3117V+/rfeekuSNHXq1ArLb7755jq9rri4OPffBQUFys/P18CBA/XNN9+ooKDAq8d87733lJycrOTkZHXt2lWvv/66xo8fr4ceeqja+7z11ltKTU3V2LFj3cvq1aunqVOnqrCwUB9++KFXtQCoLGSCypo1azRixAilp6fL4XDo73//u1+fr3z8/OeXDh06+PU5gdp6+umntWLFCi1ZskQXXXSR8vPzFRMT4759+/btMsbovvvuc39Jl1+mT58u6eQcDOnkHkRHjhxRu3btlJWVpT/84Q/64osvTvv83377rSIiItS6desKy9u3b1+n1/Xxxx9ryJAhio+PV6NGjZScnKy7775bkrwOKr1799aKFSu0cuVKrV27Vvn5+XrppZcqhKJTffvtt2rbtq0iIipuQjt27Oi+HYBvhMwclWPHjqlr16767W9/6x4L9rezzjpLK1eudF8P1r0eEHp69erl3utn5MiR6t+/v6644gpt27ZNDRo0UFlZmSTp9ttv19ChQ6t8jDZt2kiSBgwYoB07dugf//iH3nvvPT3//PN64okn9Oyzz2rSpEl1rrW6A8WVlpZWuL5jxw6df/756tChgx5//HFlZGQoOjpab731lp544gn3a/JUUlKShgwZ4tV9AfhfyHyzDhs2TMOGDav2dpfLpXvuuUcLFy7UkSNH1LlzZz300EN1OtpkVFSUUlNTvb4/EAiRkZHKzs7W4MGD9dRTT+muu+5Sq1atJJ0crqjNl3STJk109dVX6+qrr1ZhYaEGDBigGTNmVBtUWrZsqbKyMu3YsaNCL8q2bdsqrdu4cWMdOXKk0vJTeyX++c9/yuVyafny5WrRooV7+QcffFBj/b7WsmVLffHFFyorK6vQq/LVV1+5b5eqD2EAai9khn5qMmXKFH3yySdatGiRvvjiC/3mN7/RhRde6NG4+6m+/vprpaenq1WrVho3bpx2797tw4oB3xk0aJB69eqlOXPm6Mcff1RKSooGDRqk5557Tnl5eZXWP3jwoPvvQ4cOVbitQYMGatOmjVwuV7XPV/6j4S9/+UuF5XPmzKm0buvWrVVQUFBhOCkvL6/S0WEjIyMlScYY97KCggLl5ORUW4e/XHTRRdq3b58WL17sXnbixAk9+eSTatCggQYOHChJql+/viRVGcQA1E7I9Kiczu7du5WTk6Pdu3crPT1d0sku73feeUc5OTmaNWuWx4/Zu3dvLViwQO3bt1deXp5mzpypc889V5s3b1bDhg19/RKAOvvDH/6g3/zmN1qwYIGuv/56Pf300+rfv7+ysrJ07bXXqlWrVtq/f78++eQTfffdd/rvf/8rSerUqZMGDRqk7t27q0mTJlq3bp2WLFmiKVOmVPtcZ599tsaOHatnnnlGBQUF6tu3r1atWqXt27dXWvfyyy/XnXfeqVGjRmnq1KkqKirS3Llz1a5dO33++efu9X75y18qOjpaI0aM0O9+9zsVFhZq3rx5SklJqTJs+dN1112n5557ThMnTtT69euVmZmpJUuW6OOPP9acOXPc24C4uDh16tRJixcvVrt27dSkSRN17txZnTt3Dmi9QFCzercjf5Bkli1b5r7+5ptvGkkmPj6+wiUqKspcdtllxhhjtm7daiSd9nLnnXdW+5yHDx82CQkJ5vnnn/f3ywOqVb57cm5ubqXbSktLTevWrU3r1q3NiRMnjDHG7Nixw1x11VUmNTXV1KtXzzRv3txcfPHFZsmSJe77PfDAA6ZXr16mUaNGJi4uznTo0ME8+OCD5vjx4+51qtqVuLi42EydOtU0bdrUxMfHmxEjRpg9e/ZUubvue++9Zzp37myio6NN+/btzSuvvFLlYy5fvtx06dLFxMbGmszMTPPQQw+ZF154wUgyO3fudK/nye7JNe16Xd3j7d+/31x99dUmKSnJREdHm6ysLJOTk1PpvmvXrjXdu3c30dHR7KoMeMFhzM/6UUOEw+HQsmXLNHLkSEnS4sWLNW7cOG3ZssXdfVyuQYMGSk1N1fHjx/XNN9+c9nGbNm3qPtJkVXr27KkhQ4YoOzu7zq8BAACEydBPt27dVFpaqgMHDrgPJX6q6OjoOu1eXFhYqB07dmj8+PFePwYAAKgoZIJKYWFhhfHvnTt3auPGjWrSpInatWuncePG6aqrrtJjjz2mbt266eDBg1q1apW6dOni1WG9b7/9do0YMUItW7bU3r17NX36dEVGRlY4ABQAAKibkBn6Wb16tQYPHlxp+YQJE7RgwQKVlJTogQce0EsvvaTvv/9eSUlJOuecczRz5kxlZWV5/HyXX3651qxZo0OHDik5OVn9+/fXgw8+WOkAVwAAwHshE1QAAEDoCZvjqAAAgOBDUAEAALYV1JNpy8rKtHfvXjVs2JBDVQMAECSMMTp69KjS09MrndzzVEEdVPbu3auMjAyrywAAAF7Ys2ePzjjjjNOuE9RBpfww1Xv27FFCQoLF1QAAgNpwOp3KyMio1SlngjqolA/3JCQkEFQAAAgytZm2wWRaAABgWwQVAABgWwQVAABgW0E9R6W2SktLVVJSYnUZlqpXr16lM0cDAGB3IR1UjDHat2+fjhw5YnUpttCoUSOlpqZyzBkAQNAI6aBSHlJSUlJUv379sP2CNsaoqKhIBw4ckCSlpaVZXBEAALUTskGltLTUHVKaNm1qdTmWi4uLkyQdOHBAKSkpDAMBAIJCyE6mLZ+TUr9+fYsrsY/ytgj3+ToAgOARskGlXLgO91SFtgAABJuQDyoAACB4EVQAAIBtEVRs7JNPPlFkZKSGDx9eYfmuXbvkcDjclyZNmmjgwIH697//bVGlAIBQlFdQrLU78pVXUGxZDQQVG5s/f75+//vfa82aNdq7d2+l21euXKm8vDytWbNG6enpuvjii7V//34LKgUAhJrFubvVb/b7umLef9Rv9vtanLvbkjoIKjZVWFioxYsX64YbbtDw4cO1YMGCSus0bdpUqamp6ty5s+6++245nU795z//CXyxAICQkldQrGlLN6nMnLxeZqS7l262pGeFoFJLge7++tvf/qYOHTqoffv2uvLKK/XCCy/IGFPlusXFxXrppZckSdHR0QGpDwAQunbmH3OHlHKlxmhXflHAawnZA7750uLc3e5kGeGQskdnaUzPFn59zvnz5+vKK6+UJF144YUqKCjQhx9+qEGDBrnX6du3ryIiIlRUVCRjjLp3767zzz/fr3UBAELfmUnxinCoQliJdDiUmRT4Y5PRo1IDK7q/tm3bps8++0xjx46VJEVFRWnMmDGaP39+hfUWL16sDRs26I033lCbNm20YMEC1atXz291AQDCQ1pinLJHZyny/4+/FelwaNbozkpLjAt4LfSo1OB03V/+esPmz5+vEydOKD093b3MGKOYmBg99dRT7mUZGRlq27at2rZtqxMnTmjUqFHavHmzYmJi/FIXACB8jOnZQgPaJWtXfpEyk+pbElIkelRqVN799XP+7P46ceKEXnrpJT322GPauHGj+/Lf//5X6enpWrhwYZX3+/Wvf62oqCg988wzfqkLABB+0hLj1Kd1U8tCikRQqVGgu7/efPNNHT58WNdcc406d+5c4XLppZdWGv4p53A4NHXqVM2ePVtFRYGf7AQAgD8QVGphTM8W+uiuwVp47Tn66K7Bfp1IO3/+fA0ZMkSJiYmVbrv00ku1bt06OZ3OKu87YcIElZSUVBgeAgAgmDFHpZbSEuMC0vX1z3/+s9rbevXq5d5FuapdlevXr68ffvjBb7UBABBo9KgAAADbIqgAAADbIqgAAADbIqgAAADbCvmgUt35ccIRbQEACDYhG1TKDyXPMUV+Ut4WHGYfABAsQnb35MjISDVq1EgHDhyQdHLXXYfDUcO9QpMxRkVFRTpw4IAaNWqkyMhIq0sCAKBWQjaoSFJqaqokucNKuGvUqJG7TQAACAYhHVQcDofS0tKUkpKikpISq8uxVL169ehJAQAEnZAOKuUiIyP5kgYAIAhZPpn2+++/15VXXqmmTZsqLi5OWVlZWrdundVlAQAAG7C0R+Xw4cPq16+fBg8erLffflvJycn6+uuv1bhxYyvLAgAANmFpUHnooYeUkZGhnJwc97IzzzzTwooAAICdWDr0s3z5cvXo0UO/+c1vlJKSom7dumnevHnVru9yueR0OitcAABA6LI0qHzzzTeaO3eu2rZtq3fffVc33HCDpk6dqhdffLHK9bOzs5WYmOi+ZGRkBLhiAAAQSA5j4XHVo6Oj1aNHD61du9a9bOrUqcrNzdUnn3xSaX2XyyWXy+W+7nQ6lZGRoYKCAiUkJASkZgAAUDdOp1OJiYm1+v62tEclLS1NnTp1qrCsY8eO2r17d5Xrx8TEKCEhocIFAACELkuDSr9+/bRt27YKy/73v/+pZcuWFlUEAADsxNKgcsstt+jTTz/VrFmztH37dr322mv661//qsmTJ1tZFgAAsAlLg0rPnj21bNkyLVy4UJ07d9b999+vOXPmaNy4cVaWBQAAbMLSybR15clkHAAAYA9BM5kWAADgdAgqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtiwNKjNmzJDD4ahw6dChg5UlAQAAG4myuoCzzjpLK1eudF+PirK8JAAAYBOWp4KoqCilpqZaXQYAALAhy+eofP3110pPT1erVq00btw47d69u9p1XS6XnE5nhQsAAAhdlgaV3r17a8GCBXrnnXc0d+5c7dy5U+eee66OHj1a5frZ2dlKTEx0XzIyMgJcMQAACCSHMcZYXUS5I0eOqGXLlnr88cd1zTXXVLrd5XLJ5XK5rzudTmVkZKigoEAJCQmBLBUAAHjJ6XQqMTGxVt/fls9R+blGjRqpXbt22r59e5W3x8TEKCYmJsBVAQAAq1g+R+XnCgsLtWPHDqWlpVldCgAAsAFLg8rtt9+uDz/8ULt27dLatWs1atQoRUZGauzYsVaWBQAAbMLSoZ/vvvtOY8eO1aFDh5ScnKz+/fvr008/VXJyspVlAQAAm7A0qCxatMjKpwcAADZnqzkqAAAAP0dQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAgjOUVFGvtjnzlFRRbXUqVoqwuAAAAWGNx7m5NW7pJZUaKcEjZo7M0pmcLq8uqgB4VAADCUF5BsTukSFKZke5eutl2PSsEFQAAwtDO/GPukFKu1Bjtyi+ypqBqEFQAAAhDZybFK8JRcVmkw6HMpPrWFFQNggoAAGEoLTFO2aOzFOk4mVYiHQ7NGt1ZaYlxFldWEZNpAQAIU2N6ttCAdsnalV+kzKT6tgspEkEFAICwlpYYZ8uAUo6hHwAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAwlheQbHW7shXXkGxR7cFCuf6AQAgTC3O3a1pSzepzEgRDil7dJbG9GxR422BRI8KAABhKK+g2B1EJKnMSHcv3ay8guLT3hZo9KgAABCGduYfcweRcqXGaFd+kYxMtbcF+kzLBBUAAMLQmUnxinCoQiCJdDiUmVRfkk57WyAx9AMAQBhKS4xT9ugsRTockk4GkVmjOystMe60twWawxhjal7N/2bPnq1p06bppptu0pw5c2p1H6fTqcTERBUUFCghIcG/BQIAEILyCoq1K79ImUn1KwWR091WF558f9ti6Cc3N1fPPfecunTpYnUpAACElfIeFE9vCxTLh34KCws1btw4zZs3T40bN7a6HAAAYCOWB5XJkydr+PDhGjJkiNWlAAAAm7F06GfRokX6/PPPlZubW6v1XS6XXC6X+7rT6fRXaQAAwAYs61HZs2ePbrrpJr366quKjY2t1X2ys7OVmJjovmRkZPi5SgAAYCXL9vr5+9//rlGjRikyMtK9rLS0VA6HQxEREXK5XBVuk6ruUcnIyGCvHwAAgkhQ7PVz/vnna9OmTRWWXX311erQoYPuvPPOSiFFkmJiYhQTExOoEgEAgMUsCyoNGzZU586dKyyLj49X06ZNKy0HAADhyfK9fgAAAKpjiwO+lVu9erXVJQAAABuhRwUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANiWz4LKjz/+qEcffdRXDwcAAOBZUDl48KDefPNNvffeeyotLZUklZSU6M9//rMyMzM1e/ZsvxQJAADCU1RtV/zoo4908cUXy+l0yuFwqEePHsrJydHIkSMVFRWlGTNmaMKECf6sFQAAhJla96jce++9uuiii/TFF1/o1ltvVW5urkaNGqVZs2bpyy+/1PXXX6+4uDh/1goAAMKMwxhjarNi06ZN9e9//1udOnVScXGxGjRooKVLl+qSSy7xd43VcjqdSkxMVEFBgRISEiyrAwAA1J4n39+17lE5fPiwkpKSJElxcXGqX7++OnfuXLdKAQAATqPWc1Qk6csvv9S+ffskScYYbdu2TceOHauwTpcuXXxXHQAACGu1HvqJiIiQw+HQ6VZ3OBzuvYECgaEfAACCjyff37XuUdm5c2eN6xw9erS2DwcAAFCjWgeVli1bVrn86NGjWrhwoebPn69169YFtEcFAACENq+PTLtmzRpNmDBBaWlpevTRRzV48GB9+umnvqwNAACEOY8m0+7bt08LFizQ/Pnz5XQ6ddlll8nlcunvf/+7OnXq5K8aAQBAmKp1j8qIESPUvn17ffHFF5ozZ4727t2rJ5980p+1AQCAMFfrHpW3335bU6dO1Q033KC2bdv6syYAAABJHvSofPTRRzp69Ki6d++u3r1766mnnlJ+fn6dnnzu3Lnq0qWLEhISlJCQoD59+ujtt9+u02MCAIDQUeugcs4552jevHnKy8vT7373Oy1atEjp6ekqKyvTihUrvNo1+YwzztDs2bO1fv16rVu3Tuedd54uueQSbdmyxePHAgAAoafWB3yryrZt2zR//ny9/PLLOnLkiC644AItX768TgU1adJEjzzyiK655poa1+WAbwAABB+/nOunKu3bt9fDDz+s7777TgsXLqzLQ6m0tFSLFi3SsWPH1KdPnyrXcblccjqdFS4AACB01alHxRc2bdqkPn366Mcff1SDBg302muv6aKLLqpy3RkzZmjmzJmVltOjAgBA8PCkR8XyoHL8+HHt3r1bBQUFWrJkiZ5//nl9+OGHVR6XxeVyyeVyua87nU5lZGQQVAAACCJBFVRONWTIELVu3VrPPfdcjesyRwUAgOATsDkq/lBWVlah1wQAAIQvjw6h72vTpk3TsGHD1KJFCx09elSvvfaaVq9erXfffdfKsgAAgE1YGlQOHDigq666Snl5eUpMTFSXLl307rvv6oILLrCyLAAAYBOWBpX58+db+fQAAMDmbDdHBQAAoBxBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQCAMJZXUKy1O/KVV1BsdSlVirK6AAAAYI3Fubs1bekmlRkpwiFlj87SmJ4trC6rAnpUAAAIQ3kFxe6QIkllRrp76Wbb9awQVAAACEM784+5Q0q5UmO0K7/ImoKqQVABACAMnZkUrwhHxWWRDocyk+pbU1A1CCoAAIShtMQ4ZY/OUqTjZFqJdDg0a3RnpSXGWVxZRUymBQAgTI3p2UID2iVrV36RMpPq2y6kSAQVAADCWlpinC0DSjmGfgAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG1ZGlSys7PVs2dPNWzYUCkpKRo5cqS2bdtmZUkAAMBGLA0qH374oSZPnqxPP/1UK1asUElJiX75y1/q2LFjVpYFAABswmGMMTWvFhgHDx5USkqKPvzwQw0YMKDG9Z1OpxITE1VQUKCEhIQAVAgAAOrKk+9vWx2ZtqCgQJLUpEmTKm93uVxyuVzu606nMyB1AQAAa9hmMm1ZWZluvvlm9evXT507d65ynezsbCUmJrovGRkZAa4SAAAEkm2Gfm644Qa9/fbb+uijj3TGGWdUuU5VPSoZGRkM/QAAEESCbuhnypQpevPNN7VmzZpqQ4okxcTEKCYmJoCVAQAAK1kaVIwx+v3vf69ly5Zp9erVOvPMM60sBwAA2IylQWXy5Ml67bXX9I9//EMNGzbUvn37JEmJiYmKi7PvKafDTV5BsXbmH9OZSfG2PhU4ACD0WDpHxeFwVLk8JydHEydOrPH+7J7sf4tzd2va0k0qM1KEQ8oenaUxPVtYXRYAIIgFzRwVm8zjRTXyCordIUWSyox099LNGtAumZ4VAEBA2Gb3ZNjPzvxj7pBSrtQY7covsqYgAEDYIaigWmcmxSvilNG5SIdDmUn1rSkIABB2CCqoVlpinLJHZyny/+cSRTocmjW6M8M+AICAscVxVGBfY3q20IB2ydqVX6TMpPqEFABAQBFUUKO0xDgCCgDAEgz9AAAA2yKoAAAA2yKoAAAA2yKoAADw//IKirV2R77yCoqtLgX/j8m0AACIU4bYFT0qAICwV90pQ+hZsR5BBQAQ9jhliH0RVIIU46gA4LttIacMsS/mqAQhxlEBwLfbwvJThty9dLNKjeGUITbiMMaYmlezJ6fTqcTERBUUFCghIcHqcgIir6BY/Wa/X6GLMtLh0Ed3DeYfCkDY8Ne2MK+gmFOGBIAn39/0qASZ042j8k8FIFz4a1vIKUPshzkqQYZxVABgWxhOCCpBpnwcNdJx8j+UcVQA4YhtYfhgjkqQYhwVAHy/LcwrKNbO/GM6MymebasfMUclDDCOCgC+3RayR6U9MfQDAAh7HJnWvggqAICwx5Fp7YugAgCwtUAciZu9iOyLoAIAsIWqAsni3N3qN/t9XTHvP+o3+30tzt3tl+dmLyL7Yq8fAIDlqprIOqBdcsCPxM0elYHhyfc3PSoAAEtVN5F1/beHLZk3YhS0v99DErsnA7ANjmERnqqbyKr/7105tUfFX/NG2D3ZnuhR8VAgJnUB4ShQcxFgP9VNZO2e2Thg80bYPdm+6FHxAGkbdhFqPQ/VfUkMaJccEq8Pp1c+kfXupZtVakyFQDKmZwsNaJfs93kjnPDVvggq1Tj1i4ANKewiFAMzXxI4XSAJxJG4y3t1AjXMhNojqFShqi+CjCb12ZDCcqEamPmSgGTtqUFO16sDazFH5RTVfRHER0dyMCB4zVdzm+py9Ew7z6/iGBawgzE9W2jpjX107/COWnpjn6DvqQwV9KicorovgqLjZSGRtkNtbkMw8OVQjbc9D/4aLvLl5ylQcxGA6oTisGooIKic4nRfBH1aNw3qDSn/hIHn66GatMQ4jerWXG98/r172chu6ad9LH8NF/nj88RZwWGVUB1WDQUM/Zyipi7otMQ49WndNOg+uOx6Zw1fn+gsr6BYyzZ8X2HZ3zfsPe376I+TrfF5Qqipzf+JnYdPQxk9KlUIxS5o9qqwhq8niXrzPvpjoiqfJwQDT4Yma/o/oUfaOvSoVCNYe06qw5lBreHrSaLevI/+mKjK5wl25+kBBE/3f1KbHkR6W/yHHpUwwa531vFlD52376Ovewnt9HligjhO5e18k+r+T2rqQaS3xb8IKmEkFIe0goUvJ4l6+z76eqKqHT5PfEGgKnUZmqzq/yQ+OrLKdetHRzAJNwAIKmEm3PaqCOVf23Y4w6uVnye+IFAdX8/LOna8tMrlRcfLmK8VAAQVhKxQ/bUdqq/LU3xBhB5f/bDw9dBkTcHHLkdVDtUfZgSVaoTqGx4uQvXXdqi+Lm9w2P3Q4usAHsi5YXaYrxXKP2AsDSpr1qzRI488ovXr1ysvL0/Lli3TyJEjrSxJUmi/4XbnTUCs6j6h+ms7VF+XN+w0oRd1468AHqi5YVbP1wr1HzCWBpVjx46pa9eu+u1vf6vRo0dbWYpbqL/hduZNQKzuPnX9tW3XHjV6ESqy+gsCvhEsAbym4GPVvLFgaT9vWRpUhg0bpmHDhllZQiWh/obblTcBsab7ePtr2849avQiVBZuE8RDUbAHcKu3GcHefjUJqjkqLpdLLpfLfd3pdPr8OUL9Dfc1X/U8eBMQa7qPN7+2g6FHjV4EhJpgDuB22GYEc/vVRlAFlezsbM2cOdOvzxHqb7gvWX1W4Nrcx9Nf28HSo0YvAkLN6QK4XYdiJftsM0L5B0xQBZVp06bp1ltvdV93Op3KyMjw+fOE8hvuK/44K7CnAdEfoZIeNcA6VQVwq4dVamKnbUao/oAJqqASExOjmJiYgDxXqL7hvuKPXxHeBMRQPjQ8EO7sMKxSE7YZ/hdUQQX24a9fEd4ExFA8NDwA+wyr1IRthn9ZGlQKCwu1fft29/WdO3dq48aNatKkiVq0sE/XHioL9V8R9KgB1rPTsEpN2Gb4j8MYY9kJQ1avXq3BgwdXWj5hwgQtWLCgxvs7nU4lJiaqoKBACQkJfqjQd+w8Gawu8gqK+RUBBDk7b58W5+6u9IPITnNU4B1Pvr8tDSp1FSxBxe6TwQCEr2DYPvGDKPR48v0dEaCawlZ1k8HyCoqtLQwIc3kFxVq7Iz8g/4vePFcg6guW7VNaYpz6tG5KSAlTTKb1s2CZDAaEk0D2Ivjy1BC+xvYJwYAeFT8rnwz2c3adDAaEg0D2InjzXIGsj+0TggFBxc/K946JdJzcGoTa3jFAsDldL0Kgn6uq4Z1A1sf2CcGAoZ8AsNM+9nae3e8P4fZ6UbNA7vJ6uufy15m/PWWn7RNQFXpUAsQOk8EW5+5Wv9nv64p5/1G/2e9rce5uy2oJhHB7vf4SyEmngRDIXoTqnktStcM7/qrvdO+jHbZPQHXYPTlM5BUUq9/s9yv9SvvorsEhuXEKt9frL8Gw66q3ArnL66nPtXZHvq6Y959K6y289hz1ad3U5/WF8vuI4MTuyagkkOPedhBur9cfgmXXVW8Fshfh1OeKj46scr360RHV3sdbof4+IvQRVMJEuM3uD7fXW1dWT+oMN8eOl1a5vOh4mc+fi/cRwY6gEibCbXZ/uL3euqhuLg9hz38C2ba8jwh2zFEJM+F2KOr/7jms3F2H1TOzsbpmNK71/cJlb6Ga5vJwnhX/CWTb8j7Cbjz5/mb3ZB+yy5fb6eqwwxk+A9VO3k4gDKeJhzUdmZRdV/0nkG3L+4hgRlDxEbt8udmljuoEqr7qJhAOaJd82o20t/cLVrU5Zocdwm2oCmTb8j4iWDFHxQfsMqveLnVUJ5D1eTuBMNwmHjKXB4Dd0aPiA3Y5sZdd6qhOIOvz9uiegT4qqB0wLABv2GWoG6GPHhUfsMuservUUZ1A1udtT0G49jBwZFJ4gqM+I5DY68dH7DKr3i51VCfQ9Xm7l1O47R0F1BZHfYYvePL9TVDxIbt8udmljurYvT4A1avN4f+BmrB7skVON6s+kOO5dp/db/f6AFTvzKR4OST9/BeuQ7LNEDNCD0ElAOy+yzAA1Imj5lUAbzGZ1s/svsswAHhiZ/4xnTpfwBiF7C78sB5Bxc/qclyOqk4UBwBWsvvehQg9BBU/8/afmt3/ANhRuO7CD+uw1081fDn51dNdcuu6+x8HYgLgb+y9h7pgr5868vXkV0+P/FmXI7gycRdAILD3HgKFoZ9T+GvyqydH/vR2uIiJu4B/MW8MdhBun0N6VE5hh/PllI8Bnzpc5M+eGCDceDpESm9lRQwxWyMcP4cElVPY5aR03pwozi61A3bn6ca+ut7KAe2Sw/JLOhy/LAOtqiAYrp9Dhn5OYacZ7Z6eKM5OtcM64dYt7ClvhkjrcpiBUMMQs/9Vt9dnuH4O6VGpQjCf9n5MzxbqkNpQubsOq2dmY3XNaGx1SQggfunWzJshUnorf8IQs3+drtckXD+H9KhUI1hPe784d7dGPbNWD/xrq0Y9s5bjr4QRfunWjjeT1emt/AkHfPOvmoJgOH4O6VEJIeE6fomT+KVbO95OVq+ppzVcJpd6236onZp6TYK5x99bBJUQwhdVeAvXbmFveLuxr+7YIeE25BaOX5aBUpsgGG7HsCGohBC+qMIbv3Q946uNfbj2ZIbbl2UgEQQrIqj4kNVdv8HyRWV1O4UyNnCBR08m/IEg+BOCio/YpevX7l9UdmmnUMYGLrDoyQT8i71+fMBue1vYdY+l2rQTxwBBsAnXPTGAQKFHxQfo+q2dmtqJ3hYEK7v3ZALBjB4VH+C4ArVzunayW68UrBHMPWqB7MkM5nZC3YXb+0+Pig8EyyRWq52undbuyKdXKsyFY4+aNxPLw7Gd8JNwfP8dxhhT82r25HQ6lZiYqIKCAiUkJFhdjvIKiun6rYWq2imvoFj9Zr9faULiR3cNpi3DQDi+/9584dSlndjbLviF0v+JJ9/fthj6efrpp5WZmanY2Fj17t1bn332mdUlecWuk1jtpqp2YkJieAu3k615O9TpbTtVd5I72FdVwzvh9n9SzvKhn8WLF+vWW2/Vs88+q969e2vOnDkaOnSotm3bppSUFKvLQwCF8oREfs2eXrjt4uvtBHxv2ilcD0gXzKrrbQu3/5NylveoPP7447r22mt19dVXq1OnTnr22WdVv359vfDCC1aXBguEYq8Uv2ZrFm49at5OwPemncL1V3iwOl1vW7j9n5SztEfl+PHjWr9+vaZNm+ZeFhERoSFDhuiTTz6ptL7L5ZLL5XJfdzqdAakT8Ba/ZmsvlHvUTlWXCfietlO4/goPVjX1toXT/0k5S4NKfn6+SktL1axZswrLmzVrpq+++qrS+tnZ2Zo5c2agygPqjGPseCacjqpbly8cT9qJvRKDS22CZTj9n0g2mKPiiWnTpunWW291X3c6ncrIyLCwIuD0+DWL0wnUF044/goPVgTLyiwNKklJSYqMjNT+/fsrLN+/f79SU1MrrR8TE6OYmJhAlQfUGRsd2EW4/QoPZgTLiiwNKtHR0erevbtWrVqlkSNHSpLKysq0atUqTZkyxcrSAJ9howPAUwTLn1g+9HPrrbdqwoQJ6tGjh3r16qU5c+bo2LFjuvrqq60uDfAZNjoA4B3Lg8qYMWN08OBB/fGPf9S+fft09tln65133qk0wRYAAIQfDqEPAAACKugOoQ8AAFAVggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtyw+hXxflB9V1Op0WVwIAAGqr/Hu7NgfHD+qgcvToUUlSRkaGxZUAAABPHT16VImJiaddJ6jP9VNWVqa9e/eqYcOGcjgcHt/f6XQqIyNDe/bsCetzBdEOP6EtTqIdTqIdfkJbnEQ7nFTXdjDG6OjRo0pPT1dExOlnoQR1j0pERITOOOOMOj9OQkJCWH/gytEOP6EtTqIdTqIdfkJbnEQ7nFSXdqipJ6Uck2kBAIBtEVQAAIBthXVQiYmJ0fTp0xUTE2N1KZaiHX5CW5xEO5xEO/yEtjiJdjgpkO0Q1JNpAQBAaAvrHhUAAGBvBBUAAGBbBBUAAGBbBBUAAGBbIR9Unn76aWVmZio2Nla9e/fWZ599Vu26W7Zs0aWXXqrMzEw5HA7NmTMncIX6mSftMG/ePJ177rlq3LixGjdurCFDhpx2/WDjSVssXbpUPXr0UKNGjRQfH6+zzz5bL7/8cgCr9R9P2uHnFi1aJIfDoZEjR/q3wADxpB0WLFggh8NR4RIbGxvAav3L08/EkSNHNHnyZKWlpSkmJkbt2rXTW2+9FaBq/ceTdhg0aFClz4TD4dDw4cMDWLF/ePp5mDNnjtq3b6+4uDhlZGTolltu0Y8//lj3QkwIW7RokYmOjjYvvPCC2bJli7n22mtNo0aNzP79+6tc/7PPPjO33367WbhwoUlNTTVPPPFEYAv2E0/b4YorrjBPP/202bBhg9m6dauZOHGiSUxMNN99912AK/c9T9vigw8+MEuXLjVffvml2b59u5kzZ46JjIw077zzToAr9y1P26Hczp07TfPmzc25555rLrnkksAU60eetkNOTo5JSEgweXl57su+ffsCXLV/eNoWLpfL9OjRw1x00UXmo48+Mjt37jSrV682GzduDHDlvuVpOxw6dKjC52Hz5s0mMjLS5OTkBLZwH/O0HV599VUTExNjXn31VbNz507z7rvvmrS0NHPLLbfUuZaQDiq9evUykydPdl8vLS016enpJjs7u8b7tmzZMmSCSl3awRhjTpw4YRo2bGhefPFFf5UYMHVtC2OM6datm7n33nv9UV7AeNMOJ06cMH379jXPP/+8mTBhQkgEFU/bIScnxyQmJgaousDytC3mzp1rWrVqZY4fPx6oEgOirtuIJ554wjRs2NAUFhb6q8SA8LQdJk+ebM4777wKy2699VbTr1+/OtcSskM/x48f1/r16zVkyBD3soiICA0ZMkSffPKJhZUFli/aoaioSCUlJWrSpIm/ygyIuraFMUarVq3Stm3bNGDAAH+W6lfetsOf/vQnpaSk6JprrglEmX7nbTsUFhaqZcuWysjI0CWXXKItW7YEoly/8qYtli9frj59+mjy5Mlq1qyZOnfurFmzZqm0tDRQZfucL7aX8+fP1+WXX674+Hh/lel33rRD3759tX79evfw0DfffKO33npLF110UZ3rCeqTEp5Ofn6+SktL1axZswrLmzVrpq+++sqiqgLPF+1w5513Kj09vcKHNhh52xYFBQVq3ry5XC6XIiMj9cwzz+iCCy7wd7l+4007fPTRR5o/f742btwYgAoDw5t2aN++vV544QV16dJFBQUFevTRR9W3b19t2bLFJydItYo3bfHNN9/o/fff17hx4/TWW29p+/btuvHGG1VSUqLp06cHomyfq+v28rPPPtPmzZs1f/58f5UYEN60wxVXXKH8/Hz1799fxhidOHFC119/ve6+++461xOyQQW+MXv2bC1atEirV68OqUmDnmjYsKE2btyowsJCrVq1SrfeeqtatWqlQYMGWV1aQBw9elTjx4/XvHnzlJSUZHU5lurTp4/69Onjvt63b1917NhRzz33nO6//34LKwu8srIypaSk6K9//asiIyPVvXt3ff/993rkkUeCNqjU1fz585WVlaVevXpZXUrArV69WrNmzdIzzzyj3r17a/v27brpppt0//3367777qvTY4dsUElKSlJkZKT2799fYfn+/fuVmppqUVWBV5d2ePTRRzV79mytXLlSXbp08WeZAeFtW0RERKhNmzaSpLPPPltbt25VdnZ20AYVT9thx44d2rVrl0aMGOFeVlZWJkmKiorStm3b1Lp1a/8W7Qe+2EbUq1dP3bp10/bt2/1RYsB40xZpaWmqV6+eIiMj3cs6duyoffv26fjx44qOjvZrzf5Ql8/EsWPHtGjRIv3pT3/yZ4kB4U073HfffRo/frwmTZokScrKytKxY8d03XXX6Z577lFEhPczTUJ2jkp0dLS6d++uVatWuZeVlZVp1apVFX4RhTpv2+Hhhx/W/fffr3feeUc9evQIRKl+56vPRFlZmVwulz9KDAhP26FDhw7atGmTNm7c6L786le/0uDBg7Vx40ZlZGQEsnyf8cXnobS0VJs2bVJaWpq/ygwIb9qiX79+2r59uzu0StL//vc/paWlBWVIker2mXj99dflcrl05ZVX+rtMv/OmHYqKiiqFkfIQa+p6SsE6T8e1sUWLFpmYmBizYMEC8+WXX5rrrrvONGrUyL074fjx481dd93lXt/lcpkNGzaYDRs2mLS0NHP77bebDRs2mK+//tqql+ATnrbD7NmzTXR0tFmyZEmF3e6OHj1q1UvwGU/bYtasWea9994zO3bsMF9++aV59NFHTVRUlJk3b55VL8EnPG2HU4XKXj+etsPMmTPNu+++a3bs2GHWr19vLr/8chMbG2u2bNli1UvwGU/bYvfu3aZhw4ZmypQpZtu2bebNN980KSkp5oEHHrDqJfiEt/8b/fv3N2PGjAl0uX7jaTtMnz7dNGzY0CxcuNB888035r333jOtW7c2l112WZ1rCemgYowxTz75pGnRooWJjo42vXr1Mp9++qn7toEDB5oJEya4r+/cudNIqnQZOHBg4Av3MU/aoWXLllW2w/Tp0wNfuB940hb33HOPadOmjYmNjTWNGzc2ffr0MYsWLbKgat/zpB1OFSpBxRjP2uHmm292r9usWTNz0UUXmc8//9yCqv3D08/E2rVrTe/evU1MTIxp1aqVefDBB82JEycCXLXvedoOX331lZFk3nvvvQBX6l+etENJSYmZMWOGad26tYmNjTUZGRnmxhtvNIcPH65zHQ5j6tonAwAA4B8hO0cFAAAEP4IKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKANTCxIkTNXLkSKvLAMIOQQUIchMnTpTD4XBfmjZtqgsvvFBffPGF1aX5xM9fW/mlf//+fnu+Xbt2yeFwaOPGjRWW//nPf9aCBQv89rwAqkZQAULAhRdeqLy8POXl5WnVqlWKiorSxRdfbHVZPpOTk+N+fXl5eVq+fHmV65WUlPithsTERDVq1Mhvjw+gagQVIATExMQoNTVVqampOvvss3XXXXdpz549OnjwoM477zxNmTKlwvoHDx5UdHS0++yomZmZuv/++zV27FjFx8erefPmevrppyvc5/HHH1dWVpbi4+OVkZGhG2+8UYWFhe7bv/32W40YMUKNGzdWfHy8zjrrLL311luSpMOHD2vcuHFKTk5WXFyc2rZtq5ycnFq/vkaNGrlfX2pqqpo0aeLu+Vi8eLEGDhyo2NhYvfrqqzp06JDGjh2r5s2bq379+srKytLChQsrPF5ZWZkefvhhtWnTRjExMWrRooUefPBBSdKZZ54pSerWrZscDocGDRokqfLQj8vl0tSpU5WSkqLY2Fj1799fubm57ttXr14th8OhVatWqUePHqpfv7769u2rbdu21fp1AyCoACGnsLBQr7zyitq0aaOmTZtq0qRJeu211+RyudzrvPLKK2revLnOO+8897JHHnlEXbt21YYNG3TXXXfppptu0ooVK9y3R0RE6C9/+Yu2bNmiF198Ue+//77uuOMO9+2TJ0+Wy+XSmjVrtGnTJj300ENq0KCBJOm+++7Tl19+qbfffltbt27V3LlzlZSU5JPXW17r1q1bNXToUP3444/q3r27/vWvf2nz5s267rrrNH78eH322Wfu+0ybNk2zZ8921/Xaa6+pWbNmkuReb+XKlcrLy9PSpUurfN477rhDb7zxhl588UV9/vnnatOmjYYOHaoffvihwnr33HOPHnvsMa1bt05RUVH67W9/65PXDYSNOp/WEIClJkyYYCIjI018fLyJj483kkxaWppZv369McaY4uJi07hxY7N48WL3fbp06WJmzJjhvt6yZUtz4YUXVnjcMWPGmGHDhlX7vK+//rpp2rSp+3pWVlaFx/y5ESNGmKuvvtqr1yfJxMbGul9ffHy8WbZsmfts53PmzKnxMYYPH25uu+02Y4wxTqfTxMTEmHnz5lW5bvnjbtiwocLyn58xurCw0NSrV8+8+uqr7tuPHz9u0tPTzcMPP2yMMeaDDz4wkszKlSvd6/zrX/8ykkxxcbEnTQCENXpUgBAwePBgbdy4URs3btRnn32moUOHatiwYfr2228VGxur8ePH64UXXpAkff7559q8ebMmTpxY4TH69OlT6frWrVvd11euXKnzzz9fzZs3V8OGDTV+/HgdOnRIRUVFkqSpU6fqgQceUL9+/TR9+vQKk3lvuOEGLVq0SGeffbbuuOMOrV271qPX98QTT7hf38aNG3XBBRe4b+vRo0eFdUtLS3X//fcrKytLTZo0UYMGDfTuu+9q9+7dkqStW7fK5XLp/PPP96iGn9uxY4dKSkrUr18/97J69eqpV69eFdpMkrp06eL+Oy0tTZJ04MABr58bCDcEFSAExMfHq02bNmrTpo169uyp559/XseOHdO8efMkSZMmTdKKFSv03XffKScnR+edd55atmxZ68fftWuXLr74YnXp0kVvvPGG1q9f757Dcvz4cfdzfPPNNxo/frw2bdqkHj166Mknn5Qkd2i65ZZbtHfvXp1//vm6/fbba/38qamp7tfXpk0bxcfHV3jtP/fII4/oz3/+s+6880598MEH2rhxo4YOHequMy4urtbP6wv16tVz/+1wOCSdnCMDoHYIKkAIcjgcioiIUHFxsSQpKytLPXr00Lx58/Taa69VOU/i008/rXS9Y8eOkqT169errKxMjz32mM455xy1a9dOe/furfQYGRkZuv7667V06VLddttt7qAkScnJyZowYYJeeeUVzZkzR3/96199+ZLdPv74Y11yySW68sor1bVrV7Vq1Ur/+9//3Le3bdtWcXFx7onEp4qOjpZ0smemOq1bt1Z0dLQ+/vhj97KSkhLl5uaqU6dOPnolACQpyuoCANSdy+XSvn37JJ3cw+app55SYWGhRowY4V5n0qRJmjJliuLj4zVq1KhKj/Hxxx/r4Ycf1siRI7VixQq9/vrr+te//iVJatOmjUpKSvTkk09qxIgR+vjjj/Xss89WuP/NN9+sYcOGqV27djp8+LA++OADd9D54x//qO7du+uss86Sy+XSm2++6b7N19q2baslS5Zo7dq1aty4sR5//HHt37/fHSBiY2N155136o477lB0dLT69eungwcPasuWLbrmmmuUkpKiuLg4vfPOOzrjjDMUGxurxMTECs8RHx+vG264QX/4wx/UpEkTtWjRQg8//LCKiop0zTXX+OV1AeGKHhUgBLzzzjtKS0tTWlqaevfurdzcXL3++uvuXWslaezYsYqKitLYsWMVGxtb6TFuu+02rVu3Tt26ddMDDzygxx9/XEOHDpUkde3aVY8//rgeeughde7cWa+++qqys7Mr3L+0tFSTJ09Wx44ddeGFF6pdu3Z65plnJJ3spZg2bZq6dOmiAQMGKDIyUosWLfJLW9x77736xS9+oaFDh2rQoEFKTU2tdETZ++67T7fddpv++Mc/qmPHjhozZox73khUVJT+8pe/6LnnnlN6erouueSSKp9n9uzZuvTSSzV+/Hj94he/0Pbt2/Xuu++qcePGfnldQLhyGGOM1UUA8L9du3apdevWys3N1S9+8YsKt2VmZurmm2/WzTffbE1xAFANhn6AEFdSUqJDhw7p3nvv1TnnnFMppACAnTH0A4S4jz/+WGlpacrNza00r8Rqs2bNUoMGDaq8DBs2zOryANgAQz8ALPPDDz9UOpJrubi4ODVv3jzAFQGwG4IKAACwLYZ+AACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbf0fUjqA67a5Q64AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWp5JREFUeJzt3XtYVOXaP/DvAMIgyiAiMBAKKp5RTITAA5oUpplo7y8187RRO2hl2i4tT5WFaaXbMilL7S1TMt3mViMNdLdVQkRNxcMWw1MyKCIzchCReX5/+LJqBIGBWXPi+7muuWzWuteae56GWfc861nPUgghBIiIiIjI5BwsnQARERGRvWKhRURERCQTFlpEREREMmGhRURERCQTFlpEREREMmGhRURERCQTFlpEREREMmGhRURERCQTFlpEREREMmGhRUSN3sKFC6FQKOoUq1AosHDhQlnzGTBgAAYMGGC1+yOiumOhRURWY926dVAoFNLDyckJ/v7+mDhxIv744w9Lp2d1AgMDDdrL29sb/fr1wz//+U+T7L+kpAQLFy7E3r17TbI/osaIhRYRWZ23334bX3/9NRITE/HYY4/hm2++QXR0NG7duiXL682dOxelpaWy7FtuoaGh+Prrr/H111/j1VdfxZUrVzBy5EgkJiY2eN8lJSV46623WGgRNYCTpRMgIrrXY489hrCwMADA5MmT4eXlhffffx/btm3DU089ZfLXc3JygpOTbX4d+vv745lnnpGejx8/Hu3bt8eyZcvw3HPPWTAzIgLYo0VENqBfv34AgHPnzhksP336NP7nf/4Hnp6eUCqVCAsLw7Zt2wxiysvL8dZbbyE4OBhKpRItW7ZE3759sXv3bimmujFaZWVleOWVV9CqVSs0b94cTzzxBC5fvlwlt4kTJyIwMLDK8ur2uXbtWjz88MPw9vaGi4sLunTpglWrVhnVFrXx9fVF586dkZOTU2Pc1atXER8fDx8fHyiVSvTo0QNfffWVtP78+fNo1aoVAOCtt96STk/KPT6NyN7Y5k84ImpUzp8/DwBo0aKFtCwrKwt9+vSBv78/Zs+eDTc3N3z33XeIi4vD5s2bMWLECAB3C56EhARMnjwZ4eHh0Ol0OHToEA4fPoxHHnnkvq85efJkfPPNN3j66acRFRWF1NRUDB06tEHvY9WqVejatSueeOIJODk54V//+hdeeOEF6PV6TJs2rUH7rlReXo5Lly6hZcuW940pLS3FgAEDkJ2djenTpyMoKAibNm3CxIkTUVhYiJdffhmtWrXCqlWr8Pzzz2PEiBEYOXIkAKB79+4myZOo0RBERFZi7dq1AoD4+eefxbVr18SlS5fE999/L1q1aiVcXFzEpUuXpNhBgwaJkJAQcevWLWmZXq8XUVFRIjg4WFrWo0cPMXTo0Bpfd8GCBeKvX4dHjx4VAMQLL7xgEPf0008LAGLBggXSsgkTJog2bdrUuk8hhCgpKakSFxsbK9q2bWuwLDo6WkRHR9eYsxBCtGnTRjz66KPi2rVr4tq1a+K3334To0ePFgDEiy++eN/9LV++XAAQ33zzjbTs9u3bIjIyUjRr1kzodDohhBDXrl2r8n6JyDg8dUhEVicmJgatWrVCQEAA/ud//gdubm7Ytm0bHnjgAQBAQUEBUlNT8dRTT+HmzZvIz89Hfn4+rl+/jtjYWJw9e1a6StHDwwNZWVk4e/ZsnV9/586dAICXXnrJYPmMGTMa9L5cXV2l/9ZqtcjPz0d0dDR+//13aLXaeu1z165daNWqFVq1aoUePXpg06ZNGDduHN5///37brNz5074+vpizJgx0rImTZrgpZdeQlFREf7973/XKxciqoqnDonI6qxcuRIdOnSAVqvFmjVr8Msvv8DFxUVan52dDSEE5s2bh3nz5lW7j6tXr8Lf3x9vv/02hg8fjg4dOqBbt24YPHgwxo0bV+MpsAsXLsDBwQHt2rUzWN6xY8cGva/9+/djwYIFSEtLQ0lJicE6rVYLlUpl9D4jIiKwaNEiKBQKNG3aFJ07d4aHh0eN21y4cAHBwcFwcDD8rd25c2dpPRGZBgstIrI64eHh0lWHcXFx6Nu3L55++mmcOXMGzZo1g16vBwC8+uqriI2NrXYf7du3BwD0798f586dww8//IBdu3bhiy++wLJly5CYmIjJkyc3ONf7TXRaUVFh8PzcuXMYNGgQOnXqhI8++ggBAQFwdnbGzp07sWzZMuk9GcvLywsxMTH12paI5MdCi4ismqOjIxISEjBw4EB88sknmD17Ntq2bQvg7umuuhQZnp6emDRpEiZNmoSioiL0798fCxcuvG+h1aZNG+j1epw7d86gF+vMmTNVYlu0aIHCwsIqy+/tFfrXv/6FsrIybNu2Da1bt5aW79mzp9b8Ta1NmzY4duwY9Hq9Qa/W6dOnpfXA/YtIIqo7jtEiIqs3YMAAhIeHY/ny5bh16xa8vb0xYMAAfPbZZ8jNza0Sf+3aNem/r1+/brCuWbNmaN++PcrKyu77eo899hgAYMWKFQbLly9fXiW2Xbt20Gq1OHbsmLQsNze3yuzsjo6OAAAhhLRMq9Vi7dq1981DLkOGDIFGo0FSUpK07M6dO/j444/RrFkzREdHAwCaNm0KANUWkkRUN+zRIiKb8Pe//x3/7//9P6xbtw7PPfccVq5cib59+yIkJARTpkxB27ZtkZeXh7S0NFy+fBm//fYbAKBLly4YMGAAevXqBU9PTxw6dAjff/89pk+fft/XCg0NxZgxY/Dpp59Cq9UiKioKKSkpyM7OrhI7evRovP766xgxYgReeukllJSUYNWqVejQoQMOHz4sxT366KNwdnbGsGHD8Oyzz6KoqAirV6+Gt7d3tcWinKZOnYrPPvsMEydORGZmJgIDA/H9999j//79WL58OZo3bw7g7uD9Ll26ICkpCR06dICnpye6deuGbt26mTVfIptm6cseiYgqVU7vkJGRUWVdRUWFaNeunWjXrp24c+eOEEKIc+fOifHjxwtfX1/RpEkT4e/vLx5//HHx/fffS9stWrRIhIeHCw8PD+Hq6io6deok3n33XXH79m0pprqpGEpLS8VLL70kWrZsKdzc3MSwYcPEpUuXqp3uYNeuXaJbt27C2dlZdOzYUXzzzTfV7nPbtm2ie/fuQqlUisDAQPH++++LNWvWCAAiJydHijNmeofapq643/7y8vLEpEmThJeXl3B2dhYhISFi7dq1VbY9cOCA6NWrl3B2duZUD0T1oBDiL/3YRERERGQyHKNFREREJBMWWkREREQyYaFFREREJBMWWkREREQyYaFFREREJBMWWkREREQy4YSlFqTX63HlyhU0b96ct7ogIiKyEUII3Lx5E35+flVuzn4vFloWdOXKFQQEBFg6DSIiIqqHS5cu4YEHHqgxhoWWBVXe5uLSpUtwd3e3cDZERERUFzqdDgEBAdJxvCYstCyo8nShu7s7Cy0iIiIbU5dhPxwMT0RERCQTFlpEREREMmGhRURERCQTjtGyARUVFSgvL7d0GnajSZMmcHR0tHQaRETUCLDQsmJCCGg0GhQWFlo6Fbvj4eEBX19fzl9GRESyYqFlxSqLLG9vbzRt2pRFgQkIIVBSUoKrV68CANRqtYUzIiIie8ZCy0pVVFRIRVbLli0tnY5dcXV1BQBcvXoV3t7ePI1IRESy4WB4K1U5Jqtp06YWzsQ+VbYrx74REZGcWGhZOZ4ulAfblYiIzIGFFhEREZFMWGgRERERyYSFFslCo9HgxRdfRNu2beHi4oKAgAAMGzYMKSkpKCgowIsvvoiOHTvC1dUVrVu3xksvvQStVittf/78eSgUChw9erTKvgcMGIAZM2YYLDt16hSeeOIJqFQquLm5oXfv3rh48aLM75KIiKxZrrYUB87lI1dbarEceNUhmdz58+fRp08feHh4YOnSpQgJCUF5eTl++uknTJs2Dd9//z2uXLmCDz74AF26dMGFCxfw3HPP4cqVK/j++++Nfr1z586hb9++iI+Px1tvvQV3d3dkZWVBqVTK8O6IiMgWJGVcxJwtx6EXgIMCSBgZglG9W5s9DxZaZHIvvPACFAoFDh48CDc3N2l5165d8be//Q0eHh7YvHmztLxdu3Z499138cwzz+DOnTtwcjLuY/nmm29iyJAhWLJkicE+iYioccrVlkpFFgDoBfDGlhPo36EV1CpXs+bCU4eNhLm6TwsKCpCcnIxp06YZFFmVPDw8qt1Oq9XC3d3d6CJLr9djx44d6NChA2JjY+Ht7Y2IiAhs3bq1HtkTEZE9yMkvloqsShVC4Hx+idlzYaHVCCRlXESfxal4enU6+ixORVKGfGOXsrOzIYRAp06d6rxNfn4+3nnnHUydOrXKuqioKDRr1szg8Z///Edaf/XqVRQVFWHx4sUYPHgwdu3ahREjRmDkyJH497//bZL3REREtiXIyw0O98zi46hQINDL/HNT8tShnTN396kQovagv9DpdBg6dCi6dOmChQsXVlmflJSEzp07GywbO3as9N96vR4AMHz4cLzyyisAgNDQUBw4cACJiYmIjo428h0QEZGtU6tckTAyBG9sOYEKIeCoUOC9kd3MftoQYKFl92rqPpXjAxccHAyFQoHTp0/XGnvz5k0MHjwYzZs3xz//+U80adKkSkxAQADat29vsKzyFjoA4OXlBScnJ3Tp0sUgpnPnzti3b1893wUREdm6Ub1bo3+HVjifX4JAr6YWKbIAnjq0e+buPvX09ERsbCxWrlyJ4uLiKusLCwsB3O3JevTRR+Hs7Ixt27bV+wpBZ2dn9O7dG2fOnDFY/t///hdt2rSp1z6JiMg+qFWuiGzX0mJFFsBCy+5Vdp86/t8tZ8zRfbpy5UpUVFQgPDwcmzdvxtmzZ3Hq1CmsWLECkZGRUpFVXFyML7/8EjqdDhqNBhqNBhUVFUa/3t///nckJSVh9erVyM7OxieffIJ//etfeOGFF2R4d0RERHVnFYXWypUrERgYCKVSiYiICBw8eLDG+E2bNqFTp05QKpUICQnBzp07DdYLITB//nyo1Wq4uroiJiYGZ8+eNYgpKCjA2LFj4e7uDg8PD8THx6OoqEhaf+bMGQwcOBA+Pj5QKpVo27Yt5s6dW+UmxLXlYg1G9W6NfbMHYsOUh7Bv9kDZ5xFp27YtDh8+jIEDB2LWrFno1q0bHnnkEaSkpGDVqlU4fPgw0tPTcfz4cbRv3x5qtVp6XLp0yejXGzFiBBITE7FkyRKEhITgiy++wObNm9G3b18Z3h0REZERhIVt3LhRODs7izVr1oisrCwxZcoU4eHhIfLy8qqN379/v3B0dBRLliwRJ0+eFHPnzhVNmjQRx48fl2IWL14sVCqV2Lp1q/jtt9/EE088IYKCgkRpaakUM3jwYNGjRw/x66+/iv/85z+iffv2YsyYMdL6c+fOiTVr1oijR4+K8+fPix9++EF4e3uLOXPmGJVLTbRarQAgtFptlXWlpaXi5MmTBjmT6bB9iYiovmo6ft/L4oVWeHi4mDZtmvS8oqJC+Pn5iYSEhGrjn3rqKTF06FCDZREREeLZZ58VQgih1+uFr6+vWLp0qbS+sLBQuLi4iA0bNgghhDh58qQAIDIyMqSYH3/8USgUCvHHH3/cN9dXXnlF9O3bt8651IaFluWwfYmIqL6MKbQseurw9u3byMzMRExMjLTMwcEBMTExSEtLq3abtLQ0g3gAiI2NleJzcnKg0WgMYlQqFSIiIqSYtLQ0eHh4ICwsTIqJiYmBg4MD0tPTq33d7OxsJCcnG0wXUFsu9yorK4NOpzN4EBERkf2yaKGVn5+PiooK+Pj4GCz38fGBRqOpdhuNRlNjfOW/tcV4e3sbrHdycoKnp2eV142KioJSqURwcDD69euHt99+u8653CshIQEqlUp6BAQEVBtHRERE9sEqBsNbs6SkJBw+fBjffvstduzYgQ8++KDe+5ozZw60Wq30qM/AbyIiIrIdFp2w1MvLC46OjsjLyzNYnpeXB19f32q38fX1rTG+8t+8vDyo1WqDmNDQUCnm6tWrBvu4c+cOCgoKqrxuZa9Tly5dUFFRgalTp2LWrFlwdHSsNZd7ubi4wMXFpdp19yOMnGmd6obtSkRE5mDRHi1nZ2f06tULKSkp0jK9Xo+UlBRERkZWu01kZKRBPADs3r1big8KCoKvr69BjE6nQ3p6uhQTGRmJwsJCZGZmSjGpqanQ6/WIiIi4b756vR7l5eXSbV9qy6UhKmdJLykx/w0wG4PKdq1uNnoiIiJTsfgteGbOnIkJEyYgLCwM4eHhWL58OYqLizFp0iQAwPjx4+Hv74+EhAQAwMsvv4zo6Gh8+OGHGDp0KDZu3IhDhw7h888/BwAoFArMmDEDixYtQnBwMIKCgjBv3jz4+fkhLi4OwN3bswwePBhTpkxBYmIiysvLMX36dIwePRp+fn4AgPXr16NJkyYICQmBi4sLDh06hDlz5mDUqFHSwbm2XBrC0dERHh4eUs9b06ZNoVAoatmKaiOEQElJCa5evQoPDw84OjpaOiUiIrJjFi+0Ro0ahWvXrmH+/PnQaDQIDQ1FcnKyNMj84sWLcHD4s+MtKioK3377LebOnYs33ngDwcHB2Lp1K7p16ybFvPbaayguLsbUqVNRWFiIvn37Ijk52eA2L+vXr8f06dMxaNAgODg44Mknn8SKFSuk9U5OTnj//ffx3//+F0IItGnTBtOnT5duXFzXXBqi8hTkvac5qeE8PDzue4qXiIjIVBSCg1UsRqfTQaVSQavVwt3d/b5xFRUVVWakp/pr0qQJe7KIiKje6nr8BqygR4tq5+joyMKAiIjIBnF6ByIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZWEWhtXLlSgQGBkKpVCIiIgIHDx6sMX7Tpk3o1KkTlEolQkJCsHPnToP1QgjMnz8farUarq6uiImJwdmzZw1iCgoKMHbsWLi7u8PDwwPx8fEoKiqS1u/duxfDhw+HWq2Gm5sbQkNDsX79eoN9rFu3DgqFwuChVCob2BpERERkLyxeaCUlJWHmzJlYsGABDh8+jB49eiA2NhZXr16tNv7AgQMYM2YM4uPjceTIEcTFxSEuLg4nTpyQYpYsWYIVK1YgMTER6enpcHNzQ2xsLG7duiXFjB07FllZWdi9eze2b9+OX375BVOnTjV4ne7du2Pz5s04duwYJk2ahPHjx2P79u0G+bi7uyM3N1d6XLhwwcQtRERERDZLWFh4eLiYNm2a9LyiokL4+fmJhISEauOfeuopMXToUINlERER4tlnnxVCCKHX64Wvr69YunSptL6wsFC4uLiIDRs2CCGEOHnypAAgMjIypJgff/xRKBQK8ccff9w31yFDhohJkyZJz9euXStUKlXd3+w9tFqtACC0Wm2990FERETmZczx26I9Wrdv30ZmZiZiYmKkZQ4ODoiJiUFaWlq126SlpRnEA0BsbKwUn5OTA41GYxCjUqkQEREhxaSlpcHDwwNhYWFSTExMDBwcHJCenn7ffLVaLTw9PQ2WFRUVoU2bNggICMDw4cORlZV13+3Lysqg0+kMHkRERGS/LFpo5efno6KiAj4+PgbLfXx8oNFoqt1Go9HUGF/5b20x3t7eBuudnJzg6el539f97rvvkJGRgUmTJknLOnbsiDVr1uCHH37AN998A71ej6ioKFy+fLnafSQkJEClUkmPgICAauOIiIjIPlh8jJYt2LNnDyZNmoTVq1eja9eu0vLIyEiMHz8eoaGhiI6OxpYtW9CqVSt89tln1e5nzpw50Gq10uPSpUvmegtERERkARYttLy8vODo6Ii8vDyD5Xl5efD19a12G19f3xrjK/+tLebewfZ37txBQUFBldf997//jWHDhmHZsmUYP358je+nSZMm6NmzJ7Kzs6td7+LiAnd3d4MHERER1V+uthQHzuUjV1tq6VSqZdFCy9nZGb169UJKSoq0TK/XIyUlBZGRkdVuExkZaRAPALt375big4KC4OvraxCj0+mQnp4uxURGRqKwsBCZmZlSTGpqKvR6PSIiIqRle/fuxdChQ/H+++8bXJF4PxUVFTh+/DjUanUd3j0RERE1RFLGRfRZnIqnV6ejz+JUJGVctHRKVThZOoGZM2diwoQJCAsLQ3h4OJYvX47i4mJpLNT48ePh7++PhIQEAMDLL7+M6OhofPjhhxg6dCg2btyIQ4cO4fPPPwcAKBQKzJgxA4sWLUJwcDCCgoIwb948+Pn5IS4uDgDQuXNnDB48GFOmTEFiYiLKy8sxffp0jB49Gn5+fgDuni58/PHH8fLLL+PJJ5+Uxm45OztLA+LffvttPPTQQ2jfvj0KCwuxdOlSXLhwAZMnTzZnExIRETU6udpSzNlyHHpx97leAG9sOYH+HVpBrXK1bHJ/YfFCa9SoUbh27Rrmz58PjUaD0NBQJCcnS4PZL168CAeHPzveoqKi8O2332Lu3Ll44403EBwcjK1bt6Jbt25SzGuvvYbi4mJMnToVhYWF6Nu3L5KTkw0mE12/fj2mT5+OQYMGwcHBAU8++SRWrFghrf/qq69QUlKChIQEqcgDgOjoaOzduxcAcOPGDUyZMgUajQYtWrRAr169cODAAXTp0kWu5iIiIiIAOfnFUpFVqUIInM8vsapCSyGEELWHkRx0Oh1UKhW0Wi3HaxERERkhV1uKPotTDYotR4UC+2YPlL3QMub4zasOiYiIyOaoVa5IGBkCR4UCwN0i672R3ayqNwuwglOHRERERPUxqndr9O/QCufzSxDo1dTqiiyAhRYRkU3K1ZYiJ78YQV5uVnlwITIXtcrVqv8GWGgREdmYpIyL0tVWDgogYWQIRvVubem0iKgaHKNFRGRD7ndJu7VO1kjU2LHQIiKyITVd0k5E1oeFFhGRDQnycoODwnCZo0KBQK+mlkmIiGrEQouIyIbYyiXtRHQXB8MTEdkYW7iknYjuYqFFRGSDrP2SdiK6i6cOiYiIiGTCQouIiIhIJiy0iIiIiGTCQouIiIhIJiy0iIiIiGTCQouIiIhIJiy0iIiIiGTCQouIiIhIJiy0iIiIiGTCQouIiIhIJiy0iIiIiGTCQouIiIhIJiy0iIiIiGTCQouIiIhIJiy0iIiIiGTCQouIiIhIJiy0iIiIiGTCQouIiIhIJiy0iIiIiGTCQouIiIhIJiy07FSuthQHzuUjV1tq6VSIiIgaLSdLJ0Cml5RxEXO2HIdeAA4KIGFkCEb1bm3ptIiIiBod9mjZmVxtqVRkAYBeAG9sOcGeLSIiIgtgoWVncvKLpSKrUoUQOJ9fYpmEiIiIGjEWWnYmyMsNDgrDZY4KBQK9mlomISIiokaMhZadUatckTAyBI6Ku9WWo0KB90Z2g1rlauHMiIiIGh8OhrdDo3q3Rv8OrXA+vwSBXk1ZZBEREVkICy07pVa5ssAiIiKyMJ46JCKrwjngiMiesEeLiKwG54AjInvDHi0isgqcA46I7BELLSKyCpwDjohMzRqGIvDUIRFZhco54P5abHEOOCKqL2sZimAVPVorV65EYGAglEolIiIicPDgwRrjN23ahE6dOkGpVCIkJAQ7d+40WC+EwPz586FWq+Hq6oqYmBicPXvWIKagoABjx46Fu7s7PDw8EB8fj6KiImn93r17MXz4cKjVari5uSE0NBTr1683OhciqhvOAUdEpmJNQxEsXmglJSVh5syZWLBgAQ4fPowePXogNjYWV69erTb+wIEDGDNmDOLj43HkyBHExcUhLi4OJ06ckGKWLFmCFStWIDExEenp6XBzc0NsbCxu3bolxYwdOxZZWVnYvXs3tm/fjl9++QVTp041eJ3u3btj8+bNOHbsGCZNmoTx48dj+/btRuVCRHU3qndr7Js9EBumPIR9swdyIDwR1Ys1DUVQCCFE7WHyiYiIQO/evfHJJ58AAPR6PQICAvDiiy9i9uzZVeJHjRqF4uJig4LnoYceQmhoKBITEyGEgJ+fH2bNmoVXX30VAKDVauHj44N169Zh9OjROHXqFLp06YKMjAyEhYUBAJKTkzFkyBBcvnwZfn5+1eY6dOhQ+Pj4YM2aNXXKpTY6nQ4qlQparRbu7u51bDEiIiKqSa62FH0Wp1YZirBv9kCT9JIbc/y2aI/W7du3kZmZiZiYGGmZg4MDYmJikJaWVu02aWlpBvEAEBsbK8Xn5ORAo9EYxKhUKkREREgxaWlp8PDwkIosAIiJiYGDgwPS09Pvm69Wq4Wnp2edc7lXWVkZdDqdwYOIiIhMy5qGIlh0MHx+fj4qKirg4+NjsNzHxwenT5+udhuNRlNtvEajkdZXLqspxtvb22C9k5MTPD09pZh7fffdd8jIyMBnn31W51zulZCQgLfeeqvadURERGQ61nI7OouP0bIFe/bswaRJk7B69Wp07dq13vuZM2cOtFqt9Lh06ZIJsyQiIqK/UqtcEdmupUUvqrFooeXl5QVHR0fk5eUZLM/Ly4Ovr2+12/j6+tYYX/lvbTH3Dra/c+cOCgoKqrzuv//9bwwbNgzLli3D+PHjjcrlXi4uLnB3dzd4EBERkf2yaKHl7OyMXr16ISUlRVqm1+uRkpKCyMjIareJjIw0iAeA3bt3S/FBQUHw9fU1iNHpdEhPT5diIiMjUVhYiMzMTCkmNTUVer0eERER0rK9e/di6NCheP/99w2uSKxrLkRERNTICQvbuHGjcHFxEevWrRMnT54UU6dOFR4eHkKj0QghhBg3bpyYPXu2FL9//37h5OQkPvjgA3Hq1CmxYMEC0aRJE3H8+HEpZvHixcLDw0P88MMP4tixY2L48OEiKChIlJaWSjGDBw8WPXv2FOnp6WLfvn0iODhYjBkzRlqfmpoqmjZtKubMmSNyc3Olx/Xr143KpSZarVYAEFqttt7tR0REROZlzPHb4oWWEEJ8/PHHonXr1sLZ2VmEh4eLX3/9VVoXHR0tJkyYYBD/3XffiQ4dOghnZ2fRtWtXsWPHDoP1er1ezJs3T/j4+AgXFxcxaNAgcebMGYOY69evizFjxohmzZoJd3d3MWnSJHHz5k1p/YQJEwSAKo/o6GijcqkJCy0iIiLbY8zx2+LzaDVmnEeLiIjI9tjMPFpERERE9oyFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREdmsXG0pDpzLR6621NKpVMuiN5UmIiIiqq+kjIuYs+U49AJwUAAJI0MwqndrS6dlgD1aREREZHNytaVSkQUAegG8seWE1fVssdAiIiIim5OTXywVWZUqhMD5/BLLJHQfLLSIiIjI5gR5ucFBYbjMUaFAoFdTyyR0Hyy0iIiIyOaoVa5IGBkCR8XdastRocB7I7tBrXK1cGaGOBieiIiIbNKo3q3Rv0MrnM8vQaBXU6srsgAWWkRERGTD1CpXqyywKvHUIREREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgREVlQrrYUB87lI1dbaulUiEgGvAUPEZGFJGVcxJwtx6EXgIMCSBgZglG9W1s6LSIyIfZoERFZQK62VCqyAEAvgDe2nGDPFpGdYaFFRGQBOfnFUpFVqUIInM8vsUxCRCQLowqty5cvIz8/X3r+n//8B2PHjkW/fv3wzDPPIC0tzeQJEhHZoyAvNzgoDJc5KhQI9GpqmYSISBZGFVpPPvkkfv31VwDADz/8gAEDBqCoqAh9+vRBSUkJoqOjsX37dlkSJSKyJ2qVKxJGhsBRcbfaclQo8N7IblCrXC2cGRGZkkIIIWoPu6tZs2Y4fvw4goKC8NBDD2HEiBF4/fXXpfWffPIJ1qxZg8OHD8uSrL3R6XRQqVTQarVwd3e3dDpEZAG52lKczy9BoFdTFllENsKY47dRPVpOTk64efMmACAnJwePPfaYwfrHHnsMZ86cMTJdIqLGS61yRWS7liyyiOyUUYVWdHQ0NmzYAADo2bMn9u7da7B+z5498Pf3N1lyRERERLbMqHm0Fi9ejH79+uHKlSvo27cv3nzzTWRkZKBz5844c+YMkpKSkJiYKFeuRERERDbFqDFaAHDu3DnMnTsXO3bsQFFREYC7pxR79+6Nv//974iLi5MjT7vEMVpERES2x5jjt9GFViUhBK5evQq9Xg8vLy80adKkXsk2Ziy0iIiIbI8xx+9634JHoVDAx8envpsTERER2T2jCq2ZM2fWKe6jjz6qVzJERERE9sSoQuvIkSMGz/ft24devXrB1fXPy5IVCsW9mxERERE1SkYVWnv27DF43rx5c3z77bdo27atSZMiIiIisge8qTQRERGRTFhoERERkc3K1ZbiwLl85GpLLZ1Ktep91SERERGRJSVlXMScLcehF4CDAkgYGYJRvVtbOi0DRhVax44dM3guhMDp06eliUsrde/eveGZEREREd1HrrZUKrIAQC+AN7acQP8Orazq3qFGFVqhoaFQKBT46xynjz/+OABIyxUKBSoqKkybJREREdFf5OQXS0VWpQohcD6/xKoKLaPGaOXk5OD3339HTk5OlUfl8t9//92oBFauXInAwEAolUpERETg4MGDNcZv2rQJnTp1glKpREhICHbu3GmwXgiB+fPnQ61Ww9XVFTExMTh79qxBTEFBAcaOHQt3d3d4eHggPj7eoFfu1q1bmDhxIkJCQuDk5FTtbYX27t0LhUJR5aHRaIx6/0RERGS8IC83ONwzo5SjQoFAr6aWSeg+jCq02rRpU6dHXSUlJWHmzJlYsGABDh8+jB49eiA2NhZXr16tNv7AgQMYM2YM4uPjceTIEcTFxSEuLg4nTpyQYpYsWYIVK1YgMTER6enpcHNzQ2xsLG7duiXFjB07FllZWdi9eze2b9+OX375BVOnTpXWV1RUwNXVFS+99BJiYmJqfA9nzpxBbm6u9PD29q7z+yciIqL6UatckTAyBI7/N3+no0KB90Z2s6reLACAqIeKior7Lr9w4UKd9xMeHi6mTZtmsL2fn59ISEioNv6pp54SQ4cONVgWEREhnn32WSGEEHq9Xvj6+oqlS5dK6wsLC4WLi4vYsGGDEEKIkydPCgAiIyNDivnxxx+FQqEQf/zxR5XXnDBhghg+fHiV5Xv27BEAxI0bN+r8fu+l1WoFAKHVauu9DyIiosbsSmGJOJCdL64UlpjtNY05fhvVo6XT6fDUU0/Bzc0NPj4+mD9/vsF4rGvXriEoKKhO+7p9+zYyMzMNeowcHBwQExODtLS0ardJS0ur0sMUGxsrxefk5ECj0RjEqFQqRERESDFpaWnw8PBAWFiYFBMTEwMHBwekp6fXKfe/Cg0NhVqtxiOPPIL9+/fXGFtWVgadTmfwICIiovpTq1wR2a6l9fVk/R+jCq158+bht99+w9dff413330X//u//4vhw4fj9u3bUowQooY9/Ck/Px8VFRVVbkzt4+Nz33FOGo2mxvjKf2uLuff0npOTEzw9PY0aX6VWq5GYmIjNmzdj8+bNCAgIwIABA3D48OH7bpOQkACVSiU9AgIC6vx6REREZHuMuupw69at+OqrrzBgwAAAQFxcHIYOHYphw4Zh27ZtABrPvQ47duyIjh07Ss+joqJw7tw5LFu2DF9//XW128yZM8fgxtw6nY7FFhERkR0zqkfr2rVrBoPdvby88PPPP+PmzZsYMmQISkpK6rwvLy8vODo6Ii8vz2B5Xl4efH19q93G19e3xvjKf2uLuXew/Z07d1BQUHDf162r8PBwZGdn33e9i4sL3N3dDR5ERERkv4wqtFq3bo1Tp04ZLGvevDl27dqF0tJSjBgxos77cnZ2Rq9evZCSkiIt0+v1SElJQWRkZLXbREZGGsQDwO7du6X4oKAg+Pr6GsTodDqkp6dLMZGRkSgsLERmZqYUk5qaCr1ej4iIiDrnX52jR49CrVY3aB9ERERkP4w6dfjII49g7dq1GDJkiMHyZs2a4aeffsIjjzxi1IvPnDkTEyZMQFhYGMLDw7F8+XIUFxdj0qRJAIDx48fD398fCQkJAICXX34Z0dHR+PDDDzF06FBs3LgRhw4dwueffw7g7mnLGTNmYNGiRQgODkZQUBDmzZsHPz8/aS6szp07Y/DgwZgyZQoSExNRXl6O6dOnY/To0fDz85NyO3nyJG7fvo2CggLcvHkTR48eBXB38DsALF++HEFBQejatStu3bqFL774Aqmpqdi1a5dRbUBERER2zJjLGQsKCkRWVtZ91+t0OrF3715jdik+/vhj0bp1a+Hs7CzCw8PFr7/+Kq2Ljo4WEyZMMIj/7rvvRIcOHYSzs7Po2rWr2LFjh8F6vV4v5s2bJ3x8fISLi4sYNGiQOHPmjEHM9evXxZgxY0SzZs2Eu7u7mDRpkrh586ZBTJs2bQSAKo9K77//vmjXrp1QKpXC09NTDBgwQKSmphr13jm9AxERke0x5vitEKKOlwni7im26dOn49dff60yvkir1SIqKgqrVq1C//79TVcJ2jGdTgeVSgWtVsvxWkRERDbCmOO3UWO0li9fjilTplS7U5VKhWeffRbLli0zLlsiIiIiO2VUofXbb79h8ODB913/6KOPGgwyJyIiImrMjCq08vLy0KRJk/uud3JywrVr1xqcFBEREZE9MKrQ8vf3N7iB872OHTvG6Q2I7FCuthQHzuUjV1tq6VSIiGyKUdM7DBkyBPPmzcPgwYOhVCoN1pWWlmLBggV4/PHHTZogEVlWUsZFzNlyHHoBOCiAhJEhGNW7taXTIiKyCUZddZiXl4cHH3wQjo6OmD59unQLmtOnT2PlypWoqKjA4cOHq9xrkKrHqw7J2uVqS9FncSr0f/mWcFQosG/2QKu9gSsRkdyMOX4b1aPl4+ODAwcO4Pnnn8ecOXOkG0grFArExsZi5cqVLLKI7EhOfrFBkQUAFULgfH4JCy0iojowqtACgDZt2mDnzp24ceMGsrOzIYRAcHAwWrRoIUd+RGRBQV5ucFCgSo9WoFdTyyVFRGRDjBoM/1ctWrRA7969ER4eziKLyE6pVa5IGBkCR4UCwN0i672R3dibRURUR0b3aBFR4zKqd2v079AK5/NLEOjVlEUWEZERWGgRUa3UKlcWWERE9VDvU4fUuHAeJSIiIuOxR4tqxXmUiIiI6oc9WlSjXG2pVGQBd68+e2PLCfZsERER1QELLapRTfMoERERUc1YaFGNKudR+ivOo0RERFQ3LLSoRpxHiYiIqP44GJ5qxXmUiIiI6oeFFtUJ51EiIiIyHk8dEhEREcmEhRYRERGRTFhoEREREcmEhRYRERGRTFhoEREREcmEhRYRERGRTFhoEREREcmEhRYRERGRTFhoEREREcmEhRYRERGRTFhoEREREcmEhRYRERGRTFhoEREREcmEhRYRERGRTFhoERFRo5SrLcWBc/nI1ZZaOhWyY06WToCIiMjckjIuYs6W49ALwEEBJIwMwajerS2dFtkh9mgREVGjkqstlYosANAL4I0tJ9izRbJgoUVWh935RCSnnPxiqciqVCEEzueXWCYhsms8dUhWhd35RCS3IC83OChgUGw5KhQI9GpquaQsLFdbipz8YgR5uUGtcrV0OnaFPVpkNdidT0TmoFa5ImFkCBwVCgB3i6z3RnZrtAVGUsZF9FmciqdXp6PP4lQkZVy0dEp2hT1aZDVq6s5vrF+ARCSPUb1bo3+HVjifX4JAr6aN9jvmfj9w+3do1WjbxNRYaDVC1tpFXJfufGvNnYhsj1rl2ui/R/gDV34stBoZax4DVdmd/8aWE6gQokp3vjXnTkRkizheTX4KIYSoPYzkoNPpoFKpoNVq4e7uLvvr5WpL0WdxapU/qH2zB1rVL5dcbWmV7nxbyZ2IyNYkZVys8gOXP2JrZszx2+KD4VeuXInAwEAolUpERETg4MGDNcZv2rQJnTp1glKpREhICHbu3GmwXgiB+fPnQ61Ww9XVFTExMTh79qxBTEFBAcaOHQt3d3d4eHggPj4eRUVF0vpbt25h4sSJCAkJgZOTE+Li4qrNZe/evXjwwQfh4uKC9u3bY926dfVqA3OxlUua1SpXRLZraVBA2UruRES2ZlTv1tg3eyA2THkI+2YPZJFlYhYttJKSkjBz5kwsWLAAhw8fRo8ePRAbG4urV69WG3/gwAGMGTMG8fHxOHLkCOLi4hAXF4cTJ05IMUuWLMGKFSuQmJiI9PR0uLm5ITY2Frdu3ZJixo4di6ysLOzevRvbt2/HL7/8gqlTp0rrKyoq4OrqipdeegkxMTHV5pKTk4OhQ4di4MCBOHr0KGbMmIHJkyfjp59+MlHrmF5lF/Ff2UoXsVy5c84uIqLqf+CSaVj01GFERAR69+6NTz75BACg1+sREBCAF198EbNnz64SP2rUKBQXF2P79u3SsoceegihoaFITEyEEAJ+fn6YNWsWXn31VQCAVquFj48P1q1bh9GjR+PUqVPo0qULMjIyEBYWBgBITk7GkCFDcPnyZfj5+Rm85sSJE1FYWIitW7caLH/99dexY8cOgyJv9OjRKCwsRHJycp3ev7lPHQK23UVs6tw55ouIiOrDmOO3xQbD3759G5mZmZgzZ460zMHBATExMUhLS6t2m7S0NMycOdNgWWxsrFQE5eTkQKPRGPRCqVQqREREIC0tDaNHj0ZaWho8PDykIgsAYmJi4ODggPT0dIwYMaJO+aelpVXp7YqNjcWMGTPqtL2l2PIlzabMnZc0ExGROVis0MrPz0dFRQV8fHwMlvv4+OD06dPVbqPRaKqN12g00vrKZTXFeHt7G6x3cnKCp6enFFMX98tFp9OhtLQUrq5VD9ZlZWUoKyuTnut0ujq/nilZwyXN9Z2mwVS585JmIiIyB07vYEYJCQl46623LJ2GxVnDKTte0kxEROZgscHwXl5ecHR0RF5ensHyvLw8+Pr6VruNr69vjfGV/9YWc+9g+zt37qCgoOC+r2tMLu7u7tX2ZgHAnDlzoNVqpcelS5fq/HqWZqpB49Zymx3egoOIiMzBYoWWs7MzevXqhZSUFGmZXq9HSkoKIiMjq90mMjLSIB4Adu/eLcUHBQXB19fXIEan0yE9PV2KiYyMRGFhITIzM6WY1NRU6PV6RERE1Dn/2nKpjouLC9zd3Q0etsCU98GypmkaeEkzERHJzaKnDmfOnIkJEyYgLCwM4eHhWL58OYqLizFp0iQAwPjx4+Hv74+EhAQAwMsvv4zo6Gh8+OGHGDp0KDZu3IhDhw7h888/BwAoFArMmDEDixYtQnBwMIKCgjBv3jz4+flJc2F17twZgwcPxpQpU5CYmIjy8nJMnz4do0ePNrji8OTJk7h9+zYKCgpw8+ZNHD16FAAQGhoKAHjuuefwySef4LXXXsPf/vY3pKam4rvvvsOOHTvM03hmYupB49Z2ys4axqsREZH9smihNWrUKFy7dg3z58+HRqNBaGgokpOTpUHmFy9ehIPDn51uUVFR+PbbbzF37ly88cYbCA4OxtatW9GtWzcp5rXXXkNxcTGmTp2KwsJC9O3bF8nJyVAqlVLM+vXrMX36dAwaNAgODg548sknsWLFCoPchgwZggsXLkjPe/bsCeDuhKjA3d6zHTt24JVXXsE//vEPPPDAA/jiiy8QGxtr+oayIFMPGq/tNjtERET2hLfgsSBLzKNlLLlufVPdbXaIiIhsgU3dgoesm1yDxjkLMRERNQac3oFqZcuTnBKZU33nhyMyFX4GrQ8LLaoTDhonqpk1zA9HjRs/g9aJpw6JiBrIWuaHo8aLn0HrxULLTplqglEiqp01zQ9HjVNdPoM8LlgGTx3aIXvuPub4A7JG1jY/HDU+tX0G7fm4YO3Yo2Vn7Ln72JQz1BOZEm/pRJZW02fQno8LtoA9WnbG1BOMWgtTz1BPZGq8Opcs7X6fQXs9LtgKFlp2xl5PYdj7FwVPidoHXp1LllbdZ9Bejwu2gqcO7Yy9nsKo/KL4K3v5ouApUSKSk70eF2wFb8FjQXLegsceb3GTlHGxyj0SbX0wp1y3OCIiupc9HhcsxZjjN08d2il7PIVhj2Ng7P2UKBFZD3s8LtgCFlpkU+zti4JjJ4iI7BvHaJGEk9nVjSnbiWMniIjsG3u0CAAns6srOdrJHk+JEpFl8Apm68NCizhHVR3J2U72dkqUiAyZowDiD2brxFOHxPu01RHbicgQhxvUjTmmcOHs79aLPVrEAdl1xHYi+hN7T+rGXGcMeAWz9WKPFnFAdh2xnYjuYu9J3ZmrJ9yeJ3W2dezRIgAckF1XbCci9p4Yw1w94ZU/BO+d1Jn/PyyPhRZJOCC7bthO1NjxNHrdmbMA4g9B68RCi4iIjMLeE+OYswDiD0Hrw0KLiIiMxt4T49yvAOK8V/aPhRYREdULe08ahlduNg686pDISOacO4jzFBHZJ1652XiwR4vICOb8Bcpfu0S25bdLN3DwfAHCAz3RI6BFjbG8crPxYKFFVEfmvFURb4tEZFtmfXcUmw//IT1/8kF/fPhU6H3jeeVm48FTh3aKp5xMz5y34OHtfohsx2+XbhgUWQCw+fAf+O3SjftuwwmQGw/2aNkhnnKShzl/gTb0tXglE5H5HDxfUO3yQ+dv1HgK0Z6v3OR30J/Yo2VnOMBSPub8BdqQ1zLHDWyJ6E/hgZ7VLg8LrHmcFnD3bz2yXUu7Kkb4HWSIPVp2hgMs5WXOX6D1eS2O7SIyvx4BLfDkg/5VxmjVNiDeHvE7qCoWWnaGAyzlZ865g4x9LRbaRJbx4VOhGB/ZBofO30BYYItGWWQB/A6qDk8d2hkOsLQvxl7UUFlo/xULbSLz6BHQAvH92jbaIgvgd1B12KNlh+x5gGVjUp+LGngPOiKyJH4HVaUQQojaw0gOOp0OKpUKWq0W7u7ulk6HrEiuthR9FqdWOQW8b/bAOo/VYqFNRJZi799Bxhy/2aNFZIUaOs6B96AjIkvid9CfOEaLyApZ2zgHToBLRFQ/LLRIwoOp9bCmixo4Jw4RUf1xjJYFWdMYLc4mb50sPc6hoWPFiIjskTHHb/ZoEWeTt2KWnjWa91wkImoYFlrEg6kJ2dvpV2sbK0ZEZGtYaBEPpiZij2OZrGmsGBGRLeIYLQuytjFa904wxzFadWfvY5ksPVaMiMiacB4tMhpnk28Ye7+/F+fEIbJ9udpS5OQXI8jLjX/PZmQVpw5XrlyJwMBAKJVKRERE4ODBgzXGb9q0CZ06dYJSqURISAh27txpsF4Igfnz50OtVsPV1RUxMTE4e/asQUxBQQHGjh0Ld3d3eHh4ID4+HkVFRQYxx44dQ79+/aBUKhEQEIAlS5YYrF+3bh0UCoXBQ6lUNqAlLMvSA69tGU+/EpE1s8ehDbbC4oVWUlISZs6ciQULFuDw4cPo0aMHYmNjcfXq1WrjDxw4gDFjxiA+Ph5HjhxBXFwc4uLicOLECSlmyZIlWLFiBRITE5Geng43NzfExsbi1q1bUszYsWORlZWF3bt3Y/v27fjll18wdepUab1Op8Ojjz6KNm3aIDMzE0uXLsXChQvx+eefG+Tj7u6O3Nxc6XHhwgUTtxDZAo5lIiJrxSvLLUxYWHh4uJg2bZr0vKKiQvj5+YmEhIRq45966ikxdOhQg2URERHi2WefFUIIodfrha+vr1i6dKm0vrCwULi4uIgNGzYIIYQ4efKkACAyMjKkmB9//FEoFArxxx9/CCGE+PTTT0WLFi1EWVmZFPP666+Ljh07Ss/Xrl0rVCpVPd+5EFqtVgAQWq223vuwZlcKS8T+7GviSmGJpVMxmyuFJeJAdn6jes9EZN32Z18TbV7fXuVxIDvf0qnZLGOO3xbt0bp9+zYyMzMRExMjLXNwcEBMTAzS0tKq3SYtLc0gHgBiY2Ol+JycHGg0GoMYlUqFiIgIKSYtLQ0eHh4ICwuTYmJiYuDg4ID09HQppn///nB2djZ4nTNnzuDGjRvSsqKiIrRp0wYBAQEYPnw4srKy7vt+y8rKoNPpDB72qrF2U/P0K5H52du0KqbGoQ2WZdFCKz8/HxUVFfDx8TFY7uPjA41GU+02Go2mxvjKf2uL8fb2Nljv5OQET09Pg5jq9vHX1+jYsSPWrFmDH374Ad988w30ej2ioqJw+fLlanNPSEiASqWSHgEBAdXG2Tp2UxORuTTWH3XGqMvQBhar8uFVhw0QGRmJyMhI6XlUVBQ6d+6Mzz77DO+8806V+Dlz5mDmzJnSc51OZ5fFlr1fgUdE1uF+P+r6d2jF75p71HRlublvwdbYrn60aKHl5eUFR0dH5OXlGSzPy8uDr69vtdv4+vrWGF/5b15eHtRqtUFMaGioFHPvYPs7d+6goKDAYD/Vvc5fX+NeTZo0Qc+ePZGdnV3tehcXF7i4uFS7zp5UdlPfO6cUu6mJqL6qOzjzR51xqpumxdzFamO8r65FTx06OzujV69eSElJkZbp9XqkpKQY9BT9VWRkpEE8AOzevVuKDwoKgq+vr0GMTqdDenq6FBMZGYnCwkJkZmZKMampqdDr9YiIiJBifvnlF5SXlxu8TseOHdGiRYtqc6uoqMDx48cNCrzGiFfgEZEp3e/0IMceNZw5b8HWWIeVWHx6h5kzZ2L16tX46quvcOrUKTz//PMoLi7GpEmTAADjx4/HnDlzpPiXX34ZycnJ+PDDD3H69GksXLgQhw4dwvTp0wEACoUCM2bMwKJFi7Bt2zYcP34c48ePh5+fH+Li4gAAnTt3xuDBgzFlyhQcPHgQ+/fvx/Tp0zF69Gj4+fkBAJ5++mk4OzsjPj4eWVlZSEpKwj/+8Q+DU39vv/02du3ahd9//x2HDx/GM888gwsXLmDy5Mlmaj3rNap3a+ybPRAbpjyEfbMH2v0vFiKSR00HZ/6oazhzFquN9b66Fh+jNWrUKFy7dg3z58+HRqNBaGgokpOTpYHnFy9ehIPDn/VgVFQUvv32W8ydOxdvvPEGgoODsXXrVnTr1k2Kee2111BcXIypU6eisLAQffv2RXJyssFkouvXr8f06dMxaNAgODg44Mknn8SKFSuk9SqVCrt27cK0adPQq1cveHl5Yf78+QZzbd24cQNTpkyBRqNBixYt0KtXLxw4cABdunSRs8lsBmcTJ6KGqu30IO9q0TCVxeq9t2CTox0b67AS3uvQgqzpXodERPdjycHL9n4fUWthrvuZ2st9dXmvQ7Jpje2KFCJrZunBy+bscbE25vwuNNcZiMbYA8keLQtij1ZVlv5SJ6I/WVNvkhw9Ltb8o47fhdaNPVpkkzgnDpmbNR9orYE1TZ9g6h4Xay5k+F1oXyx+1SFRpcZ6RQpZBmcUN1TdzOC1XZFmq7OJW/s0A/wutC/s0SKr0VivSCHzs4ceA1P2xt2vd6em8VHW3CNUG2vqqasOvwvtCwstshqNedArmZe1H2hrY8oip7ais7rByw0tVC19ytbaCxl+F9oXFlpkVRrjFSlUd6Y6QFv7gbYmpu6Nq0vRee/4qIYUqtbQE2YLhQy/C+0HCy2yOpzolKpjygO0LRxo78fUvXH1KTrrW6ha0ylbWyhk+F1oH1hoEZHZGdszJccB2hYOtNUxdW9cfYrO+haq1nbKloUMmQMLLSIyq/r0TMl1gLbFA60cvXH1KTrrs40tn7Ilqi8WWkRkNvXtmeIB2pAcvXH1KTqN3caWT9kS1RcLLSIym/r2TPEAXZUt9sYBtnvKlqi+WGgRkdk0pGeKB2j7YatFIlF9cGZ4IjKbyp4pR8Xd6caN7ZlSq1wR2a4lD9JEZDPYo0VEZsWeKSJqTNijRWSHbOEedAKi9iAiIhvHHi0iO2MNM2/XxNrzIyIyJfZoEZmQpXuS7jd9grX0bFl7fkREpsYeLSITsYaeGmubefte1p4fEZGpsUeLyASspaemcvqEv7KmiT2tPT8iIlNjoUVkAjX11JhTQ6dPkJu150dk6yw9fIGq4qlDIhOwplvEWPv0CdaeHzUext7c3NpZw/AFqoqFFpEJWNstYqx95m1rz4/sn70VJfW9jyjJj4UWkYmwp4bINthjUcILTawXCy0iEzJ1T429ndogy+Ln6S57LEqsafgCGWKhRWSl7O3UBlmWuT9P1lzUWaIokbs9rG34Av1JIYTgfTAsRKfTQaVSQavVwt3d3dLpWA1r/oI2l1xtKfosTq1yINg3e2CjbZP64udJvs/T/drWFn4kJGVcrFKUyJWjOdsjV1tq9cMX7OFv0pjjN3u0yKrYwhe0OdjjqQ1L4OfpLjk+T/drW1sZ/2SuMZXmbg9rv9CkMf5Nch4tshrWMumnNeDEng3Hz9OfTP15qqltrWVOubpQq1wR2a6lrIWJLbWH3Brr3yQLLbIa/EL6Eyf2bDh+nv5k6s9TTW3LHwmG2B5/aqx/kzx1SFaDV80Y4nQRDcPPkyFTfp5qalsOyjbE9vhTY/2b5GB4C+Jg+KrMOUCV7B8/T/KprW1tYVC2ObE97rKXv0ljjt8stCyIhVb1TP2FZA9XuFD98QAnH7Yt1Yc9fG5YaNkIFlrya4xXuBARkbyMOX5zMDzZrcZ6hQsRkaXlaktx4Fw+v2/BwfBkxzgXFRGR+fFMgiH2aJHd4mXVZG78FU+NHc8kVMVCi+wW56Iic0rKuIg+i1Px9Op09FmciqSMi5ZOicjsGjpXlj3+WOGpQ7JrnIuKzMFWbjtjy3j1sG1oyFxZ9nrKkT1aZPfMcZsNatwa64zX5sLeQttR3zMJ9nzKkT1aREQN1FhnvDYH9hbanvqcSbDni5fYo0VE1EAcDygf9hbaJmPPJNjzxUvs0SIis7PH8TYcDygP9hY2DvZ8T0ir6NFauXIlAgMDoVQqERERgYMHD9YYv2nTJnTq1AlKpRIhISHYuXOnwXohBObPnw+1Wg1XV1fExMTg7NmzBjEFBQUYO3Ys3N3d4eHhgfj4eBQVFRnEHDt2DP369YNSqURAQACWLFlidC5EZMiex9twPKDpsbew8RjVuzX2zR6IDVMewr7ZA+1iIDwAQFjYxo0bhbOzs1izZo3IysoSU6ZMER4eHiIvL6/a+P379wtHR0exZMkScfLkSTF37lzRpEkTcfz4cSlm8eLFQqVSia1bt4rffvtNPPHEEyIoKEiUlpZKMYMHDxY9evQQv/76q/jPf/4j2rdvL8aMGSOt12q1wsfHR4wdO1acOHFCbNiwQbi6uorPPvvMqFxqotVqBQCh1WqNbTYim3SlsEQEzd4u2rz+56Pt7B3iSmFJg/e7P/tag/dD1utKYYk4kJ3P/8e14N+CeRhz/Lb4vQ4jIiLQu3dvfPLJJwAAvV6PgIAAvPjii5g9e3aV+FGjRqG4uBjbt2+Xlj300EMIDQ1FYmIihBDw8/PDrFmz8OqrrwIAtFotfHx8sG7dOowePRqnTp1Cly5dkJGRgbCwMABAcnIyhgwZgsuXL8PPzw+rVq3Cm2++CY1GA2dnZwDA7NmzsXXrVpw+fbpOudSG9zqkxubAuXw8vTq9yvINUx5CZLuW9dqnvV4STmQs/i2Yj83c6/D27dvIzMxETEyMtMzBwQExMTFIS0urdpu0tDSDeACIjY2V4nNycqDRaAxiVCoVIiIipJi0tDR4eHhIRRYAxMTEwMHBAenp6VJM//79pSKr8nXOnDmDGzdu1CmXe5WVlUGn0xk8iBoTUw94tedLwomMwb8F62XRQis/Px8VFRXw8fExWO7j4wONRlPtNhqNpsb4yn9ri/H29jZY7+TkBE9PT4OY6vbx19eoLZd7JSQkQKVSSY+AgIBq44jslanH2/CKNKK7+LdgvXjVoRnNmTMHM2fOlJ7rdDoWW9TomPLqPF6RRnQX/xasl0V7tLy8vODo6Ii8vDyD5Xl5efD19a12G19f3xrjK/+tLebq1asG6+/cuYOCggKDmOr28dfXqC2Xe7m4uMDd3d3gQdQYmerqPF6RRnQX/xasl0ULLWdnZ/Tq1QspKSnSMr1ej5SUFERGRla7TWRkpEE8AOzevVuKDwoKgq+vr0GMTqdDenq6FBMZGYnCwkJkZmZKMampqdDr9YiIiJBifvnlF5SXlxu8TseOHdGiRYs65UJE8rPbS8KJjMS/BSsl9yWQtdm4caNwcXER69atEydPnhRTp04VHh4eQqPRCCGEGDdunJg9e7YUv3//fuHk5CQ++OADcerUKbFgwYJqp3fw8PAQP/zwgzh27JgYPnx4tdM79OzZU6Snp4t9+/aJ4OBgg+kdCgsLhY+Pjxg3bpw4ceKE2Lhxo2jatGmV6R1qy6UmnN6BiIjI9hhz/LZ4oSWEEB9//LFo3bq1cHZ2FuHh4eLXX3+V1kVHR4sJEyYYxH/33XeiQ4cOwtnZWXTt2lXs2LHDYL1erxfz5s0TPj4+wsXFRQwaNEicOXPGIOb69etizJgxolmzZsLd3V1MmjRJ3Lx50yDmt99+E3379hUuLi7C399fLF68uEruteVSExZaREREtsem5tFqzDiPFhERke2xmXm0iIiIiOwZCy0iIiIimbDQIiIiIpIJCy0iIiIimbDQIiIiIpIJCy0iIiIimbDQIiIiIpIJCy0iIiIimbDQIiIiIpKJk6UTaMwqJ+XX6XQWzoSIiIjqqvK4XZeb67DQsqCbN28CAAICAiycCRERERnr5s2bUKlUNcbwXocWpNfrceXKFTRv3hwKhcLo7XU6HQICAnDp0qVGfa9EtsOf2BZ3sR3uYjv8iW1xF9vhroa2gxACN2/ehJ+fHxwcah6FxR4tC3JwcMADDzzQ4P24u7s36j+YSmyHP7Et7mI73MV2+BPb4i62w10NaYfaerIqcTA8ERERkUxYaBERERHJhIWWDXNxccGCBQvg4uJi6VQsiu3wJ7bFXWyHu9gOf2Jb3MV2uMuc7cDB8EREREQyYY8WERERkUxYaBERERHJhIUWERERkUxYaBERERHJhIWWlVu5ciUCAwOhVCoRERGBgwcP3jc2KysLTz75JAIDA6FQKLB8+XLzJSozY9ph9erV6NevH1q0aIEWLVogJiamxnhbY0xbbNmyBWFhYfDw8ICbmxtCQ0Px9ddfmzFb+RjTDn+1ceNGKBQKxMXFyZugmRjTDuvWrYNCoTB4KJVKM2YrL2M/E4WFhZg2bRrUajVcXFzQoUMH7Ny500zZyseYdhgwYECVz4RCocDQoUPNmLE8jP08LF++HB07doSrqysCAgLwyiuv4NatWw1PRJDV2rhxo3B2dhZr1qwRWVlZYsqUKcLDw0Pk5eVVG3/w4EHx6quvig0bNghfX1+xbNky8yYsE2Pb4emnnxYrV64UR44cEadOnRITJ04UKpVKXL582cyZm56xbbFnzx6xZcsWcfLkSZGdnS2WL18uHB0dRXJyspkzNy1j26FSTk6O8Pf3F/369RPDhw83T7IyMrYd1q5dK9zd3UVubq700Gg0Zs5aHsa2RVlZmQgLCxNDhgwR+/btEzk5OWLv3r3i6NGjZs7ctIxth+vXrxt8Hk6cOCEcHR3F2rVrzZu4iRnbDuvXrxcuLi5i/fr1IicnR/z0009CrVaLV155pcG5sNCyYuHh4WLatGnS84qKCuHn5ycSEhJq3bZNmzZ2U2g1pB2EEOLOnTuiefPm4quvvpIrRbNpaFsIIUTPnj3F3Llz5UjPbOrTDnfu3BFRUVHiiy++EBMmTLCLQsvYdli7dq1QqVRmys68jG2LVatWibZt24rbt2+bK0WzaOh3xLJly0Tz5s1FUVGRXCmahbHtMG3aNPHwww8bLJs5c6bo06dPg3PhqUMrdfv2bWRmZiImJkZa5uDggJiYGKSlpVkwM/MyRTuUlJSgvLwcnp6ecqVpFg1tCyEEUlJScObMGfTv31/OVGVV33Z4++234e3tjfj4eHOkKbv6tkNRURHatGmDgIAADB8+HFlZWeZIV1b1aYtt27YhMjIS06ZNg4+PD7p164b33nsPFRUV5krb5Ezxffnll19i9OjRcHNzkytN2dWnHaKiopCZmSmdXvz999+xc+dODBkypMH58KbSVio/Px8VFRXw8fExWO7j44PTp09bKCvzM0U7vP766/Dz8zP4o7NF9W0LrVYLf39/lJWVwdHREZ9++ikeeeQRudOVTX3aYd++ffjyyy9x9OhRM2RoHvVph44dO2LNmjXo3r07tFotPvjgA0RFRSErK8skN7i3lPq0xe+//47U1FSMHTsWO3fuRHZ2Nl544QWUl5djwYIF5kjb5Br6fXnw4EGcOHECX375pVwpmkV92uHpp59Gfn4++vbtCyEE7ty5g+eeew5vvPFGg/NhoUV2bfHixdi4cSP27t1rV4N+jdG8eXMcPXoURUVFSElJwcyZM9G2bVsMGDDA0qmZxc2bNzFu3DisXr0aXl5elk7HoiIjIxEZGSk9j4qKQufOnfHZZ5/hnXfesWBm5qfX6+Ht7Y3PP/8cjo6O6NWrF/744w8sXbrUZguthvryyy8REhKC8PBwS6didnv37sV7772HTz/9FBEREcjOzsbLL7+Md955B/PmzWvQvlloWSkvLy84OjoiLy/PYHleXh58fX0tlJX5NaQdPvjgAyxevBg///wzunfvLmeaZlHftnBwcED79u0BAKGhoTh16hQSEhJsttAyth3OnTuH8+fPY9iwYdIyvV4PAHBycsKZM2fQrl07eZOWgSm+I5o0aYKePXsiOztbjhTNpj5toVar0aRJEzg6OkrLOnfuDI1Gg9u3b8PZ2VnWnOXQkM9EcXExNm7ciLffflvOFM2iPu0wb948jBs3DpMnTwYAhISEoLi4GFOnTsWbb74JB4f6j7TiGC0r5ezsjF69eiElJUVaptfrkZKSYvCL1N7Vtx2WLFmCd955B8nJyQgLCzNHqrIz1WdCr9ejrKxMjhTNwth26NSpE44fP46jR49KjyeeeAIDBw7E0aNHERAQYM70TcYUn4eKigocP34carVarjTNoj5t0adPH2RnZ0tFNwD897//hVqttskiC2jYZ2LTpk0oKyvDM888I3easqtPO5SUlFQppiqLcNHQW0I3eDg9yWbjxo3CxcVFrFu3Tpw8eVJMnTpVeHh4SJdjjxs3TsyePVuKLysrE0eOHBFHjhwRarVavPrqq+LIkSPi7NmzlnoLJmFsOyxevFg4OzuL77//3uCy5Zs3b1rqLZiMsW3x3nvviV27dolz586JkydPig8++EA4OTmJ1atXW+otmISx7XAve7nq0Nh2eOutt8RPP/0kzp07JzIzM8Xo0aOFUqkUWVlZlnoLJmNsW1y8eFE0b95cTJ8+XZw5c0Zs375deHt7i0WLFlnqLZhEff82+vbtK0aNGmXudGVjbDssWLBANG/eXGzYsEH8/vvvYteuXaJdu3biqaeeanAuLLSs3Mcffyxat24tnJ2dRXh4uPj111+lddHR0WLChAnS85ycHAGgyiM6Otr8iZuYMe3Qpk2batthwYIF5k9cBsa0xZtvvinat28vlEqlaNGihYiMjBQbN260QNamZ0w73MteCi0hjGuHGTNmSLE+Pj5iyJAh4vDhwxbIWh7GfiYOHDggIiIihIuLi2jbtq149913xZ07d8yctekZ2w6nT58WAMSuXbvMnKm8jGmH8vJysXDhQtGuXTuhVCpFQECAeOGFF8SNGzcanIdCiIb2iRERERFRdThGi4iIiEgmLLSIiIiIZMJCi4iIiEgmLLSIiIiIZMJCi4iIiEgmLLSIiIiIZMJCi4iIiEgmLLSIiBqJiRMnIi4uztJpEDUqLLSIyOImTpwIhUIhPVq2bInBgwfj2LFjlk7NJP763iofffv2le31zp8/D4VCgaNHjxos/8c//oF169bJ9rpEVBULLSKyCoMHD0Zubi5yc3ORkpICJycnPP7445ZOy2TWrl0rvb/c3Fxs27at2rjy8nLZclCpVPDw8JBt/0RUFQstIrIKLi4u8PX1ha+vL0JDQzF79mxcunQJ165dw8MPP4zp06cbxF+7dg3Ozs5ISUkBAAQGBuKdd97BmDFj4ObmBn9/f6xcudJgm48++gghISFwc3NDQEAAXnjhBRQVFUnrL1y4gGHDhqFFixZwc3ND165dsXPnTgDAjRs3MHbsWLRq1Qqurq4IDg7G2rVr6/z+PDw8pPfn6+sLT09PqecpKSkJ0dHRUCqVWL9+Pa5fv44xY8bA398fTZs2RUhICDZs2GCwP71ejyVLlqB9+/ZwcXFB69at8e677wIAgoKCAAA9e/aEQqHAgAEDAFQ9dVhWVoaXXnoJ3t7eUCqV6Nu3LzIyMqT1e/fuhUKhQEpKCsLCwtC0aVNERUXhzJkzdX7fRI0dCy0isjpFRUX45ptv0L59e7Rs2RKTJ0/Gt99+i7KyMinmm2++gb+/Px5++GFp2dKlS9GjRw8cOXIEs2fPxssvv4zdu3dL6x0cHLBixQpkZWXhq6++QmpqKl577TVp/bRp01BWVoZffvkFx48fx/vvv49mzZoBAObNm4eTJ0/ixx9/xKlTp7Bq1Sp4eXmZ5P1W5nrq1CnExsbi1q1b6NWrF3bs2IETJ05g6tSpGDduHA4ePChtM2fOHCxevFjK69tvv4WPjw8ASHE///wzcnNzsWXLlmpf97XXXsPmzZvx1Vdf4fDhw2jfvj1iY2NRUFBgEPfmm2/iww8/xKFDh+Dk5IS//e1vJnnfRI1Cg29LTUTUQBMmTBCOjo7Czc1NuLm5CQBCrVaLzMxMIYQQpaWlokWLFiIpKUnapnv37mLhwoXS8zZt2ojBgwcb7HfUqFHiscceu+/rbtq0SbRs2VJ6HhISYrDPvxo2bJiYNGlSvd4fAKFUKqX35+bmJv75z3+KnJwcAUAsX7681n0MHTpUzJo1SwghhE6nEy4uLmL16tXVxlbu98iRIwbLJ0yYIIYPHy6EEKKoqEg0adJErF+/Xlp/+/Zt4efnJ5YsWSKEEGLPnj0CgPj555+lmB07dggAorS01JgmIGq02KNFRFZh4MCBOHr0KI4ePYqDBw8iNjYWjz32GC5cuAClUolx48ZhzZo1AIDDhw/jxIkTmDhxosE+IiMjqzw/deqU9Pznn3/GoEGD4O/vj+bNm2PcuHG4fv06SkpKAAAvvfQSFi1ahD59+mDBggUGg/Gff/55bNy4EaGhoXjttddw4MABo97fsmXLpPd39OhRPPLII9K6sLAwg9iKigq88847CAkJgaenJ5o1a4affvoJFy9eBACcOnUKZWVlGDRokFE5/NW5c+dQXl6OPn36SMuaNGmC8PBwgzYDgO7du0v/rVarAQBXr16t92sTNSYstIjIKri5uaF9+/Zo3749evfujS+++ALFxcVYvXo1AGDy5MnYvXs3Ll++jLVr1+Lhhx9GmzZt6rz/8+fP4/HHH0f37t2xefNmZGZmSmO4bt++Lb3G77//jnHjxuH48eMICwvDxx9/DABS0ffKK6/gypUrGDRoEF599dU6v76vr6/0/tq3bw83NzeD9/5XS5cuxT/+8Q+8/vrr2LNnD44ePYrY2FgpT1dX1zq/rik0adJE+m+FQgHg7hgxIqodCy0iskoKhQIODg4oLS0FAISEhCAsLAyrV6/Gt99+W+04oV9//bXK886dOwMAMjMzodfr8eGHH+Khhx5Chw4dcOXKlSr7CAgIwHPPPYctW7Zg1qxZUqEHAK1atcKECRPwzTffYPny5fj8889N+ZYl+/fvx/Dhw/HMM8+gR48eaNu2Lf773/9K64ODg+Hq6ipdCHAvZ2dnAHd7xu6nXbt2cHZ2xv79+6Vl5eXlyMjIQJcuXUz0TojIydIJEBEBd6+A02g0AO5e4ffJJ5+gqKgIw4YNk2ImT56M6dOnw83NDSNGjKiyj/3792PJkiWIi4vD7t27sWnTJuzYsQMA0L59e5SXl+Pjjz/GsGHDsH//fiQmJhpsP2PGDDz22GPo0KEDbty4gT179kiF2vz589GrVy907doVZWVl2L59u7TO1IKDg/H999/jwIEDaNGiBT766CPk5eVJBZBSqcTrr7+O1157Dc7OzujTpw+uXbuGrKwsxMfHw9vbG66urkhOTsYDDzwApVIJlUpl8Bpubm54/vnn8fe//x2enp5o3bo1lixZgpKSEsTHx8vyvogaI/ZoEZFVSE5OhlqthlqtRkREBDIyMrBp0yZpagIAGDNmDJycnDBmzBgolcoq+5g1axYOHTqEnj17YtGiRfjoo48QGxsLAOjRowc++ugjvP/+++jWrRvWr1+PhIQEg+0rKiowbdo0dO7cGYMHD0aHDh3w6aefArjbSzRnzhx0794d/fv3h6OjIzZu3ChLW8ydOxcPPvggYmNjMWDAAPj6+laZ0X3evHmYNWsW5s+fj86dO2PUqFHSuCknJyesWLECn332Gfz8/DB8+PBqX2fx4sV48sknMW7cODz44IPIzs7GTz/9hBYtWsjyvogaI4UQQlg6CSKiujh//jzatWuHjIwMPPjggwbrAgMDMWPGDMyYMcMyyRERVYOnDonI6pWXl+P69euYO3cuHnrooSpFFhGRteKpQyKyevv374darUZGRkaVcVWW9t5776FZs2bVPh577DFLp0dEFsZTh0REDVBQUFBlJvVKrq6u8Pf3N3NGRGRNWGgRERERyYSnDomIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCb/HwKaur4LmXGBAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQk9JREFUeJzt3Xl8U1X+//F32tKFUsrSFgoUyqooZZFNFlmUEQGRZUYREUFFR4FB3EFFRIGCCzI6iIoKjKgwKswwyiCyjV+p/kCgIyCgQCsoZaliSmkppT2/P5hmrF1o2iw3yev5eOShvbm5+dxLcvPOOeee2IwxRgAAABYU5O0CAAAAykJQAQAAlkVQAQAAlkVQAQAAlkVQAQAAlkVQAQAAlkVQAQAAlkVQAQAAlkVQAQAAlkVQAVBlTz31lGw2W4XWtdlseuqpp9xaT58+fdSnTx/Lbg9AxRFUAD+yZMkS2Ww2xy0kJEQNGzbU2LFj9eOPP3q7PMtJTEwsdrzi4uJ01VVXadWqVS7Zfk5Ojp566ilt3rzZJdsDAhFBBfBDTz/9tN5++229+uqrGjBggJYtW6bevXvr7Nmzbnm+J554Qrm5uW7Ztru1b99eb7/9tt5++2099NBDOnr0qIYPH65XX321ytvOycnRjBkzCCpAFYR4uwAArjdgwAB16tRJkjRu3DjFxMRo7ty5Wr16tW666SaXP19ISIhCQnzzdNKwYUPdeuutjr9vu+02tWjRQi+++KLuueceL1YGQKJFBQgIV111lSTp4MGDxZbv27dPf/jDH1SnTh2Fh4erU6dOWr16dbF18vPzNWPGDLVs2VLh4eGqW7euevbsqU8//dSxTmljVPLy8nT//fcrNjZWUVFRuuGGG/TDDz+UqG3s2LFKTEwssby0bS5evFhXX3214uLiFBYWpssuu0wLFy506lhcTP369dW6dWulpaWVu96JEyd05513ql69egoPD1e7du20dOlSx/3p6emKjY2VJM2YMcPRveTu8TmAv/HNr0AAnJKeni5Jql27tmPZnj171KNHDzVs2FBTpkxRZGSk/va3v2no0KH68MMPNWzYMEkXAkNycrLGjRunLl26KCsrS1999ZV27Nih3/3ud2U+57hx47Rs2TLdcsst6t69uzZu3KhBgwZVaT8WLlyoyy+/XDfccINCQkL0z3/+U+PHj1dhYaEmTJhQpW0Xyc/P15EjR1S3bt0y18nNzVWfPn104MABTZw4UU2bNtX777+vsWPH6pdfftF9992n2NhYLVy4UPfee6+GDRum4cOHS5Latm3rkjqBgGEA+I3FixcbSWb9+vXm5MmT5siRI+aDDz4wsbGxJiwszBw5csSx7jXXXGOSkpLM2bNnHcsKCwtN9+7dTcuWLR3L2rVrZwYNGlTu806fPt38+nSSmppqJJnx48cXW++WW24xksz06dMdy8aMGWOaNGly0W0aY0xOTk6J9fr372+aNWtWbFnv3r1N7969y63ZGGOaNGlirr32WnPy5Elz8uRJ85///MfcfPPNRpL505/+VOb25s+fbySZZcuWOZadO3fOdOvWzdSoUcNkZWUZY4w5efJkif0F4By6fgA/1K9fP8XGxiohIUF/+MMfFBkZqdWrV6tRo0aSpJ9//lkbN27UTTfdpNOnTyszM1OZmZn66aef1L9/f3333XeOq4Rq1aqlPXv26Lvvvqvw869Zs0aSNGnSpGLLJ0+eXKX9ioiIcPy/3W5XZmamevfurUOHDslut1dqm+vWrVNsbKxiY2PVrl07vf/++xo9erTmzp1b5mPWrFmj+vXra+TIkY5l1apV06RJk5Sdna1///vflaoFQEl+E1Q+++wzDR48WA0aNJDNZtPf//53tz5fUf/5r2+XXnqpW58TqKgFCxbo008/1QcffKCBAwcqMzNTYWFhjvsPHDggY4ymTZvm+JAuuk2fPl3ShTEY0oUriH755Re1atVKSUlJevjhh/X111+X+/zff/+9goKC1Lx582LLL7nkkirt15YtW9SvXz9FRkaqVq1aio2N1WOPPSZJlQ4qXbt21aeffqr169crJSVFmZmZ+utf/1osFP3W999/r5YtWyooqPgptHXr1o77AbiG34xROXPmjNq1a6c77rjD0RfsbpdffrnWr1/v+NtXr3qA/+nSpYvjqp+hQ4eqZ8+euuWWW7R//37VqFFDhYWFkqSHHnpI/fv3L3UbLVq0kCT16tVLBw8e1D/+8Q+tW7dOb7zxhl588UW9+uqrGjduXJVrLWuiuIKCgmJ/Hzx4UNdcc40uvfRSzZs3TwkJCQoNDdWaNWv04osvOvbJWTExMerXr1+lHgvA/fzmk3XAgAEaMGBAmffn5eXp8ccf13vvvadffvlFbdq00dy5c6s022RISIjq169f6ccDnhAcHKzk5GT17dtXf/nLXzRlyhQ1a9ZM0oXuiop8SNepU0e33367br/9dmVnZ6tXr1566qmnygwqTZo0UWFhoQ4ePFisFWX//v0l1q1du7Z++eWXEst/2yrxz3/+U3l5eVq9erUaN27sWL5p06aL1u9qTZo00ddff63CwsJirSr79u1z3C+VHcIAVJzfdP1czMSJE/XFF19o+fLl+vrrr3XjjTfquuuuc6rf/be+++47NWjQQM2aNdOoUaN0+PBhF1YMuE6fPn3UpUsXzZ8/X2fPnlVcXJz69Omj1157TRkZGSXWP3nypOP/f/rpp2L31ahRQy1atFBeXl6Zz1f0peGll14qtnz+/Pkl1m3evLnsdnux7qSMjIwSs8MGBwdLkowxjmV2u12LFy8usw53GThwoI4dO6YVK1Y4lp0/f14vv/yyatSood69e0uSqlevLkmlBjEAFeM3LSrlOXz4sBYvXqzDhw+rQYMGki40ea9du1aLFy/W7Nmznd5m165dtWTJEl1yySXKyMjQjBkzdNVVV2n37t2Kiopy9S4AVfbwww/rxhtv1JIlS3TPPfdowYIF6tmzp5KSknTXXXepWbNmOn78uL744gv98MMP+s9//iNJuuyyy9SnTx917NhRderU0VdffaUPPvhAEydOLPO52rdvr5EjR+qVV16R3W5X9+7dtWHDBh04cKDEujfffLMeffRRDRs2TJMmTVJOTo4WLlyoVq1aaceOHY71rr32WoWGhmrw4MH64x//qOzsbC1atEhxcXGlhi13uvvuu/Xaa69p7Nix2r59uxITE/XBBx9oy5Ytmj9/vuMcEBERocsuu0wrVqxQq1atVKdOHbVp00Zt2rTxaL2AT/P2ZUfuIMmsWrXK8fdHH31kJJnIyMhit5CQEHPTTTcZY4zZu3evkVTu7dFHHy3zOU+dOmVq1qxp3njjDXfvHlCmosuTt23bVuK+goIC07x5c9O8eXNz/vx5Y4wxBw8eNLfddpupX7++qVatmmnYsKG5/vrrzQcffOB43MyZM02XLl1MrVq1TEREhLn00kvNrFmzzLlz5xzrlHYpcW5urpk0aZKpW7euiYyMNIMHDzZHjhwp9XLddevWmTZt2pjQ0FBzySWXmGXLlpW6zdWrV5u2bdua8PBwk5iYaObOnWveeustI8mkpaU51nPm8uSLXXpd1vaOHz9ubr/9dhMTE2NCQ0NNUlKSWbx4cYnHpqSkmI4dO5rQ0FAuVQYqwWbMr9pR/YTNZtOqVas0dOhQSdKKFSs0atQo7dmzx9F8XKRGjRqqX7++zp07p0OHDpW73bp16zpmmixN586d1a9fPyUnJ1d5HwAAQIB0/XTo0EEFBQU6ceKEYyrx3woNDa3S5cXZ2dk6ePCgRo8eXeltAACA4vwmqGRnZxfr/05LS1Nqaqrq1KmjVq1aadSoUbrtttv0wgsvqEOHDjp58qQ2bNigtm3bVmpa74ceekiDBw9WkyZNdPToUU2fPl3BwcHFJoACAABV4zddP5s3b1bfvn1LLB8zZoyWLFmi/Px8zZw5U3/961/1448/KiYmRldeeaVmzJihpKQkp5/v5ptv1meffaaffvpJsbGx6tmzp2bNmlVigisAAFB5fhNUAACA/wmYeVQAAIDvIagAAADL8unBtIWFhTp69KiioqKYqhoAAB9hjNHp06fVoEGDEj/u+Vs+HVSOHj2qhIQEb5cBAAAq4ciRI2rUqFG56/h0UCmapvrIkSOqWbOml6sBAAAVkZWVpYSEhAr95IxPB5Wi7p6aNWsSVAAA8DEVGbbBYFoAAGBZBBUAAGBZBBUAAGBZPj1GpaIKCgqUn5/v7TL8RrVq1Ur8CjUAAO7g10HFGKNjx47pl19+8XYpfqdWrVqqX78+89cAANzKr4NKUUiJi4tT9erV+VB1AWOMcnJydOLECUlSfHy8lysCAPgzvw0qBQUFjpBSt25db5fjVyIiIiRJJ06cUFxcHN1AAAC38dvBtEVjUqpXr+7lSvxT0XFl7A8AwJ38NqgUobvHPTiuAABP8PugAgAAfBdBBQAAWBZBxaKOHTumP/3pT2rWrJnCwsKUkJCgwYMHa8OGDZKkP/7xj2revLkiIiIUGxurIUOGaN++fY7Hp6eny2azKTU1tcS2+/Tpo8mTJzv+zs7O1sSJE9WoUSNFRETosssu06uvvuruXQQAWFyGPVcpBzOVYc/1Wg1+e9WPL0tPT1ePHj1Uq1YtPffcc0pKSlJ+fr4++eQTTZgwQfv27VPHjh01atQoNW7cWD///LOeeuopXXvttUpLS3P6KpwHHnhAGzdu1LJly5SYmKh169Zp/PjxatCggW644QY37SUAwMpWbDusqSt3qdBIQTYpeXiSRnRu7PE6CCoWNH78eNlsNm3dulWRkZGO5ZdffrnuuOMOSdLdd9/tWJ6YmKiZM2eqXbt2Sk9PV/PmzZ16vpSUFI0ZM0Z9+vRxbPu1117T1q1bCSoAEIAy7LmOkCJJhUZ6bOVu9WoVq/joCI/WQtdPBXmq+evnn3/W2rVrNWHChGIhpUitWrVKLDtz5owWL16spk2bKiEhwenn7N69u1avXq0ff/xRxhht2rRJ3377ra699trK7AIAwMelZZ5xhJQiBcYoPTPH47XQolIBnmz+OnDggIwxuvTSSy+67iuvvKJHHnlEZ86c0SWXXKJPP/1UoaGhxdbp3r27goKK59Hc3Fy1b9/e8ffLL7+su+++W40aNVJISIiCgoK0aNEi9erVyyX7BADwLU1jIhVkU7GwEmyzKTHG83OT0aJyEWU1f7mrZcUYc/GV/mvUqFHauXOn/v3vf6tVq1a66aabdPbs2WLrrFixQqmpqcVunTp1KrbOyy+/rC+//FKrV6/W9u3b9cILL2jChAlav369S/YJAOBb4qMjlDw8ScH/nTMr2GbT7OFtPN7tI9GiclHlNX+54x+sZcuWstlsxa7gKUt0dLSio6PVsmVLXXnllapdu7ZWrVqlkSNHOtZJSEhQixYtij2uaAp86ULrymOPPaZVq1Zp0KBBkqS2bdsqNTVVzz//vPr16+eiPQMA+JIRnRurV6tYpWfmKDGmuldCikSLykUVNX/9mjubv+rUqaP+/ftrwYIFOnPmTIn7y/olaGOMjDHKy8tz6vny8/OVn59fonsoODhYhYWFTm0LAOBf4qMj1K15Xa+FFImgclHeaP5asGCBCgoK1KVLF3344Yf67rvvtHfvXr300kvq1q2bDh06pOTkZG3fvl2HDx9WSkqKbrzxRkVERGjgwIFOPVfNmjXVu3dvPfzww9q8ebPS0tK0ZMkS/fWvf9WwYcPctIcAAFQMXT8V4Onmr2bNmmnHjh2aNWuWHnzwQWVkZCg2NlYdO3bUwoULFR4erv/7v//T/PnzderUKdWrV0+9evVSSkqK4uLinH6+5cuXa+rUqRo1apR+/vlnNWnSRLNmzdI999zjhr0DAKDibMaZ0ZsWk5WVpejoaNntdtWsWbPYfWfPnlVaWpqaNm2q8PBwL1Xovzi+AIDKKu/z+7fo+gEAAJZFUAEAAJZFUAEAAJZFUAEAAJbl90HFh8cKWxrHFQDgCX4bVKpVqyZJysnx/A8oBYKi41p0nAEAcAe/nUclODhYtWrV0okTJyRJ1atXl81mu8ijcDHGGOXk5OjEiROqVauWgoODvV0SAMCP+W1QkaT69etLkiOswHVq1arlOL4AALiLXwcVm82m+Ph4xcXFKT8/39vl+I1q1arRkgIA8Ai/DipFgoOD+WAFAMAHeXUwbUFBgaZNm6amTZsqIiJCzZs31zPPPMMVJQAAQJKXW1Tmzp2rhQsXaunSpbr88sv11Vdf6fbbb1d0dLQmTZrkzdIAAIAFeDWopKSkaMiQIRo0aJAkKTExUe+99562bt3qzbIAAIBFeLXrp3v37tqwYYO+/fZbSdJ//vMfff755xowYECp6+fl5SkrK6vYDQAA+C+vtqhMmTJFWVlZuvTSSxUcHKyCggLNmjVLo0aNKnX95ORkzZgxw8NVAgAAb/Fqi8rf/vY3vfPOO3r33Xe1Y8cOLV26VM8//7yWLl1a6vpTp06V3W533I4cOeLhigEAgCfZjBcvsUlISNCUKVM0YcIEx7KZM2dq2bJl2rdv30Ufn5WVpejoaNntdtWsWdOdpQIAABdx5vPbqy0qOTk5CgoqXkJwcLAKCwu9VBEAALASr45RGTx4sGbNmqXGjRvr8ssv186dOzVv3jzdcccd3iwLAABYhFe7fk6fPq1p06Zp1apVOnHihBo0aKCRI0fqySefVGho6EUfT9cPAAC+x5nPb68GlaoiqAAA4Ht8ZowKAABAeQgqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAADAsggqAAAEsAx7rlIOZirDnuvtUkoV4u0CAACAd6zYdlhTV+5SoZGCbFLy8CSN6NzY22UVQ4sKAAABKMOe6wgpklRopMdW7rZcywpBBQCAAJSWecYRUooUGKP0zBzvFFQGggoAAAGoaUykgmzFlwXbbEqMqe6dgspAUAEAIADFR0coeXiSgm0X0kqwzabZw9soPjrCy5UVx2BaAAAC1IjOjdWrVazSM3OUGFPdciFFIqgAABDQ4qMjLBlQitD1AwAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALMvrQeXHH3/Urbfeqrp16yoiIkJJSUn66quvvF0WAACwAK/+1s+pU6fUo0cP9e3bV//6178UGxur7777TrVr1/ZmWQAAwCK8GlTmzp2rhIQELV682LGsadOmXqwIAABYiVe7flavXq1OnTrpxhtvVFxcnDp06KBFixaVuX5eXp6ysrKK3QAAgP/yalA5dOiQFi5cqJYtW+qTTz7Rvffeq0mTJmnp0qWlrp+cnKzo6GjHLSEhwcMVAwAAT7IZY4y3njw0NFSdOnVSSkqKY9mkSZO0bds2ffHFFyXWz8vLU15enuPvrKwsJSQkyG63q2bNmh6pGQCAQJFhz1Va5hk1jYlUfHSEy7ablZWl6OjoCn1+e3WMSnx8vC677LJiy1q3bq0PP/yw1PXDwsIUFhbmidIAAAhoK7Yd1tSVu1RopCCblDw8SSM6N/Z4HV7t+unRo4f2799fbNm3336rJk2aeKkiAACQYc91hBRJKjTSYyt3K8Oe6/FavBpU7r//fn355ZeaPXu2Dhw4oHfffVevv/66JkyY4M2yAAAIaGmZZxwhpUiBMUrPzPF4LV4NKp07d9aqVav03nvvqU2bNnrmmWc0f/58jRo1yptlAQAQ0JrGRCrIVnxZsM2mxJjqHq/Fq4Npq8qZwTgAAKDiVmw7rMdW7laBMQq22TR7eBuXjVHxmcG0AADAmkZ0bqxerWKVnpmjxJjqLr3qxxkEFQAAUKr46AivBZQiXv9RQgAAgLIQVAAAgGURVAAAgGURVAAACGAZ9lylHMz0ymRuFcFgWgAAApRVpskvDy0qAAAEICtNk18eggoAAAHIStPkl4egAgBAALLSNPnlIagAABCA4qMjlDw8ScG2C2mlaJp8b0/w9lsMpgUAIEBZZZr88hBUAAAIYFaYJr88dP0AAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAABDAMuy5SjmYqQx7rrdLKVWItwsAAADesWLbYU1duUuFRgqyScnDkzSic2Nvl1UMLSoAAASgDHuuI6RIUqGRHlu523ItKwQVAAACUFrmGUdIKVJgjNIzc7xTUBkIKgAABKCmMZEKshVfFmyzKTGmuncKKgNBBQCAABQfHaHk4UkKtl1IK8E2m2YPb6P46AgvV1Ycg2kBAAhQIzo3Vq9WsUrPzFFiTHXLhRSJoAIAQECLj46wZEApQtcPAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLKeDykcffaQnn3xSW7ZskSRt3LhRAwcO1HXXXafXX3/d5QUCAIDA5VRQee211zRs2DCtWbNGAwcO1LJlyzR06FA1bNhQiYmJmjx5sv785z+7q1YAABBgnJpH5aWXXtIrr7yiu+66S5s2bdLAgQP1wgsvaPz48ZKkK6+8Us8++6zuu+8+txQLAAACi1MtKmlpaerfv78kqW/fviooKFCvXr0c9/fp00fff/+9aysEAAABy6mgUrduXUcQOXr0qM6fP6/Dhw877v/+++9Vp04d11YIAAACllNdP0OGDNGdd96pMWPGaPXq1brtttv04IMPKigoSDabTQ8//LCuvfZad9UKAAACjFNBZe7cuTp37pyWL1+u7t276+WXX9ZLL72kIUOGKD8/X71791ZycrK7agUAAAHGZowxVd3I2bNnlZ+fr6ioKFfUVGFZWVmKjo6W3W5XzZo1PfrcAACgcpz5/HbJryeHh4crPDzcFZsCAABwcCqoPPDAAxVab968eZUqBgAA4NecCio7d+4s9vfnn3+ujh07KiIiwrHMZrO5pjIAABDwnAoqmzZtKvZ3VFSU3n33XTVr1sylRQEAAEj8KCEAALAwggoAALAsggoAALAsp8aofP3118X+NsZo3759ys7OLra8bdu2Va8MAAAEPKcmfCuaKr+0hxQtt9lsKigocGmRZWHCNwAAfI/bJnxLS0urUmEAAADOcCqoNGnSxF11AHCRDHuu0jLPqGlMpOKjIy7+AACwMKen0DfGKD09XQkJCQoJCdG5c+e0atUq5eXlaeDAgYqJiXFHnQAqYMW2w5q6cpcKjRRkk5KHJ2lE58beLgsAKs2poLJ//371799fR44cUbNmzbRu3TrdeOON2rdvn4wxql69ulJSUtSyZUt31QugDBn2XEdIkaRCIz22crd6tYqlZQWAz3Lq8uRHH31U7dq1U2pqqq6//noNGjRIjRo10qlTp/Tzzz+rW7duevrpp91VK4BypGWecYSUIgXGKD0zxzsFAYALOBVUUlJSNGPGDCUlJWnmzJnat2+fHnroIVWrVk1hYWGaMmWKPvvsM3fVCqAcTWMiFfSbn9oKttmUGFPdOwUBgAs4FVSys7NVp04dSVJkZKQiIyMVHx/vuD8hIUHHjx+vVCFz5syRzWbT5MmTK/V4INDFR0coeXiSgv/7w6DBNptmD29Dtw8An+bUGJUGDRro8OHDatz4wuC8Z599VnFxcY77T548qdq1aztdxLZt2/Taa68xURxQRSM6N1avVrFKz8xRYkx1QgoAn+dUi0q/fv20b98+x9/33nuvoqKiHH+vW7dOV1xxhVMFZGdna9SoUVq0aFGlQg6A4uKjI9SteV1CCgC/4NTMtBeTnp6usLCwYt1BFzNmzBjVqVNHL774ovr06aP27dtr/vz5pa6bl5envLw8x99ZWVlKSEhgZloAAHyIMzPTOtWisnHjRl122WXKysoqcZ/dbtegQYN04MCBCm9v+fLl2rFjh5KTkyu0fnJysqKjox23hISECj8XAADwPU4Flfnz5+uuu+4qNf1ER0frj3/8o+bNm1ehbR05ckT33Xef3nnnHYWHh1foMVOnTpXdbnfcjhw54kz5AADAxzjV9dOkSROtXbtWrVu3LvX+ffv26dprr9Xhw4cvuq2///3vGjZsmIKDgx3LCgoKZLPZFBQUpLy8vGL3lYYfJQQAwPe47UcJjx8/rmrVqpW9sZAQnTx5skLbuuaaa7Rr165iy26//XZdeumlevTRRy8aUgAAgP9zKqg0bNhQu3fvVosWLUq9/+uvv67wQNqoqCi1adOm2LLIyEjVrVu3xHIAABCYnBqjMnDgQE2bNk1nz54tcV9ubq6mT5+u66+/3mXFAQCAwObUGJXjx4/riiuuUHBwsCZOnKhLLrlE0oWxKQsWLFBBQYF27NihevXqua3gX2OMCgAAvsdtY1Tq1aunlJQU3XvvvZo6daqKMo7NZlP//v21YMECj4UUAADg/5wKKtKFK3/WrFmjU6dO6cCBAzLGqGXLlswqCwAAXM7poFKkdu3a6ty5sytrAQAAKMapwbQAAACeRFABAACWRVABAACWRVABEJAy7LlKOZipDHuut0sBUI5KD6YFAF+1YtthTV25S4VGCrJJycOTNKJzY2+XBaAUtKgACCgZ9lxHSJGkQiM9tnI3LSuARRFUAASUtMwzjpBSpMAYpWfmeKcgAOUiqAAIKE1jIhVkK74s2GZTYkx17xQEoFwEFQABJT46QsnDkxRsu5BWgm02zR7eRvHREV6uDEBpGEwLeECGPVdpmWfUNCaSD0QLGNG5sXq1ilV6Zo4SY6rzbwJYGEEFcDOuMLGm+OgIAgrgA+j6AdyIK0wAoGoIKoAbcYUJAFQNQQVwI64wAYCqIagAbsQVJgBQNQymBdyMK0wAoPIIKoAHcIUJAFQOXT8AAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAfFqGPVcpBzOVYc/1dikA3CDE2wUAQGWt2HZYU1fuUqGRgmxS8vAkjejc2NtlAXAhWlQA+KQMe64jpEhSoZEeW7mblhXAzxBUAPiktMwzjpBSpMAYpWfmeKcgAG5BUAHgk5rGRCrIVnxZsM2mxJjq3ikIgFsQVAD4pPjoCCUPT1Kw7UJaCbbZNHt4G8VHR3i5MgCuxGBaAD5rROfG6tUqVumZOUqMqU5IAfwQQQWAT4uPjiCgAH6Mrh8AAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAP4rw56rlIOZ/LilhTDhGwAAklZsO+z4Re4gm5Q8PEkjOjeu0GMz7LlKyzyjpjGRTEDoYgQVAEDAy7DnOkKKJBUa6bGVu9WrVexFg0dVAg4ujq4fAEDAS8s84wgpRQqMUXpmTrmPKyvg0HXkOgQVAEDAaxoTqSBb8WXBNpsSY6qX+7jKBhxUHEEFABDw4qMjlDw8ScG2C2kl2GbT7OFtLtrtU9mAg4pjjAoAAJJGdG6sXq1ilZ6Zo8SY6iVCSmkDZosCzmMrd6vAmAoHHFQcQQUAgP+Kj44oNWSUN2D2YgEHVUPXDwAA5ajIgNn46Ah1a16XkOIGBJUyMOkPAEBiwKy30fVTCq6JBwAUKRow++uwwoBZz6FF5Te4Jr4kWpcABLLKXhEE16BF5TfKa+KLj44IuGmSaV0CAAbMehNB5TfKa+ILtA/tqkwpDQD+pqwrguBedP38RlETX9EEPkE2afbwNpIUcF1CDCADAHgbQaUMxhT/byB+aDPjIgDA27waVJKTk9W5c2dFRUUpLi5OQ4cO1f79+71ZkqO7oyiTGF1oOYkMDQ64D20GkAEAvM2rY1T+/e9/a8KECercubPOnz+vxx57TNdee62++eYbRUZGeqWmslpOcs4VBuQ0yb4wgCzQBjgDgYb3eGDzalBZu3Ztsb+XLFmiuLg4bd++Xb169fJKTU1jImWT9OusYpOUGFNd3ZrXtfyHtjtYeQBZoA1wBgIN73FYaoyK3W6XJNWpU8fLlfzGr7p8mCbZOpjzBvBvvMchWSioFBYWavLkyerRo4fatGlT6jp5eXnKysoqdnO1tMwz+k3Pj4yRXw+a9VWBOMAZCCS8xyFZKKhMmDBBu3fv1vLly8tcJzk5WdHR0Y5bQkKCy+tw15UuzO7qelyVBPg33uOQLBJUJk6cqI8++kibNm1So0aNylxv6tSpstvtjtuRI0dcXos7rnRZse2weszZqFsW/T/1mLNRK7YddlW5AY2rkgD/xnsckmQzxvy2p8NjjDH605/+pFWrVmnz5s1q2bKlU4/PyspSdHS07Ha7atas6dLaMuy5Lhk0m2HPVY85G0vMdPv5lL682VzEVf9WAKypsu9xrhayLmc+v7161c+ECRP07rvv6h//+IeioqJ07NgxSVJ0dLQiIrz7onLVlS4X++0gVJ2Vr0oCUHWVeY9ztZD/8GrXz8KFC2W329WnTx/Fx8c7bitWrPBmWS5FHytQcYzlgitwtZB/8WqLihd7ndyitGbGoj7WQJsoDnAW34DhKrRk+xd+PdlFyjvJ+sLsroA38UvdcKWiluzfjg2sSEs241qsxxJX/fi6ijQz+utEcTTVwxWYLwOuVNmrhS52hSbnO++gRcUFArWZkaZ6uEpVvgHDf1SmNaOsxzjbkn2xVj3Od95DUHGBQDzJ0lQPV2IsFyoTBC72GGeuFrpYqx7nO+8hqLhAIJ5kA7UVCe7DWK7AVZkvPq7+slTeF07Od95FUHGRQDvJBmIrEtyPOXECU2WCgKvDw8W+cHK+8x6CigsF0kk2EFuRALhHZb74uOPLUllfODnfeZdXp9CvKndOoY+KYfp6AK6wYtvhEkGgImNUnH1MVXC+cx1nPr8JKgAAS6hMECA8+Caf+a0fAIBvcsfEaGV1n5f3XIHU5R6oCCoAAKd4ck4R5i8BM9MCACrMkz/4x48LQiKoAACc4MmfO/DGTytUdpp8ptd3H7p+AAAV5sk5lDw9X1Nlu5nonnIvWlQAABVW2R/8s/pzVbabie4p96NFBQDgFE/OxO2p56rsTLdMr+9+BBU/5I7LBuH7eF3AlTx5WbAnnquy3Uz8nIj70fXjZ1ZsO6weczbqlkX/Tz3mbNSKbYe9XRIsgNcFUL7KdjN5snsqUDEzrR/JsOeqx5yNJZL951P68qYJYL70uqDVB95W2ZlumSHXOcxMG6DoK0VpfOV1wZUTsILKdjMxQ6770PXjR4r6Sn+NvlL4wuuCKycAlIWg4kfoK0VpfOF14Y2JvQD4Brp+/IwnLxuE77D664IrJwCUhRYVPxQfHaFuzeta7sMI3mXl14UvtPoA8A5aVABYgtVbfRAYuPLMeggqACyDKyfgTVx5Zk10/XgIv6wJANbFlWfWRYuKB5DSAcDafGW+oUBEi4qbeSOl03oDAM7xhfmGAhVBxc08PT8Ev+mCyiDcItBx5Zl10fXjZp6cH6Ks1pterWJ5s6FMdE2CK10u4Moza6JFxc08mdKZ3RPOYgAhaIUtzsrzDQUqWlQ8wFMpndk94SwGEPomV7WA0AoLX0CLiod4IqVXpPWGsQj4NQYQ+p7KtoCU9t6nFda6OFf/Dy0qfqa81hurjEWgP9w6isLtYyt3q8AYBhBaXGVbQMp679MKa01WOVdbBUHFD5U2u6dVmnh5A1oPAwh9R2W66i723ieoWotVztVWQlAJEFYYi8Ab0LqYut43VKYF5GLvfYKqtVjhXG01jFEJEFYYi0B/uOvQfx2YKnMVYUXe+1zpYh1WOFdbDS0qAcIKTbz0h7sG3WeBzdkWkPjoCA3r0FAf7vjRsWxohwaEEouywrnaamzGGHPx1awpKytL0dHRstvtqlmzprfL8QkZ9lyvNvGu2Ha4xBuQD9mKy7DnqsecjSXC3udT+gb0iQxl4zXjmypzrvalCxWc+fymRcUPlfdi9fZYBPrDq4b+a//iiQ8Wd71mfOlD0Rc5e67255ZWgoqf8YUXq7fDki+j+8x/rNh2WFM+3CUjySZpzu/d8151x2vGF84zgcTfL1RgMK0fYTp0/8cPp/mHDHuuI6RIkpE05cNdbnmvuvo1w3nGevz9QgVaVPyIP3QLWKU52Sp1lIbuM9/3VfrP+u3gQCNpe/opXd/O9f+ernzN+MN5xt/4e0srQcWP+PqL1SrNyVapozx0n/k2m81WxnL3PaerXjO+fp7xR/5+pRBdP37El7sFrNKcbJU6rIQ5W1yvY5Pa+m0msdmkK5rU9ko9zvDl84w/G9G5sT6f0lfv3XWlPp/S13JfrqqCFhU/46vdAlZpTrZKHVbhC61Lvig+OkJzfp9U4tj6ymvMV88z/s5fW1oJKn7IF1+sVmlOtkodVuDvVxJ4m69/2PvieQa+ia4fWIJVmpOtUocV+PuVBK5WmS4ypq4HLo4WFViGVb5hWqUOb6N1qeLoIgPchxYVWIpVvmFapQ5vonWpYhiADbgXLSoAykTrUnGlza8TqAOwrTzXEPwLQQVAuRg0eUFZ3TtV6SLz1Q97urrgSXT9AMBFlNe9U9kushXbDqvHnI26ZdH/U485G7Vi22F374ZL0NUFT6NFxUf56jcxwBddrHvH2S4yX770O1C7uuA9BBUfRLMr4FkV6d5xpousIh/2Vv0y4s6rway6z/Auun58DM2ukJjW3tOqegXUb/+9ij7sf+3XH/ZW7hZy19VgVt5neBctKj7G35tdXf2NqrLbs/I3O1rUvKOyV0CV9e9V1o/I+UK3kKuvBvOFfbYSK5+f3IGg4mP8eRIuV38AV3Z77ggCrjqxcEL3LmevgCrv36usD3tf+TLiyqvBfGWfrSAQv6jQ9eNj/HUSLld3aVV2e+7oWnNlkzbT2vuWi/17lTax4MW6hfxRIO5zZQRq1z9BxQf54895u/oDuLLbc3Udrj6xcEL3LZX59/LXLyPlCcR9roxA/aJC14+P8rdJuFzdpVXZ7bm6Dlc3aRed0Kd+uEuFuvBNgxO6dRX9e5U2FqU8gTgjcCDus7MiQ4NLXV491L/bHAgqsITKntBdvT1X1+G2MUU2Sea//4WlVfYD2N++jFREIO6zM86cKyh1ec65Qg9X4lk2Y4y5+GrWlJWVpejoaNntdtWsWdPb5fgEq48Wz7DnuvQb1X+OnNK29FPqnFhb7RJqe6WOFdsOlwg+le2uy7DnqsecjSWCz+dT+lry39PKrP5eQGAr7fXpT+9/Zz6/aVEJIL4wWtyV36iqsr+urMOVTdpcHeEavvBeQOAq6/Xp6hZfX0GLSoDwpyReEf66v1bbL19slbDaMQR+rSKvT1e3PHuDM5/f/j0CBw6BNlrcX/fXSldH+OpMov762oB/qMjrs7TL2v0ZXT8uZOVvl/48UVxp/Hl/rXB1hC9PPOfPrw34Pl6fJVmiRWXBggVKTExUeHi4unbtqq1bt3q7JKdZ/dullb6Je0J8dISGdWhYbNnQDg38Zn+9/Y3Kl1slAu29AN/C67Mkr49RWbFihW677Ta9+uqr6tq1q+bPn6/3339f+/fvV1xcXLmPtcoYFXf1ebujhcYKfZueaHliHIJ7+cPxtcJ7ASiLv78+feqqn3nz5umuu+7S7bffLkl69dVX9fHHH+utt97SlClTvFxdxbjjSgx3XZXg7XkKPHW1BVfHuJc/XH3g7fcCUB5en//j1aBy7tw5bd++XVOnTnUsCwoKUr9+/fTFF1+UWD8vL095eXmOv7OysjxS58W4uk/Rl/v/y+PJ/aKf1/2sMFYGgP/z6hiVzMxMFRQUqF69esWW16tXT8eOHSuxfnJysqKjox23hIQET5VaLlf3Kfpy/395PLlf9PN6hrfHygDwf17v+nHG1KlT9cADDzj+zsrKskxYceW3S39tDfD0fvGNHwB8n1dbVGJiYhQcHKzjx48XW378+HHVr1+/xPphYWGqWbNmsZuVuOrbpb+2Bnhjv/jGDwC+zastKqGhoerYsaM2bNigoUOHSpIKCwu1YcMGTZw40ZuleZ2/tgb4634BANzD610/DzzwgMaMGaNOnTqpS5cumj9/vs6cOeO4CiiQ+euob3/dLwCA63k9qIwYMUInT57Uk08+qWPHjql9+/Zau3ZtiQG2AAAg8Hh9wreqsMqEbwAAoOL4UUIAAOAXCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAAMCyvD6FflUUTaqblZXl5UoAAEBFFX1uV2RyfJ8OKqdPn5YkJSQkeLkSAADgrNOnTys6OrrcdXz6t34KCwt19OhRRUVFyWazOf34rKwsJSQk6MiRIwH9W0Ech//hWFzAcbiA4/A/HIsLOA4XVPU4GGN0+vRpNWjQQEFB5Y9C8ekWlaCgIDVq1KjK26lZs2ZAv+CKcBz+h2NxAcfhAo7D/3AsLuA4XFCV43CxlpQiDKYFAACWRVABAACWFdBBJSwsTNOnT1dYWJi3S/EqjsP/cCwu4DhcwHH4H47FBRyHCzx5HHx6MC0AAPBvAd2iAgAArI2gAgAALIugAgAALIugAgAALMvvg8qCBQuUmJio8PBwde3aVVu3bi1z3T179uj3v/+9EhMTZbPZNH/+fM8V6mbOHIdFixbpqquuUu3atVW7dm3169ev3PV9jTPHYuXKlerUqZNq1aqlyMhItW/fXm+//bYHq3UfZ47Dry1fvlw2m01Dhw51b4Ee4sxxWLJkiWw2W7FbeHi4B6t1L2dfE7/88osmTJig+Ph4hYWFqVWrVlqzZo2HqnUfZ45Dnz59SrwmbDabBg0a5MGK3cPZ18P8+fN1ySWXKCIiQgkJCbr//vt19uzZqhdi/Njy5ctNaGioeeutt8yePXvMXXfdZWrVqmWOHz9e6vpbt241Dz30kHnvvfdM/fr1zYsvvujZgt3E2eNwyy23mAULFpidO3eavXv3mrFjx5ro6Gjzww8/eLhy13P2WGzatMmsXLnSfPPNN+bAgQNm/vz5Jjg42Kxdu9bDlbuWs8ehSFpammnYsKG56qqrzJAhQzxTrBs5exwWL15satasaTIyMhy3Y8eOebhq93D2WOTl5ZlOnTqZgQMHms8//9ykpaWZzZs3m9TUVA9X7lrOHoeffvqp2Oth9+7dJjg42CxevNizhbuYs8fhnXfeMWFhYeadd94xaWlp5pNPPjHx8fHm/vvvr3Itfh1UunTpYiZMmOD4u6CgwDRo0MAkJydf9LFNmjTxm6BSleNgjDHnz583UVFRZunSpe4q0WOqeiyMMaZDhw7miSeecEd5HlOZ43D+/HnTvXt388Ybb5gxY8b4RVBx9jgsXrzYREdHe6g6z3L2WCxcuNA0a9bMnDt3zlMlekRVzxEvvviiiYqKMtnZ2e4q0SOcPQ4TJkwwV199dbFlDzzwgOnRo0eVa/Hbrp9z585p+/bt6tevn2NZUFCQ+vXrpy+++MKLlXmWK45DTk6O8vPzVadOHXeV6RFVPRbGGG3YsEH79+9Xr1693FmqW1X2ODz99NOKi4vTnXfe6Yky3a6yxyE7O1tNmjRRQkKChgwZoj179niiXLeqzLFYvXq1unXrpgkTJqhevXpq06aNZs+erYKCAk+V7XKuOF+++eabuvnmmxUZGemuMt2uMsehe/fu2r59u6N76NChQ1qzZo0GDhxY5Xp8+kcJy5OZmamCggLVq1ev2PJ69epp3759XqrK81xxHB599FE1aNCg2IvWF1X2WNjtdjVs2FB5eXkKDg7WK6+8ot/97nfuLtdtKnMcPv/8c7355ptKTU31QIWeUZnjcMkll+itt95S27ZtZbfb9fzzz6t79+7as2ePS34g1VsqcywOHTqkjRs3atSoUVqzZo0OHDig8ePHKz8/X9OnT/dE2S5X1fPl1q1btXv3br355pvuKtEjKnMcbrnlFmVmZqpnz54yxuj8+fO655579Nhjj1W5Hr8NKnCNOXPmaPny5dq8ebNfDRp0RlRUlFJTU5Wdna0NGzbogQceULNmzdSnTx9vl+YRp0+f1ujRo7Vo0SLFxMR4uxyv6tatm7p16+b4u3v37mrdurVee+01PfPMM16szPMKCwsVFxen119/XcHBwerYsaN+/PFHPffccz4bVKrqzTffVFJSkrp06eLtUjxu8+bNmj17tl555RV17dpVBw4c0H333adnnnlG06ZNq9K2/TaoxMTEKDg4WMePHy+2/Pjx46pfv76XqvK8qhyH559/XnPmzNH69evVtm1bd5bpEZU9FkFBQWrRooUkqX379tq7d6+Sk5N9Nqg4exwOHjyo9PR0DR482LGssLBQkhQSEqL9+/erefPm7i3aDVxxjqhWrZo6dOigAwcOuKNEj6nMsYiPj1e1atUUHBzsWNa6dWsdO3ZM586dU2hoqFtrdoeqvCbOnDmj5cuX6+mnn3ZniR5RmeMwbdo0jR49WuPGjZMkJSUl6cyZM7r77rv1+OOPKyio8iNN/HaMSmhoqDp27KgNGzY4lhUWFmrDhg3FvhH5u8oeh2effVbPPPOM1q5dq06dOnmiVLdz1WuisLBQeXl57ijRI5w9Dpdeeql27dql1NRUx+2GG25Q3759lZqaqoSEBE+W7zKueD0UFBRo165dio+Pd1eZHlGZY9GjRw8dOHDAEVol6dtvv1V8fLxPhhSpaq+J999/X3l5ebr11lvdXabbVeY45OTklAgjRSHWVPUnBas8HNfCli9fbsLCwsySJUvMN998Y+6++25Tq1Ytx+WEo0ePNlOmTHGsn5eXZ3bu3Gl27txp4uPjzUMPPWR27txpvvvuO2/tgks4exzmzJljQkNDzQcffFDssrvTp097axdcxtljMXv2bLNu3Tpz8OBB880335jnn3/ehISEmEWLFnlrF1zC2ePwW/5y1Y+zx2HGjBnmk08+MQcPHjTbt283N998swkPDzd79uzx1i64jLPH4vDhwyYqKspMnDjR7N+/33z00UcmLi7OzJw501u74BKVfW/07NnTjBgxwtPluo2zx2H69OkmKirKvPfee+bQoUNm3bp1pnnz5uamm26qci1+HVSMMebll182jRs3NqGhoaZLly7myy+/dNzXu3dvM2bMGMffaWlpRlKJW+/evT1fuIs5cxyaNGlS6nGYPn265wt3A2eOxeOPP25atGhhwsPDTe3atU23bt3M8uXLvVC16zlzHH7LX4KKMc4dh8mTJzvWrVevnhk4cKDZsWOHF6p2D2dfEykpKaZr164mLCzMNGvWzMyaNcucP3/ew1W7nrPHYd++fUaSWbdunYcrdS9njkN+fr556qmnTPPmzU14eLhJSEgw48ePN6dOnapyHTZjqtomAwAA4B5+O0YFAAD4PoIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAFTA2LFjNXToUG+XAQQcggrg48aOHSubzea41a1bV9ddd52+/vprb5fmEr/et6Jbz5493fZ86enpstlsSk1NLbb8z3/+s5YsWeK25wVQOoIK4Aeuu+46ZWRkKCMjQxs2bFBISIiuv/56b5flMosXL3bsX0ZGhlavXl3qevn5+W6rITo6WrVq1XLb9gGUjqAC+IGwsDDVr19f9evXV/v27TVlyhQdOXJEJ0+e1NVXX62JEycWW//kyZMKDQ11/DpqYmKinnnmGY0cOVKRkZFq2LChFixYUOwx8+bNU1JSkiIjI5WQkKDx48crOzvbcf/333+vwYMHq3bt2oqMjNTll1+uNWvWSJJOnTqlUaNGKTY2VhEREWrZsqUWL15c4f2rVauWY//q16+vOnXqOFo+VqxYod69eys8PFzvvPOOfvrpJ40cOVINGzZU9erVlZSUpPfee6/Y9goLC/Xss8+qRYsWCgsLU+PGjTVr1ixJUtOmTSVJHTp0kM1mU58+fSSV7PrJy8vTpEmTFBcXp/DwcPXs2VPbtm1z3L9582bZbDZt2LBBnTp1UvXq1dW9e3ft37+/wvsNgKAC+J3s7GwtW7ZMLVq0UN26dTVu3Di9++67ysvLc6yzbNkyNWzYUFdffbVj2XPPPad27dpp586dmjJliu677z59+umnjvuDgoL00ksvac+ePVq6dKk2btyoRx55xHH/hAkTlJeXp88++0y7du3S3LlzVaNGDUnStGnT9M033+hf//qX9u7dq4ULFyomJsYl+1tU6969e9W/f3+dPXtWHTt21Mcff6zdu3fr7rvv1ujRo7V161bHY6ZOnao5c+Y46nr33XdVr149SXKst379emVkZGjlypWlPu8jjzyiDz/8UEuXLtWOHTvUokUL9e/fXz///HOx9R5//HG98MIL+uqrrxQSEqI77rjDJfsNBIwq/6whAK8aM2aMCQ4ONpGRkSYyMtJIMvHx8Wb79u3GGGNyc3NN7dq1zYoVKxyPadu2rXnqqaccfzdp0sRcd911xbY7YsQIM2DAgDKf9/333zd169Z1/J2UlFRsm782ePBgc/vtt1dq/ySZ8PBwx/5FRkaaVatWOX7tfP78+RfdxqBBg8yDDz5ojDEmKyvLhIWFmUWLFpW6btF2d+7cWWz5r38xOjs721SrVs288847jvvPnTtnGjRoYJ599lljjDGbNm0yksz69esd63z88cdGksnNzXXmEAABjRYVwA/07dtXqampSk1N1datW9W/f38NGDBA33//vcLDwzV69Gi99dZbkqQdO3Zo9+7dGjt2bLFtdOvWrcTfe/fudfy9fv16XXPNNWrYsKGioqI0evRo/fTTT8rJyZEkTZo0STNnzlSPHj00ffr0YoN57733Xi1fvlzt27fXI488opSUFKf278UXX3TsX2pqqn73u9857uvUqVOxdQsKCvTMM88oKSlJderUUY0aNfTJJ5/o8OHDkqS9e/cqLy9P11xzjVM1/NrBgweVn5+vHj16OJZVq1ZNXbp0KXbMJKlt27aO/4+Pj5cknThxotLPDQQaggrgByIjI9WiRQu1aNFCnTt31htvvKEzZ85o0aJFkqRx48bp008/1Q8//KDFixfr6quvVpMmTSq8/fT0dF1//fVq27atPvzwQ23fvt0xhuXcuXOO5zh06JBGjx6tXbt2qVOnTnr55ZclyRGa7r//fh09elTXXHONHnrooQo/f/369R3716JFC0VGRhbb91977rnn9Oc//1mPPvqoNm3apNTUVPXv399RZ0RERIWf1xWqVavm+H+bzSbpwhgZABVDUAH8kM1mU1BQkHJzcyVJSUlJ6tSpkxYtWqR333231HESX375ZYm/W7duLUnavn27CgsL9cILL+jKK69Uq1atdPTo0RLbSEhI0D333KOVK1fqwQcfdAQlSYqNjdWYMWO0bNkyzZ8/X6+//rord9lhy5YtGjJkiG699Va1a9dOzZo107fffuu4v2XLloqIiHAMJP6t0NBQSRdaZsrSvHlzhYaGasuWLY5l+fn52rZtmy677DIX7QkASQrxdgEAqi4vL0/Hjh2TdOEKm7/85S/Kzs7W4MGDHeuMGzdOEydOVGRkpIYNG1ZiG1u2bNGzzz6roUOH6tNPP9X777+vjz/+WJLUokUL5efn6+WXX9bgwYO1ZcsWvfrqq8UeP3nyZA0YMECtWrXSqVOntGnTJkfQefLJJ9WxY0ddfvnlysvL00cffeS4z9VatmypDz74QCkpKapdu7bmzZun48ePOwJEeHi4Hn30UT3yyCMKDQ1Vjx49dPLkSe3Zs0d33nmn4uLiFBERobVr16pRo0YKDw9XdHR0seeIjIzUvffeq4cfflh16tRR48aN9eyzzyonJ0d33nmnW/YLCFS0qAB+YO3atYqPj1d8fLy6du2qbdu26f3333dcWitJI0eOVEhIiEaOHKnw8PAS23jwwQf11VdfqUOHDpo5c6bmzZun/v37S5LatWunefPmae7cuWrTpo3eeecdJScnF3t8QUGBJkyYoNatW+u6665Tq1at9Morr0i60EoxdepUtW3bVr169VJwcLCWL1/ulmPxxBNP6IorrlD//v3Vp08f1a9fv8SMstOmTdODDz6oJ598Uq1bt9aIESMc40ZCQkL00ksv6bXXXlODBg00ZMiQUp9nzpw5+v3vf6/Ro0friiuu0IEDB/TJJ5+odu3abtkvIFDZjDHG20UAcL/09HQ1b95c27Zt0xVXXFHsvsTERE2ePFmTJ0/2TnEAUAa6fgA/l5+fr59++klPPPGErrzyyhIhBQCsjK4fwM9t2bJF8fHx2rZtW4lxJd42e/Zs1ahRo9TbgAEDvF0eAAug6weA1/z8888lZnItEhERoYYNG3q4IgBWQ1ABAACWRdcPAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwrP8PUlJa1+DjEKIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQeZJREFUeJzt3Xl4FFXe9vG7k5CFQMKShAQM+yJKAGWTRXZFVBRxRkQGAWEcFVRcRkHHAdyCGzA6iA5qcNzgAcFhHERZRB9BX9YoIDCCIDiEJSgdQkKA5Lx/8KSHJgvpTndXdef7ua5cF6mudP+q6K66+5xTpxzGGCMAAAAbCrO6AAAAgLIQVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVABU2pQpU+RwOCq0rsPh0JQpU/xaT+/evdW7d2/bPh+AiiOoACFk7ty5cjgcrp+IiAg1aNBAo0aN0n/+8x+ry7Odxo0bu+2vpKQkXXnllVq8eLFPnj8vL09TpkzR6tWrffJ8QFVEUAFC0JNPPql33nlHr732mgYOHKh3331XvXr10smTJ/3yen/605+Un5/vl+f2t/bt2+udd97RO++8o4cfflgHDhzQkCFD9Nprr1X6ufPy8jR16lSCClAJEVYXAMD3Bg4cqI4dO0qSxo4dq4SEBD333HNasmSJbrnlFp+/XkREhCIigvNw0qBBA/3ud79z/X777berefPmmjFjhu666y4LKwMg0aICVAlXXnmlJGn37t1uy3fs2KHf/OY3qlOnjqKjo9WxY0ctWbLEbZ3Tp09r6tSpatGihaKjo1W3bl316NFDy5cvd61T2hiVgoICPfDAA0pMTFTNmjV1ww036Oeffy5R26hRo9S4ceMSy0t7zoyMDPXt21dJSUmKiorSJZdcotmzZ3u0Ly4kOTlZrVu31p49e8pd7/DhwxozZozq1aun6OhotWvXTm+//bbr8b179yoxMVGSNHXqVFf3kr/H5wChJji/AgHwyN69eyVJtWvXdi3btm2bunfvrgYNGmjixImKjY3V//zP/2jw4MH68MMPddNNN0k6GxjS09M1duxYde7cWTk5OdqwYYM2bdqkq666qszXHDt2rN59913ddttt6tatm1atWqXrrruuUtsxe/ZsXXrppbrhhhsUERGhf/7zn7rnnntUVFSkcePGVeq5i50+fVr79+9X3bp1y1wnPz9fvXv31q5duzR+/Hg1adJECxYs0KhRo3Ts2DHdf//9SkxM1OzZs3X33Xfrpptu0pAhQyRJbdu29UmdQJVhAISMjIwMI8msWLHCHDlyxOzfv98sXLjQJCYmmqioKLN//37Xuv369TNpaWnm5MmTrmVFRUWmW7dupkWLFq5l7dq1M9ddd125rzt58mRz7uEkMzPTSDL33HOP23q33XabkWQmT57sWjZy5EjTqFGjCz6nMcbk5eWVWG/AgAGmadOmbst69eplevXqVW7NxhjTqFEjc/XVV5sjR46YI0eOmG+//dbceuutRpK59957y3y+mTNnGknm3XffdS07deqU6dq1q6lRo4bJyckxxhhz5MiREtsLwDN0/QAhqH///kpMTFRqaqp+85vfKDY2VkuWLNFFF10kSfrll1+0atUq3XLLLTp+/Liys7OVnZ2to0ePasCAAfrhhx9cVwnVqlVL27Zt0w8//FDh11+6dKkk6b777nNbPmHChEptV0xMjOvfTqdT2dnZ6tWrl3788Uc5nU6vnvOzzz5TYmKiEhMT1a5dOy1YsEAjRozQc889V+bfLF26VMnJyRo2bJhrWbVq1XTfffcpNzdXX3zxhVe1ACgpZILKl19+qUGDBql+/fpyOBz66KOP/Pp6xf3n5/5cfPHFfn1NoKJmzZql5cuXa+HChbr22muVnZ2tqKgo1+O7du2SMUZPPPGE6yRd/DN58mRJZ8dgSGevIDp27JhatmyptLQ0/fGPf9R3331X7uv/9NNPCgsLU7NmzdyWt2rVqlLbtWbNGvXv31+xsbGqVauWEhMT9dhjj0mS10GlS5cuWr58uVasWKG1a9cqOztbf//7391C0fl++ukntWjRQmFh7ofQ1q1bux4H4BshM0blxIkTateune644w5XX7C/XXrppVqxYoXr92C96gGhp3Pnzq6rfgYPHqwePXrotttu086dO1WjRg0VFRVJkh5++GENGDCg1Odo3ry5JKlnz57avXu3/vGPf+izzz7TG2+8oRkzZui1117T2LFjK11rWRPFFRYWuv2+e/du9evXTxdffLGmT5+u1NRURUZGaunSpZoxY4ZrmzyVkJCg/v37e/W3APwvZM6sAwcO1MCBA8t8vKCgQI8//rg++OADHTt2TG3atNFzzz1XqdkmIyIilJyc7PXfA4EQHh6u9PR09enTR3/96181ceJENW3aVNLZ7oqKnKTr1Kmj0aNHa/To0crNzVXPnj01ZcqUMoNKo0aNVFRUpN27d7u1ouzcubPEurVr19axY8dKLD+/VeKf//ynCgoKtGTJEjVs2NC1/PPPP79g/b7WqFEjfffddyoqKnJrVdmxY4frcansEAag4kKm6+dCxo8fr6+//lrz5s3Td999p9/+9re65pprPOp3P98PP/yg+vXrq2nTpho+fLj27dvnw4oB3+ndu7c6d+6smTNn6uTJk0pKSlLv3r31+uuvKysrq8T6R44ccf376NGjbo/VqFFDzZs3V0FBQZmvV/yl4eWXX3ZbPnPmzBLrNmvWTE6n0607KSsrq8TssOHh4ZIkY4xrmdPpVEZGRpl1+Mu1116rgwcPav78+a5lZ86c0SuvvKIaNWqoV69ekqTq1atLUqlBDEDFhEyLSnn27dunjIwM7du3T/Xr15d0tsl72bJlysjI0LPPPuvxc3bp0kVz585Vq1atlJWVpalTp+rKK6/U1q1bVbNmTV9vAlBpf/zjH/Xb3/5Wc+fO1V133aVZs2apR48eSktL0+9//3s1bdpUhw4d0tdff62ff/5Z3377rSTpkksuUe/evdWhQwfVqVNHGzZs0MKFCzV+/PgyX6t9+/YaNmyYXn31VTmdTnXr1k0rV67Url27Sqx766236tFHH9VNN92k++67T3l5eZo9e7ZatmypTZs2uda7+uqrFRkZqUGDBukPf/iDcnNzNWfOHCUlJZUatvzpzjvv1Ouvv65Ro0Zp48aNaty4sRYuXKg1a9Zo5syZrmNATEyMLrnkEs2fP18tW7ZUnTp11KZNG7Vp0yag9QJBzerLjvxBklm8eLHr948//thIMrGxsW4/ERER5pZbbjHGGLN9+3YjqdyfRx99tMzX/PXXX01cXJx54403/L15QJmKL09ev359iccKCwtNs2bNTLNmzcyZM2eMMcbs3r3b3H777SY5OdlUq1bNNGjQwFx//fVm4cKFrr97+umnTefOnU2tWrVMTEyMufjii80zzzxjTp065VqntEuJ8/PzzX333Wfq1q1rYmNjzaBBg8z+/ftLvVz3s88+M23atDGRkZGmVatW5t133y31OZcsWWLatm1roqOjTePGjc1zzz1n3nrrLSPJ7Nmzx7WeJ5cnX+jS67Ke79ChQ2b06NEmISHBREZGmrS0NJORkVHib9euXWs6dOhgIiMjuVQZ8ILDmHPaUUOEw+HQ4sWLNXjwYEnS/PnzNXz4cG3bts3VfFysRo0aSk5O1qlTp/Tjjz+W+7x169Z1zTRZmk6dOql///5KT0+v9DYAAIAq0vVz2WWXqbCwUIcPH3ZNJX6+yMjISl1enJubq927d2vEiBFePwcAAHAXMkElNzfXrf97z549yszMVJ06ddSyZUsNHz5ct99+u1566SVddtllOnLkiFauXKm2bdt6Na33ww8/rEGDBqlRo0Y6cOCAJk+erPDwcLcJoAAAQOWETNfP6tWr1adPnxLLR44cqblz5+r06dN6+umn9fe//13/+c9/lJCQoCuuuEJTp05VWlqax69366236ssvv9TRo0eVmJioHj166JlnnikxwRUAAPBeyAQVAAAQeqrMPCoAACD4EFQAAIBtBfVg2qKiIh04cEA1a9ZkqmoAAIKEMUbHjx9X/fr1S9zc83xBHVQOHDig1NRUq8sAAABe2L9/vy666KJy1wnqoFI8TfX+/fsVFxdncTUAAKAicnJylJqaWqFbzgR1UCnu7omLiyOoAAAQZCoybIPBtAAAwLYIKgAAwLYIKgAAwLaCeoxKRRUWFur06dNWl1GlVKtWrcSdqgEA8FRIBxVjjA4ePKhjx45ZXUqVVKtWLSUnJzPHDQDAayEdVIpDSlJSkqpXr84JM0CMMcrLy9Phw4clSSkpKRZXBAAIViEbVAoLC10hpW7dulaXU+XExMRIkg4fPqykpCS6gQAAXgnZwbTFY1KqV69ucSVVV/G+Z3wQAMBbIRtUitHdYx32PQCgskI+qAAAgOBFUAEAALZFULGpgwcP6t5771XTpk0VFRWl1NRUDRo0SCtXrnRbzxijgQMHyuFw6KOPPnIt37t3rxwOhzIzM0s8d+/evTVhwgTX74sWLdLVV1+tunXrlvk3J0+e1Lhx41S3bl3VqFFDN998sw4dOuSjrQUAWCXLma+1u7OV5cy3upRSEVRsaO/everQoYNWrVqlF154QVu2bNGyZcvUp08fjRs3zm3dmTNnVnosyIkTJ9SjRw8999xzZa7zwAMP6J///KcWLFigL774QgcOHNCQIUMq9boAAGvNX79P3aet0m1z/p+6T1ul+ev3WV1SCSF7eXIwu+eee+RwOLRu3TrFxsa6ll966aW64447XL9nZmbqpZde0oYNGyo1V8mIESMknQ1IpXE6nXrzzTf1/vvvq2/fvpKkjIwMtW7dWt98842uuOIKr18bAGCNLGe+Ji3aoiJz9vciIz22aKt6tkxUSnyMtcWdgxaVCgpU09gvv/yiZcuWady4cW4hpVitWrUkSXl5ebrttts0a9YsJScn+7WmjRs36vTp0+rfv79r2cUXX6yGDRvq66+/9utrAwD8Y0/2CVdIKVZojPZm51lTUBloUamA+ev3uVJnmENKH5KmoZ0a+uW1du3aJWOMLr744nLXe+CBB9StWzfdeOON5a7XrVs3hYW559H8/Hy1b9++wjUdPHhQkZGRrpBUrF69ejp48GCFnwcAYB9NEmIV5pBbWAl3ONQ4wV7zjxFULiDQTWPGmAuus2TJEq1atUqbN2++4Lrz589X69at3ZYNHz7c6/oAAKEhJT5G6UPS9NiirSo0RuEOh54d0sZW3T4SQeWCymsa88d/ZosWLeRwOLRjx44y11m1apV2795dooXj5ptv1pVXXqnVq1e7lqWmpqp58+Zu6xVPb19RycnJOnXqlI4dO+b2mocOHfJ7txMAwH+Gdmqoni0TtTc7T40TqtsupEiMUbmg4qaxc/mzaaxOnToaMGCAZs2apRMnTpR4/NixY5o4caK+++47ZWZmun4kacaMGcrIyPB5TR06dFC1atXcLo3euXOn9u3bp65du/r89QAAgZMSH6OuzeraMqRItKhckBVNY7NmzVL37t3VuXNnPfnkk2rbtq3OnDmj5cuXa/bs2dq+fXupLRkNGzZUkyZNPH69X375Rfv27dOBAwcknQ0h0tmWlOTkZMXHx2vMmDF68MEHVadOHcXFxenee+9V165dueIHAOBXBJUKCHTTWNOmTbVp0yY988wzeuihh5SVlaXExER16NBBs2fP9vnrLVmyRKNHj3b9fuutt0qSJk+erClTpkg621oTFhamm2++WQUFBRowYIBeffVVn9cCAMC5HKYiozdtKicnR/Hx8XI6nYqLi3N77OTJk9qzZ4+aNGmi6Ohoiyqs2vg/AACUprzz9/kYowIAAGyLoAIAAGyLoAIAAGyLoAIAAGwr5INKEI8VDnrsewBAZYVsUKlWrZqkszfvgzWK933x/wUAAJ4K2XlUwsPDVatWLR0+fFiSVL16dTkcjgv8FXzBGKO8vDwdPnxYtWrVUnh4uNUlAQCCVMgGFUmu2VuLwwoCq1atWtwLCABQKSEdVBwOh1JSUpSUlKTTp09bXU6VUq1aNVpSAACVZmlQmTJliqZOneq2rFWrVuXeOdgb4eHhnDQBAAhClreoXHrppVqxYoXr94gIy0sCAAA2YXkqiIiIYBwDAAAoleWXJ//www+qX7++mjZtquHDh2vfvn1lrltQUKCcnBy3HwAAELosDSpdunTR3LlztWzZMs2ePVt79uzRlVdeqePHj5e6fnp6uuLj410/qampAa4YAAAEksPYaPrQY8eOqVGjRpo+fbrGjBlT4vGCggIVFBS4fs/JyVFqamqFbhMNAADsIScnR/Hx8RU6f1s+RuVctWrVUsuWLbVr165SH4+KilJUVFSAqwIAAFaxfIzKuXJzc7V7926lpKRYXQoAALABS4PKww8/rC+++EJ79+7V2rVrddNNNyk8PFzDhg2zsiwAAGATlnb9/Pzzzxo2bJiOHj2qxMRE9ejRQ998840SExOtLAsAANiEpUFl3rx5Vr48AACwOVuNUQEAADgXQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAAJQqy5mvtbuzleXMt6yGCMteGQAA2Nb89fs0adEWFRkpzCGlD0nT0E4NA14HLSoAAMBNljPfFVIkqchIjy3aaknLCkEFAAC42ZN9whVSihUao73ZeQGvhaACAADcNEmIVZjDfVm4w6HGCdUDXgtBBQAAuEmJj1H6kDSFO86mlXCHQ88OaaOU+JiA18JgWgAAUMLQTg3Vs2Wi9mbnqXFCdUtCikRQAQAAZUiJj7EsoBSj6wcAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANiWbYLKtGnT5HA4NGHCBKtLAQAANmGLoLJ+/Xq9/vrratu2rdWlAAAAG7E8qOTm5mr48OGaM2eOateubXU5AADARiwPKuPGjdN1112n/v37X3DdgoIC5eTkuP0AAIDQFWHli8+bN0+bNm3S+vXrK7R+enq6pk6d6ueqAACAXVjWorJ//37df//9eu+99xQdHV2hv5k0aZKcTqfrZ//+/X6uEgAAWMlhjDFWvPBHH32km266SeHh4a5lhYWFcjgcCgsLU0FBgdtjpcnJyVF8fLycTqfi4uL8XTIAAPABT87flnX99OvXT1u2bHFbNnr0aF188cV69NFHLxhSAABA6LMsqNSsWVNt2rRxWxYbG6u6deuWWA4AAKomy6/6AQAAKIulV/2cb/Xq1VaXAAAAbIQWFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAUKosZ77W7s5WljPfshoiLHtlAABgW/PX79OkRVtUZKQwh5Q+JE1DOzUMeB20qAAAADdZznxXSJGkIiM9tmirJS0rBBUAAOBmT/YJV0gpVmiM9mbnBbwWggoAAHDTJCFWYQ73ZeEOhxonVA94LQQVAADgJiU+RulD0hTuOJtWwh0OPTukjVLiYwJeC4NpAQBACUM7NVTPlonam52nxgnVLQkpEkEFAACUISU+xrKAUoyuHwAAYFsEFSDE2GGCJgDwFbp+gBBilwmaAMBXaFEBQoSdJmgCAF8hqAAhwk4TNAGArxBUgBBhpwmaAMBXCCpAiLDTBE0A4CsMpgVCiF0maAIAXyGoACHGDhM0AYCv0PUDAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsy9KgMnv2bLVt21ZxcXGKi4tT165d9cknn1hZEgAAsBFLg8pFF12kadOmaePGjdqwYYP69u2rG2+8Udu2bbOyLAAAYBMOY4y58GqBU6dOHb3wwgsaM2bMBdfNyclRfHy8nE6n4uLiAlAdAACoLE/O37aZ8K2wsFALFizQiRMn1LVr11LXKSgoUEFBgev3nJycQJUHAAAs4FVQWbdunb7++msdPHhQkpScnKyuXbuqc+fOHj/Xli1b1LVrV508eVI1atTQ4sWLdckll5S6bnp6uqZOnepNyQAAIAh51PVz+PBh3XzzzVqzZo0aNmyoevXqSZIOHTqkffv2qXv37vrwww+VlJRU4QJOnTqlffv2yel0auHChXrjjTf0xRdflBpWSmtRSU1NpesHAIAg4knXj0dB5Te/+Y0OHDigjIwMtWrVyu2xnTt36o477lD9+vW1YMEC7yqX1L9/fzVr1kyvv/76BddljAoAAMHHb2NUPv30U3355ZclQooktWrVSi+//LJ69+7tUbHnKyoqcms1AQAAVZdHQSUqKqrcAazHjx9XVFRUhZ9v0qRJGjhwoBo2bKjjx4/r/fff1+rVq/Xpp596UhYAAAhRHs2jMnToUI0cOVKLFy92Cyw5OTlavHixRo8erWHDhlX4+Q4fPqzbb79drVq1Ur9+/bR+/Xp9+umnuuqqqzwpCwAAhCiPWlSmT5+uoqIi3XrrrTpz5owiIyMlnR0QGxERoTFjxujFF1+s8PO9+eabnlULAACqFK8mfMvJydHGjRvdLk/u0KFDwAe0MpgWAIDg4/cJ3+Li4tSnTx+vigMAAKgon97r59ChQ3ryySd9+ZQAAKAK82lQOXjwIDPHAgAAn/Go6+e7774r9/GdO3dWqhgAAIBzeRRU2rdvL4fDodLG3xYvdzgcPisOAABUbR4FlTp16uj5559Xv379Sn1827ZtGjRokE8KA0JJljNfe7JPqElCrFLiY6wuBwCChkdBpUOHDjpw4IAaNWpU6uPHjh0rtbUFqMrmr9+nSYu2qMhIYQ4pfUiahnZqaHVZACDJ/l+kPAoqd911l06cOFHm4w0bNlRGRkaliwJCRZYz3xVSJKnISI8t2qqeLRNteUAAULUEwxcpj4LKTTfdVO7jtWvX1siRIytVEBBK9mSfcIWUYoXGaG92HkEFgKWC5YuUTy9PBuCuSUKsws4bXx7ucKhxQnVrCgKA/1PeFyk78ahF5cEHH6zQetOnT/eqGCDUpMTHKH1Imh5btFWFxijc4dCzQ9rY6tsKgKqp+IvUuWHFjl+kPAoqmzdvdvv9q6++UocOHRQT89+DLpcnA+6Gdmqoni0TtTc7T40TqhNSANhCsHyR8uqmhMVq1qypb7/9Vk2bNvVlTRXGTQkBAKicLGd+wL9I+f2mhAAAIDSkxMfYrhXlXAymBQAAtkVQAQAAtlWpmxIaY7Rjxw7l5ua6LW/btm3lKwMAP7L7bJwAzvJoMG1YWFiFbkpYWFjo0yLLwmBaAN4Ihtk4gVDmt8G0e/bsqVRhAGC1YJmNE8BZHgWVsm5GCADBgtsaAMHFJ4Np+/btq59++skXTwUAfsVtDYDg4lGLypIlS0pd/uWXX+rjjz9WamqqJOmGG26ofGUA4AfBMhsngLN8NpjW9YQMpgUQBKyYjRPAWZ6cvz3q+hkwYIAGDhyogwcPqqioyPUTHh6urVu3qqioKGAhBQAqIyU+Rl2b1SWkADbnUVD55JNP1K9fP3Xs2FEff/yxv2oCAACQ5MVg2gceeEBLlizRo48+qj/84Q/Ky8vzR10AAADeXfXTvn17bdiwQQ6HQ+3bty93zAoAAIC3vL57ckxMjF577TUtWbJEn3/+uRISEnxZFwAAgGctKqtWrdIll1yinJwc17IbbrhBM2bMUFRUlC699FL97//+r8+LBAAAVZNHQWXmzJn6/e9/X+qlRPHx8frDH/6g6dOn+6w4AABQtXkUVL799ltdc801ZT5+9dVXa+PGjZUuCgAAQPIwqBw6dEjVqlUr8/GIiAgdOXKk0kUBAABIHgaVBg0aaOvWrWU+/t133yklJaXSRQEAgMDIcuZr7e5sZTnzrS6lVB5d9XPttdfqiSee0DXXXKPo6Gi3x/Lz8zV58mRdf/31Pi0QAAD4x/z1+zRp0RYVGSnMIaUPSdPQTg2tLsuNR/f6OXTokC6//HKFh4dr/PjxatWqlSRpx44dmjVrlgoLC7Vp0ybVq1fPbwWfi3v9AADgnSxnvrpPW6Wic1JAuMOhryb28futJTw5f3vUolKvXj2tXbtWd999tyZNmuSa6M3hcGjAgAGaNWtWwEIKAADw3p7sE24hRZIKjdHe7Dxb3QPL4wnfGjVqpKVLl+rXX3/Vrl27ZIxRixYtVLt2bX/UBwAA/KBJQqzCHCrRotI4obp1RZXCqyn0Jal27drq1KmTOnfuTEgBACDIpMTHKH1ImsIdDklnQ8qzQ9rYqjVFqsQU+gAAILgN7dRQPVsmam92nhonVLddSJEIKgAAVGkp8TG2DCjFvO76AQAA8DeCCgAAsC2CCgAAsC2CCgAAsC2CCi7I7veBAACELq76QbmC4T4QAIDQRYsKypTlzHeFFOns7IWPLdpKywoAIGAIKihTefeBAAAgEAgqKFPxfSDOZcf7QAAAQhdBBWUKlvtAAABCF4NpUa5guA8EACB0Wdqikp6erk6dOqlmzZpKSkrS4MGDtXPnTitLQilS4mPUtVldQgoAIOAsDSpffPGFxo0bp2+++UbLly/X6dOndfXVV+vEiRNWlgUAAGzCYYwxF14tMI4cOaKkpCR98cUX6tmz5wXXz8nJUXx8vJxOp+Li4gJQIQAAqCxPzt+2GqPidDolSXXq1Cn18YKCAhUUFLh+z8nJCUhdAADAGra56qeoqEgTJkxQ9+7d1aZNm1LXSU9PV3x8vOsnNTU1wFUCAIBAsk3Xz913361PPvlEX331lS666KJS1ymtRSU1NZWuHwAAgkjQdf2MHz9eH3/8sb788ssyQ4okRUVFKSoqKoCVAQAAK1kaVIwxuvfee7V48WKtXr1aTZo0sbIcAABgM5YGlXHjxun999/XP/7xD9WsWVMHDx6UJMXHxysmhjk7AFxYljNfe7JPqElCLHP9ACHI0jEqDoej1OUZGRkaNWrUBf+ey5OBqm3++n2uO3yHOaT0IWka2qmh1WUBuICgGaNik3G8AIJQljPfFVIkqchIjy3aqp4tE2lZAUKIbS5PBgBP7Mk+4QopxQqN0d7sPGsKAuAXBBUAQalJQqzCzus9Dnc41DihujUFAfALggqAoJQSH6P0IWkK/7+xbuEOh54d0oZuHyDE2GIeFQDwxtBODdWzZaL2ZuepcUJ1QgoQgggqAIJaSnwMAQUIYXT9AAAA2yKoAAAA2yKoAAAA2yKoAADwf7Kc+Vq7O1tZznyrS8H/YTAtAADilgx2RYsKAKDKK+uWDLSsWI+gAgCo8ip7Swa6jPyHrh8AQJVXfEuGc8NKRW/JQJeRf9GiAgCo8ipyS4bSWk3oMvI/WlQAAFD5t2Qoq9WkvC4jZkz2DYIKAAD/p7RbMpTVatKzZWKluoxQMXT9AABQjgu1mnAXb/+iRQUAgHJcqNWEu3j7Fy0qAACUoyKtJinxMerarC4hxQ9oUQEA4AJoNbEOQQUAgAoobaAt/I+uHwAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQBASMpy5mvt7mxlOfOtLgWVEGF1AQAA+Nr89fs0adEWFRkpzCGlD0nT0E4NrS4LXqBFBQAQUrKc+a6QIklFRnps0VZaVoIUQQUAEFL2ZJ9whZRihcZob3aeNQWhUggqAICQ0iQhVmEO92XhDocaJ1S3piBUCkEFABBSUuJjlD4kTeGOs2kl3OHQs0PaKCU+plLPy+BcazCYFgAQcoZ2aqieLRO1NztPjROqVzqkMDjXOrSoAABCUkp8jLo2q+uTlhQG51qHoAIAQDkYnGstggoAwGNVabwGg3OtRVABAHhk/vp96j5tlW6b8//UfdoqzV+/z+qS/Mpfg3NRMQ5jjLnwavaUk5Oj+Ph4OZ1OxcXFWV0OAIS8LGe+uk9b5dYVEu5w6KuJfUL+xJ3lzPfZ4NyqzpPzN1f9AAAqrLzxGv46eWc587Un+4SaJMRaGhBS4mMIKBYgqAAAKqx4vMb5LSr+Gq/BZcFgjAoAoMICOV6Dy4Ih0aICAPCQrydTK4sV3Uzeskv3VCgiqACwDQ72wSMQ4zUC3c3kLbqn/MvSrp8vv/xSgwYNUv369eVwOPTRRx9ZWQ4AC1W1S15xYSnxMbrpsgZuywZfVt9WIZbuKf+zNKicOHFC7dq106xZs6wsA4DFONijNFnOfC3e/B+3ZR9tPmCr9wWz1vqfpV0/AwcO1MCBA60sAYANBNNYBAROMLwvgqV7KpgF1VU/BQUFysnJcfsBEPyYohylCYb3BbPW+l9QBZX09HTFx8e7flJTU60uCYAPcLBHaYLlfTG0U0N9NbGPPvj9FfpqYh8G0vqYbabQdzgcWrx4sQYPHlzmOgUFBSooKHD9npOTo9TUVKbQB0IEU5SjNLwvQk/ITqEfFRWlqKgoq8sA4CdMUY7SBPJ9YZdL5O1Shx0EVVABAMBf7DIfil3qsAtLx6jk5uYqMzNTmZmZkqQ9e/YoMzNT+/ZZP39CljNfa3dn2+oyOACAf9jlEnm71GEnlraobNiwQX369HH9/uCDD0qSRo4cqblz51pUFWkWAKoau1wKbZc67MTSoNK7d2/ZZCyvS1lptmfLxCr7JgGAUGeX+VDsUoedBNXlyYHALIMAUPXY5VJou9RhJwymPQ9pFgCqpkDdFTpY6rALgsp5im+C9eGm/95fwm43wQIA+IddLpG3Sx12QNfPebKc+Vq0yf0mWIs2/8c14pqrgQBYjeMQqhJaVM6z8adfdf7wXmOkTT/9qtyCI15fDcTkPbAa78HQ4O1VicHw/x8MNSLwCCrnKesqpF/zTunP/9hW7tVAZX3IuNwZVuM9GBq8vSoxGP7/g6FGWIOun/N0bFxH592sUw5J8THVyr0aaP76feo+bZVum/P/1H3aKs1ff3bSOibvgdV4D4YOb65KDIb//2CoEdYhqJwnJT5G025Oc+2YMEnTbk5Tx8Z1yrzdeHkfMi53htV4D4aO4qsSz3WhqxKD4f8/GGqEdej6KUVZl4alD0nTY4u2qtAYt2vb1+7OLvNDxuXOsBrvwdBRPMdGacehsgTD/38w1AjrEFTKUNqlYWUFmPI+ZN4cWABf4j0YWjydYyMY/v+DoUZYx2HsNoe9B3JychQfHy+n06m4uDhLa5m/fl+JD9m5A8GynPlM3gNL8R60n0Be5RIM///BUCN8w5PzN0HFh/iQAagornJBVebJ+ZvBtD6UEh+jrs3qElIAlIurXICKI6gAQICFwlUuoTo7bqhuVzBjMG0IsvvsjnavD/C3YL/KJVS7rUJ1u4IdLSohpqyJ5+zC7vUB3vLkm3jxVS7hjrOTogTTVS6h2m0VqtsVCmhRCSHeTq8dKHavD/CWN9/EPb3M2C7K67ayYht81UJrt+3CfxFUQojdP2h2rw/wRmUCeGnzNdmdnbqtfNlVY6ftgju6fkKIN9NrB5Ld6wO8EQoDYz1hl24rX3fVFG9X8TEqzKGg6Y4LdbSohBC7z+5o9/oAb1TFb+J26LbyVwtt8cxiwTvDWOghqIQYOxxAymP3+gBPVdUAbnW3la8DYnELTfHTGTGGzi4IKiHKyL5fB6w+wFWEry+hDtVLskN1uzxFAA88XwdExtDZF0ElxMxfv08TPzz7rcAhadrNoT8PgK9Plr6eSyFU52YI1e3yVjAE8LIEa+D0ZUCsil14wYJ7/YSQLGe+uqWvcmtLcUhaO6lv0Bx8PD1g+vpkmeXMV/dpq0ocrL6a2Merfejr57OLUN2uUFbWZ4vA+V8XurksfMeT8zctKiFkw95fSnT4GEkb9/6q69vZ/+Th6QHTH/Oy+Lr5N1Sbk0N1u0JVWZ8t5jZyFyxdeMHaAuYtgkoIcTgcZSz332v66gPjzQHTHydLXzf/hmpzcqhul50E4rNF4CzJ7l14VbEFjHlUQkiHRrV1fiZxOKTLG9X2y+v5cjp8b+ai8Me8LL6eI8Iuc074mr+2ixvCnRWozxZzGwWXqjrNPy0qISQlPkbTbk4rkbbPPXlY2QJSHm++ofvrslBfN//6oznZDk2/vt6uQH9TtMM+LK2GQH62quql1cGqqraAEVRCTHknD1+eCHz9gfH2gOmvPmVfN//68vns1PTrq+0K9FgJO+zDsmoI9GfL28+QHYJeVRMbGV7q8uqRod05QlAJkEB+qEs7edihBeRCvD1g2r1P2ZdCdfBjIL8p2mEflleDFZ8tTz9Ddgh6VdGJU4WlLs87VRTgSgIrtGOYTfiyv9lbvr4fib/GKKTEx6hrs7o+O2GE2piHUL2vTCDHSthhH14omNn5s1VVx0nYQVUdU0SLip/Z4dubZK8WkECpzLc+uzZrh2rTbyDHStjhiqUL1WDnz1ZVHSdhB1V1TBFBxc/89aH29ETqrze4XbtdKhMQ7dysHcpNv4E6OdvhYF+RGuz62bJD0KvK7Bxi/YWg4mf++FB7eyKtSm9wbwOiXVrAyhLqJ4lAnZzt8FmwQw3esEPQq+rsGmL9haDiZ77+UFf2RFpV3uDentDt3qzNScJ37PBZsEMN3gjWkIXgRFAJAF9+qO1+IrULb0/owdBiwUkCdhCsIQvBh6ASIL76UAfDifRCAjVQ1ZsTerC0WHCSAFBVEFSCTLCcSMsS6IGq3pzQabFAoNj16jLAThzGmPNvuBs0PLlNdKjJcuYH3Yk0y5mv7tNWlWgN+mpin6DZBsBX7Hx1GeBvnpy/g3vyhSrM1xOjBYIVE22F2oRvCA1MmoYL4dj1X3T9IGACPb6Gb6zwNV911TAoHuXh2OWOFpUqxsqU7q+pwUvDN1b4mi9vhVFVp0LHhVXm2BWqrTC0qFQhdkjpgRqoyjdW+JKvJwIM9kHx8B9vj112OL77C0GlirDTjKuBuLQ2FC7jtguuTPFP8OXqMpTGm2OXnY7v/kDXTxVhhzvGBlIgu5lCmR3u/G0H/uqqCcZB8fAvb45doX58p0XFxnz5TbYqtjDwjbVyQv1bmifoqkEgeXrsCvXjO0HFpnzd31hVD7TM4Oo9xvm4I/gikDw5doX68Z2gYkP++ibLgRaeCPVvad4g+PoX46G8F8rHd4KKDfnzm6zdD7QcqOwj1L+lBRLv6wsL5atWAsXux3dvEVRsqKp+k+VAZT+h/C0tUHhfXxjjoVAervqxoap4xQoTtFmrvImiuDLFe7yvKybUr1pB5dCiYlNV7ZssAzetwzd+/+F9XTFVtRUZFWOLFpVZs2apcePGio6OVpcuXbRu3TqrS/KKr6cvrkrfZJlS3DO+eq/xjd+/eF9XTFVsRUbFWd6iMn/+fD344IN67bXX1KVLF82cOVMDBgzQzp07lZSUZHV5Fca30srx18DNUBzE6Mv3Gt/4/YsByRVX1VqRUXEOY4y58Gr+06VLF3Xq1El//etfJUlFRUVKTU3Vvffeq4kTJ5b7tzk5OYqPj5fT6VRcXFwgyi1VljNf3aetKtFs+dXEPnzYPJTlzPfZgSoUw6Ov32u8dwPDl+9rIBR4cv62tOvn1KlT2rhxo/r37+9aFhYWpv79++vrr78usX5BQYFycnLcfuyAgWC+46vurlDt0vD1e40m98CoSt24gK9Z2vWTnZ2twsJC1atXz215vXr1tGPHjhLrp6ena+rUqYEqr8IYCGY/odql4Y/3Gk3uAOzMFoNpK2rSpElyOp2un/3791tdkiS+ldpRqA5i9Nd7jW/8AOzK0haVhIQEhYeH69ChQ27LDx06pOTk5BLrR0VFKSoqKlDleYRvpfYSyoMYea8BqEosDSqRkZHq0KGDVq5cqcGDB0s6O5h25cqVGj9+vJWleSVUpy8OVqF8Que9BqCqsPzy5AcffFAjR45Ux44d1blzZ82cOVMnTpzQ6NGjrS4NIYATOgAEN8uDytChQ3XkyBH9+c9/1sGDB9W+fXstW7asxABbAABQ9Vg+j0pl2GUeFQAAUHFBM48KAABAeQgqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtiyfQr8yiifVzcnJsbgSAABQUcXn7YpMjh/UQeX48eOSpNTUVIsrAQAAnjp+/Lji4+PLXSeo7/VTVFSkAwcOqGbNmnI4HB7/fU5OjlJTU7V///4qfa8g9sN/sS/OYj+cxX74L/bFWeyHsyq7H4wxOn78uOrXr6+wsPJHoQR1i0pYWJguuuiiSj9PXFxclX7DFWM//Bf74iz2w1nsh/9iX5zFfjirMvvhQi0pxRhMCwAAbIugAgAAbKtKB5WoqChNnjxZUVFRVpdiKfbDf7EvzmI/nMV++C/2xVnsh7MCuR+CejAtAAAIbVW6RQUAANgbQQUAANgWQQUAANgWQQUAANhWyAeVWbNmqXHjxoqOjlaXLl20bt26Mtfdtm2bbr75ZjVu3FgOh0MzZ84MXKF+5sl+mDNnjq688krVrl1btWvXVv/+/ctdP9h4si8WLVqkjh07qlatWoqNjVX79u31zjvvBLBa//FkP5xr3rx5cjgcGjx4sH8LDBBP9sPcuXPlcDjcfqKjowNYrX95+p44duyYxo0bp5SUFEVFRally5ZaunRpgKr1H0/2Q+/evUu8JxwOh6677roAVuwfnr4fZs6cqVatWikmJkapqal64IEHdPLkycoXYkLYvHnzTGRkpHnrrbfMtm3bzO9//3tTq1Ytc+jQoVLXX7dunXn44YfNBx98YJKTk82MGTMCW7CfeLofbrvtNjNr1iyzefNms337djNq1CgTHx9vfv755wBX7nue7ovPP//cLFq0yHz//fdm165dZubMmSY8PNwsW7YswJX7lqf7odiePXtMgwYNzJVXXmluvPHGwBTrR57uh4yMDBMXF2eysrJcPwcPHgxw1f7h6b4oKCgwHTt2NNdee6356quvzJ49e8zq1atNZmZmgCv3LU/3w9GjR93eD1u3bjXh4eEmIyMjsIX7mKf74b333jNRUVHmvffeM3v27DGffvqpSUlJMQ888EClawnpoNK5c2czbtw41++FhYWmfv36Jj09/YJ/26hRo5AJKpXZD8YYc+bMGVOzZk3z9ttv+6vEgKnsvjDGmMsuu8z86U9/8kd5AePNfjhz5ozp1q2beeONN8zIkSNDIqh4uh8yMjJMfHx8gKoLLE/3xezZs03Tpk3NqVOnAlViQFT2GDFjxgxTs2ZNk5ub668SA8LT/TBu3DjTt29ft2UPPvig6d69e6VrCdmun1OnTmnjxo3q37+/a1lYWJj69++vr7/+2sLKAssX+yEvL0+nT59WnTp1/FVmQFR2XxhjtHLlSu3cuVM9e/b0Z6l+5e1+ePLJJ5WUlKQxY8YEoky/83Y/5ObmqlGjRkpNTdWNN96obdu2BaJcv/JmXyxZskRdu3bVuHHjVK9ePbVp00bPPvusCgsLA1W2z/niePnmm2/q1ltvVWxsrL/K9Dtv9kO3bt20ceNGV/fQjz/+qKVLl+raa6+tdD1BfVPC8mRnZ6uwsFD16tVzW16vXj3t2LHDoqoCzxf74dFHH1X9+vXd3rTByNt94XQ61aBBAxUUFCg8PFyvvvqqrrrqKn+X6zfe7IevvvpKb775pjIzMwNQYWB4sx9atWqlt956S23btpXT6dSLL76obt26adu2bT65QapVvNkXP/74o1atWqXhw4dr6dKl2rVrl+655x6dPn1akydPDkTZPlfZ4+W6deu0detWvfnmm/4qMSC82Q+33XabsrOz1aNHDxljdObMGd1111167LHHKl1PyAYV+Ma0adM0b948rV69OqQGDXqiZs2ayszMVG5urlauXKkHH3xQTZs2Ve/eva0uLSCOHz+uESNGaM6cOUpISLC6HEt17dpVXbt2df3erVs3tW7dWq+//rqeeuopCysLvKKiIiUlJelvf/ubwsPD1aFDB/3nP//RCy+8ELRBpbLefPNNpaWlqXPnzlaXEnCrV6/Ws88+q1dffVVdunTRrl27dP/99+upp57SE088UannDtmgkpCQoPDwcB06dMht+aFDh5ScnGxRVYFXmf3w4osvatq0aVqxYoXatm3rzzIDwtt9ERYWpubNm0uS2rdvr+3btys9PT1og4qn+2H37t3au3evBg0a5FpWVFQkSYqIiNDOnTvVrFkz/xbtB744RlSrVk2XXXaZdu3a5Y8SA8abfZGSkqJq1aopPDzctax169Y6ePCgTp06pcjISL/W7A+VeU+cOHFC8+bN05NPPunPEgPCm/3wxBNPaMSIERo7dqwkKS0tTSdOnNCdd96pxx9/XGFh3o80CdkxKpGRkerQoYNWrlzpWlZUVKSVK1e6fSMKdd7uh+eff15PPfWUli1bpo4dOwaiVL/z1XuiqKhIBQUF/igxIDzdDxdffLG2bNmizMxM188NN9ygPn36KDMzU6mpqYEs32d88X4oLCzUli1blJKS4q8yA8KbfdG9e3ft2rXLFVol6d///rdSUlKCMqRIlXtPLFiwQAUFBfrd737n7zL9zpv9kJeXVyKMFIdYU9lbClZ6OK6NzZs3z0RFRZm5c+ea77//3tx5552mVq1arssJR4wYYSZOnOhav6CgwGzevNls3rzZpKSkmIcffths3rzZ/PDDD1Ztgk94uh+mTZtmIiMjzcKFC90uuzt+/LhVm+Aznu6LZ5991nz22Wdm9+7d5vvvvzcvvviiiYiIMHPmzLFqE3zC0/1wvlC56sfT/TB16lTz6aefmt27d5uNGzeaW2+91URHR5tt27ZZtQk+4+m+2Ldvn6lZs6YZP3682blzp/n4449NUlKSefrpp63aBJ/w9rPRo0cPM3To0ECX6zee7ofJkyebmjVrmg8++MD8+OOP5rPPPjPNmjUzt9xyS6VrCemgYowxr7zyimnYsKGJjIw0nTt3Nt98843rsV69epmRI0e6ft+zZ4+RVOKnV69egS/cxzzZD40aNSp1P0yePDnwhfuBJ/vi8ccfN82bNzfR0dGmdu3apmvXrmbevHkWVO17nuyH84VKUDHGs/0wYcIE17r16tUz1157rdm0aZMFVfuHp++JtWvXmi5dupioqCjTtGlT88wzz5gzZ84EuGrf83Q/7Nixw0gyn332WYAr9S9P9sPp06fNlClTTLNmzUx0dLRJTU0199xzj/n1118rXYfDmMq2yQAAAPhHyI5RAQAAwY+gAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAVMGrUKA0ePNjqMoAqh6ACBLlRo0bJ4XC4furWratrrrlG3333ndWl+cS521b806NHD7+93t69e+VwOJSZmem2/C9/+Yvmzp3rt9cFUDqCChACrrnmGmVlZSkrK0srV65URESErr/+eqvL8pmMjAzX9mVlZWnJkiWlrnf69Gm/1RAfH69atWr57fkBlI6gAoSAqKgoJScnKzk5We3bt9fEiRO1f/9+HTlyRH379tX48ePd1j9y5IgiIyNdd0dt3LixnnrqKQ0bNkyxsbFq0KCBZs2a5fY306dPV1pammJjY5Wamqp77rlHubm5rsd/+uknDRo0SLVr11ZsbKwuvfRSLV26VJL066+/avjw4UpMTFRMTIxatGihjIyMCm9frVq1XNuXnJysOnXquFo+5s+fr169eik6Olrvvfeejh49qmHDhqlBgwaqXr260tLS9MEHH7g9X1FRkZ5//nk1b95cUVFRatiwoZ555hlJUpMmTSRJl112mRwOh3r37i2pZNdPQUGB7rvvPiUlJSk6Olo9evTQ+vXrXY+vXr1aDodDK1euVMeOHVW9enV169ZNO3furPB2AyCoACEnNzdX7777rpo3b666detq7Nixev/991VQUOBa591331WDBg3Ut29f17IXXnhB7dq10+bNmzVx4kTdf//9Wr58uevxsLAwvfzyy9q2bZvefvttrVq1So888ojr8XHjxqmgoEBffvmltmzZoueee041atSQJD3xxBP6/vvv9cknn2j79u2aPXu2EhISfLK9xbVu375dAwYM0MmTJ9WhQwf961//0tatW3XnnXdqxIgRWrdunetvJk2apGnTprnqev/991WvXj1Jcq23YsUKZWVladGiRaW+7iOPPKIPP/xQb7/9tjZt2qTmzZtrwIAB+uWXX9zWe/zxx/XSSy9pw4YNioiI0B133OGT7QaqjErf1hCApUaOHGnCw8NNbGysiY2NNZJMSkqK2bhxozHGmPz8fFO7dm0zf/5819+0bdvWTJkyxfV7o0aNzDXXXOP2vEOHDjUDBw4s83UXLFhg6tat6/o9LS3N7TnPNWjQIDN69Givtk+SiY6Odm1fbGysWbx4setu5zNnzrzgc1x33XXmoYceMsYYk5OTY6KiosycOXNKXbf4eTdv3uy2/Nw7Rufm5ppq1aqZ9957z/X4qVOnTP369c3zzz9vjDHm888/N5LMihUrXOv861//MpJMfn6+J7sAqNJoUQFCQJ8+fZSZmanMzEytW7dOAwYM0MCBA/XTTz8pOjpaI0aM0FtvvSVJ2rRpk7Zu3apRo0a5PUfXrl1L/L59+3bX7ytWrFC/fv3UoEED1axZUyNGjNDRo0eVl5cnSbrvvvv09NNPq3v37po8ebLbYN67775b8+bNU/v27fXII49o7dq1Hm3fjBkzXNuXmZmpq666yvVYx44d3dYtLCzUU089pbS0NNWpU0c1atTQp59+qn379kmStm/froKCAvXr18+jGs61e/dunT59Wt27d3ctq1atmjp37uy2zySpbdu2rn+npKRIkg4fPuz1awNVDUEFCAGxsbFq3ry5mjdvrk6dOumNN97QiRMnNGfOHEnS2LFjtXz5cv3888/KyMhQ37591ahRowo//969e3X99derbdu2+vDDD7Vx40bXGJZTp065XuPHH3/UiBEjtGXLFnXs2FGvvPKKJLlC0wMPPKADBw6oX79+evjhhyv8+snJya7ta968uWJjY922/VwvvPCC/vKXv+jRRx/V559/rszMTA0YMMBVZ0xMTIVf1xeqVavm+rfD4ZB0dowMgIohqAAhyOFwKCwsTPn5+ZKktLQ0dezYUXPmzNH7779f6jiJb775psTvrVu3liRt3LhRRUVFeumll3TFFVeoZcuWOnDgQInnSE1N1V133aVFixbpoYcecgUlSUpMTNTIkSP17rvvaubMmfrb3/7my012WbNmjW688Ub97ne/U7t27dS0aVP9+9//dj3eokULxcTEuAYSny8yMlLS2ZaZsjRr1kyRkZFas2aNa9np06e1fv16XXLJJT7aEgCSFGF1AQAqr6CgQAcPHpR09gqbv/71r8rNzdWgQYNc64wdO1bjx49XbGysbrrpphLPsWbNGj3//PMaPHiwli9frgULFuhf//qXJKl58+Y6ffq0XnnlFQ0aNEhr1qzRa6+95vb3EyZM0MCBA9WyZUv9+uuv+vzzz11B589//rM6dOigSy+9VAUFBfr4449dj/laixYttHDhQq1du1a1a9fW9OnTdejQIVeAiI6O1qOPPqpHHnlEkZGR6t69u44cOaJt27ZpzJgxSkpKUkxMjJYtW6aLLrpI0dHRio+Pd3uN2NhY3X333frjH/+oOnXqqGHDhnr++eeVl5enMWPG+GW7gKqKFhUgBCxbtkwpKSlKSUlRly5dtH79ei1YsMB1aa0kDRs2TBERERo2bJiio6NLPMdDDz2kDRs26LLLLtPTTz+t6dOna8CAAZKkdu3aafr06XruuefUpk0bvffee0pPT3f7+8LCQo0bN06tW7fWNddco5YtW+rVV1+VdLaVYtKkSWrbtq169uyp8PBwzZs3zy/74k9/+pMuv/xyDRgwQL1791ZycnKJGWWfeOIJPfTQQ/rzn/+s1q1ba+jQoa5xIxEREXr55Zf1+uuvq379+rrxxhtLfZ1p06bp5ptv1ogRI3T55Zdr165d+vTTT1W7dm2/bBdQVTmMMcbqIgD43969e9WsWTOtX79el19+udtjjRs31oQJEzRhwgRrigOAMtD1A4S406dP6+jRo/rTn/6kK664okRIAQA7o+sHCHFr1qxRSkqK1q9fX2JcidWeffZZ1ahRo9SfgQMHWl0eABug6weAZX755ZcSM7kWi4mJUYMGDQJcEQC7IagAAADbousHAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADY1v8Hfg6Q1Z+kcB0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATypJREFUeJzt3X9cVHWi//H3gMIgCv5A+RUKKqYmSYEiamnFRmVurO2G1pp5Lbcy09Q1NX9VFmVZXsuy3NJu5eq1XNd1vZRh3bbk+ttKt9w0TEtAyRwUEBXO9w+/TDvDDxmYn/B6Ph7noZz5nDOf82GYec/nfM7nmAzDMAQAAAArP09XAAAAwNsQkAAAAOwQkAAAAOwQkAAAAOwQkAAAAOwQkAAAAOwQkAAAAOwQkAAAAOwQkAAAAOwQkAD4rPnz58tkMtWrrMlk0vz5811an6FDh2ro0KFeuz8A9UdAAtBoK1eulMlksi4tWrRQdHS07rnnHv3444+erp7XiY2NtWmvTp066ZprrtFf/vIXp+y/tLRU8+fP1yeffOKU/QHNEQEJgNM88cQTevvtt7Vs2TLdfPPNeueddzRkyBCdPXvWJc83e/ZslZWVuWTfrpaYmKi3335bb7/9tqZNm6Zjx45pxIgRWrZsWaP3XVpaqscff5yABDRCC09XAEDTcfPNNys5OVmSdO+99yosLEzPPvusNmzYoDvuuMPpz9eiRQu1aOGbb2PR0dH6/e9/b/357rvvVvfu3fXiiy/q/vvv92DNAEj0IAFwoWuuuUaSdOjQIZv133zzjX7729+qffv2MpvNSk5O1oYNG2zKnD9/Xo8//rji4+NlNpvVoUMHDR48WJs3b7aWqWkMUnl5uR555BF17NhRbdq00a9//Wv98MMP1ep2zz33KDY2ttr6mva5YsUKXX/99erUqZMCAwPVu3dvvfrqqw61xaVERESoV69eysvLq7Pc8ePHNW7cOIWHh8tsNqtv37566623rI8fPnxYHTt2lCQ9/vjj1tN4rh5/BTQ1vvnVC4BPOHz4sCSpXbt21nX79+/XoEGDFB0drRkzZig4OFj//d//rYyMDL3//vv6zW9+I+liUMnKytK9996r/v37q7i4WDt37tTu3bv1q1/9qtbnvPfee/XOO+/ozjvv1MCBA7VlyxYNGzasUcfx6quv6oorrtCvf/1rtWjRQn/729/04IMPqrKyUhMmTGjUvqucP39eR48eVYcOHWotU1ZWpqFDh+rgwYN66KGHFBcXp7Vr1+qee+7RqVOnNGnSJHXs2FGvvvqqHnjgAf3mN7/RiBEjJElXXnmlU+oJNBsGADTSihUrDEnGRx99ZJw4ccI4evSo8d577xkdO3Y0AgMDjaNHj1rL3nDDDUZCQoJx9uxZ67rKykpj4MCBRnx8vHVd3759jWHDhtX5vPPmzTP+/W1s7969hiTjwQcftCl35513GpKMefPmWdeNGTPG6NKlyyX3aRiGUVpaWq1cenq60bVrV5t1Q4YMMYYMGVJnnQ3DMLp06WLceOONxokTJ4wTJ04YX3zxhTFy5EhDkjFx4sRa97d48WJDkvHOO+9Y1507d85ITU01WrdubRQXFxuGYRgnTpyodrwAHMMpNgBOk5aWpo4dOyomJka//e1vFRwcrA0bNuiyyy6TJJ08eVJbtmzRHXfcodOnT6uoqEhFRUX66aeflJ6erm+//dZ61Vvbtm21f/9+ffvtt/V+/k2bNkmSHn74YZv1kydPbtRxBQUFWf9vsVhUVFSkIUOG6LvvvpPFYmnQPj/88EN17NhRHTt2VN++fbV27VqNHj1azz77bK3bbNq0SRERERo1apR1XcuWLfXwww/rzJkz+t///d8G1QVAdZxiA+A0S5cuVY8ePWSxWPTmm2/q008/VWBgoPXxgwcPyjAMzZkzR3PmzKlxH8ePH1d0dLSeeOIJ3XbbberRo4f69Omjm266SaNHj67zVNH3338vPz8/devWzWb95Zdf3qjj+vzzzzVv3jzl5uaqtLTU5jGLxaLQ0FCH95mSkqIFCxbIZDKpVatW6tWrl9q2bVvnNt9//73i4+Pl52f73bZXr17WxwE4BwEJgNP079/fehVbRkaGBg8erDvvvFMHDhxQ69atVVlZKUmaNm2a0tPTa9xH9+7dJUnXXnutDh06pL/+9a/68MMP9ac//Ukvvviili1bpnvvvbfRda1tgsmKigqbnw8dOqQbbrhBPXv21AsvvKCYmBgFBARo06ZNevHFF63H5KiwsDClpaU1aFsArkdAAuAS/v7+ysrK0nXXXaeXX35ZM2bMUNeuXSVdPC1Un3DQvn17jR07VmPHjtWZM2d07bXXav78+bUGpC5duqiyslKHDh2y6TU6cOBAtbLt2rXTqVOnqq2374X529/+pvLycm3YsEGdO3e2rv/4448vWX9n69Kli7788ktVVlba9CJ988031sel2sMfgPpjDBIAlxk6dKj69++vxYsX6+zZs+rUqZOGDh2q1157Tfn5+dXKnzhxwvr/n376yeax1q1bq3v37iovL6/1+W6++WZJ0pIlS2zWL168uFrZbt26yWKx6Msvv7Suy8/Przabtb+/vyTJMAzrOovFohUrVtRaD1e55ZZbVFBQoDVr1ljXXbhwQS+99JJat26tIUOGSJJatWolSTUGQAD1Qw8SAJf64x//qN/97ndauXKl7r//fi1dulSDBw9WQkKC7rvvPnXt2lWFhYXKzc3VDz/8oC+++EKS1Lt3bw0dOlRJSUlq3769du7cqffee08PPfRQrc+VmJioUaNG6ZVXXpHFYtHAgQOVk5OjgwcPVis7cuRIPfroo/rNb36jhx9+WKWlpXr11VfVo0cP7d6921ruxhtvVEBAgIYPH64//OEPOnPmjJYvX65OnTrVGPJcafz48Xrttdd0zz33aNeuXYqNjdV7772nzz//XIsXL1abNm0kXRxU3rt3b61Zs0Y9evRQ+/bt1adPH/Xp08et9QV8mqcvowPg+6ou89+xY0e1xyoqKoxu3boZ3bp1My5cuGAYhmEcOnTIuPvuu42IiAijZcuWRnR0tHHrrbca7733nnW7BQsWGP379zfatm1rBAUFGT179jSeeuop49y5c9YyNV2SX1ZWZjz88MNGhw4djODgYGP48OHG0aNHa7zs/cMPPzT69OljBAQEGJdffrnxzjvv1LjPDRs2GFdeeaVhNpuN2NhY49lnnzXefPNNQ5KRl5dnLefIZf6XmsKgtv0VFhYaY8eONcLCwoyAgAAjISHBWLFiRbVtt27daiQlJRkBAQFc8g80gMkw/q3fGAAAAIxBAgAAsEdAAgAAsENAAgAAsENAAgAAsENAAgAAsOPxgLR06VLFxsbKbDYrJSVF27dvr7P82rVr1bNnT5nNZiUkJFhvTlll3bp1uvHGG9WhQweZTCbt3bvX5vGTJ09q4sSJuvzyyxUUFKTOnTvr4YcfbvANJwEAQNPj0Yki16xZoylTpmjZsmVKSUnR4sWLlZ6ergMHDqhTp07Vym/dulWjRo1SVlaWbr31Vq1atUoZGRnavXu3dQK0kpISDR48WHfccYfuu+++avs4duyYjh07pueff169e/fW999/r/vvv1/Hjh3Te++9V++6V1ZW6tixY2rTpg3T+gMA4CMMw9Dp06cVFRVV7cbP9gU9pn///saECROsP1dUVBhRUVFGVlZWjeXvuOOOapOrpaSkGH/4wx+qlc3LyzMkGXv27LlkPf77v//bCAgIMM6fP1/vuldNPMfCwsLCwsLie8vRo0fr/Jz3WA/SuXPntGvXLs2cOdO6zs/PT2lpacrNza1xm9zcXE2ZMsVmXXp6utavX9+oulgsFoWEhKhFi9qbo7y83OYeUMb/n1/z6NGjCgkJadTzAwAA9yguLlZMTIz11jy18VhAKioqUkVFhcLDw23Wh4eHW+9Mba+goKDG8gUFBY2qx5NPPqnx48fXWS4rK0uPP/54tfUhISEEJAAAfMylhsd4fJC2JxUXF2vYsGHq3bu35s+fX2fZmTNnymKxWJejR4+6p5IAAMDtPNaDFBYWJn9/fxUWFtqsLywsVERERI3bREREOFS+LqdPn9ZNN92kNm3a6C9/+YtatmxZZ/nAwEAFBgY6/DwAAMD3eKwHKSAgQElJScrJybGuq6ysVE5OjlJTU2vcJjU11aa8JG3evLnW8rUpLi7WjTfeqICAAG3YsEFms9nxAwAAAE2WRy/znzJlisaMGaPk5GT1799fixcvVklJicaOHStJuvvuuxUdHa2srCxJ0qRJkzRkyBAtWrRIw4YN0+rVq7Vz5069/vrr1n2ePHlSR44c0bFjxyRJBw4ckHSx9ykiIsIajkpLS/XOO++ouLhYxcXFkqSOHTvK39/fqcdYUVGh8+fPO3WfTVXLli2d3v4AADSERwNSZmamTpw4oblz56qgoECJiYnKzs62DsQ+cuSIzRwFAwcO1KpVqzR79mzNmjVL8fHxWr9+vXUOJEnasGGDNWBJ0siRIyVJ8+bN0/z587V7925t27ZNktS9e3eb+uTl5Sk2NtYpx2YYhgoKCnTq1Cmn7K+5aNu2rSIiIphbCgDgUSaj6np1OKS4uFihoaHWKQLs5efn69SpU+rUqZNatWrFB/4lGIah0tJSHT9+XG3btlVkZKSnqwQAaIIu9fldxaM9SE1VRUWFNRx16NDB09XxGUFBQZKk48ePq1OnTpxuAwB4TLO+zN9VqsYctWrVysM18T1Vbca4LQCAJxGQXIjTao6jzQAA3oCABAAAYIeABAAAYIeAhGoKCgo0ceJEde3aVYGBgYqJidHw4cOtk3TGxsZq8eLF1babP3++EhMTa9zn6tWrZTKZlJGR4bqKAwCahHxLmbYeKlK+pcxjdeAqNtg4fPiwBg0apLZt2+q5555TQkKCzp8/rw8++EATJkyo9UbCl9rntGnTdM0117igxgCApmTNjiOaue4rVRqSn0nKGpGgzH6d3V4PAhJsPPjggzKZTNq+fbuCg4Ot66+44gr9x3/8h8P7q6io0F133aXHH39c//jHP5g4EwBQq3xLmTUcSVKlIc1at0/X9uioyNAgt9aFU2xezp3djCdPnlR2drYmTJhgE46qtG3b1uF9PvHEE+rUqZPGjRvnhBoCAJqyvKISaziqUmEYOlxU6va60IPkxdzdzXjw4EEZhqGePXtesuyjjz6q2bNn26w7d+6cevfubf35s88+0xtvvKG9e/c6u6oAgCYoLixYfibZhCR/k0mxYe6fV5AeJC9VWzejK3uSHLnrzB//+Eft3bvXZrn//vutj58+fVqjR4/W8uXLFRYW5orqAgCamMjQIGWNSJD//58Tz99k0tMj+rj99JpED5LXqqub0VUvlPj4eJlMpnoNxA4LC6t2s9/27dtb/3/o0CEdPnxYw4cPt66rrKyUJLVo0UIHDhxQt27dnFRzAEBTkdmvs67t0VGHi0oVG9bKI+FIogfJa1V1M/47V3cztm/fXunp6Vq6dKlKSkqqPe7IAOuePXvqq6++sulh+vWvf63rrrtOe/fuVUxMjBNrDgBoSiJDg5TarYPHwpFEQPJanupmXLp0qSoqKtS/f3+9//77+vbbb/X1119ryZIlSk1Nrfd+zGaz+vTpY7O0bdtWbdq0UZ8+fRQQEODCowAAoHE4xebFPNHN2LVrV+3evVtPPfWUpk6dqvz8fHXs2FFJSUl69dVXXf78AAB4A5PhyMhcWBUXFys0NFQWi0UhISE2j509e1Z5eXmKi4uT2Wz2UA19E20HAM1HvqVMeUUligsLdtvptLo+v/8dPUgAAMDtvGXG7NowBgkAALiVJ6aycRQBCQAAuJU3zZhdGwISAABwK09MZeMoApILMf7dcbQZADR93jRjdm0YpO0CLVu2lCSVlpYqKMh7ftm+oLT0YvdqVRsCAJomb5kxuzYEJBfw9/dX27Ztdfz4cUlSq1atZDKZLrFV82YYhkpLS3X8+HG1bdtW/v7+nq4SAMDFIkODvC4YVSEguUhERIQkWUMS6qdt27bWtgMAwFMISC5iMpkUGRmpTp066fz5856ujk9o2bIlPUcAAK9AQHIxf39/PvQBAPAxXMUGAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgh4AEAABgx+MBaenSpYqNjZXZbFZKSoq2b99eZ/m1a9eqZ8+eMpvNSkhI0KZNm2weX7dunW688UZ16NBBJpNJe/furbaPs2fPasKECerQoYNat26t22+/XYWFhc48LAAA4MM8GpDWrFmjKVOmaN68edq9e7f69u2r9PR0HT9+vMbyW7du1ahRozRu3Djt2bNHGRkZysjI0L59+6xlSkpKNHjwYD377LO1Pu8jjzyiv/3tb1q7dq3+93//V8eOHdOIESOcfnwAAMA3mQzDMDz15CkpKerXr59efvllSVJlZaViYmI0ceJEzZgxo1r5zMxMlZSUaOPGjdZ1AwYMUGJiopYtW2ZT9vDhw4qLi9OePXuUmJhoXW+xWNSxY0etWrVKv/3tbyVJ33zzjXr16qXc3FwNGDCgXnUvLi5WaGioLBaLQkJCHD10AADgAfX9/PZYD9K5c+e0a9cupaWl/VIZPz+lpaUpNze3xm1yc3NtyktSenp6reVrsmvXLp0/f95mPz179lTnzp0d2g8AAGi6WnjqiYuKilRRUaHw8HCb9eHh4frmm29q3KagoKDG8gUFBfV+3oKCAgUEBKht27YO7ae8vFzl5eXWn4uLi+v9nAAAwLd4fJC2r8jKylJoaKh1iYmJ8XSVAACAi3gsIIWFhcnf37/a1WOFhYWKiIiocZuIiAiHyte2j3PnzunUqVMO7WfmzJmyWCzW5ejRo/V+TgAA4Fs8FpACAgKUlJSknJwc67rKykrl5OQoNTW1xm1SU1NtykvS5s2bay1fk6SkJLVs2dJmPwcOHNCRI0fq3E9gYKBCQkJsFgAA0DR5bAySJE2ZMkVjxoxRcnKy+vfvr8WLF6ukpERjx46VJN19992Kjo5WVlaWJGnSpEkaMmSIFi1apGHDhmn16tXauXOnXn/9des+T548qSNHjujYsWOSLoYf6WLPUUREhEJDQzVu3DhNmTJF7du3V0hIiCZOnKjU1NR6X8EGAACaNo8GpMzMTJ04cUJz585VQUGBEhMTlZ2dbR2IfeTIEfn5/dLJNXDgQK1atUqzZ8/WrFmzFB8fr/Xr16tPnz7WMhs2bLAGLEkaOXKkJGnevHmaP3++JOnFF1+Un5+fbr/9dpWXlys9PV2vvPKKG44YAAD4Ao/Og+TLmAcJAADf4/XzIAEAAHgrAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAIAdAhIAAPAq+ZYybT1UpHxLmcfq0MJjzwwAAGBnzY4jmrnuK1Uakp9JyhqRoMx+nd1eD3qQAACAV8i3lFnDkSRVGtKsdfs80pNEQAIAAF4hr6jEGo6qVBiGDheVur0uBCQAAOAV4sKC5WeyXedvMik2rJXb60JAAgAAXiEyNEhZIxLkb7qYkvxNJj09oo8iQ4PcXhcGaQMAAK+R2a+zru3RUYeLShUb1soj4UgiIAEAAC8TGRrksWBUhVNsAAAAdghIAAAAdghIAAAAdghIAAAAdghIAAAAdghIAAAAdghIAAAAdghIAAAAdghIAAAAdjwekJYuXarY2FiZzWalpKRo+/btdZZfu3atevbsKbPZrISEBG3atMnmccMwNHfuXEVGRiooKEhpaWn69ttvbcr861//0m233aawsDCFhIRo8ODB+vjjj51+bAAAwDd5NCCtWbNGU6ZM0bx587R792717dtX6enpOn78eI3lt27dqlGjRmncuHHas2ePMjIylJGRoX379lnLLFy4UEuWLNGyZcu0bds2BQcHKz09XWfPnrWWufXWW3XhwgVt2bJFu3btUt++fXXrrbeqoKDA5ccMAAC8n8kwDMNTT56SkqJ+/frp5ZdfliRVVlYqJiZGEydO1IwZM6qVz8zMVElJiTZu3GhdN2DAACUmJmrZsmUyDENRUVGaOnWqpk2bJkmyWCwKDw/XypUrNXLkSBUVFaljx4769NNPdc0110iSTp8+rZCQEG3evFlpaWn1qntxcbFCQ0NlsVgUEhLS2KYAAABuUN/Pb4/1IJ07d067du2yCSR+fn5KS0tTbm5ujdvk5uZWCzDp6enW8nl5eSooKLApExoaqpSUFGuZDh066PLLL9d//dd/qaSkRBcuXNBrr72mTp06KSkpqdb6lpeXq7i42GYBAABNk8cCUlFRkSoqKhQeHm6zPjw8vNZTXQUFBXWWr/q3rjImk0kfffSR9uzZozZt2shsNuuFF15Qdna22rVrV2t9s7KyFBoaal1iYmIcO2AAAOAzPD5I290Mw9CECRPUqVMn/eMf/9D27duVkZGh4cOHKz8/v9btZs6cKYvFYl2OHj3qxloDAAB38lhACgsLk7+/vwoLC23WFxYWKiIiosZtIiIi6ixf9W9dZbZs2aKNGzdq9erVGjRokK6++mq98sorCgoK0ltvvVVrfQMDAxUSEmKzAACApsljASkgIEBJSUnKycmxrqusrFROTo5SU1Nr3CY1NdWmvCRt3rzZWj4uLk4RERE2ZYqLi7Vt2zZrmdLSUkkXxzv9Oz8/P1VWVjb+wAAAgM9r4cknnzJlisaMGaPk5GT1799fixcvVklJicaOHStJuvvuuxUdHa2srCxJ0qRJkzRkyBAtWrRIw4YN0+rVq7Vz5069/vrrki6OL5o8ebIWLFig+Ph4xcXFac6cOYqKilJGRoakiyGrXbt2GjNmjObOnaugoCAtX75ceXl5GjZsmEfaAQAAeBePBqTMzEydOHFCc+fOVUFBgRITE5WdnW0dZH3kyBGbnp6BAwdq1apVmj17tmbNmqX4+HitX79effr0sZaZPn26SkpKNH78eJ06dUqDBw9Wdna2zGazpIun9rKzs/XYY4/p+uuv1/nz53XFFVfor3/9q/r27eveBgAAAF7Jo/Mg+TLmQQIAwPd4/TxIAAAA3oqABAAAYIeABAAAYIeABAAAYIeABAAAYIeABAAAYIeABAAAYIeABAAAYIeABAAAYIeABAAAYIeABAAAPCLfUqath4qUbynzdFWq8ejNagEAQPO0ZscRzVz3lSoNyc8kZY1IUGa/zp6ulhU9SAAAwK3yLWXWcCRJlYY0a90+r+pJIiABAAC3yisqsYajKhWGocNFpZ6pUA0ISAAAwK3iwoLlZ7Jd528yKTaslWcqVAMCEgAAcKvI0CBljUiQv+liSvI3mfT0iD6KDA3ycM1+wSBtAADgdpn9OuvaHh11uKhUsWGtvCocSQQkAADgIZGhQV4XjKpwig0AAMAOAQkAAMAOAQkAAMAOAQkAAMAOAQkAAMAOAQkAAMAOAQkAAMAOAQkAAMAOAQkAAMAOAQkAAMAOAQkAAMAOAQkAAMAOAQkAAMAOAQkAAMAOAQkAAMAOAQkAAMAOAQkAAMAOAQkAAMAOAQkAAHhEvqVMWw8VKd9S5umqVNPC0xUAAADNz5odRzRz3VeqNCQ/k5Q1IkGZ/Tp7ulpW9CABAAC3yreUWcORJFUa0qx1+7yqJ4mABAAA3CqvqMQajqpUGIYOF5V6pkI1ICABAAC3igsLlp/Jdp2/yaTYsFaeqVANCEgAAMCtIkODlDUiQf6miynJ32TS0yP6KDI0yMM1+wWDtAEAgNtl9uusa3t01OGiUsWGtfKqcCQRkAAAgIdEhgZ5XTCqwik2AAAAOwQkAAAAOwQkAAAAO04JSHl5ebpw4UKDtl26dKliY2NlNpuVkpKi7du311l+7dq16tmzp8xmsxISErRp0yabxw3D0Ny5cxUZGamgoCClpaXp22+/rbafv//970pJSVFQUJDatWunjIyMBtUfAAA0PU4JSJdffnmNIeRS1qxZoylTpmjevHnavXu3+vbtq/T0dB0/frzG8lu3btWoUaM0btw47dmzRxkZGcrIyNC+ffusZRYuXKglS5Zo2bJl2rZtm4KDg5Wenq6zZ89ay7z//vsaPXq0xo4dqy+++EKff/657rzzTscPHAAANEkmwzCMSxe7aMSIETWu/+tf/6rrr79ebdq0kSStW7euXvtLSUlRv3799PLLL0uSKisrFRMTo4kTJ2rGjBnVymdmZqqkpEQbN260rhswYIASExO1bNkyGYahqKgoTZ06VdOmTZMkWSwWhYeHa+XKlRo5cqQuXLig2NhYPf744xo3blx9D72a4uJihYaGymKxKCQkpMH7AQAA7lPfz2+HepDWr1+vkydPKjQ01GaRpNatW9v8fCnnzp3Trl27lJaW9ktl/PyUlpam3NzcGrfJzc21KS9J6enp1vJ5eXkqKCiwKRMaGqqUlBRrmd27d+vHH3+Un5+frrrqKkVGRurmm2+26YWqSXl5uYqLi20WAL/w5rtyA4CjHJoHadWqVfrjH/+oMWPGaOzYsdb177zzjp566in17t273vsqKipSRUWFwsPDbdaHh4frm2++qXGbgoKCGssXFBRYH69aV1uZ7777TpI0f/58vfDCC4qNjdWiRYs0dOhQ/etf/1L79u1rfO6srCw9/vjj9T4+oDnx9rtyA4CjHOpBGjlypP7xj3/ojTfe0O23366ff/7ZVfVymcrKSknSY489pttvv11JSUlasWKFTCaT1q5dW+t2M2fOlMVisS5Hjx51V5UBr+YLd+UGAEc5PEg7NjZWn376qfr06aO+ffvqgw8+kMlkuvSGdsLCwuTv76/CwkKb9YWFhYqIiKhxm4iIiDrLV/1bV5nIyEhJsuntCgwMVNeuXXXkyJFa6xsYGKiQkBCbBYBv3JUbABzVoKvY/Pz89Pjjj2vVqlV64IEHVFFR4fA+AgIClJSUpJycHOu6yspK5eTkKDU1tcZtUlNTbcpL0ubNm63l4+LiFBERYVOmuLhY27Zts5ZJSkpSYGCgDhw4YC1z/vx5HT58WF26dHH4OIDmzhfuyg0AjmrUvdgGDx6sL7/8UocOHVK3bt0c3n7KlCkaM2aMkpOT1b9/fy1evFglJSXW8U133323oqOjlZWVJUmaNGmShgwZokWLFmnYsGFavXq1du7cqddff12SZDKZNHnyZC1YsEDx8fGKi4vTnDlzFBUVZZ3nKCQkRPfff7/mzZunmJgYdenSRc8995wk6Xe/+11jmgNolqruyj1r3T5VGIZX3pUbABzV6JvVtm7dWn379m3QtpmZmTpx4oTmzp2rgoICJSYmKjs72zrI+siRI/Lz+6WTa+DAgVq1apVmz56tWbNmKT4+XuvXr1efPn2sZaZPn66SkhKNHz9ep06d0uDBg5WdnS2z2Wwt89xzz6lFixYaPXq0ysrKlJKSoi1btqhdu3YNbAWgefP2u3IDgKMcmgfpqquuqtd4o927dzeqUr6AeZAAAPA99f38dqgH6d9vx2EYhrKysnT//ffXemk8AACAL3KoB8lemzZt9MUXX6hr167OrJNPoAcJAADf45KZtAEAAJoDAhIAAIAdAhIAAIAdhwZpL1myxObnCxcuaOXKlQoLC7NZ//DDDze+ZgAAAB7i0CDtuLi4S+/QZLLeELYpY5A2AAC+xyWX+efl5TW6YgAAAN7OoTFIW7ZsUe/evVVcXFztMYvFoiuuuEL/+Mc/nFY5IN9Spq2HirgzPADArRzqQVq8eLHuu+++GrukQkND9Yc//EEvvPCCrrnmGqdVEM3Xmh1HNHPdV6o0JD+TlDUiQZn9Onu6Wj4l31KmvKISxYUFc/sPAHCAQz1IX3zxhW666aZaH7/xxhu1a9euRlcKyLeUWcORJFUa0qx1++hJcsCaHUc06JktunP5Ng16ZovW7Dji6SoBgM9wKCAVFhaqZcuWtT7eokULnThxotGVAvKKSqzhqEqFYehwUalnKuRjCJgA0DgOBaTo6Gjt27ev1se//PJLRUZGNrpSQFxYsPzs7ovsbzIpNqyVZyrkYwiYANA4DgWkW265RXPmzNHZs2erPVZWVqZ58+bp1ltvdVrl0HxFhgYpa0SC/E0XU5K/yaSnR/RhHE09ETABoHEcmgepsLBQV199tfz9/fXQQw/p8ssvlyR98803Wrp0qSoqKrR7926Fh4e7rMLegnmQ3CPfUqbDRaWKDWtFOHLQmh1HNGvdPlUYhjVgMsgdQHNX389vhwKSJH3//fd64IEH9MEHH6hqU5PJpPT0dC1durRek0k2BQQk+AICJgDYcllAqvLzzz/r4MGDMgxD8fHxateuXYMr64sISAAA+B6XzKT979q1a6d+/fo1dHMAAACv5dAgbQAAgOaAgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAAGCHgAQAbpRvKdPWQ0XKt5R5uioA6tDC0xUAgOZizY4jmrnuK1Uakp9JyhqRoMx+nT1dLQA1oAcJANwg31JmDUeSVGlIs9btoycJ8FIEJABwg7yiEms4qlJhGDpcVOqZCgGoEwEJANwgLixYfibbdf4mk2LDWnmmQgDqREACADeIDA1S1ogE+ZsupiR/k0lPj+ijyNAgD9cMQE0YpA0AbpLZr7Ou7dFRh4tKFRvWinAEeDECEgC4UWRoEMEI8AFecYpt6dKlio2NldlsVkpKirZv315n+bVr16pnz54ym81KSEjQpk2bbB43DENz585VZGSkgoKClJaWpm+//bbGfZWXlysxMVEmk0l79+511iEBAAAf5vGAtGbNGk2ZMkXz5s3T7t271bdvX6Wnp+v48eM1lt+6datGjRqlcePGac+ePcrIyFBGRob27dtnLbNw4UItWbJEy5Yt07Zt2xQcHKz09HSdPXu22v6mT5+uqKgolx0fAADwPSbDMIxLF3OdlJQU9evXTy+//LIkqbKyUjExMZo4caJmzJhRrXxmZqZKSkq0ceNG67oBAwYoMTFRy5Ytk2EYioqK0tSpUzVt2jRJksViUXh4uFauXKmRI0dat/uf//kfTZkyRe+//76uuOIK7dmzR4mJifWqd3FxsUJDQ2WxWBQSEtKIFgAAAO5S389vj/YgnTt3Trt27VJaWpp1nZ+fn9LS0pSbm1vjNrm5uTblJSk9Pd1aPi8vTwUFBTZlQkNDlZKSYrPPwsJC3XfffXr77bfVqtWlL7MtLy9XcXGxzQIAAJomjwakoqIiVVRUKDw83GZ9eHi4CgoKatymoKCgzvJV/9ZVxjAM3XPPPbr//vuVnJxcr7pmZWUpNDTUusTExNRrOwAA4Hs8PgbJE1566SWdPn1aM2fOrPc2M2fOlMVisS5Hjx51YQ0BAIAneTQghYWFyd/fX4WFhTbrCwsLFRERUeM2ERERdZav+reuMlu2bFFubq4CAwPVokULde/eXZKUnJysMWPG1Pi8gYGBCgkJsVkAAEDT5NGAFBAQoKSkJOXk5FjXVVZWKicnR6mpqTVuk5qaalNekjZv3mwtHxcXp4iICJsyxcXF2rZtm7XMkiVL9MUXX2jv3r3au3evdZqANWvW6KmnnnLqMQIAAN/j8Ykip0yZojFjxig5OVn9+/fX4sWLVVJSorFjx0qS7r77bkVHRysrK0uSNGnSJA0ZMkSLFi3SsGHDtHr1au3cuVOvv/66JMlkMmny5MlasGCB4uPjFRcXpzlz5igqKkoZGRmSpM6dO9vUoXXr1pKkbt266bLLLnPTkQMAAG/l8YCUmZmpEydOaO7cuSooKFBiYqKys7Otg6yPHDkiP79fOroGDhyoVatWafbs2Zo1a5bi4+O1fv169enTx1pm+vTpKikp0fjx43Xq1CkNHjxY2dnZMpvNbj8+AADqI99SpryiEsWFBTPbuhfw+DxIvop5kAAAzrJmxxHNXPeVKg3JzyRljUhQZr/Ol94QDvOJeZAAAGju8i1l1nAkSZWGNGvdPuVbyjxbsWaOgAQAgAflFZVYw1GVCsPQ4aJS68/5ljJtPVREaHIjj49BAgCgOYsLC5afSTYhyd9kUmzYxbs8cPrNM+hBAgDAgyJDg5Q1IkH+JpOki+Ho6RF9FBkaxOk3D6IHCQAAD8vs11nX9uiow0Wlig1rZb2Kra7Tb1zp5loEJAAAvEBkaFC10HOp029wHU6xAQDgpeo6/QbXogcJAAAvVtvpN4nJJV2JgAQAgJer6fQbV7e5FqfYAKCBmJsGnsLVba5HDxIANADf3uFJXN3mevQgAYCD+PYOT6u6uu3fcXWbcxGQAMBB9bk1BOBKXN3mepxiAwAHMTcN6uKuK8vquroNjUdAAgAHVX17n7VunyoMg2/vsHLV2LTaQldNV7fBOUyGYRiXLgZ7xcXFCg0NlcViUUhIiKerA8AD8i1lfHuHVb6lTIOe2VKtZ/GzGdc16vXBBQHOVd/Pb8YgAUADRYYGKbVbB8IRJLlmbBoXBHgOAQkAACdwxZVlXBDgOQQkAACcwBVXlnE5v+cwSBsAACdx9pVlXBDgOQQkAACcyNlXlnE5v2cQkAAA8AJ1zZ/E5fzuR0ACAMDDuJTf+zBIGwAAD2rMpfz5ljJtPVTEZf8uQA8SAAAeVNel/HWdVqPXybXoQQIAwIMacik/E0i6HgEJAAAPasj8SUwg6XqcYgMAwMMcvZS/qtfJ/r5vTCDpPPQgAQBQC3cOgnbk3n6umLUbtuhBAgCgBt4+CJoJJF2LHiQAAOz4yiBoR3qd4BgCEgAAdjwxCJo5jbwLp9gAALDj7kHQ3n46rzmiBwkAADvuHATtK6fzmht6kAAAqIG7BkE3dCZtuBYBCQCAWkSGBrk8pDCnkXfiFBsAAB7EnEbeiR4kAAA8jDmNvA8BCQAAL+CO03moP06xAQAA2CEgAQAA2CEgAQAA2CEgAQAA2CEgAQAA2CEgAQAA2CEgAQAA2CEgAQAA2PGKgLR06VLFxsbKbDYrJSVF27dvr7P82rVr1bNnT5nNZiUkJGjTpk02jxuGoblz5yoyMlJBQUFKS0vTt99+a3388OHDGjdunOLi4hQUFKRu3bpp3rx5OnfunEuODwDgPPmWMm09VMTd7uFSHg9Ia9as0ZQpUzRv3jzt3r1bffv2VXp6uo4fP15j+a1bt2rUqFEaN26c9uzZo4yMDGVkZGjfvn3WMgsXLtSSJUu0bNkybdu2TcHBwUpPT9fZs2clSd98840qKyv12muvaf/+/XrxxRe1bNkyzZo1yy3HDABomDU7jmjQM1t05/JtGvTMFq3ZccTTVUITZTIMw7h0MddJSUlRv3799PLLL0uSKisrFRMTo4kTJ2rGjBnVymdmZqqkpEQbN260rhswYIASExO1bNkyGYahqKgoTZ06VdOmTZMkWSwWhYeHa+XKlRo5cmSN9Xjuuef06quv6rvvvqtXvYuLixUaGiqLxaKQkBBHDxuAF8m3lCmvqERxYcHc6sGL5VvKNOiZLdXuev/ZjOv4vaHe6vv57dEepHPnzmnXrl1KS0uzrvPz81NaWppyc3Nr3CY3N9emvCSlp6dby+fl5amgoMCmTGhoqFJSUmrdp3QxRLVv377Wx8vLy1VcXGyzAPB99Ej4jryiEptwJEkVhqHDRaUue05O5zVfHg1IRUVFqqioUHh4uM368PBwFRQU1LhNQUFBneWr/nVknwcPHtRLL72kP/zhD7XWNSsrS6GhodYlJiam7oMD4PXyLWWaue4r64dupSHNWrePD0MvFRcWLD+T7Tp/k0mxYa1c8nyE5+bN42OQPO3HH3/UTTfdpN/97ne67777ai03c+ZMWSwW63L06FE31hKAK3iiRwINFxkapKwRCfI3XUxJ/iaTnh7RxyWn1wjPaOHJJw8LC5O/v78KCwtt1hcWFioiIqLGbSIiIuosX/VvYWGhIiMjbcokJibabHfs2DFdd911GjhwoF5//fU66xoYGKjAwMB6HRcA31DVI2E/psVVPRJovMx+nXVtj446XFSq2LBWLht7VFd4ZrxT8+DRHqSAgAAlJSUpJyfHuq6yslI5OTlKTU2tcZvU1FSb8pK0efNma/m4uDhFRETYlCkuLta2bdts9vnjjz9q6NChSkpK0ooVK+Tn1+w704Bmx509EnCeyNAgpXbr4NLfk7tP58H7eLQHSZKmTJmiMWPGKDk5Wf3799fixYtVUlKisWPHSpLuvvtuRUdHKysrS5I0adIkDRkyRIsWLdKwYcO0evVq7dy509oDZDKZNHnyZC1YsEDx8fGKi4vTnDlzFBUVpYyMDEm/hKMuXbro+eef14kTJ6z1qa3nCkDT5K4eCfiWqvA8a90+VRgG4bkZ8nhAyszM1IkTJzR37lwVFBQoMTFR2dnZ1kHWR44csendGThwoFatWqXZs2dr1qxZio+P1/r169WnTx9rmenTp6ukpETjx4/XqVOnNHjwYGVnZ8tsNku62ON08OBBHTx4UJdddplNfTw86wEAD4gMDeKDD9UQnps3j8+D5KtcNQ+SL8zH0pA6+sJxAQCavvp+fnu8Bwm/WLPjiPWqCT+TlDUiQZn9OtdrW3cFkIbUsTHHBQCAJzAy2Us05pJSd83V0ZA6cqksAPgWJse8iIDkJRo6H4s7A0hD6sg8MwDgO5gc8xcEJC8RHOBf4/pWAXX/itwZQBpy2SuXykLiGyngC+jxt0VA8hJHf675BfhDLeuruDOANGTOGOaZAd9IAd9Aj78tBml7idouJrzUNYbunqujrsteaxsozqWyzVdt30iv7dGR1wHgZZhZ3hYByUskx7aXSdK/5yGTpKTYdpfc1t0BpKY5Yy51pRrzzDRP3K4BrsC0Ia7B5Ji2CEheIjI0SM/cnqCZ73+lSl0895l1e0K9X5h1BRBXv5nQS4Da8I0UzuaKaUMIXL+gx/8XBCQv4ooXpjvmIGoqvQS8STof30jhTK74MsY8bdXR438RAcnLOPOF6a6enabQS8CbpOvwjRTO4uwvY/mWMs14/yvr0IZKQ5qx7it6vyGJq9h8iqOXSrvrioSqXoKqF5Of5FO9BFza6nruuPs6mj5nX7W76/ufZX8djGFIu7//uWEVRJNCQPIRDblU2u1zEJns/vVCNYVMLm0FXMtZ82A5e9qQhl49jOaBU2w+oKGnytw1/sNXBmnXdhqtKZwiBLyVs09fO/OUbWOuHm6Omts4TQKSD2jMeXd3jP/whUHalwpx3jKQuLm9AcG3OPr6dNWXJ2eN1Wzs1cPNSXMcp0lA8gGN7eFw9RUJvtADc6kQ5w0DiZvjGxB8R0Nen77w5ckb/va9na+cJXA2xiD5AG+/XYe310+q33gsTw4kZqA4vFlDX5++ci/Ghv7tO/seg956z8L6jNP01ro3Bj1IPsLbv+V4e/286TRaTXzhmzaar4a+Pr39764xnN3j6809yJc6S+DNdW8MApIP8fbJu7y9ft4c4nzhNCWar8a8Pr35766hnH3KydtPYdUVdL297o1BQEKz4q0hzlXftBn0DWdo7OvTW//uGsrZPb6+0INcW9D1hbo3FAEJcBFHw4mzv2k31W5veEZT7AlqKGf3+PpKD3JNQddX6t4QDNJGs+KugYQNmdhTct5AcQZ941Ia8rfAjOgXOfvCFF+40KU2vlz3S6EHCc2Gu3pUvOGcvCu7vTlt5/voXWw8Z/eo+XIPnS/XvS4EJDQL7gwt3nBO3lXd3nyw+j5vCPBNhbPHVvnyWC1frnttOMWGZsGd91vzhrlfXNHt7U2n7ZrinCuN4Uh7NNc5bQBH0YOEZsGdAwm9Ze4XZ3d7e0PPmEQvlj1H26O5zmkDOIoeJDQL7h5ImNmvsz6bcZ3+fN8AfTbjOo99wDhzUG1cWLDsOsZkMsmtPWPe1IvlDRrSHpGhQfrNVdE26zKuiqpzTpvm2r5o3uhBQrPh7oGETfGcfDXGpYs4k6t6sXx14HlD2iPfUqa/7PnRZt36Pcc0Lf1yr+klBLwBAQnNirNDi69+sDZEXlFJtTxkSD4/+NyXTyk1pD3qCkGemNOmOf0Nwbdwig1ooIbOdeSrmuLgc18/pdSQ9qjr9+iqU9G1Dfpubn9D8C0mwzDc3EneNBQXFys0NFQWi0UhISGero5XaE7fBPMtZRr0zJZq37Q/m3Fdkz72NTuOVBt87onelnxLmVNOlW49VKQ7l2+rtv7P9w1QarcOjamiWznaHpf6PTqrfaueq6Yeuub6NwTPq+/nN6fYUCNHw44vn6ZoiOY6FsZbJoRz1qnSpnJKydH2uNTv0VntW9ecS4x3grcjIKEaR8OOJyae83SQaM5jYZrS4HN3T8ngTb9jd/wevW28E+AIxiDBRkPGZLhzEkbJO8YtMBam6XDXlAzN8XfsifFOaDwmCr2IHiTYaEi3tzu/CXrTbRKcebqJ0w2e5enelKb6O75UD523nLLFL7ypl9PTCEiw0ZCw487TFN72IePLY2HgXs31d+yu8U5oPG/6AuoNOMXWDDjSXdrQbm93naZw5aXmnuxW5nRD0+dtv2N3vt6dOaM7XMfdwyW8HZf5N5CvXObf0O5SZ17m62yuuNTcW7qVvbnd4RwN/R0788IEb3m9w7s0l6kX6vv5TUBqIG8LSDW9eTblF7szg0RTbic0Dc4MNLzeURdvmevMlZgHqRmp7c3T28brOJMzxy005XbyZZ6eysFbOHtcCK931IWB878gIPm4ut48m+ugUEe5qp34gG84TgH9wtmBhvcFXEptX0Cb23sag7R93KXePL1pUKi3ckU7ecNcTb6qOc4XVBdnX5jA+wIaojm+p9GD5OMu9W2Q7tL6cWY7cals43AKyJYrptHgfQGOaK7vaQQkH1efN0/mGakfZ7UTH/CNwymg6lwRaHhfQH011/c0AlITwLdB78IHfOO4+/5ovoJA84vmNhbG05rrexqX+TeQt13m7+2a2xsag4wbjzmhUBP+tjyjKV3+z2X+8BrN9Q2t6qsHX0Eahh4T2GuuY2G8QXM8U8FVbHCp5nhFUtUxV+UiQ03/mAF34FYYntXcbhlDQIJLNcc3tOZ4zIA7uPJejIA9rwhIS5cuVWxsrMxms1JSUrR9+/Y6y69du1Y9e/aU2WxWQkKCNm3aZPO4YRiaO3euIiMjFRQUpLS0NH377bc2ZU6ePKm77rpLISEhatu2rcaNG6czZ844/diau+b4htbUj9mTN/VF88YcTnAnjwekNWvWaMqUKZo3b552796tvn37Kj09XcePH6+x/NatWzVq1CiNGzdOe/bsUUZGhjIyMrRv3z5rmYULF2rJkiVatmyZtm3bpuDgYKWnp+vs2bPWMnfddZf279+vzZs3a+PGjfr00081fvx4lx9vc9Mc39Ca8jG7YrI4ApfrNMW2zezXWZ/NuE5/vm+APptxXbMYzwjP8PhVbCkpKerXr59efvllSVJlZaViYmI0ceJEzZgxo1r5zMxMlZSUaOPGjdZ1AwYMUGJiopYtWybDMBQVFaWpU6dq2rRpkiSLxaLw8HCtXLlSI0eO1Ndff63evXtrx44dSk5OliRlZ2frlltu0Q8//KCoqKhL1pur2BzTHK9IamrH7IqbnDbXAfzuQNsCNavv57dHe5DOnTunXbt2KS0tzbrOz89PaWlpys3NrXGb3Nxcm/KSlJ6ebi2fl5engoICmzKhoaFKSUmxlsnNzVXbtm2t4UiS0tLS5Ofnp23bttX4vOXl5SouLrZZUH/NbXCf1PSO2dljq5rjAH53oW2BxvNoQCoqKlJFRYXCw8Nt1oeHh6ugoKDGbQoKCuosX/Xvpcp06tTJ5vEWLVqoffv2tT5vVlaWQkNDrUtMTEw9jxJoGpw9torB7K5D2wKN5/ExSL5i5syZslgs1uXo0aOerhLgVs4eW9XUB7N7Em0LNJ5HJ4oMCwuTv7+/CgsLbdYXFhYqIiKixm0iIiLqLF/1b2FhoSIjI23KJCYmWsvYDwK/cOGCTp48WevzBgYGKjAwsP4HBzRBzpwsjluKuA5tCzSeRwNSQECAkpKSlJOTo4yMDEkXB2nn5OTooYceqnGb1NRU5eTkaPLkydZ1mzdvVmpqqiQpLi5OERERysnJsQai4uJibdu2TQ888IB1H6dOndKuXbuUlJQkSdqyZYsqKyuVkpLimoMFmghnznDdHGfndRfaFmgcj99qZMqUKRozZoySk5PVv39/LV68WCUlJRo7dqwk6e6771Z0dLSysrIkSZMmTdKQIUO0aNEiDRs2TKtXr9bOnTv1+uuvS5JMJpMmT56sBQsWKD4+XnFxcZozZ46ioqKsIaxXr1666aabdN9992nZsmU6f/68HnroIY0cObJeV7ABcB5uKeI6tC3QcB4PSJmZmTpx4oTmzp2rgoICJSYmKjs72zrI+siRI/Lz+2Wo1MCBA7Vq1SrNnj1bs2bNUnx8vNavX68+ffpYy0yfPl0lJSUaP368Tp06pcGDBys7O1tms9la5t1339VDDz2kG264QX5+frr99tu1ZMkS9x04AADwWh6fB8lXMQ8SAAC+xyfmQQIAAPBGBCQAAAA7BCQAAAA7BCQAAAA7BCQAAAA7BCQAAAA7BCQAAAA7BCQAAAA7BCQAAAA7Hr/ViK+qmoC8uLjYwzUBAAD1VfW5fakbiRCQGuj06dOSpJiYGA/XBAAAOOr06dMKDQ2t9XHuxdZAlZWVOnbsmNq0aSOTyeTw9sXFxYqJidHRo0eb9b3caIeLaIdf0BYX0Q4X0Q6/oC0uamw7GIah06dPKyoqSn5+tY80ogepgfz8/HTZZZc1ej8hISHN+oVehXa4iHb4BW1xEe1wEe3wC9riosa0Q109R1UYpA0AAGCHgAQAAGCHgOQhgYGBmjdvngIDAz1dFY+iHS6iHX5BW1xEO1xEO/yCtrjIXe3AIG0AAAA79CABAADYISABAADYISABAADYISABAADYISC5yNKlSxUbGyuz2ayUlBRt37691rL79+/X7bffrtjYWJlMJi1evNh9FXUDR9pi+fLluuaaa9SuXTu1a9dOaWlpdZb3JY60w7p165ScnKy2bdsqODhYiYmJevvtt91YW9dypC3+3erVq2UymZSRkeHaCrqJI+2wcuVKmUwmm8VsNruxtq7j6Ovh1KlTmjBhgiIjIxUYGKgePXpo06ZNbqqtaznSFkOHDq32mjCZTBo2bJgba+wajr4mFi9erMsvv1xBQUGKiYnRI488orNnzzauEgacbvXq1UZAQIDx5ptvGvv37zfuu+8+o23btkZhYWGN5bdv325MmzbN+POf/2xEREQYL774onsr7EKOtsWdd95pLF261NizZ4/x9ddfG/fcc48RGhpq/PDDD26uuXM52g4ff/yxsW7dOuOf//yncfDgQWPx4sWGv7+/kZ2d7eaaO5+jbVElLy/PiI6ONq655hrjtttuc09lXcjRdlixYoUREhJi5OfnW5eCggI319r5HG2H8vJyIzk52bjllluMzz77zMjLyzM++eQTY+/evW6uufM52hY//fSTzeth3759hr+/v7FixQr3VtzJHG2Hd9991wgMDDTeffddIy8vz/jggw+MyMhI45FHHmlUPQhILtC/f39jwoQJ1p8rKiqMqKgoIysr65LbdunSpUkFpMa0hWEYxoULF4w2bdoYb731lquq6BaNbQfDMIyrrrrKmD17tiuq51YNaYsLFy4YAwcONP70pz8ZY8aMaRIBydF2WLFihREaGuqm2rmPo+3w6quvGl27djXOnTvnriq6TWPfJ1588UWjTZs2xpkzZ1xVRbdwtB0mTJhgXH/99TbrpkyZYgwaNKhR9eAUm5OdO3dOu3btUlpamnWdn5+f0tLSlJub68GauZ8z2qK0tFTnz59X+/btXVVNl2tsOxiGoZycHB04cEDXXnutK6vqcg1tiyeeeEKdOnXSuHHj3FFNl2toO5w5c0ZdunRRTEyMbrvtNu3fv98d1XWZhrTDhg0blJqaqgkTJig8PFx9+vTR008/rYqKCndV2yWc8X75xhtvaOTIkQoODnZVNV2uIe0wcOBA7dq1y3oa7rvvvtOmTZt0yy23NKou3KzWyYqKilRRUaHw8HCb9eHh4frmm288VCvPcEZbPProo4qKirL5Y/E1DW0Hi8Wi6OholZeXy9/fX6+88op+9atfubq6LtWQtvjss8/0xhtvaO/evW6ooXs0pB0uv/xyvfnmm7ryyitlsVj0/PPPa+DAgdq/f79TbpztCQ1ph++++05btmzRXXfdpU2bNungwYN68MEHdf78ec2bN88d1XaJxr5fbt++Xfv27dMbb7zhqiq6RUPa4c4771RRUZEGDx4swzB04cIF3X///Zo1a1aj6kJAgtd65plntHr1an3yySdNZjCqI9q0aaO9e/fqzJkzysnJ0ZQpU9S1a1cNHTrU01Vzm9OnT2v06NFavny5wsLCPF0dj0pNTVVqaqr154EDB6pXr1567bXX9OSTT3qwZu5VWVmpTp066fXXX5e/v7+SkpL0448/6rnnnvPpgNRYb7zxhhISEtS/f39PV8XtPvnkEz399NN65ZVXlJKSooMHD2rSpEl68sknNWfOnAbvl4DkZGFhYfL391dhYaHN+sLCQkVERHioVp7RmLZ4/vnn9cwzz+ijjz7SlVde6cpqulxD28HPz0/du3eXJCUmJurrr79WVlaWTwckR9vi0KFDOnz4sIYPH25dV1lZKUlq0aKFDhw4oG7durm20i7gjPeJli1b6qqrrtLBgwddUUW3aEg7REZGqmXLlvL397eu69WrlwoKCnTu3DkFBAS4tM6u0pjXRElJiVavXq0nnnjClVV0i4a0w5w5czR69Gjde++9kqSEhASVlJRo/Pjxeuyxx+Tn17DRRIxBcrKAgAAlJSUpJyfHuq6yslI5OTk23/6ag4a2xcKFC/Xkk08qOztbycnJ7qiqSznrNVFZWany8nJXVNFtHG2Lnj176quvvtLevXuty69//Wtdd9112rt3r2JiYtxZfadxxmuioqJCX331lSIjI11VTZdrSDsMGjRIBw8etAZlSfrXv/6lyMhInw1HUuNeE2vXrlV5ebl+//vfu7qaLteQdigtLa0WgqoCtNGY2802aog3arR69WojMDDQWLlypfHPf/7TGD9+vNG2bVvrJbmjR482ZsyYYS1fXl5u7Nmzx9izZ48RGRlpTJs2zdizZ4/x7bffeuoQnMbRtnjmmWeMgIAA47333rO5fPX06dOeOgSncLQdnn76aePDDz80Dh06ZPzzn/80nn/+eaNFixbG8uXLPXUITuNoW9hrKlexOdoOjz/+uPHBBx8Yhw4dMnbt2mWMHDnSMJvNxv79+z11CE7haDscOXLEaNOmjfHQQw8ZBw4cMDZu3Gh06tTJWLBggacOwWka+rcxePBgIzMz093VdRlH22HevHlGmzZtjD//+c/Gd999Z3z44YdGt27djDvuuKNR9SAguchLL71kdO7c2QgICDD69+9v/N///Z/1sSFDhhhjxoyx/pyXl2dIqrYMGTLE/RV3AUfaokuXLjW2xbx589xfcSdzpB0ee+wxo3v37obZbDbatWtnpKamGqtXr/ZArV3Dkbaw11QCkmE41g6TJ0+2lg0PDzduueUWY/fu3R6otfM5+nrYunWrkZKSYgQGBhpdu3Y1nnrqKePChQturrVrONoW33zzjSHJ+PDDD91cU9dypB3Onz9vzJ8/3+jWrZthNpuNmJgY48EHHzR+/vnnRtXBZBiN6X8CAABoehiDBAAAYIeABAAAYIeABAAAYIeABAAAYIeABAAAYIeABAAAYIeABAAAYIeABABe7p577lFGRoanqwE0KwQkAA12zz33yGQyWZcOHTropptu0pdffunpqjnFvx9b1TJ48GCXPd/hw4dlMpm0d+9em/X/+Z//qZUrV7rseQFUR0AC0Cg33XST8vPzlZ+fr5ycHLVo0UK33nqrp6vlNCtWrLAeX35+vjZs2FBjufPnz7usDqGhoWrbtq3L9g+gOgISgEYJDAxURESEIiIilJiYqBkzZujo0aM6ceKErr/+ej300EM25U+cOKGAgADr3bpjY2P15JNPatSoUQoODlZ0dLSWLl1qs80LL7yghIQEBQcHKyYmRg8++KDOnDljffz777/X8OHD1a5dOwUHB+uKK67Qpk2bJEk///yz7rrrLnXs2FFBQUGKj4/XihUr6n18bdu2tR5fRESE2rdvb+3pWbNmjYYMGSKz2ax3331XP/30k0aNGqXo6Gi1atVKCQkJ+vOf/2yzv8rKSi1cuFDdu3dXYGCgOnfurKeeekqSFBcXJ0m66qqrZDKZNHToUEnVT7GVl5fr4YcfVqdOnWQ2mzV48GDt2LHD+vgnn3wik8mknJwcJScnq1WrVho4cKAOHDhQ7+MGmjsCEgCnOXPmjN555x11795dHTp00L333qtVq1apvLzcWuadd95RdHS0rr/+euu65557Tn379tWePXs0Y8YMTZo0SZs3b7Y+7ufnpyVLlmj//v166623tGXLFk2fPt36+IQJE1ReXq5PP/1UX331lZ599lm1bt1akjRnzhz985//1P/8z//o66+/1quvvqqwsDCnHG9VXb/++mulp6fr7NmzSkpK0t///nft27dP48eP1+jRo7V9+3brNjNnztQzzzxjrdeqVasUHh4uSdZyH330kfLz87Vu3boan3f69Ol6//339dZbb2n37t3q3r270tPTdfLkSZtyjz32mBYtWqSdO3eqRYsW+o//+A+nHDfQLDTqVrcAmrUxY8YY/v7+RnBwsBEcHGxIMiIjI41du3YZhmEYZWVlRrt27Yw1a9ZYt7nyyiuN+fPnW3/u0qWLcdNNN9nsNzMz07j55ptrfd61a9caHTp0sP6ckJBgs89/N3z4cGPs2LENOj5Jhtlsth5fcHCw8Ze//MXIy8szJBmLFy++5D6GDRtmTJ061TAMwyguLjYCAwON5cuX11i2ar979uyxWT9mzBjjtttuMwzDMM6cOWO0bNnSePfdd62Pnzt3zoiKijIWLlxoGIZhfPzxx4Yk46OPPrKW+fvf/25IMsrKyhxpAqDZogcJQKNcd9112rt3r/bu3avt27crPT1dN998s77//nuZzWaNHj1ab775piRp9+7d2rdvn+655x6bfaSmplb7+euvv7b+/NFHH+mGG25QdHS02rRpo9GjR+unn35SaWmpJOnhhx/WggULNGjQIM2bN89mkPgDDzyg1atXKzExUdOnT9fWrVsdOr4XX3zRenx79+7Vr371K+tjycnJNmUrKir05JNPKiEhQe3bt1fr1q31wQcf6MiRI5Kkr7/+WuXl5brhhhscqsO/O3TokM6fP69BgwZZ17Vs2VL9+/e3aTNJuvLKK63/j4yMlCQdP368wc8NNCcEJACNEhwcrO7du6t79+7q16+f/vSnP6mkpETLly+XJN17773avHmzfvjhB61YsULXX3+9unTpUu/9Hz58WLfeequuvPJKvf/++9q1a5d1jNK5c+esz/Hdd99p9OjR+uqrr5ScnKyXXnpJkqxh7ZFHHtGxY8d0ww03aNq0afV+/oiICOvxde/eXcHBwTbH/u+ee+45/ed//qceffRRffzxx9q7d6/S09Ot9QwKCqr38zpDy5Ytrf83mUySLo6BAnBpBCQATmUymeTn56eysjJJUkJCgpKTk7V8+XKtWrWqxnEw//d//1ft5169ekmSdu3apcrKSi1atEgDBgxQjx49dOzYsWr7iImJ0f33369169Zp6tSp1oAmSR07dtSYMWP0zjvvaPHixXr99dedechWn3/+uW677Tb9/ve/V9++fdW1a1f961//sj4eHx+voKAg6wB1ewEBAZIu9kTVplu3bgoICNDnn39uXXf+/Hnt2LFDvXv3dtKRAGjh6QoA8G3l5eUqKCiQdPGKsZdffllnzpzR8OHDrWXuvfdePfTQQwoODtZvfvObavv4/PPPtXDhQmVkZGjz5s1au3at/v73v0uSunfvrvPnz+ull17S8OHD9fnnn2vZsmU220+ePFk333yzevTooZ9//lkff/yxNWDNnTtXSUlJuuKKK1ReXq6NGzdaH3O2+Ph4vffee9q6davatWunF154QYWFhdbgYjab9eijj2r69OkKCAjQoEGDdOLECe3fv1/jxo1Tp06dFBQUpOzsbF122WUym80KDQ21eY7g4GA98MAD+uMf/6j27durc+fOWrhwoUpLSzVu3DiXHBfQHNGDBKBRsrOzFRkZqcjISKWkpGjHjh1au3at9RJ1SRo1apRatGihUaNGyWw2V9vH1KlTtXPnTl111VVasGCBXnjhBaWnp0uS+vbtqxdeeEHPPvus+vTpo3fffVdZWVk221dUVGjChAnq1auXbrrpJvXo0UOvvPKKpIu9MjNnztSVV16pa6+9Vv7+/lq9erVL2mL27Nm6+uqrlZ6erqFDhyoiIqLaDNhz5szR1KlTNXfuXPXq1UuZmZnWcUEtWrTQkiVL9NprrykqKkq33XZbjc/zzDPP6Pbbb9fo0aN19dVX6+DBg/rggw/Url07lxwX0ByZDMMwPF0JAE3b4cOH1a1bN+3YsUNXX321zWOxsbGaPHmyJk+e7JnKAUANOMUGwGXOnz+vn376SbNnz9aAAQOqhSMA8FacYgPgMp9//rkiIyO1Y8eOauOGPO3pp59W69ata1xuvvlmT1cPgIdxig1As3Ty5MlqM09XCQoKUnR0tJtrBMCbEJAAAADscIoNAADADgEJAADADgEJAADADgEJAADADgEJAADADgEJAADADgEJAADADgEJAADAzv8D+geDcGy0RHsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAU9FJREFUeJzt3X9YVFXiP/D3AM4MogwiMgMsCv4gf6EYCKImlmyYZpK1IbqGfv2xW2q66hZWSm0aZlamkZRb2icrSbPN1I9laNuTICJqCqKpYerGoGgOCgjInO8ffrjbxA/hwvx+v56HR7n33LnnnmeYec85555RCCEEiIiIiKhFXKxdASIiIiJ7xBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRUQO7YUXXoBCoWhWWYVCgRdeeMGs9Rk5ciRGjhxps49HRM3HEEVEFrFx40YoFArpx83NDQEBAZg6dSr+85//WLt6NicoKMikvXx9fXHPPffg888/b5PHr6iowAsvvIBvv/22TR6PyBkxRBGRRf3jH//Ahx9+iPT0dDzwwAPYtGkTYmJicPPmTbOc7/nnn0dlZaVZHtvcwsLC8OGHH+LDDz/EokWL8Msvv2DChAlIT09v9WNXVFTgxRdfZIgiagU3a1eAiJzLAw88gIiICADAjBkz4OPjg1deeQXbt2/HY4891ubnc3Nzg5ubfb7UBQQE4M9//rP0++OPP46ePXvijTfewF//+lcr1oyIAPZEEZGV3XPPPQCAs2fPmmw/efIkHn30UXh7e0OtViMiIgLbt283KVNTU4MXX3wRvXr1glqtRufOnTF8+HDs2bNHKtPQnKiqqir87W9/Q5cuXdCxY0c89NBDuHjxYr26TZ06FUFBQfW2N/SYGzZswH333QdfX1+oVCr07dsX69ata1Fb3IlOp0OfPn1QVFTUZLlLly5h+vTp0Gq1UKvVGDhwID744ANp/7lz59ClSxcAwIsvvigNGZp7PhiRo7HPj2dE5DDOnTsHAOjUqZO0raCgAMOGDUNAQACSk5Ph4eGBTz/9FPHx8fjss8/w8MMPA7gdZlJTUzFjxgxERkairKwMhw4dwuHDh/HHP/6x0XPOmDEDmzZtwqRJkzB06FDs3bsXY8eObdV1rFu3Dv369cNDDz0ENzc3fPnll3jyySdhNBoxe/bsVj12nZqaGly4cAGdO3dutExlZSVGjhyJM2fOYM6cOQgODsaWLVswdepUXLt2DfPmzUOXLl2wbt06PPHEE3j44YcxYcIEAMCAAQPapJ5ETkMQEVnAhg0bBADxzTffiMuXL4sLFy6IrVu3ii5dugiVSiUuXLgglR01apQIDQ0VN2/elLYZjUYxdOhQ0atXL2nbwIEDxdixY5s8b0pKivjtS93Ro0cFAPHkk0+alJs0aZIAIFJSUqRtSUlJolu3bnd8TCGEqKioqFcuLi5OdO/e3WRbTEyMiImJabLOQgjRrVs3cf/994vLly+Ly5cvix9++EFMnDhRABBz585t9PFWr14tAIhNmzZJ26qrq0V0dLTo0KGDKCsrE0IIcfny5XrXS0Qtw+E8IrKo2NhYdOnSBYGBgXj00Ufh4eGB7du34w9/+AMA4OrVq9i7dy8ee+wxXL9+HaWlpSgtLcWVK1cQFxeH06dPS3fzeXl5oaCgAKdPn272+Xft2gUAeOqpp0y2z58/v1XX5e7uLv3fYDCgtLQUMTEx+Omnn2AwGGQ95tdff40uXbqgS5cuGDhwILZs2YIpU6bglVdeafSYXbt2QafTITExUdrWrl07PPXUU7hx4wb+/e9/y6oLEdXH4Twisqi0tDSEhITAYDDg/fffx3fffQeVSiXtP3PmDIQQWLJkCZYsWdLgY1y6dAkBAQH4xz/+gfHjxyMkJAT9+/fH6NGjMWXKlCaHpX7++We4uLigR48eJtvvuuuuVl3X/v37kZKSguzsbFRUVJjsMxgM0Gg0LX7MqKgoLFu2DAqFAu3bt0efPn3g5eXV5DE///wzevXqBRcX08/Iffr0kfYTUdtgiCIii4qMjJTuzouPj8fw4cMxadIknDp1Ch06dIDRaAQALFq0CHFxcQ0+Rs+ePQEAI0aMwNmzZ/HFF1/g66+/xj//+U+88cYbSE9Px4wZM1pd18YW6aytrTX5/ezZsxg1ahR69+6N119/HYGBgVAqldi1axfeeOMN6ZpaysfHB7GxsbKOJSLzY4giIqtxdXVFamoq7r33Xrz11ltITk5G9+7dAdwegmpOgPD29sa0adMwbdo03LhxAyNGjMALL7zQaIjq1q0bjEYjzp49a9L7dOrUqXplO3XqhGvXrtXb/vvenC+//BJVVVXYvn07unbtKm3ft2/fHevf1rp164Zjx47BaDSa9EadPHlS2g80HhCJqPk4J4qIrGrkyJGIjIzE6tWrcfPmTfj6+mLkyJF45513UFxcXK/85cuXpf9fuXLFZF+HDh3Qs2dPVFVVNXq+Bx54AACwZs0ak+2rV6+uV7ZHjx4wGAw4duyYtK24uLjequGurq4AACGEtM1gMGDDhg2N1sNcxowZA71ej4yMDGnbrVu3sHbtWnTo0AExMTEAgPbt2wNAgyGRiJqHPVFEZHV///vf8ac//QkbN27EX//6V6SlpWH48OEIDQ3FzJkz0b17d5SUlCA7OxsXL17EDz/8AADo27cvRo4cifDwcHh7e+PQoUPYunUr5syZ0+i5wsLCkJiYiLfffhsGgwFDhw5FZmYmzpw5U6/sxIkT8cwzz+Dhhx/GU089hYqKCqxbtw4hISE4fPiwVO7++++HUqnEuHHj8Je//AU3btzA+vXr4evr22AQNKdZs2bhnXfewdSpU5GXl4egoCBs3boV+/fvx+rVq9GxY0cAtyfC9+3bFxkZGQgJCYG3tzf69++P/v37W7S+RHbN2rcHEpFzqFviIDc3t96+2tpa0aNHD9GjRw9x69YtIYQQZ8+eFY8//rjQ6XSiXbt2IiAgQDz44INi69at0nHLli0TkZGRwsvLS7i7u4vevXuL5cuXi+rqaqlMQ8sRVFZWiqeeekp07txZeHh4iHHjxokLFy40eMv/119/Lfr37y+USqW46667xKZNmxp8zO3bt4sBAwYItVotgoKCxCuvvCLef/99AUAUFRVJ5VqyxMGdlm9o7PFKSkrEtGnThI+Pj1AqlSI0NFRs2LCh3rFZWVkiPDxcKJVKLndAJINCiN/0PxMRERFRs3BOFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQycLFNMzIajfjll1/QsWNHfsUCERGRnRBC4Pr16/D396/3Zd6/xRBlRr/88gsCAwOtXQ0iIiKS4cKFC/jDH/7Q6H6GKDOq+3qFCxcuwNPT08q1ISIiouYoKytDYGCg9D7eGIYoM6obwvP09GSIIiIisjN3morDieVEREREMjBEEREREcnAEEVEREQkA+dEWVltbS1qamqsXQ2b0K5dO7i6ulq7GkRERM3CEGUlQgjo9Xpcu3bN2lWxKV5eXtDpdFxXi4iIbB5DlJXUBShfX1+0b9/e6UODEAIVFRW4dOkSAMDPz8/KNSIiImoaQ5QV1NbWSgGqc+fO1q6OzXB3dwcAXLp0Cb6+vhzaIyIim8aJ5VZQNweqffv2Vq6J7alrE84TIyIiW8cQZUXOPoTXELYJERHZC4YoIiIiIhkYooiIiIhkYIgiWfR6PebOnYvu3btDpVIhMDAQ48aNQ2ZmplQmKysLY8aMQadOnaBWqxEaGorXX38dtbW1Vqw5ERE5gmJDJbLOlqLYUGm1OvDuPGqxc+fOYdiwYfDy8sKrr76K0NBQ1NTU4KuvvsLs2bNx8uRJfP7553jssccwbdo07Nu3D15eXvjmm2/w9NNPIzs7G59++innPxERkSwZueexeNtxGAXgogBSJ4QiYXBXi9dDIYQQFj+rkygrK4NGo4HBYICnp6e0/ebNmygqKkJwcDDUarUVayjPmDFjcOzYMZw6dQoeHh4m+65du4Z27dqhW7duiImJwWeffWay/8svv8RDDz2EzZs3IyEhod5j23vbEBGReRUbKjFsxV4Yf5NeXBUKfJ98L/w07m1yjsbev3+Pw3kOwJJdmlevXsXu3bsxe/bsegEKuL3i+Ndff40rV65g0aJF9faPGzcOISEh+OSTT8xeVyIicjxFpeUmAQoAaoXAudIKi9eFw3l2ztJdmmfOnIEQAr179260zI8//ggA6NOnT4P7e/fuLZUhIiJqiWAfD7goUK8nKsjH8msvsifKjhUbKqUABdx+Qj27Ld+sPVItGf3lSDEREbU1P407UieEwvX/5tW6KhR4eUL/NhvKawn2RNmxpro0zfVk6tWrFxQKBU6ePNlomZCQEABAYWEhhg4dWm9/YWEh+vbta5b6ERGR40sY3BUjQrrgXGkFgnzaWyVAAeyJsmt1XZq/Ze4uTW9vb8TFxSEtLQ3l5eX19l+7dg33338/vL298dprr9Xbv337dpw+fRqJiYlmqyMRETk+P407ont0tlqAAhii7Jq1ujTT0tJQW1uLyMhIfPbZZzh9+jQKCwuxZs0aREdHw8PDA++88w6++OILzJo1C8eOHcO5c+fw3nvvYerUqXj00Ufx2GOPmbWORERE5sbhPDtnjS7N7t274/Dhw1i+fDkWLlyI4uJidOnSBeHh4Vi3bh0A4NFHH8W+ffuwfPly3HPPPbh58yZ69eqF5557DvPnz+caUUREZPe4TpQZOeo6UebEtiEiImvjOlFEREREZsQQRURERCQDQxQRERGRDAxRRERERDIwRFkR5/TXxzYhIiJ7wRBlBe3atQMAVFRY/ssSbV1dm9S1ERERka3iOlFW4OrqCi8vL1y6dAkA0L59e6dfN0kIgYqKCly6dAleXl5wdXW1dpWIiIiaxBBlJTqdDgCkIEW3eXl5SW1DRERkyxiirEShUMDPzw++vr6oqamxdnVsQrt27dgDRUREdoMhyspcXV0ZHIiIiOwQJ5YTERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJIPVQ1RaWhqCgoKgVqsRFRWFgwcPNll+y5Yt6N27N9RqNUJDQ7Fr1y6T/UIILF26FH5+fnB3d0dsbCxOnz5tUmb58uUYOnQo2rdvDy8vr3rn+OGHH5CYmIjAwEC4u7ujT58+ePPNN1t9rUREROQ4rBqiMjIysGDBAqSkpODw4cMYOHAg4uLiGl3FOysrC4mJiZg+fTqOHDmC+Ph4xMfHIz8/XyqzcuVKrFmzBunp6cjJyYGHhwfi4uJw8+ZNqUx1dTX+9Kc/4YknnmjwPHl5efD19cWmTZtQUFCA5557DosXL8Zbb73Vtg1AREREdkshhBDWOnlUVBQGDx4shROj0YjAwEDMnTsXycnJ9conJCSgvLwcO3bskLYNGTIEYWFhSE9PhxAC/v7+WLhwIRYtWgQAMBgM0Gq12LhxIyZOnGjyeBs3bsT8+fNx7dq1O9Z19uzZKCwsxN69e5t9fWVlZdBoNDAYDPD09Gz2cURERGQ9zX3/tlpPVHV1NfLy8hAbG/vfyri4IDY2FtnZ2Q0ek52dbVIeAOLi4qTyRUVF0Ov1JmU0Gg2ioqIafczmMhgM8Pb2btVjEBERkeOw2te+lJaWora2Flqt1mS7VqvFyZMnGzxGr9c3WF6v10v767Y1VkaOrKwsZGRkYOfOnU2Wq6qqQlVVlfR7WVmZ7HMSERGRbbP6xHJbl5+fj/HjxyMlJQX3339/k2VTU1Oh0Wikn8DAQAvVkoiIiCzNaiHKx8cHrq6uKCkpMdleUlICnU7X4DE6na7J8nX/tuQxm3LixAmMGjUKs2bNwvPPP3/H8osXL4bBYJB+Lly40OJzEhERkX2wWohSKpUIDw9HZmamtM1oNCIzMxPR0dENHhMdHW1SHgD27NkjlQ8ODoZOpzMpU1ZWhpycnEYfszEFBQW49957kZSUhOXLlzfrGJVKBU9PT5MfIiIickxWmxMFAAsWLEBSUhIiIiIQGRmJ1atXo7y8HNOmTQMAPP744wgICEBqaioAYN68eYiJicFrr72GsWPHYvPmzTh06BDeffddAIBCocD8+fOxbNky9OrVC8HBwViyZAn8/f0RHx8vnff8+fO4evUqzp8/j9raWhw9ehQA0LNnT3To0AH5+fm47777EBcXhwULFkjzqVxdXdGlSxfLNRARERHZLmFla9euFV27dhVKpVJERkaKAwcOSPtiYmJEUlKSSflPP/1UhISECKVSKfr16yd27txpst9oNIolS5YIrVYrVCqVGDVqlDh16pRJmaSkJAGg3s++ffuEEEKkpKQ0uL9bt24tujaDwSAACIPB0KLjiIiIyHqa+/5t1XWiHB3XiSIiIrI/Nr9OFBEREZE9Y4giIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGSweohKS0tDUFAQ1Go1oqKicPDgwSbLb9myBb1794ZarUZoaCh27dplsl8IgaVLl8LPzw/u7u6IjY3F6dOnTcosX74cQ4cORfv27eHl5dXgec6fP4+xY8eiffv28PX1xd///nfcunWrVddKREREjsOqISojIwMLFixASkoKDh8+jIEDByIuLg6XLl1qsHxWVhYSExMxffp0HDlyBPHx8YiPj0d+fr5UZuXKlVizZg3S09ORk5MDDw8PxMXF4ebNm1KZ6upq/OlPf8ITTzzR4Hlqa2sxduxYVFdXIysrCx988AE2btyIpUuXtm0DEBERkf0SVhQZGSlmz54t/V5bWyv8/f1Fampqg+Ufe+wxMXbsWJNtUVFR4i9/+YsQQgij0Sh0Op149dVXpf3Xrl0TKpVKfPLJJ/Ueb8OGDUKj0dTbvmvXLuHi4iL0er20bd26dcLT01NUVVU1+/oMBoMAIAwGQ7OPISIiIutq7vu31XqiqqurkZeXh9jYWGmbi4sLYmNjkZ2d3eAx2dnZJuUBIC4uTipfVFQEvV5vUkaj0SAqKqrRx2zsPKGhodBqtSbnKSsrQ0FBQaPHVVVVoayszOSHiIiIHJPVQlRpaSlqa2tNggoAaLVa6PX6Bo/R6/VNlq/7tyWP2ZLz/PYcDUlNTYVGo5F+AgMDm31OIiIisi9Wn1juSBYvXgyDwSD9XLhwwdpVIiIiIjOxWojy8fGBq6srSkpKTLaXlJRAp9M1eIxOp2uyfN2/LXnMlpznt+doiEqlgqenp8kPEREROSarhSilUonw8HBkZmZK24xGIzIzMxEdHd3gMdHR0SblAWDPnj1S+eDgYOh0OpMyZWVlyMnJafQxGzvP8ePHTe4S3LNnDzw9PdG3b99mPw4RERE5LjdrnnzBggVISkpCREQEIiMjsXr1apSXl2PatGkAgMcffxwBAQFITU0FAMybNw8xMTF47bXXMHbsWGzevBmHDh3Cu+++CwBQKBSYP38+li1bhl69eiE4OBhLliyBv78/4uPjpfOeP38eV69exfnz51FbW4ujR48CAHr27IkOHTrg/vvvR9++fTFlyhSsXLkSer0ezz//PGbPng2VSmXRNiIiIiIbZaG7BRu1du1a0bVrV6FUKkVkZKQ4cOCAtC8mJkYkJSWZlP/0009FSEiIUCqVol+/fmLnzp0m+41Go1iyZInQarVCpVKJUaNGiVOnTpmUSUpKEgDq/ezbt08qc+7cOfHAAw8Id3d34ePjIxYuXChqampadG1c4oCIiMj+NPf9WyGEEFbMcA6trKwMGo0GBoOB86OIiIjsRHPfv3l3HhEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEERERkU0qNlQi62wpig2V1q5Kg9ysXQEiIiKi38vIPY/F247DKAAXBZA6IRQJg7tau1omrN4TlZaWhqCgIKjVakRFReHgwYNNlt+yZQt69+4NtVqN0NBQ7Nq1y2S/EAJLly6Fn58f3N3dERsbi9OnT5uUuXr1KiZPngxPT094eXlh+vTpuHHjhkmZr776CkOGDEHHjh3RpUsXPPLIIzh37lybXDMRERE1rthQKQUoADAK4Nlt+TbXI2XVEJWRkYEFCxYgJSUFhw8fxsCBAxEXF4dLly41WD4rKwuJiYmYPn06jhw5gvj4eMTHxyM/P18qs3LlSqxZswbp6enIycmBh4cH4uLicPPmTanM5MmTUVBQgD179mDHjh347rvvMGvWLGl/UVERxo8fj/vuuw9Hjx7FV199hdLSUkyYMMF8jUFEREQAgKLScilA1akVAudKK6xToUYohBDizsXMIyoqCoMHD8Zbb70FADAajQgMDMTcuXORnJxcr3xCQgLKy8uxY8cOaduQIUMQFhaG9PR0CCHg7++PhQsXYtGiRQAAg8EArVaLjRs3YuLEiSgsLETfvn2Rm5uLiIgIAMDu3bsxZswYXLx4Ef7+/ti6dSsSExNRVVUFF5fbOfPLL7/E+PHjUVVVhXbt2jXr+srKyqDRaGAwGODp6dmqtiIiInIWxYZKDFux1yRIuSoU+D75Xvhp3M1+/ua+f1utJ6q6uhp5eXmIjY39b2VcXBAbG4vs7OwGj8nOzjYpDwBxcXFS+aKiIuj1epMyGo0GUVFRUpns7Gx4eXlJAQoAYmNj4eLigpycHABAeHg4XFxcsGHDBtTW1sJgMODDDz9EbGxskwGqqqoKZWVlJj9ERETUMn4ad6ROCIWrQgHgdoB6eUJ/iwSolrDaxPLS0lLU1tZCq9WabNdqtTh58mSDx+j1+gbL6/V6aX/dtqbK+Pr6mux3c3ODt7e3VCY4OBhff/01HnvsMfzlL39BbW0toqOj682/+r3U1FS8+OKLTZYhIiKiO0sY3BUjQrrgXGkFgnza21yAAmxgYrkt0uv1mDlzJpKSkpCbm4t///vfUCqVePTRR9HU6OfixYthMBiknwsXLliw1kRERI7FT+OO6B6dbTJAAVbsifLx8YGrqytKSkpMtpeUlECn0zV4jE6na7J83b8lJSXw8/MzKRMWFiaV+f3E9Vu3buHq1avS8WlpadBoNFi5cqVUZtOmTQgMDEROTg6GDBnSYP1UKhVUKtWdLp2IiIgcgNV6opRKJcLDw5GZmSltMxqNyMzMRHR0dIPHREdHm5QHgD179kjlg4ODodPpTMqUlZUhJydHKhMdHY1r164hLy9PKrN3714YjUZERUUBACoqKqQJ5XVcXV2lOhIRERFBWNHmzZuFSqUSGzduFCdOnBCzZs0SXl5eQq/XCyGEmDJlikhOTpbK79+/X7i5uYlVq1aJwsJCkZKSItq1ayeOHz8ulVmxYoXw8vISX3zxhTh27JgYP368CA4OFpWVlVKZ0aNHi0GDBomcnBzx/fffi169eonExERpf2ZmplAoFOLFF18UP/74o8jLyxNxcXGiW7duoqKiotnXZzAYBABhMBha00xERERkQc19/7ZqiBJCiLVr14quXbsKpVIpIiMjxYEDB6R9MTExIikpyaT8p59+KkJCQoRSqRT9+vUTO3fuNNlvNBrFkiVLhFarFSqVSowaNUqcOnXKpMyVK1dEYmKi6NChg/D09BTTpk0T169fNynzySefiEGDBgkPDw/RpUsX8dBDD4nCwsIWXRtDFBERkf1p7vu3VdeJcnRcJ4qIiMj+2Pw6UURERET2jCGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGWSFqy5YtmDBhAvr374/+/ftjwoQJ2Lp1a1vXjYiIiMhmtShEGY1GJCQkICEhASdOnEDPnj3Rs2dPFBQUICEhARMnToQQwlx1JSIiIidSbKhE1tlSFBsqrV2VBrm1pPCbb76Jb775Btu3b8eDDz5osm/79u2YNm0a3nzzTcyfP78t60hEREROJiP3PBZvOw6jAFwUQOqEUCQM7mrtaploUU/Uhg0b8Oqrr9YLUADw0EMPYeXKlXj//ffbrHJERETkfIoNlVKAAgCjAJ7dlm9zPVItClGnT59GbGxso/tjY2Nx+vTpVleKiIiInFdRabkUoOrUCoFzpRXWqVAjWhSi3N3dce3atUb3l5WVQa1Wt7ZORERE5MSCfTzgojDd5qpQIMinvXUq1IgWhajo6GisW7eu0f1paWmIjo5udaWIiIjIeflp3JE6IRSuittJylWhwMsT+sNP427lmplq0cTy5557DiNHjsSVK1ewaNEi9O7dG0IIFBYW4rXXXsMXX3yBffv2mauuRERE5CQSBnfFiJAuOFdagSCf9jYXoABAIVq4JsHnn3+OWbNm4erVqybbO3XqhHfeeQePPPJIm1bQnpWVlUGj0cBgMMDT09Pa1SEiIqJmaO77d4tDFABUVFTgq6++kiaRh4SE4P7770f79rY1VmltDFFERET2p7nv3y0aztu7dy/mzJmDAwcO4OGHHzbZZzAY0K9fP6Snp+Oee+6RV2siIiIiO9GiieWrV6/GzJkzG0xlGo0Gf/nLX/D666+3WeWIiIiIbFWLQtQPP/yA0aNHN7r//vvvR15eXqsrRURERGTrWhSiSkpK0K5du0b3u7m54fLly62uFBEREZGta1GICggIQH5+fqP7jx07Bj8/v1ZXioiIiMjWtShEjRkzBkuWLMHNmzfr7ausrERKSkqD36tHRERE5GhatMRBSUkJ7r77bri6umLOnDm46667AAAnT55EWloaamtrcfjwYWi1WrNV2J5wiQMiIiL7Y5YlDrRaLbKysvDEE09g8eLFqMtfCoUCcXFxSEtLY4Aiiyo2VKKotBzBPh42uZotERE5rhYN5wFAt27dsGvXLpSWliInJwcHDhxAaWkpdu3aheDg4BZXIC0tDUFBQVCr1YiKisLBgwebLL9lyxb07t0barUaoaGh2LVrl8l+IQSWLl0KPz8/uLu7IzY2VloUtM7Vq1cxefJkeHp6wsvLC9OnT8eNGzfqPc6qVasQEhIClUqFgIAALF++vMXXR+aTkXsew1bsxaT1ORi2Yi8ycs9bu0pEROREWhyi6nTq1AmDBw9GZGQkOnXqJOsxMjIysGDBAqSkpODw4cMYOHAg4uLicOnSpQbLZ2VlITExEdOnT8eRI0cQHx+P+Ph4k8nuK1euxJo1a5Ceno6cnBx4eHggLi7OZB7X5MmTUVBQgD179mDHjh347rvvMGvWLJNzzZs3D//85z+xatUqnDx5Etu3b0dkZKSs66S2V2yoxOJtx2H8v8FoowCe3ZaPYkOldStGREROQ9bXvrSVqKgoDB48GG+99RYAwGg0IjAwEHPnzkVycnK98gkJCSgvL8eOHTukbUOGDEFYWBjS09MhhIC/vz8WLlyIRYsWAbi9krpWq8XGjRsxceJEFBYWom/fvsjNzUVERAQAYPfu3RgzZgwuXrwIf39/FBYWYsCAAcjPz5fmfcnBOVHmk3W2FJPW59Tb/snMIYju0dkKNSIiIkfR3Pdv2T1RrVVdXY28vDzExsb+tzIuLoiNjUV2dnaDx2RnZ5uUB4C4uDipfFFREfR6vUkZjUaDqKgoqUx2dja8vLykAAUAsbGxcHFxQU7O7TflL7/8Et27d8eOHTsQHByMoKAgzJgxo96XLv9eVVUVysrKTH7IPIJ9POCiMN3mqlAgyIff30hERJZhtRBVWlqK2traehPRtVot9Hp9g8fo9fomy9f9e6cyvr6+Jvvd3Nzg7e0tlfnpp5/w888/Y8uWLfif//kfbNy4EXl5eXj00UebvKbU1FRoNBrpJzAwsMnyJJ+fxh2pE0LhqridpFwVCrw8oT8nlxMRkcW06O48Z2E0GlFVVYX/+Z//QUhICADgvffeQ3h4OE6dOtXoEN/ixYuxYMEC6feysjIGKTNKGNwVI0K64FxpBYJ82jNAERGRRVmtJ8rHxweurq4oKSkx2V5SUgKdTtfgMTqdrsnydf/eqczvJ67funULV69elcr4+fnBzc1NClAA0KdPHwDA+fON3wGmUqng6elp8kPm5adxR3SPzgxQRERkcVYLUUqlEuHh4cjMzJS2GY1GZGZmIjo6usFjoqOjTcoDwJ49e6TywcHB0Ol0JmXKysqQk5MjlYmOjsa1a9dMvih57969MBqNiIqKAgAMGzYMt27dwtmzZ6UyP/74I4DbSzwQERERQVjR5s2bhUqlEhs3bhQnTpwQs2bNEl5eXkKv1wshhJgyZYpITk6Wyu/fv1+4ubmJVatWicLCQpGSkiLatWsnjh8/LpVZsWKF8PLyEl988YU4duyYGD9+vAgODhaVlZVSmdGjR4tBgwaJnJwc8f3334tevXqJxMREaX9tba24++67xYgRI8Thw4fFoUOHRFRUlPjjH//YouszGAwCgDAYDHKbiIiIiCysue/fVg1RQgixdu1a0bVrV6FUKkVkZKQ4cOCAtC8mJkYkJSWZlP/0009FSEiIUCqVol+/fmLnzp0m+41Go1iyZInQarVCpVKJUaNGiVOnTpmUuXLlikhMTBQdOnQQnp6eYtq0aeL69esmZf7zn/+ICRMmiA4dOgitViumTp0qrly50qJrY4giIiKyP819/7bqOlGOjutEERER2R+bXyeKiIiIyJ4xRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVERER2p9hQiayzpSg2VFqtDm5WOzMRERGRDBm557F423EYBeCiAFInhCJhcFeL14M9UURERGQ3ig2VUoACAKMAnt2Wb5UeKYYoIiIishtFpeVSgKpTKwTOlVZYvC4MUURERGQ3gn084KIw3eaqUCDIp73F68IQRURERHbDT+OO1AmhcFXcTlKuCgVentAffhp3i9eFE8uJiIjIriQM7ooRIV1wrrQCQT7trRKgAIYoMoNiQyWKSssR7ONhtSc2ERE5Nj+Nu9XfYxiiqE3Zym2nRPaMH0SI7ANDFLWZxm47HRHShW8ERM3EDyJE9sMmJpanpaUhKCgIarUaUVFROHjwYJPlt2zZgt69e0OtViM0NBS7du0y2S+EwNKlS+Hn5wd3d3fExsbi9OnTJmWuXr2KyZMnw9PTE15eXpg+fTpu3LjR4PnOnDmDjh07wsvLq1XX2VZsYZXWhtjSbadE9siW1r8hojuzeojKyMjAggULkJKSgsOHD2PgwIGIi4vDpUuXGiyflZWFxMRETJ8+HUeOHEF8fDzi4+ORn58vlVm5ciXWrFmD9PR05OTkwMPDA3Fxcbh586ZUZvLkySgoKMCePXuwY8cOfPfdd5g1a1a989XU1CAxMRH33HNP21+8DBm55zFsxV5MWp+DYSv2IiP3vLWrJGntbae2Gg6JLIUfRIjsi0IIIe5czHyioqIwePBgvPXWWwAAo9GIwMBAzJ07F8nJyfXKJyQkoLy8HDt27JC2DRkyBGFhYUhPT4cQAv7+/li4cCEWLVoEADAYDNBqtdi4cSMmTpyIwsJC9O3bF7m5uYiIiAAA7N69G2PGjMHFixfh7+8vPfYzzzyDX375BaNGjcL8+fNx7dq1Zl9bWVkZNBoNDAYDPD095TSPiWJDJYat2GvyIuuqUOD75HttZrgsI/c8nt2Wj1ohpNtOmzMUwSEMIvv4GydyBs19/7ZqT1R1dTXy8vIQGxsrbXNxcUFsbCyys7MbPCY7O9ukPADExcVJ5YuKiqDX603KaDQaREVFSWWys7Ph5eUlBSgAiI2NhYuLC3JycqRte/fuxZYtW5CWltb6i20D9vApNWFwV3yffC8+mTkE3yff26wgxCEMottsaf0bIrozq04sLy0tRW1tLbRarcl2rVaLkydPNniMXq9vsLxer5f2121rqoyvr6/Jfjc3N3h7e0tlrly5gqlTp2LTpk3N7kWqqqpCVVWV9HtZWVmzjmuuuuGy339KtcYqrU1p6W2nTYVDvnmQs7GV9W+I6M6sPifKVs2cOROTJk3CiBEjmn1MamoqNBqN9BMYGNimdXLUT6m2tIQ/kS3w07gjukdnu//bJnJ0Vg1RPj4+cHV1RUlJicn2kpIS6HS6Bo/R6XRNlq/7905lfj9x/datW7h69apUZu/evVi1ahXc3Nzg5uaG6dOnw2AwwM3NDe+//36DdVu8eDEMBoP0c+HCheY0Q4vIGS6zdY4aDomIyLFZdThPqVQiPDwcmZmZiI+PB3B7YnlmZibmzJnT4DHR0dHIzMzE/PnzpW179uxBdHQ0ACA4OBg6nQ6ZmZkICwsDcHtYLScnB0888YT0GNeuXUNeXh7Cw8MB3A5NRqMRUVFRAG7Pm6qtrZXO8cUXX+CVV15BVlYWAgICGqybSqWCSqWS3R7NZQurtLY1DmEQEZG9sfpimwsWLEBSUhIiIiIQGRmJ1atXo7y8HNOmTQMAPP744wgICEBqaioAYN68eYiJicFrr72GsWPHYvPmzTh06BDeffddAIBCocD8+fOxbNky9OrVC8HBwViyZAn8/f2loNanTx+MHj0aM2fORHp6OmpqajBnzhxMnDhRujOvT58+JvU8dOgQXFxc0L9/fwu1jPNxxHBIZM+4cjpR06weohISEnD58mUsXboUer0eYWFh2L17tzQx/Pz583Bx+e+o49ChQ/Hxxx/j+eefx7PPPotevXrhX//6l0m4efrpp1FeXo5Zs2bh2rVrGD58OHbv3g21Wi2V+eijjzBnzhyMGjUKLi4ueOSRR7BmzRrLXTgRkQ3jsiNEd2b1daIcWVuvE0VEZAlcr4qcnV2sE0VERLbHHtakI7IFDFFERGSCy44QNQ9DFBERmeCyI0TNY/WJ5UREZHu47AjRnTFEERFRg7jsCFHTOJxHRGRGxYZKZJ0t5RdqEzkg9kQREZkJ11oicmzsiSIiMoNiQ6UUoADAKIBnt+WzR4rIgTBEERGZAddaInJ8DFFERGbAtZaIHB9DFBGRGXCtJSLHx4nlRERmYg9rLRUbKlFUWo5gHw+brB+RLWOIIiIyI1tea4l3DxK1DofziIicEO8eJGo9higiIifEuwfJHJxtcVkO5xEROaG6uwd/G6R49yC1hjMOD7MniqiZnO0TFjk23j1IbclZh4fZE0X0Ow3dreSMn7DI8dnD3YNkH5oaHnbk5xVDFNkMW7jVuqGwNCKkS4OfsEaEdHHoFwdyDrZ89yDZD2cdHuZwHtmEjNzzGLZiLyatz8GwFXuRkXve4nVorDs67+dfOQGXiKgJzjo8zJ4osrrGwoule3oa647G//VKOdsnLCKyPbbQY98YZxweZogiq7OVsfTGuqPDgzohdUIont2Wj1ohnOYTFhHZFrlzMy0ZvJxteJghiqzOVsbS67qjGwpLzvgJi8ie2XKPjRxye+x5U4x5MUSR1TUVXiytqbDkbJ+wiOyVIwYHOT32tjJVwpExRJFNfGKzpZ4ehiUi++WowUFOj72tTJVwZAxRTs6WPrExvBBRazlqcJDTY28rUyUcGUOUE3PUT2xE5LwcOTi0tMfelqZKOCqGKCfmqJ/YiMh5OXpwaGmPvS1NlXBEDFFOzJE/sRGR82JwMMWpEubDFcudmLOuMEtEjs9P447oHp35ekZmxZ4oJ8dPbERERPIwRBG7eomawRaWAiEi28IQRUR0B7a0FAgR2Q7OiSIiakJjS4EUGyqtWzEHU2yoRNbZ0jZr17Z+PKKGsCfKiXA4gqjluBSI+bV1Tx97DslS2BPlJDJyz2PYir2YtD4Hw1bsRUbueWtXicgu1C0F8ltcCqTttHVPH3sOyZIYopwAX1SI5ONSIObVVE+fLTweUVM4nOcEbGk4gkOKZI+4FIj5tPWiv1xEmCyJPVFOwFaGIzikSPaMizeaR1v39LHnkCxJIYQQdy5GcpSVlUGj0cBgMMDT09OqdcnIPV/vu6QsOdGy2FCJYSv21vt0+H3yvXxxIyIUGyrbtKevrR+PnEtz3785nOckrD0cYUtDikRke9p60V9nW0SYUyWswyaG89LS0hAUFAS1Wo2oqCgcPHiwyfJbtmxB7969oVarERoail27dpnsF0Jg6dKl8PPzg7u7O2JjY3H69GmTMlevXsXkyZPh6ekJLy8vTJ8+HTdu3JD2f/vttxg/fjz8/Pzg4eGBsLAwfPTRR2130VZgzeEIWxlSJCJyNJwqYT1WD1EZGRlYsGABUlJScPjwYQwcOBBxcXG4dOlSg+WzsrKQmJiI6dOn48iRI4iPj0d8fDzy8/OlMitXrsSaNWuQnp6OnJwceHh4IC4uDjdv3pTKTJ48GQUFBdizZw927NiB7777DrNmzTI5z4ABA/DZZ5/h2LFjmDZtGh5//HHs2LHDfI3hwDhPgYio7fHua+uy+pyoqKgoDB48GG+99RYAwGg0IjAwEHPnzkVycnK98gkJCSgvLzcJM0OGDEFYWBjS09MhhIC/vz8WLlyIRYsWAQAMBgO0Wi02btyIiRMnorCwEH379kVubi4iIiIAALt378aYMWNw8eJF+Pv7N1jXsWPHQqvV4v3332/WtdnSnChbwXkK/8XudyJqrayzpZi0Pqfe9k9mDkF0j85WqJFjaO77t1V7oqqrq5GXl4fY2Fhpm4uLC2JjY5Gdnd3gMdnZ2SblASAuLk4qX1RUBL1eb1JGo9EgKipKKpOdnQ0vLy8pQAFAbGwsXFxckJNT/8lYx2AwwNvbu9H9VVVVKCsrM/khU7zD6TZ2vxNRW+BUCeuyaogqLS1FbW0ttFqtyXatVgu9Xt/gMXq9vsnydf/eqYyvr6/Jfjc3N3h7ezd63k8//RS5ubmYNm1ao9eTmpoKjUYj/QQGBjZalpxXa7vf+R1jRM7r93+vzZkqYcm/cWd7PeHdec2wb98+TJs2DevXr0e/fv0aLbd48WIsWLBA+r2srIxBiuppzZ2K/I4xIufV2N9rU3dfW/Jv3BlfT6zaE+Xj4wNXV1eUlJSYbC8pKYFOp2vwGJ1O12T5un/vVOb3E9dv3bqFq1ev1jvvv//9b4wbNw5vvPEGHn/88SavR6VSwdPT0+SH6Pfkdr/zO8aInFdz/l4FRIuPsWT9HJFVQ5RSqUR4eDgyMzOlbUajEZmZmYiOjm7wmOjoaJPyALBnzx6pfHBwMHQ6nUmZsrIy5OTkSGWio6Nx7do15OXlSWX27t0Lo9GIqKgoadu3336LsWPH4pVXXjG5c4+oNeq63+v++FyAZt2pyO8YI3JeTf29NjbH0pJ/4876emL14bwFCxYgKSkJERERiIyMxOrVq1FeXi7NPXr88ccREBCA1NRUAMC8efMQExOD1157DWPHjsXmzZtx6NAhvPvuuwAAhUKB+fPnY9myZejVqxeCg4OxZMkS+Pv7Iz4+HgDQp08fjB49GjNnzkR6ejpqamowZ84cTJw4Ubozb9++fXjwwQcxb948PPLII9JcKaVS2eTkcqJmUwAQ//dvM/A7xoicV2N/r+2VLg32AI0I6WLRv3FnfT2x+jpRCQkJWLVqFZYuXYqwsDAcPXoUu3fvliaGnz9/HsXFxVL5oUOH4uOPP8a7776LgQMHYuvWrfjXv/6F/v37S2WefvppzJ07F7NmzcLgwYNx48YN7N69G2q1Wirz0UcfoXfv3hg1ahTGjBmD4cOHS0EMAD744ANUVFQgNTUVfn5+0s+ECRMs0CrkyOR2e/M7xoicl5/GHQ8PCjDZFj/IH+XVtU3OsbTU37izvp5YfZ0oR8Z1oqghrV3Xhd8xRuR8Gvv+0W1PRuPht7Oa/F5Sc7xmNLbGnaO8nvC784hsVGu7vfkdY0T2oS0X1G1szlFFtRGpE0LrfcH8b8/Xln/jd7oDz9leTxiiiCysrtu7qRc9IrJvbX27f1MfvqJ7dLbIF8w3NhVhREgXp339YogisoKm1nUhIvtmjrBRNyfqs8P/kbbFD/KXHs8SPUCtWePOUVl9YjmRs+JX4BA5JnPc7l9sqMTnR/5jsu1fR36x6DpM/IqZ+hiiSDZnW96fiO6MrwvmCRu2sA6Ts96B1xQO55Esjry8f1tOBiVyJo78utAS5pj3aCvrMHEqgikucWBGjrrEQWO32v72llp7ZQ9vAgx5ZIsc+XVBrra+3T8j93y9YGZrr0+OgksckNk46uRCe7jzxB5CHjknR31daI22nuzNXiDbwzlR1GKOOrnQFuYcNMVZv+CT7IOjvi7YGt6QYlsYoqjFHHVyoa2/Cdh6yCPH05JJ4o76ukDUFA7nkSyO2K1s64tg2srEUnIOcoaObel1gXMHyRI4sdyMHHViuaOz5e9+4sRSsgR7nyTOuYPUWpxYTk5P7idRW/7uJ1v6pE+Oy54nidvDDSLkOBiiyCE58idRWw555BjseejYngMg2R9OLCeHw7vYiFrHnieJm+sGkaYm2XOVdufFnihyOPwkSmRKztC2vQ4dm+MGkaZ6th2515vujCGKHI49D0UQtbXWvMnb69BxWwbApuZYAeD8KyfH4TxyOPY8FEHUlpx5aLutFqVsqmeba7cRe6IcDNdGuc1ehyKsgc8Zx8Wh7da7U882e72dG0OUA5Hbbe+ob6L2OhRhSZzP4dg4tN16d5pjZcsL9JL5cbFNM7LkYptyF8fjm6jzsvcFFal5uEBr22hqEV5bXqCX5OFim05GTrc9F6VzbhzqcQ4c2m4bTfVss9e7eRxx1IMhykHI6bbnm6hz41CP8+CbfOs5YgCwJEcd9eDdeQ5Czh1p5lqUjuwD72Ikap6M3PMYtmIvJq3PwbAVe5GRe97aVbIrjnyXKHuiHEhLu+3NsSgd2RcO9RA1zVzTHpypZ8uRRz0YohxMS7vt+SZKHOohW2CrocIcAcBRh7Ya48hTBzicR222KB0RwO8Ro5az5eGytp724MhDW41x5KkD7IkishJb/eTdGs72CdtZteVz19bvEm7raQ+OPLTVFEcd9WCIIjKzht5wHDFs2PqboT2xlYBtieeuPYSKtgwAjjy0dSeOOHWAIYrIjBp6wxkR0sUhw4Y9vBnaA1sJ2JZ67t4pVNhKoGyrAMAbehwLQxSRmTTWM/NmYphDhg1n/oTdVmylN8+Sz92mQoWtBMo7aWnQc9ShLWfEEGWHbOWTGTWtsZ4ZCMf80tLWfsLm87r1vXlt1YaWfu42FCpsJVDeidyg54hDW86IIcrO2MsnM2q8ZyY8qJPDducnDO6K3rqOyD33KwYHdcLAwE7NOo7P69ta05vXlm1ojefu70OFPQwP20vQI/NhiLIjjvAH60y9DU31zDhqd76cN/LmPK8be9442vNJbm9eW7822MJz1x6Gh+0h6JF5MUTZEVvp6pfLGXsbmnrDcbTufLlv5Hd6Xjf2vHHU55OckGKON3NrP3ftYQK2PQQ9Mi+GKDtiK139cjhCL5pcjhaWGiP3jbyp53Vjz5veuo4O/Xxq6XPGXG/m1n7u2nqPrT0EPXOw9gdyW8IVy+2I3FVfbWGF3KbeYMkxeChdG9zeXvnfl5mGVjNv6nnd2PMm99yvd3w+OdPK6Y68IrStf6NCwuCu+D75Xnwycwi+T77XIXpDm2LLq8tbA3ui7Iycibu2MG7Pbm/HV15d2+D2imojgKZ7QxvrcWjseTM4qFOTzydr97xag6332jgya/fYWYozjyg0hj1RdiYj9zwefjsLy3YW4uG3s5r1KaCtv/tJDkf+pEy3NfU8a05vaEM9Do09bwYGdmr0+WQLPa/WYuu9NmTfOKJQH3ui7IjcTwG2Mm4v9/Z3W8F5AE1r6nmWdbZUdm9oYz0sjW23hZ5XIkfEEYX6bKInKi0tDUFBQVCr1YiKisLBgwebLL9lyxb07t0barUaoaGh2LVrl8l+IQSWLl0KPz8/uLu7IzY2FqdPnzYpc/XqVUyePBmenp7w8vLC9OnTcePGDZMyx44dwz333AO1Wo3AwECsXLmybS5YptZ8CrCFcXs5vWi2gvMAmqex51lre0Mb62FpaLst9LwSOSJrjCjY+txGq4eojIwMLFiwACkpKTh8+DAGDhyIuLg4XLp0qcHyWVlZSExMxPTp03HkyBHEx8cjPj4e+fn5UpmVK1dizZo1SE9PR05ODjw8PBAXF4ebN29KZSZPnoyCggLs2bMHO3bswHfffYdZs2ZJ+8vKynD//fejW7duyMvLw6uvvooXXngB7777rvka4w7M9UZkCfY8xGLPdbeGlgzLmeO5aK5z2fqLOZElWPIDuT18eFUIIcSdi5lPVFQUBg8ejLfeegsAYDQaERgYiLlz5yI5Oble+YSEBJSXl2PHjh3StiFDhiAsLAzp6ekQQsDf3x8LFy7EokWLAAAGgwFarRYbN27ExIkTUVhYiL59+yI3NxcREREAgN27d2PMmDG4ePEi/P39sW7dOjz33HPQ6/VQKpUAgOTkZPzrX//CyZMnm3VtZWVl0Gg0MBgM8PT0bFU71cnIPV9vuMQeJsxmnS3FpPU59bZ/MnMIont0tkKNms+e625rig2VFpv43JbncsaJ6kTWVGyoxLAVe+sNHX6ffK9FOgKa+/5t1Z6o6upq5OXlITY2Vtrm4uKC2NhYZGdnN3hMdna2SXkAiIuLk8oXFRVBr9eblNFoNIiKipLKZGdnw8vLSwpQABAbGwsXFxfk5ORIZUaMGCEFqLrznDp1Cr/++muDdauqqkJZWZnJT1uzhWE5Oex5iMWe625rLNkb2lbnYk8kkeXZyyR2q4ao0tJS1NbWQqvVmmzXarXQ6/UNHqPX65ssX/fvncr4+vqa7Hdzc4O3t7dJmYYe47fn+L3U1FRoNBrpJzAwsOELbyV7vAPHnu/Os+e6U+vZy4s5kSOxlw+vvDuvDS1evBgLFiyQfi8rKzNbkLJH9ryOjT3XnVqHdyQRWZ6t3FV+J1YNUT4+PnB1dUVJSYnJ9pKSEuh0ugaP0el0TZav+7ekpAR+fn4mZcLCwqQyv5+4fuvWLVy9etXkcRo6z2/P8XsqlQoqlarR6yX7XpTOnutO8tnLizmRo7GHD69WHc5TKpUIDw9HZmamtM1oNCIzMxPR0dENHhMdHW1SHgD27NkjlQ8ODoZOpzMpU1ZWhpycHKlMdHQ0rl27hry8PKnM3r17YTQaERUVJZX57rvvUFNTY3Keu+66C5062df6RkTUOvY6F5HI3tn89BVhZZs3bxYqlUps3LhRnDhxQsyaNUt4eXkJvV4vhBBiypQpIjk5WSq/f/9+4ebmJlatWiUKCwtFSkqKaNeunTh+/LhUZsWKFcLLy0t88cUX4tixY2L8+PEiODhYVFZWSmVGjx4tBg0aJHJycsT3338vevXqJRITE6X9165dE1qtVkyZMkXk5+eLzZs3i/bt24t33nmn2ddmMBgEAGEwGFrTRERERGRBzX3/tnqIEkKItWvXiq5duwqlUikiIyPFgQMHpH0xMTEiKSnJpPynn34qQkJChFKpFP369RM7d+402W80GsWSJUuEVqsVKpVKjBo1Spw6dcqkzJUrV0RiYqLo0KGD8PT0FNOmTRPXr183KfPDDz+I4cOHC5VKJQICAsSKFStadF0MUURERPanue/fVl8nypGZY50oIiIiMi+7WCeKiIiIyF4xRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyuFm7Ao6sbjH4srIyK9eEiIiImqvufftOX+rCEGVG169fBwAEBgZauSZERETUUtevX4dGo2l0P787z4yMRiN++eUXdOzYEQqFokXHlpWVITAwEBcuXHD6791jW9zGdriN7fBfbIvb2A63sR3+q7VtIYTA9evX4e/vDxeXxmc+sSfKjFxcXPCHP/yhVY/h6enp9H8MddgWt7EdbmM7/Bfb4ja2w21sh/9qTVs01QNVhxPLiYiIiGRgiCIiIiKSgSHKRqlUKqSkpEClUlm7KlbHtriN7XAb2+G/2Ba3sR1uYzv8l6XaghPLiYiIiGRgTxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDlBWlpaUhKCgIarUaUVFROHjwYKNlCwoK8MgjjyAoKAgKhQKrV6+2XEUtoCVtsX79etxzzz3o1KkTOnXqhNjY2CbL25OWtMO2bdsQEREBLy8veHh4ICwsDB9++KEFa2s+LWmH39q8eTMUCgXi4+PNW0ELaklbbNy4EQqFwuRHrVZbsLbm09LnxLVr1zB79mz4+flBpVIhJCQEu3btslBtzacl7TBy5Mh6zweFQoGxY8dasMbm09LnxOrVq3HXXXfB3d0dgYGB+Nvf/oabN2+2rhKCrGLz5s1CqVSK999/XxQUFIiZM2cKLy8vUVJS0mD5gwcPikWLFolPPvlE6HQ68cYbb1i2wmbU0raYNGmSSEtLE0eOHBGFhYVi6tSpQqPRiIsXL1q45m2rpe2wb98+sW3bNnHixAlx5swZsXr1auHq6ip2795t4Zq3rZa2Q52ioiIREBAg7rnnHjF+/HjLVNbMWtoWGzZsEJ6enqK4uFj60ev1Fq5122tpO1RVVYmIiAgxZswY8f3334uioiLx7bffiqNHj1q45m2rpe1w5coVk+dCfn6+cHV1FRs2bLBsxc2gpW3x0UcfCZVKJT766CNRVFQkvvrqK+Hn5yf+9re/taoeDFFWEhkZKWbPni39XltbK/z9/UVqauodj+3WrZtDhajWtIUQQty6dUt07NhRfPDBB+aqokW0th2EEGLQoEHi+eefN0f1LEZOO9y6dUsMHTpU/POf/xRJSUkOE6Ja2hYbNmwQGo3GQrWznJa2w7p160T37t1FdXW1papoEa19jXjjjTdEx44dxY0bN8xVRYtpaVvMnj1b3HfffSbbFixYIIYNG9aqenA4zwqqq6uRl5eH2NhYaZuLiwtiY2ORnZ1txZpZXlu0RUVFBWpqauDt7W2uappda9tBCIHMzEycOnUKI0aMMGdVzUpuO/zjH/+Ar68vpk+fbolqWoTctrhx4wa6deuGwMBAjB8/HgUFBZaortnIaYft27cjOjoas2fPhlarRf/+/fHyyy+jtrbWUtVuc23xWvnee+9h4sSJ8PDwMFc1LUJOWwwdOhR5eXnSkN9PP/2EXbt2YcyYMa2qC7+A2ApKS0tRW1sLrVZrsl2r1eLkyZNWqpV1tEVbPPPMM/D39zf5g7I3ctvBYDAgICAAVVVVcHV1xdtvv40//vGP5q6u2chph++//x7vvfcejh49aoEaWo6ctrjrrrvw/vvvY8CAATAYDFi1ahWGDh2KgoKCVn8ZurXIaYeffvoJe/fuxeTJk7Fr1y6cOXMGTz75JGpqapCSkmKJare51r5WHjx4EPn5+XjvvffMVUWLkdMWkyZNQmlpKYYPHw4hBG7duoW//vWvePbZZ1tVF4YosmsrVqzA5s2b8e233zrMBNqW6NixI44ePYobN24gMzMTCxYsQPfu3TFy5EhrV80irl+/jilTpmD9+vXw8fGxdnWsLjo6GtHR0dLvQ4cORZ8+ffDOO+/gpZdesmLNLMtoNMLX1xfvvvsuXF1dER4ejv/85z949dVX7TZEtdZ7772H0NBQREZGWrsqVvHtt9/i5Zdfxttvv42oqCicOXMG8+bNw0svvYQlS5bIflyGKCvw8fGBq6srSkpKTLaXlJRAp9NZqVbW0Zq2WLVqFVasWIFvvvkGAwYMMGc1zU5uO7i4uKBnz54AgLCwMBQWFiI1NdVuQ1RL2+Hs2bM4d+4cxo0bJ20zGo0AADc3N5w6dQo9evQwb6XNpC1eJ9q1a4dBgwbhzJkz5qiiRchpBz8/P7Rr1w6urq7Stj59+kCv16O6uhpKpdKsdTaH1jwfysvLsXnzZvzjH/8wZxUtRk5bLFmyBFOmTMGMGTMAAKGhoSgvL8esWbPw3HPPwcVF3uwmzomyAqVSifDwcGRmZkrbjEYjMjMzTT5FOgO5bbFy5Uq89NJL2L17NyIiIixRVbNqq+eE0WhEVVWVOapoES1th969e+P48eM4evSo9PPQQw/h3nvvxdGjRxEYGGjJ6reptnhO1NbW4vjx4/Dz8zNXNc1OTjsMGzYMZ86ckQI1APz444/w8/OzywAFtO75sGXLFlRVVeHPf/6zuatpEXLaoqKiol5QqgvZojVfIdyqaekk2+bNm4VKpRIbN24UJ06cELNmzRJeXl7S7chTpkwRycnJUvmqqipx5MgRceTIEeHn5ycWLVokjhw5Ik6fPm2tS2gzLW2LFStWCKVSKbZu3Wpy++7169etdQltoqXt8PLLL4uvv/5anD17Vpw4cUKsWrVKuLm5ifXr11vrEtpES9vh9xzp7ryWtsWLL74ovvrqK3H27FmRl5cnJk6cKNRqtSgoKLDWJbSJlrbD+fPnRceOHcWcOXPEqVOnxI4dO4Svr69YtmyZtS6hTcj92xg+fLhISEiwdHXNqqVtkZKSIjp27Cg++eQT8dNPP4mvv/5a9OjRQzz22GOtqgdDlBWtXbtWdO3aVSiVShEZGSkOHDgg7YuJiRFJSUnS70VFRQJAvZ+YmBjLV9wMWtIW3bp1a7AtUlJSLF/xNtaSdnjuuedEz549hVqtFp06dRLR0dFi8+bNVqh122tJO/yeI4UoIVrWFvPnz5fKarVaMWbMGHH48GEr1LrttfQ5kZWVJaKiooRKpRLdu3cXy5cvF7du3bJwrdteS9vh5MmTAoD4+uuvLVxT82tJW9TU1IgXXnhB9OjRQ6jVahEYGCiefPJJ8euvv7aqDgohWtOPRUREROScOCeKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiInIAU6dORXx8vLWrQeRUGKKIyKymTp0KhUIh/XTu3BmjR4/GsWPHrF21NvHba6v7GT58uNnOd+7cOSgUChw9etRk+5tvvomNGzea7bxEVB9DFBGZ3ejRo1FcXIzi4mJkZmbCzc0NDz74oLWr1WY2bNggXV9xcTG2b9/eYLmamhqz1UGj0cDLy8tsj09E9TFEEZHZqVQq6HQ66HQ6hIWFITk5GRcuXMDly5dx3333Yc6cOSblL1++DKVSKX1Le1BQEF566SUkJibCw8MDAQEBSEtLMznm9ddfR2hoKDw8PBAYGIgnn3wSN27ckPb//PPPGDduHDp16gQPDw/069cPu3btAgD8+uuvmDx5Mrp06QJ3d3f06tULGzZsaPb1eXl5Sden0+ng7e0t9RhlZGQgJiYGarUaH330Ea5cuYLExEQEBASgffv2CA0NxSeffGLyeEajEStXrkTPnj2hUqnQtWtXLF++HAAQHBwMABg0aBAUCgVGjhwJoP5wXlVVFZ566in4+vpCrVZj+PDhyM3NlfZ/++23UCgUyMzMREREBNq3b4+hQ4fi1KlTzb5uImfHEEVEFnXjxg1s2rQJPXv2ROfOnTFjxgx8/PHHqKqqksps2rQJAQEBuO+++6Rtr776KgYOHIgjR44gOTkZ8+bNw549e6T9Li4uWLNmDQoKCvDBBx9g7969ePrpp6X9s2fPRlVVFb777jscP34cr7zyCjp06AAAWLJkCU6cOIH//d//RWFhIdatWwcfH582ud66uhYWFiIuLg43b95EeHg4du7cifz8fMyaNQtTpkzBwYMHpWMWL16MFStWSPX6+OOPodVqAUAq980336C4uBjbtm1r8LxPP/00PvvsM3zwwQc4fPgwevbsibi4OFy9etWk3HPPPYfXXnsNhw4dgpubG/7f//t/bXLdRE6hVV9fTER0B0lJScLV1VV4eHgIDw8PAUD4+fmJvLw8IYQQlZWVolOnTiIjI0M6ZsCAAeKFF16Qfu/WrZsYPXq0yeMmJCSIBx54oNHzbtmyRXTu3Fn6PTQ01OQxf2vcuHFi2rRpsq4PgFCr1dL1eXh4iM8//1wUFRUJAGL16tV3fIyxY8eKhQsXCiGEKCsrEyqVSqxfv77BsnWPe+TIEZPtSUlJYvz48UIIIW7cuCHatWsnPvroI2l/dXW18Pf3FytXrhRCCLFv3z4BQHzzzTdSmZ07dwoAorKysiVNQOS02BNFRGZ377334ujRozh69CgOHjyIuLg4PPDAA/j555+hVqsxZcoUvP/++wCAw4cPIz8/H1OnTjV5jOjo6Hq/FxYWSr9/8803GDVqFAICAtCxY0dMmTIFV65cQUVFBQDgqaeewrJlyzBs2DCkpKSYTGx/4oknsHnzZoSFheHpp59GVlZWi67vjTfekK7v6NGj+OMf/yjti4iIMClbW1uLl156CaGhofD29kaHDh3w1Vdf4fz58wCAwsJCVFVVYdSoUS2qw2+dPXsWNTU1GDZsmLStXbt2iIyMNGkzABgwYID0fz8/PwDApUuXZJ+byJkwRBGR2Xl4eKBnz57o2bMnBg8ejH/+858oLy/H+vXrAQAzZszAnj17cPHiRWzYsAH33XcfunXr1uzHP3fuHB588EEMGDAAn332GfLy8qQ5U9XV1dI5fvrpJ0yZMgXHjx9HREQE1q5dCwBSoPvb3/6GX375BaNGjcKiRYuafX6dTiddX8+ePeHh4WFy7b/16quv4s0338QzzzyDffv24ejRo4iLi5Pq6e7u3uzztoV27dpJ/1coFABuz8kiojtjiCIii1MoFHBxcUFlZSUAIDQ0FBEREVi/fj0+/vjjBuflHDhwoN7vffr0AQDk5eXBaDTitddew5AhQxASEoJffvml3mMEBgbir3/9K7Zt24aFCxdKIQ4AunTpgqSkJGzatAmrV6/Gu+++25aXLNm/fz/Gjx+PP//5zxg4cCC6d++OH3/8Udrfq1cvuLu7S5Pqf0+pVAK43aPVmB49ekCpVGL//v3StpqaGuTm5qJv375tdCVE5GbtChCR46uqqoJerwdw+064t956Czdu3MC4ceOkMjNmzMCcOXPg4eGBhx9+uN5j7N+/HytXrkR8fDz27NmDLVu2YOfOnQCAnj17oqamBmvXrsW4ceOwf/9+pKenmxw/f/58PPDAAwgJCcGvv/6Kffv2SSFs6dKlCA8PR79+/VBVVYUdO3ZI+9par169sHXrVmRlZaFTp054/fXXUVJSIoUbtVqNZ555Bk8//TSUSiWGDRuGy5cvo6CgANOnT4evry/c3d2xe/du/OEPf4BarYZGozE5h4eHB5544gn8/e9/h7e3N7p27YqVK1eioqIC06dPN8t1ETkj9kQRkdnt3r0bfn5+8PPzQ1RUFHJzc7Flyxbp9nwASExMhJubGxITE6FWq+s9xsKFC3Ho0CEMGjQIy5Ytw+uvv464uDgAwMCBA/H666/jlVdeQf/+/fHRRx8hNTXV5Pja2lrMnj0bffr0wejRoxESEoK3334bwO3encWLF2PAgAEYMWIEXF1dsXnzZrO0xfPPP4+7774bcXFxGDlyJHQ6Xb2VxpcsWYKFCxdi6dKl6NOnDxISEqR5Sm5ublizZg3eeecd+Pv7Y/z48Q2eZ8WKFXjkkUcwZcoU3H333Thz5gy++uordOrUySzXReSMFEIIYe1KEBGdO3cOPXr0QG5uLu6++26TfUFBQZg/fz7mz59vncoRETWAw3lEZFU1NTW4cuUKnn/+eQwZMqRegCIislUcziMiq9q/fz/8/PyQm5tbbx6Ttb388svo0KFDgz8PPPCAtatHRFbG4TwiokZcvXq13grfddzd3REQEGDhGhGRLWGIIiIiIpKBw3lEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDP8fzeLtL/xcH6QAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWvhJREFUeJzt3XtcVHX+P/DXDAiDKCAh11BQITVRSmTCG5azYZpJ1obkevuS1KaloWtaKl0szEuZ5UpZartpkOWWay5FYOuvIETUDG+pYWoyKBKDIiIyn98fLqdGLsKBmTMzvJ6PxzyUc95n5n0+DDPv+Xw+5zMqIYQAEREREbWIWukEiIiIiGwRiygiIiIiGVhEEREREcnAIoqIiIhIBhZRRERERDKwiCIiIiKSgUUUERERkQwsooiIiIhkYBFFREREJAOLKCKyay+88AJUKlWzYlUqFV544QWz5jNixAiMGDHCau+PiJqPRRQRWcTGjRuhUqmkm6OjIwICAjB16lT8+uuvSqdndYKCgkzay9vbG8OGDcO//vWvNrn/y5cv44UXXsA333zTJvdH1B6xiCIii3rppZfwz3/+E6mpqbjvvvvw4YcfIjo6GleuXDHL4y1cuBBVVVVmuW9zCw8Pxz//+U/885//xNy5c3H27FmMHz8eqamprb7vy5cv48UXX2QRRdQKjkonQETty3333YeIiAgAwGOPPQYvLy+89tpr2LZtGx555JE2fzxHR0c4OtrmS11AQAD+8pe/SD9PnjwZvXr1whtvvIEnnnhCwcyICGBPFBEpbNiwYQCAEydOmGw/cuQIHn74YXh6ekKj0SAiIgLbtm0ziampqcGLL76IkJAQaDQa3HLLLRg6dCgyMzOlmIbmRFVXV+OZZ55B165d0blzZzzwwAM4c+ZMvdymTp2KoKCgetsbus8NGzbgnnvugbe3N5ydndG3b1+sXbu2RW1xM76+vujTpw+KioqajDt37hwSEhLg4+MDjUaDAQMG4IMPPpD2nzx5El27dgUAvPjii9KQobnngxHZG9v8eEZEduPkyZMAgC5dukjbDh48iCFDhiAgIADz58+Hq6srPv74Y8TGxuLTTz/Fgw8+COB6MZOSkoLHHnsMkZGRqKiowJ49e7B371786U9/avQxH3vsMXz44Yd49NFHMXjwYGRnZ2PMmDGtOo+1a9fi9ttvxwMPPABHR0f8+9//xpNPPgmj0YgZM2a06r7r1NTU4PTp07jlllsajamqqsKIESNw/PhxzJw5E8HBwdiyZQumTp2K8vJyzJo1C127dsXatWvx17/+FQ8++CDGjx8PAOjfv3+b5EnUbggiIgvYsGGDACC+/vprcf78eXH69GnxySefiK5duwpnZ2dx+vRpKXbkyJEiLCxMXLlyRdpmNBrF4MGDRUhIiLRtwIABYsyYMU0+bnJysvjjS93+/fsFAPHkk0+axD366KMCgEhOTpa2TZkyRXTv3v2m9ymEEJcvX64XFxMTI3r06GGyLTo6WkRHRzeZsxBCdO/eXdx7773i/Pnz4vz58+KHH34QEyZMEADEU0891ej9rVq1SgAQH374obTt6tWrIioqSnTq1ElUVFQIIYQ4f/58vfMlopbhcB4RWZROp0PXrl0RGBiIhx9+GK6urti2bRtuvfVWAEBZWRmys7PxyCOP4OLFiygtLUVpaSkuXLiAmJgYHDt2TLqaz8PDAwcPHsSxY8ea/fg7duwAADz99NMm22fPnt2q83JxcZH+bzAYUFpaiujoaPz8888wGAyy7vOrr75C165d0bVrVwwYMABbtmzBpEmT8NprrzV6zI4dO+Dr64v4+HhpW4cOHfD000/j0qVL+O9//ysrFyKqj8N5RGRRa9asQWhoKAwGA9avX49du3bB2dlZ2n/8+HEIIbBo0SIsWrSowfs4d+4cAgIC8NJLL2HcuHEIDQ1Fv379MGrUKEyaNKnJYalffvkFarUaPXv2NNl+2223teq8vvvuOyQnJyM3NxeXL1822WcwGODu7t7i+9RqtViyZAlUKhU6duyIPn36wMPDo8ljfvnlF4SEhECtNv2M3KdPH2k/EbUNFlFEZFGRkZHS1XmxsbEYOnQoHn30URw9ehSdOnWC0WgEAMydOxcxMTEN3kevXr0AAMOHD8eJEyfw+eef46uvvsJ7772HN954A6mpqXjsscdanWtji3TW1taa/HzixAmMHDkSvXv3xuuvv47AwEA4OTlhx44deOONN6RzaikvLy/odDpZxxKR+bGIIiLFODg4ICUlBXfffTfefvttzJ8/Hz169ABwfQiqOQWEp6cnpk2bhmnTpuHSpUsYPnw4XnjhhUaLqO7du8NoNOLEiRMmvU9Hjx6tF9ulSxeUl5fX235jb86///1vVFdXY9u2bejWrZu0fefOnTfNv611794dBw4cgNFoNOmNOnLkiLQfaLxAJKLm45woIlLUiBEjEBkZiVWrVuHKlSvw9vbGiBEj8M4776C4uLhe/Pnz56X/X7hwwWRfp06d0KtXL1RXVzf6ePfddx8AYPXq1SbbV61aVS+2Z8+eMBgMOHDggLStuLi43qrhDg4OAAAhhLTNYDBgw4YNjeZhLqNHj4Zer0d6erq07dq1a3jrrbfQqVMnREdHAwA6duwIAA0WiUTUPOyJIiLF/e1vf8Of//xnbNy4EU888QTWrFmDoUOHIiwsDNOnT0ePHj1QUlKC3NxcnDlzBj/88AMAoG/fvhgxYgQGDhwIT09P7NmzB5988glmzpzZ6GOFh4cjPj4ef//732EwGDB48GBkZWXh+PHj9WInTJiAZ599Fg8++CCefvppXL58GWvXrkVoaCj27t0rxd17771wcnLC2LFj8fjjj+PSpUtYt24dvL29GywEzSkxMRHvvPMOpk6dioKCAgQFBeGTTz7Bd999h1WrVqFz584Ark+E79u3L9LT0xEaGgpPT0/069cP/fr1s2i+RDZN6csDiah9qFviID8/v96+2tpa0bNnT9GzZ09x7do1IYQQJ06cEJMnTxa+vr6iQ4cOIiAgQNx///3ik08+kY5bsmSJiIyMFB4eHsLFxUX07t1bvPLKK+Lq1atSTEPLEVRVVYmnn35a3HLLLcLV1VWMHTtWnD59usFL/r/66ivRr18/4eTkJG677Tbx4YcfNnif27ZtE/379xcajUYEBQWJ1157Taxfv14AEEVFRVJcS5Y4uNnyDY3dX0lJiZg2bZrw8vISTk5OIiwsTGzYsKHesTk5OWLgwIHCycmJyx0QyaAS4g/9z0RERETULJwTRURERCQDiygiIiIiGVhEEREREcnAIoqIiIhIBhZRRERERDKwiCIiIiKSgYttmpHRaMTZs2fRuXNnfsUCERGRjRBC4OLFi/D396/3Zd5/xCLKjM6ePYvAwECl0yAiIiIZTp8+jVtvvbXR/SyizKju6xVOnz4NNzc3hbMhIiKi5qioqEBgYKD0Pt4YFlFmVDeE5+bmxiKKiIjIxtxsKg4nlhMRERHJwCKKiIiISAYWUUREREQycE6Uwmpra1FTU6N0GjajQ4cOcHBwUDoNIiIiFlFKEUJAr9ejvLxc6VRsjoeHB3x9fbn2FhERKYpFlELqCihvb2907NiRBUEzCCFw+fJlnDt3DgDg5+encEZERNSesYhSQG1trVRA3XLLLUqnY1NcXFwAAOfOnYO3tzeH9oiISDGcWK6AujlQHTt2VDgT21TXbpxLRkRESmIRpSAO4cnDdiMiImvAIoqIiIhIBhZRRERERDKwiCJZ9Ho9nnrqKfTo0QPOzs4IDAzE2LFjkZWVJcXk5ORg9OjR6NKlCzQaDcLCwvD666+jtrZWijl58iQSEhIQHBwMFxcX9OzZE8nJybh69aoSp0VERFak2FCFnBOlKDZUKZ1Kg3h1HrXYyZMnMWTIEHh4eGD58uUICwtDTU0NvvzyS8yYMQNHjhzBv/71LzzyyCOYNm0adu7cCQ8PD3z99deYN28ecnNz8fHHH0OlUuHIkSMwGo1455130KtXLxQWFmL69OmorKzEihUrlD5VIiJSSHr+KSzY+iOMAlCrgJTxYYgb1E3ptEyohBBC6STsVUVFBdzd3WEwGODm5iZtv3LlCoqKihAcHAyNRqNghvKMHj0aBw4cwNGjR+Hq6mqyr7y8HB06dED37t0RHR2NTz/91GT/v//9bzzwwANIS0tDXFxcg/e/fPlyrF27Fj///HOD+229/YiIqGnFhioMWZoN4x8qFAeVCt/Ovxt+7i5mf/zG3r9vZBXDeWvWrEFQUBA0Gg20Wi12797dZPyWLVvQu3dvaYhox44dJvuFEFi8eDH8/Pzg4uICnU6HY8eOmcSUlZVh4sSJcHNzg4eHBxISEnDp0iVp/wsvvACVSlXvdmPRYA0s2d1ZVlaGjIwMzJgxo8G28PDwwFdffYULFy5g7ty59faPHTsWoaGh+Oijjxp9DIPBAE9PzzbNm4iIbEdRaaVJAQUAtULgZOllZRJqhOJFVHp6OpKSkpCcnIy9e/diwIABiImJkValvlFOTg7i4+ORkJCAffv2ITY2FrGxsSgsLJRili1bhtWrVyM1NRV5eXlwdXVFTEwMrly5IsVMnDgRBw8eRGZmJrZv345du3YhMTFR2j937lwUFxeb3Pr27Ys///nP5msMGdLzT2HI0mw8ui4PQ5ZmIz3/lFkf7/jx4xBCoHfv3o3G/PTTTwCAPn36NLi/d+/eUkxD9//WW2/h8ccfb32yRERkk4K9XKG+YTUbB5UKQV7Wtb6i4kXU66+/junTp2PatGno27cvUlNT0bFjR6xfv77B+DfffBOjRo3C3/72N/Tp0wcvv/wy7rzzTrz99tsArvdCrVq1CgsXLsS4cePQv39//OMf/8DZs2fx2WefAQAOHz6MjIwMvPfee9BqtRg6dCjeeustpKWl4ezZswCATp06wdfXV7qVlJTg0KFDSEhIsEi7NEexoUoaLwYAowCe21po1h6ploz+tnSk+Ndff8WoUaPw5z//GdOnT29pakREZCf83F2QMj4MDv9bF9BBpcKr4/tZZCivJRQtoq5evYqCggLodDppm1qthk6nQ25uboPH5ObmmsQDQExMjBRfVFQEvV5vEuPu7g6tVivF5ObmwsPDAxEREVKMTqeDWq1GXl5eg4/73nvvITQ0FMOGDWv0fKqrq1FRUWFyMyclujtDQkKkCeGNCQ0NBXC9WG3I4cOHpZg6Z8+exd13343Bgwfj3XffbbuEiYjIJsUN6oZv59+Nj6bfhW/n3211k8oBhYuo0tJS1NbWwsfHx2S7j48P9Hp9g8fo9fom4+v+vVmMt7e3yX5HR0d4eno2+LhXrlzBpk2bbtoLlZKSAnd3d+kWGBjYZHxrKdHd6enpiZiYGKxZswaVlZX19peXl+Pee++Fp6cnVq5cWW//tm3bcOzYMcTHx0vbfv31V4wYMQIDBw7Ehg0boFYr3kFKRERWwM/dBVE9b7G6Hqg6fLdqhn/961+4ePEipkyZ0mTcggULYDAYpNvp06fNmpdS3Z1r1qxBbW0tIiMj8emnn+LYsWM4fPgwVq9ejaioKLi6uuKdd97B559/jsTERBw4cAAnT57E+++/j6lTp+Lhhx/GI488AuD3Aqpbt25YsWIFzp8/D71e32gRTUREZC0UXSfKy8sLDg4OKCkpMdleUlICX1/fBo+pm5/UWHzdvyUlJfDz8zOJCQ8Pl2JunLh+7do1lJWVNfi47733Hu6///56vVs3cnZ2hrOzc5MxbS1uUDcMD+2Kk6WXEeTV0SLVeo8ePbB371688sormDNnDoqLi9G1a1cMHDgQa9euBQA8/PDD2LlzJ1555RUMGzYMV65cQUhICJ5//nnMnj1b+v67zMxMHD9+HMePH8ett95q8jhcfYOIiKyZoj1RTk5OGDhwoMkq10ajEVlZWYiKimrwmKioKJN44PobcV18cHAwfH19TWIqKiqQl5cnxURFRaG8vBwFBQVSTHZ2NoxGI7Rarcl9FxUVYefOnVY1ofxGSnR3+vn54e2338bJkydRXV2NM2fO4PPPP8eIESOkmGHDhiEjIwMGgwHV1dUoLCzEnDlz4ODgIMVMnToVQogGb0RERNZM8RXLk5KSMGXKFERERCAyMhKrVq1CZWUlpk2bBgCYPHkyAgICkJKSAgCYNWsWoqOjsXLlSowZMwZpaWnYs2ePNBlZpVJh9uzZWLJkCUJCQhAcHIxFixbB398fsbGxAK5fej9q1ChMnz4dqampqKmpwcyZMzFhwgT4+/ub5Ld+/Xr4+fnhvvvus1yjEBERkdVTvIiKi4vD+fPnsXjxYuj1eoSHhyMjI0MaOjt16pTJROPBgwdj8+bNWLhwIZ577jmEhITgs88+Q79+/aSYefPmobKyEomJiSgvL8fQoUORkZFhsrr1pk2bMHPmTIwcORJqtRoPPfQQVq9ebZKb0WjExo0bMXXqVJPeEyIiIiJ+7YsZ2evXviiN7UdEROZkU1/7QkRERGRrWEQpiJ2A8rDdiIjIGrCIUkCHDh0AAJcvW9cXKdqKunara0ciIiIlKD6xvD1ycHCAh4eHtFZVx44dpXWTqHFCCFy+fBnnzp2Dh4cHJ/sTEZGiWEQppG5RzxsX/aSb8/DwaHQxViIiIkthEaUQlUoFPz8/eHt7o6amRul0bEaHDh3YA0VERFaBRZTCHBwcWBQQERHZIE4sJyIiIpKBRRQRERGRDCyiiIiIiGRgEUVEREQkA4soIiIiIhlYRBERERHJwCKKiIiISAYWUUREREQysIgiIiIikoFFFBEREZEMLKKIiIiIZGARRURERCQDiygiIiIiGVhEEREREcnAIoqIiIhIBhZRRERERDKwiCIiIiKSgUUUERERkQwsooiIiIhkYBFFREREJAOLKCIiIiIZWEQRERERycAiioiIiEgGFlFEREREMrCIIiIiIpKBRRQRERGRDCyiiIiIiGRgEUVEREQkA4soIiIiIhlYRBERERHJoHgRtWbNGgQFBUGj0UCr1WL37t1Nxm/ZsgW9e/eGRqNBWFgYduzYYbJfCIHFixfDz88PLi4u0Ol0OHbsmElMWVkZJk6cCDc3N3h4eCAhIQGXLl2qdz8rVqxAaGgonJ2dERAQgFdeeaVtTpqIiIhsnqJFVHp6OpKSkpCcnIy9e/diwIABiImJwblz5xqMz8nJQXx8PBISErBv3z7ExsYiNjYWhYWFUsyyZcuwevVqpKamIi8vD66uroiJicGVK1ekmIkTJ+LgwYPIzMzE9u3bsWvXLiQmJpo81qxZs/Dee+9hxYoVOHLkCLZt24bIyEjzNAQRERHZHqGgyMhIMWPGDOnn2tpa4e/vL1JSUhqMf+SRR8SYMWNMtmm1WvH4448LIYQwGo3C19dXLF++XNpfXl4unJ2dxUcffSSEEOLQoUMCgMjPz5di/vOf/wiVSiV+/fVXKcbR0VEcOXKkVednMBgEAGEwGFp1P0RERGQ5zX3/Vqwn6urVqygoKIBOp5O2qdVq6HQ65ObmNnhMbm6uSTwAxMTESPFFRUXQ6/UmMe7u7tBqtVJMbm4uPDw8EBERIcXodDqo1Wrk5eUBAP7973+jR48e2L59O4KDgxEUFITHHnsMZWVlTZ5TdXU1KioqTG5ERERknxQrokpLS1FbWwsfHx+T7T4+PtDr9Q0eo9frm4yv+/dmMd7e3ib7HR0d4enpKcX8/PPP+OWXX7Blyxb84x//wMaNG1FQUICHH364yXNKSUmBu7u7dAsMDGwynoiIiGyX4hPLrZHRaER1dTX+8Y9/YNiwYRgxYgTef/997Ny5E0ePHm30uAULFsBgMEi306dPWzBrIiIisiTFiigvLy84ODigpKTEZHtJSQl8fX0bPMbX17fJ+Lp/bxZz48T1a9euoaysTIrx8/ODo6MjQkNDpZg+ffoAAE6dOtXoOTk7O8PNzc3kRkRERPZJsSLKyckJAwcORFZWlrTNaDQiKysLUVFRDR4TFRVlEg8AmZmZUnxwcDB8fX1NYioqKpCXlyfFREVFoby8HAUFBVJMdnY2jEYjtFotAGDIkCG4du0aTpw4IcX89NNPAIDu3bu35rSJiIjIXlhoonuD0tLShLOzs9i4caM4dOiQSExMFB4eHkKv1wshhJg0aZKYP3++FP/dd98JR0dHsWLFCnH48GGRnJwsOnToIH788UcpZunSpcLDw0N8/vnn4sCBA2LcuHEiODhYVFVVSTGjRo0Sd9xxh8jLyxPffvutCAkJEfHx8dL+2tpaceedd4rhw4eLvXv3ij179gitViv+9Kc/tej8eHUeERGR7Wnu+7eiRZQQQrz11luiW7duwsnJSURGRorvv/9e2hcdHS2mTJliEv/xxx+L0NBQ4eTkJG6//XbxxRdfmOw3Go1i0aJFwsfHRzg7O4uRI0eKo0ePmsRcuHBBxMfHi06dOgk3Nzcxbdo0cfHiRZOYX3/9VYwfP1506tRJ+Pj4iKlTp4oLFy606NxYRBEREdme5r5/q4QQQtm+MPtVUVEBd3d3GAwGzo8iIiKyEc19/+bVeUREREQysIgiIiIikoFFFBEREZEMLKKIiIiIZGARRURERCQDiygiIiIiGVhEEREREcnAIoqIiIhIBhZRRERERDKwiCIiIiKSgUUUERERkQwsooiIiIhkYBFFREREJAOLKCIiIiIZWEQRERERycAiioiIiEgGFlFEREREMrCIIiIiIpKBRRQRERGRDCyiiIiIiGRgEUVEREQkA4soIiIiIhlYRBGRxRQbqpBzohTFhiqlUyEiajVHpRMgovYhPf8UFmz9EUYBqFVAyvgwxA3qpnRaRESysSeKiMyu2FAlFVAAYBTAc1sL2SNFRDaNRRQRmV1RaaVUQNWpFQInSy8rkxARURtgEUVEZhfs5Qq1ynSbg0qFIK+OyiRERNQGWEQRkdn5ubsgZXwYHFTXKykHlQqvju8HP3cXhTMjIpKPE8uJyCLiBnXD8NCuOFl6GUFeHVlAEZHNYxFFRBbj5+7C4omI7AaH84iIiIhkYBFFREREJAOLKCIiIiIZWEQRERERycAiioiIiEgGFlFEREREMrCIIiIiIpLBKoqoNWvWICgoCBqNBlqtFrt3724yfsuWLejduzc0Gg3CwsKwY8cOk/1CCCxevBh+fn5wcXGBTqfDsWPHTGLKysowceJEuLm5wcPDAwkJCbh06ZK0/+TJk1CpVPVu33//fdudOBEREdksxYuo9PR0JCUlITk5GXv37sWAAQMQExODc+fONRifk5OD+Ph4JCQkYN++fYiNjUVsbCwKCwulmGXLlmH16tVITU1FXl4eXF1dERMTgytXrkgxEydOxMGDB5GZmYnt27dj165dSExMrPd4X3/9NYqLi6XbwIED274RiIiIyPYIhUVGRooZM2ZIP9fW1gp/f3+RkpLSYPwjjzwixowZY7JNq9WKxx9/XAghhNFoFL6+vmL58uXS/vLycuHs7Cw++ugjIYQQhw4dEgBEfn6+FPOf//xHqFQq8euvvwohhCgqKhIAxL59+2Sfm8FgEACEwWCQfR9ERERkWc19/1a0J+rq1asoKCiATqeTtqnVauh0OuTm5jZ4TG5urkk8AMTExEjxRUVF0Ov1JjHu7u7QarVSTG5uLjw8PBARESHF6HQ6qNVq5OXlmdz3Aw88AG9vbwwdOhTbtm1r8nyqq6tRUVFhciMiIiL7pGgRVVpaitraWvj4+Jhs9/HxgV6vb/AYvV7fZHzdvzeL8fb2Ntnv6OgIT09PKaZTp05YuXIltmzZgi+++AJDhw5FbGxsk4VUSkoK3N3dpVtgYODNmoCIiIhsFL+AuBFeXl5ISkqSfh40aBDOnj2L5cuX44EHHmjwmAULFpgcU1FRwUKKiIjITinaE+Xl5QUHBweUlJSYbC8pKYGvr2+Dx/j6+jYZX/fvzWJunLh+7do1lJWVNfq4AKDVanH8+PFG9zs7O8PNzc3kRkRERPZJ0SLKyckJAwcORFZWlrTNaDQiKysLUVFRDR4TFRVlEg8AmZmZUnxwcDB8fX1NYioqKpCXlyfFREVFoby8HAUFBVJMdnY2jEYjtFpto/nu378ffn5+LT9RIiIisjuKD+clJSVhypQpiIiIQGRkJFatWoXKykpMmzYNADB58mQEBAQgJSUFADBr1ixER0dj5cqVGDNmDNLS0rBnzx68++67AACVSoXZs2djyZIlCAkJQXBwMBYtWgR/f3/ExsYCAPr06YNRo0Zh+vTpSE1NRU1NDWbOnIkJEybA398fAPDBBx/AyckJd9xxBwBg69atWL9+Pd577z0LtxARERFZI8WLqLi4OJw/fx6LFy+GXq9HeHg4MjIypInhp06dglr9e4fZ4MGDsXnzZixcuBDPPfccQkJC8Nlnn6Ffv35SzLx581BZWYnExESUl5dj6NChyMjIgEajkWI2bdqEmTNnYuTIkVCr1XjooYewevVqk9xefvll/PLLL3B0dETv3r2Rnp6Ohx9+2MwtQkRERLZAJYQQSidhryoqKuDu7g6DwcD5UURERDaiue/fiq9YTkRERGSLWEQRERERycAiioiIiEgGFlFEREREMrCIIiIiIpKBRRQRkZUpNlQh50Qpig1VSqdCRE1QfJ0oIiL6XXr+KSzY+iOMAlCrgJTxYYgb1E3ptIioAeyJIiKyEsWGKqmAAgCjAJ7bWsgeKSIrxSKKiMhKFJVWSgVUnVohcLL0sjIJEVGTWEQREVmJYC9XqFWm2xxUKgR5dVQmISJqEosoIiIr4efugpTxYXBQXa+kHFQqvDq+H/zcXRTOjIgawonlRERWJG5QNwwP7YqTpZcR5NWRBRSRFWMRRURkZfzcXVg8EdkADucRERERycAiioiIiEgGFlFEREREMrCIIiIiIpKBRRQRERGRDCyiiIiIiGRgEUVEREQkA4soIiIiIhlYRBERERHJwCKKiIiISAYWUUTtXLGhCjknSlFsqFI6FSIim8LvziNqx9LzT2HB1h9hFIBaBaSMD0PcoG5Kp0VEZBPYE0XUThUbqqQCCgCMAnhuayF7pIiImolFFFE7VVRaKRVQdWqFwMnSy8okRERkY1hEEbVTwV6uUKtMtzmoVAjy6qhMQkRENoZFFFE75efugpTxYXBQXa+kHFQqvDq+H/zcXRTOjIjINnBiOVE7FjeoG4aHdsXJ0ssI8urIAoqIqAVYRBG1c37uLiyeiIhk4HAeERERkQwsooiIiIhkYBFFREREJAOLKCIiIiIZWEQRERERycAiioiIiEgGqyii1qxZg6CgIGg0Gmi1WuzevbvJ+C1btqB3797QaDQICwvDjh07TPYLIbB48WL4+fnBxcUFOp0Ox44dM4kpKyvDxIkT4ebmBg8PDyQkJODSpUsNPt7x48fRuXNneHh4tOo8iYiIyH4oXkSlp6cjKSkJycnJ2Lt3LwYMGICYmBicO3euwficnBzEx8cjISEB+/btQ2xsLGJjY1FYWCjFLFu2DKtXr0Zqairy8vLg6uqKmJgYXLlyRYqZOHEiDh48iMzMTGzfvh27du1CYmJivcerqalBfHw8hg0b1vYnT0RERDZLJYQQNw8zH61Wi0GDBuHtt98GABiNRgQGBuKpp57C/Pnz68XHxcWhsrIS27dvl7bdddddCA8PR2pqKoQQ8Pf3x5w5czB37lwAgMFggI+PDzZu3IgJEybg8OHD6Nu3L/Lz8xEREQEAyMjIwOjRo3HmzBn4+/tL9/3ss8/i7NmzGDlyJGbPno3y8vJmn1tFRQXc3d1hMBjg5uYmp3mIiIjIwpr7/q1oT9TVq1dRUFAAnU4nbVOr1dDpdMjNzW3wmNzcXJN4AIiJiZHii4qKoNfrTWLc3d2h1WqlmNzcXHh4eEgFFADodDqo1Wrk5eVJ27Kzs7FlyxasWbOmWedTXV2NiooKkxsRERHZJ0WLqNLSUtTW1sLHx8dku4+PD/R6fYPH6PX6JuPr/r1ZjLe3t8l+R0dHeHp6SjEXLlzA1KlTsXHjxmb3IqWkpMDd3V26BQYGNus4IiIisj2Kz4myVtOnT8ejjz6K4cOHN/uYBQsWwGAwSLfTp0+bMUMiIiJSkqJFlJeXFxwcHFBSUmKyvaSkBL6+vg0e4+vr22R83b83i7lx4vq1a9dQVlYmxWRnZ2PFihVwdHSEo6MjEhISYDAY4OjoiPXr1zeYm7OzM9zc3ExuREREZJ8ULaKcnJwwcOBAZGVlSduMRiOysrIQFRXV4DFRUVEm8QCQmZkpxQcHB8PX19ckpqKiAnl5eVJMVFQUysvLUVBQIMVkZ2fDaDRCq9UCuD5vav/+/dLtpZdeQufOnbF//348+OCDbdMAREREJEuxoQo5J0pRbKhSLAdHxR75f5KSkjBlyhREREQgMjISq1atQmVlJaZNmwYAmDx5MgICApCSkgIAmDVrFqKjo7Fy5UqMGTMGaWlp2LNnD959910AgEqlwuzZs7FkyRKEhIQgODgYixYtgr+/P2JjYwEAffr0wahRozB9+nSkpqaipqYGM2fOxIQJE6Qr8/r06WOS5549e6BWq9GvXz8LtQwRERE1JD3/FBZs/RFGAahVQMr4MMQN6mbxPBQvouLi4nD+/HksXrwYer0e4eHhyMjIkCaGnzp1Cmr17x1mgwcPxubNm7Fw4UI899xzCAkJwWeffWZS3MybNw+VlZVITExEeXk5hg4dioyMDGg0Gilm06ZNmDlzJkaOHAm1Wo2HHnoIq1evttyJExERUYsVG6qkAgoAjAJ4bmshhod2hZ+7i0VzUXydKHvGdaKIiIjaVs6JUjy6Lq/e9o+m34Wonre0yWPYxDpRRERERC0R7OUKtcp0m4NKhSCvjhbPhUUUERER2Qw/dxekjA+Dg+p6JeWgUuHV8f0sPpQHtHBOVE1NDZ5//nls3boVnp6eeOKJJ/B///d/0v6SkhL4+/ujtra2zRMlIiIiAoC4Qd0wPLQrTpZeRpBXR0UKKKCFRdQrr7yCf/zjH5g7dy7Ky8uRlJSEvLw8vPPOO1IMp1gRERGRufm5uyhWPNVpURG1adMmvPfee7j//vsBAFOnTsV9992HadOmSQtQqlSqpu6CiIiIyC60aE7Ur7/+arKUQK9evfDNN98gJycHkyZN4jAeERERtRstKqJ8fX1x4sQJk20BAQHYuXMn8vPzMXXq1LbMjYiIiMhqtaiIuueee7B58+Z62/39/ZGdnY2ioqI2S4yIiIjImrVoTtSiRYtw5MiRBvcFBATgv//9LzIzM9skMSIiIiJrxhXLzYgrlhMREdkes65YvmXLFowfPx79+vVDv379MH78eHzyySeykyUiIiKyNS0qooxGI+Li4hAXF4dDhw6hV69e6NWrFw4ePIi4uDhMmDCB60QRERFRu9CiOVFvvvkmvv76a2zbtk1aK6rOtm3bMG3aNLz55puYPXt2W+ZIREREZHVa1BO1YcMGLF++vF4BBQAPPPAAli1bJi26SURERGTPWlREHTt2DDqdrtH9Op0Ox44da3VSRERERNauRUWUi4sLysvLG91fUVEBjUbT2pyIiIiIrF6LiqioqCisXbu20f1r1qxBVFRUq5MiIiIisnYtmlj+/PPPY8SIEbhw4QLmzp2L3r17QwiBw4cPY+XKlfj888+xc+dOc+VKREREZDVaVEQNHjwY6enpSExMxKeffmqyr0uXLvjoo48wZMiQNk2QiIiIyBrJWrH88uXL+PLLL6VJ5KGhobj33nvRsWPHNk/QlnHFciIiItvT3PfvFvVEZWdnY+bMmfj+++/x4IMPmuwzGAy4/fbbkZqaimHDhsnLmoiIiMhGtGhi+apVqzB9+vQGqzJ3d3c8/vjjeP3119ssOSIiIiJr1aIi6ocffsCoUaMa3X/vvfeioKCg1UkRERERWbsWFVElJSXo0KFDo/sdHR1x/vz5VidFRGQvig1VyDlRimJDldKpEFEba9GcqICAABQWFqJXr14N7j9w4AD8/PzaJDEiIluXnn8KC7b+CKMA1CogZXwY4gZ1UzotImojLeqJGj16NBYtWoQrV67U21dVVYXk5OQGv1ePiKi9KTZUSQUUABgF8NzWQvZIEdmRFvVELVy4EFu3bkVoaChmzpyJ2267DQBw5MgRrFmzBrW1tXj++efNkigRkS0pKq2UCqg6tULgZOll+Lm7KJMUEbWpFhVRPj4+yMnJwV//+lcsWLAAdUtMqVQqxMTEYM2aNfDx8TFLokREtiTYyxVqFUwKKQeVCkFeXE+PyF60qIgCgO7du2PHjh347bffcPz4cQghEBISgi5dupgjPyIim+Tn7oKU8WF4bmshaoWAg0qFV8f3Yy8UkR2RtWI5NY+5ViwvNlShqLQSwV6ufEEmsnLFhiqcLL2MIK+O/HslshFmWbGclMerfYhsi5+7C4snIjvVoqvzSFm82oeIiMh6sIiyIU1d7UNERESWxSLKhtRd7fNHvNqHiIhIGSyibEjd1T4OquuVFK/2ISIiUg4nltuYuEHdMDy0K6/2ISIiUphV9EStWbMGQUFB0Gg00Gq12L17d5PxW7ZsQe/evaHRaBAWFoYdO3aY7BdCYPHixfDz84OLiwt0Oh2OHTtmElNWVoaJEyfCzc0NHh4eSEhIwKVLl6T9R48exd133w0fHx9oNBr06NEDCxcuRE1NTduduEx+7i6I6nkLCygiIiIFKV5EpaenIykpCcnJydi7dy8GDBiAmJgYnDt3rsH4nJwcxMfHIyEhAfv27UNsbCxiY2NRWFgoxSxbtgyrV69Gamoq8vLy4OrqipiYGJPv/Js4cSIOHjyIzMxMbN++Hbt27UJiYqK0v0OHDpg8eTK++uorHD16FKtWrcK6deuQnJxsvsYgIiIim6H4YptarRaDBg3C22+/DQAwGo0IDAzEU089hfnz59eLj4uLQ2VlJbZv3y5tu+uuuxAeHo7U1FQIIeDv7485c+Zg7ty5AACDwQAfHx9s3LgREyZMwOHDh9G3b1/k5+cjIiICAJCRkYHRo0fjzJkz8Pf3bzDXpKQk5Ofn4//9v//XrHMz12KbREREZD7Nff9WtCfq6tWrKCgogE6nk7ap1WrodDrk5uY2eExubq5JPADExMRI8UVFRdDr9SYx7u7u0Gq1Ukxubi48PDykAgoAdDod1Go18vLyGnzc48ePIyMjA9HR0Y2eT3V1NSoqKkxuREREZJ8ULaJKS0tRW1tb70uLfXx8oNfrGzxGr9c3GV/3781ivL29TfY7OjrC09Oz3uMOHjwYGo0GISEhGDZsGF566aVGzyclJQXu7u7SLTAwsNFYIiIism2Kz4mydunp6di7dy82b96ML774AitWrGg0dsGCBTAYDNLt9OnTFsyUiIiILEnRJQ68vLzg4OCAkpISk+0lJSXw9fVt8BhfX98m4+v+LSkpgZ+fn0lMeHi4FHPjxPVr166hrKys3uPW9Sb17dsXtbW1SExMxJw5c+Dg4FAvN2dnZzg7O9/stImIiMgOKNoT5eTkhIEDByIrK0vaZjQakZWVhaioqAaPiYqKMokHgMzMTCk+ODgYvr6+JjEVFRXIy8uTYqKiolBeXo6CggIpJjs7G0ajEVqtttF8jUYjampqYDQaW36yREREZFcUX2wzKSkJU6ZMQUREBCIjI7Fq1SpUVlZi2rRpAIDJkycjICAAKSkpAIBZs2YhOjoaK1euxJgxY5CWloY9e/bg3XffBQCoVCrMnj0bS5YsQUhICIKDg7Fo0SL4+/sjNjYWANCnTx+MGjUK06dPR2pqKmpqajBz5kxMmDBBujJv06ZN6NChA8LCwuDs7Iw9e/ZgwYIFiIuLQ4cOHSzfUERERGRVFC+i4uLicP78eSxevBh6vR7h4eHIyMiQJoafOnUKavXvHWaDBw/G5s2bsXDhQjz33HMICQnBZ599hn79+kkx8+bNQ2VlJRITE1FeXo6hQ4ciIyMDGo1Gitm0aRNmzpyJkSNHQq1W46GHHsLq1aul/Y6Ojnjttdfw008/QQiB7t27Y+bMmXjmmWcs0CpERERk7RRfJ8qecZ0oIiIi22MT60QRERER2SoWUUREREQysIgiIiIikoFFFBEREZEMLKKIiIiIZGARRURERCQDiygiIiIiGVhEEREREcnAIoqIiIhIBhZRRERERDKwiCIiIiKSgUUUERERkQwsooiIiIhkYBFFREREJAOLKCIiIiIZWEQRERERycAiioiIiGxOsaEKOSdKUWyoUiwHR8UemagNFBuqUFRaiWAvV/i5uyidDhERWUB6/iks2PojjAJQq4CU8WGIG9TN4nmwiCKbZS1/REREZDnFhirptR8AjAJ4bmshhod2tfiHaQ7nkU1q7I9IyW5dIiIyv6LSSum1v06tEDhZetniubCIIptkTX9ERERkOcFerlCrTLc5qFQI8upo8VxYRJFNsqY/IiIishw/dxekjA+Dg+r6m4CDSoVXx/dTZF4s50SRTar7I3puayFqhVD0j4iIiCwrblA3DA/tipOllxHk1VGx134WUWSzrOWPiIiILM/P3UXx130WUWTTrOGPiIiI2ifOiSIiIiKSgUUUERERkQwsooiIiIhkYBFFREREJAOLKCIiIiIZWEQRERERycAiioiIiEgGFlFEREREMrCIIiIiIpKBRRQRERGRDCyiiIiIiGRgEUVEREQkg1UUUWvWrEFQUBA0Gg20Wi12797dZPyWLVvQu3dvaDQahIWFYceOHSb7hRBYvHgx/Pz84OLiAp1Oh2PHjpnElJWVYeLEiXBzc4OHhwcSEhJw6dIlaf8333yDcePGwc/PD66urggPD8emTZva7qSJiIjIpileRKWnpyMpKQnJycnYu3cvBgwYgJiYGJw7d67B+JycHMTHxyMhIQH79u1DbGwsYmNjUVhYKMUsW7YMq1evRmpqKvLy8uDq6oqYmBhcuXJFipk4cSIOHjyIzMxMbN++Hbt27UJiYqLJ4/Tv3x+ffvopDhw4gGnTpmHy5MnYvn27+RqDiIiIbIZKCCGUTECr1WLQoEF4++23AQBGoxGBgYF46qmnMH/+/HrxcXFxqKysNClm7rrrLoSHhyM1NRVCCPj7+2POnDmYO3cuAMBgMMDHxwcbN27EhAkTcPjwYfTt2xf5+fmIiIgAAGRkZGD06NE4c+YM/P39G8x1zJgx8PHxwfr165t1bhUVFXB3d4fBYICbm1uL2oWIiIiU0dz3b0V7oq5evYqCggLodDppm1qthk6nQ25uboPH5ObmmsQDQExMjBRfVFQEvV5vEuPu7g6tVivF5ObmwsPDQyqgAECn00GtViMvL6/RfA0GAzw9PRvdX11djYqKCpMbERER2SdFi6jS0lLU1tbCx8fHZLuPjw/0en2Dx+j1+ibj6/69WYy3t7fJfkdHR3h6ejb6uB9//DHy8/Mxbdq0Rs8nJSUF7u7u0i0wMLDRWGtSbKhCzolSFBuqlE6FiIjIZig+J8oW7Ny5E9OmTcO6detw++23Nxq3YMECGAwG6Xb69GkLZilPev4pDFmajUfX5WHI0myk559SOiUiIiKboGgR5eXlBQcHB5SUlJhsLykpga+vb4PH+Pr6Nhlf9+/NYm6cuH7t2jWUlZXVe9z//ve/GDt2LN544w1Mnjy5yfNxdnaGm5ubyc2aFRuqsGDrjzD+b1acUQDPbS1kjxQREVEzKFpEOTk5YeDAgcjKypK2GY1GZGVlISoqqsFjoqKiTOIBIDMzU4oPDg6Gr6+vSUxFRQXy8vKkmKioKJSXl6OgoECKyc7OhtFohFarlbZ98803GDNmDF577TWTK/fsRVFppVRA1akVAidLLyuTEBERkQ1xVDqBpKQkTJkyBREREYiMjMSqVatQWVkpzT2aPHkyAgICkJKSAgCYNWsWoqOjsXLlSowZMwZpaWnYs2cP3n33XQCASqXC7NmzsWTJEoSEhCA4OBiLFi2Cv78/YmNjAQB9+vTBqFGjMH36dKSmpqKmpgYzZ87EhAkTpCvzdu7cifvvvx+zZs3CQw89JM2VcnJyanJyuS0J9nKFWgWTQspBpUKQV0flkiIiIrIVwgq89dZbolu3bsLJyUlERkaK77//XtoXHR0tpkyZYhL/8ccfi9DQUOHk5CRuv/128cUXX5jsNxqNYtGiRcLHx0c4OzuLkSNHiqNHj5rEXLhwQcTHx4tOnToJNzc3MW3aNHHx4kVp/5QpUwSAerfo6Ohmn5fBYBAAhMFgaH5jWFja7l9Ej/lfiO7Pbhc95n8h0nb/onRKREREimru+7fi60TZMyXWiSo2VKGotBLBXq7wc3dp9jEnSy8jyKtjs48hIiKyV819/1Z8OI/aTnr+KWmiuFoFpIwPQ9ygbjc9zs/dhcUTERFRC3GJAzvBK+2IiIgsi0WUneCVdkREv+MiwmQJHM6zE7zSjojoOrlTG+yVnLmy1DzsibITfu4uSBkfBgeVCsD1AurV8f34B0NE7QqnNpjit1KYF3ui7EjcoG4YHtqVV9oRUbvV1NSG9vaa2FhBOTy0a7trC3NhEWVneKUdEbVnnNrwOxaU5sfhPBvECZNElse/O9vAqQ2/qyso/6i9FpTmwp4oG8MJk0SWx78722LPUxtaMkm8rqB8bmshaoVo1wWluXDFcjNq6xXLiw1VGLI0u1439bfz727VHwWv3CBqnLn+7ohaSm4xz2+laDmuWG6HzDG+zU/YRE3jvBKyBq2ZJM65subDOVE2pK3Ht3kpMNHNcV4JWYObLajMOXvKYBFlQ9p6wiRXOSe6OU5UJmvQVDHPtaCUw+E8G9OWEyZ5KTBR89jzRGWyDY1NEgfAtaAUxCLKBrXV+Dav3CBqPs4rIaU1VMznnCjlnD0FsYhq5yz9CZtXAhIRyXdjMc8RBWWxiCKLfcK29JWALNiIyN5xREFZXCfKjNp6nShbZum1drh0AxG1J1wLqm019/2bV+eRRVjySkAu3UBElmQNywv4ubsgquctLKAsjMN5ZBGWHLfn4ohEbYND4jfHXu/2jT1RZBGWXGuHiyMSmZLTUyJ37SFr6JWxFPZ6E3uiyGIsdSUgJ1oS/U5OT4ncrxhpb70y7PUmFlE2yJa72C11JSAXRySSXwzJKQ5a891utorLC5jfD6d/w+6TZYgM8sSAwC5Kp1MPiygb094+6bUGF0ek9k5uT4mc4sDaemUs8WGTvd7mNefj/fh076/Szw/dGYCVj4Qrl1ADWETZkPb4SY+I5JPbUyKnOLCmXhlLfthkr7d5/HD6N5MCCgA+3fsrJkd1t6oeKU4styH8wmCi9qGtJme35oKOuEHd8O38u/HR9Lvw7fy7b1qEWMsXNSsx2ZvLC7S93SfLGty+5+RvFs6kaeyJsiHW9EmPiMyjrXtRWtNT0tIh8dY8VlsNv5lrWNGW56Laosggzwa3RwRZTy8UwCLKpnD83TL4YklKMdeQvSXnB8p5rKYKx5b+PZrjwybnolregMAueOjOgHpzoqxpKA9gEWVzOP5uXnyxJCVZ2+RsS2iqcNz10/kW/z229YdNzkVVzspHwjE5qjv2nPwNEUFdrK6AAlhE2SRedWYefLEkpbXHIfvGCseCk7/J/ntsyw+b7bGwvRlL9tYPCLTO4qkOJ5YT/Q8n7pPSrGVytiU19g0DuKGYBFr299hWk735DQim5K5kb69YRJHVUPrrIsz1Yqn0eZFtaelVcbauscJxYPcuVlG8tMfCtjH8mpv6OJzXjljzhGlrmItkjon71nBe7ZU1P99vpr0N2Tc2/GYtF9JwLup1HNqsTyWEEDcPIzkqKirg7u4Og8EANzc3RXOx5jfzYkMVhizNrjcP5Nv5dyu20nFbvFha23k1xpaLjcZY8/OdWqat/h6p9WzlNa0tNPf9m8N57YC1d8Fa21yktppLYW3n1RB7nN9g7c93ahkuZGk9OLRZH4fz2gFr74K11yuSrP287PVqRGt/vpNtsuUe27bMnUObplhEtQOuTg4Nbu/oZB0dkfa6iKi1n5e9FhvWXryS7bGF4eHGCiVz5N7e5uw1RfF30TVr1iAoKAgajQZarRa7d+9uMn7Lli3o3bs3NBoNwsLCsGPHDpP9QggsXrwYfn5+cHFxgU6nw7Fjx0xiysrKMHHiRLi5ucHDwwMJCQm4dOmStP/KlSuYOnUqwsLC4OjoiNjY2DY7XyVUXq1tcPvlq0YLZ9I4e70iyZrPy14v3eaQA7UlWxgebmxY3hZyt3WKFlHp6elISkpCcnIy9u7diwEDBiAmJgbnzp1rMD4nJwfx8fFISEjAvn37EBsbi9jYWBQWFkoxy5Ytw+rVq5Gamoq8vDy4uroiJiYGV65ckWImTpyIgwcPIjMzE9u3b8euXbuQmJgo7a+trYWLiwuefvpp6HQ68zWAhdjKm6W9zn2w1vOytmKjLZeCsObilWyLtc9tbKpQsvbc7YGiV+dptVoMGjQIb7/9NgDAaDQiMDAQTz31FObPn18vPi4uDpWVldi+fbu07a677kJ4eDhSU1MhhIC/vz/mzJmDuXPnAgAMBgN8fHywceNGTJgwAYcPH0bfvn2Rn5+PiIgIAEBGRgZGjx6NM2fOwN/f3+Qxp06divLycnz22WctPj9ruzrvxmElvrEQYB1XP9nCcAm1T9Z+RVrOiVI8ui6v3vaPpt+FIK+OVp27NbP6q/OuXr2KgoICk54etVoNnU6H3NzcBo/Jzc2t1zMUExMjxRcVFUGv15vEuLu7Q6vVSjG5ubnw8PCQCigA0Ol0UKvVyMur/0RsierqalRUVJjcrAU/mVNjlO4p45ADWbPW9NhaYqHdpkYarK232R4pNrG8tLQUtbW18PHxMdnu4+ODI0eONHiMXq9vMF6v10v767Y1FePt7W2y39HREZ6enlKMXCkpKXjxxRdbdR/mxMmA9sHarxJqaX72OsGd7IecK9Is1bt6swtYeDWdefHqvDa0YMECJCUlST9XVFQgMDBQwYzI3lj7sJec/Hg1HdmClnwItfTyITcrlPgB2nwUG87z8vKCg4MDSkpKTLaXlJTA19e3wWN8fX2bjK/792YxN05cv3btGsrKyhp93OZydnaGm5ubyY2orVj7sJfc/DjkQPZGiQndSg/Lt1eKFVFOTk4YOHAgsrKypG1GoxFZWVmIiopq8JioqCiTeADIzMyU4oODg+Hr62sSU1FRgby8PCkmKioK5eXlKCgokGKys7NhNBqh1Wrb7PyI2pq1X2nTmvw4Z4/sSXOuiLblLya35dzbmqLDeUlJSZgyZQoiIiIQGRmJVatWobKyEtOmTQMATJ48GQEBAUhJSQEAzJo1C9HR0Vi5ciXGjBmDtLQ07NmzB++++y4AQKVSYfbs2ViyZAlCQkIQHByMRYsWwd/fX1rrqU+fPhg1ahSmT5+O1NRU1NTUYObMmZgwYYLJlXmHDh3C1atXUVZWhosXL2L//v0AgPDwcIu1D9EfWfuwV2vz45AD2YubzVOy9mH5pthy7uagaBEVFxeH8+fPY/HixdDr9QgPD0dGRoY0MfzUqVNQq3/vLBs8eDA2b96MhQsX4rnnnkNISAg+++wz9OvXT4qZN28eKisrkZiYiPLycgwdOhQZGRnQaDRSzKZNmzBz5kyMHDkSarUaDz30EFavXm2S2+jRo/HLL79IP99xxx0Ari/mSaQEa18B3drzI+tm7RdMtFRj85Rs+euWmpO7vf0eb0bRdaLsnTWtE0XWR+6LjTWs69QUa8+Pms9Sb4jtqXejqXWdonreokBGzXez3O3p99jc929enUekgNa82Fj7sJe150fNY6k3RFvumZHD2oflm9JU7u3t91hH8e/OI2pvrP0qOyJLPket/YKJtmbLV6M2lXt7+z3WYU8UWVR7Gy9vCBeXbDt8PpmHJZ+jttwzI5ctL4DZWO7t8fcIsIgiC7Kn8fLWaK8vNm2Nz6f62qqotORztL1ekGDLw94N5d5ef4+cWG5GnFj+O2v/Ek9L4xdCtw6fT/W1dVFp6ecoL0hoHmvvfbWX3yMnlpNV4RCWKVvuzrcGfD6ZMsekXks/R225Z8ZSbKH3tb39HllEUZtr6JMSh7Dqa28vNm2JzydT5ioq+Ry1Hu316jdrx6vzqE2l55/CkKXZeHRdHoYszUZ6/ikAtn1FClkfPp9MNedrRsi2tder36wde6JItht7nG72SYlDWNSW+Hz6XXud1NuesPfVOrGIIlkaGpsP9Ox40yEFDg9QW+Lz6XcsKu0bC2XrxCKKWqyxHqetT0bxkxKRglhUKsNSV8yxULY+LKKoxRobm7981chPSkTUrlj6ijkWytaFRRS1WFNj81E9b+EnJSI7Ye1rEilNiSvm+DuxLiyiqMVuNjbPT0rNwxdDsma2sCaR0iy9Xhl/J9aHRRTJwrH51uGLIVmzm/Ww8APAdZa8Yo7rRFknrhNFsvm5uyCq5y38A26hYkMV5n9q+mI4f+uPKDZUKZsY0f801cPS2Fpw7ZEl1yuzlXWiig1VyDlR2m5ez9gTRWRhBb/8hhu/sFIIYO8vv2FMfxakpLzGelg6OqnZG3IDS/XK28I6Ue2xh509UUQW1th3fvOrwBvX3j7dKq2xHpbKq7U20RtiaZbolbf2VfobG260979Z9kQRWVhEkCdUgElvlArAwKAuCmVk3drjp1tr0FAPS7Ghyup7Q+yZNc9Fba9fCs6eKLKopnoU2ktvg5+7C5Y+FCb98akBLH0ozG5eaNry99heP91aixt7WKy9N6Q9sNa5qO31+xvZE0UW01SPQnvrbbDmT5St0da/x/b66daa2etzl1qnvX4tjUo0NkGDWq2iogLu7u4wGAxwc3NTOh1FFRuqMGRpdr1hgG/n3w0Aje6z9z9Ae9LU71ju79Ec90lE5lNsqLKLAru5798cziOLaKpHwVYu3aWmmeP3yOEjIttircON5sLhPLKIm12ey8mqzWetCx2a6xJsDh8RkbViTxRZRFM9CtbW22DNE9yteaFDc/4ereHTrTU/L4hIGZwTZUacE1VfU+Pl1jCWbs0T3G1lftAPp39D/snfMCioCwYE2seyDdb8vCCittfc928O55FFNfXlxEp/cbG1fzeVLVypZo/FhrU/L4hIORzOI/qfm02MVno4x9rXYbHXNZ144QMRNYZFFNH/NFWkWMNcJGubO3Yjey02rL14JSLlsIgi+p/GihQAVtPDEjeoG76dfzc+mn4Xvp1/t1UNldlrsWHtxSu1L0r3iJMpzoki+oOGLqfPOVFqVXORlJ471hh7XrGYyyyQNbD1OYfWujxLa7CIIrrBjUWKudY/skf2XGxYa/FK7YOtX+Bg6wVgYzicR3QTHM5pGWtY04nI3oa9bHnOob1edAKwJ4qoWey5h4XaN3scYrHHXg9b7hG3heVZ5GJPFFEzsYeF7I01XHXa1uy118OWe8Tt9aITgD1RRM1mj5/Yqf2y9Tk2jbHnXg9b7RG354tOWEQRNYM9Dg9Q+2avxYYtD3s1h61e4GCrBeDNWMVw3po1axAUFASNRgOtVovdu3c3Gb9lyxb07t0bGo0GYWFh2LFjh8l+IQQWL14MPz8/uLi4QKfT4dixYyYxZWVlmDhxItzc3ODh4YGEhARcunTJJObAgQMYNmwYNBoNAgMDsWzZsrY5YbIp9jo8QO2bvQ6x2PKwl72zxykRihdR6enpSEpKQnJyMvbu3YsBAwYgJiYG586dazA+JycH8fHxSEhIwL59+xAbG4vY2FgUFhZKMcuWLcPq1auRmpqKvLw8uLq6IiYmBleuXJFiJk6ciIMHDyIzMxPbt2/Hrl27kJiYKO2vqKjAvffei+7du6OgoADLly/HCy+8gHfffdd8jUFWyZaviiFqjD0XG9a8KC3ZF5UQQtw8zHy0Wi0GDRqEt99+GwBgNBoRGBiIp556CvPnz68XHxcXh8rKSmzfvl3adtdddyE8PBypqakQQsDf3x9z5szB3LlzAQAGgwE+Pj7YuHEjJkyYgMOHD6Nv377Iz89HREQEACAjIwOjR4/GmTNn4O/vj7Vr1+L555+HXq+Hk5MTAGD+/Pn47LPPcOTIkWadW3O/BZqsW7GhCkOWZtcbHvh2/t128YZD7VuxocruhliIWqu579+K9kRdvXoVBQUF0Ol00ja1Wg2dTofc3NwGj8nNzTWJB4CYmBgpvqioCHq93iTG3d0dWq1WisnNzYWHh4dUQAGATqeDWq1GXl6eFDN8+HCpgKp7nKNHj+K3335rMLfq6mpUVFSY3Mj22fMndiJ7HGIhshRFJ5aXlpaitrYWPj4+Jtt9fHwa7e3R6/UNxuv1eml/3bamYry9vU32Ozo6wtPT0yQmODi43n3U7evSpUu93FJSUvDiiy82fsJks+x1UiQREcmn+Jwoe7JgwQIYDAbpdvr0aaVTojbET+xERPRHihZRXl5ecHBwQElJicn2kpIS+Pr6NniMr69vk/F1/94s5saJ69euXUNZWZlJTEP38cfHuJGzszPc3NxMbkRERGSfFC2inJycMHDgQGRlZUnbjEYjsrKyEBUV1eAxUVFRJvEAkJmZKcUHBwfD19fXJKaiogJ5eXlSTFRUFMrLy1FQUCDFZGdnw2g0QqvVSjG7du1CTU2NyePcdtttDQ7lERERUTsjFJaWliacnZ3Fxo0bxaFDh0RiYqLw8PAQer1eCCHEpEmTxPz586X47777Tjg6OooVK1aIw4cPi+TkZNGhQwfx448/SjFLly4VHh4e4vPPPxcHDhwQ48aNE8HBwaKqqkqKGTVqlLjjjjtEXl6e+Pbbb0VISIiIj4+X9peXlwsfHx8xadIkUVhYKNLS0kTHjh3FO++80+xzMxgMAoAwGAytaSIiIiKyoOa+fyteRAkhxFtvvSW6desmnJycRGRkpPj++++lfdHR0WLKlCkm8R9//LEIDQ0VTk5O4vbbbxdffPGFyX6j0SgWLVokfHx8hLOzsxg5cqQ4evSoScyFCxdEfHy86NSpk3BzcxPTpk0TFy9eNIn54YcfxNChQ4Wzs7MICAgQS5cubdF5sYgiIiKyPc19/1Z8nSh7xnWiiIiIbI9NrBNFREREZKtYRBERERHJwCKKiIiISAYWUUREREQysIgiIiIikoFFFBEREZEMin4Bsb2rWz2ioqJC4UyIiIioueret2+2ChSLKDO6ePEiACAwMFDhTIiIiKilLl68CHd390b3c7FNMzIajTh79iw6d+4MlUrVomMrKioQGBiI06dPt/uFOtkW17EdrmM7/I5tcR3b4Tq2w+9a2xZCCFy8eBH+/v5Qqxuf+cSeKDNSq9W49dZbW3Ufbm5u7f6PoQ7b4jq2w3Vsh9+xLa5jO1zHdvhda9qiqR6oOpxYTkRERCQDiygiIiIiGVhEWSlnZ2ckJyfD2dlZ6VQUx7a4ju1wHdvhd2yL69gO17EdfmeptuDEciIiIiIZ2BNFREREJAOLKCIiIiIZWEQRERERycAiioiIiEgGFlEKWrNmDYKCgqDRaKDVarF79+5GYw8ePIiHHnoIQUFBUKlUWLVqleUStYCWtMW6deswbNgwdOnSBV26dIFOp2sy3pa0pB22bt2KiIgIeHh4wNXVFeHh4fjnP/9pwWzNpyXt8EdpaWlQqVSIjY01b4IW1JK22LhxI1QqlclNo9FYMFvzaelzory8HDNmzICfnx+cnZ0RGhqKHTt2WChb82lJO4wYMaLe80GlUmHMmDEWzNh8WvqcWLVqFW677Ta4uLggMDAQzzzzDK5cudK6JAQpIi0tTTg5OYn169eLgwcPiunTpwsPDw9RUlLSYPzu3bvF3LlzxUcffSR8fX3FG2+8YdmEzailbfHoo4+KNWvWiH379onDhw+LqVOnCnd3d3HmzBkLZ962WtoOO3fuFFu3bhWHDh0Sx48fF6tWrRIODg4iIyPDwpm3rZa2Q52ioiIREBAghg0bJsaNG2eZZM2spW2xYcMG4ebmJoqLi6WbXq+3cNZtr6XtUF1dLSIiIsTo0aPFt99+K4qKisQ333wj9u/fb+HM21ZL2+HChQsmz4XCwkLh4OAgNmzYYNnEzaClbbFp0ybh7OwsNm3aJIqKisSXX34p/Pz8xDPPPNOqPFhEKSQyMlLMmDFD+rm2tlb4+/uLlJSUmx7bvXt3uyqiWtMWQghx7do10blzZ/HBBx+YK0WLaG07CCHEHXfcIRYuXGiO9CxGTjtcu3ZNDB48WLz33ntiypQpdlNEtbQtNmzYINzd3S2UneW0tB3Wrl0revToIa5evWqpFC2ita8Rb7zxhujcubO4dOmSuVK0mJa2xYwZM8Q999xjsi0pKUkMGTKkVXlwOE8BV69eRUFBAXQ6nbRNrVZDp9MhNzdXwcwsry3a4vLly6ipqYGnp6e50jS71raDEAJZWVk4evQohg8fbs5UzUpuO7z00kvw9vZGQkKCJdK0CLltcenSJXTv3h2BgYEYN24cDh48aIl0zUZOO2zbtg1RUVGYMWMGfHx80K9fP7z66quora21VNptri1eK99//31MmDABrq6u5krTIuS0xeDBg1FQUCAN+f3888/YsWMHRo8e3apc+AXECigtLUVtbS18fHxMtvv4+ODIkSMKZaWMtmiLZ599Fv7+/iZ/ULZGbjsYDAYEBASguroaDg4O+Pvf/44//elP5k7XbOS0w7fffov3338f+/fvt0CGliOnLW677TasX78e/fv3h8FgwIoVKzB48GAcPHiw1V+GrhQ57fDzzz8jOzsbEydOxI4dO3D8+HE8+eSTqKmpQXJysiXSbnOtfa3cvXs3CgsL8f7775srRYuR0xaPPvooSktLMXToUAghcO3aNTzxxBN47rnnWpULiyiyaUuXLkVaWhq++eYbu5lA2xKdO3fG/v37cenSJWRlZSEpKQk9evTAiBEjlE7NIi5evIhJkyZh3bp18PLyUjodxUVFRSEqKkr6efDgwejTpw/eeecdvPzyywpmZllGoxHe3t5499134eDggIEDB+LXX3/F8uXLbbaIaq33338fYWFhiIyMVDoVRXzzzTd49dVX8fe//x1arRbHjx/HrFmz8PLLL2PRokWy75dFlAK8vLzg4OCAkpISk+0lJSXw9fVVKCtltKYtVqxYgaVLl+Lrr79G//79zZmm2cltB7VajV69egEAwsPDcfjwYaSkpNhsEdXSdjhx4gROnjyJsWPHStuMRiMAwNHREUePHkXPnj3Nm7SZtMXrRIcOHXDHHXfg+PHj5kjRIuS0g5+fHzp06AAHBwdpW58+faDX63H16lU4OTmZNWdzaM3zobKyEmlpaXjppZfMmaLFyGmLRYsWYdKkSXjssccAAGFhYaisrERiYiKef/55qNXyZjdxTpQCnJycMHDgQGRlZUnbjEYjsrKyTD5Ftgdy22LZsmV4+eWXkZGRgYiICEukalZt9ZwwGo2orq42R4oW0dJ26N27N3788Ufs379fuj3wwAO4++67sX//fgQGBloy/TbVFs+J2tpa/Pjjj/Dz8zNXmmYnpx2GDBmC48ePSwU1APz000/w8/OzyQIKaN3zYcuWLaiursZf/vIXc6dpEXLa4vLly/UKpboiW7TmK4RbNS2dZEtLSxPOzs5i48aN4tChQyIxMVF4eHhIlyNPmjRJzJ8/X4qvrq4W+/btE/v27RN+fn5i7ty5Yt++feLYsWNKnUKbaWlbLF26VDg5OYlPPvnE5PLdixcvKnUKbaKl7fDqq6+Kr776Spw4cUIcOnRIrFixQjg6Oop169YpdQptoqXtcCN7ujqvpW3x4osvii+//FKcOHFCFBQUiAkTJgiNRiMOHjyo1Cm0iZa2w6lTp0Tnzp3FzJkzxdGjR8X27duFt7e3WLJkiVKn0Cbk/m0MHTpUxMXFWTpds2ppWyQnJ4vOnTuLjz76SPz888/iq6++Ej179hSPPPJIq/JgEaWgt956S3Tr1k04OTmJyMhI8f3330v7oqOjxZQpU6Sfi4qKBIB6t+joaMsnbgYtaYvu3bs32BbJycmWT7yNtaQdnn/+edGrVy+h0WhEly5dRFRUlEhLS1Mg67bXkna4kT0VUUK0rC1mz54txfr4+IjRo0eLvXv3KpB122vpcyInJ0dotVrh7OwsevToIV555RVx7do1C2fd9lraDkeOHBEAxFdffWXhTM2vJW1RU1MjXnjhBdGzZ0+h0WhEYGCgePLJJ8Vvv/3WqhxUQrSmH4uIiIiofeKcKCIiIiIZWEQRERERycAiioiIiEgGFlFEREREMrCIIiIiIpKBRRQRERGRDCyiiIiIiGRgEUVEZAemTp2K2NhYpdMgaldYRBGRWU2dOhUqlUq63XLLLRg1ahQOHDigdGpt4o/nVncbOnSo2R7v5MmTUKlU2L9/v8n2N998Exs3bjTb4xJRfSyiiMjsRo0aheLiYhQXFyMrKwuOjo64//77lU6rzWzYsEE6v+LiYmzbtq3BuJqaGrPl4O7uDg8PD7PdPxHVxyKKiMzO2dkZvr6+8PX1RXh4OObPn4/Tp0/j/PnzuOeeezBz5kyT+PPnz8PJyUn6lvagoCC8/PLLiI+Ph6urKwICArBmzRqTY15//XWEhYXB1dUVgYGBePLJJ3Hp0iVp/y+//IKxY8eiS5cucHV1xe23344dO3YAAH777TdMnDgRXbt2hYuLC0JCQrBhw4Zmn5+Hh4d0fr6+vvD09JR6jNLT0xEdHQ2NRoNNmzbhwoULiI+PR0BAADp27IiwsDB89NFHJvdnNBqxbNky9OrVC87OzujWrRteeeUVAEBwcDAA4I477oBKpcKIESMA1B/Oq66uxtNPPw1vb29oNBoMHToU+fn50v5vvvkGKpUKWVlZiIiIQMeOHTF48GAcPXq02edN1N6xiCIii7p06RI+/PBD9OrVC7fccgsee+wxbN68GdXV1VLMhx9+iICAANxzzz3StuXLl2PAgAHYt28f5s+fj1mzZiEzM1Par1arsXr1ahw8eBAffPABsrOzMW/ePGn/jBkzUF1djV27duHHH3/Ea6+9hk6dOgEAFi1ahEOHDuE///kPDh8+jLVr18LLy6tNzrcu18OHDyMmJgZXrlzBwIED8cUXX6CwsBCJiYmYNGkSdu/eLR2zYMECLF26VMpr8+bN8PHxAQAp7uuvv0ZxcTG2bt3a4OPOmzcPn376KT744APs3bsXvXr1QkxMDMrKykzinn/+eaxcuRJ79uyBo6Mj/u///q9NzpuoXWjV1xcTEd3ElClThIODg3B1dRWurq4CgPDz8xMFBQVCCCGqqqpEly5dRHp6unRM//79xQsvvCD93L17dzFq1CiT+42LixP33Xdfo4+7ZcsWccstt0g/h4WFmdznH40dO1ZMmzZN1vkBEBqNRjo/V1dX8a9//UsUFRUJAGLVqlU3vY8xY8aIOXPmCCGEqKioEM7OzmLdunUNxtbd7759+0y2T5kyRYwbN04IIcSlS5dEhw4dxKZNm6T9V69eFf7+/mLZsmVCCCF27twpAIivv/5aivniiy8EAFFVVdWSJiBqt9gTRURmd/fdd2P//v3Yv38/du/ejZiYGNx333345ZdfoNFoMGnSJKxfvx4AsHfvXhQWFmLq1Kkm9xEVFVXv58OHD0s/f/311xg5ciQCAgLQuXNnTJo0CRcuXMDly5cBAE8//TSWLFmCIUOGIDk52WRi+1//+lekpaUhPDwc8+bNQ05OTovO74033pDOb//+/fjTn/4k7YuIiDCJra2txcsvv4ywsDB4enqiU6dO+PLLL3Hq1CkAwOHDh1FdXY2RI0e2KIc/OnHiBGpqajBkyBBpW4cOHRAZGWnSZgDQv39/6f9+fn4AgHPnzsl+bKL2hEUUEZmdq6srevXqhV69emHQoEF47733UFlZiXXr1gEAHnvsMWRmZuLMmTPYsGED7rnnHnTv3r3Z93/y5Encf//96N+/Pz799FMUFBRIc6auXr0qPcbPP/+MSZMm4ccff0RERATeeustAJAKumeeeQZnz57FyJEjMXfu3GY/vq+vr3R+vXr1gqurq8m5/9Hy5cvx5ptv4tlnn8XOnTuxf/9+xMTESHm6uLg0+3HbQocOHaT/q1QqANfnZBHRzbGIIiKLU6lUUKvVqKqqAgCEhYUhIiIC69atw+bNmxucl/P999/X+7lPnz4AgIKCAhiNRqxcuRJ33XUXQkNDcfbs2Xr3ERgYiCeeeAJbt27FnDlzpCIOALp27YopU6bgww8/xKpVq/Duu++25SlLvvvuO4wbNw5/+ctfMGDAAPTo0QM//fSTtD8kJAQuLi7SpPobOTk5Abjeo9WYnj17wsnJCd999520raamBvn5+ejbt28bnQkROSqdABHZv+rqauj1egDXr4R7++23cenSJYwdO1aKeeyxxzBz5ky4urriwQcfrHcf3333HZYtW4bY2FhkZmZiy5Yt+OKLLwAAvXr1Qk1NDd566y2MHTsW3333HVJTU02Onz17Nu677z6Ehobit99+w86dO6UibPHixRg4cCBuv/12VFdXY/v27dK+thYSEoJPPvkEOTk56NKlC15//XWUlJRIxY1Go8Gzzz6LefPmwcnJCUOGDMH58+dx8OBBJCQkwNvbGy4uLsjIyMCtt94KjUYDd3d3k8dwdXXFX//6V/ztb3+Dp6cnunXrhmXLluHy5ctISEgwy3kRtUfsiSIis8vIyICfnx/8/Pyg1WqRn5+PLVu2SJfnA0B8fDwcHR0RHx8PjUZT7z7mzJmDPXv24I477sCSJUvw+uuvIyYmBgAwYMAAvP7663jttdfQr18/bNq0CSkpKSbH19bWYsaMGejTpw9GjRqF0NBQ/P3vfwdwvXdnwYIF6N+/P4YPHw4HBwekpaWZpS0WLlyIO++8EzExMRgxYgR8fX3rrTS+aNEizJkzB4sXL0afPn0QFxcnzVNydHTE6tWr8c4778Df3x/jxo1r8HGWLl2Khx56CJMmTcKdd96J48eP48svv0SXLl3Mcl5E7ZFKCCGUToKI6OTJk+jZsyfy8/Nx5513muwLCgrC7NmzMXv2bGWSIyJqAIfziEhRNTU1uHDhAhYuXIi77rqrXgFFRGStOJxHRIr67rvv4Ofnh/z8/HrzmJT26quvolOnTg3e7rvvPqXTIyKFcTiPiKgRZWVl9Vb4ruPi4oKAgAALZ0RE1oRFFBEREZEMHM4jIiIikoFFFBEREZEMLKKIiIiIZGARRURERCQDiygiIiIiGVhEEREREcnAIoqIiIhIBhZRRERERDL8fzd39jht1+YmAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVa1JREFUeJzt3X9YVFXiP/D3AA4DKKCizEAo5O8SxUVBkESTDctU+olW+OOjuZWlhqboqlhZGGa6monWKj6bBlmumbmuhro9KaIirmLqqmloMigpM4kKxpzvH365NfL7wsydYd6v55kHuffMvece5sfbc889VyWEECAiIiKiBnFSugJERERE9oghioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqImrUFCxZApVLVq6xKpcKCBQssWp9BgwZh0KBBNrs9Iqo/higisor09HSoVCrp4eLiAn9/f4wbNw4///yz0tWzOYGBgWbt1b59ezz00EP45z//2STbv3nzJhYsWIC9e/c2yfaIHBFDFBFZ1VtvvYV//OMfSEtLw6OPPopPP/0U0dHRuH37tkX2N3fuXNy6dcsi27a0kJAQ/OMf/8A//vEPzJgxA5cvX8aTTz6JtLS0Rm/75s2bePPNNxmiiBrBRekKEJFjefTRR9G3b18AwMSJE+Hj44P33nsPW7duxbPPPtvk+3NxcYGLi31+1Pn7++OFF16Qfh8zZgw6d+6MpUuX4qWXXlKwZkQEsCeKiBT20EMPAQDOnTtntvzUqVN4+umn0aZNG2g0GvTt2xdbt241K3Pnzh28+eab6NKlCzQaDdq2bYuoqCjs2rVLKlPdmKiysjK8/vrraNeuHVq1aoURI0bg0qVLVeo2btw4BAYGVlle3TbXrVuHhx9+GO3bt4erqyseeOABrFq1qkFtURetVosePXrg/PnztZa7cuUKJkyYAF9fX2g0GvTu3Rvr16+X1l+4cAHt2rUDALz55pvSKUNLjwcjam7s879nRNRsXLhwAQDQunVradmJEycwYMAA+Pv7IykpCR4eHvj8888RFxeHL7/8Ek888QSAu2EmJSUFEydORFhYGIxGIw4fPowjR47gz3/+c437nDhxIj799FM899xziIyMxO7duzFs2LBGHceqVavw4IMPYsSIEXBxccHXX3+NV155BSaTCZMnT27UtivduXMHFy9eRNu2bWssc+vWLQwaNAhnz57Fq6++iqCgIGzatAnjxo1DSUkJpk6dinbt2mHVqlV4+eWX8cQTT+DJJ58EAPTq1atJ6knkMAQRkRWsW7dOABDffvutuHr1qrh48aL44osvRLt27YSrq6u4ePGiVHbIkCEiODhY3L59W1pmMplEZGSk6NKli7Ssd+/eYtiwYbXuNzk5Wfzxo+7o0aMCgHjllVfMyj333HMCgEhOTpaWjR07VnTs2LHObQohxM2bN6uUi42NFffff7/ZsujoaBEdHV1rnYUQomPHjuKRRx4RV69eFVevXhX//e9/xahRowQA8dprr9W4vWXLlgkA4tNPP5WWlZeXi4iICNGyZUthNBqFEEJcvXq1yvESUcPwdB4RWVVMTAzatWuHgIAAPP300/Dw8MDWrVtx3333AQCuXbuG3bt349lnn8Wvv/6K4uJiFBcX45dffkFsbCzOnDkjXc3n7e2NEydO4MyZM/Xe//bt2wEAU6ZMMVs+bdq0Rh2Xm5ub9G+DwYDi4mJER0fjxx9/hMFgkLXNnTt3ol27dmjXrh169+6NTZs2ISEhAe+9916Nz9m+fTu0Wi1Gjx4tLWvRogWmTJmCGzdu4D//+Y+suhBRVTydR0RWtXLlSnTt2hUGgwFr167Fd999B1dXV2n92bNnIYTAvHnzMG/evGq3ceXKFfj7++Ott97CyJEj0bVrV/Ts2RNDhw5FQkJCraelfvrpJzg5OaFTp05my7t169ao49q3bx+Sk5ORnZ2Nmzdvmq0zGAzw8vJq8DbDw8OxcOFCqFQquLu7o0ePHvD29q71OT/99BO6dOkCJyfz/yP36NFDWk9ETYMhioisKiwsTLo6Ly4uDlFRUXjuuedw+vRptGzZEiaTCQAwY8YMxMbGVruNzp07AwAGDhyIc+fO4auvvsLOnTvxySefYOnSpUhLS8PEiRMbXdeaJumsqKgw+/3cuXMYMmQIunfvjg8++AABAQFQq9XYvn07li5dKh1TQ/n4+CAmJkbWc4nI8hiiiEgxzs7OSElJweDBg/Hhhx8iKSkJ999/P4C7p6DqEyDatGmD8ePHY/z48bhx4wYGDhyIBQsW1BiiOnbsCJPJhHPnzpn1Pp0+fbpK2datW6OkpKTK8nt7c77++muUlZVh69at6NChg7R8z549dda/qXXs2BHHjh2DyWQy6406deqUtB6oOSASUf1xTBQRKWrQoEEICwvDsmXLcPv2bbRv3x6DBg3C6tWrUVhYWKX81atXpX//8ssvZutatmyJzp07o6ysrMb9PfroowCA5cuXmy1ftmxZlbKdOnWCwWDAsWPHpGWFhYVVZg13dnYGAAghpGUGgwHr1q2rsR6W8thjj0Gv1yMzM1Na9ttvv2HFihVo2bIloqOjAQDu7u4AUG1IJKL6YU8UESnujTfewDPPPIP09HS89NJLWLlyJaKiohAcHIwXX3wR999/P4qKipCdnY1Lly7hv//9LwDggQcewKBBgxAaGoo2bdrg8OHD+OKLL/Dqq6/WuK+QkBCMHj0aH330EQwGAyIjI5GVlYWzZ89WKTtq1CjMmjULTzzxBKZMmYKbN29i1apV6Nq1K44cOSKVe+SRR6BWqzF8+HD85S9/wY0bN/Dxxx+jffv21QZBS5o0aRJWr16NcePGITc3F4GBgfjiiy+wb98+LFu2DK1atQJwdyD8Aw88gMzMTHTt2hVt2rRBz5490bNnT6vWl8iuKX15IBE5hsopDg4dOlRlXUVFhejUqZPo1KmT+O2334QQQpw7d06MGTNGaLVa0aJFC+Hv7y8ef/xx8cUXX0jPW7hwoQgLCxPe3t7Czc1NdO/eXbzzzjuivLxcKlPddAS3bt0SU6ZMEW3bthUeHh5i+PDh4uLFi9Ve8r9z507Rs2dPoVarRbdu3cSnn35a7Ta3bt0qevXqJTQajQgMDBTvvfeeWLt2rQAgzp8/L5VryBQHdU3fUNP2ioqKxPjx44WPj49Qq9UiODhYrFu3rspz9+/fL0JDQ4VareZ0B0QyqIT4Q/8zEREREdULx0QRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJAMn27Qgk8mEy5cvo1WrVrzFAhERkZ0QQuDXX3+Fn59flZt5/xFDlAVdvnwZAQEBSleDiIiIZLh48SLuu+++GtczRFlQ5e0VLl68CE9PT4VrQ0RERPVhNBoREBAgfY/XhCHKgipP4Xl6ejJEERER2Zm6huJwYDkRERGRDAxRRERERDIwRBERERHJwDFRCquoqMCdO3eUrobiWrRoAWdnZ6WrQUREVG8MUQoRQkCv16OkpETpqtgMb29vaLVazqlFRER2gSFKIZUBqn379nB3d3fo4CCEwM2bN3HlyhUAgE6nU7hGREREdWOIUkBFRYUUoNq2bat0dWyCm5sbAODKlSto3749T+0REZHN48ByBVSOgXJ3d1e4Jralsj04RoyIiOwBQ5SCHPkUXnXYHkREZE8YooiIiIhkYIgiIiIikoEhihpk3LhxiIuLq7J87969UKlUKCkpwd69ezFy5EjodDp4eHggJCQEGzZssH5liYio2So03ML+c8UoNNxSrA68Oo+a3P79+9GrVy/MmjULvr6+2LZtG8aMGQMvLy88/vjjSlePiIjsXOahAszefBwmATipgJQngxHfr4PV68EQRU1uzpw5Zr9PnToVO3fuxObNmxmiiIioUQoNt6QABQAmAczZnI+BXdtB5+Vm1brYxOm8lStXIjAwEBqNBuHh4Th48GCt5Tdt2oTu3btDo9EgODgY27dvN1svhMD8+fOh0+ng5uaGmJgYnDlzxqzMiBEj0KFDB2g0Guh0OiQkJODy5cvS+gsXLkClUlV5HDhwoOkOvInYQpdmXQwGA9q0aaN0NYiIyM6dLy6VAlSlCiFwofim1euieIjKzMxEYmIikpOTceTIEfTu3RuxsbHS7NX32r9/P0aPHo0JEyYgLy8PcXFxiIuLQ35+vlQmNTUVy5cvR1paGnJycuDh4YHY2Fjcvn1bKjN48GB8/vnnOH36NL788kucO3cOTz/9dJX9ffvttygsLJQeoaGhTd8IjZB5qAADFu3Gcx/nYMCi3cg8VGDxfW7btg0tW7Y0ezz66KM1lv/8889x6NAhjB8/3uJ1IyKi5i3IxwNO98yI46xSIdDH+nMvqoQQou5ilhMeHo5+/frhww8/BACYTCYEBATgtddeQ1JSUpXy8fHxKC0txbZt26Rl/fv3R0hICNLS0iCEgJ+fH6ZPn44ZM2YAuNsL4uvri/T0dIwaNaraemzduhVxcXEoKytDixYtcOHCBQQFBSEvLw8hISGyjs1oNMLLywsGgwGenp7S8tu3b+P8+fMICgqCRqORtW3gbg/UgEW7zRK5s0qF75MGW6xLc9y4cfj555+xatUqs+U5OTl44YUXcP36dXh7e0vL9+zZg8cffxyrVq3CmDFjat12U7ULERE1b5mHCjBncz4qhICzSoV3n+zZpGOiavr+vpeiY6LKy8uRm5uL2bNnS8ucnJwQExOD7Ozsap+TnZ2NxMREs2WxsbHYsmULAOD8+fPQ6/WIiYmR1nt5eSE8PBzZ2dnVhqhr165hw4YNiIyMRIsWLczWjRgxArdv30bXrl0xc+ZMjBgxosbjKSsrQ1lZmfS70Wis+eCbQG1dmpY8L+zh4YHOnTubLbt06VKVcv/5z38wfPhwLF26tM4ARUREVF/x/TpgYNd2uFB8E4E+7lYfC1VJ0dN5xcXFqKiogK+vr9lyX19f6PX6ap+j1+trLV/5sz7bnDVrFjw8PNC2bVsUFBTgq6++kta1bNkSS5YswaZNm/DNN98gKioKcXFx2Lp1a43Hk5KSAi8vL+kREBBQRws0ji11ad5r7969GDZsGN577z1MmjRJ6eoQEVEzo/NyQ0SntooFKMAGxkQp6Y033kBeXh527twJZ2dnjBkzBpVnN318fJCYmCidbly0aBFeeOEFLF68uMbtzZ49GwaDQXpcvHjRovXXebkh5clgOP//26VUdmkq+YIC7p7CGzZsGKZMmYKnnnoKer0eer0e165dU7ReRERETUnR03k+Pj5wdnZGUVGR2fKioiJotdpqn6PVamstX/mzqKgIOp3OrMy9Y5t8fHzg4+ODrl27okePHggICMCBAwcQERFR7b7Dw8Oxa9euGo/H1dUVrq6uNa63BFvp0vyj9evX4+bNm0hJSUFKSoq0PDo6Gnv37lWuYkRERE1I0Z4otVqN0NBQZGVlSctMJhOysrJqDDIRERFm5QFg165dUvmgoCBotVqzMkajETk5OTVus3K/AMzGNN3r6NGjZsHMVlizSzM9PV0af/ZHgwYNghAC3t7eSE9PhxCiyoMBioiImhPFJ9tMTEzE2LFj0bdvX4SFhWHZsmUoLS2VLocfM2YM/P39pR6NqVOnIjo6GkuWLMGwYcOQkZGBw4cPY82aNQAAlUqFadOmYeHChejSpQuCgoIwb948+Pn5SbcrycnJwaFDhxAVFYXWrVvj3LlzmDdvHjp16iQFrfXr10OtVqNPnz4AgM2bN2Pt2rX45JNPrNxCREREZIsUD1Hx8fG4evUq5s+fD71ej5CQEOzYsUMaGF5QUAAnp987zCIjI7Fx40bMnTsXc+bMQZcuXbBlyxb07NlTKjNz5kyUlpZi0qRJKCkpQVRUFHbs2CFdNu/u7o7NmzcjOTkZpaWl0Ol0GDp0KObOnWt2Ou7tt9/GTz/9BBcXF3Tv3h2ZmZnVziVFREREjkfxeaKaM0vPE9XcsF2IiMgW1HeeKIe+Oo+IiIhILoYoBbET0Bzbg4iI6ssW7hur+JgoR1Q5K/rNmzfh5qb8lAS24ubNuzePvHfWeCIioj/KPFSA2ZuPwyQAJxWQ8mRwk972pb4YohTg7OwMb29v6SbL7u7uUKlUdTyr+RJC4ObNm7hy5Qq8vb3h7OysdJWIiMhGFRpuSQEKAEwCmLM5HwO7trP6XIkMUQqpnBS0MkgR4O3tXeMkq0RERIBy942tDkOUQlQqFXQ6Hdq3b487d+4oXR3FtWjRgj1QRERUp8r7xv4xSCl131iGKIU5OzszPBAREdVT5X1j52zOR4UQit43liGKiIiI7Iqt3DeWIYqIiIjsjs7LTbHwVInzRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMthEiFq5ciUCAwOh0WgQHh6OgwcP1lp+06ZN6N69OzQaDYKDg7F9+3az9UIIzJ8/HzqdDm5uboiJicGZM2fMyowYMQIdOnSARqOBTqdDQkICLl++bFbm2LFjeOihh6DRaBAQEIDU1NSmOWAiIiKye4qHqMzMTCQmJiI5ORlHjhxB7969ERsbiytXrlRbfv/+/Rg9ejQmTJiAvLw8xMXFIS4uDvn5+VKZ1NRULF++HGlpacjJyYGHhwdiY2Nx+/ZtqczgwYPx+eef4/Tp0/jyyy9x7tw5PP3009J6o9GIRx55BB07dkRubi4WL16MBQsWYM2aNZZrDCIiIrIfQmFhYWFi8uTJ0u8VFRXCz89PpKSkVFv+2WefFcOGDTNbFh4eLv7yl78IIYQwmUxCq9WKxYsXS+tLSkqEq6ur+Oyzz2qsx1dffSVUKpUoLy8XQgjx0UcfidatW4uysjKpzKxZs0S3bt3qfWwGg0EAEAaDod7PISIiImXV9/tb0Z6o8vJy5ObmIiYmRlrm5OSEmJgYZGdnV/uc7Oxss/IAEBsbK5U/f/489Hq9WRkvLy+Eh4fXuM1r165hw4YNiIyMRIsWLaT9DBw4EGq12mw/p0+fxvXr16vdTllZGYxGo9mDiIiImidFQ1RxcTEqKirg6+trttzX1xd6vb7a5+j1+lrLV/6szzZnzZoFDw8PtG3bFgUFBfjqq6/q3M8f93GvlJQUeHl5SY+AgIBqyxEREZH9U3xMlJLeeOMN5OXlYefOnXB2dsaYMWMghJC9vdmzZ8NgMEiPixcvNmFtiYiIyJa4KLlzHx8fODs7o6ioyGx5UVERtFpttc/RarW1lq/8WVRUBJ1OZ1YmJCSkyv59fHzQtWtX9OjRAwEBAThw4AAiIiJq3M8f93EvV1dXuLq61nHURERE1Bwo2hOlVqsRGhqKrKwsaZnJZEJWVhYiIiKqfU5ERIRZeQDYtWuXVD4oKAhardasjNFoRE5OTo3brNwvcHdcU+V+vvvuO9y5c8dsP926dUPr1q0beKRERETU7FhnnHvNMjIyhKurq0hPTxc//PCDmDRpkvD29hZ6vV4IIURCQoJISkqSyu/bt0+4uLiI999/X5w8eVIkJyeLFi1aiOPHj0tlFi1aJLy9vcVXX30ljh07JkaOHCmCgoLErVu3hBBCHDhwQKxYsULk5eWJCxcuiKysLBEZGSk6deokbt++LYS4e0Wfr6+vSEhIEPn5+SIjI0O4u7uL1atX1/vYeHUeERGR/anv97fiIUoIIVasWCE6dOgg1Gq1CAsLEwcOHJDWRUdHi7Fjx5qV//zzz0XXrl2FWq0WDz74oPjmm2/M1ptMJjFv3jzh6+srXF1dxZAhQ8Tp06el9ceOHRODBw8Wbdq0Ea6uriIwMFC89NJL4tKlS2bb+e9//yuioqKEq6ur8Pf3F4sWLWrQcTFEERER2Z/6fn+rhGjESGqqldFohJeXFwwGAzw9PZWuDhEREdVDfb+/HfrqPCIiIiK5GKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKbVGi4hf3nilFouKV0VarlonQFiIiIiO6VeagAszcfh0kATiog5clgxPfroHS1zNhET9TKlSsRGBgIjUaD8PBwHDx4sNbymzZtQvfu3aHRaBAcHIzt27ebrRdCYP78+dDpdHBzc0NMTAzOnDkjrb9w4QImTJiAoKAguLm5oVOnTkhOTkZ5eblZGZVKVeVx4MCBpj14IiIiMlNouCUFKAAwCWDO5nyb65FSPERlZmYiMTERycnJOHLkCHr37o3Y2FhcuXKl2vL79+/H6NGjMWHCBOTl5SEuLg5xcXHIz8+XyqSmpmL58uVIS0tDTk4OPDw8EBsbi9u3bwMATp06BZPJhNWrV+PEiRNYunQp0tLSMGfOnCr7+/bbb1FYWCg9QkNDLdMQREREBAA4X1wqBahKFULgQvFNZSpUA5UQQtRdzHLCw8PRr18/fPjhhwAAk8mEgIAAvPbaa0hKSqpSPj4+HqWlpdi2bZu0rH///ggJCUFaWhqEEPDz88P06dMxY8YMAIDBYICvry/S09MxatSoauuxePFirFq1Cj/++COAuz1RQUFByMvLQ0hIiKxjMxqN8PLygsFggKenp6xtEBEROZpCwy0MWLTbLEg5q1T4PmkwdF5uFt9/fb+/Fe2JKi8vR25uLmJiYqRlTk5OiImJQXZ2drXPyc7ONisPALGxsVL58+fPQ6/Xm5Xx8vJCeHh4jdsE7gatNm3aVFk+YsQItG/fHlFRUdi6dWuDjo+IiIgaTuflhpQng+GsUgG4G6DefbKnVQJUQyg6sLy4uBgVFRXw9fU1W+7r64tTp05V+xy9Xl9teb1eL62vXFZTmXudPXsWK1aswPvvvy8ta9myJZYsWYIBAwbAyckJX375JeLi4rBlyxaMGDGi2u2UlZWhrKxM+t1oNFZbjoiIiGoX368DBnZthwvFNxHo425zAQrg1Xn4+eefMXToUDzzzDN48cUXpeU+Pj5ITEyUfu/Xrx8uX76MxYsX1xiiUlJS8Oabb1q8zkRERI5A5+Vmk+GpkqKn83x8fODs7IyioiKz5UVFRdBqtdU+R6vV1lq+8md9tnn58mUMHjwYkZGRWLNmTZ31DQ8Px9mzZ2tcP3v2bBgMBulx8eLFOrdJRERE9knREKVWqxEaGoqsrCxpmclkQlZWFiIiIqp9TkREhFl5ANi1a5dUPigoCFqt1qyM0WhETk6O2TZ//vlnDBo0CKGhoVi3bh2cnOpuiqNHj0Kn09W43tXVFZ6enmYPIiIiap4UP52XmJiIsWPHom/fvggLC8OyZctQWlqK8ePHAwDGjBkDf39/pKSkAACmTp2K6OhoLFmyBMOGDUNGRgYOHz4s9SSpVCpMmzYNCxcuRJcuXRAUFIR58+bBz88PcXFxAH4PUB07dsT777+Pq1evSvWp7K1av3491Go1+vTpAwDYvHkz1q5di08++cRaTUNEREQ2TPEQFR8fj6tXr2L+/PnQ6/UICQnBjh07pIHhBQUFZr1EkZGR2LhxI+bOnYs5c+agS5cu2LJlC3r27CmVmTlzJkpLSzFp0iSUlJQgKioKO3bsgEajAXC35+rs2bM4e/Ys7rvvPrP6/HHGh7fffhs//fQTXFxc0L17d2RmZuLpp5+2ZHMQERGRnVB8nqjmjPNEERER2R+7mCeKiIiIyF4xRBERERHJwBBFRERENqnQcAv7zxXb3I2HKyk+sJyIiIjoXpmHCjB783GYBOCkAlKeDEZ8vw5KV8sMe6KIiIjIphQabkkBCgBMApizOd/meqQYooiIiMimnC8ulQJUpQohcKH4pjIVqgFDFBEREdkUD7Vztcvd1bYVW2yrNkREROTwSssrql1+s9xk5ZrUjiGKiIiIbEqQjwecVObLnFUqBPq4K1OhGjBEERERkU3Rebkh5clgOKvuJilnlQrvPtkTOi83hWtmjlMcEBERkc2J79cBA7u2w4Ximwj0cbe5AAUwRBEREZGN0nm52WR4qsTTeUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQy2ESIWrlyJQIDA6HRaBAeHo6DBw/WWn7Tpk3o3r07NBoNgoODsX37drP1QgjMnz8fOp0Obm5uiImJwZkzZ6T1Fy5cwIQJExAUFAQ3Nzd06tQJycnJKC8vN9vOsWPH8NBDD0Gj0SAgIACpqalNd9BERERk1xQPUZmZmUhMTERycjKOHDmC3r17IzY2FleuXKm2/P79+zF69GhMmDABeXl5iIuLQ1xcHPLz86UyqampWL58OdLS0pCTkwMPDw/Exsbi9u3bAIBTp07BZDJh9erVOHHiBJYuXYq0tDTMmTNH2obRaMQjjzyCjh07Ijc3F4sXL8aCBQuwZs0ayzYIERER2QehsLCwMDF58mTp94qKCuHn5ydSUlKqLf/ss8+KYcOGmS0LDw8Xf/nLX4QQQphMJqHVasXixYul9SUlJcLV1VV89tlnNdYjNTVVBAUFSb9/9NFHonXr1qKsrExaNmvWLNGtW7d6H5vBYBAAhMFgqPdziIiISFn1/f5WtCeqvLwcubm5iImJkZY5OTkhJiYG2dnZ1T4nOzvbrDwAxMbGSuXPnz8PvV5vVsbLywvh4eE1bhMADAYD2rRpY7afgQMHQq1Wm+3n9OnTuH79erXbKCsrg9FoNHsQERFR86RoiCouLkZFRQV8fX3Nlvv6+kKv11f7HL1eX2v5yp8N2ebZs2exYsUK/OUvf6lzP3/cx71SUlLg5eUlPQICAqotR0RERPZP8TFRSvv5558xdOhQPPPMM3jxxRcbta3Zs2fDYDBIj4sXLzZRLYmIiMjWKBqifHx84OzsjKKiIrPlRUVF0Gq11T5Hq9XWWr7yZ322efnyZQwePBiRkZFVBozXtJ8/7uNerq6u8PT0NHsQERFR86RoiFKr1QgNDUVWVpa0zGQyISsrCxEREdU+JyIiwqw8AOzatUsqHxQUBK1Wa1bGaDQiJyfHbJs///wzBg0ahNDQUKxbtw5OTuZNERERge+++w537twx20+3bt3QunVr+QdNREREzYOVBrrXKCMjQ7i6uor09HTxww8/iEmTJglvb2+h1+uFEEIkJCSIpKQkqfy+ffuEi4uLeP/998XJkydFcnKyaNGihTh+/LhUZtGiRcLb21t89dVX4tixY2LkyJEiKChI3Lp1SwghxKVLl0Tnzp3FkCFDxKVLl0RhYaH0qFRSUiJ8fX1FQkKCyM/PFxkZGcLd3V2sXr263sfGq/OIiIjsT32/v12UDnHx8fG4evUq5s+fD71ej5CQEOzYsUMaxF1QUGDWSxQZGYmNGzdi7ty5mDNnDrp06YItW7agZ8+eUpmZM2eitLQUkyZNQklJCaKiorBjxw5oNBoAd3uUzp49i7Nnz+K+++4zq48QAsDdK/p27tyJyZMnIzQ0FD4+Ppg/fz4mTZpk6SYhIiIiO6ASlamBmpzRaISXlxcMBgPHRxEREdmJ+n5/O/zVeURERERyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjQ4RG3fvh0TJ07EzJkzcerUKbN1169fx8MPP9xklSMiIiKyVQ0KURs3bsSIESOg1+uRnZ2NPn36YMOGDdL68vJy/Oc//2nyShIRERHZmgbdgHjx4sX44IMPMGXKFADA559/jv/7v//D7du3MWHCBItUkIiIiMgWNShEnTlzBsOHD5d+f/bZZ9GuXTuMGDECd+7cwRNPPNHkFSQiIiKyRQ0KUZ6enigqKkJQUJC0bPDgwdi2bRsef/xxXLp0qckrSERERGSLGjQmKiwsDP/617+qLI+OjsbXX3+NZcuWNVW9iIiIiGxag0LU66+/Do1GU+26QYMG4euvv8aYMWOapGJEREREtkwlhBD1LWw0GutVztPTU3aFmhOj0QgvLy8YDAa2CRERkZ2o7/d3g8ZEeXt7Q6VS1VmuoqKiIZslIiIisjsNClF79uyR/i2EwGOPPYZPPvkE/v7+TV4xIiIiIlvWoBAVHR1t9ruzszP69++P+++/v0krRURERGTreO88IiIiIhkYooiIiIhkaHSIqs9AcyIiIqLmpkFjop588kmz32/fvo2XXnoJHh4eZss3b97c+JoRERER2bAGhSgvLy+z31944YUmrQwRERGRvWhQiFq3bp2l6kFERERkVziwnIiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkUDxErVy5EoGBgdBoNAgPD8fBgwdrLb9p0yZ0794dGo0GwcHB2L59u9l6IQTmz58PnU4HNzc3xMTE4MyZM2Zl3nnnHURGRsLd3R3e3t7V7kelUlV5ZGRkNOpYiYiIqPlQNERlZmYiMTERycnJOHLkCHr37o3Y2FhcuXKl2vL79+/H6NGjMWHCBOTl5SEuLg5xcXHIz8+XyqSmpmL58uVIS0tDTk4OPDw8EBsbi9u3b0tlysvL8cwzz+Dll1+utX7r1q1DYWGh9IiLi2uS4yYiIiL7pxJCCKV2Hh4ejn79+uHDDz8EAJhMJgQEBOC1115DUlJSlfLx8fEoLS3Ftm3bpGX9+/dHSEgI0tLSIISAn58fpk+fjhkzZgAADAYDfH19kZ6ejlGjRpltLz09HdOmTUNJSUmVfalUKvzzn/9sVHAyGo3w8vKCwWCAp6en7O0QERGR9dT3+1uxnqjy8nLk5uYiJibm98o4OSEmJgbZ2dnVPic7O9usPADExsZK5c+fPw+9Xm9WxsvLC+Hh4TVuszaTJ0+Gj48PwsLCsHbtWtSVN8vKymA0Gs0eRERE1Dy5KLXj4uJiVFRUwNfX12y5r68vTp06Ve1z9Hp9teX1er20vnJZTWXq66233sLDDz8Md3d37Ny5E6+88gpu3LiBKVOm1PiclJQUvPnmmw3aDxEREdknxUKUrZs3b5707z59+qC0tBSLFy+uNUTNnj0biYmJ0u9GoxEBAQEWrScREREpQ7HTeT4+PnB2dkZRUZHZ8qKiImi12mqfo9Vqay1f+bMh26yv8PBwXLp0CWVlZTWWcXV1haenp9mDiIiImifFQpRarUZoaCiysrKkZSaTCVlZWYiIiKj2OREREWblAWDXrl1S+aCgIGi1WrMyRqMROTk5NW6zvo4ePYrWrVvD1dW1UdshIiKi5kHR03mJiYkYO3Ys+vbti7CwMCxbtgylpaUYP348AGDMmDHw9/dHSkoKAGDq1KmIjo7GkiVLMGzYMGRkZODw4cNYs2YNgLtX1E2bNg0LFy5Ely5dEBQUhHnz5sHPz8/sKruCggJcu3YNBQUFqKiowNGjRwEAnTt3RsuWLfH111+jqKgI/fv3h0ajwa5du/Duu+9KV/wRERERQShsxYoVokOHDkKtVouwsDBx4MABaV10dLQYO3asWfnPP/9cdO3aVajVavHggw+Kb775xmy9yWQS8+bNE76+vsLV1VUMGTJEnD592qzM2LFjBYAqjz179gghhPjXv/4lQkJCRMuWLYWHh4fo3bu3SEtLExUVFQ06NoPBIAAIg8HQoOcRERGRcur7/a3oPFHNHeeJIiIisj82P08UERERkT1jiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIyE4UGm5h/7liFBpuKV0VAuCidAWIiIiobpmHCjB783GYBOCkAlKeDEZ8vw5KV8uhsSeKiIjIxhUabkkBCgBMApizOZ89UgpjiCIiIrJx54tLpQBVqUIIXCi+qUyFCABDFBERkc0L8vGAk8p8mbNKhUAfd2UqRAAYooiIiGyezssNKU8Gw1l1N0k5q1R498me0Hm5KVwzx8aB5URERHYgvl8HDOzaDheKbyLQx50BygYwRBEREdkJnZcbw5MN4ek8IiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhiiya7yPFBERKYVX55Hd4n2kiIhISeyJIrvE+0gREZHSGKLILvE+UkTK4Wl0ort4Oo/sUuV9pP4YpHgfKSLL42l0ZRUabuF8cSmCfDw46aYNYE8U2SXeR4rI+ngaXVmZhwowYNFuPPdxDgYs2o3MQwVKV8nhsSeK7BbvI0VkWff2etR2Gp3vP8uqKcAO7NqOba8ghiiya7yPFDVHtnDKprrTdgO7tuNpdIUwwNomns4jIrKghg7CtoVTNjX1egDgaXSFVI4D/SMGWOWxJ4qIyEIaOgjbVk7Z1NbrwdPoyqgcBzpncz4qhGCAtREMUUREFiAnENnKKZu6rn7laXRlMMDaHp7OIyKyADlzmdnKKRte/Wq7dF5uiOjUln8LG8GeKCIiC5Azl5ktnbJhr0fzYQsXKjRXDFFERBYgNxDZUnjhaTv7x8lRLUslhBB1FyM5jEYjvLy8YDAY4OnpqXR1iEgBhYZbNhGIyPEUGm5hwKLdVXpDv08azNdiHer7/a34mKiVK1ciMDAQGo0G4eHhOHjwYK3lN23ahO7du0Oj0SA4OBjbt283Wy+EwPz586HT6eDm5oaYmBicOXPGrMw777yDyMhIuLu7w9vbu9r9FBQUYNiwYXB3d0f79u3xxhtv4LfffmvUsRKR4+EYFrKG6qbS4D1GLU/REJWZmYnExEQkJyfjyJEj6N27N2JjY3HlypVqy+/fvx+jR4/GhAkTkJeXh7i4OMTFxSE/P18qk5qaiuXLlyMtLQ05OTnw8PBAbGwsbt++LZUpLy/HM888g5dffrna/VRUVGDYsGEoLy/H/v37sX79eqSnp2P+/PlN2wDNFG9OSkRkPTXNLWYrFyo0Z4qezgsPD0e/fv3w4YcfAgBMJhMCAgLw2muvISkpqUr5+Ph4lJaWYtu2bdKy/v37IyQkBGlpaRBCwM/PD9OnT8eMGTMAAAaDAb6+vkhPT8eoUaPMtpeeno5p06ahpKTEbPm//vUvPP7447h8+TJ8fX0BAGlpaZg1axauXr0KtVpdr+NzxNN5PP9ORGQ9dZ2yyzxUUGVcHj+T62bzp/PKy8uRm5uLmJiY3yvj5ISYmBhkZ2dX+5zs7Gyz8gAQGxsrlT9//jz0er1ZGS8vL4SHh9e4zZr2ExwcLAWoyv0YjUacOHGixueVlZXBaDSaPRwJb05KRGRddZ2yi+/XAd8nDcZnL/bH90mDGaCamGIhqri4GBUVFWZBBQB8fX2h1+urfY5er6+1fOXPhmyzIfv54z6qk5KSAi8vL+kREBBQ7302Bzz/Ts0ZT1OTLarPKTuOy7McxQeWNyezZ8+GwWCQHhcvXlS6SlbF8+/UXNnC/eyIqsOJUZWl2DxRPj4+cHZ2RlFRkdnyoqIiaLXaap+j1WprLV/5s6ioCDqdzqxMSEhIveum1WqrXCVYud+a6gYArq6ucHV1rfd+mhtbmiiQqKnYyv3siGpiS3OLORrFeqLUajVCQ0ORlZUlLTOZTMjKykJERES1z4mIiDArDwC7du2SygcFBUGr1ZqVMRqNyMnJqXGbNe3n+PHjZlcJ7tq1C56ennjggQfqvR1HxPPv1NzwNDXZA56yU4aiM5YnJiZi7Nix6Nu3L8LCwrBs2TKUlpZi/PjxAIAxY8bA398fKSkpAICpU6ciOjoaS5YswbBhw5CRkYHDhw9jzZo1AACVSoVp06Zh4cKF6NKlC4KCgjBv3jz4+fkhLi5O2m9BQQGuXbuGgoICVFRU4OjRowCAzp07o2XLlnjkkUfwwAMPICEhAampqdDr9Zg7dy4mT55sEz1Ntj6FP2c5puZEzu1blGLrnw1EzY2iISo+Ph5Xr17F/PnzodfrERISgh07dkiDuAsKCuDk9HtnWWRkJDZu3Ii5c+dizpw56NKlC7Zs2YKePXtKZWbOnInS0lJMmjQJJSUliIqKwo4dO6DRaKQy8+fPx/r166Xf+/TpAwDYs2cPBg0aBGdnZ2zbtg0vv/wyIiIi4OHhgbFjx+Ktt96ydJPUiVMIEFmXvZym5mcDkfXxti8W1NTzRHEKfyLl2PLtW/jZQNS06vv9zRsQ25Haxmbwg5LIsmz5NDU/G4iUwSkO7AinECCi6vCzgUgZDFF2hPOBEFF1+NlgmzhBa/PHMVEWZKl759ny2Ayi5soernzjZ4Pt4ED/quzhPVSJY6KaMVsem0HUHNnLFyI/G2wDJ2ityl7eQw3F03lERLXgjbWpoThBq7nm/B5iiCIiqgW/EKmhONDfXHN+DzFEkc3gIEyyRY78hcj3pDwc6G+uOb+HOCaKbEJzPV9O9s9eZixvanxPNg5vCvy75vwe4tV5FmSpq/OaG862TPbAka5843vSdtnTFW73sqf3EK/OI7vB2ZbJHjjSlW98T9ome+8dbI7vIY6JIsU15/PlRPaI70nbU9cVbhy/pgyGKFIcB2ES2Ra+J21Pbb2DmYcKMGDRbjz3cQ4GLNqNzEMFylTSAfF0HtkEDsIksi18T5pTeixSZe/gvePU3NVOnNhTQQxRZDOa4/lyInvG9+RdtjAWqaYr3ErLKzh+TUEMUURERDWwpVu4VNc7WGi4VW0PFcevWQfHRBEROTAOSK6drc22rfNyQ0SntlKA4/g1ZbEniojIQdnCaSpbV9NYpD/29FhzvFR1++L4NeUwRBEROSBbOk1ly+qabduaQbS2fXH8mjIYooiIHBAn1Ky/mnp6rBlEGXptE8dEEcdEkE3g69C6OKFmw9w7Fgmw7ngpWxubRXexJ8rBcUwE2QK+Dq3PXm4Kq/T8TLWpz3ipmjT0uBqzL7Ic3oDYgmz9BsS8ySjZAr4OlWXLN4W1h3CdeaigShCtq45yj0vOvkge3oCY6sQxEWQL+DpUlq0OSLaXMUANvTKuMcfFq/BsD0OUA2P3MNkCvg6pOvYUrhsSRBt7XLYaeh0VB5Y7ME7SRraAr0MCql5Y0FwHvitxXLxow3I4JsqCbH1MVCVbHhNBjoOvQ8dV0xih5joGyJrHZQ/jymxRfb+/GaIsyF5CFBGRUuq6sKC5hmtrHBcv2pCPA8uJiMjm1TVGqLmOAbLGcdnTuDJ7xTFRRESkmOY69skWsG0tjyGKiIgUwwsLLIdta3kcE2VBHBNFRFQ/zXXsky1g2zYcx0QREZHdaK5jn2wB29ZyeDqPbAbnMmke+HckIkfBniiyCZzLpHng35GIHAl7opqZ2noBbLWHoKZ7SdlaPal2/DsSkaNhT1QzUlsvgC33EHAuk+aBf0cicjQ20RO1cuVKBAYGQqPRIDw8HAcPHqy1/KZNm9C9e3doNBoEBwdj+/btZuuFEJg/fz50Oh3c3NwQExODM2fOmJW5du0ann/+eXh6esLb2xsTJkzAjRs3pPUXLlyASqWq8jhw4EDTHXgTqq0XwNZ7CDiXSfPAvyMRORrFQ1RmZiYSExORnJyMI0eOoHfv3oiNjcWVK1eqLb9//36MHj0aEyZMQF5eHuLi4hAXF4f8/HypTGpqKpYvX460tDTk5OTAw8MDsbGxuH37tlTm+eefx4kTJ7Br1y5s27YN3333HSZNmlRlf99++y0KCwulR2hoaNM3QhOorRegtnW2gHOZNA86Lzc80cffbFlcHz+zv6OtnlImIpJD8XmiwsPD0a9fP3z44YcAAJPJhICAALz22mtISkqqUj4+Ph6lpaXYtm2btKx///4ICQlBWloahBDw8/PD9OnTMWPGDACAwWCAr68v0tPTMWrUKJw8eRIPPPAADh06hL59+wIAduzYgcceewyXLl2Cn58fLly4gKCgIOTl5SEkJETWsVlznqja7pEEwC7un8S5TOxbXffpsuVTykREf1Tf729Fe6LKy8uRm5uLmJgYaZmTkxNiYmKQnZ1d7XOys7PNygNAbGysVP78+fPQ6/VmZby8vBAeHi6Vyc7Ohre3txSgACAmJgZOTk7Iyckx2/aIESPQvn17REVFYevWrbUeT1lZGYxGo9nDWmrrzbGXnh6dlxsiOrW1uXpR/dTW42nrp5SJ6sJeVKqOogPLi4uLUVFRAV9fX7Plvr6+OHXqVLXP0ev11ZbX6/XS+spltZVp37692XoXFxe0adNGKtOyZUssWbIEAwYMgJOTE7788kvExcVhy5YtGDFiRLV1S0lJwZtvvlmfQ7eI+H4dMLBru2p7c2pbR9QUKsdE3dsTFejjzkHnZNfYi0o14dV5NfDx8UFiYqL0e79+/XD58mUsXry4xhA1e/Zss+cYjUYEBARYvK5/VNvMtJy1liypssdzzuZ8VAhRpcezpoBFZMtq6kUd2LWdw36eFhpu4XxxKYJ8PBy2DSopGqJ8fHzg7OyMoqIis+VFRUXQarXVPker1dZavvJnUVERdDqdWZnKsU1arbbKwPXffvsN165dq3G/wN3xW7t27apxvaurK1xdXWtc39zwjUT3qqnHs66ARWSr2Itqjr1y5hQdE6VWqxEaGoqsrCxpmclkQlZWFiIiIqp9TkREhFl5ANi1a5dUPigoCFqt1qyM0WhETk6OVCYiIgIlJSXIzc2VyuzevRsmkwnh4eE11vfo0aNmwcyRZR4qwIBFu/HcxzkYsGg3Mg8VKF0lshE1jW2L79cB3ycNxmcv9sf3SYMd+oOX7Aen7vgdxzZWpfjpvMTERIwdOxZ9+/ZFWFgYli1bhtLSUowfPx4AMGbMGPj7+yMlJQUAMHXqVERHR2PJkiUYNmwYMjIycPjwYaxZswYAoFKpMG3aNCxcuBBdunRBUFAQ5s2bBz8/P8TFxQEAevTogaFDh+LFF19EWloa7ty5g1dffRWjRo2Cn58fAGD9+vVQq9Xo06cPAGDz5s1Yu3YtPvnkEyu3kO2xl+5t9pTZHp5SJnvDXtTf1adXztE+dxUPUfHx8bh69Srmz58PvV6PkJAQ7NixQxoYXlBQACen3zvMIiMjsXHjRsydOxdz5sxBly5dsGXLFvTs2VMqM3PmTJSWlmLSpEkoKSlBVFQUduzYAY1GI5XZsGEDXn31VQwZMgROTk546qmnsHz5crO6vf322/jpp5/g4uKC7t27IzMzE08//bSFW8T2NaZ721pvMHY5E1FT4YU5d9V28QjgmJ+7is8T1ZxZap4opZN+XfMB1cRabzC59SPbpfRrnojuyjxUUKVXLr5fh2b3uVvf72/Fe6KoYWwh6cvp3rbmKUAOBG1ebOE1T1QbRwr5NfXKOernLkOUHbGlsUgN7d625husri5nsh+29Jonqo4jhvzqxjY66ueu4vfOo/qztXvgNWSGcWte4WIvM7RT3WztNU/0R7xa7XeO+rnLnig7Ys9J39pXuHAgaPNgz695av4c9RRWTRzxc5chyo7Y+6W21n6D8XJ6+2fvr3lq3hjyqyfgONer8eo8C7Lk1XlNGUQcaVAk2Sc5r3m+rskaarpazRE1p/Fh9f3+ZoiyIEuFqKbUnF70RJXs/XXNAGhfmvo/tvaIUxyQw+GVT2Tvqgsb9v66tvcA6Ig4dMBxx4fx6jwHxiufCLgbOvafK7a7K4pqun+jPb+uebUX2StHvccgQ5QDc9QXPf3OXm8kXVvYsOfXtT0HQHJsjjrFAUOUA3PUF31d7LVnpqHsudejrlMH9vq6tucASBTfrwO+TxqMz17sj++TBjvEaWiOiXJwjjivR21qG4/S3Ab72vMYhrouLbfX1zWndCB752jjwxiiyOFe9DWpbUDyd/+72uwG+9rzHDf1CRv2+rq21wDYWM3tPynkGBiiiP6/mnpmci9ct6mrvZrqy8beez2ac9iw1wAoF69IJHvFEEVWZcv/26ypZwb3LAOUO+3V1F829h5EHC1sNEf2PiUFOTYOLCersfUrwWoakBzQuvoPcne1dd8+lhoI3pAbSRM1NV6RSPaMPVF2yJZ7c2piL//brK5nZv+54mrL3iw3WbVu9jwQnKgm9jw2j4ghys7Y69gBewoA954ispUPeVupB1FTsvexeeTYeDrPjtjzvD72PP+NpeYdauh8VPY8/xFRbRxxfiFqHtgTZUfsqTfnXvb+v82mHoAtt0fR3geCE9WEFwmQPWKIsiP2fjrH3gNAU33IN3Z8GL9siIhsA0/n2ZHmcDqHV4LxaiQiouaCPVF2xt57c6jxPYr2eHUmKcsRXzOOeMxkfQxRdsieT+c44gfbvcfcmPFhlrg60xH/Jo7EXq/obQxHPGZShkoIIeouRnIYjUZ4eXnBYDDA09NT6eoozhE/2Go75v9evI5DF66jX2Br9A5oXee2Cg23MGDR7io9WN8nDZYdfhzxb+JIGvuasceAbYn3CTme+n5/syeKrMJeJttsSk19Q+OmvjrTEf8mjqYxrxl7Ddj2fBWzvbDHcG0pHFhOVuGIg6kbekPjuuaLauq5thzxb+Jo5L5mOCcd1cTWb99lbQxRZBWO+MFW0zHXdkPj2jT11ZmO+DdxNHJfM/YcsJvDVcy2yp7DtaXwdB5Zhb1PtilHTccc2rG17KvzmvLqTEf8mzgiOa8ZzklH1eGp0qoYoshq7OWDrSnP99d0zE/08ceXR36WysX18av3vpry6kx7+ZtQ4zT0NdNcArYAr5tqSvYeri2BV+dZkK1dncfBgHWzxmBaXj1E9qLQcMsuA3bmoQIkfXkcAoAKwKKn7GNQvD3IPFRQJVw3x7bl1Xlkxl6vtLEma12txi5xshdyej2V/s9aoeGWFKAAQABI+vI4rzptIuy9NscQ5QB4KXv9WCvcsEucmitb+M/a4QvXqpzEEwByL1zH4735edcU7HnC56bGq/McgD1faWNN1rpajVcPUXNkK1duqVSqGpZbtRrkINgT5QDY81E/1hxMyy5xam5s5TR1aMfWUAFmvVEqFfCnjnXfFYCooRiiHEBzudLGGqwZbpprl7jSY2JIGbbynzWdlxsWPRVc5bQiX4tkCbw6z4Js8eo89nyQJdnCmBhSji1ducXPO2qM+n5/28SYqJUrVyIwMBAajQbh4eE4ePBgreU3bdqE7t27Q6PRIDg4GNu3bzdbL4TA/PnzodPp4ObmhpiYGJw5c8aszLVr1/D888/D09MT3t7emDBhAm7cuGFW5tixY3jooYeg0WgQEBCA1NTUpjlghei83BDRqS0/UMgibGVMDCknvl8HfJ80GJ+92B/fJw1WNEDz846sQfEQlZmZicTERCQnJ+PIkSPo3bs3YmNjceXKlWrL79+/H6NHj8aECROQl5eHuLg4xMXFIT8/XyqTmpqK5cuXIy0tDTk5OfDw8EBsbCxu374tlXn++edx4sQJ7Nq1C9u2bcN3332HSZMmSeuNRiMeeeQRdOzYEbm5uVi8eDEWLFiANWvWWK4xiOwYL2AggOGFHIvip/PCw8PRr18/fPjhhwAAk8mEgIAAvPbaa0hKSqpSPj4+HqWlpdi2bZu0rH///ggJCUFaWhqEEPDz88P06dMxY8YMAIDBYICvry/S09MxatQonDx5Eg888AAOHTqEvn37AgB27NiBxx57DJcuXYKfnx9WrVqFv/71r9Dr9VCr1QCApKQkbNmyBadOnarXsdna6TwiS+IkokTUXNjF6bzy8nLk5uYiJiZGWubk5ISYmBhkZ2dX+5zs7Gyz8gAQGxsrlT9//jz0er1ZGS8vL4SHh0tlsrOz4e3tLQUoAIiJiYGTkxNycnKkMgMHDpQCVOV+Tp8+jevXr1dbt7KyMhiNRrMHkaPg1A1E5GgUvTqvuLgYFRUV8PX1NVvu6+tbY2+PXq+vtrxer5fWVy6rrUz79u3N1ru4uKBNmzZmZYKCgqpso3Jd69ZVL5dNSUnBm2++WfMBEzVznLqBiByJ4mOimpPZs2fDYDBIj4sXLypdJSKr45gYInIUioYoHx8fODs7o6ioyGx5UVERtFpttc/RarW1lq/8WVeZeweu//bbb7h27ZpZmeq28cd93MvV1RWenp5mDyIiImqeFA1RarUaoaGhyMrKkpaZTCZkZWUhIiKi2udERESYlQeAXbt2SeWDgoKg1WrNyhiNRuTk5EhlIiIiUFJSgtzcXKnM7t27YTKZEB4eLpX57rvvcOfOHbP9dOvWrdpTeURERORghMIyMjKEq6urSE9PFz/88IOYNGmS8Pb2Fnq9XgghREJCgkhKSpLK79u3T7i4uIj3339fnDx5UiQnJ4sWLVqI48ePS2UWLVokvL29xVdffSWOHTsmRo4cKYKCgsStW7ekMkOHDhV9+vQROTk54vvvvxddunQRo0ePltaXlJQIX19fkZCQIPLz80VGRoZwd3cXq1evrvexGQwGAUAYDIbGNBERERFZUX2/vxUPUUIIsWLFCtGhQwehVqtFWFiYOHDggLQuOjpajB071qz8559/Lrp27SrUarV48MEHxTfffGO23mQyiXnz5glfX1/h6uoqhgwZIk6fPm1W5pdffhGjR48WLVu2FJ6enmL8+PHi119/NSvz3//+V0RFRQlXV1fh7+8vFi1a1KDjYogiIiKyP/X9/lZ8nqjmjPNEERER2R+7mCeKiIiIyF4xRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcmg6A2Im7vK2SOMRqPCNSEiIqL6qvzermsWKIYoC/r1118BAAEBAQrXhIiIiBrq119/hZeXV43rOdmmBZlMJly+fBmtWrWCSqVq0HONRiMCAgJw8eJFh5+ok21xF9vhLrbD79gWd7Ed7mI7/K6xbSGEwK+//go/Pz84OdU88ok9URbk5OSE++67r1Hb8PT0dPg3QyW2xV1sh7vYDr9jW9zFdriL7fC7xrRFbT1QlTiwnIiIiEgGhigiIiIiGRiibJSrqyuSk5Ph6uqqdFUUx7a4i+1wF9vhd2yLu9gOd7EdfmettuDAciIiIiIZ2BNFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEKWglStXIjAwEBqNBuHh4Th48GCNZU+cOIGnnnoKgYGBUKlUWLZsmfUqagUNaYuPP/4YDz30EFq3bo3WrVsjJiam1vL2pCHtsHnzZvTt2xfe3t7w8PBASEgI/vGPf1ixtpbTkHb4o4yMDKhUKsTFxVm2glbUkLZIT0+HSqUye2g0GivW1nIa+pooKSnB5MmTodPp4Orqiq5du2L79u1Wqq3lNKQdBg0aVOX1oFKpMGzYMCvW2HIa+ppYtmwZunXrBjc3NwQEBOD111/H7du3G1cJQYrIyMgQarVarF27Vpw4cUK8+OKLwtvbWxQVFVVb/uDBg2LGjBnis88+E1qtVixdutS6FbaghrbFc889J1auXCny8vLEyZMnxbhx44SXl5e4dOmSlWvetBraDnv27BGbN28WP/zwgzh79qxYtmyZcHZ2Fjt27LByzZtWQ9uh0vnz54W/v7946KGHxMiRI61TWQtraFusW7dOeHp6isLCQumh1+utXOum19B2KCsrE3379hWPPfaY+P7778X58+fF3r17xdGjR61c86bV0Hb45ZdfzF4L+fn5wtnZWaxbt866FbeAhrbFhg0bhKurq9iwYYM4f/68+Pe//y10Op14/fXXG1UPhiiFhIWFicmTJ0u/V1RUCD8/P5GSklLnczt27NisQlRj2kIIIX777TfRqlUrsX79ektV0Soa2w5CCNGnTx8xd+5cS1TPauS0w2+//SYiIyPFJ598IsaOHdtsQlRD22LdunXCy8vLSrWznoa2w6pVq8T9998vysvLrVVFq2jsZ8TSpUtFq1atxI0bNyxVRatpaFtMnjxZPPzww2bLEhMTxYABAxpVD57OU0B5eTlyc3MRExMjLXNyckJMTAyys7MVrJn1NUVb3Lx5E3fu3EGbNm0sVU2La2w7CCGQlZWF06dPY+DAgZasqkXJbYe33noL7du3x4QJE6xRTauQ2xY3btxAx44dERAQgJEjR+LEiRPWqK7FyGmHrVu3IiIiApMnT4avry969uyJd999FxUVFdaqdpNris/Kv//97xg1ahQ8PDwsVU2rkNMWkZGRyM3NlU75/fjjj9i+fTsee+yxRtWFNyBWQHFxMSoqKuDr62u23NfXF6dOnVKoVspoiraYNWsW/Pz8zN5Q9kZuOxgMBvj7+6OsrAzOzs746KOP8Oc//9nS1bUYOe3w/fff4+9//zuOHj1qhRpaj5y26NatG9auXYtevXrBYDDg/fffR2RkJE6cONHom6ErRU47/Pjjj9i9ezeef/55bN++HWfPnsUrr7yCO3fuIDk52RrVbnKN/aw8ePAg8vPz8fe//91SVbQaOW3x3HPPobi4GFFRURBC4LfffsNLL72EOXPmNKouDFFk1xYtWoSMjAzs3bu32QygbYhWrVrh6NGjuHHjBrKyspCYmIj7778fgwYNUrpqVvHrr78iISEBH3/8MXx8fJSujuIiIiIQEREh/R4ZGYkePXpg9erVePvttxWsmXWZTCa0b98ea9asgbOzM0JDQ/Hzzz9j8eLFdhuiGuvvf/87goODERYWpnRVFLF37168++67+OijjxAeHo6zZ89i6tSpePvttzFv3jzZ22WIUoCPjw+cnZ1RVFRktryoqAharVahWimjMW3x/vvvY9GiRfj222/Rq1cvS1bT4uS2g5OTEzp37gwACAkJwcmTJ5GSkmK3Iaqh7XDu3DlcuHABw4cPl5aZTCYAgIuLC06fPo1OnTpZttIW0hSfEy1atECfPn1w9uxZS1TRKuS0g06nQ4sWLeDs7Cwt69GjB/R6PcrLy6FWqy1aZ0tozOuhtLQUGRkZeOuttyxZRauR0xbz5s1DQkICJk6cCAAIDg5GaWkpJk2ahL/+9a9wcpI3uoljohSgVqsRGhqKrKwsaZnJZEJWVpbZ/yIdgdy2SE1Nxdtvv40dO3agb9++1qiqRTXVa8JkMqGsrMwSVbSKhrZD9+7dcfz4cRw9elR6jBgxAoMHD8bRo0cREBBgzeo3qaZ4TVRUVOD48ePQ6XSWqqbFyWmHAQMG4OzZs1KgBoD//e9/0Ol0dhmggMa9HjZt2oSysjK88MILlq6mVchpi5s3b1YJSpUhWzTmFsKNGpZOsmVkZAhXV1eRnp4ufvjhBzFp0iTh7e0tXY6ckJAgkpKSpPJlZWUiLy9P5OXlCZ1OJ2bMmCHy8vLEmTNnlDqEJtPQtli0aJFQq9Xiiy++MLt899dff1XqEJpEQ9vh3XffFTt37hTnzp0TP/zwg3j//feFi4uL+Pjjj5U6hCbR0Ha4V3O6Oq+hbfHmm2+Kf//73+LcuXMiNzdXjBo1Smg0GnHixAmlDqFJNLQdCgoKRKtWrcSrr74qTp8+LbZt2ybat28vFi5cqNQhNAm5742oqCgRHx9v7epaVEPbIjk5WbRq1Up89tln4scffxQ7d+4UnTp1Es8++2yj6sEQpaAVK1aIDh06CLVaLcLCwsSBAwekddHR0WLs2LHS7+fPnxcAqjyio6OtX3ELaEhbdOzYsdq2SE5Otn7Fm1hD2uGvf/2r6Ny5s9BoNKJ169YiIiJCZGRkKFDrpteQdrhXcwpRQjSsLaZNmyaV9fX1FY899pg4cuSIArVueg19Tezfv1+Eh4cLV1dXcf/994t33nlH/Pbbb1auddNraDucOnVKABA7d+60ck0tryFtcefOHbFgwQLRqVMnodFoREBAgHjllVfE9evXG1UHlRCN6cciIiIickwcE0VEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERNQPjxo1DXFyc0tUgcigMUURkUePGjYNKpZIebdu2xdChQ3Hs2DGlq9Yk/nhslY+oqCiL7e/ChQtQqVQ4evSo2fK//e1vSE9Pt9h+iagqhigisrihQ4eisLAQhYWFyMrKgouLCx5//HGlq9Vk1q1bJx1fYWEhtm7dWm25O3fuWKwOXl5e8Pb2ttj2iagqhigisjhXV1dotVpotVqEhIQgKSkJFy9exNWrV/Hwww/j1VdfNSt/9epVqNVq6S7tgYGBePvttzF69Gh4eHjA398fK1euNHvOBx98gODgYHh4eCAgIACvvPIKbty4Ia3/6aefMHz4cLRu3RoeHh548MEHsX37dgDA9evX8fzzz6Ndu3Zwc3NDly5dsG7dunofn7e3t3R8Wq0Wbdq0kXqMMjMzER0dDY1Ggw0bNuCXX37B6NGj4e/vD3d3dwQHB+Ozzz4z257JZEJqaio6d+4MV1dXdOjQAe+88w4AICgoCADQp08fqFQqDBo0CEDV03llZWWYMmUK2rdvD41Gg6ioKBw6dEhav3fvXqhUKmRlZaFv375wd3dHZGQkTp8+Xe/jJnJ0DFFEZFU3btzAp59+is6dO6Nt27aYOHEiNm7ciLKyMqnMp59+Cn9/fzz88MPSssWLF6N3797Iy8tDUlISpk6dil27dknrnZycsHz5cpw4cQLr16/H7t27MXPmTGn95MmTUVZWhu+++w7Hjx/He++9h5YtWwIA5s2bhx9++AH/+te/cPLkSaxatQo+Pj5NcryVdT158iRiY2Nx+/ZthIaG4ptvvkF+fj4mTZqEhIQEHDx4UHrO7NmzsWjRIqleGzduhK+vLwBI5b799lsUFhZi8+bN1e535syZ+PLLL7F+/XocOXIEnTt3RmxsLK5du2ZW7q9//SuWLFmCw4cPw8XFBf/3f//XJMdN5BAadftiIqI6jB07Vjg7OwsPDw/h4eEhAAidTidyc3OFEELcunVLtG7dWmRmZkrP6dWrl1iwYIH0e8eOHcXQoUPNthsfHy8effTRGve7adMm0bZtW+n34OBgs23+0fDhw8X48eNlHR8AodFopOPz8PAQ//znP8X58+cFALFs2bI6tzFs2DAxffp0IYQQRqNRuLq6io8//rjaspXbzcvLM1s+duxYMXLkSCGEEDdu3BAtWrQQGzZskNaXl5cLPz8/kZqaKoQQYs+ePQKA+Pbbb6Uy33zzjQAgbt261ZAmIHJY7IkiIosbPHgwjh49iqNHj+LgwYOIjY3Fo48+ip9++gkajQYJCQlYu3YtAODIkSPIz8/HuHHjzLYRERFR5feTJ09Kv3/77bcYMmQI/P390apVKyQkJOCXX37BzZs3AQBTpkzBwoULMWDAACQnJ5sNbH/55ZeRkZGBkJAQzJw5E/v372/Q8S1dulQ6vqNHj+LPf/6ztK5v375mZSsqKvD2228jODgYbdq0QcuWLfHvf/8bBQUFAICTJ0+irKwMQ4YMaVAd/ujcuXO4c+cOBgwYIC1r0aIFwsLCzNoMAHr16iX9W6fTAQCuXLkie99EjoQhiogszsPDA507d0bnzp3Rr18/fPLJJygtLcXHH38MAJg4cSJ27dqFS5cuYd26dXj44YfRsWPHem//woULePzxx9GrVy98+eWXyM3NlcZMlZeXS/v48ccfkZCQgOPHj6Nv375YsWIFAEiB7vXXX8fly5cxZMgQzJgxo97712q10vF17twZHh4eZsf+R4sXL8bf/vY3zJo1C3v27MHRo0cRGxsr1dPNza3e+20KLVq0kP6tUqkA3B2TRUR1Y4giIqtTqVRwcnLCrVu3AADBwcHo27cvPv74Y2zcuLHacTkHDhyo8nuPHj0AALm5uTCZTFiyZAn69++Prl274vLly1W2ERAQgJdeegmbN2/G9OnTpRAHAO3atcPYsWPx6aefYtmyZVizZk1THrJk3759GDlyJF544QX07t0b999/P/73v/9J67t06QI3NzdpUP291Go1gLs9WjXp1KkT1Go19u3bJy27c+cODh06hAceeKCJjoSIXJSuABE1f2VlZdDr9QDuXgn34Ycf4saNGxg+fLhUZuLEiXj11Vfh4eGBJ554oso29u3bh9TUVMTFxWHXrl3YtGkTvvnmGwBA586dcefOHaxYsQLDhw/Hvn37kJaWZvb8adOm4dFHH0XXrl1x/fp17NmzRwph8+fPR2hoKB588EGUlZVh27Zt0rqm1qVLF3zxxRfYv38/WrdujQ8++ABFRUVSuNFoNJg1axZmzpwJtVqNAQMG4OrVqzhx4gQmTJiA9u3bw83NDTt27MB9990HjUYDLy8vs314eHjg5ZdfxhtvvIE2bdqgQ4cOSE1Nxc2bNzFhwgSLHBeRI2JPFBFZ3I4dO6DT6aDT6RAeHo5Dhw5h06ZN0uX5ADB69Gi4uLhg9OjR0Gg0VbYxffp0HD58GH369MHChQvxwQcfIDY2FgDQu3dvfPDBB3jvvffQs2dPbNiwASkpKWbPr6iowOTJk9GjRw8MHToUXbt2xUcffQTgbu/O7Nmz0atXLwwcOBDOzs7IyMiwSFvMnTsXf/rTnxAbG4tBgwZBq9VWmWl83rx5mD59OubPn48ePXogPj5eGqfk4uKC5cuXY/Xq1fDz88PIkSOr3c+iRYvw1FNPISEhAX/6059w9uxZ/Pvf/0br1q0tclxEjkglhBBKV4KI6MKFC+jUqRMOHTqEP/3pT2brAgMDMW3aNEybNk2ZyhERVYOn84hIUXfu3MEvv/yCuXPnon///lUCFBGRreLpPCJS1L59+6DT6XDo0KEq45iU9u6776Jly5bVPh599FGlq0dECuPpPCKiGly7dq3KDN+V3Nzc4O/vb+UaEZEtYYgiIiIikoGn84iIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZ/h+znU12yPcvEgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATOFJREFUeJzt3XtYVVXi//HPAeWqgIoCGgre0hIv4wUx81JMWFaS853UyttodrEps6a0Urtj2sXJLMsm7Zkumo0zU+aYRjo9KampTN5y0jQtASXzkIqgsH5/+PNMJ0Bhc66c9+t5eOzsvc7ea+9gn89Za+21bcYYIwAAANRIkLcrAAAA4I8IUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEA6rRHH31UNputWmVtNpseffRRt9ZnwIABGjBggM9uD0D1EaIAeMSiRYtks9kcP/Xq1VOLFi00ZswY/fDDD96uns9JSkpyOl/NmjXT5Zdfrr///e8u2f7Jkyf16KOPau3atS7ZHhCICFEAPOrxxx/XX//6V82fP19XX3213nrrLfXv31+nTp1yy/4eeeQRFRcXu2Xb7ta1a1f99a9/1V//+lfdf//9OnTokIYOHar58+fXetsnT57UY489RogCaqGetysAILBcffXV6tGjhyRp/Pjxio2N1TPPPKMPPvhAN954o8v3V69ePdWr55+XuhYtWuiWW25xvB41apTatm2rF154QbfffrsXawZAoiUKgJddfvnlkqS9e/c6Lf/666/1f//3f2rcuLHCwsLUo0cPffDBB05lTp8+rccee0zt2rVTWFiYmjRpor59+2r16tWOMpWNiSopKdG9996rpk2bqmHDhrr++uv1/fffV6jbmDFjlJSUVGF5ZdtcuHChrrjiCjVr1kyhoaG65JJL9Morr9ToXFxIfHy8OnbsqH379p233OHDhzVu3DjFxcUpLCxMXbp00ZtvvulYv3//fjVt2lSS9Nhjjzm6DN09Hgyoa/zz6xmAOmP//v2SpEaNGjmW7dixQ5dddplatGihKVOmKDIyUu+9954yMzP1t7/9TTfccIOks2EmKytL48ePV69evVRUVKQvv/xSW7Zs0W9/+9sq9zl+/Hi99dZbuummm9SnTx99+umnGjx4cK2O45VXXtGll16q66+/XvXq1dOHH36oO++8U+Xl5Zo4cWKttn3O6dOndfDgQTVp0qTKMsXFxRowYID27Nmju+66S8nJyVq6dKnGjBmjY8eO6Z577lHTpk31yiuv6I477tANN9ygoUOHSpI6d+7sknoCAcMAgAcsXLjQSDKffPKJOXLkiDl48KB5//33TdOmTU1oaKg5ePCgo+yVV15pUlJSzKlTpxzLysvLTZ8+fUy7du0cy7p06WIGDx583v3OmDHD/PJSl5ubaySZO++806ncTTfdZCSZGTNmOJaNHj3atGrV6oLbNMaYkydPViiXkZFhWrdu7bSsf//+pn///uetszHGtGrVylx11VXmyJEj5siRI+Y///mPGT58uJFk/vjHP1a5vTlz5hhJ5q233nIsKy0tNWlpaaZBgwamqKjIGGPMkSNHKhwvgJqhOw+AR6Wnp6tp06ZKTEzU//3f/ykyMlIffPCBLrroIknS0aNH9emnn+rGG2/Uzz//rMLCQhUWFurHH39URkaGvvnmG8fdfDExMdqxY4e++eabau9/xYoVkqS7777bafmkSZNqdVzh4eGO/7bb7SosLFT//v317bffym63W9rmqlWr1LRpUzVt2lRdunTR0qVLNXLkSD3zzDNVvmfFihWKj4/XiBEjHMvq16+vu+++W8ePH9e///1vS3UBUBHdeQA8at68eWrfvr3sdrveeOMNffbZZwoNDXWs37Nnj4wxmjZtmqZNm1bpNg4fPqwWLVro8ccf15AhQ9S+fXt16tRJgwYN0siRI8/bLfXdd98pKChIbdq0cVp+8cUX1+q41q1bpxkzZignJ0cnT550Wme32xUdHV3jbaampurJJ5+UzWZTRESEOnbsqJiYmPO+57vvvlO7du0UFOT8Hbljx46O9QBcgxAFwKN69erluDsvMzNTffv21U033aTdu3erQYMGKi8vlyTdf//9ysjIqHQbbdu2lST169dPe/fu1T//+U+tWrVKr7/+ul544QXNnz9f48ePr3Vdq5qks6yszOn13r17deWVV6pDhw56/vnnlZiYqJCQEK1YsUIvvPCC45hqKjY2Vunp6ZbeC8D9CFEAvCY4OFhZWVkaOHCgXnrpJU2ZMkWtW7eWdLYLqjoBonHjxho7dqzGjh2r48ePq1+/fnr00UerDFGtWrVSeXm59u7d69T6tHv37gplGzVqpGPHjlVY/uvWnA8//FAlJSX64IMP1LJlS8fyNWvWXLD+rtaqVSt99dVXKi8vd2qN+vrrrx3rpaoDIoDqY0wUAK8aMGCAevXqpTlz5ujUqVNq1qyZBgwYoFdffVV5eXkVyh85csTx3z/++KPTugYNGqht27YqKSmpcn9XX321JOnFF190Wj5nzpwKZdu0aSO73a6vvvrKsSwvL6/CrOHBwcGSJGOMY5ndbtfChQurrIe7XHPNNcrPz9eSJUscy86cOaO5c+eqQYMG6t+/vyQpIiJCkioNiQCqh5YoAF73pz/9Sb///e+1aNEi3X777Zo3b5769u2rlJQU3XrrrWrdurUKCgqUk5Oj77//Xv/5z38kSZdccokGDBig7t27q3Hjxvryyy/1/vvv66677qpyX127dtWIESP08ssvy263q0+fPsrOztaePXsqlB0+fLgefPBB3XDDDbr77rt18uRJvfLKK2rfvr22bNniKHfVVVcpJCRE1113nW677TYdP35cCxYsULNmzSoNgu40YcIEvfrqqxozZow2b96spKQkvf/++1q3bp3mzJmjhg0bSjo7EP6SSy7RkiVL1L59ezVu3FidOnVSp06dPFpfwK95+/ZAAIHh3BQHmzZtqrCurKzMtGnTxrRp08acOXPGGGPM3r17zahRo0x8fLypX7++adGihbn22mvN+++/73jfk08+aXr16mViYmJMeHi46dChg3nqqadMaWmpo0xl0xEUFxebu+++2zRp0sRERkaa6667zhw8eLDSW/5XrVplOnXqZEJCQszFF19s3nrrrUq3+cEHH5jOnTubsLAwk5SUZJ555hnzxhtvGElm3759jnI1meLgQtM3VLW9goICM3bsWBMbG2tCQkJMSkqKWbhwYYX3rl+/3nTv3t2EhIQw3QFggc2YX7Q/AwAAoFoYEwUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsYLJNNyovL9ehQ4fUsGFDHrEAAICfMMbo559/VvPmzSs8zPuXCFFudOjQISUmJnq7GgAAwIKDBw/qoosuqnI9IcqNzj1e4eDBg4qKivJybQAAQHUUFRUpMTHR8TleFUKUG53rwouKiiJEAQDgZy40FIeB5QAAABYQogAAACwgRAEAAFjAmCgvKysr0+nTp71dDb8SEhJy3ltOAQDwBEKUlxhjlJ+fr2PHjnm7Kn4nKChIycnJCgkJ8XZVAAABjBDlJecCVLNmzRQREcFknNV0bgLTvLw8tWzZkvMGAPAaQpQXlJWVOQJUkyZNvF0dv9O0aVMdOnRIZ86cUf369b1dHQBAgGJgiRecGwMVERHh5Zr4p3PdeGVlZV6uCQAgkBGivIiuKGs4bwAAX0CIAgAAsIAQBQAAYAEhCjUyZswYZWZmVli+du1a2Ww2HTt2TGvXrtWQIUOUkJCgyMhIde3aVW+//XaF9xw9elSTJk1Sq1atFBISoubNm+sPf/iDDhw44IEjAQD4ujx7sdbvLVSevdjbVakUd+fB5davX6/OnTvrwQcfVFxcnJYvX65Ro0YpOjpa1157raSzAap3794KCQnR/Pnzdemll2r//v165JFH1LNnT+Xk5Kh169ZePhIAgLcs2XRAU5dtU7mRgmxS1tAUDevZ0tvVckKIgss99NBDTq/vuecerVq1SsuWLXOEqIcffliHDh3Snj17FB8fL0lq2bKlPv74Y7Vr104TJ07Uv/71L4/XHQDgfXn2YkeAkqRyIz20bLv6tW+qhOhw71buF+jOqwN8vblTkux2uxo3bizp7ISZixcv1s033+wIUOeEh4frzjvv1Mcff6yjR496o6oAAC/bV3jCEaDOKTNG+wtPeqdCVaAlys95o7lz+fLlatCggdOy883Z9N5772nTpk169dVXJUlHjhzRsWPH1LFjx0rLd+zYUcYY7dmzR7169XJdxQEAfiE5NlJBNjkFqWCbTUmxvjW/Ii1Rfqyq5k53t0gNHDhQubm5Tj+vv/56pWXXrFmjsWPHasGCBbr00kud1hljKn0PACCwJUSHK2toioL//7yAwTabnh7ayae68iRaovza+Zo73fmLFhkZqbZt2zot+/777yuU+/e//63rrrtOL7zwgkaNGuVY3rRpU8XExGjXrl2Vbn/Xrl2y2WwV9gEACBzDerZUv/ZNtb/wpJJiI3wuQEm0RPm1c82dv+QrzZ1r167V4MGD9cwzz2jChAlO64KCgnTjjTfqnXfeUX5+vtO64uJivfzyy8rIyHCMoQIABKaE6HCltWnikwFKIkT5NV9t7lyzZo0GDx6su+++W7/73e+Un5+v/Px8p4HiTz/9tOLj4/Xb3/5W//rXv3Tw4EF99tlnysjI0OnTpzVv3jwvHgEAABdGd56f88XmzjfffFMnT55UVlaWsrKyHMv79++vtWvXSpKaNGmiL774Qo8//rhuu+025efnq3Hjxrr66qv11ltvqWVL35oLBACAX7MZRve6TVFRkaKjo2W32xUVFeVYfurUKe3bt0/JyckKCwvzYg39E+cPAOBOVX1+/5pPdOfNmzdPSUlJCgsLU2pqqjZu3Hje8kuXLlWHDh0UFhamlJQUrVixwmm9MUbTp09XQkKCwsPDlZ6erm+++caxfv/+/Ro3bpySk5MVHh6uNm3aaMaMGSotLXXazldffaXLL79cYWFhSkxM1KxZs1x30AAAwK95PUQtWbJEkydP1owZM7RlyxZ16dJFGRkZOnz4cKXl169frxEjRmjcuHHaunWrMjMzlZmZqe3btzvKzJo1Sy+++KLmz5+vDRs2KDIyUhkZGTp16pQk6euvv1Z5ebleffVV7dixQy+88ILmz5/vNNN2UVGRrrrqKrVq1UqbN2/W7Nmz9eijj+q1115z7wkBAAD+wXhZr169zMSJEx2vy8rKTPPmzU1WVlal5W+88UYzePBgp2WpqanmtttuM8YYU15ebuLj483s2bMd648dO2ZCQ0PNu+++W2U9Zs2aZZKTkx2vX375ZdOoUSNTUlLiWPbggw+aiy++uNrHZrfbjSRjt9udlhcXF5udO3ea4uLiam8L/8P5AwC4U1Wf37/m1Zao0tJSbd68Wenp6Y5lQUFBSk9PV05OTqXvycnJcSovSRkZGY7y+/btU35+vlOZ6OhopaamVrlNyfmxJOf2069fP4WEhDjtZ/fu3frpp59qdqAAAKDO8WqIKiwsVFlZmeLi4pyWx8XFVZg/6Jz8/Pzzlj/3b022uWfPHs2dO1e33XbbBffzy338WklJiYqKipx+zscwpt8SzhsAwBd4fUyUt/3www8aNGiQfv/73+vWW2+t1baysrIUHR3t+ElMTKy0XP369SVJJ0/61oMU/cW5GwCCg4O9XBMAQCDz6jxRsbGxCg4OVkFBgdPygoICxcfHV/qe+Pj485Y/929BQYESEhKcynTt2tXpfYcOHdLAgQPVp0+fCgPGq9rPL/fxa1OnTtXkyZMdr4uKiioNUsHBwYqJiXEMno+IiJDNZqtQDhWVl5fryJEjioiIUL16THMGAPAer34KhYSEqHv37srOzlZmZqaksx+S2dnZuuuuuyp9T1pamrKzszVp0iTHstWrVystLU2SlJycrPj4eGVnZztCU1FRkTZs2KA77rjD8Z4ffvhBAwcOVPfu3bVw4UIFBTk3yqWlpenhhx/W6dOnHS1Hq1ev1sUXX6xGjRpVWrfQ0FCFhoZW69jPBbGq7kJE1YKCgtSyZUuCJwDAq7z+VX7y5MkaPXq0evTooV69emnOnDk6ceKExo4dK0kaNWqUWrRo4Zj5+p577lH//v313HPPafDgwVq8eLG+/PJLR0uSzWbTpEmT9OSTT6pdu3ZKTk7WtGnT1Lx5c0dQ++GHHzRgwAC1atVKzz77rI4cOeKoz7lwc9NNN+mxxx7TuHHj9OCDD2r79u3685//rBdeeMElx22z2ZSQkKBmzZrp9OnTLtlmoAgJCakQegEA8DSvh6hhw4bpyJEjmj59uvLz89W1a1etXLnSMYj7wIEDTh+Yffr00TvvvKNHHnlEDz30kNq1a6d//OMf6tSpk6PMAw88oBMnTmjChAk6duyY+vbtq5UrVzpmt169erX27NmjPXv26KKLLnKqz7lBy9HR0Vq1apUmTpyo7t27KzY2VtOnT6/wMN3aCg4OZmwPAAB+iMe+uFF1p40HAAC+w68e+wIAAOBvCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAv5NnL9b6vYXKsxd7rQ71vLZnAAAAC5ZsOqCpy7ap3EhBNilraIqG9Wzp8XrQEgUAAPxGnr3YEaAkqdxIDy3b7pUWKUIUAADwG/sKTzgC1Dllxmh/4UmP14UQBQAA/EZybKSCbM7Lgm02JcVGeLwuhCgAAOA3EqLDlTU0RcG2s0kq2GbT00M7KSE63ON1YWA5AADwK8N6tlS/9k21v/CkkmIjvBKgJEIUAADwQwnR4V4LT+fQnQcAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALvB6i5s2bp6SkJIWFhSk1NVUbN248b/mlS5eqQ4cOCgsLU0pKilasWOG03hij6dOnKyEhQeHh4UpPT9c333zjVOapp55Snz59FBERoZiYmEr3Y7PZKvwsXry4VscKAADqDq+GqCVLlmjy5MmaMWOGtmzZoi5duigjI0OHDx+utPz69es1YsQIjRs3Tlu3blVmZqYyMzO1fft2R5lZs2bpxRdf1Pz587VhwwZFRkYqIyNDp06dcpQpLS3V73//e91xxx3nrd/ChQuVl5fn+MnMzHTJcQMAAP9nM8YYb+08NTVVPXv21EsvvSRJKi8vV2Jiov74xz9qypQpFcoPGzZMJ06c0PLlyx3Levfura5du2r+/Pkyxqh58+a67777dP/990uS7Ha74uLitGjRIg0fPtxpe4sWLdKkSZN07NixCvuy2Wz6+9//XqvgVFRUpOjoaNntdkVFRVneDgAA8Jzqfn57rSWqtLRUmzdvVnp6+v8qExSk9PR05eTkVPqenJwcp/KSlJGR4Si/b98+5efnO5WJjo5Wampqlds8n4kTJyo2Nla9evXSG2+8oQvlzZKSEhUVFTn9AACAuqmet3ZcWFiosrIyxcXFOS2Pi4vT119/Xel78vPzKy2fn5/vWH9uWVVlquvxxx/XFVdcoYiICK1atUp33nmnjh8/rrvvvrvK92RlZemxxx6r0X4AAIB/8lqI8nXTpk1z/He3bt104sQJzZ49+7whaurUqZo8ebLjdVFRkRITE91aTwAA4B1e686LjY1VcHCwCgoKnJYXFBQoPj6+0vfEx8eft/y5f2uyzepKTU3V999/r5KSkirLhIaGKioqyukHAADUTV4LUSEhIerevbuys7Mdy8rLy5Wdna20tLRK35OWluZUXpJWr17tKJ+cnKz4+HinMkVFRdqwYUOV26yu3NxcNWrUSKGhobXaDgAAqBu82p03efJkjR49Wj169FCvXr00Z84cnThxQmPHjpUkjRo1Si1atFBWVpYk6Z577lH//v313HPPafDgwVq8eLG+/PJLvfbaa5LO3lE3adIkPfnkk2rXrp2Sk5M1bdo0NW/e3OkuuwMHDujo0aM6cOCAysrKlJubK0lq27atGjRooA8//FAFBQXq3bu3wsLCtHr1aj399NOOO/4AAABkvGzu3LmmZcuWJiQkxPTq1ct88cUXjnX9+/c3o0ePdir/3nvvmfbt25uQkBBz6aWXmo8++shpfXl5uZk2bZqJi4szoaGh5sorrzS7d+92KjN69GgjqcLPmjVrjDHG/Otf/zJdu3Y1DRo0MJGRkaZLly5m/vz5pqysrEbHZrfbjSRjt9tr9D4AAOA91f389uo8UXUd80QBAOB/fH6eKAAAAH9GiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAKiRPHux1u8tVJ692NtVAbyqnrcrAADwH0s2HdDUZdtUbqQgm5Q1NEXDerb0drUAr6AlCgBQLXn2YkeAkqRyIz20bDstUghYhCgAQLXsKzzhCFDnlBmj/YUnvVMhwMsIUQCASv167FNybKSCbM5lgm02JcVGeKF2gPcxJgoAUEFVY5+yhqbooWXbVWaMgm02PT20kxKiw71dXcArCFEAACdVjX3q176phvVsqX7tm2p/4UklxUYQoBDQCFEAACfnG/uUEB3u+AECHWOiAABOGPsEVA8hCgDgJCE6XFlDUxRsO5ukGPsEVI7uPABABYx9Ai6MEAUAqBRjn4DzozsPAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwALLM5YfO3ZMe/bskSS1bdtWMTExrqoTAACAz6txS9T+/fs1ePBgxcbGKjU1VampqYqNjdW1116r/fv3u6GKAAAAvqdGLVEHDx5U7969Vb9+fT3xxBPq2LGjJGnnzp165ZVXlJaWpk2bNumiiy5yS2UBAAB8hc0YY6pbeNy4cdqzZ48+/vhjhYWFOa0rLi7WoEGD1K5dO73++usur6g/KioqUnR0tOx2u6KiorxdHQAAUA3V/fyuUUvUypUrtWTJkgoBSpLCw8P1xBNPaPjw4TWvLQAAgJ+p0ZiowsJCJSUlVbm+devWOnr0aG3rBAAA4PNqFKISEhK0c+fOKtdv375d8fHxta4UAACAr6tRiMrMzNT999+vI0eOVFh3+PBhPfjgg8rMzHRV3QAAAHxWjQaW//TTT0pNTVV+fr5uueUWdejQQcYY7dq1S++8847i4+P1xRdfqHHjxu6ss99gYDkAAP7HLQPLGzVqpA0bNuihhx7S4sWLdezYMUlSTEyMbrrpJj399NMEKAAAEBBq1BL1S8YYR7de06ZNZbPZXFqxuoCWKAAA/I9bWqJ+yWazqVmzZlbfDgAA4Ndq/NiXFStWaPz48XrggQe0a9cup3U//fSTrrjiCpdVDgAAwFfVKES98847uv7665Wfn6+cnBz95je/0dtvv+1YX1paqn//+98uryQAAICvqVF33uzZs/X888/r7rvvliS99957+sMf/qBTp05p3LhxbqkgAACAL6pRS9Q333yj6667zvH6xhtv1IcffqhJkyZp/vz5liowb948JSUlKSwsTKmpqdq4ceN5yy9dulQdOnRQWFiYUlJStGLFCqf1xhhNnz5dCQkJCg8PV3p6ur755hunMk899ZT69OmjiIgIxcTEVLqfAwcOaPDgwYqIiFCzZs30pz/9SWfOnLF0jAAAoO6pUYiKiopSQUGB07KBAwdq+fLl+tOf/qS5c+fWaOdLlizR5MmTNWPGDG3ZskVdunRRRkaGDh8+XGn59evXa8SIERo3bpy2bt2qzMxMZWZmavv27Y4ys2bN0osvvqj58+drw4YNioyMVEZGhk6dOuUoU1paqt///ve64447Kt1PWVmZBg8erNLSUq1fv15vvvmmFi1apOnTp9fo+AAAQB1mamDIkCFm+vTpla5bs2aNiYyMNEFBQdXeXq9evczEiRMdr8vKykzz5s1NVlZWpeVvvPFGM3jwYKdlqamp5rbbbjPGGFNeXm7i4+PN7NmzHeuPHTtmQkNDzbvvvlthewsXLjTR0dEVlq9YscIEBQWZ/Px8x7JXXnnFREVFmZKSkmofn91uN5KM3W6v9nsAAIB3Vffzu0YtUffee6/CwsIqXTdgwAB9+OGHGjVqVLW2VVpaqs2bNys9Pd2xLCgoSOnp6crJyan0PTk5OU7lJSkjI8NRft++fcrPz3cqEx0drdTU1Cq3WdV+UlJSFBcX57SfoqIi7dixo8r3lZSUqKioyOkH7pVnL9b6vYXKsxd7uyoAgABTo4Hl3bp1U7du3aoMB927d1f37t2rta3CwkKVlZU5BRVJiouL09dff13pe/Lz8ystn5+f71h/bllVZaqjqv38ch+VycrK0mOPPVbt/aB2lmw6oKnLtqncSEE2KWtoiob1bOntagEAAkSNQlRMTEy1ZiYvKyuzXCF/NnXqVE2ePNnxuqioSImJiV6sUd2VZy92BChJKjfSQ8u2q1/7pkqIDvdu5QAAAaFGIWrNmjWO/zbG6JprrtHrr7+uFi1a1HjHsbGxCg4OrjBQvaCgQPHx8ZW+Jz4+/rzlz/1bUFCghIQEpzJdu3atdt3i4+Mr3CV4br9V1U2SQkNDFRoaWu39wLp9hSccAeqcMmO0v/AkIQoBK89erH2FJ5QcG8nfAeABNQpR/fv3d3odHBys3r17q3Xr1jXecUhIiLp3767s7GxlZmZKksrLy5Wdna277rqr0vekpaUpOztbkyZNcixbvXq10tLSJEnJycmKj49Xdna2IzQVFRVpw4YNVd6JV9V+nnrqKR0+fNjxaJvVq1crKipKl1xySY2PFa6XHBupIJucglSwzaak2AjvVQrwIrq3Ac+r8WNfXGny5MlasGCB3nzzTe3atUt33HGHTpw4obFjx0qSRo0apalTpzrK33PPPVq5cqWee+45ff3113r00Uf15ZdfOkKXzWbTpEmT9OSTT+qDDz7Qtm3bNGrUKDVv3twR1KSzc0Dl5ubqwIEDKisrU25urnJzc3X8+HFJ0lVXXaVLLrlEI0eO1H/+8x99/PHHeuSRRzRx4kRamnxEQnS4soamKPj/dy8H22x6emgnvn0jIFXVvc0NF4B7WX4AsSsMGzZMR44c0fTp05Wfn6+uXbtq5cqVjkHcBw4cUFDQ/3Jenz599M477+iRRx7RQw89pHbt2ukf//iHOnXq5CjzwAMP6MSJE5owYYKOHTumvn37auXKlU53FU6fPl1vvvmm43W3bt0kne2uHDBggIKDg7V8+XLdcccdSktLU2RkpEaPHq3HH3/c3acENTCsZ0v1a99U+wtPKik2ggCFgEX3NuAdNmOMuXCxyjVs2FBfffWVkpOTXVmnOqOoqEjR0dGy2+2KiorydnUA1IIvjzfKsxfrspmfVuje/nzKQJ+rK+APqvv5XaOWqKFDhzq9PnXqlG6//XZFRkY6LV+2bFlNNgsAPs3Xxxud695+aNl2lRlD9zbgITUKUdHR0U6vb7nlFpdWBgB8jb9Mp0H3NuB5NQpRCxcudFc9AMAn+dN4o4TocJ+rE1CXefXuPADwdeem0/glptMAIBGiAOC8mE4DQFW8OsUBAPgDxhsBqAwhCgCqgfFGAH6N7jwAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQCAn8izF2v93kLl2Yu9XRVIquftCgAAgAtbsumApi7bpnIjBdmkrKEpGtazpberFdBoiQIAwMfl2YsdAUqSyo300LLttEh5GSEKAAAft6/whCNAnVNmjPYXnvROhSCJEAUAgM9Ljo1UkM15WbDNpqTYCO9UCJIIUQAA+LyE6HBlDU1RsO1skgq22fT00E5KiA73cs0CGwPLAQDwA8N6tlS/9k21v/CkkmIjCFA+gBAFAICfSIgOJzz5ELrzAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAQLXl2Yu1fm+h8uzF3q6K1zFjOQAAqJYlmw5o6rJtKjdSkE3KGpqiYT1bertaXkNLFAAAuKA8e7EjQElSuZEeWrY9oFukCFEAANRhrup+21d4whGgzikzRvsLT9Zqu/6M7jwAAOooV3a/JcdGKsgmpyAVbLMpKTbCRbX1P7REAQBQB7m6+y0hOlxZQ1MUbLNJOhugnh7aSQnR4a6qst+hJQoAAD+RZy/WvsITSo6NvGB4OV/3m9XgM6xnS/Vr31T7C08qKTaiwnZqUr+6gBAFAIAfqGnXnLu63xKiwysNSIF45x7deQAA+DgrXXOe7H4L1Dv3aIkCAMDHWe2au1D3m7fr5+8IUQAA+LjadM1V1f3mSoF65x7deXA5HgkAAK7l63fG+Xr93MVmjDEXLgYrioqKFB0dLbvdrqioKG9XxyMCcWAhAHhKnr3Y7V1zteHr9auu6n5+050Hl6lqYGG/9k39+o8JAHyFJ7rmasPX6+dqdOfBZXgkgH+i+xUArKElCi4TqAML/RndrwBgHS1RcJlAHVjor9w1r0tdbdmqq8cFwDpaouBSnpqTBLXnjnld6mrLVl09LgC1Q0sUXC4hOlxpbZoQoHzcue7XX6pN92tdnbG4rh4X6hZaSr2DEAUEKFd3v9bVGwvq6nGh7liy6YAum/mpblqwQZfN/FRLNh3wdpUCBt15QABzZfdrXb2xoK4eF+oGppbxLlqigADnqu7XunpjQV09LtQNtJR6Fy1RAFymrt5YUFePC/6PllLvoiUKgEvV1RsL6upxwb/RUupdtEQBfibPXqx9hSeUHBvJhRKA37SU1sVrFyEK8CPMVwSgMr7+zLq6eu2iOw/wE/4yXxHz1TjjfCDQ+cu1ywpaogA/4Y4Zxl2trn7btIrzUXt1sQso0PjDtcsqWqIAP+HqGcZdrbbfNutai01d/vbtKUwiWTf4+rWrNghRgJ/w9btwajNfTV38sGT+ntohhNYdvn7tqg268wA/4st34Vidr6auzrjM/D018+tuu7rcBRSIfPnaVRuEKMDP+OpdOOe+bT60bLvKjKn2t826+mFp9XwEosrGjvVr35QQWsf46rWrNghRAFzGyrfNutxiU1e/fbtSVS2Rn08ZSAiFzyNEAXCpmn7bdFeLja/c1VUXv3270vlaIgmh8HU+MbB83rx5SkpKUlhYmFJTU7Vx48bzll+6dKk6dOigsLAwpaSkaMWKFU7rjTGaPn26EhISFB4ervT0dH3zzTdOZY4ePaqbb75ZUVFRiomJ0bhx43T8+HHH+v3798tms1X4+eKLL1x34AAknW2x+XzKQL17a299PmVgracBqIsD1euqC925xeN24Mu8HqKWLFmiyZMna8aMGdqyZYu6dOmijIwMHT58uNLy69ev14gRIzRu3Dht3bpVmZmZyszM1Pbt2x1lZs2apRdffFHz58/Xhg0bFBkZqYyMDJ06dcpR5uabb9aOHTu0evVqLV++XJ999pkmTJhQYX+ffPKJ8vLyHD/du3d3/UmAJN+5xd1X6hFoXPVhyV1d/qUu37mFus9mjDEXLuY+qamp6tmzp1566SVJUnl5uRITE/XHP/5RU6ZMqVB+2LBhOnHihJYvX+5Y1rt3b3Xt2lXz58+XMUbNmzfXfffdp/vvv1+SZLfbFRcXp0WLFmn48OHatWuXLrnkEm3atEk9evSQJK1cuVLXXHONvv/+ezVv3lz79+9XcnKytm7dqq5du1o6tqKiIkVHR8tutysqKsrSNgKFr0xK6Cv1gHXr9xbqpgUbKix/99beSmvTxAs1qjlPdkWeb1+ergfddvAV1f389mpLVGlpqTZv3qz09HTHsqCgIKWnpysnJ6fS9+Tk5DiVl6SMjAxH+X379ik/P9+pTHR0tFJTUx1lcnJyFBMT4whQkpSenq6goCBt2OB88b3++uvVrFkz9e3bVx988EHtDhiV8pWWA0/XgxYv9/D3if082RV5vn15ukuUbjv4I6+GqMLCQpWVlSkuLs5peVxcnPLz8yt9T35+/nnLn/v3QmWaNWvmtL5evXpq3Lixo0yDBg303HPPaenSpfroo4/Ut29fZWZmnjdIlZSUqKioyOkHF+YrkxJ6sh6M2XEff+4e8mSQP9++fOWLDeDruDuvCrGxsZo8ebLjdc+ePXXo0CHNnj1b119/faXvycrK0mOPPeapKtYZvnKLu6fqUVcnl/Ql/npXlyfnzDrfvoxMnZy7C3A1r7ZExcbGKjg4WAUFBU7LCwoKFB8fX+l74uPjz1v+3L8XKvPrgetnzpzR0aNHq9yvdHb81p49e6pcP3XqVNntdsfPwYMHqyyL//GVlgNP1cNXWt7qOn/sHvJkV+T59uXvXaKAp3g1RIWEhKh79+7Kzs52LCsvL1d2drbS0tIqfU9aWppTeUlavXq1o3xycrLi4+OdyhQVFWnDhg2OMmlpaTp27Jg2b97sKPPpp5+qvLxcqampVdY3NzdXCQkJVa4PDQ1VVFSU0w+qx9W3uPtyPfiAQlU8+YXifPvylS82gM8zXrZ48WITGhpqFi1aZHbu3GkmTJhgYmJiTH5+vjHGmJEjR5opU6Y4yq9bt87Uq1fPPPvss2bXrl1mxowZpn79+mbbtm2OMjNnzjQxMTHmn//8p/nqq6/MkCFDTHJysikuLnaUGTRokOnWrZvZsGGD+fzzz027du3MiBEjHOsXLVpk3nnnHbNr1y6za9cu89RTT5mgoCDzxhtvVPvY7Ha7kWTsdnttThHqoMUbvzOtp3xkWj243LSe8pFZvPE7b1cJPuTQsZNm/Z5Cc+jYSa/uy5P1AHxJdT+/vR6ijDFm7ty5pmXLliYkJMT06tXLfPHFF451/fv3N6NHj3Yq/95775n27dubkJAQc+mll5qPPvrIaX15ebmZNm2aiYuLM6GhoebKK680u3fvdirz448/mhEjRpgGDRqYqKgoM3bsWPPzzz871i9atMh07NjRREREmKioKNOrVy+zdOnSGh0XIQrnk3vgqFnw2V6Te+Cot6sCwA0OHTtp1u05Qgj1Q9X9/Pb6PFF1GfNEoSrMRwXUbfyN+ze/mCcKCETcPg7UbfyNBw5CFOBh3J0H+J+aTI7L33jgYJ4owMN8ZV4sANVT0645/sYDBy1RgIdx+zjgP6x0zfE3HjhoiQK8wF9n1AYCjdVZ5PkbDwyEKMBLzk1qCMB31aZrjr/x2suzF2tf4Qklx0b65LmkOw8AgCrQNec9/vCgduaJciPmiarI179VAEBl8uzFdM15UJ69WJfN/LRCC+DnUwZ65PxX9/Ob7jx4DJPPAfBXdM15ltWxaJ5Gdx48gsnnAADV5S8PaidEwSOYfA4AUF3+MhaN7jx4RGRIcKXLI0L8J8czngsAPMcfpokgRMEjTpSWVbr8ZGm5h2tiDeO5AMDzfH0smv80A8Cv+Uv/dmXcNZ6rJs/iAgD4HkIUPMJf+rcr447xXP4w/wkA4PzozoPH+EP/dmVc/TDRqlq2+rVv6jfnBAAqE2hjRwlR8Chf79+uzLlWtIeWbVeZMbVuRfOX+U8AoCYCcewoIQqoBle2orm6ZQsAvN0CFKgt7IQooJpc1Yrm6pYtAIHNF1qAArWFnRAFeIG/jg/zFm9/ywZ8la+0AAVqCzshCvASfxwf5g2+8C0bOB9vhnxfaQEK1BZ2QhQAl3LlB4qvfMsGquLtkO9LLUCB2MLOPFEAXMbV81/xzEX4Ml94sLqvzcGXEB2utDZNAiJASbREAXARd7Qa+dK3bODXfKUrLRBbgHwFLVEAXMIdrUa+9i0b+KXaPM7K1Y99CrQWIF9BS5Qf4k6lwOar///d1WrEt2z4KquDqb09jgquYzPGmAsXgxVFRUWKjo6W3W5XVFSUS7bJH19g8/X//0s2HajwgeJL9QPcIc9eXO2Qn2cv1mUzP63wZePzKQP5guBDqvv5TUuUH+FOpcDmD///aTVCIKrJdCW+Mo4KrsGYKD/ia3cqubpPH+fna///q8LYDKBqtRlHBd9DiPIjvvTH5+pb2XFhvvT/H4A13CxRtxCi/Eh1/vg80TrkC3OjBCIuvoD3uPLaOqxnS30+ZaDevbW3Pp8ykHGDfowxUX7mfGNOPDXomD5972HMEeB57ri2Wn3sk6/enRuoCFF+qLI/Pk8OOmYCRO/imXuA5/jSDR2+fnduIKI7r47w5KBjupUA9+KmDd/hKzd0MIzCN9ESVUd4unWIbiXAPQK1tcFXu6l8peWdYRQV+cLvDC1RdYQ3Woe4lR1wrUBtbfDlu319peU9MiS40uURIYH5Me4rvzO0RPmhqtI3rUOAfwvE1gZfGnNUFV+4tp4oLat0+cnScg/XxPt86XeGEOVnLtTUz6BjwH/5SteRJ/lLcPT2tTUQfzeq4ku/M4HZDuinArWpHwgUvtJ15ElMIls9gfi7URVf+p2hJcqP+FL6BuAevtB15EnnwsGvH1xd14/bikD73aiKL/3OEKL8CM25QGDwdteRpxEOqi/Qfjeq4iu/M3Tn+RGacwHUVdzti5ryhd8ZWqL8jK+kbwAAAh0hyg/RnAsAgPfRnQefwaMuAAD+hJYo+IRAfdQFascXHvsAIHARouB1vjT7LPwHwRvnQ8CGJxCi4HXMf4WaInjjfAjY8BTGRMHrfGn2WfiH8wVvBDae7ABPIkTB65j/CjVF8EZVCNjwJLrz4BPcMf8VYyLqLl967AN8izee7MC1JnARovxQXf2DdeX8V4yJqPuYeBaV8XTA9odrTV39zPAFNmOMuXAxWFFUVKTo6GjZ7XZFRUW5ZJv+8AfrbXn2Yl0289MK30Q/nzKQCwgQIPLsxW4P2P5wreEzw5rqfn4zJsqPMGCyehgTAcATz1Xz9WsNnxnuR4jyI77+B+srGHQMwBN8/VrDZ4b7EaL8iK//wfoK7varGR63A1jj69cad31mePKa4evXJ8ZEuZG7xkT9esBkdfu3A21woSfGRPg7xksAtefL15rafGZUtT1PXTO8eX2q7uc3IcqN3BGiJGt/sHxY4tf8YVAsXCPQvkDBmatCnievGd6+PlX385spDvxQTacC4BEZqAyP2wkMtfkCRfiqG1w1fYwnrxn+cn0iRAUAf/llhGcxKWHdV5svULRe49c8ec3wxvXJCgaWBwAGpKMynh4Uu2TTAV0281PdtGCDLpv5qZZsOuCW/eB/rN6dxa3xqIwnrxm+Pmj/HFqiAgCPyEBVPDXrN13K3mH12zyt16iKJ58U4A9PJSBEBYhhPVuqQ3xDbdr/k3omNVKXxEberhJ8hCsft1MVPpS9w+oXKH/pSoF3eOKa4Y19WUGIChCMb4A38aHsPVa+zdN6DVQPUxy4kbumOKipC90qymBfeIKr56uB+/ny/EcXwnUNtcEUB3A4X1fKZ/89QgsVPMIfxjfAma93pVRlyaYDmvK3bTKSbJJm/o7rGtyDu/MCQFV350WEBHEHDjzKEw+FRWDLsxc7ApQkGUlT/raN6xrcghAVAKq6VfREaRkPp6wBX3+GEwDpy/1H9esxKkbS5v0/eaM6qOPozgsQlXWl/Odg5ReViBD3ZWt/HafArM+Af7DZbFUs93BFEBAIUQHk1+MbTpSWVVruZGm5W/bvr3cIMuszUH3e/tLQvVUj2SSn1iibTfpNK6Z1gevRnRfAPDmTuT/NgPzrbjtmfQaqxxdmpU+IDtfM36U4rm1BNmnm0BRageEWPhGi5s2bp6SkJIWFhSk1NVUbN248b/mlS5eqQ4cOCgsLU0pKilasWOG03hij6dOnKyEhQeHh4UpPT9c333zjVObo0aO6+eabFRUVpZiYGI0bN07Hjx93KvPVV1/p8ssvV1hYmBITEzVr1izXHLCP8OS0+laDiKdV9iFgNWz6yzEDruBLXxqG9WypdVOu0Lu39ta6KVfQ+gu38XqIWrJkiSZPnqwZM2Zoy5Yt6tKlizIyMnT48OFKy69fv14jRozQuHHjtHXrVmVmZiozM1Pbt293lJk1a5ZefPFFzZ8/Xxs2bFBkZKQyMjJ06tQpR5mbb75ZO3bs0OrVq7V8+XJ99tlnmjBhgmN9UVGRrrrqKrVq1UqbN2/W7Nmz9eijj+q1115z38nwgmE9W+rzKQP17q299fmUgW672PjD8/uq+hCQZCls+sMxA67ia18auBMUnuD1yTZTU1PVs2dPvfTSS5Kk8vJyJSYm6o9//KOmTJlSofywYcN04sQJLV++3LGsd+/e6tq1q+bPny9jjJo3b6777rtP999/vyTJbrcrLi5OixYt0vDhw7Vr1y5dcskl2rRpk3r06CFJWrlypa655hp9//33at68uV555RU9/PDDys/PV0hIiCRpypQp+sc//qGvv/66WsfmK5Nt+gpfn2xx/d5C3bRgQ4Xl797aW2ltmliaeNDXjxlwlQtN6gv4E7+YbLO0tFSbN2/W1KlTHcuCgoKUnp6unJycSt+Tk5OjyZMnOy3LyMjQP/7xD0nSvn37lJ+fr/T0dMf66OhopaamKicnR8OHD1dOTo5iYmIcAUqS0tPTFRQUpA0bNuiGG25QTk6O+vXr5whQ5/bzzDPP6KefflKjRhUHKZaUlKikpMTxuqioqGYnpI7z9ckWL/RoEisTD/r6MQOuwqNiEIi8GqIKCwtVVlamuLg4p+VxcXFVtvbk5+dXWj4/P9+x/tyy85Vp1qyZ0/p69eqpcePGTmWSk5MrbOPcuspCVFZWlh577LGqDxg+PQOyuz4EfPmYAVfiSwMCDVMcuNDUqVOdWsmKioqUmJjoxRqhpvgQAGqHLw0IJF4NUbGxsQoODlZBQYHT8oKCAsXHx1f6nvj4+POWP/dvQUGBEhISnMp07drVUebXA9fPnDmjo0ePOm2nsv38ch+/FhoaqtDQ0CqPF/6BDwEAQHV49e68kJAQde/eXdnZ2Y5l5eXlys7OVlpaWqXvSUtLcyovSatXr3aUT05OVnx8vFOZoqIibdiwwVEmLS1Nx44d0+bNmx1lPv30U5WXlys1NdVR5rPPPtPp06ed9nPxxRdX2pUHAAACjPGyxYsXm9DQULNo0SKzc+dOM2HCBBMTE2Py8/ONMcaMHDnSTJkyxVF+3bp1pl69eubZZ581u3btMjNmzDD169c327Ztc5SZOXOmiYmJMf/85z/NV199ZYYMGWKSk5NNcXGxo8ygQYNMt27dzIYNG8znn39u2rVrZ0aMGOFYf+zYMRMXF2dGjhxptm/fbhYvXmwiIiLMq6++Wu1js9vtRpKx2+21OUUAAMCDqvv57fUQZYwxc+fONS1btjQhISGmV69e5osvvnCs69+/vxk9erRT+ffee8+0b9/ehISEmEsvvdR89NFHTuvLy8vNtGnTTFxcnAkNDTVXXnml2b17t1OZH3/80YwYMcI0aNDAREVFmbFjx5qff/7Zqcx//vMf07dvXxMaGmpatGhhZs6cWaPjIkQBAOB/qvv57fV5ouoy5okCAMD/VPfz2+szlgMAAPgjQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgAcQu9G5KbiKioq8XBMAAFBd5z63LzSVJiHKjX7++WdJUmJiopdrAgAAaurnn39WdHR0leuZsdyNysvLdejQITVs2FA2m61G7y0qKlJiYqIOHjwY8LOdcy7O4jycxXn4H87FWZyHszgP/1Pbc2GM0c8//6zmzZsrKKjqkU+0RLlRUFCQLrroolptIyoqKuD/GM7hXJzFeTiL8/A/nIuzOA9ncR7+pzbn4nwtUOcwsBwAAMACQhQAAIAFhCgfFRoaqhkzZig0NNTbVfE6zsVZnIezOA//w7k4i/NwFufhfzx1LhhYDgAAYAEtUQAAABYQogAAACwgRAEAAFhAiAIAALCAEOVF8+bNU1JSksLCwpSamqqNGzdWWXbHjh363e9+p6SkJNlsNs2ZM8dzFfWAmpyLBQsW6PLLL1ejRo3UqFEjpaenn7e8P6nJeVi2bJl69OihmJgYRUZGqmvXrvrrX//qwdq6T03Owy8tXrxYNptNmZmZ7q2gB9XkXCxatEg2m83pJywszIO1dZ+a/k4cO3ZMEydOVEJCgkJDQ9W+fXutWLHCQ7V1n5qchwEDBlT4fbDZbBo8eLAHa+w+Nf2dmDNnji6++GKFh4crMTFR9957r06dOlW7Shh4xeLFi01ISIh54403zI4dO8ytt95qYmJiTEFBQaXlN27caO6//37z7rvvmvj4ePPCCy94tsJuVNNzcdNNN5l58+aZrVu3ml27dpkxY8aY6Oho8/3333u45q5V0/OwZs0as2zZMrNz506zZ88eM2fOHBMcHGxWrlzp4Zq7Vk3Pwzn79u0zLVq0MJdffrkZMmSIZyrrZjU9FwsXLjRRUVEmLy/P8ZOfn+/hWrteTc9DSUmJ6dGjh7nmmmvM559/bvbt22fWrl1rcnNzPVxz16rpefjxxx+dfhe2b99ugoODzcKFCz1bcTeo6bl4++23TWhoqHn77bfNvn37zMcff2wSEhLMvffeW6t6EKK8pFevXmbixImO12VlZaZ58+YmKyvrgu9t1apVnQpRtTkXxhhz5swZ07BhQ/Pmm2+6q4oeUdvzYIwx3bp1M4888og7qucxVs7DmTNnTJ8+fczrr79uRo8eXWdCVE3PxcKFC010dLSHauc5NT0Pr7zyimndurUpLS31VBU9orbXiBdeeME0bNjQHD9+3F1V9JianouJEyeaK664wmnZ5MmTzWWXXVaretCd5wWlpaXavHmz0tPTHcuCgoKUnp6unJwcL9bM81xxLk6ePKnTp0+rcePG7qqm29X2PBhjlJ2drd27d6tfv37urKpbWT0Pjz/+uJo1a6Zx48Z5opoeYfVcHD9+XK1atVJiYqKGDBmiHTt2eKK6bmPlPHzwwQdKS0vTxIkTFRcXp06dOunpp59WWVmZp6rtcq64Vv7lL3/R8OHDFRkZ6a5qeoSVc9GnTx9t3rzZ0eX37bffasWKFbrmmmtqVRceQOwFhYWFKisrU1xcnNPyuLg4ff31116qlXe44lw8+OCDat68udMflL+xeh7sdrtatGihkpISBQcH6+WXX9Zvf/tbd1fXbaych88//1x/+ctflJub64Eaeo6Vc3HxxRfrjTfeUOfOnWW32/Xss8+qT58+2rFjR60fhu4tVs7Dt99+q08//VQ333yzVqxYoT179ujOO+/U6dOnNWPGDE9U2+Vqe63cuHGjtm/frr/85S/uqqLHWDkXN910kwoLC9W3b18ZY3TmzBndfvvteuihh2pVF0IU/NrMmTO1ePFirV27ts4MoK2Jhg0bKjc3V8ePH1d2drYmT56s1q1ba8CAAd6umkf8/PPPGjlypBYsWKDY2FhvV8fr0tLSlJaW5njdp08fdezYUa+++qqeeOIJL9bMs8rLy9WsWTO99tprCg4OVvfu3fXDDz9o9uzZfhuiausvf/mLUlJS1KtXL29XxSvWrl2rp59+Wi+//LJSU1O1Z88e3XPPPXriiSc0bdo0y9slRHlBbGysgoODVVBQ4LS8oKBA8fHxXqqVd9TmXDz77LOaOXOmPvnkE3Xu3Nmd1XQ7q+chKChIbdu2lSR17dpVu3btUlZWlt+GqJqeh71792r//v267rrrHMvKy8slSfXq1dPu3bvVpk0b91baTVxxnahfv766deumPXv2uKOKHmHlPCQkJKh+/foKDg52LOvYsaPy8/NVWlqqkJAQt9bZHWrz+3DixAktXrxYjz/+uDur6DFWzsW0adM0cuRIjR8/XpKUkpKiEydOaMKECXr44YcVFGRtdBNjorwgJCRE3bt3V3Z2tmNZeXm5srOznb5FBgKr52LWrFl64okntHLlSvXo0cMTVXUrV/1OlJeXq6SkxB1V9IianocOHTpo27Ztys3Ndfxcf/31GjhwoHJzc5WYmOjJ6ruUK34nysrKtG3bNiUkJLirmm5n5Txcdtll2rNnjyNQS9J///tfJSQk+GWAkmr3+7B06VKVlJTolltucXc1PcLKuTh58mSFoHQuZJvaPEK4VsPSYdnixYtNaGioWbRokdm5c6eZMGGCiYmJcdyOPHLkSDNlyhRH+ZKSErN161azdetWk5CQYO6//36zdetW880333jrEFympudi5syZJiQkxLz//vtOt+/+/PPP3joEl6jpeXj66afNqlWrzN69e83OnTvNs88+a+rVq2cWLFjgrUNwiZqeh1+rS3fn1fRcPPbYY+bjjz82e/fuNZs3bzbDhw83YWFhZseOHd46BJeo6Xk4cOCAadiwobnrrrvM7t27zfLly02zZs3Mk08+6a1DcAmrfxt9+/Y1w4YN83R13aqm52LGjBmmYcOG5t133zXffvutWbVqlWnTpo258cYba1UPQpQXzZ0717Rs2dKEhISYXr16mS+++MKxrn///mb06NGO1/v27TOSKvz079/f8xV3g5qci1atWlV6LmbMmOH5irtYTc7Dww8/bNq2bWvCwsJMo0aNTFpamlm8eLEXau16NTkPv1aXQpQxNTsXkyZNcpSNi4sz11xzjdmyZYsXau16Nf2dWL9+vUlNTTWhoaGmdevW5qmnnjJnzpzxcK1dr6bn4euvvzaSzKpVqzxcU/erybk4ffq0efTRR02bNm1MWFiYSUxMNHfeeaf56aefalUHmzG1accCAAAITIyJAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAFAHTBmzBhlZmZ6uxpAQCFEAXCrMWPGyGazOX6aNGmiQYMG6auvvvJ21Vzil8d27qdv375u29/+/ftls9mUm5vrtPzPf/6zFi1a5Lb9AqiIEAXA7QYNGqS8vDzl5eUpOztb9erV07XXXuvtarnMwoULHceXl5enDz74oNJyp0+fdlsdoqOjFRMT47btA6iIEAXA7UJDQxUfH6/4+Hh17dpVU6ZM0cGDB3XkyBFdccUVuuuuu5zKHzlyRCEhIY6ntCclJemJJ57QiBEjFBkZqRYtWmjevHlO73n++eeVkpKiyMhIJSYm6s4779Tx48cd67/77jtdd911atSokSIjI3XppZdqxYoVkqSffvpJN998s5o2barw8HC1a9dOCxcurPbxxcTEOI4vPj5ejRs3drQYLVmyRP3791dYWJjefvtt/fjjjxoxYoRatGihiIgIpaSk6N1333XaXnl5uWbNmqW2bdsqNDRULVu21FNPPSVJSk5OliR169ZNNptNAwYMkFSxO6+kpER33323mjVrprCwMPXt21ebNm1yrF+7dq1sNpuys7PVo0cPRUREqE+fPtq9e3e1jxsIdIQoAB51/PhxvfXWW2rbtq2aNGmi8ePH65133lFJSYmjzFtvvaUWLVroiiuucCybPXu2unTpoq1bt2rKlCm65557tHr1asf6oKAgvfjii9qxY4fefPNNffrpp3rggQcc6ydOnKiSkhJ99tln2rZtm5555hk1aNBAkjRt2jTt3LlT//rXv7Rr1y698sorio2Ndcnxnqvrrl27lJGRoVOnTql79+766KOPtH37dk2YMEEjR47Uxo0bHe+ZOnWqZs6c6ajXO++8o7i4OElylPvkk0+Ul5enZcuWVbrfBx54QH/729/05ptvasuWLWrbtq0yMjJ09OhRp3IPP/ywnnvuOX355ZeqV6+e/vCHP7jkuIGAUKvHFwPABYwePdoEBwebyMhIExkZaSSZhIQEs3nzZmOMMcXFxaZRo0ZmyZIljvd07tzZPProo47XrVq1MoMGDXLa7rBhw8zVV19d5X6XLl1qmjRp4nidkpLitM1fuu6668zYsWMtHZ8kExYW5ji+yMhI8/e//93s27fPSDJz5sy54DYGDx5s7rvvPmOMMUVFRSY0NNQsWLCg0rLntrt161an5aNHjzZDhgwxxhhz/PhxU79+ffP222871peWlprmzZubWbNmGWOMWbNmjZFkPvnkE0eZjz76yEgyxcXFNTkFQMCiJQqA2w0cOFC5ubnKzc3Vxo0blZGRoauvvlrfffedwsLCNHLkSL3xxhuSpC1btmj79u0aM2aM0zbS0tIqvN61a5fj9SeffKIrr7xSLVq0UMOGDTVy5Ej9+OOPOnnypCTp7rvv1pNPPqnLLrtMM2bMcBrYfscdd2jx4sXq2rWrHnjgAa1fv75Gx/fCCy84ji83N1e//e1vHet69OjhVLasrExPPPGEUlJS1LhxYzVo0EAff/yxDhw4IEnatWuXSkpKdOWVV9aoDr+0d+9enT59WpdddpljWf369dWrVy+ncyZJnTt3dvx3QkKCJOnw4cOW9w0EEkIUALeLjIxU27Zt1bZtW/Xs2VOvv/66Tpw4oQULFkiSxo8fr9WrV+v777/XwoULdcUVV6hVq1bV3v7+/ft17bXXqnPnzvrb3/6mzZs3O8ZMlZaWOvbx7bffauTIkdq2bZt69OihuXPnSpIj0N177706dOiQrrzySt1///3V3n98fLzj+Nq2bavIyEinY/+l2bNn689//rMefPBBrVmzRrm5ucrIyHDUMzw8vNr7dYX69es7/ttms0k6OyYLwIURogB4nM1mU1BQkIqLiyVJKSkp6tGjhxYsWKB33nmn0nE5X3zxRYXXHTt2lCRt3rxZ5eXleu6559S7d2+1b99ehw4dqrCNxMRE3X777Vq2bJnuu+8+R4iTpKZNm2r06NF66623NGfOHL322muuPGSHdevWaciQIbrlllvUpUsXtW7dWv/9738d69u1a6fw8HDHoPpfCwkJkXS2Rasqbdq0UUhIiNatW+dYdvr0aW3atEmXXHKJi44EQD1vVwBA3VdSUqL8/HxJZ++Ee+mll3T8+HFdd911jjLjx4/XXXfdpcjISN1www0VtrFu3TrNmjVLmZmZWr16tZYuXaqPPvpIktS2bVudPn1ac+fO1XXXXad169Zp/vz5Tu+fNGmSrr76arVv314//fST1qxZ4whh06dPV/fu3XXppZeqpKREy5cvd6xztXbt2un999/X+vXr1ahRIz3//PMqKChwhJuwsDA9+OCDeuCBBxQSEqLLLrtMR44c0Y4dOzRu3Dg1a9ZM4eHhWrlypS666CKFhYUpOjraaR+RkZG644479Kc//UmNGzdWy5YtNWvWLJ08eVLjxo1zy3EBgYiWKABut3LlSiUkJCghIUGpqanatGmTli5d6rg9X5JGjBihevXqacSIEQoLC6uwjfvuu09ffvmlunXrpieffFLPP/+8MjIyJEldunTR888/r2eeeUadOnXS22+/raysLKf3l5WVaeLEierYsaMGDRqk9u3b6+WXX5Z0tnVn6tSp6ty5s/r166fg4GAtXrzYLefikUce0W9+8xtlZGRowIABio+PrzDT+LRp03Tfffdp+vTp6tixo4YNG+YYp1SvXj29+OKLevXVV9W8eXMNGTKk0v3MnDlTv/vd7zRy5Ej95je/0Z49e/Txxx+rUaNGbjkuIBDZjDHG25UAgP3796tNmzbatGmTfvOb3zitS0pK0qRJkzRp0iTvVA4AKkF3HgCvOn36tH788Uc98sgj6t27d4UABQC+iu48AF61bt06JSQkaNOmTRXGMXnb008/rQYNGlT6c/XVV3u7egC8jO48AKjC0aNHK8zwfU54eLhatGjh4RoB8CWEKAAAAAvozgMAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABY8P8AU3+0EBr4bO0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATRRJREFUeJzt3XtcVVXC//HvAYWDJHhBuYVCimmJYqIIOanFDJVdqGZCa7z9LLunoWPqqGRZmI3lY1qUU+qrMh3L8SnHh8moZp6S8U6TjjZqOloBSuUhUVFh//7w8dTZXORyrvB5v17npey99j5rL845fM/aa+1tMQzDEAAAAOz8PF0BAAAAb0NAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkAC4LOeeOIJWSyWepW1WCx64oknXFqfoUOHaujQoV67PwD1R0AC0GTLly+XxWKxP1q1aqXo6GiNHTtW33zzjaer53ViY2Md2qtz5876xS9+oT//+c9O2f/Jkyf1xBNP6JNPPnHK/oCWiIAEwGmefPJJvfHGG8rNzdUNN9ygN998U0OGDNHp06dd8nwzZ87UqVOnXLJvV0tMTNQbb7yhN954Q1OmTNG3336r22+/Xbm5uU3e98mTJzVnzhwCEtAErTxdAQDNxw033KCkpCRJ0j333KOwsDA9++yzeu+993TnnXc6/flatWqlVq1882MsOjpav/3tb+0/jx49Wt27d9cLL7yg+++/34M1AyDRgwTAhX7xi19Ikg4cOOCwfO/evfr1r3+tDh06yGq1KikpSe+9955DmbNnz2rOnDmKj4+X1WpVx44dNXjwYG3cuNFepqYxSBUVFXrsscfUqVMntW3bVrfccou+/vrranUbO3asYmNjqy2vaZ/Lli3Ttddeq86dOyswMFBXXHGFXn755Qa1xcVERESoV69eOnjwYJ3ljh49qvHjxys8PFxWq1V9+/bVihUr7OsPHTqkTp06SZLmzJljP43n6vFXQHPjm1+9APiEQ4cOSZLat29vX7Z7925dffXVio6O1rRp0xQcHKw//elPysjI0LvvvqvbbrtN0vmgkpOTo3vuuUcDBw5UWVmZtm3bph07duiXv/xlrc95zz336M0339Rdd92l1NRUffTRRxo+fHiTjuPll1/WlVdeqVtuuUWtWrXS+++/rwcffFBVVVV66KGHmrTvC86ePasjR46oY8eOtZY5deqUhg4dqv379+vhhx9WXFyc1qxZo7Fjx+r48eOaOHGiOnXqpJdfflkPPPCAbrvtNt1+++2SpD59+jilnkCLYQBAEy1btsyQZHz44YfGsWPHjCNHjhjvvPOO0alTJyMwMNA4cuSIvex1111nJCQkGKdPn7Yvq6qqMlJTU434+Hj7sr59+xrDhw+v83mzs7ONn3+MFRYWGpKMBx980KHcXXfdZUgysrOz7cvGjBljdO3a9aL7NAzDOHnyZLVy6enpxmWXXeawbMiQIcaQIUPqrLNhGEbXrl2NX/3qV8axY8eMY8eOGZ9//rkxYsQIQ5LxyCOP1Lq/hQsXGpKMN998077szJkzRkpKinHJJZcYZWVlhmEYxrFjx6odL4CG4RQbAKdJS0tTp06dFBMTo1//+tcKDg7We++9p0svvVSS9P333+ujjz7SnXfeqR9//FGlpaUqLS3Vd999p/T0dO3bt88+661du3bavXu39u3bV+/n37BhgyTp0UcfdVg+adKkJh1XUFCQ/f82m02lpaUaMmSIvvrqK9lstkbt84MPPlCnTp3UqVMn9e3bV2vWrNGoUaP07LPP1rrNhg0bFBERoZEjR9qXtW7dWo8++qhOnDihv/3tb42qC4DqOMUGwGmWLFmiHj16yGaz6fXXX9ff//53BQYG2tfv379fhmFo1qxZmjVrVo37OHr0qKKjo/Xkk0/q1ltvVY8ePdS7d29df/31GjVqVJ2niv7zn//Iz89P3bp1c1h++eWXN+m4PvvsM2VnZ6ugoEAnT550WGez2RQaGtrgfSYnJ2vu3LmyWCxq06aNevXqpXbt2tW5zX/+8x/Fx8fLz8/xu22vXr3s6wE4BwEJgNMMHDjQPostIyNDgwcP1l133aUvv/xSl1xyiaqqqiRJU6ZMUXp6eo376N69uyTpmmuu0YEDB/Tf//3f+uCDD/THP/5RL7zwgnJzc3XPPfc0ua61XWCysrLS4ecDBw7ouuuuU8+ePfX8888rJiZGAQEB2rBhg1544QX7MTVUWFiY0tLSGrUtANcjIAFwCX9/f+Xk5GjYsGFavHixpk2bpssuu0zS+dNC9QkHHTp00Lhx4zRu3DidOHFC11xzjZ544olaA1LXrl1VVVWlAwcOOPQaffnll9XKtm/fXsePH6+23NwL8/7776uiokLvvfeeunTpYl/+8ccfX7T+zta1a1f985//VFVVlUMv0t69e+3rpdrDH4D6YwwSAJcZOnSoBg4cqIULF+r06dPq3Lmzhg4dqldeeUVFRUXVyh87dsz+/++++85h3SWXXKLu3buroqKi1ue74YYbJEmLFi1yWL5w4cJqZbt16yabzaZ//vOf9mVFRUXVrmbt7+8vSTIMw77MZrNp2bJltdbDVW688UYVFxdr9erV9mXnzp3Tiy++qEsuuURDhgyRJLVp00aSagyAAOqHHiQALvW73/1Ov/nNb7R8+XLdf//9WrJkiQYPHqyEhATde++9uuyyy1RSUqKCggJ9/fXX+vzzzyVJV1xxhYYOHar+/furQ4cO2rZtm9555x09/PDDtT5XYmKiRo4cqZdeekk2m02pqanKz8/X/v37q5UdMWKEHn/8cd1222169NFHdfLkSb388svq0aOHduzYYS/3q1/9SgEBAbr55pt133336cSJE1q6dKk6d+5cY8hzpQkTJuiVV17R2LFjtX37dsXGxuqdd97RZ599poULF6pt27aSzg8qv+KKK7R69Wr16NFDHTp0UO/evdW7d2+31hfwaZ6eRgfA912Y5r9169Zq6yorK41u3boZ3bp1M86dO2cYhmEcOHDAGD16tBEREWG0bt3aiI6ONm666SbjnXfesW83d+5cY+DAgUa7du2MoKAgo2fPnsbTTz9tnDlzxl6mpin5p06dMh599FGjY8eORnBwsHHzzTcbR44cqXHa+wcffGD07t3bCAgIMC6//HLjzTffrHGf7733ntGnTx/DarUasbGxxrPPPmu8/vrrhiTj4MGD9nINmeZ/sUsY1La/kpISY9y4cUZYWJgREBBgJCQkGMuWLau27aZNm4z+/fsbAQEBTPkHGsFiGD/rNwYAAABjkAAAAMwISAAAACYEJAAAABMCEgAAgInHA9KSJUsUGxsrq9Wq5ORkbdmypc7ya9asUc+ePWW1WpWQkGC/99IFhmFo9uzZioyMVFBQkNLS0mq8l9Nf/vIXJScnKygoSO3bt1dGRoYzDwsAAPgwjwak1atXKysrS9nZ2dqxY4f69u2r9PR0HT16tMbymzZt0siRIzV+/Hjt3LlTGRkZysjI0K5du+xl5s+fr0WLFik3N1ebN29WcHCw0tPTdfr0aXuZd999V6NGjdK4ceP0+eef67PPPtNdd93l8uMFAAC+waPT/JOTkzVgwAAtXrxYklRVVaWYmBg98sgjmjZtWrXymZmZKi8v1/r16+3LBg0apMTEROXm5sowDEVFRWny5MmaMmWKpPNXvA0PD9fy5cs1YsQInTt3TrGxsZozZ47Gjx/f6LpXVVXp22+/Vdu2bbmsPwAAPsIwDP3444+KioqqduPnn/PYlbTPnDmj7du3a/r06fZlfn5+SktLU0FBQY3bFBQUKCsry2FZenq61q1bJ0k6ePCgiouLHe7xFBoaquTkZBUUFGjEiBHasWOHvvnmG/n5+alfv34qLi5WYmKinnvuuTqvMltRUeFwi4NvvvlGV1xxRWMOHQAAeNiRI0d06aWX1rreYwGptLRUlZWVCg8Pd1geHh5uv/GiWXFxcY3li4uL7esvLKutzFdffSVJeuKJJ/T8888rNjZWCxYs0NChQ/Xvf/9bHTp0qPG5c3JyNGfOnGrLjxw5opCQkIsdLgAA8AJlZWWKiYmx35qnNi3uXmxVVVWSpN///ve64447JEnLli3TpZdeqjVr1ui+++6rcbvp06c79F5daOCQkBACEgAAPuZiw2M8Nkg7LCxM/v7+KikpcVheUlKiiIiIGreJiIios/yFf+sqExkZKUkOp8cCAwN12WWX6fDhw7XWNzAw0B6GCEUAADRvHgtIAQEB6t+/v/Lz8+3LqqqqlJ+fr5SUlBq3SUlJcSgvSRs3brSXj4uLU0REhEOZsrIybd682V6mf//+CgwM1Jdffmkvc/bsWR06dEhdu3Z12vEBAADf5dFTbFlZWRozZoySkpI0cOBALVy4UOXl5Ro3bpwkafTo0YqOjlZOTo4kaeLEiRoyZIgWLFig4cOHa9WqVdq2bZteffVVSee7yyZNmqS5c+cqPj5ecXFxmjVrlqKiouzXOQoJCdH999+v7OxsxcTEqGvXrnruueckSb/5zW/c3wgAAMDreDQgZWZm6tixY5o9e7Z9NlleXp59kPXhw4cdpuClpqZq5cqVmjlzpmbMmKH4+HitW7fOYfbZ1KlTVV5ergkTJuj48eMaPHiw8vLyZLVa7WWee+45tWrVSqNGjdKpU6eUnJysjz76SO3bt3f6MVZWVurs2bNO368vad26tfz9/T1dDQAA6s2j10HyZWVlZQoNDZXNZqtxPJJhGCouLtbx48fdXzkv1K5dO0VERHDNKACAR13s7/cFLW4Wm7tcCEedO3dWmzZtWmwwMAxDJ0+etF8d/cIgeQAAvBkByQUqKyvt4ahjx46ero7HBQUFSZKOHj2qzp07c7oNAOD1PH6z2ubowpijNm3aeLgm3uNCW7T08VgAAN9AQHKhlnparSa0BQDAlxCQAAAATAhIAAAAJgQkOBg7dqwsFovmzZvnsHzdunX202SffPKJbr31VkVGRio4OFiJiYl66623PFFdAEAzVGQ7pU0HSlVkO+WxOhCQUI3VatWzzz6rH374ocb1mzZtUp8+ffTuu+/qn//8p8aNG6fRo0dr/fr1bq4pAKC5Wb31sK6e95HuWrpZV8/7SKu31n6fVFciIKGatLQ0RURE2G/xYjZjxgw99dRTSk1NVbdu3TRx4kRdf/31Wrt2rZtrCgBoTopspzR97Req+r9LWFcZ0oy1uzzSk0RA8nKe6Gb09/fXM888oxdffFFff/11vbax2Wzq0KGDi2sGAGjODpaW28PRBZWGoUOlJ91eFwKSF/NkN+Ntt92mxMREZWdnX7Tsn/70J23dutV+k2EAABojLixYfqarwvhbLIoNc/91BQlIXsobuhmfffZZrVixQnv27Km1zMcff6xx48Zp6dKluvLKK91WNwBA8xMZGqSc2xPk/3+TgvwtFj1ze29Fhga5vS7casRL1dXN6K4XyjXXXKP09HRNnz5dY8eOrbb+b3/7m26++Wa98MILGj16tFvqBABo3jIHdNE1PTrpUOlJxYa18Ug4kghIXutCN+PPQ5InuhnnzZunxMREXX755Q7LP/nkE91000169tlnNWHCBLfWCQDQvEWGBnksGF3AKTYv5S3djAkJCbr77ru1aNEi+7KPP/5Yw4cP16OPPqo77rhDxcXFKi4u1vfff+/WugEA4Cr0IHkxb+lmfPLJJ7V69Wr7zytWrNDJkyeVk5PjcCmAIUOG6JNPPvFADQEAcC6LYRjGxYvBrKysTKGhobLZbAoJCXFYd/r0aR08eFBxcXGyWq0eqqF3oU0AAN6grr/fP8cpNgAAABMCEgAAgAkBCQAAwISABAAAYEJAciHGv/+EtgAA+BICkgu0bt1aknTypPtvruetLrTFhbYBAMCbcR0kF/D391e7du109OhRSVKbNm1ksVguslXzZBiGTp48qaNHj6pdu3by9/f3dJUAALgoApKLRERESJI9JLV07dq1s7cJAADejoDkIhaLRZGRkercubPOnj3r6ep4VOvWrek5AgD4FAKSi/n7+xMOAADwMQzSBgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMCEgAQAAGBCQAIAADAhIAEAAJgQkAAAAEwISAAAACYEJAAAABOvCEhLlixRbGysrFarkpOTtWXLljrLr1mzRj179pTValVCQoI2bNjgsN4wDM2ePVuRkZEKCgpSWlqa9u3b51AmNjZWFovF4TFv3jynHxsAAPA9Hg9Iq1evVlZWlrKzs7Vjxw717dtX6enpOnr0aI3lN23apJEjR2r8+PHauXOnMjIylJGRoV27dtnLzJ8/X4sWLVJubq42b96s4OBgpaen6/Tp0w77evLJJ1VUVGR/PPLIIy49VgAA4BsshmEYnqxAcnKyBgwYoMWLF0uSqqqqFBMTo0ceeUTTpk2rVj4zM1Pl5eVav369fdmgQYOUmJio3NxcGYahqKgoTZ48WVOmTJEk2Ww2hYeHa/ny5RoxYoSk8z1IkyZN0qRJkxpV77KyMoWGhspmsykkJKRR+wAAAO5V37/fHu1BOnPmjLZv3660tDT7Mj8/P6WlpamgoKDGbQoKChzKS1J6erq9/MGDB1VcXOxQJjQ0VMnJydX2OW/ePHXs2FH9+vXTc889p3PnztVa14qKCpWVlTk8AABA89TKk09eWlqqyspKhYeHOywPDw/X3r17a9ymuLi4xvLFxcX29ReW1VZGkh599FFdddVV6tChgzZt2qTp06erqKhIzz//fI3Pm5OTozlz5jTsAAEAgE/yaEDypKysLPv/+/Tpo4CAAN13333KyclRYGBgtfLTp0932KasrEwxMTFuqSsAAHAvj55iCwsLk7+/v0pKShyWl5SUKCIiosZtIiIi6ix/4d+G7FM6Pxbq3LlzOnToUI3rAwMDFRIS4vAAAADNk0cDUkBAgPr376/8/Hz7sqqqKuXn5yslJaXGbVJSUhzKS9LGjRvt5ePi4hQREeFQpqysTJs3b651n5JUWFgoPz8/de7cuSmHBAAAmgGPn2LLysrSmDFjlJSUpIEDB2rhwoUqLy/XuHHjJEmjR49WdHS0cnJyJEkTJ07UkCFDtGDBAg0fPlyrVq3Stm3b9Oqrr0qSLBaLJk2apLlz5yo+Pl5xcXGaNWuWoqKilJGRIen8QO/Nmzdr2LBhatu2rQoKCvTYY4/pt7/9rdq3b++RdgAAAN7D4wEpMzNTx44d0+zZs1VcXKzExETl5eXZB1kfPnxYfn4/dXSlpqZq5cqVmjlzpmbMmKH4+HitW7dOvXv3tpeZOnWqysvLNWHCBB0/flyDBw9WXl6erFarpPOny1atWqUnnnhCFRUViouL02OPPeYwxggAALRcHr8Okq/iOkgAAPgen7gOEgAAgDciIAEAAJgQkAAAAEwISAAAACYEJAAAABMCEgAAgAkBCQAAwISABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMCEgAQAAGBCQAIAADAhIAEAAJgQkAAAAEwISAAAACYEJAAAABMCEgAAgAkBCQAAwISABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMCEgAQAAGBCQAIAADDxioC0ZMkSxcbGymq1Kjk5WVu2bKmz/Jo1a9SzZ09ZrVYlJCRow4YNDusNw9Ds2bMVGRmpoKAgpaWlad++fTXuq6KiQomJibJYLCosLHTWIQEAAB/m8YC0evVqZWVlKTs7Wzt27FDfvn2Vnp6uo0eP1lh+06ZNGjlypMaPH6+dO3cqIyNDGRkZ2rVrl73M/PnztWjRIuXm5mrz5s0KDg5Wenq6Tp8+XW1/U6dOVVRUlMuODwAA1KzIdkqbDpSqyHbK01WpxmIYhuHJCiQnJ2vAgAFavHixJKmqqkoxMTF65JFHNG3atGrlMzMzVV5ervXr19uXDRo0SImJicrNzZVhGIqKitLkyZM1ZcoUSZLNZlN4eLiWL1+uESNG2Lf7n//5H2VlZendd9/VlVdeqZ07dyoxMbFe9S4rK1NoaKhsNptCQkKa0AIAALQ8q7ce1vS1X6jKkPwsUs7tCcoc0MXlz1vfv98e7UE6c+aMtm/frrS0NPsyPz8/paWlqaCgoMZtCgoKHMpLUnp6ur38wYMHVVxc7FAmNDRUycnJDvssKSnRvffeqzfeeENt2rS5aF0rKipUVlbm8AAAAA1XZDtlD0eSVGVIM9bu8qqeJI8GpNLSUlVWVio8PNxheXh4uIqLi2vcpri4uM7yF/6tq4xhGBo7dqzuv/9+JSUl1auuOTk5Cg0NtT9iYmLqtR0AAHB0sLTcHo4uqDQMHSo96ZkK1cDjY5A84cUXX9SPP/6o6dOn13ub6dOny2az2R9HjhxxYQ0BAGi+4sKC5WdxXOZvsSg27OJndNzFowEpLCxM/v7+KikpcVheUlKiiIiIGreJiIios/yFf+sq89FHH6mgoECBgYFq1aqVunfvLklKSkrSmDFjanzewMBAhYSEODwAAEDDRYYGKef2BPlbzqckf4tFz9zeW5GhQR6u2U88GpACAgLUv39/5efn25dVVVUpPz9fKSkpNW6TkpLiUF6SNm7caC8fFxeniIgIhzJlZWXavHmzvcyiRYv0+eefq7CwUIWFhfbLBKxevVpPP/20U48RAABUlzmgiz6dNkxv3ztIn04b5pYB2g3RytMVyMrK0pgxY5SUlKSBAwdq4cKFKi8v17hx4yRJo0ePVnR0tHJyciRJEydO1JAhQ7RgwQINHz5cq1at0rZt2/Tqq69KkiwWiyZNmqS5c+cqPj5ecXFxmjVrlqKiopSRkSFJ6tLF8ZdwySWXSJK6deumSy+91E1HDgBAyxYZGuRVvUY/5/GAlJmZqWPHjmn27NkqLi5WYmKi8vLy7IOsDx8+LD+/nzq6UlNTtXLlSs2cOVMzZsxQfHy81q1bp969e9vLTJ06VeXl5ZowYYKOHz+uwYMHKy8vT1ar1e3HBwAAfI/Hr4Pkq7gOEgAAvscnroMEAADgjQhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAOBVimyntOlAqYpspzxWB4/frBYAAOCC1VsPa/raL1RlSH4WKef2BGUO6OL2etCDBAAAvEKR7ZQ9HElSlSHNWLvLIz1JBCQAAOAR5lNpB0vL7eHogkrD0KHSk26vG6fYAACA29V0Ku2aHp3kZ5FDSPK3WBQb1sbt9aMHCQAAuFVtp9Kk80HJ32KRdD4cPXN7b0WGBrm9jvQgAQAAt6rrVFrmgC66pkcnHSo9qdiwNh4JRxIBCQAAuFlcWHCdp9IiQ4M8Fowu4BQbAABwq8jQIK85lVYbepAAAIDbecuptNoQkAAAgEd4w6m02nCKDQAAwISABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMCEgAQAAGBCQAIAADAhIAEAAJgQkAAAAEwISAAAACYEJAAAABMCEgAAgAkBCQAAwISABAAAYEJAAgAAMPGKgLRkyRLFxsbKarUqOTlZW7ZsqbP8mjVr1LNnT1mtViUkJGjDhg0O6w3D0OzZsxUZGamgoCClpaVp3759DmVuueUWdenSRVarVZGRkRo1apS+/fZbpx8bAADwPR4PSKtXr1ZWVpays7O1Y8cO9e3bV+np6Tp69GiN5Tdt2qSRI0dq/Pjx2rlzpzIyMpSRkaFdu3bZy8yfP1+LFi1Sbm6uNm/erODgYKWnp+v06dP2MsOGDdOf/vQnffnll3r33Xd14MAB/frXv3b58QIAgPOKbKe06UCpimynPF2VaiyGYRierEBycrIGDBigxYsXS5KqqqoUExOjRx55RNOmTatWPjMzU+Xl5Vq/fr192aBBg5SYmKjc3FwZhqGoqChNnjxZU6ZMkSTZbDaFh4dr+fLlGjFiRI31eO+995SRkaGKigq1bt36ovUuKytTaGiobDabQkJCGnPoAAC0WKu3Htb0tV+oypD8LFLO7QnKHNDF5c9b37/fHu1BOnPmjLZv3660tDT7Mj8/P6WlpamgoKDGbQoKChzKS1J6erq9/MGDB1VcXOxQJjQ0VMnJybXu8/vvv9dbb72l1NTUWsNRRUWFysrKHB4AAKDhimyn7OFIkqoMacbaXV7Vk+TRgFRaWqrKykqFh4c7LA8PD1dxcXGN2xQXF9dZ/sK/9dnn448/ruDgYHXs2FGHDx/Wf//3f9da15ycHIWGhtofMTEx9TtIAADg4GBpuT0cXVBpGDpUetIzFapBgwPShg0bdM8992jq1Knau3evw7offvhB1157rdMq52q/+93vtHPnTn3wwQfy9/fX6NGjVdsZx+nTp8tms9kfR44ccXNtAQBoHuLCguVncVzmb7EoNqyNZypUgwYFpJUrV+qWW25RcXGxCgoK1K9fP7311lv29WfOnNHf/va3eu8vLCxM/v7+KikpcVheUlKiiIiIGreJiIios/yFf+uzz7CwMPXo0UO//OUvtWrVKm3YsEH/+Mc/anzewMBAhYSEODwAAEDDRYYGKef2BPlbzqckf4tFz9zeW5GhQR6u2U8aFJCee+45Pf/881q/fr3+93//VytWrNB9992n1157rVFPHhAQoP79+ys/P9++rKqqSvn5+UpJSalxm5SUFIfykrRx40Z7+bi4OEVERDiUKSsr0+bNm2vd54Xnlc6PNQIAAK6VOaCLPp02TG/fO0ifThvmlgHaDdGqIYX37dunm2++2f7znXfeqU6dOumWW27R2bNnddtttzW4AllZWRozZoySkpI0cOBALVy4UOXl5Ro3bpwkafTo0YqOjlZOTo4kaeLEiRoyZIgWLFig4cOHa9WqVdq2bZteffVVSZLFYtGkSZM0d+5cxcfHKy4uTrNmzVJUVJQyMjIkSZs3b9bWrVs1ePBgtW/fXgcOHNCsWbPUrVu3OkMUAABwnsjQIK/qNfq5BgWkkJAQlZSUKC4uzr5s2LBhWr9+vW666SZ9/fXXDa5AZmamjh07ptmzZ6u4uFiJiYnKy8uzD7I+fPiw/Px+6uhKTU3VypUrNXPmTM2YMUPx8fFat26devfubS8zdepUlZeXa8KECTp+/LgGDx6svLw8Wa1WSVKbNm20du1aZWdnq7y8XJGRkbr++us1c+ZMBQYGNvgYAABA89Kg6yBlZGSob9++mjNnTrV1n3zyiW666SadOnVKlZWVTq2kN+I6SAAA+B6XXAfpscces/fCmA0dOlTvv/++Ro8e3bCaAgAAeBmPX0nbV9GDBACA76nv3+8GjUHy8/OTxWKps4zFYtG5c+caslsAAACv0qCA9Oc//7nWdQUFBVq0aJF9ujwAAICvalBAuvXWW6st+/LLLzVt2jS9//77uvvuu/Xkk086rXIAAACe0Oh7sX377be69957lZCQoHPnzqmwsFArVqxQ165dnVk/AAAAt2twQLLZbHr88cfVvXt37d69W/n5+Xr//fcdrkMEAADgyxp0im3+/Pl69tlnFRERobfffrvGU24AAAC+rkHT/P38/BQUFKS0tDT5+/vXWm7t2rVOqZw3Y5o/AAC+xyXT/EePHn3Raf4AAAC+rkEBafny5S6qBgAAgPdo9Cw2AACA5oqABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMCEgAQAAGBCQAIAADAhIAEAAJgQkAAAAEwISAAAACYEJAAAABMCEgAAgAkBCQAAwISABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMvCIgLVmyRLGxsbJarUpOTtaWLVvqLL9mzRr17NlTVqtVCQkJ2rBhg8N6wzA0e/ZsRUZGKigoSGlpadq3b599/aFDhzR+/HjFxcUpKChI3bp1U3Z2ts6cOeOS4wMAAL7F4wFp9erVysrKUnZ2tnbs2KG+ffsqPT1dR48erbH8pk2bNHLkSI0fP147d+5URkaGMjIytGvXLnuZ+fPna9GiRcrNzdXmzZsVHBys9PR0nT59WpK0d+9eVVVV6ZVXXtHu3bv1wgsvKDc3VzNmzHDLMQMAAO9mMQzD8GQFkpOTNWDAAC1evFiSVFVVpZiYGD3yyCOaNm1atfKZmZkqLy/X+vXr7csGDRqkxMRE5ebmyjAMRUVFafLkyZoyZYokyWazKTw8XMuXL9eIESNqrMdzzz2nl19+WV999VW96l1WVqbQ0FDZbDaFhIQ09LABAIAH1Pfvt0d7kM6cOaPt27crLS3NvszPz09paWkqKCiocZuCggKH8pKUnp5uL3/w4EEVFxc7lAkNDVVycnKt+5TOh6gOHTrUur6iokJlZWUODwAA0Dx5NCCVlpaqsrJS4eHhDsvDw8NVXFxc4zbFxcV1lr/wb0P2uX//fr344ou67777aq1rTk6OQkND7Y+YmJi6Dw4AAPgsj49B8rRvvvlG119/vX7zm9/o3nvvrbXc9OnTZbPZ7I8jR464sZYAAMCdPBqQwsLC5O/vr5KSEoflJSUlioiIqHGbiIiIOstf+Lc++/z22281bNgwpaam6tVXX62zroGBgQoJCXF4AACA5smjASkgIED9+/dXfn6+fVlVVZXy8/OVkpJS4zYpKSkO5SVp48aN9vJxcXGKiIhwKFNWVqbNmzc77PObb77R0KFD1b9/fy1btkx+fi2+Mw0AAPyfVp6uQFZWlsaMGaOkpCQNHDhQCxcuVHl5ucaNGydJGj16tKKjo5WTkyNJmjhxooYMGaIFCxZo+PDhWrVqlbZt22bvAbJYLJo0aZLmzp2r+Ph4xcXFadasWYqKilJGRoakn8JR165d9Yc//EHHjh2z16e2nisAANByeDwgZWZm6tixY5o9e7aKi4uVmJiovLw8+yDrw4cPO/TupKamauXKlZo5c6ZmzJih+Ph4rVu3Tr1797aXmTp1qsrLyzVhwgQdP35cgwcPVl5enqxWq6TzPU779+/X/v37demllzrUx8NXPQAAAF7A49dB8lVcBwkAAN/jE9dBAgAA8EYEJAAAABMCEgAAgAkBCQAAwISABAAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgAAAAmBCQAAAATAhIAAIAJAQkAAMCEgAQAAGBCQAIAADAhIAEAAJgQkAAAAEwISAAAOFGR7ZQ2HShVke2UW7aDa7TydAUAAGguVm89rOlrv1CVIflZpJzbE5Q5oIvLtoPr0IMEAIATFNlO2UOOJFUZ0oy1uy7aI9TY7eBaBCQAAJzgYGm5PeRcUGkYOlR60iXbwbUISAAAOEFcWLD8LI7L/C0WxYa1ccl2cC0CEgAAThAZGqSc2xPkbzmfdvwtFj1ze29Fhga5ZDu4lsUwDOPixWBWVlam0NBQ2Ww2hYSEeLo6AAAXKLKd0sHScsWFBdc7sBTZTulQ6UnFhrVpUMhp7HZomPr+/WYWGwAANWjszLLI0KBGBZzGbgfX4BQbAAAmnphZ9vmRH7T0fw/o8yM/uOw5UH/0IAEAYFLXzDJX9PJM/lOh3t3xjf3nO66K1oI7E+0/N+ZUH5qGgAQAaNFqCh8XZpb9PCS5ambZ50d+cAhHkvTujm80OqWr+sa05yKSHsIpNgBAi7V662FdPe8j3bV0s66e95FWbz0syb0zy7Yc+r7G5dsO/cBFJD2IHiQAQItUW/i4pkcnRYYGKXNAF/WMaKuth37QgNj26hvT3iX1GBjbocblSbHt3X6qDz8hIAEAWqSLhQ93ndrqG9Ned1wVXW0MUt+Y9iqynarzVB9jk1yHgORlPj/yg7Yc+l4DYzu47NsKWg53fnjyQQ1fU9c4o4v1LjnbgjsTNTqlq7Yd+kFJP+utunCqb8baXao0DIdTfYxNci0Ckhe52CwGoCHc+eF5seciPMEb1RU+Nh0odfuprb4xNZ/Gq+lUn7sDXEtEQPISF5vFADSEKz88zWHnYs/Ft1x4s8wBXXRNj07VrmDtzllsF1PTeyimQxvGJrkYs9i8RF2zGICGctXdwWua8VPXczEDB74gMjRIKd06OgQLT9wfrch2SpsOlDq8P2p7DwUH+HODWxejB8lL1DWLAWgoV3z7re2Deu2DKbU+FzNw4Mtq611yhdp6Wmt7D508U1Xr6UE4BwHJS9Q1iwFoqLrGVjRWYz+oveU0BdAYdd0fzVlj6+o6TV3Xl52Ubh3dFuBaIgKSF6ltFgPQGM7+9tuYD2pXBDXAGzhzbF1dPa0p3TrW+R7iBreuYzEMw7h4MZiVlZUpNDRUNptNISEhnq4O4Bartx7W9He/UJXOD2DMuaN+fxSKbKf4lguv1dCeoCLbKV0976NqXxY+nTasUa/v+uyP95Dz1PfvNz1IgBfxienwFknG//1bT3zLhbdqTE+Qs8fW1aenlfeQ+xGQAC/h7dPhue4KmpvGvqZdMQnCnQPCUT8en+a/ZMkSxcbGymq1Kjk5WVu2bKmz/Jo1a9SzZ09ZrVYlJCRow4YNDusNw9Ds2bMVGRmpoKAgpaWlad++fQ5lnn76aaWmpqpNmzZq166dsw/JZWqaAormwRemw7vq0gGApzT2Ne2qSwDUdLkBeI5HA9Lq1auVlZWl7Oxs7dixQ3379lV6erqOHj1aY/lNmzZp5MiRGj9+vHbu3KmMjAxlZGRo165d9jLz58/XokWLlJubq82bNys4OFjp6ek6ffq0vcyZM2f0m9/8Rg888IDLj9FZarvjNJoHXwgfF741/xwz0uDLmvKazhzQRZ9OG6a37x2kT6cN86reXjiHRwdpJycna8CAAVq8eLEkqaqqSjExMXrkkUc0bdq0auUzMzNVXl6u9evX25cNGjRIiYmJys3NlWEYioqK0uTJkzVlyhRJks1mU3h4uJYvX64RI0Y47G/58uWaNGmSjh8/3uC6u3OQtrMHBML7+MrvePXWw9XGSfCHAb6M13TL4/WDtM+cOaPt27dr+vTp9mV+fn5KS0tTQUFBjdsUFBQoKyvLYVl6errWrVsnSTp48KCKi4uVlpZmXx8aGqrk5GQVFBRUC0gNUVFRoYqKCvvPZWVljd5XQ3GxvebPV6bDN9dxEj4xOB52zvx9NdfXNJrOYwGptLRUlZWVCg8Pd1geHh6uvXv31rhNcXFxjeWLi4vt6y8sq61MY+Xk5GjOnDlN2kdjedM9geA6vvJB3dxm03j74Hg4csXvq7m9puEcHh+k7SumT58um81mfxw5csRtz+2JewLBMxik6V6+MDgeP+H3VR2Td1zHYz1IYWFh8vf3V0lJicPykpISRURE1LhNREREneUv/FtSUqLIyEiHMomJiU2qb2BgoAIDA5u0j6bwld4FeBdfOHXkyTpy+tq38PtyRO+na3msBykgIED9+/dXfn6+fVlVVZXy8/OVkpJS4zYpKSkO5SVp48aN9vJxcXGKiIhwKFNWVqbNmzfXuk9fQu9C8+fMb4O+MPPR03VkZp5v4ff1E3rTXM+jp9iysrK0dOlSrVixQnv27NEDDzyg8vJyjRs3TpI0evRoh0HcEydOVF5enhYsWKC9e/fqiSee0LZt2/Twww9LkiwWiyZNmqS5c+fqvffe0xdffKHRo0crKipKGRkZ9v0cPnxYhYWFOnz4sCorK1VYWKjCwkKdOHHCrccP31dXoGlo2HFmWPCFD09vqCOnr31LZGiQbusX7bAso19Ui/x9edulQZrjqT6PXkk7MzNTx44d0+zZs1VcXKzExETl5eXZB1kfPnxYfn4/ZbjU1FStXLlSM2fO1IwZMxQfH69169apd+/e9jJTp05VeXm5JkyYoOPHj2vw4MHKy8uT1Wq1l5k9e7ZWrFhh/7lfv36SpI8//lhDhw518VGjuaire7uhXd/Ovkq1K09FOOuUmLecLmnK6WtfOIXZnBTZTmntjm8clq3d8Y2mpF/e4trfmybvNNdTfdystpG87Wa1fFC7V13XLZLU4GsabTpQqruWbq62/O17BymlW0en1q8prw9nfhD6yrWfatNc/yh4s/c//0aPvF1Ybfnikf10U98o91fIw7zhGk6++D72+usgwXn4oHa/uno/DBkN7hlx9rdBV1xXydm9XBeroztDf2Pu5s596dzPYqn5Dsm1LG72vGHyjrf0BLsCAcnH8UHtGRcLNBdueH+BRaoz7Lgi0Dj7w9MVH4S11fFiod+Z4ckb7uaO+unftX3195ZFuqpre09VyeM8fQ0nbzrV52xcB8nHedtAvZaiwYN76/EN1xX3dnLmzEdXzSAy1/Fig7e9YTA7s6k8IzI0SPPuSLC3vZ9Fmnd7AqHUg5rzRAd6kHxcc07v3q623o+DpeUyZVYZhurVu+Dpb4N1cdftUC4W+r1hMLuv3BqmOfKG00pw1Fx/JwQkH8cHtWfVFGiac2h1xwdhXe3n7FNbTfldNdc/Cr7Am79ItFTN8XdCQGoG+KD2Ls09tLr6g/Bi7edNg9mb4x8FAOcxzb+RvG2aP5rO2bOmimynCK1NUFv7uWJqM78roOVgmj/suEbSxbnqUglGtdFIqK/aemdc0WNKTxAAMwJSM8c1ki7OFZdKoN1di0ADwNWY5t+MecO9rnyBsy+VQLsDgO8jIDVjXCOpfpx9TRvaHXVpjjf1BJojAlIzxsXs6sfZFzqj3VEbZ17kEoBrEZCaiZq+lTbnK5w2Vm3f3p15FWvaHTXh1CvgWxik3QzUNSCYayT9pD4Dp50164x2hxn3bwN8CwHJx9VnBhYzfi7eTq6YdUa74+ea8xXWgeaIU2xepqEDOBkQXD91tROnPuAOnHoFfAs9SF6kMb0YfCutH3fe3wuoTUs99crFauGL6EHyEo3txeBbaf3U1U7MOoM7RYYGKaVbxxbzHr3YzD0uewBvRQ+Sl2hKL0ZL/FbamG+ktbVTc7+5LOApnhj7BzgLAclLNPVUWUsaENyUD1V33t8LaOkuNkbS2bf4AZyJU2xeglNl9ePKAdUt7dQH4Gp1nb5mggm8HT1IXoRejItjQDXgOy52+poJJvBmBCQv05JOlTVGU09FMpsGcC/G/sFXEZDgU5ryocqAUMBzarpKPb3m8GYWwzCcc2+FFqasrEyhoaGy2WwKCQnxdHVanCLbqQZ9qBbZTunqeR9V63n6dNowPpQBF+KLCbxNff9+M0gbXq22a6Q0dEA1A0IB9+Mq9fBlnGKD13LmN0+uOA64H5Mq4MvoQYJXcvY3Ty6jAF/ni1ec5ir1vskXX2uuQA9SC+CLM7dc8c2TAaHwBo15P/rqOB5mqvkeX32tuQIBqZnz1Re7q06JcRkFeFJj3o8Xu12HOznzFj/wPt70WvMGnGJrxnx5gCSnxNDcNPb96C0TDC5209m6cJV63+AtrzVvQQ9SM+brAyT55onmpLHvR2+YYEDPQsvgDa81b0IPUjPWHAZI8s0TzUVj34/e0JtKz0LL4A2vNW9CD1IzxgBJwHs05f3o6d5UehZaDk+/1rwJV9JuJF+6knZDrzp9YRtfm/kG+ILGvB+9weqth6uFO1+Y8AGY1ffvNwGpkXwpIDWUr858A+BavhrugJ/jViNoFF+e+Qag/hpzMUDGBLZsLe0CkoxBggNfn/kG4OLoJUZDtcTXDD1IcNAcZr4BqB29xGiolvqaISDBAdM8geaNKftoqJb6muEUG6phmifQfDFlHw0VHOBf4/I2Ac27j6V5Hx0arTGDMesawNfSBvcB3qo+vcS8X/Fz5Wcqa1x+8kyVm2viXvQgwSlWbz2sae9+IUOSRdK8O34awNcSB/cB3qC265llDuiinhFttfXQDxoQ2159Y9rb1/F+hVlL7XWkBwkNZv52WWQ7ZQ9HkmRImvbuFyqynWqxg/sAT6vr5rKrtx7WbS9t0ty/7NFtL22yr+P9ipq01LGp9CChQWr6dtkmwF/mq40akrYf+kEdLgngsgGAm9V1c1lJta7jMh+Qau55bIljUwlIqLfaPnSzfhlfY/njp86of2z7Ftk1C7iT+Q9aXUHHkFHrupZ6KgU/qesUa2RoUIsIRhdwig31VtuHbsW5mgfqtQsKsHfNXri2kp9FLaJrFnCXmk6l1XU9s7rWtdRTKTiPU6yOCEiot9o+WK/r1VmmxbJI6h/708DPC3f8485/gPPU9gdNUq1BJzI0SLf1i3bYT0a/KIdTKZ9OG6a37x2kT6cNY4B2C9JSr3dUGwIS6q22b5d9Y9pr3h0J9heTn87PYosMDbJ/gP98AHdL/kYCOFNdf9BqCzpFtlP6885vHLZZt/Nbh/ck91xrmbiTgiOvCEhLlixRbGysrFarkpOTtWXLljrLr1mzRj179pTValVCQoI2bNjgsN4wDM2ePVuRkZEKCgpSWlqa9u3b51Dm+++/1913362QkBC1a9dO48eP14kTJ5x+bM1NbR+6mQO66LPp1+rtewfps+nX2pfzjQRwnYv9Qasp6PCeRG04xerI4wFp9erVysrKUnZ2tnbs2KG+ffsqPT1dR48erbH8pk2bNHLkSI0fP147d+5URkaGMjIytGvXLnuZ+fPna9GiRcrNzdXmzZsVHBys9PR0nT592l7m7rvv1u7du7Vx40atX79ef//73zVhwgSXH29zUNu3y5qW840EcJ3G/EHjPYm6cIr1JxbD8OyokOTkZA0YMECLFy+WJFVVVSkmJkaPPPKIpk2bVq18ZmamysvLtX79evuyQYMGKTExUbm5uTIMQ1FRUZo8ebKmTJkiSbLZbAoPD9fy5cs1YsQI7dmzR1dccYW2bt2qpKQkSVJeXp5uvPFGff3114qKirpovcvKyhQaGiqbzaaQkBBnNEWztXrrYc1Yu0uVhmH/AG/JbzrA2Ypspxo0/Zr3JFqy+v799ug0/zNnzmj79u2aPn26fZmfn5/S0tJUUFBQ4zYFBQXKyspyWJaenq5169ZJkg4ePKji4mKlpaXZ14eGhio5OVkFBQUaMWKECgoK1K5dO3s4kqS0tDT5+flp8+bNuu2226o9b0VFhSoqKuw/l5WVNeqYW6KWeP0MwJ0aOv2a9yRwcR4NSKWlpaqsrFR4eLjD8vDwcO3du7fGbYqLi2ssX1xcbF9/YVldZTp37uywvlWrVurQoYO9jFlOTo7mzJlTzyODWUu7fgbg7XhPAnXz+BgkXzF9+nTZbDb748iRI56uEgAAcBGPBqSwsDD5+/urpKTEYXlJSYkiIiJq3CYiIqLO8hf+vVgZ8yDwc+fO6fvvv6/1eQMDAxUSEuLwAAAAzZNHA1JAQID69++v/Px8+7Kqqirl5+crJSWlxm1SUlIcykvSxo0b7eXj4uIUERHhUKasrEybN2+2l0lJSdHx48e1fft2e5mPPvpIVVVVSk5OdtrxAQAA3+Txe7FlZWVpzJgxSkpK0sCBA7Vw4UKVl5dr3LhxkqTRo0crOjpaOTk5kqSJEydqyJAhWrBggYYPH65Vq1Zp27ZtevXVVyVJFotFkyZN0ty5cxUfH6+4uDjNmjVLUVFRysjIkCT16tVL119/ve69917l5ubq7NmzevjhhzVixIh6zWADAADNm8cDUmZmpo4dO6bZs2eruLhYiYmJysvLsw+yPnz4sPz8furoSk1N1cqVKzVz5kzNmDFD8fHxWrdunXr37m0vM3XqVJWXl2vChAk6fvy4Bg8erLy8PFmtVnuZt956Sw8//LCuu+46+fn56Y477tCiRYvcd+AAAMBrefw6SL6K6yABAOB76vv3m1lsAAAAJgQkAAAAEwISAACACQEJAADAhIAEAABg4vFp/r7qwuQ/bloLAIDvuPB3+2KT+AlIjfTjjz9KkmJiYjxcEwAA0FA//vijQkNDa13PdZAaqaqqSt9++63atm0ri8XS4O3LysoUExOjI0eOtOjrKNEO59EOP6EtzqMdzqMdfkJbnNfUdjAMQz/++KOioqIcLkRtRg9SI/n5+enSSy9t8n648e15tMN5tMNPaIvzaIfzaIef0BbnNaUd6uo5uoBB2gAAACYEJAAAABMCkocEBgYqOztbgYGBnq6KR9EO59EOP6EtzqMdzqMdfkJbnOeudmCQNgAAgAk9SAAAACYEJAAAABMCEgAAgAkBCQAAwISA5CJLlixRbGysrFarkpOTtWXLllrL7t69W3fccYdiY2NlsVi0cOFC91XUDRrSFkuXLtUvfvELtW/fXu3bt1daWlqd5X1JQ9ph7dq1SkpKUrt27RQcHKzExES98cYbbqytazWkLX5u1apVslgsysjIcG0F3aQh7bB8+XJZLBaHh9VqdWNtXaehr4fjx4/roYceUmRkpAIDA9WjRw9t2LDBTbV1rYa0xdChQ6u9JiwWi4YPH+7GGrtGQ18TCxcu1OWXX66goCDFxMToscce0+nTp5tWCQNOt2rVKiMgIMB4/fXXjd27dxv33nuv0a5dO6OkpKTG8lu2bDGmTJlivP3220ZERITxwgsvuLfCLtTQtrjrrruMJUuWGDt37jT27NljjB071ggNDTW+/vprN9fcuRraDh9//LGxdu1a41//+pexf/9+Y+HChYa/v7+Rl5fn5po7X0Pb4oKDBw8a0dHRxi9+8Qvj1ltvdU9lXaih7bBs2TIjJCTEKCoqsj+Ki4vdXGvna2g7VFRUGElJScaNN95ofPrpp8bBgweNTz75xCgsLHRzzZ2voW3x3XffObwedu3aZfj7+xvLli1zb8WdrKHt8NZbbxmBgYHGW2+9ZRw8eND461//akRGRhqPPfZYk+pBQHKBgQMHGg899JD958rKSiMqKsrIycm56LZdu3ZtVgGpKW1hGIZx7tw5o23btsaKFStcVUW3aGo7GIZh9OvXz5g5c6YrqudWjWmLc+fOGampqcYf//hHY8yYMc0iIDW0HZYtW2aEhoa6qXbu09B2ePnll43LLrvMOHPmjLuq6DZN/Zx44YUXjLZt2xonTpxwVRXdoqHt8NBDDxnXXnutw7KsrCzj6quvblI9OMXmZGfOnNH27duVlpZmX+bn56e0tDQVFBR4sGbu54y2OHnypM6ePasOHTq4qpou19R2MAxD+fn5+vLLL3XNNde4sqou19i2ePLJJ9W5c2eNHz/eHdV0uca2w4kTJ9S1a1fFxMTo1ltv1e7du91RXZdpTDu89957SklJ0UMPPaTw8HD17t1bzzzzjCorK91VbZdwxufla6+9phEjRig4ONhV1XS5xrRDamqqtm/fbj8N99VXX2nDhg268cYbm1QXblbrZKWlpaqsrFR4eLjD8vDwcO3du9dDtfIMZ7TF448/rqioKIc3i69pbDvYbDZFR0eroqJC/v7+eumll/TLX/7S1dV1qca0xaeffqrXXntNhYWFbqihezSmHS6//HK9/vrr6tOnj2w2m/7whz8oNTVVu3fvdsqNsz2hMe3w1Vdf6aOPPtLdd9+tDRs2aP/+/XrwwQd19uxZZWdnu6PaLtHUz8stW7Zo165deu2111xVRbdoTDvcddddKi0t1eDBg2UYhs6dO6f7779fM2bMaFJdCEjwWvPmzdOqVav0ySefNJvBqA3Rtm1bFRYW6sSJE8rPz1dWVpYuu+wyDR061NNVc5sff/xRo0aN0tKlSxUWFubp6nhUSkqKUlJS7D+npqaqV69eeuWVV/TUU095sGbuVVVVpc6dO+vVV1+Vv7+/+vfvr2+++UbPPfecTwekpnrttdeUkJCggQMHeroqbvfJJ5/omWee0UsvvaTk5GTt379fEydO1FNPPaVZs2Y1er8EJCcLCwuTv7+/SkpKHJaXlJQoIiLCQ7XyjKa0xR/+8AfNmzdPH374ofr06ePKarpcY9vBz89P3bt3lyQlJiZqz549ysnJ8emA1NC2OHDggA4dOqSbb77ZvqyqqkqS1KpVK3355Zfq1q2bayvtAs74nGjdurX69eun/fv3u6KKbtGYdoiMjFTr1q3l7+9vX9arVy8VFxfrzJkzCggIcGmdXaUpr4ny8nKtWrVKTz75pCur6BaNaYdZs2Zp1KhRuueeeyRJCQkJKi8v14QJE/T73/9efn6NG03EGCQnCwgIUP/+/ZWfn29fVlVVpfz8fIdvfy1BY9ti/vz5euqpp5SXl6ekpCR3VNWlnPWaqKqqUkVFhSuq6DYNbYuePXvqiy++UGFhof1xyy23aNiwYSosLFRMTIw7q+80znhNVFZW6osvvlBkZKSrqulyjWmHq6++Wvv377cHZUn697//rcjISJ8NR1LTXhNr1qxRRUWFfvvb37q6mi7XmHY4efJktRB0IUAbTbndbJOGeKNGq1atMgIDA43ly5cb//rXv4wJEyYY7dq1s0/JHTVqlDFt2jR7+YqKCmPnzp3Gzp07jcjISGPKlCnGzp07jX379nnqEJymoW0xb948IyAgwHjnnXccpq/++OOPnjoEp2hoOzzzzDPGBx98YBw4cMD417/+ZfzhD38wWrVqZSxdutRTh+A0DW0Ls+Yyi62h7TBnzhzjr3/9q3HgwAFj+/btxogRIwyr1Wrs3r3bU4fgFA1th8OHDxtt27Y1Hn74YePLL7801q9fb3Tu3NmYO3eupw7BaRr73hg8eLCRmZnp7uq6TEPbITs722jbtq3x9ttvG1999ZXxwQcfGN26dTPuvPPOJtWDgOQiL774otGlSxcjICDAGDhwoPGPf/zDvm7IkCHGmDFj7D8fPHjQkFTtMWTIEPdX3AUa0hZdu3atsS2ys7PdX3Ena0g7/P73vze6d+9uWK1Wo3379kZKSoqxatUqD9TaNRrSFmbNJSAZRsPaYdKkSfay4eHhxo033mjs2LHDA7V2voa+HjZt2mQkJycbgYGBxmWXXWY8/fTTxrlz59xca9doaFvs3bvXkGR88MEHbq6pazWkHc6ePWs88cQTRrdu3Qyr1WrExMQYDz74oPHDDz80qQ4Ww2hK/xMAAEDzwxgkAAAAEwISAACACQEJAADAhIAEAABgQkACAAAwISABAACYEJAAAABMCEgA4OXGjh2rjIwMT1cDaFEISAAabezYsbJYLPZHx44ddf311+uf//ynp6vmFD8/tguPwYMHu+z5Dh06JIvFosLCQofl//Vf/6Xly5e77HkBVEdAAtAk119/vYqKilRUVKT8/Hy1atVKN910k6er5TTLli2zH19RUZHee++9GsudPXvWZXUIDQ1Vu3btXLZ/ANURkAA0SWBgoCIiIhQREaHExERNmzZNR44c0bFjx3Tttdfq4Ycfdih/7NgxBQQE2O/WHRsbq6eeekojR45UcHCwoqOjtWTJEodtnn/+eSUkJCg4OFgxMTF68MEHdeLECfv6//znP7r55pvVvn17BQcH68orr9SGDRskST/88IPuvvtuderUSUFBQYqPj9eyZcvqfXzt2rWzH19ERIQ6dOhg7+lZvXq1hgwZIqvVqrfeekvfffedRo4cqejoaLVp00YJCQl6++23HfZXVVWl+fPnq3v37goMDFSXLl309NNPS5Li4uIkSf369ZPFYtHQoUMlVT/FVlFRoUcffVSdO3eW1WrV4MGDtXXrVvv6Tz75RBaLRfn5+UpKSlKbNm2UmpqqL7/8st7HDbR0BCQATnPixAm9+eab6t69uzp27Kh77rlHK1euVEVFhb3Mm2++qejoaF177bX2Zc8995z69u2rnTt3atq0aZo4caI2btxoX+/n56dFixZp9+7dWrFihT766CNNnTrVvv6hhx5SRUWF/v73v+uLL77Qs88+q0suuUSSNGvWLP3rX//S//zP/2jPnj16+eWXFRYW5pTjvVDXPXv2KD09XadPn1b//v31l7/8Rbt27dKECRM0atQobdmyxb7N9OnTNW/ePHu9Vq5cqfDwcEmyl/vwww9VVFSktWvX1vi8U6dO1bvvvqsVK1Zox44d6t69u9LT0/X99987lPv973+vBQsWaNu2bWrVqpX+3//7f045bqBFaNKtbgG0aGPGjDH8/f2N4OBgIzg42JBkREZGGtu3bzcMwzBOnTpltG/f3li9erV9mz59+hhPPPGE/eeuXbsa119/vcN+MzMzjRtuuKHW512zZo3RsWNH+88JCQkO+/y5m2++2Rg3blyjjk+SYbVa7ccXHBxs/PnPfzYOHjxoSDIWLlx40X0MHz7cmDx5smEYhlFWVmYEBgYaS5curbHshf3u3LnTYfmYMWOMW2+91TAMwzhx4oTRunVr46233rKvP3PmjBEVFWXMnz/fMAzD+Pjjjw1Jxocffmgv85e//MWQZJw6daohTQC0WPQgAWiSYcOGqbCwUIWFhdqyZYvS09N1ww036D//+Y+sVqtGjRql119/XZK0Y8cO7dq1S2PHjnXYR0pKSrWf9+zZY//5ww8/1HXXXafo6Gi1bdtWo0aN0nfffaeTJ09Kkh599FHNnTtXV199tbKzsx0GiT/wwANatWqVEhMTNXXqVG3atKlBx/fCCy/Yj6+wsFC//OUv7euSkpIcylZWVuqpp55SQkKCOnTooEsuuUR//etfdfjwYUnSnj17VFFRoeuuu65Bdfi5AwcO6OzZs7r66qvty1q3bq2BAwc6tJkk9enTx/7/yMhISdLRo0cb/dxAS0JAAtAkwcHB6t69u7p3764BAwboj3/8o8rLy7V06VJJ0j333KONGzfq66+/1rJly3Tttdeqa9eu9d7/oUOHdNNNN6lPnz569913tX37dvsYpTNnztif46uvvtKoUaP0xRdfKCkpSS+++KIk2cPaY489pm+//VbXXXedpkyZUu/nj4iIsB9f9+7dFRwc7HDsP/fcc8/pv/7rv/T444/r448/VmFhodLT0+31DAoKqvfzOkPr1q3t/7dYLJLOj4ECcHEEJABOZbFY5Ofnp1OnTkmSEhISlJSUpKVLl2rlypU1joP5xz/+Ue3nXr16SZK2b9+uqqoqLViwQIMGDVKPHj307bffVttHTEyM7r//fq1du1aTJ0+2BzRJ6tSpk8aMGaM333xTCxcu1KuvvurMQ7b77LPPdOutt+q3v/2t+vbtq8suu0z//ve/7evj4+MVFBRkH6BuFhAQIOl8T1RtunXrpoCAAH322Wf2ZWfPntXWrVt1xRVXOOlIALTydAUA+LaKigoVFxdLOj9jbPHixTpx4oRuvvlme5l77rlHDz/8sIKDg3XbbbdV28dnn32m+fPnKyMjQxs3btSaNWv0l7/8RZLUvXt3nT17Vi+++KJuvvlmffbZZ8rNzXXYftKkSbrhhhvUo0cP/fDDD/r444/tAWv27Nnq37+/rrzySlVUVGj9+vX2dc4WHx+vd955R5s2bVL79u31/PPPq6SkxB5crFarHn/8cU2dOlUBAQG6+uqrdezYMe3evVvjx49X586dFRQUpLy8PF166aWyWq0KDQ11eI7g4GA98MAD+t3vfqcOHTqoS5cumj9/vk6ePKnx48e75LiAlogeJABNkpeXp8jISEVGRio5OVlbt27VmjVr7FPUJWnkyJFq1aqVRo4cKavVWm0fkydP1rZt29SvXz/NnTtXzz//vNLT0yVJffv21fPPP69nn31WvXv31ltvvaWcnByH7SsrK/XQQw+pV69euv7669WjRw+99NJLks73ykyfPl19+vTRNddcI39/f61atcolbTFz5kxdddVVSk9P19ChQxUREVHtCtizZs3S5MmTNXv2bPXq1UuZmZn2cUGtWrXSokWL9MorrygqKkq33nprjc8zb9483XHHHRo1apSuuuoq7d+/X3/961/Vvn17lxwX0BJZDMMwPF0JAM3boUOH1K1bN23dulVXXXWVw7rY2FhNmjRJkyZN8kzlAKAGnGID4DJnz57Vd999p5kzZ2rQoEHVwhEAeCtOsQFwmc8++0yRkZHaunVrtXFDnvbMM8/okksuqfFxww03eLp6ADyMU2wAWqTvv/++2pWnLwgKClJ0dLSbawTAmxCQAAAATDjFBgAAYEJAAgAAMCEgAQAAmBCQAAAATAhIAAAAJgQkAAAAEwISAACACQEJAADA5P8D5g8rFiKr6KIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP4lJREFUeJzt3Xl0FFX+/vGnk5CFEMKShAQMhFVRwqKAQpRF0YiKos6IgCgo+lODiMsIqIi4sDiOMm6ojAZGUBgRR8ZxUBYZj+AMm4yCiOxECUtEO0BiCMn9/cE3rSELdNLdVV39fp2Tc0h1pfOpS6fr6Xtv3XIZY4wAAABsKMzqAgAAAKpCUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAFQa48//rhcLtdp7etyufT444/7tZ4+ffqoT58+tn0+AKePoAI4yKxZs+RyuTxfERERatasmYYPH64ffvjB6vJsJy0trVx7JSUl6aKLLtL777/vk+cvKCjQ448/rhUrVvjk+YBQRFABHOiJJ57QW2+9pVdffVX9+/fXnDlz1Lt3b/3yyy9++X2PPvqoCgsL/fLc/ta5c2e99dZbeuutt/Tggw9q7969uu666/Tqq6/W+rkLCgo0adIkggpQCxFWFwDA9/r376+uXbtKkkaOHKmEhARNmzZNixYt0g033ODz3xcREaGIiOB8O2nWrJluuukmz/c333yz2rRpo+eff1533nmnhZUBkOhRAULCRRddJEnavn17ue3ffvutfve736lRo0aKjo5W165dtWjRonL7FBcXa9KkSWrbtq2io6PVuHFjXXjhhVqyZIlnn8rmqBQVFem+++5TYmKi4uLidPXVV+v777+vUNvw4cOVlpZWYXtlz5mdna2LL75YSUlJioqK0tlnn60ZM2Z41RankpycrPbt22vnzp3V7nfgwAHddtttatKkiaKjo9WpUyfNnj3b8/iuXbuUmJgoSZo0aZJneMnf83MApwnOj0AAvLJr1y5JUsOGDT3bNm3apIyMDDVr1kzjxo1TbGys/va3v2ngwIF67733dO2110o6ERimTJmikSNHqnv37srPz9fatWu1fv16XXrppVX+zpEjR2rOnDkaMmSIevbsqeXLl+vKK6+s1XHMmDFD55xzjq6++mpFREToH//4h+6++26VlpYqKyurVs9dpri4WDk5OWrcuHGV+xQWFqpPnz7atm2bRo0apZYtW+rdd9/V8OHD9fPPP+vee+9VYmKiZsyYobvuukvXXnutrrvuOklSx44dfVInEDIMAMfIzs42kszSpUvNwYMHTU5OjlmwYIFJTEw0UVFRJicnx7PvJZdcYtLT080vv/zi2VZaWmp69uxp2rZt69nWqVMnc+WVV1b7eydOnGh++3ayYcMGI8ncfffd5fYbMmSIkWQmTpzo2XbLLbeYFi1anPI5jTGmoKCgwn6ZmZmmVatW5bb17t3b9O7du9qajTGmRYsW5rLLLjMHDx40Bw8eNP/73//MjTfeaCSZe+65p8rnmz59upFk5syZ49l27Ngx06NHD1OvXj2Tn59vjDHm4MGDFY4XgHcY+gEcqF+/fkpMTFRqaqp+97vfKTY2VosWLdIZZ5whSTp06JCWL1+uG264QYcPH1ZeXp7y8vL0448/KjMzU1u3bvVcJdSgQQNt2rRJW7duPe3f/9FHH0mSRo8eXW77mDFjanVcMTExnn+73W7l5eWpd+/e2rFjh9xud42e85NPPlFiYqISExPVqVMnvfvuuxo2bJimTZtW5c989NFHSk5O1uDBgz3b6tSpo9GjR+vIkSP697//XaNaAFTkmKDy2WefacCAAWratKlcLpf+/ve/+/X3TZkyRd26dVNcXJySkpI0cOBAbdmyxfP4oUOHdM899+jMM89UTEyMmjdvrtGjR9f4zRTwxssvv6wlS5ZowYIFuuKKK5SXl6eoqCjP49u2bZMxRhMmTPCcpMu+Jk6cKOnEHAzpxBVEP//8s9q1a6f09HT94Q9/0FdffVXt79+9e7fCwsLUunXrctvPPPPMWh3XypUr1a9fP8XGxqpBgwZKTEzUww8/LEk1/ts6//zztWTJEi1dulSrVq1SXl6e/vrXv5YLRSfbvXu32rZtq7Cw8m+h7du39zwOwDccM0fl6NGj6tSpk2699VbPWLA//fvf/1ZWVpa6deum48eP6+GHH9Zll12mb775RrGxsdq7d6/27t2rZ599VmeffbZ2796tO++8U3v37tWCBQv8Xh9CW/fu3T1X/QwcOFAXXnihhgwZoi1btqhevXoqLS2VJD344IPKzMys9DnatGkjSerVq5e2b9+uDz74QJ988on+8pe/6Pnnn9err76qkSNH1rrWqhaKKykpKff99u3bdckll+iss87Sc889p9TUVEVGRuqjjz7S888/7zkmbyUkJKhfv341+lkA/ueYoNK/f3/179+/yseLior0yCOP6J133tHPP/+sDh06aNq0aTVebXLx4sXlvp81a5aSkpK0bt069erVSx06dNB7773nebx169Z6+umnddNNN+n48eNBeykngk94eLimTJmivn376qWXXtK4cePUqlUrSSeGK07nJN2oUSONGDFCI0aM0JEjR9SrVy89/vjjVQaVFi1aqLS0VNu3by/Xi/LbXscyDRs21M8//1xh+8m9Ev/4xz9UVFSkRYsWqXnz5p7tn3766Snr97UWLVroq6++UmlpablelW+//dbzuFR1CANw+hwz9HMqo0aN0hdffKF58+bpq6++0u9//3tdfvnlXo27V6es27lRo0bV7lO/fn1CCgKuT58+6t69u6ZPn65ffvlFSUlJ6tOnj1577TXl5uZW2P/gwYOef//444/lHqtXr57atGmjoqKiKn9f2YeGF154odz26dOnV9i3devWcrvd5YaTcnNzK6wOGx4eLkkyxni2ud1uZWdnV1mHv1xxxRXat2+f5s+f79l2/Phxvfjii6pXr5569+4tSapbt64kVRrEAJyekDhj7tmzR9nZ2dqzZ4+aNm0q6USX9+LFi5Wdna3JkyfX6vlLS0s1ZswYZWRkqEOHDpXuk5eXpyeffFJ33HFHrX4XUFN/+MMf9Pvf/16zZs3SnXfeqZdfflkXXnih0tPTdfvtt6tVq1bav3+/vvjiC33//ff63//+J0k6++yz1adPH5133nlq1KiR1q5dqwULFmjUqFFV/q7OnTtr8ODBeuWVV+R2u9WzZ08tW7ZM27Ztq7DvjTfeqLFjx+raa6/V6NGjVVBQoBkzZqhdu3Zav369Z7/LLrtMkZGRGjBggP7f//t/OnLkiGbOnKmkpKRKw5Y/3XHHHXrttdc0fPhwrVu3TmlpaVqwYIFWrlyp6dOnKy4uTtKJyb9nn3225s+fr3bt2qlRo0bq0KFDle8TACph9WVH/iDJvP/++57vP/zwQyPJxMbGlvuKiIgwN9xwgzHGmM2bNxtJ1X6NHTu20t935513mhYtWpS79PO33G636d69u7n88svNsWPHfH68QJmyy5PXrFlT4bGSkhLTunVr07p1a3P8+HFjjDHbt283N998s0lOTjZ16tQxzZo1M1dddZVZsGCB5+eeeuop0717d9OgQQMTExNjzjrrLPP000+Xey1XdilxYWGhGT16tGncuLGJjY01AwYMMDk5OZVervvJJ5+YDh06mMjISHPmmWeaOXPmVPqcixYtMh07djTR0dEmLS3NTJs2zbz55ptGktm5c6dnP28uTz7VpddVPd/+/fvNiBEjTEJCgomMjDTp6ekmOzu7ws+uWrXKnHfeeSYyMpJLlYEacBnzm35Uh3C5XHr//fc1cOBASdL8+fM1dOhQbdq0ydN9XKZevXpKTk7WsWPHtGPHjmqft3Hjxp6VJsuMGjVKH3zwgT777DO1bNmyws8cPnxYmZmZqlu3rj788ENFR0fX7uAAAAghITH006VLF5WUlOjAgQOepcRPFhkZqbPOOuu0n9MYo3vuuUfvv/++VqxYUWlIyc/PV2ZmpqKiorRo0SJCCgAAXnJMUDly5Ei58e+dO3dqw4YNatSokdq1a6ehQ4fq5ptv1p/+9Cd16dJFBw8e1LJly9SxY8caLeudlZWlt99+Wx988IHi4uK0b98+SVJ8fLxiYmKUn5+vyy67TAUFBZozZ47y8/OVn58vSUpMTKzQswMAACpyzNDPihUr1Ldv3wrbb7nlFs2aNUvFxcV66qmn9Ne//lU//PCDEhISdMEFF2jSpElKT0/3+vdVddlhdna2hg8fXmU90okQVdlN2AAAQHmOCSoAAMB5QmYdFQAAEHwIKgAAwLaCejJtaWmp9u7dq7i4OJaqBgAgSBhjdPjwYTVt2rTCzT1PFtRBZe/evUpNTbW6DAAAUAM5OTk644wzqt0nqINK2TLVOTk5ql+/vsXVAACA05Gfn6/U1FTPebw6QR1UyoZ76tevT1ABACDInM60DSbTAgAA2yKoAAAA2yKoAAAA2wrqOSoAANhJaWmpjh07ZnUZlqtTp47P7mlHUAEAwAeOHTumnTt3qrS01OpSbKFBgwZKTk6u9TpnBBUAAGrJGKPc3FyFh4crNTX1lIuYOZkxRgUFBTpw4IAkKSUlpVbPR1ABAKCWjh8/roKCAjVt2lR169a1uhzLxcTESJIOHDigpKSkWg0DhW7kAwDAR0pKSiRJkZGRFldiH2WBrbi4uFbPQ1ABAMBHuO/cr3zVFgQVAABgWwQVAABgWwQVnFKuu1Crtucp111odSkAAD/IycnRrbfeqqZNmyoyMlItWrTQvffeqx9//FHSiXkmY8eOVXp6umJjY9W0aVPdfPPN2rt3r99rI6igWvPX7FHG1OUaMvO/ypi6XPPX7LG6JACAD+3YsUNdu3bV1q1b9c4772jbtm169dVXtWzZMvXo0UOHDh1SQUGB1q9frwkTJmj9+vVauHChtmzZoquvvtrv9XF5MqqU6y7U+IVfq9Sc+L7USA8v3Khe7RKVEh9jbXEAAJ/IyspSZGSkPvnkE89lxc2bN1eXLl3UunVrPfLII5oxY4aWLFlS7udeeuklde/eXXv27FHz5s39Vh89KqjSzryjnpBSpsQY7corsKYgAAgBgRxuP3TokD7++GPdfffdnpBSJjk5WUOHDtX8+fNljKnws263Wy6XSw0aNPBrjfSooEotE2IV5lK5sBLuciktgcWMAMAf5q/Z4+nJDnNJU65L16Bu/uut2Lp1q4wxat++faWPt2/fXj/99JMOHjyopKQkz/ZffvlFY8eO1eDBg1W/fn2/1SfRo4JqpMTHaMp16Qr/v2vhw10uTb6uA8M+AOAHVQ23B6JnpbIek6oUFxfrhhtukDFGM2bM8GNVJ9CjgmoN6tZcvdolaldegdIS6hJSAMBPqhtu99d7b5s2beRyubR582Zde+21FR7fvHmzGjZsqMTEREm/hpTdu3dr+fLlfu9NkehRwWlIiY9Rj9aNCSkA4Edlw+2/5e/h9saNG+vSSy/VK6+8osLC8j03+/bt09y5czVo0CC5XC5PSNm6dauWLl2qxo0b+62u3yKoAABgA1YNt7/00ksqKipSZmamPvvsM+Xk5Gjx4sW69NJL1axZMz399NMqLi7W7373O61du1Zz585VSUmJ9u3bp3379unYsWN+rY+hHwAAbMKK4fa2bdtq7dq1mjhxom644QYdOnRIycnJGjhwoCZOnKhGjRpp165dWrRokSSpc+fO5X7+008/VZ8+ffxWH0EFAAAbSYmPCfhQe4sWLTRr1qwqH09LS/Nqwq0vMfQDAABsi6ACAABsi6ACAABsi6ACAABsi6ACAICPWDXh1I581RYEFQAAaik8PFyS/L6mSDApKDhxA9s6derU6nm4PBkAgFqKiIhQ3bp1dfDgQdWpU0dhYaHbD2CMUUFBgQ4cOKAGDRp4QlxNEVQAAKgll8ullJQU7dy5U7t377a6HFto0KCBkpOTa/08BBUAAHwgMjJSbdu2ZfhHJ4Z7atuTUoagAgCAj4SFhSk6OtrqMhwldAfRAACA7RFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbVkaVEpKSjRhwgS1bNlSMTExat26tZ588klu6gQAACRZvODbtGnTNGPGDM2ePVvnnHOO1q5dqxEjRig+Pl6jR4+2sjQAAGADlgaVVatW6ZprrtGVV14pSUpLS9M777yj1atXW1kWAACwCUuHfnr27Klly5bpu+++kyT973//0+eff67+/ftXun9RUZHy8/PLfQEAAOeytEdl3Lhxys/P11lnnaXw8HCVlJTo6aef1tChQyvdf8qUKZo0aVKAqwQAAFaxtEflb3/7m+bOnau3335b69ev1+zZs/Xss89q9uzZle4/fvx4ud1uz1dOTk6AKwYAAIHkMhZeYpOamqpx48YpKyvLs+2pp57SnDlz9O23357y5/Pz8xUfHy+326369ev7s1QAAOAj3py/Le1RKSgoUFhY+RLCw8NVWlpqUUUAAMBOLJ2jMmDAAD399NNq3ry5zjnnHH355Zd67rnndOutt1pZFgAAsAlLh34OHz6sCRMm6P3339eBAwfUtGlTDR48WI899pgiIyNP+fMM/QAAEHy8OX9bGlRqi6ACAEDwCZo5KgAAANUhqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqACADeW6C7Vqe55y3YVWlwJYKsLqAgAA5c1fs0fjF36tUiOFuaQp16VrULfmVpcFWIIeFQCwkVx3oSekSFKpkR5euJGeFYQsggoA2MjOvKOekFKmxBjtyiuwpiDAYgQVALCRlgmxCnOV3xbuciktoa41BQEWszyo/PDDD7rpppvUuHFjxcTEKD09XWvXrrW6LACwREp8jKZcl65w14m0Eu5yafJ1HZQSH2NxZYA1LJ1M+9NPPykjI0N9+/bVv/71LyUmJmrr1q1q2LChlWUBgKUGdWuuXu0StSuvQGkJdQkpCGmWBpVp06YpNTVV2dnZnm0tW7a0sCIAsIeU+BgCCiyX6y7UzryjapkQa9nr0dKhn0WLFqlr1676/e9/r6SkJHXp0kUzZ860siQAAKATl8lnTF2uITP/q4ypyzV/zR5L6rA0qOzYsUMzZsxQ27Zt9fHHH+uuu+7S6NGjNXv27Er3LyoqUn5+frkvAADgW3a6TN7SoFJaWqpzzz1XkydPVpcuXXTHHXfo9ttv16uvvlrp/lOmTFF8fLznKzU1NcAVAwDgfHa6TN7SoJKSkqKzzz673Lb27dtrz57Ku5fGjx8vt9vt+crJyQlEmQAAhBQ7XSZvaVDJyMjQli1bym377rvv1KJFi0r3j4qKUv369ct9AQAA37LTZfKWXvVz3333qWfPnpo8ebJuuOEGrV69Wq+//rpef/11K8sCACDk2eUyeZcxxpx6N//58MMPNX78eG3dulUtW7bU/fffr9tvv/20fjY/P1/x8fFyu930rgAAECS8OX9bHlRqg6ACAEDw8eb8bfkS+gBQJtddqFXb87hTMAAPS+eoAECZ+Wv2eNZtCHNJU65L16Buza0uC4DF6FEBYDk7LS4FwF4IKgAsZ6fFpQDYC0EFgOXstLgUAHshqACwnJ0WlwJgL0ymBWALdllcCoC9EFQA2EZKfAwBBUA5DP0AAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAABDCct2FWrU9T7nuQqtLqVSE1QUAAABrzF+zR+MXfq1SI4W5pCnXpWtQt+ZWl1UOPSoAAISgXHehJ6RIUqmRHl640XY9KwQVAABC0M68o56QUqbEGO3KK7CmoCoQVADAInafGwBna5kQqzBX+W3hLpfSEupaU1AVCCoAYIH5a/YoY+pyDZn5X2VMXa75a/ZYXRJCTEp8jKZcl65w14m0Eu5yafJ1HZQSH2NxZeW5jDHm1LvZU35+vuLj4+V2u1W/fn2rywGA05LrLlTG1OXlut3DXS59Pq6v7U4ScL5cd6F25RUoLaFuwF5/3py/ueoHCIBcd6F25h1Vy4RYTkSodm4Arw8EWkp8jK1fdwQVwM+C4fI/BFbZ3ICTe1TsNjcAsAPmqAB+FCyX/yGwgmVuAGAH9KgAfkQXP6oyqFtz9WqXGPC5AUCwIagAfkQXP6pj97kBgB0w9AP4EV38AFA79KgAfkYXPwDUHEEFCAC6+AGgZhj6AQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQqUKuu1Crtuex1DkAABbi8uRKcBM5AADsgR6Vk3ATOQAA7IOgcpLqbiIHAAACi6BykrKbyP0WN5EDAMAaNQoq33//vY4cOVJhe3FxsT777LNaF2UlbiIHAIB9eDWZNjc3V9dcc43WrVsnl8ulIUOG6JVXXlG9evUkSYcOHVLfvn1VUlLil2IDhZvIAQBgD171qIwbN05hYWH673//q8WLF+ubb75R37599dNPP3n2McZU8wzBIyU+Rj1aNyakAABgIa+CytKlS/XCCy+oa9eu6tevn1auXKmUlBRdfPHFOnTokCTJ5XKd4lkAAABOj1dBxe12q2HDhp7vo6KitHDhQqWlpalv3746cOCAzwsEAAChy6ug0qpVK3311VfltkVEROjdd99Vq1atdNVVV/m0ODgTq/76F+0LwEm8mkzbv39/vf7667r++uvLP8n/hZXrr79e33//vU8LhLOw6q9/0b4AnMZlvJj9evz4cRUUFKh+/fqSpLy8PElSQkKC5/EffvhBLVq08EOpFeXn5ys+Pl5ut9tTE+wr112ojKnLyy2oF+5y6fNxfZm07AO0L4Bg4c3526uhn4iICJWWliorK0sJCQlq0qSJmjRpooSEBI0aNUpHjhwJWEhB8GHVX/+ifQE4kVdDP4cOHVKPHj30ww8/aOjQoWrfvr0k6ZtvvtGsWbO0bNkyrVq1qtyEW6BM2aq/J3/iZ9Vf36B9ATiRVz0qTzzxhCIjI7V9+3a99tprGjNmjMaMGaPXX39d27ZtU506dfTEE0/4q1YEuVBe9TcQE1xDuX0BOJdXc1TS0tL02muvKTMzs9LHFy9erDvvvFO7du3yVX3VYo5KcMp1F4bUqr+BnuAaau0LIPh4c/72egn9c845p8rHO3TooH379nnzlAhBKfExIXMCzXUXekKKdGJY5uGFG9WrXaLf2iCQ7ZvrLtTOvKNqmRAbMv+nAALLq6CSkJCgXbt26Ywzzqj08Z07d6pRo0Y+KQxwguomuAb7iZ1LoQEEgldzVDIzM/XII4/o2LFjFR4rKirShAkTdPnll/usOCDYlU1w/S0nTHCtqqfI6YvMsZgeEHhe9ag88cQT6tq1q9q2bausrCydddZZMsZo8+bNeuWVV1RUVKS33nrLX7UCQadsguvDCzeqxBjHTHB1ck9RVehBAqzhVVA544wz9MUXX+juu+/W+PHjPXdKdrlcuvTSS/XSSy8pNTXVL4UCwWpQt+bq1S7RURNcQ+1SaCvmGsEazLuyH6+CiiS1bNlS//rXv/TTTz9p69atkqQ2bdowNwWohtMmEDu1p6gqodiDFIroNbMnr4NKmYYNG6p79+6+rAVAEHFiT1FVQq0HKRTRa2ZfXk2m9aepU6fK5XJpzJgxVpcC4DSlxMeoR+vGjn8jZzE95+MWFPZV4x4VX1qzZo1ee+01dezY0epSAKBSodSDFIroNbMvy3tUjhw5oqFDh2rmzJncIwiArYVKD1IootfMvizvUcnKytKVV16pfv366amnnqp236KiIhUVFXm+z8/P93d5AIAQQa+ZPVkaVObNm6f169drzZo1p7X/lClTNGnSJD9XBQAIVU67Qs8JLBv6ycnJ0b333qu5c+cqOjr6tH5m/Pjxcrvdnq+cnBw/VwkAAKzk1d2Tfenvf/+7rr32WoWHh3u2lZSUyOVyKSwsTEVFReUeqwx3T64cCxYBAOzMb3dP9qVLLrlEX3/9dbltI0aM0FlnnaWxY8eeMqSgcixYBABwEsuCSlxcnDp06FBuW2xsrBo3blxhO04PCxYBAJzG8suT4TssWAQAcBrLL0/+rRUrVlhdQlBjwSIAgNPQo+IgLFgEAHAaW/WooPZYsAgA4CQEFQdiwSIAgFMw9AMAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAJUItddqFXb85TrLrS6FAAIaVz1A5yE+yUBgH3QoxKk+MTvH1XdL4l2BgBr0KMShPjE7z/V3S+JtWkAIPDoUQkyfOL3r7L7Jf0W90sCAOsQVIIMd0j2L+6XBAD2wtBPkOEOyf7H/ZIAwD7oUQkyfOIPjJT4GPVo3Zh2BQCL0aMShPjEDwAIFQSVIMUdkgEAoYChHwAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFSAIca8nAKGCq37gaLnuQu3MO6qWCbGOuUqKez0BCCUEFTiWE0/oVd3rqVe7RMcEMQD4LYZ+4EhOvXkj93oCEGoIKnAkp57QubszgFBDUIEjOfWEzr2eAIQa5qjAkcpO6A8v3KgSYxx1QudeTwBCCUEFjuXkEzr3egIQKhj6CTGhuP6GkTn1TgAAW6JHJYQ48XLd6oTa8QKAE9GjEiKcerluVULteAHAqQgqIcKpl+tWJdSOFwCciqASIpx6uW5VQu14AcCpCCohItTW3wi14wUAp3IZY4L2koj8/HzFx8fL7Xarfv36VpdjG9XdiC/XXejIy3WrEmrHCwDBwJvzN1f9OMyprnQJtfU3Qu14AcBpGPpxEK50AQA4DUHFQbjSBQBqJxQXxbQ7hn4cpOxKl9+GFa50AYDTwyKR9kSPioNwpQsA1AxD5/ZFj4rDOPlGfADgL9UNndvtfbS6KzudiKDiQFzpAgDeCZah81AcnmLoBwAQ8oJh6DxUh6foUQEAQPYfOg+m4SlfIqgAAPB/7Dx0HizDU77G0A8AAEEgGIan/IEeFQAAgoTdh6f8gaACAEAQsfPwlD8w9AMAAGyLoAIAgM1wz6FfMfQDAICNhOKibtWhRwUAAJsI1UXdqkNQgaPRfQogmFS3qFuoYugHjkX3Kewi1G4iV1O0U+gu6lYdggocqaru017tEh3xBsgbevAgMJ8e2umEskXdHl64USXGhMyibtUhqMCRnHxPDN7Qg4fTA7Ov0E7lheKibtVhjgocqaz79Lec0H3KRLvgwnyD0+OEdvL1fLiU+Bj1aN045EOKRFCBQzn1nhhOeEMPJU4NzL4W7O00f80eZUxdriEz/6uMqcs1f80eq0tyFIIKHGtQt+b6fFxfvXP7Bfp8XF9HDI/U5g2dK6ACz6mB2deCuZ3o5fQ/5qjA0Zx2T4yaTrRjXot1mG9weoK1nZw8H84uCCpAkPH2DZ2JitZzWmD2l2BsJy4n9j+GfoAg5M1EO+a1AP4TzMNWwYIeFSAIebOOCp/4AP+yy7CVU9dXIqgEiFNfQAg8b+ebsIAU4H9WD1s5eR6ayxhjTr2bPeXn5ys+Pl5ut1v169e3upwqOfkFhMDKdRcqY+ryCr0jn4/re1pzVaz+xAfA92rzvmAVb87fls5RmTJlirp166a4uDglJSVp4MCB2rJli5Ul+RyXrsGXajPfhAWkAGdy+jw0S4PKv//9b2VlZek///mPlixZouLiYl122WU6evSolWXVWGXrVDj9BYTACvaFsQD4ntPfFyydo7J48eJy38+aNUtJSUlat26devXqZVFVNVPV8A4TGb3DXJ7qMd8EwMmc/r5gq8m0brdbktSoUaNKHy8qKlJRUZHn+/z8/IDUdSqnWqfCyS8gX2Iuz+mxyxUGAOzDye8LtgkqpaWlGjNmjDIyMtShQ4dK95kyZYomTZoU4MpO7VQrEzr5BeQrLErmHauvMABgP059X7DNgm9ZWVnauHGj5s2bV+U+48ePl9vt9nzl5OQEsMKqnc74IBMZq8dcHgQa9z4CgoMtelRGjRqlDz/8UJ999pnOOOOMKveLiopSVFRUACs7PQzv1B5zeRBIDDMimIXaXD5L11Exxuiee+7R+++/rxUrVqht27Ze/bzd1lFhnYramb9mT4Wwx8kDvhaMa04AZZwSsr05f1vao5KVlaW3335bH3zwgeLi4rRv3z5JUnx8vGJigu8Nw6njg4HCXB4EAne7RbAK1bl8lgaVGTNmSJL69OlTbnt2draGDx8e+IJgOcIe/I1hRgSrUA3ZlgaVIF69H3CUUBrzZk4ZglWohmxbTKZF5ULp5AHrOGXM2xsMMyIYhWrI5qaENhWKJw8EHhNLgeDjhAs3guamhKgcNzL0Duth1Bzr1wDBJ9TW5WLox4ZCdcJUTdDzVDuhOuYNIHjQo2JDTr8Tpq/Q81R7ZWPe4a4TL7hQGfMGEDzoUQkQbybGhuqEKW/R8+QbTCwFYGcElQCoyfAEJ49T8+ewRahdccX6NQDsiqEfP6vN8EQwTJiyciKrv4Yt5q/Zo4ypyzVk5n+VMXW55q/Z44tyAUsx6RzBih6VKvjqE7WThyfsMJHV1z1PobpENZzNDn+rQE0RVCpR3R+1twHGqVdV2OmE7sthCycHS4Sm0/lbDbWhTgQXgspJqvuj/uy7g15/KnHqxFinntCdGiwRuk71t1rT3pZQDDeheMx2QFA5SVV/1Ot3/1TjHgQnTox16gndqcESoau6v9Wa9oyG4lBSKB6zXTCZ9iRVrWFSakytVvAMhomx3nDy+huDujXX5+P66p3bL9Dn4/ryZoSgVt3fak1WJg7F9YtC8ZjthB6Vk1T1ibprWiNH9iDUhhN7ispwua416Fr3j6r+VmvSM+rUYd/qhOIx2wlBpRJV/VEzJFARJ3T4Cl3r/lXZ32pNhjqdOuxbnVA8Zjvh7slecsJdKwG74S7O1vL2fW3+mj0Vwo3TQ2UoHrM/eXP+pkfFS/QgAL4Xql3rgRzqqu53efu+5uRh36qE4jFL9hiOJagAsFwodq0HcqjLH78rFD+0hdox22U4lqt+AFjOyVeRVSaQV5FwxQpqwk6vG3pUANhCKHWtB3Koy+nDanYYmnAiO71uCCoAbCNUutYDOdTl5GE1uwxNOJGdXjcM/QBAgAVyqMupw2p2GppwIju9buhRqQLdiQD8KZBDXU4cVrPT0IRT2eV1Q1CpBN2JAALFKDBLWQXDsJo3HxDtNDThZHZ43RBUTlLTm3TZCb1BgP3xgag8b9uDG4iGDoLKSYK9O5E3P8D+nPCByJdq2h52GZqAfzGZ9iRV3T05GLoTmVwGBIea3LXYbnLdhVq1Pc8n7y+1aQ+n3ZkeFRFUTmKnmc7ecsKbHxAKavuByJchoSbmr9mjjKnLNWTmf5Uxdbnmr9lTq+cL5g+I8D+GfioRrN2JTC4DgkNt5ldYPbzrj2Er5pugOgSVKthhprO3+GMHrOPtJPaafCCyw9wWf83jC9YPiPA/gorD8McOBF5Nezm8/UBkh8n+/uy5DcYPiPA/5qg4EJPLgMAJ5CR2O8zlCOZ5fAhO9KjAVlgDBsEmkL0cdhnepecWgURQgW1YPUkQqIlAT2K3S0hgmAaBwtAPbIE1YBCsrBgKYXgXoYQeFdiCHSYJAjVll16OQGKYFoFCUIEtsAYMgl0oDYUwTOssdg+dDP3AFriSAAgODNM6i69XGfYHelRgG6HYfQ4EG4ZpncMOCwieDoIKbCWUus+BYMQwbeV8PXwSiOGYYAmdBBUAwGmzy1ouduLrOTuBmgMULKHTZYwxp97NnvLz8xUfHy+326369etbXQ4AhIxcdyHDtDrRDhlTl1c42X8+rm+N2sXXz3cq89fsqRA6AzEx2pvzNz0qAACvMUx7gq+HTwI9HBMMcwMJKgAA1JCvh0+sGI6xe+jk8mQAAGrI10srsFRDRcxRAQCglnw9Z8fpc4CYowIAQAD5evjE7sMxgcTQDwIu112oVdvzWMkSAHBK9KggoLhHCADAG/SoIGC4RwgAu6PH137oUUHABMtyzQDsJVB396XH154IKiHGytt5B8tyzQDsI1DhIVhu0BeKGPoJIVbfzpv1AQB4I5DDxdX1+MJa9KiECLt8WgiG5ZoB2EMgh4vp8bUvelRChJ0+LaTEx6hH68aEFADVKgsPv+Wv8ECPr33RoxIi+LQAINiUhYeT7+7rr/BAj689EVRCRKD/4AHAFwIdHlgR1n4IKj5k5RU1p4NPCwCCEeHBv+x+7iKo+EiwXH/PHzyAYGP3E2kwC4ZzF5NpfYAVVwHAP6xeVsHJguXcRVDxATtdUQMATmG3E6nTltcPlnMXQz8+wBU1AOB7drrtRjAMkXgrWM5d9Kj4ANffA4DvBXIdlerYrWfHV4Ll3EWPio9wRQ0A+JYVyypUNnHXTj07vhYM5y6Cig9xRQ0QeFwR4myBPJFWNbwTLEMkNWX3cxdDPwCqZecJhLW5IsTOx4XyanrbDW/+j6sb3gmWIRKnokcFQJXsPIGwNjfatPNxwTe8/T8+1fBOMAyROJUtelRefvllpaWlKTo6Wueff75Wr15tdUlAyLP7BMKaXlpp9+NC7dXk//h0Ju5yQ1VrWB5U5s+fr/vvv18TJ07U+vXr1alTJ2VmZurAgQNWlwaENLuvsVDTK0LsflyovZr8HzO8Y1+WB5XnnntOt99+u0aMGKGzzz5br776qurWras333zT6tKAkGaXS0OrUtMTi92PC7VX0//jQd2a6/NxffXO7Rfo83F9GQ60CUuDyrFjx7Ru3Tr169fPsy0sLEz9+vXTF198UWH/oqIi5efnl/sC4B/B8AmzJieWYDgu1E5t/o8Z3rEfSyfT5uXlqaSkRE2aNCm3vUmTJvr2228r7D9lyhRNmjQpUOUBIS8YJhDW5NLKYDgu1A7/x84RVFf9jB8/Xvfff7/n+/z8fKWmplpYEeB8dl9joaacelz4Ff/HzmBpUElISFB4eLj2799fbvv+/fuVnJxcYf+oqChFRUUFqjwAAGAxS+eoREZG6rzzztOyZcs820pLS7Vs2TL16NHDwsoAAIAdWD70c//99+uWW25R165d1b17d02fPl1Hjx7ViBEjrC4NAABYzPKgMmjQIB08eFCPPfaY9u3bp86dO2vx4sUVJtgCAIDQ4zLGmFPvZk/5+fmKj4+X2+1W/fr1rS4HAACcBm/O35Yv+AYAAFAVggoAALAtggoAALAtggoAALAtggoAALAtggoAALAty9dRqY2yK6u5izIAAMGj7Lx9OiukBHVQOXz4sCRxY0IAAILQ4cOHFR8fX+0+Qb3gW2lpqfbu3au4uDi5XC6vf77s7ss5OTkhvWAc7fAr2uIE2uEE2uFXtMUJtMMJtW0HY4wOHz6spk2bKiys+lkoQd2jEhYWpjPOOKPWz1O/fv2QfsGVoR1+RVucQDucQDv8irY4gXY4oTbtcKqelDJMpgUAALZFUAEAALYV0kElKipKEydOVFRUlNWlWIp2+BVtcQLtcALt8Cva4gTa4YRAtkNQT6YFAADOFtI9KgAAwN4IKgAAwLYIKgAAwLYIKgAAwLYcH1RefvllpaWlKTo6Wueff75Wr15d5b6bNm3S9ddfr7S0NLlcLk2fPj1whfqZN+0wc+ZMXXTRRWrYsKEaNmyofv36Vbt/sPGmLRYuXKiuXbuqQYMGio2NVefOnfXWW28FsFr/8aYdfmvevHlyuVwaOHCgfwsMEG/aYdasWXK5XOW+oqOjA1itf3n7mvj555+VlZWllJQURUVFqV27dvroo48CVK3/eNMOffr0qfCacLlcuvLKKwNYsX94+3qYPn26zjzzTMXExCg1NVX33Xeffvnll9oXYhxs3rx5JjIy0rz55ptm06ZN5vbbbzcNGjQw+/fvr3T/1atXmwcffNC88847Jjk52Tz//POBLdhPvG2HIUOGmJdfftl8+eWXZvPmzWb48OEmPj7efP/99wGu3Pe8bYtPP/3ULFy40HzzzTdm27ZtZvr06SY8PNwsXrw4wJX7lrftUGbnzp2mWbNm5qKLLjLXXHNNYIr1I2/bITs729SvX9/k5uZ6vvbt2xfgqv3D27YoKioyXbt2NVdccYX5/PPPzc6dO82KFSvMhg0bAly5b3nbDj/++GO518PGjRtNeHi4yc7ODmzhPuZtO8ydO9dERUWZuXPnmp07d5qPP/7YpKSkmPvuu6/WtTg6qHTv3t1kZWV5vi8pKTFNmzY1U6ZMOeXPtmjRwjFBpTbtYIwxx48fN3FxcWb27Nn+KjFgatsWxhjTpUsX8+ijj/qjvICpSTscP37c9OzZ0/zlL38xt9xyiyOCirftkJ2dbeLj4wNUXWB52xYzZswwrVq1MseOHQtUiQFR2/eI559/3sTFxZkjR474q8SA8LYdsrKyzMUXX1xu2/33328yMjJqXYtjh36OHTumdevWqV+/fp5tYWFh6tevn7744gsLKwssX7RDQUGBiouL1ahRI3+VGRC1bQtjjJYtW6YtW7aoV69e/izVr2raDk888YSSkpJ02223BaJMv6tpOxw5ckQtWrRQamqqrrnmGm3atCkQ5fpVTdpi0aJF6tGjh7KystSkSRN16NBBkydPVklJSaDK9jlfvF++8cYbuvHGGxUbG+uvMv2uJu3Qs2dPrVu3zjM8tGPHDn300Ue64ooral1PUN+UsDp5eXkqKSlRkyZNym1v0qSJvv32W4uqCjxftMPYsWPVtGnTci/aYFTTtnC73WrWrJmKiooUHh6uV155RZdeeqm/y/WbmrTD559/rjfeeEMbNmwIQIWBUZN2OPPMM/Xmm2+qY8eOcrvdevbZZ9WzZ09t2rTJJzdItUpN2mLHjh1avny5hg4dqo8++kjbtm3T3XffreLiYk2cODEQZftcbd8vV69erY0bN+qNN97wV4kBUZN2GDJkiPLy8nThhRfKGKPjx4/rzjvv1MMPP1zrehwbVOAbU6dO1bx587RixQpHTRr0RlxcnDZs2KAjR45o2bJluv/++9WqVSv16dPH6tIC4vDhwxo2bJhmzpyphIQEq8uxVI8ePdSjRw/P9z179lT79u312muv6cknn7SwssArLS1VUlKSXn/9dYWHh+u8887TDz/8oD/+8Y9BG1Rq64033lB6erq6d+9udSkBt2LFCk2ePFmvvPKKzj//fG3btk333nuvnnzySU2YMKFWz+3YoJKQkKDw8HDt37+/3Pb9+/crOTnZoqoCrzbt8Oyzz2rq1KlaunSpOnbs6M8yA6KmbREWFqY2bdpIkjp37qzNmzdrypQpQRtUvG2H7du3a9euXRowYIBnW2lpqSQpIiJCW7ZsUevWrf1btB/44j2iTp066tKli7Zt2+aPEgOmJm2RkpKiOnXqKDw83LOtffv22rdvn44dO6bIyEi/1uwPtXlNHD16VPPmzdMTTzzhzxIDoibtMGHCBA0bNkwjR46UJKWnp+vo0aO644479MgjjygsrOYzTRw7RyUyMlLnnXeeli1b5tlWWlqqZcuWlftE5HQ1bYdnnnlGTz75pBYvXqyuXbsGolS/89VrorS0VEVFRf4oMSC8bYezzjpLX3/9tTZs2OD5uvrqq9W3b19t2LBBqampgSzfZ3zxeigpKdHXX3+tlJQUf5UZEDVpi4yMDG3bts0TWiXpu+++U0pKSlCGFKl2r4l3331XRUVFuummm/xdpt/VpB0KCgoqhJGyEGtqe0vBWk/HtbF58+aZqKgoM2vWLPPNN9+YO+64wzRo0MBzOeGwYcPMuHHjPPsXFRWZL7/80nz55ZcmJSXFPPjgg+bLL780W7duteoQfMLbdpg6daqJjIw0CxYsKHfZ3eHDh606BJ/xti0mT55sPvnkE7N9+3bzzTffmGeffdZERESYmTNnWnUIPuFtO5zMKVf9eNsOkyZNMh9//LHZvn27WbdunbnxxhtNdHS02bRpk1WH4DPetsWePXtMXFycGTVqlNmyZYv58MMPTVJSknnqqaesOgSfqOnfxoUXXmgGDRoU6HL9xtt2mDhxoomLizPvvPOO2bFjh/nkk09M69atzQ033FDrWhwdVIwx5sUXXzTNmzc3kZGRpnv37uY///mP57HevXubW265xfP9zp07jaQKX7179w584T7mTTu0aNGi0naYOHFi4Av3A2/a4pFHHjFt2rQx0dHRpmHDhqZHjx5m3rx5FlTte960w8mcElSM8a4dxowZ49m3SZMm5oorrjDr16+3oGr/8PY1sWrVKnP++eebqKgo06pVK/P000+b48ePB7hq3/O2Hb799lsjyXzyyScBrtS/vGmH4uJi8/jjj5vWrVub6Ohok5qaau6++27z008/1boOlzG17ZMBAADwD8fOUQEAAMGPoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAp2H48OEaOHCg1WUAIYegAgS54cOHy+Vyeb4aN26syy+/XF999ZXVpfnEb4+t7OvCCy/02+/btWuXXC6XNmzYUG77n//8Z82aNctvvxdA5QgqgANcfvnlys3NVW5urpYtW6aIiAhdddVVVpflM9nZ2Z7jy83N1aJFiyrdr7i42G81xMfHq0GDBn57fgCVI6gADhAVFaXk5GQlJyerc+fOGjdunHJycnTw4EFdfPHFGjVqVLn9Dx48qMjISM/dUdPS0vTkk09q8ODBio2NVbNmzfTyyy+X+5nnnntO6enpio2NVWpqqu6++24dOXLE8/ju3bs1YMAANWzYULGxsTrnnHP00UcfSZJ++uknDR06VImJiYqJiVHbtm2VnZ192sfXoEEDz/ElJyerUaNGnp6P+fPnq3fv3oqOjtbcuXP1448/avDgwWrWrJnq1q2r9PR0vfPOO+Wer7S0VM8884zatGmjqKgoNW/eXE8//bQkqWXLlpKkLl26yOVyqU+fPpIqDv0UFRVp9OjRSkpKUnR0tC688EKtWbPG8/iKFSvkcrm0bNkyde3aVXXr1lXPnj21ZcuW0z5uAAQVwHGOHDmiOXPmqE2bNmrcuLFGjhypt99+W0VFRZ595syZo2bNmuniiy/2bPvjH/+oTp066csvv9S4ceN07733asmSJZ7Hw8LC9MILL2jTpk2aPXu2li9froceesjzeFZWloqKivTZZ5/p66+/1rRp01SvXj1J0oQJE/TNN9/oX//6lzZv3qwZM2YoISHBJ8dbVuvmzZuVmZmpX375Reedd57++c9/auPGjbrjjjs0bNgwrV692vMz48eP19SpUz11vf3222rSpIkkefZbunSpcnNztXDhwkp/70MPPaT33ntPs2fP1vr169WmTRtlZmbq0KFD5fZ75JFH9Kc//Ulr165VRESEbr31Vp8cNxAyan1bQwCWuuWWW0x4eLiJjY01sbGxRpJJSUkx69atM8YYU1hYaBo2bGjmz5/v+ZmOHTuaxx9/3PN9ixYtzOWXX17ueQcNGmT69+9f5e999913TePGjT3fp6enl3vO3xowYIAZMWJEjY5PkomOjvYcX2xsrHn//fc9dzufPn36KZ/jyiuvNA888IAxxpj8/HwTFRVlZs6cWem+Zc/75Zdfltv+2ztGHzlyxNSpU8fMnTvX8/ixY8dM06ZNzTPPPGOMMebTTz81kszSpUs9+/zzn/80kkxhYaE3TQCENHpUAAfo27evNmzYoA0bNmj16tXKzMxU//79tXv3bkVHR2vYsGF68803JUnr16/Xxo0bNXz48HLP0aNHjwrfb9682fP90qVLdckll6hZs2aKi4vTsGHD9OOPP6qgoECSNHr0aD311FPKyMjQxIkTy03mveuuuzRv3jx17txZDz30kFatWuXV8T3//POe49uwYYMuvfRSz2Ndu3Ytt29JSYmefPJJpaenq1GjRqpXr54+/vhj7dmzR5K0efNmFRUV6ZJLLvGqht/avn27iouLlZGR4dlWp04dde/evVybSVLHjh09/05JSZEkHThwoMa/Gwg1BBXAAWJjY9WmTRu1adNG3bp101/+8hcdPXpUM2fOlCSNHDlSS5Ys0ffff6/s7GxdfPHFatGixWk//65du3TVVVepY8eOeu+997Ru3TrPHJZjx455fseOHTs0bNgwff311+ratatefPFFSfKEpvvuu0979+7VJZdcogcffPC0f39ycrLn+Nq0aaPY2Nhyx/5bf/zjH/XnP/9ZY8eO1aeffqoNGzYoMzPTU2dMTMxp/15fqFOnjuffLpdL0ok5MgBOD0EFcCCXy6WwsDAVFhZKktLT09W1a1fNnDlTb7/9dqXzJP7zn/9U+L59+/aSpHXr1qm0tFR/+tOfdMEFF6hdu3bau3dvhedITU3VnXfeqYULF+qBBx7wBCVJSkxM1C233KI5c+Zo+vTpev311315yB4rV67UNddco5tuukmdOnVSq1at9N1333keb9u2rWJiYjwTiU8WGRkp6UTPTFVat26tyMhIrVy50rOtuLhYa9as0dlnn+2jIwEgSRFWFwCg9oqKirRv3z5JJ66weemll3TkyBENGDDAs8/IkSM1atQoxcbG6tprr63wHCtXrtQzzzyjgQMHasmSJXr33Xf1z3/+U5LUpk0bFRcX68UXX9SAAQO0cuVKvfrqq+V+fsyYMerfv7/atWunn376SZ9++qkn6Dz22GM677zzdM4556ioqEgffvih5zFfa9u2rRYsWKBVq1apYcOGeu6557R//35PgIiOjtbYsWP10EMPKTIyUhkZGTp48KA2bdqk2267TUlJSYqJidHixYt1xhlnKDo6WvHx8eV+R2xsrO666y794Q9/UKNGjdS8eXM988wzKigo0G233eaX4wJCFT0qgAMsXrxYKSkpSklJ0fnnn681a9bo3Xff9VxaK0mDBw9WRESEBg8erOjo6ArP8cADD2jt2rXq0qWLnnrqKT333HPKzMyUJHXq1EnPPfecpk2bpg4dOmju3LmaMmVKuZ8vKSlRVlaW2rdvr8svv1zt2rXTK6+8IulEL8X48ePVsWNH9erVS+Hh4Zo3b55f2uLRRx/Vueeeq8zMTPXp00fJyckVVpSdMGGCHnjgAT322GNq3769Bg0a5Jk3EhERoRdeeEGvvfaamjZtqmuuuabS3zN16lRdf/31GjZsmM4991xt27ZNH3/8sRo2bOiX4wJClcsYY6wuAoD/7dq1S61bt9aaNWt07rnnlnssLS1NY8aM0ZgxY6wpDgCqwNAP4HDFxcX68ccf9eijj+qCCy6oEFIAwM4Y+gEcbuXKlUpJSdGaNWsqzCux2uTJk1WvXr1Kv/r37291eQBsgKEfAJY5dOhQhZVcy8TExKhZs2YBrgiA3RBUAACAbTH0AwAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbIugAgAAbOv/A2vHl5m08DcgAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUERJREFUeJzt3XlclNXiBvBnQAZQBFIQhFAQFyRQXBE1wMQorTT1iktqXtM290rRVEQrtJvJdUnNW2KpiXrJLS5puCs/F3DfMoSwBBSNQRE35vz+8DLXGQacGWaY7fl+PvNR3jnvO+fMMDMP5z3nvBIhhAARERERKdgYuwJEREREpoYBiYiIiEgFAxIRERGRCgYkIiIiIhUMSEREREQqGJCIiIiIVDAgEREREalgQCIiIiJSwYBEREREpIIBiYjM1pw5cyCRSDQqK5FIMGfOHIPWJzIyEpGRkSZ7PCLSHAMSEdVYUlISJBKJ4lanTh14e3vjzTffxJ9//mns6pkcX19fpeerUaNGeP755/Hjjz/q5fh3797FnDlzsHfvXr0cj8gaMSARkd7MnTsX33//PVasWIGXX34Za9euRUREBO7du2eQx5s5cybKysoMcmxDCwkJwffff4/vv/8eH374Ia5du4b+/ftjxYoVNT723bt3ER8fz4BEVAN1jF0BIrIcL7/8Mjp27AgAeOutt+Dm5oYFCxZg27ZtGDRokN4fr06dOqhTxzw/xry9vfHGG28ofh4xYgSaN2+ORYsW4Z133jFizYgIYA8SERnQ888/DwDIzs5W2n7x4kUMHDgQDRo0gIODAzp27Iht27YplXn48CHi4+PRokULODg4oGHDhujevTt27dqlKKNuDNL9+/cxefJkuLu7o379+njttdfwxx9/VKrbm2++CV9f30rb1R1z9erVeOGFF9CoUSPY29sjMDAQy5cv1+q5eBpPT0+0bt0aOTk51Za7fv06Ro8eDQ8PDzg4OKBt27ZYs2aN4v7c3Fy4u7sDAOLj4xWn8Qw9/orI0pjnn15EZBZyc3MBAM8884xi27lz59CtWzd4e3sjNjYW9erVw8aNG9GvXz/8+9//xuuvvw7gcVBJSEjAW2+9hc6dO6OkpATHjx9HVlYWevXqVeVjvvXWW1i7di2GDh2Krl27Yvfu3ejTp0+N2rF8+XI899xzeO2111CnTh1s374d7733HuRyOd5///0aHbvCw4cPcfXqVTRs2LDKMmVlZYiMjMRvv/2GcePGwc/PD5s2bcKbb76J4uJiTJw4Ee7u7li+fDneffddvP766+jfvz8AoE2bNnqpJ5HVEERENbR69WoBQPzyyy/ixo0b4urVq2Lz5s3C3d1d2Nvbi6tXryrK9uzZUwQHB4t79+4ptsnlctG1a1fRokULxba2bduKPn36VPu4cXFx4smPsZMnTwoA4r333lMqN3ToUAFAxMXFKbaNHDlSNG3a9KnHFEKIu3fvVioXHR0tmjVrprQtIiJCREREVFtnIYRo2rSpePHFF8WNGzfEjRs3xKlTp8TgwYMFADF+/Pgqj5eYmCgAiLVr1yq2PXjwQISFhQknJydRUlIihBDixo0bldpLRNrhKTYi0puoqCi4u7vDx8cHAwcORL169bBt2zY8++yzAIBbt25h9+7dGDRoEG7fvo2ioiIUFRXh5s2biI6OxuXLlxWz3lxdXXHu3DlcvnxZ48dPTU0FAEyYMEFp+6RJk2rULkdHR8X/ZTIZioqKEBERgStXrkAmk+l0zJ07d8Ld3R3u7u5o27YtNm3ahOHDh2PBggVV7pOamgpPT08MGTJEsc3Ozg4TJkzAnTt3sG/fPp3qQkSV8RQbEenNsmXL0LJlS8hkMnz77bfYv38/7O3tFff/9ttvEEJg1qxZmDVrltpjXL9+Hd7e3pg7dy769u2Lli1bIigoCC+99BKGDx9e7ami33//HTY2NvD391fa3qpVqxq169ChQ4iLi0NGRgbu3r2rdJ9MJoOLi4vWxwwNDcUnn3wCiUSCunXronXr1nB1da12n99//x0tWrSAjY3y37atW7dW3E9E+sGARER607lzZ8Ustn79+qF79+4YOnQoLl26BCcnJ8jlcgDAhx9+iOjoaLXHaN68OQAgPDwc2dnZ2Lp1K3bu3Il//etfWLRoEVasWIG33nqrxnWtaoHJ8vJypZ+zs7PRs2dPBAQE4Msvv4SPjw+kUilSU1OxaNEiRZu05ebmhqioKJ32JSLDY0AiIoOwtbVFQkICevTogaVLlyI2NhbNmjUD8Pi0kCbhoEGDBhg1ahRGjRqFO3fuIDw8HHPmzKkyIDVt2hRyuRzZ2dlKvUaXLl2qVPaZZ55BcXFxpe2qvTDbt2/H/fv3sW3bNjRp0kSxfc+ePU+tv741bdoUp0+fhlwuV+pFunjxouJ+oOrwR0Sa4xgkIjKYyMhIdO7cGYmJibh37x4aNWqEyMhIrFy5Evn5+ZXK37hxQ/H/mzdvKt3n5OSE5s2b4/79+1U+3ssvvwwAWLx4sdL2xMTESmX9/f0hk8lw+vRpxbb8/PxKq1nb2toCAIQQim0ymQyrV6+ush6G0rt3bxQUFCA5OVmx7dGjR1iyZAmcnJwQEREBAKhbty4AqA2ARKQZ9iARkUF99NFH+Nvf/oakpCS88847WLZsGbp3747g4GCMGTMGzZo1Q2FhITIyMvDHH3/g1KlTAIDAwEBERkaiQ4cOaNCgAY4fP47Nmzdj3LhxVT5WSEgIhgwZgq+++goymQxdu3ZFeno6fvvtt0plBw8ejGnTpuH111/HhAkTcPfuXSxfvhwtW7ZEVlaWotyLL74IqVSKV199FW+//Tbu3LmDVatWoVGjRmpDniGNHTsWK1euxJtvvonMzEz4+vpi8+bNOHToEBITE1G/fn0AjweVBwYGIjk5GS1btkSDBg0QFBSEoKCgWq0vkVkz9jQ6IjJ/FdP8jx07Vum+8vJy4e/vL/z9/cWjR4+EEEJkZ2eLESNGCE9PT2FnZye8vb3FK6+8IjZv3qzY75NPPhGdO3cWrq6uwtHRUQQEBIhPP/1UPHjwQFFG3ZT8srIyMWHCBNGwYUNRr1498eqrr4qrV6+qnfa+c+dOERQUJKRSqWjVqpVYu3at2mNu27ZNtGnTRjg4OAhfX1+xYMEC8e233woAIicnR1FOm2n+T1vCoKrjFRYWilGjRgk3NzchlUpFcHCwWL16daV9Dx8+LDp06CCkUimn/BPpQCLEE/3GRERERMQxSERERESqGJCIiIiIVDAgEREREalgQCIiIiJSwYBEREREpIIBiYiIiEgFF4rUkVwux7Vr11C/fn0u609ERGQmhBC4ffs2vLy8Kl34+UkMSDq6du0afHx8jF0NIiIi0sHVq1fx7LPPVnk/A5KOKpb0v3r1KpydnY1cGyIiItJESUkJfHx8FN/jVWFA0lHFaTVnZ2cGJCIiIjPztOExHKRNREREpIIBiYiIiEgFAxIRERGRCo5BMrDy8nI8fPjQ2NUgI5NKpdVOJyUiItPCgGQgQggUFBSguLjY2FUhE2BjYwM/Pz9IpVJjV4WIiDTAgGQgFeGoUaNGqFu3LheTtGIVi4rm5+ejSZMm/F0gIjIDDEgGUF5erghHDRs2NHZ1yAS4u7vj2rVrePToEezs7IxdHSIiegoOijCAijFHdevWNXJNyFRUnForLy83ck2IiEgTDEgGxFMpVIG/C0RE5oUBiYiIiEgFAxJZLV9fXyQmJhq7GkREZIIYkEjJjRs38O6776JJkyawt7eHp6cnoqOjcejQIQCPTxVt2bLFuJXUUGRkJCQSSaXbo0ePjF01IiKqRr6sDIezi5AvKzNaHTiLjZQMGDAADx48wJo1a9CsWTMUFhYiPT0dN2/eNHbVdDJmzBjMnTtXaVudOvy1JyIyVcnH8jA95QzkArCRAAn9gxHTqUmt14M9SKRQXFyMAwcOYMGCBejRoweaNm2Kzp07Y/r06Xjttdfg6+sLAHj99dchkUgUPwPA1q1b0b59ezg4OKBZs2aIj49X6qn58ssvERwcjHr16sHHxwfvvfce7ty5o7g/KSkJrq6u2LFjB1q1aoW6deti4MCBuHv3LtasWQNfX18888wzmDBhglYzwerWrQtPT0+lW1Xy8vLQt29fODk5wdnZGYMGDUJhYSEAQCaTwdbWFsePHwfweG2jBg0aoEuXLor9165dCx8fH43rRkREyvJlZYpwBAByAcxIOWuUniQGJBNXm92MTk5OcHJywpYtW3D//v1K9x87dgwAsHr1auTn5yt+PnDgAEaMGIGJEyfi/PnzWLlyJZKSkvDpp58q9rWxscHixYtx7tw5rFmzBrt378bUqVOVjn/37l0sXrwYGzZsQFpaGvbu3YvXX38dqampSE1Nxffff4+VK1di8+bNem+7XC5H3759cevWLezbtw+7du3ClStXEBMTAwBwcXFBSEgI9u7dCwA4c+YMJBIJTpw4oQh6+/btQ0REhN7rRkRkLXKKShXhqEK5EMgtulvrdWFAMmHJx/LQbf5uDF11BN3m70bysTyDPl6dOnWQlJSENWvWwNXVFd26dcOMGTNw+vRpAI8XOwQAV1dXeHp6Kn6Oj49HbGwsRo4ciWbNmqFXr16YN28eVq5cqTj2pEmT0KNHD/j6+uKFF17AJ598go0bNyo9/sOHD7F8+XK0a9cO4eHhGDhwIA4ePIhvvvkGgYGBeOWVV9CjRw/s2bNH4zZ99dVXiuDn5OSEDz74QG259PR0nDlzBuvXr0eHDh0QGhqK7777Dvv27VMEwcjISEVA2rt3L3r16oXWrVvj4MGDim0MSEREuvNzqwcblVVRbCUS+LrV/rqCDEgmyljdjAMGDMC1a9ewbds2vPTSS9i7dy/at2+PpKSkKvc5deoU5s6dqxRExowZg/z8fNy9+zj1//LLL+jZsye8vb1Rv359DB8+HDdv3lTcDzw+Hebv76/42cPDA76+vnByclLadv36dY3bM2zYMJw8eVJxmz59utpyFy5cgI+Pj9IpssDAQLi6uuLChQsAgIiICBw8eBDl5eXYt28fIiMjFaHp2rVr+O233xAZGalx3YiISFljF0ck9A+G7X/XjrOVSPBZ/yA0dnGs9bpwtKqJqq6b0dC/KA4ODujVqxd69eqFWbNm4a233kJcXBzefPNNteXv3LmD+Ph49O/fX+2xcnNz8corr+Ddd9/Fp59+igYNGuDgwYMYPXo0Hjx4oFhxXPUSHBKJRO02uVyucVtcXFzQvHlzjctXJzw8HLdv30ZWVhb279+Pzz77DJ6enpg/fz7atm0LLy8vtGjRQi+PRURkrWI6NUF4S3fkFt2Fr1tdo4QjgAHJZFV0Mz4ZkozVzRgYGKiY2m9nZ1dpkHT79u1x6dKlKoNIZmYm5HI5Fi5cCBubx52WqqfXjK1169a4evUqrl69quhFOn/+PIqLixEYGAjg8anFNm3aYOnSpbCzs0NAQAAaNWqEmJgY7Nixg6fXiIj0pLGLo9GCUQWeYjNRxuhmvHnzJl544QWsXbsWp0+fRk5ODjZt2oTPP/8cffv2BfB4ccX09HQUFBTgr7/+AgDMnj0b3333HeLj43Hu3DlcuHABGzZswMyZMwEAzZs3x8OHD7FkyRJcuXIF33//PVasWGGwdugiKioKwcHBGDZsGLKysnD06FGMGDECERER6Nixo6JcZGQk1q1bpwhDDRo0QOvWrZGcnMyARERkQRiQTFhMpyY4GNsDP4zpgoOxPQy+DoSTkxNCQ0OxaNEihIeHIygoCLNmzcKYMWOwdOlSAMDChQuxa9cu+Pj4oF27dgCA6Oho7NixAzt37kSnTp3QpUsXLFq0CE2bNgUAtG3bFl9++SUWLFiAoKAgrFu3DgkJCQZti7YkEgm2bt2KZ555BuHh4YiKikKzZs2QnJysVC4iIgLl5eVKY40iIyMrbSMiIvMmEUKIpxcjVSUlJXBxcYFMJoOzs7PSfffu3UNOTg78/Pzg4OBgpBqSKeHvBBGRaaju+/tJ7EEiIiIiUsGARGbpwIEDSssKqN6IiIhqgrPYyCx17NgRJ0+eNHY1iIjIQjEgkVlydHTU2/pGREREqniKzYA4/p0q8HeBiMi8MCAZQMXqz09eRoOs24MHDwAAtra2Rq4JERFpgqfYDMDW1haurq6Ka4bVrVsXEonkKXuRpZLL5bhx4wbq1q2LOnX4liMiMgf8tDYQT09PANDqwqpkuWxsbNCkSRMGZSIiM8GAZCASiQSNGzdGo0aN8PDhQ2NXh4xMKpUqrkNHRESmjwHJwGxtbTnuhIiIyMzwT1oiIiIiFQxIRERERCoYkIiIiIhUMCARERERqWBAIiIiIlLBgERERESkggGJiIiISAUDEhEREZEKBiQiIiIiFQxIRERERCoYkIiIiIhUMCARERERqWBAIiIiIlLBgERERESkwiQC0rJly+Dr6wsHBweEhobi6NGj1ZbftGkTAgIC4ODggODgYKSmpirue/jwIaZNm4bg4GDUq1cPXl5eGDFiBK5du6Z0jFu3bmHYsGFwdnaGq6srRo8ejTt37hikfURERGRejB6QkpOTMWXKFMTFxSErKwtt27ZFdHQ0rl+/rrb84cOHMWTIEIwePRonTpxAv3790K9fP5w9exYAcPfuXWRlZWHWrFnIyspCSkoKLl26hNdee03pOMOGDcO5c+ewa9cu7NixA/v378fYsWMN3l4iIiIyfRIhhDBmBUJDQ9GpUycsXboUACCXy+Hj44Px48cjNja2UvmYmBiUlpZix44dim1dunRBSEgIVqxYofYxjh07hs6dO+P3339HkyZNcOHCBQQGBuLYsWPo2LEjACAtLQ29e/fGH3/8AS8vr6fWu6SkBC4uLpDJZHB2dtal6URERFTLNP3+NmoP0oMHD5CZmYmoqCjFNhsbG0RFRSEjI0PtPhkZGUrlASA6OrrK8gAgk8kgkUjg6uqqOIarq6siHAFAVFQUbGxscOTIEbXHuH//PkpKSpRuREREZJmMGpCKiopQXl4ODw8Ppe0eHh4oKChQu09BQYFW5e/du4dp06ZhyJAhiqRYUFCARo0aKZWrU6cOGjRoUOVxEhIS4OLiorj5+Pho1EYiIiIyP0Yfg2RIDx8+xKBBgyCEwPLly2t0rOnTp0MmkyluV69e1VMtiYiIyNTUMeaDu7m5wdbWFoWFhUrbCwsL4enpqXYfT09PjcpXhKPff/8du3fvVjrP6OnpWWkQ+KNHj3Dr1q0qH9fe3h729vYat42IiIjMl1F7kKRSKTp06ID09HTFNrlcjvT0dISFhandJywsTKk8AOzatUupfEU4unz5Mn755Rc0bNiw0jGKi4uRmZmp2LZ7927I5XKEhobqo2lERERkxozagwQAU6ZMwciRI9GxY0d07twZiYmJKC0txahRowAAI0aMgLe3NxISEgAAEydOREREBBYuXIg+ffpgw4YNOH78OL7++msAj8PRwIEDkZWVhR07dqC8vFwxrqhBgwaQSqVo3bo1XnrpJYwZMwYrVqzAw4cPMW7cOAwePFijGWxERERk2YwekGJiYnDjxg3Mnj0bBQUFCAkJQVpammIgdl5eHmxs/tfR1bVrV6xfvx4zZ87EjBkz0KJFC2zZsgVBQUEAgD///BPbtm0DAISEhCg91p49exAZGQkAWLduHcaNG4eePXvCxsYGAwYMwOLFiw3fYCIiIjJ5Rl8HyVxxHSQiIiLzYxbrIBERERGZIgYkIiIiIhUMSEREREQqGJCIiIiIVDAgEREREalgQCIiIiJSwYBEREREpIIBiYiIiEgFAxIRERGRCgYkIiIiIhUMSEREREQqGJCIiIiIVDAgEREREalgQCIiIiJSwYBEREREpIIBiYiIiEgFAxIRERGRCgYkIiIiIhUMSEREREQqGJCIiIiIVDAgEREREalgQCIiIiJSwYBEREREpIIBiYiIiEgFAxIRERGRCgYkIiIiIhUMSEREREQqGJCIiIiIVDAgEREREalgQCIiIiJSwYBEREREpIIBiYiIiEgFAxIRERGRCgYkIiIiIhUMSEREREQqGJCIiIiIVDAgEREREalgQCIiIiJSwYBEREREpIIBiYiIiEgFAxIRERGRCgYkIiIiIhUMSEREREQqGJCIiIiIVDAgEREREalgQCIiIiJSwYBEREREpIIBiYiIiEgFAxIRERGRCgYkIiIiIhUMSEREREQqGJCIiIiIVDAgEREREalgQCIiIiJSwYBEREREpIIBiYiIiEgFAxIRERGRCgYkIiIiIhUMSEREREQqGJCIiIiIVDAgEREREalgQCIiIiJSwYBEREREpIIBiYiIiEgFAxIRERGRCpMISMuWLYOvry8cHBwQGhqKo0ePVlt+06ZNCAgIgIODA4KDg5Gamqp0f0pKCl588UU0bNgQEokEJ0+erHSMyMhISCQSpds777yjz2YRERGRmTJ6QEpOTsaUKVMQFxeHrKwstG3bFtHR0bh+/bra8ocPH8aQIUMwevRonDhxAv369UO/fv1w9uxZRZnS0lJ0794dCxYsqPaxx4wZg/z8fMXt888/12vbiIiIyDxJhBDCmBUIDQ1Fp06dsHTpUgCAXC6Hj48Pxo8fj9jY2ErlY2JiUFpaih07dii2denSBSEhIVixYoVS2dzcXPj5+eHEiRMICQlRui8yMhIhISFITEzUqd4lJSVwcXGBTCaDs7OzTscgIqLalS8rQ05RKfzc6qGxi6Oxq0NGoOn3t1F7kB48eIDMzExERUUpttnY2CAqKgoZGRlq98nIyFAqDwDR0dFVlq/OunXr4ObmhqCgIEyfPh13796tsuz9+/dRUlKidCMiIvORfCwP3ebvxtBVR9Bt/m4kH8szdpXIhNUx5oMXFRWhvLwcHh4eSts9PDxw8eJFtfsUFBSoLV9QUKDVYw8dOhRNmzaFl5cXTp8+jWnTpuHSpUtISUlRWz4hIQHx8fFaPQYREZmGfFkZpqecgfy/50zkApiRchbhLd3Zk0RqGTUgGdPYsWMV/w8ODkbjxo3Rs2dPZGdnw9/fv1L56dOnY8qUKYqfS0pK4OPjUyt1JSKimskpKlWEowrlQiC36C4DEqll1IDk5uYGW1tbFBYWKm0vLCyEp6en2n08PT21Kq+p0NBQAMBvv/2mNiDZ29vD3t6+Ro9BRETG4edWDxIAT2YkiQTwdatrrCqRiTPqGCSpVIoOHTogPT1dsU0ulyM9PR1hYWFq9wkLC1MqDwC7du2qsrymKpYCaNy4cY2OQ0REZsKoU5TI1Bn9FNuUKVMwcuRIdOzYEZ07d0ZiYiJKS0sxatQoAMCIESPg7e2NhIQEAMDEiRMRERGBhQsXok+fPtiwYQOOHz+Or7/+WnHMW7duIS8vD9euXQMAXLp0CcDj3idPT09kZ2dj/fr16N27Nxo2bIjTp09j8uTJCA8PR5s2bWr5GSAiIkPLKSqtlIcEwFNsVCWjB6SYmBjcuHEDs2fPRkFBAUJCQpCWlqYYiJ2Xlwcbm/91dHXt2hXr16/HzJkzMWPGDLRo0QJbtmxBUFCQosy2bdsUAQsABg8eDACIi4vDnDlzIJVK8csvvyjCmI+PDwYMGICZM2fWUquJiKg2+bnVg40ESuOQbCUSnmKjKhl9HSRzxXWQiIjMS/KxPMxIOYtyIWArkeCz/kGI6dTE2NWiWqbp97fRe5CIiIhqQ0ynJghv6Y7corvwdavLU2tULQYkIiKyGo1dHBmMSCNGvxYbERERkalhQCIiIiJSwYBEREREpIIBiYiIiEgFAxIRERGRCgYkIiIiIhUMSEREREQqGJCIiIiIVOgUkJo0aYIRI0bgm2++QXZ2tr7rRERk0fJlZTicXYR8WZmxq0JEVdApIH322WdwcHDAggUL0KJFC/j4+OCNN97AqlWrcPnyZX3XkYjIYiQfy0O3+bsxdNURdJu/G8nH8oxdJSJSo8YXq83Pz8e+ffuwY8cOJCcnQy6Xo7y8XF/1M1m8WC0RaStfVoZu83dXuqL8wdgevPwFUS0x+MVq7969i4MHD2Lv3r3Ys2cPTpw4gaCgIERGRup6SCIii5ZTVKoUjgCgXAjkFt1lQCIyMToFpK5du+LEiRNo3bo1IiMjERsbi/DwcDzzzDP6rh8RkcXwc6sHGwkq9SD5utU1XqWISC2dxiBdvHgR9erVQ0BAAAICAtC6dWuGIyKip2js4oiE/sGwlUgAPA5Hn/UPYu8RkQnSaQySEAJnzpzB3r17sW/fPuzfvx9SqRQRERHo0aMHxowZY4i6mhSOQSIiXeXLypBbdBe+bnUZjohqmabf3zUepC2EQGZmJpYuXYp169ZxkDYRERGZLIMO0s7KysLevXuxd+9eHDx4ELdv30ZwcDDGjx+PiIgInStNREREZAp0CkidO3dGu3btEBERgTFjxiA8PBwuLi76rhsZQL6sDDlFpfBzq8eufSIioiroFJBu3brF00pmKPlYHqannIFcADYSIKF/MGI6NTF2tYiIiEyOTgGpIhxlZmbiwoULAIDAwEC0b99efzUjvcqXlSnCEfB4mvGMlLMIb+nOniQiIiIVOgWk69evIyYmBvv27YOrqysAoLi4GD169MCGDRvg7u6uzzqSHnCBOiIiIs3ptA7S+PHjcefOHZw7dw63bt3CrVu3cPbsWZSUlGDChAn6riPpQcUCdU/iAnVERETq6RSQ0tLS8NVXX6F169aKbYGBgVi2bBn+85//6K1ypD9coI6IiEhzOp1ik8vlsLOzq7Tdzs4Ocrm8xpUiw4jp1AThLd25QB0REdFT6NSD9MILL2DixIm4du2aYtuff/6JyZMno2fPnnqrHOlfYxdHhPk3ZDgiIiIl+bIyHM4uQr6szNhVMQk69SAtXboUr732Gnx9feHj4wMAuHr1KoKCgrB27Vq9VpCIiIgMi8vAVKbzpUaEEPjll19w8eJFAEDr1q0RFRWl18qZMl5qhIiILEG+rAzd5u9WmulsK5HgYGwPizzbYNBLjQCARCJBr1690KtXL10PQUREREbGZWDU0zggLV68WOODcqo/ERGRfhnqUlEVy8Co9iBZ+zIwGp9i8/Pz0+yAEgmuXLlSo0qZA55iIyKi2mLoMULJx/IwI+UsyoVQLANjqWOQNP3+1nkMkrVjQCIioprQtEeotsYI5cvKrGIZGIOMQZLL5bCx0WllACIiIvovbXqEamuMUGMXR4sORtrSKu3Y2dnh+vXrip8/+ugj3Lp1S++VIiIislRVXTy8qvWHeKko49AqIKmejVu5ciWKi4v1WR8iIiKLVl2PkDq8VJRx6DzNH6gcmIiIiKh6uswa46Wiah8HFBEREdUiXXuEeKmo2qV1D9Ls2bNRt+7jlPvgwQN8+umncHFxUSrz5Zdf6qd2REREFog9QqZPq4AUHh6OS5cuKX7u2rVrpTWPJBKJ6m5ERHplqAXziGoTZ42ZNq0C0t69ew1UDSIizfCimkRUGww6BsnZ2dkqVtUmotqh7fRoIiJdGTQgcZYbEemTttOjiYh0xVlsRGQ2THXBvHxZGQ5nF7Eni8iCMCARkdkwxQXzko/lodv83Ri66gi6zd+N5GN5RqsLEelPjRaKJCKqbaY0PbqqMVHhLd05O4nIzBk0IHHKv/Xh9GuqDaYyPbq2LiJKRLXPoAGJg7StC6dfk7XR5ZIRRGQeDDoG6T//+Q+8vb0N+RBkIjj9mqyRKY6JIiL90KkHSQiBzZs3Y8+ePbh+/TrkcrnS/SkpKQCA7t2717yGZBZ4qoGslSmNiSIi/dEpIE2aNAkrV65Ejx494OHhwbFGxFMNZNVMZUwUEemPTgHp+++/R0pKCnr37q3v+pCZqjjVMCPlLMqF4KkGIiIyazoFJBcXFzRr1kzfdSEzx1MNRERkKXQapD1nzhzEx8ejrIwDcElZYxdHhPk3ZDgiIiKzplMP0qBBg/DDDz+gUaNG8PX1hZ2dndL9WVlZeqkcERERkTHoFJBGjhyJzMxMvPHGGxykTURERE9lbgsJ6xSQfvrpJ/z888+cxk9ERERPZY4LCes0BsnHxwfOzs76rguR3vEq60RExmWuCwnrFJAWLlyIqVOnIjc3V8/VIdIfXmWdiMj4qltI2JTpdIrtjTfewN27d+Hv74+6detWGqR969YtvVSOSFe8yjoRkWkw14WEdQpIiYmJeq4GkX7x0idERKbBXBcS1nkWG5EpM9e/WIiILJE5LiSs0xikJ927dw8lJSVKNyJj41XWiYhMi7ktJKxTD1JpaSmmTZuGjRs34ubNm5XuLy8vr3HFiGrKHP9iISIi06BTD9LUqVOxe/duLF++HPb29vjXv/6F+Ph4eHl54bvvvtP6eMuWLYOvry8cHBwQGhqKo0ePVlt+06ZNCAgIgIODA4KDg5Gamqp0f0pKCl588UU0bNgQEokEJ0+erHSMe/fu4f3330fDhg3h5OSEAQMGoLCwUOu6k2kzt79YLAWXVyAic6dTQNq+fTu++uorDBgwAHXq1MHzzz+PmTNn4rPPPsO6deu0OlZycjKmTJmCuLg4ZGVloW3btoiOjsb169fVlj98+DCGDBmC0aNH48SJE+jXrx/69euHs2fPKsqUlpaie/fuWLBgQZWPO3nyZGzfvh2bNm3Cvn37cO3aNfTv31+ruhNRZVxegYgsgUQIIZ5eTJmTkxPOnz+PJk2a4Nlnn0VKSgo6d+6MnJwcBAcH486dOxofKzQ0FJ06dcLSpUsBAHK5HD4+Phg/fjxiY2MrlY+JiUFpaSl27Nih2NalSxeEhIRgxYoVSmVzc3Ph5+eHEydOICQkRLFdJpPB3d0d69evx8CBAwEAFy9eROvWrZGRkYEuXbo8td4lJSVwcXGBTCbjoplE/5UvK0O3+bsrDY4/GNuDvXhEZBI0/f7WqQepWbNmyMnJAQAEBARg48aNAB73LLm6ump8nAcPHiAzMxNRUVH/q5CNDaKiopCRkaF2n4yMDKXyABAdHV1leXUyMzPx8OFDpeMEBASgSZMmWh2HiJSZ64JwRESqdApIo0aNwqlTpwAAsbGxWLZsGRwcHDB58mR89NFHGh+nqKgI5eXl8PDwUNru4eGBgoICtfsUFBRoVb6qY0il0kphrrrj3L9/n7P1iJ6iYnmFJ3F5BSIyRzrNYps8ebLi/1FRUbh48SIyMzPRvHlztGnTRm+VMyUJCQmIj483djWITJq5Lghn6sztKuhElkCngPSke/fuoWnTpmjatKnW+7q5ucHW1rbS7LHCwkJ4enqq3cfT01Or8lUd48GDByguLlbqRaruONOnT8eUKVMUP5eUlMDHx0fjxySyFlxeQb/M8SroRJZAp1Ns5eXlmDdvHry9veHk5IQrV64AAGbNmoVvvvlG4+NIpVJ06NAB6enpim1yuRzp6ekICwtTu09YWJhSeQDYtWtXleXV6dChA+zs7JSOc+nSJeTl5VV5HHt7ezg7OyvdiEg9Lq+gH+Z6FXQiS6BTQPr000+RlJSEzz//HFKpVLE9KCgI//rXv7Q61pQpU7Bq1SqsWbMGFy5cwLvvvovS0lKMGjUKADBixAhMnz5dUX7ixIlIS0vDwoULcfHiRcyZMwfHjx/HuHHjFGVu3bqFkydP4vz58wAeh5+TJ08qxhe5uLhg9OjRmDJlCvbs2YPMzEyMGjUKYWFhGs1gIyKqDRz0TmQ8OgWk7777Dl9//TWGDRsGW1tbxfa2bdvi4sWLWh0rJiYGX3zxBWbPno2QkBCcPHkSaWlpioHYeXl5yM/PV5Tv2rUr1q9fj6+//hpt27bF5s2bsWXLFgQFBSnKbNu2De3atUOfPn0AAIMHD0a7du2UlgFYtGgRXnnlFQwYMADh4eHw9PRESkqKLk8HEZFBcNA7kfHotA6So6MjLl68iKZNm6J+/fo4deoUmjVrhvPnz6Nz585arYNkrrgOEhHVhuRjeZUGvXMMEpHuNP3+1mmQdmBgIA4cOFBpYPbmzZvRrl07XQ5JRERqcNA7kXHoFJBmz56NkSNH4s8//4RcLkdKSgouXbqE7777TmmFayIiqrnGLo4MRkS1TKcxSH379sX27dvxyy+/oF69epg9ezYuXLiA7du3o1evXvquIxEREVGt0mkMEnEMEhERkTky+LXYbt68WWl7cXExmjVrpsshiYiIiEyGTgEpNzcX5eXllbbfv38ff/75Z40rRUTmLV9WhsPZRWa7oKG515+Iak6rQdrbtm1T/P/nn3+Gi4uL4ufy8nKkp6fD19dXb5UjIvNj7pfGMPf6E+mK1/xTptUYJBubxx1OEokEqrvZ2dnB19cXCxcuxCuvvKLfWpogjkEiqixfVoZu83crrf5sK5HgYGwPs/jANff6E+nKmv4wMMg6SHK5HADg5+eHY8eOwc3NrWa1JCKLUt2lMcwhYJh7/Yl0UdU1/8Jbulv1771WY5AyMjKwY8cO5OTkKMLRd999Bz8/PzRq1Ahjx47F/fv3DVJRIjJ95n5pDHOvP5EueM0/9bQKSPHx8Th37pzi5zNnzmD06NGIiopCbGwstm/fjoSEBL1XkojMQ2MXRyT0D4at5HHKqLg0hrn8FWru9SfSBf8wUE+rMUiNGzfG9u3b0bFjRwDAxx9/jH379uHgwYMAgE2bNiEuLg7nz583TG1NCMcgEVUtX1Zm1pfGMPf6E2nLmq75Z5AxSH/99Rc8PDwUP+/btw8vv/yy4udOnTrh6tWrOlSXiGqbIWesmPulMcy9/kTa4jX/KtMqIHl4eCAnJwc+Pj548OABsrKyEB8fr7j/9u3bsLOz03sliUi/rGnGChFphn8YKNNqDFLv3r0RGxuLAwcOYPr06ahbty6ef/55xf2nT5+Gv7+/3itJRPpT1YwVLopIRPQ/WgWkefPmoU6dOoiIiMCqVauwatUqSKVSxf3ffvstXnzxRb1Xkoj0hzNWiMjUmcJq9lqdYnNzc8P+/fshk8ng5OQEW1tbpfs3bdoEJycnvVaQiPSrYsaK6mKI1j5jhYhMg6kMAdDpWmwuLi6VwhEANGjQQKlHiYhMD6eyE5GpMqUhAFr1IBGRZeCMFSIyRaa0mj0DEpGV4owVIjI1pjQEQKdTbERERET6ZkpDANiDREREZASGXKzVnJnKEAAGJCIiolpmKjO1TJUpDAHgKTYiIqJaZEoztahqDEhERES1iIu1mgcGJCIiolpUMVPrSVys1fQwIBEREdUiU5qpRVXjIG0iIqJaZioztahqDEhERGQ1TGlqvSnM1KKqMSAREZFV4NR60gbHIBERkcHky8pwOLvIYFPYNT0+p9aTttiDREREBmHoHhttjm9KF0El88AeJCIi0jtD99hoe3xOrSdtMSAREZHeGXoxRG2Pz6n1pC2eYiMiIr2r6LF5MsTos8dGl+Nzaj1pgz1IRESkd4busdH1+I1dHBHm35DhiJ5KIoQQTy9GqkpKSuDi4gKZTAZnZ2djV4eIyCTly8oM2mNj6OOT5dH0+5un2IiIyGAMvRgiF1skQ+EpNtIrQ695QkREVBvYg0R6w1VqjcuULqFARGTuGJBIL6pakyS8pTu/rGsBwykRkX7xFBvphaHXPLFGvIQCEZHxsAeJ9MLQa55YG15CgZ7E06dEtY89SKQXXKVWf3gJBeMzpckGycfy0G3+bgxddQTd5u9G8rE8Y1eJyCqwB4n0hqvU6oe2PUIV4XRGylmUC8FwWkOmNJ6LY/uIjIcBifSKa5LUHC+hYDymFkh4+vTpePqRDIUBicjE6NojxHBac7oGEkN9SXNsX/VMqbePLA8DkpXhX1vmgT1CxqFLIDHklzRPn1bN1Hr7yPIwIFkR/rVlXNqGU/YI1T5tA0ltfEkzLKvH049kaAxIVoJ/bRkXw6n50CaQ1NaXNMNyZTz9SIbGaf5Wggs5Gg8XcjQ/jV0cEebf8KmhhEssGA+XFiFDYw+SleBfW8bDUwGWi2OEjIunH8mQGJCsBD/IjYfh1LJZ25e0qU304OlHMhQGJCtibR/kpoLh1PJZy5c0x9LRk0wtLOubRAghnl6MVJWUlMDFxQUymQzOzs7Grg6ZgXxZGcMpma18WRm6zd9dqSf0YGwP/j5bIXMOy5p+f3OQNlEt0XTgL5Ep4kQPqmAtE08YkKhapnTRTiIyHs7YowrWEpYZkKhKvIo4EVXgtHqqYC1hmWOQdGTpY5A43oCI1OFYOgIe/wGtOvHE0sYgcRabmTPULAKu3fN0lj6Dg0gdQ8/Y4/uqaqb03FjDrGgGJDNmyFkEXLuneuY8g8MSmNIXBekP31dVM8XnxtKXt+AYJDNl6FkEjV0c8Xo7b6Vt/dp5WfSbQVPWMoPDVHFsnGXi+6pqfG6MgwHJTBl6FkG+rAw/nvhTaduWE9f4hoT1zOAwRfyisFx8X1WNz41xMCCZKUPPIuAbsmrWMoPDFPH30nLxfVU1PjfGwYBkpgw95ZZvyKpxurPx8PfScvF9VTU+N8ZhEtP8ly1bhn/84x8oKChA27ZtsWTJEnTu3LnK8ps2bcKsWbOQm5uLFi1aYMGCBejdu7fifiEE4uLisGrVKhQXF6Nbt25Yvnw5WrRooSjj6+uL33//Xem4CQkJiI2N1ajOpjLN35BTbs15Gmdt4HRn4+DvpWXj+6pqfG70Q9Pvb6MHpOTkZIwYMQIrVqxAaGgoEhMTsWnTJly6dAmNGjWqVP7w4cMIDw9HQkICXnnlFaxfvx4LFixAVlYWgoKCAAALFixAQkIC1qxZAz8/P8yaNQtnzpzB+fPn4eDgAOBxQBo9ejTGjBmjOHb9+vVRr149jeptKgHJ0PiGJFPE30uqDZwtaZnMJiCFhoaiU6dOWLp0KQBALpfDx8cH48ePV9ubExMTg9LSUuzYsUOxrUuXLggJCcGKFSsghICXlxc++OADfPjhhwAAmUwGDw8PJCUlYfDgwQAeB6RJkyZh0qRJOtXbWgISEZE1MsVp9aQfZnGx2gcPHiAzMxNRUVGKbTY2NoiKikJGRobafTIyMpTKA0B0dLSifE5ODgoKCpTKuLi4IDQ0tNIx58+fj4YNG6Jdu3b4xz/+gUePHlVZ1/v376OkpETpRkREloezJQkw8kKRRUVFKC8vh4eHh9J2Dw8PXLx4Ue0+BQUFassXFBQo7q/YVlUZAJgwYQLat2+PBg0a4PDhw5g+fTry8/Px5Zdfqn3chIQExMfHa9dAIiIyO7ySAAFWvJL2lClTFP9v06YNpFIp3n77bSQkJMDe3r5S+enTpyvtU1JSAh8fn1qpKxER1Z56Ulu12+tKOfHbmhj11XZzc4OtrS0KCwuVthcWFsLT01PtPp6entWWr/hXm2MCj8dCPXr0CLm5uWrvt7e3h7Ozs9KNSBv5sjIczi5iNz2RiSt9UK52+90H8lquCRmTUQOSVCpFhw4dkJ6ertgml8uRnp6OsLAwtfuEhYUplQeAXbt2Kcr7+fnB09NTqUxJSQmOHDlS5TEB4OTJk7CxsVE7c46opnh5jOoxPJIp4XpbBJjAKbYpU6Zg5MiR6NixIzp37ozExESUlpZi1KhRAIARI0bA29sbCQkJAICJEyciIiICCxcuRJ8+fbBhwwYcP34cX3/9NQBAIpFg0qRJ+OSTT9CiRQvFNH8vLy/069cPwOOB3keOHEGPHj1Qv359ZGRkYPLkyXjjjTfwzDPPGOV5IMtV1YDP8JbuHM8AzhYi01OxMKPqelt8v1oXowekmJgY3LhxA7Nnz0ZBQQFCQkKQlpamGGSdl5cHG5v/dXR17doV69evx8yZMzFjxgy0aNECW7ZsUayBBABTp05FaWkpxo4di+LiYnTv3h1paWmKNZDs7e2xYcMGzJkzB/fv34efnx8mT56sNMaISF90HfBpDWuwMDySqYrp1AThLd253pYVM/o6SOaK6yCRpvJlZeg2f7dSSLKVSHAwtkeVH7rW0qtyOLsIQ1cdqbT9hzFdEObf0Ag1IiJLZxbrIFFlHIthebS9jpI1rcFSW2M9+L4iIm0Z/RQb/Y+19BpYo5hOTRDgWR/Hcv9CJ99n0Nan6rFu1rQGS22M9eD7ioh0wYBkIjgWw/xoM0ZImy/pil4V1VNyljqDxpBjPfi+opqwhnGAVDUGJBNhTb0GlkCbwKPtl7Q1zqBp7OJokPbxfUW6Ys8jMSCZCGvrNTBn2gYeXb6kOYNGP/i+Il2w55EADtI2GdoO5CXjqS7wqKPrQOTGLo4I82/I34Ea4PuKdKHte5wsE3uQTAh7DYxL0/EG2vZKWOMpM1PC9xVpiz2PBHAdJJ1xHSTLou14g+RjeZUCz9PGJ+TLyvglTWQmdHmPk3nQ9PubAUlHDEiWQ5eFHCv2Y+Ahslx8j1smTb+/eYqNrJ6uM50MNfOKiEwD3+PWjYO0yerxyt1ERKSKAYmsHmc6ERGRKp5iIwJnOukbVyAmInPHgERGZUpfpBxvoB9cgZiILAEDEhkNv0gtD1cgJiJLwTFIZBRVfZHmy8qMWzGqEa5ATESWggGJjIJfpJaJMwKJyFIwIJFR8ItU//JlZTicXWTUXjjOCCQiS8ExSGQUvD7Z02kzgN2UxnNxRiARWQJeakRHvNSIfnApf/W0CTy6XiqFCDCtmaREtYGXGiGzwKn1lWk7E0zXS6WYEn5JG4cp9TwSmRoGJCITo23gqRjPpdqDZC7jufglbRxckoGoehykTWRitB3AXlsDow0xCJzLPRgPZ5JSTZnCxBBDYg8SkYnRZQC7oQdGG6qXxxJOD5orc+95JOOyhp5fBiQzx7EblkmXwGOo8VyGPBXDL2nj4UxS0pW1nJ5lQDJj1pDgrZm2gcdQYdmQvTz8kjYuLslAurCWnl8GJDNlLQmeNGPIsGzoXh5+SRsXZ5KStqyl55eDtM0UB1hSBUMPdK6NQeCNXRwR5t+QX9R6YOkDZ8n4rGXFfPYgmSlrSfD0dLXR3c1eHvPA0+5UW6zhM4E9SGbKWhI8PV1tXdeOvTymjUsmUG2z9M8E9iCZMWtI8PR0HOhMgPUMnCWqLQxIZo4DLAlgWCaedifSN55iI/ovcx/caund3VQ9nnYn0i/2IBGBg1vJMrAnkUh/2INEVo+DW8mSsCeRSD8YkMjqcU0p/TP305VERDzFRlaPg1v1i6cricgSsAeJrB4Ht+oPT1cSkaVgDxIROLhVX7gWDxFZCgYkov/imlI1x9OVRGQpeIqNiPSGpyuJyFKwB4moluTLypBTVAo/t3oWHRh4upKILAEDElEtsLaZXTxdSUTmjqfYiAyMM7uIiMwPAxKRgXEhSiIi88OARGRgFTO7nsSZXUREpo0BicjAOLOLiMj8cJA26ZW1zNTSFmd2EWmGnyFkKhiQSG+sbaaWtjizi6h6/AyxbOYWfnmKjfSCM7WIqCb4GWLZko/lodv83Ri66gi6zd+N5GN5xq7SUzEgkV5wphYR1QQ/QyyXuYZfBiTSC87UIqKa4GeI5TLX8MuARNXKl5XhcHbRU5M+Z2oRkTr8DCFzDb8SIYR4ejFSVVJSAhcXF8hkMjg7Oxu7Ogahy4DJfFkZZ2oRmRFDDpzlZwhVSD6WhxkpZ1EuhCL8GmsAvqbf3wxIOrL0gJQvK0O3+buVukVtJRIcjO3BDy0iC2HIWWP8DCFVphJ+Nf3+5ik2UstczxkTkWYMPXCWnyGkqrGLI8L8G5pNQGZAIrXM9ZwxEWnG0AGGnyFk7hiQSC0OmCRrpunAYnNm6ADDzxAydxyDpCNLH4NUwVTOGRPVFmtazbk2Bs7yM4RMDQdpG5ipBCRzW7qdyJRZ48BiBhiyNpp+f/NabGbMmv7SrQ0Mm1TduBxL/Z3gNQKJ1GNAMlNVzUAJb+nODzsdMGwS8L9xOao9SBxYTGR9OEjbTFnKFFpTGAxrrtcJIv3jwGKqCVP4PCP9YQ+SmbKEv3RNpddG19MqPCVnmWI6NUF4S3eOyyGtmMrnmSkzt89MBiQzVfGXruoMFHP4pQNM6xShLmGTH4aWjeNySBum9HlmqszxM9MkTrEtW7YMvr6+cHBwQGhoKI4ePVpt+U2bNiEgIAAODg4IDg5Gamqq0v1CCMyePRuNGzeGo6MjoqKicPnyZaUyt27dwrBhw+Ds7AxXV1eMHj0ad+7c0XvbDCmmUxMcjO2BH8Z0wcHYHib/y/YkUzpFqO1pFZ6SI6InmdLnmSky189Mowek5ORkTJkyBXFxccjKykLbtm0RHR2N69evqy1/+PBhDBkyBKNHj8aJEyfQr18/9OvXD2fPnlWU+fzzz7F48WKsWLECR44cQb169RAdHY179+4pygwbNgznzp3Drl27sGPHDuzfvx9jx441eHv1zdyWbq9gaqvsahM2+WFIRE8ytc8zU2Oun5lGXwcpNDQUnTp1wtKlSwEAcrkcPj4+GD9+PGJjYyuVj4mJQWlpKXbs2KHY1qVLF4SEhGDFihUQQsDLywsffPABPvzwQwCATCaDh4cHkpKSMHjwYFy4cAGBgYE4duwYOnbsCABIS0tD79698ccff8DLy+up9TaVdZDMmSld3Vkb1rhWDhFVz1w/z2qDqX1mmsXFah88eIDMzExERUUpttnY2CAqKgoZGRlq98nIyFAqDwDR0dGK8jk5OSgoKFAq4+LigtDQUEWZjIwMuLq6KsIRAERFRcHGxgZHjhxR+7j3799HSUmJ0o1qxlxPEXKmExGpMtfPs9pgrp+ZRh2kXVRUhPLycnh4eCht9/DwwMWLF9XuU1BQoLZ8QUGB4v6KbdWVadSokdL9derUQYMGDRRlVCUkJCA+Pl7DlpGmzHUwLGc6EZEqc/08qw3m+Jlp9DFI5mL69OmQyWSK29WrV41dJTIycx3/RURkDOb2mWnUgOTm5gZbW1sUFhYqbS8sLISnp6fafTw9PastX/Hv08qoDgJ/9OgRbt26VeXj2tvbw9nZWelGRERElsmoAUkqlaJDhw5IT09XbJPL5UhPT0dYWJjafcLCwpTKA8CuXbsU5f38/ODp6alUpqSkBEeOHFGUCQsLQ3FxMTIzMxVldu/eDblcjtDQUL21j4iIiMyT0ReKnDJlCkaOHImOHTuic+fOSExMRGlpKUaNGgUAGDFiBLy9vZGQkAAAmDhxIiIiIrBw4UL06dMHGzZswPHjx/H1118DACQSCSZNmoRPPvkELVq0gJ+fH2bNmgUvLy/069cPANC6dWu89NJLGDNmDFasWIGHDx9i3LhxGDx4sEYz2IiIiMiyGT0gxcTE4MaNG5g9ezYKCgoQEhKCtLQ0xSDrvLw82Nj8r6Ora9euWL9+PWbOnIkZM2agRYsW2LJlC4KCghRlpk6ditLSUowdOxbFxcXo3r070tLS4ODgoCizbt06jBs3Dj179oSNjQ0GDBiAxYsX117DiYiIyGQZfR0kc8V1kIiIiMyPWayDRERERGSKGJCIiIiIVDAgEREREalgQCIiIiJSwYBEREREpIIBiYiIiEiF0ddBMlcVqyOUlJQYuSZERESkqYrv7aetcsSApKPbt28DAHx8fIxcEyIiItLW7du34eLiUuX9XChSR3K5HNeuXUP9+vUhkUj0dtySkhL4+Pjg6tWrFrsApaW30dLbB1h+G9k+82fpbWT7dCeEwO3bt+Hl5aV0pQ5V7EHSkY2NDZ599lmDHd/Z2dkif+mfZOlttPT2AZbfRrbP/Fl6G9k+3VTXc1SBg7SJiIiIVDAgEREREalgQDIx9vb2iIuLg729vbGrYjCW3kZLbx9g+W1k+8yfpbeR7TM8DtImIiIiUsEeJCIiIiIVDEhEREREKhiQiIiIiFQwIBERERGpYECqBcuWLYOvry8cHBwQGhqKo0ePVls+MTERrVq1gqOjI3x8fDB58mTcu3evRsc0JH23b86cOZBIJEq3gIAAQzejWtq08eHDh5g7dy78/f3h4OCAtm3bIi0trUbHNDR9t8+UXsP9+/fj1VdfhZeXFyQSCbZs2fLUffbu3Yv27dvD3t4ezZs3R1JSUqUypvL6GaJ9pvT6Adq3MT8/H0OHDkXLli1hY2ODSZMmqS23adMmBAQEwMHBAcHBwUhNTdV/5TVgiPYlJSVVeg0dHBwM0wANaNvGlJQU9OrVC+7u7nB2dkZYWBh+/vnnSuUM+j4UZFAbNmwQUqlUfPvtt+LcuXNizJgxwtXVVRQWFqotv27dOmFvby/WrVsncnJyxM8//ywaN24sJk+erPMxDckQ7YuLixPPPfecyM/PV9xu3LhRW02qRNs2Tp06VXh5eYmffvpJZGdni6+++ko4ODiIrKwsnY9pSIZonym9hqmpqeLjjz8WKSkpAoD48ccfqy1/5coVUbduXTFlyhRx/vx5sWTJEmFrayvS0tIUZUzp9TNE+0zp9RNC+zbm5OSICRMmiDVr1oiQkBAxceLESmUOHTokbG1txeeffy7Onz8vZs6cKezs7MSZM2cM04hqGKJ9q1evFs7OzkqvYUFBgWEaoAFt2zhx4kSxYMECcfToUfHrr7+K6dOnCzs7u1r9HGVAMrDOnTuL999/X/FzeXm58PLyEgkJCWrLv//+++KFF15Q2jZlyhTRrVs3nY9pSIZoX1xcnGjbtq1B6qsLbdvYuHFjsXTpUqVt/fv3F8OGDdP5mIZkiPaZ2mtYQZMP5qlTp4rnnntOaVtMTIyIjo5W/GxKr9+T9NU+U339hNCsjU+KiIhQGyAGDRok+vTpo7QtNDRUvP322zWsYc3oq32rV68WLi4uequXPmnbxgqBgYEiPj5e8bOh34c8xWZADx48QGZmJqKiohTbbGxsEBUVhYyMDLX7dO3aFZmZmYpuwitXriA1NRW9e/fW+ZiGYoj2Vbh8+TK8vLzQrFkzDBs2DHl5eYZrSDV0aeP9+/crdWU7Ojri4MGDOh/TUAzRvgqm8hpqKyMjQ+n5AIDo6GjF82FKr58unta+Cub6+mlK0+fBnN25cwdNmzaFj48P+vbti3Pnzhm7SjqTy+W4ffs2GjRoAKB23ocMSAZUVFSE8vJyeHh4KG338PBAQUGB2n2GDh2KuXPnonv37rCzs4O/vz8iIyMxY8YMnY9pKIZoHwCEhoYiKSkJaWlpWL58OXJycvD888/j9u3bBm2POrq0MTo6Gl9++SUuX74MuVyOXbt2ISUlBfn5+Tof01AM0T7AtF5DbRUUFKh9PkpKSlBWVmZSr58untY+wLxfP01V9TyYw2uoiVatWuHbb7/F1q1bsXbtWsjlcnTt2hV//PGHsaumky+++AJ37tzBoEGDANTO5ygDkonZu3cvPvvsM3z11VfIyspCSkoKfvrpJ8ybN8/YVdMLTdr38ssv429/+xvatGmD6OhopKamori4GBs3bjRizTX3z3/+Ey1atEBAQACkUinGjRuHUaNGwcbGMt5umrTP3F9Da8fXz/yFhYVhxIgRCAkJQUREBFJSUuDu7o6VK1cau2paW79+PeLj47Fx40Y0atSo1h63Tq09khVyc3ODra0tCgsLlbYXFhbC09NT7T6zZs3C8OHD8dZbbwEAgoODUVpairFjx+Ljjz/W6ZiGYoj2qQsRrq6uaNmyJX777Tf9N+IpdGmju7s7tmzZgnv37uHmzZvw8vJCbGwsmjVrpvMxDcUQ7VPHmK+htjw9PdU+H87OznB0dIStra3JvH66eFr71DGn109TVT0P5vAa6sLOzg7t2rUzu9dww4YNeOutt7Bp0yal02m18TlqGX/SmiipVIoOHTogPT1dsU0ulyM9PR1hYWFq97l7926lkGBrawsAEELodExDMUT71Llz5w6ys7PRuHFjPdVcczV5vh0cHODt7Y1Hjx7h3//+N/r27VvjY+qbIdqnjjFfQ22FhYUpPR8AsGvXLsXzYUqvny6e1j51zOn105Quz4M5Ky8vx5kzZ8zqNfzhhx8watQo/PDDD+jTp4/SfbXyPtTLUG+q0oYNG4S9vb1ISkoS58+fF2PHjhWurq6K6ZbDhw8XsbGxivJxcXGifv364ocffhBXrlwRO3fuFP7+/mLQoEEaH9Pc2/fBBx+IvXv3ipycHHHo0CERFRUl3NzcxPXr12u9fUJo38b/+7//E//+979Fdna22L9/v3jhhReEn5+f+OuvvzQ+Zm0yRPtM6TW8ffu2OHHihDhx4oQAIL788ktx4sQJ8fvvvwshhIiNjRXDhw9XlK+YBv/RRx+JCxcuiGXLlqmd5m8qr58h2mdKr58Q2rdRCKEo36FDBzF06FBx4sQJce7cOcX9hw4dEnXq1BFffPGFuHDhgoiLizPaNH9DtC8+Pl78/PPPIjs7W2RmZorBgwcLBwcHpTK1Sds2rlu3TtSpU0csW7ZMaamC4uJiRRlDvw8ZkGrBkiVLRJMmTYRUKhWdO3cW//d//6e4LyIiQowcOVLx88OHD8WcOXOEv7+/cHBwED4+PuK9995T+vJ52jFrm77bFxMTIxo3biykUqnw9vYWMTEx4rfffqvFFlWmTRv37t0rWrduLezt7UXDhg3F8OHDxZ9//qnVMWubvttnSq/hnj17BIBKt4o2jRw5UkRERFTaJyQkREilUtGsWTOxevXqSsc1ldfPEO0zpddPCN3aqK5806ZNlcps3LhRtGzZUkilUvHcc8+Jn376qXYapMIQ7Zs0aZLi99PDw0P07t1baQ2h2qZtGyMiIqotX8GQ70OJEFWc1yAiIiKyUhyDRERERKSCAYmIiIhIBQMSERERkQoGJCIiIiIVDEhEREREKhiQiIiIiFQwIBERERGpYEAiIrIQe/fuhUQiQXFxsbGrQmT2GJCISGtvvvkmJBIJ5s+fr7R9y5YtkEgkip+FEFi1ahXCwsLg7OwMJycnPPfcc5g4caLGF828e/cupk+fDn9/fzg4OMDd3R0RERHYunWrooyvry8SExP10jZDq3juJBIJ7Ozs4Ofnh6lTp+LevXtaHScyMhKTJk1S2ta1a1fk5+fDxcVFjzUmsk4MSESkEwcHByxYsAB//fWX2vuFEBg6dCgmTJiA3r17Y+fOnTh//jy++eYbODg44JNPPtHocd555x2kpKRgyZIluHjxItLS0jBw4EDcvHlTn82pVS+99BLy8/Nx5coVLFq0CCtXrkRcXFyNjyuVSuHp6akUUolIR3q7aAkRWY2RI0eKV155RQQEBIiPPvpIsf3HH38UFR8rP/zwgwAgtm7dqvYYcrlco8dycXERSUlJVd6v7ppNFQ4cOCC6d+8uHBwcxLPPPivGjx8v7ty5o7j/u+++Ex06dBBOTk7Cw8NDDBkyRBQWFirur7h+VFpamggJCREODg6iR48eorCwUKSmpoqAgABRv359MWTIEFFaWqpRe0aOHCn69u2rtK1///6iXbt2ip+LiorE4MGDhZeXl3B0dBRBQUFi/fr1SsdQbXNOTo6ivk9e23Dz5s0iMDBQSKVS0bRpU/HFF19oVE8ia8ceJCLSia2tLT777DMsWbIEf/zxR6X7f/jhB7Rq1Qqvvfaa2v017eXw9PREamoqbt++rfb+lJQUPPvss5g7dy7y8/ORn58PAMjOzsZLL72EAQMG4PTp00hOTsbBgwcxbtw4xb4PHz7EvHnzcOrUKWzZsgW5ubl48803Kz3GnDlzsHTpUhw+fBhXr17FoEGDkJiYiPXr1+Onn37Czp07sWTJEo3ao+rs2bM4fPgwpFKpYtu9e/fQoUMH/PTTTzh79izGjh2L4cOH4+jRowCAf/7znwgLC8OYMWMUbfbx8al07MzMTAwaNAiDBw/GmTNnMGfOHMyaNQtJSUk61ZXIqhg7oRGR+XmyF6RLly7i73//uxBCuQcpICBAvPbaa0r7TZw4UdSrV0/Uq1dPeHt7a/RY+/btE88++6yws7MTHTt2FJMmTRIHDx5UKtO0aVOxaNEipW2jR48WY8eOVdp24MABYWNjI8rKytQ+1rFjxwQAcfv2bSHE/3qQfvnlF0WZhIQEAUBkZ2crtr399tsiOjpao/aMHDlS2Nrainr16gl7e3sBQNjY2IjNmzdXu1+fPn3EBx98oPg5IiJCTJw4UamMag/S0KFDRa9evZTKfPTRRyIwMFCjuhJZM/YgEVGNLFiwAGvWrMGFCxeeWvbjjz/GyZMnMXv2bNy5c0ej44eHh+PKlStIT0/HwIEDce7cOTz//POYN29etfudOnUKSUlJcHJyUtyio6Mhl8uRk5MD4HEPy6uvvoomTZqgfv36iIiIAADk5eUpHatNmzaK/3t4eKBu3bpo1qyZ0rbr169r1B4A6NGjB06ePIkjR45g5MiRGDVqFAYMGKC4v7y8HPPmzUNwcDAaNGgAJycn/Pzzz5Xq9TQXLlxAt27dlLZ169YNly9fRnl5uVbHIrI2DEhEVCPh4eGIjo7G9OnTlba3aNECly5dUtrm7u6O5s2bo1GjRlo9hp2dHZ5//nlMmzYNO3fuxNy5czFv3jw8ePCgyn3u3LmDt99+GydPnlTcTp06hcuXL8Pf3x+lpaWIjo6Gs7Mz1q1bh2PHjuHHH38EgErHtbOzU/y/YvbZkyQSCeRyucbtqVevHpo3b462bdvi22+/xZEjR/DNN98o7v/HP/6Bf/7zn5g2bRr27NmDkydPIjo6utr2EpF+1TF2BYjI/M2fPx8hISFo1aqVYtuQIUMwdOhQbN26FX379tXr4wUGBuLRo0e4d+8epFIppFJppR6R9u3b4/z582jevLnaY5w5cwY3b97E/PnzFeN3jh8/rtd6asLGxgYzZszAlClTMHToUDg6OuLQoUPo27cv3njjDQCAXC7Hr7/+isDAQMV+6tqsqnXr1jh06JDStkOHDqFly5awtbXVf2OILAh7kIioxoKDgzFs2DAsXrxYsW3w4MEYOHAgBg8ejLlz5+LIkSPIzc3Fvn37kJycrPEXdGRkJFauXInMzEzk5uYiNTUVM2bMQI8ePeDs7Azg8TpI+/fvx59//omioiIAwLRp03D48GGMGzcOJ0+exOXLl7F161bFIO0mTZpAKpViyZIluHLlCrZt2/bU03aG8re//Q22trZYtmwZgMe9b7t27cLhw4dx4cIFvP322ygsLFTax9fXV/GcFhUVqe3B+uCDD5Ceno558+bh119/xZo1a7B06VJ8+OGHtdIuInPGgEREejF37lylL2mJRILk5GQkJiYiNTUVPXv2RKtWrfD3v/8dPj4+OHjwoEbHjY6Oxpo1a/Diiy+idevWGD9+PKKjo7Fx40alx87NzYW/vz/c3d0BPB43tG/fPvz66694/vnn0a5dO8yePRteXl4AHp/uS0pKwqZNmxAYGIj58+fjiy++0OMzork6depg3Lhx+Pzzz1FaWoqZM2eiffv2iI6ORmRkJDw9PdGvXz+lfT788EPY2toiMDAQ7u7uascntW/fHhs3bsSGDRsQFBSE2bNnY+7cuWpn6hGRMokQQhi7EkRERESmhD1IRERERCoYkIjIqJ6chq96O3DggLGrp5W8vLxq26PtNH0iMh6eYiMio6ruorXe3t5wdHSsxdrUzKNHj5Cbm1vl/b6+vqhTh5OHicwBAxIRERGRCp5iIyIiIlLBgERERESkggGJiIiISAUDEhEREZEKBiQiIiIiFQxIRERERCoYkIiIiIhUMCARERERqfh/GFpSctuXoC8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT4NJREFUeJzt3Xl4TGf/P/D3ZI/ETIqsRBJrktqKIqKWNm1auiiK2kItLWKnRGsLFTxtqd3jW4kuFC2l5FFK0UiqSrW11BJRWxbhMRGRiOT+/eGXeUyzmJnMZM45835d11xX5pwzZz73nMk5n7m3oxJCCBAREREplJ21AyAiIiKyJCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7RCQJs2fPhkqlMmhblUqF2bNnWzSezp07o3PnzpLdHxEZjskOEelJSEiASqXSPRwcHFC7dm0MHjwY165ds3Z4khMYGKj3eXl5eeGZZ57Btm3bzLL/vLw8zJ49GwcOHDDL/ohsEZMdIipTbGwsPv/8c6xevRovvfQSvvjiC3Tq1An5+fkWeb/3338f9+7ds8i+La1Fixb4/PPP8fnnn2Py5Mm4fv06evTogdWrV1d633l5eZgzZw6THaJKcLB2AEQkTS+99BJat24NABg2bBhq1aqFhQsXYseOHejdu7fZ38/BwQEODvI8JdWuXRsDBgzQPR80aBAaNGiAxYsX45133rFiZEQEsGaHiAz0zDPPAABSU1P1lv/111/o1asXatSoARcXF7Ru3Ro7duzQ26awsBBz5sxBw4YN4eLigpo1a6JDhw7Yu3evbpuy+uwUFBRgwoQJ8PT0RPXq1fHqq6/i6tWrpWIbPHgwAgMDSy0va5/x8fF49tln4eXlBWdnZ4SGhmLVqlVGfRaP4+Pjg5CQEKSlpVW4XVZWFoYOHQpvb2+4uLigefPmWL9+vW79pUuX4OnpCQCYM2eOrqnM0v2ViJRGnj+jiKjKXbp0CQDwxBNP6JadOnUK4eHhqF27NqZNmwY3Nzds3rwZ3bt3xzfffIPXX38dwMOkIy4uDsOGDUObNm2Qk5ODX3/9FcePH8fzzz9f7nsOGzYMX3zxBfr164f27dtj//796NatW6XKsWrVKjz55JN49dVX4eDggO+++w6jRo1CcXExRo8eXal9lygsLMSVK1dQs2bNcre5d+8eOnfujAsXLiA6OhpBQUHYsmULBg8ejNu3b2PcuHHw9PTEqlWrMHLkSLz++uvo0aMHAKBZs2ZmiZPIZggiokfEx8cLAOKHH34QN27cEFeuXBFff/218PT0FM7OzuLKlSu6bZ977jnRtGlTkZ+fr1tWXFws2rdvLxo2bKhb1rx5c9GtW7cK33fWrFni0VPSiRMnBAAxatQove369esnAIhZs2bplkVFRYmAgIDH7lMIIfLy8kptFxkZKerVq6e3rFOnTqJTp04VxiyEEAEBAeKFF14QN27cEDdu3BC///676Nu3rwAgxowZU+7+lixZIgCIL774Qrfs/v37IiwsTLi7u4ucnBwhhBA3btwoVV4iMg6bsYioTBEREfD09IS/vz969eoFNzc37NixA3Xq1AEA3Lp1C/v370fv3r1x584dZGdnIzs7Gzdv3kRkZCTOnz+vG73l4eGBU6dO4fz58wa/f2JiIgBg7NixesvHjx9fqXK5urrq/tZqtcjOzkanTp1w8eJFaLVak/a5Z88eeHp6wtPTE82bN8eWLVswcOBALFy4sNzXJCYmwsfHB2+++aZumaOjI8aOHYvc3FwcPHjQpFiIqDQ2YxFRmVasWIFGjRpBq9Vi3bp1OHToEJydnXXrL1y4ACEEZsyYgRkzZpS5j6ysLNSuXRuxsbF47bXX0KhRIzRp0gQvvvgiBg4cWGFzzN9//w07OzvUr19fb3njxo0rVa7Dhw9j1qxZSElJQV5ent46rVYLjUZj9D7btm2LefPmQaVSoVq1aggJCYGHh0eFr/n777/RsGFD2Nnp/+YMCQnRrSci82CyQ0RlatOmjW40Vvfu3dGhQwf069cPZ8+ehbu7O4qLiwEAkydPRmRkZJn7aNCgAQCgY8eOSE1Nxfbt27Fnzx783//9HxYvXozVq1dj2LBhlY61vMkIi4qK9J6npqbiueeeQ3BwMD7++GP4+/vDyckJiYmJWLx4sa5MxqpVqxYiIiJMei0RWR6THSJ6LHt7e8TFxaFLly5Yvnw5pk2bhnr16gF42PRiyIW+Ro0aGDJkCIYMGYLc3Fx07NgRs2fPLjfZCQgIQHFxMVJTU/Vqc86ePVtq2yeeeAK3b98utfyftSPfffcdCgoKsGPHDtStW1e3/Mcff3xs/OYWEBCAP/74A8XFxXq1O3/99ZduPVB+IkdEhmOfHSIySOfOndGmTRssWbIE+fn58PLyQufOnbFmzRqkp6eX2v7GjRu6v2/evKm3zt3dHQ0aNEBBQUG57/fSSy8BAJYuXaq3fMmSJaW2rV+/PrRaLf744w/dsvT09FKzGNvb2wMAhBC6ZVqtFvHx8eXGYSldu3ZFRkYGNm3apFv24MEDLFu2DO7u7ujUqRMAoFq1agBQZjJHRIZhzQ4RGWzKlCl44403kJCQgHfeeQcrVqxAhw4d0LRpUwwfPhz16tVDZmYmUlJScPXqVfz+++8AgNDQUHTu3BmtWrVCjRo18Ouvv+Lrr79GdHR0ue/VokULvPnmm1i5ciW0Wi3at2+Pffv24cKFC6W27du3L6ZOnYrXX38dY8eORV5eHlatWoVGjRrh+PHjuu1eeOEFODk54ZVXXsHbb7+N3NxcrF27Fl5eXmUmbJY0YsQIrFmzBoMHD8axY8cQGBiIr7/+GocPH8aSJUtQvXp1AA87VIeGhmLTpk1o1KgRatSogSZNmqBJkyZVGi+RrFl7OBgRSUvJ0POjR4+WWldUVCTq168v6tevLx48eCCEECI1NVUMGjRI+Pj4CEdHR1G7dm3x8ssvi6+//lr3unnz5ok2bdoIDw8P4erqKoKDg8UHH3wg7t+/r9umrGHi9+7dE2PHjhU1a9YUbm5u4pVXXhFXrlwpcyj2nj17RJMmTYSTk5No3Lix+OKLL8rc544dO0SzZs2Ei4uLCAwMFAsXLhTr1q0TAERaWppuO2OGnj9uWH15+8vMzBRDhgwRtWrVEk5OTqJp06YiPj6+1GuTk5NFq1athJOTE4ehE5lAJcQj9blERERECsM+O0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNkwoCKC4uxvXr11G9enVOzU5ERCQTQgjcuXMHfn5+pW6q+ygmOwCuX78Of39/a4dBREREJrhy5Qrq1KlT7nomO4BuWvYrV65ArVZbORoiIiIyRE5ODvz9/XXX8fIw2cH/7iqsVquZ7BAREcnM47qgsIMyERERKRqTHSIiIlI0JjtERESkaOyzQyRDxcXFuH//vrXDIAVydHSEvb29tcMgMismO0Qyc//+faSlpaG4uNjaoZBCeXh4wMfHh/OOkWIw2SGSESEE0tPTYW9vD39//won0SIylhACeXl5yMrKAgD4+vpaOSIi82CyQyQjDx48QF5eHvz8/FCtWjVrh0MK5OrqCgDIysqCl5cXm7RIEfizkEhGioqKAABOTk5WjoSUrCSRLiwstHIkRObBZIdIhtiXgiyJ3y9SGiY7REREpGhMdohIFg4fPoymTZvC0dER3bt3t3Y4RCQjTHZkLF17D8mp2UjX3rN2KEQVGjx4MFQqFVQqFRwdHREUFIR3330X+fn5Bu9j4sSJaNGiBdLS0pCQkGC5YKtQQkKC7nOxt7fHE088gbZt2yI2NhZardbo/alUKnz77bfmD5RI5jgaS6Y2Hb2MmK1/olgAdiogrkdT9Hm6rrXDIirXiy++iPj4eBQWFuLYsWOIioqCSqXCwoULDXp9amoq3nnnHdSpU8fkGO7fv19lnbuFECgqKoKDQ8WnWbVajbNnz0IIgdu3byM5ORlxcXGIj4/H4cOH4efnVyXxEikZa3ZkKF17T5foAECxAKZvPckaHpI0Z2dn+Pj4wN/fH927d0dERAT27t0L4OGM0HFxcQgKCoKrqyuaN2+Or7/+GgBw6dIlqFQq3Lx5E2+99RZUKpWuZufgwYNo06YNnJ2d4evri2nTpuHBgwe69+zcuTOio6Mxfvx41KpVC5GRkThw4ABUKhW+//57PPXUU3B1dcWzzz6LrKws/Oc//0FISAjUajX69euHvLw83b4qihGAbr//+c9/0KpVKzg7OyMpKemxn4tKpYKPjw98fX0REhKCoUOHIjk5Gbm5uXj33Xd12wUGBmLJkiV6r23RogVmz56tWw8Ar7/+OlQqFQIDA3Hp0iXY2dnh119/1XvdkiVLEBAQwIkpqUpIoRWCNTsylJZ9V5folCgSApey8+CrcbVOUCQ76dp7SMu+i6BablX+vTl58iSSk5MREBAAAIiLi8MXX3yB1atXo2HDhjh06BAGDBgAT09PdOjQAenp6WjcuDFiY2PRp08faDQaXLt2DV27dsXgwYPx2Wef4a+//sLw4cPh4uKiSwAAYP369Rg5ciQOHz78sNzp6QCA2bNnY/ny5ahWrRp69+6N3r17w9nZGRs2bEBubi5ef/11LFu2DFOnTn1sjJ06ddK937Rp0/Dhhx+iXr16eOKJJ0z6fLy8vNC/f3+sW7cORUVFBs11c/ToUXh5eSE+Ph4vvvgi7O3t4enpiYiICMTHx6N169a6bePj4zF48GBOSkkWJ5VWCCY7MhRUyw12KuglPPYqFQJrcZI5Mow1TkA7d+6Eu7s7Hjx4gIKCAtjZ2WH58uUoKCjA/Pnz8cMPPyAsLAwAUK9ePSQlJWHNmjXo1KmT7tYFGo0GPj4+AICVK1fC398fy5cvh0qlQnBwMK5fv46pU6di5syZugt5w4YNsWjRIl0cJcnOvHnzEB4eDgAYOnQoYmJikJqainr16gEAevXqhR9//BFTp041KMYSsbGxeP755yv9eQUHB+POnTu4efMmvLy8Hru9p6cngP/d6qHEsGHD8M477+Djjz+Gs7Mzjh8/jj///BPbt2+vdIxEFSmvFaJjI88q/4HFtF6GfDWuiOvRFPb/fy4Me5UK83s0Ya0OGcRazaBdunTBiRMncOTIEURFRWHIkCHo2bMnLly4gLy8PDz//PNwd3fXPT777DOkpqaWu78zZ84gLCxMb06Y8PBw5Obm4urVq7plrVq1KvP1zZo10/3t7e2NatWq6RKdkmUlt00wJsZHa1AqQ4iHB6iyc950794d9vb22LZtG4CHnaK7dOmia/YispSKWiGqGmt2ZKrP03XRsZEnLmXnIbBWNSY6ZDBrNYO6ubmhQYMGAIB169ahefPm+PTTT9GkSRMAwK5du1C7dm291zg7O5vlfcvi6Oio+7tklNijVCqVrk9Lbm6uwTGW937GOnPmDNRqNWrWrAkAsLOz0yVAJQyZ4djJyQmDBg1CfHw8evTogQ0bNuCTTz4xS4xEFZFSKwSTHRnz1bgyySGjSeEEZGdnh+nTp2PixIk4d+4cnJ2dcfnyZb3moMcJCQnBN998AyGErvbj8OHDqF69eqVGbJUlNDTUpBhNlZWVhQ0bNqB79+665jhPT09dExwA5OTkIC0tTe91jo6OuluKPGrYsGFo0qQJVq5ciQcPHqBHjx6WLQAR/tcKMX3rSRQJYdVWCCY7RDZGKiegN954A1OmTMGaNWswefJkTJgwAcXFxejQoQO0Wi0OHz4MtVqNqKioMl8/atQoLFmyBGPGjEF0dDTOnj2LWbNmYeLEiWbveFu9enWTYjSEEAIZGRm6oecpKSmYP38+NBoNFixYoNvu2WefRUJCAl555RV4eHhg5syZpTouBwYGYt++fQgPD4ezs7Oug3RISAjatWuHqVOn4q233tLd7JPI0qTSCsFkh8gGSeEE5ODggOjoaCxatAhpaWnw9PREXFwcLl68CA8PD7Rs2RLTp08v9/W1a9dGYmIipkyZgubNm6NGjRoYOnQo3n//fYvEO3fuXKNjNEROTg58fX2hUqmgVqvRuHFjREVFYdy4cVCr1brtYmJikJaWhpdffhkajQZz584tVbPz0UcfYeLEiVi7di1q166NS5cu6daVDGl/6623KhUvkbGk0AqhEv9sBLZBOTk50Gg00Gq1eicXIqnJz89HWloagoKC4OLiYu1wSEbmzp2LLVu24I8//njstvyekVwYev3maCwiIgXLzc3FyZMnsXz5cowZM8ba4RBZBZMdIiILefLJJ/WGqj/6+PLLL6skhujoaLRq1QqdO3dmExbZLPbZISKykMTExHKHh3t7e1dJDAkJCYq5cSqRqZjsEBFZSMntMIjIutiMRSRDHFdAlsTvFykNkx0iGSmZV+X+/ftWjoSUrORu7/+cVZpIrtiMRSQjDg4OqFatGm7cuAFHR0fetZrMSgiBvLw8ZGVlwcPDw6C7rRPJAZMdIhlRqVTw9fVFWloa/v77b2uHQwr1zzunE8kdkx0imXFyckLDhg3ZlEUW4ejoyBodUhwmO0QyZGdnx5ltiYgMxAZ/IiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBTNqslOUVERZsyYgaCgILi6uqJ+/fqYO3eu3k3ohBCYOXMmfH194erqioiICJw/f15vP7du3UL//v2hVqvh4eGBoUOHIjc3t6qLQ0RERBJk1WRn4cKFWLVqFZYvX44zZ85g4cKFWLRoEZYtW6bbZtGiRVi6dClWr16NI0eOwM3NDZGRkcjPz9dt079/f5w6dQp79+7Fzp07cejQIYwYMcIaRSIiIiKJUYlHq1Gq2Msvvwxvb298+umnumU9e/aEq6srvvjiCwgh4Ofnh0mTJmHy5MkAAK1WC29vbyQkJKBv3744c+YMQkNDcfToUbRu3RoAsHv3bnTt2hVXr16Fn5/fY+PIycmBRqOBVquFWq22TGGJiIjIrAy9flu1Zqd9+/bYt28fzp07BwD4/fffkZSUhJdeegkAkJaWhoyMDEREROheo9Fo0LZtW6SkpAAAUlJS4OHhoUt0ACAiIgJ2dnY4cuRIFZaGiIiIpMiq98aaNm0acnJyEBwcDHt7exQVFeGDDz5A//79AQAZGRkAAG9vb73XeXt769ZlZGTAy8tLb72DgwNq1Kih2+afCgoKUFBQoHuek5NjtjIRERGRtFi1Zmfz5s348ssvsWHDBhw/fhzr16/Hhx9+iPXr11v0fePi4qDRaHQPf39/i74fERERWY9Vk50pU6Zg2rRp6Nu3L5o2bYqBAwdiwoQJiIuLAwD4+PgAADIzM/Vel5mZqVvn4+ODrKwsvfUPHjzArVu3dNv8U0xMDLRare5x5coVcxeNiIiIJMKqyU5eXh7s7PRDsLe3R3FxMQAgKCgIPj4+2Ldvn259Tk4Ojhw5grCwMABAWFgYbt++jWPHjum22b9/P4qLi9G2bdsy39fZ2RlqtVrvQURERMpk1T47r7zyCj744APUrVsXTz75JH777Td8/PHHeOuttwAAKpUK48ePx7x589CwYUMEBQVhxowZ8PPzQ/fu3QEAISEhePHFFzF8+HCsXr0ahYWFiI6ORt++fQ0aiUVERETKZtVkZ9myZZgxYwZGjRqFrKws+Pn54e2338bMmTN127z77ru4e/cuRowYgdu3b6NDhw7YvXs3XFxcdNt8+eWXiI6OxnPPPQc7Ozv07NkTS5cutUaRiIiISGKsOs+OVHCeHSIiIvmRxTw7RERERJbGZIeIiIgUjckOERERKRqTHSIiIlI0JjtERESkaEx2iIiISNGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHSIiIlI0JjtERESkaEx2iIiISNGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHSIiIlI0JjtERESkaEx2iIiISNGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUjckOlStdew/JqdlI196zdihEREQmc7B2ACRNm45eRszWP1EsADsVENejKfo8XdfaYRERERmNNTtUSrr2ni7RAYBiAUzfepI1PEREJEtMdqiUtOy7ukSnRJEQuJSdZ52AiIiIKoHJDpUSVMsNdir9ZfYqFQJrVbNOQERERJXAZIdK8dW4Iq5HU9irHmY89ioV5vdoAl+Nq5UjIyIiMh47KFOZ+jxdFx0beeJSdh4Ca1VjokNERLLFZIfK5atxZZJDRESyx2YsIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmOyQL6dp7SE7NRrr2nrVDISIimXGwdgBEj7Pp6GXEbP0TxQKwUwFxPZqiz9N1rR0WERHJBGt2SNLStfd0iQ4AFAtg+taTrOEhIiKDMdkhSUvLvqtLdEoUCYFL2XnWCYiIiGSHyQ5JWlAtN9ip9JfZq1QIrFXNOgEREZHsMNkhSfPVuCKuR1PYqx5mPPYqFeb3aAJfjauVIyMiIrlgB2WSvD5P10XHRp64lJ2HwFrVmOgQEZFRmOyQLPhqXJnkEBGRSdiMRURERIpm9WTn2rVrGDBgAGrWrAlXV1c0bdoUv/76q269EAIzZ86Er68vXF1dERERgfPnz+vt49atW+jfvz/UajU8PDwwdOhQ5ObmVnVRiIiISIKsmuz897//RXh4OBwdHfGf//wHp0+fxkcffYQnnnhCt82iRYuwdOlSrF69GkeOHIGbmxsiIyORn5+v26Z///44deoU9u7di507d+LQoUMYMWKENYpEREREEqMSQojHb2YZ06ZNw+HDh/HTTz+VuV4IAT8/P0yaNAmTJ08GAGi1Wnh7eyMhIQF9+/bFmTNnEBoaiqNHj6J169YAgN27d6Nr1664evUq/Pz8HhtHTk4ONBoNtFot1Gq1+QpIREREFmPo9duqNTs7duxA69at8cYbb8DLywtPPfUU1q5dq1uflpaGjIwMRERE6JZpNBq0bdsWKSkpAICUlBR4eHjoEh0AiIiIgJ2dHY4cOVLm+xYUFCAnJ0fvQURERMpk1WTn4sWLWLVqFRo2bIjvv/8eI0eOxNixY7F+/XoAQEZGBgDA29tb73Xe3t66dRkZGfDy8tJb7+DggBo1aui2+ae4uDhoNBrdw9/f39xFIyIiIomwarJTXFyMli1bYv78+XjqqacwYsQIDB8+HKtXr7bo+8bExECr1eoeV65csej7ERERkfVYNdnx9fVFaGio3rKQkBBcvnwZAODj4wMAyMzM1NsmMzNTt87HxwdZWVl66x88eIBbt27ptvknZ2dnqNVqvQcREREpk1WTnfDwcJw9e1Zv2blz5xAQEAAACAoKgo+PD/bt26dbn5OTgyNHjiAsLAwAEBYWhtu3b+PYsWO6bfbv34/i4mK0bdu2CkpBREREUmbVGZQnTJiA9u3bY/78+ejduzd++eUX/Pvf/8a///1vAIBKpcL48eMxb948NGzYEEFBQZgxYwb8/PzQvXt3AA9rgl588UVd81dhYSGio6PRt29fg0ZiERERkbJZdeg5AOzcuRMxMTE4f/48goKCMHHiRAwfPly3XgiBWbNm4d///jdu376NDh06YOXKlWjUqJFum1u3biE6Ohrfffcd7Ozs0LNnTyxduhTu7u4GxcCh50RERPJj6PXb6smOFDDZISIikh9ZzLNDREREZGlMdoiIiEjRmOwQERGRojHZISIiIkUzOdkJDAxEbGysbgJAIiIiIikyOdkZP348tm7dinr16uH555/HV199hYKCAnPGRkRERFRplUp2Tpw4gV9++QUhISEYM2YMfH19ER0djePHj5szRiIiIiKTmW2encLCQqxcuRJTp05FYWEhmjZtirFjx2LIkCFQqVTmeAuL4Tw7RERE8mPo9bvSt4soLCzEtm3bEB8fj71796Jdu3YYOnQorl69iunTp+OHH37Ahg0bKvs2RERERCYxOdk5fvw44uPjsXHjRtjZ2WHQoEFYvHgxgoODddu8/vrrePrpp80SKBEREZEpTE52nn76aTz//PNYtWoVunfvDkdHx1LbBAUFoW/fvpUKkIiIiKgyTE52Ll68iICAgAq3cXNzQ3x8vKlvQURERFRpJo/G6tKlC27evFlq+e3bt1GvXr1KBUVERERkLiYnO5cuXUJRUVGp5QUFBbh27VqlgiIiIiIyF6ObsXbs2KH7+/vvv4dGo9E9Lyoqwr59+xAYGGiW4IiIiIgqy+hkp3v37gAAlUqFqKgovXWOjo4IDAzERx99ZJbgiIiIiCrL6GSnuLgYwMORVkePHkWtWrXMHhQRERGRuZg8GistLc2ccRARERFZhMnJTmxsbIXrZ86caequiYiIiMzG5GRn27Ztes8LCwuRlpYGBwcH1K9fn8kOERGRlaRr7yEt+y6CarnBV+Nq7XCszuRk57fffiu1LCcnB4MHD8brr79eqaCIiIjINJuOXkbM1j9RLAA7FRDXoyn6PF3X2mFZlcnz7JRFrVZjzpw5mDFjhjl3S0RERAZI197TJToAUCyA6VtPIl17z7qBWZlZkx0A0Gq10Gq15t4tERERPUZa9l1dolOiSAhcys6zTkASYXIz1tKlS/WeCyGQnp6Ozz//HC+99FKlAyMiIiLjBNVyg50KegmPvUqFwFrVrBeUBJic7CxevFjvuZ2dHTw9PREVFYWYmJhKB0ZERETG8dW4Iq5HU0zfehJFQsBepcL8Hk1svpMy59khIiJSkD5P10XHRp64lJ2HwFrVbD7RASqR7AAPm65u3rwJlUqFmjVrmismIiIiqgRfjSuTnEeY1EE5IyMDgwYNwhNPPAFvb294eXnhiSeewFtvvYXMzExzx0hERERkMqNrdnJyctC+fXvk5uZiyJAhCA4OhhACp0+fxsaNG5GUlITjx4/D3d3dEvESERERGcXoZOeTTz6Bvb09Tp06BU9PT71177//PsLDw7F06VJMnz7dbEESERE9ijMEkzGMbsbatWsXpk+fXirRAQAvLy/ExMTgu+++M0twRERE/7Tp6GWEL9iPfmuPIHzBfmw6etnaIZHEGZ3snDt3Du3bty93ffv27XH27NlKBUVERFQWzhBMpjA62cnJyYGHh0e56z08PJCTk1OZmIiIiMrEGYLJFEYnO0II2NmV/zKVSgUhRLnriYiITFUyQ/Cj5DhDcLr2HpJTs1kjVUWM7qAshECjRo2gUqnKXU9ERGQJSpghmHclr3pGJzvx8fGWiIOIiMggcp4huLw+Rx0becqqHMaQwsg5o5OdqKgoo7bfuHEjXn31Vbi5uRn7VkRERGWS6wzBFfU5kmN5HkcqtVgmzaBsjLfffpuzKhMREUE5fY4MIaWRcxZPdtiHh4iI6KGSPkf2/7/fqxz7HBlKSiPnKnUjUCIiIjKOnPscGaOkFuvRhMdatVgWr9khIiIifb4aV4TVr6nYRAeQVi0Wa3aIiIjIIqRSi8Vkh4iIiCxGCiPnTGrGKioqwqFDh3D79u3HbhsQEABHR0dT3oasjDN8khLwe0xEJtXs2Nvb44UXXsCZM2cqvE8WAJw8edKUtyArk8rcCESVwe8xEQGV6KDcpEkTXLx40ZyxkERIaW4EIlPxe0xEJUxOdubNm4fJkydj586dSE9PR05Ojt6D5EtKcyMQmYrfY2Vj8yQZw+QOyl27dgUAvPrqq3o3BRVCQKVSoaioqPLRkVVIaW4EpZDCvWFsTVV9j3lsqx6bJ8lYJic7P/74oznjIAlRwl2FpYQnZuuoiu8xj23Vs8UbaVLlqQTv54CcnBxoNBpotVqo1WprhyMZ6dp7Vp8bQe7StfcQvmB/qdqFpGld+JlWEUt9j3lsrSM5NRv91h4ptXzj8HYIq1/TChGRNRl6/a7UDMo//fQTBgwYgPbt2+PatWsAgM8//xxJSUmV2S1JhC3M8Glp7DdifZb6HvPYWoct3UiTzMfkZOebb75BZGQkXF1dcfz4cRQUFAAAtFot5s+fb7YAieSMJ2bl4rG1DindgoDko1KjsVavXo21a9fqTRoYHh6O48ePmyU4IrnjiVm5eGytp8/TdZE0rQs2Dm+HpGld2E+KHsvkDspnz55Fx44dSy3XaDQGzaxMZCukcm8YMj8eW+uRwi0IpIyjBPWZnOz4+PjgwoULCAwM1FuelJSEevXqVTYuIkXhibl8cj8p89iS1HCUYGkmJzvDhw/HuHHjsG7dOqhUKly/fh0pKSmYPHkyZsyYYc4YiUiheFImMi8OzS+bycnOtGnTUFxcjOeeew55eXno2LEjnJ2dMXnyZIwZM8acMRKRAvGkTGR+FY0StOX/K5OTHZVKhffeew9TpkzBhQsXkJubi9DQULi7u5szPiJSKJ6UicyPM+CXrVLz7ACAk5MTQkND0aZNGyY6RGQwDt0mJZHKvbo4SrBsJtfs5OfnY9myZfjxxx+RlZWF4uJivfUcfk5EFeFtSUgppNb3jKMESzM52Rk6dCj27NmDXr16oU2bNno3AyUi5bDkaCmelEnupNr3jKME9Zmc7OzcuROJiYkIDw83ZzxEJCFV8YuVJ2WSM/Y9kweT++zUrl0b1atXN2csRCQh5f1itXafBCIpYd8zeTA52fnoo48wdepU/P333+aMh4gkgje6JHo8UzsES6VDs60wuRmrdevWyM/PR7169VCtWjW9+2MBwK1btyodHBFZD4ewEhnG2L5nUuvQbAtMTnbefPNNXLt2DfPnz4e3tzc7KBMpDEdLERnO0L5nUu3QrHQmJzvJyclISUlB8+bNzRkPEZnAUiOmOFqKyLzYodk6TO6zExwcjHv3zNvWuGDBAqhUKowfP163LD8/H6NHj0bNmjXh7u6Onj17IjMzU+91ly9fRrdu3VCtWjV4eXlhypQpePDggVljI5KqTUcvI3zBfvRbewThC/Zj09HLZt2/r8YVYfVr8kRMZAbs0GwdJic7CxYswKRJk3DgwAHcvHkTOTk5eg9jHT16FGvWrEGzZs30lk+YMAHfffcdtmzZgoMHD+L69evo0aOHbn1RURG6deuG+/fvIzk5GevXr0dCQgJmzpxpatGIZIMjph6PHUFJSjjDsXWohBDi8ZuVZmf3ME/6Z18dIQRUKhWKiooM3ldubi5atmyJlStXYt68eWjRogWWLFkCrVYLT09PbNiwAb169QIA/PXXXwgJCUFKSgratWuH//znP3j55Zdx/fp1eHt7AwBWr16NqVOn4saNG3Bycnrs++fk5ECj0UCr1UKtVhscN5G1Jadmo9/aI6WWbxzeDmH1a1ohImlhR1CSqnTtPTYPm4Gh12+T++z8+OOPpr60lNGjR6Nbt26IiIjAvHnzdMuPHTuGwsJCRERE6JYFBwejbt26umQnJSUFTZs21SU6ABAZGYmRI0fi1KlTeOqpp0q9X0FBAQoKCnTPTamJIpICjpgqHzuCkpRxMs2qZVKyU1hYiNjYWKxevRoNGzasVABfffUVjh8/jqNHj5Zal5GRAScnJ3h4eOgt9/b2RkZGhm6bRxOdkvUl68oSFxeHOXPmVCpuIingiKnysSMoEZUwKdlxdHTEH3/8Uek3v3LlCsaNG4e9e/fCxcWl0vszVExMDCZOnKh7npOTA39//yp7fyJz4oipsrHWi4hKmNxBecCAAfj0008r9ebHjh1DVlYWWrZsCQcHBzg4OODgwYNYunQpHBwc4O3tjfv37+P27dt6r8vMzISPjw8AwMfHp9TorJLnJdv8k7OzM9Rqtd6DSM44Yqo0dgQlohIm99l58OAB1q1bhx9++AGtWrWCm5ub3vqPP/74sft47rnn8Oeff+otGzJkCIKDgzF16lT4+/vD0dER+/btQ8+ePQEAZ8+exeXLlxEWFgYACAsLwwcffICsrCx4eXkBAPbu3Qu1Wo3Q0FBTi0dECsBaLyICKpHsnDx5Ei1btgQAnDt3Tm+dobMpV69eHU2aNNFb5ubmhpo1a+qWDx06FBMnTkSNGjWgVqsxZswYhIWFoV27dgCAF154AaGhoRg4cCAWLVqEjIwMvP/++xg9ejScnZ1NLR7ZGEtNykfWZ2xHUH4XiJRHEqOxKrJ48WLY2dmhZ8+eKCgoQGRkJFauXKlbb29vj507d2LkyJEICwuDm5sboqKiEBsbWyXxkfxxeDKV4HeBSJlMnmfnUVevXgUA1KlTp9IBWYOtzLPDX6ylpWvvIXzB/lKdWJOmdeFnZGP4XSCSH0Ov3yZ3UC4uLkZsbCw0Gg0CAgIQEBAADw8PzJ07F8XFxabulizE0rcUkKuKhidT1ZDKDMf8LhApl8nNWO+99x4+/fRTLFiwAOHh4QCApKQkzJ49G/n5+fjggw/MFiRVDidXKx+HJ1uXlJqN+F0gUi6Ta3bWr1+P//u//8PIkSPRrFkzNGvWDKNGjcLatWuRkJBgxhCpsviLtXwcnmw9UruvF78LRMplcs3OrVu3EBwcXGp5cHAwbt26VamgyLz4i7VipgxPZv+nypPiDMccqk6kTCbX7DRv3hzLly8vtXz58uVo3rx5pYIi8+IvVsMIGNZXn/2fzKMkCX+UFJJwTtBIVDGp9LMzhsmjsQ4ePIhu3bqhbt26ugn+UlJScOXKFSQmJuKZZ54xa6CWZEujsfiLtTRj+o1wxI55bTp6udR9vTjUm0i6pNTPDjD8+l2poefXr1/HihUr8NdffwEAQkJCMGrUKPj5+Zm6S6uwlWSHSjM2eUlOzUa/tUdKLd84vB3C6te0ZKiKxSScSB6k+GPP0Ou3UX12evTogYSEBKjVanz22Wfo06cPR12RrBnbb8TNyb7M/VRzMrlF2OYZO8MxEVmHFPvZGcqoM/TOnTtx9+5dAA/vYaXVai0SFFFVMbbfyN37RWUuz7vPuaWISNmk2s/OEEbV7AQHByMmJgZdunSBEAKbN28ut9po0KBBZgmQyJJKOm//s99Ieb9SOLKNiGyVsedLKTGqz05ycjImTpyI1NRU3Lp1C9WrVy/zpp8qlUpWw8/ZZ4eM6TfCTrVEZMuk1M/O4h2U7ezskJGRAS8vL5ODlAomO2QsKf2zE5H1ce4t67BIB+VHpaWlwdPT09SXE8masZ1qeSIkUi6pDcem0kweQhIQEICkpCQMGDAAYWFhuHbtGgDg888/R1JSktkCJJI7TkJIpFxSu+0Jlc3kZOebb75BZGQkXF1d8dtvv6GgoAAAoNVqMX/+fLMFSCRnPBESKRvvPSgPJic78+bNw+rVq7F27Vo4OjrqloeHh+P48eNmCY5I7ngiJFI2OQ/HtiUmJztnz55Fx44dSy3XaDS4fft2ZWIiUgwlnAjleB8coqrCew/Kg8kdlH18fHDhwgUEBgbqLU9KSkK9evUqGxeRIsh5XgqAHS+JDNHn6bro2MiTIzQlzORkZ/jw4Rg3bhzWrVsHlUqF69evIyUlBZMmTcLMmTPNGSORrMn1RFhef6OOjTxlUwaiqsLbnkibycnOtGnTUFxcjOeeew55eXno2LEjnJ2dMWXKFAwbNsycMVI5jB3OzOHP1iPHE6Gc74NDRPQok/vsqFQqvPfee7h16xZOnjyJn3/+GTdu3IBGo0FQUJA5Y6QyGDucmcOfyVhK6G9ERASYkOwUFBQgJiYGrVu3Rnh4OBITExEaGopTp06hcePG+OSTTzBhwgRLxEr/n7HDmTn8mUzBjpdEpBRGN2PNnDkTa9asQUREBJKTk/HGG29gyJAh+Pnnn/HRRx/hjTfegL29vSVipf/P2OYFNkeQqeTa34iI6FFGJztbtmzBZ599hldffRUnT55Es2bN8ODBA/z+++9l3hSUzM/YO2/zTt1UGXLsb0RE9Cijm7GuXr2KVq1aAQCaNGkCZ2dnTJgwgYlOFTK2eYHNEUTSIPc5i+QeP9kuo2t2ioqK4OTk9L8dODjA3d3drEHR4xnbvMDmCCLrkvucRXKPn2ybSgghHr/Z/9jZ2eGll16Cs7MzAOC7777Ds88+Czc3N73ttm7dar4oLczQW8QTEZkiXXsP4Qv2l2pKTprWRRY/POQePymXoddvo2t2oqKi9J4PGDDA+OiIiGyI3AcJyD1+IqOTnfj4eEvEQUSkWHIfJCD3+IlMnlSQiIgMUzJIoGSSRjsVZDVIgIMcSO5Mvl0EEREZp6SHpHE9JaWBgxxIzlizQ0RkYSWzmJfkOALynMXcV+OKsPo1meiQ7DDZISKysIo6+BKR5THZIUXi5GckJbypKpF1MdkhxVHCHd6ZrCkLO/gSWZfRkwoqEScVVA4lTH7GmWqVK117jx18iczI0Os3a3ZIUeTeN6KkI2tJGYqFPDuyUtnYwZfIOpjskKLIvW+E3JM1IiIpYrIjIeynUXly7xsh92SNqDJ4DiRL4aSCEsF+GuYj58nPSpK16VtPokgI2SVrRKbiOdC60rX3kJZ9F0G13BR5vmEHZVi/g7ISOtWSebEjK9kSngOtS86JJjsoywj7adA/sSMr2RKeA63HVgZFMNmRAPbToKrEfhEV4+dT9XgOtB5bSTSZ7EiA3DvVShEvWGVTwoSLlsTPxzp4DrQeW0k02WcH1u+zU4L9NMxDzu3PlsR+ERXj52N9PAdax6ajl0sNipDLOdPQ6zdHY0mIr8aV/+CVVF77c8dGnjb/2VZUXW3rnw3Az0cKeA60DjmPYDUUkx1SFKVcsCwxDLSkuvqfNRdKq642FT8fsmVKTzTZZ4cURQntz5bqN8J+ERXj50OkXOyzA+n02SHzkHP7c1X0G2G/iIrx8yGSD/bZIZsl5/bnqmiGU3p1dWXx85EHpc/4S+bFZIcUSa4XLPYbIXo8jrgkY7HPDpGEsN8IUcVsZcZfMi/W7BBJjJyb4YgsTSkjLqlqMdkhkiC5NsMRWRqbeskUbMYiIiLZYFMvmYI1O0QSxJEmROVjUy8Zi8kOkcRwpAnR47Gpl4zBZiwiCeFIEyIi82OyQyQhFY00ISIi0zDZIZIQJdzbi4hIapjsEEkIR5oQEZkfOygTSQxHmhARmReTHSIJ4kgTIiLzYTMWEZlVuvYeklOzOYKMjMbvDlkKa3aIyGw4RxCZit8dsiTW7BCRWXCOIDIVvztkaUx2iKhChjYtcI4gMhW/O2RpbMYiReK9pczDmKYF3o2aTFUV3x2eE2ybVWt24uLi8PTTT6N69erw8vJC9+7dcfbsWb1t8vPzMXr0aNSsWRPu7u7o2bMnMjMz9ba5fPkyunXrhmrVqsHLywtTpkzBgwcPqrIoJCGbjl5G+IL96Lf2CMIX7Memo5etHZIsGdu0wDmCyFSW/u7wnGBecuxIbtWanYMHD2L06NF4+umn8eDBA0yfPh0vvPACTp8+DTc3NwDAhAkTsGvXLmzZsgUajQbR0dHo0aMHDh8+DAAoKipCt27d4OPjg+TkZKSnp2PQoEFwdHTE/PnzrVk8soLyLtAdG3ma9aJrC78SK2paKK/MnCPIuuT8vbTUd6eqzgm2Qq4dya2a7OzevVvveUJCAry8vHDs2DF07NgRWq0Wn376KTZs2IBnn30WABAfH4+QkBD8/PPPaNeuHfbs2YPTp0/jhx9+gLe3N1q0aIG5c+di6tSpmD17NpycnKxRNJskhROtKRdoY8n1n91YpjYtcI4g61DC99IS352qOCfYCjknjpLqoKzVagEANWrUAAAcO3YMhYWFiIiI0G0THByMunXrIiUlBQCQkpKCpk2bwtvbW7dNZGQkcnJycOrUqTLfp6CgADk5OXoPqhypVBNb+t5StjRqhM1S8mFL30tj8X5z5iPnjuSSSXaKi4sxfvx4hIeHo0mTJgCAjIwMODk5wcPDQ29bb29vZGRk6LZ5NNEpWV+yrixxcXHQaDS6h7+/v5lLY1ukdKK19AVazv/spujzdF0kTeuCjcPbIWlaF9nVFNgKW/teGoNJu/nIOXGUzGis0aNH4+TJk0hKSrL4e8XExGDixIm65zk5OUx4KkFq1cSW7DdiiyOO2Cwlfbb4vTQG+5KZR0niOH3rSRQJIavEURLJTnR0NHbu3IlDhw6hTp06uuU+Pj64f/8+bt++rVe7k5mZCR8fH902v/zyi97+SkZrlWzzT87OznB2djZzKWyXFE+0lrpAy/mfnZSL38vHY9JuHnJNHK2a7AghMGbMGGzbtg0HDhxAUFCQ3vpWrVrB0dER+/btQ8+ePQEAZ8+exeXLlxEWFgYACAsLwwcffICsrCx4eXkBAPbu3Qu1Wo3Q0NCqLZCNsrUTrVz/2Ul+jOn0z+8lVRU5Jo4qIYR4/GaWMWrUKGzYsAHbt29H48aNdcs1Gg1cXR9+kCNHjkRiYiISEhKgVqsxZswYAEBycjKAh0PPW7RoAT8/PyxatAgZGRkYOHAghg0bZvDQ85ycHGg0Gmi1WqjVajOX0naka+/xREtkJkoYXUVkaYZev62a7KhUqjKXx8fHY/DgwQAeTio4adIkbNy4EQUFBYiMjMTKlSv1mqj+/vtvjBw5EgcOHICbmxuioqKwYMECODgYVnHFZIeIpCRdew/hC/aXahpOmtaFPySIHiGLZEcqmOwQkZQkp2aj39ojpZZvHN4OYfVrWiEiImky9PotmaHnRET0kJyH+BJJEZMdCZHj/UaIyPw4NwxJmRyvVZIYek7sjEhE+ji6iqRIrtcq1uxIgJRmICYi6fDVuCKsfk0mOiQJcr5WMdmRAE71TkREUifnaxWTHQlgZ0QiIpI6OV+rmOxIADsjEhGR1Mn5WsV5diCdeXY4AzHR4xlzCwUiMj8pXasMvX5zNJaEyPF+I6R8Ukou5DoShEhJ5HitYrJDROWSUnJR3kiQjo08ZXfipapnbNIupSSfKo/JDpEJbOFEKLXkoqKRIEo9BmQexibtUkryyTzYQZnISJuOXkb4gv3ot/YIwhfsx6ajl60dkkVIbZipnEeCkPUYOzeMnOeSofIx2SEygi2dCKWWXMh5JAhZj7FJu9SSfDIPNmMRGcGWmlJKkovpW0+iSAhJJBe8hQIZqyRpf/T/tqKk3djtSR6Y7BAZwdZOhFJMLuQ4EoSsx9ikXYpJPlUe59mBdObZIXnYdPRyqRMhOy8SSZuxc8NIaS6ZqiDXQReGXr+Z7IDJDhnPlBOnHE8kRKR8ch59xkkFiSzImKYUOZ9IiEjZpDbFhKVwNBaRBdnS6C0ikh9bGX3GZIfIgmzlRPKodO09JKdmM6EjkgGpTTFhKUx2iCzIVk4kJWxlwkWSHybhZbOV+avYQRnsoEyWZSujt9K19xC+YH+pYflJ07oo7sRJ8sJ+c48n19Fn7KBMJBFSnKvGEmxpwkWSD1vpgFtZSp+/iskOURVQ+okEsL0JF0kemIQTwD47RGQmttL2T/Jia/3mqGys2SEis7GVJjuSD97+gQAmO0RkZrbQZEfywiScmOwQEZHiMQm3beyzQ0Rkozj3DNkK1uwQEdkgzj1DtoQ1OzaEv+KICOA928j2sGbHRvBXHBGV4NwzZGtYs2MD+CuOiB7FuWfI1jDZsQG2eOdtIiofJ4AkW8NmLBvAafyJ6J849wzZEtbs2AD+iiOisvhqXBFWvybPBaR4rNmxEfwVR0SVla69h7Tsuwiq5cZzCMkKkx0bwhlEichUHNFJcsZmLCIiqhBHdJLcMdkhIqIKcUQnyR2THSIiqpCp8/Jw1naSCiY7RERUIVNGdG46ehnhC/aj39ojCF+wH5uOXq6qcIlKUQkhxOM3U7acnBxoNBpotVqo1Wprh0NEZBJLj5ZK194zaERnuvYewhfsLzW3V9K0LhwkQWZl6PWbo7EkhMM6ichUVTFaytARnbz3FkkNkx2JUMKwTiZrRNZR3mipjo08rfK/yFnbSWrYZ0cClDCsk+3zRNYjtdFSnLWdpIY1OxIg9ypfqf2qJLI1UqxJ4aztJCWs2ZEAU4d1SoXUflUS2Rqp1qTw3lskFazZkYCSE9X0rSdRJIRkTlSGkuKvSiJbw5oUovIx2ZEIOZ+o5J6sESkF739HVDYmOxIi5xOVnJM1IiJSNiY7ZDZyTtZIuTglAhEx2SECL4hKpYT5q4io8pjskM3jBVGZOCUCEZXg0HMqly3csVgJEzpS2TglAhGVYM0OlclWajvkPqEjlY9TIhBRCdbsUCm2VNsh9wkdqXxSnWiPiKoea3YsSK6dXm2ptoNzBCkbp0QgIoDJjsXIuRnI1qr/eUFUNk6JQERsxrIAuTcD2WL1P+/hQ0SkXKzZsQAlNAOxtoOIiJSCyY4FKKUZiNX/RFQZcu23SMrDZiwLsMVmICKiR206ehnhC/aj39ojCF+wH5uOXrZ2SGTDVEII8fjNlC0nJwcajQZarRZqtdps+03X3mMzEBHZnHTtPYQv2F+qdjtpWheeC8msDL1+sxnLgtgMRES2SAn9FklZ2IxFRERmxck6SWqY7BARkVmx3yJJjWKasVasWIF//etfyMjIQPPmzbFs2TK0adPG2mEREdkkTl9BUqKImp1NmzZh4sSJmDVrFo4fP47mzZsjMjISWVlZ1g6NiMhmcbJOkgpFJDsff/wxhg8fjiFDhiA0NBSrV69GtWrVsG7dOmuHRkRERFYm+2Tn/v37OHbsGCIiInTL7OzsEBERgZSUlDJfU1BQgJycHL0HERERKZPsk53s7GwUFRXB29tbb7m3tzcyMjLKfE1cXBw0Go3u4e/vXxWhEhERkRXIPtkxRUxMDLRare5x5coVa4dEREREFiL70Vi1atWCvb09MjMz9ZZnZmbCx8enzNc4OzvD2dm5KsIjIiIiK5N9zY6TkxNatWqFffv26ZYVFxdj3759CAsLs2JkREREJAWyr9kBgIkTJyIqKgqtW7dGmzZtsGTJEty9exdDhgyxdmhERERkZYpIdvr06YMbN25g5syZyMjIQIsWLbB79+5SnZaJiIjI9vCu57DcXc+JiIjIcgy9fsu+zw4RERFRRZjsEBERkaIpos9OZZW05HEmZSIiIvkouW4/rkcOkx0Ad+7cAQDOpExERCRDd+7cgUajKXc9Oyjj4bw8169fR/Xq1aFSqcy235ycHPj7++PKlSuK7fis9DKyfPKn9DIqvXyA8svI8plOCIE7d+7Az88Pdnbl98xhzQ4e3ji0Tp06Ftu/Wq1W5Bf4UUovI8snf0ovo9LLByi/jCyfaSqq0SnBDspERESkaEx2iIiISNGY7FiQs7MzZs2apeibjiq9jCyf/Cm9jEovH6D8MrJ8lscOykRERKRorNkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHSOtWLECgYGBcHFxQdu2bfHLL79UuP2SJUvQuHFjuLq6wt/fHxMmTEB+fn6l9mlJ5i7f7NmzoVKp9B7BwcGWLkaFjCljYWEhYmNjUb9+fbi4uKB58+bYvXt3pfZpaeYun5SO4aFDh/DKK6/Az88PKpUK33777WNfc+DAAbRs2RLOzs5o0KABEhISSm0jleNnifJJ6fgBxpcxPT0d/fr1Q6NGjWBnZ4fx48eXud2WLVsQHBwMFxcXNG3aFImJieYP3gCWKF9CQkKpY+ji4mKZAjyGseXbunUrnn/+eXh6ekKtViMsLAzff/99qe0s/j8oyGBfffWVcHJyEuvWrROnTp0Sw4cPFx4eHiIzM7PM7b/88kvh7OwsvvzyS5GWlia+//574evrKyZMmGDyPi3JEuWbNWuWePLJJ0V6errucePGjaoqUinGlvHdd98Vfn5+YteuXSI1NVWsXLlSuLi4iOPHj5u8T0uyRPmkdAwTExPFe++9J7Zu3SoAiG3btlW4/cWLF0W1atXExIkTxenTp8WyZcuEvb292L17t24bKR0/S5RPSsdPCOPLmJaWJsaOHSvWr18vWrRoIcaNG1dqm8OHDwt7e3uxaNEicfr0afH+++8LR0dH8eeff1qmEBWwRPni4+OFWq3WO4YZGRmWKcBjGFu+cePGiYULF4pffvlFnDt3TsTExAhHR8cqP4cy2TFCmzZtxOjRo3XPi4qKhJ+fn4iLiytz+9GjR4tnn31Wb9nEiRNFeHi4yfu0JEuUb9asWaJ58+YWidcUxpbR19dXLF++XG9Zjx49RP/+/U3epyVZonxSO4YlDDnRvvvuu+LJJ5/UW9anTx8RGRmpey6l4/coc5VPqsdPCMPK+KhOnTqVmQz07t1bdOvWTW9Z27Ztxdtvv13JCCvHXOWLj48XGo3GbHGZi7HlKxEaGirmzJmje14V/4NsxjLQ/fv3cezYMUREROiW2dnZISIiAikpKWW+pn379jh27JiuOu7ixYtITExE165dTd6npViifCXOnz8PPz8/1KtXD/3798fly5ctV5AKmFLGgoKCUtXFrq6uSEpKMnmflmKJ8pWQyjE0VkpKit7nAQCRkZG6z0NKx88UjytfCbkeP0MZ+jnIWW5uLgICAuDv74/XXnsNp06dsnZIJikuLsadO3dQo0YNAFX3P8hkx0DZ2dkoKiqCt7e33nJvb29kZGSU+Zp+/fohNjYWHTp0gKOjI+rXr4/OnTtj+vTpJu/TUixRPgBo27YtEhISsHv3bqxatQppaWl45plncOfOHYuWpyymlDEyMhIff/wxzp8/j+LiYuzduxdbt25Fenq6yfu0FEuUD5DWMTRWRkZGmZ9HTk4O7t27J6njZ4rHlQ+Q9/EzVHmfgxyOoSEaN26MdevWYfv27fjiiy9QXFyM9u3b4+rVq9YOzWgffvghcnNz0bt3bwBVdw5lsmNBBw4cwPz587Fy5UocP34cW7duxa5duzB37lxrh2YWhpTvpZdewhtvvIFmzZohMjISiYmJuH37NjZv3mzFyA33ySefoGHDhggODoaTkxOio6MxZMgQ2Nkp41/HkPLJ/RjaOh4/+QsLC8OgQYPQokULdOrUCVu3boWnpyfWrFlj7dCMsmHDBsyZMwebN2+Gl5dXlb63Q5W+m4zVqlUL9vb2yMzM1FuemZkJHx+fMl8zY8YMDBw4EMOGDQMANG3aFHfv3sWIESPw3nvvmbRPS7FE+cpKCDw8PNCoUSNcuHDB/IV4DFPK6OnpiW+//Rb5+fm4efMm/Pz8MG3aNNSrV8/kfVqKJcpXFmseQ2P5+PiU+Xmo1Wq4urrC3t5eMsfPFI8rX1nkdPwMVd7nIIdjaApHR0c89dRTsjqGX331FYYNG4YtW7boNVlV1TlUGT9Pq4CTkxNatWqFffv26ZYVFxdj3759CAsLK/M1eXl5pS749vb2AAAhhEn7tBRLlK8subm5SE1Nha+vr5kiN1xlPm8XFxfUrl0bDx48wDfffIPXXnut0vs0N0uUryzWPIbGCgsL0/s8AGDv3r26z0NKx88UjytfWeR0/AxlyucgZ0VFRfjzzz9lcww3btyIIUOGYOPGjejWrZveuir7HzRbV2cb8NVXXwlnZ2eRkJAgTp8+LUaMGCE8PDx0QwAHDhwopk2bptt+1qxZonr16mLjxo3i4sWLYs+ePaJ+/fqid+/eBu9T7uWbNGmSOHDggEhLSxOHDx8WERERolatWiIrK6vKyyeE8WX8+eefxTfffCNSU1PFoUOHxLPPPiuCgoLEf//7X4P3WZUsUT4pHcM7d+6I3377Tfz2228CgPj444/Fb7/9Jv7++28hhBDTpk0TAwcO1G1fMjR7ypQp4syZM2LFihVlDj2XyvGzRPmkdPyEML6MQgjd9q1atRL9+vUTv/32mzh16pRu/eHDh4WDg4P48MMPxZkzZ8SsWbOsNvTcEuWbM2eO+P7770Vqaqo4duyY6Nu3r3BxcdHbpqoYW74vv/xSODg4iBUrVugNnb99+7Zum6r4H2SyY6Rly5aJunXrCicnJ9GmTRvx888/69Z16tRJREVF6Z4XFhaK2bNni/r16wsXFxfh7+8vRo0apXchedw+q5q5y9enTx/h6+srnJycRO3atUWfPn3EhQsXqrBEpRlTxgMHDoiQkBDh7OwsatasKQYOHCiuXbtm1D6rmrnLJ6Vj+OOPPwoApR4lZYqKihKdOnUq9ZoWLVoIJycnUa9ePREfH19qv1I5fpYon5SOnxCmlbGs7QMCAvS22bx5s2jUqJFwcnISTz75pNi1a1fVFOgfLFG+8ePH676f3t7eomvXrnrz1FQlY8vXqVOnCrcvYen/QZUQ5bQ3EBERESkA++wQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIJOjAgQNQqVS4ffu2tUMhkj0mO0Q2bvDgwVCpVFiwYIHe8m+//RYqlUr3XAiBtWvXIiwsDGq1Gu7u7njyyScxbtw4g29ImJeXh5iYGNSvXx8uLi7w9PREp06dsH37dt02gYGBWLJkiVnKZmkln51KpYKjoyOCgoLw7rvvIj8/36j9dO7cGePHj9db1r59e6Snp0Oj0ZgxYiLbxGSHiODi4oKFCxfiv//9b5nrhRDo168fxo4di65du2LPnj04ffo0Pv30U7i4uGDevHkGvc8777yDrVu3YtmyZfjrr7+we/du9OrVCzdv3jRncarUiy++iPT0dFy8eBGLFy/GmjVrMGvWrErv18nJCT4+PnoJJxGZyKw3nyAi2YmKihIvv/yyCA4OFlOmTNEt37Ztmyg5RWzcuFEAENu3by9zH8XFxQa9l0ajEQkJCeWuL+s+OiV++ukn0aFDB+Hi4iLq1KkjxowZI3Jzc3XrP/vsM9GqVSvh7u4uvL29xZtvvikyMzN160vu6bN7927RokUL4eLiIrp06SIyMzNFYmKiCA4OFtWrVxdvvvmmuHv3rkHliYqKEq+99presh49eoinnnpK9zw7O1v07dtX+Pn5CVdXV9GkSROxYcMGvX38s8xpaWm6eB+919zXX38tQkNDhZOTkwgICBAffvihQXES2TrW7BAR7O3tMX/+fCxbtgxXr14ttX7jxo1o3LgxXn311TJfb2jtg4+PDxITE3Hnzp0y12/duhV16tRBbGws0tPTkZ6eDgBITU3Fiy++iJ49e+KPP/7Apk2bkJSUhOjoaN1rCwsLMXfuXPz+++/49ttvcenSJQwePLjUe8yePRvLly9HcnIyrly5gt69e2PJkiXYsGEDdu3ahT179mDZsmUGleefTp48ieTkZDg5OemW5efno1WrVti1axdOnjyJESNGYODAgfjll18AAJ988gnCwsIwfPhwXZn9/f1L7fvYsWPo3bs3+vbtiz///BOzZ8/GjBkzkJCQYFKsRDbF2tkWEVnXo7UT7dq1E2+99ZYQQr9mJzg4WLz66qt6rxs3bpxwc3MTbm5uonbt2ga918GDB0WdOnWEo6OjaN26tRg/frxISkrS2yYgIEAsXrxYb9nQoUPFiBEj9Jb99NNPws7OTty7d6/M9zp69KgAIO7cuSOE+F/Nzg8//KDbJi4uTgAQqampumVvv/22iIyMNKg8UVFRwt7eXri5uQlnZ2cBQNjZ2Ymvv/66wtd169ZNTJo0Sfe8U6dOYty4cXrb/LNmp1+/fuL555/X22bKlCkiNDTUoFiJbBlrdohIZ+HChVi/fj3OnDnz2G3fe+89nDhxAjNnzkRubq5B++/YsSMuXryIffv2oVevXjh16hSeeeYZzJ07t8LX/f7770hISIC7u7vuERkZieLiYqSlpQF4WPPxyiuvoG7duqhevTo6deoEALh8+bLevpo1a6b729vbG9WqVUO9evX0lmVlZRlUHgDo0qULTpw4gSNHjiAqKgpDhgxBz549deuLioowd+5cNG3aFDVq1IC7uzu+//77UnE9zpkzZxAeHq63LDw8HOfPn0dRUZFR+yKyNUx2iEinY8eOiIyMRExMjN7yhg0b4uzZs3rLPD090aBBA3h5eRn1Ho6OjnjmmWcwdepU7NmzB7GxsZg7dy7u379f7mtyc3Px9ttv48SJE7rH77//jvPnz6N+/fq4e/cuIiMjoVar8eWXX+Lo0aPYtm0bAJTar6Ojo+7vklFUj1KpVCguLja4PG5ubmjQoAGaN2+OdevW4ciRI/j000916//1r3/hk08+wdSpU/Hjjz/ixIkTiIyMrLC8RGReDtYOgIikZcGCBWjRogUaN26sW/bmm2+iX79+2L59O1577TWzvl9oaCgePHiA/Px8ODk5wcnJqVRNRcuWLXH69Gk0aNCgzH38+eefuHnzJhYsWKDr7/Lrr7+aNU5D2NnZYfr06Zg4cSL69esHV1dXHD58GK+99hoGDBgAACguLsa5c+cQGhqqe11ZZf6nkJAQHD58WG/Z4cOH0ahRI9jb25u/MEQKwpodItLTtGlT9O/fH0uXLtUt69u3L3r16oW+ffsiNjYWR44cwaVLl3Dw4EFs2rTJ4Itt586dsWbNGhw7dgyXLl1CYmIipk+fji5dukCtVgN4OM/OoUOHcO3aNWRnZwMApk6diuTkZERHR+PEiRM4f/48tm/fruugXLduXTg5OWHZsmW4ePEiduzY8dimMUt54403YG9vjxUrVgB4WCu2d+9eJCcn48yZM3j77beRmZmp95rAwEDdZ5qdnV1mzdKkSZOwb98+zJ07F+fOncP69euxfPlyTJ48uUrKRSRnTHaIqJTY2Fi9C65KpcKmTZuwZMkSJCYm4rnnnkPjxo3x1ltvwd/fH0lJSQbtNzIyEuvXr8cLL7yAkJAQjBkzBpGRkdi8ebPee1+6dAn169eHp6cngIf9bA4ePIhz587hmWeewVNPPYWZM2fCz88PwMMmtYSEBGzZsgWhoaFYsGABPvzwQzN+IoZzcHBAdHQ0Fi1ahLt37+L9999Hy5YtERkZic6dO8PHxwfdu3fXe83kyZNhb2+P0NBQeHp6ltmfp2XLlti8eTO++uorNGnSBDNnzkRsbGyZI86ISJ9KCCGsHQQRERGRpbBmh4iIiBSNyQ4Rmc2jQ8P/+fjpp5+sHZ5RLl++XGF5jB06TkTWw2YsIjKbim4IWrt2bbi6ulZhNJXz4MEDXLp0qdz1gYGBcHDggFYiOWCyQ0RERIrGZiwiIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESna/wOmBZfxphlRrAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP6hJREFUeJzt3Xl8U1Xi//932tKFpUWgLIVC2RHZFAQBEVC0Ii6Iyqoi7g4IyugI6sjijIUZR3FQ0Y+D1JVFBGEUEcQBBFwABREVocCAWpY60LJWaM/vD7/Nj9AWkjTJPWlez8ejj0dzc3NzTnKT+75nuXEZY4wAAAAsFOV0AQAAAEpDUAEAANYiqAAAAGsRVAAAgLUIKgAAwFoEFQAAYC2CCgAAsBZBBQAAWIugAgAArEVQAVBm48ePl8vl8mpdl8ul8ePHB7U8PXr0UI8ePazdHgDvEVSAciQzM1Mul8v9FxMTo7p16+q2227Tzz//7HTxrJOWlubxetWsWVPdunXT/PnzA7L9o0ePavz48Vq+fHlAtgdEIoIKUA5NnDhRb7zxhl566SX17t1bb775prp3767jx48H5fkef/xxHTt2LCjbDrZ27drpjTfe0BtvvKGHHnpIv/zyi/r166eXXnqpzNs+evSoJkyYQFAByiDG6QIACLzevXurQ4cOkqQ777xTNWrU0OTJk7Vw4UL1798/4M8XExOjmJjw/DqpW7eubr75ZvftW2+9VU2aNNGzzz6re++918GSAZBoUQEiQrdu3SRJWVlZHst/+OEH3XjjjapWrZri4+PVoUMHLVy40GOdEydOaMKECWratKni4+NVvXp1XXzxxVq6dKl7nZLGqOTn5+vBBx9UcnKyqlSpomuvvVY//fRTsbLddtttSktLK7a8pG3OmDFDl156qWrWrKm4uDi1bNlS06ZN8+m1OJvatWvr3HPP1Y4dO8643r59+3THHXeoVq1aio+PV9u2bfXaa6+579+5c6eSk5MlSRMmTHB3LwV7fA5Q3oTnKRAAn+zcuVOSdM4557iXbd68WV27dlXdunU1ZswYVapUSXPmzFHfvn317rvv6vrrr5f0e2DIyMjQnXfeqY4dOyovL0/r1q3TV199pcsvv7zU57zzzjv15ptvavDgwerSpYs++eQT9enTp0z1mDZtms477zxde+21iomJ0b///W/94Q9/UGFhoYYPH16mbRc5ceKEdu/ererVq5e6zrFjx9SjRw9t27ZNI0aMUMOGDfXOO+/otttu08GDBzVq1CglJydr2rRpuu+++3T99derX79+kqQ2bdoEpJxAxDAAyo0ZM2YYSebjjz82+/fvN7t37zZz5841ycnJJi4uzuzevdu97mWXXWZat25tjh8/7l5WWFhounTpYpo2bepe1rZtW9OnT58zPu+4cePMqV8nGzZsMJLMH/7wB4/1Bg8ebCSZcePGuZcNHTrUNGjQ4KzbNMaYo0ePFlsvPT3dNGrUyGNZ9+7dTffu3c9YZmOMadCggbniiivM/v37zf79+83GjRvNwIEDjSRz//33l7q9KVOmGEnmzTffdC/77bffTOfOnU3lypVNXl6eMcaY/fv3F6svAN/Q9QOUQ7169VJycrJSU1N14403qlKlSlq4cKHq1asnSfrf//6nTz75RP3799ehQ4eUk5OjnJwc/frrr0pPT9fWrVvds4SqVq2qzZs3a+vWrV4//6JFiyRJI0eO9Fj+wAMPlKleCQkJ7v9zc3OVk5Oj7t27a/v27crNzfVrm0uWLFFycrKSk5PVtm1bvfPOO7rllls0efLkUh+zaNEi1a5dW4MGDXIvq1ChgkaOHKnDhw9rxYoVfpUFQHHlJqisXLlS11xzjVJSUuRyufTee+8F9fmK+s9P/WvRokVQnxPw1gsvvKClS5dq7ty5uuqqq5STk6O4uDj3/du2bZMxRn/+85/dB+miv3Hjxkn6fQyG9PsMooMHD6pZs2Zq3bq1Hn74YX3zzTdnfP7//ve/ioqKUuPGjT2WN2/evEz1Wr16tXr16qVKlSqpatWqSk5O1qOPPipJfgeVTp06aenSpfr444+1Zs0a5eTk6PXXX/cIRaf773//q6ZNmyoqyvMr9Nxzz3XfDyAwys0YlSNHjqht27a6/fbb3X3BwXbeeefp448/dt8O11kPKH86duzonvXTt29fXXzxxRo8eLC2bNmiypUrq7CwUJL00EMPKT09vcRtNGnSRJJ0ySWXKCsrSwsWLNCSJUv0r3/9S88++6xeeukl3XnnnWUua2kXiisoKPC4nZWVpcsuu0wtWrTQM888o9TUVMXGxmrRokV69tln3XXyVY0aNdSrVy+/Hgsg+MrNkbV3797q3bt3qffn5+frscce08yZM3Xw4EG1atVKkydPLtPVJmNiYlS7dm2/Hw+EQnR0tDIyMtSzZ089//zzGjNmjBo1aiTp9+4Kbw7S1apV07BhwzRs2DAdPnxYl1xyicaPH19qUGnQoIEKCwuVlZXl0YqyZcuWYuuec845OnjwYLHlp7dK/Pvf/1Z+fr4WLlyo+vXru5f/5z//OWv5A61Bgwb65ptvVFhY6NGq8sMPP7jvl0oPYQC8V266fs5mxIgR+uyzzzRr1ix98803uummm3TllVf61O9+uq1btyolJUWNGjXSkCFDtGvXrgCWGAicHj16qGPHjpoyZYqOHz+umjVrqkePHnr55ZeVnZ1dbP39+/e7///111897qtcubKaNGmi/Pz8Up+v6KThn//8p8fyKVOmFFu3cePGys3N9ehOys7OLnZ12OjoaEmSMca9LDc3VzNmzCi1HMFy1VVXac+ePZo9e7Z72cmTJzV16lRVrlxZ3bt3lyRVrFhRkkoMYgC8U25aVM5k165dmjFjhnbt2qWUlBRJvzd5L168WDNmzNBTTz3l8zY7deqkzMxMNW/eXNnZ2ZowYYK6deumb7/9VlWqVAl0FYAye/jhh3XTTTcpMzNT9957r1544QVdfPHFat26te666y41atRIe/fu1WeffaaffvpJGzdulCS1bNlSPXr0UPv27VWtWjWtW7dOc+fO1YgRI0p9rnbt2mnQoEF68cUXlZubqy5dumjZsmXatm1bsXUHDhyoRx55RNdff71Gjhypo0ePatq0aWrWrJm++uor93pXXHGFYmNjdc011+iee+7R4cOH9corr6hmzZolhq1guvvuu/Xyyy/rtttu0/r165WWlqa5c+dq9erVmjJlivs7ICEhQS1bttTs2bPVrFkzVatWTa1atVKrVq1CWl4grDk97SgYJJn58+e7b7///vtGkqlUqZLHX0xMjOnfv78xxpjvv//eSDrj3yOPPFLqcx44cMAkJiaaf/3rX8GuHlCqounJa9euLXZfQUGBady4sWncuLE5efKkMcaYrKwsc+utt5ratWubChUqmLp165qrr77azJ071/24v/zlL6Zjx46matWqJiEhwbRo0cL89a9/Nb/99pt7nZKmEh87dsyMHDnSVK9e3VSqVMlcc801Zvfu3SVO112yZIlp1aqViY2NNc2bNzdvvvlmidtcuHChadOmjYmPjzdpaWlm8uTJ5tVXXzWSzI4dO9zr+TI9+WxTr0vb3t69e82wYcNMjRo1TGxsrGndurWZMWNGsceuWbPGtG/f3sTGxjJVGfCDy5hT2lHLCZfLpfnz56tv376SpNmzZ2vIkCHavHmzu/m4SOXKlVW7dm399ttv2r59+xm3W716dfeVJkty4YUXqlevXsrIyChzHQAAQIR0/Zx//vkqKCjQvn373JcSP11sbGyZphcfPnxYWVlZuuWWW/zeBgAA8FRugsrhw4c9+r937NihDRs2qFq1amrWrJmGDBmiW2+9Vf/4xz90/vnna//+/Vq2bJnatGnj12W9H3roIV1zzTVq0KCBfvnlF40bN07R0dEeF4ACAABlU266fpYvX66ePXsWWz506FBlZmbqxIkT+stf/qLXX39dP//8s2rUqKGLLrpIEyZMUOvWrX1+voEDB2rlypX69ddflZycrIsvvlh//etfi13gCgAA+K/cBBUAAFD+RMx1VAAAQPghqAAAAGuF9WDawsJC/fLLL6pSpQqXqgYAIEwYY3To0CGlpKQU+3HP04V1UPnll1+UmprqdDEAAIAfdu/erXr16p1xnbAOKkWXqd69e7cSExMdLg0AAPBGXl6eUlNTvfrJmbAOKkXdPYmJiQQVAADCjDfDNhhMCwAArEVQAQAA1iKoAAAAa4X1GBUAAGxTUFCgEydOOF0MR1WoUEHR0dEB2RZBBQCAADDGaM+ePTp48KDTRbFC1apVVbt27TJf54ygAgBAABSFlJo1a6pixYoReyFSY4yOHj2qffv2SZLq1KlTpu0RVAAAKKOCggJ3SKlevbrTxXFcQkKCJGnfvn2qWbNmmbqBGEwLAEAZFY1JqVixosMlsUfRa1HW8ToEFQAAAiRSu3tKEqjXgqACAACsRVABAADWIqg4IDv3mNZk5Sg795jTRQEAQJL02WefKTo6Wn369PFYvnPnTrlcLvdftWrV1L17d3366achKRdBJcRmr92lrpM+0eBXvlDXSZ9o9tpdThcJAABNnz5d999/v1auXKlffvml2P0ff/yxsrOztXLlSqWkpOjqq6/W3r17g14ugkoIZece09h5m1Rofr9daKRH531LywoAwFGHDx/W7Nmzdd9996lPnz7KzMwstk716tVVu3ZttWrVSo8++qjy8vL0xRdfBL1sBJUQ2pFzxB1SihQYo505R50pEADASqEeIjBnzhy1aNFCzZs3180336xXX31VxpgS1z127Jhef/11SVJsbGzQy8YF30KoYY1KinLJI6xEu1xKq8G8ewDA72av3eVufY9ySRn9WmvAhfWD+pzTp0/XzTffLEm68sorlZubqxUrVqhHjx7udbp06aKoqCgdPXpUxhi1b99el112WVDLJdGiElJ1khKU0a+1ov/f3PJol0tP9WulOkkJDpcMAGADJ4YIbNmyRV9++aUGDRokSYqJidGAAQM0ffp0j/Vmz56tr7/+Wu+++66aNGmizMxMVahQIWjlKkKLSogNuLC+LmmWrJ05R5VWoyIhBQDgdqYhAsE6XkyfPl0nT55USkqKe5kxRnFxcXr++efdy1JTU9W0aVM1bdpUJ0+e1PXXX69vv/1WcXFxQSlXEVpUHFAnKUGdG1cnpAAAPBQNEThVMIcInDx5Uq+//rr+8Y9/aMOGDe6/jRs3KiUlRTNnzizxcTfeeKNiYmL04osvBqVcpyKoAABgiVAPEXj//fd14MAB3XHHHWrVqpXH3w033FCs+6eIy+XSyJEjNWnSJB09GtwJIQQVAAAsMuDC+lo1pqdm3nWRVo3pGdSBtNOnT1evXr2UlJRU7L4bbrhB69atU15eXomPHTp0qE6cOOHRPRQMjFEBAMAydZISQjI84N///nep93Xs2NE9RbmkqcoVK1bU//73v6CVrQgtKgAAwFoEFQAAYC2CCgAAsBZBBQAAWIugAgBAgJT2+ziRKFCvBUEFAIAyKrqUfLCvKRJOil6Lsl5mn+nJAACUUXR0tKpWrap9+/ZJ+n3qrsvlOsujyidjjI4ePap9+/apatWqio6OLtP2CCoAAARA7dq1JckdViJd1apV3a9JWRBUAAAIAJfLpTp16qhmzZo6ceKE08VxVIUKFcrcklKEoAIAQABFR0cH7CANCwbT/vzzz7r55ptVvXp1JSQkqHXr1lq3bp3TxQIAABZwtEXlwIED6tq1q3r27KkPP/xQycnJ2rp1q8455xwniwUAACzhaFCZPHmyUlNTNWPGDPeyhg0bOlgiAABgE0e7fhYuXKgOHTropptuUs2aNXX++efrlVdeKXX9/Px85eXlefwBAIDyy9Ggsn37dk2bNk1NmzbVRx99pPvuu08jR47Ua6+9VuL6GRkZSkpKcv+lpqaGuMQAACCUXMbB6/3GxsaqQ4cOWrNmjXvZyJEjtXbtWn322WfF1s/Pz1d+fr77dl5enlJTU5Wbm6vExMSQlBkAAJRNXl6ekpKSvDp+O9qiUqdOHbVs2dJj2bnnnqtdu3aVuH5cXJwSExM9/gAAQPnlaFDp2rWrtmzZ4rHsxx9/VIMGDRwqEQAAsImjQeXBBx/U559/rqeeekrbtm3T22+/rf/7v//T8OHDnSwWAACwhKNB5cILL9T8+fM1c+ZMtWrVSk8++aSmTJmiIUOGOFksAABgCUcH05aVL4NxAACAHcJmMC0AAMCZEFQAAIC1CCoAAMBaBBUAAGAtggoAALAWQQUAAFiLoAIAAKxFUAEAANYiqAAAAGsRVAAAgLUIKgAAwFoEFQAAYC2CCgAAsBZBBQAAWIugAgAArEVQAQAA1iKoAAAAaxFUAACAtQgqAADAWgQVAABgLYIKAACwFkEFAABYi6ACAACsRVABAADWIqgAAABrEVQAAIC1CCoAAMBaBBUAAGAtggoAALAWQQUAAFiLoAIAAKxFUAEAANYiqAAAAGsRVAAAgLUIKgAAwFoEFQAAYC2CCgAAsBZBBQAAWIugAgAArEVQAQAA1iKoAAAAazkaVMaPHy+Xy+Xx16JFCyeLBAAALBLjdAHOO+88ffzxx+7bMTGOFwkAAFjC8VQQExOj2rVrO10MAABgIcfHqGzdulUpKSlq1KiRhgwZol27dpW6bn5+vvLy8jz+AABA+eVoUOnUqZMyMzO1ePFiTZs2TTt27FC3bt106NChEtfPyMhQUlKS+y81NTXEJQYAAKHkMsYYpwtR5ODBg2rQoIGeeeYZ3XHHHcXuz8/PV35+vvt2Xl6eUlNTlZubq8TExFAWFQAA+CkvL09JSUleHb8dH6NyqqpVq6pZs2batm1biffHxcUpLi4uxKUCAABOcXyMyqkOHz6srKws1alTx+miAAAACzgaVB566CGtWLFCO3fu1Jo1a3T99dcrOjpagwYNcrJYAADAEo52/fz0008aNGiQfv31VyUnJ+viiy/W559/ruTkZCeLBQAALOFoUJk1a5aTTw8AACxn1RgVAACAUxFUAACAtQgqAADAWgQVAABgLYIKAACwFkEFAABYi6ACAACsRVABAADWIqgAAABrEVQAAIC1CCoAAMBaBBUAAGAtggoAALAWQQUAAFiLoAIAAKxFUAEAANYiqAAAAGsRVMqh7NxjWpOVo+zcY04XBQCAMolxugAIrNlrd2nsvE0qNFKUS8ro11oDLqzvdLEAAPALLSrlSHbuMXdIkaRCIz0671taVgAAYYugUo7syDniDilFCozRzpyjzhQIAIAyIqiUIw1rVFKUy3NZtMultBoVnSkQAABlRFApR+okJSijX2tFu35PK9Eul57q10p1khIcLhkAAP5hMG05M+DC+rqkWbJ25hxVWo2KhBQAQFgjqJRDdZISCCgAgHKBrh8AAGAtggoAALAWQQUAAFiLoAIAAKxFUAEAANYiqAAAAGsRVAAAgLUIKgAAwFoEFQAAYC2CCgAAsBZBBUGXnXtMa7JylJ17zOmiIIyw3wCQ+K0fBNnstbs0dt4mFRopyiVl9GutARfWd7pYsBz7DYAitKggaLJzj7kPNpJUaKRH533LGTLOiP0GwKkIKgiaHTlH3AebIgXGaGfOUWcKhLDAfgPgVAQVBE3DGpUU5fJcFu1yKa1GRWcKhLDAfgPgVAQVBE2dpARl9GutaNfvR51ol0tP9WulOkkJDpcMNmO/AXAqlzHGnH214Js0aZLGjh2rUaNGacqUKV49Ji8vT0lJScrNzVViYmJwCwi/Zece086co0qrUZGDDbzGfgOUX74cv62Y9bN27Vq9/PLLatOmjdNFQRDUSUrgQAOfsd8AkCzo+jl8+LCGDBmiV155Reecc47TxQEAABZxPKgMHz5cffr0Ua9evZwuCgAAsIyjXT+zZs3SV199pbVr13q1fn5+vvLz89238/LyglU0AABgAcdaVHbv3q1Ro0bprbfeUnx8vFePycjIUFJSkvsvNTU1yKUEAABOcmzWz3vvvafrr79e0dHR7mUFBQVyuVyKiopSfn6+x31SyS0qqampzPoBACCMhMWsn8suu0ybNm3yWDZs2DC1aNFCjzzySLGQIklxcXGKi4sLVREBAIDDHAsqVapUUatWrTyWVapUSdWrVy+2HAAARCbHZ/0AAACUxooLvhVZvny500UAAAAWoUUFAABYi6ACAACsRVABAADWIqgAAABrEVQAAIC1CCoAAMBaBBUAAGAtggoAALAWQQUAAFiLoAIAAKxFUAEAANYiqAAAAGsRVAAAgLUIKgAAwFoEFQAAYC2CCgAAsBZBBQAAWIugAgAArEVQAQAA1iKoAAAAaxFUAACAtQgqAADAWgQVAABgLYIKAACwFkEFAABYi6ACAACsRVABAADWIqgAAABrBSyoHD9+XE8//XSgNgcAAOBbUNm/f7/ef/99LVmyRAUFBZKkEydO6LnnnlNaWpomTZoUlEICAIDIFOPtiqtWrdLVV1+tvLw8uVwudejQQTNmzFDfvn0VExOj8ePHa+jQocEsKwAAiDBet6g8/vjjuuqqq/TNN99o9OjRWrt2ra6//no99dRT+u6773TvvfcqISEhmGUFAAARxmWMMd6sWL16dX366adq2bKljh07psqVK2vevHm67rrrgl3GUuXl5SkpKUm5ublKTEx0rBwAAMB7vhy/vW5ROXDggGrUqCFJSkhIUMWKFdWqVauylRQAAOAMvB6jIknfffed9uzZI0kyxmjLli06cuSIxzpt2rQJXOkAAEBE87rrJyoqSi6XS2da3eVyuWcDhQJdPwAAhB9fjt9et6js2LHjrOscOnTI280BAACclddBpUGDBiUuP3TokGbOnKnp06dr3bp1IW1RAQAA5ZvfV6ZduXKlhg4dqjp16ujpp59Wz5499fnnnweybAAAIML5NJh2z549yszM1PTp05WXl6f+/fsrPz9f7733nlq2bBmsMgIAgAjldYvKNddco+bNm+ubb77RlClT9Msvv2jq1KnBLBsAAIhwXreofPjhhxo5cqTuu+8+NW3aNJhlAgAAkORDi8qqVat06NAhtW/fXp06ddLzzz+vnJycMj35tGnT1KZNGyUmJioxMVGdO3fWhx9+WKZtAgCA8sProHLRRRfplVdeUXZ2tu655x7NmjVLKSkpKiws1NKlS/2amlyvXj1NmjRJ69ev17p163TppZfquuuu0+bNm33eFgAAKH+8vuBbSbZs2aLp06frjTfe0MGDB3X55Zdr4cKFZSpQtWrV9Pe//1133HHHWdflgm8AAISfoPzWT0maN2+uv/3tb/rpp580c+bMsmxKBQUFmjVrlo4cOaLOnTuXuE5+fr7y8vI8/gAAQPlVphaVQNi0aZM6d+6s48ePq3Llynr77bd11VVXlbju+PHjNWHChGLLaVEBACB8+NKi4nhQ+e2337Rr1y7l5uZq7ty5+te//qUVK1aUeF2W/Px85efnu2/n5eUpNTWVoAIAQBgJq6Byul69eqlx48Z6+eWXz7ouY1QAAAg/IRujEgyFhYUerSYAACBy+XQJ/UAbO3asevfurfr16+vQoUN6++23tXz5cn300UdOFgsAAFjC0aCyb98+3XrrrcrOzlZSUpLatGmjjz76SJdffrmTxQIAAJZwNKhMnz7dyacHAACWs26MCgAAQBGCCgAAsBZBBQAAWIugAgAArEVQAQAA1iKoAAAAaxFUAACAtQgqAADAWgQVAABgLYIKAACwFkEFAABYi6ACAACsRVABAADWIqgAAABrEVQAAIC1CCoAAMBaBBUAAGAtggoAALAWQQUAAFiLoAIAAKxFUAEAANYiqAAAAGsRVAAAgLUIKgAAwFoEFQAAYC2CCgAAsBZBBQAAWIugAgCAl7Jzj2lNVo6yc485XZSIEeN0AQAACAez1+7S2HmbVGikKJeU0a+1BlxY3+lilXu0qAAAcBbZucfcIUWSCo306LxvaVkJAYIKAABnsSPniDukFCkwRjtzjjpToAhCUAEA4Cwa1qikKJfnsmiXS2k1KjpToAhCUAEA4CzqJCUoo19rRbt+TyvRLpee6tdKdZISHC5Z+cdgWgAAvDDgwvq6pFmyduYcVVqNioSUECGoAADgpTpJCQSUEKPrBwAAWIugAgAArEVQAQAA1iKoAAAAaxFUAACAtQgqAADAWo4GlYyMDF144YWqUqWKatasqb59+2rLli1OFgkAAFjE0aCyYsUKDR8+XJ9//rmWLl2qEydO6IorrtCRI0ecLBYAALCEyxhjzr5aaOzfv181a9bUihUrdMkll5x1/by8PCUlJSk3N1eJiYkhKCEAACgrX47fVl2ZNjc3V5JUrVq1Eu/Pz89Xfn6++3ZeXl5IygUAAJxhzWDawsJCPfDAA+ratatatWpV4joZGRlKSkpy/6Wmpoa4lAAAIJSs6fq577779OGHH2rVqlWqV69eieuU1KKSmppK1w8AAGEk7Lp+RowYoffff18rV64sNaRIUlxcnOLi4kJYMgAA4CRHg4oxRvfff7/mz5+v5cuXq2HDhk4WBwAAWMbRoDJ8+HC9/fbbWrBggapUqaI9e/ZIkpKSkpSQEF4/o52de0w7co6oYY1K/AQ4AAAB4ugYFZfLVeLyGTNm6Lbbbjvr422Znjx77S6NnbdJhUaKckkZ/VprwIX1HSsPAAA2C5sxKpaM4y2T7Nxj7pAiSYVGenTet7qkWTItKwAAlJE105PD1Y6cI+6QUqTAGO3MOepMgQAAKEcIKmXUsEYlRZ3WgxXtcimtRkVnCgQAQDlCUCmjOkkJyujXWtH/b7xNtMulp/q1otsHAIAAsOI6KuFuwIX1dUmzZO3MOaq0GhUJKQAABAhBJUDqJCUQUAAACDC6fgAAgLUIKgAAwFoEFQAAYC2CCgCgTLJzj2lNVo6yc485XRSUQwymBQD4jZ8QQbDRogIA8EtpPyFCywoCiaACAPALPyGCUCCowDr0dwPhwd+fEOEzDl8wRgVWob8bCB9FPyHy6LxvVWCMVz8hwmccvnIZY8zZV7NTXl6ekpKSlJubq8TERKeLgzLKzj2mrpM+8WhKjna5tGpMT676C1gsO/eYVz8hwmccRXw5ftOiAmucqb+bLzHAXt7+hAifcfiDMSqwhr/93QDCA59x+IOgAmsU9XdHu37/JvOmvxtA+OAzDn8wRiVAsnOPaUfOETWsUYkPXRl5298NIDzxGQdjVEKMUeyB5W1/N4DwxGccvqDrp4y4MiMAAMFDUCkjrswIAEDwEFTKiFHsAGzHlWARzggqZcQodgA2m712l7pO+kSDX/lCXSd9otlrdwX8OQhCCCZm/QQIo9gB2CYUV4JlMgH84cvxmxaVAKmTlKDOjasHJaRwtgLAH8EeQ8dkAoQC05Mtx9nKmXH9GqB0RWPoTm9RCdQYOi6Jj1CgRcVinK2cWSj63hE4tAyGXrDH0DGZAKFAi4rFOFspXWkh7pJmyRH/2pzKlhYnWgadM+DC+rqkWXJQxtAVBaFH532rAmOYTICgIKhYLNjNtuGMEHd2toSDUIVKW0KZjYJ5JdhgBiFAouvHakx9Lh1NzmdmU7dhKC6KSDegs4I5mQCgRcVynK2UzN8m52CfddtyVm9Ti1OwWwb9bbGx5b0CcGYElTAQaT/g5e0BxNcQF+yuEFu6WiS7ug2DPY7Bn1Dmz3tFsAGcQVCBVXw9gHgb4oI9TiI795jGvLtJRcfLQiONmbfJscG9tg1yDGbLoK+hzJ99waYQCkQaxqjAmmmjwRxXEexxEuv/e0CnbV7GSF/990BAtu+PARfW16oxPTXzrou0akxPxw+swRrH4OtYLl/3BZvG+wCRiBaVCGfTmWIwx1UEuyuktF+icPoHKiKl29CXFhtf9wWbxvsAkYgWlQhm25liwxqVdNpEHrmkgISJorPuoh0+SgpoV0iHtGollr192jkB2b6/bGktCwVvW2x8bYFhhhngLFpUIlhYnCmefvQPxPZM4LdbJylBk25orbHvblKhfg9CGTe05iJrlvKlBca28T5ApCGoRLCiFoxTs4rLFZgWDH/syDlS4jiPQASnUFx0zKap5Fy59+x86Raz6b0FIg1BBZ4cHFMRzHEkoWo9smVMSFi0loUZW97b8mDj7gP6cuf/1DGtmtqmOts9CvsRVMJAsK7fUGILhgLTguGPYDax23RdkVDwt75cKwTB9sc5G/TuVz+7b99wQV39o3875woE6xFULBfMcQY2HryD1cQeaeMM/KkvY1rOjBBXdht3H/AIKZL07lc/69bODWhZQakcDSorV67U3//+d61fv17Z2dmaP3+++vbt62SRrBLscQa2HryD1cQeaeMMfKkvY1rOjBAXGF/u/F+Jy9ftPOBYUIm0ABqO9XU0qBw5ckRt27bV7bffrn79+jlZFCv5O87Alx0x0g7ekTbOwNv6+rOvheMXnj8IcYHTMa1aics7ODSNP9ICaLjW19Gg0rt3b/Xu3dvJIljNn64Zf3bESDt4ozhf97Vw/cLzBwOTA6dt6jm64YK6xcaoONGaEmkBNJzrG1YXfMvPz1deXp7HX3nm64WpbLuAG8KHL/tapO1nXPAtsP7Rv50WDO+iP/c5VwuGd3FsIG2wf1YjVLy9qGM41zesBtNmZGRowoQJThcjpHzpmonEM79I6X4IBW/3tUjbz2wdyxXO2qae4/jgWRsnE/jKl5bNcK5vWAWVsWPHavTo0e7beXl5Sk1NdbBEoeFt10w474j+iKTuh1DxZl+LtP1MiryxXJEg3AOor1054VzfsAoqcXFxiouLc7oY1grnHdFX4dzfGu4iaT87FWO5yp9wDqD+tGyGa33DKqjg7MJ1R/RVpHU/2CZS9jOUf+EaQP1t2QzH+joaVA4fPqxt27a5b+/YsUMbNmxQtWrVVL8+Tfj+Cscd0VeR2P1gm0jYzwBbRVLLpssY49ivuyxfvlw9e/Ystnzo0KHKzMw86+Pz8vKUlJSk3NxcJSYmBqGEsNnstbuKfUgZo1J+MFAaRdgXSpedeywsWzZ9OX47GlTKiqCCcP2Q4swYKI0i7Avlky/H77C6jkp54e28d5xdnaQEdW5cPWJCSiTsO5F2nRaUjn0h8MLxO4TBtCHG2QH8FSn7DgOlUYR9IbDC9TuEFpUQ4uwA/oqkfYcrwaII+0LghPN3CEElhML5EsaRypZm0kjad3z96QiUX+wLgRPO3yF0/YQQU2rDiz/NpMGaneDvvhOusyW4TguKsC8ERjgff2hRCSHODsKHP82ks9fuUtdJn2jwK1+o66RPNHvtroCVx599J5jlCYVIGyiNMzOyY4KqLa2svir6DinqSotyKWyOP7SohBhnB+HB10F8obikvy/7Dj8xgPLCpgGgNpXFX0UXJAmnC5PQouIAzhTt5+sgvlD1/3q774RzfzRQxKYBoDaVxR9F5S/6WjAKn/ITVIAS+NrVYtvsBNvKA/jDpsAdqrIEq2vJptfSV3T9AKXwpavFtt/dsK08gD9sGgAairIEs2vJptfSV1xCHxEl2LNgfL2kv23lAWxj0296BbMs2bnH1HXSJ8WCxKoxPQP22bXptfTl+E2LCiJGKAbC+fKLwqEamGfLbIlgs20qtm3lCVc2TUAIZllCcRVem15LXxBUEBFsmwUTivKUhxkK3rKtrraVJ9z5cgIQbMEqS6i6Zmx6Lb3FYFpEBNsGkgW7POE+Q8EXttXVtvIgPHCdrdLRooKIYNtAsmCXpzz8mJu3XSe21dW28iB8hGvXTLDRooKIYNvZSrDLE+7Tk325qq5tdbWtPAgvXGerOGb9IKLYNgsmmOWxaYS/L/yZ/WBbXW0rD2AbX47fBJVyiNkGKGJbMPPGmqwcDX7li2LLZ951kTo3rl7q42yrq23lAWzC9OQIxmwDnCocR/j7O37HtrraVh6EB040i2OMSjnCbAOUB7aNJwJCJdx/8TxYaFEpR5htgPKC2Q+INLZd68kmBJVyxLYpuEBZ0HUCf4Vj9wknmqWj66ccockcQKQL1+4TprWXjlk/5RCzDQCURTi2SEih+WG/YLJxWnuw9gVm/UQ4mswB+CucZw6Ge/eJbWOzbNkX6PoB4Jade0xrsnKYKRahwn3mYHnoPvH1yrTB+szatC/QogKcQbg2gfvDlrMnOMfWFglvP4dF4/RO7z4pr5/dYH5mbdoXCCphIJIOljaJpAM3UyMh2Tlz0NfPoW3dJ8ES7M+sTfsCXT+lsKUJPFxHsIc7m5o9Q+FMZ0+IHLbNHPT3cxgJP+wX7M+sTfsCLSolsOVMmrNc59jU7BkKNp094eyC2cpqU4tEpH0OfRGKz6wt+wItKqex6Uyas1znlIdBeb6w6ewJZxaKVlZbWiQi7XPoi1B9Zm3YF2hROY1NCZ6zXOdE2qA8yZ6zJ5QuVK2stoyLi8TPoS8i5TNLUDmNTeGAD6mzIuVL4FRcg8duoTiRsqXru0gkfg59EQmfWYLKaWwLB3xInRUJXwIIH8E+kbJ1XByfw8hGUCmBbeGAD2ng2NKkDfgj2CdSNnV9hwrfCfYjqJSCcFD+2NakDfgjmCdSNnV9hwLfCeGBWT8Ia95e78am2VxAWQVrJkYkzf7iOyF80KKCsOXL2VAkNmkD/rCt6ztY+E4IH7SoICz5ejbE9Rhgs427D+iVT7O0cfcBp4siyY5rZwQb3wneseEq7bSoICz5ejZk22wuoMgf52zQu1/97L59wwV19Y/+7QL6HAwYLY7vhLOzZQwPQQVhyZ9Bf5HSpB0qHPzKbuPuAx4hRZLe/epn3dq5gdqmnhOQ57DlYGMjvhNKZ9NUdSu6fl544QWlpaUpPj5enTp10pdfful0kWA5fwf9+dqkbUOzp434sczA+HLn/0pcvm5nYLqAGDB6dpHQzeUPm37CxfEWldmzZ2v06NF66aWX1KlTJ02ZMkXp6enasmWLatas6XTxvMbZZegF+2yIM9GS2XSmFe46plUrcXmHtMC0pjBgFP6yaaq64y0qzzzzjO666y4NGzZMLVu21EsvvaSKFSvq1VdfdbpoXuPs0jnBOhviTLR0Np1phbu2qefohgvqeiy74YK6Aev2YcAo/GXTVHVHW1R+++03rV+/XmPHjnUvi4qKUq9evfTZZ58VWz8/P1/5+fnu23l5eSEp55lwdlk+cSZaOpvOtMqDf/Rvp1s7N9C6nQfUIe2cgIUUiQGjKBtbxvA4GlRycnJUUFCgWrVqeSyvVauWfvjhh2LrZ2RkaMKECaEqnlc4oJVPHIxLx8Ev8NqmBjagnMqWgw3Ckw1XaXd8jIovxo4dq9GjR7tv5+XlKTU11cEScUArrzgYnxkHv/Biw8EG8JejQaVGjRqKjo7W3r17PZbv3btXtWvXLrZ+XFyc4uLiQlU8r3BAK784GJ8ZBz8AoeBoUImNjVX79u21bNky9e3bV5JUWFioZcuWacSIEU4WzScc0MovDsYA4CzHu35Gjx6toUOHqkOHDurYsaOmTJmiI0eOaNiwYU4XzScc0AAACDzHg8qAAQO0f/9+PfHEE9qzZ4/atWunxYsXFxtgCwAAIo/LGGPOvpqd8vLylJSUpNzcXCUmJjpdHAAA4AVfjt+OX/ANAACgNAQVAABgLYIKAACwFkEFAABYi6ACAACsRVABAADWIqgAAABrEVQAAIC1CCoAAMBajl9CvyyKLqqbl5fncEkAAIC3io7b3lwcP6yDyqFDhyRJqampDpcEAAD46tChQ0pKSjrjOmH9Wz+FhYX65ZdfVKVKFblcroBuOy8vT6mpqdq9e3e5/B0h6hf+ynsdy3v9pPJfR+oX/oJVR2OMDh06pJSUFEVFnXkUSli3qERFRalevXpBfY7ExMRyuwNK1K88KO91LO/1k8p/Half+AtGHc/WklKEwbQAAMBaBBUAAGAtgkop4uLiNG7cOMXFxTldlKCgfuGvvNexvNdPKv91pH7hz4Y6hvVgWgAAUL7RogIAAKxFUAEAANYiqAAAAGsRVAAAgLUiJqi88MILSktLU3x8vDp16qQvv/zyjOtPmTJFzZs3V0JCglJTU/Xggw/q+PHjZdpmsAW6juPHj5fL5fL4a9GiRbCrUSpf6nfixAlNnDhRjRs3Vnx8vNq2bavFixeXaZvBFuj62fT+rVy5Utdcc41SUlLkcrn03nvvnfUxy5cv1wUXXKC4uDg1adJEmZmZxdax6f0LRh3D+T3Mzs7W4MGD1axZM0VFRemBBx4ocb133nlHLVq0UHx8vFq3bq1FixYFvvBeCEb9MjMzi71/8fHxwamAF3yt47x583T55ZcrOTlZiYmJ6ty5sz766KNi6wX9c2giwKxZs0xsbKx59dVXzebNm81dd91lqlatavbu3Vvi+m+99ZaJi4szb731ltmxY4f56KOPTJ06dcyDDz7o9zaDLRh1HDdunDnvvPNMdna2+2///v2hqpIHX+v3pz/9yaSkpJgPPvjAZGVlmRdffNHEx8ebr776yu9tBlMw6mfT+7do0SLz2GOPmXnz5hlJZv78+Wdcf/v27aZixYpm9OjR5rvvvjNTp0410dHRZvHixe51bHr/jAlOHcP5PdyxY4cZOXKkee2110y7du3MqFGjiq2zevVqEx0dbf72t7+Z7777zjz++OOmQoUKZtOmTcGpxBkEo34zZswwiYmJHu/fnj17glMBL/hax1GjRpnJkyebL7/80vz4449m7NixpkKFCiH/Ho2IoNKxY0czfPhw9+2CggKTkpJiMjIySlx/+PDh5tJLL/VYNnr0aNO1a1e/txlswajjuHHjTNu2bYNSXl/5Wr86deqY559/3mNZv379zJAhQ/zeZjAFo342vX+n8uYL8k9/+pM577zzPJYNGDDApKenu2/b9P6dLlB1DOf38FTdu3cv8UDev39/06dPH49lnTp1Mvfcc08ZS1g2garfjBkzTFJSUsDKFUi+1rFIy5YtzYQJE9y3Q/E5LPddP7/99pvWr1+vXr16uZdFRUWpV69e+uyzz0p8TJcuXbR+/Xp389X27du1aNEiXXXVVX5vM5iCUcciW7duVUpKiho1aqQhQ4Zo165dwatIKfypX35+frEm1oSEBK1atcrvbQZLMOpXxIb3zx+fffaZx+shSenp6e7Xw6b3z19nq2ORcH0PveHtaxDODh8+rAYNGig1NVXXXXedNm/e7HSR/FZYWKhDhw6pWrVqkkL3OSz3QSUnJ0cFBQWqVauWx/JatWppz549JT5m8ODBmjhxoi6++GJVqFBBjRs3Vo8ePfToo4/6vc1gCkYdJalTp07KzMzU4sWLNW3aNO3YsUPdunXToUOHglqf0/lTv/T0dD3zzDPaunWrCgsLtXTpUs2bN0/Z2dl+bzNYglE/yZ73zx979uwp8fXIy8vTsWPHrHr//HW2Okrh/R56o7TXIFzew7Np3ry5Xn31VS1YsEBvvvmmCgsL1aVLF/30009OF80vTz/9tA4fPqz+/ftLCt33aLkPKv5Yvny5nnrqKb344ov66quvNG/ePH3wwQd68sknnS5awHhTx969e+umm25SmzZtlJ6erkWLFungwYOaM2eOgyX3znPPPaemTZuqRYsWio2N1YgRIzRs2LCz/px4uPCmfuH8/uF3vIfhrXPnzrr11lvVrl07de/eXfPmzVNycrJefvllp4vms7ffflsTJkzQnDlzVLNmzZA+d0xIn80BNWrUUHR0tPbu3euxfO/evapdu3aJj/nzn/+sW265RXfeeackqXXr1jpy5IjuvvtuPfbYY35tM5iCUceSDuhVq1ZVs2bNtG3btsBX4gz8qV9ycrLee+89HT9+XL/++qtSUlI0ZswYNWrUyO9tBksw6lcSp94/f9SuXbvE1yMxMVEJCQmKjo625v3z19nqWJJweg+9UdprEC7voa8qVKig888/P+zev1mzZunOO+/UO++849HNE6rv0fJxenkGsbGxat++vZYtW+ZeVlhYqGXLlqlz584lPubo0aPFDtTR0dGSJGOMX9sMpmDUsSSHDx9WVlaW6tSpE6CSe6csr3d8fLzq1q2rkydP6t1339V1111X5m0GWjDqVxKn3j9/dO7c2eP1kKSlS5e6Xw+b3j9/na2OJQmn99Ab/rwG4aygoECbNm0Kq/dv5syZGjZsmGbOnKk+ffp43Beyz2HAhuVabNasWSYuLs5kZmaa7777ztx9992matWq7mlit9xyixkzZox7/XHjxpkqVaqYmTNnmu3bt5slS5aYxo0bm/79+3u9zVALRh3/+Mc/muXLl5sdO3aY1atXm169epkaNWqYffv2WV+/zz//3Lz77rsmKyvLrFy50lx66aWmYcOG5sCBA15vM5SCUT+b3r9Dhw6Zr7/+2nz99ddGknnmmWfM119/bf773/8aY4wZM2aMueWWW9zrF03dffjhh833339vXnjhhRKnJ9vy/hkTnDqG83tojHGv3759ezN48GDz9ddfm82bN7vvX716tYmJiTFPP/20+f777824ceMcm54cjPpNmDDBfPTRRyYrK8usX7/eDBw40MTHx3usE0q+1vGtt94yMTEx5oUXXvCYYn3w4EH3OqH4HEZEUDHGmKlTp5r69eub2NhY07FjR/P555+77+vevbsZOnSo+/aJEyfM+PHjTePGjU18fLxJTU01f/jDHzwOAmfbphMCXccBAwaYOnXqmNjYWFO3bl0zYMAAs23bthDWyJMv9Vu+fLk599xzTVxcnKlevbq55ZZbzM8//+zTNkMt0PWz6f37z3/+YyQV+yuq09ChQ0337t2LPaZdu3YmNjbWNGrUyMyYMaPYdm16/4JRx3B/D0tav0GDBh7rzJkzxzRr1szExsaa8847z3zwwQehqdBpglG/Bx54wL1/1qpVy1x11VUe1yAJNV/r2L179zOuXyTYn0OXMaW08wMAADis3I9RAQAA4YugAgAArEVQAQAA1iKoAAAAaxFUAACAtQgqAADAWgQVAABgLYIKAATY8uXL5XK5dPDgQaeLAoQ9ggoQxm677Ta5XC5NmjTJY/l7770nl8vlvm2M0SuvvKLOnTsrMTFRlStX1nnnnadRo0Z5/QNpR48e1dixY9W4cWPFx8crOTlZ3bt314IFC9zrpKWlacqUKQGpW7AVvXYul0sVKlRQw4YN9ac//UnHjx/3aTs9evTQAw884LGsS5cuys7OVlJSUgBLDEQmggoQ5uLj4zV58mQdOHCgxPuNMRo8eLBGjhypq666SkuWLNF3332n6dOnKz4+Xn/5y1+8ep57771X8+bN09SpU/XDDz9o8eLFuvHGG/Xrr78GsjohdeWVVyo7O1vbt2/Xs88+q5dfflnjxo0r83ZjY2NVu3Ztj7AIwE8BvSA/gJAaOnSoufrqq02LFi3Mww8/7F4+f/58U/TxnjlzppFkFixYUOI2CgsLvXqupKQkk5mZWer9Jf0uSJFPP/3UXHzxxSY+Pt7Uq1fP3H///ebw4cPu+19//XXTvn17U7lyZVOrVi0zaNAgs3fvXvf9Rb9RsnjxYtOuXTsTHx9vevbsafbu3WsWLVpkWrRoYapUqWIGDRpkjhw54lV9hg4daq677jqPZf369TPnn3+++3ZOTo4ZOHCgSUlJMQkJCaZVq1bm7bff9tjG6XXesWOHu7yn/nbW3LlzTcuWLU1sbKxp0KCBefrpp70qJxDpaFEBwlx0dLSeeuopTZ06VT/99FOx+2fOnKnmzZvr2muvLfHx3p71165dW4sWLdKhQ4dKvH/evHmqV6+eJk6cqOzsbGVnZ0uSsrKydOWVV+qGG27QN998o9mzZ2vVqlUaMWKE+7EnTpzQk08+qY0bN+q9997Tzp07ddtttxV7jvHjx+v555/XmjVrtHv3bvXv319TpkzR22+/rQ8++EBLlizR1KlTvarP6b799lutWbNGsbGx7mXHjx9X+/bt9cEHH+jbb7/V3XffrVtuuUVffvmlJOm5555T586dddddd7nrnJqaWmzb69evV//+/TVw4EBt2rRJ48eP15///GdlZmb6VVYgojidlAD479RWgYsuusjcfvvtxhjPFpUWLVqYa6+91uNxo0aNMpUqVTKVKlUydevW9eq5VqxYYerVq2cqVKhgOnToYB544AGzatUqj3UaNGhgnn32WY9ld9xxh7n77rs9ln366acmKirKHDt2rMTnWrt2rZFkDh06ZIz5/1tUPv74Y/c6GRkZRpLJyspyL7vnnntMenq6V/UZOnSoiY6ONpUqVTJxcXFGkomKijJz58494+P69Olj/vjHP7pvd+/e3YwaNcpjndNbVAYPHmwuv/xyj3Uefvhh07JlS6/KCkQyWlSAcmLy5Ml67bXX9P3335913ccee0wbNmzQE088ocOHD3u1/UsuuUTbt2/XsmXLdOONN2rz5s3q1q2bnnzyyTM+buPGjcrMzFTlypXdf+np6SosLNSOHTsk/d7icM0116h+/fqqUqWKunfvLknatWuXx7batGnj/r9WrVqqWLGiGjVq5LFs3759XtVHknr27KkNGzboiy++0NChQzVs2DDdcMMN7vsLCgr05JNPqnXr1qpWrZoqV66sjz76qFi5zub7779X165dPZZ17dpVW7duVUFBgU/bAiINQQUoJy655BKlp6dr7NixHsubNm2qLVu2eCxLTk5WkyZNVLNmTZ+eo0KFCurWrZseeeQRLVmyRBMnTtSTTz6p3377rdTHHD58WPfcc482bNjg/tu4caO2bt2qxo0b68iRI0pPT1diYqLeeustrV27VvPnz5ekYtutUKGC+/+i2TqncrlcKiws9Lo+lSpVUpMmTdS2bVu9+uqr+uKLLzR9+nT3/X//+9/13HPP6ZFHHtF//vMfbdiwQenp6WesL4DAinG6AAACZ9KkSWrXrp2aN2/uXjZo0CANHjxYCxYs0HXXXRfQ52vZsqVOnjyp48ePKzY2VrGxscVaCC644AJ99913atKkSYnb2LRpk3799VdNmjTJPb5j3bp1AS2nN6KiovToo49q9OjRGjx4sBISErR69Wpdd911uvnmmyVJhYWF+vHHH9WyZUv340qq8+nOPfdcrV692mPZ6tWr1axZM0VHRwe+MkA5QosKUI60bt1aQ4YM0T//+U/3soEDB+rGG2/UwIEDNXHiRH3xxRfauXOnVqxYodmzZ3t9oOzRo4defvllrV+/Xjt37tSiRYv06KOPqmfPnkpMTJT0+3VUVq5cqZ9//lk5OTmSpEceeURr1qzRiBEjtGHDBm3dulULFixwD6atX7++YmNjNXXqVG3fvl0LFy48a3dSsNx0002Kjo7WCy+8IOn31qilS5dqzZo1+v7773XPPfdo7969Ho9JS0tzv6Y5OTkltuj88Y9/1LJly/Tkk0/qxx9/1Guvvabnn39eDz30UEjqBYQzggpQzkycONHjYOlyuTR79mxNmTJFixYt0mWXXabmzZvr9ttvV2pqqlatWuXVdtPT0/Xaa6/piiuu0Lnnnqv7779f6enpmjNnjsdz79y5U40bN1ZycrKk38eVrFixQj/++KO6deum888/X0888YRSUlIk/d4NlZmZqXfeeUctW7bUpEmT9PTTTwfwFfFeTEyMRowYob/97W86cuSIHn/8cV1wwQVKT09Xjx49VLt2bfXt29fjMQ899JCio6PVsmVLJScnlzh+5YILLtCcOXM0a9YstWrVSk888YQmTpxY4swmAJ5cxhjjdCEAAABKQosKAACwFkEFgCR5TB8+/e/TTz91ung+2bVr1xnr4+v0YgDOoesHgCSd8ccJ69atq4SEhBCWpmxOnjypnTt3lnp/WlqaYmKY9AiEA4IKAACwFl0/AADAWgQVAABgLYIKAACwFkEFAABYi6ACAACsRVABAADWIqgAAABrEVQAAIC1/j8N9yJ9FYKgsAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWuJJREFUeJzt3Xtc1FX+P/DXDDAMogwayMVQUPGCkpQK4Q1dqTGpJG29rhrrrW9amt3QvNcuarWalw1r12wrFU3TVlnSxcwUQsT7JVPDWzIoETNy8cac3x/++KwjA8wgH+bC6/l4zEM5n/fnM+d8Bmbec875nI9CCCFARERERHVOaesKEBERETkrJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpE1ODNmzcPCoXColiFQoF58+bJWp++ffuib9++dns8IrIcEy0ishtr1qyBQqGQHq6urmjRogVeeOEF/Prrr7aunt0JDg42OV/NmzdH79698fXXX9fJ8UtLSzFv3jzs3r27To5H1BAx0SIiu7NgwQJ8/vnnSE5OxlNPPYUvvvgCMTExuHHjhizPN2vWLJSVlclybLlFRETg888/x+eff47XX38dV65cweDBg5GcnPzAxy4tLcX8+fOZaBE9AFdbV4CI6H5PPfUUunXrBgAYP348fHx8sGjRInzzzTcYOnRonT+fq6srXF0d8+2wRYsW+NOf/iT9PGbMGLRt2xZLlizBiy++aMOaERHAHi0icgC9e/cGAJw7d86k/KeffsLzzz+PZs2aQa1Wo1u3bvjmm29MYm7fvo358+cjNDQUarUaDz30EHr16oWdO3dKMebmaN28eROvvvoqfH190aRJEzz77LO4fPlypbq98MILCA4OrlRu7piffvop/vCHP6B58+Zwd3dHWFgYPvroI6vORU38/f3RsWNH5ObmVht39epVjBs3Dn5+flCr1ejSpQs+++wzafv58+fh6+sLAJg/f740PCn3/DQiZ+OYX+GIqEE5f/48AKBp06ZS2YkTJ9CzZ0+0aNECiYmJ8PT0xIYNGxAfH49NmzbhueeeA3A34UlKSsL48eMRGRkJg8GAAwcO4ODBg3jiiSeqfM7x48fjiy++wMiRI9GjRw/s2rULcXFxD9SOjz76CJ06dcKzzz4LV1dX/Pvf/8ZLL70Eo9GIyZMnP9CxK9y+fRuXLl3CQw89VGVMWVkZ+vbti7Nnz2LKlCkICQnBxo0b8cILL6CoqAhTp06Fr68vPvroI/zf//0fnnvuOQwePBgA8Mgjj9RJPYkaDEFEZCc+/fRTAUD897//FdeuXROXLl0SX331lfD19RXu7u7i0qVLUmz//v1FeHi4uHHjhlRmNBpFjx49RGhoqFTWpUsXERcXV+3zzp07V9z7dnj48GEBQLz00ksmcSNHjhQAxNy5c6WysWPHilatWtV4TCGEKC0trRSn1WpF69atTcpiYmJETExMtXUWQohWrVqJJ598Uly7dk1cu3ZNHDlyRAwfPlwAEC+//HKVx1u6dKkAIL744gup7NatWyI6Olo0btxYGAwGIYQQ165dq9ReIrIOhw6JyO7ExsbC19cXQUFBeP755+Hp6YlvvvkGDz/8MACgsLAQu3btwtChQ3H9+nUUFBSgoKAAv/32G7RaLc6cOSNdpejt7Y0TJ07gzJkzFj9/amoqAOCVV14xKZ82bdoDtcvDw0P6v16vR0FBAWJiYvDLL79Ar9fX6pg7duyAr68vfH190aVLF2zcuBGjR4/GokWLqtwnNTUV/v7+GDFihFTm5uaGV155BcXFxfj+++9rVRciqoxDh0Rkd1auXIl27dpBr9dj9erV2LNnD9zd3aXtZ8+ehRACs2fPxuzZs80e4+rVq2jRogUWLFiAQYMGoV27dujcuTMGDBiA0aNHVzsEduHCBSiVSrRp08akvH379g/Urn379mHu3LnIzMxEaWmpyTa9Xg+NRmP1MaOiovDuu+9CoVCgUaNG6NixI7y9vavd58KFCwgNDYVSafpdu2PHjtJ2IqobTLSIyO5ERkZKVx3Gx8ejV69eGDlyJE6fPo3GjRvDaDQCAF5//XVotVqzx2jbti0AoE+fPjh37hy2bt2KHTt24B//+AeWLFmC5ORkjB8//oHrWtVCp+Xl5SY/nzt3Dv3790eHDh3wt7/9DUFBQVCpVEhNTcWSJUukNlnLx8cHsbGxtdqXiOTHRIuI7JqLiwuSkpLQr18/rFixAomJiWjdujWAu8NdliQZzZo1Q0JCAhISElBcXIw+ffpg3rx5VSZarVq1gtFoxLlz50x6sU6fPl0ptmnTpigqKqpUfn+v0L///W/cvHkT33zzDVq2bCmVf/fddzXWv661atUKR48ehdFoNOnV+umnn6TtQNVJJBFZjnO0iMju9e3bF5GRkVi6dClu3LiB5s2bo2/fvli1ahXy8vIqxV+7dk36/2+//WayrXHjxmjbti1u3rxZ5fM99dRTAIBly5aZlC9durRSbJs2baDX63H06FGpLC8vr9Lq7C4uLgAAIYRUptfr8emnn1ZZD7kMHDgQOp0OKSkpUtmdO3ewfPlyNG7cGDExMQCARo0aAYDZRJKILMMeLSJyCG+88Qb++Mc/Ys2aNXjxxRexcuVK9OrVC+Hh4ZgwYQJat26N/Px8ZGZm4vLlyzhy5AgAICwsDH379kXXrl3RrFkzHDhwAF999RWmTJlS5XNFRERgxIgR+Pvf/w69Xo8ePXogPT0dZ8+erRQ7fPhwvPXWW3juuefwyiuvoLS0FB999BHatWuHgwcPSnFPPvkkVCoVnnnmGUyaNAnFxcX45JNP0Lx5c7PJopwmTpyIVatW4YUXXkBOTg6Cg4Px1VdfYd++fVi6dCmaNGkC4O7k/bCwMKSkpKBdu3Zo1qwZOnfujM6dO9drfYkcmq0veyQiqlCxvEN2dnalbeXl5aJNmzaiTZs24s6dO0IIIc6dOyfGjBkj/P39hZubm2jRooV4+umnxVdffSXt9+6774rIyEjh7e0tPDw8RIcOHcRf/vIXcevWLSnG3FIMZWVl4pVXXhEPPfSQ8PT0FM8884y4dOmS2eUOduzYITp37ixUKpVo3769+OKLL8we85tvvhGPPPKIUKvVIjg4WCxatEisXr1aABC5ublSnDXLO9S0dEVVx8vPzxcJCQnCx8dHqFQqER4eLj799NNK+2ZkZIiuXbsKlUrFpR6IakEhxD392ERERERUZzhHi4iIiEgmTLSIiIiIZMJEi4iIiEgmTLSIiIiIZMJEi4iIiEgmTLSIiIiIZMIFS23IaDTiypUraNKkCW91QURE5CCEELh+/ToCAwMr3Zz9fky0bOjKlSsICgqydTWIiIioFi5duoSHH3642hgmWjZUcZuLS5cuwcvLy8a1ISIiIksYDAYEBQVJn+PVYaJlQxXDhV5eXky0iIiIHIwl0344GZ6IiIhIJky0iIiIiGTCRIuIiIhIJpyjRURE5OCMRiNu3bpl62o4FZVKVePSDZZgokVEROTAbt26hdzcXBiNRltXxakolUqEhIRApVI90HGYaBERETkoIQTy8vLg4uKCoKCgOumBof8tKJ6Xl4eWLVs+0KLiTLSIiIgc1J07d1BaWorAwEA0atTI1tVxKr6+vrhy5Qru3LkDNze3Wh+HqS8REZGDKi8vB4AHHt6iyirOacU5ri0mWkRERA6O98ute3V1TploEREREcmEiRYRERGRTJhoUa3k6cuQca4AefoyW1eFiIgclE6nw8svv4zWrVvD3d0dQUFBeOaZZ5Ceno7CwkK8/PLLaN++PTw8PNCyZUu88sor0Ov10v7nz5+HQqHA4cOHKx27b9++mDZtmknZqVOn8Oyzz0Kj0cDT0xPdu3fHxYsXZW0jrzokq6VkX8SMzcdgFIBSASQNDsew7i1tXS0iInIg58+fR8+ePeHt7Y333nsP4eHhuH37Nr799ltMnjwZX331Fa5cuYL3338fYWFhuHDhAl588UVcuXIFX331ldXPd+7cOfTq1Qvjxo3D/Pnz4eXlhRMnTkCtVsvQuv9hokVWydOXSUkWABgFMHPzcfRp54sAjYdtK0dERA7jpZdegkKhwP79++Hp6SmVd+rUCX/+85/h7e2NTZs2SeVt2rTBX/7yF/zpT3/CnTt34OpqXQrz9ttvY+DAgVi8eLHJMeXGoUOySm5BiZRkVSgXAucLSm1TISIiqhP1OSWksLAQaWlpmDx5skmSVcHb29vsfnq9Hl5eXlYnWUajEdu3b0e7du2g1WrRvHlzREVFYcuWLbWovXWYaJFVQnw8obzvilcXhQLBPlwoj4jIUaVkX0TPhbsw8pMs9Fy4CynZ8s5bOnv2LIQQ6NChg8X7FBQU4J133sHEiRMrbevRowcaN25s8vjhhx+k7VevXkVxcTEWLlyIAQMGYMeOHXjuuecwePBgfP/993XSpqpw6JCsEqDxQNLgcMzcfBzlQsBFocBfB3fmsCERkYOyxZQQIUTNQfcwGAyIi4tDWFgY5s2bV2l7SkoKOnbsaFI2atQo6f8V94EcNGgQXn31VQBAREQEMjIykJycjJiYGCtbYDkmWmS1Yd1bok87X5wvKEWwTyMmWUREDqy6KSFyvb+HhoZCoVDgp59+qjH2+vXrGDBgAJo0aYKvv/7a7O1wgoKC0LZtW5MyD4//1d3Hxweurq4ICwszienYsSP27t1by1ZYhkOHVCsBGg9Et3mISRYRkYOzxZSQZs2aQavVYuXKlSgpKam0vaioCMDdnqwnn3wSKpUK33zzTa2vEFSpVOjevTtOnz5tUv7zzz+jVatWtTqmpZhoERERNWAVU0Jc/v8tZ+prSsjKlStRXl6OyMhIbNq0CWfOnMGpU6ewbNkyREdHS0lWSUkJ/vnPf8JgMECn00Gn09Xq/oNvvPEGUlJS8Mknn+Ds2bNYsWIF/v3vf+Oll16SoXX/YxeJ1sqVKxEcHAy1Wo2oqCjs37+/2viNGzeiQ4cOUKvVCA8PR2pqqsl2IQTmzJmDgIAAeHh4IDY2FmfOnDGJKSwsxKhRo+Dl5QVvb2+MGzcOxcXF0vbTp0+jX79+8PPzg1qtRuvWrTFr1izcvn3bqroQERHZu2HdW2JvYj+sm/A49ib2q5e1EVu3bo2DBw+iX79+eO2119C5c2c88cQTSE9Px0cffYSDBw8iKysLx44dQ9u2bREQECA9Ll26ZPXzPffcc0hOTsbixYsRHh6Of/zjH9i0aRN69eolQ+vuIWxs/fr1QqVSidWrV4sTJ06ICRMmCG9vb5Gfn282ft++fcLFxUUsXrxYnDx5UsyaNUu4ubmJY8eOSTELFy4UGo1GbNmyRRw5ckQ8++yzIiQkRJSVlUkxAwYMEF26dBE//vij+OGHH0Tbtm3FiBEjpO3nzp0Tq1evFocPHxbnz58XW7duFc2bNxczZsywqi7V0ev1AoDQ6/XWnjYiIiJRVlYmTp48afL5RnWjunNrzee3zROtyMhIMXnyZOnn8vJyERgYKJKSkszGDx06VMTFxZmURUVFiUmTJgkhhDAajcLf31+899570vaioiLh7u4u1q1bJ4QQ4uTJkwKAyM7OlmL+85//CIVCIX799dcq6/rqq6+KXr16WVyXmjDRIiKiB8FESz51lWjZdOjw1q1byMnJQWxsrFSmVCoRGxuLzMxMs/tkZmaaxAOAVquV4nNzc6HT6UxiNBoNoqKipJjMzEx4e3ujW7duUkxsbCyUSiWysrLMPu/Zs2eRlpZmcgloTXW5382bN2EwGEweRERE5LxsmmgVFBSgvLwcfn5+JuV+fn7Q6XRm99HpdNXGV/xbU0zz5s1Ntru6uqJZs2aVnrdHjx5Qq9UIDQ1F7969sWDBAovrcr+kpCRoNBrpERQUZDaOiIiInINdTIa3ZykpKTh48CDWrl2L7du34/3336/1sWbMmAG9Xi89ajOZj4iIiByHTRcs9fHxgYuLC/Lz803K8/Pz4e/vb3Yff3//auMr/s3Pz0dAQIBJTEREhBRz9epVk2PcuXMHhYWFlZ63otcpLCwM5eXlmDhxIl577TW4uLjUWJf7ubu7w93d3ew2IiKi2hJWrrRONaurc2rTHi2VSoWuXbsiPT1dKjMajUhPT0d0dLTZfaKjo03iAWDnzp1SfEhICPz9/U1iDAYDsrKypJjo6GgUFRUhJydHitm1axeMRiOioqKqrK/RaMTt27elpfxrqgsREZGcXFxcANyd80x1q+KcVpzj2rL5LXimT5+OsWPHolu3boiMjMTSpUtRUlKChIQEAMCYMWPQokULJCUlAQCmTp2KmJgYfPDBB4iLi8P69etx4MABfPzxxwAAhUKBadOm4d1330VoaChCQkIwe/ZsBAYGIj4+HsDdJfcHDBiACRMmIDk5Gbdv38aUKVMwfPhwBAYGAgC+/PJLuLm5ITw8HO7u7jhw4ABmzJiBYcOGScv/11QXIiIiObm6uqJRo0a4du0a3NzcoFRyRlBdMBqNuHbtGho1agRX1wdLlWyeaA0bNgzXrl3DnDlzoNPpEBERgbS0NGmS+cWLF01+cXr06IG1a9di1qxZmDlzJkJDQ7FlyxZ07txZinnzzTdRUlKCiRMnoqioCL169UJaWprJ0v1ffvklpkyZgv79+0OpVGLIkCFYtmyZtN3V1RWLFi3Czz//DCEEWrVqhSlTpkg3o7S0LkRERHJRKBQICAhAbm4uLly4YOvqOBWlUomWLVtCoVDUHFwNheDArs0YDAZoNBro9Xp4eXnZujpEROSgjEYjhw/rmEqlqrKH0JrPb5v3aBEREdGDUSqVtb7hMsmLg7lEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMrGLRGvlypUIDg6GWq1GVFQU9u/fX238xo0b0aFDB6jVaoSHhyM1NdVkuxACc+bMQUBAADw8PBAbG4szZ86YxBQWFmLUqFHw8vKCt7c3xo0bh+LiYmn77t27MWjQIAQEBMDT0xMRERH48ssvTY6xZs0aKBQKk4darX7As0FERETOwuaJVkpKCqZPn465c+fi4MGD6NKlC7RaLa5evWo2PiMjAyNGjMC4ceNw6NAhxMfHIz4+HsePH5diFi9ejGXLliE5ORlZWVnw9PSEVqvFjRs3pJhRo0bhxIkT2LlzJ7Zt24Y9e/Zg4sSJJs/zyCOPYNOmTTh69CgSEhIwZswYbNu2zaQ+Xl5eyMvLkx4XLlyo4zNEREREDkvYWGRkpJg8ebL0c3l5uQgMDBRJSUlm44cOHSri4uJMyqKiosSkSZOEEEIYjUbh7+8v3nvvPWl7UVGRcHd3F+vWrRNCCHHy5EkBQGRnZ0sx//nPf4RCoRC//vprlXUdOHCgSEhIkH7+9NNPhUajsbyx99Hr9QKA0Ov1tT4GERER1S9rPr9t2qN169Yt5OTkIDY2VipTKpWIjY1FZmam2X0yMzNN4gFAq9VK8bm5udDpdCYxGo0GUVFRUkxmZia8vb3RrVs3KSY2NhZKpRJZWVlV1lev16NZs2YmZcXFxWjVqhWCgoIwaNAgnDhxosr9b968CYPBYPIgIiIi52XTRKugoADl5eXw8/MzKffz84NOpzO7j06nqza+4t+aYpo3b26y3dXVFc2aNavyeTds2IDs7GwkJCRIZe3bt8fq1auxdetWfPHFFzAajejRowcuX75s9hhJSUnQaDTSIygoyGwcEREROQebz9FyBN999x0SEhLwySefoFOnTlJ5dHQ0xowZg4iICMTExGDz5s3w9fXFqlWrzB5nxowZ0Ov10uPSpUv11QQiIiKyAZsmWj4+PnBxcUF+fr5JeX5+Pvz9/c3u4+/vX218xb81xdw/2f7OnTsoLCys9Lzff/89nnnmGSxZsgRjxoyptj1ubm549NFHcfbsWbPb3d3d4eXlZfIgIiKqL3n6MmScK0CevszWVWkwbJpoqVQqdO3aFenp6VKZ0WhEeno6oqOjze4THR1tEg8AO3fulOJDQkLg7+9vEmMwGJCVlSXFREdHo6ioCDk5OVLMrl27YDQaERUVJZXt3r0bcXFxWLRokckViVUpLy/HsWPHEBAQYEHriYiI6k9K9kX0XLgLIz/JQs+Fu5CSfdHWVWoQXG1dgenTp2Ps2LHo1q0bIiMjsXTpUpSUlEhzocaMGYMWLVogKSkJADB16lTExMTggw8+QFxcHNavX48DBw7g448/BgAoFApMmzYN7777LkJDQxESEoLZs2cjMDAQ8fHxAICOHTtiwIABmDBhApKTk3H79m1MmTIFw4cPR2BgIIC7w4VPP/00pk6diiFDhkhzt1QqlTQhfsGCBXj88cfRtm1bFBUV4b333sOFCxcwfvz4+jyFRERE1crTl2HG5mMwirs/GwUwc/Nx9GnniwCNh20r5+RsnmgNGzYM165dw5w5c6DT6RAREYG0tDRpMvvFixehVP6v461Hjx5Yu3YtZs2ahZkzZyI0NBRbtmxB586dpZg333wTJSUlmDhxIoqKitCrVy+kpaWZLCb65ZdfYsqUKejfvz+USiWGDBmCZcuWSds/++wzlJaWIikpSUryACAmJga7d+8GAPz++++YMGECdDodmjZtiq5duyIjIwNhYWFynS4iIiKr5RaUSElWhXIhcL6glImWzBRCCFFzGMnBYDBAo9FAr9dzvhYREckmT1+Gngt3mSRbLgoF9ib2Y6JVC9Z8fvOqQyIiIicXoPFA0uBwuCgUAO4mWX8d3JlJVj2w+dAhERERyW9Y95bo084X5wtKEezTiElWPWGiRbWSpy9DbkEJQnw8+cdKROQgAjQefM+uZ0y0yGop2Relq1eUCiBpcDiGdW9p62oRERHZHc7RIqtUdYkwF78jIiKqjIkWWaW6S4SJiIjIFBMtskqIjyeUCtMyF4UCwT6NbFMhIiIiO8ZEi6zCS4SJiIgsx8nwZDVeIkxERGQZJlpUK7xEmIiIqGYcOiQiIiKSCRMtIiIiIpkw0SIiIiKSCRMtIiIiIpkw0SIiIiKSCRMtIiIiIpkw0SIiIiKSCRMtIiIiIpkw0SIiIiKSCRMtIiIiIpkw0SIiIiKSCRMtIiIiIpkw0SIiIiKSCRMtIiIiIpkw0SIiIiKSCRMtIiIiIpkw0SIiIiKSCRMtIiIiIpkw0SIiIiKSCRMtIiIiIpkw0SIiIiKnlKcvQ8a5AuTpy2xWB1ebPTMRERGRTFKyL2LG5mMwCkCpAJIGh2NY95b1Xg/2aBEREZFTydOXSUkWABgFMHPzcZv0bDHRIiIiIqeSW1AiJVkVyoXA+YLSeq8LEy0iIiJyKiE+nlAqTMtcFAoE+zSq97ow0SIiIiKnEqDxQNLgcLgo7mZbLgoF/jq4MwI0HvVeF06GJyIiIqczrHtL9Gnni/MFpQj2aWSTJAtgokVEREROKkDjYbMEqwKHDp2UPawdQkRE1NCxR8sJ2cvaIURERA0de7ScjD2tHUJERNTQMdFyMva0dghRQ8bheyICOHTodCrWDrk32bLV2iFEDRWH74mogl30aK1cuRLBwcFQq9WIiorC/v37q43fuHEjOnToALVajfDwcKSmpppsF0Jgzpw5CAgIgIeHB2JjY3HmzBmTmMLCQowaNQpeXl7w9vbGuHHjUFxcLG3fvXs3Bg0ahICAAHh6eiIiIgJffvml1XWpb/a0dghRQ8TheyK6l80TrZSUFEyfPh1z587FwYMH0aVLF2i1Wly9etVsfEZGBkaMGIFx48bh0KFDiI+PR3x8PI4fPy7FLF68GMuWLUNycjKysrLg6ekJrVaLGzduSDGjRo3CiRMnsHPnTmzbtg179uzBxIkTTZ7nkUcewaZNm3D06FEkJCRgzJgx2LZtm1V1sYVh3Vtib2I/rJvwOPYm9uM3aaJ6xOF7IrqXQgghag6TT1RUFLp3744VK1YAAIxGI4KCgvDyyy8jMTGxUvywYcNQUlJikvA8/vjjiIiIQHJyMoQQCAwMxGuvvYbXX38dAKDX6+Hn54c1a9Zg+PDhOHXqFMLCwpCdnY1u3boBANLS0jBw4EBcvnwZgYGBZusaFxcHPz8/rF692qK61MRgMECj0UCv18PLy8vCM0ZE9ixPX4aeC3dVGr7fm9iPPctETsKaz2+b9mjdunULOTk5iI2NlcqUSiViY2ORmZlpdp/MzEyTeADQarVSfG5uLnQ6nUmMRqNBVFSUFJOZmQlvb28pyQKA2NhYKJVKZGVlVVlfvV6PZs2aWVyX+928eRMGg8HkQUTOhcP3RHQvm06GLygoQHl5Ofz8/EzK/fz88NNPP5ndR6fTmY3X6XTS9oqy6mKaN29ust3V1RXNmjWTYu63YcMGZGdnY9WqVRbX5X5JSUmYP3++2W1E5Dzs5dYfRGR7Np+j5Qi+++47JCQk4JNPPkGnTp1qfZwZM2ZAr9dLj0uXLtVhLYnIngRoPBDd5iEmWUQNnE0TLR8fH7i4uCA/P9+kPD8/H/7+/mb38ff3rza+4t+aYu6fbH/nzh0UFhZWet7vv/8ezzzzDJYsWYIxY8ZYVZf7ubu7w8vLy+RBREREzsumiZZKpULXrl2Rnp4ulRmNRqSnpyM6OtrsPtHR0SbxALBz504pPiQkBP7+/iYxBoMBWVlZUkx0dDSKioqQk5MjxezatQtGoxFRUVFS2e7duxEXF4dFixaZXJFoaV2IiIiogRM2tn79euHu7i7WrFkjTp48KSZOnCi8vb2FTqcTQggxevRokZiYKMXv27dPuLq6ivfff1+cOnVKzJ07V7i5uYljx45JMQsXLhTe3t5i69at4ujRo2LQoEEiJCRElJWVSTEDBgwQjz76qMjKyhJ79+4VoaGhYsSIEdL2Xbt2iUaNGokZM2aIvLw86fHbb79ZVZfq6PV6AUDo9fpanz8iIiKqX9Z8fts80RJCiOXLl4uWLVsKlUolIiMjxY8//ihti4mJEWPHjjWJ37Bhg2jXrp1QqVSiU6dOYvv27SbbjUajmD17tvDz8xPu7u6if//+4vTp0yYxv/32mxgxYoRo3Lix8PLyEgkJCeL69evS9rFjxwoAlR4xMTFW1aU6TLSIiIgcjzWf3zZfR6sh4zpaREREjsdh1tEiIiIicmZMtIiIiIhkwkSLiIiISCZMtIiIiIhkwkSLiIiISCZMtMju5OnLkHGuAHn6MltXhYiI6IHY9KbSRPdLyb6IGZuPwSgApQJIGhyOYd1b2rpaREREtcIeLbIbefoyKckCAKMAZm4+zp4tIiJyWEy0yG7kFpRISVaFciFwvqDUNhUiIiJ6QEy0yG6E+HhCqTAtc1EoEOzTyDYVIiIiekBMtMhuBGg8kDQ4HC6Ku9mWi0KBvw7ujACNh41rRkREVDucDE92ZVj3lujTzhfnC0oR7NOISRYRETk0JlpkdwI0HkywiIjIKXDokIiIiEgmTLSIiIiIZMJEi4iIiEgmTLSIiIiIZMJEi4iIiEgmTLSIiIiIZMJEi4iIiEgmTLSIiIiIZMJEi4iIiEgmTLTI4eXpy5BxrgB5+jJbV4WIiMgEb8FDDi0l+yJmbD4GowCUCiBpcDiGdW9p62oREREBYI8WObA8fZmUZAGAUQAzNx9nzxYREdkNJlrksHILSqQkq0K5EDhfUGqbChEREd3HqkTr8uXLKCgokH7+4YcfMGrUKPTu3Rt/+tOfkJmZWecVJKpKiI8nlArTMheFAsE+jWxTISIiovtYlWgNGTIEP/74IwBg69at6Nu3L4qLi9GzZ0+UlpYiJiYG27Ztk6WiRPcL0HggaXA4XBR3sy0XhQJ/HdwZARoPG9eMiIjoLoUQQtQcdlfjxo1x7NgxhISE4PHHH8dzzz2Ht956S9q+YsUKrF69GgcPHpSlss7GYDBAo9FAr9fDy8vL1tVxWHn6MpwvKEWwTyMmWUREJDtrPr+t6tFydXXF9evXAQC5ubl46qmnTLY/9dRTOH36tJXVJXowARoPRLd5iEkWERHZHasSrZiYGKxbtw4A8Oijj2L37t0m27/77ju0aNGizipHRERE5MisWkdr4cKF6N27N65cuYJevXrh7bffRnZ2Njp27IjTp08jJSUFycnJctWViIiIyKFYNUcLAM6dO4dZs2Zh+/btKC4uBnB3SLF79+544403EB8fL0c9nRLnaBERETkeaz6/rU60KgghcPXqVRiNRvj4+MDNza1WlW3ImGgRERE5Hms+v2t9Cx6FQgE/P7/a7k5ERETk9KxKtKZPn25R3N/+9rdaVYaIiIjImViVaB06dMjk571796Jr167w8PjfZfUKheL+3YiIiIgaJKsSre+++87k5yZNmmDt2rVo3bp1nVaKiIiIyBnwptJEREREMmGiRVSDPH0ZMs4VIE9fZuuqEBGRg6n1VYdEDUFK9kXM2HwMRgEoFUDS4HAM697S1tUiIiIHYVWidfToUZOfhRD46aefpIVLKzzyyCMPXjMiG8vTl0lJFgAYBTBz83H0aefL+yoSEZFFrEq0IiIioFAocO8ap08//TQASOUKhQLl5eV1W0siG8gtKJGSrArlQuB8QSkTLSIisohVc7Ryc3Pxyy+/IDc3t9KjovyXX36xqgIrV65EcHAw1Go1oqKisH///mrjN27ciA4dOkCtViM8PBypqakm24UQmDNnDgICAuDh4YHY2FicOXPGJKawsBCjRo2Cl5cXvL29MW7cOJNeuRs3buCFF15AeHg4XF1dzd5WaPfu3VAoFJUeOp3OqvaT/Qrx8YTyvtVKXBQKBPs0sk2FiIjI4ViVaLVq1cqih6VSUlIwffp0zJ07FwcPHkSXLl2g1Wpx9epVs/EZGRkYMWIExo0bh0OHDiE+Ph7x8fE4fvy4FLN48WIsW7YMycnJyMrKgqenJ7RaLW7cuCHFjBo1CidOnMDOnTuxbds27NmzBxMnTpS2l5eXw8PDA6+88gpiY2OrbcPp06eRl5cnPZo3b25x+8m+BWg8kDQ4HC7/f204F4UCfx3cmb1ZRERkOVEL5eXlVZZfuHDB4uNERkaKyZMnm+wfGBgokpKSzMYPHTpUxMXFmZRFRUWJSZMmCSGEMBqNwt/fX7z33nvS9qKiIuHu7i7WrVsnhBDi5MmTAoDIzs6WYv7zn/8IhUIhfv3110rPOXbsWDFo0KBK5d99950AIH7//XeL23s/vV4vAAi9Xl/rY5D8rhSVioyzBeJKUamtq0JERHbAms9vq3q0DAYDhg4dCk9PT/j5+WHOnDkm87GuXbuGkJAQi45169Yt5OTkmPQYKZVKxMbGIjMz0+w+mZmZlXqYtFqtFJ+bmwudTmcSo9FoEBUVJcVkZmbC29sb3bp1k2JiY2OhVCqRlZVlUd3vFRERgYCAADzxxBPYt29ftbE3b96EwWAweZD9C9B4ILrNQ+zJIiIiq1mVaM2ePRtHjhzB559/jr/85S/417/+hUGDBuHWrVtSjBCimiP8T0FBAcrLyyvdmNrPz6/KeU46na7a+Ip/a4q5f3jP1dUVzZo1s2p+VUBAAJKTk7Fp0yZs2rQJQUFB6Nu3Lw4ePFjlPklJSdBoNNIjKCjI4ucjIiIix2PVVYdbtmzBZ599hr59+wIA4uPjERcXh2eeeQbffPMNgIZzr8P27dujffv20s89evTAuXPnsGTJEnz++edm95kxY4bJjbkNBgOTLSIiIidmVY/WtWvXTCa7+/j44L///S+uX7+OgQMHorS01OJj+fj4wMXFBfn5+Sbl+fn58Pf3N7uPv79/tfEV/9YUc/9k+zt37qCwsLDK57VUZGQkzp49W+V2d3d3eHl5mTyIiIjIeVmVaLVs2RKnTp0yKWvSpAl27NiBsrIyPPfccxYfS6VSoWvXrkhPT5fKjEYj0tPTER0dbXaf6Ohok3gA2LlzpxQfEhICf39/kxiDwYCsrCwpJjo6GkVFRcjJyZFidu3aBaPRiKioKIvrb87hw4cREBDwQMcgIiIi52HV0OETTzyBTz/9FAMHDjQpb9y4Mb799ls88cQTVj359OnTMXbsWHTr1g2RkZFYunQpSkpKkJCQAAAYM2YMWrRogaSkJADA1KlTERMTgw8++ABxcXFYv349Dhw4gI8//hjA3WHLadOm4d1330VoaChCQkIwe/ZsBAYGSmthdezYEQMGDMCECROQnJyM27dvY8qUKRg+fDgCAwOlup08eRK3bt1CYWEhrl+/jsOHDwO4O/kdAJYuXYqQkBB06tQJN27cwD/+8Q/s2rULO3bssOocEBERkROz5nLGwsJCceLEiSq3GwwGsXv3bmsOKZYvXy5atmwpVCqViIyMFD/++KO0LSYmRowdO9YkfsOGDaJdu3ZCpVKJTp06ie3bt5tsNxqNYvbs2cLPz0+4u7uL/v37i9OnT5vE/Pbbb2LEiBGicePGwsvLSyQkJIjr16+bxLRq1UoAqPSosGjRItGmTRuhVqtFs2bNRN++fcWuXbusajuXdyAiInI81nx+K4Sw8DJB3B1imzJlCn788cdK84v0ej169OiBjz76CH369Km7TNCJGQwGaDQa6PV6ztciIiJyENZ8fls1R2vp0qWYMGGC2YNqNBpMmjQJS5Yssa62RERERE7KqkTryJEjGDBgQJXbn3zySZNJ5kREREQNmVWJVn5+Ptzc3Krc7urqimvXrj1wpYiIiIicgVWJVosWLUxu4Hy/o0ePcnkDB5WnL0PGuQLk6ctsXRUiIiKnYdXyDgMHDsTs2bMxYMAAqNVqk21lZWWYO3cunn766TqtIMkvJfsiZmw+BqMAlAogaXA4hnVvaetqEREROTyrrjrMz8/HY489BhcXF0yZMkW6Bc1PP/2ElStXory8HAcPHqx0r0Eyzx6uOszTl6Hnwl0w3vNb4KJQYG9iP95EmYiIyAxrPr+t6tHy8/NDRkYG/u///g8zZsyQbiCtUCig1WqxcuVKJlkOJregxCTJAoByIXC+oJSJFhER0QOyKtECgFatWiE1NRW///47zp49CyEEQkND0bRpUznqRzIL8fGEUoFKPVrBPo1sVykiIiInYdVk+Hs1bdoU3bt3R2RkJJMsBxag8UDS4HC4KBQA7iZZfx3cmb1ZREREdcDqHi1yPsO6t0Sfdr44X1CKYJ9GTLKIiIjqCBMtAnC3Z4sJFhERUd2q9dAhERER0b24JmNl7NEiIiKiB8Y1Gc1jjxYRERE9kDx9mZRkAXevZJ+5+Th7tsBEi4iIiB5QdWsyNnRMtIiIiOiBVKzJeC+uyXgXEy0iIiJ6IFyTsWqcDE9EREQPjGsymsdEi4iIiOoE12SsjEOHRERERDJhokVEREQkEyZaRERERDJhokVEREQkEyZaRERERDJhokVEREQkEyZaRERERDJhokVEREQkEyZaRERERDJhokVEREQkEyZaRERERDJhokVEREQkEyZaRERERDJhokVEREQkEyZaZHfy9GXIOFeAPH2ZratCRET0QFxtXQGie6VkX8SMzcdgFIBSASQNDsew7i1tXS0iIqJaYY8W2Y08fZmUZAGAUQAzNx9nzxYRETksJlpkN3ILSqQkq0K5EDhfUGqbCpHNcRiZiBwdhw7JboT4eEKpgEmy5aJQINinke0qRTaTkn0RiZuOQQBQAFg4hMPIROR42KNFdiNA44GkweFwUSgA3E2y/jq4MwI0HjauGdW3PH2ZlGQBgACQuOkYe7aIyOGwR4vsyrDuLdGnnS/OF5Qi2KcRk6wG6sD5Qtw3igwBIOf873i6C38niMhxMNEiuxOg8WCCZSN5+jLkFpQgxMfTpq+B4v/3alYur+eK3MNezg0RORYmWkQEwL6W1ujaqikUgEmvlkIBPNaqqU3qY0/nhogcC+doEZHdLa0RoPHAwiHhUP7/HiylAlg4ONwmPUn2dm6IyLHYPNFauXIlgoODoVarERUVhf3791cbv3HjRnTo0AFqtRrh4eFITU012S6EwJw5cxAQEAAPDw/ExsbizJkzJjGFhYUYNWoUvLy84O3tjXHjxqG4uFjafuPGDbzwwgsIDw+Hq6sr4uPjzdZl9+7deOyxx+Du7o62bdtizZo1tToHRLZmj0trDOveEvsS/4B1Ex7HvsQ/2KwHyR7PDRE5DpsmWikpKZg+fTrmzp2LgwcPokuXLtBqtbh69arZ+IyMDIwYMQLjxo3DoUOHEB8fj/j4eBw/flyKWbx4MZYtW4bk5GRkZWXB09MTWq0WN27ckGJGjRqFEydOYOfOndi2bRv27NmDiRMnStvLy8vh4eGBV155BbGxsWbrkpubi7i4OPTr1w+HDx/GtGnTMH78eHz77bd1dHaI6k/F0hr3soelNQI0Hohu85BN50TZ67khcgYNYa08hRDi/ot76k1UVBS6d++OFStWAACMRiOCgoLw8ssvIzExsVL8sGHDUFJSgm3btklljz/+OCIiIpCcnAwhBAIDA/Haa6/h9ddfBwDo9Xr4+flhzZo1GD58OE6dOoWwsDBkZ2ejW7duAIC0tDQMHDgQly9fRmBgoMlzvvDCCygqKsKWLVtMyt966y1s377dJMkbPnw4ioqKkJaWZlH7DQYDNBoN9Ho9vLy8LNqHSC4p2Rcxc/NxlAshLa3BeUh38dwQ1T1Hnvtozee3zSbD37p1Czk5OZgxY4ZUplQqERsbi8zMTLP7ZGZmYvr06SZlWq1WSoJyc3Oh0+lMeqE0Gg2ioqKQmZmJ4cOHIzMzE97e3lKSBQCxsbFQKpXIysrCc889Z1H9MzMzK/V2abVaTJs2zaL9iewNl9aoGs8NUd2qau5jn3a+Tvf3ZbNEq6CgAOXl5fDz8zMp9/Pzw08//WR2H51OZzZep9NJ2yvKqotp3ry5yXZXV1c0a9ZMirFEVXUxGAwoKyuDh0flX5SbN2/i5s2b0s8Gg8Hi5yPH4cjLAHBpjarx3BDVnermPjrb3xmXd6hHSUlJmD9/vq2rQTJy5K5wIqL60pBuuWazyfA+Pj5wcXFBfn6+SXl+fj78/f3N7uPv719tfMW/NcXcP9n+zp07KCwsrPJ5ramLl5eX2d4sAJgxYwb0er30uHTpksXPR/aPywDQvRrCJF+i2mpIt1yzWaKlUqnQtWtXpKenS2VGoxHp6emIjo42u090dLRJPADs3LlTig8JCYG/v79JjMFgQFZWlhQTHR2NoqIi5OTkSDG7du2C0WhEVFSUxfWvqS7muLu7w8vLy+RBzoPLAFCFlOyL6LlwF0Z+koWeC3chJfuiratEZHeGdW+JvYn9sG7C49ib2M9pe/9tOnQ4ffp0jB07Ft26dUNkZCSWLl2KkpISJCQkAADGjBmDFi1aICkpCQAwdepUxMTE4IMPPkBcXBzWr1+PAwcO4OOPPwZw97Yd06ZNw7vvvovQ0FCEhIRg9uzZCAwMlNbC6tixIwYMGIAJEyYgOTkZt2/fxpQpUzB8+HCTKw5PnjyJW7duobCwENevX8fhw4cBABEREQCAF198EStWrMCbb76JP//5z9i1axc2bNiA7du318/JI7vTkLrCqWoNaZIv0YNqCHMfbZpoDRs2DNeuXcOcOXOg0+kQERGBtLQ0aZL5xYsXoVT+r9OtR48eWLt2LWbNmoWZM2ciNDQUW7ZsQefOnaWYN998EyUlJZg4cSKKiorQq1cvpKWlQa1WSzFffvklpkyZgv79+0OpVGLIkCFYtmyZSd0GDhyICxcuSD8/+uijAO4uiArc7T3bvn07Xn31VXz44Yd4+OGH8Y9//ANarbbuTxQ5hIqu8PuXAXD2NxEy1ZAm+RJRzWy6jlZDx3W0nFOevozLADRgefoy9Fy4q1LP5t7Efvx9IHIS1nx+2/wWPETOxh5WMyfbaUiTfImoZlzegcjG7GndLXuqiyPjAqdEVIGJFpEN2dO6W/ZUF2fQECb5ElHNOHRIZCP2tO6WPdWFiMiZMNEispHarLsl1yKYXAPM9rjAKZFz4tAhUR2zdJ6TtetuyTm0xzXAbIvDtkTOiz1aRHXImhXBrbk6Te6hPV4pZzsctiVybuzRIqojtVkR3NKr0+pjEUxeKWcbXOCUyLkx0SKqI7X9wLTk6rT6GtrjlXL1j8O2RJZzxCVoOHRIVEcqPjDvVVcfmBzac158bYks46g3a+cteGyIt+BxPinZFyvd67AuJzXz9j7Oi68tUdXs7dZW1nx+c+iQqA7JPc+JQ3vOi68tUdUceS4jEy2iOsYPTCKiuuXIcxk5R4uIyA5wwVKqrYbwu+PIcxnZo0VEZGNcsNS2HPFKtgoN6XfHUZegYaJFRGRDtVl/raGRMxFy5ESlIf7uOOLUDA4dEjmxhjCk4Oh4n8nqyXlJv6Ovys/fHcfAHi0iJ+XI39QbEkee5Cs3uXtsHPlKNoC/O46CPVpETsjRv6k3JI48yVducvfYyLnIcH3g745jYI8WkRNy9G/qDY2jTvKVm9w9NhWJyv2LDDvS+efvjv1jokXkhDik4HgccZKv3OojEXKGRIW/O/aNiRaRE3KGb+pEQP0kQkxUSE5MtIiclDN8UycC7C8RcuR1t6j+MdEicmL29gFF5Oh4NS9Zi1cdEjmQhrYuVkNrL9k3Xs1LtcEeLZIdu9nrRkP7Jt3Q2ku2Y+l7FK/mpdpgokWy4odl3Whot9poaO0l27HmPYpX81JtcOiQZMNu9rrT0G610dDaWx84DFuZte9RXCCUaoM9WiQbdrPXndp+k3bUYdv66jlw1PNjLfYsm1eb9yhezUvWYo8WycbRb29hT2rzTVrOm/HKrT56Dhz5/FiDPctVq+17VIDGA9FtHmKSRRZhjxbJhotm1i1rvkk7wxwnOXsOnOH8WIo9y1XjexTVByZaJCt2s9ctS9fFcpYPV7nWAXOW82MJTuCuHt+jSG4cOiTZsZu9/tXXsK2jTrBuSMPanMBdM75HkZzYo0XkhOpjSMSRJ1g3tCEj9toQ2Y5CCCFqDiM5GAwGaDQa6PV6eHl52bo65ITy9GWyzXHquXBXpeGovYn9HOpDXK7zQ0TOzZrPb/ZoETkxznGqHu8FSURy4xwtIrJaQ5rjZK8cdX4cUUPDRIuIrMYJ1rZVH2uAMZEjqhuco2VDnKNFjo5znOpffcyPc+QLHYjqgzWf3+zRIqJa42Xx9U/u+0ByJXmiusVEi8jGOERD1pB7fhxv6E1Ut5hoEdlQQ7nfHtUduefH8UIHorrFOVo2xDlaDZuzrEVFtiHn/LiU7IuVFnPlHC2i/+E6WtSg5OnLkFtQghAfT4dKUJxlLSqyDTnXAONK8kR1xy6GDleuXIng4GCo1WpERUVh//791cZv3LgRHTp0gFqtRnh4OFJTU022CyEwZ84cBAQEwMPDA7GxsThz5oxJTGFhIUaNGgUvLy94e3tj3LhxKC4uNok5evQoevfuDbVajaCgICxevNhk+5o1a6BQKEwearX6Ac4EWcuRh944REP2jBc6ENUNmydaKSkpmD59OubOnYuDBw+iS5cu0Gq1uHr1qtn4jIwMjBgxAuPGjcOhQ4cQHx+P+Ph4HD9+XIpZvHgxli1bhuTkZGRlZcHT0xNarRY3btyQYkaNGoUTJ05g586d2LZtG/bs2YOJEydK2w0GA5588km0atUKOTk5eO+99zBv3jx8/PHHJvXx8vJCXl6e9Lhw4UIdnyGqiqNfHcW1qIiIGgBhY5GRkWLy5MnSz+Xl5SIwMFAkJSWZjR86dKiIi4szKYuKihKTJk0SQghhNBqFv7+/eO+996TtRUVFwt3dXaxbt04IIcTJkycFAJGdnS3F/Oc//xEKhUL8+uuvQggh/v73v4umTZuKmzdvSjFvvfWWaN++vfTzp59+KjQaTS1bLoRerxcAhF6vr/UxGrJ9Z6+JVm9tq/TIOFtg66pZ5UpRqcg4WyCuFJXauipEZAeuFJWKfWev8T3Bjlnz+W3THq1bt24hJycHsbGxUplSqURsbCwyMzPN7pOZmWkSDwBarVaKz83NhU6nM4nRaDSIioqSYjIzM+Ht7Y1u3bpJMbGxsVAqlcjKypJi+vTpA5VKZfI8p0+fxu+//y6VFRcXo1WrVggKCsKgQYNw4sSJKtt78+ZNGAwGkwfVnrMMvXGIhsi5WbOEiyNPhyDzbJpoFRQUoLy8HH5+fiblfn5+0Ol0ZvfR6XTVxlf8W1NM8+bNTba7urqiWbNmJjHmjnHvc7Rv3x6rV6/G1q1b8cUXX8BoNKJHjx64fPmy2bonJSVBo9FIj6CgILNxDZ2lb0oceiMie2dN4uTo0yHIPF51+ACio6MRHR0t/dyjRw907NgRq1atwjvvvFMpfsaMGZg+fbr0s8FgYLJ1H2tv/cGro+hejnoFKjmnqhKnPu18zf5+8kpk52TTRMvHxwcuLi7Iz883Kc/Pz4e/v7/Zffz9/auNr/g3Pz8fAQEBJjERERFSzP2T7e/cuYPCwkKT45h7nnuf435ubm549NFHcfbsWbPb3d3d4e7ubnYbWf+mVEHOy9zJcfD+fGRvrE2cKqZD3L+2nqNNhyBTNh06VKlU6Nq1K9LT06Uyo9GI9PR0k56ie0VHR5vEA8DOnTul+JCQEPj7+5vEGAwGZGVlSTHR0dEoKipCTk6OFLNr1y4YjUZERUVJMXv27MHt27dNnqd9+/Zo2rSp2bqVl5fj2LFjJgkeWY63/qDa4pAL2aMQH0/cN40UCgWqTJw4HcI52XzocPr06Rg7diy6deuGyMhILF26FCUlJUhISAAAjBkzBi1atEBSUhIAYOrUqYiJicEHH3yAuLg4rF+/HgcOHJCWXVAoFJg2bRreffddhIaGIiQkBLNnz0ZgYCDi4+MBAB07dsSAAQMwYcIEJCcn4/bt25gyZQqGDx+OwMBAAMDIkSMxf/58jBs3Dm+99RaOHz+ODz/8EEuWLJHqvmDBAjz++ONo27YtioqK8N577+HChQsYP358PZ5B58Fvc1RbHHIhh1HDvVg4HcL52DzRGjZsGK5du4Y5c+ZAp9MhIiICaWlp0sTzixcvQqn8X8dbjx49sHbtWsyaNQszZ85EaGgotmzZgs6dO0sxb775JkpKSjBx4kQUFRWhV69eSEtLM1lM9Msvv8SUKVPQv39/KJVKDBkyBMuWLZO2azQa7NixA5MnT0bXrl3h4+ODOXPmmKy19fvvv2PChAnQ6XRo2rQpunbtioyMDISFhcl5ypxWxbe5+2/9wTcaqgmTdLJHuQUllfIqAdT4BYDTIZwL73VoQ7zXoXly3sONbEvOyeq8Px/ZG97P1HnxXofk0Bz92xyvfDNP7snqHHJxHA3lb4S99ASwR8um2KPlfHjlm3kN8Zt9Q0kmrNUQ/0bYS+982KNFZAO1XZ6iIWhok9XtMZmwh8Svof6NOHovPT0Ym99UmshZcHmKqjnL7ZIsYY9LTdjLbV1q+zdizS1sahNPJCf2aBHVEV75VrWGNFfF3nrv7KkXqTZ/I9b2DrI3kewNEy2iOtKQkonaaCiT1e0t4a6vxM+SZMLavxFrk0R7Sior2GPiR/WLiRZRHZI7mXD0b8YNYa6KvSXc9ZH4WZNMWPM3Ym2SyN5EskdMtIjqmFzJBL8ZOw576r2TO/GrTTJh6d+ItUliQ+1NJPvGRIvIAfCbseOxp947ORM/OZMJa5PE+upNtLRn2d4SP7INJlpEDoDfjOlByZX4yZ1MWJskyt2baE3Psr0NI5NtMNEicgD8Zkz2qj6SCWuTRLmSytr0LNvTMDLZBhMtIgfAb8ZkzxpKMlHbnmV7Gkam+sdEi8hBNJQPM3JMDSGZYM8y1QZXhidyIAEaD0S3ecjpP9CI7FFFz7KL4u5tDtizTJZgjxYREZGF2LNM1mKiReRAHH3BUms1tPaSY2gIw6RUd5hoETmIhrZgaUNrLxE5J87RInIAVV1Wnqcvs23FZNLQ2kv0IPL0Zcg4V8C/DzvFHi0iB9DQFixtaO0lqi32/No/9mgROYCKy8rv5cyXlTe09hLVBnt+HQMTLZIdu7UfXEO7rLyhtZeoNqrr+SX7waFDkhW7tetObS4rd+Sr9ngZPVH1uICqY2CiRbKpzX3BqHrWXFbuDEkuL6MnqhpvzeUYmGiRbDih2XaY5BI1DOz5tX9MtEg27Na2HSa5RPKxtyF5R+75tbdzKQcmWiQbdmtbRo43Gia5RPJwhiF5e1Gbc+mIiZlCCCFqDiM5GAwGaDQa6PV6eHl52bo6ssnTl7FbuwpyvmmnZF+slOTyA4HkYk8fgHLVJU9fhp4Ld1X6ArM3sZ/N22wpe3mdanMu7SnJtebzmz1aJDtH7taWk9zzqDh3g+qLPX0AylkXRx+St6fXydpzmacvQ+KmY6jYxSiAxM3HHGLeKdfRIrKR+lgDJ0Djgeg2D9n9GxE5LntaNFPuujjyQrr29DoB1p/LnAu/4/7hNyGAgxd+l6eCdYiJFpGNOPKbNlEFe1o0U+66OPJCuvb0OgHWn8uqZjk5wuQnDh0S2QgvFiBnYE8XXtRHXRx1SN6eXqcK1pzLbsHNoABMerUUALoGN5W7mg+MPVpENjSse0vsTeyHdRMex97EfpysTg7Hnnp56qsujjgkb0+v0/31suRcBmg8sHBIuJS0KAEsHBJu8/pbglcd2pA9XXVoL1eiEJFjsqeri+2pLvbG0c+NvdTfms9vJlo2ZC+Jlj1diUJERGTvrPn85tBhA1cfV6Lk6cuQca7AZle3EBER2Qonwzdwcq8Lw94yIiJqyNij1cDJucSAva3bQkREDYs9jKgw0Wrg5LwSxd7WbSHnZw9vqkRkH1KyL6Lnwl0Y+UkWei7chZTsizapB4cOSbZ1Yexx3RZyXg3lBrVEVDO5b3FmDfZoEQB51oWx13VbyPnUZpjaXr7tElHds6cRFfZokawcdRVlciy1uUGtvXzbJaK6Z08jKuzRItk54irK5FisvajDnr7tElHds6cRFfZoEZHEUecsWXvfSHv6tktE8rCXERW76NFauXIlgoODoVarERUVhf3791cbv3HjRnTo0AFqtRrh4eFITU012S6EwJw5cxAQEAAPDw/ExsbizJkzJjGFhYUYNWoUvLy84O3tjXHjxqG4uNgk5ujRo+jduzfUajWCgoKwePFiq+tC5Cgcfc6SNfeNtKdvu0QkH7sYURE2tn79eqFSqcTq1avFiRMnxIQJE4S3t7fIz883G79v3z7h4uIiFi9eLE6ePClmzZol3NzcxLFjx6SYhQsXCo1GI7Zs2SKOHDkinn32WRESEiLKysqkmAEDBoguXbqIH3/8Ufzwww+ibdu2YsSIEdJ2vV4v/Pz8xKhRo8Tx48fFunXrhIeHh1i1apVVdamOXq8XAIRer7f2tNW5K0WlYt/Za+JKUamtq0I2cKWoVIQkbhOt3vrfo3Xidqf/fbhSVCoyzhY4fTuJ6ktD+Syx5vPb5vc6jIqKQvfu3bFixQoAgNFoRFBQEF5++WUkJiZWih82bBhKSkqwbds2qezxxx9HREQEkpOTIYRAYGAgXnvtNbz++usAAL1eDz8/P6xZswbDhw/HqVOnEBYWhuzsbHTr1g0AkJaWhoEDB+Ly5csIDAzERx99hLfffhs6nQ4qlQoAkJiYiC1btuCnn36yqC414b0OyV5knCvAyE+yKpWvm/A4ots8ZIMaEZGjaUifJQ5zr8Nbt24hJycHsbGxUplSqURsbCwyMzPN7pOZmWkSDwBarVaKz83NhU6nM4nRaDSIioqSYjIzM+Ht7S0lWQAQGxsLpVKJrKwsKaZPnz5SklXxPKdPn8bvv/9uUV3ud/PmTRgMBpOHrXH1dgLkvUMAETk/fpZUzaaJVkFBAcrLy+Hn52dS7ufnB51OZ3YfnU5XbXzFvzXFNG/e3GS7q6srmjVrZhJj7hj3PkdNdblfUlISNBqN9AgKCjIbV5949RUBnLNERA+GnyVV41WH9WjGjBmYPn269LPBYLB5ssWrr6iCvVyhQ0SOh58lVbNpj5aPjw9cXFyQn59vUp6fnw9/f3+z+/j7+1cbX/FvTTFXr1412X7nzh0UFhaaxJg7xr3PUVNd7ufu7g4vLy+Th62xJ4PuZRdX6BCRw+FnSdVsmmipVCp07doV6enpUpnRaER6ejqio6PN7hMdHW0SDwA7d+6U4kNCQuDv728SYzAYkJWVJcVER0ejqKgIOTk5UsyuXbtgNBoRFRUlxezZswe3b982eZ727dujadOmFtXFUVhzWTwREZE5/CypgtyXQNZk/fr1wt3dXaxZs0acPHlSTJw4UXh7ewudTieEEGL06NEiMTFRit+3b59wdXUV77//vjh16pSYO3eu2eUdvL29xdatW8XRo0fFoEGDzC7v8Oijj4qsrCyxd+9eERoaarK8Q1FRkfDz8xOjR48Wx48fF+vXrxeNGjWqtLxDTXWpjj0t70BERESWsebz2+aJlhBCLF++XLRs2VKoVCoRGRkpfvzxR2lbTEyMGDt2rEn8hg0bRLt27YRKpRKdOnUS27dvN9luNBrF7NmzhZ+fn3B3dxf9+/cXp0+fNon57bffxIgRI0Tjxo2Fl5eXSEhIENevXzeJOXLkiOjVq5dwd3cXLVq0EAsXLqxU95rqUh0mWkRERI7HodbRasjsZR0tIiIispzDrKNFRERE5MyYaBERERHJhIkWERERkUyYaBERERHJhIkWERERkUyYaBERERHJhIkWERERkUyYaBERERHJhIkWERERkUxcbV2BhqxiUX6DwWDjmhAREZGlKj63Lbm5DhMtG7p+/ToAICgoyMY1ISIiImtdv34dGo2m2hje69CGjEYjrly5giZNmkChUNTpsQ0GA4KCgnDp0iWnvI+is7cPcP42sn2Oz9nbyPY5PrnaKITA9evXERgYCKWy+llY7NGyIaVSiYcffljW5/Dy8nLaPyDA+dsHOH8b2T7H5+xtZPscnxxtrKknqwInwxMRERHJhIkWERERkUyYaDkpd3d3zJ07F+7u7rauiiycvX2A87eR7XN8zt5Gts/x2UMbORmeiIiISCbs0SIiIiKSCRMtIiIiIpkw0SIiIiKSCRMtIiIiIpkw0XIQK1euRHBwMNRqNaKiorB///5q45cuXYr27dvDw8MDQUFBePXVV3Hjxo0HOqbc6rqN8+bNg0KhMHl06NBB7mZUyZr23b59GwsWLECbNm2gVqvRpUsXpKWlPdAx5VbX7bOn12/Pnj145plnEBgYCIVCgS1bttS4z+7du/HYY4/B3d0dbdu2xZo1ayrF2NPrJ0cbHfk1zMvLw8iRI9GuXTsolUpMmzbNbNzGjRvRoUMHqNVqhIeHIzU1te4rbwE52rdmzZpKr59arZanARawto2bN2/GE088AV9fX3h5eSE6OhrffvttpTi5/w6ZaDmAlJQUTJ8+HXPnzsXBgwfRpUsXaLVaXL161Wz82rVrkZiYiLlz5+LUqVP45z//iZSUFMycObPWx5SbHG0EgE6dOiEvL0967N27tz6aU4m17Zs1axZWrVqF5cuX4+TJk3jxxRfx3HPP4dChQ7U+ppzkaB9gP69fSUkJunTpgpUrV1oUn5ubi7i4OPTr1w+HDx/GtGnTMH78eJM3eXt6/QB52gg47mt48+ZN+Pr6YtasWejSpYvZmIyMDIwYMQLjxo3DoUOHEB8fj/j4eBw/frwuq24ROdoH3F1R/d7X78KFC3VVZatZ28Y9e/bgiSeeQGpqKnJyctCvXz8888wz9f8+KsjuRUZGismTJ0s/l5eXi8DAQJGUlGQ2fvLkyeIPf/iDSdn06dNFz549a31MucnRxrlz54ouXbrIUl9rWdu+gIAAsWLFCpOywYMHi1GjRtX6mHKSo3329PrdC4D4+uuvq4158803RadOnUzKhg0bJrRarfSzPb1+96urNjrya3ivmJgYMXXq1ErlQ4cOFXFxcSZlUVFRYtKkSQ9YwwdTV+379NNPhUajqbN61SVr21ghLCxMzJ8/X/q5Pv4O2aNl527duoWcnBzExsZKZUqlErGxscjMzDS7T48ePZCTkyN1f/7yyy9ITU3FwIEDa31MOcnRxgpnzpxBYGAgWrdujVGjRuHixYvyNaQKtWnfzZs3K3XRe3h4SL0B9vQaytG+Cvbw+tVGZmamyfkAAK1WK50Pe3r9aqumNlZw1NfQEpaeA0dWXFyMVq1aISgoCIMGDcKJEydsXaVaMxqNuH79Opo1awag/v4OmWjZuYKCApSXl8PPz8+k3M/PDzqdzuw+I0eOxIIFC9CrVy+4ubmhTZs26Nu3rzSsVptjykmONgJAVFQU1qxZg7S0NHz00UfIzc1F7969cf36dVnbc7/atE+r1eJvf/sbzpw5A6PRiJ07d2Lz5s3Iy8ur9THlIkf7APt5/WpDp9OZPR8GgwFlZWV29frVVk1tBBz7NbREVefAUV7DmrRv3x6rV6/G1q1b8cUXX8BoNKJHjx64fPmyratWK++//z6Ki4sxdOhQAPX3PspEywnt3r0bf/3rX/H3v/8dBw8exObNm7F9+3a88847tq5anbGkjU899RT++Mc/4pFHHoFWq0VqaiqKioqwYcMGG9bcMh9++CFCQ0PRoUMHqFQqTJkyBQkJCVAqneNP1pL2OfLrR3fxNXRs0dHRGDNmDCIiIhATE4PNmzfD19cXq1atsnXVrLZ27VrMnz8fGzZsQPPmzev1uV3r9dnIaj4+PnBxcUF+fr5JeX5+Pvz9/c3uM3v2bIwePRrjx48HAISHh6OkpAQTJ07E22+/XatjykmONppLSLy9vdGuXTucPXu27htRjdq0z9fXF1u2bMGNGzfw22+/ITAwEImJiWjdunWtjykXOdpnjq1ev9rw9/c3ez68vLzg4eEBFxcXu3n9aqumNprjSK+hJao6B47yGlrLzc0Njz76qMO9fuvXr8f48eOxceNGk2HC+nofdY6vx05MpVKha9euSE9Pl8qMRiPS09MRHR1tdp/S0tJKiYaLiwsAQAhRq2PKSY42mlNcXIxz584hICCgjmpumQc532q1Gi1atMCdO3ewadMmDBo06IGPWdfkaJ85tnr9aiM6OtrkfADAzp07pfNhT69fbdXURnMc6TW0RG3OgSMrLy/HsWPHHOr1W7duHRISErBu3TrExcWZbKu3v8M6m1ZPslm/fr1wd3cXa9asESdPnhQTJ04U3t7eQqfTCSGEGD16tEhMTJTi586dK5o0aSLWrVsnfvnlF7Fjxw7Rpk0bMXToUIuPWd/kaONrr70mdu/eLXJzc8W+fftEbGys8PHxEVevXrX79v34449i06ZN4ty5c2LPnj3iD3/4gwgJCRG///67xcesT3K0z55ev+vXr4tDhw6JQ4cOCQDib3/7mzh06JC4cOGCEEKIxMREMXr0aCn+l19+EY0aNRJvvPGGOHXqlFi5cqVwcXERaWlpUow9vX5CyNNGR34NhRBSfNeuXcXIkSPFoUOHxIkTJ6Tt+/btE66uruL9998Xp06dEnPnzhVubm7i2LFj9do2IeRp3/z588W3334rzp07J3JycsTw4cOFWq02ialP1rbxyy+/FK6urmLlypUiLy9PehQVFUkx9fF3yETLQSxfvly0bNlSqFQqERkZKX788UdpW0xMjBg7dqz08+3bt8W8efNEmzZthFqtFkFBQeKll14y+RCr6Zi2UNdtHDZsmAgICBAqlUq0aNFCDBs2TJw9e7YeW2TKmvbt3r1bdOzYUbi7u4uHHnpIjB49Wvz6669WHbO+1XX77On1++677wSASo+KNo0dO1bExMRU2iciIkKoVCrRunVr8emnn1Y6rj29fnK00dFfQ3PxrVq1MonZsGGDaNeunVCpVKJTp05i+/bt9dOg+8jRvmnTpkm/n35+fmLgwIHi4MGD9deo+1jbxpiYmGrjK8j9d6gQoopxFiIiIiJ6IJyjRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpEREREMmGiRURERCQTJlpERGRi9+7dUCgUKCoqsnVViBweEy0ispkXXngBCoUCCxcuNCnfsmULFAqF9LMQAp988gmio6Ph5eWFxo0bo1OnTpg6darFN7gtLS3FjBkz0KZNG6jVavj6+iImJgZbt26VYoKDg7F06dI6aZvcKs6dQqGAm5sbQkJC8Oabb+LGjRtWHadv376YNm2aSVmPHj2Ql5cHjUZThzUmapiYaBGRTanVaixatAi///672e1CCIwcORKvvPIKBg4ciB07duDkyZP45z//CbVajXfffdei53nxxRexefNmLF++HD/99BPS0tLw/PPP47fffqvL5tSrAQMGIC8vD7/88guWLFmCVatWYe7cuQ98XJVKBX9/f5Nkl4hqqU5v6ENEZIWxY8eKp59+WnTo0EG88cYbUvnXX38tKt6e1q1bJwCIrVu3mj2G0Wi06Lk0Go1Ys2ZNldvN3Retwg8//CB69eol1Gq1ePjhh8XLL78siouLpe3/+te/RNeuXUXjxo2Fn5+fGDFihMjPz5e2V9yjLS0tTURERAi1Wi369esn8vPzRWpqqujQoYNo0qSJGDFihCgpKbGoPWPHjhWDBg0yKRs8eLB49NFHpZ8LCgrE8OHDRWBgoPDw8BCdO3cWa9euNTnG/W3Ozc2V6nvvvUO/+uorERYWJlQqlWjVqpV4//33LaonUUPHHi0isikXFxf89a9/xfLly3H58uVK29etW4f27dvj2WefNbu/pb0u/v7+SE1NxfXr181u37x5Mx5++GEsWLAAeXl5yMvLAwCcO3cOAwYMwJAhQ3D06FGkpKRg7969mDJlirTv7du38c477+DIkSPYsmULzp8/jxdeeKHSc8ybNw8rVqxARkYGLl26hKFDh2Lp0qVYu3Yttm/fjh07dmD58uUWted+x48fR0ZGBlQqlVR248YNdO3aFdu3b8fx48cxceJEjB49Gvv37wcAfPjhh4iOjsaECROkNgcFBVU6dk5ODoYOHYrhw4fj2LFjmDdvHmbPno01a9bUqq5EDYqtMz0iarju7ZV5/PHHxZ///GchhGmPVocOHcSzzz5rst/UqVOFp6en8PT0FC1atLDoub7//nvx8MMPCzc3N9GtWzcxbdo0sXfvXpOYVq1aiSVLlpiUjRs3TkycONGk7IcffhBKpVKUlZWZfa7s7GwBQFy/fl0I8b8erf/+979STFJSkgAgzp07J5VNmjRJaLVai9ozduxY4eLiIjw9PYW7u7sAIJRKpfjqq6+q3S8uLk689tpr0s8xMTFi6tSpJjH392iNHDlSPPHEEyYxb7zxhggLC7OorkQNGXu0iMguLFq0CJ999hlOnTpVY+zbb7+Nw4cPY86cOSguLrbo+H369MEvv/yC9PR0PP/88zhx4gR69+6Nd955p9r9jhw5gjVr1qBx48bSQ6vVwmg0Ijc3F8DdHp9nnnkGLVu2RJMmTRATEwMAuHjxosmxHnnkEen/fn5+aNSoEVq3bm1SdvXqVYvaAwD9+vXD4cOHkZWVhbFjxyIhIQFDhgyRtpeXl+Odd95BeHg4mjVrhsaNG+Pbb7+tVK+anDp1Cj179jQp69mzJ86cOYPy8nKrjkXU0DDRIiK70KdPH2i1WsyYMcOkPDQ0FKdPnzYp8/X1Rdu2bdG8eXOrnsPNzQ29e/fGW2+9hR07dmDBggV45513cOvWrSr3KS4uxqRJk3D48GHpceTIEZw5cwZt2rRBSUkJtFotvLy88OWXXyI7Oxtff/01AFQ6rpubm/T/iqsF76VQKGA0Gi1uj6enJ9q2bYsuXbpg9erVyMrKwj//+U9p+3vvvYcPP/wQb731Fr777jscPnwYWq222vYSUd1ytXUFiIgqLFy4EBEREWjfvr1UNmLECIwcORJbt27FoEGD6vT5wsLCcOfOHdy4cQMqlQoqlapSD81jjz2GkydPom3btmaPcezYMfz2229YuHChNL/pwIEDdVpPSyiVSsycORPTp0/HyJEj4eHhgX379mHQoEH405/+BAAwGo34+eefERYWJu1nrs3369ixI/bt22dStm/fPrRr1w4uLi513xgiJ8IeLSKyG+Hh4Rg1ahSWLVsmlQ0fPhzPP/88hg8fjgULFiArKwvnz5/H999/j5SUFIs/6Pv27YtVq1YhJycH58+fR2pqKmbOnIl+/frBy8sLwN11tPbs2YNff/0VBQUFAIC33noLGRkZmDJlCg4fPowzZ85g69at0mT4li1bQqVSYfny5fjll1/wzTff1DgcKZc//vGPcHFxwcqVKwHc7Q3cuXMnMjIycOrUKUyaNAn5+fkm+wQHB0vntKCgwGyP2muvvYb09HS88847+Pnnn/HZZ59hxYoVeP311+ulXUSOjIkWEdmVBQsWmHzYKxQKpKSkYOnSpUhNTUX//v3Rvn17/PnPf0ZQUBD27t1r0XG1Wi0+++wzPPnkk+jYsSNefvllaLVabNiwweS5z58/jzZt2sDX1xfA3XlV33//PX7++Wf07t0bjz76KObMmYPAwEAAd4cx16xZg40bNyIsLAwLFy7E+++/X4dnxHKurq6YMmUKFi9ejJKSEsyaNQuPPfYYtFot+vbtC39/f8THx5vs8/rrr8PFxQVhYWHw9fU1O3/rsccew4YNG7B+/Xp07twZc+bMwYIFC8xeWUlEphRCCGHrShARERE5I/ZoEREREcmEiRYROYV7l1+4//HDDz/YunpWuXjxYrXtsXZ5BiKyHQ4dEpFTqO7m0i1atICHh0c91ubB3LlzB+fPn69ye3BwMFxdedE4kSNgokVEREQkEw4dEhEREcmEiRYRERGRTJhoEREREcmEiRYRERGRTJhoEREREcmEiRYRERGRTJhoEREREcmEiRYRERGRTP4fduSVyL0PnG0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQm5JREFUeJzt3Xl4U2XC/vE7Dd0otAhtoYVCoWwCFZRFAaVlZKiCiDIKCKOI4w4C7oCjbGrBcRRFRMYZAQcFXEB5R14EUVSojgiioKIsrUUtSxVaulCwfX5/8DY/Q1to2qQ5Sb6f68p1NScnJ8+T0yR3ni02Y4wRAACABQV5uwAAAABVIagAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAqLXp06fLZrNVa1+bzabp06d7tDypqalKTU217PEAVB9BBfAjixcvls1mc1zq1aun5s2b68Ybb9RPP/3k7eJZTmJiotPzFRsbq0suuUSrVq1yy/GLioo0ffp0bdy40S3HAwIRQQXwQzNnztS///1vvfDCC7r88su1dOlSpaSk6Pjx4x55vL/+9a8qLi72yLE9rVu3bvr3v/+tf//737rvvvv0888/a9iwYXrhhRdqfeyioiLNmDGDoALUQj1vFwCA+11++eXq0aOHJOnmm29WdHS05syZo9WrV2v48OFuf7x69eqpXj3ffDtp3ry5/vznPzuu33DDDWrbtq2efvpp3X777V4sGQCJFhUgIFxyySWSpL179zpt37Vrl6655ho1btxYYWFh6tGjh1avXu20z8mTJzVjxgy1a9dOYWFhatKkiS6++GKtX7/esU9lY1RKSkp09913KyYmRg0bNtSVV16pH3/8sULZbrzxRiUmJlbYXtkxFy1apD/84Q+KjY1VaGioOnXqpAULFrj0XJxNs2bNdO655yozM/OM+x06dEh/+ctf1LRpU4WFhalr165asmSJ4/asrCzFxMRIkmbMmOHoXvL0+BzA3/jmVyAALsnKypIknXPOOY5tX3/9tfr27avmzZtr8uTJioiI0GuvvaarrrpKb775pq6++mpJpwJDenq6br75ZvXq1Uv5+fn6/PPPtW3bNv3xj3+s8jFvvvlmLV26VKNGjVKfPn30/vvva/DgwbWqx4IFC9S5c2ddeeWVqlevnv7nf/5Hd955p8rKyjRu3LhaHbvcyZMntX//fjVp0qTKfYqLi5Wamqo9e/Zo/Pjxat26tV5//XXdeOONOnr0qCZOnKiYmBgtWLBAd9xxh66++moNGzZMknTeeee5pZxAwDAA/MaiRYuMJPPee++Zw4cPm/3795s33njDxMTEmNDQULN//37HvpdeeqlJTk42x48fd2wrKyszffr0Me3atXNs69q1qxk8ePAZH3fatGnm928n27dvN5LMnXfe6bTfqFGjjCQzbdo0x7YxY8aYVq1anfWYxhhTVFRUYb+0tDTTpk0bp20pKSkmJSXljGU2xphWrVqZgQMHmsOHD5vDhw+bL7/80owcOdJIMnfddVeVx5s7d66RZJYuXerYduLECdO7d2/ToEEDk5+fb4wx5vDhwxXqC8A1dP0AfmjAgAGKiYlRQkKCrrnmGkVERGj16tVq0aKFJOnXX3/V+++/r+HDh+vYsWPKzc1Vbm6ufvnlF6WlpWn37t2OWUKNGjXS119/rd27d1f78desWSNJmjBhgtP2SZMm1ape4eHhjr/z8vKUm5urlJQU7du3T3l5eTU65rp16xQTE6OYmBh17dpVr7/+uq6//nrNmTOnyvusWbNGzZo103XXXefYFhwcrAkTJqigoEAffvhhjcoCoCK/CSofffSRhgwZovj4eNlsNr311lsefbzy/vPfXzp27OjRxwSqa/78+Vq/fr3eeOMNDRo0SLm5uQoNDXXcvmfPHhlj9PDDDzs+pMsv06ZNk3RqDIZ0agbR0aNH1b59eyUnJ+v+++/XV199dcbH/+GHHxQUFKSkpCSn7R06dKhVvTZv3qwBAwYoIiJCjRo1UkxMjKZOnSpJNQ4qF154odavX6/33ntPGRkZys3N1csvv+wUik73ww8/qF27dgoKcn4LPffccx23A3APvxmjUlhYqK5du+qmm25y9AV7WufOnfXee+85rvvqrAf4n169ejlm/Vx11VW6+OKLNWrUKH333Xdq0KCBysrKJEn33Xef0tLSKj1G27ZtJUn9+vXT3r179fbbb2vdunX65z//qaefflovvPCCbr755lqXtaqF4kpLS52u7927V5deeqk6duyop556SgkJCQoJCdGaNWv09NNPO+rkqujoaA0YMKBG9wXgeX7zyXr55Zfr8ssvr/L2kpISPfTQQ1q2bJmOHj2qLl26aM6cObVabbJevXpq1qxZje8P1AW73a709HT1799fzz33nCZPnqw2bdpIOtVdUZ0P6caNG2vs2LEaO3asCgoK1K9fP02fPr3KoNKqVSuVlZVp7969Tq0o3333XYV9zznnHB09erTC9tNbJf7nf/5HJSUlWr16tVq2bOnY/sEHH5y1/O7WqlUrffXVVyorK3NqVdm1a5fjdqnqEAag+vym6+dsxo8fr08++UTLly/XV199pWuvvVaXXXaZS/3up9u9e7fi4+PVpk0bjR49WtnZ2W4sMeA+qamp6tWrl+bOnavjx48rNjZWqampWrhwoXJycirsf/jwYcffv/zyi9NtDRo0UNu2bVVSUlLl45V/aXj22Wedts+dO7fCvklJScrLy3PqTsrJyamwOqzdbpckGWMc2/Ly8rRo0aIqy+EpgwYN0oEDB7RixQrHtt9++03z5s1TgwYNlJKSIkmqX7++JFUaxABUj9+0qJxJdna2Fi1apOzsbMXHx0s61eS9du1aLVq0SI8//rjLx7zwwgu1ePFidejQQTk5OZoxY4YuueQS7dy5Uw0bNnR3FYBau//++3Xttddq8eLFuv322zV//nxdfPHFSk5O1i233KI2bdro4MGD+uSTT/Tjjz/qyy+/lCR16tRJqamp6t69uxo3bqzPP/9cb7zxhsaPH1/lY3Xr1k3XXXednn/+eeXl5alPnz7asGGD9uzZU2HfkSNH6sEHH9TVV1+tCRMmqKioSAsWLFD79u21bds2x34DBw5USEiIhgwZottuu00FBQV68cUXFRsbW2nY8qRbb71VCxcu1I033qitW7cqMTFRb7zxhjZv3qy5c+c63gPCw8PVqVMnrVixQu3bt1fjxo3VpUsXdenSpU7LC/g0b0878gRJZtWqVY7r//nPf4wkExER4XSpV6+eGT58uDHGmG+//dZIOuPlwQcfrPIxjxw5YiIjI80///lPT1cPqFL59OQtW7ZUuK20tNQkJSWZpKQk89tvvxljjNm7d6+54YYbTLNmzUxwcLBp3ry5ueKKK8wbb7zhuN+jjz5qevXqZRo1amTCw8NNx44dzWOPPWZOnDjh2KeyqcTFxcVmwoQJpkmTJiYiIsIMGTLE7N+/v9LpuuvWrTNdunQxISEhpkOHDmbp0qWVHnP16tXmvPPOM2FhYSYxMdHMmTPHvPTSS0aSyczMdOznyvTks029rup4Bw8eNGPHjjXR0dEmJCTEJCcnm0WLFlW4b0ZGhunevbsJCQlhqjJQAzZjfteO6idsNptWrVqlq666SpK0YsUKjR49Wl9//bWj+bhcgwYN1KxZM504cUL79u0743GbNGniWGmyMj179tSAAQOUnp5e6zoAAIAA6fo5//zzVVpaqkOHDjmWEj9dSEhIraYXFxQUaO/evbr++utrfAwAAODMb4JKQUGBU/93Zmamtm/frsaNG6t9+/YaPXq0brjhBv3973/X+eefr8OHD2vDhg0677zzarSs93333achQ4aoVatW+vnnnzVt2jTZ7XanBaAAAEDt+E3Xz8aNG9W/f/8K28eMGaPFixfr5MmTevTRR/Xyyy/rp59+UnR0tC666CLNmDFDycnJLj/eyJEj9dFHH+mXX35RTEyMLr74Yj322GMVFrgCAAA15zdBBQAA+J+AWUcFAAD4HoIKAACwLJ8eTFtWVqaff/5ZDRs2ZKlqAAB8hDFGx44dU3x8fIUf9zydTweVn3/+WQkJCd4uBgAAqIH9+/erRYsWZ9zHp4NK+TLV+/fvV2RkpJdLAwAAqiM/P18JCQnV+skZnw4q5d09kZGRBBUAAHxMdYZtMJgWAABYFkEFAABYFkEFAABYlk+PUQEAwB1KS0t18uRJbxfDbwQHB8tut7vlWAQVAEDAMsbowIEDOnr0qLeL4ncaNWqkZs2a1XqdM4IKACBglYeU2NhY1a9fn8VD3cAYo6KiIh06dEiSFBcXV6vjEVQAAAGptLTUEVKaNGni7eL4lfDwcEnSoUOHFBsbW6tuIAbTAgACUvmYlPr163u5JP6p/Hmt7dgfggoAIKDR3eMZ7npeCSoAAMCyCCoAAMCyCCpekJNXrIy9ucrJK/Z2UQAAPuzAgQO666671KZNG4WGhiohIUFDhgzRhg0bJEm33XabkpKSFB4erpiYGA0dOlS7du1y3D8rK0s2m03bt2+vcOzU1FRNmjTJcb2goEDjx49XixYtFB4erk6dOumFF17wdBWZ9VPXVmzJ1pSVO1RmpCCblD4sWSN6tvR2sQAAPiYrK0t9+/ZVo0aN9Le//U3Jyck6efKk3n33XY0bN067du1S9+7dNXr0aLVs2VK//vqrpk+froEDByozM9PlmTj33HOP3n//fS1dulSJiYlat26d7rzzTsXHx+vKK6/0UC0JKnUqJ6/YEVIkqcxIU1fuVL/2MYqLCvdu4QAAPuXOO++UzWbTZ599poiICMf2zp0766abbpIk3XrrrY7tiYmJevTRR9W1a1dlZWUpKSnJpcfLyMjQmDFjlJqa6jj2woUL9dlnn3k0qND1U4cycwsdIaVcqTHKyi3yToEAAG5Tl936v/76q9auXatx48Y5hZRyjRo1qrCtsLBQixYtUuvWrZWQkODyY/bp00erV6/WTz/9JGOMPvjgA33//fcaOHBgTapQbbSo1KHW0REKsskprNhtNiVGM4cfAHxZXXfr79mzR8YYdezY8az7Pv/883rggQdUWFioDh06aP369QoJCXHap0+fPgoKcm67KC4uVrdu3RzX582bp1tvvVUtWrRQvXr1FBQUpBdffFH9+vVzS52qQotKHYqLClf6sGTZ/29uud1m0+PDutDtAwA+rKpufU+2rBhjzr7T/xk9erS++OILffjhh2rfvr2GDx+u48ePO+2zYsUKbd++3enSo0cPp33mzZunTz/9VKtXr9bWrVv197//XePGjdN7773nljpVhRaVOjaiZ0v1ax+jrNwiJUbXJ6QAgI87U7e+p97j27VrJ5vN5jSDpypRUVGKiopSu3btdNFFF+mcc87RqlWrdN111zn2SUhIUNu2bZ3uV74MvnSqdWXq1KlatWqVBg8eLEk677zztH37dj355JMaMGCAm2pWES0qXhAXFa7eSU0IKQDgB8q79X/P0936jRs3VlpamubPn6/CwsIKt1f1a9DGGBljVFJS4tLjnTx5UidPnqzQPWS321VWVubSsVxFUAEAoBa81a0/f/58lZaWqlevXnrzzTe1e/duffvtt3r22WfVu3dv7du3T+np6dq6dauys7OVkZGha6+9VuHh4Ro0aJBLjxUZGamUlBTdf//92rhxozIzM7V48WK9/PLLuvrqqz1Uw1Po+gEAoJa80a3fpk0bbdu2TY899pjuvfde5eTkKCYmRt27d9eCBQsUFhamjz/+WHPnztWRI0fUtGlT9evXTxkZGYqNjXX58ZYvX64pU6Zo9OjR+vXXX9WqVSs99thjuv322z1Qu//PZlwZkWMx+fn5ioqKUl5eniIjI71dHACADzl+/LgyMzPVunVrhYWFebs4fudMz68rn990/QAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAApoPzymxNHc9rwQVAEBACg4OliQVFfHDsJ5Q/ryWP881xToqAICAZLfb1ahRIx06dEiSVL9+fdlstrPcC2djjFFRUZEOHTqkRo0ayW631+p4BBUAQMBq1qyZJDnCCtynUaNGjue3NggqAICAZbPZFBcXp9jYWJ08edLbxfEbwcHBtW5JKUdQAQAEPLvd7rYPVriXVwfTlpaW6uGHH1br1q0VHh6upKQkzZo1ixHYAABAkpdbVObMmaMFCxZoyZIl6ty5sz7//HONHTtWUVFRmjBhgjeLBgAALMCrQSUjI0NDhw7V4MGDJUmJiYlatmyZPvvsM28WCwAAWIRXu3769OmjDRs26Pvvv5ckffnll9q0aZMuv/zySvcvKSlRfn6+0wUAAPgvr7aoTJ48Wfn5+erYsaPsdrtKS0v12GOPafTo0ZXun56erhkzZtRxKQEAgLd4tUXltdde0yuvvKJXX31V27Zt05IlS/Tkk09qyZIlle4/ZcoU5eXlOS779++v4xIDAIC6ZDNenGKTkJCgyZMna9y4cY5tjz76qJYuXapdu3ad9f75+fmKiopSXl6eIiMjPVlUAADgJq58fnu1RaWoqEhBQc5FsNvtKisr81KJAACAlXh1jMqQIUP02GOPqWXLlurcubO++OILPfXUU7rpppu8WSwAAGARXu36OXbsmB5++GGtWrVKhw4dUnx8vK677jo98sgjCgkJOev96foBAMD3uPL57dWgUlsEFQAAfI/PjFEBAAA4E4IKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAADVlJNXrIy9ucrJK/Z2UQJGPW8XAAAAX7BiS7amrNyhMiMF2aT0Ycka0bOlt4vl92hRAQDgLHLyih0hRZLKjDR15U5aVuoAQQUAgLPIzC10hJRypcYoK7fIOwUKIAQVAADOonV0hIJsztvsNpsSo+t7p0ABhKACAMBZxEWFK31Ysuy2U2nFbrPp8WFdFBcV7uWS+T8G0wIAUA0jerZUv/YxysotUmJ0fUJKHSGoAABQTXFR4QSUOkbXDwAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyvB5WffvpJf/7zn9WkSROFh4crOTlZn3/+ubeLBQAALMCrv/Vz5MgR9e3bV/3799f//u//KiYmRrt379Y555zjzWIBAACL8GpQmTNnjhISErRo0SLHttatW3uxRAAAwEq82vWzevVq9ejRQ9dee61iY2N1/vnn68UXX6xy/5KSEuXn5ztdAACA//JqUNm3b58WLFigdu3a6d1339Udd9yhCRMmaMmSJZXun56erqioKMclISGhjksMAADqks0YY7z14CEhIerRo4cyMjIc2yZMmKAtW7bok08+qbB/SUmJSkpKHNfz8/OVkJCgvLw8RUZG1kmZAdSNnLxiZeYWqnV0hOKiwr1dHABulJ+fr6ioqGp9fnt1jEpcXJw6derktO3cc8/Vm2++Wen+oaGhCg0NrYuiAfCiFVuyNWXlDpUZKcgmpQ9L1oieLb1dLABe4NWun759++q7775z2vb999+rVatWXioRAG/LySt2hBRJKjPS1JU7lZNX7N2CAfAKrwaVu+++W59++qkef/xx7dmzR6+++qr+8Y9/aNy4cd4sFgAvyswtdISUcqXGKCu3yDsFAuBVXg0qPXv21KpVq7Rs2TJ16dJFs2bN0ty5czV69GhvFguAF7WOjlCQzXmb3WZTYnR97xQIgFd5dTBtbbkyGAeA71ixJVtTV+5UqTGy22x6fFgXxqgAfsRnBtMCQGVG9Gypfu1jlJVbpMTo+sz6AQIYQQWAJcVFhRNQAHj/RwkBAACqQlABAACWRVABAACWRVDxQzl5xcrYm8sCWQAAn8dgWj/D0uMAAH9Ci4ofYelxAIC/Iaj4EZYeBwD4G4KKH2HpcQCAvyGo+JG4qHClD0uW3XYqrZQvPc6iWQAAX8VgWj/D0uMAAH9CUPFDLD0OAPAXdP0AAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqjA43LyipWxN1c5ecXeLgoAwMfU83YB4N9WbMnWlJU7VGakIJuUPixZI3q29HaxAAA+ghYVeExOXrEjpEhSmZGmrtxJywoAoNoIKvCYzNxCR0gpV2qMsnKLvFMgAIDPIajAY1pHRyjI5rzNbrMpMbq+dwoEAPA5BBV4TFxUuNKHJctuO5VW7DabHh/WRXFR4V4uGQDAVzCYFh41omdL9Wsfo6zcIiVG1yekAABcQlCBx8VFhRNQAAA1QtcPAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLJeDyn/+8x898sgj2rx5syTp/fff16BBg3TZZZfpH//4h9sLCAAAApdLQWXhwoW6+uqrtWbNGg0aNEhLly7VVVddpebNmysxMVGTJk3SM88846myAgCAAOPSOirPPvusnn/+ed1yyy364IMPNGjQIP3973/XnXfeKUm66KKL9MQTT2jixIkeKSwAAAgsLrWoZGZmKi0tTZLUv39/lZaWql+/fo7bU1NT9cMPP7i3hAAAIGC5FFSaNGniCCI///yzfvvtN2VnZztu/+GHH9S4cWP3lhAAAAQsl7p+hg4dqr/85S8aM2aMVq9erRtuuEH33nuvgoKCZLPZdP/992vgwIGeKisAAAgwLgWVOXPm6MSJE1q+fLn69OmjefPm6dlnn9XQoUN18uRJpaSkKD093VNlBQAAAcZmjDG1Pcjx48d18uRJNWzY0B1lqrb8/HxFRUUpLy9PkZGRdfrYAACgZlz5/HbLryeHhYUpLCzMHYcCAABwcCmo3HPPPdXa76mnnqpRYQAAAH7PpaDyxRdfOF3ftGmTunfvrvDwcMc2m83mnpIBAICA51JQ+eCDD5yuN2zYUK+++qratGnj1kIBAABI/CghAACwMIIKAACwLIIKAACwLJfGqHz11VdO140x2rVrlwoKCpy2n3feebUvGQAACHguLfhWvlR+ZXcp326z2VRaWurWQlaFBd8AAPA9HlvwLTMzs1YFAwAAcIVLQaVVq1aeKofl5OQVKzO3UK2jIxQXFX72OwAAALdzeQl9Y4yysrKUkJCgevXq6cSJE1q1apVKSko0aNAgRUdHe6KcdWrFlmxNWblDZUYKsknpw5I1omdLbxcLAICA41JQ+e6775SWlqb9+/erTZs2Wrduna699lrt2rVLxhjVr19fGRkZateunafK63E5ecWOkCJJZUaaunKn+rWPoWUFAIA65tL05AcffFBdu3bV9u3bdcUVV2jw4MFq0aKFjhw5ol9//VW9e/fWzJkzPVXWOpGZW+gIKeVKjVFWbpF3CgQAQABzKahkZGRoxowZSk5O1qOPPqpdu3bpvvvuU3BwsEJDQzV58mR99NFHniprnWgdHaGg036uyG6zKTG6vncKBABAAHMpqBQUFKhx48aSpIiICEVERCguLs5xe0JCgg4ePFijgsyePVs2m02TJk2q0f3dJS4qXOnDkmX/vx9XtNtsenxYF7p9AADwApfGqMTHxys7O1stW54aWPrEE08oNjbWcfvhw4d1zjnnuFyILVu2aOHChZZZKG5Ez5bq1z5GWblFSoyuT0gBAMBLXGpRGTBggHbt2uW4fscdd6hhw4aO6+vWrdMFF1zgUgEKCgo0evRovfjiizUKOZ4SFxWu3klNCCkAAHiRSyvTnk1WVpZCQ0OduoPOZsyYMWrcuLGefvpppaamqlu3bpo7d26l+5aUlKikpMRxPT8/XwkJCaxMCwCAD3FlZVqXWlTef/99derUSfn5+RVuy8vL0+DBg7Vnz55qH2/58uXatm2b0tPTq7V/enq6oqKiHJeEhIRqPxYAAPA9LgWVuXPn6pZbbqk0/URFRem2227TU089Va1j7d+/XxMnTtQrr7yisLCwat1nypQpysvLc1z279/vSvEBAICPcanrp1WrVlq7dq3OPffcSm/ftWuXBg4cqOzs7LMe66233tLVV18tu93u2FZaWiqbzaagoCCVlJQ43VYZfpQQAADf47EfJTx48KCCg4OrPli9ejp8+HC1jnXppZdqx44dTtvGjh2rjh076sEHHzxrSAEAAP7PpaDSvHlz7dy5U23btq309q+++qraA2kbNmyoLl26OG2LiIhQkyZNKmwHAACByaUxKoMGDdLDDz+s48ePV7ituLhY06ZN0xVXXOG2wgEAgMDm0hiVgwcP6oILLpDdbtf48ePVoUMHSafGpsyfP1+lpaXatm2bmjZt6rEC/x5jVAAA8D0eG6PStGlTZWRk6I477tCUKVNUnnFsNpvS0tI0f/78OgspAADA/7kUVKRTM3/WrFmjI0eOaM+ePTLGqF27dpZaVRYAAPgHl4NKuXPOOUc9e/Z0Z1kAAACcuDSYFgAAoC4RVAAAgGURVAAAgGURVLwgJ69YGXtzlZNX7O2iAABgaTUeTIuaWbElW1NW7lCZkYJsUvqwZI3o2dLbxQIAwJJoUalDOXnFjpAiSWVGmrpyJy0rAABUgaBShzJzCx0hpVypMcrKLfJOgQAAsDiCSh1qHR2hIJvzNrvNpsTo+t4pEAAAFkdQqUNxUeFKH5Ysu+1UWrHbbHp8WBfFRYV7uWQAAFgTg2ndJCevWJm5hWodHXHG4DGiZ0v1ax+jrNwiJUbXJ6QAAHAGBBU3cHUmT1xUOAEFAIBqoOunlpjJAwCA5xBUaomZPAAAeA5BpZaYyQMAgOcQVGqJmTwAAHgOg2ndgJk8AAB4BkHFTZjJAwCA+9H1AwAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAuXkFStjb65y8oq9XRQAAJzU83YB4F0rtmRrysodKjNSkE1KH5asET1bertYAABIokUloOXkFTtCiiSVGWnqyp20rAAALIOgEsAycwsdIaVcqTHKyi3yToEAADgNQSWAtY6OUJDNeZvdZlNidH3vFAgAgNMQVAJYXFS40ocly247lVbsNpseH9ZFcVHhXi4ZAACnMJg2wI3o2VL92scoK7dIidH1CSkAAEshqEBxUeEEFACAJdH1AwAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugArhRTl6xMvbm8sOOAOAmLPgGuMmKLdmOX6MOsknpw5I1omdLr5YpJ69YmbmFah0dwaJ+AHwSQQVwg5y8YkdIkaQyI01duVP92sd4LSBYMTgBgKvo+gHcIDO30BFSypUao6zcIq+Up6rgRJcUAF9DUAHcoHV0hIJsztvsNpsSo+t7pTxWC04AUFMEFcAN4qLClT4sWXbbqbRit9n0+LAuXuv2sVpwAoCaYowKAoonB5eO6NlS/drHKCu3SInR9b06eLU8OE1duVOlxng9OAFATRFUEDDqYnBpXFS4ZcKAlYITANQUXT8ICIE6uDQuKly9k5oQUgD4LIIKAgKDS/0fi+0B/omuHwSE8sGlvw8rDC71H6wZA/gvWlTchG9z1ma1WTlwn0Dt1gMCBS0qbsC3Od/A4FLv8tSMqzN163GOAd9HUKklKy6djqpZaVZOIPFkmKdbD/BvdP3UEoM0gTPzdNdMXXXr0b0LeActKrXEtzngzOqia8bT3Xp07wLe49UWlfT0dPXs2VMNGzZUbGysrrrqKn333XfeLJLLGKQJnFldLefvqTVjGKwLeJdXg8qHH36ocePG6dNPP9X69et18uRJDRw4UIWFhd4slstG9GypTZP7a9ktF2nT5P580wJ+x9fDvD9079JthXKu/i9Y4X/Hq10/a9eudbq+ePFixcbGauvWrerXr5+XSlUzDNIEqubLM658vXuXbiuUc/V/wSr/O5YaTJuXlydJaty4sZdLAsDdfHU5f19uEaLbCuVc/V+w0v+OZQbTlpWVadKkSerbt6+6dOlS6T4lJSUqKSlxXM/Pz6+r4gEIYL7aIsQaMyjn6v+Clf53LBNUxo0bp507d2rTpk1V7pOenq4ZM2bUYakAeIunFoirKV/s3vX1biu4j6v/C1b637FE18/48eP1n//8Rx988IFatGhR5X5TpkxRXl6e47J///46LCWAurJiS7b6zn5fo178r/rOfl8rtmR7u0g+yZe7reBerv4vWOl/x2aMMWffzTOMMbrrrru0atUqbdy4Ue3atXPp/vn5+YqKilJeXp4iIyM9VErUNat9k0bdyskrVt/Z71f4Jrdpcn/+H2ooJ6/Y57qt4Bmu/i946n/Hlc9vr3b9jBs3Tq+++qrefvttNWzYUAcOHJAkRUVFKTycF1Mgssooc3iPlfrG/YUvdlvBM1z9X7DC/45Xu34WLFigvLw8paamKi4uznFZsWKFN4sFL6nJKHMrzPGHe9XVAnEAfINXW1S82OsEC3L1mzStL/6pvG986sqdKjXGZ8dV0IUJuIdlZv0Arowy51er/ZuvTgcuF2ghmlAGT7LErB94l1W6T1wZZe4Py5rjzHx1gTgrLZRVF5ih5V1Wef/2JFpUApzVvvlV95u0leb4A78XSIOBa9qySQuMe1jt/dtTaFEJYFb95ledb9JWmuMP/F4gDQauScsmLTDuYdX3b0+gRSWA+fo3P18fxwD/5C+DgasjIsRe6fb6IZV/B2Zsmfv4+vu3KwgqAcwfuk+sMMcfOF2ghOjCE6WVbi86UVbp9kD6cPU0f3j/ri66fgIY3SeA5/jqYGBXuNrNFUjdYp4WSO/fXl1Cv7ZYQt89WF4bQE2t2JJdoZvrTAM6Xd0fZ+ar79+ufH4TVAAAtWKV34+B7/CZ3/oBaotpjv6Lc+s7fPH3Y+A7CCrwWYGyhkAg4twCKMdgWvikQFpDINBwbgH8HkHFB7i6RHIgLKnMEvr+i3ML4Pfo+rE4V5vAA6XJPJDWEAg0nFsAv0eLioW52gQeSE3mgbSGQKDh3AL4PVpULMzVVRwDbdXHQFn9MxBxbgGUI6hYmKtN4IHYZO7qNMdAm/Lqy/VlCisAia4fS3O1CZwm8zMLtF9tDbT6AvBPrEzrA1j1sfZy8orVd/b7FVqbNk3u75fPUaDVF4BneKpVlpVp/QyrPtZeoI3fCbT6AnA/q8wipesHASHQfrU10OoLwL2sNIuUoIKAEGjjdwKtvgDcy0oLL9L1g4ARaFNeA62+ANzHSrNIaVFBQImLClfvpCYB86EdaPUF4B5WapWlRcVNfHm9CgAATmeVVlmCihtYZWQ0AADuZIVZpHT91JKVRkYDAHxbTl6xMvbm8hnyO7So1BLrVQAA3IHW+crRolJLrFcBoK7xrdv/0DpfNYJKLVlpZDQA/8dvOPknK61bYjV0/biBVUZGA/BvVX3r7tc+xq/fdwJhVmXr6AjZJP0+q9hsonVeBBW3scLIaAD+LRDHxAX0uA2f/clg96LrBwC8rLpjTgJtTFwgjdvIzC2skEuMRNePCCrAGbk6aJFBjnCVK2NOAm1MXCCN2wi0EOoKun6AKrja5BzQTdQW4IvjGGoy5iSQxsQF0riN8hA6deVOlRrj9yHUFQQVoBKufoAE6iBHq/DVkFjTMScBPSbOj8dtBFIIdQVdP0AlXG1yDqQmaqvx5XEMNPefWSCO2+CHRCsiqACVcPUDJBA/cKwyHseXQ2KgjTlxVSC+rlARXT9AJVztL46LCtfV5zfXm9t+cmy76vx4v/3AsVJXS/mH2e/Dii99mNHcXzXGbUCSbMYYn+3xy8/PV1RUlPLy8hQZGent4sAP5eQVV+sDJCevWH1nv1/hw3LT5P4+9aZanQGpVqzrii3ZFT7MfGGMCqqnuq9D+A5XPr9pUQHO4FD+ce38+ajqhwSd8Q3SHxbiqm4riRXrSquEe1ltBlVADx4GQQWoyr2vbXfqyvnTBc319+HdKt3X17sfXJm1ZNW68mFWNVeCh5W69QCJwbRApb7cf8QppEjSm9t+0pf7j1S6v68PinRlQKqv1zXQuLKgnC/PoIL/okUFAaW63yw/y/q10u2fZx1R14RzKr3Nl7sfXG0l8eW6BhJX1/exYreep1mtmwsVEVQQMFxp0u6V2LjS7T0SKw8p5Xy1+6Emsyt8ta6BxNXgYdVuPU+hm8s30PWDgOBqk3bXhHP0pwuaO2370wXNq2xN8QcjerbUpsn9teyWi7Rpcn/esP2Aq+uQBFK3Xk27uayyflAgoUUFAaEmTdp/H95NN/Rupc+zjqhH4jl+HVLK0UriX2rSUhYo3Xo1eU+gBcY7CCoICDVt0u6aEBgBBf6rJsEjEAKrq+8J/J6X99D1g4AQSE3awOlc/f2YQOjecPU9wZd/qsHX0aKCgBEoTdpAbQRS94Yr7wmBNtDYSmhRQUDhl0mBqgXiOirVfU+gVdZ7aFHxQ6wLAKAmAnEdFVdYsVU2EN7vCSp+JpCabQG4F90bZ2elgcY1eb/3xWBD148fCcRmWwDuQ/eG76jJ+70rP6dgJbSo+BF/abb1xcQP+Asrdm+gIlff7315ejVBxQdU94PbH5pt6boCvM9K3RuonKvv9778RZauH4tzpanO15tt6bo6O1fXtwiE9TCAQOTq+33r6Aid9msKskk+8UWWFhULq0lTnS8329Yk8QdSN5GrrU0rtmRr8ps7ZHTqDWn2n9w70C6QnnvAimr9fn96crEogoqF1bSpzlebbV1tygykbiJXQ2tOXrEjpEiSkTT5zR1nDLmuPJ/+8NwTtOAPqvt+n5lbqNM+TmSM6PpB7bj6y6e+zpWmzEDrJnJ1+e7Ps36t+KYkaWvWkUr3d+X59Ifn3mqzH+iig6f58ucJLSoWVpNfPvV11W3K9OWBYTXhamuTzVZ5m24Vm116Pn39ubfa7Ad/aJ2C9fny5wlBxeJ8ecxJTVWnKdMfZji5wtU3me6tzpFNcmpVsdmkC1pV/kvQrjyfvv7cWyloWS001RW63bzDVz9PCCo+wFfHnHiSL387qClX3mTiosI1+0/JFb6pV3UfV55PX3/urRS0rBSa6gotSN7li58nNmPM6V3ZPiM/P19RUVHKy8tTZGSkt4vjMYH27cPVmSe+9u2gLrn6/Liyvy8/9yu2ZFcIWt74sMzJK1bf2e9XCE2bJvf3uee0Ompa30B7DwwErnx+06JicYH27cPV+vrit4O65Orz48r+vvzcW6UJ3Ndbp1xVkxakQHsPREUEFQsLtP7rQKsvvMvVoOWpb/VWCU11ISLEXun2+iGVT0DlPQESQcXSAq3/OtDqC9/h6W/1vtw65YrCE6WVbi86UVbpdt4TILGOiqX58rz3mgi0+kqsn+EL/GHdGKtw9TVeF+8JvAatzxJBZf78+UpMTFRYWJguvPBCffbZZ94ukiX4+m/3uCrQ6mu1RcdQOVcX20PVXH2Ne/o9gdegb/D6rJ8VK1bohhtu0AsvvKALL7xQc+fO1euvv67vvvtOsbGxZ7xvIM36CYT+63KerK9VZg8E2mwPX8a5cj9PzkYr3/9sr3POq3f51Kyfp556SrfccovGjh0rSXrhhRf0zjvv6KWXXtLkyZO9XDprCJT+63Keqq+VZg/Q9+47Am1mTl3w5Gy06r7OeQ36Dq8GlRMnTmjr1q2aMmWKY1tQUJAGDBigTz75pML+JSUlKikpcVzPz8+vk3LC91lt9oCVFh3D2QXSzBxf5srrnNeg7/DqGJXc3FyVlpaqadOmTtubNm2qAwcOVNg/PT1dUVFRjktCQkJdFRU+zmrjDAJtPI4/iIsKV++kJpwjC3Pldc5r0Hd4vevHFVOmTNE999zjuJ6fn09YQbVY8dsT39IB93L1dc5r0Dd4tUUlOjpadrtdBw8edNp+8OBBNWvWrML+oaGhioyMdLoA1WHVb098Swfcpyavc16D1ufVFpWQkBB1795dGzZs0FVXXSVJKisr04YNGzR+/HhvFg1+iG9PgP/jde5/vN71c88992jMmDHq0aOHevXqpblz56qwsNAxCwhwp0CbQQUEIl7n/sXrQWXEiBE6fPiwHnnkER04cEDdunXT2rVrKwywBQAAgcfrC77VRqAs+AYAgD9x5fPbEkvoAwAAVIagAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALMvrS+jXRvmiuvn5+V4uCQAAqK7yz+3qLI7v00Hl2LFjkqSEhAQvlwQAALjq2LFjioqKOuM+Pv1bP2VlZfr555/VsGFD2Ww2tx47Pz9fCQkJ2r9/v1/+jhD1833+Xkd/r5/k/3Wkfr7PU3U0xujYsWOKj49XUNCZR6H4dItKUFCQWrRo4dHHiIyM9Nt/QIn6+QN/r6O/10/y/zpSP9/niTqerSWlHINpAQCAZRFUAACAZRFUqhAaGqpp06YpNDTU20XxCOrn+/y9jv5eP8n/60j9fJ8V6ujTg2kBAIB/o0UFAABYFkEFAABYFkEFAABYFkEFAABYVsAElfnz5ysxMVFhYWG68MIL9dlnn51x/7lz56pDhw4KDw9XQkKC7r77bh0/frxWx/Q0d9dx+vTpstlsTpeOHTt6uhpVcqV+J0+e1MyZM5WUlKSwsDB17dpVa9eurdUxPc3d9bPS+fvoo480ZMgQxcfHy2az6a233jrrfTZu3KgLLrhAoaGhatu2rRYvXlxhHyudP0/U0ZfPYU5OjkaNGqX27dsrKChIkyZNqnS/119/XR07dlRYWJiSk5O1Zs0a9xe+GjxRv8WLF1c4f2FhYZ6pQDW4WseVK1fqj3/8o2JiYhQZGanevXvr3XffrbCfx1+HJgAsX77chISEmJdeesl8/fXX5pZbbjGNGjUyBw8erHT/V155xYSGhppXXnnFZGZmmnfffdfExcWZu+++u8bH9DRP1HHatGmmc+fOJicnx3E5fPhwXVXJiav1e+CBB0x8fLx55513zN69e83zzz9vwsLCzLZt22p8TE/yRP2sdP7WrFljHnroIbNy5UojyaxateqM++/bt8/Ur1/f3HPPPeabb74x8+bNM3a73axdu9axj5XOnzGeqaMvn8PMzEwzYcIEs2TJEtOtWzczceLECvts3rzZ2O1288QTT5hvvvnG/PWvfzXBwcFmx44dnqnEGXiifosWLTKRkZFO5+/AgQOeqUA1uFrHiRMnmjlz5pjPPvvMfP/992bKlCkmODi4zt9HAyKo9OrVy4wbN85xvbS01MTHx5v09PRK9x83bpz5wx/+4LTtnnvuMX379q3xMT3NE3WcNm2a6dq1q0fK6ypX6xcXF2eee+45p23Dhg0zo0ePrvExPckT9bPS+fu96rxBPvDAA6Zz585O20aMGGHS0tIc1610/k7nrjr68jn8vZSUlEo/yIcPH24GDx7stO3CCy80t912Wy1LWDvuqt+iRYtMVFSU28rlTq7WsVynTp3MjBkzHNfr4nXo910/J06c0NatWzVgwADHtqCgIA0YMECffPJJpffp06ePtm7d6mi+2rdvn9asWaNBgwbV+Jie5Ik6ltu9e7fi4+PVpk0bjR49WtnZ2Z6rSBVqUr+SkpIKTazh4eHatGlTjY/pKZ6oXzkrnL+a+OSTT5yeD0lKS0tzPB9WOn81dbY6lvPVc1gd1X0OfFlBQYFatWqlhIQEDR06VF9//bW3i1RjZWVlOnbsmBo3biyp7l6Hfh9UcnNzVVpaqqZNmzptb9q0qQ4cOFDpfUaNGqWZM2fq4osvVnBwsJKSkpSamqqpU6fW+Jie5Ik6StKFF16oxYsXa+3atVqwYIEyMzN1ySWX6NixYx6tz+lqUr+0tDQ99dRT2r17t8rKyrR+/XqtXLlSOTk5NT6mp3iifpJ1zl9NHDhwoNLnIz8/X8XFxZY6fzV1tjpKvn0Oq6Oq58BXzuHZdOjQQS+99JLefvttLV26VGVlZerTp49+/PFHbxetRp588kkVFBRo+PDhkurufdTvg0pNbNy4UY8//rief/55bdu2TStXrtQ777yjWbNmebtoblOdOl5++eW69tprdd555yktLU1r1qzR0aNH9dprr3mx5NXzzDPPqF27durYsaNCQkI0fvx4jR079qw/J+4rqlM/Xz5/OIVz6Nt69+6tG264Qd26dVNKSopWrlypmJgYLVy40NtFc9mrr76qGTNm6LXXXlNsbGydPna9On00L4iOjpbdbtfBgwedth88eFDNmjWr9D4PP/ywrr/+et18882SpOTkZBUWFurWW2/VQw89VKNjepIn6ljZB3qjRo3Uvn177dmzx/2VOIOa1C8mJkZvvfWWjh8/rl9++UXx8fGaPHmy2rRpU+Njeoon6lcZb52/mmjWrFmlz0dkZKTCw8Nlt9stc/5q6mx1rIwvncPqqOo58JVz6Krg4GCdf/75Pnf+li9frptvvlmvv/66UzdPXb2P+sfXyzMICQlR9+7dtWHDBse2srIybdiwQb179670PkVFRRU+qO12uyTJGFOjY3qSJ+pYmYKCAu3du1dxcXFuKnn11Ob5DgsLU/PmzfXbb7/pzTff1NChQ2t9THfzRP0q463zVxO9e/d2ej4kaf369Y7nw0rnr6bOVsfK+NI5rI6aPAe+rLS0VDt27PCp87ds2TKNHTtWy5Yt0+DBg51uq7PXoduG5VrY8uXLTWhoqFm8eLH55ptvzK233moaNWrkmCZ2/fXXm8mTJzv2nzZtmmnYsKFZtmyZ2bdvn1m3bp1JSkoyw4cPr/Yx65on6njvvfeajRs3mszMTLN582YzYMAAEx0dbQ4dOmT5+n366afmzTffNHv37jUfffSR+cMf/mBat25tjhw5Uu1j1iVP1M9K5+/YsWPmiy++MF988YWRZJ566inzxRdfmB9++MEYY8zkyZPN9ddf79i/fOru/fffb7799lszf/78SqcnW+X8GeOZOvryOTTGOPbv3r27GTVqlPniiy/M119/7bh98+bNpl69eubJJ5803377rZk2bZrXpid7on4zZsww7777rtm7d6/ZunWrGTlypAkLC3Papy65WsdXXnnF1KtXz8yfP99pivXRo0cd+9TF6zAggooxxsybN8+0bNnShISEmF69eplPP/3UcVtKSooZM2aM4/rJkyfN9OnTTVJSkgkLCzMJCQnmzjvvdPoQONsxvcHddRwxYoSJi4szISEhpnnz5mbEiBFmz549dVgjZ67Ub+PGjebcc881oaGhpkmTJub66683P/30k0vHrGvurp+Vzt8HH3xgJFW4lNdpzJgxJiUlpcJ9unXrZkJCQkybNm3MokWLKhzXSufPE3X09XNY2f6tWrVy2ue1114z7du3NyEhIaZz587mnXfeqZsKncYT9Zs0aZLj/7Np06Zm0KBBTmuQ1DVX65iSknLG/ct5+nVoM6aKdn4AAAAv8/sxKgAAwHcRVAAAgGURVAAAgGURVAAAgGURVAAAgGURVAAAgGURVAAAgGURVADAzTZu3CibzaajR496uyiAzyOoAD7sxhtvlM1m0+zZs522v/XWW7LZbI7rxhi9+OKL6t27tyIjI9WgQQN17txZEydOrPYPpBUVFWnKlClKSkpSWFiYYmJilJKSorffftuxT2JioubOneuWunla+XNns9kUHBys1q1b64EHHtDx48ddOk5qaqomTZrktK1Pnz7KyclRVFSUG0sMBCaCCuDjwsLCNGfOHB05cqTS240xGjVqlCZMmKBBgwZp3bp1+uabb/Svf/1LYWFhevTRR6v1OLfffrtWrlypefPmadeuXVq7dq2uueYa/fLLL+6sTp267LLLlJOTo3379unpp5/WwoULNW3atFofNyQkRM2aNXMKiwBqyK0L8gOoU2PGjDFXXHGF6dixo7n//vsd21etWmXKX97Lli0zkszbb79d6THKysqq9VhRUVFm8eLFVd5e2e+ClPv444/NxRdfbMLCwkyLFi3MXXfdZQoKChy3v/zyy6Z79+6mQYMGpmnTpua6664zBw8edNxe/hsla9euNd26dTNhYWGmf//+5uDBg2bNmjWmY8eOpmHDhua6664zhYWF1arPmDFjzNChQ522DRs2zJx//vmO67m5uWbkyJEmPj7ehIeHmy5duphXX33V6Rin1zkzM9NR3t//dtYbb7xhOnXqZEJCQkyrVq3Mk08+Wa1yAoGOFhXAx9ntdj3++OOaN2+efvzxxwq3L1u2TB06dNCVV15Z6f2r+62/WbNmWrNmjY4dO1bp7StXrlSLFi00c+ZM5eTkKCcnR5K0d+9eXXbZZfrTn/6kr776SitWrNCmTZs0fvx4x31PnjypWbNm6csvv9Rbb72lrKws3XjjjRUeY/r06XruueeUkZGh/fv3a/jw4Zo7d65effVVvfPOO1q3bp3mzZtXrfqcbufOncrIyFBISIhj2/Hjx9W9e3e988472rlzp2699VZdf/31+uyzzyRJzzzzjHr37q1bbrnFUeeEhIQKx966dauGDx+ukSNHaseOHZo+fboefvhhLV68uEZlBQKKt5MSgJr7favARRddZG666SZjjHOLSseOHc2VV17pdL+JEyeaiIgIExERYZo3b16tx/rwww9NixYtTHBwsOnRo4eZNGmS2bRpk9M+rVq1Mk8//bTTtr/85S/m1ltvddr28ccfm6CgIFNcXFzpY23ZssVIMseOHTPG/P8Wlffee8+xT3p6upFk9u7d69h22223mbS0tGrVZ8yYMcZut5uIiAgTGhpqJJmgoCDzxhtvnPF+gwcPNvfee6/jekpKipk4caLTPqe3qIwaNcr88Y9/dNrn/vvvN506dapWWYFARosK4CfmzJmjJUuW6Ntvvz3rvg899JC2b9+uRx55RAUFBdU6fr9+/bRv3z5t2LBB11xzjb7++mtdcsklmjVr1hnv9+WXX2rx4sVq0KCB45KWlqaysjJlZmZKOtXiMGTIELVs2VINGzZUSkqKJCk7O9vpWOedd57j76ZNm6p+/fpq06aN07ZDhw5Vqz6S1L9/f23fvl3//e9/NWbMGI0dO1Z/+tOfHLeXlpZq1qxZSk5OVuPGjdWgQQO9++67Fcp1Nt9++6369u3rtK1v377avXu3SktLXToWEGgIKoCf6Nevn9LS0jRlyhSn7e3atdN3333ntC0mJkZt27ZVbGysS48RHBysSy65RA8++KDWrVunmTNnatasWTpx4kSV9ykoKNBtt92m7du3Oy5ffvmldu/eraSkJBUWFiotLU2RkZF65ZVXtGXLFq1atUqSKhw3ODjY8Xf5bJ3fs9lsKisrq3Z9IiIi1LZtW3Xt2lUvvfSS/vvf/+pf//qX4/a//e1veuaZZ/Tggw/qgw8+0Pbt25WWlnbG+gJwr3reLgAA95k9e7a6deumDh06OLZdd911GjVqlN5++20NHTrUrY/XqVMn/fbbbzp+/LhCQkIUEhJSoYXgggsu0DfffKO2bdtWeowdO3bol19+0ezZsx3jOz7//HO3lrM6goKCNHXqVN1zzz0aNWqUwsPDtXnzZg0dOlR//vOfJUllZWX6/vvv1alTJ8f9Kqvz6c4991xt3rzZadvmzZvVvn172e1291cG8CO0qAB+JDk5WaNHj9azzz7r2DZy5Ehdc801GjlypGbOnKn//ve/ysrK0ocffqgVK1ZU+4MyNTVVCxcu1NatW5WVlaU1a9Zo6tSp6t+/vyIjIyWdWkflo48+0k8//aTc3FxJ0oMPPqiMjAyNHz9e27dv1+7du/X22287BtO2bNlSISEhmjdvnvbt26fVq1eftTvJU6699lrZ7XbNnz9f0qnWqPXr1ysjI0PffvutbrvtNh08eNDpPomJiY7nNDc3t9IWnXvvvVcbNmzQrFmz9P3332vJkiV67rnndN9999VJvQBfRlAB/MzMmTOdPixtNptWrFihuXPnas2aNbr00kvVoUMH3XTTTUpISNCmTZuqddy0tDQtWbJEAwcO1Lnnnqu77rpLaWlpeu2115weOysrS0lJSYqJiZF0alzJhx9+qO+//16XXHKJzj//fD3yyCOKj4+XdKobavHixXr99dfVqVMnzZ49W08++aQbn5Hqq1evnsaPH68nnnhChYWF+utf/6oLLrhAaWlpSk1NVbNmzXTVVVc53ee+++6T3W5Xp06dFBMTU+n4lQsuuECvvfaali9fri5duuiRRx7RzJkzK53ZBMCZzRhjvF0IAACAytCiAgAALIugAkCSnKYPn375+OOPvV08l2RnZ5+xPq5OLwbgPXT9AJCkM/44YfPmzRUeHl6Hpamd3377TVlZWVXenpiYqHr1mPQI+AKCCgAAsCy6fgAAgGURVAAAgGURVAAAgGURVAAAgGURVAAAgGURVAAAgGURVAAAgGURVAAAgGX9Pz+q9zsBh0czAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQaRJREFUeJzt3Xl4VNXh//HPJJCFJUFIIAmEXUB2RaDsoGhEiwsqaxFxr6AiagWtstgaaK3SKqKPVbB1QxCQKkURBARcEEQBFSEEgxICsZJACAGT8/uDX+brkIXMJJN7Zub9ep48T3Lnzp1z7s3M/cw5557rMsYYAQAAWCjM6QIAAACUhaACAACsRVABAADWIqgAAABrEVQAAIC1CCoAAMBaBBUAAGAtggoAALAWQQUAAFiLoAKg0qZPny6Xy1WhdV0ul6ZPn+7X8gwcOFADBw60dnsAKo6gAgSRBQsWyOVyuX9q1Kihxo0b68Ybb9SPP/7odPGs07x5c4/91bBhQ/Xr109Lly6tku0fP35c06dP19q1a6tke0AoIqgAQWjmzJn697//reeee05DhgzRK6+8ogEDBujEiRN+eb0//vGPys/P98u2/a1r167697//rX//+9+6//77deDAAQ0bNkzPPfdcpbd9/PhxzZgxg6ACVEINpwsAoOoNGTJEF154oSTplltuUVxcnGbPnq3ly5dr+PDhVf56NWrUUI0agflx0rhxY/3ud79z/33DDTeodevWeuqpp3THHXc4WDIAEi0qQEjo16+fJCktLc1j+bfffqvrrrtO9evXV1RUlC688EItX77cY51Tp05pxowZOvfccxUVFaUGDRqob9++WrVqlXud0saoFBQU6N5771V8fLzq1q2rK6+8Uj/88EOJst14441q3rx5ieWlbXP+/Pm66KKL1LBhQ0VGRqp9+/aaN2+eV/vibBISEnTeeecpPT293PUOHTqkm2++WY0aNVJUVJS6dOmil19+2f34vn37FB8fL0maMWOGu3vJ3+NzgGATmF+BAHhl3759kqRzzjnHvWznzp3q06ePGjdurClTpqh27dp68803dfXVV+utt97SNddcI+l0YEhNTdUtt9yiHj16KDc3V59//rm2bt2qSy65pMzXvOWWW/TKK69o9OjR6t27t9asWaMrrriiUvWYN2+eOnTooCuvvFI1atTQf/7zH915550qKirShAkTKrXtYqdOndL+/fvVoEGDMtfJz8/XwIEDtWfPHk2cOFEtWrTQokWLdOONN+rIkSO65557FB8fr3nz5un3v/+9rrnmGg0bNkyS1Llz5yopJxAyDICgMX/+fCPJfPDBB+bw4cNm//79ZvHixSY+Pt5ERkaa/fv3u9e9+OKLTadOncyJEyfcy4qKikzv3r3Nueee617WpUsXc8UVV5T7utOmTTO//jjZtm2bkWTuvPNOj/VGjx5tJJlp06a5l40bN840a9bsrNs0xpjjx4+XWC8lJcW0bNnSY9mAAQPMgAEDyi2zMcY0a9bMXHrppebw4cPm8OHD5ssvvzQjR440ksxdd91V5vbmzJljJJlXXnnFvezkyZOmV69epk6dOiY3N9cYY8zhw4dL1BeAd+j6AYLQ4MGDFR8fr+TkZF133XWqXbu2li9friZNmkiS/ve//2nNmjUaPny4jh49quzsbGVnZ+unn35SSkqKdu/e7b5KqF69etq5c6d2795d4ddfsWKFJOnuu+/2WD5p0qRK1Ss6Otr9e05OjrKzszVgwADt3btXOTk5Pm3z/fffV3x8vOLj49WlSxctWrRIY8eO1ezZs8t8zooVK5SQkKBRo0a5l9WsWVN33323jh07pnXr1vlUFgAlBU1QWb9+vYYOHaqkpCS5XC4tW7bMr69X3H/+65927dr59TWBipo7d65WrVqlxYsX6/LLL1d2drYiIyPdj+/Zs0fGGD3yyCPuk3Txz7Rp0ySdHoMhnb6C6MiRI2rTpo06deqkBx54QF999VW5r//9998rLCxMrVq18ljetm3bStVr48aNGjx4sGrXrq169eopPj5eDz30kCT5HFR69uypVatW6YMPPtCmTZuUnZ2tf/3rXx6h6Ezff/+9zj33XIWFeX6Ennfeee7HAVSNoBmjkpeXpy5duuimm25y9wX7W4cOHfTBBx+4/w7Uqx4QfHr06OG+6ufqq69W3759NXr0aO3atUt16tRRUVGRJOn+++9XSkpKqdto3bq1JKl///5KS0vT22+/rffff1///Oc/9dRTT+m5557TLbfcUumyljVRXGFhocffaWlpuvjii9WuXTs9+eSTSk5OVkREhFasWKGnnnrKXSdvxcXFafDgwT49F4D/Bc2ZdciQIRoyZEiZjxcUFOjhhx/W66+/riNHjqhjx46aPXt2pWabrFGjhhISEnx+PlAdwsPDlZqaqkGDBumZZ57RlClT1LJlS0mnuysqcpKuX7++xo8fr/Hjx+vYsWPq37+/pk+fXmZQadasmYqKipSWlubRirJr164S655zzjk6cuRIieVntkr85z//UUFBgZYvX66mTZu6l3/44YdnLX9Va9asmb766isVFRV5tKp8++237selskMYgIoLmq6fs5k4caI+/vhjvfHGG/rqq690/fXX67LLLvOq3/1Mu3fvVlJSklq2bKkxY8YoIyOjCksMVJ2BAweqR48emjNnjk6cOKGGDRtq4MCBev7555WZmVli/cOHD7t//+mnnzweq1Onjlq3bq2CgoIyX6/4S8M//vEPj+Vz5swpsW6rVq2Uk5Pj0Z2UmZlZYnbY8PBwSZIxxr0sJydH8+fPL7Mc/nL55Zfr4MGDWrhwoXvZL7/8oqefflp16tTRgAEDJEm1atWSpFKDGICKCZoWlfJkZGRo/vz5ysjIUFJSkqTTTd4rV67U/Pnz9fjjj3u9zZ49e2rBggVq27atMjMzNWPGDPXr1087duxQ3bp1q7oKQKU98MADuv7667VgwQLdcccdmjt3rvr27atOnTrp1ltvVcuWLZWVlaWPP/5YP/zwg7788ktJUvv27TVw4EB169ZN9evX1+eff67Fixdr4sSJZb5W165dNWrUKD377LPKyclR7969tXr1au3Zs6fEuiNHjtSDDz6oa665RnfffbeOHz+uefPmqU2bNtq6dat7vUsvvVQREREaOnSobr/9dh07dkwvvPCCGjZsWGrY8qfbbrtNzz//vG688UZt2bJFzZs31+LFi7Vx40bNmTPH/RkQHR2t9u3ba+HChWrTpo3q16+vjh07qmPHjtVaXiCgOX3ZkT9IMkuXLnX//c477xhJpnbt2h4/NWrUMMOHDzfGGPPNN98YSeX+PPjgg2W+5s8//2xiYmLMP//5T39XDyhT8eXJmzdvLvFYYWGhadWqlWnVqpX55ZdfjDHGpKWlmRtuuMEkJCSYmjVrmsaNG5vf/va3ZvHixe7n/elPfzI9evQw9erVM9HR0aZdu3bmz3/+szl58qR7ndIuJc7Pzzd33323adCggaldu7YZOnSo2b9/f6mX677//vumY8eOJiIiwrRt29a88sorpW5z+fLlpnPnziYqKso0b97czJ4927z00ktGkklPT3ev583lyWe79Lqs7WVlZZnx48ebuLg4ExERYTp16mTmz59f4rmbNm0y3bp1MxEREVyqDPjAZcyv2lGDhMvl0tKlS3X11VdLkhYuXKgxY8Zo586d7ubjYnXq1FFCQoJOnjypvXv3lrvdBg0auGeaLE337t01ePBgpaamVroOAAAgRLp+zj//fBUWFurQoUPuqcTPFBERUanLi48dO6a0tDSNHTvW520AAABPQRNUjh075tH/nZ6erm3btql+/fpq06aNxowZoxtuuEF/+9vfdP755+vw4cNavXq1Onfu7NO03vfff7+GDh2qZs2a6cCBA5o2bZrCw8M9JoACAACVEzRdP2vXrtWgQYNKLB83bpwWLFigU6dO6U9/+pP+9a9/6ccff1RcXJx+85vfaMaMGerUqZPXrzdy5EitX79eP/30k+Lj49W3b1/9+c9/LjHBFQAA8F3QBBUAABB8QmYeFQAAEHgIKgAAwFoBPZi2qKhIBw4cUN26dZmqGgCAAGGM0dGjR5WUlFTi5p5nCuigcuDAASUnJztdDAAA4IP9+/erSZMm5a4T0EGleJrq/fv3KyYmxuHSAACAisjNzVVycnKFbjkT0EGluLsnJiaGoAIAQICpyLANBtMCAABrEVQAAIC1CCoAAMBaAT1GpaIKCwt16tQpp4sRUmrWrFniTtUAAHgrqIOKMUYHDx7UkSNHnC5KSKpXr54SEhKY4wYA4LOgDirFIaVhw4aqVasWJ8xqYozR8ePHdejQIUlSYmKiwyUCAASqoA0qhYWF7pDSoEEDp4sTcqKjoyVJhw4dUsOGDekGAgD4JGgH0xaPSalVq5bDJQldxfue8UEAAF8FbVApRnePc9j3AIDKCvqgAgAAAhdBBQAAWIugYqmDBw/qrrvuUsuWLRUZGank5GQNHTpUq1ev9ljPGKMhQ4bI5XJp2bJl7uX79u2Ty+XStm3bSmx74MCBmjRpkvvvJUuW6NJLL1WDBg3KfM6JEyc0YcIENWjQQHXq1NG1116rrKysKqotAASGzJx8bUrLVmZOvtNFCRkEFQvt27dP3bp105o1a/TXv/5V27dv18qVKzVo0CBNmDDBY905c+ZUeixIXl6e+vbtq9mzZ5e5zr333qv//Oc/WrRokdatW6cDBw5o2LBhlXpdAAgkCzdnqM+sNRr9wqfqM2uNFm7OcLpIISFoL08OZHfeeadcLpc+++wz1a5d2728Q4cOuummm9x/b9u2TX/729/0+eefV2qukrFjx0o6HZBKk5OToxdffFGvvfaaLrroIknS/Pnzdd555+mTTz7Rb37zG59fGwACQWZOvqYu2a4ic/rvIiM9tGSH+reJV2JstLOFC3K0qFRQdTX3/e9//9PKlSs1YcIEj5BSrF69epKk48ePa/To0Zo7d64SEhL8WqYtW7bo1KlTGjx4sHtZu3bt1LRpU3388cd+fW0AsEF6dp47pBQrNEb7so87U6AQQotKBSzcnOFO0mEuKXVYJ43o3tQvr7Vnzx4ZY9SuXbty17v33nvVu3dvXXXVVeWu17t3b4WFeebR/Px8de3atcJlOnjwoCIiItwhqVijRo108ODBCm8HAAJVi7jaCnPJI6yEu1xqHsdcXf5GUDmL6m7uM8acdZ3ly5drzZo1+uKLL8667sKFC3Xeeed5LBszZozP5QOAUJQYG63UYZ300JIdKjRG4S6XHh/WkW6fakBQOYvymvv88Q967rnnyuVy6dtvvy1znTVr1igtLa1EC8e1116rfv36ae3ate5lycnJat26tcd6xdPbV1RCQoJOnjypI0eOeLxmVlaW37udAMAWI7o3Vf828dqXfVzN42oRUqoJY1TOori579f82dxXv359paSkaO7cucrLyyvx+JEjRzRlyhR99dVX2rZtm/tHkp566inNnz+/ysvUrVs31axZ0+PS6F27dikjI0O9evWq8tcDAFslxkarV6sGhJRqRIvKWTjR3Dd37lz16dNHPXr00MyZM9W5c2f98ssvWrVqlebNm6dvvvmm1JaMpk2bqkWLFl6/3v/+9z9lZGTowIEDkk6HEOl0S0pCQoJiY2N18803a/Lkyapfv75iYmJ01113qVevXlzxAwDwK4JKBVR3c1/Lli21detW/fnPf9Z9992nzMxMxcfHq1u3bpo3b16Vv97y5cs1fvx4998jR46UJE2bNk3Tp0+XdLq1JiwsTNdee60KCgqUkpKiZ599tsrLAgDAr7lMRUZvWio3N1exsbHKyclRTEyMx2MnTpxQenq6WrRooaioKIdKGNo4BgCA0pR3/j4TY1QAAIC1CCoAAMBaBBUAAGAtggoAALBW0AeVAB4rHPDY9wCAygraoFKzZk1Jp2/eB2cU7/viYwEAgLeCdh6V8PBw1atXT4cOHZIk1apVSy6X6yzPQlUwxuj48eM6dOiQ6tWrp/DwcKeLBAAIUEEbVCS5Z28tDiuoXvXq1eNeQACASgnqoOJyuZSYmKiGDRvq1KlTThcnpNSsWZOWFABApTkaVKZPn64ZM2Z4LGvbtm25dw72RXh4OCdNAAACkOMtKh06dNAHH3zg/rtGDceLBAAALOF4KqhRowbjGAAAQKkcvzx59+7dSkpKUsuWLTVmzBhlZGSUuW5BQYFyc3M9fgAAQPByNKj07NlTCxYs0MqVKzVv3jylp6erX79+Onr0aKnrp6amKjY21v2TnJxczSUGAADVyWUsmj70yJEjatasmZ588kndfPPNJR4vKChQQUGB++/c3FwlJydX6DbRAADADrm5uYqNja3Q+dvxMSq/Vq9ePbVp00Z79uwp9fHIyEhFRkZWc6kAAIBTHB+j8mvHjh1TWlqaEhMTnS4KAACwgKNB5f7779e6deu0b98+bdq0Sddcc43Cw8M1atQoJ4sFAAAs4WjXzw8//KBRo0bpp59+Unx8vPr27atPPvlE8fHxThYLAABYwtGg8sYbbzj58gAAwHJWjVEBAAD4NYIKAACwFkEFAABYi6ACAACsRVABAADWIqgAAABrEVQAAIC1CCoAAMBaBBUAAGAtggoAALAWQQUAAFiLoAIAAKxFUAEAANYiqAAAAGsRVAAAgLUIKgAAwFoEFQAAYC2CCgAAsBZBBQAAWIugAgAArEVQAQAA1iKoAAAAaxFUAACAtQgqAADAWgQVAABgLYKKAzJz8rUpLVuZOflOFwUAAKvVcLoAoWbh5gxNXbJdRUYKc0mpwzppRPemThcLAAAr0aJSjTJz8t0hRZKKjPTQkh20rAAAUAaCSjVKz85zh5RihcZoX/ZxZwoEAIDlCCrVqEVcbYW5PJeFu1xqHlfLmQIBAGA5gko1SoyNVuqwTgp3nU4r4S6XHh/WUYmx0Q6XDAAAOzGYtpqN6N5U/dvEa1/2cTWPq0VIAQCgHAQVByTGRhNQAACoALp+AACAtQgqAADAWgQVAABgLYIKAACwFkEFAABYi6ACAACsRVABAADWIqgAAABrEVQAAIC1CCoAAMBaBBUAAGAtggoAALAWQQUAAFiLoAIAAKxFUAEAANYiqAAAAGsRVAAAgLUIKgAAwFoEFQAAYC1rgsqsWbPkcrk0adIkp4sCAAAsYUVQ2bx5s55//nl17tzZ6aIAAACLOB5Ujh07pjFjxuiFF17QOeec43RxAACARRwPKhMmTNAVV1yhwYMHn3XdgoIC5ebmevwAAIDgVcPJF3/jjTe0detWbd68uULrp6amasaMGX4uFQAAsIVjLSr79+/XPffco1dffVVRUVEVes7UqVOVk5Pj/tm/f7+fSwkAAJzkMsYYJ1542bJluuaaaxQeHu5eVlhYKJfLpbCwMBUUFHg8Vprc3FzFxsYqJydHMTEx/i4yAACoAt6cvx3r+rn44ou1fft2j2Xjx49Xu3bt9OCDD541pAAAgODnWFCpW7euOnbs6LGsdu3aatCgQYnlAAAgNDl+1Q8AAEBZHL3q50xr1651uggAAMAitKgAAABrEVQAAIC1CCoAAMBaBBUAAGAtggoAALAWQQUAAFiLoAIAAKxFUAEAANYiqAAAAGsRVAAAgLUIKgAAwFoEFQAAYC2CCgAAsBZBBQAAWIugAgAArEVQAQAA1iKoAAAAaxFUAACAtQgqAADAWgQVAABgLYIKAACwFkEFAABYi6ACAACsRVABAADWIqgAAABrEVQAAIC1CCoAAMBaBBUAAGAtggoAALAWQQUAAFiLoALASpk5+dqUlq3MnHyniwLAQTWcLgAAnGnh5gxNXbJdRUYKc0mpwzppRPemThcLgANoUQFglcycfHdIkaQiIz20ZActK0CIIqgAsEp6dp47pBQrNEb7so87UyAAjiKoALBKi7jaCnN5Lgt3udQ8rpYzBQLgKIIKAKskxkYrdVgnhbtOp5Vwl0uPD+uoxNhoh0sGwAkMpgVgnRHdm6p/m3jtyz6u5nG1CClACCOoALBSYmw0AQUAXT8AAMBeBJUyMNkUAADOo+unFEw2BQCAHWhROQOTTQEAYA+CyhmYbAoAAHsQVM7AZFMAANiDoHIGJpsCAMAeDKYtBZNNAQBgB4JKGZhsCgAA59H1AwAArEVQAQAA1iKoAAAAaxFUAACAtQgqAADAWo4GlXnz5qlz586KiYlRTEyMevXqpf/+979OFgkAAFjE0aDSpEkTzZo1S1u2bNHnn3+uiy66SFdddZV27tzpZLEAAIAlXMYYc/bVqk/9+vX117/+VTfffPNZ183NzVVsbKxycnIUExNTDaUDAACV5c3525oJ3woLC7Vo0SLl5eWpV69epa5TUFCggoIC99+5ubnVVTwAAOAAn4LKZ599po8//lgHDx6UJCUkJKhXr17q0aOH19vavn27evXqpRMnTqhOnTpaunSp2rdvX+q6qampmjFjhi9FBgAAAcirrp9Dhw7p2muv1caNG9W0aVM1atRIkpSVlaWMjAz16dNHb731lho2bFjhApw8eVIZGRnKycnR4sWL9c9//lPr1q0rNayU1qKSnJxM1w8AAAHEm64fr4LKddddpwMHDmj+/Plq27atx2O7du3STTfdpKSkJC1atMi3kksaPHiwWrVqpeeff/6s6zJGBQCAwOO3MSrvvfee1q9fXyKkSFLbtm31j3/8QwMHDvSqsGcqKiryaDUBAAChy6ugEhkZWe4A1qNHjyoyMrLC25s6daqGDBmipk2b6ujRo3rttde0du1avffee94UCwAABCmv5lEZMWKExo0bp6VLl3oEltzcXC1dulTjx4/XqFGjKry9Q4cO6YYbblDbtm118cUXa/PmzXrvvfd0ySWXeFMsAAAQpLxqUXnyySdVVFSkkSNH6pdfflFERISk0wNia9SooZtvvllPPPFEhbf34osveldaAAAQUnya8C03N1dbtmzxuDy5W7du1T6glcG0AAAEHr9P+BYTE6NBgwb5VDgAAICKqtJ7/WRlZWnmzJlVuUkAABDCqjSoHDx4kJljAQBAlfGq6+err74q9/Fdu3ZVqjAAAAC/5lVQ6dq1q1wul0obf1u83OVyVVnhAABAaPMqqNSvX19/+ctfdPHFF5f6+M6dOzV06NAqKVigyczJV3p2nlrE1VZibLTTxQEAICh4FVS6deumAwcOqFmzZqU+fuTIkVJbW4Ldws0Zmrpku4qMFOaSUod10ojuTR0rD6EJABAsvAoqd9xxh/Ly8sp8vGnTppo/f36lCxVIMnPy3SFFkoqM9NCSHerfJt6RkGBbaAIAoDK8CirXXHNNuY+fc845GjduXKUKFGjSs/PcIaVYoTHal3282oOKbaEJAIDKqtLLk0NRi7jaCjtj/HC4y6XmcbWqvSzlhSYAAAKRVy0qkydPrtB6Tz75pE+FCUSJsdFKHdZJDy3ZoUJjFO5y6fFhHR1pwSgOTb8OK06FJgAAqoJXQeWLL77w+HvDhg3q1q2boqP/76Qcipcnj+jeVP3bxGtf9nE1j6vlWDeLTaEJAICq4NNNCYvVrVtXX375pVq2bFmVZaowbkpYusycfMdDEwAAZfH7TQlht8TYaAIKACAoMJgWAABYi6ACAACsVambEhpj9O233+rYsWMeyzt37lz5kgUxZo4FAKBivBpMGxYWVqGbEhYWFlZpIcsSiINpmTkWABDq/DaYNj09vVIFC3XMHAsAgHe8Cipl3YwQFWPTdPsAAASCKhlMe9FFF+n777+vik0FNZum2wcAIBB41aKyfPnyUpevX79e77zzjpKTkyVJV155ZeVLFoSYORYAAO9U2WBa9wYZTHtWzBwLAAhl3py/ver6SUlJ0ZAhQ3Tw4EEVFRW5f8LDw7Vjxw4VFRVVW0gJZImx0erVqgEhBQCAs/AqqPz3v//VxRdfrAsvvFDvvPOOv8oEAAAgyYfBtPfee6+WL1+uBx98ULfffruOHz/uj3IBAAD4dtVP165d9fnnn8vlcqlr167ljlkBAADwlc93T46OjtZzzz2n5cuX68MPP1RcXFxVlgsAAMC7FpU1a9aoffv2ys3NdS+78sor9dRTTykyMlIdOnTQRx99VOWFBAAAocmroDJnzhzdeuutpV5KFBsbq9tvv11PPvlklRUOAACENq+CypdffqnLLruszMcvvfRSbdmypdKFAgAAkLwMKllZWapZs2aZj9eoUUOHDx+udKEAAAAkL4NK48aNtWPHjjIf/+qrr5SYmFjpQiG4ZObka1NatjJz8p0uCgAgwHh11c/ll1+uRx55RJdddpmioqI8HsvPz9e0adP029/+tkoLiMC2cHOGpi7ZriIjhbmk1GGdNKJ7U6eLBQAIEF7d6ycrK0sXXHCBwsPDNXHiRLVt21aS9O2332ru3LkqLCzU1q1b1ahRI78V+NcC9V4/oSIzJ199Zq1R0a/+w8JdLm2YMojbBwBACPPm/O1Vi0qjRo20adMm/f73v9fUqVPdE725XC6lpKRo7ty51RZSYL/07DyPkCJJhcZoX/ZxggoAoEK8nvCtWbNmWrFihX7++Wft2bNHxhide+65Ouecc/xRPgSwFnG1FeZSiRaV5nG1nCsUACCg+DSFviSdc8456t69u3r06EFIQakSY6OVOqyTwl0uSadDyuPDOtKaAgCoMJ+n0AcqYkT3purfJl77so+reVwtQgoAwCsEFfhdYmw0AQUA4BOfu34AAAD8jaACAACsRVABAADWIqgAAABrEVSqCPezAQCg6nHVTxXgfjYAAPgHLSqVlJmT7w4p0ulZWB9asoOWFQAAqgBBpZLKu58NAACoHIJKJRXfz+bXuJ8NAABVg6BSSdzPBgAA/2EwbRXgfjYAAPiHoy0qqamp6t69u+rWrauGDRvq6quv1q5du5wsks8SY6PVq1UDQgoAAFXI0aCybt06TZgwQZ988olWrVqlU6dO6dJLL1VeXp6TxQIAAJZwGWPM2VerHocPH1bDhg21bt069e/f/6zr5+bmKjY2Vjk5OYqJiamGEgIAgMry5vxt1RiVnJwcSVL9+vVLfbygoEAFBQXuv3Nzc6ulXAAAwBnWXPVTVFSkSZMmqU+fPurYsWOp66Smpio2Ntb9k5ycXM2lBAAA1cmarp/f//73+u9//6sNGzaoSZMmpa5TWotKcnIyXT8AAASQgOv6mThxot555x2tX7++zJAiSZGRkYqMjKzGkgEAACc5GlSMMbrrrru0dOlSrV27Vi1atHCyOAAAwDKOBpUJEybotdde09tvv626devq4MGDkqTY2FhFRzMfSXXJzMlXenaeWsTVZh4YAIBVHB2j4nK5Sl0+f/583XjjjWd9PpcnV97CzRnuuz+HuaTUYZ00ontTp4sFAAhiATNGxZJxvCErMyffHVIkqchIDy3Zof5t4mlZAQBYwZrLk1H90rPz3CGlWKEx2pd93JkCAQBwBoJKCGsRV1thZ/S+hbtcah5Xy5kCAQBwBoJKCEuMjVbqsE4K//9jhcJdLj0+rCPdPgAAa1gxjwqcM6J7U/VvE6992cfVPK4WIQUAYBWCCpQYG01AAQBYia4fAABgLYIKAACwFkEFAABYi6ACVKHMnHxtSstWZk6+00UBgKDAYFqginA7AgCoerSoAFWgrNsR0LICAJVDUAGqgK23I6ArCkCgo+sHqALFtyP4dVhx+nYEdEUBCAa0qCCk+KuFwbbbEdAVBSBY0KKCkOHvFgabbkdQXlcUsxADCCS0qCAkVFcLQ2JstHq1auB4GODO2ACCBUEFIcHWwa7+YltXFAD4iq4fhAQbB7v6m01dUQDgK1pUEBJCtYXBlq4oAPAVLSoIGbQwAEDgIaggpCTGRhNQACCA0PUDAACsRVABAADWIqgAAABrEVQAAIC1CCoAAMBaBBUAAGAtggoAALAWQQUAAFiLoAIAAKxFUAEAANYiqAAAAGsRVAAAgLUIKgAAwFoEFQAAYC2CCqyTmZOvTWnZyszJd7ooAACH1XC6AMCvLdycoalLtqvISGEuKXVYJ43o3tTpYgEAHEKLCqyRmZPvDimSVGSkh5bsoGUFAEIYQQXWSM/Oc4eUYoXGaF/2cWcKBABwHEEF1mgRV1thLs9l4S6XmsfVcqZAAADHEVRgzeDVxNhopQ7rpHDX6bQS7nLp8WEdlRgb7Wi5AADOYTBtiLNt8OqI7k3Vv0289mUfV/O4WoQUAAhxtKiEMFsHrybGRqtXqwaEFAAAQSWUMXgVAGA7gkoIY/AqbGbL2CkAziKohDAGr8JWCzdnqM+sNRr9wqfqM2uNFm7OcLpIABziMsaYs69mp9zcXMXGxionJ0cxMTFOFydgZebkM3gV1sjMyVefWWs8uiXDXS5tmDKI/08gSHhz/uaqHygxNjpgTwCZOflKz85Ti7jaAVsHeCpv7BTHGAg9BBUELNsurUbVKB47dWaLCmOngNDEGBUEJFsvrUblMXYKwK/RohKEQqE7hO6B4MbEfwCKEVSCTKh0h9A9EPwCeeyUbULhywuCl6NdP+vXr9fQoUOVlJQkl8ulZcuWOVmcgBdK3SGJsdG65vzGHsuuPj+JD2HgDFzqjUDnaFDJy8tTly5dNHfuXCeLETRCaabZzJx8Lf3iR49ly744EJShDPBVKH15QfBytOtnyJAhGjJkiJNFCCqh1B3CGBXg7HifIBgE1FU/BQUFys3N9fjB/wmlqyWY/h84O94nCAYBFVRSU1MVGxvr/klOTna6SNYZ0b2pNkwZpNdv/Y02TBkUlANppdAKZYCveJ8gGFgzhb7L5dLSpUt19dVXl7lOQUGBCgoK3H/n5uYqOTmZKfRDGNP/A2fH+wS2Cdop9CMjIxUZGel0MaodlxaWzd+XsLLvEQy41BuBLKCCSigKlXlRbMS+BwDnOTpG5dixY9q2bZu2bdsmSUpPT9e2bduUkcF1/hKXFjqJfQ8Apz8LN6VlO/rZ52iLyueff65Bgwa5/548ebIkady4cVqwYIFDpbIHlxY6h30PINTZ0qrsaFAZOHCgLBnLa6VQmhfFNux7AKGsrFbl/m3iq/3LWkBdnhxquLTQOex7AKHMppnOGUxrOe4i6xz2fWDhCi2g6tjUqkxQCQBcWugc9n1gqI6+dIIQQklxq/JDS3ao0BhHW5WtmfDNF95MGAPAWf460Wfm5KvPrDUlvvltmDKoyl7H30GIEARb+WuywKCd8A2oLE4IVcebfenLib6i2/f3FVr+HlRoy5UVlcH7KnjZ0KpMUEHICIYTgi282Ze+nOi92b6/+9J9DUIVOXnbdGWFr3hfwd+46gchgQncqo63+9Lbqwe83b6/r9Dy5Q7ECzdnqM+sNRr9wqfqM2uNFm4ufRJLm66s8AXvK1QHWlQQEpjArep4uy+9bfHw5Vj58wotbwcVetNKYtOVFb7gfYXqQFBBSAj0E4JNvN2X3p7ofT1W/uxL9yYIeXPytunKCl/wvkJ1IKggJAT6CcEmvuxLb070th6rigYhb0/egTxfj63HCsGFy5MRUvx1qV0o8ve+DORjtXBzRomTt5MDTP19VU4gHys4w5vzN0EFAPzAlpM3V+XARt6cv7nqBwD8IDE2Wr1aNXA0pHBVDoIBQaWKZObka1NaNh8AQYbjikAW6Jc/AxKDaasETavBieMaWEJpdtSK1pWrchAMaFGpJJpWgxPHNbBUdIK1YOBNXX2dDI+WRNiEFpVKYsKj4MRxDRzBMA19RflSV28vf+ZO1LANQaWSaFoNThzXwBFKodLXulZ0DpjqCH10qcJbdP1Ukr/vMwJncFwDhy/34glU/q6rr4NvK9pVRJcqfEGLShUI5JklUTaOa2AIpdlR/V1XX1oSvWkhCaXWL1QdJnwDEBRsmWCtOvizrt7MqpuZk68+s9aUCDYbpgwqtVzero/g5c35mxYVhJRQG8QXSvX19qaE3u4bm/ZlIN6AUQqt1i9UHYIKQkaoDeILtfp6w9t9E4r70ujsje2+dBX50qVqU0gMdIG4L+n6QUCr6Jsu1JqcQ62+3qC7ony+hDh/3oAxFEOiv9i0L+n6QUhgEF/ZQq2+3vB231THvrTlW251zNPibXmmvLXd3bZTZKQpS7YH5Rw5/hbI8w1xeTICkreXOYbSJaxS6NXXG97uG3/vS5tm1fX18mR/3YBxy/c/l+iAMkba+v3PVfo6gayil4YH8n2fCCoISN6+6UJtXhSmTi+bt/vGn/87ts0rYlvALWtkQuAOWKha3oTcFnG1dcahlUs667G14TOBrh9YpyLN4NU1iC+Q2Th1ui283Tf++t+xrYuuuq7KqWhX14XN68slebSquCR1a35OlZYnEFVJV86ZyeUMtnwmEFSCkC393b6o6BvD1w9Uf17WaSObpk63jbf/C/7437HxVg3+DvTenPwSY6M17ILGemvrj+5lwy5oHLT/k97wZaxVad1oZa1v02cCQSXI2JKAfeHtG8PGFpJADYm2fbMPFbbOK+KvQO/tezwzJ19Lv/jRY9myLw7o/pS2ju8jf6noZ4i3Ibd2RHipy2tFlD4CxKbPBIJKELEpAfvClzeGTS0kgRwSbfxmHypsDNz+YuMVVzbxtrXJm5Cbd7Kw1OXHTxaVutymzwQG0waRQB7VLdk3kM8btg2K9JYvA0ZtGGQXLPx11YxtvB3QGcifCd7y5TNkRPem2jBlkF6/9TfaMGVQuV+MvN2XNl2AQItKELEpAfui+I3x628UNjSDV0QwfPPz5pt9ILcewTLlDOi0tWvMH3z9DKloq7Iv+9KW1j6CShAJljd18aWHgXQJYqCHxGIV+dAL9C5GOMfbAZ2SPSdLf6uOzxBf9qUN3esElSATyG/q4hNg8fvUKHBOgMESEisiGFqP4AxfT8Y2nCz9rbo+QwJxXxJUglAg/iNKgX8CDOSQ6I1gaT1C9QulQO+LUPkM8RZBBdaojhOgvy8fDtSQ6A1ONqgMTsblC4XPEG8RVGANf58AfRkAGqjzovgbJxtUBidjeMNlyrqZQgDw5jbRCByZOflVfgLMzMlXn1lrSrTWbJgyqMzX4MoWAPAPb87fzKMSAEJtvgp/zCnh7RwzgT4vSrFQ+98BEHzo+rEc3+qrhrfjXwJ9YK/E/w4QCkKhe5oWFYsFy7d6G3g7y6KvM2La0oLh6/+OLeUHcHYLN2eoz6w1Gv3Cp+oza40Wbs5wukh+QYuKxYLhW71NvBkA6svAXptaMHz537Gp/ADKF0oTLxJULMZ8FVXPm6sNvAk2tn1oePu/Y1v5AVvZ0tUSSl9k6fqxmE03hQpVFR3Ya9sNIb3937Gt/ICNbOpqCaUbNtKiYjnmqwgMNrZ+efO/Y2P5AV/5o9XDtlbHUJp4kaASAJgcyX62fmj4886qgI38NdbKxq6WUPkiS1AJALb0iaJ8gf6hEejlB/zZ6mFrq2MofJElqFiOKzECi78/NLhXEVA2X1o9KvqeotXROQQVi9nWJwpnEVqB8nnb6uHte4pWR2dw1Y/FuBIDxZj8Dzg7b6528/U95Y9bfJxZLiZd9ESLisVs7RNF9bNxIB9go4q2etj4nqLVtHRWtKjMnTtXzZs3V1RUlHr27KnPPvvM6SJZgXlUUCzQp/QHqlNFWj1sm4eEVtOyOd6isnDhQk2ePFnPPfecevbsqTlz5iglJUW7du1Sw4YNnS6e4+gTDW7+HMjHtzOgbImx0brm/MZ6a+uP7mVXn5/k2GesjS08tnAZY8zZV/Ofnj17qnv37nrmmWckSUVFRUpOTtZdd92lKVOmlPvc3NxcxcbGKicnRzExMdVRXKDK+BIkMnPyKzylf59Za0p0G26YMijkP/QAyb73iG3l8Tdvzt+Odv2cPHlSW7Zs0eDBg93LwsLCNHjwYH388ccl1i8oKFBubq7HDxCI/D2Qj4HYQPlse4/Q1V82R7t+srOzVVhYqEaNGnksb9Sokb799tsS66empmrGjBnVVTzAb/zdzMtAbKB8Nr5H6OovnRWDaStq6tSpysnJcf/s37/f6SIBPvH3QD6+nQHls/U94u/LnwORoy0qcXFxCg8PV1ZWlsfyrKwsJSQklFg/MjJSkZGR1VU8wG+qY5ZLvp0B5eM9EhgcDSoRERHq1q2bVq9erauvvlrS6cG0q1ev1sSJE50sGuB31fEhyZT4QPl4j9jP8cuTJ0+erHHjxunCCy9Ujx49NGfOHOXl5Wn8+PFOFw3wOz4kAaB8jgeVESNG6PDhw3r00Ud18OBBde3aVStXriwxwBYAAIQex+dRqQzmUQEAIPAEzDwqAAAA5SGoAAAAaxFUAACAtQgqAADAWgQVAABgLYIKAACwFkEFAABYi6ACAACsRVABAADWcnwK/coonlQ3NzfX4ZIAAICKKj5vV2Ry/IAOKkePHpUkJScnO1wSAADgraNHjyo2NrbcdQL6Xj9FRUU6cOCA6tatK5fLVaXbzs3NVXJysvbv3x+U9xGifoEv2OsY7PWTgr+O1C/w+auOxhgdPXpUSUlJCgsrfxRKQLeohIWFqUmTJn59jZiYmKD9B5SoXzAI9joGe/2k4K8j9Qt8/qjj2VpSijGYFgAAWIugAgAArEVQKUNkZKSmTZumyMhIp4viF9Qv8AV7HYO9flLw15H6BT4b6hjQg2kBAEBwo0UFAABYi6ACAACsRVABAADWIqgAAABrhUxQmTt3rpo3b66oqCj17NlTn332Wbnrz5kzR23btlV0dLSSk5N177336sSJE5Xapr9VdR2nT58ul8vl8dOuXTt/V6NM3tTv1KlTmjlzplq1aqWoqCh16dJFK1eurNQ2/a2q62fT8Vu/fr2GDh2qpKQkuVwuLVu27KzPWbt2rS644AJFRkaqdevWWrBgQYl1bDp+/qhjIB/DzMxMjR49Wm3atFFYWJgmTZpU6nqLFi1Su3btFBUVpU6dOmnFihVVX/gK8Ef9FixYUOL4RUVF+acCFeBtHZcsWaJLLrlE8fHxiomJUa9evfTee++VWM/v70MTAt544w0TERFhXnrpJbNz505z6623mnr16pmsrKxS13/11VdNZGSkefXVV016erp57733TGJiorn33nt93qa/+aOO06ZNMx06dDCZmZnun8OHD1dXlTx4W78//OEPJikpybz77rsmLS3NPPvssyYqKsps3brV5236kz/qZ9PxW7FihXn44YfNkiVLjCSzdOnSctffu3evqVWrlpk8ebL5+uuvzdNPP23Cw8PNypUr3evYdPyM8U8dA/kYpqenm7vvvtu8/PLLpmvXruaee+4psc7GjRtNeHi4+ctf/mK+/vpr88c//tHUrFnTbN++3T+VKIc/6jd//nwTExPjcfwOHjzonwpUgLd1vOeee8zs2bPNZ599Zr777jszdepUU7NmzWr/HA2JoNKjRw8zYcIE99+FhYUmKSnJpKamlrr+hAkTzEUXXeSxbPLkyaZPnz4+b9Pf/FHHadOmmS5duvilvN7ytn6JiYnmmWee8Vg2bNgwM2bMGJ+36U/+qJ9Nx+/XKvIB+Yc//MF06NDBY9mIESNMSkqK+2+bjt+ZqqqOgXwMf23AgAGlnsiHDx9urrjiCo9lPXv2NLfffnslS1g5VVW/+fPnm9jY2CorV1Xyto7F2rdvb2bMmOH+uzreh0Hf9XPy5Elt2bJFgwcPdi8LCwvT4MGD9fHHH5f6nN69e2vLli3u5qu9e/dqxYoVuvzyy33epj/5o47Fdu/eraSkJLVs2VJjxoxRRkaG/ypSBl/qV1BQUKKJNTo6Whs2bPB5m/7ij/oVs+H4+eLjjz/22B+SlJKS4t4fNh0/X52tjsUC9RhWREX3QSA7duyYmjVrpuTkZF111VXauXOn00XyWVFRkY4ePar69etLqr73YdAHlezsbBUWFqpRo0Yeyxs1aqSDBw+W+pzRo0dr5syZ6tu3r2rWrKlWrVpp4MCBeuihh3zepj/5o46S1LNnTy1YsEArV67UvHnzlJ6ern79+uno0aN+rc+ZfKlfSkqKnnzySe3evVtFRUVatWqVlixZoszMTJ+36S/+qJ9kz/HzxcGDB0vdH7m5ucrPz7fq+PnqbHWUAvsYVkRZ+yBQjuHZtG3bVi+99JLefvttvfLKKyoqKlLv3r31ww8/OF00nzzxxBM6duyYhg8fLqn6PkeDPqj4Yu3atXr88cf17LPPauvWrVqyZIneffddPfbYY04XrcpUpI5DhgzR9ddfr86dOyslJUUrVqzQkSNH9OabbzpY8or5+9//rnPPPVft2rVTRESEJk6cqPHjx5/1duKBoiL1C+Tjh9M4hoGtV69euuGGG9S1a1cNGDBAS5YsUXx8vJ5//nmni+a11157TTNmzNCbb76phg0bVutr16jWV3NAXFycwsPDlZWV5bE8KytLCQkJpT7nkUce0dixY3XLLbdIkjp16qS8vDzddtttevjhh33apj/5o46lndDr1aunNm3aaM+ePVVfiXL4Ur/4+HgtW7ZMJ06c0E8//aSkpCRNmTJFLVu29Hmb/uKP+pXGqePni4SEhFL3R0xMjKKjoxUeHm7N8fPV2epYmkA6hhVR1j4IlGPorZo1a+r8888PuOP3xhtv6JZbbtGiRYs8unmq63M0OL5eliMiIkLdunXT6tWr3cuKioq0evVq9erVq9TnHD9+vMSJOjw8XJJkjPFpm/7kjzqW5tixY0pLS1NiYmIVlbxiKrO/o6Ki1LhxY/3yyy966623dNVVV1V6m1XNH/UrjVPHzxe9evXy2B+StGrVKvf+sOn4+epsdSxNIB3DivBlHwSywsJCbd++PaCO3+uvv67x48fr9ddf1xVXXOHxWLW9D6tsWK7F3njjDRMZGWkWLFhgvv76a3PbbbeZevXquS8TGzt2rJkyZYp7/WnTppm6deua119/3ezdu9e8//77plWrVmb48OEV3mZ180cd77vvPrN27VqTnp5uNm7caAYPHmzi4uLMoUOHrK/fJ598Yt566y2TlpZm1q9fby666CLTokUL8/PPP1d4m9XJH/Wz6fgdPXrUfPHFF+aLL74wksyTTz5pvvjiC/P9998bY4yZMmWKGTt2rHv94kt3H3jgAfPNN9+YuXPnlnp5si3Hzxj/1DGQj6Exxr1+t27dzOjRo80XX3xhdu7c6X5848aNpkaNGuaJJ54w33zzjZk2bZpjlyf7o34zZsww7733nklLSzNbtmwxI0eONFFRUR7rVCdv6/jqq6+aGjVqmLlz53pcYn3kyBH3OtXxPgyJoGKMMU8//bRp2rSpiYiIMD169DCffPKJ+7EBAwaYcePGuf8+deqUmT59umnVqpWJiooyycnJ5s477/Q4CZxtm06o6jqOGDHCJCYmmoiICNO4cWMzYsQIs2fPnmqskSdv6rd27Vpz3nnnmcjISNOgQQMzduxY8+OPP3q1zepW1fWz6fh9+OGHRlKJn+I6jRs3zgwYMKDEc7p27WoiIiJMy5Ytzfz580ts16bj5486BvoxLG39Zs2aeazz5ptvmjZt2piIiAjToUMH8+6771ZPhc7gj/pNmjTJ/f/ZqFEjc/nll3vMQVLdvK3jgAEDyl2/mL/fhy5jymjnBwAAcFjQj1EBAACBi6ACAACsRVABAADWIqgAAABrEVQAAIC1CCoAAMBaBBUAAGAtggoAVLG1a9fK5XLpyJEjThcFCHgEFSCA3XjjjXK5XJo1a5bH8mXLlsnlcrn/NsbohRdeUK9evRQTE6M6deqoQ4cOuueeeyp8g7Tjx49r6tSpatWqlaKiohQfH68BAwbo7bffdq/TvHlzzZkzp0rq5m/F+87lcqlmzZpq0aKF/vCHP+jEiRNebWfgwIGaNGmSx7LevXsrMzNTsbGxVVhiIDQRVIAAFxUVpdmzZ+vnn38u9XFjjEaPHq27775bl19+ud5//319/fXXevHFFxUVFaU//elPFXqdO+64Q0uWLNHTTz+tb7/9VitXrtR1112nn376qSqrU60uu+wyZWZmau/evXrqqaf0/PPPa9q0aZXebkREhBISEjzCIgAfVemE/ACq1bhx48xvf/tb065dO/PAAw+4ly9dutQUv71ff/11I8m8/fbbpW6jqKioQq8VGxtrFixYUObjpd0XpNhHH31k+vbta6KiokyTJk3MXXfdZY4dO+Z+/F//+pfp1q2bqVOnjmnUqJEZNWqUycrKcj9efI+SlStXmq5du5qoqCgzaNAgk5WVZVasWGHatWtn6tata0aNGmXy8vIqVJ9x48aZq666ymPZsGHDzPnnn+/+Ozs724wcOdIkJSWZ6Oho07FjR/Paa695bOPMOqenp7vL++t7Zy1evNi0b9/eREREmGbNmpknnniiQuUEQh0tKkCACw8P1+OPP66nn35aP/zwQ4nHX3/9dbVt21ZXXnllqc+v6Lf+hIQErVixQkePHi318SVLlqhJkyaaOXOmMjMzlZmZKUlKS0vTZZddpmuvvVZfffWVFi5cqA0bNmjixInu5546dUqPPfaYvvzySy1btkz79u3TjTfeWOI1pk+frmeeeUabNm3S/v37NXz4cM2ZM0evvfaa3n33Xb3//vt6+umnK1SfM+3YsUObNm1SRESEe9mJEyfUrVs3vfvuu9qxY4duu+02jR07Vp999pkk6e9//7t69eqlW2+91V3n5OTkEtvesmWLhg8frpEjR2r79u2aPn26HnnkES1YsMCnsgIhxemkBMB3v24V+M1vfmNuuukmY4xni0q7du3MlVde6fG8e+65x9SuXdvUrl3bNG7cuEKvtW7dOtOkSRNTs2ZNc+GFF5pJkyaZDRs2eKzTrFkz89RTT3ksu/nmm81tt93mseyjjz4yYWFhJj8/v9TX2rx5s5Fkjh49aoz5vxaVDz74wL1OamqqkWTS0tLcy26//XaTkpJSofqMGzfOhIeHm9q1a5vIyEgjyYSFhZnFixeX+7wrrrjC3Hfffe6/BwwYYO655x6Pdc5sURk9erS55JJLPNZ54IEHTPv27StUViCU0aICBInZs2fr5Zdf1jfffHPWdR9++GFt27ZNjz76qI4dO1ah7ffv31979+7V6tWrdd1112nnzp3q16+fHnvssXKf9+WXX2rBggWqU6eO+yclJUVFRUVKT0+XdLrFYejQoWratKnq1q2rAQMGSJIyMjI8ttW5c2f3740aNVKtWrXUsmVLj2WHDh2qUH0kadCgQdq2bZs+/fRTjRs3TuPHj9e1117rfrywsFCPPfaYOnXqpPr166tOnTp67733SpTrbL755hv16dPHY1mfPn20e/duFRYWerUtINQQVIAg0b9/f6WkpGjq1Kkey88991zt2rXLY1l8fLxat26thg0bevUaNWvWVL9+/fTggw/q/fff18yZM/XYY4/p5MmTZT7n2LFjuv3227Vt2zb3z5dffqndu3erVatWysvLU0pKimJiYvTqq69q8+bNWrp0qSSV2G7NmjXdvxdfrfNrLpdLRUVFFa5P7dq11bp1a3Xp0kUvvfSSPv30U7344ovux//617/q73//ux588EF9+OGH2rZtm1JSUsqtL4CqVcPpAgCoOrNmzVLXrl3Vtm1b97JRo0Zp9OjRevvtt3XVVVdV6eu1b99ev/zyi06cOKGIiAhFRESUaCG44IIL9PXXX6t169albmP79u366aefNGvWLPf4js8//7xKy1kRYWFheuihhzR58mSNHj1a0dHR2rhxo6666ir97ne/kyQVFRXpu+++U/v27d3PK63OZzrvvPO0ceNGj2UbN25UmzZtFB4eXvWVAYIILSpAEOnUqZPGjBmjf/zjH+5lI0eO1HXXXaeRI0dq5syZ+vTTT7Vv3z6tW7dOCxcurPCJcuDAgXr++ee1ZcsW7du3TytWrNBDDz2kQYMGKSYmRtLpeVTWr1+vH3/8UdnZ2ZKkBx98UJs2bdLEiRO1bds27d69W2+//bZ7MG3Tpk0VERGhp59+Wnv37tXy5cvP2p3kL9dff73Cw8M1d+5cSadbo1atWqVNmzbpm2++0e23366srCyP5zRv3ty9T7Ozs0tt0bnvvvu0evVqPfbYY/ruu+/08ssv65lnntH9999fLfUCAhlBBQgyM2fO9DhZulwuLVy4UHPmzNGKFSt08cUXq23btrrpppuUnJysDRs2VGi7KSkpevnll3XppZfqvPPO01133aWUlBS9+eabHq+9b98+tWrVSvHx8ZJOjytZt26dvvvuO/Xr10/nn3++Hn30USUlJUk63Q21YMECLVq0SO3bt9esWbP0xBNPVOEeqbgaNWpo4sSJ+stf/qK8vDz98Y9/1AUXXKCUlBQNHDhQCQkJuvrqqz2ec//99ys8PFzt27dXfHx8qeNXLrjgAr355pt644031LFjRz366KOaOXNmqVc2AfDkMsYYpwsBAABQGlpUAACAtQgqACTJ4/LhM38++ugjp4vnlYyMjHLr4+3lxQCcQ9cPAEkq9+aEjRs3VnR0dDWWpnJ++eUX7du3r8zHmzdvrho1uOgRCAQEFQAAYC26fgAAgLUIKgAAwFoEFQAAYC2CCgAAsBZBBQAAWIugAgAArEVQAQAA1iKoAAAAa/0/JkLAN7EtDhYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATwFJREFUeJzt3XtclGXi///3gHLwAKYgB0NBRc10pVAJs7CWjcoOrJWofdJcy9pN0yUrdVXUDnSyWA9l9d2yT2WaZdaWP8rF7SgfzVNpRzNIS0CpHBTxBNfvD5fZZhiQQYaZgdfz8ZiHcs9133NdM8PMm+u67uu2GGOMAAAAYOPn6QoAAAB4GwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAJ81d+5cWSyWepW1WCyaO3euW+szbNgwDRs2zGuPB6D+CEgAztiyZctksVhst1atWqlLly66+eab9dNPP3m6el4nNjbW7vnq3LmzLrroIr3xxhuNcvwjR45o7ty5ev/99xvleEBLREAC0Gjmz5+vF198UUuXLtUVV1yhl156SSkpKTp69KhbHm/WrFmqqKhwy7HdLSEhQS+++KJefPFFTZs2Tfv27dOIESO0dOnSMz72kSNHNG/ePAIScAZaeboCAJqPK664QgMHDpQk3XLLLQoLC9PDDz+st956SyNHjmz0x2vVqpVatfLNj7EuXbrof/7nf2w/jx07Vj179tQTTzyh22+/3YM1AyDRgwTAjS666CJJ0u7du+22f/3117r++uvVsWNHBQUFaeDAgXrrrbfsypw4cULz5s1TfHy8goKC1KlTJw0dOlTr1q2zlXE2B+nYsWP661//qvDwcLVv317XXHONfvzxxxp1u/nmmxUbG1tju7NjPv/887r00kvVuXNnBQYGqm/fvnrqqadcei5OJzIyUuecc44KCgrqLLd//35NmDBBERERCgoK0oABA/TCCy/Y7i8sLFR4eLgkad68ebZhPHfPvwKaG9/80wuATygsLJQknXXWWbZtX3zxhS688EJ16dJF06dPV9u2bfXqq68qPT1dr7/+uv74xz9KOhVUsrOzdcstt2jw4MEqKyvT5s2btXXrVv3hD3+o9TFvueUWvfTSSxozZoyGDBmi9evXa/jw4WfUjqeeekrnnnuurrnmGrVq1Ur//Oc/9Ze//EVVVVW64447zujY1U6cOKG9e/eqU6dOtZapqKjQsGHD9N1332nSpEmKi4vTqlWrdPPNN+vgwYOaMmWKwsPD9dRTT+nPf/6z/vjHP2rEiBGSpN/97neNUk+gxTAAcIaef/55I8n861//MgcOHDB79+41r732mgkPDzeBgYFm7969trK///3vTf/+/c3Ro0dt26qqqsyQIUNMfHy8bduAAQPM8OHD63zcrKws89uPse3btxtJ5i9/+YtduTFjxhhJJisry7Zt3Lhxplu3bqc9pjHGHDlypEa5tLQ00717d7ttKSkpJiUlpc46G2NMt27dzGWXXWYOHDhgDhw4YD777DMzatQoI8lMnjy51uPl5OQYSeall16ybTt+/LhJTk427dq1M2VlZcYYYw4cOFCjvQBcwxAbgEaTmpqq8PBwxcTE6Prrr1fbtm311ltv6eyzz5Yk/fLLL1q/fr1GjhypQ4cOqbS0VKWlpfr555+VlpamXbt22c5669Chg7744gvt2rWr3o+/du1aSdKdd95pt33q1Kln1K7g4GDb/61Wq0pLS5WSkqLvv/9eVqu1Qcd87733FB4ervDwcA0YMECrVq3STTfdpIcffrjWfdauXavIyEiNHj3atq1169a68847dfjwYX3wwQcNqguAmhhiA9BolixZol69eslqteq5557Thx9+qMDAQNv93333nYwxmj17tmbPnu30GPv371eXLl00f/58XXvtterVq5f69eunyy+/XDfddFOdQ0U//PCD/Pz81KNHD7vtvXv3PqN2ffLJJ8rKylJ+fr6OHDlid5/ValVoaKjLx0xKStL9998vi8WiNm3a6JxzzlGHDh3q3OeHH35QfHy8/Pzs/7Y955xzbPcDaBwEJACNZvDgwbaz2NLT0zV06FCNGTNG33zzjdq1a6eqqipJ0rRp05SWlub0GD179pQkXXzxxdq9e7fefPNNvffee/p//+//6YknntDSpUt1yy23nHFda1tgsrKy0u7n3bt36/e//7369Omjxx9/XDExMQoICNDatWv1xBNP2NrkqrCwMKWmpjZoXwDuR0AC4Bb+/v7Kzs7WJZdcosWLF2v69Onq3r27pFPDQvUJBx07dtT48eM1fvx4HT58WBdffLHmzp1ba0Dq1q2bqqqqtHv3brteo2+++aZG2bPOOksHDx6ssd2xF+af//ynjh07prfeektdu3a1bf/3v/992vo3tm7duunzzz9XVVWVXS/S119/bbtfqj38Aag/5iABcJthw4Zp8ODBysnJ0dGjR9W5c2cNGzZMTz/9tIqKimqUP3DggO3/P//8s9197dq1U8+ePXXs2LFaH++KK66QJC1cuNBue05OTo2yPXr0kNVq1eeff27bVlRUVGM1a39/f0mSMca2zWq16vnnn6+1Hu5y5ZVXqri4WCtXrrRtO3nypBYtWqR27dopJSVFktSmTRtJchoAAdQPPUgA3Oruu+/WDTfcoGXLlun222/XkiVLNHToUPXv31+33nqrunfvrpKSEuXn5+vHH3/UZ599Jknq27evhg0bpsTERHXs2FGbN2/Wa6+9pkmTJtX6WAkJCRo9erSefPJJWa1WDRkyRHl5efruu+9qlB01apTuvfde/fGPf9Sdd96pI0eO6KmnnlKvXr20detWW7nLLrtMAQEBuvrqq3Xbbbfp8OHDevbZZ9W5c2enIc+dJk6cqKefflo333yztmzZotjYWL322mv65JNPlJOTo/bt20s6Nam8b9++WrlypXr16qWOHTuqX79+6tevX5PWF/Bpnj6NDoDvqz7N/9NPP61xX2VlpenRo4fp0aOHOXnypDHGmN27d5uxY8eayMhI07p1a9OlSxdz1VVXmddee8223/33328GDx5sOnToYIKDg02fPn3MAw88YI4fP24r4+yU/IqKCnPnnXeaTp06mbZt25qrr77a7N271+lp7++9957p16+fCQgIML179zYvvfSS02O+9dZb5ne/+50JCgoysbGx5uGHHzbPPfeckWQKCgps5Vw5zf90SxjUdrySkhIzfvx4ExYWZgICAkz//v3N888/X2PfDRs2mMTERBMQEMAp/0ADWIz5Tb8xAAAAmIMEAADgiIAEAADggIAEAADggIAEAADggIAEAADgwOMBacmSJYqNjVVQUJCSkpK0adOmOsuvWrVKffr0UVBQkPr372+7OGW11atX67LLLlOnTp1ksVi0fft2u/t/+eUXTZ48Wb1791ZwcLC6du2qO++8s8EXnAQAAM2PRxeKXLlypTIzM7V06VIlJSUpJydHaWlp+uabb9S5c+ca5Tds2KDRo0crOztbV111lZYvX6709HRt3brVtgBaeXm5hg4dqpEjR+rWW2+tcYx9+/Zp3759euyxx9S3b1/98MMPuv3227Vv3z699tpr9a57VVWV9u3bp/bt27OsPwAAPsIYo0OHDik6OrrGhZ8dC3rM4MGDzR133GH7ubKy0kRHR5vs7Gyn5UeOHFljcbWkpCRz22231ShbUFBgJJlt27adth6vvvqqCQgIMCdOnKh33asXnuPGjRs3bty4+d5t7969dX7Pe6wH6fjx49qyZYtmzJhh2+bn56fU1FTl5+c73Sc/P1+ZmZl229LS0rRmzZozqovValVISIhatar96Th27JjdNaDMf9bX3Lt3r0JCQs7o8QEAQNMoKytTTEyM7dI8tfFYQCotLVVlZaUiIiLstkdERNiuTO2ouLjYafni4uIzqsd9992niRMn1lkuOztb8+bNq7E9JCSEgAQAgI853fQYj0/S9qSysjINHz5cffv21dy5c+ssO2PGDFmtVttt7969TVNJAADQ5DzWgxQWFiZ/f3+VlJTYbS8pKVFkZKTTfSIjI10qX5dDhw7p8ssvV/v27fXGG2+odevWdZYPDAxUYGCgy48DAAB8j8d6kAICApSYmKi8vDzbtqqqKuXl5Sk5OdnpPsnJyXblJWndunW1lq9NWVmZLrvsMgUEBOitt95SUFCQ6w0AAADNlkdP88/MzNS4ceM0cOBADR48WDk5OSovL9f48eMlSWPHjlWXLl2UnZ0tSZoyZYpSUlK0YMECDR8+XCtWrNDmzZv1zDPP2I75yy+/aM+ePdq3b58k6ZtvvpF0qvcpMjLSFo6OHDmil156SWVlZSorK5MkhYeHy9/fvymfAgAA4IU8GpAyMjJ04MABzZkzR8XFxUpISFBubq5tIvaePXvs1igYMmSIli9frlmzZmnmzJmKj4/XmjVrbGsgSdJbb71lC1iSNGrUKElSVlaW5s6dq61bt2rjxo2SpJ49e9rVp6CgQLGxse5qLgAA8BEWU32+OlxSVlam0NBQ2xIBAADA+9X3+7tFn8UGAADgDAEJAADAAQEJAADAAQEJAADAAQEJAADAAQGphSmyVmjD7lIVWSs8XRUAALyWR9dBQtNa+ekezVi9Q1VG8rNI2SP6K2NQV09XCwAAr0MPUgtRZK2whSNJqjLSzNU76UkCAMAJAlILUVBabgtH1SqNUWHpEc9UCAAAL0ZAaiHiwtrKz2K/zd9iUWxYG89UCAAAL0ZAaiGiQoOVPaK//C2nUpK/xaIHR/RTVGiwh2sGAID3YZJ2C5IxqKsu7hWuwtIjig1rQzgCAKAWBKQWJio0mGAEAMBpMMQGAADggIAEAADggIAEAIAP4EoITYs5SAAAeDmuhND06EECAMCLcSUEzyAgAQDgxbgSgmcQkAAA8GJcCcEzCEgAAHgxroTgGUzSBgDAy3ElhKZHQAIAwAdwJYSmxRAbAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAAwISAACAA48HpCVLlig2NlZBQUFKSkrSpk2b6iy/atUq9enTR0FBQerfv7/Wrl1rd//q1at12WWXqVOnTrJYLNq+fXuNYxw9elR33HGHOnXqpHbt2um6665TSUlJYzYLAAD4MI8GpJUrVyozM1NZWVnaunWrBgwYoLS0NO3fv99p+Q0bNmj06NGaMGGCtm3bpvT0dKWnp2vnzp22MuXl5Ro6dKgefvjhWh/3r3/9q/75z39q1apV+uCDD7Rv3z6NGDGi0dsHAAB8k8UYYzz14ElJSRo0aJAWL14sSaqqqlJMTIwmT56s6dOn1yifkZGh8vJyvf3227ZtF1xwgRISErR06VK7soWFhYqLi9O2bduUkJBg2261WhUeHq7ly5fr+uuvlyR9/fXXOuecc5Sfn68LLrigXnUvKytTaGiorFarQkJCXG06AADwgPp+f3usB+n48ePasmWLUlNT/1sZPz+lpqYqPz/f6T75+fl25SUpLS2t1vLObNmyRSdOnLA7Tp8+fdS1a1eXjgMAAJqvVp564NLSUlVWVioiIsJue0REhL7++mun+xQXFzstX1xcXO/HLS4uVkBAgDp06ODScY4dO6Zjx47Zfi4rK6v3YwIAAN/i8UnaviI7O1uhoaG2W0xMjKerBAAA3MRjASksLEz+/v41zh4rKSlRZGSk030iIyNdKl/bMY4fP66DBw+6dJwZM2bIarXabnv37q33YwIAAN/isYAUEBCgxMRE5eXl2bZVVVUpLy9PycnJTvdJTk62Ky9J69atq7W8M4mJiWrdurXdcb755hvt2bOnzuMEBgYqJCTE7gYAAJonj81BkqTMzEyNGzdOAwcO1ODBg5WTk6Py8nKNHz9ekjR27Fh16dJF2dnZkqQpU6YoJSVFCxYs0PDhw7VixQpt3rxZzzzzjO2Yv/zyi/bs2aN9+/ZJOhV+pFM9R5GRkQoNDdWECROUmZmpjh07KiQkRJMnT1ZycnK9z2ADAADNm0cDUkZGhg4cOKA5c+aouLhYCQkJys3NtU3E3rNnj/z8/tvJNWTIEC1fvlyzZs3SzJkzFR8frzVr1qhfv362Mm+99ZYtYEnSqFGjJElZWVmaO3euJOmJJ56Qn5+frrvuOh07dkxpaWl68sknm6DFAADAF3h0HSRfxjpIAAD4Hq9fBwkAAMBbEZAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAwEGRtUIbdpeqyFrh6aoA8JBWnq4AAHiTlZ/u0YzVO1RlJD+LlD2ivzIGdfV0tQA0MXqQAOA/iqwVtnAkSVVGmrl6Jz1JQAtEQAKA/ygoLbeFo2qVxqiw9IhnKgTAYwhIAPAfcWFt5Wex3+ZvsSg2rI1nKgTAYwhIAPAfUaHByh7RX/6WUynJ32LRgyP6KSo02MM1A9DUmKQNAL+RMairLu4VrsLSI4oNa0M4AlooAhIAOIgKDSYYAS0cQ2wAAAAOCEgAAAAOCEgAAAAOCEgAAAAOCEgAAAAOCEgAAAAOCEgAAAAOCEgAAAAOCEgAAAAOPB6QlixZotjYWAUFBSkpKUmbNm2qs/yqVavUp08fBQUFqX///lq7dq3d/cYYzZkzR1FRUQoODlZqaqp27dplV+bbb7/Vtddeq7CwMIWEhGjo0KH697//3ehtAwAAvsmjAWnlypXKzMxUVlaWtm7dqgEDBigtLU379+93Wn7Dhg0aPXq0JkyYoG3btik9PV3p6enauXOnrcwjjzyihQsXaunSpdq4caPatm2rtLQ0HT161Fbmqquu0smTJ7V+/Xpt2bJFAwYM0FVXXaXi4mK3txkAAHg/izHGeOrBk5KSNGjQIC1evFiSVFVVpZiYGE2ePFnTp0+vUT4jI0Pl5eV6++23bdsuuOACJSQkaOnSpTLGKDo6WnfddZemTZsmSbJarYqIiNCyZcs0atQolZaWKjw8XB9++KEuuugiSdKhQ4cUEhKidevWKTU1tV51LysrU2hoqKxWq0JCQs70qQAAAE2gvt/fHutBOn78uLZs2WIXSPz8/JSamqr8/Hyn++Tn59cIMGlpabbyBQUFKi4utisTGhqqpKQkW5lOnTqpd+/e+t///V+Vl5fr5MmTevrpp9W5c2clJibWWt9jx46prKzM7gYAAJonjwWk0tJSVVZWKiIiwm57RERErUNdxcXFdZav/reuMhaLRf/617+0bds2tW/fXkFBQXr88ceVm5urs846q9b6ZmdnKzQ01HaLiYlxrcEAAMBneHySdlMzxuiOO+5Q586d9dFHH2nTpk1KT0/X1VdfraKiolr3mzFjhqxWq+22d+/eJqw1AABoSh4LSGFhYfL391dJSYnd9pKSEkVGRjrdJzIyss7y1f/WVWb9+vV6++23tWLFCl144YU6//zz9eSTTyo4OFgvvPBCrfUNDAxUSEiI3Q0AADRPHgtIAQEBSkxMVF5enm1bVVWV8vLylJyc7HSf5ORku/KStG7dOlv5uLg4RUZG2pUpKyvTxo0bbWWOHDki6dR8p9/y8/NTVVXVmTcMAAD4vFaefPDMzEyNGzdOAwcO1ODBg5WTk6Py8nKNHz9ekjR27Fh16dJF2dnZkqQpU6YoJSVFCxYs0PDhw7VixQpt3rxZzzzzjKRT84umTp2q+++/X/Hx8YqLi9Ps2bMVHR2t9PR0SadC1llnnaVx48Zpzpw5Cg4O1rPPPquCggINHz7cI88DAADwLh4NSBkZGTpw4IDmzJmj4uJiJSQkKDc31zbJes+ePXY9PUOGDNHy5cs1a9YszZw5U/Hx8VqzZo369etnK3PPPfeovLxcEydO1MGDBzV06FDl5uYqKChI0qmhvdzcXP3tb3/TpZdeqhMnTujcc8/Vm2++qQEDBjTtEwAAALySR9dB8mWsgwQAgO/x+nWQAAAAvBUBCQAAwAEBCQAAwAEBCQAAwAEBCQAAwAEBCQAAwAEBCQAAwAEBCQAAwAEBCQAAwAEBCQAAwAEBCY2qyFqhDbtLVWSt8HRVAABoMI9erBbNy8pP92jG6h2qMpKfRcoe0V8Zg7p6uloAALiMHiQ0iiJrhS0cSVKVkWau3klPEgDAJxGQ0CgKSstt4ahapTEqLD3imQoBAHAGCEhoFHFhbeVnsd/mb7EoNqyNZyoEAMAZICChUUSFBit7RH/5W06lJH+LRQ+O6Keo0GAP1wwAANcxSRuNJmNQV13cK1yFpUcUG9aGcAQA8FkEJDSqqNBgghEAwOcxxAYAAOCAgAQAAOCAgAQAAOCAgAQAAOCAgAQAAOCAgAQAAOCAgAQAAOCAgAQAAOCAgAQAAOCAgAQAAOCAgAQAAOCAgAQAAOCAgAQAAOCAgAQAAOCAgAQAAOCAgAQAAOCAgAQAAOCAgAQAAOCAgIRmq8haoQ27S1VkrfB0VQAAPqaVpysAuMPKT/doxuodqjKSn0XKHtFfGYO6erpaAAAfQQ8Smp0ia4UtHElSlZFmrt5JTxIAoN4ISGh2CkrLbeGoWqUxKiw94pkKAQB8DgEJzU5cWFv5Wey3+Vssig1r45kKAQB8DgEJzU5UaLCyR/SXv+VUSvK3WPTgiH6KCg32cM0AAL6CSdpoljIGddXFvcJVWHpEsWFtCEcAAJcQkNBsRYUGE4wAAA3CEBsAAIADepAAAPBylZWVOnHihKer4RNat24tf3//Mz4OAQkAAC9ljFFxcbEOHjzo6ar4lA4dOigyMlIWi+X0hWvRKAGpoKBAMTExatXK9cMtWbJEjz76qIqLizVgwAAtWrRIgwcPrrX8qlWrNHv2bBUWFio+Pl4PP/ywrrzyStv9xhhlZWXp2Wef1cGDB3XhhRfqqaeeUnx8vN1x3nnnHc2fP1+ff/65goKClJKSojVr1rhcfwAA3KU6HHXu3Flt2rQ5oy/8lsAYoyNHjmj//v2SpKioqAYfq1ECUu/evfXZZ5/pnHPOcWm/lStXKjMzU0uXLlVSUpJycnKUlpamb775Rp07d65RfsOGDRo9erSys7N11VVXafny5UpPT9fWrVvVr18/SdIjjzyihQsX6oUXXlBcXJxmz56ttLQ0ffnllwoKCpIkvf7667r11lv14IMP6tJLL9XJkye1c+fOM38iAABoJJWVlbZw1KlTJ09Xx2cEB586OWf//v3q3Llzg4fbLMYYc/pip4wYMcLp9jfffFOXXnqp2rdvL0lavXp1vY6XlJSkQYMGafHixZKkqqoqxcTEaPLkyZo+fXqN8hkZGSovL9fbb79t23bBBRcoISFBS5culTFG0dHRuuuuuzRt2jRJktVqVUREhJYtW6ZRo0bp5MmTio2N1bx58zRhwoT6Nr2GsrIyhYaGymq1KiQkpMHHAQDAmaNHj6qgoECxsbG2L33UT0VFhQoLCxUXF2frHKlW3+9vl85iW7NmjX755ReFhoba3SSpXbt2dj+fzvHjx7Vlyxalpqb+tzJ+fkpNTVV+fr7TffLz8+3KS1JaWpqtfEFBgYqLi+3KhIaGKikpyVZm69at+umnn+Tn56fzzjtPUVFRuuKKK07bg3Ts2DGVlZXZ3dyBK9ADAH6LYTXXNcZz5tIQ2/Lly3X33Xdr3LhxGj9+vG37Sy+9pAceeEB9+/at97FKS0tVWVmpiIgIu+0RERH6+uuvne5TXFzstHxxcbHt/upttZX5/vvvJUlz587V448/rtjYWC1YsEDDhg3Tt99+q44dOzp97OzsbM2bN6/e7WsIrkAPAIB3cKkHadSoUfroo4/0j3/8Q9ddd51+/fVXd9XLbaqqqiRJf/vb33TdddcpMTFRzz//vCwWi1atWlXrfjNmzJDVarXd9u7d26j14gr0AAB4D5cXioyNjdWHH36ofv36acCAAXr33Xcb1JUVFhYmf39/lZSU2G0vKSlRZGSk030iIyPrLF/9b11lqme0/7a3KzAwUN27d9eePXtqrW9gYKBCQkLsbo2JK9ADAJqT4uJiTZ48Wd27d1dgYKBiYmJ09dVXKy8vT9KpPJGTk1Njv7lz5yohIcHpMVesWCGLxaL09HT3Vfw/GrSStp+fn+bNm6fly5frz3/+syorK10+RkBAgBITE21PlHSqdycvL0/JyclO90lOTrYrL0nr1q2zlY+Li1NkZKRdmbKyMm3cuNFWJjExUYGBgfrmm29sZU6cOKHCwkJ169bN5XY0Fq5ADwBoLgoLC5WYmKj169fr0Ucf1Y4dO5Sbm6tLLrlEd9xxR4OPOW3aNF100UWNXFvnzug0/6FDh+rzzz/X7t271aNHD5f3z8zM1Lhx4zRw4EANHjxYOTk5Ki8vt81vGjt2rLp06aLs7GxJ0pQpU5SSkqIFCxZo+PDhWrFihTZv3qxnnnlG0qlJWVOnTtX999+v+Ph422n+0dHRtrQZEhKi22+/XVlZWYqJiVG3bt306KOPSpJuuOGGM3k6zkj1Fehnrt6pSmO4Aj0AwGf95S9/kcVi0aZNm9S2bVvb9nPPPVd/+tOfXD5eZWWlbrzxRs2bN08fffRRkyycecbrILVr104DBgxo0L4ZGRk6cOCA5syZo+LiYiUkJCg3N9c2yXrPnj3y8/tvJ9eQIUO0fPlyzZo1SzNnzlR8fLzWrFljWwNJku655x6Vl5dr4sSJOnjwoIYOHarc3Fy70/weffRRtWrVSjfddJMqKiqUlJSk9evX66yzzmrgs9A4uAI9AMAdiqwVKigtV1xYW7d/t/zyyy/Kzc3VAw88YBeOqnXo0MHlY86fP1+dO3fWhAkT9NFHHzVCLU/PpXWQzjvvvHrNN9q6desZVcoXsA4SAMCdqtdBcraWjyua+gzpTZs2KSkpSatXr9Yf//jHWsvFxsaqqKhIrVu3ttt+/Phx9e3bV9u3b5ckffzxxxo1apS2b9+usLAw3XzzzTp48GCdV7+o67mr7/e3Sz1Iv50UZYxRdna2br/99lpPjQcAAJ5T2xnSF/cKd1tPkgv9Lrr77rt18803221buHChPvzwQ0nSoUOHdNNNN+nZZ59VWFhYY1bztFwKSFlZWXY/L1iwQFOmTFH37t0btVIAAODM1XWGtLsCUnx8vCwWS61rGv5WWFiYevbsabftt50uu3fvVmFhoa6++mrbturlelq1aqVvvvmmQXOg66NBZ7EBAADv54kzpDt27Ki0tDQtWbJE5eXlNe53ZYJ1nz59tGPHDm3fvt12u+aaa3TJJZdo+/btiomJacSa2yMgAQDQTFWfIe3/n/nDTXWG9JIlS1RZWanBgwfr9ddf165du/TVV19p4cKFtS7l40xQUJD69etnd+vQoYPat2+vfv36KSAgwG1tOOOz2AAAgPfyxBnS3bt319atW/XAAw/orrvuUlFRkcLDw5WYmKinnnrK7Y/fGFw6i23hwoV2P9977726++67a0ycuvPOOxundl6Ms9gAAO7UWGextURNfhbbE088YfdzZGSkXnzxRbttFoulRQQkAADQfLkUkAoKCtxVDwAAAK/h0iTt9evXq2/fviorK6txn9Vq1bnnnttkK1zilCJrhTbsLlWRtcLTVQEAoNlwqQcpJydHt956q9Mxu9DQUN122216/PHHm+xCci1dU6+OCgBAS+FSD9Jnn32myy+/vNb7L7vsMm3ZsuWMK4XTK7JWaPrr9qujTl+9g54kAAAagUsBqaSkpMY1U36rVatWOnDgwBlXCqe35Ydf5Xj6oTHS1h9+9Uh9AADuUb1yNOqvMZ4zl4bYunTpop07d9ZYFrza559/rqioqDOuFE6vttUZXLgEDgDAiwUEBMjPz0/79u1TeHi4AgIC6nXB+JbMGKPjx4/rwIED8vPzO6OFJF0KSFdeeaVmz56tyy+/vMa6AhUVFcrKytJVV13V4Mqg/gbGdpRFsutFskhKjD3LQzUCADQmPz8/xcXFqaioSPv27fN0dXxKmzZt1LVrV/n5NfyCIS4tFFlSUqLzzz9f/v7+mjRpknr37i1J+vrrr23Lim/dulURERENrpCv8IaFIld+ukczXt+hKp0aK82+jknaANDcGGN08uRJVVZWeroqPsHf31+tWrWqtbetvt/fLgUkSfrhhx/05z//We+++65tmMdisdguTBcXF+fK4XyWNwQk6dRk7aZcPh4AAF/mtoBU7ddff9V3330nY4zi4+N11lkta2jHWwISAACoP7dcauS3zjrrLA0aNKihuwMAAHiths9eAgAAaKYISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISAAAAA4ISC1MkbVCG3aXqsha4emqAADgtVp5ugJoOis/3aMZq3eoykh+Fil7RH9lDOrq6WoBAOB16EFqIYqsFbZwJElVRpq5eic9SQAAOEFAaiEKSstt4ahapTEqLD3imQoBAODFCEgtRFxYW/lZ7Lf5WyyKDWvjmQoBAODFCEgtRFRosLJH9Je/5VRK8rdY9OCIfooKDfZwzQAA8D5M0m5BMgZ11cW9wlVYekSxYW0IRwAA1IKA1MJEhQYTjAAAOA2vGGJbsmSJYmNjFRQUpKSkJG3atKnO8qtWrVKfPn0UFBSk/v37a+3atXb3G2M0Z84cRUVFKTg4WKmpqdq1a5fTYx07dkwJCQmyWCzavn17YzUJAAD4MI8HpJUrVyozM1NZWVnaunWrBgwYoLS0NO3fv99p+Q0bNmj06NGaMGGCtm3bpvT0dKWnp2vnzp22Mo888ogWLlyopUuXauPGjWrbtq3S0tJ09OjRGse75557FB0d7bb2AQAA32MxxpjTF3OfpKQkDRo0SIsXL5YkVVVVKSYmRpMnT9b06dNrlM/IyFB5ebnefvtt27YLLrhACQkJWrp0qYwxio6O1l133aVp06ZJkqxWqyIiIrRs2TKNGjXKtt//9//9f8rMzNTrr7+uc889V9u2bVNCQkK96l1WVqbQ0FBZrVaFhIScwTMAAACaSn2/vz3ag3T8+HFt2bJFqamptm1+fn5KTU1Vfn6+033y8/PtyktSWlqarXxBQYGKi4vtyoSGhiopKcnumCUlJbr11lv14osvqk2b05/qfuzYMZWVldndAABA8+TRgFRaWqrKykpFRETYbY+IiFBxcbHTfYqLi+ssX/1vXWWMMbr55pt1++23a+DAgfWqa3Z2tkJDQ223mJiYeu0HAAB8j8fnIHnCokWLdOjQIc2YMaPe+8yYMUNWq9V227t3rxtrCAAAPMmjASksLEz+/v4qKSmx215SUqLIyEin+0RGRtZZvvrfusqsX79e+fn5CgwMVKtWrdSzZ09J0sCBAzVu3DinjxsYGKiQkBC7GwAAaJ48GpACAgKUmJiovLw827aqqirl5eUpOTnZ6T7Jycl25SVp3bp1tvJxcXGKjIy0K1NWVqaNGzfayixcuFCfffaZtm/fru3bt9uWCVi5cqUeeOCBRm0jAADwPR5fKDIzM1Pjxo3TwIEDNXjwYOXk5Ki8vFzjx4+XJI0dO1ZdunRRdna2JGnKlClKSUnRggULNHz4cK1YsUKbN2/WM888I0myWCyaOnWq7r//fsXHxysuLk6zZ89WdHS00tPTJUldu3a1q0O7du0kST169NDZZ5/dRC0HAADeyuMBKSMjQwcOHNCcOXNUXFyshIQE5ebm2iZZ79mzR35+/+3oGjJkiJYvX65Zs2Zp5syZio+P15o1a9SvXz9bmXvuuUfl5eWaOHGiDh48qKFDhyo3N1dBQUFN3j6gqRRZK1RQWq64sLaslg4AZ8jj6yD5KtZBgjdZ+ekezVi9Q1VG8rNI2SP6K2NQ19PvCAAtjE+sgwTgzBVZK2zhSJKqjDRz9U4VWSs8WzEA8GEEJKCJFFkrtGF3aaMHl4LScls4qlZpjApLjzTq4wBAS+LxOUhAS+DOIbC4sLbys8guJPlbLIoNO/0K8QAA5+hBAtzM3UNgUaHByh7RX/4Wi6RT4ejBEf2YqA0AZ4AeJMDN6hoCa6wQkzGoqy7uFa7C0iOKDWtDOAKAM0RAAtysqYbAokKDCUYA0EgYYgPcjCEwAPA99CABTaClDYGxaCUAX0dAAppISxkCY9FKAM0BQ2zwKHetDQTPYNFKAM0FPUjwGHoamp+mOGMPAJoCPUjwCHoamqfqM/Z+i0UrAfgiAhI8gstjNE+csQeguWCIDR7hjZfH4MyrxtHSztgD0DwRkOAR1T0NM17foSqd6sr0ZE8D86EaV0s5Yw9A88UQGzzL4vCvBzAfCgDgiIAEj/CmUMJ8KACAIwISPMKbQglnXgEAHBGQ4BHeFEo48woA4IhJ2vCI6lAyc/VOVRrj8VDCmVcAgN8iIMFjvC2UcOYVAKAaAQl1cvfaQIQSAIA3IiChVqwNBABoqZikDacaehp+kbVCG3aXsoYQAMCn0YMEpxpyVXZ6nAAAzQU9SHDK1dPwvWnhRwAAzhQBCU65ujaQNy38CADAmWKIDbVy5TT86h6n34YkVqMGAPgqepBQp6jQYCX36HTaU/Fb4mrUTEgHgOaLHiQ0Gm9b+NGdmJAOAM0bPUhoVPXtcfJlTEgHgOaPgOTjGOZpekxIB4DmjyE2H8Ywj2cwIR0Amj96kHwUwzye0xInpANAS0MPko9qyErXaDwtaUI6ALREBCQfxTCP50WFBhOMAKCZYojNRzHMAwCA+9CD5MMY5gEAwD0ISD6OYR4AABofQ2wAAAAOCEgAAAAOCEgAAAAOCEgAAAAOCEgAAAAOCEgAAAAOCEgAAAAOCEgAAAAOvCIgLVmyRLGxsQoKClJSUpI2bdpUZ/lVq1apT58+CgoKUv/+/bV27Vq7+40xmjNnjqKiohQcHKzU1FTt2rXLdn9hYaEmTJiguLg4BQcHq0ePHsrKytLx48fd0j4AvqXIWqENu0tVZK3wdFUAeIjHA9LKlSuVmZmprKwsbd26VQMGDFBaWpr279/vtPyGDRs0evRoTZgwQdu2bVN6errS09O1c+dOW5lHHnlECxcu1NKlS7Vx40a1bdtWaWlpOnr0qCTp66+/VlVVlZ5++ml98cUXeuKJJ7R06VLNnDmzSdoMwHut/HSPLnxovcY8u1EXPrReKz/d4+kqAfAAizHGnL6Y+yQlJWnQoEFavHixJKmqqkoxMTGaPHmypk+fXqN8RkaGysvL9fbbb9u2XXDBBUpISNDSpUtljFF0dLTuuusuTZs2TZJktVoVERGhZcuWadSoUU7r8eijj+qpp57S999/X696l5WVKTQ0VFarVSEhIa42G81AkbVCBaXligtry+Vemokia4UufGi9qn7zqehvsejj6ZfwGgPNRH2/vz3ag3T8+HFt2bJFqamptm1+fn5KTU1Vfn6+033y8/PtyktSWlqarXxBQYGKi4vtyoSGhiopKanWY0qnQlTHjh1rvf/YsWMqKyuzu6HlopeheSooLbcLR5JUaYwKS494pkLNAMOV8FUeDUilpaWqrKxURESE3faIiAgVFxc73ae4uLjO8tX/unLM7777TosWLdJtt91Wa12zs7MVGhpqu8XExNTdODRbRdYKzVi9w/ZFWmWkmat38gXQDMSFtZWfxX6bv8Wi2LA2nqmQj+MPCfgyj89B8rSffvpJl19+uW644QbdeuuttZabMWOGrFar7bZ3794mrCW8Cb0MzVdUaLCyR/SXv+VUSvK3WPTgiH4MrzUAf0jA17Xy5IOHhYXJ399fJSUldttLSkoUGRnpdJ/IyMg6y1f/W1JSoqioKLsyCQkJdvvt27dPl1xyiYYMGaJnnnmmzroGBgYqMDCwXu1C81bdy+A4T4VehuYhY1BXXdwrXIWlRxQb1oZw1EB1/SHBcwpf4NEepICAACUmJiovL8+2raqqSnl5eUpOTna6T3Jysl15SVq3bp2tfFxcnCIjI+3KlJWVaePGjXbH/OmnnzRs2DAlJibq+eefl59fi+9MQz3Ry9D8RYUGK7lHJ17TM8BwJXydR3uQJCkzM1Pjxo3TwIEDNXjwYOXk5Ki8vFzjx4+XJI0dO1ZdunRRdna2JGnKlClKSUnRggULNHz4cK1YsUKbN2+29QBZLBZNnTpV999/v+Lj4xUXF6fZs2crOjpa6enpkv4bjrp166bHHntMBw4csNWntp4r4LfoZQDqVv2HxMzVO1VpDH9IwOd4PCBlZGTowIEDmjNnjoqLi5WQkKDc3FzbJOs9e/bY9e4MGTJEy5cv16xZszRz5kzFx8drzZo16tevn63MPffco/Lyck2cOFEHDx7U0KFDlZubq6CgIEmnepy+++47fffddzr77LPt6uPhVQ/gQ6JCg/mwB+rAHxLwZR5fB8lXsQ5S8/PZ3l+1qfAXDY7tqAExZ3m6OoAk1tsCGlt9v7893oMEeIO7Xt2u17f+ZPv5uvO7aMHIBM9VCNCp0+SrzwTzs0jZI/orY1DXOvchUAGNg5nJaPE+2/urXTiSpNe3/qTP9v7qoRqdwgJ7LVtDTpNn3SE0F97w+UcPElq8TYW/ON2+ufBXjw21NaTnAJ7jjl4bV0+Try1QXdwrnJ4k+BRv+fyjBwkt3uBY55eYGRjbuOGovn8RscCeb3FXr42rp8mzgCmaA2/6/CMgocUbEHOWrju/i922687v0qi9R658ifJF5zvc+WHu6npbrDuE5sCbPv8YYgMkLRiZoLHJ3bS58FcNjD2rUcORq0MfrNTtO9y9WrQrp8k31bpDTAKHO3nT5x8BCfiPATGNG4yqufolWv1F99sxeBbY805N8WHuynpb7l53yFvmhqD58qYFRglIgJs19Eu0eoUyViprevXtJfGmD/Pf1skdj++tk8Dp0Wp+vGWBUQIS6sSHT+3c9SVa/UVUnYuMvOOLqKVwtZfEWz7M3c0bLz5Lj1bz5Q1XKiAgoVZ8+NTOnV+i3vhF1FI0tJfEGz7M3c2b5oZI3tujheaDs9jglDedaultGvrc1PcK8ZyN1Pjqu8SCN51B421cPauuoXit4C3oQYJT9GLUzt3PjTfOa/E2rgz9utLb19BekpYyFO1Nk8C9rUcLzQ8BCU7x4VO7pnhuWsq8loZw5UvU1WGYhoRTXx+KdjXcecskcP6QgLsRkOAUHz61a+hz4y1fRL7M1S/RhvT2uRJOfX0ezMpP92j666dOCLBIeug6z4U7d79WgKsISKgVHz61c/W58fVeBm/h6pdoQ3v76htOfXkoushaYQtH0qmzJae/vsNj4c7drxXgKiZpo071nVjcEtX3uWHC++nVd2KuqxPY3T2x2Jcn1G8u/EUO2U5G0pbCXz1RnQa/Vq5c9d0brhAP30EPEuBmvtzL0BRc6V1ryPCmO3tCfXko2mKx1LK9iSvyG+7smaUXF64iIAFuxoT32jVkDk9DAo87h2F8dSg6sdtZskh2vUgWi3R+t8a/3I4r6vtaufLe8fW5YvAMhtgAN2uq9WN8UUPXsvG2oV9X6+MNQz1RocF66Lr+tiFCP4v00Ij+XvOcno4r7x3WTEJD0IMENAFf7WVwt5bYu+ZNQz2+/L505b3TEt9nOHP0IAFNyNSYFtuytbTeNW+csO/u3jh39Za58t6JCg3WH8/rYrct/bzoZvs+Q+OgBwloAt7Ua+BtfLkXw1UtbcK+u9/39X3vFFkr9Ma2n+y2rdm2T9PSejfL5x2Ngx4kwM28sdfA23jbnCJ38eVlAVzVVO/7+rx3mIOEhiAgAW7GhzOqNWRI0RsmdDdEQ9/37mhv2wB/p9vbBPAV2FR88X3MEBvgZk01QbSlXDDV17kypOjLQ7MNed+7q73lxyudbj9yvOqMj43T89X3MfEZcLOmmIi88tM9uvCh9Rrz7EZd+NB6rfx0T6MdG42vPsNCvj406+r73p3tbUlDm96m+pI2v31dp6/e4RPvY3qQgCbgzonILILXPDWHCd2uvO/d2V5fXvHc12354deal7Qx0tYfftXw39X9B4Kne8QJSEATcddqzs3hixQ1NZe1e+r7vnd3exvyR4o3fEn7OmOcL21Sy2ZJ3jMkxxAb4OMYPmieWtoaUU3RXlfOlmTYunEMjO3odHtirPNL2njT0DI9SICP88bhA/7ybhwtaY0oyXvaWz1vprqTo3reDMPWDePsmn+18aYecQIS0Ax4yxeL1DTd4y0pgLnzQrveyBva68vzZrxNQWm50+eytsDjTUPLBCSgmfCGL5ammDDuLfMT0Hz58ryZplSfQOhq4PGmHnECEurEX0Rwhbu7xzljD02ha0fnX94xHV1boqA5vy/rGwgbEni8pUecgIRatcS/iHBm3N097k3zE9B8ubqwZEt7X7oaCBsSeLyhR5yz2OCUN51JAN/h7jOROGMPTcHV91lLe1825DIyvni9RQISnOL6YZ7ni9cukk79tfjx9Ev0yq0X6OPplzRqr2NLO/UdnuHq+6yh70tv+x2vb31aSiC0mNpmo6FOZWVlCg0NldVqVUhIiKer0+iKrBW68KH1NYZKPp5+CV9GTYDhzboVWSs8Pj8BzZ+r7zNXynvb77ir9fG2+ruivt/f9CDBKf5S9xyGN0/PF7vr4XtcfZ/Vt7y3/Y43tD7V3SvNtZuFSdqolbecSdDStLQJn0BL09DfcXedVexqfaoDVfUuRs3zrD0CEurkDWcStDTetFBaQ7n6Qc5yEmhJ2gb4O93eJqD2QR13Dmm5+pnTUv6IY4gN8DK+Przp6jWsuOYVWhpXlxFw95Ccq585LWWSNj1IgBfy1eFNV9dHaYkL7AHe2GPjymeON6127U4EJMBL+eLwpqsf5C2lqx74LVcDRlMNu7vymeOrf8S5goCERsVckpbN1Q/y5jDfCmiI5tBj44t/xLmCdZAaqLmvg9QQvrwuRnPgLROjV366p8YH+enWU3GlPNBSsf5X46jv9zcBqYEISPZYWNKzvG2RN3cusAcAZ4KFItGkuDSJ57h6hktTLFLnrgX2AKCpEJDQKFrKaZ/eyNVwSpgFgNPzioC0ZMkSxcbGKigoSElJSdq0aVOd5VetWqU+ffooKChI/fv319q1a+3uN8Zozpw5ioqKUnBwsFJTU7Vr1y67Mr/88otuvPFGhYSEqEOHDpowYYIOHz7c6G1rKXx97R5f5o1XHve2i3ACgKs8HpBWrlypzMxMZWVlaevWrRowYIDS0tK0f/9+p+U3bNig0aNHa8KECdq2bZvS09OVnp6unTt32so88sgjWrhwoZYuXaqNGzeqbdu2SktL09GjR21lbrzxRn3xxRdat26d3n77bX344YeaOHGi29vbnLnzKu6oXVNcedyVwMPCj4Bv4g8bex6fpJ2UlKRBgwZp8eLFkqSqqirFxMRo8uTJmj59eo3yGRkZKi8v19tvv23bdsEFFyghIUFLly6VMUbR0dG66667NG3aNEmS1WpVRESEli1bplGjRumrr75S37599emnn2rgwIGSpNzcXF155ZX68ccfFR0dfdp6M0kb3sZdE6NdmdDNZH3AN7Wks5B9YpL28ePHtWXLFqWmptq2+fn5KTU1Vfn5+U73yc/PtysvSWlpabbyBQUFKi4utisTGhqqpKQkW5n8/Hx16NDBFo4kKTU1VX5+ftq4caPTxz127JjKysrsboA3ccfEaFcndDO/CfA9TXHihi/yaEAqLS1VZWWlIiIi7LZHRESouLjY6T7FxcV1lq/+93RlOnfubHd/q1at1LFjx1ofNzs7W6GhobZbTExMPVsJ+C5XAw+T9QHfwx82znl8DpKvmDFjhqxWq+22d+9eT1cJcDtXAw+T9QHfwx82znn0UiNhYWHy9/dXSUmJ3faSkhJFRkY63ScyMrLO8tX/lpSUKCoqyq5MQkKCrYzjJPCTJ0/ql19+qfVxAwMDFRgYWP/GAc1AQy5x0BKu0QQ0J956KRNP82hACggIUGJiovLy8pSeni7p1CTtvLw8TZo0yek+ycnJysvL09SpU23b1q1bp+TkZElSXFycIiMjlZeXZwtEZWVl2rhxo/785z/bjnHw4EFt2bJFiYmJkqT169erqqpKSUlJ7mks4KMaEnia+zWagOaGP2xq8vjFajMzMzVu3DgNHDhQgwcPVk5OjsrLyzV+/HhJ0tixY9WlSxdlZ2dLkqZMmaKUlBQtWLBAw4cP14oVK7R582Y988wzkiSLxaKpU6fq/vvvV3x8vOLi4jR79mxFR0fbQtg555yjyy+/XLfeequWLl2qEydOaNKkSRo1alS9zmADWhoCD9D88Xtuz+MBKSMjQwcOHNCcOXNUXFyshIQE5ebm2iZZ79mzR35+/50qNWTIEC1fvlyzZs3SzJkzFR8frzVr1qhfv362Mvfcc4/Ky8s1ceJEHTx4UEOHDlVubq6CgoJsZV5++WVNmjRJv//97+Xn56frrrtOCxcubLqGAwAAr+XxdZB8FesgAQDge3xiHSQAAABvREACAABwQEACAABwQEACAABwQEACAABwQEACAABwQEACAABwQEACAABwQEACAABw4PFLjfiq6gXIy8rKPFwTAABQX9Xf26e7kAgBqYEOHTokSYqJifFwTQAAgKsOHTqk0NDQWu/nWmwNVFVVpX379ql9+/ayWCyNdtyysjLFxMRo7969zfYab829jbTP9zX3Njb39knNv420r+GMMTp06JCio6Pl51f7TCN6kBrIz89PZ599ttuOHxIS0izf9L/V3NtI+3xfc29jc2+f1PzbSPsapq6eo2pM0gYAAHBAQAIAAHBAQPIygYGBysrKUmBgoKer4jbNvY20z/c19zY29/ZJzb+NtM/9mKQNAADggB4kAAAABwQkAAAABwQkAAAABwQkAAAABwSkJrBkyRLFxsYqKChISUlJ2rRpU53lc3Jy1Lt3bwUHBysmJkZ//etfdfTo0TM6pjs1dvvmzp0ri8Vid+vTp4+7m1EnV9p44sQJzZ8/Xz169FBQUJAGDBig3NzcMzqmuzV2+7zpNfzwww919dVXKzo6WhaLRWvWrDntPu+//77OP/98BQYGqmfPnlq2bFmNMt7y+rmjfd70+kmut7GoqEhjxoxRr1695Ofnp6lTpzott2rVKvXp00dBQUHq37+/1q5d2/iVrwd3tG/ZsmU1XsOgoCD3NOA0XG3f6tWr9Yc//EHh4eEKCQlRcnKy3n333Rrl3P47aOBWK1asMAEBAea5554zX3zxhbn11ltNhw4dTElJidPyL7/8sgkMDDQvv/yyKSgoMO+++66Jiooyf/3rXxt8THdyR/uysrLMueeea4qKimy3AwcONFWTanC1jffcc4+Jjo4277zzjtm9e7d58sknTVBQkNm6dWuDj+lO7mifN72Ga9euNX/729/M6tWrjSTzxhtv1Fn++++/N23atDGZmZnmyy+/NIsWLTL+/v4mNzfXVsabXj93tM+bXj9jXG9jQUGBufPOO80LL7xgEhISzJQpU2qU+eSTT4y/v7955JFHzJdffmlmzZplWrdubXbs2OGeRtTBHe17/vnnTUhIiN1rWFxc7J4GnIar7ZsyZYp5+OGHzaZNm8y3335rZsyYYVq3bt3kn6EEJDcbPHiwueOOO2w/V1ZWmujoaJOdne20/B133GEuvfRSu22ZmZnmwgsvbPAx3ckd7cvKyjIDBgxwS30bwtU2RkVFmcWLF9ttGzFihLnxxhsbfEx3ckf7vO01rFafD+d77rnHnHvuuXbbMjIyTFpamu1nb3r9fqux2uetr58x9Wvjb6WkpDgNECNHjjTDhw+325aUlGRuu+22M6zhmWms9j3//PMmNDS00erVWFxtX7W+ffuaefPm2X5uit9Bhtjc6Pjx49qyZYtSU1Nt2/z8/JSamqr8/Hyn+wwZMkRbtmyxdRV+//33Wrt2ra688soGH9Nd3NG+art27VJ0dLS6d++uG2+8UXv27HFfQ+rQkDYeO3asRld2cHCwPv744wYf013c0b5q3vIauio/P9/u+ZCktLQ02/PhTa9fQ5yufdV89fWrr/o+D77s8OHD6tatm2JiYnTttdfqiy++8HSVGqSqqkqHDh1Sx44dJTXd7yAByY1KS0tVWVmpiIgIu+0REREqLi52us+YMWM0f/58DR06VK1bt1aPHj00bNgwzZw5s8HHdBd3tE+SkpKStGzZMuXm5uqpp55SQUGBLrroIh06dMit7XGmIW1MS0vT448/rl27dqmqqkrr1q3T6tWrVVRU1OBjuos72id512voquLiYqfPR1lZmSoqKrzq9WuI07VP8u3Xr75qex584TWsj969e+u5557Tm2++qZdeeklVVVUaMmSIfvzxR09XzWWPPfaYDh8+rJEjR0pqus9QApKXef/99/Xggw/qySef1NatW7V69Wq98847uu+++zxdtUZRn/ZdccUVuuGGG/S73/1OaWlpWrt2rQ4ePKhXX33VgzWvv7///e+Kj49Xnz59FBAQoEmTJmn8+PHy82sev271aZ+vv4YtHa+f70tOTtbYsWOVkJCglJQUrV69WuHh4Xr66ac9XTWXLF++XPPmzdOrr76qzp07N+ljt2rSR2thwsLC5O/vr5KSErvtJSUlioyMdLrP7NmzddNNN+mWW26RJPXv31/l5eWaOHGi/va3vzXomO7ijvY5CxEdOnRQr1699N133zV+I06jIW0MDw/XmjVrdPToUf3888+Kjo7W9OnT1b179wYf013c0T5nPPkauioyMtLp8xESEqLg4GD5+/t7zevXEKdrnzO+9PrVV23Pgy+8hg3RunVrnXfeeT71Gq5YsUK33HKLVq1aZTec1lSfoc3jT1ovFRAQoMTEROXl5dm2VVVVKS8vT8nJyU73OXLkSI2Q4O/vL0kyxjTomO7ijvY5c/jwYe3evVtRUVGNVPP6O5PnOygoSF26dNHJkyf1+uuv69prrz3jYzY2d7TPGU++hq5KTk62ez4kad26dbbnw5tev4Y4Xfuc8aXXr74a8jz4ssrKSu3YscNnXsNXXnlF48eP1yuvvKLhw4fb3ddkv4ONNt0bTq1YscIEBgaaZcuWmS+//NJMnDjRdOjQwXa65U033WSmT59uK5+VlWXat29vXnnlFfP999+b9957z/To0cOMHDmy3sf09fbddddd5v333zcFBQXmk08+MampqSYsLMzs37+/ydtnjOtt/L//+z/z+uuvm927d5sPP/zQXHrppSYuLs78+uuv9T5mU3JH+7zpNTx06JDZtm2b2bZtm5FkHn/8cbNt2zbzww8/GGOMmT59urnpppts5atPg7/77rvNV199ZZYsWeL0NH9vef3c0T5vev2Mcb2Nxhhb+cTERDNmzBizbds288UXX9ju/+STT0yrVq3MY489Zr766iuTlZXlsdP83dG+efPmmXfffdfs3r3bbNmyxYwaNcoEBQXZlWkqrrbv5ZdfNq1atTJLliyxW6bg4MGDtjJN8TtIQGoCixYtMl27djUBAQFm8ODB5v/+7/9s96WkpJhx48bZfj5x4oSZO3eu6dGjhwkKCjIxMTHmL3/5i92Xz+mO2dQau30ZGRkmKirKBAQEmC5dupiMjAzz3XffNWGLanKlje+//74555xzTGBgoOnUqZO56aabzE8//eTSMZtaY7fPm17Df//730ZSjVt1m8aNG2dSUlJq7JOQkGACAgJM9+7dzfPPP1/juN7y+rmjfd70+hnTsDY6K9+tWze7Mq+++qrp1auXCQgIMOeee6555513mqZBDtzRvqlTp9renxEREebKK6+0W0eoKbnavpSUlDrLV3P376DFmFrGNQAAAFoo5iABAAA4ICABAAA4ICABAAA4ICABAAA4ICABAAA4ICABAAA4ICABAAA4ICABQDPx/vvvy2Kx6ODBg56uCuDzCEgAXHbzzTfLYrHooYcestu+Zs0aWSwW28/GGD377LNKTk5WSEiI2rVrp3PPPVdTpkyp90Uzjxw5ohkzZqhHjx4KCgpSeHi4UlJS9Oabb9rKxMbGKicnp1Ha5m7Vz53FYlHr1q0VFxene+65R0ePHnXpOMOGDdPUqVPttg0ZMkRFRUUKDQ1txBoDLRMBCUCDBAUF6eGHH9avv/7q9H5jjMaMGaM777xTV155pd577z19+eWX+sc//qGgoCDdf//99Xqc22+/XatXr9aiRYv09ddfKzc3V9dff71+/vnnxmxOk7r88stVVFSk77//Xk888YSefvppZWVlnfFxAwICFBkZaRdSATRQo164BECLMG7cOHPVVVeZPn36mLvvvtu2/Y033jDVHyuvvPKKkWTefPNNp8eoqqqq12OFhoaaZcuW1Xq/s+s2Vfvoo4/M0KFDTVBQkDn77LPN5MmTzeHDh233/+///q9JTEw07dq1MxEREWb06NGmpKTEdn/1NaRyc3NNQkKCCQoKMpdccokpKSkxa9euNX369DHt27c3o0ePNuXl5fVqz7hx48y1115rt23EiBHmvPPOs/1cWlpqRo0aZaKjo01wcLDp16+fWb58ud0xHNtcUFBgq+9vr2342muvmb59+5qAgADTrVs389hjj9WrnkBLRw8SgAbx9/fXgw8+qEWLFunHH3+scf8rr7yi3r1765prrnG6f317OSIjI7V27VodOnTI6f2rV6/W2Wefrfnz56uoqEhFRUWSpN27d+vyyy/Xddddp88//1wrV67Uxx9/rEmTJtn2PXHihO677z599tlnWrNmjQoLC3XzzTfXeIy5c+dq8eLF2rBhg/bu3auRI0cqJydHy5cv1zvvvKP33ntPixYtqld7HO3cuVMbNmxQQECAbdvRo0eVmJiod955Rzt37tTEiRN10003adOmTZKkv//970pOTtatt95qa3NMTEyNY2/ZskUjR47UqFGjtGPHDs2dO1ezZ8/WsmXLGlRXoEXxdEID4Ht+2wtywQUXmD/96U/GGPsepD59+phrrrnGbr8pU6aYtm3bmrZt25ouXbrU67E++OADc/bZZ5vWrVubgQMHmqlTp5qPP/7Yrky3bt3ME088YbdtwoQJZuLEiXbbPvroI+Pn52cqKiqcPtann35qJJlDhw4ZY/7bg/Svf/3LViY7O9tIMrt377Ztu+2220xaWlq92jNu3Djj7+9v2rZtawIDA40k4+fnZ1577bU69xs+fLi56667bD+npKSYKVOm2JVx7EEaM2aM+cMf/mBX5u677zZ9+/atV12BloweJABn5OGHH9YLL7ygr7766rRl//a3v2n79u2aM2eODh8+XK/jX3zxxfr++++Vl5en66+/Xl988YUuuugi3XfffXXu99lnn2nZsmVq166d7ZaWlqaqqioVFBRIOtXDcvXVV6tr165q3769UlJSJEl79uyxO9bvfvc72/8jIiLUpk0bde/e3W7b/v3769UeSbrkkku0fft2bdy4UePGjdP48eN13XXX2e6vrKzUfffdp/79+6tjx45q166d3n333Rr1Op2vvvpKF154od22Cy+8ULt27VJlZaVLxwJaGgISgDNy8cUXKy0tTTNmzLDbHh8fr2+++cZuW3h4uHr27KnOnTu79BitW7fWRRddpHvvvVfvvfee5s+fr/vuu0/Hjx+vdZ/Dhw/rtttu0/bt2223zz77TLt27VKPHj1UXl6utLQ0hYSE6OWXX9ann36qN954Q5JqHLd169a2/1efffZbFotFVVVV9W5P27Zt1bNnTw0YMEDPPfecNm7cqH/84x+2+x999FH9/e9/17333qt///vf2r59u9LS0upsL4DG1crTFQDg+x566CElJCSod+/etm2jR4/WmDFj9Oabb+raa69t1Mfr27evTp48qaNHjyogIEABAQE1ekTOP/98ffnll+rZs6fTY+zYsUM///yzHnroIdv8nc2bNzdqPevDz89PM2fOVGZmpsaMGaPg4GB98sknuvbaa/U///M/kqSqqip9++236tu3r20/Z212dM455+iTTz6x2/bJJ5+oV69e8vf3b/zGAM0IPUgAzlj//v114403auHChbZto0aN0vXXX69Ro0Zp/vz52rhxowoLC/XBBx9o5cqV9f6CHjZsmJ5++mlt2bJFhYWFWrt2rWbOnKlLLrlEISEhkk6tg/Thhx/qp59+UmlpqSTp3nvv1YYNGzRp0iRt375du3bt0ptvvmmbpN21a1cFBARo0aJF+v777/XWW2+ddtjOXW644Qb5+/tryZIlkk71vq1bt04bNmzQV199pdtuu00lJSV2+8TGxtqe09LSUqc9WHfddZfy8vJ033336dtvv9ULL7ygxYsXa9q0aU3SLsCXEZAANIr58+fbfUlbLBatXLlSOTk5Wrt2rX7/+9+rd+/e+tOf/qSYmBh9/PHH9TpuWlqaXnjhBV122WU655xzNHnyZKWlpenVV1+1e+zCwkL16NFD4eHhkk7NG/rggw/07bff6qKLLtJ5552nOXPmKDo6WtKp4b5ly5Zp1apV6tu3rx566CE99thjjfiM1F+rVq00adIkPfLIIyovL9esWbN0/vnnKy0tTcOGDVNkZKTS09Pt9pk2bZr8/f3Vt29fhYeHO52fdP755+vVV1/VihUr1K9fP82ZM0fz5893eqYeAHsWY4zxdCUAAAC8CT1IAAAADghIADzqt6fhO94++ugjT1fPJXv27KmzPa6epg/AcxhiA+BRdV20tkuXLgoODm7C2pyZkydPqrCwsNb7Y2Nj1aoVJw8DvoCABAAA4IAhNgAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAcEJAAAAAf/P0Ec8T26zcrPAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAU+ZJREFUeJzt3X1YVNXaP/Dv8DIMokAGDi+h4AsiSlAqiKZokmNaSWYiehR9LDqdNH3QCivFrA5mVqZyxHpKOqdS1CxNuUxDy6MgKmq+oZlhajEYehgUEZVZvz/8sY8jA85sGWaG+X6uay5k73vvvdYenH3PWmuvrRBCCBARERGRWZysXQAiIiIie8QkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiFq0uXPnQqFQmBSrUCgwd+5ci5Zn4MCBGDhwoM3uj4hMxySKiJpFdnY2FAqF9HJxcUFgYCAmTpyI33//3drFsznBwcEG56tdu3bo378/vv766ybZ/5UrVzB37lz88MMPTbI/IkfEJIqImtW8efPwr3/9C1lZWXj00Ufx+eefIy4uDlevXrXI8V5//XVUV1dbZN+WFhUVhX/961/417/+hZkzZ+KPP/7AyJEjkZWVddf7vnLlCt544w0mUUR3wcXaBSAix/Loo4+iV69eAIBnnnkGPj4+eOedd7BhwwaMHj26yY/n4uICFxf7/KgLDAzEX/7yF+n3CRMmoHPnzvjggw/w17/+1YolIyKALVFEZGX9+/cHAJw6dcpg+fHjxzFq1Ci0bdsWKpUKvXr1woYNGwxirl+/jjfeeANdunSBSqXCvffei4ceeghbt26VYoyNiaqpqcH//u//wtfXF23atMETTzyBc+fO1SvbxIkTERwcXG+5sX2uWLECDz/8MNq1awc3NzeEh4dj2bJlZp2LO/Hz80O3bt1QUlLSaNz58+cxefJkqNVqqFQqREZG4rPPPpPWnz59Gr6+vgCAN954Q+oytPR4MKKWxj6/nhFRi3H69GkAwD333CMtO3r0KPr164fAwECkpaXBw8MDq1evRkJCAr766is8+eSTAG4mMxkZGXjmmWcQHR2NyspK7Nu3D/v378cjjzzS4DGfeeYZfP755xg7diz69u2Lbdu2Yfjw4XdVj2XLlqF79+544okn4OLigm+//RZ/+9vfoNfr8cILL9zVvutcv34dZ8+exb333ttgTHV1NQYOHIhffvkFU6ZMQUhICNasWYOJEyeioqIC06ZNg6+vL5YtW4bnn38eTz75JEaOHAkAuP/++5uknEQOQxARNYMVK1YIAOL7778Xf/75pzh79qxYu3at8PX1FW5ubuLs2bNS7ODBg0VERIS4evWqtEyv14u+ffuKLl26SMsiIyPF8OHDGz1uenq6uPWj7uDBgwKA+Nvf/mYQN3bsWAFApKenS8uSk5NFhw4d7rhPIYS4cuVKvTiNRiM6duxosCwuLk7ExcU1WmYhhOjQoYMYMmSI+PPPP8Wff/4pfvrpJzFmzBgBQEydOrXB/S1atEgAEJ9//rm07Nq1ayI2Nla0bt1aVFZWCiGE+PPPP+vVl4jMw+48ImpW8fHx8PX1RVBQEEaNGgUPDw9s2LAB9913HwDg4sWL2LZtG0aPHo1Lly6hvLwc5eXluHDhAjQaDU6ePCndzeft7Y2jR4/i5MmTJh8/NzcXAPDiiy8aLJ8+ffpd1cvd3V36t06nQ3l5OeLi4vDrr79Cp9PJ2ueWLVvg6+sLX19fREZGYs2aNRg/fjzeeeedBrfJzc2Fn58fkpKSpGWurq548cUXcfnyZfz444+yykJE9bE7j4iaVWZmJkJDQ6HT6fDpp59ix44dcHNzk9b/8ssvEEJg9uzZmD17ttF9nD9/HoGBgZg3bx5GjBiB0NBQ9OjRA0OHDsX48eMb7Zb67bff4OTkhE6dOhks79q1613Va9euXUhPT0dBQQGuXLlisE6n08HLy8vsfcbExOCtt96CQqFAq1at0K1bN3h7eze6zW+//YYuXbrAycnwO3K3bt2k9UTUNJhEEVGzio6Olu7OS0hIwEMPPYSxY8fixIkTaN26NfR6PQBg5syZ0Gg0RvfRuXNnAMCAAQNw6tQprF+/Hlu2bMH//d//4YMPPkBWVhaeeeaZuy5rQ5N01tbWGvx+6tQpDB48GGFhYXj//fcRFBQEpVKJ3NxcfPDBB1KdzOXj44P4+HhZ2xKR5TGJIiKrcXZ2RkZGBgYNGoSlS5ciLS0NHTt2BHCzC8qUBKJt27aYNGkSJk2ahMuXL2PAgAGYO3dug0lUhw4doNfrcerUKYPWpxMnTtSLveeee1BRUVFv+e2tOd9++y1qamqwYcMGtG/fXlq+ffv2O5a/qXXo0AGHDh2CXq83aI06fvy4tB5oOEEkItNxTBQRWdXAgQMRHR2NRYsW4erVq2jXrh0GDhyI5cuXo7S0tF78n3/+Kf37woULButat26Nzp07o6ampsHjPfroowCAxYsXGyxftGhRvdhOnTpBp9Ph0KFD0rLS0tJ6s4Y7OzsDAIQQ0jKdTocVK1Y0WA5LGTZsGLRaLXJycqRlN27cwJIlS9C6dWvExcUBAFq1agUARpNEIjINW6KIyOpeeuklPP3008jOzsZf//pXZGZm4qGHHkJERASeffZZdOzYEWVlZSgoKMC5c+fw008/AQDCw8MxcOBA9OzZE23btsW+ffuwdu1aTJkypcFjRUVFISkpCf/4xz+g0+nQt29f5OXl4ZdffqkXO2bMGLzyyit48skn8eKLL+LKlStYtmwZQkNDsX//filuyJAhUCqVePzxx/Hcc8/h8uXL+Pjjj9GuXTujiaAlpaSkYPny5Zg4cSKKiooQHByMtWvXYteuXVi0aBHatGkD4OZA+PDwcOTk5CA0NBRt27ZFjx490KNHj2YtL5Fds/btgUTkGOqmONi7d2+9dbW1taJTp06iU6dO4saNG0IIIU6dOiUmTJgg/Pz8hKurqwgMDBSPPfaYWLt2rbTdW2+9JaKjo4W3t7dwd3cXYWFh4u233xbXrl2TYoxNR1BdXS1efPFFce+99woPDw/x+OOPi7Nnzxq95X/Lli2iR48eQqlUiq5du4rPP//c6D43bNgg7r//fqFSqURwcLB45513xKeffioAiJKSEinOnCkO7jR9Q0P7KysrE5MmTRI+Pj5CqVSKiIgIsWLFinrb5ufni549ewqlUsnpDohkUAhxS/szEREREZmEY6KIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDJwsk0L0uv1+OOPP9CmTRs+YoGIiMhOCCFw6dIlBAQE1HuY962YRFnQH3/8gaCgIGsXg4iIiGQ4e/Ys7rvvvgbXM4myoLrHK5w9exaenp5WLg0RERGZorKyEkFBQdJ1vCFMoiyorgvP09OTSRQREZGdudNQHA4sJyIiIpKBSRQRERGRDEyiiIiIiGTgmCgiIiIHUFtbi+vXr1u7GDbB1dUVzs7Od70fJlFEREQtmBACWq0WFRUV1i6KTfH29oafn99dzePIJIqIiKgFq0ug2rVrh1atWjn85M9CCFy5cgXnz58HAPj7+8veF5MoIiKiFqq2tlZKoO69915rF8dmuLu7AwDOnz+Pdu3aye7a48ByIiKiFqpuDFSrVq2sXBLbU3dO7macGJMoIiKiFs7Ru/CMaYpzwiSKiIiISAYmUUREREQyMImiekp11cg/VY5SXbW1i0JERA5Mq9Vi6tSp6NixI9zc3BAUFITHH38ceXl5Ukx+fj6GDRuGe+65ByqVChEREXj//fdRW1tr8fLx7jwykLP3DGatOwy9AJwUQMbICCT2bm/tYhERkYM5ffo0+vXrB29vb7z77ruIiIjA9evX8d133+GFF17A8ePH8fXXX2P06NGYNGkStm/fDm9vb3z//fd4+eWXUVBQgNWrV1t0PJhCCCEstncHV1lZCS8vL+h0Onh6elq7OHdUqqtGv/nboL/lL8JZocDOtEHw93K3XsGIiEiWq1evoqSkBCEhIVCpVNYujlmGDRuGQ4cO4cSJE/Dw8DBYV1FRAVdXV3To0AFxcXH46quvDNZ/++23eOKJJ7Bq1SokJiYa3X9j58bU6ze780hSUl5lkEABQK0QOF1+xToFIiIim9GcQz0uXryIzZs344UXXqiXQAE3ZxvfsmULLly4gJkzZ9Zb//jjjyM0NBQrV660aDnZnUeSEB8POClQryUq2IfzixARObLmHurxyy+/QAiBsLCwBmN+/vlnAEC3bt2Mrg8LC5NiLIUtUSTx93JHxsgIOP///mNnhQJ/H9mDXXlERA6sVFctJVDAzS/ar647YtEWKXNGGllzVBJboshAYu/2GBDqi9PlVxDs04oJFBGRg2tsqIelrhFdunSBQqHA8ePHG4wJDQ0FABQXF6Nv37711hcXFyM8PNwi5avDliiqx9/LHbGd7mUCRURE0lCPW1l6qEfbtm2h0WiQmZmJqqqqeusrKiowZMgQtG3bFu+991699Rs2bMDJkyeRlJRksTICTKKIiIioEdYa6pGZmYna2lpER0fjq6++wsmTJ1FcXIzFixcjNjYWHh4eWL58OdavX4+UlBQcOnQIp0+fxieffIKJEydi1KhRGD16tEXLyO48IiIiapQ1hnp07NgR+/fvx9tvv40ZM2agtLQUvr6+6NmzJ5YtWwYAGDVqFLZv3463334b/fv3x9WrV9GlSxe89tprmD59usWfGch5oizI3uaJIiKilsWe54myNM4TRURERGQlTKKIiIiIZGASRURERCQDkygiIiIiGZhEERERtXC8h6y+pjgnTKKIiIhaKFdXVwDAlSt8kPzt6s5J3TmSg/NEERERtVDOzs7w9vbG+fPnAQCtWrWy+NxJtk4IgStXruD8+fPw9vaGs7Oz7H0xiSIiImrB/Pz8AEBKpOgmb29v6dzIxSSKiIioBVMoFPD390e7du1w/fp1axfHJri6ut5VC1QdJlFEREQOwNnZuUkSB/ovDiwnIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREclg9SQqMzMTwcHBUKlUiImJwZ49exqNX7NmDcLCwqBSqRAREYHc3FyD9UIIzJkzB/7+/nB3d0d8fDxOnjxpEPP222+jb9++aNWqFby9vesd46effkJSUhKCgoLg7u6Obt264cMPP7zruhIREVHLYdUkKicnB6mpqUhPT8f+/fsRGRkJjUbT4Kyq+fn5SEpKwuTJk3HgwAEkJCQgISEBR44ckWIWLFiAxYsXIysrC4WFhfDw8IBGo8HVq1elmGvXruHpp5/G888/b/Q4RUVFaNeuHT7//HMcPXoUr732GmbNmoWlS5c27QkgIiIiu6UQVny0c0xMDHr37i0lJ3q9HkFBQZg6dSrS0tLqxScmJqKqqgobN26UlvXp0wdRUVHIysqCEAIBAQGYMWMGZs6cCQDQ6XRQq9XIzs7GmDFjDPaXnZ2N6dOno6Ki4o5lfeGFF1BcXIxt27aZXL/Kykp4eXlBp9PB09PT5O2IiIjIeky9flutJeratWsoKipCfHz8fwvj5IT4+HgUFBQY3aagoMAgHgA0Go0UX1JSAq1WaxDj5eWFmJiYBvdpKp1Oh7Zt297VPoiIiKjlsNpjX8rLy1FbWwu1Wm2wXK1W4/jx40a30Wq1RuO1Wq20vm5ZQzFy5OfnIycnB5s2bWo0rqamBjU1NdLvlZWVso9JREREts3qA8tt3ZEjRzBixAikp6djyJAhjcZmZGTAy8tLegUFBTVTKYmIiKi5WS2J8vHxgbOzM8rKygyWl5WVwc/Pz+g2fn5+jcbX/TRnn405duwYBg8ejJSUFLz++ut3jJ81axZ0Op30Onv2rNnHJCIiIvtgtSRKqVSiZ8+eyMvLk5bp9Xrk5eUhNjbW6DaxsbEG8QCwdetWKT4kJAR+fn4GMZWVlSgsLGxwnw05evQoBg0ahOTkZLz99tsmbePm5gZPT0+DFxEREbVMVhsTBQCpqalITk5Gr169EB0djUWLFqGqqgqTJk0CAEyYMAGBgYHIyMgAAEybNg1xcXF47733MHz4cKxatQr79u3DRx99BABQKBSYPn063nrrLXTp0gUhISGYPXs2AgICkJCQIB33zJkzuHjxIs6cOYPa2locPHgQANC5c2e0bt0aR44cwcMPPwyNRoPU1FRpPJWzszN8fX2b7wQRERGR7RJWtmTJEtG+fXuhVCpFdHS02L17t7QuLi5OJCcnG8SvXr1ahIaGCqVSKbp37y42bdpksF6v14vZs2cLtVot3NzcxODBg8WJEycMYpKTkwWAeq/t27cLIYRIT083ur5Dhw5m1U2n0wkAQqfTmbUdERERWY+p12+rzhPV0nGeKCIiIvtj8/NEEREREdkzJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBqsnUZmZmQgODoZKpUJMTAz27NnTaPyaNWsQFhYGlUqFiIgI5ObmGqwXQmDOnDnw9/eHu7s74uPjcfLkSYOYt99+G3379kWrVq3g7e1t9DhnzpzB8OHD0apVK7Rr1w4vvfQSbty4cVd1JSIiopbDqklUTk4OUlNTkZ6ejv379yMyMhIajQbnz583Gp+fn4+kpCRMnjwZBw4cQEJCAhISEnDkyBEpZsGCBVi8eDGysrJQWFgIDw8PaDQaXL16VYq5du0ann76aTz//PNGj1NbW4vhw4fj2rVryM/Px2effYbs7GzMmTOnaU8AERER2S9hRdHR0eKFF16Qfq+trRUBAQEiIyPDaPzo0aPF8OHDDZbFxMSI5557TgghhF6vF35+fuLdd9+V1ldUVAg3NzexcuXKevtbsWKF8PLyqrc8NzdXODk5Ca1WKy1btmyZ8PT0FDU1NSbXT6fTCQBCp9OZvA0RERFZl6nXb6u1RF27dg1FRUWIj4+Xljk5OSE+Ph4FBQVGtykoKDCIBwCNRiPFl5SUQKvVGsR4eXkhJiamwX02dJyIiAio1WqD41RWVuLo0aMNbldTU4PKykqDFxEREbVMVkuiysvLUVtba5CoAIBarYZWqzW6jVarbTS+7qc5+zTnOLcew5iMjAx4eXlJr6CgIJOPSURERPbF6gPLW5JZs2ZBp9NJr7Nnz1q7SERERGQhVkuifHx84OzsjLKyMoPlZWVl8PPzM7qNn59fo/F1P83ZpznHufUYxri5ucHT09PgRURERC2T1ZIopVKJnj17Ii8vT1qm1+uRl5eH2NhYo9vExsYaxAPA1q1bpfiQkBD4+fkZxFRWVqKwsLDBfTZ0nMOHDxvcJbh161Z4enoiPDzc5P0QERFRy+VizYOnpqYiOTkZvXr1QnR0NBYtWoSqqipMmjQJADBhwgQEBgYiIyMDADBt2jTExcXhvffew/Dhw7Fq1Srs27cPH330EQBAoVBg+vTpeOutt9ClSxeEhIRg9uzZCAgIQEJCgnTcM2fO4OLFizhz5gxqa2tx8OBBAEDnzp3RunVrDBkyBOHh4Rg/fjwWLFgArVaL119/HS+88ALc3Nya9RwRERGRjWqmuwUbtGTJEtG+fXuhVCpFdHS02L17t7QuLi5OJCcnG8SvXr1ahIaGCqVSKbp37y42bdpksF6v14vZs2cLtVot3NzcxODBg8WJEycMYpKTkwWAeq/t27dLMadPnxaPPvqocHd3Fz4+PmLGjBni+vXrZtWNUxwQERHZH1Ov3wohhLBiDteiVVZWwsvLCzqdjuOjiIiI7ISp12/enUdEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUNbtSXTXyT5WjVFdt7aIQERHJ5mLtApBjydl7BrPWHYZeAE4KIGNkBBJ7t7d2sYiIiMxm9ZaozMxMBAcHQ6VSISYmBnv27Gk0fs2aNQgLC4NKpUJERARyc3MN1gshMGfOHPj7+8Pd3R3x8fE4efKkQczFixcxbtw4eHp6wtvbG5MnT8bly5cNYr777jv06dMHbdq0ga+vL5566imcPn26SersqEp11VICBQB6Aby67ghbpIiIyC5ZNYnKyclBamoq0tPTsX//fkRGRkKj0eD8+fNG4/Pz85GUlITJkyfjwIEDSEhIQEJCAo4cOSLFLFiwAIsXL0ZWVhYKCwvh4eEBjUaDq1evSjHjxo3D0aNHsXXrVmzcuBE7duxASkqKtL6kpAQjRozAww8/jIMHD+K7775DeXk5Ro4cabmT4QBKyqukBKpOrRA4XX7FOgUiIiK6CwohhLhzmGXExMSgd+/eWLp0KQBAr9cjKCgIU6dORVpaWr34xMREVFVVYePGjdKyPn36ICoqCllZWRBCICAgADNmzMDMmTMBADqdDmq1GtnZ2RgzZgyKi4sRHh6OvXv3olevXgCAzZs3Y9iwYTh37hwCAgKwdu1aJCUloaamBk5ON/PMb7/9FiNGjEBNTQ1cXV1Nql9lZSW8vLyg0+ng6el5V+eqJSjVVaPf/G0GiZSzQoGdaYPg7+VuvYIRERHdwtTrt9Vaoq5du4aioiLEx8f/tzBOToiPj0dBQYHRbQoKCgziAUCj0UjxJSUl0Gq1BjFeXl6IiYmRYgoKCuDt7S0lUAAQHx8PJycnFBYWAgB69uwJJycnrFixArW1tdDpdPjXv/6F+Pj4RhOompoaVFZWGrzov/y93JExMgLOCgWAmwnU30f2YAJFRER2yWoDy8vLy1FbWwu1Wm2wXK1W4/jx40a30Wq1RuO1Wq20vm5ZYzHt2rUzWO/i4oK2bdtKMSEhIdiyZQtGjx6N5557DrW1tYiNja03/up2GRkZeOONNxqNcXSJvdtjQKgvTpdfQbBPKyZQRERkt6w+sNwWabVaPPvss0hOTsbevXvx448/QqlUYtSoUWis93PWrFnQ6XTS6+zZs81Yavvh7+WO2E73MoEiIiK7ZrWWKB8fHzg7O6OsrMxgeVlZGfz8/Ixu4+fn12h83c+ysjL4+/sbxERFRUkxtw9cv3HjBi5evChtn5mZCS8vLyxYsECK+fzzzxEUFITCwkL06dPHaPnc3Nzg5uZ2p6oTERFRC2C1liilUomePXsiLy9PWqbX65GXl4fY2Fij28TGxhrEA8DWrVul+JCQEPj5+RnEVFZWorCwUIqJjY1FRUUFioqKpJht27ZBr9cjJiYGAHDlyhVpQHkdZ2dnqYxEREREEFa0atUq4ebmJrKzs8WxY8dESkqK8Pb2FlqtVgghxPjx40VaWpoUv2vXLuHi4iIWLlwoiouLRXp6unB1dRWHDx+WYubPny+8vb3F+vXrxaFDh8SIESNESEiIqK6ulmKGDh0qHnjgAVFYWCh27twpunTpIpKSkqT1eXl5QqFQiDfeeEP8/PPPoqioSGg0GtGhQwdx5coVk+un0+kEAKHT6e7mNBEREVEzMvX6bdUkSgghlixZItq3by+USqWIjo4Wu3fvltbFxcWJ5ORkg/jVq1eL0NBQoVQqRffu3cWmTZsM1uv1ejF79myhVquFm5ubGDx4sDhx4oRBzIULF0RSUpJo3bq18PT0FJMmTRKXLl0yiFm5cqV44IEHhIeHh/D19RVPPPGEKC4uNqtuTKKIiIjsj6nXb6vOE9XScZ4oIiIi+2Pz80QRERER2TMmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkg6wkas2aNRg5ciR69OiBHj16YOTIkVi7dm1Tl42IiIjIZpmVROn1eiQmJiIxMRHHjh1D586d0blzZxw9ehSJiYkYM2YMhBCWKitRkyvVVSP/VDlKddXWLgoREdkZF3OCP/zwQ3z//ffYsGEDHnvsMYN1GzZswKRJk/Dhhx9i+vTpTVlGIovI2XsGs9Ydhl4ATgogY2QEEnu3t3axiIjITpjVErVixQq8++679RIoAHjiiSewYMECfPrpp01WOCJLKdVVSwkUAOgF8Oq6I2yRIiIik5mVRJ08eRLx8fENro+Pj8fJkyfvulBEllZSXiUlUHVqhcDp8ivWKRAREdkds5Iod3d3VFRUNLi+srISKpXqbstEZHEhPh5wUhguc1YoEOzTyjoFIiIiu2NWEhUbG4tly5Y1uD4zMxOxsbF3XSgiS/P3ckfGyAg4K25mUs4KBf4+sgf8vdytXDIiIrIXZg0sf+211zBw4EBcuHABM2fORFhYGIQQKC4uxnvvvYf169dj+/btliorUZNK7N0eA0J9cbr8CoJ9WjGBIiIisyiEmXMSfP3110hJScHFixcNlt9zzz1Yvnw5nnrqqSYtoD2rrKyEl5cXdDodPD09rV0cIiIiMoGp12+zkygAuHLlCr777jtpEHloaCiGDBmCVq04nuRWTKKIiIjsj6nXb7O687Zt24YpU6Zg9+7dePLJJw3W6XQ6dO/eHVlZWejfv7+8UhMRERHZCbMGli9atAjPPvus0azMy8sLzz33HN5///0mKxwRERGRrTIrifrpp58wdOjQBtcPGTIERUVFd10oIiIiIltnVhJVVlYGV1fXBte7uLjgzz//vOtCEREREdk6s5KowMBAHDlypMH1hw4dgr+//10XioiIiMjWmZVEDRs2DLNnz8bVq1frrauurkZ6errR5+oRERERtTRmTXFQVlaGBx98EM7OzpgyZQq6du0KADh+/DgyMzNRW1uL/fv3Q61WW6zA9oRTHBAREdkfi0xxoFarkZ+fj+effx6zZs1CXf6lUCig0WiQmZnJBMoGleqqUVJehRAfD87KTURE1ETM6s4DgA4dOiA3Nxfl5eUoLCzE7t27UV5ejtzcXISEhJhdgMzMTAQHB0OlUiEmJgZ79uxpNH7NmjUICwuDSqVCREQEcnNzDdYLITBnzhz4+/vD3d0d8fHx0qSgdS5evIhx48bB09MT3t7emDx5Mi5fvlxvPwsXLkRoaCjc3NwQGBiIt99+2+z6WVvO3jPoN38bxn5ciH7ztyFn7xlrF4mIiKhFMDuJqnPPPfegd+/eiI6Oxj333CNrHzk5OUhNTUV6ejr279+PyMhIaDQanD9/3mh8fn4+kpKSMHnyZBw4cAAJCQlISEgwGOy+YMECLF68GFlZWSgsLISHhwc0Go3BOK5x48bh6NGj2Lp1KzZu3IgdO3YgJSXF4FjTpk3D//3f/2HhwoU4fvw4NmzYgOjoaFn1tJZSXTVmrTsM/f/vsNUL4NV1R1Cqq7ZuwYiIiFoAWY99aSoxMTHo3bs3li5dCgDQ6/UICgrC1KlTkZaWVi8+MTERVVVV2Lhxo7SsT58+iIqKQlZWFoQQCAgIwIwZMzBz5kwAN2dSV6vVyM7OxpgxY1BcXIzw8HDs3bsXvXr1AgBs3rwZw4YNw7lz5xAQEIDi4mLcf//9OHLkiDTuSw5rj4nKP1WOsR8X1lu+8tk+iO10b7OXh4iIyB6Yev2W3RJ1t65du4aioiLEx8f/tzBOToiPj0dBQYHRbQoKCgziAUCj0UjxJSUl0Gq1BjFeXl6IiYmRYgoKCuDt7S0lUAAQHx8PJycnFBbeTDi+/fZbdOzYERs3bkRISAiCg4PxzDPP1Hvo8u1qampQWVlp8LKmEB8POCkMlzkrFAj24TMOiYiI7pbVkqjy8nLU1tbWG4iuVquh1WqNbqPVahuNr/t5p5h27doZrHdxcUHbtm2lmF9//RW//fYb1qxZg3/+85/Izs5GUVERRo0a1WidMjIy4OXlJb2CgoIajbc0fy93ZIyMgLPiZiblrFDg7yN7cHA5ERFREzDr7jxHodfrUVNTg3/+858IDQ0FAHzyySfo2bMnTpw40WAX36xZs5Camir9XllZafVEKrF3ewwI9cXp8isI9mnFBIqIiKiJWK0lysfHB87OzigrKzNYXlZWBj8/P6Pb+Pn5NRpf9/NOMbcPXL9x4wYuXrwoxfj7+8PFxUVKoACgW7duAIAzZxq+u83NzQ2enp4GL1vg7+WO2E73MoEiIiJqQlZLopRKJXr27Im8vDxpmV6vR15eHmJjY41uExsbaxAPAFu3bpXiQ0JC4OfnZxBTWVmJwsJCKSY2NhYVFRUGD0retm0b9Ho9YmJiAAD9+vXDjRs3cOrUKSnm559/BnBzigciIiIiCCtatWqVcHNzE9nZ2eLYsWMiJSVFeHt7C61WK4QQYvz48SItLU2K37Vrl3BxcRELFy4UxcXFIj09Xbi6uorDhw9LMfPnzxfe3t5i/fr14tChQ2LEiBEiJCREVFdXSzFDhw4VDzzwgCgsLBQ7d+4UXbp0EUlJSdL62tpa8eCDD4oBAwaI/fv3i3379omYmBjxyCOPmFU/nU4nAAidTif3FBEREVEzM/X6bdUkSgghlixZItq3by+USqWIjo4Wu3fvltbFxcWJ5ORkg/jVq1eL0NBQoVQqRffu3cWmTZsM1uv1ejF79myhVquFm5ubGDx4sDhx4oRBzIULF0RSUpJo3bq18PT0FJMmTRKXLl0yiPn999/FyJEjRevWrYVarRYTJ04UFy5cMKtuTKKIiIjsj6nXb6vOE9XSWXueKCIiIjKfzc8TRURERGTPmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIhkKNVVI/9UOUp11dYuChFZiYu1C0BEZG9y9p7BrHWHoReAkwLIGBmBxN7trV0sImpmbIkiIjJDqa5aSqAAQC+AV9cdYYsUkQNiEkVEZIaS8iopgapTKwROl1+xToGIyGqYRBERmSHExwNOCsNlzgoFgn1aWadARGQ1TKKIiMzg7+WOjJERcFbczKScFQr8fWQP+Hu5W7lkRNTcOLCciMhMib3bY0CoL06XX0GwTysmUEQOikkUkRlKddUoKa9CiI8HL5wOzt/LnX8DRA6OSRTVw0TBON7WTkREt2ISRQaYKBjX0G3tA0J9mWgSETkomxhYnpmZieDgYKhUKsTExGDPnj2Nxq9ZswZhYWFQqVSIiIhAbm6uwXohBObMmQN/f3+4u7sjPj4eJ0+eNIi5ePEixo0bB09PT3h7e2Py5Mm4fPmy0eP98ssvaNOmDby9ve+qnraO8980jLe1ExHZFlt4aoDVk6icnBykpqYiPT0d+/fvR2RkJDQaDc6fP280Pj8/H0lJSZg8eTIOHDiAhIQEJCQk4MiRI1LMggULsHjxYmRlZaGwsBAeHh7QaDS4evWqFDNu3DgcPXoUW7duxcaNG7Fjxw6kpKTUO97169eRlJSE/v37N33lbQwThYbxtnYiItuRs/cM+s3fhrEfF6Lf/G3I2XvGKuVQCCHEncMsJyYmBr1798bSpUsBAHq9HkFBQZg6dSrS0tLqxScmJqKqqgobN26UlvXp0wdRUVHIysqCEAIBAQGYMWMGZs6cCQDQ6XRQq9XIzs7GmDFjUFxcjPDwcOzduxe9evUCAGzevBnDhg3DuXPnEBAQIO37lVdewR9//IHBgwdj+vTpqKioMLlulZWV8PLygk6ng6enp5zT06xKddXoN3+bQSLlrFBgZ9ogdlkBmLH6IL7a/7v0+1MPBuK90VHWKxARkQNqjmuVqddvq7ZEXbt2DUVFRYiPj5eWOTk5IT4+HgUFBUa3KSgoMIgHAI1GI8WXlJRAq9UaxHh5eSEmJkaKKSgogLe3t5RAAUB8fDycnJxQWFgoLdu2bRvWrFmDzMzMu6+sHeD8Nw0r1VXj6wO/Gyz75sAf7OokImpmttRrYtWB5eXl5aitrYVarTZYrlarcfz4caPbaLVao/FarVZaX7essZh27doZrHdxcUHbtm2lmAsXLmDixIn4/PPPTW5FqqmpQU1NjfR7ZWWlSdvZEs5/Y1xj/2l5joiImk/d8IrbW6KsMbzC6mOibNWzzz6LsWPHYsCAASZvk5GRAS8vL+kVFBRkwRJajr+XO2I73cvk4BYcE0VEZBtsqdfEqkmUj48PnJ2dUVZWZrC8rKwMfn5+Rrfx8/NrNL7u551ibh+4fuPGDVy8eFGK2bZtGxYuXAgXFxe4uLhg8uTJ0Ol0cHFxwaeffmq0bLNmzYJOp5NeZ8+eNeU0kB2wpf+0RESOLrF3e+xMG4SVz/bBzrRBVpuKx6rdeUqlEj179kReXh4SEhIA3BxYnpeXhylTphjdJjY2Fnl5eZg+fbq0bOvWrYiNjQUAhISEwM/PD3l5eYiKigJws1utsLAQzz//vLSPiooKFBUVoWfPngBuJk16vR4xMTEAbo6bqq2tlY6xfv16vPPOO8jPz0dgYKDRsrm5ucHNzU32+SDbxq5OIiLbYQtPDbD6ZJupqalITk5Gr169EB0djUWLFqGqqgqTJk0CAEyYMAGBgYHIyMgAAEybNg1xcXF47733MHz4cKxatQr79u3DRx99BABQKBSYPn063nrrLXTp0gUhISGYPXs2AgICpEStW7duGDp0KJ599llkZWXh+vXrmDJlCsaMGSPdmdetWzeDcu7btw9OTk7o0aNHM50ZskW28J/2VpxdnojIeqyeRCUmJuLPP//EnDlzoNVqERUVhc2bN0sDw8+cOQMnp//2Ovbt2xdffvklXn/9dbz66qvo0qULvvnmG4Pk5uWXX0ZVVRVSUlJQUVGBhx56CJs3b4ZKpZJivvjiC0yZMgWDBw+Gk5MTnnrqKSxevLj5Kk50lzi7PBGRdVl9nqiWzN7miSL7wTm9iIgsxy7miSIieWxpnhQiIkfFJIrIDnHKBSIi62MSRWSHOOUCEZH1WX1gORHJwykXiIisi0kUkR2ztSkXiIgcCbvzyKaV6qqRf6qcD/olIiKbw5YoslmcB4mIiGwZW6LIJpXqqqUECrj5tO5X1x1hixQREdkMJlFkkzgPEhER2TomUWSTOA8SERHZOiZRZJM4DxIREdk6Diwnm8V5kOxLqa4aJeVVCPHx4HtFRA6BSRTZNM6DZB94JyUROSJ25xHRXeGdlETkqJhEEdFd4Z2ULR8nvSUyjt15RHRX6u6kvDWR4p2ULQe7aokaxpYoIgtyhG/wvJOy5WJXLVHj2BJFZCFyvsHb6x1uvJOyZWqsq5bvMRGTKCKLaOgb/IBQ3wYvPpbuNrF0gsY7KVsedtUSNY7deUQWYO5ga0t3m+TsPYN+87dh7MeF6Dd/G3L2nmmS/VLLxq5aosaxJYrIAsz9Bm/JbhM5rWJEdey9q9Zeu8jJPjCJIrKAum/wr647gloh7vgN3pLdJrY6roUXN/thr121vLOQLI1JFDU7R7l4mvMN3tykyxy2OK6FFzeyNLbAUnNgEkXNytEunuZ8g7dUt4klEzQ5eHGj5mCrLbDUsjCJombDi+edWarbxJbGtfDiRs3BFltg7Z2j9CKYg0kUNRtePK3LVsa18OJGzcHWWmDtnaP1IpiKSRQ1G148CeDFjZqPLbXA2jP2IjSMSRQ1G148qQ4vbtRcbKUF1p6xF6FhTKKoWfHiSXV4cSOyD+xFaBhnLKdm5+/ljthO9/ICSkRkBzhzfcPYEkVERESNYi+CcUyiiCyItwQTUUvBLvj6mEQRWQhvCSYiatk4JorIAhq6JbhUV93kx8k/Vd7k+20JeG6IyNLYEkVkAc1xSzBbuhrGc0MtBYcE2Da2RBFZQN0twbdqyluCm6ulyx7x3FBLkbP3DPrN34axHxei3/xtyNl7xtpFotswiSKyAEvfEtxYS5ej47mhloBfBuwDu/OILMSStwS3hMnvLNVN0RLODRFnCbcPbIkisiBLTSxq75PfWbKbwt7PDRFg+SEB1DQUQghx5zCSo7KyEl5eXtDpdPD09LR2cagFKtVV293kd6W6avSbv61eS9HOtEFNWgd7PDdEt8rZe6bes0Z5g0TzMPX6ze48IhtibheXPU5+11zdFPZ4bohuxVnCbZ9NdOdlZmYiODgYKpUKMTEx2LNnT6Pxa9asQVhYGFQqFSIiIpCbm2uwXgiBOXPmwN/fH+7u7oiPj8fJkycNYi5evIhx48bB09MT3t7emDx5Mi5fviyt/+GHHzBixAj4+/vDw8MDUVFR+OKLL5qu0kS3cZQ7cdhNQWQ6PmvUtlk9icrJyUFqairS09Oxf/9+REZGQqPR4Pz580bj8/PzkZSUhMmTJ+PAgQNISEhAQkICjhw5IsUsWLAAixcvRlZWFgoLC+Hh4QGNRoOrV69KMePGjcPRo0exdetWbNy4ETt27EBKSorBce6//3589dVXOHToECZNmoQJEyZg48aNljsZ5LAc6U4cjlkiopbC6mOiYmJi0Lt3byxduhQAoNfrERQUhKlTpyItLa1efGJiIqqqqgySmT59+iAqKgpZWVkQQiAgIAAzZszAzJkzAQA6nQ5qtRrZ2dkYM2YMiouLER4ejr1796JXr14AgM2bN2PYsGE4d+4cAgICjJZ1+PDhUKvV+PTTT02qG8dEkanyT5Vj7MeF9ZavfLYPYjvda4USWX6SP45ZIiJbZer126otUdeuXUNRURHi4+OlZU5OToiPj0dBQYHRbQoKCgziAUCj0UjxJSUl0Gq1BjFeXl6IiYmRYgoKCuDt7S0lUAAQHx8PJycnFBbWv5DV0el0aNu2bYPra2pqUFlZafAiMoWtdXE1R9ciuymIyN5ZNYkqLy9HbW0t1Gq1wXK1Wg2tVmt0G61W22h83c87xbRr185gvYuLC9q2bdvgcVevXo29e/di0qRJDdYnIyMDXl5e0isoKKjB2OZka88Qs7Xy2IK6Lq66RMpJgSbv4jL1vNtq1yL/bojI1vDuPBNs374dkyZNwscff4zu3bs3GDdr1iykpqZKv1dWVlo9kbK1Z4jZWnlsTV3nelN3sptz3m1xkj/+3RCRLbJqS5SPjw+cnZ1RVlZmsLysrAx+fn5Gt/Hz82s0vu7nnWJuH7h+48YNXLx4sd5xf/zxRzz++OP44IMPMGHChEbr4+bmBk9PT4OXNdlai4Kc8jhK60PduanLXQSa7r0y97zbWteirf0dExHVsWoSpVQq0bNnT+Tl5UnL9Ho98vLyEBsba3Sb2NhYg3gA2Lp1qxQfEhICPz8/g5jKykoUFhZKMbGxsaioqEBRUZEUs23bNuj1esTExEjLfvjhBwwfPhzvvPOOwZ179sLWniFmbnkc5ZZ/wLLvlbn7bq6750xNkG3t75iIqI7Vu/NSU1ORnJyMXr16ITo6GosWLUJVVZU09mjChAkIDAxERkYGAGDatGmIi4vDe++9h+HDh2PVqlXYt28fPvroIwCAQqHA9OnT8dZbb6FLly4ICQnB7NmzERAQgISEBABAt27dMHToUDz77LPIysrC9evXMWXKFIwZM0a6M2/79u147LHHMG3aNDz11FPSWCmlUtno4HJbYmvPEDOnPA21PgwI9W2RA5Et+V7J2belJ/kzp3vO1v6OiYjqWH2eqMTERCxcuBBz5sxBVFQUDh48iM2bN0sDw8+cOYPS0lIpvm/fvvjyyy/x0UcfITIyEmvXrsU333yDHj16SDEvv/wypk6dipSUFPTu3RuXL1/G5s2boVKppJgvvvgCYWFhGDx4MIYNG4aHHnpISsQA4LPPPsOVK1eQkZEBf39/6TVy5MhmOCtNw9/LHU8+EGiwLOGBAKslIea0cDha64MlW3/k7ttSd8+Z2z3HeaWIyFZZfZ6olsza80Q11zPK5JTrTi0ctlp2SzN37iRz5nKylXmZ5M6JZSvlJ6KWj8/OI5u8ywow7Zlmda0Ptz98s6VfPM153pu5d6zZyrPk5HbP2Ur5qWWz9CSz1LIwiWrBmmssiaU+dPjwzYbZ85gxR02QyfZxKg0yF5OoFqw5LlaW/tBh64NxttrKaComyGRr7PmLCVkPk6gWzpIXK37oWE9LuGONCTLZEnv/YkLWYfW788jyLHWXlaPdQWdLeMcaNSdHmPS2uSaZdYRz6UjYEkWytYTWEHvGLjH7Yc+DlR1lnFBLGP5AzY9THFiQtac4aA45e8/U+9DhhwLZAltJXOz5wumIU41YaioNRzyX9oxTHFCzYGsI2SJbSVzsfdygI44TstRYPUc8l46AY6LorllqzBWRHLb0wGJ7Hzdoaw+jtmc8ly0TkygialFsKXGx9wunrT2M2p7xZpCWid15RNSi2NIksy1hYlFbehi1vePwh5aHA8styBEGlhPZIkvf8GDuhZ/P/TOOg63JVnFgORE5LFubZJYTixrHwdYtm63cIWtJTKKIqEXiXVa2j3PNtVyO0k3LgeV01xxhUChRHXsfLG5L6saM1V2InAC7GzNG9dnSHbKWxiSK7krO3jPoN38bxn5ciH7ztyFn7xlrF4nIoniXlQUobvvZCH5ps322dIespbE7j2Sz94kEieTiXVZNw9zPEEfpIrJ3jtRNy5Yoks2Rvm0Q3Y6TzN49cz5DHKmLyN45UmstW6JINkf6tkEtny3dSWRLZbEkcz5DOKDfvjhKay2TKJKtJUwkSATI6yayVKLjSF1W5nyG8Eub/XGEqT042aYFOcpkm5xIkOyZnAkfLZXoOOrkk6Z+hlh6ElWiOpxsk5qNI3zbIOuzVMuPud1ElryhwlG7rEz9DHGULiKyH0yiiMjmWbKLy9xuIksmOuyyujNzv7Q5yvgysg7enUdENs3Sd2WZeyeRJSfbdKS7mpoD57EjS2NLFJEZ+K22+TVHF5c53USWvqGCXVZNg/PYUXNgEkVkIke6a8qWNFcXlzndRJZOdDjO8O411/gyfrFybOzOIzIBJ/qzHlvt4uJkm7ZNbrerOY+VYXchsSWKyASOeteUrWAXF5lLTrdrzt4zSPvqMARuPsZv/lMNtzazu7Dp2WOrHpMoIhPwrinrYxcXmcuc5LtUVy0lUAAgAKR9dbjBpIhfrJpWzt4zSFt3GEIACgUw306GS7A7j8gEttqlRESNM7Xbdd/pi7h95mkBoOj0f4zGh/h44LbeQigAfrGSoVRXjVe+uplAAYAQNxNYexguwZYoIhPJ6VKyx+ZpIkekUNyeEtUtb3gbY0kXme/7Y2X1lgkAecVl+Euf4GYvjzmYRBGZwZwuJVt6Hhu1bPy7uXs9O9wDBQwTIYUCeLDDPUbj952+aHR50en/4LFIvgeA6X+X5y9dNbr8z8oaSxWtyTCJIrIAOYNOHW0KBV74m4aj/d1Yir+XO+Y/FVHvXDb0tymn5cqRmPN3Gd9NjSXbTtVb/nC3dpYu5l1jEkVkAbb0PDZbxAt/03C0vxvAssm3OV325rZcNRdLnh9T923u32Vk0D146sFAfLX/d2nZUw8GIjLIuufSFEyiiCzAlp7HVsdWWn4c8cJvKXL/bmzlb8FczZF8m9plb27LVXOw5PkxZ99y/i7fGx2FCbEdsO/0f9Ar+B67SKAAJlHUBOz1A9mSzJ2jxtJTKNhSyw9vDW86cv5ubOlvwRy2mHzb0vxlljw/5u5b7udZZJD9JE91OMWBHTJnRl1L44y9DUvs3R470wZh5bN9sDNtUKMXKktOoWBrs61b8gG+jqbu76bufDop0Ojfja39LZijseTbmmxl5npLnh9z9+1IU8KwJcrO2NK3SFv8ZmhrbOF5bLbW8mPpB/jaIku31t46v05jbO1vwRyc8LZxljw/cvZtS610lsQkyo7YWtJizx/ItsoSs3Lb4sXHUT5gAct+8an7TLh1lm1LdLPYAkdMvs1hyfMjd9+O8JQBJlF2xNaSFnv+QHYktnrxcYQPWEt/8TH3M6G5/hYs1fLmSMl3HXPOpSXPjyOee1PYxJiozMxMBAcHQ6VSISYmBnv27Gk0fs2aNQgLC4NKpUJERARyc3MN1gshMGfOHPj7+8Pd3R3x8fE4efKkQczFixcxbtw4eHp6wtvbG5MnT8bly5cNYg4dOoT+/ftDpVIhKCgICxYsaJoKy2RrY0kcqd/b3pkzPouajqXH8cj5TLD034Klx0nayhik5iD3XAoLzZ3uSOfeVFZPonJycpCamor09HTs378fkZGR0Gg0OH/+vNH4/Px8JCUlYfLkyThw4AASEhKQkJCAI0eOSDELFizA4sWLkZWVhcLCQnh4eECj0eDq1f/Oijpu3DgcPXoUW7duxcaNG7Fjxw6kpKRI6ysrKzFkyBB06NABRUVFePfddzF37lx89NFHljsZd2CLSQsvzvaDH4DNz9JffOR+Jljqb8GeB67bGjnn0tFu9LGFm6wUQtxpKKJlxcTEoHfv3li6dCkAQK/XIygoCFOnTkVaWlq9+MTERFRVVWHjxo3Ssj59+iAqKgpZWVkQQiAgIAAzZszAzJkzAQA6nQ5qtRrZ2dkYM2YMiouLER4ejr1796JXr14AgM2bN2PYsGE4d+4cAgICsGzZMrz22mvQarVQKpUAgLS0NHzzzTc4fvy4SXWrrKyEl5cXdDodPD097+o83apUV80mVSI7kbP3TL3us6b+smErnwn5p8ox9uPCestXPtsHsZ3utUKJ7Je557JUV41+87fVG16xM21Qi7xOWPomK1Ov31Ztibp27RqKiooQHx8vLXNyckJ8fDwKCgqMblNQUGAQDwAajUaKLykpgVarNYjx8vJCTEyMFFNQUABvb28pgQKA+Ph4ODk5obCwUIoZMGCAlEDVHefEiRP4z3+MP9W7pqYGlZWVBi9LYIsCkf1ojtZaW/lMsLUhB/bM3HNpq1NAWIIttXhaNYkqLy9HbW0t1Gq1wXK1Wg2tVmt0G61W22h83c87xbRrZ/hMHhcXF7Rt29Ygxtg+bj3G7TIyMuDl5SW9goKCjFeciByKrSQ5lmaLQw7slbnn0pESWFtKGHl3XhOaNWsWUlNTpd8rKyuZSBGRQ+FdXE3HnHNpq3fhWoIt3Rlu1STKx8cHzs7OKCsrM1heVlYGPz8/o9v4+fk1Gl/3s6ysDP7+/gYxUVFRUsztA9dv3LiBixcvGuzH2HFuPcbt3Nzc4Obm1mB9iYgcgSNMX9FcbGHCXltjSwmjVbvzlEolevbsiby8PGmZXq9HXl4eYmNjjW4TGxtrEA8AW7duleJDQkLg5+dnEFNZWYnCwkIpJjY2FhUVFSgqKpJitm3bBr1ej5iYGClmx44duH79usFxunbtinvusa9n+xARkWNwlK5jm7kzXFjZqlWrhJubm8jOzhbHjh0TKSkpwtvbW2i1WiGEEOPHjxdpaWlS/K5du4SLi4tYuHChKC4uFunp6cLV1VUcPnxYipk/f77w9vYW69evF4cOHRIjRowQISEhorq6WooZOnSoeOCBB0RhYaHYuXOn6NKli0hKSpLWV1RUCLVaLcaPHy+OHDkiVq1aJVq1aiWWL19uct10Op0AIHQ63d2cIiIiImpGpl6/rZ5ECSHEkiVLRPv27YVSqRTR0dFi9+7d0rq4uDiRnJxsEL969WoRGhoqlEql6N69u9i0aZPBer1eL2bPni3UarVwc3MTgwcPFidOnDCIuXDhgkhKShKtW7cWnp6eYtKkSeLSpUsGMT/99JN46KGHhJubmwgMDBTz5883q15MooiIiOyPqddvq88T1ZJZap4oIiIishy7mCeKiIiIyF4xiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMrhYuwAtWd1k8JWVlVYuCREREZmq7rp9p4e6MImyoEuXLgEAgoKCrFwSIiIiMtelS5fg5eXV4Ho+O8+C9Ho9/vjjD7Rp0wYKhaLJ9ltZWYmgoCCcPXu2RT6Tr6XXD2j5dWzp9QNafh1ZP/vX0utoyfoJIXDp0iUEBATAyanhkU9sibIgJycn3HfffRbbv6enZ4v8j1GnpdcPaPl1bOn1A1p+HVk/+9fS62ip+jXWAlWHA8uJiIiIZGASRURERCQDkyg75ObmhvT0dLi5uVm7KBbR0usHtPw6tvT6AS2/jqyf/WvpdbSF+nFgOREREZEMbIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygbkZmZieDgYKhUKsTExGDPnj2Nxi9atAhdu3aFu7s7goKC8L//+7+4evXqXe3Tkpq6fnPnzoVCoTB4hYWFWboaDTKnftevX8e8efPQqVMnqFQqREZGYvPmzXe1z+bQ1HW0pfdwx44dePzxxxEQEACFQoFvvvnmjtv88MMPePDBB+Hm5obOnTsjOzu7XoytvIeWqJ89v3+lpaUYO3YsQkND4eTkhOnTpxuNW7NmDcLCwqBSqRAREYHc3NymL7yJLFHH7Ozseu+hSqWyTAXuwNz6rVu3Do888gh8fX3h6emJ2NhYfPfdd/XiLP1/kEmUDcjJyUFqairS09Oxf/9+REZGQqPR4Pz580bjv/zyS6SlpSE9PR3FxcX45JNPkJOTg1dffVX2Pi3JEvUDgO7du6O0tFR67dy5szmqU4+59Xv99dexfPlyLFmyBMeOHcNf//pXPPnkkzhw4IDsfVqaJeoI2M57WFVVhcjISGRmZpoUX1JSguHDh2PQoEE4ePAgpk+fjmeeecbgQ9yW3kNL1A+w3/evpqYGvr6+eP311xEZGWk0Jj8/H0lJSZg8eTIOHDiAhIQEJCQk4MiRI01ZdJNZoo7Azdm+b30Pf/vtt6YqslnMrd+OHTvwyCOPIDc3F0VFRRg0aBAef/zx5v8cFWR10dHR4oUXXpB+r62tFQEBASIjI8No/AsvvCAefvhhg2WpqamiX79+svdpSZaoX3p6uoiMjLRIec1lbv38/f3F0qVLDZaNHDlSjBs3TvY+Lc0SdbSl9/BWAMTXX3/daMzLL78sunfvbrAsMTFRaDQa6Xdbew/rNFX97Pn9u1VcXJyYNm1aveWjR48Ww4cPN1gWExMjnnvuubss4d1rqjquWLFCeHl5NVm5moq59asTHh4u3njjDen35vg/yJYoK7t27RqKiooQHx8vLXNyckJ8fDwKCgqMbtO3b18UFRVJzZK//vorcnNzMWzYMNn7tBRL1K/OyZMnERAQgI4dO2LcuHE4c+aM5SrSADn1q6mpqddk7u7uLn2Lt6X3T2557lTHOrbwHspRUFBgcD4AQKPRSOfD1t5Dc92pfnXs9f0zhannwN5dvnwZHTp0QFBQEEaMGIGjR49au0iy6PV6XLp0CW3btgXQfP8HmURZWXl5OWpra6FWqw2Wq9VqaLVao9uMHTsW8+bNw0MPPQRXV1d06tQJAwcOlLq75OzTUixRPwCIiYlBdnY2Nm/ejGXLlqGkpAT9+/fHpUuXLFqf28mpn0ajwfvvv4+TJ09Cr9dj69atWLduHUpLS2Xv05IsUUfAdt5DObRardHzUVlZierqapt7D811p/oB9v3+maKhc2AP75+punbtik8//RTr16/H559/Dr1ej759++LcuXPWLprZFi5ciMuXL2P06NEAmu9zlEmUHfrhhx/w97//Hf/4xz+wf/9+rFu3Dps2bcKbb75p7aI1CVPq9+ijj+Lpp5/G/fffD41Gg9zcXFRUVGD16tVWLLlpPvzwQ3Tp0gVhYWFQKpWYMmUKJk2aBCenlvPf0ZQ62vN7SHz/WoLY2FhMmDABUVFRiIuLw7p16+Dr64vly5dbu2hm+fLLL/HGG29g9erVaNeuXbMe26VZj0b1+Pj4wNnZGWVlZQbLy8rK4OfnZ3Sb2bNnY/z48XjmmWcAABEREaiqqkJKSgpee+01Wfu0FEvUz1iy4e3tjdDQUPzyyy9NX4lGyKmfr68vvvnmG1y9ehUXLlxAQEAA0tLS0LFjR9n7tCRL1NEYa72Hcvj5+Rk9H56ennB3d4ezs7NNvYfmulP9jLGn988UDZ0De3j/5HJ1dcUDDzxgV+/hqlWr8Mwzz2DNmjUGXXfN9Tnacr762imlUomePXsiLy9PWqbX65GXl4fY2Fij21y5cqVeIuHs7AwAEELI2qelWKJ+xly+fBmnTp2Cv79/E5XcNHdzrlUqFQIDA3Hjxg189dVXGDFixF3v0xIsUUdjrPUeyhEbG2twPgBg69at0vmwtffQXHeqnzH29P6ZQs45sHe1tbU4fPiw3byHK1euxKRJk7By5UoMHz7cYF2z/R9ssiHqJNuqVauEm5ubyM7OFseOHRMpKSnC29tbaLVaIYQQ48ePF2lpaVJ8enq6aNOmjVi5cqX49ddfxZYtW0SnTp3E6NGjTd6nvddvxowZ4ocffhAlJSVi165dIj4+Xvj4+Ijz58/bfP12794tvvrqK3Hq1CmxY8cO8fDDD4uQkBDxn//8x+R9NjdL1NGW3sNLly6JAwcOiAMHDggA4v333xcHDhwQv/32mxBCiLS0NDF+/Hgp/tdffxWtWrUSL730kiguLhaZmZnC2dlZbN68WYqxpffQEvWz5/dPCCHF9+zZU4wdO1YcOHBAHD16VFq/a9cu4eLiIhYuXCiKi4tFenq6cHV1FYcPH27WutWxRB3feOMN8d1334lTp06JoqIiMWbMGKFSqQximou59fviiy+Ei4uLyMzMFKWlpdKroqJCimmO/4NMomzEkiVLRPv27YVSqRTR0dFi9+7d0rq4uDiRnJws/X79+nUxd+5c0alTJ6FSqURQUJD429/+ZnCButM+m1tT1y8xMVH4+/sLpVIpAgMDRWJiovjll1+asUaGzKnfDz/8ILp16ybc3NzEvffeK8aPHy9+//13s/ZpDU1dR1t6D7dv3y4A1HvV1Sk5OVnExcXV2yYqKkoolUrRsWNHsWLFinr7tZX30BL1s/f3z1h8hw4dDGJWr14tQkNDhVKpFN27dxebNm1qngoZYYk6Tp8+Xfr7VKvVYtiwYWL//v3NV6lbmFu/uLi4RuPrWPr/oEKIBvpHiIiIiKhBHBNFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIgcyA8//ACFQoGKigprF4XI7jGJIiKLmDhxIhQKBebPn2+w/JtvvoFCoZB+F0Lg448/RmxsLDw9PdG6dWt0794d06ZNM/lBqFeuXMGsWbPQqVMnqFQq+Pr6Ii4uDuvXr5digoODsWjRoiapm6XVnTuFQgFXV1eEhITg5ZdfxtWrV83az8CBAzF9+nSDZX379kVpaSm8vLyasMREjolJFBFZjEqlwjvvvIP//Oc/RtcLITB27Fi8+OKLGDZsGLZs2YJjx47hk08+gUqlwltvvWXScf76179i3bp1WLJkCY4fP47Nmzdj1KhRuHDhQlNWp1kNHToUpaWl+PXXX/HBBx9g+fLlSE9Pv+v9KpVK+Pn5GSSyRCRTkz5Ehojo/0tOThaPPfaYCAsLEy+99JK0/OuvvxZ1Hz0rV64UAMT69euN7kOv15t0LC8vL5Gdnd3gemPP2arz73//Wzz00ENCpVKJ++67T0ydOlVcvnxZWv/Pf/5T9OzZU7Ru3Vqo1WqRlJQkysrKpPV1z/zavHmziIqKEiqVSgwaNEiUlZWJ3NxcERYWJtq0aSOSkpJEVVWVSfVJTk4WI0aMMFg2cuRI8cADD0i/l5eXizFjxoiAgADh7u4uevToIb788kuDfdxe55KSEqm8tz6Lcu3atSI8PFwolUrRoUMHsXDhQpPKSeTo2BJFRBbj7OyMv//971iyZAnOnTtXb/3KlSvRtWtXPPHEE0a3N7W1xM/PD7m5ubh06ZLR9evWrcN9992HefPmobS0FKWlpQCAU6dOYejQoXjqqadw6NAh5OTkYOfOnZgyZYq07fXr1/Hmm2/ip59+wjfffIPTp09j4sSJ9Y4xd+5cLF26FPn5+Th79ixGjx6NRYsW4csvv8SmTZuwZcsWLFmyxKT63O7IkSPIz8+HUqmUll29ehU9e/bEpk2bcOTIEaSkpGD8+PHYs2cPAODDDz9EbGwsnn32WanOQUFB9fZdVFSE0aNHY8yYMTh8+DDmzp2L2bNnIzs7W1ZZiRyKtbM4ImqZbm1N6dOnj/if//kfIYRhS1RYWJh44oknDLabNm2a8PDwEB4eHiIwMNCkY/3444/ivvvuE66urqJXr15i+vTpYufOnQYxHTp0EB988IHBssmTJ4uUlBSDZf/+97+Fk5OTqK6uNnqsvXv3CgDi0qVLQoj/tkR9//33UkxGRoYAIE6dOiUte+6554RGozGpPsnJycLZ2Vl4eHgINzc3AUA4OTmJtWvXNrrd8OHDxYwZM6Tf4+LixLRp0wxibm+JGjt2rHjkkUcMYl566SURHh5uUlmJHBlboojI4t555x189tlnKC4uvmPsa6+9hoMHD2LOnDm4fPmySfsfMGAAfv31V+Tl5WHUqFE4evQo+vfvjzfffLPR7X766SdkZ2ejdevW0kuj0UCv16OkpATAzZaaxx9/HO3bt0ebNm0QFxcHADhz5ozBvu6//37p32q1Gq1atULHjh0Nlp0/f96k+gDAoEGDcPDgQRQWFiI5ORmTJk3CU089Ja2vra3Fm2++iYiICLRt2xatW7fGd999V69cd1JcXIx+/foZLOvXrx9OnjyJ2tpas/ZF5GiYRBGRxQ0YMAAajQazZs0yWN6lSxecOHHCYJmvry86d+6Mdu3amXUMV1dX9O/fH6+88gq2bNmCefPm4c0338S1a9ca3Oby5ct47rnncPDgQen1008/4eTJk+jUqROqqqqg0Wjg6emJL774Anv37sXXX38NAPX26+rqKv277q66WykUCuj1epPr4+Hhgc6dOyMyMhKffvopCgsL8cknn0jr3333XXz44Yd45ZVXsH37dhw8eBAajabR+hJR03KxdgGIyDHMnz8fUVFR6Nq1q7QsKSkJY8eOxfr16zFixIgmPV54eDhu3LiBq1evQqlUQqlU1mtZefDBB3Hs2DF07tzZ6D4OHz6MCxcuYP78+dJ4on379jVpOU3h5OSEV199FampqRg7dizc3d2xa9cujBgxAn/5y18AAHq9Hj///DPCw8Ol7YzV+XbdunXDrl27DJbt2rULoaGhcHZ2bvrKELUgbIkiomYRERGBcePGYfHixdKyMWPGYNSoURgzZgzmzZuHwsJCnD59Gj/++CNycnJMvogPHDgQy5cvR1FREU6fPo3c3Fy8+uqrGDRoEDw9PQHcnCdqx44d+P3331FeXg4AeOWVV5Cfn48pU6bg4MGDOHnyJNavXy8NLG/fvj2USiWWLFmCX3/9FRs2bLhjF6GlPP3003B2dkZmZiaAm614W7duRX5+PoqLi/Hcc8+hrKzMYJvg4GDpnJaXlxttCZsxYwby8vLw5ptv4ueff8Znn32GpUuXYubMmc1SLyJ7xiSKiJrNvHnzDC7kCoUCOTk5WLRoEXJzczF48GB07doV//M//4OgoCDs3LnTpP1qNBp89tlnGDJkCLp164apU6dCo9Fg9erVBsc+ffo0OnXqBF9fXwA3xzH9+OOP+Pnnn9G/f3888MADmDNnDgICAgDc7FrMzs7GmjVrEB4ejvnz52PhwoVNeEZM5+LigilTpmDBggWoqqrC66+/jgcffBAajQYDBw6En58fEhISDLaZOXMmnJ2dER4eDl9fX6PjpR588EGsXr0aq1atQo8ePTBnzhzMmzfP6B2IRGRIIYQQ1i4EERERkb1hSxQRERGRDEyiiMjm3ToFwe2vf//739YunlnOnDnTaH3MnaKAiKyH3XlEZPMaexBxYGAg3N3dm7E0d+fGjRs4ffp0g+uDg4Ph4sIbp4nsAZMoIiIiIhnYnUdEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZPh/UUaeSx6q5d8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWtNJREFUeJzt3XtcVNXeP/DPDAiDGBCB3EJBhfBCUl4Ib2hOjWklaYno44VDUs+J0oNWaCpmdTCzMpUn7EqdvKBl6lEeitDyJISKmndTw1sxKBKDInhh1u+PfuynkUGZLcPcPu/Xa17K2t+9Z609MPs7a629RiGEECAiIiIikygtXQEiIiIiW8QkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiOzavHnzoFAomhWrUCgwb948s9Zn8ODBGDx4sNUej4iaj0kUEbWK7OxsKBQK6eHs7IygoCBMnjwZv/32m6WrZ3VCQkIMzlf79u0xcOBAfP311y1y/MuXL2PevHn4/vvvW+R4RI6ISRQRtar58+fjX//6F7KysvDII4/giy++QGxsLOrq6szyfLNnz0Ztba1Zjm1uUVFR+Ne//oV//etfmDFjBn7//XeMGjUKWVlZt33sy5cv49VXX2USRXQbnC1dASJyLI888gh69+4NAHj66afh4+ODN998Exs3bsSYMWNa/PmcnZ3h7Gybb3VBQUH4r//6L+nniRMnokuXLnj33Xfx7LPPWrBmRASwJ4qILGzgwIEAgBMnThiUHzlyBE8++SS8vb2hUqnQu3dvbNy40SDm2rVrePXVVxEWFgaVSoW77roLAwYMQH5+vhRjbE7UlStX8I9//AO+vr6444478Pjjj+Ps2bON6jZ58mSEhIQ0Kjd2zE8//RQPPvgg2rdvD1dXV3Tr1g3vv/++SefiVvz9/dG1a1eUlpbeNO7cuXNISkqCn58fVCoVevbsic8++0zafvLkSfj6+gIAXn31VWnI0NzzwYjsjW1+PCMiu3Hy5EkAwJ133imVHTx4EP3790dQUBDS0tLg7u6ONWvWIC4uDl999RWeeOIJAH8mMxkZGXj66afRt29fVFdXY9euXdi9ezceeuihJp/z6aefxhdffIFx48ahX79+2LJlC0aMGHFb7Xj//ffRvXt3PP7443B2dsa///1v/P3vf4der8dzzz13W8ducO3aNZw5cwZ33XVXkzG1tbUYPHgwjh8/jpSUFISGhmLt2rWYPHkyqqqqMHXqVPj6+uL999/Hf//3f+OJJ57AqFGjAAD33ntvi9STyGEIIqJW8OmnnwoA4rvvvhPnz58XZ86cEV9++aXw9fUVrq6u4syZM1Ls0KFDRWRkpKirq5PK9Hq96NevnwgLC5PKevbsKUaMGHHT501PTxd/favbu3evACD+/ve/G8SNGzdOABDp6elS2aRJk0THjh1veUwhhLh8+XKjOI1GIzp16mRQFhsbK2JjY29aZyGE6Nixo3j44YfF+fPnxfnz58XPP/8sxo4dKwCI559/vsnjLV68WAAQX3zxhVR29epVERMTI9q1ayeqq6uFEEKcP3++UXuJyDQcziOiVqVWq+Hr64vg4GA8+eSTcHd3x8aNG3H33XcDACorK7FlyxaMGTMGFy9eREVFBSoqKnDhwgVoNBocO3ZMupvPy8sLBw8exLFjx5r9/Lm5uQCAF154waB82rRpt9UuNzc36f86nQ4VFRWIjY3Fr7/+Cp1OJ+uY3377LXx9feHr64uePXti7dq1mDBhAt58880m98nNzYW/vz8SEhKksjZt2uCFF17ApUuX8MMPP8iqCxE1xuE8ImpVmZmZCA8Ph06nwyeffIJt27bB1dVV2n78+HEIITBnzhzMmTPH6DHOnTuHoKAgzJ8/HyNHjkR4eDh69OiBYcOGYcKECTcdljp16hSUSiU6d+5sUH7PPffcVru2b9+O9PR0FBUV4fLlywbbdDodPD09TT5mdHQ0Xn/9dSgUCrRt2xZdu3aFl5fXTfc5deoUwsLCoFQafkbu2rWrtJ2IWgaTKCJqVX379pXuzouLi8OAAQMwbtw4HD16FO3atYNerwcAzJgxAxqNxugxunTpAgAYNGgQTpw4gQ0bNuDbb7/FRx99hHfffRdZWVl4+umnb7uuTS3SWV9fb/DziRMnMHToUEREROCdd95BcHAwXFxckJubi3fffVdqk6l8fHygVqtl7UtE5sckiogsxsnJCRkZGRgyZAiWLVuGtLQ0dOrUCcCfQ1DNSSC8vb2RmJiIxMREXLp0CYMGDcK8efOaTKI6duwIvV6PEydOGPQ+HT16tFHsnXfeiaqqqkblN/bm/Pvf/8aVK1ewceNGdOjQQSrfunXrLevf0jp27Ih9+/ZBr9cb9EYdOXJE2g40nSASUfNxThQRWdTgwYPRt29fLF68GHV1dWjfvj0GDx6M5cuXo6ysrFH8+fPnpf9fuHDBYFu7du3QpUsXXLlypcnne+SRRwAAS5YsMShfvHhxo9jOnTtDp9Nh3759UllZWVmjVcOdnJwAAEIIqUyn0+HTTz9tsh7mMnz4cGi1WuTk5Ehl169fx9KlS9GuXTvExsYCANq2bQsARpNEImoe9kQRkcW9+OKLeOqpp5CdnY1nn30WmZmZGDBgACIjIzFlyhR06tQJ5eXlKCoqwtmzZ/Hzzz8DALp164bBgwejV69e8Pb2xq5du/Dll18iJSWlyeeKiopCQkIC/ud//gc6nQ79+vVDQUEBjh8/3ih27NixePnll/HEE0/ghRdewOXLl/H+++8jPDwcu3fvluIefvhhuLi44LHHHsMzzzyDS5cu4cMPP0T79u2NJoLmlJycjOXLl2Py5MkoKSlBSEgIvvzyS2zfvh2LFy/GHXfcAeDPifDdunVDTk4OwsPD4e3tjR49eqBHjx6tWl8im2bp2wOJyDE0LHGwc+fORtvq6+tF586dRefOncX169eFEEKcOHFCTJw4Ufj7+4s2bdqIoKAg8eijj4ovv/xS2u/1118Xffv2FV5eXsLNzU1ERESIN954Q1y9elWKMbYcQW1trXjhhRfEXXfdJdzd3cVjjz0mzpw5Y/SW/2+//Vb06NFDuLi4iHvuuUd88cUXRo+5ceNGce+99wqVSiVCQkLEm2++KT755BMBQJSWlkpxpixxcKvlG5o6Xnl5uUhMTBQ+Pj7CxcVFREZGik8//bTRvoWFhaJXr17CxcWFyx0QyaAQ4i/9z0RERETULJwTRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgYttmpFer8fvv/+OO+64g1+xQEREZCOEELh48SICAwMbfZn3XzGJMqPff/8dwcHBlq4GERERyXDmzBncfffdTW5nEmVGDV+vcObMGXh4eFi4NkRERNQc1dXVCA4Olq7jTWESZUYNQ3geHh5MooiIiGzMrabicGI5ERERkQxMooiIiIhkYBJFREREJAPnRFlYfX09rl27Zulq2Iw2bdrAycnJ0tUgIiJiEmUpQghotVpUVVVZuio2x8vLC/7+/lx7i4iILIpJlIU0JFDt27dH27ZtmRA0gxACly9fxrlz5wAAAQEBFq4RERE5MiZRFlBfXy8lUHfddZelq2NT3NzcAADnzp1D+/btObRHREQWw4nlFtAwB6pt27YWroltajhvnEtGRESWxCTKgjiEJw/PGxERWQMmUUREREQyMIkiIiIikoFJFMmi1Wrx/PPPo1OnTnB1dUVwcDAee+wxFBQUSDGFhYUYPnw47rzzTqhUKkRGRuKdd95BfX29FHPy5EkkJSUhNDQUbm5u6Ny5M9LT03H16lVLNIuIyKaV6WpReKICZbpaS1fFIfDuPDLZyZMn0b9/f3h5eeGtt95CZGQkrl27hm+++QbPPfccjhw5gq+//hpjxoxBYmIitm7dCi8vL3z33Xd46aWXUFRUhDVr1kChUODIkSPQ6/VYvnw5unTpggMHDmDKlCmoqanBokWLLN1UIiKbkbPzNGau2w+9AJQKIGNUJOL7dLB0teyaQgghLF0Je1VdXQ1PT0/odDp4eHhI5XV1dSgtLUVoaChUKpUFayjP8OHDsW/fPhw9ehTu7u4G26qqqtCmTRt07NgRsbGx+Oqrrwy2//vf/8bjjz+O1atXIz4+3ujx33rrLbz//vv49ddfjW639fNHRNTSynS16L9gC/R/uaI7KRT4MW0IAjzdLFcxG9XU9ftGVjGcl5mZiZCQEKhUKkRHR2PHjh03jV+7di0iIiKkIaLc3FyD7UIIzJ07FwEBAXBzc4NarcaxY8cMYiorKzF+/Hh4eHjAy8sLSUlJuHTpkrR93rx5UCgUjR43Jg3WoDW7bysrK5GXl4fnnnvO6Lnw8vLCt99+iwsXLmDGjBmNtj/22GMIDw/HqlWrmnwOnU4Hb2/vFq03EZE9K62oMUigAKBeCJysuGyZCjkIiydROTk5SE1NRXp6Onbv3o2ePXtCo9FIq1LfqLCwEAkJCUhKSsKePXsQFxeHuLg4HDhwQIpZuHAhlixZgqysLBQXF8Pd3R0ajQZ1dXVSzPjx43Hw4EHk5+dj06ZN2LZtG5KTk6XtM2bMQFlZmcGjW7dueOqpp8x3MmTI2Xka/RdswbgPi9F/wRbk7Dxt1uc7fvw4hBCIiIhoMuaXX34BAHTt2tXo9oiICCnG2PGXLl2KZ5555vYrS0TkIEJ93KG8YfUXJ4UCIT5cj9CcLJ5EvfPOO5gyZQoSExPRrVs3ZGVloW3btvjkk0+Mxr/33nsYNmwYXnzxRXTt2hWvvfYa7r//fixbtgzAn71QixcvxuzZszFy5Ejce++9+Pzzz/H7779j/fr1AIDDhw8jLy8PH330EaKjozFgwAAsXboUq1evxu+//w4AaNeuHfz9/aVHeXk5Dh06hKSkpFY5L81RpquVxr8BQC+AWesOmLVHypTRX1NHin/77TcMGzYMTz31FKZMmWJq1YiIHFaApxsyRkXC6f+vo+ekUOCfo3pwKM/MLJpEXb16FSUlJVCr1VKZUqmEWq1GUVGR0X2KiooM4gFAo9FI8aWlpdBqtQYxnp6eiI6OlmKKiorg5eWF3r17SzFqtRpKpRLFxcVGn/ejjz5CeHg4Bg4c2GR7rly5gurqaoOHOVmi+zYsLEyaEN6U8PBwAH8mq8YcPnxYimnw+++/Y8iQIejXrx8++OCDlqswEZGDiO/TAT+mDcGqKQ/gx7QhnFTeCiyaRFVUVKC+vh5+fn4G5X5+ftBqtUb30Wq1N41v+PdWMe3btzfY7uzsDG9vb6PPW1dXhxUrVtyyFyojIwOenp7SIzg4+Kbxt8sS3bfe3t7QaDTIzMxETU1No+1VVVV4+OGH4e3tjbfffrvR9o0bN+LYsWNISEiQyn777TcMHjwYvXr1wqeffgql0uIdpERENinA0w0xne9iD1Qr4dWqGb7++mtcvHgRkyZNumnczJkzodPppMeZM2fMWi9Ldd9mZmaivr4effv2xVdffYVjx47h8OHDWLJkCWJiYuDu7o7ly5djw4YNSE5Oxr59+3Dy5El8/PHHmDx5Mp588kmMGTMGwP8lUB06dMCiRYtw/vx5aLXaJpNoIiIia2HRdaJ8fHzg5OSE8vJyg/Ly8nL4+/sb3adhflJT8Q3/lpeXIyAgwCAmKipKirlx4vr169dRWVlp9Hk/+ugjPProo416t27k6uoKV1fXm8a0tPg+HTAo3BcnKy4jxKdtq3z66NSpE3bv3o033ngD06dPR1lZGXx9fdGrVy+8//77AIAnn3wSW7duxRtvvIGBAweirq4OYWFheOWVVzBt2jTp++/y8/Nx/PhxHD9+HHfffbfB83D1DSIismYW7YlycXFBr169DFa51uv1KCgoQExMjNF9YmJiDOKBPy/EDfGhoaHw9/c3iKmurkZxcbEUExMTg6qqKpSUlEgxW7ZsgV6vR3R0tMGxS0tLsXXrVquaUH4jS3TfBgQEYNmyZTh58iSuXLmCs2fPYsOGDRg8eLAUM3DgQOTl5UGn0+HKlSs4cOAApk+fDicnJylm8uTJEEIYfRAREVkzi69YnpqaikmTJqF3797o27cvFi9ejJqaGiQmJgIAJk6ciKCgIGRkZAAApk6ditjYWLz99tsYMWIEVq9ejV27dkmTkRUKBaZNm4bXX38dYWFhCA0NxZw5cxAYGIi4uDgAf956P2zYMEyZMgVZWVm4du0aUlJSMHbsWAQGBhrU75NPPkFAQAAeeeSR1jspREREZPUsnkTFx8fj/PnzmDt3LrRaLaKiopCXlycNnZ0+fdpgonG/fv2wcuVKzJ49G7NmzUJYWBjWr1+PHj16SDEvvfQSampqkJycjKqqKgwYMAB5eXkGq1uvWLECKSkpGDp0KJRKJUaPHo0lS5YY1E2v1yM7OxuTJ0826D0hIiIi4te+mJG9fu2LpfH8ERGROdnU174QERER2RomURbETkB5eN6IiMgaMImygDZt2gAALl/mF0PK0XDeGs4jERGRJVh8YrkjcnJygpeXl7RWVdu2baV1k6hpQghcvnwZ586dg5eXFyf7ExGRRTGJspCGRT1vXPSTbs3Ly6vJxViJiIhaC5MoC1EoFAgICED79u1x7do1S1fHZrRp04Y9UEREZBWYRFmYk5MTkwIiIiIbxInlRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZLJ5EZWZmIiQkBCqVCtHR0dixY8dN49euXYuIiAioVCpERkYiNzfXYLsQAnPnzkVAQADc3NygVqtx7Ngxg5jKykqMHz8eHh4e8PLyQlJSEi5dutToOIsWLUJ4eDhcXV0RFBSEN954o2UaTURERDbPoklUTk4OUlNTkZ6ejt27d6Nnz57QaDQ4d+6c0fjCwkIkJCQgKSkJe/bsQVxcHOLi4nDgwAEpZuHChViyZAmysrJQXFwMd3d3aDQa1NXVSTHjx4/HwYMHkZ+fj02bNmHbtm1ITk42eK6pU6fio48+wqJFi3DkyBFs3LgRffv2Nc+JICIiItsjLKhv377iueeek36ur68XgYGBIiMjw2j8mDFjxIgRIwzKoqOjxTPPPCOEEEKv1wt/f3/x1ltvSdurqqqEq6urWLVqlRBCiEOHDgkAYufOnVLM//7v/wqFQiF+++03KcbZ2VkcOXLkttqn0+kEAKHT6W7rOERERNR6mnv9tlhP1NWrV1FSUgK1Wi2VKZVKqNVqFBUVGd2nqKjIIB4ANBqNFF9aWgqtVmsQ4+npiejoaCmmqKgIXl5e6N27txSjVquhVCpRXFwMAPj3v/+NTp06YdOmTQgNDUVISAiefvppVFZW3rRNV65cQXV1tcGDiIiI7JPFkqiKigrU19fDz8/PoNzPzw9ardboPlqt9qbxDf/eKqZ9+/YG252dneHt7S3F/Prrrzh16hTWrl2Lzz//HNnZ2SgpKcGTTz550zZlZGTA09NTegQHB980noiIiGyXxSeWWyO9Xo8rV67g888/x8CBAzF48GB8/PHH2Lp1K44ePdrkfjNnzoROp5MeZ86cacVaExERUWuyWBLl4+MDJycnlJeXG5SXl5fD39/f6D7+/v43jW/491YxN05cv379OiorK6WYgIAAODs7Izw8XIrp2rUrAOD06dNNtsnV1RUeHh4GDyIiIrJPFkuiXFxc0KtXLxQUFEhler0eBQUFiImJMbpPTEyMQTwA5OfnS/GhoaHw9/c3iKmurkZxcbEUExMTg6qqKpSUlEgxW7ZsgV6vR3R0NACgf//+uH79Ok6cOCHF/PLLLwCAjh073k6ziYiIyF600kR3o1avXi1cXV1Fdna2OHTokEhOThZeXl5Cq9UKIYSYMGGCSEtLk+K3b98unJ2dxaJFi8Thw4dFenq6aNOmjdi/f78Us2DBAuHl5SU2bNgg9u3bJ0aOHClCQ0NFbW2tFDNs2DBx3333ieLiYvHjjz+KsLAwkZCQIG2vr68X999/vxg0aJDYvXu32LVrl4iOjhYPPfSQSe3j3XlERES2p7nXb4smUUIIsXTpUtGhQwfh4uIi+vbtK3766SdpW2xsrJg0aZJB/Jo1a0R4eLhwcXER3bt3F5s3bzbYrtfrxZw5c4Sfn59wdXUVQ4cOFUePHjWIuXDhgkhISBDt2rUTHh4eIjExUVy8eNEg5rfffhOjRo0S7dq1E35+fmLy5MniwoULJrWNSRQREZHtae71WyGEEJbtC7Nf1dXV8PT0hE6n4/woIiIiG9Hc6zfvziMiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJMoGlelqUXiiAmW6WktXhYiIyGE5W7oCZJqcnacxc91+6AWgVAAZoyIR36eDpatFRETkcNgTZUPKdLVSAgUAegHMWneAPVJEREQWwCTKhpRW1EgJVIN6IXCy4rJlKkREROTAmETZkFAfdygVhmVOCgVCfNpapkJEREQOjEmUDQnwdEPGqEg4Kf7MpJwUCvxzVA8EeLpZuGZERESOhxPLbUx8nw4YFO6LkxWXEeLTlgkUERGRhTCJskEBnm5MnoiIiCyMw3lEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJYBVJVGZmJkJCQqBSqRAdHY0dO3bcNH7t2rWIiIiASqVCZGQkcnNzDbYLITB37lwEBATAzc0NarUax44dM4iprKzE+PHj4eHhAS8vLyQlJeHSpUvS9pMnT0KhUDR6/PTTTy3XcCIiIrJZFk+icnJykJqaivT0dOzevRs9e/aERqPBuXPnjMYXFhYiISEBSUlJ2LNnD+Li4hAXF4cDBw5IMQsXLsSSJUuQlZWF4uJiuLu7Q6PRoK6uTooZP348Dh48iPz8fGzatAnbtm1DcnJyo+f77rvvUFZWJj169erV8ieBiIiIbI+wsL59+4rnnntO+rm+vl4EBgaKjIwMo/FjxowRI0aMMCiLjo4WzzzzjBBCCL1eL/z9/cVbb70lba+qqhKurq5i1apVQgghDh06JACInTt3SjH/+7//KxQKhfjtt9+EEEKUlpYKAGLPnj2y26bT6QQAodPpZB+DiIiIWldzr98W7Ym6evUqSkpKoFarpTKlUgm1Wo2ioiKj+xQVFRnEA4BGo5HiS0tLodVqDWI8PT0RHR0txRQVFcHLywu9e/eWYtRqNZRKJYqLiw2O/fjjj6N9+/YYMGAANm7ceNP2XLlyBdXV1QYPIiIisk8WTaIqKipQX18PPz8/g3I/Pz9otVqj+2i12pvGN/x7q5j27dsbbHd2doa3t7cU065dO7z99ttYu3YtNm/ejAEDBiAuLu6miVRGRgY8PT2lR3Bw8K1OAREREdkofgFxE3x8fJCamir93KdPH/z+++9466238PjjjxvdZ+bMmQb7VFdXM5EiIiKyUxbtifLx8YGTkxPKy8sNysvLy+Hv7290H39//5vGN/x7q5gbJ65fv34dlZWVTT4vAERHR+P48eNNbnd1dYWHh4fBg4iIiOyTRZMoFxcX9OrVCwUFBVKZXq9HQUEBYmJijO4TExNjEA8A+fn5UnxoaCj8/f0NYqqrq1FcXCzFxMTEoKqqCiUlJVLMli1boNfrER0d3WR99+7di4CAANMbSkRERHbH4sN5qampmDRpEnr37o2+ffti8eLFqKmpQWJiIgBg4sSJCAoKQkZGBgBg6tSpiI2Nxdtvv40RI0Zg9erV2LVrFz744AMAgEKhwLRp0/D6668jLCwMoaGhmDNnDgIDAxEXFwcA6Nq1K4YNG4YpU6YgKysL165dQ0pKCsaOHYvAwEAAwGeffQYXFxfcd999AIB169bhk08+wUcffdTKZ4iIiIiskcWTqPj4eJw/fx5z586FVqtFVFQU8vLypInhp0+fhlL5fx1m/fr1w8qVKzF79mzMmjULYWFhWL9+PXr06CHFvPTSS6ipqUFycjKqqqowYMAA5OXlQaVSSTErVqxASkoKhg4dCqVSidGjR2PJkiUGdXvttddw6tQpODs7IyIiAjk5OXjyySfNfEaIiIjIFiiEEMLSlbBX1dXV8PT0hE6n4/woIiIiG9Hc67fFVywnIiIiskVMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkihop09Wi8EQFynS1lq4KERGR1bL4OlFkXXJ2nsbMdfuhF4BSAWSMikR8nw6WrhYREZHVYU8UScp0tVICBQB6Acxad4A9UkREREYwiSJJaUWNlEA1qBcCJysuW6ZCREREVoxJFElCfdyhVBiWOSkUCPFpa5kKERERWTEmUSQJ8HRDxqhIOCn+zKScFAr8c1QPBHi6WbhmRERE1ocTy8lAfJ8OGBTui5MVlxHi05YJFBERUROYRFEjAZ5uTJ6IiIhugcN5RERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSZQDKNPVovBEBcp0tZauChERkd3gd+fZuZydpzFz3X7oBaBUABmjIhHfp4Olq0VERGTz2BNlx8p0tVICBQB6Acxad4A9UkRERC2ASZQdK62okRKoBvVC4GTFZctUiIiIyI4wibJjoT7uUCoMy5wUCoT4tLVMhYiIiOwIkyg7FuDphoxRkXBS/JlJOSkU+OeoHgjwdLNwzYiIiGwfJ5bbufg+HTAo3BcnKy4jxKctEygiIqIWwiTKAQR4ujF5IiIiamEcziMiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERyWAVSVRmZiZCQkKgUqkQHR2NHTt23DR+7dq1iIiIgEqlQmRkJHJzcw22CyEwd+5cBAQEwM3NDWq1GseOHTOIqaysxPjx4+Hh4QEvLy8kJSXh0qVLRp/v+PHjuOOOO+Dl5XVb7SQiIiL7YfEkKicnB6mpqUhPT8fu3bvRs2dPaDQanDt3zmh8YWEhEhISkJSUhD179iAuLg5xcXE4cOCAFLNw4UIsWbIEWVlZKC4uhru7OzQaDerq6qSY8ePH4+DBg8jPz8emTZuwbds2JCcnN3q+a9euISEhAQMHDmz5xhMREZHNUgghxK3DzCc6Ohp9+vTBsmXLAAB6vR7BwcF4/vnnkZaW1ig+Pj4eNTU12LRpk1T2wAMPICoqCllZWRBCIDAwENOnT8eMGTMAADqdDn5+fsjOzsbYsWNx+PBhdOvWDTt37kTv3r0BAHl5eRg+fDjOnj2LwMBA6dgvv/wyfv/9dwwdOhTTpk1DVVVVs9tWXV0NT09P6HQ6eHh4yDk9RERE1Mqae/22aE/U1atXUVJSArVaLZUplUqo1WoUFRUZ3aeoqMggHgA0Go0UX1paCq1WaxDj6emJ6OhoKaaoqAheXl5SAgUAarUaSqUSxcXFUtmWLVuwdu1aZGZmNqs9V65cQXV1tcGDiIiI7JNFk6iKigrU19fDz8/PoNzPzw9ardboPlqt9qbxDf/eKqZ9+/YG252dneHt7S3FXLhwAZMnT0Z2dnaze5EyMjLg6ekpPYKDg5u1HxEREdkei8+JslZTpkzBuHHjMGjQoGbvM3PmTOh0Oulx5swZM9aQiIiILMmiSZSPjw+cnJxQXl5uUF5eXg5/f3+j+/j7+980vuHfW8XcOHH9+vXrqKyslGK2bNmCRYsWwdnZGc7OzkhKSoJOp4OzszM++eQTo3VzdXWFh4eHwYOIiIjsk0WTKBcXF/Tq1QsFBQVSmV6vR0FBAWJiYozuExMTYxAPAPn5+VJ8aGgo/P39DWKqq6tRXFwsxcTExKCqqgolJSVSzJYtW6DX6xEdHQ3gz3lTe/fulR7z58/HHXfcgb179+KJJ55omRNARDarTFeLwhMVKNPVWroqRGQhzpauQGpqKiZNmoTevXujb9++WLx4MWpqapCYmAgAmDhxIoKCgpCRkQEAmDp1KmJjY/H2229jxIgRWL16NXbt2oUPPvgAAKBQKDBt2jS8/vrrCAsLQ2hoKObMmYPAwEDExcUBALp27Yphw4ZhypQpyMrKwrVr15CSkoKxY8dKd+Z17drVoJ67du2CUqlEjx49WunMEJG1ytl5GjPX7YdeAEoFkDEqEvF9Oli6WkTUyiyeRMXHx+P8+fOYO3cutFotoqKikJeXJ00MP336NJTK/+sw69evH1auXInZs2dj1qxZCAsLw/r16w2Sm5deegk1NTVITk5GVVUVBgwYgLy8PKhUKilmxYoVSElJwdChQ6FUKjF69GgsWbKk9RpORDapTFcrJVAAoBfArHUHMCjcFwGebpatHBG1KouvE2XPuE4Ukf0pPFGBcR8WNypfNeUBxHS+ywI1IqKWZhPrRBER2ZpQH3coFYZlTgoFQnzaWqZCRGQxTKKIiEwQ4OmGjFGRcFL8mUk5KRT456geHMojckAmzYm6du0aXnnlFaxbtw7e3t549tln8be//U3aXl5ejsDAQNTX17d4RYmIrEV8nw4YFO6LkxWXEeLTlgkUkYMyKYl644038Pnnn2PGjBmoqqpCamoqiouLsXz5cimGU6yIyBEEeLoxeSJycCYlUStWrMBHH32ERx99FAAwefJkPPLII0hMTJQWoFQoFDc7BBEREZFdMGlO1G+//WawlECXLl3w/fffo7CwEBMmTOAwHhERETkMk5Iof39/nDhxwqAsKCgIW7duxc6dOzF58uSWrBsRERGR1TIpiXrwwQexcuXKRuWBgYHYsmULSktLW6xiRERERNbMpDlRc+bMwZEjR4xuCwoKwg8//ID8/PwWqRgRERGRNeOK5WbEFcuJiIhsj1lXLF+7di1GjRqFHj16oEePHhg1ahS+/PJL2ZUlIiIisjUmJVF6vR7x8fGIj4/HoUOH0KVLF3Tp0gUHDx5EfHw8xo4dy3WiiIiIyCGYNCfqvffew3fffYeNGzdKa0U12LhxIxITE/Hee+9h2rRpLVlHIiIiIqtjUk/Up59+irfeeqtRAgUAjz/+OBYuXCgtuklERERkz0xKoo4dOwa1Wt3kdrVajWPHjt12pYiIiIisnUlJlJubG6qqqprcXl1dDZVKdbt1IiIiIrJ6JiVRMTExeP/995vcnpmZiZiYmNuuFBEREZG1M2li+SuvvILBgwfjwoULmDFjBiIiIiCEwOHDh/H2229jw4YN2Lp1q7nqSkRERGQ1TEqi+vXrh5ycHCQnJ+Orr74y2HbnnXdi1apV6N+/f4tWkIiIiMgayVqx/PLly/jmm2+kSeTh4eF4+OGH0bZt2xavoC3jiuVERES2p7nXb5N6orZs2YKUlBT89NNPeOKJJwy26XQ6dO/eHVlZWRg4cKC8WhMRERHZCJMmli9evBhTpkwxmpV5enrimWeewTvvvNNilSMiIiKyViYlUT///DOGDRvW5PaHH34YJSUlt10pIiIiImtnUhJVXl6ONm3aNLnd2dkZ58+fv+1KETUo09Wi8EQFynS1lq4KERGRAZPmRAUFBeHAgQPo0qWL0e379u1DQEBAi1SMKGfnacxctx96ASgVQMaoSMT36WDpahEREQEwsSdq+PDhmDNnDurq6hptq62tRXp6utHv1SMyVZmuVkqgAEAvgFnrDrBHioiIrIZJPVGzZ8/GunXrEB4ejpSUFNxzzz0AgCNHjiAzMxP19fV45ZVXzFJRciylFTVSAtWgXgicrLiMAE83y1SKiIjoL0xKovz8/FBYWIj//u//xsyZM9GwxJRCoYBGo0FmZib8/PzMUlFyLKE+7lAqYJBIOSkUCPHhWmRERGQdTEqiAKBjx47Izc3FH3/8gePHj0MIgbCwMNx5553mqB85qABPN2SMisSsdQdQLwScFAr8c1QP9kIREZHVkLViOTUPVyy/fWW6WpysuIwQn7ZMoIiISFKmq0VpRQ1Cfdxb/PpglhXLiVpbgKcbkyciIjJgLXdvm3R3HhEREZElWdPd20yiiIiIyGbc7O7t1sYkioiIiGxGw93bf2Wpu7eZRBEREZHNaLh720nxZyZlybu3ObGciIiIbEp8nw4YFO5r8bu3raInKjMzEyEhIVCpVIiOjsaOHTtuGr927VpERERApVIhMjISubm5BtuFEJg7dy4CAgLg5uYGtVqNY8eOGcRUVlZi/Pjx8PDwgJeXF5KSknDp0iVp+9GjRzFkyBD4+flBpVKhU6dOmD17Nq5du9ZyDSciIiJZAjzdENP5LovewW3xJConJwepqalIT0/H7t270bNnT2g0Gpw7d85ofGFhIRISEpCUlIQ9e/YgLi4OcXFxOHDggBSzcOFCLFmyBFlZWSguLoa7uzs0Go3Bd/6NHz8eBw8eRH5+PjZt2oRt27YhOTlZ2t6mTRtMnDgR3377LY4ePYrFixfjww8/RHp6uvlOBhEREdkMiy+2GR0djT59+mDZsmUAAL1ej+DgYDz//PNIS0trFB8fH4+amhps2rRJKnvggQcQFRWFrKwsCCEQGBiI6dOnY8aMGQAAnU4HPz8/ZGdnY+zYsTh8+DC6deuGnTt3onfv3gCAvLw8DB8+HGfPnkVgYKDRuqampmLnzp34z3/+06y2cbFNIiIi29Pc67dFe6KuXr2KkpISqNVqqUypVEKtVqOoqMjoPkVFRQbxAKDRaKT40tJSaLVagxhPT09ER0dLMUVFRfDy8pISKABQq9VQKpUoLi42+rzHjx9HXl4eYmNjm2zPlStXUF1dbfAgIiIi+2TRJKqiogL19fWNvrTYz88PWq3W6D5arfam8Q3/3iqmffv2BtudnZ3h7e3d6Hn79esHlUqFsLAwDBw4EPPnz2+yPRkZGfD09JQewcHBTcYSERGRbbP4nChrl5OTg927d2PlypXYvHkzFi1a1GTszJkzodPppMeZM2dasaZERETUmiy6xIGPjw+cnJxQXl5uUF5eXg5/f3+j+/j7+980vuHf8vJyBAQEGMRERUVJMTdOXL9+/ToqKysbPW9Db1K3bt1QX1+P5ORkTJ8+HU5OTo3q5urqCldX11s1m4iIiOyARXuiXFxc0KtXLxQUFEhler0eBQUFiImJMbpPTEyMQTwA5OfnS/GhoaHw9/c3iKmurkZxcbEUExMTg6qqKpSUlEgxW7ZsgV6vR3R0dJP11ev1uHbtGvR6vemNJSIiIrti8cU2U1NTMWnSJPTu3Rt9+/bF4sWLUVNTg8TERADAxIkTERQUhIyMDADA1KlTERsbi7fffhsjRozA6tWrsWvXLnzwwQcAAIVCgWnTpuH1119HWFgYQkNDMWfOHAQGBiIuLg4A0LVrVwwbNgxTpkxBVlYWrl27hpSUFIwdO1a6M2/FihVo06YNIiMj4erqil27dmHmzJmIj49HmzZtWv9EERERkVWxeBIVHx+P8+fPY+7cudBqtYiKikJeXp40Mfz06dNQKv+vw6xfv35YuXIlZs+ejVmzZiEsLAzr169Hjx49pJiXXnoJNTU1SE5ORlVVFQYMGIC8vDyoVCopZsWKFUhJScHQoUOhVCoxevRoLFmyRNru7OyMN998E7/88guEEOjYsSNSUlLwj3/8oxXOChEREVk7i68TZc+4ThQREZHtsYl1ooiIiIhsFZMoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFjZTpalF4ogJlulpLV4WIiMhqOVu6AmR+ZbpalFbUINTHHQGebjeNzdl5GjPX7YdeAEoFkDEqEvF9OrRSTYmIiGwHkyg7Z0pSVKarlWIBQC+AWesOYFC47y2TLyIiIkfD4Tw71lRS1NQwXWlFjRTboF4InKy4bOaaEhER2R4mUXbM1KQo1McdSoVhmZNCgRCftmaqIRERke1iEmXHTE2KAjzdkDEqEk4KhRT7z1E9OJRHRERkBOdE2bGGpGjWugOoF6JZSVF8nw4YFO6LkxWXEeLTlgkUERFRE5hE2Tk5SVGApxuTJyIioltgEuUAmBQRERG1PM6JIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCSDVSRRmZmZCAkJgUqlQnR0NHbs2HHT+LVr1yIiIgIqlQqRkZHIzc012C6EwNy5cxEQEAA3Nzeo1WocO3bMIKayshLjx4+Hh4cHvLy8kJSUhEuXLknbv//+e4wcORIBAQFwd3dHVFQUVqxY0XKNJiIiIptm8SQqJycHqampSE9Px+7du9GzZ09oNBqcO3fOaHxhYSESEhKQlJSEPXv2IC4uDnFxcThw4IAUs3DhQixZsgRZWVkoLi6Gu7s7NBoN6urqpJjx48fj4MGDyM/Px6ZNm7Bt2zYkJycbPM+9996Lr776Cvv27UNiYiImTpyITZs2me9kEBERkc1QCCGEJSsQHR2NPn36YNmyZQAAvV6P4OBgPP/880hLS2sUHx8fj5qaGoNk5oEHHkBUVBSysrIghEBgYCCmT5+OGTNmAAB0Oh38/PyQnZ2NsWPH4vDhw+jWrRt27tyJ3r17AwDy8vIwfPhwnD17FoGBgUbrOmLECPj5+eGTTz5pVtuqq6vh6ekJnU4HDw8Pk84LERERWUZzr98W7Ym6evUqSkpKoFarpTKlUgm1Wo2ioiKj+xQVFRnEA4BGo5HiS0tLodVqDWI8PT0RHR0txRQVFcHLy0tKoABArVZDqVSiuLi4yfrqdDp4e3s3uf3KlSuorq42eBAREZF9smgSVVFRgfr6evj5+RmU+/n5QavVGt1Hq9XeNL7h31vFtG/f3mC7s7MzvL29m3zeNWvWYOfOnUhMTGyyPRkZGfD09JQewcHBTcYSERHZkjJdLQpPVKBMV2vpqlgNi8+JsgVbt25FYmIiPvzwQ3Tv3r3JuJkzZ0Kn00mPM2fOtGItiYiIzCNn52n0X7AF4z4sRv8FW5Cz87Slq2QVLJpE+fj4wMnJCeXl5Qbl5eXl8Pf3N7qPv7//TeMb/r1VzI0T169fv47KyspGz/vDDz/gsccew7vvvouJEyfetD2urq7w8PAweBAREdmyMl0tZq7bD/3/n0GtF8CsdQfYIwULJ1EuLi7o1asXCgoKpDK9Xo+CggLExMQY3ScmJsYgHgDy8/Ol+NDQUPj7+xvEVFdXo7i4WIqJiYlBVVUVSkpKpJgtW7ZAr9cjOjpaKvv+++8xYsQIvPnmmwZ37hERETmK0ooaKYFqUC8ETlZctkyFrIizpSuQmpqKSZMmoXfv3ujbty8WL16Mmpoaae7RxIkTERQUhIyMDADA1KlTERsbi7fffhsjRozA6tWrsWvXLnzwwQcAAIVCgWnTpuH1119HWFgYQkNDMWfOHAQGBiIuLg4A0LVrVwwbNgxTpkxBVlYWrl27hpSUFIwdO1a6M2/r1q149NFHMXXqVIwePVqaK+Xi4nLTyeVERET2JNTHHUoFDBIpJ4UCIT5tLVcpayGswNKlS0WHDh2Ei4uL6Nu3r/jpp5+kbbGxsWLSpEkG8WvWrBHh4eHCxcVFdO/eXWzevNlgu16vF3PmzBF+fn7C1dVVDB06VBw9etQg5sKFCyIhIUG0a9dOeHh4iMTERHHx4kVp+6RJkwSARo/Y2Nhmt0un0wkAQqfTNf9kEBERWZnVO06JTmmbRceXN4lOaZvF6h2nLF0ls2ru9dvi60TZM64TRWQ7ynS1KK2oQaiPOwI83SxdHSKrU6arxcmKywjxaWv3fyPNvX5bfDiPiMjScnaelibOKhVAxqhIxPfpYOlqEVmVAE83u0+eTMUlDojIofHOIyKSi0kUtTou2EbWhHceEZFcHM6jVsVhE2pgLXOQeOcREcnFnihqNRw2oQbWtPpxgKcbMkZFwkmhAPBnAvXPUT0494OIbok9UdRqbjZswguW42gqmR4U7mux34P4Ph0wKNzXYe48IqKWwSSKWg2HTQiw3mSadx4Rkak4nEetxhGHTTiJvrGGZPqv7D2Z5u8BkX1iTxS1KkcaNrG2SfTWMpG7IZmete4A6oWw+2Ta2n4PiKjlcMVyM+KK5Y6rTFeL/gu2NBq6/DFtiEWSBWu8kNv66sfNSUqt7feAiJqHK5YTWZA1zfuxxoncgG3PQWpuUmpNvwdE1PI4J4rIDOTO+zHH3BkuJtmyTFmqwxHnfxE5EiZRRGYgZxK9udZO4oW8ZZmSlDrizRREjoTDeURmYsokenMOuTnaRG5zM3WpDke6mYLI0TCJIjKj5s77MffcGV7IW46cpNSW538RUdOYRBFZgdZYiNTaLuTWsuSCHExKiQhgEkVkFRxtyM0al1wwlbUlpUTWxpY/KDUX14kyI64TRaay9bWTmoNrJxHZP1v/oNTc6zfvziOyIgGebojpfJddJxNccoFuxK/FsS+mLANi6zicR0Stil9ETX9l6z0W1JgjLTLLnigialVcO8n2mKunqExXi7SvDHss0tbtv+nzsNfK+jnS2nTsiSKiVse722yHOXuKSk79gRsn5QoB7D71B0bc2/h3gr1WtsGRbpRhEkWtzpru2LCmujga3t3Wcsz1e2zu711s6r4mY8XW+h2QZJyjfFBiEkWtypo+SVpTXcj2WEsCbs7fY3PPbekd4g0FYNAbpQDQK+TOVq8LtTxH+KDEOVHUaqzpjg1rqgvZHnN9z6GpzP17bO65LQGeblgwOlK6ECkBLBgdafTC60jzbMh2MImiVmNNt7ZbU13ItlhTAm7u3+PWuAkgvk8HbJ/5IFZNeQDbZz7YZC+atd6QwInujo3DedRqrOnWdmuqC9kWaxpWao3f49aY29LcYR85dTHnsCunBBB7oqjVWNMnSWuqC9kWOcNK5uqtaK3fY2taBNaUuphz2FXO8gxkf/i1L2bEr30xzpq+2sSa6kK2I2fn6Ua3bzfVA9EavRX8PW7M3F8vtGnf70hZuadReea4+zDi3sDbPj5ZVnOv3xzOo1ZnTXdsWFNd5LCWO8QcTXOHlVrrtnxb/z02B3MPu1bWXGmi/OptH5tsB5MoIhvF+RiW1ZzExZrmTzkac88X83Z3baLcpUWOT7aBc6KIbJCcO8R4F1Hr4235lmPu+WK9Ot6JG15aKBTA/R0br3FFzWOL71HsiSKyQab2cLDXyjJa6+svTB3WdZRhYHPeWdiwxtWNf1f2fD7NyVbfozix3Iw4sZzMxZRJs+aeYEu3ZurEb1OSHFMvPrZ6sbJWnNR/+6zxPaq5128O5xHZIFOGKriwqOWZ67Z8U4d1rWmhUHth7uUfbHGIy1S2/B7F4Ty6bRxKsIzmDlVwYVHbYerdfKYO63Kiu21xlF5DW36PYk8U3RZTF7MzNd4RPoXdjuZ8CubCorbD1E/kpk5c50R32+FIvYa2/B5l8SQqMzMTISEhUKlUiI6Oxo4dO24av3btWkREREClUiEyMhK5ubkG24UQmDt3LgICAuDm5ga1Wo1jx44ZxFRWVmL8+PHw8PCAl5cXkpKScOnSJWl7XV0dJk+ejMjISDg7OyMuLq7F2mtPzD2UYC1f8moP4vt0wI9pQ7BqygP4MW2IXX6atQemJjmmXnxs+WLlaGx5iEsOW32PsmgSlZOTg9TUVKSnp2P37t3o2bMnNBoNzp07ZzS+sLAQCQkJSEpKwp49exAXF4e4uDgcOHBAilm4cCGWLFmCrKwsFBcXw93dHRqNBnV1dVLM+PHjcfDgQeTn52PTpk3Ytm0bkpOTpe319fVwc3PDCy+8ALVabb4TYONM/SM3Jd6RPoX9lTl73qzpqzvIODlJjqkXH1u9WDkaR+w1tMX3KIvenRcdHY0+ffpg2bJlAAC9Xo/g4GA8//zzSEtLaxQfHx+PmpoabNq0SSp74IEHEBUVhaysLAghEBgYiOnTp2PGjBkAAJ1OBz8/P2RnZ2Ps2LE4fPgwunXrhp07d6J3794AgLy8PAwfPhxnz55FYKDhcv2TJ09GVVUV1q9fb3L77P3uPFPvqDAlvvBEBcZ9WNzoGKumPICYzne1WBusiaPMf6Bb4x1fBJj29ULUsqz+7ryrV6+ipKTEoKdHqVRCrVajqKjI6D5FRUWNeoY0Go0UX1paCq1WaxDj6emJ6OhoKaaoqAheXl5SAgUAarUaSqUSxcWNL9qmuHLlCqqrqw0e9sycQwmO9inMUXveyDhb/ERuL6xpHiZ7Da2fxe7Oq6ioQH19Pfz8/AzK/fz8cOTIEaP7aLVao/FarVba3lB2s5j27dsbbHd2doa3t7cUI1dGRgZeffXV2zqGrTF1MbvmxrfWIoXWgndNtTzeBUqmssbeYH4vonXjEgctaObMmUhNTZV+rq6uRnBwsAVr1DpM/SNvbrw5Vxu2NrZ8i681ssaLIVm3Ml0t0r7aj4Y/Qb0A0tbtb/Eviyb7YrHhPB8fHzg5OaG8vNygvLy8HP7+/kb38ff3v2l8w7+3irlx4vr169dRWVnZ5PM2l6urKzw8PAwedHscZViDd021HA6Nkhwlp/7AjROEhQB2n/rDIvUh22CxJMrFxQW9evVCQUGBVKbX61FQUICYmBij+8TExBjEA0B+fr4UHxoaCn9/f4OY6upqFBcXSzExMTGoqqpCSUmJFLNlyxbo9XpER0e3WPsciTXNITA3c7aV8x9ahqPdGk4to6l7rPjFaHQzFh3OS01NxaRJk9C7d2/07dsXixcvRk1NDRITEwEAEydORFBQEDIyMgAAU6dORWxsLN5++22MGDECq1evxq5du/DBBx8AABQKBaZNm4bXX38dYWFhCA0NxZw5cxAYGCit9dS1a1cMGzYMU6ZMQVZWFq5du4aUlBSMHTvW4M68Q4cO4erVq6isrMTFixexd+9eAEBUVFSrnR9b4EjDJq3RVs5/uH0cGiU5eod4QwEY9EYpAPQKudNCNSJbYNEkKj4+HufPn8fcuXOh1WoRFRWFvLw8aWL46dOnoVT+X2dZv379sHLlSsyePRuzZs1CWFgY1q9fjx49ekgxL730EmpqapCcnIyqqioMGDAAeXl5UKlUUsyKFSuQkpKCoUOHQqlUYvTo0ViyZIlB3YYPH45Tp05JP993330Amv604ohM/YoKW+ZIbbV1DUOjf014OTR6exxhkn6ApxsWjI7EzK/2Q48/h2kyRkfabXupZVh0nSh7Z+/rRDnSWk7W2lZbvriZs+45O09Lk4QVABaMtt8eUnNzpN5mgGt00Z+ae/3m3XkkmyMNm1hjW2354mbOujf0Gja8VALsNZTLEXtgOaROprD4d+eR7XKkO8qsra22fAeauevOieUth+eS6ObYE0W3xZHWcrKmttry4pzmrrs19hraKrnn0paHmW0dz33rYhJFt82Rur+tpa22nCiYu+6Ottq9Ock5l7Y8zGzrrO3cO0JCx4nlZmTvE8vJsmz5y0lbo+6cINxymnsuTf1S8tbgCBdywPrOvbUldKbixHIiO2dNw4umao26W0uvoT1o7rm0tmFmW7+Qm8Kazr0j3ZDAJIrIBNb2qdaWEwVbrjsZZ03DzI50IQes69xbU0Jnbrw7j6iZcnaeRv8FWzDuw2L0X7AFOTtPW7pKRFbFmu5idbQ7C63p3DckdH9lK3M2TcWeKKJmcLRPtURyWcswszX1zPyVOXuzreXcO9LNHUyiiJrBkbqniW6XNQzVWuOF3JG+f9NaEjpzYxJF1AxcL4fI9ljThdwRe7OtJaEzJyZRRM3A9XKIbJO1XMjZm22fmETRbXOU3hZTPtU64qdOImqatc7Rsia2eC1hEkW3xdF6W2x1vRw5bPENjchaWeMcLWtiq9cSJlEkG3tbmmbrnzpt9Q2N6HY5wt1z1saWryVcJ4pkc7R1WExhTWu2mKqpN7QyXa3F61V4osLi9SD71RprwQV4uiGm81028V7QWmz5WsKeKJLN1ntbzM1WP3Va41Ake8bI3Gy5N8TWubs4GS1v62L9/TzWX0OyWrbc29JabPFTp7WtNmytPWNkX2y5N6S1mKs3uOZqvdHyy1f1Lfo85sCeKLotttrbQk2ztgmw1tgzRvaHPes3Z87eYFs+90yi6LZZyzosrcFR7lhrjeS4uefSlt9gqeWZ62/Q2j48WBNzD3Xa8rlnEkXUTI42L8ecybEp59KW32CpZZn7b5A968a1Rm+wrZ57hRBC3DqM5Kiuroanpyd0Oh08PDwsXR26DWW6WvRfsKVRb8iPaUNs5o/dWsg9l2W6Wpt7g6WWw79By3HEc9/c6zcnlhM1Ayedthy559IWJ+lTy+HfoOXwJqKmcTiPqBlaa16OI8y54hwnkoO/N5Zlq8Nt5saeKKJmaI1PYq2x0J814KdakoO/N5Znbb3B1rAAL+dEmRHnRNkfc83LKdPVol/GFvz1j1GhAArTHmyx57G2Xi7OcSI5+HtDgPlvMmju9ZvDeUQmMNcdayWn/sCNn2aEAHaf+gMj7r3957PGOwsdaWkMajn8vSFrWl2ew3lEVqCpDuGW6Cfmit9EtssahqysjTXdZMCeKCIr0DvEGwrAcDgPQK+QO2/72Fzxm8g2WWMPsjWwppsM2BPlAPhJxvoFeLphwehI6Q9SCWDB6MgWSXKs7bvwiOjW2IPcNGu6yYA9UXaOn2Rsh7luIbaXFb+tbWI8kTmxB/nmrGXJBSZRdsyaJt9R85hr0qy1vOHIxQ8D5GisacjKWlnDTQYczrNj1jT5jszDlKFaa1vjpbk4rEGOyJqGrKhp7ImyY/wkY9+srXfGXMNtHNYgR2XrPciOgD1RdoyfZOyXtfXOmHO1dU6MJ0dmqz3IjoI9UXaOn2QsyxF6Z8w9985eJsYTkf1hEuUArGHynSMy53CbNQ3VtkZCxw8DRGSNrGI4LzMzEyEhIVCpVIiOjsaOHTtuGr927VpERERApVIhMjISubm5BtuFEJg7dy4CAgLg5uYGtVqNY8eOGcRUVlZi/Pjx8PDwgJeXF5KSknDp0iWDmH379mHgwIFQqVQIDg7GwoULW6bBZPfMPdxmTUO1rTXcxmENIrI2Fk+icnJykJqaivT0dOzevRs9e/aERqPBuXPnjMYXFhYiISEBSUlJ2LNnD+Li4hAXF4cDBw5IMQsXLsSSJUuQlZWF4uJiuLu7Q6PRoK6uTooZP348Dh48iPz8fGzatAnbtm1DcnKytL26uhoPP/wwOnbsiJKSErz11luYN28ePvjgA/OdDLIbrXFnZHyfDvgxbQhWTXkAP6YNsdikcmtK6IiIWpNCNPWlXa0kOjoaffr0wbJlywAAer0ewcHBeP7555GWltYoPj4+HjU1Ndi0aZNU9sADDyAqKgpZWVkQQiAwMBDTp0/HjBkzAAA6nQ5+fn7Izs7G2LFjcfjwYXTr1g07d+5E7969AQB5eXkYPnw4zp49i8DAQLz//vt45ZVXoNVq4eLiAgBIS0vD+vXrceTIkWa1rbnfAk32p0xXi/4LtjQabvsxbYjdJhdluloOtxGRXWju9duiPVFXr15FSUkJ1Gq1VKZUKqFWq1FUVGR0n6KiIoN4ANBoNFJ8aWkptFqtQYynpyeio6OlmKKiInh5eUkJFACo1WoolUoUFxdLMYMGDZISqIbnOXr0KP744w+jdbty5Qqqq6sNHuSYHLF3hsNtRORoLDqxvKKiAvX19fDz8zMo9/Pza7K3R6vVGo3XarXS9oaym8W0b9/eYLuzszO8vb0NYkJDQxsdo2HbnXc2/mLYjIwMvPrqq003mBwKJ0MTEdk3i8+JsiczZ86ETqeTHmfOnLF0lcjC2DtDRGS/LJpE+fj4wMnJCeXl5Qbl5eXl8Pf3N7qPv7//TeMb/r1VzI0T169fv47KykqDGGPH+Otz3MjV1RUeHh4GDyIiIrJPFk2iXFxc0KtXLxQUFEhler0eBQUFiImJMbpPTEyMQTwA5OfnS/GhoaHw9/c3iKmurkZxcbEUExMTg6qqKpSUlEgxW7ZsgV6vR3R0tBSzbds2XLt2zeB57rnnHqNDeURERORghIWtXr1auLq6iuzsbHHo0CGRnJwsvLy8hFarFUIIMWHCBJGWlibFb9++XTg7O4tFixaJw4cPi/T0dNGmTRuxf/9+KWbBggXCy8tLbNiwQezbt0+MHDlShIaGitraWilm2LBh4r777hPFxcXixx9/FGFhYSIhIUHaXlVVJfz8/MSECRPEgQMHxOrVq0Xbtm3F8uXLm902nU4nAAidTnc7p4iIiIhaUXOv3xZPooQQYunSpaJDhw7CxcVF9O3bV/z000/SttjYWDFp0iSD+DVr1ojw8HDh4uIiunfvLjZv3mywXa/Xizlz5gg/Pz/h6uoqhg4dKo4ePWoQc+HCBZGQkCDatWsnPDw8RGJiorh48aJBzM8//ywGDBggXF1dRVBQkFiwYIFJ7WISRUREZHuae/22+DpR9ozrRBEREdkem1gnioiIiMhWMYkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGSz6BcT2rmH1iOrqagvXhIiIiJqr4bp9q1WgmESZ0cWLFwEAwcHBFq4JERERmerixYvw9PRscjsX2zQjvV6P33//HXfccQcUCkWLHbe6uhrBwcE4c+aMXS7iae/tA+y/jfbePsD+28j22T57b6M52yeEwMWLFxEYGAilsumZT+yJMiOlUom7777bbMf38PCwyz+MBvbePsD+22jv7QPsv41sn+2z9zaaq30364FqwInlRERERDIwiSIiIiKSgUmUDXJ1dUV6ejpcXV0tXRWzsPf2AfbfRntvH2D/bWT7bJ+9t9Ea2seJ5UREREQysCeKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKsRGZmJkJCQqBSqRAdHY0dO3bcNH7x4sW455574ObmhuDgYPzjH/9AXV3dbR3TnFq6ffPmzYNCoTB4REREmLsZTTKlfdeuXcP8+fPRuXNnqFQq9OzZE3l5ebd1zNbQ0m20ptdw27ZteOyxxxAYGAiFQoH169ffcp/vv/8e999/P1xdXdGlSxdkZ2c3irGW19Ac7bPl16+srAzjxo1DeHg4lEolpk2bZjRu7dq1iIiIgEqlQmRkJHJzc1u+8s1kjjZmZ2c3eg1VKpV5GnALprZv3bp1eOihh+Dr6wsPDw/ExMTgm2++aRRn7r9BJlFWICcnB6mpqUhPT8fu3bvRs2dPaDQanDt3zmj8ypUrkZaWhvT0dBw+fBgff/wxcnJyMGvWLNnHNCdztA8AunfvjrKyMunx448/tkZzGjG1fbNnz8by5cuxdOlSHDp0CM8++yyeeOIJ7NmzR/Yxzc0cbQSs5zWsqalBz549kZmZ2az40tJSjBgxAkOGDMHevXsxbdo0PP300wZv4tb0GpqjfYDtvn5XrlyBr68vZs+ejZ49exqNKSwsREJCApKSkrBnzx7ExcUhLi4OBw4caMmqN5s52gj8udr3X1/DU6dOtVSVTWJq+7Zt24aHHnoIubm5KCkpwZAhQ/DYY4+1/vuoIIvr27eveO6556Sf6+vrRWBgoMjIyDAa/9xzz4kHH3zQoCw1NVX0799f9jHNyRztS09PFz179jRLfU1lavsCAgLEsmXLDMpGjRolxo8fL/uY5maONlrTa/hXAMTXX39905iXXnpJdO/e3aAsPj5eaDQa6Wdrew0btFT7bPn1+6vY2FgxderURuVjxowRI0aMMCiLjo4WzzzzzG3W8Pa1VBs//fRT4enp2WL1aimmtq9Bt27dxKuvvir93Bp/g+yJsrCrV6+ipKQEarVaKlMqlVCr1SgqKjK6T79+/VBSUiJ1S/7666/Izc3F8OHDZR/TXMzRvgbHjh1DYGAgOnXqhPHjx+P06dPma0gT5LTvypUrjbrM3dzcpE/x1vT6ya3PrdrYwBpeQzmKiooMzgcAaDQa6XxY22toqlu1r4Gtvn7N0dxzYOsuXbqEjh07Ijg4GCNHjsTBgwctXSVZ9Ho9Ll68CG9vbwCt9zfIJMrCKioqUF9fDz8/P4NyPz8/aLVao/uMGzcO8+fPx4ABA9CmTRt07twZgwcPloa75BzTXMzRPgCIjo5GdnY28vLy8P7776O0tBQDBw7ExYsXzdqeG8lpn0ajwTvvvINjx45Br9cjPz8f69atQ1lZmexjmpM52ghYz2soh1arNXo+qqurUVtba3Wvoalu1T7Atl+/5mjqHNjC69dc99xzDz755BNs2LABX3zxBfR6Pfr164ezZ89aumomW7RoES5duoQxY8YAaL33USZRNuj777/HP//5T/zP//wPdu/ejXXr1mHz5s147bXXLF21FtGc9j3yyCN46qmncO+990Kj0SA3NxdVVVVYs2aNBWvePO+99x7CwsIQEREBFxcXpKSkIDExEUql/fw5NqeNtvwaEl8/exATE4OJEyciKioKsbGxWLduHXx9fbF8+XJLV80kK1euxKuvvoo1a9agffv2rfrczq36bNSIj48PnJycUF5eblBeXl4Of39/o/vMmTMHEyZMwNNPPw0AiIyMRE1NDZKTk/HKK6/IOqa5mKN9xpINLy8vhIeH4/jx4y3fiJuQ0z5fX1+sX78edXV1uHDhAgIDA5GWloZOnTrJPqY5maONxljqNZTD39/f6Pnw8PCAm5sbnJycrOo1NNWt2meMLb1+zdHUObCF10+uNm3a4L777rOp13D16tV4+umnsXbtWoOhu9Z6H7Wfj742ysXFBb169UJBQYFUptfrUVBQgJiYGKP7XL58uVEi4eTkBAAQQsg6prmYo33GXLp0CSdOnEBAQEAL1bx5budcq1QqBAUF4fr16/jqq68wcuTI2z6mOZijjcZY6jWUIyYmxuB8AEB+fr50PqztNTTVrdpnjC29fs0h5xzYuvr6euzfv99mXsNVq1YhMTERq1atwogRIwy2tdrfYItNUSfZVq9eLVxdXUV2drY4dOiQSE5OFl5eXkKr1QohhJgwYYJIS0uT4tPT08Udd9whVq1aJX799Vfx7bffis6dO4sxY8Y0+5i23r7p06eL77//XpSWlort27cLtVotfHx8xLlz56y+fT/99JP46quvxIkTJ8S2bdvEgw8+KEJDQ8Uff/zR7GO2NnO00Zpew4sXL4o9e/aIPXv2CADinXfeEXv27BGnTp0SQgiRlpYmJkyYIMX/+uuvom3btuLFF18Uhw8fFpmZmcLJyUnk5eVJMdb0Gpqjfbb8+gkhpPhevXqJcePGiT179oiDBw9K27dv3y6cnZ3FokWLxOHDh0V6erpo06aN2L9/f6u2rYE52vjqq6+Kb775Rpw4cUKUlJSIsWPHCpVKZRDTWkxt34oVK4Szs7PIzMwUZWVl0qOqqkqKaY2/QSZRVmLp0qWiQ4cOwsXFRfTt21f89NNP0rbY2FgxadIk6edr166JefPmic6dOwuVSiWCg4PF3//+d4ML1K2O2dpaun3x8fEiICBAuLi4iKCgIBEfHy+OHz/eii0yZEr7vv/+e9G1a1fh6uoq7rrrLjFhwgTx22+/mXRMS2jpNlrTa7h161YBoNGjoU2TJk0SsbGxjfaJiooSLi4uolOnTuLTTz9tdFxreQ3N0T5bf/2MxXfs2NEgZs2aNSI8PFy4uLiI7t27i82bN7dOg4wwRxunTZsm/X76+fmJ4cOHi927d7deo/7C1PbFxsbeNL6Buf8GFUI0MT5CRERERE3inCgiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFRORAvv/+eygUClRVVVm6KkQ2j0kUEZnF5MmToVAosGDBAoPy9evXQ6FQSD8LIfDhhx8iJiYGHh4eaNeuHbp3746pU6c2+4tQL1++jJkzZ6Jz585QqVTw9fVFbGwsNmzYIMWEhIRg8eLFLdI2c2s4dwqFAm3atEFoaCheeukl1NXVmXScwYMHY9q0aQZl/fr1Q1lZGTw9PVuwxkSOiUkUEZmNSqXCm2++iT/++MPodiEExo0bhxdeeAHDhw/Ht99+i0OHDuHjjz+GSqXC66+/3qznefbZZ7Fu3TosXboUR44cQV5eHp588klcuHChJZvTqoYNG4aysjL8+uuvePfdd7F8+XKkp6ff9nFdXFzg7+9vkMgSkUwt+iUyRET/36RJk8Sjjz4qIiIixIsvviiVf/3116LhrWfVqlUCgNiwYYPRY+j1+mY9l6enp8jOzm5yu7Hv2Wrwn//8RwwYMECoVCpx9913i+eff15cunRJ2v7555+LXr16iXbt2gk/Pz+RkJAgysvLpe0N3/mVl5cnoqKihEqlEkOGDBHl5eUiNzdXREREiDvuuEMkJCSImpqaZrVn0qRJYuTIkQZlo0aNEvfdd5/0c0VFhRg7dqwIDAwUbm5uokePHmLlypUGx7ixzaWlpVJ9//pdlF9++aXo1q2bcHFxER07dhSLFi1qVj2JHB17oojIbJycnPDPf/4TS5cuxdmzZxttX7VqFe655x48/vjjRvdvbm+Jv78/cnNzcfHiRaPb161bh7vvvhvz589HWVkZysrKAAAnTpzAsGHDMHr0aOzbtw85OTn48ccfkZKSIu177do1vPbaa/j555+xfv16nDx5EpMnT270HPPmzcOyZctQWFiIM2fOYMyYMVi8eDFWrlyJzZs349tvv8XSpUub1Z4bHThwAIWFhXBxcZHK6urq0KtXL2zevBkHDhxAcnIyJkyYgB07dgAA3nvvPcTExGDKlClSm4ODgxsdu6SkBGPGjMHYsWOxf/9+zJs3D3PmzEF2drasuhI5FEtncURkn/7am/LAAw+Iv/3tb0IIw56oiIgI8fjjjxvsN3XqVOHu7i7c3d1FUFBQs57rhx9+EHfffbdo06aN6N27t5g2bZr48ccfDWI6duwo3n33XYOypKQkkZycbFD2n//8RyiVSlFbW2v0uXbu3CkAiIsXLwoh/q8n6rvvvpNiMjIyBABx4sQJqeyZZ54RGo2mWe2ZNGmScHJyEu7u7sLV1VUAEEqlUnz55Zc33W/EiBFi+vTp0s+xsbFi6tSpBjE39kSNGzdOPPTQQwYxL774oujWrVuz6krkyNgTRURm9+abb+Kzzz7D4cOHbxn7yiuvYO/evZg7dy4uXbrUrOMPGjQIv/76KwoKCvDkk0/i4MGDGDhwIF577bWb7vfzzz8jOzsb7dq1kx4ajQZ6vR6lpaUA/uypeeyxx9ChQwfccccdiI2NBQCcPn3a4Fj33nuv9H8/Pz+0bdsWnTp1Mig7d+5cs9oDAEOGDMHevXtRXFyMSZMmITExEaNHj5a219fX47XXXkNkZCS8vb3Rrl07fPPNN43qdSuHDx9G//79Dcr69++PY8eOob6+3qRjETkaJlFEZHaDBg2CRqPBzJkzDcrDwsJw9OhRgzJfX1906dIF7du3N+k52rRpg4EDB+Lll1/Gt99+i/nz5+O1117D1atXm9zn0qVLeOaZZ7B3717p8fPPP+PYsWPo3LkzampqoNFo4OHhgRUrVmDnzp34+uuvAaDRcdu0aSP9v+Guur9SKBTQ6/XNbo+7uzu6dOmCnj174pNPPkFxcTE+/vhjaftbb72F9957Dy+//DK2bt2KvXv3QqPR3LS9RNSynC1dASJyDAsWLEBUVBTuueceqSwhIQHjxo3Dhg0bMHLkyBZ9vm7duuH69euoq6uDi4sLXFxcGvWs3H///Th06BC6dOli9Bj79+/HhQsXsGDBAmk+0a5du1q0ns2hVCoxa9YspKamYty4cXBzc8P27dsxcuRI/Nd//RcAQK/X45dffkG3bt2k/Yy1+UZdu3bF9u3bDcq2b9+O8PBwODk5tXxjiOwIe6KIqFVERkZi/PjxWLJkiVQ2duxYPPnkkxg7dizmz5+P4uJinDx5Ej/88ANycnKafREfPHgwli9fjpKSEpw8eRK5ubmYNWsWhgwZAg8PDwB/rhO1bds2/Pbbb6ioqAAAvPzyyygsLERKSgr27t2LY8eOYcOGDdLE8g4dOsDFxQVLly7Fr7/+io0bN95yiNBcnnrqKTg5OSEzMxPAn714+fn5KCwsxOHDh/HMM8+gvLzcYJ+QkBDpnFZUVBjtCZs+fToKCgrw2muv4ZdffsFnn32GZcuWYcaMGa3SLiJbxiSKiFrN/PnzDS7kCoUCOTk5WLx4MXJzczF06FDcc889+Nvf/obg4GD8+OOPzTquRqPBZ599hocffhhdu3bF888/D41GgzVr1hg898mTJ9G5c2f4+voC+HMe0w8//IBffvkFAwcOxH333Ye5c+ciMDAQwJ9Di9nZ2Vi7di26deuGBQsWYNGiRS14RprP2dkZKSkpWLhwIWpqajB79mzcf//90Gg0GDx4MPz9/REXF2ewz4wZM+Dk5IRu3brB19fX6Hyp+++/H2vWrMHq1avRo0cPzJ07F/Pnzzd6ByIRGVIIIYSlK0FERERka9gTRURERCQDkygisnp/XYLgxsd//vMfS1fPJKdPn75pe0xdooCILIfDeURk9W72RcRBQUFwc3NrxdrcnuvXr+PkyZNNbg8JCYGzM2+cJrIFTKKIiIiIZOBwHhEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKS4f8B02f4vzAnzfUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVgNJREFUeJzt3X9cVFX+P/DXAA6DGKCCDBAK+QtNAkNB/IUW21SWkpmopeZa1m6ZLlqiq+CPdjG1zfXHim2b+N0y0TI1Y12NMldFVMT8kbpqEP5gUFJmFAWMOd8//HC3iQFnrgzz6/V8POahnPu+954zc5n75txzz1UIIQSIiIiIyCJutq4AERERkSNiEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURObe7cuVAoFGbFKhQKzJ0716r1GTRoEAYNGmS32yMi8zGJIqJmkZWVBYVCIb08PDwQEhKCF198ERcvXrR19exOWFiY0fvVrl07DBgwAJ9//nmTbP/mzZuYO3cudu3a1STbI3JFTKKIqFnNnz8f//znP5GZmYknnngCH330ERISElBVVWWV/c2ePRu3bt2yyratLTo6Gv/85z/xz3/+E9OnT8elS5cwfPhwZGZm3vO2b968iXnz5jGJIroHHrauABG5lieeeAK9evUCALz00kvw9/fHO++8g61bt2LkyJFNvj8PDw94eDjmV11ISAheeOEF6edx48ahU6dOeO+99/Dqq6/asGZEBLAniohsbMCAAQCAc+fOGZWfOnUKI0aMQJs2baBSqdCrVy9s3brVKOb27duYN28eOnfuDJVKhbZt26J///7YuXOnFGNqTFR1dTX+8Ic/ICAgAPfddx+GDh2KCxcu1Kvbiy++iLCwsHrlpra5Zs0aPPLII2jXrh08PT3RvXt3rFq1yqL34m7UajW6deuGoqKiRuMuX76MiRMnIjAwECqVClFRUVi7dq20vLi4GAEBAQCAefPmSZcMrT0ejMjZOOafZ0TkNIqLiwEArVu3lspOnDiBfv36ISQkBKmpqfD29saGDRuQlJSEzz77DM888wyAO8lMRkYGXnrpJcTGxkKv1+PQoUM4fPgwfvOb3zS4z5deegkfffQRxowZg759++Lrr7/GkCFD7qkdq1atwoMPPoihQ4fCw8MDX3zxBX7/+9/DYDDgtddeu6dt17l9+zbOnz+Ptm3bNhhz69YtDBo0CGfPnsXrr7+O8PBwbNy4ES+++CIqKiowZcoUBAQEYNWqVfjd736HZ555BsOHDwcAPPTQQ01STyKXIYiImsGaNWsEAPHVV1+JK1euiPPnz4tPP/1UBAQECE9PT3H+/Hkp9tFHHxWRkZGiqqpKKjMYDKJv376ic+fOUllUVJQYMmRIo/tNT08Xv/yqO3LkiAAgfv/73xvFjRkzRgAQ6enpUtn48eNFhw4d7rpNIYS4efNmvTiNRiMeeOABo7KEhASRkJDQaJ2FEKJDhw7iscceE1euXBFXrlwR3333nRg1apQAICZPntzg9pYuXSoAiI8++kgqq6mpEfHx8aJVq1ZCr9cLIYS4cuVKvfYSkWV4OY+ImlViYiICAgIQGhqKESNGwNvbG1u3bsX9998PALh69Sq+/vprjBw5EtevX0d5eTnKy8vx008/QaPR4MyZM9LdfH5+fjhx4gTOnDlj9v5zcnIAAG+88YZR+dSpU++pXV5eXtL/dTodysvLkZCQgB9++AE6nU7WNnfs2IGAgAAEBAQgKioKGzduxNixY/HOO+80uE5OTg7UajVGjx4tlbVo0QJvvPEGbty4gW+//VZWXYioPl7OI6JmtXLlSnTp0gU6nQ4ffvghdu/eDU9PT2n52bNnIYTAnDlzMGfOHJPbuHz5MkJCQjB//nwMGzYMXbp0QY8ePfD4449j7NixjV6W+vHHH+Hm5oaOHTsalXft2vWe2rV3716kp6cjLy8PN2/eNFqm0+ng6+tr8Tbj4uLw9ttvQ6FQoGXLlujWrRv8/PwaXefHH39E586d4eZm/Ddyt27dpOVE1DSYRBFRs4qNjZXuzktKSkL//v0xZswYnD59Gq1atYLBYAAATJ8+HRqNxuQ2OnXqBAAYOHAgzp07hy1btmDHjh344IMP8N577yEzMxMvvfTSPde1oUk6a2trjX4+d+4cHn30UUREROAvf/kLQkNDoVQqkZOTg/fee09qk6X8/f2RmJgoa10isj4mUURkM+7u7sjIyMDgwYOxYsUKpKam4oEHHgBw5xKUOQlEmzZtMGHCBEyYMAE3btzAwIEDMXfu3AaTqA4dOsBgMODcuXNGvU+nT5+uF9u6dWtUVFTUK/91b84XX3yB6upqbN26Fe3bt5fKv/nmm7vWv6l16NABR48ehcFgMOqNOnXqlLQcaDhBJCLzcUwUEdnUoEGDEBsbi6VLl6Kqqgrt2rXDoEGDsHr1apSWltaLv3LlivT/n376yWhZq1at0KlTJ1RXVze4vyeeeAIAsGzZMqPypUuX1ovt2LEjdDodjh49KpWVlpbWmzXc3d0dACCEkMp0Oh3WrFnTYD2s5cknn4RWq0V2drZU9vPPP2P58uVo1aoVEhISAAAtW7YEAJNJIhGZhz1RRGRzb775Jp577jlkZWXh1VdfxcqVK9G/f39ERkbi5ZdfxgMPPICysjLk5eXhwoUL+O677wAA3bt3x6BBgxATE4M2bdrg0KFD+PTTT/H66683uK/o6GiMHj0af/vb36DT6dC3b1/k5ubi7Nmz9WJHjRqFGTNm4JlnnsEbb7yBmzdvYtWqVejSpQsOHz4sxT322GNQKpV4+umn8corr+DGjRv4+9//jnbt2plMBK1p0qRJWL16NV588UUUFBQgLCwMn376Kfbu3YulS5fivvvuA3BnIHz37t2RnZ2NLl26oE2bNujRowd69OjRrPUlcmi2vj2QiFxD3RQHBw8erLestrZWdOzYUXTs2FH8/PPPQgghzp07J8aNGyfUarVo0aKFCAkJEU899ZT49NNPpfXefvttERsbK/z8/ISXl5eIiIgQf/rTn0RNTY0UY2o6glu3bok33nhDtG3bVnh7e4unn35anD9/3uQt/zt27BA9evQQSqVSdO3aVXz00Ucmt7l161bx0EMPCZVKJcLCwsQ777wjPvzwQwFAFBUVSXGWTHFwt+kbGtpeWVmZmDBhgvD39xdKpVJERkaKNWvW1Ft33759IiYmRiiVSk53QCSDQohf9D8TERERkVk4JoqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAMn27Qig8GAS5cu4b777uMjFoiIiByEEALXr19HcHBwvYd5/xKTKCu6dOkSQkNDbV0NIiIikuH8+fO4//77G1zOJMqK6h6vcP78efj4+Ni4NkRERGQOvV6P0NBQ6TzeECZRVlR3Cc/Hx4dJFBERkYO521AcDiwnIiIikoFJFBEREZEMTKKIiIiIZOCYKCIiIhdRW1uL27dv27oaNteiRQu4u7vf83aYRBERETk5IQS0Wi0qKipsXRW74efnB7VafU/zODKJIiIicnJ1CVS7du3QsmVLl54AWgiBmzdv4vLlywCAoKAg2dtiEkVEROTEamtrpQSqbdu2tq6OXfDy8gIAXL58Ge3atZN9aY8Dy4mIiJxY3Rioli1b2rgm9qXu/biXMWJMooiIiFyAK1/CM6Up3g8mUUREREQyMIkiIiIikoFJFNVTqruFfefKUaq7ZeuqEBGRC3vxxReRlJRUr3zXrl1QKBSoqKjArl27MGzYMAQFBcHb2xvR0dH4+OOPm6V+vDuPjGQfLMHMTcdgEICbAsgYHonk3u1tXS0iIiKT9u3bh4ceeggzZsxAYGAgtm3bhnHjxsHX1xdPPfWUVffNJIokpbpbUgIFAAYBzNp0HAO7BCDI18u2lSMiIjJh1qxZRj9PmTIFO3bswKZNm6yeRNnF5byVK1ciLCwMKpUKcXFxOHDgQKPxGzduREREBFQqFSIjI5GTk2O0XAiBtLQ0BAUFwcvLC4mJiThz5oxRzNChQ9G+fXuoVCoEBQVh7NixuHTpkrS8uLgYCoWi3mv//v1N13A7U1ReKSVQdWqFQHH5TdtUiIiI7I4jDPnQ6XRo06aN1fdj8yQqOzsbKSkpSE9Px+HDhxEVFQWNRiPNJPpr+/btw+jRozFx4kQUFhYiKSkJSUlJOH78uBSzaNEiLFu2DJmZmcjPz4e3tzc0Gg2qqqqkmMGDB2PDhg04ffo0PvvsM5w7dw4jRoyot7+vvvoKpaWl0ismJqbp3wQ7Ee7vDbdf3fHprlAgzJ9zixAR0Z0hH/0Wfo0xf89Hv4VfI/tgidX3uW3bNrRq1cro9cQTTzQYv2HDBhw8eBATJkywet0UQghx9zDriYuLQ+/evbFixQoAgMFgQGhoKCZPnozU1NR68cnJyaisrMS2bduksj59+iA6OhqZmZkQQiA4OBjTpk3D9OnTAdzJSAMDA5GVlYVRo0aZrMfWrVuRlJSE6upqtGjRAsXFxQgPD0dhYSGio6NltU2v18PX1xc6nQ4+Pj6yttHcsg+WYNam46gVAu4KBf48vAfHRBERObCqqioUFRUhPDwcKpVK9nZKdbfQb+HXRlcs3BUK7EkdbLUhHy+++CIuXryIVatWGZXn5+fjhRdewLVr1+Dn5yeVf/PNN3jqqaewatUqjBs3rtFtN/a+mHv+tumYqJqaGhQUFGDmzJlSmZubGxITE5GXl2dynby8PKSkpBiVaTQabN68GQBQVFQErVaLxMREabmvry/i4uKQl5dnMom6evUqPv74Y/Tt2xctWrQwWjZ06FBUVVWhS5cueOuttzB06NAG21NdXY3q6mrpZ71e33Dj7VRy7/YY2CUAxeU3EebfkmOhiIgIQONDPqx5rvD29kanTp2Myi5cuFAv7ttvv8XTTz+N9957764JVFOx6eW88vJy1NbWIjAw0Kg8MDAQWq3W5DparbbR+Lp/zdnmjBkz4O3tjbZt26KkpARbtmyRlrVq1QrvvvsuNm7ciC+//BL9+/dHUlIStm7d2mB7MjIy4OvrK71CQ0Pv8g7YpyBfL8R3bMsEioiIJPY85GPXrl0YMmQI3nnnHUyaNKnZ9mvzMVG29Oabb6KwsBA7duyAu7s7xo0bh7qrm/7+/khJSZEuNy5cuBAvvPACFi9e3OD2Zs6cCZ1OJ73Onz/fXE0hIiKyqiBfL2QMj4T7/z0upW7Ih63/4P7mm28wZMgQvPHGG3j22Weh1Wqh1Wpx9epVq+/bppfz/P394e7ujrKyMqPysrIyqNVqk+uo1epG4+v+LSsrQ1BQkFHMr8c2+fv7w9/fH126dEG3bt0QGhqK/fv3Iz4+3uS+4+LisHPnzgbb4+npCU9PzwaXExEROTJ7HPKxdu1a3Lx5ExkZGcjIyJDKExISsGvXLqvu26Y9UUqlEjExMcjNzZXKDAYDcnNzG0xk4uPjjeIBYOfOnVJ8eHg41Gq1UYxer0d+fn6D26zbLwCjMU2/duTIEaPEjIiIyNU055CPrKwsaczzLw0aNAhCCPj5+SErKwtCiHovaydQgB1MtpmSkoLx48ejV69eiI2NxdKlS1FZWSndmjhu3DiEhIRI2eWUKVOQkJCAd999F0OGDMH69etx6NAhvP/++wDuPJV56tSpePvtt9G5c2eEh4djzpw5CA4OlqaOz8/Px8GDB9G/f3+0bt0a586dw5w5c9CxY0cp0Vq7di2USiV69uwJANi0aRM+/PBDfPDBB838DhEREZE9snkSlZycjCtXriAtLQ1arRbR0dHYvn27NDC8pKQEbm7/6zDr27cv1q1bh9mzZ2PWrFno3LkzNm/ejB49ekgxb731FiorKzFp0iRUVFSgf//+2L59u3QLY8uWLbFp0yakp6ejsrISQUFBePzxxzF79myjy3ELFizAjz/+CA8PD0RERCA7O9vkXFJERETkemw+T5Qzc8R5ooiIyLk01TxRzqYp5oly6bvziIiIiORiEkVEJIMjPD+M6Jd44clYU7wfNh8TRUTkaLIPlmDmpmMwCMBNAWQMj+Tjkchu1T2J4+bNm/Dysv2UBPbi5s2bAFDvSSWWYBJFRGSBUt0tKYECAIMAZm06joFdAuxizhyiX3N3d4efnx8uX74M4M7NVQqF4i5rOS8hBG7evInLly/Dz88P7u7usrfFJIqIyAK2en4Y0b2om4i6LpEiwM/Pr8GJvc3FJIqIyAJ1zw/79ZPs7eH5YUQNUSgUCAoKQrt27XD79m1bV8fmWrRocU89UHWYRBERWaDu+WGzNh1HrRB28/wwInO4u7s3SfJAdzCJIiKykD0+P4yImh+TKCIiGYJ8vZg8Ebk4zhNFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGu0iiVq5cibCwMKhUKsTFxeHAgQONxm/cuBERERFQqVSIjIxETk6O0XIhBNLS0hAUFAQvLy8kJibizJkzRjFDhw5F+/btoVKpEBQUhLFjx+LSpUtGMUePHsWAAQOgUqkQGhqKRYsWNU2DiYiIyOHZPInKzs5GSkoK0tPTcfjwYURFRUGj0eDy5csm4/ft24fRo0dj4sSJKCwsRFJSEpKSknD8+HEpZtGiRVi2bBkyMzORn58Pb29vaDQaVFVVSTGDBw/Ghg0bcPr0aXz22Wc4d+4cRowYIS3X6/V47LHH0KFDBxQUFGDx4sWYO3cu3n//feu9GUREROQ4hI3FxsaK1157Tfq5trZWBAcHi4yMDJPxI0eOFEOGDDEqi4uLE6+88ooQQgiDwSDUarVYvHixtLyiokJ4enqKTz75pMF6bNmyRSgUClFTUyOEEOJvf/ubaN26taiurpZiZsyYIbp27Wp223Q6nQAgdDqd2esQERGRbZl7/rZpT1RNTQ0KCgqQmJgolbm5uSExMRF5eXkm18nLyzOKBwCNRiPFFxUVQavVGsX4+voiLi6uwW1evXoVH3/8Mfr27YsWLVpI+xk4cCCUSqXRfk6fPo1r166Z3E51dTX0er3Ri4iIiJyTTZOo8vJy1NbWIjAw0Kg8MDAQWq3W5DparbbR+Lp/zdnmjBkz4O3tjbZt26KkpARbtmy5635+uY9fy8jIgK+vr/QKDQ01GUdERESOz+ZjomzpzTffRGFhIXbs2AF3d3eMGzcOQgjZ25s5cyZ0Op30On/+fBPWloiIiOyJhy137u/vD3d3d5SVlRmVl5WVQa1Wm1xHrVY3Gl/3b1lZGYKCgoxioqOj6+3f398fXbp0Qbdu3RAaGor9+/cjPj6+wf38ch+/5unpCU9Pz7u0moiIiJyBTXuilEolYmJikJubK5UZDAbk5uYiPj7e5Drx8fFG8QCwc+dOKT48PBxqtdooRq/XIz8/v8Ft1u0XuDOuqW4/u3fvxu3bt43207VrV7Ru3drClhIREZHTaZ5x7g1bv3698PT0FFlZWeL7778XkyZNEn5+fkKr1QohhBg7dqxITU2V4vfu3Ss8PDzEkiVLxMmTJ0V6erpo0aKFOHbsmBSzcOFC4efnJ7Zs2SKOHj0qhg0bJsLDw8WtW7eEEELs379fLF++XBQWFori4mKRm5sr+vbtKzp27CiqqqqEEHfu6AsMDBRjx44Vx48fF+vXrxctW7YUq1evNrttvDuPiIjI8Zh7/rZ5EiWEEMuXLxft27cXSqVSxMbGiv3790vLEhISxPjx443iN2zYILp06SKUSqV48MEHxZdffmm03GAwiDlz5ojAwEDh6ekpHn30UXH69Glp+dGjR8XgwYNFmzZthKenpwgLCxOvvvqquHDhgtF2vvvuO9G/f3/h6ekpQkJCxMKFCy1qF5MoIiIix2Pu+VshxD2MpKZG6fV6+Pr6QqfTwcfHx9bVISIiIjOYe/526bvziIiIiORiEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiInUaq7hX3nylGqu2XrqrgED1tXgIiIiO5d9sESzNx0DAYBuCmAjOGRSO7d3tbVcmp20RO1cuVKhIWFQaVSIS4uDgcOHGg0fuPGjYiIiIBKpUJkZCRycnKMlgshkJaWhqCgIHh5eSExMRFnzpyRlhcXF2PixIkIDw+Hl5cXOnbsiPT0dNTU1BjFKBSKeq/9+/c3beOJiIjuUanulpRAAYBBALM2HWePlJXZPInKzs5GSkoK0tPTcfjwYURFRUGj0eDy5csm4/ft24fRo0dj4sSJKCwsRFJSEpKSknD8+HEpZtGiRVi2bBkyMzORn58Pb29vaDQaVFVVAQBOnToFg8GA1atX48SJE3jvvfeQmZmJWbNm1dvfV199hdLSUukVExNjnTeCiIhIpqLySimBqlMrBIrLb9qmQi5CIYQQdw+znri4OPTu3RsrVqwAABgMBoSGhmLy5MlITU2tF5+cnIzKykps27ZNKuvTpw+io6ORmZkJIQSCg4Mxbdo0TJ8+HQCg0+kQGBiIrKwsjBo1ymQ9Fi9ejFWrVuGHH34AcKcnKjw8HIWFhYiOjpbVNr1eD19fX+h0Ovj4+MjaBhER0d2U6m6h38KvjRIpd4UCe1IHI8jXy3YVc1Dmnr9t2hNVU1ODgoICJCYmSmVubm5ITExEXl6eyXXy8vKM4gFAo9FI8UVFRdBqtUYxvr6+iIuLa3CbwJ1Eq02bNvXKhw4dinbt2qF///7YunWrRe0jIiJqDkG+XsgYHgl3hQLAnQTqz8N7MIGyMpsOLC8vL0dtbS0CAwONygMDA3Hq1CmT62i1WpPxWq1WWl5X1lDMr509exbLly/HkiVLpLJWrVrh3XffRb9+/eDm5obPPvsMSUlJ2Lx5M4YOHWpyO9XV1aiurpZ+1uv1JuOIiIiaWnLv9hjYJQDF5TcR5t+SCVQzcPm78y5evIjHH38czz33HF5++WWp3N/fHykpKdLPvXv3xqVLl7B48eIGk6iMjAzMmzfP6nUmIiIyJcjXi8lTM7Lp5Tx/f3+4u7ujrKzMqLysrAxqtdrkOmq1utH4un/N2ealS5cwePBg9O3bF++///5d6xsXF4ezZ882uHzmzJnQ6XTS6/z583fdJhERETkmmyZRSqUSMTExyM3NlcoMBgNyc3MRHx9vcp34+HijeADYuXOnFB8eHg61Wm0Uo9frkZ+fb7TNixcvYtCgQYiJicGaNWvg5nb3t+LIkSMICgpqcLmnpyd8fHyMXkREROScbH45LyUlBePHj0evXr0QGxuLpUuXorKyEhMmTAAAjBs3DiEhIcjIyAAATJkyBQkJCXj33XcxZMgQrF+/HocOHZJ6khQKBaZOnYq3334bnTt3Rnh4OObMmYPg4GAkJSUB+F8C1aFDByxZsgRXrlyR6lPXW7V27VoolUr07NkTALBp0yZ8+OGH+OCDD5rrrSEiIiI7ZvMkKjk5GVeuXEFaWhq0Wi2io6Oxfft2aWB4SUmJUS9R3759sW7dOsyePRuzZs1C586dsXnzZvTo0UOKeeutt1BZWYlJkyahoqIC/fv3x/bt26FSqQDc6bk6e/Yszp49i/vvv9+oPr+c8WHBggX48ccf4eHhgYiICGRnZ2PEiBHWfDuIiIjIQdh8nihnxnmiiIiIHI9DzBNFRERE5KiYRBERERHJwCSKXFqp7hb2nSvnQzqJiMhiNh9YTmQr2QdLpKeeuymAjOGRSO7d3tbVIiIiB8GeKGp29tD7U6q7JSVQAGAQwKxNx9kjRUREZmNPFDUre+n9KSqvNHraOQDUCoHi8pt8ZAIREZmFPVHUbOyp9yfc3xtuCuMyd4UCYf4tm70uRETkmJhEUbNprPenuQX5eiFjeCTcFXcyKXeFAn8e3oO9UEREZDZezqNmU9f788tEypa9P8m922NglwAUl99EmH9LJlBERGQR9kRRs7HH3p8gXy/Ed2zLBIqIiCzGnihqVuz9ISIiZ8EkippdkK8XkyciInJ4vJxHREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJINdJFErV65EWFgYVCoV4uLicODAgUbjN27ciIiICKhUKkRGRiInJ8douRACaWlpCAoKgpeXFxITE3HmzBlpeXFxMSZOnIjw8HB4eXmhY8eOSE9PR01NjdF2jh49igEDBkClUiE0NBSLFi1qukYTERGRQ7N5EpWdnY2UlBSkp6fj8OHDiIqKgkajweXLl03G79u3D6NHj8bEiRNRWFiIpKQkJCUl4fjx41LMokWLsGzZMmRmZiI/Px/e3t7QaDSoqqoCAJw6dQoGgwGrV6/GiRMn8N577yEzMxOzZs2StqHX6/HYY4+hQ4cOKCgowOLFizF37ly8//771n1DiIiIyDEIG4uNjRWvvfaa9HNtba0IDg4WGRkZJuNHjhwphgwZYlQWFxcnXnnlFSGEEAaDQajVarF48WJpeUVFhfD09BSffPJJg/VYtGiRCA8Pl37+29/+Jlq3bi2qq6ulshkzZoiuXbua3TadTicACJ1OZ/Y6REREZFvmnr9t2hNVU1ODgoICJCYmSmVubm5ITExEXl6eyXXy8vKM4gFAo9FI8UVFRdBqtUYxvr6+iIuLa3CbAKDT6dCmTRuj/QwcOBBKpdJoP6dPn8a1a9dMbqO6uhp6vd7oRURERM7JpklUeXk5amtrERgYaFQeGBgIrVZrch2tVttofN2/lmzz7NmzWL58OV555ZW77ueX+/i1jIwM+Pr6Sq/Q0FCTcUREROT4bD4mytYuXryIxx9/HM899xxefvnle9rWzJkzodPppNf58+ebqJZERERkb2yaRPn7+8Pd3R1lZWVG5WVlZVCr1SbXUavVjcbX/WvONi9duoTBgwejb9++9QaMN7SfX+7j1zw9PeHj42P0IiIiIudk0yRKqVQiJiYGubm5UpnBYEBubi7i4+NNrhMfH28UDwA7d+6U4sPDw6FWq41i9Ho98vPzjbZ58eJFDBo0CDExMVizZg3c3Izfivj4eOzevRu3b9822k/Xrl3RunVr+Y0mIiIi59BMA90btH79euHp6SmysrLE999/LyZNmiT8/PyEVqsVQggxduxYkZqaKsXv3btXeHh4iCVLloiTJ0+K9PR00aJFC3Hs2DEpZuHChcLPz09s2bJFHD16VAwbNkyEh4eLW7duCSGEuHDhgujUqZN49NFHxYULF0Rpaan0qlNRUSECAwPF2LFjxfHjx8X69etFy5YtxerVq81uG+/OIyIicjzmnr89bJ3EJScn48qVK0hLS4NWq0V0dDS2b98uDeIuKSkx6iXq27cv1q1bh9mzZ2PWrFno3LkzNm/ejB49ekgxb731FiorKzFp0iRUVFSgf//+2L59O1QqFYA7PUpnz57F2bNncf/99xvVRwgB4M4dfTt27MBrr72GmJgY+Pv7Iy0tDZMmTbL2W0JEREQOQCHqsgZqcnq9Hr6+vtDpdBwfRURE5CDMPX+7/N15RERERHIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMlicROXk5OCll17CW2+9hVOnThktu3btGh555JEmqxwRERGRvbIoiVq3bh2GDh0KrVaLvLw89OzZEx9//LG0vKamBt9++22TV5KIiIjI3lj0AOLFixfjL3/5C9544w0AwIYNG/Db3/4WVVVVmDhxolUqSERERGSPLEqizpw5g6efflr6eeTIkQgICMDQoUNx+/ZtPPPMM01eQSIiIiJ7ZFES5ePjg7KyMoSHh0tlgwcPxrZt2/DUU0/hwoULTV5BIiIiIntk0Zio2NhY/Otf/6pXnpCQgC+++AJLly5tqnoRERER2TWLkqg//OEPUKlUJpcNGjQIX3zxBcaNG9ckFSMiIiKyZwohhDA3WK/XmxXn4+Mju0LORK/Xw9fXFzqdju8JERGRgzD3/G3RmCg/Pz8oFIq7xtXW1lqyWSIiIiKHY1ES9c0330j/F0LgySefxAcffICQkJAmrxgRERGRPbMoiUpISDD62d3dHX369MEDDzzQpJUiIiIisnd8dh4RERGRDEyiiIiIiGS45yTKnIHmRERERM7GojFRw4cPN/q5qqoKr776Kry9vY3KN23adO81IyIiIrJjFiVRvr6+Rj+/8MILTVoZIiIiIkdhURK1Zs0aa9WDiIiIyKFwYDkRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCSDzZOolStXIiwsDCqVCnFxcThw4ECj8Rs3bkRERARUKhUiIyORk5NjtFwIgbS0NAQFBcHLywuJiYk4c+aMUcyf/vQn9O3bFy1btoSfn5/J/SgUinqv9evX31NbiYiIyHnYNInKzs5GSkoK0tPTcfjwYURFRUGj0eDy5csm4/ft24fRo0dj4sSJKCwsRFJSEpKSknD8+HEpZtGiRVi2bBkyMzORn58Pb29vaDQaVFVVSTE1NTV47rnn8Lvf/a7R+q1ZswalpaXSKykpqUnaTURERI5PIYQQttp5XFwcevfujRUrVgAADAYDQkNDMXnyZKSmptaLT05ORmVlJbZt2yaV9enTB9HR0cjMzIQQAsHBwZg2bRqmT58OANDpdAgMDERWVhZGjRpltL2srCxMnToVFRUV9falUCjw+eef31PipNfr4evrC51OBx8fH9nbISIiouZj7vnbZj1RNTU1KCgoQGJi4v8q4+aGxMRE5OXlmVwnLy/PKB4ANBqNFF9UVAStVmsU4+vri7i4uAa32ZjXXnsN/v7+iI2NxYcffoi75ZvV1dXQ6/VGLyIiInJOHrbacXl5OWpraxEYGGhUHhgYiFOnTplcR6vVmozXarXS8rqyhmLMNX/+fDzyyCNo2bIlduzYgd///ve4ceMG3njjjQbXycjIwLx58yzaDxERETkmmyVR9m7OnDnS/3v27InKykosXry40SRq5syZSElJkX7W6/UIDQ21aj2JiIjINmx2Oc/f3x/u7u4oKyszKi8rK4NarTa5jlqtbjS+7l9LtmmuuLg4XLhwAdXV1Q3GeHp6wsfHx+hFREREzslmSZRSqURMTAxyc3OlMoPBgNzcXMTHx5tcJz4+3igeAHbu3CnFh4eHQ61WG8Xo9Xrk5+c3uE1zHTlyBK1bt4anp+c9bYeIiIicg00v56WkpGD8+PHo1asXYmNjsXTpUlRWVmLChAkAgHHjxiEkJAQZGRkAgClTpiAhIQHvvvsuhgwZgvXr1+PQoUN4//33Ady5o27q1Kl4++230blzZ4SHh2POnDkIDg42usuupKQEV69eRUlJCWpra3HkyBEAQKdOndCqVSt88cUXKCsrQ58+faBSqbBz5078+c9/lu74IyIiIoKwseXLl4v27dsLpVIpYmNjxf79+6VlCQkJYvz48UbxGzZsEF26dBFKpVI8+OCD4ssvvzRabjAYxJw5c0RgYKDw9PQUjz76qDh9+rRRzPjx4wWAeq9vvvlGCCHEv/71LxEdHS1atWolvL29RVRUlMjMzBS1tbUWtU2n0wkAQqfTWbQeERER2Y6552+bzhPl7DhPFBERkeOx+3miiIiIiBwZkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmES5gFLdLew7V45S3S1bV4WIiMhpeNi6AmRd2QdLMHPTMRgE4KYAMoZHIrl3e1tXi4iIyOGxJ8qJlepuSQkUABgEMGvTcfZIERERNQEmUU6sqLxSSqDq1AqB4vKbtqkQERGRE2ES5cTC/b3hpjAuc1coEObf0jYVIiIiciJMopxYkK8XMoZHwl1xJ5NyVyjw5+E9EOTrZeOaEREROT4OLHdyyb3bY2CXABSX30SYf0smUERERE2ESZQLCPL1YvJERETUxHg5j4iIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiXACfnUdERNT0eHeek+Oz84iIiKyDPVFOjM/OIyIish4mUU6Mz84jIiJH4YhDT3g5z4nVPTvvl4mUNZ6dV6q7haLySoT7e3NSTyIispijDj1hT5QTa45n52UfLEG/hV9jzN/z0W/h18g+WNJk2yYiIufnyENP2BPl5Kz57LyGDvyBXQLYI0VERGZpbOiJvZ9LmES5AEufnWfu5TlHPvCJiMg+hPt7QwHgl6cThQJNPvTEGphEkRFLrks3x5grjrciInJB4u4h9oBjokhi6XVpa4+54ngrIiLnV1ReWS9nEoBD3EnOniiSyLk8Z60xVxxvRUTkGprrTnJrYE8USeoO5F8y50AO8vVCfMe2TZrccI4rIiLX0Bx3klsLe6JIUncgz9p0HLVCWO1ANmeckyP/ZUJERJax5p3k1sQkioxY+0A2d+B6cyV0RERkHyy9k9weKIQQDjIG3vHo9Xr4+vpCp9PBx8fH1tWxuVLdLfRb+HW93qU9qYMb/MUp1d1yuL9MiIjIsZl7/rb5mKiVK1ciLCwMKpUKcXFxOHDgQKPxGzduREREBFQqFSIjI5GTk2O0XAiBtLQ0BAUFwcvLC4mJiThz5oxRzJ/+9Cf07dsXLVu2hJ+fn8n9lJSUYMiQIWjZsiXatWuHN998Ez///PM9tdXVyR3nJBzlXlciInIpNk2isrOzkZKSgvT0dBw+fBhRUVHQaDS4fPmyyfh9+/Zh9OjRmDhxIgoLC5GUlISkpCQcP35cilm0aBGWLVuGzMxM5Ofnw9vbGxqNBlVVVVJMTU0NnnvuOfzud78zuZ/a2loMGTIENTU12LdvH9auXYusrCykpaU17RvgYiwduG6PUxw44gMyiYjIOmx6OS8uLg69e/fGihUrAAAGgwGhoaGYPHkyUlNT68UnJyejsrIS27Ztk8r69OmD6OhoZGZmQgiB4OBgTJs2DdOnTwcA6HQ6BAYGIisrC6NGjTLaXlZWFqZOnYqKigqj8n/961946qmncOnSJQQGBgIAMjMzMWPGDFy5cgVKpdKs9vFyXn3ZB0vqjXMyNSZKzqU/a3PUB2QSEZFl7P5yXk1NDQoKCpCYmPi/yri5ITExEXl5eSbXycvLM4oHAI1GI8UXFRVBq9Uaxfj6+iIuLq7BbTa0n8jISCmBqtuPXq/HiRMnGlyvuroaer3e6EXGknu3x57Uwfjk5T7Ykzq4wSTE3qY4cOQHZBIRkXXYLIkqLy9HbW2tUaICAIGBgdBqtSbX0Wq1jcbX/WvJNi3Zzy/3YUpGRgZ8fX2lV2hoqNn7dCXmzCsld84qa5Gb1PHyHxGR87L5wHJnMnPmTOh0Oul1/vx5W1fJYdnb5Gtykjp7HNNFRERNx2bzRPn7+8Pd3R1lZWVG5WVlZVCr1SbXUavVjcbX/VtWVoagoCCjmOjoaLPrplar690lWLffhuoGAJ6envD09DR7P9Q4e5p8zdJ5q/jYGiIi52ezniilUomYmBjk5uZKZQaDAbm5uYiPjze5Tnx8vFE8AOzcuVOKDw8Ph1qtNorR6/XIz89vcJsN7efYsWNGdwnu3LkTPj4+6N69u9nboXtnjUfKyGXueC7A/sZ0ERFR07PpjOUpKSkYP348evXqhdjYWCxduhSVlZWYMGECAGDcuHEICQlBRkYGAGDKlClISEjAu+++iyFDhmD9+vU4dOgQ3n//fQCAQqHA1KlT8fbbb6Nz584IDw/HnDlzEBwcjKSkJGm/JSUluHr1KkpKSlBbW4sjR44AADp16oRWrVrhscceQ/fu3TF27FgsWrQIWq0Ws2fPxmuvvcaeJhdn7oy6fGwNEbk6cx7xZc/bN4dNk6jk5GRcuXIFaWlp0Gq1iI6Oxvbt26VB3CUlJXBz+19nWd++fbFu3TrMnj0bs2bNQufOnbF582b06NFDinnrrbdQWVmJSZMmoaKiAv3798f27duhUqmkmLS0NKxdu1b6uWfPngCAb775BoMGDYK7uzu2bduG3/3ud4iPj4e3tzfGjx+P+fPnW/stISfBx9YQkSuz9pQw9jLlDB/7YkWcJ4r42BoicjXWnuevOeYRNPf8zQcQE1mRIz5Qk4joXjQ2JrQpvg+tvX1LcIoDIiIiajLWnufPnuYRZBJFRET0fzhB7r2z9jx/9jSPIMdEWRHHRBE1HXu4E4ecm70MVnYW1h4T+t35azhYfA29w1ojKrR1k26bY6KIyGnw5EbWxglym541x4Tay3cCL+cRkV3jw5+pOXCCXMdhT98JTKKIyK7x5EbNwZ4GK1Pj7Ok7gUkUkQXsbdCpvdXHGnhyo+ZgT4OVqXH29J3AMVFEZrKXa/D2Wh9r4ezv1Fzs6aHn1DB7+k7g3XlWxLvznEdzzJDryPVpDpz9neTgXZ3Oy5rfCbw7j6gJ2dMMufZYn+bA2d/JUq7SW+uq7OE7gWOiiMzQXNfgzR3jZE9jAojskT3dwUXOi0kUkRmaY9Bp9sES9Fv4Ncb8PR/9Fn6N7IMlNq0PkSOzpzu4yHnxch6Rmaw56FTORH8cBEvUsLre2l+PG2RvLTUlJlFEFrDWNXi5Y5zsYUwAkT0K8vXCMz1D8Nnhi1JZUs9g/r5Qk+LlPCI7wDFORE2rVHcLnxdeNCrbXHiJY6KoSTGJIrIDzjDGyRUm/iTHwTFR1Bx4OY/ITlh7jJM158vhreR0L6xxbHJMFDUHJlFEdsRaY5ysmeTIGRRPVMdax6Y9zWpNzotJFJGTs3aS44oTf1LTsPaxyTtYydo4JorIjlhjXJG1x4ZwUDzJ1RzjloJ8vRDfsS0TqCbAcY/1sSeKyAKOOK7I2mNDeNmE5HKGcUuu8mw+jns0jQ8gtiI+gNi5WHtckTUfKJx9sKRektPUX4B8QDDJ0RzHprW4SmLhig885wOIiZqQo48rao6xIZz4k+Rw1HFLrnRDBcc9NoxJFJEZrP0l0hyXNZjkkL1yxGPTlRILZ7jsai0cWE5kBmsPnnaGyTYtxUGq5Mhc6YYKV/x+Mhd7oojM0ByDpx31soYcrjKWhJyXqz2bz5W+nyzBgeVWxIHlzoeDp++dKw5SJefD49i5cWA5kRU44tgNe+NKY0nIefE4JoBjooiombnSWBJyXjyOCWASRUTNjINUyRnwOCaAY6KsimOiiBrG8WXkDHgcOyeOiSIiu8bxZeQMeBy7Nl7OI3IR352/hr//5xy+O3/N1lUhInIK7IkicgHTNhwxms/m2YdD8O7IaNtViIjICbAnisjJfXf+mlECBQCfHb7IHqlf4QzqZI94XNo39kQRObkDxVdNlh8qvoao0NbNXBv7xBnUyR7xuLR/dtETtXLlSoSFhUGlUiEuLg4HDhxoNH7jxo2IiIiASqVCZGQkcnJyjJYLIZCWloagoCB4eXkhMTERZ86cMYq5evUqnn/+efj4+MDPzw8TJ07EjRs3pOXFxcVQKBT1Xvv372+6hhM1g9iwNibLe4XZNoGyl7+wS3W3pBMVcOchq7M2Hbd5vci18bh0DDZPorKzs5GSkoL09HQcPnwYUVFR0Gg0uHz5ssn4ffv2YfTo0Zg4cSIKCwuRlJSEpKQkHD9+XIpZtGgRli1bhszMTOTn58Pb2xsajQZVVVVSzPPPP48TJ05g586d2LZtG3bv3o1JkybV299XX32F0tJS6RUTE9P0b4KF7OXkQ44hKrQ1nn04xKjs2YdDbNoLlX2wBP0Wfo0xf89Hv4VfI/tgic3q0tjM00S2wuPSMdh8nqi4uDj07t0bK1asAAAYDAaEhoZi8uTJSE1NrRefnJyMyspKbNu2TSrr06cPoqOjkZmZCSEEgoODMW3aNEyfPh0AoNPpEBgYiKysLIwaNQonT55E9+7dcfDgQfTq1QsAsH37djz55JO4cOECgoODUVxcjPDwcBQWFiI6OlpW26wxTxS7d0mu785fw6Hia+gV1tqmCZS9PXPM3upDBPC4tDVzz9827YmqqalBQUEBEhMTpTI3NzckJiYiLy/P5Dp5eXlG8QCg0Wik+KKiImi1WqMYX19fxMXFSTF5eXnw8/OTEigASExMhJubG/Lz8422PXToULRr1w79+/fH1q1bG21PdXU19Hq90asp2Wv3LnvGHENUaGtMHPCAzcdB2dtf2Jx5muwRj0vHYNOB5eXl5aitrUVgYKBReWBgIE6dOmVyHa1WazJeq9VKy+vKGotp166d0XIPDw+0adNGimnVqhXeffdd9OvXD25ubvjss8+QlJSEzZs3Y+jQoSbrlpGRgXnz5pnTdFns8YGX7BkjS9U9c+zXf2Hb8pljyb3bY2CXAM48TXaFx6X94915DfD390dKSor0c+/evXHp0iUsXry4wSRq5syZRuvo9XqEhoY2WZ3s7eTTUM/YwC4B/GWnBtX9hT1r03HUCmE3f2Fz5mmyRzwu7ZtNkyh/f3+4u7ujrKzMqLysrAxqtdrkOmq1utH4un/LysoQFBRkFFM3tkmtVtcbuP7zzz/j6tWrDe4XuDN+a+fOnQ0u9/T0hKenZ4PL75W9nXzssWeMHAP/wiZXVaq7haLySoT7e/O4dwI2HROlVCoRExOD3NxcqcxgMCA3Nxfx8fEm14mPjzeKB4CdO3dK8eHh4VCr1UYxer0e+fn5Ukx8fDwqKipQUFAgxXz99dcwGAyIi4trsL5HjhwxSsxsIbl3e+xJHYxPXu6DPamDbXrpzFvpbrK8pdLmN32SAwjy9UJ8x7Y8kZDLsKe7Uqlp2PxyXkpKCsaPH49evXohNjYWS5cuRWVlJSZMmAAAGDduHEJCQpCRkQEAmDJlChISEvDuu+9iyJAhWL9+PQ4dOoT3338fAKBQKDB16lS8/fbb6Ny5M8LDwzFnzhwEBwcjKSkJANCtWzc8/vjjePnll5GZmYnbt2/j9ddfx6hRoxAcHAwAWLt2LZRKJXr27AkA2LRpEz788EN88MEHzfwO1Wcv3buVNbUmy2/WGJq5JkRkTew9uXeuOPzBFY4bmydRycnJuHLlCtLS0qDVahEdHY3t27dLA8NLSkrg5va/no2+ffti3bp1mD17NmbNmoXOnTtj8+bN6NGjhxTz1ltvobKyEpMmTUJFRQX69++P7du3Q6VSSTEff/wxXn/9dTz66KNwc3PDs88+i2XLlhnVbcGCBfjxxx/h4eGBiIgIZGdnY8SIEVZ+RxyHvY3RIsfiCl+wzoA3jzQNVxv+4CrHjc3niXJm1pgnyt5kHyypN0bLGX9RqGm5yhdsHUdNGDlXUdNxhvfS3OPYGdpq7vnb5j1R5Ng4QLhxjnrytCZXu6zhyAmjq/WeWJO93RhkKUuOY1c6bphE0T2zlzFa9saRT57W5EpfsI6eMPKSfdNy1D86LT2OXem44W1URFZgr7PL24O6L9hfctYvWHubnd1SnDW76TniXamWHseudNywJ4rIClypt8VSjn5ZwxLO8Be5o/aeUNORcxy7ynHDJIrICpzh5GlNcr5gHXF8mbMkjLxk79rkHseucNzw7jwrcoW786hhvHOx6djj+DJLkrpS3S2r/kXuiAkmOR5rH8f2xNzzN5MoK2ISRa70pWMt9ni7tD0ldfZUF1fEBNY5cYoDIjvgCt3Z1mZv48vs6Y47e6qLK7LHBJZJXfPi3XlEZNfs7W6+5rjjrlR3C/vOld/1bk5Hv/vPkdnjHbh8Nl/zYxJFRHbN3m6XtnZSZ8mJ0N4STFdibwmsPSZ1roBJFJEdMbcHwtUk926PPamD8cnLfbAndbBNL5lYM6mz9ERobwmmK7G3BNbekjpXwTFRRHbCHsdX2BN7Gl9mrTlw5Iz/cpX5eOxNc01fYe4YJ06rYhtMoojsAAcINz1rD7C1RlIn90RoTwmmK7F2AmvJH1bOMieZo2ESRWRF5p7I7e0ONEeXfbAEqZ8dgwCgALDwWcfo1eOJ0PFYK4GV84cVeyWbH5MoIiux5K9IdsU3nVLdLSmBAgABIPWzYw7Tq8cTYeNc5RZ+uX9YsVeyeXFgOZEVcICw7RwqvopfnXsgABQUX7NFdWRxxIfUNgdXuoXf3gauk2nsiSKyAg4Qth2FQtFAeTNXpBm5Qu+Mq40b5KVdx8AkisgKOEDYdmI6tIYCMOqNUiiAhzu0tlWVrMpV7up0xXGD/MPK/vFyHpEV8PKc7QT5emHhs5HSpRA3BbBweKRTvveuNMFic13esre52nhp176xJ4rISvhXpO24ynvvSr0zzXF5y1V69ajpMIkisiJenrMdV3jvXe2uTmsmx6425oqaBi/nERE5KFe8bGyty1t8bArJwZ4oIjti6V1WrnBXFjXOVS5d1rHWMe9qvXrUNJhEuQCeaB2DpeMxOH6D6tjbpUtrfedY85jnlAK254jnKoUQ4tfz0lET0ev18PX1hU6ng4+Pj03qwBOtYyjV3UK/hV/X+yt4T+pgk18mlsbbI0f8wqS7k/OdY86x0FzHfKnulsv06tkTeztXmXv+Zk+UE+NAScdh6V1Wjn5Xlr19YVLTkPOdY+6x0FzHvL316rkCRz5XcWC5E+NAScdh6Rw44f7e+PUE3ArAIcZvuNLcRq7G0u8cS44FPgbFeTnyuYpJlBPjl47jaJK7rBzksSaO/IVJjbP0O8eSY8EV70R0FY58ruLlPCfGgZKOxZK7rIrKK+s/ZFegSS9t8C4ospSl3zmWHguudieiq3DkcxUHlluRPQwsBzhQ0hlZe5CttccsZR8sqfeF6WhjoixJMl1tEL0l3znOcCxQ07Cnc5W5528mUVZkL0mUvXG1E4q1WOvkw7ug7s6SJNMeB9Hb2++gIx8L5Jx4dx7ZJXs8oTgqa13a4F1QjbPkTiJ7vOvIWlMQ3AtHPRaImERRs7HHE4qjs8bJh2OWGmdJkmlvU1FYcwoCIlfEu/Oo2fCuLMfAu6AaZ8mdRPZ215E1pyAgckXsiaJmwx4Ox8G7oBpmyZ1E9nbXkaW/g/bWk0Zkb5hEUbOxtxMKNY7jVBpmSZJpTwmptacgcAb2Nuie7BvvzrMi3p1nGu/EIbItTkFgGsd/UR1zz992MSZq5cqVCAsLg0qlQlxcHA4cONBo/MaNGxEREQGVSoXIyEjk5OQYLRdCIC0tDUFBQfDy8kJiYiLOnDljFHP16lU8//zz8PHxgZ+fHyZOnIgbN24YxRw9ehQDBgyASqVCaGgoFi1a1DQNdnFBvl6I79iWCRSRjVjyO5jcuz32pA7GJy/3wZ7UwU6bVHD8F8lh8yQqOzsbKSkpSE9Px+HDhxEVFQWNRoPLly+bjN+3bx9Gjx6NiRMnorCwEElJSUhKSsLx48elmEWLFmHZsmXIzMxEfn4+vL29odFoUFVVJcU8//zzOHHiBHbu3Ilt27Zh9+7dmDRpkrRcr9fjscceQ4cOHVBQUIDFixdj7ty5eP/99633ZhAR2SFX+MOHN76QHDa/nBcXF4fevXtjxYoVAACDwYDQ0FBMnjwZqamp9eKTk5NRWVmJbdu2SWV9+vRBdHQ0MjMzIYRAcHAwpk2bhunTpwMAdDodAgMDkZWVhVGjRuHkyZPo3r07Dh48iF69egEAtm/fjieffBIXLlxAcHAwVq1ahT/+8Y/QarVQKpUAgNTUVGzevBmnTp0yq228nEdE5Biaa5JZcgwOcTmvpqYGBQUFSExMlMrc3NyQmJiIvLw8k+vk5eUZxQOARqOR4ouKiqDVao1ifH19ERcXJ8Xk5eXBz89PSqAAIDExEW5ubsjPz5diBg4cKCVQdfs5ffo0rl27ZrJu1dXV0Ov1Ri8iIrJ/nNqD5LDp3Xnl5eWora1FYGCgUXlgYGCDvT1ardZkvFarlZbXlTUW065dO6PlHh4eaNOmjVFMeHh4vW3ULWvdunW9umVkZGDevHkNN5iIiOyWPd1JSY7B5mOinMnMmTOh0+mk1/nz521dJSIisoArjP+ipmPTJMrf3x/u7u4oKyszKi8rK4NarTa5jlqtbjS+7t+7xfx64PrPP/+Mq1evGsWY2sYv9/Frnp6e8PHxMXoRERGRc7JpEqVUKhETE4Pc3FypzGAwIDc3F/Hx8SbXiY+PN4oHgJ07d0rx4eHhUKvVRjF6vR75+flSTHx8PCoqKlBQUCDFfP311zAYDIiLi5Nidu/ejdu3bxvtp2vXriYv5REREZGLETa2fv164enpKbKyssT3338vJk2aJPz8/IRWqxVCCDF27FiRmpoqxe/du1d4eHiIJUuWiJMnT4r09HTRokULcezYMSlm4cKFws/PT2zZskUcPXpUDBs2TISHh4tbt25JMY8//rjo2bOnyM/PF3v27BGdO3cWo0ePlpZXVFSIwMBAMXbsWHH8+HGxfv160bJlS7F69Wqz26bT6QQAodPp7uUtIiIiomZk7vnb5kmUEEIsX75ctG/fXiiVShEbGyv2798vLUtISBDjx483it+wYYPo0qWLUCqV4sEHHxRffvml0XKDwSDmzJkjAgMDhaenp3j00UfF6dOnjWJ++uknMXr0aNGqVSvh4+MjJkyYIK5fv24U891334n+/fsLT09PERISIhYuXGhRu5hEEREROR5zz982nyfKmXGeKCIiIsfjEPNEERERETkqJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkg00fQOzs6maP0Ov1Nq4JERERmavuvH23WaCYRFnR9evXAQChoaE2rgkRERFZ6vr16/D19W1wOSfbtCKDwYBLly7hvvvug0KhaLLt6vV6hIaG4vz58045iaeztw9w/jY6e/sA528j2+f4nL2N1myfEALXr19HcHAw3NwaHvnEnigrcnNzw/3332+17fv4+DjlL0YdZ28f4PxtdPb2Ac7fRrbP8Tl7G63VvsZ6oOpwYDkRERGRDEyiiIiIiGRgEuWAPD09kZ6eDk9PT1tXxSqcvX2A87fR2dsHOH8b2T7H5+xttIf2cWA5ERERkQzsiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKDuxcuVKhIWFQaVSIS4uDgcOHGg0funSpejatSu8vLwQGhqKP/zhD6iqqrqnbVpTU7dv7ty5UCgURq+IiAhrN6NBlrTv9u3bmD9/Pjp27AiVSoWoqChs3779nrbZHJq6jfb0Ge7evRtPP/00goODoVAosHnz5ruus2vXLjz88MPw9PREp06dkJWVVS/GXj5Da7TPkT+/0tJSjBkzBl26dIGbmxumTp1qMm7jxo2IiIiASqVCZGQkcnJymr7yZrJGG7Oysup9hiqVyjoNuAtL27dp0yb85je/QUBAAHx8fBAfH49///vf9eKs/TvIJMoOZGdnIyUlBenp6Th8+DCioqKg0Whw+fJlk/Hr1q1Damoq0tPTcfLkSfzjH/9AdnY2Zs2aJXub1mSN9gHAgw8+iNLSUum1Z8+e5mhOPZa2b/bs2Vi9ejWWL1+O77//Hq+++iqeeeYZFBYWyt6mtVmjjYD9fIaVlZWIiorCypUrzYovKirCkCFDMHjwYBw5cgRTp07FSy+9ZPQlbk+foTXaBzju51ddXY2AgADMnj0bUVFRJmP27duH0aNHY+LEiSgsLERSUhKSkpJw/Pjxpqy62azRRuDObN+//Ax//PHHpqqyRSxt3+7du/Gb3/wGOTk5KCgowODBg/H00083//eoIJuLjY0Vr732mvRzbW2tCA4OFhkZGSbjX3vtNfHII48YlaWkpIh+/frJ3qY1WaN96enpIioqyir1tZSl7QsKChIrVqwwKhs+fLh4/vnnZW/T2qzRRnv6DH8JgPj8888bjXnrrbfEgw8+aFSWnJwsNBqN9LO9fYZ1mqp9jvz5/VJCQoKYMmVKvfKRI0eKIUOGGJXFxcWJV1555R5reO+aqo1r1qwRvr6+TVavpmJp++p0795dzJs3T/q5OX4H2RNlYzU1NSgoKEBiYqJU5ubmhsTEROTl5Zlcp2/fvigoKJC6JX/44Qfk5OTgySeflL1Na7FG++qcOXMGwcHBeOCBB/D888+jpKTEeg1pgJz2VVdX1+sy9/Lykv6Kt6fPT2597tbGOvbwGcqRl5dn9H4AgEajkd4Pe/sMLXW39tVx1M/PHOa+B47uxo0b6NChA0JDQzFs2DCcOHHC1lWSxWAw4Pr162jTpg2A5vsdZBJlY+Xl5aitrUVgYKBReWBgILRarcl1xowZg/nz56N///5o0aIFOnbsiEGDBkmXu+Rs01qs0T4AiIuLQ1ZWFrZv345Vq1ahqKgIAwYMwPXr163anl+T0z6NRoO//OUvOHPmDAwGA3bu3IlNmzahtLRU9jatyRptBOznM5RDq9WafD/0ej1u3bpld5+hpe7WPsCxPz9zNPQeOMLnZ66uXbviww8/xJYtW/DRRx/BYDCgb9++uHDhgq2rZrElS5bgxo0bGDlyJIDm+x5lEuWAdu3ahT//+c/429/+hsOHD2PTpk348ssvsWDBAltXrUmY074nnngCzz33HB566CFoNBrk5OSgoqICGzZssGHNzfPXv/4VnTt3RkREBJRKJV5//XVMmDABbm7O8+toThsd+TMkfn7OID4+HuPGjUN0dDQSEhKwadMmBAQEYPXq1baumkXWrVuHefPmYcOGDWjXrl2z7tujWfdG9fj7+8Pd3R1lZWVG5WVlZVCr1SbXmTNnDsaOHYuXXnoJABAZGYnKykpMmjQJf/zjH2Vt01qs0T5TyYafnx+6dOmCs2fPNn0jGiGnfQEBAdi8eTOqqqrw008/ITg4GKmpqXjggQdkb9OarNFGU2z1GcqhVqtNvh8+Pj7w8vKCu7u7XX2Glrpb+0xxpM/PHA29B47w+cnVokUL9OzZ06E+w/Xr1+Oll17Cxo0bjS7dNdf3qPP86euglEolYmJikJubK5UZDAbk5uYiPj7e5Do3b96sl0i4u7sDAIQQsrZpLdZonyk3btzAuXPnEBQU1EQ1N8+9vNcqlQohISH4+eef8dlnn2HYsGH3vE1rsEYbTbHVZyhHfHy80fsBADt37pTeD3v7DC11t/aZ4kifnznkvAeOrra2FseOHXOYz/CTTz7BhAkT8Mknn2DIkCFGy5rtd7DJhqiTbOvXrxeenp4iKytLfP/992LSpEnCz89PaLVaIYQQY8eOFampqVJ8enq6uO+++8Qnn3wifvjhB7Fjxw7RsWNHMXLkSLO36ejtmzZtmti1a5coKioSe/fuFYmJicLf319cvnzZ7tu3f/9+8dlnn4lz586J3bt3i0ceeUSEh4eLa9eumb3N5maNNtrTZ3j9+nVRWFgoCgsLBQDxl7/8RRQWFooff/xRCCFEamqqGDt2rBT/ww8/iJYtW4o333xTnDx5UqxcuVK4u7uL7du3SzH29Blao32O/PkJIaT4mJgYMWbMGFFYWChOnDghLd+7d6/w8PAQS5YsESdPnhTp6emiRYsW4tixY83atjrWaOO8efPEv//9b3Hu3DlRUFAgRo0aJVQqlVFMc7G0fR9//LHw8PAQK1euFKWlpdKroqJCimmO30EmUXZi+fLlon379kKpVIrY2Fixf/9+aVlCQoIYP3689PPt27fF3LlzRceOHYVKpRKhoaHi97//vdEJ6m7bbG5N3b7k5GQRFBQklEqlCAkJEcnJyeLs2bPN2CJjlrRv165dolu3bsLT01O0bdtWjB07Vly8eNGibdpCU7fRnj7Db775RgCo96pr0/jx40VCQkK9daKjo4VSqRQPPPCAWLNmTb3t2stnaI32OfrnZyq+Q4cORjEbNmwQXbp0EUqlUjz44IPiyy+/bJ4GmWCNNk6dOlU6PgMDA8WTTz4pDh8+3HyN+gVL25eQkNBofB1r/w4qhGjg+ggRERERNYhjooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRkQvZtWsXFAoFKioqbF0VIofHJIqIrOLFF1+EQqHAwoULjco3b94MhUIh/SyEwN///nfEx8fDx8cHrVq1woMPPogpU6aY/SDUmzdvYubMmejYsSNUKhUCAgKQkJCALVu2SDFhYWFYunRpk7TN2ureO4VCgRYtWiA8PBxvvfUWqqqqLNrOoEGDMHXqVKOyvn37orS0FL6+vk1YYyLXxCSKiKxGpVLhnXfewbVr10wuF0JgzJgxeOONN/Dkk09ix44d+P777/GPf/wDKpUKb7/9tln7efXVV7Fp0yYsX74cp06dwvbt2zFixAj89NNPTdmcZvX444+jtLQUP/zwA9577z2sXr0a6enp97xdpVIJtVptlMgSkUxN+hAZIqL/M378ePHUU0+JiIgI8eabb0rln3/+uaj76vnkk08EALFlyxaT2zAYDGbty9fXV2RlZTW43NRztur85z//Ef379xcqlUrcf//9YvLkyeLGjRvS8v/3//6fiImJEa1atRKBgYFi9OjRoqysTFpe98yv7du3i+joaKFSqcTgwYNFWVmZyMnJEREREeK+++4To0ePFpWVlWa1Z/z48WLYsGFGZcOHDxc9e/aUfi4vLxejRo0SwcHBwsvLS/To0UOsW7fOaBu/bnNRUZFU318+i/LTTz8V3bt3F0qlUnTo0EEsWbLErHoSuTr2RBGR1bi7u+PPf/4zli9fjgsXLtRb/sknn6Br164YOnSoyfXN7S1Rq9XIycnB9evXTS7ftGkT7r//fsyfPx+lpaUoLS0FAJw7dw6PP/44nn32WRw9ehTZ2dnYs2cPXn/9dWnd27dvY8GCBfjuu++wefNmFBcX48UXX6y3j7lz52LFihXYt28fzp8/j5EjR2Lp0qVYt24dvvzyS+zYsQPLly83qz2/dvz4cezbtw9KpVIqq6qqQkxMDL788kscP34ckyZNwtixY3HgwAEAwF//+lfEx8fj5ZdfltocGhpab9sFBQUYOXIkRo0ahWPHjmHu3LmYM2cOsrKyZNWVyKXYOosjIuf0y96UPn36iN/+9rdCCOOeqIiICDF06FCj9aZMmSK8vb2Ft7e3CAkJMWtf3377rbj//vtFixYtRK9evcTUqVPFnj17jGI6dOgg3nvvPaOyiRMnikmTJhmV/ec//xFubm7i1q1bJvd18OBBAUBcv35dCPG/nqivvvpKisnIyBAAxLlz56SyV155RWg0GrPaM378eOHu7i68vb2Fp6enACDc3NzEp59+2uh6Q4YMEdOmTZN+TkhIEFOmTDGK+XVP1JgxY8RvfvMbo5g333xTdO/e3ay6Erky9kQRkdW98847WLt2LU6ePHnX2D/+8Y84cuQI0tLScOPGDbO2P3DgQPzwww/Izc3FiBEjcOLECQwYMAALFixodL3vvvsOWVlZaNWqlfTSaDQwGAwoKioCcKen5umnn0b79u1x3333ISEhAQBQUlJitK2HHnpI+n9gYCBatmyJBx54wKjs8uXLZrUHAAYPHowjR44gPz8f48ePx4QJE/Dss89Ky2tra7FgwQJERkaiTZs2aNWqFf7973/Xq9fdnDx5Ev369TMq69evH86cOYPa2lqLtkXkaphEEZHVDRw4EBqNBjNnzjQq79y5M06fPm1UFhAQgE6dOqFdu3YW7aNFixYYMGAAZsyYgR07dmD+/PlYsGABampqGlznxo0beOWVV3DkyBHp9d133+HMmTPo2LEjKisrodFo4OPjg48//hgHDx7E559/DgD1ttuiRQvp/3V31f2SQqGAwWAwuz3e3t7o1KkToqKi8OGHHyI/Px//+Mc/pOWLFy/GX//6V8yYMQPffPMNjhw5Ao1G02h7iahpedi6AkTkGhYuXIjo6Gh07dpVKhs9ejTGjBmDLVu2YNiwYU26v+7du+Pnn39GVVUVlEollEplvZ6Vhx9+GN9//z06depkchvHjh3DTz/9hIULF0rjiQ4dOtSk9TSHm5sbZs2ahZSUFIwZMwZeXl7Yu3cvhg0bhhdeeAEAYDAY8N///hfdu3eX1jPV5l/r1q0b9u7da1S2d+9edOnSBe7u7k3fGCInwp4oImoWkZGReP7557Fs2TKpbNSoURgxYgRGjRqF+fPnIz8/H8XFxfj222+RnZ1t9kl80KBBWL16NQoKClBcXIycnBzMmjULgwcPho+PD4A780Tt3r0bFy9eRHl5OQBgxowZ2LdvH15//XUcOXIEZ86cwZYtW6SB5e3bt4dSqcTy5cvxww8/YOvWrXe9RGgtzz33HNzd3bFy5UoAd3rxdu7ciX379uHkyZN45ZVXUFZWZrROWFiY9J6Wl5eb7AmbNm0acnNzsWDBAvz3v//F2rVrsWLFCkyfPr1Z2kXkyJhEEVGzmT9/vtGJXKFQIDs7G0uXLkVOTg4effRRdO3aFb/97W8RGhqKPXv2mLVdjUaDtWvX4rHHHkO3bt0wefJkaDQabNiwwWjfxcXF6NixIwICAgDcGcf07bff4r///S8GDBiAnj17Ii0tDcHBwQDuXFrMysrCxo0b0b17dyxcuBBLlixpwnfEfB4eHnj99dexaNEiVFZWYvbs2Xj44Yeh0WgwaNAgqNVqJCUlGa0zffp0uLu7o3v37ggICDA5Xurhhx/Ghg0bsH79evTo0QNpaWmYP3++yTsQiciYQgghbF0JIiIiIkfDnigiIiIiGZhEEZHd++UUBL9+/ec//7F19SxSUlLSaHssnaKAiGyHl/OIyO419iDikJAQeHl5NWNt7s3PP/+M4uLiBpeHhYXBw4M3ThM5AiZRRERERDLwch4RERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikuH/A4hpbWtXix2pAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATPdJREFUeJzt3Xl8FEUe9/HvJJCDYBIxIQcGEu5TQIQQRAIajcoqkVUuF5BF8VYWL0A5PcBrZUVWXHclPusih4sXsggbRRaIETlUFF1AWFCSQMRMOMJhUs8fPpnHMQlkmkymJ/N5v155wVRXd1f1zPT8uqq62mGMMQIAAIBHgnxdAAAAAH9EEAUAAGABQRQAAIAFBFEAAAAWEEQBAABYQBAFAABgAUEUAACABQRRAAAAFhBEAQAAWEAQBaBemz59uhwOR43yOhwOTZ8+3avl6d+/v/r372/b7QGoOYIoAHUiOztbDofD9degQQM1a9ZMN910k77//ntfF892kpOT3Y5X06ZNdckll+jNN9+sle0fO3ZM06dP15o1a2ple0AgIogCUKdmzpypv//975o/f76uuuoqvfbaa0pPT9fx48e9sr9HHnlEpaWlXtm2t3Xr1k1///vf9fe//13333+/9u/fr8GDB2v+/Plnve1jx45pxowZBFHAWWjg6wIACCxXXXWVLrroIknSzTffrJiYGD355JN65513NGTIkFrfX4MGDdSggX+e6po1a6bf/e53rtejRo1S69at9dxzz+m2227zYckASLREAfCxSy65RJK0a9cut/Svv/5a119/vZo0aaKwsDBddNFFeuedd9zynDp1SjNmzFCbNm0UFham8847T3379tXq1atdeaoaE3XixAn94Q9/UGxsrM455xxde+21+u677yqV7aabblJycnKl9Kq2uWDBAl166aVq2rSpQkND1bFjR7344oseHYsziY+PV4cOHbR79+7T5jtw4IDGjh2ruLg4hYWFqWvXrnr11Vddy/fs2aPY2FhJ0owZM1xdht4eDwbUN/55eQag3tizZ48k6dxzz3Wlffnll7r44ovVrFkzTZw4UREREVqyZImysrL0z3/+U9ddd52kn4OZWbNm6eabb1avXr1UUlKiTz/9VJs3b9bll19e7T5vvvlmvfbaaxoxYoT69OmjDz74QAMHDjyrerz44ovq1KmTrr32WjVo0EDvvvuu7rjjDpWXl+vOO+88q21XOHXqlPbt26fzzjuv2jylpaXq37+/du7cqbvuukspKSlaunSpbrrpJhUXF+vee+9VbGysXnzxRd1+++267rrrNHjwYEnSBRdcUCvlBAKGAYA6sGDBAiPJ/Pvf/zYHDx40+/btM2+88YaJjY01oaGhZt++fa68l112menSpYs5fvy4K628vNz06dPHtGnTxpXWtWtXM3DgwNPud9q0aeaXp7qtW7caSeaOO+5wyzdixAgjyUybNs2VNnr0aNOiRYszbtMYY44dO1YpX2ZmpmnZsqVbWnp6uklPTz9tmY0xpkWLFuaKK64wBw8eNAcPHjSfffaZGTZsmJFk7r777mq3N2fOHCPJvPbaa660kydPmrS0NNO4cWNTUlJijDHm4MGDleoLwDN05wGoUxkZGYqNjVVSUpKuv/56RURE6J133tH5558vSTp06JA++OADDRkyRIcPH1ZRUZGKior0ww8/KDMzUzt27HDdzRcdHa0vv/xSO3bsqPH+V6xYIUm655573NLHjx9/VvUKDw93/d/pdKqoqEjp6en69ttv5XQ6LW1z1apVio2NVWxsrLp27aqlS5dq5MiRevLJJ6tdZ8WKFYqPj9fw4cNdaQ0bNtQ999yjI0eO6KOPPrJUFgCV0Z0HoE7NmzdPbdu2ldPp1CuvvKK1a9cqNDTUtXznzp0yxmjKlCmaMmVKlds4cOCAmjVrppkzZ2rQoEFq27atOnfurCuvvFIjR448bbfU//73PwUFBalVq1Zu6e3atTureq1fv17Tpk1Tbm6ujh075rbM6XQqKirK422mpqbqsccek8PhUKNGjdShQwdFR0efdp3//e9/atOmjYKC3K+RO3To4FoOoHYQRAGoU7169XLdnZeVlaW+fftqxIgR+uabb9S4cWOVl5dLku6//35lZmZWuY3WrVtLkvr166ddu3bp7bff1qpVq/TXv/5Vzz33nObPn6+bb775rMta3SSdZWVlbq937dqlyy67TO3bt9cf//hHJSUlKSQkRCtWrNBzzz3nqpOnYmJilJGRYWldAN5HEAXAZ4KDgzVr1iwNGDBAL7zwgiZOnKiWLVtK+rkLqiYBRJMmTTRmzBiNGTNGR44cUb9+/TR9+vRqg6gWLVqovLxcu3btcmt9+uabbyrlPffcc1VcXFwp/detOe+++65OnDihd955R82bN3elf/jhh2csf21r0aKFPv/8c5WXl7u1Rn399deu5VL1ASKAmmNMFACf6t+/v3r16qU5c+bo+PHjatq0qfr376+XXnpJ+fn5lfIfPHjQ9f8ffvjBbVnjxo3VunVrnThxotr9XXXVVZKk559/3i19zpw5lfK2atVKTqdTn3/+uSstPz+/0qzhwcHBkiRjjCvN6XRqwYIF1ZbDW66++moVFBRo8eLFrrSffvpJc+fOVePGjZWeni5JatSokSRVGSQCqBlaogD43AMPPKAbbrhB2dnZuu222zRv3jz17dtXXbp00S233KKWLVuqsLBQubm5+u677/TZZ59Jkjp27Kj+/furR48eatKkiT799FO98cYbuuuuu6rdV7du3TR8+HD9+c9/ltPpVJ8+fZSTk6OdO3dWyjts2DA99NBDuu6663TPPffo2LFjevHFF9W2bVtt3rzZle+KK65QSEiIrrnmGt166606cuSIXn75ZTVt2rTKQNCbxo0bp5deekk33XSTNm3apOTkZL3xxhtav3695syZo3POOUfSzwPhO3bsqMWLF6tt27Zq0qSJOnfurM6dO9dpeQG/5uvbAwEEhoopDjZu3FhpWVlZmWnVqpVp1aqV+emnn4wxxuzatcuMGjXKxMfHm4YNG5pmzZqZ3/zmN+aNN95wrffYY4+ZXr16mejoaBMeHm7at29vHn/8cXPy5ElXnqqmIygtLTX33HOPOe+880xERIS55pprzL59+6q85X/VqlWmc+fOJiQkxLRr18689tprVW7znXfeMRdccIEJCwszycnJ5sknnzSvvPKKkWR2797tyufJFAdnmr6huu0VFhaaMWPGmJiYGBMSEmK6dOliFixYUGndDRs2mB49epiQkBCmOwAscBjzi/ZnAAAA1AhjogAAACwgiAIAALCAIAoAAMACgigAAAALCKIAAAAsIIgCAACwgMk2vai8vFz79+/XOeecwyMWAADwE8YYHT58WImJiZUe5v1LBFFetH//fiUlJfm6GAAAwIJ9+/bp/PPPr3Y5QZQXVTxeYd++fYqMjPRxaQAAQE2UlJQoKSnJ9TteHYIoL6rowouMjCSIAgDAz5xpKA4DywEAACwgiAIAALCAIAoAAMACxkT5WFlZmU6dOuXrYviVkJCQ095yCgBAXSCI8hFjjAoKClRcXOzrovidoKAgpaSkKCQkxNdFAQAEMIIoH6kIoJo2bapGjRoxGWcNVUxgmp+fr+bNm3PcAAA+QxDlA2VlZa4A6rzzzvN1cfxObGys9u/fr59++kkNGzb0dXEAAAGKgSU+UDEGqlGjRj4uiX+q6MYrKyvzcUkAAIGMIMqH6IqyhuMGALADgigAAAALCKIAAAAsIIiCR2666SZlZWVVSl+zZo0cDoeKi4u1Zs0aDRo0SAkJCYqIiFC3bt30j3/8o9I6hw4d0vjx49WiRQuFhIQoMTFRv//977V37946qAkA1D/5zlJt2FWkfGepr4sSELg7D7Vuw4YNuuCCC/TQQw8pLi5Oy5cv16hRoxQVFaXf/OY3kn4OoHr37q2QkBDNnz9fnTp10p49e/TII4+oZ8+eys3NVcuWLX1cEwDwH4s37tWkZV+o3EhBDmnW4C4a2rO5r4tVrxFEodZNnjzZ7fW9996rVatWadmyZa4g6uGHH9b+/fu1c+dOxcfHS5KaN2+u999/X23atNGdd96pf/3rX3VedgDwR/nOUlcAJUnlRpq8bJv6tY1VQlS4bwtXj9GdVw/4Q/Ot0+lUkyZNJP08YeaiRYt04403ugKoCuHh4brjjjv0/vvv69ChQ74oKgD4nd1FR10BVIUyY7Sn6JhvChQgaInyc75ovl2+fLkaN27slna6OZuWLFmijRs36qWXXpIkHTx4UMXFxerQoUOV+Tt06CBjjHbu3KlevXrVXsEBoJ5KiYlQkENugVSww6HkGOYj9CZaovxYdc233m6RGjBggLZu3er299e//rXKvB9++KHGjBmjl19+WZ06dXJbZoypch0AgGcSosI1a3AXBf+/efSCHQ49MbgzXXleRkuUHztd8603vzgRERFq3bq1W9p3331XKd9HH32ka665Rs8995xGjRrlSo+NjVV0dLS2b99e5fa3b98uh8NRaR8AgOoN7dlc/drGak/RMSXHNCKAqgO0RPmxiubbX7JL8+2aNWs0cOBAPfnkkxo3bpzbsqCgIA0ZMkQLFy5UQUGB27LS0lL9+c9/VmZmpmsMFQCgZhKiwpXW6jwCqDpCEOXH7Np8++GHH2rgwIG655579Nvf/lYFBQUqKChwGyj+xBNPKD4+Xpdffrn+9a9/ad++fVq7dq0yMzN16tQpzZs3z4c1AADgzOjO83N2bL599dVXdezYMc2aNUuzZs1ypaenp2vNmjWSpPPOO08ff/yxZs6cqVtvvVUFBQVq0qSJrrrqKr322mtq3py5TQAA9uYwjO71mpKSEkVFRcnpdCoyMtKVfvz4ce3evVspKSkKCwvzYQn9E8cPAOBN1f1+/5otuvPmzZun5ORkhYWFKTU1VZ988slp8y9dulTt27dXWFiYunTpohUrVrgtN8Zo6tSpSkhIUHh4uDIyMrRjxw7X8j179mjs2LFKSUlReHi4WrVqpWnTpunkyZNu2/n88891ySWXKCwsTElJSXrqqadqr9IAAMCv+TyIWrx4sSZMmKBp06Zp8+bN6tq1qzIzM3XgwIEq82/YsEHDhw/X2LFjtWXLFmVlZSkrK0vbtm1z5Xnqqaf0/PPPa/78+crLy1NERIQyMzN1/PhxSdLXX3+t8vJyvfTSS/ryyy/13HPPaf78+W4zbZeUlOiKK65QixYttGnTJj399NOaPn26/vKXv3j3gAAAAP9gfKxXr17mzjvvdL0uKysziYmJZtasWVXmHzJkiBk4cKBbWmpqqrn11luNMcaUl5eb+Ph48/TTT7uWFxcXm9DQUPP6669XW46nnnrKpKSkuF7/+c9/Nueee645ceKEK+2hhx4y7dq1q3HdnE6nkWScTqdbemlpqfnqq69MaWlpjbeF/4/jBwDwpup+v3/Npy1RJ0+e1KZNm5SRkeFKCwoKUkZGhnJzc6tcJzc31y2/JGVmZrry7969WwUFBW55oqKilJqaWu02JffHklTsp1+/fgoJCXHbzzfffKMff/zRs4oCAIB6x6dBVFFRkcrKyhQXF+eWHhcXV2n+oAoFBQWnzV/xryfb3Llzp+bOnatbb731jPv55T5+7cSJEyopKXH7Ox3DmH5LOG4AADvw+ZgoX/v+++915ZVX6oYbbtAtt9xyVtuaNWuWoqKiXH9JSUlV5mvYsKEk6dgxHgxpRcUNAMHBwT4uCQAgkPl0nqiYmBgFBwersLDQLb2wsFDx8fFVrhMfH3/a/BX/FhYWKiEhwS1Pt27d3Nbbv3+/BgwYoD59+lQaMF7dfn65j1+bNGmSJkyY4HpdUlJSZSAVHBys6Oho1+D5Ro0ayeFwVMqHysrLy3Xw4EE1atRIDRowzRkAwHd8+isUEhKiHj16KCcnR1lZWZJ+/pHMycnRXXfdVeU6aWlpysnJ0fjx411pq1evVlpamiQpJSVF8fHxysnJcQVNJSUlysvL0+233+5a5/vvv9eAAQPUo0cPLViwQEFB7o1yaWlpevjhh3Xq1ClXy9Hq1avVrl07nXvuuVWWLTQ0VKGhoTWqe0UgVt1diKheUFCQmjdvTuAJAPApn1/KT5gwQaNHj9ZFF12kXr16ac6cOTp69KjGjBkjSRo1apSaNWvmmvn63nvvVXp6up599lkNHDhQixYt0qeffupqSXI4HBo/frwee+wxtWnTRikpKZoyZYoSExNdgdr333+v/v37q0WLFnrmmWd08OBBV3kqgpsRI0ZoxowZGjt2rB566CFt27ZNf/rTn/Tcc8/VSr0dDocSEhLUtGlTnTp1qla2GShCQkIqBb0AANQ1nwdRQ4cO1cGDBzV16lQVFBSoW7duWrlypWsQ9969e91+MPv06aOFCxfqkUce0eTJk9WmTRu99dZb6ty5syvPgw8+qKNHj2rcuHEqLi5W3759tXLlStfs1qtXr9bOnTu1c+dOnX/++W7lqRi0HBUVpVWrVunOO+9Ujx49FBMTo6lTp1Z6mO7ZCg4OZmwPAAB+iMe+eFFNp40HAAD24VePfQEAAPA3BFEAAAAWEEQBAABYQBAFAABgAUEUAACABQRRAAAAFhBEAQAAWEAQBQAAYAFBFAAAgAUEUQAAABYQRAEAAFhAEAUAFuQ7S7VhV5HynaW+LgoAH2ng6wIAgL9ZvHGvJi37QuVGCnJIswZ30dCezX1dLAB1jJYoAPBAvrPUFUBJUrmRJi/bRosUEIAIogDAA7uLjroCqAplxmhP0THfFAiAzxBEAYAHUmIiFORwTwt2OJQc08g3BQLgMwRRAOCBhKhwzRrcRcGOnyOpYIdDTwzurISocB+XDEBdY2A5AHhoaM/m6tc2VnuKjik5phEBFBCgCKIAwIKEqHCCJyDA0Z0HAABgAUEUAACABQRRAAAAFhBEAQAAWEAQBQAAYAFBFAAAgAUEUQAAABYQRAEAAFhAEAUAAGABQRQAAIAFBFEAAAAWEEQBAABYQBAFAABgAUEUAACABQRRAAAAFhBEAQAAWEAQBQAAYAFBFAAAgAUEUQAAABYQRAEAAFhAEAUAAGABQRQAAIAFBFEAAAAWEEQBAABYQBAFAABgAUEUAACABQRRAAAAFhBEAQAAWEAQBQAAYAFBFAAAgAUEUQAAABYQRAEAAFhAEAUAAGABQRQAAIAFBFEAAAAWEEQBAABYQBAFAABgAUEUAACABQRRAAAAFhBEAQAAWEAQBQAAYAFBFAAAgAUEUQAAABYQRAEAAFhAEAUAAGABQRQAAIAFBFEAAAAWEEQBAABYQBAFAABgAUEUAACABQRRAAAAFhBEAQAAWODzIGrevHlKTk5WWFiYUlNT9cknn5w2/9KlS9W+fXuFhYWpS5cuWrFihdtyY4ymTp2qhIQEhYeHKyMjQzt27HDL8/jjj6tPnz5q1KiRoqOjq9yPw+Go9Ldo0aKzqisAAKg/fBpELV68WBMmTNC0adO0efNmde3aVZmZmTpw4ECV+Tds2KDhw4dr7Nix2rJli7KyspSVlaVt27a58jz11FN6/vnnNX/+fOXl5SkiIkKZmZk6fvy4K8/Jkyd1ww036Pbbbz9t+RYsWKD8/HzXX1ZWVq3UGwAA+D+HMcb4auepqanq2bOnXnjhBUlSeXm5kpKSdPfdd2vixImV8g8dOlRHjx7V8uXLXWm9e/dWt27dNH/+fBljlJiYqPvuu0/333+/JMnpdCouLk7Z2dkaNmyY2/ays7M1fvx4FRcXV9qXw+HQm2++eVaBU0lJiaKiouR0OhUZGWl5OwAAoO7U9PfbZy1RJ0+e1KZNm5SRkfH/CxMUpIyMDOXm5la5Tm5urlt+ScrMzHTl3717twoKCtzyREVFKTU1tdptns6dd96pmJgY9erVS6+88orOFG+eOHFCJSUlbn8AAKB+auCrHRcVFamsrExxcXFu6XFxcfr666+rXKegoKDK/AUFBa7lFWnV5ampmTNn6tJLL1WjRo20atUq3XHHHTpy5IjuueeeateZNWuWZsyY4dF+AACAf/JZEGV3U6ZMcf2/e/fuOnr0qJ5++unTBlGTJk3ShAkTXK9LSkqUlJTk1XICAADf8Fl3XkxMjIKDg1VYWOiWXlhYqPj4+CrXiY+PP23+in892WZNpaam6rvvvtOJEyeqzRMaGqrIyEi3PwAAUD/5LIgKCQlRjx49lJOT40orLy9XTk6O0tLSqlwnLS3NLb8krV692pU/JSVF8fHxbnlKSkqUl5dX7TZrauvWrTr33HMVGhp6VtsBAAD1g0+78yZMmKDRo0froosuUq9evTRnzhwdPXpUY8aMkSSNGjVKzZo106xZsyRJ9957r9LT0/Xss89q4MCBWrRokT799FP95S9/kfTzHXXjx4/XY489pjZt2iglJUVTpkxRYmKi2112e/fu1aFDh7R3716VlZVp69atkqTWrVurcePGevfdd1VYWKjevXsrLCxMq1ev1hNPPOG64w8AAEDGx+bOnWuaN29uQkJCTK9evczHH3/sWpaenm5Gjx7tln/JkiWmbdu2JiQkxHTq1Mm89957bsvLy8vNlClTTFxcnAkNDTWXXXaZ+eabb9zyjB492kiq9Pfhhx8aY4z517/+Zbp162YaN25sIiIiTNeuXc38+fNNWVmZR3VzOp1GknE6nR6tBwAAfKemv98+nSeqvmOeKAAA/I/t54kCAADwZwRRAAAAFhBEAQAAWEAQBQAAYAFBFAAAgAUEUQAAABYQRAEAAFhAEAUAAGABQRQAAIAFBFEAAAAWEEQBAABYQBAFAABgAUEUAACABQRRAAAAFhBEAQAAWEAQBQAAYAFBFAAAgAUEUQAAABYQRAEAAFhAEAUAAGABQRQAAIAFBFEAAAAWEEQBAABYQBAFAABgAUEUAACABQRRAAAAFhBEAQAAWEAQBQAAYAFBFAAAgAUEUQAAABYQRAEAAFhAEAUAAGABQRQAAIAFBFEAAAAWEEQBAACfy3eWasOuIuU7S31dlBpr4OsCAACAwLZ4415NWvaFyo0U5JBmDe6ioT2b+7pYZ0RLFAAA8Jl8Z6krgJKkciNNXrbNL1qkCKIAAIDP7C466gqgKpQZoz1Fx3xTIA8QRAEAAJ9JiYlQkMM9LdjhUHJMI98UyAMEUQAAwGcSosJ1XfdmbmlZ3ROVEBXuoxLVHEEUAADwmXxnqd7c8r1b2ltb9jMmCgAA4HQYEwUAAGABY6IAAAAsSIgK16zBXRTs+DmSCnY49MTgzn4xJorJNgEAgE8N7dlc/drGak/RMSXHNPKLAEoiiAIAADaQEBXuN8FTBbrzAAAALCCIAgAAsIAgCgAAwAKCKAAAAAsIogAAACwgiAIAALCAIAoAAMACgigAAAALCKIAAAAssDxjeXFxsXbu3ClJat26taKjo2urTAAAALbncUvUnj17NHDgQMXExCg1NVWpqamKiYnRb37zG+3Zs8cLRQQAALAfj1qi9u3bp969e6thw4Z69NFH1aFDB0nSV199pRdffFFpaWnauHGjzj//fK8UFgAAwC4cxhhT08xjx47Vzp079f777yssLMxtWWlpqa688kq1adNGf/3rX2u9oP6opKREUVFRcjqdioyM9HVxAABADdT099ujlqiVK1dq8eLFlQIoSQoPD9ejjz6qYcOGeV5aAAAAP+PRmKiioiIlJydXu7xly5Y6dOjQ2ZYJAADA9jwKohISEvTVV19Vu3zbtm2Kj48/60IBAADYnUdBVFZWlu6//34dPHiw0rIDBw7ooYceUlZWVm2VDQAAwLY8Glj+448/KjU1VQUFBfrd736n9u3byxij7du3a+HChYqPj9fHH3+sJk2aeLPMfoOB5QAA+B+vDCw/99xzlZeXp8mTJ2vRokUqLi6WJEVHR2vEiBF64oknCKAAAEBA8Kgl6peMMa5uvdjYWDkcjlotWH1ASxQAAP7HKy1Rv+RwONS0aVOrqwMAAPg1jx/7smLFCt1888168MEHtX37drdlP/74oy699NJaKxwAAIBdeRRELVy4UNdee60KCgqUm5urCy+8UP/4xz9cy0+ePKmPPvqo1gsJAABgNx515z399NP64x//qHvuuUeStGTJEv3+97/X8ePHNXbsWK8UEAAAwI48aonasWOHrrnmGtfrIUOG6N1339X48eM1f/58SwWYN2+ekpOTFRYWptTUVH3yySenzb906VK1b99eYWFh6tKli1asWOG23BijqVOnKiEhQeHh4crIyNCOHTvc8jz++OPq06ePGjVqpOjo6Cr3s3fvXg0cOFCNGjVS06ZN9cADD+inn36yVEcAAFD/eBRERUZGqrCw0C1twIABWr58uR544AHNnTvXo50vXrxYEyZM0LRp07R582Z17dpVmZmZOnDgQJX5N2zYoOHDh2vs2LHasmWLsrKylJWVpW3btrnyPPXUU3r++ec1f/585eXlKSIiQpmZmTp+/Lgrz8mTJ3XDDTfo9ttvr3I/ZWVlGjhwoE6ePKkNGzbo1VdfVXZ2tqZOnepR/QAAQD1mPDBo0CAzderUKpd9+OGHJiIiwgQFBdV4e7169TJ33nmn63VZWZlJTEw0s2bNqjL/kCFDzMCBA93SUlNTza233mqMMaa8vNzEx8ebp59+2rW8uLjYhIaGmtdff73S9hYsWGCioqIqpa9YscIEBQWZgoICV9qLL75oIiMjzYkTJ2pcP6fTaSQZp9NZ43UAAIBv1fT326OWqD/84Q8KCwurcln//v317rvvatSoUTXa1smTJ7Vp0yZlZGS40oKCgpSRkaHc3Nwq18nNzXXLL0mZmZmu/Lt371ZBQYFbnqioKKWmpla7zer206VLF8XFxbntp6SkRF9++WW16504cUIlJSVuf3aQ7yzVhl1FyneW+rooAADUGx4NLO/evbu6d+9ebXDQo0cP9ejRo0bbKioqUllZmVugIklxcXH6+uuvq1ynoKCgyvwFBQWu5RVp1eWpier288t9VGXWrFmaMWNGjfdTFxZv3KtJy75QuZGCHNKswV00tGdzXxcLAAC/51EQFR0dXaOZycvKyiwXyJ9NmjRJEyZMcL0uKSlRUlKSz8qT7yx1BVCSVG6kycu2qV/bWCVEhfusXAAA1AceBVEffvih6//GGF199dX661//qmbNmnm845iYGAUHB1caqF5YWKj4+Pgq14mPjz9t/op/CwsLlZCQ4JanW7duNS5bfHx8pbsEK/ZbXdkkKTQ0VKGhoTXej7ftLjrqCqAqlBmjPUXHCKIAAF6V7yzV7qKjSomJqLe/OR4FUenp6W6vg4OD1bt3b7Vs2dLjHYeEhKhHjx7KyclRVlaWJKm8vFw5OTm66667qlwnLS1NOTk5Gj9+vCtt9erVSktLkySlpKQoPj5eOTk5rqCppKREeXl51d6JV91+Hn/8cR04cMD1aJvVq1crMjJSHTt29LiuvpISE6Egh9wCqWCHQ8kxjXxXKABAvRcoQ0k8fuxLbZowYYJefvllvfrqq9q+fbtuv/12HT16VGPGjJEkjRo1SpMmTXLlv/fee7Vy5Uo9++yz+vrrrzV9+nR9+umnrqDL4XBo/Pjxeuyxx/TOO+/oiy++0KhRo5SYmOgK1KSf54DaunWr9u7dq7KyMm3dulVbt27VkSNHJElXXHGFOnbsqJEjR+qzzz7T+++/r0ceeUR33nmnrVqaziQhKlyzBndR8P/rgg12OPTE4M719ooAAOB71Q0lqY83N1l+AHFtGDp0qA4ePKipU6eqoKBA3bp108qVK12DuPfu3augoP8f5/Xp00cLFy7UI488osmTJ6tNmzZ666231LlzZ1eeBx98UEePHtW4ceNUXFysvn37auXKlW53FU6dOlWvvvqq63X37t0l/dxd2b9/fwUHB2v58uW6/fbblZaWpoiICI0ePVozZ8709iGpdUN7Nle/trHaU3RMyTGNCKAAAF4VSENJHMYYc+ZsVTvnnHP0+eefKyUlpTbLVG+UlJQoKipKTqdTkZGRvi4OAABel+8s1cWzP6g0lGTdxAG1GkR5c8xVTX+/PWqJGjx4sNvr48eP67bbblNERIRb+rJlyzzZLAAAqCcqhpJMXrZNZcZ4ZSiJXcZceRRERUVFub3+3e9+V6uFAQAA/s+bQ0nsNH2PR0HUggULvFUOAABQjyREhXslqLHTmCuf3p0HAADgiYrpe37JV9P3EEQBAAC/Yafpe3w6xQEAAICn7DJ9D0EUAADwO94ac+UJuvMAAAAsIIgCAACwgCAKAADAAoIoAAAACwiiAAAALCCIAgAAsIAgCgAAwAKCKAAAAAsIogAAACwgiAIAALCAIAoAAMACgigAAAALCKIAAAAsIIgKAPnOUm3YVaR8Z6mviwIAQL3RwNcFgHct3rhXk5Z9oXIjBTmkWYO7aGjP5r4uFgAAfo+WqHos31nqCqAkqdxIk5dto0UKAIBaQBBVj+0uOuoKoCqUGaM9Rcd8UyAAAOoRgqh6LCUmQkEO97Rgh0PJMY18UyAAAOoRgqh6LCEqXLMGd1Gw4+dIKtjh0BODOyshKtzHJQMAwP8xsLyeG9qzufq1jdWeomNKjmlEAAUAQC0hiAoACVHhBE8AANQyuvMAAAAsIIgCAACwgCAKAADAAoIoAAAACwiiAAAALCCIAgAAsIAgCgAAwAKCKAAAAAsIonDW8p2l2rCrSPnOUl8XBQCAOsOM5Tgrizfu1aRlX6jcSEEOadbgLhras7mviwUAgNfREgXL8p2lrgBKksqNNHnZNlqkAAABgSAKlu0uOuoKoCqUGaM9RcdOux7dfwCA+oDuPFiWEhOhIIfcAqlgh0PJMY2qXYfuPwBAfUFLFCxLiArXrMFdFOxwSPo5gHpicGclRIVXmZ/uPwBAfUJLFM7K0J7N1T7+HG3c86N6Jp+rrknnVpv3dN1/1QVeAHwv31mq3UVHlRITwXcV+AWCKJwVT7rnrHT/AfAtuuCB6tGdB8s87Z7ztPsPgG/RBQ+cHi1RsMxK99zQns3Vr22s9hQdU3JMIwIowMboggdOjyAKllntnkuICucEDPgBuuCB06M7D5YFYvccc1whkATidxzwhMMYY86cDVaUlJQoKipKTqdTkZGRvi6O1+Q7SwOie44BtghUgfIdByrU9Peb7jyctUDonqtugG2/trH1vu5AIHzHASvozgNqwOojbgAr6DYG/AMtUUANMMAWdYVuY8B/0BIF1IDVAba0KFSPY1MZ8zIB/oWWKKCGPJ3jihaF6nFsqsa8TIB/oSUKtma31oqEqHCltTqvRi1QtChUjWNTvYpu41+i2xiwL4Io2NbijXt18ewPNOLlPF08+wMt3rjX10WqMQaiV49jUz3mZQL8C915sCV/n1KAgejV49icHo9GAvwHLVGwJX9vraBFoXocmzOrabcxAN+iJQq2VB9aK2hRqB7HBkB9QEsUbKm+tFbQolA9jg0Af0dLFGyL1gr8Ur6zVLuLjiolJqJGnwVP8wOApwiiYGs8swuS5/NKMQ8VgLpAdx5szW7zRPkzfz2Wns4rxTxUAOoKLVGwLVoTao8/H0tPZ/Fm1m/UJbqNAxstUbClQG1N8EZrkb8fS09n8WbWb9QVf54QGLWDIAq25O/zRFnhrROyvx9LT+/UrC93dsLe/P3iBLWD7jzYUn2YJ8oT3pyhvT4cS0/v1OTOTngb3caQaImCTQVaa4I3W4vqy7H0dF4p5qGCN6XEROhXvcZyOORXFyc4e7REwbYCqTXB261FgXQsAZ8xZ86C+oWWKNhaoLQm1EVrUaAcy0Dkr9NX+LPdRUcrxUxG8puxhqgdtgii5s2bp+TkZIWFhSk1NVWffPLJafMvXbpU7du3V1hYmLp06aIVK1a4LTfGaOrUqUpISFB4eLgyMjK0Y8cOtzyHDh3SjTfeqMjISEVHR2vs2LE6cuSIa/mePXvkcDgq/X388ce1V3HgF4b2bK51Ewfo9Vt6a93EAX4zBQF8izvEfIO7QCHZIIhavHixJkyYoGnTpmnz5s3q2rWrMjMzdeDAgSrzb9iwQcOHD9fYsWO1ZcsWZWVlKSsrS9u2bXPleeqpp/T8889r/vz5ysvLU0REhDIzM3X8+HFXnhtvvFFffvmlVq9ereXLl2vt2rUaN25cpf39+9//Vn5+vuuvR48etX8Q4De8fcVPa1H95K3PDXeI+U59GWuIs+Mwxvi0Fzc1NVU9e/bUCy+8IEkqLy9XUlKS7r77bk2cOLFS/qFDh+ro0aNavny5K613797q1q2b5s+fL2OMEhMTdd999+n++++XJDmdTsXFxSk7O1vDhg3T9u3b1bFjR23cuFEXXXSRJGnlypW6+uqr9d133ykxMVF79uxRSkqKtmzZom7dulmqW0lJiaKiouR0OhUZGWlpG77A5HFVs+OElXZ6r+xUFjvx5udmw64ijXg5r1L667f0Vlqr82plHzi9fGcpYw3roZr+fvu0JerkyZPatGmTMjIyXGlBQUHKyMhQbm5ulevk5ua65ZekzMxMV/7du3eroKDALU9UVJRSU1NdeXJzcxUdHe0KoCQpIyNDQUFBystzPyFde+21atq0qfr27at33nnn7CrsB+gaqJodr/jt9F7ZqSx24u3PDV1Ktc/TVkNajwObT4OooqIilZWVKS4uzi09Li5OBQUFVa5TUFBw2vwV/54pT9OmTd2WN2jQQE2aNHHlady4sZ599lktXbpU7733nvr27ausrKzTBlInTpxQSUmJ258/sWOgYBd2m7DSTu+VncpiN97+3NClVLu4GICnmOKgGjExMZowYYLrdc+ePbV//349/fTTuvbaa6tcZ9asWZoxY0ZdFbHWMXlc9ew2YaWd3is7lcVu6uJzw/QVtcObE96i/vJpS1RMTIyCg4NVWFjoll5YWKj4+Pgq14mPjz9t/op/z5Tn1wPXf/rpJx06dKja/Uo/j9/auXNntcsnTZokp9Pp+tu3b1+1ee2IroHq2e2K307vlZ3KYjd19bmhS+ns2a21Gf7Bp0FUSEiIevTooZycHFdaeXm5cnJylJaWVuU6aWlpbvklafXq1a78KSkpio+Pd8tTUlKivLw8V560tDQVFxdr06ZNrjwffPCBysvLlZqaWm15t27dqoSEhGqXh4aGKjIy0u3Pn9gtULAbO01BYKf3yk5lsSM7fW5QPS4GYInxsUWLFpnQ0FCTnZ1tvvrqKzNu3DgTHR1tCgoKjDHGjBw50kycONGVf/369aZBgwbmmWeeMdu3bzfTpk0zDRs2NF988YUrz+zZs010dLR5++23zeeff24GDRpkUlJSTGlpqSvPlVdeabp3727y8vLMunXrTJs2bczw4cNdy7Ozs83ChQvN9u3bzfbt283jjz9ugoKCzCuvvFLjujmdTiPJOJ3OszlEdW5/8TGzYWeR2V98zNdFwRnY6b2yU1kAKxZ98j/TcuJ7psVDy03Lie+ZRZ/8z9dFgo/U9Pfb50GUMcbMnTvXNG/e3ISEhJhevXqZjz/+2LUsPT3djB492i3/kiVLTNu2bU1ISIjp1KmTee+999yWl5eXmylTppi4uDgTGhpqLrvsMvPNN9+45fnhhx/M8OHDTePGjU1kZKQZM2aMOXz4sGt5dna26dChg2nUqJGJjIw0vXr1MkuXLvWoXv4aRAF1YX/xMbN+50GCLtjK1r2HzMtrd5mtew/5uijwoZr+fvt8nqj6zF/niQK8zY5zbgF8LlHBL+aJAhB4mBIBdsTnElYQRAGoU9wFhbpU08kz+VzCCuaJAlCn7DbnFuovT7rn+FzCClqiANQppkRAXfC0e47PJaygJQpAnWOWbXiblZn0+VzCUwRRCGj5zlLtLjqqlJgITph1LCEqnGMOr7HaPcfnEp6gOw8Bi4eNAvUX3XOoC8wT5UXME2Vf+c5SXTz7g0pXqesmDuAkC9iYp63H+c5SuufgsZr+ftOdh4BkZbwEAN+yMhkm3XPwJrrzEJB42CjgPTWdm8nTbTIZJuyGIAoBifESgHd4a6whk2HCjujOQ8DidmagdlXXWtSvbexZf78CdTJM7iC2N4IoBDTGSwC1x5tjDStajycv26YyYwKi9ZgHItsfQRSAKnEFDE95u7UokFqPvdmqh9pDEAWgEq6AYUVdtBYFSusxdxD7B4IoAG7segVMy5h/CKTWIm8K1DFg/oYgCoAbO14B0zLmXwKltcibAnEMmD8iiAJsxA6tLXa7ArZryxjgbbTq2R9BFGATdmltsdsVsB1bxoC6QquevRFEATZgt9YWO10B261lDAhUdmgptxuCKMAG7NjaYpcrYLu1jKH28eNsf3ZpKbcbgijABmhtOT07tYyhdtntx5mArjK7tZTbCc/OA2yAZ/mdWUJUuNJanccxqUfs9lBhbz33z9/x3MLq0RIF2AStLQg0durGprWlerSUV4+WKMAD+c5SbdhV5LUrZVpbEEgqfpx/yVc/zrS2VI+W8urREgXUUF2M3WA8BgKJnW4aoLXl9OzYUm6H86XDGGPOnA1WlJSUKCoqSk6nU5GRkb4uDs5CvrNUF8/+oNIJdt3EAbX25bXbAFugruQ7S23x47x4495KAR3fQXvy9vmypr/ftEQBNeDtsRuMx0Ags8t0GnZsbUFldjpfMiYKqAFvj91gPAZgD94el+jtcZWBwE7nS4IooAa8PbDSTgNsAXgHUyjUDjudLwmicNYC5cpqaM/mWjdxgF6/pbfWTRxQq/3v3P3ie4HyOYZv2G1OLH9mp/MlY6JwVgJtMLQ3x24wHsN3Au1zHEjscAeXZK85seoDu5wvCaJgmZ0G99UXdhlgG0j4HNdfdgqOmUKh9tnhfEl3Hiyz0+A+nBndVVXjc1w/1VX3WU2/V3bqgkLtoSUKldS0+ZsrK/9hpyvyusLnOLDVRfeZp98ru3RBofbQEgU3ntw9wpWVfwjEAa18juHtO7isfq94tFP9QksUXKyMDeHKyv4CbUCrHT/HdhncHEi8/UiZQPteoWoEUXCxelKww+A+VC/Quqvs9jkOxK5Uu/BmcBxo3ytUje48uNhpAjPUnkDrrrLT5zgQu1LtxlvdZ4H2vULVaImCi52eqI7aFUjdrnb6HNPlU78F0vcKVSOIghtOCvVXIHW72uVzTJdP/RdI3ytURnceKuHuEdQHdvgc0+UD1G+0RAGAF9mlVQxA7SOIAgAvo8sHqJ/ozgMCBI99AYDaRUsUEACYqwgIDEzsWrcIogA/VpMTppUZvAH4Hy6W6h5BFOCnanrCZK4ioP7jYsk3GBMF+CFPZsK20wzeALzjdBdL8B6CKMAPeXLCZK4ioP7jYsk36M4DvMhbgzw9nQmbuYqA+s1OjzuqEAiD3AmiAC/x5iBPKydMu81VFAgn2LrCsYRkr4ulQBnk7jDGmDNngxUlJSWKioqS0+lUZGSkr4uDOpTvLNXFsz+o1FK0buKAWj2x5TtLbXHC9FSgnGDrAscSdlNX5z9vqunvN2OiAC+oq0Gedng+nKc8GRSP0+NYwo4CaZA7QRTgBQzyrF4gnWC9jWMJOwqk8x9BVACw2+M+7FYeb6irO+L88VgG0gnW2ziWsKNAuiOYMVFeZIcxUXYbL2G38nibN8cs+fOxXLxxb6VB8f5SdrvhWNZv/nzTgL+O2ZRq/vtNEOVFvg6i7Da4z27l8Wf14Vj68wnWbgLpWPpzUOEpf75Q8nc1/f1mioN6zG6P+7BbefxZfTiWdptywZ/5+7GsaWAUSEEFj3HxDwRRfqimJxxPJ2T0NruVx59xLFFf1DQwCrSgoj5cKAUCBpb7mcUb9+ri2R9oxMt5unj2B1q8cW+1ee02uM9u5fFnHEvUB55M0RBodyJy04B/oCXKj1i5ErPTDLZ2LI8/41jC33nS2hJora92fIwLKiOI8iNWm3ftNl7CbuXxZxxLWGGXwdmeBEaBGFRwoWR/BFF+JNCuxADUPjsNzvY0MArEoIILJXtjigMv8sYUB8wJA9jDZ/t+1Cd7DqlXchN1TTrX18WpEbtOjRFIUzTAPzDFQT1VH67E7NKVAFh135Kt+ufm712vf3thMz07pJvvClRDdr3ji9YW+CuCKD/kzyccO3UlAFZ8tu9HtwBKkv65+XuNSmth+xYphgTgbHABXBlTHKDOBOIT5/3x2XY4vU/2HKoy/dM9P9ZxSTzH1BiwypPpdQIJLVGoM3btSvAWWt1Oz1+vanslN6ky/aJke7dCVagPQwJQt+pqolN/PCcQRKHOBFJXQqDNruwpfw4wuyadq99e2KzSmCi7d+X9kqdDAvzxxw21py4ugP31nEAQhToTSPO8WD3pBMKPVX0IMJ8d0k2j0lro0z0/6qLkc/0qgPKUv/64ofZ4+wLYn88JthgTNW/ePCUnJyssLEypqan65JNPTpt/6dKlat++vcLCwtSlSxetWLHCbbkxRlOnTlVCQoLCw8OVkZGhHTt2uOU5dOiQbrzxRkVGRio6Olpjx47VkSNH3PJ8/vnnuuSSSxQWFqakpCQ99dRTtVPhADa0Z3OtmzhAr9/SW+smDqi3J2Mrj2wIlDEH9eXxHV2TztXYS1rW6wAqEMcxojJvj6Xz53OCz4OoxYsXa8KECZo2bZo2b96srl27KjMzUwcOHKgy/4YNGzR8+HCNHTtWW7ZsUVZWlrKysrRt2zZXnqeeekrPP/+85s+fr7y8PEVERCgzM1PHjx935bnxxhv15ZdfavXq1Vq+fLnWrl2rcePGuZaXlJToiiuuUIsWLbRp0yY9/fTTmj59uv7yl79472AEiISocKW1Os/2Vxhnw9OTTiD9WPFMMP/hzz9uqF3evAD253OCzyfbTE1NVc+ePfXCCy9IksrLy5WUlKS7775bEydOrJR/6NChOnr0qJYvX+5K6927t7p166b58+fLGKPExETdd999uv/++yVJTqdTcXFxys7O1rBhw7R9+3Z17NhRGzdu1EUXXSRJWrlypa6++mp99913SkxM1IsvvqiHH35YBQUFCgkJkSRNnDhRb731lr7++usa1c0bk23Cv9R0EsENu4o04uW8Sumv39Jbaa3O82YRfYJJY/2DXSfnRP1jt3OCX0y2efLkSW3atEmTJk1ypQUFBSkjI0O5ublVrpObm6sJEya4pWVmZuqtt96SJO3evVsFBQXKyMhwLY+KilJqaqpyc3M1bNgw5ebmKjo62hVASVJGRoaCgoKUl5en6667Trm5uerXr58rgKrYz5NPPqkff/xR555buQn/xIkTOnHihOt1SUmJZwcE9U5NB/AG0qB7iTvE/EUgjWOEb/nrOcGnQVRRUZHKysoUFxfnlh4XF1dta09BQUGV+QsKClzLK9JOl6dp06Zuyxs0aKAmTZq45UlJSam0jYplVQVRs2bN0owZM6qvMFCNQPyx8udJYwOJv/64wf/44zmBu/Nq0aRJk9xayUpKSpSUlOTDEsGf8GMFu/LHHzegLvg0iIqJiVFwcLAKCwvd0gsLCxUfH1/lOvHx8afNX/FvYWGhEhIS3PJ069bNlefXA9d/+uknHTp0yG07Ve3nl/v4tdDQUIWGhlZbX+BM+LECAP/h07vzQkJC1KNHD+Xk5LjSysvLlZOTo7S0tCrXSUtLc8svSatXr3blT0lJUXx8vFuekpIS5eXlufKkpaWpuLhYmzZtcuX54IMPVF5ertTUVFeetWvX6tSpU277adeuXZVdeQAAIMAYH1u0aJEJDQ012dnZ5quvvjLjxo0z0dHRpqCgwBhjzMiRI83EiRNd+devX28aNGhgnnnmGbN9+3Yzbdo007BhQ/PFF1+48syePdtER0ebt99+23z++edm0KBBJiUlxZSWlrryXHnllaZ79+4mLy/PrFu3zrRp08YMHz7ctby4uNjExcWZkSNHmm3btplFixaZRo0amZdeeqnGdXM6nUaScTqdZ3OIAABAHarp77fPgyhjjJk7d65p3ry5CQkJMb169TIff/yxa1l6eroZPXq0W/4lS5aYtm3bmpCQENOpUyfz3nvvuS0vLy83U6ZMMXFxcSY0NNRcdtll5ptvvnHL88MPP5jhw4ebxo0bm8jISDNmzBhz+PBhtzyfffaZ6du3rwkNDTXNmjUzs2fP9qheBFEAAPifmv5++3yeqPqMeaIAAPA/Nf399vmM5QAAAP6IIAoAAMACgigAAAALCKIAAAAsIIgCAACwgCAKAADAAoIoAAAAC3gAsRdVTMFVUlLi45IAAICaqvjdPtNUmgRRXnT48GFJUlJSko9LAgAAPHX48GFFRUVVu5wZy72ovLxc+/fv1znnnCOHw1Fr2y0pKVFSUpL27dtXL2dCr+/1k+p/Het7/aT6X0fq5//qex29WT9jjA4fPqzExEQFBVU/8omWKC8KCgrS+eef77XtR0ZG1ssvRoX6Xj+p/texvtdPqv91pH7+r77X0Vv1O10LVAUGlgMAAFhAEAUAAGABQZQfCg0N1bRp0xQaGurronhFfa+fVP/rWN/rJ9X/OlI//1ff62iH+jGwHAAAwAJaogAAACwgiAIAALCAIAoAAMACgigAAAALCKJsYt68eUpOTlZYWJhSU1P1ySefnDb/nDlz1K5dO4WHhyspKUl/+MMfdPz48bPapjfVdv2mT58uh8Ph9te+fXtvV6NantTv1KlTmjlzplq1aqWwsDB17dpVK1euPKtt1oXarqOd3sO1a9fqmmuuUWJiohwOh956660zrrNmzRpdeOGFCg0NVevWrZWdnV0pj13eQ2/Uz5/fv/z8fI0YMUJt27ZVUFCQxo8fX2W+pUuXqn379goLC1OXLl20YsWK2i98DXmjjtnZ2ZXew7CwMO9U4Aw8rd+yZct0+eWXKzY2VpGRkUpLS9P7779fKZ+3v4MEUTawePFiTZgwQdOmTdPmzZvVtWtXZWZm6sCBA1XmX7hwoSZOnKhp06Zp+/bt+tvf/qbFixdr8uTJlrfpTd6onyR16tRJ+fn5rr9169bVRXUq8bR+jzzyiF566SXNnTtXX331lW677TZdd9112rJli+Vteps36ijZ5z08evSounbtqnnz5tUo/+7duzVw4EANGDBAW7du1fjx43XzzTe7ncTt9B56o36S/75/J06cUGxsrB555BF17dq1yjwbNmzQ8OHDNXbsWG3ZskVZWVnKysrStm3barPoNeaNOko/z/b9y/fwf//7X20V2SOe1m/t2rW6/PLLtWLFCm3atEkDBgzQNddcU/fnUQOf69Wrl7nzzjtdr8vKykxiYqKZNWtWlfnvvPNOc+mll7qlTZgwwVx88cWWt+lN3qjftGnTTNeuXb1SXk95Wr+EhATzwgsvuKUNHjzY3HjjjZa36W3eqKOd3sNfkmTefPPN0+Z58MEHTadOndzShg4dajIzM12v7fYeVqit+vnz+/dL6enp5t57762UPmTIEDNw4EC3tNTUVHPrrbeeZQnPXm3VccGCBSYqKqrWylVbPK1fhY4dO5oZM2a4XtfFd5CWKB87efKkNm3apIyMDFdaUFCQMjIylJubW+U6ffr00aZNm1zNkt9++61WrFihq6++2vI2vcUb9auwY8cOJSYmqmXLlrrxxhu1d+9e71WkGlbqd+LEiUpN5uHh4a6reDu9f1bLc6Y6VrDDe2hFbm6u2/GQpMzMTNfxsNt76Kkz1a+Cv75/NVHTY+Dvjhw5ohYtWigpKUmDBg3Sl19+6esiWVJeXq7Dhw+rSZMmkuruO0gQ5WNFRUUqKytTXFycW3pcXJwKCgqqXGfEiBGaOXOm+vbtq4YNG6pVq1bq37+/q7vLyja9xRv1k6TU1FRlZ2dr5cqVevHFF7V7925dcsklOnz4sFfr82tW6peZmak//vGP2rFjh8rLy7V69WotW7ZM+fn5lrfpTd6oo2Sf99CKgoKCKo9HSUmJSktLbfceeupM9ZP8+/2rieqOgT+8fzXVrl07vfLKK3r77bf12muvqby8XH369NF3333n66J57JlnntGRI0c0ZMgQSXV3HiWI8kNr1qzRE088oT//+c/avHmzli1bpvfee0+PPvqor4tWK2pSv6uuuko33HCDLrjgAmVmZmrFihUqLi7WkiVLfFjymvnTn/6kNm3aqH379goJCdFdd92lMWPGKCio/nwda1JHf34PwftXH6SlpWnUqFHq1q2b0tPTtWzZMsXGxuqll17yddE8snDhQs2YMUNLlixR06ZN63TfDep0b6gkJiZGwcHBKiwsdEsvLCxUfHx8letMmTJFI0eO1M033yxJ6tKli44ePapx48bp4YcftrRNb/FG/aoKNqKjo9W2bVvt3Lmz9itxGlbqFxsbq7feekvHjx/XDz/8oMTERE2cOFEtW7a0vE1v8kYdq+Kr99CK+Pj4Ko9HZGSkwsPDFRwcbKv30FNnql9V/On9q4nqjoE/vH9WNWzYUN27d/er93DRokW6+eabtXTpUreuu7o6j9afS18/FRISoh49eignJ8eVVl5erpycHKWlpVW5zrFjxyoFEsHBwZIkY4ylbXqLN+pXlSNHjmjXrl1KSEiopZLXzNkc67CwMDVr1kw//fST/vnPf2rQoEFnvU1v8EYdq+Kr99CKtLQ0t+MhSatXr3YdD7u9h546U/2q4k/vX01YOQb+rqysTF988YXfvIevv/66xowZo9dff10DBw50W1Zn38FaG6IOyxYtWmRCQ0NNdna2+eqrr8y4ceNMdHS0KSgoMMYYM3LkSDNx4kRX/mnTpplzzjnHvP766+bbb781q1atMq1atTJDhgyp8Tb9vX733XefWbNmjdm9e7dZv369ycjIMDExMebAgQO2r9/HH39s/vnPf5pdu3aZtWvXmksvvdSkpKSYH3/8scbbrGveqKOd3sPDhw+bLVu2mC1bthhJ5o9//KPZsmWL+d///meMMWbixIlm5MiRrvzffvutadSokXnggQfM9u3bzbx580xwcLBZuXKlK4+d3kNv1M+f3z9jjCt/jx49zIgRI8yWLVvMl19+6Vq+fv1606BBA/PMM8+Y7du3m2nTppmGDRuaL774ok7rVsEbdZwxY4Z5//33za5du8ymTZvMsGHDTFhYmFueuuJp/f7xj3+YBg0amHnz5pn8/HzXX3FxsStPXXwHCaJsYu7cuaZ58+YmJCTE9OrVy3z88ceuZenp6Wb06NGu16dOnTLTp083rVq1MmFhYSYpKcnccccdbj9QZ9pmXavt+g0dOtQkJCSYkJAQ06xZMzN06FCzc+fOOqyRO0/qt2bNGtOhQwcTGhpqzjvvPDNy5Ejz/fffe7RNX6jtOtrpPfzwww+NpEp/FXUaPXq0SU9Pr7ROt27dTEhIiGnZsqVZsGBBpe3a5T30Rv38/f2rKn+LFi3c8ixZssS0bdvWhISEmE6dOpn33nuvbipUBW/Ucfz48a7PZ1xcnLn66qvN5s2b665Sv+Bp/dLT00+bv4K3v4MOY6rpHwEAAEC1GBMFAABgAUEUAACABQRRAAAAFhBEAQAAWEAQBQAAYAFBFAAAgAUEUQAAABYQRAFAAFmzZo0cDoeKi4t9XRTA7xFEAfCKm266SQ6HQ7Nnz3ZLf+utt+RwOFyvjTF6+eWXlZaWpsjISDVu3FidOnXSvffeW+MHoR47dkyTJk1Sq1atFBYWptjYWKWnp+vtt9925UlOTtacOXNqpW7eVnHsHA6HGjZsqJSUFD344IM6fvy4R9vp37+/xo8f75bWp08f5efnKyoqqhZLDAQmgigAXhMWFqYnn3xSP/74Y5XLjTEaMWKE7rnnHl199dVatWqVvvrqK/3tb39TWFiYHnvssRrt57bbbtOyZcs0d+5cff3111q5cqWuv/56/fDDD7VZnTp15ZVXKj8/X99++62ee+45vfTSS5o2bdpZbzckJETx8fFugSwAi2r1ITIA8P+MHj3a/OY3vzHt27c3DzzwgCv9zTffNBWnntdff91IMm+//XaV2ygvL6/RvqKiokx2dna1y6t6zlaF//znP6Zv374mLCzMnH/++ebuu+82R44ccS3/P//n/5gePXqYxo0bm7i4ODN8+HBTWFjoWl7xzK+VK1eabt26mbCwMDNgwABTWFhoVqxYYdq3b2/OOeccM3z4cHP06NEa1Wf06NFm0KBBbmmDBw823bt3d70uKioyw4YNM4mJiSY8PNx07tzZLFy40G0bv67z7t27XeX95bMo33jjDdOxY0cTEhJiWrRoYZ555pkalRMIdLREAfCa4OBgPfHEE5o7d66+++67Sstff/11tWvXTtdee22V69e0tSQ+Pl4rVqzQ4cOHq1y+bNkynX/++Zo5c6by8/OVn58vSdq1a5euvPJK/fa3v9Xnn3+uxYsXa926dbrrrrtc6546dUqPPvqoPvvsM7311lvas2ePbrrppkr7mD59ul544QVt2LBB+/bt05AhQzRnzhwtXLhQ7733nlatWqW5c+fWqD6/tm3bNm3YsEEhISGutOPHj6tHjx567733tG3bNo0bN04jR47UJ598Ikn605/+pLS0NN1yyy2uOiclJVXa9qZNmzRkyBANGzZMX3zxhaZPn64pU6YoOzvbUlmBgOLrKA5A/fTL1pTevXub3//+98YY95ao9u3bm2uvvdZtvXvvvddERESYiIgI06xZsxrt66OPPjLnn3++adiwobnooovM+PHjzbp169zytGjRwjz33HNuaWPHjjXjxo1zS/vPf/5jgoKCTGlpaZX72rhxo5FkDh8+bIz5/y1R//73v115Zs2aZSSZXbt2udJuvfVWk5mZWaP6jB492gQHB5uIiAgTGhpqJJmgoCDzxhtvnHa9gQMHmvvuu8/1Oj093dx7771ueX7dEjVixAhz+eWXu+V54IEHTMeOHWtUViCQ0RIFwOuefPJJvfrqq9q+ffsZ8z788MPaunWrpk6dqiNHjtRo+/369dO3336rnJwcXX/99fryyy91ySWX6NFHHz3tep999pmys7PVuHFj119mZqbKy8u1e/duST+31FxzzTVq3ry5zjnnHKWnp0uS9u7d67atCy64wPX/uLg4NWrUSC1btnRLO3DgQI3qI0kDBgzQ1q1blZeXp9GjR2vMmDH67W9/61peVlamRx99VF26dFGTJk3UuHFjvf/++5XKdSbbt2/XxRdf7JZ28cUXa8eOHSorK/NoW0CgIYgC4HX9+vVTZmamJk2a5Jbepk0bffPNN25psbGxat26tZo2berRPho2bKhLLrlEDz30kFatWqWZM2fq0Ucf1cmTJ6td58iRI7r11lu1detW199nn32mHTt2qFWrVjp69KgyMzMVGRmpf/zjH9q4caPefPNNSaq03YYNG7r+X3FX3S85HA6Vl5fXuD4RERFq3bq1unbtqldeeUV5eXn629/+5lr+9NNP609/+pMeeughffjhh9q6dasyMzNPW18AtauBrwsAIDDMnj1b3bp1U7t27Vxpw4cP14gRI/T2229r0KBBtbq/jh076qefftLx48cVEhKikJCQSi0rF154ob766iu1bt26ym188cUX+uGHHzR79mzXeKJPP/20VstZE0FBQZo8ebImTJigESNGKDw8XOvXr9egQYP0u9/9TpJUXl6u//73v+rYsaNrvarq/GsdOnTQ+vXr3dLWr1+vtm3bKjg4uPYrA9QjtEQBqBNdunTRjTfeqOeff96VNmzYMF1//fUaNmyYZs6cqby8PO3Zs0cfffSRFi9eXOMf8f79++ull17Spk2btGfPHq1YsUKTJ0/WgAEDFBkZKenneaLWrl2r77//XkVFRZKkhx56SBs2bNBdd92lrVu3aseOHXr77bddA8ubN2+ukJAQzZ07V99++63eeeedM3YRessNN9yg4OBgzZs3T9LPrXirV6/Whg0btH37dt16660qLCx0Wyc5Odl1TIuKiqpsCbvvvvuUk5OjRx99VP/973/16quv6oUXXtD9999fJ/UC/BlBFIA6M3PmTLcfcofDocWLF2vOnDlasWKFLrvsMrVr106///3vlZSUpHXr1tVou5mZmXr11Vd1xRVXqEOHDrr77ruVmZmpJUuWuO17z549atWqlWJjYyX9PI7po48+0n//+19dcskl6t69u6ZOnarExERJP3ctZmdna+nSperYsaNmz56tZ555phaPSM01aNBAd911l5566ikdPXpUjzzyiC688EJlZmaqf//+io+PV1ZWlts6999/v4KDg9WxY0fFxsZWOV7qwgsv1JIlS7Ro0SJ17txZU6dO1cyZM6u8AxGAO4cxxvi6EAAAAP6GligAAAALCKIA2N4vpyD49d9//vMfXxfPI3v37j1tfTydogCA79CdB8D2Tvcg4mbNmik8PLwOS3N2fvrpJ+3Zs6fa5cnJyWrQgBunAX9AEAUAAGAB3XkAAAAWEEQBAABYQBAFAABgAUEUAACABQRRAAAAFhBEAQAAWEAQBQAAYAFBFAAAgAX/Fy1PWf3hhYGxAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATNVJREFUeJzt3XtcVHXi//H3gMIgBWYaF0Mhw8wkKS+IWeguu7TZha6orZpfy9rdTEMzdVXU3FC7uV42qt8W/rZMs8zK/LH5pawtWby32dUMVytAqRwUbwmf3x+ts80BlEGGmWFez8djHsqZzznz+cyZmfOez/mcz9iMMUYAAABwCvJ2BQAAAHwNAQkAAMCCgAQAAGBBQAIAALAgIAEAAFgQkAAAACwISAAAABYEJAAAAAsCEgAAgAUBCYDfmjlzpmw2W4PK2mw2zZw506P1GThwoAYOHOiz2wPQcAQkAGcsPz9fNpvNeWvVqpU6duyoO+64Q9988423q+dz4uPjXZ6v8847T1deeaVeffXVJtn+4cOHNXPmTK1fv75JtgcEIgISgCYze/Zs/e1vf1NeXp5+85vf6Pnnn1daWpqOHj3qkcebNm2ajhw54pFte1pycrL+9re/6W9/+5smTpyob7/9VjfddJPy8vLOeNuHDx/WrFmzCEjAGWjl7QoAaDl+85vfqHfv3pKkO++8U+3bt9e8efP0+uuv67bbbmvyx2vVqpVatfLPj7GOHTvqt7/9rfPvESNG6MILL9QTTzyhe+65x4s1AyDRgwTAg6688kpJ0q5du1yWf/bZZ7rlllvUrl072e129e7dW6+//rpLmR9//FGzZs1SYmKi7Ha7zj33XA0YMEDr1q1zlqlrDNKxY8d0//33q0OHDjr77LN1/fXX6+uvv65VtzvuuEPx8fG1lte1zeeee06/+MUvdN555yk0NFTdu3fXk08+6dZzcTrR0dG6+OKLVVJScspy+/bt0+jRoxUVFSW73a6ePXtq6dKlzvt3796tDh06SJJmzZrlPI3n6fFXQEvjn1+9APiF3bt3S5LOOecc57KPP/5YV1xxhTp27KjJkycrPDxcL730kjIzM/XKK6/oxhtvlPRTUMnNzdWdd96pvn37qrKyUps3b9bWrVv1q1/9qt7HvPPOO/X8889r2LBh6t+/v95++20NHjz4jNrx5JNP6pJLLtH111+vVq1a6Y033tDvf/971dTU6A9/+MMZbfukH3/8UXv37tW5555bb5kjR45o4MCB+vLLL3XvvfcqISFBK1eu1B133KEDBw5o3Lhx6tChg5588kn97ne/04033qibbrpJknTppZc2ST2BgGEA4Aw999xzRpL53//9X7N//36zd+9e8/LLL5sOHTqY0NBQs3fvXmfZX/7ylyYpKckcPXrUuaympsb079/fJCYmOpf17NnTDB48+JSPm5OTY37+MbZ9+3Yjyfz+9793KTds2DAjyeTk5DiXjRw50nTu3Pm02zTGmMOHD9cql5GRYS644AKXZWlpaSYtLe2UdTbGmM6dO5tf//rXZv/+/Wb//v3mww8/NEOGDDGSzNixY+vd3oIFC4wk8/zzzzuXHT9+3KSmppqzzjrLVFZWGmOM2b9/f632AnAPp9gANJn09HR16NBBcXFxuuWWWxQeHq7XX39d559/viTp+++/19tvv63bbrtNBw8eVEVFhSoqKvTdd98pIyNDO3fudF711rZtW3388cfauXNngx9/7dq1kqT77rvPZfn48ePPqF1hYWHO/zscDlVUVCgtLU1fffWVHA5Ho7b51ltvqUOHDurQoYN69uyplStXavjw4Zo3b16966xdu1bR0dEaOnSoc1nr1q1133336dChQ3r33XcbVRcAtXGKDUCTWbJkibp27SqHw6Fnn31W7733nkJDQ533f/nllzLGaPr06Zo+fXqd29i3b586duyo2bNn64YbblDXrl3Vo0cPXX311Ro+fPgpTxX9+9//VlBQkLp06eKy/KKLLjqjdn3wwQfKyclRUVGRDh8+7HKfw+FQZGSk29tMSUnRnDlzZLPZ1KZNG1188cVq27btKdf597//rcTERAUFuX63vfjii533A2gaBCQATaZv377Oq9gyMzM1YMAADRs2TJ9//rnOOuss1dTUSJImTpyojIyMOrdx4YUXSpKuuuoq7dq1S6+99preeust/Z//83/0xBNPKC8vT3feeecZ17W+CSarq6td/t61a5d++ctfqlu3bnr88ccVFxenkJAQrV27Vk888YSzTe5q37690tPTG7UuAM8jIAHwiODgYOXm5mrQoEFavHixJk+erAsuuEDST6eFGhIO2rVrp1GjRmnUqFE6dOiQrrrqKs2cObPegNS5c2fV1NRo165dLr1Gn3/+ea2y55xzjg4cOFBrubUX5o033tCxY8f0+uuvq1OnTs7l77zzzmnr39Q6d+6sf/3rX6qpqXHpRfrss8+c90v1hz8ADccYJAAeM3DgQPXt21cLFizQ0aNHdd5552ngwIF66qmnVFpaWqv8/v37nf//7rvvXO4766yzdOGFF+rYsWP1Pt5vfvMbSdLChQtdli9YsKBW2S5dusjhcOhf//qXc1lpaWmt2ayDg4MlScYY5zKHw6Hnnnuu3np4yjXXXKOysjKtWLHCuezEiRNatGiRzjrrLKWlpUmS2rRpI0l1BkAADUMPEgCPeuCBB3TrrbcqPz9f99xzj5YsWaIBAwYoKSlJd911ly644AKVl5erqKhIX3/9tT788ENJUvfu3TVw4ED16tVL7dq10+bNm/Xyyy/r3nvvrfexkpOTNXToUP3lL3+Rw+FQ//79VVhYqC+//LJW2SFDhujBBx/UjTfeqPvuu0+HDx/Wk08+qa5du2rr1q3Ocr/+9a8VEhKi6667TnfffbcOHTqkZ555Ruedd16dIc+TxowZo6eeekp33HGHtmzZovj4eL388sv64IMPtGDBAp199tmSfhpU3r17d61YsUJdu3ZVu3bt1KNHD/Xo0aNZ6wv4NW9fRgfA/528zH/Tpk217quurjZdunQxXbp0MSdOnDDGGLNr1y4zYsQIEx0dbVq3bm06duxorr32WvPyyy8715szZ47p27evadu2rQkLCzPdunUzf/rTn8zx48edZeq6JP/IkSPmvvvuM+eee64JDw831113ndm7d2+dl72/9dZbpkePHiYkJMRcdNFF5vnnn69zm6+//rq59NJLjd1uN/Hx8WbevHnm2WefNZJMSUmJs5w7l/mfbgqD+rZXXl5uRo0aZdq3b29CQkJMUlKSee6552qtu2HDBtOrVy8TEhLCJf9AI9iM+Vm/MQAAABiDBAAAYEVAAgAAsCAgAQAAWBCQAAAALLwekJYsWaL4+HjZ7XalpKRo48aNpyy/cuVKdevWTXa7XUlJSc7fXjrJGKMZM2YoJiZGYWFhSk9Pr/O3nN58802lpKQoLCxM55xzjjIzM5uyWQAAwI95NSCtWLFC2dnZysnJ0datW9WzZ09lZGRo3759dZbfsGGDhg4dqtGjR2vbtm3KzMxUZmamduzY4Swzf/58LVy4UHl5eSouLlZ4eLgyMjJ09OhRZ5lXXnlFw4cP16hRo/Thhx/qgw8+0LBhwzzeXgAA4B+8epl/SkqK+vTpo8WLF0uSampqFBcXp7Fjx2ry5Mm1ymdlZamqqkpr1qxxLuvXr5+Sk5OVl5cnY4xiY2M1YcIETZw4UdJPM95GRUUpPz9fQ4YM0YkTJxQfH69Zs2Zp9OjRja57TU2Nvv32W5199tlM6w8AgJ8wxujgwYOKjY2t9cPPP+e1mbSPHz+uLVu2aMqUKc5lQUFBSk9PV1FRUZ3rFBUVKTs722VZRkaGVq9eLUkqKSlRWVmZy288RUZGKiUlRUVFRRoyZIi2bt2qb775RkFBQbrssstUVlam5ORkPfLII6ecZfbYsWMuP3HwzTffqHv37o1pOgAA8LK9e/fq/PPPr/d+rwWkiooKVVdXKyoqymV5VFSU84cXrcrKyuosX1ZW5rz/5LL6ynz11VeSpJkzZ+rxxx9XfHy8HnvsMQ0cOFBffPGF2rVrV+dj5+bmatasWbWW7927VxEREadrLgAA8AGVlZWKi4tz/jRPfQLut9hqamokSX/84x918803S5Kee+45nX/++Vq5cqXuvvvuOtebMmWKS+/VySc4IiKCgAQAgJ853fAYrw3Sbt++vYKDg1VeXu6yvLy8XNHR0XWuEx0dfcryJ/89VZmYmBhJcjk9FhoaqgsuuEB79uypt76hoaHOMEQoAgCgZfNaQAoJCVGvXr1UWFjoXFZTU6PCwkKlpqbWuU5qaqpLeUlat26ds3xCQoKio6NdylRWVqq4uNhZplevXgoNDdXnn3/uLPPjjz9q9+7d6ty5c5O1DwAA+C+vnmLLzs7WyJEj1bt3b/Xt21cLFixQVVWVRo0aJUkaMWKEOnbsqNzcXEnSuHHjlJaWpscee0yDBw/W8uXLtXnzZj399NOSfuouGz9+vObMmaPExEQlJCRo+vTpio2Ndc5zFBERoXvuuUc5OTmKi4tT586d9cgjj0iSbr311uZ/EgAAgM/xakDKysrS/v37NWPGDOfVZAUFBc5B1nv27HG5BK9///5atmyZpk2bpqlTpyoxMVGrV692ufps0qRJqqqq0pgxY3TgwAENGDBABQUFstvtzjKPPPKIWrVqpeHDh+vIkSNKSUnR22+/rXPOOaf5Gg8AQBOqqanR8ePHvV0Nr2vdurWCg4PPeDtenQfJn1VWVioyMlIOh4PxSAAArzp+/LhKSkqcFyIFurZt2yo6OrrOgdgNPX4H3FVsAAC0JMYYlZaWKjg4WHFxcaec/LClM8bo8OHDzl/kOHlhVmMQkAAA8GMnTpzQ4cOHFRsbqzZt2ni7Ol4XFhYmSdq3b5/OO++8Rp9uC9yYCQBAC1BdXS3pp6vD8ZOTQfHHH39s9DYISAAAtAD8Luh/NcVzQUACAACwICABAABYEJACTKnjiDbsqlCp44i3qwIACHB33HGHbDab5s6d67J89erVztNk69ev1w033KCYmBiFh4crOTlZL7zwgsfrRkAKICs27dEVc9/WsGeKdcXct7ViU/2/PQcAQHOw2+2aN2+efvjhhzrv37Bhgy699FK98sor+te//qVRo0ZpxIgRWrNmjUfrRUAKEKWOI5qy6iPV/Gda0BojTV21g54kAIBXpaenKzo62vmzYlZTp07VQw89pP79+6tLly4aN26crr76aq1atcqj9SIgBYiSiipnODqp2hjtrjjsnQoBAHyON4ZhBAcH6+GHH9aiRYv09ddfN2gdh8Ohdu3aebReBKQAkdA+XEGWqx6DbTbFt2dSMQCAd4dh3HjjjUpOTlZOTs5py7700kvatGmT84ftPYWAFCBiIsOUe1OSgv8z6C3YZtPDN/VQTGSYl2sGAPA2XxiGMW/ePC1dulSffvppvWXeeecdjRo1Ss8884wuueQSj9aHnxoJIFl9Oumqrh20u+Kw4tu3IRwBACSdehhGcx0rrrrqKmVkZGjKlCm64447at3/7rvv6rrrrtMTTzyhESNGeLw+BKQAExMZRjACALg4OQzj5yHJG8Mw5s6dq+TkZF100UUuy9evX69rr71W8+bN05gxY5qlLpxiAwAgwPnKMIykpCTdfvvtWrhwoXPZO++8o8GDB+u+++7TzTffrLKyMpWVlen777/3aF3oQQIAAD4zDGP27NlasWKF8++lS5fq8OHDys3NdZkKIC0tTevXr/dYPWzGGHP6YrCqrKxUZGSkHA6HIiIivF0dAECAOnr0qEpKSpSQkCC73e7t6viEUz0nDT1+c4oNAADAgoAEAABgQUACAACwICABAABYEJAAAGgBuObqv5riuSAgAQDgx4KDgyVJx48f93JNfMfhwz/9EHvr1q0bvQ3mQQIAwI+1atVKbdq00f79+9W6dWsFBQVu34cxRocPH9a+ffvUtm1bZ3hsDAISAAB+zGazKSYmRiUlJfr3v//t7er4hLZt2yo6OvqMtkFAAgDAz4WEhCgxMZHTbPrptNqZ9BydREACAKAFCAoKYibtJhS4JyoBAADqQUACAACwICABAABYEJAAAAAsCEgAAAAWBCQAAAALAhIAAIAFAQkAAMCCgAQAAGBBQAIAALAgIAEAAFgQkAAAACwISAAAABYEJAAAAAsCEgAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFj4RkJYsWaL4+HjZ7XalpKRo48aNpyy/cuVKdevWTXa7XUlJSVq7dq3L/cYYzZgxQzExMQoLC1N6erp27tzpUiY+Pl42m83lNnfu3CZvGwAA8D9eD0grVqxQdna2cnJytHXrVvXs2VMZGRnat29fneU3bNigoUOHavTo0dq2bZsyMzOVmZmpHTt2OMvMnz9fCxcuVF5enoqLixUeHq6MjAwdPXrUZVuzZ89WaWmp8zZ27FiPthUAAPgHmzHGeLMCKSkp6tOnjxYvXixJqqmpUVxcnMaOHavJkyfXKp+VlaWqqiqtWbPGuaxfv35KTk5WXl6ejDGKjY3VhAkTNHHiREmSw+FQVFSU8vPzNWTIEEk/9SCNHz9e48ePb1S9KysrFRkZKYfDoYiIiEZtAwAANK+GHr+92oN0/PhxbdmyRenp6c5lQUFBSk9PV1FRUZ3rFBUVuZSXpIyMDGf5kpISlZWVuZSJjIxUSkpKrW3OnTtX5557ri677DI98sgjOnHiRL11PXbsmCorK11uAACgZWrlzQevqKhQdXW1oqKiXJZHRUXps88+q3OdsrKyOsuXlZU57z+5rL4yknTffffp8ssvV7t27bRhwwZNmTJFpaWlevzxx+t83NzcXM2aNcu9BgIAAL/k1YDkTdnZ2c7/X3rppQoJCdHdd9+t3NxchYaG1io/ZcoUl3UqKysVFxfXLHUFAADNy6un2Nq3b6/g4GCVl5e7LC8vL1d0dHSd60RHR5+y/Ml/3dmm9NNYqBMnTmj37t113h8aGqqIiAiXGwAAaJm8GpBCQkLUq1cvFRYWOpfV1NSosLBQqampda6TmprqUl6S1q1b5yyfkJCg6OholzKVlZUqLi6ud5uStH37dgUFBem88847kyYBAIAWwOun2LKzszVy5Ej17t1bffv21YIFC1RVVaVRo0ZJkkaMGKGOHTsqNzdXkjRu3DilpaXpscce0+DBg7V8+XJt3rxZTz/9tCTJZrNp/PjxmjNnjhITE5WQkKDp06crNjZWmZmZkn4a6F1cXKxBgwbp7LPPVlFRke6//3799re/1TnnnOOV5wEAAPgOrwekrKws7d+/XzNmzFBZWZmSk5NVUFDgHGS9Z88eBQX9t6Orf//+WrZsmaZNm6apU6cqMTFRq1evVo8ePZxlJk2apKqqKo0ZM0YHDhzQgAEDVFBQILvdLumn02XLly/XzJkzdezYMSUkJOj+++93GWMEAAACl9fnQfJXzIMEAID/8Yt5kAAAAHwRAQkAAMCCgAQAAGBBQAIAALAgIAEAAFgQkAAAACwISAAAABYEJAAAAAsCEgAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFgQkAAAACwISAACABQEJAADAgoAEAABgQUACAACwICABAABYEJAAAAAsCEgAAAAWBCQAAAALAhIAAIAFAQkAAMCCgAQAAGBBQAIAALAgIAEAAFgQkAAAACwISAAAABYEJAAAAAsCEgAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFgQkAAAACwISAACABQEJAADAgoAEAABgQUACAACwICABAABYEJAAAAAsCEgAAAAWBCQAAAALAhIAAICFTwSkJUuWKD4+Xna7XSkpKdq4ceMpy69cuVLdunWT3W5XUlKS1q5d63K/MUYzZsxQTEyMwsLClJ6erp07d9a5rWPHjik5OVk2m03bt29vqiYBAAA/5vWAtGLFCmVnZysnJ0dbt25Vz549lZGRoX379tVZfsOGDRo6dKhGjx6tbdu2KTMzU5mZmdqxY4ezzPz587Vw4ULl5eWpuLhY4eHhysjI0NGjR2ttb9KkSYqNjfVY+wJNqeOINuyqUKnjiLerAgBAo9mMMcabFUhJSVGfPn20ePFiSVJNTY3i4uI0duxYTZ48uVb5rKwsVVVVac2aNc5l/fr1U3JysvLy8mSMUWxsrCZMmKCJEydKkhwOh6KiopSfn68hQ4Y41/t//+//KTs7W6+88oouueQSbdu2TcnJyQ2qd2VlpSIjI+VwOBQREXEGz0DLsWLTHk1Z9ZFqjBRkk3JvSlJWn07erhYAAE4NPX57tQfp+PHj2rJli9LT053LgoKClJ6erqKiojrXKSoqcikvSRkZGc7yJSUlKisrcykTGRmplJQUl22Wl5frrrvu0t/+9je1adPmtHU9duyYKisrXW74r1LHEWc4kqQaI01dtYOeJACAX/JqQKqoqFB1dbWioqJclkdFRamsrKzOdcrKyk5Z/uS/pypjjNEdd9yhe+65R717925QXXNzcxUZGem8xcXFNWi9QFFSUeUMRydVG6PdFYe9UyEAAM6A18cgecOiRYt08OBBTZkypcHrTJkyRQ6Hw3nbu3evB2vofxLahyvI5ros2GZTfPvT984BAOBrvBqQ2rdvr+DgYJWXl7ssLy8vV3R0dJ3rREdHn7L8yX9PVebtt99WUVGRQkND1apVK1144YWSpN69e2vkyJF1Pm5oaKgiIiJcbvivmMgw5d6UpGDbTykp2GbTwzf1UExkmJdrBgCA+7wakEJCQtSrVy8VFhY6l9XU1KiwsFCpqal1rpOamupSXpLWrVvnLJ+QkKDo6GiXMpWVlSouLnaWWbhwoT788ENt375d27dvd04TsGLFCv3pT39q0jYGkqw+nfT+5EF68a5+en/yIAZoAwD8VitvVyA7O1sjR45U79691bdvXy1YsEBVVVUaNWqUJGnEiBHq2LGjcnNzJUnjxo1TWlqaHnvsMQ0ePFjLly/X5s2b9fTTT0uSbDabxo8frzlz5igxMVEJCQmaPn26YmNjlZmZKUnq1Mn1wH3WWWdJkrp06aLzzz+/mVreMsVEhtFrBADwe14PSFlZWdq/f79mzJihsrIyJScnq6CgwDnIes+ePQoK+m9HV//+/bVs2TJNmzZNU6dOVWJiolavXq0ePXo4y0yaNElVVVUaM2aMDhw4oAEDBqigoEB2u73Z2wcAAPyP1+dB8lfMgwQAgP/xi3mQAAAAfBEBCQAAwIKABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFgQkAAAACwISAACABQEJAADAgoAEABaljiPasKtCpY4j3q4KAC/x+o/VAoAvWbFpj6as+kg1RgqySbk3JSmrTydvVwtAM6MHCQD+o9RxxBmOJKnGSFNX7aAnCQhABCS0WJwmgbtKKqqc4eikamO0u+KwdyoEwGs4xYYWidMkaIyE9uEKssklJAXbbIpv38Z7lQLgFfQgocXhNAkaKyYyTLk3JSnYZpP0Uzh6+KYeiokM83LNADQ3epDQ4pzqNAkHOpxOVp9OuqprB+2uOKz49m14zQABioCEFofTJDhTMZFhBCMgwHGKDS0Op0kAAGeKHiS0SJwmAQCcCQISWixOkwAAGotTbAAAABYEJAAAAAsCEgAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFgQkAAAACwISAACABQEJAADAgoAEAABgQUACAACwICABAABYEJAAAAAsCEgAAAAWBCQAAAALAhIAAIAFAQkAAMCCgAQAAGBBQAIAALAgIAEAAFgQkAAAACwISAAAABYEJAAAAAsCEgAAgIVPBKQlS5YoPj5edrtdKSkp2rhx4ynLr1y5Ut26dZPdbldSUpLWrl3rcr8xRjNmzFBMTIzCwsKUnp6unTt3upS5/vrr1alTJ9ntdsXExGj48OH69ttvm7xtAADA/3g9IK1YsULZ2dnKycnR1q1b1bNnT2VkZGjfvn11lt+wYYOGDh2q0aNHa9u2bcrMzFRmZqZ27NjhLDN//nwtXLhQeXl5Ki4uVnh4uDIyMnT06FFnmUGDBumll17S559/rldeeUW7du3SLbfc4vH2AgDQGKWOI9qwq0KljiPerkpAsBljjDcrkJKSoj59+mjx4sWSpJqaGsXFxWns2LGaPHlyrfJZWVmqqqrSmjVrnMv69eun5ORk5eXlyRij2NhYTZgwQRMnTpQkORwORUVFKT8/X0OGDKmzHq+//royMzN17NgxtW7d+rT1rqysVGRkpBwOhyIiIhrTdAAAGmTFpj2asuoj1RgpyCbl3pSkrD6dvF0tv9TQ47dXe5COHz+uLVu2KD093bksKChI6enpKioqqnOdoqIil/KSlJGR4SxfUlKisrIylzKRkZFKSUmpd5vff/+9XnjhBfXv37/ecHTs2DFVVla63AAA8LRSxxFnOJKkGiNNXbWDniQP82pAqqioUHV1taKiolyWR0VFqaysrM51ysrKTln+5L8N2eaDDz6o8PBwnXvuudqzZ49ee+21euuam5uryMhI5y0uLq5hjQQA4AyUVFQ5w9FJ1cZod8Vh71QoQLgdkNauXas777xTkyZN0meffeZy3w8//KBf/OIXTVY5T3vggQe0bds2vfXWWwoODtaIESNU3xnHKVOmyOFwOG979+5t5toCAAJRQvtwBdlclwXbbIpv38Y7FQoQbgWkZcuW6frrr1dZWZmKiop02WWX6YUXXnDef/z4cb377rsN3l779u0VHBys8vJyl+Xl5eWKjo6uc53o6OhTlj/5b0O22b59e3Xt2lW/+tWvtHz5cq1du1b//Oc/63zc0NBQRUREuNwAAPC0mMgw5d6UpGDbTykp2GbTwzf1UExkmJdr1rK5FZAeeeQRPf7441qzZo3+8Y9/aOnSpbr77rv117/+tVEPHhISol69eqmwsNC5rKamRoWFhUpNTa1zndTUVJfykrRu3Tpn+YSEBEVHR7uUqaysVHFxcb3bPPm40k9jjQAA8CVZfTrp/cmD9OJd/fT+5EEM0G4GrdwpvHPnTl133XXOv2+77TZ16NBB119/vX788UfdeOONblcgOztbI0eOVO/evdW3b18tWLBAVVVVGjVqlCRpxIgR6tixo3JzcyVJ48aNU1pamh577DENHjxYy5cv1+bNm/X0009Lkmw2m8aPH685c+YoMTFRCQkJmj59umJjY5WZmSlJKi4u1qZNmzRgwACdc8452rVrl6ZPn64uXbqcMkQBAOAtMZFh9Bo1I7cCUkREhMrLy5WQkOBcNmjQIK1Zs0bXXnutvv76a7crkJWVpf3792vGjBkqKytTcnKyCgoKnIOs9+zZo6Cg/3Z09e/fX8uWLdO0adM0depUJSYmavXq1erRo4ezzKRJk1RVVaUxY8bowIEDGjBggAoKCmS32yVJbdq00apVq5STk6OqqirFxMTo6quv1rRp0xQaGup2GwAAQMvi1jxImZmZ6tmzp2bNmlXrvvXr1+vaa6/VkSNHVF1d3aSV9EXMgwQAgP/xyDxI999/v7MXxmrgwIF64403NGLECPdqCgAA4GO8PpO2v6IHCQAA/9PQ47dbY5CCgoJks9lOWcZms+nEiRPubBYAAMCnuBWQXn311XrvKyoq0sKFC52XywMAAPgrtwLSDTfcUGvZ559/rsmTJ+uNN97Q7bffrtmzZzdZ5QAAALyh0b/F9u233+quu+5SUlKSTpw4oe3bt2vp0qXq3LlzU9YPAACg2bkdkBwOhx588EFdeOGF+vjjj1VYWKg33njDZR4iAAAAf+bWKbb58+dr3rx5io6O1osvvljnKTcAAAB/59Zl/kFBQQoLC1N6erqCg4PrLbdq1aomqZwv4zJ/AAD8j0cu8x8xYsRpL/MHAADwd24FpPz8fA9VAwAAwHc0+io2AACAloqABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFgQkAAAACwISAACABQEJAADAgoAEAABgQUACAACwICABAABYEJAAAAAsCEgAAAAWBCQAAAALAhIAAIAFAQkAAMCCgAQAAGBBQAIAALAgIAEAAFgQkAAAACwISAAAABYEJAAAAAsCEgAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFgQkAAAACwISAACABQEJAADAgoAEAABgQUACAACwICABAABYEJAAAAAsfCIgLVmyRPHx8bLb7UpJSdHGjRtPWX7lypXq1q2b7Ha7kpKStHbtWpf7jTGaMWOGYmJiFBYWpvT0dO3cudN5/+7duzV69GglJCQoLCxMXbp0UU5Ojo4fP+6R9gEAAP/i9YC0YsUKZWdnKycnR1u3blXPnj2VkZGhffv21Vl+w4YNGjp0qEaPHq1t27YpMzNTmZmZ2rFjh7PM/PnztXDhQuXl5am4uFjh4eHKyMjQ0aNHJUmfffaZampq9NRTT+njjz/WE088oby8PE2dOrVZ2gwAAHybzRhjvFmBlJQU9enTR4sXL5Yk1dTUKC4uTmPHjtXkyZNrlc/KylJVVZXWrFnjXNavXz8lJycrLy9PxhjFxsZqwoQJmjhxoiTJ4XAoKipK+fn5GjJkSJ31eOSRR/Tkk0/qq6++alC9KysrFRkZKYfDoYiICHebDQAAvKChx2+v9iAdP35cW7ZsUXp6unNZUFCQ0tPTVVRUVOc6RUVFLuUlKSMjw1m+pKREZWVlLmUiIyOVkpJS7zaln0JUu3bt6r3/2LFjqqysdLkBAICWyasBqaKiQtXV1YqKinJZHhUVpbKysjrXKSsrO2X5k/+6s80vv/xSixYt0t13311vXXNzcxUZGem8xcXFnbpxAADAb3l9DJK3ffPNN7r66qt166236q677qq33JQpU+RwOJy3vXv3NmMtAQBAc/JqQGrfvr2Cg4NVXl7usry8vFzR0dF1rhMdHX3K8if/bcg2v/32Ww0aNEj9+/fX008/fcq6hoaGKiIiwuUGAABaJq8GpJCQEPXq1UuFhYXOZTU1NSosLFRqamqd66SmprqUl6R169Y5yyckJCg6OtqlTGVlpYqLi122+c0332jgwIHq1auXnnvuOQUFBXxnGgAA+I9W3q5Adna2Ro4cqd69e6tv375asGCBqqqqNGrUKEnSiBEj1LFjR+Xm5kqSxo0bp7S0ND322GMaPHiwli9frs2bNzt7gGw2m8aPH685c+YoMTFRCQkJmj59umJjY5WZmSnpv+Goc+fOevTRR7V//35nferruQIAAIHD6wEpKytL+/fv14wZM1RWVqbk5GQVFBQ4B1nv2bPHpXenf//+WrZsmaZNm6apU6cqMTFRq1evVo8ePZxlJk2apKqqKo0ZM0YHDhzQgAEDVFBQILvdLumnHqcvv/xSX375pc4//3yX+nh51gMAAOADvD4Pkr9iHiQAAPyPX8yDBAAA4IsISAAAABYEJAAAAAsCEgAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWBCQAAAALAhIAAAAFgQkAAAACwISAACABQEJAADAgoAEAABgQUACAACwICABAABYEJAAAAAsCEgAAAAWBCQAAAALAhIAAIAFAQkAAMCCgAQAAGBBQAIAALAgIAEAAFgQkID/KHUc0YZdFSp1HPF2VRrF3+sPAL6klbcrAPiCFZv2aMqqj1RjpCCblHtTkrL6dPJ2tRrM3+sPAL6GHiQEvFLHEWe4kKQaI01dtcNvemL8vf4A4IsISAh4JRVVznBxUrUx2l1x2DsVcpO/1x8AfBEBCQEvoX24gmyuy4JtNsW3b+OdCrnJ3+sPAL6IgISAFxMZptybkhRs+yllBNtsevimHoqJDPNyzRrG3+sPAL7IZowxpy8Gq8rKSkVGRsrhcCgiIsLb1UETKHUc0e6Kw4pv36ZB4aLUcUQlFVVKaB/uE2HE3foDQCBq6PGbq9iA/4iJDGtwsPDFq8bcqT8A4NQ4xebnPD33DXPr1MZVYwDQ8tGD5Mc83Yvhi70kvuBUV42dqgfH107JAQDqRw+Sn/J0Lwa9JPVrzFVjKzbt0RVz39awZ4p1xdy3tWLTHg/XEgBwJghIfsrTc98wt0793L1qjLAJAP6HU2x+6mQvxs9DTFPOfRMeElzn8jYhZGpJyurTSVd17dCgq8Yae0oOaAk4tQx/RUDyUyd7Maau2qFqY5p87puq49V1Lj98vKZJtt8SNPSqMU+HWV/EQRES4xjh3whIPsadA0tWn07qFn22Nu3+QX3iz1HPuHOarB6BeFD3FE+HWV8TiAdFTwZCfw2b9Z1avqprB79qBwIXAcmHuHtg8eSBqLkO6v764e8uT4ZZXxKIB0VPvg/9OWxyahn+joDkI9w9sDTHgcidcTaN4c8f/u5qjrb6QtgMtIOiJ9+H/h426YWGv2PErY9w96qx5rrKLCYyTKldzvVIz1GgXNnVHG31lWkEAu2Hcz35PvT3K0mb6zcCmcwWnkIPko9w99uWv387C6SeBk+31Zd6GgJtvJUn34f+/h6X6IWGf6MHyUe4+23L33/BPZB6GjzdVl/racjq00nvTx6kF+/qp/cnD2rRByxPvg/9/T1+ki/1QtPbBHfQg+RD3P225elvZ54USD0Nnm6rL/Y0BNIP53ryfejP73FPc7dnlt4muMtmjDGnLwaryspKRUZGyuFwKCIiwtvV8VuljiMB8+Hvybau2LSnVgDz5oe/LwwYR8tW6jiiK+a+XeuLwfuTB9V6zblTFi1fQ4/f9CDBqwKpp0GSjDzzfcSXehr4po7mEBMZphsv66hXtn7jXJZ5WWydr/1AGvOIpsMYJKAZNMdVZp4a6+GOQLo6Ed5V6jiiV7d947Js9bZv63ytBdKYRzQdrwekJUuWKD4+Xna7XSkpKdq4ceMpy69cuVLdunWT3W5XUlKS1q5d63K/MUYzZsxQTEyMwsLClJ6erp07d7qU+dOf/qT+/furTZs2atu2bVM3CXARSKHB1waMn8Tg3JbHnddaSxnwjubl1YC0YsUKZWdnKycnR1u3blXPnj2VkZGhffv21Vl+w4YNGjp0qEaPHq1t27YpMzNTmZmZ2rFjh7PM/PnztXDhQuXl5am4uFjh4eHKyMjQ0aNHnWWOHz+uW2+9Vb/73e883kbAV0ODJ/jiN3VfmSMKTcvd11ogXV2JpuHVQdopKSnq06ePFi9eLEmqqalRXFycxo4dq8mTJ9cqn5WVpaqqKq1Zs8a5rF+/fkpOTlZeXp6MMYqNjdWECRM0ceJESZLD4VBUVJTy8/M1ZMgQl+3l5+dr/PjxOnDggNt1Z5A2GirQBoj60oDxQHvuA40vvdbgP3x+kPbx48e1ZcsWTZkyxbksKChI6enpKioqqnOdoqIiZWdnuyzLyMjQ6tWrJUklJSUqKytTenq68/7IyEilpKSoqKioVkByx7Fjx3Ts2DHn35WVlY3eFlqGhl6pFUhTGki+NWC8sYNzuQrPP/jSaw0tj9cCUkVFhaqrqxUVFeWyPCoqSp999lmd65SVldVZvqyszHn/yWX1lWms3NxczZo164y2gZbD3Su1Au2D3FeuTmzMHFFchedffOW1hpbH64O0/cWUKVPkcDict71793q7Sj4pEAbDNnbQtS9cZRZo3B2cG0gD6gGcmtd6kNq3b6/g4GCVl5e7LC8vL1d0dHSd60RHR5+y/Ml/y8vLFRMT41ImOTn5jOobGhqq0NDQM9pGSxco37yZU8W/uNN711z7llN48EW8Ll15rQcpJCREvXr1UmFhoXNZTU2NCgsLlZqaWuc6qampLuUlad26dc7yCQkJio6OdilTWVmp4uLiereJphFI37yb60qtQOiNayx3n5uG9t41x77lqjr4Il6XtXn1FFt2draeeeYZLV26VJ9++ql+97vfqaqqSqNGjZIkjRgxwmUQ97hx41RQUKDHHntMn332mWbOnKnNmzfr3nvvlSTZbDaNHz9ec+bM0euvv66PPvpII0aMUGxsrDIzM53b2bNnj7Zv3649e/aourpa27dv1/bt23Xo0KFmbX9LEkiXsjfHnCrN8WHlSwHMnbp48rnx9L4NpC8S8B/N8br0pc+bhvLqT41kZWVp//79mjFjhsrKypScnKyCggLnIOs9e/YoKOi/Ga5///5atmyZpk2bpqlTpyoxMVGrV69Wjx49nGUmTZqkqqoqjRkzRgcOHNCAAQNUUFAgu93uLDNjxgwtXbrU+fdll10mSXrnnXc0cOBAD7e6ZUpoHy6b5PJDGjabTvvN21+7dD056Lq+D6urunZossfxpdOh7tSlOZ4bT+5bTs96l79+3niap1+XvvR54w5+rLaRmAfJVanjiPrnvu0akCRtmPKLet9g/vqm8bQNuyo07JniWstfvKufUruce8bb96W5gdyti6efG09rjueeEFA3Pm/q58nXpS993pzU0OM3V7GhSZRUVNX6GVYj1XuKjVMN9fP0OJjmOB3a0O50d+viizN1u8PTp/AYR1K3lvJ546nTVJ58XTb288YXTsl59RQbWg5355vhVEP9PD2xZGPmBnKHO9/U3a1LS5h0091TeA3tEWqO04/+qiV83ni6B8xTp5b9eS4yAhKahLsHLk8fpP2dJ8fBeDJkuHuQbkxdWsKkmw2d3NCdA0VLCAGe4u+fN80Vfj0x6aa773FfCvoEJDQZdw5cLaEnwNM8OUOwp0JGYw7SjalLIMye7O6Bwt9DgCf5++eNv4dfX5yLrCEISGhS7hy4WkJPgD/zRMho7EE6EAKPu9w9UPh7CPA0f/68aQnht6HvcV9qKwEJXsWBsWXhIN10GnOg8OcQ0Bz89fMmkN5XvtRWLvNvJC7zB5dT16/UcYSDdBNYsWlPrQMFl6YHrkB6X3myrQ09fhOQGomAFNh85SoLeIYvhd9AOih6mi/tV3hPQ4/fnGID3ORLV1mg6fla+PXX00K+xtf2K3wfE0UCbgqk350LNC1lQkG4Yr+iMQhIAcYXZif1d/4+mzPqR/htmdivaAwCUgDhZwiahqd/LgLeQ/htmdivaAwCUoCgi7lpZfXppPcnD9KLd/XT+5MHNWgsA713vo/w2zL56n7lM8G3MUg7QPjS7KQthTuDZxkg6j+YS6hl8rX9ymeC76MHKUDQxew99N75n5jIMKV2OdfrB1E0LV/Zr6WOI5r8iutnwuRVH/GZ4GMISAHCV7uYAwEDRAH83JZ//yDrBITGSFv//YNX6uOLfOH0I6fYAoivdTEHCl/6baGWggn/4M/qm5+ZaZt/4iunH+lBCjC+0sUcSOi9a1pcjYnm4qlejN7x7WQZ8SCbpF7x5zTp4/gjXxqSQA8S0AzovWsazGKO5uLJXoyYyDDNvTlJU175SDX6qaci9+Ykv3sNe6In15cuKCIgAc2En4w4c7704YmWqzmCuL9/afJUgPSlIQmcYgPgN7gaE82huS6s8NchD548DeZLQxLoQQLgN05+eE5dtUPVxjCeCx7hS70YvsjTPbm+0rtGQALgV3zlw/PnuKquZSGIn1pzBEhfGJJAQALgd3zhw/MkX7kkGU0rq08ndYs+W5t2/6A+8eeoZxxXmJ0UKAHSZuqbkAGnVFlZqcjISDkcDkVERHi7OgC8oNRxRFfMfbvWN+n3Jw9qcQeLQEPwPb1SxxGf6sltqIYevxmk7ed8YbZRIFAxS3rL5Etz8fgyfx1k3lCcYvNjfMMBvIvBvC0T00lAogfJbzXXNxx6qID6+dIlyWg6TCfRMC39+EAPkp9qjm849FABp+eLV9XhzJwMvj+f6ToQgq87V2MGwvGBgOSnPN21z086AA3nS1fVuYspCk7BJsn8598Wzp3AEyjHB06x+SlPd+0z+BRo+fjh37oF2iBtd9sbKMcHepD8mCe79hl8CrRsgdIL0BiBNkjb3fYGyvGBHiQ/56nLLBl8CrRsgdIL0BiBNkjb3fYGyvGBHiTUi8GnQMsVKL0AjREoM0Wf1Jj2BsLxgZm0G4mZtAH4uxWb9tQ6KLa0K5HOhLszRfv7gHd/nRnbXQ09fhOQGomABKAlCJSDoqcFwmXvLQU/NQLAb7T0Ced8WUv/uYjmEGhXvTWGP77HGYMEwKv45g1/F2hXvbnLX9/j9CAB8Bq+eXufP36z9zWBdtWbO/z5PU5AAuA1XGruXUwU2TQC5bL3xvDn9zin2AB4DZeaew8TRTatQLjsvTH8+T1ODxLwH5xqaH588/aexn6z531SPwa813byPX4ybPjTD//SgwTIfwcRNhdPzu/CN2/vaMw3+8a8T9x97fj7XEKohx/+8C/zIDUS8yC1HKWOI7pi7tu1DhTvTx7EB7Sa56AI73BnosjGvE/cfe3wRaXl8cXP14Yev+lBQsDz1Ut0fSFkNGacCgc5/+FO75277xN3XzuMiWqZfPXztSEISAh44SHBdS5vE+K9IXq+EjI8fVCE98VEhjVo37h7Ss7d144/H0hRPwZpA36s6nh1ncsPH69p5pr8pLHzhnhi8Ky787v48yW9ODV3B9S7+9pJaB9ea3iKzSa/OJCifv58IQY9SAh4vvYNpzHfpD3V4+Tur3z72nOJpuXOKbnG/EJ8LYyQbRH89UIMAhICXpN8kDchd0/5efq0VrMfFOHTGnpKTnJ/jJM1DxmJU2wthDuvG1/hE6fYlixZovj4eNntdqWkpGjjxo2nLL9y5Up169ZNdrtdSUlJWrt2rcv9xhjNmDFDMTExCgsLU3p6unbu3OlS5vvvv9ftt9+uiIgItW3bVqNHj9ahQ4eavG3wD1l9Oun9yYP04l399P7kQV4dVOzuKb/mOK3lzvwuvvRcwvsa+trh5zrga7wekFasWKHs7Gzl5ORo69at6tmzpzIyMrRv3746y2/YsEFDhw7V6NGjtW3bNmVmZiozM1M7duxwlpk/f74WLlyovLw8FRcXKzw8XBkZGTp69KizzO23366PP/5Y69at05o1a/Tee+9pzJgxHm8vfJevTPLWmLEbvnZg8ZXnEv7Dn8eqoGXy+jxIKSkp6tOnjxYvXixJqqmpUVxcnMaOHavJkyfXKp+VlaWqqiqtWbPGuaxfv35KTk5WXl6ejDGKjY3VhAkTNHHiREmSw+FQVFSU8vPzNWTIEH366afq3r27Nm3apN69e0uSCgoKdM011+jrr79WbGzsaevNPEjwJHfmp2lMecBXlTqO+N1YFfgXv5gH6fjx49qyZYumTJniXBYUFKT09HQVFRXVuU5RUZGys7NdlmVkZGj16tWSpJKSEpWVlSk9Pd15f2RkpFJSUlRUVKQhQ4aoqKhIbdu2dYYjSUpPT1dQUJCKi4t144031nrcY8eO6dixY86/KysrG9VmoCHcHdTor4MgASt/HKuClsmrAamiokLV1dWKiopyWR4VFaXPPvusznXKysrqLF9WVua8/+SyU5U577zzXO5v1aqV2rVr5yxjlZubq1mzZjWwZcCZc/dAwYEFAJqO18cg+YspU6bI4XA4b3v37vV2lQAAgId4NSC1b99ewcHBKi8vd1leXl6u6OjoOteJjo4+ZfmT/56ujHUQ+IkTJ/T999/X+7ihoaGKiIhwuQEAgJbJqwEpJCREvXr1UmFhoXNZTU2NCgsLlZqaWuc6qampLuUlad26dc7yCQkJio6OdilTWVmp4uJiZ5nU1FQdOHBAW7ZscZZ5++23VVNTo5SUlCZrHwAA8E9enygyOztbI0eOVO/evdW3b18tWLBAVVVVGjVqlCRpxIgR6tixo3JzcyVJ48aNU1pamh577DENHjxYy5cv1+bNm/X0009Lkmw2m8aPH685c+YoMTFRCQkJmj59umJjY5WZmSlJuvjii3X11VfrrrvuUl5enn788Ufde++9GjJkSIOuYAMAAC2b1wNSVlaW9u/frxkzZqisrEzJyckqKChwDrLes2ePgoL+29HVv39/LVu2TNOmTdPUqVOVmJio1atXq0ePHs4ykyZNUlVVlcaMGaMDBw5owIABKigokN1ud5Z54YUXdO+99+qXv/ylgoKCdPPNN2vhwoXN13AAAOCzvD4Pkr9iHiQAAPxPQ4/fXMUGAABgQUACAACwICABAABYEJAAAAAsCEgAAAAWXr/M31+dvPiPH60FAMB/nDxun+4ifgJSIx08eFCSFBcX5+WaAAAAdx08eFCRkZH13s88SI1UU1Ojb7/9VmeffbZsNluTbbeyslJxcXHau3dvi51fqaW3kfb5v5bexpbePqnlt5H2NZ4xRgcPHlRsbKzLRNRW9CA1UlBQkM4//3yPbT8QfhC3pbeR9vm/lt7Glt4+qeW3kfY1zql6jk5ikDYAAIAFAQkAAMCCgORjQkNDlZOTo9DQUG9XxWNaehtpn/9r6W1s6e2TWn4baZ/nMUgbAADAgh4kAAAACwISAACABQEJAADAgoAEAABgQUBqBkuWLFF8fLzsdrtSUlK0cePGU5ZfsGCBLrroIoWFhSkuLk7333+/jh49ekbb9KSmbt/MmTNls9lcbt26dfN0M07JnTb++OOPmj17trp06SK73a6ePXuqoKDgjLbpaU3dPl/ah++9956uu+46xcbGymazafXq1addZ/369br88ssVGhqqCy+8UPn5+bXK+Mr+80T7fGn/Se63sbS0VMOGDVPXrl0VFBSk8ePH11lu5cqV6tatm+x2u5KSkrR27dqmr3wDeKJ9+fn5tfah3W73TANOw932rVq1Sr/61a/UoUMHRUREKDU1VX//+99rlfP4e9DAo5YvX25CQkLMs88+az7++GNz1113mbZt25ry8vI6y7/wwgsmNDTUvPDCC6akpMT8/e9/NzExMeb+++9v9DY9yRPty8nJMZdccokpLS113vbv399cTarF3TZOmjTJxMbGmjfffNPs2rXL/OUvfzF2u91s3bq10dv0JE+0z5f24dq1a80f//hHs2rVKiPJvPrqq6cs/9VXX5k2bdqY7Oxs88knn5hFixaZ4OBgU1BQ4CzjS/vPE+3zpf1njPttLCkpMffdd59ZunSpSU5ONuPGjatV5oMPPjDBwcFm/vz55pNPPjHTpk0zrVu3Nh999JFnGnEKnmjfc889ZyIiIlz2YVlZmWcacBrutm/cuHFm3rx5ZuPGjeaLL74wU6ZMMa1bt272z1ACkof17dvX/OEPf3D+XV1dbWJjY01ubm6d5f/whz+YX/ziFy7LsrOzzRVXXNHobXqSJ9qXk5Njevbs6ZH6Noa7bYyJiTGLFy92WXbTTTeZ22+/vdHb9CRPtM/X9uFJDflwnjRpkrnkkktclmVlZZmMjAzn3760/36uqdrnq/vPmIa18efS0tLqDBC33XabGTx4sMuylJQUc/fdd59hDc9MU7XvueeeM5GRkU1Wr6bibvtO6t69u5k1a5bz7+Z4D3KKzYOOHz+uLVu2KD093bksKChI6enpKioqqnOd/v37a8uWLc6uwq+++kpr167VNddc0+hteoon2nfSzp07FRsbqwsuuEC333679uzZ47mGnEJj2njs2LFaXdlhYWF6//33G71NT/FE+07ylX3orqKiIpfnQ5IyMjKcz4cv7b/GOF37TvLX/ddQDX0e/NmhQ4fUuXNnxcXF6YYbbtDHH3/s7So1Sk1NjQ4ePKh27dpJar73IAHJgyoqKlRdXa2oqCiX5VFRUSorK6tznWHDhmn27NkaMGCAWrdurS5dumjgwIGaOnVqo7fpKZ5onySlpKQoPz9fBQUFevLJJ1VSUqIrr7xSBw8e9Gh76tKYNmZkZOjxxx/Xzp07VVNTo3Xr1mnVqlUqLS1t9DY9xRPtk3xrH7qrrKyszuejsrJSR44c8an91xina5/k3/uvoep7HvxhHzbERRddpGeffVavvfaann/+edXU1Kh///76+uuvvV01tz366KM6dOiQbrvtNknN9xlKQPIx69ev18MPP6y//OUv2rp1q1atWqU333xTDz30kLer1iQa0r7f/OY3uvXWW3XppZcqIyNDa9eu1YEDB/TSSy95seYN9+c//1mJiYnq1q2bQkJCdO+992rUqFEKCmoZb7eGtM/f92GgY//5v9TUVI0YMULJyclKS0vTqlWr1KFDBz311FPerppbli1bplmzZumll17Seeed16yP3apZHy3AtG/fXsHBwSovL3dZXl5erujo6DrXmT59uoYPH64777xTkpSUlKSqqiqNGTNGf/zjHxu1TU/xRPvqChFt27ZV165d9eWXXzZ9I06jMW3s0KGDVq9eraNHj+q7775TbGysJk+erAsuuKDR2/QUT7SvLt7ch+6Kjo6u8/mIiIhQWFiYgoODfWb/Ncbp2lcXf9p/DVXf8+AP+7AxWrdurcsuu8yv9uHy5ct15513auXKlS6n05rrM7RlfKX1USEhIerVq5cKCwudy2pqalRYWKjU1NQ61zl8+HCtkBAcHCxJMsY0apue4on21eXQoUPatWuXYmJimqjmDXcmz7fdblfHjh114sQJvfLKK7rhhhvOeJtNzRPtq4s396G7UlNTXZ4PSVq3bp3z+fCl/dcYp2tfXfxp/zVUY54Hf1ZdXa2PPvrIb/bhiy++qFGjRunFF1/U4MGDXe5rtvdgkw33Rp2WL19uQkNDTX5+vvnkk0/MmDFjTNu2bZ2XWw4fPtxMnjzZWT4nJ8ecffbZ5sUXXzRfffWVeeutt0yXLl3Mbbfd1uBt+nv7JkyYYNavX29KSkrMBx98YNLT00379u3Nvn37mr19xrjfxn/+85/mlVdeMbt27TLvvfee+cUvfmESEhLMDz/80OBtNidPtM+X9uHBgwfNtm3bzLZt24wk8/jjj5tt27aZf//738YYYyZPnmyGDx/uLH/yMvgHHnjAfPrpp2bJkiV1XubvK/vPE+3zpf1njPttNMY4y/fq1csMGzbMbNu2zXz88cfO+z/44APTqlUr8+ijj5pPP/3U5OTkeO0yf0+0b9asWebvf/+72bVrl9myZYsZMmSIsdvtLmWai7vte+GFF0yrVq3MkiVLXKYpOHDggLNMc7wHCUjNYNGiRaZTp04mJCTE9O3b1/zzn/903peWlmZGjhzp/PvHH380M2fONF26dDF2u93ExcWZ3//+9y4Hn9Nts7k1dfuysrJMTEyMCQkJMR07djRZWVnmyy+/bMYW1eZOG9evX28uvvhiExoaas4991wzfPhw880337i1zebW1O3zpX34zjvvGEm1bifbNHLkSJOWllZrneTkZBMSEmIuuOAC89xzz9Xarq/sP0+0z5f2nzGNa2Nd5Tt37uxS5qWXXjJdu3Y1ISEh5pJLLjFvvvlm8zTIwhPtGz9+vPP1GRUVZa655hqXeYSak7vtS0tLO2X5kzz9HrQZU895DQAAgADFGCQAAAALAhIAAIAFAQkAAMCCgAQAAGBBQAIAALAgIAEAAFgQkAAAACwISADQQqxfv142m00HDhzwdlUAv0dAAuC2O+64QzabTXPnznVZvnr1atlsNuffxhg988wzSk1NVUREhM466yxdcsklGjduXIN/NPPw4cOaMmWKunTpIrvdrg4dOigtLU2vvfaas0x8fLwWLFjQJG3ztJPPnc1mU+vWrZWQkKBJkybp6NGjbm1n4MCBGj9+vMuy/v37q7S0VJGRkU1YYyAwEZAANIrdbte8efP0ww8/1Hm/MUbDhg3Tfffdp2uuuUZvvfWWPvnkE/31r3+V3W7XnDlzGvQ499xzj1atWqVFixbps88+U0FBgW655RZ99913TdmcZnX11VertLRUX331lZ544gk99dRTysnJOePthoSEKDo62iWkAmikJv3hEgABYeTIkebaa6813bp1Mw888IBz+auvvmpOfqy8+OKLRpJ57bXX6txGTU1Ngx4rMjLS5Ofn13t/Xb/bdNI//vEPM2DAAGO32835559vxo4daw4dOuS8///+3/9revXqZc466ywTFRVlhg4dasrLy533n/wNqYKCApOcnGzsdrsZNGiQKS8vN2vXrjXdunUzZ599thk6dKipqqpqUHtGjhxpbrjhBpdlN910k7nsssucf1dUVJghQ4aY2NhYExYWZnr06GGWLVvmsg1rm0tKSpz1/flvG7788sume/fuJiQkxHTu3Nk8+uijDaonEOjoQQLQKMHBwXr44Ye1aNEiff3117Xuf/HFF3XRRRfp+uuvr3P9hvZyREdHa+3atTp48GCd969atUrnn3++Zs+erdLSUpWWlkqSdu3apauvvlo333yz/vWvf2nFihV6//33de+99zrX/fHHH/XQQw/pww8/1OrVq7V7927dcccdtR5j5syZWrx4sTZs2KC9e/fqtttu04IFC7Rs2TK9+eabeuutt7Ro0aIGtcdqx44d2rBhg0JCQpzLjh49ql69eunNN9/Ujh07NGbMGA0fPlwbN26UJP35z39Wamqq7rrrLmeb4+Liam17y5Ytuu222zRkyBB99NFHmjlzpqZPn678/PxG1RUIKN5OaAD8z897Qfr162f+53/+xxjj2oPUrVs3c/3117usN27cOBMeHm7Cw8NNx44dG/RY7777rjn//PNN69atTe/evc348ePN+++/71Kmc+fO5oknnnBZNnr0aDNmzBiXZf/4xz9MUFCQOXLkSJ2PtWnTJiPJHDx40Bjz3x6k//3f/3WWyc3NNZLMrl27nMvuvvtuk5GR0aD2jBw50gQHB5vw8HATGhpqJJmgoCDz8ssvn3K9wYMHmwkTJjj/TktLM+PGjXMpY+1BGjZsmPnVr37lUuaBBx4w3bt3b1BdgUBGDxKAMzJv3jwtXbpUn3766WnL/vGPf9T27ds1Y8YMHTp0qEHbv+qqq/TVV1+psLBQt9xyiz7++GNdeeWVeuihh0653ocffqj8/HydddZZzltGRoZqampUUlIi6aceluuuu06dOnXS2WefrbS0NEnSnj17XLZ16aWXOv8fFRWlNm3a6IILLnBZtm/fvga1R5IGDRqk7du3q7i4WCNHjtSoUaN08803O++vrq7WQw89pKSkJLVr105nnXWW/v73v9eq1+l8+umnuuKKK1yWXXHFFdq5c6eqq6vd2hYQaAhIAM7IVVddpYyMDE2ZMsVleWJioj7//HOXZR06dNCFF16o8847z63HaN26ta688ko9+OCDeuuttzR79mw99NBDOn78eL3rHDp0SHfffbe2b9/uvH344YfauXOnunTpoqqqKmVkZCgiIkIvvPCCNm3apFdffVWSam23devWzv+fvPrs52w2m2pqahrcnvDwcF144YXq2bOnnn32WRUXF+uvf/2r8/5HHnlEf/7zn/Xggw/qnXfe0fbt25WRkXHK9gJoWq28XQEA/m/u3LlKTk7WRRdd5Fw2dOhQDRs2TK+99ppuuOGGJn287t2768SJEzp69KhCQkIUEhJSq0fk8ssv1yeffKILL7ywzm189NFH+u677zR37lzn+J3Nmzc3aT0bIigoSFOnTlV2draGDRumsLAwffDBB7rhhhv029/+VpJUU1OjL774Qt27d3euV1ebrS6++GJ98MEHLss++OADde3aVcHBwU3fGKAFoQcJwBlLSkrS7bffroULFzqXDRkyRLfccouGDBmi2bNnq7i4WLt379a7776rFStWNPgAPXDgQD311FPasmWLdu/erbVr12rq1KkaNGiQIiIiJP00D9J7772nb775RhUVFZKkBx98UBs2bNC9996r7du3a+fOnXrttdecg7Q7deqkkJAQLVq0SF999ZVef/31056285Rbb71VwcHBWrJkiaSfet/WrVunDRs26NNPP9Xdd9+t8vJyl3Xi4+Odz2lFRUWdPVgTJkxQYWGhHnroIX3xxRdaunSpFi9erIkTJzZLuwB/RkAC0CRmz57tcpC22WxasWKFFixYoLVr1+qXv/ylLrroIv3P//yP4uLi9P777zdouxkZGVq6dKl+/etf6+KLL9bYsWOVkZGhl156yeWxd+/erS5duqhDhw6Sfho39O677+qLL77QlVdeqcsuu0wzZsxQbGyspJ9O9+Xn52vlypXq3r275s6dq0cffbQJn5GGa9Wqle69917Nnz9fVVVVmjZtmi6//HJlZGRo4MCBio6OVmZmpss6EydOVHBwsLp3764OHTrUOT7p8ssv10svvaTly5erR48emjFjhmbPnl3nlXoAXNmMMcbblQAAAPAl9CABAABYEJAAeNXPL8O33v7xj394u3pu2bNnzynb4+5l+gC8h1NsALzqVD9a27FjR4WFhTVjbc7MiRMntHv37nrvj4+PV6tWXDwM+AMCEgAAgAWn2AAAACwISAAAABYEJAAAAAsCEgAAgAUBCQAAwIKABAAAYEFAAgAAsCAgAQAAWPx/bOuMD5Mg5IIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP/JJREFUeJzt3Xl4FFWi/vG3E8hCIGFJgAQCgbAvAoI4gLIoGpdRERUUVMBxu4KAjg6Lo2wqMNerzLgg+hsJo4hRBGGUQRBEBnCUxR1UDEEihCWiHSAhQHJ+f3DTlzZrJ71UdX8/z5PnIdXV1eek6K63z1YOY4wRAACABYUFugAAAADlIagAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAqLHp06fL4XBUaV+Hw6Hp06f7tDwDBw7UwIEDLXs8AFVHUAGCSHp6uhwOh+unVq1aatasmUaPHq39+/cHuniWk5KS4vb3aty4sS6++GItX77cK8fPz8/X9OnTtWHDBq8cDwhFBBUgCM2cOVOvvvqqXnzxRV155ZV67bXXNGDAAJ08edInr/fnP/9ZBQUFPjm2r3Xv3l2vvvqqXn31VT300EM6cOCAhg4dqhdffLHGx87Pz9eMGTMIKkAN1Ap0AQB435VXXqlevXpJku68807Fx8dr7ty5WrlypYYNG+b116tVq5Zq1bLnx0mzZs106623un6//fbb1aZNGz3zzDO69957A1gyABItKkBIuPjiiyVJmZmZbtu//fZb3XjjjWrYsKGioqLUq1cvrVy50m2f06dPa8aMGWrbtq2ioqLUqFEjXXTRRVq7dq1rn7LGqBQWFuqBBx5QQkKC6tWrp2uvvVY//fRTqbKNHj1aKSkppbaXdcyFCxfqkksuUePGjRUZGalOnTpp/vz5Hv0tKtO0aVN17NhRWVlZFe53+PBh/eEPf1CTJk0UFRWlbt26adGiRa7H9+7dq4SEBEnSjBkzXN1Lvh6fAwQbe34FAuCRvXv3SpIaNGjg2vbNN9+oX79+atasmSZPnqyYmBi9+eabGjJkiN5++21df/31ks4GhtmzZ+vOO+9U7969lZeXp23btmnHjh267LLLyn3NO++8U6+99ppGjBihvn37av369br66qtrVI/58+erc+fOuvbaa1WrVi3985//1H333afi4mKNHTu2Rscucfr0aWVnZ6tRo0bl7lNQUKCBAwfqhx9+0Lhx49SqVSu99dZbGj16tH799VdNmDBBCQkJmj9/vv7rv/5L119/vYYOHSpJOu+887xSTiBkGABBY+HChUaS+eCDD8yRI0dMdna2Wbp0qUlISDCRkZEmOzvbte+ll15qunbtak6ePOnaVlxcbPr27Wvatm3r2tatWzdz9dVXV/i606ZNM+d+nHz++edGkrnvvvvc9hsxYoSRZKZNm+baNmrUKNOyZctKj2mMMfn5+aX2S0tLM61bt3bbNmDAADNgwIAKy2yMMS1btjSXX365OXLkiDly5Ij54osvzM0332wkmfvvv7/c482bN89IMq+99ppr26lTp0yfPn1M3bp1TV5enjHGmCNHjpSqLwDP0PUDBKHBgwcrISFBycnJuvHGGxUTE6OVK1eqefPmkqSjR49q/fr1GjZsmI4dO6bc3Fzl5ubq559/Vlpamnbv3u2aJVS/fn1988032r17d5Vff9WqVZKk8ePHu22fOHFijeoVHR3t+rfT6VRubq4GDBigPXv2yOl0VuuYa9asUUJCghISEtStWze99dZbuu222zR37txyn7Nq1So1bdpUt9xyi2tb7dq1NX78eB0/flwfffRRtcoCoLSgCSobN27UNddco6SkJDkcDr3zzjs+fb3Zs2frggsuUL169dS4cWMNGTJE3333nevxo0eP6v7771f79u0VHR2tFi1aaPz48dX+MAU88fzzz2vt2rVaunSprrrqKuXm5ioyMtL1+A8//CBjjB599FHXRbrkZ9q0aZLOjsGQzs4g+vXXX9WuXTt17dpVDz/8sL788ssKX//HH39UWFiYUlNT3ba3b9++RvXavHmzBg8erJiYGNWvX18JCQmaOnWqJFX7vXXhhRdq7dq1+uCDD7Rlyxbl5ubqH//4h1so+q0ff/xRbdu2VViY+0dox44dXY8D8I6gGaNy4sQJdevWTXfccYerL9iXPvroI40dO1YXXHCBzpw5o6lTp+ryyy/Xzp07FRMTowMHDujAgQN66qmn1KlTJ/3444+69957deDAAS1dutTn5UNo6927t2vWz5AhQ3TRRRdpxIgR+u6771S3bl0VFxdLkh566CGlpaWVeYw2bdpIkvr376/MzEytWLFCa9as0f/7f/9PzzzzjF588UXdeeedNS5reQvFFRUVuf2emZmpSy+9VB06dNDTTz+t5ORkRUREaNWqVXrmmWdcdfJUfHy8Bg8eXK3nAvC9oAkqV155pa688spyHy8sLNQjjzyiJUuW6Ndff1WXLl00d+7caq82uXr1arff09PT1bhxY23fvl39+/dXly5d9Pbbb7seT01N1RNPPKFbb71VZ86cse1UTthPeHi4Zs+erUGDBum5557T5MmT1bp1a0lnuyuqcpFu2LChxowZozFjxuj48ePq37+/pk+fXm5QadmypYqLi5WZmenWinJuq2OJBg0a6Ndffy21/betEv/85z9VWFiolStXqkWLFq7tH374YaXl97aWLVvqyy+/VHFxsVuryrfffut6XCo/hAGouqDp+qnMuHHj9PHHH+uNN97Ql19+qZtuuklXXHGFR/3uFSlpdm7YsGGF+8TGxhJS4HcDBw5U7969NW/ePJ08eVKNGzfWwIEDtWDBAuXk5JTa/8iRI65///zzz26P1a1bV23atFFhYWG5r1fypeFvf/ub2/Z58+aV2jc1NVVOp9OtOyknJ6fU6rDh4eGSJGOMa5vT6dTChQvLLYevXHXVVTp48KAyMjJc286cOaNnn31WdevW1YABAyRJderUkaQygxiAqgmJK+a+ffu0cOFC7du3T0lJSZLONnmvXr1aCxcu1JNPPlmj4xcXF2vixInq16+funTpUuY+ubm5mjVrlu6+++4avRZQXQ8//LBuuukmpaen695779Xzzz+viy66SF27dtVdd92l1q1b69ChQ/r444/1008/6YsvvpAkderUSQMHDlTPnj3VsGFDbdu2TUuXLtW4cePKfa3u3bvrlltu0QsvvCCn06m+fftq3bp1+uGHH0rte/PNN2vSpEm6/vrrNX78eOXn52v+/Plq166dduzY4drv8ssvV0REhK655hrdc889On78uF5++WU1bty4zLDlS3fffbcWLFig0aNHa/v27UpJSdHSpUu1efNmzZs3T/Xq1ZN0dvBvp06dlJGRoXbt2qlhw4bq0qVLuZ8TAMoQ6GlHviDJLF++3PX7u+++aySZmJgYt59atWqZYcOGGWOM2bVrl5FU4c+kSZPKfL17773XtGzZ0m3q57mcTqfp3bu3ueKKK8ypU6e8Xl+gRMn05K1bt5Z6rKioyKSmpprU1FRz5swZY4wxmZmZ5vbbbzdNmzY1tWvXNs2aNTO///3vzdKlS13Pe/zxx03v3r1N/fr1TXR0tOnQoYN54okn3P4vlzWVuKCgwIwfP940atTIxMTEmGuuucZkZ2eXOV13zZo1pkuXLiYiIsK0b9/evPbaa2Uec+XKlea8884zUVFRJiUlxcydO9e88sorRpLJyspy7efJ9OTKpl6Xd7xDhw6ZMWPGmPj4eBMREWG6du1qFi5cWOq5W7ZsMT179jQRERFMVQaqwWHMOe2oQcLhcGj58uUaMmSIJCkjI0MjR47UN99842o+LlG3bl01bdpUp06d0p49eyo8bqNGjVwrTZYYN26cVqxYoY0bN6pVq1alnnPs2DGlpaWpTp06evfddxUVFVWzygEAEEJCouunR48eKioq0uHDh11Lif9WRESEOnToUOVjGmN0//33a/ny5dqwYUOZISUvL09paWmKjIzUypUrCSkAAHgoaILK8ePH3fq/s7Ky9Pnnn6thw4Zq166dRo4cqdtvv13/8z//ox49eujIkSNat26dzjvvvGot6z127Fi9/vrrWrFiherVq6eDBw9KkuLi4hQdHa28vDxdfvnlys/P12uvvaa8vDzl5eVJkhISEkq17AAAgNKCputnw4YNGjRoUKnto0aNUnp6uk6fPq3HH39c//jHP7R//37Fx8frd7/7nWbMmKGuXbt6/HrlTTtcuHChRo8eXW55pLMhqqybsAEAAHdBE1QAAEDwCZl1VAAAgP0QVAAAgGXZejBtcXGxDhw4oHr16rFUNQAANmGM0bFjx5SUlFTq5p6/ZeugcuDAASUnJwe6GAAAoBqys7PVvHnzCvexdVApWaY6OztbsbGxAS4NAACoiry8PCUnJ7uu4xWxdVAp6e6JjY0lqAAAYDNVGbbBYFoAAGBZBBUAAGBZBBUAAGBZth6jAgCAlRQXF+vUqVOBLkbA1a5d22v3tCOoAADgBadOnVJWVpaKi4sDXRRLqF+/vpo2bVrjdc4IKgAA1JAxRjk5OQoPD1dycnKli5gFM2OM8vPzdfjwYUlSYmJijY5HUAEAoIbOnDmj/Px8JSUlqU6dOoEuTsBFR0dLkg4fPqzGjRvXqBsodCMfAABeUlRUJEmKiIgIcEmsoySwnT59ukbHIagAAOAl3Hfu/3jrb0FQAQAAlkVQAQAAlkVQ8ZIcZ4G2ZOYqx1kQ6KIAAOCR7Oxs3XHHHUpKSlJERIRatmypCRMm6Oeff5Z0dpzJpEmT1LVrV8XExCgpKUm33367Dhw44POyEVS8IGPrPvWbs14jXv5E/easV8bWfYEuEgAAVbJnzx716tVLu3fv1pIlS/TDDz/oxRdf1Lp169SnTx8dPXpU+fn52rFjhx599FHt2LFDy5Yt03fffadrr73W5+VjenIN5TgLNGXZVyo2Z38vNtLUZV+rf7sEJcZFB7ZwAABUYuzYsYqIiNCaNWtc04pbtGihHj16KDU1VY888ojmz5+vtWvXuj3vueeeU+/evbVv3z61aNHCZ+WjRaWGsnJPuEJKiSJjtDc3PzAFAgDYmj+HEhw9elTvv/++7rvvPldIKdG0aVONHDlSGRkZMsaUeq7T6ZTD4VD9+vV9WkZaVGqoVXyMwhxyCyvhDodS4lnwBwDgmYyt+1yt9GEOafbQrhp+ge9aK3bv3i1jjDp27Fjm4x07dtQvv/yiI0eOqHHjxq7tJ0+e1KRJk3TLLbcoNjbWZ+WTaFGpscS4aM0e2lXh/ztfPNzh0JNDu9DtAwDwSHlDCfzRslJWi0l5Tp8+rWHDhskYo/nz5/uwVGfRouIFwy9oof7tErQ3N18p8XUIKQAAj1U0lMBX15U2bdrI4XBo165duv7660s9vmvXLjVo0EAJCQmS/i+k/Pjjj1q/fr3PW1MkWlS8JjEuWn1SGxFSAADVUjKU4Fy+HkrQqFEjXXbZZXrhhRdUUODecnPw4EEtXrxYw4cPl8PhcIWU3bt364MPPlCjRo18Vq5zEVQAALCAQA0leO6551RYWKi0tDRt3LhR2dnZWr16tS677DI1a9ZMTzzxhE6fPq0bb7xR27Zt0+LFi1VUVKSDBw/q4MGDOnXqlE/LR9cPAAAWEYihBG3bttW2bds0bdo0DRs2TEePHlXTpk01ZMgQTZs2TQ0bNtTevXu1cuVKSVL37t3dnv/hhx9q4MCBPisfQQUAAAtJjIv2+zCCli1bKj09vdzHU1JSPBpw6010/QAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAA4CWBGnBqRd76WxBUAACoofDwcEny+ZoidpKff/bmvLVr167RcZieDABADdWqVUt16tTRkSNHVLt2bYWFhW47gDFG+fn5Onz4sOrXr+8KcdVFUAEAoIYcDocSExOVlZWlH3/8MdDFsYT69euradOmNT4OQQUAAC+IiIhQ27Zt6f7R2e6emraklCCoAADgJWFhYYqKigp0MYJK6HaiAQAAyyOoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAywpoUCkqKtKjjz6qVq1aKTo6WqmpqZo1axY3dQIAAJICvODb3LlzNX/+fC1atEidO3fWtm3bNGbMGMXFxWn8+PGBLBoAALCAgAaVLVu26LrrrtPVV18tSUpJSdGSJUv06aefBrJYAADAIgLa9dO3b1+tW7dO33//vSTpiy++0KZNm3TllVeWuX9hYaHy8vLcfgAAQPAKaIvK5MmTlZeXpw4dOig8PFxFRUV64oknNHLkyDL3nz17tmbMmOHnUgIAgEAJaIvKm2++qcWLF+v111/Xjh07tGjRIj311FNatGhRmftPmTJFTqfT9ZOdne3nEgMAAH9ymABOsUlOTtbkyZM1duxY17bHH39cr732mr799ttKn5+Xl6e4uDg5nU7Fxsb6sqgAAMBLPLl+B7RFJT8/X2Fh7kUIDw9XcXFxgEoEAACsJKBjVK655ho98cQTatGihTp37qzPPvtMTz/9tO64445AFgsAAFhEQLt+jh07pkcffVTLly/X4cOHlZSUpFtuuUWPPfaYIiIiKn0+XT8AANiPJ9fvgAaVmiKoAABgP7YZowIAAFARggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAACEix1mgLZm5ynEWBLooVVYr0AUAAAC+l7F1n6Ys+0rFRgpzSLOHdtXwC1oEuliVokUFAIAgl+MscIUUSSo20tRlX9uiZYWgAgBAkMvKPeEKKSWKjNHe3PzAFMgDBBUAAIJcq/gYhTnct4U7HEqJrxOYAnkg4EFl//79uvXWW9WoUSNFR0era9eu2rZtW6CLBQBA0EiMi9bsoV0V7jibVsIdDj05tIsS46IDXLLKBXQw7S+//KJ+/fpp0KBB+te//qWEhATt3r1bDRo0CGSxAAAIOsMvaKH+7RK0NzdfKfF1bBFSpAAHlblz5yo5OVkLFy50bWvVqlUASwTAKnKcBcrKPaFW8TG2+UAFrC4xLtp276eAdv2sXLlSvXr10k033aTGjRurR48eevnllwNZJAAWkLF1n/rNWa8RL3+ifnPWK2PrvkAXCUCABDSo7NmzR/Pnz1fbtm31/vvv67/+6780fvx4LVq0qMz9CwsLlZeX5/YDILjYeRolAO8LaFApLi7W+eefryeffFI9evTQ3XffrbvuuksvvvhimfvPnj1bcXFxrp/k5GQ/lxiAr9l5GiUA7wtoUElMTFSnTp3ctnXs2FH79pXdzDtlyhQ5nU7XT3Z2tj+KCcCP7DyNEoD3BTSo9OvXT999953btu+//14tW7Ysc//IyEjFxsa6/QAILnaeRgnA+wI66+eBBx5Q37599eSTT2rYsGH69NNP9dJLL+mll14KZLEABJhdp1EC8D6HMcZUvpvvvPvuu5oyZYp2796tVq1a6cEHH9Rdd91Vpefm5eUpLi5OTqeT1hUAAGzCk+t3wINKTRBUAACwH0+u3wFfQh8AAFhTjrNAWzJzA7o8QEDHqAAAAGvK2LrPtaZRmEOaPbSrhl/Qwu/loEUFAAC4sdLCiwQVAADgxkoLLxJUAACAGystvEhQAQAAbqy08CKDaQEAQClWWXiRoAIAAMqUGBcd8JWh6foBAACWRVABAACWRVABAACWRVABAACWRVABAACWRVABAACWRVABAACWRVABAACWRVABAACWRVABAACWRVABAACWRVABAACWRVABAACWRVABAACWRVABAACWRVABAKCKcpwF2pKZqxxnQaCLEjJqBboAAADYQcbWfZqy7CsVGynMIc0e2lXDL2gR6GIFPVpUAACoRI6zwBVSJKnYSFOXfU3Lih8QVAAAqERW7glXSClRZIz25uYHpkAhhKACAEAlWsXHKMzhvi3c4VBKfJ3AFKia7DjGhqACAEAlEuOiNXtoV4U7zqaVcIdDTw7tosS46ACXrOoytu5TvznrNeLlT9RvznplbN0X6CJVicMYYyrfzZry8vIUFxcnp9Op2NjYQBcHABDkcpwF2pubr5T4OrYKKTnOAvWbs96t+yrc4dCmyYMCUg9Prt/M+vGSHGeBsnJPqFV8jK3+8wIAqi4xLtqWn/EVjbGxen0IKl7AlDUAgJWVjLH5bYuKHcbYMEalhpiyBgCwOjuPsaFFpYbs3JwGAAgdwy9oof7tEmw3xoagUkN2bk4DAIQWO46xoeunhuzcnAYAgNXRouIFdm1OAwDA6ggqXmLH5jQAAKyOrh8AAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAFCmHGeBtmTmBvS2MExPBgAApVjlhru0qAAAADdWuuEuQQUAALip6Ia7/kZQAQAAbkpuuHuuQN1wt1pB5aefftLx48dLbT99+rQ2btxY40IBAIDAsdINdz0aTJuTk6PrrrtO27dvl8Ph0IgRI/TCCy+obt26kqSjR49q0KBBKioq8klhAQCAf1jlhrsetahMnjxZYWFh+uSTT7R69Wrt3LlTgwYN0i+//OLaxxhTwREAAIBdJMZFq09qo4DedNejoPLBBx/ob3/7m3r16qXBgwdr8+bNSkxM1CWXXKKjR49KkhwORyVHAQAAqBqPgorT6VSDBg1cv0dGRmrZsmVKSUnRoEGDdPjwYa8XEAAAhC6Pgkrr1q315Zdfum2rVauW3nrrLbVu3Vq///3vvVq4QLLCanwAqo73LBCcPBpMe+WVV+qll17SDTfc4H6Q/w0rN9xwg3766SevFjAQrLIaH4Cq4T0LBC+H8WD065kzZ5Sfn6/Y2FhJUm5uriQpPj7e9fj+/fvVsmVLHxS1tLy8PMXFxcnpdLrKVFM5zgL1m7PebaGbcIdDmyYPCuhgIgBl4z0L2I8n12+Pun5q1aql4uJijR07VvHx8WrSpImaNGmi+Ph4jRs3TsePH/dbSPEVK63GB6ByvGeB4OZR18/Ro0fVp08f7d+/XyNHjlTHjh0lSTt37lR6errWrVunLVu2uA24tZuS1fh+++0sEKvxAagc71kguHnUojJz5kxFREQoMzNTCxYs0MSJEzVx4kS99NJL+uGHH1S7dm3NnDnTV2X1CyutxgegctV9zzL4FrAHj8aopKSkaMGCBUpLSyvz8dWrV+vee+/V3r17vVW+CvlijEqJHGdBwFfjA1B1nrxnGXwLBJYn12+Pl9Dv3LlzuY936dJFBw8e9OSQlpUYF01AAWykqu/Z8m5f379dQoXPz3EWKCv3hFrFx/DZAPiRR0ElPj5ee/fuVfPmzct8PCsrSw0bNvRKwQDAFyoafFteAKEFBggcj8aopKWl6ZFHHtGpU6dKPVZYWKhHH31UV1xxhdcKBwDe5unt68trgWFsC6wgFMZaedSiMnPmTPXq1Utt27bV2LFj1aFDBxljtGvXLr3wwgsqLCzUq6++6quyAkCNlQy+nbrsaxUZU+ng2+q0wAD+ECotfR4FlebNm+vjjz/WfffdpylTprjulOxwOHTZZZfpueeeU3Jysk8KanX0XwP24cnt65n+DCuq7lgrO/IoqEhSq1at9K9//Uu//PKLdu/eLUlq06ZNSI9NCZVUCwSTqg6+9bQFBvCHUGrp8ziolGjQoIF69+7tzbLYUiilWiBUedICA/hDKLX0eTSY1pfmzJkjh8OhiRMnBrooHmH5biA0JMZFq09qI0IKLCGUFietdouKN23dulULFizQeeedF+iieCyUUi0AwDpCpaUv4C0qx48f18iRI/Xyyy/b8h5BoZRqAQDWEgotfQFvURk7dqyuvvpqDR48WI8//niF+xYWFqqwsND1e15enq+LVyWhkmoBAPC3gAaVN954Qzt27NDWrVurtP/s2bM1Y8YMH5eqelhyHwAA7wtY1092drYmTJigxYsXKyoqqkrPmTJlipxOp+snOzvbx6UEAACB5NHdk73pnXfe0fXXX6/w8HDXtqKiIjkcDoWFhamwsNDtsbL48u7JAGBVLDAJu/PZ3ZO96dJLL9VXX33ltm3MmDHq0KGDJk2aVGlIAYBQxAKTCDUBCyr16tVTly5d3LbFxMSoUaNGpbYDAFhgEqEp4NOTAQBVwwKTCEUBn558rg0bNgS6CABgWSwwiVBEiwoA2AQLTCIUWapFBQBQMRaYRKghqACAzbDAJEIJXT8AAMCyCCoAAMCyCCoAAMCyCCoAAMCyCCoAqiXHWaAtmbnKcRYEuigAghizfgB4jPvNAPAXWlRgOXxTt7by7jfD+QLgC7SowFL4pm59Fd1vhrU9AHgbLSqwDL6p20PJ/WbOxf1mAPgKQQWWwZ1h7YH7zQDwJ7p+YBncGdY+uN8MAH+hRQWWwTd1e0mMi1af1EacHwA+RYsKLIVv6gCAcxFUYDncGRYAUIKuHwAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFSCIcd8kAHbHrB8gSGVs3afJb38lI8khac4N3DcJgP3QogIEoRxngSukSJKRNPntr2hZAWA7BBUgCG3be1S/uW2SjKTte38JRHEAoNoIKkAQcjgc5Wz3c0EAoIYIKkAQ6tmygX6bSRwO6fyWDQJSHgCoLoIKEIQS46I154auCvvftBLmkOYM7cqtCQDYDrN+gCDFDR4BBAOCCiwnx1mgrNwTahUfw8W1hrjBI6yI9zg8QVCBpWRs3acpy75SsTnbXTF7KGt/AMGE9zg8xRgVWEaOs8D1ASZJxUaauuxr1v4AggTvcVQHQQWWkZV7wvUBVqLIGO3NzQ9MgQB4Fe9xVAdBBZbRKj7GNUulRLjDoZT4OoEpEACv4j2O6iCowDIS46I1e2hXhf/vqmThDoeeHNqFwXZAkOA9jupwGGN+u9K2beTl5SkuLk5Op1OxsbGBLg68JMdZwJRaIIB8PSuH9zg8uX4z6weWw5RaIHD8MSuH9zg8QdcPAEASs3JgTQQVG8hxFmhLZi4fFgB8ilk5sCK6fiyOxZEA+EvJrJxzwwqzchBotKhYGM2wAPyJWTmwIlpULKyiZlg+OIDgYaV733AzS1gNQcXCaIYFgp8Vu3eZlQMroevHwmiGBYIb3btA5WhRsTiaYYHgRfcuUDmCig3QDAsEJ7p3gcrR9QMAAUL3LlA5WlQAIIDo3gUqRlABgACjexcoH10/AADAsggqNsC9fgAAoYquH4uz4mJQAAD4Cy0qFsZiUACAUEdQsTBuuR786NYDgIrR9WNhLAYV3KrTrWelm9cBgD/QomJhiXHRur5HM7dtQ3okcYEKAtXp1svYuk/95qzXiJc/Ub8565WxdZ+fSgt4Fy2J8ARBxcJynAVa/tl+t23vfHaAN3cQ8LRbj/FKCBYEbniKoGJh1R2jwrcV6yvp1jtXRd16jFdCMCBwozoIKhbm6cVM4tuKXXh6j5fq/F8ArIbAjeogqFiYpxczvq1UzkqtTcMvaKFNkwdpyV2/06bJgyocSMvN6xAMCNyoDmb9WJwnNyyr6NsKFzRrLp7nyT1euHkd7K4kcE9d9rWKjCFwo0oIKjZQ1YsZ05nLV15rU/92Cbb6kOTmdbA7Ajc8RddPEKF7oHz0jQPWkRgXrT6pjfhsQpXQohJk+LZSNn+1Ntl9QTa7lx9A8CGoBCG6B0rzR9+4FcfAeMJq5Sc0AZAkhzHGVL6bNeXl5SkuLk5Op1OxsbGBLg5sIMdZ4JPWphxngfrNWV+qxWbT5EG2uMharfxWC00AvMuT63dAx6jMnj1bF1xwgerVq6fGjRtryJAh+u677wJZJAQ5X/WN230MjJXKzzR7AOcKaFD56KOPNHbsWP3nP//R2rVrdfr0aV1++eU6ceJEIIsFeMzu60NYqfxWCk01YaU1ewA7C+gYldWrV7v9np6ersaNG2v79u3q379/gEoFeM7u60NYqfzBMM2eriv7YCyU9VlqMK3T6ZQkNWzYsMzHCwsLVVhY6Po9Ly/PL+UCqsLuM66sUn4rhabqCJY1e0IBgdIeLBNUiouLNXHiRPXr109dunQpc5/Zs2drxowZfi4ZUHV2n3FllfJbJTRVBytE2wOB0j4ss+Db2LFj9fXXX+uNN94od58pU6bI6XS6frKzs/1YQu+h7xqonF0XBbPSeB+UL1jGQoUCS7SojBs3Tu+++642btyo5s2bl7tfZGSkIiMj/Vgy76OpEVZGf33N2b3rKlQEw1ioUBHQdVSMMbr//vu1fPlybdiwQW3btvXo+XZbR8Vqa1UA5yJEe5ev1uyB92Rs3VcqUPJ/3j88uX4HtEVl7Nixev3117VixQrVq1dPBw8elCTFxcUpOjr43tj0XcOq6K/3PquM90H57DwWKpQENKjMnz9fkjRw4EC37QsXLtTo0aP9XyAfo6kRVkWIRqgiUFpfQIOKjVfvrxb6rmFVhGjAGhgnVpolBtOGEpoaYUWEaAQTu17sGSdWNm5KCMCFAaCwO7te7ENtsoVtbkoIwFrsunYJINn7hpb+WtfFjut40fUDAAgKdh4U7o9xYnZtbaJFBQAQFOy8KnDJOLFwx9kKeHucmJ1bm2hRAQAEBbsPCh9+QQt1aFpPW/f+ogtSGqhbcgOvHdvOrU0EFYQUu84GAFA1dp5Z6cuuGTsvQUDXD0JGxtZ96jdnvUa8/In6zVmvjK37Al0kW7PjoDyEBjsOCq9u10xV34e+7lryJVpUEBJYIt677DooryZojYMvVadrxtP3oV1bmwgqCAl27p+1muqGPjtf6EMxmFmJnf/vVJWnXTPVfR/a8ZYBdP0EIU+b5EOhCd/OswGspjrrPdi5283OsyWCgZ3/73jC064Zf627YgW0qAQZT7/5hco3RbvPBrASf33zswpa4wLH7v93POVJ14ydB8d6ihaVIOLpN79Q+6Y4/IIW2jR5kJbc9TttmjwoKAOZP4TaNz9a4wLH7v93qqOqA4HtPDjWU7SoBBFPv/kFwzdFT/uu7dg/a0Wh9M2P1rjAsfv/HV+z6+BYTxFUgoinb2q7fwiESreVVVU19AXDhT5ULghWEwz/d3wtFL58cffkIJOxdV+pN3VlY1Q82d8qQu1Oo8GAOzOjuvi/E3w8uX7TohIAvpxq5+k3P7t+U/RXt1UoTIv0l1D45gffMbLtd2rUEEHFz/zRXeHpBcGOFxDuNAqEBt6HYNaPH4XaLBtf4k6jQPDjfQiJFhW/CoZZNlbiy24rzhXgO1XtUuV9CImg4ld2n2VjRb7qtuJcAb7hSVcO70NIdP34VSgt0GN3nCvA+zztyuF9CIkWFb+z6yybUMS5shdmaFlfdbpyeB+CoBIAdpxlE6o4V/bAzJCK+TrEVfX41e3K4X0Y2ggqQBALhVaGULtxnad8HeI8OT4rzaI6CCpAkAqVVgZmhpTP1yGuOsenKweeYjAtUIEcZ4G2ZObabt2GUFp/grsbl8/Xdx+u7vGreodgQCKoAOXK2LpP/eas14iXP1G/OeuVsXVfoItUZb6+QFlJMMwM8VUg9nWIIyTCH+j6Acpg93EPobb+hJ27E3zZRefrMSGMOYE/EFSAMth93EMoXkDsODPEH4G4OiHOk0HYdg6JsAeCClCGYGiR4AJiff4KxJ6EuOq08NgxJMI+GKMClCEYxj1IDFq0OquN8QilQdiwD1pUYGu+XCeEFgn4mtW66Oze5YngRFCBbfljnRCatOFrVgrEwdDlieBD1w9siSZqBBOrdNEFS5cnggstKrAlmqiDXygs/29FVmrhASSCCvzAFxccmqiDW6gs/29VdHnCSuj6gU/5anVXmqiDF916AM5Fiwp8xteLWdFEHZzo1gNwLoIKfMYfFxxfN1HbfZyEHctPtx6AcxFU4DN2v+DYfZyEXctvtbVFAASWwxhjKt/NmvLy8hQXFyen06nY2NhAFwdlyNi6r9QFxw4XyxxngfrNWV8qZG2aPMgWF0y7l186Wwe69YDg5Mn1mxYV+JRdx5HYfZyE3csvMfMEwFkEFficHS84du+2snv5AaAE05OBMth9+rPdyw8AJRijAlTA7uMk7F5+AMGJMSqAl9ix2+pcdi8/AND1g5CS4yzQlsxcVjkFAJugRQUhw67rigBAKKNFBSHBX/ePocUGALyLFhWEBH+sK0KLDazKjrdSAEoQVBASfL2uiK9vwAhUFwEadkfXD0KCr9cVqajFBggUf3V5Ar5EiwpChi+X84+JCC9ze50IvgsgcILhVgoAQQUhxVfripw4VVTm9vxTxV5/LaCquJUCggFf9wAvKLkgnIsLAgKNWykgGNCiAnhByQVh6rKvVWQMFwRYhl3vYA6UIKgEIaYiBgYXBFgVt1IoH5+X1kdQCTKhNhXRah8yXBAA+wi1z0u7YoxKEAm1qYgZW/ep35z1GvHyJ+o3Z70ytu4LdJEA2ESofV7aGUEliITSWh7V/ZBhiXsAUmh9XtodXT9BJJSmIlZnfQiaeQGUCKXPS7ujRSWIhNJURE+nA9PMC+BcofR5aXe0qASZUJl54ul0YFboBHzHaoPaqypUPi/tjqAShDydeRIKHzI08wK+YfcuVWbqWR9dPyHOijNnPBnwmhgXrT6pjSr9oKGZF/A+f3WpWmkQvJXKEipoUQlh5X3I9G+XELALuC+/ndHMC3iXP7pUrdRiY6WyhBJLtKg8//zzSklJUVRUlC688EJ9+umngS5SSLDa9Dx/fDuragsMgMr5+h5XVhoEb6WyhJqAB5WMjAw9+OCDmjZtmnbs2KFu3bopLS1Nhw8fDnTRgp7VbqRnteAEoGK+7lK10meClcoSagIeVJ5++mndddddGjNmjDp16qQXX3xRderU0SuvvBLoogU9q43bsFpwAlC54Re00KbJg7Tkrt9p0+RBXu0KsdJngpXKEmoCGlROnTql7du3a/Dgwa5tYWFhGjx4sD7++ONS+xcWFiovL8/tBzXjyw8ZT1ktOAGoGl91qVrpM8FKZQk1AR1Mm5ubq6KiIjVp0sRte5MmTfTtt9+W2n/27NmaMWOGv4oXMqw0PY8BrwDOZaXPBCuVJZTYatbPlClT9OCDD7p+z8vLU3JycgBLBF+wUnACEHhW+kywUllCRUCDSnx8vMLDw3Xo0CG37YcOHVLTpk1L7R8ZGanIyEh/FQ8AAARYQMeoREREqGfPnlq3bp1rW3FxsdatW6c+ffoEsGQAAMAKAt718+CDD2rUqFHq1auXevfurXnz5unEiRMaM2ZMoIsGAAACLOBBZfjw4Tpy5Igee+wxHTx4UN27d9fq1atLDbAFAAChx2GMMZXvZk15eXmKi4uT0+lUbGxsoIsDAACqwJPrd8AXfAMAACgPQQUAAFgWQQUAAFgWQQUAAFgWQQUAAFgWQQUAAFhWwNdRqYmSmdXcRRkAAPsouW5XZYUUWweVY8eOSRI3JgQAwIaOHTumuLi4Cvex9YJvxcXFOnDggOrVqyeHw+HVY5fcmTk7OzsoF5OjfvYX7HUM9vpJwV9H6md/vqqjMUbHjh1TUlKSwsIqHoVi6xaVsLAwNW/e3KevERsbG7T/ASXqFwyCvY7BXj8p+OtI/ezPF3WsrCWlBINpAQCAZRFUAACAZRFUyhEZGalp06YpMjIy0EXxCepnf8Fex2CvnxT8daR+9meFOtp6MC0AAAhutKgAAADLIqgAAADLIqgAAADLIqgAAADLCpmg8vzzzyslJUVRUVG68MIL9emnn1a4/7x589S+fXtFR0crOTlZDzzwgE6ePFmjY/qat+s4ffp0ORwOt58OHTr4uhrl8qR+p0+f1syZM5WamqqoqCh169ZNq1evrtExfc3b9bPS+du4caOuueYaJSUlyeFw6J133qn0ORs2bND555+vyMhItWnTRunp6aX2sdL580Ud7XwOc3JyNGLECLVr105hYWGaOHFimfu99dZb6tChg6KiotS1a1etWrXK+4WvAl/ULz09vdT5i4qK8k0FqsDTOi5btkyXXXaZEhISFBsbqz59+uj9998vtZ/P34cmBLzxxhsmIiLCvPLKK+abb74xd911l6lfv745dOhQmfsvXrzYREZGmsWLF5usrCzz/vvvm8TERPPAAw9U+5i+5os6Tps2zXTu3Nnk5OS4fo4cOeKvKrnxtH5/+tOfTFJSknnvvfdMZmameeGFF0xUVJTZsWNHtY/pS76on5XO36pVq8wjjzxili1bZiSZ5cuXV7j/nj17TJ06dcyDDz5odu7caZ599lkTHh5uVq9e7drHSufPGN/U0c7nMCsry4wfP94sWrTIdO/e3UyYMKHUPps3bzbh4eHmL3/5i9m5c6f585//bGrXrm2++uor31SiAr6o38KFC01sbKzb+Tt48KBvKlAFntZxwoQJZu7cuebTTz8133//vZkyZYqpXbu23z9HQyKo9O7d24wdO9b1e1FRkUlKSjKzZ88uc/+xY8eaSy65xG3bgw8+aPr161ftY/qaL+o4bdo0061bN5+U11Oe1i8xMdE899xzbtuGDh1qRo4cWe1j+pIv6mel83euqnxA/ulPfzKdO3d22zZ8+HCTlpbm+t1K5++3vFVHO5/Dcw0YMKDMC/mwYcPM1Vdf7bbtwgsvNPfcc08NS1gz3qrfwoULTVxcnNfK5U2e1rFEp06dzIwZM1y/++N9GPRdP6dOndL27ds1ePBg17awsDANHjxYH3/8cZnP6du3r7Zv3+5qvtqzZ49WrVqlq666qtrH9CVf1LHE7t27lZSUpNatW2vkyJHat2+f7ypSjurUr7CwsFQTa3R0tDZt2lTtY/qKL+pXwgrnrzo+/vhjt7+HJKWlpbn+HlY6f9VVWR1L2PUcVkVV/wZ2dvz4cbVs2VLJycm67rrr9M033wS6SNVWXFysY8eOqWHDhpL89z4M+qCSm5uroqIiNWnSxG17kyZNdPDgwTKfM2LECM2cOVMXXXSRateurdTUVA0cOFBTp06t9jF9yRd1lKQLL7xQ6enpWr16tebPn6+srCxdfPHFOnbsmE/r81vVqV9aWpqefvpp7d69W8XFxVq7dq2WLVumnJycah/TV3xRP8k65686Dh48WObfIy8vTwUFBZY6f9VVWR0le5/Dqijvb2CXc1iZ9u3b65VXXtGKFSv02muvqbi4WH379tVPP/0U6KJVy1NPPaXjx49r2LBhkvz3ORr0QaU6NmzYoCeffFIvvPCCduzYoWXLlum9997TrFmzAl00r6lKHa+88krddNNNOu+885SWlqZVq1bp119/1ZtvvhnAklfNX//6V7Vt21YdOnRQRESExo0bpzFjxlR6O3G7qEr97Hz+cBbn0N769Omj22+/Xd27d9eAAQO0bNkyJSQkaMGCBYEumsdef/11zZgxQ2+++aYaN27s19eu5ddXC4D4+HiFh4fr0KFDbtsPHTqkpk2blvmcRx99VLfddpvuvPNOSVLXrl114sQJ3X333XrkkUeqdUxf8kUdy7qg169fX+3atdMPP/zg/UpUoDr1S0hI0DvvvKOTJ0/q559/VlJSkiZPnqzWrVtX+5i+4ov6lSVQ5686mjZtWubfIzY2VtHR0QoPD7fM+auuyupYFjudw6oo729gl3Poqdq1a6tHjx62O39vvPGG7rzzTr311ltu3Tz++hwNjq+XFYiIiFDPnj21bt0617bi4mKtW7dOffr0KfM5+fn5pS7U4eHhkiRjTLWO6Uu+qGNZjh8/rszMTCUmJnqp5FVTk793VFSUmjVrpjNnzujtt9/WddddV+Njepsv6leWQJ2/6ujTp4/b30OS1q5d6/p7WOn8VVdldSyLnc5hVVTnb2BnRUVF+uqrr2x1/pYsWaIxY8ZoyZIluvrqq90e89v70GvDci3sjTfeMJGRkSY9Pd3s3LnT3H333aZ+/fquaWK33XabmTx5smv/adOmmXr16pklS5aYPXv2mDVr1pjU1FQzbNiwKh/T33xRxz/+8Y9mw4YNJisry2zevNkMHjzYxMfHm8OHD1u+fv/5z3/M22+/bTIzM83GjRvNJZdcYlq1amV++eWXKh/Tn3xRPyudv2PHjpnPPvvMfPbZZ0aSefrpp81nn31mfvzxR2OMMZMnTza33Xaba/+SqbsPP/yw2bVrl3n++efLnJ5slfNnjG/qaOdzaIxx7d+zZ08zYsQI89lnn5lvvvnG9fjmzZtNrVq1zFNPPWV27dplpk2bFrDpyb6o34wZM8z7779vMjMzzfbt283NN99soqKi3PbxJ0/ruHjxYlOrVi3z/PPPu02x/vXXX137+ON9GBJBxRhjnn32WdOiRQsTERFhevfubf7zn/+4HhswYIAZNWqU6/fTp0+b6dOnm9TUVBMVFWWSk5PNfffd53YRqOyYgeDtOg4fPtwkJiaaiIgI06xZMzN8+HDzww8/+LFG7jyp34YNG0zHjh1NZGSkadSokbntttvM/v37PTqmv3m7flY6fx9++KGRVOqnpE6jRo0yAwYMKPWc7t27m4iICNO6dWuzcOHCUse10vnzRR3tfg7L2r9ly5Zu+7z55pumXbt2JiIiwnTu3Nm89957/qnQb/iifhMnTnT9/2zSpIm56qqr3NYg8TdP6zhgwIAK9y/h6/ehw5hy2vkBAAACLOjHqAAAAPsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqACAl23YsEEOh0O//vproIsC2B5BBbCx0aNHy+FwaM6cOW7b33nnHTkcDtfvxhi9/PLL6tOnj2JjY1W3bl117txZEyZMqPIN0vLz8zVlyhSlpqYqKipKCQkJGjBggFasWOHaJyUlRfPmzfNK3Xyt5G/ncDhUu3ZttWrVSn/605908uRJj44zcOBATZw40W1b3759lZOTo7i4OC+WGAhNBBXA5qKiojR37lz98ssvZT5ujNGIESM0fvx4XXXVVVqzZo127typv//974qKitLjjz9epde59957tWzZMj377LP69ttvtXr1at144436+eefvVkdv7riiiuUk5OjPXv26JlnntGCBQs0bdq0Gh83IiJCTZs2dQuLAKrJqwvyA/CrUaNGmd///vemQ4cO5uGHH3ZtX758uSl5ey9ZssRIMitWrCjzGMXFxVV6rbi4OJOenl7u42XdF6TEv//9b3PRRReZqKgo07x5c3P//feb48ePux7/xz/+YXr27Gnq1q1rmjRpYm655RZz6NAh1+Ml9yhZvXq16d69u4mKijKDBg0yhw4dMqtWrTIdOnQw9erVM7fccos5ceJEleozatQoc91117ltGzp0qOnRo4fr99zcXHPzzTebpKQkEx0dbbp06WJef/11t2P8ts5ZWVmu8p5776ylS5eaTp06mYiICNOyZUvz1FNPVamcQKijRQWwufDwcD355JN69tln9dNPP5V6fMmSJWrfvr2uvfbaMp9f1W/9TZs21apVq3Ts2LEyH1+2bJmaN2+umTNnKicnRzk5OZKkzMxMXXHFFbrhhhv05ZdfKiMjQ5s2bdK4ceNczz19+rRmzZqlL774Qu+884727t2r0aNHl3qN6dOn67nnntOWLVuUnZ2tYcOGad68eXr99df13nvvac2aNXr22WerVJ/f+vrrr7VlyxZFRES4tp08eVI9e/bUe++9p6+//lp33323brvtNn366aeSpL/+9a/q06eP7rrrLledk5OTSx17+/btGjZsmG6++WZ99dVXmj59uh599FGlp6dXq6xASAl0UgJQfee2Cvzud78zd9xxhzHGvUWlQ4cO5tprr3V73oQJE0xMTIyJiYkxzZo1q9JrffTRR6Z58+amdu3aplevXmbixIlm06ZNbvu0bNnSPPPMM27b/vCHP5i7777bbdu///1vExYWZgoKCsp8ra1btxpJ5tixY8aY/2tR+eCDD1z7zJ4920gymZmZrm333HOPSUtLq1J9Ro0aZcLDw01MTIyJjIw0kkxYWJhZunRphc+7+uqrzR//+EfX7wMGDDATJkxw2+e3LSojRowwl112mds+Dz/8sOnUqVOVygqEMlpUgCAxd+5cLVq0SLt27ap030ceeUSff/65HnvsMR0/frxKx+/fv7/27NmjdevW6cYbb9Q333yjiy++WLNmzarweV988YXS09NVt25d109aWpqKi4uVlZUl6WyLwzXXXKMWLVqoXr16GjBggCRp3759bsc677zzXP9u0qSJ6tSpo9atW7ttO3z4cJXqI0mDBg3S559/rk8++USjRo3SmDFjdMMNN7geLyoq0qxZs9S1a1c1bNhQdevW1fvvv1+qXJXZtWuX+vXr57atX79+2r17t4qKijw6FhBqCCpAkOjfv7/S0tI0ZcoUt+1t27bVd99957YtISFBbdq0UePGjT16jdq1a+viiy/WpEmTtGbNGs2cOVOzZs3SqVOnyn3O8ePHdc899+jzzz93/XzxxRfavXu3UlNTdeLECaWlpSk2NlaLFy/W1q1btXz5ckkqddzatWu7/l0yW+dcDodDxcXFVa5PTEyM2rRpo27duumVV17RJ598or///e+ux//7v/9bf/3rXzVp0iR9+OGH+vzzz5WWllZhfQF4V61AFwCA98yZM0fdu3dX+/btXdtuueUWjRgxQitWrNB1113n1dfr1KmTzpw5o5MnTyoiIkIRERGlWgjOP/987dy5U23atCnzGF999ZV+/vlnzZkzxzW+Y9u2bV4tZ1WEhYVp6tSpevDBBzVixAhFR0dr8+bNuu6663TrrbdKkoqLi/X999+rU6dOrueVVeff6tixozZv3uy2bfPmzWrXrp3Cw8O9XxkgiNCiAgSRrl27auTIkfrb3/7m2nbzzTfrxhtv1M0336yZM2fqk08+0d69e/XRRx8pIyOjyhfKgQMHasGCBdq+fbv27t2rVatWaerUqRo0aJBiY2MlnV1HZePGjdq/f79yc3MlSZMmTdKWLVs0btw4ff7559q9e7dWrFjhGkzbokULRURE6Nlnn9WePXu0cuXKSruTfOWmm25SeHi4nn/+eUlnW6PWrl2rLVu2aNeuXbrnnnt06NAht+ekpKS4/qa5ublltuj88Y9/1Lp16zRr1ix9//33WrRokZ577jk99NBDfqkXYGcEFSDIzJw50+1i6XA4lJGRoXnz5mnVqlW69NJL1b59e91xxx1KTk7Wpk2bqnTctLQ0LVq0SJdffrk6duyo+++/X2lpaXrzzTfdXnvv3r1KTU1VQkKCpLPjSj766CN9//33uvjii9WjRw899thjSkpKknS2Gyo9PV1vvfWWOnXqpDlz5uipp57y4l+k6mrVqqVx48bpL3/5i06cOKE///nPOv/885WWlqaBAweqadOmGjJkiNtzHnroIYWHh6tTp05KSEgoc/zK+eefrzfffFNvvPGGunTposcee0wzZ84sc2YTAHcOY4wJdCEAAADKQosKAACwLIIKAElymz78259///vfgS6eR/bt21dhfTydXgwgcOj6ASBJFd6csFmzZoqOjvZjaWrmzJkz2rt3b7mPp6SkqFYtJj0CdkBQAQAAlkXXDwAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsCyCCgAAsKz/D9YGNrJa/d7ZAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# visualize with IDAES surrogate plotting tools\n", "surrogate_scatter2D(\n", @@ -329,7 +1324,741 @@ "metadata": { "scrolled": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR8JJREFUeJzt3XucjfXe//H3mjEHM2YWMxhDwzBDyKEZImeJEFPuun/pQCi1dZsklbjLacuhRHJIJacOotDeOWw2Yhcp9jAVoWgUOc9kzSAzzLp+f7hnbcuY8zrMXPN6Ph7rYda1vutan+vas2e9+17f7/eyGIZhCAAAwCR8vF0AAACAKxFuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAMBLFi9eLIvFoiNHjni7FMBUCDeAie3atUuJiYm65ZZbFBwcrNq1a+uBBx7QTz/9lKtt586dZbFYZLFY5OPjo9DQUN18883q37+/Nm7cWKTPXb16tTp16qTq1asrKChI9erV0wMPPKD169e76tBymTx5sv72t7/l2v71119r/PjxOnfunNs++3rjx493nEuLxaKgoCA1btxYL7/8stLT013yGUuXLtXMmTNdsi/AbAg3gIm9+uqrWrlype688069+eabevLJJ/Xll18qPj5ee/fuzdX+pptu0gcffKD3339f06ZN0z333KOvv/5ad911l/r27avLly8X+Jmvv/667rnnHlksFo0ePVpvvPGG7r//fv38889atmyZOw5TUv7hZsKECR4NNznmzZunDz74QDNmzFDDhg01adIk9ejRQ664pR/hBshbBW8XAMB9RowYoaVLl8rf39+xrW/fvmratKmmTp2qDz/80Km91WpVv379nLZNnTpVw4YN01tvvaXo6Gi9+uqreX7elStXNHHiRHXr1k3//Oc/c71++vTpEh5R6XHx4kUFBQXl2+a///u/VbVqVUnSkCFDdP/992vVqlX65ptv1KZNG0+UCZRL9NwAJta2bVunYCNJ9evX1y233KL9+/cXah++vr6aNWuWGjdurDlz5shms+XZ9uzZs0pPT1e7du1u+Hr16tWdnl+6dEnjx49XgwYNFBgYqMjISN133306fPiwo83rr7+utm3bKjw8XBUrVlSLFi20YsUKp/1YLBZduHBBS5YscVwKGjhwoMaPH68XXnhBklS3bl3Ha9eOcfnwww/VokULVaxYUWFhYXrwwQd19OhRp/137txZTZo0UVJSkjp27KigoCD97//+b6HO37W6dOkiSUpJScm33VtvvaVbbrlFAQEBqlmzpoYOHerU89S5c2etXbtWv/76q+OYoqOji1wPYFb03ADljGEYOnXqlG655ZZCv8fX11cPPfSQxowZo23btqlXr143bFe9enVVrFhRq1ev1tNPP62wsLA895mdna3evXtr8+bNevDBB/XMM88oIyNDGzdu1N69exUTEyNJevPNN3XPPffokUceUVZWlpYtW6b/9//+n9asWeOo44MPPtDgwYPVqlUrPfnkk5KkmJgYBQcH66efftLHH3+sN954w9GLUq1aNUnSpEmTNGbMGD3wwAMaPHiwzpw5o9mzZ6tjx47as2ePKleu7Kg3NTVVPXv21IMPPqh+/fopIiKi0OcvR05oCw8Pz7PN+PHjNWHCBHXt2lVPPfWUDh48qHnz5mnXrl3avn27/Pz89NJLL8lms+nYsWN64403JEmVKlUqcj2AaRkAypUPPvjAkGQsWLDAaXunTp2MW265Jc/3ffbZZ4Yk480338x3/2PHjjUkGcHBwUbPnj2NSZMmGUlJSbnaLVy40JBkzJgxI9drdrvd8fPFixedXsvKyjKaNGlidOnSxWl7cHCwMWDAgFz7mjZtmiHJSElJcdp+5MgRw9fX15g0aZLT9h9++MGoUKGC0/ZOnToZkoy33347z+O+1rhx4wxJxsGDB40zZ84YKSkpxjvvvGMEBAQYERERxoULFwzDMIxFixY51Xb69GnD39/fuOuuu4zs7GzH/ubMmWNIMhYuXOjY1qtXL6NOnTqFqgcob7gsBZQjBw4c0NChQ9WmTRsNGDCgSO/N6RnIyMjIt92ECRO0dOlSxcXFacOGDXrppZfUokULxcfHO10KW7lypapWraqnn3461z4sFovj54oVKzp+/uOPP2Sz2dShQwft3r27SPVfb9WqVbLb7XrggQd09uxZx6NGjRqqX7++tmzZ4tQ+ICBAgwYNKtJn3HzzzapWrZrq1q2rv/zlL4qNjdXatWvzHKuzadMmZWVlafjw4fLx+c+f5yeeeEKhoaFau3Zt0Q8UKIe4LAWUEydPnlSvXr1ktVq1YsUK+fr6Fun958+flySFhIQU2Pahhx7SQw89pPT0dH377bdavHixli5dqoSEBO3du1eBgYE6fPiwbr75ZlWokP+foTVr1uiVV15RcnKyMjMzHduvDUDF8fPPP8swDNWvX/+Gr/v5+Tk9r1WrVq7xSwVZuXKlQkND5efnp5tuuslxqS0vv/76q6Sroeha/v7+qlevnuN1APkj3ADlgM1mU8+ePXXu3Dl99dVXqlmzZpH3kTN1PDY2ttDvCQ0NVbdu3dStWzf5+flpyZIl+vbbb9WpU6dCvf+rr77SPffco44dO+qtt95SZGSk/Pz8tGjRIi1durTIx3Atu90ui8Wif/zjHzcMetePYbm2B6mwOnbs6BjnA8BzCDeAyV26dEkJCQn66aeftGnTJjVu3LjI+8jOztbSpUsVFBSk9u3bF6uOli1basmSJTpx4oSkqwN+v/32W12+fDlXL0mOlStXKjAwUBs2bFBAQIBj+6JFi3K1zasnJ6/tMTExMgxDdevWVYMGDYp6OG5Rp04dSdLBgwdVr149x/asrCylpKSoa9eujm0l7bkCzIwxN4CJZWdnq2/fvtqxY4c+/fTTYq2tkp2drWHDhmn//v0aNmyYQkND82x78eJF7dix44av/eMf/5D0n0su999/v86ePas5c+bkamv83yJ3vr6+slgsys7Odrx25MiRGy7WFxwcfMOF+oKDgyUp12v33XeffH19NWHChFyL6hmGodTU1BsfpBt17dpV/v7+mjVrllNNCxYskM1mc5qlFhwcnO+0fKA8o+cGMLHnnntOn3/+uRISEpSWlpZr0b7rF+yz2WyONhcvXtShQ4e0atUqHT58WA8++KAmTpyY7+ddvHhRbdu21e23364ePXooKipK586d09/+9jd99dVX6tOnj+Li4iRJjz76qN5//32NGDFCO3fuVIcOHXThwgVt2rRJ//M//6N7771XvXr10owZM9SjRw89/PDDOn36tObOnavY2Fh9//33Tp/dokULbdq0STNmzFDNmjVVt25dtW7dWi1atJAkvfTSS3rwwQfl5+enhIQExcTE6JVXXtHo0aN15MgR9enTRyEhIUpJSdFnn32mJ598Us8//3yJzn9RVatWTaNHj9aECRPUo0cP3XPPPTp48KDeeust3XbbbU7/e7Vo0ULLly/XiBEjdNttt6lSpUpKSEjwaL1AqeXNqVoA3CtnCnNej/zaVqpUyahfv77Rr18/45///GehPu/y5cvG/PnzjT59+hh16tQxAgICjKCgICMuLs6YNm2akZmZ6dT+4sWLxksvvWTUrVvX8PPzM2rUqGH893//t3H48GFHmwULFhj169c3AgICjIYNGxqLFi1yTLW+1oEDB4yOHTsaFStWNCQ5TQufOHGiUatWLcPHxyfXtPCVK1ca7du3N4KDg43g4GCjYcOGxtChQ42DBw86nZv8pslfL6e+M2fO5Nvu+qngOebMmWM0bNjQ8PPzMyIiIoynnnrK+OOPP5zanD9/3nj44YeNypUrG5KYFg5cw2IYLrjJCQAAQCnBmBsAAGAqhBsAAGAqhBsAAGAqhBsAAGAqhBsAAGAqhBsAAGAq5W4RP7vdruPHjyskJITlywEAKCMMw1BGRoZq1qwpH5/8+2bKXbg5fvy4oqKivF0GAAAohqNHj+qmm27Kt025CzchISGSrp6c/O6RAwAASo/09HRFRUU5vsfzU+7CTc6lqNDQUMINAABlTGGGlDCgGAAAmArhBgAAmArhBgAAmEq5G3MDAEBxZWdn6/Lly94uw7T8/f0LnOZdGIQbAAAKYBiGTp48qXPnznm7FFPz8fFR3bp15e/vX6L9EG4AAChATrCpXr26goKCWATWDXIW2T1x4oRq165donPs1XDz5Zdfatq0aUpKStKJEyf02WefqU+fPnm2X7VqlebNm6fk5GRlZmbqlltu0fjx49W9e3fPFQ0AKFeys7MdwSY8PNzb5ZhatWrVdPz4cV25ckV+fn7F3o9XBxRfuHBBzZs319y5cwvV/ssvv1S3bt20bt06JSUl6Y477lBCQoL27Nnj5koBAOVVzhiboKAgL1difjmXo7Kzs0u0H6/23PTs2VM9e/YsdPuZM2c6PZ88ebL+/ve/a/Xq1YqLi3NxdQAA/AeXotzPVee4TI+5sdvtysjIUFhYWJ5tMjMzlZmZ6Xienp7uidJKrdTUVGVlZeX5ur+/P92uAIAyrUyHm9dff13nz5/XAw88kGebKVOmaMKECR6sqvRKTU3VnDlzCmyXmJhIwAEAlFlldhG/pUuXasKECfrkk09UvXr1PNuNHj1aNpvN8Th69KgHqyxd8uuxKU47AEDpNnDgQFksFlksFvn5+SkiIkLdunXTwoULZbfbC72fxYsXq3Llyu4r1MXKZM/NsmXLNHjwYH366afq2rVrvm0DAgIUEBDgocrKFpstRGlp4QoLS5XVmuHtcgDAlLw9HKBHjx5atGiRsrOzderUKa1fv17PPPOMVqxYoc8//1wVKpTJKJCvMndEH3/8sR577DEtW7ZMvXr18nY5Zdbu3XFavbq3DMNHFotdCQlrFB/PrDMAcKXSMBwgICBANWrUkCTVqlVL8fHxuv3223XnnXdq8eLFGjx4sGbMmKFFixbpl19+UVhYmBISEvTaa6+pUqVK2rp1qwYNGiTpPwN+x40bp/Hjx+uDDz7Qm2++qYMHDyo4OFhdunTRzJkz872i4glevSx1/vx5JScnKzk5WZKUkpKi5ORk/fbbb5KuXlJ69NFHHe2XLl2qRx99VNOnT1fr1q118uRJnTx5UjabzRvll1k2W4gj2EiSYfho9erestlCvFwZAJhLaR0O0KVLFzVv3lyrVq2SdHVl4FmzZmnfvn1asmSJvvjiC40cOVKS1LZtW82cOVOhoaE6ceKETpw4oeeff17S1WnyEydO1Hfffae//e1vOnLkiAYOHOjRY7kRr/bc/Pvf/9Ydd9zheD5ixAhJ0oABA7R48WKdOHHCEXQk6d1339WVK1c0dOhQDR061LE9pz0KJy0t3BFschiGj9LSwrg8BQDlRMOGDfX9999LkoYPH+7YHh0drVdeeUVDhgzRW2+9JX9/f1mtVlksFkcPUI7HHnvM8XO9evU0a9Ys3XbbbTp//rwqVarkkeO4Ea+Gm86dO8swjDxfvz6wbN261b0FlRNhYamyWOxOAcdisSssLM2LVQEAPMkwDMdlpk2bNmnKlCk6cOCA0tPTdeXKFV26dEkXL17Md/HCpKQkjR8/Xt99953++OMPxyDl3377TY0bN/bIcdxImZ0theKzWjOUkLBGFsvVX8KcMTf02gBA+bF//37VrVtXR44cUe/evdWsWTOtXLlSSUlJjjsH5He57MKFC+revbtCQ0P10UcfadeuXfrss88KfJ8nlLkBxSi+a++yGh+/RzExh5SWFqawsDSnYFPSu7ECAEq3L774Qj/88IOeffZZJSUlyW63a/r06fLxudrn8cknnzi19/f3z3VLhAMHDig1NVVTp05VVFSUpKvDTUoDwk05Eh4ersTERFYoBoByJDMzUydPnnSaCj5lyhT17t1bjz76qPbu3avLly9r9uzZSkhI0Pbt2/X222877SM6Olrnz5/X5s2b1bx5cwUFBal27dry9/fX7NmzNWTIEO3du1cTJ0700lE647JUORMeHq7IyMg8HwQbADCX9evXKzIyUtHR0erRo4e2bNmiWbNm6e9//7t8fX3VvHlzzZgxQ6+++qqaNGmijz76SFOmTHHaR9u2bTVkyBD17dtX1apV02uvvaZq1app8eLF+vTTT9W4cWNNnTpVr7/+upeO0pnFyG9Erwmlp6fLarXKZrMpNDTU2+UAAEq5S5cuKSUlRXXr1lVgYGCR3lsa1rkpS/I710X5/uayFAAAbsJwAO8g3AAA4EYEF89jzA0AADAVwg0AADAVLkvBJbx911sAAHIQblBizAYAAJQmXJZCiV3fY2OzhSglJTrXXca9vRw3AKB8oOcGLrV7d5xWr+4tw/Bx3LMqPn6Pt8sCAJQj9NzAZWy2EEewkSTD8NHq1b1z9eAAAOBOhBu4TFpauCPY5DAMH6WlhXmpIgCAO23dulUWi0Xnzp0r9Huio6M1c+ZMt9UkEW7gQmFhqbJY7E7bLBa7wsLSvFQRAJRvAwcOlMVi0ZAhQ3K9NnToUFksFg0cONDzhbkZ4QYuY7VmKCFhjSPg5Iy5sVozvFwZAJRfUVFRWrZsmf7880/HtkuXLmnp0qWqXbu2FytzH8INXCo+fo+GD5+pAQMWa/jwmQwmBgAvi4+PV1RUlFatWuXYtmrVKtWuXVtxcXGObZmZmRo2bJiqV6+uwMBAtW/fXrt27XLa17p169SgQQNVrFhRd9xxh44cOZLr87Zt26YOHTqoYsWKioqK0rBhw3ThwgW3Hd+NEG5QYv7+/k7PrdYM1a37a64em+vbAUB5c+yYtGXL1X896bHHHtOiRYsczxcuXKhBgwY5tRk5cqRWrlypJUuWaPfu3YqNjVX37t2VlnZ1aMHRo0d13333KSEhQcnJyRo8eLBGjRrltI/Dhw+rR48euv/++/X9999r+fLl2rZtmxITE91/kNdgKjhKjLveAkDBFiyQnnxSstslHx/p3Xelxx/3zGf369dPo0eP1q+//ipJ2r59u5YtW6atW7dKki5cuKB58+Zp8eLF6tmzpyRp/vz52rhxoxYsWKAXXnhB8+bNU0xMjKZPny5Juvnmm/XDDz/o1VdfdXzOlClT9Mgjj2j48OGSpPr162vWrFnq1KmT5s2bp8DAQI8cL+EGLkFwAYC8HTv2n2AjXf33L3+RuneXbrrJ/Z9frVo19erVS4sXL5ZhGOrVq5eqVq3qeP3w4cO6fPmy2rVr59jm5+enVq1aaf/+/ZKk/fv3q3Xr1k77bdOmjdPz7777Tt9//70++ugjxzbDMGS325WSkqJGjRq54/ByIdwAAOBmP//8n2CTIztbOnTIM+FGunppKufy0Ny5c93yGefPn9df/vIXDRs2LNdrnhy8TLgBAMDN6te/einq2oDj6yvFxnquhh49eigrK0sWi0Xdu3d3ei0mJkb+/v7avn276tSpI0m6fPmydu3a5bjE1KhRI33++edO7/vmm2+cnsfHx+vHH39UrCcP7AYYUAwAgJvddNPVMTa+vlef+/pK77zjuV6bq5/pq/379+vHH3+Ub04h/yc4OFhPPfWUXnjhBa1fv14//vijnnjiCV28eFGP/9/AoCFDhujnn3/WCy+8oIMHD2rp0qVavHix035efPFFff3110pMTFRycrJ+/vln/f3vf2dAMQAAZvT441fH2Bw6dLXHxpPBJkdoaGier02dOlV2u139+/dXRkaGWrZsqQ0bNqhKlSqSrl5WWrlypZ599lnNnj1brVq10uTJk/XYY4859tGsWTP961//0ksvvaQOHTrIMAzFxMSob9++bj+2a1kMwzA8+olelp6eLqvVKpvNlu//yAAASFcXvEtJSVHdunU9NtunvMrvXBfl+5vLUgAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAFEI5m3/jFa46x4QbAADy4efnJ0m6ePGilysxv5x7FF6/Dk9Rsc4NAAD58PX1VeXKlXX69GlJUlBQkCwWi5erMh+73a4zZ84oKChIFSqULJ4QbgAAKECNGjUkyRFw4B4+Pj6qXbt2icMj4QYAgAJYLBZFRkaqevXqunz5srfLMS1/f3/5+JR8xAzhBgCAQvL19S3xeBC4HwOKAQCAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBugAIcOyZt2XL1XwBA6Ue4AfKxYIFUp47UpcvVfxcs8HZFAICCEG6APBw7Jj35pGS3X31ut0t/+Qs9OABQ2hFugBtITU3VN9+kOoJNjuxs6dtvU5WamuqdwgAABarg7QLKutTUVGVlZeX5ur+/v8LDwz1YEUoqNTVVc+bMkc0WIotluAzjP/8NYLHYtX37Eu3dm6HExET+twWAUohwUwI5X4IF4UuwbMkJq1ZrhhIS1mj16t4yDB9ZLHYlJKyR1Zrh1A4AULoQbkqgsF9ufAmWXfHxexQTc0hpaWEKC0tzBBsAQOlFuAEKYLVmEGoAoAxhQLEL2WwhSkmJls0W4u1SAAAot+i5cZHdu+Nyjc2Ij9/j7bIAACh36LlxAZstxBFsJMkwfLR6dW96cAAA8ALCjQukpYU7TReWrgactLQwL1UEAED5RbhxgbCwVFkszqu9WSx2hYWleakilIS/v79L2wEAPIsxNyWQ8+VW0HoofAmWLeHh4UpMTGRxRgAooyyGYRjeLsKT0tPTZbVaZbPZFBoaWuL9XbtC8fHjPjpypIKio6+oZs2rPTl8CQIAUHJF+f6m56aErg0ukZFSixZeLAYAADDmBgAAmItXw82XX36phIQE1axZUxaLRX/7298KfM/WrVsVHx+vgIAAxcbGavHixW6vEwAAlB1eDTcXLlxQ8+bNNXfu3EK1T0lJUa9evXTHHXcoOTlZw4cP1+DBg7VhwwY3VwoAAMoKr4656dmzp3r27Fno9m+//bbq1q2r6dOnS5IaNWqkbdu26Y033lD37t3dVSYAAChDytSYmx07dqhr165O27p3764dO3Z4qSIAAFDalKnZUidPnlRERITTtoiICKWnp+vPP/9UxYoVc70nMzNTmZmZjufp6elurxMAAHhPmeq5KY4pU6bIarU6HlFRUd4uCQAAuFGZCjc1atTQqVOnnLadOnVKoaGhN+y1kaTRo0fLZrM5HkePHvVEqQAAwEvK1GWpNm3aaN26dU7bNm7cqDZt2uT5noCAAAUEBLi7NAAAUEp4tefm/PnzSk5OVnJysqSrU72Tk5P122+/Sbra6/Loo4862g8ZMkS//PKLRo4cqQMHDuitt97SJ598omeffdYb5QMAgFLIq+Hm3//+t+Li4hQXFydJGjFihOLi4jR27FhJ0okTJxxBR5Lq1q2rtWvXauPGjWrevLmmT5+u9957j2ngAADAgRtnAgCAUq8o399lakAxAABAQQg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVCoU5021a9dW586d1alTJ3Xu3FkxMTGurgsAAKBYitVzM3nyZAUGBurVV19V/fr1FRUVpX79+mn+/Pn6+eefXV0jAABAoVkMwzBKsoMTJ07oX//6l9asWaPly5fLbrcrOzvbVfW5XHp6uqxWq2w2m0JDQ71dDgAAKISifH8X67KUJF28eFHbtm3T1q1btWXLFu3Zs0dNmjRR586di7tLAACAEitWuGnbtq327NmjRo0aqXPnzho1apQ6duyoKlWquLo+AACAIinWmJsDBw4oODhYDRs2VMOGDdWoUSOCDQAAKBWKFW5SU1P1xRdf6Pbbb9eGDRvUrl071apVSw8//LDmz5/v6hoBAAAKrcQDig3DUFJSkubMmaOPPvqIAcUAAMDl3D6gePfu3dq6dau2bt2qbdu2KSMjQ02bNtXTTz+tTp06FatoAAAAVyhWuGnVqpXi4uLUqVMnPfHEE+rYsaOsVqurawMAACiyYoWbtLQ0LukAAIBSqVjhJifYJCUlaf/+/ZKkxo0bKz4+3nWVAQAAFEOxws3p06fVt29f/etf/1LlypUlSefOndMdd9yhZcuWqVq1aq6sEQAAoNCKNRX86aef1vnz57Vv3z6lpaUpLS1Ne/fuVXp6uoYNG+bqGgEAAAqtWFPBrVarNm3apNtuu81p+86dO3XXXXfp3LlzrqrP5ZgKDgBA2VOU7+9i9dzY7Xb5+fnl2u7n5ye73V6cXQIAALhEscJNly5d9Mwzz+j48eOObb///rueffZZ3XnnnS4rDgAAoKiKFW7mzJmj9PR0RUdHKyYmRjExMapbt67S09M1e/ZsV9cIAABQaMWaLRUVFaXdu3dr06ZNOnDggCSpUaNG6tq1q0uLAwAAKKoS31uqrGFAMQAAZY9b7i01a9asQhfAdHAAAOAthe65qVu3buF2aLHol19+KVFR7kTPDQAAZY9bpoKnpKQU6lGcYDN37lxFR0crMDBQrVu31s6dO/NtP3PmTN18882qWLGioqKi9Oyzz+rSpUtF/lwAAGA+RZot5Y41bJYvX64RI0Zo3Lhx2r17t5o3b67u3bvr9OnTN2y/dOlSjRo1SuPGjdP+/fu1YMECLV++XP/7v//r8toAuM6xY9KWLVf/BQB3KlK48fPzcwodL7zwgtLS0kpUwIwZM/TEE09o0KBBaty4sd5++20FBQVp4cKFN2z/9ddfq127dnr44YcVHR2tu+66Sw899FCBvT0AvGfBAqlOHalLl6v/Lljg7YoAmFmRws31w3PeeeedEt1qISsrS0lJSU5TyH18fNS1a1ft2LHjhu9p27atkpKSHGHml19+0bp163T33XffsH1mZqbS09OdHgA859gx6cknpZyOX7td+stf6MEB4D7FWucmR0lnkZ89e1bZ2dmKiIhw2h4REeFYP+d6Dz/8sM6ePav27dvLMAxduXJFQ4YMyfOy1JQpUzRhwoQS1QmgeFJTU/XNN5LdHu60PTtb+vbbVFWsKIWHh+fxbgAonmKtUOxNW7du1eTJk/XWW29p9+7dWrVqldauXauJEyfesP3o0aNls9kcj6NHj3q4YqB8Sk1N1Zw5c/T110tksTiP17NY7Nq+fYnmzJmj1NTUEn0OY3kAXK/IPTdjx45VUFCQpKuXlSZNmiSr1erUZsaMGYXaV9WqVeXr66tTp045bT916pRq1Khxw/eMGTNG/fv31+DBgyVJTZs21YULF/Tkk0/qpZdeko+Pc14LCAhQQEBAoeoB4DpZWVmSJKs1QwkJa7R6dW8Zho8sFrsSEtbIas1walccCxb855KXj4/07rvS44+7pHwAZViRwk3Hjh118OBBx/O2bdvmmvptsVgKvT9/f3+1aNFCmzdvVp8+fSRdnZG1efNmJSYm3vA9Fy9ezBVgfH19JZX8MhkA94iP36OYmENKSwtTWFiaI9iURF5jebp3l266qcS7B1CGFSncbN261eUFjBgxQgMGDFDLli3VqlUrzZw5UxcuXNCgQYMkSY8++qhq1aqlKVOmSJISEhI0Y8YMxcXFqXXr1jp06JDGjBmjhIQER8gBUPpYrRkuCTUSY3kA5K9EA4oLEhoaquTkZNWrVy/PNn379tWZM2c0duxYnTx5UrfeeqvWr1/vGGT822+/OfXUvPzyy7JYLHr55Zf1+++/q1q1akpISNCkSZPceSgASomcsTw2W4gsluEyjP/8fcgZy7N3b4YSExMJOEA55dZwU9jLRImJiXlehrq+t6hChQoaN26cxo0bV9LyAJRBnhjLA6Bsc2u4AQB3io/fo+rVT+ro0dqKivpNN910wtslASgFCDcAyqzdu+Ny9dzEx+/xdlkAvKzMrXMDoGzw9/d3abvr2WwhjmAjSYbho9Wre8tmCynW/gCYh1t7booyLRyAuYSHhysxMTHfsS/+/v7FHvSblhbuNJhYuhpw0tLCXDYrC0DZVCoGFAMwJ3fMVsq5n11YWKosFnuu2VJhYWmOdpGRkS7/fACln1svS/3jH/9QrVq13PkRAMqZK1euSPrPbKmcWztcP1sqpx2A8qdYPTeGYWjFihXasmWLTp8+Lbvd+b4xq1atkiS1b9++5BUCwDX8/PwcP+e38vG17QCUL8UKN8OHD9c777yjO+64QxEREYytAeA2x45JP/8s1a9/9bYK19/LLq+Vj69vB6D8KFa4+eCDD7Rq1Srdfffdrq4HABxudGNM/uwAKEixxtxYrdZ8b6kAACWRmpqqpKRTevJJ47obYxrau/ecV2sDUPoVK9yMHz9eEyZM0J9//unqegCUczn3jpo9e73sdudL3tnZFn300bdeqgxAWVGsy1IPPPCAPv74Y1WvXl3R0dG5Bu7t3r3bJcUBKH9y1sUpaKo3AOSlWOFmwIABSkpKUr9+/RhQDMAtCroxZkGKu/IxgLKvWOFm7dq12rBhA1O9AbhVflO977vvPlWtWvWG7yvJyscAyr5ihZuoqCiFhoa6uhYAyCWvqd5Vq1ZlBWIAN1SsAcXTp0/XyJEjdeTIEReXAwAAUDLF6rnp16+fLl68qJiYGAUFBeUaUJyWxoA/AADgHcUKNzNnznRxGQAAAK5R7NlSAOAOhZ3lxGwoAHkpVri51qVLlxzrUuRgsDGA4goPD1diYmKuvyvXYjYUgPwUK9xcuHBBL774oj755BOlpqbmej07O7vEhQEovwguAEqiWLOlRo4cqS+++ELz5s1TQECA3nvvPU2YMEE1a9bU+++/7+oaAQAACq1YPTerV6/W+++/r86dO2vQoEHq0KGDYmNjVadOHX300Ud65JFHXF0nAABAoRSr5yYtLc1xV/DQ0FDH1O/27dvryy+/dF11AAAARVSscFOvXj2lpKRIkho2bKhPPvlE0tUencqVK7usOAAAgKIqVrgZNGiQvvvuO0nSqFGjNHfuXAUGBurZZ5/VCy+84NICAQAAisJiGIZR0p38+uuvSkpKUmxsrJo1a+aKutwmPT1dVqtVNpuNKesAAJQRRfn+dsk6N3Xq1FGdOnVKuisAAIASK9ZlqezsbE2cOFG1atVSpUqV9Msvv0iSxowZowULFri0QAAAgKIoVriZNGmSFi9erNdee81pCfQmTZrovffec1lxAHDsmLRly9V/AaAwihVu3n//fb377rt65JFH5Ovr69jevHlzHThwwGXFASifUlNTdeLECU2ffk516hjq0kWqU8fQ9OnndOLEiRuujA4AOYo15ub3339XbGxsru12u12XL18ucVEAyq/U1FTNmTNHNluIZs4cLsOwSJLsdoteeCFUv/++UFZrhhITE7lNA4AbKlbPTePGjfXVV1/l2r5ixQrFxcWVuCgA5VfODTPT0sJlGM5/ogzDR2lpYU7tAOB6xeq5GTt2rAYMGKDff/9ddrtdq1at0sGDB/X+++9rzZo1rq4RQDkUFpYqi8XuFHAsFrvCwtK8WBWAsqBYPTf33nuvVq9erU2bNik4OFhjx47V/v37tXr1anXr1s3VNQIoh6zWDCUkrJHFYpd0NdgkJKyR1Zrh5coAlHbFXuemQ4cO2rhxoytrAQAn8fF7FBNzSGlpYQoLSyPYACiUYt9b6kazFc6dO+e4oSYAuILVmqG6dX8l2AAotGKFmyNHjig7OzvX9szMTP3+++8lLgoAAKC4inRZ6vPPP3f8vGHDBlmtVsfz7Oxsbd68WdHR0S4rDgAAoKiKFG769OkjSbJYLBowYIDTa35+foqOjtb06dNdVhyA8ufaVc9d0Q5A+VOkcGO3X521ULduXe3atUtVq1Z1S1EAyq/w8HAlJibmu46Nv78/C/gByFORws2OHTuUmpqqlJQUx7b3339f48aN04ULF9SnTx/Nnj1bAQEBLi8UQPlBcAFQEkUaUDxhwgTt27fP8fyHH37Q448/rq5du2rUqFFavXq1pkyZ4vIiAQAACqtI4ea7777TnXfe6Xi+bNkytW7dWvPnz9eIESM0a9YsffLJJy4vEgAAoLCKFG7++OMPRUREOJ7/61//Us+ePR3Pb7vtNh09etR11QEAABRRkcJNRESEY7xNVlaWdu/erdtvv93xekZGhvz8/FxbIQAAQBEUKdzcfffdGjVqlL766iuNHj1aQUFB6tChg+P177//XjExMS4vEgAAoLCKNFtq4sSJuu+++9SpUydVqlRJS5YscVprYuHChbrrrrtcXiQAAEBhWQzDMIr6JpvNpkqVKsnX19dpe1pamipVqlSqF9dKT0+X1WqVzWZTaGiot8sBAACFUJTv72LdFfza2y5cKywsrDi7AwAAcJli3TgTAACgtCLcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUykV4Wbu3LmKjo5WYGCgWrdurZ07d+bb/ty5cxo6dKgiIyMVEBCgBg0aaN26dR6qFgAAlGYVvF3A8uXLNWLECL399ttq3bq1Zs6cqe7du+vgwYOqXr16rvZZWVnq1q2bqlevrhUrVqhWrVr69ddfVblyZc8XDwAASh2LYRiGNwto3bq1brvtNs2ZM0eSZLfbFRUVpaefflqjRo3K1f7tt9/WtGnTdODAAfn5+RX589LT02W1WmWz2RQaGlri+gEAgPsV5fvbq5elsrKylJSUpK5duzq2+fj4qGvXrtqxY8cN3/P555+rTZs2Gjp0qCIiItSkSRNNnjxZ2dnZN2yfmZmp9PR0pwcAADAvr4abs2fPKjs7WxEREU7bIyIidPLkyRu+55dfftGKFSuUnZ2tdevWacyYMZo+fbpeeeWVG7afMmWKrFar4xEVFeXy4wAAAKWH18fcFJXdblf16tX17rvvytfXVy1atNDvv/+uadOmady4cbnajx49WiNGjHA8T09PJ+AAKDVSU1OVlZWV5+v+/v4KDw/3YEVA2efVcFO1alX5+vrq1KlTTttPnTqlGjVq3PA9kZGR8vPzk6+vr2Nbo0aNdPLkSWVlZcnf39+pfUBAgAICAlxfPACUUGpqqmO8YX4SExMJOEARePWylL+/v1q0aKHNmzc7ttntdm3evFlt2rS54XvatWunQ4cOyW63O7b99NNPioyMzBVsAOB6qampOnHiRJ6P1NRUj9VyfY+NzRailJRo2Wwh+bYDkD+vX5YaMWKEBgwYoJYtW6pVq1aaOXOmLly4oEGDBkmSHn30UdWqVUtTpkyRJD311FOaM2eOnnnmGT399NP6+eefNXnyZA0bNsybhwGgDCjNPSW7d8dp9ereMgwfWSx2JSSsUXz8Ho/WAJiF18NN3759debMGY0dO1YnT57UrbfeqvXr1zsGGf/222/y8flPB1NUVJQ2bNigZ599Vs2aNVOtWrX0zDPP6MUXX/TWIQAoIwrbA+LpnhKbLcQRbCTJMHy0enVvxcQcktWa4dFaADPweriRrv5XUmJi4g1f27p1a65tbdq00TfffOPmqgCYnc0WorS0cIWFpXo1RKSlhTuCTQ7D8FFaWhjhBiiGUhFuAMDTStNloLCwVFksdqeAY7HYFRaW5pV6gLKuVNxbCgA8Ka/LQNcP5PUUqzVDCQlrZLFcnSiRE7botQGKh54bAOVOabwMFB+/RzExh5SWFqawsDSCDVAChBsA5U5puQx0/fIVVmvGDUMNy1wARUO4AVDu5FwGun7Mjad7S8LDw5WYmMgKxYCLEW4AlBvX9oDkdxnIkz0lBBfA9Qg3AMqN8tZTwn2rUF4RbgCUK+Xly7w0r8YMuBtTwQHAhErrasyAJxBuAKAcyOumnIAZcVkKAEyuNK3GDHgCPTcAYGKlbTVmwBPouQEAL3L3jKbSuBoz4G6EGwDwEk/MaCotqzEDnsRlKQDwEk/MaOKmnCiP6LkBgFLCZgtRWlq4wsJSSxw+SuNqzICnEG4AoBRw9Yym8rYaM3Atwg0AeFleM5piYg6VqAeH4ILyijE3AOBl+c1oAlB0hBsA8LKcGU3XYkYTUHyEGwDwMmY0Aa7FmBsA8BJmNAHuQbgBAC9hRhPgHoQbAPCi8hZc3H27CUAi3AAAPMQTt5sAJAYUAwA8xBO3mwAkwg0AADAZwg0AwCtsthClpETLZgvxdikwGcbcAAA8ztX30gKuRc8NAMCj8rqXFj04cBXCDQDAo7iXFtyNcAMA8CjupQV3I9wAADwi5zYSBd1Li9tNoKQshmEY3i7Ck9LT02W1WmWz2RQaGurtcgCgXLl2heLjx3105EgFRUdfUc2aV4MOKxQjL0X5/ma2FADAY64NLpGRUosWXiwGpkW4AQDAw7jHlnsRbgAA8CDuseV+hBsAQKlnpp4O7rHlfoQbAECpRk8Hioqp4ACAUo2eDhQV4QYAAC/iBqKux2UpAECZYrOFKC0tXGFhqY6F/8oqbiDqHoQbAECZYaYwkNcNRGNiDpX50OZtXJYCAJQJZrubODcQdR/CDQCgTDBLGMi5d1ZBNxDlHlvFx2UpAECZkBMGrg04ZfFu4uHh4UpMTFRWVpZq1UrXiy9alZ1tka+voVdfTdfDDz9UptbtKY0INwCAUu36u4lfP+amLN5NPCe4PPec1LevdOiQFBtr0U03VZZU2ZulmQJ3BQcAlHrcTRzcFRwAYCrcTRxFwYBiAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKqxzAwCASVy72OGNlJfFDgk3AACYQGpqqubMmVNgu8TERNMHHC5LAQBgAvn12BSnXVlGuAEAAKZCuAEAwIRsthClpETLZgvxdikex5gbAABMZvfuOK1e3VuG4SOLxa6EhDWKj9/j7bI8hp4bAABMxGYLcQQbSTIMH61e3btc9eAQbgAAMJG0tHBHsMlhGD5KSwvzUkWeR7gBAMBEwsJSZbHYnbZZLHaFhaV5qSLPI9wAAGAC/v7+kiSrNUMJCWscASdnzI3VmuHUzswshmEY3i7Ck9LT02W1WmWz2RQaGurtcgAALsDKvFddex6OH/fRkSMVFB19RTVrXg06Zfk8FOX7m9lSAIAyjZV5/+Pa44uMlFq08GIxXsRlKQBAmcbKvLheqQg3c+fOVXR0tAIDA9W6dWvt3LmzUO9btmyZLBaL+vTp494CAQBAmeH1cLN8+XKNGDFC48aN0+7du9W8eXN1795dp0+fzvd9R44c0fPPP68OHTp4qFIAQFlQnlfmxVVeDzczZszQE088oUGDBqlx48Z6++23FRQUpIULF+b5nuzsbD3yyCOaMGGC6tWr58FqAQCl2e7dcZo5c7iWLBmgmTOHa/fuOG+XBC/warjJyspSUlKSunbt6tjm4+Ojrl27aseOHXm+769//auqV6+uxx9/vMDPyMzMVHp6utMDAGA+rMyLHF4NN2fPnlV2drYiIiKctkdEROjkyZM3fM+2bdu0YMECzZ8/v1CfMWXKFFmtVscjKiqqxHUDAEofVuZFDq9fliqKjIwM9e/fX/Pnz1fVqlUL9Z7Ro0fLZrM5HkePHnVzlQAAb2BlXuTw6jo3VatWla+vr06dOuW0/dSpU6pRo0au9ocPH9aRI0eUkJDg2Ga3X/1FrlChgg4ePKiYmBin9wQEBCggIMAN1QMASoPrV+a9/m7Y5WllXlzl9RWKW7durVatWmn27NmSroaV2rVrKzExUaNGjXJqe+nSJR06dMhp28svv6yMjAy9+eabatCgQYG/vKxQDADmY+aVeXFVmVqheMSIERowYIBatmypVq1aaebMmbpw4YIGDRokSXr00UdVq1YtTZkyRYGBgWrSpInT+ytXrixJubYDAMoPVubFtbwebvr27aszZ85o7NixOnnypG699VatX7/eMcj4t99+k49PmRoaBAAAvMjrl6U8jctSAACUPUX5/qZLBAAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmIrXp4IDAIDS7dpFEm+ktC2SSLgBAAB5Sk1N1Zw5cwpsl5iYWGoCDpelAABAnvLrsSlOO08g3AAAgEKz2UKUkhItmy3E26XkictSAACgUHbvjst11/X4+D2SpLNnz+b5Pk+PySHcAACAAtlsIY5gI0mG4aPVq3srJuaQrNYMrVq1Kt/3e3JMDpelAABAgdLSwh3BJodh+CgtLaxQ7/fkmBzCDQAAKFBYWKosFrvTNovFrrCwNKdtpWFMDpelAABAgazWDCUkrMk15sZqzXC0yW9MjicRbgAAQJ78/f0dP8fH71FMzCGlpYUpLCzNKdgUNCbHkwg3AAAgT+Hh4UpMTMxzzMzZs2e1atWqfMfkEG4AAECpUphZTjljcq4NODcak+MJDCgGAAAlljMmJ2fQ8Y3G5HgKPTcAAKDYCjsm59p27ka4AQAAxVbQmByJFYoBAEAZU1ruBp6DMTcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUyt3tFwzDkCSlp6d7uRIAAFBYOd/bOd/j+Sl34SYj4+odSqOiorxcCQAAKKqMjAxZrdZ821iMwkQgE7Hb7Tp+/LhCQkJksVhyvZ6enq6oqCgdPXpUoaGhXqiw9OMcFYxzVDDOUcE4R/nj/BTMTOfIMAxlZGSoZs2a8vHJf1RNueu58fHx0U033VRgu9DQ0DL/i+BunKOCcY4KxjkqGOcof5yfgpnlHBXUY5ODAcUAAMBUCDcAAMBUCDfXCQgI0Lhx4xQQEODtUkotzlHBOEcF4xwVjHOUP85PwcrrOSp3A4oBAIC50XMDAABMhXADAABMhXADAABMhXADAABMpVyGm7lz5yo6OlqBgYFq3bq1du7cmWfbffv26f7771d0dLQsFotmzpzpuUK9qCjnaP78+erQoYOqVKmiKlWqqGvXrvm2N4uinKNVq1apZcuWqly5soKDg3Xrrbfqgw8+8GC13lGUc3StZcuWyWKxqE+fPu4tsBQoyjlavHixLBaL0yMwMNCD1XpeUX+Hzp07p6FDhyoyMlIBAQFq0KCB1q1b56FqvaMo56hz5865focsFot69erlwYo9wChnli1bZvj7+xsLFy409u3bZzzxxBNG5cqVjVOnTt2w/c6dO43nn3/e+Pjjj40aNWoYb7zxhmcL9oKinqOHH37YmDt3rrFnzx5j//79xsCBAw2r1WocO3bMw5V7TlHP0ZYtW4xVq1YZP/74o3Ho0CFj5syZhq+vr7F+/XoPV+45RT1HOVJSUoxatWoZHTp0MO69917PFOslRT1HixYtMkJDQ40TJ044HidPnvRw1Z5T1POTmZlptGzZ0rj77ruNbdu2GSkpKcbWrVuN5ORkD1fuOUU9R6mpqU6/P3v37jV8fX2NRYsWebZwNyt34aZVq1bG0KFDHc+zs7ONmjVrGlOmTCnwvXXq1CkX4aYk58gwDOPKlStGSEiIsWTJEneV6HUlPUeGYRhxcXHGyy+/7I7ySoXinKMrV64Ybdu2Nd577z1jwIABpg83RT1HixYtMqxWq4eq876inp958+YZ9erVM7KysjxVoteV9G/RG2+8YYSEhBjnz593V4leUa4uS2VlZSkpKUldu3Z1bPPx8VHXrl21Y8cOL1ZWerjiHF28eFGXL19WWFiYu8r0qpKeI8MwtHnzZh08eFAdO3Z0Z6leU9xz9Ne//lXVq1fX448/7okyvaq45+j8+fOqU6eOoqKidO+992rfvn2eKNfjinN+Pv/8c7Vp00ZDhw5VRESEmjRposmTJys7O9tTZXuUK/5eL1iwQA8++KCCg4PdVaZXlKtwc/bsWWVnZysiIsJpe0REhE6ePOmlqkoXV5yjF198UTVr1nT6P5yZFPcc2Ww2VapUSf7+/urVq5dmz56tbt26ubtcryjOOdq2bZsWLFig+fPne6JEryvOObr55pu1cOFC/f3vf9eHH34ou92utm3b6tixY54o2aOKc35++eUXrVixQtnZ2Vq3bp3GjBmj6dOn65VXXvFEyR5X0r/XO3fu1N69ezV48GB3leg15e6u4HCvqVOnatmyZdq6davpBzoWVUhIiJKTk3X+/Hlt3rxZI0aMUL169dS5c2dvl+Z1GRkZ6t+/v+bPn6+qVat6u5xSq02bNmrTpo3jedu2bdWoUSO98847mjhxohcrKx3sdruqV6+ud999V76+vmrRooV+//13TZs2TePGjfN2eaXOggUL1LRpU7Vq1crbpbhcuQo3VatWla+vr06dOuW0/dSpU6pRo4aXqipdSnKOXn/9dU2dOlWbNm1Ss2bN3FmmVxX3HPn4+Cg2NlaSdOutt2r//v2aMmWKKcNNUc/R4cOHdeTIESUkJDi22e12SVKFChV08OBBxcTEuLdoD3PF3yM/Pz/FxcXp0KFD7ijRq4pzfiIjI+Xn5ydfX1/HtkaNGunkyZPKysqSv7+/W2v2tJL8Dl24cEHLli3TX//6V3eW6DXl6rKUv7+/WrRooc2bNzu22e12bd682em/hsqz4p6j1157TRMnTtT69evVsmVLT5TqNa76PbLb7crMzHRHiV5X1HPUsGFD/fDDD0pOTnY87rnnHt1xxx1KTk5WVFSUJ8v3CFf8HmVnZ+uHH35QZGSku8r0muKcn3bt2unQoUOOYCxJP/30kyIjI00XbKSS/Q59+umnyszMVL9+/dxdpnd4e0Szpy1btswICAgwFi9ebPz444/Gk08+aVSuXNkxnbJ///7GqFGjHO0zMzONPXv2GHv27DEiIyON559/3tizZ4/x888/e+sQ3K6o52jq1KmGv7+/sWLFCqcphhkZGd46BLcr6jmaPHmy8c9//tM4fPiw8eOPPxqvv/66UaFCBWP+/PneOgS3K+o5ul55mC1V1HM0YcIEY8OGDcbhw4eNpKQk48EHHzQCAwONffv2eesQ3Kqo5+e3334zQkJCjMTEROPgwYPGmjVrjOrVqxuvvPKKtw7B7Yr7/7P27dsbffv29XS5HlPuwo1hGMbs2bON2rVrG/7+/karVq2Mb775xvFap06djAEDBjiep6SkGJJyPTp16uT5wj2oKOeoTp06NzxH48aN83zhHlSUc/TSSy8ZsbGxRmBgoFGlShWjTZs2xrJly7xQtWcV5RxdrzyEG8Mo2jkaPny4o21ERIRx9913G7t37/ZC1Z5T1N+hr7/+2mjdurUREBBg1KtXz5g0aZJx5coVD1ftWUU9RwcOHDAkGf/85z89XKnnWAzDMLzUaQQAAOBy5WrMDQAAMD/CDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQAAMBXCDQC40cCBA9WnTx9vlwGUK4QboJwaOHCgLBaL4xEeHq4ePXro+++/93ZpLnHtseU82rdv77bPO3LkiCwWi5KTk522v/nmm1q8eLHbPhdAboQboBzr0aOHTpw4oRMnTmjz5s2qUKGCevfu7e2yXGbRokWO4ztx4oQ+//zzG7a7fPmy22qwWq2qXLmy2/YPIDfCDVCOBQQEqEaNGqpRo4ZuvfVWjRo1SkePHtWZM2fUpUsXJSYmOrU/c+aM/P39HXchjo6O1sSJE/XQQw8pODhYtWrV0ty5c53eM2PGDDVt2lTBwcGKiorS//zP/+j8+fOO13/99VclJCSoSpUqCg4O1i233KJ169ZJkv744w898sgjqlatmipWrKj69etr0aJFhT6+ypUrO46vRo0aCgsLc/SwLF++XJ06dVJgYKA++ugjpaam6qGHHlKtWrUUFBSkpk2b6uOPP3ban91u12uvvabY2FgFBASodu3amjRpkiSpbt26kqS4uDhZLBZ17txZUu7LUpmZmRo2bJiqV6+uwMBAtW/fXrt27XK8vnXrVlksFm3evFktW7ZUUFCQ2rZtq4MHDxb6uIHyjnADQJJ0/vx5ffjhh4qNjVV4eLgGDx6spUuXKjMz09Hmww8/VK1atdSlSxfHtmnTpql58+bas2ePRo0apWeeeUYbN250vO7j46NZs2Zp3759WrJkib744guNHDnS8frQoUOVmZmpL7/8Uj/88INeffVVVapUSZI0ZswY/fjjj/rHP/6h/fv3a968eapatapLjjen1v3796t79+66dOmSWrRoobVr12rv3r168skn1b9/f+3cudPxntGjR2vq1KmOupYuXaqIiAhJcrTbtGmTTpw4oVWrVt3wc0eOHKmVK1dqyZIl2r17t2JjY9W9e3elpaU5tXvppZc0ffp0/fvf/1aFChX02GOPueS4gXLB23fuBOAdAwYMMHx9fY3g4GAjODjYkGRERkYaSUlJhmEYxp9//mlUqVLFWL58ueM9zZo1M8aPH+94XqdOHaNHjx5O++3bt6/Rs2fPPD/3008/NcLDwx3PmzZt6rTPayUkJBiDBg0q1vFJMgIDAx3HFxwcbHz22WdGSkqKIcmYOXNmgfvo1auX8dxzzxmGYRjp6elGQECAMX/+/Bu2zdnvnj17nLZfe3fz8+fPG35+fsZHH33keD0rK8uoWbOm8dprrxmGYRhbtmwxJBmbNm1ytFm7dq0hyfjzzz+LcgqAcoueG6Acu+OOO5ScnKzk5GTt3LlT3bt3V8+ePfXrr78qMDBQ/fv318KFCyVJu3fv1t69ezVw4ECnfbRp0ybX8/379zueb9q0SXfeeadq1aqlkJAQ9e/fX6mpqbp48aIkadiwYXrllVfUrl07jRs3zmlA81NPPaVly5bp1ltv1ciRI/X1118X6fjeeOMNx/ElJyerW7dujtdatmzp1DY7O1sTJ05U06ZNFRYWpkqVKmnDhg367bffJEn79+9XZmam7rzzziLVcK3Dhw/r8uXLateunWObn5+fWrVq5XTOJKlZs2aOnyMjIyVJp0+fLvZnA+UJ4QYox4KDgxUbG6vY2Fjddttteu+993ThwgXNnz9fkjR48GBt3LhRx44d06JFi9SlSxfVqVOn0Ps/cuSIevfurWbNmmnlypVKSkpyjMnJyspyfMYvv/yi/v3764cfflDLli01e/ZsSXIErWeffVbHjx/XnXfeqeeff77Qn1+jRg3H8cXGxio4ONjp2K81bdo0vfnmm3rxxRe1ZcsWJScnq3v37o46K1asWOjPdQU/Pz/HzxaLRdLVMT8ACka4AeBgsVjk4+OjP//8U5LUtGlTtWzZUvPnz9fSpUtvOO7jm2++yfW8UaNGkqSkpCTZ7XZNnz5dt99+uxo0aKDjx4/n2kdUVJSGDBmiVatW6bnnnnOEK0mqVq2aBgwYoA8//FAzZ87Uu+++68pDdti+fbvuvfde9evXT82bN1e9evX0008/OV6vX7++Klas6BhMfT1/f39JV3uA8hITEyN/f39t377dse3y5cvatWuXGjdu7KIjAVDB2wUA8J7MzEydPHlS0tWZSXPmzNH58+eVkJDgaDN48GAlJiYqODhY//Vf/5VrH9u3b9drr72mPn36aOPGjfr000+1du1aSVJsbKwuX76s2bNnKyEhQdu3b9fbb7/t9P7hw4erZ8+eatCggf744w9t2bLFEY7Gjh2rFi1a6JZbblFmZqbWrFnjeM3V6tevrxUrVujrr79WlSpVNGPGDJ06dcoROgIDA/Xiiy9q5MiR8vf3V7t27XTmzBnt27dPjz/+uKpXr66KFStq/fr1uummmxQYGCir1er0GcHBwXrqqaf0wgsvKCwsTLVr19Zrr72mixcv6vHHH3fLcQHlET03QDm2fv16RUZGKjIyUq1bt9auXbv06aefOqYxS9JDDz2kChUq6KGHHlJgYGCufTz33HP697//rbi4OL3yyiuaMWOGunfvLklq3ry5ZsyYoVdffVVNmjTRRx99pClTpji9Pzs7W0OHDlWjRo3Uo0cPNWjQQG+99Zakq70ho0ePVrNmzdSxY0f5+vpq2bJlbjkXL7/8suLj49W9e3d17txZNWrUyLWy8JgxY/Tcc89p7NixatSokfr27esYB1OhQgXNmjVL77zzjmrWrKl77733hp8zdepU3X///erfv7/i4+N16NAhbdiwQVWqVHHLcQHlkcUwDMPbRQAovY4cOaKYmBjt2rVL8fHxTq9FR0dr+PDhGj58uHeKA4Ab4LIUgBu6fPmyUlNT9fLLL+v222/PFWwAoLTishSAG9q+fbsiIyO1a9euXONkvG3y5MmqVKnSDR89e/b0dnkAvIzLUgDKnLS0tFwr+uaoWLGiatWq5eGKAJQmhBsAAGAqXJYCAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACm8v8BBqXcmeMkc24AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASJlJREFUeJzt3XlclOX+//H3gCxujF9QcUNR3LVMLE3LNQ3NKL/VUbPULDPPT1KzLG1xyVI7pZliy+moWCdTU1tcjqaezFxaDmplqbmAWqEm5ICYYsz1+8MvcxxBhWFg4Ob1fDx4yNxz3fd87qtp5s11X/d924wxRgAAABbh5+sCAAAAvIlwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwA+kpCQIJvNpuTkZF+XAlgK4QawsG+++UZxcXFq0aKFKlasqLp166pv37766aefcrXt0qWLbDabbDab/Pz8FBISoiZNmmjgwIFav359gV535cqV6ty5s6pXr64KFSqoQYMG6tu3r9auXeutXctl6tSp+uijj3It37ZtmyZNmqRTp04V2WtfatKkSa6+tNlsqlChgpo3b65nn31W6enpXnmNRYsWadasWV7ZFmA1hBvAwl566SUtX75ct9xyi1577TUNGzZMmzdvVnR0tHbv3p2rfZ06dfTuu+/qnXfe0csvv6w77rhD27Zt06233qp+/frp/PnzV33NV155RXfccYdsNpvGjx+vV199VXfffbf279+vxYsXF8VuSrpyuJk8eXKxhpscb7zxht59913NnDlTTZs21YsvvqiePXvKG7f0I9wAl1fO1wUAKDpjxozRokWLFBgY6FrWr18/XXPNNZo+fbr++c9/urW32+26//773ZZNnz5dI0eO1Ouvv67IyEi99NJLl329P//8U1OmTFGPHj306aef5nr+xIkThdyjkuPMmTOqUKHCFdvcc889qlq1qiRp+PDhuvvuu7VixQp9+eWXat++fXGUCZRJjNwAFtahQwe3YCNJjRo1UosWLbRnz558bcPf31+zZ89W8+bNFR8fL4fDcdm2J0+eVHp6um666aY8n69evbrb47Nnz2rSpElq3LixgoODVbNmTd111106ePCgq80rr7yiDh06KCwsTOXLl1ebNm20bNkyt+3YbDZlZmZq4cKFrkNBDzzwgCZNmqSxY8dKkurXr+967uI5Lv/85z/Vpk0blS9fXqGhoerfv7+OHj3qtv0uXbqoZcuWSkxMVKdOnVShQgU9/fTT+eq/i3Xr1k2SlJSUdMV2r7/+ulq0aKGgoCDVqlVLI0aMcBt56tKli1avXq3Dhw+79ikyMrLA9QBWxcgNUMYYY3T8+HG1aNEi3+v4+/vr3nvv1XPPPactW7aod+/eebarXr26ypcvr5UrV+rRRx9VaGjoZbeZnZ2t22+/XRs3blT//v01atQoZWRkaP369dq9e7eioqIkSa+99pruuOMO3XfffcrKytLixYv1l7/8RatWrXLV8e6772ro0KFq27athg0bJkmKiopSxYoV9dNPP+n999/Xq6++6hpFqVatmiTpxRdf1HPPPae+fftq6NCh+u233zRnzhx16tRJO3fuVJUqVVz1pqamqlevXurfv7/uv/9+hYeH57v/cuSEtrCwsMu2mTRpkiZPnqzu3bvrr3/9q/bt26c33nhD33zzjbZu3aqAgAA988wzcjgc+vnnn/Xqq69KkipVqlTgegDLMgDKlHfffddIMvPmzXNb3rlzZ9OiRYvLrvfhhx8aSea111674vYnTJhgJJmKFSuaXr16mRdffNEkJibmajd//nwjycycOTPXc06n0/X7mTNn3J7LysoyLVu2NN26dXNbXrFiRTN48OBc23r55ZeNJJOUlOS2PDk52fj7+5sXX3zRbfn3339vypUr57a8c+fORpJ58803L7vfF5s4caKRZPbt22d+++03k5SUZN566y0TFBRkwsPDTWZmpjHGmAULFrjVduLECRMYGGhuvfVWk52d7dpefHy8kWTmz5/vWta7d29Tr169fNUDlDUclgLKkL1792rEiBFq3769Bg8eXKB1c0YGMjIyrthu8uTJWrRokVq3bq1169bpmWeeUZs2bRQdHe12KGz58uWqWrWqHn300VzbsNlsrt/Lly/v+v3333+Xw+FQx44dtWPHjgLVf6kVK1bI6XSqb9++OnnypOunRo0aatSokT777DO39kFBQRoyZEiBXqNJkyaqVq2a6tevr0ceeUQNGzbU6tWrLztXZ8OGDcrKytLo0aPl5/ffj+eHH35YISEhWr16dcF3FCiDOCwFlBHHjh1T7969ZbfbtWzZMvn7+xdo/dOnT0uSKleufNW29957r+69916lp6frq6++UkJCghYtWqTY2Fjt3r1bwcHBOnjwoJo0aaJy5a78MbRq1Sq98MIL2rVrl86dO+dafnEA8sT+/ftljFGjRo3yfD4gIMDtce3atXPNX7qa5cuXKyQkRAEBAapTp47rUNvlHD58WNKFUHSxwMBANWjQwPU8gCsj3ABlgMPhUK9evXTq1Cl98cUXqlWrVoG3kXPqeMOGDfO9TkhIiHr06KEePXooICBACxcu1FdffaXOnTvna/0vvvhCd9xxhzp16qTXX39dNWvWVEBAgBYsWKBFixYVeB8u5nQ6ZbPZ9K9//SvPoHfpHJaLR5Dyq1OnTq55PgCKD+EGsLizZ88qNjZWP/30kzZs2KDmzZsXeBvZ2dlatGiRKlSooJtvvtmjOq6//notXLhQKSkpki5M+P3qq690/vz5XKMkOZYvX67g4GCtW7dOQUFBruULFizI1fZyIzmXWx4VFSVjjOrXr6/GjRsXdHeKRL169SRJ+/btU4MGDVzLs7KylJSUpO7du7uWFXbkCrAy5twAFpadna1+/fpp+/bt+uCDDzy6tkp2drZGjhypPXv2aOTIkQoJCbls2zNnzmj79u15Pvevf/1L0n8Pudx99906efKk4uPjc7U1/3eRO39/f9lsNmVnZ7ueS05OzvNifRUrVszzQn0VK1aUpFzP3XXXXfL399fkyZNzXVTPGKPU1NS8d7IIde/eXYGBgZo9e7ZbTfPmzZPD4XA7S61ixYpXPC0fKMsYuQEs7PHHH9cnn3yi2NhYpaWl5bpo36UX7HM4HK42Z86c0YEDB7RixQodPHhQ/fv315QpU674emfOnFGHDh104403qmfPnoqIiNCpU6f00Ucf6YsvvlCfPn3UunVrSdKgQYP0zjvvaMyYMfr666/VsWNHZWZmasOGDfp//+//6c4771Tv3r01c+ZM9ezZUwMGDNCJEyc0d+5cNWzYUN99953ba7dp00YbNmzQzJkzVatWLdWvX1/t2rVTmzZtJEnPPPOM+vfvr4CAAMXGxioqKkovvPCCxo8fr+TkZPXp00eVK1dWUlKSPvzwQw0bNkxPPPFEofq/oKpVq6bx48dr8uTJ6tmzp+644w7t27dPr7/+um644Qa3/15t2rTRkiVLNGbMGN1www2qVKmSYmNji7VeoMTy5alaAIpWzinMl/u5UttKlSqZRo0amfvvv998+umn+Xq98+fPm7ffftv06dPH1KtXzwQFBZkKFSqY1q1bm5dfftmcO3fOrf2ZM2fMM888Y+rXr28CAgJMjRo1zD333GMOHjzoajNv3jzTqFEjExQUZJo2bWoWLFjgOtX6Ynv37jWdOnUy5cuXN5LcTgufMmWKqV27tvHz88t1Wvjy5cvNzTffbCpWrGgqVqxomjZtakaMGGH27dvn1jdXOk3+Ujn1/fbbb1dsd+mp4Dni4+NN06ZNTUBAgAkPDzd//etfze+//+7W5vTp02bAgAGmSpUqRhKnhQMXsRnjhZucAAAAlBDMuQEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZS5i7i53Q69euvv6py5cpcvhwAgFLCGKOMjAzVqlVLfn5XHpspc+Hm119/VUREhK/LAAAAHjh69Kjq1KlzxTZlLtxUrlxZ0oXOudI9cgAAQMmRnp6uiIgI1/f4lZS5cJNzKCokJIRwAwBAKZOfKSVMKAYAAJZCuAEAAJZCuAEAAJZS5ubc5Fd2drbOnz/v6zIsKyAgQP7+/r4uAwBgQYSbSxhjdOzYMZ06dcrXpVhelSpVVKNGDa43BADwKsLNJXKCTfXq1VWhQgW+eIuAMUZnzpzRiRMnJEk1a9b0cUUAACvxabjZvHmzXn75ZSUmJiolJUUffvih+vTpc9n2K1as0BtvvKFdu3bp3LlzatGihSZNmqSYmBiv1JOdne0KNmFhYV7ZJvJWvnx5SdKJEydUvXp1DlEBALzGpxOKMzMz1apVK82dOzdf7Tdv3qwePXpozZo1SkxMVNeuXRUbG6udO3d6pZ6cOTYVKlTwyvZwZTn9zNwmAIA3+XTkplevXurVq1e+28+aNcvt8dSpU/Xxxx9r5cqVat26tdfq4lBU8aCfAQBFoVTPuXE6ncrIyFBoaOhl25w7d07nzp1zPU5PTy+O0gAAKDNSU1OVlZV12ecDAwOLdbpHqQ43r7zyik6fPq2+fftets20adM0efLkYqwKAICyIzU1VfHx8VdtFxcXV2wBp9RexG/RokWaPHmyli5dqurVq1+23fjx4+VwOFw/R48eLcYqi88DDzwgm80mm82mgIAAhYeHq0ePHpo/f76cTme+t5OQkKAqVaoUXaEAAEu50oiNJ+28oVSO3CxevFhDhw7VBx98oO7du1+xbVBQkIKCgoqpMt8OzfXs2VMLFixQdna2jh8/rrVr12rUqFFatmyZPvnkE5UrVyr/cwMAShGHo7LS0sIUGpoquz3DJzWUum+7999/Xw8++KAWL16s3r17+7ocN74emgsKClKNGjUkSbVr11Z0dLRuvPFG3XLLLUpISNDQoUM1c+ZMLViwQIcOHVJoaKhiY2P1t7/9TZUqVdKmTZs0ZMgQSf+d7Dtx4kRNmjRJ7777rl577TXt27dPFStWVLdu3TRr1qwrjpoBAMqWHTtaa+XK22WMn2w2p2JjVyk62jtnNBeETw9LnT59Wrt27dKuXbskSUlJSdq1a5eOHDki6cIhpUGDBrnaL1q0SIMGDdKMGTPUrl07HTt2TMeOHZPD4fBF+bmUxKG5bt26qVWrVlqxYoUkyc/PT7Nnz9YPP/yghQsX6t///reefPJJSVKHDh00a9YshYSEKCUlRSkpKXriiSckXThde8qUKfr222/10UcfKTk5WQ888ECx7QcAoGRzOCq7go0kGeOnlStvl8NRudhr8enIzX/+8x917drV9XjMmDGSpMGDByshIUEpKSmuoCNJf//73/Xnn39qxIgRGjFihGt5TnvkrWnTpvruu+8kSaNHj3Ytj4yM1AsvvKDhw4fr9ddfV2BgoOx2u2w2m2sEKMeDDz7o+r1BgwaaPXu2brjhBp0+fVqVKlUqlv0AAJRcaWlhrmCTwxg/paWFFvvhKZ+Gmy5dusgYc9nnLw0smzZtKtqCLMoY4zrMtGHDBk2bNk179+5Venq6/vzzT509e1Znzpy54sULExMTNWnSJH377bf6/fffXZOUjxw5oubNmxfLfgAASq7Q0FTZbE63gGOzORUamlbstZTas6WQf3v27FH9+vWVnJys22+/Xddee62WL1+uxMRE19Whr3SoLDMzUzExMQoJCdF7772nb775Rh9++OFV1wMAlB12e4ZiY1fJZrvwx2/OnBtfTCoudROKUTD//ve/9f333+uxxx5TYmKinE6nZsyYIT+/C7l26dKlbu0DAwOVnZ3ttmzv3r1KTU3V9OnTFRERIenCIUUAAAIDA12/R0fvVFTUAaWlhSo0NM0t2FzcrqgRbizk3LlzOnbsmNup4NOmTdPtt9+uQYMGaffu3Tp//rzmzJmj2NhYbd26VW+++abbNiIjI3X69Glt3LhRrVq1UoUKFVS3bl0FBgZqzpw5Gj58uHbv3q0pU6b4aC8BACVJWFiY4uLiStQVijksZSFr165VzZo1FRkZqZ49e+qzzz7T7Nmz9fHHH8vf31+tWrXSzJkz9dJLL6lly5Z67733NG3aNLdtdOjQQcOHD1e/fv1UrVo1/e1vf1O1atWUkJCgDz74QM2bN9f06dP1yiuv+GgvAQAlTVhYmGrWrHnZn+IMNpJkM1ea0WtB6enpstvtcjgcCgkJcXvu7NmzSkpKUv369RUcHFzgbfv6OjelTWH7GwBQdlzp+/tSHJbyopI4NAcAQFlDuPEyggsAAL7FnBsAAGAphBsAAGApHJYCAACFkpqaWqLmmxJuAACAx0rimcIclgIAAB67dMTG4aispKTIXHcDL87b9TByAwAAvGLHjtZaufJ2GePnurdUdPTOYq+DkRsAAFBoDkdlV7CRJGP8tHLl7blGcIoD4Qb5smnTJtlsNp06dSrf60RGRmrWrFlFVhMAoORISwtzBZscxvgpLS202Gsh3FjEAw88IJvNpuHDh+d6bsSIEbLZbHrggQeKvzAAQJkQGpoqm83ptsxmcyo0NK3YayHcWEhERIQWL16sP/74w7Xs7NmzWrRokerWrevDygAAVme3Zyg2dpUr4OTMubHbM4q9FsKNhURHRysiIkIrVqxwLVuxYoXq1q2r1q1bu5adO3dOI0eOVPXq1RUcHKybb75Z33zzjdu21qxZo8aNG6t8+fLq2rWrkpOTc73eli1b1LFjR5UvX14REREaOXKkMjMzi2z/AAAlW3T0To0ePUuDBydo9OhZPplMLBFuitTPP0uffXbh3+Ly4IMPasGCBa7H8+fP15AhQ9zaPPnkk1q+fLkWLlyoHTt2qGHDhoqJiVFa2oWhw6NHj+quu+5SbGysdu3apaFDh2rcuHFu2zh48KB69uypu+++W999952WLFmiLVu2KC4uruh3EgBQYgQGBro9ttszVL/+4VwjNpe2K0qcCl5E5s2Thg2TnE7Jz0/6+9+lhx4q+te9//77NX78eB0+fFiStHXrVi1evFibNm2SJGVmZuqNN95QQkKCevXqJUl6++23tX79es2bN09jx47VG2+8oaioKM2YMUOS1KRJE33//fd66aWXXK8zbdo03XfffRo9erQkqVGjRpo9e7Y6d+6sN954Q8HBwUW/swAAnwsLC1NcXBxXKLa6n3/+b7CRLvz7yCNSTIxUp07Rvna1atXUu3dvJSQkyBij3r17q2rVqq7nDx48qPPnz+umm25yLQsICFDbtm21Z88eSdKePXvUrl07t+22b9/e7fG3336r7777Tu+9955rmTFGTqdTSUlJatasWVHsHgCgBCrO4JIfhJsisH//f4NNjuxs6cCBog830oVDUzmHh+bOnVskr3H69Gk98sgjGjlyZK7nmLwMAPAlwk0RaNTowqGoiwOOv7/UsGHxvH7Pnj2VlZUlm82mmJgYt+eioqIUGBiorVu3ql69epKk8+fP65tvvnEdYmrWrJk++eQTt/W+/PJLt8fR0dH68ccf1bC4dgoAgHxiQnERqFPnwhwbf/8Lj/39pbfeKp5Rmwuv5689e/boxx9/lH9OEf+nYsWK+utf/6qxY8dq7dq1+vHHH/Xwww/rzJkzeuj/JgUNHz5c+/fv19ixY7Vv3z4tWrRICQkJbtt56qmntG3bNsXFxWnXrl3av3+/Pv74YyYUAwB8jpGbIvLQQxfm2Bw4cGHEpriCTY6QkJDLPjd9+nQ5nU4NHDhQGRkZuv7667Vu3Tr9z//8j6QLh5WWL1+uxx57THPmzFHbtm01depUPfjgg65tXHvttfr888/1zDPPqGPHjjLGKCoqSv369SvyfQMA4Epsxhjj6yKKU3p6uux2uxwOR64AcPbsWSUlJal+/fqc7VMM6G8AQH5d6fv7UhyWAgAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4yUMZm2PtM/QzAKAoEG4uEhAQIEk6c+aMjyspG3L6OaffAQDwBq5zcxF/f39VqVJFJ06ckCRVqFBBNpvNx1VZjzFGZ86c0YkTJ1SlSpVcFxoEAKAwCDeXqFGjhiS5Ag6KTpUqVVz9DQCAtxBuLmGz2VSzZk1Vr15d58+f93U5lhUQEMCIDQCgSBBuLsPf358vXwAASiEmFAMAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAgFx+/ln67LML/5Y2hBsAAOBm3jypXj2pW7cL/86b5+uKCoZwAwAAXH7+WRo2THI6Lzx2OqVHHildIziEGwAAIElKTU3Vl1+muoJNjuxs6auvUpWamuqbwgqonK8LAJBbamqqsrKyLvt8YGCgwsLCirEiAFaXmpqq+Ph4ORyVZbONljH/Hf+w2ZzaunWhdu/OUFxcXIn//CHcACVMzgfM1ZSGDxgApUfOH1R2e4ZiY1dp5crbZYyfbDanYmNXyW7PcGtXkhFugBImvx8cpeEDBkDpFB29U1FRB5SWFqrQ0DRXsCktCDcAACAXuz2j1IWaHEwoBko4h6OykpIi5XBU9nUpAFAqMHIDlGA7drTOddw7Onqnr8sCgBKNkRughHI4KruCjSQZ46eVK29nBAcAroJwA5RQaWlhbqdiShcCTlpaqI8qAoDSgXADlFChoamy2dyvpGWzORUamuajigBYWWBgoFfb+RJzboASJueD42rXmigNHzAASo+wsDDFxcVZ4gKiNmOM8XURxSk9PV12u10Oh0MhISG+LgfI08VXKP71Vz8lJ5dTZOSfqlXrwkhOafmAAQBvKcj3NyM3QAl0cXCpWVNq08aHxQBAKcOcGwAAYCk+DTebN29WbGysatWqJZvNpo8++uiq62zatEnR0dEKCgpSw4YNlZCQUOR1AgCA0sOn4SYzM1OtWrXS3Llz89U+KSlJvXv3VteuXbVr1y6NHj1aQ4cO1bp164q4UgAAUFr4dM5Nr1691KtXr3y3f/PNN1W/fn3NmDFDktSsWTNt2bJFr776qmJiYoqqTAAAUIqUqjk327dvV/fu3d2WxcTEaPv27T6qCAAAlDSl6mypY8eOKTw83G1ZeHi40tPT9ccff6h8+fK51jl37pzOnTvnepyenl7kdQIAAN8pVSM3npg2bZrsdrvrJyIiwtclAQCAIlSqwk2NGjV0/Phxt2XHjx9XSEhInqM2kjR+/Hg5HA7Xz9GjR4ujVAAA4COl6rBU+/bttWbNGrdl69evV/v27S+7TlBQkIKCgoq6NAAAUEL4dOTm9OnT2rVrl3bt2iXpwqneu3bt0pEjRyRdGHUZNGiQq/3w4cN16NAhPfnkk9q7d69ef/11LV26VI899pgvygcAACWQT8PNf/7zH7Vu3VqtW7eWJI0ZM0atW7fWhAkTJEkpKSmuoCNJ9evX1+rVq7V+/Xq1atVKM2bM0D/+8Q9OAwcAAC7cOBMAAJR4Bfn+LlUTigEAAK6GcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACylnCcr1a1bV126dFHnzp3VpUsXRUVFebsuAAAAj3g0cjN16lQFBwfrpZdeUqNGjRQREaH7779fb7/9tvbv3+/tGgEAAPLNZowxhdlASkqKPv/8c61atUpLliyR0+lUdna2t+rzuvT0dNntdjkcDoWEhPi6HAAAkA8F+f726LCUJJ05c0ZbtmzRpk2b9Nlnn2nnzp1q2bKlunTp4ukmAQAACs2jcNOhQwft3LlTzZo1U5cuXTRu3Dh16tRJ//M//+Pt+gAAAArEozk3e/fuVcWKFdW0aVM1bdpUzZo1I9gAAIASwaNwk5qaqn//+9+68cYbtW7dOt10002qXbu2BgwYoLffftvbNQIAAORboScUG2OUmJio+Ph4vffee0woBgAAXlfkE4p37NihTZs2adOmTdqyZYsyMjJ0zTXX6NFHH1Xnzp09KhoAAMAbPAo3bdu2VevWrdW5c2c9/PDD6tSpk+x2u7drAwAAKDCPwk1aWhqHdAAAQInkUbjJCTaJiYnas2ePJKl58+aKjo72XmUAAAAe8CjcnDhxQv369dPnn3+uKlWqSJJOnTqlrl27avHixapWrZo3awQAAMg3j04Ff/TRR3X69Gn98MMPSktLU1pamnbv3q309HSNHDnS2zUCAADkm0engtvtdm3YsEE33HCD2/Kvv/5at956q06dOuWt+ryOU8EBACh9CvL97dHIjdPpVEBAQK7lAQEBcjqdnmwSAADAKzwKN926ddOoUaP066+/upb98ssveuyxx3TLLbd4rTgAAICC8ijcxMfHKz09XZGRkYqKilJUVJTq16+v9PR0zZkzx9s1AgAA5JtHZ0tFRERox44d2rBhg/bu3StJatasmbp37+7V4gAAAAqq0PeWKm2YUAwAQOlTJPeWmj17dr4L4HRwAADgK/keualfv37+Nmiz6dChQ4UqqigxcgMAQOlTJKeCJyUl5evHk2Azd+5cRUZGKjg4WO3atdPXX399xfazZs1SkyZNVL58eUVEROixxx7T2bNnC/y6AADAegp0tlRRXMNmyZIlGjNmjCZOnKgdO3aoVatWiomJ0YkTJ/Jsv2jRIo0bN04TJ07Unj17NG/ePC1ZskRPP/2012sDgNLg55+lzz678C+AAoabgIAAt9AxduxYpaWlFaqAmTNn6uGHH9aQIUPUvHlzvfnmm6pQoYLmz5+fZ/tt27bppptu0oABAxQZGalbb71V995771VHewDAiubNk+rVk7p1u/DvvHm+rgjwvQKFm0un57z11luFutVCVlaWEhMT3U4h9/PzU/fu3bV9+/Y81+nQoYMSExNdYebQoUNas2aNbrvttjzbnzt3Tunp6W4/AGAFP/8sDRsm5QyqO53SI48wggN4dJ2bHIU9i/zkyZPKzs5WeHi42/Lw8HDX9XMuNWDAAJ08eVI333yzjDH6888/NXz48Mselpo2bZomT55cqDoBoKRJTU3Vl19KTmeY2/LsbOmrr1JVvrwUFhZ2mbUBa/PoCsW+tGnTJk2dOlWvv/66duzYoRUrVmj16tWaMmVKnu3Hjx8vh8Ph+jl69GgxVwwA3pWamqr4+Hht27ZQNpv7XEibzamtWxcqPj5eqampPqrQe5hPBE8UeORmwoQJqlChgqQLh5VefPFF2e12tzYzZ87M17aqVq0qf39/HT9+3G358ePHVaNGjTzXee655zRw4EANHTpUknTNNdcoMzNTw4YN0zPPPCM/P/e8FhQUpKCgoHzVAwClQVZWliTJbs9QbOwqrVx5u4zxk83mVGzsKtntGW7tSqt58/572M3PT/r736WHHvJ1VSgNChRuOnXqpH379rked+jQIdep3zabLd/bCwwMVJs2bbRx40b16dNH0oUzsjZu3Ki4uLg81zlz5kyuAOPv7y+p8IfJAKC0iY7eqaioA0pLC1VoaJor2JR2l5tPFBMj1anj29pQ8hUo3GzatMnrBYwZM0aDBw/W9ddfr7Zt22rWrFnKzMzUkCFDJEmDBg1S7dq1NW3aNElSbGysZs6cqdatW6tdu3Y6cOCAnnvuOcXGxrpCDgCUJXZ7hmVCjcR8IhReoSYUX01ISIh27dqlBg0aXLZNv3799Ntvv2nChAk6duyYrrvuOq1du9Y1yfjIkSNuIzXPPvusbDabnn32Wf3yyy+qVq2aYmNj9eKLLxblrgAAikHOfCKHo7JsttEy5r+f/znziXbvzlBcXBwBB5dVpOEmv4eJ4uLiLnsY6tLRonLlymnixImaOHFiYcsDAJQwZWU+EYpWkYYbAIC1/PyztH+/1KhR0c99sep8IhS9UncqOADAN3xxNWS7PUP16x8m2KBACDcAUMoEBgZ6tV1+cDVklCZFeliqIKeFAwDyJywsTHFxcVecdxIYGOi1CbecvYTSpkRMKAYAFExxhQnOXkJpVKSHpf71r3+pdu3aRfkSAIAidOnZSzm3e+DsJZRkHo3cGGO0bNkyffbZZzpx4oScTvd7m6xYsUKSdPPNNxe+QgBAiVAcZy/5Yj4RrMejcDN69Gi99dZb6tq1q8LDw5lbAwCXKM5TpotTUV8NubjnE8GaPAo37777rlasWKHbbrvN2/UAQKnHDR8Lh+CCwvJozo3dbr/iLRUAoCxKTU1VYuJxDRtmLjll2igx8bhSU1N9WyBQRngUbiZNmqTJkyfrjz/+8HY9AFAq5ZxVNGfOWjmd7ofqs7NtmjPnX4qPjyfgAMXAo8NSffv21fvvv6/q1asrMjJSAQEBbs/v2LHDK8UBQGmRM0ckNDRVNpsz1ynToaFpbu0AFB2Pws3gwYOVmJio+++/nwnFAHCRq93wsbTh7CWURh6Fm9WrV2vdunWc6g0AebDSDR85ewmlkUfhJiIiQiEhId6uBQAso6hPmS5OBBeUNh5NKJ4xY4aefPJJJScne7kcAACAwvFo5Ob+++/XmTNnFBUVpQoVKuSaUJyWluaV4gAAAArKo3Aza9YsL5cBAADgHR6fLQUA+C/OKgJKDo/CzcXOnj2baxY9k40BlDWcVQSUHB6Fm8zMTD311FNaunRpnlfbzM7OLnRhAFDaEFyAksGjs6WefPJJ/fvf/9Ybb7yhoKAg/eMf/9DkyZNVq1YtvfPOO96uEQAAIN88GrlZuXKl3nnnHXXp0kVDhgxRx44d1bBhQ9WrV0/vvfee7rvvPm/XCQAAkC8ejdykpaW57goeEhLiOvX75ptv1ubNm71XHQAAQAF5FG4aNGigpKQkSVLTpk21dOlSSRdGdKpUqeK14gAAAArKo3AzZMgQffvtt5KkcePGae7cuQoODtZjjz2msWPHerVAAACAgrAZY0xhN3L48GElJiaqYcOGuvbaa71RV5FJT0+X3W6Xw+HglHUAAEqJgnx/e+U6N/Xq1VO9evUKuykAAIBC8+iwVHZ2tqZMmaLatWurUqVKOnTokCTpueee07x587xaIAAAQEF4FG5efPFFJSQk6G9/+5vbpcRbtmypf/zjH14rDoDnfv5Z+uyzC/8CQFniUbh555139Pe//1333Xef/P39XctbtWqlvXv3eq04AAWTmpqqlJQUzZhxSvXqGXXrJtWrZzRjximlpKTkeUVxALAaj+bc/PLLL2rYsGGu5U6nU+fPny90UQAKLjU1VfHx8XI4KmvWrNEyxiZJcjptGjs2RL/8Ml92e4bi4uK4TQAAS/No5KZ58+b64osvci1ftmyZWrduXeiiABRczg0b09LCZIz7/9rG+CktLdStHQBYlUcjNxMmTNDgwYP1yy+/yOl0asWKFdq3b5/eeecdrVq1yts1AiiA0NBU2WxOt4BjszkVGprmw6oAoPh4NHJz5513auXKldqwYYMqVqyoCRMmaM+ePVq5cqV69Ojh7RoBFIDdnqHY2FWy2ZySLgSb2NhVstszfFwZABQPj69z07FjR61fv96btQDwkujonYqKOqC0tFCFhqYRbACUKR7fWyqvsy5OnTrluqEmAN+y2zNUv/5hgg2AMsejcJOcnKzs7Oxcy8+dO6dffvml0EUBAAB4qkCHpT755BPX7+vWrZPdbnc9zs7O1saNGxUZGem14gAAAAqqQOGmT58+kiSbzabBgwe7PRcQEKDIyEjNmDHDa8UByL+LrxbujXYAUFoVKNw4nRfOvqhfv76++eYbVa1atUiKAlBwYWFhiouLu+J1bAIDA7mAHwDLK1C42b59u1JTU5WUlORa9s4772jixInKzMxUnz59NGfOHAUFBXm9UABXR3ABgAJOKJ48ebJ++OEH1+Pvv/9eDz30kLp3765x48Zp5cqVmjZtmteLBAAAyK8ChZtvv/1Wt9xyi+vx4sWL1a5dO7399tsaM2aMZs+eraVLl3q9SAAAgPwqULj5/fffFR4e7nr8+eefq1evXq7HN9xwg44ePeq96gAAAAqoQOEmPDzcNd8mKytLO3bs0I033uh6PiMjQwEBAd6tEAAAoAAKFG5uu+02jRs3Tl988YXGjx+vChUqqGPHjq7nv/vuO0VFRXm9SAAAgPwq0NlSU6ZM0V133aXOnTurUqVKWrhwods1M+bPn69bb73V60UCAADkl80YYwq6ksPhUKVKleTv7++2PC0tTZUqVSrRFwlLT0+X3W6Xw+FQSEiIr8sBAAD5UJDvb4/uCn7xbRcuFhoa6snmAAAAvMajG2cCAACUVIQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKSUi3MydO1eRkZEKDg5Wu3bt9PXXX1+x/alTpzRixAjVrFlTQUFBaty4sdasWVNM1QIAgJKsnK8LWLJkicaMGaM333xT7dq106xZsxQTE6N9+/apevXqudpnZWWpR48eql69upYtW6batWvr8OHDqlKlSvEXDwAAShybMcb4soB27drphhtuUHx8vCTJ6XQqIiJCjz76qMaNG5er/ZtvvqmXX35Ze/fuVUBAQIFfLz09XXa7XQ6HQyEhIYWuHwAAFL2CfH/79LBUVlaWEhMT1b17d9cyPz8/de/eXdu3b89znU8++UTt27fXiBEjFB4erpYtW2rq1KnKzs7Os/25c+eUnp7u9gMAAKzLp+Hm5MmTys7OVnh4uNvy8PBwHTt2LM91Dh06pGXLlik7O1tr1qzRc889pxkzZuiFF17Is/20adNkt9tdPxEREV7fDwAAUHL4fM5NQTmdTlWvXl1///vf5e/vrzZt2uiXX37Ryy+/rIkTJ+ZqP378eI0ZM8b1OD09nYCDYpWamqqsrKzLPh8YGKiwsLBirAgArM2n4aZq1ary9/fX8ePH3ZYfP35cNWrUyHOdmjVrKiAgQP7+/q5lzZo107Fjx5SVlaXAwEC39kFBQQoKCvJ+8UA+pKamuuaTXUlcXBwBBwC8xKeHpQIDA9WmTRtt3LjRtczpdGrjxo1q3759nuvcdNNNOnDggJxOp2vZTz/9pJo1a+YKNiVZamqqUlJSLvuTmprq6xLhBZeO2DgclZWUFCmHo/IV2wEAPOfzw1JjxozR4MGDdf3116tt27aaNWuWMjMzNWTIEEnSoEGDVLt2bU2bNk2S9Ne//lXx8fEaNWqUHn30Ue3fv19Tp07VyJEjfbkbBcJf82XTjh2ttXLl7TLGTzabU7GxqxQdvdPXZQGA5fg83PTr10+//fabJkyYoGPHjum6667T2rVrXZOMjxw5Ij+//w4wRUREaN26dXrsscd07bXXqnbt2ho1apSeeuopX+1CgeX3r3T+mrcOh6OyK9hIkjF+WrnydkVFHZDdnuHj6gDAWnwebqQLIxRxcXF5Prdp06Zcy9q3b68vv/yyiKsqPg5HZaWlhSk0NJUvOotKSwtzBZscxvgpLS2U/+YA4GUlItyUZRyqKBtCQ1NlszndAo7N5lRoaJoPqwIAayoR95Yqqy53qOLSyaYo/ez2DMXGrpLNdmEifE6QZdQGALyPkRsf4lBF2RIdvVNRUQeUlhaq0NA0/hsDQBEh3PgQhyqs79LLE9jtGXmGmtJ0GQMAKOkINz6Uc6ji0jk3/EVvHWFhYYqLi+MKxQBQjAg3PnDxX+lXOlTBX/PWQHABgOJFuPEB/prH1XA/KgDwHOHGR/hiwuVwBWsAKBxOBQdKGK5gDQCFQ7gBSrjL3WwTAJA3DksBJRhXsAaAgmPkBiihuII1AHiGkZsygDNvSieuYA0AniHcWBxn3pReXMEaADzDYSmL48yb0oubbQKAZxi5KWMcjspKSwtTaGgqX5IlFFewBoDCIdyUIZx5UzpwBWsAKBzCTRlxuTNvoqIOMIJTAhFcAMBzzLkpI6505g0AAFZCuCkjcs68uRhn3gAArIhwU0Zw5g0AoKxgzo3FceYNAKCsIdxYHGfeAADKGsJNGUBwQVHgth4ASirCDYAC47YeAEoyJhQDKDBu6wGgJCPcAAAASyHcACg0h6OykpIi5XBU9nUpAMCcGwCFwz3LAJQ0jNwA8Njl7lnGCA4AXyLcAPAY9ywDUBIRbgB4jHuWASiJCDcACizndh1Xu2cZt/UA4As2Y4zxdRHFKT09XXa7XQ6HQyEhIb4uByi1Lr5C8a+/+ik5uZwiI/9UrVoXgg5XKAbgTQX5/uZsKQAeuTi41KwptWnjw2IA4CKEGwAAUCgl7V5zhBsAAOCxknivOcINYCEl7a8nANZXEu81R7gBLKIk/vUEAL7AqeCARZTEv54AwBcINwAAwGtKwo10OSwFWJTDUVlpaWEKDU11XVQPAIpSSbmRLuEGsKCS8gEDoOy43I10o6IOFPsfWByWAiyGO3UD8IWSdCNdwg1gMSXpAwaA9eXcQ+5qN9ItznvNcVgKsJicD5iLAw536gZQVMLCwhQXF6esrCzVrp2up56yKzvbJn9/o5deSteAAfdyhWIAnrn0Tt2XzrnhTt0AikpOcHn8calfP+nAAalhQ5vq1KkiqUqx18NdwQEL4U7dAKyKu4IDZRR36gYAJhQDAACLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABL4To3AABY0MUX9cyLlS/qSbgBAMBiUlNTFR8ff9V2cXFxlgw4HJYCAMBirjRi40m70oZwAwAALIVwAwCAxTkclZWUFCmHo7KvSykWzLkBAMDCduxorZUrb5cxfrLZnIqNXaXo6J2+LqtIMXIDAIBFORyVXcFGkozx08qVt1t+BIdwAwCARaWlhbmCTQ5j/JSWFuqjiooH4QYAAIsKDU2VzeZ0W2azORUamuajiooH4QYAAIsJDAyUJNntGYqNXeUKODlzbuz2DLd2VmMzxhhfF1Gc0tPTZbfb5XA4FBISUujtleUrQAIASq6Lv59+/dVPycnlFBn5p2rVuhB0Stv3U0G+vzlbqhDK+hUgAQAl18XfOzVrSm3a+LCYYsZhqUIo61eABACgJCoR4Wbu3LmKjIxUcHCw2rVrp6+//jpf6y1evFg2m019+vQp2gIBAECp4fNws2TJEo0ZM0YTJ07Ujh071KpVK8XExOjEiRNXXC85OVlPPPGEOnbsWEyVXl1ZuwIkAAAlkc/DzcyZM/Xwww9ryJAhat68ud58801VqFBB8+fPv+w62dnZuu+++zR58mQ1aNCgGKu9vB07WmvWrNFauHCwZs0arR07Wvu6JAAAyiSfhpusrCwlJiaqe/furmV+fn7q3r27tm/fftn1nn/+eVWvXl0PPfTQVV/j3LlzSk9Pd/vxtrJ6BUgAAEoin4abkydPKjs7W+Hh4W7Lw8PDdezYsTzX2bJli+bNm6e33347X68xbdo02e12109ERESh675UWb0CJAAAJZHPD0sVREZGhgYOHKi3335bVatWzdc648ePl8PhcP0cPXrU63WV1StAAgBQEvn0OjdVq1aVv7+/jh8/7rb8+PHjqlGjRq72Bw8eVHJysmJjY13LnM4LoaJcuXLat2+foqKi3NYJCgpSUFBQEVSf+wqQl9511epXgAQAoCTy+RWK27Vrp7Zt22rOnDmSLoSVunXrKi4uTuPGjXNre/bsWR04cMBt2bPPPquMjAy99tpraty48VWDRFFeodgKV4AEAKAkKlVXKB4zZowGDx6s66+/Xm3bttWsWbOUmZmpIUOGSJIGDRqk2rVra9q0aQoODlbLli3d1q9SpYok5VpeXMryFSABACiJfB5u+vXrp99++00TJkzQsWPHdN1112nt2rWuScZHjhyRn1+pmhoEAAB8yOeHpYqbtw9LAQCAoleQ72+GRAAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKX4/FRwAEDxufjCo3nhwqOwAsINAJQRqampio+Pv2q7uLg4Ag5KNQ5LAUAZcaURG0/aASUV4QYAyiiHo7KSkiLlcFT2dSmAV3FYCgDKoB07WmvlyttljJ9sNqdiY1cpOnpnnm2Zp4PShnADAGWMw1HZFWwkyRg/rVx5u6KiDshuz3BryzwdlEYclgKAMiYtLcwVbHIY46e0tNBcbZmng9KIcAMAZUxoaKpsNqfbMpvNqdDQtKuuyzwdlAYclgKAMsZuz1Bs7Kpcc24uPSR1qYLM0wF8iXADAGVEYGCg6/fo6J2KijqgtLRQhYamuQWbi9vlKMg8HcDXCDcAUEaEhYUpLi7OozOfrjRPh3CDkoZwAwBliKdnNOXM07k44OR3ng5Q3JhQDAC4qpx5OjkTkfM7TwfwBUZuAACXVZh5OoCvEG4AAJdVmHk6gK8QbgAAV0RwQWnDnBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGApZe72C8YYSVJ6erqPKwEAAPmV872d8z1+JWUu3GRkXLiLbUREhI8rAQAABZWRkSG73X7FNjaTnwhkIU6nU7/++qsqV64sm81W6O2lp6crIiJCR48eVUhIiBcqLF3K+v5L9IFEH0j0gUQfSPSBVHR9YIxRRkaGatWqJT+/K8+qKXMjN35+fqpTp47XtxsSElJm38gS+y/RBxJ9INEHEn0g0QdS0fTB1UZscjChGAAAWArhBgAAWArhppCCgoI0ceJEBQUF+boUnyjr+y/RBxJ9INEHEn0g0QdSyeiDMjehGAAAWBsjNwAAwFIINwAAwFIINwAAwFIINwAAwFIIN5eYO3euIiMjFRwcrHbt2unrr7++YvtZs2apSZMmKl++vCIiIvTYY4/p7NmzrucnTZokm83m9tO0adOi3o1CKUgfnD9/Xs8//7yioqIUHBysVq1aae3atYXaZkng7T4oTe+DzZs3KzY2VrVq1ZLNZtNHH3101XU2bdqk6OhoBQUFqWHDhkpISMjVpjS9B4qiD0rTe0AqeB+kpKRowIABaty4sfz8/DR69Og8233wwQdq2rSpgoODdc0112jNmjXeL95LiqIPEhIScr0PgoODi2YHvKCgfbBixQr16NFD1apVU0hIiNq3b69169blalfUnweEm4ssWbJEY8aM0cSJE7Vjxw61atVKMTExOnHiRJ7tFy1apHHjxmnixInas2eP5s2bpyVLlujpp592a9eiRQulpKS4frZs2VIcu+ORgvbBs88+q7feektz5szRjz/+qOHDh+t///d/tXPnTo+36WtF0QdS6XkfZGZmqlWrVpo7d26+2iclJal3797q2rWrdu3apdGjR2vo0KFuH2il7T1QFH0glZ73gFTwPjh37pyqVaumZ599Vq1atcqzzbZt23TvvffqoYce0s6dO9WnTx/16dNHu3fv9mbpXlMUfSBduHLvxe+Dw4cPe6tkrytoH2zevFk9evTQmjVrlJiYqK5duyo2Nrb4vxMMXNq2bWtGjBjhepydnW1q1aplpk2blmf7ESNGmG7durktGzNmjLnppptcjydOnGhatWpVJPUWhYL2Qc2aNU18fLzbsrvuusvcd999Hm/T14qiD0rb+yCHJPPhhx9esc2TTz5pWrRo4basX79+JiYmxvW4tL0HLuatPiit7wFj8tcHF+vcubMZNWpUruV9+/Y1vXv3dlvWrl0788gjjxSywqLnrT5YsGCBsdvtXqurOBW0D3I0b97cTJ482fW4OD4PGLn5P1lZWUpMTFT37t1dy/z8/NS9e3dt3749z3U6dOigxMRE13DaoUOHtGbNGt12221u7fbv369atWqpQYMGuu+++3TkyJGi25FC8KQPzp07l2tItXz58q6/SD3Zpi8VRR/kKC3vg4Lavn27W39JUkxMjKu/Stt7wBNX64McVn0P5Fd++8nqTp8+rXr16ikiIkJ33nmnfvjhB1+XVGScTqcyMjIUGhoqqfg+Dwg3/+fkyZPKzs5WeHi42/Lw8HAdO3Ysz3UGDBig559/XjfffLMCAgIUFRWlLl26uB2WateunRISErR27Vq98cYbSkpKUseOHZWRkVGk++MJT/ogJiZGM2fO1P79++V0OrV+/XqtWLFCKSkpHm/Tl4qiD6TS9T4oqGPHjuXZX+np6frjjz9K3XvAE1frA8na74H8ulw/WeV9kB9NmjTR/Pnz9fHHH+uf//ynnE6nOnTooJ9//tnXpRWJV155RadPn1bfvn0lFd93AuGmEDZt2qSpU6fq9ddf144dO7RixQqtXr1aU6ZMcbXp1auX/vKXv+jaa69VTEyM1qxZo1OnTmnp0qU+rNx7XnvtNTVq1EhNmzZVYGCg4uLiNGTIkKvejt5K8tMHVn8f4Op4D0CS2rdvr0GDBum6665T586dtWLFClWrVk1vvfWWr0vzukWLFmny5MlaunSpqlevXqyvXXa+ga6iatWq8vf31/Hjx92WHz9+XDVq1Mhzneeee04DBw7U0KFDdc011+h///d/NXXqVE2bNk1OpzPPdapUqaLGjRvrwIEDXt+HwvKkD6pVq6aPPvpImZmZOnz4sPbu3atKlSqpQYMGHm/Tl4qiD/JSkt8HBVWjRo08+yskJETly5cvde8BT1ytD/JipfdAfl2un6zyPvBEQECAWrdubbn3weLFizV06FAtXbrU7RBUcX0eEG7+T2BgoNq0aaONGze6ljmdTm3cuFHt27fPc50zZ87kGqHw9/eXJJnL3LLr9OnTOnjwoGrWrOmlyr3Hkz7IERwcrNq1a+vPP//U8uXLdeeddxZ6m75QFH2Ql5L8Piio9u3bu/WXJK1fv97VX6XtPeCJq/VBXqz0HsgvT/rJ6rKzs/X9999b6n3w/vvva8iQIXr//ffVu3dvt+eK7fPAa1OTLWDx4sUmKCjIJCQkmB9//NEMGzbMVKlSxRw7dswYY8zAgQPNuHHjXO0nTpxoKleubN5//31z6NAh8+mnn5qoqCjTt29fV5vHH3/cbNq0ySQlJZmtW7ea7t27m6pVq5oTJ04U+/7lR0H74MsvvzTLly83Bw8eNJs3bzbdunUz9evXN7///nu+t1nSFEUflKb3QUZGhtm5c6fZuXOnkWRmzpxpdu7caQ4fPmyMMWbcuHFm4MCBrvaHDh0yFSpUMGPHjjV79uwxc+fONf7+/mbt2rWuNqXtPVAUfVCa3gPGFLwPjDGu9m3atDEDBgwwO3fuND/88IPr+a1bt5py5cqZV155xezZs8dMnDjRBAQEmO+//75Y9y2/iqIPJk+ebNatW2cOHjxoEhMTTf/+/U1wcLBbm5KkoH3w3nvvmXLlypm5c+ealJQU18+pU6dcbYrj84Bwc4k5c+aYunXrmsDAQNO2bVvz5Zdfup7r3LmzGTx4sOvx+fPnzaRJk0xUVJQJDg42ERER5v/9v//n9qXWr18/U7NmTRMYGGhq165t+vXrZw4cOFCMe1RwBemDTZs2mWbNmpmgoCATFhZmBg4caH755ZcCbbMk8nYflKb3wWeffWYk5frJ2efBgwebzp0751rnuuuuM4GBgaZBgwZmwYIFubZbmt4DRdEHpek9YIxnfZBX+3r16rm1Wbp0qWncuLEJDAw0LVq0MKtXry6eHfJAUfTB6NGjXf8fhIeHm9tuu83s2LGj+HaqgAraB507d75i+xxF/XlgM+Yyx08AAABKIebcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAEAJsGnTJtlsNp06dcrXpQClHuEGKGMeeOAB2Ww2TZ8+3W35Rx99JJvN5npsjNHbb7+t9u3bKyQkRJUqVVKLFi00atSofN/k78yZMxo/fryioqIUHBysatWqqXPnzvr4449dbSIjIzVr1iyv7FtRy+k7m82mgIAA1a9fX08++aTOnj1boO106dJFo0ePdlvWoUMHpaSkyG63e7FioGwi3ABlUHBwsF566SX9/vvveT5vjNGAAQM0cuRI3Xbbbfr000/1448/at68eQoODtYLL7yQr9cZPny4VqxYoTlz5mjv3r1au3at7rnnHqWmpnpzd4pVz549lZKSokOHDunVV1/VW2+9pYkTJxZ6u4GBgapRo4ZbwATgIa/ezAFAiTd48GBz++23m6ZNm5qxY8e6ln/44Ycm5yPh/fffN5LMxx9/nOc2nE5nvl7LbrebhISEyz6f131ocnzxxRfm5ptvNsHBwaZOnTrm0UcfNadPn3Y9/84775g2bdqYSpUqmfDwcHPvvfea48ePu57PuSfO2rVrzXXXXWeCg4NN165dzfHjx82aNWtM06ZNTeXKlc29995rMjMz87U/gwcPNnfeeafbsrvuusu0bt3a9fjkyZOmf//+platWqZ8+fKmZcuWZtGiRW7buHSfk5KSXPVefG+6ZcuWmebNm5vAwEBTr14988orr+SrTqCsY+QGKIP8/f01depUzZkzRz///HOu599//301adJEd9xxR57r53d0oUaNGlqzZo0yMjLyfH7FihWqU6eOnn/+eaWkpCglJUWSdPDgQfXs2VN33323vvvuOy1ZskRbtmxRXFyca93z589rypQp+vbbb/XRRx8pOTlZDzzwQK7XmDRpkuLj47Vt2zYdPXpUffv21axZs7Ro0SKtXr1an376qebMmZOv/bnU7t27tW3bNgUGBrqWnT17Vm3atNHq1au1e/duDRs2TAMHDtTXX38tSXrttdfUvn17Pfzww659joiIyLXtxMRE9e3bV/3799f333+vSZMm6bnnnlNCQoJHtQJliq/TFYDidfHow4033mgefPBBY4z7yE3Tpk3NHXfc4bbeqFGjTMWKFU3FihVN7dq18/Van3/+ualTp44JCAgw119/vRk9erTZsmWLW5t69eqZV1991W3ZQw89ZIYNG+a27IsvvjB+fn7mjz/+yPO1vvnmGyPJZGRkGGP+O3KzYcMGV5tp06YZSebgwYOuZY888oiJiYnJ1/4MHjzY+Pv7m4oVK5qgoCAjyfj5+Zlly5Zdcb3evXubxx9/3PW4c+fOZtSoUW5tLh25GTBggOnRo4dbm7Fjx5rmzZvnq1agLGPkBijDXnrpJS1cuFB79uy5attnnnlGu3bt0oQJE3T69Ol8bb9Tp046dOiQNm7cqHvuuUc//PCDOnbsqClTplxxvW+//VYJCQmqVKmS6ycmJkZOp1NJSUmSLoxsxMbGqm7duqpcubI6d+4sSTpy5Ijbtq699lrX7+Hh4apQoYIaNGjgtuzEiRP52h9J6tq1q3bt2qWvvvpKgwcP1pAhQ3T33Xe7ns/OztaUKVN0zTXXKDQ0VJUqVdK6dety1XU1e/bs0U033eS27KabbtL+/fuVnZ1doG0BZQ3hBijDOnXqpJiYGI0fP95teaNGjbRv3z63ZdWqVVPDhg1VvXr1Ar1GQECAOnbsqKeeekqffvqpnn/+eU2ZMkVZWVmXXef06dN65JFHtGvXLtfPt99+q/379ysqKkqZmZmKiYlRSEiI3nvvPX3zzTf68MMPJSnXdgMCAly/55zldDGbzSan05nv/alYsaIaNmyoVq1aaf78+frqq680b9481/Mvv/yyXnvtNT311FP67LPPtGvXLsXExFxxfwF4VzlfFwDAt6ZPn67rrrtOTZo0cS279957NWDAAH388ce68847vfp6zZs3159//qmzZ88qMDBQgYGBuUYioqOj9eOPP6phw4Z5buP7779Xamqqpk+f7pqv8p///MerdeaHn5+fnn76aY0ZM0YDBgxQ+fLltXXrVt155526//77JUlOp1M//fSTmjdv7lovr32+VLNmzbR161a3ZVu3blXjxo3l7+/v/Z0BLISRG6CMu+aaa3Tfffdp9uzZrmX9+/fXPffco/79++v555/XV199peTkZH3++edasmRJvr9cu3TporfeekuJiYlKTk7WmjVr9PTTT6tr164KCQmRdOE6N5s3b9Yvv/yikydPSpKeeuopbdu2TXFxcdq1a5f279+vjz/+2DWhuG7dugoMDNScOXN06NAhffLJJ1c91FVU/vKXv8jf319z586VdGHUa/369dq2bZv27NmjRx55RMePH3dbJzIy0tWnJ0+ezHPk6PHHH9fGjRs1ZcoU/fTTT1q4cKHi4+P1xBNPFMt+AaUZ4QaAnn/+ebcvWJvNpiVLlmjWrFlas2aNbrnlFjVp0kQPPvigIiIitGXLlnxtNyYmRgsXLtStt96qZs2a6dFHH1VMTIyWLl3q9trJycmKiopStWrVJF2YJ/P555/rp59+UseOHdW6dWtNmDBBtWrVknThEFlCQoI++OADNW/eXNOnT9crr7zixR7Jv3LlyikuLk5/+9vflJmZqWeffVbR0dGKiYlRly5dVKNGDfXp08dtnSeeeEL+/v5q3ry5qlWrlud8nOjoaC1dulSLFy9Wy5YtNWHCBD3//PN5nhEGwJ3NGGN8XQQAAIC3MHIDAAAshXADwGMXn6p96c8XX3zh6/IK5MiRI1fcn4Keyg3AdzgsBcBjV7qBZu3atVW+fPlirKZw/vzzTyUnJ1/2+cjISJUrxwmmQGlAuAEAAJbCYSkAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAp/x8hSiyduWmiPwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVgtJREFUeJzt3XlcVOX+B/DPgAybzOigbIqspuEOLqHlnmiIWd571dJwyzTIUFPzai65prljWqZgC1mm3nJJQ1y6bmkiuUZhuCW4DDHgBjjz/P7wx7mOIM4Mw8wAn/frNS+dc5458z3P9cKn5zznOTIhhAARERERlcnO2gUQERERVQYMTUREREQGYGgiIiIiMgBDExEREZEBGJqIiIiIDMDQRERERGQAhiYiIiIiAzA0ERERERmAoYmIiIjIAAxNRERVTGJiImQyGS5cuGDtUoiqFIYmIjLasWPHEBsbiyZNmsDV1RUNGjTAv/71L/z+++8l2nbu3BkymQwymQx2dnZQKBRo1KgRBg8ejOTkZKO+d+vWrejUqRM8PDzg4uKCwMBA/Otf/8LOnTvNdWolzJ07F//5z39KbD906BBmzJiB3NzcCvvuR82YMUPqS5lMBhcXF4SEhGDq1KnIy8szy3ckJSVh6dKlZjkWUVXD0ERERvvggw+wadMmdOvWDcuWLcPIkSPx008/ITQ0FKdPny7Rvn79+vj888/x2WefYeHChejTpw8OHTqEHj16oH///igqKnrid3744Yfo06cPZDIZJk+ejCVLlqBfv374448/sGHDhoo4TQBlh6aZM2daNDQVW7VqFT7//HMsXrwYjRs3xpw5c9CzZ0+Y41GiDE1Ej1fD2gUQUeUzbtw4JCUlQS6XS9v69++PZs2aYf78+fjiiy/02iuVSgwaNEhv2/z58zFmzBh89NFH8Pf3xwcffPDY77t//z5mzZqF559/Hj/++GOJ/devXy/nGdmOO3fuwMXFpcw2//jHP1CnTh0AwKhRo9CvXz9s3rwZR44cQXh4uCXKJKqWONJEREZr3769XmACgIYNG6JJkyY4d+6cQcewt7fH8uXLERISgvj4eGg0mse2vXnzJvLy8tChQ4dS93t4eOi9v3fvHmbMmIGnnnoKTk5O8Pb2xssvv4zz589LbT788EO0b98e7u7ucHZ2RlhYGL799lu948hkMty+fRvr16+XLokNGTIEM2bMwIQJEwAAAQEB0r6H5xB98cUXCAsLg7OzM1QqFQYMGIDLly/rHb9z585o2rQpjh8/jo4dO8LFxQX//ve/Deq/h3Xt2hUAkJmZWWa7jz76CE2aNIGjoyN8fHwQExOjN1LWuXNnbN++HRcvXpTOyd/f3+h6iKoqjjQRkVkIIXDt2jU0adLE4M/Y29tj4MCBeO+993DgwAFERkaW2s7DwwPOzs7YunUr3nrrLahUqsceU6vVonfv3khJScGAAQPw9ttvIz8/H8nJyTh9+jSCgoIAAMuWLUOfPn3w6quvorCwEBs2bMA///lPbNu2Tarj888/x4gRI9C2bVuMHDkSABAUFARXV1f8/vvv+Oqrr7BkyRJp1Kdu3boAgDlz5uC9997Dv/71L4wYMQI3btzAihUr0LFjR5w4cQK1atWS6lWr1ejVqxcGDBiAQYMGwdPT0+D+K1YcBt3d3R/bZsaMGZg5cya6d++O0aNHIz09HatWrcKxY8dw8OBBODg4YMqUKdBoNLhy5QqWLFkCAKhZs6bR9RBVWYKIyAw+//xzAUCsXbtWb3unTp1EkyZNHvu5LVu2CABi2bJlZR5/2rRpAoBwdXUVvXr1EnPmzBHHjx8v0W7dunUCgFi8eHGJfTqdTvr7nTt39PYVFhaKpk2biq5du+ptd3V1FdHR0SWOtXDhQgFAZGZm6m2/cOGCsLe3F3PmzNHbfurUKVGjRg297Z06dRIAxOrVqx973g+bPn26ACDS09PFjRs3RGZmpvj444+Fo6Oj8PT0FLdv3xZCCJGQkKBX2/Xr14VcLhc9evQQWq1WOl58fLwAINatWydti4yMFH5+fgbVQ1Td8PIcEZXbb7/9hpiYGISHhyM6OtqozxaPZOTn55fZbubMmUhKSkKrVq2wa9cuTJkyBWFhYQgNDdW7JLhp0ybUqVMHb731VoljyGQy6e/Ozs7S3//++29oNBo899xzSE1NNar+R23evBk6nQ7/+te/cPPmTenl5eWFhg0bYu/evXrtHR0dMXToUKO+o1GjRqhbty4CAgLwxhtvIDg4GNu3b3/sXKjdu3ejsLAQcXFxsLP734/9119/HQqFAtu3bzf+RImqIV6eI6Jyyc7ORmRkJJRKJb799lvY29sb9flbt24BANzc3J7YduDAgRg4cCDy8vLw888/IzExEUlJSYiKisLp06fh5OSE8+fPo1GjRqhRo+wfb9u2bcPs2bORlpaGgoICafvDwcoUf/zxB4QQaNiwYan7HRwc9N7Xq1evxPywJ9m0aRMUCgUcHBxQv3596ZLj41y8eBHAg7D1MLlcjsDAQGk/EZWNoYmITKbRaNCrVy/k5ubiv//9L3x8fIw+RvESBcHBwQZ/RqFQ4Pnnn8fzzz8PBwcHrF+/Hj///DM6depk0Of/+9//ok+fPujYsSM++ugjeHt7w8HBAQkJCUhKSjL6HB6m0+kgk8nwww8/lBogH50j9PCIl6E6duwozaMiIsthaCIik9y7dw9RUVH4/fffsXv3boSEhBh9DK1Wi6SkJLi4uODZZ581qY7WrVtj/fr1yMrKAvBgovbPP/+MoqKiEqM6xTZt2gQnJyfs2rULjo6O0vaEhIQSbR838vS47UFBQRBCICAgAE899ZSxp1Mh/Pz8AADp6ekIDAyUthcWFiIzMxPdu3eXtpV3pI2oKuOcJiIymlarRf/+/XH48GFs3LjRpLWBtFotxowZg3PnzmHMmDFQKBSPbXvnzh0cPny41H0//PADgP9deurXrx9u3ryJ+Pj4Em3F/y/+aG9vD5lMBq1WK+27cOFCqYtYurq6lrqApaurKwCU2Pfyyy/D3t4eM2fOLLHYpBACarW69JOsQN27d4dcLsfy5cv1alq7di00Go3eXYuurq5lLv9AVJ1xpImIjDZ+/Hh8//33iIqKQk5OTonFLB9dyFKj0Uht7ty5g4yMDGzevBnnz5/HgAEDMGvWrDK/786dO2jfvj2eeeYZ9OzZE76+vsjNzcV//vMf/Pe//0Xfvn3RqlUrAMBrr72Gzz77DOPGjcPRo0fx3HPP4fbt29i9ezfefPNNvPjii4iMjMTixYvRs2dPvPLKK7h+/TpWrlyJ4OBgnDx5Uu+7w8LCsHv3bixevBg+Pj4ICAhAu3btEBYWBgCYMmUKBgwYAAcHB0RFRSEoKAizZ8/G5MmTceHCBfTt2xdubm7IzMzEli1bMHLkSLzzzjvl6n9j1a1bF5MnT8bMmTPRs2dP9OnTB+np6fjoo4/Qpk0bvf+9wsLC8PXXX2PcuHFo06YNatasiaioKIvWS2SzrHnrHhFVTsW3yj/uVVbbmjVrioYNG4pBgwaJH3/80aDvKyoqEmvWrBF9+/YVfn5+wtHRUbi4uIhWrVqJhQsXioKCAr32d+7cEVOmTBEBAQHCwcFBeHl5iX/84x/i/PnzUpu1a9eKhg0bCkdHR9G4cWORkJAg3dL/sN9++0107NhRODs7CwB6yw/MmjVL1KtXT9jZ2ZVYfmDTpk3i2WefFa6ursLV1VU0btxYxMTEiPT0dL2+KWs5hkcV13fjxo0y2z265ECx+Ph40bhxY+Hg4CA8PT3F6NGjxd9//63X5tatW+KVV14RtWrVEgC4/ADRQ2RCmOFhRURERERVHOc0ERERERmAoYmIiIjIAAxNRERERAZgaCIiIiIyAEMTERERkQEYmoiIiIgMwMUtzUSn0+Hq1atwc3PjYwiIiIgqCSEE8vPz4ePjAzu7sseSGJrM5OrVq/D19bV2GURERGSCy5cvo379+mW2YWgyEzc3NwAPOr2sZ2gRERGR7cjLy4Ovr6/0e7wsDE1mUnxJTqFQMDQRERFVMoZMreFEcCIiIiIDMDQRERERGYChiYiIiMgAnNNERERkRTqdDoWFhdYuo0qTy+VPXE7AEAxNREREVlJYWIjMzEzodDprl1Kl2dnZISAgAHK5vFzHYWgiIiKyAiEEsrKyYG9vD19fX7OMhFBJxYtPZ2VloUGDBuVagJqhiYiIyAru37+PO3fuwMfHBy4uLtYup0qrW7curl69ivv378PBwcHk4zDWEhERWYFWqwWAcl8yoicr7uPiPjcVQxMREZEV8XmlFc9cfczLc2QWarW6zLs/5HI53N3dLVgRERGReTE0Ubmp1WrEx8c/sV1sbCyDExERVVq8PEflZuj6IlyHhIio8hsyZAhkMhlkMhkcHBzg6emJ559/HuvWrTNq6YTExETUqlWr4gqtABxpIiIiqoSsOS2iZ8+eSEhIgFarxbVr17Bz5068/fbb+Pbbb/H999+jRo2qGS+q5lkRERFVYdaeFuHo6AgvLy8AQL169RAaGopnnnkG3bp1Q2JiIkaMGIHFixcjISEBf/75J1QqFaKiorBgwQLUrFkT+/btw9ChQwH8b5L29OnTMWPGDHz++edYtmwZ0tPT4erqiq5du2Lp0qXw8PAw+3kYi5fnyOw0GjdkZvpDo3GzdilERFWSLU6L6Nq1K1q0aIHNmzcDeLAK9/Lly3HmzBmsX78ee/bswcSJEwEA7du3x9KlS6FQKJCVlYWsrCy88847AICioiLMmjULv/76K/7zn//gwoULGDJkiMXOoywcaSKzSk1tha1be0MIO8hkOkRFbUNo6Alrl0VERBbQuHFjnDx5EgAQFxcnbff398fs2bMxatQofPTRR5DL5VAqlZDJZNKIVbFhw4ZJfw8MDMTy5cvRpk0b3Lp1CzVr1rTIeTwOR5rIbDQaNykwAYAQdti6tTdHnIiIqgkhhHS5bffu3ejWrRvq1asHNzc3DB48GGq1Gnfu3CnzGMePH0dUVBQaNGgANzc3dOrUCQBw6dKlCq//SRiayGxyctylwFRMCDvk5KisVBEREVnSuXPnEBAQgAsXLqB3795o3rw5Nm3ahOPHj2PlypUAyr5kePv2bUREREChUODLL7/EsWPHsGXLlid+zlJ4eY7KrXh5epVKDZlMpxecZDIdVKocvXZERFT17NmzB6dOncLYsWNx/Phx6HQ6LFq0SHoQ8TfffKPXXi6Xl3isyW+//Qa1Wo358+fD19cXAPDLL79Y5gQMwNBE5ebu7o7Y2FgUFhaiXr08TJqkhFYrg729wAcf5OGVVwZyRXAioiqkoKAA2dnZeksOzJs3D71798Zrr72G06dPo6ioCCtWrEBUVBQOHjyI1atX6x3D398ft27dQkpKClq0aAEXFxc0aNAAcrkcK1aswKhRo3D69GnMmjXLSmdZEi/PkVm4u7vD29sb48fXwoULMuzdC1y4IMP48bXg7e3NwEREVIXs3LkT3t7e8Pf3R8+ePbF3714sX74c3333Hezt7dGiRQssXrwYH3zwAZo2bYovv/wS8+bN0ztG+/btMWrUKPTv3x9169bFggULULduXSQmJmLjxo0ICQnB/Pnz8eGHH1rpLEuSCSGEtYuoCvLy8qBUKqHRaKBQKKxdDhER2bh79+4hMzMTAQEBcHJyMuqz1l6nqbIpq6+N+f3Ny3NERESVzMPTIh6H0yLMj6GJiIioEmIgsjzOaSIiIiIyAEMTERERkQEYmoiIiIgMwDlNZNPUajUnOhIRkU1gaCKbxVtqiYjIlvDyHNmsR0eYNBo3ZGb6l3gAsC08j4iIiKo+jjRRpZCa2gpbt/aGEHaQyXSIitqG0NAT1i6LiIiqEY40kc3TaNykwAQAQthh69beJUaciIio8tu3bx9kMhlyc3MN/oy/vz+WLl1aYTUVY2gim5eT4y4FpmJC2CEnR2WlioiIqq8hQ4ZAJpNh1KhRJfbFxMRAJpNhyJAhli/MAhiayOapVGrIZDq9bTKZDipVjpUqIiKq3nx9fbFhwwbcvXtX2nbv3j0kJSWhQYMGVqysYjE0kc1TKvMRFbVNCk7Fc5qUynwrV0ZEVD2FhobC19cXmzdvlrZt3rwZDRo0QKtWraRtBQUFGDNmDDw8PODk5IRnn30Wx44d0zvWjh078NRTT8HZ2RldunTBhQsXSnzfgQMH8Nxzz8HZ2Rm+vr4YM2YMbt++XWHn9zgMTVQphIaeQFzcUkRHJyIubikngRMRPeTKFWDv3gd/WsqwYcOQkJAgvV+3bh2GDh2q12bixInYtGkT1q9fj9TUVAQHByMiIgI5OQ+uFFy+fBkvv/wyoqKikJaWhhEjRuDdd9/VO8b58+fRs2dP9OvXDydPnsTXX3+NAwcOIDY2tuJP8hEMTTZKrVYjKyvrsS+1Wm3tEiucXC7Xe69U5iMg4GKJEaZH2xERVSdr1wJ+fkDXrg/+XLvWMt87aNAgHDhwABcvXsTFixdx8OBBDBo0SNp/+/ZtrFq1CgsXLkSvXr0QEhKCNWvWwNnZGWv/v8hVq1YhKCgIixYtQqNGjfDqq6+WmA81b948vPrqq4iLi0PDhg3Rvn17LF++HJ999hnu3btnmZP9f1xywAZxUccH3N3dERsbyxXBiYge48oVYORIQPf/0z51OuCNN4CICKB+/Yr97rp16yIyMhKJiYkQQiAyMhJ16tSR9p8/fx5FRUXo0KGDtM3BwQFt27bFuXPnAADnzp1Du3bt9I4bHh6u9/7XX3/FyZMn8eWXX0rbhBDQ6XTIzMzE008/XRGnVyqGJhtk6GKN1WFRRwYiIqLH++OP/wWmYlotkJFR8aEJeHCJrvgy2cqVKyvkO27duoU33ngDY8aMKbHP0pPOrXp5btWqVWjevDkUCgUUCgXCw8Pxww8/SPs7d+4MmUym93r0FsdLly4hMjISLi4u8PDwwIQJE3D//n29Nvv27UNoaCgcHR0RHByMxMTEErWsXLkS/v7+cHJyQrt27XD06NEKOWciIiJzadgQsHvkN7m9PRAcbJnv79mzJwoLC1FUVISIiAi9fUFBQZDL5Th48KC0raioCMeOHUNISAgA4Omnny7x+/bIkSN670NDQ3H27FkEBweXeFl6eoZVQ1P9+vUxf/58HD9+HL/88gu6du2KF198EWfOnJHavP7663pzeRYsWCDt02q1iIyMRGFhIQ4dOoT169cjMTER06ZNk9pkZmYiMjISXbp0QVpaGuLi4jBixAjs2rVLavP1119j3LhxmD59OlJTU9GiRQtERETg+vXrlumIJ3jc40OIiKh6q18f+OSTB0EJePDnxx9bZpTpwffZ49y5czh79izsi4v4f66urhg9ejQmTJiAnTt34uzZs3j99ddx584dDB8+HAAwatQo/PHHH5gwYQLS09ORlJRUYmBj0qRJOHToEGJjY5GWloY//vgD3333nVUmglv18lxUVJTe+zlz5mDVqlU4cuQImjRpAgBwcXGBl5dXqZ//8ccfcfbsWezevRuenp5o2bIlZs2ahUmTJmHGjBmQy+VYvXo1AgICsGjRIgAPUu2BAwewZMkSKRUvXrwYr7/+ujTrf/Xq1di+fTvWrVtXYha/pfHxIUREVJbhwx/MYcrIeDDCZKnAVEyhUDx23/z586HT6TB48GDk5+ejdevW2LVrF2rXrg3gweW1TZs2YezYsVixYgXatm2LuXPnYtiwYdIxmjdvjv3792PKlCl47rnnIIRAUFAQ+vfvX+Hn9iiZEEJY/FtLodVqsXHjRkRHR+PEiRMICQlB586dcebMGQgh4OXlhaioKLz33ntwcXEBAEybNg3ff/890tLSpONkZmYiMDAQqampaNWqFTp27IjQ0FC95dUTEhIQFxcHjUaDwsJCuLi44Ntvv0Xfvn2lNtHR0cjNzcV3331Xar0FBQUoKCiQ3ufl5cHX1xcajabMf0CGyMrKwieffAKNxg1Ll8bprYYtk+kQF7cUSmU+Ro4cCW9v73J9FxERWce9e/eQmZmJgIAAODk5WbucKq2svs7Ly4NSqTTo97fVJ4KfOnUK4eHhuHfvHmrWrIktW7ZI1zpfeeUV+Pn5wcfHBydPnsSkSZOQnp4uLaaVnZ0NT09PveMVv8/Ozi6zTV5eHu7evYu///4bWq221Da//fbbY+ueN28eZs6cWb6Tf4KyHh/ChR2JiIgsy+qhqVGjRkhLS4NGo8G3336L6Oho7N+/HyEhIRg5cqTUrlmzZvD29ka3bt1w/vx5BAUFWbFqYPLkyRg3bpz0vnikyZyKHx/y6EgTHx9CRERkeVZf3FIulyM4OBhhYWGYN28eWrRogWXLlpXatngth4yMDACAl5cXrl27ptem+H3xPKjHtVEoFHB2dkadOnVgb29fapvHzaUCAEdHR+muv+KXuRTfDfCkx4dwUUciIiLLsfpI06N0Op3eXKGHFc9dKp7HEx4ejjlz5uD69evw8PAAACQnJ0OhUEiX+MLDw7Fjxw694yQnJ0uLZ8nlcoSFhSElJUWa06TT6ZCSkmKVmflAyUUdp027gQsXasDf/z58fNoAaMNFHYmIiCzMqqFp8uTJ6NWrFxo0aID8/HwkJSVh37592LVrF86fP4+kpCS88MILcHd3x8mTJzF27Fh07NgRzZs3BwD06NEDISEhGDx4MBYsWIDs7GxMnToVMTExcHR0BPDgdsb4+HhMnDgRw4YNw549e/DNN99g+/btUh3jxo1DdHQ0WrdujbZt22Lp0qW4fft2iWfoWNLDgcjbGwgLs1opRERUgWzkfqwqzVx9bNXQdP36dbz22mvIysqCUqlE8+bNsWvXLjz//PO4fPkydu/eLQUYX19f9OvXD1OnTpU+b29vj23btmH06NEIDw+Hq6sroqOj8f7770ttAgICsH37dowdOxbLli1D/fr18emnn+otwtW/f3/cuHED06ZNQ3Z2Nlq2bImdO3eWmBxORERkLsXrGhUWFsLZ2dnK1VRtxVduHl1Lylg2s+RAZWfMLYtERERCCFy6dAlFRUXw8fGB3aNLe5NZ6HQ6XL16FQ4ODmjQoAFkMpne/kq15AAREVF1JJPJ4O3tjczMTFy8eNHa5VRpdnZ2pQYmYzE0ERERWYlcLkfDhg2rxQPYrUkul5tlJI+hiYiIyIrs7Oy4InglwQuoRERERAZgaCIiIiIyAEMTERERkQEYmoiIiIgMwNBEREREZACGJiIiIiIDMDQRERERGYChiYiIiMgADE1EREREBmBoIiIiIjIAQxMRERGRARiaiIiIiAzA0ERERERkAIYmIiIiIgMwNBEREREZgKGJiIiIyAAMTUREREQGYGgispIrV4C9ex/8SUREto+hicgK1q4F/PyArl0f/Ll2rbUrIiKiJ2FoIrKwK1eAkSMBne7Be50OeOMNjjgREdk6hiYiC1Kr1ThyRC0FpmJaLfDzz2qo1WrrFEZERE/E0ERkIWq1GvHx8Th0aD1kMv3UJJPpcPDgesTHxzM4ERHZKIYmIgspLCwEACiV+YiK2iYFJ5lMh6iobVAq8/XaERGRbalh7QKIqqPQ0BMICspATo4KKlWOFJiIiMh2MTQRWYlSmc+wRERUifDyHBEREZEBGJqIiIiIDMDQRERERGQAhiYiIiIiAzA0EVmIXC43azsiIrIs3j1HZCHu7u6IjY0tcx0muVwOd3d3C1ZFRESGYmgisiAGIiKiyouX54iIiIgMwNBEREREZACGJiIiIiIDMDQRERERGYChiYiIiMgADE1EREREBmBoIiIiIjIAQxMRERGRARiaiIiIiAzA0ERERERkAIYmIiIiIgMwNBEREREZgKGJiIiIyAAMTUREREQGYGgiIiIiMgBDExEREZEBGJqIiIiIDMDQRERERGQAhiYiIiIiAzA0ERERERmAoYmIiIjIAAxNRERERAZgaCIiIiIyAEMTERERkQGsGppWrVqF5s2bQ6FQQKFQIDw8HD/88IO0/969e4iJiYG7uztq1qyJfv364dq1a3rHuHTpEiIjI+Hi4gIPDw9MmDAB9+/f12uzb98+hIaGwtHREcHBwUhMTCxRy8qVK+Hv7w8nJye0a9cOR48erZBzJiIiosrJqqGpfv36mD9/Po4fP45ffvkFXbt2xYsvvogzZ84AAMaOHYutW7di48aN2L9/P65evYqXX35Z+rxWq0VkZCQKCwtx6NAhrF+/HomJiZg2bZrUJjMzE5GRkejSpQvS0tIQFxeHESNGYNeuXVKbr7/+GuPGjcP06dORmpqKFi1aICIiAtevX7dcZxAREZFtEzamdu3a4tNPPxW5ubnCwcFBbNy4Udp37tw5AUAcPnxYCCHEjh07hJ2dncjOzpbarFq1SigUClFQUCCEEGLixImiSZMmet/Rv39/ERERIb1v27atiImJkd5rtVrh4+Mj5s2bZ3DdGo1GABAajca4EyYiIiKrMeb3t83MadJqtdiwYQNu376N8PBwHD9+HEVFRejevbvUpnHjxmjQoAEOHz4MADh8+DCaNWsGT09PqU1ERATy8vKk0arDhw/rHaO4TfExCgsLcfz4cb02dnZ26N69u9SmNAUFBcjLy9N7ERERUdVl9dB06tQp1KxZE46Ojhg1ahS2bNmCkJAQZGdnQy6Xo1atWnrtPT09kZ2dDQDIzs7WC0zF+4v3ldUmLy8Pd+/exc2bN6HVakttU3yM0sybNw9KpVJ6+fr6mnT+REREVDlYPTQ1atQIaWlp+PnnnzF69GhER0fj7Nmz1i7riSZPngyNRiO9Ll++bO2SiIiIqALVsHYBcrkcwcHBAICwsDAcO3YMy5YtQ//+/VFYWIjc3Fy90aZr167By8sLAODl5VXiLrfiu+sebvPoHXfXrl2DQqGAs7Mz7O3tYW9vX2qb4mOUxtHREY6OjqadNBEREVU6Vh9pepROp0NBQQHCwsLg4OCAlJQUaV96ejouXbqE8PBwAEB4eDhOnTqld5dbcnIyFAoFQkJCpDYPH6O4TfEx5HI5wsLC9NrodDqkpKRIbYiIiIisOtI0efJk9OrVCw0aNEB+fj6SkpKwb98+7Nq1C0qlEsOHD8e4ceOgUqmgUCjw1ltvITw8HM888wwAoEePHggJCcHgwYOxYMECZGdnY+rUqYiJiZFGgUaNGoX4+HhMnDgRw4YNw549e/DNN99g+/btUh3jxo1DdHQ0WrdujbZt22Lp0qW4ffs2hg4dapV+ISIiIhtkgbv5HmvYsGHCz89PyOVyUbduXdGtWzfx448/Svvv3r0r3nzzTVG7dm3h4uIiXnrpJZGVlaV3jAsXLohevXoJZ2dnUadOHTF+/HhRVFSk12bv3r2iZcuWQi6Xi8DAQJGQkFCilhUrVogGDRoIuVwu2rZtK44cOWLUuXDJASIiosrHmN/fMiGEsHZwqwry8vKgVCqh0WigUCisXQ4REREZwJjf3zY3p4mIiIjIFjE0ERERERmAoYmIiIjIAAxNRERERAZgaCIiIiIyAEMTERERkQEYmoiIiIgMwNBEREREZACGJiIiIiIDMDQRERERGYChiYiIiMgADE1EREREBmBoIiIiIjKAyaHJ398f77//Pi5dumTOeoiIiIhsksmhKS4uDps3b0ZgYCCef/55bNiwAQUFBeasjYiIiMhmlCs0paWl4ejRo3j66afx1ltvwdvbG7GxsUhNTTVnjURERERWJxNCCHMcqKioCB999BEmTZqEoqIiNGvWDGPGjMHQoUMhk8nM8RU2LS8vD0qlEhqNBgqFwtrlEBERkQGM+f1do7xfVlRUhC1btiAhIQHJycl45plnMHz4cFy5cgX//ve/sXv3biQlJZX3a4iIiIisyuTQlJqaioSEBHz11Vews7PDa6+9hiVLlqBx48ZSm5deeglt2rQxS6FERERE1mRyaGrTpg2ef/55rFq1Cn379oWDg0OJNgEBARgwYEC5CiQiIiKyBSaHpj///BN+fn5ltnF1dUVCQoKpX0FERERkM0y+e65Lly5Qq9Ultufm5iIwMLBcRRERERHZGpND04ULF6DVaktsLygowF9//VWuooiIiIhsjdGX577//nvp77t27YJSqZTea7VapKSkwN/f3yzFEREREdkKo0NT3759AQAymQzR0dF6+xwcHODv749FixaZpTgiIiIiW2F0aNLpdAAe3Bl37Ngx1KlTx+xFEREREdkak++ey8zMNGcdRERERDbN5ND0/vvvl7l/2rRpph6aiIiIyOaYHJq2bNmi976oqAiZmZmoUaMGgoKCGJqIiIioSjE5NJ04caLEtry8PAwZMgQvvfRSuYoiIiIisjUmr9NUGoVCgZkzZ+K9994z52GJiIiIrM6soQkANBoNNBqNuQ9LREREZFUmX55bvny53nshBLKysvD555+jV69e5S6MiIiIyJaYHJqWLFmi997Ozg5169ZFdHQ0Jk+eXO7CiIiIiGwJ12kiIiIiMkC55jQJIXDz5k2o1Wpz1UNERERkk0wKTdnZ2XjttddQu3ZteHp6wsPDA7Vr18awYcNw7do1c9dIREREZHVGX57Ly8tD+/btcevWLQwdOhSNGzeGEAJnz57FV199hQMHDiA1NRU1a9asiHqJiIiIrMLo0LRs2TLY29vjzJkzqFu3rt6+qVOnokOHDli+fDn+/e9/m61IIiIiImsz+vLc9u3b8e9//7tEYAIADw8PTJ48GVu3bjVLcUREZblyBdi798GfREQVzejQ9Pvvv6N9+/aP3d++fXukp6eXqygioidZuxbw8wO6dn3w59q11q6IiKo6o0NTXl4eatWq9dj9tWrVQl5eXnlqIiIq05UrwMiRgE734L1OB7zxBkeciKhiGR2ahBCws3v8x2QyGYQQ5SqKiKgsf/zxv8BUTKsFMjKsUw8RVQ9GTwQXQuCpp56CTCZ77H4iooqiVquhUNyHnZ0HdLr//Ryytxdwc7sOtboG3N3drVghEVVVRoemhISEiqiDiOiJ1Go14uPjAQC9e7fC1q29IYQdZDIdIiO3Ydu2EwCA2NhYBiciMjujQ1N0dLRR7b/66iv06dMHrq6uxn4VEZGewsJC6e+hoScQFJSBnBwVVKocKJX5pbYjIjKXcj1GxRBvvPEGVwknogqhVOYjIOCiXmAiIqooFR6aOMeJiIiIqoIKD01ERJURF84kokcxNBERPYILZxJRaRiaiIgewoUziehxGJqIiB7ChTOJ6HFMCk1arRY//fQTcnNzn9jWz88PDg4OpnwNEZEeuVxu1naPerBw5jXY2enfwPJg4cxrUKvVJh2XiKoGmTDx9jYnJyecO3cOAQEB5q6pUsrLy4NSqYRGo4FCobB2OURVllqtLnMdJrlcbtLClg8vnJmaqr9wZlTUNoSGcuFMoqrImN/fRi9uWaxp06b4888/GZqIyKIqKrA8GsSK/3Py0f+s5MKZRNWXyXOaZs+ejXfeeQfbtm1DVlYW8vLy9F5ERLbscUsKaDRu2Lq1N/7349EOW7f2hkbjZukSicjGmDzS9MILLwAA+vTpo/fwXiEEZDIZtFpt+asjIqoAa9f+7w45Ozvgk0+A//+Rhpwcdwih/9+TQtghJ0fFlceJqjmTQ9PevXvNWQcRkUU8bkmB5ORbAACVSg2ZTKcXnGQyHVSqHABAbm4uvL29LV43EVmfyaGpU6dO5qyDiKjCqdVqHDkC6HT686K0WuDkyTsAHjzPLipqW4mJ4MWjTPfv37d43URkG8q1TtN///tfDBo0CO3bt8dff/0FAPj8889x4MABgz4/b948tGnTBm5ubvDw8EDfvn2Rnp6u16Zz586QyWR6r1GjRum1uXTpEiIjI+Hi4gIPDw9MmDChxA+2ffv2ITQ0FI6OjggODkZiYmKJelauXAl/f384OTmhXbt2OHr0qBG9QUS2rPjuuEOH1kMm01+ISSbT4eLFFOl9aOgJxMUtRXR0IuLilkp3zhFR9WZyaNq0aRMiIiLg7OyM1NRUFBQUAAA0Gg3mzp1r0DH279+PmJgYHDlyBMnJySgqKkKPHj1w+/ZtvXavv/46srKypNeCBQukfVqtFpGRkSgsLMShQ4ewfv16JCYmYtq0aVKbzMxMREZGokuXLkhLS0NcXBxGjBiBXbt2SW2+/vprjBs3DtOnT0dqaipatGiBiIgIXL9+3dQuIiIbUnzXW/FIUnFwenQkqZhSmY+AgIucx0REEpPXaWrVqhXGjh2L1157DW5ubvj1118RGBiIEydOoFevXsjOzjb6mDdu3ICHhwf279+Pjh07Angw0tSyZUssXbq01M/88MMP6N27N65evQpPT08AwOrVqzFp0iTcuHEDcrkckyZNwvbt23H69GnpcwMGDEBubi527twJAGjXrh3atGkjrdOi0+ng6+uLt956C+++++4Ta+c6TUS2LSsrC5988on0XqNxQ06OCipVjlHBqH///mjcuHFFlEhEVmDM72+TR5rS09OlYPMwpVJp0ErhpdFoNAAAlUqlt/3LL79EnTp10LRpU0yePBl37tyR9h0+fBjNmjWTAhMAREREIC8vD2fOnJHadO/eXe+YEREROHz4MIAH/wV6/PhxvTZ2dnbo3r271OZRBQUFXGaBqBIzdSRJqVRWUEVEZOtMngju5eWFjIwM+Pv7620/cOAAAgMDjT6eTqdDXFwcOnTogKZNm0rbX3nlFfj5+cHHxwcnT57EpEmTkJ6ejs2bNwMAsrOz9QITAOl98WjX49rk5eXh7t27+Pvvv6HVaktt89tvv5Va77x58zBz5kyjz5OIiIgqJ5ND0+uvv463334b69atg0wmw9WrV3H48GG88847eO+994w+XkxMDE6fPl1iEvnIkSOlvzdr1gze3t7o1q0bzp8/j6CgIFPLL7fJkydj3Lhx0vu8vDz4+vparR4iIiKqWCaHpnfffRc6nQ7dunXDnTt30LFjRzg6OuKdd97BW2+9ZdSxYmNjsW3bNvz000+oX79+mW3btWsHAMjIyEBQUBC8vLxK3OV27do1AA9Gw4r/LN72cBuFQgFnZ2fY29vD3t6+1DbFx3iUo6MjHB0dDT9JIqoSTH0YMBFVfiaHJplMhilTpmDChAnIyMjArVu3EBISgpo1axp8DCEE3nrrLWzZsgX79u0z6Dl2aWlpACAtLhceHo45c+bg+vXr8PDwAAAkJydDoVAgJCREarNjxw694yQnJyM8PBzAgx+CYWFhSElJQd++fQE8uFyYkpKC2NhYg8+HiCq/l19+GXXq1Cl1n6kPAyaiqsHk0FRMLpdL4cRYMTExSEpKwnfffQc3NzdpDpJSqYSzszPOnz+PpKQkvPDCC3B3d8fJkycxduxYdOzYEc2bNwcA9OjRAyEhIRg8eDAWLFiA7OxsTJ06FTExMdJI0KhRoxAfH4+JEydi2LBh2LNnD7755hts375dqmXcuHGIjo5G69at0bZtWyxduhS3b9/G0KFDy9lDRGQLDB0h8vHxYTAiolKZvOTAvXv3sGLFCuzduxfXr1+HTqe/WFxqauqTv/yhZ9Y9LCEhAUOGDMHly5cxaNAgnD59Grdv34avry9eeuklTJ06Ve+2wIsXL2L06NHYt28fXF1dER0djfnz56NGjf9lwn379mHs2LE4e/Ys6tevj/feew9DhgzR+974+HgsXLgQ2dnZaNmyJZYvXy5dDnwSLjlAZPvUarW0XlNpOJJEVP0Y8/vb5ND06quv4scff8Q//vEPeHp6lghA06dPN+WwlRZDExERUeVjzO9vky/Pbdu2DTt27ECHDh1MPQQRkdVcuQL88QfQsCHwhPtPiIgAlGNxy3r16sHNzc2ctRARVSi1Wo2srCwsWpQLPz+Brl0BPz+BRYtykZWVBbVabe0SiciGmTzStGjRIkyaNAmrV6+Gn5+fOWsiIjK74gf2ajRuWLo0DkI8mFKg08kwYYICf/21DkplPmJjYzmviYhKZXJoat26Ne7du4fAwEC4uLjAwcFBb39OTk65iyMiMpfiCeA5Oe4QQn+QXQg75OSooFTmlzlRnIiqN5ND08CBA/HXX39h7ty5pU4EJyKyRSqVGjKZTi84yWQ6qFT8Dz0iKpvJoenQoUM4fPgwWrRoYc56iIgqlFKZj6iobdi6tTeEsINMpkNU1DajH9xLRNWPyaGpcePGuHv3rjlrISKyiNDQEwgKykBOjgoqVQ4DExEZxOS75+bPn4/x48dj3759UKvVyMvL03sREdkypTIfAQEXGZiIyGAmjzT17NkTANCtWze97UIIyGQyaLXa8lVGREREZENMDk179+41Zx1ERERENs2k0FRUVIT3338fq1evRsOGDc1dExGR2Rn6wF5D2xFR9WNSaHJwcMDJkyfNXQsRUYVxd3dHbGwsH9hLRCYz+fLcoEGDsHbtWsyfP9+c9RARVRgGIiIqD5ND0/3797Fu3Trs3r0bYWFhcHV11du/ePHichdHREREZCtMDk2nT59GaGgoAOD333/X28fVwYmIiKiq4d1zRERERAYweXHLh125cgVXrlwxx6GIiIiIbJLJoUmn0+H999+HUqmEn58f/Pz8UKtWLcyaNQs6nc6cNRIRERFZncmX56ZMmSLdPdehQwcAwIEDBzBjxgzcu3cPc+bMMVuRRERERNYmE0IIUz7o4+OD1atXo0+fPnrbv/vuO7z55pv466+/zFJgZZGXlwelUgmNRgOFQmHtcoiIiMgAxvz+NvnyXE5ODho3blxie+PGjZGTk2PqYYmIiIhsksmhqUWLFoiPjy+xPT4+Hi1atChXUURERES2xuQ5TQsWLEBkZCR2796N8PBwAMDhw4dx+fJl7Nixw2wFEhEREdkCk0eaOnXqhN9//x0vvfQScnNzkZubi5dffhnp6el47rnnzFkjERERkdUZNdL08ssvIzExEQqFAp999hn69+/Pu+SIiIioWjBqpGnbtm24ffs2AGDo0KHQaDQVUhQRERGRrTFqpKlx48aYPHkyunTpAiEEvvnmm8fenvfaa6+ZpUAiIiIiW2DUOk2HDh3CuHHjcP78eeTk5MDNza3Uh/PKZLJqt+wA12kiIiKqfIz5/W3y4pZ2dnbIzs6Gh4eHSUVWNQxNRERElY9FFrfMzMxE3bp1Tf04ERERUaVicmjy8/PDgQMHMGjQIISHh0uPTfn8889x4MABsxVIREREZAtMDk2bNm1CREQEnJ2dceLECRQUFAAANBoN5s6da7YCiYiIiGyByaFp9uzZWL16NdasWQMHBwdpe4cOHZCammqW4oiIiIhshcmhKT09HR07diyxXalUIjc3tzw1EREREdkck0OTl5cXMjIySmw/cOAAAgMDy1UUERERka0xOTS9/vrrePvtt/Hzzz9DJpPh6tWr+PLLLzF+/HiMHj3anDUSERERWZ1RK4I/7N1334VOp0O3bt1w584ddOzYEY6OjpgwYQJGjBhhzhqJiIiIrM7kxS2LFRYWIiMjA7du3UJISAg+/vhjLFy4ENnZ2eaqsVLg4pZE1ZdarUZhYeFj98vlcri7u1uwIiIylDG/v40eaSooKMCMGTOQnJwsjSz17dsXCQkJeOmll2Bvb4+xY8eaXDwRUWWiVqsRHx//xHaxsbEMTkSVnNGhadq0afj444/RvXt3HDp0CP/85z8xdOhQHDlyBIsWLcI///lP2NvbV0StREQ2p6wRJlPaEZHtMjo0bdy4EZ999hn69OmD06dPo3nz5rh//z5+/fXXUh/eS0RUnWg0bsjJcYdKpYZSmW/tcojIjIwOTVeuXEFYWBgAoGnTpnB0dMTYsWMZmIio2ktNbYWtW3tDCDvIZDpERW1DaOgJa5dFRGZi9JIDWq0Wcrlcel+jRg3UrFnTrEUREVU2Go2bFJgAQAg7bN3aGxqNm5UrIyJzMXqkSQiBIUOGwNHREQBw7949jBo1Cq6urnrtNm/ebJ4KiYgqgZwcdykwFRPCDjk5Kl6mI6oijA5N0dHReu8HDRpktmKIiCorlUoNmUynF5xkMh1UqhwrVkVE5mR0aEpISKiIOoiIKjWlMh9RUdtKzGniKBNR1WHyiuBERAS9OZ6hoScQFJSBnBwVVKocvcD0cDsiqpwYmoiIysHd3R2xsbE2tyI4VyknMj+GJiKicrK18MFVyokqhtFLDhARkW3jKuVEFYOhiYiIiMgADE1ERFWcRuOGzEx/LrRJVE6c00REVIXx0S5E5sORJiKiKoqPdiEyL4YmIqIqqqxHuxCR8RiaiIiqqOJHuzyMj3YhMh1DExFRFVO8+njxo12Kg9Ojj3bhKuVExpEJIYS1i6gK8vLyoFQqodFooFAorF0OEVVzD68IfvWqHS5cqAF///vw8XkQoLgiONEDxvz+5t1zRERVnI+PDj4+XMiSqLysenlu3rx5aNOmDdzc3ODh4YG+ffsiPT1dr829e/cQExMDd3d31KxZE/369cO1a9f02ly6dAmRkZFwcXGBh4cHJkyYgPv37+u12bdvH0JDQ+Ho6Ijg4GAkJiaWqGflypXw9/eHk5MT2rVrh6NHj5r9nImIKlrxY1Q++eSTx77i4+OhVqutXSpRpWLV0LR//37ExMTgyJEjSE5ORlFREXr06IHbt29LbcaOHYutW7di48aN2L9/P65evYqXX35Z2q/VahEZGYnCwkIcOnQI69evR2JiIqZNmya1yczMRGRkJLp06YK0tDTExcVhxIgR2LVrl9Tm66+/xrhx4zB9+nSkpqaiRYsWiIiIwPXr1y3TGUREZsLHqBBVDJua03Tjxg14eHhg//796NixIzQaDerWrYukpCT84x//AAD89ttvePrpp3H48GE888wz+OGHH9C7d29cvXoVnp6eAIDVq1dj0qRJuHHjBuRyOSZNmoTt27fj9OnT0ncNGDAAubm52LlzJwCgXbt2aNOmjfSQS51OB19fX7z11lt49913n1g75zQRka3IysrCJ5988sR2I0eOhLe3t9HHf3i+VGk4X4oqk0o7p0mj0QAAVKoHa4gcP34cRUVF6N69u9SmcePGaNCggRSaDh8+jGbNmkmBCQAiIiIwevRonDlzBq1atcLhw4f1jlHcJi4uDsCD/9o6fvw4Jk+eLO23s7ND9+7dcfjw4VJrLSgoQEFBgfQ+Ly+vfCdPRFQJFF/6e5LY2FgGJ6pybGbJAZ1Oh7i4OHTo0AFNmzYFAGRnZ0Mul6NWrVp6bT09PZGdnS21eTgwFe8v3ldWm7y8PNy9exc3b96EVqsttU3xMR41b948KJVK6eXr62vaiRMRVSK89EfVmc2EppiYGJw+fRobNmywdikGmTx5MjQajfS6fPmytUsiIioVH9hLZB42cXkuNjYW27Ztw08//YT69etL2728vFBYWIjc3Fy90aZr167By8tLavPoXW7Fd9c93ObRO+6uXbsGhUIBZ2dn2Nvbw97evtQ2xcd4lKOjIxwdHU07YSIiC+EDe4nMx6ojTUIIxMbGYsuWLdizZw8CAgL09oeFhcHBwQEpKSnStvT0dFy6dAnh4eEAgPDwcJw6dUrvLrfk5GQoFAqEhIRIbR4+RnGb4mPI5XKEhYXptdHpdEhJSZHaEBFVNpZ4YC9Hsag6sepIU0xMDJKSkvDdd9/Bzc1Nmj+kVCrh7OwMpVKJ4cOHY9y4cVCpVFAoFHjrrbcQHh6OZ555BgDQo0cPhISEYPDgwViwYAGys7MxdepUxMTESCNBo0aNQnx8PCZOnIhhw4Zhz549+Oabb7B9+3aplnHjxiE6OhqtW7dG27ZtsXTpUty+fRtDhw61fMcQEZVD8eNRynpgr1KZX+7HqHAUi6odYUUASn0lJCRIbe7evSvefPNNUbt2beHi4iJeeuklkZWVpXecCxcuiF69eglnZ2dRp04dMX78eFFUVKTXZu/evaJly5ZCLpeLwMBAve8otmLFCtGgQQMhl8tF27ZtxZEjRww+F41GIwAIjUZjVB8QEVWEmzdvil9+yRZ2djoBCOllb68Tv/ySLW7evGnSca9evSpmzJghxo5dJGQyrd6xZTKtGDt2kZgxY4a4evWqmc+IqGIY8/vbptZpqsy4ThMR2aK1a4E33gC0WsDeHvj4Y2D4cNOPV7wGVGamP9avjy6xPzo6EQEBF01eA4rI0irtOk1ERGRew4cDERFARgYQHAw8dK+NSYov6alUashkOr3LfzKZDipVjl47oqqEI01mwpEmIqouilcET0pyxqRJSmi1MtjbC3zwgQavvHKXK4JTpWLM72+GJjNhaCKi6ujKFfONYhFZAy/PERGRRdSvz7BE1YfNrAhOREREZMsYmoiIiIgMwNBEREREZACGJiIiIiIDMDQRERERGYChiYiIiMgADE1EREREBmBoIiIiIjIAQxMRERGRAbgiOBERVWrFz8J7HD4Lj8yFoYmIiCottVqN+Pj4J7aLjY1lcKJy4+U5IiKqtMoaYTKlHVFZGJqIiIiIDMDQRERERGQAhiYiIiIiAzA0ERERERmAoYmIiKoMjcYNmZn+0GjcrF0KVUFccoCIiKqE1NRW2Lq1N4Swg0ymQ1TUNoSGnrB2WVSFcKSJiIgqLblcDuDBCFNxYAIAIeywdWtvacSpuB1ReciEEMLaRVQFeXl5UCqV0Gg0UCgU1i6HiKjaUKvV2LsX+Oc/Sy5e+e23anTuDC5sSY9lzO9vXp4jIqJKzd3dHc88A9jZATrd/7bb2wPt2rmDeYnMhZfniIio0qtfH/jkkwdBCXjw58cfP9hOZC4caSIioiph+HAgIgLIyACCgw0LTHzYLxmDoYmIiKqM+vUNH13iw37JWLw8R0RE1RIf9kvGYmgiIiIiMgBDExEREZEBGJqIiIiIDMDQRERERGQAhiYiIiLwYb/0ZFxygIiIqj0+7JcMwZEmIiKqlviwXzIWH9hrJnxgLxFR5cOH/RIf2EtERGQAPuyXjMHLc0REVK3xYb9kKI40ERFRtWfKw35tER9AXLEYmoiIiGDcw35t0aMPINZo3JCT4w6VSg2lMl/azgcQm46hiYiIqAp4eISprCUU+ABi03FOExERURXypCUUyHQMTURERFVITo67FJiKCWGHnByVlSqqOhiaiIiIqhCVSg2ZTKe3TSbTQaXKsVJFVQfnNBERET1GZbwbTanMR1TUthJzmh6eDE6mYWgiIiIqxaN3oz2OLd6NFhp6AkFBGcjJUUGlymFgMhOGJiIiolIYepeZrd6NplTmMyyZGec0ERERVQGGPliYDyA2HUeaiIiIqgB3d3fExsZWujlYlQlDExERURXBQFSxeHmOiIiIyAAMTUREREQGYGgiIiIiMgBDExERUSkevctMo3FDZqZ/iWe48W606oMTwYmIiErx8N1oSUnOeP99JXQ6GezsBBYs0OCVV+7ybrRqRiaEENYuoirIy8uDUqmERqOBQqGwdjlERGQmV64Afn6A7qHHudnbAxcuAPXrW60sMhNjfn9zpImIiKgMf/yhH5gAQKsFMjKqT2iqjM/gqwgMTURERGVo2BCwsys50hQcbL2aLKkyP4PP3Kw6Efynn35CVFQUfHx8IJPJ8J///Edv/5AhQyCTyfRePXv21GuTk5ODV199FQqFArVq1cLw4cNx69YtvTYnT57Ec889BycnJ/j6+mLBggUlatm4cSMaN24MJycnNGvWDDt27DD7+RIRUeVTvz7wyScPghLw4M+PP64+o0yPjjA9bkK8rT6Dz5ysOtJ0+/ZttGjRAsOGDcPLL79capuePXsiISFBeu/o6Ki3/9VXX0VWVhaSk5NRVFSEoUOHYuTIkUhKSgLw4Fpljx490L17d6xevRqnTp3CsGHDUKtWLYwcORIAcOjQIQwcOBDz5s1D7969kZSUhL59+yI1NRVNmzatoLMnIqLKYvhwICLiwSW54ODqE5gelZraClu39oYQdpDJdIiK2obQ0BPWLstirBqaevXqhV69epXZxtHREV5eXqXuO3fuHHbu3Iljx46hdevWAIAVK1bghRdewIcffggfHx98+eWXKCwsxLp16yCXy9GkSROkpaVh8eLFUmhatmwZevbsiQkTJgAAZs2aheTkZMTHx2P16tVmPGMiIqqs6tevvmEJeDDCVByYAEAIO2zd2htBQRlQKvOtXJ1l2Pw6Tfv27YOHhwcaNWqE0aNHQ61WS/sOHz6MWrVqSYEJALp37w47Ozv8/PPPUpuOHTvqraMRERGB9PR0/P3331Kb7t27631vREQEDh8+/Ni6CgoKkJeXp/ciIiKqqnJy3KXAVEwIO+TkqKxUkeXZdGjq2bMnPvvsM6SkpOCDDz7A/v370atXL2i1WgBAdnY2PDw89D5To0YNqFQqZGdnS208PT312hS/f1Kb4v2lmTdvHpRKpfTy9fUt38kSERHZMJVKDZlM/zZCmUwHlSrHShVZnk2HpgEDBqBPnz5o1qwZ+vbti23btuHYsWPYt2+ftUvD5MmTodFopNfly5etXRIREVGFUSrzERW1TQpOxXOaqsulOaCSLTkQGBiIOnXqICMjA926dYOXlxeuX7+u1+b+/fvIycmR5kF5eXnh2rVrem2K3z+pzePmUgEP5lo9OimdiIioKgsNPYGgoAzk5KigUuVUq8AE2PhI06OuXLkCtVoNb29vAEB4eDhyc3Nx/Phxqc2ePXug0+nQrl07qc1PP/2EoqIiqU1ycjIaNWqE2rVrS21SUlL0vis5ORnh4eEVfUpEREQ27dFn6ymV+QgIuFgiMFWHZ/BZ9TEqt27dQkZGBgCgVatWWLx4Mbp06QKVSgWVSoWZM2eiX79+8PLywvnz5zFx4kTk5+fj1KlT0ihPr169cO3aNaxevVpacqB169bSkgMajQaNGjVCjx49MGnSJJw+fRrDhg3DkiVL9JYc6NSpE+bPn4/IyEhs2LABc+fONWrJAT5GhYiIqqqqvCK4Ub+/hRXt3btXACjxio6OFnfu3BE9evQQdevWFQ4ODsLPz0+8/vrrIjs7W+8YarVaDBw4UNSsWVMoFAoxdOhQkZ+fr9fm119/Fc8++6xwdHQU9erVE/Pnzy9RyzfffCOeeuopIZfLRZMmTcT27duNOheNRiMACI1GY3xHEBERkVUY8/ubD+w1E440ERERVT7G/P6uVHOaiIiIiKyFoYmIiIjIAAxNRERERAZgaCIiIiIyAEMTERERkQEYmoiIiIgMwNBEREREZACGJiIiIiIDMDQRERERGYChiYiIiMgADE1EREREBqhh7QKIiIioelKr1SgsLHzsfrlcDnd3dwtWVDaGJiIiIrI4tVqN+Pj4J7aLjY21meDEy3NERERkcY+OMGk0bsjM9IdG41ZmO2viSBMRERFZVWpqK2zd2htC2EEm0yEqahtCQ09Yu6wSGJqIiIjIajQaNykwAYAQdti6tTeCgjKgVObj5s2bj/2spec8MTQRERGR1eTkuEuBqZgQdsjJUUGpzMfmzZsBPAhXOTnuUKnUUCrzpbaWnPPE0ERERERWo1KpIZPp9IKTTKaDSpUjvS/r8p0l5zxxIjgRERFZjVKZj6iobZDJdAAghaLi0aTHXb57dMK4JXCkiYiIiKwqNPQEgoIykJOjgkqVo3f57UmX7yyJoYmIiIgsTi6X671XKvNLDUGGXL6zFIYmIiIisjh3d3fExsY+dk7SzZs3sXnzZuny3aNzmiw9ygQwNBEREZGVGHrXW1mX7yyJoYmIiIhs3uMu31kS754jIiIim/PonKfytjMHjjQRERGRzXnSnCeAK4ITERERATB8zpOl8PIcERERkQEYmoiIiIgMwNBEREREZACGJiIiIiIDMDQRERERGYChiYiIiMgADE1EREREBmBoIiIiIjIAQxMRERGRAbgiuJkIIQAAeXl5Vq6EiIiIDFX8e7v493hZGJrMJD//wZOXfX19rVwJERERGSs/Px9KpbLMNjJhSLSiJ9LpdLh69Src3Nwgk8lK7M/Ly4Ovry8uX74MhUJhhQptH/voydhHT8Y+ejL2UdnYP09WlfpICIH8/Hz4+PjAzq7sWUscaTITOzs71K9f/4ntFApFpf8HVtHYR0/GPnoy9tGTsY/Kxv55sqrSR08aYSrGieBEREREBmBoIiIiIjIAQ5OFODo6Yvr06XB0dLR2KTaLffRk7KMnYx89GfuobOyfJ6uufcSJ4EREREQG4EgTERERkQEYmoiIiIgMwNBEREREZACGJiIiIiIDMDSZ0cqVK+Hv7w8nJye0a9cOR48efWzbM2fOoF+/fvD394dMJsPSpUstV6gVGdNHa9aswXPPPYfatWujdu3a6N69e5ntqwpj+mjz5s1o3bo1atWqBVdXV7Rs2RKff/65Bau1DmP66GEbNmyATCZD3759K7ZAKzOmfxITEyGTyfReTk5OFqzWOoz9N5Sbm4uYmBh4e3vD0dERTz31FHbs2GGhaq3DmD7q3LlziX9HMpkMkZGRFqzYAgSZxYYNG4RcLhfr1q0TZ86cEa+//rqoVauWuHbtWqntjx49Kt555x3x1VdfCS8vL7FkyRLLFmwFxvbRK6+8IlauXClOnDghzp07J4YMGSKUSqW4cuWKhSu3HGP7aO/evWLz5s3i7NmzIiMjQyxdulTY29uLnTt3WrhyyzG2j4plZmaKevXqieeee068+OKLlinWCoztn4SEBKFQKERWVpb0ys7OtnDVlmVsHxUUFIjWrVuLF154QRw4cEBkZmaKffv2ibS0NAtXbjnG9pFardb7N3T69Glhb28vEhISLFt4BWNoMpO2bduKmJgY6b1WqxU+Pj5i3rx5T/ysn59ftQhN5ekjIYS4f/++cHNzE+vXr6+oEq2uvH0khBCtWrUSU6dOrYjybIIpfXT//n3Rvn178emnn4ro6OgqHZqM7Z+EhAShVCotVJ1tMLaPVq1aJQIDA0VhYaGlSrS68v4sWrJkiXBzcxO3bt2qqBKtgpfnzKCwsBDHjx9H9+7dpW12dnbo3r07Dh8+bMXKbIc5+ujOnTsoKiqCSqWqqDKtqrx9JIRASkoK0tPT0bFjx4os1WpM7aP3338fHh4eGD58uCXKtBpT++fWrVvw8/ODr68vXnzxRZw5c8YS5VqFKX30/fffIzw8HDExMfD09ETTpk0xd+5caLVaS5VtUeb4eb127VoMGDAArq6uFVWmVTA0mcHNmzeh1Wrh6empt93T0xPZ2dlWqsq2mKOPJk2aBB8fH73/I1clpvaRRqNBzZo1IZfLERkZiRUrVuD555+v6HKtwpQ+OnDgANauXYs1a9ZYokSrMqV/GjVqhHXr1uG7777DF198AZ1Oh/bt2+PKlSuWKNniTOmjP//8E99++y20Wi127NiB9957D4sWLcLs2bMtUbLFlffn9dGjR3H69GmMGDGiokq0mhrWLoDIEPPnz8eGDRuwb9++ajFJ1Rhubm5IS0vDrVu3kJKSgnHjxiEwMBCdO3e2dmlWl5+fj8GDB2PNmjWoU6eOtcuxSeHh4QgPD5fet2/fHk8//TQ+/vhjzJo1y4qV2Q6dTgcPDw988sknsLe3R1hYGP766y8sXLgQ06dPt3Z5Nmft2rVo1qwZ2rZta+1SzI6hyQzq1KkDe3t7XLt2TW/7tWvX4OXlZaWqbEt5+ujDDz/E/PnzsXv3bjRv3rwiy7QqU/vIzs4OwcHBAICWLVvi3LlzmDdvXpUMTcb20fnz53HhwgVERUVJ23Q6HQCgRo0aSE9PR1BQUMUWbUHm+Fnk4OCAVq1aISMjoyJKtDpT+sjb2xsODg6wt7eXtj399NPIzs5GYWEh5HJ5hdZsaeX5d3T79m1s2LAB77//fkWWaDW8PGcGcrkcYWFhSElJkbbpdDqkpKTo/RdcdWZqHy1YsACzZs3Czp070bp1a0uUajXm+nek0+lQUFBQESVanbF91LhxY5w6dQppaWnSq0+fPujSpQvS0tLg6+tryfIrnDn+DWm1Wpw6dQre3t4VVaZVmdJHHTp0QEZGhhS4AeD333+Ht7d3lQtMQPn+HW3cuBEFBQUYNGhQRZdpHdaeiV5VbNiwQTg6OorExERx9uxZMXLkSFGrVi3p1t3BgweLd999V2pfUFAgTpw4IU6cOCG8vb3FO++8I06cOCH++OMPa51ChTO2j+bPny/kcrn49ttv9W5lzc/Pt9YpVDhj+2ju3Lnixx9/FOfPnxdnz54VH374oahRo4ZYs2aNtU6hwhnbR4+q6nfPGds/M2fOFLt27RLnz58Xx48fFwMGDBBOTk7izJkz1jqFCmdsH126dEm4ubmJ2NhYkZ6eLrZt2yY8PDzE7NmzrXUKFc7U/589++yzon///pYu12IYmsxoxYoVokGDBkIul4u2bduKI0eOSPs6deokoqOjpfeZmZkCQIlXp06dLF+4BRnTR35+fqX20fTp0y1fuAUZ00dTpkwRwcHBwsnJSdSuXVuEh4eLDRs2WKFqyzKmjx5V1UOTEMb1T1xcnNTW09NTvPDCCyI1NdUKVVuWsf+GDh06JNq1ayccHR1FYGCgmDNnjrh//76Fq7YsY/vot99+EwDEjz/+aOFKLUcmhBBWGuQiIiIiqjQ4p4mIiIjIAAxNRERERAZgaCIiIiIyAEMTERERkQEYmoiIiIgMwNBEREREZACGJiIiIiIDMDQREVVCQ4YMQd++fa1dBlG1wtBERGY1ZMgQyGQy6eXu7o6ePXvi5MmT1i7NLB4+t+LXs88+W2Hfd+HCBchkMqSlpeltX7ZsGRITEyvse4moJIYmIjK7nj17IisrC1lZWUhJSUGNGjXQu3dva5dlNgkJCdL5ZWVl4fvvvy+1XVFRUYXVoFQqUatWrQo7PhGVxNBERGbn6OgILy8veHl5oWXLlnj33Xdx+fJl3LhxA127dkVsbKxe+xs3bkAul0tPVff398esWbMwcOBAuLq6ol69eli5cqXeZxYvXoxmzZrB1dUVvr6+ePPNN3Hr1i1p/8WLFxEVFYXatWvD1dUVTZo0wY4dOwAAf//9N1599VXUrVsXzs7OaNiwIRISEgw+v1q1aknn5+XlBZVKJY0Iff311+jUqROcnJzw5ZdfQq1WY+DAgahXrx5cXFzQrFkzfPXVV3rH0+l0WLBgAYKDg+Ho6IgGDRpgzpw5AICAgAAAQKtWrSCTydC5c2cAJS/PFRQUYMyYMfDw8ICTkxOeffZZHDt2TNq/b98+yGQypKSkoHXr1nBxcUH79u2Rnp5u8HkTVXcMTURUoW7duoUvvvgCwcHBcHd3x4gRI5CUlISCggKpzRdffIF69eqha9eu0raFCxeiRYsWOHHiBN599128/fbbSE5Olvbb2dlh+fLlOHPmDNavX489e/Zg4sSJ0v6YmBgUFBTgp59+wqlTp/DBBx+gZs2aAID33nsPZ8+exQ8//IBz585h1apVqFOnjlnOt7jWc+fOISIiAvfu3UNYWBi2b9+O06dPY+TIkRg8eDCOHj0qfWby5MmYP3++VFdSUhI8PT0BQGq3e/duZGVlYfPmzaV+78SJE7Fp0yasX78eqampCA4ORkREBHJycvTaTZkyBYsWLcIvv/yCGjVqYNiwYWY5b6JqwdpPDCaiqiU6OlrY29sLV1dX4erqKgAIb29vcfz4cSGEEHfv3hW1a9cWX3/9tfSZ5s2bixkzZkjv/fz8RM+ePfWO279/f9GrV6/Hfu/GjRuFu7u79L5Zs2Z6x3xYVFSUGDp0qEnnB0A4OTlJ5+fq6iq2bNkiMjMzBQCxdOnSJx4jMjJSjB8/XgghRF5ennB0dBRr1qwptW3xcU+cOKG3PTo6Wrz44otCCCFu3bolHBwcxJdffintLywsFD4+PmLBggVCCCH27t0rAIjdu3dLbbZv3y4AiLt37xrTBUTVFkeaiMjsunTpgrS0NKSlpeHo0aOIiIhAr169cPHiRTg5OWHw4MFYt24dACA1NRWnT5/GkCFD9I4RHh5e4v25c+ek97t370a3bt1Qr149uLm5YfDgwVCr1bhz5w4AYMyYMZg9ezY6dOiA6dOn601EHz16NDZs2ICWLVti4sSJOHTokFHnt2TJEun80tLS8Pzzz0v7WrdurddWq9Vi1qxZaNasGVQqFWrWrIldu3bh0qVLAIBz586hoKAA3bp1M6qGh50/fx5FRUXo0KGDtM3BwQFt27bV6zMAaN68ufR3b29vAMD169dN/m6i6oShiYjMztXVFcHBwQgODkabNm3w6aef4vbt21izZg0AYMSIEUhOTsaVK1eQkJCArl27ws/Pz+DjX7hwAb1790bz5s2xadMmHD9+XJrzVFhYKH3Hn3/+icGDB+PUqVNo3bo1VqxYAQBSgBs7diyuXr2Kbt264Z133jH4+728vKTzCw4Ohqurq965P2zhwoVYtmwZJk2ahL179yItLQ0RERFSnc7OzgZ/rzk4ODhIf5fJZAAezKkioidjaCKiCieTyWBnZ4e7d+8CAJo1a4bWrVtjzZo1SEpKKnVezZEjR0q8f/rppwEAx48fh06nw6JFi/DMM8/gqaeewtWrV0scw9fXF6NGjcLmzZsxfvx4KbQBQN26dREdHY0vvvgCS5cuxSeffGLOU5YcPHgQL774IgYNGoQWLVogMDAQv//+u7S/YcOGcHZ2libBP0oulwN4MGL1OEFBQZDL5Th48KC0raioCMeOHUNISIiZzoSIali7ACKqegoKCpCdnQ3gwZ1q8fHxuHXrFqKioqQ2I0aMQGxsLFxdXfHSSy+VOMbBgwexYMEC9O3bF8nJydi4cSO2b98OAAgODkZRURFWrFiBqKgoHDx4EKtXr9b7fFxcHHr16oWnnnoKf//9N/bu3SuFrmnTpiEsLAxNmjRBQUEBtm3bJu0zt4YNG+Lbb7/FoUOHULt2bSxevBjXrl2TwoyTkxMmTZqEiRMnQi6Xo0OHDrhx4wbOnDmD4cOHw8PDA87Ozti5cyfq168PJycnKJVKve9wdXXF6NGjMWHCBKhUKjRo0AALFizAnTt3MHz48Ao5L6LqiCNNRGR2O3fuhLe3N7y9vdGuXTscO3YMGzdulG6XB4CBAweiRo0aGDhwIJycnEocY/z48fjll1/QqlUrzJ49G4sXL0ZERAQAoEWLFli8eDE++OADNG3aFF9++SXmzZun93mtVouYmBg8/fTT6NmzJ5566il89NFHAB6M3kyePBnNmzdHx44dYW9vjw0bNlRIX0ydOhWhoaGIiIhA586d4eXlVWIl7/feew/jx4/HtGnT8PTTT6N///7SPKMaNWpg+fLl+Pjjj+Hj44MXX3yx1O+ZP38++vXrh8GDByM0NBQZGRnYtWsXateuXSHnRVQdyYQQwtpFEFH1c+HCBQQFBeHYsWMIDQ3V2+fv74+4uDjExcVZpzgiolLw8hwRWVRRURHUajWmTp2KZ555pkRgIiKyVbw8R0QWdfDgQXh7e+PYsWMl5iFZ29y5c1GzZs1SX7169bJ2eURkZbw8R0T0/3JyckqsoF3M2dkZ9erVs3BFRGRLGJqIiIiIDMDLc0REREQGYGgiIiIiMgBDExEREZEBGJqIiIiIDMDQRERERGQAhiYiIiIiAzA0ERERERmAoYmIiIjIAP8HcKg/K0UiCp8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVwdJREFUeJzt3XlcVNX/P/DXgAybzBjI4oKAYBLuYBqa+4KGmGnlkob7EliIqVnmWmlWrpja56tgfSKX1MwlFU00Fc1Aco3UcEvAHGJAVMCZ8/vDH/fjCOLMMDADvp6Pxzx07j1z533PZz7Oq3PPnCsTQggQERERUZmszF0AERERUVXA0ERERESkB4YmIiIiIj0wNBERERHpgaGJiIiISA8MTURERER6YGgiIiIi0gNDExEREZEeGJqIiIiI9MDQRERUzcTFxUEmk+Hy5cvmLoWoWmFoIiKDnThxApGRkWjSpAkcHR3RoEEDvP766/jzzz9LtO3cuTNkMhlkMhmsrKygUCjQuHFjDBs2DAkJCQa97/bt29GpUye4ubnBwcEBDRs2xOuvv47du3eb6tRK+OSTT/DDDz+U2H706FHMnj0bOTk5Ffbej5o9e7bUlzKZDA4ODggICMCMGTOQm5trkveIj4/HkiVLTHIsouqGoYmIDPbpp59i8+bN6NatG5YuXYqxY8fi0KFDCAwMxJkzZ0q0r1+/Pr755ht8/fXX+Oyzz9C3b18cPXoUPXv2xMCBA1FUVPTE9/z888/Rt29fyGQyTJ8+HYsXL8aAAQNw4cIFrF+/viJOE0DZoWnOnDmVGpqKrVy5Et988w0WLVoEf39/fPzxx+jVqxdMcStRhiaix6th7gKIqOqJjo5GfHw85HK5tG3gwIFo1qwZFixYgP/+97867ZVKJYYOHaqzbcGCBXj77bfx5ZdfwtvbG59++ulj3+/+/fuYN28eevTogb1795bYf/PmzXKekeW4c+cOHBwcymzz6quvonbt2gCA8ePHY8CAAdiyZQuOHTuG4ODgyiiT6KnEkSYiMli7du10AhMANGrUCE2aNMH58+f1Ooa1tTWWLVuGgIAAxMTEQK1WP7btrVu3kJubi/bt25e6383NTef5vXv3MHv2bDz77LOws7NDnTp10L9/f1y6dElq8/nnn6Ndu3ZwcXGBvb09goKC8P333+scRyaTIT8/H+vWrZMuiQ0fPhyzZ8/GlClTAAA+Pj7SvofnEP33v/9FUFAQ7O3t4ezsjEGDBuHatWs6x+/cuTOaNm2K5ORkdOzYEQ4ODnj//ff16r+Hde3aFQCQnp5eZrsvv/wSTZo0ga2tLerWrYuIiAidkbLOnTtj586duHLlinRO3t7eBtdDVF1xpImITEIIgaysLDRp0kTv11hbW2Pw4MH48MMPcfjwYYSGhpbazs3NDfb29ti+fTsmTpwIZ2fnxx5To9GgT58+2L9/PwYNGoR33nkHeXl5SEhIwJkzZ+Dr6wsAWLp0Kfr27Ys33ngDhYWFWL9+PV577TXs2LFDquObb77B6NGj0aZNG4wdOxYA4OvrC0dHR/z555/47rvvsHjxYmnUx9XVFQDw8ccf48MPP8Trr7+O0aNH459//sHy5cvRsWNHnDx5ErVq1ZLqValU6N27NwYNGoShQ4fC3d1d7/4rVhwGXVxcHttm9uzZmDNnDrp3744JEyYgLS0NK1euxIkTJ3DkyBHY2Njggw8+gFqtxvXr17F48WIAQM2aNQ2uh6jaEkREJvDNN98IAGLNmjU62zt16iSaNGny2Ndt3bpVABBLly4t8/gzZ84UAISjo6Po3bu3+Pjjj0VycnKJdmvXrhUAxKJFi0rs02q10t/v3Lmjs6+wsFA0bdpUdO3aVWe7o6OjCA8PL3Gszz77TAAQ6enpOtsvX74srK2txccff6yz/fTp06JGjRo62zt16iQAiFWrVj32vB82a9YsAUCkpaWJf/75R6Snp4vVq1cLW1tb4e7uLvLz84UQQsTGxurUdvPmTSGXy0XPnj2FRqORjhcTEyMAiLVr10rbQkNDhZeXl171ED1teHmOiMrtjz/+QEREBIKDgxEeHm7Qa4tHMvLy8spsN2fOHMTHx6NVq1bYs2cPPvjgAwQFBSEwMFDnkuDmzZtRu3ZtTJw4scQxZDKZ9Hd7e3vp7//++y/UajU6dOiAlJQUg+p/1JYtW6DVavH666/j1q1b0sPDwwONGjXCgQMHdNrb2tpixIgRBr1H48aN4erqCh8fH4wbNw5+fn7YuXPnY+dC7du3D4WFhYiKioKV1f/+2R8zZgwUCgV27txp+IkSPYV4eY6IyiUzMxOhoaFQKpX4/vvvYW1tbdDrb9++DQBwcnJ6YtvBgwdj8ODByM3NxfHjxxEXF4f4+HiEhYXhzJkzsLOzw6VLl9C4cWPUqFH2P287duzARx99hNTUVBQUFEjbHw5Wxrhw4QKEEGjUqFGp+21sbHSe16tXr8T8sCfZvHkzFAoFbGxsUL9+femS4+NcuXIFwIOw9TC5XI6GDRtK+4mobAxNRGQ0tVqN3r17IycnB7/88gvq1q1r8DGKlyjw8/PT+zUKhQI9evRAjx49YGNjg3Xr1uH48ePo1KmTXq//5Zdf0LdvX3Ts2BFffvkl6tSpAxsbG8TGxiI+Pt7gc3iYVquFTCbDTz/9VGqAfHSO0MMjXvrq2LGjNI+KiCoPQxMRGeXevXsICwvDn3/+iX379iEgIMDgY2g0GsTHx8PBwQEvvviiUXW0bt0a69atQ0ZGBoAHE7WPHz+OoqKiEqM6xTZv3gw7Ozvs2bMHtra20vbY2NgSbR838vS47b6+vhBCwMfHB88++6yhp1MhvLy8AABpaWlo2LChtL2wsBDp6eno3r27tK28I21E1RnnNBGRwTQaDQYOHIikpCRs2rTJqLWBNBoN3n77bZw/fx5vv/02FArFY9veuXMHSUlJpe776aefAPzv0tOAAQNw69YtxMTElGgr/v/ij9bW1pDJZNBoNNK+y5cvl7qIpaOjY6kLWDo6OgJAiX39+/eHtbU15syZU2KxSSEEVCpV6SdZgbp37w65XI5ly5bp1LRmzRqo1WqdXy06OjqWufwD0dOMI01EZLDJkyfjxx9/RFhYGLKzs0ssZvnoQpZqtVpqc+fOHVy8eBFbtmzBpUuXMGjQIMybN6/M97tz5w7atWuHF154Ab169YKnpydycnLwww8/4JdffkG/fv3QqlUrAMCbb76Jr7/+GtHR0fj111/RoUMH5OfnY9++fXjrrbfw8ssvIzQ0FIsWLUKvXr0wZMgQ3Lx5EytWrICfnx9OnTql895BQUHYt28fFi1ahLp168LHxwdt27ZFUFAQAOCDDz7AoEGDYGNjg7CwMPj6+uKjjz7C9OnTcfnyZfTr1w9OTk5IT0/H1q1bMXbsWLz77rvl6n9Dubq6Yvr06ZgzZw569eqFvn37Ii0tDV9++SWef/55nf+9goKCsGHDBkRHR+P5559HzZo1ERYWVqn1Elksc/50j4iqpuKfyj/uUVbbmjVrikaNGomhQ4eKvXv36vV+RUVF4j//+Y/o16+f8PLyEra2tsLBwUG0atVKfPbZZ6KgoECn/Z07d8QHH3wgfHx8hI2NjfDw8BCvvvqquHTpktRmzZo1olGjRsLW1lb4+/uL2NhY6Sf9D/vjjz9Ex44dhb29vQCgs/zAvHnzRL169YSVlVWJ5Qc2b94sXnzxReHo6CgcHR2Fv7+/iIiIEGlpaTp9U9ZyDI8qru+ff/4ps92jSw4Ui4mJEf7+/sLGxka4u7uLCRMmiH///Venze3bt8WQIUNErVq1BAAuP0D0EJkQJrhZEREREVE1xzlNRERERHpgaCIiIiLSA0MTERERkR4YmoiIiIj0wNBEREREpAeGJiIiIiI9cHFLE9Fqtbhx4wacnJx4GwIiIqIqQgiBvLw81K1bF1ZWZY8lMTSZyI0bN+Dp6WnuMoiIiMgI165dQ/369ctsw9BkIk5OTgAedHpZ99AiIiIiy5GbmwtPT0/pe7wsDE0mUnxJTqFQMDQRERFVMfpMreFEcCIiIiI9MDQRERER6YGhiYiIiEgPnNNUyTQaDYqKisxdRrVlY2MDa2trc5dBRETVEENTJRFCIDMzEzk5OeYupdqrVasWPDw8uF4WERGZFENTJSkOTG5ubnBwcOAXegUQQuDOnTu4efMmAKBOnTpmroiIiKoThqZKoNFopMDk4uJi7nKqNXt7ewDAzZs34ebmxkt1RERkMpwIXgmK5zA5ODiYuZKnQ3E/c+4YERGZEkNTJeIlucrBfiYioorAy3NERERkkVQqFQoLCx+7Xy6XV+q0F4YmIiIisjgqlQoxMTFPbBcZGVlpwYmX56hMw4cPh0wmg0wmg42NDdzd3dGjRw+sXbsWWq1W7+PExcWhVq1aFVcoERFVK2WNMBnTzhQ40lRFmHOIslevXoiNjYVGo0FWVhZ2796Nd955B99//z1+/PFH1KjBjxEREVV//LarAsw9RGlrawsPDw8AQL169RAYGIgXXngB3bp1Q1xcHEaPHo1FixYhNjYWf/31F5ydnREWFoaFCxeiZs2aSExMxIgRIwD8b5L2rFmzMHv2bHzzzTdYunQp0tLS4OjoiK5du2LJkiVwc3Mz+XkQERGVBy/PVQGWOETZtWtXtGjRAlu2bAEAWFlZYdmyZTh79izWrVuHn3/+GVOnTgUAtGvXDkuWLIFCoUBGRgYyMjLw7rvvAniwLMC8efPw+++/44cffsDly5cxfPjwSjsPIiKqGtRqJ6Sne0OtdjJbDRxpIqP5+/vj1KlTAICoqChpu7e3Nz766COMHz8eX375JeRyOZRKJWQymTRiVWzkyJHS3xs2bIhly5bh+eefx+3bt1GzZs1KOQ8iIrJsKSmtsH17HwhhBZlMi7CwHQgMPFnpdXCkiYwmhJAut+3btw/dunVDvXr14OTkhGHDhkGlUuHOnTtlHiM5ORlhYWFo0KABnJyc0KlTJwDA1atXK7x+IiKyfGq1kxSYAEAIK2zf3scsI04MTWS08+fPw8fHB5cvX0afPn3QvHlzbN68GcnJyVixYgWAsi8Z5ufnIyQkBAqFAt9++y1OnDiBrVu3PvF1RET09MjOdpECUzEhrJCd7VzptfDyHBnl559/xunTpzFp0iQkJydDq9Xiiy++gJXVgw/2xo0bddrL5XJoNBqdbX/88QdUKhUWLFgAT09PAMBvv/1WOSdAREQWTS6XAwCcnVWQybQ6wUkm08LZOVunXWVgaKInKigoQGZmps6SA/Pnz0efPn3w5ptv4syZMygqKsLy5csRFhaGI0eOYNWqVTrH8Pb2xu3bt7F//360aNECDg4OaNCgAeRyOZYvX47x48fjzJkzmDdvnpnOkoiILImLiwsiIyNRWFiIevVyMW2aEhqNDNbWAp9+moshQwZX+orgvDxHT7R7927UqVMH3t7e6NWrFw4cOIBly5Zh27ZtsLa2RosWLbBo0SJ8+umnaNq0Kb799lvMnz9f5xjt2rXD+PHjMXDgQLi6umLhwoVwdXVFXFwcNm3ahICAACxYsACff/65mc6SiIgsjYuLC+rUqYPJk2vh8mUZDhwALl+WYfLkWqhTp06lBiYAkAkhRKW+YzWVm5sLpVIJtVoNhUKhs+/evXtIT0+Hj48P7OzsDD62uddpqmrK299ERPT0KOv7+1G8PFcFPDxE+TiVPURJRET0tGFoqiIYiIiIiMyLc5qIiIiI9MDQRERERKQHhiYiIiIiPXBOExEREVkklUplUT+CYmgiIiIii2OJy+3w8hwRERFZnEdHmNRqJ6Sne5e4UW9l3quUI01ERERk0VJSWmH79j4QwgoymRZhYTsQGHiy0uvgSBOZVWJiImQyGXJycvR+jbe3N5YsWVJhNRERkeVQq52kwAQAQlhh+/Y+JUacKgNDE5Vp+PDhkMlkGD9+fIl9ERERkMlkGD58eOUXRkRET4XsbBcpMBUTwgrZ2c6VXgtDEz2Rp6cn1q9fj7t370rb7t27h/j4eDRo0MCMlRERUXXn7KyCTKbV2SaTaeHsnF3ptTA00RMFBgbC09MTW7ZskbZt2bIFDRo0QKtWraRtBQUFePvtt+Hm5gY7Ozu8+OKLOHHihM6xdu3ahWeffRb29vbo0qULLl++XOL9Dh8+jA4dOsDe3h6enp54++23kZ+fX2HnR0RElkupzENY2A4pOBXPaVIq8yq9FoamKuj6deDAgQd/VpaRI0ciNjZWer527VqMGDFCp83UqVOxefNmrFu3DikpKfDz80NISAiysx/818C1a9fQv39/hIWFITU1FaNHj8Z7772nc4xLly6hV69eGDBgAE6dOoUNGzbg8OHDiIyMrPiTJCIiixQYeBJRUUsQHh6HqKglZpkEDjA0VTlr1gBeXkDXrg/+XLOmct536NChOHz4MK5cuYIrV67gyJEjGDp0qLQ/Pz8fK1euxGeffYbevXsjICAA//nPf2Bvb481/7/IlStXwtfXF1988QUaN26MN954o8R8qPnz5+ONN95AVFQUGjVqhHbt2mHZsmX4+uuvce/evco52WpMpVIhIyPjsQ+VSmXuEomIADxYuPJhSmUefHyulBhherRdReKSA1XI9evA2LGA9v9f2tVqgXHjgJAQoH79in1vV1dXhIaGIi4uDkIIhIaGonbt2tL+S5cuoaioCO3bt5e22djYoE2bNjh//jwA4Pz582jbtq3OcYODg3We//777zh16hS+/fZbaZsQAlqtFunp6Xjuuecq4vSeCpa4UBwR0eO4uLggMjKSK4KTcS5c+F9gKqbRABcvVnxoAh5coiu+TLZixYoKeY/bt29j3LhxePvtt0vs46Tz8tF3AbjKXCiOiKgslvYfcGa9PLdy5Uo0b94cCoUCCoUCwcHB+Omnn6T9nTt3hkwm03k8+tP3q1evIjQ0FA4ODnBzc8OUKVNw//59nTaJiYkIDAyEra0t/Pz8EBcXV6KWFStWwNvbG3Z2dmjbti1+/fXXCjnn8mjUCLB65H8xa2vAz69y3r9Xr14oLCxEUVERQkJCdPb5+vpCLpfjyJEj0raioiKcOHECAQEBAIDnnnuuRL8eO3ZM53lgYCDOnTsHPz+/Eo/KHIIlIiJ6lFlDU/369bFgwQIkJyfjt99+Q9euXfHyyy/j7NmzUpsxY8bozLlYuHChtE+j0SA0NBSFhYU4evQo1q1bh7i4OMycOVNqk56ejtDQUHTp0gWpqamIiorC6NGjsWfPHqnNhg0bEB0djVmzZiElJQUtWrRASEgIbt68WTkdoaf69YGvvnoQlIAHf65eXTmjTA/ezxrnz5/HuXPnYF1cxP/n6OiICRMmYMqUKdi9ezfOnTuHMWPG4M6dOxg1ahQAYPz48bhw4QKmTJmCtLQ0xMfHlwiw06ZNw9GjRxEZGYnU1FRcuHAB27Zt40TwCvC4WxIQEVHpzHp5LiwsTOf5xx9/jJUrV+LYsWNo0qQJAMDBwQEeHh6lvn7v3r04d+4c9u3bB3d3d7Rs2RLz5s3DtGnTMHv2bMjlcqxatQo+Pj744osvADwY7Th8+DAWL14sjZYsWrQIY8aMkX4NtmrVKuzcuRNr164t8esucxs16sEcposXH4wwVVZgKqZQKB67b8GCBdBqtRg2bBjy8vLQunVr7NmzB8888wyAB5fXNm/ejEmTJmH58uVo06YNPvnkE4wcOVI6RvPmzXHw4EF88MEH6NChA4QQ8PX1xcCBAyv83J4mlnJLAiKiqkQmhBDmLgJ4MGq0adMmhIeH4+TJkwgICEDnzp1x9uxZCCHg4eGBsLAwfPjhh3BwcAAAzJw5Ez/++CNSU1Ol46Snp6Nhw4ZISUlBq1at0LFjRwQGBurcdiM2NhZRUVFQq9UoLCyEg4MDvv/+e/Tr109qEx4ejpycHGzbtq3UegsKClBQUCA9z83NhaenJ9RqdYlgce/ePaSnp8PHxwd2dnbl7ywqE/u7dBkZGfjqq6+gVjthyZIonRV2ZTItoqKWQKnMw9ixY1GnTh0zVkpEVHlyc3OhVCpL/f5+lNkngp8+fRrBwcG4d+8eatasia1bt0pzYIYMGQIvLy/UrVsXp06dwrRp05CWliYtspiZmQl3d3ed4xU/z8zMLLNNbm4u7t69i3///RcajabUNn/88cdj654/fz7mzJlTvpMnMoOybklgjsXiiIiqCrOHpsaNGyM1NRVqtRrff/89wsPDcfDgQQQEBGDs2LFSu2bNmqFOnTro1q0bLl26BF9fXzNWDUyfPh3R0dHS8+KRJiJLV3xLgkdHmsxxSwIioqrE7ItbyuVy+Pn5ISgoCPPnz0eLFi2wdOnSUtsWr/Fz8eJFAICHhweysrJ02hQ/L54H9bg2CoUC9vb2qF27NqytrUtt87i5VABga2sr/eqv+EFkyYp/ffikWxLwV4pERKUz+0jTo7Rarc5coYcVz10qnm8RHByMjz/+GDdv3oSbmxsAICEhAQqFQrrEFxwcjF27dukcJyEhQVpUUS6XIygoCPv375fmNGm1Wuzfv5+/2KJq5dGF4mbO/AeXL9eAt/d91K37PIDnK32hOCKiqsSsoWn69Ono3bs3GjRogLy8PMTHxyMxMRF79uzBpUuXEB8fj5deegkuLi44deoUJk2ahI4dO6J58+YAgJ49eyIgIADDhg3DwoULkZmZiRkzZiAiIgK2trYAHvzMPSYmBlOnTsXIkSPx888/Y+PGjdi5c6dUR3R0NMLDw9G6dWu0adMGS5YsQX5+fol7q5WXhcy5r/bYz4/3cCCqUwcICjJjMUREVYxZQ9PNmzfx5ptvIiMjA0qlEs2bN8eePXvQo0cPXLt2Dfv27ZMCjKenJwYMGIAZM2ZIr7e2tsaOHTswYcIEBAcHw9HREeHh4Zg7d67UxsfHBzt37sSkSZOwdOlS1K9fH//3f/+nszjjwIED8c8//2DmzJnIzMxEy5YtsXv37hKTw41lY2MDALhz5w7s7e1Nckx6vDt37gD4X78TERGZgsUsOVDVPeknixkZGcjJyYGbmxscHBwgk8nMUGX1JoTAnTt3cPPmTdSqVYs/mycioieqUksOPC2KJ5Vb2irj1VGtWrXKnMRPRERkDIamSiKTyVCnTh24ubmhqKjI3OVUWzY2NiVu8UJERGQKDE2VzNraml/qREREVZDZ12kiIiIiqgoYmoiIiIj0wNBEREREpAeGJiIiIiI9MDQRERER6YGhiYiIiEgPDE1EREREemBoIiIiItIDQxMRERGRHhiaiIiIiPTA0ERERESkB4YmIiIiIj0wNBERERHpgaGJiIiISA8MTURERER6YGgiIiIi0gNDExEREZEeGJqIiIio0ly/Dhw48ODPqoahiYiIiCrFmjWAlxfQteuDP9esMXdFhmFoIiIiogp3/Towdiyg1T54rtUC48ZVrREnhiYiIiKqUCqVCseOqaTAVEyjAY4fV0GlUpmnMAMxNBEREVGFUalUiImJwdGj6yCT6aYmmUyLI0fWISYmpkoEJ4YmIiIiqjCFhYUAAKUyD2FhO6TgJJNpERa2A0plnk47S1bD3AUQERHR0yEw8CR8fS8iO9sZzs7ZUmCqKhiaiIiIqNIolXlVLiwV4+U5IiIiIj0wNBERERHpgaGJiIiISA8MTURERER6YGgiIiKiCiOXy03azpz46zkiIiKqMC4uLoiMjCxzHSa5XA4XF5dKrMo4DE1ERERUoapCINIHL88RERER6YGhiYiIiEgPDE1EREREemBoIiIiItIDQxMRERGRHhiaiIiIiPTA0ERERESkB4YmIiIiIj0wNBERERHpgaGJiIiISA8MTURERER6YGgiIiIi0gNDExEREZEeGJqIiIiI9MDQRERERKQHhiYiIiIiPTA0EREREemBoYmIiIhIDwxNRERERHpgaCIiIiLSA0MTERERkR4YmoiIiIj0wNBEREREpAeGJiIiIiI9mDU0rVy5Es2bN4dCoYBCoUBwcDB++uknaf+9e/cQEREBFxcX1KxZEwMGDEBWVpbOMa5evYrQ0FA4ODjAzc0NU6ZMwf3793XaJCYmIjAwELa2tvDz80NcXFyJWlasWAFvb2/Y2dmhbdu2+PXXXyvknImIiKhqMmtoql+/PhYsWIDk5GT89ttv6Nq1K15++WWcPXsWADBp0iRs374dmzZtwsGDB3Hjxg30799fer1Go0FoaCgKCwtx9OhRrFu3DnFxcZg5c6bUJj09HaGhoejSpQtSU1MRFRWF0aNHY8+ePVKbDRs2IDo6GrNmzUJKSgpatGiBkJAQ3Lx5s/I6g4iIiCybsDDPPPOM+L//+z+Rk5MjbGxsxKZNm6R958+fFwBEUlKSEEKIXbt2CSsrK5GZmSm1WblypVAoFKKgoEAIIcTUqVNFkyZNdN5j4MCBIiQkRHrepk0bERERIT3XaDSibt26Yv78+XrXrVarBQChVqsNO2EiIiIyG0O+vy1mTpNGo8H69euRn5+P4OBgJCcno6ioCN27d5fa+Pv7o0GDBkhKSgIAJCUloVmzZnB3d5fahISEIDc3VxqtSkpK0jlGcZviYxQWFiI5OVmnjZWVFbp37y61KU1BQQFyc3N1HkRERFR9mT00nT59GjVr1oStrS3Gjx+PrVu3IiAgAJmZmZDL5ahVq5ZOe3d3d2RmZgIAMjMzdQJT8f7ifWW1yc3Nxd27d3Hr1i1oNJpS2xQfozTz58+HUqmUHp6enkadPxEREVUNZg9NjRs3RmpqKo4fP44JEyYgPDwc586dM3dZTzR9+nSo1Wrpce3aNXOXRERERBWohrkLkMvl8PPzAwAEBQXhxIkTWLp0KQYOHIjCwkLk5OTojDZlZWXBw8MDAODh4VHiV27Fv657uM2jv7jLysqCQqGAvb09rK2tYW1tXWqb4mOUxtbWFra2tsadNBEREVU5Zh9pepRWq0VBQQGCgoJgY2OD/fv3S/vS0tJw9epVBAcHAwCCg4Nx+vRpnV+5JSQkQKFQICAgQGrz8DGK2xQfQy6XIygoSKeNVqvF/v37pTZEREREZh1pmj59Onr37o0GDRogLy8P8fHxSExMxJ49e6BUKjFq1ChER0fD2dkZCoUCEydORHBwMF544QUAQM+ePREQEIBhw4Zh4cKFyMzMxIwZMxARESGNAo0fPx4xMTGYOnUqRo4ciZ9//hkbN27Ezp07pTqio6MRHh6O1q1bo02bNliyZAny8/MxYsQIs/QLERERWaBK+DXfY40cOVJ4eXkJuVwuXF1dRbdu3cTevXul/Xfv3hVvvfWWeOaZZ4SDg4N45ZVXREZGhs4xLl++LHr37i3s7e1F7dq1xeTJk0VRUZFOmwMHDoiWLVsKuVwuGjZsKGJjY0vUsnz5ctGgQQMhl8tFmzZtxLFjxww6Fy45QEREVPUY8v0tE0IIcwe36iA3NxdKpRJqtRoKhcLc5RAREZEeDPn+trg5TURERESWiKGJiIiISA8MTURERER6YGgiIiIi0gNDExEREZEeGJqIiIiI9MDQRERERKQHhiYiIiIiPTA0EREREemBoYmIiIhIDwxNRERERHpgaCIiIiLSA0MTERERkR6MDk3e3t6YO3curl69asp6iIiIiCyS0aEpKioKW7ZsQcOGDdGjRw+sX78eBQUFpqyNiIiIyGKUKzSlpqbi119/xXPPPYeJEyeiTp06iIyMREpKiilrJCIiIjI7mRBCmOJARUVF+PLLLzFt2jQUFRWhWbNmePvttzFixAjIZDJTvIVFy83NhVKphFqthkKhMHc5REREpAdDvr9rlPfNioqKsHXrVsTGxiIhIQEvvPACRo0ahevXr+P999/Hvn37EB8fX963ISIiIjIro0NTSkoKYmNj8d1338HKygpvvvkmFi9eDH9/f6nNK6+8gueff94khRIRERGZk9Gh6fnnn0ePHj2wcuVK9OvXDzY2NiXa+Pj4YNCgQeUqkIiIiMgSGB2a/vrrL3h5eZXZxtHREbGxsca+BREREZHFMPrXc126dIFKpSqxPScnBw0bNixXUURERESWxujQdPnyZWg0mhLbCwoK8Pfff5erKCIiIiJLY/DluR9//FH6+549e6BUKqXnGo0G+/fvh7e3t0mKIyIiIrIUBoemfv36AQBkMhnCw8N19tnY2MDb2xtffPGFSYojIiIishQGhyatVgvgwS/jTpw4gdq1a5u8KCIiIiJLY/Sv59LT001ZBxEREZFFMzo0zZ07t8z9M2fONPbQRERERBbH6NC0detWnedFRUVIT09HjRo14Ovry9BERERE1YrRoenkyZMltuXm5mL48OF45ZVXylUUERERkaUxep2m0igUCsyZMwcffvihKQ9LREREZHYmDU0AoFaroVarTX1YIiIiIrMy+vLcsmXLdJ4LIZCRkYFvvvkGvXv3LndhRERERJbE6NC0ePFinedWVlZwdXVFeHg4pk+fXu7CiIiIiCwJ12kiIiIi0kO55jQJIXDr1i2oVCpT1UNERERkkYwKTZmZmXjzzTfxzDPPwN3dHW5ubnjmmWcwcuRIZGVlmbpGIiIiIrMz+PJcbm4u2rVrh9u3b2PEiBHw9/eHEALnzp3Dd999h8OHDyMlJQU1a9asiHqJiIiIzMLg0LR06VJYW1vj7NmzcHV11dk3Y8YMtG/fHsuWLcP7779vsiKJiIiIzM3gy3M7d+7E+++/XyIwAYCbmxumT5+O7du3m6Q4IiIyn+vXgQMHHvxJREaEpj///BPt2rV77P527dohLS2tXEUREZF5rVkDeHkBXbs++HPNGnNXRGR+Boem3Nxc1KpV67H7a9Wqhdzc3PLUREREZnT9OjB2LKDVPniu1QLjxnHEicjg0CSEgJXV418mk8kghChXUUREZD4XLvwvMBXTaICLF81TD5GlMHgiuBACzz77LGQy2WP3ExFR1aRSqaBQ3IeVlRu02v/9O29tLeDkdBMqVQ24uLiYsUIi8zE4NMXGxlZEHUREZGYqlQoxMTEAgD59WmH79j4QwgoymRahoTuwY8dJAEBkZCSDEz2VDA5N4eHhBrX/7rvv0LdvXzg6Ohr6VkREVIkKCwulvwcGnoSv70VkZzvD2TkbSmVeqe2Inibluo2KPsaNG8dVwomIqiClMg8+Pld0AhPR06zCQxPnOBEREVF1UOGhiYiIyJJw0U4yFkMTERE9NbhoJ5UHQxMRET0VuGgnlRdDExERPRW4aCeVl1GhSaPR4NChQ8jJyXliWy8vL9jY2BjzNkREVInkcrlJ21mSB4t2ZsHKSvfHSQ8W7cyCSqUyU2VUlciEkT9vs7Ozw/nz5+Hj42Pqmqqk3NxcKJVKqNVqKBQKc5dDRGQUlUpV5jpMcrm8Qha2vH79wUhQo0ZA/fqmPfbDi3ampOgu2hkWtgOBgVy082lmyPe3wYtbFmvatCn++usvhiYiomrEHKFhzZr/zTWysgK++goYNcp0x+einWQqRs9p+uijj/Duu+9ix44dyMjIQG5urs6DiIhMqzr+VN4ck7O5aCcZy+iRppdeegkA0LdvX52b9wohIJPJoNFoyl8dEREBqPjRGHNQqVQ4dgzQanVHtzQa4PhxFeztzTPyRfQ4RoemAwcOmLIOIiJ6jMeNxoSEmH7+T2UpnmekVjtBJouCEP+78CGTaXHkyDqcOZPHeUZkUYwOTZ06dTJlHUREVIrqOhpTPH9IqcxDWNiOEpOziy+dcZ4RWZJyrdP0yy+/YOjQoWjXrh3+/vtvAMA333yDw4cP6/X6+fPn4/nnn4eTkxPc3NzQr18/pKWl6bTp3LkzZDKZzmP8+PE6ba5evYrQ0FA4ODjAzc0NU6ZMwf3793XaJCYmIjAwELa2tvDz80NcXFyJelasWAFvb2/Y2dmhbdu2+PXXXw3oDSIi0yoejTl6dB1kMt0FhopHY2JiYqr8z+UDA08iKmoJwsPjEBW1RPo1G5GlMTo0bd68GSEhIbC3t0dKSgoKCgoAAGq1Gp988olexzh48CAiIiJw7NgxJCQkoKioCD179kR+fr5OuzFjxiAjI0N6LFy4UNqn0WgQGhqKwsJCHD16FOvWrUNcXBxmzpwptUlPT0doaCi6dOmC1NRUREVFYfTo0dizZ4/UZsOGDYiOjsasWbOQkpKCFi1aICQkBDdv3jS2i4iIyuXR0Zji4FQdR2M4OZuqAqMvz3300UdYtWoV3nzzTaxfv17a3r59e3z00Ud6HWP37t06z+Pi4uDm5obk5GR07NhR2u7g4AAPD49Sj7F3716cO3cO+/btg7u7O1q2bIl58+Zh2rRpmD17NuRyOVatWgUfHx988cUXAIDnnnsOhw8fxuLFixESEgIAWLRoEcaMGYMRI0YAAFatWoWdO3di7dq1eO+99/TvGCKiClDWT+WpbNV50U6qXEaHprS0NJ1gU0ypVOq1Unhp1Go1AMDZ2Vln+7fffov//ve/8PDwQFhYGD788EM4ODgAAJKSktCsWTO4u7tL7UNCQjBhwgScPXsWrVq1QlJSErp3765zzJCQEERFRQF48F9pycnJmD59urTfysoK3bt3R1JSUqm1FhQUSKNrALjMAhFVOKUyj2HJCC4uLoiMjDTLop1UvRgdmjw8PHDx4kV4e3vrbD98+DAaNmxo8PG0Wi2ioqLQvn17NG3aVNo+ZMgQeHl5oW7dujh16hSmTZuGtLQ0bNmyBQCQmZmpE5gASM8zMzPLbJObm4u7d+/i33//hUajKbXNH3/8UWq98+fPx5w5cww+TyIiqnwMRGQKRoemMWPG4J133sHatWshk8lw48YNJCUl4d1338WHH35o8PEiIiJw5syZEpPIx44dK/29WbNmqFOnDrp164ZLly7B19fX2PLLbfr06YiOjpae5+bmwtPT02z1EBERUcUyOjS999570Gq16NatG+7cuYOOHTvC1tYW7777LiZOnGjQsSIjI7Fjxw4cOnQI9Z+w6Ejbtm0BABcvXoSvry88PDxK/MotKysLAKR5UB4eHtK2h9soFArY29vD2toa1tbWpbZ53FwqW1tb2Nra6n+SREQk4TwjqoqMDk0ymQwffPABpkyZgosXL+L27dsICAhAzZo19T6GEAITJ07E1q1bkZiYqNd97FJTUwEAderUAQAEBwfj448/xs2bN+Hm5gYASEhIgEKhQEBAgNRm165dOsdJSEhAcHAwgAf/pwwKCsL+/fvRr18/AA8uF+7fvx+RkZF6nw8REemH84yoKjI6NBWTy+VSODFUREQE4uPjsW3bNjg5OUlzkJRKJezt7XHp0iXEx8fjpZdegouLC06dOoVJkyahY8eOaN68OQCgZ8+eCAgIwLBhw7Bw4UJkZmZixowZiIiIkEaCxo8fj5iYGEydOhUjR47Ezz//jI0bN2Lnzp1SLdHR0QgPD0fr1q3Rpk0bLFmyBPn5+dKv6YiIKlt1H41hIKKqRiaEEMa88N69e1i+fDkOHDiAmzdvQqvVXXgtJSXlyW/+0D3rHhYbG4vhw4fj2rVrGDp0KM6cOYP8/Hx4enrilVdewYwZM6BQKKT2V65cwYQJE5CYmAhHR0eEh4djwYIFqFHjf5kwMTERkyZNwrlz51C/fn18+OGHGD58uM77xsTE4LPPPkNmZiZatmyJZcuWSZcDnyQ3NxdKpRJqtVqnNiKi8lCpVByNIapAhnx/Gx2a3njjDezduxevvvoq3N3dSwSgWbNmGXPYKouhiYiIqOox5Pvb6MtzO3bswK5du9C+fXtjD0FEVdD168CFC0CjRlX3ZrFERMYw+jYq9erVg5OTkylrISILpVKpkJGRgS++yIGXl0DXroCXl8AXX+QgIyOjyt/7jIhIH0aPNH3xxReYNm0aVq1aBS8vL1PWREQWpPimsWq1E5YsiYIQDy7Fa7UyTJmiwN9/r4VSmYfIyEjOrSGias3o0NS6dWvcu3cPDRs2hIODA2xsbHT2Z2dnl7s4IjK/4knI2dkuEEJ3cFoIK2RnO0OpzKsWN40lIiqL0aFp8ODB+Pvvv/HJJ5+UOhGciKoXZ2cVZDKtTnCSybRwduZ/IBHR08Ho0HT06FEkJSWhRYsWpqyHiCyUUpmHsLAd2L69D4SwgkymRVjYDt5AloieGkaHJn9/f9y9e9eUtRCRhQsMPAlf34vIznaGs3M2AxMRPVWM/vXcggULMHnyZCQmJkKlUiE3N1fnQUTVk1KZBx+fKwxMRPTUMXqkqVevXgCAbt266WwXQkAmk0Gj0ZSvMiIiIiILYnRoOnDggCnrICIiIrJoRoWmoqIizJ07F6tWrUKjRo1MXRMRWZDqftNYIiJ9GRWabGxscOrUKVPXQkQWyMXFBZGRkbxpLBE99Yy+PDd06FCsWbMGCxYsMGU9RGSBGIiIiMoRmu7fv4+1a9di3759CAoKgqOjo87+RYsWlbs4IiIiIkthdGg6c+YMAgMDAQB//vmnzj6uDk5ERETVDX89R0RERKQHoxe3fNj169dx/fp1UxyKiIiIyCIZHZq0Wi3mzp0LpVIJLy8veHl5oVatWpg3bx60Wq0payQiIiIyO6Mvz33wwQfSr+fat28PADh8+DBmz56Ne/fu4eOPPzZZkURERETmJhNCCGNeWLduXaxatQp9+/bV2b5t2za89dZb+Pvvv01SYFWRm5sLpVIJtVoNhUJh7nKIiIhID4Z8fxt9eS47Oxv+/v4ltvv7+yM7O9vYwxIRERFZJKNDU4sWLRATE1Nie0xMDFq0aFGuooiIiIgsjdFzmhYuXIjQ0FDs27cPwcHBAICkpCRcu3YNu3btMlmBRERERJbA6JGmTp064c8//8Qrr7yCnJwc5OTkoH///khLS0OHDh1MWSMRERGR2Rk00tS/f3/ExcVBoVDg66+/xsCBA/krOSIiInoqGDTStGPHDuTn5wMARowYAbVaXSFFEREREVkag0aa/P39MX36dHTp0gVCCGzcuPGxP8978803TVIgERERkSUwaJ2mo0ePIjo6GpcuXUJ2djacnJxKvTmvTCZ76pYd4DpNREREVY8h399GL25pZWWFzMxMuLm5GVVkdcPQREREVPVUyuKW6enpcHV1NfblRERERFWK0aHJy8sLhw8fxtChQxEcHCzdNuWbb77B4cOHTVYgERERkSUwOjRt3rwZISEhsLe3x8mTJ1FQUAAAUKvV+OSTT0xWIBEREZElMDo0ffTRR1i1ahX+85//wMbGRtrevn17pKSkmKQ4IiIiIkthdGhKS0tDx44dS2xXKpXIyckpT01EREREFsfo0OTh4YGLFy+W2H748GE0bNiwXEURERERWRqjQ9OYMWPwzjvv4Pjx45DJZLhx4wa+/fZbTJ48GRMmTDBljURERERmZ9CK4A977733oNVq0a1bN9y5cwcdO3aEra0tpkyZgtGjR5uyRiIiIiKzM3pxy2KFhYW4ePEibt++jYCAAKxevRqfffYZMjMzTVVjlWApi1uqVCoUFhY+dr9cLoeLi0slVkRERGS5DPn+NnikqaCgALNnz0ZCQoI0stSvXz/ExsbilVdegbW1NSZNmmR08WQ8lUqFmJiYJ7aLjIxkcCIiIjKQwaFp5syZWL16Nbp3746jR4/itddew4gRI3Ds2DF88cUXeO2112BtbV0RtdITlDXCZEw7IiIi+h+DQ9OmTZvw9ddfo2/fvjhz5gyaN2+O+/fv4/fffy/15r1kPmq1E7KzXeDsrIJSmWfucoiIiKo0g0PT9evXERQUBABo2rQpbG1tMWnSJAYmC5OS0grbt/eBEFaQybQIC9uBwMCT5i6LiIioyjJ4yQGNRgO5XC49r1GjBmrWrGnSoqh81GonKTABgBBW2L69D9RqJzNXRkREVHUZPNIkhMDw4cNha2sLALh37x7Gjx8PR0dHnXZbtmwxTYVksOxsFykwFRPCCtnZzrxMR0REZCSDQ1N4eLjO86FDh5qsGDINZ2cVZDKtTnCSybRwds42Y1VERERVm8GhKTY2tiLqIBNSKvMQFrajxJwmjjIREREZz+gVwcnyPDzXLDDwJHx9LyI72xnOztk6genhdkRERKQfhqZqxMXFBZGRkVwR/CnAld+JiCofQ1M1wy/K6o8rvxMRmYfBSw4QkXlx5XciIvNgaCIiIiLSA0MTURWnVjshPd2bi5cSEVUwzmkiqsJ4uxwiosrDkSaiKoq3yyEiqlwMTURVVFm3yyEiItNjaCKqoopvl/Mw3i6HiKjiMDQRVTHFK7oX3y6nODg9erscrvxORGRaMiGEMHcR1UFubi6USiXUajUUCoW5y6Fq7uEVwW/csMLlyzXg7X0fdes+CFBcEZyISD+GfH/z13NkNN7Kw3we7tc6dYCgIDMWQ0T0lDDr5bn58+fj+eefh5OTE9zc3NCvXz+kpaXptLl37x4iIiLg4uKCmjVrYsCAAcjKytJpc/XqVYSGhsLBwQFubm6YMmUK7t+/r9MmMTERgYGBsLW1hZ+fH+Li4krUs2LFCnh7e8POzg5t27bFr7/+avJzri6Kb+Xx1VdfPfYRExMDlUpl7lKJiIhMwqyh6eDBg4iIiMCxY8eQkJCAoqIi9OzZE/n5+VKbSZMmYfv27di0aRMOHjyIGzduoH///tJ+jUaD0NBQFBYW4ujRo1i3bh3i4uIwc+ZMqU16ejpCQ0PRpUsXpKamIioqCqNHj8aePXukNhs2bEB0dDRmzZqFlJQUtGjRAiEhIbh582bldEYVw1t5EBHR08ai5jT9888/cHNzw8GDB9GxY0eo1Wq4uroiPj4er776KgDgjz/+wHPPPYekpCS88MIL+Omnn9CnTx/cuHED7u7uAIBVq1Zh2rRp+OeffyCXyzFt2jTs3LkTZ86ckd5r0KBByMnJwe7duwEAbdu2xfPPPy/dCFWr1cLT0xMTJ07Ee++998Tan7Y5TRkZGfjqq6+e2G7s2LGoU6dOJVRE+uAlVSIiXVV2TpNarQYAODs/WGcmOTkZRUVF6N69u9TG398fDRo0kEJTUlISmjVrJgUmAAgJCcGECRNw9uxZtGrVCklJSTrHKG4TFRUF4MFoSHJyMqZPny7tt7KyQvfu3ZGUlFRqrQUFBSgoKJCe5+bmlu/kiSpY8SXVJ4mMjGRwIiIqhcUsOaDVahEVFYX27dujadOmAIDMzEzI5XLUqlVLp627uzsyMzOlNg8HpuL9xfvKapObm4u7d+/i1q1b0Gg0pbYpPsaj5s+fD6VSKT08PT2NO3GiSsJLqkRE5WMxoSkiIgJnzpzB+vXrzV2KXqZPnw61Wi09rl27Zu6SzIo3jSUiourOIi7PRUZGYseOHTh06BDq168vbffw8EBhYSFycnJ0RpuysrLg4eEhtXn0V27Fv657uM2jv7jLysqCQqGAvb09rK2tYW1tXWqb4mM8ytbWFra2tsadcDXDm8YSEdHTwKwjTUIIREZGYuvWrfj555/h4+Ojsz8oKAg2NjbYv3+/tC0tLQ1Xr15FcHAwACA4OBinT5/W+ZVbQkICFAoFAgICpDYPH6O4TfEx5HI5goKCdNpotVrs379fakOl401jqy6ODhIRGcasI00RERGIj4/Htm3b4OTkJM0fUiqVsLe3h1KpxKhRoxAdHQ1nZ2coFApMnDgRwcHBeOGFFwAAPXv2REBAAIYNG4aFCxciMzMTM2bMQEREhDQSNH78eMTExGDq1KkYOXIkfv75Z2zcuBE7d+6UaomOjkZ4eDhat26NNm3aYMmSJcjPz8eIESMqv2OqgOJbdJR101ilMo+38rBQHB0kIjKCMCMApT5iY2OlNnfv3hVvvfWWeOaZZ4SDg4N45ZVXREZGhs5xLl++LHr37i3s7e1F7dq1xeTJk0VRUZFOmwMHDoiWLVsKuVwuGjZsqPMexZYvXy4aNGgg5HK5aNOmjTh27Jje56JWqwUAoVarDeqDquzWrVvit98yhZWVVgBCelhba8Vvv2WKW7dumbtEesiNGzfE7NmzxaRJXwiZTKPzv5lMphGTJn0hZs+eLW7cuGHuUomIKo0h398WtU5TVfa0rdP0sDVrgHHjAI0GsLYGVq8GRo0yd1X0qOK1tdLTvbFuXXiJ/eHhcfDxucK1tYjoqVJl12miqmnUKCAkBLh4EfDzAx6ay08WpPhSqbOzCjKZVueyqkymhbNztk47IiLSxZEmE3maR5qo6iheETw+3h7Tpimh0chgbS3w6adqDBlylyuCE9FTx5Dvb4YmE2Fooqrm+nWODhIR8fIcET1R/foMS0REhrCYFcGJiIiILBlDExEREZEeGJqIiIiI9MDQRERERKQHhiYiIiIiPTA0EREREemBoYmIiIhIDwxNRERERHpgaCIiIiLSA1cEJyKLUnx/vMfh/fGIyFwYmojIYqhUKsTExDyxXWRkJIMTEVU6Xp4jIotR1giTMe2IiEyJoYmIiIhIDwxNRERERHpgaCIiIiLSA0MTERERkR4YmojIYqnVTkhP94Za7WTuUoiIuOQAEVmmlJRW2L69D4SwgkymRVjYDgQGnjR3WUT0FONIExFZDLlcDuDBCFNxYAIAIaywfXsfacSpuB0RUWWSCSGEuYuoDnJzc6FUKqFWq6FQKMxdDlGVpVKpcOAA8NprJRev/P57FTp3Bhe2JCKTMeT7m5fniMiiuLi44IUXACsrQKv933Zra6BtWxcwLxGRufDyHBFZnPr1ga++ehCUgAd/rl79YDsRkblwpImInsgcN9EdNQoICQEuXgT8/BiYiMj8GJqIqEzmvIlu/foMS0RkOXh5jojKxJvoEhE9wNBEREREpAeGJiIiIiI9MDQRERER6YGhiYiIiEgPDE1EZBDeRJeInlZccoCI9Mab6BLR04wjTURUJt5El4joAd6w10R4w16qzngTXSKqrnjDXiIyKd5El4iIl+eISE+8iS4RPe040kREeuNNdImoMpnjZuFlYWgiIoPwJrpEVBkevVm4Wu2E7GwXODuroFTmSdsr4mbhj8PQRERERBbn4RGmspY7qcybhXNOExEREVmsJy13UpkYmoiIiMhiZWe7SIGpmBBWyM52rvRaGJqIiIjIYjk7qyCTaXW2yWRaODtnV3otnNNkoSztFwNERETmoFTmISxsR4k5TQ9PBq8sDE0W6NFfDDxOZf5igIiIyFwCA0/C1/cisrOd4eycbZbABDA0WSR9fwlQmb8YICIiMielMs9sYakY5zQRERGRxdH3JuCVebNwjjQRERGRxXFxcUFkZKRFze9laCIiIiKLZGnzdnl5joiIiEgPDE1EREREemBoIiIiItIDQ5MFevSXAGq1E9LTvUvcZ6cyfzFARET0tONEcAv08C8G4uPtMXeuElqtDFZWAgsXqjFkyF2uCE5ERFTJZEIIYe4iqoPc3FwolUqo1WooFAqTHPP6dcDLC9A+dMsda2vg8mWgfn2TvAUREdFTzZDvb440WbALF3QDEwBoNMDFiwxNRERU+Z72+6IyNFmwRo0AK6uSI01+fuariYiInk68L6qZJ4IfOnQIYWFhqFu3LmQyGX744Qed/cOHD4dMJtN59OrVS6dNdnY23njjDSgUCtSqVQujRo3C7du3ddqcOnUKHTp0gJ2dHTw9PbFw4cIStWzatAn+/v6ws7NDs2bNsGvXLpOfr6Hq1we++upBUAIe/Ll6NUeZiIio8j06wvS4HylV5/uimnWkKT8/Hy1atMDIkSPRv3//Utv06tULsbGx0nNbW1ud/W+88QYyMjKQkJCAoqIijBgxAmPHjkV8fDyAB9cqe/bsie7du2PVqlU4ffo0Ro4ciVq1amHs2LEAgKNHj2Lw4MGYP38++vTpg/j4ePTr1w8pKSlo2rRpBZ29fkaNAkJCHlyS8/NjYCIiIvNLSWmF7dv7QAgryGRahIXtQGDgSXOXVeHMGpp69+6N3r17l9nG1tYWHh4epe47f/48du/ejRMnTqB169YAgOXLl+Oll17C559/jrp16+Lbb79FYWEh1q5dC7lcjiZNmiA1NRWLFi2SQtPSpUvRq1cvTJkyBQAwb948JCQkICYmBqtWrTLhGRunfn2GJSIisgxqtZMUmABACCts394Hvr4XoVTmmbm6imXx6zQlJibCzc0NjRs3xoQJE6BSqaR9SUlJqFWrlhSYAKB79+6wsrLC8ePHpTYdO3bUWdMoJCQEaWlp+Pfff6U23bt313nfkJAQJCUlPbaugoIC5Obm6jyIiIiqu+xsFykwFRPCCtnZzmaqqPJYdGjq1asXvv76a+zfvx+ffvopDh48iN69e0Oj0QAAMjMz4ebmpvOaGjVqwNnZGZmZmVIbd3d3nTbFz5/Upnh/aebPnw+lUik9PD09y3eyREREVYCzswoyme5Pu2UyLZyds81UUeWx6NA0aNAg9O3bF82aNUO/fv2wY8cOnDhxAomJieYuDdOnT4darZYe165dM3dJREREFU6pzENY2A4pOBXPaarul+aAKrbkQMOGDVG7dm1cvHgR3bp1g4eHB27evKnT5v79+8jOzpbmQXl4eCArK0unTfHzJ7V53Fwq4MFcq0cnpRMRET0NAgNPwtf3IrKzneHsnP1UBCbAwkeaHnX9+nWoVCrUqVMHABAcHIycnBwkJydLbX7++WdotVq0bdtWanPo0CEUFRVJbRISEtC4cWM888wzUpv9+/frvFdCQgKCg4Mr+pSIiIiqhEfvd6pU5sHH50qJwFSd74tq1tuo3L59GxcvXgQAtGrVCosWLUKXLl3g7OwMZ2dnzJkzBwMGDICHhwcuXbqEqVOnIi8vD6dPn5ZGeXr37o2srCysWrVKWnKgdevW0pIDarUajRs3Rs+ePTFt2jScOXMGI0eOxOLFi3WWHOjUqRMWLFiA0NBQrF+/Hp988olBSw5UxG1UiIiILEl1XBHcoO9vYUYHDhwQAEo8wsPDxZ07d0TPnj2Fq6ursLGxEV5eXmLMmDEiMzNT5xgqlUoMHjxY1KxZUygUCjFixAiRl5en0+b3338XL774orC1tRX16tUTCxYsKFHLxo0bxbPPPivkcrlo0qSJ2Llzp0HnolarBQChVqsN7wgiIiIyC0O+v3nDXhPhSBMREVHVY8j3d5Wa00RERERkLgxNRERERHpgaCIiIiLSA0MTERERkR4YmoiIiIj0wNBEREREpAeGJiIiIiI9MDQRERER6YGhiYiIiEgPDE1EREREemBoIiIiItJDDXMXQEREVZuqGt75nqg0DE1ERGQ0lUqFmJiYJ7aLjIxkcKIqj5fniIjIaI+OMKnVTkhP94Za7VRmO6KqiCNNRERkEikprbB9ex8IYQWZTIuwsB0IDDxp7rKITIahiYiIyk2tdpICEwAIYYXt2/vA1/cilMq8Ul/DuVBU1TA0ERFRuWVnu0iBqZgQVsjOdi41ND06F0qtdkJ2tgucnVU67TkXiiwJQxMREZWbs7MKMplWJzjJZFo4O2eX2v7hEaayLutxLhRZEk4EJyKiclMq8xAWtgMymRYApPDzuEtzxR53We/RieREloAjTUREZBKBgSfh63sR2dnOcHbOfmJgAgy/rEdkTgxNRERkNLlcrvNcqcwrNew82q6YoZf1iMyJoYmIiIzm4uKCyMhIo38FV3xZ79E5TRxlIkvE0EREROVS3l+3GXNZj8gcGJqIiMjsHndZj8iS8NdzRERU6R43x8nYdkSVgSNNRERU6co7F4rIHBiaiIjILBiIqKrh5TkiIiIiPTA0EREREemBoYmIiIhIDwxNRERERHpgaCIiIiLSA0MTERERkR4YmoiIiIj0wNBEREREpAeGJiIiIiI9cEVwExFCAAByc3PNXAkRERHpq/h7u/h7vCwMTSaSl/fg7tyenp5mroSIiIgMlZeXB6VSWWYbmdAnWtETabVa3LhxA05OTpDJZOU6Vm5uLjw9PXHt2jUoFAoTVVi1sA/YBwD7AGAfAOwDgH0AVFwfCCGQl5eHunXrwsqq7FlLHGkyESsrK9SvX9+kx1QoFE/t/zmKsQ/YBwD7AGAfAOwDgH0AVEwfPGmEqRgnghMRERHpgaGJiIiISA8MTRbI1tYWs2bNgq2trblLMRv2AfsAYB8A7AOAfQCwDwDL6ANOBCciIiLSA0eaiIiIiPTA0ERERESkB4YmIiIiIj0wNBERERHpgaGpkqxYsQLe3t6ws7ND27Zt8euvv5bZfsmSJWjcuDHs7e3h6emJSZMm4d69e9L+2bNnQyaT6Tz8/f0r+jTKxZA+KCoqwty5c+Hr6ws7Ozu0aNECu3fvLtcxLYGp+6AqfQ4OHTqEsLAw1K1bFzKZDD/88MMTX5OYmIjAwEDY2trCz88PcXFxJdpUpc9ARfRBVfoMAIb3QUZGBoYMGYJnn30WVlZWiIqKKrXdpk2b4O/vDzs7OzRr1gy7du0yffEmUhF9EBcXV+JzYGdnVzEnYAKG9sGWLVvQo0cPuLq6QqFQIDg4GHv27CnRrqL/PWBoqgQbNmxAdHQ0Zs2ahZSUFLRo0QIhISG4efNmqe3j4+Px3nvvYdasWTh//jzWrFmDDRs24P3339dp16RJE2RkZEiPw4cPV8bpGMXQPpgxYwZWr16N5cuX49y5cxg/fjxeeeUVnDx50uhjmltF9AFQdT4H+fn5aNGiBVasWKFX+/T0dISGhqJLly5ITU1FVFQURo8erfMPZVX7DFREHwBV5zMAGN4HBQUFcHV1xYwZM9CiRYtS2xw9ehSDBw/GqFGjcPLkSfTr1w/9+vXDmTNnTFm6yVREHwAPVsp++HNw5coVU5Vscob2waFDh9CjRw/s2rULycnJ6NKlC8LCwir/O0FQhWvTpo2IiIiQnms0GlG3bl0xf/78UttHRESIrl276myLjo4W7du3l57PmjVLtGjRokLqrQiG9kGdOnVETEyMzrb+/fuLN954w+hjmltF9EFV+xwUAyC2bt1aZpupU6eKJk2a6GwbOHCgCAkJkZ5Xtc/Aw0zVB1X1MyCEfn3wsE6dOol33nmnxPbXX39dhIaG6mxr27atGDduXDkrrHim6oPY2FihVCpNVldlMrQPigUEBIg5c+ZIzyvj3wOONFWwwsJCJCcno3v37tI2KysrdO/eHUlJSaW+pl27dkhOTpaGFf/66y/s2rULL730kk67CxcuoG7dumjYsCHeeOMNXL16teJOpByM6YOCgoISQ8v29vbSf0Ebc0xzqog+KFZVPgeGSkpK0ukvAAgJCZH6q6p9BozxpD4oVl0/A/rSt5+qu9u3b8PLywuenp54+eWXcfbsWXOXVGG0Wi3y8vLg7OwMoPL+PWBoqmC3bt2CRqOBu7u7znZ3d3dkZmaW+pohQ4Zg7ty5ePHFF2FjYwNfX1907txZ5/Jc27ZtERcXh927d2PlypVIT09Hhw4dkJeXV6HnYwxj+iAkJASLFi3ChQsXoNVqkZCQgC1btiAjI8PoY5pTRfQBULU+B4bKzMwstb9yc3Nx9+7dKvcZMMaT+gCo3p8BfT2un6rL50AfjRs3xtq1a7Ft2zb897//hVarRbt27XD9+nVzl1YhPv/8c9y+fRuvv/46gMr7TmBoskCJiYn45JNP8OWXXyIlJQVbtmzBzp07MW/ePKlN79698dprr6F58+YICQnBrl27kJOTg40bN5qxctNZunQpGjVqBH9/f8jlckRGRmLEiBGwsnp6PrL69EF1/xzQk/EzQAAQHByMN998Ey1btkSnTp2wZcsWuLq6YvXq1eYuzeTi4+MxZ84cbNy4EW5ubpX63k/PN5CZ1K5dG9bW1sjKytLZnpWVBQ8Pj1Jf8+GHH2LYsGEYPXo0mjVrhldeeQWffPIJ5s+fD61WW+pratWqhWeffRYXL140+TmUlzF94Orqih9++AH5+fm4cuUK/vjjD9SsWRMNGzY0+pjmVBF9UBpL/hwYysPDo9T+UigUsLe3r3KfAWM8qQ9KU50+A/p6XD9Vl8+BMWxsbNCqVatq9zlYv349Ro8ejY0bN+pciqusfw8YmiqYXC5HUFAQ9u/fL23TarXYv38/goODS33NnTt3SoyoWFtbAwDEY24VePv2bVy6dAl16tQxUeWmY0wfFLOzs0O9evVw//59bN68GS+//HK5j2kOFdEHpbHkz4GhgoODdfoLABISEqT+qmqfAWM8qQ9KU50+A/oypp+qO41Gg9OnT1erz8F3332HESNG4LvvvkNoaKjOvkr798BkU8rpsdavXy9sbW1FXFycOHfunBg7dqyoVauWyMzMFEIIMWzYMPHee+9J7WfNmiWcnJzEd999J/766y+xd+9e4evrK15//XWpzeTJk0ViYqJIT08XR44cEd27dxe1a9cWN2/erPTz04ehfXDs2DGxefNmcenSJXHo0CHRtWtX4ePjI/7991+9j2lpKqIPqtLnIC8vT5w8eVKcPHlSABCLFi0SJ0+eFFeuXBFCCPHee++JYcOGSe3/+usv4eDgIKZMmSLOnz8vVqxYIaytrcXu3bulNlXtM1ARfVCVPgNCGN4HQgipfVBQkBgyZIg4efKkOHv2rLT/yJEjokaNGuLzzz8X58+fF7NmzRI2Njbi9OnTlXpu+qqIPpgzZ47Ys2ePuHTpkkhOThaDBg0SdnZ2Om0siaF98O2334oaNWqIFStWiIyMDOmRk5MjtamMfw8YmirJ8uXLRYMGDYRcLhdt2rQRx44dk/Z16tRJhIeHS8+LiorE7Nmzha+vr7CzsxOenp7irbfe0vmyHDhwoKhTp46Qy+WiXr16YuDAgeLixYuVeEaGM6QPEhMTxXPPPSdsbW2Fi4uLGDZsmPj7778NOqYlMnUfVKXPwYEDBwSAEo/icw4PDxedOnUq8ZqWLVsKuVwuGjZsKGJjY0sctyp9BiqiD6rSZ0AI4/qgtPZeXl46bTZu3CieffZZIZfLRZMmTcTOnTsr54SMUBF9EBUVJf3/wN3dXbz00ksiJSWl8k7KQIb2QadOncpsX6yi/z2QCfGY6z1EREREJOGcJiIiIiI9MDQRERER6YGhiYiIiEgPDE1EREREemBoIiIiItIDQxMRERGRHhiaiIiIiPTA0EREVI0lJiZCJpMhJyfH3KUQVXkMTURkEsOHD4dMJsOCBQt0tv/www+QyWTScyEE/vOf/yA4OBgKhQI1a9ZEkyZN8M477+h9c9E7d+5g+vTp8PX1hZ2dHVxdXdGpUyds27ZNauPt7Y0lS5aY5NwqWnHfyWQy2NjYwMfHB1OnTsW9e/cMOk7nzp0RFRWls61du3bIyMiAUqk0YcVETyeGJiIyGTs7O3z66af4999/S90vhMCQIUPw9ttv46WXXsLevXtx7tw5rFmzBnZ2dvjoo4/0ep/x48djy5YtWL58Of744w/s3r0br776KlQqlSlPp1L16tULGRkZ+Ouvv7B48WKsXr0as2bNKvdx5XI5PDw8dIIrERnJpDdlIaKnVnh4uOjTp4/w9/cXU6ZMkbZv3bpVFP9T89133wkAYtu2baUeQ6vV6vVeSqVSxMXFPXZ/afepKvbLL7+IF198UdjZ2Yn69euLiRMnitu3b0v7v/76axEUFCRq1qwp3N3dxeDBg0VWVpa0v/ieWbt37xYtW7YUdnZ2okuXLiIrK0vs2rVL+Pv7CycnJzF48GCRn5+v1/mEh4eLl19+WWdb//79RatWraTnt27dEoMGDRJ169YV9vb2omnTpiI+Pl7nGI+ec3p6ulTvw/eu/P7770VAQICQy+XCy8tLfP7553rVSfS040gTEZmMtbU1PvnkEyxfvhzXr18vsf+7775D48aN0bdv31Jfr+9oiIeHB3bt2oW8vLxS92/ZsgX169fH3LlzkZGRgYyMDADApUuX0KtXLwwYMACnTp3Chg0bcPjwYURGRkqvLSoqwrx58/D777/jhx9+wOXLlzF8+PAS7zF79mzExMTg6NGjuHbtGl5//XUsWbIE8fHx2LlzJ/bu3Yvly5frdT6POnPmDI4ePQq5XC5tu3fvHoKCgrBz506cOXMGY8eOxbBhw/Drr78CAJYuXYrg4GCMGTNGOmdPT88Sx05OTsbrr7+OQYMG4fTp05g9ezY+/PBDxMXFGVUr0VPF3KmNiKqHh0dLXnjhBTFy5EghhO5Ik7+/v+jbt6/O69555x3h6OgoHB0dRb169fR6r4MHD4r69esLGxsb0bp1axEVFSUOHz6s08bLy0ssXrxYZ9uoUaPE2LFjdbb98ssvwsrKSty9e7fU9zpx4oQAIPLy8oQQ/xtp2rdvn9Rm/vz5AoC4dOmStG3cuHEiJCREr/MJDw8X1tbWwtHRUdja2goAwsrKSnz//fdlvi40NFRMnjxZet6pUyfxzjvv6LR5dKRpyJAhokePHjptpkyZIgICAvSqlehpxpEmIjK5Tz/9FOvWrcP58+ef2PaDDz5AamoqZs6cidu3b+t1/I4dO+Kvv/7C/v378eqrr+Ls2bPo0KED5s2bV+brfv/9d8TFxaFmzZrSIyQkBFqtFunp6QAejMSEhYWhQYMGcHJyQqdOnQAAV69e1TlW8+bNpb+7u7vDwcEBDRs21Nl28+ZNvc4HALp06YLU1FQcP34c4eHhGDFiBAYMGCDt12g0mDdvHpo1awZnZ2fUrFkTe/bsKVHXk5w/fx7t27fX2da+fXtcuHABGo3GoGMRPW0YmojI5Dp27IiQkBBMnz5dZ3ujRo2Qlpams83V1RV+fn5wc3Mz6D1sbGzQoUMHTJs2DXv37sXcuXMxb948FBYWPvY1t2/fxrhx45Camio9fv/9d1y4cAG+vr7Iz89HSEgIFAoFvv32W5w4cQJbt24FgBLHtbGxkf5e/Ku3h8lkMmi1Wr3Px9HREX5+fmjRogXWrl2L48ePY82aNdL+zz77DEuXLsW0adNw4MABpKamIiQkpMzzJSLTqmHuAoioelqwYAFatmyJxo0bS9sGDx6MIUOGYNu2bXj55ZdN+n4BAQG4f/8+7t27B7lcDrlcXmLkJDAwEOfOnYOfn1+pxzh9+jRUKhUWLFggzQf67bffTFqnPqysrPD+++8jOjoaQ4YMgb29PY4cOYKXX34ZQ4cOBQBotVr8+eefCAgIkF5X2jk/6rnnnsORI0d0th05cgTPPvssrK2tTX8yRNUIR5qIqEI0a9YMb7zxBpYtWyZtGzRoEF599VUMGjQIc+fOxfHjx3H58mUcPHgQGzZs0PtLu3Pnzli9ejWSk5Nx+fJl7Nq1C++//z66dOkChUIB4ME6TYcOHcLff/+NW7duAQCmTZuGo0ePIjIyEqmpqbhw4QK2bdsmTQRv0KAB5HI5li9fjr/++gs//vjjEy/5VZTXXnsN1tbWWLFiBYAHo3QJCQk4evQozp8/j3HjxiErK0vnNd7e3lKf3rp1q9SRrsmTJ2P//v2YN28e/vzzT6xbtw4xMTF49913K+W8iKoyhiYiqjBz587V+eKWyWTYsGEDlixZgl27dqFbt25o3LgxRo4cCU9PTxw+fFiv44aEhGDdunXo2bMnnnvuOUycOBEhISHYuHGjzntfvnwZvr6+cHV1BfBgHtLBgwfx559/okOHDmjVqhVmzpyJunXrAnhwqTAuLg6bNm1CQEAAFixYgM8//9yEPaK/GjVqIDIyEgsXLkR+fj5mzJiBwMBAhISEoHPnzvDw8EC/fv10XvPuu+/C2toaAQEBcHV1LXW+U2BgIDZu3Ij169ejadOmmDlzJubOnVvqLwSJSJdMCCHMXQQRERGRpeNIExEREZEeGJqIyOI8vCTAo49ffvnF3OUZ5OrVq2Wej6FLBhCR+fDyHBFZnLJu3FuvXj3Y29tXYjXlc//+fVy+fPmx+729vVGjBn/ITFQVMDQRERER6YGX54iIiIj0wNBEREREpAeGJiIiIiI9MDQRERER6YGhiYiIiEgPDE1EREREemBoIiIiItIDQxMRERGRHv4f5kd+mezgeukAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWBhJREFUeJzt3XtcVHX+P/DXgAwDI4wCCoOiEOIlbygoQl7SaNFFlK02tFI0i+wnpYt5K0UrDcMb3sp0Vawk1HQ1zUgj3TZFVISMNFIWU1cGdcgBIYGYz+8Pv5wcuQgjw3B5PR+PeYxzzvuc8zmfNee153zmc2RCCAEiIiIiqhMLczeAiIiIqCliiCIiIiIyAkMUERERkREYooiIiIiMwBBFREREZASGKCIiIiIjMEQRERERGYEhioiIiMgIDFFERERERmCIIiJq5uLj4yGTyXDp0iVzN4WoWWGIIqKHdurUKURGRqJnz55QKpXo1KkTnn32Wfzyyy+Vah9//HHIZDLIZDJYWFjA3t4e3bp1w4QJE3D48OE6HXf//v0YNmwY2rdvD1tbWzzyyCN49tlnkZSUVF+nVsl7772HvXv3Vlp+/PhxLFq0CLdu3TLZse+3aNEiqS9lMhlsbW3x6KOPYv78+SgoKKiXYyQkJCAuLq5e9kXU3DBEEdFDe//997F792488cQTWL16NSIiIvDdd9+hf//+yMzMrFTfsWNHfPLJJ/j444+xbNkyjBkzBsePH8df/vIXhIWFoays7IHHXL58OcaMGQOZTIZ58+Zh1apVePrpp3HhwgUkJiaa4jQB1Byi3n777QYNURU+/PBDfPLJJ1i5ciW6d++OJUuWYOTIkaiPR6MyRBFVr5W5G0BETV9UVBQSEhIgl8ulZWFhYejduzeWLl2KTz/91KBepVLhhRdeMFi2dOlSvP766/jggw/g7u6O999/v9rj/fHHH3j33Xfx5JNP4tChQ5XWX79+/SHPqPEoLi6Gra1tjTXPPPMMnJycAABTp07F008/jT179uDEiRPw9/dviGYStUi8EkVEDy0gIMAgQAGAl5cXevbsifPnz9dqH5aWllizZg0effRRrFu3DjqdrtramzdvoqCgAI899liV69u3b2/w+c6dO1i0aBG6du0KhUIBtVqNp556CtnZ2VLN8uXLERAQAEdHR9jY2MDHxweff/65wX5kMhmKioqwbds26RbapEmTsGjRIsyaNQsA4OHhIa27dwzSp59+Ch8fH9jY2MDBwQHjxo3DlStXDPb/+OOPo1evXkhLS8PQoUNha2uLN998s1b9d68RI0YAAHJycmqs++CDD9CzZ09YW1vD1dUV06ZNM7iS9vjjj+PLL7/Er7/+Kp2Tu7t7ndtD1FzxShQRmYQQAnl5eejZs2ett7G0tMT48eOxYMECfP/99wgODq6yrn379rCxscH+/fvx2muvwcHBodp9lpeXY/To0UhOTsa4ceMwffp0FBYW4vDhw8jMzISnpycAYPXq1RgzZgyef/55lJaWIjExEX//+99x4MABqR2ffPIJXnrpJQwcOBAREREAAE9PTyiVSvzyyy/47LPPsGrVKumqULt27QAAS5YswYIFC/Dss8/ipZdewo0bN7B27VoMHToU6enpaNOmjdRerVaLUaNGYdy4cXjhhRfg7Oxc6/6rUBEOHR0dq61ZtGgR3n77bQQGBuLVV19FVlYWPvzwQ5w6dQrHjh2DlZUV3nrrLeh0Oly9ehWrVq0CALRu3brO7SFqtgQRkQl88sknAoDYvHmzwfJhw4aJnj17Vrvdv/71LwFArF69usb9R0dHCwBCqVSKUaNGiSVLloi0tLRKdVu2bBEAxMqVKyut0+v10p+Li4sN1pWWlopevXqJESNGGCxXKpUiPDy80r6WLVsmAIicnByD5ZcuXRKWlpZiyZIlBst//PFH0apVK4Plw4YNEwDEhg0bqj3vey1cuFAAEFlZWeLGjRsiJydHfPTRR8La2lo4OzuLoqIiIYQQW7duNWjb9evXhVwuF3/5y19EeXm5tL9169YJAGLLli3SsuDgYNG5c+datYeopeHtPCKqdz///DOmTZsGf39/hIeH12nbiisdhYWFNda9/fbbSEhIQL9+/fD111/jrbfego+PD/r3729wC3H37t1wcnLCa6+9VmkfMplM+rONjY30599++w06nQ5DhgzBmTNn6tT+++3Zswd6vR7PPvssbt68Kb1cXFzg5eWFI0eOGNRbW1tj8uTJdTpGt27d0K5dO3h4eOCVV15Bly5d8OWXX1Y7luqbb75BaWkpZsyYAQuLP78GXn75Zdjb2+PLL7+s+4kStUC8nUdE9Uqj0SA4OBgqlQqff/45LC0t67T97du3AQB2dnYPrB0/fjzGjx+PgoICpKamIj4+HgkJCQgJCUFmZiYUCgWys7PRrVs3tGpV8z93Bw4cwOLFi5GRkYGSkhJp+b1ByxgXLlyAEAJeXl5VrreysjL43KFDh0rjyx5k9+7dsLe3h5WVFTp27CjdoqzOr7/+CuBu+LqXXC7HI488Iq0nopoxRBFRvdHpdBg1ahRu3bqF//znP3B1da3zPiqmROjSpUutt7G3t8eTTz6JJ598ElZWVti2bRtSU1MxbNiwWm3/n//8B2PGjMHQoUPxwQcfQK1Ww8rKClu3bkVCQkKdz+Feer0eMpkMX331VZWB8v4xRvdeEautoUOHSuOwiKjhMEQRUb24c+cOQkJC8Msvv+Cbb77Bo48+Wud9lJeXIyEhAba2thg8eLBR7fD19cW2bduQm5sL4O7A79TUVJSVlVW66lNh9+7dUCgU+Prrr2FtbS0t37p1a6Xa6q5MVbfc09MTQgh4eHiga9eudT0dk+jcuTMAICsrC4888oi0vLS0FDk5OQgMDJSWPeyVOKLmjGOiiOihlZeXIywsDCkpKdi1a5dRcxOVl5fj9ddfx/nz5/H666/D3t6+2tri4mKkpKRUue6rr74C8Oetqqeffho3b97EunXrKtWK/5uM0tLSEjKZDOXl5dK6S5cuVTmpplKprHJCTaVSCQCV1j311FOwtLTE22+/XWnySyEEtFpt1SdpQoGBgZDL5VizZo1BmzZv3gydTmfwq0ilUlnjdBNELRmvRBHRQ5s5cya++OILhISEID8/v9LkmvdPrKnT6aSa4uJiXLx4EXv27EF2djbGjRuHd999t8bjFRcXIyAgAIMGDcLIkSPh5uaGW7duYe/evfjPf/6D0NBQ9OvXDwAwceJEfPzxx4iKisLJkycxZMgQFBUV4ZtvvsH/+3//D2PHjkVwcDBWrlyJkSNH4rnnnsP169exfv16dOnSBWfPnjU4to+PD7755husXLkSrq6u8PDwgJ+fH3x8fAAAb731FsaNGwcrKyuEhITA09MTixcvxrx583Dp0iWEhobCzs4OOTk5+Ne//oWIiAi88cYbD9X/ddWuXTvMmzcPb7/9NkaOHIkxY8YgKysLH3zwAQYMGGDwv5ePjw927NiBqKgoDBgwAK1bt0ZISEiDtpeo0TLnTwOJqHmo+Gl+da+aalu3bi28vLzECy+8IA4dOlSr45WVlYlNmzaJ0NBQ0blzZ2FtbS1sbW1Fv379xLJly0RJSYlBfXFxsXjrrbeEh4eHsLKyEi4uLuKZZ54R2dnZUs3mzZuFl5eXsLa2Ft27dxdbt26VphC4188//yyGDh0qbGxsBACD6Q7effdd0aFDB2FhYVFpuoPdu3eLwYMHC6VSKZRKpejevbuYNm2ayMrKMuibmqZ/uF9F+27cuFFj3f1THFRYt26d6N69u7CyshLOzs7i1VdfFb/99ptBze3bt8Vzzz0n2rRpIwBwugOie8iEqIeHKxERERG1MBwTRURERGQEhigiIiIiIzBEERERERmBIYqIiIjICAxRREREREZgiCIiIiIyAifbNCG9Xo9r167Bzs6Oj04gIiJqIoQQKCwshKurKywsqr/exBBlQteuXYObm5u5m0FERERGuHLlCjp27FjteoYoE7KzswNw93+Emp4DRkRERI1HQUEB3NzcpO/x6jBEmVDFLTx7e3uGKCIioibmQUNxOLCciIiIyAgMUURERERGYIgiIiIiMgLHRBERETUy5eXlKCsrM3czmi0rKytYWlo+9H4YooiIiBoJIQQ0Gg1u3bpl7qY0e23atIGLi8tDzePIEEVERNRIVASo9u3bw9bWlhM1m4AQAsXFxbh+/ToAQK1WG70vhigiIqJGoLy8XApQjo6O5m5Os2ZjYwMAuH79Otq3b2/0rb1GMbB8/fr1cHd3h0KhgJ+fH06ePFlj/a5du9C9e3coFAr07t0bBw8eNFgvhEB0dDTUajVsbGwQGBiICxcuVLmvkpISeHt7QyaTISMjQ1p+9OhRjB07Fmq1GkqlEt7e3ti+fftDnysREVFVKsZA2dramrklLUNFPz/M2DOzh6gdO3YgKioKCxcuxJkzZ9C3b18EBQVJl9nud/z4cYwfPx5TpkxBeno6QkNDERoaiszMTKkmNjYWa9aswYYNG5CamgqlUomgoCDcuXOn0v5mz54NV1fXKo/Tp08f7N69G2fPnsXkyZMxceJEHDhwoP5OnoiI6D68hdcw6qOfZUIIUQ9tMZqfnx8GDBiAdevWAbj70F43Nze89tprmDt3bqX6sLAwFBUVGYSZQYMGwdvbGxs2bIAQAq6urpg5cybeeOMNAIBOp4OzszPi4+Mxbtw4abuvvvoKUVFR2L17N3r27In09HR4e3tX29bg4GA4Oztjy5YttTq3goICqFQq6HS6h56xXKvVorS0tNr1crmcl3+JiJqwO3fuICcnBx4eHlAoFOZuTrNXU3/X9vvbrGOiSktLkZaWhnnz5knLLCwsEBgYiJSUlCq3SUlJQVRUlMGyoKAg7N27FwCQk5MDjUaDwMBAab1KpYKfnx9SUlKkEJWXl4eXX34Ze/furfWlU51Ohx49elS7vqSkBCUlJdLngoKCWu33QbRarRQyaxIZGckgRURE1EDMejvv5s2bKC8vh7Ozs8FyZ2dnaDSaKrfRaDQ11le811QjhMCkSZMwdepU+Pr61qqtO3fuxKlTpzB58uRqa2JiYqBSqaSXm5tbrfb9IDVdgTKmjoiIqD5NmjQJMpkMMpkMVlZWcHZ2xpNPPoktW7ZAr9fXej/x8fFo06aN6Rpaz8w+Jsoc1q5di8LCQoMrYDU5cuQIJk+ejE2bNqFnz57V1s2bNw86nU56Xblypb6aTEREVCOtVovc3NxqX1qt1qTHHzlyJHJzc3Hp0iV89dVXGD58OKZPn47Ro0fjjz/+MOmxzcWst/OcnJxgaWmJvLw8g+V5eXlwcXGpchsXF5ca6yve8/LyDOZ+yMvLk8Y7ffvtt0hJSYG1tbXBfnx9ffH8889j27Zt0rJ///vfCAkJwapVqzBx4sQaz8fa2rrSPomIiEytMQz7sLa2lr6DO3TogP79+2PQoEF44oknEB8fj5deegkrV67E1q1b8d///hcODg4ICQlBbGwsWrdujaNHj0p3eyoGfS9cuBCLFi3CJ598gtWrVyMrKwtKpRIjRoxAXFwc2rdvb5JzqS2zXomSy+Xw8fFBcnKytEyv1yM5ORn+/v5VbuPv729QDwCHDx+W6j08PODi4mJQU1BQgNTUVKlmzZo1+OGHH5CRkYGMjAxpioQdO3ZgyZIl0nZHjx5FcHAw3n//fURERNTPSRMREdWzxjrsY8SIEejbty/27NkD4O645zVr1uCnn37Ctm3b8O2332L27NkAgICAAMTFxcHe3l66elbxA7GysjK8++67+OGHH7B3715cunQJkyZNatBzqYrZJ9uMiopCeHg4fH19MXDgQMTFxaGoqEhKoxMnTkSHDh0QExMDAJg+fTqGDRuGFStWIDg4GImJiTh9+jQ2btwI4G56nTFjBhYvXgwvLy94eHhgwYIFcHV1RWhoKACgU6dOBm1o3bo1AMDT0xMdO3YEcPcW3ujRozF9+nQ8/fTT0ngquVwOBwcHk/dLTXQ6O+TnO8LBQQuVqtCsbSEiIqpJ9+7dcfbsWQDAjBkzpOXu7u5YvHgxpk6dig8++AByuRwqlQoymazS3agXX3xR+vMjjzyCNWvWYMCAAbh9+7b0HW4OZg9RYWFhuHHjBqKjo6HRaODt7Y2kpCRpYPjly5dhYfHnBbOAgAAkJCRg/vz5ePPNN+Hl5YW9e/eiV69eUs3s2bNRVFSEiIgI3Lp1C4MHD0ZSUlKdfjK6bds2FBcXIyYmRgpwADBs2DAcPXr04U/cSGfO9MP+/aMhhAVkMj1CQg6gf/90s7WHiIioJkII6fbcN998g5iYGPz8888oKCjAH3/8gTt37qC4uLjGX8qnpaVh0aJF+OGHH/Dbb79Jg9UvX76MRx99tEHOoypmD1HA3Xu0kZGRVa6rKrD8/e9/x9///vdq9yeTyfDOO+/gnXfeqdXx3d3dcf90WfHx8YiPj6/V9g1Fp7OTAhQACGGB/ftHw9PzIq9IERFRo3T+/Hl4eHjg0qVLGD16NF599VUsWbIEDg4O+P777zFlyhSUlpZWG6KKiooQFBSEoKAgbN++He3atcPly5cRFBRk9l+lN4oQRTWTy+UAgPx8RylAVRDCAvn5DlCpCqU6IiKixuDbb7/Fjz/+iH/84x9IS0uDXq/HihUrpDtMO3fuNKiXy+UoLy83WPbzzz9Dq9Vi6dKl0tRBp0+fbpgTeACGqCbA0dERkZGRuHTpD3zyiYBe/+dU9ZaWAq+9Ngru7q040SYREZlNSUkJNBoNysvLkZeXh6SkJMTExGD06NGYOHEiMjMzUVZWhrVr1yIkJATHjh3Dhg0bDPbh7u6O27dvIzk5GX379oWtrS06deoEuVyOtWvXYurUqcjMzMS7775rprM01CLniWqKHB0d4ePjjI0bZah42LSlJfDRRzL4+DgzQBERkVklJSVBrVbD3d0dI0eOxJEjR7BmzRrs27cPlpaW6Nu3L1auXIn3338fvXr1wvbt2w3GHAN3xz1PnToVYWFhaNeuHWJjY9GuXTvEx8dj165dePTRR7F06VIsX77cTGdpyOzPzmvO6vPZefe6ehW4eBHo0gX4vx8TEhFRE/cwz85rDPNENTVN/tl5ZJyOHRmeiIjoTxXDPvig+obFEEVERNQMMCA1PI6JIiIiIjICQxQRERGRERiiiIiIiIzAEEVERERkBIYoIiIiIiMwRBEREREZgSGKiIiIyAgMUURERNSoHT16FDKZDLdu3ar1Nu7u7oiLizNZmwCGKCIiInpIkyZNgkwmw9SpUyutmzZtGmQyGSZNmtTwDTMxhigiIiJ6aG5ubkhMTMTvv/8uLbtz5w4SEhLQqVMnM7bMdBiiiIiI6KH1798fbm5u2LNnj7Rsz5496NSpE/r16yctKykpweuvv4727dtDoVBg8ODBOHXqlMG+Dh48iK5du8LGxgbDhw/HpUuXKh3v+++/x5AhQ2BjYwM3Nze8/vrrKCoqMtn5VYUhioiIqJm5ehU4cuTue0N68cUXsXXrVunzli1bMHnyZIOa2bNnY/fu3di2bRvOnDmDLl26ICgoCPn5+QCAK1eu4KmnnkJISAgyMjLw0ksvYe7cuQb7yM7OxsiRI/H000/j7Nmz2LFjB77//ntERkaa/iTvwRBFRETUjGzeDHTuDIwYcfd98+aGO/YLL7yA77//Hr/++it+/fVXHDt2DC+88IK0vqioCB9++CGWLVuGUaNG4dFHH8WmTZtgY2ODzf/X0A8//BCenp5YsWIFunXrhueff77SeKqYmBg8//zzmDFjBry8vBAQEIA1a9bg448/xp07dxrsfFs12JGIiIjIpK5eBSIiAL3+7me9HnjlFSAoCOjY0fTHb9euHYKDgxEfHw8hBIKDg+Hk5CStz87ORllZGR577DFpmZWVFQYOHIjz588DAM6fPw8/Pz+D/fr7+xt8/uGHH3D27Fls375dWiaEgF6vR05ODnr06GGK06uEIYqIiKiZuHDhzwBVobwcuHixYUIUcPeWXsVttfXr15vkGLdv38Yrr7yC119/vdK6hhzEzhBFRETUTHh5ARYWhkHK0hLo0qXh2jBy5EiUlpZCJpMhKCjIYJ2npyfkcjmOHTuGzp07AwDKyspw6tQpzJgxAwDQo0cPfPHFFwbbnThxwuBz//79ce7cOXRpyBOrAsdEERERNRMdOwIbN94NTsDd948+arirUHePaYnz58/j3LlzsKxoyP9RKpV49dVXMWvWLCQlJeHcuXN4+eWXUVxcjClTpgAApk6digsXLmDWrFnIyspCQkIC4uPjDfYzZ84cHD9+HJGRkcjIyMCFCxewb9++Bh9YzitRREREzciUKXfHQF28ePcKVEMGqAr29vbVrlu6dCn0ej0mTJiAwsJC+Pr64uuvv0bbtm0B3L0dt3v3bvzjH//A2rVrMXDgQLz33nt48cUXpX306dMH//73v/HWW29hyJAhEELA09MTYWFhJj+3e8mEEKJBj9iCFBQUQKVSQafT1fgXioiI6M6dO8jJyYGHhwcUCoW5m9Ps1dTftf3+5u08IiIiIiMwRBEREREZgSGKiIiIyAgMUURERERGYIgiIiJqRPh7r4ZRH/3MEEVERNQIWFlZAQCKi4vN3JKWoaKfK/rdGJwnioiIqBGwtLREmzZtcP36dQCAra0tZDKZmVvV/AghUFxcjOvXr6NNmzaVJgStC4YoIiKiRsLFxQUApCBFptOmTRupv43FEEVERNRIyGQyqNVqtG/fHmVlZeZuTrNlZWX1UFegKjBEERERNTKWlpb18iVPpsWB5URERERGYIgiIiIiMgJDFBEREZERGKKIiIiIjMAQRURERGQEhigiIiIiIzBEERERERmhUYSo9evXw93dHQqFAn5+fjh58mSN9bt27UL37t2hUCjQu3dvHDx40GC9EALR0dFQq9WwsbFBYGAgLly4UOW+SkpK4O3tDZlMhoyMDIN1Z8+exZAhQ6BQKODm5obY2NiHOs+WRKvVIjc3F7m5uUhLy8Pnn2uRlpYnLdNqteZuIhER0UMxe4jasWMHoqKisHDhQpw5cwZ9+/ZFUFBQtVPeHz9+HOPHj8eUKVOQnp6O0NBQhIaGIjMzU6qJjY3FmjVrsGHDBqSmpkKpVCIoKAh37typtL/Zs2fD1dW10vKCggL85S9/QefOnZGWloZly5Zh0aJF2LhxY/2dfDOl1Wqxbt06bNy4EVOnnsKAAe3w9787YsCAdpg69RQ2btyIdevWMUgREVHTJsxs4MCBYtq0adLn8vJy4erqKmJiYqqsf/bZZ0VwcLDBMj8/P/HKK68IIYTQ6/XCxcVFLFu2TFp/69YtYW1tLT777DOD7Q4ePCi6d+8ufvrpJwFApKenS+s++OAD0bZtW1FSUiItmzNnjujWrVutz02n0wkAQqfT1Xqb5uDatWti0aJF4h//WCFksnIBCOklk5WLf/xjhVi0aJG4du2auZtKRERUSW2/v816Jaq0tBRpaWkIDAyUlllYWCAwMBApKSlVbpOSkmJQDwBBQUFSfU5ODjQajUGNSqWCn5+fwT7z8vLw8ssv45NPPoGtrW2Vxxk6dCjkcrnBcbKysvDbb79V2baSkhIUFBQYvFqy/HxH3P9XTAgL5Oc7mKlFRERE9cesIermzZsoLy+Hs7OzwXJnZ2doNJoqt9FoNDXWV7zXVCOEwKRJkzB16lT4+vrW6Tj3HuN+MTExUKlU0svNza3KupbCwUELmUxvsEwm08PBId9MLSIiIqo/Zh8TZQ5r165FYWEh5s2bV6/7nTdvHnQ6nfS6cuVKve6/qVGpChESckAKUjKZHiEhB6BSFZq5ZURERA+vlTkP7uTkBEtLS+Tl5Rksz8vLg4uLS5XbuLi41Fhf8Z6Xlwe1Wm1Q4+3tDQD49ttvkZKSAmtra4P9+Pr64vnnn8e2bduqPc69x7iftbV1pX22dP37p8PT8yLy8x3g4JDPAEVERM2GWa9EyeVy+Pj4IDk5WVqm1+uRnJwMf3//Krfx9/c3qAeAw4cPS/UeHh5wcXExqCkoKEBqaqpUs2bNGvzwww/IyMhARkaGNEXCjh07sGTJEuk43333HcrKygyO061bN7Rt27Yezr7lUKkK4eHxq0kC1NWrwJEjd9+JiIgaklmvRAFAVFQUwsPD4evri4EDByIuLg5FRUWYPHkyAGDixIno0KEDYmJiAADTp0/HsGHDsGLFCgQHByMxMRGnT5+Wph6QyWSYMWMGFi9eDC8vL3h4eGDBggVwdXVFaGgoAKBTp04GbWjdujUAwNPTEx07dgQAPPfcc3j77bcxZcoUzJkzB5mZmVi9ejVWrVrVEN1CNdBqtSgtLUVCgg1mz1ZBr5fBwkIgNlaH5577HXK5HI6OjuZuJhERNXNmD1FhYWG4ceMGoqOjodFo4O3tjaSkJGkQ9+XLl2Fh8ecFs4CAACQkJGD+/Pl488034eXlhb1796JXr15SzezZs1FUVISIiAjcunULgwcPRlJSEhQKRa3bpVKpcOjQIUybNg0+Pj5wcnJCdHQ0IiIi6u/km6l7f9FYH3X3qpiDSqezQ1zcDAghAwDo9TLMmmWP//1vC1SqQkRGRjJIERGRScmEEMLcjWiuCgoKoFKpoNPpYG9vb+7mNKiKq0XVMfZqUW5uLjZu3IicHHds2xZeaX14eDw8PH5FRESEwZg4IiKi2qrt97fZr0RR82Tqq0AV0yfcOw8Vp08gIqKG1CKnOKCmj9MnEBGRufFKFDVZnD6BiIjMiSGKmjSVqpDhiYiIzIK384iIiIiMwBBFREREZASGKGpSTDkHFRERUV1wTBQ1KY6OjoiMjDTJHFRERER1wRBFTQ4DEhERNQa8nUdERERkBIYoIiIiIiMwRBEREREZgSGKiIiIyAgMUUSNxNWrwJEjd9+JiKjxY4giMiOtVovc3FysWHELnTsLjBgBdO4ssGLFLeTm5kKr1Zq7iUREVA1OcUBkJlqtFuvWrYNOZ4e4uBkQQgYA0OtlmDXLHv/73xaoVIWIjIzktA5ERI0Qr0QRmUnFhKH5+Y4QwvA/RSEskJ/vYFBHRESNC0MUkZk5OGghk+kNlslkejg45JupRUREVBsMUURmplIVIiTkgBSkZDI9QkIOQKUqNHPLiIioJhwTRdQI9O+fDk/Pi8jPd4CDQz4DFBFRE8AQRdRIqFSFDE9ERE0Ib+cRERERGYEhioiIiMgIDFFEZiKXy+u1joiIGhbHRBGZiaOjIyIjI2ucB0oul3OizWbg6lXgwgXAywvo2NHcrSGi+sIQRWRGDEjNl1arRWlpKRISbDB7tgp6vQwWFgKxsTo899zvDMhEzQBDFBFRPeMjfYhaBo6JIiLC3VtuR47cfX9YfKQPUcvAEEVELd7mzUDnzsCIEXffN2+un/3ykT5EzRtDFBG1WFqtFmlpeYiIEND/X9bR64FXXhFIS8uDVqt9qP3zkT5EzRvHRBFRi1Qxbiknxx16fbjBuvJyGdau/QoeHr8+9LglPtKHqPliiCKiFqliPFLFLbd7xy7de8utPsYt8ZE+RM0Tb+cRUYvGW25EZCxeiSKiZsWYiS15y42IjMEQRURNXn1MbFmft9z4SB+iloEhioiatMY4sSUf6UPUMjBEEVGTVpuJLVWqwgaf2JIBiaj548ByImoWOLElETU0higiahbq+iu7+8cj6XR2yMlxh05nV2MdEVEF3s4jomajLr+yc3R0xAsvvIDi4mLs2dMWq1d3kAakR0f/D0899RtsbW15W46IqsUQRUTNSm1/ZafVavHpp59WOSD97bddodPtbPAB6UTUtJj9dt769evh7u4OhUIBPz8/nDx5ssb6Xbt2oXv37lAoFOjduzcOHjxosF4IgejoaKjVatjY2CAwMBAXLlwwqBkzZgw6deoEhUIBtVqNCRMm4Nq1awY1X3/9NQYNGgQ7Ozu0a9cOTz/9NC5dulQv50xE5lebAen31hER3c+sIWrHjh2IiorCwoULcebMGfTt2xdBQUG4fv16lfXHjx/H+PHjMWXKFKSnpyM0NBShoaHIzMyUamJjY7FmzRps2LABqampUCqVCAoKwp07d6Sa4cOHY+fOncjKysLu3buRnZ2NZ555Rlqfk5ODsWPHYsSIEcjIyMDXX3+Nmzdv4qmnnjJdZxCRWXBAOhEZSyaEEOY6uJ+fHwYMGIB169YBAPR6Pdzc3PDaa69h7ty5lerDwsJQVFSEAwcOSMsGDRoEb29vbNiwAUIIuLq6YubMmXjjjTcAADqdDs7OzoiPj8e4ceOqbMcXX3yB0NBQlJSUwMrKCp9//jnGjx+PkpISWFjczZn79+/H2LFjpZraKCgogEqlgk6ng729fZ36hohqp2KeqAe5/7Zcbm4uNm7cCAA4c6Yf9u8fDSEspAHp/funAwAiIiKgVqtN03giapRq+/1ttjFRpaWlSEtLw7x586RlFhYWCAwMREpKSpXbpKSkICoqymBZUFAQ9u7dC+DuFSSNRoPAwEBpvUqlgp+fH1JSUqoMUfn5+di+fTsCAgKkcOTj4wMLCwts3boVkyZNwu3bt/HJJ58gMDCwxgBVUlKCkpIS6XNBQcGDO4KIHkp9TGzJx74QkTHMdjvv5s2bKC8vh7Ozs8FyZ2dnaDSaKrfRaDQ11le812afc+bMgVKphKOjIy5fvox9+/ZJ6zw8PHDo0CG8+eabsLa2Rps2bXD16lXs3LmzxnOKiYmBSqWSXm5ubjXWE1H9cHR0hFqtrvZVm4HhKlUhPDx+ZYAioloz+8Byc5k1axbS09Nx6NAhWFpaYuLEiai4s6nRaPDyyy8jPDwcp06dwr///W/I5XI888wzqOnu57x586DT6aTXlStXGup0iIiIqIGZ7Xaek5MTLC0tkZeXZ7A8Ly8PLi4uVW7j4uJSY33Fe15ensEYhry8PHh7e1c6vpOTE7p27YoePXrAzc0NJ06cgL+/P9avXw+VSoXY2Fip/tNPP4WbmxtSU1MxaNCgKttnbW0Na2vr2nUAERERNWlmuxIll8vh4+OD5ORkaZler0dycjL8/f2r3Mbf39+gHgAOHz4s1Xt4eMDFxcWgpqCgAKmpqdXus+K4AKTxTMXFxdKA8gqWlpYGtUTUtNV2JnLOWE5E1THrZJtRUVEIDw+Hr68vBg4ciLi4OBQVFWHy5MkAgIkTJ6JDhw6IiYkBAEyfPh3Dhg3DihUrEBwcjMTERJw+fVr6hY1MJsOMGTOwePFieHl5wcPDAwsWLICrqytCQ0MBAKmpqTh16hQGDx6Mtm3bIjs7GwsWLICnp6cUtIKDg7Fq1Sq88847GD9+PAoLC/Hmm2+ic+fO6NevX8N3FBHVu9oMSC8uLkZpaSlyc3Nx7ZoFcnJawcPjD7i63v0/Uw8asE5EzZtZQ1RYWBhu3LiB6OhoaDQaeHt7IykpSRoYfvnyZYMrQgEBAUhISMD8+fPx5ptvwsvLC3v37kWvXr2kmtmzZ6OoqAgRERG4desWBg8ejKSkJCgUCgCAra0t9uzZg4ULF6KoqAhqtRojR47E/PnzpVtxI0aMQEJCAmJjYxEbGwtbW1v4+/sjKSkJNjY2DdhDRGRKNQUgrVZbqykQOKM5Uctl1nmimjvOE0XUdFXMI/XnY2H+/D90MpkeM2bEQaUq5DxSRM1Qbb+/W+yv84iIauNBj4UhopaLIYqIqAo6nQ7A3cfCAPf/oOTPx8JU1DU1V68CR47cfSci4zBEERFVoays7J5PMoN1Mll1dY2bVqtFbm4uVqy4hc6dBUaMADp3Flix4hZyc3Oh1WrN3USiJsWsA8uJiBq7/HxH3B+iKm7nNaXZzSueMfjnGK+756TXyzBrlj3+978tUKkKOVCeqA54JYqIqAYODlrIZIa382SyP2/nNRUVUzk8aIxXTVM+EJEhhigiohqoVIUICTkgBamKKQ6a0lWoezWXUEjUGPB2HhFRFVq1+vOfx/790+HpeRH5+Q5wcMg3CFD31jUFFaHw/nmvmmooJDKnpvVfPxFRA2nTpo3BZ5WqsMqgcX9dU1BTKCSi2mOIIiJqgaoLhURUexwTRURUBT6gmIgehFeiiIiqUJsHFPMBxEQtG0MUEVE1mlNAuv+KmU5nh/x8Rzg4aA1u6/HKGlHtMUQREbUAjo6OeOGFF1BcXIw9e9pi9eoO0OtlsLAQiI7+H5566jfY2to2q+BIZGoMUURELYBWq8Wnn35a5Yzlb7/tCp1uJ2csJ6ojDiwnImoBOGM5Uf1jiCIiakE4YzlR/WGIIiJqQZrbY2yIzIljooiIWhjOWE5UPxiiiIhaIM5YTvTweDuPiIiIyAgMUURERERGYIgiImoB+CxAovrHMVFERC0AnwVIVP8YooiIWggGJKL6xdt5REREREZgiCIiIiIyAkMUERERkREYooiIiIiMwBBFREREZASGKCIiIiIjcIoDIiJ6KFqtVpp/6to1C+TktIKHxx9wddUD4PxT1HwxRBERkdG0Wi3WrVsHADhzph/27x8NISwgk+kREnIA/funAwAiIyMZpKjZ4e08IiIyWsUVKJ3OTgpQACCEBfbvHw2dzs6gjqg5YYgiIqKHlp/vKAWoCkJYID/fwUwtIjI9higiInpoDg5ayGR6g2UymR4ODvlmahGR6TFEERHRQ1OpChESckAKUhVjolSqQjO3jMh0OLCciIjqRf/+6fD0vIj8fAc4OOQzQFGzxxBFRET1RqUqZHiiFoO384iIiIiMwBBFRERGk8vl9VpH1JTwdh4RERnN0dERkZGRNc4DxRnLqbky+5Wo9evXw93dHQqFAn5+fjh58mSN9bt27UL37t2hUCjQu3dvHDx40GC9EALR0dFQq9WwsbFBYGAgLly4YFAzZswYdOrUCQqFAmq1GhMmTMC1a9cq7Wf58uXo2rUrrK2t0aFDByxZsqR+TpqIqBlxdHSEWq2u9sUARc2VWUPUjh07EBUVhYULF+LMmTPo27cvgoKCcP369Srrjx8/jvHjx2PKlClIT09HaGgoQkNDkZmZKdXExsZizZo12LBhA1JTU6FUKhEUFIQ7d+5INcOHD8fOnTuRlZWF3bt3Izs7G88884zBsaZPn45//vOfWL58OX7++Wd88cUXGDhwoGk6goiIiJocmRBCmOvgfn5+GDBggPTcJb1eDzc3N7z22muYO3dupfqwsDAUFRXhwIED0rJBgwbB29sbGzZsgBACrq6umDlzJt544w0AgE6ng7OzM+Lj4zFu3Lgq2/HFF18gNDQUJSUlsLKywvnz59GnTx9kZmaiW7duRp9fQUEBVCoVdDod7O3tjd4PERERNZzafn+b7UpUaWkp0tLSEBgY+GdjLCwQGBiIlJSUKrdJSUkxqAeAoKAgqT4nJwcajcagRqVSwc/Pr9p95ufnY/v27QgICICVlRUAYP/+/XjkkUdw4MABeHh4wN3dHS+99BLy82ueebekpAQFBQUGLyIiImqezBaibt68ifLycjg7Oxssd3Z2hkajqXIbjUZTY33Fe232OWfOHCiVSjg6OuLy5cvYt2+ftO6///0vfv31V+zatQsff/wx4uPjkZaWVumW3/1iYmKgUqmkl5ubW431RERE1HSZfWC5ucyaNQvp6ek4dOgQLC0tMXHiRFTc2dTr9SgpKcHHH3+MIUOG4PHHH8fmzZtx5MgRZGVlVbvPefPmQafTSa8rV6401OkQERFRAzPbFAdOTk6wtLREXl6ewfK8vDy4uLhUuY2Li0uN9RXveXl5UKvVBjXe3t6Vju/k5ISuXbuiR48ecHNzw4kTJ+Dv7w+1Wo1WrVqha9euUn2PHj0AAJcvX652nJS1tTWsra1rcfZERETU1JntSpRcLoePjw+Sk5OlZXq9HsnJyfD3969yG39/f4N6ADh8+LBU7+HhARcXF4OagoICpKamVrvPiuMCd8c0AcBjjz2GP/74A9nZ2VLNL7/8AgDo3LlzXU6TiIiImimzTrYZFRWF8PBw+Pr6YuDAgYiLi0NRUREmT54MAJg4cSI6dOiAmJgYAHenHRg2bBhWrFiB4OBgJCYm4vTp09i4cSMAQCaTYcaMGVi8eDG8vLzg4eGBBQsWwNXVFaGhoQCA1NRUnDp1CoMHD0bbtm2RnZ2NBQsWwNPTUwpagYGB6N+/P1588UXExcVBr9dj2rRpePLJJw2uThEREVHLZdYQFRYWhhs3biA6OhoajQbe3t5ISkqSBoZfvnwZFhZ/XiwLCAhAQkIC5s+fjzfffBNeXl7Yu3cvevXqJdXMnj0bRUVFiIiIwK1btzB48GAkJSVBoVAAAGxtbbFnzx4sXLgQRUVFUKvVGDlyJObPny/dirOwsMD+/fvx2muvYejQoVAqlRg1ahRWrFjRgL1DREREjZlZ54lq7jhPFBERUdPT4PNE3blzB8uXL6+v3RERERE1anUKUTdu3MCBAwdw6NAhlJeXAwDKysqwevVquLu7Y+nSpSZpJBEREVFjU+sxUd9//z1Gjx6NgoICyGQy+Pr6YuvWrQgNDUWrVq2waNEihIeHm7KtRERERI1Gra9EzZ8/H3/9619x9uxZREVF4dSpU/jb3/6G9957D+fOncPUqVNhY2NjyrYSERERNRq1Hlju6OiI//znP3j00Ufx+++/o3Xr1tizZw/Gjh1r6jY2WRxYTkRE1PTU+8Dy3377DU5OTgAAGxsb2NraGkwtQERERNSS1GmeqHPnzkkP8hVCICsrC0VFRQY1ffr0qb/WERERETVStb6dZ2FhAZlMhprKZTKZ9Ks94u08IiKipqi239+1vhKVk5PzwJrCwsLa7o6IiIioSat1iKruwbuFhYX47LPPsHnzZpw+fZpXooiIiKhFMHrG8u+++w7h4eFQq9VYvnw5hg8fjhMnTtRn24iIiIgarToNLNdoNIiPj8fmzZtRUFCAZ599FiUlJdi7dy8effRRU7WRiIiIqNGp9ZWokJAQdOvWDWfPnkVcXByuXbuGtWvXmrJtRERERI1Wra9EffXVV3j99dfx6quvwsvLy5RtIiIieiharRalpaXVrpfL5XB0dGzAFlFzVKdn523evBk+Pj7o0aMHJkyYgHHjxpmybURERHWm1Wqxbt26B9ZFRkYySNFDqfXtvEGDBmHTpk3Izc3FK6+8gsTERLi6ukKv1+Pw4cOc3oCIiBqF+69A6XR2yMlxh05nV2MdUV3V+dd5SqUSL774Ir7//nv8+OOPmDlzJpYuXYr27dtjzJgxpmgjERGRUc6c6Ye4uBnYti0ccXEzcOZMP3M3iZoRo6c4AIBu3bohNjYWV69exWeffVZfbSIiInpoOp0d9u8fDSHuftUJYYH9+0dXuiJVF1qtFrm5udW+tFptfTWfmoA6TXFQHUtLS4SGhiI0NLQ+dkdERPTQ8vMdpQBVQQgL5Oc7QKWq+xAUjrWi+z3UlSgiIqLGysFBC5lMb7BMJtPDwSHfqP3VdgwVx1q1HAxRRETULKlUhQgJOSAFKZlMj5CQA0ZdhapKdQPWqeWol9t5REREjVH//unw9LyI/HwHODjk11uAOnOmnzTeqiKc9e+fXi/7pqaDV6KIiKhZkcvlBp9VqkJ4ePxaKUDdX1dbphiwTk0Tr0QREVGz4ujoiMjISJPNWF7fA9ap6WKIIiKiZseUv46rGLB+b5B6mAHr1HQxRBEREf2fmp65d/PmTQB/Dli/f0wUr0K1PAxRREREqP08UEDNA9aNHWtFTQ9DFBEREap+5l5+viMcHLQGIempp56Ck5NTlft4mLFW1PQwRBEREd2npikMnJycoFarzdxCagw4xQEREdE9OIUB1RZDFBER0T1qmsKA6F4MUURERPeo72fuUfPFEEVERHQPUz9zj5oPDiwnIiK6j6meuUfNC0MUERERqn7mXlXhifNAUQWGKCIiIpj+mXvU/DBEERER/R8GJKoLDiwnIiIiMgJDFBEREZERGKKIiIiIjMAQRURERGSERhGi1q9fD3d3dygUCvj5+eHkyZM11u/atQvdu3eHQqFA7969cfDgQYP1QghER0dDrVbDxsYGgYGBuHDhgkHNmDFj0KlTJygUCqjVakyYMAHXrl2r8ngXL16EnZ0d2rRp81DnSURERM2H2UPUjh07EBUVhYULF+LMmTPo27cvgoKCcP369Srrjx8/jvHjx2PKlClIT09HaGgoQkNDkZmZKdXExsZizZo12LBhA1JTU6FUKhEUFIQ7d+5INcOHD8fOnTuRlZWF3bt3Izs7G88880yl45WVlWH8+PEYMmRI/Z88ERERNVkyIYQwZwP8/PwwYMAArFu3DgCg1+vh5uaG1157DXPnzq1UHxYWhqKiIhw4cEBaNmjQIHh7e2PDhg0QQsDV1RUzZ87EG2+8AQDQ6XRwdnZGfHw8xo0bV2U7vvjiC4SGhqKkpARWVlbS8jlz5uDatWt44oknMGPGDNy6davW51ZQUACVSgWdTgd7e/tab0dERETmU9vvb7NeiSotLUVaWhoCAwOlZRYWFggMDERKSkqV26SkpBjUA0BQUJBUn5OTA41GY1CjUqng5+dX7T7z8/Oxfft2BAQEGASob7/9Frt27cL69euNPkciIiJqnswaom7evIny8nI4OzsbLHd2doZGo6lyG41GU2N9xXtt9jlnzhwolUo4Ojri8uXL2Ldvn7ROq9Vi0qRJiI+Pr/VVpJKSEhQUFBi8iIiIqHky+5goc5o1axbS09Nx6NAhWFpaYuLEiai4u/nyyy/jueeew9ChQ2u9v5iYGKhUKunl5uZmqqYTERGRmZk1RDk5OcHS0hJ5eXkGy/Py8uDi4lLlNi4uLjXWV7zXZp9OTk7o2rUrnnzySSQmJuLgwYM4ceIEgLu38pYvX45WrVqhVatWmDJlCnQ6HVq1aoUtW7ZU2bZ58+ZBp9NJrytXrtSyJ4iIiKipMWuIksvl8PHxQXJysrRMr9cjOTkZ/v7+VW7j7+9vUA8Ahw8fluo9PDzg4uJiUFNQUIDU1NRq91lxXODuLTng7tirjIwM6fXOO+/Azs4OGRkZ+Nvf/lblPqytrWFvb2/wIiIioubJ7A8gjoqKQnh4OHx9fTFw4EDExcWhqKgIkydPBgBMnDgRHTp0QExMDABg+vTpGDZsGFasWIHg4GAkJibi9OnT2LhxIwBAJpNhxowZWLx4Mby8vODh4YEFCxbA1dUVoaGhAIDU1FScOnUKgwcPRtu2bZGdnY0FCxbA09NTClo9evQwaOfp06dhYWGBXr16NVDPEBERUWNm9hAVFhaGGzduIDo6GhqNBt7e3khKSpIGhl++fBkWFn9eMAsICEBCQgLmz5+PN998E15eXti7d69BuJk9ezaKiooQERGBW7duYfDgwUhKSoJCoQAA2NraYs+ePVi4cCGKioqgVqsxcuRIzJ8/H9bW1g3bAURERNQkmX2eqOaM80QRERE1PU1inigiIiKipoohioiIiMgIDFFERERERmCIIiIiIjICQxQRERGRERiiiIiIiIzAEEVERERkBIYoIiIiIiMwRBEREREZgSGKiIiIyAgMUURERERGYIgiIiIiMgJDFBEREZERGKKIiIiIjMAQRURERGQEhigiIiIiIzBEERERERmBIYqIiIjICAxRREREREZgiCIiIiIyAkMUERERkREYooiIiIiMwBBFREREZASGKCIiIiIjMEQRERERGYEhioiIiMgIDFFERERERmCIIiIiIjICQxQRERGRERiiiIiIiIzAEEVERERkBIYoIiIiIiMwRBEREREZgSGKiIiIyAgMUURERERGYIgiIiIiMgJDFBEREZERGKKIiIiIjMAQRURERGQEhigiIiIiIzBEERERERmBIYqIiIjICI0iRK1fvx7u7u5QKBTw8/PDyZMna6zftWsXunfvDoVCgd69e+PgwYMG64UQiI6Ohlqtho2NDQIDA3HhwgWDmjFjxqBTp05QKBRQq9WYMGECrl27Jq0/evQoxo4dC7VaDaVSCW9vb2zfvr3+TpqIiIiaNLOHqB07diAqKgoLFy7EmTNn0LdvXwQFBeH69etV1h8/fhzjx4/HlClTkJ6ejtDQUISGhiIzM1OqiY2NxZo1a7BhwwakpqZCqVQiKCgId+7ckWqGDx+OnTt3IisrC7t370Z2djaeeeYZg+P06dMHu3fvxtmzZzF58mRMnDgRBw4cMF1nEBERUZMhE0IIczbAz88PAwYMwLp16wAAer0ebm5ueO211zB37txK9WFhYSgqKjIIM4MGDYK3tzc2bNgAIQRcXV0xc+ZMvPHGGwAAnU4HZ2dnxMfHY9y4cVW244svvkBoaChKSkpgZWVVZU1wcDCcnZ2xZcuWWp1bQUEBVCoVdDod7O3ta7UNERERmVdtv7/NeiWqtLQUaWlpCAwMlJZZWFggMDAQKSkpVW6TkpJiUA8AQUFBUn1OTg40Go1BjUqlgp+fX7X7zM/Px/bt2xEQEFBtgALuhjEHB4dq15eUlKCgoMDgRURERM2TWUPUzZs3UV5eDmdnZ4Plzs7O0Gg0VW6j0WhqrK94r80+58yZA6VSCUdHR1y+fBn79u2rtq07d+7EqVOnMHny5GprYmJioFKppJebm1u1tURERNS0mX1MlDnNmjUL6enpOHToECwtLTFx4kRUdXfzyJEjmDx5MjZt2oSePXtWu7958+ZBp9NJrytXrpiy+URERGRGrcx5cCcnJ1haWiIvL89geV5eHlxcXKrcxsXFpcb6ive8vDyo1WqDGm9v70rHd3JyQteuXdGjRw+4ubnhxIkT8Pf3l2r+/e9/IyQkBKtWrcLEiRNrPB9ra2tYW1vXfNJERETULJj1SpRcLoePjw+Sk5OlZXq9HsnJyQZB5l7+/v4G9QBw+PBhqd7DwwMuLi4GNQUFBUhNTa12nxXHBe6Oa6pw9OhRBAcH4/3330dERETdT5CIiIiaLbNeiQKAqKgohIeHw9fXFwMHDkRcXByKioqksUcTJ05Ehw4dEBMTAwCYPn06hg0bhhUrViA4OBiJiYk4ffo0Nm7cCACQyWSYMWMGFi9eDC8vL3h4eGDBggVwdXVFaGgoACA1NRWnTp3C4MGD0bZtW2RnZ2PBggXw9PSUgtaRI0cwevRoTJ8+HU8//bQ0nkoul9c4uJyIiIhaCNEIrF27VnTq1EnI5XIxcOBAceLECWndsGHDRHh4uEH9zp07RdeuXYVcLhc9e/YUX375pcF6vV4vFixYIJydnYW1tbV44oknRFZWlrT+7NmzYvjw4cLBwUFYW1sLd3d3MXXqVHH16lWpJjw8XACo9Bo2bFitz0un0wkAQqfT1a1DiIiIyGxq+/1t9nmimjPOE0VEROak1WpRWlpa7Xq5XA5HR8cGbFHTUNvvb7PfziMiIqL6p9VqpYmsaxIZGckgZaQWPcUBERFRc1XTFShj6qgyhigiIiIiIzBEERERERmBIYqIiIjICAxRREREREZgiCIiImoBdDo75OS4Q6ezM3dTmg1OcUBERNTMnTnTD/v3j4YQFpDJ9AgJOYD+/dPN3awmj1eiiIiImiG5XA7g7hWoigAFAEJYYP/+0dIVqYo6qjvOWG5CnLGciIjMSavV4sgR4O9/rzyZ5uefa/H44+BEm1XgjOVEREQtnKOjIwYNAiwsAL3+z+WWloCfnyOYnx4Ob+cRERE1Yx07Ahs33g1OwN33jz66u5weDq9EERERNXNTpgBBQcDFi0CXLgxQ9YUhioiIqAXo2JHhqb7xdh4RERGRERiiiIiIiIzAEEVERERkBIYoIiIiIiMwRBEREREZgSGKiIiIyAgMUURERERGYIgiIiIiMgJDFBEREZERGKKIiIiIjMAQRURERGQEhigiIiIiI/ABxERERFQnWq0WpaWl1a6Xy+VwdHRswBaZB0MUERER1ZpWq8W6deseWBcZGdnsgxRv5xEREVGt1XQFypi6powhioiIiMgIDFFERERERmCIIiIiIjICQxQREREZTaezQ06OO3Q6O3M3pcHx13lERERklDNn+mH//tEQwgIymR4hIQfQv3+6uZvVYHglioiIiOpMp7OTAhQACGGB/ftHt6grUgxRREREVGtyuRwAkJ/vKAWoCkJYID/fwaCuOZMJIYS5G9FcFRQUQKVSQafTwd7e3tzNISIiqhdarRaXLv2BgQPbQ6+XScstLQVSU6/D3b1Vk55os7bf37wSRURERHXi6OgIHx9nbNwog6Xl3WWWlsBHH8ng4+PcpANUXXBgORERERllyhQgKAi4eBHo0gXo2NHcLWpYDFFERERktI4dW154qsDbeURERERGaBQhav369XB3d4dCoYCfnx9OnjxZY/2uXbvQvXt3KBQK9O7dGwcPHjRYL4RAdHQ01Go1bGxsEBgYiAsXLhjUjBkzBp06dYJCoYBarcaECRNw7do1g5qzZ89iyJAhUCgUcHNzQ2xsbP2cMBERETV5Zg9RO3bsQFRUFBYuXIgzZ86gb9++CAoKwvXr16usP378OMaPH48pU6YgPT0doaGhCA0NRWZmplQTGxuLNWvWYMOGDUhNTYVSqURQUBDu3Lkj1QwfPhw7d+5EVlYWdu/ejezsbDzzzDPS+oKCAvzlL39B586dkZaWhmXLlmHRokXYuHGj6TqDiIiImg5hZgMHDhTTpk2TPpeXlwtXV1cRExNTZf2zzz4rgoODDZb5+fmJV155RQghhF6vFy4uLmLZsmXS+lu3bglra2vx2WefVduOffv2CZlMJkpLS4UQQnzwwQeibdu2oqSkRKqZM2eO6NatW63PTafTCQBCp9PVehsiIiIyr9p+f5v1SlRpaSnS0tIQGBgoLbOwsEBgYCBSUlKq3CYlJcWgHgCCgoKk+pycHGg0GoMalUoFPz+/aveZn5+P7du3IyAgAFZWVtJxhg4dajBZWFBQELKysvDbb79VuZ+SkhIUFBQYvIiIiKh5MmuIunnzJsrLy+Hs7Gyw3NnZGRqNpsptNBpNjfUV77XZ55w5c6BUKuHo6IjLly9j3759DzzOvce4X0xMDFQqlfRyc3Orso6IiIiaPrOPiTKnWbNmIT09HYcOHYKlpSUmTpwI8RATuM+bNw86nU56XblypR5bS0RERI2JWeeJcnJygqWlJfLy8gyW5+XlwcXFpcptXFxcaqyveM/Ly4NarTao8fb2rnR8JycndO3aFT169ICbmxtOnDgBf3//ao9z7zHuZ21tDWtr6wecNRERETUHZr0SJZfL4ePjg+TkZGmZXq9HcnIy/P39q9zG39/foB4ADh8+LNV7eHjAxcXFoKagoACpqanV7rPiuMDdcU0Vx/nuu+9QVlZmcJxu3bqhbdu2dTxTIiIianYaZpx79RITE4W1tbWIj48X586dExEREaJNmzZCo9EIIYSYMGGCmDt3rlR/7Ngx0apVK7F8+XJx/vx5sXDhQmFlZSV+/PFHqWbp0qWiTZs2Yt++feLs2bNi7NixwsPDQ/z+++9CCCFOnDgh1q5dK9LT08WlS5dEcnKyCAgIEJ6enuLOnTtCiLu/6HN2dhYTJkwQmZmZIjExUdja2oqPPvqo1ufGX+cRERE1PbX9/jb7Y1/CwsJw48YNREdHQ6PRwNvbG0lJSdIg7suXL8PC4s8LZgEBAUhISMD8+fPx5ptvwsvLC3v37kWvXr2kmtmzZ6OoqAgRERG4desWBg8ejKSkJCgUCgCAra0t9uzZg4ULF6KoqAhqtRojR47E/PnzpdtxKpUKhw4dwrRp0+Dj4wMnJydER0cjIiKiAXuHiIioZdFqtSgtLa12vVwubzQPOJYJ8RAjqalGBQUFUKlU0Ol0sLe3N3dziIiIGjWtVot169Y9sC4yMtKkQaq2398t+td5RERE1HjUdAXKmDpTY4giIiIiMgJDFBEREZERGKKIiIioUdLp7JCT4w6dzs7cTamS2X+dR0RERHS/M2f6Yf/+0RDCAjKZHiEhB9C/f7q5m2WAV6KIiIioUdHp7KQABQBCWGD//tGN7ooUQxQRERE1Kvn5jlKAqiCEBfLzHczUoqoxRBEREVGjIJfLAQAODlrIZHqDdTKZHg4O+QZ15sYxUURERNQoODo6IjIyEqWlpejQoQBz5qhQXi6DpaXA++8X4LnnxnPG8paCM5YTEREZ7+pV4OJFoEsXoGPHhjtubb+/eSWKiIiIGqWOHRs2PNUVQxQRERE1CY3t4cQMUURERNToNZaHE9+Lv84jIiKiRq8xPpyYIYqIiIjICAxRRERE1OQ0hufqcUwUERERNSmN5bl6vBJFRERETUZjeq4eQxQRERE1GY3puXoMUURERNRkPOi5eg2JIYqIiIgavYqHDqtUhQgJOSAFqYoxUSpVoUFdQ+Cz80yIz84jIiKqP/fOWH7tmgUuXWoFd/c/4Op6N1DV14zlfHYeERERNSv3BiS1GvDxMWNjwNt5REREREZhiCIiIiIyAkMUERERkREYooiIiIiMwBBFREREZASGKCIiIiIjMEQRERERGYEhioiIiMgIDFFERERERmCIIiIiIjICQxQRERGREfjsPBOqeLZzQUGBmVtCREREtVXxvV3xPV4dhigTKiwsBAC4ubmZuSVERERUV4WFhVCpVNWul4kHxSwyml6vx7Vr12BnZweZTGawrqCgAG5ubrhy5Qrs7e3N1MLGjX30YOyjB2MfPRj76MHYRzVrbv0jhEBhYSFcXV1hYVH9yCdeiTIhCwsLdOzYscYae3v7ZvEXzpTYRw/GPnow9tGDsY8ejH1Us+bUPzVdgarAgeVERERERmCIIiIiIjICQ5SZWFtbY+HChbC2tjZ3Uxot9tGDsY8ejH30YOyjB2Mf1ayl9g8HlhMREREZgVeiiIiIiIzAEEVERERkBIYoIiIiIiMwRBEREREZgSHKhNavXw93d3coFAr4+fnh5MmT1db+9NNPePrpp+Hu7g6ZTIa4uLiGa6gZ1aWPNm3ahCFDhqBt27Zo27YtAgMDa6xvLurSR3v27IGvry/atGkDpVIJb29vfPLJJw3YWvOoSx/dKzExETKZDKGhoaZtYCNQlz6Kj4+HTCYzeCkUigZsbcOr69+hW7duYdq0aVCr1bC2tkbXrl1x8ODBBmqtedSljx5//PFKf4dkMhmCg4MbsMUNQJBJJCYmCrlcLrZs2SJ++ukn8fLLL4s2bdqIvLy8KutPnjwp3njjDfHZZ58JFxcXsWrVqoZtsBnUtY+ee+45sX79epGeni7Onz8vJk2aJFQqlbh69WoDt7zh1LWPjhw5Ivbs2SPOnTsnLl68KOLi4oSlpaVISkpq4JY3nLr2UYWcnBzRoUMHMWTIEDF27NiGaayZ1LWPtm7dKuzt7UVubq700mg0DdzqhlPX/ikpKRG+vr7ir3/9q/j+++9FTk6OOHr0qMjIyGjgljecuvaRVqs1+PuTmZkpLC0txdatWxu24SbGEGUiAwcOFNOmTZM+l5eXC1dXVxETE/PAbTt37twiQtTD9JEQQvzxxx/Czs5ObNu2zVRNNLuH7SMhhOjXr5+YP3++KZrXKBjTR3/88YcICAgQ//znP0V4eHizD1F17aOtW7cKlUrVQK0zv7r2z4cffigeeeQRUVpa2lBNNLuH/bdo1apVws7OTty+fdtUTTQL3s4zgdLSUqSlpSEwMFBaZmFhgcDAQKSkpJixZY1HffRRcXExysrK4ODgYKpmmtXD9pEQAsnJycjKysLQoUNN2VSzMbaP3nnnHbRv3x5TpkxpiGaalbF9dPv2bXTu3Blubm4YO3Ysfvrpp4ZoboMzpn+++OIL+Pv7Y9q0aXB2dkavXr3w3nvvoby8vKGa3aDq49/rzZs3Y9y4cVAqlaZqplkwRJnAzZs3UV5eDmdnZ4Plzs7O0Gg0ZmpV41IffTRnzhy4uroa/IfdnBjbRzqdDq1bt4ZcLkdwcDDWrl2LJ5980tTNNQtj+uj777/H5s2bsWnTpoZootkZ00fdunXDli1bsG/fPnz66afQ6/UICAjA1atXG6LJDcqY/vnvf/+Lzz//HOXl5Th48CAWLFiAFStWYPHixQ3R5Ab3sP9enzx5EpmZmXjppZdM1USzaWXuBhAZY+nSpUhMTMTRo0eb/YDXurKzs0NGRgZu376N5ORkREVF4ZFHHsHjjz9u7qaZXWFhISZMmIBNmzbBycnJ3M1ptPz9/eHv7y99DggIQI8ePfDRRx/h3XffNWPLGge9Xo/27dtj48aNsLS0hI+PD/73v/9h2bJlWLhwobmb1+hs3rwZvXv3xsCBA83dlHrHEGUCTk5OsLS0RF5ensHyvLw8uLi4mKlVjcvD9NHy5cuxdOlSfPPNN+jTp48pm2lWxvaRhYUFunTpAgDw9vbG+fPnERMT0yxDVF37KDs7G5cuXUJISIi0TK/XAwBatWqFrKwseHp6mrbRDaw+/j2ysrJCv379cPHiRVM00ayM6R+1Wg0rKytYWlpKy3r06AGNRoPS0lLI5XKTtrmhPczfoaKiIiQmJuKdd94xZRPNhrfzTEAul8PHxwfJycnSMr1ej+TkZIP/d9eSGdtHsbGxePfdd5GUlARfX9+GaKrZ1NffI71ej5KSElM00ezq2kfdu3fHjz/+iIyMDOk1ZswYDB8+HBkZGXBzc2vI5jeI+vh7VF5ejh9//BFqtdpUzTQbY/rnsccew8WLF6UADgC//PIL1Gp1swtQwMP9Hdq1axdKSkrwwgsvmLqZ5mHuke3NVWJiorC2thbx8fHi3LlzIiIiQrRp00b6mfCECRPE3LlzpfqSkhKRnp4u0tPThVqtFm+88YZIT08XFy5cMNcpmFxd+2jp0qVCLpeLzz//3OCns4WFheY6BZOrax+999574tChQyI7O1ucO3dOLF++XLRq1Ups2rTJXKdgcnXto/u1hF/n1bWP3n77bfH111+L7OxskZaWJsaNGycUCoX46aefzHUKJlXX/rl8+bKws7MTkZGRIisrSxw4cEC0b99eLF682FynYHLG/nc2ePBgERYW1tDNbTAMUSa0du1a0alTJyGXy8XAgQPFiRMnpHXDhg0T4eHh0uecnBwBoNJr2LBhDd/wBlSXPurcuXOVfbRw4cKGb3gDqksfvfXWW6JLly5CoVCItm3bCn9/f5GYmGiGVjesuvTR/VpCiBKibn00Y8YMqdbZ2Vn89a9/FWfOnDFDqxtOXf8OHT9+XPj5+Qlra2vxyCOPiCVLlog//vijgVvdsOraRz///LMAIA4dOtTALW04MiGEMNNFMCIiIqImi2OiiIiIiIzAEEVERERkBIYoIiIiIiMwRBEREREZgSGKiIiIyAgMUURERERGYIgiIiIiMgJDFBFRMzBp0iSEhoaauxlELQpDFBGZ1KRJkyCTyaSXo6MjRo4cibNnz5q7afXi3nOreA0ePNhkx7t06RJkMhkyMjIMlq9evRrx8fEmOy4RVcYQRUQmN3LkSOTm5iI3NxfJyclo1aoVRo8ebe5m1ZutW7dK55ebm4svvviiyrqysjKTtUGlUqFNmzYm2z8RVcYQRUQmZ21tDRcXF7i4uMDb2xtz587FlStXcOPGDYwYMQKRkZEG9Tdu3IBcLpeeGu/u7o53330X48ePh1KpRIcOHbB+/XqDbVauXInevXtDqVTCzc0N/+///T/cvn1bWv/rr78iJCQEbdu2hVKpRM+ePXHw4EEAwG+//Ybnn38e7dq1g42NDby8vLB169Zan1+bNm2k83NxcYGDg4N0xWjHjh0YNmwYFAoFtm/fDq1Wi/Hjx6NDhw6wtbVF79698dlnnxnsT6/XIzY2Fl26dIG1tTU6deqEJUuWAAA8PDwAAP369YNMJsPjjz8OoPLtvJKSErz++uto3749FAoFBg8ejFOnTknrjx49CplMhuTkZPj6+sLW1hYBAQHIysqq9XkTtXQMUUTUoG7fvo1PP/0UXbp0gaOjI1566SUkJCSgpKREqvn000/RoUMHjBgxQlq2bNky9O3bF+np6Zg7dy6mT5+Ow4cPS+stLCywZs0a/PTTT9i2bRu+/fZbzJ49W1o/bdo0lJSU4LvvvsOPP/6I999/H61btwYALFiwAOfOncNXX32F8+fP48MPP4STk1O9nG9FW8+fP4+goCDcuXMHPj4++PLLL5GZmYmIiAhMmDABJ0+elLaZN28eli5dKrUrISEBzs7OACDVffPNN8jNzcWePXuqPO7s2bOxe/dubNu2DWfOnEGXLl0QFBSE/Px8g7q33noLK1aswOnTp9GqVSu8+OKL9XLeRC2CuZ+ATETNW3h4uLC0tBRKpVIolUoBQKjVapGWliaEEOL3338Xbdu2FTt27JC26dOnj1i0aJH0uXPnzmLkyJEG+w0LCxOjRo2q9ri7du0Sjo6O0ufevXsb7PNeISEhYvLkyUadHwChUCik81MqleJf//qXyMnJEQBEXFzcA/cRHBwsZs6cKYQQoqCgQFhbW4tNmzZVWVux3/T0dIPl4eHhYuzYsUIIIW7fvi2srKzE9u3bpfWlpaXC1dVVxMbGCiGEOHLkiAAgvvnmG6nmyy+/FADE77//XpcuIGqxeCWKiExu+PDhyMjIQEZGBk6ePImgoCCMGjUKv/76KxQKBSZMmIAtW7YAAM6cOYPMzExMmjTJYB/+/v6VPp8/f176/M033+CJJ55Ahw4dYGdnhwkTJkCr1aK4uBgA8Prrr2Px4sV47LHHsHDhQoOB7a+++ioSExPh7e2N2bNn4/jx43U6v1WrVknnl5GRgSeffFJa5+vra1BbXl6Od999F71794aDgwNat26Nr7/+GpcvXwYAnD9/HiUlJXjiiSfq1IZ7ZWdno6ysDI899pi0zMrKCgMHDjToMwDo06eP9Ge1Wg0AuH79utHHJmpJGKKIyOSUSiW6dOmCLl26YMCAAfjnP/+JoqIibNq0CQDw0ksv4fDhw7h69Sq2bt2KESNGoHPnzrXe/6VLlzB69Gj06dMHu3fvRlpamjRmqrS0VDrGf//7X0yYMAE//vgjfH19sXbtWgCQAt0//vEPXLt2DU888QTeeOONWh/fxcVFOr8uXbpAqVQanPu9li1bhtWrV2POnDk4cuQIMjIyEBQUJLXTxsam1setD1ZWVtKfZTIZgLtjsojowRiiiKjByWQyWFhY4PfffwcA9O7dG76+vti0aRMSEhKqHJdz4sSJSp979OgBAEhLS4Ner8eKFSswaNAgdO3aFdeuXau0Dzc3N0ydOhV79uzBzJkzpRAHAO3atUN4eDg+/fRTxMXFYePGjfV5ypJjx45h7NixeOGFF9C3b1888sgj+OWXX6T1Xl5esLGxkQbV308ulwO4e0WrOp6enpDL5Th27Ji0rKysDKdOncKjjz5aT2dCRK3M3QAiav5KSkqg0WgA3P0l3Lp163D79m2EhIRINS+99BIiIyOhVCrxt7/9rdI+jh07htjYWISGhuLw4cPYtWsXvvzySwBAly5dUFZWhrVr1yIkJATHjh3Dhg0bDLafMWMGRo0aha5du+K3337DkSNHpBAWHR0NHx8f9OzZEyUlJThw4IC0rr55eXnh888/x/Hjx9G2bVusXLkSeXl5UrhRKBSYM2cOZs+eDblcjsceeww3btzATz/9hClTpqB9+/awsbFBUlISOnbsCIVCAZVKZXAMpVKJV199FbNmzYKDgwM6deqE2NhYFBcXY8qUKSY5L6KWiFeiiMjkkpKSoFaroVar4efnh1OnTmHXrl3Sz/MBYPz48WjVqhXGjx8PhUJRaR8zZ87E6dOn0a9fPyxevBgrV65EUFAQAKBv375YuXIl3n//ffTq1Qvbt29HTEyMwfbl5eWYNm0aevTogZEjR6Jr16744IMPANy9ujNv3jz06dMHQ4cOhaWlJRITE03SF/Pnz0f//v0RFBSExx9/HC4uLpVmGl+wYAFmzpyJ6Oho9OjRA2FhYdI4pVatWmHNmjX46KOP4OrqirFjx1Z5nKVLl+Lpp5/GhAkT0L9/f1y8eBFff/012rZta5LzImqJZEIIYe5GEBFdunQJnp6eOHXqFPr372+wzt3dHTNmzMCMGTPM0zgioirwdh4RmVVZWRm0Wi3mz5+PQYMGVQpQRESNFW/nEZFZHTt2DGq1GqdOnao0jsnc3nvvPbRu3brK16hRo8zdPCIyM97OIyKqRn5+fqUZvivY2NigQ4cODdwiImpMGKKIiIiIjMDbeURERERGYIgiIiIiMgJDFBEREZERGKKIiIiIjMAQRURERGQEhigiIiIiIzBEERERERmBIYqIiIjICP8fGnD5oflphroAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWGhJREFUeJzt3XtYVNX+P/D3MDIMoIwBykVRCFG8JYqKkEoaNXYQ5ZSJWopmoX3FNMxrCqYWZlrkpcx+KtYRb2maZqSRViqiAmammRLejoA6xIAYYMz6/eFh58jFYYQZLu/X88xD7P3Ze6+9zxzm7dpr1pYJIQSIiIiIqFoszN0AIiIiovqIIYqIiIjICAxRREREREZgiCIiIiIyAkMUERERkREYooiIiIiMwBBFREREZASGKCIiIiIjMEQRERERGYEhioiogYuPj4dMJsPFixfN3RSiBoUhioge2vHjxxEZGYnOnTvD1tYWbdq0wfDhw/H777+Xq33iiScgk8kgk8lgYWEBOzs7dOjQAaNHj8b+/furddzdu3cjMDAQLVu2hI2NDR599FEMHz4ciYmJNXVq5bzzzjvYuXNnueVHjhzB/PnzkZeXV2vHvt/8+fOlaymTyWBjY4NOnTph7ty5yM/Pr5FjJCQkIC4urkb2RdTQMEQR0UN79913sX37djz55JP48MMPERERgR9//BE9evTA6dOny9W3bt0an3/+OT777DO89957GDJkCI4cOYKnn34aYWFhuHPnzgOPuXTpUgwZMgQymQyzZ8/GBx98gOeeew7nz5/H5s2ba+M0AVQdot566y2ThqgyH3/8MT7//HO8//778Pb2xttvv41BgwahJh6NyhBFVLkm5m4AEdV/UVFRSEhIgEKhkJaFhYWha9euWLx4Mf7zn//o1atUKrz44ot6yxYvXozXXnsNH330Edzd3fHuu+9Wery///4bCxcuxFNPPYV9+/aVW3/9+vWHPKO64/bt27CxsamyZtiwYXB0dAQATJw4Ec899xx27NiBo0ePwt/f3xTNJGqU2BNFRA8tICBAL0ABgJeXFzp37oyzZ88atA+5XI7ly5ejU6dOWLlyJbRabaW1N2/eRH5+Ph5//PEK17ds2VLv96KiIsyfPx/t27eHUqmEi4sLnn32WWRkZEg1S5cuRUBAABwcHGBtbQ1fX1988cUXevuRyWQoLCzEhg0bpFtoY8eOxfz58zF9+nQAgIeHh7Tu3jFI//nPf+Dr6wtra2vY29tjxIgRuHLlit7+n3jiCXTp0gWpqano378/bGxsMGfOHIOu370GDhwIAMjMzKyy7qOPPkLnzp1hZWUFV1dXTJo0Sa8n7YknnsDXX3+NS5cuSefk7u5e7fYQNVTsiSKiWiGEQE5ODjp37mzwNnK5HCNHjsS8efNw6NAhBAcHV1jXsmVLWFtbY/fu3Zg8eTLs7e0r3WdpaSkGDx6MpKQkjBgxAlOmTEFBQQH279+P06dPw9PTEwDw4YcfYsiQIXjhhRdQUlKCzZs34/nnn8eePXukdnz++ed4+eWX0bt3b0RERAAAPD09YWtri99//x2bNm3CBx98IPUKtWjRAgDw9ttvY968eRg+fDhefvll3LhxAytWrED//v2Rnp6O5s2bS+3VaDR45plnMGLECLz44otwcnIy+PqVKQuHDg4OldbMnz8fb731FoKCgvDqq6/i3Llz+Pjjj3H8+HEcPnwYlpaWePPNN6HVanH16lV88MEHAICmTZtWuz1EDZYgIqoFn3/+uQAg1q5dq7c8MDBQdO7cudLtvvzySwFAfPjhh1XuPzo6WgAQtra24plnnhFvv/22SE1NLVe3bt06AUC8//775dbpdDrpv2/fvq23rqSkRHTp0kUMHDhQb7mtra0IDw8vt6/33ntPABCZmZl6yy9evCjkcrl4++239Zb/8ssvokmTJnrLAwMDBQCxevXqSs/7XjExMQKAOHfunLhx44bIzMwUn3zyibCyshJOTk6isLBQCCHE+vXr9dp2/fp1oVAoxNNPPy1KS0ul/a1cuVIAEOvWrZOWBQcHi7Zt2xrUHqLGhrfziKjG/fbbb5g0aRL8/f0RHh5erW3LejoKCgqqrHvrrbeQkJCA7t2749tvv8Wbb74JX19f9OjRQ+8W4vbt2+Ho6IjJkyeX24dMJpP+29raWvrvP//8E1qtFv369UNaWlq12n+/HTt2QKfTYfjw4bh586b0cnZ2hpeXFw4cOKBXb2VlhXHjxlXrGB06dECLFi3g4eGBCRMmoF27dvj6668rHUv13XffoaSkBFOnToWFxT8fA6+88grs7Ozw9ddfV/9EiRoh3s4johqVnZ2N4OBgqFQqfPHFF5DL5dXa/tatWwCAZs2aPbB25MiRGDlyJPLz85GSkoL4+HgkJCQgJCQEp0+fhlKpREZGBjp06IAmTar+c7dnzx4sWrQIJ0+eRHFxsbT83qBljPPnz0MIAS8vrwrXW1pa6v3eqlWrcuPLHmT79u2ws7ODpaUlWrduLd2irMylS5cA3A1f91IoFHj00Uel9URUNYYoIqoxWq0WzzzzDPLy8vDTTz/B1dW12vsomxKhXbt2Bm9jZ2eHp556Ck899RQsLS2xYcMGpKSkIDAw0KDtf/rpJwwZMgT9+/fHRx99BBcXF1haWmL9+vVISEio9jncS6fTQSaT4ZtvvqkwUN4/xujeHjFD9e/fXxqHRUSmwxBFRDWiqKgIISEh+P333/Hdd9+hU6dO1d5HaWkpEhISYGNjg759+xrVjp49e2LDhg3IysoCcHfgd0pKCu7cuVOu16fM9u3boVQq8e2338LKykpavn79+nK1lfVMVbbc09MTQgh4eHigffv21T2dWtG2bVsAwLlz5/Doo49Ky0tKSpCZmYmgoCBp2cP2xBE1ZBwTRUQPrbS0FGFhYUhOTsa2bduMmpuotLQUr732Gs6ePYvXXnsNdnZ2ldbevn0bycnJFa775ptvAPxzq+q5557DzZs3sXLlynK14n+TUcrlcshkMpSWlkrrLl68WOGkmra2thVOqGlrawsA5dY9++yzkMvleOutt8pNfimEgEajqfgka1FQUBAUCgWWL1+u16a1a9dCq9XqfSvS1ta2yukmiBoz9kQR0UObNm0avvrqK4SEhCA3N7fc5Jr3T6yp1Wqlmtu3b+PChQvYsWMHMjIyMGLECCxcuLDK492+fRsBAQHo06cPBg0aBDc3N+Tl5WHnzp346aefEBoaiu7duwMAxowZg88++wxRUVE4duwY+vXrh8LCQnz33Xf4v//7PwwdOhTBwcF4//33MWjQIIwaNQrXr1/HqlWr0K5dO5w6dUrv2L6+vvjuu+/w/vvvw9XVFR4eHvDz84Ovry8A4M0338SIESNgaWmJkJAQeHp6YtGiRZg9ezYuXryI0NBQNGvWDJmZmfjyyy8RERGBN95446Guf3W1aNECs2fPxltvvYVBgwZhyJAhOHfuHD766CP06tVL738vX19fbNmyBVFRUejVqxeaNm2KkJAQk7aXqM4y51cDiahhKPtqfmWvqmqbNm0qvLy8xIsvvij27dtn0PHu3LkjPv30UxEaGiratm0rrKyshI2Njejevbt47733RHFxsV797du3xZtvvik8PDyEpaWlcHZ2FsOGDRMZGRlSzdq1a4WXl5ewsrIS3t7eYv369dIUAvf67bffRP/+/YW1tbUAoDfdwcKFC0WrVq2EhYVFuekOtm/fLvr27StsbW2Fra2t8Pb2FpMmTRLnzp3TuzZVTf9wv7L23bhxo8q6+6c4KLNy5Urh7e0tLC0thZOTk3j11VfFn3/+qVdz69YtMWrUKNG8eXMBgNMdEN1DJkQNPFyJiIiIqJHhmCgiIiIiIzBEERERERmBIYqIiIjICAxRREREREZgiCIiIiIyAkMUERERkRE42WYt0ul0uHbtGpo1a8ZHJxAREdUTQggUFBTA1dUVFhaV9zcxRNWia9euwc3NzdzNICIiIiNcuXIFrVu3rnQ9Q1QtatasGYC7/yNU9RwwIiIiqjvy8/Ph5uYmfY5XhiGqFpXdwrOzs2OIIiIiqmceNBSHA8uJiIiIjMAQRURERGQEhigiIiIiI3BMFBERUR1TWlqKO3fumLsZDZalpSXkcvlD74chioiIqI4QQiA7Oxt5eXnmbkqD17x5czg7Oz/UPI4MUURERHVEWYBq2bIlbGxsOFFzLRBC4Pbt27h+/ToAwMXFxeh9MUQRERHVAaWlpVKAcnBwMHdzGjRra2sAwPXr19GyZUujb+3ViYHlq1atgru7O5RKJfz8/HDs2LEq67dt2wZvb28olUp07doVe/fu1VsvhEB0dDRcXFxgbW2NoKAgnD9/vsJ9FRcXw8fHBzKZDCdPnpSWHzx4EEOHDoWLiwtsbW3h4+ODjRs3PvS5EhERVaRsDJSNjY2ZW9I4lF3nhxl7ZvYQtWXLFkRFRSEmJgZpaWno1q0b1Gq11M12vyNHjmDkyJEYP3480tPTERoaitDQUJw+fVqqWbJkCZYvX47Vq1cjJSUFtra2UKvVKCoqKre/GTNmwNXVtcLjPPbYY9i+fTtOnTqFcePGYcyYMdizZ0/NnTwREdF9eAvPNGriOsuEEKIG2mI0Pz8/9OrVCytXrgRw96G9bm5umDx5MmbNmlWuPiwsDIWFhXphpk+fPvDx8cHq1ashhICrqyumTZuGN954AwCg1Wrh5OSE+Ph4jBgxQtrum2++QVRUFLZv347OnTsjPT0dPj4+lbY1ODgYTk5OWLdunUHnlp+fD5VKBa1WyxnLqU7SaDQoKSmpdL1CoeBtBSITKSoqQmZmJjw8PKBUKs3dnAavqutt6Oe3WcdElZSUIDU1FbNnz5aWWVhYICgoCMnJyRVuk5ycjKioKL1larUaO3fuBABkZmYiOzsbQUFB0nqVSgU/Pz8kJydLISonJwevvPIKdu7caXDXqVarRceOHStdX1xcjOLiYun3/Px8g/ZLZA4ajUb6x0tVIiMjGaSIiCpg1tt5N2/eRGlpKZycnPSWOzk5ITs7u8JtsrOzq6wv+1lVjRACY8eOxcSJE9GzZ0+D2rp161YcP34c48aNq7QmNjYWKpVKerm5uRm0byJzqKoHypg6Imq8xo4dC5lMBplMBktLSzg5OeGpp57CunXroNPpDN5PfHw8mjdvXnsNrWFmHxNlDitWrEBBQYFeD1hVDhw4gHHjxuHTTz9F586dK62bPXs2tFqt9Lpy5UpNNZmIiKhKGo0GWVlZlb40Gk2tHn/QoEHIysrCxYsX8c0332DAgAGYMmUKBg8ejL///rtWj20uZr2d5+joCLlcjpycHL3lOTk5cHZ2rnAbZ2fnKuvLfubk5OjN/ZCTkyONd/r++++RnJwMKysrvf307NkTL7zwAjZs2CAt++GHHxASEoIPPvgAY8aMqfJ8rKysyu2TiIiottWF2/NWVlbSZ3CrVq3Qo0cP9OnTB08++STi4+Px8ssv4/3338f69evxxx9/wN7eHiEhIViyZAmaNm2KgwcPSnd7ygZ9x8TEYP78+fj888/x4Ycf4ty5c7C1tcXAgQMRFxeHli1b1sq5GMqsPVEKhQK+vr5ISkqSlul0OiQlJcHf37/Cbfz9/fXqAWD//v1SvYeHB5ydnfVq8vPzkZKSItUsX74cP//8M06ePImTJ09KUyRs2bIFb7/9trTdwYMHERwcjHfffRcRERE1c9JEREQ1rK7enh84cCC6deuGHTt2ALg77nn58uX49ddfsWHDBnz//feYMWMGACAgIABxcXGws7OTes/KviB2584dLFy4ED///DN27tyJixcvYuzYsSY9l4qYfbLNqKgohIeHo2fPnujduzfi4uJQWFgopdExY8agVatWiI2NBQBMmTIFgYGBWLZsGYKDg7F582acOHECa9asAXA3vU6dOhWLFi2Cl5cXPDw8MG/ePLi6uiI0NBQA0KZNG702NG3aFADg6emJ1q1bA7h7C2/w4MGYMmUKnnvuOWk8lUKhgL29fa1fFyJT02qbITfXAfb2GqhUBeZuDhE1EN7e3jh16hQAYOrUqdJyd3d3LFq0CBMnTsRHH30EhUIBlUoFmUxW7m7USy+9JP33o48+iuXLl6NXr164deuW9BluDmYPUWFhYbhx4waio6ORnZ0NHx8fJCYmSgPDL1++DAuLfzrMAgICkJCQgLlz52LOnDnw8vLCzp070aVLF6lmxowZKCwsREREBPLy8tC3b18kJiZW6yujGzZswO3btxEbGysFOAAIDAzEwYMHH/7EieqQtLTu2L17MISwgEymQ0jIHvTokW7uZhFRAyCEkG7Pfffdd4iNjcVvv/2G/Px8/P333ygqKsLt27er/KZ8amoq5s+fj59//hl//vmnNFj98uXL6NSpk0nOoyJmD1HA3Xu0kZGRFa6rKLA8//zzeP755yvdn0wmw4IFC7BgwQKDju/u7o77p8uKj49HfHy8QdsT1WdabTMpQAGAEBbYvXswPD0vsEeKiB7a2bNn4eHhgYsXL2Lw4MF49dVX8fbbb8Pe3h6HDh3C+PHjUVJSUmmIKiwshFqthlqtxsaNG9GiRQtcvnwZarXa7N8erhMhiohMT6FQAABycx2kAFVGCAvk5tpDpSqQ6oiIquv777/HL7/8gtdffx2pqanQ6XRYtmyZdIdp69atevUKhQKlpaV6y3777TdoNBosXrxYmjroxIkTpjmBB2CIImqkHBwcEBkZiYsX/8bnnwvodP88AkEuF5g8+Rm4uzfhRJtEZJDi4mJkZ2ejtLQUOTk5SExMRGxsLAYPHowxY8bg9OnTuHPnDlasWIGQkBAcPnwYq1ev1tuHu7s7bt26haSkJHTr1g02NjZo06YNFAoFVqxYgYkTJ+L06dNYuHChmc5SX6OcJ4qI7nJwcICvrxPWrJGh7CHmcjnwyScy+Po6MUARkcESExPh4uICd3d3DBo0CAcOHMDy5cuxa9cuyOVydOvWDe+//z7effdddOnSBRs3btQbcwzcHfc8ceJEhIWFoUWLFliyZAlatGiB+Ph4bNu2DZ06dcLixYuxdOlSM52lPrM/O68h47PzqD65ehW4cAFo1w7435dUiciEHubZeXVhnqj6pt4/O4+I6o7WrRmeiOqrstvzfKC4aTFEERERNQAMSKbHMVFERERERmCIIiIiIjICQxQRERGRERiiiIiIiIzAEEVERERkBIYoIiIiIiMwRBEREREZgSGKiIiI6rSDBw9CJpMhLy/P4G3c3d0RFxdXa20CGKKIiIjoIY0dOxYymQwTJ04st27SpEmQyWQYO3as6RtWyxiiiIiI6KG5ublh8+bN+Ouvv6RlRUVFSEhIQJs2bczYstrDEEVEREQPrUePHnBzc8OOHTukZTt27ECbNm3QvXt3aVlxcTFee+01tGzZEkqlEn379sXx48f19rV37160b98e1tbWGDBgAC5evFjueIcOHUK/fv1gbW0NNzc3vPbaaygsLKy186sIQxQREVEDc/UqcODA3Z+m9NJLL2H9+vXS7+vWrcO4ceP0ambMmIHt27djw4YNSEtLQ7t27aBWq5GbmwsAuHLlCp599lmEhITg5MmTePnllzFr1iy9fWRkZGDQoEF47rnncOrUKWzZsgWHDh1CZGRk7Z/kPRiiiIiIGpC1a4G2bYGBA+/+XLvWdMd+8cUXcejQIVy6dAmXLl3C4cOH8eKLL0rrCwsL8fHHH+O9997DM888g06dOuHTTz+FtbU11v6voR9//DE8PT2xbNkydOjQAS+88EK58VSxsbF44YUXMHXqVHh5eSEgIADLly/HZ599hqKiIpOdbxOTHYmIiIhq1dWrQEQEoNPd/V2nAyZMANRqoHXr2j9+ixYtEBwcjPj4eAghEBwcDEdHR2l9RkYG7ty5g8cff1xaZmlpid69e+Ps2bMAgLNnz8LPz09vv/7+/nq///zzzzh16hQ2btwoLRNCQKfTITMzEx07dqyN0yuHIYqIiKiBOH/+nwBVprQUuHDBNCEKuHtLr+y22qpVq2rlGLdu3cKECRPw2muvlVtnykHsDFFEREQNhJcXYGGhH6TkcqBdO9O1YdCgQSgpKYFMJoNardZb5+npCYVCgcOHD6Nt27YAgDt37uD48eOYOnUqAKBjx4746quv9LY7evSo3u89evTAmTNn0M6UJ1YBjokiIiJqIFq3BtasuRucgLs/P/nEdL1Qd48px9mzZ3HmzBnIyxryP7a2tnj11Vcxffp0JCYm4syZM3jllVdw+/ZtjB8/HgAwceJEnD9/HtOnT8e5c+eQkJCA+Ph4vf3MnDkTR44cQWRkJE6ePInz589j165dJh9Yzp4oIiKiBmT8+LtjoC5cuNsDZcoAVcbOzq7SdYsXL4ZOp8Po0aNRUFCAnj174ttvv8UjjzwC4O7tuO3bt+P111/HihUr0Lt3b7zzzjt46aWXpH089thj+OGHH/Dmm2+iX79+EELA09MTYWFhtX5u95IJIYRJj9iI5OfnQ6VSQavVVvmGIiIiKioqQmZmJjw8PKBUKs3dnAavqutt6Oc3b+cRERERGYEhioiIiMgIDFFERERERmCIIiIiIjICQxQREVEdwu97mUZNXGeGKCIiojrA0tISAHD79m0zt6RxKLvOZdfdGJwnioiIqA6Qy+Vo3rw5rl+/DgCwsbGBTCYzc6saHiEEbt++jevXr6N58+blJgStDoYoIiKiOsLZ2RkApCBFtad58+bS9TYWQxQREVEdIZPJ4OLigpYtW+LOnTvmbk6DZWlp+VA9UGUYooiIiOoYuVxeIx/yVLs4sJyIiIjICAxRREREREZgiCIiIiIyAkMUERERkREYooiIiIiMwBBFREREZASGKCIiIiIj1IkQtWrVKri7u0OpVMLPzw/Hjh2rsn7btm3w9vaGUqlE165dsXfvXr31QghER0fDxcUF1tbWCAoKwvnz5yvcV3FxMXx8fCCTyXDy5Em9dadOnUK/fv2gVCrh5uaGJUuWPNR5EhERkfE0Gg2ysrKQlZWF1NQcfPGFBqmpOdIyjUZj0vaYPURt2bIFUVFRiImJQVpaGrp16wa1Wl3plPdHjhzByJEjMX78eKSnpyM0NBShoaE4ffq0VLNkyRIsX74cq1evRkpKCmxtbaFWq1FUVFRufzNmzICrq2u55fn5+Xj66afRtm1bpKam4r333sP8+fOxZs2amjt5IiIiMohGo8HKlSuxZs0aTJx4HL16tcDzzzugV68WmDjxONasWYOVK1eaNkgJM+vdu7eYNGmS9HtpaalwdXUVsbGxFdYPHz5cBAcH6y3z8/MTEyZMEEIIodPphLOzs3jvvfek9Xl5ecLKykps2rRJb7u9e/cKb29v8euvvwoAIj09XVr30UcfiUceeUQUFxdLy2bOnCk6dOhg8LlptVoBQGi1WoO3ISIiovKuXbsm5s+fL15/fZmQyUoFIKSXTFYqXn99mZg/f764du3aQx/L0M9vs/ZElZSUIDU1FUFBQdIyCwsLBAUFITk5ucJtkpOT9eoBQK1WS/WZmZnIzs7Wq1GpVPDz89PbZ05ODl555RV8/vnnsLGxqfA4/fv3h0Kh0DvOuXPn8Oeff1bYtuLiYuTn5+u9iIiIqObk5jrg/vgihAVyc+1N3hazhqibN2+itLQUTk5OesudnJyQnZ1d4TbZ2dlV1pf9rKpGCIGxY8di4sSJ6NmzZ7WOc+8x7hcbGwuVSiW93NzcKqwjIiIi49jbayCT6fSWyWQ62NvnmrwtZh8TZQ4rVqxAQUEBZs+eXaP7nT17NrRarfS6cuVKje6fiIiosVOpChASskcKUjKZDiEhe6BSFZi8LU1MfsR7ODo6Qi6XIycnR295Tk4OnJ2dK9zG2dm5yvqynzk5OXBxcdGr8fHxAQB8//33SE5OhpWVld5+evbsiRdeeAEbNmyo9Dj3HuN+VlZW5fZJRERENatHj3R4el5Abq497O1zzRKgADP3RCkUCvj6+iIpKUlaptPpkJSUBH9//wq38ff316sHgP3790v1Hh4ecHZ21qvJz89HSkqKVLN8+XL8/PPPOHnyJE6ePClNkbBlyxa8/fbb0nF+/PFH3LlzR+84HTp0wCOPPFIDZ09EREQPR2bWo5u1JwoAoqKiEB4ejp49e6J3796Ii4tDYWEhxo0bBwAYM2YMWrVqhdjYWADAlClTEBgYiGXLliE4OBibN2/GiRMnpKkHZDIZpk6dikWLFsHLywseHh6YN28eXF1dERoaCgBo06aNXhuaNm0KAPD09ETr1q0BAKNGjcJbb72F8ePHY+bMmTh9+jQ+/PBDfPDBB6a4LERERFSJtLTu2L17MISwkG7n9eiRbvJ2mD1EhYWF4caNG4iOjkZ2djZ8fHyQmJgoDeK+fPkyLCz+6TALCAhAQkIC5s6dizlz5sDLyws7d+5Ely5dpJoZM2agsLAQERERyMvLQ9++fZGYmAilUmlwu1QqFfbt24dJkybB19cXjo6OiI6ORkRERM2dPBERERnk9u3bAACttpkUoIC738zbvXswPD0vQKUqkOpMQSaEECY7WiOTn58PlUoFrVYLOzs7czeHiIio3srKysKaNWuQmemODRvCy60PD4+Hh8clRERE6I2JNoahn9+N8tt5REREVD9xigMiIiIiI3CKAyIiIiIj1ZUpDhiiiIiIqN5RqQrMFp7K8HYeERERkREYooiIiIiMwBBFREREdZ5CoajRuprAMVFERERU5zk4OCAyMhIlJSWV1igUCjg4OJisTQxRREREVC+YMiAZgrfziIiIiIzAEEVERERkBIYoIiIiIiMwRBEREREZgSGKiIiIzObqVeDAgbs/6xuGKCIiIjIpjUaDrKwsLFuWh7ZtBQYOBNq2FVi2LA9ZWVnQaDTmbqJBOMUBERERmYxGo8HKlSuh1TZDXNxUCCEDAOh0Mkyfbof//ncdVKoCREZG1rkpDe7HnigiIiIymbLJMnNzHSCEfgwRwgK5ufZ6dXUZQxQRERGZnL29BjKZTm+ZTKaDvX2umVpUfQxRREREZHIqVQFCQvZIQUom0yEkZA9UqgIzt8xwHBNFREREZtGjRzo8PS8gN9ce9va59SpAAQxRREREZEYqVUG9C09leDuPiIiIyAgMUURERERGYIgiIiIik1EoFDVaZ04cE9WIXL0KnD8PeHkBrVubuzVERNQYOTg4IDIyssp5oBQKRZ2faBNgiGrwNBoNSkpKkJBgjRkzVNDpZLCwEFiyRItRo/6qN29UIiJqOBrK5w5DVAPWkKbWJyIiqms4JqoBa0hT61PdVZ+fwE5E9DAYohqBhjC1PtVNa9cCbdvif09gv/s7EVFjwRDVCDSEqfWpbtFoNEhNzUFEhIDuf/lcpwMmTBBITc2BRqMxbwOJiEyAY6Iaifo+tT7VHWVj7TIz3aHTheutKy2VYcWKb+DhcYlj7YiowWOIakTq89T6VHeUjaEru01873i7e28Tc6wdETV0vJ1HREbhbWIiauzYE0VERuNt4saFE/YS6WOIasAa0tT6VHfxNnHDxgl7iSrHENWANaSp9YnI9DhhL1HVGKIaOP5hIyJjGTJhr0pVwC8RUKPFgeVERFQlTthLVDGGKCKqFo61q1tM8dgdfhOTqGK8nUdE1cKxduZnjsHe/CYmUXkMUURUbQxI5mPOwd78JiaRPrPfzlu1ahXc3d2hVCrh5+eHY8eOVVm/bds2eHt7Q6lUomvXrti7d6/eeiEEoqOj4eLiAmtrawQFBeH8+fN6NUOGDEGbNm2gVCrh4uKC0aNH49q1a3o13377Lfr06YNmzZqhRYsWeO6553Dx4sUaOWciImMZMtj73joiqj1mDVFbtmxBVFQUYmJikJaWhm7dukGtVuP69esV1h85cgQjR47E+PHjkZ6ejtDQUISGhuL06dNSzZIlS7B8+XKsXr0aKSkpsLW1hVqtRlFRkVQzYMAAbN26FefOncP27duRkZGBYcOGSeszMzMxdOhQDBw4ECdPnsS3336Lmzdv4tlnn629i0FEVA0c7E1kfjIhhDDXwf38/NCrVy+sXLkSAKDT6eDm5obJkydj1qxZ5erDwsJQWFiIPXv2SMv69OkDHx8frF69GkIIuLq6Ytq0aXjjjTcAAFqtFk5OToiPj8eIESMqbMdXX32F0NBQFBcXw9LSEl988QVGjhyJ4uJiWFjczZm7d+/G0KFDpRpD5OfnQ6VSQavVws7OrlrXhoioIllZWVizZg0AIC2tO3bvHgwhLKTB3j16pAMAIiIi4OLi8lDHKrt1+CCcJ4oaGkM/v802JqqkpASpqamYPXu2tMzCwgJBQUFITk6ucJvk5GRERUXpLVOr1di5cyeAuz1I2dnZCAoKktarVCr4+fkhOTm5whCVm5uLjRs3IiAgQApHvr6+sLCwwPr16zF27FjcunULn3/+OYKCgqoMUMXFxSguLpZ+z8/Pf/CFICIyUm0P9uaXCIiqZrbbeTdv3kRpaSmcnJz0ljs5OSE7O7vCbbKzs6usL/tpyD5nzpwJW1tbODg44PLly9i1a5e0zsPDA/v27cOcOXNgZWWF5s2b4+rVq9i6dWuV5xQbGwuVSiW93NzcqqwnInpYKlUBPDwu1dqAbwcHB7i4uFT6YoCixszsA8vNZfr06UhPT8e+ffsgl8sxZswYlN3ZzM7OxiuvvILw8HAcP34cP/zwAxQKBYYNG4aq7n7Onj0bWq1Wel25csVUp0NEREQmZrbbeY6OjpDL5cjJydFbnpOTA2dn5wq3cXZ2rrK+7GdOTo7eWICcnBz4+PiUO76joyPat2+Pjh07ws3NDUePHoW/vz9WrVoFlUqFJUuWSPX/+c9/4ObmhpSUFPTp06fC9llZWcHKysqwC0BERET1mtl6ohQKBXx9fZGUlCQt0+l0SEpKgr+/f4Xb+Pv769UDwP79+6V6Dw8PODs769Xk5+cjJSWl0n2WHReANJ7p9u3b0oDyMnK5XK+WiMgcOGM8Ud1h1sk2o6KiEB4ejp49e6J3796Ii4tDYWEhxo0bBwAYM2YMWrVqhdjYWADAlClTEBgYiGXLliE4OBibN2/GiRMnpG+qyGQyTJ06FYsWLYKXlxc8PDwwb948uLq6IjQ0FACQkpKC48ePo2/fvnjkkUeQkZGBefPmwdPTUwpawcHB+OCDD7BgwQKMHDkSBQUFmDNnDtq2bYvu3bub/kIREf1PQx7sXTYTOwBcu2aBzMwm8PD4G66ud//xWl/Pixous4aosLAw3LhxA9HR0cjOzoaPjw8SExOlgeGXL1/W6xEKCAhAQkIC5s6dizlz5sDLyws7d+5Ely5dpJoZM2agsLAQERERyMvLQ9++fZGYmAilUgkAsLGxwY4dOxATE4PCwkK4uLhg0KBBmDt3rnQrbuDAgUhISMCSJUuwZMkS2NjYwN/fH4mJibC2tjbhFSIiKq8hBol7p1OoauoGTqdAdYlZ54lq6DhPFBGRYcrmv/rncTb//ANaJtNh6tQ4qFQFNTL/FdGD1Pl5ooiIiO5X1eNsanoaB94+pIfFEEW14upV4Px5wMsLaN3a3K0hovqi7HE29/dE1fTjbHj7kGpCo50nimqeRqNBVlYWli3LQ9u2AgMHAm3bCixbloesrCxoNBpzN5GI6jiVqgAhIXuk5wKWhZqa7oUq64HSaptJAQq42+u1e/dgaLXN9OqIKsKeKKoRZf+q+2c8gwwAoNPJMH26Hf7733VQqQr4rzoieqDafpzNvUx5+5AaHoYoqhFl/1p70B8k/quOiAyhUhWYJMSY6vYhNUy8nUc1quwP0r34B4mI6ipT3T6khok9UVSjyv4g3T9Ik3+QiKgq5pyJ3ZS3D6lhYYiiGsc/SERUXeaeid1Utw+pYWGIolrBP0hEVF380gnVNxwTRUREjQ4f5Ew1gT1RRETU6Jj79iE1DAxRVCP4r7q6hTPGEz0YAxI9LIYoqhH8V535lT0HLCHBGjNmqKDTyWBhIbBkiRajRv3F609EVMMYoqjG8APafDhjPBGR6XFgOVEDYMiM8ffWERHRw2OIImpAOGM8EZHpMEQRNSB8hAURkelwTBRRA8MZ44mITIMhiqgB4ozxRES1j7fziIiIiIzAEEVERERkBIYoogaAM8YTEZkex0QRNQCcMZ6IyPQYoogaCAYkIiLT4u08IiIiIiMwRBEREREZgSGKiIiIyAgMUURERERGYIgiIiIiMgJDFBEREZEROMUBUSOm0WikuaWuXbNAZmYTeHj8DVdXHQDOLUVEVBWGKKJGSqPRYOXKlQCAtLTu2L17MISwgEymQ0jIHvTokQ4AiIyMZJAiIqoAb+cRNVJlPVBabTMpQAGAEBbYvXswtNpmenVERKSPIYqokcvNdZACVBkhLJCba2+mFhER1Q8MUUSNnL29BjKZTm+ZTKaDvX2umVpERFQ/MEQRNXIqVQFCQvZIQapsTJRKVWDmlhER1W0cWE5E6NEjHZ6eF5Cbaw97+1wGKCIiAzBEERGAuz1SDE9ERIbj7TwiIiIiIzBEETVSCoWiRuuIiBob3s4jaqQcHBwQGRlZ5TxQnLGciKhyZu+JWrVqFdzd3aFUKuHn54djx45VWb9t2zZ4e3tDqVSia9eu2Lt3r956IQSio6Ph4uICa2trBAUF4fz583o1Q4YMQZs2baBUKuHi4oLRo0fj2rVr5fazdOlStG/fHlZWVmjVqhXefvvtmjlpojrCwcEBLi4ulb4YoIiIKmfWELVlyxZERUUhJiYGaWlp6NatG9RqNa5fv15h/ZEjRzBy5EiMHz8e6enpCA0NRWhoKE6fPi3VLFmyBMuXL8fq1auRkpICW1tbqNVqFBUVSTUDBgzA1q1bce7cOWzfvh0ZGRkYNmyY3rGmTJmC//f//h+WLl2K3377DV999RV69+5dOxeCiIiI6h2ZEEKY6+B+fn7o1auX9PwunU4HNzc3TJ48GbNmzSpXHxYWhsLCQuzZs0da1qdPH/j4+GD16tUQQsDV1RXTpk3DG2+8AQDQarVwcnJCfHw8RowYUWE7vvrqK4SGhqK4uBiWlpY4e/YsHnvsMZw+fRodOnQw+vzy8/OhUqmg1WphZ2dn9H6IiIjIdAz9/DZbT1RJSQlSU1MRFBT0T2MsLBAUFITk5OQKt0lOTtarBwC1Wi3VZ2ZmIjs7W69GpVLBz8+v0n3m5uZi48aNCAgIgKWlJQBg9+7dePTRR7Fnzx54eHjA3d0dL7/8MnJzq57Bubi4GPn5+XovIiIiapjMFqJu3ryJ0tJSODk56S13cnJCdnZ2hdtkZ2dXWV/205B9zpw5E7a2tnBwcMDly5exa9cuad0ff/yBS5cuYdu2bfjss88QHx+P1NTUcrf87hcbGwuVSiW93NzcqqwnIiKi+svsA8vNZfr06UhPT8e+ffsgl8sxZswYlN3Z1Ol0KC4uxmeffYZ+/frhiSeewNq1a3HgwAGcO3eu0n3Onj0bWq1Wel25csVUp0NEREQmZrYpDhwdHSGXy5GTk6O3PCcnB87OzhVu4+zsXGV92c+cnBy4uLjo1fj4+JQ7vqOjI9q3b4+OHTvCzc0NR48ehb+/P1xcXNCkSRO0b99equ/YsSMA4PLly5WOk7KysoKVlZUBZ09ERET1ndl6ohQKBXx9fZGUlCQt0+l0SEpKgr+/f4Xb+Pv769UDwP79+6V6Dw8PODs769Xk5+cjJSWl0n2WHRe4O6YJAB5//HH8/fffyMjIkGp+//13AEDbtm2rc5pERETUQJl1ss2oqCiEh4ejZ8+e6N27N+Li4lBYWIhx48YBAMaMGYNWrVohNjYWwN1pBwIDA7Fs2TIEBwdj8+bNOHHiBNasWQMAkMlkmDp1KhYtWgQvLy94eHhg3rx5cHV1RWhoKAAgJSUFx48fR9++ffHII48gIyMD8+bNg6enpxS0goKC0KNHD7z00kuIi4uDTqfDpEmT8NRTT+n1ThEREVHjZdYQFRYWhhs3biA6OhrZ2dnw8fFBYmKiNDD88uXLsLD4p7MsICAACQkJmDt3LubMmQMvLy/s3LkTXbp0kWpmzJiBwsJCREREIC8vD3379kViYiKUSiUAwMbGBjt27EBMTAwKCwvh4uKCQYMGYe7cudKtOAsLC+zevRuTJ09G//79YWtri2eeeQbLli0z4dUhIiKiusys80Q1dJwnioiIqP4x+TxRRUVFWLp0aU3tjoiIiKhOq1aIunHjBvbs2YN9+/ahtLQUAHDnzh18+OGHcHd3x+LFi2ulkURERER1jcFjog4dOoTBgwcjPz8fMpkMPXv2xPr16xEaGoomTZpg/vz5CA8Pr822EhEREdUZBvdEzZ07F//6179w6tQpREVF4fjx4/j3v/+Nd955B2fOnMHEiRNhbW1dm20lIiIiqjMMHlju4OCAn376CZ06dcJff/2Fpk2bYseOHRg6dGhtt7He4sByIiKi+qfGB5b/+eefcHR0BABYW1vDxsZGb2oBIiIiosakWvNEnTlzRnqQrxAC586dQ2FhoV7NY489VnOtIyIiIqqjDL6dZ2FhAZlMhqrKZTKZ9K094u08IiKi+sjQz2+De6IyMzMfWFNQUGDo7oiIiIjqNYNDVGUP3i0oKMCmTZuwdu1anDhxgj1RRERE1CgYPWP5jz/+iPDwcLi4uGDp0qUYMGAAjh49WpNtIyIiIqqzqjWwPDs7G/Hx8Vi7di3y8/MxfPhwFBcXY+fOnejUqVNttZGIiIiozjG4JyokJAQdOnTAqVOnEBcXh2vXrmHFihW12TYiIiKiOsvgnqhvvvkGr732Gl599VV4eXnVZpuIiCQajQYlJSWVrlcoFHBwcDBhi4iI7qrWs/PWrl0LX19fdOzYEaNHj8aIESNqs21E1MhpNBqsXLnygXWRkZEMUkRkcgbfzuvTpw8+/fRTZGVlYcKECdi8eTNcXV2h0+mwf/9+Tm9ARDXu/h4orbYZMjPdodU2q7KOiMgUqv3tPFtbW7z00ks4dOgQfvnlF0ybNg2LFy9Gy5YtMWTIkNpoIxER0tK6Iy5uKjZsCEdc3FSkpXU3d5OIqJEzeooDAOjQoQOWLFmCq1evYtOmTTXVJqqARqNBVlZWpS+NRmPuJhLVGq22GXbvHgwh7v7JEsICu3cPLtcjRURkStWa4qAycrkcoaGhCA0NrYnd0X04LoQau9xcBylAlRHCArm59lCpOJSAiMzjoXqiyDQMHe/BcSHUUNnbayCT6fSWyWQ62NvnmqlFREQMUfVSZYNriRoqlaoAISF7pCAlk+kQErKHvVBEZFY1cjuPTCctrbs0NqTsg6RHj3RzN4uo1vXokQ5PzwvIzbWHvX0uAxQRmR17ouoRDq6lxkahUOj9rlIVwMPjUrkAdX8dEZEpsCeqHuHgWmpsHBwcEBkZyRnLiahOYoiqR8oG194bpDi4lho6BiQiqqsYouqRssG194+JYi8UmRqfZ0dExBBVL9w73qOqwbUcF0KmwHnLiIjuYoiqBzguhOqSip5nl5vrAHt7jV6o57xlRNTQMUTVEwxIVBdxyg0iasw4xQERGYVTbhBRY8cQRURGqWrKDSKixoAhioiMwufZEVFjxxBFREbh8+yIqLHjwHIiMhqfZ0dEjRlDFBFVS0XPs6soPHHeMiJq6BiiiKhaOG8ZEdFdDFFEVG0MSEREHFhOREREZBSGKCIiIiIjMEQRERERGYEhioiIiMgIdSJErVq1Cu7u7lAqlfDz88OxY8eqrN+2bRu8vb2hVCrRtWtX7N27V2+9EALR0dFwcXGBtbU1goKCcP78eb2aIUOGoE2bNlAqlXBxccHo0aNx7dq1Co934cIFNGvWDM2bN3+o8yQiIqKGw+whasuWLYiKikJMTAzS0tLQrVs3qNVqXL9+vcL6I0eOYOTIkRg/fjzS09MRGhqK0NBQnD59WqpZsmQJli9fjtWrVyMlJQW2trZQq9UoKiqSagYMGICtW7fi3Llz2L59OzIyMjBs2LByx7tz5w5GjhyJfv361fzJExERUb0lE0IIczbAz88PvXr1wsqVKwEAOp0Obm5umDx5MmbNmlWuPiwsDIWFhdizZ4+0rE+fPvDx8cHq1ashhICrqyumTZuGN954AwCg1Wrh5OSE+Ph4jBgxosJ2fPXVVwgNDUVxcTEsLS2l5TNnzsS1a9fw5JNPYurUqcjLyzP43PLz86FSqaDVamFnZ2fwdkRERGQ+hn5+m7UnqqSkBKmpqQgKCpKWWVhYICgoCMnJyRVuk5ycrFcPAGq1WqrPzMxEdna2Xo1KpYKfn1+l+8zNzcXGjRsREBCgF6C+//57bNu2DatWrTL6HImIiKhhMmuIunnzJkpLS+Hk5KS33MnJCdnZ2RVuk52dXWV92U9D9jlz5kzY2trCwcEBly9fxq5du6R1Go0GY8eORXx8vMG9SMXFxcjPz9d7ERERUcNk9jFR5jR9+nSkp6dj3759kMvlGDNmDMrubr7yyisYNWoU+vfvb/D+YmNjoVKppJebm1ttNZ2IiIjMzKwhytHREXK5HDk5OXrLc3Jy4OzsXOE2zs7OVdaX/TRkn46Ojmjfvj2eeuopbN68GXv37sXRo0cB3L2Vt3TpUjRp0gRNmjTB+PHjodVq0aRJE6xbt67Cts2ePRtarVZ6XblyxcArQURERPWNWUOUQqGAr68vkpKSpGU6nQ5JSUnw9/evcBt/f3+9egDYv3+/VO/h4QFnZ2e9mvz8fKSkpFS6z7LjAndvyQF3x16dPHlSei1YsADNmjXDyZMn8e9//7vCfVhZWcHOzk7vRURERA2T2R9AHBUVhfDwcPTs2RO9e/dGXFwcCgsLMW7cOADAmDFj0KpVK8TGxgIApkyZgsDAQCxbtgzBwcHYvHkzTpw4gTVr1gAAZDIZpk6dikWLFsHLywseHh6YN28eXF1dERoaCgBISUnB8ePH0bdvXzzyyCPIyMjAvHnz4OnpKQWtjh076rXzxIkTsLCwQJcuXUx0ZYiIiKguM3uICgsLw40bNxAdHY3s7Gz4+PggMTFRGhh++fJlWFj802EWEBCAhIQEzJ07F3PmzIGXlxd27typF25mzJiBwsJCREREIC8vD3379kViYiKUSiUAwMbGBjt27EBMTAwKCwvh4uKCQYMGYe7cubCysjLtBSAiIqJ6yezzRDVknCeKiIio/qkX80QRERER1VcMUURERERGYIgiIiIiMgJDFBEREZERGKKIiIiIjMAQRURERGQEhigiIiIiIzBEERERERmBIYqIiIjICAxRREREREZgiCIiIiIyAkMUERERkREYooiIiIiMwBBFREREZASGKCIiIiIjMEQRERERGYEhioiIiMgIDFFERERERmCIIiIiIjICQxQRERGRERiiiIiIiIzAEEVERERkBIYoIiIiIiMwRBEREREZgSGKiIiIyAgMUURERERGYIgiIiIiMgJDFBEREZERGKKIiIiIjMAQRURERGQEhigiIiIiIzBEERERERmBIYqIiIjICAxRREREREZgiCIiIiIyAkMUERERkREYooiIiIiMwBBFREREZASGKCIiIiIjMEQRERERGYEhioiIiMgIDFFERERERqgTIWrVqlVwd3eHUqmEn58fjh07VmX9tm3b4O3tDaVSia5du2Lv3r1664UQiI6OhouLC6ytrREUFITz58/r1QwZMgRt2rSBUqmEi4sLRo8ejWvXrknrDx48iKFDh8LFxQW2trbw8fHBxo0ba+6kiYiIqF4ze4jasmULoqKiEBMTg7S0NHTr1g1qtRrXr1+vsP7IkSMYOXIkxo8fj/T0dISGhiI0NBSnT5+WapYsWYLly5dj9erVSElJga2tLdRqNYqKiqSaAQMGYOvWrTh37hy2b9+OjIwMDBs2TO84jz32GLZv345Tp05h3LhxGDNmDPbs2VN7F4OIiIjqDZkQQpizAX5+fujVqxdWrlwJANDpdHBzc8PkyZMxa9ascvVhYWEoLCzUCzN9+vSBj48PVq9eDSEEXF1dMW3aNLzxxhsAAK1WCycnJ8THx2PEiBEVtuOrr75CaGgoiouLYWlpWWFNcHAwnJycsG7dOoPOLT8/HyqVClqtFnZ2dgZtQ0REROZl6Oe3WXuiSkpKkJqaiqCgIGmZhYUFgoKCkJycXOE2ycnJevUAoFarpfrMzExkZ2fr1ahUKvj5+VW6z9zcXGzcuBEBAQGVBijgbhizt7evdH1xcTHy8/P1XkRERNQwmTVE3bx5E6WlpXByctJb7uTkhOzs7Aq3yc7OrrK+7Kch+5w5cyZsbW3h4OCAy5cvY9euXZW2devWrTh+/DjGjRtXaU1sbCxUKpX0cnNzq7SWiIiI6jezj4kyp+nTpyM9PR379u2DXC7HmDFjUNHdzQMHDmDcuHH49NNP0blz50r3N3v2bGi1Wul15cqV2mw+ERERmVETcx7c0dERcrkcOTk5estzcnLg7Oxc4TbOzs5V1pf9zMnJgYuLi16Nj49PueM7Ojqiffv26NixI9zc3HD06FH4+/tLNT/88ANCQkLwwQcfYMyYMVWej5WVFaysrKo+aSIiImoQzNoTpVAo4Ovri6SkJGmZTqdDUlKSXpC5l7+/v149AOzfv1+q9/DwgLOzs15Nfn4+UlJSKt1n2XGBu+Oayhw8eBDBwcF49913ERERUf0TJCIiogbLrD1RABAVFYXw8HD07NkTvXv3RlxcHAoLC6WxR2PGjEGrVq0QGxsLAJgyZQoCAwOxbNkyBAcHY/PmzThx4gTWrFkDAJDJZJg6dSoWLVoELy8veHh4YN68eXB1dUVoaCgAICUlBcePH0ffvn3xyCOPICMjA/PmzYOnp6cUtA4cOIDBgwdjypQpeO6556TxVAqFosrB5URERNRIiDpgxYoVok2bNkKhUIjevXuLo0ePSusCAwNFeHi4Xv3WrVtF+/bthUKhEJ07dxZff/213nqdTifmzZsnnJychJWVlXjyySfFuXPnpPWnTp0SAwYMEPb29sLKykq4u7uLiRMniqtXr0o14eHhAkC5V2BgoMHnpdVqBQCh1Wqrd0GIiIjIbAz9/Db7PFENGeeJIiIiqjkajQYlJSWVrlcoFHBwcHjo4xj6+W3223lERERED6LRaKSJuasSGRlZI0HKEI16igMiIiKqH6rqgTKmriYwRBEREREZgSGKiIiIyAgMUURERERGYIgiIiIiMgJDFBEREdU7Wm0zZGa6Q6ttZrY2cIoDIiIiqlfS0rpj9+7BEMICMpkOISF70KNHusnbwZ4oIiIiqvMUCgWAuz1QZQEKAISwwO7dg6UeqbI6U+CM5bWIM5YTERHVHI1GgwMHgOefLz+Z5hdfaPDEE+CM5URERET3c3BwQJ8+gIUFoNP9s1wuB/z8HGCiicolvJ1HRERE9Ubr1sCaNXeDE3D35yef3F1uauyJIiIionpl/HhArQYuXADatTNPgAIYooiIiKgeat3afOGpDG/nERERERmBIYqIiIjICAxRREREREZgiCIiIiIyAkMUERERkREYooiIiIiMwBBFREREZASGKCIiIiIjMEQRERERGYEhioiIiMgIDFFERERERmCIIiIiIjICH0BMRERERtNoNCgpKal0vUKhgIODgwlbZDoMUURERGQUjUaDlStXPrAuMjKyQQYp3s4jIiIio1TVA2VMXX3DEEVERERkBIYoIiIiIiMwRBEREREZgSGKiIiIaoRW2wyZme7QapuZuykmwW/nERER0UNLS+uO3bsHQwgLyGQ6hITsQY8e6eZuVq1iTxQRERE9FK22mRSgAEAIC+zePbjB90gxRBEREZFRFAoFACA310EKUGWEsEBurr1eXUMjE0IIczeiocrPz4dKpYJWq4WdnZ25m0NERFTjNBoNLl78G717t4ROJ5OWy+UCKSnX4e7epN5NtGno5zd7ooiIiMhoDg4O8PV1wpo1Msjld5fJ5cAnn8jg6+tU7wJUdXBgORERET208eMBtRq4cAFo1w5o3drcLap9DFFERERUI1q3bhzhqQxv5xEREREZoU6EqFWrVsHd3R1KpRJ+fn44duxYlfXbtm2Dt7c3lEolunbtir179+qtF0IgOjoaLi4usLa2RlBQEM6fP69XM2TIELRp0wZKpRIuLi4YPXo0rl27pldz6tQp9OvXD0qlEm5ubliyZEnNnDARERHVe2YPUVu2bEFUVBRiYmKQlpaGbt26Qa1W4/r16xXWHzlyBCNHjsT48eORnp6O0NBQhIaG4vTp01LNkiVLsHz5cqxevRopKSmwtbWFWq1GUVGRVDNgwABs3boV586dw/bt25GRkYFhw4ZJ6/Pz8/H000+jbdu2SE1NxXvvvYf58+djzZo1tXcxiIiIqP4QZta7d28xadIk6ffS0lLh6uoqYmNjK6wfPny4CA4O1lvm5+cnJkyYIIQQQqfTCWdnZ/Hee+9J6/Py8oSVlZXYtGlTpe3YtWuXkMlkoqSkRAghxEcffSQeeeQRUVxcLNXMnDlTdOjQweBz02q1AoDQarUGb0NERETmZejnt1l7okpKSpCamoqgoCBpmYWFBYKCgpCcnFzhNsnJyXr1AKBWq6X6zMxMZGdn69WoVCr4+flVus/c3Fxs3LgRAQEBsLS0lI7Tv39/vQnC1Go1zp07hz///LPC/RQXFyM/P1/vRURERA2TWUPUzZs3UVpaCicnJ73lTk5OyM7OrnCb7OzsKuvLfhqyz5kzZ8LW1hYODg64fPkydu3a9cDj3HuM+8XGxkKlUkkvNze3CuuIiIio/jP7mChzmj59OtLT07Fv3z7I5XKMGTMG4iEmcJ89eza0Wq30unLlSg22loiIiOoSs84T5ejoCLlcjpycHL3lOTk5cHZ2rnAbZ2fnKuvLfubk5MDFxUWvxsfHp9zxHR0d0b59e3Ts2BFubm44evQo/P39Kz3Ovce4n5WVFaysrB5w1kRERNQQmLUnSqFQwNfXF0lJSdIynU6HpKQk+Pv7V7iNv7+/Xj0A7N+/X6r38PCAs7OzXk1+fj5SUlIq3WfZcYG745rKjvPjjz/izp07esfp0KEDHnnkkWqeKRERETU4phnnXrnNmzcLKysrER8fL86cOSMiIiJE8+bNRXZ2thBCiNGjR4tZs2ZJ9YcPHxZNmjQRS5cuFWfPnhUxMTHC0tJS/PLLL1LN4sWLRfPmzcWuXbvEqVOnxNChQ4WHh4f466+/hBBCHD16VKxYsUKkp6eLixcviqSkJBEQECA8PT1FUVGREOLuN/qcnJzE6NGjxenTp8XmzZuFjY2N+OSTTww+N347j4iIqP4x9PPb7I99CQsLw40bNxAdHY3s7Gz4+PggMTFRGsR9+fJlWFj802EWEBCAhIQEzJ07F3PmzIGXlxd27tyJLl26SDUzZsxAYWEhIiIikJeXh759+yIxMRFKpRIAYGNjgx07diAmJgaFhYVwcXHBoEGDMHfuXOl2nEqlwr59+zBp0iT4+vrC0dER0dHRiIiIMOHVISKqnzQaDUpKSipdr1AoGvSDaalxkAnxECOpqUr5+flQqVTQarWws7Mzd3OIiExCo9Fg5cqVD6yLjIxkkKI6ydDP70b97TwiIqp5VfVAGVNHVFcxRBEREREZgSGKiIiIyAgMUUREVKu02mbIzHSHVtvM3E0hqlFm/3YeERE1XGlp3bF792AIYQGZTIeQkD3o0SPd3M0iqhHsiSIiolqh1TaTAhQACGGB3bsHs0eKGgyGKCIiqhW5uQ5SgCojhAVyc+3N1CKimsUQRURENUqhUAAA7O01kMl0eutkMh3s7XP16ojqK46JIiKiGuXg4IDIyEiUlJSgVat8zJypQmmpDHK5wLvv5mPUqJGcsZwaBM5YXos4YzkREXD1KnDhAtCuHdC6tblbQ/Rghn5+syeKiIhqVevWDE/UMDFEERFRncCHFlN9wxBFRERmx4cWU33Eb+cREZHZ8aHFVB8xRBEREREZgSGKiIjqHD5vj+oDjokiIqI6hc/bo/qCPVFERFRn8Hl7VJ8wRBERUZ3B5+1RfcIQRUREdcaDnrdHVJcwRBERkdmVPYxYpSpASMgeKUiVjYlSqQr06ojqAj47rxbx2XlERIa7d8bya9cscPFiE7i7/w1X17uBijOWk6nw2XlERFSv3BuQXFwAX18zNobIALydR0RERGQEhigiIiIiIzBEERERERmBIYqIiIjICAxRREREREZgiCIiIiIyAkMUERERkREYooiIiIiMwBBFREREZASGKCIiIiIjMEQRERERGYHPzqtFZc92zs/PN3NLiIiIyFBln9tln+OVYYiqRQUFBQAANzc3M7eEiIiIqqugoAAqlarS9TLxoJhFRtPpdLh27RqaNWsGmUz2UPvKz8+Hm5sbrly5Ajs7uxpqYf3S2K9BYz9/gNcA4DUAeA0AXgOgdq+BEAIFBQVwdXWFhUXlI5/YE1WLLCws0Lp16xrdp52dXaP9P0yZxn4NGvv5A7wGAK8BwGsA8BoAtXcNquqBKsOB5URERERGYIgiIiIiMgJDVD1hZWWFmJgYWFlZmbspZtPYr0FjP3+A1wDgNQB4DQBeA6BuXAMOLCciIiIyAnuiiIiIiIzAEEVERERkBIYoIiIiIiMwRBEREREZgSHKTFatWgV3d3colUr4+fnh2LFjVdbHxcWhQ4cOsLa2hpubG15//XUUFRVJ6+fPnw+ZTKb38vb2ru3TeCjVuQZ37tzBggUL4OnpCaVSiW7duiExMfGh9lkX1PQ1qG/vgx9//BEhISFwdXWFTCbDzp07H7jNwYMH0aNHD1hZWaFdu3aIj48vV1Nf3ge1cf4N/T2QlZWFUaNGoX379rCwsMDUqVMrrNu2bRu8vb2hVCrRtWtX7N27t+YbX0Nq4xrEx8eXex8olcraOYEaUN1rsGPHDjz11FNo0aIF7Ozs4O/vj2+//bZcXW3/LWCIMoMtW7YgKioKMTExSEtLQ7du3aBWq3H9+vUK6xMSEjBr1izExMTg7NmzWLt2LbZs2YI5c+bo1XXu3BlZWVnS69ChQ6Y4HaNU9xrMnTsXn3zyCVasWIEzZ85g4sSJ+Pe//4309HSj92lutXENgPr1PigsLES3bt2watUqg+ozMzMRHByMAQMG4OTJk5g6dSpefvllvT+e9el9UBvnDzTs90BxcTFatGiBuXPnolu3bhXWHDlyBCNHjsT48eORnp6O0NBQhIaG4vTp0zXZ9BpTG9cAuDuT973vg0uXLtVUk2tcda/Bjz/+iKeeegp79+5FamoqBgwYgJCQENN/Jggyud69e4tJkyZJv5eWlgpXV1cRGxtbYf2kSZPEwIED9ZZFRUWJxx9/XPo9JiZGdOvWrVbaWxuqew1cXFzEypUr9ZY9++yz4oUXXjB6n+ZWG9egvr0P7gVAfPnll1XWzJgxQ3Tu3FlvWVhYmFCr1dLv9e19UKamzr+hvwfuFRgYKKZMmVJu+fDhw0VwcLDeMj8/PzFhwoSHbGHtq6lrsH79eqFSqWqsXaZU3WtQplOnTuKtt96SfjfF3wL2RJlYSUkJUlNTERQUJC2zsLBAUFAQkpOTK9wmICAAqampUjfkH3/8gb179+Jf//qXXt358+fh6uqKRx99FC+88AIuX75ceyfyEIy5BsXFxeW6oq2traV/YRuzT3OqjWtQpr68D4yRnJysd80AQK1WS9esvr0PqutB51+mIb8HDGHodWrobt26hbZt28LNzQ1Dhw7Fr7/+au4m1RqdToeCggLY29sDMN3fAoYoE7t58yZKS0vh5OSkt9zJyQnZ2dkVbjNq1CgsWLAAffv2haWlJTw9PfHEE0/o3c7z8/NDfHw8EhMT8fHHHyMzMxP9+vVDQUFBrZ6PMYy5Bmq1Gu+//z7Onz8PnU6H/fv3Y8eOHcjKyjJ6n+ZUG9cAqF/vA2NkZ2dXeM3y8/Px119/1bv3QXU96PyBhv8eMERl16khvAcM1aFDB6xbtw67du3Cf/7zH+h0OgQEBODq1avmblqtWLp0KW7duoXhw4cDMN1nAkNUPXDw4EG88847+Oijj5CWloYdO3bg66+/xsKFC6WaZ555Bs8//zwee+wxqNVq7N27F3l5edi6dasZW15zPvzwQ3h5ecHb2xsKhQKRkZEYN24cLCwaz1vYkGvQ0N8H9GB8DxAA+Pv7Y8yYMfDx8UFgYCB27NiBFi1a4JNPPjF302pcQkIC3nrrLWzduhUtW7Y06bEbzydQHeHo6Ai5XI6cnBy95Tk5OXB2dq5wm3nz5mH06NF4+eWX0bVrV/z73//GO++8g9jYWOh0ugq3ad68Odq3b48LFy7U+Dk8LGOuQYsWLbBz504UFhbi0qVL+O2339C0aVM8+uijRu/TnGrjGlSkLr8PjOHs7FzhNbOzs4O1tXW9ex9U14POvyIN7T1giMquU0N4DxjL0tIS3bt3b3Dvg82bN+Pll1/G1q1b9W7dmepvAUOUiSkUCvj6+iIpKUlaptPpkJSUBH9//wq3uX37drkeF7lcDgAQlTz68NatW8jIyICLi0sNtbzmGHMNyiiVSrRq1Qp///03tm/fjqFDhz70Ps2hNq5BRery+8AY/v7+etcMAPbv3y9ds/r2PqiuB51/RRrae8AQxlynhq60tBS//PJLg3ofbNq0CePGjcOmTZsQHByst85kfwtqbIg6GWzz5s3CyspKxMfHizNnzoiIiAjRvHlzkZ2dLYQQYvTo0WLWrFlSfUxMjGjWrJnYtGmT+OOPP8S+ffuEp6enGD58uFQzbdo0cfDgQZGZmSkOHz4sgoKChKOjo7h+/brJz88Q1b0GR48eFdu3bxcZGRnixx9/FAMHDhQeHh7izz//NHifdU1tXIP69j4oKCgQ6enpIj09XQAQ77//vkhPTxeXLl0SQggxa9YsMXr0aKn+jz/+EDY2NmL69Oni7NmzYtWqVUIul4vExESppj69D2rj/Bv6e0AIIdX7+vqKUaNGifT0dPHrr79K6w8fPiyaNGkili5dKs6ePStiYmKEpaWl+OWXX0x6boaqjWvw1ltviW+//VZkZGSI1NRUMWLECKFUKvVq6pLqXoONGzeKJk2aiFWrVomsrCzplZeXJ9WY4m8BQ5SZrFixQrRp00YoFArRu3dvcfToUWldYGCgCA8Pl36/c+eOmD9/vvD09BRKpVK4ubmJ//u//9P78AwLCxMuLi5CoVCIVq1aibCwMHHhwgUTnlH1VecaHDx4UHTs2FFYWVkJBwcHMXr0aPHf//63Wvusi2r6GtS398GBAwcEgHKvsvMODw8XgYGB5bbx8fERCoVCPProo2L9+vXl9ltf3ge1cf6N4T1QUX3btm31arZu3Srat28vFAqF6Ny5s/j6669Nc0JGqI1rMHXqVOn/A05OTuJf//qXSEtLM91JVVN1r0FgYGCV9WVq+2+BTIhK7gcRERERUaU4JoqIiIjICAxRREREREZgiCIiIiIyAkMUERERkREYooiIiIiMwBBFREREZASGKCIiIiIjMEQRETUiBw8ehEwmQ15enrmbQlTvMUQRUa0YO3YsZDIZFi9erLd8586dkMlk0u9CCHz66afw9/eHnZ0dmjZtis6dO2PKlCkGPyz19u3bmD17Njw9PaFUKtGiRQsEBgZi165dUo27uzvi4uJq5NxqW9m1k8lksLS0hIeHB2bMmIGioqJq7eeJJ57A1KlT9ZYFBAQgKysLKpWqBltM1DgxRBFRrVEqlXj33Xfx559/VrheCIFRo0bhtddew7/+9S/s27cPZ86cwdq1a6FUKrFo0SKDjjNx4kTs2LEDK1aswG+//YbExEQMGzYMGo2mJk/HpAYNGoSsrCz88ccf+OCDD/DJJ58gJibmoferUCjg7OysF2SJyEg1+hAZIqL/CQ8PF4MHDxbe3t5i+vTp0vIvv/xSlP3p2bRpkwAgdu3aVeE+dDqdQcdSqVQiPj6+0vUVPWerzE8//ST69u0rlEqlaN26tZg8ebK4deuWtP6zzz4Tvr6+omnTpsLJyUmMHDlS5OTkSOvLnvmVmJgofHx8hFKpFAMGDBA5OTli7969wtvbWzRr1kyMHDlSFBYWGnQ+4eHhYujQoXrLnn32WdG9e3fp95s3b4oRI0YIV1dXYW1tLbp06SISEhL09nH/OWdmZkrtvffZm1988YXo1KmTUCgUom3btmLp0qUGtZOosWNPFBHVGrlcjnfeeQcrVqzA1atXy63ftGkTOnTogCFDhlS4vaG9Jc7Ozti7dy8KCgoqXL9jxw60bt0aCxYsQFZWFrKysgAAGRkZGDRoEJ577jmcOnUKW7ZswaFDhxAZGSlte+fOHSxcuBA///wzdu7ciYsXL2Ls2LHljjF//nysXLkSR44cwZUrVzB8+HDExcUhISEBX3/9Nfbt24cVK1YYdD73O336NI4cOQKFQiEtKyoqgq+vL77++mucPn0aERERGD16NI4dOwYA+PDDD+Hv749XXnlFOmc3N7dy+05NTcXw4cMxYsQI/PLLL5g/fz7mzZuH+Ph4o9pK1KiYO8URUcN0b29Knz59xEsvvSSE0O+J8vb2FkOGDNHbbsqUKcLW1lbY2tqKVq1aGXSsH374QbRu3VpYWlqKnj17iqlTp4pDhw7p1bRt21Z88MEHesvGjx8vIiIi9Jb99NNPwsLCQvz1118VHuv48eMCgCgoKBBC/NMT9d1330k1sbGxAoDIyMiQlk2YMEGo1WqDzic8PFzI5XJha2srrKysBABhYWEhvvjiiyq3Cw4OFtOmTZN+DwwMFFOmTNGrub8natSoUeKpp57Sq5k+fbro1KmTQW0laszYE0VEte7dd9/Fhg0bcPbs2QfWvvnmmzh58iSio6Nx69Ytg/bfv39//PHHH0hKSsKwYcPw66+/ol+/fli4cGGV2/3888+Ij49H06ZNpZdarYZOp0NmZiaAuz01ISEhaNOmDZo1a4bAwEAAwOXLl/X29dhjj0n/7eTkBBsbGzz66KN6y65fv27Q+QDAgAEDcPLkSaSkpCA8PBzjxo3Dc889J60vLS3FwoUL0bVrV9jb26Np06b49ttvy7XrQc6ePYvHH39cb9njjz+O8+fPo7S0tFr7ImpsGKKIqNb1798farUas2fP1lvu5eWFc+fO6S1r0aIF2rVrh5YtW1brGJaWlujXrx9mzpyJffv2YcGCBVi4cCFKSkoq3ebWrVuYMGECTp48Kb1+/vlnnD9/Hp6enigsLIRarYadnR02btyI48eP48svvwSAcvu1tLSU/rvsW3X3kslk0Ol0Bp+Pra0t2rVrh27dumHdunVISUnB2rVrpfXvvfcePvzwQ8ycORMHDhzAyZMnoVarqzxfIqpZTczdACJqHBYvXgwfHx906NBBWjZy5EiMGjUKu3btwtChQ2v0eJ06dcLff/+NoqIiKBQKKBSKcj0rPXr0wJkzZ9CuXbsK9/HLL79Ao9Fg8eLF0niiEydO1Gg7DWFhYYE5c+YgKioKo0aNgrW1NQ4fPoyhQ4fixRdfBADodDr8/vvv6NSpk7RdRed8v44dO+Lw4cN6yw4fPoz27dtDLpfX/MkQNSDsiSIik+jatSteeOEFLF++XFo2YsQIDBs2DCNGjMCCBQuQkpKCixcv4ocffsCWLVsM/hB/4okn8MknnyA1NRUXL17E3r17MWfOHAwYMAB2dnYA7s4T9eOPP+K///0vbt68CQCYOXMmjhw5gsjISJw8eRLnz5/Hrl27pIHlbdq0gUKhwIoVK/DHH3/gq6++euAtwtry/PPPQy6XY9WqVQDu9uLt378fR44cwdmzZzFhwgTk5OTobePu7i5d05s3b1bYEzZt2jQkJSVh4cKF+P3337FhwwasXLkSb7zxhknOi6g+Y4giIpNZsGCB3ge5TCbDli1bEBcXh7179+LJJ59Ehw4d8NJLL8HNzQ2HDh0yaL9qtRobNmzA008/jY4dO2Ly5MlQq9XYunWr3rEvXrwIT09PtGjRAsDdcUw//PADfv/9d/Tr1w/du3dHdHQ0XF1dAdy9tRgfH49t27ahU6dOWLx4MZYuXVqDV8RwTZo0QWRkJJYsWYLCwkLMnTsXPXr0gFqtxhNPPAFnZ2eEhobqbfPGG29ALpejU6dOaNGiRYXjpXr06IGtW7di8+bN6NKlC6Kjo7FgwYIKv4FIRPpkQghh7kYQERER1TfsiSIiIiIyAkMUEdV5905BcP/rp59+MnfzquXy5ctVnk91pyggIvPh7TwiqvOqehBxq1atYG1tbcLWPJy///4bFy9erHS9u7s7mjThF6eJ6gOGKCIiIiIj8HYeERERkREYooiIiIiMwBBFREREZASGKCIiIiIjMEQRERERGYEhioiIiMgIDFFERERERmCIIiIiIjLC/wdDL11Vnf8m7QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASxJJREFUeJzt3X1cVHX+///ngAwgwiiogIqCQGnlFZimWZrZoqsku+1mVqauZfWRyrWyzKtaLU3TyIsy3VK7cPVrupbWWkr2+5SammBlmalh5iqoQw6ICcqc3x9+mJzhQlCYGfBxv93mBnPOe868zntZ59n7vOd9TIZhGAIAAICDj6cLAAAA8DYEJAAAABcEJAAAABcEJAAAABcEJAAAABcEJAAAABcEJAAAABcEJAAAABcEJAAAABcEJACoxZYsWSKTyaSDBw96uhSgTiEgAajQjh07lJqaqmuvvVZBQUFq2bKl7rzzTv3444+l2vbq1Usmk0kmk0k+Pj4KCQnR1VdfrSFDhmjDhg1Vet+1a9eqZ8+eatq0qerXr6/WrVvrzjvv1Pr166vr1Ep54YUXtGbNmlLbt2zZomeffVYnT56ssfd29eyzzzr60mQyqX79+rrmmms0YcIE5eXlVct7LFu2TGlpadVyLKCuISABqNCLL76oVatW6dZbb9Urr7yikSNH6n//93+VkJCg3bt3l2rfokULvf3223rrrbc0c+ZM3X777dqyZYv+8Ic/aNCgQTp79uxF3/Oll17S7bffLpPJpHHjxunll1/WHXfcoX379mn58uU1cZqSKg5Izz33nFsDUonXXntNb7/9tmbPnq02bdro+eefV9++fVUdt9EkIAHlq+fpAgB4tzFjxmjZsmUym82ObYMGDVK7du00ffp0vfPOO07tLRaL7r33Xqdt06dP16OPPqpXX31V0dHRevHFF8t9v3PnzmnKlCm67bbb9Mknn5Taf+zYscs8I+9x+vRp1a9fv8I2f/nLX9S4cWNJ0kMPPaQ77rhDq1ev1pdffqlu3bq5o0zgisQIEoAKde/e3SkcSVJ8fLyuvfZa7dmzp1LH8PX11Zw5c3TNNddo3rx5stls5bY9ceKE8vLydOONN5a5v2nTpk7Pz5w5o2effVZXXXWVAgICFBkZqT//+c86cOCAo81LL72k7t27KywsTIGBgUpMTNR7773ndByTyaSCggItXbrUcVlr2LBhevbZZ/Xkk09KkmJiYhz7Lpzz88477ygxMVGBgYEKDQ3VXXfdpV9++cXp+L169dJ1112nnTt36uabb1b9+vX1zDPPVKr/LtS7d29JUlZWVoXtXn31VV177bXy9/dXs2bNNGrUKKcRsF69eunDDz/Uzz//7Din6OjoKtcD1FWMIAGoMsMwlJOTo2uvvbbSr/H19dXgwYM1ceJEffHFF+rfv3+Z7Zo2barAwECtXbtWjzzyiEJDQ8s9ZnFxsQYMGKD09HTdddddeuyxx5Sfn68NGzZo9+7dio2NlSS98soruv3223XPPfeoqKhIy5cv11//+letW7fOUcfbb7+t+++/X126dNHIkSMlSbGxsQoKCtKPP/6of/3rX3r55ZcdozlNmjSRJD3//POaOHGi7rzzTt1///06fvy45s6dq5tvvlmZmZlq2LCho16r1ap+/frprrvu0r333qvw8PBK91+JkuAXFhZWbptnn31Wzz33nPr06aOHH35Ye/fu1WuvvaYdO3Zo8+bN8vPz0/jx42Wz2XT48GG9/PLLkqQGDRpUuR6gzjIAoIrefvttQ5LxxhtvOG3v2bOnce2115b7un//+9+GJOOVV16p8PiTJk0yJBlBQUFGv379jOeff97YuXNnqXZvvvmmIcmYPXt2qX12u93x++nTp532FRUVGdddd53Ru3dvp+1BQUHG0KFDSx1r5syZhiQjKyvLafvBgwcNX19f4/nnn3fa/u233xr16tVz2t6zZ09DkrFgwYJyz/tCkydPNiQZe/fuNY4fP25kZWUZr7/+uuHv72+Eh4cbBQUFhmEYxuLFi51qO3bsmGE2m40//OEPRnFxseN48+bNMyQZb775pmNb//79jVatWlWqHuBKwyU2AFXyww8/aNSoUerWrZuGDh1apdeWjFDk5+dX2O65557TsmXL1KlTJ3388ccaP368EhMTlZCQ4HRZb9WqVWrcuLEeeeSRUscwmUyO3wMDAx2///rrr7LZbLrpppuUkZFRpfpdrV69Wna7XXfeeadOnDjheERERCg+Pl6bNm1yau/v76/hw4dX6T2uvvpqNWnSRDExMXrwwQcVFxenDz/8sNy5Sxs3blRRUZFGjx4tH5/f/4l/4IEHFBISog8//LDqJwpcgbjEBqDSsrOz1b9/f1ksFr333nvy9fWt0utPnTolSQoODr5o28GDB2vw4MHKy8vTtm3btGTJEi1btkzJycnavXu3AgICdODAAV199dWqV6/if8rWrVunqVOnateuXSosLHRsvzBEXYp9+/bJMAzFx8eXud/Pz8/pefPmzUvN57qYVatWKSQkRH5+fmrRooXjsmF5fv75Z0nng9WFzGazWrdu7dgPoGIEJACVYrPZ1K9fP508eVKff/65mjVrVuVjlCwLEBcXV+nXhISE6LbbbtNtt90mPz8/LV26VNu2bVPPnj0r9frPP/9ct99+u26++Wa9+uqrioyMlJ+fnxYvXqxly5ZV+RwuZLfbZTKZ9J///KfMsOg6p+fCkazKuvnmmx3zngC4DwEJwEWdOXNGycnJ+vHHH7Vx40Zdc801VT5GcXGxli1bpvr166tHjx6XVEfnzp21dOlSHT16VNL5SdTbtm3T2bNnS43WlFi1apUCAgL08ccfy9/f37F98eLFpdqWN6JU3vbY2FgZhqGYmBhdddVVVT2dGtGqVStJ0t69e9W6dWvH9qKiImVlZalPnz6ObZc7ggbUZcxBAlCh4uJiDRo0SFu3btXKlSsvae2d4uJiPfroo9qzZ48effRRhYSElNv29OnT2rp1a5n7/vOf/0j6/fLRHXfcoRMnTmjevHml2hr/t5Cir6+vTCaTiouLHfsOHjxY5oKQQUFBZS4GGRQUJEml9v35z3+Wr6+vnnvuuVILNxqGIavVWvZJ1qA+ffrIbDZrzpw5TjW98cYbstlsTt8eDAoKqnDJBeBKxggSgAo9/vjj+uCDD5ScnKzc3NxSC0O6Lgpps9kcbU6fPq39+/dr9erVOnDggO666y5NmTKlwvc7ffq0unfvrhtuuEF9+/ZVVFSUTp48qTVr1ujzzz9XSkqKOnXqJEm677779NZbb2nMmDHavn27brrpJhUUFGjjxo36n//5Hw0cOFD9+/fX7Nmz1bdvX9199906duyY5s+fr7i4OH3zzTdO752YmKiNGzdq9uzZatasmWJiYtS1a1clJiZKksaPH6+77rpLfn5+Sk5OVmxsrKZOnapx48bp4MGDSklJUXBwsLKysvTvf/9bI0eO1BNPPHFZ/V9VTZo00bhx4/Tcc8+pb9++uv3227V37169+uqruv76653+90pMTNSKFSs0ZswYXX/99WrQoIGSk5PdWi/gtTz5FToA3q/k6+nlPSpq26BBAyM+Pt649957jU8++aRS73f27Flj0aJFRkpKitGqVSvD39/fqF+/vtGpUydj5syZRmFhoVP706dPG+PHjzdiYmIMPz8/IyIiwvjLX/5iHDhwwNHmjTfeMOLj4w1/f3+jTZs2xuLFix1fo7/QDz/8YNx8881GYGCgIcnpK/9Tpkwxmjdvbvj4+JT6yv+qVauMHj16GEFBQUZQUJDRpk0bY9SoUcbevXud+qaiJRBcldR3/PjxCtu5fs2/xLx584w2bdoYfn5+Rnh4uPHwww8bv/76q1ObU6dOGXfffbfRsGFDQxJf+QcuYDKMarihDwAAQB3CHCQAAAAXBCQAAAAXBCQAAAAXBCQAAAAXBCQAAAAXBCQAAAAXLBR5iex2u44cOaLg4GCW6wcAoJYwDEP5+flq1qyZfHzKHyciIF2iI0eOKCoqytNlAACAS/DLL7+oRYsW5e4nIF2i4OBgSec7uKL7SgEAAO+Rl5enqKgox+d4eQhIl6jkslpISAgBCQCAWuZi02OYpA0AAOCCgAQAAOCCgAQAAOCCOUg1rLi4WGfPnvV0GXWW2Wyu8GuaAABcCgJSDTEMQ9nZ2Tp58qSnS6nTfHx8FBMTI7PZ7OlSAAB1CAGphpSEo6ZNm6p+/fosJlkDShbrPHr0qFq2bEkfAwCqDQGpBhQXFzvCUVhYmKfLqdOaNGmiI0eO6Ny5c/Lz8/N0OQCAOoLJGzWgZM5R/fr1PVxJ3Vdyaa24uNjDlQAA6hICUg3ikk/No48BADWBS2wAAMDjrFarioqKyt1vNpvdOm2FgAQAADzKarVq3rx5F22XmprqtpDEJTY4GTZsmEwmk0wmk/z8/BQeHq7bbrtNb775pux2e6WPs2TJEjVs2LDmCgUA1BmuI0c2W7CysqJlswVX2K4mMYLkhTw9zNi3b18tXrxYxcXFysnJ0fr16/XYY4/pvffe0wcffKB69fizAQDUjIyMTlq7doAMw0cmk13JyeuUkJDp9jr4pPMy3jDM6O/vr4iICElS8+bNlZCQoBtuuEG33nqrlixZovvvv1+zZ8/W4sWL9dNPPyk0NFTJycmaMWOGGjRooM8++0zDhw+X9Psk6smTJ+vZZ5/V22+/rVdeeUV79+5VUFCQevfurbS0NDVt2rRGzgUAUHvYbMGOcCRJhuGjtWsHKDZ2vyyWfLfWwiU2L1PZ4UN3DjNKUu/evdWhQwetXr1a0vkVrOfMmaPvvvtOS5cu1aeffqqxY8dKkrp37660tDSFhITo6NGjOnr0qJ544glJ55dAmDJlir7++mutWbNGBw8e1LBhw9x6LgAA75SbG+YIRyUMw0e5uaFur4URJFRamzZt9M0330iSRo8e7dgeHR2tqVOn6qGHHtKrr74qs9ksi8Uik8nkGIkq8be//c3xe+vWrTVnzhxdf/31OnXqlBo0aOCW8wAAeKfQUKtMJrtTSDKZ7AoNzXV7LYwgodIMw3BcMtu4caNuvfVWNW/eXMHBwRoyZIisVqtOnz5d4TF27typ5ORktWzZUsHBwerZs6ck6dChQzVePwDAu1ks+UpOXieT6fyXgkrmILn78prECBKqYM+ePYqJidHBgwc1YMAAPfzww3r++ecVGhqqL774QiNGjFBRUVG5K4gXFBQoKSlJSUlJevfdd9WkSRMdOnRISUlJbr9kCADwTgkJmYqN3a/c3FCFhuZ6JBxJBCRU0qeffqpvv/1Wf//737Vz507Z7XbNmjVLPj7nByH/3//7f07tzWZzqdt//PDDD7JarZo+fbqioqIkSV999ZV7TgAA4LVKbhtVwmLJLzMYubarSQQklFJYWKjs7Gynr/lPmzZNAwYM0H333afdu3fr7Nmzmjt3rpKTk7V582YtWLDA6RjR0dE6deqU0tPT1aFDB9WvX18tW7aU2WzW3Llz9dBDD2n37t2aMmWKh84SAOAtwsLClJqa6lUraTMHCaWsX79ekZGRio6OVt++fbVp0ybNmTNH77//vnx9fdWhQwfNnj1bL774oq677jq9++67mjZtmtMxunfvroceekiDBg1SkyZNNGPGDDVp0kRLlizRypUrdc0112j69Ol66aWXPHSWAABvEhYWpsjIyHIf7gxHkmQyDMNw6zvWEXl5ebJYLLLZbAoJCXHad+bMGWVlZSkmJkYBAQFVOq43rINUm1xOXwMArjwVfX5fiEtsXsYbhxkBAKgOF94p4sgRH2Vl1VNMzDk1a3b+W2ve9PlGQPJC3vLHAQBAdbnwCklFtxPxliskzEECAAA1rmTkqLzbiZTcmNZbln0hIAEAALfxptuJVISABAAA3KbkdiIX8tTtRCpCQAIAAG7jTbcTqQiTtAEAgFt5y+1EKkJAAgAAblfe7US8BZfYAAAAXBCQ4FafffaZTCaTTp48WenXREdHKy0trcZqAgDUvMreaNadN6StCJfY4GTYsGFaunSpHnzwwVI3oB01apReffVVDR06VEuWLPFMgQCAWqm23SmCgIRSoqKitHz5cr388ssKDAyUdP6eZ8uWLVPLli09XB0AoLbylvBTGVxiQykJCQmKiorS6tWrHdtWr16tli1bqlOnTo5thYWFevTRR9W0aVMFBASoR48e2rFjh9OxPvroI1111VUKDAzULbfcooMHD5Z6vy+++EI33XSTAgMDFRUVpUcffVQFBQU1dn4AAFwMAcnLHT4sbdp0/qc7/e1vf9PixYsdz998800NHz7cqc3YsWO1atUqLV26VBkZGYqLi1NSUpJyc88v9vXLL7/oz3/+s5KTk7Vr1y7df//9evrpp52OceDAAfXt21d33HGHvvnmG61YsUJffPGFUlNTa/4kAQAoBwHJi73xhtSqldS79/mfb7zhvve+99579cUXX+jnn3/Wzz//rM2bN+vee+917C8oKNBrr72mmTNnql+/frrmmmu0aNEiBQYG6o3/K/S1115TbGysZs2apauvvlr33HOPhg0b5vQ+06ZN0z333KPRo0crPj5e3bt315w5c/TWW2/pzJkz7jthAAAuwBwkL3X4sDRypGT/v9XY7XbpwQelpCSpRYuaf/8mTZqof//+WrJkiQzDUP/+/dW4cWPH/gMHDujs2bO68cYbHdv8/PzUpUsX7dmzR5K0Z88ede3a1em43bp1c3r+9ddf65tvvtG7777r2GYYhux2u7KystS2bduaOD0AACpEQPJS+/b9Ho5KFBdL+/e7JyBJ5y+zlVzqmj9/fo28x6lTp/Tggw/q0UcfLbWPCeEAAE8hIHmp+HjJx8c5JPn6SnFx7quhb9++KioqkslkUlJSktO+2NhYmc1mbd68Wa1atZIknT17Vjt27NDo0aMlSW3bttUHH3zg9Lovv/zS6XlCQoK+//57xbnzxAAAuAjmIHmpFi2khQvPhyLp/M/XX3ff6NH59/TVnj179P3338u3pJD/ExQUpIcfflhPPvmk1q9fr++//14PPPCATp8+rREjRkiSHnroIe3bt09PPvmk9u7dq2XLlpVaP+mpp57Sli1blJqaql27dmnfvn16//33maQNAPAoRpC82IgR5+cc7d9/fuTIneGoREhISLn7pk+fLrvdriFDhig/P1+dO3fWxx9/rEaNGkk6f4ls1apV+vvf/665c+eqS5cueuGFF/S3v/3NcYz27dvr//v//j+NHz9eN910kwzDUGxsrAYNGlTj5wYAQHlMhmEYni6iNsrLy5PFYpHNZisVIs6cOaOsrCzFxMQoICDAQxVeGehrAEBVVPT5fSEusQEAALggIAEAALggIAEAALggIAEAALggINUg5r/XPPoYAFATCEg1wM/PT5J0+vRpD1dS9xUVFUlSqXWaAAC4HKyDVAN8fX3VsGFDHTt2TJJUv359mUwmD1dV99jtdh0/flz169dXvXr8KQMAqg+fKjUkIiJCkhwhCTXDx8dHLVu2JIACAKoVAamGmEwmRUZGqmnTpjp79qyny6mzzGazfHy4UgwAqF4EpBrm6+vL/BgAAGoZ/tMbAADABQEJAADABQEJAADABQEJAADABQEJAADABQEJAADABQEJAADABQEJAADABQtFAgAAJ1ar1XEz8LKYzWaFhYW5sSL3IyABAAAHq9WqefPmXbRdampqnQ5JXGIDAAAOriNHNluwsrKiZbMFV9iurvF4QJo/f76io6MVEBCgrl27avv27RW2X7lypdq0aaOAgAC1a9dOH330kdN+wzA0adIkRUZGKjAwUH369NG+ffuc2vz4448aOHCgGjdurJCQEPXo0UObNm2q9nMDAKA2y8jopLS00Vq6dKjS0kYrI6OTp0tyG48GpBUrVmjMmDGaPHmyMjIy1KFDByUlJenYsWNltt+yZYsGDx6sESNGKDMzUykpKUpJSdHu3bsdbWbMmKE5c+ZowYIF2rZtm4KCgpSUlKQzZ8442gwYMEDnzp3Tp59+qp07d6pDhw4aMGCAsrOza/ycAQCoDWy2YK1dO0CGcT4qGIaP1q4dUGokqa7yaECaPXu2HnjgAQ0fPlzXXHONFixYoPr16+vNN98ss/0rr7yivn376sknn1Tbtm01ZcoUJSQkOK6VGoahtLQ0TZgwQQMHDlT79u311ltv6ciRI1qzZo0k6cSJE9q3b5+efvpptW/fXvHx8Zo+fbpOnz7tFLQAALiS5eaGOcJRCcPwUW5uqIcqci+PBaSioiLt3LlTffr0+b0YHx/16dNHW7duLfM1W7dudWovSUlJSY72WVlZys7OdmpjsVjUtWtXR5uwsDBdffXVeuutt1RQUKBz587p9ddfV9OmTZWYmFhuvYWFhcrLy3N6AABQV4WGWmUy2Z22mUx2hYbmeqgi9/JYQDpx4oSKi4sVHh7utD08PLzcS13Z2dkVti/5WVEbk8mkjRs3KjMzU8HBwQoICNDs2bO1fv16NWrUqNx6p02bJovF4nhERUVV7YQBAKhFLJZ8JSevc4Qkk8mu5OR1sljyPVyZe1xxX/M3DEOjRo1S06ZN9fnnnyswMFD//Oc/lZycrB07digyMrLM140bN05jxoxxPM/LyyMkAQDqtISETMXG7ldubqhCQ3OvmHAkeTAgNW7cWL6+vsrJyXHanpOTo4iIiDJfExERUWH7kp85OTlOQScnJ0cdO3aUJH366adat26dfv31V4WEhEiSXn31VW3YsEFLly7V008/XeZ7+/v7y9/fv+onCgBALWI2m52eWyz5ZQYj13Z1jccCktlsVmJiotLT05WSkiJJstvtSk9PV2pqapmv6datm9LT0zV69GjHtg0bNqhbt26SpJiYGEVERCg9Pd0RiPLy8rRt2zY9/PDDkqTTp09LOj/f6UI+Pj6y252vtQIAcKUJCwtTamoqK2l78s3HjBmjoUOHqnPnzurSpYvS0tJUUFCg4cOHS5Luu+8+NW/eXNOmTZMkPfbYY+rZs6dmzZql/v37a/ny5frqq6+0cOFCSefnF40ePVpTp05VfHy8YmJiNHHiRDVr1swRwrp166ZGjRpp6NChmjRpkgIDA7Vo0SJlZWWpf//+HukHAAC8SV0PP5Xh0YA0aNAgHT9+XJMmTVJ2drY6duyo9evXOyZZHzp0yGmkp3v37lq2bJkmTJigZ555RvHx8VqzZo2uu+46R5uxY8eqoKBAI0eO1MmTJ9WjRw+tX79eAQEBks5f2lu/fr3Gjx+v3r176+zZs7r22mv1/vvvq0OHDu7tAAAA4JVMhmEYni6iNsrLy5PFYpHNZnPMZQIAAN6tsp/fHr/VCAAAgLchIAEAALggIAEAALggIAEAALggIAEAALggIAEAALggIAEAALggIAEAALggIAEAALggIAEAALggIAEAALggIAEAALggIAEAALggIAEAALggIAEAALggIAEAALggIAEAALio5+kCAABA1VmtVhUVFZW732w2KywszI0V1S0EJAAAahmr1ap58+ZdtF1qaioh6RJxiQ0AgFrGdeTIZgtWVla0bLbgCtuh8hhBAgCgFsvI6KS1awfIMHxkMtmVnLxOCQmZni6r1mMECQCAWspmC3aEI0kyDB+tXTug1EgSqo6ABABALZWbG+YIRyUMw0e5uaEeqqjuICABAFBLhYZaZTLZnbaZTHaFhuZ6qKK6g4AEAEAtZbHkKzl5nSMklcxBsljyPVxZ7cckbQAAarGEhEzFxu5Xbm6oQkNzCUfVhIAEAEAtYzabnZ5bLPllBiPXdqg8AhIAALVMWFiYUlNTWUm7BhGQAACohQg/NYtJ2gAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC4ISAAAAC7qeboAAAC8gdVqVVFRUbn7zWazwsLC3FgRPImABAC44lmtVs2bN++i7VJTUwlJVwgusQEArngVjRxdSjvUfgQkAAAAFwQkAAAAFwQkAAAAFx4PSPPnz1d0dLQCAgLUtWtXbd++vcL2K1euVJs2bRQQEKB27drpo48+ctpvGIYmTZqkyMhIBQYGqk+fPtq3b1+p43z44Yfq2rWrAgMD1ahRI6WkpFTnaQEAajGbLVhZWdGy2YI9XQo8xKMBacWKFRozZowmT56sjIwMdejQQUlJSTp27FiZ7bds2aLBgwdrxIgRyszMVEpKilJSUrR7925HmxkzZmjOnDlasGCBtm3bpqCgICUlJenMmTOONqtWrdKQIUM0fPhwff3119q8ebPuvvvuGj9fAID3y8jopLS00Vq6dKjS0kYrI6OTp0uCB5gMwzA89eZdu3bV9ddf7/hqpd1uV1RUlB555BE9/fTTpdoPGjRIBQUFWrdunWPbDTfcoI4dO2rBggUyDEPNmjXT448/rieeeEKSZLPZFB4eriVLluiuu+7SuXPnFB0dreeee04jRoy45Nrz8vJksVhks9kUEhJyyccBAHje0aNHtXDhQtlswUpLGy3D+H38wGSya/ToNFks+Ro5cqQiIyM9WCkuV2U/vz02glRUVKSdO3eqT58+vxfj46M+ffpo69atZb5m69atTu0lKSkpydE+KytL2dnZTm0sFou6du3qaJORkaH//ve/8vHxUadOnRQZGal+/fo5jUIBAK4sZrNZkpSbG+YUjiTJMHyUmxvq1A51n8cWijxx4oSKi4sVHh7utD08PFw//PBDma/Jzs4us312drZjf8m28tr89NNPkqRnn31Ws2fPVnR0tGbNmqVevXrpxx9/VGhoaJnvXVhYqMLCQsfzvLy8yp4qAMDLhYWFKTU1VQcPntPbbxuy202Ofb6+hh55pJ+io+uxSOQVxOOTtN3NbrdLksaPH6877rhDiYmJWrx4sUwmk1auXFnu66ZNmyaLxeJ4REVFuatkAIAbhIWFKTExXAsXmuTre36br6/0+usmJSaGE46uMB4bQWrcuLF8fX2Vk5PjtD0nJ0cRERFlviYiIqLC9iU/c3JynK4R5+TkqGPHjpLk2H7NNdc49vv7+6t169Y6dOhQufWOGzdOY8aMcTzPy8sjJAFALVOZ+62NGBGmpCRp/34pLk5q0cKNBcJreCwgmc1mJSYmKj093fEVe7vdrvT0dKWmppb5mm7duik9PV2jR492bNuwYYO6desmSYqJiVFERITS09MdgSgvL0/btm3Tww8/LElKTEyUv7+/9u7dqx49ekiSzp49q4MHD6pVq1bl1uvv7y9/f//LPGsAgKe43m/NZgtWbm6YQkOtsljyHdtTU1PVokUYwegK59Gb1Y4ZM0ZDhw5V586d1aVLF6WlpamgoEDDhw+XJN13331q3ry5pk2bJkl67LHH1LNnT82aNUv9+/fX8uXL9dVXX2nhwoWSJJPJpNGjR2vq1KmKj49XTEyMJk6cqGbNmjlCWEhIiB566CFNnjxZUVFRatWqlWbOnClJ+utf/+r+TgAAuMWFI0cZGZ20du0AGYaPTCa7kpPXKSEhs1Q7XLk8GpAGDRqk48ePa9KkScrOzlbHjh21fv16xyTrQ4cOycfn92lS3bt317JlyzRhwgQ988wzio+P15o1a3Tdddc52owdO1YFBQUaOXKkTp48qR49emj9+vUKCAhwtJk5c6bq1aunIUOG6LffflPXrl316aefqlGjRu47eQCAR9hswY5wJJ3/ltratQMUG7vfaSQJVzaProNUm7EOEgDULiVrHWVlRWvp0qGl9g8dukQxMT+z1lEd5/XrIAEA4AmhoVaZTHanbSaTXaGhuR6qCN6IgAQAuKJYLPlKTl7nCEklc5C4vIYLeXQOEgAAnpCQkKnY2P3KzQ1VaGgu4QilEJAAAFckiyWfYIRycYkNAHBFqOx91LjfGiRGkAAAV4iS+61dbCVtbikCiYAEALiCEH5QWVxiAwAAcEFAAgAAcEFAAgAAcMEcJABArWK1WplojRpHQAIA1BpWq1Xz5s1zPLfZgpWbG6bQUKvTmkapqamEJFwWAhIAoNa4cOQoI6OT1q4dIMPwcdwuJCEhs1Q74FIwBwkAUOvYbMGOcCRJhuGjtWsHyGYL9nBlqCsISACAWic3N8wRjkoYho9yc0M9VBHqmioFpMOHD+vEiROO559//rnuuece3XTTTbr33nu1devWai8QAABXoaFWmUx2p20mk12hobkeqgh1TZUC0h133KEvv/xSkvT++++rV69eOnXqlG688UadPn1aPXv21Lp162qkUAAASlgs+UpOXucISSVzkLj5LKpLlSZpf/fdd7r22mslSdOmTdMLL7ygp556yrF/3rx5mjRpkgYMGFC9VQIA4CIhIVOxsfuVmxuq0NBcwhGqVZVGkOrVq6f8/PN/gFlZWerXr5/T/n79+mnv3r3VVx0AABWwWPIVE/Mz4QjVrkoBqWfPnvrXv/4lSerUqZM+++wzp/2bNm1S8+bNq604AAAuZDabq7UdUJ4qXWKbPn26brrpJh05ckQ9evTQ+PHjtWPHDrVt21Z79+7VihUrtGDBgpqqFQBwhQsLC1NqaioraaPGmQzDMKryggMHDmjChAn68MMPderUKUnnL71df/31evLJJ5WSklITdXqdvLw8WSwW2Ww2hYSEeLocAABQCZX9/K5yQCphGIaOHTsmu92uxo0by8/P75KLrY0ISAAA1D6V/fy+5FuNmEwmhYeHX+rLAQAAvFaVAtKYMWMq1W727NmXVAwAAIA3qFJAyszMdHr+xRdfKDExUYGBgY5tJpOpeioDAADwkCoFpE2bNjk9Dw4O1rJly9S6detqLQoAAMCTuFktAACACwISAACACwISAACAiyrNQfrmm2+cnhuGoR9++MGxYGSJ9u3bX35lAAAAHlKlhSJ9fHxkMplU1ktKtptMJhUXF1drkd6IhSIBAKh9amShyKysrMsuDAAAwNtVKSC1atWqpuoAAADwGpc0Sdtut5e7/dChQ5dVEAAAgKdVKSDl5eXpzjvvVFBQkMLDwzVp0iSn+UbHjx9XTExMtRcJAADgTlW6xDZx4kR9/fXXevvtt3Xy5ElNnTpVGRkZWr16tcxmsySVOYEbAACgNqnSCNKaNWv0+uuv6y9/+Yvuv/9+ffXVVzp+/LiSk5NVWFgoiXuxAQCA2q9KAen48eNOE7UbN26sjRs3Kj8/X3/84x91+vTpai8QAADA3aoUkFq2bKk9e/Y4bQsODtYnn3yi3377TX/605+qtTgAAABPqFJAuu2227R48eJS2xs0aKCPP/5YAQEB1VYYAACAp1RpkvY//vEPHT16tMx9wcHB2rBhgzIyMqqlMAAAAE+p0ghSZmam/vKXvygvL6/UPpvNphtuuIFJ2gBQh1itVh09erTch9Vq9XSJQI2o0ghSWlqaHnjggTLvXWKxWPTggw/q5Zdf1s0331xtBQIAPMNqtWrevHkXbZeamqqwsDA3VAS4T5VGkL7++mv17du33P1/+MMftHPnzssuCgDgeUVFRdXaDqhNqhSQcnJy5OfnV+7+evXq6fjx45ddFADA+9hswcrKipbNFuzpUoAaV6VLbM2bN9fu3bsVFxdX5v5vvvlGkZGR1VIYAMB7ZGR00tq1A2QYPjKZ7EpOXqeEhExPlwXUmCqNIP3xj3/UxIkTdebMmVL7fvvtN02ePFkDBgyotuIAAJ5nswU7wpEkGYaP1q4dwEgS6rQqjSBNmDBBq1ev1lVXXaXU1FRdffXVkqQffvhB8+fPV3FxscaPH18jhQIAPCM3N8wRjkoYho9yc0NlseR7qCqgZlUpIIWHh2vLli16+OGHNW7cOMeNaU0mk5KSkjR//nyFh4fXSKEAAM8IDbXKZLI7hSSTya7Q0FwPVgXUrCoFJElq1aqVPvroI/3666/av3+/DMNQfHy8GjVqVBP1AQA8zGLJV3LyulJzkBg9Ql1W5YBUolGjRrr++uursxYAgBcxm82O3xMSMhUbu1+5uaEKDc11CkcXtgPqiksOSACAui0sLEypqakVrnNkNptZJBJ1EgEJAFAuwg+uVFX6mj8AAMCVgIAEAADggoAEAADggoAEAADggknaAFAHWK1Wvm0GVCMCEgDUclarVfPmzbtou9TUVEISUElcYgOAWq6ikaNLaQeAgAQAtd7JkyertR0AAhIA1Hrnzp2r1nYACEgAUOfYbMHKyoqWzRbs6VKAWotJ2gBQh2RkdNLatQNkGD4ymexKTl6nhIRMT5cF1DqMIAFAHWGzBTvCkSQZho/Wrh3ASBJwCbwiIM2fP1/R0dEKCAhQ165dtX379grbr1y5Um3atFFAQIDatWunjz76yGm/YRiaNGmSIiMjFRgYqD59+mjfvn1lHquwsFAdO3aUyWTSrl27quuUAMDtcnPDHOGohGH4KDc31EMVAbWXxwPSihUrNGbMGE2ePFkZGRnq0KGDkpKSdOzYsTLbb9myRYMHD9aIESOUmZmplJQUpaSkaPfu3Y42M2bM0Jw5c7RgwQJt27ZNQUFBSkpK0pkzZ0odb+zYsWrWrFmNnR8A1DQ/P7//+1koyXDZa8jPr8ipHYCL83hAmj17th544AENHz5c11xzjRYsWKD69evrzTffLLP9K6+8or59++rJJ59U27ZtNWXKFCUkJDgWSTMMQ2lpaZowYYIGDhyo9u3b66233tKRI0e0Zs0ap2P95z//0SeffKKXXnqppk8TAGqMxWKRJJ096y/J5LLXpLNnzU7tAFycRwNSUVGRdu7cqT59+ji2+fj4qE+fPtq6dWuZr9m6datTe0lKSkpytM/KylJ2drZTG4vFoq5duzodMycnRw888IDefvtt1a9f/6K1FhYWKi8vz+kBAN7AbD4fgEJDrTKZ7E77TCa7QkNzndoBuDiPfovtxIkTKi4uVnh4uNP28PBw/fDDD2W+Jjs7u8z22dnZjv0l28prYxiGhg0bpoceekidO3fWwYMHL1rrtGnT9Nxzz1XqvADAncLCwpSamqqioiI1b56np56yqLjYJF9fQy++mKe77x7MvdiAKroiv+Y/d+5c5efna9y4cZV+zbhx4zRmzBjH87y8PEVFRdVEeQBQZSXh5/HHpUGDpP37pbg4k1q0aCipoSdLA2olj15ia9y4sXx9fZWTk+O0PScnRxEREWW+JiIiosL2JT8ravPpp59q69at8vf3V7169RQXFydJ6ty5s4YOHVrm+/r7+yskJMTpAQDeqEULqVev8z8BXBqPBiSz2azExESlp6c7ttntdqWnp6tbt25lvqZbt25O7SVpw4YNjvYxMTGKiIhwapOXl6dt27Y52syZM0dff/21du3apV27djmWCVixYoWef/75aj1HAABQ+3j8EtuYMWM0dOhQde7cWV26dFFaWpoKCgo0fPhwSdJ9992n5s2ba9q0aZKkxx57TD179tSsWbPUv39/LV++XF999ZUWLlwoSTKZTBo9erSmTp2q+Ph4xcTEaOLEiWrWrJlSUlIkSS1btnSqoUGDBpKk2NhYteA/uQAAuOJ5PCANGjRIx48f16RJk5Sdna2OHTtq/fr1jknWhw4dko/P7wNd3bt317JlyzRhwgQ988wzio+P15o1a3Tdddc52owdO1YFBQUaOXKkTp48qR49emj9+vUKCAhw+/kBAIDax2QYhuuqYqiEvLw8WSwW2Ww25iMBAFBLVPbz2+MLRQIAAHgbAhIAAIALAhIAAIALAhIAAIALAhIAAIALAhIAAIALAhIAAIALjy8UCQC1jdVqVVFRUbn7zWaz4+axAGonAhIAVIHVatW8efMu2i41NZWQBNRiXGIDgCqoaOToUtoB8E4EJAAAABcEJAAAABcEJAAAABcEJAAAABcEJAC4DDZbsLKyomWzBXu6FADViK/5A8AlysjopLVrB8gwfGQy2ZWcvE4JCZmeLgtANWAECQCqwGw2Szo/clQSjiTJMHy0du0Ax0hSSTsAtZPJMAzD00XURnl5ebJYLLLZbAoJCfF0OQDcyGq1atMm6a9/Lb0Q5HvvWdWrl1gkEvBSlf385hIbAFRRWFiYbrhB8vGR7Pbft/v6Sl27holsBNR+XGIDgEvQooW0cOH5UCSd//n66+e3A6j9GEECcEWqjhvOjhghJSVJ+/dLcXGEI6AuISABuOK43nD28OFIHTrUSi1b/qwWLY46tlfmhrMtWhCMgLqIgATginP8+HHH7//+90B9/XUHSSZJhjp0+Fp/+tP7jnZMtgauTAQkAHVWeZfRjh07Jun8yNHv4UiSTPr66w66/vrtatHiqM6ePeu+YgF4FQISgDrJ9TKazRas3NwwhYZaZbHkS5IOHWql38NRCZN++aWl06U2AFceAhKAOqlklEgqf8Xrli1/lmTIOSQZioo65O5yAXgZvuYPoE46d+6cpPMjRx98kFzmitctWhxVhw5f63xIkkrmIDF6BIARJAB12i+/RMn1Mpph+OiXX1rIYtmjP/3pfV1//Xb98ktLRUUdIhwBkERAAgC1aHGUYATACZfYANRpUVG/SLK7bLUrKurwRV9brx7/DQlcqQhIAOo0iyVft9++Tr+HJLtuv32d45tsFWnatGmN1gbAe/GfRwDqvISETMXG7ldubqhCQ3OdwtEtt9yi+Pj4Uq+pzK1GANRdBCQAdZKfn5/Tc4slv8xRo6ZNmyoyMtJdZQGoJQhIALzahathHznio6yseoqJOadmzc5fMitvpKdJkyaVOn5l2wG4shCQAHitC1fDLm+xR6nsm8qGhYUpNTW1zFuNlOAyGoDyEJAAeK2ScGOzBTvCkfT7Yo+xsftlseSXG4IIPwAuFd9iA+D1cnPDHOGohGH4KDc31EMVAajrCEgAvF5oqFUmk/NaRiaTXaGhuR6qCEBdR0AC4PUslnwlJ69zhKSSOUiVWcsIAC4Fc5AA1AoVrWUEANWNgASg1ihvLSMAqG5cYgMAAHBBQALgtcxmc7W2A4DK4hIbAK/FYo8APIWABMCrEX4AeAKX2AAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFwQkAAAAFx4RUCaP3++oqOjFRAQoK5du2r79u0Vtl+5cqXatGmjgIAAtWvXTh999JHTfsMwNGnSJEVGRiowMFB9+vTRvn37HPsPHjyoESNGKCYmRoGBgYqNjdXkyZNVVFRUI+cHAABqF48HpBUrVmjMmDGaPHmyMjIy1KFDByUlJenYsWNltt+yZYsGDx6sESNGKDMzUykpKUpJSdHu3bsdbWbMmKE5c+ZowYIF2rZtm4KCgpSUlKQzZ85Ikn744QfZ7Xa9/vrr+u677/Tyyy9rwYIFeuaZZ9xyzgAAwLuZDMMwPFlA165ddf3112vevHmSJLvdrqioKD3yyCN6+umnS7UfNGiQCgoKtG7dOse2G264QR07dtSCBQtkGIaaNWumxx9/XE888YQkyWazKTw8XEuWLNFdd91VZh0zZ87Ua6+9pp9++qlSdefl5clischmsykkJKSqpw0AADygsp/fHh1BKioq0s6dO9WnTx/HNh8fH/Xp00dbt24t8zVbt251ai9JSUlJjvZZWVnKzs52amOxWNS1a9dyjymdD1GhoaHl7i8sLFReXp7TAwAA1E0eDUgnTpxQcXGxwsPDnbaHh4crOzu7zNdkZ2dX2L7kZ1WOuX//fs2dO1cPPvhgubVOmzZNFovF8YiKiqr45AAAQK3l8TlInvbf//5Xffv21V//+lc98MAD5bYbN26cbDab4/HLL7+4sUoAAOBOHg1IjRs3lq+vr3Jycpy25+TkKCIioszXREREVNi+5GdljnnkyBHdcsst6t69uxYuXFhhrf7+/goJCXF6AACAusmjAclsNisxMVHp6emObXa7Xenp6erWrVuZr+nWrZtTe0nasGGDo31MTIwiIiKc2uTl5Wnbtm1Ox/zvf/+rXr16KTExUYsXL5aPzxU/mAYAAP5PPU8XMGbMGA0dOlSdO3dWly5dlJaWpoKCAg0fPlySdN9996l58+aaNm2aJOmxxx5Tz549NWvWLPXv31/Lly/XV1995RgBMplMGj16tKZOnar4+HjFxMRo4sSJatasmVJSUiT9Ho5atWqll156ScePH3fUU97IFQAAuHJ4PCANGjRIx48f16RJk5Sdna2OHTtq/fr1jknWhw4dchrd6d69u5YtW6YJEybomWeeUXx8vNasWaPrrrvO0Wbs2LEqKCjQyJEjdfLkSfXo0UPr169XQECApPMjTvv379f+/fvVokULp3o8vOoB6hir1VrhAqRms1lhYWFurAgAUBkeXweptmIdJFyM1Wp1rO9VkdTUVEISALhJrVgHCajLKnvrGm5xAwDeh4AEAADggoAEAADggoAEuInNFqysrGjZbMGeLgUAcBEe/xYbcCXIyOiktWsHyDB8ZDLZlZy8TgkJmZ4uCwBQDkaQgBpmswU7wpEkGYaP1q4dwEgSAHgxAhJQw3JzwxzhqIRh+Cg3N9RDFQEALoaABNQQs9ksSQoNtcpksjvtM5nsCg3NdWoHAPAezEECakhYWJhSU1NVVFSk5s3z9NRTFhUXm+Tra+jFF/N0992DWUkbALwUK2lfIlbSRlUdPizt3y/FxUkud7gBALhJZT+/GUEC3KRFC4IRANQWzEECAABwQUACAABwQUACAABwQUACAABwQUACAABwQUACAABwQUACAABwwTpI8CpWq1VFRUXl7mflaQCAOxCQ4DWsVqvmzZt30XapqamEJABAjeISG7xGRSNHl9IOAIBLRUACAABwQUACAABwQUACAABwQUACAABwQUACAABwwdf8cUncsV6RzRas3NwwhYZaZbHkX9axAACoCgISqqym1isym82O3zMyOmnt2gEyDB+ZTHYlJ69TQkJmqXYAANQEAhKqrKbWKwoLC1NqaqoOHjynf/yjqQzDJEkyDB99+GGyJk3qqujoeiwSCQCoccxBglcJCwtTXl647HaT0/biYpPy88MJRwAAtyAgwevEx0s+Ln+Zvr5SXJxn6gEAXHkISPA6LVpICxeeD0XS+Z+vv35+OwAA7sAcJHilESOkpCRp//7zI0eEIwCAOxGQ4LVatCAYAQA8g0tsAAAALghIqDLXdYhstmBlZUXLZguusB0AALUFl9hQZSXrFRUVFWnZskD94x8W2e0m+fgYmjHDprvv/q1aVtIGAMBTTIZhGJ4uojbKy8uTxWKRzWZTSEhItR338GFp377zX3X39vk3hw9LrVpJdvvv23x9pYMHvb92AMCVqbKf31xi8yJvvHE+cPTuff7nG294uqKK7dvnHI4kqbj4/DfPAACozQhIXuLwYWnkyN8Dh90uPfjg+e3eigUdAQB1FQHJC1itVn35pbXM0Zht26yyWq2eKewiWNARAFBXMUnbw6xWq+bNmyebLVgm02gZxu+Z1WSya/Pmpdq9O1+pqaleOemZBR0BAHURI0geVnLHe4slX8nJ62QynR9GMpnsSk5eJ4sl36mdN2rRQurVi3AEAKg7GEHyIgkJmYqN3a/c3FCFhuY6whEAAHAvApKXsVjyCUYAAHgYl9gAAABcEJAAAABcEJAAAABcEJAAAABcEJA8rLJ3vK9sOwAAcPn4FpuHhYWFKTU1tcJ1jsxms1cuEgkAQF1FQPIChB8AALwLl9gAAABcEJAAAABcEJAAAABcEJAAAABcEJAAAABcEJAAAABcEJAAAABcEJAAAABcEJAAAABcsJL2JTIMQ5KUl5fn4UoAAEBllXxul3yOl4eAdIny8/MlSVFRUR6uBAAAVFV+fr4sFku5+03GxSIUymS323XkyBEFBwfLZDKV2p+Xl6eoqCj98ssvCgkJ8UCF3o3+uTj66OLoo4ujjy6OPrq4utRHhmEoPz9fzZo1k49P+TONGEG6RD4+PmrRosVF24WEhNT6P6aaRP9cHH10cfTRxdFHF0cfXVxd6aOKRo5KMEkbAADABQEJAADABQGphvj7+2vy5Mny9/f3dCleif65OPro4uiji6OPLo4+urgrsY+YpA0AAOCCESQAAAAXBCQAAAAXBCQAAAAXBCQAAAAXBKRLNH/+fEVHRysgIEBdu3bV9u3by2373Xff6Y477lB0dLRMJpPS0tLcV6gHVaWPFi1apJtuukmNGjVSo0aN1KdPnwrb1xVV6aPVq1erc+fOatiwoYKCgtSxY0e9/fbbbqzWM6rSRxdavny5TCaTUlJSarZAL1CVPlqyZIlMJpPTIyAgwI3VekZV/45OnjypUaNGKTIyUv7+/rrqqqv00Ucfualaz6hKH/Xq1avU35HJZFL//v3dWHENM1Bly5cvN8xms/Hmm28a3333nfHAAw8YDRs2NHJycspsv337duOJJ54w/vWvfxkRERHGyy+/7N6CPaCqfXT33Xcb8+fPNzIzM409e/YYw4YNMywWi3H48GE3V+4+Ve2jTZs2GatXrza+//57Y//+/UZaWprh6+trrF+/3s2Vu09V+6hEVlaW0bx5c+Omm24yBg4c6J5iPaSqfbR48WIjJCTEOHr0qOORnZ3t5qrdq6p9VFhYaHTu3Nn44x//aHzxxRdGVlaW8dlnnxm7du1yc+XuU9U+slqtTn9Du3fvNnx9fY3Fixe7t/AaREC6BF26dDFGjRrleF5cXGw0a9bMmDZt2kVf26pVqysiIF1OHxmGYZw7d84IDg42li5dWlMletzl9pFhGEanTp2MCRMm1ER5XuFS+ujcuXNG9+7djX/+85/G0KFD63xAqmofLV682LBYLG6qzjtUtY9ee+01o3Xr1kZRUZG7SvS4y/336OWXXzaCg4ONU6dO1VSJbscltioqKirSzp071adPH8c2Hx8f9enTR1u3bvVgZd6jOvro9OnTOnv2rEJDQ2uqTI+63D4yDEPp6enau3evbr755pos1WMutY/+8Y9/qGnTphoxYoQ7yvSoS+2jU6dOqVWrVoqKitLAgQP13XffuaNcj7iUPvrggw/UrVs3jRo1SuHh4bruuuv0wgsvqLi42F1lu1V1/Jv9xhtv6K677lJQUFBNlel2BKQqOnHihIqLixUeHu60PTw8XNnZ2R6qyrtURx899dRTatasmdP/YeuSS+0jm82mBg0ayGw2q3///po7d65uu+22mi7XIy6lj7744gu98cYbWrRokTtK9LhL6aOrr75ab775pt5//3298847stvt6t69uw4fPuyOkt3uUvrop59+0nvvvafi4mJ99NFHmjhxombNmqWpU6e6o2S3u9x/s7dv367du3fr/vvvr6kSPaKepwsAXE2fPl3Lly/XZ599dkVMHq2K4OBg7dq1S6dOnVJ6errGjBmj1q1bq1evXp4uzePy8/M1ZMgQLVq0SI0bN/Z0OV6rW7du6tatm+N59+7d1bZtW73++uuaMmWKByvzHna7XU2bNtXChQvl6+urxMRE/fe//9XMmTM1efJkT5fndd544w21a9dOXbp08XQp1YqAVEWNGzeWr6+vcnJynLbn5OQoIiLCQ1V5l8vpo5deeknTp0/Xxo0b1b59+5os06MutY98fHwUFxcnSerYsaP27NmjadOm1cmAVNU+OnDggA4ePKjk5GTHNrvdLkmqV6+e9u7dq9jY2Jot2s2q498jPz8/derUSfv376+JEj3uUvooMjJSfn5+8vX1dWxr27atsrOzVVRUJLPZXKM1u9vl/B0VFBRo+fLl+sc//lGTJXoEl9iqyGw2KzExUenp6Y5tdrtd6enpTv9VdiW71D6aMWOGpkyZovXr16tz587uKNVjquvvyG63q7CwsCZK9Liq9lGbNm307bffateuXY7H7bffrltuuUW7du1SVFSUO8t3i+r4OyouLta3336ryMjImirToy6lj2688Ubt37/fEbAl6ccff1RkZGSdC0fS5f0drVy5UoWFhbr33ntrukz38/Qs8dpo+fLlhr+/v7FkyRLj+++/N0aOHGk0bNjQ8VXZIUOGGE8//bSjfWFhoZGZmWlkZmYakZGRxhNPPGFkZmYa+/bt89Qp1Liq9tH06dMNs9lsvPfee05fHc3Pz/fUKdS4qvbRCy+8YHzyySfGgQMHjO+//9546aWXjHr16hmLFi3y1CnUuKr2kasr4VtsVe2j5557zvj444+NAwcOGDt37jTuuusuIyAgwPjuu+88dQo1rqp9dOjQISM4ONhITU019u7da6xbt85o2rSpMXXqVE+dQo271P+v9ejRwxg0aJC7y3ULAtIlmjt3rtGyZUvDbDYbXbp0Mb788kvHvp49expDhw51PM/KyjIklXr07NnT/YW7UVX6qFWrVmX20eTJk91fuBtVpY/Gjx9vxMXFGQEBAUajRo2Mbt26GcuXL/dA1e5VlT5ydSUEJMOoWh+NHj3a0TY8PNz44x//aGRkZHigaveq6t/Rli1bjK5duxr+/v5G69atjeeff944d+6cm6t2r6r20Q8//GBIMj755BM3V+oeJsMwDA8NXgEAAHgl5iABAAC4ICABAAC4ICABAAC4ICABAAC4ICABAAC4ICABAAC4ICABAAC4ICABgJcbNmyYUlJSPF0GcEUhIAG4ZMOGDZPJZHI8wsLC1LdvX33zzTeeLq1aXHhuJY8ePXrU2PsdPHhQJpNJu3btctr+yiuvaMmSJTX2vgBKIyABuCx9+/bV0aNHdfToUaWnp6tevXoaMGCAp8uqNosXL3ac39GjR/XBBx+U2e7s2bM1VoPFYlHDhg1r7PgASiMgAbgs/v7+ioiIUEREhDp27Kinn35av/zyi44fP67evXsrNTXVqf3x48dlNpsddw6Pjo7WlClTNHjwYAUFBal58+aaP3++02tmz56tdu3aKSgoSFFRUfqf//kfnTp1yrH/559/VnJysho1aqSgoCBde+21+uijjyRJv/76q+655x41adJEgYGBio+P1+LFiyt9fg0bNnScX0REhEJDQx0jPStWrFDPnj0VEBCgd999V1arVYMHD1bz5s1Vv359tWvXTv/617+cjme32zVjxgzFxcXJ399fLVu21PPPPy9JiomJkSR16tRJJpNJvXr1klT6ElthYaEeffRRNW3aVAEBAerRo4d27Njh2P/ZZ5/JZDIpPT1dnTt3Vv369dW9e3ft3bu30ucNXOkISACqzalTp/TOO+8oLi5OYWFhuv/++7Vs2TIVFhY62rzzzjtq3ry5evfu7dg2c+ZMdejQQZmZmXr66af12GOPacOGDY79Pj4+mjNnjr777jstXbpUn376qcaOHevYP2rUKBUWFup///d/9e233+rFF19UgwYNJEkTJ07U999/r//85z/as2ePXnvtNTVu3Lhazrek1j179igpKUlnzpxRYmKiPvzwQ+3evVsjR47UkCFDtH37dsdrxo0bp+nTpzvqWrZsmcLDwyXJ0W7jxo06evSoVq9eXeb7jh07VqtWrdLSpUuVkZGhuLg4JSUlKTc316nd+PHjNWvWLH311VeqV6+e/va3v1XLeQNXBE/fLRdA7TV06FDD19fXCAoKMoKCggxJRmRkpLFz507DMAzjt99+Mxo1amSsWLHC8Zr27dsbzz77rON5q1atjL59+zodd9CgQUa/fv3Kfd+VK1caYWFhjuft2rVzOuaFkpOTjeHDh1/S+UkyAgICHOcXFBRk/Pvf/zaysrIMSUZaWtpFj9G/f3/j8ccfNwzDMPLy8gx/f39j0aJFZbYtOW5mZqbT9qFDhxoDBw40DMMwTp06Zfj5+RnvvvuuY39RUZHRrFkzY8aMGYZhGMamTZsMScbGjRsdbT788ENDkvHbb79VpQuAKxYjSAAuyy233KJdu3Zp165d2r59u5KSktSvXz/9/PPPCggI0JAhQ/Tmm29KkjIyMrR7924NGzbM6RjdunUr9XzPnj2O5xs3btStt96q5s2bKzg4WEOGDJHVatXp06clSY8++qimTp2qG2+8UZMnT3aaJP7www9r+fLl6tixo8aOHastW7ZU6fxefvllx/nt2rVLt912m2Nf586dndoWFxdrypQpateunUJDQ9WgQQN9/PHHOnTokCRpz549Kiws1K233lqlGi504MABnT17VjfeeKNjm5+fn7p06eLUZ5LUvn17x++RkZGSpGPHjl3yewNXEgISgMsSFBSkuLg4xcXF6frrr9c///lPFRQUaNGiRZKk+++/Xxs2bNDhw4e1ePFi9e7dW61atar08Q8ePKgBAwaoffv2WrVqlXbu3OmYo1RUVOR4j59++klDhgzRt99+q86dO2vu3LmS5Ahrf//733XkyBHdeuuteuKJJyr9/hEREY7zi4uLU1BQkNO5X2jmzJl65ZVX9NRTT2nTpk3atWuXkpKSHHUGBgZW+n2rg5+fn+N3k8kk6fwcKAAXR0ACUK1MJpN8fHz022+/SZLatWunzp07a9GiRVq2bFmZ82C+/PLLUs/btm0rSdq5c6fsdrtmzZqlG264QVdddZWOHDlS6hhRUVF66KGHtHr1aj3++OOOgCZJTZo00dChQ/XOO+8oLS1NCxcurM5Tdti8ebMGDhyoe++9Vx06dFDr1q31448/OvbHx8crMDDQMUHdldlslnR+JKo8sbGxMpvN2rx5s2Pb2bNntWPHDl1zzTXVdCYA6nm6AAC1W2FhobKzsyWd/8bYvHnzdOrUKSUnJzva3H///UpNTVVQUJD+9Kc/lTrG5s2bNWPGDKWkpGjDhg1auXKlPvzwQ0lSXFyczp49q7lz5yo5OVmbN2/WggULnF4/evRo9evXT1dddZV+/fVXbdq0yRGwJk2apMTERF177bUqLCzUunXrHPuqW3x8vN577z1t2bJFjRo10uzZs5WTk+MILgEBAXrqqac0duxYmc1m3XjjjTp+/Li+++47jRgxQk2bNlVgYKDWr1+vFi1aKCAgQBaLxek9goKC9PDDD+vJJ59UaGioWrZsqRkzZuj06dMaMWJEjZwXcCViBAnAZVm/fr0iIyMVGRmprl27aseOHVq5cqXjK+qSNHjwYNWrV0+DBw9WQEBAqWM8/vjj+uqrr9SpUydNnTpVs2fPVlJSkiSpQ4cOmj17tl588UVdd911evfddzVt2jSn1xcXF2vUqFFq27at+vbtq6uuukqvvvqqpPOjMuPGjVP79u118803y9fXV8uXL6+RvpgwYYISEhKUlJSkXr16KSIiotQK2BMnTtTjjz+uSZMmqW3btho0aJBjXlC9evU0Z84cvf7662rWrJkGDhxY5vtMnz5dd9xxh4YMGaKEhATt379fH3/8sRo1alQj5wVciUyGYRieLgJA3Xbw4EHFxsZqx44dSkhIcNoXHR2t0aNHa/To0Z4pDgDKwCU2ADXm7NmzslqtmjBhgm644YZS4QgAvBWX2ADUmM2bNysyMlI7duwoNW/I01544QU1aNCgzEe/fv08XR4AD+MSG4ArUm5ubqmVp0sEBgaqefPmbq4IgDchIAEAALjgEhsAAIALAhIAAIALAhIAAIALAhIAAIALAhIAAIALAhIAAIALAhIAAIALAhIAAICL/x9svhTN7O5asQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAS89JREFUeJzt3XtclGX+//H3gAwgwhSo4AEFkTStVKhM07TWFksptoOnMjNLa6Nk7Wies9JORoql7a/U2kwrzVZzLbPa8pCVYGWpqWF2EFTIATHFmOv3h19mneEgIMxweD0fDx44133d9/25751l3l33NfdtMcYYAQAAwMnH2wUAAADUNgQkAAAANwQkAAAANwQkAAAANwQkAAAANwQkAAAANwQkAAAANwQkAAAANwQkAAAANwQkAKjDFi5cKIvFor1793q7FKBeISABKNeXX36p5ORkde7cWUFBQWrTpo0GDRqkH374oUTfvn37ymKxyGKxyMfHRyEhIerQoYOGDx+utWvXVmq/K1euVJ8+fdS8eXM1btxY7dq106BBg7RmzZrqOrQSnnjiCa1YsaJE+8aNGzV16lQdPny4xvbtburUqc5zabFY1LhxY3Xq1EkTJ05UXl5etexj8eLFSk1NrZZtAfUNAQlAuZ588kktW7ZMf/nLX/T8889r9OjR+vTTTxUXF6dt27aV6N+6dWu99tprevXVV/X000/rmmuu0caNG/XXv/5VgwcP1okTJ067z2eeeUbXXHONLBaLxo8fr+eee07XX3+9du3apSVLltTEYUoqPyBNmzbNowGp2IsvvqjXXntNs2bNUseOHfX444+rf//+qo7HaBKQgLI18nYBAGq3cePGafHixbJarc62wYMH6/zzz9fMmTP1r3/9y6W/zWbTzTff7NI2c+ZM3XvvvXrhhRcUFRWlJ598ssz9/fnnn5o+fbquvPJKffDBByWWHzhw4AyPqPY4evSoGjduXG6fG264QU2bNpUk3Xnnnbr++uu1fPlyff755+rRo4cnygQaJEaQAJSrZ8+eLuFIkmJjY9W5c2dt3769Qtvw9fXV7Nmz1alTJ6Wlpclut5fZ99ChQ8rLy9Oll15a6vLmzZu7vD527JimTp2qc845RwEBAWrRooWuu+467dmzx9nnmWeeUc+ePRUWFqbAwEDFx8fr7bffdtmOxWJRQUGBFi1a5Lysdeutt2rq1Kl64IEHJEnR0dHOZafO+fnXv/6l+Ph4BQYGKjQ0VEOGDNHPP//ssv2+ffvqvPPO05YtW3TZZZepcePGeuSRRyp0/k51xRVXSJIyMzPL7ffCCy+oc+fO8vf3V8uWLXX33Xe7jID17dtX7733nn766SfnMUVFRVW6HqC+YgQJQKUZY5Sdna3OnTtXeB1fX18NHTpUkyZN0vr16zVgwIBS+zVv3lyBgYFauXKl7rnnHoWGhpa5zaKiIg0cOFDr1q3TkCFDNHbsWOXn52vt2rXatm2bYmJiJEnPP/+8rrnmGt10000qLCzUkiVLdOONN2rVqlXOOl577TXdfvvtuvjiizV69GhJUkxMjIKCgvTDDz/ojTfe0HPPPecczWnWrJkk6fHHH9ekSZM0aNAg3X777Tp48KDmzJmjyy67TBkZGTrrrLOc9ebk5Oiqq67SkCFDdPPNNys8PLzC569YcfALCwsrs8/UqVM1bdo09evXT3fddZd27typF198UV9++aU2bNggPz8/TZgwQXa7Xb/88ouee+45SVKTJk0qXQ9QbxkAqKTXXnvNSDIvv/yyS3ufPn1M586dy1zvnXfeMZLM888/X+72J0+ebCSZoKAgc9VVV5nHH3/cbNmypUS/V155xUgys2bNKrHM4XA4/3306FGXZYWFhea8884zV1xxhUt7UFCQGTFiRIltPf3000aSyczMdGnfu3ev8fX1NY8//rhL+7fffmsaNWrk0t6nTx8jycybN6/M4z7VlClTjCSzc+dOc/DgQZOZmWnmz59v/P39TXh4uCkoKDDGGLNgwQKX2g4cOGCsVqv561//aoqKipzbS0tLM5LMK6+84mwbMGCAadu2bYXqARoaLrEBqJQdO3bo7rvvVo8ePTRixIhKrVs8QpGfn19uv2nTpmnx4sXq1q2b3n//fU2YMEHx8fGKi4tzuay3bNkyNW3aVPfcc0+JbVgsFue/AwMDnf/+/fffZbfb1bt3b6Wnp1eqfnfLly+Xw+HQoEGDdOjQIedPRESEYmNj9fHHH7v09/f318iRIyu1jw4dOqhZs2aKjo7WmDFj1L59e7333ntlzl368MMPVVhYqJSUFPn4/O9P/B133KGQkBC99957lT9QoAHiEhuACsvKytKAAQNks9n09ttvy9fXt1LrHzlyRJIUHBx82r5Dhw7V0KFDlZeXp82bN2vhwoVavHixEhMTtW3bNgUEBGjPnj3q0KGDGjUq/0/ZqlWr9Nhjj2nr1q06fvy4s/3UEFUVu3btkjFGsbGxpS738/Nzed2qVasS87lOZ9myZQoJCZGfn59at27tvGxYlp9++knSyWB1KqvVqnbt2jmXAygfAQlAhdjtdl111VU6fPiwPvvsM7Vs2bLS2yi+LUD79u0rvE5ISIiuvPJKXXnllfLz89OiRYu0efNm9enTp0Lrf/bZZ7rmmmt02WWX6YUXXlCLFi3k5+enBQsWaPHixZU+hlM5HA5ZLBb95z//KTUsus/pOXUkq6Iuu+wy57wnAJ5DQAJwWseOHVNiYqJ++OEHffjhh+rUqVOlt1FUVKTFixercePG6tWrV5XquPDCC7Vo0SLt379f0slJ1Js3b9aJEydKjNYUW7ZsmQICAvT+++/L39/f2b5gwYISfcsaUSqrPSYmRsYYRUdH65xzzqns4dSItm3bSpJ27typdu3aOdsLCwuVmZmpfv36OdvOdAQNqM+YgwSgXEVFRRo8eLA2bdqkt956q0r33ikqKtK9996r7du3695771VISEiZfY8ePapNmzaVuuw///mPpP9dPrr++ut16NAhpaWllehr/u9Gir6+vrJYLCoqKnIu27t3b6k3hAwKCir1ZpBBQUGSVGLZddddJ19fX02bNq3EjRuNMcrJySn9IGtQv379ZLVaNXv2bJeaXn75ZdntdpdvDwYFBZV7ywWgIWMECUC57rvvPv373/9WYmKicnNzS9wY0v2mkHa73dnn6NGj2r17t5YvX649e/ZoyJAhmj59ern7O3r0qHr27KlLLrlE/fv3V2RkpA4fPqwVK1bos88+U1JSkrp16yZJuuWWW/Tqq69q3Lhx+uKLL9S7d28VFBToww8/1N///ndde+21GjBggGbNmqX+/ftr2LBhOnDggObOnav27dvrm2++cdl3fHy8PvzwQ82aNUstW7ZUdHS0unfvrvj4eEnShAkTNGTIEPn5+SkxMVExMTF67LHHNH78eO3du1dJSUkKDg5WZmam3nnnHY0ePVr333//GZ3/ymrWrJnGjx+vadOmqX///rrmmmu0c+dOvfDCC7roootc/veKj4/X0qVLNW7cOF100UVq0qSJEhMTPVovUGt58yt0AGq/4q+nl/VTXt8mTZqY2NhYc/PNN5sPPvigQvs7ceKE+ec//2mSkpJM27Ztjb+/v2ncuLHp1q2befrpp83x48dd+h89etRMmDDBREdHGz8/PxMREWFuuOEGs2fPHmefl19+2cTGxhp/f3/TsWNHs2DBAufX6E+1Y8cOc9lll5nAwEAjyeUr/9OnTzetWrUyPj4+Jb7yv2zZMtOrVy8TFBRkgoKCTMeOHc3dd99tdu7c6XJuyrsFgrvi+g4ePFhuP/ev+RdLS0szHTt2NH5+fiY8PNzcdddd5vfff3fpc+TIETNs2DBz1llnGUl85R84hcWYanigDwAAQD3CHCQAAAA3BCQAAAA3BCQAAAA3BCQAAAA3BCQAAAA3BCQAAAA33CiyihwOh3777TcFBwdzu34AAOoIY4zy8/PVsmVL+fiUPU5EQKqi3377TZGRkd4uAwAAVMHPP/+s1q1bl7mcgFRFwcHBkk6e4PKeKwUAAGqPvLw8RUZGOj/Hy0JAqqLiy2ohISEEJAAA6pjTTY9hkjYAAIAbAhIAAIAbAhIAAIAb5iABAOBBRUVFOnHihLfLqLf8/Pzk6+t7xtshIAEA4AHGGGVlZenw4cPeLqXeO+ussxQREXFG9ykkIAEA4AHF4ah58+Zq3LgxNxmuAcYYHT16VAcOHJAktWjRosrbIiABAFDDioqKnOEoLCzM2+XUa4GBgZKkAwcOqHnz5lW+3MYkbQAAaljxnKPGjRt7uZKGofg8n8lcLwISAAAewmU1z6iO88wlNgCAR+Tk5KiwsLDM5VarlctPqDUISACAGpeTk6O0tLTT9ktOTiYkoVbgEhsAoMa5jxzZ7cHKzIyS3R5cbj9436233iqLxSKLxSI/Pz+Fh4fryiuv1CuvvCKHw1Hh7SxcuFBnnXVWzRVazRhBAgB4VHp6N61cOVDG+MhicSgxcZXi4jK8XVat581LlP3799eCBQtUVFSk7OxsrVmzRmPHjtXbb7+tf//732rUqP7Fifp3RACAWstuD3aGI0kyxkcrVw5UTMxu2Wz5Xq6u9vL2JUp/f39FRERIklq1aqW4uDhdcskl+stf/qKFCxfq9ttv16xZs7RgwQL9+OOPCg0NVWJiop566ik1adJEn3zyiUaOHCnpfxOop0yZoqlTp+q1117T888/r507dyooKEhXXHGFUlNT1bx582o/jsrgEhsAwGNyc8Oc4aiYMT7KzQ31UkV1Q0UvPXryEuUVV1yhLl26aPny5ZIkHx8fzZ49W999950WLVqkjz76SA8++KAkqWfPnkpNTVVISIj279+v/fv36/7775d08qv406dP19dff60VK1Zo7969uvXWWz12HGVhBAkA4DGhoTmyWBwuIclicSg0NNeLVaGqOnbsqG+++UaSlJKS4myPiorSY489pjvvvFMvvPCCrFarbDabLBaLcySq2G233eb8d7t27TR79mxddNFFOnLkiJo0aeKR4ygNI0gAAI+x2fKVmLhKFsvJyb3Fc5C4vFY3GWOcl8w+/PBD/eUvf1GrVq0UHBys4cOHKycnR0ePHi13G1u2bFFiYqLatGmj4OBg9enTR5K0b9++Gq+/PIwgAQA8Ki4uQzExu5WbG6rQ0FzCUR22fft2RUdHa+/evRo4cKDuuusuPf744woNDdX69es1atQoFRYWlnkH8YKCAiUkJCghIUGvv/66mjVrpn379ikhIcHr32gkIAEAapzVanV5bbPllxqM3Puh9vroo4/07bff6h//+Ie2bNkih8OhZ599Vj4+Jy9Ovfnmmy79rVarioqKXNp27NihnJwczZw5U5GRkZKkr776yjMHcBoEJABAjQsLC1NycjJ30q6jjh8/rqysLJev+c+YMUMDBw7ULbfcom3btunEiROaM2eOEhMTtWHDBs2bN89lG1FRUTpy5IjWrVunLl26qHHjxmrTpo2sVqvmzJmjO++8U9u2bdP06dO9dJSumIMEAPCIsLAwtWjRoswfwlHttWbNGrVo0UJRUVHq37+/Pv74Y82ePVvvvvuufH191aVLF82aNUtPPvmkzjvvPL3++uuaMWOGyzZ69uypO++8U4MHD1azZs301FNPqVmzZlq4cKHeeustderUSTNnztQzzzzjpaN0ZTHGGG8XURfl5eXJZrPJbrcrJCTE2+UAAGqxY8eOKTMzU9HR0QoICKj0+t6+D1JdU975rujnN5fYAACVcuodnX/7zUeZmY0UHf2nWrY8+c00LpVVPy5Reh4BCQBQYaeOZJT3yBBGMqof59OzmIMEAKiw4hGMsh4ZUvzwWW9/RRs4UwQkAECl8cgQ1HcEJABApRU/MuRUPDIE9QkBCQBQaTwyBPUdk7QBAFXCI0NQnxGQAABVVtYjQ4C6jktsAAAAbghIAIAKq+jDZHnoLCrqk08+kcVi0eHDhyu8TlRUlFJTU2usJolLbACASuCOzg3PrbfeqkWLFmnMmDElHkB7991364UXXtCIESO0cOFC7xRYQwhIAIBKIfw0PJGRkVqyZImee+45BQYGSjr5vLPFixerTZs2Xq6uZnCJDQAAlCsuLk6RkZFavny5s2358uVq06aNunXr5mw7fvy47r33XjVv3lwBAQHq1auXvvzyS5dtrV69Wuecc44CAwN1+eWXa+/evSX2t379evXu3VuBgYGKjIzUvffeq4KCgho7vtIQkAAAqGN++UX6+OOTvz3ltttu04IFC5yvX3nlFY0cOdKlz4MPPqhly5Zp0aJFSk9PV/v27ZWQkKDc3JM3EP3555913XXXKTExUVu3btXtt9+uhx9+2GUbe/bsUf/+/XX99dfrm2++0dKlS7V+/XolJyfX/EGegoAEAEAd8vLLUtu20hVXnPz98sue2e/NN9+s9evX66efftJPP/2kDRs26Oabb3YuLygo0Isvvqinn35aV111lTp16qR//vOfCgwM1Mv/V+SLL76omJgYPfvss+rQoYNuuukm3XrrrS77mTFjhm666SalpKQoNjZWPXv21OzZs/Xqq6/q2LFjnjlYMQcJAIA645dfpNGjJcf/PeXF4ZDGjJESEqTWrWt2382aNdOAAQO0cOFCGWM0YMAANW3a1Ll8z549OnHihC699FJnm5+fny6++GJt375dkrR9+3Z1797dZbs9evRwef3111/rm2++0euvv+5sM8bI4XAoMzNT5557bk0cXgkEJAAA6ohdu/4XjooVFUm7d9d8QJJOXmYrvtQ1d+7cGtnHkSNHNGbMGN17770llnlyQjgBCQCAOiI2VvLxcQ1Jvr5S+/ae2X///v1VWFgoi8WihIQEl2UxMTGyWq3asGGD2rZtK0k6ceKEvvzyS6WkpEiSzj33XP373/92We/zzz93eR0XF6fvv/9e7T11UGVgDhIAAHVE69bSSy+dDEXSyd/z53tm9Ojk/ny1fft2ff/99/ItLuL/BAUF6a677tIDDzygNWvW6Pvvv9cdd9yho0ePatSoUZKkO++8U7t27dIDDzygnTt3avHixSXun/TQQw9p48aNSk5O1tatW7Vr1y69++67Hp+kzQgSAAB1yKhRJ+cc7d59cuTIU+GoWEhISJnLZs6cKYfDoeHDhys/P18XXnih3n//fZ199tmSTl4iW7Zsmf7xj39ozpw5uvjii/XEE0/otttuc27jggsu0H//+19NmDBBvXv3ljFGMTExGjx4cI0f26ksxhjj0T3WE3l5ebLZbLLb7eW+WQAAOHbsmDIzMxUdHa2AgABvl1PvlXe+K/r5zSU2AAAANwQkAAAANwQkAAAANwQkAAAANwQkAAA8hO9FeUZ1nGcCEgAANczPz0+SdPToUS9X0jAUn+fi814V3AcJAIAa5uvrq7POOksHDhyQJDVu3FgWi8XLVdU/xhgdPXpUBw4c0FlnnVXiZpaVQUACAMADIiIiJMkZklBzzjrrLOf5rioCEgAAHmCxWNSiRQs1b95cJ06c8HY59Zafn98ZjRwVIyABAOBBvr6+1fIBjprFJG0AAAA3BCQAAAA3BCQAAAA3BCQAAAA3BCQAAAA3BCQAAAA3BCQAAAA3BCQAAAA33CgSAACUKicnR4WFhWUut1qtCgsL82BFnkNAAgAAJeTk5CgtLe20/ZKTk+tlSOISGwAAKMF95MhuD1ZmZpTs9uBy+9UXXg9Ic+fOVVRUlAICAtS9e3d98cUX5fZ/66231LFjRwUEBOj888/X6tWrXZYbYzR58mS1aNFCgYGB6tevn3bt2uXS54cfftC1116rpk2bKiQkRL169dLHH39c7ccGAEB9kJ7eTampKVq0aIRSU1OUnt7N2yXVOK8GpKVLl2rcuHGaMmWK0tPT1aVLFyUkJOjAgQOl9t+4caOGDh2qUaNGKSMjQ0lJSUpKStK2bducfZ566inNnj1b8+bN0+bNmxUUFKSEhAQdO3bM2WfgwIH6888/9dFHH2nLli3q0qWLBg4cqKysrBo/ZgAA6hK7PVgrVw6UMScjgzE+WrlyYImRpPrGqwFp1qxZuuOOOzRy5Eh16tRJ8+bNU+PGjfXKK6+U2v/5559X//799cADD+jcc8/V9OnTFRcX57xGaoxRamqqJk6cqGuvvVYXXHCBXn31Vf32229asWKFJOnQoUPatWuXHn74YV1wwQWKjY3VzJkzdfToUZegBQAApNzcMGc4KmaMj3JzQ71UkWd4LSAVFhZqy5Yt6tev3/+K8fFRv379tGnTplLX2bRpk0t/SUpISHD2z8zMVFZWlksfm82m7t27O/uEhYWpQ4cOevXVV1VQUKA///xT8+fPV/PmzRUfH19mvcePH1deXp7LDwAA9V1oaI4sFodLm8XiUGhorpcq8gyvBaRDhw6pqKhI4eHhLu3h4eFlXurKysoqt3/x7/L6WCwWffjhh8rIyFBwcLACAgI0a9YsrVmzRmeffXaZ9c6YMUM2m835ExkZWbkDBgCgDrLZ8pWYuMoZkiwWhxITV8lmy/dyZTWrwX3N3xiju+++W82bN9dnn32mwMBA/b//9/+UmJioL7/8Ui1atCh1vfHjx2vcuHHO13l5eYQkAECDEBeXoZiY3crNDVVoaG69D0eSFwNS06ZN5evrq+zsbJf27OxsRURElLpOREREuf2Lf2dnZ7sEnezsbHXt2lWS9NFHH2nVqlX6/fffFRISIkl64YUXtHbtWi1atEgPP/xwqfv29/eXv79/5Q8UAIA6yGq1ury22fJLDUbu/eoLrwUkq9Wq+Ph4rVu3TklJSZIkh8OhdevWKTk5udR1evTooXXr1iklJcXZtnbtWvXo0UOSFB0drYiICK1bt84ZiPLy8rR582bdddddkqSjR49KOjnf6VQ+Pj5yOFyvsQIA0FCFhYUpOTmZO2l7w7hx4zRixAhdeOGFuvjii5WamqqCggKNHDlSknTLLbeoVatWmjFjhiRp7Nix6tOnj5599lkNGDBAS5Ys0VdffaWXXnpJ0sn5RSkpKXrssccUGxur6OhoTZo0SS1btnSGsB49eujss8/WiBEjNHnyZAUGBuqf//ynMjMzNWDAAK+cBwAAaqP6Gn4qwqsBafDgwTp48KAmT56srKwsde3aVWvWrHFOst63b5/LSE/Pnj21ePFiTZw4UY888ohiY2O1YsUKnXfeec4+Dz74oAoKCjR69GgdPnxYvXr10po1axQQECDp5KW9NWvWaMKECbriiit04sQJde7cWe+++666dOni2RMAAABqJYsxxni7iLooLy9PNptNdrvdOZcJAADUbhX9/Pb6o0YAAABqGwISAACAGwISAACAGwISAACAGwISAACAGwISAACAGwISAACAGwISAACAGwISAACAGwISAACAGwISAACAGwISAACAGwISAACAGwISAACAGwISAACAGwISAACAGwISAACAm0beLgAAACAnJ0eFhYVlLrdarQoLC/NYPQQkAADgVTk5OUpLSzttv+TkZI+FJC6xAQAAr3IfObLbg5WZGSW7PbjcfjWJESQAAFBrpKd308qVA2WMjywWhxITVykuLsPjdTCCBAAAagW7PdgZjiTJGB+tXDmwxEiSJxCQAABArZCbG+YMR8WM8VFubqjHayEgAQCAWiE0NEcWi8OlzWJxKDQ01+O1EJAAAECtYLPlKzFxlTMkFc9BstnyPV4Lk7QBAECtEReXoZiY3crNDVVoaK5XwpFEQAIAAF5mtVpdXtts+aUGI/d+NYmABAAAvCosLEzJycncSRsAAOBUngw/FcEkbQAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADcEJAAAADeNvF0ApJycHBUWFpa53Gq1KiwszIMVAQDQsBGQvCwnJ0dpaWmn7ZecnExIAgDAQ7jE5mXljRxVpR8AADhzBCQAAAA3BCQAAAA3BCQAAAA3Xg9Ic+fOVVRUlAICAtS9e3d98cUX5fZ/66231LFjRwUEBOj888/X6tWrXZYbYzR58mS1aNFCgYGB6tevn3bt2lViO++99566d++uwMBAnX322UpKSqrOw6oyuz1YmZlRstuDvV0KAAANllcD0tKlSzVu3DhNmTJF6enp6tKlixISEnTgwIFS+2/cuFFDhw7VqFGjlJGRoaSkJCUlJWnbtm3OPk899ZRmz56tefPmafPmzQoKClJCQoKOHTvm7LNs2TINHz5cI0eO1Ndff60NGzZo2LBhNX68p5Oe3k2pqSlatGiEUlNTlJ7ezdslAQDQIFmMMcZbO+/evbsuuugi59fcHQ6HIiMjdc899+jhhx8u0X/w4MEqKCjQqlWrnG2XXHKJunbtqnnz5skYo5YtW+q+++7T/fffL0my2+0KDw/XwoULNWTIEP3555+KiorStGnTNGrUqCrXnpeXJ5vNJrvdrpCQkCpvZ//+/XrppZdktwcrNTVFxvwvs1osDqWkpMpmy9fo0aPVokWLKu8HAABU/PPbayNIhYWF2rJli/r16/e/Ynx81K9fP23atKnUdTZt2uTSX5ISEhKc/TMzM5WVleXSx2azqXv37s4+6enp+vXXX+Xj46Nu3bqpRYsWuuqqq1xGoTzJarVKknJzw1zCkSQZ46Pc3FCXfgAAoOZ57UaRhw4dUlFRkcLDw13aw8PDtWPHjlLXycrKKrV/VlaWc3lxW1l9fvzxR0nS1KlTNWvWLEVFRenZZ59V37599cMPPyg0NLTUfR8/flzHjx93vs7Ly6vooZYrLCxMycnJ2rv3T732mpHDYXEu8/U1uueeqxQV1YibRAIA4EFen6TtaQ6HQ5I0YcIEXX/99YqPj9eCBQtksVj01ltvlbnejBkzZLPZnD+RkZHVVlNYWJji48P10ksW+fqebPP1lebPtyg+PpxwBACAh3ltBKlp06by9fVVdna2S3t2drYiIiJKXSciIqLc/sW/s7OzXebrZGdnq2vXrpLkbO/UqZNzub+/v9q1a6d9+/aVWe/48eM1btw45+u8vLxqDUmSNGqUlJAg7d4ttW8vtW5drZsHKoRnAwKAFwOS1WpVfHy81q1b5/yKvcPh0Lp165ScnFzqOj169NC6deuUkpLibFu7dq169OghSYqOjlZERITWrVvnDER5eXnavHmz7rrrLklSfHy8/P39tXPnTvXq1UuSdOLECe3du1dt27Yts15/f3/5+/uf4VGfXuvWBCN4j/uzAe32YOXmhik0NEc2W76znWcDAqjvvPqw2nHjxmnEiBG68MILdfHFFys1NVUFBQUaOXKkJOmWW25Rq1atNGPGDEnS2LFj1adPHz377LMaMGCAlixZoq+++kovvfSSJMlisSglJUWPPfaYYmNjFR0drUmTJqlly5bOEBYSEqI777xTU6ZMUWRkpNq2baunn35aknTjjTd6/iQAtcipI0fp6d20cuVAGeMji8WhxMRViovLKNEPAOojrwakwYMH6+DBg5o8ebKysrLUtWtXrVmzxjnJet++ffLx+d80qZ49e2rx4sWaOHGiHnnkEcXGxmrFihU677zznH0efPBBFRQUaPTo0Tp8+LB69eqlNWvWKCAgwNnn6aefVqNGjTR8+HD98ccf6t69uz766COdffbZnjt4oBaz24Od4Ug6+Y3KlSsHKiZmt8tIEgDUV169D1JdVl33QQJqk+L7cmVmRmnRohEllo8YsVDR0T9xXy4AdVatvw8SgNorNDRHFovDpc1icSg0NNdLFQGAZxGQAJRgs+UrMXGVMyQVz0Hi8hqAhsKrc5AA1F5xcRmKidmt3NxQhYbmEo4ANCgEJABlstnyCUYAGiQusQFwqugz/3g2IID6jhEkAE7FzwbkTtoAGjoCEgAXhB8A4BIbAABACQQkAAAANwQkAAAAN8xBAuBVOTk5TAoHUOsQkAB4TU5OjtLS0pyv7fZg5eaGKTQ0x+X+S8nJyYQkAB5FQALgNaeOHKWnd9PKlQNljI/z0SZxcRkl+gGAJzAHCYDX2e3BznAkScb4aOXKgbLbg71cGYCGioAEwOtyc8Oc4aiYMT7KzQ31UkUAGrpKBaRffvlFhw4dcr7+7LPPdNNNN6l37966+eabtWnTpmovEED9FxqaI4vF4dJmsTgUGprrpYoANHSVCkjXX3+9Pv/8c0nSu+++q759++rIkSO69NJLdfToUfXp00erVq2qkUIB1F82W74SE1c5Q1LxHCQelAvAWyo1Sfu7775T586dJUkzZszQE088oYceesi5PC0tTZMnT9bAgQOrt0oA9V5cXIZiYnYrNzdUoaG5hCMAXlWpEaRGjRopP//kH63MzExdddVVLsuvuuoq7dy5s/qqA9Cg2Gz5io7+iXAEwOsqFZD69OmjN954Q5LUrVs3ffLJJy7LP/74Y7Vq1araigNQv1mt1mrtBwDVpVKX2GbOnKnevXvrt99+U69evTRhwgR9+eWXOvfcc7Vz504tXbpU8+bNq6laAdQzYWFhSk5O5k7aAGodizHGVGaFPXv2aOLEiXrvvfd05MgRSScvvV100UV64IEHlJSUVBN11jp5eXmy2Wyy2+0KCQnxdjkAAKACKvr5XemAVMwYowMHDsjhcKhp06by8/OrcrF1EQEJAIC6p6Kf31V+1IjFYlF4eHhVVwcAAKi1KhWQxo0bV6F+s2bNqlIxAAAAtUGlAlJGRobL6/Xr1ys+Pl6BgYHONovFUj2VAQAAeEmlAtLHH3/s8jo4OFiLFy9Wu3btqrUoAAAAb+JhtQAAAG4ISAAAAG4ISAAAAG4qNQfpm2++cXltjNGOHTucN4wsdsEFF5x5ZQAAAF5SqRtF+vj4yGKxqLRVitstFouKioqqtcjaiBtFAgBQ99TIjSIzMzPPuDAAAIDarlIBqW3btjVVBwAAQK1RpUnaDoejzPZ9+/adUUEAAADeVqmAlJeXp0GDBikoKEjh4eGaPHmyy3yjgwcPKjo6utqLBAAA8KRKXWKbNGmSvv76a7322ms6fPiwHnvsMaWnp2v58uWyWq2SVOoEbgAAgLqkUiNIK1as0Pz583XDDTfo9ttv11dffaWDBw8qMTFRx48fl8Sz2AAAQN1XqYB08OBBl4naTZs21Ycffqj8/HxdffXVOnr0aLUXCAAA4GmVCkht2rTR9u3bXdqCg4P1wQcf6I8//tDf/va3ai0OAADAGyoVkK688kotWLCgRHuTJk30/vvvKyAgoNoKAwAA8JZKTdJ+9NFHtX///lKXBQcHa+3atUpPT6+WwgAAALylUiNIGRkZuuGGG5SXl1dimd1u1yWXXMIkbaAWycnJ0f79+8v8ycnJ8XaJAFArVWoEKTU1VXfccUepzy6x2WwaM2aMnnvuOV122WXVViCAqsnJyVFaWtpp+yUnJyssLMwDFQFA3VGpEaSvv/5a/fv3L3P5X//6V23ZsuWMiwJw5goLC6u1HwA0JJUKSNnZ2fLz8ytzeaNGjXTw4MEzLgpA9bPbg5WZGSW7PdjbpQBArVepS2ytWrXStm3b1L59+1KXf/PNN2rRokW1FAag+qSnd9PKlQNljI8sFocSE1cpLi7D22UBQK1VqRGkq6++WpMmTdKxY8dKLPvjjz80ZcoUDRw4sNqKA3Dm7PZgZziSJGN8tHLlQEaSAKAclRpBmjhxopYvX65zzjlHycnJ6tChgyRpx44dmjt3roqKijRhwoQaKRRA1eTmhjnDUTFjfJSbGyqbLd9LVQFA7VapgBQeHq6NGzfqrrvu0vjx450PprVYLEpISNDcuXMVHh5eI4UCqJrQ0BxZLA6XkGSxOBQamuvFqgCgdqtUQJKktm3bavXq1fr999+1e/duGWMUGxurs88+uybqA3CGbLZ8JSauKjEHidEjAChbpQNSsbPPPlsXXXRRddYCoBpZrVbnv+PiMhQTs1u5uaEKDc11CUen9gMAnFTlgASgdgsLC1NycnK59zmyWq3cJBIASkFAAuoxwg8AVE2lvuYPAADQEBCQAAAA3BCQAAAA3BCQAAAA3DBJGxWSk5PDt6EAAA0GAQmnlZOTo7S0tNP2S05OJiQBAOoFAhJOq7yRo6r0Q+UxggcAnkVAAmo5RvAAwPOYpA3UcozgAYDnEZCAOsZuD1ZmZpTs9mBvlwIA9RaX2IA6JD29m1auHChjfGSxOJSYuEpxcRneLgsA6h1GkFBpjGB4h90e7AxHkmSMj1auHMj/DgBQA2pFQJo7d66ioqIUEBCg7t2764svvii3/1tvvaWOHTsqICBA559/vlavXu2y3BijyZMnq0WLFgoMDFS/fv20a9euUrd1/Phxde3aVRaLRVu3bq2uQ6q30tO7KTU1RYsWjVBqaorS07t5u6QGIzc3zBmOihnjo9zcUC9VBAD1l9cD0tKlSzVu3DhNmTJF6enp6tKlixISEnTgwIFS+2/cuFFDhw7VqFGjlJGRoaSkJCUlJWnbtm3OPk899ZRmz56tefPmafPmzQoKClJCQoKOHTtWYnsPPvigWrZsWWPHVx9YrVZJpx/BKO6HmhEamiOLxeHSZrE4FBqa66WKAKD+8npAmjVrlu644w6NHDlSnTp10rx589S4cWO98sorpfZ//vnn1b9/fz3wwAM699xzNX36dMXFxTm/Bm2MUWpqqiZOnKhrr71WF1xwgV599VX99ttvWrFihcu2/vOf/+iDDz7QM888U9OHWaeFhYUpOTlZPXuOKHUE49JLR/AVcw+w2fKVmLjKGZKK5yDZbPlergwA6h+vTtIuLCzUli1bNH78eGebj4+P+vXrp02bNpW6zqZNmzRu3DiXtoSEBGf4yczMVFZWlvr16+dcbrPZ1L17d23atElDhgyRJGVnZ+uOO+7QihUr1Lhx49PWevz4cR0/ftz5Oi8vr8LHWR+EhYXpkkskHx/Jccoghq+v1L17mMhGNefUkbm4uAzFxOxWbm6oQkNzXcIRI3gAUH28GpAOHTqkoqIihYeHu7SHh4drx44dpa6TlZVVav+srCzn8uK2svoYY3Trrbfqzjvv1IUXXqi9e/eettYZM2Zo2rRpFTqu+qp1a+mll6QxY6SiopPhaP78k+2oOcUjeNxJGwA8p0F+zX/OnDnKz893Gbk6nfHjx7uMXOXl5SkyMrImyqvVRo2SEhKk3bul9u0JR55C+AEAz/LqHKSmTZvK19dX2dnZLu3Z2dmKiIgodZ2IiIhy+xf/Lq/PRx99pE2bNsnf31+NGjVS+/btJUkXXnihRowYUep+/f39FRIS4vLTULVuLfXtSzgCANRfXg1IVqtV8fHxWrdunbPN4XBo3bp16tGjR6nr9OjRw6W/JK1du9bZPzo6WhERES598vLytHnzZmef2bNn6+uvv9bWrVu1detW520Cli5dqscff7xajxEAANQ9Xr/ENm7cOI0YMUIXXnihLr74YqWmpqqgoEAjR46UJN1yyy1q1aqVZsyYIUkaO3as+vTpo2effVYDBgzQkiVL9NVXX+mll16SJFksFqWkpOixxx5TbGysoqOjNWnSJLVs2VJJSUmSpDZt2rjU0KRJE0lSTEyMWjMsAgBAg+f1gDR48GAdPHhQkydPVlZWlrp27ao1a9Y4J1nv27dPPj7/G+jq2bOnFi9erIkTJ+qRRx5RbGysVqxYofPOO8/Z58EHH1RBQYFGjx6tw4cPq1evXlqzZo0CAgI8fnwAAKDusRhjjLeLqIvy8vJks9lkt9sb9HwkAADqkop+fnv9RpEAAAC1DQEJAADADQEJAADADQEJAADADQEJAADADQEJAADADQEJAADAjddvFImqy8nJ4QnvAADUAAJSHZWTk6O0tLTT9ktOTiYkAQBQSVxiq6PKGzmqSj8AAPA/BCQAAAA3BCQAAAA3BCQAAAA3BCQAAAA3BKR6wm4PVmZmlOz2YG+XAgBAncfX/OuB9PRuWrlyoIzxkcXiUGLiKsXFZXi7LAAA6ixGkOooq9Uq6eTIUXE4kiRjfLRy5UDnSFJxPwAAUHEWY4zxdhF1UV5enmw2m+x2u0JCQrxSQ05Ojj7+WLrxxpI3gnz77Rz17StuEgkAwCkq+vnNJbY6LCwsTJdcIvn4SA7H/9p9faXu3cNENgIAoGq4xFbHtW4tvfTSyVAknfw9f/7JdgAAUDWMINUDo0ZJCQnS7t1S+/aEIwC1Ew/YRl1CQKonWrcmGAGovdwfsG23Bys3N0yhoTmy2fKd7dX1gO1Tw9hvv/koM7ORoqP/VMuWJ+cjEMZwOgQkAECNO3XkqLxbk1THA7ZPDWPl7au6whjqJwISABdcBkFNKuvWJDExu11Gks5E8fv3dPuqjjCG+ouABMDJ05dBUFJ9D6i5uWHOwFLMGB/l5oZWW0Dyxr5Q/xCQADh58jIISmoIATU0NEcWi8MluFgsDoWG5tbpfaH+4Wv+AEo43R3aUTPcA2pqaooWLRqh1NQUpad3K7VfXWOz5SsxcZUslpOTpYvDd02M6HhyX6h/GEECUAKXJrzLE/N0vCkuLkMxMbuVmxuq0NDcGj0mT+4L9QsBCUAJXJrwroYQUG22fI8diyf3hfqDS2wASuDShHcVB9RT1fWAWtEHZ/OAbdQWjCABKBWXJrynOKC6T5Kvy/8bhIWFKTk52SPf0COMoToQkACUiUsT3lMfA6qnvnnnyTCG+ouABMCJ//KuXQioVUf4wZkiIAFw4r+8vcvTAZXnlQFlsxhjjLeLqIvy8vJks9lkt9sVEhLi7XIA1BOeupM2zytDQ1XRz29GkACgFvFUGOF5ZUD5+Jo/ADRg5d1zCWjICEgA0IDVx3suAdWBgAQADRg3BQVKxxwkAGjg6uM9l4AzRUACAHDPJcANl9gAAADcEJAAoAHirulA+bjEBgANEHdNB8pHQAKABorwA5SNS2wAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuCEgAAABuakVAmjt3rqKiohQQEKDu3bvriy++KLf/W2+9pY4dOyogIEDnn3++Vq9e7bLcGKPJkyerRYsWCgwMVL9+/bRr1y7n8r1792rUqFGKjo5WYGCgYmJiNGXKFBUWFtbI8QEAgLrF6wFp6dKlGjdunKZMmaL09HR16dJFCQkJOnDgQKn9N27cqKFDh2rUqFHKyMhQUlKSkpKStG3bNmefp556SrNnz9a8efO0efNmBQUFKSEhQceOHZMk7dixQw6HQ/Pnz9d3332n5557TvPmzdMjjzzikWMGAAC1m8UYY7xZQPfu3XXRRRcpLS1NkuRwOBQZGal77rlHDz/8cIn+gwcPVkFBgVatWuVsu+SSS9S1a1fNmzdPxhi1bNlS9913n+6//35Jkt1uV3h4uBYuXKghQ4aUWsfTTz+tF198UT/++GOF6s7Ly5PNZpPdbldISEhlDxsAAHhBRT+/vTqCVFhYqC1btqhfv37ONh8fH/Xr10+bNm0qdZ1Nmza59JekhIQEZ//MzExlZWW59LHZbOrevXuZ25ROhqjQ0NAylx8/flx5eXkuPwAAoH7yakA6dOiQioqKFB4e7tIeHh6urKysUtfJysoqt3/x78psc/fu3ZozZ47GjBlTZq0zZsyQzWZz/kRGRpZ/cAAAoM7y+hwkb/v111/Vv39/3XjjjbrjjjvK7Dd+/HjZ7Xbnz88//+zBKgEAgCd5NSA1bdpUvr6+ys7OdmnPzs5WREREqetERESU27/4d0W2+dtvv+nyyy9Xz5499dJLL5Vbq7+/v0JCQlx+AABA/eTVgGS1WhUfH69169Y52xwOh9atW6cePXqUuk6PHj1c+kvS2rVrnf2jo6MVERHh0icvL0+bN2922eavv/6qvn37Kj4+XgsWLJCPT4MfTAMAAP+nkbcLGDdunEaMGKELL7xQF198sVJTU1VQUKCRI0dKkm655Ra1atVKM2bMkCSNHTtWffr00bPPPqsBAwZoyZIl+uqrr5wjQBaLRSkpKXrssccUGxur6OhoTZo0SS1btlRSUpKk/4Wjtm3b6plnntHBgwed9ZQ1cgUAABoOrwekwYMH6+DBg5o8ebKysrLUtWtXrVmzxjnJet++fS6jOz179tTixYs1ceJEPfLII4qNjdWKFSt03nnnOfs8+OCDKigo0OjRo3X48GH16tVLa9asUUBAgKSTI067d+/W7t271bp1a5d6vHzXAwAA6rycnJxyb75stVoVFhbmwYoqz+v3QaqruA8SAAAl5eTkOO9tWJ7k5GSvhKQ6cR8kAABQv1T0sV21/fFeBCQAAAA3BCQAAAA3BCQAAFBj7PZgZWZGyW4P9nYpleL1b7EBAID6KT29m1auHChjfGSxOJSYuEpxcRneLqtCGEECAADVzm4PdoYjSTLGRytXDqwzI0kEJAAAUO1yc8Oc4aiYMT7KzQ31UkWVQ0ACAADVxmq1SpJCQ3NksThcllksDoWG5rr0q62YgwQAAKpNWFiYkpOTVVhYqFat8vTQQzYVFVnk62v05JN5GjZsKHfSrs+4kzYAAKf3yy/S7t1S+/aS29O9vKKin9+MIAEAgBrTunXtCEaVxRwkAAAANwQkAAAANwQkAAAANwQkAAAANwQkAAAANwQkAAAANwQkAAAAN9wHCQAAeF1OTo4KCwvLXO7pu28TkAAAgFfl5OQoLS3ttP2Sk5M9FpK4xAYAALyqvJGjqvSrDgQkAAAANwQkAAAANwQkAAAANwQkAAAANwQkAAAANwQkAABQq9jtwcrMjJLdHuy1GrgPEgAA8KqjR486/52e3k0rVw6UMT6yWBxKTFyluLiMEv1qGiNIAADAqxo3bizp5MhRcTiSJGN8tHLlQOdIUnE/TyAgAQCAWiE3N8wZjooZ46Pc3FCP10JAAgAAtUJoaI4sFodLm8XiUGhorsdrISABAIBawWbLV2LiKmdIKp6DZLPle7wWJmkDAIBaIy4uQzExu5WbG6rQ0FyvhCOJgAQAAGoZmy3fa8GoGJfYAAAA3BCQAACAV1mtVpfXZd0o0r1fTeISGwAA8KqwsDAlJyersLBQixcH6tFHbXI4LPLxMXrqKbuGDftDVqtVYWFhHqvJYowxHttbPZKXlyebzSa73a6QkBBvlwOc1i+/SLt2SbGxUuvW3q4GAEr65RepbVvJcco3/X19pb17q+/vVkU/v7nEBjQAL7988o/OFVec/P3yy96uCABK2rXLNRxJUlGRtHu352shIAH13C+/SKNH/++PjsMhjRlzsh0AapPYWMnHLZn4+krt23u+FgISUI/l5OTo889zSv0vss2bc5STk+OdwgCgFK1bSy+9dDIUSSd/z5/vnWkBTNIG6qmcnBylpaXJbg+WxZLi8nwji8WhDRsWadu2fCUnJ3t04iMAlGfUKCkh4eRltfbtvTdnkhEkoJ4qLCyUdPpb9xf3A4DaonVrqW9f736hhBEkoAGoLbfuB4C6goAENBC14db9AFBXcIkNAADADQEJAADADQEJAADADQEJAADADQEJqKcq+tRrTz4dGwDqCr7FBtRTpz4duyyefjo2ANQVBCSgHiP8AEDVcIkNAADADQEJAADADQEJAADADQEJAADADQEJAADADQEJAADADQEJAADADQEJAADADQEJAADADXfSriJjjCQpLy/Py5UAAICKKv7cLv4cLwsBqYry8/MlSZGRkV6uBAAAVFZ+fr5sNluZyy3mdBEKpXI4HPrtt98UHBwsi8VyRtvKy8tTZGSkfv75Z4WEhFRThXUL54BzIHEOJM5BQz9+iXMg1ew5MMYoPz9fLVu2lI9P2TONGEGqIh8fH7Vu3bpatxkSEtJg/89QjHPAOZA4BxLnoKEfv8Q5kGruHJQ3clSMSdoAAABuCEgAAABuCEi1gL+/v6ZMmSJ/f39vl+I1nAPOgcQ5kDgHDf34Jc6BVDvOAZO0AQAA3DCCBAAA4IaABAAA4IaABAAA4IaABAAA4IaAVAPmzp2rqKgoBQQEqHv37vriiy/K7Z+amqoOHTooMDBQkZGR+sc//qFjx445l0+dOlUWi8Xlp2PHjjV9GGekMufgxIkTevTRRxUTE6OAgAB16dJFa9asOaNt1gbVfQ7q2vvg008/VWJiolq2bCmLxaIVK1acdp1PPvlEcXFx8vf3V/v27bVw4cISferS+6AmzkF9fx/s379fw4YN0znnnCMfHx+lpKSU2u+tt95Sx44dFRAQoPPPP1+rV6+u/uKrQU0c/8KFC0u8BwICAmrmAKpBZc/B8uXLdeWVV6pZs2YKCQlRjx499P7775foV9N/CwhI1Wzp0qUaN26cpkyZovT0dHXp0kUJCQk6cOBAqf0XL16shx9+WFOmTNH27dv18ssva+nSpXrkkUdc+nXu3Fn79+93/qxfv94Th1MllT0HEydO1Pz58zVnzhx9//33uvPOO/W3v/1NGRkZVd6mt9XEOZDq1vugoKBAXbp00dy5cyvUPzMzUwMGDNDll1+urVu3KiUlRbfffrvLH8a69j6oiXMg1e/3wfHjx9WsWTNNnDhRXbp0KbXPxo0bNXToUI0aNUoZGRlKSkpSUlKStm3bVp2lV4uaOH7p5B2mT30P/PTTT9VVcrWr7Dn49NNPdeWVV2r16tXasmWLLr/8ciUmJnr+M8GgWl188cXm7rvvdr4uKioyLVu2NDNmzCi1/913322uuOIKl7Zx48aZSy+91Pl6ypQppkuXLjVSb02o7Dlo0aKFSUtLc2m77rrrzE033VTlbXpbTZyDuvY+OJUk884775Tb58EHHzSdO3d2aRs8eLBJSEhwvq5r74NTVdc5qO/vg1P16dPHjB07tkT7oEGDzIABA1zaunfvbsaMGXOGFdas6jr+BQsWGJvNVm11eVJlz0GxTp06mWnTpjlfe+JvASNI1aiwsFBbtmxRv379nG0+Pj7q16+fNm3aVOo6PXv21JYtW5xDgz/++KNWr16tq6++2qXfrl271LJlS7Vr10433XST9u3bV3MHcgaqcg6OHz9eYng4MDDQ+V/FVdmmN9XEOShWV94HVbFp0yaXcyZJCQkJznNW194HVXG6c1CsPr8PKqKi56k+O3LkiNq2bavIyEhde+21+u6777xdUo1xOBzKz89XaGioJM/9LSAgVaNDhw6pqKhI4eHhLu3h4eHKysoqdZ1hw4bp0UcfVa9eveTn56eYmBj17dvX5RJb9+7dtXDhQq1Zs0YvvviiMjMz1bt3b+Xn59fo8VRFVc5BQkKCZs2apV27dsnhcGjt2rVavny59u/fX+VtelNNnAOpbr0PqiIrK6vUc5aXl6c//vijzr0PquJ050Cq/++DiijrPNWX98HpdOjQQa+88oreffdd/etf/5LD4VDPnj31yy+/eLu0GvHMM8/oyJEjGjRokCTPfSYQkLzsk08+0RNPPKEXXnhB6enpWr58ud577z1Nnz7d2eeqq67SjTfeqAsuuEAJCQlavXq1Dh8+rDfffNOLlVef559/XrGxserYsaOsVquSk5M1cuRI+fg0nLdnRc5BfX8foGJ4H6BHjx665ZZb1LVrV/Xp00fLly9Xs2bNNH/+fG+XVu0WL16sadOm6c0331Tz5s09uu+G8wnkAU2bNpWvr6+ys7Nd2rOzsxUREVHqOpMmTdLw4cN1++236/zzz9ff/vY3PfHEE5oxY4YcDkep65x11lk655xztHv37mo/hjNVlXPQrFkzrVixQgUFBfrpp5+0Y8cONWnSRO3atavyNr2pJs5BaWrz+6AqIiIiSj1nISEhCgwMrHPvg6o43TkoTX17H1REWeepvrwPKsvPz0/dunWrd++BJUuW6Pbbb9ebb77pcjnNU38LCEjVyGq1Kj4+XuvWrXO2ORwOrVu3Tj169Ch1naNHj5YYKfH19ZUkmTIek3fkyBHt2bNHLVq0qKbKq09VzkGxgIAAtWrVSn/++aeWLVuma6+99oy36Q01cQ5KU5vfB1XRo0cPl3MmSWvXrnWes7r2PqiK052D0tS390FFVOU81WdFRUX69ttv69V74I033tDIkSP1xhtvaMCAAS7LPPa3oNqme8MYY8ySJUuMv7+/Wbhwofn+++/N6NGjzVlnnWWysrKMMcYMHz7cPPzww87+U6ZMMcHBweaNN94wP/74o/nggw9MTEyMGTRokLPPfffdZz755BOTmZlpNmzYYPr162eaNm1qDhw44PHjq4jKnoPPP//cLFu2zOzZs8d8+umn5oorrjDR0dHm999/r/A2a5uaOAd17X2Qn59vMjIyTEZGhpFkZs2aZTIyMsxPP/1kjDHm4YcfNsOHD3f2//HHH03jxo3NAw88YLZv327mzp1rfH19zZo1a5x96tr7oCbOQX1/HxhjnP3j4+PNsGHDTEZGhvnuu++cyzds2GAaNWpknnnmGbN9+3YzZcoU4+fnZ7799luPHltF1MTxT5s2zbz//vtmz549ZsuWLWbIkCEmICDApU9tUtlz8Prrr5tGjRqZuXPnmv379zt/Dh8+7Ozjib8FBKQaMGfOHNOmTRtjtVrNxRdfbD7//HPnsj59+pgRI0Y4X584ccJMnTrVxMTEmICAABMZGWn+/ve/u3wwDh482LRo0cJYrVbTqlUrM3jwYLN7924PHlHlVeYcfPLJJ+bcc881/v7+JiwszAwfPtz8+uuvldpmbVTd56CuvQ8+/vhjI6nET/FxjxgxwvTp06fEOl27djVWq9W0a9fOLFiwoMR269L7oCbOQUN4H5TWv23bti593nzzTXPOOecYq9VqOnfubN577z3PHFAl1cTxp6SkOP8/EB4ebq6++mqTnp7uuYOqpMqegz59+pTbv1hN/y2wGFPGdRwAAIAGijlIAAAAbghIAAAAbghIAAAAbghIAAAAbghIAAAAbghIAAAAbghIAAAAbghIAFBPfPLJJ7JYLDp8+LC3SwHqPAISgEq79dZbZbFYNHPmTJf2FStWyGKxOF8bY/TPf/5TPXr0UEhIiJo0aaLOnTtr7NixFX6w5tGjRzV+/HjFxMQoICBAzZo1U58+ffTuu+86+0RFRSk1NbVajq2mFZ87i8UiPz8/RUdH68EHH9SxY8cqtZ2+ffsqJSXFpa1nz57av3+/bDZbNVYMNEwEJABVEhAQoCeffFK///57qcuNMRo2bJjuvfdeXX311frggw/0/fff6+WXX1ZAQIAee+yxCu3nzjvv1PLlyzVnzhzt2LFDa9as0Q033KCcnJzqPByP6t+/v/bv368ff/xRzz33nObPn68pU6ac8XatVqsiIiJcQiqAKqrWB5cAaBBGjBhhBg4caDp27GgeeOABZ/s777xjiv+svPHGG0aSeffdd0vdhsPhqNC+bDabWbhwYZnLS3tuU7HPPvvM9OrVywQEBJjWrVube+65xxw5csS5/NVXXzXx8fGmSZMmJjw83AwdOtRkZ2c7lxc/Q2rNmjWma9euJiAgwFx++eUmOzvbrF692nTs2NEEBweboUOHmoKCggodz4gRI8y1117r0nbdddeZbt26OV8fOnTIDBkyxLRs2dIEBgaa8847zyxevNhlG+7HnJmZ6az31Gc5vv3226ZTp07GarWatm3bmmeeeaZCdQINHSNIAKrE19dXTzzxhObMmaNffvmlxPI33nhDHTp00DXXXFPq+hUd5YiIiNDq1auVn59f6vLly5erdevWevTRR7V//37t379fkrRnzx71799f119/vb755hstXbpU69evV3JysnPdEydOaPr06fr666+1YsUK7d27V7feemuJfUydOlVpaWnauHGjfv75Zw0aNEipqalavHix3nvvPX3wwQeaM2dOhY7H3bZt27Rx40ZZrVZn27FjxxQfH6/33ntP27Zt0+jRozV8+HB98cUXkqTnn39ePXr00B133OE85sjIyBLb3rJliwYNGqQhQ4bo22+/1dSpUzVp0iQtXLiwSrUCDYq3ExqAuufUUZBLLrnE3HbbbcYY1xGkjh07mmuuucZlvbFjx5qgoCATFBRkWrVqVaF9/fe//zWtW7c2fn5+5sILLzQpKSlm/fr1Ln3atm1rnnvuOZe2UaNGmdGjR7u0ffbZZ8bHx8f88ccfpe7ryy+/NJJMfn6+MeZ/I0gffvihs8+MGTOMJLNnzx5n25gxY0xCQkKFjmfEiBHG19fXBAUFGX9/fyPJ+Pj4mLfffrvc9QYMGGDuu+8+5+s+ffqYsWPHuvRxH0EaNmyYufLKK136PPDAA6ZTp04VqhVoyBhBAnBGnnzySS1atEjbt28/bd8JEyZo69atmjx5so4cOVKh7V922WX68ccftW7dOt1www367rvv1Lt3b02fPr3c9b7++mstXLhQTZo0cf4kJCTI4XAoMzNT0skRlsTERLVp00bBwcHq06ePJGnfvn0u27rggguc/w4PD1fjxo3Vrl07l7YDBw5U6Hgk6fLLL9fWrVu1efNmjRgxQiNHjtT111/vXF5UVKTp06fr/PPPV2hoqJo0aaL333+/RF2ns337dl166aUubZdeeql27dqloqKiSm0LaGgISADOyGWXXaaEhASNHz/epT02NlY7d+50aWvWrJnat2+v5s2bV2offn5+6t27tx566CF98MEHevTRRzV9+nQVFhaWuc6RI0c0ZswYbd261fnz9ddfa9euXYqJiVFBQYESEhIUEhKi119/XV9++aXeeecdSSqxXT8/P+e/i799diqLxSKHw1Hh4wkKClL79u3VpUsXvfLKK9q8ebNefvll5/Knn35azz//vB566CF9/PHH2rp1qxISEso9XgDVq5G3CwBQ982cOVNdu3ZVhw4dnG1Dhw7VsGHD9O677+raa6+t1v116tRJf/75p44dOyar1Sqr1VpiRCQuLk7ff/+92rdvX+o2vv32W+Xk5GjmzJnO+TtfffVVtdZZET4+PnrkkUc0btw4DRs2TIGBgdqwYYOuvfZa3XzzzZIkh8OhH374QZ06dXKuV9oxuzv33HO1YcMGl7YNGzbonHPOka+vb/UfDFCPMIIE4Iydf/75uummmzR79mxn25AhQ3TDDTdoyJAhevTRR7V582bt3btX//3vf7V06dIKf0D37dtX8+fP15YtW7R3716tXr1ajzzyiC6//HKFhIRIOnkfpE8//VS//vqrDh06JEl66KGHtHHjRiUnJ2vr1q3atWuX3n33Xeck7TZt2shqtWrOnDn68ccf9e9///u0l+1qyo033ihfX1/NnTtX0snRt7Vr12rjxo3avn27xowZo+zsbJd1oqKinOf00KFDpY5g3XfffVq3bp2mT5+uH374QYsWLVJaWpruv/9+jxwXUJcRkABUi0cffdTlQ9pisWjp0qVKTU3V6tWr9Ze//EUdOnTQbbfdpsjISK1fv75C201ISNCiRYv017/+Veeee67uueceJSQk6M0333TZ9969exUTE6NmzZpJOjlv6L///a9++OEH9e7dW926ddPkyZPVsmVLSScv9y1cuFBvvfWWOnXqpJkzZ+qZZ56pxjNScY0aNVJycrKeeuopFRQUaOLEiYqLi1NCQoL69u2riIgIJSUluaxz//33y9fXV506dVKzZs1KnZ8UFxenN998U0uWLNF5552nyZMn69FHHy31m3oAXFmMMcbbRQAAANQmjCABAAC4ISAB8KpTv4bv/vPZZ595u7xK2bdvX7nHU9mv6QPwHi6xAfCq8h5a26pVKwUGBnqwmjPz559/au/evWUuj4qKUqNGfHkYqAsISAAAAG64xAYAAOCGgAQAAOCGgAQAAOCGgAQAAOCGgAQAAOCGgAQAAOCGgAQAAOCGgAQAAODm/wNtlzA89LJumwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAX4BJREFUeJzt3XtcVNX6P/DPgMxwEQZBuSkKCt5NBAMhS01qLEQ5p1NqpeTBKI9UhGVaKloapmnmpSxTsYtpppW3TEX9dlRC43K8oUcNb+mggs4AKujM+v3hj30cuY4xs7l83q/XvGDWevbez96H4zytvWZthRBCgIiIiIjqnI3cCRARERE1Viy0iIiIiCyEhRYRERGRhbDQIiIiIrIQFlpEREREFsJCi4iIiMhCWGgRERERWQgLLSIiIiILYaFFREREZCEstIiICKmpqVAoFDh9+rTcqRA1Kiy0iMgqDhw4gISEBHTr1g1OTk5o27YtnnnmGfz3v/+tENu/f38oFAooFArY2NjAxcUFnTp1wsiRI7F9+3azjrtx40b069cPHh4ecHR0RPv27fHMM89g69atdXVqFbz//vv48ccfK7Tv27cP06ZNw7Vr1yx27HtNmzZNupYKhQKOjo7o2rUrJk+eDL1eXyfHWLVqFebPn18n+yJqbFhoEZFVfPDBB1i3bh0GDhyIjz/+GPHx8fj1118RHByMw4cPV4hv06YNvvrqK3z55ZeYM2cOhgwZgn379uHxxx/HsGHDcOvWrRqP+eGHH2LIkCFQKBSYNGkSPvroIzz11FM4ceIEVq9ebYnTBFB9oTV9+nSrFlrlPv30U3z11VeYN28eOnfujJkzZ2LQoEGoi8fdstAiqlozuRMgoqYhKSkJq1atglKplNqGDRuGHj16YNasWfj6669N4tVqNZ5//nmTtlmzZuHVV1/FJ598Aj8/P3zwwQdVHu/27dt477338Nhjj2Hbtm0V+i9duvQXz6j+uH79OhwdHauN+cc//oGWLVsCAF5++WU89dRTWL9+PX777TeEh4dbI02iJokjWkRkFRERESZFFgAEBgaiW7duyM3NrdU+bG1tsWDBAnTt2hWLFi2CTqerMvbKlSvQ6/V46KGHKu338PAweX/z5k1MmzYNHTt2hL29Pby9vfH3v/8dp06dkmI+/PBDREREwN3dHQ4ODggJCcH3339vsh+FQoGSkhKsXLlSul33wgsvYNq0aXjzzTcBAP7+/lLf3XOivv76a4SEhMDBwQFubm4YPnw4zp07Z7L//v37o3v37sjMzMQjjzwCR0dHvP3227W6fnd79NFHAQB5eXnVxn3yySfo1q0bVCoVfHx8MG7cOJMRuf79+2Pz5s04c+aMdE5+fn5m50PUWHFEi4hkI4RAfn4+unXrVuttbG1tMWLECEyZMgV79uxBVFRUpXEeHh5wcHDAxo0b8corr8DNza3KfRoMBgwePBhpaWkYPnw4XnvtNRQVFWH79u04fPgwOnToAAD4+OOPMWTIEDz33HMoKyvD6tWr8fTTT2PTpk1SHl999RXGjBmD0NBQxMfHAwA6dOgAJycn/Pe//8W3336Ljz76SBpdatWqFQBg5syZmDJlCp555hmMGTMGly9fxsKFC/HII48gOzsbrq6uUr4FBQV44oknMHz4cDz//PPw9PSs9fUrV15Auru7Vxkzbdo0TJ8+HZGRkRg7diyOHz+OTz/9FAcOHMDevXthZ2eHd955BzqdDufPn8dHH30EAGjevLnZ+RA1WoKISCZfffWVACCWLVtm0t6vXz/RrVu3Krf74YcfBADx8ccfV7v/qVOnCgDCyclJPPHEE2LmzJkiMzOzQtzy5csFADFv3rwKfUajUfr9+vXrJn1lZWWie/fu4tFHHzVpd3JyErGxsRX2NWfOHAFA5OXlmbSfPn1a2NraipkzZ5q0Hzp0SDRr1sykvV+/fgKAWLJkSZXnfbfk5GQBQBw/flxcvnxZ5OXlic8++0yoVCrh6ekpSkpKhBBCrFixwiS3S5cuCaVSKR5//HFhMBik/S1atEgAEMuXL5faoqKiRLt27WqVD1FTw1uHRCSLY8eOYdy4cQgPD0dsbKxZ25aPmBQVFVUbN336dKxatQq9evXCL7/8gnfeeQchISEIDg42uV25bt06tGzZEq+88kqFfSgUCul3BwcH6ferV69Cp9Ph4YcfRlZWlln532v9+vUwGo145plncOXKFenl5eWFwMBA7Nq1yyRepVJh9OjRZh2jU6dOaNWqFfz9/fHSSy8hICAAmzdvrnJu144dO1BWVobExETY2Pzvo+LFF1+Ei4sLNm/ebP6JEjVBvHVIRFan1WoRFRUFtVqN77//Hra2tmZtX1xcDABwdnauMXbEiBEYMWIE9Ho9MjIykJqailWrViE6OhqHDx+Gvb09Tp06hU6dOqFZs+r/Sdy0aRNmzJiBnJwclJaWSu13F2P348SJExBCIDAwsNJ+Ozs7k/etW7euMN+tJuvWrYOLiwvs7OzQpk0b6XZoVc6cOQPgToF2N6VSifbt20v9RFQ9FlpEZFU6nQ5PPPEErl27hn//+9/w8fExex/ly0EEBATUehsXFxc89thjeOyxx2BnZ4eVK1ciIyMD/fr1q9X2//73vzFkyBA88sgj+OSTT+Dt7Q07OzusWLECq1atMvsc7mY0GqFQKPDzzz9XWnTeO+fp7pG12nrkkUekeWFEZD0stIjIam7evIno6Gj897//xY4dO9C1a1ez92EwGLBq1So4Ojqib9++95VH7969sXLlSly8eBHAncnqGRkZuHXrVoXRo3Lr1q2Dvb09fvnlF6hUKql9xYoVFWKrGuGqqr1Dhw4QQsDf3x8dO3Y093Qsol27dgCA48ePo3379lJ7WVkZ8vLyEBkZKbX91RE9osaMc7SIyCoMBgOGDRuG9PR0rF279r7WbjIYDHj11VeRm5uLV199FS4uLlXGXr9+Henp6ZX2/fzzzwD+d1vsqaeewpUrV7Bo0aIKseL/L+hpa2sLhUIBg8Eg9Z0+fbrShUmdnJwqXZTUyckJACr0/f3vf4etrS2mT59eYQFRIQQKCgoqP0kLioyMhFKpxIIFC0xyWrZsGXQ6ncm3PZ2cnKpdaoOoKeOIFhFZxfjx47FhwwZER0ejsLCwwgKl9y5OqtPppJjr16/j5MmTWL9+PU6dOoXhw4fjvffeq/Z4169fR0REBPr06YNBgwbB19cX165dw48//oh///vfiImJQa9evQAAo0aNwpdffomkpCTs378fDz/8MEpKSrBjxw7861//wtChQxEVFYV58+Zh0KBBePbZZ3Hp0iUsXrwYAQEBOHjwoMmxQ0JCsGPHDsybNw8+Pj7w9/dHWFgYQkJCAADvvPMOhg8fDjs7O0RHR6NDhw6YMWMGJk2ahNOnTyMmJgbOzs7Iy8vDDz/8gPj4eLzxxht/6fqbq1WrVpg0aRKmT5+OQYMGYciQITh+/Dg++eQTPPjggyb/e4WEhGDNmjVISkrCgw8+iObNmyM6Otqq+RLVW3J+5ZGImo7yZQmqelUX27x5cxEYGCief/55sW3btlod79atW2Lp0qUiJiZGtGvXTqhUKuHo6Ch69eol5syZI0pLS03ir1+/Lt555x3h7+8v7OzshJeXl/jHP/4hTp06JcUsW7ZMBAYGCpVKJTp37ixWrFghLZ9wt2PHjolHHnlEODg4CAAmSz289957onXr1sLGxqbCUg/r1q0Tffv2FU5OTsLJyUl07txZjBs3Thw/ftzk2lS39MW9yvO7fPlytXH3Lu9QbtGiRaJz587Czs5OeHp6irFjx4qrV6+axBQXF4tnn31WuLq6CgBc6oHoLgoh6uBBV0RERERUAedoEREREVkICy0iIiIiC2GhRURERGQhLLSIiIiILISFFhEREZGFsNAiIiIishAuWCojo9GICxcuwNnZmY+wICIiaiCEECgqKoKPjw9sbKofs2KhJaMLFy7A19dX7jSIiIjoPpw7dw5t2rSpNoaFloycnZ0B3PkfqrpnthEREVH9odfr4evrK32OV4eFlozKbxe6uLiw0CIiImpgajPth5PhiYiIiCyEhRYRERGRhbDQIiIiIrIQztFqAAwGA27duiV3Go2WnZ0dbG1t5U6DiIgaIRZa9ZgQAlqtFteuXZM7lUbP1dUVXl5eXM+MiIjqFAuteqy8yPLw8ICjoyOLAAsQQuD69eu4dOkSAMDb21vmjIiIqDFhoVVPGQwGqchyd3eXO51GzcHBAQBw6dIleHh48DYiERHVGU6Gr6fK52Q5OjrKnEnTUH6dOReOiIjqEguteo63C62D15mIiCyBtw6JiIio0SgoKEBZWVmV/Uql0qpTclhoERERUaNQUFCARYsW1RiXkJBgtWKLtw6pzr3wwgtQKBRQKBSws7ODp6cnHnvsMSxfvhxGo7HW+0lNTYWrq6vlEiUiokbl3pEsnc4ZeXl+0Omcq42zJI5oNWJyDp8OGjQIK1asgMFgQH5+PrZu3YrXXnsN33//PTZs2IBmzfinR0RElpOV1QsbNw6GEDZQKIyIjt6E4OBsq+fBT7tGSu7hU5VKBS8vLwBA69atERwcjD59+mDgwIFITU3FmDFjMG/ePKxYsQJ//PEH3NzcEB0djdmzZ6N58+bYvXs3Ro8eDeB/E9WTk5Mxbdo0fPXVV/j4449x/PhxODk54dFHH8X8+fPh4eFR5+dBREQNj07nLBVZACCEDTZuHIwOHU5CrS6yai68ddhI1XZY1JrDp48++ih69uyJ9evXAwBsbGywYMECHDlyBCtXrsTOnTsxYcIEAEBERATmz58PFxcXXLx4ERcvXsQbb7wB4M4SDO+99x7+85//4Mcff8Tp06fxwgsvWO08iIiofissdJeKrHJC2KCw0M3quXBEi6yqc+fOOHjwIAAgMTFRavfz88OMGTPw8ssv45NPPoFSqYRarYZCoZBGxsr985//lH5v3749FixYgAcffBDFxcVo3ry5Vc6DiIjqLze3AigURpNiS6Ewws2t0Oq5cESLrEoIId0K3LFjBwYOHIjWrVvD2dkZI0eOREFBAa5fv17tPjIzMxEdHY22bdvC2dkZ/fr1AwCcPXvW4vkTEVH9p1YXITp6ExSKO1/AKp+jZe3bhgBHtMjKcnNz4e/vj9OnT2Pw4MEYO3YsZs6cCTc3N+zZswdxcXEoKyurckX8kpISaDQaaDQafPPNN2jVqhXOnj0LjUZj1dugRERUvwUHZ6NDh5MoLHSDm1uhLEUWwEKLrGjnzp04dOgQXn/9dWRmZsJoNGLu3LmwsbkzsPrdd9+ZxCuVShgMBpO2Y8eOoaCgALNmzYKvry8A4Pfff7fOCRARUb2mVCpN3qvVRZUWWPfGWVK9uHW4ePFi+Pn5wd7eHmFhYdi/f3+18WvXrkXnzp1hb2+PHj16YMuWLSb9QghMnToV3t7ecHBwQGRkJE6cOCH1nz59GnFxcfD394eDgwM6dOiA5OTkCiMiBw8exMMPPwx7e3v4+vpi9uzZZufSVJWWlkKr1eLPP/9EVlYW3n//fQwdOhSDBw/GqFGjEBAQgFu3bmHhwoX4448/8NVXX2HJkiUm+/Dz80NxcTHS0tJw5coVXL9+HW3btoVSqZS227BhA9577z2ZzpKIiOoTd3d3JCQkID4+vsqXNRcrBepBobVmzRokJSUhOTkZWVlZ6NmzJzQaDS5dulRp/L59+zBixAjExcUhOzsbMTExiImJweHDh6WY2bNnY8GCBViyZAkyMjLg5OQEjUaDmzdvArgzKmI0GvHZZ5/hyJEj+Oijj7BkyRK8/fbb0j70ej0ef/xxtGvXDpmZmZgzZw6mTZuGzz//3KxcmqqtW7fC29sbfn5+GDRoEHbt2oUFCxbgp59+gq2tLXr27Il58+bhgw8+QPfu3fHNN98gJSXFZB8RERF4+eWXMWzYMLRq1QqzZ89Gq1atkJqairVr16Jr166YNWsWPvzwQ5nOkoiI6ht3d3d4e3tX+bJmkQUACiGEsOoR7xEWFoYHH3xQWvPJaDTC19cXr7zyCiZOnFghftiwYSgpKcGmTZuktj59+iAoKAhLliyBEAI+Pj4YP368tByATqeDp6cnUlNTMXz48ErzmDNnDj799FP88ccfAIBPP/0U77zzDrRarTTEOHHiRPz44484duxYrXKpiV6vh1qthk6ng4uLi0nfzZs3kZeXB39/f9jb29e4r3vJvY5WQ/NXrzcREVlHfXiWYXWf3/eSdY5WWVkZMjMzMWnSJKnNxsYGkZGRSE9Pr3Sb9PR0JCUlmbRpNBr8+OOPAIC8vDxotVpERkZK/Wq1GmFhYUhPT6+y0NLpdHBz+9/6Gunp6XjkkUdM7uNqNBp88MEHuHr1Klq0aFFjLvcqLS1FaWmp9F6v11caVxfKh0/l/mMkIiKqK/cOIuh0zigsdIebW4HJXKz6NIgga6F15coVGAwGeHp6mrR7enpKo0b30mq1lcZrtVqpv7ytqph7nTx5EgsXLjS5BaXVauHv719hH+V9LVq0qDGXe6WkpGD69OmV9llCffkjIyIiqgt3Dx5U94id+vQtdNnnaMntzz//xKBBg/D000/jxRdftOixJk2aBJ1OJ73OnTtn0eMRERE1RlU9Yufeh0fXB7IWWi1btoStrS3y8/NN2vPz8yusBl7Oy8ur2vjyn7XZ54ULFzBgwABERESYTHKv7jh3H6OmXO6lUqng4uJi8iIiIiLz1KdH7NRE1kJLqVQiJCQEaWlpUpvRaERaWhrCw8Mr3SY8PNwkHgC2b98uxfv7+8PLy8skRq/XIyMjw2Sff/75J/r374+QkBCsWLFCWsvp7uP8+uuvuHXrlslxOnXqhBYtWtQqFyIiIqp75Y/YuZtcj9ipiey3DpOSkrB06VKsXLkSubm5GDt2LEpKSjB69GgAwKhRo0wmy7/22mvYunUr5s6di2PHjmHatGn4/fffkZCQAABQKBRITEzEjBkzsGHDBhw6dAijRo2Cj48PYmJiAPyvyGrbti0+/PBDXL58GVqt1mRu1bPPPgulUom4uDgcOXIEa9aswccff2wy+b2mXIiIiKju1adH7NRE9pXhhw0bhsuXL2Pq1KnQarUICgrC1q1bpUnmZ8+eNRltioiIwKpVqzB58mS8/fbbCAwMxI8//oju3btLMRMmTEBJSQni4+Nx7do19O3bF1u3bpW+tr99+3acPHkSJ0+eRJs2bUzyKV/tQq1WY9u2bRg3bhxCQkLQsmVLTJ06FfHx8WblQkRERHWvvjxipyayr6PVlFlyHS0yD683EVH9d/HixQpzqisTHx8Pb29vi+Vhzjpast86JCIiIqqN2j6j0JrPMqyJ7LcOicy1e/duDBgwAFevXoWrq2uttvHz80NiYiISExMtmhsREVlOQ1yMmyNaVOdeeOEFKBQKvPzyyxX6xo0bB4VCgRdeeMH6iRERUYNX355lWBMWWmQRvr6+WL16NW7cuCG13bx5E6tWrULbtm1lzIyIiMh6WGiRRQQHB8PX1xfr16+X2tavX4+2bduiV69eUltpaSleffVVeHh4wN7eHn379sWBAwdM9rVlyxZ07NgRDg4OGDBgAE6fPl3heHv27MHDDz8MBwcH+Pr64tVXX0VJSYnFzo+IiKg2WGg1EefPA7t23flpLf/85z+xYsUK6f3y5cul9dHKTZgwAevWrcPKlSuRlZWFgIAAaDQaFBbeWXTu3Llz+Pvf/47o6Gjk5ORgzJgxmDhxosk+Tp06hUGDBuGpp57CwYMHsWbNGuzZs4frmRERkexYaDUBy5YB7doBjz565+eyZdY57vPPP489e/bgzJkzOHPmDPbu3Yvnn39e6i8pKcGnn36KOXPm4IknnkDXrl2xdOlSODg4YNn/T/LTTz9Fhw4dMHfuXHTq1AnPPfdchfldKSkpeO6555CYmIjAwEBERERgwYIF+PLLL3Hz5k3rnCwREVEl+K3DRu78eSA+HjD+/ycVGI3ASy8BGg1wz1qtda5Vq1aIiopCamoqhBCIiopCy5Ytpf5Tp07h1q1beOihh6Q2Ozs7hIaGIjc3FwCQm5uLsLAwk/3e+4ij//znPzh48CC++eYbqU0IAaPRiLy8PHTp0sUSp0dERFQjFlqN3IkT/yuyyhkMwMmTli+0gDu3D8tv4S1evNgixyguLsZLL72EV199tUIfJ94TEZGcWGg1coGBgI2NabFlawsEBFjn+IMGDUJZWRkUCgU0Go1JX4cOHaBUKrF37160a9cOAHDr1i0cOHBAWu+qS5cu2LBhg8l2v/32m8n74OBgHD16FAHWOikiIqJa4hytRq5NG+Dzz+8UV8Cdn599Zp3RrDvHs0Vubi6OHj0K2/Ik/j8nJyeMHTsWb775JrZu3YqjR4/ixRdfxPXr1xEXFwcAePnll3HixAm8+eabOH78OFatWoXU1FST/bz11lvYt28fEhISkJOTgxMnTuCnn37iZHgiIpIdR7SagLi4O3OyTp68M5JlrSKrXHXPgZo1axaMRiNGjhyJoqIi9O7dG7/88gtatGgB4M6tv3Xr1uH111/HwoULERoaivfffx///Oc/pX088MAD+L//+z+88847ePjhhyGEQIcOHTBs2DCLnxsREVF1+FBpGfGh0vUHrzcREdUWHypNREREVA+w0CIiIiKyEBZaRERERBbCQouIiIjIQlho1XP8roJ18DoTEZElsNCqp+zs7AAA169flzmTpqH8OpdfdyIiorrAdbTqKVtbW7i6uuLSpUsAAEdHRygUCpmzanyEELh+/TouXboEV1fXCouqEhER/RUstOoxLy8vAJCKLbIcV1dX6XoTERHVFRZa9ZhCoYC3tzc8PDxw69YtudNptOzs7DiSRUREFsFCqwGwtbVlIUBERNQAcTI8ERERkYWw0CIiIiKyEBZaRERERBbCQouIiIjIQlhoEREREVkICy0iIiIiC2GhRURERGQhXEeLiIiI6lxBQQHKysqq7FcqlXB3d7diRvJgoUVERER1qqCgAIsWLaoxLiEhodEXW7x1SERERHWqupGs+4lryGQvtBYvXgw/Pz/Y29sjLCwM+/fvrzZ+7dq16Ny5M+zt7dGjRw9s2bLFpF8IgalTp8Lb2xsODg6IjIzEiRMnTGJmzpyJiIgIODo6wtXVtcIxUlNToVAoKn2VP+B59+7dlfZrtdq/dkGIiIgaGZ3OGXl5ftDpnOVOxepkLbTWrFmDpKQkJCcnIysrCz179oRGo5GKmXvt27cPI0aMQFxcHLKzsxETE4OYmBgcPnxYipk9ezYWLFiAJUuWICMjA05OTtBoNLh586YUU1ZWhqeffhpjx46t9DjDhg3DxYsXTV4ajQb9+vWDh4eHSezx48dN4u7tJyIiasqysnph/vxErFwZi/nzE5GV1UvulKxLyCg0NFSMGzdOem8wGISPj49ISUmpNP6ZZ54RUVFRJm1hYWHipZdeEkIIYTQahZeXl5gzZ47Uf+3aNaFSqcS3335bYX8rVqwQarW6xjwvXbok7OzsxJdffim17dq1SwAQV69erXH7quh0OgFA6HS6+94HERFRfXPhwgUxbdo08frrc4VCYRCAkF4KhUG8/vpcMW3aNHHhwgW5U70v5nx+yzaiVVZWhszMTERGRkptNjY2iIyMRHp6eqXbpKenm8QDgEajkeLz8vKg1WpNYtRqNcLCwqrcZ218+eWXcHR0xD/+8Y8KfUFBQfD29sZjjz2GvXv3Vruf0tJS6PV6kxcREVFjVVjojntLDSFsUFjoJlNG1idboXXlyhUYDAZ4enqatHt6elY5z0mr1VYbX/7TnH3WxrJly/Dss8/CwcFBavP29saSJUuwbt06rFu3Dr6+vujfvz+ysrKq3E9KSgrUarX08vX1ve+ciIiI6js3twIoFEaTNoXCCDe3Qpkysj7ZJ8PXd+np6cjNzUVcXJxJe6dOnfDSSy8hJCQEERERWL58OSIiIvDRRx9Vua9JkyZBp9NJr3Pnzlk6fSIiItmo1UWIjt4kFVsKhRHR0ZugVhfJnJn1yLaOVsuWLWFra4v8/HyT9vz8fHh5eVW6jZeXV7Xx5T/z8/Ph7e1tEhMUFHRfeX7xxRcICgpCSEhIjbGhoaHYs2dPlf0qlQoqleq+8iAiImoolEql9HtwcDY6dDiJwkI3uLkVmhRZd8c1VrIVWkqlEiEhIUhLS0NMTAwAwGg0Ii0tDQkJCZVuEx4ejrS0NCQmJkpt27dvR3h4OADA398fXl5eSEtLkworvV6PjIyMKr9hWJ3i4mJ89913SElJqVV8Tk6OSYFHRETUFLm7uyMhIYErw0PmleGTkpIQGxuL3r17IzQ0FPPnz0dJSQlGjx4NABg1ahRat24tFTqvvfYa+vXrh7lz5yIqKgqrV6/G77//js8//xwAoFAokJiYiBkzZiAwMBD+/v6YMmUKfHx8pGIOAM6ePYvCwkKcPXsWBoMBOTk5AICAgAA0b95ciluzZg1u376N559/vkLu8+fPh7+/P7p164abN2/iiy++wM6dO7Ft2zYLXS0iIqKGoykUUbUha6E1bNgwXL58GVOnToVWq0VQUBC2bt0qTWY/e/YsbGz+N40sIiICq1atwuTJk/H2228jMDAQP/74I7p37y7FTJgwASUlJYiPj8e1a9fQt29fbN26Ffb29lLM1KlTsXLlSul9r1531vTYtWsX+vfvL7UvW7YMf//73ytd1LSsrAzjx4/Hn3/+CUdHRzzwwAPYsWMHBgwYUFeXh4iIiBo4hRBCyJ1EU6XX66FWq6HT6eDi4iJ3OkRERFQL5nx+81uHRERERBbCQouIiIjIQlhoEREREVkICy0iIiIiC2GhRURERGQhLLSIiIiILISFFhEREZGFsNAiIiIishAWWkREREQWwkKLiIiIyEJYaBERERFZCAstIiIiIgthoUVERERkISy0iIiIiCyEhRYRERGRhbDQIiIiIrIQFlpEREREFsJCi4iIiMhCmsmdABEREcmnoKAAZWVlVfYrlUq4u7tbMaPGhYUWERFRE1VQUIBFixbVGJeQkMBi6z7x1iEREVETVd1I1v3EUUUstIiIiAgAoNM5Iy/PDzqds9ypNBq8dUhERETIyuqFjRsHQwgbKBRGREdvQnBwttxpNXgc0SIiImridDpnqcgCACFssHHjYI5s1QEWWkRERE1cYaG7VGSVE8IGhYVuMmXUeLDQIiIiauLc3AqgUBhN2hQKI9zcCmXKqPFgoUVERNTEqdVFiI7eJBVb5XO01OoimTNr+DgZnoiIqIlSKpXS78HB2ejQ4SQKC93g5lZoUmTdHUfmYaFFRETURLm7uyMhIYErw1sQCy0iIqImjEWUZXGOFhEREZGFsNAiIiIishAWWkREREQWInuhtXjxYvj5+cHe3h5hYWHYv39/tfFr165F586dYW9vjx49emDLli0m/UIITJ06Fd7e3nBwcEBkZCROnDhhEjNz5kxERETA0dERrq6ulR5HoVBUeK1evdokZvfu3QgODoZKpUJAQABSU1PNPn8iIiJqvGQttNasWYOkpCQkJycjKysLPXv2hEajwaVLlyqN37dvH0aMGIG4uDhkZ2cjJiYGMTExOHz4sBQze/ZsLFiwAEuWLEFGRgacnJyg0Whw8+ZNKaasrAxPP/00xo4dW21+K1aswMWLF6VXTEyM1JeXl4eoqCgMGDAAOTk5SExMxJgxY/DLL7/8tYtCREREjYeQUWhoqBg3bpz03mAwCB8fH5GSklJp/DPPPCOioqJM2sLCwsRLL70khBDCaDQKLy8vMWfOHKn/2rVrQqVSiW+//bbC/lasWCHUanWlxwIgfvjhhypznzBhgujWrZtJ27Bhw4RGo6lym3vpdDoBQOh0ulpvQ0RERPIy5/NbthGtsrIyZGZmIjIyUmqzsbFBZGQk0tPTK90mPT3dJB4ANBqNFJ+XlwetVmsSo1arERYWVuU+qzNu3Di0bNkSoaGhWL58OYQQtc6lMqWlpdDr9SYvIiIiarxkW0frypUrMBgM8PT0NGn39PTEsWPHKt1Gq9VWGq/VaqX+8raqYmrr3XffxaOPPgpHR0ds27YN//rXv1BcXIxXX3212lz0ej1u3LgBBweHCvtMSUnB9OnTzcqDiIiIGi4uWFqFKVOmSL/36tULJSUlmDNnjlRo3Y9JkyYhKSlJeq/X6+Hr6/uX8iQiIqL6S7Zbhy1btoStrS3y8/NN2vPz8+Hl5VXpNl5eXtXGl/80Z5+1FRYWhvPnz6O0tLTaXFxcXCodzQIAlUoFFxcXkxcRERE1XrIVWkqlEiEhIUhLS5PajEYj0tLSEB4eXuk24eHhJvEAsH37dine398fXl5eJjF6vR4ZGRlV7rO2cnJy0KJFC6hUqlrlQkRERCTrrcOkpCTExsaid+/eCA0Nxfz581FSUoLRo0cDAEaNGoXWrVsjJSUFAPDaa6+hX79+mDt3LqKiorB69Wr8/vvv+PzzzwHcWfsqMTERM2bMQGBgIPz9/TFlyhT4+PiYLM1w9uxZFBYW4uzZszAYDMjJyQEABAQEoHnz5ti4cSPy8/PRp08f2NvbY/v27Xj//ffxxhtvSPt4+eWXsWjRIkyYMAH//Oc/sXPnTnz33XfYvHmzdS4eERER1X+W/xJk9RYuXCjatm0rlEqlCA0NFb/99pvU169fPxEbG2sS/91334mOHTsKpVIpunXrJjZv3mzSbzQaxZQpU4Snp6dQqVRi4MCB4vjx4yYxsbGxAkCF165du4QQQvz8888iKChING/eXDg5OYmePXuKJUuWCIPBYLKfXbt2iaCgIKFUKkX79u3FihUrzDp3Lu9ARETU8Jjz+a0Q4q41C8iq9Ho91Go1dDod52sRERE1EOZ8fsv+CB4iIiKixoqFFhEREZGFsNAiIiIishAWWkREREQWwkKLiIiIyEJYaBERERFZCAstIiIiIgthoUVERERkISy0iIiIiCyEhRYRERGRhbDQIiIiIrIQFlpEREREFsJCi4iIiMhCWGgRERERWQgLLSIiIiILYaFFREREZCHN5E6AiIioMSkoKEBZWVmV/UqlEu7u7lbMiOTEQouIiKiOFBQUYNGiRTXGJSQksNhqInjrkIiIqI7cO5Kl0zkjL88POp1ztXHUeHFEi4iIyAKysnph48bBEMIGCoUR0dGbEBycLXdaZGUc0SIiIqpjOp2zVGQBgBA22LhxcIWRLWr8WGgRERHVscJCd6nIKieEDQoL3WTKiOTCQouIiKiOubkVQKEwmrQpFEa4uRXKlBHJhYUWERFRHVOrixAdvUkqtsrnaKnVRTJnRtbGyfBEREQWEBycjQ4dTqKw0A1uboUsspooFlpERER1RKlUmrxXq4sqLbDujaPGi4UWERFRHXF3d0dCQgJXhicJCy0iIiIz3P2InQsXbJCX1wz+/rfh43NnPpZSqYS3t7ecKVI9wkKLiIiolu5+xE51C5LyETtUjt86JCIiqqXykayaFiTlI3aoHAstIiIiM3FBUqotFlpERERm4oKkVFsstIiIiMzEBUmptmQvtBYvXgw/Pz/Y29sjLCwM+/fvrzZ+7dq16Ny5M+zt7dGjRw9s2bLFpF8IgalTp8Lb2xsODg6IjIzEiRMnTGJmzpyJiIgIODo6wtXVtcIx/vOf/2DEiBHw9fWFg4MDunTpgo8//tgkZvfu3VAoFBVeWq32/i4EERE1KMHB2UhMnI/Y2FQkJs6XJsIT3U3WQmvNmjVISkpCcnIysrKy0LNnT2g0Gly6dKnS+H379mHEiBGIi4tDdnY2YmJiEBMTg8OHD0sxs2fPxoIFC7BkyRJkZGTAyckJGo0GN2/elGLKysrw9NNPY+zYsZUeJzMzEx4eHvj6669x5MgRvPPOO5g0aZL0TZO7HT9+HBcvXpReHh4ef/GqEBFRQ6FWF8Hf/wxHsqhKCiGEkOvgYWFhePDBB6UCxmg0wtfXF6+88gomTpxYIX7YsGEoKSnBpk2bpLY+ffogKCgIS5YsgRACPj4+GD9+PN544w0AgE6ng6enJ1JTUzF8+HCT/aWmpiIxMRHXrl2rMddx48YhNzcXO3fuBHBnRGvAgAG4evVqpaNitaHX66FWq6HT6eDi4nJf+yAiIuu5ePEiPv/88xrj4uPjuZZWI2bO57dsI1plZWXIzMxEZGTk/5KxsUFkZCTS09Mr3SY9Pd0kHgA0Go0Un5eXB61WaxKjVqsRFhZW5T5rS6fTwc2t4rdJgoKC4O3tjcceewx79+6tdh+lpaXQ6/UmLyIiajhq++gcPmKHysm2YOmVK1dgMBjg6elp0u7p6Yljx45Vuo1Wq600vnxeVPnP6mLux759+7BmzRps3rxZavP29saSJUvQu3dvlJaW4osvvkD//v2RkZGB4ODgSveTkpKC6dOn33ceREQkLz5ih8zFleFrcPjwYQwdOhTJycl4/PHHpfZOnTqhU6dO0vuIiAicOnUKH330Eb766qtK9zVp0iQkJSVJ7/V6PXx9fS2XPBER1TkWUWQO2W4dtmzZEra2tsjPzzdpz8/Ph5eXV6XbeHl5VRtf/tOcfVbn6NGjGDhwIOLj4zF58uQa40NDQ3Hy5Mkq+1UqFVxcXExeRERE1HjJVmgplUqEhIQgLS1NajMajUhLS0N4eHil24SHh5vEA8D27duleH9/f3h5eZnE6PV6ZGRkVLnPqhw5cgQDBgxAbGwsZs6cWattcnJyOPmRiIiIJLLeOkxKSkJsbCx69+6N0NBQzJ8/HyUlJRg9ejQAYNSoUWjdujVSUlIAAK+99hr69euHuXPnIioqCqtXr8bvv/8ufQNEoVAgMTERM2bMQGBgIPz9/TFlyhT4+PggJiZGOu7Zs2dRWFiIs2fPwmAwICcnBwAQEBCA5s2b4/Dhw3j00Ueh0WiQlJQkze+ytbVFq1atAADz58+Hv78/unXrhps3b+KLL77Azp07sW3bNitdPSIiIqr3hMwWLlwo2rZtK5RKpQgNDRW//fab1NevXz8RGxtrEv/dd9+Jjh07CqVSKbp16yY2b95s0m80GsWUKVOEp6enUKlUYuDAgeL48eMmMbGxsQJAhdeuXbuEEEIkJydX2t+uXTtpHx988IHo0KGDsLe3F25ubqJ///5i586dZp27TqcTAIROpzNrOyIiIpKPOZ/fsq6j1dRxHS0iInkUFBRI3xy8cMEGeXnN4O9/Gz4+dx6pw28OUnXM+fzmtw6JiKhJKSgokBbKzsrqhY0bB0MIG+l5heWP0klISGCxRX+Z7M86JCIisqbykSydzlkqsgBACBts3DgYOp2zSRzRX8FCi4iImqTCQnepyConhA0KCys+BYTofrHQIiKiJsnNrQAKhdGkTaEwws2tUKaMqDEyu9DatGkTpk6dKj3Xb+fOnXjyyScxaNCgWj1ok4iIqD5Qq4sQHb1JKrbK52ip1UUyZ0aNiVmT4T/77DMkJCSgZ8+e+Pjjj7F48WL861//wrBhw2Bra4vExETcuHEDr732mqXyJSIiqjPBwdno0OEkCgvd4OZWyCKL6pxZhdaCBQvwySef4MUXX8SuXbvw5JNPYu7cufjXv/4FAOjTpw9mz57NQouIiBoMtbqIBRZZjFm3DvPy8qDRaAAAAwYMgMFgwCOPPCL19+/fH2fOnKnbDImIiIgaKLMKLXd3d6mQunDhAm7fvo2zZ89K/WfOnIGbG7+tQURE9ZdSqazTOKLqmHXrcOjQoYiLi0NsbCw2bNiAUaNGYfz48bCxsYFCocCbb76Jxx9/3FK5EhER/WXu7u5ISEiodp0srgxPdcWsQuuDDz5AWVkZVq9ejYiICCxcuBALFizA0KFDcevWLfTr1096ADQREVF9xSKKrKVOnnV48+ZN3Lp1C87OznWRU5PBZx0SERE1PFZ/1qG9vT3s7e3rYldEREREjYZZhVZSUlKt4ubNm3dfyRARERE1JmYVWtnZ2Sbv9+zZg5CQEDg4OEhtCoWibjIjIiIiauDMKrR27dpl8t7Z2RmrVq1C+/bt6zQpIiIiosaAD5UmIiIishAWWkREREQWwkKLiIiIyELMmqN18OBBk/dCCBw7dgzFxcUm7Q888MBfz4yIiIiogTNrwdLyR+1Utkl5u0KhgMFgqNMkGysuWEpERNTwWGzB0ry8vL+UGBEREVFTYlah1a5dO0vlQURERNTomD0ZXgiBvLw83L59GwBQVlaGNWvW4Msvv8SVK1fqPEEiIiKihsqsEa3jx49Do9Hg3LlzaN++PbZt24ann34ax44dgxACjo6O2LdvHwIDAy2VLxEREVGDYdaI1ltvvYWePXsiJycHgwcPRlRUFNq0aYOrV6+isLAQ4eHhePfddy2VKxEREVGDYta3Dj08PLBt2zYEBQWhpKQEzs7O+PXXX9G3b18AwL59+zBixAicOXPGYgk3JvzWIRERUcNjzue3WSNaxcXFcHNzAwA4OTnByckJ3t7eUr+vry/y8/PvI2UiIiKixsesQsvHxwdnz56V3s+ePRseHh7S+8uXL6NFixZ1lx0RERFRA2ZWoRUZGYljx45J78eOHQtnZ2fp/bZt2xAcHFx32RERERE1YGbN0arJ6dOnoVKpTG4nUtU4R4uIiKjhsdgcrZ07d6Jr167Q6/UV+nQ6HaKionDy5EnzsiUiokavoKAAFy9erPJVUFAgd4pEFmHWOlrz58/Hiy++WGn1plar8dJLL2HevHl4+OGH6yxBIiJq2AoKCrBo0aIa4xISEuDu7m6FjIisx6wRrf/85z8YNGhQlf2PP/44MjMzzUpg8eLF8PPzg729PcLCwrB///5q49euXYvOnTvD3t4ePXr0wJYtW0z6hRCYOnUqvL294eDggMjISJw4ccIkZubMmYiIiICjoyNcXV0rPc7Zs2cRFRUFR0dHeHh44M0335RWwy+3e/duBAcHQ6VSISAgAKmpqWadOxFRU1BWVmbyXqdzRl6eH3Q652rjiBoDswqt/Px82NnZVdnfrFkzXL58udb7W7NmDZKSkpCcnIysrCz07NkTGo0Gly5dqjS+fJ2uuLg4ZGdnIyYmBjExMTh8+LAUM3v2bCxYsABLlixBRkYGnJycoNFocPPmTSmmrKwMTz/9NMaOHVvpcQwGA6KiolBWVoZ9+/Zh5cqVSE1NxdSpU6WYvLw8REVFYcCAAcjJyUFiYiLGjBmDX375pdbnT0TU1GRl9cL8+YlYuTIW8+cnIiurl9wpEVmWMEP79u3FDz/8UGX/unXrhL+/f633FxoaKsaNGye9NxgMwsfHR6SkpFQa/8wzz4ioqCiTtrCwMPHSSy8JIYQwGo3Cy8tLzJkzR+q/du2aUKlU4ttvv62wvxUrVgi1Wl2hfcuWLcLGxkZotVqp7dNPPxUuLi6itLRUCCHEhAkTRLdu3Uy2GzZsmNBoNDWc9f/odDoBQOh0ulpvQ0TU0Fy4cEFMmzZNvP76XKFQGAQgpJdCYRCvvz5XTJs2TVy4cEHuVIlqxZzPb7NGtJ588klMmTLFZHSo3I0bN5CcnIzBgwfXal9lZWXIzMxEZGSk1GZjY4PIyEikp6dXuk16erpJPABoNBopPi8vD1qt1iRGrVYjLCysyn1WdZwePXrA09PT5Dh6vR5HjhypVS6VKS0thV6vN3kRETUVhYXuuPdjRwgbFBa6yZQRkeWZNRl+8uTJWL9+PTp27IiEhAR06tQJAHDs2DEsXrwYBoMB77zzTq32deXKFRgMBpNiBgA8PT1N1uq6m1arrTReq9VK/eVtVcXURlXHufsYVcXo9XrcuHEDDg4OFfabkpKC6dOn1zoPIqLGxM2tAAqF0aTYUiiMcHMrlDErIssya0TL09MT+/btQ/fu3TFp0iT87W9/w9/+9je8/fbb6N69O/bs2VOh+KD/mTRpEnQ6nfQ6d+6c3CkREVmNWl2E6OhNUCiMAO4UWdHRm6BWF8mcGZHlmDWiBQDt2rXDli1bcPXqVZw8eRJCCAQGBpr96J2WLVvC1ta2wrMR8/Pz4eXlVek2Xl5e1caX/8zPzzdZNDU/Px9BQUG1zs3Ly6vCtx/Lj3v3sSrLxcXFpdLRLABQqVRQqVS1zoOIqLEJDs5Ghw4nUVjoBje3QhZZ1OiZNaJ1txYtWuDBBx9EaGjofT3fUKlUIiQkBGlpaVKb0WhEWloawsPDK90mPDzcJB4Atm/fLsX7+/vDy8vLJEav1yMjI6PKfVZ1nEOHDpl8+3H79u1wcXFB165da5ULERHdoVQqTd6r1UXw9z9Toci6N46oUbD83PyqrV69WqhUKpGamiqOHj0q4uPjhaurq/Rtv5EjR4qJEydK8Xv37hXNmjUTH374ocjNzRXJycnCzs5OHDp0SIqZNWuWcHV1FT/99JM4ePCgGDp0qPD39xc3btyQYs6cOSOys7PF9OnTRfPmzUV2drbIzs4WRUVFQgghbt++Lbp37y4ef/xxkZOTI7Zu3SpatWolJk2aJO3jjz/+EI6OjuLNN98Uubm5YvHixcLW1lZs3bq11ufPbx0SUVNx5coVceHChSpfV65ckTtFoloz5/Nb1kJLCCEWLlwo2rZtK5RKpQgNDRW//fab1NevXz8RGxtrEv/dd9+Jjh07CqVSKbp16yY2b95s0m80GsWUKVOEp6enUKlUYuDAgeL48eMmMbGxsQJAhdeuXbukmNOnT4snnnhCODg4iJYtW4rx48eLW7dumexn165dIigoSCiVStG+fXuxYsUKs86dhRYREVHDY87nd50+VJrMw4dKExERNTwWe6g0EREREdUeCy0iIiIiC2GhRURERGQhZq+jRUREjVNBQQHKysqq7FcqlXB3d7diRkQNHwstIiJCQUEBFi1aVGNcQkICiy0iM/DWIRERmSzQXBdxRHQHCy0iIsLt27frNI6I7mChRUREFeh0zsjL84NO5yx3KkQNGudoERGRiaysXtiwYTDu/Le4EUOGbEJwcLbcaRE1SBzRIiIiiU7nfFeRBQA22LBhMEe2iO4TCy0iIpKcO+eLih8NNjh3ro0c6RA1eCy0iIiIiCyEhRYREcHOzg4A4Ot7DoAw6VMojPD1PW8SR0S1w0KLiIjQqlUrAIBaXYQhQzZCoTACuFNkRUdvglpdZBJHRLWjEEKImsPIEvR6PdRqNXQ6HVxcXOROh4iauLsfwXPhgg1On24GP7/b8PG5U3TxETxEd5jz+c3lHYiICABMiihvbyAkRMZkiBoJ3jokIiIishAWWkREREQWwkKLiIiIyEJYaBERERFZCAstIiIiIgthoUVERERkISy0iIiIiCyEhRYRERGRhbDQIiIiIrIQFlpEREREFsJCi4iIiMhCWGgRERERWQgLLSIiIiILaSZ3AkRETVFBQQHKysqq7FcqlXB3d7diRkRkCSy0iIisrKCgAIsWLaoxLiEhgcUWUQPHW4dERFZW3UjW/cQRUf3FQouIiIjIQupFobV48WL4+fnB3t4eYWFh2L9/f7Xxa9euRefOnWFvb48ePXpgy5YtJv1CCEydOhXe3t5wcHBAZGQkTpw4YRJTWFiI5557Di4uLnB1dUVcXByKi4ul/mnTpkGhUFR4OTk5STGpqakV+u3t7evgihAREVFjIHuhtWbNGiQlJSE5ORlZWVno2bMnNBoNLl26VGn8vn37MGLECMTFxSE7OxsxMTGIiYnB4cOHpZjZs2djwYIFWLJkCTIyMuDk5ASNRoObN29KMc899xyOHDmC7du3Y9OmTfj1118RHx8v9b/xxhu4ePGiyatr1654+umnTfJxcXExiTlz5kwdXyEiIiJqqBRCCCFnAmFhYXjwwQeliaFGoxG+vr545ZVXMHHixArxw4YNQ0lJCTZt2iS19enTB0FBQViyZAmEEPDx8cH48ePxxhtvAAB0Oh08PT2RmpqK4cOHIzc3F127dsWBAwfQu3dvAMDWrVvx5JNP4vz58/Dx8alw3P/85z8ICgrCr7/+iocffhjAnRGtxMREXLt27b7OXa/XQ61WQ6fTwcXF5b72QUQNz8WLF/H5559L73U6ZxQWusPNrQBqdZHUHh8fD29vbzlSJKJqmPP5LeuIVllZGTIzMxEZGSm12djYIDIyEunp6ZVuk56ebhIPABqNRorPy8uDVqs1iVGr1QgLC5Ni0tPT4erqKhVZABAZGQkbGxtkZGRUetwvvvgCHTt2lIqscsXFxWjXrh18fX0xdOhQHDlypMrzLS0thV6vN3kRUdOWldUL8+cnYuXKWMyfn4isrF5yp0REdUjWQuvKlSswGAzw9PQ0aff09IRWq610G61WW218+c+aYjw8PEz6mzVrBjc3t0qPe/PmTXzzzTeIi4szae/UqROWL1+On376CV9//TWMRiMiIiJw/vz5SnNPSUmBWq2WXr6+vpXGEVHToNM5Y+PGwRDizj/FQthg48bB0OmcZc6MiOqK7HO0GoIffvgBRUVFiI2NNWkPDw/HqFGjEBQUhH79+mH9+vVo1aoVPvvss0r3M2nSJOh0Oul17tw5a6RPRPWMUqkEABQWuktFVjkhbFBY6GYSR0QNl6wLlrZs2RK2trbIz883ac/Pz4eXl1el23h5eVUbX/4zPz/fZG5Dfn4+goKCpJh7J9vfvn0bhYWFlR73iy++wODBgyuMkt3Lzs4OvXr1wsmTJyvtV6lUUKlU1e6DiBo/d3d3JCQk4PTp2/jqKwGjUSH12doKvPLKE/Dza8bFSokaAVlHtJRKJUJCQpCWlia1GY1GpKWlITw8vNJtwsPDTeIBYPv27VK8v78/vLy8TGL0ej0yMjKkmPDwcFy7dg2ZmZlSzM6dO2E0GhEWFmay77y8POzatavCbcPKGAwGHDp0iJNXiahG7u7uCAnxxOefK2Bre6fN1hb47DMFQkI8WWQRNRZCZqtXrxYqlUqkpqaKo0ePivj4eOHq6iq0Wq0QQoiRI0eKiRMnSvF79+4VzZo1Ex9++KHIzc0VycnJws7OThw6dEiKmTVrlnB1dRU//fSTOHjwoBg6dKjw9/cXN27ckGIGDRokevXqJTIyMsSePXtEYGCgGDFiRIX8Jk+eLHx8fMTt27cr9E2fPl388ssv4tSpUyIzM1MMHz5c2NvbiyNHjtTq3HU6nQAgdDpdra8XETU+584JsWvXnZ9EVP+Z8/kt+7MOhw0bhsuXL2Pq1KnQarUICgrC1q1bpdt0Z8+ehY3N/wbeIiIisGrVKkyePBlvv/02AgMD8eOPP6J79+5SzIQJE1BSUoL4+Hhcu3YNffv2xdatW00WE/3mm2+QkJCAgQMHwsbGBk899RQWLFhgkpvRaERqaipeeOEF2Jb/J+ddrl69ihdffBFarRYtWrRASEgI9u3bh65du9b1ZSKieqouHg7dps2dFxE1PrKvo9WUcR0tooaND4cmapoazDpaREQN2eXLl03e63TOyMvzq7A8w71xRNR0yH7rkIioPqvu1uDd317OyuqFDRsG485/vxoxZMgmBAdnAwBu3bplhUyJqD5ioUVEVIXa3hrU6ZzvKrIAwAYbNgxGhw4nTR6pQ0RND28dEhFV4d719qq6NXjunC8q/nNqg3PnOMOdqKnjiBYRURVu374t/Z6V1Ut6XI5CYUR09P9uDRIRVYUjWkRENbhzazC6ymcS+vqeA2D6BW6Fwghf38qfe0pETQcLLSKiGty5NagwaRPif7cG1eoiDBmyEQqFEQCkES/OzyIi3jokIqoDwcHZ6NDhJAoL3eDmVmhSZDVrxn9qiZoq/r+fiKgGd24NGmF6E6DirUG1uqjSUSwPDw+L5kdE9RcLLSKiGty5NbipwjpZ5UXVgAEDEBgYWOm2tXkEDxE1Xiy0iIiqYGdnJ/1e3a1BDw8PeHt7y5EiEdVzLLSIqNG73wc/t2rVyuR9VbcG740jIirHQouIGrW/8uBnd3d3JCQk3FeRRkQEsNAiokbu3iJJp3NGYaE73NwKTEanqiqmWEQR0V/BQouImgyu7k5E1sYFS4moSdDpnKUiC6i4ujsRkSWw0CKiJqGw0F0qssoJYYPCQjeZMiKipoCFFhE1CW5uBdIjcsopFEa4uRXKlBERNQUstIioSVCrixAdvYnPIyQiq+JkeCJqMqpbdJSIyBJYaBFRo6ZUKk3eV7Xo6L1xRER1gYUWETVqXHSUiOTEQouIGj0WUUQkF06GJyIiIrIQFlpEREREFsJCi4iIiMhCWGgRERERWQgLLSIiIiILYaFFREREZCEstIiIiIgshIUWERERkYWw0CIiIiKyEBZaRERERBZSLwqtxYsXw8/PD/b29ggLC8P+/furjV+7di06d+4Me3t79OjRA1u2bDHpF0Jg6tSp8Pb2hoODAyIjI3HixAmTmMLCQjz33HNwcXGBq6sr4uLiUFxcLPWfPn0aCoWiwuu3334zKxciIiJqumQvtNasWYOkpCQkJycjKysLPXv2hEajwaVLlyqN37dvH0aMGIG4uDhkZ2cjJiYGMTExOHz4sBQze/ZsLFiwAEuWLEFGRgacnJyg0Whw8+ZNKea5557DkSNHsH37dmzatAm//vor4uPjKxxvx44duHjxovQKCQkxKxciIiJqwoTMQkNDxbhx46T3BoNB+Pj4iJSUlErjn3nmGREVFWXSFhYWJl566SUhhBBGo1F4eXmJOXPmSP3Xrl0TKpVKfPvtt0IIIY4ePSoAiAMHDkgxP//8s1AoFOLPP/8UQgiRl5cnAIjs7Owqc68pl5rodDoBQOh0ulrFExERkfzM+fyWdUSrrKwMmZmZiIyMlNpsbGwQGRmJ9PT0SrdJT083iQcAjUYjxefl5UGr1ZrEqNVqhIWFSTHp6elwdXVF7969pZjIyEjY2NggIyPDZN9DhgyBh4cH+vbtiw0bNpiVy71KS0uh1+tNXkRERNR4yVpoXblyBQaDAZ6enibtnp6e0Gq1lW6j1WqrjS//WVOMh4eHSX+zZs3g5uYmxTRv3hxz587F2rVrsXnzZvTt2xcxMTEmxVZNudwrJSUFarVaevn6+lYaR0RERI1DM7kTqK9atmyJpKQk6f2DDz6ICxcuYM6cORgyZMh97XPSpEkm+9Tr9Sy2iIiIGjFZR7RatmwJW1tb5Ofnm7Tn5+fDy8ur0m28vLyqjS//WVPMvZPtb9++jcLCwiqPCwBhYWE4efJkrXO5l0qlgouLi8mLiIiIGi9ZCy2lUomQkBCkpaVJbUajEWlpaQgPD690m/DwcJN4ANi+fbsU7+/vDy8vL5MYvV6PjIwMKSY8PBzXrl1DZmamFLNz504YjUaEhYVVmW9OTg68vb1rnQsRERE1cVaYnF+t1atXC5VKJVJTU8XRo0dFfHy8cHV1FVqtVgghxMiRI8XEiROl+L1794pmzZqJDz/8UOTm5ork5GRhZ2cnDh06JMXMmjVLuLq6ip9++kkcPHhQDB06VPj7+4sbN25IMYMGDRK9evUSGRkZYs+ePSIwMFCMGDFC6k9NTRWrVq0Subm5Ijc3V8ycOVPY2NiI5cuXm5VLdfitQyIioobHnM9v2QstIYRYuHChaNu2rVAqlSI0NFT89ttvUl+/fv1EbGysSfx3330nOnbsKJRKpejWrZvYvHmzSb/RaBRTpkwRnp6eQqVSiYEDB4rjx4+bxBQUFIgRI0aI5s2bCxcXFzF69GhRVFQk9aempoouXboIR0dH4eLiIkJDQ8XatWsr5F5TLtVhoUVERNTwmPP5rRBCCHnH1JouvV4PtVoNnU7H+VpEREQNhDmf37KvDE9ERETUWLHQIiIiIrIQFlpEREREFsJCi4iIiMhCWGgRERERWQgLLSIiIiILYaFFREREZCEstIiIiIgshIUWERERkYU0kzsBIqpeQUEBysrKquxXKpVwd3e3YkZERFRbLLSI6rGCggIsWrSoxriEhAQWW0RE9RBvHRLVY9WNZN1PHBERWRcLLSIiIiILYaFFREREZCEstIgaEJ3OGXl5ftDpnOVOhYiIaoGT4YkaiKysXti4cTCEsIFCYUR09CYEB2fLnRYREVWDI1pEDYBO5ywVWQAghA02bhzMkS0ionqOhRZRA1BY6C4VWeWEsEFhoZtMGRERUW2w0CKqx5RKJQDAza0ACoXRpE+hMMLNrdAkjoiI6hfO0SKqx9zd3ZGQkICysjK0bq3HW2+pYTAoYGsr8MEHejz77AiuDE9EVI8phBBC7iSaKr1eD7VaDZ1OBxcXF7nToQbg/Hng5EkgIABo00bubIiImiZzPr85okXUgLRpwwKLiKgh4RwtIiIiIgthoUVERERkISy0iIiIiCyEhRYRERGRhbDQIiIiIrIQFlpEREREFsJCi4iIiMhCuI4WNToFBQUoKyursp8rqRMRkbWw0KJGpaCgAIsWLaoxLiEhgcUWERFZHG8dUqNS3UjW/cQRERH9FSy0iIiIiCykXhRaixcvhp+fH+zt7REWFob9+/dXG7927Vp07twZ9vb26NGjB7Zs2WLSL4TA1KlT4e3tDQcHB0RGRuLEiRMmMYWFhXjuuefg4uICV1dXxMXFobi4WOrfvXs3hg4dCm9vbzg5OSEoKAjffPONyT5SU1OhUChMXvb29n/xahAREVFjIXuhtWbNGiQlJSE5ORlZWVno2bMnNBoNLl26VGn8vn37MGLECMTFxSE7OxsxMTGIiYnB4cOHpZjZs2djwYIFWLJkCTIyMuDk5ASNRoObN29KMc899xyOHDmC7du3Y9OmTfj1118RHx9vcpwHHngA69atw8GDBzF69GiMGjUKmzZtMsnHxcUFFy9elF5nzpyp4ytEREREDZVCCCHkTCAsLAwPPvigNIHZaDTC19cXr7zyCiZOnFghftiwYSgpKTEpePr06YOgoCAsWbIEQgj4+Phg/PjxeOONNwAAOp0Onp6eSE1NxfDhw5Gbm4uuXbviwIED6N27NwBg69atePLJJ3H+/Hn4+PhUmmtUVBQ8PT2xfPlyAHdGtBITE3Ht2rX7One9Xg+1Wg2dTgcXF5f72geZunjxIj7//HPpvU7njMJCd7i5FUCtLpLa4+Pj4e3tLUeKRETUwJnz+S3riFZZWRkyMzMRGRkptdnY2CAyMhLp6emVbpOenm4SDwAajUaKz8vLg1arNYlRq9UICwuTYtLT0+Hq6ioVWQAQGRkJGxsbZGRkVJmvTqeDm5ubSVtxcTHatWsHX19fDB06FEeOHKly+9LSUuj1epMXWU5WVi/Mn5+IlStjMX9+IrKyesmdEhERNTGyLu9w5coVGAwGeHp6mrR7enri2LFjlW6j1WorjddqtVJ/eVt1MR4eHib9zZo1g5ubmxRzr++++w4HDhzAZ599JrV16tQJy5cvxwMPPACdTocPP/wQEREROHLkCNq0aVNhHykpKZg+fXql+2+KLLnelU7njI0bB0OIO/8tIYQNNm4cjA4dTpqMbBEREVkS19GqhV27dmH06NFYunQpunXrJrWHh4cjPDxceh8REYEuXbrgs88+w3vvvVdhP5MmTUJSUpL0Xq/Xw9fX17LJ11OWWu9KqVQCAAoL3aUiq5wQNigsdINaXSTFERERWZKshVbLli1ha2uL/Px8k/b8/Hx4eXlVuo2Xl1e18eU/8/PzTebg5OfnIygoSIq5d7L97du3UVhYWOG4//d//4fo6Gh89NFHGDVqVLXnY2dnh169euHkyZOV9qtUKqhUqmr30VRYar0rd3d3JCQk4PTp2/jqKwGjUSH12doKvPLKE/Dza8bFSomIyCpknaOlVCoREhKCtLQ0qc1oNCItLc1kpOhu4eHhJvEAsH37dine398fXl5eJjF6vR4ZGRlSTHh4OK5du4bMzEwpZufOnTAajQgLC5Padu/ejaioKHzwwQcm30isisFgwKFDhzjJWmbu7u4ICfHE558rYGt7p83WFvjsMwVCQjxZZBERkdXIfuswKSkJsbGx6N27N0JDQzF//nyUlJRg9OjRAIBRo0ahdevWSElJAQC89tpr6NevH+bOnYuoqCisXr0av//+u/RNM4VCgcTERMyYMQOBgYHw9/fHlClT4OPjg5iYGABAly5dMGjQILz44otYsmQJbt26hYSEBAwfPlz6xuGuXbswePBgvPbaa3jqqaekuVtKpVKaEP/uu++iT58+CAgIwLVr1zBnzhycOXMGY8aMseYlpCrExQEaDXDyJBAQAFQybY6IiMiiZC+0hg0bhsuXL2Pq1KnQarUICgrC1q1bpcnsZ8+ehY3N/wbeIiIisGrVKkyePBlvv/02AgMD8eOPP6J79+5SzIQJE1BSUoL4+Hhcu3YNffv2xdatW00WE/3mm2+QkJCAgQMHwsbGBk899RQWLFgg9a9cuRLXr19HSkqKVOQBQL9+/bB7924AwNWrV/Hiiy9Cq9WiRYsWCAkJwb59+9C1a1dLXS4yU5s2LLCIiEg+sq+j1ZQ15XW0uN4VERE1VOZ8fss+okWUldVLWopBoTAiOnoTgoOz5U6LiIjoL5P9ETzUtFW13pVO5yxzZkRERH8dCy2SRW3Wu7o7joiIqCHiHC0ZNeU5WsCdRUtPn76N0FCPCutdZWRc4npXRERULzWYZx1S08b1roiIqLHjZPhG6vx54MQJIDCw/i9vwPWuiIioseKIViO0bBnQrh3w6KN3fi5bJndGNWvTBujfn0UWERE1Liy0GpGCggJkZuYjPl7AaLzTZjQCL70kkJmZj4KCAnkTJCIiamJ467CRKCgowKJFi5CX5wejMdakz2BQYOHCn+HvfwYJCQmc+0RERGQlHNFqJMrKygAAbm4FUCiMJn0KhRFuboUmcURERGR5LLQaGbW6CNHRm6Riq3yl9bsfa0NERETWwVuHjVBwcDY6dDiJwkI3uLkVssgiIiKSCQutRkqtLmKBRUREJDPeOiQiIiKyEBZaRERERBbCQouIiIjIQlhoNRJKpbJO44iIiOiv42T4RsLd3R0JCQnVrpOlVCq5WCkREZEVsdBqRFhEERER1S+8dUhERERkISy0iIiIiCyEhRYRERGRhbDQIiIiIrIQFlpEREREFsJCi4iIiMhCWGgRERERWQgLLSIiIiILYaFFREREZCFcGV5GQggAgF6vlzkTIiIiqq3yz+3yz/HqsNCSUVFREQDA19dX5kyIiIjIXEVFRVCr1dXGKERtyjGyCKPRiAsXLsDZ2RkKhaJCv16vh6+vL86dOwcXFxcZMqz/eI1qxmtUM16j6vH61IzXqGaN6RoJIVBUVAQfHx/Y2FQ/C4sjWjKysbFBmzZtaoxzcXFp8H+UlsZrVDNeo5rxGlWP16dmvEY1ayzXqKaRrHKcDE9ERERkISy0iIiIiCyEhVY9plKpkJycDJVKJXcq9RavUc14jWrGa1Q9Xp+a8RrVrKleI06GJyIiIrIQjmgRERERWQgLLSIiIiILYaFFREREZCEstIiIiIgshIWWzBYvXgw/Pz/Y29sjLCwM+/fvrzL2yJEjeOqpp+Dn5weFQoH58+dbL1EZmXONli5diocffhgtWrRAixYtEBkZWW18Y2HONVq/fj169+4NV1dXODk5ISgoCF999ZUVs5WHOdfobqtXr4ZCoUBMTIxlE5SZOdcnNTUVCoXC5GVvb2/FbOVh7t/QtWvXMG7cOHh7e0OlUqFjx47YsmWLlbKVhznXqH///hX+jhQKBaKioqyYsRUIks3q1auFUqkUy5cvF0eOHBEvvviicHV1Ffn5+ZXG79+/X7zxxhvi22+/FV5eXuKjjz6ybsIyMPcaPfvss2Lx4sUiOztb5ObmihdeeEGo1Wpx/vx5K2duPeZeo127don169eLo0ePipMnT4r58+cLW1tbsXXrVitnbj3mXqNyeXl5onXr1uLhhx8WQ4cOtU6yMjD3+qxYsUK4uLiIixcvSi+tVmvlrK3L3GtUWloqevfuLZ588kmxZ88ekZeXJ3bv3i1ycnKsnLn1mHuNCgoKTP6GDh8+LGxtbcWKFSusm7iFsdCSUWhoqBg3bpz03mAwCB8fH5GSklLjtu3atWsShdZfuUZCCHH79m3h7OwsVq5caakUZfdXr5EQQvTq1UtMnjzZEunVC/dzjW7fvi0iIiLEF198IWJjYxt1oWXu9VmxYoVQq9VWyq5+MPcaffrpp6J9+/airKzMWinK7q/+W/TRRx8JZ2dnUVxcbKkUZcFbhzIpKytDZmYmIiMjpTYbGxtERkYiPT1dxszqj7q4RtevX8etW7fg5uZmqTRl9VevkRACaWlpOH78OB555BFLpiqb+71G7777Ljw8PBAXF2eNNGVzv9enuLgY7dq1g6+vL4YOHYojR45YI11Z3M812rBhA8LDwzFu3Dh4enqie/fueP/992EwGKyVtlXVxb/Xy5Ytw/Dhw+Hk5GSpNGXBQksmV65cgcFggKenp0m7p6cntFqtTFnVL3Vxjd566y34+PiY/J+/Mbnfa6TT6dC8eXMolUpERUVh4cKFeOyxxyydrizu5xrt2bMHy5Ytw9KlS62Roqzu5/p06tQJy5cvx08//YSvv/4aRqMREREROH/+vDVStrr7uUZ//PEHvv/+exgMBmzZsgVTpkzB3LlzMWPGDGukbHV/9d/r/fv34/DhwxgzZoylUpRNM7kTILKUWbNmYfXq1di9e3eTmKhrDmdnZ+Tk5KC4uBhpaWlISkpC+/bt0b9/f7lTk11RURFGjhyJpUuXomXLlnKnUy+Fh4cjPDxceh8REYEuXbrgs88+w3vvvSdjZvWH0WiEh4cHPv/8c9ja2iIkJAR//vkn5syZg+TkZLnTq3eWLVuGHj16IDQ0VO5U6hwLLZm0bNkStra2yM/PN2nPz8+Hl5eXTFnVL3/lGn344YeYNWsWduzYgQceeMCSacrqfq+RjY0NAgICAABBQUHIzc1FSkpKoyy0zL1Gp06dwunTpxEdHS21GY1GAECzZs1w/PhxdOjQwbJJW1Fd/FtkZ2eHXr164eTJk5ZIUXb3c428vb1hZ2cHW1tbqa1Lly7QarUoKyuDUqm0aM7W9lf+jkpKSrB69Wq8++67lkxRNrx1KBOlUomQkBCkpaVJbUajEWlpaSb/pdiU3e81mj17Nt577z1s3boVvXv3tkaqsqmrvyOj0YjS0lJLpCg7c69R586dcejQIeTk5EivIUOGYMCAAcjJyYGvr68107e4uvgbMhgMOHToELy9vS2Vpqzu5xo99NBDOHnypFSkA8B///tfeHt7N7oiC/hrf0dr165FaWkpnn/+eUunKQ+5Z+M3ZatXrxYqlUqkpqaKo0ePivj4eOHq6ip9TXrkyJFi4sSJUnxpaanIzs4W2dnZwtvbW7zxxhsiOztbnDhxQq5TsDhzr9GsWbOEUqkU33//vcnXhouKiuQ6BYsz9xq9//77Ytu2beLUqVPi6NGj4sMPPxTNmjUTS5culesULM7ca3Svxv6tQ3Ovz/Tp08Uvv/wiTp06JTIzM8Xw4cOFvb29OHLkiFynYHHmXqOzZ88KZ2dnkZCQII4fPy42bdokPDw8xIwZM+Q6BYu73/+f9e3bVwwbNsza6VoNCy2ZLVy4ULRt21YolUoRGhoqfvvtN6mvX79+IjY2Vnqfl5cnAFR49evXz/qJW5E516hdu3aVXqPk5GTrJ25F5lyjd955RwQEBAh7e3vRokULER4eLlavXi1D1tZlzjW6V2MvtIQw7/okJiZKsZ6enuLJJ58UWVlZMmRtXeb+De3bt0+EhYUJlUol2rdvL2bOnClu375t5ayty9xrdOzYMQFAbNu2zcqZWo9CCCFkGkwjIiIiatQ4R4uIiIjIQlhoEREREVkICy0iIiIiC2GhRURERGQhLLSIiIiILISFFhEREZGFsNAiIiIishAWWkRETcQLL7yAmJgYudMgalJYaBGR7F544QUoFArp5e7ujkGDBuHgwYNyp1Yn7j638lffvn0tdrzTp09DoVAgJyfHpP3jjz9GamqqxY5LRBWx0CKiemHQoEG4ePEiLl68iLS0NDRr1gyDBw+WO606s2LFCun8Ll68iA0bNlQad+vWLYvloFar4erqarH9E1FFLLSIqF5QqVTw8vKCl5cXgoKCMHHiRJw7dw6XL1/Go48+ioSEBJP4y5cvQ6lUIi0tDQDg5+eH9957DyNGjICTkxNat26NxYsXm2wzb9489OjRA05OTvD19cW//vUvFBcXS/1nzpxBdHQ0WrRoAScnJ3Tr1g1btmwBAFy9ehXPPfccWrVqBQcHBwQGBmLFihW1Pj9XV1fp/Ly8vODm5iaNPK1Zswb9+vWDvb09vvnmGxQUFGDEiBFo3bo1HB0d0aNHD3z77bcm+zMajZg9ezYCAgKgUqnQtm1bzJw5EwDg7+8PAOjVqxcUCgX69+8PoOKtw9LSUrz66qvw8PCAvb09+vbtiwMHDkj9u3fvhkKhQFpaGnr37g1HR0dERETg+PHjtT5voqaOhRYR1TvFxcX4+uuvERAQAHd3d4wZMwarVq1CaWmpFPP111+jdevWePTRR6W2OXPmoGfPnsjOzsbEiRPx2muvYfv27VK/jY0NFixYgCNHjmDlypXYuXMnJkyYIPWPGzcOpaWl+PXXX3Ho0CF88MEHaN68OQBgypQpOHr0KH7++Wfk5ubi008/RcuWLevkfMtzzc3NhUajwc2bNxESEoLNmzfj8OHDiI+Px8iRI7F//35pm0mTJmHWrFlSXqtWrYKnpycASHE7duzAxYsXsX79+kqPO2HCBKxbtw4rV65EVlYWAgICoNFoUFhYaBL3zjvvYO7cufj999/RrFkz/POf/6yT8yZqEuR+qjURUWxsrLC1tRVOTk7CyclJABDe3t4iMzNTCCHEjRs3RIsWLcSaNWukbR544AExbdo06X27du3EoEGDTPY7bNgw8cQTT1R53LVr1wp3d3fpfY8ePUz2ebfo6GgxevTo+zo/AMLe3l46PycnJ/HDDz+IvLw8AUDMnz+/xn1ERUWJ8ePHCyGE0Ov1QqVSiaVLl1YaW77f7Oxsk/bY2FgxdOhQIYQQxcXFws7OTnzzzTdSf1lZmfDx8RGzZ88WQgixa9cuAUDs2LFDitm8ebMAIG7cuGHOJSBqsjiiRUT1woABA5CTk4OcnBzs378fGo0GTzzxBM6cOQN7e3uMHDkSy5cvBwBkZWXh8OHDeOGFF0z2ER4eXuF9bm6u9H7Hjh0YOHAgWrduDWdnZ4wcORIFBQW4fv06AODVV1/FjBkz8NBDDyE5OdlkMv7YsWOxevVqBAUFYcKECdi3b59Z5/fRRx9J55eTk4PHHntM6uvdu7dJrMFgwHvvvYcePXrAzc0NzZs3xy+//IKzZ88CAHJzc1FaWoqBAwealcPdTp06hVu3buGhhx6S2uzs7BAaGmpyzQDggQcekH739vYGAFy6dOm+j03UlLDQIqJ6wcnJCQEBAQgICMCDDz6IL774AiUlJVi6dCkAYMyYMdi+fTvOnz+PFStW4NFHH0W7du1qvf/Tp09j8ODBeOCBB7Bu3TpkZmZKc7jKysqkY/zxxx8YOXIkDh06hN69e2PhwoUAIBV9r7/+Oi5cuICBAwfijTfeqPXxvby8pPMLCAiAk5OTybnfbc6cOfj444/x1ltvYdeuXcjJyYFGo5HydHBwqPVx64KdnZ30u0KhAHBnjhgR1YyFFhHVSwqFAjY2Nrhx4wYAoEePHujduzeWLl2KVatWVTpP6LfffqvwvkuXLgCAzMxMGI1GzJ07F3369EHHjh1x4cKFCvvw9fXFyy+/jPXr12P8+PFSoQcArVq1QmxsLL7++mvMnz8fn3/+eV2esmTv3r0YOnQonn/+efTs2RPt27fHf//7X6k/MDAQDg4O0hcB7qVUKgHcGRmrSocOHaBUKrF3716p7datWzhw4AC6du1aR2dCRM3kToCICLjzDTitVgvgzjf8Fi1ahOLiYkRHR0sxY8aMQUJCApycnPC3v/2twj727t2L2bNnIyYmBtu3b8fatWuxefNmAEBAQABu3bqFhQsXIjo6Gnv37sWSJUtMtk9MTMQTTzyBjh074urVq9i1a5dUqE2dOhUhISHo1q0bSktLsWnTJqmvrgUGBuL777/Hvn370KJFC8ybNw/5+flSAWRvb4+33noLEyZMgFKpxEMPPYTLly/jyJEjiIuLg4eHBxwcHLB161a0adMG9vb2UKvVJsdwcnLC2LFj8eabb8LNzQ1t27bF7Nmzcf36dcTFxVnkvIiaIo5oEVG9sHXrVnh7e8Pb2xthYWE4cOAA1q5dKy1NAAAjRoxAs2bNMGLECNjb21fYx/jx4/H777+jV69emDFjBubNmweNRgMA6NmzJ+bNm4cPPvgA3bt3xzfffIOUlBST7Q0GA8aNG4cuXbpg0KBB6NixIz755BMAd0aJJk2ahAceeACPPPIIbG1tsXr1aotci8mTJyM4OBgajQb9+/eHl5dXhRXdp0yZgvHjx2Pq1Kno0qULhg0bJs2batasGRYsWIDPPvsMPj4+GDp0aKXHmTVrFp566imMHDkSwcHBOHnyJH755Re0aNHCIudF1BQphBBC7iSIiGrj9OnT6NChAw4cOIDg4GCTPj8/PyQmJiIxMVGe5IiIKsFbh0RU7926dQsFBQWYPHky+vTpU6HIIiKqr3jrkIjqvb1798Lb2xsHDhyoMK9Kbu+//z6aN29e6euJJ56QOz0ikhlvHRIR/QWFhYUVVlIv5+DggNatW1s5IyKqT1hoEREREVkIbx0SERERWQgLLSIiIiILYaFFREREZCEstIiIiIgshIUWERERkYWw0CIiIiKyEBZaRERERBbCQouIiIjIQv4f0kQ16OxCmmEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYJhJREFUeJzt3XlcVOX+B/DPDDIMIAwNKouiIKLmkggGwdXQpMZCktvimpJRWFdKwjItFc0MUytzKa1UbDGXq2kulzTUawphAeaGpoZbAiojA2KIMs/vD3+c65FFRhmG5fN+veZF85zvOec55zfX+fyec+Y5CiGEABERERHVOqWlO0BERETUWDFoEREREZkJgxYRERGRmTBoEREREZkJgxYRERGRmTBoEREREZkJgxYRERGRmTBoEREREZkJgxYRERGRmTBoEREREhMToVAocOrUKUt3hahRYdAiojrx66+/IiYmBl27doW9vT3atm2LwYMH448//qhQ27dvXygUCigUCiiVSjg6OqJTp04YOXIktm/fbtJ+N23ahJCQELRq1Qp2dnZo3749Bg8ejKSkpNo6tAref/99bNiwoUJ7SkoKpk2bhoKCArPt+3bTpk2TzqVCoYCdnR26dOmCyZMno7CwsFb2sXLlSsybN69WtkXU2DBoEVGd+OCDD7Bu3Tr0798fn3zyCaKjo7F79274+fnh0KFDFerbtGmDr7/+Gl999RXmzJmDJ598EikpKXjssccwZMgQXL9+/Y77nDt3Lp588kkoFApMmjQJH3/8MZ5++mkcP34cq1atMsdhAqg+aE2fPr1Og1a5zz77DF9//TU++ugjdO7cGTNnzsSAAQNQG4+7ZdAiqlozS3eAiJqGuLg4rFy5EiqVSmobMmQIunfvjlmzZuGbb76R1Ws0Gjz33HOytlmzZuG1117Dp59+Ck9PT3zwwQdV7u/GjRuYMWMGHn30UWzbtq3C8gsXLtzjEdUfV69ehZ2dXbU1zzzzDFq0aAEAePnll/H0009j/fr1+OWXXxAUFFQX3SRqkjiiRUR1Ijg4WBayAMDHxwddu3ZFVlZWjbZhZWWF+fPno0uXLli4cCEMBkOVtZcuXUJhYSH+8Y9/VLq8VatWsvclJSWYNm0aOnbsCLVaDTc3Nzz11FM4efKkVDN37lwEBwfD2dkZtra28Pf3x7///W/ZdhQKBYqLi7FixQrpct3zzz+PadOm4c033wQAeHl5SctuvSfqm2++gb+/P2xtbaHVajF06FCcPXtWtv2+ffuiW7duSE9Px8MPPww7Ozu8/fbbNTp/t3rkkUcAANnZ2dXWffrpp+jatStsbGzg7u6OsWPHykbk+vbtiy1btuD06dPSMXl6eprcH6LGiiNaRGQxQgjk5eWha9euNV7HysoKw4YNw5QpU7Bnzx6EhYVVWteqVSvY2tpi06ZNePXVV6HVaqvcZllZGQYOHIjk5GQMHToU48aNQ1FREbZv345Dhw7B29sbAPDJJ5/gySefxIgRI1BaWopVq1bh2WefxebNm6V+fP3113jxxRcREBCA6OhoAIC3tzfs7e3xxx9/4LvvvsPHH38sjS61bNkSADBz5kxMmTIFgwcPxosvvoiLFy9iwYIFePjhh5GZmQknJyepv/n5+Xj88ccxdOhQPPfcc3Bxcanx+StXHiCdnZ2rrJk2bRqmT5+O0NBQvPLKKzh27Bg+++wz/Prrr9i7dy+sra3xzjvvwGAw4Ny5c/j4448BAM2bNze5P0SNliAispCvv/5aABBLly6VtYeEhIiuXbtWud73338vAIhPPvmk2u1PnTpVABD29vbi8ccfFzNnzhTp6ekV6pYtWyYAiI8++qjCMqPRKP331atXZctKS0tFt27dxCOPPCJrt7e3F5GRkRW2NWfOHAFAZGdny9pPnTolrKysxMyZM2XtBw8eFM2aNZO1h4SECABi8eLFVR73reLj4wUAcezYMXHx4kWRnZ0tlixZImxsbISLi4soLi4WQgixfPlyWd8uXLggVCqVeOyxx0RZWZm0vYULFwoAYtmyZVJbWFiYaNeuXY36Q9TU8NIhEVnE0aNHMXbsWAQFBSEyMtKkdctHTIqKiqqtmz59OlauXImePXvixx9/xDvvvAN/f3/4+fnJLleuW7cOLVq0wKuvvlphGwqFQvpvW1tb6b8vX74Mg8GAPn36ICMjw6T+3279+vUwGo0YPHgwLl26JL1cXV3h4+ODnTt3yuptbGwwevRok/bRqVMntGzZEl5eXhgzZgw6dOiALVu2VHlv108//YTS0lLExsZCqfzfV8VLL70ER0dHbNmyxfQDJWqCeOmQiOpcbm4uwsLCoNFo8O9//xtWVlYmrX/lyhUAgIODwx1rhw0bhmHDhqGwsBBpaWlITEzEypUrER4ejkOHDkGtVuPkyZPo1KkTmjWr/p/EzZs347333sP+/ftx7do1qf3WMHY3jh8/DiEEfHx8Kl1ubW0te9+6desK97vdybp16+Do6Ahra2u0adNGuhxaldOnTwO4GdBupVKp0L59e2k5EVWPQYuI6pTBYMDjjz+OgoIC/Pzzz3B3dzd5G+XTQXTo0KHG6zg6OuLRRx/Fo48+Cmtra6xYsQJpaWkICQmp0fo///wznnzySTz88MP49NNP4ebmBmtrayxfvhwrV640+RhuZTQaoVAo8J///KfS0Hn7PU+3jqzV1MMPPyzdF0ZEdYdBi4jqTElJCcLDw/HHH3/gp59+QpcuXUzeRllZGVauXAk7Ozv07t37rvrRq1cvrFixAjk5OQBu3qyelpaG69evVxg9Krdu3Tqo1Wr8+OOPsLGxkdqXL19eobaqEa6q2r29vSGEgJeXFzp27Gjq4ZhFu3btAADHjh1D+/btpfbS0lJkZ2cjNDRUarvXET2ixoz3aBFRnSgrK8OQIUOQmpqKtWvX3tXcTWVlZXjttdeQlZWF1157DY6OjlXWXr16FampqZUu+89//gPgf5fFnn76aVy6dAkLFy6sUCv+f0JPKysrKBQKlJWVSctOnTpV6cSk9vb2lU5Kam9vDwAVlj311FOwsrLC9OnTK0wgKoRAfn5+5QdpRqGhoVCpVJg/f76sT0uXLoXBYJD92tPe3r7aqTaImjKOaBFRnRg/fjx++OEHhIeHQ6/XV5ig9PbJSQ0Gg1Rz9epVnDhxAuvXr8fJkycxdOhQzJgxo9r9Xb16FcHBwXjooYcwYMAAeHh4oKCgABs2bMDPP/+MiIgI9OzZEwAwatQofPXVV4iLi8O+ffvQp08fFBcX46effsK//vUvDBo0CGFhYfjoo48wYMAADB8+HBcuXMCiRYvQoUMHHDhwQLZvf39//PTTT/joo4/g7u4OLy8vBAYGwt/fHwDwzjvvYOjQobC2tkZ4eDi8vb3x3nvvYdKkSTh16hQiIiLg4OCA7OxsfP/994iOjsYbb7xxT+ffVC1btsSkSZMwffp0DBgwAE8++SSOHTuGTz/9FA8++KDs/17+/v5YvXo14uLi8OCDD6J58+YIDw+v0/4S1VuW/MkjETUd5dMSVPWqrrZ58+bCx8dHPPfcc2Lbtm012t/169fFF198ISIiIkS7du2EjY2NsLOzEz179hRz5swR165dk9VfvXpVvPPOO8LLy0tYW1sLV1dX8cwzz4iTJ09KNUuXLhU+Pj7CxsZGdO7cWSxfvlyaPuFWR48eFQ8//LCwtbUVAGRTPcyYMUO0bt1aKJXKClM9rFu3TvTu3VvY29sLe3t70blzZzF27Fhx7Ngx2bmpbuqL25X37+LFi9XW3T69Q7mFCxeKzp07C2tra+Hi4iJeeeUVcfnyZVnNlStXxPDhw4WTk5MAwKkeiG6hEKIWHnRFRERERBXwHi0iIiIiM2HQIiIiIjITBi0iIiIiM2HQIiIiIjITBi0iIiIiM2HQIiIiIjITTlhqQUajEefPn4eDgwMfYUFERNRACCFQVFQEd3d3KJXVj1kxaFnQ+fPn4eHhYeluEBER0V04e/Ys2rRpU20Ng5YFOTg4ALj5f6jqntlGRERE9UdhYSE8PDyk7/HqMGhZUPnlQkdHRwYtIiKiBqYmt/3wZngiIiIiM2HQIiIiIjITBi0iIiIiM+E9WkRERA2M0WhEaWmppbvRqKlUqjtO3VATDFpEREQNSGlpKbKzs2E0Gi3dlUZNqVTCy8sLKpXqnrbDoEVERNRACCGQk5MDKysreHh41MqIC1VUPqF4Tk4O2rZte0+TijNoERERNRA3btzA1atX4e7uDjs7O0t3p1Fr2bIlzp8/jxs3bsDa2vqut8MoTERE1ECUlZUBwD1fzqI7Kz/H5ef8bjFoERERNTB8Pq751dY55qVDIiJqMPLz86v9tZ1KpYKzs3Md9oioegxaRETUIOTn52PhwoV3rIuJiWHYonqDlw6JiKhBuH0ky2BwQHa2JwwGh2rryPKef/55KBQKKBQKWFtbw8XFBY8++iiWLVtm0jQViYmJcHJyMl9HzYAjWkRE1OBkZPTEpk0DIYQSCoUR4eGb4eeXaelu1XuWvPQ6YMAALF++HGVlZcjLy0NSUhLGjRuHf//73/jhhx/QrFnjjCSN86iIiKjRMhgcpJAFAEIosWnTQHh7n4BGU2Th3tVflr70amNjA1dXVwBA69at4efnh4ceegj9+/dHYmIiXnzxRXz00UdYvnw5/vzzT2i1WoSHh2P27Nlo3rw5du3ahdGjRwP4343q8fHxmDZtGr7++mt88sknOHbsGOzt7fHII49g3rx5aNWqVa0fh6l46ZCIiBoUvd5ZClnlhFBCr9daqEcNQ00vqdblpddHHnkEPXr0wPr16wHcnI19/vz5OHz4MFasWIEdO3ZgwoQJAIDg4GDMmzcPjo6OyMnJQU5ODt544w0AwPXr1zFjxgz8/vvv2LBhA06dOoXnn3++zo6jOhzRIiKiBkWrzYdCYZSFLYXCCK1Wb8Fe0d3q3LkzDhw4AACIjY2V2j09PfHee+/h5ZdfxqeffgqVSgWNRgOFQiGNjJV74YUXpP9u37495s+fjwcffBBXrlxB8+bN6+Q4qsIRLSIialA0miKEh2+GQnHzJurye7R42bBhEkJIlwJ/+ukn9O/fH61bt4aDgwNGjhyJ/Px8XL16tdptpKenIzw8HG3btoWDgwNCQkIAAGfOnDF7/++EI1pERNTg+Pllwtv7BPR6LbRaPUNWA5aVlQUvLy+cOnUKAwcOxCuvvIKZM2dCq9Viz549iIqKQmlpaZWPHCouLoZOp4NOp8O3336Lli1b4syZM9DpdPXiF6gMWkRE1CDc/tgZjaao0oDFx9M0HDt27MDBgwfx+uuvIz09HUajER9++KH0sOw1a9bI6lUqVYVH4hw9ehT5+fmYNWsWPDw8AAC//fZb3RxADdSLS4eLFi2Cp6cn1Go1AgMDsW/fvmrr165di86dO0OtVqN79+7YunWrbLkQAlOnToWbmxtsbW0RGhqK48ePS8tPnTqFqKgoeHl5wdbWFt7e3oiPj6+QfA8cOIA+ffpArVbDw8MDs2fPNrkvRERUO5ydnRETE4Po6OgqX5ystP66du0acnNz8ddffyEjIwPvv/8+Bg0ahIEDB2LUqFHo0KEDrl+/jgULFuDPP//E119/jcWLF8u24enpiStXriA5ORmXLl3C1atX0bZtW6hUKmm9H374ATNmzLDQUVZk8aC1evVqxMXFIT4+HhkZGejRowd0Oh0uXLhQaX1KSgqGDRuGqKgoZGZmIiIiAhERETh06JBUM3v2bMyfPx+LFy9GWloa7O3todPpUFJSAuBm+jUajViyZAkOHz6Mjz/+GIsXL8bbb78tbaOwsBCPPfYY2rVrh/T0dMyZMwfTpk3D559/blJfiIio9jg7O8PNza3KF0NW/ZWUlAQ3Nzd4enpiwIAB2LlzJ+bPn4+NGzfCysoKPXr0wEcffYQPPvgA3bp1w7fffouEhATZNoKDg/Hyyy9jyJAhaNmyJWbPno2WLVsiMTERa9euRZcuXTBr1izMnTvXQkdZkUIIISzZgcDAQDz44IPS3B5GoxEeHh549dVXMXHixAr1Q4YMQXFxMTZv3iy1PfTQQ/D19cXixYshhIC7uzvGjx8v/ezTYDDAxcUFiYmJGDp0aKX9mDNnDj777DP8+eefAIDPPvsM77zzDnJzc6Vh6IkTJ2LDhg04evRojfpyJ4WFhdBoNDAYDHB0dKzJ6SIiahT4zMK7U1JSguzsbHh5eUGtVpu0rqXn0WpoqjvXpnx/W/QerdLSUqSnp2PSpElSm1KpRGhoKFJTUytdJzU1FXFxcbI2nU6HDRs2AACys7ORm5uL0NBQablGo0FgYCBSU1OrDFoGgwFa7f/mYElNTcXDDz8su9av0+nwwQcf4PLly7jvvvvu2JfbXbt2DdeuXZPeFxYWVlpHRNSY3f6FbzA4QK93hlabL7vnil/4tav80isDbt2yaNC6dOkSysrK4OLiImt3cXGRRo1ul5ubW2l9bm6utLy8raqa2504cQILFiyQDTXm5ubCy8urwjbKl91333137MvtEhISMH369EqXERE1Fbd+0Vf3KJ368IuxxoYhqu5Z/B4tS/vrr78wYMAAPPvss3jppZfMuq9JkybBYDBIr7Nnz5p1f0RE9VlVj9K5/SHRRA2ZRYNWixYtYGVlhby8PFl7Xl5ehVlfy7m6ulZbX/63Jts8f/48+vXrh+DgYNlN7tXt59Z93Kkvt7OxsYGjo6PsRUTUVPFROtQUWDRoqVQq+Pv7Izk5WWozGo1ITk5GUFBQpesEBQXJ6gFg+/btUr2XlxdcXV1lNYWFhUhLS5Nt86+//kLfvn3h7++P5cuXS3N23Lqf3bt34/r167L9dOrUCffdd1+N+kJERFUrf5TOrfgoHWpsLH7pMC4uDl988QVWrFiBrKwsvPLKKyguLpae0D1q1CjZzfLjxo1DUlISPvzwQxw9ehTTpk3Db7/9hpiYGAA3n+gdGxuL9957Dz/88AMOHjyIUaNGwd3dHREREQD+F7Latm2LuXPn4uLFi8jNzZXdWzV8+HCoVCpERUXh8OHDWL16NT755BPZze936gsREVWNj9KhpsDiM8MPGTIEFy9exNSpU5GbmwtfX18kJSVJN5mfOXNGNtoUHByMlStXYvLkyXj77bfh4+ODDRs2oFu3blLNhAkTUFxcjOjoaBQUFKB3795ISkqSfp65fft2nDhxAidOnECbNm1k/Smf7UKj0WDbtm0YO3Ys/P390aJFC0ydOhXR0dEm9YWIiKrGR+lQY2fxebSaMs6jRURNUU5OToX7YisTHR0NNze3OuhRw3Ev82iRaWprHi2LXzokIqKmpabPIuQzC6kxsPilQyIialo4cSbVtl27dqFfv364fPkynJycarSOp6cnYmNjERsba9a+cUSLiIjqHJ9Z2LQ8//zzUCgUePnllyssGzt2LBQKBZ5//vm671gdYNAiIiIis/Pw8MCqVavw999/S20lJSVYuXIl2rZta8GemReDFhEREZmdn58fPDw8sH79eqlt/fr1aNu2LXr27Cm1Xbt2Da+99hpatWoFtVqN3r1749dff5Vta+vWrejYsSNsbW3Rr18/nDp1qsL+9uzZgz59+sDW1hYeHh547bXXUFxcbLbjqwqDFhERURN07hywc+fNv3XlhRdewPLly6X3y5Ytk+bNLDdhwgSsW7cOK1asQEZGBjp06ACdTge9/uZEtmfPnsVTTz2F8PBw7N+/Hy+++CImTpwo28bJkycxYMAAPP300zhw4ABWr16NPXv2WGSeSwYtIiKiJmbpUqBdO+CRR27+Xbq0bvb73HPPYc+ePTh9+jROnz6NvXv34rnnnpOWFxcX47PPPsOcOXPw+OOPo0uXLvjiiy9ga2uLpf/fyc8++wze3t748MMP0alTJ4wYMaLC/V0JCQkYMWIEYmNj4ePjg+DgYMyfPx9fffUVSkpK6uZg/x9/dUhERNSEnDsHREcDxv9/+pHRCIwZA+h0wG1zeNe6li1bIiwsDImJiRBCICwsDC1atJCWnzx5EtevX8c//vEPqc3a2hoBAQHIysoCAGRlZSEwMFC23dsffff777/jwIED+Pbbb6U2IQSMRiOys7Nx//33m+PwKsWgRURE1IQcP/6/kFWurAw4ccL8QQu4efmw/BLeokWLzLKPK1euYMyYMXjttdcqLKvrG+8ZtIiIiJoQHx9AqZSHLSsroEOHutn/gAEDUFpaCoVCAZ1OJ1vm7e0NlUqFvXv3ol27dgCA69ev49dff5Xmu7r//vvxww8/yNb75ZdfZO/9/Pxw5MgRdKirg6oG79EiIiJqQtq0AT7//Ga4Am7+XbKkbkazbu7PCllZWThy5Aisyjvx/+zt7fHKK6/gzTffRFJSEo4cOYKXXnoJV69eRVRUFADg5ZdfxvHjx/Hmm2/i2LFjWLlyJRITE2Xbeeutt5CSkoKYmBjs378fx48fx8aNGy1yMzxHtIiIiJqYqKib92SdOHFzJKuuQla56p4POGvWLBiNRowcORJFRUXo1asXfvzxR9x3330Abl76W7duHV5//XUsWLAAAQEBeP/99/HCCy9I23jggQfw3//+F++88w769OkDIQS8vb0xZMgQsx/b7fhQaQviQ6WJiMgUfKh03eFDpYmIiIjqOQYtIiIiIjNh0CIiIiIyEwYtIiIiIjNh0CIiImpg+Ds286utc8ygRURE1ECUzztVWlpq4Z40fuXn+Pa5vkzFebSIiIgaiGbNmsHOzg4XL16EtbU1lEqOl5iD0WjExYsXYWdnh2bN7i0qMWgRERE1EAqFAm5ubsjOzsbp06ct3Z1GTalUom3btlAoFPe0HQYtIiKiBkSlUsHHx4eXD81MpVLVyoghgxYREVEDo1QqOTN8A8GLu0RERERmwqBFREREZCYMWkRERERmwqBFREREZCYMWkRERERmwqBFREREZCYMWkRERERmwnm0iIiIyGzy8/OrnVxVpVLB2dm5DntUtxi0iIiIyCzy8/OxcOHCO9bFxMQ02rDFS4dERERkFjV9TFBjfpyQxYPWokWL4OnpCbVajcDAQOzbt6/a+rVr16Jz585Qq9Xo3r07tm7dKlsuhMDUqVPh5uYGW1tbhIaG4vjx47KamTNnIjg4GHZ2dnBycqqwj8TERCgUikpfFy5cAADs2rWr0uW5ubn3dkKIiIgaKYPBAdnZnjAYHCzdlTpj0aC1evVqxMXFIT4+HhkZGejRowd0Op0UZm6XkpKCYcOGISoqCpmZmYiIiEBERAQOHTok1cyePRvz58/H4sWLkZaWBnt7e+h0OpSUlEg1paWlePbZZ/HKK69Uup8hQ4YgJydH9tLpdAgJCUGrVq1ktceOHZPV3b6ciIiIgIyMnpg3LxYrVkRi3rxYZGT0tHSX6oawoICAADF27FjpfVlZmXB3dxcJCQmV1g8ePFiEhYXJ2gIDA8WYMWOEEEIYjUbh6uoq5syZIy0vKCgQNjY24rvvvquwveXLlwuNRnPHfl64cEFYW1uLr776SmrbuXOnACAuX758x/WrYjAYBABhMBjuehtERET11fnz58W0adPE669/KBSKMgEI6aVQlInXX/9QTJs2TZw/f97SXTWJKd/fFhvRKi0tRXp6OkJDQ6U2pVKJ0NBQpKamVrpOamqqrB4AdDqdVJ+dnY3c3FxZjUajQWBgYJXbrImvvvoKdnZ2eOaZZyos8/X1hZubGx599FHs3bu32u1cu3YNhYWFshcREVFjp9c74/bIIYQSer3WQj2qOxYLWpcuXUJZWRlcXFxk7S4uLlXe55Sbm1ttfflfU7ZZE0uXLsXw4cNha2srtbm5uWHx4sVYt24d1q1bBw8PD/Tt2xcZGRlVbichIQEajUZ6eXh43HWfiIiIGgqtNh8KhVHWplAYodXqLdSjumPxm+Hru9TUVGRlZSEqKkrW3qlTJ4wZMwb+/v4IDg7GsmXLEBwcjI8//rjKbU2aNAkGg0F6nT171tzdJyIisjiNpgjh4ZulsKVQGBEevhkaTZGFe2Z+FptHq0WLFrCyskJeXp6sPS8vD66urpWu4+rqWm19+d+8vDy4ubnJanx9fe+qn19++SV8fX3h7+9/x9qAgADs2bOnyuU2NjawsbG5q34QERE1NCqVSvpvP79MeHufgF6vhVarl4WsW+saG4sFLZVKBX9/fyQnJyMiIgIAYDQakZycjJiYmErXCQoKQnJyMmJjY6W27du3IygoCADg5eUFV1dXJCcnS8GqsLAQaWlpVf7CsDpXrlzBmjVrkJCQUKP6/fv3ywIeERFRU+bs7IyYmBjODG8pcXFxiIyMRK9evRAQEIB58+ahuLgYo0ePBgCMGjUKrVu3loLOuHHjEBISgg8//BBhYWFYtWoVfvvtN3z++ecAAIVCgdjYWLz33nvw8fGBl5cXpkyZAnd3dynMAcCZM2eg1+tx5swZlJWVYf/+/QCADh06oHnz5lLd6tWrcePGDTz33HMV+j5v3jx4eXmha9euKCkpwZdffokdO3Zg27ZtZjpbREREDU9jDlE1YdGgNWTIEFy8eBFTp05Fbm4ufH19kZSUJN3MfubMGSiV/7uNLDg4GCtXrsTkyZPx9ttvw8fHBxs2bEC3bt2kmgkTJqC4uBjR0dEoKChA7969kZSUBLVaLdVMnToVK1askN737HlzLo+dO3eib9++UvvSpUvx1FNPVTqpaWlpKcaPH4+//voLdnZ2eOCBB/DTTz+hX79+tXV6iIiIqIFTCCGEpTvRVBUWFkKj0cBgMMDR0dHS3SEiIqIaMOX7m786JCIiIjITBi0iIiIiM2HQIiIiIjITBi0iIiIiM2HQIiIiIjITBi0iIiIiM2HQIiIiIjITBi0iIiIiM2HQIiIiIjITBi0iIiIiM2HQIiIiIjITBi0iIiIiM2HQIiIiIjITBi0iIiIiM2HQIiIiIjITBi0iIiIiM2HQIiIiIjITBi0iIiIiM2lm6Q4QERER1Zb8/HyUlpZWuVylUsHZ2bnO+sOgRURERI1Cfn4+Fi5ceMe6mJiYOgtbvHRIREREjUJ1I1l3U1cbGLSIiIioUTIYHJCd7QmDwcFifeClQyIiImp0MjJ6YtOmgRBCCYXCiPDwzfDzy6zzfnBEi4iIiBoVg8FBClkAIIQSmzYNtMjIFoMWERERNSp6vbMUssoJoYRer63zvjBoERERUaOi1eZDoTDK2hQKI7RafZ33hUGLiIiIGhWNpgjh4ZulsFV+j5ZGU1TnfeHN8ERERNQoqFQq6b/9/DLh7X0Cer0WWq1eFrJurTM3Bi0iIiJqFJydnRETE8OZ4YmIiIjMoS5DVE3wHi0iIiIiM2HQIiIiIjITBi0iIiIiM7F40Fq0aBE8PT2hVqsRGBiIffv2VVu/du1adO7cGWq1Gt27d8fWrVtly4UQmDp1Ktzc3GBra4vQ0FAcP35cVjNz5kwEBwfDzs4OTk5Ole5HoVBUeK1atUpWs2vXLvj5+cHGxgYdOnRAYmKiycdPREREjZdFg9bq1asRFxeH+Ph4ZGRkoEePHtDpdLhw4UKl9SkpKRg2bBiioqKQmZmJiIgIRERE4NChQ1LN7NmzMX/+fCxevBhpaWmwt7eHTqdDSUmJVFNaWopnn30Wr7zySrX9W758OXJycqRXRESEtCw7OxthYWHo168f9u/fj9jYWLz44ov48ccf7+2kEBERUeMhLCggIECMHTtWel9WVibc3d1FQkJCpfWDBw8WYWFhsrbAwEAxZswYIYQQRqNRuLq6ijlz5kjLCwoKhI2Njfjuu+8qbG/58uVCo9FUui8A4vvvv6+y7xMmTBBdu3aVtQ0ZMkTodLoq17mdwWAQAITBYKjxOkRERGRZpnx/W2xEq7S0FOnp6QgNDZXalEolQkNDkZqaWuk6qampsnoA0Ol0Un12djZyc3NlNRqNBoGBgVVuszpjx45FixYtEBAQgGXLlkEIUeO+VObatWsoLCyUvYiIiKjxstg8WpcuXUJZWRlcXFxk7S4uLjh69Gil6+Tm5lZan5ubKy0vb6uqpqbeffddPPLII7Czs8O2bdvwr3/9C1euXMFrr71WbV8KCwvx999/w9bWtsI2ExISMH36dJP6QURERA0XJyytwpQpU6T/7tmzJ4qLizFnzhwpaN2NSZMmIS4uTnpfWFgIDw+Pe+onERER1V8Wu3TYokULWFlZIS8vT9ael5cHV1fXStdxdXWttr78rynbrKnAwECcO3cO165dq7Yvjo6OlY5mAYCNjQ0cHR1lLyIiImq8LBa0VCoV/P39kZycLLUZjUYkJycjKCio0nWCgoJk9QCwfft2qd7Lywuurq6ymsLCQqSlpVW5zZrav38/7rvvPtjY2NSoL0REREQWvXQYFxeHyMhI9OrVCwEBAZg3bx6Ki4sxevRoAMCoUaPQunVrJCQkAADGjRuHkJAQfPjhhwgLC8OqVavw22+/4fPPPwdwc+6r2NhYvPfee/Dx8YGXlxemTJkCd3d32dQMZ86cgV6vx5kzZ1BWVob9+/cDADp06IDmzZtj06ZNyMvLw0MPPQS1Wo3t27fj/fffxxtvvCFt4+WXX8bChQsxYcIEvPDCC9ixYwfWrFmDLVu21M3JIyIiovrP/D+CrN6CBQtE27ZthUqlEgEBAeKXX36RloWEhIjIyEhZ/Zo1a0THjh2FSqUSXbt2FVu2bJEtNxqNYsqUKcLFxUXY2NiI/v37i2PHjslqIiMjBYAKr507dwohhPjPf/4jfH19RfPmzYW9vb3o0aOHWLx4sSgrK5NtZ+fOncLX11eoVCrRvn17sXz5cpOOndM7EBERNTymfH8rhLhlzgKqU4WFhdBoNDAYDLxfi4iIqIEw5fvb4o/gISIiImqsGLSIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhMGLSIiIiIzKSZpTtAtSc/Px+lpaVVLlepVHB2dq7DHhERETVtDFqNRH5+PhYuXHjHupiYGIYtIiKiOsJLh43E7SNZBoMDsrM9YTA4VFtHRERE5sMRrUYoI6MnNm0aCCGUUCiMCA/fDD+/TEt3i4iIqMnhiFYjYzA4SCELAIRQYtOmgRVGtoiIiMj8GLQaGb3eWQpZ5YRQQq/XWqhHRERETReDViOj1eZDoTDK2hQKI7RavYV6RERE1HQxaDUyGk0RwsM3S2Gr/B4tjabIwj0jIiJqengzfCPk55cJb+8T0Ou10Gr1DFlEREQWwqDVSKhUKtl7jaao0oB1ex0RERGZD4NWI+Hs7IyYmBjODE9ERFSPMGg1IgxRVJ/c+kio8+eVyM5uBi+vG3B3v3n/IIM/ETUFDFpEVOtufSRUdRPo8pFQRNTY8VeHRFTrykey7jSBLh8JRUSNHYMWEZkNJ9AloqaOQYuIzIYT6BJRU8egRURmwwl0iaips3jQWrRoETw9PaFWqxEYGIh9+/ZVW7927Vp07twZarUa3bt3x9atW2XLhRCYOnUq3NzcYGtri9DQUBw/flxWM3PmTAQHB8POzg5OTk4V9vH7779j2LBh8PDwgK2tLe6//3588sknsppdu3ZBoVBUeOXm5t7diSBqpPz8MhEbOw+RkYmIjZ0n3QhPRNQUWDRorV69GnFxcYiPj0dGRgZ69OgBnU6HCxcuVFqfkpKCYcOGISoqCpmZmYiIiEBERAQOHTok1cyePRvz58/H4sWLkZaWBnt7e+h0OpSUlEg1paWlePbZZ/HKK69Uup/09HS0atUK33zzDQ4fPox33nkHkyZNkn5Fdatjx44hJydHerVq1eoezwpR46PRFMHL6zRHsoioyVEIIYSldh4YGIgHH3xQCjBGoxEeHh549dVXMXHixAr1Q4YMQXFxMTZv3iy1PfTQQ/D19cXixYshhIC7uzvGjx+PN954AwBgMBjg4uKCxMREDB06VLa9xMRExMbGoqCg4I59HTt2LLKysrBjxw4AN0e0+vXrh8uXL1c6KlYThYWF0Gg0MBgMcHR0vKttENVHOTk5+Pzzz+9YFx0dDTc3tzroERFR7THl+9tiI1qlpaVIT09HaGjo/zqjVCI0NBSpqamVrpOamiqrBwCdTifVZ2dnIzc3V1aj0WgQGBhY5TZrymAwQKut+EspX19fuLm54dFHH8XevXur3ca1a9dQWFgoexE1RjV91BMfCUVEjZ3FJiy9dOkSysrK4OLiImt3cXHB0aNHK10nNze30vry+6LK/1ZXczdSUlKwevVqbNmyRWpzc3PD4sWL0atXL1y7dg1ffvkl+vbti7S0NPj5+VW6nYSEBEyfPv2u+0HUUPCRUEREN3Fm+Ds4dOgQBg0ahPj4eDz22GNSe6dOndCpUyfpfXBwME6ePImPP/4YX3/9daXbmjRpEuLi4qT3hYWF8PDwMF/niSyIIYqIyIKXDlu0aAErKyvk5eXJ2vPy8uDq6lrpOq6urtXWl/81ZZvVOXLkCPr374/o6GhMnjz5jvUBAQE4ceJElcttbGzg6OgoexEREVHjZbGgpVKp4O/vj+TkZKnNaDQiOTkZQUFBla4TFBQkqweA7du3S/VeXl5wdXWV1RQWFiItLa3KbVbl8OHD6NevHyIjIzFz5swarbN//37e2EtEREQSi146jIuLQ2RkJHr16oWAgADMmzcPxcXFGD16NABg1KhRaN26NRISEgAA48aNQ0hICD788EOEhYVh1apV+O2336RfNykUCsTGxuK9996Dj48PvLy8MGXKFLi7uyMiIkLa75kzZ6DX63HmzBmUlZVh//79AIAOHTqgefPmOHToEB555BHodDrExcVJ93dZWVmhZcuWAIB58+bBy8sLXbt2RUlJCb788kvs2LED27Ztq6OzR0RERPWesLAFCxaItm3bCpVKJQICAsQvv/wiLQsJCRGRkZGy+jVr1oiOHTsKlUolunbtKrZs2SJbbjQaxZQpU4SLi4uwsbER/fv3F8eOHZPVREZGCgAVXjt37hRCCBEfH1/p8nbt2knb+OCDD4S3t7dQq9VCq9WKvn37ih07dph07AaDQQAQBoPBpPWIiIjIckz5/rboPFpNHefRIqod+fn50i8cz59XIju7Gby8bsDd/eajf/gLRyKqTaZ8f/NXh0TUoOXn50uTHmdk9MSmTQMhhFJ6rmL5I39iYmIYtoiozln8WYdERPeifCTLYHCQQhYACKHEpk0DYTA4yOqIiOoSgxYRNQp6vbMUssoJoYReX/GJDkREdYVBi4gaBa02HwqFUdamUBih1eot1CMiorsIWps3b8bUqVOl5/rt2LEDTzzxBAYMGFCjh8gSEZmDRlOE8PDNUtgqv0dLoymycM+IqCkz6Wb4JUuWICYmBj169MAnn3yCRYsW4V//+heGDBkCKysrxMbG4u+//8a4cePM1V8ioir5+WXC2/sE9HottFo9QxYRWZxJQWv+/Pn49NNP8dJLL2Hnzp144okn8OGHH+Jf//oXAOChhx7C7NmzGbSIyGI0miIGLCKqN0y6dJidnQ2dTgcA6NevH8rKyvDwww9Ly/v27YvTp0/Xbg+JiIiIGiiTgpazs7MUpM6fP48bN27gzJkz0vLTp09Dq+UvfIio7qhUqlqtIyKqTSZdOhw0aBCioqIQGRmJH374AaNGjcL48eOhVCqhUCjw5ptv4rHHHjNXX4mIKnB2dkZMTEy182RxZngishSTgtYHH3yA0tJSrFq1CsHBwViwYAHmz5+PQYMG4fr16wgJCZEeAE1EVFcYooiovqqVZx2WlJTg+vXrcHBwqI0+NRl81iEREVHDU+fPOlSr1VCr1bWxKSIiIqJGw6SgFRcXV6O6jz766K46Q0RERNSYmBS0MjMzZe/37NkDf39/2NraSm0KhaJ2ekZERETUwJkUtHbu3Cl77+DggJUrV6J9+/a12ikiIiKixoAPlSYiIiIyEwYtIiIiIjNh0CIiIiIyE5Pu0Tpw4IDsvRACR48exZUrV2TtDzzwwL33jIiIiKiBM2nC0vJH7VS2Snm7QqFAWVlZrXayseKEpURERA2P2SYszc7OvqeOERERETUlJgWtdu3amasfRERERI2OyTfDCyGQnZ2NGzduAABKS0uxevVqfPXVV7h06VKtd5CIiIiooTJpROvYsWPQ6XQ4e/Ys2rdvj23btuHZZ5/F0aNHIYSAnZ0dUlJS4OPjY67+EhERETUYJo1ovfXWW+jRowf279+PgQMHIiwsDG3atMHly5eh1+sRFBSEd99911x9JSIiImpQTPrVYatWrbBt2zb4+vqiuLgYDg4O2L17N3r37g0ASElJwbBhw3D69Gmzdbgx4a8OiYiIGh5Tvr9NGtG6cuUKtFotAMDe3h729vZwc3OTlnt4eCAvL+8uukxERETU+JgUtNzd3XHmzBnp/ezZs9GqVSvp/cWLF3HffffVXu+IiIiIGjCTglZoaCiOHj0qvX/llVfg4OAgvd+2bRv8/Pxqr3dEREREDZhJ92jdyalTp2BjYyO7nEhV4z1aREREDY/Z7tHasWMHunTpgsLCwgrLDAYDwsLCcOLECdN6S0T1Wn5+PnJycqp85efnW7qLRET1lknzaM2bNw8vvfRSpelNo9FgzJgx+Oijj9CnT59a6yARWU5+fj4WLlx4x7qYmBg4OzvXQY+IiBoWk0a0fv/9dwwYMKDK5Y899hjS09NN6sCiRYvg6ekJtVqNwMBA7Nu3r9r6tWvXonPnzlCr1ejevTu2bt0qWy6EwNSpU+Hm5gZbW1uEhobi+PHjspqZM2ciODgYdnZ2cHJyqnQ/Z86cQVhYGOzs7NCqVSu8+eab0mz45Xbt2gU/Pz/Y2NigQ4cOSExMNOnYieq70tJS2XuDwQHZ2Z4wGByqrSMioptMClp5eXmwtraucnmzZs1w8eLFGm9v9erViIuLQ3x8PDIyMtCjRw/odDpcuHCh0vryebqioqKQmZmJiIgIRERE4NChQ1LN7NmzMX/+fCxevBhpaWmwt7eHTqdDSUmJVFNaWopnn30Wr7zySqX7KSsrQ1hYGEpLS5GSkoIVK1YgMTERU6dOlWqys7MRFhaGfv36Yf/+/YiNjcWLL76IH3/8scbHT9SQZGT0xLx5sVixIhLz5sUiI6OnpbtERFT/CRO0b99efP/991UuX7dunfDy8qrx9gICAsTYsWOl92VlZcLd3V0kJCRUWj948GARFhYmawsMDBRjxowRQghhNBqFq6urmDNnjrS8oKBA2NjYiO+++67C9pYvXy40Gk2F9q1btwqlUilyc3Olts8++0w4OjqKa9euCSGEmDBhgujatatsvSFDhgidTneHo/4fg8EgAAiDwVDjdYjq0vnz58W0adPE669/KBSKMgEI6aVQlInXX/9QTJs2TZw/f97SXSUiqjOmfH+bNKL1xBNPYMqUKbLRoXJ///034uPjMXDgwBptq7S0FOnp6QgNDZXalEolQkNDkZqaWuk6qampsnoA0Ol0Un12djZyc3NlNRqNBoGBgVVus6r9dO/eHS4uLrL9FBYW4vDhwzXqS2WuXbuGwsJC2YuoIdDrnXH7PxdCKKHXay3UIyKihsGkm+EnT56M9evXo2PHjoiJiUGnTp0AAEePHsWiRYtQVlaGd955p0bbunTpEsrKymRhBgBcXFxkc3XdKjc3t9L63NxcaXl5W1U1NVHVfm7dR1U1hYWF+Pvvv2Fra1thuwkJCZg+fXqN+0FUX2i1+VAojLKwpVAYodXqLdgrIqL6z6QRLRcXF6SkpKBbt26YNGkS/vnPf+Kf//wn3n77bXTr1g179uypED7ofyZNmgSDwSC9zp49a+kuEdWIRlOE8PDNUCiMAG6GrPDwzdBoiizcMyKi+s2kES0AaNeuHbZu3YrLly/jxIkTEELAx8fH5EfvtGjRAlZWVhWejZiXlwdXV9dK13F1da22vvxvXl6ebNLUvLw8+Pr61rhvrq6uFX79WL7fW/dVWV8cHR0rHc0CABsbG9jY2NS4H0T1iZ9fJry9T0Cv10Kr1TNkERHVgEkjWre677778OCDDyIgIOCunm+oUqng7++P5ORkqc1oNCI5ORlBQUGVrhMUFCSrB4Dt27dL9V5eXnB1dZXVFBYWIi0trcptVrWfgwcPyn79uH37djg6OqJLly416gtRY6BSqWTvNZoieHmdrhCybq8jIqL/Z/5786u2atUqYWNjIxITE8WRI0dEdHS0cHJykn7tN3LkSDFx4kSpfu/evaJZs2Zi7ty5IisrS8THxwtra2tx8OBBqWbWrFnCyclJbNy4URw4cEAMGjRIeHl5ib///luqOX36tMjMzBTTp08XzZs3F5mZmSIzM1MUFRUJIYS4ceOG6Natm3jsscfE/v37RVJSkmjZsqWYNGmStI0///xT2NnZiTfffFNkZWWJRYsWCSsrK5GUlFTj4+evDqkhuHTpkjh//nyVr0uXLlm6i0REdcqU72+LBi0hhFiwYIFo27atUKlUIiAgQPzyyy/SspCQEBEZGSmrX7NmjejYsaNQqVSia9euYsuWLbLlRqNRTJkyRbi4uAgbGxvRv39/cezYMVlNZGSkAFDhtXPnTqnm1KlT4vHHHxe2traiRYsWYvz48eL69euy7ezcuVP4+voKlUol2rdvL5YvX27SsTNoERERNTymfH/X6kOlyTR8qDQREVHDY7aHShMRERFRzTFoEREREZkJgxYRERGRmZg8jxbRvcjPz0dpaWmVy1UqFZydneuwR0RERObDoEV1Jj8/HwsXLrxjXUxMDMOWGTDkEhHVPQYtqjPVfcnfTR3VHEMuEZFl8B4toiaAIZeIyDIYtIiaIIPBAdnZnjAYHCzdFSKiRo2XDsliDAYH6PXO0Grz+YDiOpSR0RObNg2EEEooFEaEh2+Gn1+mpbtFRNQoMWiRRfDL3jIMBgfpvAOAEEps2jQQ3t4nGHaJiMyAlw6pzlX1Zc/LWOan1ztL572cEEro9VoL9YiIqHFj0KI6xy97y9Fq86FQGGVtCoURWq3eQj0iImrcGLSozqhUKgB3/rIvr6Pap9EUITx8s3T+yy/b8rIhEZF58B4tqjPOzs6IiYlBaWkpWrcuxFtvaVBWpoCVlcAHHxRi+PBhnDTTTG4Nr35+mfD2PgG9XgutVi8LWQy5RES1SyGEEJbuRFNVWFgIjUYDg8EAR0dHS3enzp07B5w4AXToALRpY+neNH6cGZ6IqHaY8v3NES2ymDZtGLDqEkMUEVHd4z1aRERERGbCoEVERERkJgxaRERERGbCoEVERERkJgxaRERERGbCoEVERERkJgxaRERERGbCoEVERERkJgxaRERERGbCoEVERERkJgxaRERERGbCoEVERERkJgxaRERERGbSzNIdIMvKz89HaWlplctVKhWcnZ3rsEdERESNB4NWE5afn4+FCxfesS4mJoZhi4iI6C7w0mETVt1I1t3UERERkRyDFhEREZGZ1IugtWjRInh6ekKtViMwMBD79u2rtn7t2rXo3Lkz1Go1unfvjq1bt8qWCyEwdepUuLm5wdbWFqGhoTh+/LisRq/XY8SIEXB0dISTkxOioqJw5coVafm0adOgUCgqvOzt7aWaxMTECsvVanUtnBEiIiJqDCwetFavXo24uDjEx8cjIyMDPXr0gE6nw4ULFyqtT0lJwbBhwxAVFYXMzExEREQgIiIChw4dkmpmz56N+fPnY/HixUhLS4O9vT10Oh1KSkqkmhEjRuDw4cPYvn07Nm/ejN27dyM6Olpa/sYbbyAnJ0f26tKlC5599llZfxwdHWU1p0+fruUzRERERA2VQgghLNmBwMBAPPjgg9JN2UajER4eHnj11VcxceLECvVDhgxBcXExNm/eLLU99NBD8PX1xeLFiyGEgLu7O8aPH4833ngDAGAwGODi4oLExEQMHToUWVlZ6NKlC3799Vf06tULAJCUlIQnnngC586dg7u7e4X9/v777/D19cXu3bvRp08fADdHtGJjY1FQUHBXx15YWAiNRgODwQBHR8e72sa9yMnJweeffy69NxgcoNc7Q6vNh0ZTJLVHR0fDzc2tzvtHRERUH5ny/W3REa3S0lKkp6cjNDRUalMqlQgNDUVqamql66SmpsrqAUCn00n12dnZyM3NldVoNBoEBgZKNampqXBycpJCFgCEhoZCqVQiLS2t0v1++eWX6NixoxSyyl25cgXt2rWDh4cHBg0ahMOHD1d5vNeuXUNhYaHsVV9kZPTEvHmxWLEiEvPmxSIjo6elu0RERNTgWTRoXbp0CWVlZXBxcZG1u7i4IDc3t9J1cnNzq60v/3unmlatWsmWN2vWDFqtttL9lpSU4Ntvv0VUVJSsvVOnTli2bBk2btyIb775BkajEcHBwTh37lylfU9ISIBGo5FeHh4eldbVNYPBAZs2DYQQNz8OQiixadNAGAwOFu4ZERFRw2bxe7Qagu+//x5FRUWIjIyUtQcFBWHUqFHw9fVFSEgI1q9fj5YtW2LJkiWVbmfSpEkwGAzS6+zZs3XR/SqpVCoAgF7vLIWsckIooddrZXVERERkGotOWNqiRQtYWVkhLy9P1p6XlwdXV9dK13F1da22vvxvXl6e7L6ivLw8+Pr6SjW332x/48YN6PX6Svf75ZdfYuDAgRVGyW5nbW2Nnj174sSJE5Uut7GxgY2NTbXbqEvOzs6IiYnBqVM38PXXAkajQlpmZSXw6quPw9OzGScrJSIiuksWHdFSqVTw9/dHcnKy1GY0GpGcnIygoKBK1wkKCpLVA8D27dulei8vL7i6uspqCgsLkZaWJtUEBQWhoKAA6enpUs2OHTtgNBoRGBgo23Z2djZ27txZ4bJhZcrKynDw4MEGdeO4s7Mz/P1d8PnnClhZ3WyzsgKWLFHA39+FIYuIiOheCAtbtWqVsLGxEYmJieLIkSMiOjpaODk5idzcXCGEECNHjhQTJ06U6vfu3SuaNWsm5s6dK7KyskR8fLywtrYWBw8elGpmzZolnJycxMaNG8WBAwfEoEGDhJeXl/j777+lmgEDBoiePXuKtLQ0sWfPHuHj4yOGDRtWoX+TJ08W7u7u4saNGxWWTZ8+Xfz444/i5MmTIj09XQwdOlSo1Wpx+PDhGh27wWAQAITBYKjx+TKns2eF2Lnz5l8iIiKqnCnf3xZ/1uGQIUNw8eJFTJ06Fbm5ufD19UVSUpJ0me7MmTNQKv838BYcHIyVK1di8uTJePvtt+Hj44MNGzagW7duUs2ECRNQXFyM6OhoFBQUoHfv3khKSpJNJvrtt98iJiYG/fv3h1KpxNNPP4358+fL+mY0GpGYmIjnn38eVuXDPbe4fPkyXnrpJeTm5uK+++6Dv78/UlJS0KVLl9o+TXWiTZubLyKi+io/P7/ax4KpVCqOxFO9YvF5tJoyS8+jRUTUkOTn50tzLlYnJiamVsIWQx1VxZTvb4uPaBEREdXE7aGnqkmWqwtHNVXXoY4aLwYtIjILjgaQOWVk9JTm/1MojAgP3ww/v8xa235dhjpq3Bi0iKjWcTTAshp7yK1qkmVv7xOyEFRbzB3qqHFj0CKiWsfRAMtpCiG3ukmWazto1XWoo8aHQYuIzIqjAXWrKYRcrTYfCoVRFrYUCiO0Wn2t76suQx01TgxaRGQ2HA2wrMYacjWaIoSHb65wbOb4TNVlqKPGiUGLiMyGowGW09hDrp9fJry9T0Cv10Kr1ZvtmOoy1FHjxKBFRGbD0QDLaYwh9/YH3Gs0RZUey+1196quQh01TgxaRGQ2HA2wnMYYcp2dnRETE1Mnv6i0VKijxodBi4jMiqMBltFYQ25d/VKyLkMdNW4MWkRU6zgaUD8w5N4bhiiqDQxaRFTrOBpgOZYIuY19glSie8GHSlsQHypNROZQl8GnKUyQSnQ7PlSaiKgJq8tA0xQmSCW6FwxaRERUKxrrBKlE90J55xIiIqLqVTVBqsHgYOGeEVkWgxYREd2z6iZIJWrKGLSIiOielU+QequGPkEqUW1g0CIiontWPkFqedhqLBOkEt0r3gxPRES1ghOkElXEoEVERHeNTwEgqh6DFhER3TU+BYCoegxaRER0TxiiiKrGm+GJiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhM6kXQWrRoETw9PaFWqxEYGIh9+/ZVW7927Vp07twZarUa3bt3x9atW2XLhRCYOnUq3NzcYGtri9DQUBw/flxWo9frMWLECDg6OsLJyQlRUVG4cuWKtPzUqVNQKBQVXr/88otJfSEiIqKmy+JBa/Xq1YiLi0N8fDwyMjLQo0cP6HQ6XLhwodL6lJQUDBs2DFFRUcjMzERERAQiIiJw6NAhqWb27NmYP38+Fi9ejLS0NNjb20On06GkpESqGTFiBA4fPozt27dj8+bN2L17N6Kjoyvs76effkJOTo708vf3N6kvRERE1IQJCwsICBBjx46V3peVlQl3d3eRkJBQaf3gwYNFWFiYrC0wMFCMGTNGCCGE0WgUrq6uYs6cOdLygoICYWNjI7777jshhBBHjhwRAMSvv/4q1fznP/8RCoVC/PXXX0IIIbKzswUAkZmZWWXf79SXOzEYDAKAMBgMNaonIiIiyzPl+9uiI1qlpaVIT09HaGio1KZUKhEaGorU1NRK10lNTZXVA4BOp5Pqs7OzkZubK6vRaDQIDAyUalJTU+Hk5IRevXpJNaGhoVAqlUhLS5Nt+8knn0SrVq3Qu3dv/PDDDyb15XbXrl1DYWGh7EVERESNl0WD1qVLl1BWVgYXFxdZu4uLC3JzcytdJzc3t9r68r93qmnVqpVsebNmzaDVaqWa5s2b48MPP8TatWuxZcsW9O7dGxEREbKwdae+3C4hIQEajUZ6eXh4VFpHREREjUMzS3egvmrRogXi4uKk9w8++CDOnz+POXPm4Mknn7yrbU6aNEm2zcLCQoYtIiKiRsyiI1otWrSAlZUV8vLyZO15eXlwdXWtdB1XV9dq68v/3qnm9pvtb9y4Ab1eX+V+ASAwMBAnTpyocV9uZ2NjA0dHR9mLiIiIGi+LBi2VSgV/f38kJydLbUajEcnJyQgKCqp0naCgIFk9AGzfvl2q9/Lygqurq6ymsLAQaWlpUk1QUBAKCgqQnp4u1ezYsQNGoxGBgYFV9nf//v1wc3OrcV+IiIioiauDm/OrtWrVKmFjYyMSExPFkSNHRHR0tHBychK5ublCCCFGjhwpJk6cKNXv3btXNGvWTMydO1dkZWWJ+Ph4YW1tLQ4ePCjVzJo1Szg5OYmNGzeKAwcOiEGDBgkvLy/x999/SzUDBgwQPXv2FGlpaWLPnj3Cx8dHDBs2TFqemJgoVq5cKbKyskRWVpaYOXOmUCqVYtmyZSb1pTr81SEREVHDY8r3t8WDlhBCLFiwQLRt21aoVCoREBAgfvnlF2lZSEiIiIyMlNWvWbNGdOzYUahUKtG1a1exZcsW2XKj0SimTJkiXFxchI2Njejfv784duyYrCY/P18MGzZMNG/eXDg6OorRo0eLoqIiaXliYqK4//77hZ2dnXB0dBQBAQFi7dq1Ffp+p75Uh0GLiIio4THl+1shhBCWHVNrugoLC6HRaGAwGHi/FhERUQNhyve3xWeGJyIiImqsGLSIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhMmlm6A0RERES3y8/PR2lpaZXLVSoVnJ2d67BHd4dBi4iIiOqV/Px8LFy48I51MTEx9T5s8dIhERER1SvVjWTdTZ0lMWgRERERmQmDFhEREZGZMGgRERFRvWYwOCA72xMGg4Olu2Iy3gxPRERE9VZGRk9s2jQQQiihUBgRHr4Zfn6Zlu5WjXFEi4iIiOolg8FBClkAIIQSmzYNbFAjWwxaREREVC/p9c5SyConhBJ6vdZCPTIdgxYRERHVKyqVCgCg1eZDoTDKlikURmi1elldfcZ7tIiIiKhecXZ2RkxMDEpLS9G6dSHeekuDsjIFrKwEPvigEMOHD2swM8MrhBDC0p1oqgoLC6HRaGAwGODo6Gjp7hAREdVL584BJ04AHToAbdpYujemfX9zRIuIiIjqtTZt6kfAuhu8R4uIiIjITBi0iIiIiMyEQYuIiIjITBi0iIiIiMyEQYuIiIjITBi0iIiIiMyEQYuIiIjITDiPFhERETUa+fn5KC0trXJ5Xc8oz6BFREREjUJ+fj4WLlx4x7qYmJg6C1u8dEhERESNQnUjWXdTVxsYtIiIiIjMpF4ErUWLFsHT0xNqtRqBgYHYt29ftfVr165F586doVar0b17d2zdulW2XAiBqVOnws3NDba2tggNDcXx48dlNXq9HiNGjICjoyOcnJwQFRWFK1euSMt37dqFQYMGwc3NDfb29vD19cW3334r20ZiYiIUCoXspVar7/FsEBERUWNh8aC1evVqxMXFIT4+HhkZGejRowd0Oh0uXLhQaX1KSgqGDRuGqKgoZGZmIiIiAhERETh06JBUM3v2bMyfPx+LFy9GWloa7O3todPpUFJSItWMGDEChw8fxvbt27F582bs3r0b0dHRsv088MADWLduHQ4cOIDRo0dj1KhR2Lx5s6w/jo6OyMnJkV6nT5+u5TNEREREDZVCCCEs2YHAwEA8+OCD0s1rRqMRHh4eePXVVzFx4sQK9UOGDEFxcbEs8Dz00EPw9fXF4sWLIYSAu7s7xo8fjzfeeAMAYDAY4OLigsTERAwdOhRZWVno0qULfv31V/Tq1QsAkJSUhCeeeALnzp2Du7t7pX0NCwuDi4sLli1bBuDmiFZsbCwKCgru6tgLCwuh0WhgMBjg6Oh4V9sgIiKim3JycvD5559L7w0GB+j1ztBq86HRFEnt0dHRcHNzu+v9mPL9bdERrdLSUqSnpyM0NFRqUyqVCA0NRWpqaqXrpKamyuoBQKfTSfXZ2dnIzc2V1Wg0GgQGBko1qampcHJykkIWAISGhkKpVCItLa3K/hoMBmi1WlnblStX0K5dO3h4eGDQoEE4fPhwletfu3YNhYWFshcRERHVvoyMnpg3LxYrVkRi3rxYZGT0tEg/LBq0Ll26hLKyMri4uMjaXVxckJubW+k6ubm51daX/71TTatWrWTLmzVrBq1WW+V+16xZg19//RWjR4+W2jp16oRly5Zh48aN+Oabb2A0GhEcHIxz585Vuo2EhARoNBrp5eHhUWkdERER3T2DwQGbNg2EEDdjjhBKbNo0EAaDQ533xeL3aDUEO3fuxOjRo/HFF1+ga9euUntQUBBGjRoFX19fhISEYP369WjZsiWWLFlS6XYmTZoEg8Egvc6ePVtXh0BERNToXb16FQCg1ztLIaucEEro9VpZXV2waNBq0aIFrKyskJeXJ2vPy8uDq6trpeu4urpWW1/+9041t99sf+PGDej1+gr7/e9//4vw8HB8/PHHGDVqVLXHY21tjZ49e+LEiROVLrexsYGjo6PsRURERLXDzs4OAKDV5kOhMMqWKRRGaLV6WV1dsGjQUqlU8Pf3R3JystRmNBqRnJyMoKCgStcJCgqS1QPA9u3bpXovLy+4urrKagoLC5GWlibVBAUFoaCgAOnp6VLNjh07YDQaERgYKLXt2rULYWFh+OCDD2S/SKxKWVkZDh48eE832BEREdG90WiKEB6+WQpbCoUR4eGbZTfE1xWLP4InLi4OkZGR6NWrFwICAjBv3jwUFxdL90KNGjUKrVu3RkJCAgBg3LhxCAkJwYcffoiwsDCsWrUKv/32m/QrA4VCgdjYWLz33nvw8fGBl5cXpkyZAnd3d0RERAAA7r//fgwYMAAvvfQSFi9ejOvXryMmJgZDhw6VfnG4c+dODBw4EOPGjcPTTz8t3bulUqmkG+LfffddPPTQQ+jQoQMKCgowZ84cnD59Gi+++GJdnkIiIiK6jZ9fJry9T0Cv10Kr1VskZAH1IGgNGTIEFy9exNSpU5GbmwtfX18kJSVJN7OfOXMGSuX/Bt6Cg4OxcuVKTJ48GW+//TZ8fHywYcMGdOvWTaqZMGECiouLER0djYKCAvTu3RtJSUmyyUS//fZbxMTEoH///lAqlXj66acxf/58afmKFStw9epVJCQkSCEPAEJCQrBr1y4AwOXLl/HSSy8hNzcX9913H/z9/ZGSkoIuXbqY63QRERFRDWk0RRYLWOUsPo9WU8Z5tIiIiGpPfZxHy+IjWkRERES1LSOjpzTFQ/k9Wn5+mXXeD07vQERERI0K59EiIiIiqmUqlQrAnefRKq+rC7xHy4J4jxYREVHtys/Px6lTNxAQ0ApGo0Jqt7ISSEu7AE/PZnB2dr6nfTSYZx0SERER1SZnZ2f4+7vg888VsLK62WZlBSxZooC/v8s9hyxT8WZ4Iqqxc+eA48cBHx+gTRtL94aIqGpRUYBOB5w4AXToYLl/sziiRUQ1snQp0K4d8MgjN/8uXWrpHhERVa9NG6BvX8v+P4YMWkRUrfz8fKSn5yE6WsD4/48OMxqBMWME0tPzkJ+fb9kOEhHVY7x0SERVys/Px8KFC5Gd7QmjMVK2rKxMgQUL/gMvr9OIiYmp8/seiIgaAo5oEVGVSktLAQBabb70cNZyCoURWq1eVkdERHIMWkR0RxpNEcLDN0thq3yWZUs/Q4yIqL7jpUMiqhE/v0x4e5+AXq+FVqtnyCIiqgEGLSKqMY2miAGLiMgEvHRIREREZCYMWkRERERmwqBFREREZCYMWkRUpZo+4b6mdURETQ1vhieiKjk7OyMmJqbaebJUKhUnKyUiqgKDFhFViyGKiOju8dIhERERkZkwaBERERGZCYMWERERkZkwaBERERGZCYMWERERkZkwaBERERGZCYMWERERkZkwaBERERGZCYMWERERkZlwZngLEkIAAAoLCy3cEyIiIqqp8u/t8u/x6jBoWVBRUREAwMPDw8I9ISIiIlMVFRVBo9FUW6MQNYljZBZGoxHnz5+Hg4MDFArFPW2rsLAQHh4eOHv2LBwdHWuphw0LzwHPAcBzAPAcADwHAM8BYL5zIIRAUVER3N3doVRWfxcWR7QsSKlUok2bNrW6TUdHxyb7P6hyPAc8BwDPAcBzAPAcADwHgHnOwZ1GssrxZngiIiIiM2HQIiIiIjITBq1GwsbGBvHx8bCxsbF0VyyG54DnAOA5AHgOAJ4DgOcAqB/ngDfDExEREZkJR7SIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhMGLTqsUWLFsHT0xNqtRqBgYHYt29ftfXz5s1Dp06dYGtrCw8PD7z++usoKSmRlk+bNg0KhUL26ty5s7kP456Ycg6uX7+Od999F97e3lCr1ejRoweSkpLuaZv1QW2fg4b0Odi9ezfCw8Ph7u4OhUKBDRs23HGdXbt2wc/PDzY2NujQoQMSExMr1DSkz4A5zkFD+gwApp+DnJwcDB8+HB07doRSqURsbGyldWvXrkXnzp2hVqvRvXt3bN26tfY7X0vMcQ4SExMrfA7UarV5DqAWmHoO1q9fj0cffRQtW7aEo6MjgoKC8OOPP1aoM/e/Bwxa9dTq1asRFxeH+Ph4ZGRkoEePHtDpdLhw4UKl9StXrsTEiRMRHx+PrKwsLF26FKtXr8bbb78tq+vatStycnKk1549e+ricO6Kqedg8uTJWLJkCRYsWIAjR47g5Zdfxj//+U9kZmbe9TYtzRznAGg4n4Pi4mL06NEDixYtqlF9dnY2wsLC0K9fP+zfvx+xsbF48cUXZf+4NrTPgDnOAdBwPgOA6efg2rVraNmyJSZPnowePXpUWpOSkoJhw4YhKioKmZmZiIiIQEREBA4dOlSbXa815jgHwM0Z02/9HJw+fbq2ulzrTD0Hu3fvxqOPPoqtW7ciPT0d/fr1Q3h4eN1/JwiqlwICAsTYsWOl92VlZcLd3V0kJCRUWj927FjxyCOPyNri4uLEP/7xD+l9fHy86NGjh1n6aw6mngM3NzexcOFCWdtTTz0lRowYcdfbtDRznIOG9jkoB0B8//331dZMmDBBdO3aVdY2ZMgQodPppPcN7TNwq9o6Bw31MyBEzc7BrUJCQsS4ceMqtA8ePFiEhYXJ2gIDA8WYMWPusYfmV1vnYPny5UKj0dRav+qSqeegXJcuXcT06dOl93Xx7wFHtOqh0tJSpKenIzQ0VGpTKpUIDQ1FampqpesEBwcjPT1dGvL8888/sXXrVjzxxBOyuuPHj8Pd3R3t27fHiBEjcObMGfMdyD24m3Nw7dq1CsPetra20v+nfjfbtCRznINyDeVzYKrU1FTZ+QIAnU4nna+G9hm4G3c6B+Ua62egpmp6nhq7K1euoF27dvDw8MCgQYNw+PBhS3fJbIxGI4qKiqDVagHU3b8HDFr10KVLl1BWVgYXFxdZu4uLC3JzcytdZ/jw4Xj33XfRu3dvWFtbw9vbG3379pVdOgwMDERiYiKSkpLw2WefITs7G3369EFRUZFZj+du3M050Ol0+Oijj3D8+HEYjUZs374d69evR05Ozl1v05LMcQ6AhvU5MFVubm6l56uwsBB///13g/sM3I07nQOgcX8Gaqqq89RYPgc10alTJyxbtgwbN27EN998A6PRiODgYJw7d87SXTOLuXPn4sqVKxg8eDCAuvtOYNBqJHbt2oX3338fn376KTIyMrB+/Xps2bIFM2bMkGoef/xxPPvss3jggQeg0+mwdetWFBQUYM2aNRbsee355JNP4OPjg86dO0OlUiEmJgajR4+GUtl0PuY1OQeN/XNAd8bPAAFAUFAQRo0aBV9fX4SEhGD9+vVo2bIllixZYumu1bqVK1di+vTpWLNmDVq1alWn+24630ANSIsWLWBlZYW8vDxZe15eHlxdXStdZ8qUKRg5ciRefPFFdO/eHf/85z/x/vvvIyEhAUajsdJ1nJyc0LFjR5w4caLWj+Fe3c05aNmyJTZs2IDi4mKcPn0aR48eRfPmzdG+ffu73qYlmeMcVKY+fw5M5erqWun5cnR0hK2tbYP7DNyNO52DyjSmz0BNVXWeGsvn4G5YW1ujZ8+eje5zsGrVKrz44otYs2aN7DJhXf17wKBVD6lUKvj7+yM5OVlqMxqNSE5ORlBQUKXrXL16tcLIjZWVFQBAVPE4yytXruDkyZNwc3OrpZ7Xnrs5B+XUajVat26NGzduYN26dRg0aNA9b9MSzHEOKlOfPwemCgoKkp0vANi+fbt0vhraZ+Bu3OkcVKYxfQZq6m7OU2NXVlaGgwcPNqrPwXfffYfRo0fju+++Q1hYmGxZnf17UGu31VOtWrVqlbCxsRGJiYniyJEjIjo6Wjg5OYnc3FwhhBAjR44UEydOlOrj4+OFg4OD+O6778Sff/4ptm3bJry9vcXgwYOlmvHjx4tdu3aJ7OxssXfvXhEaGipatGghLly4UOfHVxOmnoNffvlFrFu3Tpw8eVLs3r1bPPLII8LLy0tcvny5xtusb8xxDhrS56CoqEhkZmaKzMxMAUB89NFHIjMzU5w+fVoIIcTEiRPFyJEjpfo///xT2NnZiTfffFNkZWWJRYsWCSsrK5GUlCTVNLTPgDnOQUP6DAhh+jkQQkj1/v7+Yvjw4SIzM1McPnxYWr53717RrFkzMXfuXJGVlSXi4+OFtbW1OHjwYJ0eW02Z4xxMnz5d/Pjjj+LkyZMiPT1dDB06VKjVallNfWLqOfj2229Fs2bNxKJFi0ROTo70KigokGrq4t8DBq16bMGCBaJt27ZCpVKJgIAA8csvv0jLQkJCRGRkpPT++vXrYtq0acLb21uo1Wrh4eEh/vWvf8m+YIcMGSLc3NyESqUSrVu3FkOGDBEnTpyowyMynSnnYNeuXeL+++8XNjY2wtnZWYwcOVL89ddfJm2zPqrtc9CQPgc7d+4UACq8yo85MjJShISEVFjH19dXqFQq0b59e7F8+fIK221InwFznIOG9BkQ4u7OQWX17dq1k9WsWbNGdOzYUahUKtG1a1exZcuWujmgu2COcxAbGyv978DFxUU88cQTIiMjo+4OykSmnoOQkJBq68uZ+98DhRBVXFciIiIionvCe7SIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIiMhMGLSIiIiIzIRBi4iIZHbt2gWFQoGCggJLd4WowWPQIiKLef7556FQKDBr1ixZ+4YNG6BQKKT3Qgh88cUXCAoKgqOjI5o3b46uXbti3LhxNX4A7tWrVzFp0iR4e3tDrVajZcuWCAkJwcaNG6UaT09PzJs3r1aOzdzKz51CoYC1tTW8vLwwYcIElJSUmLSdvn37IjY2VtYWHByMnJwcaDSaWuwxUdPEoEVEFqVWq/HBBx/g8uXLlS4XQmD48OF47bXX8MQTT2Dbtm04cuQIli5dCrVajffee69G+3n55Zexfv16LFiwAEePHkVSUhKeeeYZ5Ofn1+bh1KkBAwYgJycHf/75Jz7++GMsWbIE8fHx97xdlUoFV1dXWdglortUqw/0ISIyQWRkpBg4cKDo3LmzePPNN6X277//XpT/8/Tdd98JAGLjxo2VbsNoNNZoXxqNRiQmJla5vLLnopX7+eefRe/evYVarRZt2rQRr776qrhy5Yq0/KuvvhL+/v6iefPmwsXFRQwbNkzk5eVJy8uf0ZaUlCR8fX2FWq0W/fr1E3l5eWLr1q2ic+fOwsHBQQwbNkwUFxfX6HgiIyPFoEGDZG1PPfWU6Nmzp/T+0qVLYujQocLd3V3Y2tqKbt26iZUrV8q2cfsxZ2dnS/299Vmp//73v0WXLl2ESqUS7dq1E3Pnzq1RP4maOo5oEZFFWVlZ4f3338eCBQtw7ty5Csu/++47dOrUCU8++WSl69d01MXV1RVbt25FUVFRpcvXr1+PNm3a4N1330VOTg5ycnIAACdPnsSAAQPw9NNP48CBA1i9ejX27NmDmJgYad3r169jxowZ+P3337FhwwacOnUKzz//fIV9TJs2DQsXLkRKSgrOnj2LwYMHY968eVi5ciW2bNmCbdu2YcGCBTU6ntsdOnQIKSkpUKlUUltJSQn8/f2xZcsWHDp0CNHR0Rg5ciT27dsHAPjkk08QFBSEl156STpmDw+PCttOT0/H4MGDMXToUBw8eBDTpk3DlClTkJiYeFd9JWpSLJ30iKjpunVU5qGHHhIvvPCCEEI+otW5c2fx5JNPytYbN26csLe3F/b29qJ169Y12td///tf0aZNG2FtbS169eolYmNjxZ49e2Q17dq1Ex9//LGsLSoqSkRHR8vafv75Z6FUKsXff/9d6b5+/fVXAUAUFRUJIf43ovXTTz9JNQkJCQKAOHnypNQ2ZswYodPpanQ8kZGRwsrKStjb2wsbGxsBQCiVSvHvf/+72vXCwsLE+PHjpfchISFi3LhxsprbR7SGDx8uHn30UVnNm2++Kbp06VKjvhI1ZRzRIqJ64YMPPsCKFSuQlZV1x9p33nkH+/fvx9SpU3HlypUabf/hhx/Gn3/+ieTkZDzzzDM4fPgw+vTpgxkzZlS73u+//47ExEQ0b95ceul0OhiNRmRnZwO4OeITHh6Otm3bwsHBASEhIQCAM2fOyLb1wAMPSP/t4uICOzs7tG/fXtZ24cKFGh0PAPTr1w/79+9HWloaIiMjMXr0aDz99NPS8rKyMsyYMQPdu3eHVqtF8+bN8eOPP1bo151kZWXhH//4h6ztH//4B44fP46ysjKTtkXU1DBoEVG98PDDD0On02HSpEmydh8fHxw7dkzW1rJlS3To0AGtWrUyaR/W1tbo06cP3nrrLWzbtg3vvvsuZsyYgdLS0irXuXLlCsaMGYP9+/dLr99//x3Hjx+Ht7c3iouLodPp4OjoiG+//Ra//vorvv/+ewCosF1ra2vpv8t/LXgrhUIBo9FY4+Oxt7dHhw4d0KNHDyxbtgxpaWlYunSptHzOnDn45JNP8NZbb2Hnzp3Yv38/dDpdtcdLRLWrmaU7QERUbtasWfD19UWnTp2ktmHDhmH48OHYuHEjBg0aVKv769KlC27cuIGSkhKoVCqoVKoKIzR+fn44cuQIOnToUOk2Dh48iPz8fMyaNUu6v+m3336r1X7WhFKpxNtvv424uDgMHz4ctra22Lt3LwYNGoTnnnsOAGA0GvHHH3+gS5cu0nqVHfPt7r//fuzdu1fWtnfvXnTs2BFWVla1fzBEjQhHtIio3ujevTtGjBiB+fPnS21Dhw7FM888g6FDh+Ldd99FWloaTp06hf/+979YvXp1jb/o+/btiyVLliA9PR2nTp3C1q1b8fbbb6Nfv35wdHQEcHMerd27d+Ovv/7CpUuXAABvvfUWUlJSEBMTg/379+P48ePYuHGjdDN827ZtoVKpsGDBAvz555/44Ycf7ng50lyeffZZWFlZYdGiRQBujgZu374dKSkpyMrKwpgxY5CXlydbx9PTUzqnly5dqnREbfz48UhOTsaMGTPwxx9/YMWKFVi4cCHeeOONOjkuooaMQYuI6pV3331X9mWvUCiwevVqzJs3D1u3bkX//v3RqVMnvPDCC/Dw8MCePXtqtF2dTocVK1bgsccew/33349XX30VOp0Oa9aske371KlT8Pb2RsuWLQHcvK/qv//9L/744w/06dMHPXv2xNSpU+Hu7g7g5mXMxMRErF27Fl26dMGsWbMwd+7cWjwjNdesWTPExMRg9uzZKC4uxuTJk+Hn5wedToe+ffvC1dUVERERsnXeeOMNWFlZoUuXLmjZsmWl92/5+flhzZo1WLVqFbp164apU6fi3XffrfSXlUQkpxBCCEt3goiIiKgx4ogWERERkZkwaBFRo3Dr9Au3v37++WdLd88kZ86cqfZ4TJ2egYgsh5cOiahRqO7h0q1bt4atrW0d9ube3LhxA6dOnapyuaenJ5o144/GiRoCBi0iIiIiM+GlQyIiIiIzYdAiIiIiMhMGLSIiIiIzYdAiIiIiMhMGLSIiIiIzYdAiIiIiMhMGLSIiIiIzYdAiIiIiMpP/A0Kigm9+ajVlAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVUdJREFUeJzt3Xt8TGf+B/DPTJJJIpKJhNwICaLuckFEFSVtaKR07RZVwtK0XdFqtErrUouGuKUurbKIlpQq1QqNErpdpKGJ1C0UG9SSYKZmIiqJmef3h19OjVxkRmYml8/79ZpX5JzvOed7zqr57HPOPCMTQggQERERkVHk1m6AiIiIqDZiiCIiIiIyAUMUERERkQkYooiIiIhMwBBFREREZAKGKCIiIiITMEQRERERmYAhioiIiMgEDFFEREREJmCIIiKq45KSkiCTyXDx4kVrt0JUpzBEEdFjO3r0KGJjY9GhQwc4OTmhefPmePHFF/Hrr7+Wqe3bty9kMhlkMhnkcjlcXFzwxBNPYNSoUdi7d69Rx925cyf69OkDDw8PNGjQAC1btsSLL76I1NTU6jq1Mj788EPs2LGjzPLDhw/jgw8+wK1bt8x27Id98MEH0rWUyWRo0KAB2rdvj+nTp0Or1VbLMZKTk5GYmFgt+yKqaxiiiOixLViwANu2bUP//v3x0UcfISYmBj/++COCg4Nx8uTJMvXNmjXD559/js8++wwLFy7E888/j8OHD+PZZ5/FsGHDUFJS8shjLlq0CM8//zxkMhmmTZuGpUuXYujQoTh37hw2b95sjtMEUHmImj17tkVDVKlPPvkEn3/+OZYsWYK2bdti3rx5GDBgAKrjq1EZoogqZmvtBoio9ouLi0NycjIUCoW0bNiwYejUqRPmz5+PjRs3GtQrlUq8/PLLBsvmz5+PN954Ax9//DH8/PywYMGCCo937949zJkzB8888wy+//77MuuvX7/+mGdUc9y5cwcNGjSotOavf/0rGjduDAB47bXXMHToUGzfvh0//fQTwsLCLNEmUb3EkSgiemw9e/Y0CFAAEBAQgA4dOiAnJ6dK+7CxscGyZcvQvn17rFixAhqNpsLamzdvQqvV4sknnyx3vYeHh8Hvd+/exQcffIA2bdrAwcEB3t7e+Mtf/oILFy5INYsWLULPnj3h7u4OR0dHhISE4KuvvjLYj0wmQ2FhITZs2CDdQhszZgw++OADvPPOOwAAf39/ad2DzyBt3LgRISEhcHR0hJubG4YPH47ffvvNYP99+/ZFx44dkZmZid69e6NBgwZ47733qnT9HtSvXz8AQG5ubqV1H3/8MTp06AB7e3v4+PhgwoQJBiNpffv2xa5du3Dp0iXpnPz8/Izuh6iu4kgUEZmFEAL5+fno0KFDlbexsbHBiBEjMGPGDBw8eBCRkZHl1nl4eMDR0RE7d+7ExIkT4ebmVuE+dTodBg0ahLS0NAwfPhxvvvkmCgoKsHfvXpw8eRKtWrUCAHz00Ud4/vnnMXLkSBQXF2Pz5s3429/+hpSUFKmPzz//HOPHj0f37t0RExMDAGjVqhWcnJzw66+/4osvvsDSpUulUaEmTZoAAObNm4cZM2bgxRdfxPjx43Hjxg0sX74cvXv3xrFjx+Dq6ir1q1KpMHDgQAwfPhwvv/wyPD09q3z9SpWGQ3d39wprPvjgA8yePRvh4eF4/fXXcfbsWXzyySc4evQoDh06BDs7O7z//vvQaDS4cuUKli5dCgBo2LCh0f0Q1VmCiMgMPv/8cwFArF271mB5nz59RIcOHSrc7uuvvxYAxEcffVTp/mfOnCkACCcnJzFw4EAxb948kZmZWaZu3bp1AoBYsmRJmXV6vV768507dwzWFRcXi44dO4p+/foZLHdychLR0dFl9rVw4UIBQOTm5hosv3jxorCxsRHz5s0zWH7ixAlha2trsLxPnz4CgFi1alWF5/2gWbNmCQDi7Nmz4saNGyI3N1d8+umnwt7eXnh6eorCwkIhhBDr16836O369etCoVCIZ599Vuh0Oml/K1asEADEunXrpGWRkZGiRYsWVeqHqL7h7TwiqnZnzpzBhAkTEBYWhujoaKO2LR3pKCgoqLRu9uzZSE5ORlBQEPbs2YP3338fISEhCA4ONriFuG3bNjRu3BgTJ04ssw+ZTCb92dHRUfrz77//Do1Gg6eeegpZWVlG9f+w7du3Q6/X48UXX8TNmzell5eXFwICAnDgwAGDent7e4wdO9aoYzzxxBNo0qQJ/P398eqrr6J169bYtWtXhc9S7du3D8XFxZg0aRLk8j/fBl555RW4uLhg165dxp8oUT3E23lEVK3y8vIQGRkJpVKJr776CjY2NkZtf/v2bQCAs7PzI2tHjBiBESNGQKvVIiMjA0lJSUhOTkZUVBROnjwJBwcHXLhwAU888QRsbSv/5y4lJQVz585FdnY2ioqKpOUPBi1TnDt3DkIIBAQElLvezs7O4PemTZuWeb7sUbZt2wYXFxfY2dmhWbNm0i3Kily6dAnA/fD1IIVCgZYtW0rriahyDFFEVG00Gg0GDhyIW7du4T//+Q98fHyM3kfplAitW7eu8jYuLi545pln8Mwzz8DOzg4bNmxARkYG+vTpU6Xt//Of/+D5559H79698fHHH8Pb2xt2dnZYv349kpOTjT6HB+n1eshkMnz33XflBsqHnzF6cESsqnr37i09h0VElsMQRUTV4u7du4iKisKvv/6Kffv2oX379kbvQ6fTITk5GQ0aNECvXr1M6qNr167YsGEDrl27BuD+g98ZGRkoKSkpM+pTatu2bXBwcMCePXtgb28vLV+/fn2Z2opGpipa3qpVKwgh4O/vjzZt2hh7OmbRokULAMDZs2fRsmVLaXlxcTFyc3MRHh4uLXvckTiiuozPRBHRY9PpdBg2bBjS09OxdetWk+Ym0ul0eOONN5CTk4M33ngDLi4uFdbeuXMH6enp5a777rvvAPx5q2ro0KG4efMmVqxYUaZW/P9klDY2NpDJZNDpdNK6ixcvljupppOTU7kTajo5OQFAmXV/+ctfYGNjg9mzZ5eZ/FIIAZVKVf5JmlF4eDgUCgWWLVtm0NPatWuh0WgMPhXp5ORU6XQTRPUZR6KI6LFNnjwZ3377LaKioqBWq8tMrvnwxJoajUaquXPnDs6fP4/t27fjwoULGD58OObMmVPp8e7cuYOePXuiR48eGDBgAHx9fXHr1i3s2LED//nPfzBkyBAEBQUBAEaPHo3PPvsMcXFxOHLkCJ566ikUFhZi3759+Mc//oHBgwcjMjISS5YswYABA/DSSy/h+vXrWLlyJVq3bo3jx48bHDskJAT79u3DkiVL4OPjA39/f4SGhiIkJAQA8P7772P48OGws7NDVFQUWrVqhblz52LatGm4ePEihgwZAmdnZ+Tm5uLrr79GTEwM3n777ce6/sZq0qQJpk2bhtmzZ2PAgAF4/vnncfbsWXz88cfo1q2bwf9eISEh2LJlC+Li4tCtWzc0bNgQUVFRFu2XqMay5kcDiahuKP1ofkWvymobNmwoAgICxMsvvyy+//77Kh2vpKRErFmzRgwZMkS0aNFC2NvbiwYNGoigoCCxcOFCUVRUZFB/584d8f777wt/f39hZ2cnvLy8xF//+ldx4cIFqWbt2rUiICBA2Nvbi7Zt24r169dLUwg86MyZM6J3797C0dFRADCY7mDOnDmiadOmQi6Xl5nuYNu2baJXr17CyclJODk5ibZt24oJEyaIs2fPGlybyqZ/eFhpfzdu3Ki07uEpDkqtWLFCtG3bVtjZ2QlPT0/x+uuvi99//92g5vbt2+Kll14Srq6uAgCnOyB6gEyIavhyJSIiIqJ6hs9EEREREZmAIYqIiIjIBAxRRERERCZgiCIiIiIyAUMUERERkQkYooiIiIhMwMk2zUiv1+Pq1atwdnbmVycQERHVEkIIFBQUwMfHB3J5xeNNDFFmdPXqVfj6+lq7DSIiIjLBb7/9hmbNmlW4niHKjJydnQHc/x+hsu8BIyIioppDq9XC19dXeh+vCEOUGZXewnNxcWGIIiIiqmUe9SgOHywnIiIiMgFDFBEREZEJrB6iVq5cCT8/Pzg4OCA0NBRHjhyptH7r1q1o27YtHBwc0KlTJ+zevdtgvRACM2fOhLe3NxwdHREeHo5z584Z1MybNw89e/ZEgwYN4OrqWuYYv/zyC0aMGAFfX184OjqiXbt2+Oijjx77XImIiKjusOozUVu2bEFcXBxWrVqF0NBQJCYmIiIiAmfPnoWHh0eZ+sOHD2PEiBGIj4/HoEGDkJycjCFDhiArKwsdO3YEACQkJGDZsmXYsGED/P39MWPGDEREROD06dNwcHAAABQXF+Nvf/sbwsLCsHbt2jLHyczMhIeHBzZu3AhfX18cPnwYMTExsLGxQWxsbLVeA51Oh5KSkmrdJ/3Jzs4ONjY21m6DiIjqIJkQQljr4KGhoejWrRtWrFgB4P68Sr6+vpg4cSKmTp1apn7YsGEoLCxESkqKtKxHjx4IDAzEqlWrIISAj48PJk+ejLfffhsAoNFo4OnpiaSkJAwfPtxgf0lJSZg0aRJu3br1yF4nTJiAnJwc7N+/v8rnp9VqoVQqodFoyjxYLoRAXl5elY5Nj8fV1RVeXl6cq4uIiKqksvfvB1ltJKq4uBiZmZmYNm2atEwulyM8PBzp6enlbpOeno64uDiDZREREdixYwcAIDc3F3l5eQgPD5fWK5VKhIaGIj09vUyIMoZGo4Gbm1ulNUVFRSgqKpJ+12q1FdaWBigPDw80aNCAb/BmIITAnTt3cP36dQCAt7e3lTsiIqK6xGoh6ubNm9DpdPD09DRY7unpiTNnzpS7TV5eXrn1eXl50vrSZRXVmOLw4cPYsmULdu3aVWldfHw8Zs+e/cj96XQ6KUC5u7ub3Bc9mqOjIwDg+vXr8PDw4K09IiKqNlZ/sLymO3nyJAYPHoxZs2bh2WefrbR22rRp0Gg00uu3334rt670GagGDRpUe79UVul15rNnRERUnawWoho3bgwbGxvk5+cbLM/Pz4eXl1e523h5eVVaX/rTmH1W5vTp0+jfvz9iYmIwffr0R9bb29tLE2tWZYJN3sKzDF5nIiIyB6uFKIVCgZCQEKSlpUnL9Ho90tLSEBYWVu42YWFhBvUAsHfvXqne398fXl5eBjVarRYZGRkV7rMip06dwtNPP43o6GjMmzfPqG2JiIio+qlUKly7dq3Cl0qlsmg/Vp3iIC4uDtHR0ejatSu6d++OxMREFBYWYuzYsQCA0aNHo2nTpoiPjwcAvPnmm+jTpw8WL16MyMhIbN68GT///DNWr14N4P6Iw6RJkzB37lwEBARIUxz4+PhgyJAh0nEvX74MtVqNy5cvQ6fTITs7GwDQunVrNGzYECdPnkS/fv0QERGBuLg46XkqGxsbNGnSxHIXiIiIiADcD1Cln+avTGxsrMWeN7bqM1HDhg3DokWLMHPmTAQGBiI7OxupqanSg+GXL1/GtWvXpPqePXsiOTkZq1evRpcuXfDVV19hx44d0hxRADBlyhRMnDgRMTEx6NatG27fvo3U1FRpjigAmDlzJoKCgjBr1izcvn0bQUFBCAoKws8//wwA+Oqrr3Djxg1s3LgR3t7e0qtbt24WujI115gxYyCTySCTyWBnZwdPT08888wzWLduHfR6fZX3k5SUVO5Ep0REROUpLi6u1rrqYNV5ouq6iuaZuHv3LnJzc+Hv728Q7oyhUqkq/YuiUCjMksTHjBmD/Px8rF+/HjqdDvn5+UhNTUV8fDyeeuopfPvtt7C1ffQApzFzdD2u6rjeRERkXdeuXZPuPFUmJibmsae0qfHzRJHprD2kaW9vLz2o37RpUwQHB6NHjx7o378/kpKSMH78eCxZsgTr16/Hf//7X7i5uSEqKgoJCQlo2LAhfvjhB+mWbelD37NmzcIHH3yAzz//HB999BHOnj0LJycn9OvXD4mJieXOYE9ERPWXRuMMtdodbm4qKJUFVumBUxzUQjVxSLNfv37o0qULtm/fDuD+xKnLli3DqVOnsGHDBuzfvx9TpkwBcP+2bGJiIlxcXKSHAUtnmC8pKcGcOXPwyy+/YMeOHbh48SLGjBljsfMgIqKaLysrCImJk7BhQzQSEychKyvIKn1wJIqqTdu2bXH8+HEAwKRJk6Tlfn5+mDt3Ll577TV8/PHHUCgUUCqVkMlkZaae+Pvf/y79uWXLlli2bJn0bFvDhg0tch5ERFRzaTTO2LlzEIS4Pw4khBw7dw5Cq1bnLT4ixZEoqjZCCOn23L59+9C/f380bdoUzs7OGDVqFFQqFe7cuVPpPjIzMxEVFYXmzZvD2dkZffr0AXD/QwZERERqtbsUoEoJIYdaXflXs5kDQxRVm5ycHPj7++PixYsYNGgQOnfujG3btiEzMxMrV64EUPktxsLCQkRERMDFxQWbNm3C0aNH8fXXXz9yOyIiqj/c3FSQyQw/DS6T6eHmprZ4LwxRVC3279+PEydOYOjQocjMzIRer8fixYvRo0cPtGnTBlevXjWoVygU0Ol0BsvOnDkDlUqF+fPn46mnnkLbtm2lLw8mIqL6TaFQAACUygJERaVIQUom0yMqKkW6lVdaZwl8JoqMVlRUhLy8vDJTHAwaNAijR4/GyZMnUVJSguXLlyMqKgqHDh3CqlWrDPbh5+eH27dvIy0tDV26dEGDBg3QvHlzKBQKLF++HK+99hpOnjyJOXPmWOksiYioJnF3d0dsbKx0Z2LmzBu4eNEWfn734OPTDUA3s03vUxGORJHRUlNT4e3tDT8/PwwYMAAHDhzAsmXL8M0338DGxgZdunTBkiVLsGDBAnTs2BGbNm2SZp0v1bNnT7z22msYNmwYmjRpgoSEBDRp0gRJSUnYunUr2rdvj/nz52PRokVWOksiIqpp3N3dpQmwQ0I8MXSoO0JCPKVllgxQACfbNCtzTbZp7XmiahtOtklEVHtYazLpB3GyzTrs4SHN8lh6SJOIiOhx1bZBAoaoWqom/OUhIiKqTjVxMunK8JkoIiIiqpE0Gmfk5vpBo3G2divl4kgUERER1ThZWUHSzOSl0xgEBx+zdlsGOBJFRERENUpFX+1S00akGKKIiIioRqlJX+1SGYYoIiIiqlFq0le7VIYhioiIiGqUR321S03BB8uJiIioRnjwe++Cg4+hVavzUKvd4OamNghQlvx+vMowRFGN8sMPP+Dpp5/G77//DldX1ypt4+fnh0mTJmHSpElm7Y2IiMyrtk0mzdt5ZJQxY8ZAJpPhtddeK7NuwoQJkMlkGDNmjOUbIyKiOuHB78cr71VTAhTAEEUm8PX1xebNm/HHH39Iy+7evYvk5GQ0b97cip0RERFZDkMUGS04OBi+vr7Yvn27tGz79u1o3rw5goKCpGVFRUV444034OHhAQcHB/Tq1QtHjx412Nfu3bvRpk0bODo64umnn8bFixfLHO/gwYN46qmn4OjoCF9fX7zxxhsoLCw02/kRERFVBUNUHXDlCnDgwP2flvL3v/8d69evl35ft24dxo4da1AzZcoUbNu2DRs2bEBWVhZat26NiIgIqNX3P6L622+/4S9/+QuioqKQnZ2N8ePHY+rUqQb7uHDhAgYMGIChQ4fi+PHj2LJlCw4ePIjY2FjznyQREVElGKJqubVrgRYtgH797v9cu9Yyx3355Zdx8OBBXLp0CZcuXcKhQ4fw8ssvS+sLCwvxySefYOHChRg4cCDat2+PNWvWwNHREWv/v8lPPvkErVq1wuLFi/HEE09g5MiRZZ6nio+Px8iRIzFp0iQEBASgZ8+eWLZsGT777DPcvXvXMidLRERUDn46rxa7cgWIiQH0/z8fmV4PvPoqEBEBNGtm3mM3adIEkZGRSEpKghACkZGRaNy4sbT+woULKCkpwZNPPikts7OzQ/fu3ZGTkwMAyMnJQWhoqMF+w8LCDH7/5ZdfcPz4cWzatElaJoSAXq9Hbm4u2rVrZ47TIyIieiSGqFrs3Lk/A1QpnQ44f978IQq4f0uv9LbaypUrzXKM27dv49VXX8Ubb7xRZh0fYiciImtiiKrFAgIAudwwSNnYAK1bW+b4AwYMQHFxMWQyGSIiIgzWtWrVCgqFAocOHUKLFi0AACUlJTh69Kg0n1O7du3w7bffGmz3008/GfweHByM06dPo7WlToqIiKiK+ExULdasGbB69f3gBNz/+emnlhmFun88G+Tk5OD06dOwKW3i/zk5OeH111/HO++8g9TUVJw+fRqvvPIK7ty5g3HjxgEAXnvtNZw7dw7vvPMOzp49i+TkZCQlJRns591338Xhw4cRGxuL7OxsnDt3Dt988w0fLCciIqvjSFQtN27c/Wegzp+/PwJlqQBVysXFpcJ18+fPh16vx6hRo1BQUICuXbtiz549aNSoEYD7t+O2bduGt956C8uXL0f37t3x4Ycf4u9//7u0j86dO+Pf//433n//fTz11FMQQqBVq1YYNmyY2c+NiIioMjIhhLB2E3WVVquFUqmERqMxCBt3795Fbm4u/P394eDgYMUO6wdebyIiMkZF798P4+08IiIiIhMwRBERERGZgCGKiIiIyAQMUUREREQmYIiyIj7Tbxm8zkREZA4MUVZgZ2cHALhz546VO6kfSq9z6XUnIiKqDpwnygpsbGzg6uqK69evAwAaNGgAmUxm5a7qHiEE7ty5g+vXr8PV1bXMhKBERESPgyHKSry8vABAClJkPq6urtL1JiIiqi4MUVYik8ng7e0NDw8PlJSUWLudOsvOzo4jUEREZBYMUVZmY2PDN3kiIqJaiA+WExEREZmAIYqIiIjIBAxRRERERCZgiCIiIiIyAUMUERERkQkYooiIiIhMwBBFREREZALOE0VERERGUalUKC4urnC9QqGAu7u7BTuyDoYoIiIiqjKVSoUVK1Y8si42NrbOByneziMiIqIqq2wEypS62szqIWrlypXw8/ODg4MDQkNDceTIkUrrt27dirZt28LBwQGdOnXC7t27DdYLITBz5kx4e3vD0dER4eHhOHfunEHNvHnz0LNnTzRo0ACurq7lHufy5cuIjIxEgwYN4OHhgXfeeQf37t17rHMlIiKiusOqIWrLli2Ii4vDrFmzkJWVhS5duiAiIgLXr18vt/7w4cMYMWIExo0bh2PHjmHIkCEYMmQITp48KdUkJCRg2bJlWLVqFTIyMuDk5ISIiAjcvXtXqikuLsbf/vY3vP766+UeR6fTITIyEsXFxTh8+DA2bNiApKQkzJw5s3ovABEREdVaMiGEsNbBQ0ND0a1bN+neql6vh6+vLyZOnIipU6eWqR82bBgKCwuRkpIiLevRowcCAwOxatUqCCHg4+ODyZMn4+233wYAaDQaeHp6IikpCcOHDzfYX1JSEiZNmoRbt24ZLP/uu+8waNAgXL16FZ6engCAVatW4d1338WNGzegUCiqdH5arRZKpRIajQYuLi5Vvi5EREQ11bVr17B69epH1sXExMDb29sCHVW/qr5/W20kqri4GJmZmQgPD/+zGbkc4eHhSE9PL3eb9PR0g3oAiIiIkOpzc3ORl5dnUKNUKhEaGlrhPis6TqdOnaQAVXocrVaLU6dOVbhdUVERtFqtwYuIiIjqJquFqJs3b0Kn0xkEFQDw9PREXl5eudvk5eVVWl/605h9GnOcB49Rnvj4eCiVSunl6+tb5WMSERHVRhqNM3Jz/aDROFu7FYvjFAfVaNq0aYiLi5N+12q1DFJERFRnZWUFYefOQRBCDplMj6ioFAQHH7N2WxZjtZGoxo0bw8bGBvn5+QbL8/Pz4eXlVe42Xl5eldaX/jRmn8Yc58FjlMfe3h4uLi4GLyIiorqk9LlgjcZZClAAIIQcO3cOkkakqvr8cG1mtRClUCgQEhKCtLQ0aZler0daWhrCwsLK3SYsLMygHgD27t0r1fv7+8PLy8ugRqvVIiMjo8J9VnScEydOGHxKcO/evXBxcUH79u2rvB8iIqK6xt3dHbGxsejZM1oKUKWEkOPJJ6PrxUSbgJVv58XFxSE6Ohpdu3ZF9+7dkZiYiMLCQowdOxYAMHr0aDRt2hTx8fEAgDfffBN9+vTB4sWLERkZic2bN+Pnn3+WPiUgk8kwadIkzJ07FwEBAfD398eMGTPg4+ODIUOGSMe9fPky1Go1Ll++DJ1Oh+zsbABA69at0bBhQzz77LNo3749Ro0ahYSEBOTl5WH69OmYMGEC7O3tLXqNiIiIahp3d3f06AHI5YBe/+dyGxsgNNQd9SA/3SesbPny5aJ58+ZCoVCI7t27i59++kla16dPHxEdHW1Q/+WXX4o2bdoIhUIhOnToIHbt2mWwXq/XixkzZghPT09hb28v+vfvL86ePWtQEx0dLQCUeR04cECquXjxohg4cKBwdHQUjRs3FpMnTxYlJSVGnZtGoxEAhEajMWo7IiKi2uBf/xLCxkYI4P7Pf/3L2h1Vj6q+f1t1nqi6jvNEERFRXXflCnD+PNC6NdCsmbW7qR5Vff/mp/OIiIjIZM2a1Z3wZCyrf3ceERERUW3EEEVERERkAoYoIiIiIhMwRBERERGZgCGKiIiIyAQMUUREREQmYIgiIiIiMgFDFBEREZEJGKKIiIiITMAQRURERGQChigiIiIiEzBEEREREZmAIYqIiIjIBAxRRERERCZgiCIiIiIyAUMUERERkQkYooiIiIhMYGvtBoiIiMg8VCoViouLK1yvUCjg7u5uwY7qFoYoIiKiOkilUmHFihWPrIuNjWWQMhFv5xEREdVBlY1AmVJHZTFEEREREZmAIYqIiIjIBAxRRERERCZgiCIiIiIyAUMUERFRPaDROCM31w8ajbO1W6kzOMUBERFRHZeVFYSdOwdBCDlkMj2iolIQHHzM2m3VehyJIiIiqoMUCgWA+yNQpQEKAISQY+fOQdKIVGkdGU8mhBDWbqKu0mq1UCqV0Gg0cHFxsXY7RERUz6hUKhw4APztb2Un0/zqKxX69gUn2ixHVd+/eTuPiIiojnJ3d0ePHoBcDuj1fy63sQFCQ93B/PR4eDuPiIioDmvWDFi9+n5wAu7//PTT+8vp8XAkioiIqI4bNw6IiADOnwdat2aAqi4MUURERPVAs2YMT9WNt/OIiIiITMAQRURERGQChigiIiIiEzBEEREREZmAIYqIiIjIBAxRRERERCZgiCIiIiIyAUMUERERkQkYooiIiIhMwBBFREREZAKGKCIiIiITMEQRERERmYAhioiIiMgEDFFEREREJmCIIiIiIjIBQxQRERGRCRiiiIiIiEzAEEVERERkAquHqJUrV8LPzw8ODg4IDQ3FkSNHKq3funUr2rZtCwcHB3Tq1Am7d+82WC+EwMyZM+Ht7Q1HR0eEh4fj3LlzBjVqtRojR46Ei4sLXF1dMW7cONy+fdugZs+ePejRowecnZ3RpEkTDB06FBcvXqyWcyYiIqLaz6ohasuWLYiLi8OsWbOQlZWFLl26ICIiAtevXy+3/vDhwxgxYgTGjRuHY8eOYciQIRgyZAhOnjwp1SQkJGDZsmVYtWoVMjIy4OTkhIiICNy9e1eqGTlyJE6dOoW9e/ciJSUFP/74I2JiYqT1ubm5GDx4MPr164fs7Gzs2bMHN2/exF/+8hfzXQwiIiKqXYQVde/eXUyYMEH6XafTCR8fHxEfH19u/YsvvigiIyMNloWGhopXX31VCCGEXq8XXl5eYuHChdL6W7duCXt7e/HFF18IIYQ4ffq0ACCOHj0q1Xz33XdCJpOJ//3vf0IIIbZu3SpsbW2FTqeTar799lshk8lEcXFxlc9Po9EIAEKj0VR5GyIiIrKuqr5/W20kqri4GJmZmQgPD5eWyeVyhIeHIz09vdxt0tPTDeoBICIiQqrPzc1FXl6eQY1SqURoaKhUk56eDldXV3Tt2lWqCQ8Ph1wuR0ZGBgAgJCQEcrkc69evh06ng0ajweeff47w8HDY2dlVeE5FRUXQarUGLyIiIqqbrBaibt68CZ1OB09PT4Plnp6eyMvLK3ebvLy8SutLfz6qxsPDw2C9ra0t3NzcpBp/f398//33eO+992Bvbw9XV1dcuXIFX375ZaXnFB8fD6VSKb18fX0rrSciIqLay+oPltdEeXl5eOWVVxAdHY2jR4/i3//+NxQKBf76179CCFHhdtOmTYNGo5Fev/32mwW7JiIiIkuytdaBGzduDBsbG+Tn5xssz8/Ph5eXV7nbeHl5VVpf+jM/Px/e3t4GNYGBgVLNww+u37t3D2q1Wtp+5cqVUCqVSEhIkGo2btwIX19fZGRkoEePHuX2Z29vD3t7+0edOhEREdUBVhuJUigUCAkJQVpamrRMr9cjLS0NYWFh5W4TFhZmUA8Ae/fuler9/f3h5eVlUKPVapGRkSHVhIWF4datW8jMzJRq9u/fD71ej9DQUADAnTt3IJcbXhobGxupRyIiIiKrfjpv8+bNwt7eXiQlJYnTp0+LmJgY4erqKvLy8oQQQowaNUpMnTpVqj906JCwtbUVixYtEjk5OWLWrFnCzs5OnDhxQqqZP3++cHV1Fd988404fvy4GDx4sPD39xd//PGHVDNgwAARFBQkMjIyxMGDB0VAQIAYMWKEtD4tLU3IZDIxe/Zs8euvv4rMzEwREREhWrRoIe7cuVPl8+On84iIiGqfqr5/W+12HgAMGzYMN27cwMyZM5GXl4fAwECkpqZKD4ZfvnzZYESoZ8+eSE5OxvTp0/Hee+8hICAAO3bsQMeOHaWaKVOmoLCwEDExMbh16xZ69eqF1NRUODg4SDWbNm1CbGws+vfvD7lcjqFDh2LZsmXS+n79+iE5ORkJCQlISEhAgwYNEBYWhtTUVDg6OlrgyhARUU2kUqlQXFxc4XqFQgF3d3cLdkTWJBOikiel6bFotVoolUpoNBq4uLhYux0iInoMKpUKK1aseGRdbGwsg1QtV9X3b346j4iIqAoeHoHSaJyRm+sHjca50jqqu6x6O4+IiKg2ysoKws6dgyCEHDKZHlFRKQgOPmbttsjCOBJFRERkBI3GWQpQACCEHDt3DiozIkV1H0MUERGREdRqdzz8rWlCyKFWu1mpI7IWhigiIiIjuLmpIJMZzhkok+nh5qa2UkdkLQxRRERERlAqCxAVlSIFqdJnopTKAit3RpbGB8uJiIiMFBx8DK1anYda7QY3NzUDVD3FEEVERFQFCoXC4HelsqDc8PRwHdVdDFFERETluHIFOHcOCAgAmjUD3N3dERsbyxnLScIQRURE9P9Kv9YlOdkRU6YoodfLIJcLJCRo8NJLf0ChUMDb29vabVINwRBFRESEP7/WRaNxRmLiJAghAwDo9TK8844L/ve/dVAqC/i1LiThp/OIiIjw59e1PGoeKH6tC5ViiCIiInoA54GiqmKIIiIiegDngaKq4jNRRERED+E8UFQVDFFERETlqGgeKKJSvJ1HREREZAKGKCIiIiITMEQRERGh6l/Xwq91oVJ8JoqIiAj8WhcyHkMUERHR/2NAImPwdh4RERGRCRiiiIiIiEzAEEVERERkAoYoIiKq065cAQ4cuP+TqDqZ9GD5kSNHkJ6ejry8PACAl5cXwsLC0L1792ptjoiIyBQqlQrFxcVITnbElClK6PUyyOUCCQkavPTSH/yUHVULo0LU9evXMXToUBw6dAjNmzeHp6cnACA/Px9vvfUWnnzySWzbtg0eHh5maZaIiOhRVCoVVqxYAY3GGYmJkyCEDACg18vwzjsu+N//1kGpLEBsbCyDFD0Wo27n/eMf/4BOp0NOTg4uXryIjIwMZGRk4OLFi8jJyYFer8eECRPM1SsREdEjlc7zpFa7QwjDtzkh5FCr3QzqiExl1EjUnj178OOPP+KJJ54os+6JJ57AsmXL0Ldv3+rqjYiIyGRubirIZHqDICWT6eHmprZiV1SXGDUSZW9vD61WW+H6goIC2NvbP3ZTREREj0upLEBUVApkMj2A+wEqKioFSmWBlTujusKokahhw4YhOjoaS5cuRf/+/eHi4gIA0Gq1SEtLQ1xcHEaMGGGWRomIiIwVHHwMrVqdh1rtBjc3NQMUVSujQtSSJUug1+sxfPhw3Lt3T/oSxuLiYtja2mLcuHFYtGiRWRolIiIyhVJZwPBEZmFUiLK3t8cnn3yCBQsWIDMz02CKg5CQEGlkioiIiKiuM2meKBcXFzz99NPV3QsRERFRrVGtM5bn5+fjn//8Z3XukoiIyCilj5pUVx1RRWRCCFFdO/vll18QHBwMnU5XXbus1bRaLZRKJTQaDW91EhFZUOmM5RXhjOVUmaq+fxt1O+/48eOVrj979qwxuyMiIjILBiSyBKNCVGBgIGQyGcobvCpdLpPJqq05IiIioprKqBDl5uaGhIQE9O/fv9z1p06dQlRUVLU0RkRERFSTGRWiQkJCcPXqVbRo0aLc9bdu3Sp3lIqIiIiorjEqRL322msoLCyscH3z5s2xfv36x26KiIiIqKar1k/nkSF+Oo+IiKj2qer7d7XOE0VERERUXxh1Oy8uLq5KdUuWLDGpGSIiIqLawqgQdezYMYPfDx48iJCQEDg6OkrLOMUBERER1QdGhagDBw4Y/O7s7Izk5GS0bNmyWpsiIiIiqun4TBQRERGRCRiiiIiIiEzAEEVERERkgsf6AmIhBM6cOYPbt28bLO/cufPjd0ZERERUgxk1EhUYGIigoCAEBgYiMDAQd+7cwaBBgwyWBwUFGdXAypUr4efnBwcHB4SGhuLIkSOV1m/duhVt27aFg4MDOnXqhN27dxusF0Jg5syZ8Pb2hqOjI8LDw3Hu3DmDGrVajZEjR8LFxQWurq4YN25cmSAohMCiRYvQpk0b2Nvbo2nTppg3b55R50ZERER1l1EjUbm5udV68C1btiAuLg6rVq1CaGgoEhMTERERgbNnz8LDw6NM/eHDhzFixAjEx8dj0KBBSE5OxpAhQ5CVlYWOHTsCABISErBs2TJs2LAB/v7+mDFjBiIiInD69Gk4ODgAAEaOHIlr165h7969KCkpwdixYxETE4Pk5GTpWG+++Sa+//57LFq0CJ06dYJarYZara7W8yciIqJaTFhR9+7dxYQJE6TfdTqd8PHxEfHx8eXWv/jiiyIyMtJgWWhoqHj11VeFEELo9Xrh5eUlFi5cKK2/deuWsLe3F1988YUQQojTp08LAOLo0aNSzXfffSdkMpn43//+J9XY2tqKM2fOPNb5aTQaAUBoNJrH2g8RERFZTlXfv6vlwfJ+/frh0qVLRm1TXFyMzMxMhIeHS8vkcjnCw8ORnp5e7jbp6ekG9QAQEREh1efm5iIvL8+gRqlUIjQ0VKpJT0+Hq6srunbtKtWEh4dDLpcjIyMDALBz5060bNkSKSkp8Pf3h5+fH8aPH//IkaiioiJotVqDFxEREdVNRt3O+/bbb8td/uOPPyIlJQW+vr4AgOeff/6R+7p58yZ0Oh08PT0Nlnt6euLMmTPlbpOXl1dufV5enrS+dFllNQ/fKrS1tYWbm5tU89///heXLl3C1q1b8dlnn0Gn0+Gtt97CX//6V+zfv7/Cc4qPj8fs2bMfdepERERUBxgVooYMGQKZTAYhRJl1EydOBHD/a190Ol31dGcler0eRUVF+Oyzz9CmTRsAwNq1axESEoKzZ8/iiSeeKHe7adOmGXy/oFarlYIlERER1S1G3c6LiIjAwIEDkZeXB71eL71sbGxw8uRJ6PX6Kgeoxo0bw8bGBvn5+QbL8/Pz4eXlVe42Xl5eldaX/nxUzfXr1w3W37t3D2q1Wqrx9vaGra2tFKAAoF27dgCAy5cvV3hO9vb2cHFxMXgRERFR3WRUiPruu+/Qv39/dO3aFSkpKY91YIVCgZCQEKSlpUnL9Ho90tLSEBYWVu42YWFhBvUAsHfvXqne398fXl5eBjVarRYZGRlSTVhYGG7duoXMzEypZv/+/dDr9QgNDQUAPPnkk7h37x4uXLgg1fz6668AgBYtWjzOaRMR1TkqlQrXrl2r8KVSqazdIpFZyER59+YeITs7GyNHjkSvXr2wdOlSKJVK/PLLL2jfvr1R+9myZQuio6Px6aefonv37khMTMSXX36JM2fOwNPTE6NHj0bTpk0RHx8P4P4UB3369MH8+fMRGRmJzZs348MPPzSY4mDBggWYP3++wRQHx48fN5jiYODAgcjPz8eqVaukKQ66du0qTXGg1+vRrVs3NGzYEImJidDr9ZgwYQJcXFzw/fffV/n8tFotlEolNBoNR6WIqE5SqVRYsWKF9LtG4wy12h1ubioolQXS8tjYWLi7u1ujRSKjVfX926hnokoFBgbi559/xltvvYXAwMByn5GqimHDhuHGjRuYOXMm8vLyEBgYiNTUVOnB8MuXL0Mu/3OwrGfPnkhOTsb06dPx3nvvISAgADt27JACFABMmTIFhYWFiImJwa1bt9CrVy+kpqZKAQoANm3ahNjYWPTv3x9yuRxDhw7FsmXLpPVyuRw7d+7ExIkT0bt3bzg5OWHgwIFYvHixSedJRFRXFRcXS3/OygrCzp2DIIQcMpkeUVEpCA4+VqaOqK4waSTqQd9++y0OHDiAadOmlTtBZn3GkSgiquuuXbuG1atXQ6NxRmLiJDw4c45MpsekSYlQKgsQExMDb29vK3ZKVHVVff826pmo/fv3o3379gbzHz3//PNYunQp7O3t0aFDB/znP/8xvWsiIqqV1Gp3PDz1oBByqNVuVuqIyPyMClGJiYl45ZVXyk1lSqUSr776KpYsWVJtzRERUe3g5qaCTKY3WCaT6eHmxq/LorrLqBD1yy+/YMCAARWuf/bZZw0+9UZERPWDUlmAqKgUKUiVPhP14MPlRHWNUQ+W5+fnw87OruKd2drixo0bj90UERHVPsHBx9Cq1Xmo1W5wc1MzQFGdZ9RIVNOmTXHy5MkK1x8/fpwPDhIR1WNKZQH8/S8xQFG9YFSIeu655zBjxgzcvXu3zLo//vgDs2bNwqBBg6qtOSIiqtkUCkW11hHVJkZNcZCfn4/g4GDY2NggNjZW+g65M2fOYOXKldDpdMjKyirzBcD1Fac4IKL6QKVSVToPlEKh4ESbVKuYZbJNT09PHD58GK+//jqmTZsmTbIpk8kQERGBlStXMkAREdUzDEhUXxk9Y3mLFi2we/du/P777zh//jyEEAgICECjRo3M0R8RERFRjWTS174AQKNGjdCtW7fq7IWIiIio1jDqwXIiIiIiuo8hioiIiMgEJt/OIyKi2oWfoiOqXgxRRET1gEqlwooVKx5ZFxsbyyBFVEW8nUdEVA9cv369WuuIiCGKiKheuHfvnsHvGo0zcnP9oNE4V1pHRBXj7TwionomKysIO3cOghByyGR6REWlIDj4mLXbIqp1OBJFRFSPaDTOUoACACHk2LlzUJkRKSJ6NIYoIqJ6RK12lwJUKSHkUKvdrNQRUe3FEEVEVI/Y2RUBePh75wXs7Cqe+oCIyscQRURUj5SU2AOQPbRUhpIShTXaIarVGKKIiOoBOzs7AICbmwoymd5gnUymh5ub2qCOiB6NIYqIqB5o0qQJAECpLEBUVIoUpEo/nadUFhjUEdGjyYQQD98cp2qi1WqhVCqh0Wjg4uJi7XaIqJ578Gtfrl6V4+JFW/j53YOPz/1Axa99Ibqvqu/fnCeKiKieeDAgeXsDISFWbIaoDuDtPCIiIiITMEQRERERmYAhioiIiMgEDFFEREREJmCIIiIiIjIBQxQRERGRCRiiiIiIiEzAEEVERERkAoYoIiIiIhMwRBERERGZgCGKiIiIyAQMUUREREQmYIgiIiIiMoGttRsgIqqLVCoViouLK1yvUCjg7u5uwY6IqLoxRBERVTOVSoUVK1Y8si42NpZBiqgW4+08IqJqVtkIlCl1RFQzMUQRERERmYAhioiIiMgEDFFEREREJmCIIiIiIjIBQxQRkZlpNM7IzfWDRuNs7VaIqBpxigMiIjPKygrCzp2DIIQcMpkeUVEpCA4+Zu22iKgacCSKiKiaKRQKAPdHoEoDFAAIIcfOnYOkEanSOiKqnWRCCGHtJuoqrVYLpVIJjUYDFxcXa7dDRBakUqlw4ADwt7+VnUzzq69U6NsXnGiTqIaq6vs3b+cREZmBu7s7evQA5HJAr/9zuY0NEBrqDuYnotqPt/OIiMykWTNg9er7wQm4//PTT+8vJ6Lar0aEqJUrV8LPzw8ODg4IDQ3FkSNHKq3funUr2rZtCwcHB3Tq1Am7d+82WC+EwMyZM+Ht7Q1HR0eEh4fj3LlzBjVqtRojR46Ei4sLXF1dMW7cONy+fbvc450/fx7Ozs5wdXV9rPMkotpFpVLh2rVrFb5UKtUj9zFuHHDxInDgwP2f48aZvW0ishCrPxO1ZcsWjB49GqtWrUJoaCgSExOxdetWnD17Fh4eHmXqDx8+jN69eyM+Ph6DBg1CcnIyFixYgKysLHTs2BEAsGDBAsTHx2PDhg3w9/fHjBkzcOLECZw+fRoODg4AgIEDB+LatWv49NNPUVJSgrFjx6Jbt25ITk42OF5JSQl69uyJJk2a4PDhw7h161aVz43PRBHVXg9/ifCVK964fLkFmje/hGbNrknL+SXCRHVPVd+/rR6iQkND0a1bN+kfK71eD19fX0ycOBFTp04tUz9s2DAUFhYiJSVFWtajRw8EBgZi1apVEELAx8cHkydPxttvvw0A0Gg08PT0RFJSEoYPH46cnBy0b98eR48eRdeuXQEAqampeO6553DlyhX4+PhI+3733Xdx9epV9O/fH5MmTWKIIqonzpw5gy1btgAAvv56MH75pQsAGQCBLl1+wQsvfAPg/r9Jbdu2tV6jRFTtqvr+bdXbecXFxcjMzER4eLi0TC6XIzw8HOnp6eVuk56eblAPABEREVJ9bm4u8vLyDGqUSiVCQ0OlmvT0dLi6ukoBCgDCw8Mhl8uRkZEhLdu/fz+2bt2KlStXVul8ioqKoNVqDV5EVHNVdrvu+vXrAO6PQP0ZoABAhl9+6YIrV7wB3B+tJqL6yaqfzrt58yZ0Oh08PT0Nlnt6euLMmTPlbpOXl1dufV5enrS+dFllNQ/fKrS1tYWbm5tUo1KpMGbMGGzcuLHKo0jx8fGYPXt2lWqJyLqqervu8uUW+DNAlZLht9+aG9QRUf3DKQ4q8Morr+Cll15C7969q7zNtGnTEBcXJ/2u1Wrh6+trjvaI6DGVjjQBld+ua978EgABwyAl4Ot72YLdElFNZNXbeY0bN4aNjQ3y8/MNlufn58PLy6vcbby8vCqtL/35qJoH/wEFgHv37kGtVks1+/fvx6JFi2BrawtbW1uMGzcOGo0Gtra2WLduXbm92dvbw8XFxeBFRDXTvXv3ADz6dl2zZtfQpcsvuB+kgNKQxVEoIrJqiFIoFAgJCUFaWpq0TK/XIy0tDWFhYeVuExYWZlAPAHv37pXq/f394eXlZVCj1WqRkZEh1YSFheHWrVvIzMyUavbv3w+9Xo/Q0FAA95+bys7Oll7//Oc/4ezsjOzsbLzwwgvVcwGIyOoqu11X6oUXvsH48WsQEZGK8ePXSKNURFS/Wf12XlxcHKKjo9G1a1d0794diYmJKCwsxNixYwEAo0ePRtOmTREfHw8AePPNN9GnTx8sXrwYkZGR2Lx5M37++WesXr0aACCTyTBp0iTMnTsXAQEB0hQHPj4+GDJkCACgXbt2GDBgAF555RWsWrUKJSUliI2NxfDhw6VP5rVr186gz59//hlyuVyaRoGI6oaq3q5r1uwaR5+IyIDVQ9SwYcNw48YNzJw5E3l5eQgMDERqaqr0YPjly5chl/85YNazZ08kJydj+vTpeO+99xAQEIAdO3YYhJspU6agsLAQMTExuHXrFnr16oXU1FRpjigA2LRpE2JjY9G/f3/I5XIMHToUy5Yts9yJE1GNUHq77uFnoqoamGxtrf7PKBFZidXniarLOE8UUc114sQJbN++Xfr9yhVv/PZbc/j6XjZqxImTbRLVPfwCYiIiI1R0u+7pp59GQEBAudsoFAoGKKJ6jCGKiOolOzu7KtV5eHjA29vbzN0QUW3EEEVEtZ5KpUJxcTEA4OpVOXJzbeHvfw8+PnoA5Y8YNWnSpEr7rmodEdU/DFFEVKs9OPN4VlYQdu4cBCHkkMn0iIpKQXDwMQBln11yd3dHbGysFL7Kw9t1RFQZhigiqtVKQ5BG4ywFKAAQQo6dOwehVavzUCoLyg1LDEhE9DisOtkmEVF1UavdpQBVSgg51Go3K3VERHUdQxQR1QlubirIZHqDZTKZHm5uait1RER1HUMUEdUJSmUBoqJSpCBV+kyUUllg5c6IqK7iM1FEVGcEBx9Dq1bnoVa7wc1NzQBFRGbFEEVEdYpSWcDwREQWwdt5RERERCZgiCKiWk2hUFRrHRFRVfF2HhHVapw0k4ishSGKiGo9BiQisgbeziMiIiIyAUMUERERkQkYooiIiIhMwBBFREREZAKGKCIiIiITMEQRERERmYAhioiIiMgEDFFEREREJmCIIiIiIjIBQxQRERGRCRiiiIiIiEzAEEVERERkAoYoIiIiIhMwRBERERGZgCGKiIiIyAQMUUREREQmYIgiIiIiMgFDFBEREZEJGKKIiIiITMAQRURERGQChigiIiIiEzBEEREREZmAIYqIiIjIBAxRRERERCZgiCIiIiIyAUMUERERkQkYooiIiIhMwBBFREREZAKGKCIiIiITMEQRERERmcDW2g0Q1WcqlQrFxcUVrlcoFHB3d7dgR0REVFUMUURWolKpsGLFikfWxcbGMkgREdVAvJ1HZCWVjUCZUkdERJbFEEVUQ2g0zsjN9YNG42ztVoiIqAp4O4+oBsjKCsLOnYMghBwymR5RUSkIDj5m7baIiKgSHIkisjKNxlkKUAAghBw7dw7iiBQRUQ1XI0LUypUr4efnBwcHB4SGhuLIkSOV1m/duhVt27aFg4MDOnXqhN27dxusF0Jg5syZ8Pb2hqOjI8LDw3Hu3DmDGrVajZEjR8LFxQWurq4YN24cbt++La3/4YcfMHjwYHh7e8PJyQmBgYHYtGlT9Z000f9Tq92lAFVKCDnUajcrdURERFVh9RC1ZcsWxMXFYdasWcjKykKXLl0QERGB69evl1t/+PBhjBgxAuPGjcOxY8cwZMgQDBkyBCdPnpRqEhISsGzZMqxatQoZGRlwcnJCREQE7t69K9WMHDkSp06dwt69e5GSkoIff/wRMTExBsfp3Lkztm3bhuPHj2Ps2LEYPXo0UlJSzHcxqF5yc1NBJtMbLJPJ9HBzU1upIyIiqgqZEEJYs4HQ0FB069ZN+qi3Xq+Hr68vJk6ciKlTp5apHzZsGAoLCw3CTI8ePRAYGIhVq1ZBCAEfHx9MnjwZb7/9NgBAo9HA09MTSUlJGD58OHJyctC+fXscPXoUXbt2BQCkpqbiueeew5UrV+Dj41Nur5GRkfD09MS6deuqdG5arRZKpRIajQYuLi5GXReq+65du4bVq1cDqPyZqJiYGHh7e1uzVSKieqWq799WfbC8uLgYmZmZmDZtmrRMLpcjPDwc6enp5W6Tnp6OuLg4g2URERHYsWMHACA3Nxd5eXkIDw+X1iuVSoSGhiI9PR3Dhw9Heno6XF1dpQAFAOHh4ZDL5cjIyMALL7xQ7rE1Gg3atWtX4fkUFRWhqKhI+l2r1VZ88lTvKRQK6c/BwcfQqtV5qNVucHNTQ6ksKLeOiIhqDquGqJs3b0Kn08HT09NguaenJ86cOVPuNnl5eeXW5+XlSetLl1VW4+HhYbDe1tYWbm5uUs3DvvzySxw9ehSffvpphecTHx+P2bNnV7ie6EHu7u6IjY3ljOVERLUUpzioggMHDmDs2LFYs2YNOnToUGHdtGnTDEbJtFotfH19LdEi1VIMSEREtZdVHyxv3LgxbGxskJ+fb7A8Pz8fXl5e5W7j5eVVaX3pz0fVPPzg+r1796BWq8sc99///jeioqKwdOlSjB49utLzsbe3h4uLi8GLiIiI6iarhiiFQoGQkBCkpaVJy/R6PdLS0hAWFlbuNmFhYQb1ALB3716p3t/fH15eXgY1Wq0WGRkZUk1YWBhu3bqFzMxMqWb//v3Q6/UIDQ2Vlv3www+IjIzEggULDD65R0RERARhZZs3bxb29vYiKSlJnD59WsTExAhXV1eRl5cnhBBi1KhRYurUqVL9oUOHhK2trVi0aJHIyckRs2bNEnZ2duLEiRNSzfz584Wrq6v45ptvxPHjx8XgwYOFv7+/+OOPP6SaAQMGiKCgIJGRkSEOHjwoAgICxIgRI6T1+/fvFw0aNBDTpk0T165dk14qlarK56bRaAQAodFoHucSERERkQVV9f3b6iFKCCGWL18umjdvLhQKhejevbv46aefpHV9+vQR0dHRBvVffvmlaNOmjVAoFKJDhw5i165dBuv1er2YMWOG8PT0FPb29qJ///7i7NmzBjUqlUqMGDFCNGzYULi4uIixY8eKgoICaX10dLQAUObVp0+fKp8XQxQREVHtU9X3b6vPE1WXcZ4oIiKi2qeq799Wn7GciIiIqDZiiCIiIiIyAUMUERERkQk42SbVOiqVirN8ExGR1TFEUa2iUqmkL6uuTGxsLIMUERGZFW/nUa1S2QiUKXVERESmYogiIiIiMgFDFBEREZEJGKKoVtNonJGb6weNxtnarRARUT3DB8up1srKCsLOnYMghBwymR5RUSkIDj5m7baIiKie4EgU1UoajbMUoABACDl27hzEESkiIrIYjkSRWZh7Lie12l0KUKWEkEOtdoNSWWDyfomIiKqKIYqqnTnnclIoFAAANzcVZDK9QZCSyfRwc1Mb1BEREZkLQxRVO3PO5eTu7o7Y2FgUFxejaVMt3n1XCZ1OBhsbgQULtHjppRGcsZyIiCyCIYpqndKANHkyMGwYcP480Lq1DM2auQJwtWZrRERUjzBEUa3WrNn9FxERkaXx03lkdpzLiYiI6iKORJFZcS4nIiKqqzgSRWbDuZyIiKguY4gis6lsLiciIqLajiGKqt3Dczk9iHM5ERFRXcFnoqjacS4nIiKqD2RCCGHtJuoqrVYLpVIJjUYDFxcXa7djNVeulM7lxOkIiIio5qvq+zdHosjsOJcTERHVRXwmioiIiMgEHImqJVQqlfRdc1evypGbawt//3vw8bn/4DafMSIiIrIshqhaQKVSYcWKFQAqn7wyNjaWQYqIiMhCeDuvFigdgXrU5JWldURERGR+DFG1CCevJCIiqjkYomqRR01eSURERJbDEFWLKJUFiIpKkYJU6TNRSmWBlTsjIiKqf/hgeS0THHwMrVqdh1rtBjc3NQMUERGRlTBE1UJKZQHDExERkZXxdh4RERGRCRiiagGFQlGtdURERPT4eDuvFnB3d0dsbGyl80BxxnIiIiLLYoiqJRiQiIiIahbeziMiIiIyAUMUERERkQkYooiIiIhMwBBFREREZAKGKCIiIiITMEQRERERmYAhioiIiMgEDFFEREREJmCIIiIiIjIBZyw3IyEEAECr1Vq5EyIiIqqq0vft0vfxijBEmVFBQQEAwNfX18qdEBERkbEKCgqgVCorXC8Tj4pZZDK9Xo+rV6/C2dkZMpnMYJ1Wq4Wvry9+++03uLi4WKnDmo3X6NF4jR6N1+jReI0ejdeocnXt+gghUFBQAB8fH8jlFT/5xJEoM5LL5WjWrFmlNS4uLnXiL5w58Ro9Gq/Ro/EaPRqv0aPxGlWuLl2fykagSvHBciIiIiITMEQRERERmYAhykrs7e0xa9Ys2NvbW7uVGovX6NF4jR6N1+jReI0ejdeocvX1+vDBciIiIiITcCSKiIiIyAQMUUREREQmYIgiIiIiMgFDFBEREZEJGKLMaOXKlfDz84ODgwNCQ0Nx5MiRCmtPnTqFoUOHws/PDzKZDImJiZZr1IqMuUZr1qzBU089hUaNGqFRo0YIDw+vtL6uMOYabd++HV27doWrqyucnJwQGBiIzz//3ILdWocx1+hBmzdvhkwmw5AhQ8zbYA1gzDVKSkqCTCYzeDk4OFiwW8sz9u/QrVu3MGHCBHh7e8Pe3h5t2rTB7t27LdStdRhzjfr27Vvm75BMJkNkZKQFO7YAQWaxefNmoVAoxLp168SpU6fEK6+8IlxdXUV+fn659UeOHBFvv/22+OKLL4SXl5dYunSpZRu2AmOv0UsvvSRWrlwpjh07JnJycsSYMWOEUqkUV65csXDnlmPsNTpw4IDYvn27OH36tDh//rxITEwUNjY2IjU11cKdW46x16hUbm6uaNq0qXjqqafE4MGDLdOslRh7jdavXy9cXFzEtWvXpFdeXp6Fu7YcY69PUVGR6Nq1q3juuefEwYMHRW5urvjhhx9Edna2hTu3HGOvkUqlMvj7c/LkSWFjYyPWr19v2cbNjCHKTLp37y4mTJgg/a7T6YSPj4+Ij49/5LYtWrSoFyHqca6REELcu3dPODs7iw0bNpirRat73GskhBBBQUFi+vTp5mivRjDlGt27d0/07NlT/Otf/xLR0dF1PkQZe43Wr18vlEqlhbqzPmOvzyeffCJatmwpiouLLdWi1T3uv0VLly4Vzs7O4vbt2+Zq0Sp4O88MiouLkZmZifDwcGmZXC5HeHg40tPTrdhZzVEd1+jOnTsoKSmBm5ubudq0qse9RkIIpKWl4ezZs+jdu7c5W7UaU6/RP//5T3h4eGDcuHGWaNOqTL1Gt2/fRosWLeDr64vBgwfj1KlTlmjX4ky5Pt9++y3CwsIwYcIEeHp6omPHjvjwww+h0+ks1bZFVce/12vXrsXw4cPh5ORkrjatgiHKDG7evAmdTgdPT0+D5Z6ensjLy7NSVzVLdVyjd999Fz4+Pgb/Ydclpl4jjUaDhg0bQqFQIDIyEsuXL8czzzxj7natwpRrdPDgQaxduxZr1qyxRItWZ8o1euKJJ7Bu3Tp888032LhxI/R6PXr27IkrV65YomWLMuX6/Pe//8VXX30FnU6H3bt3Y8aMGVi8eDHmzp1riZYt7nH/vT5y5AhOnjyJ8ePHm6tFq7G1dgNEppg/fz42b96MH374oc4/8GosZ2dnZGdn4/bt20hLS0NcXBxatmyJvn37Wrs1qysoKMCoUaOwZs0aNG7c2Nrt1FhhYWEICwuTfu/ZsyfatWuHTz/9FHPmzLFiZzWDXq+Hh4cHVq9eDRsbG4SEhOB///sfFi5ciFmzZlm7vRpn7dq16NSpE7p3727tVqodQ5QZNG7cGDY2NsjPzzdYnp+fDy8vLyt1VbM8zjVatGgR5s+fj3379qFz587mbNOqTL1GcrkcrVu3BgAEBgYiJycH8fHxdTJEGXuNLly4gIsXLyIqKkpaptfrAQC2trY4e/YsWrVqZd6mLaw6/j2ys7NDUFAQzp8/b44WrcqU6+Pt7Q07OzvY2NhIy9q1a4e8vDwUFxdDoVCYtWdLe5y/Q4WFhdi8eTP++c9/mrNFq+HtPDNQKBQICQlBWlqatEyv1yMtLc3g/93VZ6Zeo4SEBMyZMwepqano2rWrJVq1mur6e6TX61FUVGSOFq3O2GvUtm1bnDhxAtnZ2dLr+eefx9NPP43s7Gz4+vpasn2LqI6/RzqdDidOnIC3t7e52rQaU67Pk08+ifPnz0sBHAB+/fVXeHt717kABTze36GtW7eiqKgIL7/8srnbtA5rP9leV23evFnY29uLpKQkcfr0aRETEyNcXV2ljwmPGjVKTJ06VaovKioSx44dE8eOHRPe3t7i7bffFseOHRPnzp2z1imYnbHXaP78+UKhUIivvvrK4KOzBQUF1joFszP2Gn344Yfi+++/FxcuXBCnT58WixYtEra2tmLNmjXWOgWzM/YaPaw+fDrP2Gs0e/ZssWfPHnHhwgWRmZkphg8fLhwcHMSpU6esdQpmZez1uXz5snB2dhaxsbHi7NmzIiUlRXh4eIi5c+da6xTMztT/znr16iWGDRtm6XYthiHKjJYvXy6aN28uFAqF6N69u/jpp5+kdX369BHR0dHS77m5uQJAmVefPn0s37gFGXONWrRoUe41mjVrluUbtyBjrtH7778vWrduLRwcHESjRo1EWFiY2Lx5sxW6tixjrtHD6kOIEsK4azRp0iSp1tPTUzz33HMiKyvLCl1bjrF/hw4fPixCQ0OFvb29aNmypZg3b564d++ehbu2LGOv0ZkzZwQA8f3331u4U8uRCSGElQbBiIiIiGotPhNFREREZAKGKCIiIiITMEQRERERmYAhioiIiMgEDFFEREREJmCIIiIiIjIBQxQRERGRCRiiiIjqgDFjxmDIkCHWboOoXmGIIiKzGjNmDGQymfRyd3fHgAEDcPz4cWu3Vi0ePLfSV69evcx2vIsXL0ImkyE7O9tg+UcffYSkpCSzHZeIymKIIiKzGzBgAK5du4Zr164hLS0Ntra2GDRokLXbqjbr16+Xzu/atWv49ttvy60rKSkxWw9KpRKurq5m2z8RlcUQRURmZ29vDy8vL3h5eSEwMBBTp07Fb7/9hhs3bqBfv36IjY01qL9x4wYUCoX0rfF+fn6YM2cORowYAScnJzRt2hQrV6402GbJkiXo1KkTnJyc4Ovri3/84x+4ffu2tP7SpUuIiopCo0aN4OTkhA4dOmD37t0AgN9//x0jR45EkyZN4OjoiICAAKxfv77K5+fq6iqdn5eXF9zc3KQRoy1btqBPnz5wcHDApk2boFKpMGLECDRt2hQNGjRAp06d8MUXXxjsT6/XIyEhAa1bt4a9vT2aN2+OefPmAQD8/f0BAEFBQZDJZOjbty+AsrfzioqK8MYbb8DDwwMODg7o1asXjh49Kq3/4YcfIJPJkJaWhq5du6JBgwbo2bMnzp49W+XzJqrvGKKIyKJu376NjRs3onXr1nB3d8f48eORnJyMoqIiqWbjxo1o2rQp+vXrJy1buHAhunTpgmPHjmHq1Kl48803sXfvXmm9XC7HsmXLcOrUKWzYsAH79+/HlClTpPUTJkxAUVERfvzxR5w4cQILFixAw4YNAQAzZszA6dOn8d133yEnJweffPIJGjduXC3nW9prTk4OIiIicPfuXYSEhGDXrl04efIkYmJiMGrUKBw5ckTaZtq0aZg/f77UV3JyMjw9PQFAqtu3bx+uXbuG7du3l3vcKVOmYNu2bdiwYQOysrLQunVrREREQK1WG9S9//77WLx4MX7++WfY2tri73//e7WcN1G9YO1vQCaiui06OlrY2NgIJycn4eTkJAAIb29vkZmZKYQQ4o8//hCNGjUSW7Zskbbp3Lmz+OCDD6TfW7RoIQYMGGCw32HDhomBAwdWeNytW7cKd3d36fdOnToZ7PNBUVFRYuzYsSadHwDh4OAgnZ+Tk5P4+uuvRW5urgAgEhMTH7mPyMhIMXnyZCGEEFqtVtjb24s1a9aUW1u632PHjhksj46OFoMHDxZCCHH79m1hZ2cnNm3aJK0vLi4WPj4+IiEhQQghxIEDBwQAsW/fPqlm165dAoD4448/jLkERPUWR6KIyOyefvppZGdnIzs7G0eOHEFERAQGDhyIS5cuwcHBAaNGjcK6desAAFlZWTh58iTGjBljsI+wsLAyv+fk5Ei/79u3D/3790fTpk3h7OyMUaNGQaVS4c6dOwCAN954A3PnzsWTTz6JWbNmGTzY/vrrr2Pz5s0IDAzElClTcPjwYaPOb+nSpdL5ZWdn45lnnpHWde3a1aBWp9Nhzpw56NSpE9zc3NCwYUPs2bMHly9fBgDk5OSgqKgI/fv3N6qHB124cAElJSV48sknpWV2dnbo3r27wTUDgM6dO0t/9vb2BgBcv37d5GMT1ScMUURkdk5OTmjdujVat26Nbt264V//+hcKCwuxZs0aAMD48eOxd+9eXLlyBevXr0e/fv3QokWLKu//4sWLGDRoEDp37oxt27YhMzNTemaquLhYOsZ///tfjBo1CidOnEDXrl2xfPlyAJAC3VtvvYWrV6+if//+ePvtt6t8fC8vL+n8WrduDScnJ4Nzf9DChQvx0Ucf4d1338WBAweQnZ2NiIgIqU9HR8cqH7c62NnZSX+WyWQA7j+TRUSPxhBFRBYnk8kgl8vxxx9/AAA6deqErl27Ys2aNUhOTi73uZyffvqpzO/t2rUDAGRmZkKv12Px4sXo0aMH2rRpg6tXr5bZh6+vL1577TVs374dkydPlkIcADRp0gTR0dHYuHEjEhMTsXr16uo8ZcmhQ4cwePBgvPzyy+jSpQtatmyJX3/9VVofEBAAR0dH6aH6hykUCgD3R7Qq0qpVKygUChw6dEhaVlJSgqNHj6J9+/bVdCZEZGvtBoio7isqKkJeXh6A+5+EW7FiBW7fvo2oqCipZvz48YiNjYWTkxNeeOGFMvs4dOgQEhISMGTIEOzduxdbt27Frl27AACtW7dGSUkJli9fjqioKBw6dAirVq0y2H7SpEkYOHAg2rRpg99//x0HDhyQQtjMmTMREhKCDh06oKioCCkpKdK66hYQEICvvvoKhw8fRqNGjbBkyRLk5+dL4cbBwQHvvvsupkyZAoVCgSeffBI3btzAqVOnMG7cOHh4eMDR0RGpqalo1qwZHBwcoFQqDY7h5OSE119/He+88w7c3NzQvHlzJCQk4M6dOxg3bpxZzouoPuJIFBGZXWpqKry9veHt7Y3Q0FAcPXoUW7dulT6eDwAjRoyAra0tRowYAQcHhzL7mDx5Mn7++WcEBQVh7ty5WLJkCSIiIgAAXbp0wZIlS7BgwQJ07NgRmzZtQnx8vMH2Op0OEyZMQLt27TBgwAC0adMGH3/8MYD7ozvTpk1D586d0bt3b9jY2GDz5s1muRbTp09HcHAwIiIi0LdvX3h5eZWZaXzGjBmYPHkyZs6ciXbt2mHYsGHSc0q2trZYtmwZPv30U/j4+GDw4MHlHmf+/PkYOnQoRo0aheDgYJw/fx579uxBo0aNzHJeRPWRTAghrN0EEdHFixfRqlUrHD16FMHBwQbr/Pz8MGnSJEyaNMk6zRERlYO384jIqkpKSqBSqTB9+nT06NGjTIAiIqqpeDuPiKzq0KFD8Pb2xtGjR8s8x2RtH374IRo2bFjua+DAgdZuj4isjLfziIgqoFary8zwXcrR0RFNmza1cEdEVJMwRBERERGZgLfziIiIiEzAEEVERERkAoYoIiIiIhMwRBERERGZgCGKiIiIyAQMUUREREQmYIgiIiIiMgFDFBEREZEJ/g+7XfxlSvU5yQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVlBJREFUeJzt3XlYVGX/P/D3DDCAyAwPqCyKgrjglggqYiou1GiI+mS5pmgW1iMWYZlWblmhZkoupT4/EyvJJU1zCTXUTCE00NREU0PNAsyZnEFMUeb+/eGX8zixCEeYYXm/rmsu5D6fc859TpPz9j5n7qMQQggQERERUYUord0BIiIiopqIIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiKiWS0hIgEKhwMWLF63dFaJahSGKiB7a0aNHER0djXbt2sHJyQlNmzbFsGHD8MsvvxSr7d27NxQKBRQKBZRKJdRqNVq3bo0xY8Zg7969Fdrv9u3bERoaikaNGqFevXpo3rw5hg0bhqSkpMo6tGLee+89bN26tVh7SkoKZs+ejevXr1fZvv9p9uzZ0rlUKBSoV68e2rZti7feegtGo7FS9pGYmIj4+PhK2RZRbcMQRUQPbf78+di8eTP69euHDz/8EFFRUTh48CACAwNx6tSpYvVNmjTBZ599hk8//RTvv/8+Bg0ahJSUFDz++OMYPnw47ty588B9Lly4EIMGDYJCocD06dOxePFiDB06FOfOncP69eur4jABlB2i5syZY9EQVeTjjz/GZ599hkWLFsHf3x/vvvsu+vfvj8p4NCpDFFHpbK3dASKq+WJjY5GYmAiVSiW1DR8+HB06dMC8efPw+eefm9VrNBo888wzZm3z5s3DSy+9hI8++gg+Pj6YP39+qfu7e/cu5s6di8ceewx79uwptvzq1asPeUTVx82bN1GvXr0ya5566ik0aNAAAPDCCy9g6NCh2LJlC3744QeEhIRYoptEdRJHoojooXXv3t0sQAFAy5Yt0a5dO2RmZpZrGzY2NliyZAnatm2LZcuWwWAwlFp77do1GI1GPProoyUub9Sokdnvt27dwuzZs9GqVSs4ODjA09MTTz75JC5cuCDVLFy4EN27d4ebmxscHR0RFBSEL7/80mw7CoUC+fn5WLt2rXQJbdy4cZg9ezZee+01AICvr6+07P57kD7//HMEBQXB0dERrq6uGDFiBH777Tez7ffu3Rvt27dHeno6evXqhXr16uGNN94o1/m7X9++fQEAWVlZZdZ99NFHaNeuHezt7eHl5YVJkyaZjaT17t0bO3fuxKVLl6Rj8vHxqXB/iGorjkQRUZUQQiA3Nxft2rUr9zo2NjYYOXIkZsyYgUOHDiE8PLzEukaNGsHR0RHbt2/H5MmT4erqWuo2CwsLMXDgQCQnJ2PEiBF4+eWXkZeXh7179+LUqVPw8/MDAHz44YcYNGgQRo8ejYKCAqxfvx5PP/00duzYIfXjs88+w3PPPYeuXbsiKioKAODn5wcnJyf88ssv+OKLL7B48WJpVKhhw4YAgHfffRczZszAsGHD8Nxzz+HPP//E0qVL0atXLxw7dgwuLi5Sf3U6HQYMGIARI0bgmWeegbu7e7nPX5GicOjm5lZqzezZszFnzhyEhYXhxRdfxNmzZ/Hxxx/j6NGjOHz4MOzs7PDmm2/CYDDgypUrWLx4MQCgfv36Fe4PUa0liIiqwGeffSYAiNWrV5u1h4aGinbt2pW63ldffSUAiA8//LDM7c+cOVMAEE5OTmLAgAHi3XffFenp6cXqPvnkEwFALFq0qNgyk8kk/fnmzZtmywoKCkT79u1F3759zdqdnJxEZGRksW29//77AoDIysoya7948aKwsbER7777rln7yZMnha2trVl7aGioACBWrFhR6nHfb9asWQKAOHv2rPjzzz9FVlaWWLlypbC3txfu7u4iPz9fCCHEmjVrzPp29epVoVKpxOOPPy4KCwul7S1btkwAEJ988onUFh4eLpo1a1au/hDVNbycR0SV7syZM5g0aRJCQkIQGRlZoXWLRjry8vLKrJszZw4SExPRqVMn7N69G2+++SaCgoIQGBhodglx8+bNaNCgASZPnlxsGwqFQvqzo6Oj9Oe//voLBoMBPXv2REZGRoX6/09btmyByWTCsGHDcO3aNenl4eGBli1bYv/+/Wb19vb2GD9+fIX20bp1azRs2BC+vr6YOHEiWrRogZ07d5Z6L9W3336LgoICxMTEQKn838fA888/D7VajZ07d1b8QInqIF7OI6JKlZOTg/DwcGg0Gnz55ZewsbGp0Po3btwAADg7Oz+wduTIkRg5ciSMRiPS0tKQkJCAxMRERERE4NSpU3BwcMCFCxfQunVr2NqW/dfdjh078M477+D48eO4ffu21H5/0JLj3LlzEEKgZcuWJS63s7Mz+71x48bF7i97kM2bN0OtVsPOzg5NmjSRLlGW5tKlSwDuha/7qVQqNG/eXFpORGVjiCKiSmMwGDBgwABcv34d33//Pby8vCq8jaIpEVq0aFHuddRqNR577DE89thjsLOzw9q1a5GWlobQ0NByrf/9999j0KBB6NWrFz766CN4enrCzs4Oa9asQWJiYoWP4X4mkwkKhQLffPNNiYHyn/cY3T8iVl69evWS7sMiIsthiCKiSnHr1i1ERETgl19+wbfffou2bdtWeBuFhYVITExEvXr10KNHD1n96Ny5M9auXYvs7GwA9278TktLw507d4qN+hTZvHkzHBwcsHv3btjb20vta9asKVZb2shUae1+fn4QQsDX1xetWrWq6OFUiWbNmgEAzp49i+bNm0vtBQUFyMrKQlhYmNT2sCNxRLUZ74kioodWWFiI4cOHIzU1FZs2bZI1N1FhYSFeeuklZGZm4qWXXoJarS619ubNm0hNTS1x2TfffAPgf5eqhg4dimvXrmHZsmXFasX/TUZpY2MDhUKBwsJCadnFixdLnFTTycmpxAk1nZycAKDYsieffBI2NjaYM2dOsckvhRDQ6XQlH2QVCgsLg0qlwpIlS8z6tHr1ahgMBrNvRTo5OZU53QRRXcaRKCJ6aFOmTMHXX3+NiIgI6PX6YpNr/nNiTYPBINXcvHkT58+fx5YtW3DhwgWMGDECc+fOLXN/N2/eRPfu3dGtWzf0798f3t7euH79OrZu3Yrvv/8eQ4YMQadOnQAAY8eOxaefforY2FgcOXIEPXv2RH5+Pr799lv85z//weDBgxEeHo5Fixahf//+GDVqFK5evYrly5ejRYsWOHHihNm+g4KC8O2332LRokXw8vKCr68vgoODERQUBAB48803MWLECNjZ2SEiIgJ+fn545513MH36dFy8eBFDhgyBs7MzsrKy8NVXXyEqKgqvvvrqQ53/imrYsCGmT5+OOXPmoH///hg0aBDOnj2Ljz76CF26dDH77xUUFIQNGzYgNjYWXbp0Qf369REREWHR/hJVW9b8aiAR1Q5FX80v7VVWbf369UXLli3FM888I/bs2VOu/d25c0f897//FUOGDBHNmjUT9vb2ol69eqJTp07i/fffF7dv3zarv3nzpnjzzTeFr6+vsLOzEx4eHuKpp54SFy5ckGpWr14tWrZsKezt7YW/v79Ys2aNNIXA/c6cOSN69eolHB0dBQCz6Q7mzp0rGjduLJRKZbHpDjZv3ix69OghnJychJOTk/D39xeTJk0SZ8+eNTs3ZU3/8E9F/fvzzz/LrPvnFAdFli1bJvz9/YWdnZ1wd3cXL774ovjrr7/Mam7cuCFGjRolXFxcBABOd0B0H4UQlfBwJSIiIqI6hvdEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDJ9usQiaTCX/88QecnZ356AQiIqIaQgiBvLw8eHl5QaksfbyJIaoK/fHHH/D29rZ2N4iIiEiG3377DU2aNCl1OUNUFXJ2dgZw7z9CWc8BIyIiourDaDTC29tb+hwvDUNUFSq6hKdWqxmiiIiIapgH3YrDG8uJiIiIZGCIIiIiIpLB6iFq+fLl8PHxgYODA4KDg3HkyJEy6zdt2gR/f384ODigQ4cO2LVrl9lyIQRmzpwJT09PODo6IiwsDOfOnTOreffdd9G9e3fUq1cPLi4uxfbx008/YeTIkfD29oajoyPatGmDDz/88KGPlYiIiGoPq94TtWHDBsTGxmLFihUIDg5GfHw8tFotzp49i0aNGhWrT0lJwciRIxEXF4eBAwciMTERQ4YMQUZGBtq3bw8AWLBgAZYsWYK1a9fC19cXM2bMgFarxenTp+Hg4AAAKCgowNNPP42QkBCsXr262H7S09PRqFEjfP755/D29kZKSgqioqJgY2OD6Ojoqj0pRERU5xUWFuLOnTvW7katZWdnBxsbm4fejkIIISqhP7IEBwejS5cuWLZsGYB78yp5e3tj8uTJmDZtWrH64cOHIz8/Hzt27JDaunXrhoCAAKxYsQJCCHh5eWHKlCl49dVXAQAGgwHu7u5ISEjAiBEjzLaXkJCAmJgYXL9+/YF9nTRpEjIzM7Fv375yH5/RaIRGo4HBYOCN5URE9EBCCOTk5JTrc4kejouLCzw8PEq8eby8n99WG4kqKChAeno6pk+fLrUplUqEhYUhNTW1xHVSU1MRGxtr1qbVarF161YAQFZWFnJychAWFiYt12g0CA4ORmpqarEQVREGgwGurq5l1ty+fRu3b9+WfjcajbL3R0REdU9RgGrUqBHq1avHiZqrgBACN2/exNWrVwEAnp6esrdltRB17do1FBYWwt3d3azd3d0dZ86cKXGdnJycEutzcnKk5UVtpdXIkZKSgg0bNmDnzp1l1sXFxWHOnDmy90NERHVXYWGhFKDc3Nys3Z1azdHREQBw9epVNGrUSPalPavfWF7dnTp1CoMHD8asWbPw+OOPl1k7ffp0GAwG6fXbb79ZqJdERFTTFd0DVa9ePSv3pG4oOs8Pc++Z1UJUgwYNYGNjg9zcXLP23NxceHh4lLiOh4dHmfVFPyuyzbKcPn0a/fr1Q1RUFN56660H1tvb20sTa3KCTSIikoOX8CyjMs6z1UKUSqVCUFAQkpOTpTaTyYTk5GSEhISUuE5ISIhZPQDs3btXqvf19YWHh4dZjdFoRFpaWqnbLM3PP/+MPn36IDIyEu+++26F1iUioorT6XTIzs4u9aXT6azdRSIzVp3iIDY2FpGRkejcuTO6du2K+Ph45OfnY/z48QCAsWPHonHjxoiLiwMAvPzyywgNDcUHH3yA8PBwrF+/Hj/++CNWrVoF4F6qjImJwTvvvIOWLVtKUxx4eXlhyJAh0n4vX74MvV6Py5cvo7CwEMePHwcAtGjRAvXr18epU6fQt29faLVaxMbGSvdT2djYoGHDhpY7QUREdYROp5O+qV2W6Oho3i9E1YZV74kaPnw4Fi5ciJkzZyIgIADHjx9HUlKSdGP45cuXkZ2dLdV3794diYmJWLVqFTp27Igvv/wSW7duleaIAoCpU6di8uTJiIqKQpcuXXDjxg0kJSVJc0QBwMyZM9GpUyfMmjULN27cQKdOndCpUyf8+OOPAIAvv/wSf/75Jz7//HN4enpKry5duljozBAR1S0FBQWVWkeWNW7cOCgUCigUCtjZ2cHd3R2PPfYYPvnkE5hMpnJvJyEhocRJsKsrq84TVdtxnigiovLJzs6WriqUJSoq6qG+kl6d3bp1C1lZWfD19TX7h3956XS6MkOmSqWqslG8cePGITc3F2vWrEFhYSFyc3ORlJSEuLg49OzZE19//TVsbR988asi8zc+rLLOd7WfJ4qIiKg0BoMz9Ho3uLrqoNHkWbs71V51uBxqb28vfYmrcePGCAwMRLdu3dCvXz8kJCTgueeew6JFi7BmzRr8+uuvcHV1RUREBBYsWID69evjwIED0u08RTd9z5o1C7Nnz8Znn32GDz/8EGfPnoWTkxP69u2L+Pj4Ep9uYkmc4oCIiKqVjIxOiI+Pwdq1kYiPj0FGRidrd6naq66XQ/v27YuOHTtiy5YtAO5Nqr1kyRL8/PPPWLt2Lfbt24epU6cCuHfLTnx8PNRqtfRlgqKnj9y5cwdz587FTz/9hK1bt+LixYsYN26cRY+lJByJIiKiasNgcMb27QMhxL1/4wuhxPbtA+Hnd54jUjWUv78/Tpw4AQCIiYmR2n18fPDOO+/ghRdewEcffQSVSgWNRgOFQlFsWqJnn31W+nPz5s2xZMkS6b7n+vXrW+Q4SsKRKCIiqjb0ejcpQBURQgm9vuzHblH1JYSQLs99++236NevHxo3bgxnZ2eMGTMGOp0ON2/eLHMb6enpiIiIQNOmTeHs7IzQ0FAA976AZk0MUUREVG24uuqgUJh/m0uhMMHVVW+lHtHDyszMhK+vLy5evIiBAwfikUcewebNm5Geno7ly5cDKPsyY35+PrRaLdRqNdatW4ejR4/iq6++euB6lsAQRUREVqdSqQAAGk0eIiJ2SEFKoTAhImKHdCmvqI5qhn379uHkyZMYOnQo0tPTYTKZ8MEHH6Bbt25o1aoV/vjjD7N6lUqFwsJCs7YzZ85Ap9Nh3rx56NmzJ/z9/aWHB1sb74kiIiKrc3NzQ3R0tDSyMHPmn7h40RY+Pnfh5dUFQJcq/Yo+Pbzbt28jJyen2BQHAwcOxNixY3Hq1CncuXMHS5cuRUREBA4fPowVK1aYbcPHxwc3btxAcnIyOnbsiHr16qFp06ZQqVRYunQpXnjhBZw6dQpz58610lGa40gUERFVC25ubtLkxkFB7hg61A1BQe5SGwNU9ZaUlARPT0/4+Pigf//+2L9/P5YsWYJt27bBxsYGHTt2xKJFizB//ny0b98e69atk55IUqR79+544YUXMHz4cDRs2BALFixAw4YNkZCQgE2bNqFt27aYN28eFi5caKWjNMfJNqsQJ9skorrKmhM/1lQPM9lmdZgnqqbhZJtERFTt8APd8v55ObQkDK6VjyGKiIgqVXWd+LG2Y0CyPN4TRUREVcpgcEZWlg8MBmdrd4WoUnEkioiIqkxGRidpBvKi6QoCA49Zu1tElYIjUUREVCVKe4QLR6SotmCIIiKiKsFHuFBtxxBFRERVgo9wodqOIYqIiKrEgx7hQlTT8cZyIiKqVPc/3y4w8Bj8/M5Dr3eFq6veLEDxOXhU0zFEERFRpeLEj1TZDhw4gD59+uCvv/6Ci4tLudbx8fFBTEwMYmJiqqxfvJxHRESV7v7n4JX0YoCqXcaNGweFQoEXXnih2LJJkyZBoVBg3Lhxlu9YFWOIIiIioofm7e2N9evX4++//5babt26hcTERDRt2tSKPas6DFFERET00AIDA+Ht7Y0tW7ZIbVu2bEHTpk3RqVMnqe327dt46aWX0KhRIzg4OKBHjx44evSo2bZ27dqFVq1awdHREX369MHFixeL7e/QoUPo2bMnHB0d4e3tjZdeegn5+flVdnwlYYgiIiKqZa5cAfbvv/fTkp599lmsWbNG+v2TTz7B+PHjzWqmTp2KzZs3Y+3atcjIyECLFi2g1Wqh19+b+uK3337Dk08+iYiICBw/fhzPPfccpk2bZraNCxcuoH///hg6dChOnDiBDRs24NChQ4iOjq76g7wPQxQREVEtsno10KwZ0LfvvZ+rV1tu38888wwOHTqES5cu4dKlSzh8+DCeeeYZaXl+fj4+/vhjvP/++xgwYADatm2L//73v3B0dMTq/+voxx9/DD8/P3zwwQdo3bo1Ro8eXex+qri4OIwePRoxMTFo2bIlunfvjiVLluDTTz/FrVu3LHa8/HYeERFRLXHlChAVBZj+b45TkwmYOBHQaoEmTap+/w0bNkR4eDgSEhIghEB4eDgaNGggLb9w4QLu3LmDRx99VGqzs7ND165dkZmZCQDIzMxEcHCw2XZDQkLMfv/pp59w4sQJrFu3TmoTQsBkMiErKwtt2rSpisMrhiGKiIioljh37n8BqkhhIXD+vGVCFHDvkl7RZbXly5dXyT5u3LiBiRMn4qWXXiq2zJI3sTNEERER1RItWwJKpXmQsrEBWrSwXB/69++PgoICKBQKaLVas2V+fn5QqVQ4fPgwmjVrBgC4c+cOjh49Ks3n1KZNG3z99ddm6/3www9mvwcGBuL06dNoYckDKwHviSIiIqolmjQBVq26F5yAez9XrrTcKNS9fdogMzMTp0+fhk1RR/6Pk5MTXnzxRbz22mtISkrC6dOn8fzzz+PmzZuYMGECAOCFF17AuXPn8Nprr+Hs2bNITExEQkKC2XZef/11pKSkIDo6GsePH8e5c+ewbds2i99YzpEoIiKiWmTChHv3QJ0/f28EypIBqoharS512bx582AymTBmzBjk5eWhc+fO2L17N/71r38BuHc5bvPmzXjllVewdOlSdO3aFe+99x6effZZaRuPPPIIvvvuO7z55pvo2bMnhBDw8/PD8OHDq/zY7qcQQgiL7rEOMRqN0Gg0MBgMZb6hiIiIbt26haysLPj6+sLBwcHa3an1yjrf5f385uU8IiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIqJqhN/3sozKOM8MUURERNWAnZ0dAODmzZtW7kndUHSei867HJwnioiIqBqwsbGBi4sLrl69CgCoV68eFAqFlXtV+wghcPPmTVy9ehUuLi7FJgStCIYoIiKiasLDwwMApCBFVcfFxUU633IxRBEREVUTCoUCnp6eaNSoEe7cuWPt7tRadnZ2DzUCVYQhioiIqJqxsbGplA95qlq8sZyIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGTgPFFEREQkm06nQ0FBQanLVSoV3NzcLNgjy2GIIiIiIll0Oh2WLVv2wLro6OhaGaR4OY+IiIhkKWsESk5dTWP1ELV8+XL4+PjAwcEBwcHBOHLkSJn1mzZtgr+/PxwcHNChQwfs2rXLbLkQAjNnzoSnpyccHR0RFhaGc+fOmdW8++676N69O+rVqwcXF5cS93P58mWEh4ejXr16aNSoEV577TXcvXv3oY6ViIiIag+rhqgNGzYgNjYWs2bNQkZGBjp27AitVlvq06tTUlIwcuRITJgwAceOHcOQIUMwZMgQnDp1SqpZsGABlixZghUrViAtLQ1OTk7QarW4deuWVFNQUICnn34aL774Yon7KSwsRHh4OAoKCpCSkoK1a9ciISEBM2fOrNwTQERERDWWQgghrLXz4OBgdOnSRbqeajKZ4O3tjcmTJ2PatGnF6ocPH478/Hzs2LFDauvWrRsCAgKwYsUKCCHg5eWFKVOm4NVXXwUAGAwGuLu7IyEhASNGjDDbXkJCAmJiYnD9+nWz9m+++QYDBw7EH3/8AXd3dwDAihUr8Prrr+PPP/+ESqUq1/EZjUZoNBoYDAao1epynxciIqKaIDs7G6tWrXpgXVRUFDw9PS3Qo8pR3s9vq41EFRQUID09HWFhYf/rjFKJsLAwpKamlrhOamqqWT0AaLVaqT4rKws5OTlmNRqNBsHBwaVus7T9dOjQQQpQRfsxGo34+eefS13v9u3bMBqNZi8iIiKqnawWoq5du4bCwkKzoAIA7u7uyMnJKXGdnJycMuuLflZkmxXZz/37KElcXBw0Go308vb2Lvc+iYiIajqDwRlZWT4wGJyt3RWL4BQHlWj69OmIjY2VfjcajQxSRERUJ2RkdML27QMhhBIKhQkRETsQGHjM2t2qUlYbiWrQoAFsbGyQm5tr1p6bmwsPD48S1/Hw8CizvuhnRbZZkf3cv4+S2NvbQ61Wm72IiIhqq6J7hA0GZylAAYAQSmzfPlAakSrvvcQ1jdVClEqlQlBQEJKTk6U2k8mE5ORkhISElLhOSEiIWT0A7N27V6r39fWFh4eHWY3RaERaWlqp2yxtPydPnjT7luDevXuhVqvRtm3bcm+HiIioNnNzc0N0dDS6d4+UAlQRIZR49NHIWjvRJmDly3mxsbGIjIxE586d0bVrV8THxyM/Px/jx48HAIwdOxaNGzdGXFwcAODll19GaGgoPvjgA4SHh2P9+vX48ccfpW8GKBQKxMTE4J133kHLli3h6+uLGTNmwMvLC0OGDJH2e/nyZej1ely+fBmFhYU4fvw4AKBFixaoX78+Hn/8cbRt2xZjxozBggULkJOTg7feeguTJk2Cvb29Rc8RERFRdebm5oZu3QClEjCZ/tduYwMEB7uhluane4SVLV26VDRt2lSoVCrRtWtX8cMPP0jLQkNDRWRkpFn9xo0bRatWrYRKpRLt2rUTO3fuNFtuMpnEjBkzhLu7u7C3txf9+vUTZ8+eNauJjIwUAIq99u/fL9VcvHhRDBgwQDg6OooGDRqIKVOmiDt37lTo2AwGgwAgDAZDhdYjIiKqaf7f/xPCxkYI4N7P//f/rN0j+cr7+W3VeaJqO84TRUREdcmVK8D580CLFkCTJtbujXzl/fzmt/OIiIioUjRpUrPDU0VZ/dl5RERERDURQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJIOttTtAREREVB46nQ4FBQWlLlepVHBzc7NYfxiiiIiIqNrT6XRYtmzZA+uio6MtFqR4OY+IiIiqvbJGoOTUVQaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiqnEMBmdkZfnAYHC2Wh84xQERERHVKBkZnbB9+0AIoYRCYUJExA4EBh6zeD84EkVERETVnkqlAnBvBKooQAGAEEps3z5QGpEqqrMEhRBCWGxvdYzRaIRGo4HBYIBarbZ2d4iIiGo0nU6H/fuBp58uPpnml1/q0Ls3KmWizfJ+fvNyHhEREdUIbm5u6NYNUCoBk+l/7TY2QHCwGyz4xBcAvJxHRERENUiTJsCqVfeCE3Dv58qV99otjSNRREREVKNMmABotcD580CLFtYJUABDFBEREdVATZpYLzwV4eU8IiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGSweohavnw5fHx84ODggODgYBw5cqTM+k2bNsHf3x8ODg7o0KEDdu3aZbZcCIGZM2fC09MTjo6OCAsLw7lz58xq9Ho9Ro8eDbVaDRcXF0yYMAE3btwwq9m9eze6desGZ2dnNGzYEEOHDsXFixcr5ZiJiIio5rNqiNqwYQNiY2Mxa9YsZGRkoGPHjtBqtbh69WqJ9SkpKRg5ciQmTJiAY8eOYciQIRgyZAhOnTol1SxYsABLlizBihUrkJaWBicnJ2i1Wty6dUuqGT16NH7++Wfs3bsXO3bswMGDBxEVFSUtz8rKwuDBg9G3b18cP34cu3fvxrVr1/Dkk09W3ckgIiKimkVYUdeuXcWkSZOk3wsLC4WXl5eIi4srsX7YsGEiPDzcrC04OFhMnDhRCCGEyWQSHh4e4v3335eWX79+Xdjb24svvvhCCCHE6dOnBQBx9OhRqeabb74RCoVC/P7770IIITZt2iRsbW1FYWGhVPP1118LhUIhCgoKyn18BoNBABAGg6Hc6xAREZF1lffz22ojUQUFBUhPT0dYWJjUplQqERYWhtTU1BLXSU1NNasHAK1WK9VnZWUhJyfHrEaj0SA4OFiqSU1NhYuLCzp37izVhIWFQalUIi0tDQAQFBQEpVKJNWvWoLCwEAaDAZ999hnCwsJgZ2dX6jHdvn0bRqPR7EVERES1k9VC1LVr11BYWAh3d3ezdnd3d+Tk5JS4Tk5OTpn1RT8fVNOoUSOz5ba2tnB1dZVqfH19sWfPHrzxxhuwt7eHi4sLrly5go0bN5Z5THFxcdBoNNLL29u7zHoiIiKquax+Y3l1lJOTg+effx6RkZE4evQovvvuO6hUKjz11FMQQpS63vTp02EwGKTXb7/9ZsFeExERkSXZWmvHDRo0gI2NDXJzc83ac3Nz4eHhUeI6Hh4eZdYX/czNzYWnp6dZTUBAgFTzzxvX7969C71eL62/fPlyaDQaLFiwQKr5/PPP4e3tjbS0NHTr1q3E/tnb28Pe3v5Bh05ERES1gNVGolQqFYKCgpCcnCy1mUwmJCcnIyQkpMR1QkJCzOoBYO/evVK9r68vPDw8zGqMRiPS0tKkmpCQEFy/fh3p6elSzb59+2AymRAcHAwAuHnzJpRK81NjY2Mj9ZGIiIjIqt/OW79+vbC3txcJCQni9OnTIioqSri4uIicnBwhhBBjxowR06ZNk+oPHz4sbG1txcKFC0VmZqaYNWuWsLOzEydPnpRq5s2bJ1xcXMS2bdvEiRMnxODBg4Wvr6/4+++/pZr+/fuLTp06ibS0NHHo0CHRsmVLMXLkSGl5cnKyUCgUYs6cOeKXX34R6enpQqvVimbNmombN2+W+/j47TwiIqKap7yf31a7nAcAw4cPx59//omZM2ciJycHAQEBSEpKkm4Mv3z5stmIUPfu3ZGYmIi33noLb7zxBlq2bImtW7eiffv2Us3UqVORn5+PqKgoXL9+HT169EBSUhIcHBykmnXr1iE6Ohr9+vWDUqnE0KFDsWTJEml53759kZiYiAULFmDBggWoV68eQkJCkJSUBEdHRwucmeJ0Oh0KCgpKXa5SqeDm5mbBHhEREdVtCiHKuFOaHorRaIRGo4HBYIBarZa9HZ1Oh2XLlj2wLjo6mkGKiIjoIZX385vfzqsB/jkCZTA4IyvLBwaDc5l1REREVHWsejmPKi4joxO2bx8IIZRQKEyIiNiBwMBj1u4WERFRncORqBrEYHCWAhQACKHE9u0Di41IERERUdVjiKpB9Ho3/PNJPUIoode7WqlHREREdRdDVA3i6qqDQmE+T5VCYYKrq95KPSIiIqq7GKJqEI0mDxERO6QgVXRPlEaTZ+WeERER1T28sbyGCQw8Bj+/89DrXeHqqmeAIiIishKGqBpApVKZ/a7R5JUYnv5ZR0RERFWHIaoGcHNzQ3R0NGcsp2rpyhXg3DmgZUugSRNr94aIyHIYomoIBiSqTooeQ5SY6IipUzUwmRRQKgUWLDBg1Ki/GeqJqE5giCKiCil6DJHB4Iz4+BgIoQAAmEwKvPaaGr///gk0mjw+hoiIaj1+O4+IKqTosvKD5i3jY4iIqLZjiCIiWThvGRHVdQxRRCQL5y0jorqO90QRkWyct4yI6jKGKCJ6KKXNW0ZEVNvxch4RERGRDAxRRERERDIwRBFRhZT38UJ8DBER1Xa8J4qIKoSPISIiuochiogqjAGJiIiX84iIiIhkYYgiIiIikoEhioiIiEgGhigiqjGuXAH277/3k4jI2mTdWH7kyBGkpqYiJycHAODh4YGQkBB07dq1UjtHRKTT6VBQUIDEREdMnaqByaSAUimwYIEBo0b9zW8CEpHVVChEXb16FUOHDsXhw4fRtGlTuLu7AwByc3Pxyiuv4NFHH8XmzZvRqFGjKuksEdUtOp0Oy5Ytg8HgjPj4GAihAACYTAq89poav//+CTSaPERHRzNIEZHFVehy3n/+8x8UFhYiMzMTFy9eRFpaGtLS0nDx4kVkZmbCZDJh0qRJVdVXIqpjiuai0uvdIIT5X1dCKKHXu5rVERFZUoVGonbv3o2DBw+idevWxZa1bt0aS5YsQe/evSurb0REAABXVx0UCpNZkFIoTHB11VuxV0RU11VoJMre3h5Go7HU5Xl5ebC3t3/oThER3U+jyUNExA4oFCYA9wJURMQOaDR5Vu4ZEdVlFRqJGj58OCIjI7F48WL069cParUaAGA0GpGcnIzY2FiMHDmySjpKRHVbYOAx+Pmdh17vCldXPQMUEVldhULUokWLYDKZMGLECNy9e1d6wGhBQQFsbW0xYcIELFy4sEo6SkSk0eQxPBFRtVGhEGVvb4+PP/4Y8+fPR3p6utkUB0FBQdLIFBEREVFtJ2ueKLVajT59+lR2X4iIiIhqjEqdsTw3Nxdvv/12ZW6SiOqwolsGKquOiKgyKYQQorI29tNPPyEwMBCFhYWVtckazWg0QqPRwGAw8FInkUxFM5aXhjOWE1FlK+/nd4Uu5504caLM5WfPnq3I5oiIHogBiYiqqwqFqICAACgUCpQ0eFXUrlAoKq1zRERERNVVhUKUq6srFixYgH79+pW4/Oeff0ZERESldIyIiIioOqtQiAoKCsIff/yBZs2albj8+vXrJY5SEREREdU2FQpRL7zwAvLz80td3rRpU6xZs+ahO0VERERU3VXqt/PIHL+dR0REVPOU9/O7UueJIiIiIqorKnQ5LzY2tlx1ixYtktUZIiIiopqiQiHq2LFjZr8fOnQIQUFBcHR0lNo4xQERERHVBRUKUfv37zf73dnZGYmJiWjevHmldoqIiIiouuM9UUREREQyMEQRERERycAQRURERCTDQz2AWAiBM2fO4MaNG2btjzzyyMP3jIiIiKgaq9BIVEBAADp16oSAgAAEBATg5s2bGDhwoFl7p06dKtSB5cuXw8fHBw4ODggODsaRI0fKrN+0aRP8/f3h4OCADh06YNeuXWbLhRCYOXMmPD094ejoiLCwMJw7d86sRq/XY/To0VCr1XBxccGECROKBUEhBBYuXIhWrVrB3t4ejRs3xrvvvluhYyMiIqLaq0IjUVlZWZW68w0bNiA2NhYrVqxAcHAw4uPjodVqcfbsWTRq1KhYfUpKCkaOHIm4uDgMHDgQiYmJGDJkCDIyMtC+fXsAwIIFC7BkyRKsXbsWvr6+mDFjBrRaLU6fPg0HBwcAwOjRo5GdnY29e/fizp07GD9+PKKiopCYmCjt6+WXX8aePXuwcOFCdOjQAXq9Hnq9vlKPn4iIiGowYUVdu3YVkyZNkn4vLCwUXl5eIi4ursT6YcOGifDwcLO24OBgMXHiRCGEECaTSXh4eIj3339fWn79+nVhb28vvvjiCyGEEKdPnxYAxNGjR6Wab775RigUCvH7779LNba2tuLMmTMPdXwGg0EAEAaD4aG2Q0RERJZT3s/vSrmxvG/fvrh06VKF1ikoKEB6ejrCwsKkNqVSibCwMKSmppa4Tmpqqlk9AGi1Wqk+KysLOTk5ZjUajQbBwcFSTWpqKlxcXNC5c2epJiwsDEqlEmlpaQCA7du3o3nz5tixYwd8fX3h4+OD55577oEjUbdv34bRaDR7ERERUe1Uoct5X3/9dYntBw8exI4dO+Dt7Q0AGDRo0AO3de3aNRQWFsLd3d2s3d3dHWfOnClxnZycnBLrc3JypOVFbWXV/PNSoa2tLVxdXaWaX3/9FZcuXcKmTZvw6aeforCwEK+88gqeeuop7Nu3r9RjiouLw5w5cx506ERERFQLVChEDRkyBAqFAkKIYssmT54M4N5jXwoLCyund1ZiMplw+/ZtfPrpp2jVqhUAYPXq1QgKCsLZs2fRunXrEtebPn262fMFjUajFCyJiIiodqnQ5TytVosBAwYgJycHJpNJetnY2ODUqVMwmUzlDlANGjSAjY0NcnNzzdpzc3Ph4eFR4joeHh5l1hf9fFDN1atXzZbfvXsXer1eqvH09IStra0UoACgTZs2AIDLly+Xekz29vZQq9VmLyIiIqqdKhSivvnmG/Tr1w+dO3fGjh07HmrHKpUKQUFBSE5OltpMJhOSk5MREhJS4johISFm9QCwd+9eqd7X1xceHh5mNUajEWlpaVJNSEgIrl+/jvT0dKlm3759MJlMCA4OBgA8+uijuHv3Li5cuCDV/PLLLwCAZs2aPcxhE1UrOp0O2dnZpb50Op21u0hEVG0pREnX5h7g+PHjGD16NHr06IHFixdDo9Hgp59+Qtu2bSu0nQ0bNiAyMhIrV65E165dER8fj40bN+LMmTNwd3fH2LFj0bhxY8TFxQG4N8VBaGgo5s2bh/DwcKxfvx7vvfee2RQH8+fPx7x588ymODhx4oTZFAcDBgxAbm4uVqxYIU1x0LlzZ2mKA5PJhC5duqB+/fqIj4+HyWTCpEmToFarsWfPnnIfn9FohEajgcFg4KgUVTs6nQ7Lli2TfjcYnKHXu8HVVQeNJk9qj46OhpubmzW6SERkFeX9/K7QPVFFAgIC8OOPP+KVV15BQEBAifdIlcfw4cPx559/YubMmcjJyUFAQACSkpKkG8MvX74MpfJ/g2Xdu3dHYmIi3nrrLbzxxhto2bIltm7dKgUoAJg6dSry8/MRFRWF69evo0ePHkhKSpICFACsW7cO0dHR6NevH5RKJYYOHYolS5ZIy5VKJbZv347JkyejV69ecHJywoABA/DBBx/IOk6i6qigoED6c0ZGJ2zfPhBCKKFQmBARsQOBgceK1RER0f/IGom639dff439+/dj+vTpJU6QWZdxJIqqs+zsbKxatQoGgzPi42Nw/4wnCoUJMTHx0GjyEBUVBU9PTyv2lIjIssr7+V2he6L27duHtm3bms1/NGjQICxevBj29vZo164dvv/+e/m9JiKL0+vd8M8p44RQQq93tVKPiIhqhgqFqPj4eDz//PMlpjKNRoOJEydi0aJFldY5Iqp6rq46KBQmszaFwgRXVz7miIioLBUKUT/99BP69+9f6vLHH3/c7FtvRFT9aTR5iIjYIQWponui7r+5nIiIiqvQjeW5ubmws7MrfWO2tvjzzz8fulNEZFmBgcfg53ceer0rXF31DFBEROVQoZGoxo0b49SpU6UuP3HiBG9AJaqhNJo8+PpeYoAiIiqnCoWoJ554AjNmzMCtW7eKLfv7778xa9YsDBw4sNI6R0RVR6VSVWodEVFdU6EpDnJzcxEYGAgbGxtER0dLz5A7c+YMli9fjsLCQmRkZBR7AHBdxSkOqLrT6XRlzgOlUqk40SYR1TlVMtmmu7s7UlJS8OKLL2L69OnSJJsKhQJarRbLly9ngCKqQRiQiIjkq/CM5c2aNcOuXbvw119/4fz58xBCoGXLlvjXv/5VFf0jIiIiqpZkPfYFAP71r3+hS5culdkXIiIiohqjQjeWExEREdE9DFFEREREMsi+nEf0T/ymFxER1SUMUVQpdDodli1b9sC66OhoBqkqwhBLRGRZDFFUKcr68JZTRxXDEEtEZHm8J4qoFvhnODUYnJGV5QODwbnMOiIiko8jUUS1TEZGJ2zfPhBCKKFQmBARsQOBgces3S0iolqHI1FUJUobCaGqZTA4SwEKAIRQYvv2gfzvQERUBTgSRZWOIyHWo9e7SQGqiBBK6PWu0GjyrNQrIqLaiSNRVKk4EmJdrq46KBQmszaFwgRXV72VekREVHsxRFGlKmskhKqeRpOHiIgdUpAqGgnkKBQRUeXj5TyqFCqVCsD/RkLuD1L3j4QU1VHVCQw8Bj+/89DrXeHqqmeAIiKqIgxRVCnc3NwQHR2NgoICNG5sxOuva1BYqICNjcD8+UaMGjWSkz1WoX+GU40mr8TwxBBLRFR5FEIIYe1O1FZGoxEajQYGgwFqtdra3bGoK1eA8+eBFi2AJk2s3Zu6gTOWExFVjvJ+fnMkiqpEkyYMT5bGgEREZFm8sZyIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBltrd4Cqlk6nQ0FBQanLVSoV3NzcLNgjIiKi2oEhqhbT6XRYtmzZA+uio6MZpIiIiCqIl/NqsbJGoOTUERER0f8wRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBE1SEGgzOysnxgMDhbuytEREQ1Hqc4qCMyMjph+/aBEEIJhcKEiIgdCAw8Zu1uERER1VgciarFVCoVgHsjUEUBCgCEUGL79oHSiFRRHREREZWfQgghrN2J2spoNEKj0cBgMECtVlulDzqdDvv3A08/XXwyzS+/1KF3b3CiTSIiovuU9/Obl/NqOTc3N3TrBiiVgMn0v3YbGyA42A3MT0RERPLwcl4d0KQJsGrVveAE3Pu5cuW9diIiIpKnWoSo5cuXw8fHBw4ODggODsaRI0fKrN+0aRP8/f3h4OCADh06YNeuXWbLhRCYOXMmPD094ejoiLCwMJw7d86sRq/XY/To0VCr1XBxccGECRNw48aNEvd3/vx5ODs7w8XF5aGO05omTAAuXgT277/3c8IEa/eIiMicTqdDdnZ2qS+dTmftLhKZsfo9URs2bMDYsWOxYsUKBAcHIz4+Hps2bcLZs2fRqFGjYvUpKSno1asX4uLiMHDgQCQmJmL+/PnIyMhA+/btAQDz589HXFwc1q5dC19fX8yYMQMnT57E6dOn4eDgAAAYMGAAsrOzsXLlSty5cwfjx49Hly5dkJiYaLa/O3fuoHv37mjYsCFSUlJw/fr1ch9bdbgnioioJvjnA9MNBmfo9W5wddVBo8mT2ivzgek6nU56dugffyiRlWULX9+78PK6d++DSqXiPaN1VHk/v60eooKDg9GlSxfpfx6TyQRvb29MnjwZ06ZNK1Y/fPhw5OfnY8eOHVJbt27dEBAQgBUrVkAIAS8vL0yZMgWvvvoqAMBgMMDd3R0JCQkYMWIEMjMz0bZtWxw9ehSdO3cGACQlJeGJJ57AlStX4OXlJW379ddfxx9//IF+/fohJiaGIYqIqApkZ2dj1apVAMqekiUqKgqenp4Pvb/7Q1tZ+6vM0EY1R3k/v616Oa+goADp6ekICwuT2pRKJcLCwpCamlriOqmpqWb1AKDVaqX6rKws5OTkmNVoNBoEBwdLNampqXBxcZECFACEhYVBqVQiLS1Natu3bx82bdqE5cuXl+t4bt++DaPRaPYiqo142YWqyoOmZKksRSNQD9pfUR1RSaz67bxr166hsLAQ7u7uZu3u7u44c+ZMievk5OSUWJ+TkyMtL2orq+aflwptbW3h6uoq1eh0OowbNw6ff/55uUeR4uLiMGfOnHLVEtVU1rjsQuZq82Uovd5NCjRFhFBCr3c1e3/V1P1R7cIpDkrx/PPPY9SoUejVq1e515k+fTpiY2Ol341GI7y9vauie0RWc/+/zMu6DMJ/wVeN2n4ZytVVB4XCZBZsFAoTXF31tWJ/VLtY9XJegwYNYGNjg9zcXLP23NxceHh4lLiOh4dHmfVFPx9Uc/XqVbPld+/ehV6vl2r27duHhQsXwtbWFra2tpgwYQIMBgNsbW3xySeflNg3e3t7qNVqsxdRbWWpyy5krrZfhtJo8hARsQMKxb1RtaJwWFWjQpbeH9UuVh2JUqlUCAoKQnJyMoYMGQLg3o3lycnJiI6OLnGdkJAQJCcnIyYmRmrbu3cvQkJCAAC+vr7w8PBAcnIyAgICANwbEUpLS8OLL74obeP69etIT09HUFAQgHuhyWQyITg4GMC9+6YKCwulfWzbtg3z589HSkoKGjduXJmngahG4mUQ66rN5z8w8Bj8/M5Dr3eFq6u+yo/H0vuj2sPql/NiY2MRGRmJzp07o2vXroiPj0d+fj7Gjx8PABg7diwaN26MuLg4AMDLL7+M0NBQfPDBBwgPD8f69evx448/St/qUCgUiImJwTvvvIOWLVtKUxx4eXlJQa1Nmzbo378/nn/+eaxYsQJ37txBdHQ0RowYIX0zr02bNmb9/PHHH6FUKqVpFIjqOl4Gsa7afv41mjyLhhlL749qB6tPtjl8+HAsXLgQM2fOREBAAI4fP46kpCTpxvDLly8jOztbqu/evTsSExOxatUqdOzYEV9++SW2bt1qFm6mTp2KyZMnIyoqCl26dMGNGzeQlJQkzREFAOvWrYO/vz/69euHJ554Aj169JCCGBE9GC+DWFdtO//lfRA6H5hO1YnV54mqzThPFNVG98/nAxR9O6/4ZZDKms+HzNXm83//tw5LUpnfOvznt0xLU1Nv0KeHwwcQE5FF8DKIddWm82/JsOLm5obo6GiLhTaqnRiiiKhCeNmFagsGJHpYDFFEVCH8F7x1WTrE1uaJPYkeFu+JqkK8J4qIqoKl7h2q7RN7EpWG90QREdVSlgosD5rY08/vPDSavBo7sSfRw7L6FAdERFS9lTWxJ1FdxhBFRERlKprY8361aWJPIrkYooiIqEy1bWJPosrCe6KIiOiB+Hw5ouIYooiIqFxq08SeRJWBl/OIiIiIZGCIIiKiEnF2eqKy8XIeERGViLPTE5WNIYqIiErFgERUOl7OIyIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGW2t3gIiIiOoWnU6HgoKCUperVCq4ublZsEfyMEQRERGRxeh0OixbtuyBddHR0dU+SPFyHhEREVlMWSNQcuqsiSGKiIiIrMZgcEZWlg8MBmdrd6XCeDmPiIiIrCIjoxO2bx8IIZRQKEyIiNiBwMBj1u5WuXEkioiIiCzOYHCWAhQACKHE9u0Da9SIVLUIUcuXL4ePjw8cHBwQHByMI0eOlFm/adMm+Pv7w8HBAR06dMCuXbvMlgshMHPmTHh6esLR0RFhYWE4d+6cWY1er8fo0aOhVqvh4uKCCRMm4MaNG9LyAwcOYPDgwfD09ISTkxMCAgKwbt26yjtoIiKiOkyvd5MCVBEhlNDrXa3Uo4qzeojasGEDYmNjMWvWLGRkZKBjx47QarW4evVqifUpKSkYOXIkJkyYgGPHjmHIkCEYMmQITp06JdUsWLAAS5YswYoVK5CWlgYnJydotVrcunVLqhk9ejR+/vln7N27Fzt27MDBgwcRFRVltp9HHnkEmzdvxokTJzB+/HiMHTsWO3bsqLqTQUREVEe4uuqgUJjM2hQKE1xd9VbqUcUphBDCmh0IDg5Gly5dpK87mkwmeHt7Y/LkyZg2bVqx+uHDhyM/P98szHTr1g0BAQFYsWIFhBDw8vLClClT8OqrrwIADAYD3N3dkZCQgBEjRiAzMxNt27bF0aNH0blzZwBAUlISnnjiCVy5cgVeXl4l9jU8PBzu7u745JNPynVsRqMRGo0GBoMBarW6QueFiIioNsrOzsaqVasAlH1PVFRUFDw9Pa3Sx/J+flv1xvKCggKkp6dj+vTpUptSqURYWBhSU1NLXCc1NRWxsbFmbVqtFlu3bgUAZGVlIScnB2FhYdJyjUaD4OBgpKamYsSIEUhNTYWLi4sUoAAgLCwMSqUSaWlp+Pe//13ivg0GA9q0aVPq8dy+fRu3b9+WfjcajaUfPBERUR2kUqmkPwcGHoOf33no9a5wddVDo8krsa66smqIunbtGgoLC+Hu7m7W7u7ujjNnzpS4Tk5OTon1OTk50vKitrJqGjVqZLbc1tYWrq6uUs0/bdy4EUePHsXKlStLPZ64uDjMmTOn1OVERER1nZubG6KjozljeV2xf/9+jB8/Hv/973/Rrl27UuumT59uNkpmNBrh7e1tiS4SERHVGDUhIJWHVW8sb9CgAWxsbJCbm2vWnpubCw8PjxLX8fDwKLO+6OeDav554/rdu3eh1+uL7fe7775DREQEFi9ejLFjx5Z5PPb29lCr1WYvIiIiqp2sGqJUKhWCgoKQnJwstZlMJiQnJyMkJKTEdUJCQszqAWDv3r1Sva+vLzw8PMxqjEYj0tLSpJqQkBBcv34d6enpUs2+fftgMpkQHBwstR04cADh4eGYP3++2Tf3iIiIiCCsbP369cLe3l4kJCSI06dPi6ioKOHi4iJycnKEEEKMGTNGTJs2Tao/fPiwsLW1FQsXLhSZmZli1qxZws7OTpw8eVKqmTdvnnBxcRHbtm0TJ06cEIMHDxa+vr7i77//lmr69+8vOnXqJNLS0sShQ4dEy5YtxciRI6Xl+/btE/Xq1RPTp08X2dnZ0kun05X72AwGgwAgDAbDw5wiIiIisqDyfn5bPUQJIcTSpUtF06ZNhUqlEl27dhU//PCDtCw0NFRERkaa1W/cuFG0atVKqFQq0a5dO7Fz506z5SaTScyYMUO4u7sLe3t70a9fP3H27FmzGp1OJ0aOHCnq168v1Gq1GD9+vMjLy5OWR0ZGCgDFXqGhoeU+LoYoIiKimqe8n99WnyeqNuM8UURERDVPeT+/rT5jOREREVFNxBBFREREJANDFBEREZEMnGyTiIiIagSdTletZjpniCIiIqJqT6fTYdmyZQ+si46OtliQ4uU8IiIiqvbKGoGSU1cZGKKIiIiIZGCIIiIiIpKBIYqIiIhqHIPBGVlZPjAYnK3WB95YTkRERDVKRkYnbN8+EEIooVCYEBGxA4GBxyzeD45EERERUY1hMDhLAQoAhFBi+/aBVhmRYogiIiKiGkOvd5MCVBEhlNDrXS3eF4YoIiIiqvZu3rwJAHB11UGhMJktUyhMcHXVm9VZAkMUERERVXv16tUDAGg0eYiI2CEFqaJ7ojSaPLM6S+CN5URERFSjBAYeg5/feej1rnB11UsBytIYooiIiKjG0WjyrBaeivByHhEREdU4nCeKiIiIqII4TxQRERFRBXGeKCIiIiIZOE8UERERUQWoVCoAD54nqqjOEnhPFBEREVV7bm5uiI6ORkFBARo3NuL11zUoLFTAxkZg/nwjRo0aCZVKBTc3N4v1SSGEEBbbWx1jNBqh0WhgMBigVqut3R0iIqJa48oV4Px5oEULoEmTyt12eT+/ORJFRERENU6TJpUfniqK90QRERERycCRKKI6TKfToaCgAADwxx9KZGXZwtf3Lry87t20aen7C4iIahKGKKI6SqfTYdmyZQDKnrguOjqaQYqIqAS8nEdURxWNQD1o4rqiOiIiMscQRVTHVaeJ64iIahKGKKI67kET1xERUckYoojqOI0mDxERO6QgVXRPlEaTZ+WeERFVb7yxnIgQGHgMfn7node7wtVVzwBFRFQODFFEBODeiBTDExFR+fFyHhEREZEMDFFEdVR5n3RuySeiExHVJLycR1RH3f9E9NJwxnIiotIxRBHVYQxIRETy8XIeERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMnLG8CgkhAABGo9HKPSEiIqLyKvrcLvocLw1DVBXKy8sDAHh7e1u5J0RERFRReXl50Gg0pS5XiAfFLJLNZDLhjz/+gLOzMxQKxUNty2g0wtvbG7/99hvUanUl9bBmqevnoK4fP8BzAPAcADwHAM8BULXnQAiBvLw8eHl5Qaks/c4njkRVIaVSiSZNmlTqNtVqdZ39H6ZIXT8Hdf34AZ4DgOcA4DkAeA6AqjsHZY1AFeGN5UREREQyMEQRERERycAQVUPY29tj1qxZsLe3t3ZXrKaun4O6fvwAzwHAcwDwHAA8B0D1OAe8sZyIiIhIBo5EEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMERZyfLly+Hj4wMHBwcEBwfjyJEjZdbHx8ejdevWcHR0hLe3N1555RXcunVLWj579mwoFAqzl7+/f1UfxkOpyDm4c+cO3n77bfj5+cHBwQEdO3ZEUlLSQ22zOqjsc1DT3gcHDx5EREQEvLy8oFAosHXr1geuc+DAAQQGBsLe3h4tWrRAQkJCsZqa8j6oiuOv7e+B7OxsjBo1Cq1atYJSqURMTEyJdZs2bYK/vz8cHBzQoUMH7Nq1q/I7X0mq4hwkJCQUex84ODhUzQFUgoqegy1btuCxxx5Dw4YNoVarERISgt27dxerq+q/CxiirGDDhg2IjY3FrFmzkJGRgY4dO0Kr1eLq1asl1icmJmLatGmYNWsWMjMzsXr1amzYsAFvvPGGWV27du2QnZ0tvQ4dOmSJw5GloufgrbfewsqVK7F06VKcPn0aL7zwAv7973/j2LFjsrdpbVVxDoCa9T7Iz89Hx44dsXz58nLVZ2VlITw8HH369MHx48cRExOD5557zuwvz5r0PqiK4wdq93vg9u3baNiwId566y107NixxJqUlBSMHDkSEyZMwLFjxzBkyBAMGTIEp06dqsyuV5qqOAfAvZm8738fXLp0qbK6XOkqeg4OHjyIxx57DLt27UJ6ejr69OmDiIgIy38mCLK4rl27ikmTJkm/FxYWCi8vLxEXF1di/aRJk0Tfvn3N2mJjY8Wjjz4q/T5r1izRsWPHKulvVajoOfD09BTLli0za3vyySfF6NGjZW/T2qriHNS098H9AIivvvqqzJqpU6eKdu3ambUNHz5caLVa6fea9j4oUlnHX9vfA/cLDQ0VL7/8crH2YcOGifDwcLO24OBgMXHixIfsYdWrrHOwZs0aodFoKq1fllTRc1Ckbdu2Ys6cOdLvlvi7gCNRFlZQUID09HSEhYVJbUqlEmFhYUhNTS1xne7duyM9PV0ahvz111+xa9cuPPHEE2Z1586dg5eXF5o3b47Ro0fj8uXLVXcgD0HOObh9+3axoWhHR0fpX9hytmlNVXEOitSU94EcqampZucMALRarXTOatr7oKIedPxFavN7oDzKe55quxs3bqBZs2bw9vbG4MGD8fPPP1u7S1XGZDIhLy8Prq6uACz3dwFDlIVdu3YNhYWFcHd3N2t3d3dHTk5OieuMGjUKb7/9Nnr06AE7Ozv4+fmhd+/eZpfzgoODkZCQgKSkJHz88cfIyspCz549kZeXV6XHI4ecc6DVarFo0SKcO3cOJpMJe/fuxZYtW5CdnS17m9ZUFecAqFnvAzlycnJKPGdGoxF///13jXsfVNSDjh+o/e+B8ijtPNWG90B5tW7dGp988gm2bduGzz//HCaTCd27d8eVK1es3bUqsXDhQty4cQPDhg0DYLnPBIaoGuDAgQN477338NFHHyEjIwNbtmzBzp07MXfuXKlmwIABePrpp/HII49Aq9Vi165duH79OjZu3GjFnleeDz/8EC1btoS/vz9UKhWio6Mxfvx4KJV15y1cnnNQ298H9GB8DxAAhISEYOzYsQgICEBoaCi2bNmChg0bYuXKldbuWqVLTEzEnDlzsHHjRjRq1Mii+647n0DVRIMGDWBjY4Pc3Fyz9tzcXHh4eJS4zowZMzBmzBg899xz6NChA/7973/jvffeQ1xcHEwmU4nruLi4oFWrVjh//nylH8PDknMOGjZsiK1btyI/Px+XLl3CmTNnUL9+fTRv3lz2Nq2pKs5BSarz+0AODw+PEs+ZWq2Go6NjjXsfVNSDjr8kte09UB6lnafa8B6Qy87ODp06dap174P169fjueeew8aNG80u3Vnq7wKGKAtTqVQICgpCcnKy1GYymZCcnIyQkJAS17l582axERcbGxsAgCjl0Yc3btzAhQsX4OnpWUk9rzxyzkERBwcHNG7cGHfv3sXmzZsxePDgh96mNVTFOShJdX4fyBESEmJ2zgBg79690jmrae+DinrQ8Zektr0HykPOeartCgsLcfLkyVr1Pvjiiy8wfvx4fPHFFwgPDzdbZrG/CyrtFnUqt/Xr1wt7e3uRkJAgTp8+LaKiooSLi4vIyckRQggxZswYMW3aNKl+1qxZwtnZWXzxxRfi119/FXv27BF+fn5i2LBhUs2UKVPEgQMHRFZWljh8+LAICwsTDRo0EFevXrX48ZVHRc/BDz/8IDZv3iwuXLggDh48KPr27St8fX3FX3/9Ve5tVjdVcQ5q2vsgLy9PHDt2TBw7dkwAEIsWLRLHjh0Tly5dEkIIMW3aNDFmzBip/tdffxX16tUTr732msjMzBTLly8XNjY2IikpSaqpSe+Dqjj+2v4eEEJI9UFBQWLUqFHi2LFj4ueff5aWHz58WNja2oqFCxeKzMxMMWvWLGFnZydOnjxp0WMrr6o4B3PmzBG7d+8WFy5cEOnp6WLEiBHCwcHBrKY6qeg5WLdunbC1tRXLly8X2dnZ0uv69etSjSX+LmCIspKlS5eKpk2bCpVKJbp27Sp++OEHaVloaKiIjIyUfr9z546YPXu28PPzEw4ODsLb21v85z//MfvwHD58uPD09BQqlUo0btxYDB8+XJw/f96CR1RxFTkHBw4cEG3atBH29vbCzc1NjBkzRvz+++8V2mZ1VNnnoKa9D/bv3y8AFHsVHXdkZKQIDQ0ttk5AQIBQqVSiefPmYs2aNcW2W1PeB1Vx/HXhPVBSfbNmzcxqNm7cKFq1aiVUKpVo166d2Llzp2UOSIaqOAcxMTHS/wPu7u7iiSeeEBkZGZY7qAqq6DkIDQ0ts75IVf9doBCilOtBRERERFQq3hNFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQREdUhBw4cgEKhwPXr163dFaIajyGKiKrEuHHjoFAoMG/ePLP2rVu3QqFQSL8LIfDf//4XISEhUKvVqF+/Ptq1a4eXX3653A9LvXnzJqZPnw4/Pz84ODigYcOGCA0NxbZt26QaHx8fxMfHV8qxVbWic6dQKGBnZwdfX19MnToVt27dqtB2evfujZiYGLO27t27Izs7GxqNphJ7TFQ3MUQRUZVxcHDA/Pnz8ddff5W4XAiBUaNG4aWXXsITTzyBPXv24PTp01i9ejUcHBzwzjvvlGs/L7zwArZs2YKlS5fizJkzSEpKwlNPPQWdTleZh2NR/fv3R3Z2Nn799VcsXrwYK1euxKxZsx56uyqVCh4eHmZBlohkqtSHyBAR/Z/IyEgxcOBA4e/vL1577TWp/auvvhJFf/V88cUXAoDYtm1bidswmUzl2pdGoxEJCQmlLi/pOVtFvv/+e9GjRw/h4OAgmjRpIiZPnixu3LghLf/0009FUFCQqF+/vnB3dxcjR44Uubm50vKiZ34lJSWJgIAA4eDgIPr06SNyc3PFrl27hL+/v3B2dhYjR44U+fn55TqeyMhIMXjwYLO2J598UnTq1En6/dq1a2LEiBHCy8tLODo6ivbt24vExESzbfzzmLOysqT+3v/szS+//FK0bdtWqFQq0axZM7Fw4cJy9ZOoruNIFBFVGRsbG7z33ntYunQprly5Umz5F198gdatW2PQoEElrl/e0RIPDw/s2rULeXl5JS7fsmULmjRpgrfffhvZ2dnIzs4GAFy4cAH9+/fH0KFDceLECWzYsAGHDh1CdHS0tO6dO3cwd+5c/PTTT9i6dSsuXryIcePGFdvH7NmzsWzZMqSkpOC3337DsGHDEB8fj8TEROzcuRN79uzB0qVLy3U8/3Tq1CmkpKRApVJJbbdu3UJQUBB27tyJU6dOISoqCmPGjMGRI0cAAB9++CFCQkLw/PPPS8fs7e1dbNvp6ekYNmwYRowYgZMnT2L27NmYMWMGEhISZPWVqE6xdoojotrp/tGUbt26iWeffVYIYT4S5e/vLwYNGmS23ssvvyycnJyEk5OTaNy4cbn29d1334kmTZoIOzs70blzZxETEyMOHTpkVtOsWTOxePFis7YJEyaIqKgos7bvv/9eKJVK8ffff5e4r6NHjwoAIi8vTwjxv5Gob7/9VqqJi4sTAMSFCxektokTJwqtVluu44mMjBQ2NjbCyclJ2NvbCwBCqVSKL7/8ssz1wsPDxZQpU6TfQ0NDxcsvv2xW88+RqFGjRonHHnvMrOa1114Tbdu2LVdfieoyjkQRUZWbP38+1q5di8zMzAfWvvnmmzh+/DhmzpyJGzdulGv7vXr1wq+//ork5GQ89dRT+Pnnn9GzZ0/MnTu3zPV++uknJCQkoH79+tJLq9XCZDIhKysLwL2RmoiICDRt2hTOzs4IDQ0FAFy+fNlsW4888oj0Z3d3d9SrVw/Nmzc3a7t69Wq5jgcA+vTpg+PHjyMtLQ2RkZEYP348hg4dKi0vLCzE3Llz0aFDB7i6uqJ+/frYvXt3sX49SGZmJh599FGztkcffRTnzp1DYWFhhbZFVNcwRBFRlevVqxe0Wi2mT59u1t6yZUucPXvWrK1hw4Zo0aIFGjVqVKF92NnZoWfPnnj99dexZ88evP3225g7dy4KCgpKXefGjRuYOHEijh8/Lr1++uknnDt3Dn5+fsjPz4dWq4Varca6detw9OhRfPXVVwBQbLt2dnbSn4u+VXc/hUIBk8lU7uNxcnJCixYt0LFjR3zyySdIS0vD6tWrpeXvv/8+PvzwQ7z++uvYv38/jh8/Dq1WW+bxElHlsrV2B4iobpg3bx4CAgLQunVrqW3kyJEYNWoUtm3bhsGDB1fq/tq2bYu7d+/i1q1bUKlUUKlUxUZWAgMDcfr0abRo0aLEbZw8eRI6nQ7z5s2T7if68ccfK7Wf5aFUKvHGG28gNjYWo0aNgqOjIw4fPozBgwfjmWeeAQCYTCb88ssvaNu2rbReScf8T23atMHhw4fN2g4fPoxWrVrBxsam8g+GqBbhSBQRWUSHDh0wevRoLFmyRGobMWIEnnrqKYwYMQJvv/020tLScPHiRXz33XfYsGFDuT/Ee/fujZUrVyI9PR0XL17Erl278MYbb6BPnz5Qq9UA7s0TdfDgQfz++++4du0aAOD1119HSkoKoqOjcfz4cZw7dw7btm2Tbixv2rQpVCoVli5dil9//RVff/31Ay8RVpWnn34aNjY2WL58OYB7o3h79+5FSkoKMjMzMXHiROTm5pqt4+PjI53Ta9eulTgSNmXKFCQnJ2Pu3Ln45ZdfsHbtWixbtgyvvvqqRY6LqCZjiCIii3n77bfNPsgVCgU2bNiA+Ph47Nq1C/369UPr1q3x7LPPwtvbG4cOHSrXdrVaLdauXYvHH38cbdq0weTJk6HVarFx40azfV+8eBF+fn5o2LAhgHv3MX333Xf45Zdf0LNnT3Tq1AkzZ86El5cXgHuXFhMSErBp0ya0bdsW8+bNw8KFCyvxjJSfra0toqOjsWDBAuTn5+Ott95CYGAgtFotevfuDQ8PDwwZMsRsnVdffRU2NjZo27YtGjZsWOL9UoGBgdi4cSPWr1+P9u3bY+bMmXj77bdL/AYiEZlTCCGEtTtBREREVNNwJIqIiIhIBoYoIqr27p+C4J+v77//3trdq5DLly+XeTwVnaKAiKyHl/OIqNor60HEjRs3hqOjowV783Du3r2Lixcvlrrcx8cHtrb84jRRTcAQRURERCQDL+cRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMvx/Kqk6bV6NPncAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARtFJREFUeJzt3XtclGX+//H3gAwowiioHBRFQU3NE3hI0+xAgauUm/tbdUvT7bD5lVy/dHQrD2vlMTPFTq6nrUy/pbVprW2yultq6Ypmmlq6mJriYchBpUDh/v3hMusIIiDMDdyv5+Mxj5j7vuaez32tK2+v+7qv22YYhiEAAAAL8TG7AAAAAG8jAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAFANbVkyRLZbDYdPHjQ7FKAWocABFjY1q1blZKSog4dOigwMFDNmzfXr3/9a3377bfF2t58882y2Wyy2Wzy8fFRcHCw2rZtq+HDh+vTTz8t1/euXr1a/fr1U5MmTVSvXj21atVKv/71r7V27drKOrViXnjhBX3wwQfFtm/atEmTJk3S6dOnq+y7Lzdp0iR3X9psNtWrV0/t27fXM888o5ycnEr5jmXLlmnOnDmVciygNiIAARY2ffp0rVy5UrfddptefvllPfTQQ/rnP/+puLg47dq1q1j7Zs2a6c0339Sf//xnzZw5U3feeac2bdqkO+64Q0OGDNH58+ev+p2zZs3SnXfeKZvNpvHjx+ull17S4MGD9d1332n58uVVcZqSSg9AkydP9moAKvLqq6/qzTff1OzZs3Xdddfp+eefV1JSkirjEY0EIKB0dcwuAIB5UlNTtWzZMtntdve2IUOGqGPHjpo2bZreeustj/YOh0P33nuvx7Zp06Zp7NixeuWVVxQdHa3p06df8fsuXLigKVOm6Pbbb9ff/va3YvtPnDhxjWdUfeTm5qpevXqltvnVr36lRo0aSZIefvhhDR48WKtWrdIXX3yhXr16eaNMwLIYAQIsrHfv3h7hR5Jat26tDh06aM+ePWU6hq+vr+bOnav27dsrLS1NLpfrim1PnTqlnJwc3XjjjSXub9Kkicf7n3/+WZMmTVKbNm0UEBCgiIgI3X333Tpw4IC7zaxZs9S7d2+Fhoaqbt26io+P13vvvedxHJvNpnPnzmnp0qXuy04jR47UpEmT9Pjjj0uSWrZs6d536Zybt956S/Hx8apbt65CQkI0dOhQHT582OP4N998s66//npt27ZNN910k+rVq6c//OEPZeq/S916662SpMzMzFLbvfLKK+rQoYP8/f0VGRmpMWPGeIxg3Xzzzfroo4/0/fffu88pOjq63PUAtRkjQAA8GIah48ePq0OHDmX+jK+vr4YNG6Znn31Wn3/+uQYMGFBiuyZNmqhu3bpavXq1HnnkEYWEhFzxmAUFBRo4cKDS09M1dOhQ/f73v9eZM2f06aefateuXYqJiZEkvfzyy7rzzjt1zz33KD8/X8uXL9f/+3//T2vWrHHX8eabb+qBBx5Qjx499NBDD0mSYmJiFBgYqG+//VbvvPOOXnrpJfdoTOPGjSVJzz//vJ599ln9+te/1gMPPKCTJ09q3rx5uummm7R9+3Y1aNDAXa/T6VT//v01dOhQ3XvvvQoLCytz/xUpCnahoaFXbDNp0iRNnjxZCQkJGj16tPbt26dXX31VW7du1caNG+Xn56enn35aLpdLR44c0UsvvSRJql+/frnrAWo1AwAu8eabbxqSjIULF3ps79evn9GhQ4crfu799983JBkvv/xyqcefMGGCIckIDAw0+vfvbzz//PPGtm3birVbtGiRIcmYPXt2sX2FhYXun3Nzcz325efnG9dff71x6623emwPDAw07rvvvmLHmjlzpiHJyMzM9Nh+8OBBw9fX13j++ec9tn/99ddGnTp1PLb369fPkGS89tprVzzvS02cONGQZOzbt884efKkkZmZabz++uuGv7+/ERYWZpw7d84wDMNYvHixR20nTpww7Ha7cccddxgFBQXu46WlpRmSjEWLFrm3DRgwwGjRokWZ6gGsiEtgANz27t2rMWPGqFevXrrvvvvK9dmiEYYzZ86U2m7y5MlatmyZunbtqk8++URPP/204uPjFRcX53HZbeXKlWrUqJEeeeSRYsew2Wzun+vWrev++ccff5TL5VLfvn2VkZFRrvovt2rVKhUWFurXv/61Tp065X6Fh4erdevWWr9+vUd7f39/jRo1qlzf0bZtWzVu3FgtW7bU7373O8XGxuqjjz664tyhdevWKT8/X+PGjZOPz3//+n7wwQcVHBysjz76qPwnClgUl8AASJKysrI0YMAAORwOvffee/L19S3X58+ePStJCgoKumrbYcOGadiwYcrJydGXX36pJUuWaNmyZUpOTtauXbsUEBCgAwcOqG3btqpTp/S/ptasWaPnnntOO3bsUF5ennv7pSGpIr777jsZhqHWrVuXuN/Pz8/jfdOmTYvNp7qalStXKjg4WH5+fmrWrJn7st6VfP/995IuBqdL2e12tWrVyr0fwNURgADI5XKpf//+On36tD777DNFRkaW+xhFt83HxsaW+TPBwcG6/fbbdfvtt8vPz09Lly7Vl19+qX79+pXp85999pnuvPNO3XTTTXrllVcUEREhPz8/LV68WMuWLSv3OVyqsLBQNptNf/3rX0sMg5fPqbl0JKqsbrrpJve8IwDeRQACLO7nn39WcnKyvv32W61bt07t27cv9zEKCgq0bNky1atXT3369KlQHd26ddPSpUt17NgxSRcnKX/55Zc6f/58sdGWIitXrlRAQIA++eQT+fv7u7cvXry4WNsrjQhdaXtMTIwMw1DLli3Vpk2b8p5OlWjRooUkad++fWrVqpV7e35+vjIzM5WQkODedq0jYEBtxxwgwMIKCgo0ZMgQbd68We+++26F1p4pKCjQ2LFjtWfPHo0dO1bBwcFXbJubm6vNmzeXuO+vf/2rpP9e3hk8eLBOnTqltLS0Ym2N/ywU6OvrK5vNpoKCAve+gwcPlrjgYWBgYImLHQYGBkpSsX133323fH19NXny5GILExqGIafTWfJJVqGEhATZ7XbNnTvXo6aFCxfK5XJ53H0XGBhY6pIEgNUxAgRY2KOPPqoPP/xQycnJys7OLrbw4eWLHrpcLneb3Nxc7d+/X6tWrdKBAwc0dOhQTZkypdTvy83NVe/evXXDDTcoKSlJUVFROn36tD744AN99tlnGjRokLp27SpJGjFihP785z8rNTVVW7ZsUd++fXXu3DmtW7dO//M//6O77rpLAwYM0OzZs5WUlKTf/OY3OnHihObPn6/Y2Fjt3LnT47vj4+O1bt06zZ49W5GRkWrZsqV69uyp+Ph4SdLTTz+toUOHys/PT8nJyYqJidFzzz2n8ePH6+DBgxo0aJCCgoKUmZmp999/Xw899JAee+yxa+r/8mrcuLHGjx+vyZMnKykpSXfeeaf27dunV155Rd27d/f43ys+Pl4rVqxQamqqunfvrvr16ys5Odmr9QLVmpm3oAEwV9Ht21d6lda2fv36RuvWrY17773X+Nvf/lam7zt//ryxYMECY9CgQUaLFi0Mf39/o169ekbXrl2NmTNnGnl5eR7tc3Nzjaefftpo2bKl4efnZ4SHhxu/+tWvjAMHDrjbLFy40GjdurXh7+9vXHfddcbixYvdt5lfau/evcZNN91k1K1b15DkcUv8lClTjKZNmxo+Pj7FbolfuXKl0adPHyMwMNAIDAw0rrvuOmPMmDHGvn37PPqmtCUCLldU38mTJ0ttd/lt8EXS0tKM6667zvDz8zPCwsKM0aNHGz/++KNHm7Nnzxq/+c1vjAYNGhiSuCUeuIzNMCrhoTMAAAA1CHOAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5bAQYgkKCwt19OhRBQUFsZw8AAA1hGEYOnPmjCIjI+XjU/oYDwGoBEePHlVUVJTZZQAAgAo4fPiwmjVrVmobAlAJgoKCJF3swNKeawQAAKqPnJwcRUVFuX+Pl4YAVIKiy17BwcEEIAAAapiyTF9hEjQAALAcAhAAALAcAhAAALAc5gBdg4KCAp0/f97sMmotPz8/+fr6ml0GAKAWIgBVgGEYysrK0unTp80updZr0KCBwsPDWY8JAFCpCEAVUBR+mjRponr16vHLuQoYhqHc3FydOHFCkhQREWFyRQCA2oQAVE4FBQXu8BMaGmp2ObVa3bp1JUknTpxQkyZNuBwGAKg0TIIup6I5P/Xq1TO5Emso6mfmWgEAKhMBqIK47OUd9DMAoCpwCQwAAFQpp9Op/Pz8K+632+1en1ZCAAIAAFXG6XQqLS3tqu1SUlK8GoK4BGYhI0eOlM1mk81mk5+fn8LCwnT77bdr0aJFKiwsLPNxlixZogYNGlRdoQCAWqO0kZ+KtKssjAB5mdnDgElJSVq8eLEKCgp0/PhxrV27Vr///e/13nvv6cMPP1SdOvyRAADUfvy286LqMAzo7++v8PBwSVLTpk0VFxenG264QbfddpuWLFmiBx54QLNnz9bixYv173//WyEhIUpOTtaMGTNUv359bdiwQaNGjZL03wnKEydO1KRJk/Tmm2/q5Zdf1r59+xQYGKhbb71Vc+bMUZMmTarkXAAANY/LFaTs7FCFhDjlcJwxrQ4ugXlRdR0GvPXWW9W5c2etWrVKkuTj46O5c+dq9+7dWrp0qf7+97/riSeekCT17t1bc+bMUXBwsI4dO6Zjx47psccek3TxVvUpU6boq6++0gcffKCDBw9q5MiRXj0XAED1lZHRVXPmjNPSpfdpzpxxysjoalotjABBknTddddp586dkqRx48a5t0dHR+u5557Tww8/rFdeeUV2u10Oh0M2m809klTkt7/9rfvnVq1aae7cuerevbvOnj2r+vXre+U8AADVk8sVpNWrB8owLo69GIaPVq8eqJiY/aaMBDECBEkXHz1RdElr3bp1uu2229S0aVMFBQVp+PDhcjqdys3NLfUY27ZtU3Jyspo3b66goCD169dPknTo0KEqrx8AUL1lZ4e6w08Rw/BRdnaIKfUQgCBJ2rNnj1q2bKmDBw9q4MCB6tSpk1auXKlt27Zp/vz5kkq/NHfu3DklJiYqODhYb7/9trZu3ar333//qp8DAFhDSIhTNpvnHcc2W6FCQrJNqYcABP3973/X119/rcGDB2vbtm0qLCzUiy++qBtuuEFt2rTR0aNHPdrb7XYVFBR4bNu7d6+cTqemTZumvn376rrrrnM/yBQAYF12u12S5HCcUXLyGncIstkKlZy8xn35q6idtzAHyGLy8vKUlZXlcRv81KlTNXDgQI0YMUK7du3S+fPnNW/ePCUnJ2vjxo167bXXPI4RHR2ts2fPKj09XZ07d1a9evXUvHlz2e12zZs3Tw8//LB27dqlKVOmmHSWAIDqIjQ0VCkpKe6rARMmnNTBg3UUHX1BkZHdJXU3ZSVoRoAsZu3atYqIiFB0dLSSkpK0fv16zZ07V3/5y1/k6+urzp07a/bs2Zo+fbquv/56vf3225o6darHMXr37q2HH35YQ4YMUePGjTVjxgw1btxYS5Ys0bvvvqv27dtr2rRpmjVrlklnCQCoTkJDQxUREaGIiAjFx4dp8OBQxceHubd5O/xIks0wDMPr31rN5eTkyOFwyOVyKTg42GPfzz//rMzMTLVs2VIBAQHlOm51WAeoprmW/gYAeI/ZC/1Kpf/+vhyXwLzo8mHAkpgxDAgAwLWoif/AJwB5WXX5Hx4AgMpSXRf6LQ1zgAAAQKVyuYKUmRktlyvI7FKuiBEgAABQaTIyurpXfC661T0ubrvZZRXDCBAAAKgUV3rcRXUcCSIAAQCASlHdHndRGgIQAACoFNXtcRelIQABAIBKcbXHXVQnTIIGAADX5NLneMXFbVdMzH5lZ4coJCTbI/x4+3lfpSEAodJs2LBBt9xyi3788Uc1aNCgTJ+Jjo7WuHHjNG7cuCqtDQBQdWriQr9cArOQkSNHymaz6eGHHy62b8yYMbLZbBo5cqT3CwMA1HiXPu+rpFd1Cj8SAchyoqKitHz5cv3000/ubT///LOWLVum5s2bm1gZAADeQwCymLi4OEVFRWnVqlXubatWrVLz5s3VtWtX97a8vDyNHTtWTZo0UUBAgPr06aOtW7d6HOvjjz9WmzZtVLduXd1yyy06ePBgse/7/PPP1bdvX9WtW1dRUVEaO3aszp07V2XnBwBAWRCATHTkiLR+/cX/etNvf/tbLV682P1+0aJFGjVqlEebJ554QitXrtTSpUuVkZGh2NhYJSYmKjv74q2Mhw8f1t13363k5GTt2LFDDzzwgJ566imPYxw4cEBJSUkaPHiwdu7cqRUrVujzzz9XSkpK1Z8kAAClIACZZOFCqUUL6dZbL/534ULvffe9996rzz//XN9//72+//57bdy4Uffee697/7lz5/Tqq69q5syZ6t+/v9q3b68FCxaobt26WvifQl999VXFxMToxRdfVNu2bXXPPfcUmz80depU3XPPPRo3bpxat26t3r17a+7cufrzn/+sn3/+2XsnDADAZbgLzARHjkgPPSQV/metqMJC6Xe/kxITpWbNqv77GzdurAEDBmjJkiUyDEMDBgxQo0aN3PsPHDig8+fP68Ybb3Rv8/PzU48ePbRnzx5J0p49e9SzZ0+P4/bq1cvj/VdffaWdO3fq7bffdm8zDEOFhYXKzMxUu3btquL0AAC4KgKQCb777r/hp0hBgbR/v3cCkHTxMljRpaj58+dXyXecPXtWv/vd7zR27Nhi+5hwDQAwEwHIBK1bSz4+niHI11eKjfVeDUlJScrPz5fNZlNiYqLHvpiYGNntdm3cuFEtWrSQJJ0/f15bt251r9fTrl07ffjhhx6f++KLLzzex8XF6ZtvvlGsN08MAIAyYA6QCZo1k95442LokS7+9/XXvTf6c/E7fbVnzx5988038i0q5D8CAwM1evRoPf7441q7dq2++eYbPfjgg8rNzdX9998vSXr44Yf13Xff6fHHH9e+ffu0bNkyLVmyxOM4Tz75pDZt2qSUlBTt2LFD3333nf7yl78wCRoAYDpGgExy//0X5/zs339x5Meb4adIcHDwFfdNmzZNhYWFGj58uM6cOaNu3brpk08+UcOGDSVdvIS1cuVK/e///q/mzZunHj166IUXXtBvf/tb9zE6deqkf/zjH3r66afVt29fGYahmJgYDRkypMrPDQCA0tgMwzDMLqK6ycnJkcPhkMvlKhYSfv75Z2VmZqply5YKCAgwqULroL8BAGVV2u/vy3EJDAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BqIKYO+4d9DMAoCoQgMrJz89PkpSbm2tyJdZQ1M9F/Q4AQGVgHaBy8vX1VYMGDXTixAlJUr169WSz2UyuqvYxDEO5ubk6ceKEGjRoUGyxRgAArgUBqALCw8MlyR2CUHUaNGjg7m8AACoLAagCbDabIiIi1KRJE50/f97scmotPz8/Rn4AAFWCAHQNfH19+QUNAEANxCRoAABgOQQgAABgOdUiAM2fP1/R0dEKCAhQz549tWXLliu2XbBggfr27auGDRuqYcOGSkhIKNZ+5MiRstlsHq+kpKSqPg0AAFBDmB6AVqxYodTUVE2cOFEZGRnq3LmzEhMTr3iH1YYNGzRs2DCtX79emzdvVlRUlO644w798MMPHu2SkpJ07Ngx9+udd97xxukAAIAawGaYvNRuz5491b17d6WlpUmSCgsLFRUVpUceeURPPfXUVT9fUFCghg0bKi0tTSNGjJB0cQTo9OnT+uCDDypUU05OjhwOh1wul4KDgyt0DAAA4F3l+f1t6ghQfn6+tm3bpoSEBPc2Hx8fJSQkaPPmzWU6Rm5urs6fP6+QkBCP7Rs2bFCTJk3Utm1bjR49Wk6n84rHyMvLU05OjscLAADUXqYGoFOnTqmgoEBhYWEe28PCwpSVlVWmYzz55JOKjIz0CFFJSUn685//rPT0dE2fPl3/+Mc/1L9/fxUUFJR4jKlTp8rhcLhfUVFRFT8pAABQ7dXodYCmTZum5cuXa8OGDQoICHBvHzp0qPvnjh07qlOnToqJidGGDRt02223FTvO+PHjlZqa6n6fk5NDCAIA1EpOp1P5+flX3G+32xUaGurFisxhagBq1KiRfH19dfz4cY/tx48fv+rjD2bNmqVp06Zp3bp16tSpU6ltW7VqpUaNGmn//v0lBiB/f3/5+/uX/wQAAKhBnE6ne85taVJSUmp9CDL1Epjdbld8fLzS09Pd2woLC5Wenq5evXpd8XMzZszQlClTtHbtWnXr1u2q33PkyBE5nU5FRERUSt0AANREpY38VKRdTWb6bfCpqalasGCBli5dqj179mj06NE6d+6cRo0aJUkaMWKExo8f724/ffp0Pfvss1q0aJGio6OVlZWlrKwsnT17VpJ09uxZPf744/riiy908OBBpaen66677lJsbKwSExNNOUcAAFC9mD4HaMiQITp58qQmTJigrKwsdenSRWvXrnVPjD506JB8fP6b01599VXl5+frV7/6lcdxJk6cqEmTJsnX11c7d+7U0qVLdfr0aUVGRuqOO+7QlClTuMwFAAAkVYN1gKoj1gECANRGx44d0xtvvHHVdg899FCNnDZSY9YBAgAA5nG5gpSZGS2XK8jsUrzO9EtgAADA+zIyumr16oEyDB/ZbIVKTl6juLjtZpflNYwAAQBgMS5XkDv8SJJh+Gj16oGWGgkiAAEAYBF2u12SlJ0d6g4/RQzDR9nZIR7tajMmQZeASdAAgNrK6XTq4MEL6tGjiQoLbe7tvr6GvvzyhKKj69TYRRCZBA0AAEoUGhqq+PgwvfGGTb6+F7f5+kqvv25TfHxYjQ0/5cUkaAAALOj++6XERGn/fik2VmrWzOyKvIsABACARTVrZr3gU4RLYAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHLqmF0AAAAozul0Kj8//4r77Xa7QkNDvVhR7UIAAgCgmnE6nUpLS7tqu5SUFEJQBXEJDACAaqa0kZ+KtENxBCAAAGA5BCAAAGA5BCAAAKo5lytImZnRcrmCzC6l1mASNAAA1VhGRletXj1QhuEjm61QyclrFBe33eyyajxGgAAAqKZcriB3+JEkw/DR6tUDGQmqBAQgAACqqezsUHf4KWIYPsrODjGpotqDAAQAQDVjt9slSSEhTtlshR77bLZChYRke7RD+TEHCACAaiY0NFQpKSnKz89X06Y5evJJhwoKbPL1NTR9eo5+85thrAR9jWyGYRhmF1Hd5OTkyOFwyOVyKTg42OxyAAAWd+SItH+/FBsrNWtmdjXVV3l+fzMCBABANdesGcGnsjEHCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWE61CEDz589XdHS0AgIC1LNnT23ZsuWKbRcsWKC+ffuqYcOGatiwoRISEoq1NwxDEyZMUEREhOrWrauEhAR99913VX0aAACghjA9AK1YsUKpqamaOHGiMjIy1LlzZyUmJurEiRMltt+wYYOGDRum9evXa/PmzYqKitIdd9yhH374wd1mxowZmjt3rl577TV9+eWXCgwMVGJion7++WdvnRYAAKjGbIZhGGYW0LNnT3Xv3l1paWmSpMLCQkVFRemRRx7RU089ddXPFxQUqGHDhkpLS9OIESNkGIYiIyP16KOP6rHHHpMkuVwuhYWFacmSJRo6dOhVj5mTkyOHwyGXy6Xg4OBrO0EAAOAV5fn9beoIUH5+vrZt26aEhAT3Nh8fHyUkJGjz5s1lOkZubq7Onz+vkJAQSVJmZqaysrI8julwONSzZ88rHjMvL085OTkeLwAAUHuZGoBOnTqlgoIChYWFeWwPCwtTVlZWmY7x5JNPKjIy0h14ij5XnmNOnTpVDofD/YqKiirvqQAAgBrE9DlA12LatGlavny53n//fQUEBFT4OOPHj5fL5XK/Dh8+XIlVAgCA6qaOmV/eqFEj+fr66vjx4x7bjx8/rvDw8FI/O2vWLE2bNk3r1q1Tp06d3NuLPnf8+HFFRER4HLNLly4lHsvf31/+/v4VPAsAAFDTmDoCZLfbFR8fr/T0dPe2wsJCpaenq1evXlf83IwZMzRlyhStXbtW3bp189jXsmVLhYeHexwzJydHX375ZanHBAAA1mHqCJAkpaam6r777lO3bt3Uo0cPzZkzR+fOndOoUaMkSSNGjFDTpk01depUSdL06dM1YcIELVu2TNHR0e55PfXr11f9+vVls9k0btw4Pffcc2rdurVatmypZ599VpGRkRo0aJBZpwkAAKoR0wPQkCFDdPLkSU2YMEFZWVnq0qWL1q5d657EfOjQIfn4/Heg6tVXX1V+fr5+9atfeRxn4sSJmjRpkiTpiSee0Llz5/TQQw/p9OnT6tOnj9auXXtN84QAAEDtYfo6QNUR6wABAFDz1Jh1gAAAAMxAAAIAAJZDAAIAAJZDAAIAAJZj+l1gAABUNafTqfz8/Cvut9vtCg0N9WJFMBsBCABQqzmdTqWlpbnfu1xBys4OVUiIUw7HGff2lJQUQpCFEIAAALXapSM/GRldtXr1QBmGj2y2QiUnr1Fc3PZi7VD7MQcIAGAJLleQO/xIkmH4aPXqgXK5gkyuDGYgAAEALCE7O9QdfooYho+ys0NMqghmIgABACwhJMQpm63QY5vNVqiQkGyTKoKZCEAAAEtwOM4oOXmNOwQVzQG6dCI0rINJ0AAAy4iL266YmP3Kzg5RSEg24cfCCEAAAEtxOM4QfMAlMABA7Wa32yu1HWoHRoAAALVaaGioUlJSWAkaHghAAIBa4dLHXRw96qPMzDpq2fKCIiMvTnom5OBSBCAAQI136eMuSlvtmcddoAhzgAAANV7RyM/VVnvmcRcoQgACANQarPaMsiIAAQBqDVZ7RlkRgAAAtQarPaOsmAQNAKhVWO0ZZUEAAgDUOqz2jKvhEhgAALAcAhAAoMbjcRcoLy6BAQBqPB53gfIiAAEAagXCDcqDS2AAAMByCEAAAMByCEAAAMByCEAAAMBymAQNAKg2nE6n+06uo0d9lJlZRy1bXlBk5MVHW3AnFyoLAQgAUC04nU6lpaVJkjIyumr16oEyDB/387zi4rZLklJSUghBuGZcAgMAVAtFIz8uV5A7/EiSYfho9eqBcrmCPNoB14IABACoVrKzQ93hp4hh+Cg7O8SkilAbEYAAANVKSIhTNluhxzabrVAhIdkmVYTaiAAEAKhWHI4zSk5e4w5BRXOAeLo7KhOToAEA1U5c3HbFxOxXdnaIQkKyCT+odAQgAEC15HCcIfigynAJDAAAWE6lBKDMzExduHChMg4FALAou91eqe2A0tgMwzCu9SB2u11fffWV2rVrVxk1mS4nJ0cOh0Mul0vBwcFmlwMAlnHpStAlYSVolKY8v7/LNQfo7rvvLnF7QUGBxo4dq6Cgi4tUrVq1qjyHBQBAkgg38JpyXQL74IMPlJ2dLYfD4fGSpPr163u8BwAAqK7KdQls+fLlevzxx/XHP/5Ro0aNcm/38/PTV199pfbt21dJkd7GJTAAAGqe8vz+LtcI0NChQ/XZZ59p4cKFGjx4sH788cdrKhQAAMAM5b4LLDo6Wv/85z91/fXXq3Pnzvrkk09ks9mqojYAAIAqUaGFEH18fDR58mTdfvvtGjFihAoKCiq7LgAAgCpzTStB9+nTRzt37tSBAwcUExNTWTUBAABUqWt+FEb9+vXVuXPnyqgFAADAK8oVgLp27Vqm+T4ZGRkVLggAAKCqlSsADRo0yP2zYRiaOnWqHn74YYWEhFR2XQAAAFXmmh6FERQUpK+++kqtWrWqcAHz58/XzJkzlZWVpc6dO2vevHnq0aNHiW13796tCRMmaNu2bfr+++/10ksvady4cR5tJk2apMmTJ3tsa9u2rfbu3VvmmlgHCACAmqfK1gGqbCtWrFBqaqomTpyojIwMde7cWYmJiTpx4kSJ7XNzc9WqVStNmzZN4eHhVzxuhw4ddOzYMffr888/r6pTAAAANZCpAWj27Nl68MEHNWrUKLVv316vvfaa6tWrp0WLFpXYvnv37po5c6aGDh0qf3//Kx63Tp06Cg8Pd78aNWpUVacAAABqINMCUH5+vrZt26aEhIT/FuPjo4SEBG3evPmajv3dd98pMjJSrVq10j333KNDhw6V2j4vL085OTkeLwAAUHuVaxL03LlzPd5fuHBBS5YsKTbCMnbs2Kse69SpUyooKFBYWJjH9rCwsHLN17lcz549tWTJErVt21bHjh3T5MmT1bdvX+3atcv9tPrLTZ06tdi8IQAAUHuVKwC99NJLHu/Dw8P15ptvemyz2WxlCkBVpX///u6fO3XqpJ49e6pFixb6v//7P91///0lfmb8+PFKTU11v8/JyVFUVFSV1woAAMxRrgCUmZlZaV/cqFEj+fr66vjx4x7bjx8/XuoE5/Jq0KCB2rRpo/3791+xjb+/f6lzigAAQO1SrjlAf//739W+ffsS58i4XC516NBBn332WZmOZbfbFR8fr/T0dPe2wsJCpaenq1evXuUpq1Rnz57VgQMHFBERUWnHBAAANVu5AtCcOXP04IMPlnhvvcPh0O9+9zvNnj27zMdLTU3VggULtHTpUu3Zs0ejR4/WuXPnNGrUKEnSiBEjNH78eHf7/Px87dixQzt27FB+fr5++OEH7dixw2N057HHHtM//vEPHTx4UJs2bdIvf/lL+fr6atiwYeU5VQAAUIuV6xLYV199penTp19x/x133KFZs2aV+XhDhgzRyZMnNWHCBGVlZalLly5au3ate2L0oUOH5OPz34x29OhRde3a1f1+1qxZmjVrlvr166cNGzZIko4cOaJhw4bJ6XSqcePG6tOnj7744gs1bty4PKcKAABqsXKtBB0QEKBdu3YpNja2xP379+9Xx44d9dNPP1VagWZgJWgAAGqe8vz+LtcIUNOmTUsNQDt37mSuDQDUEE6nU/n5+Vfcb7fbFRoa6sWKAO8pVwD6xS9+oWeffVZJSUkKCAjw2PfTTz9p4sSJGjhwYKUWCACofE6nU2lpaVdtl5KSQghCrVSuAPTMM89o1apVatOmjVJSUtS2bVtJ0t69ezV//nwVFBTo6aefrpJCAQCV5/KRH5crSNnZoQoJccrhOHPFdkBtUa4AFBYWpk2bNmn06NEaP368iqYP2Ww2JSYmav78+cVWdgYAVG8ZGV21evVAGYaPbLZCJSevUVzcdrPLAqpUuQKQJLVo0UIff/yxfvzxR+3fv1+GYah169Zq2LBhVdQHAKhCLleQO/xIkmH4aPXqgYqJ2e8xEgTUNuUOQEUaNmyo7t27V2YtAAAvy84OdYefIobho+zsEAIQajXTngYPADBfSIhTNluhxzabrVAhIdkmVQR4BwEIACzM4Tij5OQ17hBUNAeI0R/UdhW+BAYAqB3i4rYrJma/srNDFBKSTfiBJRCAAMCC7Ha7x3uH40yJwefydkBtQQACAAsKDQ1VSkoKK0HDsghAAGBRhBtYGZOgAQCA5RCAAACA5RCAAACA5RCAAACA5TAJGgCqOafTyd1aQCUjAAFANeZ0OpWWlnbVdikpKYQgoBy4BAYA1diJEycqtR2AiwhAAFCNXbhwweO9yxWkzMxouVxBpbYDUDougQFADZGR0VUffjhQF//tWqg771yjuLjtZpcF1EiMAAFADeByBV0SfiTJRx9+OLDYSBCAsiEAAUANcPhwlIr/le2jw4ebmVEOUOMRgAAAgOUQgACgBoiKOizJ8NhmsxUqKuqIOQUBNRwBCACqMT8/P0mSw3FGd965WjZboaSL4Sc5eY0cjjMe7QCUDXeBAUA11rhxY/fPcXHbFROzX9nZIQoJyXaHn8vbAbg6AhAAVGOhoaFKSUnhURhAJSMAAUA1R7gBKh9zgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOXwMFQAuITT6eTJ64AFEIAA4D+cTqfS0tKu2i4lJYUQBNRwXAIDgP8obeSnIu0AVF8EIAAAYDkEIAAAYDkEIAAAYDkEIAC4ApcrSJmZ0XK5gswuBUAl4y4wAChBRkZXrV49UIbhI5utUMnJaxQXt93ssgBUEkaAAOAyLleQO/xIkmH4aPXqgYwEAbUIAQgA/sNut0uSsrND3eGniGH4KDs7xKMdgJrLZhiGYXYR1U1OTo4cDodcLpeCg4PNLgeAFzmdTh08eEE9ejRRYaHNvd3X19CXX55QdHQdFkEEqqny/P42fQRo/vz5io6OVkBAgHr27KktW7Zcse3u3bs1ePBgRUdHy2azac6cOdd8TAC4VGhoqOLjw/TGGzb5+l7c5usrvf66TfHxYYQfoJYwNQCtWLFCqampmjhxojIyMtS5c2clJibqxIkTJbbPzc1Vq1atNG3aNIWHh1fKMQGgJPffLx08KK1ff/G/999vdkUAKpOpl8B69uyp7t27u5+9U1hYqKioKD3yyCN66qmnSv1sdHS0xo0bp3HjxlXaMYtwCQwAgJqnPL+/TbsNPj8/X9u2bdP48ePd23x8fJSQkKDNmzd79Zh5eXnKy8tzv8/JyanQ9wOoHniiO4CrMS0AnTp1SgUFBQoLC/PYHhYWpr1793r1mFOnTtXkyZMr9J0AqpfLn+jucgUpOztUISFOORxn3Nt5ojtgbSyEKGn8+PFKTU11v8/JyVFUVJSJFQGoqJMnT7p/zsjoqg8/HKiL0x0Ldeed/13M8OTJkwQgwMJMC0CNGjWSr6+vjh8/7rH9+PHjV5zgXFXH9Pf3l7+/f4W+E4A5rnSZq+iGB5cr6JLwI0k++vDDgYqJ2S+H44zOnz/vvWIBVDumBSC73a74+Hilp6dr0KBBki5OWE5PT1dKSkq1OSaA6ufyy1wlOXw4SsVvdPXR4cPN5HDsqbLaANQMpl4CS01N1X333adu3bqpR48emjNnjs6dO6dRo0ZJkkaMGKGmTZtq6tSpki5Ocv7mm2/cP//www/asWOH6tevr9jY2DIdE0DNd/myFkeOROjQoRZq3vx7NWt2zKSqANQkpgagIUOG6OTJk5owYYKysrLUpUsXrV271j2J+dChQ/Lx+e+/4I4ePaquXbu638+aNUuzZs1Sv379tGHDhjIdE0DNd+HCBffP779/l776qrMkmyRDnTt/pV/+8i+KijosyfjP9otstkJFRR3xdrkAqiEehVEC1gECqrevv/5aq1at0pEjEfrTnx7UpSFHMvTAAwvUrNmxUp/ofvfdd6tjx46m1A+gatSIdYAA4FodOtRCnuFHkmw6fLi5mjU7pri47YqJ2a/s7BCFhGR73AYPwNoIQABqrObNv9fll7kkQ1FRh9zvHI4zJQafOnX46w+wMtMfhgoAFdWs2TF17vyVLoYgqWgOUFkmQjdp0qRKawNQvfFPIAA12i9/+Rd1775Fhw83V1TUIY/wc8stt6h169bFPsOjMAAQgADUOH5+fh7vmzU7VuKoT5MmTRQREeGtsgDUIAQgAKap6ENLGzduXKbjl7UdAOshAAEwxbU8tDQ0NFQpKSk88R1AhRGAAJji0vBS2no9Vwo5hBsA14K7wACYyuUKcocfSTIMH61ePVAuV5DJlQGozQhAAEyVnR3qDj9FDMNH2dkhJlUEwAoIQABMFRLilM1W6LHNZitUSEi2SRUBsAICEABTORxnlJy8xh2CiuYA8dgKAFWJSdAATMczuwB4GwEIQLVwpWd2AUBV4BIYAFPY7fZKbQcA5cEIEABTsJghADMRgACYhnADwCxcAgMAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZTx+wCgJrK6XQqPz//ivvtdrtCQ0O9WBEAoKwIQEAFOJ1OpaWlXbVdSkoKIQgAqiEugQEVUNrIT0XaAQC8iwAEVAKXK0iZmdFyuYLMLgUAUAZcAgOuUUZGV61ePVCG4SObrVDJyWsUF7fd7LIAAKWoFiNA8+fPV3R0tAICAtSzZ09t2bKl1PbvvvuurrvuOgUEBKhjx476+OOPPfaPHDlSNpvN45WUlFSVpwCLcrmC3OFHkgzDR6tXD2QkCACqOdMD0IoVK5SamqqJEycqIyNDnTt3VmJiok6cOFFi+02bNmnYsGG6//77tX37dg0aNEiDBg3Srl27PNolJSXp2LFj7tc777zjjdOBxWRnh7rDTxHD8FF2dohJFQEAysL0ADR79mw9+OCDGjVqlNq3b6/XXntN9erV06JFi0ps//LLLyspKUmPP/642rVrpylTpiguLq7YHTn+/v4KDw93vxo2bOiN04HFhIQ4ZbMVemyz2QoVEpJtUkUAgLIwNQDl5+dr27ZtSkhIcG/z8fFRQkKCNm/eXOJnNm/e7NFekhITE4u137Bhg5o0aaK2bdtq9OjRcjqdV6wjLy9POTk5Hi+gLByOM0pOXuMOQUVzgByOMyZXBgAojamToE+dOqWCggKFhYV5bA8LC9PevXtL/ExWVlaJ7bOystzvk5KSdPfdd6tly5Y6cOCA/vCHP6h///7avHmzfH19ix1z6tSpmjx5ciWcEazCbre7f46L266YmP3Kzg5RSEi2R/i5tB0AoPqolXeBDR061P1zx44d1alTJ8XExGjDhg267bbbirUfP368UlNT3e9zcnIUFRXllVpRM4WGhiolJYWVoAGghjI1ADVq1Ei+vr46fvy4x/bjx48rPDy8xM+Eh4eXq70ktWrVSo0aNdL+/ftLDED+/v7y9/evwBnAygg3AFBzmToHyG63Kz4+Xunp6e5thYWFSk9PV69evUr8TK9evTzaS9Knn356xfaSdOTIETmdTkVERFRO4QAAoEYz/S6w1NRULViwQEuXLtWePXs0evRonTt3TqNGjZIkjRgxQuPHj3e3//3vf6+1a9fqxRdf1N69ezVp0iT961//UkpKiiTp7Nmzevzxx/XFF1/o4MGDSk9P11133aXY2FglJiaaco4AAKB6MX0O0JAhQ3Ty5ElNmDBBWVlZ6tKli9auXeue6Hzo0CH5+Pw3p/Xu3VvLli3TM888oz/84Q9q3bq1PvjgA11//fWSJF9fX+3cuVNLly7V6dOnFRkZqTvuuENTpkzhMhcAAJAk2QzDMMwuorrJycmRw+GQy+VScHCw2eUAAIAyKM/vb9MvgQEAAHgbAQgAAFgOAQgAAFgOAQgAAFiO6XeBwTqcTicrJwMAqgUCELzC6XQqLS3tqu1SUlIIQQCAKsclMHhFaSM/FWkHAMC1IAABAADLIQDBFC5XkDIzo+VyBZldCgDAgpgDBK/LyOiq1asHyjB8ZLMVKjl5jeLitptdFgDAQhgBgle5XEHu8CNJhuGj1asHMhIEAPAqAhC8Kjs71B1+ihiGj7KzQ0yqCABgRVwCQzFVuV5PSIhTNluhRwiy2QoVEpJdoeMBAFARBCB4qKr1eux2uyTJ4Tij5OQ1xeYAORxnPNoBAFCVCEDwUFXr9YSGhiolJcX9uQkTTurgwTqKjr6gyMjukrqzEjQAwGsIQPCaS8NNRIQUH29iMQAAS2MSNErFej0AgNqIESBcEev1AABqK0aAUCLW6wEA1GYEIJSI9XoAALUZAQglKlqv51Ks1wMAqC0IQPBw+Xo9RSGI9XoAALWJzTAMw+wiqpucnBw5HA65XC4FBwebXY7XXboS9NGjPpes13MxDLFeDwCgOirP72/uAkMxrNcDAKjtuAQGAAAshwAEAAAsh0tgXlCVT1cHAADlRwCqYpc/Xd3lClJ2dqhCQpzuO6qk8j9dHQAAVBwBqIpdOvJT2qMlyvt0dQAAUHHMAfISHi0BAED1QQDyEh4tAQBA9UEA8hIeLQEAQPVBAPKSqz1aAgAAeA+ToL0oLm67YmL2Kzs7RCEh2YQfAABMQgDyMofjDMEHAACTcQmsipX1qek8XR0AAO9hBKiKhYaGKiUlhZWgAQCoRghAXkC4AQCgeuESGAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBxWgi6BYRiSpJycHJMrAQAAZVX0e7vo93hpCEAlOHPm4tPao6KiTK4EAACU15kzZ+RwOEptYzPKEpMsprCwUEePHlVQUJBsNlux/Tk5OYqKitLhw4cVHBxsQoXVH310dfRR6eifq6OPro4+urra1EeGYejMmTOKjIyUj0/ps3wYASqBj4+PmjVrdtV2wcHBNf4PS1Wjj66OPiod/XN19NHV0UdXV1v66GojP0WYBA0AACyHAAQAACyHAFQB/v7+mjhxovz9/c0updqij66OPiod/XN19NHV0UdXZ9U+YhI0AACwHEaAAACA5RCAAACA5RCAAACA5RCAAACA5RCArmD+/PmKjo5WQECAevbsqS1btlyx7e7duzV48GBFR0fLZrNpzpw53ivUROXpowULFqhv375q2LChGjZsqISEhFLb1wbl6Z9Vq1apW7duatCggQIDA9WlSxe9+eabXqzWHOXpo0stX75cNptNgwYNqtoCq4Hy9NGSJUtks9k8XgEBAV6s1hzl/XN0+vRpjRkzRhEREfL391ebNm308ccfe6lac5Snj26++eZif45sNpsGDBjgxYq9wEAxy5cvN+x2u7Fo0SJj9+7dxoMPPmg0aNDAOH78eIntt2zZYjz22GPGO++8Y4SHhxsvvfSSdws2QXn76De/+Y0xf/58Y/v27caePXuMkSNHGg6Hwzhy5IiXK/eO8vbP+vXrjVWrVhnffPONsX//fmPOnDmGr6+vsXbtWi9X7j3l7aMimZmZRtOmTY2+ffsad911l3eKNUl5+2jx4sVGcHCwcezYMfcrKyvLy1V7V3n7KC8vz+jWrZvxi1/8wvj888+NzMxMY8OGDcaOHTu8XLn3lLePnE6nx5+hXbt2Gb6+vsbixYu9W3gVIwCVoEePHsaYMWPc7wsKCozIyEhj6tSpV/1sixYtLBGArqWPDMMwLly4YAQFBRlLly6tqhJNda39YxiG0bVrV+OZZ56pivKqhYr00YULF4zevXsbf/rTn4z77ruv1geg8vbR4sWLDYfD4aXqqofy9tGrr75qtGrVysjPz/dWiaa71r+PXnrpJSMoKMg4e/ZsVZVoCi6BXSY/P1/btm1TQkKCe5uPj48SEhK0efNmEyurPiqjj3Jzc3X+/HmFhIRUVZmmudb+MQxD6enp2rdvn2666aaqLNU0Fe2jP/7xj2rSpInuv/9+b5Rpqor20dmzZ9WiRQtFRUXprrvu0u7du71Rrikq0kcffvihevXqpTFjxigsLEzXX3+9XnjhBRUUFHirbK+qjL+vFy5cqKFDhyowMLCqyjQFAegyp06dUkFBgcLCwjy2h4WFKSsry6SqqpfK6KMnn3xSkZGRHv+nrC0q2j8ul0v169eX3W7XgAEDNG/ePN1+++1VXa4pKtJHn3/+uRYuXKgFCxZ4o0TTVaSP2rZtq0WLFukvf/mL3nrrLRUWFqp37946cuSIN0r2uor00b///W+99957Kigo0Mcff6xnn31WL774op577jlvlOx11/r39ZYtW7Rr1y498MADVVWiaXgaPLxu2rRpWr58uTZs2GCJCZplFRQUpB07dujs2bNKT09XamqqWrVqpZtvvtns0kx35swZDR8+XAsWLFCjRo3MLqfa6tWrl3r16uV+37t3b7Vr106vv/66pkyZYmJl1UdhYaGaNGmiN954Q76+voqPj9cPP/ygmTNnauLEiWaXV+0sXLhQHTt2VI8ePcwupdIRgC7TqFEj+fr66vjx4x7bjx8/rvDwcJOqql6upY9mzZqladOmad26derUqVNVlmmaivaPj4+PYmNjJUldunTRnj17NHXq1FoZgMrbRwcOHNDBgweVnJzs3lZYWChJqlOnjvbt26eYmJiqLdrLKuPvIj8/P3Xt2lX79++vihJNV5E+ioiIkJ+fn3x9fd3b2rVrp6ysLOXn58tut1dpzd52LX+Ozp07p+XLl+uPf/xjVZZoGi6BXcZutys+Pl7p6enubYWFhUpPT/f4l5WVVbSPZsyYoSlTpmjt2rXq1q2bN0o1RWX9GSosLFReXl5VlGi68vbRddddp6+//lo7duxwv+68807dcsst2rFjh6KiorxZvldUxp+jgoICff3114qIiKiqMk1VkT668cYbtX//fneAlqRvv/1WERERtS78SNf25+jdd99VXl6e7r333qou0xxmz8KujpYvX274+/sbS5YsMb755hvjoYceMho0aOC+nXT48OHGU0895W6fl5dnbN++3di+fbsRERFhPPbYY8b27duN7777zqxTqHLl7aNp06YZdrvdeO+99zxurzxz5oxZp1Clyts/L7zwgvG3v/3NOHDggPHNN98Ys2bNMurUqWMsWLDArFOocuXto8tZ4S6w8vbR5MmTjU8++cQ4cOCAsW3bNmPo0KFGQECAsXv3brNOocqVt48OHTpkBAUFGSkpKca+ffuMNWvWGE2aNDGee+45s06hylX0/2t9+vQxhgwZ4u1yvYYAdAXz5s0zmjdvbtjtdqNHjx7GF1984d7Xr18/47777nO/z8zMNCQVe/Xr18/7hXtRefqoRYsWJfbRxIkTvV+4l5Snf55++mkjNjbWCAgIMBo2bGj06tXLWL58uQlVe1d5+uhyVghAhlG+Pho3bpy7bVhYmPGLX/zCyMjIMKFq7yrvn6NNmzYZPXv2NPz9/Y1WrVoZzz//vHHhwgUvV+1d5e2jvXv3GpKMv/3tb16u1HtshmEYJg0+AQAAmII5QAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQABgopEjR2rQoEFmlwFYDgEIQIlGjhwpm83mfoWGhiopKUk7d+40u7RKcem5Fb369OlTZd938OBB2Ww27dixw2P7yy+/rCVLllTZ9wIoGQEIwBUlJSXp2LFjOnbsmNLT01WnTh0NHDjQ7LIqzeLFi93nd+zYMX344Ycltjt//nyV1eBwONSgQYMqOz6AkhGAAFyRv7+/wsPDFR4eri5duuipp57S4cOHdfLkSd16661KSUnxaH/y5EnZ7Xb3k6ejo6M1ZcoUDRs2TIGBgWratKnmz5/v8ZnZs2erY8eOCgwMVFRUlP7nf/5HZ8+ede///vvvlZycrIYNGyowMFAdOnTQxx9/LEn68ccfdc8996hx48aqW7euWrdurcWLF5f5/Bo0aOA+v/DwcIWEhLhHalasWKF+/fopICBAb7/9tpxOp4YNG6amTZuqXr166tixo9555x2P4xUWFmrGjBmKjY2Vv7+/mjdvrueff16S1LJlS0lS165dZbPZdPPNN0sqfgksLy9PY8eOVZMmTRQQEKA+ffpo69at7v0bNmyQzWZTenq6unXrpnr16ql3797at29fmc8bAAEIQBmdPXtWb731lmJjYxUaGqoHHnhAy5YtU15enrvNW2+9paZNm+rWW291b5s5c6Y6d+6s7du366mnntLvf/97ffrpp+79Pj4+mjt3rnbv3q2lS5fq73//u5544gn3/jFjxigvL0///Oc/9fXXX2v69OmqX7++JOnZZ5/VN998o7/+9a/as2ePXn31VTVq1KhSzreo1j179igxMVE///yz4uPj9dFHH2nXrl166KGHNHz4cG3ZssX9mfHjx2vatGnuupYtW6awsDBJcrdbt26djh07plWrVpX4vU888YRWrlyppUuXKiMjQ7GxsUpMTFR2drZHu6efflovvvii/vWvf6lOnTr67W9/WynnDViG2U9jBVA93XfffYavr68RGBhoBAYGGpKMiIgIY9u2bYZhGMZPP/1kNGzY0FixYoX7M506dTImTZrkft+iRQsjKSnJ47hDhgwx+vfvf8Xvfffdd43Q0FD3+44dO3oc81LJycnGqFGjKnR+koyAgAD3+QUGBhrvv/++kZmZaUgy5syZc9VjDBgwwHj00UcNwzCMnJwcw9/f31iwYEGJbYuOu337do/tlz7V/uzZs4afn5/x9ttvu/fn5+cbkZGRxowZMwzDMIz169cbkox169a523z00UeGJOOnn34qTxcAlsYIEIAruuWWW7Rjxw7t2LFDW7ZsUWJiovr376/vv/9eAQEBGj58uBYtWiRJysjI0K5duzRy5EiPY/Tq1avY+z179rjfr1u3TrfddpuaNm2qoKAgDR8+XE6nU7m5uZKksWPH6rnnntONN96oiRMnekzCHj16tJYvX64uXbroiSee0KZNm8p1fi+99JL7/Hbs2KHbb7/dva9bt24ebQsKCjRlyhR17NhRISEhql+/vj755BMdOnRIkrRnzx7l5eXptttuK1cNlzpw4IDOnz+vG2+80b3Nz89PPXr08OgzSerUqZP754iICEnSiRMnKvzdgNUQgABcUWBgoGJjYxUbG6vu3bvrT3/6k86dO6cFCxZIkh544AF9+umnOnLkiBYvXqxbb71VLVq0KPPxDx48qIEDB6pTp05auXKltm3b5p4jlJ+f7/6Of//73xo+fLi+/vprdevWTfPmzZMkdxj73//9Xx09elS33XabHnvssTJ/f3h4uPv8YmNjFRgY6HHul5o5c6ZefvllPfnkk1q/fr127NihxMREd51169Yt8/dWBj8/P/fPNptN0sU5SADKhgAEoMxsNpt8fHz0008/SZI6duyobt26acGCBVq2bFmJ81C++OKLYu/btWsnSdq2bZsKCwv14osv6oYbblCbNm109OjRYseIiorSww8/rFWrVunRRx91BzBJaty4se677z699dZbmjNnjt54443KPGW3jRs36q677tK9996rzp07q1WrVvr222/d+1u3bq26deu6J4Bfzm63S7o4knQlMTExstvt2rhxo3vb+fPntXXrVrVv376SzgSAJNUxuwAA1VdeXp6ysrIkXbzjKi0tTWfPnlVycrK7zQMPPKCUlBQFBgbql7/8ZbFjbNy4UTNmzNCgQYP06aef6t1339VHH30kSYqNjdX58+c1b948JScna+PGjXrttdc8Pj9u3Dj1799fbdq00Y8//qj169e7A9SECRMUHx+vDh06KC8vT2vWrHHvq2ytW7fWe++9p02bNqlhw4aaPXu2jh8/7g4mAQEBevLJJ/XEE0/Ibrfrxhtv1MmTJ7V7927df//9atKkierWrau1a9eqWbNmCggIkMPh8PiOwMBAjR49Wo8//rhCQkLUvHlzzZgxQ7m5ubr//vur5LwAq2IECMAVrV27VhEREYqIiFDPnj21detWvfvuu+5buCVp2LBhqlOnjoYNG6aAgIBix3j00Uf1r3/9S127dtVzzz2n2bNnKzExUZLUuXNnzZ49W9OnT9f111+vt99+W1OnTvX4fEFBgcaMGaN27dopKSlJbdq00SuvvCLp4qjK+PHj1alTJ910003y9fXV8uXLq6QvnnnmGcXFxSkxMVE333yzwsPDi63g/Oyzz+rRRx/VhAkT1K5dOw0ZMsQ9L6dOnTqaO3euXn/9dUVGRuquu+4q8XumTZumwYMHa/jw4YqLi9P+/fv1ySefqGHDhlVyXoBV2QzDMMwuAkDNdfDgQcXExGjr1q2Ki4vz2BcdHa1x48Zp3Lhx5hQHAFfAJTAAFXL+/Hk5nU4988wzuuGGG4qFHwCozrgEBqBCNm7cqIiICG3durXYvB2zvfDCC6pfv36Jr/79+5tdHoBqgEtgAGqd7OzsYisnF6lbt66aNm3q5YoAVDcEIAAAYDlcAgMAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJbz/wHVNmFqZS+CCQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR8pJREFUeJzt3Xl0VEWix/FfJ6QTlqShAyQEIoGwCSqQCAwo4oIGB6KMOGwqizvPiLwoKi4s4ggogwjBZTyy6IiggjgoD5eMqCyijwCKggIm4kJAOtIJIASTen/w0kOThWzdneR+P+f0kb63urrqTg/9o6q6rs0YYwQAAGAhQYFuAAAAgL8RgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgACghlq8eLFsNpuysrIC3RSgziEAARb2xRdfKCUlRV26dFHDhg11zjnnaOjQofruu++Klb300ktls9lks9kUFBSkiIgIdezYUTfddJM++OCDCr3v6tWr1a9fPzVv3lwNGjRQ27ZtNXToUK1du7a6ulbME088oVWrVhU7vnHjRk2dOlWHDx/22XufaerUqZ5rabPZ1KBBA3Xu3FmPPPKIcnNzq+U9li5dqrlz51ZLXUBdRAACLGzWrFlasWKFrrjiCj3zzDO6/fbb9cknnyghIUE7duwoVr5Vq1Z65ZVX9PLLL+upp57SNddco40bN+qqq67SsGHDdPLkybO+5+zZs3XNNdfIZrNp0qRJevrppzVkyBDt3r1by5Yt80U3JZUdgKZNm+bXAFTkueee0yuvvKI5c+aoU6dO+tvf/qYBAwaoOm7RSAACylYv0A0AEDipqalaunSp7Ha759iwYcN0/vnna+bMmfrnP//pVd7hcOjGG2/0OjZz5kyNHz9ezz77rOLi4jRr1qxS3++PP/7Q9OnTdeWVV+r9998vdv7gwYNV7FHNcezYMTVo0KDMMtdff72aNm0qSbrzzjs1ZMgQrVy5Up999pl69+7tj2YClsUIEGBhffr08Qo/ktS+fXt16dJFO3fuLFcdwcHBmjdvnjp37qy0tDS53e5Syx46dEi5ubm66KKLSjzfvHlzr+fHjx/X1KlT1aFDB4WFhalFixa67rrrtHfvXk+Z2bNnq0+fPoqMjFT9+vWVmJioN99806sem82mo0ePasmSJZ5ppzFjxmjq1KmaOHGiJKlNmzaec6evufnnP/+pxMRE1a9fX06nU8OHD9ePP/7oVf+ll16q8847T1u2bNEll1yiBg0a6KGHHirX9Tvd5ZdfLknKzMwss9yzzz6rLl26KDQ0VDExMbrrrru8RrAuvfRSvfvuu/rhhx88fYqLi6twe4C6jBEgAF6MMTpw4IC6dOlS7tcEBwdrxIgRevTRR7V+/XoNHDiwxHLNmzdX/fr1tXr1at19991yOp2l1llQUKBBgwYpPT1dw4cP1z333KO8vDx98MEH2rFjh+Lj4yVJzzzzjK655hrdcMMNys/P17Jly/TXv/5V77zzjqcdr7zyim699Vb17NlTt99+uyQpPj5eDRs21HfffafXXntNTz/9tGc0plmzZpKkv/3tb3r00Uc1dOhQ3Xrrrfr11181f/58XXLJJdq6dasaN27saa/L5dLVV1+t4cOH68Ybb1RUVFS5r1+RomAXGRlZapmpU6dq2rRp6t+/v8aNG6dvv/1Wzz33nL744gtt2LBBISEhevjhh+V2u/XTTz/p6aefliQ1atSowu0B6jQDAKd55ZVXjCTz0ksveR3v16+f6dKlS6mve+utt4wk88wzz5RZ/+TJk40k07BhQ3P11Vebv/3tb2bLli3Fyi1cuNBIMnPmzCl2rrCw0PPnY8eOeZ3Lz8835513nrn88su9jjds2NCMHj26WF1PPfWUkWQyMzO9jmdlZZng4GDzt7/9zev4V199ZerVq+d1vF+/fkaSef7550vt9+mmTJliJJlvv/3W/PrrryYzM9O88MILJjQ01ERFRZmjR48aY4xZtGiRV9sOHjxo7Ha7ueqqq0xBQYGnvrS0NCPJLFy40HNs4MCBpnXr1uVqD2BFTIEB8Ni1a5fuuusu9e7dW6NHj67Qa4tGGPLy8sosN23aNC1dulTdu3fXe++9p4cffliJiYlKSEjwmnZbsWKFmjZtqrvvvrtYHTabzfPn+vXre/7822+/ye12q2/fvsrIyKhQ+8+0cuVKFRYWaujQoTp06JDnER0drfbt2+ujjz7yKh8aGqqxY8dW6D06duyoZs2aqU2bNrrjjjvUrl07vfvuu6WuHfrwww+Vn5+vCRMmKCjoP39933bbbYqIiNC7775b8Y4CFsUUGABJUnZ2tgYOHCiHw6E333xTwcHBFXr9kSNHJEnh4eFnLTtixAiNGDFCubm52rx5sxYvXqylS5cqOTlZO3bsUFhYmPbu3auOHTuqXr2y/5p655139Pjjj2vbtm06ceKE5/jpIakydu/eLWOM2rdvX+L5kJAQr+ctW7Ystp7qbFasWKGIiAiFhISoVatWnmm90vzwww+STgWn09ntdrVt29ZzHsDZEYAAyO126+qrr9bhw4f16aefKiYmpsJ1FP1svl27duV+TUREhK688kpdeeWVCgkJ0ZIlS7R582b169evXK//9NNPdc011+iSSy7Rs88+qxYtWigkJESLFi3S0qVLK9yH0xUWFspms+l//ud/SgyDZ66pOX0kqrwuueQSz7ojAP5FAAIs7vjx40pOTtZ3332nDz/8UJ07d65wHQUFBVq6dKkaNGigiy++uFLtuPDCC7VkyRLt379f0qlFyps3b9bJkyeLjbYUWbFihcLCwvTee+8pNDTUc3zRokXFypY2IlTa8fj4eBlj1KZNG3Xo0KGi3fGJ1q1bS5K+/fZbtW3b1nM8Pz9fmZmZ6t+/v+dYVUfAgLqONUCAhRUUFGjYsGHatGmT3njjjUrtPVNQUKDx48dr586dGj9+vCIiIkote+zYMW3atKnEc//zP/8j6T/TO0OGDNGhQ4eUlpZWrKz5/40Cg4ODZbPZVFBQ4DmXlZVV4oaHDRs2LHGzw4YNG0pSsXPXXXedgoODNW3atGIbExpj5HK5Su6kD/Xv3192u13z5s3zatNLL70kt9vt9eu7hg0blrklAWB1jAABFnbvvffqX//6l5KTk5WTk1Ns48MzNz10u92eMseOHdOePXu0cuVK7d27V8OHD9f06dPLfL9jx46pT58++tOf/qQBAwYoNjZWhw8f1qpVq/Tpp59q8ODB6t69uyRp1KhRevnll5WamqrPP/9cffv21dGjR/Xhhx/qv/7rv3Tttddq4MCBmjNnjgYMGKCRI0fq4MGDWrBggdq1a6cvv/zS670TExP14Ycfas6cOYqJiVGbNm3Uq1cvJSYmSpIefvhhDR8+XCEhIUpOTlZ8fLwef/xxTZo0SVlZWRo8eLDCw8OVmZmpt956S7fffrvuu+++Kl3/imrWrJkmTZqkadOmacCAAbrmmmv07bff6tlnn1WPHj28/vdKTEzU8uXLlZqaqh49eqhRo0ZKTk72a3uBGi2QP0EDEFhFP98u7VFW2UaNGpn27dubG2+80bz//vvler+TJ0+aF1980QwePNi0bt3ahIaGmgYNGpju3bubp556ypw4ccKr/LFjx8zDDz9s2rRpY0JCQkx0dLS5/vrrzd69ez1lXnrpJdO+fXsTGhpqOnXqZBYtWuT5mfnpdu3aZS655BJTv359I8nrJ/HTp083LVu2NEFBQcV+Er9ixQpz8cUXm4YNG5qGDRuaTp06mbvuust8++23XtemrC0CzlTUvl9//bXMcmf+DL5IWlqa6dSpkwkJCTFRUVFm3Lhx5rfffvMqc+TIETNy5EjTuHFjI4mfxANnsBlTDTedAQAAqEVYAwQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHjRBLUFhYqF9++UXh4eFsJw8AQC1hjFFeXp5iYmIUFFT2GA8BqAS//PKLYmNjA90MAABQCT/++KNatWpVZhkCUAnCw8MlnbqAZd3XCAAA1By5ubmKjY31fI+XhQBUgqJpr4iICAIQAAC1THmWr7AIGgAAWA4BCAAAWA4BCAAAWA5rgAAAqCYFBQU6efJkoJtRZ4WEhCg4OLha6iIAAQBQRcYYZWdn6/Dhw4FuSp3XuHFjRUdHV3mfPgIQAABVVBR+mjdvrgYNGrCJrg8YY3Ts2DEdPHhQktSiRYsq1UcAAgCgCgoKCjzhJzIyMtDNqdPq168vSTp48KCaN29epekwFkEDAFAFRWt+GjRoEOCWWEPRda7qWisCEAAA1YBpL/+oruvMFBgAoMpcLpfy8/NLPW+325keQo1CAAIAVInL5VJaWtpZy6WkpBCCUGMwBQYAqJKyRn4qUw7+M2bMGNlsNtlsNoWEhCgqKkpXXnmlFi5cqMLCwnLXs3jxYjVu3Nh3DfUBRoAAAAiwQE4hDhgwQIsWLVJBQYEOHDigtWvX6p577tGbb76pf/3rX6pXr25GhbrZKwBAwLjd4crJiZTT6ZLDkRfo5tR4gZ5CDA0NVXR0tCSpZcuWSkhI0J/+9CddccUVWrx4sW699VbNmTNHixYt0vfffy+n06nk5GQ9+eSTatSokdatW6exY8dK+s8C5SlTpmjq1Kl65ZVX9Mwzz+jbb79Vw4YNdfnll2vu3Llq3rx5tfejopgCAwBUm4yM7po7d4KWLBmtuXMnKCOje6CbVOPVxCnEyy+/XF27dtXKlSslSUFBQZo3b56+/vprLVmyRP/+9791//33S5L69OmjuXPnKiIiQvv379f+/ft13333STr1U/Xp06dr+/btWrVqlbKysjRmzBi/9aMsjAABAKqF2x2u1asHyZhT/7Y2JkirVw9SfPweRoJqoU6dOunLL7+UJE2YMMFzPC4uTo8//rjuvPNOPfvss7Lb7XI4HLLZbJ6RpCI333yz589t27bVvHnz1KNHDx05ckSNGjXySz9KwwgQAKBa5OREesJPEWOClJPjDFCLUBXGGM+U1ocffqgrrrhCLVu2VHh4uG666Sa5XC4dO3aszDq2bNmi5ORknXPOOQoPD1e/fv0kSfv27fN5+8+GAAQAqBZOp0s2m/cvh2y2QjmdOQFqEapi586datOmjbKysjRo0CBdcMEFWrFihbZs2aIFCxZIKnta7ujRo0pKSlJERIReffVVffHFF3rrrbfO+jp/IQABAKrEbrdLkhyOPCUnv+MJQTZboZKT3/FMfxWVQ83373//W1999ZWGDBmiLVu2qLCwUH//+9/1pz/9SR06dNAvv/ziVd5ut6ugoMDr2K5du+RyuTRz5kz17dtXnTp18tzItCZgDRAAoEoiIyOVkpLi+Vf95Mm/KiurnuLi/lBMTA9JPdgJugY7ceKEsrOzvX4GP2PGDA0aNEijRo3Sjh07dPLkSc2fP1/JycnasGGDnn/+ea864uLidOTIEaWnp6tr165q0KCBzjnnHNntds2fP1933nmnduzYoenTpweol8UxAgQAqLLIyEi1aNFCLVq0UGJilIYMiVRiYpTnGOGn5lq7dq1atGihuLg4DRgwQB999JHmzZunt99+W8HBweratavmzJmjWbNm6bzzztOrr76qGTNmeNXRp08f3XnnnRo2bJiaNWumJ598Us2aNdPixYv1xhtvqHPnzpo5c6Zmz54doF4WZzPGmEA3oqbJzc2Vw+GQ2+1WREREoJsDAH7DPb0q7vjx48rMzFSbNm0UFhZW4dcHeh+g2qas612R72+mwAAAkvgiDpQzpxBLQvCsfgQgAICkmrkhn1UQbvyPNUAAgBK53eHKzIyT2x0e6KYA1Y4RIABAMRkZ3T27Ohf9nD0hYWugmwVUG0aAAABeSrulBSNBqEsIQAAAL9zSAlZAAAIAeOGWFrACAhAAwMvZbmkB1AUsggYASPK+V1dCwlbFx+9RTo5TTmeOV/jhnl6oCwhAAABJbMiH6rdu3Tpddtll+u2339S4ceNyvSYuLk4TJkzQhAkTfNo2psAAAB6n39OrpAfhp24ZM2aMbDab7rzzzmLn7rrrLtlsNo0ZM8b/DfMDAhAAABYWGxurZcuW6ffff/ccO378uJYuXapzzjkngC3zLQIQAAAWlpCQoNjYWK1cudJzbOXKlTrnnHPUvXt3z7ETJ05o/Pjxat68ucLCwnTxxRfriy++8KprzZo16tChg+rXr6/LLrtMWVlZxd5v/fr16tu3r+rXr6/Y2FiNHz9eR48e9Vn/SkMAAgCgBvnpJ+mjj079119uvvlmLVq0yPN84cKFGjt2rFeZ+++/XytWrNCSJUuUkZGhdu3aKSkpSTk5p7ZH+PHHH3XdddcpOTlZ27Zt06233qoHH3zQq469e/dqwIABGjJkiL788kstX75c69evV0pKiu87eQYCEAAANcRLL0mtW0uXX37qvy+95J/3vfHGG7V+/Xr98MMP+uGHH7RhwwbdeOONnvNHjx7Vc889p6eeekpXX321OnfurBdffFH169fXS//fyOeee07x8fH6+9//ro4dO+qGG24otn5oxowZuuGGGzRhwgS1b99effr00bx58/Tyyy/r+PHj/uns/+NXYAAA1AA//STdfrtU+P97UBYWSnfcISUlSa1a+fa9mzVrpoEDB2rx4sUyxmjgwIFq2rSp5/zevXt18uRJXXTRRZ5jISEh6tmzp3bu3ClJ2rlzp3r16uVVb+/evb2eb9++XV9++aVeffVVzzFjjAoLC5WZmalzzz3XF90rEQEIAIAaYPfu/4SfIgUF0p49vg9A0qlpsKKpqAULFvjkPY4cOaI77rhD48ePL3bO3wuuCUAAANQA7dtLQUHeISg4WGrXzj/vP2DAAOXn58tmsykpKcnrXHx8vOx2uzZs2KDWrVtLkk6ePKkvvvjCs1/Pueeeq3/9619er/vss8+8nickJOibb75RO391qgysAQIAoAZo1Ur6xz9OhR7p1H9feME/oz+n3i9YO3fu1DfffKPgokb8v4YNG2rcuHGaOHGi1q5dq2+++Ua33Xabjh07pltuuUWSdOedd2r37t2aOHGivv32Wy1dulSLFy/2queBBx7Qxo0blZKSom3btmn37t16++23A7IImhEgAABqiFtuObXmZ8+eUyM//go/RSIiIko9N3PmTBUWFuqmm25SXl6eLrzwQr333ntq0qSJpFNTWCtWrNB///d/a/78+erZs6eeeOIJ3XzzzZ46LrjgAn388cd6+OGH1bdvXxljFB8fr2HDhvm8b2eyGWOM39+1hsvNzZXD4ZDb7S7zwwAAwPHjx5WZmak2bdooLCws0M2p88q63hX5/mYKDAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCACAasBvivyjuq4zAQgAgCoICQmRJB07dizALbGGoutcdN0ri32AAACoguDgYDVu3FgHDx6UJDVo0EA2my3Arap7jDE6duyYDh48qMaNGxfbrLGiCEAAAFRRdHS0JHlCEHyncePGnutdFQQgAACqyGazqUWLFmrevLlOnjwZ6ObUWSEhIVUe+SlCAAIAoJoEBwdX2xc0fItF0AAAwHIIQAAAwHJqRABasGCB4uLiFBYWpl69eunzzz8vteyLL76ovn37qkmTJmrSpIn69+9frPyYMWNks9m8HgMGDPB1NwAAQC0R8AC0fPlypaamasqUKcrIyFDXrl2VlJRU6kr6devWacSIEfroo4+0adMmxcbG6qqrrtLPP//sVW7AgAHav3+/5/Haa6/5ozsAAKAWsJkAb13Zq1cv9ejRQ2lpaZKkwsJCxcbG6u6779aDDz541tcXFBSoSZMmSktL06hRoySdGgE6fPiwVq1aVak25ebmyuFwyO12KyIiolJ1AAAA/6rI93dAR4Dy8/O1ZcsW9e/f33MsKChI/fv316ZNm8pVx7Fjx3Ty5Ek5nU6v4+vWrVPz5s3VsWNHjRs3Ti6Xq9Q6Tpw4odzcXK8HAACouwIagA4dOqSCggJFRUV5HY+KilJ2dna56njggQcUExPjFaIGDBigl19+Wenp6Zo1a5Y+/vhjXX311SooKCixjhkzZsjhcHgesbGxle8UAACo8Wr1PkAzZ87UsmXLtG7dOoWFhXmODx8+3PPn888/XxdccIHi4+O1bt06XXHFFcXqmTRpklJTUz3Pc3NzCUEAgDrN5XIpPz+/1PN2u12RkZF+bJF/BTQANW3aVMHBwTpw4IDX8QMHDpx1m+vZs2dr5syZ+vDDD3XBBReUWbZt27Zq2rSp9uzZU2IACg0NVWhoaMU7AABALeRyuTxrb8uSkpJSZ0NQQKfA7Ha7EhMTlZ6e7jlWWFio9PR09e7du9TXPfnkk5o+fbrWrl2rCy+88Kzv89NPP8nlcqlFixbV0m4AAGqzskZ+KlOuNgr4z+BTU1P14osvasmSJdq5c6fGjRuno0ePauzYsZKkUaNGadKkSZ7ys2bN0qOPPqqFCxcqLi5O2dnZys7O1pEjRyRJR44c0cSJE/XZZ58pKytL6enpuvbaa9WuXTslJSUFpI8AAKBmCfgaoGHDhunXX3/V5MmTlZ2drW7dumnt2rWehdH79u1TUNB/ctpzzz2n/Px8XX/99V71TJkyRVOnTlVwcLC+/PJLLVmyRIcPH1ZMTIyuuuoqTZ8+nWkuAAAgqQbsA1QTsQ8QAKAu279/v/7xj3+ctdztt99eq5aP1Jp9gAAAQOC53eHKzIyT2x0e6Kb4TcCnwAAAQOBkZHTX6tWDZEyQbLZCJSe/o4SErYFuls8xAgQAgEW53eGe8CNJxgRp9epBlhgJIgABAGAxdrtdkpSTE+kJP0WMCVJOjtOrXF3EIugSsAgaAFDXuVwuZWX9oZ49m6uw0OY5HhxstHnzQcXF1at1myCyCBoAAJQpMjJSiYlR+sc/bAoOPnUsOFh64QWbEhOjal34qSgWQQMAYGG33CIlJUl79kjt2kmtWgW6Rf5BAAIAwOJatbJO8CnCFBgAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALCceoFuAAAAqNtcLpfy8/NLPW+32xUZGenHFhGAAACAD7lcLqWlpZ21XEpKil9DEFNgAADAZ8oa+alMuepCAAIAAJZDAAIAAJZDAAIAAH7jdocrMzNObnd4QNvBImgAAOAXGRndtXr1IBkTJJutUMnJ7yghYWtA2sIIEAAA8Dm3O9wTfiTJmCCtXj0oYCNBBCAAAOBzOTmRnvBTxJgg5eQ4A9IeAhAAAPAZu90uSXI6XbLZCr3O2WyFcjpzvMr5C2uAAACAz0RGRiolJUX5+flq2TJXDzzgUEGBTcHBRrNm5WrkyBEB2QnaZowxfn3HWiA3N1cOh0Nut1sRERGBbg4AAHXGTz9Je/ZI7dpJrVpVb90V+f5mBAgAAPhNq1bVH3wqgzVAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcmpEAFqwYIHi4uIUFhamXr166fPPPy+17Isvvqi+ffuqSZMmatKkifr371+svDFGkydPVosWLVS/fn31799fu3fv9nU3AABALRHwALR8+XKlpqZqypQpysjIUNeuXZWUlKSDBw+WWH7dunUaMWKEPvroI23atEmxsbG66qqr9PPPP3vKPPnkk5o3b56ef/55bd68WQ0bNlRSUpKOHz/ur24BAIAazGaMMYFsQK9evdSjRw+lpaVJkgoLCxUbG6u7775bDz744FlfX1BQoCZNmigtLU2jRo2SMUYxMTG69957dd9990mS3G63oqKitHjxYg0fPvysdebm5srhcMjtdisiIqJqHQQAAH5Rke/vgI4A5efna8uWLerfv7/nWFBQkPr3769NmzaVq45jx47p5MmTcjqdkqTMzExlZ2d71elwONSrV69S6zxx4oRyc3O9HgAAoO4KaAA6dOiQCgoKFBUV5XU8KipK2dnZ5arjgQceUExMjCfwFL2uInXOmDFDDofD84iNja1oVwAAQC0S8DVAVTFz5kwtW7ZMb731lsLCwipdz6RJk+R2uz2PH3/8sRpbCQAAapp6gXzzpk2bKjg4WAcOHPA6fuDAAUVHR5f52tmzZ2vmzJn68MMPdcEFF3iOF73uwIEDatGihVed3bp1K7Gu0NBQhYaGVrIXAACgtgnoCJDdbldiYqLS09M9xwoLC5Wenq7evXuX+ronn3xS06dP19q1a3XhhRd6nWvTpo2io6O96szNzdXmzZvLrBMAAFhHQEeAJCk1NVWjR4/WhRdeqJ49e2ru3Lk6evSoxo4dK0kaNWqUWrZsqRkzZkiSZs2apcmTJ2vp0qWKi4vzrOtp1KiRGjVqJJvNpgkTJujxxx9X+/bt1aZNGz366KOKiYnR4MGDA9VNAABQgwQ8AA0bNky//vqrJk+erOzsbHXr1k1r1671LGLet2+fgoL+M1D13HPPKT8/X9dff71XPVOmTNHUqVMlSffff7+OHj2q22+/XYcPH9bFF1+stWvXVmmdEAAAqDsCvg9QTcQ+QAAA1D61Zh8gAACAQCAAAQAAyyEAAQAAyyEAAQAAywn4r8CswOVyKT8/v9TzdrtdkZGRfmwRAADWRgDyMZfL5bnTvSS53eHKyYmU0+mSw5HnOZ6SkkIIAgDATwhAPnb6yE9GRnetXj1IxgTJZitUcvI7SkjYWqwcAADwLdYA+YnbHe4JP5JkTJBWrx4ktzs8wC0DAMB6CEB+kpMT6Qk/RYwJUk6OM0AtAgDAughAfuJ0umSzFXods9kK5XTmBKhFAABYFwHITxyOPCUnv+MJQUVrgE5fCA0AAPyDRdB+lJCwVfHxe5ST45TTmUP4AQAgQAhAfuZw5BF8AAAIMKbAfMxut1drOQAAUHWMAPlYZGSkUlJS2AkaAIAahADkB4Qb1CSn35rll1+ClJlZT23a/KGYmFML9AnkAKyAAARYyOm3ZilrZ3JuzQKgrmMNEGAhRSM/Z9uZnFuzAKjrCECABbEzOQCrIwABFsTO5ACsjgAEWBA7kwOwOhZBAxbFzuQArIwABFgYO5MDsCqmwAAAgOUQgAAL4dYsAHAKU2CAhXBrFgA4hQAEWAzhBgCYAgMAABZEAAIAAJZDAAIAAJZDAAIAAJbDImgAPuNyuTy/OPvllyBlZtZTmzZ/KCbm1C04+MUZgEAhAAHwCZfLpbS0NElSRkZ3rV49SMYEee47lpCwVZKUkpJCCALgd0yBAfCJopEftzvcE34kyZggrV49SG53uFc5APAnAhAAn8rJifSEnyLGBCknxxmgFgEAAQiAjzmdLtlshV7HbLZCOZ05AWoRABCAAPiYw5Gn5OR3PCGoaA0Qd6EHEEgsggbgcwkJWxUfv0c5OU45nTmEHwABRwAC4BcORx7BB0CNwRQYAACwnGoJQJmZmfrjjz+qoyoAdYTdbq/WcgBQnWzGGFPVSux2u7Zv365zzz23OtoUcLm5uXI4HHK73YqIiAh0c4Ba6/SdoEvCTtAAqlNFvr8rtAbouuuuK/F4QUGBxo8fr/DwUxubrVy5siLVAqijCDcAaqoKTYGtWrVKOTk5cjgcXg9JatSokddzAACAmqpCU2DLli3TxIkT9dhjj2ns2LGe4yEhIdq+fbs6d+7sk0b6G1NgAADUPhX5/q7QCNDw4cP16aef6qWXXtKQIUP022+/VamhAAAAgVDhX4HFxcXpk08+0XnnnaeuXbvqvffek81m80XbAAAAfKJSGyEGBQVp2rRpuvLKKzVq1CgVFBRUd7sAAAB8pko7QV988cX68ssvtXfvXsXHx1dXmwAAAHyqyrfCaNSokbp27VodbQEAAPCLCgWg7t27l2u9T0ZGRqUbBAAA4GsVCkCDBw/2/NkYoxkzZujOO++U0+ms7nYBAAD4TJVuhREeHq7t27erbdu2lW7AggUL9NRTTyk7O1tdu3bV/Pnz1bNnzxLLfv3115o8ebK2bNmiH374QU8//bQmTJjgVWbq1KmaNm2a17GOHTtq165d5W4T+wABAFD7+GwfoOq2fPlypaamasqUKcrIyFDXrl2VlJSkgwcPllj+2LFjatu2rWbOnKno6OhS6+3SpYv279/veaxfv95XXQAAALVQQAPQnDlzdNttt2ns2LHq3Lmznn/+eTVo0EALFy4ssXyPHj301FNPafjw4QoNDS213nr16ik6OtrzaNq0qa+6AAAAaqGABaD8/Hxt2bJF/fv3/09jgoLUv39/bdq0qUp17969WzExMWrbtq1uuOEG7du3r8zyJ06cUG5urtcDAADUXRVaBD1v3jyv53/88YcWL15cbIRl/PjxZ63r0KFDKigoUFRUlNfxqKioCq3XOVOvXr20ePFidezYUfv379e0adPUt29f7dixw3O3+jPNmDGj2LohAABQd1UoAD399NNez6Ojo/XKK694HbPZbOUKQL5y9dVXe/58wQUXqFevXmrdurVef/113XLLLSW+ZtKkSUpNTfU8z83NVWxsrM/bCgAAAqNCASgzM7Pa3rhp06YKDg7WgQMHvI4fOHCgzAXOFdW4cWN16NBBe/bsKbVMaGhomWuKAABA3VKhNUD//ve/1blz5xLXyLjdbnXp0kWffvppueqy2+1KTExUenq651hhYaHS09PVu3fvijSrTEeOHNHevXvVokWLaqsTAADUbhUKQHPnztVtt91W4m/rHQ6H7rjjDs2ZM6fc9aWmpurFF1/UkiVLtHPnTo0bN05Hjx7V2LFjJUmjRo3SpEmTPOXz8/O1bds2bdu2Tfn5+fr555+1bds2r9Gd++67Tx9//LGysrK0ceNG/eUvf1FwcLBGjBhRka4CAIA6rEJTYNu3b9esWbNKPX/VVVdp9uzZ5a5v2LBh+vXXXzV58mRlZ2erW7duWrt2rWdh9L59+xQU9J+M9ssvv6h79+6e57Nnz9bs2bPVr18/rVu3TpL0008/acSIEXK5XGrWrJkuvvhiffbZZ2rWrFlFugoAAOqwCu0EHRYWph07dqhdu3Ylnt+zZ4/OP/98/f7779XWwEBgJ2gAAGqfinx/V2gEqGXLlmUGoC+//JK1NoCfuFwu5efnl3rebrcrMjLSjy0CgNqjQgHoz3/+sx599FENGDBAYWFhXud+//13TZkyRYMGDarWBgIozuVyKS0t7azlUlJSCEEAUIIKBaBHHnlEK1euVIcOHZSSkqKOHTtKknbt2qUFCxaooKBADz/8sE8aCuA/zhz5cbvDlZMTKafTJYcjr9RyAIBTKhSAoqKitHHjRo0bN06TJk1S0fIhm82mpKQkLViwoNjOzgB8KyOju1avHiRjgmSzFSo5+R0lJGwNdLMAoEarUACSpNatW2vNmjX67bfftGfPHhlj1L59ezVp0sQX7QNQBrc73BN+JMmYIK1ePUjx8Xu8RoIAAN4qHICKNGnSRD169KjOtgCooJycSE/4KWJMkHJynAQgAChDwO4GD6DqnE6XbLZCr2M2W6GczpwAtQgAagcCEFCLORx5Sk5+xxOCitYAMfoDAGWr9BQYgJohIWGr4uP3KCfHKaczh/ADAOVAAAJqIbvd7vXc4cgrMficWQ4AcAoBCKiFIiMjlZKSwk7QAFBJBCCgliLcAEDlsQgaAABYDgEIAABYDgEIAABYDgEIAABYDougIUlyuVz8oggAYBkEIMjlciktLe2s5VJSUghBPkD4BAD/IwChzC/fypRD+RE+ASAwWAMEBNCZodLtDldmZpzc7vAyywEAqoYRIBTjdocrJydSTqeL+0r5UUZGd61ePUjGBHluapqQsDXQzQKAOokABC98CQeG2x3uue6SZEyQVq8epPj4PYRQAPABpsDgUdqX8JnTMah+OTmRnutexJgg5eQ4A9QiAKjbCEDw4Es4cJxOl2y2Qq9jNluhnM6cALUIAOo2AhA8+BIOHIcjT8nJ73iuf9H0I9NfAOAbrAGC7Ha7pP98CZ+5BqjoS7ioHHwjIWGr4uP3KCfHKaczh/ADAD5EAIIiIyOVkpLi+an15Mm/KiurnuLi/lBMTA9JPdiMz0fODJUOR16JwYfwCQDVy2aMMYFuRE2Tm5srh8Mht9utiIiIQDcHdRw7QQNA9ajI9zcjQECAEW4AwP9YBA0AACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHm6HWUNwhHAAA3yEA1UAul0tpaWlnLZeSkkIIAgCgEpgCq4HKGvmpTDkAAOCNAAQAACyHAAQAACyHAAQAACyHAFQLuN3hysyMk9sdHuimAABQJ/ArsBouI6O7Vq8eJGOCZLMVKjn5HSUkbA10swAAqNUYAarB3O5wT/iRJGOCtHr1IEaCAACoIgJQDWS32yVJOTmRnvBTxJgg5eQ4vcoBAICKsRljTKAbUdPk5ubK4XDI7XYrIiIiIG1wuVzKyvpDPXs2V2GhzXM8ONho8+aDiourxyaIAACcpiLf3wEfAVqwYIHi4uIUFhamXr166fPPPy+17Ndff60hQ4YoLi5ONptNc+fOrXKdNVVkZKQSE6P0j3/YFBx86lhwsPTCCzYlJkYRfgAAqIKABqDly5crNTVVU6ZMUUZGhrp27aqkpCQdPHiwxPLHjh1T27ZtNXPmTEVHR1dLnTXdLbdIWVnSRx+d+u8ttwS6RQAA1H4BnQLr1auXevTo4bnvVWFhoWJjY3X33XfrwQcfLPO1cXFxmjBhgiZMmFBtdRapCVNgAACgYiry/R2wn8Hn5+dry5YtmjRpkudYUFCQ+vfvr02bNvm1zhMnTujEiROe57m5uZV6fwCwKpfLVeb9Ce12O1P3qFECFoAOHTqkgoICRUVFeR2PiorSrl27/FrnjBkzNG3atEq9JwBYncvl8oy6S6e28MjJiZTT6ZLDkec5npKSUi0hiLCF6sBGiJImTZqk1NRUz/Pc3FzFxsYGsEUAUHucHkbK2ry1rNBSXv4OW6i7AhaAmjZtquDgYB04cMDr+IEDB0pd4OyrOkNDQxUaGlqp9wRqG/71DF8pbfPW+Pg9XuGkKvwZtlC3BSwA2e12JSYmKj09XYMHD5Z0asFyenq6UlJSakydQF1y5r+eS8O/nn2jrofPsjZvra4AVMQfYQt1W0CnwFJTUzV69GhdeOGF6tmzp+bOnaujR49q7NixkqRRo0apZcuWmjFjhqRTif6bb77x/Pnnn3/Wtm3b1KhRI7Vr165cdQJWduaXb2nTB/zrufpZYerG6XTJZiv0CkE2W6Gczpxqfy9/hi3UTQENQMOGDdOvv/6qyZMnKzs7W926ddPatWs9i5j37dunoKD/fMB/+eUXde/e3fN89uzZmj17tvr166d169aVq04Ap3CjXf+ywtSNw5Gn5OR3ivXNF4HEn2ELdVPAF0GnpKSUOj1VFGqKxMXFqTzbFpVVJwCmDwKprl/7hIStio/fo5wcp5zOHJ/1yZ9hC3VTwAMQAP9j+iBwrHDtHY48v/TFX2ELdRMBCLAgpg8Cpy5ee7vdXq3lKsJfYQt1DwEIsCCmDwKnLl77yMhIpaSk+OUXboEMW6hbCECARTF9EDh18dr765dr/gxbqNsIQICFnPmv4tKmD/jXs+8xdVN5hBtUBwIQYCH86zlwAjF1U9c3XgSqwmbK87tyi8nNzZXD4ZDb7VZERESgmwOgjvBnILHCxovAmSry/c0IEAD4iT+DhhU2XgSqIujsRQAAtVVpGy+63eEBbhkQWAQgAKjDytp4EbAyAhAA1GFFGy+errZvvAhUBwIQANRhRRsvFoWgurDxIlAdWAQNAHVcXdx4EagqAhAAWAAbLwLemAIDgDqIe2YBZWMECADqIHb9BspGAAKAOopwA5SOKTAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA59QLdAAAAUHu4XC7l5+eXet5utysyMtKPLaocAhAAACgXl8ultLS0s5ZLSUmp8SGIKTAAAFAuZY38VKZcIBGAAABApbjd4crMjJPbHR7oplQYU2AAAKDCMjK6a/XqQTImSDZboZKT31FCwtZAN6vcasQI0IIFCxQXF6ewsDD16tVLn3/+eZnl33jjDXXq1ElhYWE6//zztWbNGq/zY8aMkc1m83oMGDDAl10AAMAy3O5wT/iRJGOCtHr1oFo1EhTwALR8+XKlpqZqypQpysjIUNeuXZWUlKSDBw+WWH7jxo0aMWKEbrnlFm3dulWDBw/W4MGDtWPHDq9yAwYM0P79+z2P1157zR/dAQCgzsvJifSEnyLGBCknxxmgFlVcwAPQnDlzdNttt2ns2LHq3Lmznn/+eTVo0EALFy4ssfwzzzyjAQMGaOLEiTr33HM1ffp0JSQkFFuVHhoaqujoaM+jSZMm/ugOAAB1ntPpks1W6HXMZiuU05kToBZVXEADUH5+vrZs2aL+/ft7jgUFBal///7atGlTia/ZtGmTV3lJSkpKKlZ+3bp1at68uTp27Khx48bJ5XKV2o4TJ04oNzfX6wEAAErmcOQpOfkdTwgqWgPkcOQFuGXlF9BF0IcOHVJBQYGioqK8jkdFRWnXrl0lviY7O7vE8tnZ2Z7nAwYM0HXXXac2bdpo7969euihh3T11Vdr06ZNCg4OLlbnjBkzNG3atGroEQAAdZfdbvf8OSFhq+Lj9ygnxymnM8cr/Jxerqaqk78CGz58uOfP559/vi644ALFx8dr3bp1uuKKK4qVnzRpklJTUz3Pc3NzFRsb65e2AgBQW0RGRiolJYWdoKuqadOmCg4O1oEDB7yOHzhwQNHR0SW+Jjo6ukLlJalt27Zq2rSp9uzZU2IACg0NVWhoaCV6AACAtdSGcFMeAV0DZLfblZiYqPT0dM+xwsJCpaenq3fv3iW+pnfv3l7lJemDDz4otbwk/fTTT3K5XGrRokX1NBwAANRqAf8VWGpqql588UUtWbJEO3fu1Lhx43T06FGNHTtWkjRq1ChNmjTJU/6ee+7R2rVr9fe//127du3S1KlT9b//+79KSUmRJB05ckQTJ07UZ599pqysLKWnp+vaa69Vu3btlJSUFJA+AgCAmiXga4CGDRumX3/9VZMnT1Z2dra6deumtWvXehY679u3T0FB/8lpffr00dKlS/XII4/ooYceUvv27bVq1Sqdd955kqTg4GB9+eWXWrJkiQ4fPqyYmBhdddVVmj59OtNcAABAkmQzxphAN6Kmyc3NlcPhkNvtVkRERKCbAwAAyqEi398BnwIDAADwNwIQAACwHAIQAACwHAIQAACwnID/CgwAANRtLperxu0eTQACAAA+43K5lJaWdtZyKSkpfg1BTIEBAACfKWvkpzLlqgsBCAAAWA4BCAAA+I3bHa7MzDi53eEBbQdrgAAAgF9kZHTX6tWDZEyQbLZCJSe/o4SErQFpCyNAAADA59zucE/4kSRjgrR69aCAjQQRgAAAgM/l5ER6wk8RY4KUk+MMSHsIQAAAwOecTpdstkKvYzZboZzOnIC0hwAEAAB85tixY5IkhyNPycnveEJQ0RoghyPPq5y/sAgaAAD4TIMGDTx/TkjYqvj4PcrJccrpzPGEnzPL+QMBCAAA+I3DkecVfAKFKTAAAOA37AMEAAAshX2AAACApbAPEAAAsBz2AQIAAJbDPkAAAMAy7Ha7pLPvA1RUzl9sxhjj13esBXJzc+VwOOR2uxURERHo5gAAUKu5XC7l5+dLkn75JUhZWfUUF/eHYmJOhSG73a7IyMgqv09Fvr/5FRgAAPCp08NNixZSYmIAG/P/mAIDAACWQwACAACWwxQYUEudPqdekuqaUweAuogABNRCLpdLaWlpnudud7hyciLldLq87rGTkpJCCAKAEhCAgFro9JGfsraWL2uECACsjDVAQC1W07aWB4DaggAE1GI1bWt5AKgtCEBALVbTtpYHgNqCAATUYmfbWh4AUDIWQQO1XELCVsXH71FOjlNOZw7hBwDKgQAE1AEORx7BBwAqgCkwoBYq712T/X13ZQCoLRgBAmqhyMhIpaSksBM0AFQSAQiopQg3AFB5TIEBAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLYSfoEhhjJEm5ubkBbgkAACivou/tou/xshCASpCXd+qu2rGxsQFuCQAAqKi8vDw5HI4yy9hMeWKSxRQWFuqXX35ReHi4bDZblerKzc1VbGysfvzxR0VERFRTC2sXrgHXQOIaSFwDiWsgcQ182X9jjPLy8hQTE6OgoLJX+TACVIKgoCC1atWqWuuMiIiw5Af9dFwDroHENZC4BhLXQOIa+Kr/Zxv5KcIiaAAAYDkEIAAAYDkEIB8LDQ3VlClTFBoaGuimBAzXgGsgcQ0kroHENZC4BjWl/yyCBgAAlsMIEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCUCUsWLBAcXFxCgsLU69evfT555+XWX7u3Lnq2LGj6tevr9jYWP33f/+3jh8/7jk/depU2Ww2r0enTp183Y0qqcg1OHnypB577DHFx8crLCxMXbt21dq1a6tUZ6BVd/9r22fgk08+UXJysmJiYmSz2bRq1aqzvmbdunVKSEhQaGio2rVrp8WLFxcrU5s+A764BnX9c7B//36NHDlSHTp0UFBQkCZMmFBiuTfeeEOdOnVSWFiYzj//fK1Zs6b6G19NfHENFi9eXOxzEBYW5psOVIOKXoOVK1fqyiuvVLNmzRQREaHevXvrvffeK1bO138fEIAqaPny5UpNTdWUKVOUkZGhrl27KikpSQcPHiyx/NKlS/Xggw9qypQp2rlzp1566SUtX75cDz30kFe5Ll26aP/+/Z7H+vXr/dGdSqnoNXjkkUf0wgsvaP78+frmm29055136i9/+Yu2bt1a6ToDyRf9l2rXZ+Do0aPq2rWrFixYUK7ymZmZGjhwoC677DJt27ZNEyZM0K233ur1l15t+gxIvrkGUt3+HJw4cULNmjXTI488oq5du5ZYZuPGjRoxYoRuueUWbd26VYMHD9bgwYO1Y8eO6mx6tfHFNZBO7ZJ8+ufghx9+qK4mV7uKXoNPPvlEV155pdasWaMtW7bosssuU3Jysv+/EwwqpGfPnuauu+7yPC8oKDAxMTFmxowZJZa/6667zOWXX+51LDU11Vx00UWe51OmTDFdu3b1SXt9oaLXoEWLFiYtLc3r2HXXXWduuOGGStcZSL7of237DJxOknnrrbfKLHP//febLl26eB0bNmyYSUpK8jyvTZ+BM1XXNajrn4PT9evXz9xzzz3Fjg8dOtQMHDjQ61ivXr3MHXfcUcUW+l51XYNFixYZh8NRbe3yp4pegyKdO3c206ZN8zz3x98HjABVQH5+vrZs2aL+/ft7jgUFBal///7atGlTia/p06ePtmzZ4hm6+/7777VmzRr9+c9/9iq3e/duxcTEqG3btrrhhhu0b98+33WkCipzDU6cOFFs+LZ+/fqef9lWps5A8UX/i9SWz0BlbNq0yeuaSVJSUpLnmtWmz0Blne0aFKnLn4PyKO91quuOHDmi1q1bKzY2Vtdee62+/vrrQDfJZwoLC5WXlyen0ynJf38fEIAq4NChQyooKFBUVJTX8aioKGVnZ5f4mpEjR+qxxx7TxRdfrJCQEMXHx+vSSy/1mgLr1auXFi9erLVr1+q5555TZmam+vbtq7y8PJ/2pzIqcw2SkpI0Z84c7d69W4WFhfrggw+0cuVK7d+/v9J1Boov+i/Vrs9AZWRnZ5d4zXJzc/X777/Xqs9AZZ3tGkh1/3NQHqVdp7ryOSiPjh07auHChXr77bf1z3/+U4WFherTp49++umnQDfNJ2bPnq0jR45o6NChkvz3nUAA8rF169bpiSee0LPPPquMjAytXLlS7777rqZPn+4pc/XVV+uvf/2rLrjgAiUlJWnNmjU6fPiwXn/99QC2vPo888wzat++vTp16iS73a6UlBSNHTtWQUHW+PiVp/91/TOA8uFzAEnq3bu3Ro0apW7duqlfv35auXKlmjVrphdeeCHQTat2S5cu1bRp0/T666+refPmfn1va3wDVZOmTZsqODhYBw4c8Dp+4MABRUdHl/iaRx99VDfddJNuvfVWnX/++frLX/6iJ554QjNmzFBhYWGJr2ncuLE6dOigPXv2VHsfqqoy16BZs2ZatWqVjh49qh9++EG7du1So0aN1LZt20rXGSi+6H9JavJnoDKio6NLvGYRERGqX79+rfoMVNbZrkFJ6trnoDxKu0515XNQGSEhIerevXud+xwsW7ZMt956q15//XWv6S5//X1AAKoAu92uxMREpaene44VFhYqPT1dvXv3LvE1x44dKzbSERwcLEkypdyG7ciRI9q7d69atGhRTS2vPpW5BkXCwsLUsmVL/fHHH1qxYoWuvfbaKtfpb77of0lq8megMnr37u11zSTpgw8+8Fyz2vQZqKyzXYOS1LXPQXlU5jrVdQUFBfrqq6/q1Ofgtdde09ixY/Xaa69p4MCBXuf89vdBtS2ntohly5aZ0NBQs3jxYvPNN9+Y22+/3TRu3NhkZ2cbY4y56aabzIMPPugpP2XKFBMeHm5ee+018/3335v333/fxMfHm6FDh3rK3HvvvWbdunUmMzPTbNiwwfTv3980bdrUHDx40O/9K4+KXoPPPvvMrFixwuzdu9d88skn5vLLLzdt2rQxv/32W7nrrEl80f/a9hnIy8szW7duNVu3bjWSzJw5c8zWrVvNDz/8YIwx5sEHHzQ33XSTp/z3339vGjRoYCZOnGh27txpFixYYIKDg83atWs9ZWrTZ8AY31yDuv45MMZ4yicmJpqRI0earVu3mq+//tpzfsOGDaZevXpm9uzZZufOnWbKlCkmJCTEfPXVV37tW3n54hpMmzbNvPfee2bv3r1my5YtZvjw4SYsLMyrTE1S0Wvw6quvmnr16pkFCxaY/fv3ex6HDx/2lPHH3wcEoEqYP3++Oeecc4zdbjc9e/Y0n332medcv379zOjRoz3PT548aaZOnWri4+NNWFiYiY2NNf/1X//l9eU3bNgw06JFC2O3203Lli3NsGHDzJ49e/zYo4qryDVYt26dOffcc01oaKiJjIw0N910k/n5558rVGdNU939r22fgY8++shIKvYo6vfo0aNNv379ir2mW7duxm63m7Zt25pFixYVq7c2fQZ8cQ2s8DkoqXzr1q29yrz++uumQ4cOxm63my5duph3333XPx2qBF9cgwkTJnj+fxAVFWX+/Oc/m4yMDP91qoIqeg369etXZvkivv77wGZMKfMwAAAAdRRrgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgACgFli3bp1sNpsOHz4c6KYAdQIBCICXMWPGyGazaebMmV7HV61aJZvN5nlujNGLL76o3r17KyIiQo0aNVKXLl10zz33lPumjceOHdOkSZMUHx+vsLAwNWvWTP369dPbb7/tKRMXF6e5c+dWS998reja2Ww2hYSEqE2bNrr//vt1/PjxCtVz6aWXasKECV7H+vTpo/3798vhcFRjiwHrIgABKCYsLEyzZs3Sb7/9VuJ5Y4xGjhyp8ePH689//rPef/99ffPNN3rppZcUFhamxx9/vFzvc+edd2rlypWaP3++du3apbVr1+r666+Xy+Wqzu741YABA7R//359//33evrpp/XCCy9oypQpVa7XbrcrOjraK4QCqIJqvbEGgFpv9OjRZtCgQaZTp05m4sSJnuNvvfWWKfor47XXXjOSzNtvv11iHYWFheV6L4fDYRYvXlzq+ZLuGVTk008/NRdffLEJCwszrVq1Mnfffbc5cuSI5/zLL79sEhMTTaNGjUxUVJQZMWKEOXDggOd80f2L1q5da7p162bCwsLMZZddZg4cOGDWrFljOnXqZMLDw82IESPM0aNHy9Wf0aNHm2uvvdbr2HXXXWe6d+/ueX7o0CEzfPhwExMTY+rXr2/OO+88s3TpUq86zuxzZmamp72n30fwzTffNJ07dzZ2u920bt3azJ49u1ztBGAMI0AAigkODtYTTzyh+fPn66effip2/rXXXlPHjh11zTXXlPj68o5SREdHa82aNcrLyyvx/MqVK9WqVSs99thj2r9/v/bv3y9J2rt3rwYMGKAhQ4boyy+/1PLly7V+/XqlpKR4Xnvy5ElNnz5d27dv16pVq5SVlaUxY8YUe4+pU6cqLS1NGzdu1I8//qihQ4dq7ty5Wrp0qd599129//77mj9/frn6c6YdO3Zo48aNstvtnmPHjx9XYmKi3n33Xe3YsUO33367brrpJn3++eeSpGeeeUa9e/fWbbfd5ulzbGxssbq3bNmioUOHavjw4frqq680depUPfroo1q8eHGl2gpYTqATGICa5fRRjD/96U/m5ptvNsZ4jwB16tTJXHPNNV6vu+eee0zDhg1Nw4YNTcuWLcv1Xh9//LFp1aqVCQkJMRdeeKGZMGGCWb9+vVeZ1q1bm6efftrr2C233GJuv/12r2OffvqpCQoKMr///nuJ7/XFF18YSSYvL88Y858RoA8//NBTZsaMGUaS2bt3r+fYHXfcYZKSksrVn9GjR5vg4GDTsGFDExoaaiSZoKAg8+abb5b5uoEDB5p7773X87xfv37mnnvu8Spz5gjQyJEjzZVXXulVZuLEiaZz587laitgdYwAASjVrFmztGTJEu3cufOsZR9++GFt27ZNkydP1pEjR8pV/yWXXKLvv/9e6enpuv766/X111+rb9++mj59epmv2759uxYvXqxGjRp5HklJSSosLFRmZqakUyMkycnJOueccxQeHq5+/fpJkvbt2+dV1wUXXOD5c1RUlBo0aKC2bdt6HTt48GC5+iNJl112mbZt26bNmzdr9OjRGjt2rIYMGeI5X1BQoOnTp+v888+X0+lUo0aN9N577xVr19ns3LlTF110kdexiy66SLt371ZBQUGF6gKsiAAEoFSXXHKJkpKSNGnSJK/j7du317fffut1rFmzZmrXrp2aN29eofcICQlR37599cADD+j999/XY489punTpys/P7/U1xw5ckR33HGHtm3b5nls375du3fvVnx8vI4ePaqkpCRFRETo1Vdf1RdffKG33npLkorVGxIS4vlz0a+3Tmez2VRYWFju/jRs2FDt2rVT165dtXDhQm3evFkvvfSS5/xTTz2lZ555Rg888IA++ugjbdu2TUlJSWX2F0D1qxfoBgCo2WbOnKlu3bqpY8eOnmMjRozQyJEj9fbbb+vaa6+t1vfr3Lmz/vjjDx0/flx2u112u73YiEZCQoK++eYbtWvXrsQ6vvrqK7lcLs2cOdOzfuZ///d/q7Wd5REUFKSHHnpIqampGjlypOrXr68NGzbo2muv1Y033ihJKiws1HfffafOnTt7XldSn8907rnnasOGDV7HNmzYoA4dOig4OLj6OwPUMYwAASjT+eefrxtuuEHz5s3zHBs+fLiuv/56DR8+XI899pg2b96srKwsffzxx1q+fHm5v4AvvfRSvfDCC9qyZYuysrK0Zs0aPfTQQ7rssssUEREh6dQ+QJ988ol+/vlnHTp0SJL0wAMPaOPGjUpJSdG2bdu0e/duvf32255F0Oecc47sdrvmz5+v77//Xv/617/OOq3mK3/9618VHBysBQsWSDo1evbBBx9o48aN2rlzp+644w4dOHDA6zVxcXGea3ro0KESR6Duvfdepaena/r06fruu++0ZMkSpaWl6b777vNLv4DajgAE4Kwee+wxry9hm82m5cuXa+7cuVqzZo2uuOIKdezYUTfffLNiY2O1fv36ctWblJSkJUuW6KqrrtK5556ru+++W0lJSXr99de93jsrK0vx8fFq1qyZpFPrdj7++GN999136tu3r7p3767JkycrJiZG0qnpuMWLF+uNN95Q586dNXPmTM2ePbsar0j51atXTykpKXryySd19OhRPfLII0pISFBSUpIuvfRSRUdHa/DgwV6vue+++xQcHKzOnTurWbNmJa4PSkhI0Ouvv65ly5bpvPPO0+TJk/XYY4+V+Es3AMXZjDEm0I0AAADwJ0aAAACA5RCAAPjM6T9TP/Px6aefBrp5FbJv374y+1PRn7EDCCymwAD4TFk3RW3ZsqXq16/vx9ZUzR9//KGsrKxSz8fFxalePX5YC9QWBCAAAGA5TIEBAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADL+T+IKKsSOQo/TAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUy5JREFUeJzt3XlcVPX+P/DXDDJswiiobCIoYO4LIAiVmFJgSvGVey9auV2X7CtulBW5ZVqYC+KCml63SsIfaaVmlnKte1NMBbnmhku4JaBCDgoKxHx+f/jlXGdYZJs5LK/n4zGPnHM+c877c75e5/X9nM/5jEIIIUBEREREEqXcBRARERE1NAxIRERERHoYkIiIiIj0MCARERER6WFAIiIiItLDgERERESkhwGJiIiISA8DEhEREZEeBiQiIiIiPQxIRESN2NatW6FQKHDlyhW5SyFqUhiQiKhKx48fR2RkJLp37w4rKyt06NABf/vb33DhwoVybQcOHAiFQgGFQgGlUgkbGxs89dRTGDVqFA4cOFCj8+7ZsweBgYFo164dLC0t0alTJ/ztb3/D/v3766tr5Xz00Uf4+uuvy20/cuQI3n//fdy9e9dg59b3/vvvS9dSoVDA0tIS3bp1w5w5c5Cfn18v50hISEBcXFy9HIuoqWFAIqIqffzxx9i5cycGDx6MlStXYtKkSfjXv/4FLy8vnD59ulz79u3b47PPPsOnn36KpUuX4qWXXsKRI0fwwgsvICIiAiUlJU8857Jly/DSSy9BoVAgOjoaK1asQHh4OC5evIjExERDdBNA1QFpwYIFRg1IZdatW4fPPvsMsbGx6NKlCz788EOEhISgPn5GkwGJqHIt5C6AiBq2qKgoJCQkQKVSSdsiIiLQs2dPLF68GJ9//rlOe7Vajddee01n2+LFizFt2jSsXbsWbm5u+Pjjjys9359//omFCxfi+eefxw8//FBu/61bt+rYo4ajsLAQlpaWVbb5y1/+gjZt2gAAJk+ejPDwcOzatQtHjx6Fv7+/McokapY4gkREVQoICNAJRwDg6emJ7t2749y5c9U6homJCVatWoVu3bphzZo10Gg0lba9c+cO8vPz8fTTT1e4v127djrvHz58iPfffx+dO3eGubk5HB0dMXz4cFy+fFlqs2zZMgQEBMDOzg4WFhbw9vbGl19+qXMchUKBgoICbNu2TbqtNXbsWLz//vuYNWsWAKBjx47Svsfn/Hz++efw9vaGhYUFbG1tMWLECFy/fl3n+AMHDkSPHj2QmpqKAQMGwNLSEu+99161rt/jBg0aBADIzMysst3atWvRvXt3mJmZwcnJCVOmTNEZARs4cCC+/fZbXL16VeqTm5tbjeshaqo4gkRENSaEQE5ODrp3717tz5iYmGDkyJGYO3cufv75ZwwdOrTCdu3atYOFhQX27NmDqVOnwtbWttJjlpaWYtiwYUhOTsaIESMwffp03Lt3DwcOHMDp06fh7u4OAFi5ciVeeuklvPrqqyguLkZiYiL++te/Yu/evVIdn332GSZMmABfX19MmjQJAODu7g4rKytcuHABX3zxBVasWCGN5rRt2xYA8OGHH2Lu3Ln429/+hgkTJuD27dtYvXo1BgwYgJMnT6JVq1ZSvbm5uRgyZAhGjBiB1157Dfb29tW+fmXKgp+dnV2lbd5//30sWLAAQUFBeOONN5CRkYF169bh+PHjOHz4MExNTTF79mxoNBrcuHEDK1asAAC0bNmyxvUQNVmCiKiGPvvsMwFAbNq0SWd7YGCg6N69e6Wf++qrrwQAsXLlyiqPP2/ePAFAWFlZiSFDhogPP/xQpKamlmu3efNmAUDExsaW26fVaqU/FxYW6uwrLi4WPXr0EIMGDdLZbmVlJcaMGVPuWEuXLhUARGZmps72K1euCBMTE/Hhhx/qbP/1119FixYtdLYHBgYKAGL9+vWV9vtx8+fPFwBERkaGuH37tsjMzBSffPKJMDMzE/b29qKgoEAIIcSWLVt0art165ZQqVTihRdeEKWlpdLx1qxZIwCIzZs3S9uGDh0qXF1dq1UPUXPDW2xEVCPnz5/HlClT4O/vjzFjxtTos2UjFPfu3auy3YIFC5CQkIC+ffvi+++/x+zZs+Ht7Q0vLy+d23o7d+5EmzZtMHXq1HLHUCgU0p8tLCykP//xxx/QaDR49tlnkZaWVqP69e3atQtarRZ/+9vfcOfOHenl4OAAT09PHDp0SKe9mZkZxo0bV6NzPPXUU2jbti06duyI119/HR4eHvj2228rnbt08OBBFBcXY8aMGVAq//tP/MSJE2FjY4Nvv/225h0laoZ4i42Iqi07OxtDhw6FWq3Gl19+CRMTkxp9/v79+wAAa2vrJ7YdOXIkRo4cifz8fPzyyy/YunUrEhISEBoaitOnT8Pc3ByXL1/GU089hRYtqv6nbO/evVi0aBHS09NRVFQkbX88RNXGxYsXIYSAp6dnhftNTU113js7O5ebz/UkO3fuhI2NDUxNTdG+fXvptmFlrl69CuBRsHqcSqVCp06dpP1EVDUGJCKqFo1GgyFDhuDu3bv497//DScnpxofo2xZAA8Pj2p/xsbGBs8//zyef/55mJqaYtu2bfjll18QGBhYrc//+9//xksvvYQBAwZg7dq1cHR0hKmpKbZs2YKEhIQa9+FxWq0WCoUC3333XYVhUX9Oz+MjWdU1YMAAad4TERkPAxIRPdHDhw8RGhqKCxcu4ODBg+jWrVuNj1FaWoqEhARYWlrimWeeqVUdPj4+2LZtG7KysgA8mkT9yy+/oKSkpNxoTZmdO3fC3Nwc33//PczMzKTtW7ZsKde2shGlyra7u7tDCIGOHTuic+fONe2OQbi6ugIAMjIy0KlTJ2l7cXExMjMzERQUJG2r6wgaUVPGOUhEVKXS0lJEREQgJSUFSUlJtVp7p7S0FNOmTcO5c+cwbdo02NjYVNq2sLAQKSkpFe777rvvAPz39lF4eDju3LmDNWvWlGsr/m8hRRMTEygUCpSWlkr7rly5UuGCkFZWVhUuBmllZQUA5fYNHz4cJiYmWLBgQbmFG4UQyM3NrbiTBhQUFASVSoVVq1bp1LRp0yZoNBqdpwetrKyqXHKBqDnjCBIRVenNN9/E7t27ERoairy8vHILQ+ovCqnRaKQ2hYWFuHTpEnbt2oXLly9jxIgRWLhwYZXnKywsREBAAPr374+QkBC4uLjg7t27+Prrr/Hvf/8bYWFh6Nu3LwBg9OjR+PTTTxEVFYVjx47h2WefRUFBAQ4ePIj//d//xcsvv4yhQ4ciNjYWISEheOWVV3Dr1i3Ex8fDw8MDp06d0jm3t7c3Dh48iNjYWDg5OaFjx47w8/ODt7c3AGD27NkYMWIETE1NERoaCnd3dyxatAjR0dG4cuUKwsLCYG1tjczMTHz11VeYNGkS3nrrrTpd/5pq27YtoqOjsWDBAoSEhOCll15CRkYG1q5di379+un838vb2xs7duxAVFQU+vXrh5YtWyI0NNSo9RI1WHI+QkdEDV/Z4+mVvapq27JlS+Hp6Slee+018cMPP1TrfCUlJWLjxo0iLCxMuLq6CjMzM2FpaSn69u0rli5dKoqKinTaFxYWitmzZ4uOHTsKU1NT4eDgIP7yl7+Iy5cvS202bdokPD09hZmZmejSpYvYsmWL9Bj9486fPy8GDBggLCwsBACdR/4XLlwonJ2dhVKpLPfI/86dO8UzzzwjrKyshJWVlejSpYuYMmWKyMjI0Lk2VS2BoK+svtu3b1fZTv8x/zJr1qwRXbp0EaampsLe3l688cYb4o8//tBpc//+ffHKK6+IVq1aCQB85J/oMQoh6uEHfYiIiIiaEM5BIiIiItLDgERERESkhwGJiIiISA8DEhEREZEeBiQiIiIiPQxIRERERHq4UGQtabVa3Lx5E9bW1lyun4iIqJEQQuDevXtwcnKCUln5OBEDUi3dvHkTLi4ucpdBREREtXD9+nW0b9++0v0MSLVkbW0N4NEFrup3pYiIiKjhyM/Ph4uLi/Q9XhkGpFoqu61mY2PDgERERNTIPGl6DCdpExEREelhQCIiIiLSw4BEREREpIdzkIiIiIyotLQUJSUlcpfRZJmamsLExKTOx2FAIiIiMgIhBLKzs3H37l25S2nyWrVqBQcHhzqtU8iAREREZARl4ahdu3awtLTkIsMGIIRAYWEhbt26BQBwdHSs9bEYkIiIiAystLRUCkd2dnZyl9OkWVhYAABu3bqFdu3a1fp2GydpExERGVjZnCNLS0uZK2keyq5zXeZ6MSAREREZCW+rGUd9XGfeYmsAcnNzUVxcXOl+lUrFIVkiIiIjYkCSWW5uLtasWfPEdpGRkQxJRERERsJbbDKrauSoNu2IiIjq09ixY6FQKKBQKGBqagp7e3s8//zz2Lx5M7RabbWPs3XrVrRq1cpwhdYzjiA1MBqNNfLy7GBrmwu1+p7c5RARUQMh53SMkJAQbNmyBaWlpcjJycH+/fsxffp0fPnll9i9ezdatGh6caLp9agRS0vriz17hkEIJRQKLUJD98LL66TcZRERkczkno5hZmYGBwcHAICzszO8vLzQv39/DB48GFu3bsWECRMQGxuLLVu24LfffoOtrS1CQ0OxZMkStGzZEj/++CPGjRsH4L8TqOfPn4/3338fn332GVauXImMjAxYWVlh0KBBiIuLQ7t27eq9HzXBW2wNhEZjLYUjABBCiT17hkGjsZa5MiIikltDnI4xaNAg9O7dG7t27QIAKJVKrFq1CmfOnMG2bdvwz3/+E2+//TYAICAgAHFxcbCxsUFWVhaysrLw1ltvAXj0KP7ChQvxn//8B19//TWuXLmCsWPHGq0fleEIUgORl2cnhaMyQiiRl2fLW21ERNQgdenSBadOnQIAzJgxQ9ru5uaGRYsWYfLkyVi7di1UKhXUajUUCoU0ElXm73//u/TnTp06YdWqVejXrx/u37+Pli1bGqUfFeEIUgNha5sLhUJ3sptCoYWtbZ5MFREREVVNCCHdMjt48CAGDx4MZ2dnWFtbY9SoUcjNzUVhYWGVx0hNTUVoaCg6dOgAa2trBAYGAgCuXbtm8PqrwoDUQKjV9xAaulcKSWVzkDh6REREDdW5c+fQsWNHXLlyBcOGDUOvXr2wc+dOpKamIj4+HkDVt/0KCgoQHBwMGxsbbN++HcePH8dXX331xM8ZA2+xyUylUkl/9vI6CXf3S8jLs4WtbZ5OOHq8HRERkdz++c9/4tdff8XMmTORmpoKrVaL5cuXQ6l8NPby//7f/9Npr1KpUFpaqrPt/PnzyM3NxeLFi+Hi4gIAOHHihHE68AQMSDKzs7NDZGQkV9ImIqIGq6ioCNnZ2TqP+cfExGDYsGEYPXo0Tp8+jZKSEqxevRqhoaE4fPgw1q9fr3MMNzc33L9/H8nJyejduzcsLS3RoUMHqFQqrF69GpMnT8bp06excOFCmXqpi7fYGgA7Ozs4OjpW+mI4IiIiOe3fvx+Ojo5wc3NDSEgIDh06hFWrVuGbb76BiYkJevfujdjYWHz88cfo0aMHtm/fjpiYGJ1jBAQEYPLkyYiIiEDbtm2xZMkStG3bFlu3bkVSUhK6deuGxYsXY9myZTL1UpdCCCHkLqIxys/Ph1qthkajgY2NjdzlEBFRA/bw4UNkZmaiY8eOMDc3r/Hn5V4HqbGp6npX9/tb9lts8fHxWLp0KbKzs9G7d2+sXr0avr6+FbY9c+YM5s2bh9TUVFy9ehUrVqzQeawQAP71r39h6dKlSE1NRVZWFr766iuEhYXptBFCYP78+di4cSPu3r2Lp59+GuvWrYOnp6eBeklERFR7nI5hfLLeYtuxYweioqIwf/58pKWloXfv3ggODsatW7cqbF9YWIhOnTph8eLF5dZRKFNQUIDevXtLs+crsmTJEqxatQrr16/HL7/8AisrKwQHB+Phw4f10i8iIqL6xukYxiXrLTY/Pz/069dPGjbUarVwcXHB1KlT8e6771b5WTc3N8yYMaPcCNLjFApFuREkIQScnJzw5ptvSqt4ajQa2NvbY+vWrRgxYkS1auctNiIiqq663mKjmqmPW2yyjSAVFxcjNTUVQUFB/y1GqURQUBBSUlIMdt7MzExkZ2frnFetVsPPz6/K8xYVFSE/P1/nRURERE2TbAHpzp07KC0thb29vc52e3t7ZGdnG+y8Zceu6XljYmKgVqulV9l6DURERNT08DH/aoqOjoZGo5Fe169fl7skIiIiMhDZAlKbNm1gYmKCnJwcne05OTmVTsCuD2XHrul5zczMYGNjo/MiIiKipkm2gKRSqeDt7Y3k5GRpm1arRXJyMvz9/Q123o4dO8LBwUHnvPn5+fjll18Mel4iIiJqPGRdBykqKgpjxoyBj48PfH19ERcXh4KCAowbNw4AMHr0aDg7O0urcRYXF+Ps2bPSn3///Xekp6ejZcuW8PDwAADcv38fly5dks6RmZmJ9PR02NraokOHDlAoFJgxYwYWLVoET09PdOzYEXPnzoWTk1O59ZKIiIiomRIyW716tejQoYNQqVTC19dXHD16VNoXGBgoxowZI73PzMwUAMq9AgMDpTaHDh2qsM3jx9FqtWLu3LnC3t5emJmZicGDB4uMjIwa1a3RaAQAodFoatt1IiJqJh48eCDOnj0rHjx4IHcpDU7Z9/Yff/xR7c+4urqKFStWVLq/qutd3e9v2SdpR0ZG4urVqygqKsIvv/wCPz8/ad+PP/6IrVu3Su/d3NwghCj3+vHHH6U2AwcOrLDN48dRKBT44IMPkJ2djYcPH+LgwYPo3LmzEXpLRETUuIwdOxYKhQKTJ08ut2/KlClQKBQYO3as8QszMNkDEhERETVsLi4uSExMxIMHD6RtDx8+REJCAjp06CBjZYbDgERERERV8vLygouLC3bt2iVt27VrFzp06IC+fftK24qKijBt2jS0a9cO5ubmeOaZZ3D8+HGdY+3btw+dO3eGhYUFnnvuOVy5cqXc+X7++Wc8++yzsLCwgIuLC6ZNm4aCggKD9a8iDEhERESNzI0bwKFDj/5rLH//+9+xZcsW6f3mzZulh6rKvP3229i5cye2bduGtLQ0eHh4IDg4GHl5eQCA69evY/jw4QgNDUV6ejomTJhQ7qfFLl++jJCQEISHh+PUqVPYsWMHfv75Z0RGRhq+k49hQCIiImpENm0CXF2BQYMe/XfTJuOc97XXXsPPP/+Mq1ev4urVqzh8+DBee+01aX9BQQHWrVuHpUuXYsiQIejWrRs2btwICwsLbPq/ItetWwd3d3csX74cTz31FF599dVy85diYmLw6quvYsaMGfD09ERAQABWrVqFTz/91Kg/Ki/rY/5ERERUfTduAJMmAVrto/daLfD660BwMNC+vWHP3bZtWwwdOhRbt26FEAJDhw5FmzZtpP2XL19GSUkJnn76aWmbqakpfH19ce7cOQDAuXPndB7GAlBuDcL//Oc/OHXqFLZv3y5tE0JAq9UiMzMTXbt2NUT3ymFAIiIiaiQuXvxvOCpTWgpcumT4gAQ8us1WdqsrPj7eIOe4f/8+Xn/9dUybNq3cPmNOCGdAIiIiaiQ8PQGlUjckmZgA/7dWssGFhISguLgYCoUCwcHBOvvc3d2hUqlw+PBhuLq6AgBKSkpw/PhxzJgxAwDQtWtX7N69W+dzR48e1Xnv5eWFs2fPSgtAy4VzkIiIiBqJ9u2BDRsehSLg0X8/+cQ4o0ePzmeCc+fO4ezZszApK+L/WFlZ4Y033sCsWbOwf/9+nD17FhMnTkRhYSHGjx8PAJg8eTIuXryIWbNmISMjAwkJCTrrFALAO++8gyNHjiAyMhLp6em4ePEivvnmG6NP0uYIEhERUSMyfvyjOUeXLj0aOTJWOCpT1Y+1L168GFqtFqNGjcK9e/fg4+OD77//Hq1btwbw6BbZzp07MXPmTKxevRq+vr746KOP8Pe//106Rq9evfDTTz9h9uzZePbZZyGEgLu7OyIiIgzet8cphBDCqGdsIvLz86FWq6HRaKr8y0JERPTw4UNkZmaiY8eOMDc3l7ucJq+q613d72/eYiMiIiLSw4BEREREpIcBiYiIiEgPAxIRERGRHgYkIiIiI+FzUcZRH9eZAYmIiMjATE1NAQCFhYUyV9I8lF3nsuteG1wHiYiIyMBMTEzQqlUr3Lp1CwBgaWkJhUIhc1VNjxAChYWFuHXrFlq1alVuMcuaYEAiIiIyAgcHBwCQQhIZTqtWraTrXVsMSEREREagUCjg6OiIdu3aoaSkRO5ymixTU9M6jRyVYUAiIiIyIhMTk3r5AifD4iRtIiIiIj0MSERERER6GJCIiIiI9DAgEREREelhQCIiIiLSw4BEREREpIcBiYiIiEgPAxIRERGRHgYkIiIiIj0MSERERER6GJCIiOrgxg3g0KFH/yWipoMBiYiohnJzc5GVlYXly+/C1VVg0CDA1VVg+fK7yMrKQm5urtwlElEd8cdqiYhqIDc3F2vWrIFGY424uBkQQgEA0GoVmDXLBr//vhlq9T1ERkbCzs5O5mqJqLY4gkREVAPFxcUAgLw8Owih+0+oEErk5dnqtCOixokBiYioFmxtc6FQaHW2KRRa2NrmyVQREdWnBhGQ4uPj4ebmBnNzc/j5+eHYsWOVtj1z5gzCw8Ph5uYGhUKBuLi4Wh1z4MCBUCgUOq/JkyfXZ7eIqAlTq+8hNHSvFJIUCi1CQ/dCrb4nc2VEVB9kn4O0Y8cOREVFYf369fDz80NcXByCg4ORkZGBdu3alWtfWFiITp064a9//StmzpxZp2NOnDgRH3zwgfTe0tKy/jtIRE2Wl9dJuLtfQl6eLWxt8xiOiJoQ2UeQYmNjMXHiRIwbNw7dunXD+vXrYWlpic2bN1fYvl+/fli6dClGjBgBMzOzOh3T0tISDg4O0svGxqbe+0dETZtafQ8dO15lOCJqYmQNSMXFxUhNTUVQUJC0TalUIigoCCkpKQY/5vbt29GmTRv06NED0dHRKCwsrPS4RUVFyM/P13kRERFR0yTrLbY7d+6gtLQU9vb2Otvt7e1x/vx5gx7zlVdegaurK5ycnHDq1Cm88847yMjIwK5duyo8bkxMDBYsWFCrmoiIiKhxkX0OklwmTZok/blnz55wdHTE4MGDcfnyZbi7u5drHx0djaioKOl9fn4+XFxcjFIrETUcKpWqXtsRUcMka0Bq06YNTExMkJOTo7M9JycHDg4ORj2mn58fAODSpUsVBiQzM7NK5zwRUfNhZ2eHyMjIKtc5UqlUXCSSqJGTdQ6SSqWCt7c3kpOTpW1arRbJycnw9/c36jHT09MBAI6OjrU6LxE1H3Z2dnB0dKz0xXBE1PjJfostKioKY8aMgY+PD3x9fREXF4eCggKMGzcOADB69Gg4OzsjJiYGwKNJ2GfPnpX+/PvvvyM9PR0tW7aEh4dHtY55+fJlJCQk4MUXX4SdnR1OnTqFmTNnYsCAAejVq5cMV4GIiIgaEtkDUkREBG7fvo158+YhOzsbffr0wf79+6VJ1teuXYNS+d+Brps3b6Jv377S+2XLlmHZsmUIDAzEjz/+WK1jqlQqHDx4UApOLi4uCA8Px5w5c4zXcSIiImqwFEIIIXcRjVF+fj7UajU0Gg3XTyIiImokqvv9LftCkUREREQNDQMSERERkR4GJCIiIiI9DEhEREREehiQiIiIiPQwIBERERHpYUAiIiIi0sOARERERKSHAYmIiIhIDwMSERERkR4GJCIiIiI9DEhEREREehiQiIiIiPQwIBERERHpYUAiIiIi0sOARETUxNy4ARw69Oi/RFQ7DEhERE3Ipk2AqyswaNCj/27aJHdFRI1TC7kLICIylNzcXBQXF1e6X6VSwc7OzogVGU5ubi6uXPkTkya1g1arAABotcDrrwv06XMLbm4tmkxfiYyBAYmImqTc3FysWbNGeq/RWCMvzw62trlQq+9J2yMjIxt9cCjra2amG7TaMTr7SksVWL36O3TseLVJ9JXIWBiQiKhJenzkKC2tL/bsGQYhlFAotAgN3Qsvr5Pl2jVWZX2wtc2FQqGFEP+dPaFQaGFrm6fTjoiejHOQiKhJ02ispXAEAEIosWfPMGg01jJXVv/U6nsIDd0LhUILAFIYfHzEjIiqhyNIRNSk5eXZ6YyoAI9CUl6ebZMMDl5eJ+Hufgl5ebawtc1rkn0kMgYGJCJq0p5026kpUqvvMRgR1RFvsRFRk8bbTkRUGxxBIqImj7ediKimGJCIqFngbSciqgneYiOiJkmlUtVru4asOfWVyFgUQgghdxGNUX5+PtRqNTQaDWxsbOQuh4gq0NxW0m4ufSWqi+p+f/MWGxE1Wc0pEDSnvhIZA2+xEREREelhQCIiIiLSw4BEREREpIcBiYiIiEgPJ2lTrTz+xMzNm0pkZrZAx45/wsnp0WrFfGKGiIgaswYxghQfHw83NzeYm5vDz88Px44dq7TtmTNnEB4eDjc3NygUCsTFxdXqmA8fPsSUKVNgZ2eHli1bIjw8HDk5OfXZrSYrNzcXa9aswYYNGzB58nH069cWf/2rHfr1a4vJk49jw4YNWLNmDXJzc+UulYiIqFZkD0g7duxAVFQU5s+fj7S0NPTu3RvBwcG4detWhe0LCwvRqVMnLF68GA4ODrU+5syZM7Fnzx4kJSXhp59+ws2bNzF8+HCD9LGpKRs50missWfPMOlHQIVQYs+eYdBorHXaERERNTayB6TY2FhMnDgR48aNQ7du3bB+/XpYWlpi8+bNFbbv168fli5dihEjRsDMzKxWx9RoNNi0aRNiY2MxaNAgeHt7Y8uWLThy5AiOHj1qsL42NXl5djq/kA48Ckl5ebYyVURERFQ/ZA1IxcXFSE1NRVBQkLRNqVQiKCgIKSkpBjtmamoqSkpKdNp06dIFHTp0qPS8RUVFyM/P13k1d7a2udIvpJdRKLSwtc2TqSIiIqL6IWtAunPnDkpLS2Fvb6+z3d7eHtnZ2QY7ZnZ2NlQqFVq1alXt88bExECtVksvFxeXWtXXlKjV9xAaulcKSQqFFqGhe/mDoERE1OjxKbZqio6ORlRUlPQ+Pz+fIQmAl9dJuLtfQl6eLWxt8+ocjvh7UkRE1BDIGpDatGkDExOTck+P5eTkVDoBuz6O6eDggOLiYty9e1dnFKmq85qZmVU656m5U6vv1cuoUdnTcWU0Gmvk5dnB1jZX5/iRkZEMSUREZFCy3mJTqVTw9vZGcnKytE2r1SI5ORn+/v4GO6a3tzdMTU112mRkZODatWu1Pi/V3eMjR2lpfREXNwPbto1BXNwMpKX1rbAdERGRIch+iy0qKgpjxoyBj48PfH19ERcXh4KCAowbNw4AMHr0aDg7OyMmJgbAoy/Hs2fPSn/+/fffkZ6ejpYtW8LDw6Nax1Sr1Rg/fjyioqJga2sLGxsbTJ06Ff7+/ujfv78MV6FxUalU9dpOX2XLB7i7X+L8JiIiMgrZA1JERARu376NefPmITs7G3369MH+/fulSdbXrl2DUvnfga6bN2+ib9//jiYsW7YMy5YtQ2BgIH788cdqHRMAVqxYAaVSifDwcBQVFSE4OBhr1641TqcbOTs7O0RGRhpsrlBVywcwIBERkTEohBBC7iIao/z8fKjVamg0GtjY2MhdTpOQlZWFDRs2QKOxRlzcDJ2QpFBoMWNGHNTqe5g0aRIcHR1lrJSMqS4T95vTpH/+/A9R9VT3+1v2ESQifWXLB5TdZuPyAc2X/sT9ylQ0cb8un21sHu9rWlrfcv/b8fI6CaBp9JXIWBiQqEGq7+UDqHHSH/2p7MnGikaJ6vLZxuZJP/9TNn+vKfSVyFgYkKjBqq/lA6hpqGpkxJCfbUw4f4+o/sj+W2xEZQz9dBw1Xk/6YWRDfbax4c//ENUfjiBRg2Hop+Oo8arLyEhzGlXh/D2i+sOARA0Kww9VpGxkRP/JxuqMjNTls40R5+8R1Q/eYiOiBq8uP4zcHH9UWa2+h44drzbpPhIZGkeQiAyoOa3DY2h1GRnhqAoR1RQDEpGBNKd1eAxFf0J+ZU82VjRxvy6fbWz4gANR/WNAIjKQ5rQOj6HUZeJ+c5r035z6SmQsDEhERtBc1uExhLp8qTenQNCc+kpkDJykTWRgzWkdHiKipoIBicjAqlqHh4iIGiYGJCID4+rGRESNDwMSkYE1x3V4iIgaO07SJjICrsNDRNS4MCARGUhzWoeHiKipYUAiMhCuTdOwcZVzIqoKAxKRAfELtmHiKufV93iQvHlTiczMFujY8U84OT2aU8cgSU0VAxIRNTtc5bx6Hg+SVS12yiBJTREDEhE1a1zlvHJlAbGyxU7d3S9Brb7X7IMkNU18zJ+Imi2ucl49XOyUmiMGJCJqtvjFXz1c7JSaIwYkImq2+MVfPVzslJojzkEiomar7Itffw4Sv/jL42Kn1NwwIBFRs8Yv/uqrbLFToqaIAYmImp3CwkKd95V98eu3I6Lmg3OQiKjZsbS01Hmv0VgjM9Ot3NNr+u2am+r+DA5/LoeaIo4gEVGzxnWQKtecfy7nxg3g4kXA0xNo317uakgODEhE1Gw9aQFEal4/l1P2syoJCRZ4+201tFoFlEqBJUs0eOWVB002DFLFGJCIqNmqah0kBqTmpexnVTQaa8TFzYAQCgCAVqvArFk2+P33zVCr7/FnVZoRzkEiomaL6yBRmbLbiE9aPJQ/q9J8MCARUbPFBRBJH0MzleEtNiJq1rgOEj2Oi4dSGQYkImp29B9Lr2wdJD6+3jwxNBPQQAJSfHw8li5diuzsbPTu3RurV6+Gr69vpe2TkpIwd+5cXLlyBZ6envj444/x4osvSvtzcnLwzjvv4IcffsDdu3cxYMAArF69Gp6enlKbgQMH4qefftI57uuvv47169fXfweJqEFpzo+vU/Vw1XCSfQ7Sjh07EBUVhfnz5yMtLQ29e/dGcHAwbt26VWH7I0eOYOTIkRg/fjxOnjyJsLAwhIWF4fTp0wAAIQTCwsLw22+/4ZtvvsHJkyfh6uqKoKAgFBQU6Bxr4sSJyMrKkl5LliwxeH+JqGGws7ODo6NjpS+GI6LmTfaAFBsbi4kTJ2LcuHHo1q0b1q9fD0tLS2zevLnC9itXrkRISAhmzZqFrl27YuHChfDy8sKaNWsAABcvXsTRo0exbt069OvXD0899RTWrVuHBw8e4IsvvtA5lqWlJRwcHKSXjY2NwftLREREDZ+sAam4uBipqakICgqStimVSgQFBSElJaXCz6SkpOi0B4Dg4GCpfVFREQDA3Nxc55hmZmb4+eefdT63fft2tGnTBj169EB0dHSVv7tUVFSE/Px8nRcRETUN/FkV0ifrHKQ7d+6gtLQU9vb2Otvt7e1x/vz5Cj+TnZ1dYfvs7GwAQJcuXdChQwdER0fjk08+gZWVFVasWIEbN24gKytL+swrr7wCV1dXODk54dSpU3jnnXeQkZGBXbt2VXjemJgYLFiwoC7dJSKiBorz0khfg5ikXZ9MTU2xa9cujB8/Hra2tjAxMUFQUBCGDBkCIYTUbtKkSdKfe/bsCUdHRwwePBiXL1+Gu7t7ueNGR0cjKipKep+fnw8XFxfDdoaIiIyG4YceJ2tAatOmDUxMTJCTk6OzPScnBw4ODhV+xsHB4Yntvb29kZ6eDo1Gg+LiYrRt2xZ+fn7w8fGptBY/Pz8AwKVLlyoMSGZmZjAzM6t234iIiKjxknUOkkqlgre3N5KTk6VtWq0WycnJ8Pf3r/Az/v7+Ou0B4MCBAxW2V6vVaNu2LS5evIgTJ07g5ZdfrrSW9PR0AICjo2MtekJERERNiey32KKiojBmzBj4+PjA19cXcXFxKCgowLhx4wAAo0ePhrOzM2JiYgAA06dPR2BgIJYvX46hQ4ciMTERJ06cwIYNG6RjJiUloW3btujQoQN+/fVXTJ8+HWFhYXjhhRcAAJcvX0ZCQgJefPFF2NnZ4dSpU5g5cyYGDBiAXr16Gf8iEBERUYMie0CKiIjA7du3MW/ePGRnZ6NPnz7Yv3+/NBH72rVrUCr/O9AVEBCAhIQEzJkzB++99x48PT3x9ddfo0ePHlKbrKwsREVFIScnB46Ojhg9ejTmzp0r7VepVDh48KAUxlxcXBAeHo45c+YYr+NERETUYCnE4zOXqdry8/OhVquh0Wi4fhIREVEjUd3vb9kXiiQiIiJqaBiQiIiIiPQwIBERERHpYUAiIiIi0lOrgJSUlIThw4ejR48e6NGjB4YPH44vv/yyvmsjIiIikkWNApJWq0VERAQiIiJw9uxZeHh4wMPDA2fOnEFERARGjBgBPhRHREREjV2N1kFauXIlDh48iN27d2PYsGE6+3bv3o1x48Zh5cqVmDFjRn3WSERERGRUNRpB2rJlC5YuXVouHAHASy+9hCVLlmDz5s31VhwRERGRHGoUkC5evIigoKBK9wcFBeHixYt1LoqIiIhITjUKSBYWFrh7926l+/Pz82Fubl7XmoiIiIhkVaOA5O/vj3Xr1lW6Pz4+Hv7+/nUuioiIiEhONZqkPXv2bAwcOBC5ubl466230KVLFwghcO7cOSxfvhzffPMNDh06ZKhaiYiIiIyiRgEpICAAO3bswKRJk7Bz506dfa1bt8YXX3yBp59+ul4LJCIielxubi6Ki4sBADdvKpGZ2QIdO/4JJyctAEClUsHOzk7OEqkJUIhaLFxUWFiI77//XpqQ3blzZ7zwwguwtLSs9wIbqur+GjAREdWf3NxcrFmzBgCQltYXe/YMgxBKKBRahIbuhZfXSQBAZGQkQxJVqLrf3zUaQfrnP/+JyMhIHD16FP/zP/+js0+j0aB79+5Yv349nn322dpVTUREVIWykSONxloKRwAghBJ79gyDu/slqNX3pHZEtVWjSdpxcXGYOHFihYlLrVbj9ddfR2xsbL0VR0REVJG8PDspHJURQom8PFuZKqKmpkYB6T//+Q9CQkIq3f/CCy8gNTW1zkURERFVxdY2FwqFVmebQqGFrW2eTBVRU1OjgJSTkwNTU9NK97do0QK3b9+uc1FERERVUavvITR0rxSSyuYgqdX3ZK6MmooazUFydnbG6dOn4eHhUeH+U6dOwdHRsV4KIyIiqoqX10m4u19CXp4tbG3zqhWO+AQcVVeNAtKLL76IuXPnIiQkpNyK2Q8ePMD8+fMr/J02IiIiQ1Cr71V71IhPwFFN1CggzZkzB7t27ULnzp0RGRmJp556CgBw/vx5xMfHo7S0FLNnzzZIoURERHXBJ+CoJmoUkOzt7XHkyBG88cYbiI6ORtkSSgqFAsHBwYiPj4e9vb1BCiUiIlKpVHVuV9UTcJzDRGVqFJAAwNXVFfv27cMff/yBS5cuQQgBT09PtG7d2hD1ERERSezs7BAZGVnlKM+T5hGVPQH3eEjiE3Ckr8YBqUzr1q3Rr1+/+qyFiIjoieo6P6jsCTj9OUgcPaLH1TogERERNVa1eQKOmhcGJCIiapZq8gQcNT81WiiSiIiIqDlgQCIiomahPp6Ao+aDt9iIiKhZqI8n4Kj5YEAiIqJmg+GHqou32IiIiIj0MCARERER6WFAIiIiItLDgERERESkhwGJiIiISE+DCEjx8fFwc3ODubk5/Pz8cOzYsSrbJyUloUuXLjA3N0fPnj2xb98+nf05OTkYO3YsnJycYGlpiZCQEFy8eFGnzcOHDzFlyhTY2dmhZcuWCA8PR05OTr33jYiIiBof2QPSjh07EBUVhfnz5yMtLQ29e/dGcHAwbt26VWH7I0eOYOTIkRg/fjxOnjyJsLAwhIWF4fTp0wAAIQTCwsLw22+/4ZtvvsHJkyfh6uqKoKAgFBQUSMeZOXMm9uzZg6SkJPz000+4efMmhg8fbpQ+ExERUcOmEEIIOQvw8/NDv379sGbNGgCAVquFi4sLpk6dinfffbdc+4iICBQUFGDv3r3Stv79+6NPnz5Yv349Lly4gKeeegqnT59G9+7dpWM6ODjgo48+woQJE6DRaNC2bVskJCTgL3/5CwDg/Pnz6Nq1K1JSUtC/f/8n1p2fnw+1Wg2NRgMbG5v6uBRERERkYNX9/pZ1BKm4uBipqakICgqStimVSgQFBSElJaXCz6SkpOi0B4Dg4GCpfVFREQDA3Nxc55hmZmb4+eefAQCpqakoKSnROU6XLl3QoUOHSs9bVFSE/Px8nRcRERE1TbIGpDt37qC0tBT29vY62+3t7ZGdnV3hZ7Kzs6tsXxZ0oqOj8ccff6C4uBgff/wxbty4gaysLOkYKpUKrVq1qvZ5Y2JioFarpZeLi0ttukxERESNgOxzkOqbqakpdu3ahQsXLsDW1haWlpY4dOgQhgwZAqWy9t2Njo6GRqORXtevX6/HqomIiKghkfW32Nq0aQMTE5NyT4/l5OTAwcGhws84ODg8sb23tzfS09Oh0WhQXFyMtm3bws/PDz4+PtIxiouLcffuXZ1RpKrOa2ZmBjMzs9p0k4iIiBoZWUeQVCoVvL29kZycLG3TarVITk6Gv79/hZ/x9/fXaQ8ABw4cqLC9Wq1G27ZtcfHiRZw4cQIvv/wygEcBytTUVOc4GRkZuHbtWqXnJSIiouZD1hEkAIiKisKYMWPg4+MDX19fxMXFoaCgAOPGjQMAjB49Gs7OzoiJiQEATJ8+HYGBgVi+fDmGDh2KxMREnDhxAhs2bJCOmZSUhLZt26JDhw749ddfMX36dISFheGFF14A8Cg4jR8/HlFRUbC1tYWNjQ2mTp0Kf3//aj3BRkRERE2b7AEpIiICt2/fxrx585CdnY0+ffpg//790kTsa9eu6cwdCggIQEJCAubMmYP33nsPnp6e+Prrr9GjRw+pTVZWFqKiopCTkwNHR0eMHj0ac+fO1TnvihUroFQqER4ejqKiIgQHB2Pt2rXG6TQRERE1aLKvg9RYcR0kIiKixqdRrINERERE1BAxIBERERHpYUAiIiIi0sOARERERKSHAYmIiIhIDwMSERERkR4GJCIiIiI9DEhEREREehiQiIiIiPQwIBERERHpYUAiIiIi0sOARERERKSHAYmIiIhIDwMSERERkR4GJCIiIiI9DEhEREREehiQiIiIiPQwIBERERHpYUAiIiIi0sOARERERKSHAYmIiIhIDwMSERERkR4GJCIiIiI9DEhEREREehiQiIiIiPQwIBERERHpYUAiIiIi0sOARERERKSHAYmIiIhIDwMSERERkR4GJCIiIiI9DEhEREREehiQiIiIiPQwIBERERHpaRABKT4+Hm5ubjA3N4efnx+OHTtWZfukpCR06dIF5ubm6NmzJ/bt26ez//79+4iMjET79u1hYWGBbt26Yf369TptBg4cCIVCofOaPHlyvfeNiIiIGh/ZA9KOHTsQFRWF+fPnIy0tDb1790ZwcDBu3bpVYfsjR45g5MiRGD9+PE6ePImwsDCEhYXh9OnTUpuoqCjs378fn3/+Oc6dO4cZM2YgMjISu3fv1jnWxIkTkZWVJb2WLFli0L4SERFR46AQQgg5C/Dz80O/fv2wZs0aAIBWq4WLiwumTp2Kd999t1z7iIgIFBQUYO/evdK2/v37o0+fPtIoUY8ePRAREYG5c+dKbby9vTFkyBAsWrQIwKMRpD59+iAuLq5Wdefn50OtVkOj0cDGxqZWxyAiIiLjqu73t6wjSMXFxUhNTUVQUJC0TalUIigoCCkpKRV+JiUlRac9AAQHB+u0DwgIwO7du/H7779DCIFDhw7hwoULeOGFF3Q+t337drRp0wY9evRAdHQ0CgsLK621qKgI+fn5Oi8iIiJqmlrIefI7d+6gtLQU9vb2Otvt7e1x/vz5Cj+TnZ1dYfvs7Gzp/erVqzFp0iS0b98eLVq0gFKpxMaNGzFgwACpzSuvvAJXV1c4OTnh1KlTeOedd5CRkYFdu3ZVeN6YmBgsWLCgtl0lIiKiRkTWgGQoq1evxtGjR7F79264urriX//6F6ZMmQInJydp9GnSpElS+549e8LR0RGDBw/G5cuX4e7uXu6Y0dHRiIqKkt7n5+fDxcXF8J0hIiIio5M1ILVp0wYmJibIycnR2Z6TkwMHB4cKP+Pg4FBl+wcPHuC9997DV199haFDhwIAevXqhfT0dCxbtqzc7bkyfn5+AIBLly5VGJDMzMxgZmZWsw4SERFRoyTrHCSVSgVvb28kJydL27RaLZKTk+Hv71/hZ/z9/XXaA8CBAwek9iUlJSgpKYFSqds1ExMTaLXaSmtJT08HADg6OtamK0RERNSEyH6LLSoqCmPGjIGPjw98fX0RFxeHgoICjBs3DgAwevRoODs7IyYmBgAwffp0BAYGYvny5Rg6dCgSExNx4sQJbNiwAQBgY2ODwMBAzJo1CxYWFnB1dcVPP/2ETz/9FLGxsQCAy5cvIyEhAS+++CLs7Oxw6tQpzJw5EwMGDECvXr3kuRBERETUYMgekCIiInD79m3MmzcP2dnZ6NOnD/bv3y9NxL527ZrOaFBAQAASEhIwZ84cvPfee/D09MTXX3+NHj16SG0SExMRHR2NV199FXl5eXB1dcWHH34oLQSpUqlw8OBBKYy5uLggPDwcc+bMMW7niYiIqEGSfR2kxorrIBERETU+jWIdJCIiIqKGiAGJiIiISA8DEhEREZEeBiQiIiIiPQxIRERERHoYkIiIiIj0MCARERER6WFAIiIiItLDgERERESkhwGJiIiISA8DEhEREZEeBiQiIiIiPQxIRERERHoYkIiIiIj0MCARERER6WFAIiIiItLDgERERESkhwGJiIiISA8DEhEREZEeBiQiIiIiPQxIRERERHoYkIiIiIj0MCARERER6WFAIiIiItLDgERERESkhwGJiIiISA8DEhEREZEeBiQiIiIiPQxIRERERHoYkIiIiIj0MCARERER6WFAIiIiItLDgERERESkhwGJiIiISA8DEhEREZGeBhGQ4uPj4ebmBnNzc/j5+eHYsWNVtk9KSkKXLl1gbm6Onj17Yt++fTr779+/j8jISLRv3x4WFhbo1q0b1q9fr9Pm4cOHmDJlCuzs7NCyZUuEh4cjJyen3vtGREREjY/sAWnHjh2IiorC/PnzkZaWht69eyM4OBi3bt2qsP2RI0cwcuRIjB8/HidPnkRYWBjCwsJw+vRpqU1UVBT279+Pzz//HOfOncOMGTMQGRmJ3bt3S21mzpyJPXv2ICkpCT/99BNu3ryJ4cOHG7y/RERE1PAphBBCzgL8/PzQr18/rFmzBgCg1Wrh4uKCqVOn4t133y3XPiIiAgUFBdi7d6+0rX///ujTp480StSjRw9ERERg7ty5Uhtvb28MGTIEixYtgkajQdu2bZGQkIC//OUvAIDz58+ja9euSElJQf/+/Z9Yd35+PtRqNTQaDWxsbOp0DYiIiMg4qvv9LesIUnFxMVJTUxEUFCRtUyqVCAoKQkpKSoWfSUlJ0WkPAMHBwTrtAwICsHv3bvz+++8QQuDQoUO4cOECXnjhBQBAamoqSkpKdI7TpUsXdOjQodLzFhUVIT8/X+dFRERETZOsAenOnTsoLS2Fvb29znZ7e3tkZ2dX+Jns7Owntl+9ejW6deuG9u3bQ6VSISQkBPHx8RgwYIB0DJVKhVatWlX7vDExMVCr1dLLxcWlpt0lIiKiRkL2OUiGsHr1ahw9ehS7d+9Gamoqli9fjilTpuDgwYO1PmZ0dDQ0Go30un79ej1WTERERA1JCzlP3qZNG5iYmJR7eiwnJwcODg4VfsbBwaHK9g8ePMB7772Hr776CkOHDgUA9OrVC+np6Vi2bBmCgoLg4OCA4uJi3L17V2cUqarzmpmZwczMrLZdJSIiokZE1hEklUoFb29vJCcnS9u0Wi2Sk5Ph7+9f4Wf8/f112gPAgQMHpPYlJSUoKSmBUqnbNRMTE2i1WgCPJmybmprqHCcjIwPXrl2r9LxERETUfMg6ggQ8eiR/zJgx8PHxga+vL+Li4lBQUIBx48YBAEaPHg1nZ2fExMQAAKZPn47AwEAsX74cQ4cORWJiIk6cOIENGzYAAGxsbBAYGIhZs2bBwsICrq6u+Omnn/Dpp58iNjYWAKBWqzF+/HhERUXB1tYWNjY2mDp1Kvz9/av1BBsREVFDkJubi+Li4kr3q1Qq2NnZGbGipkP2gBQREYHbt29j3rx5yM7ORp8+fbB//35pIva1a9d0RoMCAgKQkJCAOXPm4L333oOnpye+/vpr9OjRQ2qTmJiI6OhovPrqq8jLy4Orqys+/PBDTJ48WWqzYsUKKJVKhIeHo6ioCMHBwVi7dq3xOk5ERFQHubm50hI5VYmMjGRIqgXZ10FqrLgOEhERySkrK0u6e1KVSZMmwdHR0QgVNQ6NYh0kIiIiqh8ajTUyM92g0VjLXUqTIPstNiIiIqqbtLS+2LNnGIRQQqHQIjR0L7y8TspdVqPGESQiIqJGTKOxlsIRAAihxJ49wziSVEcMSERERI1YXp6dFI7KCKFEXp6tTBU1DQxIREREjZitbS4UCq3ONoVCC1vbPJkqahoYkIiIiBoxtfoeQkP3SiGpbA6SWn1P5soaN07SJiIiaoRUKpX0Zy+vk3B3v4S8PFvY2ubphKPH21H1MSARERE1QnZ2doiMjORK2gbCgERERNRIMfwYDucgEREREelhQCIiIiLSw4BEREREpIcBiYiIiEgPAxIRERGRHgYkIiIiIj0MSERERER6uA4SERER6cjNzW32C1AyIBEREZEkNzcXa9aseWK7yMjIJh2SeIuNiIiIJFWNHNWmXWPFgERERESkhwGJiIiIKqXRWCMz0w0ajbXcpRgV5yARERFRhdLS+mLPnmEQQgmFQovQ0L3w8jpZ6+M1psnfDEhERERUjkZjLYUjABBCiT17hsHd/RLU6ns1Pl5jm/zNW2xERERUTl6enRSOygihRF6eba2O19gmfzMgERERUTm2trlQKLQ62xQKLWxt82SqyLgYkIiIiEiiUqkAAGr1PYSG7pVCUtkcpLLba2XtmirOQSIiIiKJnZ0dIiMjpVtd8+bdxpUrLeDm9iecnPoB6Fcvk6k1Gmvk5dnB1ja3VnOaDI0BiYiIiHQ8Hn4cHQFv7/o9fn0/HWcIvMVGRERERlPZ03ENbZ0lBiQiIiIymvp+Os5QGJCIiIjI4MomdT/p6biGMvmbc5CIiIjI4B6f/O3snI933lGjtFQBExOBjz/OxyuvjGxQK2krhBBC7iIao/z8fKjVamg0GtjY2MhdDhERUaNy4wZw6RLg4QG0b2+881b3+5sjSERERGR07dsbNxjVVIOYgxQfHw83NzeYm5vDz88Px44dq7J9UlISunTpAnNzc/Ts2RP79u3T2a9QKCp8LV26VGrj5uZWbv/ixYsN0j8iIiKqWm5uLrKysip95ebmGrUe2UeQduzYgaioKKxfvx5+fn6Ii4tDcHAwMjIy0K5du3Ltjxw5gpEjRyImJgbDhg1DQkICwsLCkJaWhh49egAAsrKydD7z3XffYfz48QgPD9fZ/sEHH2DixInSe2vrhvWIIRERUXPQEH/IVvYRpNjYWEycOBHjxo1Dt27dsH79elhaWmLz5s0Vtl+5ciVCQkIwa9YsdO3aFQsXLoSXl5fOhXVwcNB5ffPNN3juuefQqVMnnWNZW1vrtLOysjJoX4mIiKi8hvhDtrIGpOLiYqSmpiIoKEjaplQqERQUhJSUlAo/k5KSotMeAIKDgyttn5OTg2+//Rbjx48vt2/x4sWws7ND3759sXTpUvz555916A0RERE1FbLeYrtz5w5KS0thb2+vs93e3h7nz5+v8DPZ2dkVts/Ozq6w/bZt22BtbY3hw4frbJ82bRq8vLxga2uLI0eOIDo6GllZWYiNja3wOEVFRSgqKpLe5+fnP7F/RERE1DjJPgfJ0DZv3oxXX30V5ubmOtujoqKkP/fq1QsqlQqvv/46YmJiYGZmVu44MTExWLBggcHrJSIiIvnJeoutTZs2MDExQU5Ojs72nJwcODg4VPgZBweHarf/97//jYyMDEyYMOGJtfj5+eHPP//ElStXKtwfHR0NjUYjva5fv/7EYxIREVHNaTTWyMx0k/X32WQNSCqVCt7e3khOTpa2abVaJCcnw9/fv8LP+Pv767QHgAMHDlTYftOmTfD29kbv3r2fWEt6ejqUSmWFT84BgJmZGWxsbHReREREVL/S0voiLm4Gtm0bg7i4GUhL6ytLHbLfYouKisKYMWPg4+MDX19fxMXFoaCgAOPGjQMAjB49Gs7OzoiJiQEATJ8+HYGBgVi+fDmGDh2KxMREnDhxAhs2bNA5bn5+PpKSkrB8+fJy50xJScEvv/yC5557DtbW1khJScHMmTPx2muvoXXr1obvNBEREZWj0Vhjz55h0o/ZCqHEnj3D4O5+CWr1PaPWIntAioiIwO3btzFv3jxkZ2ejT58+2L9/vzQR+9q1a1Aq/zvQFRAQgISEBMyZMwfvvfcePD098fXXX0trIJVJTEyEEAIjR44sd04zMzMkJibi/fffR1FRETp27IiZM2fqzEsiIiIi4yj7gdq8PDspHJURQom8PFuo1feM+kO2/C22WuJvsREREdWf3NxcXLnyJ3x920GrVUjbTUwEfvnlFtzcWtTLIpHV/f6WfaFIIiIiIjs7O3h722PDBgVMTB5tMzEBPvlEAW9ve6OtoF1G9ltsRERERGXGjweCg4FLlwAPD/l+0JYBiYiIiBqU9u3lC0ZleIuNiIiISA8DEhEREZEeBiQiIiIiPQxIRERERHoYkIiIiIj0MCARERER6WFAIiIiItLDgERERESkhwGJiIiISA8DEhEREZEeBiQiIiIiPfwttloSQgAA8vPzZa6EiIiIqqvse7vse7wyDEi1dO/ePQCAi4uLzJUQERFRTd27dw9qtbrS/QrxpAhFFdJqtbh58yasra2hUCjK7c/Pz4eLiwuuX78OGxsbGSps+HiNqsbr82S8Rk/Ga/RkvEZP1pSukRAC9+7dg5OTE5TKymcacQSplpRKJdq3b//EdjY2No3+L5Oh8RpVjdfnyXiNnozX6Ml4jZ6sqVyjqkaOynCSNhEREZEeBiQiIiIiPQxIBmJmZob58+fDzMxM7lIaLF6jqvH6PBmv0ZPxGj0Zr9GTNcdrxEnaRERERHo4gkRERESkhwGJiIiISA8DEhEREZEeBiQiIiIiPQxIdRAfHw83NzeYm5vDz88Px44dq7TtmTNnEB4eDjc3NygUCsTFxRmvUJnU5Pps3LgRzz77LFq3bo3WrVsjKCioyvZNRU2u0a5du+Dj44NWrVrBysoKffr0wWeffWbEauVRk2v0uMTERCgUCoSFhRm2wAagJtdo69atUCgUOi9zc3MjViuPmv49unv3LqZMmQJHR0eYmZmhc+fO2Ldvn5GqlUdNrtHAgQPL/T1SKBQYOnSoESs2MEG1kpiYKFQqldi8ebM4c+aMmDhxomjVqpXIycmpsP2xY8fEW2+9Jb744gvh4OAgVqxYYdyCjaym1+eVV14R8fHx4uTJk+LcuXNi7NixQq1Wixs3bhi5cuOp6TU6dOiQ2LVrlzh79qy4dOmSiIuLEyYmJmL//v1Grtx4anqNymRmZgpnZ2fx7LPPipdfftk4xcqkptdoy5YtwsbGRmRlZUmv7OxsI1dtXDW9RkVFRcLHx0e8+OKL4ueffxaZmZnixx9/FOnp6Uau3Hhqeo1yc3N1/g6dPn1amJiYiC1bthi3cANiQKolX19fMWXKFOl9aWmpcHJyEjExMU/8rKura5MPSHW5PkII8eeffwpra2uxbds2Q5Uou7peIyGE6Nu3r5gzZ44hymsQanON/vzzTxEQECD+8Y9/iDFjxjT5gFTTa7RlyxahVquNVF3DUNNrtG7dOtGpUydRXFxsrBJlV9d/j1asWCGsra3F/fv3DVWi0fEWWy0UFxcjNTUVQUFB0jalUomgoCCkpKTIWFnDUB/Xp7CwECUlJbC1tTVUmbKq6zUSQiA5ORkZGRkYMGCAIUuVTW2v0QcffIB27dph/PjxxihTVrW9Rvfv34erqytcXFzw8ssv48yZM8YoVxa1uUa7d++Gv78/pkyZAnt7e/To0QMfffQRSktLjVW2UdXHv9mbNm3CiBEjYGVlZagyjY4BqRbu3LmD0tJS2Nvb62y3t7dHdna2TFU1HPVxfd555x04OTnp/A+2KantNdJoNGjZsiVUKhWGDh2K1atX4/nnnzd0ubKozTX6+eefsWnTJmzcuNEYJcquNtfoqaeewubNm/HNN9/g888/h1arRUBAAG7cuGGMko2uNtfot99+w5dffonS0lLs27cPc+fOxfLly7Fo0SJjlGx0df03+9ixYzh9+jQmTJhgqBJl0ULuAoj0LV68GImJifjxxx+bxeTRmrC2tkZ6ejru37+P5ORkREVFoVOnThg4cKDcpcnu3r17GDVqFDZu3Ig2bdrIXU6D5e/vD39/f+l9QEAAunbtik8++QQLFy6UsbKGQ6vVol27dtiwYQNMTEzg7e2N33//HUuXLsX8+fPlLq/B2bRpE3r27AlfX1+5S6lXDEi10KZNG5iYmCAnJ0dne05ODhwcHGSqquGoy/VZtmwZFi9ejIMHD6JXr16GLFNWtb1GSqUSHh4eAIA+ffrg3LlziImJaZIBqabX6PLly7hy5QpCQ0OlbVqtFgDQokULZGRkwN3d3bBFG1l9/FtkamqKvn374tKlS4YoUXa1uUaOjo4wNTWFiYmJtK1r167Izs5GcXExVCqVQWs2trr8PSooKEBiYiI++OADQ5YoC95iqwWVSgVvb28kJydL27RaLZKTk3X+P7PmqrbXZ8mSJVi4cCH2798PHx8fY5Qqm/r6O6TValFUVGSIEmVX02vUpUsX/Prrr0hPT5deL730Ep577jmkp6fDxcXFmOUbRX38PSotLcWvv/4KR0dHQ5Upq9pco6effhqXLl2SAjYAXLhwAY6Ojk0uHAF1+3uUlJSEoqIivPbaa4Yu0/jkniXeWCUmJgozMzOxdetWcfbsWTFp0iTRqlUr6XHZUaNGiXfffVdqX1RUJE6ePClOnjwpHB0dxVtvvSVOnjwpLl68KFcXDKqm12fx4sVCpVKJL7/8UufR0Xv37snVBYOr6TX66KOPxA8//CAuX74szp49K5YtWyZatGghNm7cKFcXDK6m10hfc3iKrabXaMGCBeL7778Xly9fFqmpqWLEiBHC3NxcnDlzRq4uGFxNr9G1a9eEtbW1iIyMFBkZGWLv3r2iXbt2YtGiRXJ1weBq+7+1Z555RkRERBi7XKNgQKqD1atXiw4dOgiVSiV8fX3F0aNHpX2BgYFizJgx0vvMzEwBoNwrMDDQ+IUbSU2uj6ura4XXZ/78+cYv3Ihqco1mz54tPDw8hLm5uWjdurXw9/cXiYmJMlRtXDW5RvqaQ0ASombXaMaMGVJbe3t78eKLL4q0tDQZqjaumv49OnLkiPDz8xNmZmaiU6dO4sMPPxR//vmnkas2rppeo/PnzwsA4ocffjBypcahEEIImQaviIiIiBokzkEiIiIi0sOARERERKSHAYmIiIhIDwMSERERkR4GJCIiIiI9DEhEREREehiQiIiIiPQwIBERNXBjx45FWFiY3GUQNSsMSERUa2PHjoVCoZBednZ2CAkJwalTp+QurV483rey1zPPPGOw8125cgUKhQLp6ek621euXImtW7ca7LxEVB4DEhHVSUhICLKyspCVlYXk5GS0aNECw4YNk7userNlyxapf1lZWdi9e3eF7UpKSgxWg1qtRqtWrQx2fCIqjwGJiOrEzMwMDg4OcHBwQJ8+ffDuu+/i+vXruH37NgYNGoTIyEid9rdv34ZKpZJ+OdzNzQ0LFy7EyJEjYWVlBWdnZ8THx+t8JjY2Fj179oSVlRVcXFzwv//7v7h//760/+rVqwgNDUXr1q1hZWWF7t27Y9++fQCAP/74A6+++iratm0LCwsLeHp6YsuWLdXuX6tWraT+OTg4wNbWVhrp2bFjBwIDA2Fubo7t27cjNzcXI0eOhLOzMywtLdGzZ0988cUXOsfTarVYsmQJPDw8YGZmhg4dOuDDDz8EAHTs2BEA0LdvXygUCgwcOBBA+VtsRUVFmDZtGtq1awdzc3M888wzOH78uLT/xx9/hEKhQHJyMnx8fGBpaYmAgABkZGRUu99EzR0DEhHVm/v37+Pzzz+Hh4cH7OzsMGHCBCQkJKCoqEhq8/nnn8PZ2RmDBg2Sti1duhS9e/fGyZMn8e6772L69Ok4cOCAtF+pVGLVqlU4c+YMtm3bhn/+8594++23pf1TpkxBUVER/vWvf+HXX3/Fxx9/jJYtWwIA5s6di7Nnz+K7777DuXPnsG7dOrRp06Ze+ltW67lz5xAcHIyHDx/C29sb3377LU6fPo1JkyZh1KhROHbsmPSZ6OhoLF68WKorISEB9vb2ACC1O3jwILKysrBr164Kz/v2229j586d2LZtG9LS0uDh4YHg4GDk5eXptJs9ezaWL1+OEydOoEWLFvj73/9eL/0mahbk/rVcImq8xowZI0xMTISVlZWwsrISAISjo6NITU0VQgjx4MED0bp1a7Fjxw7pM7169RLvv/++9N7V1VWEhIToHDciIkIMGTKk0vMmJSUJOzs76X3Pnj11jvm40NBQMW7cuFr1D4AwNzeX+mdlZSW++uorkZmZKQCIuLi4Jx5j6NCh4s033xRCCJGfny/MzMzExo0bK2xbdtyTJ0/qbB8zZox4+eWXhRBC3L9/X5iamort27dL+4uLi4WTk5NYsmSJEEKIQ4cOCQDi4MGDUptvv/1WABAPHjyoySUgarY4gkREdfLcc88hPT0d6enpOHbsGIKDgzFkyBBcvXoV5ubmGDVqFDZv3gwASEtLw+nTpzF27FidY/j7+5d7f+7cOen9wYMHMXjwYDg7O8Pa2hqjRo1Cbm4uCgsLAQDTpk3DokWL8PTTT2P+/Pk6k8TfeOMNJCYmok+fPnj77bdx5MiRGvVvxYoVUv/S09Px/PPPS/t8fHx02paWlmLhwoXo2bMnbG1t0bJlS3z//fe4du0aAODcuXMoKirC4MGDa1TD4y5fvoySkhI8/fTT0jZTU1P4+vrqXDMA6NWrl/RnR0dHAMCtW7dqfW6i5oQBiYjqxMrKCh4eHvDw8EC/fv3wj3/8AwUFBdi4cSMAYMKECThw4ABu3LiBLVu2YNCgQXB1da328a9cuYJhw4ahV69e2LlzJ1JTU6U5SsXFxdI5fvvtN4waNQq//vorfHx8sHr1agCQwtrMmTNx8+ZNDB48GG+99Va1z+/g4CD1z8PDA1ZWVjp9f9zSpUuxcuVKvPPOOzh06BDS09MRHBws1WlhYVHt89YHU1NT6c8KhQLAozlQRPRkDEhEVK8UCgWUSiUePHgAAOjZsyd8fHywceNGJCQkVDgP5ujRo+Xed+3aFQCQmpoKrVaL5cuXo3///ujcuTNu3rxZ7hguLi6YPHkydu3ahTfffFMKaADQtm1bjBkzBp9//jni4uKwYcOG+uyy5PDhw3j55Zfx2muvoXfv3ujUqRMuXLgg7ff09ISFhYU0QV2fSqUC8GgkqjLu7u5QqVQ4fPiwtK2kpATHjx9Ht27d6qknRNRC7gKIqHErKipCdnY2gEdPjK1Zswb3799HaGio1GbChAmIjIyElZUV/ud//qfcMQ4fPowlS5YgLCwMBw4cQFJSEr799lsAgIeHB0pKSrB69WqEhobi8OHDWL9+vc7nZ8yYgSFDhqBz5874448/cOjQISlgzZs3D97e3ujevTuKioqwd+9eaV998/T0xJdffokjR46gdevWiI2NRU5OjhRczM3N8c477+Dtt9+GSqXC008/jdu3b+PMmTMYP3482rVrBwsLC+zfvx/t27eHubk51Gq1zjmsrKzwxhtvYNasWbC1tUWHDh2wZMkSFBYWYvz48QbpF1FzxBEkIqqT/fv3w9HREY6OjvDz88Px48eRlJQkPaIOACNHjkSLFi0wcuRImJublzvGm2++iRMnTqBv375YtGgRYmNjERwcDADo3bs3YmNj8fHHH6NHjx7Yvn07YmJidD5fWlqKKVOmoGvXrggJCUHnzp2xdu1aAI9GZaKjo9GrVy8MGDAAJiYmSExMNMi1mDNnDry8vBAcHIyBAwfCwcGh3ArYc+fOxZtvvol58+aha9euiIiIkOYFtWjRAqtWrcInn3wCJycnvPzyyxWeZ/HixQgPD8eoUaPg5eWFS5cu4fvvv0fr1q0N0i+i5kghhBByF0FETduVK1fg7u6O48ePw8vLS2efm5sbZsyYgRkzZshTHBFRBXiLjYgMpqSkBLm5uZgzZw769+9fLhwRETVUvMVGRAZz+PBhODo64vjx4+XmDcnto48+QsuWLSt8DRkyRO7yiEhmvMVGRM1SXl5euZWny1hYWMDZ2dnIFRFRQ8KARERERKSHt9iIiIiI9DAgEREREelhQCIiIiLSw4BEREREpIcBiYiIiEgPAxIRERGRHgYkIiIiIj0MSERERER6/j8utWkd1meNpQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVERJREFUeJzt3XlcVFXjP/DPDDJswhiILIqgiCIuKKiIpZiRaErxSIlLSeT6fMVUyqcwdyssNwxRs5dbC2kmrvlQyqOWipogmam44ZaACjkgKBBzfn/44+YMi4DMDMvn/XrNS+bec+8953JjPp177hmZEEKAiIiIiCRyQ1eAiIiIqK5hQCIiIiLSwoBEREREpIUBiYiIiEgLAxIRERGRFgYkIiIiIi0MSERERERaGJCIiIiItDAgEREREWlhQCIiqsc2btwImUyGq1evGroqRA0KAxIRVerXX39FeHg4OnXqBAsLC7Ru3RrDhw/HhQsXypTt378/ZDIZZDIZ5HI5rKys0KFDB7zxxhvYt29ftY67e/du+Pn5oUWLFjA3N0fbtm0xfPhwJCQk1FbTyvj444+xY8eOMsuPHj2KefPm4d69ezo7trZ58+ZJ51Imk8Hc3BweHh6YNWsWcnNza+UYcXFxiI6OrpV9ETU0DEhEVKlPPvkE27ZtwwsvvIAVK1ZgwoQJ+Pnnn+Hl5YUzZ86UKd+qVSt89dVX+PLLL7F48WK8/PLLOHr0KAYOHIiQkBAUFxc/8ZhLlizByy+/DJlMhsjISCxfvhzBwcG4ePEiNm/erItmAqg8IM2fP1+vAanU6tWr8dVXX2HZsmVwd3fHRx99hEGDBqE2vkaTAYmoYk0MXQEiqtsiIiIQFxcHhUIhLQsJCUGXLl2waNEifP311xrllUolXn/9dY1lixYtwttvv41Vq1bBxcUFn3zySYXH+/vvv7Fw4UK8+OKL+Omnn8qsv3379lO2qO4oKCiAubl5pWVeffVVNG/eHAAwadIkBAcHIz4+HseOHYOvr68+qknUKLEHiYgq1adPH41wBABubm7o1KkTzp07V6V9GBkZ4bPPPoOHhwdWrlwJlUpVYdm7d+8iNzcXzz77bLnrW7RoofH+4cOHmDdvHtq3bw9TU1M4ODhg2LBhuHz5slRmyZIl6NOnD2xsbGBmZgZvb298//33GvuRyWTIz8/Hpk2bpNtab775JubNm4cZM2YAANq0aSOte3zMz9dffw1vb2+YmZnB2toaI0aMwI0bNzT2379/f3Tu3BnJycno168fzM3NMXPmzCqdv8cNGDAAAJCenl5puVWrVqFTp04wMTGBo6MjJk+erNED1r9/f/zwww+4du2a1CYXF5dq14eooWIPEhFVmxACWVlZ6NSpU5W3MTIywsiRIzF79mwcPnwYQ4YMKbdcixYtYGZmht27d2PKlCmwtraucJ8lJSUYOnQoEhMTMWLECEydOhV5eXnYt28fzpw5A1dXVwDAihUr8PLLL2P06NEoKirC5s2b8dprr2HPnj1SPb766iuMGzcOvXr1woQJEwAArq6usLCwwIULF/Dtt99i+fLlUm+Ora0tAOCjjz7C7NmzMXz4cIwbNw537txBTEwM+vXrh1OnTqFZs2ZSfbOzszF48GCMGDECr7/+Ouzs7Kp8/kqVBj8bG5sKy8ybNw/z58+Hv78//v3vfyMtLQ2rV6/Gr7/+iiNHjsDY2BgffPABVCoVbt68ieXLlwMAmjZtWu36EDVYgoiomr766isBQKxbt05juZ+fn+jUqVOF223fvl0AECtWrKh0/3PmzBEAhIWFhRg8eLD46KOPRHJycply69evFwDEsmXLyqxTq9XSzwUFBRrrioqKROfOncWAAQM0lltYWIjQ0NAy+1q8eLEAINLT0zWWX716VRgZGYmPPvpIY/nvv/8umjRporHcz89PABBr1qypsN2Pmzt3rgAg0tLSxJ07d0R6err4/PPPhYmJibCzsxP5+flCCCE2bNigUbfbt28LhUIhBg4cKEpKSqT9rVy5UgAQ69evl5YNGTJEODs7V6k+RI0Nb7ERUbWcP38ekydPhq+vL0JDQ6u1bWkPRV5eXqXl5s+fj7i4OHTv3h0//vgjPvjgA3h7e8PLy0vjtt62bdvQvHlzTJkypcw+ZDKZ9LOZmZn0819//QWVSoW+ffsiJSWlWvXXFh8fD7VajeHDh+Pu3bvSy97eHm5ubjhw4IBGeRMTE4SFhVXrGB06dICtrS3atGmDiRMnol27dvjhhx8qHLu0f/9+FBUVYdq0aZDL//kTP378eFhZWeGHH36ofkOJGiHeYiOiKsvMzMSQIUOgVCrx/fffw8jIqFrb379/HwBgaWn5xLIjR47EyJEjkZubi+PHj2Pjxo2Ii4tDYGAgzpw5A1NTU1y+fBkdOnRAkyaV/ynbs2cPPvzwQ6SmpqKwsFBa/niIqomLFy9CCAE3N7dy1xsbG2u8b9myZZnxXE+ybds2WFlZwdjYGK1atZJuG1bk2rVrAB4Fq8cpFAq0bdtWWk9ElWNAIqIqUalUGDx4MO7du4dffvkFjo6O1d5H6bQA7dq1q/I2VlZWePHFF/Hiiy/C2NgYmzZtwvHjx+Hn51el7X/55Re8/PLL6NevH1atWgUHBwcYGxtjw4YNiIuLq3YbHqdWqyGTyfDf//633LCoPabn8Z6squrXr5807omI9IcBiYie6OHDhwgMDMSFCxewf/9+eHh4VHsfJSUliIuLg7m5OZ577rka1aNHjx7YtGkTMjIyADwaRH38+HEUFxeX6a0ptW3bNpiamuLHH3+EiYmJtHzDhg1lylbUo1TRcldXVwgh0KZNG7Rv3766zdEJZ2dnAEBaWhratm0rLS8qKkJ6ejr8/f2lZU/bg0bUkHEMEhFVqqSkBCEhIUhKSsLWrVtrNPdOSUkJ3n77bZw7dw5vv/02rKysKixbUFCApKSkctf997//BfDP7aPg4GDcvXsXK1euLFNW/P+JFI2MjCCTyVBSUiKtu3r1arkTQlpYWJQ7GaSFhQUAlFk3bNgwGBkZYf78+WUmbhRCIDs7u/xG6pC/vz8UCgU+++wzjTqtW7cOKpVK4+lBCwuLSqdcIGrM2INERJV65513sGvXLgQGBiInJ6fMxJDak0KqVCqpTEFBAS5duoT4+HhcvnwZI0aMwMKFCys9XkFBAfr06YPevXtj0KBBcHJywr1797Bjxw788ssvCAoKQvfu3QEAY8aMwZdffomIiAicOHECffv2RX5+Pvbv34//+7//wyuvvIIhQ4Zg2bJlGDRoEEaNGoXbt28jNjYW7dq1w+nTpzWO7e3tjf3792PZsmVwdHREmzZt4OPjA29vbwDABx98gBEjRsDY2BiBgYFwdXXFhx9+iMjISFy9ehVBQUGwtLREeno6tm/fjgkTJuDdd999qvNfXba2toiMjMT8+fMxaNAgvPzyy0hLS8OqVavQs2dPjd+Xt7c3tmzZgoiICPTs2RNNmzZFYGCgXutLVGcZ8hE6Iqr7Sh9Pr+hVWdmmTZsKNzc38frrr4uffvqpSscrLi4WX3zxhQgKChLOzs7CxMREmJubi+7du4vFixeLwsJCjfIFBQXigw8+EG3atBHGxsbC3t5evPrqq+Ly5ctSmXXr1gk3NzdhYmIi3N3dxYYNG6TH6B93/vx50a9fP2FmZiYAaDzyv3DhQtGyZUshl8vLPPK/bds28dxzzwkLCwthYWEh3N3dxeTJk0VaWprGualsCgRtpfW7c+dOpeW0H/MvtXLlSuHu7i6MjY2FnZ2d+Pe//y3++usvjTL3798Xo0aNEs2aNRMA+Mg/0WNkQtTCF/oQERERNSAcg0RERESkhQGJiIiISAsDEhEREZEWBiQiIiIiLQxIRERERFoYkIiIiIi0cKLIGlKr1bh16xYsLS05XT8REVE9IYRAXl4eHB0dIZdX3E/EgFRDt27dgpOTk6GrQURERDVw48YNtGrVqsL1DEg1ZGlpCeDRCa7se6WIiIio7sjNzYWTk5P0OV4RBqQaKr2tZmVlxYBERERUzzxpeAwHaRMRERFpYUAiIiIi0sKARERERKSFY5CIiIj0qKSkBMXFxYauRoNlbGwMIyOjp94PAxIREZEeCCGQmZmJe/fuGboqDV6zZs1gb2//VPMUMiARERHpQWk4atGiBczNzTnJsA4IIVBQUIDbt28DABwcHGq8LwYkIiIiHSspKZHCkY2NjaGr06CZmZkBAG7fvo0WLVrU+HYbB2kTERHpWOmYI3NzcwPXpHEoPc9PM9aLAYmIiEhPeFtNP2rjPPMWG1EDlp2djaKiogrXKxQKdvcTEZWDAYmogcrOzsbKlSufWC48PJwhiYhIC2+xETVQlfUc1aQcETVOb775JmQyGWQyGYyNjWFnZ4cXX3wR69evh1qtrvJ+Nm7ciGbNmumuorWMPUhEjYRKZYmcHBtYW2dDqcwzdHWIqJoMect80KBB2LBhA0pKSpCVlYWEhARMnToV33//PXbt2oUmTRpenGh4LSKiMlJSumP37qEQQg6ZTI3AwD3w8jpl6GoRURUZ+pa5iYkJ7O3tAQAtW7aEl5cXevfujRdeeAEbN27EuHHjsGzZMmzYsAFXrlyBtbU1AgMD8emnn6Jp06Y4ePAgwsLCAPwzgHru3LmYN28evvrqK6xYsQJpaWmwsLDAgAEDEB0djRYtWtR6O6qDt9iIGjiVylIKRwAghBy7dw+FSmVp4JoRUVXVxVvmAwYMgKenJ+Lj4wEAcrkcn332Gf744w9s2rQJ//vf//Cf//wHANCnTx9ER0fDysoKGRkZyMjIwLvvvgvg0aP4CxcuxG+//YYdO3bg6tWrePPNN/XWjoqwB4mogcvJsZHCUSkh5MjJseatNiJ6Ku7u7jh9+jQAYNq0adJyFxcXfPjhh5g0aRJWrVoFhUIBpVIJmUwm9USVeuutt6Sf27Zti88++ww9e/bE/fv30bRpU720ozzsQSJq4KytsyGTaQ6klMnUsLbOMVCNiKihEEJIt8z279+PF154AS1btoSlpSXeeOMNZGdno6CgoNJ9JCcnIzAwEK1bt4alpSX8/PwAANevX9d5/SvDgETUwCmVeQgM3COFpNIxSOw9IqKnde7cObRp0wZXr17F0KFD0bVrV2zbtg3JycmIjY0FUPltv/z8fAQEBMDKygrffPMNfv31V2zfvv2J2+kDb7ERNVAKhUL62cvrFFxdLyEnxxrW1jka4ejxckREVfW///0Pv//+O6ZPn47k5GSo1WosXboUcvmjvpfvvvtOo7xCoUBJSYnGsvPnzyM7OxuLFi2Ck5MTAODkyZP6acATMCARNVA2NjYIDw/nTNpE9NQKCwuRmZmp8Zh/VFQUhg4dijFjxuDMmTMoLi5GTEwMAgMDceTIEaxZs0ZjHy4uLrh//z4SExPh6ekJc3NztG7dGgqFAjExMZg0aRLOnDmDhQsXGqiVmniLjagBs7GxgYODQ4UvhiMiqoqEhAQ4ODjAxcUFgwYNwoEDB/DZZ59h586dMDIygqenJ5YtW4ZPPvkEnTt3xjfffIOoqCiNffTp0weTJk1CSEgIbG1t8emnn8LW1hYbN27E1q1b4eHhgUWLFmHJkiUGaqUmmRBCGLoS9VFubi6USiVUKhWsrKwMXR0iIqrDHj58iPT0dLRp0wampqbV3t7Q8yDVN5Wd76p+fhv8FltsbCwWL16MzMxMeHp6IiYmBr169Sq37B9//IE5c+YgOTkZ165dw/LlyzUeKwSAn3/+GYsXL0ZycjIyMjKwfft2BAUFaZQRQmDu3Ln44osvcO/ePTz77LNYvXo13NzcdNRKIiKimuMtc/0z6C22LVu2ICIiAnPnzkVKSgo8PT0REBCA27dvl1u+oKAAbdu2xaJFi8rMo1AqPz8fnp6e0uj58nz66af47LPPsGbNGhw/fhwWFhYICAjAw4cPa6VdREREtY23zPXLoLfYfHx80LNnT6nbUK1Ww8nJCVOmTMH7779f6bYuLi6YNm1amR6kx8lksjI9SEIIODo64p133pFm8VSpVLCzs8PGjRsxYsSIKtWdt9iIiKiqnvYWG1VPbdxiM1gPUlFREZKTk+Hv7/9PZeRy+Pv7IykpSWfHTU9PR2ZmpsZxlUolfHx8Kj1uYWEhcnNzNV5ERETUMBksIN29exclJSWws7PTWG5nZ4fMzEydHbd039U9blRUFJRKpfQqna+BiIiIGh4+5l9FkZGRUKlU0uvGjRuGrhIRERHpiMECUvPmzWFkZISsrCyN5VlZWRUOwK4Npfuu7nFNTExgZWWl8SIiIqKGyWABSaFQwNvbG4mJidIytVqNxMRE+Pr66uy4bdq0gb29vcZxc3Nzcfz4cZ0el4iIiOoPg86DFBERgdDQUPTo0QO9evVCdHQ08vPzERYWBgAYM2YMWrZsKc3GWVRUhLNnz0o///nnn0hNTUXTpk3Rrl07AMD9+/dx6dIl6Rjp6elITU2FtbU1WrduDZlMhmnTpuHDDz+Em5sb2rRpg9mzZ8PR0bHMfElERETUSAkDi4mJEa1btxYKhUL06tVLHDt2TFrn5+cnQkNDpffp6ekCQJmXn5+fVObAgQPllnl8P2q1WsyePVvY2dkJExMT8cILL4i0tLRq1VulUgkAQqVS1bTpRETUSDx48ECcPXtWPHjwwNBVqXNKP7f/+uuvKm/j7Owsli9fXuH6ys53VT+/DT5IOzw8HNeuXUNhYSGOHz8OHx8fad3BgwexceNG6b2LiwuEEGVeBw8elMr079+/3DKP70cmk2HBggXIzMzEw4cPsX//frRv314PrSUiIqpf3nzzTchkMkyaNKnMusmTJ0Mmk+HNN9/Uf8V0zOABiYiIiOo2JycnbN68GQ8ePJCWPXz4EHFxcWjdurUBa6Y7DEhERERUKS8vLzg5OSE+Pl5aFh8fj9atW6N79+7SssLCQrz99tto0aIFTE1N8dxzz+HXX3/V2NfevXvRvn17mJmZ4fnnn8fVq1fLHO/w4cPo27cvzMzM4OTkhLfffhv5+fk6a195GJCIiIjqmZs3gQMHHv2rL2+99RY2bNggvV+/fr30UFWp//znP9i2bRs2bdqElJQUtGvXDgEBAcjJyQEA3LhxA8OGDUNgYCBSU1Mxbty4Ml8tdvnyZQwaNAjBwcE4ffo0tmzZgsOHDyM8PFz3jXwMAxIREVE9sm4d4OwMDBjw6N916/Rz3Ndffx2HDx/GtWvXcO3aNRw5cgSvv/66tD4/Px+rV6/G4sWLMXjwYHh4eOCLL76AmZkZ1v3/Sq5evRqurq5YunQpOnTogNGjR5cZvxQVFYXRo0dj2rRpcHNzQ58+ffDZZ5/hyy+/1OuXyhv0MX8iIiKqups3gQkTALX60Xu1Gpg4EQgIAFq10u2xbW1tMWTIEGzcuBFCCAwZMgTNmzeX1l++fBnFxcV49tlnpWXGxsbo1asXzp07BwA4d+6cxsNYAMrMQfjbb7/h9OnT+Oabb6RlQgio1Wqkp6ejY8eOumheGQxIRERE9cTFi/+Eo1IlJcClS7oPSMCj22ylt7piY2N1coz79+9j4sSJePvtt8us0+eAcAYkIiKiesLNDZDLNUOSkRHw/+dK1rlBgwahqKgIMpkMAQEBGutcXV2hUChw5MgRODs7AwCKi4vx66+/Ytq0aQCAjh07YteuXRrbHTt2TOO9l5cXzp49K00AbSgcg0RERFRPtGoFrF37KBQBj/79/HP99B49Op4Rzp07h7Nnz8KotBL/n4WFBf79739jxowZSEhIwNmzZzF+/HgUFBRg7NixAIBJkybh4sWLmDFjBtLS0hAXF6cxTyEAvPfeezh69CjCw8ORmpqKixcvYufOnXofpM0eJCIionpk7NhHY44uXXrUc6SvcFSqsi9rX7RoEdRqNd544w3k5eWhR48e+PHHH/HMM88AeHSLbNu2bZg+fTpiYmLQq1cvfPzxx3jrrbekfXTt2hWHDh3CBx98gL59+0IIAVdXV4SEhOi8bY+TCSGEXo/YQOTm5kKpVEKlUlV6sRARET18+BDp6elo06YNTE1NDV2dBq+y813Vz2/eYiMiIiLSwoBEREREpIUBiYiIiEgLAxIRERGRFgYkIiIiPeFzUfpRG+eZAYmIiEjHjI2NAQAFBQUGrknjUHqeS897TXAeJCIiIh0zMjJCs2bNcPv2bQCAubk5ZDKZgWvV8AghUFBQgNu3b6NZs2ZlJrOsDgYkIiIiPbC3twcAKSSR7jRr1kw63zXFgERERKQHMpkMDg4OaNGiBYqLiw1dnQbL2Nj4qXqOSjEgERER6ZGRkVGtfICTbnGQNhEREZEWBiQiIiIiLQxIRERERFoYkIiIiIi0MCARERERaWFAIiIiItLCgERERESkhQGJiIiISAsDEhEREZEWBiQiIiIiLQxIDcTNm8CBA4/+JSIioqfDgFSPZWdnIyMjA0uX3oOzs8CAAYCzs8DSpfeQkZGB7OxsQ1eRiIioXuKX1dZT2dnZWLlyJVQqS0RHT4MQMgCAWi3DjBlW+PPP9VAq8xAeHg4bGxsD15aIiKh+YQ9SPVVUVAQAyMmxgRCav0Yh5MjJsdYoR0RERFXHgFTPWVtnQyZTayyTydSwts4xUI2IiIjqvzoRkGJjY+Hi4gJTU1P4+PjgxIkTFZb9448/EBwcDBcXF8hkMkRHR9don/3794dMJtN4TZo0qTabpRdKZR4CA/dIIUkmUyMwcA+UyjwD14yIiKj+MvgYpC1btiAiIgJr1qyBj48PoqOjERAQgLS0NLRo0aJM+YKCArRt2xavvfYapk+f/lT7HD9+PBYsWCC9Nzc3r/0G6oGX1ym4ul5CTo41rK1zGI6IiIieksF7kJYtW4bx48cjLCwMHh4eWLNmDczNzbF+/fpyy/fs2ROLFy/GiBEjYGJi8lT7NDc3h729vfSysrKq9fbpi1KZhzZtrjEcERER1QKDBqSioiIkJyfD399fWiaXy+Hv74+kpCSd7/Obb75B8+bN0blzZ0RGRqKgoKDC/RYWFiI3N1fjRURERA2TQW+x3b17FyUlJbCzs9NYbmdnh/Pnz+t0n6NGjYKzszMcHR1x+vRpvPfee0hLS0N8fHy5+42KisL8+fNrVCciIiKqXww+BslQJkyYIP3cpUsXODg44IUXXsDly5fh6upapnxkZCQiIiKk97m5uXByctJLXcujUChqtRwRERH9w6ABqXnz5jAyMkJWVpbG8qysLNjb2+t1nz4+PgCAS5culRuQTExMKhzzZAg2NjYIDw+vdJ4jhULBSSKJiIhqwKBjkBQKBby9vZGYmCgtU6vVSExMhK+vr173mZqaCgBwcHCo0XENwcbGBg4ODhW+GI6IiIhqxuC32CIiIhAaGooePXqgV69eiI6ORn5+PsLCwgAAY8aMQcuWLREVFQXg0SDss2fPSj//+eefSE1NRdOmTdGuXbsq7fPy5cuIi4vDSy+9BBsbG5w+fRrTp09Hv3790LVrVwOcBSIiIqpLDB6QQkJCcOfOHcyZMweZmZno1q0bEhISpEHW169fh1z+T0fXrVu30L17d+n9kiVLsGTJEvj5+eHgwYNV2qdCocD+/ful4OTk5ITg4GDMmjVLfw0nIiKiOksmhBCGrkR9lJubC6VSCZVKVa/nTyIiImpMqvr5bfCJIomIiIjqGgYkIiIiIi0MSERERERaGJCIiIiItDAgEREREWlhQCIiIiLSwoBEREREpIUBiYiIiEgLAxIRERGRFgYkIiIiIi0MSERERERaGJCIiIiItDAgEREREWlhQCIiIiLSwoBEREREpIUBiart5k3gwIFH/xIRETVEDEhULevWAc7OwIABj/5dt87QNSIiIqp9TQxdAaofsrOzcfXq35gwoQXUahkAQK0GJk4U6NbtNlxcmsDGxsbAtaTakJ2djaKiogrXKxQK/q6JqMFjQKInys7OxsqVK5Ge7gK1OlRjXUmJDDEx/0WbNtcQHh7OD856rvR3XUqlskROjg2srbOhVOZJy/m7JqKGjgGJnqi0N8HaOhsymRpC/HNnViZTw9o6R6Mc1V+P/w5TUrpj9+6hEEIOmUyNwMA98PI6VaYcEVFDxDFIVGVKZR4CA/dAJlMDgPSh+XjPAjUMKpWlFI4AQAg5du8eCpXK0sA1IyLSD/YgUbV4eZ2Cq+sl5ORYw9o6h+GogcrJsdHoKQQehaScHGv+zomoUWBAompTKvP4IdnAPel2KhFRQ8dbbERUBm+nElFjxx4kIioXb6cSUWPGgEREFeLtVCJqrHiLjZ5IoVDUajmqu/i7JiJ6RCaEEIauRH2Um5sLpVIJlUoFKysrQ1dH5zi7cuPB3zURNWRV/fzmLTaqEn4gNh78XRMR8RYbERERURkMSERERERaGJCIiIiItDAgEREREWnhIG0iIiIyuMefoL11S4709CZo0+ZvODo+mtFf30/Q1okepNjYWLi4uMDU1BQ+Pj44ceJEhWX/+OMPBAcHw8XFBTKZDNHR0TXa58OHDzF58mTY2NigadOmCA4ORlZWVm02i4iIiKogOzsbK1euxNq1azFp0q/o2dMWr71mg549bTFp0q9Yu3YtVq5ciezsbL3VyeABacuWLYiIiMDcuXORkpICT09PBAQE4Pbt2+WWLygoQNu2bbFo0SLY29vXeJ/Tp0/H7t27sXXrVhw6dAi3bt3CsGHDdNJGIiIiqlhpz5FKZYndu4dKX5QthBy7dw+FSmWpUU4fDB6Qli1bhvHjxyMsLAweHh5Ys2YNzM3NsX79+nLL9+zZE4sXL8aIESNgYmJSo32qVCqsW7cOy5Ytw4ABA+Dt7Y0NGzbg6NGjOHbsmM7aSkRERBXLybGRwlEpIeTIybHWe10MGpCKioqQnJwMf39/aZlcLoe/vz+SkpJ0ts/k5GQUFxdrlHF3d0fr1q0rPG5hYSFyc3M1XkRERFR7rK2zIZOpNZbJZGpYW+fovS4GDUh3795FSUkJ7OzsNJbb2dkhMzNTZ/vMzMyEQqFAs2bNqnzcqKgoKJVK6eXk5FSj+hEREVH5lMo8BAbukUKSTKZGYOAeg3xpNp9iq6LIyEhERERI73NzcxmSiIiIapmX1ym4ul5CTo41rK1zDBKOAAMHpObNm8PIyKjM02NZWVkVDsCujX3a29ujqKgI9+7d0+hFquy4JiYmFY55IiIiopq7d+9eOUtl5ZZzcHDQeX0AA99iUygU8Pb2RmJiorRMrVYjMTERvr6+Otunt7c3jI2NNcqkpaXh+vXrNT4uERER1czff/8t/ZyS0h3R0dOwaVMooqOnISWle7nldM3gt9giIiIQGhqKHj16oFevXoiOjkZ+fj7CwsIAAGPGjEHLli0RFRUF4NEg7LNnz0o///nnn0hNTUXTpk3Rrl27Ku1TqVRi7NixiIiIgLW1NaysrDBlyhT4+vqid+/eBjgLREREjZexsTGAih/zd3W9BKUyTyqnDwYPSCEhIbhz5w7mzJmDzMxMdOvWDQkJCdIg6+vXr0Mu/6ej69atW+je/Z80uWTJEixZsgR+fn44ePBglfYJAMuXL4dcLkdwcDAKCwsREBCAVatW6afRREREJFEqlQAqf8xfqcyTyumDTAgh9Ha0BiQ3NxdKpRIqlQpWVlaGrg41cHVtCn7Sncd/1+Wpzd+1Po9FVJmMjAysXbsWKpUloqOnaYQkmUyNadOioVTmYcKECU89Bqmqn98G70EiosqVTsEPPLo3X9r9XPr4q5fXKQBAeHg4P8zqucd/15Wpjd+1Po9FVFWlj/lr/53jY/5EVMaTpuAvvTevzyn4STe0f4cqlSVycmxgbZ2t8QFRG79rfR6LqDr4mD8RVcuT7s1Tw1JZb2F9PhZRVTwab2TYv2sG/y42IqqaujQFP+nWk76ws74ei6giCoWiVsvVBvYgEdUTdenePOmWPnsL2TNJdYGNjQ3Cw8Pr1EMDDEhE9UhduTdPulXaW6j9JI8uegv1eSyiytS1hwF4i42onlEq89CmzTWGowZMn1/YWZe+HJSoLmEPEhFRHaTP3kL2TFJtawhzbDEgEdVxdXHwIumG9u+woid5auN3rc9jUePSUObYYkAiquPq4uBF0g19/q55XZGuNJQ5thiQiOoBfkg1Hvr8XfO6Il2rz3NscZA2ERER1br6PscWAxIRERHVusrm2KoPGJCIiIio1tX32f8ZkIiIiKjW1fc5tjhIm4iIiHSiPs+xxYBEREREtaahzLHFgERERHrREGZXpidrKHNsMSARNWCPfyDduiVHenoTtGnzNxwdH40JqA9/pKhhaCizK1PVNITfIQMSUQP1+AdSZZO18QOJ9KGhzK5MjQcDElEDVfpBU9Fkba6ul6BU5vEDifSuPs+uTI0HH/MnauDq+2Rt1LDU99mVqfFgQCJq4Or7ZG3UsDCwU33BgETUwNX3ydqoYWFgp/qCY5CIGoH6PFkbNSylgV17DBKvSaprGJCIGomKJmsj0jd9BHbOuURPiwGJiIh0Tp+zK3POJaoNDEhEDVRVP2jq+nT/1DDoc3ZlzrlEtYEBqY65eRO4eBFwcwNatTJ0bag+ayjT/VPDYYhrjXMuUU0xINUBpffK4+LM8J//KKFWyyCXC3z6qQqjRj3ghxjVGK8basyeNEkqUWUYkAys9F65SmWJ6OhpEEIGAFCrZZgxwwp//rkeSmUe75UTEVVTZXMuMSDRk3AeJAMrvf3xpMnTeK+ciKh6OOcSPQ0GpDqC/yETEdUuTpJKT4O32OoITp5GRFT7OEkq1RQDUh3C/5CJiJ6ePudcooarTgSk2NhYLF68GJmZmfD09ERMTAx69epVYfmtW7di9uzZuHr1Ktzc3PDJJ5/gpZdektZnZWXhvffew08//YR79+6hX79+iImJgZubm1Smf//+OHTokMZ+J06ciDVr1tR+A6uBsx0TET0dTnFBtcHgY5C2bNmCiIgIzJ07FykpKfD09ERAQABu375dbvmjR49i5MiRGDt2LE6dOoWgoCAEBQXhzJkzAAAhBIKCgnDlyhXs3LkTp06dgrOzM/z9/ZGfn6+xr/HjxyMjI0N6ffrppzpvLxER6Z6NjQ0cHBwqfDEc0ZMYPCAtW7YM48ePR1hYGDw8PLBmzRqYm5tj/fr15ZZfsWIFBg0ahBkzZqBjx45YuHAhvLy8pGnlL168iGPHjmH16tXo2bMnOnTogNWrV+PBgwf49ttvNfZlbm4Oe3t76WVlZaXz9hIREVHdZ9CAVFRUhOTkZPj7+0vL5HI5/P39kZSUVO42SUlJGuUBICAgQCpfWFgIADA1NdXYp4mJCQ4fPqyx3TfffIPmzZujc+fOiIyMREFBQYV1LSwsRG5ursarNvDrIIiIiOoeg45Bunv3LkpKSmBnZ6ex3M7ODufPny93m8zMzHLLZ2ZmAgDc3d3RunVrREZG4vPPP4eFhQWWL1+OmzdvIiMjQ9pm1KhRcHZ2hqOjI06fPo333nsPaWlpiI+PL/e4UVFRmD9//tM0t1y8V05ERFT31IlB2rXJ2NgY8fHxGDt2LKytrWFkZAR/f38MHjwYQgip3IQJE6Sfu3TpAgcHB7zwwgu4fPkyXF1dy+w3MjISERER0vvc3Fw4OTnVSp0ZfoiIiOoWgwak5s2bw8jICFlZWRrLs7KyYG9vX+429vb2Tyzv7e2N1NRUqFQqFBUVwdbWFj4+PujRo0eFdfHx8QEAXLp0qdyAZGJiAhMTkyq3jYiIiOovg45BUigU8Pb2RmJiorRMrVYjMTERvr6+5W7j6+urUR4A9u3bV255pVIJW1tbXLx4ESdPnsQrr7xSYV1SU1MBAA4ODjVoCRERETUkBr/FFhERgdDQUPTo0QO9evVCdHQ08vPzERYWBgAYM2YMWrZsiaioKADA1KlT4efnh6VLl2LIkCHYvHkzTp48ibVr10r73Lp1K2xtbdG6dWv8/vvvmDp1KoKCgjBw4EAAwOXLlxEXF4eXXnoJNjY2OH36NKZPn45+/fqha9eu+j8JREREVKcYPCCFhITgzp07mDNnDjIzM9GtWzckJCRIA7GvX78Oufyfjq4+ffogLi4Os2bNwsyZM+Hm5oYdO3agc+fOUpmMjAxEREQgKysLDg4OGDNmDGbPni2tVygU2L9/vxTGnJycEBwcjFmzZumv4URERFRnycTjI5epynJzc6FUKqFSqTh/EhERUT1R1c9vg08USURERFTXMCARERERaWFAIiIiItLCgERERESkpUYBaevWrRg2bBg6d+6Mzp07Y9iwYfj+++9ru25EREREBlGtgKRWqxESEoKQkBCcPXsW7dq1Q7t27fDHH38gJCQEI0aMAB+KIyIiovquWvMgrVixAvv378euXbswdOhQjXW7du1CWFgYVqxYgWnTptVmHYmIiIj0qlo9SBs2bMDixYvLhCMAePnll/Hpp59i/fr1tVY5IiIiIkOoVkC6ePEi/P39K1zv7++PixcvPnWliIiIiAypWgHJzMwM9+7dq3B9bm4uTE1Nn7ZORERERAZVrYDk6+uL1atXV7g+NjYWvr6+T10pIiIiIkOq1iDtDz74AP3790d2djbeffdduLu7QwiBc+fOYenSpdi5cycOHDigq7oSERER6UW1AlKfPn2wZcsWTJgwAdu2bdNY98wzz+Dbb7/Fs88+W6sVJKKGLTs7G0VFRQCAW7fkSE9vgjZt/oajoxoAoFAoYGNjY8gqElEjJBM1mLiooKAAP/74ozQgu3379hg4cCDMzc1rvYJ1VVW/DZiIKpadnY2VK1cCAFJSumP37qEQQg6ZTI3AwD3w8joFAAgPD2dIIqJaUdXP72r1IP3vf/9DeHg4jh07hn/9618a61QqFTp16oQ1a9agb9++Nas1ETUqpT1HKpWlFI4AQAg5du8eClfXS1Aq86RyRET6Uq1B2tHR0Rg/fny5iUupVGLixIlYtmxZrVWOiBqHnBwbKRyVEkKOnBxrA9WIiBq7agWk3377DYMGDapw/cCBA5GcnPzUlSKixsXaOhsymVpjmUymhrV1joFqRESNXbUCUlZWFoyNjStc36RJE9y5c+epK0VEjYtSmYfAwD1SSCodg6RU5hm4ZkTUWFVrDFLLli1x5swZtGvXrtz1p0+fhoODQ61UjIgMw1BPlXl5nYKr6yXk5FjD2jqH4YiIDKpaAemll17C7NmzMWjQoDIzZj948ABz584t93vaiKh+MPRTZUplHoMREdUJ1QpIs2bNQnx8PNq3b4/w8HB06NABAHD+/HnExsaipKQEH3zwgU4qSkS6x6fKiIgeqVZAsrOzw9GjR/Hvf/8bkZGRKJ1CSSaTISAgALGxsbCzs9NJRYlIfyp7qqw2e3gUCkWtliMiqi3VCkgA4OzsjL179+Kvv/7CpUuXIISAm5sbnnnmGV3Uj4gMoPSpssdDki6eKrOxsUF4eHilPVKcSZuIDKHaAanUM888g549e9ZmXYiojih9qkx7DJIuxgcx/BBRXVTjgEREDRufKiOixowBiYgqxKfKiKixqtZEkURERESNAQMSEUn4VBkR0SO8xUZEEj5VRkT0CAMSEWlg+CEi4i02IiIiojIYkIiIiIi0MCARERERaWFAIiIiItLCgERERESkpU4EpNjYWLi4uMDU1BQ+Pj44ceJEpeW3bt0Kd3d3mJqaokuXLti7d6/G+qysLLz55ptwdHSEubk5Bg0ahIsXL2qUefjwISZPngwbGxs0bdoUwcHByMrKqvW2ERERUf1j8IC0ZcsWREREYO7cuUhJSYGnpycCAgJw+/btcssfPXoUI0eOxNixY3Hq1CkEBQUhKCgIZ86cAQAIIRAUFIQrV65g586dOHXqFJydneHv74/8/HxpP9OnT8fu3buxdetWHDp0CLdu3cKwYcP00mYiIiKq22RCCGHICvj4+KBnz55YuXIlAECtVsPJyQlTpkzB+++/X6Z8SEgI8vPzsWfPHmlZ79690a1bN6xZswYXLlxAhw4dcObMGXTq1Enap729PT7++GOMGzcOKpUKtra2iIuLw6uvvgoAOH/+PDp27IikpCT07t37ifXOzc2FUqmESqWClZVVbZwKIiIi0rGqfn4btAepqKgIycnJ8Pf3l5bJ5XL4+/sjKSmp3G2SkpI0ygNAQECAVL6wsBAAYGpqqrFPExMTHD58GACQnJyM4uJijf24u7ujdevWFR63sLAQubm5Gi8iIiJqmAwakO7evYuSkhLY2dlpLLezs0NmZma522RmZlZavjToREZG4q+//kJRURE++eQT3Lx5ExkZGdI+FAoFmjVrVuXjRkVFQalUSi8nJ6eaNJmIiIjqAYOPQaptxsbGiI+Px4ULF2BtbQ1zc3McOHAAgwcPhlxe8+ZGRkZCpVJJrxs3btRirYmIiKguMeh3sTVv3hxGRkZlnh7LysqCvb19udvY29s/sby3tzdSU1OhUqlQVFQEW1tb+Pj4oEePHtI+ioqKcO/ePY1epMqOa2JiAhMTk5o0k4iIiOoZg/YgKRQKeHt7IzExUVqmVquRmJgIX1/fcrfx9fXVKA8A+/btK7e8UqmEra0tLl68iJMnT+KVV14B8ChAGRsba+wnLS0N169fr/C4RERE1HgYtAcJACIiIhAaGooePXqgV69eiI6ORn5+PsLCwgAAY8aMQcuWLREVFQUAmDp1Kvz8/LB06VIMGTIEmzdvxsmTJ7F27Vppn1u3boWtrS1at26N33//HVOnTkVQUBAGDhwI4FFwGjt2LCIiImBtbQ0rKytMmTIFvr6+VXqCjYiIiBo2gwekkJAQ3LlzB3PmzEFmZia6deuGhIQEaSD29evXNcYO9enTB3FxcZg1axZmzpwJNzc37NixA507d5bKZGRkICIiAllZWXBwcMCYMWMwe/ZsjeMuX74ccrkcwcHBKCwsREBAAFatWqWfRhMREVGdZvB5kOorzoNERERU/9SLeZCIiIiI6iIGJCIiIiItDEhEREREWhiQiIiIiLQwIBERERFpYUAiIiIi0sKARERERKSFAYmIiIhICwMSERERkRYGJCIiIiItDEhEREREWhiQiIiIiLQwIBERERFpYUAiIiIi0sKARERERKSFAYmIiIhICwMSERERkRYGJCIiIiItDEhEREREWhiQiIiIiLQwIBERERFpYUAiIiIi0sKARERERKSFAYmIiIhICwMSERERkRYGJCIiIiItDEhEREREWhiQiIiIiLQwIBERERFpYUAiIiIi0sKARERERKSFAYmIiIhICwMSERERkRYGJCIiIiItdSIgxcbGwsXFBaampvDx8cGJEycqLb9161a4u7vD1NQUXbp0wd69ezXW379/H+Hh4WjVqhXMzMzg4eGBNWvWaJTp378/ZDKZxmvSpEm13jYiIiKqfwwekLZs2YKIiAjMnTsXKSkp8PT0REBAAG7fvl1u+aNHj2LkyJEYO3YsTp06haCgIAQFBeHMmTNSmYiICCQkJODrr7/GuXPnMG3aNISHh2PXrl0a+xo/fjwyMjKk16effqrTthIREVH9IBNCCENWwMfHBz179sTKlSsBAGq1Gk5OTpgyZQref//9MuVDQkKQn5+PPXv2SMt69+6Nbt26Sb1EnTt3RkhICGbPni2V8fb2xuDBg/Hhhx8CeNSD1K1bN0RHR9eo3rm5uVAqlVCpVLCysqrRPoiIiEi/qvr5bdAepKKiIiQnJ8Pf319aJpfL4e/vj6SkpHK3SUpK0igPAAEBARrl+/Tpg127duHPP/+EEAIHDhzAhQsXMHDgQI3tvvnmGzRv3hydO3dGZGQkCgoKKqxrYWEhcnNzNV5ERETUMDUx5MHv3r2LkpIS2NnZaSy3s7PD+fPny90mMzOz3PKZmZnS+5iYGEyYMAGtWrVCkyZNIJfL8cUXX6Bfv35SmVGjRsHZ2RmOjo44ffo03nvvPaSlpSE+Pr7c40ZFRWH+/Pk1bSoRERHVIwYNSLoSExODY8eOYdeuXXB2dsbPP/+MyZMnw9HRUep9mjBhglS+S5cucHBwwAsvvIDLly/D1dW1zD4jIyMREREhvc/NzYWTk5PuG0NERER6Z9CA1Lx5cxgZGSErK0tjeVZWFuzt7cvdxt7evtLyDx48wMyZM7F9+3YMGTIEANC1a1ekpqZiyZIlZW7PlfLx8QEAXLp0qdyAZGJiAhMTk+o1kIiIiOolg45BUigU8Pb2RmJiorRMrVYjMTERvr6+5W7j6+urUR4A9u3bJ5UvLi5GcXEx5HLNphkZGUGtVldYl9TUVACAg4NDTZpCREREDYjBb7FFREQgNDQUPXr0QK9evRAdHY38/HyEhYUBAMaMGYOWLVsiKioKADB16lT4+flh6dKlGDJkCDZv3oyTJ09i7dq1AAArKyv4+flhxowZMDMzg7OzMw4dOoQvv/wSy5YtAwBcvnwZcXFxeOmll2BjY4PTp09j+vTp6NevH7p27WqYE0FERER1hsEDUkhICO7cuYM5c+YgMzMT3bp1Q0JCgjQQ+/r16xq9QX369EFcXBxmzZqFmTNnws3NDTt27EDnzp2lMps3b0ZkZCRGjx6NnJwcODs746OPPpImglQoFNi/f78UxpycnBAcHIxZs2bpt/FERERUJxl8HqT6ivMgERER1T/1Yh4kIiIiorqIAYmIiIhICwMSERERkRYGJCIiIiItDEhEREREWhiQiIiIiLQwIBERERFpYUAiIiIi0sKARERERKSFAYmIiIhICwMSERERkRYGJCIiIiItDEhEREREWhiQiIiIiLQwIBERERFpYUAiIiIi0sKARERERKSFAYmIiIhICwMSERERkRYGJCIiIiItDEhEREREWhiQiIiIiLQwIBERERFpYUAiIiIi0sKARERERKSFAYmIiIhICwMSERERkRYGJCIiIiItDEhEREREWhiQiIiIiLQwIBERERFpYUAiIiIi0sKARERERKSFAYmIiIhICwMSERERkZY6EZBiY2Ph4uICU1NT+Pj44MSJE5WW37p1K9zd3WFqaoouXbpg7969Guvv37+P8PBwtGrVCmZmZvDw8MCaNWs0yjx8+BCTJ0+GjY0NmjZtiuDgYGRlZdV624iIiKj+MXhA2rJlCyIiIjB37lykpKTA09MTAQEBuH37drnljx49ipEjR2Ls2LE4deoUgoKCEBQUhDNnzkhlIiIikJCQgK+//hrnzp3DtGnTEB4ejl27dkllpk+fjt27d2Pr1q04dOgQbt26hWHDhum8vURERFT3yYQQwpAV8PHxQc+ePbFy5UoAgFqthpOTE6ZMmYL333+/TPmQkBDk5+djz5490rLevXujW7duUi9R586dERISgtmzZ0tlvL29MXjwYHz44YdQqVSwtbVFXFwcXn31VQDA+fPn0bFjRyQlJaF3795PrHdubi6USiVUKhWsrKye6hwQERGRflT189ugPUhFRUVITk6Gv7+/tEwul8Pf3x9JSUnlbpOUlKRRHgACAgI0yvfp0we7du3Cn3/+CSEEDhw4gAsXLmDgwIEAgOTkZBQXF2vsx93dHa1bt67wuIWFhcjNzdV4ERERUcNk0IB09+5dlJSUwM7OTmO5nZ0dMjMzy90mMzPzieVjYmLg4eGBVq1aQaFQYNCgQYiNjUW/fv2kfSgUCjRr1qzKx42KioJSqZReTk5O1W0uERER1RMGH4OkCzExMTh27Bh27dqF5ORkLF26FJMnT8b+/ftrvM/IyEioVCrpdePGjVqsMREREdUlTQx58ObNm8PIyKjM02NZWVmwt7cvdxt7e/tKyz948AAzZ87E9u3bMWTIEABA165dkZqaiiVLlsDf3x/29vYoKirCvXv3NHqRKjuuiYkJTExMatpUIiIiqkcM2oOkUCjg7e2NxMREaZlarUZiYiJ8fX3L3cbX11ejPADs27dPKl9cXIzi4mLI5ZpNMzIyglqtBvBowLaxsbHGftLS0nD9+vUKj0tERESNh0F7kIBHj+SHhoaiR48e6NWrF6Kjo5Gfn4+wsDAAwJgxY9CyZUtERUUBAKZOnQo/Pz8sXboUQ4YMwebNm3Hy5EmsXbsWAGBlZQU/Pz/MmDEDZmZmcHZ2xqFDh/Dll19i2bJlAAClUomxY8ciIiIC1tbWsLKywpQpU+Dr61ulJ9iIiIiodmVnZ6OoqKjC9QqFAjY2Nnqrj8EDUkhICO7cuYM5c+YgMzMT3bp1Q0JCgjQQ+/r16xq9QX369EFcXBxmzZqFmTNnws3NDTt27EDnzp2lMps3b0ZkZCRGjx6NnJwcODs746OPPsKkSZOkMsuXL4dcLkdwcDAKCwsREBCAVatW6a/hREREBOBROCqd7qcy4eHhegtJBp8Hqb7iPEhERES1IyMjQ7oTVJkJEybAwcHhqY5VL+ZBIiIiItKmUlkiPd0FKpWlwepg8FtsRERERKVSUrpj9+6hEEIOmUyNwMA98PI6pfd6sAeJiIiI6gSVylIKRwAghBy7dw81SE8SAxIRERHVCTk5NlI4KiWEHDk51nqvCwMSERER1QnW1tmQydQay2QyNaytc/ReFwYkIiIiqhOUyjwEBu6RQlLpGCSlMk/vdeEgbSIiIjIohUIh/ezldQqurpeQk2MNa+scjXD0eDldY0AiIiIig7KxsUF4eDhn0iYiIiJ6nD7DT1VwDBIRERGRFgYkIiIiIi0MSERERERaGJCIiIiItDAgEREREWlhQCIiIiLSwoBEREREpIXzIBEREVG5srOz69TkjfrEgERERERlZGdnY+XKlU8sFx4e3iBDEm+xERERURmV9RzVpFx9w4BEREREpIUBiYiIiJ5IpbJEeroLVCpLQ1dFLzgGiYiIqqUxD9xtrFJSumP37qEQQg6ZTI3AwD3w8jpl6GrpFAMSERFVWWMfuNsYqVSWUjgCACHk2L17KFxdL0GpzDNw7XSHt9iIiKjKGvvA3cYoJ8dGCkelhJAjJ8faQDXSDwYkIiIiqpC1dTZkMrXGMplMDWvrHAPVSD8YkIiIiKgMhUIBAFAq8xAYuEcKSaVjkEpvr5WWa2g4BomIiGpMpbJETo4NrK2zG/R4lMbIxsYG4eHh0u3SOXPu4OrVJnBx+RuOjj0B9GzQA/IZkIiIqEYa45NNjc3j4cfBAfD2NmBl9Iy32IiIqNoqerKpscyRQw0fAxIREVVbY32yiRoPBiQiIqqy0gG5T3qyqaEO3KXGg2OQiIioyh4fuNuyZS7ee0+JkhIZjIwEPvkkF6NGjWzQA3ep8ZAJIYShK1Ef5ebmQqlUQqVSwcrKytDVISIyiJs3gUuXgHbtgFatDF0boier6uc3e5CIiKjGWrViMKKGqU6MQYqNjYWLiwtMTU3h4+ODEydOVFp+69atcHd3h6mpKbp06YK9e/dqrJfJZOW+Fi9eLJVxcXEps37RokU6aR8RET36HreMjIwKX9nZ2YauIpHE4D1IW7ZsQUREBNasWQMfHx9ER0cjICAAaWlpaNGiRZnyR48exciRIxEVFYWhQ4ciLi4OQUFBSElJQefOnQEAGRkZGtv897//xdixYxEcHKyxfMGCBRg/frz03tKSj6cSEekCv+SW6huD9yAtW7YM48ePR1hYGDw8PLBmzRqYm5tj/fr15ZZfsWIFBg0ahBkzZqBjx45YuHAhvLy8NP7Ds7e313jt3LkTzz//PNq2bauxL0tLS41yFhYWOm0rEVFjxS+5pfrGoAGpqKgIycnJ8Pf3l5bJ5XL4+/sjKSmp3G2SkpI0ygNAQEBAheWzsrLwww8/YOzYsWXWLVq0CDY2NujevTsWL16Mv//++ylaQ0RERA2FQW+x3b17FyUlJbCzs9NYbmdnh/Pnz5e7TWZmZrnlMzMzyy2/adMmWFpaYtiwYRrL3377bXh5ecHa2hpHjx5FZGQkMjIysGzZsnL3U1hYiMLCQul9bm7uE9tHRERE9ZPBxyDp2vr16zF69GiYmppqLI+IiJB+7tq1KxQKBSZOnIioqCiYmJiU2U9UVBTmz5+v8/oSERGR4Rn0Flvz5s1hZGSErKwsjeVZWVmwt7cvdxt7e/sql//ll1+QlpaGcePGPbEuPj4++Pvvv3H16tVy10dGRkKlUkmvGzduPHGfRERUPpXKEunpLvzuNqqzDBqQFAoFvL29kZiYKC1Tq9VITEyEr69vudv4+vpqlAeAffv2lVt+3bp18Pb2hqen5xPrkpqaCrlcXu6TcwBgYmICKysrjRcREVVfSkp3REdPw6ZNoYiOnoaUlO6GrhJRGQa/xRYREYHQ0FD06NEDvXr1QnR0NPLz8xEWFgYAGDNmDFq2bImoqCgAwNSpU+Hn54elS5diyJAh2Lx5M06ePIm1a9dq7Dc3Nxdbt27F0qVLyxwzKSkJx48fx/PPPw9LS0skJSVh+vTpeP311/HMM8/ovtFERI2USmWJ3buHSl90K4Qcu3cPhavrJSiVeQauHdE/DB6QQkJCcOfOHcyZMweZmZno1q0bEhISpIHY169fh1z+T0dXnz59EBcXh1mzZmHmzJlwc3PDjh07pDmQSm3evBlCCIwcObLMMU1MTLB582bMmzcPhYWFaNOmDaZPn64xLomIiGpP6ZfX5uTYSOGolBBy5ORYQ6nM45fcUp3B72KrIX4XGxFR9WRnZ+Pq1b/Rq1cLqNUyabmRkcDx47fh4tKEk0SSzlX189vgE0USEVHjYGNjA29vO6xdK4OR0aNlRkbA55/L4O1tx3BEdYrBb7EREVHjMnYsEBAAXLoEtGvHL7uluokBiYiI9K5VKwYjqtt4i42IiIhICwMSERERkRYGJCIiIiItDEhEREREWhiQiIiIiLQwIBERERFpYUAiIiIi0sKARERERKSFAYmIiIhICwMSERERkRYGJCIiIiIt/C62GhJCAAByc3MNXBMiIiKqqtLP7dLP8YowINVQXl4eAMDJycnANSEiIqLqysvLg1KprHC9TDwpQlG51Go1bt26BUtLS8hksqfaV25uLpycnHDjxg1YWVnVUg3rF54DngOA5wDgOQB4Dhp7+wHdngMhBPLy8uDo6Ai5vOKRRuxBqiG5XI5WrVrV6j6trKwa7X8MpXgOeA4AngOA5wDgOWjs7Qd0dw4q6zkqxUHaRERERFoYkIiIiIi0MCDVASYmJpg7dy5MTEwMXRWD4TngOQB4DgCeA4DnoLG3H6gb54CDtImIiIi0sAeJiIiISAsDEhEREZEWBiQiIiIiLQxIRERERFoYkHQkNjYWLi4uMDU1hY+PD06cOFFp+ejoaHTo0AFmZmZwcnLC9OnT8fDhQ2n9vHnzIJPJNF7u7u66bkaNVaf9xcXFWLBgAVxdXWFqagpPT08kJCQ81T7rgto+B/XtGvj5558RGBgIR0dHyGQy7Nix44nbHDx4EF5eXjAxMUG7du2wcePGMmXq03Wgi3PQ0K+DjIwMjBo1Cu3bt4dcLse0adPKLbd161a4u7vD1NQUXbp0wd69e2u/8rVEF+dg48aNZa4DU1NT3TSgFlT3HMTHx+PFF1+Era0trKys4Ovrix9//LFMOV3+PWBA0oEtW7YgIiICc+fORUpKCjw9PREQEIDbt2+XWz4uLg7vv/8+5s6di3PnzmHdunXYsmULZs6cqVGuU6dOyMjIkF6HDx/WR3OqrbrtnzVrFj7//HPExMTg7NmzmDRpEv71r3/h1KlTNd6noeniHAD15xoAgPz8fHh6eiI2NrZK5dPT0zFkyBA8//zzSE1NxbRp0zBu3DiNP4r17TrQxTkAGvZ1UFhYCFtbW8yaNQuenp7lljl69ChGjhyJsWPH4tSpUwgKCkJQUBDOnDlTm1WvNbo4B8CjWaYfvw6uXbtWW1WuddU9Bz///DNefPFF7N27F8nJyXj++ecRGBio388FQbWuV69eYvLkydL7kpIS4ejoKKKiosotP3nyZDFgwACNZREREeLZZ5+V3s+dO1d4enrqpL61rbrtd3BwECtXrtRYNmzYMDF69Oga79PQdHEO6tM1oA2A2L59e6Vl/vOf/4hOnTppLAsJCREBAQHS+/p2HTyuts5BQ78OHufn5yemTp1aZvnw4cPFkCFDNJb5+PiIiRMnPmUNda+2zsGGDRuEUqmstXrpU3XPQSkPDw8xf/586b2u/x6wB6mWFRUVITk5Gf7+/tIyuVwOf39/JCUllbtNnz59kJycLHUNXrlyBXv37sVLL72kUe7ixYtwdHRE27ZtMXr0aFy/fl13DamhmrS/sLCwTNewmZmZ9H/FNdmnIeniHJSqD9dATSUlJWmcMwAICAiQzll9uw5q4knnoFRDvg6qoqrnqaG7f/8+nJ2d4eTkhFdeeQV//PGHoaukM2q1Gnl5ebC2tgagn78HDEi17O7duygpKYGdnZ3Gcjs7O2RmZpa7zahRo7BgwQI899xzMDY2hqurK/r3769xi83HxwcbN25EQkICVq9ejfT0dPTt2xd5eXk6bU911aT9AQEBWLZsGS5evAi1Wo19+/YhPj4eGRkZNd6nIeniHAD15xqoqczMzHLPWW5uLh48eFDvroOaeNI5ABr+dVAVFZ2nhnIdVEWHDh2wfv167Ny5E19//TXUajX69OmDmzdvGrpqOrFkyRLcv38fw4cPB6CfzwUGpDrg4MGD+Pjjj7Fq1SqkpKQgPj4eP/zwAxYuXCiVGTx4MF577TV07doVAQEB2Lt3L+7du4fvvvvOgDWvHStWrICbmxvc3d2hUCgQHh6OsLAwyOWN5/KsyjloyNcAVR2vAwIAX19fjBkzBt26dYOfnx/i4+Nha2uLzz//3NBVq3VxcXGYP38+vvvuO7Ro0UJvx208n0B60rx5cxgZGSErK0tjeVZWFuzt7cvdZvbs2XjjjTcwbtw4dOnSBf/617/w8ccfIyoqCmq1utxtmjVrhvbt2+PSpUu13oanUZP229raYseOHcjPz8e1a9dw/vx5NG3aFG3btq3xPg1JF+egPHX1Gqgpe3v7cs+ZlZUVzMzM6t11UBNPOgflaWjXQVVUdJ4aynVQE8bGxujevXuDuw42b96McePG4bvvvtO4naaPvwcMSLVMoVDA29sbiYmJ0jK1Wo3ExET4+vqWu01BQUGZ3hIjIyMAgKjgq/Lu37+Py5cvw8HBoZZqXjtq0v5SpqamaNmyJf7++29s27YNr7zyylPv0xB0cQ7KU1evgZry9fXVOGcAsG/fPumc1bfroCaedA7K09Cug6qoyXlq6EpKSvD77783qOvg22+/RVhYGL799lsMGTJEY51e/h7UylBv0rB582ZhYmIiNm7cKM6ePSsmTJggmjVrJjIzM4UQQrzxxhvi/fffl8rPnTtXWFpaim+//VZcuXJF/PTTT8LV1VUMHz5cKvPOO++IgwcPivT0dHHkyBHh7+8vmjdvLm7fvq339j1Jddt/7NgxsW3bNnH58mXx888/iwEDBog2bdqIv/76q8r7rGt0cQ7q0zUghBB5eXni1KlT4tSpUwKAWLZsmTh16pS4du2aEEKI999/X7zxxhtS+StXrghzc3MxY8YMce7cOREbGyuMjIxEQkKCVKa+XQe6OAcN/ToQQkjlvb29xahRo8SpU6fEH3/8Ia0/cuSIaNKkiViyZIk4d+6cmDt3rjA2Nha///67XttWVbo4B/Pnzxc//vijuHz5skhOThYjRowQpqamGmXqkuqeg2+++UY0adJExMbGioyMDOl17949qYyu/x4wIOlITEyMaN26tVAoFKJXr17i2LFj0jo/Pz8RGhoqvS8uLhbz5s0Trq6uwtTUVDg5OYn/+7//0/hwDAkJEQ4ODkKhUIiWLVuKkJAQcenSJT22qHqq0/6DBw+Kjh07ChMTE2FjYyPeeOMN8eeff1Zrn3VRbZ+D+nYNHDhwQAAo8yptd2hoqPDz8yuzTbdu3YRCoRBt27YVGzZsKLPf+nQd6OIcNIbroLzyzs7OGmW+++470b59e6FQKESnTp3EDz/8oJ8G1YAuzsG0adOk/w7s7OzESy+9JFJSUvTXqGqq7jnw8/OrtHwpXf49kAlRwT0cIiIiokaKY5CIiIiItDAgEREREWlhQCIiIiLSwoBEREREpIUBiYiIiEgLAxIRERGRFgYkIiIiIi0MSEREDcTBgwchk8lw7949Q1eFqN5jQCKianvzzTchk8mwaNEijeU7duyATCaT3gsh8MUXX8DX1xdWVlZo2rQpOnXqhKlTp1b5SzULCgoQGRkJV1dXmJqawtbWFn5+fti5c6dUxsXFBdHR0bXSNl0rPXcymQzGxsZo06YN/vOf/+Dhw4fV2k///v0xbdo0jWV9+vRBRkYGlEplLdaYqHFiQCKiGjE1NcUnn3yCv/76q9z1QgiMGjUKb7/9Nl566SX89NNPOHv2LNatWwdTU1N8+OGHVTrOpEmTEB8fj5iYGJw/fx4JCQl49dVXkZ2dXZvN0atBgwYhIyMDV65cwfLly/H5559j7ty5T71fhUIBe3t7jZBKRDVUa19aQkSNRmhoqBg6dKhwd3cXM2bMkJZv375dlP5Z+fbbbwUAsXPnznL3oVarq3QspVIpNm7cWOH68r6zqdQvv/winnvuOWFqaipatWolpkyZIu7fvy+t//LLL4W3t7do2rSpsLOzEyNHjhRZWVnS+tLvj0pISBDdunUTpqam4vnnnxdZWVli7969wt3dXVhaWoqRI0eK/Pz8KrUnNDRUvPLKKxrLhg0bJrp37y69v3v3rhgxYoRwdHQUZmZmonPnziIuLk5jH9ptTk9Pl+r7+Pc4fv/998LDw0MoFArh7OwslixZUqV6EjV27EEiohoxMjLCxx9/jJiYGNy8ebPM+m+//RYdOnTAyy+/XO72Ve3lsLe3x969e5GXl1fu+vj4eLRq1QoLFixARkYGMjIyAACXL1/GoEGDEBwcjNOnT2PLli04fPgwwsPDpW2Li4uxcOFC/Pbbb9ixYweuXr2KN998s8wx5s2bh5UrV+Lo0aO4ceMGhg8fjujoaMTFxeGHH37ATz/9hJiYmCq1R9uZM2dw9OhRKBQKadnDhw/h7e2NH374AWfOnMGECRPwxhtv4MSJEwCAFStWwNfXF+PHj5fa7OTkVGbfycnJGD58OEaMGIHff/8d8+bNw+zZs7Fx48Ya1ZWoUTF0QiOi+ufxXpDevXuLt956Swih2YPk7u4uXn75ZY3tpk6dKiwsLISFhYVo2bJllY516NAh0apVK2FsbCx69Oghpk2bJg4fPqxRxtnZWSxfvlxj2dixY8WECRM0lv3yyy9CLpeLBw8elHusX3/9VQAQeXl5Qoh/epD2798vlYmKihIAxOXLl6VlEydOFAEBAVVqT2hoqDAyMhIWFhbCxMREABByuVx8//33lW43ZMgQ8c4770jv/fz8xNSpUzXKaPcgjRo1Srz44osaZWbMmCE8PDyqVFeixow9SET0VD755BNs2rQJ586de2LZDz74AKmpqZgzZw7u379fpf3369cPV65cQWJiIl599VX88ccf6Nu3LxYuXFjpdr/99hs2btyIpk2bSq+AgACo1Wqkp6cDeNTDEhgYiNatW8PS0hJ+fn4AgOvXr2vsq2vXrtLPdnZ2MDc3R9u2bTWW3b59u0rtAYDnn38eqampOH78OEJDQxEWFobg4GBpfUlJCRYuXIguXbrA2toaTZs2xY8//limXk9y7tw5PPvssxrLnn32WVy8eBElJSXV2hdRY8OARERPpV+/fggICEBkZKTGcjc3N6SlpWkss7W1Rbt27dCiRYtqHcPY2Bh9+/bFe++9h59++gkLFizAwoULUVRUVOE29+/fx8SJE5Gamiq9fvvtN1y8eBGurq7Iz89HQEAArKys8M033+DXX3/F9u3bAaDMfo2NjaWfS58+e5xMJoNara5yeywsLNCuXTt4enpi/fr1OH78ONatWyetX7x4MVasWIH33nsPBw4cQGpqKgICAiptLxHVriaGrgAR1X+LFi1Ct27d0KFDB2nZyJEjMWrUKOzcuROvvPJKrR7Pw8MDf//9Nx4+fAiFQgGFQlGmR8TLywtnz55Fu3btyt3H77//juzsbCxatEgav3Py5MlarWdVyOVyzJw5ExERERg1ahTMzMxw5MgRvPLKK3j99dcBAGq1GhcuXICHh4e0XXlt1taxY0ccOXJEY9mRI0fQvn17GBkZ1X5jiBoQ9iAR0VPr0qULRo8ejc8++0xaNmLECLz66qsYMWIEFixYgOPHj+Pq1as4dOgQtmzZUuUP6P79++Pzzz9HcnIyrl69ir1792LmzJl4/vnnYWVlBeDRPEg///wz/vzzT9y9excA8N577+Ho0aMIDw9HamoqLl68iJ07d0qDtFu3bg2FQoGYmBhcuXIFu3bteuJtO1157bXXYGRkhNjYWACPet/27duHo0eP4ty5c5g4cSKysrI0tnFxcZHO6d27d8vtwXrnnXeQmJiIhQsX4sKFC9i0aRNWrlyJd999Vy/tIqrPGJCIqFYsWLBA40NaJpNhy5YtiI6Oxt69e/HCCy+gQ4cOeOutt+Dk5ITDhw9Xab8BAQHYtGkTBg4ciI4dO2LKlCkICAjAd999p3Hsq1evwtXVFba2tgAejRs6dOgQLly4gL59+6J79+6YM2cOHB0dATy63bdx40Zs3boVHh4eWLRoEZYsWVKLZ6TqmjRpgvDwcHz66afIz8/HrFmz4OXlhYCAAPTv3x/29vYICgrS2Obdd9+FkZERPDw8YGtrW+74JC8vL3z33XfYvHkzOnfujDlz5mDBggXlPqlHRJpkQghh6EoQERER1SXsQSIiIiLSwoBERAb1+GP42q9ffvnF0NWrluvXr1fanuo+pk9EhsNbbERkUJV9aW3Lli1hZmamx9o8nb///htXr16tcL2LiwuaNOHDw0T1AQMSERERkRbeYiMiIiLSwoBEREREpIUBiYiIiEgLAxIRERGRFgYkIiIiIi0MSERERERaGJCIiIiItDAgEREREWn5f0Ium90BDH9mAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV0ZJREFUeJzt3XtcFPX+P/DX7sICIqwCwgKiKJD3REARumhKgQcpTp5z0AwvkaZfUTmY5i0vRwvNNLylad4qCX+mWZLhUdRvpZjKJdPUxMQ7oEsuiAXKzu8PvkzuckeWWeD1fDz2oTvzmZn3TCYvP/OZz8gEQRBARERERCK51AUQERERmRoGJCIiIiIDDEhEREREBhiQiIiIiAwwIBEREREZYEAiIiIiMsCARERERGSAAYmIiIjIAAMSERERkQEGJCKiJmzr1q2QyWTIzs6WuhSiZoUBiYiqdfLkSURHR6NHjx6wtrZGhw4d8K9//Qu//vprhbYDBw6ETCaDTCaDXC6Hra0tunTpgsjISBw4cKBOx927dy8GDBgAR0dHtGrVCp07d8a//vUvJCcnN9SpVfDuu+9iz549FZYfO3YMCxYswN27d412bEMLFiwQr6VMJkOrVq3QvXt3zJ07FwUFBQ1yjISEBMTHxzfIvoiaGwYkIqrW0qVLsWvXLgwePBgrV67E+PHj8d1338HHxwdnzpyp0L59+/b49NNP8cknn2DZsmV48cUXcezYMbzwwguIiIjAgwcPajzm+++/jxdffBEymQyzZs3CBx98gGHDhuHixYtITEw0xmkCqD4gLVy4sFEDUrl169bh008/xYoVK9C1a1e88847CAkJQUO8RpMBiahqZlIXQESmLTY2FgkJCVAqleKyiIgI9OrVC0uWLMFnn32m116lUuHVV1/VW7ZkyRJMmTIFH374Idzd3bF06dIqj/fw4UMsWrQIzz//PP773/9WWJ+Xl/eYZ2Q67t+/j1atWlXb5h//+AccHBwAABMmTMCwYcOwe/duHD9+HAEBAY1RJlGLxB4kIqpWYGCgXjgCAC8vL/To0QPnzp2r1T4UCgVWrVqF7t27Y82aNdBqtVW2vXPnDgoKCvDUU09Vut7R0VHv+59//okFCxbgiSeegKWlJZydnfHyyy/j0qVLYpv3338fgYGBsLe3h5WVFXx9ffHFF1/o7Ucmk6GoqAjbtm0Tb2uNGTMGCxYswPTp0wEAnTp1Etc9Oubns88+g6+vL6ysrGBnZ4fhw4fj2rVrevsfOHAgevbsibS0NDz77LNo1aoVZs+eXavr96hBgwYBAC5fvlxtuw8//BA9evSAhYUFXFxcMGnSJL0esIEDB+Kbb77BlStXxHNyd3evcz1EzRV7kIiozgRBQG5uLnr06FHrbRQKBUaMGIG3334bP/zwA0JDQytt5+joCCsrK+zduxeTJ0+GnZ1dlfssLS3F0KFDkZKSguHDh2Pq1KkoLCzEgQMHcObMGXh4eAAAVq5ciRdffBEjR45ESUkJEhMT8c9//hNJSUliHZ9++ilef/119OvXD+PHjwcAeHh4wNraGr/++is+//xzfPDBB2JvTrt27QAA77zzDt5++23861//wuuvv47bt29j9erVePbZZ5GRkYE2bdqI9Wo0GgwZMgTDhw/Hq6++Cicnp1pfv3Llwc/e3r7KNgsWLMDChQsRFBSEiRMn4sKFC1i3bh1OnjyJo0ePwtzcHHPmzIFWq8X169fxwQcfAABat25d53qImi2BiKiOPv30UwGAsGnTJr3lAwYMEHr06FHldl9++aUAQFi5cmW1+583b54AQLC2thaGDBkivPPOO0JaWlqFdps3bxYACCtWrKiwTqfTib+/f/++3rqSkhKhZ8+ewqBBg/SWW1tbC6NHj66wr2XLlgkAhMuXL+stz87OFhQKhfDOO+/oLf/5558FMzMzveUDBgwQAAjr16+v8rwfNX/+fAGAcOHCBeH27dvC5cuXhY8++kiwsLAQnJychKKiIkEQBGHLli16teXl5QlKpVJ44YUXhNLSUnF/a9asEQAImzdvFpeFhoYKHTt2rFU9RC0Nb7ERUZ2cP38ekyZNQkBAAEaPHl2nbct7KAoLC6ttt3DhQiQkJKBPnz7Yv38/5syZA19fX/j4+Ojd1tu1axccHBwwefLkCvuQyWTi762srMTf//7779BqtXjmmWeQnp5ep/oN7d69GzqdDv/6179w584d8aNWq+Hl5YXDhw/rtbewsMDYsWPrdIwuXbqgXbt26NSpE9544w14enrim2++qXLs0sGDB1FSUoKYmBjI5X/9FT9u3DjY2trim2++qfuJErVAvMVGRLWWk5OD0NBQqFQqfPHFF1AoFHXa/t69ewAAGxubGtuOGDECI0aMQEFBAX788Uds3boVCQkJCAsLw5kzZ2BpaYlLly6hS5cuMDOr/q+ypKQkLF68GJmZmSguLhaXPxqi6uPixYsQBAFeXl6Vrjc3N9f77urqWmE8V0127doFW1tbmJubo3379uJtw6pcuXIFQFmwepRSqUTnzp3F9URUPQYkIqoVrVaLIUOG4O7du/j+++/h4uJS532UTwvg6elZ621sbW3x/PPP4/nnn4e5uTm2bduGH3/8EQMGDKjV9t9//z1efPFFPPvss/jwww/h7OwMc3NzbNmyBQkJCXU+h0fpdDrIZDJ8++23lYZFwzE9j/Zk1dazzz4rjnsiosbDgERENfrzzz8RFhaGX3/9FQcPHkT37t3rvI/S0lIkJCSgVatWePrpp+tVh5+fH7Zt24Zbt24BKBtE/eOPP+LBgwcVemvK7dq1C5aWlti/fz8sLCzE5Vu2bKnQtqoepaqWe3h4QBAEdOrUCU888URdT8coOnbsCAC4cOECOnfuLC4vKSnB5cuXERQUJC573B40ouaMY5CIqFqlpaWIiIhAamoqdu7cWa+5d0pLSzFlyhScO3cOU6ZMga2tbZVt79+/j9TU1ErXffvttwD+un00bNgw3LlzB2vWrKnQVvi/iRQVCgVkMhlKS0vFddnZ2ZVOCGltbV3pZJDW1tYAUGHdyy+/DIVCgYULF1aYuFEQBGg0mspP0oiCgoKgVCqxatUqvZo2bdoErVar9/SgtbV1tVMuELVk7EEiompNmzYNX3/9NcLCwpCfn19hYkjDSSG1Wq3Y5v79+8jKysLu3btx6dIlDB8+HIsWLar2ePfv30dgYCD69++PkJAQuLm54e7du9izZw++//57hIeHo0+fPgCAUaNG4ZNPPkFsbCxOnDiBZ555BkVFRTh48CD+53/+By+99BJCQ0OxYsUKhISE4JVXXkFeXh7Wrl0LT09PnD59Wu/Yvr6+OHjwIFasWAEXFxd06tQJ/v7+8PX1BQDMmTMHw4cPh7m5OcLCwuDh4YHFixdj1qxZyM7ORnh4OGxsbHD58mV8+eWXGD9+PN58883Huv511a5dO8yaNQsLFy5ESEgIXnzxRVy4cAEffvgh+vbtq/ffy9fXFzt27EBsbCz69u2L1q1bIywsrFHrJTJZUj5CR0Smr/zx9Ko+1bVt3bq14OXlJbz66qvCf//731od78GDB8LGjRuF8PBwoWPHjoKFhYXQqlUroU+fPsKyZcuE4uJivfb3798X5syZI3Tq1EkwNzcX1Gq18I9//EO4dOmS2GbTpk2Cl5eXYGFhIXTt2lXYsmWL+Bj9o86fPy88++yzgpWVlQBA75H/RYsWCa6uroJcLq/wyP+uXbuEp59+WrC2thasra2Frl27CpMmTRIuXLigd22qmwLBUHl9t2/frrad4WP+5dasWSN07dpVMDc3F5ycnISJEycKv//+u16be/fuCa+88orQpk0bAQAf+Sd6hEwQGuCFPkRERETNCMcgERERERlgQCIiIiIywIBEREREZIABiYiIiMgAAxIRERGRAQYkIiIiIgOcKLKedDodbt68CRsbG07XT0RE1EQIgoDCwkK4uLhALq+6n4gBqZ5u3rwJNzc3qcsgIiKierh27Rrat29f5XoGpHqysbEBUHaBq3uvFBEREZmOgoICuLm5iT/Hq8KAVE/lt9VsbW0ZkIiIiJqYmobHcJA2ERERkQEGJCIiIiIDDEhEREREBjgGiYiIqBGVlpbiwYMHUpfRbJmbm0OhUDz2fhiQiIiIGoEgCMjJycHdu3elLqXZa9OmDdRq9WPNU8iARERE1AjKw5GjoyNatWrFSYaNQBAE3L9/H3l5eQAAZ2fneu+LAYmIiMjISktLxXBkb28vdTnNmpWVFQAgLy8Pjo6O9b7dxkHaRERERlY+5qhVq1YSV9IylF/nxxnrxYBERETUSHhbrXE0xHVmQCIiIiIywIBEREREZIABiR7b9evA4cNlvxIRUfMyZswYyGQyyGQymJubw8nJCc8//zw2b94MnU5X6/1s3boVbdq0MV6hDYxPsdFj2bQJGD8e0OkAuRzYsAGIipK6KiKi5kej0aCkpKTK9Uql0mhPyIWEhGDLli0oLS1Fbm4ukpOTMXXqVHzxxRf4+uuvYWbW/OJE8zsjajTXr/8VjoCyX994AwgOBtq3l7Y2IqLmRKPRYM2aNTW2i46ONkpIsrCwgFqtBgC4urrCx8cH/fv3x+DBg7F161a8/vrrWLFiBbZs2YLffvsNdnZ2CAsLw3vvvYfWrVvjyJEjGDt2LIC/BlDPnz8fCxYswKeffoqVK1fiwoULsLa2xqBBgxAfHw9HR8cGP4+64C02qreLF/8KR+VKS4GsLGnqISJqrqrrOapPu4YwaNAg9O7dG7t37wYAyOVyrFq1CmfPnsW2bdtw6NAhzJgxAwAQGBiI+Ph42Nra4tatW7h16xbefPNNAGWP4i9atAg//fQT9uzZg+zsbIwZM6bRzqMq7EGietFoNLC1fQi53BE63V+PUyoUAmxs8qDRmHEyNCKiZq5r1644ffo0ACAmJkZc7u7ujsWLF2PChAn48MMPoVQqoVKpIJPJxJ6ocq+99pr4+86dO2PVqlXo27cv7t27h9atWzfKeVSGAYnq7NGu3qFD+2Dv3qEQBDlkMh1CQ5OQlJQBwHhdvUREZBoEQRBvmR08eBBxcXE4f/48CgoK8PDhQ/z555+4f/9+tRNkpqWlYcGCBfjpp5/w+++/iwO/r169iu7duzfKeVSGAYnq7NEuXB+fDHh4ZCE/3w52dvlQqQorbUdERM3PuXPn0KlTJ2RnZ2Po0KGYOHEi3nnnHdjZ2eGHH35AVFQUSkpKqgxIRUVFCA4ORnBwMLZv34527drh6tWrCA4OlvxnCAMSPTaVqlAvGBERUfN36NAh/Pzzz/j3v/+NtLQ06HQ6LF++HHJ52fDm//f//p9ee6VSidLSUr1l58+fh0ajwZIlS+Dm5gYAOHXqVOOcQA1MYpD22rVr4e7uDktLS/j7++PEiRPVtt+5cye6du0KS0tL9OrVC/v27dNb/+icDeWfkJCQSvdVXFwMb29vyGQyZGZmNtQpUQPg/EpERKahuLgYOTk5uHHjBtLT0/Huu+/ipZdewtChQzFq1Ch4enriwYMHWL16NX777Td8+umnWL9+vd4+3N3dce/ePaSkpODOnTu4f/8+OnToAKVSKW739ddfY9GiRRKdpT7JA9KOHTsQGxuL+fPnIz09Hb1790ZwcDDy8vIqbX/s2DGMGDECUVFRyMjIQHh4OMLDw3HmzBm9diEhIeJI+Vu3buHzzz+vdH8zZsyAi4tLg58XPZ5Nm4COHYFBg8p+3bRJ6oqIiFqu5ORkODs7w93dHSEhITh8+DBWrVqFr776CgqFAr1798aKFSuwdOlS9OzZE9u3b0dcXJzePgIDAzFhwgRERESgXbt2eO+999CuXTts3boVO3fuRPfu3bFkyRK8//77Ep2lPpkgCIKUBfj7+6Nv377ioF+dTgc3NzdMnjwZM2fOrNA+IiICRUVFSEpKEpf1798f3t7eYlodM2YM7t69iz179lR77G+//RaxsbHYtWsXevTogYyMDHh7e9eq7oKCAqhUKmi1Wtja2tbuZJuJW7duYcOGDTW2Gz9+PJydneu8/+vXy0LRo1MIKBRAdjbnVyKipunPP//E5cuX0alTJ1haWtZ5e6nnQWpqqrvetf35LekYpJKSEqSlpWHWrFniMrlcjqCgIKSmpla6TWpqKmJjY/WWBQcHVwhDR44cgaOjI9q2bYtBgwZh8eLFen9ocnNzMW7cOOzZs6fa0fXliouLUVxcLH4vKCiozSlSHWk0Ghw/Duh0+v+Dl5YCP/6ogZUV+D8/EbU49vb2iI6Olmwm7ZZI0oB0584dlJaWwsnJSW+5k5MTzp8/X+k2OTk5lbbPyckRv4eEhODll19Gp06dcOnSJcyePRtDhgxBamoqFAoFBEHAmDFjMGHCBPj5+SE7O7vGWuPi4rBw4cK6nyTVWvm/kLRaG8hkMRCEv+4Ay2Q6HD26DWfOFPJfSETUIvHvvcYl+RgkYxg+fDhefPFF9OrVC+Hh4UhKSsLJkydx5MgRAMDq1atRWFio13NVk1mzZkGr1Yqfa9euGal606dUKhu0XbnyfxmpVIUIC0uCTFZ2j00m0yEsLEl8Uk7qRz+JiKj5k7QHycHBAQqFArm5uXrLc3NzK8y0WU6tVtepPVA2M6eDgwOysrIwePBgHDp0CKmpqbCwsNBr5+fnh5EjR2Lbtm0V9mFhYVGhfUvVGF291c2vREREZGySBiSlUglfX1+kpKQgPDwcQNkg7ZSUFERHR1e6TUBAAFJSUvSmND9w4AACAgKqPM7169eh0WjEAcOrVq3C4sWLxfU3b95EcHAwduzYAX9//8c/sRagMbp6Ob8SERFJRfKJImNjYzF69Gj4+fmhX79+iI+PR1FRkfjW31GjRsHV1VV8XHDq1KkYMGAAli9fjtDQUCQmJuLUqVPiU1X37t3DwoULMWzYMKjValy6dAkzZsyAp6cngoODAQAdOnTQq6H8XS8eHh5oz8ekiIiIWjzJA1JERARu376NefPmIScnB97e3khOThYHYl+9elWclRMom0chISEBc+fOxezZs+Hl5YU9e/agZ8+eAACFQoHTp09j27ZtuHv3LlxcXPDCCy9g0aJFvEVGREREtSL5PEhNVUueB8lYjD2/EhGRVB53HiSqm4aYB6lZPsVGRERE9DgYkMhkGGv6ACIiMl1HjhyBTCbD3bt3a72Nu7s74uPjjVYTYAJjkIjKcaZYIiLTM2bMGGzbtg1vvPFGhRfQTpo0CR9++CFGjx6NrVu3SlOgkTAgkUlh+CEiMj1ubm5ITEzEBx98ACsrKwBl43wSEhIqPBneXPAWGxEREVXLx8cHbm5u2L17t7hs9+7d6NChA/r06SMuKy4uxpQpU+Do6AhLS0s8/fTTOHnypN6+9u3bhyeeeAJWVlZ47rnnKn3d1w8//IBnnnkGVlZWcHNzw5QpU1BUVGS086sMAxIREVETc/06cPhw2a+N5bXXXsOWLVvE75s3bxbnLCw3Y8YM7Nq1C9u2bUN6ero4B2F+fj4A4Nq1a3j55ZcRFhaGzMxMvP7665g5c6bePi5duoSQkBAMGzYMp0+fxo4dO/DDDz9UOYG0sTAgERERNSGbNgEdOwKDBpX9umlT4xz31VdfxQ8//IArV67gypUrOHr0KF599VVxfVFREdatW4dly5ZhyJAh6N69OzZu3AgrKyts+r8i161bBw8PDyxfvhxdunTByJEjMWbMGL3jxMXFYeTIkYiJiYGXlxcCAwOxatUqfPLJJ/jzzz8b52TBMUhERERNxvXrwPjxgK7sXd7Q6YA33gCCgwFjvwiiXbt2CA0NxdatWyEIAkJDQ+Hg4CCuv3TpEh48eICnnnpKXGZubo5+/frh3LlzAIBz585VeKWX4avCfvrpJ5w+fRrbt28XlwmCAJ1Oh8uXL6Nbt27GOL0KGJCIiIiaiIsX/wpH5UpLgaws4wckoOw2W/mtrrVr1xrlGPfu3cMbb7yBKVOmVFjXmAPCGZCIiIiaCC8vQC7XD0kKBeDp2TjHDwkJQUlJCWQymfh+03IeHh5QKpU4evQoOnbsCAB48OABTp48Kb5gvlu3bvj666/1tjt+/Ljedx8fH/zyyy/wbKyTqgLHIBERETUR7dsDGzaUhSKg7NePPmqc3qOy4ylw7tw5/PLLL1CUF/F/rK2tMXHiREyfPh3Jycn45ZdfMG7cONy/fx9RUVEAgAkTJuDixYuYPn06Lly4gISEhArzJ7311ls4duwYoqOjkZmZiYsXL+Krr75q9EHa7EEiIiJqQqKiysYcZWWV9Rw1VjgqV937y5YsWQKdTofIyEgUFhbCz88P+/fvR9u2bQGU3SLbtWsX/v3vf2P16tXo168f3n33Xbz22mviPp588kn87//+L+bMmYNnnnkGgiDAw8MDERERRj+3R/FltfXEl9USEVFt8WW1jYsvqyUiIiIyAgYkIiIiIgMcg0RkRBqNRnz57s2bcly+bIZOnR7CxaXsERS+fJeIyDQxIBEZiUajwZo1awAA6el9sHfvUAiCHDKZDmFhSfDxyQAAREdHMyQREZkY3mIjMpLyniOt1kYMRwAgCHLs3TsUWq2NXjsiav74XFTjaIjrzIBEZGT5+fZiOConCHLk59tJVBERNTZzc3MAwP379yWupGUov87l170+eIuNyMjs7DSQyXR6IUkm08HOLl/CqoioMSkUCrRp0wZ5eXkAgFatWkEmk0lcVfMjCALu37+PvLw8tGnTpsJklnXBgERkZCpVIcLCkiqMQVKpCqUujYgakVqtBgAxJJHxtGnTRrze9cWARNQIfHwy4OGRhfx8O9jZ5TMcEbVAMpkMzs7OcHR0xIMHD6Qup9kyNzd/rJ6jcgxIRI1EpSpkMCIiKBSKBvkBTsbFQdpEREREBhiQiIxEqVQ2aDsiImo8vMVGZCT29vaIjo6udp4jzqRNRGSaGJCIjIjhh4ioaeItNiIiIiIDDEhEREREBhiQiIiIiAwwIBEREREZYEAiIiIiMsCARERERGSAAYmIiIjIAAMSERERkQEGJCIiIiIDJhGQ1q5dC3d3d1haWsLf3x8nTpyotv3OnTvRtWtXWFpaolevXti3b5/e+jFjxkAmk+l9QkJCxPXZ2dmIiopCp06dYGVlBQ8PD8yfP7/aV0IQERFRyyF5QNqxYwdiY2Mxf/58pKeno3fv3ggODkZeXl6l7Y8dO4YRI0YgKioKGRkZCA8PR3h4OM6cOaPXLiQkBLdu3RI/n3/+ubju/Pnz0Ol0+Oijj3D27Fl88MEHWL9+PWbPnm3UcyUiIqKmQSYIgiBlAf7+/ujbty/WrFkDANDpdHBzc8PkyZMxc+bMCu0jIiJQVFSEpKQkcVn//v3h7e2N9evXAyjrQbp79y727NlT6zqWLVuGdevW4bfffqtV+4KCAqhUKmi1Wtja2tb6OERERCSd2v78lrQHqaSkBGlpaQgKChKXyeVyBAUFITU1tdJtUlNT9doDQHBwcIX2R44cgaOjI7p06YKJEydCo9FUW4tWq4WdnV09z4SIiIiaEzMpD37nzh2UlpbCyclJb7mTkxPOnz9f6TY5OTmVts/JyRG/h4SE4OWXX0anTp1w6dIlzJ49G0OGDEFqaioUCkWFfWZlZWH16tV4//33q6y1uLgYxcXF4veCgoJanSMRERE1PZIGJGMZPny4+PtevXrhySefhIeHB44cOYLBgwfrtb1x4wZCQkLwz3/+E+PGjatyn3FxcVi4cKHRaiYiIiLTIektNgcHBygUCuTm5uotz83NhVqtrnQbtVpdp/YA0LlzZzg4OCArK0tv+c2bN/Hcc88hMDAQGzZsqLbWWbNmQavVip9r165V256IiIiaLkkDklKphK+vL1JSUsRlOp0OKSkpCAgIqHSbgIAAvfYAcODAgSrbA8D169eh0Wjg7OwsLrtx4wYGDhwIX19fbNmyBXJ59ZfCwsICtra2eh8iIiJqniS/xRYbG4vRo0fDz88P/fr1Q3x8PIqKijB27FgAwKhRo+Dq6oq4uDgAwNSpUzFgwAAsX74coaGhSExMxKlTp8QeoHv37mHhwoUYNmwY1Go1Ll26hBkzZsDT0xPBwcEA/gpHHTt2xPvvv4/bt2+L9VTXE0VEREQtg+QBKSIiArdv38a8efOQk5MDb29vJCcniwOxr169qte7ExgYiISEBMydOxezZ8+Gl5cX9uzZg549ewIAFAoFTp8+jW3btuHu3btwcXHBCy+8gEWLFsHCwgJAWY9TVlYWsrKy0L59e716JJ71gIiIiEyA5PMgNVWcB4mIiKjpaRLzIBERERGZIgYkIiIiIgMMSEREREQGGJCIiIiIDDAgERERERlgQCIiIiIywIBEREREZIABiYiIiMgAAxIRERGRAQYkIiIiIgMMSEREREQGGJCIiIiIDDAgERERERlgQCIiIiIywIBEREREZIABiYiIiMgAAxIRERGRAQYkIiIiIgMMSEREREQGGJCIiIiIDDAgERERERlgQCIiIiIywIBEREREZIABiYiIiMgAAxIRERGRAQYkIiIiIgMMSEREREQGGJCIiIiIDDAgERERERlgQCIiIiIywIBEREREZMBM6gII0Gg0KCkpqXK9UqmEvb19I1ZERETUsjEgSUyj0WDNmjU1touOjmZIIiIiaiS8xSax6nqO6tOOiIiIHh8DEhEREZEBBiQiIiIiAwxIRERERAZMIiCtXbsW7u7usLS0hL+/P06cOFFt+507d6Jr166wtLREr169sG/fPr31Y8aMgUwm0/uEhITotcnPz8fIkSNha2uLNm3aICoqCvfu3Wvwc6srrdYGly+7Q6u1kboUIiKiFkvygLRjxw7ExsZi/vz5SE9PR+/evREcHIy8vLxK2x87dgwjRoxAVFQUMjIyEB4ejvDwcJw5c0avXUhICG7duiV+Pv/8c731I0eOxNmzZ3HgwAEkJSXhu+++w/jx4412nrWRnt4H8fEx2LZtNOLjY5Ce3kfSeoiIiFoqyQPSihUrMG7cOIwdOxbdu3fH+vXr0apVK2zevLnS9itXrkRISAimT5+Obt26YdGiRfDx8anwqLyFhQXUarX4adu2rbju3LlzSE5Oxscffwx/f388/fTTWL16NRITE3Hz5k2jnm9VtFob7N07FIJQ9p9EEOTYu3coe5KIiIgkIGlAKikpQVpaGoKCgsRlcrkcQUFBSE1NrXSb1NRUvfYAEBwcXKH9kSNH4OjoiC5dumDixInQaDR6+2jTpg38/PzEZUFBQZDL5fjxxx8rPW5xcTEKCgr0Pg1BqVQCAPLz7cVwVE4Q5MjPt9NrR0RERMYn6USRd+7cQWlpKZycnPSWOzk54fz585Vuk5OTU2n7nJwc8XtISAhefvlldOrUCZcuXcLs2bMxZMgQpKamQqFQICcnB46Ojnr7MDMzg52dnd5+HhUXF4eFCxfW5zSrZW9vj+joaGRnP8SnnwrQ6WTiOoVCwOTJQ+DubsZJIomIiBpRs5xJe/jw4eLve/XqhSeffBIeHh44cuQIBg8eXK99zpo1C7GxseL3goICuLm5PXatQFlIsrcHNmwA3ngDKC0FFArgo49k8PV1qnkHRERE1KAkDUgODg5QKBTIzc3VW56bmwu1Wl3pNmq1uk7tAaBz585wcHBAVlYWBg8eDLVaXWEQ+MOHD5Gfn1/lfiwsLGBhYVGb06q3qCggOBjIygI8PYH27Y16OCIiIqqCpGOQlEolfH19kZKSIi7T6XRISUlBQEBApdsEBATotQeAAwcOVNkeAK5fvw6NRgNnZ2dxH3fv3kVaWprY5tChQ9DpdPD393+cU3ps7dsDAwcyHBEREUlJ8qfYYmNjsXHjRmzbtg3nzp3DxIkTUVRUhLFjxwIARo0ahVmzZontp06diuTkZCxfvhznz5/HggULcOrUKURHRwMA7t27h+nTp+P48ePIzs5GSkoKXnrpJXh6eiI4OBgA0K1bN4SEhGDcuHE4ceIEjh49iujoaAwfPhwuLi6NfxGIiIjIpEg+BikiIgK3b9/GvHnzkJOTA29vbyQnJ4sDsa9evQq5/K8cFxgYiISEBMydOxezZ8+Gl5cX9uzZg549ewIAFAoFTp8+jW3btuHu3btwcXHBCy+8gEWLFundItu+fTuio6MxePBgyOVyDBs2DKtWrWrckyciIiKTJBMEQZC6iKaooKAAKpUKWq0Wtra2UpdDRHWk0WhQUlJS5XqlUsmnR4maodr+/Ja8B4mIqLFpNJoKk8tWJjo6miGJqIWSfAwSEVFjq67nqD7tiKj5YUAiIiIiMsCAREQtnlZrg8uX3fnuQyIScQwSEbVo6el9xBdFy2Q6hIUlwccnQ+qyiEhiDEhEZNKM+bSZVmsjhiOg7AXRe/cOhYdHFlSqwnrtk4iaBwYkIjJZxn7aLD/fXgxH5QRBjvx8OwYkohaOY5CIyGQZ+2kzOzsNZDKd3jKZTAc7u/x67Y+Img8GJCJqcZRKJQBApSpEWFiSGJLKxyCV9x6VtyOiloe32IioRfPxyYCHRxby8+1gZ5fPW2tEBIABiYiaEK3WBvn59rCz0zxWkDG8JadSFVa6P04USdRyMSARUZPAx/GJqDFxDBIRmbyqHsdvqIkdOVEkERliDxIRmTxjPo7Pnikiqgx7kIjIZJU/RVbT4/j1fdrM2D1TRNR0sQeJiEyWvb09oqOjUVJSAlfXArz1lgqlpTIoFAKWLi3AK6+MeKyZtDlRJBFVhQGJiExaefiZNg2IiACysgBPTxnat28DoM1j7bu8Z+rRkMSJIokI4C02ImpC2rcHBg4s+/VxcKJIIqqJTBAEQeoimqKCggKoVCpotVrY2tpKXQ4R1dGjL8G9eVOO7GwzuLs/hItLWVh6nFt3RGS6avvzm7fYiKhFejT8ODsDvr4SFkNEJoe32IiIiIgMMCARERERGeAtNiJqth4dZ1QZjjMioqowIBFRs6TRaLBmzZoa20VHRzMkEVEFvMVGRM1SdT1H9WlHRC0LAxIRERGRAQYkIiIiIgMMSETUImi1Nrh82Z0voiWiWuEgbSJq9tLT+2Dv3qEQBLn4OhEfnwypyyIiE8YeJCJq1rRaGzEcAYAgyLF371D2JBFRtRiQiKhZy8+3F8NROUGQIz/fTqKKiKgpYEAiomZJqVQCAOzsNJDJdHrrZDId7Ozy9doRET2KY5CIqFmyt7dHdHQ0SkpK4OpagLfeUqG0VAaFQsDSpQV45ZURnEmbiKokEwRBkLqIpqigoAAqlQparRa2trZSl0NENbh+HcjKAjw9gfbtpa6GiKRS25/f7EEiohahfXsGIyKqPY5BIiIiIjIgeUBau3Yt3N3dYWlpCX9/f5w4caLa9jt37kTXrl1haWmJXr16Yd++fVW2nTBhAmQyGeLj4/WW//rrr3jppZfg4OAAW1tbPP300zh8+HBDnA4RERE1A5IGpB07diA2Nhbz589Heno6evfujeDgYOTl5VXa/tixYxgxYgSioqKQkZGB8PBwhIeH48yZMxXafvnllzh+/DhcXFwqrBs6dCgePnyIQ4cOIS0tDb1798bQoUORk5PT4OdIRERETY+kg7T9/f3Rt29frFmzBgCg0+ng5uaGyZMnY+bMmRXaR0REoKioCElJSeKy/v37w9vbG+vXrxeX3bhxA/7+/ti/fz9CQ0MRExODmJgYAMCdO3fQrl07fPfdd3jmmWcAAIWFhbC1tcWBAwcQFBRUq9o5SJuIiKjpqe3Pb8l6kEpKSpCWlqYXSORyOYKCgpCamlrpNqmpqRUCTHBwsF57nU6HyMhITJ8+HT169KiwD3t7e3Tp0gWffPIJioqK8PDhQ3z00UdwdHSEr69vlfUWFxejoKBA70NERETNk2QB6c6dOygtLYWTk5PecicnpypvdeXk5NTYfunSpTAzM8OUKVMq3YdMJsPBgweRkZEBGxsbWFpaYsWKFUhOTkbbtm2rrDcuLg4qlUr8uLm51fZUiYiIqImRfJB2Q0pLS8PKlSuxdetWyGSyStsIgoBJkybB0dER33//PU6cOIHw8HCEhYXh1q1bVe571qxZ0Gq14ufatWvGOg0iIiKSmGQBycHBAQqFArm5uXrLc3NzoVarK91GrVZX2/77779HXl4eOnToADMzM5iZmeHKlSuYNm0a3N3dAQCHDh1CUlISEhMT8dRTT8HHxwcffvghrKyssG3btirrtbCwgK2trd6HiIiImifJApJSqYSvry9SUlLEZTqdDikpKQgICKh0m4CAAL32AHDgwAGxfWRkJE6fPo3MzEzx4+LigunTp2P//v0AgPv37wMoG+/0KLlcDp1O/31NRERE1DJJOpN2bGwsRo8eDT8/P/Tr1w/x8fEoKirC2LFjAQCjRo2Cq6sr4uLiAABTp07FgAEDsHz5coSGhiIxMRGnTp3Chg0bAJQNwDZ8r5K5uTnUajW6dOkCoCxktW3bFqNHj8a8efNgZWWFjRs34vLlywgNDW3EsyciIiJTJWlAioiIwO3btzFv3jzk5OTA29sbycnJ4kDsq1ev6vX0BAYGIiEhAXPnzsXs2bPh5eWFPXv2oGfPnrU+poODA5KTkzFnzhwMGjQIDx48QI8ePfDVV1+hd+/eDX6ORERE1PTUaR6kBw8eYM6cOdi9ezfs7OwwYcIEvPbaa+L63NxcuLi4oLS01CjFmhLOg0RERNT0GGUepHfeeQeffPIJJkyYgBdeeAGxsbF444039NpIOO8kERERUYOo0y227du34+OPP8bQoUMBAGPGjMGQIUMwduxYbN68GQCqfLyeiIiIqKmoUw/SjRs39Mb7eHp64siRIzh27BgiIyNbxK01IiIiav7qFJDUajUuXbqkt8zV1RWHDx/GyZMnMWbMmIasjYiIiEgSdQpIgwYNQkJCQoXlLi4uOHToEC5fvtxghRERERFJpU5jkN5++22cP3++0nWurq743//9Xxw4cKBBCiMiIiKSSp0e86e/8DF/IiKipscoj/mX27lzJ15++WX07NkTPXv2xMsvv4wvvvii3sUSERERmZI6BSSdToeIiAhERETgl19+gaenJzw9PXH27FlERERg+PDhnAeJiIiImrw6jUFauXIlDh48iK+//lqcC6nc119/jbFjx2LlypWIiYlpyBqJiOpFo9GgpKSkyvVKpbLC+xuJiIA6jkF68sknERMTo/d6kUdt2rQJK1euxOnTpxusQFPFMUhEpk2j0WDNmjU1touOjmZIImpBjDIG6eLFiwgKCqpyfVBQEC5evFiXXRIRGUV1PUf1aUdELUudApKVlRXu3r1b5fqCggJYWlo+bk1ERA1Oq7XB5cvu0GptpC6FiJqAOo1BCggIwLp167Bu3bpK169duxYBAQENUhgRUUNJT++DvXuHQhDkkMl0CAtLgo9PhtRlEZEJq1NAmjNnDgYOHAiNRoM333wTXbt2hSAIOHfuHJYvX46vvvoKhw8fNlatRER1ptXaiOEIAARBjr17h8LDIwsqVaHE1RGRqapTQAoMDMSOHTswfvx47Nq1S29d27Zt8fnnn+Opp55q0AKJiB5Hfr69GI7KCYIc+fl2DEhEVKU6BSQA+Pvf/47g4GDs379fHJD9xBNP4IUXXkCrVq0avEAiosdhZ6eBTKbTC0kymQ52dvkSVkVEpq5OAenQoUOIjo7G8ePH8fe//11vnVarRY8ePbB+/Xo888wzDVokEVF9qVSFCAtLqjAGib1HRFSdOgWk+Ph4jBs3rtJ5A1QqFd544w2sWLGCAYmIJKdUKsXf+/hkwMMjC/n5drCzy9cLR4+2IyIqV6eJIjt27Ijk5GR069at0vXnz5/HCy+8gKtXrzZYgaaKE0USmT7OpE1Ehmr787tOPUi5ubkwNzevemdmZrh9+3ZddklEZDQMP0RUX3WaKNLV1RVnzpypcv3p06fh7Oz82EURERERSalOAelvf/sb3n77bfz5558V1v3xxx+YP39+hZfYEhERETU1dRqDlJubCx8fHygUCkRHR6NLly4AysYerV27FqWlpUhPT4eTk5PRCjYVHINERETU9BhlDJKTkxOOHTuGiRMnYtasWSjPVjKZDMHBwVi7dm2LCEdERETUvNV5osiOHTti3759+P3335GVlQVBEODl5YW2bdsaoz4iIiKiRlfngFSubdu26Nu3b0PWQkRERGQS6jRIm4iIiKglYEAiIiIiMsCARERERGSAAYmIiIjIAAMSERERkQEGJCIiIiIDDEhEREREBhiQiIiIiAwwIBEREREZYEAiIiIiMiB5QFq7di3c3d1haWkJf39/nDhxotr2O3fuRNeuXWFpaYlevXph3759VbadMGECZDIZ4uPjK6z75ptv4O/vDysrK7Rt2xbh4eGPeSZERETUXEgakHbs2IHY2FjMnz8f6enp6N27N4KDg5GXl1dp+2PHjmHEiBGIiopCRkYGwsPDER4ejjNnzlRo++WXX+L48eNwcXGpsG7Xrl2IjIzE2LFj8dNPP+Ho0aN45ZVXGvz8iIiIqGmSCYIgSHVwf39/9O3bF2vWrAEA6HQ6uLm5YfLkyZg5c2aF9hERESgqKkJSUpK4rH///vD29sb69evFZTdu3IC/vz/279+P0NBQxMTEICYmBgDw8OFDuLu7Y+HChYiKiqp37QUFBVCpVNBqtbC1ta33foiIiKjx1Pbnt2Q9SCUlJUhLS0NQUNBfxcjlCAoKQmpqaqXbpKam6rUHgODgYL32Op0OkZGRmD59Onr06FFhH+np6bhx4wbkcjn69OkDZ2dnDBkypNJeqEcVFxejoKBA70NERETNk2QB6c6dOygtLYWTk5PecicnJ+Tk5FS6TU5OTo3tly5dCjMzM0yZMqXSffz2228AgAULFmDu3LlISkpC27ZtMXDgQOTn51dZb1xcHFQqlfhxc3Or1XkSERFR0yP5IO2GlJaWhpUrV2Lr1q2QyWSVttHpdACAOXPmYNiwYfD19cWWLVsgk8mwc+fOKvc9a9YsaLVa8XPt2jWjnAMRERFJT7KA5ODgAIVCgdzcXL3lubm5UKvVlW6jVqurbf/9998jLy8PHTp0gJmZGczMzHDlyhVMmzYN7u7uAABnZ2cAQPfu3cV9WFhYoHPnzrh69WqV9VpYWMDW1lbvQ0RERM2TZAFJqVTC19cXKSkp4jKdToeUlBQEBARUuk1AQIBeewA4cOCA2D4yMhKnT59GZmam+HFxccH06dOxf/9+AICvry8sLCxw4cIFcR8PHjxAdnY2Onbs2NCnSURERE2QmZQHj42NxejRo+Hn54d+/fohPj4eRUVFGDt2LABg1KhRcHV1RVxcHABg6tSpGDBgAJYvX47Q0FAkJibi1KlT2LBhAwDA3t4e9vb2escwNzeHWq1Gly5dAAC2traYMGEC5s+fDzc3N3Ts2BHLli0DAPzzn/9srFMnIiIiEyZpQIqIiMDt27cxb9485OTkwNvbG8nJyeJA7KtXr0Iu/6uTKzAwEAkJCZg7dy5mz54NLy8v7NmzBz179qzTcZctWwYzMzNERkbijz/+gL+/Pw4dOoS2bds26PkRERFR0yTpPEhNGedBIiIianpMfh4kIiIiIlPFgERERERkgAGJiIiIyAADEhEREZEBBiQiIiIiA5I+5k9ERA1Do9GgpKSkyvVKpbLCPHFEVDUGJCKiJk6j0WDNmjU1touOjmZIIqol3mIjImriDHuOtFobXL7sDq3Wptp2RFQ19iARETUj6el9sHfvUAiCHDKZDmFhSfDxyZC6LKImhz1IRETNhFZrI4YjABAEOfbuHVqhJ4mIasaARETUTOTn24vhqJwgyJGfbydRRURNFwMSEVEzYWengUym01smk+lgZ5cvUUVETRcDEhFRM6FSFSIsLEkMSeVjkFSqQokrI2p6OEibiKgZ8fHJgIdHFvLz7WBnl89wRFRPDEhERE2cUqnU+65SFVYajAzb1QYnoKSWigGJiKiJs7e3R3R0dIMHGU5A2XRcvw5cvAh4eQHt20tdTfPAgERE1AwYI6DUdmJJTkApjfLevYQEK8yYoYJOJ4NcLuC997R45ZU/2Lv3mBiQiIioVrRaG+Tn28POTsOxTRIr793Tam0QHx8DQZABAHQ6GaZPt8WNG5uhUhWyd+8xMCAREVGNOEO3aSnvtatu7iuVqpC9e4+Bj/kTEVG1OEO36eLcV8bDgERERNXiDN2mi3NfGQ9vsRERUbXKeykeDUnspTAdnPvKONiDRERE1WIvhelTqQrRqdMV/jdpQOxBIiKiSj06sWR1vRT1mYCSyNQxIBERUaWMNQElUVPAgERERFVi+DFNte21Y+9e/TEgERE9Br7igaTA3j3jY0AiIqqnTZuA8eMBnQ6Qy4ENG4CoKKmropaC4ce4ZIIgCFIX0RQVFBRApVJBq9XC1tZW6nKIqJFdvw507FgWjsopFEB2NnuSjK38HWRVYc8JVae2P7/Zg0REVA8XL+qHIwAoLQWyshiQjKn8HWQ14TvI6HFxHiQionrw8iq7rfYohQLw9JSmnpaitu8W4zvI6HExIBER1ZFGo4FCcQvvvXcXCkXZKAWFQsDSpXehUNyCRqORuEIiely8xUZEVAeGt3imTLERJ0+8d68QGzaULectnsah1dogP98ednYaziJNDYoBiYioDgxv3ahUhZX+YOYtHuNLT++DvXuHQhDk4utPfHwypC6LmgneYiMioiZHq7URwxEACIIce/cOhVZrI3Fl1FwwIBERUZOTn28vhqNygiBHfr6dRBVRc2MSAWnt2rVwd3eHpaUl/P39ceLEiWrb79y5E127doWlpSV69eqFffv2Vdl2woQJkMlkiI+Pr3R9cXExvL29IZPJkJmZ+RhnQUREjcXOTgOZTH+eBZlMBzu7fIkqouZG8oC0Y8cOxMbGYv78+UhPT0fv3r0RHByMvLy8StsfO3YMI0aMQFRUFDIyMhAeHo7w8HCcOXOmQtsvv/wSx48fh4uLS5XHnzFjRrXriYjIdJS/W0ylKkRYWJIYksrHIJWPB+M7yOhxST6Ttr+/P/r27Ss+FaLT6eDm5obJkydj5syZFdpHRESgqKgISUlJ4rL+/fvD29sb69evF5fduHED/v7+2L9/P0JDQxETE4OYmBi9fX377beIjY3Frl270KNHD2RkZMDb27tWdXMmbaKW6datW9hQ/qhaNcaPHw9nZ+dGqKii5v5+uEdn0r55U47sbDO4uz+Ei0tZWOJM2lSdJjGTdklJCdLS0jBr1ixxmVwuR1BQEFJTUyvdJjU1FbGxsXrLgoODsWfPHvG7TqdDZGQkpk+fjh49elS6n9zcXIwbNw579uxBq1ataqy1uLgYxcXF4veCgoIatyEiamwt4f1wj4YfZ2fA11fCYqjZkvQW2507d1BaWgonJye95U5OTsjJyal0m5ycnBrbL126FGZmZpgyZUql+xAEAWPGjMGECRPg5+dXq1rj4uKgUqnEj5ubW622I6Lmpba3bqS4xXP9+l/hCCj79Y03ypYTUd00u3mQ0tLSsHLlSqSnp0Mmk1XaZvXq1SgsLNTruarJrFmz9HquCgoKGJKIWiB7e3tER0eb3MtSNRoNjh8HdDr945aWAj/+qIGVFd/+TlQXkgYkBwcHKBQK5Obm6i3Pzc2FWq2udBu1Wl1t+++//x55eXno0KGDuL60tBTTpk1DfHw8srOzcejQIaSmpsLCwkJvP35+fhg5ciS2bdtW4bgWFhYV2hNRy2RqQaN8dm+t1gYyWYze4+8ymQ5Hj27DmTOFnN2bqA4kvcWmVCrh6+uLlJQUcZlOp0NKSgoCAgIq3SYgIECvPQAcOHBAbB8ZGYnTp08jMzNT/Li4uGD69OnYv38/AGDVqlX46aefxPXl0wTs2LED77zzjjFOlYjIaMp7s2p6souzexPVnuS32GJjYzF69Gj4+fmhX79+iI+PR1FREcaOHQsAGDVqFFxdXREXFwcAmDp1KgYMGIDly5cjNDQUiYmJOHXqlPhUib29fYV/IZmbm0OtVqNLly4AoNe7BACtW7cGAHh4eKB9c3zkg4haDB+fDHh4ZInvh+P7yYjqR/KAFBERgdu3b2PevHnIycmBt7c3kpOTxYHYV69ehVz+V0dXYGAgEhISMHfuXMyePRteXl7Ys2cPevbsKdUpEBGZlKreD0dEtSf5PEhNFedBIiJT0RTmZiIyFbX9+S35TNpEREREpoYBiYiIiMiA5GOQiIiIGsujrympDF9TQuUYkIiImjhTnt3blJTPF1UTzhelr7m/268qDEhERE2cqc7ubWpqOw8U54v6S0t4t19VGJCIiJqBlh5+qGFpNBpkZz/E+PGO0OnKXttV9m4/Ad7eeXB3N2v2f+YYkIiIiEhUfivy8mV36HSj9daVlsqwevW36NTpSrO/Fcmn2IiIqEXSam1w+bI7tFobqUsxKeW3GO3sNOJra8rJZDrY2eXrtWuu2INEREQtTnp6H+zdOxSCIBffWefjkyF1WSal/N1+hteppczSzoBEREQtilZrI/7QBwBBkGPv3qHw8MhqMT/8a6slv9uPAYmIiFqU/Hx7MRyVEwQ58vPtWlQAqK2W+m4/jkEiIqIWoXweqJrG1rT0+aKoDHuQiIioRXh0vihX1wK89ZYKpaUyKBQCli4twCuvjOB8USRiQCIiohajPPxMmwZERABZWYCnpwzt27cB0EbK0sjEMCAREVGL1L59y3p1Rm3x1TVlGJCIiIhIxFfXlGFAIiIiIj3NPfzUBp9iIyIiIjLAgERERERkgAGJiIiIyAADEhEREZEBBiQiIiIiAwxIRERERAYYkIiIiIgMMCARERERGWBAIiIiIjLAgERERERkgAGJiIiIyAADEhEREZEBBiQiIiIiAwxIRERERAYYkIiIiIgMMCARERERGWBAIiIiIjLAgERERERkgAGJiIiIyIBJBKS1a9fC3d0dlpaW8Pf3x4kTJ6ptv3PnTnTt2hWWlpbo1asX9u3bV2XbCRMmQCaTIT4+XlyWnZ2NqKgodOrUCVZWVvDw8MD8+fNRUlLSUKdERERETZjkAWnHjh2IjY3F/PnzkZ6ejt69eyM4OBh5eXmVtj927BhGjBiBqKgoZGRkIDw8HOHh4Thz5kyFtl9++SWOHz8OFxcXveXnz5+HTqfDRx99hLNnz+KDDz7A+vXrMXv2bKOcIxERETUtMkEQBCkL8Pf3R9++fbFmzRoAgE6ng5ubGyZPnoyZM2dWaB8REYGioiIkJSWJy/r37w9vb2+sX79eXHbjxg34+/tj//79CA0NRUxMDGJiYqqsY9myZVi3bh1+++23WtVdUFAAlUoFrVYLW1vbWp4tERERSam2P78l7UEqKSlBWloagoKCxGVyuRxBQUFITU2tdJvU1FS99gAQHBys116n0yEyMhLTp09Hjx49alWLVquFnZ1dleuLi4tRUFCg9yEiIqLmSdKAdOfOHZSWlsLJyUlvuZOTE3JycirdJicnp8b2S5cuhZmZGaZMmVKrOrKysrB69Wq88cYbVbaJi4uDSqUSP25ubrXaNxERETU9ko9BamhpaWlYuXIltm7dCplMVmP7GzduICQkBP/85z8xbty4KtvNmjULWq1W/Fy7dq0hyyYiIiITImlAcnBwgEKhQG5urt7y3NxcqNXqSrdRq9XVtv/++++Rl5eHDh06wMzMDGZmZrhy5QqmTZsGd3d3ve1u3ryJ5557DoGBgdiwYUO1tVpYWMDW1lbvQ0RERM2TpAFJqVTC19cXKSkp4jKdToeUlBQEBARUuk1AQIBeewA4cOCA2D4yMhKnT59GZmam+HFxccH06dOxf/9+cZsbN25g4MCB8PX1xZYtWyCXN7vONCIiIqonM6kLiI2NxejRo+Hn54d+/fohPj4eRUVFGDt2LABg1KhRcHV1RVxcHABg6tSpGDBgAJYvX47Q0FAkJibi1KlTYg+Qvb097O3t9Y5hbm4OtVqNLl26APgrHHXs2BHvv/8+bt++LbatqueKiIiIWg7JA1JERARu376NefPmIScnB97e3khOThYHYl+9elWvdycwMBAJCQmYO3cuZs+eDS8vL+zZswc9e/as9TEPHDiArKwsZGVloX379nrrJJ71gIiIiEyA5PMgNVWcB4mIiKjpaRLzIBERERGZIgYkIiIiIgMMSEREREQGGJCIiIiIDDAgERERERlgQCIiIiIywIBEREREZIABiYiIiMgAAxIRERGRAQYkIiIiIgMMSEREREQGGJCIiIiIDDAgERERERlgQCIiIiIywIBEREREZIABiYiIiMgAAxIRERGRAQYkIiIiIgMMSEREREQGGJCIiIiIDDAgERERGbh+HTh8uOxXapkYkIiIiABoNBrcunULy5ffRceOAgYNAjp2FLB8+V3cunULGo1G6hKpEZlJXQAREZHUNBoN1qxZA63WBvHxMRAEGQBAp5Nh+nRb3LixGSpVIaKjo2Fvby9xtdQYGJCIiKjFKykpAQDk59tDEPRvrgiCHPn5dlCpCsV2VD8ajabaa6hUKk0mgDIgERER/R87Ow1kMp1eSJLJdLCzy5ewquahvJeunFZrg/x8e9jZaaBSFYrLTaWXjgGJiIjo/6hUhQgLS8LevUMhCHLIZDqEhSXp/QCn+nm05yg9vU+Fa+zjk1GhnZQYkIiIiB7h45MBD48s5Ofbwc4un+GogWm1NmI4AspuYe7dOxQeHlkmda0ZkIiIiAyoVIUm9cO6OalpnJep4GP+RERE1GjKx3k9yhTHeTEgERERUaMpH+dVHpJMdZwXb7EREVGLp1QqG7QdVa+mcV7XrwMXLwJeXkD79tLUyIBEREQtnr29PaKjo5vMHD3NQVXjvDZsKMV//iNAp5NBLhfw3ntavPLKH41+/RmQiIiIAIYfI6tN71vZTOYuJjGTOQMSERERGV11vXR37tzB7t27TWomcwYkIiIiahQ19f6Y0kzmfIqNiIiITIIpPeHGHiQiIiIyGaYyk7lJ9CCtXbsW7u7usLS0hL+/P06cOFFt+507d6Jr166wtLREr169sG/fvirbTpgwATKZDPHx8XrL8/PzMXLkSNja2qJNmzaIiorCvXv3GuJ0iIiI6DGoVIXo1OmKpHMjSR6QduzYgdjYWMyfPx/p6eno3bs3goODkZeXV2n7Y8eOYcSIEYiKikJGRgbCw8MRHh6OM2fOVGj75Zdf4vjx43BxcamwbuTIkTh79iwOHDiApKQkfPfddxg/fnyDnx8RERE1PZIHpBUrVmDcuHEYO3YsunfvjvXr16NVq1bYvHlzpe1XrlyJkJAQTJ8+Hd26dcOiRYvg4+ODNWvW6LW7ceMGJk+ejO3bt8Pc3Fxv3blz55CcnIyPP/4Y/v7+ePrpp7F69WokJibi5s2bRjtXIiIiahokDUglJSVIS0tDUFCQuEwulyMoKAipqamVbpOamqrXHgCCg4P12ut0OkRGRmL69Ono0aNHpfto06YN/Pz8xGVBQUGQy+X48ccfKz1ucXExCgoK9D5ERET0+ExxJnNJB2nfuXMHpaWlcHJy0lvu5OSE8+fPV7pNTk5Ope1zcnLE70uXLoWZmRmmTJlS5T4cHR31lpmZmcHOzk5vP4+Ki4vDwoULazwnIiIiqhtTnMm82T3FlpaWhpUrVyI9PR0ymazB9jtr1izExsaK3wsKCuDm5tZg+yciImrJTG0mc0lvsTk4OEChUCA3N1dveW5uLtRqdaXbqNXqatt///33yMvLQ4cOHWBmZgYzMzNcuXIF06ZNg7u7u7gPw0HgDx8+RH5+fpXHtbCwgK2trd6HiIiImidJA5JSqYSvry9SUlLEZTqdDikpKQgICKh0m4CAAL32AHDgwAGxfWRkJE6fPo3MzEzx4+LigunTp2P//v3iPu7evYu0tDRxH4cOHYJOp4O/v39DnyYRERE1MZLfYouNjcXo0aPh5+eHfv36IT4+HkVFRRg7diwAYNSoUXB1dUVcXBwAYOrUqRgwYACWL1+O0NBQJCYm4tSpU9iwYQOAsi46w246c3NzqNVqdOnSBQDQrVs3hISEYNy4cVi/fj0ePHiA6OhoDB8+vNIpAYiIiKhlkTwgRURE4Pbt25g3bx5ycnLg7e2N5ORkcSD21atXIZf/1dEVGBiIhIQEzJ07F7Nnz4aXlxf27NmDnj171um427dvR3R0NAYPHgy5XI5hw4Zh1apVDXpuRERE1DTJBEEQpC6iKSooKIBKpYJWq+V4JCIioiaitj+/JZ8okoiIiMjUMCARERERGWBAIiIiIjLAgERERERkQPKn2Jqq8rHtfCcbERFR01H+c7umZ9QYkOqpsLAQAPi6ESIioiaosLAQKpWqyvV8zL+edDodbt68CRsbm0rf+Vb+rrZr165xGoBK8PrUjNeoZrxGNeM1qhmvUc2a0zUSBAGFhYVwcXHRm2fREHuQ6kkul6N9+/Y1tuN726rH61MzXqOa8RrVjNeoZrxGNWsu16i6nqNyHKRNREREZIABiYiIiMgAA5KRWFhYYP78+bCwsJC6FJPE61MzXqOa8RrVjNeoZrxGNWuJ14iDtImIiIgMsAeJiIiIyAADEhEREZEBBiQiIiIiAwxIRERERAYYkOpp7dq1cHd3h6WlJfz9/XHixIkq2549exbDhg2Du7s7ZDIZ4uPjG69QCdXlGm3cuBHPPPMM2rZti7Zt2yIoKKja9s1FXa7R7t274efnhzZt2sDa2hre3t749NNPG7FaadTlGj0qMTERMpkM4eHhxi3QBNTlGm3duhUymUzvY2lp2YjVSqOuf47u3r2LSZMmwdnZGRYWFnjiiSewb9++RqpWGnW5RgMHDqzw50gmkyE0NLQRKzYygeosMTFRUCqVwubNm4WzZ88K48aNE9q0aSPk5uZW2v7EiRPCm2++KXz++eeCWq0WPvjgg8YtWAJ1vUavvPKKsHbtWiEjI0M4d+6cMGbMGEGlUgnXr19v5MobT12v0eHDh4Xdu3cLv/zyi5CVlSXEx8cLCoVCSE5ObuTKG09dr1G5y5cvC66ursIzzzwjvPTSS41TrETqeo22bNki2NraCrdu3RI/OTk5jVx146rrNSouLhb8/PyEv/3tb8IPP/wgXL58WThy5IiQmZnZyJU3nrpeI41Go/dn6MyZM4JCoRC2bNnSuIUbEQNSPfTr10+YNGmS+L20tFRwcXER4uLiaty2Y8eOLSIgPc41EgRBePjwoWBjYyNs27bNWCVK7nGvkSAIQp8+fYS5c+caozyTUJ9r9PDhQyEwMFD4+OOPhdGjRzf7gFTXa7RlyxZBpVI1UnWmoa7XaN26dULnzp2FkpKSxipRco/799EHH3wg2NjYCPfu3TNWiY2Ot9jqqKSkBGlpaQgKChKXyeVyBAUFITU1VcLKTEdDXKP79+/jwYMHsLOzM1aZknrcayQIAlJSUnDhwgU8++yzxixVMvW9Rv/5z3/g6OiIqKioxihTUvW9Rvfu3UPHjh3h5uaGl156CWfPnm2MciVRn2v09ddfIyAgAJMmTYKTkxN69uyJd999F6WlpY1VdqNqiL+zN23ahOHDh8Pa2tpYZTY6BqQ6unPnDkpLS+Hk5KS33MnJCTk5ORJVZVoa4hq99dZbcHFx0fsftjmp7zXSarVo3bo1lEolQkNDsXr1ajz//PPGLlcS9blGP/zwAzZt2oSNGzc2RomSq8816tKlCzZv3oyvvvoKn332GXQ6HQIDA3H9+vXGKLnR1eca/fbbb/jiiy9QWlqKffv24e2338by5cuxePHixii50T3u39knTpzAmTNn8PrrrxurREmYSV0AkaElS5YgMTERR44caRGDR+vCxsYGmZmZuHfvHlJSUhAbG4vOnTtj4MCBUpcmucLCQkRGRmLjxo1wcHCQuhyTFRAQgICAAPF7YGAgunXrho8++giLFi2SsDLTodPp4OjoiA0bNkChUMDX1xc3btzAsmXLMH/+fKnLMzmbNm1Cr1690K9fP6lLaVAMSHXk4OAAhUKB3NxcveW5ublQq9USVWVaHucavf/++1iyZAkOHjyIJ5980phlSqq+10gul8PT0xMA4O3tjXPnziEuLq5ZBqS6XqNLly4hOzsbYWFh4jKdTgcAMDMzw4ULF+Dh4WHcohtZQ/x9ZG5ujj59+iArK8sYJUquPtfI2dkZ5ubmUCgU4rJu3bohJycHJSUlUCqVRq25sT3On6OioiIkJibiP//5jzFLlARvsdWRUqmEr68vUlJSxGU6nQ4pKSl6/ypryep7jd577z0sWrQIycnJ8PPza4xSJdNQf450Oh2Ki4uNUaLk6nqNunbtip9//hmZmZni58UXX8Rzzz2HzMxMuLm5NWb5jaIh/hyVlpbi559/hrOzs7HKlFR9rtFTTz2FrKwsMWADwK+//gpnZ+dmF46Ax/tztHPnThQXF+PVV181dpmNT+pR4k1RYmKiYGFhIWzdulX45ZdfhPHjxwtt2rQRH5WNjIwUZs6cKbYvLi4WMjIyhIyMDMHZ2Vl48803hYyMDOHixYtSnYLR1fUaLVmyRFAqlcIXX3yh9+hoYWGhVKdgdHW9Ru+++67w3//+V7h06ZLwyy+/CO+//75gZmYmbNy4UapTMLq6XiNDLeEptrpeo4ULFwr79+8XLl26JKSlpQnDhw8XLC0thbNnz0p1CkZX12t09epVwcbGRoiOjhYuXLggJCUlCY6OjsLixYulOgWjq+//a08//bQQERHR2OU2Cgakelq9erXQoUMHQalUCv369ROOHz8urhswYIAwevRo8fvly5cFABU+AwYMaPzCG1FdrlHHjh0rvUbz589v/MIbUV2u0Zw5cwRPT0/B0tJSaNu2rRAQECAkJiZKUHXjqss1MtQSApIg1O0axcTEiG2dnJyEv/3tb0J6eroEVTeuuv45OnbsmODv7y9YWFgInTt3Ft555x3h4cOHjVx146rrNTp//rwAQPjvf//byJU2DpkgCIJEnVdEREREJoljkIiIiIgMMCARERERGWBAIiIiIjLAgERERERkgAGJiIiIyAADEhEREZEBBiQiIiIiAwxIREQmbsyYMQgPD5e6DKIWhQGJiOptzJgxkMlk4sfe3h4hISE4ffq01KU1iEfPrfzz9NNPG+142dnZkMlkyMzM1Fu+cuVKbN261WjHJaKKGJCI6LGEhITg1q1buHXrFlJSUmBmZoahQ4dKXVaD2bJli3h+t27dwtdff11puwcPHhitBpVKhTZt2hht/0RUEQMSET0WCwsLqNVqqNVqeHt7Y+bMmbh27Rpu376NQYMGITo6Wq/97du3oVQqxTeHu7u7Y9GiRRgxYgSsra3h6uqKtWvX6m2zYsUK9OrVC9bW1nBzc8P//M//4N69e+L6K1euICwsDG3btoW1tTV69OiBffv2AQB+//13jBw5Eu3atYOVlRW8vLywZcuWWp9fmzZtxPNTq9Wws7MTe3p27NiBAQMGwNLSEtu3b4dGo8GIESPg6uqKVq1aoVevXvj888/19qfT6fDee+/B09MTFhYW6NChA9555x0AQKdOnQAAffr0gUwmw8CBAwFUvMVWXFyMKVOmwNHREZaWlnj66adx8uRJcf2RI0cgk8mQkpICPz8/tGrVCoGBgbhw4UKtz5uopWNAIqIGc+/ePXz22Wfw9PSEvb09Xn/9dSQkJKC4uFhs89lnn8HV1RWDBg0Sly1btgy9e/dGRkYGZs6cialTp+LAgQPierlcjlWrVuHs2bPYtm0bDh06hBkzZojrJ02ahOLiYnz33Xf4+eefsXTpUrRu3RoA8Pbbb+OXX37Bt99+i3PnzmHdunVwcHBokPMtr/XcuXMIDg7Gn3/+CV9fX3zzzTc4c+YMxo8fj8jISJw4cULcZtasWViyZIlYV0JCApycnABAbHfw4EHcunULu3fvrvS4M2bMwK5du7Bt2zakp6fD09MTwcHByM/P12s3Z84cLF++HKdOnYKZmRlee+21BjlvohZB6rflElHTNXr0aEGhUAjW1taCtbW1AEBwdnYW0tLSBEEQhD/++ENo27atsGPHDnGbJ598UliwYIH4vWPHjkJISIjefiMiIoQhQ4ZUedydO3cK9vb24vdevXrp7fNRYWFhwtixY+t1fgAES0tL8fysra2FL7/8Urh8+bIAQIiPj69xH6GhocK0adMEQRCEgoICwcLCQti4cWOlbcv3m5GRobd89OjRwksvvSQIgiDcu3dPMDc3F7Zv3y6uLykpEVxcXIT33ntPEARBOHz4sABAOHjwoNjmm2++EQAIf/zxR10uAVGLxR4kInoszz33HDIzM5GZmYkTJ04gODgYQ4YMwZUrV2BpaYnIyEhs3rwZAJCeno4zZ85gzJgxevsICAio8P3cuXPi94MHD2Lw4MFwdXWFjY0NIiMjodFocP/+fQDAlClTsHjxYjz11FOYP3++3iDxiRMnIjExEd7e3pgxYwaOHTtWp/P74IMPxPPLzMzE888/L67z8/PTa1taWopFixahV69esLOzQ+vWrbF//35cvXoVAHDu3DkUFxdj8ODBdarhUZcuXcKDBw/w1FNPicvMzc3Rr18/vWsGAE8++aT4e2dnZwBAXl5evY9N1JIwIBHRY7G2toanpyc8PT3Rt29ffPzxxygqKsLGjRsBAK+//joOHDiA69evY8uWLRg0aBA6duxY6/1nZ2dj6NChePLJJ7Fr1y6kpaWJY5RKSkrEY/z222+IjIzEzz//DD8/P6xevRoAxLD273//Gzdv3sTgwYPx5ptv1vr4arVaPD9PT09YW1vrnfujli1bhpUrV+Ktt97C4cOHkZmZieDgYLFOKyurWh+3IZibm4u/l8lkAMrGQBFRzRiQiKhByWQyyOVy/PHHHwCAXr16wc/PDxs3bkRCQkKl42COHz9e4Xu3bt0AAGlpadDpdFi+fDn69++PJ554Ajdv3qywDzc3N0yYMAG7d+/GtGnTxIAGAO3atcPo0aPx2WefIT4+Hhs2bGjIUxYdPXoUL730El599VX07t0bnTt3xq+//iqu9/LygpWVlThA3ZBSqQRQ1hNVFQ8PDyiVShw9elRc9uDBA5w8eRLdu3dvoDMhIjOpCyCipq24uBg5OTkAyp4YW7NmDe7du4ewsDCxzeuvv47o6GhYW1vj73//e4V9HD16FO+99x7Cw8Nx4MAB7Ny5E9988w0AwNPTEw8ePMDq1asRFhaGo0ePYv369Xrbx8TEYMiQIXjiiSfw+++/4/Dhw2LAmjdvHnx9fdGjRw8UFxcjKSlJXNfQvLy88MUXX+DYsWNo27YtVqxYgdzcXDG4WFpa4q233sKMGTOgVCrx1FNP4fbt2zh79iyioqLg6OgIKysrJCcno3379rC0tIRKpdI7hrW1NSZOnIjp06fDzs4OHTp0wHvvvYf79+8jKirKKOdF1BKxB4mIHktycjKcnZ3h7OwMf39/nDx5Ejt37hQfUQeAESNGwMzMDCNGjIClpWWFfUybNg2nTp1Cnz59sHjxYqxYsQLBwcEAgN69e2PFihVYunQpevbsie3btyMuLk5v+9LSUkyaNAndunVDSEgInnjiCXz44YcAynplZs2ahSeffBLPPvssFAoFEhMTjXIt5s6dCx8fHwQHB2PgwIFQq9UVZsB+++23MW3aNMybNw/dunVDRESEOC7IzMwMq1atwkcffQQXFxe89NJLlR5nyZIlGDZsGCIjI+Hj44OsrCzs378fbdu2Ncp5EbVEMkEQBKmLIKLmLTs7Gx4eHjh58iR8fHz01rm7uyMmJgYxMTHSFEdEVAneYiMio3nw4AE0Gg3mzp2L/v37VwhHRESmirfYiMhojh49CmdnZ5w8ebLCuCGpvfvuu2jdunWlnyFDhkhdHhFJjLfYiKhFys/PrzDzdDkrKyu4uro2ckVEZEoYkIiIiIgM8BYbERERkQEGJCIiIiIDDEhEREREBhiQiIiIiAwwIBEREREZYEAiIiIiMsCARERERGSAAYmIiIjIwP8HjdIeIxViIt4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWFlJREFUeJzt3XtYVNXiPvB3ZmAAFUZBBUEURBJviaASlGFGDR6kOFrhJbxEXvqFysEwb4lmRZYa3krteKsTaqZSmgczzDLFTMDM0hIFr1x0yAHxCMqs3x9+2TnDRUBgZuD9PM88ytpr71lrNzGva6+9tkwIIUBEREREErmxG0BERERkahiQiIiIiAwwIBEREREZYEAiIiIiMsCARERERGSAAYmIiIjIAAMSERERkQEGJCIiIiIDDEhEREREBhiQiIjM2MaNGyGTyZCdnW3sphA1KQxIRFStn3/+GVFRUejZsydatmyJTp064YUXXsCff/5Zoe6gQYMgk8kgk8kgl8thZ2eHbt26ISIiAvv27avV++7atQuBgYFo3749WrRogS5duuCFF15AcnJyfXWtgnfeeQdJSUkVyg8fPoz58+fj+vXrDfbehubPny+dS5lMhhYtWqBHjx6YO3cuCgsL6+U9EhMTkZCQUC/HImpqGJCIqFqLFi3C9u3b8eSTT2LZsmWYOHEifvjhB/j4+ODkyZMV6nfs2BGffvopPvnkE7z//vt45plncPjwYTz99NMIDw/H7du37/ueixcvxjPPPAOZTIZZs2bhgw8+wPDhw3HmzBls2bKlIboJoPqAtGDBgkYNSOU++ugjfPrpp1i6dCm8vLzw9ttvIzg4GPXxGE0GJKKqWRi7AURk2mJiYpCYmAilUimVhYeHo3fv3nj33Xfxn//8R6++SqXCiy++qFf27rvvYurUqfjwww/h5uaGRYsWVfl+d+7cwcKFC/HUU0/hm2++qbA9Pz//AXtkOm7evIkWLVpUW+e5555D27ZtAQCTJ0/G8OHDsWPHDhw5cgT+/v6N0UyiZokjSERUrYCAAL1wBACenp7o2bMnTp06VaNjKBQKLF++HD169MDKlSuh1WqrrHvt2jUUFhbi0UcfrXR7+/bt9X6+desW5s+fj4ceegjW1tbo0KEDhg0bhrNnz0p1Fi9ejICAADg4OMDGxga+vr744osv9I4jk8lQXFyMTZs2SZe1xo0bh/nz5yM2NhYA4O7uLm27d87Pf/7zH/j6+sLGxgb29vYYMWIELl68qHf8QYMGoVevXkhLS8Pjjz+OFi1aYPbs2TU6f/caPHgwACArK6vaeh9++CF69uwJKysrODs749VXX9UbARs0aBC+/vprnD9/XuqTm5tbrdtD1FRxBImIak0Igby8PPTs2bPG+ygUCowcORJvvPEGfvzxR4SEhFRar3379rCxscGuXbswZcoU2NvbV3nMsrIyDB06FCkpKRgxYgSmTZuGoqIi7Nu3DydPnoSHhwcAYNmyZXjmmWcwevRolJaWYsuWLXj++eexe/duqR2ffvopXn75ZQwYMAATJ04EAHh4eKBly5b4888/sXnzZnzwwQfSaE67du0AAG+//TbeeOMNvPDCC3j55Zdx9epVrFixAo8//jgyMjLQunVrqb0ajQZDhgzBiBEj8OKLL8LR0bHG569cefBzcHCoss78+fOxYMECBAUF4ZVXXsEff/yBjz76CD///DMOHToES0tLzJkzB1qtFpcuXcIHH3wAAGjVqlWt20PUZAkiolr69NNPBQCxbt06vfLAwEDRs2fPKvfbuXOnACCWLVtW7fHnzZsnAIiWLVuKIUOGiLffflukpaVVqLd+/XoBQCxdurTCNp1OJ/395s2bettKS0tFr169xODBg/XKW7ZsKcaOHVvhWO+//74AILKysvTKs7OzhUKhEG+//bZe+a+//iosLCz0ygMDAwUAsXr16ir7fa+4uDgBQPzxxx/i6tWrIisrS6xZs0ZYWVkJR0dHUVxcLIQQYsOGDXpty8/PF0qlUjz99NOirKxMOt7KlSsFALF+/XqpLCQkRHTu3LlG7SFqbniJjYhq5fTp03j11Vfh7++PsWPH1mrf8hGKoqKiaustWLAAiYmJ6Nu3L/bu3Ys5c+bA19cXPj4+epf1tm/fjrZt22LKlCkVjiGTyaS/29jYSH//66+/oNVqMXDgQKSnp9eq/YZ27NgBnU6HF154AdeuXZNeTk5O8PT0xHfffadX38rKCuPHj6/Ve3Tr1g3t2rWDu7s7Jk2ahK5du+Lrr7+ucu7St99+i9LSUkRHR0Mu//tX/IQJE2BnZ4evv/669h0laoZ4iY2Iaiw3NxchISFQqVT44osvoFAoarX/jRs3AAC2trb3rTty5EiMHDkShYWF+Omnn7Bx40YkJiYiNDQUJ0+ehLW1Nc6ePYtu3brBwqL6X2W7d+/GW2+9hePHj6OkpEQqvzdE1cWZM2cghICnp2el2y0tLfV+dnFxqTCf6362b98OOzs7WFpaomPHjtJlw6qcP38ewN1gdS+lUokuXbpI24moegxIRFQjWq0WQ4YMwfXr13Hw4EE4OzvX+hjlywJ07dq1xvvY2dnhqaeewlNPPQVLS0ts2rQJP/30EwIDA2u0/8GDB/HMM8/g8ccfx4cffogOHTrA0tISGzZsQGJiYq37cC+dTgeZTIb//ve/lYZFwzk9945k1dTjjz8uzXsiosbDgERE93Xr1i2Ehobizz//xLfffosePXrU+hhlZWVITExEixYt8Nhjj9WpHf369cOmTZuQk5MD4O4k6p9++gm3b9+uMFpTbvv27bC2tsbevXthZWUllW/YsKFC3apGlKoq9/DwgBAC7u7ueOihh2rbnQbRuXNnAMAff/yBLl26SOWlpaXIyspCUFCQVPagI2hETRnnIBFRtcrKyhAeHo7U1FRs27atTmvvlJWVYerUqTh16hSmTp0KOzu7KuvevHkTqamplW7773//C+Dvy0fDhw/HtWvXsHLlygp1xf8tpKhQKCCTyVBWViZty87OrnRByJYtW1a6GGTLli0BoMK2YcOGQaFQYMGCBRUWbhRCQKPRVN7JBhQUFASlUonly5frtWndunXQarV6dw+2bNmy2iUXiJozjiARUbWmT5+Or776CqGhoSgoKKiwMKThopBarVaqc/PmTWRmZmLHjh04e/YsRowYgYULF1b7fjdv3kRAQAAeeeQRBAcHw9XVFdevX0dSUhIOHjyIsLAw9O3bFwAwZswYfPLJJ4iJicHRo0cxcOBAFBcX49tvv8X/+3//D88++yxCQkKwdOlSBAcHY9SoUcjPz8eqVavQtWtXnDhxQu+9fX198e2332Lp0qVwdnaGu7s7/Pz84OvrCwCYM2cORowYAUtLS4SGhsLDwwNvvfUWZs2ahezsbISFhcHW1hZZWVnYuXMnJk6ciNdee+2Bzn9ttWvXDrNmzcKCBQsQHByMZ555Bn/88Qc+/PBD9O/fX++/l6+vL7Zu3YqYmBj0798frVq1QmhoaKO2l8hkGfMWOiIyfeW3p1f1qq5uq1athKenp3jxxRfFN998U6P3u337tvj4449FWFiY6Ny5s7CyshItWrQQffv2Fe+//74oKSnRq3/z5k0xZ84c4e7uLiwtLYWTk5N47rnnxNmzZ6U669atE56ensLKykp4eXmJDRs2SLfR3+v06dPi8ccfFzY2NgKA3i3/CxcuFC4uLkIul1e45X/79u3iscceEy1bthQtW7YUXl5e4tVXXxV//PGH3rmpbgkEQ+Xtu3r1arX1DG/zL7dy5Urh5eUlLC0thaOjo3jllVfEX3/9pVfnxo0bYtSoUaJ169YCAG/5J7qHTIh6eKAPERERURPCOUhEREREBhiQiIiIiAwwIBEREREZYEAiIiIiMsCARERERGSAAYmIiIjIABeKrCOdTocrV67A1taWy/UTERGZCSEEioqK4OzsDLm86nEiBqQ6unLlClxdXY3dDCIiIqqDixcvomPHjlVuZ0CqI1tbWwB3T3B1z5UiIiIi01FYWAhXV1fpe7wqDEh1VH5Zzc7OjgGJiIjIzNxvegwnaRMREREZYEAiIiIiMsCARERERGSAc5AaWFlZGW7fvm3sZjRZSqWy2ts0iYiI6oIBqYEIIZCbm4vr168buylNmlwuh7u7O5RKpbGbQkRETQgDUgMpD0ft27dHixYtuJhkAyhfrDMnJwedOnXiOSYionrDgNQAysrKpHDk4OBg7OY0ae3atcOVK1dw584dWFpaGrs5RETURHDyRgMon3PUokULI7ek6Su/tFZWVmbklhARUVPCgNSAeMmn4fEcExFRQ2BAIiIiIjLAgERERERkgAGJ9IwbNw4ymQwymQyWlpZwdHTEU089hfXr10On09X4OBs3bkTr1q0brqFERNRkXboEfPfd3T+NhXexmSCNRoPS0tIqtyuVyga9Oy44OBgbNmxAWVkZ8vLykJycjGnTpuGLL77AV199BQsLfmyIiKhhrFsHTJwI6HSAXA6sXQtERjZ+O/hNZ2I0Gg1Wrlx533pRUVENFpKsrKzg5OQEAHBxcYGPjw8eeeQRPPnkk9i4cSNefvllLF26FBs2bMC5c+dgb2+P0NBQvPfee2jVqhUOHDiA8ePHA/h7EnVcXBzmz5+PTz/9FMuWLcMff/yBli1bYvDgwUhISED79u0bpC9ERGQ+Ll36OxwBd/+cNAlQq4GOHRu3LbzEZmKqGzmqS736MnjwYPTp0wc7duwAcHcF6+XLl+O3337Dpk2bsH//fsyYMQMAEBAQgISEBNjZ2SEnJwc5OTl47bXXANxdAmHhwoX45ZdfkJSUhOzsbIwbN65R+0JERKbpzJm/w1G5sjIgM7Px28IRJKoxLy8vnDhxAgAQHR0tlbu5ueGtt97C5MmT8eGHH0KpVEKlUkEmk0kjUeVeeukl6e9dunTB8uXL0b9/f9y4cQOtWrVqlH4QEZHp0Wg0sLO7A7m8PXS6v5dwUSgEbG3zodFYNOriywxIVGNCCOmS2bfffov4+HicPn0ahYWFuHPnDm7duoWbN29Wu0BmWloa5s+fj19++QV//fWXNPH7woUL6NGjR6P0g4iITMu900uGDu2LXbuGQgg5ZDIdQkJ2Y/fuDAANO73EEAMS1dipU6fg7u6O7OxsDB06FK+88grefvtt2Nvb48cff0RkZCRKS0urDEjFxcVQq9VQq9X47LPP0K5dO1y4cAFqtbrRLxkSEZHpuPc7wMcnAx4emSgosIe9fQFUqqJK6zU0BiSqkf379+PXX3/Fv/71L6SlpUGn02HJkiWQy+9OY/v888/16iuVygqP/zh9+jQ0Gg3effdduLq6AgCOHTvWOB0gIiKzoVIV6QUjYzCJSdqrVq2Cm5sbrK2t4efnh6NHj1Zbf9u2bfDy8oK1tTV69+6NPXv26G2/dy2f8ldwcHClxyopKYG3tzdkMhmOHz9eX10yayUlJcjNzcXly5eRnp6Od955B88++yyGDh2KMWPGoGvXrrh9+zZWrFiBc+fO4dNPP8Xq1av1juHm5oYbN24gJSUF165dw82bN9GpUycolUppv6+++goLFy40Ui+JiMhUabW2yMpyg1Zra7Q2GD0gbd26FTExMYiLi0N6ejr69OkDtVqN/Pz8SusfPnwYI0eORGRkJDIyMhAWFoawsDCcPHlSr15wcLB0B1VOTg42b95c6fFmzJgBZ2fneu+XOUtOTkaHDh3g5uaG4OBgfPfdd1i+fDm+/PJLKBQK9OnTB0uXLsWiRYvQq1cvfPbZZ4iPj9c7RkBAACZPnozw8HC0a9cO7733Htq1a4eNGzdi27Zt6NGjB959910sXrzYSL0kIiJTlJ7eFwkJ0di0aSwSEqKRnt7XKO2QCSGEUd75//j5+aF///7S5CydTgdXV1dMmTIFM2fOrFA/PDwcxcXF2L17t1T2yCOPwNvbWxrFGDduHK5fv46kpKRq3/u///0vYmJisH37dvTs2RMZGRnw9vauUbsLCwuhUqmg1WphZ2ent+3WrVvIysqCu7s7rK2ta3S8cqawDpI5eZBzTUREpiEnJwdr166FVmuLhIRoCPH3+I1MpkN0dAJUqiJMnDgRHTp0eKD3qu77+15GnYNUWlqKtLQ0zJo1SyqTy+UICgpCampqpfukpqYiJiZGr0ytVlcIQwcOHED79u3Rpk0bDB48GG+99ZZeoMjLy8OECROQlJRU7V1X5UpKSlBSUiL9XFhYWJMu1pqDgwOioqKMupI2ERGRMRQUOOiFIwAQQo6CAvtGn5Nk1IB07do1lJWVwdHRUa/c0dERp0+frnSf3NzcSuvn5uZKPwcHB2PYsGFwd3fH2bNnMXv2bAwZMgSpqalQKBQQQmDcuHGYPHky+vXrh+zs7Pu2NT4+HgsWLKh9J+uA4YeIiJqT69evAwDs7TWQyXQVRpDs7Qukeg86glRTRp+D1BBGjBiBZ555Br1790ZYWBh2796Nn3/+GQcOHAAArFixAkVFRXojV/cza9YsaLVa6XXx4sUGaj0REVHzUr7GnkpVhNDQ3ZDJdP9XrkNo6G5p9Ki8XmMw6ghS27ZtoVAokJeXp1eel5dXYQXmck5OTrWqD9xdsblt27bIzMzEk08+if379yM1NRVWVlZ69fr164fRo0dj06ZNFY5hZWVVoT4RERE9OJVKJf29unWQ7q3X0Iw6gqRUKuHr64uUlBSpTKfTISUlBf7+/pXu4+/vr1cfAPbt21dlfQC4dOkSNBqNNCy3fPly/PLLLzh+/DiOHz8uLROwdetWvP322w/aLSIiInoAKlUR3N3PG3UtJKMvFBkTE4OxY8eiX79+GDBgABISElBcXCw9DX7MmDFwcXGRbiOfNm0aAgMDsWTJEoSEhGDLli04duwY1q5dCwC4ceMGFixYgOHDh8PJyQlnz57FjBkz0LVrV6jVagBAp06d9NpQ/gwwDw8PdGzsxwUTERGRyTF6QAoPD8fVq1cxb9485ObmwtvbG8nJydJE7AsXLkirNQN319dJTEzE3LlzMXv2bHh6eiIpKQm9evUCACgUCpw4cQKbNm3C9evX4ezsjKeffhoLFy7kJTIiIiKqEaOvg2SuGmodJKodnmsiIvNXvg7S/TTmOkhN8i42IiIiogfBgESN6sCBA5DJZNKaFzXh5uaGhISEBmsTEREZl1KprNd69cHoc5DItIwbNw6bNm3CpEmTKjyA9tVXX8WHH36IsWPHYuPGjcZpIBERNTmm+BQJBiSqwNXVFVu2bMEHH3wAGxsbAHfn+iQmJla4A5CIiKg+mNpTJHiJjSrw8fGBq6srduzYIZXt2LEDnTp1Qt++fz9VuaSkBFOnTkX79u1hbW2Nxx57DD///LPesfbs2YOHHnoINjY2eOKJJyp9rMuPP/6IgQMHwsbGBq6urpg6dSqKi4sbrH9ERET3w4Bk4i5dAr777u6fjemll17Chg0bpJ/Xr18vrU1VbsaMGdi+fTs2bdqE9PR0aa2pgoK7z8y5ePEihg0bhtDQUBw/fhwvv/wyZs6cqXeMs2fPIjg4GMOHD8eJEyewdetW/Pjjj4iKimr4ThIREVWBAcmErVsHdO4MDB5898916xrvvV988UX8+OOPOH/+PM6fP49Dhw7hxRdflLYXFxfjo48+wvvvv48hQ4agR48e+Pjjj2FjY4N1/9fQjz76CB4eHliyZAm6deuG0aNHY9y4cXrvEx8fj9GjRyM6Ohqenp4ICAjA8uXL8cknn+DWrVuN12EiIqJ7cA6Sibp0CZg4EdDdfV4fdDpg0iRArQYaY7Hvdu3aISQkBBs3boQQAiEhIWjbtq20/ezZs7h9+zYeffRRqczS0hIDBgzAqVOnAACnTp2Cn5+f3nENHwnzyy+/4MSJE/jss8+kMiEEdDodsrKy0L1794boHhERUbUYkEzUmTN/h6NyZWVAZmbjBCTg7mW28ktdq1atapD3uHHjBiZNmoSpU6dW2MYJ4UREZCwMSCbK0xOQy/VDkkIBdO3aeG0IDg5GaWkpZDKZ9By7ch4eHlAqlTh06BA6d+4MALh9+zZ+/vlnREdHAwC6d++Or776Sm+/I0eO6P3s4+OD33//HV0bs2NERET3wTlIJqpjR2Dt2ruhCLj755o1jTd6dPc9FTh16hR+//13KMob8n9atmyJV155BbGxsUhOTsbvv/+OCRMm4ObNm4iMjAQATJ48GWfOnEFsbCz++OMPJCYmVlg/6fXXX8fhw4cRFRWF48eP48yZM/jyyy85SZuIiIyKI0gmLDLy7pyjzMy7I0eNGY7KVfecmnfffRc6nQ4REREoKipCv379sHfvXrRp0wbA3Utk27dvx7/+9S+sWLECAwYMwDvvvIOXXnpJOsbDDz+M77//HnPmzMHAgQMhhICHhwfCw8MbvG9ERERV4cNq64gPqzUNPNdERFQbfFgtERERUR0xIBEREREZ4BwkIiIiqlcajUZ68OyVK3JkZVnA3f0OnJ3v3prd2A+erQsGJCIiIqo3Go0GK1euBACkp/fFrl1DIYQcMpkOoaG74eOTAQCIiooy6ZDES2wNiPPfGx7PMRGRaSkfOdJqbaVwBABCyLFr11BotbZ69UwVA1IDsLS0BADcvHnTyC1p+sr/BzNcp4mIiIyroMBBCkflhJCjoMDeSC2qHV5iawAKhQKtW7dGfn4+AKBFixaQyWRGblXTo9PpcPXqVbRo0QIWFvwoExGZEnt7DWQynV5Iksl0sLcvMGKrao7fKg3EyckJAKSQRA1DLpejU6dODKBERCZGpSpCaOjuCnOQVKoiYzetRhiQGohMJkOHDh3Qvn173L5929jNabKUSiXkcl4pJiIyRT4+GfDwyERBgT3s7QvMJhwBDEgNTqFQcH4MERE1WypVkVkFo3L8pzcRERGRAQYkIiIiqjdKpbJe6xkLL7ERERFRvXFwcEBUVFS16xxxJW0iIiJqdkw9/NQEL7ERERERGWBAIiIiIjLAgERERERkgAGJiIiIyAADEhEREZEBBiQiIiIiAwxIRERERAYYkIiIiIgMMCARERERGTCJgLRq1Sq4ubnB2toafn5+OHr0aLX1t23bBi8vL1hbW6N3797Ys2eP3vZx48ZBJpPpvYKDg6Xt2dnZiIyMhLu7O2xsbODh4YG4uLhql0UnIiKi5sPoAWnr1q2IiYlBXFwc0tPT0adPH6jVauTn51da//Dhwxg5ciQiIyORkZGBsLAwhIWF4eTJk3r1goODkZOTI702b94sbTt9+jR0Oh3WrFmD3377DR988AFWr16N2bNnN2hfiYiIyDzIhBDCmA3w8/ND//79sXLlSgCATqeDq6srpkyZgpkzZ1aoHx4ejuLiYuzevVsqe+SRR+Dt7Y3Vq1cDuDuCdP36dSQlJdW4He+//z4++ugjnDt3rkb1CwsLoVKpoNVqYWdnV+P3ISIiIuOp6fe3UUeQSktLkZaWhqCgIKlMLpcjKCgIqample6TmpqqVx8A1Gp1hfoHDhxA+/bt0a1bN7zyyivQaDTVtkWr1cLe3r6OPSEiIqKmxMKYb37t2jWUlZXB0dFRr9zR0RGnT5+udJ/c3NxK6+fm5ko/BwcHY9iwYXB3d8fZs2cxe/ZsDBkyBKmpqVAoFBWOmZmZiRUrVmDx4sVVtrWkpAQlJSXSz4WFhTXqIxEREZkfowakhjJixAjp771798bDDz8MDw8PHDhwAE8++aRe3cuXLyM4OBjPP/88JkyYUOUx4+PjsWDBggZrMxEREZkOo15ia9u2LRQKBfLy8vTK8/Ly4OTkVOk+Tk5OtaoPAF26dEHbtm2RmZmpV37lyhU88cQTCAgIwNq1a6tt66xZs6DVaqXXxYsXq61PRERE5suoAUmpVMLX1xcpKSlSmU6nQ0pKCvz9/Svdx9/fX68+AOzbt6/K+gBw6dIlaDQadOjQQSq7fPkyBg0aBF9fX2zYsAFyefWnwsrKCnZ2dnovIiIiapqMfoktJiYGY8eORb9+/TBgwAAkJCSguLgY48ePBwCMGTMGLi4uiI+PBwBMmzYNgYGBWLJkCUJCQrBlyxYcO3ZMGgG6ceMGFixYgOHDh8PJyQlnz57FjBkz0LVrV6jVagB/h6POnTtj8eLFuHr1qtSe6kaiiIiIqHkwekAKDw/H1atXMW/ePOTm5sLb2xvJycnSROwLFy7oje4EBAQgMTERc+fOxezZs+Hp6YmkpCT06tULAKBQKHDixAls2rQJ169fh7OzM55++mksXLgQVlZWAO6OOGVmZiIzMxMdO3bUa4+RVz0gIiIiE2D0dZDMFddBIiIiMj9msQ4SERERkSliQCIiIiIywIBEREREZIABiYiIiMgAAxIRERGRAQYkIiIiIgMMSEREREQGGJCIiIiIDDAgERERERlgQCIiIiIywIBEREREZIABiYiIiMgAAxIRERGRAQYkIiIiIgMMSEREREQGGJCIiIiIDDAgERERERlgQCIiIiIywIBEREREZIABiYiIiMgAAxIRERGRAQYkIiIiIgMMSEREREQGGJCIiIiIDDAgERERERlgQCIiIiIywIBEREREZIABiYiIiMgAAxIRERGRAQYkIiIiIgMMSEREREQGLIzdACJqOBqNBqWlpVVuVyqVcHBwaMQWERGZBwYkoiZKo9Fg5cqV960XFRXFkEREZICX2IiaqOpGjupSj4ioOWFAIiIiIjLAgERERERkgAGJiIiIyIBJBKRVq1bBzc0N1tbW8PPzw9GjR6utv23bNnh5ecHa2hq9e/fGnj179LaPGzcOMplM7xUcHKxXp6CgAKNHj4adnR1at26NyMhI3Lhxo977RmQqtFpbZGW5Qau1NXZTiIhMntED0tatWxETE4O4uDikp6ejT58+UKvVyM/Pr7T+4cOHMXLkSERGRiIjIwNhYWEICwvDyZMn9eoFBwcjJydHem3evFlv++jRo/Hbb79h37592L17N3744QdMnDixwfpJZEzp6X2RkBCNTZvGIiEhGunpfY3dJCIik2b0gLR06VJMmDAB48ePR48ePbB69Wq0aNEC69evr7T+smXLEBwcjNjYWHTv3h0LFy6Ej49PhduZrays4OTkJL3atGkjbTt16hSSk5Px73//G35+fnjsscewYsUKbNmyBVeuXGnQ/hI1Nq3WFrt2DYUQd/93F0KOXbuGciSJiKgaRg1IpaWlSEtLQ1BQkFQml8sRFBSE1NTUSvdJTU3Vqw8AarW6Qv0DBw6gffv26NatG1555RVoNBq9Y7Ru3Rr9+vWTyoKCgiCXy/HTTz9V+r4lJSUoLCzUexGZMqVSCQAoKHCQwlE5IeQoKLDXq0dERH8z6kKR165dQ1lZGRwdHfXKHR0dcfr06Ur3yc3NrbR+bm6u9HNwcDCGDRsGd3d3nD17FrNnz8aQIUOQmpoKhUKB3NxctG/fXu8YFhYWsLe31zvOveLj47FgwYK6dJPIKBwcHBAVFYXs7Dv49FMBnU4mbVMoBKZMGQI3NwsuEklEVIkmuZL2iBEjpL/37t0bDz/8MDw8PHDgwAE8+eSTdTrmrFmzEBMTI/1cWFgIV1fXB24rUUNycHCAgwOwdi0waRJQVgYoFMCaNTL4+jre/wBERM2UUQNS27ZtoVAokJeXp1eel5cHJyenSvdxcnKqVX0A6NKlC9q2bYvMzEw8+eSTcHJyqjAJ/M6dOygoKKjyOFZWVrCysqpJt4hMTmQkoFYDmZlA165Ax47GbhERkWkz6hwkpVIJX19fpKSkSGU6nQ4pKSnw9/evdB9/f3+9+gCwb9++KusDwKVLl6DRaNChQwfpGNevX0daWppUZ//+/dDpdPDz83uQLhGZrI4dgUGDGI6IiGrC6HexxcTE4OOPP8amTZtw6tQpvPLKKyguLsb48eMBAGPGjMGsWbOk+tOmTUNycjKWLFmC06dPY/78+Th27BiioqIAADdu3EBsbCyOHDmC7OxspKSk4Nlnn0XXrl2hVqsBAN27d0dwcDAmTJiAo0eP4tChQ4iKisKIESPg7Ozc+CeBiIiITIrR5yCFh4fj6tWrmDdvHnJzc+Ht7Y3k5GRpIvaFCxcgl/+d4wICApCYmIi5c+di9uzZ8PT0RFJSEnr16gUAUCgUOHHiBDZt2oTr16/D2dkZTz/9NBYuXKh3ieyzzz5DVFQUnnzyScjlcgwfPhzLly9v3M4TERGRSZIJIYSxG2GOCgsLoVKpoNVqYWdnZ+zmEBHRPTQaDUpLS6vcrlQqeQdnM1XT72+jjyARERHVJ41GU2Hx4MpERUUxJFGVjD4HiYiIqD5VN3JUl3rUPDEgERERERlgQCIioiZNq7VFVpYbnz9ItcI5SERE1GSlp/eVHtYsk+kQGrobPj4Zxm4WmQEGJCKiZqqp3+ml1dpK4Qi4+5DmXbuGwsMjEypVkZFbR6aOAYmIqBlqDnd6FRQ4SOGonBByFBTYMyDRfXEOEhFRM9Qc7vSyt9dAJtPplclkOtjbFxipRWROOIJERESNorEu6SmVSgCASlWE0NDdFeYglY8eldcjqgwDEhERNbjGvKTn4OCAqKgoKYzNm3cV2dkWcHO7A2fn/gD6m/38Kmp4DEhERASt1hYFBQ6wt9c0yPycxr6kd2/46dAB8PWtl8NSM8KARETUzPFWeKKKOEmbiKgZq+pW+IZeVJGLN5Kp4wgSEVEzZoxb4TliReaAI0hERM1Q+R1c97sVvr7v9DLWiBVRbXEEiYioGbr3Ti8Xl0K8/roKZWUyKBQCixYVYtSokQ1ypxcXbyRzwYBERNRMlYef6dOB8HAgMxPo2lWGjh1bA2jdIO9ZPmJ1b0ji4o1kiniJjYiI0LEjMGjQ3T8bguHijeWX9bh4I5kqmRBCGLsR5qiwsBAqlQparRZ2dnbGbg4Rkcm7dyXtK1fk9yzeeDcscfFGagw1/f7mJTYiImoUXLyRzAkvsREREREZYEAiIiIiMsBLbEREJqSxnnhPRNVjQCIiMhGN+cR7IqoeL7EREZmIxn7iPRFVjQGJiIiIyAADEhEREZEBBiQiIhOl1doiK8uND3IlMgJO0iYiMkHp6X2lp96XP47DxyfD2M0iajY4gkREZGK0WlspHAF3n3a/a9dQjiQRNSIGJCIiE1NQ4KD3tHvgbkgqKLA3UouImh8GJCIiE1H+JHt7e430tPtyMpkO9vYFevWIqOFwDhIRkYlwcHBAVFQUSktL4eJSiNdfV6GsTAaFQmDRokKMGjWSK2kTNRKZEEIYuxHmqLCwECqVClqtFnZ2dsZuDhE1QZcuAZmZQNeuQMeOxm4NUdNQ0+9vjiAREZmojh0ZjIiMhXOQiIiIiAwYPSCtWrUKbm5usLa2hp+fH44ePVpt/W3btsHLywvW1tbo3bs39uzZU2XdyZMnQyaTISEhQa/8zz//xLPPPou2bdvCzs4Ojz32GL777rv66A4RERE1AUYNSFu3bkVMTAzi4uKQnp6OPn36QK1WIz8/v9L6hw8fxsiRIxEZGYmMjAyEhYUhLCwMJ0+erFB3586dOHLkCJydnStsGzp0KO7cuYP9+/cjLS0Nffr0wdChQ5Gbm1vvfSQiIiLzY9RJ2n5+fujfvz9WrlwJANDpdHB1dcWUKVMwc+bMCvXDw8NRXFyM3bt3S2WPPPIIvL29sXr1aqns8uXL8PPzw969exESEoLo6GhER0cDAK5du4Z27drhhx9+wMCBAwEARUVFsLOzw759+xAUFFSjtnOSNhERkfmp6fe30UaQSktLkZaWphdI5HI5goKCkJqaWuk+qampFQKMWq3Wq6/T6RAREYHY2Fj07NmzwjEcHBzQrVs3fPLJJyguLsadO3ewZs0atG/fHr6+vlW2t6SkBIWFhXovIiIiapqMFpCuXbuGsrIyODo66pU7OjpWeakrNzf3vvUXLVoECwsLTJ06tdJjyGQyfPvtt8jIyICtrS2sra2xdOlSJCcno02bNlW2Nz4+HiqVSnq5urrWtKtERERkZow+Sbs+paWlYdmyZdi4cSNkMlmldYQQePXVV9G+fXscPHgQR48eRVhYGEJDQ5GTk1PlsWfNmgWtViu9Ll682FDdICIiIiMzWkBq27YtFAoF8vLy9Mrz8vLg5ORU6T5OTk7V1j948CDy8/PRqVMnWFhYwMLCAufPn8f06dPh5uYGANi/fz92796NLVu24NFHH4WPjw8+/PBD2NjYYNOmTVW218rKCnZ2dnovIiIiapqMFpCUSiV8fX2RkpIilel0OqSkpMDf37/Sffz9/fXqA8C+ffuk+hEREThx4gSOHz8uvZydnREbG4u9e/cCAG7evAng7nyne8nlcuh0+s8+IiIioubJqCtpx8TEYOzYsejXrx8GDBiAhIQEFBcXY/z48QCAMWPGwMXFBfHx8QCAadOmITAwEEuWLEFISAi2bNmCY8eOYe3atQDuTsA2fEaRpaUlnJyc0K1bNwB3Q1abNm0wduxYzJs3DzY2Nvj444+RlZWFkJCQRuw9ERERmSqjBqTw8HBcvXoV8+bNQ25uLry9vZGcnCxNxL5w4YLeSE9AQAASExMxd+5czJ49G56enkhKSkKvXr1q/J5t27ZFcnIy5syZg8GDB+P27dvo2bMnvvzyS/Tp06fe+0hERETmp1brIN2+fRtz5szBjh07YG9vj8mTJ+Oll16Stufl5cHZ2RllZWUN0lhTwnWQiIiIzE+DrIP09ttv45NPPsHkyZPx9NNPIyYmBpMmTdKrY8R1J4mIiIjqRa0usX322Wf497//jaFDhwIAxo0bhyFDhmD8+PFYv349AFR5ez0RERGRuajVCNLly5f15vt07doVBw4cwOHDhxEREdEsLq0RERFR01ergOTk5ISzZ8/qlbm4uOC7777Dzz//jHHjxtVn24iIiIiMolYBafDgwUhMTKxQ7uzsjP379yMrK6veGkZERERkLLWag/TGG2/g9OnTlW5zcXHB999/j3379tVLw4iIiIiMpVa3+dPfeJs/ERGR+WmQ2/zLbdu2DcOGDUOvXr3Qq1cvDBs2DF988UWdG0tERERkSmoVkHQ6HcLDwxEeHo7ff/8dXbt2RdeuXfHbb78hPDwcI0aM4DpIREREZPZqNQdp2bJl+Pbbb/HVV19JayGV++qrrzB+/HgsW7YM0dHR9dlGImpEGo0GpaWlVW5XKpUVnnlIRNTU1GoO0sMPP4zo6Gi9x4vca926dVi2bBlOnDhRbw00VZyDRE2RRqPBypUr71svKiqKIYmIzFKDzEE6c+YMgoKCqtweFBSEM2fO1OaQRGRCqhs5qks9IiJzVauAZGNjg+vXr1e5vbCwENbW1g/aJiIyEVqtLbKy3KDV2hq7KUREjapWc5D8/f3x0Ucf4aOPPqp0+6pVq+Dv718vDSMi40pP74tdu4ZCCDlkMh1CQ3fDxyfD2M0iImoUtQpIc+bMwaBBg6DRaPDaa6/By8sLQgicOnUKS5YswZdffonvvvuuodpKRI1Eq7WVwhEACCHHrl1D4eGRCZWqyMitIyJqeLUKSAEBAdi6dSsmTpyI7du3621r06YNNm/ejEcffbReG0hEja+gwEEKR+WEkKOgwJ4BiYiahVoFJAD45z//CbVajb1790oTsh966CE8/fTTaNGiRb03kIgan729BjKZTi8kyWQ62NsXGLFVRESNp1YBaf/+/YiKisKRI0fwz3/+U2+bVqtFz549sXr1agwcOLBeG0lEjUulKkJo6O4Kc5A4ekREzUWtAlJCQgImTJhQ6boBKpUKkyZNwtKlSxmQiMyUUqmU/u7jkwEPj0wUFNjD3r5ALxzdW4+IqCmq1UKRnTt3RnJyMrp3717p9tOnT+Ppp5/GhQsX6q2BpooLRVJTxZW0iagpq+n3d61GkPLy8mBpaVn1wSwscPXq1dockohMDMMPEVEtF4p0cXHByZMnq9x+4sQJdOjQ4YEbRURERGRMtQpI//jHP/DGG2/g1q1bFbb973//Q1xcXIWH2BIRERGZm1rNQcrLy4OPjw8UCgWioqLQrVs3AHfnHq1atQplZWVIT0+Ho6NjgzXYVHAOEhERkflpkDlIjo6OOHz4MF555RXMmjUL5dlKJpNBrVZj1apVzSIcERERUdNW64UiO3fujD179uCvv/5CZmYmhBDw9PREmzZtGqJ9RERERI2u1gGpXJs2bdC/f//6bAsRERGRSajVJG0iIiKi5oABiYiIiMgAAxIRERGRAQYkIiIiIgMMSEREREQGGJCIiIiIDDAgERERERlgQCIiIiIywIBEREREZIABiYiIiMiA0QPSqlWr4ObmBmtra/j5+eHo0aPV1t+2bRu8vLxgbW2N3r17Y8+ePVXWnTx5MmQyGRISEips+/rrr+Hn5wcbGxu0adMGYWFhD9gTIiIiaiqMGpC2bt2KmJgYxMXFIT09HX369IFarUZ+fn6l9Q8fPoyRI0ciMjISGRkZCAsLQ1hYGE6ePFmh7s6dO3HkyBE4OztX2LZ9+3ZERERg/Pjx+OWXX3Do0CGMGjWq3vtHRERE5kkmhBDGenM/Pz/0798fK1euBADodDq4urpiypQpmDlzZoX64eHhKC4uxu7du6WyRx55BN7e3li9erVUdvnyZfj5+WHv3r0ICQlBdHQ0oqOjAQB37tyBm5sbFixYgMjIyDq3vbCwECqVClqtFnZ2dnU+DhERETWemn5/G20EqbS0FGlpaQgKCvq7MXI5goKCkJqaWuk+qampevUBQK1W69XX6XSIiIhAbGwsevbsWeEY6enpuHz5MuRyOfr27YsOHTpgyJAhlY5C3aukpASFhYV6LyIiImqajBaQrl27hrKyMjg6OuqVOzo6Ijc3t9J9cnNz71t/0aJFsLCwwNSpUys9xrlz5wAA8+fPx9y5c7F79260adMGgwYNQkFBQZXtjY+Ph0qlkl6urq416icRERGZH6NP0q5PaWlpWLZsGTZu3AiZTFZpHZ1OBwCYM2cOhg8fDl9fX2zYsAEymQzbtm2r8tizZs2CVquVXhcvXmyQPhAREZHxGS0gtW3bFgqFAnl5eXrleXl5cHJyqnQfJyenausfPHgQ+fn56NSpEywsLGBhYYHz589j+vTpcHNzAwB06NABANCjRw/pGFZWVujSpQsuXLhQZXutrKxgZ2en9yIiIqKmyWgBSalUwtfXFykpKVKZTqdDSkoK/P39K93H399frz4A7Nu3T6ofERGBEydO4Pjx49LL2dkZsbGx2Lt3LwDA19cXVlZW+OOPP6Rj3L59G9nZ2ejcuXN9d5OIiIjMkIUx3zwmJgZjx45Fv379MGDAACQkJKC4uBjjx48HAIwZMwYuLi6Ij48HAEybNg2BgYFYsmQJQkJCsGXLFhw7dgxr164FADg4OMDBwUHvPSwtLeHk5IRu3boBAOzs7DB58mTExcXB1dUVnTt3xvvvvw8AeP755xur60RERGTCjBqQwsPDcfXqVcybNw+5ubnw9vZGcnKyNBH7woULkMv/HuQKCAhAYmIi5s6di9mzZ8PT0xNJSUno1atXrd73/fffh4WFBSIiIvC///0Pfn5+2L9/P9q0aVOv/SMiIiLzZNR1kMwZ10EiIiIyPya/DhIRERGRqWJAIiIiIjLAgERERERkgAGJiIiIyAADEhEREZEBo97mT0Q1o9FoUFpaWuV2pVJZYQ0wIiKqOwYkIhOn0WiwcuXK+9aLiopiSCIiqie8xEZk4gxHjrRaW2RluUGrta22HhER1R1HkIjMSHp6X+zaNRRCyCGT6RAauhs+PhnGbhYRUZPDESQiM6HV2krhCACEkGPXrqEVRpKIiOjBMSARmYmCAgcpHJUTQo6CAnsjtYiIqOliQCIyE/b2GshkOr0ymUwHe/sCI7WIiKjpYkAiMhMqVRFCQ3dLIal8DpJKVWTklhERNT2cpE1kRnx8MuDhkYmCAnvY2xcwHBERNRAGJCITp1Qq9X5WqYoqDUaG9QAuMElEVFcMSEQmzsHBAVFRUbUOOlxgkojM1aVLwJkzgKcn0LGjcdrAgERkBuoSYGq6cCQXmCQiU1A+4p2YaIMZM1TQ6WSQywXee0+LUaP+1+gj3gxIRM2EVmuLggIH2NtrOHeJiExK+Yi3VmuLhIRoCCEDAOh0MsTG2uHy5fVQqYoadcSbAYmoGeAK3ERkyspHsqtb702lKmrUEW/e5k/UxHEFbiIyF6a03hsDElETxxW4ichcmNJ6b7zERtTElf+L7N6QxBW4ichUmcp6bxxBImriTOlfZERENaFSFcHd/bxRf09xBImoibp34cjq/kVW2QKTRETNHQMSURNV1wUmiYiIAYmoSWP4ISJzUNOR7MYc8WZAaiJMYVl2IiKiujDFEW8GpCZg3Tpg4kRApwPkcmDtWiAy0titIiIiqjlTG/GWCSGEsRthjgoLC6FSqaDVamFnZ2e0dly6BHTufDcclVMogOxsjiSReSh//lJVOE+KiOpTTb+/OYJk5s6c0Q9HAFBWBmRmMiCR6St//tL9NObzl4iIAK6DZPY8Pe9eVruXQgF07Wqc9hDVRk2fq9SYz18iIgIYkMyaRqOBQpGD9967DoXi7pVShUJg0aLrUChyoNFojNxCIiIi88RLbGbK8NLE1Km20iKAN24UYe3au+W8NEHmRKu1RUGBA+ztNVzpm4iMigHJTBleclCpiir9QuGlCTIX6el9sWvXUAghlx6H4uOTYexmEVEzxUtsRGR0Wq2tFI4AQAg5du0aCq3W1sgtI6LmigGJiIyuoMBBCkflhJCjoMDeSC0ioubOJALSqlWr4ObmBmtra/j5+eHo0aPV1t+2bRu8vLxgbW2N3r17Y8+ePVXWnTx5MmQyGRISEirdXlJSAm9vb8hkMhw/fvwBekFEdWVvr4FMpr9ehUymg719gZFaRETNndED0tatWxETE4O4uDikp6ejT58+UKvVyM/Pr7T+4cOHMXLkSERGRiIjIwNhYWEICwvDyZMnK9TduXMnjhw5Amdn5yrff8aMGdVuJ6KGU/5cJZWqCKGhu6WQVD4HqXxeXWM+f4mICDCBlbT9/PzQv39/6Y4snU4HV1dXTJkyBTNnzqxQPzw8HMXFxdi9e7dU9sgjj8Db2xurV6+Wyi5fvgw/Pz/s3bsXISEhiI6ORnR0tN6x/vvf/yImJgbbt29Hz549kZGRAW9v7xq129graefk5GBt+a1q1Zg4cSI6dOhQr+/N575Rfbp3Je0rV+TIzraAm9sdODvfDUtcSZuI6pNZrKRdWlqKtLQ0zJo1SyqTy+UICgpCampqpfukpqYiJiZGr0ytViMpKUn6WafTISIiArGxsejZs2elx8nLy8OECROQlJSEFi1a3LetJSUlKCkpkX4uLCy87z5NEZ/7RvXt3vDToQPg62vExhAR/R+jXmK7du0aysrK4OjoqFfu6OiI3NzcSvfJzc29b/1FixbBwsICU6dOrfQYQgiMGzcOkydPRr9+/WrU1vj4eKhUKunl6upao/0aSk0vOdTnpYlLl/4OR8DdPydNultORETUlDS5dZDS0tKwbNkypKenQyaTVVpnxYoVKCoq0hu5up9Zs2bpjVwVFhYaNSQ5ODggKiqq0R7yqdFocOQIoNPpH6+sDPjpJw1sbEzvScxERER1ZdSA1LZtWygUCuTl5emV5+XlwcnJqdJ9nJycqq1/8OBB5Ofno1OnTtL2srIyTJ8+HQkJCcjOzsb+/fuRmpoKKysrveP069cPo0ePxqZNmyq8r5WVVYX6xtZYgaR81W6t1hYyWbTe7dgymQ6HDm3CyZNFXLWbiIiaDKNeYlMqlfD19UVKSopUptPpkJKSAn9//0r38ff316sPAPv27ZPqR0RE4MSJEzh+/Lj0cnZ2RmxsLPbu3QsAWL58OX755Rdpe/kyAVu3bsXbb7/dEF01a+WjVPe704irdhMRUVNh9EtsMTExGDt2LPr164cBAwYgISEBxcXFGD9+PABgzJgxcHFxQXx8PABg2rRpCAwMxJIlSxASEoItW7bg2LFj0h1dDg4OFUYxLC0t4eTkhG7dugGA3ugSALRq1QoA4OHhgY68LataPj4Z8PDIlJ77xudlERFRU2T0gBQeHo6rV69i3rx5yM3Nhbe3N5KTk6WJ2BcuXIBc/vdAV0BAABITEzF37lzMnj0bnp6eSEpKQq9evYzVhWanque+ERERNRVGXwfJXBl7HaTGZMw1l4iIiOpTTb+/jb6SNhEREZGpYUAiIiIiMmD0OUhEZFruffRHZfjoDyJqDhiQ6L6MsWo3GUf5mlf3wzWviJqf5vYcTgYkuq/GXrWbjKema1lxzSui5qU5PoeTAYlqhOGHiKj50Wg0yM6+g4kT20Onu/v4rrvP4RTw9s6Hm5tFk/1+YEAiIiKiCsovuWdluUGnG6u3raxMhhUr/gt39/NN9pI772IjoipptbbIynKDVmtr7KYQUSMrv5Rub6+RHjFVTibTwd6+QK9eU8MRJCKqVHp6X+zaNRRCyKXn7vn4ZBi7WUTUyMqfw2n4+6CpP1GBAYmIKtBqbaVfhgAghBy7dg2Fh0dmk/+lSEQVNcfncDIgEVEFBQUOUjgqJ4QcBQX2zeIXIxFV1Nyew8k5SEQkKV/L6n5zDrjmFRE1dRxBIiLJvWteubgU4vXXVSgrk0GhEFi0qBCjRo3kmldE1CwwIBGRnvLwM306EB4OZGYCXbvK0LFjawCtjdk0IqJGw4BERFXq2LF5PFKAiCpq7o+ZYkAiIiKiCpr7Y6YYkIiIiKhSTTX81ATvYiMiIiIywIBEREREZIABiYiIiMgAAxIRERGRAQYkIiIiIgMMSEREREQGGJCIiIiIDDAgERERERlgQCIiIiIywIBEREREZIABiYiIiMgAAxIRERGRAQYkIiIiIgMMSEREREQGGJCIiIiIDDAgERERERlgQCIiIiIywIBEREREZIABiYiIiMiASQSkVatWwc3NDdbW1vDz88PRo0errb9t2zZ4eXnB2toavXv3xp49e6qsO3nyZMhkMiQkJEhl2dnZiIyMhLu7O2xsbODh4YG4uDiUlpbWV5eIiIjIjBk9IG3duhUxMTGIi4tDeno6+vTpA7Vajfz8/ErrHz58GCNHjkRkZCQyMjIQFhaGsLAwnDx5skLdnTt34siRI3B2dtYrP336NHQ6HdasWYPffvsNH3zwAVavXo3Zs2c3SB+JiIjIvMiEEMKYDfDz80P//v2xcuVKAIBOp4OrqyumTJmCmTNnVqgfHh6O4uJi7N69Wyp75JFH4O3tjdWrV0tlly9fhp+fH/bu3YuQkBBER0cjOjq6yna8//77+Oijj3Du3LkatbuwsBAqlQparRZ2dnY17C0REREZU02/v406glRaWoq0tDQEBQVJZXK5HEFBQUhNTa10n9TUVL36AKBWq/Xq63Q6REREIDY2Fj179qxRW7RaLezt7avcXlJSgsLCQr0XERERNU1GDUjXrl1DWVkZHB0d9codHR2Rm5tb6T65ubn3rb9o0SJYWFhg6tSpNWpHZmYmVqxYgUmTJlVZJz4+HiqVSnq5urrW6NhERERkfow+B6m+paWlYdmyZdi4cSNkMtl961++fBnBwcF4/vnnMWHChCrrzZo1C1qtVnpdvHixPptNREREJsSoAalt27ZQKBTIy8vTK8/Ly4OTk1Ol+zg5OVVb/+DBg8jPz0enTp1gYWEBCwsLnD9/HtOnT4ebm5vefleuXMETTzyBgIAArF27ttq2WllZwc7OTu9FRERETZNRA5JSqYSvry9SUlKkMp1Oh5SUFPj7+1e6j7+/v159ANi3b59UPyIiAidOnMDx48ell7OzM2JjY7F3715pn8uXL2PQoEHw9fXFhg0bIJc3ucE0IiIiqiMLYzcgJiYGY8eORb9+/TBgwAAkJCSguLgY48ePBwCMGTMGLi4uiI+PBwBMmzYNgYGBWLJkCUJCQrBlyxYcO3ZMGgFycHCAg4OD3ntYWlrCyckJ3bp1A/B3OOrcuTMWL16Mq1evSnWrGrkiIiKi5sPoASk8PBxXr17FvHnzkJubC29vbyQnJ0sTsS9cuKA3uhMQEIDExETMnTsXs2fPhqenJ5KSktCrV68av+e+ffuQmZmJzMxMdOzYUW+bkVc9ICIiIhNg9HWQzBXXQSIiIjI/ZrEOEhEREZEpYkAiIiIiMsCARERERGSAAYmIiIjIAAMSERERkQEGJCIiIiIDDEhEREREBhiQiIiIiAwwIBEREREZYEAiIiIiMsCARERERGSAAYmIiIjIAAMSERERkQEGJCIiIiIDDEhEREREBhiQiIiIiAwwIBEREREZYEAiIiIiMsCARERERGSAAYmIiIjIAAOSibl0Cfjuu7t/EhERkXEwIJkAjUaDnJwcLFlyHZ07CwweDHTuLLBkyXXk5ORAo9EYu4lERETNioWxG9DcaTQarFy5ElqtLRISoiGEDACg08kQG2uHy5fXQ6UqQlRUFBwcHIzcWiIiouaBAcnISktLAQAFBQ4QQn9ATwg5CgrsoVIVSfWIiIxNo9FU+ztJqVTyH3Rk9hiQTIS9vQYymU4vJMlkOtjbFxixVURE+spHvctptbYoKHCAvb0GKlWRVM5RbzJ3DEgmQqUqQmjobuzaNRRCyCGT6RAaulvvFw4RkbHdO3KUnt63wu8sH5+MCvWIzBEDkgnx8cmAh0cmCgrsYW9fwHBERCZLq7WVwhFwd0rArl1D4eGRyd9d1CQwIJkYlaqIv1yIyOTdb94kkbnjbf5ERFRr5fMm78V5k9SUMCAREVGtlc+bLA9JnDdJTQ0vsRmZUqms13pERI3lQeZNXroEnDkDeHoCHTs2YCOJ6ogBycgcHBwQFRXFNUWIyCzVZt5k+fpJiYk2mDFDBZ1OBrlc4L33tBg16n/8XUcmhQHJBPAXAhGZi7qOevOpAWRuGJCIiKjG6jrqzacGkLlhQCIiolp5kBEePjWAzAXvYiMiokbDu9/IXHAEiYiIGhWfGkDmwCRGkFatWgU3NzdYW1vDz88PR48erbb+tm3b4OXlBWtra/Tu3Rt79uypsu7kyZMhk8mQkJCgV15QUIDRo0fDzs4OrVu3RmRkJG7cuFEf3SEiovtQqYrg7n6e4YhMltED0tatWxETE4O4uDikp6ejT58+UKvVyM/Pr7T+4cOHMXLkSERGRiIjIwNhYWEICwvDyZMnK9TduXMnjhw5Amdn5wrbRo8ejd9++w379u3D7t278cMPP2DixIn13j8iIiIyP0YPSEuXLsWECRMwfvx49OjRA6tXr0aLFi2wfv36SusvW7YMwcHBiI2NRffu3bFw4UL4+Phg5cqVevUuX76MKVOm4LPPPoOlpaXetlOnTiE5ORn//ve/4efnh8ceewwrVqzAli1bcOXKlQbrKxEREZkHowak0tJSpKWlISgoSCqTy+UICgpCampqpfukpqbq1QcAtVqtV1+n0yEiIgKxsbHo2bNnpcdo3bo1+vXrJ5UFBQVBLpfjp59+qvR9S0pKUFhYqPciIqKa4VMDyNwYdZL2tWvXUFZWBkdHR71yR0dHnD59utJ9cnNzK62fm5sr/bxo0SJYWFhg6tSpVR6jffv2emUWFhawt7fXO8694uPjsWDBgvv2iYiIKuJTA8jcNLm72NLS0rBs2TKkp6dDJpPV23FnzZqFmJgY6efCwkK4urrW2/GJiJo6hh8yJ0a9xNa2bVsoFArk5eXplefl5cHJyanSfZycnKqtf/DgQeTn56NTp06wsLCAhYUFzp8/j+nTp8PNzU06huEk8Dt37qCgoKDK97WysoKdnZ3ei4iIiJomowYkpVIJX19fpKSkSGU6nQ4pKSnw9/evdB9/f3+9+gCwb98+qX5ERAROnDiB48ePSy9nZ2fExsZi79690jGuX7+OtLQ06Rj79++HTqeDn59ffXeTiIiIzIzRL7HFxMRg7Nix6NevHwYMGICEhAQUFxdj/PjxAIAxY8bAxcUF8fHxAIBp06YhMDAQS5YsQUhICLZs2YJjx45h7dq1AO4O4RoO41paWsLJyQndunUDAHTv3h3BwcGYMGECVq9ejdu3byMqKgojRoyodEkAIiIial6MHpDCw8Nx9epVzJs3D7m5ufD29kZycrI0EfvChQuQy/8e6AoICEBiYiLmzp2L2bNnw9PTE0lJSejVq1et3vezzz5DVFQUnnzyScjlcgwfPhzLly+v174RERGReZIJIYSxG2GOCgsLoVKpoNVqOR+JiIjITNT0+9voC0USERERmRoGJCIiIiIDDEhEREREBhiQiIiIiAwY/S42c1U+t53PZCMiIjIf5d/b97tHjQGpjoqKigCAjxshIiIyQ0VFRVCpVFVu523+daTT6XDlyhXY2to+8DPfyp/rdvHixWa7ZADPAc8BwHMA8Bw09/4DPAdAw54DIQSKiorg7Oyst86iIY4g1ZFcLkfHjh3r9Zh8xhvPAcBzAPAcADwHzb3/AM8B0HDnoLqRo3KcpE1ERERkgAGJiIiIyAADkgmwsrJCXFwcrKysjN0Uo+E54DkAeA4AnoPm3n+A5wAwjXPASdpEREREBjiCRERERGSAAYmIiIjIAAMSERERkQEGJCIiIiIDDEgNYNWqVXBzc4O1tTX8/Pxw9OjRausnJCSgW7dusLGxgaurK/71r3/h1q1b0vb58+dDJpPpvby8vBq6Gw+kNufg9u3bePPNN+Hh4QFra2v06dMHycnJD3RMU1Df58DcPgc//PADQkND4ezsDJlMhqSkpPvuc+DAAfj4+MDKygpdu3bFxo0bK9Qxp89BQ5yDpv45yMnJwahRo/DQQw9BLpcjOjq60nrbtm2Dl5cXrK2t0bt3b+zZs6f+G18PGqL/GzdurPAZsLa2bpgO1IPanoMdO3bgqaeeQrt27WBnZwd/f3/s3bu3Qr2G/l3AgFTPtm7dipiYGMTFxSE9PR19+vSBWq1Gfn5+pfUTExMxc+ZMxMXF4dSpU1i3bh22bt2K2bNn69Xr2bMncnJypNePP/7YGN2pk9qeg7lz52LNmjVYsWIFfv/9d0yePBn//Oc/kZGRUedjGltDnAPAvD4HxcXF6NOnD1atWlWj+llZWQgJCcETTzyB48ePIzo6Gi+//LLeL0Zz+xw0xDkAmvbnoKSkBO3atcPcuXPRp0+fSuscPnwYI0eORGRkJDIyMhAWFoawsDCcPHmyPpteLxqi/8DdFabv/QycP3++vppc72p7Dn744Qc89dRT2LNnD9LS0vDEE08gNDS08b8TBNWrAQMGiFdffVX6uaysTDg7O4v4+PhK67/66qti8ODBemUxMTHi0UcflX6Oi4sTffr0aZD2NoTanoMOHTqIlStX6pUNGzZMjB49us7HNLaGOAfm9jm4FwCxc+fOauvMmDFD9OzZU68sPDxcqNVq6Wdz+xzcq77OQVP/HNwrMDBQTJs2rUL5Cy+8IEJCQvTK/Pz8xKRJkx6whQ2rvvq/YcMGoVKp6q1djam256Bcjx49xIIFC6SfG+N3AUeQ6lFpaSnS0tIQFBQklcnlcgQFBSE1NbXSfQICApCWliYNDZ47dw579uzBP/7xD716Z86cgbOzM7p06YLRo0fjwoULDdeRB1CXc1BSUlJheNjGxkb6V3FdjmlMDXEOypnL56AuUlNT9c4ZAKjVaumcmdvnoC7udw7KNeXPQU3U9Dw1ZTdu3EDnzp3h6uqKZ599Fr/99puxm9RgdDodioqKYG9vD6DxfhcwINWja9euoaysDI6Ojnrljo6OyM3NrXSfUaNG4c0338Rjjz0GS0tLeHh4YNCgQXqX2Pz8/LBx40YkJyfjo48+QlZWFgYOHIiioqIG7U9d1OUcqNVqLF26FGfOnIFOp8O+ffuwY8cO5OTk1PmYxtQQ5wAwr89BXeTm5lZ6zgoLC/G///3P7D4HdXG/cwA0/c9BTVR1nprK5+B+unXrhvXr1+PLL7/Ef/7zH+h0OgQEBODSpUvGblqDWLx4MW7cuIEXXngBQON9JzAgGdmBAwfwzjvv4MMPP0R6ejp27NiBr7/+GgsXLpTqDBkyBM8//zwefvhhqNVq7NmzB9evX8fnn39uxJbXn2XLlsHT0xNeXl5QKpWIiorC+PHjIZc3n49nTc5BU/8cUM3wc0D+/v4YM2YMvL29ERgYiB07dqBdu3ZYs2aNsZtW7xITE7FgwQJ8/vnnaN++faO+d/P5BmoEbdu2hUKhQF5enl55Xl4enJycKt3njTfeQEREBF5++WX07t0b//znP/HOO+8gPj4eOp2u0n1at26Nhx56CJmZmfXehwdVl3PQrl07JCUlobi4GOfPn8fp06fRqlUrdOnSpc7HNKaGOAeVMeXPQV04OTlVes7s7OxgY2Njdp+DurjfOahMU/sc1ERV56mpfA5qy9LSEn379m1yn4EtW7bg5Zdfxueff653Oa2xfhcwINUjpVIJX19fpKSkSGU6nQ4pKSnw9/evdJ+bN29WGClRKBQAAFHFY/Ju3LiBs2fPokOHDvXU8vpTl3NQztraGi4uLrhz5w62b9+OZ5999oGPaQwNcQ4qY8qfg7rw9/fXO2cAsG/fPumcmdvnoC7udw4q09Q+BzVRl/PUlJWVleHXX39tUp+BzZs3Y/z48di8eTNCQkL0tjXa74J6m+5NQgghtmzZIqysrMTGjRvF77//LiZOnChat24tcnNzhRBCREREiJkzZ0r14+LihK2trdi8ebM4d+6c+Oabb4SHh4d44YUXpDrTp08XBw4cEFlZWeLQoUMiKChItG3bVuTn5zd6/2qitufgyJEjYvv27eLs2bPihx9+EIMHDxbu7u7ir7/+qvExTU1DnANz+xwUFRWJjIwMkZGRIQCIpUuXioyMDHH+/HkhhBAzZ84UERERUv1z586JFi1aiNjYWHHq1CmxatUqoVAoRHJyslTH3D4HDXEOmvrnQAgh1ff19RWjRo0SGRkZ4rfffpO2Hzp0SFhYWIjFixeLU6dOibi4OGFpaSl+/fXXRu1bTTRE/xcsWCD27t0rzp49K9LS0sSIESOEtbW1Xh1TUttz8NlnnwkLCwuxatUqkZOTI72uX78u1WmM3wUMSA1gxYoVolOnTkKpVIoBAwaII0eOSNsCAwPF2LFjpZ9v374t5s+fLzw8PIS1tbVwdXUV/+///T+9L8bw8HDRoUMHoVQqhYuLiwgPDxeZmZmN2KPaq805OHDggOjevbuwsrISDg4OIiIiQly+fLlWxzRF9X0OzO1z8N133wkAFV7l/R47dqwIDAyssI+3t7dQKpWiS5cuYsOGDRWOa06fg4Y4B83hc1BZ/c6dO+vV+fzzz8VDDz0klEql6Nmzp/j6668bp0O11BD9j46Olv4fcHR0FP/4xz9Eenp643Wqlmp7DgIDA6utX66hfxfIhKjiOg4RERFRM8U5SEREREQGGJCIiIiIDDAgERERERlgQCIiIiIywIBEREREZIABiYiIiMgAAxIRERGRAQYkIqIm4sCBA5DJZLh+/bqxm0Jk9hiQiKjWxo0bB5lMhnfffVevPCkpCTKZTPpZCIGPP/4Y/v7+sLOzQ6tWrdCzZ09Mmzatxg/WvHnzJmbNmgUPDw9YW1ujXbt2CAwMxJdffinVcXNzQ0JCQr30raGVnzuZTAZLS0u4u7tjxowZuHXrVq2OM2jQIERHR+uVBQQEICcnByqVqh5bTNQ8MSARUZ1YW1tj0aJF+OuvvyrdLoTAqFGjMHXqVPzjH//AN998g99//x3r1q2DtbU13nrrrRq9z+TJk7Fjxw6sWLECp0+fRnJyMp577jloNJr67E6jCg4ORk5ODs6dO4cPPvgAa9asQVxc3AMfV6lUwsnJSS+kElEd1euDS4ioWRg7dqwYOnSo8PLyErGxsVL5zp07Rfmvlc2bNwsA4ssvv6z0GDqdrkbvpVKpxMaNG6vcXtlzm8odPHhQPPbYY8La2lp07NhRTJkyRdy4cUPa/sknnwhfX1/RqlUr4ejoKEaOHCny8vKk7eXPkEpOThbe3t7C2tpaPPHEEyIvL0/s2bNHeHl5CVtbWzFy5EhRXFxco/6MHTtWPPvss3plw4YNE3379pV+vnbtmhgxYoRwdnYWNjY2olevXiIxMVHvGIZ9zsrKktp777Mcv/jiC9GjRw+hVCpF586dxeLFi2vUTqLmjiNIRFQnCoUC77zzDlasWIFLly5V2L5582Z069YNzzzzTKX713SUw8nJCXv27EFRUVGl23fs2IGOHTvizTffRE5ODnJycgAAZ8+eRXBwMIYPH44TJ05g69at+PHHHxEVFSXte/v2bSxcuBC//PILkpKSkJ2djXHjxlV4j/nz52PlypU4fPgwLl68iBdeeAEJCQlITEzE119/jW+++QYrVqyoUX8MnTx5EocPH4ZSqZTKbt26BV9fX3z99dc4efIkJk6ciIiICBw9ehQAsGzZMvj7+2PChAlSn11dXSscOy0tDS+88AJGjBiBX3/9FfPnz8cbb7yBjRs31qmtRM2KsRMaEZmfe0dBHnnkEfHSSy8JIfRHkLy8vMQzzzyjt9+0adNEy5YtRcuWLYWLi0uN3uv7778XHTt2FJaWlqJfv34iOjpa/Pjjj3p1OnfuLD744AO9ssjISDFx4kS9soMHDwq5XC7+97//VfpeP//8swAgioqKhBB/jyB9++23Up34+HgBQJw9e1YqmzRpklCr1TXqz9ixY4VCoRAtW7YUVlZWAoCQy+Xiiy++qHa/kJAQMX36dOnnwMBAMW3aNL06hiNIo0aNEk899ZRendjYWNGjR48atZWoOeMIEhE9kEWLFmHTpk04derUfevOmTMHx48fx7x583Djxo0aHf/xxx/HuXPnkJKSgueeew6//fYbBg4ciIULF1a73y+//IKNGzeiVatW0kutVkOn0yErKwvA3RGW0NBQdOrUCba2tggMDAQAXLhwQe9YDz/8sPR3R0dHtGjRAl26dNEry8/Pr1F/AOCJJ57A8ePH8dNPP2Hs2LEYP348hg8fLm0vKyvDwoUL0bt3b9jb26NVq1bYu3dvhXbdz6lTp/Doo4/qlT366KM4c+YMysrKanUsouaGAYmIHsjjjz8OtVqNWbNm6ZV7enrijz/+0Ctr164dunbtivbt29fqPSwtLTFw4EC8/vrr+Oabb/Dmm29i4cKFKC0trXKfGzduYNKkSTh+/Lj0+uWXX3DmzBl4eHiguLgYarUadnZ2+Oyzz/Dzzz9j586dAFDhuJaWltLfy+8+u5dMJoNOp6txf1q2bImuXbuiT58+WL9+PX766SesW7dO2v7+++9j2bJleP311/Hdd9/h+PHjUKvV1faXiOqXhbEbQETm791334W3tze6desmlY0cORKjRo3Cl19+iWeffbZe369Hjx64c+cObt26BaVSCaVSWWFExMfHB7///ju6du1a6TF+/fVXaDQavPvuu9L8nWPHjtVrO2tCLpdj9uzZiImJwahRo2BjY4NDhw7h2WefxYsvvggA0Ol0+PPPP9GjRw9pv8r6bKh79+44dOiQXtmhQ4fw0EMPQaFQ1H9niJoQjiAR0QPr3bs3Ro8ejeXLl0tlI0aMwHPPPYcRI0bgzTffxE8//YTs7Gx8//332Lp1a42/oAcNGoQ1a9YgLS0N2dnZ2LNnD2bPno0nnngCdnZ2AO6ug/TDDz/g8uXLuHbtGgDg9ddfx+HDhxEVFYXjx4/jzJkz+PLLL6VJ2p06dYJSqcSKFStw7tw5fPXVV/e9bNdQnn/+eSgUCqxatQrA3dG3ffv24fDhwzh16hQmTZqEvLw8vX3c3Nykc3rt2rVKR7CmT5+OlJQULFy4EH/++Sc2bdqElStX4rXXXmuUfhGZMwYkIqoXb775pt6XtEwmw9atW5GQkIA9e/bgySefRLdu3fDSSy/B1dUVP/74Y42Oq1arsWnTJjz99NPo3r07pkyZArVajc8//1zvvbOzs+Hh4YF27doBuDtv6Pvvv8eff/6JgQMHom/fvpg3bx6cnZ0B3L3ct3HjRmzbtg09evTAu+++i8WLF9fjGak5CwsLREVF4b333kNxcTHmzp0LHx8fqNVqDBo0CE5OTggLC9Pb57XXXoNCoUCPHj3Qrl27Sucn+fj44PPPP8eWLVvQq1cvzJs3D2+++Wald+oRkT6ZEEIYuxFEREREpoQjSEREREQGGJCIyKjuvQ3f8HXw4EFjN69WLly4UG1/anubPhEZDy+xEZFRVffQWhcXF9jY2DRiax7MnTt3kJ2dXeV2Nzc3WFjw5mEic8CARERERGSAl9iIiIiIDDAgERERERlgQCIiIiIywIBEREREZIABiYiIiMgAAxIRERGRAQYkIiIiIgMMSEREREQG/j8cnWV+mXiKhwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR9pJREFUeJzt3X1cVHXe//H3gAwgwuigIiiKomZW3gBqmneZpa1ibfVL3VKzXNeSXNduzMtN7bJCzYy8STfzprxZvUrrSisrTffazNIL9DLLLF3UTEEdcvAmgZjz+8NlcuRGQJgBzuv5eMxD55zvfOdzvkvy3u/5nnMshmEYAgAAMBE/XxcAAADgbQQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAKiili9fLovFosOHD/u6FKDGIQABJrZr1y4lJSXphhtuUEhIiJo2bar7779f33//faG2vXv3lsVikcVikZ+fn8LCwnTddddp2LBh+vTTT8v0vRs2bFCvXr3UsGFD1a5dWy1atND999+vTZs2VdShFfLiiy/qvffeK7T9iy++0LRp03TmzJlK++4rTZs2zT2WFotFtWvXVtu2bfXXv/5V2dnZFfIdq1evVkpKSoX0BdREBCDAxGbOnKl169bptttu06uvvqrRo0frf/7nfxQXF6d9+/YVat+kSROtWLFCb731ll566SUNGjRIX3zxhe644w4NHjxYeXl5V/3O2bNna9CgQbJYLJo0aZJeeeUV3Xvvvfrhhx+0Zs2ayjhMSSUHoOeee86rAajAwoULtWLFCs2ZM0dt2rTRCy+8oP79+6siHtFIAAJKVsvXBQDwnQkTJmj16tWyWq3ubYMHD9ZNN92kGTNmaOXKlR7tbTabHnzwQY9tM2bM0Lhx4/Taa68pJiZGM2fOLPb7fv31V02fPl233367Pvnkk0L7T548eY1HVHVcuHBBtWvXLrHNfffdp/r160uSxowZo3vvvVfr16/Xl19+qa5du3qjTMC0mAECTKxbt24e4UeSWrVqpRtuuEH79+8vVR/+/v6aO3eu2rZtq/nz58vpdBbb9vTp08rOztYtt9xS5P6GDRt6vL948aKmTZum1q1bKygoSJGRkbrnnnt06NAhd5vZs2erW7duCg8PV3BwsOLj4/XOO+949GOxWHT+/Hm9+eab7tNODz30kKZNm6annnpKktS8eXP3vsvX3KxcuVLx8fEKDg6W3W7XkCFD9OOPP3r037t3b914441KTU1Vz549Vbt2bf3Hf/xHqcbvcn369JEkpaenl9jutdde0w033KDAwEBFRUVp7NixHjNYvXv31gcffKAjR464jykmJqbM9QA1GTNAADwYhqHMzEzdcMMNpf6Mv7+/hg4dqmeffVaff/65BgwYUGS7hg0bKjg4WBs2bNDjjz8uu91ebJ/5+fkaOHCgtmzZoiFDhujPf/6zzp49q08//VT79u1TbGysJOnVV1/VoEGD9MADDyg3N1dr1qzR//t//08bN25017FixQqNGjVKnTt31ujRoyVJsbGxCgkJ0ffff6+///3veuWVV9yzMQ0aNJAkvfDCC3r22Wd1//33a9SoUTp16pTmzZunnj17avfu3apbt667XofDoTvvvFNDhgzRgw8+qIiIiFKPX4GCYBceHl5sm2nTpum5555T37599eijj+rAgQNauHChdu3ape3btysgIECTJ0+W0+nUsWPH9Morr0iS6tSpU+Z6gBrNAIDLrFixwpBkLFmyxGN7r169jBtuuKHYz7377ruGJOPVV18tsf8pU6YYkoyQkBDjzjvvNF544QUjNTW1ULulS5cakow5c+YU2udyudx/v3Dhgse+3Nxc48YbbzT69OnjsT0kJMQYMWJEob5eeuklQ5KRnp7usf3w4cOGv7+/8cILL3hs//rrr41atWp5bO/Vq5chyVi0aFGxx325qVOnGpKMAwcOGKdOnTLS09ONv/3tb0ZgYKARERFhnD9/3jAMw1i2bJlHbSdPnjSsVqtxxx13GPn5+e7+5s+fb0gyli5d6t42YMAAo1mzZqWqBzAjToEBcPvuu+80duxYde3aVSNGjCjTZwtmGM6ePVtiu+eee06rV69Wx44d9fHHH2vy5MmKj49XXFycx2m3devWqX79+nr88ccL9WGxWNx/Dw4Odv/9559/ltPpVI8ePZSWllam+q+0fv16uVwu3X///Tp9+rT71ahRI7Vq1Upbt271aB8YGKiRI0eW6Tuuu+46NWjQQM2bN9ef/vQntWzZUh988EGxa4c2b96s3NxcjR8/Xn5+v/3z/cc//lFhYWH64IMPyn6ggElxCgyAJCkjI0MDBgyQzWbTO++8I39//zJ9/ty5c5Kk0NDQq7YdOnSohg4dquzsbH311Vdavny5Vq9ercTERO3bt09BQUE6dOiQrrvuOtWqVfI/Uxs3btTzzz+vPXv2KCcnx7398pBUHj/88IMMw1CrVq2K3B8QEODxvnHjxoXWU13NunXrFBYWpoCAADVp0sR9Wq84R44ckXQpOF3OarWqRYsW7v0Aro4ABEBOp1N33nmnzpw5o3/+85+Kiooqcx8Fl823bNmy1J8JCwvT7bffrttvv10BAQF688039dVXX6lXr16l+vw///lPDRo0SD179tRrr72myMhIBQQEaNmyZVq9enWZj+FyLpdLFotFH330UZFh8Mo1NZfPRJVWz5493euOAHgXAQgwuYsXLyoxMVHff/+9Nm/erLZt25a5j/z8fK1evVq1a9dW9+7dy1VHQkKC3nzzTZ04cULSpUXKX331lfLy8grNthRYt26dgoKC9PHHHyswMNC9fdmyZYXaFjcjVNz22NhYGYah5s2bq3Xr1mU9nErRrFkzSdKBAwfUokUL9/bc3Fylp6erb9++7m3XOgMG1HSsAQJMLD8/X4MHD9aOHTv09ttvl+veM/n5+Ro3bpz279+vcePGKSwsrNi2Fy5c0I4dO4rc99FHH0n67fTOvffeq9OnT2v+/PmF2hr/vlGgv7+/LBaL8vPz3fsOHz5c5A0PQ0JCirzZYUhIiCQV2nfPPffI399fzz33XKEbExqGIYfDUfRBVqK+ffvKarVq7ty5HjUtWbJETqfT4+q7kJCQEm9JAJgdM0CAiT3xxBN6//33lZiYqKysrEI3PrzypodOp9Pd5sKFCzp48KDWr1+vQ4cOaciQIZo+fXqJ33fhwgV169ZNN998s/r376/o6GidOXNG7733nv75z3/q7rvvVseOHSVJw4cP11tvvaUJEyZo586d6tGjh86fP6/Nmzfrscce01133aUBAwZozpw56t+/v/7whz/o5MmTWrBggVq2bKm9e/d6fHd8fLw2b96sOXPmKCoqSs2bN1eXLl0UHx8vSZo8ebKGDBmigIAAJSYmKjY2Vs8//7wmTZqkw4cP6+6771ZoaKjS09P17rvvavTo0XryySevafzLqkGDBpo0aZKee+459e/fX4MGDdKBAwf02muvqVOnTh7/e8XHx2vt2rWaMGGCOnXqpDp16igxMdGr9QJVmi8vQQPgWwWXbxf3KqltnTp1jFatWhkPPvig8cknn5Tq+/Ly8ozFixcbd999t9GsWTMjMDDQqF27ttGxY0fjpZdeMnJycjzaX7hwwZg8ebLRvHlzIyAgwGjUqJFx3333GYcOHXK3WbJkidGqVSsjMDDQaNOmjbFs2TL3ZeaX++6774yePXsawcHBhiSPS+KnT59uNG7c2PDz8yt0Sfy6deuM7t27GyEhIUZISIjRpk0bY+zYscaBAwc8xqakWwRcqaC+U6dOldjuysvgC8yfP99o06aNERAQYERERBiPPvqo8fPPP3u0OXfunPGHP/zBqFu3riGJS+KBK1gMowIeOgMAAFCNsAYIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDjdCLILL5dLx48cVGhrK7eQBAKgmDMPQ2bNnFRUVJT+/kud4CEBFOH78uKKjo31dBgAAKIcff/xRTZo0KbENAagIoaGhki4NYEnPNQIAAFVHdna2oqOj3b/HS0IAKkLBaa+wsDACEAAA1Uxplq+wCBoAAJgOAQgAAJgOAQgAAJgOa4AAAKgg+fn5ysvL83UZNVZAQID8/f0rpC8CEAAA18gwDGVkZOjMmTO+LqXGq1u3rho1anTN9+kjAAEAcI0Kwk/Dhg1Vu3ZtbqJbCQzD0IULF3Ty5ElJUmRk5DX1RwACAOAa5Ofnu8NPeHi4r8up0YKDgyVJJ0+eVMOGDa/pdBiLoAEAuAYFa35q167t40rMoWCcr3WtFQEIAIAKwGkv76ioceYUmBc4HA7l5uYWu99qtTJtCgCAFxGAKpnD4dD8+fOv2i4pKYkQBACAl3AKrJKVNPNTnnYAAFSUhx56SBaLRRaLRQEBAYqIiNDtt9+upUuXyuVylbqf5cuXq27dupVXaCVgBggAAB/z5VKJ/v37a9myZcrPz1dmZqY2bdqkP//5z3rnnXf0/vvvq1atmhkVauZRVWFOZ6iyssJltztks531dTkAAB/z9VKJwMBANWrUSJLUuHFjxcXF6eabb9Ztt92m5cuXa9SoUZozZ46WLVumf/3rX7Lb7UpMTNSsWbNUp04dbdu2TSNHjpT02wLlqVOnatq0aVqxYoVeffVVHThwQCEhIerTp49SUlLUsGHDCj+OsuIUmBelpXVUSsp4vfnmCKWkjFdaWkdflwQA8LGquFSiT58+at++vdavXy9J8vPz09y5c/XNN9/ozTff1Geffaann35aktStWzelpKQoLCxMJ06c0IkTJ/Tkk09KunSp+vTp0/V///d/eu+993T48GE99NBDXjuOkjAD5CVOZ6g2bBgow7iUOQ3DTxs2DFRs7EFmggAAVU6bNm20d+9eSdL48ePd22NiYvT8889rzJgxeu2112S1WmWz2WSxWNwzSQUefvhh999btGihuXPnqlOnTjp37pzq1KnjleMoDjNAXpKVFe4OPwUMw09ZWXYfVQQAQPEMw3Cf0tq8ebNuu+02NW7cWKGhoRo2bJgcDocuXLhQYh+pqalKTExU06ZNFRoaql69ekmSjh49Wun1Xw0ByEvsdocsFs8V9RaLS3Z7lo8qAgCgePv371fz5s11+PBhDRw4UO3atdO6deuUmpqqBQsWSCr5tNz58+fVr18/hYWFadWqVdq1a5fefffdq37OWwhAlcxqtUqSbLazSkzc6A5BFotLiYkb3ae/CtoBAOBrn332mb7++mvde++9Sk1Nlcvl0ssvv6ybb75ZrVu31vHjxz3aW61W5efne2z77rvv5HA4NGPGDPXo0UNt2rRxP8i0KmANUCULDw9XUlKSO+1OmXJKhw/XUkzMr4qK6iSpE3eCBgD4TE5OjjIyMjwug09OTtbAgQM1fPhw7du3T3l5eZo3b54SExO1fft2LVq0yKOPmJgYnTt3Tlu2bFH79u1Vu3ZtNW3aVFarVfPmzdOYMWO0b98+TZ8+3UdHWRgzQF4QHh6uyMhIRUZGKj4+QvfeG674+Aj3NsIPAMBXNm3apMjISMXExKh///7aunWr5s6dq//+7/+Wv7+/2rdvrzlz5mjmzJm68cYbtWrVKiUnJ3v00a1bN40ZM0aDBw9WgwYNNGvWLDVo0EDLly/X22+/rbZt22rGjBmaPXu2j46yMIthGIavi6hqsrOzZbPZ5HQ6FRYW5utyAABV2MWLF5Wenq7mzZsrKCiozJ/39X2AqpuSxrssv785BQYAgA9duVSiKCyVqHgEIAAAfIxw432sAQIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAJVi27ZtslgsOnPmTKk/ExMTo5SUlEqrqQABCAAAk3rooYdksVg0ZsyYQvvGjh0ri8Wihx56yPuFeQEBCAAAE4uOjtaaNWv0yy+/uLddvHhRq1evVtOmTX1YWeUiAAEAYGJxcXGKjo7W+vXr3dvWr1+vpk2bqmPHju5tOTk5GjdunBo2bKigoCB1795du3bt8ujrww8/VOvWrRUcHKxbb71Vhw8fLvR9n3/+uXr06KHg4GBFR0dr3LhxOn/+fKUdX3EIQAAAVCHHjklbt17601sefvhhLVu2zP1+6dKlGjlypEebp59+WuvWrdObb76ptLQ0tWzZUv369VNWVpYk6ccff9Q999yjxMRE7dmzR6NGjdIzzzzj0cehQ4fUv39/3Xvvvdq7d6/Wrl2rzz//XElJSZV/kFcgAAEAUEUsWSI1ayb16XPpzyVLvPO9Dz74oD7//HMdOXJER44c0fbt2/Xggw+6958/f14LFy7USy+9pDvvvFNt27bV4sWLFRwcrCX/LnLhwoWKjY3Vyy+/rOuuu04PPPBAofVDycnJeuCBBzR+/Hi1atVK3bp109y5c/XWW2/p4sWL3jnYf+Np8AAAVAHHjkmjR0su16X3Lpf0pz9J/fpJTZpU7nc3aNBAAwYM0PLly2UYhgYMGKD69eu79x86dEh5eXm65ZZb3NsCAgLUuXNn7d+/X5K0f/9+denSxaPfrl27erz/v//7P+3du1erVq1ybzMMQy6XS+np6br++usr4/CKRAACAKAK+OGH38JPgfx86eDByg9A0qXTYAWnohYsWFAp33Hu3Dn96U9/0rhx4wrt8/aCawIQAABVQKtWkp+fZwjy95datvTO9/fv31+5ubmyWCzq16+fx77Y2FhZrVZt375dzZo1kyTl5eVp165dGj9+vCTp+uuv1/vvv+/xuS+//NLjfVxcnL799lu19NZBlYAAhEIcDodyc3MlSceP+yk9vZaaN/9VUVGX/qu0Wq0KDw/3ZYkAUOM0aSK9/vql0175+ZfCz9/+5p3ZH0ny9/d3n87y9/f32BcSEqJHH31UTz31lOx2u5o2bapZs2bpwoULeuSRRyRJY8aM0csvv6ynnnpKo0aNUmpqqpYvX+7Rz8SJE3XzzTcrKSlJo0aNUkhIiL799lt9+umnmj9/vleOswABCB4cDof7hzAtraM2bBgow/CTxeJSYuJGxcXtliQlJSURggCggj3yyKU1PwcPXpr58Vb4KRAWFlbsvhkzZsjlcmnYsGE6e/asEhIS9PHHH6tevXqSLp3CWrdunf7yl79o3rx56ty5s1588UU9/PDD7j7atWunf/zjH5o8ebJ69OghwzAUGxurwYMHV/qxXcliGIbh9W+t4rKzs2Wz2eR0Okv8YaiJTpw4oddff11OZ6hSUsbLMH67UNBicWn8+BTZbGc1evRoRUZG+rBSAKgaLl68qPT0dDVv3lxBQUG+LqfGK2m8y/L7m8vgUaSsrHCP8CNJhuGnrCy7jyoCAKDiEIBQJLvdIYvF83IEi8Uluz3LRxUBAFBxCEAoks12VomJG90hqGANkM121seVAQBw7VgEjWLFxe1WbOxBZWXZZbdnEX4AADUGAQglstnOEnwAoBS4psg7KmqcCUDwGu4vBKAmCggIkCRduHBBwcHBPq6m5rtw4YKk38a9vAhA8GC1Wiu0XQHuLwSgpvL391fdunV18uRJSVLt2rVlsVh8XFXNYxiGLly4oJMnT6pu3bqFbtZYVgQgeAgPD1dSUpJ7pqYo5ZmpKejP6Qx1hx/p0qX1GzYMVGzsQdlsZ0v8XgCoqho1aiRJ7hCEylO3bl33eF8LAhAKqcwZmJLuL8RaIwDVlcViUWRkpBo2bKi8vDxfl1NjBQQEXPPMTwECELyq4P5CV95hmvsLAagJ/P39K+wXNCoX9wGCV3F/IQBAVcAMELyO+wsBAHyNAASf4P5CAABfqhKnwBYsWKCYmBgFBQWpS5cu2rlzZ7Ft169fr4SEBNWtW1chISHq0KGDVqxY4d6fl5eniRMn6qabblJISIiioqI0fPhwHT9+3BuHAgAAqgGfB6C1a9dqwoQJmjp1qtLS0tS+fXv169ev2EsJ7Xa7Jk+erB07dmjv3r0aOXKkRo4cqY8//ljSpRskpaWl6dlnn1VaWprWr1+vAwcOaNCgQd48LFyhsu4vBABAeVgMH9+7u0uXLurUqZP7Jnkul0vR0dF6/PHH9cwzz5Sqj7i4OA0YMEDTp08vcv+uXbvUuXNnHTlyRE2bNr1qf9nZ2bLZbHI6nQoLCyv9waBEl98JuijcCRoAcC3K8vvbp2uAcnNzlZqaqkmTJrm3+fn5qW/fvtqxY8dVP28Yhj777DMdOHBAM2fOLLad0+mUxWJR3bp1i9yfk5OjnJwc9/vs7OzSHwRKjXADAKgqfHoK7PTp08rPz1dERITH9oiICGVkZBT7OafTqTp16shqtWrAgAGaN2+ebr/99iLbXrx4URMnTtTQoUOLTYPJycmy2WzuV3R0dPkPCgAAVHk+XwNUHqGhodqzZ4927dqlF154QRMmTNC2bdsKtcvLy9P9998vwzC0cOHCYvubNGmSnE6n+/Xjjz9WYvUAAMDXfHoKrH79+vL391dmZqbH9szMzBKf8+Hn56eWLVtKkjp06KD9+/crOTlZvXv3drcpCD9HjhzRZ599VuK5wMDAQAUGBl7bwQAAgGrDpzNAVqtV8fHx2rJli3uby+XSli1b1LVr11L343K5PNbwFISfH374QZs3b2btCQAA8ODzGyFOmDBBI0aMUEJCgjp37qyUlBSdP39eI0eOlCQNHz5cjRs3VnJysqRL63USEhIUGxurnJwcffjhh1qxYoX7FFdeXp7uu+8+paWlaePGjcrPz3evJ7Lb7VxmDQAAfB+ABg8erFOnTmnKlCnKyMhQhw4dtGnTJvfC6KNHj8rP77eJqvPnz+uxxx7TsWPHFBwcrDZt2mjlypUaPHiwJOmnn37S+++/L+nS6bHLbd261eM0GQAAMCef3weoKuI+QAAAVD/V5j5AQHXGjR0BoPoiAAHl4HA43HcvlySnM1RZWeGy2x0eD3lNSkoiBAFAFUQAAsrh8pmftLSO2rBhoAzDTxaLS4mJGxUXt7tQOwBA1VEtb4QIVBVOZ6g7/EiSYfhpw4aBcjpDfVwZAKAkBCDgGmRlhbvDTwHD8FNWlt1HFQEASoMABFwDu90hi8Xlsc1iccluz/JRRQCA0iAAAdfAZjurxMSN7hBUsAbo8oXQAICqh0XQwDWKi9ut2NiDysqyy27PIvwAQDVAAAIqgM12luADANUIp8CAcijtM+V49hwAVE3MAAHlEB4erqSkJO4EDQDVFAEIKCfCDQBUX5wCAwAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAAplPL1wUAMC+Hw6Hc3Nxi91utVoWHh3uxIgBmQQAC4BMOh0Pz58+/arukpCRCEIAKxykwAD5x5cyP0xmq9PQYOZ2hJbYDgIrADBAAn0tL66gNGwbKMPxksbiUmLhRcXG7fV0WgBqMAATAp5zOUHf4kSTD8NOGDQMVG3tQNtvZYj93+fqh48f9lJ5eS82b/6qoKJck1g8BKBkBCIBPZWWFu8NPAcPwU1aWvdgAdPn6oZJmj1g/BKA4rAEC4FN2u0MWi8tjm8Xikt2eVexnCmZ+ips9KlhHxPohAMUhAAHwKZvtrBITN7pDUMEsTkmnvwqUNHsEACXhFBgAn4uL263Y2IPKyrLLbs8qVfiRfps9ujwEXW32CAAkZoAA+IjVavV4b7OdVfPmRwqFnyvbSdKZM2fcnylp9qigHQBciRkgAD4RHh6upKSkct0J+tdff/V4bxiefxbXrqyOHZN++EFq1Upq0uSaugJQxRCAAPjMtV6hVbAI+rfJ7NJdQl8aS5ZIo0dLLpfk5ye9/rr0yCPX1CWAKoRTYACqrcpYBO1wOJSamqnRow25/n1xmssl/elPhlJTM+VwOK6lZABVBAEIQLUTEBAg6eqX0Be0K62C+wvNm7dJLpfFY19+vkXz5n2k+fPnE4KAGoBTYACqHZvN9u8/Ly2CvvJGiAWnv/Ly8nTixIlCny9ubVHBeqSrXV3G/YWA6o8ABKBaK+kS+vXr1xf7uZLuEn21YAWg+iMAAaj2bLazxYYTpzNUWVnhstsdHm1OnTpV4iLs8t6bCED1QAACUO0UdW+gopT0nLC8vLyrfr6kYAWgeiMAAah2SrqH0A8//KCtW7eW+ynzAMyBAASgWiru9NXp06clle8p8wDMg8vgAdRIAQE5kq64NbQMBQRwBRcAAhCAGiovL1CS5YqtFuXlFb9+qLRri0rbDkDVxSkwADVSeZ4Ufy3PJwNQvRCAANQotWpd+mftavfyKWh3JcINYA4EIAA1SsOGDd1/L+lePpe3A2A+BCAANQqnsQCURpVYBL1gwQLFxMQoKChIXbp00c6dO4ttu379eiUkJKhu3boKCQlRhw4dtGLFCo82hmFoypQpioyMVHBwsPr27asffvihsg8DQBURHh6uyMjIYl+EHwA+D0Br167VhAkTNHXqVKWlpal9+/bq16+fTp48WWR7u92uyZMna8eOHdq7d69GjhypkSNH6uOPP3a3mTVrlubOnatFixbpq6++UkhIiPr166eLFy9667AAAEAVZjEM48obZXhVly5d1KlTJ82fP1+S5HK5FB0drccff1zPPPNMqfqIi4vTgAEDNH36dBmGoaioKD3xxBN68sknJUlOp1MRERFavny5hgwZctX+srOzZbPZ5HQ6FRYWVv6DAwAAXlOW398+nQHKzc1Vamqq+vbt697m5+envn37aseOHVf9vGEY2rJliw4cOKCePXtKktLT05WRkeHRp81mU5cuXYrtMycnR9nZ2R4vAABQc/k0AJ0+fVr5+fmKiIjw2B4REaGMjIxiP+d0OlWnTh1ZrVYNGDBA8+bN0+233y5J7s+Vpc/k5GTZbDb3Kzo6+loOCwAAVHE+XwNUHqGhodqzZ4927dqlF154QRMmTNC2bdvK3d+kSZPkdDrdrx9//LHiigUAAFWOTy+Dr1+/vvz9/ZWZmemxPTMzU40aNSr2c35+fmrZsqUkqUOHDtq/f7+Sk5PVu3dv9+cyMzMVGRnp0WeHDh2K7C8wMFCBgYHXeDQAAKC68OkMkNVqVXx8vLZs2eLe5nK5tGXLFnXt2rXU/bhcLuXk5EiSmjdvrkaNGnn0mZ2dra+++qpMfQIAgJrL5zdCnDBhgkaMGKGEhAR17txZKSkpOn/+vEaOHClJGj58uBo3bqzk5GRJl9brJCQkKDY2Vjk5Ofrwww+1YsUKLVy4UJJksVg0fvx4Pf/882rVqpWaN2+uZ599VlFRUbr77rt9dZgAAKAK8XkAGjx4sE6dOqUpU6YoIyNDHTp00KZNm9yLmI8ePSo/v98mqs6fP6/HHntMx44dU3BwsNq0aaOVK1dq8ODB7jZPP/20zp8/r9GjR+vMmTPq3r27Nm3apKCgIK8fHwAAqHp8fh+gqoj7AAEAUP1Um/sAAQDK5tgxaevWS38CKD8CEABUE0uWSM2aSX36XPpzyRJfVwRUXwQgAKjiHA6HUlMzNXq0IZfr0jaXS/rTnwylpmbK4XD4tkCgGvL5ImgAQPEcDofmz5+v9PQYuVwjPPbl51s0b95Hat78iJKSknjKPVAGzAABQBWWm5srSbLbHbJYXB77LBaX7PYsj3YASocABADVgM12Vu3a7ZVUcOGuoXbt9spmO+vLsoBqiwAEAFXYmTNnJElOZ6j27m0nyfLvPRbt3dtOTmeoRzsApUMAAoAq7Ndff5UkZWWFyzA8/8k2DD9lZdk92gEoHQIQAFQDV1sDBKBsCEAAUA3YbGeVmLjRHYIsFpcSEzeyBggoJy6DB4BqIi5ut2JjDyoryy67PYvwA1wDAhAAVGEBAQEe7222s0UGnyvbASgZp8AAoAqz2WwV2g7AJQQgAABgOgQgAKjCrFZrhbYDcAlrgACgCgsPD1dSUlKJj7qwWq08BwwoIwIQAFRxhBug4nEKDAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA5XgQGASTkcDvfl9ceP+yk9vZaaN/9VUVGXHrjK5fWoyQhAAGBCDodD8+fPlySlpXXUhg0DZRh+7qfMx8XtliQlJSURglAjcQoMAEyoYObH6Qx1hx9JMgw/bdgwUE5nqEc7oKYhAAGAiWVlhbvDTwHD8FNWlt1HFQHeQQACABOz2x2yWFwe2ywWl+z2LB9VBHgHAQgATMxmO6vExI3uEFSwBshmO+vjyoDKxSJoADC5uLjdio09qKwsu+z2LMIPTIEABACQzXaW4ANT4RQYAAAwHQIQAJiQ1Wqt0HZAdcMpMAAwofDwcCUlJZV4nx/uBI2ajAAEACZFuIGZcQoMAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYTpkD0IcffqhRo0bp6aef1nfffeex7+eff1afPn0qrDgAAIDKUKYAtHr1ag0aNEgZGRnasWOHOnbsqFWrVrn35+bm6h//+EeFFwkAAFCRyvQojJdeeklz5szRuHHjJEn/9V//pYcfflgXL17UI488UikFAgAAVLQyBaAffvhBiYmJ7vf333+/GjRooEGDBikvL0+///3vK7xAAACAilamABQWFqbMzEw1b97cve3WW2/Vxo0bNXDgQB07dqzCCwQAAKhoZVoD1LlzZ3300UeFtvfq1UsbNmxQSkpKRdUFAABQacoUgP7yl78oKCioyH29e/fWhg0bNHz48AopDAAAoLJYDMMwSts4Ozu7VO3CwsLKXVBVkJ2dLZvNJqfTWe2PBQAAsyjL7+8yrQGqW7euLBbLVdvl5+eXpVsAAACvKlMA2rp1q/vvhmHod7/7nd544w01bty4wgsDAACoLGUKQL169fJ47+/vr5tvvlktWrSo0KIAAAAqE88CAwAApkMAAgAApnPNAag0i6IBAACqkjKtAbrnnns83l+8eFFjxoxRSEiIx/b169dfe2UAANNxOBzKzc0tdr/ValV4eLgXK0JNVaYAZLPZPN4/+OCD11zAggUL9NJLLykjI0Pt27fXvHnz1Llz5yLbLl68WG+99Zb27dsnSYqPj9eLL77o0f7cuXN65pln9N5778nhcKh58+YaN26cxowZc821AgAqj8Ph0Pz5893vnc5QZWWFy253yGY7696elJRECMI1K1MAWrZsWYV++dq1azVhwgQtWrRIXbp0UUpKivr166cDBw6oYcOGhdpv27ZNQ4cOVbdu3RQUFKSZM2fqjjvu0DfffOO+FH/ChAn67LPPtHLlSsXExOiTTz7RY489pqioKA0aNKhC6wcAVJzLZ37S0jpqw4aBMgw/WSwuJSZuVFzc7kLtgPLy6SLoOXPm6I9//KNGjhyptm3batGiRapdu7aWLl1aZPtVq1bpscceU4cOHdSmTRu98cYbcrlc2rJli7vNF198oREjRqh3796KiYnR6NGj1b59e+3cudNbhwUAuAZOZ6g7/EiSYfhpw4aBcjpDfVwZahKfBaDc3Fylpqaqb9++vxXj56e+fftqx44dperjwoULysvLk91ud2/r1q2b3n//ff30008yDENbt27V999/rzvuuKPYfnJycpSdne3xAgD4RlZWuDv8FDAMP2Vl2Yv5BFB2PgtAp0+fVn5+viIiIjy2R0REKCMjo1R9TJw4UVFRUR4hat68eWrbtq2aNGkiq9Wq/v37a8GCBerZs2ex/SQnJ8tms7lf0dHR5TsoAMA1s9sdslhcHtssFpfs9iwfVYSaqNreB2jGjBlas2aN3n33XY8n1M+bN09ffvml3n//faWmpurll1/W2LFjtXnz5mL7mjRpkpxOp/v1448/euMQAABFsNnOKjFxozsEFawBunwhNHCtyrQIuiLVr19f/v7+yszM9NiemZmpRo0alfjZ2bNna8aMGdq8ebPatWvn3v7LL7/oP/7jP/Tuu+9qwIABkqR27dppz549mj17tsdM0eUCAwMVGBh4jUcEAKgocXG7FRt7UFlZdtntWYQfVDifzQBZrVbFx8d7LGAuWNDctWvXYj83a9YsTZ8+XZs2bVJCQoLHvry8POXl5cnPz/Ow/P395XJ5TqcCAKo2m+2smjc/QvhBpfDZDJB06ZL1ESNGKCEhQZ07d1ZKSorOnz+vkSNHSpKGDx+uxo0bKzk5WZI0c+ZMTZkyRatXr1ZMTIx7rVCdOnVUp04dhYWFqVevXnrqqacUHBysZs2a6R//+IfeeustzZkzx2fHCQC4OqvVWqHtgJL4NAANHjxYp06d0pQpU5SRkaEOHTpo06ZN7oXRR48e9ZjNWbhwoXJzc3Xfffd59DN16lRNmzZNkrRmzRpNmjRJDzzwgLKystSsWTO98MIL3AgRAKq48PBwJSUlcSdoeIXFMAzD10VUNdnZ2bLZbHI6nQoLC/N1OQAAoBTK8vu72l4FBgAAUF4EIAAAYDo+XQMEAEBF4UnyKAsCEACg2uNJ8igrAhAAoNrjSfIoK9YAAQBqDJ4kj9JiBggAUGOU9CR5m+2sTp8+XeTnWB9kPgQgAECNUfAk+ctD0OVPkl+/fj3rgyCJAAQAqEEKniR/5RqggqDD+iAUIAABAGqU4p4kX9z6oNjYgzxw1YQIQACAGsdmO1so1FxtfRDMhavAAADVXmmeEF+wPuhyl68PgrkwAwQAqPZKepL86dOntX79+quuD4K5EIAAADVCaa7gKm59EMyHAAQAMJWi1gfBfFgDBACo0UqzPqgs7VAzMAMEAKjRSlofVIA7QZsPAQgAUOMRbnAlToEBAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADT8XkAWrBggWJiYhQUFKQuXbpo586dxbZdvHixevTooXr16qlevXrq27dvke3379+vQYMGyWazKSQkRJ06ddLRo0cr8zAAAEA14tMAtHbtWk2YMEFTp05VWlqa2rdvr379+unkyZNFtt+2bZuGDh2qrVu3aseOHYqOjtYdd9yhn376yd3m0KFD6t69u9q0aaNt27Zp7969evbZZxUUFOStwwIAAFWcxTAMw1df3qVLF3Xq1Enz58+XJLlcLkVHR+vxxx/XM888c9XP5+fnq169epo/f76GDx8uSRoyZIgCAgK0YsWKcteVnZ0tm80mp9OpsLCwcvcDAAC8pyy/v302A5Sbm6vU1FT17dv3t2L8/NS3b1/t2LGjVH1cuHBBeXl5stvtki4FqA8++ECtW7dWv3791LBhQ3Xp0kXvvfdeif3k5OQoOzvb4wUAAGounwWg06dPKz8/XxERER7bIyIilJGRUao+Jk6cqKioKHeIOnnypM6dO6cZM2aof//++uSTT/T73/9e99xzj/7xj38U209ycrJsNpv7FR0dXf4DAwAAVV4tXxdQXjNmzNCaNWu0bds29/oel8slSbrrrrv0l7/8RZLUoUMHffHFF1q0aJF69epVZF+TJk3ShAkT3O+zs7MJQQAA1GA+C0D169eXv7+/MjMzPbZnZmaqUaNGJX529uzZmjFjhjZv3qx27dp59FmrVi21bdvWo/3111+vzz//vNj+AgMDFRgYWI6jAAAA1ZHPToFZrVbFx8dry5Yt7m0ul0tbtmxR165di/3crFmzNH36dG3atEkJCQmF+uzUqZMOHDjgsf37779Xs2bNKvYAAABAteXTU2ATJkzQiBEjlJCQoM6dOyslJUXnz5/XyJEjJUnDhw9X48aNlZycLEmaOXOmpkyZotWrVysmJsa9VqhOnTqqU6eOJOmpp57S4MGD1bNnT916663atGmTNmzYoG3btvnkGAEAQNXj0wA0ePBgnTp1SlOmTFFGRoY6dOigTZs2uRdGHz16VH5+v01SLVy4ULm5ubrvvvs8+pk6daqmTZsmSfr973+vRYsWKTk5WePGjdN1112ndevWqXv37l47LgAAULX59D5AVRX3AQIAoPopy+/vansVGAAANZnD4VBubm6x+61Wq8LDw71YUc1CAAIAoIpxOBzupySUJCkpiRBUTj5/GCoAAPBU0sxPedqhMAIQAAAwHQIQAAAwHQIQAAAwHQIQAABVnNMZqvT0GDmdob4upcbgKjAAAKqwtLSO2rBhoAzDTxaLS4mJGxUXt9vXZVV7zAABAFBFOZ2h7vAjSYbhpw0bBjITVAEIQAAAVDFWq1WSlJUV7g4/BQzDT1lZdo92KDsehVEEHoUBAPA1h8Ohw4d/VefODeVyWdzb/f0NffXVScXE1OImiFcoy+9vZoAAAKiCwsPDFR8foddft8jf/9I2f3/pb3+zKD4+gvBzjVgEDQBAFfbII1K/ftLBg1LLllKTJr6uqGYgAAEAUMU1aULwqWicAgMAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZTy9cFAAAA73E4HMrNzS12v9VqVXh4uBcr8g0CEAAAJuFwODR//vyrtktKSqrxIYhTYAAAmERJMz/laVedEYAAAIDpEIAAAIDpEIAAADAppzNU6ekxcjpDfV2K17EIGgAAE0pL66gNGwbKMPxksbiUmLhRcXG7fV2W1zADBACAyTidoe7wI0mG4acNGwaaaiaIAAQAgMlkZYW7w08Bw/BTVpbdRxV5HwEIAACTsFqtkiS73SGLxeWxz2JxyW7P8mhXk7EGCAAAkwgPD1dSUpJyc3PVuHG2Jk60KT/fIn9/QzNnZusPfxhqmjtBWwzDMHxdRFWTnZ0tm80mp9OpsLAwX5cDAEClOHZMOnhQatlSatLE19Vcu7L8/mYGCAAAk2rSpGYEn/JgDRAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADCdKhGAFixYoJiYGAUFBalLly7auXNnsW0XL16sHj16qF69eqpXr5769u1bYvsxY8bIYrEoJSWlEioHAADVkc8D0Nq1azVhwgRNnTpVaWlpat++vfr166eTJ08W2X7btm0aOnSotm7dqh07dig6Olp33HGHfvrpp0Jt3333XX355ZeKioqq7MMAAADViM8D0Jw5c/THP/5RI0eOVNu2bbVo0SLVrl1bS5cuLbL9qlWr9Nhjj6lDhw5q06aN3njjDblcLm3ZssWj3U8//aTHH39cq1atUkBAgDcOBQAAVBM+DUC5ublKTU1V37593dv8/PzUt29f7dixo1R9XLhwQXl5ebLb7e5tLpdLw4YN01NPPaUbbrihwusGAADVWy1ffvnp06eVn5+viIgIj+0RERH67rvvStXHxIkTFRUV5RGiZs6cqVq1amncuHGl6iMnJ0c5OTnu99nZ2aX6HAAAqJ58GoCu1YwZM7RmzRpt27ZNQUFBkqTU1FS9+uqrSktLk8ViKVU/ycnJeu655yqzVAAAajSHw6Hc3Nxi91utVoWHh3uxopL5NADVr19f/v7+yszM9NiemZmpRo0alfjZ2bNna8aMGdq8ebPatWvn3v7Pf/5TJ0+eVNOmTd3b8vPz9cQTTyglJUWHDx8u1NekSZM0YcIE9/vs7GxFR0eX86gAADAXh8Oh+fPnX7VdUlJSlQlBPl0DZLVaFR8f77GAuWBBc9euXYv93KxZszR9+nRt2rRJCQkJHvuGDRumvXv3as+ePe5XVFSUnnrqKX388cdF9hcYGKiwsDCPFwAAKJ2SZn7K084bfH4KbMKECRoxYoQSEhLUuXNnpaSk6Pz58xo5cqQkafjw4WrcuLGSk5MlXVrfM2XKFK1evVoxMTHKyMiQJNWpU0d16tRReHh4oXQZEBCgRo0a6brrrvPuwQEAYEJOZ6iyssJltztks531dTlF8nkAGjx4sE6dOqUpU6YoIyNDHTp00KZNm9wLo48ePSo/v98mqhYuXKjc3Fzdd999Hv1MnTpV06ZN82bpAADgCmlpHbVhw0AZhp8sFpcSEzcqLm63r8sqxOcBSLp0TjApKanIfdu2bfN4X9Qanqspz2cAAEDZOJ2h7vAjSYbhpw0bBio29mCVmwny+Y0QAQBAzZCVFe4OPwUMw09ZWfZiPuE7BCAAAFAh7HaHLBaXxzaLxSW7PctHFRWPAAQAACqEzXZWiYkb3SGoYA1QVTv9JVWRNUAAAKD6slqt7r/Hxe1WbOxBZWXZZbdneYSfy9v5GgEIAABck/DwcCUlJXEnaAAAYC5VKdyUBmuAAACA6TADBAAAKlVVfFAqAQgAAFSaqvqgVE6BAQCASnPlzI/TGar09Bg5naEltqtszAABAACvqErPCWMGCAAAVLrinhN25UyQtxCAAABApatqzwkjAAEAgEpX1Z4TRgACAACVrqo9J4xF0AAAwCtKek6YtxGAAABApbnyAag229kig4+3H5RKAAIAAJWmqj4olQAEAAAqVVV8UCqLoAEAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOlwJ+giGIYhScrOzvZxJQAAoLQKfm8X/B4vCQGoCGfPXnpIW3R0tI8rAQAAZXX27FnZbLYS21iM0sQkk3G5XDp+/LhCQ0NlsVgK7c/OzlZ0dLR+/PFHhYWF+aDCqo8xujrGqGSMz9UxRlfHGF1dTRojwzB09uxZRUVFyc+v5FU+zAAVwc/PT02aNLlqu7CwsGr/w1LZGKOrY4xKxvhcHWN0dYzR1dWUMbrazE8BFkEDAADTIQABAADTIQCVQ2BgoKZOnarAwEBfl1JlMUZXxxiVjPG5Osbo6hijqzPrGLEIGgAAmA4zQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQMVYsGCBYmJiFBQUpC5dumjnzp3Ftv3mm2907733KiYmRhaLRSkpKd4r1IfKMkaLFy9Wjx49VK9ePdWrV099+/YtsX1NUJbxWb9+vRISElS3bl2FhISoQ4cOWrFihRer9Y2yjNHl1qxZI4vForvvvrtyC6wCyjJGy5cvl8Vi8XgFBQV5sVrfKOvP0ZkzZzR27FhFRkYqMDBQrVu31ocffuilan2jLGPUu3fvQj9HFotFAwYM8GLFXmCgkDVr1hhWq9VYunSp8c033xh//OMfjbp16xqZmZlFtt+5c6fx5JNPGn//+9+NRo0aGa+88op3C/aBso7RH/7wB2PBggXG7t27jf379xsPPfSQYbPZjGPHjnm5cu8o6/hs3brVWL9+vfHtt98aBw8eNFJSUgx/f39j06ZNXq7ce8o6RgXS09ONxo0bGz169DDuuusu7xTrI2Udo2XLlhlhYWHGiRMn3K+MjAwvV+1dZR2jnJwcIyEhwfjd735nfP7550Z6erqxbds2Y8+ePV6u3HvKOkYOh8PjZ2jfvn2Gv7+/sWzZMu8WXskIQEXo3LmzMXbsWPf7/Px8IyoqykhOTr7qZ5s1a2aKAHQtY2QYhvHrr78aoaGhxptvvllZJfrUtY6PYRhGx44djb/+9a+VUV6VUJ4x+vXXX41u3boZb7zxhjFixIgaH4DKOkbLli0zbDabl6qrGso6RgsXLjRatGhh5ObmeqtEn7vWf49eeeUVIzQ01Dh37lxllegTnAK7Qm5urlJTU9W3b1/3Nj8/P/Xt21c7duzwYWVVR0WM0YULF5SXlye73V5ZZfrMtY6PYRjasmWLDhw4oJ49e1ZmqT5T3jH6z//8TzVs2FCPPPKIN8r0qfKO0blz59SsWTNFR0frrrvu0jfffOONcn2iPGP0/vvvq2vXrho7dqwiIiJ044036sUXX1R+fr63yvaqivj3esmSJRoyZIhCQkIqq0yfIABd4fTp08rPz1dERITH9oiICGVkZPioqqqlIsZo4sSJioqK8viPsqYo7/g4nU7VqVNHVqtVAwYM0Lx583T77bdXdrk+UZ4x+vzzz7VkyRItXrzYGyX6XHnG6LrrrtPSpUv13//931q5cqVcLpe6deumY8eOeaNkryvPGP3rX//SO++8o/z8fH344Yd69tln9fLLL+v555/3Rsled63/Xu/cuVP79u3TqFGjKqtEn+Fp8PC6GTNmaM2aNdq2bZspFmiWVmhoqPbs2aNz585py5YtmjBhglq0aKHevXv7ujSfO3v2rIYNG6bFixerfv36vi6nyuratau6du3qft+tWzddf/31+tvf/qbp06f7sLKqw+VyqWHDhnr99dfl7++v+Ph4/fTTT3rppZc0depUX5dX5SxZskQ33XSTOnfu7OtSKhwB6Ar169eXv7+/MjMzPbZnZmaqUaNGPqqqarmWMZo9e7ZmzJihzZs3q127dpVZps+Ud3z8/PzUsmVLSVKHDh20f/9+JScn18gAVNYxOnTokA4fPqzExET3NpfLJUmqVauWDhw4oNjY2Mot2ssq4t+igIAAdezYUQcPHqyMEn2uPGMUGRmpgIAA+fv7u7ddf/31ysjIUG5urqxWa6XW7G3X8nN0/vx5rVmzRv/5n/9ZmSX6DKfArmC1WhUfH68tW7a4t7lcLm3ZssXj/1mZWXnHaNasWZo+fbo2bdqkhIQEb5TqExX1M+RyuZSTk1MZJfpcWceoTZs2+vrrr7Vnzx73a9CgQbr11lu1Z88eRUdHe7N8r6iIn6P8/Hx9/fXXioyMrKwyfao8Y3TLLbfo4MGD7gAtSd9//70iIyNrXPiRru3n6O2331ZOTo4efPDByi7TN3y9CrsqWrNmjREYGGgsX77c+Pbbb43Ro0cbdevWdV9OOmzYMOOZZ55xt8/JyTF2795t7N6924iMjDSefPJJY/fu3cYPP/zgq0OodGUdoxkzZhhWq9V45513PC6vPHv2rK8OoVKVdXxefPFF45NPPjEOHTpkfPvtt8bs2bONWrVqGYsXL/bVIVS6so7RlcxwFVhZx+i5554zPv74Y+PQoUNGamqqMWTIECMoKMj45ptvfHUIla6sY3T06FEjNDTUSEpKMg4cOGBs3LjRaNiwofH888/76hAqXXn/W+vevbsxePBgb5frNQSgYsybN89o2rSpYbVajc6dOxtffvmle1+vXr2MESNGuN+np6cbkgq9evXq5f3CvagsY9SsWbMix2jq1KneL9xLyjI+kydPNlq2bGkEBQUZ9erVM7p27WqsWbPGB1V7V1nG6EpmCECGUbYxGj9+vLttRESE8bvf/c5IS0vzQdXeVdafoy+++MLo0qWLERgYaLRo0cJ44YUXjF9//dXLVXtXWcfou+++MyQZn3zyiZcr9R6LYRiGjyafAAAAfII1QAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQADgQw899JDuvvtuX5cBmA4BCECRHnroIVksFvcrPDxc/fv31969e31dWoW4/NgKXt27d6+07zt8+LAsFov27Nnjsf3VV1/V8uXLK+17ARSNAASgWP3799eJEyd04sQJbdmyRbVq1dLAgQN9XVaFWbZsmfv4Tpw4offff7/Idnl5eZVWg81mU926dSutfwBFIwABKFZgYKAaNWqkRo0aqUOHDnrmmWf0448/6tSpU+rTp4+SkpI82p86dUpWq9X95OmYmBhNnz5dQ4cOVUhIiBo3bqwFCxZ4fGbOnDm66aabFBISoujoaD322GM6d+6ce/+RI0eUmJioevXqKSQkRDfccIM+/PBDSdLPP/+sBx54QA0aNFBwcLBatWqlZcuWlfr46tat6z6+Ro0ayW63u2dq1q5dq169eikoKEirVq2Sw+HQ0KFD1bhxY9WuXVs33XST/v73v3v053K5NGvWLLVs2VKBgYFq2rSpXnjhBUlS8+bNJUkdO3aUxWJR7969JRU+BZaTk6Nx48apYcOGCgoKUvfu3bVr1y73/m3btslisWjLli1KSEhQ7dq11a1bNx04cKDUxw2AAASglM6dO6eVK1eqZcuWCg8P16hRo7R69Wrl5OS426xcuVKNGzdWnz593NteeukltW/fXrt379YzzzyjP//5z/r000/d+/38/DR37lx98803evPNN/XZZ5/p6aefdu8fO3ascnJy9D//8z/6+uuvNXPmTNWpU0eS9Oyzz+rbb7/VRx99pP3792vhwoWqX79+hRxvQa379+9Xv379dPHiRcXHx+uDDz7Qvn37NHr0aA0bNkw7d+50f2bSpEmaMWOGu67Vq1crIiJCktztNm/erBMnTmj9+vVFfu/TTz+tdevW6c0331RaWppatmypfv36KSsry6Pd5MmT9fLLL+t///d/VatWLT388MMVctyAafj6aawAqqYRI0YY/v7+RkhIiBESEmJIMiIjI43U1FTDMAzjl19+MerVq2esXbvW/Zl27doZ06ZNc79v1qyZ0b9/f49+Bw8ebNx5553Ffu/bb79thIeHu9/fdNNNHn1eLjEx0Rg5cmS5jk+SERQU5D6+kJAQ49133zXS09MNSUZKSspV+xgwYIDxxBNPGIZhGNnZ2UZgYKCxePHiItsW9Lt7926P7Zc/1f7cuXNGQECAsWrVKvf+3NxcIyoqypg1a5ZhGIaxdetWQ5KxefNmd5sPPvjAkGT88ssvZRkCwNSYAQJQrFtvvVV79uzRnj17tHPnTvXr10933nmnjhw5oqCgIA0bNkxLly6VJKWlpWnfvn166KGHPPro2rVroff79+93v9+8ebNuu+02NW7cWKGhoRo2bJgcDocuXLggSRo3bpyef/553XLLLZo6darHIuxHH31Ua9asUYcOHfT000/riy++KNPxvfLKK+7j27Nnj26//Xb3voSEBI+2+fn5mj59um666SbZ7XbVqVNHH3/8sY4ePSpJ2r9/v3JycnTbbbeVqYbLHTp0SHl5ebrlllvc2wICAtS5c2ePMZOkdu3auf8eGRkpSTp58mS5vxswGwIQgGKFhISoZcuWatmypTp16qQ33nhD58+f1+LFiyVJo0aN0qeffqpjx45p2bJl6tOnj5o1a1bq/g8fPqyBAweqXbt2WrdunVJTU91rhHJzc93f8a9//UvDhg3T119/rYSEBM2bN0+S3GHsL3/5i44fP67bbrtNTz75ZKm/v1GjRu7ja9mypUJCQjyO/XIvvfSSXn31VU2cOFFbt27Vnj171K9fP3edwcHBpf7eihAQEOD+u8VikXRpDRKA0iEAASg1i8UiPz8//fLLL5Kkm266SQkJCVq8eLFWr15d5DqUL7/8stD766+/XpKUmpoql8ull19+WTfffLNat26t48ePF+ojOjpaY8aM0fr16/XEE0+4A5gkNWjQQCNGjNDKlSuVkpKi119/vSIP2W379u2666679OCDD6p9+/Zq0aKFvv/+e/f+Vq1aKTg42L0A/EpWq1XSpZmk4sTGxspqtWr79u3ubXl5edq1a5fatm1bQUcCQJJq+boAAFVXTk6OMjIyJF264mr+/Pk6d+6cEhMT3W1GjRqlpKQkhYSE6Pe//32hPrZv365Zs2bp7rvv1qeffqq3335bH3zwgSSpZcuWysvL07x585SYmKjt27dr0aJFHp8fP3687rzzTrVu3Vo///yztm7d6g5QU6ZMUXx8vG644Qbl5ORo48aN7n0VrVWrVnrnnXf0xRdfqF69epozZ44yMzPdwSQoKEgTJ07U008/LavVqltuuUWnTp3SN998o0ceeUQNGzZUcHCwNm3apCZNmigoKEg2m83jO0JCQvToo4/qqaeekt1uV9OmTTVr1ixduHBBjzzySKUcF2BWzAABKNamTZsUGRmpyMhIdenSRbt27dLbb7/tvoRbkoYOHapatWpp6NChCgoKKtTHE088of/93/9Vx44d9fzzz2vOnDnq16+fJKl9+/aaM2eOZs6cqRtvvFGrVq1ScnKyx+fz8/M1duxYXX/99erfv79at26t1157TdKlWZVJkyapXbt26tmzp/z9/bVmzZpKGYu//vWviouLU79+/dS7d281atSo0B2cn332WT3xxBOaMmWKrr/+eg0ePNi9LqdWrVqaO3eu/va3vykqKkp33XVXkd8zY8YM3XvvvRo2bJji4uJ08OBBffzxx6pXr16lHBdgVhbDMAxfFwGg+jp8+LBiY2O1a9cuxcXFeeyLiYnR+PHjNX78eN8UBwDF4BQYgHLJy8uTw+HQX//6V918882Fwg8AVGWcAgNQLtu3b1dkZKR27dpVaN2Or7344ouqU6dOka8777zT1+UBqAI4BQagxsnKyip05+QCwcHBaty4sZcrAlDVEIAAAIDpcAoMAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYzv8H+tCrlq051sMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASMpJREFUeJzt3X9cVFXi//H3gAwgwtigoiiKoWlaqWialj9qLWwV+7n+KjXLNbfIXMrM2tSyQsuMErO2NS3LtE37oblWmvbTyi9oP83UUPshmJAD4irEnO8ffph1EhAQZoD7ej4e81jn3HPPnHM/82HenXvuvTZjjBEAAICFBPi7AwAAAL5GAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAKAWmrJkiWy2Wzas2ePv7sC1DsEIMDCtmzZoqSkJHXu3FlhYWFq3bq1hg0bpu+///6kugMGDJDNZpPNZlNAQIAiIiLUoUMHjR49Wu+++26lPnf16tXq37+/mjVrpoYNG+rMM8/UsGHDtG7duuoa2kkefvhhvf766yeVf/LJJ5o5c6YOHTpUY5/9RzNnzvQcS5vNpoYNG6pTp076xz/+oby8vGr5jGXLlik1NbVa2gLqIwIQYGFz5szRypUr9ac//UlPPPGEJkyYoA8++EDx8fH6+uuvT6rfqlUrLV26VC+88IIeffRRDR06VJ988okuu+wyDR8+XEVFRaf8zLlz52ro0KGy2WyaNm2aHn/8cV1zzTXauXOnli9fXhPDlFR+ALr//vt9GoBKLFy4UEuXLtW8efPUsWNHPfTQQxo0aJCq4xGNBCCgfA383QEA/pOcnKxly5bJbrd7yoYPH65zzz1Xs2fP1osvvuhV3+Fw6Prrr/cqmz17tiZNmqSnnnpKsbGxmjNnTpmf9/vvv2vWrFm69NJL9c4775y0/cCBA6c5otrjyJEjatiwYbl1rr32WjVp0kSSNHHiRF1zzTVatWqVPv30U/Xu3dsX3QQsixkgwML69OnjFX4kqX379urcubO2b99eoTYCAwP15JNPqlOnTkpLS5PL5Sqz7sGDB5WXl6cLL7yw1O3NmjXzen/06FHNnDlTZ511lkJCQtSiRQtdffXV2r17t6fO3Llz1adPH0VGRio0NFTdu3fXq6++6tWOzWZTQUGBnn/+ec9ppxtuuEEzZ87UlClTJElt27b1bDtxzc2LL76o7t27KzQ0VE6nUyNGjNCPP/7o1f6AAQN0zjnnKD09Xf369VPDhg11zz33VOj4neiSSy6RJGVmZpZb76mnnlLnzp0VHBys6Oho3XrrrV4zWAMGDNBbb72lvXv3esYUGxtb6f4A9RkzQAC8GGOUnZ2tzp07V3ifwMBAjRw5Uvfdd58++ugjDR48uNR6zZo1U2hoqFavXq3bbrtNTqezzDaLi4s1ZMgQbdiwQSNGjNDtt9+u/Px8vfvuu/r6668VFxcnSXriiSc0dOhQXXfddSosLNTy5cv1l7/8RWvWrPH0Y+nSpRo/frx69uypCRMmSJLi4uIUFham77//Xi+//LIef/xxz2xM06ZNJUkPPfSQ7rvvPg0bNkzjx4/Xr7/+qvnz56tfv37aunWrGjdu7OlvTk6OLr/8co0YMULXX3+9oqKiKnz8SpQEu8jIyDLrzJw5U/fff78GDhyov/3tb9qxY4cWLlyoLVu26OOPP1ZQUJDuvfdeuVwu/fTTT3r88cclSY0aNap0f4B6zQDACZYuXWokmUWLFnmV9+/f33Tu3LnM/V577TUjyTzxxBPltj99+nQjyYSFhZnLL7/cPPTQQyY9Pf2kes8995yRZObNm3fSNrfb7fn3kSNHvLYVFhaac845x1xyySVe5WFhYWbs2LEntfXoo48aSSYzM9OrfM+ePSYwMNA89NBDXuVfffWVadCggVd5//79jSTz9NNPlznuE82YMcNIMjt27DC//vqryczMNM8884wJDg42UVFRpqCgwBhjzOLFi736duDAAWO3281ll11miouLPe2lpaUZSea5557zlA0ePNi0adOmQv0BrIhTYAA8vvvuO916663q3bu3xo4dW6l9S2YY8vPzy613//33a9myZerWrZvefvtt3Xvvverevbvi4+O9TrutXLlSTZo00W233XZSGzabzfPv0NBQz79/++03uVwu9e3bVxkZGZXq/x+tWrVKbrdbw4YN08GDBz2v5s2bq3379tq4caNX/eDgYI0bN65Sn9GhQwc1bdpUbdu21c0336x27drprbfeKnPt0Pr161VYWKjJkycrIOB/f77/+te/KiIiQm+99VblBwpYFKfAAEiSsrKyNHjwYDkcDr366qsKDAys1P6HDx+WJIWHh5+y7siRIzVy5Ejl5eXps88+05IlS7Rs2TIlJibq66+/VkhIiHbv3q0OHTqoQYPy/0ytWbNGDz74oLZt26Zjx455yk8MSVWxc+dOGWPUvn37UrcHBQV5vW/ZsuVJ66lOZeXKlYqIiFBQUJBatWrlOa1Xlr1790o6HpxOZLfbdeaZZ3q2Azg1AhAAuVwuXX755Tp06JA+/PBDRUdHV7qNksvm27VrV+F9IiIidOmll+rSSy9VUFCQnn/+eX322Wfq379/hfb/8MMPNXToUPXr109PPfWUWrRooaCgIC1evFjLli2r9BhO5Ha7ZbPZ9J///KfUMPjHNTUnzkRVVL9+/TzrjgD4FgEIsLijR48qMTFR33//vdavX69OnTpVuo3i4mItW7ZMDRs21EUXXVSlfvTo0UPPP/+89u/fL+n4IuXPPvtMRUVFJ822lFi5cqVCQkL09ttvKzg42FO+ePHik+qWNSNUVnlcXJyMMWrbtq3OOuusyg6nRrRp00aStGPHDp155pme8sLCQmVmZmrgwIGestOdAQPqO9YAARZWXFys4cOHa/Pmzfr3v/9dpXvPFBcXa9KkSdq+fbsmTZqkiIiIMuseOXJEmzdvLnXbf/7zH0n/O71zzTXX6ODBg0pLSzuprvm/GwUGBgbKZrOpuLjYs23Pnj2l3vAwLCys1JsdhoWFSdJJ266++moFBgbq/vvvP+nGhMYY5eTklD7IGjRw4EDZ7XY9+eSTXn1atGiRXC6X19V3YWFh5d6SALA6ZoAAC7vjjjv05ptvKjExUbm5uSfd+PCPNz10uVyeOkeOHNGuXbu0atUq7d69WyNGjNCsWbPK/bwjR46oT58+uuCCCzRo0CDFxMTo0KFDev311/Xhhx/qyiuvVLdu3SRJY8aM0QsvvKDk5GR9/vnn6tu3rwoKCrR+/XrdcsstuuKKKzR48GDNmzdPgwYN0qhRo3TgwAEtWLBA7dq105dffun12d27d9f69es1b948RUdHq23bturVq5e6d+8uSbr33ns1YsQIBQUFKTExUXFxcXrwwQc1bdo07dmzR1deeaXCw8OVmZmp1157TRMmTNCdd955Wse/spo2bapp06bp/vvv16BBgzR06FDt2LFDTz31lM4//3yv/3t1795dK1asUHJyss4//3w1atRIiYmJPu0vUKv58xI0AP5Vcvl2Wa/y6jZq1Mi0b9/eXH/99eadd96p0OcVFRWZZ5991lx55ZWmTZs2Jjg42DRs2NB069bNPProo+bYsWNe9Y8cOWLuvfde07ZtWxMUFGSaN29urr32WrN7925PnUWLFpn27dub4OBg07FjR7N48WLPZeYn+u6770y/fv1MaGiokeR1SfysWbNMy5YtTUBAwEmXxK9cudJcdNFFJiwszISFhZmOHTuaW2+91ezYscPr2JR3i4A/Kunfr7/+Wm69P14GXyItLc107NjRBAUFmaioKPO3v/3N/Pbbb151Dh8+bEaNGmUaN25sJHFJPPAHNmOq4aEzAAAAdQhrgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOVwI8RSuN1u/fLLLwoPD+d28gAA1BHGGOXn5ys6OloBAeXP8RCASvHLL78oJibG390AAABV8OOPP6pVq1bl1iEAlSI8PFzS8QNY3nONAABA7ZGXl6eYmBjP73h5CEClKDntFRERQQACAKCOqcjyFRZBAwAAyyEAAQAAyyEAAQAAy2EN0GkoLi5WUVGRv7tRbwUFBSkwMNDf3QAA1EMEoCowxigrK0uHDh3yd1fqvcaNG6t58+bcjwkAUK0IQFVQEn6aNWumhg0b8uNcA4wxOnLkiA4cOCBJatGihZ97BACoTwhAlVRcXOwJP5GRkf7uTr0WGhoqSTpw4ICaNWvG6TAAQLVhEXQllaz5adiwoZ97Yg0lx5m1VgCA6kQAqiJOe/kGxxkAUBM4BQbUUTk5OSosLCxzu91u5zQtAJSBAATUQTk5OUpLSztlvaSkJEIQAJSCU2AWcsMNN8hms8lmsykoKEhRUVG69NJL9dxzz8ntdle4nSVLlqhx48Y111GcUnkzP1WpBwBWwwyQj/n7tMWgQYO0ePFiFRcXKzs7W+vWrdPtt9+uV199VW+++aYaNOArAQCo//i186HacNoiODhYzZs3lyS1bNlS8fHxuuCCC/SnP/1JS5Ys0fjx4zVv3jwtXrxYP/zwg5xOpxITE/XII4+oUaNG2rRpk8aNGyfpfwuUZ8yYoZkzZ2rp0qV64okntGPHDoWFhemSSy5RamqqmjVrViNjwf+4XOHKzY2U05kjhyPf390BgFqPU2A+VFtPW1xyySXq0qWLVq1aJUkKCAjQk08+qW+++UbPP/+83nvvPd11112SpD59+ig1NVURERHav3+/9u/frzvvvFPS8UvVZ82apS+++EKvv/669uzZoxtuuMGnY7GijIxuSk2drOefH6vU1MnKyOjm7y4BQK3HDBAkSR07dtSXX34pSZo8ebKnPDY2Vg8++KAmTpyop556Sna7XQ6HQzabzTOTVOLGG2/0/PvMM8/Uk08+qfPPP1+HDx9Wo0aNfDIOq3G5wrV69RAZc/y/ZYwJ0OrVQxQXt4uZIAAoBzNAkHT80RMlp7TWr1+vP/3pT2rZsqXCw8M1evRo5eTk6MiRI+W2kZ6ersTERLVu3Vrh4eHq37+/JGnfvn013n+rys2N9ISfEsYEKDfX6aceAUDdQACCJGn79u1q27at9uzZoyFDhui8887TypUrlZ6ergULFkgq/9RcQUGBEhISFBERoZdeeklbtmzRa6+9dsr9cHqczhzZbN5X8NlsbjmduX7qEQDUDQQg6L333tNXX32la665Runp6XK73Xrsscd0wQUX6KyzztIvv/ziVd9ut6u4uNir7LvvvlNOTo5mz56tvn37qmPHjp4HmaL62e12SZLDka/ExDWeEGSzuZWYuMZz+qukHgDAG2uALObYsWPKysryugw+JSVFQ4YM0ZgxY/T111+rqKhI8+fPV2Jioj7++GM9/fTTXm3Exsbq8OHD2rBhg7p06aKGDRuqdevWstvtmj9/viZOnKivv/5as2bN8tMo67/IyEglJSV5ZtemT/9Ve/Y0UGzs74qOPl/S+dwJGgDKwQyQxaxbt04tWrRQbGysBg0apI0bN+rJJ5/UG2+8ocDAQHXp0kXz5s3TnDlzdM455+ill15SSkqKVxt9+vTRxIkTNXz4cDVt2lSPPPKImjZtqiVLlujf//63OnXqpNmzZ2vu3Ll+GqU1REZGqkWLFmrRooW6d4/SNddEqnv3KE8Z4QcAymYzxhh/d6K2ycvLk8PhkMvlUkREhNe2o0ePKjMzU23btlVISEil2q0N9wGqa07neAMArKW83+8/4hSYD/3xtEVpOG0BAEDNIwD5GOEGAAD/Yw0QAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQqs2mTZtks9l06NChCu8TGxur1NTUGusTAAClIQBZyA033CCbzaaJEyeetO3WW2+VzWbTDTfc4PuOAQDgYwQgi4mJidHy5cv13//+11N29OhRLVu2TK1bt/ZjzwAA8B0CkMXEx8crJiZGq1at8pStWrVKrVu3Vrdu3Txlx44d06RJk9SsWTOFhITooosu0pYtW7zaWrt2rc466yyFhobq4osv1p49e076vI8++kh9+/ZVaGioYmJiNGnSJBUUFNTY+AAAqAgCkB/99JO0cePx//WlG2+8UYsXL/a8f+655zRu3DivOnfddZdWrlyp559/XhkZGWrXrp0SEhKUm5srSfrxxx919dVXKzExUdu2bdP48eN19913e7Wxe/duDRo0SNdcc42+/PJLrVixQh999JGSkpJqfpAAAJSDAOQnixZJbdpIl1xy/H8XLfLdZ19//fX66KOPtHfvXu3du1cff/yxrr/+es/2goICLVy4UI8++qguv/xyderUSc8++6xCQ0O16P86unDhQsXFxemxxx5Thw4ddN111520figlJUXXXXedJk+erPbt26tPnz568skn9cILL+jo0aO+GzAAAH/A0+D94KefpAkTJLf7+Hu3W7r5ZikhQWrVquY/v2nTpho8eLCWLFkiY4wGDx6sJk2aeLbv3r1bRUVFuvDCCz1lQUFB6tmzp7Zv3y5J2r59u3r16uXVbu/evb3ef/HFF/ryyy/10ksvecqMMXK73crMzNTZZ59dE8MDAOCUCEB+sHPn/8JPieJiadcu3wQg6fhpsJJTUQsWLKiRzzh8+LBuvvlmTZo06aRtLLgGAPgTAcgP2reXAgK8Q1BgoNSune/6MGjQIBUWFspmsykhIcFrW1xcnOx2uz7++GO1adNGklRUVKQtW7Zo8uTJkqSzzz5bb775ptd+n376qdf7+Ph4ffvtt2rny4EBAFABBCA/aNVK+uc/j5/2Ki4+Hn6eecZ3sz+SFBgY6DmdFRgY6LUtLCxMf/vb3zRlyhQ5nU61bt1ajzzyiI4cOaKbbrpJkjRx4kQ99thjmjJlisaPH6/09HQtWbLEq52pU6fqggsuUFJSksaPH6+wsDB9++23evfdd5WWluaTcQIA/C8nJ0eFhYWSpF9+CVBmZgO1bfu7oqOPzwTY7XZFRkb6tE8EID+56abja3527To+8+PL8FMiIiKizG2zZ8+W2+3W6NGjlZ+frx49eujtt9/WGWecIen4KayVK1fq73//u+bPn6+ePXvq4Ycf1o033uhp47zzztP777+ve++9V3379pUxRnFxcRo+fHiNjw0AUDvk5OR4/qM3I6ObVq8eImMCZLO5lZi4RvHxWyVJSUlJPg1BNmOM8dmn1RF5eXlyOBxyuVwnhYSjR48qMzNTbdu2VUhIiJ96aB0cbwCo2/bv369//vOfcrnClZo6Wcb87wJ0m82tyZNT5XDka8KECWrRosVpfVZ5v99/xGXwAACgxuXmRnqFH0kyJkC5uU6/9IcABAAAapzTmSObzfsSaJvNLacz1y/9IQABAIAa53DkKzFxjScElawBcjjy/dIfFkEDAACfiI/fqri4XcrNdcrpzPVb+JEIQFXG2nHf4DgDQP3icOT7NfiU4BRYJQUFBUmSjhw54ueeWEPJcS457gCAus3lCldmZqxcrnC/9oMZoEoKDAxU48aNdeDAAUlSw4YNZbPZ/Nyr+scYoyNHjujAgQNq3LjxSTdrBADUDSdOGJR3HyBfTywQgKqgefPmkuQJQag5jRs39hxvAEDd07BhQ0nHZ35Kwo90/BL41auHKC5ulxyOfE89XyEAVYHNZlOLFi3UrFkzFRUV+bs79VZQUBAzPwBQT5R3HyB/rAkiAJ2GwMBAfqABAKiAkvsA/fFO0NwHCAAA1FvcBwgAAFgS9wECAACWxH2ATrBgwQLFxsYqJCREvXr10ueff15m3VWrVqlHjx5q3LixwsLC1LVrVy1dutSzvaioSFOnTtW5556rsLAwRUdHa8yYMfrll198MRQAAFAH+D0ArVixQsnJyZoxY4YyMjLUpUsXJSQklHmJudPp1L333qvNmzfryy+/1Lhx4zRu3Di9/fbbko7fRyAjI0P33XefMjIytGrVKu3YsUNDhw715bAAAIAku91erfWqi834+VkDvXr10vnnn6+0tDRJktvtVkxMjG677TbdfffdFWojPj5egwcP1qxZs0rdvmXLFvXs2VN79+5V69atT9leXl6eHA6HXC6XIiIiKj4YAABwkpycHBUWFpa53W63KzIy8rQ/pzK/335dA1RYWKj09HRNmzbNUxYQEKCBAwdq8+bNp9zfGKP33ntPO3bs0Jw5c8qs53K5ZLPZ1Lhx41K3Hzt2TMeOHfO8z8vLq/ggAABAuaoj3FQ3v54CO3jwoIqLixUVFeVVHhUVpaysrDL3c7lcatSokex2uwYPHqz58+fr0ksvLbXu0aNHNXXqVI0cObLMNJiSkiKHw+F5xcTEVH1QAACg1vP7GqCqCA8P17Zt27RlyxY99NBDSk5O1qZNm06qV1RUpGHDhskYo4ULF5bZ3rRp0+RyuTyvH3/8sQZ7DwAA/M2vp8CaNGmiwMBAZWdne5VnZ2eX+/yngIAAtWvXTpLUtWtXbd++XSkpKRowYICnTkn42bt3r957771yzwUGBwcrODj49AYDAADqDL/OANntdnXv3l0bNmzwlLndbm3YsEG9e/eucDtut9trDU9J+Nm5c6fWr19fK889AgAA//H7jRCTk5M1duxY9ejRQz179lRqaqoKCgo0btw4SdKYMWPUsmVLpaSkSDq+XqdHjx6Ki4vTsWPHtHbtWi1dutRziquoqEjXXnutMjIytGbNGhUXF3vWEzmdTp9fZgcAAGofvweg4cOH69dff9X06dOVlZWlrl27at26dZ6F0fv27VNAwP8mqgoKCnTLLbfop59+UmhoqDp27KgXX3xRw4cPlyT9/PPPevPNNyUdPz12oo0bN3qdJgMAANbk9/sA1UbcBwgAgLqnztwHCAAA1C2+uqlhTSMAAQCACsnJyfE8uUGSXK5w5eZGyunM8XrAaVJSUq0PQQQgAABQISfO/GRkdNPq1UNkTIBsNrcSE9coPn7rSfVqqzp5I0QAAOA/Lle4J/xIkjEBWr16iFyucD/3rOIIQAAAoFJycyM94aeEMQHKzXX6qUeVRwACAACV4nTmyGZze5XZbG45nbl+6lHlEYAAAEClOBz5Skxc4wlBJWuATlwIXduxCBoAAFRafPxWxcXtUm6uU05nbp0KPxIBCAAAVJHDkV/ngk8JToEBAIAKqejzNOvCczeZAQIAABUSGRmppKQk7gQNAACspS6Em4rgFBgAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALCcBv7uAACgZuTk5KiwsLDM7Xa7XZGRkT7sEVB7EIAAoB7KyclRWlraKeslJSURgmBJnAIDgHrojzM/Lle4MjNj5XKFl1sPsApmgACgnsvI6KbVq4fImADZbG4lJq5RfPxWf3cL8CsCEGAxJ64L+eWXAGVmNlDbtr8rOtotiXUh9Y3LFe4JP5JkTIBWrx6iuLhdcjjy/dw7wH8IQICFnLgupLxZAdaF1B+5uZGe8FPCmADl5joJQLA01gABFlIy81PWrEDJ+hDWhdQfTmeObDa3V5nN5pbTmeunHgG1AwEIsKDyZgVQvzgc+UpMXOMJQSWzfcz+wOo4BQZYUMmswIkhiFmBmuev+/LEx29VXNwu5eY65XTmEn4AEYAASyqZFfjjGiB+GGvOH+/L43KFKzc3Uk5njtdxr671V3a73eu9w5Ff6v99/1gPsAoCUB3w00/Szp1S+/ZSq1b+7g3qC2YFfOvEmZ/yFqBX1/qryMhIJSUlcSdooAwEoFpu0SJpwgTJ7ZYCAqR//lO66SZ/9wr1RVmzAqg5vrwsnXADlI1F0LVUTk6O0tOzNWGCkfv/LuBwu6WbbzZKT89WTk6OfzsIoEpYgA7UDgSgWqhkrcD8+evkdtu8thUX2zR//n+UlpZGCEKlVXS9B+tCag6XpQO1A6fAaqGSc/anulKHe7WgslgX4n/1dQE6T55HXUMAqsXq6x9K+Bc/Qv5X3xag+/rJ84QtVAcCUC1X3/5QAjiuPi1AL+3J86Vd4l8ds9a+DluovwhAdUB9+kMJWJVV1l/V9JPnKxqiWCKAUyEAAYAPWGH9lT+ePF/WbBNwKgQgAPCRuhxuKsLXT56v6dkm1G9cBg8AqBa+vMS/rNkmlyu82j8L9RMBqBayyloBAPWLL588zw0lcbo4BVYLWWGtAID6yVdXrp7qPmnAqRCAainCDYC6wh9Pnuc+aThdBCAAwGnx5az1iSGqvNkmlgjgVGzGGOPvTtQ2eXl5cjgccrlcioiI8Hd3AAAn4E7QKEtlfr9rxSLoBQsWKDY2ViEhIerVq5c+//zzMuuuWrVKPXr0UOPGjRUWFqauXbtq6dKlXnWMMZo+fbpatGih0NBQDRw4UDt37qzpYQAAfCAyMlItWrQo80X4QUX4PQCtWLFCycnJmjFjhjIyMtSlSxclJCTowIEDpdZ3Op269957tXnzZn355ZcaN26cxo0bp7fffttT55FHHtGTTz6pp59+Wp999pnCwsKUkJCgo0eP+mpYAACgFvP7KbBevXrp/PPP9zzbxe12KyYmRrfddpvuvvvuCrURHx+vwYMHa9asWTLGKDo6WnfccYfuvPNOSZLL5VJUVJSWLFmiESNGnLI9ToEBAFD31JlTYIWFhUpPT9fAgQM9ZQEBARo4cKA2b958yv2NMdqwYYN27Nihfv36SZIyMzOVlZXl1abD4VCvXr3KbPPYsWPKy8vzegEAgPrLrwHo4MGDKi4uVlRUlFd5VFSUsrKyytzP5XKpUaNGstvtGjx4sObPn69LL71Ukjz7VabNlJQUORwOzysmJuZ0hgUAAGo5v68Bqorw8HBt27ZNW7Zs0UMPPaTk5GRt2rSpyu1NmzZNLpfL8/rxxx+rr7MAAKDW8et9gJo0aaLAwEBlZ2d7lWdnZ6t58+Zl7hcQEKB27dpJkrp27art27crJSVFAwYM8OyXnZ2tFi1aeLXZtWvXUtsLDg5WcHDwaY4GAADUFX6dAbLb7erevbs2bNjgKXO73dqwYYN69+5d4XbcbreOHTsmSWrbtq2aN2/u1WZeXp4+++yzSrUJAADqL7/fCTo5OVljx45Vjx491LNnT6WmpqqgoEDjxo2TJI0ZM0YtW7ZUSkqKpOPrdXr06KG4uDgdO3ZMa9eu1dKlS7Vw4UJJks1m0+TJk/Xggw+qffv2atu2re677z5FR0fryiuv9NcwAQBALeL3ADR8+HD9+uuvmj59urKystS1a1etW7fOs4h53759Cgj430RVQUGBbrnlFv30008KDQ1Vx44d9eKLL2r48OGeOnfddZcKCgo0YcIEHTp0SBdddJHWrVunkJAQn48PAADUPn6/D1BtxH2AAACoe+rMfYBQO/30k7Rx4/H/BQCgPiIAwcuiRVKbNtIllxz/30WL/N0jAACqHwEIko4/XTk9PVsTJhi53cfL3G7p5puN0tOzlZOT498OAgBQjfy+CBr+l5OTo7S0NGVmxsrtHuu1rbjYpvnz/6O2bfcqKSmJpywDAOoFZoCgwsJCSZLTmSObze21zWZzy+nM9aqHmsP6KwDwDQIQPByOfCUmrvGEIJvNrcTENXI48v3cs/otJydH+/fv12OPHVKbNub/1l8ZPfbYIe3fv5/TjwBQAzgFBi/x8VsVF7dLublOOZ25hJ8aVnL60eUKV2rqZBljkyS53TZNmRKhn39+Tg5HPqcfAaCaEYBwEocjn+DjIyWnFXNzI2WM94SsMQHKzXXK4cjn9CMAVDNOgQG1wKnWXwEAqhcBCKgFWH8FAL7FKTCglmD9FQD4DgEIstvt1VoPVcf6KwDwDQIQFBkZqaSkpHIX2trtdq5CAgDUGwQgSBLhBgBgKSyCBvyI048A4B/MAAF+xOlHAPAPAhDgZ4QbAPA9ToEBAADLIQABAADLIQABAADLIQABAADLIQABAADL4SowoI7KycnxXD7/yy8BysxsoLZtf1d09PEHqnL5PACUjQAE1EE5OTlKS0uTJGVkdNPq1UNkTIDnKfLx8VslSUlJSYQgACgFp8CAOqhk5sflCveEH0kyJkCrVw+RyxXuVQ8A4I0ABNRhubmRnvBTwpgA5eY6/dQjAKgbCEBAHeZ05shmc3uV2WxuOZ25fuoRANQNBCCgDnM48pWYuMYTgkrWADkc+X7uGQDUbiyCBuq4+Pitiovbpdxcp5zOXMIPAFQAAQioBxyOfIIPAFQCp8AAAIDlEICAOshut1drPQCwGk6BAXVQZGSkkpKSyr3PD3eCBoCyEYCAOopwAwBVxykwAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOZUOQGvXrtX48eN111136bvvvvPa9ttvv+mSSy6pts4BAADUhEoFoGXLlmno0KHKysrS5s2b1a1bN7300kue7YWFhXr//fervZMAAADVqVKPwnj00Uc1b948TZo0SZL0yiuv6MYbb9TRo0d100031UgHAQAAqlulAtDOnTuVmJjoeT9s2DA1bdpUQ4cOVVFRka666qpq7yAAAEB1q1QAioiIUHZ2ttq2bespu/jii7VmzRoNGTJEP/30U7V3EAAAoLpVag1Qz5499Z///Oek8v79+2v16tVKTU2trn4BAADUmEoFoL///e8KCQkpdduAAQO0evVqjRkzplo6BgAAUFNsxhhT0cp5eXkVqhcREVHlDtUGeXl5cjgccrlcdX4sAABYRWV+vyu1Bqhx48ay2WynrFdcXFyZZgEAAHyqUgFo48aNnn8bY/TnP/9Z//rXv9SyZctq7xgAAEBNqVQA6t+/v9f7wMBAXXDBBTrzzDOrtVMAAAA1iWeBAQAAyyEAAQAAyzntAFSRRdEAAAC1SaXWAF199dVe748ePaqJEycqLCzMq3zVqlWn3zMAdV5OTo4KCwvL3G632xUZGenDHgHAcZUKQA6Hw+v99ddff9odWLBggR599FFlZWWpS5cumj9/vnr27Flq3WeffVYvvPCCvv76a0lS9+7d9fDDD3vVP3z4sO6++269/vrrysnJUdu2bTVp0iRNnDjxtPsKoOJycnKUlpbmee9yhSs3N1JOZ44cjnxPeVJSEiEIgM9VKgAtXry4Wj98xYoVSk5O1tNPP61evXopNTVVCQkJ2rFjh5o1a3ZS/U2bNmnkyJHq06ePQkJCNGfOHF122WX65ptvPJfiJycn67333tOLL76o2NhYvfPOO7rlllsUHR2toUOHVmv/AZTtxJmfjIxuWr16iIwJkM3mVmLiGsXHbz2pHgD4il8XQc+bN09//etfNW7cOHXq1ElPP/20GjZsqOeee67U+i+99JJuueUWde3aVR07dtS//vUvud1ubdiwwVPnk08+0dixYzVgwADFxsZqwoQJ6tKliz7//HNfDQvACVyucE/4kSRjArR69RC5XOF+7hkAK/NbACosLFR6eroGDhz4v84EBGjgwIHavHlzhdo4cuSIioqK5HQ6PWV9+vTRm2++qZ9//lnGGG3cuFHff/+9LrvssjLbOXbsmPLy8rxeAKpHbm6kJ/yUMCZAubnOMvYAgJrntwB08OBBFRcXKyoqyqs8KipKWVlZFWpj6tSpio6O9gpR8+fPV6dOndSqVSvZ7XYNGjRICxYsUL9+/cpsJyUlRQ6Hw/OKiYmp2qAAnMTpzJHN5vYqs9nccjpz/dQjAKjD9wGaPXu2li9frtdee83rCfXz58/Xp59+qjfffFPp6el67LHHdOutt2r9+vVltjVt2jS5XC7P68cff/TFEABLcDjylZi4xhOCStYAnbgQGgB8rVKLoKtTkyZNFBgYqOzsbK/y7OxsNW/evNx9586dq9mzZ2v9+vU677zzPOX//e9/dc899+i1117T4MGDJUnnnXeetm3bprlz53rNFJ0oODhYwcHBpzkiAGWJj9+quLhdys11yunMJfwA8Du/zQDZ7XZ1797dawFzyYLm3r17l7nfI488olmzZmndunXq0aOH17aioiIVFRUpIMB7WIGBgXK7vafgAfiWw5Gvtm33En4A1Ap+mwGSjl+yPnbsWPXo0UM9e/ZUamqqCgoKNG7cOEnSmDFj1LJlS6WkpEiS5syZo+nTp2vZsmWKjY31rBVq1KiRGjVqpIiICPXv319TpkxRaGio2rRpo/fff18vvPCC5s2b57dxAlZkt9urtR4AVCe/BqDhw4fr119/1fTp05WVlaWuXbtq3bp1noXR+/bt85rNWbhwoQoLC3Xttdd6tTNjxgzNnDlTkrR8+XJNmzZN1113nXJzc9WmTRs99NBD3AgR8LHIyEglJSVxJ2gAtZLNGGP83YnaJi8vTw6HQy6XSxEREf7uDgAAqIDK/H7X2avAAAAAqooABAAALMeva4AA+B5PaAcAAhBgKTyhHQCOIwABFsIT2gHgONYAARbEE9oBWB0zQD7AmgvUNuU9oZ07NQOwAgJQDWPNBWqjkie0nxiCeEI7ACshANUw1lygNip5Qvsfv4/M/gCwCgKQj5S15iIubhc/OvALntAOwMoIQD7CmgvURg5HPt8/AJbEVWA+UrLm4kSsuYCv8YR2ADiOGSAfYc0FagOe0A4AxxGAfIg1F6gNCDcAQADyOdZcAADgf6wBqmGsuQAAoPZhBqiGseYCAIDahwDkA4QbAABqF06BAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAy/F7AFqwYIFiY2MVEhKiXr166fPPPy+z7rPPPqu+ffvqjDPO0BlnnKGBAweWWn/79u0aOnSoHA6HwsLCdP7552vfvn01OQwAAFCH+DUArVixQsnJyZoxY4YyMjLUpUsXJSQk6MCBA6XW37Rpk0aOHKmNGzdq8+bNiomJ0WWXXaaff/7ZU2f37t266KKL1LFjR23atElffvml7rvvPoWEhPhqWAAAoJazGWOMvz68V69eOv/885WWliZJcrvdiomJ0W233aa77777lPsXFxfrjDPOUFpamsaMGSNJGjFihIKCgrR06dIq9ysvL08Oh0Mul0sRERFVbgcAAPhOZX6//TYDVFhYqPT0dA0cOPB/nQkI0MCBA7V58+YKtXHkyBEVFRXJ6XRKOh6g3nrrLZ111llKSEhQs2bN1KtXL73++uvltnPs2DHl5eV5vQAAQP3ltwB08OBBFRcXKyoqyqs8KipKWVlZFWpj6tSpio6O9oSoAwcO6PDhw5o9e7YGDRqkd955R1dddZWuvvpqvf/++2W2k5KSIofD4XnFxMRUfWAAAKDWa+DvDlTV7NmztXz5cm3atMmzvsftdkuSrrjiCv3973+XJHXt2lWffPKJnn76afXv37/UtqZNm6bk5GTP+7y8PEIQAAD1mN8CUJMmTRQYGKjs7Gyv8uzsbDVv3rzcfefOnavZs2dr/fr1Ou+887zabNCggTp16uRV/+yzz9ZHH31UZnvBwcEKDg6uwigAAEBd5LdTYHa7Xd27d9eGDRs8ZW63Wxs2bFDv3r3L3O+RRx7RrFmztG7dOvXo0eOkNs8//3zt2LHDq/z7779XmzZtqncAAACgzvLrKbDk5GSNHTtWPXr0UM+ePZWamqqCggKNGzdOkjRmzBi1bNlSKSkpkqQ5c+Zo+vTpWrZsmWJjYz1rhRo1aqRGjRpJkqZMmaLhw4erX79+uvjii7Vu3TqtXr1amzZt8ssYAQBA7ePXADR8+HD9+uuvmj59urKystS1a1etW7fOszB63759Cgj43yTVwoULVVhYqGuvvdarnRkzZmjmzJmSpKuuukpPP/20UlJSNGnSJHXo0EErV67URRdd5LNxAQCA2s2v9wGqrbgPEAAAdU9lfr/r7FVgAACgbsjJyVFhYWGZ2+12uyIjI33YIwIQAACoQTk5OZ4nPpQnKSnJpyHI7w9DBQAA9Vd5Mz9VqVddCEAAAMByCEAAAMByCEAAAMByCEAAAMBnXK5wZWbGyuUK92s/uAoMAAD4REZGN61ePUTGBMhmcysxcY3i47f6pS/MAAEAgBrncoV7wo8kGROg1auH+G0miAAEAABqjN1ulyTl5kZ6wk8JYwKUm+v0qucrPAqjFDwKAwCA6pOTk6M9e35Xz57N5HbbPOWBgUaffXZAsbENquUmiJX5/WYGCAAA1KjIyEh17x6lf/7TpsDA42WBgdIzz9jUvXuUzx+DIbEIGgAA+MhNN0kJCdKuXVK7dlKrVv7rCwEIAAD4TKtW/g0+JTgFBgAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALKeBvzsAAAB8LycnR4WFhWVut9vtioyM9GGPfIsABACAxeTk5CgtLe2U9ZKSkuptCOIUGAAAFlPezE9V6tVFBCAAAGA5BCAAAGA5BCAAACzO5QpXZmasXK5wf3fFZ1gEDQCAhWVkdNPq1UNkTIBsNrcSE9coPn6rv7tV45gBAgDAolyucE/4kSRjArR69RBLzAQRgAAAsKjc3EhP+ClhTIByc51+6pHvEIAAALAYu90uSXI6c2Szub222WxuOZ25XvXqI9YAAQBgMZGRkUpKSlJhYaFatszT1KkOFRfbFBhoNGdOnkaNGlnv7wRtM8YYf3eitsnLy5PD4ZDL5VJERIS/uwMAQI366Sdp1y6pXTupVSt/96bqKvP7zQwQAAAW16pV3Q4+VcEaIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDm1IgAtWLBAsbGxCgkJUa9evfT555+XWffZZ59V3759dcYZZ+iMM87QwIEDy60/ceJE2Ww2paam1kDPAQBAXeT3ALRixQolJydrxowZysjIUJcuXZSQkKADBw6UWn/Tpk0aOXKkNm7cqM2bNysmJkaXXXaZfv7555Pqvvbaa/r0008VHR1d08MAAAB1iN8D0Lx58/TXv/5V48aNU6dOnfT000+rYcOGeu6550qt/9JLL+mWW25R165d1bFjR/3rX/+S2+3Whg0bvOr9/PPPuu222/TSSy8pKCjIF0MBAAB1hF8DUGFhodLT0zVw4EBPWUBAgAYOHKjNmzdXqI0jR46oqKhITqfTU+Z2uzV69GhNmTJFnTt3rvZ+AwCAuq2BPz/84MGDKi4uVlRUlFd5VFSUvvvuuwq1MXXqVEVHR3uFqDlz5qhBgwaaNGlShdo4duyYjh075nmfl5dXof0AAEDd5NcAdLpmz56t5cuXa9OmTQoJCZEkpaen64knnlBGRoZsNluF2klJSdH9999fk10FgDohJydHhYWFZW632+2KjIz0YY+AmuHXANSkSRMFBgYqOzvbqzw7O1vNmzcvd9+5c+dq9uzZWr9+vc477zxP+YcffqgDBw6odevWnrLi4mLdcccdSk1N1Z49e05qa9q0aUpOTva8z8vLU0xMTBVHBQB1U05OjtLS0k5ZLykpiRCEOs+va4Dsdru6d+/utYC5ZEFz7969y9zvkUce0axZs7Ru3Tr16NHDa9vo0aP15Zdfatu2bZ5XdHS0pkyZorfffrvU9oKDgxUREeH1AgCrKW/mpyr1gNrM76fAkpOTNXbsWPXo0UM9e/ZUamqqCgoKNG7cOEnSmDFj1LJlS6WkpEg6vr5n+vTpWrZsmWJjY5WVlSVJatSokRo1aqTIyMiT/sskKChIzZs3V4cOHXw7OACow1yucOXmRsrpzJHDke/v7gDVyu8BaPjw4fr11181ffp0ZWVlqWvXrlq3bp1nYfS+ffsUEPC/iaqFCxeqsLBQ1157rVc7M2bM0MyZM33ZdQCotzIyumn16iEyJkA2m1uJiWsUH7/V390Cqo3fA5B0/HxyUlJSqds2bdrk9b60NTynUpV9AMCqXK5wT/iRJGMCtHr1EMXF7WImCPWG32+ECACoXXJzIz3hp4QxAcrNdZaxB1D3EIAAAF6czhzZbG6vMpvNLacz1089AqofAQgA4MXhyFdi4hpPCCpZA8TpL9QntWINEADA/+x2u+ff8fFbFRe3S7m5TjmduV7h58R6QF1FAAIASJIiIyOVlJTEnaBhCQQgAIAH4QZWwRogAABgOcwAAQBOGw9RRV1DAAIAnBYeooq6iFNgAIDT8seZH5crXJmZsXK5wsutB/gTM0AAgGrDM8RQVzADBACoFmU9Q+yPM0FAbUAAAgBUC54hhrqEAAQAqBY8Qwx1CQEIAFAteIYY6hIWQQMAqk15zxADahMCEADgtPzx4agOR36pwYeHqKI2IQABAE4LD1FFXUQAAgCcNsIN6hoWQQMAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMvhTtClMMZIkvLy8vzcEwAAUFElv9slv+PlIQCVIj//+EP8YmJi/NwTAABQWfn5+XI4HOXWsZmKxCSLcbvd+uWXXxQeHi6bzXZabeXl5SkmJkY//vijIiIiqqmHdQvHgGMgcQwkjoHEMZA4BjU5fmOM8vPzFR0drYCA8lf5MANUioCAALVq1apa24yIiLDkF/1EHAOOgcQxkDgGEsdA4hjU1PhPNfNTgkXQAADAcghAAADAcghANSw4OFgzZsxQcHCwv7viNxwDjoHEMZA4BhLHQOIY1JbxswgaAABYDjNAAADAcghAAADAcghAAADAcghAAADAcghAVbBgwQLFxsYqJCREvXr10ueff15u/dTUVHXo0EGhoaGKiYnR3//+dx09etSzfebMmbLZbF6vjh071vQwTktljkFRUZEeeOABxcXFKSQkRF26dNG6detOq01/q+7x17XvwAcffKDExERFR0fLZrPp9ddfP+U+mzZtUnx8vIKDg9WuXTstWbLkpDp16TtQE8egvn8P9u/fr1GjRumss85SQECAJk+eXGq9f//73+rYsaNCQkJ07rnnau3atdXf+WpSE8dgyZIlJ30PQkJCamYA1aCyx2DVqlW69NJL1bRpU0VERKh37956++23T6pX038PCECVtGLFCiUnJ2vGjBnKyMhQly5dlJCQoAMHDpRaf9myZbr77rs1Y8YMbd++XYsWLdKKFSt0zz33eNXr3Lmz9u/f73l99NFHvhhOlVT2GPzjH//QM888o/nz5+vbb7/VxIkTddVVV2nr1q1VbtOfamL8Ut36DhQUFKhLly5asGBBhepnZmZq8ODBuvjii7Vt2zZNnjxZ48eP9/qjV5e+A1LNHAOpfn8Pjh07pqZNm+of//iHunTpUmqdTz75RCNHjtRNN92krVu36sorr9SVV16pr7/+ujq7Xm1q4hhIx++SfOL3YO/evdXV5WpX2WPwwQcf6NJLL9XatWuVnp6uiy++WImJib7/TTColJ49e5pbb73V8764uNhER0eblJSUUuvfeuut5pJLLvEqS05ONhdeeKHn/YwZM0yXLl1qpL81obLHoEWLFiYtLc2r7OqrrzbXXXddldv0p5oYf137DpxIknnttdfKrXPXXXeZzp07e5UNHz7cJCQkeN7Xpe/AH1XXMajv34MT9e/f39x+++0nlQ8bNswMHjzYq6xXr17m5ptvPs0e1rzqOgaLFy82Doej2vrlS5U9BiU6depk7r//fs97X/w9YAaoEgoLC5Wenq6BAwd6ygICAjRw4EBt3ry51H369Omj9PR0z9TdDz/8oLVr1+rPf/6zV72dO3cqOjpaZ555pq677jrt27ev5gZyGqpyDI4dO3bS9G1oaKjnv2yr0qa/1MT4S9SV70BVbN682euYSVJCQoLnmNWl70BVneoYlKjP34OKqOhxqu8OHz6sNm3aKCYmRldccYW++eYbf3epxrjdbuXn58vpdEry3d8DAlAlHDx4UMXFxYqKivIqj4qKUlZWVqn7jBo1Sg888IAuuugiBQUFKS4uTgMGDPA6BdarVy8tWbJE69at08KFC5WZmam+ffsqPz+/RsdTFVU5BgkJCZo3b5527twpt9utd999V6tWrdL+/fur3Ka/1MT4pbr1HaiKrKysUo9ZXl6e/vvf/9ap70BVneoYSPX/e1ARZR2n+vI9qIgOHTroueee0xtvvKEXX3xRbrdbffr00U8//eTvrtWIuXPn6vDhwxo2bJgk3/0mEIBq2KZNm/Twww/rqaeeUkZGhlatWqW33npLs2bN8tS5/PLL9Ze//EXnnXeeEhIStHbtWh06dEivvPKKH3tefZ544gm1b99eHTt2lN1uV1JSksaNG6eAAGt8/Soy/vr+HUDF8D2AJPXu3VtjxoxR165d1b9/f61atUpNmzbVM8884++uVbtly5bp/vvv1yuvvKJmzZr59LOt8QtUTZo0aaLAwEBlZ2d7lWdnZ6t58+al7nPfffdp9OjRGj9+vM4991xdddVVevjhh5WSkiK3213qPo0bN9ZZZ52lXbt2VfsYTldVjkHTpk31+uuvq6CgQHv37tV3332nRo0a6cwzz6xym/5SE+MvTW3+DlRF8+bNSz1mERERCg0NrVPfgao61TEoTX37HlREWcepvnwPqiIoKEjdunWrd9+D5cuXa/z48XrllVe8Tnf56u8BAagS7Ha7unfvrg0bNnjK3G63NmzYoN69e5e6z5EjR06a6QgMDJQkmTIew3b48GHt3r1bLVq0qKaeV5+qHIMSISEhatmypX7//XetXLlSV1xxxWm36Ws1Mf7S1ObvQFX07t3b65hJ0rvvvus5ZnXpO1BVpzoGpalv34OKqMpxqu+Ki4v11Vdf1avvwcsvv6xx48bp5Zdf1uDBg722+ezvQbUtp7aI5cuXm+DgYLNkyRLz7bffmgkTJpjGjRubrKwsY4wxo0ePNnfffben/owZM0x4eLh5+eWXzQ8//GDeeecdExcXZ4YNG+apc8cdd5hNmzaZzMxM8/HHH5uBAweaJk2amAMHDvh8fBVR2WPw6aefmpUrV5rdu3ebDz74wFxyySWmbdu25rfffqtwm7VJTYy/rn0H8vPzzdatW83WrVuNJDNv3jyzdetWs3fvXmOMMXfffbcZPXq0p/4PP/xgGjZsaKZMmWK2b99uFixYYAIDA826des8derSd8CYmjkG9f17YIzx1O/evbsZNWqU2bp1q/nmm2882z/++GPToEEDM3fuXLN9+3YzY8YMExQUZL766iufjq2iauIY3H///ebtt982u3fvNunp6WbEiBEmJCTEq05tUtlj8NJLL5kGDRqYBQsWmP3793tehw4d8tTxxd8DAlAVzJ8/37Ru3drY7XbTs2dP8+mnn3q29e/f34wdO9bzvqioyMycOdPExcWZkJAQExMTY2655RavH7/hw4ebFi1aGLvdblq2bGmGDx9udu3a5cMRVV5ljsGmTZvM2WefbYKDg01kZKQZPXq0+fnnnyvVZm1T3eOva9+BjRs3GkknvUrGPXbsWNO/f/+T9unataux2+3mzDPPNIsXLz6p3br0HaiJY2CF70Fp9du0aeNV55VXXjFnnXWWsdvtpnPnzuatt97yzYCqoCaOweTJkz3/fxAVFWX+/Oc/m4yMDN8NqpIqewz69+9fbv0SNf33wGZMGedhAAAA6inWAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAFAHbBp0ybZbDYdOnTI310B6gUCEAAvN9xwg2w2m2bPnu1V/vrrr8tms3neG2P07LPPqnfv3oqIiFCjRo3UuXNn3X777RV+aOORI0c0bdo0xcXFKSQkRE2bNlX//v31xhtveOrExsYqNTW1WsZW00qOnc1mU1BQkNq2bau77rpLR48erVQ7AwYM0OTJk73K+vTpo/3798vhcFRjjwHrIgABOElISIjmzJmj3377rdTtxhiNGjVKkyZN0p///Ge98847+vbbb7Vo0SKFhITowQcfrNDnTJw4UatWrdL8+fP13Xffad26dbr22muVk5NTncPxqUGDBmn//v364Ycf9Pjjj+uZZ57RjBkzTrtdu92u5s2be4VQAKehWh+sAaDOGzt2rBkyZIjp2LGjmTJliqf8tddeMyV/Ml5++WUjybzxxhultuF2uyv0WQ6HwyxZsqTM7aU9M6jEhx9+aC666CITEhJiWrVqZW677TZz+PBhz/YXXnjBdO/e3TRq1MhERUWZkSNHmuzsbM/2kucXrVu3znTt2tWEhISYiy++2GRnZ5u1a9eajh07mvDwcDNy5EhTUFBQofGMHTvWXHHFFV5lV199tenWrZvn/cGDB82IESNMdHS0CQ0NNeecc45ZtmyZVxt/HHNmZqanvyc+R/DVV181nTp1Mna73bRp08bMnTu3Qv0EYAwzQABOEhgYqIcffljz58/XTz/9dNL2l19+WR06dNDQoUNL3b+isxTNmzfX2rVrlZ+fX+r2VatWqVWrVnrggQe0f/9+7d+/X5K0e/duDRo0SNdcc42+/PJLrVixQh999JGSkpI8+xYVFWnWrFn64osv9Prrr2vPnj264YYbTvqMmTNnKi0tTZ988ol+/PFHDRs2TKmpqVq2bJneeustvfPOO5o/f36FxvNHX3/9tT755BPZ7XZP2dGjR9W9e3e99dZb+vrrrzVhwgSNHj1an3/+uSTpiSeeUO/evfXXv/7VM+aYmJiT2k5PT9ewYcM0YsQIffXVV5o5c6buu+8+LVmypEp9BSzH3wkMQO1y4izGBRdcYG688UZjjPcMUMeOHc3QoUO99rv99ttNWFiYCQsLMy1btqzQZ73//vumVatWJigoyPTo0cNMnjzZfPTRR1512rRpYx5//HGvsptuuslMmDDBq+zDDz80AQEB5r///W+pn7VlyxYjyeTn5xtj/jcDtH79ek+dlJQUI8ns3r3bU3bzzTebhISECo1n7NixJjAw0ISFhZng4GAjyQQEBJhXX3213P0GDx5s7rjjDs/7/v37m9tvv92rzh9ngEaNGmUuvfRSrzpTpkwxnTp1qlBfAatjBghAmebMmaPnn39e27dvP2Xde++9V9u2bdP06dN1+PDhCrXfr18//fDDD9qwYYOuvfZaffPNN+rbt69mzZpV7n5ffPGFlixZokaNGnleCQkJcrvdyszMlHR8hiQxMVGtW7dWeHi4+vfvL0nat2+fV1vnnXee599RUVFq2LChzjzzTK+yAwcOVGg8knTxxRdr27Zt+uyzzzR27FiNGzdO11xzjWd7cXGxZs2apXPPPVdOp1ONGjXS22+/fVK/TmX79u268MILvcouvPBC7dy5U8XFxZVqC7AiAhCAMvXr108JCQmaNm2aV3n79u21Y8cOr7KmTZuqXbt2atasWaU+IygoSH379tXUqVP1zjvv6IEHHtCsWbNUWFhY5j6HDx/WzTffrG3btnleX3zxhXbu3Km4uDgVFBQoISFBEREReumll7Rlyxa99tprknRSu0FBQZ5/l1y9dSKbzSa3213h8YSFhaldu3bq0qWLnnvuOX322WdatGiRZ/ujjz6qJ554QlOnTtXGjRu1bds2JSQklDteANWvgb87AKB2mz17trp27aoOHTp4ykaOHKlRo0bpjTfe0BVXXFGtn9epUyf9/vvvOnr0qOx2u+x2+0kzGvHx8fr222/Vrl27Utv46quvlJOTo9mzZ3vWz/y///f/qrWfFREQEKB77rlHycnJGjVqlEJDQ/Xxxx/riiuu0PXXXy9Jcrvd+v7779WpUyfPfqWN+Y/OPvtsffzxx15lH3/8sc466ywFBgZW/2CAeoYZIADlOvfcc3XdddfpySef9JSNGDFC1157rUaMGKEHHnhAn332mfbs2aP3339fK1asqPAP8IABA/TMM88oPT1de/bs0dq1a3XPPffo4osvVkREhKTj9wH64IMP9PPPP+vgwYOSpKlTp+qTTz5RUlKStm3bpp07d+qNN97wLIJu3bq17Ha75s+frx9++EFvvvnmKU+r1ZS//OUvCgwM1IIFCyQdnz1799139cknn2j79u26+eablZ2d7bVPbGys55gePHiw1BmoO+64Qxs2bNCsWbP0/fff6/nnn1daWpruvPNOn4wLqOsIQABO6YEHHvD6EbbZbFqxYoVSU1O1du1a/elPf1KHDh104403KiYmRh999FGF2k1ISNDzzz+vyy67TGeffbZuu+02JSQk6JVXXvH67D179iguLk5NmzaVdHzdzvvvv6/vv/9effv2Vbdu3TR9+nRFR0dLOn46bsmSJfr3v/+tTp06afbs2Zo7d241HpGKa9CggZKSkvTII4+ooKBA//jHPxQfH6+EhAQNGDBAzZs315VXXum1z5133qnAwEB16tRJTZs2LXV9UHx8vF555RUtX75c55xzjqZPn64HHnig1CvdAJzMZowx/u4EAACALzEDBAAALIcABKDGnHiZ+h9fH374ob+7Vyn79u0rdzyVvYwdgH9xCgxAjSnvoagtW7ZUaGioD3tzen7//Xft2bOnzO2xsbFq0IALa4G6ggAEAAAsh1NgAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcv4/X+txJ0GjyX4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASGtJREFUeJzt3XtclHXe//H3gAwowuigAiqJih2sPOCB7KSZLbpKea/3L7PylOXWLbVkZXm3Zd1WmJpRaec83JWrW1qbVrbF6raVpYns5iFLV9YjoFADSoEx398f3sw6chCEmQGu1/PxmAfMNd+5rs91OTHvvtf3e102Y4wRAACAhQQFugAAAAB/IwABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABQCO2dOlS2Ww25eTkBLoUoFkhAAEWt3nzZqWmpurCCy9UeHi4zjnnHF1//fX67rvvKrUdMmSIbDabbDabgoKCFBkZqfPOO0/jx4/Xxx9/XKftrlmzRoMHD1aHDh3UqlUrdevWTddff73WrVvXULtWyRNPPKF333230vIvvvhCjzzyiH788Uefbft0jzzyiOdY2mw2tWrVSj179tTvf/97FRUVNcg2li9froyMjAZZF9DcEIAAi3vyySe1atUqXX311XrmmWc0depUffrpp0pMTNS2bdsqte/cubNef/11/e///q/mzZuna6+9Vl988YV+9atfaezYsTpx4sQZtzl//nxde+21stlsmjlzpp5++mmNGTNG33//vVasWOGL3ZRUcwB69NFH/RqAKrzwwgt6/fXXtWDBAp1//vl6/PHHNXz4cDXEbRoJQED1WgS6AACBNX36dC1fvlx2u92zbOzYsbr44os1Z84cvfHGG17tHQ6Hbr75Zq9lc+bM0V133aXnn39e8fHxevLJJ6vd3i+//KLZs2frmmuu0Z///OdKr+fn59dzjxqPkpIStWrVqsY2//mf/6l27dpJkm6//XaNGTNGq1ev1pdffqlBgwb5o0zAkugBAizu0ksv9Qo/ktSjRw9deOGF2rlzZ63WERwcrGeffVY9e/bUwoUL5XK5qm179OhRFRUV6bLLLqvy9Q4dOng9//nnn/XII4/o3HPPVVhYmGJjY/Wb3/xGe/bs8bSZP3++Lr30UkVFRally5bq16+f3n77ba/12Gw2HT9+XMuWLfOcdpo0aZIeeeQR3XfffZKkrl27el47dczNG2+8oX79+qlly5ZyOp264YYbtH//fq/1DxkyRBdddJG2bNmiK6+8Uq1atdJ///d/1+r4nWro0KGSpL1799bY7vnnn9eFF16o0NBQdezYUdOmTfPqwRoyZIjef/99/etf//LsU3x8fJ3rAZoreoAAVGKMUV5eni688MJavyc4OFjjxo3TQw89pM8++0wjR46ssl2HDh3UsmVLrVmzRnfeeaecTme16ywvL9eoUaOUmZmpG264Qb/73e9UXFysjz/+WNu2bVP37t0lSc8884yuvfZa3XTTTSorK9OKFSv0//7f/9PatWs9dbz++uu69dZbNXDgQE2dOlWS1L17d4WHh+u7777TH/7wBz399NOe3pj27dtLkh5//HE99NBDuv7663XrrbfqyJEjeu6553TllVdq69atatOmjafegoICjRgxQjfccINuvvlmRUdH1/r4VagIdlFRUdW2eeSRR/Too49q2LBhuuOOO7Rr1y698MIL2rx5sz7//HOFhITowQcflMvl0oEDB/T0009Lklq3bl3neoBmywDAaV5//XUjybz22mteywcPHmwuvPDCat/3zjvvGEnmmWeeqXH9Dz/8sJFkwsPDzYgRI8zjjz9utmzZUqnd4sWLjSSzYMGCSq+53W7P7yUlJV6vlZWVmYsuusgMHTrUa3l4eLiZOHFipXXNmzfPSDJ79+71Wp6Tk2OCg4PN448/7rX8m2++MS1atPBaPnjwYCPJvPjii9Xu96lmzZplJJldu3aZI0eOmL1795qXXnrJhIaGmujoaHP8+HFjjDFLlizxqi0/P9/Y7Xbzq1/9ypSXl3vWt3DhQiPJLF682LNs5MiRpkuXLrWqB7AaToEB8PLtt99q2rRpGjRokCZOnFin91b0MBQXF9fY7tFHH9Xy5cvVt29fffTRR3rwwQfVr18/JSYmep12W7Vqldq1a6c777yz0jpsNpvn95YtW3p+/+GHH+RyuXTFFVcoKyurTvWfbvXq1XK73br++ut19OhRzyMmJkY9evTQ+vXrvdqHhoZq8uTJddrGeeedp/bt26tr16767W9/q4SEBL3//vvVjh365JNPVFZWprS0NAUF/ftP+G233abIyEi9//77dd9RwII4BQbAIzc3VyNHjpTD4dDbb7+t4ODgOr3/2LFjkqSIiIgzth03bpzGjRunoqIiffXVV1q6dKmWL1+ulJQUbdu2TWFhYdqzZ4/OO+88tWhR85+qtWvX6rHHHlN2drZKS0s9y08NSWfj+++/lzFGPXr0qPL1kJAQr+edOnWqNJ7qTFatWqXIyEiFhISoc+fOntN61fnXv/4l6WRwOpXdble3bt08rwOoGQEIgCTJ5XJpxIgR+vHHH/W3v/1NHTt2rPM6KqbNJyQk1Po9kZGRuuaaa3TNNdcoJCREy5Yt01dffaXBgwfX6v1/+9vfdO211+rKK6/U888/r9jYWIWEhGjJkiVavnx5nffhVG63WzabTR9++GGVYfD0MTWn9kTV1pVXXukZdwTAfwhAAPTzzz8rJSVF3333nT755BP17NmzzusoLy/X8uXL1apVK11++eVnVUf//v21bNkyHT58WNLJQcpfffWVTpw4Uam3pcKqVasUFhamjz76SKGhoZ7lS5YsqdS2uh6h6pZ3795dxhh17dpV5557bl13xye6dOkiSdq1a5e6devmWV5WVqa9e/dq2LBhnmX17QEDmjPGAAEWV15errFjx2rjxo166623zuraM+Xl5brrrru0c+dO3XXXXYqMjKy2bUlJiTZu3Fjlax9++KGkf5/eGTNmjI4ePaqFCxdWamv+70KBwcHBstlsKi8v97yWk5NT5QUPw8PDq7zYYXh4uCRVeu03v/mNgoOD9eijj1a6MKExRgUFBVXvpA8NGzZMdrtdzz77rFdNr732mlwul9fsu/Dw8BovSQBYGT1AgMXdc889eu+995SSkqLCwsJKFz48/aKHLpfL06akpES7d+/W6tWrtWfPHt1www2aPXt2jdsrKSnRpZdeqksuuUTDhw9XXFycfvzxR7377rv629/+ptGjR6tv376SpAkTJuh///d/NX36dG3atElXXHGFjh8/rk8++UT/9V//peuuu04jR47UggULNHz4cN14443Kz8/XokWLlJCQoH/84x9e2+7Xr58++eQTLViwQB07dlTXrl2VlJSkfv36SZIefPBB3XDDDQoJCVFKSoq6d++uxx57TDNnzlROTo5Gjx6tiIgI7d27V++8846mTp2qe++9t17Hv67at2+vmTNn6tFHH9Xw4cN17bXXateuXXr++ec1YMAAr3+vfv36aeXKlZo+fboGDBig1q1bKyUlxa/1Ao1WIKegAQi8iunb1T1qatu6dWvTo0cPc/PNN5s///nPtdreiRMnzCuvvGJGjx5tunTpYkJDQ02rVq1M3759zbx580xpaalX+5KSEvPggw+arl27mpCQEBMTE2P+8z//0+zZs8fT5rXXXjM9evQwoaGh5vzzzzdLlizxTDM/1bfffmuuvPJK07JlSyPJa0r87NmzTadOnUxQUFClKfGrVq0yl19+uQkPDzfh4eHm/PPPN9OmTTO7du3yOjY1XSLgdBX1HTlypMZ2p0+Dr7Bw4UJz/vnnm5CQEBMdHW3uuOMO88MPP3i1OXbsmLnxxhtNmzZtjCSmxAOnsBnTADecAQAAaEIYAwQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHCyFWwe1269ChQ4qIiOBS8gAANBHGGBUXF6tjx44KCqq5j4cAVIVDhw4pLi4u0GUAAICzsH//fnXu3LnGNgSgKkREREg6eQBruqcRAABoPIqKihQXF+f5Hq8JAagKFae9IiMjCUAAADQxtRm+wiBoAABgOQQgAABgOQQgAABgOYwBAgCggZSXl+vEiROBLqPZCgkJUXBwcIOsiwAEAEA9GWOUm5urH3/8MdClNHtt2rRRTExMva/TRwACAKCeKsJPhw4d1KpVKy6i6wPGGJWUlCg/P1+SFBsbW6/1EYAAAKiH8vJyT/iJiooKdDnNWsuWLSVJ+fn56tChQ71OhzEIGgCAeqgY89OqVasAV2INFce5vmOtCEAAADQATnv5R0MdZ06BoZKCggKVlZVV+7rdbqebFwDQpBGA4KWgoEALFy48Y7vU1FRCEACgyeIUGLyc3vPjckVo7954uVwRNbYDADQ9kyZNks1mk81mU0hIiKKjo3XNNddo8eLFcrvdtV7P0qVL1aZNG98V6gP0AKFaWVl9tWbNKBkTJJvNrZSUtUpM3BrosgCg2Qnk0IPhw4dryZIlKi8vV15entatW6ff/e53evvtt/Xee++pRYvmGRWa516h3lyuCE/4kSRjgrRmzSh1775bDkdxgKsDgOYj0EMPQkNDFRMTI0nq1KmTEhMTdckll+jqq6/W0qVLdeutt2rBggVasmSJ/vnPf8rpdColJUVz585V69attWHDBk2ePFnSvwcoz5o1S4888ohef/11PfPMM9q1a5fCw8M1dOhQZWRkqEOHDg2+H3XFKTBUqbAwyhN+KhgTpMJCZ4AqAoDmqbZDCvw59GDo0KHq3bu3Vq9eLUkKCgrSs88+q+3bt2vZsmX6y1/+ohkzZkiSLr30UmVkZCgyMlKHDx/W4cOHde+990o6OVV99uzZ+vvf/653331XOTk5mjRpkt/2oyb0AKFKTmeBbDa3Vwiy2dxyOgvPep3MLgOApuP888/XP/7xD0lSWlqaZ3l8fLwee+wx3X777Xr++edlt9vlcDhks9k8PUkVbrnlFs/v3bp107PPPqsBAwbo2LFjat26tV/2ozoEIFTJ4ShWSsraSmOAzvb0V6C7eAEAdWOM8ZzS+uSTT5Senq5vv/1WRUVF+uWXX/Tzzz+rpKSkxgtAbtmyRY888oj+/ve/64cffvAMrN63b5969uzpl/2oDgEI1UpM3Kru3XersNApp7OwXmN/qppdVlgYJaezwGu9zC4DgMZh586d6tq1q3JycjRq1Cjdcccdevzxx+V0OvXZZ59pypQpKisrqzYAHT9+XMnJyUpOTtabb76p9u3ba9++fUpOTm4Uf+sJQPBit9u9njscxVUGn9Pb1QWzywCgcfvLX/6ib775Rnfffbe2bNkit9utp556SkFBJ4dF/PGPf/Rqb7fbVV5e7rXs22+/VUFBgebMmaO4uDhJ0tdff+2fHagFAhC8REVFKTU11WdjdZhdBgCNS2lpqXJzc72mwaenp2vUqFGaMGGCtm3bphMnTui5555TSkqKPv/8c7344ote64iPj9exY8eUmZmp3r17q1WrVjrnnHNkt9v13HPP6fbbb9e2bds0e/bsAO1lZcwCQyVRUVGKjY2t9lGfMTrMLgOAxmXdunWKjY1VfHy8hg8frvXr1+vZZ5/Vn/70JwUHB6t3795asGCBnnzySV100UV68803lZ6e7rWOSy+9VLfffrvGjh2r9u3ba+7cuWrfvr2WLl2qt956Sz179tScOXM0f/78AO1lZfQAwa98MbsMAJqy2g4pqM/Qg+osXbpUS5cuPWO7u+++W3fffbfXsvHjx3s9f+GFF/TCCy94LRs3bpzGjRvntcwYc3bFNjACEPyqoWeXAUBT5+uhB6gaAQh+15CzywCgOSDc+B8BCH7hj9llAADUFgEIfkEXLwCgMSEAwW8INwCAxoJp8AAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwCc2bNggm82mH3/8sdbviY+PV0ZGhs9qqkAAAgDAoiZNmiSbzabbb7+90mvTpk2TzWbTpEmT/F+YHxCAAACwsLi4OK1YsUI//fSTZ9nPP/+s5cuX65xzzglgZb7VKALQokWLFB8fr7CwMCUlJWnTpk3Vtt2+fbvGjBmj+Ph42Wy2KrvJHnnkEdlsNq/H+eef78M9AACgaUpMTFRcXJxWr17tWbZ69Wqdc8456tu3r2dZaWmp7rrrLnXo0EFhYWG6/PLLtXnzZq91ffDBBzr33HPVsmVLXXXVVcrJyam0vc8++0xXXHGFWrZsqbi4ON111106fvy4z/avOgEPQCtXrtT06dM1a9YsZWVlqXfv3kpOTlZ+fn6V7UtKStStWzfNmTNHMTEx1a73wgsv1OHDhz2Pzz77zFe7AABAgzlwQFq//uRPf7nlllu0ZMkSz/PFixdr8uTJXm1mzJihVatWadmyZcrKylJCQoKSk5NVWFgoSdq/f79+85vfKCUlRdnZ2br11lv1wAMPeK1jz549Gj58uMaMGaN//OMfWrlypT777DOlpqb6fidPZwJs4MCBZtq0aZ7n5eXlpmPHjiY9Pf2M7+3SpYt5+umnKy2fNWuW6d2791nX5HK5jCTjcrnOeh0AAGv46aefzI4dO8xPP/1U73W9+qoxQUHGSCd/vvpqAxRYg4kTJ5rrrrvO5Ofnm9DQUJOTk2NycnJMWFiYOXLkiLnuuuvMxIkTzbFjx0xISIh58803Pe8tKyszHTt2NHPnzjXGGDNz5kzTs2dPr/Xff//9RpL54YcfjDHGTJkyxUydOtWrzd/+9jcTFBTkOX7VfbdXqOl41+X7O6A9QGVlZdqyZYuGDRvmWRYUFKRhw4Zp48aN9Vr3999/r44dO6pbt2666aabtG/fvmrblpaWqqioyOsBAIA/HTggTZ0qud0nn7vd0m9/65+eoPbt22vkyJFaunSplixZopEjR6pdu3ae1/fs2aMTJ07osssu8ywLCQnRwIEDtXPnTknSzp07lZSU5LXeQYMGeT3/+9//rqVLl6p169aeR3Jystxut/bu3evDPawsoPcCO3r0qMrLyxUdHe21PDo6Wt9+++1ZrzcpKUlLly7Veeedp8OHD+vRRx/VFVdcoW3btikiIqJS+/T0dD366KNnvT1YU0FBATd3BdBgvv/+3+GnQnm5tHu31Lmz77d/yy23eE5FLVq0yCfbOHbsmH7729/qrrvuqvSavwdcN8uboY4YMcLze69evZSUlKQuXbroj3/8o6ZMmVKp/cyZMzV9+nTP86KiIsXFxfmlVjRNBQUFWrhw4RnbpaamEoIA1EqPHlJQkHcICg6WEhL8s/3hw4errKxMNptNycnJXq91795ddrtdn3/+ubp06SJJOnHihDZv3qy0tDRJ0gUXXKD33nvP631ffvml1/PExETt2LFDCf7aqRoE9BRYu3btFBwcrLy8PK/leXl5NQ5wrqs2bdro3HPP1e7du6t8PTQ0VJGRkV4PoCan9/y4XBHauzdeLldEje0AoDqdO0svv3wy9Egnf770kn96f05uL1g7d+7Ujh07FFxRxP8JDw/XHXfcofvuu0/r1q3Tjh07dNttt6mkpMTTsXD77bfr+++/13333addu3Zp+fLlWrp0qdd67r//fn3xxRdKTU1Vdna2vv/+e/3pT38KyCDogAYgu92ufv36KTMz07PM7XYrMzOz0nnD+jh27Jj27Nmj2NjYBlsnUCErq68yMtK0bNlEZWSkKSur75nfBABVmDJFysk5OQssJ+fkc3+qqRNgzpw5GjNmjMaPH6/ExETt3r1bH330kdq2bSvp5CmsVatW6d1331Xv3r314osv6oknnvBaR69evfTXv/5V3333na644gr17dtXDz/8sDp27OjzfTudzRhj/L7VU6xcuVITJ07USy+9pIEDByojI0N//OMf9e233yo6OloTJkxQp06dlJ6eLunk/1Hv2LFDkvTrX/9aN910k2666Sa1bt3a06V27733KiUlRV26dNGhQ4c0a9YsZWdna8eOHWrfvv0ZayoqKpLD4ZDL5aI3CFU6fPiwXn75ZblcEcrISNOp8wlsNrfS0jLkcBRr6tSpBG+gmfv555+1d+9ede3aVWFhYYEup9mr6XjX5fs74GOAxo4dqyNHjujhhx9Wbm6u+vTpo3Xr1nkGRu/bt09BQf/+cjl06JDXhZnmz5+v+fPna/DgwdqwYYMk6cCBAxo3bpwKCgrUvn17XX755fryyy9rFX6AuigsjNLpkymNCVJhoVMOR3GAqgIAnEnAA5B0cqBodef/KkJNhfj4eJ2p02rFihUNVRpQI6ezQDabu1IPkNNZGMCqAABnEvArQQNNmcNRrJSUtbLZTk7bsNncSklZS+8PADRyjaIHCGjKEhO3qnv33SosdMrpLCT8AEATQAACzoLdbvd67nAUVxl8Tm8HoPkK8Jwiy2io40wAAs5CVFSUUlNTuRI0AIWEhEg6ebPuli1bBria5q+kpETSv4/72SIAAWeJcANAOnkBwTZt2ig/P1+S1KpVK9lstgBX1fwYY1RSUqL8/Hy1adOm0sUa64oABABAPVXcvaAiBMF32rRp0yB3iyAAAQBQTzabTbGxserQoYNOnDgR6HKarZCQkHr3/FQgAAEA0ECCg4Mb7AsavsV1gAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOU0igC0aNEixcfHKywsTElJSdq0aVO1bbdv364xY8YoPj5eNptNGRkZNa57zpw5stlsSktLa9iiAQBAkxXwALRy5UpNnz5ds2bNUlZWlnr37q3k5GTl5+dX2b6kpETdunXTnDlzFBMTU+O6N2/erJdeekm9evXyRekAAKCJCngAWrBggW677TZNnjxZPXv21IsvvqhWrVpp8eLFVbYfMGCA5s2bpxtuuEGhoaHVrvfYsWO66aab9Morr6ht27a+Kh8AADRBAQ1AZWVl2rJli4YNG+ZZFhQUpGHDhmnjxo31Wve0adM0cuRIr3VXp7S0VEVFRV4PAADQfAU0AB09elTl5eWKjo72Wh4dHa3c3NyzXu+KFSuUlZWl9PT0WrVPT0+Xw+HwPOLi4s562wAAoPEL+CmwhrZ//3797ne/05tvvqmwsLBavWfmzJlyuVyex/79+31cJQAACKQWgdx4u3btFBwcrLy8PK/leXl5ZxzgXJ0tW7YoPz9fiYmJnmXl5eX69NNPtXDhQpWWlio4ONjrPaGhoTWOJwIAAM1LQHuA7Ha7+vXrp8zMTM8yt9utzMxMDRo06KzWefXVV+ubb75Rdna259G/f3/ddNNNys7OrhR+AACA9QS0B0iSpk+frokTJ6p///4aOHCgMjIydPz4cU2ePFmSNGHCBHXq1MkznqesrEw7duzw/H7w4EFlZ2erdevWSkhIUEREhC666CKvbYSHhysqKqrScgAAYE0BD0Bjx47VkSNH9PDDDys3N1d9+vTRunXrPAOj9+3bp6Cgf3dUHTp0SH379vU8nz9/vubPn6/Bgwdrw4YN/i4fAAA0QTZjjAl0EY1NUVGRHA6HXC6XIiMjA10OAACohbp8fze7WWAAAABnQgACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACW0yLQBQBAQysoKFBZWVm1r9vtdkVFRfmxIgCNDQEIQLNSUFCghQsXep67XBEqLIyS01kgh6PYszw1NZUQBFgYAQhAs3Jqz09WVl+tWTNKxgTJZnMrJWWtEhO3VmoHwHoYAwSgWXK5IjzhR5KMCdKaNaPkckUEuDIAjQEBCECzVFgY5Qk/FYwJUmGhM0AVAWhMCEAAmiWns0A2m9trmc3mltNZGKCKADQmBCAAzZLDUayUlLWeEFQxBujUgdAArItB0ACarcTErerefbcKC51yOgsJPwA8CEAAmjWHo5jgA6ASToEBaFbsdnuDtgPQPNEDBKBZiYqKUmpqKleCBlAjAhCAZodwA+BMCEAAmh3uBQbgTAhAAJoV7gUGoDYIQAAC5tSemkOHgrR3bwt17fqLOnY8ee2es+mp4V5gAGqDAAQgIE7tqakpqJxtT0119wLr3n030+IBMA0eQGBU9MCc6aalZ9tTw73AANSEHiA/YEAmUL2agkp9emoq7gV26rq5FxiACgQgHzt9QGZ1GJAJq/JVUKm4F9jpp9Y4/QVAIgD5XG277xmQCavyZVDhXmAAqkMAAhBwvgwq3AsMQFUIQH5W3TVJAKtrqKDCvcAA1AYByI9qmuoLoGFwLzAAtUEA8hOuSQJ482VPDeEGwJkQgPzEV1N9gaaKnhoAgUQA8hOuSQJURrgBEChcCdrHKrrvK6b62mwn73F0+lRfBmQCAOA/NmOMCXQRjU1RUZEcDodcLpciIyPrvb7Tb/iYk9NC8fH1u+EjAADwVpfvb06B+cGp4SY2VurXL4DFAAAAToEBAADrIQABAADLaRQBaNGiRYqPj1dYWJiSkpK0adOmattu375dY8aMUXx8vGw2mzIyMiq1eeGFF9SrVy9FRkYqMjJSgwYN0ocffujDPQAAAE1JwAPQypUrNX36dM2aNUtZWVnq3bu3kpOTlZ+fX2X7kpISdevWTXPmzFFMTEyVbTp37qw5c+Zoy5Yt+vrrrzV06FBdd9112r59uy93BUCAHDggrV9/8icA1EbAZ4ElJSVpwIABWrhwoSTJ7XYrLi5Od955px544IEa3xsfH6+0tDSlpaWdcTtOp1Pz5s3TlClTzti2oWeBAWh4FbMrly9vqRkzHHK7bQoKMpo716Ubb/yJ2ZWABTWZWWBlZWXasmWLZs6c6VkWFBSkYcOGaePGjQ2yjfLycr311ls6fvy4Bg0aVGWb0tJSlZaWep4XFRU1yLYB+EZBQYEWLlwolytCGRlpMsYmSXK7bbrvvkgdPLhYDkexUlNTCUEAqhTQU2BHjx5VeXm5oqOjvZZHR0crNze3Xuv+5ptv1Lp1a4WGhur222/XO++8o549e1bZNj09XQ6Hw/OIi4ur17YB+FbFdbVqusXMqe0A4HQBHwPkK+edd56ys7P11Vdf6Y477tDEiRO1Y8eOKtvOnDlTLpfL89i/f7+fqwVwNipuMXMqbjEDoDYCGoDatWun4OBg5eXleS3Py8urdoBzbdntdiUkJKhfv35KT09X79699cwzz1TZNjQ01DNjrOIBoPE70y1mAKA6AR0DZLfb1a9fP2VmZmr06NGSTg6CzszMVGpqaoNuy+12e43zAdA8JCZuVffuu1VY6JTTWUj4AVArAb8VxvTp0zVx4kT1799fAwcOVEZGho4fP67JkydLkiZMmKBOnTopPT1d0slz+hWnssrKynTw4EFlZ2erdevWSkhIkHTylNaIESN0zjnnqLi4WMuXL9eGDRv00UcfBWYnAfiUw1FM8AFQJwEPQGPHjtWRI0f08MMPKzc3V3369NG6des8A6P37dunoKB/n6k7dOiQ+vbt63k+f/58zZ8/X4MHD9aGDRskSfn5+ZowYYIOHz4sh8OhXr166aOPPtI111zj130DAACNU8CvA9QYcR0goHE7fPiwXn755TO2mzp1qmJjY/1QEYDGoC7f3812FhiA5stutzdoOwDWE/BTYABQV1FRUUpNTa3xOj9cCRpATQhAAJokwg2A+uAUGAAAsBwCEAAAsJyzPgX2448/avfu3ZKkhIQEtWnTpqFqAgAA8Kk69wDl5ORo5MiRateunZKSkpSUlKR27dpp1KhRysnJ8UGJAAAADatOPUD79+/XJZdcopCQEM2ePVsXXHCBJGnHjh164YUXNGjQIG3evFmdO3f2SbEAAAANoU4XQpwyZYp2796tjz76SGFhYV6v/fTTTxo+fLh69OihV199tcEL9ScuhAgAQNNTl+/vOvUArVu3TitXrqwUfiSpZcuWmj17tm644Ya6VQsAAOBndRoDdPToUcXHx1f7erdu3VRYWFjfmgAAAHyqTgEoNjbWcyf2qmzbtk0xMTH1LgoAAMCX6hSARo8erXvvvVdHjhyp9Fp+fr7uv/9+jR49uqFqAwAA8Ik6DYL+4YcflJSUpNzcXN188806//zzZYzRzp07tXz5csXExOjLL7+U0+n0Zc0+xyBoAACaHp8Ngm7btq2++uor/fd//7dWrFihH3/8UZLUpk0b3XjjjXriiSeafPgBAADNX516gE5ljPGcCmvfvr1sNluDFhZI9AABAND0+KwH6FQ2m00dOnQ427cDAAAETJ1vhfHBBx/o1ltv1YwZM7Rz506v13744QcNHTq0wYoDAADwhToFoOXLl+vaa69Vbm6uNm7cqMTERL355pue18vKyvTXv/61wYsEAABoSHU6BTZv3jwtWLBAd911lyTpj3/8o2655Rb9/PPPmjJlik8KBAAAaGh1CkDff/+9UlJSPM+vv/56tW/fXtdee61OnDih//iP/2jwAgEAABpanQJQZGSk8vLy1LVrV8+yq666SmvXrtWoUaN04MCBBi8QAACgodVpDNDAgQP14YcfVlo+ePBgrVmzRhkZGQ1VFwAAgM/UKQDdfffdVd4JXpKGDBmiNWvWaMKECQ1SGAAAgK/U6UKIRUVFtWrX1C8eyIUQAQBoenx2IcQ2bdrU6orP5eXldVktAACAX9UpAK1fv97zuzFGv/71r/Xqq6+qU6dODV4YAACAr9QpAA0ePNjreXBwsC655BJ169atQYsCAADwpTrfCgMAAKCpIwABAADLqXcAqs2gaAAAgMakTmOAfvOb33g9//nnn3X77bcrPDzca/nq1avrXxkAAICP1CkAORwOr+c333xzgxYDAGfjwAHp+++lHj2kzp0DXQ2ApqBOAWjJkiW+qgMA6qSgoEBlZWVavrylZsxwyO22KSjIaO5cl2688SfZ7XZFRUUFukwAjVSdAhAANAYFBQVauHChXK4IZWSkyZiTYxHdbpvuuy9SBw8ulsNRrNTUVEIQgCoxCwxAk1NWViZJKiyMkjHef8aMCVJhodOrHQCcjgAEoMlyOgtks7m9ltlsbjmdhQGqCEBTQQAC0GQ5HMVKSVnrCUE2m1spKWvlcBQHuDIAjR1jgAA0aYmJW9W9+24VFjrldBYSftBsVAz0rw4D/euHAASgyXM4igk+aFYqBvqfCQP9zx6nwAAAaGRqO4Cfgf5njwAEAAAshwAEoMmx2+0N2g6A9TAGCECTExUVpdTUVAaIAjhrBCAATRLhBkB9cAoMAABYDgEIAIBGzuWK0N698XK5IgJdSrPBKTAAABqZUwfwZ2X11Zo1o2RMkOdq54mJWyu1Q93YjDEm0EU0NkVFRXI4HHK5XIqMjAx0OQAACyooKFBOzi8aOLCD3G6bZ3lwsNFXX+UrPr4FY+FOU5fv70ZxCmzRokWKj49XWFiYkpKStGnTpmrbbt++XWPGjFF8fLxsNpsyMjIqtUlPT9eAAQMUERGhDh06aPTo0dq1a5cP9wAAgIYVFRWloqJor/AjSeXlNhUXRxN+6ingAWjlypWaPn26Zs2apaysLPXu3VvJycnKz8+vsn1JSYm6deumOXPmKCYmpso2f/3rXzVt2jR9+eWX+vjjj3XixAn96le/0vHjx325KwAANKgePaSg076pg4OlhITA1NOcBPwUWFJSkgYMGOC554nb7VZcXJzuvPNOPfDAAzW+Nz4+XmlpaUpLS6ux3ZEjR9ShQwf99a9/1ZVXXnnGmjgFBgBoLF57Tfrtb6Xy8pPh56WXpClTAl1V41SX7++ADoIuKyvTli1bNHPmTM+yoKAgDRs2TBs3bmyw7bhcLkmS0+ms8vXS0lKVlpZ6nhcVFTXYtgEAqI8pU6TkZGn37pM9P507B7qi5iGgp8COHj2q8vJyRUdHey2Pjo5Wbm5ug2zD7XYrLS1Nl112mS666KIq26Snp8vhcHgecXFxDbJtAAAaQufO0pAhhJ+GFPAxQL42bdo0bdu2TStWrKi2zcyZM+VyuTyP/fv3+7FCAADgbwE9BdauXTsFBwcrLy/Pa3leXl61A5zrIjU1VWvXrtWnn36qzjXE5tDQUIWGhtZ7ewAAoGkIaA+Q3W5Xv379lJmZ6VnmdruVmZmpQYMGnfV6jTFKTU3VO++8o7/85S/q2rVrQ5QLAACaiYBfCXr69OmaOHGi+vfvr4EDByojI0PHjx/X5MmTJUkTJkxQp06dlJ6eLunkwOkdO3Z4fj948KCys7PVunVrJfzfvMBp06Zp+fLl+tOf/qSIiAjPeCKHw6GWLVsGYC8BAEBjEvBp8JK0cOFCzZs3T7m5uerTp4+effZZJSUlSZKGDBmi+Ph4LV26VJKUk5NTZY/O4MGDtWHDBkmSzWar9LokLVmyRJMmTTpjPUyDBwCg6anL93ejCECNDQEIAICmp8ndCgMAAMCfCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAA0IQcOCCtX3/yJ4Cz1yLQBQAAalZQUKCysjItX95SM2Y45HbbFBRkNHeuSzfe+JPsdruioqICXSaaiIrPU3Ws8nkiAAFAI1ZQUKCFCxfK5YpQRkaajLFJktxum+67L1IHDy6Ww1Gs1NRUS3xpoX4qPk9nYoXPE6fAAKARq/g/9cLCKBnj/SfbmCAVFjq92gE1qe3nxAqfJwIQADQBTmeBbDa31zKbzS2nszBAFQFNGwEIAJoAh6NYKSlrPSHIZnMrJWWtHI7iAFcGNE2MAQKAJiIxcau6d9+twkKnnM5Cwg/qzeWKUGFhlJzOAst9nghAANCEOBzFDfZFdepsoEOHgrR3bwt17fqLOnY82ctkldlAVpWV1Vdr1oySMUGeHsXExK2BLstvCEAAYEGnzgaq6YvQCrOBrMjlivD8m0snB9SvWTNK3bvvtkxPEGOAAMCCKnp+qvsidLkivNqheTnTrEIrIAABQCNmt9sbtN3p+CK0lorPyZlmFZ7t56kp4RQYADRiUVFRSk1N9dmVeyu+CE8NQUyvb75O/Tx16lSk++93qLzcpuBgoyefLNKNN46zzNgvAhAANHK+/DKqmF5/+hggq4wDsaKKz9M990hjx0q7d0sJCTZ17txGUptAluZXBCAAsLjGNL2e+1T5V+fOJx9WRAACADTo9Pqzdfp9qqq7Rg0z09AQCEAAgEbh1J6fmqbmMzMNDYFZYABgQb6eXVYfZ5qaDzQEeoAAwIJ8PbusPmqamh/o03RoPghAAGBRjXUcDVPz4Q+cAgMANCoVU/MrLtTH1Hz4Aj1AAIBGpzFNzUfzRAACADRKjWFqPpovToEBABqFxjwzDc0PPUAAgEahMc9MQ/NDAAIANBqEG/gLp8AAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlcCsMAECzUFBQwH3EUGsEIABAk1dQUKCFCxd6nrtcESosjJLTWSCHo9izPDU1lRAESY3gFNiiRYsUHx+vsLAwJSUladOmTdW23b59u8aMGaP4+HjZbDZlZGRUavPpp58qJSVFHTt2lM1m07vvvuu74gE0awcOSOvXn/yJxu3Unp+srL7KyEjTsmUTlZGRpqysvlW2g7UFNACtXLlS06dP16xZs5SVlaXevXsrOTlZ+fn5VbYvKSlRt27dNGfOHMXExFTZ5vjx4+rdu7cWLVrky9IBNHOvvSZ16SINHXry52uvBboi1IbLFaE1a0bJmJNfb8YEac2aUXK5IgJcGRqbgJ4CW7BggW677TZNnjxZkvTiiy/q/fff1+LFi/XAAw9Uaj9gwAANGDBAkqp8XZJGjBihESNG+K5oAM1aQUGBcnJ+0dSpHeR22yRJbrf0298a9emTr/j4FpxCacQKC6M84aeCMUEqLHR6nQoDAtYDVFZWpi1btmjYsGH/LiYoSMOGDdPGjRsDVRYAC6sYR/Lcc+s84adCeblNzz33oRYuXKiCgoIAVYgzcToLZLO5vZbZbG45nYUBqgiNVcAC0NGjR1VeXq7o6Giv5dHR0crNzfVrLaWlpSoqKvJ6ALCeivEhZ/oSZRxJ4+VwFCslZa3n389mcyslZS29P6iEWWCS0tPT9eijjwa6DACNRMWXaMVYksb0JXrggPT991KPHlLnzoGupnFKTNyq7t13q7DQKaezsFH8u6HxCVgAateunYKDg5WXl+e1PC8vr9oBzr4yc+ZMTZ8+3fO8qKhIcXFxfq0BQOPSmL5EK65vs3x5S82Y4ZDbbVNQkNHcuS7deONPXN+mCg5HMcEHNQpYALLb7erXr58yMzM1evRoSZLb7VZmZqZSU1P9WktoaKhCQ0P9uk0AjV9j+BKtGJfkckUoIyNNxlQMzLbpvvsidfDgYjkcxZa/vo3dbm/Qdmj+AnoKbPr06Zo4caL69++vgQMHKiMjQ8ePH/fMCpswYYI6deqk9PR0SSfPu+/YscPz+8GDB5Wdna3WrVsrISFBknTs2DHt3r3bs429e/cqOztbTqdT55xzjp/3EADqp2K80ZlmN1l9XFJUVJRSU1O5EjRqLaABaOzYsTpy5Igefvhh5ebmqk+fPlq3bp1nYPS+ffsUFPTv/+APHTqkvn3/fUGr+fPna/78+Ro8eLA2bNggSfr666911VVXedpUnNqaOHGili5d6vudAgAfqBiYfWoIYnaTN8IN6iLgg6BTU1OrPeVVEWoqxMfHyxhT4/qGDBlyxjYA0NQ05oHZQFMU8AAEAI1FYx9H0pgGZgNNHQEIAP5PUxhH0hgGZgPNAQEIAE7BOBLAGgJ+N3gAAAB/IwABQCPW2MclAU0Vp8AAoBFrCuOSgKaIAAQAjRzhBmh4nAIDAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACW0yLQBQAAgKavoKBAZWVlkqRDh4K0d28Lde36izp2dEuS7Ha7oqKiAlmiFwIQAACol4KCAi1cuFCSlJXVV2vWjJIxQbLZ3EpJWavExK2SpNTU1EYTgjgFBgAA6qWi58flivCEH0kyJkhr1oySyxXh1a4xIAABAIAGUVgY5Qk/FYwJUmGhM0AVVY8ABAAAGoTTWSCbze21zGZzy+ks9Fp24IC0fv3Jn4FCAAIAAA3C4ShWSspaTwiqGAPkcBRLko4ePaqnnvpRXboYDR0qdeli9NRTP+rw4cMqKCjwa60MggYAAA0mMXGrunffrcJCp5zOQk/4kaQlSz5WRkaajLFJktxum+67L1IHDy6Ww1Hs10HSBCAAANCgHI5ir+BToaYxQg5HsV8HSXMKDAAA+EVtxwj5AwEIAADUi91ur1W7M40R8idOgQEAgHqJiopSampqtaewjh49qtWrV0uqeYyQPxGAAABAvdVl8HJ1Y4T8iVNgAADAcghAAADAcghAAADAp2o7SLq27RoCY4AAAIBPnWmQtHQy/PjzTvEEIAAA4HP+DDe1wSkwAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOY0iAC1atEjx8fEKCwtTUlKSNm3aVG3b7du3a8yYMYqPj5fNZlNGRka91wkAAKwl4AFo5cqVmj59umbNmqWsrCz17t1bycnJys/Pr7J9SUmJunXrpjlz5igmJqZB1gkAAKzFZowxgSwgKSlJAwYM0MKFCyVJbrdbcXFxuvPOO/XAAw/U+N74+HilpaUpLS2twdYpSUVFRXI4HHK5XIqMjDy7HQMAAH5Vl+/vgPYAlZWVacuWLRo2bJhnWVBQkIYNG6aNGzc2mnUCAIDmJaC3wjh69KjKy8sVHR3ttTw6Olrffvut39ZZWlqq0tJSz/OioqKz2jYAAGgaAj4GqDFIT0+Xw+HwPOLi4gJdEgAA8KGABqB27dopODhYeXl5Xsvz8vKqHeDsi3XOnDlTLpfL89i/f/9ZbRsAADQNAQ1Adrtd/fr1U2ZmpmeZ2+1WZmamBg0a5Ld1hoaGKjIy0usBAACar4COAZKk6dOna+LEierfv78GDhyojIwMHT9+XJMnT5YkTZgwQZ06dVJ6erqkk4Ocd+zY4fn94MGDys7OVuvWrZWQkFCrdQIAAGsLeAAaO3asjhw5oocffli5ubnq06eP1q1b5xnEvG/fPgUF/buj6tChQ+rbt6/n+fz58zV//nwNHjxYGzZsqNU6AQCAtQX8OkCNEdcBAgCg6anL93fAe4AAAPCHgoIClZWVVfu63W5XVFSUHytCIBGAAADNXkFBgefuAJLkckWosDBKTmeBHI5iz/LU1FRCkEUQgAAAzd6pPT9ZWX21Zs0oGRMkm82tlJS1SkzcWqkdmjcuhAgAsAyXK8ITfiTJmCCtWTNKLldEgCuDvxGAAACWUVgY5Qk/FYwJUmGhM0AVIVAIQAAAy3A6C2Szub2W2WxuOZ2FAaoIgUIAAgBYhsNRrJSUtZ4QVDEG6NSB0LAGBkEDACwlMXGrunffrcJCp5zOQsKPRRGAAACW43AUE3wsjlNgAIBmz263N2g7NH30AAEAmr2oqCilpqZyJWh4EIAAAJZAuMGpOAUGAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshytBV8EYI0kqKioKcCUAAKC2Kr63K77Ha0IAqkJx8ck7BMfFxQW4EgAAUFfFxcVyOBw1trGZ2sQki3G73Tp06JAiIiJks9kqvV5UVKS4uDjt379fkZGRAaiw8eMYnRnH6Mw4RjXj+JwZx+jMmtMxMsaouLhYHTt2VFBQzaN86AGqQlBQkDp37nzGdpGRkU3+w+JrHKMz4xidGceoZhyfM+MYnVlzOUZn6vmpwCBoAABgOQQgAABgOQSgsxAaGqpZs2YpNDQ00KU0WhyjM+MYnRnHqGYcnzPjGJ2ZVY8Rg6ABAIDl0AMEAAAshwAEAAAshwAEAAAshwAEAAAshwBUjUWLFik+Pl5hYWFKSkrSpk2bqm27fft2jRkzRvHx8bLZbMrIyPBfoQFUl2P0yiuv6IorrlDbtm3Vtm1bDRs2rMb2zUVdjtHq1avVv39/tWnTRuHh4erTp49ef/11P1brf3U5PqdasWKFbDabRo8e7dsCG4G6HKOlS5fKZrN5PcLCwvxYbWDU9XP0448/atq0aYqNjVVoaKjOPfdcffDBB36qNjDqcoyGDBlS6XNks9k0cuRIP1bsBwaVrFixwtjtdrN48WKzfft2c9ttt5k2bdqYvLy8Kttv2rTJ3HvvveYPf/iDiYmJMU8//bR/Cw6Auh6jG2+80SxatMhs3brV7Ny500yaNMk4HA5z4MABP1fuP3U9RuvXrzerV682O3bsMLt37zYZGRkmODjYrFu3zs+V+0ddj0+FvXv3mk6dOpkrrrjCXHfddf4pNkDqeoyWLFliIiMjzeHDhz2P3NxcP1ftX3U9RqWlpaZ///7m17/+tfnss8/M3r17zYYNG0x2drafK/efuh6jgoICr8/Qtm3bTHBwsFmyZIl/C/cxAlAVBg4caKZNm+Z5Xl5ebjp27GjS09PP+N4uXbpYIgDV5xgZY8wvv/xiIiIizLJly3xVYsDV9xgZY0zfvn3N73//e1+UF3Bnc3x++eUXc+mll5pXX33VTJw4sdkHoLoeoyVLlhiHw+Gn6hqHuh6jF154wXTr1s2UlZX5q8SAq+/foqefftpERESYY8eO+arEgOAU2GnKysq0ZcsWDRs2zLMsKChIw4YN08aNGwNYWePREMeopKREJ06ckNPp9FWZAVXfY2SMUWZmpnbt2qUrr7zSl6UGxNken//5n/9Rhw4dNGXKFH+UGVBne4yOHTumLl26KC4uTtddd522b9/uj3ID4myO0XvvvadBgwZp2rRpio6O1kUXXaQnnnhC5eXl/irbrxri7/Vrr72mG264QeHh4b4qMyAIQKc5evSoysvLFR0d7bU8Ojpaubm5AaqqcWmIY3T//ferY8eOXv9RNidne4xcLpdat24tu92ukSNH6rnnntM111zj63L97myOz2effabXXntNr7zyij9KDLizOUbnnXeeFi9erD/96U9644035Ha7demll+rAgQP+KNnvzuYY/fOf/9Tbb7+t8vJyffDBB3rooYf01FNP6bHHHvNHyX5X37/XmzZt0rZt23Trrbf6qsSA4W7w8Ls5c+ZoxYoV2rBhgyUGaNZFRESEsrOzdezYMWVmZmr69Onq1q2bhgwZEujSAqq4uFjjx4/XK6+8onbt2gW6nEZr0KBBGjRokOf5pZdeqgsuuEAvvfSSZs+eHcDKGg+3260OHTro5ZdfVnBwsPr166eDBw9q3rx5mjVrVqDLa3Ree+01XXzxxRo4cGCgS2lwBKDTtGvXTsHBwcrLy/NanpeXp5iYmABV1bjU5xjNnz9fc+bM0SeffKJevXr5ssyAOttjFBQUpISEBElSnz59tHPnTqWnpze7AFTX47Nnzx7l5OQoJSXFs8ztdkuSWrRooV27dql79+6+LdrPGuJvUUhIiPr27avdu3f7osSAO5tjFBsbq5CQEAUHB3uWXXDBBcrNzVVZWZnsdrtPa/a3+nyOjh8/rhUrVuh//ud/fFliwHAK7DR2u139+vVTZmamZ5nb7VZmZqbX/1lZ2dkeo7lz52r27Nlat26d+vfv749SA6ahPkdut1ulpaW+KDGg6np8zj//fH3zzTfKzs72PK699lpdddVVys7OVlxcnD/L94uG+AyVl5frm2++UWxsrK/KDKizOUaXXXaZdu/e7QnQkvTdd98pNja22YUfqX6fo7feekulpaW6+eabfV1mYAR6FHZjtGLFChMaGmqWLl1qduzYYaZOnWratGnjmU46fvx488ADD3jal5aWmq1bt5qtW7ea2NhYc++995qtW7ea77//PlC74HN1PUZz5swxdrvdvP32217TK4uLiwO1Cz5X12P0xBNPmD//+c9mz549ZseOHWb+/PmmRYsW5pVXXgnULvhUXY/P6awwC6yux+jRRx81H330kdmzZ4/ZsmWLueGGG0xYWJjZvn17oHbB5+p6jPbt22ciIiJMamqq2bVrl1m7dq3p0KGDeeyxxwK1Cz53tv+tXX755Wbs2LH+LtdvCEDVeO6558w555xj7Ha7GThwoPnyyy89rw0ePNhMnDjR83zv3r1GUqXH4MGD/V+4H9XlGHXp0qXKYzRr1iz/F+5HdTlGDz74oElISDBhYWGmbdu2ZtCgQWbFihUBqNp/6nJ8TmeFAGRM3Y5RWlqap210dLT59a9/bbKysgJQtX/V9XP0xRdfmKSkJBMaGmq6detmHn/8cfPLL7/4uWr/qusx+vbbb40k8+c//9nPlfqPzRhjAtT5BAAAEBCMAQIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAKAAJo0aZJGjx4d6DIAyyEAAajSpEmTZLPZPI+oqCgNHz5c//jHPwJdWoM4dd8qHpdffrnPtpeTkyObzabs7Gyv5c8884yWLl3qs+0CqBoBCEC1hg8frsOHD+vw4cPKzMxUixYtNGrUqECX1WCWLFni2b/Dhw/rvffeq7LdiRMnfFaDw+FQmzZtfLZ+AFUjAAGoVmhoqGJiYhQTE6M+ffrogQce0P79+3XkyBENHTpUqampXu2PHDkiu93uufN0fHy8Zs+erXHjxik8PFydOnXSokWLvN6zYMECXXzxxQoPD1dcXJz+67/+S8eOHfO8/q9//UspKSlq27atwsPDdeGFF+qDDz6QJP3www+66aab1L59e7Vs2VI9evTQkiVLar1/bdq08exfTEyMnE6np6dm5cqVGjx4sMLCwvTmm2+qoKBA48aNU6dOndSqVStdfPHF+sMf/uC1Prfbrblz5yohIUGhoaE655xz9Pjjj0uSunbtKknq27evbDabhgwZIqnyKbDS0lLddddd6tChg8LCwnT55Zdr8+bNntc3bNggm82mzMxM9e/fX61atdKll16qXbt21Xq/ARCAANTSsWPH9MYbbyghIUFRUVG69dZbtXz5cpWWlnravPHGG+rUqZOGDh3qWTZv3jz17t1bW7du1QMPPKDf/e53+vjjjz2vBwUF6dlnn9X27du1bNky/eUvf9GMGTM8r0+bNk2lpaX69NNP9c033+jJJ59U69atJUkPPfSQduzYoQ8//FA7d+7UCy+8oHbt2jXI/lbUunPnTiUnJ+vnn39Wv3799P7772vbtm2aOnWqxo8fr02bNnneM3PmTM2ZM8dT1/LlyxUdHS1JnnaffPKJDh8+rNWrV1e53RkzZmjVqlVatmyZsrKylJCQoOTkZBUWFnq1e/DBB/XUU0/p66+/VosWLXTLLbc0yH4DlhHou7ECaJwmTpxogoODTXh4uAkPDzeSTGxsrNmyZYsxxpiffvrJtG3b1qxcudLznl69eplHHnnE87xLly5m+PDhXusdO3asGTFiRLXbfeutt0xUVJTn+cUXX+y1zlOlpKSYyZMnn9X+STJhYWGe/QsPDzfvvPOO2bt3r5FkMjIyzriOkSNHmnvuuccYY0xRUZEJDQ01r7zySpVtK9a7detWr+Wn3tX+2LFjJiQkxLz55pue18vKykzHjh3N3LlzjTHGrF+/3kgyn3zyiafN+++/bySZn376qS6HALA0eoAAVOuqq65Sdna2srOztWnTJiUnJ2vEiBH617/+pbCwMI0fP16LFy+WJGVlZWnbtm2aNGmS1zoGDRpU6fnOnTs9zz/55BNdffXV6tSpkyIiIjR+/HgVFBSopKREknTXXXfpscce02WXXaZZs2Z5DcK+4447tGLFCvXp00czZszQF198Uaf9e/rppz37l52drWuuucbzWv/+/b3alpeXa/bs2br44ovldDrVunVrffTRR9q3b58kaefOnSotLdXVV19dpxpOtWfPHp04cUKXXXaZZ1lISIgGDhzodcwkqVevXp7fY2NjJUn5+flnvW3AaghAAKoVHh6uhIQEJSQkaMCAAXr11Vd1/PhxvfLKK5KkW2+9VR9//LEOHDigJUuWaOjQoerSpUut15+Tk6NRo0apV69eWrVqlbZs2eIZI1RWVubZxj//+U+NHz9e33zzjfr376/nnntOkjxh7O6779ahQ4d09dVX695776319mNiYjz7l5CQoPDwcK99P9W8efP0zDPP6P7779f69euVnZ2t5ORkT50tW7as9XYbQkhIiOd3m80m6eQYJAC1QwACUGs2m01BQUH66aefJEkXX3yx+vfvr1deeUXLly+vchzKl19+Wen5BRdcIEnasmWL3G63nnrqKV1yySU699xzdejQoUrriIuL0+23367Vq1frnnvu8QQwSWrfvr0mTpyoN954QxkZGXr55Zcbcpc9Pv/8c1133XW6+eab1bt3b3Xr1k3fffed5/UePXqoZcuWngHgp7Pb7ZJO9iRVp3v37rLb7fr88889y06cOKHNmzerZ8+eDbQnACSpRaALANB4lZaWKjc3V9LJGVcLFy7UsWPHlJKS4mlz6623KjU1VeHh4fqP//iPSuv4/PPPNXfuXI0ePVoff/yx3nrrLb3//vuSpISEBJ04cULPPfecUlJS9Pnnn+vFF1/0en9aWppGjBihc889Vz/88IPWr1/vCVAPP/yw+vXrpwsvvFClpaVau3at57WG1qNHD7399tv64osv1LZtWy1YsEB5eXmeYBIWFqb7779fM2bMkN1u12WXXaYjR45o+/btmjJlijp06KCWLVtq3bp16ty5s8LCwuRwOLy2ER4erjvuuEP33XefnE6nzjnnHM2dO1clJSWaMmWKT/YLsCp6gABUa926dYqNjVVsbKySkpK0efNmvfXWW54p3JI0btw4tWjRQuPGjVNYWFilddxzzz36+uuv1bdvXz322GNasGCBkpOTJUm9e/fWggUL9OSTT+qiiy7Sm2++qfT0dK/3l5eXa9q0abrgggs0fPhwnXvuuXr++eclnexVmTlzpnr16qUrr7xSwcHBWrFihU+Oxe9//3slJiYqOTlZQ4YMUUxMTKUrOD/00EO655579PDDD+uCCy7Q2LFjPeNyWrRooWeffVYvvfSSOnbsqOuuu67K7cyZM0djxozR+PHjlZiYqN27d+ujjz5S27ZtfbJfgFXZjDEm0EUAaLpycnLUvXt3bd68WYmJiV6vxcfHKy0tTWlpaYEpDgCqwSkwAGflxIkTKigo0O9//3tdcskllcIPADRmnAIDcFY+//xzxcbGavPmzZXG7QTaE088odatW1f5GDFiRKDLA9AIcAoMQLNTWFhY6crJFVq2bKlOnTr5uSIAjQ0BCAAAWA6nwAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOX8f/IOIPdlTh+VAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASZ5JREFUeJzt3Xtc1FXi//H3gAx4gXFBxBuKomlaqZiS3TCzxVLSzdZbpZll9ZWKKCtr10tuYeUaJXbZ3RS3zdTKLpprFze72mVF2lIrNck7KCSgpBhzfn/4Y3LkIigzw/B5PR+PecicOfP5nM/Zaea953PO52MzxhgBAABYSICvGwAAAOBtBCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAqMcyMzNls9mUk5Pj66YADQoBCLC4r776SsnJyerRo4eaNm2q9u3ba+TIkfrhhx8q1B0wYIBsNptsNpsCAgIUFhamrl276oYbbtB7771Xq/2uWLFCCQkJatmypZo0aaJOnTpp5MiRWr16dV0dWgWPPvqo3njjjQrln332mWbMmKGDBw96bN8nmzFjhqsvbTabmjRpou7du+tPf/qTioqK6mQfixcvVnp6ep1sC2hoCECAxT322GN67bXXdPnll+upp57SpEmT9NFHHykuLk7ffvtthfrt2rXTiy++qH/+85964okndPXVV+uzzz7T73//e40aNUrHjh075T7nzJmjq6++WjabTVOnTtWTTz6pESNGaMuWLVqyZIknDlNS9QFo5syZXg1A5Z599lm9+OKLmjt3rrp166ZHHnlEgwcPVl3cppEABFStka8bAMC3UlNTtXjxYtntdlfZqFGjdO6552r27Nn617/+5Vbf4XDo+uuvdyubPXu27rzzTj3zzDOKiYnRY489VuX+fv31V82aNUtXXHGF3n333Qqv5+XlneER1R8lJSVq0qRJtXWuvfZatWjRQpJ02223acSIEVq+fLk+//xz9e/f3xvNBCyJESDA4i688EK38CNJXbp0UY8ePbR58+YabSMwMFBPP/20unfvroyMDBUWFlZZ98CBAyoqKtJFF11U6estW7Z0e37kyBHNmDFDZ511lkJCQtS6dWtdc8012rZtm6vOnDlzdOGFFyoiIkKNGzdWnz599Oqrr7ptx2az6fDhw1q0aJHrtNONN96oGTNmaMqUKZKkjh07ul47cc7Nv/71L/Xp00eNGzdWeHi4Ro8erZ07d7ptf8CAATrnnHO0fv16XXrppWrSpIkefPDBGvXfiQYOHChJ2r59e7X1nnnmGfXo0UPBwcFq06aNJk+e7DaCNWDAAL399tv66aefXMcUExNT6/YADRUjQAAqMMYoNzdXPXr0qPF7AgMDNWbMGP35z3/WJ598oiFDhlRar2XLlmrcuLFWrFihO+64Q+Hh4VVus6ysTEOHDtWaNWs0evRo3XXXXSouLtZ7772nb7/9VrGxsZKkp556SldffbWuu+46lZaWasmSJfrjH/+olStXutrx4osv6uabb1a/fv00adIkSVJsbKyaNm2qH374QS+//LKefPJJ12hMZGSkJOmRRx7Rn//8Z40cOVI333yz9u/fr3nz5unSSy/Vhg0b1Lx5c1d78/PzdeWVV2r06NG6/vrrFRUVVeP+K1ce7CIiIqqsM2PGDM2cOVODBg3S7bffru+//17PPvusvvrqK3366acKCgrSQw89pMLCQu3atUtPPvmkJKlZs2a1bg/QYBkAOMmLL75oJJkXXnjBrTwhIcH06NGjyve9/vrrRpJ56qmnqt3+tGnTjCTTtGlTc+WVV5pHHnnErF+/vkK9BQsWGElm7ty5FV5zOp2uv0tKStxeKy0tNeecc44ZOHCgW3nTpk3N+PHjK2zriSeeMJLM9u3b3cpzcnJMYGCgeeSRR9zKv/nmG9OoUSO38oSEBCPJPPfcc1Ue94mmT59uJJnvv//e7N+/32zfvt08//zzJjg42ERFRZnDhw8bY4xZuHChW9vy8vKM3W43v//9701ZWZlrexkZGUaSWbBggatsyJAhpkOHDjVqD2A1nAID4Oa7777T5MmT1b9/f40fP75W7y0fYSguLq623syZM7V48WL17t1b77zzjh566CH16dNHcXFxbqfdXnvtNbVo0UJ33HFHhW3YbDbX340bN3b9/fPPP6uwsFCXXHKJsrKyatX+ky1fvlxOp1MjR47UgQMHXI9WrVqpS5cu+uCDD9zqBwcHa8KECbXaR9euXRUZGamOHTvq1ltvVefOnfX2229XOXfo/fffV2lpqVJSUhQQ8NtX+C233KKwsDC9/fbbtT9QwII4BQbAZd++fRoyZIgcDodeffVVBQYG1ur9hw4dkiSFhoaesu6YMWM0ZswYFRUV6YsvvlBmZqYWL16spKQkffvttwoJCdG2bdvUtWtXNWpU/VfVypUr9Ze//EXZ2dk6evSoq/zEkHQ6tmzZImOMunTpUunrQUFBbs/btm1bYT7Vqbz22msKCwtTUFCQ2rVr5zqtV5WffvpJ0vHgdCK73a5OnTq5XgdQPQIQAElSYWGhrrzySh08eFAff/yx2rRpU+ttlC+b79y5c43fExYWpiuuuEJXXHGFgoKCtGjRIn3xxRdKSEio0fs//vhjXX311br00kv1zDPPqHXr1goKCtLChQu1ePHiWh/DiZxOp2w2m/79739XGgZPnlNz4khUTV166aWueUcAvIcABEBHjhxRUlKSfvjhB73//vvq3r17rbdRVlamxYsXq0mTJrr44otPqx3nn3++Fi1apL1790o6Pkn5iy++0LFjxyqMtpR77bXXFBISonfeeUfBwcGu8oULF1aoW9WIUFXlsbGxMsaoY8eOOuuss2p7OB7RoUMHSdL333+vTp06ucpLS0u1fft2DRo0yFV2piNgQEPGHCDA4srKyjRq1CitW7dOr7zyymlde6asrEx33nmnNm/erDvvvFNhYWFV1i0pKdG6desqfe3f//63pN9O74wYMUIHDhxQRkZGhbrm/18oMDAwUDabTWVlZa7XcnJyKr3gYdOmTSu92GHTpk0lqcJr11xzjQIDAzVz5swKFyY0xig/P7/yg/SgQYMGyW636+mnn3Zr0wsvvKDCwkK31XdNmzat9pIEgJUxAgRY3D333KO33npLSUlJKigoqHDhw5MvelhYWOiqU1JSoq1bt2r58uXatm2bRo8erVmzZlW7v5KSEl144YW64IILNHjwYEVHR+vgwYN644039PHHH2v48OHq3bu3JGncuHH65z//qdTUVH355Ze65JJLdPjwYb3//vv6v//7Pw0bNkxDhgzR3LlzNXjwYI0dO1Z5eXmaP3++OnfurP/9739u++7Tp4/ef/99zZ07V23atFHHjh0VHx+vPn36SJIeeughjR49WkFBQUpKSlJsbKz+8pe/aOrUqcrJydHw4cMVGhqq7du36/XXX9ekSZN07733nlH/11ZkZKSmTp2qmTNnavDgwbr66qv1/fff65lnnlHfvn3d/vfq06ePli5dqtTUVPXt21fNmjVTUlKSV9sL1Fu+XIIGwPfKl29X9aiubrNmzUyXLl3M9ddfb959990a7e/YsWPm73//uxk+fLjp0KGDCQ4ONk2aNDG9e/c2TzzxhDl69Khb/ZKSEvPQQw+Zjh07mqCgINOqVStz7bXXmm3btrnqvPDCC6ZLly4mODjYdOvWzSxcuNC1zPxE3333nbn00ktN48aNjSS3JfGzZs0ybdu2NQEBARWWxL/22mvm4osvNk2bNjVNmzY13bp1M5MnTzbff/+9W99Ud4mAk5W3b//+/dXWO3kZfLmMjAzTrVs3ExQUZKKiosztt99ufv75Z7c6hw4dMmPHjjXNmzc3klgSD5zAZkwd3HAGAADAjzAHCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4XQqyE0+nUnj17FBoayqXkAQDwE8YYFRcXq02bNgoIqH6MhwBUiT179ig6OtrXzQAAAKdh586dateuXbV1CECVCA0NlXS8A6u7pxEAAKg/ioqKFB0d7fodrw4BqBLlp73CwsIIQAAA+JmaTF9hEjQAALAcAhAAALAcAhAAALAc5gCdgbKyMh07dszXzWiwgoKCFBgY6OtmAAAaIALQaTDGaN++fTp48KCvm9LgNW/eXK1ateJ6TACAOkUAOg3l4adly5Zq0qQJP84eYIxRSUmJ8vLyJEmtW7f2cYsAAA0JAaiWysrKXOEnIiLC181p0Bo3bixJysvLU8uWLTkdBgCoM0yCrqXyOT9NmjTxcUusobyfmWsFAKhLBKDTxGkv76CfAQCewCkwAADgcfn5+SotLa3ydbvd7tWpJQQgAADgUfn5+crIyDhlveTkZK+FIE6BWciNN94om80mm82moKAgRUVF6YorrtCCBQvkdDprvJ3MzEw1b97ccw0FADQoJ4/8FBaGavv2GBUWhlZbz5MYAfIBXw4DDh48WAsXLlRZWZlyc3O1evVq3XXXXXr11Vf11ltvqVEjPhIAAM/JyuqtFSuGypgA2WxOJSWtVFzcBq+3g187L/P1MGBwcLBatWolSWrbtq3i4uJ0wQUX6PLLL1dmZqZuvvlmzZ07VwsXLtSPP/6o8PBwJSUl6fHHH1ezZs20du1aTZgwQdJvE5SnT5+uGTNm6MUXX9RTTz2l77//Xk2bNtXAgQOVnp6uli1b1vlxAAD8T2FhqCv8SJIxAVqxYqhiY7fK4Sj2als4BeZlNR3e8+Yw4MCBA9WzZ08tX75ckhQQEKCnn35aGzdu1KJFi/Sf//xH9913nyTpwgsvVHp6usLCwrR3717t3btX9957r6TjS9VnzZqlr7/+Wm+88YZycnJ04403eu04AAD1W0FBhCv8lDMmQAUF4V5vCyNAkCR169ZN//vf/yRJKSkprvKYmBj95S9/0W233aZnnnlGdrtdDodDNpvNNZJU7qabbnL93alTJz399NPq27evDh06pGbNmnnlOAAA9Vd4eL5sNqdbCLLZnAoPL/B6WxgBgqTjt54oP6X1/vvv6/LLL1fbtm0VGhqqG264Qfn5+SopKal2G+vXr1dSUpLat2+v0NBQJSQkSJJ27Njh8fYDAOqv8ntnOhzFSkpaKZvt+MKb8jlA5ae/vHmPTUaAIEnavHmzOnbsqJycHA0dOlS33367HnnkEYWHh+uTTz7RxIkTVVpaWuUVsA8fPqzExEQlJibqpZdeUmRkpHbs2KHExESvns4DANQ/v/76q+vvuLgNatlyn3bubK/o6B1q125vpfU8jQAE/ec//9E333yju+++W+vXr5fT6dRf//pXBQQcHyBctmyZW3273a6ysjK3su+++075+fmaPXu2oqOjJUn//e9/vXMAAIB6LSgoyPV3davATqznaZwCs5ijR49q37592r17t7KysvToo49q2LBhGjp0qMaNG6fOnTvr2LFjmjdvnn788Ue9+OKLeu6559y2ERMTo0OHDmnNmjU6cOCASkpK1L59e9ntdtf73nrrLc2aNctHRwkAqE8cDoekqleBlV8PqLyeNxCALGb16tVq3bq1YmJiNHjwYH3wwQd6+umn9eabbyowMFA9e/bU3Llz9dhjj+mcc87RSy+9pLS0NLdtXHjhhbrttts0atQoRUZG6vHHH1dkZKQyMzP1yiuvqHv37po9e7bmzJnjo6MEANRHrAKzMLvdXqf1aiMzM1OZmZmnrHf33Xfr7rvvdiu74YYb3J4/++yzevbZZ93KxowZozFjxriVGWNOr7EAgAanPq0CIwB5WUREhJKTk+vVDeEAAPCG8lVgJ88B8vZFECUCkE8QbgAAVhUXt0GxsVtVUBCu8PACn4QfiQAEAAA87ORpHQ5HcaXBxxPTP6pCAAIAAB5VH6d/EIAAAIDH1bfpHyyDBwAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAQp1Zu3atbDabDh48WOP3xMTEKD093WNtAgCgMgQgC7nxxhtls9l02223VXht8uTJstlsuvHGG73fMAAAvIwAZDHR0dFasmSJfvnlF1fZkSNHtHjxYrVv396HLQMAwHvqRQCaP3++YmJiFBISovj4eH355ZdV1t24caNGjBihmJgY2Wy2Sk+fzJgxQzabze3RrVs3Dx6B/4iLi1N0dLSWL1/uKlu+fLnat2+v3r17u8qOHj2qO++8Uy1btlRISIguvvhiffXVV27bWrVqlc466yw1btxYl112mXJycirs75NPPtEll1yixo0bKzo6WnfeeacOHz7sseMDAKAmfB6Ali5dqtTUVE2fPl1ZWVnq2bOnEhMTlZeXV2n9kpISderUSbNnz1arVq2q3G6PHj20d+9e1+OTTz7x1CGckV27pA8+OP6vt9x0001auHCh6/mCBQs0YcIEtzr33XefXnvtNS1atEhZWVnq3LmzEhMTVVBw/I69O3fu1DXXXKOkpCRlZ2fr5ptv1gMPPOC2jW3btmnw4MEaMWKE/ve//2np0qX65JNPlJyc7PmDBACgOsbH+vXrZyZPnux6XlZWZtq0aWPS0tJO+d4OHTqYJ598skL59OnTTc+ePU+7TYWFhUaSKSwsrPDaL7/8YjZt2mR++eWX095+uX/8w5iAAGOk4//+4x9nvMlqjR8/3gwbNszk5eWZ4OBgk5OTY3JyckxISIjZv3+/GTZsmBk/frw5dOiQCQoKMi+99JLrvaWlpaZNmzbm8ccfN8YYM3XqVNO9e3e37d9///1Gkvn555+NMcZMnDjRTJo0ya3Oxx9/bAICAlz9V9X/huXqsr8BAA1bdb/fJ/PpCFBpaanWr1+vQYMGucoCAgI0aNAgrVu37oy2vWXLFrVp00adOnXSddddpx07dlRZ9+jRoyoqKnJ7eNquXdKkSZLTefy50yndeqt3RoIiIyM1ZMgQZWZmauHChRoyZIhatGjhen3btm06duyYLrroIldZUFCQ+vXrp82bN0uSNm/erPj4eLft9u/f3+35119/rczMTDVr1sz1SExMlNPp1Pbt2z14hAAAVM+n9wI7cOCAysrKFBUV5VYeFRWl77777rS3Gx8fr8zMTHXt2lV79+7VzJkzdckll+jbb79VaGhohfppaWmaOXPmae/vdGzZ8lv4KVdWJm3dKrVr5/n933TTTa5TUfPnz/fIPg4dOqRbb71Vd955Z4XXmHANAP4pPz+/Xt3U9HQ1yJuhXnnlla6/zzvvPMXHx6tDhw5atmyZJk6cWKH+1KlTlZqa6npeVFSk6Ohoj7axSxcpIMA9BAUGSp07e3S3LoMHD1ZpaalsNpsSExPdXouNjZXdbtenn36qDh06SJKOHTumr776SikpKZKks88+W2+99Zbb+z7//HO353Fxcdq0aZM6e+ugAAAelZ+fr4yMjFPWS05OrvchyKenwFq0aKHAwEDl5ua6lefm5lY7wbm2mjdvrrPOOktbt26t9PXg4GCFhYW5PTytXTvpb387Hnqk4/8+/7x3Rn+O7y9Qmzdv1qZNmxRY3oj/r2nTprr99ts1ZcoUrV69Wps2bdItt9yikpISV4C87bbbtGXLFk2ZMkXff/+9Fi9erMzMTLft3H///frss8+UnJys7OxsbdmyRW+++SaToAHAT5088lNYGKrt22NUWBhabb36yKcByG63q0+fPlqzZo2rzOl0as2aNRXmk5yJQ4cOadu2bWrdunWdbbMuTJwo5eQcXwWWk3P8uTdVF/Zmz56tESNG6IYbblBcXJy2bt2qd955R7/73e8kHT+F9dprr+mNN95Qz5499dxzz+nRRx9128Z5552nDz/8UD/88IMuueQS9e7dW9OmTVObNm08fmwAAM/Kyuqt9PQULVo0XunpKcrK6n3qN9UjNmOM8WUDli5dqvHjx+v5559Xv379lJ6ermXLlum7775TVFSUxo0bp7Zt2yotLU3S8VS5adMmSdJVV12l6667Ttddd52aNWvmOtVy7733KikpSR06dNCePXs0ffp0ZWdna9OmTYqMjDxlm4qKiuRwOFRYWFghIBw5ckTbt29Xx44dFRISUse9gZPR3wBQf+zdu1d/+9vfVFgYqvT0FJ24lspmcyolJV0OR7EmTZrkk0GH6n6/T+bzOUCjRo3S/v37NW3aNO3bt0+9evXS6tWrXROjd+zYoYCA3zp4z549bhfsmzNnjubMmaOEhAStXbtWkrRr1y6NGTNG+fn5ioyM1MUXX6zPP/+8RuEHAABUr6AgQicvJDcmQAUF4XI4in3UqtrxeQCSjk+WqmpeSHmoKRcTE6NTDVotWbKkrpoGAABOEh6eL5vNWWEEKDy8wIetqh2fXwkaAAD4F4ejWElJK2WzHV/KbLM5lZS00m9Gf6R6MgIEAAD8S1zcBsXGblVBQbjCwwv8KvxIBKDT5uO545ZBPwNA/WG3292eOxzFlQafk+vVRwSgWgoKCpJ0/KasjRs39nFrGr6SkhJJv/U7AMB3IiIilJyczJWgrSgwMFDNmzd33a2+SZMmstlsPm5Vw2OMUUlJifLy8tS8efMKF2sEAPiGP4SbmiAAnYbyq1SXhyB4TvPmzev0quAAAEgEoNNis9nUunVrtWzZUseOHfN1cxqsoKAgRn4AAB5BADoDgYGB/EADAOCHuA4QAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwnHoRgObPn6+YmBiFhIQoPj5eX375ZZV1N27cqBEjRigmJkY2m03p6enVbnv27Nmy2WxKSUmp20YDAAC/5fMAtHTpUqWmpmr69OnKyspSz549lZiYqLy8vErrl5SUqFOnTpo9e7ZatWpV7ba/+uorPf/88zrvvPM80XQAAOCnfB6A5s6dq1tuuUUTJkxQ9+7d9dxzz6lJkyZasGBBpfX79u2rJ554QqNHj1ZwcHCV2z106JCuu+46/f3vf9fvfvc7TzUfAAD4IZ8GoNLSUq1fv16DBg1ylQUEBGjQoEFat27dGW178uTJGjJkiNu2q3L06FEVFRW5PQAAQMPl0wB04MABlZWVKSoqyq08KipK+/btO+3tLlmyRFlZWUpLS6tR/bS0NDkcDtcjOjr6tPcNAADqP5+fAqtrO3fu1F133aWXXnpJISEhNXrP1KlTVVhY6Hrs3LnTw60EAAC+1MiXO2/RooUCAwOVm5vrVp6bm3vKCc5VWb9+vfLy8hQXF+cqKysr00cffaSMjAwdPXpUgYGBbu8JDg6udj4RAABoWHw6AmS329WnTx+tWbPGVeZ0OrVmzRr179//tLZ5+eWX65tvvlF2drbrcf755+u6665TdnZ2hfADAACsx6cjQJKUmpqq8ePH6/zzz1e/fv2Unp6uw4cPa8KECZKkcePGqW3btq75PKWlpdq0aZPr7927dys7O1vNmjVT586dFRoaqnPOOcdtH02bNlVERESFcgAAYE0+D0CjRo3S/v37NW3aNO3bt0+9evXS6tWrXROjd+zYoYCA3waq9uzZo969e7uez5kzR3PmzFFCQoLWrl3r7eYDAAA/ZDPGGF83or4pKiqSw+FQYWGhwsLCfN0cAABQA7X5/W5wq8AAAABOhQAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAsp5GvGwAAQG3k5+ertLS0ytftdrsiIiK82CL4IwIQAMBv5OfnKyMjw/W8sDBUBQURCg/Pl8NR7CpPTk4mBKFaBCAAgN84ceQnK6u3VqwYKmMCZLM5lZS0UnFxGyrUAyrDHCAAgN8pLAx1hR9JMiZAK1YMVWFhqI9bBn9BAAIA+J2CgghX+ClnTIAKCsJ91CL4GwIQAMDvhIfny2ZzupXZbE6Fhxf4qEXwNwQgAIDfcTiKlZS00hWCyucAnTgRGqgOk6ABAH4pLm6DYmO3qqAgXOHhBYQf1AoBCADgtxyOYoIPTgunwAAAfsNut9dpPVgXI0AAAL8RERGh5ORkrgSNM0YAAgD4FcIN6gIBCABwxrg/F/wNAQgAcEa4Pxf8EQEIABqoE0dl9uwJ0PbtjdSx469q0+b4tXPqalSG+3PBHxGAAKABOnFUprpQUpejMlXdnys2ditL1VHvsAweABqg8tGWU900tC5HZbg/F/wJI0CAn2LSKWqiulBS16My5ffnOnF/3J8L9RUBCPBDJ086rQqTTuHNUFJ+f66TT7dx+gv1EQEI8EM1PW3BpFN4O5Rwfy74CwIQADRw3g4l3J8L/oAABDQAVV13BSjnyVDC/bngjwhAgJ+rbokz4A3cnwv+iAAE+DGuu4KqeHtUhnADf0MAAvyYN5c4w78wKgNUjwAE+DGuu4LqEG6AqnElaMAPlZ+2KF/ibLMdv7fTyUucmXQKAJWzGWOMrxtR3xQVFcnhcKiwsFBhYWG+bg5QqZNvdJmT00gxMXV/o0sA8Be1+f3mFBjgp04MN61bS336+LAxAOBnOAUGAAAshwAEAAAsp14EoPnz5ysmJkYhISGKj4/Xl19+WWXdjRs3asSIEYqJiZHNZlN6enqFOs8++6zOO+88hYWFKSwsTP3799e///1vDx4BAADwJz4PQEuXLlVqaqqmT5+urKws9ezZU4mJicrLy6u0fklJiTp16qTZs2erVatWldZp166dZs+erfXr1+u///2vBg4cqGHDhmnjxo2ePBQAqLFdu6QPPjj+LwDv8/kqsPj4ePXt21cZGRmSJKfTqejoaN1xxx164IEHqn1vTEyMUlJSlJKScsr9hIeH64knntDEiRNPWZdVYAA8oXzl3uLFjXXffQ45nTYFBBg9/nihxo79hZV7wBnym1VgpaWlWr9+vaZOneoqCwgI0KBBg7Ru3bo62UdZWZleeeUVHT58WP3796+0ztGjR3X06FHX86KiojrZNwCUy8/PV0ZGhgoLQ5WeniJjbJIkp9OmKVPCtHv3AjkcxUpOTiYEAV7g01NgBw4cUFlZmaKiotzKo6KitG/fvjPa9jfffKNmzZopODhYt912m15//XV179690rppaWlyOByuR3R09BntGwBOVn7NpupuX3JiPQCe5fM5QJ7StWtXZWdn64svvtDtt9+u8ePHa9OmTZXWnTp1qgoLC12PnTt3erm1AKyi/PYlJ+L2JYD3+TQAtWjRQoGBgcrNzXUrz83NrXKCc03Z7XZ17txZffr0UVpamnr27Kmnnnqq0rrBwcGuFWPlDwDwhFPdvgSAd/h0DpDdblefPn20Zs0aDR8+XNLxSdBr1qxRcnJyne7L6XS6zfMBAF+Ji9ug2NitKigIV3h4AeEH8AGf3wojNTVV48eP1/nnn69+/fopPT1dhw8f1oQJEyRJ48aNU9u2bZWWlibp+Pnx8lNZpaWl2r17t7Kzs9WsWTN17txZ0vFTWldeeaXat2+v4uJiLV68WGvXrtU777zjm4MEgJM4HMUEH8CHfB6ARo0apf3792vatGnat2+fevXqpdWrV7smRu/YsUMBAb+dqduzZ4969+7tej5nzhzNmTNHCQkJWrt2rSQpLy9P48aN0969e+VwOHTeeefpnXfe0RVXXOHVYwMAAPWTz68DVB9xHSAAdW3v3r3629/+dsp6kyZNUuvWrb3QIqDhqc3vd4NdBQYA9Yndbq/TegDOjM9PgQGAFURERCg5Obna6/xwJWjAewhAAOAlhBug/uAUGAAAsBwCEAAAsJzTPgV28OBBbd26VZLUuXNnNW/evK7aBAAA4FG1HgHKycnRkCFD1KJFC8XHxys+Pl4tWrTQ0KFDlZOT44EmAgAA1K1ajQDt3LlTF1xwgYKCgjRr1iydffbZkqRNmzbp2WefVf/+/fXVV1+pXbt2HmksAABAXajVhRAnTpyorVu36p133lFISIjba7/88osGDx6sLl266B//+EedN9SbuBAiAAD+pza/37UaAVq9erWWLl1aIfxIUuPGjTVr1iyNHj26dq0FAADwslrNATpw4IBiYmKqfL1Tp04qKCg40zYBAAB4VK0CUOvWrV13Yq/Mt99+q1atWp1xowAAADypVgFo+PDhuvfee7V///4Kr+Xl5en+++/X8OHD66ptAAAAHlGrSdA///yz4uPjtW/fPl1//fXq1q2bjDHavHmzFi9erFatWunzzz9XeHi4J9vscUyCBgDA/3hsEvTvfvc7ffHFF3rwwQe1ZMkSHTx4UJLUvHlzjR07Vo8++qjfhx8AANDw1WoE6ETGGNepsMjISNlstjptmC8xAgQAgP/x2AjQiWw2m1q2bHm6bwcAAPCZWt8KY9WqVbr55pt13333afPmzW6v/fzzzxo4cGCdNQ4AAMATahWAFi9erKuvvlr79u3TunXrFBcXp5deesn1emlpqT788MM6byQAAEBdqtUpsCeeeEJz587VnXfeKUlatmyZbrrpJh05ckQTJ070SAMBAADqWq0C0JYtW5SUlOR6PnLkSEVGRurqq6/WsWPH9Ic//KHOGwgAAFDXahWAwsLClJubq44dO7rKLrvsMq1cuVJDhw7Vrl276ryBAAAAda1Wc4D69eunf//73xXKExIStGLFCqWnp9dVuwAAADymVgHo7rvvrvRO8JI0YMAArVixQuPGjauThgEAAHhKrS6EWFRUVKN6/n7xQC6ECACA//HYhRCbN29eoys+l5WV1WazAAAAXlWrAPTBBx+4/jbG6KqrrtI//vEPtW3bts4bBgAA4Cm1CkAJCQluzwMDA3XBBReoU6dOddooAAAAT6r1rTAAAAD8HQEIAABYzhkHoJpMigYAAKhPajUH6JprrnF7fuTIEd12221q2rSpW/ny5cvPvGUAAAAeUqsA5HA43J5ff/31ddoYAN61a5e0ZYvUpYvUrp2vWwMA3lOrALRw4UJPtQOAl+Tn56u0tFSLFzfWffc55HTaFBBg9PjjhRo79hfZ7XZFRET4upkA4FG1CkAA/Ft+fr4yMjJUWBiq9PQUGXN8Dp/TadOUKWHavXuBHI5iJScnE4IANGisAgMspLS0VJJUUBAhY9z/8zcmQAUF4W71AKChIgABFhQeni+bzelWZrM5FR5e4KMWAYB3EYAAC3I4ipWUtNIVgmw2p5KSVsrhKPZxywDAO5gDBFhUXNwGxcZuVUFBuMLDCwg/ADyqfAFGVby9AIMABFiYw1FM8AHgceULME7FmwswOAUGAAA8qqYLK7y5AIMABAAALIcABFiI3W6v03oA4K+YAwRYSEREhJKTk+vVREQA8AUCEGAxhBsA4BQYAACwIAIQAADwqsLCUG3fHqPCwlCftYFTYAAAwKNOXFiRldVbK1YMlTEBrqvQx8VtqFDP02zGGOO1vfmJoqIiORwOFRYWKiwszNfNAQDA7+Xn5ysn51f169dSTqfNVR4YaPTFF3mKiWl0xnMUa/P7XS9Ogc2fP18xMTEKCQlRfHy8vvzyyyrrbty4USNGjFBMTIxsNpvS09Mr1ElLS1Pfvn0VGhqqli1bavjw4fr+++89eAQAAKA6ERERKiqKcgs/klRWZlNxcZTXF2j4PAAtXbpUqampmj59urKystSzZ08lJiYqLy+v0volJSXq1KmTZs+erVatWlVa58MPP9TkyZP1+eef67333tOxY8f0+9//XocPH/bkoQAAgGp06SIFnJQ8AgOlzp293xafnwKLj49X3759XfcIcTqdio6O1h133KEHHnig2vfGxMQoJSVFKSkp1dbbv3+/WrZsqQ8//FCXXnrpKdvEKTAAADzjhRekW2+VysqOh5/nn5cmTqybbdfm99unk6BLS0u1fv16TZ061VUWEBCgQYMGad26dXW2n8LCQklSeHh4pa8fPXpUR48edT0vKiqqs30DAIDfTJwoJSZKW7ceH/lp18437fDpKbADBw6orKxMUVFRbuVRUVHat29fnezD6XQqJSVFF110kc4555xK66SlpcnhcLge0dHRdbJvAABQUbt20oABvgs/Uj2YA+RpkydP1rfffqslS5ZUWWfq1KkqLCx0PXbu3OnFFgIAAG/z6SmwFi1aKDAwULm5uW7lubm5VU5wro3k5GStXLlSH330kdpVEzODg4MVHBx8xvsDAAD+wacjQHa7XX369NGaNWtcZU6nU2vWrFH//v1Pe7vGGCUnJ+v111/Xf/7zH3Xs2LEumgsAABoIn18JOjU1VePHj9f555+vfv36KT09XYcPH9aECRMkSePGjVPbtm2VlpYm6fjE6U2bNrn+3r17t7Kzs9WsWTN1/v/r6CZPnqzFixfrzTffVGhoqGs+kcPhUOPGjX1wlAAAoD7x+TJ4ScrIyNATTzyhffv2qVevXnr66acVHx8vSRowYIBiYmKUmZkpScrJyal0RCchIUFr166VJNlstgqvS9LChQt14403nrI9LIMHAMD/1Ob3u14EoPqGAAQAgP/xu1thAAAAeBMBCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCKhHdu2SPvjg+L8AAM9p5OsGAFaXn5+v0tJSLV7cWPfd55DTaVNAgNHjjxdq7NhfZLfbFRER4etmAmhgyr97qtLQv3sIQIAP5efnKyMjQ4WFoUpPT5ExNkmS02nTlClh2r17gRyOYiUnJzfoLyIA3lX+3XMqDfm7h1NggA+V/7+vgoIIGeP+n6MxASooCHerBwB1oabfKQ35u4cABNQD4eH5stmcbmU2m1Ph4QU+ahEANGwEIKAecDiKlZS00hWCbDankpJWyuEo9nHLAKBhYg4QUE/ExW1QbOxWFRSEKzy8gPADwGsKC0NVUBCh8PB8y3z3EICAesThKK7xl8+JKzj27AnQ9u2N1LHjr2rT5vgoUkNfwQGgbmRl9daKFUNlTIBr9DkuboOvm+VxBCDAD524gqO6L6+GvIIDwJkrLAx1fX9IxxdfrFgxVLGxWxv8SBBzgAA/VD7yU9WXV2FhqFs9AKjMqVagNmQEIMCH7Hb7GdWz8pcXgNNX/p1yqhWoNf2O8kecAgN8KCIiQsnJyad9NdbyL68TQxDL5wGcyonfPW3bFun++x0qK7MpMNDosceKNHbsmAY/j5AABPjYmXzBlC+fP3kOUEM/dw/gzJV/99xzjzRqlLR1q9S5s03t2jWX1NyXTfMKAhDg5+rz8nmr32sI8Bft2h1/WAkBCGgAarN83ltOvtdQVdcZYaUaAF8gAAHwiBNHfqpbqs9KNQC+wCowwA+d6eoxbzrVUn0A8AVGgAA/dKarx7ypuqX69e20HQDrIAABfqo+hJuaYKk+gPqIU2AAPIo73QOojxgBAuBx9XmpPgBrIgAB8Ir6uFQfgHVxCgyAR/jTSjUA1sMIEACP8KeVagCshwAEwGMINwDqK06BAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAy+FWGIDF5Ofnc38uAJZHAAIsJD8/XxkZGa7nhYWhKiiIUHh4vhyOYld5cnIyIQhAg+bzU2Dz589XTEyMQkJCFB8fry+//LLKuhs3btSIESMUExMjm82m9PT0CnU++ugjJSUlqU2bNrLZbHrjjTc813gv2bVL+uCD4/8CZ+LEkZ+srN5KT0/RokXjlZ6eoqys3pXWA4CGyKcBaOnSpUpNTdX06dOVlZWlnj17KjExUXl5eZXWLykpUadOnTR79my1atWq0jqHDx9Wz549NX/+fE823WteeEHq0EEaOPD4vy+84OsWoSEoLAzVihVDZczxrwBjArRixVAVFob6uGUA4B0+PQU2d+5c3XLLLZowYYIk6bnnntPbb7+tBQsW6IEHHqhQv2/fvurbt68kVfq6JF155ZW68sorPddoL8nPz1dOzq+aNKmlnE6bJMnplG691ahXrzzFxDTiFAVOW0FBhCv8lDMmQAUF4W6nwgCgofLZCFBpaanWr1+vQYMG/daYgAANGjRI69at81Wz6oXyeRrz5q12hZ9yZWU2zZv3b2VkZCg/P99HLYS/Cw/Pl83mdCuz2ZwKDy/wUYsAwLt8FoAOHDigsrIyRUVFuZVHRUVp3759Xm3L0aNHVVRU5PbwpfL5F6f6kWKeBk6Xw1GspKSVrs+XzeZUUtJKRn8AWAarwCSlpaVp5syZvm5GBeU/UuVzNbz1I7Vrl7Rli9Sli9SunUd3BR+Ki9ug2NitKigIV3h4AeEHgKX4LAC1aNFCgYGBys3NdSvPzc2tcoKzp0ydOlWpqamu50VFRYqOjvZqG6rirR+p8mvDLF7cWPfd55DTaVNAgNHjjxdq7NhfuDZMA+VwFBN8AFiSzwKQ3W5Xnz59tGbNGg0fPlyS5HQ6tWbNGiUnJ3u1LcHBwQoODvbqPmvD0z9S5XOOCgtDlZ6eImPKJ13bNGVKmHbvXiCHo5hrwzQAdru9TusBgL/y6Smw1NRUjR8/Xueff7769eun9PR0HT582LUqbNy4cWrbtq3S0tIkHZ/zsmnTJtffu3fvVnZ2tpo1a6bOnTtLkg4dOqStW7e69rF9+3ZlZ2crPDxc7du39/IR+ofyuUSnWhnEnCP/FxERoeTkZK4EDcDyfBqARo0apf3792vatGnat2+fevXqpdWrV7smRu/YsUMBAb/9IO/Zs0e9e/92sbY5c+Zozpw5SkhI0Nq1ayVJ//3vf3XZZZe56pSf2ho/frwyMzM9f1B+rHzS9YkhiJVBDQ/hBgDqwSTo5OTkKk95lYeacjExMTLGVLu9AQMGnLIOKuerSdcAAHibzwMQKvLlPA1WBgEArIAAVA/5ep4GK4MAAA0dAaieYp4GAACe4/O7wQMAAHgbAQhcGwYAYDmcAoPP5xwBAOBtBCBIYs4RAMBaOAUGAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAsp5GvGwAAqD/y8/NVWloqSdqzJ0DbtzdSx46/qk0bpyTJbrcrIiLCl00E6gQBCAAg6Xj4ycjIkCRlZfXWihVDZUyAbDankpJWKi5ugyQpOTmZEAS/xykwAIAkuUZ+CgtDXeFHkowJ0IoVQ1VYGOpWD/BnBCAAgJuCgghX+ClnTIAKCsJ91CKg7hGAAABuwsPzZbM53cpsNqfCwwtq9P5du6QPPjj+L1BfEYAAAG4cjmIlJa10haDyOUAOR3GV78nPz9fevXv1178eVIcORgMHSh06GP31rwe1d+9e5efne6v5QI0wCRoAUEFc3AbFxm5VQUG4wsMLThl+MjIyVFgYqvT0FBljkyQ5nTZNmRKm3bsXyOEoZvI06hUCEACgUg5HcbXBp1z5pOjq5g45HMVMnka9wikwAECdONO5Q4A3EYAAAJKOX+TwTOqdztwhwFc4BQYAkCRFREQoOTm52lNVp7oSdG3mDgG+RAACALjUxSTlms4dAnyJU2AAAMByCEAAAMByCEAAgDNyppOnAV9gDhAA4IzUxeRpwNsIQACAM0a4gb/hFBgAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALCcehGA5s+fr5iYGIWEhCg+Pl5ffvlllXU3btyoESNGKCYmRjabTenp6We8TQAAYC0+D0BLly5Vamqqpk+frqysLPXs2VOJiYnKy8urtH5JSYk6deqk2bNnq1WrVnWyTQAAYC02Y4zxZQPi4+PVt29fZWRkSJKcTqeio6N1xx136IEHHqj2vTExMUpJSVFKSkqdbVOSioqK5HA4VFhYqLCwsNM7MAAA4FW1+f326QhQaWmp1q9fr0GDBrnKAgICNGjQIK1bt67ebBMAADQsPr0VxoEDB1RWVqaoqCi38qioKH333Xde2+bRo0d19OhR1/OioqLT2jcAAPAPPp8DVB+kpaXJ4XC4HtHR0b5uEgAA8CCfBqAWLVooMDBQubm5buW5ublVTnD2xDanTp2qwsJC12Pnzp2ntW8AAOAffBqA7Ha7+vTpozVr1rjKnE6n1qxZo/79+3ttm8HBwQoLC3N7AACAhsunc4AkKTU1VePHj9f555+vfv36KT09XYcPH9aECRMkSePGjVPbtm2VlpYm6fgk502bNrn+3r17t7Kzs9WsWTN17ty5RtsEAADW5vMANGrUKO3fv1/Tpk3Tvn371KtXL61evdo1iXnHjh0KCPhtoGrPnj3q3bu36/mcOXM0Z84cJSQkaO3atTXaJgAAsDafXweoPuI6QAAA+J/a/H77fATICvLz81VaWlrl63a7XREREV5sEQAA1kYA8rD8/HzXFaklqbAwVAUFEQoPz5fDUewqT05OJgQBAOAlBCAPO3HkJyurt1asGCpjAmSzOZWUtFJxcRsq1AMAAJ7FhRC9pLAw1BV+JMmYAK1YMVSFhaE+bhkAANZDAPKSgoIIV/gpZ0yACgrCfdQiAACsiwDkJeHh+bLZnG5lNptT4eEFPmoRAADWRQDyEoejWElJK10hqHwO0IkToQEAgHcwCdqL4uI2KDZ2qwoKwhUeXkD4AQDARwhAXuZwFBN8AADwMU6BeZjdbq/TegAA4MwxAuRhERERSk5O5krQAADUIwQgLyDcAABQv3AKDAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA5Xgq6EMUaSVFRU5OOWAACAmir/3S7/Ha8OAagSxcXH79YeHR3t45YAAIDaKi4ulsPhqLaOzdQkJlmM0+nUnj17FBoaKpvNdkbbKioqUnR0tHbu3KmwsLA6aqF/oQ/oA4k+kOgDiT6Q6APJc31gjFFxcbHatGmjgIDqZ/kwAlSJgIAAtWvXrk63GRYWZtkPejn6gD6Q6AOJPpDoA4k+kDzTB6ca+SnHJGgAAGA5BCAAAGA5BCAPCw4O1vTp0xUcHOzrpvgMfUAfSPSBRB9I9IFEH0j1ow+YBA0AACyHESAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BKDTMH/+fMXExCgkJETx8fH68ssvq62fnp6url27qnHjxoqOjtbdd9+tI0eOuF6fMWOGbDab26Nbt26ePowzUps+OHbsmB5++GHFxsYqJCREPXv21OrVq89om/VBXfeBP30OPvroIyUlJalNmzay2Wx64403TvmetWvXKi4uTsHBwercubMyMzMr1PGnz4An+sCfPgNS7ftg7969Gjt2rM466ywFBAQoJSWl0nqvvPKKunXrppCQEJ177rlatWpV3Te+jniiDzIzMyt8DkJCQjxzAHWgtn2wfPlyXXHFFYqMjFRYWJj69++vd955p0I9T38fEIBqaenSpUpNTdX06dOVlZWlnj17KjExUXl5eZXWX7x4sR544AFNnz5dmzdv1gsvvKClS5fqwQcfdKvXo0cP7d271/X45JNPvHE4p6W2ffCnP/1Jzz//vObNm6dNmzbptttu0x/+8Adt2LDhtLfpa57oA8l/PgeHDx9Wz549NX/+/BrV3759u4YMGaLLLrtM2dnZSklJ0c033+z2pedvnwFP9IHkP58BqfZ9cPToUUVGRupPf/qTevbsWWmdzz77TGPGjNHEiRO1YcMGDR8+XMOHD9e3335bl02vM57oA+n4FZJP/Bz89NNPddXkOlfbPvjoo490xRVXaNWqVVq/fr0uu+wyJSUlef83waBW+vXrZyZPnux6XlZWZtq0aWPS0tIqrT958mQzcOBAt7LU1FRz0UUXuZ5Pnz7d9OzZ0yPt9YTa9kHr1q1NRkaGW9k111xjrrvuutPepq95og/87XNQTpJ5/fXXq61z3333mR49eriVjRo1yiQmJrqe+9tn4ER11Qf++hkwpmZ9cKKEhARz1113VSgfOXKkGTJkiFtZfHy8ufXWW8+whZ5XV32wcOFC43A46qxd3lTbPijXvXt3M3PmTNdzb3wfMAJUC6WlpVq/fr0GDRrkKgsICNCgQYO0bt26St9z4YUXav369a6hux9//FGrVq3SVVdd5VZvy5YtatOmjTp16qTrrrtOO3bs8NyBnIHT6YOjR49WGL5t3Lix6//Zns42fckTfVDOXz4HtbVu3Tq3/pKkxMREV3/522fgdJyqD8o11M9ATdW0nxq6Q4cOqUOHDoqOjtawYcO0ceNGXzfJY5xOp4qLixUeHi7Je98HBKBaOHDggMrKyhQVFeVWHhUVpX379lX6nrFjx+rhhx/WxRdfrKCgIMXGxmrAgAFup8Di4+OVmZmp1atX69lnn9X27dt1ySWXqLi42KPHczpOpw8SExM1d+5cbdmyRU6nU++9956WL1+uvXv3nvY2fckTfSD51+egtvbt21dpfxUVFemXX37xu8/A6ThVH0gN+zNQU1X1U0P5HNRE165dtWDBAr355pv617/+JafTqQsvvFC7du3yddM8Ys6cOTp06JBGjhwpyXu/CQQgD1u7dq0effRRPfPMM8rKytLy5cv19ttva9asWa46V155pf74xz/qvPPOU2JiolatWqWDBw9q2bJlPmx53XnqqafUpUsXdevWTXa7XcnJyZowYYICAqzz8atJHzT0zwFOjc8AJKl///4aN26cevXqpYSEBC1fvlyRkZF6/vnnfd20Ord48WLNnDlTy5YtU8uWLb26b+v8AtWBFi1aKDAwULm5uW7lubm5atWqVaXv+fOf/6wbbrhBN998s84991z94Q9/0KOPPqq0tDQ5nc5K39O8eXOdddZZ2rp1a50fw5k6nT6IjIzUG2+8ocOHD+unn37Sd999p2bNmqlTp06nvU1f8kQfVKY+fw5qq1WrVpX2V1hYmBo3bux3n4HTcao+qExD+gzUVFX91FA+B6cjKChIvXv3bnCfgyVLlujmm2/WsmXL3E53eev7gABUC3a7XX369NGaNWtcZU6nU2vWrFH//v0rfU9JSUmFkY7AwEBJkqniNmyHDh3Stm3b1Lp16zpqed05nT4oFxISorZt2+rXX3/Va6+9pmHDhp3xNn3BE31Qmfr8Oait/v37u/WXJL333nuu/vK3z8DpOFUfVKYhfQZq6nT6qaErKyvTN99806A+By+//LImTJigl19+WUOGDHF7zWvfB3U2ndoilixZYoKDg01mZqbZtGmTmTRpkmnevLnZt2+fMcaYG264wTzwwAOu+tOnTzehoaHm5ZdfNj/++KN59913TWxsrBk5cqSrzj333GPWrl1rtm/fbj799FMzaNAg06JFC5OXl+f146uJ2vbB559/bl577TWzbds289FHH5mBAweajh07mp9//rnG26xvPNEH/vQ5KC4uNhs2bDAbNmwwkszcuXPNhg0bzE8//WSMMeaBBx4wN9xwg6v+jz/+aJo0aWKmTJliNm/ebObPn28CAwPN6tWrXXX87TPgiT7wp8+AMbXvA2OMq36fPn3M2LFjzYYNG8zGjRtdr3/66aemUaNGZs6cOWbz5s1m+vTpJigoyHzzzTdePbaa8kQfzJw507zzzjtm27ZtZv369Wb06NEmJCTErU59Uts+eOmll0yjRo3M/Pnzzd69e12PgwcPuup44/uAAHQa5s2bZ9q3b2/sdrvp16+f+fzzz12vJSQkmPHjx7ueHzt2zMyYMcPExsaakJAQEx0dbf7v//7P7Ydv1KhRpnXr1sZut5u2bduaUaNGma1bt3rxiGqvNn2wdu1ac/bZZ5vg4GATERFhbrjhBrN79+5abbM+qus+8KfPwQcffGAkVXiUH/P48eNNQkJChff06tXL2O1206lTJ7Nw4cIK2/Wnz4An+sCfPgPGnF4fVFa/Q4cObnWWLVtmzjrrLGO3202PHj3M22+/7Z0DOg2e6IOUlBTXfwdRUVHmqquuMllZWd47qFqqbR8kJCRUW7+cp78PbMZUcR4GAACggWIOEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAD4ibVr18pms+ngwYO+bgrg9whAACq48cYbZbPZNHv2bLfyN954QzabzfXcGKO///3v6t+/v8LCwtSsWTP16NFDd911V41v3FhSUqKpU6cqNjZWISEhioyMVEJCgt58801XnZiYGKWnp9fJsXlaed/ZbDYFBQWpY8eOuu+++3TkyJFabWfAgAFKSUlxK7vwwgu1d+9eORyOOmwxYE0EIACVCgkJ0WOPPaaff/650teNMRo7dqzuvPNOXXXVVXr33Xe1adMmvfDCCwoJCdFf/vKXGu3ntttu0/LlyzVv3jx99913Wr16ta699lrl5+fX5eF41eDBg7V37179+OOPevLJJ/X8889r+vTpZ7xdu92uVq1auYVQAKepTm+sAaBBGD9+vBk6dKjp1q2bmTJliqv89ddfN+VfGy+//LKRZN58881Kt+F0Omu0L4fDYTIzM6t8vbL7BpX7+OOPzcUXX2xCQkJMu3btzB133GEOHTrkev2f//yn6dOnj2nWrJmJiooyY8aMMbm5ua7Xy+9htHr1atOrVy8TEhJiLrvsMpObm2tWrVplunXrZkJDQ82YMWPM4cOHa3Q848ePN8OGDXMru+aaa0zv3r1dzw8cOGBGjx5t2rRpYxo3bmzOOeccs3jxYrdtnHzM27dvd7X3xHsJvvrqq6Z79+7GbrebDh06mDlz5tSonYDVMQIEoFKBgYF69NFHNW/ePO3atavC6y+//LK6du2qq6++utL313SUolWrVlq1apWKi4srfX358uVq166dHn74Ye3du1d79+6VJG3btk2DBw/WiBEj9L///U9Lly7VJ598ouTkZNd7jx07plmzZunrr7/WG2+8oZycHN14440V9jFjxgxlZGTos88+086dOzVy5Eilp6dr8eLFevvtt/Xuu+9q3rx5NTqek3377bf67LPPZLfbXWVHjhxRnz599Pbbb+vbb7/VpEmTdMMNN+jLL7+UJD311FPq37+/brnlFtcxR0dHV9j2+vXrNXLkSI0ePVrffPONZsyYoT//+c/KzMw8rbYCluLrBAag/jlxFOOCCy4wN910kzHGfQSoW7du5uqrr3Z731133WWaNm1qmjZtatq2bVujfX344YemXbt2JigoyJx//vkmJSXFfPLJJ251OnToYJ588km3sokTJ5pJkya5lX388ccmICDA/PLLL5Xu66uvvjKSTHFxsTHmtxGg999/31UnLS3NSDLbtm1zld16660mMTGxRsczfvx4ExgYaJo2bWqCg4ONJBMQEGBeffXVat83ZMgQc88997ieJyQkmLvuusutzskjQGPHjjVXXHGFW50pU6aY7t2716itgJUxAgSgWo899pgWLVqkzZs3n7LuQw89pOzsbE2bNk2HDh2q0fYvvfRS/fjjj1qzZo2uvfZabdy4UZdccolmzZpV7fu+/vprZWZmqlmzZq5HYmKinE6ntm/fLun4CElSUpLat2+v0NBQJSQkSJJ27Njhtq3zzjvP9XdUVJSaNGmiTp06uZXl5eXV6Hgk6bLLLlN2dra++OILjR8/XhMmTNCIESNcr5eVlWnWrFk699xzFR4ermbNmumdd96p0K5T2bx5sy666CK3sosuukhbtmxRWVlZrbYFWA0BCEC1Lr30UiUmJmrq1Klu5V26dNH333/vVhYZGanOnTurZcuWtdpHUFCQLrnkEt1///1699139fDDD2vWrFkqLS2t8j2HDh3SrbfequzsbNfj66+/1pYtWxQbG6vDhw8rMTFRYWFheumll/TVV1/p9ddfl6QK2w0KCnL9Xb5660Q2m01Op7PGx9O0aVN17txZPXv21IIFC/TFF1/ohRdecL3+xBNP6KmnntL999+vDz74QNnZ2UpMTKz2eAHUrUa+bgCA+m/27Nnq1auXunbt6iobM2aMxo4dqzfffFPDhg2r0/11795dv/76q44cOSK73S673V5hRCMuLk6bNm1S586dK93GN998o/z8fM2ePds1f+a///1vnbazJgICAvTggw8qNTVVY8eOVePGjfXpp59q2LBhuv766yVJTqdTP/zwg7p37+56X2XHfLKzzz5bn376qVvZp59+qrPOOkuBgYF1fzBAA8IIEIBTOvfcc3Xdddfp6aefdpWNHj1a1157rUaPHq2HH35YX3zxhXJycvThhx9q6dKlNf4BHjBggJ5//nmtX79eOTk5WrVqlR588EFddtllCgsLk3T8OkAfffSRdu/erQMHDkiS7r//fn322WdKTk5Wdna2tmzZojfffNM1Cbp9+/ay2+2aN2+efvzxR7311lunPK3mKX/84x8VGBio+fPnSzo+evbee+/ps88+0+bNm3XrrbcqNzfX7T0xMTGuPj1w4EClI1D33HOP1qxZo1mzZumHH37QokWLlJGRoXvvvdcrxwX4MwIQgBp5+OGH3X6EbTabli5dqvT0dK1atUqXX365unbtqptuuknR0dH65JNParTdxMRELVq0SL///e919tln64477lBiYqKWLVvmtu+cnBzFxsYqMjJS0vF5Ox9++KF++OEHXXLJJerdu7emTZumNm3aSDp+Oi4zM1OvvPKKunfvrtmzZ2vOnDl12CM116hRIyUnJ+vxxx/X4cOH9ac//UlxcXFKTEzUgAED1KpVKw0fPtztPffee68CAwPVvXt3RUZGVjo/KC4uTsuWLdOSJUt0zjnnaNq0aXr44YcrXekGwJ3NGGN83QgAAABvYgQIAABYDgEIgEeduEz95MfHH3/s6+bVyo4dO6o9ntouYwfgO5wCA+BR1d0UtW3btmrcuLEXW3Nmfv31V+Xk5FT5ekxMjBo1YnEt4A8IQAAAwHI4BQYAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACzn/wGBYTXnWzWwzAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARzFJREFUeJzt3X1cVHXe//H3gAwgwiCogIqiaKmlIqKu5l2GqatYbf1SK+/K3Eoyo0y93NRWDbUy8ybd9Sp1NVev0lq1lkpW99rM0kW5zDJTFzNLUKEGbxKIOb8/XGYduVEQZoDzej4e85A55ztnPt/vmrz3nO85X4thGIYAAABMxMvTBQAAALgbAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAqqnVq1fLYrHo+PHjni4FqHUIQICJ7d27V4mJibrlllsUEBCgZs2a6f7779c333xTrG3fvn1lsVhksVjk5eWloKAg3XzzzRo5cqQ+/vjjcn3v1q1b1adPHzVq1Eh169ZVy5Ytdf/99yslJaWyulbMiy++qPfee6/Y9k8//VSzZs3STz/9VGXffbVZs2Y5x9Jisahu3bpq166dfve73yk3N7dSvmP9+vVatGhRpRwLqI0IQICJzZ8/X5s2bdIdd9yh1157TePHj9f//u//KjY2VgcPHizWvmnTplq7dq3+9Kc/6aWXXtLQoUP16aef6s4779SwYcNUUFBwze98+eWXNXToUFksFk2bNk2vvvqq7r33Xh05ckQbNmyoim5KKjsAvfDCC24NQEWWL1+utWvXauHChWrTpo3mzp2rgQMHqjKWaCQAAWWr4+kCAHhOUlKS1q9fL6vV6tw2bNgwtW/fXvPmzdO6detc2ttsNj300EMu2+bNm6eJEyfq9ddfV1RUlObPn1/q9/3yyy+aPXu2+vfvr48++qjY/tOnT99gj6qPixcvqm7dumW2ue+++9SgQQNJ0mOPPaZ7771Xmzdv1meffabu3bu7o0zAtDgDBJhYjx49XMKPJLVu3Vq33HKLDh06dF3H8Pb21uLFi9WuXTstXbpUdru91LZnz55Vbm6ubrvtthL3N2rUyOX9pUuXNGvWLN10003y8/NTRESEfvOb3+jYsWPONi+//LJ69Oih0NBQ+fv7q3PnznrnnXdcjmOxWHThwgWtWbPGedlpzJgxmjVrliZPnixJatGihXPflXNu1q1bp86dO8vf318hISEaPny4vvvuO5fj9+3bV7feeqvS0tLUu3dv1a1bV//1X/91XeN3pX79+kmSMjIyymz3+uuv65ZbbpGvr68aN26sCRMmuJzB6tu3r95//319++23zj5FRUWVux6gNuMMEAAXhmEoKytLt9xyy3V/xtvbWyNGjNDzzz+vTz75RIMHDy6xXaNGjeTv76+tW7fqySefVEhISKnHLCws1JAhQ5Samqrhw4frqaee0rlz5/Txxx/r4MGDio6OliS99tprGjp0qB588EHl5+drw4YN+n//7/9p27ZtzjrWrl2rcePGqWvXrho/frwkKTo6WgEBAfrmm2/05z//Wa+++qrzbEzDhg0lSXPnztXzzz+v+++/X+PGjdOZM2e0ZMkS9e7dW/v371dwcLCz3uzsbA0aNEjDhw/XQw89pLCwsOsevyJFwS40NLTUNrNmzdILL7yg+Ph4Pf744zp8+LCWL1+uvXv3ateuXfLx8dH06dNlt9t18uRJvfrqq5KkevXqlbseoFYzAOAKa9euNSQZb7zxhsv2Pn36GLfcckupn3v33XcNScZrr71W5vFnzJhhSDICAgKMQYMGGXPnzjXS0tKKtXvzzTcNScbChQuL7XM4HM6fL1686LIvPz/fuPXWW41+/fq5bA8ICDBGjx5d7FgvvfSSIcnIyMhw2X78+HHD29vbmDt3rsv2L774wqhTp47L9j59+hiSjBUrVpTa7yvNnDnTkGQcPnzYOHPmjJGRkWH84Q9/MHx9fY2wsDDjwoULhmEYxqpVq1xqO336tGG1Wo0777zTKCwsdB5v6dKlhiTjzTffdG4bPHiw0bx58+uqBzAjLoEBcPr66681YcIEde/eXaNHjy7XZ4vOMJw7d67Mdi+88ILWr1+vTp066cMPP9T06dPVuXNnxcbGulx227Rpkxo0aKAnn3yy2DEsFovzZ39/f+fPP/74o+x2u3r16qV9+/aVq/6rbd68WQ6HQ/fff7/Onj3rfIWHh6t169basWOHS3tfX1+NHTu2XN9x8803q2HDhmrRooV++9vfqlWrVnr//fdLnTu0fft25efna9KkSfLy+s8/348++qiCgoL0/vvvl7+jgElxCQyAJCkzM1ODBw+WzWbTO++8I29v73J9/vz585KkwMDAa7YdMWKERowYodzcXH3++edavXq11q9fr4SEBB08eFB+fn46duyYbr75ZtWpU/Y/U9u2bdOcOXOUnp6uvLw85/YrQ1JFHDlyRIZhqHXr1iXu9/HxcXnfpEmTYvOprmXTpk0KCgqSj4+PmjZt6rysV5pvv/1W0uXgdCWr1aqWLVs69wO4NgIQANntdg0aNEg//fST/vGPf6hx48blPkbRbfOtWrW67s8EBQWpf//+6t+/v3x8fLRmzRp9/vnn6tOnz3V9/h//+IeGDh2q3r176/XXX1dERIR8fHy0atUqrV+/vtx9uJLD4ZDFYtFf//rXEsPg1XNqrjwTdb169+7tnHcEwL0IQIDJXbp0SQkJCfrmm2+0fft2tWvXrtzHKCws1Pr161W3bl317NmzQnXExcVpzZo1OnXqlKTLk5Q///xzFRQUFDvbUmTTpk3y8/PThx9+KF9fX+f2VatWFWtb2hmh0rZHR0fLMAy1aNFCN910U3m7UyWaN28uSTp8+LBatmzp3J6fn6+MjAzFx8c7t93oGTCgtmMOEGBihYWFGjZsmHbv3q233367Qs+eKSws1MSJE3Xo0CFNnDhRQUFBpba9ePGidu/eXeK+v/71r5L+c3nn3nvv1dmzZ7V06dJibY1/PyjQ29tbFotFhYWFzn3Hjx8v8YGHAQEBJT7sMCAgQJKK7fvNb34jb29vvfDCC8UeTGgYhrKzs0vuZBWKj4+X1WrV4sWLXWp64403ZLfbXe6+CwgIKPORBIDZcQYIMLFnnnlGW7ZsUUJCgnJycoo9+PDqhx7a7XZnm4sXL+ro0aPavHmzjh07puHDh2v27Nllft/FixfVo0cP/epXv9LAgQMVGRmpn376Se+9957+8Y9/6O6771anTp0kSaNGjdKf/vQnJSUlac+ePerVq5cuXLig7du364knntBdd92lwYMHa+HChRo4cKAeeOABnT59WsuWLVOrVq104MABl+/u3Lmztm/froULF6px48Zq0aKFunXrps6dO0uSpk+fruHDh8vHx0cJCQmKjo7WnDlzNG3aNB0/flx33323AgMDlZGRoXfffVfjx4/Xs88+e0PjX14NGzbUtGnT9MILL2jgwIEaOnSoDh8+rNdff11dunRx+d+rc+fO2rhxo5KSktSlSxfVq1dPCQkJbq0XqNY8eQsaAM8qun27tFdZbevVq2e0bt3aeOihh4yPPvrour6voKDAWLlypXH33XcbzZs3N3x9fY26desanTp1Ml566SUjLy/Ppf3FixeN6dOnGy1atDB8fHyM8PBw47777jOOHTvmbPPGG28YrVu3Nnx9fY02bdoYq1atct5mfqWvv/7a6N27t+Hv729Icrklfvbs2UaTJk0MLy+vYrfEb9q0yejZs6cREBBgBAQEGG3atDEmTJhgHD582GVsynpEwNWK6jtz5kyZ7a6+Db7I0qVLjTZt2hg+Pj5GWFiY8fjjjxs//vijS5vz588bDzzwgBEcHGxI4pZ44CoWw6iERWcAAABqEOYAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0+FBiCVwOBz64YcfFBgYyOPkAQCoIQzD0Llz59S4cWN5eZV9jocAVIIffvhBkZGRni4DAABUwHfffaemTZuW2YYAVILAwEBJlwewrHWNAABA9ZGbm6vIyEjn7/GyEIBKUHTZKygoiAAEAEANcz3TV5gEDQAATIcABAAATIcABAAATIc5QAAAVJLCwkIVFBR4uoxay8fHR97e3pVyLAIQAAA3yDAMZWZm6qeffvJ0KbVecHCwwsPDb/g5fQQgAABuUFH4adSokerWrctDdKuAYRi6ePGiTp8+LUmKiIi4oeMRgAAAuAGFhYXO8BMaGurpcmo1f39/SdLp06fVqFGjG7ocxiRoAABuQNGcn7p163q4EnMoGucbnWtFAAIAoBJw2cs9KmucuQTmBtnZ2crPzy91v9Vq5bQpAABuRACqYtnZ2Vq6dOk12yUmJhKCAABwEy6BVbGyzvxUpB0AAJVlzJgxslgsslgs8vHxUVhYmPr3768333xTDofjuo+zevVqBQcHV12hVYAzQAAAeJgnp0oMHDhQq1atUmFhobKyspSSkqKnnnpK77zzjrZs2aI6dWpnVKidvQIAoIbw9FQJX19fhYeHS5KaNGmi2NhY/epXv9Idd9yh1atXa9y4cVq4cKFWrVqlf/3rXwoJCVFCQoIWLFigevXqaefOnRo7dqyk/0xQnjlzpmbNmqW1a9fqtdde0+HDhxUQEKB+/fpp0aJFatSoUaX3o7y4BOZmdnugMjKiZLcHeroUAEA1UB2nSvTr108dO3bU5s2bJUleXl5avHixvvzyS61Zs0Z/+9vf9Nxzz0mSevTooUWLFikoKEinTp3SqVOn9Oyzz0q6fKv67Nmz9X//93967733dPz4cY0ZM8Zt/SgLZ4DcaN++Ttq6dYgMw0sWi0MJCdsUG7vf02UBAFBMmzZtdODAAUnSpEmTnNujoqI0Z84cPfbYY3r99ddltVpls9lksVicZ5KKPPzww86fW7ZsqcWLF6tLly46f/686tWr55Z+lIYzQG5itwc6w48kGYaXtm4dwpkgAEC1ZBiG85LW9u3bdccdd6hJkyYKDAzUyJEjlZ2drYsXL5Z5jLS0NCUkJKhZs2YKDAxUnz59JEknTpyo8vqvhQDkJjk5oc7wU8QwvJSTE+KhigAAKN2hQ4fUokULHT9+XEOGDFGHDh20adMmpaWladmyZZLKvix34cIFDRgwQEFBQXrrrbe0d+9evfvuu9f8nLtwCayKWa1WSVJISLYsFodLCLJYHAoJyXFpBwCAp/3tb3/TF198oaefflppaWlyOBx65ZVX5OV1+XfY//zP/7i0t1qtKiwsdNn29ddfKzs7W/PmzVNkZKQk6Z///Kd7OnAdCEBVLDQ0VImJicrPz1eTJrmaMsWmwkKLvL0NzZ+fqwceGMGToAEAHpOXl6fMzEyX2+CTk5M1ZMgQjRo1SgcPHlRBQYGWLFmihIQE7dq1SytWrHA5RlRUlM6fP6/U1FR17NhRdevWVbNmzWS1WrVkyRI99thjOnjwoGbPnu2hXhbHJTA3CA0NVUREhJ55JljHj1u0Y4d0/LhFzzwTrIiICMIPAMBjUlJSFBERoaioKA0cOFA7duzQ4sWL9Ze//EXe3t7q2LGjFi5cqPnz5+vWW2/VW2+9peTkZJdj9OjRQ4899piGDRumhg0basGCBWrYsKFWr16tt99+W+3atdO8efP08ssve6iXxVkMwzA8XUR1k5ubK5vNJrvdrqCgIE+XAwCoxi5duqSMjAy1aNFCfn5+5f68p58DVNOUNd7l+f3NJTAAADzoyqkSpWGqROUjAAEA4GGEG/djDhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAAKgSO3fulMVi0U8//XTdn4mKitKiRYuqrKYiBCAAAExqzJgxslgseuyxx4rtmzBhgiwWi8aMGeP+wtygWgSgZcuWKSoqSn5+furWrZv27NlTatvNmzcrLi5OwcHBCggIUExMjNauXVtq+8cee0wWi8UtaRIAgJomMjJSGzZs0M8//+zcdunSJa1fv17NmjXzYGVVy+MBaOPGjUpKStLMmTO1b98+dezYUQMGDNDp06dLbB8SEqLp06dr9+7dOnDggMaOHauxY8fqww8/LNb23Xff1WeffabGjRtXdTcAAKiRYmNjFRkZqc2bNzu3bd68Wc2aNVOnTp2c2/Ly8jRx4kQ1atRIfn5+6tmzp/bu3etyrA8++EA33XST/P39dfvtt+v48ePFvu+TTz5Rr1695O/vr8jISE2cOFEXLlyosv6VxuMBaOHChXr00Uc1duxYtWvXTitWrFDdunX15ptvlti+b9++uueee9S2bVtFR0frqaeeUocOHfTJJ5+4tPv+++/15JNP6q233pKPj487ugIAwA07eVLasePyn+7y8MMPa9WqVc73b775psaOHevS5rnnntOmTZu0Zs0a7du3T61atdKAAQOUk5MjSfruu+/0m9/8RgkJCUpPT9e4ceM0depUl2McO3ZMAwcO1L333qsDBw5o48aN+uSTT5SYmFj1nbyKRwNQfn6+0tLSFB8f79zm5eWl+Ph47d69+5qfNwxDqampOnz4sHr37u3c7nA4NHLkSE2ePFm33HLLNY+Tl5en3NxclxcAAO72xhtS8+ZSv36X/3zjDfd870MPPaRPPvlE3377rb799lvt2rVLDz30kHP/hQsXtHz5cr300ksaNGiQ2rVrp5UrV8rf319v/LvI5cuXKzo6Wq+88opuvvlmPfjgg8XmDyUnJ+vBBx/UpEmT1Lp1a/Xo0UOLFy/Wn/70J126dMk9nf03j64Gf/bsWRUWFiosLMxle1hYmL7++utSP2e329WkSRPl5eXJ29tbr7/+uvr37+/cP3/+fNWpU0cTJ068rjqSk5P1wgsvVKwTAABUgpMnpfHjJYfj8nuHQ/rtb6UBA6SmTav2uxs2bKjBgwdr9erVMgxDgwcPVoMGDZz7jx07poKCAt12223ObT4+PuratasOHTokSTp06JC6devmctzu3bu7vP+///s/HThwQG+99ZZzm2EYcjgcysjIUNu2bauieyXyaACqqMDAQKWnp+v8+fNKTU1VUlKSWrZsqb59+yotLU2vvfaa9u3bJ4vFcl3HmzZtmpKSkpzvc3NzFRkZWVXlAwBQzJEj/wk/RQoLpaNHqz4ASZcvgxVdilq2bFmVfMf58+f129/+tsQTFO6ecO3RANSgQQN5e3srKyvLZXtWVpbCw8NL/ZyXl5datWolSYqJidGhQ4eUnJysvn376h//+IdOnz7tMpCFhYV65plntGjRohInZPn6+srX17dyOgUAQAW0bi15ebmGIG9v6d+/7qrcwIEDlZ+fL4vFogEDBrjsi46OltVq1a5du9S8eXNJUkFBgfbu3atJkyZJktq2bastW7a4fO6zzz5zeR8bG6uvvvrK+Tvckzw6B8hqtapz585KTU11bnM4HEpNTS122qwsDodDeXl5kqSRI0fqwIEDSk9Pd74aN26syZMnl3inGAAA1UHTptIf/3g59EiX//zDH9xz9ufy93nr0KFD+uqrr+RdVMS/BQQE6PHHH9fkyZOVkpKir776So8++qguXryoRx55RNLlx84cOXJEkydP1uHDh7V+/XqtXr3a5ThTpkzRp59+qsTERKWnp+vIkSP6y1/+4pFJ0B6/BJaUlKTRo0crLi5OXbt21aJFi3ThwgXn7PNRo0apSZMmSk5OlnR5vk5cXJyio6OVl5enDz74QGvXrtXy5cslSaGhoQoNDXX5Dh8fH4WHh+vmm292b+cAACiHRx65POfn6NHLZ37cFX6KBAUFlbpv3rx5zpuMzp07p7i4OH344YeqX7++pMuXsDZt2qSnn35aS5YsUdeuXfXiiy/q4Ycfdh6jQ4cO+vvf/67p06erV69eMgxD0dHRGjZsWJX37WoeD0DDhg3TmTNnNGPGDGVmZiomJkYpKSnOidEnTpyQl9d/TlRduHBBTzzxhE6ePCl/f3+1adNG69at88jgAQBQ2Zo2dV/wufoMzdXee+89589+fn5avHixFi9eXGr7IUOGaMiQIS7brr6dvkuXLvroo49KPUZJU1WqgsUwDMMt31SD5ObmymazyW63l5mGAQC4dOmSMjIy1KJFC/n5+Xm6nFqvrPEuz+9vjz8IEQAAwN0IQAAAwHQIQAAAwHQIQAAAVAKm1LpHZY0zAQgAgBtQtOD2xYsXPVyJORSN840udO7x2+ABAKjJvL29FRwcrNOnT0uS6tate91LMeH6GYahixcv6vTp0woODi72sMbyIgABAHCDipZvKgpBqDrBwcFlLpd1vQhAAADcIIvFooiICDVq1EgFBQWeLqfW8vHxueEzP0UIQAAAVBJvb+9K+wWNqsUkaAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDo8CRrFZGdnKz8/v9T9VqtVoaGhbqwIAIDKRQCCi+zsbC1dutT53m4PVE5OqEJCsmWznXNuT0xMJAQBAGosAhBcXHnmZ9++Ttq6dYgMw0sWi0MJCdsUG7u/WDsAAGoa5gChRHZ7oDP8SJJheGnr1iGy2wM9XBkAADeOAIQS5eSEOsNPEcPwUk5OiIcqAgCg8hCAUKKQkGxZLA6XbRaLQyEhOR6qCACAykMAQolstnNKSNjmDEFFc4CunAgNAEBNxSRolCo2dr+io48qJydEISE5Nxx+uL0eAFBdEIBQJpvtXKWc9eH2egBAdUIAggur1Vqp7Ypwez0AoDohAMFFaGioEhMTq+xSVWm310dHH2V+EQDAbQhAKKYqL0GVdXs9AQgA4C7cBQa34vZ6AEB1QACCW3F7PQCgOuASGNyusm+vBwCgvAhA8IjKur0eAICK4BIY3KKqbq8HAKAiOAMEt6jq2+sBACgPAhDchnADAKguuAQGAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEVIKTJ6UdOy7/CQCo/ghAQAVlZ2fr1KlTeuWVn9S8uaF+/aTmzQ298spPOnXqlLKzsz1dIgCgFDwHCKiA7OxsLV26VHZ7oBYtmiTDsEiSHA6LJk8O0vffvymb7ZwSExN5/hEAVEOcAQIqoOiJ1jk5oTIM1/+MDMNLOTkhLu0AANULAQi4ASEh2bJYHC7bLBaHQkJyPFQRAOB6EICAG2CznVNCwjZnCLJYHEpI2MZK9wBQzTEHCLhBsbH7FR19VDk5IQoJySH8AEANQAACKoHNdo7gAwA1CJfAAKAUPN8JqL0IQABQgjfekJo317+f73T5PYDagwAEVIDVaq3Udqg+srOzlZaWpfHjDTn+fYOfwyH99reG0tKyeMAlUEswBwiogNDQUCUmJpb5nB+r1cpDEGuYogdcZmREyeEY7bKvsNCiJUv+qhYtvuUBl0AtQAACKohfgLVPUaAter7TlQ+5vPL5TjzgEqj5qsUlsGXLlikqKkp+fn7q1q2b9uzZU2rbzZs3Ky4uTsHBwQoICFBMTIzWrl3r3F9QUKApU6aoffv2CggIUOPGjTVq1Cj98MMP7ugKAA+o7MnKPN8JqP08fgZo48aNSkpK0ooVK9StWzctWrRIAwYM0OHDh9WoUaNi7UNCQjR9+nS1adNGVqtV27Zt09ixY9WoUSMNGDBAFy9e1L59+/T888+rY8eO+vHHH/XUU09p6NCh+uc//+mBHgKoCtnZ2crPz9f69f567jmbHA6LvLwMLVhg1wMP/HzDlyB5vhNQu1kMwzA8WUC3bt3UpUsXLV26VJLkcDgUGRmpJ598UlOnTr2uY8TGxmrw4MGaPXt2ifv37t2rrl276ttvv1WzZs2uebzc3FzZbDbZ7XYFBQVdf2cAuEXxxWhdL1VNmrSoQovRnjp1Sn/84x+v2W78+PGKiIioUO0Aqk55fn979BJYfn6+0tLSFB8f79zm5eWl+Ph47d69+5qfNwxDqampOnz4sHr37l1qO7vdLovFouDg4BL35+XlKTc31+UFoPpiMVoAN8qjAejs2bMqLCxUWFiYy/awsDBlZmaW+jm73a569erJarVq8ODBWrJkifr3719i20uXLmnKlCkaMWJEqWkwOTlZNpvN+YqMjKx4pwC4DYvRAqioajEJurwCAwOVnp6uvXv3au7cuUpKStLOnTuLtSsoKND9998vwzC0fPnyUo83bdo02e125+u7776rwuoBVBYmKwOoKI9Ogm7QoIG8vb2VlZXlsj0rK0vh4eGlfs7Ly0utWrWSJMXExOjQoUNKTk5W3759nW2Kws+3336rv/3tb2VeC/T19ZWvr++NdQbADTl5UjpyRGrdWmra9Po/V5mTlXnAJWAeHg1AVqtVnTt3Vmpqqu6++25JlydBp6amKjEx8bqP43A4lJeX53xfFH6OHDmiHTt28LwWoJqqrDu5KmsxWh5wCZiHx2+DT0pK0ujRoxUXF6euXbtq0aJFunDhgsaOHStJGjVqlJo0aaLk5GRJl+frxMXFKTo6Wnl5efrggw+0du1a5yWugoIC3Xfffdq3b5+2bdumwsJC53yikJAQ/p8bUE0Uv5PLIklyOCyaPDlI33//ZoXu5LpRhBvAHDwegIYNG6YzZ85oxowZyszMVExMjFJSUpwTo0+cOCEvr/9MVbpw4YKeeOIJnTx5Uv7+/mrTpo3WrVunYcOGSZK+//57bdmyRdLly2NX2rFjh8tlMgCecz13ctls57iTC0CV8HgAkqTExMRSL3ldPbl5zpw5mjNnTqnHioqKkocfbQSgHK617ERJmKsD4EZViwAEwLyK7uTaunWIDMPruu7kunquzg8/eCkjo45atPhFjRtfviOMuToAykIAAuBxN3InV2kTqAGgLAQgANVCee7kqq4TqAHUHDXyQYgAzI2lMADcKAIQgBqLpTAAVBQBCIBHVMadXCyFAaCimAMEwCMq66nLlbkUBgDzIAAB8JjKmqBcWUthADAPLoEBAADTIQABAADTIQABqHFYCgPAjbIYLJxVTG5urmw2m+x2u4KCgjxdDoASZGdnlzqB2m63yzAMBQcHs0wGYCLl+f3NJGgANVJpASY7O1sbN26UJO3b16nYGmOxsfsliadEAybHJTAAtUrRWSG7PdAZfqTLT4jeunWI7PZAl3YAzIkzQABqpbKWyahpt8xfebmPS3pA5SAAAahV7Ha7pMvLZEgOuZ7o/s8yGXa7XREREW6vr7yKFn6VuKQHVCYugQGoVQoKCq54Z3HZZ7GU1q764pIeUDUIQABqpZycUF0dgK5cKb6mKeuSHoDyIwABqJVq20rxta0/gKcRgADUSrVtpfja1h/A05gEDaBWqVPnP/+slbVS/JXtaoqy+gOgfGrevwAAUIbg4GCX96WtFH91u5qitP4AKB8ugQEAANMhAAGoVWrbQqm1rT9AdcFiqCVgMVSgZitroVSp5j05ubb1B6gqLIYKwNQIAwCuhQAEANXYlUthSJefCJ2TE6qQkGyXydAshQGUDwEIAKqxKy99lbUWGEthAOXDJGgAqAGutRYYgPIhAAFADcBaYEDlIgABQA3AWmBA5SIAAUANwFpgQOViEjQA1BCsBQZUHgIQANQgrAUGVA4ugQFANcZSGEDV4AwQAFRjoaGhSkxMZCkMoJIRgACgmiPcAJWPS2AAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0uA0eAEwqOzub5wvBtAhAAGBC2dnZWrp06TXbJSYmEoJQK3EJDABM6OozP3Z7oDIyomS3B5bZDqgtOAMEACa3b18nbd06RIbhJYvFoYSEbYqN3e/psoAqxRkgADAxuz3QGX4kyTC8tHXrkGJngoDahgAEACaWkxPqDD9FDMNLOTkhHqoIcA8CEACYWEhItiwWh8s2i8WhkJAcD1UEuAcBCABMzGY7p4SEbc4QVDQHyGY75+HKgKrFJGgAMLnY2P2Kjj6qnJwQhYTkEH5gCgQgADAhq9Xq8t5mO1di8Lm6HVBbEIAAwIRCQ0OVmJjIk6BhWgQgADApwg3MrFpMgl62bJmioqLk5+enbt26ac+ePaW23bx5s+Li4hQcHKyAgADFxMRo7dq1Lm0Mw9CMGTMUEREhf39/xcfH68iRI1XdDQAAUEN4PABt3LhRSUlJmjlzpvbt26eOHTtqwIABOn36dIntQ0JCNH36dO3evVsHDhzQ2LFjNXbsWH344YfONgsWLNDixYu1YsUKff755woICNCAAQN06dIld3ULAABUYxbDMAxPFtCtWzd16dLFuSifw+FQZGSknnzySU2dOvW6jhEbG6vBgwdr9uzZMgxDjRs31jPPPKNnn31WkmS32xUWFqbVq1dr+PDh1zxebm6ubDab7Ha7goKCKt45AADgNuX5/e3RM0D5+flKS0tTfHy8c5uXl5fi4+O1e/fua37eMAylpqbq8OHD6t27tyQpIyNDmZmZLse02Wzq1q1bqcfMy8tTbm6uywsAANReHg1AZ8+eVWFhocLCwly2h4WFKTMzs9TP2e121atXT1arVYMHD9aSJUvUv39/SXJ+rjzHTE5Ols1mc74iIyNvpFsAAKCa8/gcoIoIDAxUenq69u7dq7lz5yopKUk7d+6s8PGmTZsmu93ufH333XeVVywAAKh2PHobfIMGDeTt7a2srCyX7VlZWQoPDy/1c15eXmrVqpUkKSYmRocOHVJycrL69u3r/FxWVpYiIiJcjhkTE1Pi8Xx9feXr63uDvQEAADWFR88AWa1Wde7cWampqc5tDodDqamp6t69+3Ufx+FwKC8vT5LUokULhYeHuxwzNzdXn3/+ebmOCQAAai+PPwgxKSlJo0ePVlxcnLp27apFixbpwoULGjt2rCRp1KhRatKkiZKTkyVdnq8TFxen6Oho5eXl6YMPPtDatWu1fPlySZLFYtGkSZM0Z84ctW7dWi1atNDzzz+vxo0b6+677/ZUNwEAQDXi8QA0bNgwnTlzRjNmzFBmZqZiYmKUkpLinMR84sQJeXn950TVhQsX9MQTT+jkyZPy9/dXmzZttG7dOg0bNszZ5rnnntOFCxc0fvx4/fTTT+rZs6dSUlLk5+fn9v4BAIDqx+PPAaqOeA4QAAA1T415DhAAAIAnlDsAffDBBxo3bpyee+45ff311y77fvzxR/Xr16/SigMAAKgK5QpA69ev19ChQ5WZmandu3erU6dOeuutt5z78/Pz9fe//73SiwQAAKhM5ZoE/dJLL2nhwoWaOHGiJOl//ud/9PDDD+vSpUt65JFHqqRAAACAylauAHTkyBElJCQ4399///1q2LChhg4dqoKCAt1zzz2VXiAAAEBlK1cACgoKUlZWllq0aOHcdvvtt2vbtm0aMmSITp48WekFAgAAVLZyzQHq2rWr/vrXvxbb3qdPH23dulWLFi2qrLoAAACqTLkC0NNPP13qwwT79u2rrVu3atSoUZVSGAAAQFXhQYgl4EGIAADUPOX5/V2uOUBeXl6yWCxltrFYLPrll1/Kc1gAAAC3KlcAevfdd0vdt3v3bi1evFgOh+OGiwIAAKhK5QpAd911V7Fthw8f1tSpU7V161Y9+OCD+v3vf19pxQEAAFSFCq8F9sMPP+jRRx9V+/bt9csvvyg9PV1r1qxR8+bNK7M+AACASleuM0CSZLfb9eKLL2rJkiWKiYlRamqqevXqVRW1AQBMJjs7W/n5+aXut1qtCg0NdWNFqK3KFYAWLFig+fPnKzw8XH/+859LvCQGAEBFZGdna+nSpddsl5iYSAjCDStXAJo6dar8/f3VqlUrrVmzRmvWrCmx3ebNmyulOACAeZR15qci7YCylCsAjRo16pq3wQMAUN1waQ1XK1cAWr16dRWVAQCAK7s9UDk5oQoJyZbNdq7Cx+HSGkpS7knQAABUtX37Omnr1iEyDC9ZLA4lJGxTbOz+Ch2LS2soSYVvgwcAoCrY7YHO8CNJhuGlrVuHyG4P9HBlqE0IQACAaiUnJ9QZfooYhpdyckI8VBFqIwIQAKBaCQnJlsXiuqySxeJQSEhOpRzfbg9URkYUZ5RMjjlAAIBqwWq1SpJstnNKSNhWbA5Q0UToonYVUZlzi1CzEYAAANVCaGioEhMTnZORZ8w4o+PH6ygq6hc1btxFUpcbul29tLlF0dFHb+guM9RMBCAAQLVxZbiJiJA6d77+z5b2rJ+zZ89KKntuEQHIfAhAAIAa73qe9VM0t+jKEHTl3KIbubSGmocABACo8a7nGT422znNnPmDZs9uosJCi7y9Dc2fn6sHHhjBk6BNiAAEADCN8eO99cgjFh09KrVqZVHTpsGSgj1cFTyBAAQAMJWmTS+/YG48BwgAUOvwrB9cC2eAAAC1Cs/6wfXgDBAAoNZgHTFcLwIQAKDWYB0xXC8CEACgxit6hs+11hHjWT8owhwgAECNd+UyGk2a5GrKFBvP+kGZLIZhGJ4uorrJzc2VzWaT3W5XUFCQp8sBAJTTyZP697N+uOXdTMrz+5szQACAWodn/eBamAMEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMx+MBaNmyZYqKipKfn5+6deumPXv2lNp25cqV6tWrl+rXr6/69esrPj6+WPvz588rMTFRTZs2lb+/v9q1a6cVK1ZUdTcAAEAN4tEAtHHjRiUlJWnmzJnat2+fOnbsqAEDBuj06dMltt+5c6dGjBihHTt2aPfu3YqMjNSdd96p77//3tkmKSlJKSkpWrdunQ4dOqRJkyYpMTFRW7ZscVe3AABANWcxDMPw1Jd369ZNXbp00dKlSyVJDodDkZGRevLJJzV16tRrfr6wsFD169fX0qVLNWrUKEnSrbfeqmHDhun55593tuvcubMGDRqkOXPmXFddubm5stlsstvtCgoKqkDPAACAu5Xn97fHzgDl5+crLS1N8fHx/ynGy0vx8fHavXv3dR3j4sWLKigoUEhIiHNbjx49tGXLFn3//fcyDEM7duzQN998ozvvvLPU4+Tl5Sk3N9flBQAAai+PBaCzZ8+qsLBQYWFhLtvDwsKUmZl5XceYMmWKGjdu7BKilixZonbt2qlp06ayWq0aOHCgli1bpt69e5d6nOTkZNlsNucrMjKyYp0CAAA1gscnQVfUvHnztGHDBr377rvy8/Nzbl+yZIk+++wzbdmyRWlpaXrllVc0YcIEbd++vdRjTZs2TXa73fn67rvv3NEFAADgIXU89cUNGjSQt7e3srKyXLZnZWUpPDy8zM++/PLLmjdvnrZv364OHTo4t//888/6r//6L7377rsaPHiwJKlDhw5KT0/Xyy+/7HKm6Eq+vr7y9fW9wR4BAICawmNngKxWqzp37qzU1FTnNofDodTUVHXv3r3Uzy1YsECzZ89WSkqK4uLiXPYVFBSooKBAXl6u3fL29pbD4ajcDgAAgBrLY2eApMu3rI8ePVpxcXHq2rWrFi1apAsXLmjs2LGSpFGjRqlJkyZKTk6WJM2fP18zZszQ+vXrFRUV5ZwrVK9ePdWrV09BQUHq06ePJk+eLH9/fzVv3lx///vf9ac//UkLFy70WD8BAED14tEANGzYMJ05c0YzZsxQZmamYmJilJKS4pwYfeLECZezOcuXL1d+fr7uu+8+l+PMnDlTs2bNkiRt2LBB06ZN04MPPqicnBw1b95cc+fO1WOPPea2fgEAgOrNo88Bqq54DhAAADVPjXgOEAAAgKcQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOnU8XQBAACguOzsbOXn55e632q1KjQ01I0V1S4EIAAAqpns7GwtXbr0mu0SExMJQRXEJTAAAKqZss78VKQdiiMAAQBQzdntgcrIiJLdHujpUmoNLoEBAFCN7dvXSVu3DpFheMlicSghYZtiY/d7uqwajzNAAABUU3Z7oDP8SJJheGnr1iGcCaoEBCAAAKqpnJxQZ/gpYhheyskJ8VBFtQcBCACAaiokJFsWi8Nlm8XiUEhIjocqqj0IQAAAVFM22zklJGxzhqCiOUA22zkPV1bzMQkaAIBqxmq1On+Ojd2v6OijyskJUUhIjkv4ubIdyocABABANRMaGqrExESeBF2FCEAAAFRDhJuqxRwgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOh4PQMuWLVNUVJT8/PzUrVs37dmzp9S2K1euVK9evVS/fn3Vr19f8fHxJbY/dOiQhg4dKpvNpoCAAHXp0kUnTpyoym4AAIAaxKMBaOPGjUpKStLMmTO1b98+dezYUQMGDNDp06dLbL9z506NGDFCO3bs0O7duxUZGak777xT33//vbPNsWPH1LNnT7Vp00Y7d+7UgQMH9Pzzz8vPz89d3QIAANWcxTAMw1Nf3q1bN3Xp0kVLly6VJDkcDkVGRurJJ5/U1KlTr/n5wsJC1a9fX0uXLtWoUaMkScOHD5ePj4/Wrl1b4bpyc3Nls9lkt9sVFBRU4eMAAAD3Kc/vb4+dAcrPz1daWpri4+P/U4yXl+Lj47V79+7rOsbFixdVUFCgkJDLq+I6HA69//77uummmzRgwAA1atRI3bp103vvvVfmcfLy8pSbm+vyAgAAtZfHAtDZs2dVWFiosLAwl+1hYWHKzMy8rmNMmTJFjRs3doao06dP6/z585o3b54GDhyojz76SPfcc49+85vf6O9//3upx0lOTpbNZnO+IiMjK94xAABQ7dXYpTDmzZunDRs2aOfOnc75PQ7H5dVy77rrLj399NOSpJiYGH366adasWKF+vTpU+Kxpk2bpqSkJOf73NxcQhAAALWYxwJQgwYN5O3traysLJftWVlZCg8PL/OzL7/8subNm6ft27erQ4cOLsesU6eO2rVr59K+bdu2+uSTT0o9nq+vr3x9fSvQCwAAUBN57BKY1WpV586dlZqa6tzmcDiUmpqq7t27l/q5BQsWaPbs2UpJSVFcXFyxY3bp0kWHDx922f7NN9+oefPmldsBAABQY3n0ElhSUpJGjx6tuLg4de3aVYsWLdKFCxc0duxYSdKoUaPUpEkTJScnS5Lmz5+vGTNmaP369YqKinLOFapXr57q1asnSZo8ebKGDRum3r176/bbb1dKSoq2bt2qnTt3eqSPAACg+vFoABo2bJjOnDmjGTNmKDMzUzExMUpJSXFOjD5x4oS8vP5zkmr58uXKz8/Xfffd53KcmTNnatasWZKke+65RytWrFBycrImTpyom2++WZs2bVLPnj3d1i8AAFC9efQ5QNUVzwECANRW2dnZys/PL3W/1WpVaGioGyuqPOX5/V1j7wIDAADlk52d7Xz4cFkSExNrbAi6Xh5fCwwAALhHWWd+KtKuJiMAAQBgUnZ7oDIyomS3B3q6FLfjEhgAACa0b18nbd06RIbhJYvFoYSEbYqN3e/pstyGM0AAAJiM3R7oDD+SZBhe2rp1iKnOBBGAAAAwmZycUGf4KWIYXsrJCfFQRe5HAAIAwGRCQrJlsThctlksDoWE5HioIvcjAAEAYDI22zklJGxzhqCiOUA22zkPV+Y+TIIGAMAkrFar8+fY2P2Kjj6qnJwQhYTkuISfK9vVVgQgAABMIjQ0VImJibX2SdDlQQACAMBEzBBurgdzgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOmwGCoAALhh2dnZNWqVeQIQAAC4IdnZ2Vq6dOk12yUmJlabEMQlMAAAcEPKOvNTkXbuQAACAACVym4PVEZGlOz2QE+XUiougQEAgEqzb18nbd06RIbhJYvFoYSEbYqN3e/psorhDBAAAKgUdnugM/xIkmF4aevWIdXyTBABCAAAVIqcnFBn+CliGF7KyQnxUEWlIwABAIBKERKSLYvF4bLNYnEoJCTHQxWVjgAEAAAqhc12TgkJ25whqGgOkM12zsOVFcckaAAAcEOsVqvz59jY/YqOPqqcnBCFhOS4hJ8r23kaAQgAANyQ0NBQJSYm8iRoAABgLtUp3FwP5gABAADT4QwQAACoUtVxoVQCEAAAqDLVdaFULoEBAIAqc/WZn9LWCXP3QqmcAQIAAG5RndYJ4wwQAACoctVtnTACEAAAqHLVbZ0wAhAAAKhy1W2dMAIQAACoctVtnTAmQQMAALcoa50wdyMAAQCAKnP1Aqg227kSg4+7F0olAAEAgCpTXRdKJQABAIAqVR0XSmUSNAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB2eBF0CwzAkSbm5uR6uBAAAXK+i39tFv8fLQgAqwblzlxdpi4yM9HAlAACgvM6dOyebzVZmG4txPTHJZBwOh3744QcFBgbKYrEU25+bm6vIyEh99913CgoK8kCF1R9jdG2MUdkYn2tjjK6NMbq22jRGhmHo3Llzaty4sby8yp7lwxmgEnh5ealp06bXbBcUFFTj/7JUNcbo2hijsjE+18YYXRtjdG21ZYyudeanCJOgAQCA6RCAAACA6RCAKsDX11czZ86Ur6+vp0upthija2OMysb4XBtjdG2M0bWZdYyYBA0AAEyHM0AAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEClWLZsmaKiouTn56du3bppz549pbb98ssvde+99yoqKkoWi0WLFi1yX6EeVJ4xWrlypXr16qX69eurfv36io+PL7N9bVCe8dm8ebPi4uIUHBysgIAAxcTEaO3atW6s1jPKM0ZX2rBhgywWi+6+++6qLbAaKM8YrV69WhaLxeXl5+fnxmo9o7x/j3766SdNmDBBERER8vX11U033aQPPvjATdV6RnnGqG/fvsX+HlksFg0ePNiNFbuBgWI2bNhgWK1W48033zS+/PJL49FHHzWCg4ONrKysEtvv2bPHePbZZ40///nPRnh4uPHqq6+6t2APKO8YPfDAA8ayZcuM/fv3G4cOHTLGjBlj2Gw24+TJk26u3D3KOz47duwwNm/ebHz11VfG0aNHjUWLFhne3t5GSkqKmyt3n/KOUZGMjAyjSZMmRq9evYy77rrLPcV6SHnHaNWqVUZQUJBx6tQp5yszM9PNVbtXeccoLy/PiIuLM379618bn3zyiZGRkWHs3LnTSE9Pd3Pl7lPeMcrOznb5O3Tw4EHD29vbWLVqlXsLr2IEoBJ07drVmDBhgvN9YWGh0bhxYyM5Ofman23evLkpAtCNjJFhGMYvv/xiBAYGGmvWrKmqEj3qRsfHMAyjU6dOxu9+97uqKK9aqMgY/fLLL0aPHj2M//7v/zZGjx5d6wNQecdo1apVhs1mc1N11UN5x2j58uVGy5Ytjfz8fHeV6HE3+u/Rq6++agQGBhrnz5+vqhI9gktgV8nPz1daWpri4+Od27y8vBQfH6/du3d7sLLqozLG6OLFiyooKFBISEhVlekxNzo+hmEoNTVVhw8fVu/evauyVI+p6Bj9/ve/V6NGjfTII4+4o0yPqugYnT9/Xs2bN1dkZKTuuusuffnll+4o1yMqMkZbtmxR9+7dNWHCBIWFhenWW2/Viy++qMLCQneV7VaV8e/1G2+8oeHDhysgIKCqyvQIAtBVzp49q8LCQoWFhblsDwsLU2Zmpoeqql4qY4ymTJmixo0bu/xHWVtUdHzsdrvq1asnq9WqwYMHa8mSJerfv39Vl+sRFRmjTz75RG+88YZWrlzpjhI9riJjdPPNN+vNN9/UX/7yF61bt04Oh0M9evTQyZMn3VGy21VkjP71r3/pnXfeUWFhoT744AM9//zzeuWVVzRnzhx3lOx2N/rv9Z49e3Tw4EGNGzeuqkr0GFaDh9vNmzdPGzZs0M6dO00xQfN6BQYGKj09XefPn1dqaqqSkpLUsmVL9e3b19Oledy5c+c0cuRIrVy5Ug0aNPB0OdVW9+7d1b17d+f7Hj16qG3btvrDH/6g2bNne7Cy6sPhcKhRo0b64x//KG9vb3Xu3Fnff/+9XnrpJc2cOdPT5VU7b7zxhtq3b6+uXbt6upRKRwC6SoMGDeTt7a2srCyX7VlZWQoPD/dQVdXLjYzRyy+/rHnz5mn79u3q0KFDVZbpMRUdHy8vL7Vq1UqSFBMTo0OHDik5OblWBqDyjtGxY8d0/PhxJSQkOLc5HA5JUp06dXT48GFFR0dXbdFuVhn/Fvn4+KhTp046evRoVZTocRUZo4iICPn4+Mjb29u5rW3btsrMzFR+fr6sVmuV1uxuN/L36MKFC9qwYYN+//vfV2WJHsMlsKtYrVZ17txZqampzm0Oh0Opqaku/8/KzCo6RgsWLNDs2bOVkpKiuLg4d5TqEZX1d8jhcCgvL68qSvS48o5RmzZt9MUXXyg9Pd35Gjp0qG6//Xalp6crMjLSneW7RWX8PSosLNQXX3yhiIiIqirToyoyRrfddpuOHj3qDNCS9M033ygiIqLWhR/pxv4evf3228rLy9NDDz1U1WV6hqdnYVdHGzZsMHx9fY3Vq1cbX331lTF+/HgjODjYeTvpyJEjjalTpzrb5+XlGfv37zf2799vREREGM8++6yxf/9+48iRI57qQpUr7xjNmzfPsFqtxjvvvONye+W5c+c81YUqVd7xefHFF42PPvrIOHbsmPHVV18ZL7/8slGnTh1j5cqVnupClSvvGF3NDHeBlXeMXnjhBePDDz80jh07ZqSlpRnDhw83/Pz8jC+//NJTXahy5R2jEydOGIGBgUZiYqJx+PBhY9u2bUajRo2MOXPmeKoLVa6i/6317NnTGDZsmLvLdRsCUCmWLFliNGvWzLBarUbXrl2Nzz77zLmvT58+xujRo53vMzIyDEnFXn369HF/4W5UnjFq3rx5iWM0c+ZM9xfuJuUZn+nTpxutWrUy/Pz8jPr16xvdu3c3NmzY4IGq3as8Y3Q1MwQgwyjfGE2aNMnZNiwszPj1r39t7Nu3zwNVu1d5/x59+umnRrdu3QxfX1+jZcuWxty5c41ffvnFzVW7V3nH6OuvvzYkGR999JGbK3Ufi2EYhodOPgEAAHgEc4AAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAwIPGjBmju+++29NlAKZDAAJQojFjxshisThfoaGhGjhwoA4cOODp0irFlX0revXs2bPKvu/48eOyWCxKT0932f7aa69p9erVVfa9AEpGAAJQqoEDB+rUqVM6deqUUlNTVadOHQ0ZMsTTZVWaVatWOft36tQpbdmypcR2BQUFVVaDzWZTcHBwlR0fQMkIQABK5evrq/DwcIWHhysmJkZTp07Vd999pzNnzqhfv35KTEx0aX/mzBlZrVbnytNRUVGaPXu2RowYoYCAADVp0kTLli1z+czChQvVvn17BQQEKDIyUk888YTOnz/v3P/tt98qISFB9evXV0BAgG655RZ98MEHkqQff/xRDz74oBo2bCh/f3+1bt1aq1atuu7+BQcHO/sXHh6ukJAQ55majRs3qk+fPvLz89Nbb72l7OxsjRgxQk2aNFHdunXVvn17/fnPf3Y5nsPh0IIFC9SqVSv5+vqqWbNmmjt3riSpRYsWkqROnTrJYrGob9++kopfAsvLy9PEiRPVqFEj+fn5qWfPntq7d69z/86dO2WxWJSamqq4uDjVrVtXPXr00OHDh6+73wAIQACu0/nz57Vu3Tq1atVKoaGhGjdunNavX6+8vDxnm3Xr1qlJkybq16+fc9tLL72kjh07av/+/Zo6daqeeuopffzxx879Xl5eWrx4sb788kutWbNGf/vb3/Tcc88590+YMEF5eXn63//9X33xxReaP3++6tWrJ0l6/vnn9dVXX+mvf/2rDh06pOXLl6tBgwaV0t+iWg8dOqQBAwbo0qVL6ty5s95//30dPHhQ48eP18iRI7Vnzx7nZ6ZNm6Z58+Y561q/fr3CwsIkydlu+/btOnXqlDZv3lzi9z733HPatGmT1qxZo3379qlVq1YaMGCAcnJyXNpNnz5dr7zyiv75z3+qTp06evjhhyul34BpeHo1VgDV0+jRow1vb28jICDACAgIMCQZERERRlpammEYhvHzzz8b9evXNzZu3Oj8TIcOHYxZs2Y53zdv3twYOHCgy3GHDRtmDBo0qNTvffvtt43Q0FDn+/bt27sc80oJCQnG2LFjK9Q/SYafn5+zfwEBAca7775rZGRkGJKMRYsWXfMYgwcPNp555hnDMAwjNzfX8PX1NVauXFli26Lj7t+/32X7lavanz9/3vDx8THeeust5/78/HyjcePGxoIFCwzDMIwdO3YYkozt27c727z//vuGJOPnn38uzxAApsYZIACluv3225Wenq709HTt2bNHAwYM0KBBg/Ttt9/Kz89PI0eO1JtvvilJ2rdvnw4ePKgxY8a4HKN79+7F3h86dMj5fvv27brjjjvUpEkTBQYGauTIkcrOztbFixclSRMnTtScOXN02223aebMmS6TsB9//HFt2LBBMTExeu655/Tpp5+Wq3+vvvqqs3/p6enq37+/c19cXJxL28LCQs2ePVvt27dXSEiI6tWrpw8//FAnTpyQJB06dEh5eXm64447ylXDlY4dO6aCggLddtttzm0+Pj7q2rWry5hJUocOHZw/R0RESJJOnz5d4e8GzIYABKBUAQEBatWqlVq1aqUuXbrov//7v3XhwgWtXLlSkjRu3Dh9/PHHOnnypFatWqV+/fqpefPm133848ePa8iQIerQoYM2bdqktLQ05xyh/Px853f861//0siRI/XFF18oLi5OS5YskSRnGHv66af1ww8/6I477tCzzz573d8fHh7u7F+rVq0UEBDg0vcrvfTSS3rttdc0ZcoU7dixQ+np6RowYICzTn9//+v+3srg4+Pj/NlisUi6PAcJwPUhAAG4bhaLRV5eXvr5558lSe3bt1dcXJxWrlyp9evXlzgP5bPPPiv2vm3btpKktLQ0ORwOvfLKK/rVr36lm266ST/88EOxY0RGRuqxxx7T5s2b9cwzzzgDmCQ1bNhQo0eP1rp167Ro0SL98Y9/rMwuO+3atUt33XWXHnroIXXs2FEtW7bUN99849zfunVr+fv7OyeAX81qtUq6fCapNNHR0bJardq1a5dzW0FBgfbu3at27dpVUk8ASFIdTxcAoPrKy8tTZmampMt3XC1dulTnz59XQkKCs824ceOUmJiogIAA3XPPPcWOsWvXLi1YsEB33323Pv74Y7399tt6//33JUmtWrVSQUGBlixZooSEBO3atUsrVqxw+fykSZM0aNAg3XTTTfrxxx+1Y8cOZ4CaMWOGOnfurFtuuUV5eXnatm2bc19la926td555x19+umnql+/vhYuXKisrCxnMPHz89OUKVP03HPPyWq16rbbbtOZM2f05Zdf6pFHHlGjRo3k7++vlJQUNW3aVH5+frLZbC7fERAQoMcff1yTJ09WSEiImjVrpgULFujixYt65JFHqqRfgFlxBghAqVJSUhQREaGIiAh169ZNe/fu1dtvv+28hVuSRowYoTp16mjEiBHy8/MrdoxnnnlG//znP9WpUyfNmTNHCxcu1IABAyRJHTt21MKFCzV//nzdeuuteuutt5ScnOzy+cLCQk2YMEFt27bVwIEDddNNN+n111+XdPmsyrRp09ShQwf17t1b3t7e2rBhQ5WMxe9+9zvFxsZqwIAB6tu3r8LDw4s9wfn555/XM888oxkzZqht27YaNmyYc15OnTp1tHjxYv3hD39Q48aNddddd5X4PfPmzdO9996rkSNHKjY2VkePHtWHH36o+vXrV0m/ALOyGIZheLoIADXX8ePHFR0drb179yo2NtZlX1RUlCZNmqRJkyZ5pjgAKAWXwABUSEFBgbKzs/W73/1Ov/rVr4qFHwCozrgEBqBCdu3apYiICO3du7fYvB1Pe/HFF1WvXr0SX4MGDfJ0eQCqAS6BAah1cnJyij05uYi/v7+aNGni5ooAVDcEIAAAYDpcAgMAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKbz/wG0vzFTG9753AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASBZJREFUeJzt3XtYVVXCx/HfATmACBioKEqiaJpWKt5Gy0sNho1i1/FWanaxptCMMrUmL1mh5ZgpZr09pWZZNqmV5lDJaOWlclC7TGZmqFmKCXlQHIU46/3D4YwnLnI9B9jfz/OcJ9l77XXW2u+Zc37v2muvbTPGGAEAAFiIj7cbAAAA4GkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIACooZYuXSqbzab9+/d7uylAnUMAAixs+/btSkxMVMeOHRUUFKQLL7xQQ4cO1XfffVekbP/+/WWz2WSz2eTj46OQkBC1a9dOo0aN0ocffliu9127dq369eunJk2aqH79+mrdurWGDh2q1NTUqupaEU8++aTefvvtItu3bt2qGTNm6Pjx49X23r83Y8YM17m02WyqX7++OnTooL/+9a/KycmpkvdYsWKF5s+fXyV1AXURAQiwsDlz5mjVqlX64x//qGeffVbjxo3Txx9/rNjYWH399ddFyrdo0ULLly/XK6+8oqefflpDhgzR1q1bdfXVV2vYsGHKz88/73vOnTtXQ4YMkc1m09SpU/XMM8/oxhtv1N69e/XGG29URzcllR6AZs6c6dEAVGjx4sVavny55s2bp/bt2+uJJ57QwIEDVRWPaCQAAaWr5+0GAPCepKQkrVixQna73bVt2LBhuvTSSzV79my9+uqrbuVDQ0N1yy23uG2bPXu2JkyYoOeee07R0dGaM2dOie/322+/adasWRowYIA++OCDIvuPHj1ayR7VHKdOnVL9+vVLLXPTTTepUaNGkqS7775bN954o1avXq1PP/1UvXr18kQzActiBAiwsN69e7uFH0lq27atOnbsqN27d5epDl9fXy1YsEAdOnRQSkqKHA5HiWWPHTumnJwcXX755cXub9Kkidvfp0+f1owZM3TRRRcpICBAzZo10w033KB9+/a5ysydO1e9e/dWeHi4AgMD1bVrV7311ltu9dhsNuXm5mrZsmWuy0633nqrZsyYoUmTJkmSWrVq5dp37pybV199VV27dlVgYKDCwsI0fPhw/fjjj2719+/fX5dcconS09PVt29f1a9fXw8//HCZzt+5rrrqKklSRkZGqeWee+45dezYUf7+/oqMjNS9997rNoLVv39/vffeezpw4ICrT9HR0eVuD1CXMQIEwI0xRpmZmerYsWOZj/H19dWIESP06KOPavPmzRo0aFCx5Zo0aaLAwECtXbtW48ePV1hYWIl1FhQUaPDgwUpLS9Pw4cN133336cSJE/rwww/19ddfKyYmRpL07LPPasiQIbr55puVl5enN954Q3/+85+1bt06VzuWL1+uO+64Qz169NC4ceMkSTExMQoKCtJ3332n119/Xc8884xrNKZx48aSpCeeeEKPPvqohg4dqjvuuEO//PKLFi5cqL59+2rnzp1q2LChq71ZWVm65pprNHz4cN1yyy2KiIgo8/krVBjswsPDSywzY8YMzZw5U3FxcfrLX/6iPXv2aPHixdq+fbu2bNkiPz8/PfLII3I4HDp06JCeeeYZSVKDBg3K3R6gTjMAcI7ly5cbSeall15y296vXz/TsWPHEo9bs2aNkWSeffbZUuufNm2akWSCgoLMNddcY5544gmTnp5epNzLL79sJJl58+YV2ed0Ol3/PnXqlNu+vLw8c8kll5irrrrKbXtQUJAZM2ZMkbqefvppI8lkZGS4bd+/f7/x9fU1TzzxhNv2r776ytSrV89te79+/Ywk8/zzz5fY73NNnz7dSDJ79uwxv/zyi8nIyDAvvPCC8ff3NxERESY3N9cYY8ySJUvc2nb06FFjt9vN1VdfbQoKClz1paSkGEnm5Zdfdm0bNGiQadmyZZnaA1gRl8AAuHz77be699571atXL40ZM6ZcxxaOMJw4caLUcjNnztSKFSvUpUsXvf/++3rkkUfUtWtXxcbGul12W7VqlRo1aqTx48cXqcNms7n+HRgY6Pr3r7/+KofDoT59+mjHjh3lav/vrV69Wk6nU0OHDtWxY8dcr6ZNm6pt27bauHGjW3l/f3+NHTu2XO/Rrl07NW7cWK1atdJdd92lNm3a6L333itx7tCGDRuUl5eniRMnysfnf1/fd955p0JCQvTee++Vv6OARXEJDIAk6ciRIxo0aJBCQ0P11ltvydfXt1zHnzx5UpIUHBx83rIjRozQiBEjlJOTo88++0xLly7VihUrlJCQoK+//loBAQHat2+f2rVrp3r1Sv+aWrdunR5//HHt2rVLZ86ccW0/NyRVxN69e2WMUdu2bYvd7+fn5/Z38+bNi8ynOp9Vq1YpJCREfn5+atGiheuyXkkOHDgg6WxwOpfdblfr1q1d+wGcHwEIgBwOh6655hodP35cn3zyiSIjI8tdR+Ft823atCnzMSEhIRowYIAGDBggPz8/LVu2TJ999pn69etXpuM/+eQTDRkyRH379tVzzz2nZs2ayc/PT0uWLNGKFSvK3YdzOZ1O2Ww2/eMf/yg2DP5+Ts25I1Fl1bdvX9e8IwCeRQACLO706dNKSEjQd999pw0bNqhDhw7lrqOgoEArVqxQ/fr1dcUVV1SoHd26ddOyZct0+PBhSWcnKX/22WfKz88vMtpSaNWqVQoICND7778vf39/1/YlS5YUKVvSiFBJ22NiYmSMUatWrXTRRReVtzvVomXLlpKkPXv2qHXr1q7teXl5ysjIUFxcnGtbZUfAgLqOOUCAhRUUFGjYsGHatm2b/v73v1do7ZmCggJNmDBBu3fv1oQJExQSElJi2VOnTmnbtm3F7vvHP/4h6X+Xd2688UYdO3ZMKSkpRcqa/y4U6OvrK5vNpoKCAte+/fv3F7vgYVBQULGLHQYFBUlSkX033HCDfH19NXPmzCILExpjlJWVVXwnq1FcXJzsdrsWLFjg1qaXXnpJDofD7e67oKCgUpckAKyOESDAwh544AG9++67SkhIUHZ2dpGFD3+/6KHD4XCVOXXqlL7//nutXr1a+/bt0/DhwzVr1qxS3+/UqVPq3bu3/vCHP2jgwIGKiorS8ePH9fbbb+uTTz7Rddddpy5dukiSRo8erVdeeUVJSUn6/PPP1adPH+Xm5mrDhg265557dO2112rQoEGaN2+eBg4cqJEjR+ro0aNatGiR2rRpoy+//NLtvbt27aoNGzZo3rx5ioyMVKtWrdSzZ0917dpVkvTII49o+PDh8vPzU0JCgmJiYvT4449r6tSp2r9/v6677joFBwcrIyNDa9as0bhx4/Tggw9W6vyXV+PGjTV16lTNnDlTAwcO1JAhQ7Rnzx4999xz6t69u9v/vbp27aqVK1cqKSlJ3bt3V4MGDZSQkODR9gI1mjdvQQPgXYW3b5f0Kq1sgwYNTNu2bc0tt9xiPvjggzK9X35+vnnxxRfNddddZ1q2bGn8/f1N/fr1TZcuXczTTz9tzpw541b+1KlT5pFHHjGtWrUyfn5+pmnTpuamm24y+/btc5V56aWXTNu2bY2/v79p3769WbJkies283N9++23pm/fviYwMNBIcrslftasWaZ58+bGx8enyC3xq1atMldccYUJCgoyQUFBpn379ubee+81e/bscTs3pS0R8HuF7fvll19KLff72+ALpaSkmPbt2xs/Pz8TERFh/vKXv5hff/3VrczJkyfNyJEjTcOGDY0kbokHfsdmTBU8dAYAAKAWYQ4QAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHBZCLIbT6dTPP/+s4OBglpMHAKCWMMboxIkTioyMlI9P6WM8BKBi/Pzzz4qKivJ2MwAAQAX8+OOPatGiRallCEDFCA4OlnT2BJb2XCMAAFBz5OTkKCoqyvU7XhoCUDEKL3uFhIQQgAAAqGXKMn2FSdAAAMByCEAAAMByCEAAAMBymAMEAEAVKSgoUH5+vrebUWf5+fnJ19e3SuoiAAEAUEnGGB05ckTHjx/3dlPqvIYNG6pp06aVXqePAAQAQCUVhp8mTZqofv36LKJbDYwxOnXqlI4ePSpJatasWaXqIwABAFAJBQUFrvATHh7u7ebUaYGBgZKko0ePqkmTJpW6HMYkaAAAKqFwzk/9+vW93BJrKDzPlZ1rRQACAKAKcNnLM6rqPHMJDKilsrKylJeXV+J+u93OcDwAlIAABNRCWVlZSklJOW+5xMREQhAAFINLYEAtVNrIT0XKAbCmW2+9VTabTTabTX5+foqIiNCAAQP08ssvy+l0lrmepUuXqmHDhtXX0GrACBAAAF7mzUvaAwcO1JIlS1RQUKDMzEylpqbqvvvu01tvvaV3331X9erVzahQN3sFAEAt4e1L2v7+/mratKkkqXnz5oqNjdUf/vAH/fGPf9TSpUt1xx13aN68eVqyZIl++OEHhYWFKSEhQU899ZQaNGigTZs2aezYsZL+N0F5+vTpmjFjhpYvX65nn31We/bsUVBQkK666irNnz9fTZo0qfJ+lBeXwIA6wOEIVkZGtByOYG83BUA51cRL2ldddZU6deqk1atXS5J8fHy0YMEC/fvf/9ayZcv0z3/+Uw899JAkqXfv3po/f75CQkJ0+PBhHT58WA8++KCks7eqz5o1S1988YXefvtt7d+/X7feeqvH+lEaRoCAWm7Hji5au3awjPGRzeZUQsI6xcbu9HazANRy7du315dffilJmjhxomt7dHS0Hn/8cd1999167rnnZLfbFRoaKpvN5hpJKnTbbbe5/t26dWstWLBA3bt318mTJ9WgQQOP9KMkjAABtZjDEewKP5JkjI/Wrh3MSBCASjPGuC5pbdiwQX/84x/VvHlzBQcHa9SoUcrKytKpU6dKrSM9PV0JCQm68MILFRwcrH79+kmSDh48WO3tPx8CEFCLZWeHu8JPIWN8lJ0d5qUWAagrdu/erVatWmn//v0aPHiwLrvsMq1atUrp6elatGiRpNIvy+Xm5io+Pl4hISF67bXXtH37dq1Zs+a8x3kKl8CAWshut0uSwsKyZLM53UKQzeZUWFi2WzkAKI9//vOf+uqrr3T//fcrPT1dTqdTf/vb3+Tjc/a75s0333Qrb7fbVVBQ4Lbt22+/VVZWlmbPnq2oqChJ0r/+9S/PdKAMCEBALRQeHq7ExETl5eWpefMcTZ4cqoICm3x9jebMydHIkSNYCRpAmZw5c0ZHjhxxuw0+OTlZgwcP1ujRo/X1118rPz9fCxcuVEJCgrZs2aLnn3/erY7o6GidPHlSaWlp6tSpk+rXr68LL7xQdrtdCxcu1N13362vv/5as2bN8lIvi+ISGFBLhYeHq1mzZnrggYbav9+mjRul/ftteuCBhmrWrBnhB0CZpKamqlmzZoqOjtbAgQO1ceNGLViwQO+88458fX3VqVMnzZs3T3PmzNEll1yi1157TcnJyW519O7dW3fffbeGDRumxo0b66mnnlLjxo21dOlS/f3vf1eHDh00e/ZszZ0710u9LMpmjDHebkRNk5OTo9DQUDkcDoWEhHi7OQCAGuz06dPKyMhQq1atFBAQUO7jvb0OUG1T2vkuz+83l8AAAPCicy9pl4RL2lWPAAQAgJcRbjyPOUAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAKBabNq0STabTcePHy/zMdHR0Zo/f361takQAQgAAIu69dZbZbPZdPfddxfZd++998pms+nWW2/1fMM8oEYEoEWLFik6OloBAQHq2bOnPv/88xLLrl69Wt26dVPDhg0VFBSkzp07a/ny5SWWv/vuu2Wz2TySJgEAqG2ioqL0xhtv6D//+Y9r2+nTp7VixQpdeOGFXmxZ9fJ6AFq5cqWSkpI0ffp07dixQ506dVJ8fLyOHj1abPmwsDA98sgj2rZtm7788kuNHTtWY8eO1fvvv1+k7Jo1a/Tpp58qMjKyursBAECtFBsbq6ioKK1evdq1bfXq1brwwgvVpUsX17YzZ85owoQJatKkiQICAnTFFVdo+/btbnWtX79eF110kQIDA3XllVdq//79Rd5v8+bN6tOnjwIDAxUVFaUJEyYoNze32vpXEq8HoHnz5unOO+/U2LFj1aFDBz3//POqX7++Xn755WLL9+/fX9dff70uvvhixcTE6L777tNll12mzZs3u5X76aefNH78eL322mvy8/PzRFcAAKi0Q4ekjRvP/tdTbrvtNi1ZssT198svv6yxY8e6lXnooYe0atUqLVu2TDt27FCbNm0UHx+v7OxsSdKPP/6oG264QQkJCdq1a5fuuOMOTZkyxa2Offv2aeDAgbrxxhv15ZdfauXKldq8ebMSExOrv5O/49UAlJeXp/T0dMXFxbm2+fj4KC4uTtu2bTvv8cYYpaWlac+ePerbt69ru9Pp1KhRozRp0iR17NjxvPWcOXNGOTk5bi8AADztpZekli2lq646+9+XXvLM+95yyy3avHmzDhw4oAMHDmjLli265ZZbXPtzc3O1ePFiPf3007rmmmvUoUMHvfjiiwoMDNRL/23k4sWLFRMTo7/97W9q166dbr755iLzh5KTk3XzzTdr4sSJatu2rXr37q0FCxbolVde0enTpz3T2f/y6tPgjx07poKCAkVERLhtj4iI0LffflvicQ6HQ82bN9eZM2fk6+ur5557TgMGDHDtnzNnjurVq6cJEyaUqR3JycmaOXNmxToBAEAVOHRIGjdOcjrP/u10SnfdJcXHSy1aVO97N27cWIMGDdLSpUtljNGgQYPUqFEj1/59+/YpPz9fl19+uWubn5+fevTood27d0uSdu/erZ49e7rV26tXL7e/v/jiC3355Zd67bXXXNuMMXI6ncrIyNDFF19cHd0rllcDUEUFBwdr165dOnnypNLS0pSUlKTWrVurf//+Sk9P17PPPqsdO3bIZrOVqb6pU6cqKSnJ9XdOTo6ioqKqq/kAABSxd+//wk+hggLp+++rPwBJZy+DFV6KWrRoUbW8x8mTJ3XXXXcVO0Dh6QnXXg1AjRo1kq+vrzIzM922Z2ZmqmnTpiUe5+PjozZt2kiSOnfurN27dys5OVn9+/fXJ598oqNHj7qdyIKCAj3wwAOaP39+sROy/P395e/vXzWdAgCgAtq2lXx83EOQr6/035+7ajdw4EDl5eXJZrMpPj7ebV9MTIzsdru2bNmili1bSpLy8/O1fft2TZw4UZJ08cUX691333U77tNPP3X7OzY2Vt98843rN9ybvDoHyG63q2vXrkpLS3NtczqdSktLKzJsVhqn06kzZ85IkkaNGqUvv/xSu3btcr0iIyM1adKkYu8UAwCgJmjRQvq//zsbeqSz/33hBc+M/px9P1/t3r1b33zzjXwLG/FfQUFB+stf/qJJkyYpNTVV33zzje68806dOnVKt99+u6Szy87s3btXkyZN0p49e7RixQotXbrUrZ7Jkydr69atSkxM1K5du7R371698847XpkE7fVLYElJSRozZoy6deumHj16aP78+crNzXXNPh89erSaN2+u5ORkSWfn63Tr1k0xMTE6c+aM1q9fr+XLl2vx4sWSpPDwcIWHh7u9h5+fn5o2bap27dp5tnMAAJTD7befnfPz/fdnR348FX4KhYSElLhv9uzZrpuMTpw4oW7duun999/XBRdcIOnsJaxVq1bp/vvv18KFC9WjRw89+eSTuu2221x1XHbZZfroo4/0yCOPqE+fPjLGKCYmRsOGDav2vv2e1wPQsGHD9Msvv2jatGk6cuSIOnfurNTUVNfE6IMHD8rH538DVbm5ubrnnnt06NAhBQYGqn379nr11Ve9cvIAAKhqLVp4Lvj8foTm995++23XvwMCArRgwQItWLCgxPKDBw/W4MGD3bb9/nb67t2764MPPiixjuKmqlQHmzHGeOSdapGcnByFhobK4XCUmoYBADh9+rQyMjLUqlUrBQQEeLs5dV5p57s8v99eXwgRAADA0whAAADAcghAAADAcghAAABUAabUekZVnWcCEAAAlVD4wO1Tp055uSXWUHieK/ugc6/fBg8AQG3m6+urhg0b6ujRo5Kk+vXrl/lRTCg7Y4xOnTqlo0ePqmHDhkUWaywvAhAAAJVU+PimwhCE6tOwYcNSH5dVVgQgAAAqyWazqVmzZmrSpIny8/O93Zw6y8/Pr9IjP4UIQAAAVBFfX98q+4FG9WISNAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBxWggYAANUqKytLeXl5Je632+0KDw/3YIsIQAAAoBplZWUpJSXF9bfDEazs7HCFhWUpNPSEa3tiYqJHQxABCAAAVJtzR3527OiitWsHyxgf2WxOJSSsU2zsziLlPIE5QAAAoNo5HMGu8CNJxvho7drBcjiCvdIeAhAAAKh22dnhrvBTyBgfZWeHeaU9BCAAAFDtwsKyZLM53bbZbE6FhWV7pT0EIAAAUO1CQ08oIWGdKwQVzgE6dyK0JzEJGgAAeERs7E7FxHyv7OwwhYVley38SIwAAQCAanT8+PFittrKWK76MAIEAACqjc32v7BT2m3w55bzBEaAAABAtQkNDZV0/tvgC8t5CgEIAABUO26DBwAAlsNt8AAAwHK4DR4AAFhSTboNngAEAAA8JjT0hFeDTyEugQEAgGpjt9urtFxVYQQIAABUm/DwcCUmJiovL6/EMna7XeHh4R5sFQEIAABUM0+Hm7LgEhgAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAAKiQQ4ekjRvP/re2IQABAIAyy8rK0uHDh/W3vx1Xy5ZGV10ltWxp9Le/Hdfhw4eVlZXl7SaWCesAAQCAMsnKylJKSoocjmDNnz9RxtgkSU6nTZMmheinn15WaOgJJSYm1si1f87FCBAAACiTwtWcs7PDZYx7hDDGR9nZYW7lajICEAAAKJewsCzZbE63bTabU2Fh2V5qUfkRgAAAQLmEhp5QQsI6Vwiy2ZxKSFhXI57yXlbMAQIAAOUWG7tTMTHfKzs7TGFh2bUq/EgEIAAAUEGhoSdqXfApxCWwWqA2r7MAAEBNRACq4V56SWrZUv9dZ+Hs3wAAoHIIQDVUVlaW0tMzNW6ckfO/E+2dTumuu4zS0zNrzUJTAIC6w263V2k5b2IOUA1UuNBURka0nM4xbvsKCmxauPAfatXqQK1YaAoAUHeEh4crMTGx1HV+7HZ7rfhtIgDVQIUfrMJ1Fs5dbOrcdRZqw0JTAIC6pTaEm7KoEZfAFi1apOjoaAUEBKhnz576/PPPSyy7evVqdevWTQ0bNlRQUJA6d+6s5cuXu/bn5+dr8uTJuvTSSxUUFKTIyEiNHj1aP//8sye6UqXqwjoLqNmYYA/Aqrw+ArRy5UolJSXp+eefV8+ePTV//nzFx8drz549atKkSZHyYWFheuSRR9S+fXvZ7XatW7dOY8eOVZMmTRQfH69Tp05px44devTRR9WpUyf9+uuvuu+++zRkyBD961//8kIPK6e2r7OAmicrK0t5eXlasSJQDz0UKqfTJh8fo6eecmjkyP/UmuFrAKgMmzHGeLMBPXv2VPfu3ZWSkiJJcjqdioqK0vjx4zVlypQy1REbG6tBgwZp1qxZxe7fvn27evTooQMHDujCCy88b305OTkKDQ2Vw+FQSEhI2TtTRQ4fPqz/+7//O2+5cePGqVmzZh5oEeqKog8ydL+8OnHi/FrzIEMA+L3y/H579RJYXl6e0tPTFRcX59rm4+OjuLg4bdu27bzHG2OUlpamPXv2qG/fviWWczgcstlsatiwYbH7z5w5o5ycHLcXUBfVpQcZAkBleDUAHTt2TAUFBYqIiHDbHhERoSNHjpR4nMPhUIMGDWS32zVo0CAtXLhQAwYMKLbs6dOnNXnyZI0YMaLENJicnKzQ0FDXKyoqquKdAmqBuvAgQwCojBoxCbq8goODtWvXLm3fvl1PPPGEkpKStGnTpiLl8vPzNXToUBljtHjx4hLrmzp1qhwOh+v1448/VmPrAe9jgj0Aq/PqJOhGjRrJ19dXmZmZbtszMzPVtGnTEo/z8fFRmzZtJEmdO3fW7t27lZycrP79+7vKFIafAwcO6J///Gep1wL9/f3l7+9fuc5Uobq00BRqLibYW8uhQ9LevVLbtlKLFt5uDeB9Xg1AdrtdXbt2VVpamq677jpJZydBp6WlKTExscz1OJ1OnTlzxvV3YfjZu3evNm7cWOsmc9alhaZQs9XmBxni/LjjDyiZ12+DT0pK0pgxY9StWzf16NFD8+fPV25ursaOHStJGj16tJo3b67k5GRJZ+frdOvWTTExMTpz5ozWr1+v5cuXuy5x5efn66abbtKOHTu0bt06FRQUuOYThYWF1ZpRE76UAFRG0Tv+bJIkp9OmSZNC9NNPL3PHHyzN6wFo2LBh+uWXXzRt2jQdOXJEnTt3Vmpqqmti9MGDB+Xj87+pSrm5ubrnnnt06NAhBQYGqn379nr11Vc1bNgwSdJPP/2kd999V9LZy2Pn2rhxo9tlMgCoq8pyx19o6Anu+INleT0ASVJiYmKJl7x+P7n58ccf1+OPP15iXdHR0fLy0kZAjcX8Mus53yN1AKuqEQEIgGcwv6zm8NSk5MI7/tauHSxjfLjjD/gvAhBgMYQb7/HWpGTu+AOKIgABgAd4e1Iyd/wB7mrlQogAUNvwGBKgZiEAAYAH8RgSoGYgAAGAB3nqMSTc8QeUjjlAAOBhnpiUzB1/QOkIQADgBZ6YlEy4AUrGJTAAAGA5BCAAAGA5BCAA8AAmJQM1C3OAAMAD6vqk5MJVriXp5599lJFRT61a/abIyLN3u9XmvqFuIgABgIfU1QBQuMq1JO3Y0aXIc8diY3dKUrWtcg1UBJfAAACVUjjy43AEu8KPdHaF67VrB8vhCHYrB9QEjABBEsPXACqvtMd8VOUt/3xfoSoQgMDwNYAqUfiYj3NDUFU/5oPvK1QVLoGB4WsAVcITj/ng+wpVhREguHhq+BpA3eWJx3xIfF+h8ghAcPHE8DWAus8Tj/ng+wqVxSUwuHjqKdUAUFl8X6GyGAGCG08NXwOoO7y1yjXfV6gMAhCK8MTwNYC6w5urXPN9hYoiAAEAKo1bzlHbMAcIPKQRQK3B9xWqis0YY7zdiJomJydHoaGhcjgcCgkJ8XZzPOLclVWLw8qqAGoKvq9QkvL8fnMJDJIYvvYmvsyB8uF/D6gKBCDAi85d1l86u7ptdna4wsKy3CZ2sqw/AFQtAhDgReeO/JT2XCOW9QeAqsUkaKAGON9zjQAAVYsABNQApT3XCABQ9QhAQA1Q+Fyjc/FcIwCoPgQgoAbguUYA4FlMggZqCJ5rBACeQwACahCeawQAnsElMMCLWNYfALyDESDAi7z5FG0AsDICEOBlhBsA8DwugQEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMvhNniglsrKymL9IACoIAIQUAtlZWUpJSXlvOUSExMJQQBQDC6BAbXQ70d+HI5gZWREy+EILrUcAOAsRoCAWm7Hji5au3awjPGRzeZUQsI6xcbu9HazAKBGYwQIqMUcjmBX+JEkY3y0du3gIiNBAAB3BCCgFsvODneFn0LG+Cg7O8xLLQKA2oEABNRiYWFZstmcbttsNqfCwrK91CIAqB0IQEAtFhp6QgkJ61whqHAOUGjoCS+3DABqNiZBA7VcbOxOxcR8r+zsMIWFZRN+AKAMCEBALWS3293+Dg09UWzw+X05AMBZBCCgFgoPD1diYiIrQQNABRGAgFqKcAMAFVcjJkEvWrRI0dHRCggIUM+ePfX555+XWHb16tXq1q2bGjZsqKCgIHXu3FnLly93K2OM0bRp09SsWTMFBgYqLi5Oe/fure5uAACAWsLrAWjlypVKSkrS9OnTtWPHDnXq1Enx8fE6evRoseXDwsL0yCOPaNu2bfryyy81duxYjR07Vu+//76rzFNPPaUFCxbo+eef12effaagoCDFx8fr9OnTnuoWAACowWzGGOPNBvTs2VPdu3d3PdjR6XQqKipK48eP15QpU8pUR2xsrAYNGqRZs2bJGKPIyEg98MADevDBByVJDodDERERWrp0qYYPH37e+nJychQaGiqHw6GQkJCKdw4AAHhMeX6/vToClJeXp/T0dMXFxbm2+fj4KC4uTtu2bTvv8cYYpaWlac+ePerbt68kKSMjQ0eOHHGrMzQ0VD179iyxzjNnzignJ8ftBQAA6i6vBqBjx46poKBAERERbtsjIiJ05MiREo9zOBxq0KCB7Ha7Bg0apIULF2rAgAGS5DquPHUmJycrNDTU9YqKiqpMtwAAQA3n9TlAFREcHKxdu3Zp+/bteuKJJ5SUlKRNmzZVuL6pU6fK4XC4Xj/++GPVNRYAANQ4Xr0NvlGjRvL19VVmZqbb9szMTDVt2rTE43x8fNSmTRtJUufOnbV7924lJyerf//+ruMyMzPVrFkztzo7d+5cbH3+/v7y9/evZG8AAEBt4dURILvdrq5duyotLc21zel0Ki0tTb169SpzPU6nU2fOnJEktWrVSk2bNnWrMycnR5999lm56gQAAHWX1xdCTEpK0pgxY9StWzf16NFD8+fPV25ursaOHStJGj16tJo3b67k5GRJZ+frdOvWTTExMTpz5ozWr1+v5cuXa/HixZIkm82miRMn6vHHH1fbtm3VqlUrPfroo4qMjNR1113nrW4CAIAaxOsBaNiwYfrll180bdo0HTlyRJ07d1ZqaqprEvPBgwfl4/O/garc3Fzdc889OnTokAIDA9W+fXu9+uqrGjZsmKvMQw89pNzcXI0bN07Hjx/XFVdcodTUVAUEBHi8fwAAoObx+jpANRHrAAEAUPvUmnWAAAAAvKHcAWj9+vW644479NBDD+nbb7912/frr7/qqquuqrLGAQAAVIdyBaAVK1ZoyJAhOnLkiLZt26YuXbrotddec+3Py8vTRx99VOWNBAAAqErlmgT99NNPa968eZowYYIk6c0339Rtt92m06dP6/bbb6+WBgIAAFS1cgWgvXv3KiEhwfX30KFD1bhxYw0ZMkT5+fm6/vrrq7yBAAAAVa1cASgkJESZmZlq1aqVa9uVV16pdevWafDgwTp06FCVNxAAAKCqlWsOUI8ePfSPf/yjyPZ+/fpp7dq1mj9/flW1CwAAoNqUKwDdf//9JS4m2L9/f61du1ajR4+ukoYBAABUFxZCLAYLIQIAUPuU5/e7XHOAfHx8ZLPZSi1js9n022+/ladaAAAAjypXAFqzZk2J+7Zt26YFCxbI6XRWulEAAADVqVwB6Nprry2ybc+ePZoyZYrWrl2rm2++WY899liVNQ4AAKA6VPhZYD///LPuvPNOXXrppfrtt9+0a9cuLVu2TC1btqzK9gEAAFS5co0ASZLD4dCTTz6phQsXqnPnzkpLS1OfPn2qo20AarmsrCzl5eWVuN9utys8PNyDLQKAs8oVgJ566inNmTNHTZs21euvv17sJTEAkM6Gn5SUlPOWS0xMJAQB8LhyBaApU6YoMDBQbdq00bJly7Rs2bJiy61evbpKGgeg9ipt5Kci5QCgKpUrAI0ePfq8t8GjKC4DAABQs5QrAC1durSamlF3cRkAOMvhCFZ2drjCwrIUGnrC280BYHHlngSN8uEyACDt2NFFa9cOljE+stmcSkhYp9jYnd5uFgALq/Bt8ABQFg5HsCv8SJIxPlq7drAcjmAvtwyAlRGAAFSr7OxwV/gpZIyPsrPDvNQiACAAeZzDEayMjGj+v19YRlhYlmw290fk2GxOhYVle6lFAMAcII9iHgSsxG63S5JCQ08oIWFdkc9+4UTownIA4EkEIA8paR5ETMz33BGDOik8PFyJiYmuCf7Tpv2i/fvrKTr6N0VGdpfUnSUgAHgNAchDSpsHQQCCJ3lyXapz62nWTOratUqqBYBKIwBVs8Lh/cJ5EOeGoHPnQXAZAJ7AulQAcBYBqJqdexmgefMcTZ4cqoICm3x9jebMydHIkSO4DACPYV0qADiLAOQBheHmgQekYcOk77+X2rSxqUWLhpIaerNpAABYEgHIw1q0OPsCAADewzpAgIWxLhUAq2IECLAo1qUCYGWMAAEWxPO5AFgdAQiwIJ7PBcDqCECAhfx+XapzsS4VACthDhBgIaxLBQBn2YwxxtuNqGlycnIUGhoqh8OhkJAQbzcHqDaHDhWuS8XyDABqv/L8fjMCBFgY61IBsCrmAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMvxegBatGiRoqOjFRAQoJ49e+rzzz8vseyLL76oPn366IILLtAFF1yguLi4IuVPnjypxMREtWjRQoGBgerQoYOef/756u4GAACoRbwagFauXKmkpCRNnz5dO3bsUKdOnRQfH6+jR48WW37Tpk0aMWKENm7cqG3btikqKkpXX321fvrpJ1eZpKQkpaam6tVXX9Xu3bs1ceJEJSYm6t133/VUtwAAQA1nM8YYb715z5491b17d6WkpEiSnE6noqKiNH78eE2ZMuW8xxcUFOiCCy5QSkqKRo8eLUm65JJLNGzYMD366KOucl27dtU111yjxx9/vEztysnJUWhoqBwOh0JCQirQMwAA4Gnl+f322ghQXl6e0tPTFRcX97/G+PgoLi5O27ZtK1Mdp06dUn5+vsLCwlzbevfurXfffVc//fSTjDHauHGjvvvuO1199dUl1nPmzBnl5OS4vQAAQN3ltQB07NgxFRQUKCIiwm17RESEjhw5UqY6Jk+erMjISLcQtXDhQnXo0EEtWrSQ3W7XwIEDtWjRIvXt27fEepKTkxUaGup6RUVFVaxTAACgVvD6JOiKmj17tt544w2tWbNGAQEBru0LFy7Up59+qnfffVfp6en629/+pnvvvVcbNmwosa6pU6fK4XC4Xj/++KMnugAAALyknrfeuFGjRvL19VVmZqbb9szMTDVt2rTUY+fOnavZs2drw4YNuuyyy1zb//Of/+jhhx/WmjVrNGjQIEnSZZddpl27dmnu3LluI0Xn8vf3l7+/fyV7BAAAaguvjQDZ7XZ17dpVaWlprm1Op1NpaWnq1atXicc99dRTmjVrllJTU9WtWze3ffn5+crPz5ePj3u3fH195XQ6q7YDAACg1vLaCJB09pb1MWPGqFu3burRo4fmz5+v3NxcjR07VpI0evRoNW/eXMnJyZKkOXPmaNq0aVqxYoWio6Ndc4UaNGigBg0aKCQkRP369dOkSZMUGBioli1b6qOPPtIrr7yiefPmea2fAACgZvFqABo2bJh++eUXTZs2TUeOHFHnzp2Vmprqmhh98OBBt9GcxYsXKy8vTzfddJNbPdOnT9eMGTMkSW+88YamTp2qm2++WdnZ2WrZsqWeeOIJ3X333R7rFwAAqNm8ug5QTcU6QAAA1D61Yh0gAAAAbyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAy6nn7QYAAIC6LSsrS3l5eSXut9vtCg8P92CLCEAAAKAaZWVlKSUl5bzlEhMTPRqCuAQGAACqTWkjPxUpV1UIQAAAwGMcjmBlZETL4Qj2aju4BAYAADxix44uWrt2sIzxkc3mVELCOsXG7vRKWxgBAgAA1c7hCHaFH0kyxkdr1w722kgQAQgAAFS77OxwV/gpZIyPsrPDvNIeAhAAAKh2YWFZstmcbttsNqfCwrK90h4CEAAAqHahoSeUkLDOFYIK5wCFhp7wSnuYBA0AAKqN3W53/Ts2dqdiYr5XdnaYwsKy3cLPueU8gQAEAACqTXh4uBITE1kJGgAAWIunw01ZMAcIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYjtcD0KJFixQdHa2AgAD17NlTn3/+eYllX3zxRfXp00cXXHCBLrjgAsXFxRVbfvfu3RoyZIhCQ0MVFBSk7t276+DBg9XZDQAAUIt4NQCtXLlSSUlJmj59unbs2KFOnTopPj5eR48eLbb8pk2bNGLECG3cuFHbtm1TVFSUrr76av3000+uMvv27dMVV1yh9u3ba9OmTfryyy/16KOPKiAgwFPdAgAANZzNGGO89eY9e/ZU9+7dlZKSIklyOp2KiorS+PHjNWXKlPMeX1BQoAsuuEApKSkaPXq0JGn48OHy8/PT8uXLK9yunJwchYaGyuFwKCQkpML1AAAAzynP77fXRoDy8vKUnp6uuLi4/zXGx0dxcXHatm1bmeo4deqU8vPzFRZ29kmyTqdT7733ni666CLFx8erSZMm6tmzp95+++1S6zlz5oxycnLcXgAAoO7yWgA6duyYCgoKFBER4bY9IiJCR44cKVMdkydPVmRkpCtEHT16VCdPntTs2bM1cOBAffDBB7r++ut1ww036KOPPiqxnuTkZIWGhrpeUVFRFe8YAACo8WrtozBmz56tN954Q5s2bXLN73E6zz5h9tprr9X9998vSercubO2bt2q559/Xv369Su2rqlTpyopKcn1d05ODiEIAIA6zGsBqFGjRvL19VVmZqbb9szMTDVt2rTUY+fOnavZs2drw4YNuuyyy9zqrFevnjp06OBW/uKLL9bmzZtLrM/f31/+/v4V6AUAAKiNvHYJzG63q2vXrkpLS3NtczqdSktLU69evUo87qmnntKsWbOUmpqqbt26Famze/fu2rNnj9v27777Ti1btqzaDgAAgFrLq5fAkpKSNGbMGHXr1k09evTQ/PnzlZubq7Fjx0qSRo8erebNmys5OVmSNGfOHE2bNk0rVqxQdHS0a65QgwYN1KBBA0nSpEmTNGzYMPXt21dXXnmlUlNTtXbtWm3atMkrfQQAADWPVwPQsGHD9Msvv2jatGk6cuSIOnfurNTUVNfE6IMHD8rH53+DVIsXL1ZeXp5uuukmt3qmT5+uGTNmSJKuv/56Pf/880pOTtaECRPUrl07rVq1SldccYXH+gUAAGo2r64DVFOxDhAAoK7LyspSXl5eifvtdrvCw8M92KLKK8/vd629CwwAAFRMVlaWaxHi0iQmJta6EFRWXn8WGAAA8KzSRn4qUq42IgABAGBxDkewMjKi5XAEe7spHsMlMAAALGzHji5au3awjPGRzeZUQsI6xcbu9Hazqh0jQAAAWJTDEewKP5JkjI/Wrh1siZEgAhAAABaVnR3uCj+FjPFRdnaYl1rkOQQgAAAsKiwsSzab022bzeZUWFi2l1rkOQQgAAAsKjT0hBIS1rlCUOEcoNDQE15uWfVjEjQAABZjt9td/46N3amYmO+VnR2msLBst/Bzbrm6hgAEAIDFhIeHKzExsc6tBF0eBCAAACyoLoebsmAOEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwehgoAcMnKyrL0E8JhHQQgAICks+EnJSXlvOUSExMJQaj1uAQGAJCkUkd+KlIOqMkIQACAYjkcwcrIiJbDEeztpgBVjktgAIAiduzoorVrB8sYH9lsTiUkrFNs7E5vNwuoMowAAQDcOBzBrvAjScb4aO3awYwEoU4hAAEA3GRnh7vCTyFjfJSdHealFgFVjwAEAHATFpYlm83pts1mcyosLNtLLQKqHgEIAOAmNPSEEhLWuUJQ4Ryg0NATXm4ZUHWYBA0AkHR2kcNCsbE7FRPzvbKzwxQWlu0Wfs4tB9RWBCAAgCQpPDxciYmJrAQNSyAAAQBcCDewCuYAAQAAy2EECABQaTxEFbUNAQgAUCk8RBW1EZfAAACV8vuRn5KeIcZDVFGTMAIEAKgyPEMMtQUjQACAKsEzxFCbEIAAAFWCZ4ihNiEAAQCqBM8QQ21CAAIAVAmeIYbahEnQAIAqU9ozxICahAAEAKiU3z8cNTT0RLHBh4eooiYhAAEAKoWHqKI2IgABACqNcIPahknQAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAclgJuhjGGElSTk6Ol1sCAADKqvB3u/B3vDQEoGKcOHH2IX5RUVFebgkAACivEydOKDQ0tNQyNlOWmGQxTqdTP//8s4KDg2Wz2SpVV05OjqKiovTjjz8qJCSkilpYu3AOOAcS50DiHEicA4lzUJ39N8boxIkTioyMlI9P6bN8GAEqho+Pj1q0aFGldYaEhFjyg34uzgHnQOIcSJwDiXMgcQ6qq//nG/kpxCRoAABgOQQgAABgOQSgaubv76/p06fL39/f203xGs4B50DiHEicA4lzIHEOakr/mQQNAAAshxEgAABgOQQgAABgOQQgAABgOQQgAABgOQSgCli0aJGio6MVEBCgnj176vPPPy+1/Pz589WuXTsFBgYqKipK999/v06fPu3aP2PGDNlsNrdX+/btq7sblVKec5Cfn6/HHntMMTExCggIUKdOnZSamlqpOr2tqvtf2z4DH3/8sRISEhQZGSmbzaa33377vMds2rRJsbGx8vf3V5s2bbR06dIiZWrTZ6A6zkFd/xwcPnxYI0eO1EUXXSQfHx9NnDix2HJ///vf1b59ewUEBOjSSy/V+vXrq77xVaQ6zsHSpUuLfA4CAgKqpwNVoLznYPXq1RowYIAaN26skJAQ9erVS++//36RctX9fUAAKqeVK1cqKSlJ06dP144dO9SpUyfFx8fr6NGjxZZfsWKFpkyZounTp2v37t166aWXtHLlSj388MNu5Tp27KjDhw+7Xps3b/ZEdyqkvOfgr3/9q1544QUtXLhQ33zzje6++25df/312rlzZ4Xr9Kbq6L9Uuz4Dubm56tSpkxYtWlSm8hkZGRo0aJCuvPJK7dq1SxMnTtQdd9zh9qVXmz4DUvWcA6lufw7OnDmjxo0b669//as6depUbJmtW7dqxIgRuv3227Vz505dd911uu666/T1119XZdOrTHWcA+nsKsnnfg4OHDhQVU2ucuU9Bx9//LEGDBig9evXKz09XVdeeaUSEhI8/5tgUC49evQw9957r+vvgoICExkZaZKTk4stf++995qrrrrKbVtSUpK5/PLLXX9Pnz7ddOrUqVraWx3Kew6aNWtmUlJS3LbdcMMN5uabb65wnd5UHf2vbZ+Bc0kya9asKbXMQw89ZDp27Oi2bdiwYSY+Pt71d236DPxeVZ2Duv45OFe/fv3MfffdV2T70KFDzaBBg9y29ezZ09x1112VbGH1q6pzsGTJEhMaGlpl7fKk8p6DQh06dDAzZ850/e2J7wNGgMohLy9P6enpiouLc23z8fFRXFyctm3bVuwxvXv3Vnp6umvo7ocfftD69ev1pz/9ya3c3r17FRkZqdatW+vmm2/WwYMHq68jlVCRc3DmzJkiw7eBgYGu/8+2InV6S3X0v1Bt+QxUxLZt29zOmSTFx8e7zllt+gxU1PnOQaG6/Dkoi7Kep7ru5MmTatmypaKionTttdfq3//+t7ebVG2cTqdOnDihsLAwSZ77PiAAlcOxY8dUUFCgiIgIt+0RERE6cuRIsceMHDlSjz32mK644gr5+fkpJiZG/fv3d7sE1rNnTy1dulSpqalavHixMjIy1KdPH504caJa+1MRFTkH8fHxmjdvnvbu3Sun06kPP/xQq1ev1uHDhytcp7dUR/+l2vUZqIgjR44Ue85ycnL0n//8p1Z9BirqfOdAqvufg7Io6TzVlc9BWbRr104vv/yy3nnnHb366qtyOp3q3bu3Dh065O2mVYu5c+fq5MmTGjp0qCTP/SYQgKrZpk2b9OSTT+q5557Tjh07tHr1ar333nuaNWuWq8w111yjP//5z7rssssUHx+v9evX6/jx43rzzTe92PKq8+yzz6pt27Zq37697Ha7EhMTNXbsWPn4WOPjV5b+1/XPAMqGzwEkqVevXho9erQ6d+6sfv36afXq1WrcuLFeeOEFbzetyq1YsUIzZ87Um2++qSZNmnj0va3xC1RFGjVqJF9fX2VmZrptz8zMVNOmTYs95tFHH9WoUaN0xx136NJLL9X111+vJ598UsnJyXI6ncUe07BhQ1100UX6/vvvq7wPlVWRc9C4cWO9/fbbys3N1YEDB/Ttt9+qQYMGat26dYXr9Jbq6H9xavJnoCKaNm1a7DkLCQlRYGBgrfoMVNT5zkFx6trnoCxKOk915XNQEX5+furSpUud+xy88cYbuuOOO/Tmm2+6Xe7y1PcBAagc7Ha7unbtqrS0NNc2p9OptLQ09erVq9hjTp06VWSkw9fXV5JkSngM28mTJ7Vv3z41a9asilpedSpyDgoFBASoefPm+u2337Rq1Spde+21la7T06qj/8WpyZ+BiujVq5fbOZOkDz/80HXOatNnoKLOdw6KU9c+B2VRkfNU1xUUFOirr76qU5+D119/XWPHjtXrr7+uQYMGue3z2PdBlU2ntog33njD+Pv7m6VLl5pvvvnGjBs3zjRs2NAcOXLEGGPMqFGjzJQpU1zlp0+fboKDg83rr79ufvjhB/PBBx+YmJgYM3ToUFeZBx54wGzatMlkZGSYLVu2mLi4ONOoUSNz9OhRj/evLMp7Dj799FOzatUqs2/fPvPxxx+bq666yrRq1cr8+uuvZa6zJqmO/te2z8CJEyfMzp07zc6dO40kM2/ePLNz505z4MABY4wxU6ZMMaNGjXKV/+GHH0z9+vXNpEmTzO7du82iRYuMr6+vSU1NdZWpTZ8BY6rnHNT1z4ExxlW+a9euZuTIkWbnzp3m3//+t2v/li1bTL169czcuXPN7t27zfTp042fn5/56quvPNq3sqqOczBz5kzz/vvvm3379pn09HQzfPhwExAQ4FamJinvOXjttddMvXr1zKJFi8zhw4ddr+PHj7vKeOL7gABUAQsXLjQXXnihsdvtpkePHubTTz917evXr58ZM2aM6+/8/HwzY8YMExMTYwICAkxUVJS555573H78hg0bZpo1a2bsdrtp3ry5GTZsmPn+++892KPyK8852LRpk7n44ouNv7+/CQ8PN6NGjTI//fRTueqsaaq6/7XtM7Bx40YjqcirsN9jxowx/fr1K3JM586djd1uN61btzZLliwpUm9t+gxUxzmwwueguPItW7Z0K/Pmm2+aiy66yNjtdtOxY0fz3nvveaZDFVAd52DixImu/x1ERESYP/3pT2bHjh2e61Q5lfcc9OvXr9Tyhar7+8BmTAnXYQAAAOoo5gABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABQC2wadMm2Ww2HT9+3NtNAeoEAhAAN7feeqtsNptmz57ttv3tt9+WzWZz/W2M0YsvvqhevXopJCREDRo0UMeOHXXfffeV+aGNp06d0tSpUxUTE6OAgAA1btxY/fr10zvvvOMqEx0drfnz51dJ36pb4bmz2Wzy8/NTq1at9NBDD+n06dPlqqd///6aOHGi27bevXvr8OHDCg0NrcIWA9ZFAAJQREBAgObMmaNff/212P3GGI0cOVITJkzQn/70J33wwQf65ptv9NJLLykgIECPP/54md7n7rvv1urVq7Vw4UJ9++23Sk1N1U033aSsrKyq7I5HDRw4UIcPH9YPP/ygZ555Ri+88IKmT59e6XrtdruaNm3qFkIBVEKVPlgDQK03ZswYM3jwYNO+fXszadIk1/Y1a9aYwq+M119/3Ugy77zzTrF1OJ3OMr1XaGioWbp0aYn7i3tmUKFPPvnEXHHFFSYgIMC0aNHCjB8/3pw8edK1/5VXXjFdu3Y1DRo0MBEREWbEiBEmMzPTtb/w+UWpqammc+fOJiAgwFx55ZUmMzPTrF+/3rRv394EBwebESNGmNzc3DL1Z8yYMebaa69123bDDTeYLl26uP4+duyYGT58uImMjDSBgYHmkksuMStWrHCr4/d9zsjIcLX33OcIvvXWW6ZDhw7Gbrebli1bmrlz55apnQCMYQQIQBG+vr568skntXDhQh06dKjI/tdff13t2rXTkCFDij2+rKMUTZs21fr163XixIli969evVotWrTQY489psOHD+vw4cOSpH379mngwIG68cYb9eWXX2rlypXavHmzEhMTXcfm5+dr1qxZ+uKLL/T2229r//79uvXWW4u8x4wZM5SSkqKtW7fqxx9/1NChQzV//nytWLFC7733nj744AMtXLiwTP35va+//lpbt26V3W53bTt9+rS6du2q9957T19//bXGjRunUaNG6fPPP5ckPfvss+rVq5fuvPNOV5+joqKK1J2enq6hQ4dq+PDh+uqrrzRjxgw9+uijWrp0aYXaCliOtxMYgJrl3FGMP/zhD+a2224zxriPALVv394MGTLE7bj77rvPBAUFmaCgINO8efMyvddHH31kWrRoYfz8/Ey3bt3MxIkTzebNm93KtGzZ0jzzzDNu226//XYzbtw4t22ffPKJ8fHxMf/5z3+Kfa/t27cbSebEiRPGmP+NAG3YsMFVJjk52Ugy+/btc2276667THx8fJn6M2bMGOPr62uCgoKMv7+/kWR8fHzMW2+9VepxgwYNMg888IDr7379+pn77rvPrczvR4BGjhxpBgwY4FZm0qRJpkOHDmVqK2B1jAABKNGcOXO0bNky7d69+7xlH3nkEe3atUvTpk3TyZMny1R/37599cMPPygtLU033XST/v3vf6tPnz6aNWtWqcd98cUXWrp0qRo0aOB6xcfHy+l0KiMjQ9LZEZKEhARdeOGFCg4OVr9+/SRJBw8edKvrsssuc/07IiJC9evXV+vWrd22HT16tEz9kaQrr7xSu3bt0meffaYxY8Zo7NixuvHGG137CwoKNGvWLF166aUKCwtTgwYN9P777xdp1/ns3r1bl19+udu2yy+/XHv37lVBQUG56gKsiAAEoER9+/ZVfHy8pk6d6ra9bdu22rNnj9u2xo0bq02bNmrSpEm53sPPz099+vTR5MmT9cEHH+ixxx7TrFmzlJeXV+IxJ0+e1F133aVdu3a5Xl988YX27t2rmJgY5ebmKj4+XiEhIXrttde0fft2rVmzRpKK1Ovn5+f6d+HdW+ey2WxyOp1l7k9QUJDatGmjTp066eWXX9Znn32ml156ybX/6aef1rPPPqvJkydr48aN2rVrl+Lj40vtL4CqV8/bDQBQs82ePVudO3dWu3btXNtGjBihkSNH6p133tG1115bpe/XoUMH/fbbbzp9+rTsdrvsdnuREY3Y2Fh98803atOmTbF1fPXVV8rKytLs2bNd82f+9a9/VWk7y8LHx0cPP/ywkpKSNHLkSAUGBmrLli269tprdcstt0iSnE6nvvvuO3Xo0MF1XHF9/r2LL75YW7Zscdu2ZcsWXXTRRfL19a36zgB1DCNAAEp16aWX6uabb9aCBQtc24YPH66bbrpJw4cP12OPPabPPvtM+/fv10cffaSVK1eW+Qe4f//+euGFF5Senq79+/dr/fr1evjhh3XllVcqJCRE0tl1gD7++GP99NNPOnbsmCRp8uTJ2rp1qxITE7Vr1y7t3btX77zzjmsS9IUXXii73a6FCxfqhx9+0Lvvvnvey2rV5c9//rN8fX21aNEiSWdHzz788ENt3bpVu3fv1l133aXMzEy3Y6Kjo13n9NixY8WOQD3wwANKS0vTrFmz9N1332nZsmVKSUnRgw8+6JF+AbUdAQjAeT322GNuP8I2m00rV67U/PnztX79ev3xj39Uu3btdNtttykqKkqbN28uU73x8fFatmyZrr76al188cUaP3684uPj9eabb7q99/79+xUTE6PGjRtLOjtv56OPPtJ3332nPn36qEuXLpo2bZoiIyMlnb0ct3TpUv39739Xhw4dNHv2bM2dO7cKz0jZ1atXT4mJiXrqqaeUm5urv/71r4qNjVV8fLz69++vpk2b6rrrrnM75sEHH5Svr686dOigxo0bFzs/KDY2Vm+++abeeOMNXXLJJZo2bZoee+yxYu90A1CUzRhjvN0IAAAAT2IECAAAWA4BCEC1Ofc29d+/PvnkE283r1wOHjxYan/Kexs7AO/iEhiAalPaQ1GbN2+uwMBAD7amcn777Tft37+/xP3R0dGqV48ba4HaggAEAAAsh0tgAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcv4fl0yG9hshW6sAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVfpJREFUeJzt3XlcVPX+P/DXgAwgwuigbIKIQJq7uKKm5gZcJfllllaipdf0QsVtsUtlamq4pKlRuFwEyoiue1pCSmLXNdevayYGKgVagwyLCch8fn9wmRzZtzkD5/V8POahc87nnHl/TsS8/JzPOUchhBAgIiIikhEzqQsgIiIiMjYGICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiITFRsbC4VCgfT0dKlLIWp2GICIZOzEiRMIDQ1Ft27dYGNjgw4dOuDpp5/Gzz//XK7tiBEjoFAooFAoYGZmBjs7O3Tu3BlTp07Fvn37avW5u3fvxvDhw+Hg4ICWLVuiU6dOePrpp5GYmNhQXSvngw8+wM6dO8stP3LkCBYsWICcnJxG++yHLViwQH8sFQoFWrZsia5du+Ldd99Fbm5ug3xGfHw8Vq9e3SD7ImqOGICIZGzZsmXYtm0bRo0ahTVr1mDWrFn44Ycf4OPjgwsXLpRr7+rqis8//xyfffYZVqxYgSeeeAJHjhzB2LFj8cwzz6C4uLjaz/zwww/xxBNPQKFQIDw8HB999BEmTpyIq1evIiEhoTG6CaDqALRw4UKjBqAyUVFR+Pzzz7Fq1Sp06dIFS5Ysgb+/PxriEY0MQERVayF1AUQknddeew3x8fFQKpX6Zc888wx69OiBpUuXYvPmzQbtVSoVnn/+eYNlS5cuxSuvvIJPP/0UHTt2xLJlyyr9vPv372PRokUYM2YMvvvuu3Lrb9++Xc8emY67d++iZcuWVbZ56qmn0LZtWwDA7NmzMXHiRGzfvh3Hjh2Dr6+vMcokki2OABHJ2ODBgw3CDwB4e3ujW7duuHz5co32YW5ujrVr16Jr166IjIyEVquttO0ff/yB3NxcDBkypML1Dg4OBu/v3buHBQsW4JFHHoGVlRWcnZ3x5JNP4tq1a/o2H374IQYPHgx7e3tYW1ujb9++2Lp1q8F+FAoFCgoKEBcXpz/tNH36dCxYsABvvvkmAMDDw0O/7sE5N5s3b0bfvn1hbW0NtVqNyZMn4+bNmwb7HzFiBLp3745Tp05h2LBhaNmyJd5+++0aHb8HjRw5EgCQlpZWZbtPP/0U3bp1g6WlJVxcXBASEmIwgjVixAh88803uH79ur5PHTt2rHU9RM0ZR4CIyIAQArdu3UK3bt1qvI25uTmmTJmCefPm4dChQxg3blyF7RwcHGBtbY3du3fj5ZdfhlqtrnSfJSUlGD9+PJKTkzF58mS8+uqryMvLw759+3DhwgV4enoCANasWYMnnngCzz33HIqKipCQkIBJkyZhz549+jo+//xzzJw5EwMGDMCsWbMAAJ6enrCxscHPP/+ML7/8Eh999JF+NKZdu3YAgCVLlmDevHl4+umnMXPmTPz+++/4+OOPMWzYMJw5cwatW7fW16vRaBAQEIDJkyfj+eefh6OjY42PX5myYGdvb19pmwULFmDhwoUYPXo05syZgytXriAqKgonTpzA4cOHYWFhgXfeeQdarRYZGRn46KOPAACtWrWqdT1EzZogInrA559/LgCI6Ohog+XDhw8X3bp1q3S7HTt2CABizZo1Ve7/vffeEwCEjY2NCAgIEEuWLBGnTp0q127Tpk0CgFi1alW5dTqdTv/3u3fvGqwrKioS3bt3FyNHjjRYbmNjI6ZNm1ZuXytWrBAARFpamsHy9PR0YW5uLpYsWWKw/Pz586JFixYGy4cPHy4AiHXr1lXa7wfNnz9fABBXrlwRv//+u0hLSxPr168XlpaWwtHRURQUFAghhIiJiTGo7fbt20KpVIqxY8eKkpIS/f4iIyMFALFp0yb9snHjxgl3d/ca1UMkRzwFRkR6P/30E0JCQuDr64tp06bVatuyEYa8vLwq2y1cuBDx8fHo06cPkpKS8M4776Bv377w8fExOO22bds2tG3bFi+//HK5fSgUCv3fra2t9X+/c+cOtFotHnvsMZw+fbpW9T9s+/bt0Ol0ePrpp/HHH3/oX05OTvD29saBAwcM2ltaWuKFF16o1Wd07twZ7dq1g4eHB1566SV4eXnhm2++qXTu0P79+1FUVISwsDCYmf316/vvf/877Ozs8M0339S+o0QyxQBUjR9++AGBgYFwcXGBQqGo8CqShhQREYH+/fvD1tYWDg4OCAoKwpUrVwza3Lt3DyEhIbC3t0erVq0wceJE3Lp1q1HrouYvKysL48aNg0qlwtatW2Fubl6r7fPz8wEAtra21badMmUK/vvf/+LOnTv47rvv8Oyzz+LMmTMIDAzEvXv3AJSeDurcuTNatKj6TP2ePXswaNAgWFlZQa1Wo127doiKiqpyLlJNXL16FUIIeHt7o127dgavy5cvl5uw3b59+3Lzqaqzbds27Nu3DykpKUhNTcWFCxfQt2/fSttfv34dQGlwepBSqUSnTp3064moepwDVI2CggL06tULL774Ip588slG/7yDBw8iJCQE/fv3x/379/H2229j7NixuHTpEmxsbAAA//znP/HNN99gy5YtUKlUCA0NxZNPPonDhw83en3UPGm1WgQEBCAnJwf//e9/4eLiUut9lF027+XlVeNt7OzsMGbMGIwZMwYWFhaIi4vD8ePHMXz48Bpt/9///hdPPPEEhg0bhk8//RTOzs6wsLBATEwM4uPja92HB+l0OigUCuzdu7fCMPjwnJoHR6JqatiwYfp5R0RkXAxA1QgICEBAQECl6wsLC/HOO+/gyy+/RE5ODrp3745ly5ZhxIgRdfq8h28EFxsbCwcHB/3VJVqtFtHR0YiPj9dfMRITE4NHH30Ux44dw6BBg+r0uSRf9+7dQ2BgIH7++Wfs378fXbt2rfU+SkpKEB8fj5YtW2Lo0KF1qqNfv36Ii4tDZmYmgNJJysePH0dxcTEsLCwq3Gbbtm2wsrJCUlISLC0t9ctjYmLKtX3wtFlNlnt6ekIIAQ8PDzzyyCO17U6jcHd3BwBcuXIFnTp10i8vKipCWloaRo8erV9WWb+IqBRPgdVTaGgojh49ioSEBJw7dw6TJk2Cv78/rl692iD7LxvGL7ta5tSpUyguLjb4RdelSxd06NABR48ebZDPJPkoKSnBM888g6NHj2LLli11uvdMSUkJXnnlFVy+fBmvvPIK7OzsKm179+7dSn9O9+7dC+Cv0zsTJ07EH3/8gcjIyHJtxf9uFGhubg6FQoGSkhL9uvT09ApPVdvY2FR4s8OykdWH1z355JMwNzfHwoULy92YUAgBjUZTcScb0ejRo6FUKrF27VqDmqKjo6HVag2uvrOxsan3aUCi5owjQPVw48YNxMTE4MaNG/pTBm+88QYSExMRExODDz74oF771+l0CAsLw5AhQ9C9e3cApfM0lEqlweW3AODo6IisrKx6fR7Jz+uvv46vv/4agYGByM7OLnfjw4dveqjVavVt7t69i9TUVGzfvh3Xrl3D5MmTsWjRoio/7+7duxg8eDAGDRoEf39/uLm5IScnBzt37sR///tfBAUFoU+fPgCA4OBgfPbZZ3jttdfw448/4rHHHkNBQQH279+Pf/zjH5gwYQLGjRuHVatWwd/fH88++yxu376NTz75BF5eXjh37pzBZ/ft2xf79+/HqlWr4OLiAg8PDwwcOFA/5+add97B5MmTYWFhgcDAQHh6emLx4sUIDw9Heno6goKCYGtri7S0NOzYsQOzZs3CG2+8Ua/jX1vt2rVDeHg4Fi5cCH9/fzzxxBO4cuUKPv30U/Tv39/gv1ffvn3x1Vdf4bXXXkP//v3RqlUrBAYGGrVeIpMm5SVoTQ0AsWPHDv37PXv26C/nffDVokUL8fTTTwshhLh8+bIAUOXrrbfeqvDzZs+eLdzd3cXNmzf1y7744guhVCrLte3fv7+YO3duw3aYmr2yy7cre1XVtlWrVsLb21s8//zz4rvvvqvR5xUXF4uNGzeKoKAg4e7uLiwtLUXLli1Fnz59xIoVK0RhYaFB+7t374p33nlHeHh4CAsLC+Hk5CSeeuopce3aNX2b6Oho4e3tLSwtLUWXLl1ETEyM/jLzB/30009i2LBhwtraWgAwuCR+0aJFon379sLMzKzcJfHbtm0TQ4cO1f//3aVLFxESEiKuXLlicGyqukXAw8rq+/3336ts9/Bl8GUiIyNFly5dhIWFhXB0dBRz5swRd+7cMWiTn58vnn32WdG6dWsBgJfEEz1EIUQDPHRGJhQKBXbs2IGgoCAAwFdffYXnnnsOFy9eLDdJslWrVnByckJRURF++eWXKvdrb2+vv/FamdDQUOzatQs//PADPDw89Mu///57jBo1Cnfu3DEYBXJ3d0dYWBj++c9/1q+TREREMsBTYPXQp08flJSU4Pbt23jssccqbKNUKtGlS5ca71MIgZdffhk7duxASkqKQfgBSoe1LSwskJycjIkTJwIonRB548YNPjuIiIiohhiAqpGfn4/U1FT9+7S0NJw9exZqtRqPPPIInnvuOQQHB2PlypXo06cPfv/9dyQnJ6Nnz56VPg6gKiEhIYiPj8euXbtga2urn9ejUqlgbW0NlUqFGTNm4LXXXoNarYadnR1efvll+Pr68gowIiKiGuIpsGqkpKTg8ccfL7d82rRpiI2NRXFxMRYvXozPPvsMv/76K9q2bYtBgwZh4cKF6NGjR60/r7JLV2NiYjB9+nQApZctv/766/jyyy9RWFgIPz8/fPrpp3Bycqr15xEREckRAxARERHJDu8DRERERLLDAERERESyw0nQFdDpdPjtt99ga2vL28kTERE1EUII5OXlwcXFBWZmVY/xMABV4LfffoObm5vUZRAREVEd3Lx5E66urlW2YQCqgK2tLYDSA1jVc42IiIjIdOTm5sLNzU3/PV4VBqAKlJ32srOzYwAiIiJqYmoyfYWToImIiEh2GICIiIhIdhiAiIiISHY4B4iIiKiBlJSUoLi4WOoymi0LCwuYm5s3yL4YgIiIiOpJCIGsrCzk5ORIXUqz17p1azg5OdX7Pn0MQERERPVUFn4cHBzQsmVL3kS3EQghcPfuXdy+fRsA4OzsXK/9MQARERHVQ0lJiT782NvbS11Os2ZtbQ0AuH37NhwcHOp1OoyToImIiOqhbM5Py5YtJa5EHsqOc33nWkkagKKiotCzZ0/9DQd9fX2xd+/eStuPGDECCoWi3GvcuHH6NtOnTy+33t/f3xjdISIiGeNpL+NoqOMs6SkwV1dXLF26FN7e3hBCIC4uDhMmTMCZM2fQrVu3cu23b9+OoqIi/XuNRoNevXph0qRJBu38/f0RExOjf29padl4nWiGNBqNwXF+mFKp5DAvERE1aZIGoMDAQIP3S5YsQVRUFI4dO1ZhAFKr1QbvExIS0LJly3IByNLSEk5OTg1fsAxoNBpERkZW2y40NJQhiIiImiyTmQNUUlKChIQEFBQUwNfXt0bbREdHY/LkybCxsTFYnpKSAgcHB3Tu3Blz5syBRqOpcj+FhYXIzc01eMlVVSM/dWlHRESm68FpIxYWFnB0dMSYMWOwadMm6HS6Gu8nNjYWrVu3brxCG4HkV4GdP38evr6+uHfvHlq1aoUdO3aga9eu1W73448/4sKFC4iOjjZY7u/vjyeffBIeHh64du0a3n77bQQEBODo0aOVzhaPiIjAwoULG6Q/VDmeWiMiqpiUvx/Lpo2UlJTg1q1bSExMxKuvvoqtW7fi66+/RosWkkeFRiF5rzp37oyzZ89Cq9Vi69atmDZtGg4ePFhtCIqOjkaPHj0wYMAAg+WTJ0/W/71Hjx7o2bMnPD09kZKSglGjRlW4r/DwcLz22mv697m5uXBzc6tHr+hhPLVGRFQxqX8/PjhtpH379vDx8cGgQYMwatQoxMbGYubMmVi1ahViYmLwyy+/QK1WIzAwEMuXL0erVq2QkpKCF154AcBfE5Tnz5+PBQsW4PPPP8eaNWtw5coV2NjYYOTIkVi9ejUcHBwavB+1JfkpMKVSCS8vL/Tt2xcRERHo1asX1qxZU+U2BQUFSEhIwIwZM6rdf6dOndC2bVukpqZW2sbS0lJ/JVrZixoWT60REVXMFH8/jhw5Er169cL27dsBAGZmZli7di0uXryIuLg4fP/995g7dy4AYPDgwVi9ejXs7OyQmZmJzMxMvPHGGwBKL1VftGgR/u///g87d+5Eeno6pk+fbrR+VEXyEaCH6XQ6FBYWVtlmy5YtKCwsxPPPP1/t/jIyMqDRaOp9x0giIiI56dKlC86dOwcACAsL0y/v2LEjFi9ejNmzZ+PTTz+FUqmESqWCQqEodwHSiy++qP97p06dsHbtWvTv3x/5+flo1aqVUfpRGUlHgMLDw/HDDz8gPT0d58+fR3h4OFJSUvDcc88BAIKDgxEeHl5uu+joaAQFBZUbCszPz8ebb76JY8eOIT09HcnJyZgwYQK8vLzg5+dnlD41N1qtLdLSOkKrtZW6FCIiMiIhhP6U1v79+zFq1Ci0b98etra2mDp1KjQaDe7evVvlPk6dOoXAwEB06NABtra2GD58OADgxo0bjV5/dSQdAbp9+zaCg4ORmZkJlUqFnj17IikpCWPGjAFQeoDMzAwz2pUrV3Do0CF899135fZnbm6Oc+fOIS4uDjk5OXBxccHYsWOxaNEi3guoDk6f7oPdu8dDCDMoFDoEBu6Bj88ZqcsiIiIjuHz5Mjw8PJCeno7x48djzpw5WLJkCdRqNQ4dOoQZM2agqKio0jtgFxQUwM/PD35+fvjiiy/Qrl073LhxA35+fiYx3UHSAPTwFVwPS0lJKbesc+fOEEJU2N7a2hpJSUkNUZpsKZVKAKUjP2XhBwCEMMPu3ePh6ZkKlSpP346IiJqf77//HufPn8c///lPnDp1CjqdDitXrtQPSvznP/8xaK9UKlFSUmKw7KeffoJGo8HSpUv1FxadPHnSOB2oAcknQZNpsbe3R2hoKAYPnqYPP2WEMMOQIdN4pRYRUTNSWFiIrKws/Prrrzh9+jQ++OADTJgwAePHj0dwcDC8vLxQXFyMjz/+GL/88gs+//xzrFu3zmAfHTt2RH5+PpKTk/HHH3/g7t276NChA5RKpX67r7/+GosWLZKol+UxAFE59vb2GDTIHg+dfYS5OTBwoH2DhB/OLSIiMg2JiYlwdnZGx44d4e/vjwMHDmDt2rXYtWsXzM3N0atXL6xatQrLli1D9+7d8cUXXyAiIsJgH4MHD8bs2bPxzDPPoF27dli+fDnatWuH2NhYbNmyBV27dsXSpUvx4YcfStTL8hSisvNJMpabmwuVSgWtVivrS+Kjo4GXXgJKSkrDz/r1QA3uPFChB+9zUdXcIo4uEVFTc+/ePaSlpcHDwwNWVla13l7q+wA1NVUd79p8fzMAVYAB6C8ZGUBqKuDlBbi61m9fGo0G6en3MWCAA3S6v57ma24ucPz4bXTs2IL/cxNRk1PfAATwTvm10VAByOTuA0SmxdW1/sGnjL29Pc6dAx5+vExJiQJ5eY7g/9tEJFcMN8bHOUBkVN7eqHBukZeXNPUQEZE8MQCRUbm6Ahs2lIYe4K+5RQ01ykRERFQTPAVGRjdjBuDn13Bzi4iIiGqLAYgk0ZBzi4iIiGqLp8CIiIhIdhiAiIiISHYYgIiIiEh2GICIiIioUaSkpEChUCAnJ6fG23Ts2BGrV69utJrKMAARERHJ1PTp06FQKDB79uxy60JCQqBQKDB9+nTjF2YEDEBEREQy5ubmhoSEBPz555/6Zffu3UN8fDw6dOggYWWNiwGIqI40Gg0yMzMrfWk0GqlLJCKqlo+PD9zc3LB9+3b9su3bt6NDhw7o06ePfllhYSFeeeUVODg4wMrKCkOHDsWJEycM9vXtt9/ikUcegbW1NR5//HGkp6eX+7xDhw7hscceg7W1Ndzc3PDKK6+goKCg0fpXGd4HiKgO+PRmImosGRnA1auljw4y1v3SXnzxRcTExOC5554DAGzatAkvvPACUlJS9G3mzp2Lbdu2IS4uDu7u7li+fDn8/PyQmpoKtVqNmzdv4sknn0RISAhmzZqFkydP4vXXXzf4nGvXrsHf3x+LFy/Gpk2b8PvvvyM0NBShoaGIiYkxTmf/hyNARHVQ1VOb69KOiAgAoqMBd3dg5MjSP6OjjfO5zz//PA4dOoTr16/j+vXrOHz4MJ5//nn9+oKCAkRFRWHFihUICAhA165dsXHjRlhbWyP6f0VGRUXB09MTK1euROfOnfHcc8+Vmz8UERGB5557DmFhYfD29sbgwYOxdu1afPbZZ7h3755xOvs/HAEiIiIyARkZwKxZgE5X+l6nA156qfTRQY09EtSuXTuMGzcOsbGxEEJg3LhxaNu2rX79tWvXUFxcjCFDhuiXWVhYYMCAAbh8+TIA4PLlyxg4cKDBfn19fQ3e/9///R/OnTuHL774Qr9MCAGdToe0tDQ8+uijjdG9CjEAERERmYCrV/8KP2VKSkqfm2iMU2EvvvgiQkNDAQCffPJJo3xGfn4+XnrpJbzyyivl1hl7wjUDEFED0GptkZ1tD7VaA5UqT+pyiKgJ8vYGzMwMQ5C5eelDo43B398fRUVFUCgU8PPzM1jn6ekJpVKJw4cPw93dHQBQXFyMEydOICwsDADw6KOP4uuvvzbY7tixYwbvfXx8cOnSJXgZq1NVYAAiqqfTp/tg9+7xEMIMCoUOgYF74ONzRuqyiKiJcXUFNmwoPe1VUlIaftavN95EaHNzc/3pLHNzc4N1NjY2mDNnDt58802o1Wp06NABy5cvx927dzFjxgwAwOzZs7Fy5Uq8+eabmDlzJk6dOoXY2FiD/bz11lsYNGgQQkNDMXPmTNjY2ODSpUvYt29fjS4saUicBE1UD1qtrT78AIAQZti9ezy0WluJKyOipmjGDCA9HThwoPTP/2ULo7Gzs4OdnV2F65YuXYqJEydi6tSp8PHxQWpqKpKSktCmTRsApaewtm3bhp07d6JXr15Yt24dPvjgA4N99OzZEwcPHsTPP/+Mxx57DH369MF7770HFxeXRu/bwxRCCGH0TzVxubm5UKlU0Gq1lf4gkLxlZmZiw4YNSEvriLi4aeXWT5sWCw+P65g1axacnZ0lqJCIjOXevXtIS0uDh4cHrKyspC6n2avqeNfm+5sjQER1oFQqAQBqtQYKheGsRYVCB7U626AdERGZFs4BIqoDe3t7hIaGoqioCO3b5+Ktt1QoKVHA3Fxg2bJcPPvsFCiVSt4EkYjIRDEAEdVRWbh5/XXgmWdKL1X18lLA1bU1gNZSlkZERNVgACJqAK6uxrtSg4iI6o9zgIiIiBoArykyjoY6zgxARERE9WBhYQEAuHv3rsSVyEPZcS477nXFU2BERET1YG5ujtatW+P27dsAgJYtW0KhUEhcVfMjhMDdu3dx+/ZttG7dutzNGmtL0gAUFRWFqKgopKenAwC6deuG9957DwEBARW2j42NxQsvvGCwzNLS0uAJskIIzJ8/Hxs3bkROTg6GDBmCqKgoeHt7N1o/iIhI3pycnABAH4Ko8bRu3Vp/vOtD0gDk6uqKpUuXwtvbG0IIxMXFYcKECThz5gy6detW4TZ2dna4cuWK/v3DKXv58uVYu3Yt4uLi4OHhgXnz5sHPzw+XLl3iDaqIiKhRKBQKODs7w8HBAcXFxVKX02xZWFjUe+SnjKQBKDAw0OD9kiVLEBUVhWPHjlUagBQKRaXJTwiB1atX491338WECRMAAJ999hkcHR2xc+dOTJ48uWE7QERE9ABzc/MG+4KmxmUyk6BLSkqQkJCAgoIC+Pr6VtouPz8f7u7ucHNzw4QJE3Dx4kX9urS0NGRlZWH06NH6ZSqVCgMHDsTRo0cr3WdhYSFyc3MNXkRERNR8SR6Azp8/j1atWsHS0hKzZ8/Gjh070LVr1wrbdu7cGZs2bcKuXbuwefNm6HQ6DB48GBkZGQCArKwsAICjo6PBdo6Ojvp1FYmIiIBKpdK/3NzcGqh3REREZIokD0CdO3fG2bNncfz4ccyZMwfTpk3DpUuXKmzr6+uL4OBg9O7dG8OHD8f27dvRrl07rF+/vl41hIeHQ6vV6l83b96s1/6IiIjItEl+GbxSqYSXlxcAoG/fvjhx4gTWrFlTo1BjYWGBPn36IDU1FcBfs/Bv3bpl8ATuW7duoXfv3pXux9LSEpaWlvXoBRERETUlko8APUyn06GwsLBGbUtKSnD+/Hl92PHw8ICTkxOSk5P1bXJzc3H8+PEq5xURERGRvEg6AhQeHo6AgAB06NABeXl5iI+PR0pKCpKSkgAAwcHBaN++PSIiIgAA77//PgYNGgQvLy/k5ORgxYoVuH79OmbOnAmg9AqxsLAwLF68GN7e3vrL4F1cXBAUFCRVN4mIiMjESBqAbt++jeDgYGRmZkKlUqFnz55ISkrCmDFjAAA3btyAmdlfg1R37tzB3//+d2RlZaFNmzbo27cvjhw5YjBpeu7cuSgoKMCsWbOQk5ODoUOHIjExkfcAIiIiIj2F4NPbysnNzYVKpYJWq4WdnZ3U5RAREVEN1Ob72+TmABERERE1NgYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHUkDUFRUFHr27Ak7OzvY2dnB19cXe/furbT9xo0b8dhjj6FNmzZo06YNRo8ejR9//NGgzfTp06FQKAxe/v7+jd0VIiIiakIkDUCurq5YunQpTp06hZMnT2LkyJGYMGECLl68WGH7lJQUTJkyBQcOHMDRo0fh5uaGsWPH4tdffzVo5+/vj8zMTP3ryy+/NEZ3iIiIqIlQCCGE1EU8SK1WY8WKFZgxY0a1bUtKStCmTRtERkYiODgYQOkIUE5ODnbu3FnnGnJzc6FSqaDVamFnZ1fn/RAREZHx1Ob722TmAJWUlCAhIQEFBQXw9fWt0TZ3795FcXEx1Gq1wfKUlBQ4ODigc+fOmDNnDjQaTZX7KSwsRG5ursGLiIiImq8WUhdw/vx5+Pr64t69e2jVqhV27NiBrl271mjbt956Cy4uLhg9erR+mb+/P5588kl4eHjg2rVrePvttxEQEICjR4/C3Ny8wv1ERERg4cKFDdIfIiIiMn2SnwIrKirCjRs3oNVqsXXrVvz73//GwYMHqw1BS5cuxfLly5GSkoKePXtW2u6XX36Bp6cn9u/fj1GjRlXYprCwEIWFhfr3ubm5cHNz4ykwIiKiJqRJnQJTKpXw8vJC3759ERERgV69emHNmjVVbvPhhx9i6dKl+O6776oMPwDQqVMntG3bFqmpqZW2sbS01F+JVvYiIiKi5kvyU2AP0+l0BqMxD1u+fDmWLFmCpKQk9OvXr9r9ZWRkQKPRwNnZuSHLJCIioiZM0gAUHh6OgIAAdOjQAXl5eYiPj0dKSgqSkpIAAMHBwWjfvj0iIiIAAMuWLcN7772H+Ph4dOzYEVlZWQCAVq1aoVWrVsjPz8fChQsxceJEODk54dq1a5g7dy68vLzg5+cnWT+JiIjItEgagG7fvo3g4GBkZmZCpVKhZ8+eSEpKwpgxYwAAN27cgJnZX2fpoqKiUFRUhKeeespgP/Pnz8eCBQtgbm6Oc+fOIS4uDjk5OXBxccHYsWOxaNEiWFpaGrVvREREZLoknwRtingfICIioqanSU2CJiIiIjI2BiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpKdFlIXQETU0DQaDYqKigAAv/1mhrS0FvDwuA8XFx0AQKlUwt7eXsoSiUhiDEBE1KxoNBpERkYCAE6f7oPdu8dDCDMoFDoEBu6Bj88ZAEBoaChDEJGM8RQYETUrZSM/Wq2tPvwAgBBm2L17PLRaW4N2RCRPDEBE1CxlZ9vrw08ZIcyQna2WqCIiMiUMQETULKnVGigUOoNlCoUOanW2RBURkSlhACKiZkmlykNg4B59CCqbA6RS5UlcGRGZAk6CJqJmy8fnDDw9U5GdrYZanc3wQ0R6DEBE1KypVHkMPkRUDk+BERERkewwABFRs6JUKhu0HRE1TzwFRkTNir29PUJDQ6u8zw/vBE1EDEBE1Oww3BBRdSQ9BRYVFYWePXvCzs4OdnZ28PX1xd69e6vcZsuWLejSpQusrKzQo0cPfPvttwbrhRB477334OzsDGtra4wePRpXr15tzG4QERFREyNpAHJ1dcXSpUtx6tQpnDx5EiNHjsSECRNw8eLFCtsfOXIEU6ZMwYwZM3DmzBkEBQUhKCgIFy5c0LdZvnw51q5di3Xr1uH48eOwsbGBn58f7t27Z6xuERERkYlTCCGE1EU8SK1WY8WKFZgxY0a5dc888wwKCgqwZ88e/bJBgwahd+/eWLduHYQQcHFxweuvv4433ngDAKDVauHo6IjY2FhMnjy5RjXk5uZCpVJBq9XCzs6uYTpGREREjao2398mcxVYSUkJEhISUFBQAF9f3wrbHD16FKNHjzZY5ufnh6NHjwIA0tLSkJWVZdBGpVJh4MCB+jYVKSwsRG5ursGLiJqHjAzgwIHSP4mIykgegM6fP49WrVrB0tISs2fPxo4dO9C1a9cK22ZlZcHR0dFgmaOjI7KysvTry5ZV1qYiERERUKlU+pebm1t9ukREEtNoNMjMzMTKlTlwdxcYORJwdxdYuTIHmZmZ0Gg0UpdIRBKT/Cqwzp074+zZs9Bqtdi6dSumTZuGgwcPVhqCGkN4eDhee+01/fvc3FyGIKImSqPRIDIyElqtLVavDoMQCgCATqfAm2/a4ddfN0GlykNoaCivFiOSMckDkFKphJeXFwCgb9++OHHiBNasWYP169eXa+vk5IRbt24ZLLt16xacnJz068uWOTs7G7Tp3bt3pTVYWlrC0tKyvl0hIhNQdv+f7Gx7CGE4yC2EGbKz1VCp8qq8TxCRKdBoNLyfVSOSPAA9TKfTobCwsMJ1vr6+SE5ORlhYmH7Zvn379HOGPDw84OTkhOTkZH3gyc3NxfHjxzFnzpzGLp2ITIharYFCoTMIQQqFDmp1toRVEdVM2UhmdTiSWXeSBqDw8HAEBASgQ4cOyMvLQ3x8PFJSUpCUlAQACA4ORvv27REREQEAePXVVzF8+HCsXLkS48aNQ0JCAk6ePIkNGzYAABQKBcLCwrB48WJ4e3vDw8MD8+bNg4uLC4KCgqTqJhFJQKXKQ2DgHuzePR5CmEGh0CEwcA8fjEpNQk1HKDmSWXeSBqDbt28jODgYmZmZUKlU6NmzJ5KSkjBmzBgAwI0bN2Bm9te/3gYPHoz4+Hi8++67ePvtt+Ht7Y2dO3eie/fu+jZz585FQUEBZs2ahZycHAwdOhSJiYmwsrIyev+ISFo+Pmfg6ZmK7Gw11Opshh8i0pM0AEVHR1e5PiUlpdyySZMmYdKkSZVuo1Ao8P777+P999+vb3lE1AyoVHkMPkRUjuSXwRMREREZGwMQEZkE3rCQiIyJAYiIJBcdDbi74383LCx9X1dKpbJB2xFR82Ryl8ETkbxkZACzZgE6Xel7nQ546SXAzw9wda39/uzt7REaGsr7pxBRlRiAiEgyGo0Gx44BOp1hGCkpAY4f18DaGnUKKgw31NRxJLPxMQARkSQefGSFQhFW7oaFhw/H4cIFPrKC5IkjmY2PAYiIJFH2i726GxbyRm8kVww3jYsBiIgkxxsWElUtIwO4ehXw9q7b3Dgqj1eBEZFJUKny4OFxneGH6CENeZUk/YUBiIiIyERVdpUk75dVfwxAREREJurq1b/CT5mSEiA1VZp6mhMGICIiIhPl7Q2YPfRNbW4OeHlJU09zwgBERERkolxdgQ0bSkMPUPrn+vWcCN0QeBUYEUmCN3ojqpkZM0rvjJ6aWjryw/DTMBRCCCF1EaYmNzcXKpUKWq0WdnZ2UpdD1GxpNBre6I2IGkxtvr85AkREkmG4ISKpcA4QERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBE1eRkZwIEDfDwAEdUcAxARNWl8UCQR1QUDEBE1WXxQJBHVFQMQETVZfFAkEdUVAxARNUkajQZ2drdgZmZ4M3tzcwFb21vQaDQSVUZETQHvBE1ETY5Go0FkZCQAYPz4Pti9ezyEMINCocO4cXuwZ88ZAEBoaCjvNk1EFWIAIqIm58Hnh/n4nIGnZyqys9VQq7OhUuVV2I6I6EEMQETU5KlUeQbBh4gqx4cQl2IAIiIikokHTx9XRQ6njzkJmoiISCZqelpYDqeP6xSAMjIykJ+fX255cXExfvjhh3oXRURERNSYahWAMjMzMWDAALi7u6N169YIDg42CELZ2dl4/PHHa7y/iIgI9O/fH7a2tnBwcEBQUBCuXLlS5TYjRoyAQqEo9xo3bpy+zfTp08ut9/f3r01XiYiIqBmrVQD617/+BTMzMxw/fhyJiYm4dOkSHn/8cdy5c0ffRghRxR4MHTx4ECEhITh27Bj27duH4uJijB07FgUFBZVus337dmRmZupfFy5cgLm5OSZNmmTQzt/f36Ddl19+WZuuEhERUTNWq0nQ+/fvx44dO9CvXz8AwOHDhzFp0iSMHDkSycnJAACFQlHj/SUmJhq8j42NhYODA06dOoVhw4ZVuI1arTZ4n5CQgJYtW5YLQJaWlnBycqpxLUTUdCiVygZtR0TyU6sApNVq0aZNG/17S0tLbN++HZMmTcLjjz+OzZs316sYrVYLoHzIqUp0dDQmT54MGxsbg+UpKSlwcHBAmzZtMHLkSCxevLjSGe2FhYUoLCzUv8/Nza1D9URkLPb29ggNDeWlvERUZ7UKQJ06dcK5c+fg7e391w5atMCWLVswadIkjB8/vs6F6HQ6hIWFYciQIejevXuNtvnxxx9x4cIFRD/0+Gd/f388+eST8PDwwLVr1/D2228jICAAR48ehbm5ebn9REREYOHChXWunYiMj+GGqP60WltkZ9tDrdbI7l5aClGLSTtvvfUWzp49i6SkpHLr7t+/j4kTJ2LPnj0oKSmpdSFz5szB3r17cejQIbi6utZom5deeglHjx7FuXPnqmz3yy+/wNPTE/v378eoUaPKra9oBMjNzQ1arRZ2dna16wgREZGJevA+QKdPGz5GJjBwD3x8mvZjZHJzc6FSqWr0/V2rAHT//n3cvXtXv9M//vgDANC2bVv9+l9//RXu7u61Kjg0NBS7du3CDz/8AA8PjxptU1BQABcXF7z//vt49dVXq23frl07LF68GC+99FK1bWtzAImIiJoSjUaD9PT7GDDAATrdX/N2zc0Fjh+/jY4dWzTJ8APU7vu7VleBtWjRAjqdDiEhIWjbti0cHR3h6OiItm3bIjQ0FPn5+bUKP0IIhIaGYseOHfj+++9rHH4AYMuWLSgsLMTzzz9fbduMjAxoNBo4OzvXeP9ERETNkb29PXJzHQ3CDwCUlCiQl+fYZMNPbdVqDlB2djZ8fX3x66+/4rnnnsOjjz4KALh06RJiY2ORnJyMI0eOGEyUrkpISAji4+Oxa9cu2NraIisrCwCgUqlgbW0NAAgODkb79u0RERFhsG10dDSCgoLK/YfKz8/HwoULMXHiRDg5OeHatWuYO3cuvLy84OfnV5vuEhERNUve3oCZGaDT/bXM3Bzw8pKuJmOrVQB6//33oVQqce3aNTg6OpZbN3bsWLz//vv46KOParS/qKgoAKU3N3xQTEwMpk+fDgC4ceMGzMwMB6quXLmCQ4cO4bvvviu3T3Nzc5w7dw5xcXHIycmBi4sLxo4di0WLFsHS0rKGPSUiImq+XF2BDRuAl14CSkpKw8/69aXL5aJWc4A6duyI9evXVzqSkpiYiNmzZyM9Pb2h6pME5wAREZEcZGQAqamlIz/NIfzU5vu7ViNAmZmZ6NatW6Xru3fvrj+NRURERKbN1bV5BJ+6qNUk6LZt21Y5upOWllarmxgSERERSaFWAcjPzw/vvPNOhXdfLSwsxLx58/jQUSIiIjJ5tZoDlJGRgX79+sHS0hIhISHo0qULhBC4fPkyPv30UxQWFuLkyZNwc3NrzJobHecAERERNT2NNgfI1dUVR48exT/+8Q+Eh4frn/yuUCgwZswYREZGNvnwQ0RERM1frQIQAHh4eGDv3r24c+cOrl69CgDw8vLi3B8iIiJqMmodgMq0adMGAwYMaMhaiIiIiIyizgGIak6j0VQ4cbyMUqmUza3HiYiITAEDUCN78Mm7VWmqT94lIiJqimp1GTzV3sMjP1qtLdLSOkKrta2yHRERETUejgAZ0enTfbB793gIYQaFQofAwD3w8TkjdVlERESywxEgI9FqbfXhBwCEMMPu3ePLjQQRERFR42MAMpLsbHt9+CkjhBmys3n7ACIiImNjADIStVoDhUJnsEyh0EGtzpaoIiIiIvliADISlSoPgYF79CGobA6QSpUncWVERETyw0nQRuTjcwaenqnIzlZDrc5m+CEiIpIIA1AjUyqVBu9VqrwKg8/D7YiIiKjxMAA1Mnt7e4SGhvJO0ERERCaEAcgIGG6IiIhMCydBExERkewwABEREZHsMAARERGR7DAAERERkewwABEREZHsMAARERGR7DAAERERkewwABEREZHsMAARERGR7DAAERERkewwABEREZHsMAARERGR7EgagCIiItC/f3/Y2trCwcEBQUFBuHLlSpXbxMbGQqFQGLysrKwM2ggh8N5778HZ2RnW1tYYPXo0rl692phdISIioiZE0gB08OBBhISE4NixY9i3bx+Ki4sxduxYFBQUVLmdnZ0dMjMz9a/r168brF++fDnWrl2LdevW4fjx47CxsYGfnx/u3bvXmN0hIolkZAAHDpT+SURUEy2k/PDExESD97GxsXBwcMCpU6cwbNiwSrdTKBRwcnKqcJ0QAqtXr8a7776LCRMmAAA+++wzODo6YufOnZg8eXLDdYCIJBcdDcyaBeh0gJkZsGEDMGOG1FURkakzqTlAWq0WAKBWq6tsl5+fD3d3d7i5uWHChAm4ePGifl1aWhqysrIwevRo/TKVSoWBAwfi6NGjjVM4EUkiI+Ov8AOU/vnSSxwJIqLqmUwA0ul0CAsLw5AhQ9C9e/dK23Xu3BmbNm3Crl27sHnzZuh0OgwePBgZ//uNl5WVBQBwdHQ02M7R0VG/7mGFhYXIzc01eBGR6bt69a/wU6akBEhNlaYeImo6TCYAhYSE4MKFC0hISKiyna+vL4KDg9G7d28MHz4c27dvR7t27bB+/fo6f3ZERARUKpX+5ebmVud9EZFxaDQa2NndgpmZMFhubi5ga3sLGo1GosqIqCkwiQAUGhqKPXv24MCBA3B1da3VthYWFujTpw9S//dPvrK5Qbdu3TJod+vWrUrnDYWHh0Or1epfN2/erEMviMhYNBoNIiMjsWfPOowfvxsKRekwkEKhw7hxu7FnzzpERkYyBBFRpSSdBC2EwMsvv4wdO3YgJSUFHh4etd5HSUkJzp8/j7/97W8AAA8PDzg5OSE5ORm9e/cGAOTm5uL48eOYM2dOhfuwtLSEpaVlnftBRMZVVFSk/7uPzxl4eqYiO1sNtTobKlVehe2IiB4kaQAKCQlBfHw8du3aBVtbW/0cHZVKBWtrawBAcHAw2rdvj4iICADA+++/j0GDBsHLyws5OTlYsWIFrl+/jpkzZwIovUIsLCwMixcvhre3Nzw8PDBv3jy4uLggKChIkn4SUeNSqfIMgg8RUXUkDUBRUVEAgBEjRhgsj4mJwfTp0wEAN27cgJnZX2fq7ty5g7///e/IyspCmzZt0LdvXxw5cgRdu3bVt5k7dy4KCgowa9Ys5OTkYOjQoUhMTCx3w0QiIiKSJ4UQQlTfTF5yc3OhUqmg1WphZ2cndTlE9JDMzExs2LCh2nazZs2Cs7OzESoiIlNQm+9vk5gETURERGRMDEBEREQkOwxAREREJDsMQETU5CiVygZtR0TyI+lVYEREdWFvb4/Q0NAq7/OjVCphb29vxKqIqClhACKiJonhhojqg6fAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIjIJGVkAAcOlP5J1NAYgIiIyGRoNBpkZmZi5cocuLsLjBwJuLsLrFyZg8zMTGg0GqlLpGaCzwIjIiKToNFoEBkZCa3WFqtXh0EIBQBAp1PgzTft8Ouvm6BS5SE0NJTPgqN64wgQERGZhKKiIgBAdrY9hDD8ehLCDNnZaoN2RPXBAERERCZFrdZAodAZLFModFCrsyWqiJojBiAiIjIpKlUeAgP36EOQQqFDYOAeqFR5EldGzQnnABERNSEZGcDVq4C3N+Dqavr7rSsfnzPw9ExFdrYaanU2ww81OAYgIqImIjoamDUL0OkAMzNgwwZgxgzT3W99qVR5DD7NhEaj0c/d+u03M6SltYCHx324uJSO8imVSqNPbGcAIiJqAjIy/gopQOmfL70E+PnVb8SmsfZL8vbgiKK1denVfQBw+nQf7N49HkKY6U9t+vicAQCjX93HOUBERCZOo9Hg2DGNPqSUKSkBjh/X1PneOI21X5Knyu7hFBn5JwBAq7XVhx+g9Mq+3bvHQ6u1BWD8q/sYgIiITFjZvXGOHImr8Mqow4fjEBkZWeuw0lj7rQ+lUtmg7ch4yn6eVqz4Em++aQed7q97OC1c6AKt1rba2xsYG0+BERGZsLJ/FZddGfXw6YOyOTK1/ddzY+23Puzt7REaGlrlZ0oxV4SqV5N7OJXd3uDB9VLe3oABiIioiWisK6NM6YorhpumraqQU13YNjYGICKiJqSxroziFVfUEKoLOaYUthmAiIiIqMFUF3JMJWwzABEREVGDMpWQUxVeBUZERESSM/bVfZKOAEVERGD79u346aefYG1tjcGDB2PZsmXo3Llzpdts3LgRn332GS5cuAAA6Nu3Lz744AMMGDBA32b69OmIi4sz2M7Pzw+JiYmN0xEiIiKq1pNPPom2bduWWy67O0EfPHgQISEh6N+/P+7fv4+3334bY8eOxaVLl2BjY1PhNikpKZgyZQoGDx4MKysrLFu2DGPHjsXFixfRvn17fTt/f3/ExMTo31taWjZ6f4iIGlpj3RuH99yhhlTTnxMXFxeTudJPIYQQUhdR5vfff4eDgwMOHjyIYcOG1WibkpIStGnTBpGRkQgODgZQOgKUk5ODnTt31qmO3NxcqFQqaLVa2NnZ1WkfREQN5cHnKFWkrv96bqz9kjyZws9Tbb6/TWoStFarBQCo1TW/K+Tdu3dRXFxcbpuUlBQ4ODigTZs2GDlyJBYvXlzpgS8sLERhYaH+fW5ubh2qJyJqHI31pdGcw42pPd1eDpraz5PJjADpdDo88cQTyMnJwaFDh2q83T/+8Q8kJSXh4sWLsLKyAgAkJCSgZcuW8PDwwLVr1/D222+jVatWOHr0KMzNzcvtY8GCBVi4cGG55RwBIiJqOspGIOLjrTF3rgo6nQJmZgLLl2vx7LN/ckRLBmozAmQyAWjOnDnYu3cvDh06BNcaxvWlS5di+fLlSElJQc+ePStt98svv8DT0xP79+/HqFGjyq2vaATIzc2NAYiIqIkoexaVVmuL1avDyt2JOCxsNVSqPKM/cZyMqzYByCQugw8NDcWePXtw4MCBGoefDz/8EEuXLsV3331XZfgBgE6dOqFt27ZITU2tcL2lpSXs7OwMXkRE1HTU5FlUD7YjknQOkBACL7/8Mnbs2IGUlBR4eHjUaLvly5djyZIlSEpKQr9+/aptn5GRAY1GA2dn5/qWTEREJszUHrhJpkvSEaCQkBBs3rwZ8fHxsLW1RVZWFrKysvDnn3/q2wQHByM8PFz/ftmyZZg3bx42bdqEjh076rfJz88HAOTn5+PNN9/EsWPHkJ6ejuTkZEyYMAFeXl7w8/Mzeh+JiMh4yp5FpVDoAEDyB26S6ZJ0BCgqKgoAMGLECIPlMTExmD59OgDgxo0bMDMzM9imqKgITz31lME28+fPx4IFC2Bubo5z584hLi4OOTk5cHFxwdixY7Fo0SLeC4iISAZM6YGbZLokPwVWnZSUFIP36enpVba3trZGUlJSPaoiIqKmrik8i4qkZRKToImIiIiMiQGIiIiIZIcBiIiImjw+24xqy6QehUFERFQX9vb2CA0NlfxZVNR0MAAREVGzwHBDtcFTYERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOy2kLoCIiKqm0WhQVFRU6XqlUgl7e3sjVkTU9DEAERGZMI1Gg8jISP17rdYW2dn2UKs1UKny9MtDQ0MZgohqgQGIiMiEPTjyc/p0H+zePR5CmEGh0CEwcA98fM6Ua0dE1ZN0DlBERAT69+8PW1tbODg4ICgoCFeuXKl2uy1btqBLly6wsrJCjx498O233xqsF0Lgvffeg7OzM6ytrTF69GhcvXq1sbpBRNTotFpbffgBACHMsHv3eGi1thJXRtQ0SRqADh48iJCQEBw7dgz79u1DcXExxo4di4KCgkq3OXLkCKZMmYIZM2bgzJkzCAoKQlBQEC5cuKBvs3z5cqxduxbr1q3D8ePHYWNjAz8/P9y7d88Y3SIianDZ2fb68FNGCDNkZ6slqoioaZP0FFhiYqLB+9jYWDg4OODUqVMYNmxYhdusWbMG/v7+ePPNNwEAixYtwr59+xAZGYl169ZBCIHVq1fj3XffxYQJEwAAn332GRwdHbFz505Mnjy5cTtFRE2aqU44Vqs1UCh0BiFIodBBrc42ei1EzYFJzQHSarUAALW68n/RHD16FK+99prBMj8/P+zcuRMAkJaWhqysLIwePVq/XqVSYeDAgTh69GiFAaiwsBCFhYX697m5ufXpBhE1UQ9POK6MFBOOVao8BAbuKTcH6MGJ0ERUcyYTgHQ6HcLCwjBkyBB079690nZZWVlwdHQ0WObo6IisrCz9+rJllbV5WEREBBYuXFif8omoGXh45KeyK66kmnDs43MGnp6pyM5WQ63OZvghqgeTCUAhISG4cOECDh06ZPTPDg8PNxhVys3NhZubm9HrICLTUdUVV1JSqfIYfIgagEncCTo0NBR79uzBgQMH4OrqWmVbJycn3Lp1y2DZrVu34OTkpF9ftqyyNg+ztLSEnZ2dwYuI5MuUrrhSKpUN2o6ISkk6AiSEwMsvv4wdO3YgJSUFHh4e1W7j6+uL5ORkhIWF6Zft27cPvr6+AAAPDw84OTkhOTkZvXv3BlA6onP8+HHMmTOnMbpBRM1MVVdcGXv0xd7eHqGhoSY5MZuoKZM0AIWEhCA+Ph67du2Cra2tfo6OSqWCtbU1ACA4OBjt27dHREQEAODVV1/F8OHDsXLlSowbNw4JCQk4efIkNmzYAABQKBQICwvD4sWL4e3tDQ8PD8ybNw8uLi4ICgqSpJ9E1LSY2hVXDDdEDU/SU2BRUVHQarUYMWIEnJ2d9a+vvvpK3+bGjRvIzMzUvx88eDDi4+OxYcMG9OrVC1u3bsXOnTsNJk7PnTsXL7/8MmbNmoX+/fsjPz8fiYmJsLKyMmr/iKhpKrviSqHQAQCvuCJqhhRCCCF1EaYmNzcXKpUKWq2W84GIZCQzM1M/mgyUXQVW/oqrWbNmwdnZWYoSiagKtfn+NpmrwIiIpPbwROLKrrjihGOipo8BiIjofzjhmEg+GICIiB7AcEMkDyZxHyAiIiIiY2IAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZaSF1AURERI1No9GgqKio0vVKpRL29vZGrIikJmkA+uGHH7BixQqcOnUKmZmZ2LFjB4KCgiptP336dMTFxZVb3rVrV1y8eBEAsGDBAixcuNBgfefOnfHTTz81aO1ERNQ0aDQaREZGVtsuNDSUIUhGJD0FVlBQgF69euGTTz6pUfs1a9YgMzNT/7p58ybUajUmTZpk0K5bt24G7Q4dOtQY5RMRURNQ1chPXdpR8yDpCFBAQAACAgJq3F6lUkGlUunf79y5E3fu3MELL7xg0K5FixZwcnJqsDqJiKj50GptkZ1tD7VaA5UqT+pySCJNeg5QdHQ0Ro8eDXd3d4PlV69ehYuLC6ysrODr64uIiAh06NCh0v0UFhaisLBQ/z43N7fRaiYiIumcPt0Hu3ePhxBmUCh0CAzcAx+fM1KXRRJosleB/fbbb9i7dy9mzpxpsHzgwIGIjY1FYmIioqKikJaWhsceewx5eZWn/IiICP3okkqlgpubW2OXT0RERqbV2urDDwAIYYbdu8dDq7WVuDKSQpMNQHFxcWjdunW5SdMBAQGYNGkSevbsCT8/P3z77bfIycnBf/7zn0r3FR4eDq1Wq3/dvHmzkasnIiJjy86214efMkKYITtbLVFFJKUmeQpMCIFNmzZh6tSpUCqVVbZt3bo1HnnkEaSmplbaxtLSEpaWlg1dJhERmRC1WgOFQmcQghQKHdTqbAmrIqk0yRGggwcPIjU1FTNmzKi2bX5+Pq5duwZnZ2cjVEZERKZKpcpDYOAeKBQ6ANDPAeJEaHmSdAQoPz/fYGQmLS0NZ8+ehVqtRocOHRAeHo5ff/0Vn332mcF20dHRGDhwILp3715un2+88QYCAwPh7u6O3377DfPnz4e5uTmmTJnS6P0hIiLT8+CZAh+fM/D0TEV2thpqdbZB+KnujAI1L5IGoJMnT+Lxxx/Xv3/ttdcAANOmTUNsbCwyMzNx48YNg220Wi22bduGNWvWVLjPjIwMTJkyBRqNBu3atcPQoUNx7NgxtGvXrvE6QkREJsve3h6hoaG8EzQZUAghhNRFmJrc3FyoVCpotVrY2dlJXQ4RERHVQG2+v5vkHCAiIiKi+mAAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2ZH0WWCmquzpILm5uRJXQkRERDVV9r1dk6d8MQBVIC+v9OnAbm5uEldCREREtZWXlweVSlVlGz4MtQI6nQ6//fYbbG1toVAoyq3Pzc2Fm5sbbt68yYelVoLHqHo8RlXj8akej1H1eIyq15yOkRACeXl5cHFxgZlZ1bN8OAJUATMzM7i6ulbbzs7Orsn/sDQ2HqPq8RhVjcenejxG1eMxql5zOUbVjfyU4SRoIiIikh0GICIiIpIdBqA6sLS0xPz582FpaSl1KSaLx6h6PEZV4/GpHo9R9XiMqifXY8RJ0ERERCQ7HAEiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAqsQnn3yCjh07wsrKCgMHDsSPP/5YaduLFy9i4sSJ6NixIxQKBVavXm28QiVUm2O0ceNGPPbYY2jTpg3atGmD0aNHV9m+OajN8dm+fTv69euH1q1bw8bGBr1798bnn39uxGqlUZtj9KCEhAQoFAoEBQU1boEmoDbHKDY2FgqFwuBlZWVlxGqlUdufo5ycHISEhMDZ2RmWlpZ45JFH8O233xqpWmnU5hiNGDGi3M+RQqHAuHHjjFixEQgqJyEhQSiVSrFp0yZx8eJF8fe//120bt1a3Lp1q8L2P/74o3jjjTfEl19+KZycnMRHH31k3IIlUNtj9Oyzz4pPPvlEnDlzRly+fFlMnz5dqFQqkZGRYeTKjaO2x+fAgQNi+/bt4tKlSyI1NVWsXr1amJubi8TERCNXbjy1PUZl0tLSRPv27cVjjz0mJkyYYJxiJVLbYxQTEyPs7OxEZmam/pWVlWXkqo2rtseosLBQ9OvXT/ztb38Thw4dEmlpaSIlJUWcPXvWyJUbT22PkUajMfgZunDhgjA3NxcxMTHGLbyRMQBVYMCAASIkJET/vqSkRLi4uIiIiIhqt3V3d5dFAKrPMRJCiPv37wtbW1sRFxfXWCVKqr7HRwgh+vTpI959993GKM8k1OUY3b9/XwwePFj8+9//FtOmTWv2Aai2xygmJkaoVCojVWcaanuMoqKiRKdOnURRUZGxSpRcfX8fffTRR8LW1lbk5+c3VomS4CmwhxQVFeHUqVMYPXq0fpmZmRlGjx6No0ePSliZ6WiIY3T37l0UFxdDrVY3VpmSqe/xEUIgOTkZV65cwbBhwxqzVMnU9Ri9//77cHBwwIwZM4xRpqTqeozy8/Ph7u4ONzc3TJgwARcvXjRGuZKoyzH6+uuv4evri5CQEDg6OqJ79+744IMPUFJSYqyyjaohfl9HR0dj8uTJsLGxaawyJcEA9JA//vgDJSUlcHR0NFju6OiIrKwsiaoyLQ1xjN566y24uLgY/E/ZXNT1+Gi1WrRq1QpKpRLjxo3Dxx9/jDFjxjR2uZKoyzE6dOgQoqOjsXHjRmOUKLm6HKPOnTtj06ZN2LVrFzZv3gydTofBgwcjIyPDGCUbXV2O0S+//IKtW7eipKQE3377LebNm4eVK1di8eLFxijZ6Or7+/rHH3/EhQsXMHPmzMYqUTJ8GjwZ3dKlS5GQkICUlBRZTNCsKVtbW5w9exb5+flITk7Ga6+9hk6dOmHEiBFSlya5vLw8TJ06FRs3bkTbtm2lLsdk+fr6wtfXV/9+8ODBePTRR7F+/XosWrRIwspMh06ng4ODAzZs2ABzc3P07dsXv/76K1asWIH58+dLXZ7JiY6ORo8ePTBgwACpS2lwDEAPadu2LczNzXHr1i2D5bdu3YKTk5NEVZmW+hyjDz/8EEuXLsX+/fvRs2fPxixTMnU9PmZmZvDy8gIA9O7dG5cvX0ZERESzDEC1PUbXrl1Deno6AgMD9ct0Oh0AoEWLFrhy5Qo8PT0bt2gja4jfRRYWFujTpw9SU1Mbo0TJ1eUYOTs7w8LCAubm5vpljz76KLKyslBUVASlUtmoNRtbfX6OCgoKkJCQgPfff78xS5QMT4E9RKlUom/fvkhOTtYv0+l0SE5ONviXlZzV9RgtX74cixYtQmJiIvr162eMUiXRUD9DOp0OhYWFjVGi5Gp7jLp06YLz58/j7Nmz+tcTTzyBxx9/HGfPnoWbm5sxyzeKhvg5Kikpwfnz5+Hs7NxYZUqqLsdoyJAhSE1N1QdoAPj555/h7Ozc7MIPUL+foy1btqCwsBDPP/98Y5cpDalnYZuihIQEYWlpKWJjY8WlS5fErFmzROvWrfWXk06dOlX861//0rcvLCwUZ86cEWfOnBHOzs7ijTfeEGfOnBFXr16VqguNrrbHaOnSpUKpVIqtW7caXF6Zl5cnVRcaVW2PzwcffCC+++47ce3aNXHp0iXx4YcfihYtWoiNGzdK1YVGV9tj9DA5XAVW22O0cOFCkZSUJK5duyZOnTolJk+eLKysrMTFixel6kKjq+0xunHjhrC1tRWhoaHiypUrYs+ePcLBwUEsXrxYqi40urr+vzZ06FDxzDPPGLtco2EAqsTHH38sOnToIJRKpRgwYIA4duyYft3w4cPFtGnT9O/T0tIEgHKv4cOHG79wI6rNMXJ3d6/wGM2fP9/4hRtJbY7PO++8I7y8vISVlZVo06aN8PX1FQkJCRJUbVy1OUYPk0MAEqJ2xygsLEzf1tHRUfztb38Tp0+flqBq46rtz9GRI0fEwIEDhaWlpejUqZNYsmSJuH//vpGrNq7aHqOffvpJABDfffedkSs1HoUQQkg0+EREREQkCc4BIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiktD06dMRFBQkdRlEssMAREQVmj59OhQKhf5lb28Pf39/nDt3TurSGsSDfSt7DR06tNE+Lz09HQqFAmfPnjVYvmbNGsTGxjba5xJRxRiAiKhS/v7+yMzMRGZmJpKTk9GiRQuMHz9e6rIaTExMjL5/mZmZ+PrrrytsV1xc3Gg1qFQqtG7dutH2T0QVYwAiokpZWlrCyckJTk5O6N27N/71r3/h5s2b+P333zFy5EiEhoYatP/999+hVCr1T57u2LEjFi1ahClTpsDGxgbt27fHJ598YrDNqlWr0KNHD9jY2MDNzQ3/+Mc/kJ+fr19//fp1BAYGok2bNrCxsUG3bt3w7bffAgDu3LmD5557Du3atYO1tTW8vb0RExNT4/61bt1a3z8nJyeo1Wr9SM1XX32F4cOHw8rKCl988QU0Gg2mTJmC9u3bo2XLlujRowe+/PJLg/3pdDosX74cXl5esLS0RIcOHbBkyRIAgIeHBwCgT58+UCgUGDFiBIDyp8AKCwvxyiuvwMHBAVZWVhg6dChOnDihX5+SkgKFQoHk5GT069cPLVu2xODBg3HlypUa95uIGICIqIby8/OxefNmeHl5wd7eHjNnzkR8fDwKCwv1bTZv3oz27dtj5MiR+mUrVqxAr169cObMGfzrX//Cq6++in379unXm5mZYe3atbh48SLi4uLw/fffY+7cufr1ISEhKCwsxA8//IDz589j2bJlaNWqFQBg3rx5uHTpEvbu3YvLly8jKioKbdu2bZD+ltV6+fJl+Pn54d69e+jbty+++eYbXLhwAbNmzcLUqVPx448/6rcJDw/H0qVL9XXFx8fD0dERAPTt9u/fj8zMTGzfvr3Cz507dy62bduGuLg4nD59Gl5eXvDz80N2drZBu3feeQcrV67EyZMn0aJFC7z44osN0m8i2ZD6aaxEZJqmTZsmzM3NhY2NjbCxsREAhLOzszh16pQQQog///xTtGnTRnz11Vf6bXr27CkWLFigf+/u7i78/f0N9vvMM8+IgICASj93y5Ytwt7eXv++R48eBvt8UGBgoHjhhRfq1D8AwsrKSt8/GxsbsWPHDpGWliYAiNWrV1e7j3HjxonXX39dCCFEbm6usLS0FBs3bqywbdl+z5w5Y7D8wafa5+fnCwsLC/HFF1/o1xcVFQkXFxexfPlyIYQQBw4cEADE/v379W2++eYbAUD8+eeftTkERLLGESAiqtTjjz+Os2fP4uzZs/jxxx/h5+eHgIAAXL9+HVZWVpg6dSo2bdoEADh9+jQuXLiA6dOnG+zD19e33PvLly/r3+/fvx+jRo1C+/btYWtri6lTp0Kj0eDu3bsAgFdeeQWLFy/GkCFDMH/+fINJ2HPmzEFCQgJ69+6NuXPn4siRI7Xq30cffaTv39mzZzFmzBj9un79+hm0LSkpwaJFi9CjRw+o1Wq0atUKSUlJuHHjBgDg8uXLKCwsxKhRo2pVw4OuXbuG4uJiDBkyRL/MwsICAwYMMDhmANCzZ0/9352dnQEAt2/frvNnE8kNAxARVcrGxgZeXl7w8vJC//798e9//xsFBQXYuHEjAGDmzJnYt28fMjIyEBMTg5EjR8Ld3b3G+09PT8f48ePRs2dPbNu2DadOndLPESoqKtJ/xi+//IKpU6fi/Pnz6NevHz7++GMA0Iexf/7zn/jtt98watQovPHGGzX+fCcnJ33/vLy8YGNjY9D3B61YsQJr1qzBW2+9hQMHDuDs2bPw8/PT12ltbV3jz20IFhYW+r8rFAoApXOQiKhmGICIqMYUCgXMzMzw559/AgB69OiBfv36YePGjYiPj69wHsqxY8fKvX/00UcBAKdOnYJOp8PKlSsxaNAgPPLII/jtt9/K7cPNzQ2zZ8/G9u3b8frrr+sDGAC0a9cO06ZNw+bNm7F69Wps2LChIbusd/jwYUyYMAHPP/88evXqhU6dOuHnn3/Wr/f29oa1tbV+AvjDlEolgNKRpMp4enpCqVTi8OHD+mXFxcU4ceIEunbt2kA9ISIAaCF1AURkugoLC5GVlQWg9IqryMhI5OfnIzAwUN9m5syZCA0NhY2NDf7f//t/5fZx+PBhLF++HEFBQdi3bx+2bNmCb775BgDg5eWF4uJifPzxxwgMDMThw4exbt06g+3DwsIQEBCARx55BHfu3MGBAwf0Aeq9995D37590a1bNxQWFmLPnj36dQ3N29sbW7duxZEjR9CmTRusWrUKt27d0gcTKysrvPXWW5g7dy6USiWGDBmC33//HRcvXsSMGTPg4OAAa2trJCYmwtXVFVZWVlCpVAafYWNjgzlz5uDNN9+EWq1Ghw4dsHz5cty9exczZsxolH4RyRVHgIioUomJiXB2doazszMGDhyIEydOYMuWLfpLuAFgypQpaNGiBaZMmQIrK6ty+3j99ddx8uRJ9OnTB4sXL8aqVavg5+cHAOjVqxdWrVqFZcuWoXv37vjiiy8QERFhsH1JSQlCQkLw6KOPwt/fH4888gg+/fRTAKWjKuHh4ejZsyeGDRsGc3NzJCQkNMqxePfdd+Hj4wM/Pz+MGDECTk5O5e7gPG/ePLz++ut477338Oijj+KZZ57Rz8tp0aIF1q5di/Xr18PFxQUTJkyo8HOWLl2KiRMnYurUqfDx8UFqaiqSkpLQpk2bRukXkVwphBBC6iKIqOlKT0+Hp6cnTpw4AR8fH4N1HTt2RFhYGMLCwqQpjoioEjwFRkR1UlxcDI1Gg3fffReDBg0qF36IiEwZT4ERUZ0cPnwYzs7OOHHiRLl5O1L74IMP0KpVqwpfAQEBUpdHRCaAp8CIqNnJzs4ud+fkMtbW1mjfvr2RKyIiU8MARERERLLDU2BEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDv/HzraQSoqxU3NAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVuNJREFUeJzt3XlcVFXjP/DPgAwgy+ggqyAiEOYu5oLmmgo+SvBomkuhpY/LAxaPpT1Y7hYuLWoUWT8UrNAyRdMMXB7RXCuXXDNRUDHQGmRYTEDm/P7gy+TIIiCzwP28X6954Zx77p1zbjfmw7nn3isTQggQERERSYiZsRtAREREZGgMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREQmKj4+HjKZDBkZGcZuClGjwwBEJGE//fQTIiIi0L59e9jY2KBVq1YYM2YMfvvttwp1BwwYAJlMBplMBjMzM9jb28PPzw8vvvgi9uzZU6vP3bFjB/r37w8nJyc0bdoUbdq0wZgxY5CcnFxfXavgnXfewbZt2yqUHzlyBAsXLkRubq7ePvthCxcu1O5LmUyGpk2bol27dnjrrbeQl5dXL5+RmJiIVatW1cu2iBojBiAiCVu+fDm2bNmCZ555BqtXr8bUqVNx8OBB+Pv749y5cxXqu7u74/PPP8eGDRuwcuVKPPvsszhy5AiGDh2K559/HiUlJY/8zHfffRfPPvssZDIZoqKi8MEHH2DUqFG4fPkyNm3apI9uAqg+AC1atMigAahcbGwsPv/8c7z//vto27Yt3n77bQQFBaE+HtHIAERUvSbGbgARGc+sWbOQmJgIuVyuLXv++efRsWNHLFu2DF988YVOfYVCgRdeeEGnbNmyZXjllVfw8ccfo3Xr1li+fHmVn3f//n0sWbIEQ4YMwe7duyssv3379mP2yHTcvXsXTZs2rbbOc889hxYtWgAApk+fjlGjRmHr1q04duwYAgICDNFMIsniCBCRhPXu3Vsn/ACAr68v2rdvj4sXL9ZoG+bm5lizZg3atWuHmJgYqNXqKuv++eefyMvLQ58+fSpd7uTkpPP+3r17WLhwIZ544glYWVnB1dUVI0eOxJUrV7R13n33XfTu3RsODg6wtrZGt27d8M033+hsRyaTobCwEAkJCdrTTpMmTcLChQsxe/ZsAICXl5d22YNzbr744gt069YN1tbWUCqVGDt2LG7cuKGz/QEDBqBDhw44ceIE+vXrh6ZNm2Lu3Lk12n8PGjRoEAAgPT292noff/wx2rdvD0tLS7i5uSE8PFxnBGvAgAH47rvvcO3aNW2fWrduXev2EDVmHAEiIh1CCNy6dQvt27ev8Trm5uYYN24c5s2bh0OHDmH48OGV1nNycoK1tTV27NiBmTNnQqlUVrnN0tJSjBgxAvv27cPYsWPx6quvIj8/H3v27MG5c+fg7e0NAFi9ejWeffZZTJgwAcXFxdi0aRNGjx6NnTt3atvx+eefY8qUKejRowemTp0KAPD29oaNjQ1+++03bNy4ER988IF2NMbR0REA8Pbbb2PevHkYM2YMpkyZgj/++AMffvgh+vXrh1OnTqFZs2ba9qpUKgwbNgxjx47FCy+8AGdn5xrvv3Llwc7BwaHKOgsXLsSiRYswePBgzJgxA5cuXUJsbCx++uknHD58GBYWFnjzzTehVquRmZmJDz74AABga2tb6/YQNWqCiOgBn3/+uQAg4uLidMr79+8v2rdvX+V6SUlJAoBYvXp1tdufP3++ACBsbGzEsGHDxNtvvy1OnDhRod66desEAPH+++9XWKbRaLT/vnv3rs6y4uJi0aFDBzFo0CCdchsbGzFx4sQK21q5cqUAINLT03XKMzIyhLm5uXj77bd1ys+ePSuaNGmiU96/f38BQHzyySdV9vtBCxYsEADEpUuXxB9//CHS09PF2rVrhaWlpXB2dhaFhYVCCCHWr1+v07bbt28LuVwuhg4dKkpLS7Xbi4mJEQDEunXrtGXDhw8Xnp6eNWoPkRTxFBgRaf36668IDw9HQEAAJk6cWKt1y0cY8vPzq623aNEiJCYmomvXrkhJScGbb76Jbt26wd/fX+e025YtW9CiRQvMnDmzwjZkMpn239bW1tp/37lzB2q1Gn379sXJkydr1f6Hbd26FRqNBmPGjMGff/6pfbm4uMDX1xf79+/XqW9paYmXXnqpVp/h5+cHR0dHeHl5Ydq0afDx8cF3331X5dyhvXv3ori4GJGRkTAz+/vX97/+9S/Y29vju+++q31HiSSKAegRDh48iODgYLi5uUEmk1V6FUl9io6ORvfu3WFnZwcnJyeEhobi0qVLOnXu3buH8PBwODg4wNbWFqNGjcKtW7f02i5q/LKzszF8+HAoFAp88803MDc3r9X6BQUFAAA7O7tH1h03bhx++OEH3LlzB7t378b48eNx6tQpBAcH4969ewDKTgf5+fmhSZPqz9Tv3LkTvXr1gpWVFZRKJRwdHREbG1vtXKSauHz5MoQQ8PX1haOjo87r4sWLFSZst2zZssJ8qkfZsmUL9uzZg9TUVKSlpeHcuXPo1q1blfWvXbsGoCw4PUgul6NNmzba5UT0aJwD9AiFhYXo3LkzXn75ZYwcOVLvn3fgwAGEh4eje/fuuH//PubOnYuhQ4fiwoULsLGxAQD85z//wXfffYfNmzdDoVAgIiICI0eOxOHDh/XePmqc1Go1hg0bhtzcXPzwww9wc3Or9TbKL5v38fGp8Tr29vYYMmQIhgwZAgsLCyQkJOD48ePo379/jdb/4Ycf8Oyzz6Jfv374+OOP4erqCgsLC6xfvx6JiYm17sODNBoNZDIZvv/++0rD4MNzah4ciaqpfv36aecdEZFhMQA9wrBhwzBs2LAqlxcVFeHNN9/Exo0bkZubiw4dOmD58uUYMGBAnT7v4RvBxcfHw8nJSXt1iVqtRlxcHBITE7VXjKxfvx5PPvkkjh07hl69etXpc0m67t27h+DgYPz222/Yu3cv2rVrV+ttlJaWIjExEU2bNsXTTz9dp3Y89dRTSEhIQFZWFoCyScrHjx9HSUkJLCwsKl1ny5YtsLKyQkpKCiwtLbXl69evr1D3wdNmNSn39vaGEAJeXl544oknatsdvfD09AQAXLp0CW3atNGWFxcXIz09HYMHD9aWVdUvIirDU2CPKSIiAkePHsWmTZtw5swZjB49GkFBQbh8+XK9bL98GL/8apkTJ06gpKRE5xdd27Zt0apVKxw9erRePpOko7S0FM8//zyOHj2KzZs31+neM6WlpXjllVdw8eJFvPLKK7C3t6+y7t27d6s8Tr///nsAf5/eGTVqFP7880/ExMRUqCv+70aB5ubmkMlkKC0t1S7LyMio9FS1jY1NpTc7LB9ZfXjZyJEjYW5ujkWLFlW4MaEQAiqVqvJO6tHgwYMhl8uxZs0anTbFxcVBrVbrXH1nY2Pz2KcBiRozjgA9huvXr2P9+vW4fv269pTB66+/juTkZKxfvx7vvPPOY21fo9EgMjISffr0QYcOHQCUzdOQy+U6l98CgLOzM7Kzsx/r80h6XnvtNXz77bcIDg5GTk5OhRsfPnzTQ7Vara1z9+5dpKWlYevWrbhy5QrGjh2LJUuWVPt5d+/eRe/evdGrVy8EBQXBw8MDubm52LZtG3744QeEhoaia9euAICwsDBs2LABs2bNwo8//oi+ffuisLAQe/fuxb///W+EhIRg+PDheP/99xEUFITx48fj9u3b+Oijj+Dj44MzZ87ofHa3bt2wd+9evP/++3Bzc4OXlxd69uypnXPz5ptvYuzYsbCwsEBwcDC8vb2xdOlSREVFISMjA6GhobCzs0N6ejqSkpIwdepUvP7664+1/2vL0dERUVFRWLRoEYKCgvDss8/i0qVL+Pjjj9G9e3ed/17dunXDV199hVmzZqF79+6wtbVFcHCwQdtLZNKMeQlaQwNAJCUlad/v3LlTeznvg68mTZqIMWPGCCGEuHjxogBQ7euNN96o9POmT58uPD09xY0bN7RlX375pZDL5RXqdu/eXcyZM6d+O0yNXvnl21W9qqtra2srfH19xQsvvCB2795do88rKSkRn332mQgNDRWenp7C0tJSNG3aVHTt2lWsXLlSFBUV6dS/e/euePPNN4WXl5ewsLAQLi4u4rnnnhNXrlzR1omLixO+vr7C0tJStG3bVqxfv157mfmDfv31V9GvXz9hbW0tAOhcEr9kyRLRsmVLYWZmVuGS+C1btoinn35a+/9327ZtRXh4uLh06ZLOvqnuFgEPK2/fH3/8UW29hy+DLxcTEyPatm0rLCwshLOzs5gxY4a4c+eOTp2CggIxfvx40axZMwGAl8QTPUQmRD08dEYiZDIZkpKSEBoaCgD46quvMGHCBJw/f77CJElbW1u4uLiguLgYV69erXa7Dg4O2huvlYuIiMD27dtx8OBBeHl5acv/97//4ZlnnsGdO3d0RoE8PT0RGRmJ//znP4/XSSIiIgngKbDH0LVrV5SWluL27dvo27dvpXXkcjnatm1b420KITBz5kwkJSUhNTVVJ/wAZcPaFhYW2LdvH0aNGgWgbELk9evX+ewgIiKiGmIAeoSCggKkpaVp36enp+P06dNQKpV44oknMGHCBISFheG9995D165d8ccff2Dfvn3o1KlTlY8DqE54eDgSExOxfft22NnZaef1KBQKWFtbQ6FQYPLkyZg1axaUSiXs7e0xc+ZMBAQE8AowIiKiGuIpsEdITU3FwIEDK5RPnDgR8fHxKCkpwdKlS7FhwwbcvHkTLVq0QK9evbBo0SJ07Nix1p9X1aWr69evx6RJkwCUXbb82muvYePGjSgqKkJgYCA+/vhjuLi41PrziIiIpIgBiIiIiCSH9wEiIiIiyWEAIiIiIsnhJOhKaDQa/P7777Czs+Pt5ImIiBoIIQTy8/Ph5uYGM7Pqx3gYgCrx+++/w8PDw9jNICIiojq4ceMG3N3dq63DAFQJOzs7AGU7sLrnGhEREZHpyMvLg4eHh/Z7vDoMQJUoP+1lb2/PAERERNTA1GT6CidBExERkeQwABEREZHkMAARERGR5HAO0GMoLS1FSUmJsZvRaFlYWMDc3NzYzSAiokaIAagOhBDIzs5Gbm6usZvS6DVr1gwuLi68HxMREdUrBqA6KA8/Tk5OaNq0Kb+c9UAIgbt37+L27dsAAFdXVyO3iIiIGhMGoFoqLS3Vhh8HBwdjN6dRs7a2BgDcvn0bTk5OPB1GRET1hpOga6l8zk/Tpk2N3BJpKN/PnGtFRET1yagBKDY2Fp06ddLecDAgIADff/99lfUHDBgAmUxW4TV8+HBtnUmTJlVYHhQUVO9t52kvw+B+JiIifTDqKTB3d3csW7YMvr6+EEIgISEBISEhOHXqFNq3b1+h/tatW1FcXKx9r1Kp0LlzZ4wePVqnXlBQENavX699b2lpqb9OEBERUbVUKpXO9/fD5HK5waeVGDUABQcH67x/++23ERsbi2PHjlUagJRKpc77TZs2oWnTphUCkKWlJVxcXOq/wURERFQrKpUKMTExj6wXERFh0BBkMnOASktLsWnTJhQWFiIgIKBG68TFxWHs2LGwsbHRKU9NTYWTkxP8/PwwY8YMqFSqardTVFSEvLw8nVdj9ODpQQsLCzg7O2PIkCFYt24dNBpNjbcTHx+PZs2a6a+hRETUaFQ38lOXevXF6FeBnT17FgEBAbh37x5sbW2RlJSEdu3aPXK9H3/8EefOnUNcXJxOeVBQEEaOHAkvLy9cuXIFc+fOxbBhw3D06NEqryKKjo7GokWL6qU/j2LsYcDy04OlpaW4desWkpOT8eqrr+Kbb77Bt99+iyZNjH5IEBER6Z3Rv+38/Pxw+vRpqNVqfPPNN5g4cSIOHDjwyBAUFxeHjh07okePHjrlY8eO1f67Y8eO6NSpE7y9vZGamopnnnmm0m1FRUVh1qxZ2vd5eXnw8PB4jF5VzhSGAR88PdiyZUv4+/ujV69eeOaZZxAfH48pU6bg/fffx/r163H16lUolUoEBwdjxYoVsLW1RWpqKl566SUAf09QXrBgARYuXIjPP/8cq1evxqVLl2BjY4NBgwZh1apVcHJy0ktfiIjI9NX0psG5ubkGveeb0U+ByeVy+Pj4oFu3boiOjkbnzp2xevXqatcpLCzEpk2bMHny5Eduv02bNmjRogXS0tKqrGNpaam9Eq38pQ+mOgw4aNAgdO7cGVu3bgUAmJmZYc2aNTh//jwSEhLwv//9D3PmzAEA9O7dG6tWrYK9vT2ysrKQlZWF119/HUDZpepLlizBL7/8gm3btiEjIwOTJk0yaF+IiMi03L9/v17r1RejjwA9TKPRoKioqNo6mzdvRlFREV544YVHbi8zMxMqlYp3En6Etm3b4syZMwCAyMhIbXnr1q2xdOlSTJ8+HR9//DHkcjkUCgVkMlmFieYvv/yy9t9t2rTBmjVr0L17dxQUFMDW1tYg/SAiIqoJo44ARUVF4eDBg8jIyMDZs2cRFRWF1NRUTJgwAQAQFhaGqKioCuvFxcUhNDS0wmmigoICzJ49G8eOHUNGRgb27duHkJAQ+Pj4IDAw0CB9aqiEENpTWnv37sUzzzyDli1bws7ODi+++CJUKhXu3r1b7TZOnDiB4OBgtGrVCnZ2dujfvz8A4Pr163pvPxERNQxqtR3S01tDrbYzajuMOgJ0+/ZthIWFISsrCwqFAp06dUJKSgqGDBkCoOyL08xMN6NdunQJhw4dwu7duytsz9zcHGfOnEFCQgJyc3Ph5uaGoUOHYsmSJbwX0CNcvHgRXl5eyMjIwIgRIzBjxgy8/fbbUCqVOHToECZPnozi4uIq74BdWFiIwMBABAYG4ssvv4SjoyOuX7+OwMBAg5/SIyIi03TyZFfs2DECQphBJtMgOHgn/P1PGaUtRg1AD1/B9bDU1NQKZX5+fhBCVFrf2toaKSkp9dE0Sfnf//6Hs2fP4j//+Q9OnDgBjUaD9957Txs+v/76a536crkcpaWlOmW//vorVCoVli1bpp1A/vPPPxumA0REZLIsLCwAlI38lIcfABDCDDt2jIC3dxoUinxtPUMx+iRoMqyioiJkZ2fj5s2bOHnyJN555x2EhIRgxIgRCAsLg4+PD0pKSvDhhx/i6tWr+Pzzz/HJJ5/obKN169YoKCjAvn378Oeff+Lu3bto1aoV5HK5dr1vv/0WS5YsMVIviYjIVCgUCgBATo6DNvyUE8IMOTlKnXqGwgAkMcnJyXB1dUXr1q0RFBSE/fv3Y82aNdi+fTvMzc3RuXNnvP/++1i+fDk6dOiAL7/8EtHR0Trb6N27N6ZPn47nn38ejo6OWLFiBRwdHREfH4/NmzejXbt2WLZsGd59910j9ZKIiEyNUqmCTKZ7012ZTAOlMsco7ZGJqs4nSVheXh4UCgXUanWFS+Lv3buH9PR0eHl5wcrKqlbbNYX7ADU0j7O/iYjI+B787ktKCsEvv3QGIAMg0LnzL/jnP7cDqJ/vvuq+vx/GAFQJfQUgwPh3gm5oGICIiBo+lUqFjIz76NHDCRqNTFtubi5w/PhttG7dpF6++2oTgEzuPkCNHcMNERFJjYODA86cAR5+7GRpqQz5+c4wxlcj5wARERGR3vn6Ag/d2Qbm5oCPj3HawwBEREREeufuDnz6aVnoAcp+rl1bVm4MPAVGREREBjF5MhAYCKSllY38GCv8AAxAREREZEDu7sYNPuV4CoyIiIgkhwGIiIiIJIcBiIiIiCSHAYjqTWpqKmQyGXJzc2u8TuvWrbFq1Sq9tYmIiKgyDEASMmnSJMhkMkyfPr3CsvDwcMhkMkyaNMnwDSMiIjIwBiCJ8fDwwKZNm/DXX39py+7du4fExES0atXKiC0jIiIyHAYgifH394eHhwe2bt2qLdu6dStatWqFrl27asuKiorwyiuvwMnJCVZWVnj66afx008/6Wxr165deOKJJ2BtbY2BAwciIyOjwucdOnQIffv2hbW1NTw8PPDKK6+gsLBQb/0jIiL9UqlUyMrKqvKlUqmM3cQa4X2AjCgzE7h8uez24Ia8J8LLL7+M9evXY8KECQCAdevW4aWXXkJqaqq2zpw5c7BlyxYkJCTA09MTK1asQGBgINLS0qBUKnHjxg2MHDkS4eHhmDp1Kn7++We89tprOp9z5coVBAUFYenSpVi3bh3++OMPREREICIiAuvXrzdch4mIqF48+GT36tTHk931jSNARhIXB3h6AoMGlf2MizPcZ7/wwgs4dOgQrl27hmvXruHw4cN44YUXtMsLCwsRGxuLlStXYtiwYWjXrh0+++wzWFtbI+7/GhobGwtvb2+899578PPzw4QJEyrMH4qOjsaECRMQGRkJX19f9O7dG2vWrMGGDRtw7949w3WYiIjqRXFxcb3WMyaOABlBZiYwderfT8XVaIBp08puD26IkSBHR0cMHz4c8fHxEEJg+PDhaNGihXb5lStXUFJSgj59+mjLLCws0KNHD1y8eBEAcPHiRfTs2VNnuwEBATrvf/nlF5w5cwZffvmltkwIAY1Gg/T0dDz55JP66B4REdEjMQAZweXLf4efcqWlZc9GMdSpsJdffhkREREAgI8++kgvn1FQUIBp06bhlVdeqbCME66JiMiYGICMwNcXMDPTDUHm5mUPhjOUoKAgFBcXQyaTITAwUGeZt7c35HI5Dh8+DE9PTwBASUkJfvrpJ0RGRgIAnnzySXz77bc66x07dkznvb+/Py5cuAAfQ3aMiIgMRq22Q06OA5RKFRSKfGM3p1YYgIzA3R349NOy016lpWXhZ+1aw06ENjc3157OMjc311lmY2ODGTNmYPbs2VAqlWjVqhVWrFiBu3fvYvLkyQCA6dOn47333sPs2bMxZcoUnDhxAvHx8TrbeeONN9CrVy9ERERgypQpsLGxwYULF7Bnz54aTaIjIiLTdfJkV+zYMQJCmEEm0yA4eCf8/U8Zu1k1xknQRjJ5MpCRAezfX/bz/3KFQdnb28Pe3r7SZcuWLcOoUaPw4osvwt/fH2lpaUhJSUHz5s0BlJ3C2rJlC7Zt24bOnTvjk08+wTvvvKOzjU6dOuHAgQP47bff0LdvX3Tt2hXz58+Hm5ub3vtGRET6o1bbacMPAAhhhh07RkCttjNyy2pOJoQQxm6EqcnLy4NCoYBara4QEO7du4f09HR4eXnBysrKSC2UDu5vIiLTkZWVhU8//RTp6a2RkDCxwvKJE+Ph5XUNU6dOhaurq8HbV93398M4AkREREQ1IpfLAQBKpQoyme7VPDKZBkpljk49U8Y5QERERFQjDg4OiIiIQHFxMVq2zMMbbyhQWiqDubnA8uV5GD9+HORyucnfBBFgACIiIqJaKA83r70GPP982S1cfHxkcHdvBqCZMZtWKwxAREREVCfu7oa9grk+cQ5QHXHuuGFwPxMRkT4wANWShYUFAODu3btGbok0lO/n8v1ORERUH3gKrJbMzc3RrFkz3L59GwDQtGlTyGQyI7eq8RFC4O7du7h9+zaaNWtW4WaNREREj8OoASg2NhaxsbHIyMgAALRv3x7z58/HsGHDKq0fHx+Pl156SafM0tJS58niQggsWLAAn332GXJzc9GnTx/ExsbC19e33trt4uICANoQRPrTrFkz7f4mIiKqL0YNQO7u7li2bBl8fX0hhEBCQgJCQkJw6tQptG/fvtJ17O3tcenSJe37h0dfVqxYgTVr1iAhIQFeXl6YN28eAgMDceHChXq7kZ5MJoOrqyucnJxQUlJSL9ukiiwsLDjyQ0REemHUABQcHKzz/u2330ZsbCyOHTtWZQCSyWRVjggIIbBq1Sq89dZbCAkJAQBs2LABzs7O2LZtG8aOHVuv7Tc3N+cXNBERUQNkMpOgS0tLsWnTJhQWFiIgIKDKegUFBfD09ISHhwdCQkJw/vx57bL09HRkZ2dj8ODB2jKFQoGePXvi6NGjVW6zqKgIeXl5Oi8iIiJqvIwegM6ePQtbW1tYWlpi+vTpSEpKQrt27Sqt6+fnh3Xr1mH79u344osvoNFo0Lt3b2RmZgIAsrOzAQDOzs466zk7O2uXVSY6OhoKhUL78vDwqKfeERERkSkyegDy8/PD6dOncfz4ccyYMQMTJ07EhQsXKq0bEBCAsLAwdOnSBf3798fWrVvh6OiItWvXPlYboqKioFarta8bN2481vaIiIjItBn9Mni5XA4fHx8AQLdu3fDTTz9h9erVNQo1FhYW6Nq1K9LS0gD8fXXWrVu3dJ5Ce+vWLXTp0qXK7VhaWsLS0vIxekFEREQNidFHgB6m0WhQVFRUo7qlpaU4e/asNux4eXnBxcUF+/bt09bJy8vD8ePHq51XRERERNJi1BGgqKgoDBs2DK1atUJ+fj4SExORmpqKlJQUAEBYWBhatmyJ6OhoAMDixYvRq1cv+Pj4IDc3FytXrsS1a9cwZcoUAGVXiEVGRmLp0qXw9fXVXgbv5uaG0NBQY3WTiIiITIxRA9Dt27cRFhaGrKwsKBQKdOrUCSkpKRgyZAgA4Pr16zAz+3uQ6s6dO/jXv/6F7OxsNG/eHN26dcORI0d0Jk3PmTMHhYWFmDp1KnJzc/H0008jOTm53u4BRERERA2fTPBpkxXk5eVBoVBArVbD3t7e2M0hIiKiGqjN97fJzQEiIiIi0jcGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhyjBqDY2Fh06tQJ9vb2sLe3R0BAAL7//vsq63/22Wfo27cvmjdvjubNm2Pw4MH48ccfdepMmjQJMplM5xUUFKTvrhAREVEDYtQA5O7ujmXLluHEiRP4+eefMWjQIISEhOD8+fOV1k9NTcW4ceOwf/9+HD16FB4eHhg6dChu3rypUy8oKAhZWVna18aNGw3RHSIiImogZEIIYexGPEipVGLlypWYPHnyI+uWlpaiefPmiImJQVhYGICyEaDc3Fxs27atzm3Iy8uDQqGAWq2Gvb19nbdDREREhlOb72+TmQNUWlqKTZs2obCwEAEBATVa5+7duygpKYFSqdQpT01NhZOTE/z8/DBjxgyoVKpqt1NUVIS8vDydFxERETVeTYzdgLNnzyIgIAD37t2Dra0tkpKS0K5duxqt+8Ybb8DNzQ2DBw/WlgUFBWHkyJHw8vLClStXMHfuXAwbNgxHjx6Fubl5pduJjo7GokWL6qU/REREZPqMfgqsuLgY169fh1qtxjfffIP/9//+Hw4cOPDIELRs2TKsWLECqamp6NSpU5X1rl69Cm9vb+zduxfPPPNMpXWKiopQVFSkfZ+XlwcPDw+eAiMiImpAGtQpMLlcDh8fH3Tr1g3R0dHo3LkzVq9eXe067777LpYtW4bdu3dXG34AoE2bNmjRogXS0tKqrGNpaam9Eq38RURERI2X0U+BPUyj0eiMxjxsxYoVePvtt5GSkoKnnnrqkdvLzMyESqWCq6trfTaTiIiIGjCjBqCoqCgMGzYMrVq1Qn5+PhITE5GamoqUlBQAQFhYGFq2bIno6GgAwPLlyzF//nwkJiaidevWyM7OBgDY2trC1tYWBQUFWLRoEUaNGgUXFxdcuXIFc+bMgY+PDwIDA43WTyIiIjItRg1At2/fRlhYGLKysqBQKNCpUyekpKRgyJAhAIDr16/DzOzvs3SxsbEoLi7Gc889p7OdBQsWYOHChTA3N8eZM2eQkJCA3NxcuLm5YejQoViyZAksLS0N2jciIiIyXUafBG2KeB8gIiKihqdBTYImIiIiMjQGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikpwmxm4AERFRbahUKhQXFwMAfv/dDOnpTeDldR9ubhoAgFwuh4ODgzGbSA0AAxARETUYKpUKMTExAICTJ7tix44REMIMMpkGwcE74e9/CgAQERHBEETV4ikwIiJqMMpHftRqO234AQAhzLBjxwio1XY69YiqwgBEREQNTk6Ogzb8lBPCDDk5SiO1iBoaBiAiImpwlEoVZDKNTplMpoFSmWOkFlFDwwBEREQNjkKRj+DgndoQVD4HSKHIN3LLqKHgJGgiImqQ/P1Pwds7DTk5SiiVOQw/VCsMQERE1GApFPkMPlQnPAVGREREksMAREREDYZcLq/XeiRdPAVGREQNhoODAyIiIqq9zw/vBE01wQBEREQNCsMN1QejngKLjY1Fp06dYG9vD3t7ewQEBOD777+vdp3Nmzejbdu2sLKyQseOHbFr1y6d5UIIzJ8/H66urrC2tsbgwYNx+fJlfXaDiIiIGhijBiB3d3csW7YMJ06cwM8//4xBgwYhJCQE58+fr7T+kSNHMG7cOEyePBmnTp1CaGgoQkNDce7cOW2dFStWYM2aNfjkk09w/Phx2NjYIDAwEPfu3TNUt4iIiMjEyYQQwtiNeJBSqcTKlSsxefLkCsuef/55FBYWYufOndqyXr16oUuXLvjkk08ghICbmxtee+01vP766wAAtVoNZ2dnxMfHY+zYsTVqQ15eHhQKBdRqNezt7eunY0RERKRXtfn+NpmrwEpLS7Fp0yYUFhYiICCg0jpHjx7F4MGDdcoCAwNx9OhRAEB6ejqys7N16igUCvTs2VNbpzJFRUXIy8vTeRERUd1kZgL795f9JDJVRg9AZ8+eha2tLSwtLTF9+nQkJSWhXbt2ldbNzs6Gs7OzTpmzszOys7O1y8vLqqpTmejoaCgUCu3Lw8PjcbpERCQ5KpUKWVlZeO+9XHh6CgwaBHh6Crz3Xi6ysrKgUqmM3UQiHUa/CszPzw+nT5+GWq3GN998g4kTJ+LAgQNVhiB9iIqKwqxZs7Tv8/LyGIKIiGpIpVIhJiYGarUdVq2KhBAyAIBGI8Ps2fa4eXMdFIp8RERE8AouMhlGD0ByuRw+Pj4AgG7duuGnn37C6tWrsXbt2gp1XVxccOvWLZ2yW7duwcXFRbu8vMzV1VWnTpcuXapsg6WlJSwtLR+3K0REklR+T56cHAcIoXtiQQgz5OQooVDkV3vvHmrcVCqVyd27yegB6GEajQZFRUWVLgsICMC+ffsQGRmpLduzZ492zpCXlxdcXFywb98+beDJy8vD8ePHMWPGDH03nYhI0pRKFWQyjU4Iksk0UCpzjNgqMrbyEcJHMfQIoVEDUFRUFIYNG4ZWrVohPz8fiYmJSE1NRUpKCgAgLCwMLVu2RHR0NADg1VdfRf/+/fHee+9h+PDh2LRpE37++Wd8+umnAACZTIbIyEgsXboUvr6+8PLywrx58+Dm5obQ0FBjdZOISBIUinwEB+/Ejh0jIIQZZDINgoN38mGlElfTkT9DjxAaNQDdvn0bYWFhyMrKgkKhQKdOnZCSkoIhQ4YAAK5fvw4zs7//kujduzcSExPx1ltvYe7cufD19cW2bdvQoUMHbZ05c+agsLAQU6dORW5uLp5++mkkJyfDysrK4P0jIpIaf/9T8PZOQ06OEkplDsMPmSyjBqC4uLhql6emplYoGz16NEaPHl3lOjKZDIsXL8bixYsft3lERFQHCkU+gw+ZPKNfBk9ERERkaAxAREQSwJsTEuliACIiauTi4gBPT/zfzQnL3tcnuVxer/WIDMHkLoMnIqL6k5kJTJ0KaDRl7zUaYNo0IDAQcHevn89wcHBARESEyd3nhag6DEBERI2USqXCsWOARqMbPEpLgePHVbC2Rr2FEoYbqoqpjhAyABERNUIPPp5CJouscHPCw4cTcO4cH09B+meqI4QMQEREjVD5l82jbk7Ix1OQIZhiyGYAIiJq5HhzQjIlmZnA5cuAr2/9zUOrC14FRkQkAQpFPry8rjH8kFHp+4rE2mAAIiIiIr2r6opEY92bigGIiIiI9O7y5b/DT7nSUiAtzTjtYQAiIiIivfP1BcweSh3m5oCPj3HawwBEREREeufuDnz6aVnoAcp+rl1rvInQvAqMiKgRMtWbz5G0TZ5cdhfytLSykR9jXgUmE0II4328acrLy4NCoYBarYa9vb2xm0NEVCcqlcrkbj5HpE+1+f7mCBARUSPFcENUNc4BIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiMoLMTGD/fuM9BoBI6hiAiIgMzJQeCEkkVQxAREQGZGoPhCSSKgYgIiIDMrUHQhJJFQMQEZGBqFQq2NvfgpmZ7g34zc0F7OxuQaVSGallRNLDO0ETERmASqVCTEwMAGDEiK7YsWMEhDCDTKbB8OE7sXPnKQBAREQE7+BMZAAMQEREBvDgM7n8/U/B2zsNOTlKKJU5UCjyK61HRPrDAEREZAQKRb5O8CEyNKk/LJcBiIiISGIePCVbncZ8SpaToImIiCSmpqdaG/Mp2ToFoMzMTBQUFFQoLykpwcGDBx+7UURERET6VKsAlJWVhR49esDT0xPNmjVDWFiYThDKycnBwIEDa7y96OhodO/eHXZ2dnByckJoaCguXbpU7ToDBgyATCar8Bo+fLi2zqRJkyosDwoKqk1XiYiIqBGrVQD673//CzMzMxw/fhzJycm4cOECBg4ciDt37mjrCCGq2YKuAwcOIDw8HMeOHcOePXtQUlKCoUOHorCwsMp1tm7diqysLO3r3LlzMDc3x+jRo3XqBQUF6dTbuHFjbbpKREREjVitJkHv3bsXSUlJeOqppwAAhw8fxujRozFo0CDs27cPACCTyWq8veTkZJ338fHxcHJywokTJ9CvX79K11EqlTrvN23ahKZNm1YIQJaWlnBxcalxW4iI9Ekul9drPSJ6PLUKQGq1Gs2bN9e+t7S0xNatWzF69GgMHDgQX3zxxWM1Rq1WA6gYcqoTFxeHsWPHwsbGRqc8NTUVTk5OaN68OQYNGoSlS5dWOZO9qKgIRUVF2vd5eXl1aD0RUdUcHBwQEREh6cuOiUxJrQJQmzZtcObMGfj6+v69gSZNsHnzZowePRojRoyoc0M0Gg0iIyPRp08fdOjQoUbr/Pjjjzh37hziHnqUclBQEEaOHAkvLy9cuXIFc+fOxbBhw3D06FGYm5tX2E50dDQWLVpU57YTEdUEww2ZKrXaDjk5DlAqVZK5P5VM1GLSzhtvvIHTp08jJSWlwrL79+9j1KhR2LlzJ0pLS2vdkBkzZuD777/HoUOH4O7uXqN1pk2bhqNHj+LMmTPV1rt69Sq8vb2xd+9ePPPMMxWWVzYC5OHhAbVaDXt7+9p1hIiIyMQ9eB+gkyd1H80SHLwT/v4N89EseXl5UCgUNfr+rlUAun//Pu7evavd6J9//gkAaNGihXb5zZs34enpWasGR0REYPv27Th48CC8vLxqtE5hYSHc3NywePFivPrqq4+s7+joiKVLl2LatGmPrFubHUhERNQQqVQqZGTcR48eTtBo/p6/a24ucPz4bbRu3aRBhR+gdt/ftboKrEmTJtBoNAgPD0eLFi3g7OwMZ2dntGjRAhERESgoKKhV+BFCICIiAklJSfjf//5X4/ADAJs3b0ZRURFeeOGFR9bNzMyESqWCq6trjbdPRETUmDk4OCAvz1kn/ABAaakM+fnODS781Fat5gDl5OQgICAAN2/exIQJE/Dkk08CAC5cuID4+Hjs27cPR44c0ZkoXZ3w8HAkJiZi+/btsLOzQ3Z2NgBAoVDA2toaABAWFoaWLVsiOjpaZ924uDiEhoZW+A9UUFCARYsWYdSoUXBxccGVK1cwZ84c+Pj4IDAwsDbdJSIiatR8fQEzM0Cj+bvM3Bzw8TFemwylVgFo8eLFkMvluHLlCpydnSssGzp0KBYvXowPPvigRtuLjY0FUHZzwwetX78ekyZNAgBcv34dZma6A1WXLl3CoUOHsHv37grbNDc3x5kzZ5CQkIDc3Fy4ublh6NChWLJkCSwtLWvYUyIiosbP3R349FNg2jSgtLQs/KxdW1be2NVqDlDr1q2xdu3aKkdSkpOTMX36dGRkZNRX+4yCc4CIiEhKMjOBtLSykZ+GHH5q8/1dqxGgrKwstG/fvsrlHTp00J7GIiIioobB3b1hB5+6qNUk6BYtWlQ7upOenl6rmxgSERERGUOtAlBgYCDefPPNSu9kWlRUhHnz5vGho0RERGTyajUHKDMzE0899RQsLS0RHh6Otm3bQgiBixcv4uOPP0ZRURF+/vlneHh46LPNesc5QERERA2P3uYAubu74+jRo/j3v/+NqKgo7ZPfZTIZhgwZgpiYmAYffoiIiKjxq1UAAgAvLy98//33uHPnDi5fvgwA8PHx4dwfIiIiajBqHYDKNW/eHD169KjPthAREREZRJ0DEBEZl0qlqvSChHJyubzR38qeiKiuGICIGqAHn+RcnYb2JGciIkOp1WXwRGQaHh75UavtkJ7eGmq1XbX1iIioDEeAiBq4kye7YseOERDCDDKZBsHBO+Hvf8rYzSIiMmkcASJqwNRqO234AQAhzLBjx4gKI0FERKSLAYioAcvJcdCGn3JCmCEnh7elICKqDgMQUQOmVKogk2l0ymQyDZTKHCO1iIioYWAAImrAFIp8BAfv1Iag8jlACkW+kVtGRGTaOAmaqIHz9z8Fb+805OQooVTmMPwQEdUAAxBRAySXy3XeKxT5lQafh+sREVEZBiCiBsjBwQERERG8EzQRUR0xABE1UAw3RER1x0nQREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOUYNQNHR0ejevTvs7Ozg5OSE0NBQXLp0qdp14uPjIZPJdF5WVlY6dYQQmD9/PlxdXWFtbY3Bgwfj8uXL+uwKERERNSBGDUAHDhxAeHg4jh07hj179qCkpARDhw5FYWFhtevZ29sjKytL+7p27ZrO8hUrVmDNmjX45JNPcPz4cdjY2CAwMBD37t3TZ3eIGpzMTGD//rKfRERS0sSYH56cnKzzPj4+Hk5OTjhx4gT69etX5XoymQwuLi6VLhNCYNWqVXjrrbcQEhICANiwYQOcnZ2xbds2jB07tv46QNSAxcUBU6cCGg1gZgZ8+ikwebKxW0VEZBgmNQdIrVYDAJRKZbX1CgoK4OnpCQ8PD4SEhOD8+fPaZenp6cjOzsbgwYO1ZQqFAj179sTRo0f103CiBiYz8+/wA5T9nDaNI0FEJB0mE4A0Gg0iIyPRp08fdOjQocp6fn5+WLduHbZv344vvvgCGo0GvXv3Rub//ebOzs4GADg7O+us5+zsrF32sKKiIuTl5em8iBqzy5f/Dj/lSkuBtDTjtIeIyNBMJgCFh4fj3Llz2LRpU7X1AgICEBYWhi5duqB///7YunUrHB0dsXbt2jp/dnR0NBQKhfbl4eFR520RmTqVSgV7+1swMxM65ebmAnZ2t6BSqYzUMiIiwzGJABQREYGdO3di//79cHd3r9W6FhYW6Nq1K9L+70/X8rlBt27d0ql369atKucNRUVFQa1Wa183btyoQy+ITJ9KpUJMTAx27vwEI0bsgExWNgwkk2kwfPgO7Nz5CWJiYhiCiKjRM+okaCEEZs6ciaSkJKSmpsLLy6vW2ygtLcXZs2fxj3/8AwDg5eUFFxcX7Nu3D126dAEA5OXl4fjx45gxY0al27C0tISlpWWd+0HUUBQXF2v/7e9/Ct7eacjJUUKpzIFCkV9pPSKixsioASg8PByJiYnYvn077OzstHN0FAoFrK2tAQBhYWFo2bIloqOjAQCLFy9Gr1694OPjg9zcXKxcuRLXrl3DlClTAJRdIRYZGYmlS5fC19cXXl5emDdvHtzc3BAaGmqUfhKZKoUiXyf4EBFJhVEDUGxsLABgwIABOuXr16/HpEmTAADXr1+HmdnfZ+ru3LmDf/3rX8jOzkbz5s3RrVs3HDlyBO3atdPWmTNnDgoLCzF16lTk5ubi6aefRnJycoUbJhIREZE0yYQQ4tHVpCUvLw8KhQJqtRr29vbGbg5RvcnKysKnn376yHpTp06Fq6urAVpERFR/avP9bRKToImIiIgMiQGIiIiIJIcBiIiIiCSHAYhIQuRyeb3WIyJqqIx6FRgRGZaDgwMiIiKqvc+PXC6Hg4ODAVtFRGR4DEBEEsNwQ0TEU2BEREQkQQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEZBCZmcD+/WU/iYiMjQGIiPRGpVIhKysL772XC09PgUGDAE9Pgffey0VWVhZUKpWxm0hEEsVngRGRXqhUKsTExECttsOqVZEQQgYA0GhkmD3bHjdvroNCkY+IiAg+n4yIDI4jQESkF+VPnM/JcYAQur9qhDBDTo5Spx4RkSExABGRXimVKshkGp0ymUwDpTLHSC0iImIAIiI9UyjyERy8UxuCZDINgoN3QqHIN3LLiEjKOAeIyIRkZgKXLwO+voC7u/7XMxR//1Pw9k5DTo4SSmUOww8RGR0DEJGJiIsDpk4FNBrAzAz49FNg8mT9rWdoCkU+g08jplKptPO5fv/dDOnpTeDldR9ubmUjf3K5nJPdyaQwABGZgMzMv0MMUPZz2jQgMLD6EZ26rkdUEzUdWSy/4g8ATp7sih07RkAIM+3pTn//UwDAK/7IpHAOEJGRqVQqHDum0oaYcqWlwPHjqirvlVPX9YiqU5d7N5WP/KjVdtrwA5Rd7bdjxwio1XY69YhMAUeAiIzowXvlyGSROpeLy2QaHD6cgHPnKt4rp67rGZJcLq/XeqR/j3vvpupuecDTn2RqGICIjKj8L+LyK6UePnVQ/qXx8F/OdV3PkBwcHBAREVFtGzgvxLTU5N5NCkV+lf9Ny2958HAg5y0PyBQxABGZiLpeKWXKV1gx3DRMdQ0yjwrkRKaEAYjIhNT1SileYUX16XGCjCkHcqIHMQAREVEFjxNkGMipIWAAIiKiSjHIUGPGy+CJiOix8Io/aoiMOgIUHR2NrVu34tdff4W1tTV69+6N5cuXw8/Pr8p1PvvsM2zYsAHnzp0DAHTr1g3vvPMOevTooa0zadIkJCQk6KwXGBiI5ORk/XSEiEjCeMUfNURGDUAHDhxAeHg4unfvjvv372Pu3LkYOnQoLly4ABsbm0rXSU1Nxbhx49C7d29YWVlh+fLlGDp0KM6fP4+WLVtq6wUFBWH9+vXa95aWlnrvD1Ft1fUvZ/7FTfrwOMcVww01NDIhhDB2I8r98ccfcHJywoEDB9CvX78arVNaWormzZsjJiYGYWFhAMpGgHJzc7Ft27Y6tSMvLw8KhQJqtRr29vZ12gZRTT34DKXKVPWXc13XI6oOjytqyGrz/W1Sk6DVajUAQKlU1nidu3fvoqSkpMI6qampcHJyQvPmzTFo0CAsXbq0yv9pi4qKUFRUpH2fl5dXh9YT1U1dv0zq40vI1J8iT4bHcENSYTIjQBqNBs8++yxyc3Nx6NChGq/373//GykpKTh//jysrKwAAJs2bULTpk3h5eWFK1euYO7cubC1tcXRo0dhbm5eYRsLFy7EokWLKpRzBIgao/K/8BMTrTFnjgIajQxmZgIrVqgxfvxf/AufiBqs2owAmUwAmjFjBr7//nscOnQI7jX8U3TZsmVYsWIFUlNT0alTpyrrXb16Fd7e3ti7dy+eeeaZCssrGwHy8PBgAKJGp+KznnTv9BsZuaraZz0REZmy2gQgk7gMPiIiAjt37sT+/ftrHH7effddLFu2DLt37642/ABAmzZt0KJFC6SlpVW63NLSEvb29jovosaoJs96erAeEVFjZdQ5QEIIzJw5E0lJSUhNTYWXl1eN1luxYgXefvttpKSk4Kmnnnpk/czMTKhUKri6uj5uk4kaBT60koikzqgjQOHh4fjiiy+QmJgIOzs7ZGdnIzs7G3/99Ze2TlhYGKKiorTvly9fjnnz5mHdunVo3bq1dp2CggIAQEFBAWbPno1jx44hIyMD+/btQ0hICHx8fBAYGGjwPhKZovJnPclkGgDgQyuJSHKMOgIUGxsLABgwYIBO+fr16zFp0iQAwPXr12FmZqazTnFxMZ577jmddRYsWICFCxfC3NwcZ86cQUJCAnJzc+Hm5oahQ4diyZIlvBcQ0QP40EoikjKjnwJ7lNTUVJ33GRkZ1da3trZGSkrKY7SKSDr4rCcikiqTmARNREREZEgMQERERCQ5DEBEEsJniBERlTGpR2EQkX7xqd1ERGUYgIgkhuGGiIinwIiIiEiCGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIcpoYuwFkGlQqFYqLi6tcLpfL4eDgYMAWERER6Q8DEEGlUiEmJkb7Xq22Q06OA5RKFRSKfG15REQEQxARETUKDECkM/Jz8mRX7NgxAkKYQSbTIDh4J/z9T1WoR0RE1JAZdQ5QdHQ0unfvDjs7Ozg5OSE0NBSXLl165HqbN29G27ZtYWVlhY4dO2LXrl06y4UQmD9/PlxdXWFtbY3Bgwfj8uXL+upGo6FW22nDDwAIYYYdO0ZArbYzcsuIiIjql1ED0IEDBxAeHo5jx45hz549KCkpwdChQ1FYWFjlOkeOHMG4ceMwefJknDp1CqGhoQgNDcW5c+e0dVasWIE1a9bgk08+wfHjx2FjY4PAwEDcu3fPEN1qsHJyHLThp5wQZsjJURqpRURERPph1FNgycnJOu/j4+Ph5OSEEydOoF+/fpWus3r1agQFBWH27NkAgCVLlmDPnj2IiYnBJ598AiEEVq1ahbfeegshISEAgA0bNsDZ2Rnbtm3D2LFj9dupemKMSclKpQoymUYnBMlkGiiVOfX6OURERMZmUnOA1Go1AECprHrE4ejRo5g1a5ZOWWBgILZt2wYASE9PR3Z2NgYPHqxdrlAo0LNnTxw9erTSAFRUVISioiLt+7y8vMfpxmN7eFJyVep7UrJCkY/g4J0V5gA9OBGaiIioMTCZAKTRaBAZGYk+ffqgQ4cOVdbLzs6Gs7OzTpmzszOys7O1y8vLqqrzsOjoaCxatOhxml+vHh75qeqqLH1MSvb3PwVv7zTk5CihVOYw/BARUaNkMgEoPDwc586dw6FDhwz+2VFRUTqjSnl5efDw8DB4OypT3VVZ+qJQ5DP4EBFRo2YSd4KOiIjAzp07sX//fri7u1db18XFBbdu3dIpu3XrFlxcXLTLy8uqqvMwS0tL2Nvb67xMgaGuypLL5fVaj4iIyNQZdQRICIGZM2ciKSkJqamp8PLyeuQ6AQEB2LdvHyIjI7Vle/bsQUBAAADAy8sLLi4u2LdvH7p06QKgbETn+PHjmDFjhj66oTfVXZVVnyM0Dg4OiIiI4J2giYhIMowagMLDw5GYmIjt27fDzs5OO0dHoVDA2toaABAWFoaWLVsiOjoaAPDqq6+if//+eO+99zB8+HBs2rQJP//8Mz799FMAgEwmQ2RkJJYuXQpfX194eXlh3rx5cHNzQ2hoqFH6WVeGvCqL4YaIiKTEqKfAYmNjoVarMWDAALi6umpfX331lbbO9evXkZWVpX3fu3dvJCYm4tNPP0Xnzp3xzTffYNu2bToTp+fMmYOZM2di6tSp6N69OwoKCpCcnAwrKyuD9u9xlV+VJZNpAIBXZREREdUTmRBCGLsRpiYvLw8KhQJqtdoo84GysrK0I1pA+VVgFa/Kmjp1KlxdXQ3ePiIiIlNUm+9vk7kKjP728GTjqq7K4qRkIiKiumEAMkGclExERKRfDEAmiuGGiIhIf0ziPkBEREREhsQARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESS08TYDZAClUqF4uLiKpfL5XI4ODgYsEVERETSZtQAdPDgQaxcuRInTpxAVlYWkpKSEBoaWmX9SZMmISEhoUJ5u3btcP78eQDAwoULsWjRIp3lfn5++PXXX+u17TWlUqkQExPzyHoREREMQURERAZi1FNghYWF6Ny5Mz766KMa1V+9ejWysrK0rxs3bkCpVGL06NE69dq3b69T79ChQ/pofo1UN/JTl3pERET0+Iw6AjRs2DAMGzasxvUVCgUUCoX2/bZt23Dnzh289NJLOvWaNGkCFxeXemtnfVKr7ZCT4wClUgWFIt/YzSEiIpKkBj0HKC4uDoMHD4anp6dO+eXLl+Hm5gYrKysEBAQgOjoarVq1qnI7RUVFKCoq0r7Py8vTS3tPnuyKHTtGQAgzyGQaBAfvhL//Kb18FhEREVWtwV4F9vvvv+P777/HlClTdMp79uyJ+Ph4JCcnIzY2Funp6ejbty/y86sebYmOjtaOLikUCnh4eNR7e9VqO234AQAhzLBjxwio1Xb1/llERERUvQYbgBISEtCsWbMKk6aHDRuG0aNHo1OnTggMDMSuXbuQm5uLr7/+usptRUVFQa1Wa183btyo9/bm5Dhow085IcyQk6Os988iIiKi6jXIU2BCCKxbtw4vvvgi5HJ5tXWbNWuGJ554AmlpaVXWsbS0hKWlZX03U4dSqYJMptEJQTKZBkpljl4/l4iIiCpqkCNABw4cQFpaGiZPnvzIugUFBbhy5QpcXV0N0LKqKRT5CA7eCZlMAwDaOUCcCE1ERGR4Rh0BKigo0BmZSU9Px+nTp6FUKtGqVStERUXh5s2b2LBhg856cXFx6NmzJzp06FBhm6+//jqCg4Ph6emJ33//HQsWLIC5uTnGjRun9/5U5sERKn//U/D2TkNOjhJKZY5O+HnUSBYRERHVH6MGoJ9//hkDBw7Uvp81axYAYOLEiYiPj0dWVhauX7+us45arcaWLVuwevXqSreZmZmJcePGQaVSwdHREU8//TSOHTsGR0dH/XWkGg4ODoiIiOCdoImIiEyITAghjN0IU5OXlweFQgG1Wg17e3tjN4eIiIhqoDbf3w1yDhARERHR42AAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyTHqs8BMVfnTQfLy8ozcEiIiIqqp8u/tmjzliwGoEvn5ZU9p9/DwMHJLiIiIqLby8/OhUCiqrcOHoVZCo9Hg999/h52dHWQy2WNtKy8vDx4eHrhx44ZkH6zKfcB9AHAfANwHAPcBwH2gz/4LIZCfnw83NzeYmVU/y4cjQJUwMzODu7t7vW7T3t5ekgf6g7gPuA8A7gOA+wDgPgC4D/TV/0eN/JTjJGgiIiKSHAYgIiIikhwGID2ztLTEggULYGlpaeymGA33AfcBwH0AcB8A3AcA94Gp9J+ToImIiEhyOAJEREREksMARERERJLDAERERESSwwBEREREksMAVAcfffQRWrduDSsrK/Ts2RM//vhjtfVXrVoFPz8/WFtbw8PDA//5z39w79497fKFCxdCJpPpvNq2bavvbjyW2uyDkpISLF68GN7e3rCyskLnzp2RnJz8WNs0tvruf0M7Bg4ePIjg4GC4ublBJpNh27Ztj1wnNTUV/v7+sLS0hI+PD+Lj4yvUaUjHgD72QWM/DrKysjB+/Hg88cQTMDMzQ2RkZKX1Nm/ejLZt28LKygodO3bErl276r/x9UQf+yA+Pr7CcWBlZaWfDtSD2u6DrVu3YsiQIXB0dIS9vT0CAgKQkpJSoZ6+fx8wANXSV199hVmzZmHBggU4efIkOnfujMDAQNy+fbvS+omJifjvf/+LBQsW4OLFi4iLi8NXX32FuXPn6tRr3749srKytK9Dhw4Zojt1Utt98NZbb2Ht2rX48MMPceHCBUyfPh3//Oc/cerUqTpv05j00X+gYR0DhYWF6Ny5Mz766KMa1U9PT8fw4cMxcOBAnD59GpGRkZgyZYrOL72GdAwA+tkHQOM+DoqKiuDo6Ii33noLnTt3rrTOkSNHMG7cOEyePBmnTp1CaGgoQkNDce7cufpser3Rxz4Ayu6S/OBxcO3atfpqcr2r7T44ePAghgwZgl27duHEiRMYOHAggoODDf+dIKhWevToIcLDw7XvS0tLhZubm4iOjq60fnh4uBg0aJBO2axZs0SfPn207xcsWCA6d+6sl/bqQ233gaurq4iJidEpGzlypJgwYUKdt2lM+uh/QzsGHgRAJCUlVVtnzpw5on379jplzz//vAgMDNS+b0jHwMPqax809uPgQf379xevvvpqhfIxY8aI4cOH65T17NlTTJs27TFbqH/1tQ/Wr18vFApFvbXLkGq7D8q1a9dOLFq0SPveEL8POAJUC8XFxThx4gQGDx6sLTMzM8PgwYNx9OjRStfp3bs3Tpw4oR26u3r1Knbt2oV//OMfOvUuX74MNzc3tGnTBhMmTMD169f115HHUJd9UFRUVGH41traWvuXbV22aSz66H+5hnIM1MXRo0d19hkABAYGavdZQzoG6upR+6BcYz4OaqKm+6mxKygogKenJzw8PBASEoLz588bu0l6o9FokJ+fD6VSCcBwvw8YgGrhzz//RGlpKZydnXXKnZ2dkZ2dXek648ePx+LFi/H000/DwsIC3t7eGDBggM4psJ49eyI+Ph7JycmIjY1Feno6+vbti/z8fL32py7qsg8CAwPx/vvv4/Lly9BoNNizZw+2bt2KrKysOm/TWPTRf6BhHQN1kZ2dXek+y8vLw19//dWgjoG6etQ+ABr/cVATVe2nxnIc1ISfnx/WrVuH7du344svvoBGo0Hv3r2RmZlp7KbpxbvvvouCggKMGTMGgOG+ExiA9Cw1NRXvvPMOPv74Y5w8eRJbt27Fd999hyVLlmjrDBs2DKNHj0anTp0QGBiIXbt2ITc3F19//bURW15/Vq9eDV9fX7Rt2xZyuRwRERF46aWXYGYmjcOvJv1v7McA1QyPAwKAgIAAhIWFoUuXLujfvz+2bt0KR0dHrF271thNq3eJiYlYtGgRvv76azg5ORn0s6XxDVRPWrRoAXNzc9y6dUun/NatW3Bxcal0nXnz5uHFF1/ElClT0LFjR/zzn//EO++8g+joaGg0mkrXadasGZ544gmkpaXVex8eV132gaOjI7Zt24bCwkJcu3YNv/76K2xtbdGmTZs6b9NY9NH/ypjyMVAXLi4ule4ze3t7WFtbN6hjoK4etQ8q09iOg5qoaj81luOgLiwsLNC1a9dGdxxs2rQJU6ZMwddff61zustQvw8YgGpBLpejW7du2Ldvn7ZMo9Fg3759CAgIqHSdu3fvVhjpMDc3BwCIKh7DVlBQgCtXrsDV1bWeWl5/6rIPyllZWaFly5a4f/8+tmzZgpCQkMfepqHpo/+VMeVjoC4CAgJ09hkA7NmzR7vPGtIxUFeP2geVaWzHQU3UZT81dqWlpTh79myjOg42btyIl156CRs3bsTw4cN1lhns90G9TaeWiE2bNglLS0sRHx8vLly4IKZOnSqaNWsmsrOzhRBCvPjii+K///2vtv6CBQuEnZ2d2Lhxo7h69arYvXu38Pb2FmPGjNHWee2110RqaqpIT08Xhw8fFoMHDxYtWrQQt2/fNnj/aqK2++DYsWNiy5Yt4sqVK+LgwYNi0KBBwsvLS9y5c6fG2zQl+uh/QzsG8vPzxalTp8SpU6cEAPH++++LU6dOiWvXrgkhhPjvf/8rXnzxRW39q1eviqZNm4rZs2eLixcvio8++kiYm5uL5ORkbZ2GdAwIoZ990NiPAyGEtn63bt3E+PHjxalTp8T58+e1yw8fPiyaNGki3n33XXHx4kWxYMECYWFhIc6ePWvQvtWUPvbBokWLREpKirhy5Yo4ceKEGDt2rLCystKpY0pquw++/PJL0aRJE/HRRx+JrKws7Ss3N1dbxxC/DxiA6uDDDz8UrVq1EnK5XPTo0UMcO3ZMu6x///5i4sSJ2vclJSVi4cKFwtvbW1hZWQkPDw/x73//W+fL7/nnnxeurq5CLpeLli1biueff16kpaUZsEe1V5t9kJqaKp588klhaWkpHBwcxIsvvihu3rxZq22amvruf0M7Bvbv3y8AVHiV93vixImif//+Fdbp0qWLkMvlok2bNmL9+vUVttuQjgF97AMpHAeV1ff09NSp8/XXX4snnnhCyOVy0b59e/Hdd98ZpkN1oI99EBkZqf3/wNnZWfzjH/8QJ0+eNFynaqm2+6B///7V1i+n798HMiGqOA9DRERE1EhxDhARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQEVEDkJqaCplMhtzcXGM3hahRYAAiIh2TJk2CTCbDsmXLdMq3bdsGmUymfS+EwGeffYaAgADY29vD1tYW7du3x6uvvlrjhzbevXsXUVFR8Pb2hpWVFRwdHdG/f39s375dW6d169ZYtWpVvfRN38r3nUwmg4WFBby8vDBnzhzcu3evVtsZMGAAIiMjdcp69+6NrKwsKBSKemwxkXQxABFRBVZWVli+fDnu3LlT6XIhBMaPH49XXnkF//jHP7B7925cuHABcXFxsLKywtKlS2v0OdOnT8fWrVvx4Ycf4tdff0VycjKee+45qFSq+uyOQQUFBSErKwtXr17FBx98gLVr12LBggWPvV25XA4XFxedEEpEj6FeH6xBRA3exIkTxYgRI0Tbtm3F7NmzteVJSUmi/FfGxo0bBQCxffv2Sreh0Whq9FkKhULEx8dXubyyZwaV++GHH8TTTz8trKyshLu7u5g5c6YoKCjQLt+wYYPo1q2bsLW1Fc7OzmLcuHHi1q1b2uXlzy9KTk4WXbp0EVZWVmLgwIHi1q1bYteuXaJt27bCzs5OjBs3ThQWFtaoPxMnThQhISE6ZSNHjhRdu3bVvv/zzz/F2LFjhZubm7C2thYdOnQQiYmJOtt4uM/p6ena9j74HMFvvvlGtGvXTsjlcuHp6SnefffdGrWTiITgCBARVWBubo533nkHH374ITIzMyss37hxI/z8/PDss89Wun5NRylcXFywa9cu5OfnV7p869atcHd3x+LFi5GVlYWsrCwAwJUrVxAUFIRRo0bhzJkz+Oqrr3Do0CFERERo1y0pKcGSJUvwyy+/YNu2bcjIyMCkSZMqfMbChQsRExODI0eO4MaNGxgzZgxWrVqFxMREfPfdd9i9ezc+/PDDGvXnYefOncORI0cgl8u1Zffu3UO3bt3w3Xff4dy5c5g6dSpefPFF/PjjjwCA1atXIyAgAP/617+0ffbw8Kiw7RMnTmDMmDEYO3Yszp49i4ULF2LevHmIj4+vU1uJJMfYCYyITMuDoxi9evUSL7/8shBCdwSobdu24tlnn9VZ79VXXxU2NjbCxsZGtGzZskafdeDAAeHu7i4sLCzEU089JSIjI8WhQ4d06nh6eooPPvhAp2zy5Mli6tSpOmU//PCDMDMzE3/99Veln/XTTz8JACI/P18I8fcI0N69e7V1oqOjBQBx5coVbdm0adNEYGBgjfozceJEYW5uLmxsbISlpaUAIMzMzMQ333xT7XrDhw8Xr732mvZ9//79xauvvqpT5+ERoPHjx4shQ4bo1Jk9e7Zo165djdpKJHUcASKiKi1fvhwJCQm4ePHiI+u++eabOH36NObPn4+CgoIabb9fv364evUq9u3bh+eeew7nz59H3759sWTJkmrX++WXXxAfHw9bW1vtKzAwEBqNBunp6QDKRkiCg4PRqlUr2NnZoX///gCA69ev62yrU6dO2n87OzujadOmaNOmjU7Z7du3a9QfABg4cCBOnz6N48ePY+LEiXjppZcwatQo7fLS0lIsWbIEHTt2hFKphK2tLVJSUiq061EuXryIPn366JT16dMHly9fRmlpaa22RSRFDEBEVKV+/fohMDAQUVFROuW+vr64dOmSTpmjoyN8fHzg5ORUq8+wsLBA37598cYbb2D37t1YvHgxlixZguLi4irXKSgowLRp03D69Gnt65dffsHly5fh7e2NwsJCBAYGwt7eHl9++SV++uknJCUlAUCF7VpYWGj/XX711oNkMhk0Gk2N+2NjYwMfHx907twZ69atw/HjxxEXF6ddvnLlSqxevRpvvPEG9u/fj9OnTyMwMLDa/hJR/Wti7AYQkWlbtmwZunTpAj8/P23ZuHHjMH78eGzfvh0hISH1+nnt2rXD/fv3ce/ePcjlcsjl8gojGv7+/rhw4QJ8fHwq3cbZs2ehUqmwbNky7fyZn3/+uV7bWRNmZmaYO3cuZs2ahfHjx8Pa2hqHDx9GSEgIXnjhBQCARqPBb7/9hnbt2mnXq6zPD3vyySdx+PBhnbLDhw/jiSeegLm5ef13hqiR4QgQEVWrY8eOmDBhAtasWaMtGzt2LJ577jmMHTsWixcvxvHjx5GRkYEDBw7gq6++qvEX8IABA7B27VqcOHECGRkZ2LVrF+bOnYuBAwfC3t4eQNl9gA4ePIibN2/izz//BAC88cYbOHLkCCIiInD69GlcvnwZ27dv106CbtWqFeRyOT788ENcvXoV33777SNPq+nL6NGjYW5ujo8++ghA2ejZnj17cOTIEVy8eBHTpk3DrVu3dNZp3bq1dp/++eeflY5Avfbaa9i3bx+WLFmC3377DQkJCYiJicHrr79ukH4RNXQMQET0SIsXL9b5EpbJZPjqq6+watUq7Nq1C8888wz8/Pzw8ssvw8PDA4cOHarRdgMDA5GQkIChQ4fiySefxMyZMxEYGIivv/5a57MzMjLg7e0NR0dHAGXzdg4cOIDffvsNffv2RdeuXTF//ny4ubkBKDsdFx8fj82bN6Ndu3ZYtmwZ3n333XrcIzXXpEkTREREYMWKFSgsLMRbb70Ff39/BAYGYsCAAXBxcUFoaKjOOq+//jrMzc3Rrl07ODo6Vjo/yN/fH19//TU2bdqEDh06YP78+Vi8eHGlV7oRUUUyIYQwdiOIiIiIDIkjQERERCQ5DEBEpDcPXqb+8OuHH34wdvNq5fr169X2p7aXsRORcfEUGBHpTXUPRW3ZsiWsra0N2JrHc//+fWRkZFS5vHXr1mjShBfWEjUUDEBEREQkOTwFRkRERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESS8/8BfDl29SJLU0AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATPlJREFUeJzt3XdcVfX/B/DXBRmiDAfDgYKa2xQXYSVqGJqzrPyWCbj3Ige4EFTQXKSSpubIbeZKSTQKR1JOzD0hLAFHspVxOb8//HnreC96L957zx2v5+NxH3rf95xz39ej3JefzxkyQRAEEBEREZkIC6kbICIiItImhhsiIiIyKQw3REREZFIYboiIiMikMNwQERGRSWG4ISIiIpPCcENEREQmheGGiIiITArDDREREZkUhhsiMkgymQyzZs2Sug2FoKAgeHh4SN0GEamB4YaI1LZ+/XrIZDLFw9bWFvXr18fo0aORkZGh0/c+ceIEZs2ahczMTK1ut0OHDqLPVLlyZbRp0wZr165FSUmJVt4jMjISe/bs0cq2iOjlykndABEZn4iICHh6euLJkyc4fvw4VqxYgdjYWFy8eBF2dnZaeY/Hjx+jXLl/f0SdOHEC4eHhCAoKgpOTk1be45maNWsiKioKAHD//n18++23GDRoEK5fv4558+a98vYjIyPx4Ycfonfv3q+8LSJ6OYYbItJY165d0bp1awDA4MGDUaVKFSxevBh79+7FJ598UubtlpSUoLCwELa2trC1tdVWuy/l6OiIzz77TPF82LBhaNCgAZYvX47Zs2fDyspKb70Q0avjtBQRvbJOnToBAJKTkwEACxcuRLt27VClShWUL18erVq1ws6dO5XWk8lkGD16NDZv3owmTZrAxsYGBw8eVLz27JibWbNmYdKkSQAAT09PxRRSSkoKfH190bx5c5V9NWjQAP7+/hp/Hjs7O7zxxhvIy8vD/fv3S10uLy8Pn3/+Odzd3WFjY4MGDRpg4cKFEARB9Bnz8vKwYcMGRd9BQUEa90RE6uPIDRG9slu3bgEAqlSpAgD48ssv0bNnT/Tr1w+FhYXYtm0bPvroI+zfvx/dunUTrfvzzz9jx44dGD16NKpWraryoN0PPvgA169fx9atW7FkyRJUrVoVAODs7Iz+/ftjyJAhuHjxIpo2bapY59SpU7h+/TqmT59eps90+/ZtWFpaljoFJggCevbsiV9++QWDBg1CixYtEBcXh0mTJuHvv//GkiVLAAAbN27E4MGD0bZtWwwdOhQAULdu3TL1RERqEoiI1LRu3ToBgPDTTz8J9+/fF+7cuSNs27ZNqFKlilC+fHnhr7/+EgRBEPLz80XrFRYWCk2bNhU6deokqgMQLCwshEuXLim9FwAhLCxM8XzBggUCACE5OVm0XGZmpmBraytMmTJFVB87dqxQoUIFITc394WfydfXV2jYsKFw//594f79+8KVK1eEsWPHCgCEHj16KJYLDAwUateurXi+Z88eAYAwZ84c0fY+/PBDQSaTCTdv3lTUKlSoIAQGBr6wDyLSHk5LEZHG/Pz84OzsDHd3d/zvf/9DxYoVsXv3btSoUQMAUL58ecWyjx49QlZWFt5++22cPXtWaVu+vr5o3LhxmXtxdHREr169sHXrVsV0kFwux/bt29G7d29UqFDhpdu4evUqnJ2d4ezsjEaNGmHZsmXo1q0b1q5dW+o6sbGxsLS0xNixY0X1zz//HIIg4McffyzzZyKiV8NpKSLSWExMDOrXr49y5crB1dUVDRo0gIXFv/9X2r9/P+bMmYOkpCQUFBQo6jKZTGlbnp6er9xPQEAAtm/fjmPHjqF9+/b46aefkJGRgf79+6u1voeHB1avXq04vf21116Di4vLC9f5888/Ub16ddjb24vqjRo1UrxORNJguCEijbVt21ZxttTzjh07hp49e6J9+/b46quvUK1aNVhZWWHdunXYsmWL0vL/HeUpK39/f7i6umLTpk1o3749Nm3aBDc3N/j5+am1foUKFdRelogMH6eliEirvv/+e9ja2iIuLg4DBw5E165dtRIcVI36PGNpaYlPP/0UO3fuxKNHj7Bnzx588sknsLS0fOX3LU3t2rVx9+5d5OTkiOpXr15VvP7Mi3onIu1juCEirbK0tIRMJoNcLlfUUlJSXvkKvc+OnSntCsX9+/fHo0ePMGzYMOTm5oquW6ML7733HuRyOZYvXy6qL1myBDKZDF27dlXUKlSooPUrKxNR6TgtRURa1a1bNyxevBhdunTBp59+inv37iEmJgb16tXDH3/8UebttmrVCgAwbdo0/O9//4OVlRV69OihCD1eXl5o2rQpvvvuOzRq1AgtW7bUyucpTY8ePdCxY0dMmzYNKSkpaN68OQ4dOoS9e/di/PjxotO9W7VqhZ9++gmLFy9G9erV4enpCW9vb532R2TOOHJDRFrVqVMnfPPNN0hPT8f48eOxdetWzJ8/H++///4rbbdNmzaYPXs2zp8/j6CgIHzyySdKF9gLCAgAALUPJH4VFhYW2LdvH8aPH4/9+/dj/PjxuHz5MhYsWIDFixeLll28eDFatWqF6dOn45NPPsGKFSt03h+ROZMJwn8upUlEZMS+/PJLTJgwASkpKahVq5bU7RCRRBhuiMgkCIKA5s2bo0qVKvjll1+kboeIJMRjbojIqOXl5WHfvn345ZdfcOHCBezdu1fqlohIYhy5ISKjlpKSAk9PTzg5OWHkyJGYO3eu1C0RkcQYboiIiMik8GwpIiIiMikMN0RERGRSzO6A4pKSEty9exf29va8JDoREZGREAQBOTk5qF69uuhGvaqYXbi5e/cu3N3dpW6DiIiIyuDOnTuoWbPmC5cxu3Bjb28P4OkfjoODg8TdEBERkTqys7Ph7u6u+B5/EbMLN8+mohwcHBhuiIiIjIw6h5TwgGIiIiIyKQw3REREZFIYboiIiMikmN0xN+qSy+UoKiqSug3SA2tr65eeVkhERMaD4eY5giAgPT0dmZmZUrdCemJhYQFPT09YW1tL3QoREWkBw81zngUbFxcX2NnZ8UJ/Ju7ZRR3T0tJQq1Yt7m8iIhMgabg5evQoFixYgDNnziAtLQ27d+9G7969S11+165dWLFiBZKSklBQUIAmTZpg1qxZ8Pf310o/crlcEWyqVKmilW2S4XN2dsbdu3dRXFwMKysrqdshIqJXJOmBBnl5eWjevDliYmLUWv7o0aPo3LkzYmNjcebMGXTs2BE9evTAuXPntNLPs2Ns7OzstLI9Mg7PpqPkcrnEnRARkTZIOnLTtWtXdO3aVe3lo6OjRc8jIyOxd+9e/PDDD/Dy8tJaX5yaMC/c30REpsWoj7kpKSlBTk4OKleuXOoyBQUFKCgoUDzPzs7WR2tEREQkEaM+/3XhwoXIzc3Fxx9/XOoyUVFRcHR0VDx400wiIiLTZrThZsuWLQgPD8eOHTvg4uJS6nKhoaHIyspSPO7cuaPHLvUnKCgIMpkMMpkMVlZWcHV1RefOnbF27VqUlJSovZ3169fDyclJd40SERHpmFGGm23btmHw4MHYsWMH/Pz8XrisjY2N4iaZpn6zzC5duiAtLQ0pKSn48ccf0bFjR4wbNw7du3dHcXGx1O0REZEZePjwoeTfOUYXbrZu3YoBAwZg69at6Natm9TtGBQbGxu4ubmhRo0aaNmyJaZOnYq9e/fixx9/xPr16wEAixcvRrNmzVChQgW4u7tj5MiRyM3NBQAkJCRgwIAByMrKUowCzZo1CwCwceNGtG7dGvb29nBzc8Onn36Ke/fuSfRJiYjI0OTn5yM8PBzLly/HDz/8IGkvkoab3NxcJCUlISkpCQCQnJyMpKQkpKamAng6pRQQEKBYfsuWLQgICMCiRYvg7e2N9PR0pKenIysrS2c9CoKAwsJCSR6CILxy/506dULz5s2xa9cuAE+vxrt06VJcunQJGzZswM8//4zJkycDANq1a4fo6Gg4ODggLS0NaWlpmDhxIoCnp8nPnj0b58+fx549e5CSkoKgoKBX7o+IiIzflStXsGDBAsXz3bsdsW+fdP1IerbU6dOn0bFjR8Xz4OBgAEBgYCDWr1+PtLQ0RdABgFWrVqG4uBijRo3CqFGjFPVny+tCUVERoqKidLLtlwkNDdXKLQEaNmyIP/74AwAwfvx4Rd3DwwNz5szB8OHD8dVXX8Ha2hqOjo6QyWRwc3MTbWPgwIGK39epUwdLly5FmzZtkJubi4oVK75yj0REZJw2bNiAlJQUxfPbt9/Exo2dcPMm0LOnND1JGm46dOjwwtGJ5wNLQkKCbhsyUYIgKK7l8tNPPyEqKgpXr15FdnY2iouL8eTJE+Tn57/w4oVnzpzBrFmzcP78eTx69EhxkHJqaioaN26sl89BRESGIzc3F4sWLRLVhg0bhpMn3XDjBhASIlFjMPLr3OiDlZUVQkNDJXtvbbhy5Qo8PT2RkpKC7t27Y8SIEZg7dy4qV66M48ePY9CgQSgsLCw13OTl5cHf3x/+/v7YvHkznJ2dkZqaCn9/fxQWFmqlRyIiMh5//PEHdu/erXhuaWmJ0NBQWFpaomdP6UZsnmG4eQmZTGbUd4v++eefceHCBUyYMAFnzpxBSUkJFi1aBAuLp4db7dixQ7S8tbW10m0Irl69iocPH2LevHmK6wSdPn1aPx+AiIgMhiAIWLNmDe7evauodejQAb6+vhJ2pYzhxoQUFBQgPT0dcrkcGRkZOHjwIKKiotC9e3cEBATg4sWLKCoqwrJly9CjRw/8+uuvWLlypWgbHh4eyM3NRXx8PJo3bw47OzvUqlUL1tbWWLZsGYYPH46LFy9i9uzZEn1KIiKSQnZ2NpYsWSKqjRw5Es7OzhJ1VDqjOxWcSnfw4EFUq1YNHh4e6NKlC3755RcsXboUe/fuhaWlJZo3b47Fixdj/vz5aNq0KTZv3qx0sHS7du0wfPhw9O3bF87Ozvjiiy/g7OyM9evX47vvvkPjxo0xb948LFy4UKJPSURE+nb27FlRsLGzs8OMGTMMMtgAgEzQxvnGRiQ7OxuOjo7IyspSuqDfkydPkJycDE9PT9ja2krUIekb9zsRkWqCIOCrr77CgwcPFLV3330XPj4+eu/lRd/fz+O0FBERESnJzMzEl19+KaqNGTPmhTerNhQMN0RERCRy8uRJ/Pjjj4rnTk5OGDt2rOKyIoaO4YaIiIgAPJ2Gio6ORnZ2tqL23nvvoU2bNhJ2pTmGGyIiIsLDhw+xfPlyUW38+PFwdHSUqKOyY7ghIiIyc7/++it++uknxXMXFxcMHz7caKahnsdwQ0REZKZKSkqwYMECPHnyRFHr1asXWrRoIV1TWsBwQ0REZIbu3buHFStWiGrBwcGwt7eXqCPtYbghIiIyM0eOHBHdjLpmzZoYOHCg0U5DPY/hhoiIyEwUFRUhMjJSVOvTpw+aNm0qUUe6wdsvkEaCgoLQu3dvxfMOHTpg/Pjxr7RNbWyDiIhe7Ny5c0rBZuLEiSYXbACO3JiMoKAgbNiwAQBgZWWFWrVqISAgAFOnTkW5crrbzbt27YKVlZVayyYkJKBjx4549OgRnJycyrQNIiLSXHh4uFLNyysMFSpI0IweMNyYkC5dumDdunUoKChAbGwsRo0aBSsrK4SGhoqWKywshLW1tVbeUxuX4TaGS3kTERmjJ0+eYP78+aJaixYt0KtXL4k60g9OS5kQGxsbuLm5oXbt2hgxYgT8/Pywb98+xVTS3LlzUb16dTRo0AAAcOfOHXz88cdwcnJC5cqV0atXL6SkpCi2J5fLERwcDCcnJ1SpUgWTJ0/G8/dZfX5KqaCgAFOmTIG7uztsbGxQr149fPPNN0hJSUHHjh0BAJUqVYJMJkNQUJDKbTx69AgBAQGoVKkS7Ozs0LVrV9y4cUPx+vr16+Hk5IS4uDg0atQIFStWRJcuXZCWlqZYJiEhAW3btkWFChXg5OSEN998E3/++aeW/qSJiAzf77//rhRsxowZY/LBBmC4MWnly5dHYWEhACA+Ph7Xrl3D4cOHsX//fhQVFcHf3x/29vY4duwYfv31V0VIeLbOokWLsH79eqxduxbHjx/HP//8g927d7/wPQMCArB161YsXboUV65cwddff42KFSvC3d0d33//PQDg2rVrSEtLU7oh2zNBQUE4ffo09u3bh8TERAiCgPfeew9FRUWKZfLz87Fw4UJs3LgRR48eRWpqKiZOnAgAKC4uRu/eveHr64s//vgDiYmJGDp0qMmcBUBE9DLh4eE4ePCgqBYWFmY2I+WcljJBgiAgPj4ecXFxGDNmDO7fv48KFSpgzZo1iumoTZs2oaSkBGvWrFF86a9btw5OTk5ISEjAu+++i+joaISGhuKDDz4AAKxcuRJxcXGlvu/169exY8cOHD58GH5+fgCAOnXqKF5/9o/KxcVFdMzNf924cQP79u3Dr7/+inbt2gEANm/eDHd3d+zZswcfffQRgKdH/K9cuRJ169YFAIwePRoREREAgOzsbGRlZaF79+6K1xs1aqT5HyQRkZHJz8/HggULRLU33ngD/v7+EnUkDY7c6NC+fUC7dk9/1Yf9+/ejYsWKsLW1RdeuXdG3b1/MmjULANCsWTPRcTbnz5/HzZs3YW9vj4oVK6JixYqoXLkynjx5glu3biErKwtpaWnw9vZWrFOuXDm0bt261PdPSkqCpaUlfH19y/wZrly5gnLlyonet0qVKmjQoAGuXLmiqNnZ2SmCCwBUq1YN9+7dA/A0RAUFBcHf3x89evTAl19+KZqyIiIyRUePHlUKNhMmTDC7YANw5Ean5s0DEhOf/tqzp+7fr2PHjlixYgWsra1RvXp10VlSFZ47JD43NxetWrXC5s2blbbj7OxcpvcvX758mdYri+fPrpLJZKLjgdatW4exY8fi4MGD2L59O6ZPn47Dhw/jjTfe0FuPRET6oupsqLCwMAk6MQwcudGhkBDAx+fpr/pQoUIF1KtXD7Vq1Xrp6d8tW7bEjRs34OLignr16okejo6OcHR0RLVq1fD7778r1ikuLsaZM2dK3WazZs1QUlKCI0eOqHz92ciRXC4vdRuNGjVCcXGx6H0fPnyIa9euoXHjxi/8TM/z8vJCaGgoTpw4gaZNm2LLli0arU9EZOhycnKUgo2vr69ZBxuA4UanevYETpzQz6iNpvr164eqVauiV69eOHbsGJKTk5GQkICxY8fir7/+AgCMGzcO8+bNw549e3D16lWMHDkSmZmZpW7Tw8MDgYGBGDhwIPbs2aPY5o4dOwAAtWvXhkwmw/79+3H//n3k5uYqbeO1115Dr169MGTIEBw/fhznz5/HZ599hho1aqh9hH9ycjJCQ0ORmJiIP//8E4cOHcKNGzd43A0RmZTDhw9j8eLFotrEiRPRoUMHaRoyIAw3ZsrOzg5Hjx5FrVq18MEHH6BRo0YYNGgQnjx5AgcHBwDA559/jv79+yMwMBA+Pj6wt7fH+++//8LtrlixAh9++CFGjhyJhg0bYsiQIcjLywMA1KhRA+Hh4QgJCYGrqytGjx6tchvr1q1Dq1at0L17d/j4+EAQBMTGxqp9oT87OztcvXoVffr0Qf369TF06FCMGjUKw4YN0+BPiIjIcIWHh+PEiROiWlhYmNIhCOZKJjx/4RITl52dDUdHR2RlZSm+xJ958uQJkpOT4enpCVtbW4k6JH3jficiY5GZmal0GY3OnTsrzi41ZS/6/n4eDygmIiIyAvv371c67nHKlCn8T5kKDDdEREQGjmdDaYbhhoiIyEA9ePAAMTExolr37t3RqlUriToyDgw3REREBmjnzp24dOmSqBYaGqq1Gx+bMoYbFczsGGuzx/1NRIZEEATF7WT+i9NQ6mO4+Y9npxrn5+fr9Wq7JK1nNwq1tLSUuBMiMnfp6en4+uuvRbUPPvgAzZo1k6gj48Rw8x+WlpZwcnJS3KPIzs6Od5I2cSUlJbh//z7s7OxeelVnIiJd2rRpE27duiWqTZs2jT+byoB/Ys9xc3MDAEXAIdNnYWGBWrVqMcgSkSRUTUPZ2NggRF/37jFBDDfPkclkqFatGlxcXFBUVCR1O6QH1tbWsLDgxbqJSP/++usvfPPNN6La//73PzRo0ECijkwDw00pLC0teQwGERHpzOrVq3H37l1Rbfr06fzu0QKGGyIiIj1SNQ3l5OSEcePGSdSR6WG4ISIi0pPk5GR8++23olr//v1Rp04diToyTQw3REREerB06VI8evRIVJsxYwaP+dMBhhsiIiIdksvlmDNnjqhWrVo1DB06VKKOTB/DDRERkY5cv34dW7duFdUGDhwId3d3iToyDww3REREOjB//nw8efJEVJs5cyavqaUHDDdERERaVFxcjLlz54pqderUQf/+/SXqyPww3BAREWnJxYsX8f3334tqQ4cORbVq1STqyDwx3BAREWlBeHi4Uo3TUNJguCEiInoFhYWFiIqKEtUaN26Mjz76SKKOiOGGiIiojM6cOYP9+/eLaqNGjULVqlUl6ogAhhsiIqIyUTUNFRYWJkEn9DyGGyIiIg08efIE8+fPF9W8vLzQs2dPiTqi5zHcEBERqSkxMRGHDh0S1caOHYtKlSpJ1BGpwnBDRESkBk5DGQ+GGyIiohfIy8vDwoULRTUfHx+8++67EnVEL8NwQ0REVIqEhAQcOXJEVAsODoa9vb1EHZE6eJ91IiIya/v2Ae3aPf31v8LDw5WCTVhYGIONEeDIDRERmbV584DExKe/9uwJZGdnY8mSJaJlOnToAF9fX4k6JE0x3BARkVkLCXkabEJCgLi4OPz222+i1ydNmgQ7OzuJuqOyYLghIiKz1rPn0wfPhjIdDDdERGTWHj16hKVLl4pq/v7+eOONNyTqiF4Vww0REZktVaM1U6ZMga2trQTdkLYw3BARkVniNJTpYrghIiKzcuXKFezYsUNUa9WqFbp37y5RR6RtDDdERGQ2VI3W/PzzRHh5VZCgG9IVhhsiIjJ5giAgIiJCqR4XF4bERKCo6OkZU2QaGG6IiMiknT17Fj/88IOo1qhRI3z88cfw8vr3GjdkOhhuiIjIZKmahgoJCYGNjQ2Af69xQ6aF4YaIiExOadNQPBvKPDDcEBGRSfn111/x008/iWqtW7dGt27dJOqI9I3hhoiITIaqaahp06ahXDl+3ZkTCynf/OjRo+jRoweqV68OmUyGPXv2vHSdhIQEtGzZEjY2NqhXrx7Wr1+v8z6JiMiwyeXyUi/Kx2BjfiQNN3l5eWjevDliYmLUWj45ORndunVDx44dkZSUhPHjx2Pw4MGIi4vTcadERGSoDh8+jDlz5ohq7du35/E1ZkzSONu1a1d07dpV7eVXrlwJT09PLFq0CMDTU/mOHz+OJUuWwN/fX1dtEhGRgVI1WjNjxgxYWEj6f3eSmFHt/cTERPj5+Ylq/v7+SExMlKgjIiKSQlFRUanTUAw2ZFQTkenp6XB1dRXVXF1dkZ2djcePH6N8+fJK6xQUFKCgoEDxPDs7W+d9EhGR7uzduxdJSUmiWpcuXeDt7S1NQ2RwjCrclEVUVJTKdE9ERMZH1c/zmTNnQiaTSdANGSqjGrtzc3NDRkaGqJaRkQEHBweVozYAEBoaiqysLMXjzp07+miViIi06MmTJ6VOQzHY0POMauTGx8cHsbGxotrhw4fh4+NT6jo2NjaKy2wTEZHx2bx5M27evCmqvf/++3j99dcl6ogMnaThJjc3V/QXNjk5GUlJSahcuTJq1aqF0NBQ/P333/j2228BAMOHD8fy5csxefJkDBw4ED///DN27NiBAwcOSPURiIhIh0obrSF6EUnDzenTp9GxY0fF8+DgYABAYGAg1q9fj7S0NKSmpipe9/T0xIEDBzBhwgR8+eWXqFmzJtasWcPTwImITExubq7ish//xWBD6pAJgiBI3YQ+ZWdnw9HREVlZWXBwcJC6HSIies7XX3+N9PR0Ue2TTz5B/fr1JeqIDIEm399GdcwNERGZNk5DkTYw3BARkeQePXqEpUuXKtUZbKgsGG6IiEhSCxcuRF5enqgWFBSE2rVrS9QRGTuGGyIikgynoUgXGG6IiEjv7t27hxUrVijVGWxIGxhuiIhIr1SN1gwbNgxubm4SdEOmiOGGiIj0htNQpA8MN0REpHN37tzB2rVrRTVra2uEhoZK1BGZMoYbIiLSKVWjNaNHj0aVKlUk6IbMAcMNERHpDKehSAoMN0REpHU3b97E5s2bRbWqVati1KhREnVE5oThhoiItErVaM2ECRN4Pz/SG4YbIiLSGk5DkSFguCEiold26dIl7Ny5U1Tz8PBAYGCgRB2ROWO4ISKiV6JqtGbSpEmws7OToBsihhsiIiojQRAQERGhVOc0FEmN4YaIiDR2+vRpHDhwQFRr2rQp+vTpI1FHRP9iuCEiIo2omoYKDQ2FtbW1BN0QKWO4ISIitZSUlGD27NlKdU5DkaFhuCEiopc6duwYfv75Z1HN29sbXbp0kagjotIx3BAR0QupmoaaNm0aypXjVwgZJv7NJCIileRyOebMmaNU5zQUGTqGGyIiUhIXF4fffvtNVOvYsSPat28vUUdE6mO4ISIiEVXTUDNmzICFhYUE3RBpjuGGiIgAAIWFhYiKilKqcxqKjA3DDRERYdeuXbhw4YKo9t5776FNmzYSdURUdgw3RERmTtU01MyZMyGTySTohujVMdwQEZmpx48f44svvlCqcxqKjB3DDRGRGfr222+RnJwsqvXp0wdNmzaVqCMi7WG4ISIyM6qmoThaQ6aE4YaIyEzk5ORg8eLFSnUGGzI1DDdERGYgJiYGDx48ENX69euHevXqSdQRke4w3BARmThOQ5G5YbghIjJR//zzD5YtW6ZUZ7AhU8dwQ0RkgubNm4eCggJRbeDAgXB3d5eoIyL9YbghIjIxnIYic8dwQ0RkItLT0/H1118r1RlsyNww3BARmQBVozXDhw+Hq6urBN0QSYvhhojIyHEaikiM4YaIyEilpqZi3bp1opqdnR0mTZokUUdEhkHjcGNpaYm0tDS4uLiI6g8fPoSLiwvkcrnWmiMiItVUjdaMHTsWlSpVkqAbIsOicbgRBEFlvaCgANbW1q/cEBERvRinoYheTO1ws3TpUgCATCbDmjVrULFiRcVrcrkcR48eRcOGDbXfIRERAQBu3LiBLVu2iGqurq4YPny4RB0RGSa1w82SJUsAPB25WblyJSwtLRWvWVtbw8PDAytXrtR+h0REpHK0Jjg4GPb29hJ0Q2TY1A43ycnJAICOHTti165dnNclItITTkMRaUbjY25++eUXXfRBRETP+eOPP7B7925RrW7duvjss88k6ojIOGgcbgYOHPjC19euXVvmZoiI6ClVozWTJ09G+fLlJeiGyLhoHG4ePXokel5UVISLFy8iMzMTnTp10lpjRETmSBAEREREKNU5DUWkPo3DzfNDpABQUlKCESNGoG7dulppiojIHJ08eRI//vijqNa8eXP07t1bmoaIjJRMKO3CNRq6du0aOnTogLS0NG1sTmeys7Ph6OiIrKwsODg4SN0OEREA1dNQU6dOhZWVlQTdEBkeTb6/tXb7hVu3bqG4uFhbmyMiMgslJSWYPXu2Up3TUERlp3G4CQ4OFj0XBAFpaWk4cOAAAgMDtdYYEZGpS0hIwJEjR0Q1Hx8fvPvuuxJ1RGQaNA43586dEz23sLCAs7MzFi1a9NIzqYiI6ClV01DTp08XXSCViMqG17khItKj4uJizJ07V6nOaSgi7SnzMTf37t3DtWvXAAANGjRQuks4ERGJxcbG4tSpU6LaO++8g7feekuijohMk8bhJjs7G6NGjcLWrVtRUlICALC0tETfvn0RExMDR0dHrTdJRGTsVE1DzZw5EzKZTIJuiEybhaYrDBkyBL///jsOHDiAzMxMZGZmYv/+/Th9+jSGDRumix6JiIxWQUFBqfeGYrAh0g2Nr3NToUIFxMXFKQ2jHjt2DF26dEFeXp5WG9Q2XueGiPTlu+++w+XLl0W17t27o1WrVhJ1RGS8dHqdmypVqqicenJ0dOSdwomI/h+noYiko/G01PTp0xEcHIz09HRFLT09HZMmTcKMGTO02hwRkbHJz8/nNBSRxDSelvLy8sLNmzdRUFCAWrVqAQBSU1NhY2OD1157TbTs2bNntdeplnBaioh0Zd26dUhNTRXVPvroIzRu3FiijohMh06npXr16sX/fRARPae00Roi0j+t3TjTWHDkhoi0KSsrC9HR0Up1Bhsi7dLpyE2dOnVw6tQpVKlSRVTPzMxEy5Ytcfv2bU03SURklJYtW4Z//vlHVOvfvz/q1KkjUUdEBJQh3KSkpEAulyvVCwoK8Ndff2mlKSIiQ8dpKCLDpXa42bdvn+L3cXFxotPB5XI54uPj4enpqd3uiIgMzIMHDxATE6NUZ7AhMhxqh5vevXsDAGQyGQIDA0WvWVlZwcPDA4sWLdJqc0REhmTu3LkoLi4W1QYPHowaNWpI1BERqaJ2uHl2HylPT0+cOnUKVatW1VlTRESGhtNQRMZD42NukpOTddEHEZFBSktLw6pVq5TqDDZEhkvjcBMREfHC12fOnKnR9mJiYrBgwQKkp6ejefPmWLZsGdq2bVvq8tHR0VixYgVSU1NRtWpVfPjhh4iKioKtra1G70tE9DKqRmtGjhwJZ2dnCbohInVpHG52794tel5UVITk5GSUK1cOdevW1SjcbN++HcHBwVi5ciW8vb0RHR0Nf39/XLt2DS4uLkrLb9myBSEhIVi7di3atWuH69evIygoCDKZDIsXL9b0oxARlYrTUETGSysX8cvOzkZQUBDef/999O/fX+31vL290aZNGyxfvhzA0+N63N3dMWbMGISEhCgtP3r0aFy5cgXx8fGK2ueff47ff/8dx48fV7tXXsSPiEqTkpKCDRs2iGr29vYIDg6WqCMiAjT7/tb4xpmqODg4IDw8XKMbZxYWFuLMmTPw8/P7txkLC/j5+SExMVHlOu3atcOZM2dw8uRJAMDt27cRGxuL9957r9T3KSgoQHZ2tuhBRLRvH9Cu3dNfnwkPD1cKNuPGjWOwITIyWgk3wNNLkGdlZam9/IMHDyCXy+Hq6iqqu7q6iu44/l+ffvopIiIi8NZbb8HKygp169ZFhw4dMHXq1FLfJyoqCo6OjoqHu7u72j0SkemaNw9ITHz6K1D6NJSTk5N+GyOiV6bxMTdLly4VPRcEAWlpadi4cSO6du2qtcZUSUhIQGRkJL766it4e3vj5s2bGDduHGbPnl3qqFFoaKjof13Z2dkMOESEkJCnwWb48KsID98ueq169eoYMmSIRJ0R0avSONwsWbJE9NzCwgLOzs4IDAxEaGio2tupWrUqLC0tkZGRIapnZGTAzc1N5TozZsxA//79MXjwYABAs2bNkJeXh6FDh2LatGmwsFAeiLKxsYGNjY3afRGReejZEzh3LhzPX91i4sSJqFChgjRNEZFWSHadG2tra7Rq1Qrx8fGKqx+XlJQgPj4eo0ePVrlOfn6+UoCxtLQE8HQEiYjoefv2PR2hCQl5GmiApz8vVF3WgmdDEZkGjcMN8PQO4Ddv3gQA1KtXr8xz0sHBwQgMDETr1q3Rtm1bREdHIy8vDwMGDAAABAQEoEaNGoiKigIA9OjRA4sXL4aXl5diWmrGjBno0aOHIuQQEf3Xf4+t6dkTOHXqFGJjY0XLNGjQAP/73/8k6pCItE2jcJOSkoJRo0YhLi5OMVIik8nQpUsXLF++HB4eHhq9ed++fXH//n3MnDkT6enpaNGiBQ4ePKg4yDg1NVU0UjN9+nTIZDJMnz4df//9N5ydndGjRw/MnTtXo/clIvPx7NiakBDVBw1PnjwZ5cuXl6AzItIVta9zc+fOHbRp0wZWVlYYOXIkGjVqBAC4fPkyVqxYgeLiYpw6dQo1a9bUacOvite5ITI/nIYiMn6afH+rHW4GDRqEmzdvIi4uTulWB48fP0aXLl3w2muvYc2aNWXvXA8YbojMy6FDh5SundWwYUP07dtXoo6IqCw0+f5We1rq4MGD2L59u8p7OJUvXx6zZ8/mnDURGRRV01BTp06FlZWVBN0Qkb6ofRG/Bw8evPCYmjp16uCff/7RRk9ERBp5/mrDcrm81IvyMdgQmT61R26qVauGy5cvl3pMzcWLF0u9Pg0RkS7994yo3NwtuHHjhuj1evXqoV+/fhJ1R0T6pvbITe/evTFx4kTcv39f6bV79+5hypQpiuvVEBHpU0gI4OMD+PuHKwWb6dOnM9gQmRm1Dyh+9OgRvL29kZ6ejs8++wwNGzaEIAi4cuUKtmzZAjc3N/z222+oXLmyrnt+JTygmMj0FBYWKq6H9V88G4rIdOjkgOJKlSrh999/x9SpU7Ft2zZkZmYCAJycnPDpp58iMjLS4IMNEZmeFStW4N69e6Kal5cXej67HDERmR21R27+SxAExfSUs7MzZDKZ1hvTFY7cEJkOVQcNz5w506h+JhGRenQycvNfMpkMLi4uZWqOiOhV5efnY8GCBUp1TkMREVDGcENEpC/P3/gyKioKhYWFomXefvttdOrUSaIOicjQMNwQkUH772ne585xGoqIXk7tU8GJiKQQEgJ07JgFf3/VF+VjsCGi53HkhogM2rlz4fD1Fde6dOkCb29vaRoiIoOnVrhZunSp2hscO3ZsmZshIvqv0m6hQET0ImqdCu7p6anexmQy3L59+5Wb0iWeCk5k+NLS0rBq1SqlOoMNkfnS+qngycnJWmmMiOhlVI3WdOvWDa1bt5agGyIyRmU+5qawsBDJycmoW7cuypXjoTtE9Oo4DUVE2qDx2VL5+fkYNGgQ7Ozs0KRJE6SmpgIAxowZg3nz5mm9QSIyfbdv32awISKt0TjchIaG4vz580hISICtra2i7ufnh+3bt2u1OSIyfeHh4di4caOo9tFHHzHYEFGZaTyftGfPHmzfvh1vvPGG6PoSTZo0wa1bt7TaHBGZNo7WEJEuaBxu7t+/r/K+Unl5ebyYFhGp5dKlS9i5c6dSncGGiLRB43DTunVrHDhwAGPGjAEARaBZs2YNfHx8tNsdEZkcVaM1gYGB8PDw0H8zRGSSNA43kZGR6Nq1Ky5fvozi4mJ8+eWXuHz5Mk6cOIEjR47ookciMhGchiIifdD4gOK33noLSUlJKC4uRrNmzXDo0CG4uLggMTERrVq10kWPRGTkfv/9dwYbItIbta5QbEp4hWIi/VIVaoYNGwY3NzcJuiEiY6X1KxRnZ2er/eYMDET0DEdriEgKaoUbJycntc+Eksvlr9QQERm/+Ph4HD9+XKnOYENE+qBWuPnll18Uv09JSUFISAiCgoIUZ0clJiZiw4YNiIqK0k2XRGQ0VI3WjB07FpUqVZKgGyIyRxofc/POO+9g8ODB+OSTT0T1LVu2YNWqVUhISNBmf1rHY26IdEMQBERERCjVOVpDRNqgyfe3xmdLJSYmqrw7b+vWrXHy5ElNN0dEJmD37t0MNkRkMDS+zo27uztWr16NL774QlRfs2YN3N3dtdYYERkHVdNQEydORIUKFSTohoioDOFmyZIl6NOnD3788Ud4e3sDAE6ePIkbN27g+++/13qDRGRY9u0D5s0DpkwpQVLSbKXXOVpDRFIr03Vu/vrrL3z11Ve4evUqAKBRo0YYPny4UYzc8JgbolfTrh1Qv/4GeHqmiOrW1tYIDQ2VpikiMnlav87N82rWrInIyMgyNUdExs3fX3kaKjQ0FNbW1hJ0Q0SkrEzhJjMzE9988w2uXLkCAGjSpAkGDhwIR0dHrTZHRIajuLgYc+fOVapzGoqIDI3G01KnT5+Gv78/ypcvj7Zt2wIATp06hcePH+PQoUNo2bKlThrVFk5LEWluw4YNSElJEdVcXV0xfPhwaRoiIrOjyfe3xuHm7bffRr169bB69WqUK/d04Ke4uBiDBw/G7du3cfTo0bJ3rgcMN0SaUXU21PTp02FpaSlBN0RkrnQabsqXL49z586hYcOGovrly5fRunVr5Ofna96xHjHcEKmnoKAA8+bNU6pzGoqIpKDTA4odHByQmpqqFG7u3LkDe3t7TTdHRAZo6dKlePTokajWunVrdOvWTaKOiIjUp3G46du3LwYNGoSFCxeiXbt2AIBff/0VkyZNUrolAxEZH1XTUDNnzlT75rlERFLTONwsXLgQMpkMAQEBKC4uBgBYWVlhxIgRKoewicg45ObmYtGiRUp1TkMRkbEp00X8ACA/Px+3bt0CANStWxd2dnZabUxXeMwNkbKIiAg8/6OgQ4cO8PX1lagjIiIxnV/EDwDs7OzQrFmzsq5ORAZC1TQUR2uIyJipHW4GDhyo1nJr164tczNEpD+PHj3C0qVLleoMNkRk7NQON+vXr0ft2rXh5eWlNHxNRMZF1WhNt27d0Lp1awm6ISLSLrXDzYgRI7B161YkJydjwIAB+Oyzz1C5cmVd9kZEOsBpKCIydRbqLhgTE4O0tDRMnjwZP/zwA9zd3fHxxx8jLi6OIzlERiAjI4PBhojMQpnPlvrzzz+xfv16fPvttyguLsalS5dQsWJFbfendTxbisyRqlDz0UcfoXHjxhJ0Q0SkOb2cLWVhYQGZTAZBECCXy8u6GSLSMY7WEJG5UXtaCnh6r5mtW7eic+fOqF+/Pi5cuIDly5cjNTXVKEZtiMzJn3/+yWBDRGZJ7ZGbkSNHYtu2bXB3d8fAgQOxdetWVK1aVZe9EVEZqQo1AQEB8PT0lKAbIiL9UvuYGwsLC9SqVQteXl4vvMfMrl27tNacLvCYGzJ1HK0hIlOkk2NuAgICeOM8IgN29epVbN++XanOYENE5kaji/gRkWFSNVozdOhQVKtWTYJuiIikVeazpYjIMHAaiohIjOGGyEidO3cO+/btU6oz2BCRuWO4ITJCqkZrxowZw1uiEBGB4YbI6HAaiojoxRhuiIzE8ePHER8fr1RnsCEiEmO4ITICqkZrgoODYW9vL0E3RESGjeGGyIAJgoCIiAilOkdriIhKx3BDZKAOHjyI33//XVRzcHDAhAkTJOqIiMg4MNwQGSBV01BTpkyBra2tBN0QERkXhhsiA1JSUoLZs2cr1TkNRUSkPoYbIgOxc+dOXLp0SVRzd3fHwIEDJeqIiMg4MdwQGQBV01BTp06FlZWVBN0QERk3hhsiCRUVFSEyMlKpzmkoIqKyY7ghksjatWtx584dUa1Jkyb48MMPJeqIiMg0WEjdQExMDDw8PGBrawtvb2+cPHnyhctnZmZi1KhRqFatGmxsbFC/fn3ExsbqqVsi7QgPD1cKNjNmzGCwISLSAklHbrZv347g4GCsXLkS3t7eiI6Ohr+/P65duwYXFxel5QsLC9G5c2e4uLhg586dqFGjBv788084OTnpv3miMnjy5Anmz5+vVOc0FBGR9sgEQRCkenNvb2+0adMGy5cvB/D0NFh3d3eMGTMGISEhSsuvXLkSCxYswNWrV8t8oGV2djYcHR2RlZUFBweHV+qfSBNLlixBdna2qObt7Y0uXbpI1BERkfHQ5PtbsmmpwsJCnDlzBn5+fv82Y2EBPz8/JCYmqlxn37598PHxwahRo+Dq6oqmTZsiMjIScrm81PcpKChAdna26EGkb+Hh4Up/92bOnMlgQ0SkA5KFmwcPHkAul8PV1VVUd3V1RXp6usp1bt++jZ07d0IulyM2NhYzZszAokWLMGfOnFLfJyoqCo6OjoqHu7u7Vj8H0Yvk5OSoPM07LCwMMplMgo6IiEyfUZ0tVVJSAhcXF6xatQqWlpZo1aoV/v77byxYsKDUYxZCQ0MRHByseJ6dnc2AQ3qhKtS88847eOuttyTohojIfEgWbqpWrQpLS0tkZGSI6hkZGXBzc1O5TrVq1WBlZQVLS0tFrVGjRkhPT0dhYSGsra2V1rGxsYGNjY12myd6idJGa4iISPckm5aytrZGq1atEB8fr6iVlJQgPj4ePj4+Ktd58803cfPmTZSUlChq169fR7Vq1VQGGyJ9++effxhsiIgkJum0VHBwMAIDA9G6dWu0bdsW0dHRyMvLw4ABAwAAAQEBqFGjBqKiogAAI0aMwPLlyzFu3DiMGTMGN27cQGRkJMaOHSvlxyACoHq0pmfPnvDy8pKgGyIi8yVpuOnbty/u37+PmTNnIj09HS1atMDBgwcVBxmnpqbCwuLfwSV3d3fExcVhwoQJeP3111GjRg2MGzcOU6ZMkeojEAHgNBQRkSGR9Do3UuB1bkib0tLSsGrVKqU6gw0RkXZp8v1tVGdLERkSVaM1Z8/2xaBBDSXohoiInmG4ISoDTkMRERkuyW+cSWRMkpOTVQabuDgGGyIiQ8GRGyI1qQo1r70WhOXLa0PFrdCIiEgiDDdEanjRNNSnn+q7GyIiehGGG6IXuHz5Mr777julOo+vISIyXAw3RKVQNVozfPhwpZu9EhGRYWG4IVKBZ0MRERkvhhui/zh9+jQOHDigVGewISIyHgw3RP9P1WjN2LFjUalSJQm6ISKismK4IbMnCAIiIiKU6hytISIyTgw3ZNaOHDmChISE56oWCAubIUU7RESkBQw3ZLZUTUMtWDARr79eARy0ISIyXgw3ZHZKm4by8grD66+DVxsmIjJyDDdkVg4cOIDTp0+LapUqVcLYsWMBAD17StEVERFpE8MNmQ1V01AhISGwsbGRoBsiItIVhhsyeXK5HHPmzFGq82woIiLTxHBDJm3btm24du2aqFaxogc+/zxQoo6IiEjXGG7IZKmahpo9exrati2Hzz+XoCEiItILhhsyOUVFRYiMjFSqe3mFoW1bng1FRGTqGG7IpKxatQppaWmi2uuvv473338fAM+GIiIyBww3ZDJUTUPNmDEDFhYWEnRDRERSYbgho/f48WN88cUXSnWeDUVEZJ4YbsioffHFF3j8+LGo1q5dO3Tu3FmijoiISGoMN2S0VE1DzZw5EzKZTIJuiIjIUDDckNHJzs7GkiVLlOqchiIiIoDhhoyMqtGad999Fz4+PhJ0Q0REhojhhoyGqmDD0RoiInoeww0ZvAcPHiAmJkapzmBDRESqMNyQQVM1WvPHH70RGNhcgm6IiMgYMNyQwVIVbOLiwpCYCKSl8WrDRESkGsMNGZy///4ba9asUaqHhYXBywuYN4/3hyIiotIx3JBBUTVa8+mnn+K1114D8HS0hiM2RET0Igw3ZDB4NhQREWkDww1J7tatW9i0aZNSncGGiIjKguGGJKVqtGbgwIFwd3eXoBsiIjIFDDckGU5DERGRLjDckN5dvHgR33//vVKdwYaIiLSB4Yb0StVozYgRI+Di4iJBN0REZIoYbkhvOA1FRET6wHBDOnfhwgXs2rVLqc5gQ0REusBwQzqlarQmODgY9vb2EnRDRETmwELqBsg0CYKgMth4eYXB398e+/ZJ0BQREZkFhhvSusuXLyMiIkJU++svL3h5hWHePCAx8en9oYiIiHSB01KkVapGa376KQTHj9vg0qWnN7zkjS+JiEiXGG5IKwRBUBqtAf69k7dc/jTQ8MaXRESkaww39MrOnTuHfc8dRPPmm2/Cz88PAAMNERHpF8MNvRJV01DTpk1DuXL8q0VERNLgNxCVSUlJCWbPnq1U57VriIhIagw3pLETJ07g8OHDolrnzp3Rrl07iToiIiL6F8MNaUTVNNSMGTNgYcGrChARkWFguCG1FBcXY+7cuUp1TkMREZGhYbihl4qPj8fx48dFtR49eqBly5YSdURERFQ6hht6IVXTUDNnzoRMJpOgGyIiopdjuCGVCgoKME/FPRI4DUVERIaO4YaU/PDDDzh79qyo9tFHH6Fx48YSdURERKQ+hhsS4TQUEREZO4YbAgDk5+djwYIFSnVOQxERkbFhuCFs27YN165dE9U+++wz1K1bV6KOiIiIyo7hxsypmobiaA0RERkzhhszxWkoIiIyVQw3ZiguLg6//fabqDZw4EC4u7tL1BEREZH2MNyYGVXTUHFxYfDyAphtiIjIFPBuh2YiJydHKdg0atQIcXFhSEwEVFyvj4iIyChx5MYM7NmzB+fPnxfVxo0bBycnJ9jaPg02ISESNUdERKRlDDcm7mVnQ/Xs+fRBRERkKhhuTNSjR4+wdOlSUa1ly5bo0aOHRB0RERHpB8ONCdq6dSuuX78uqgUHB8Pe3l6ijoiIiPSH4cbE8KJ8RERk7gzibKmYmBh4eHjA1tYW3t7eOHnypFrrbdu2DTKZDL1799Ztg0bg/v37SsGmXbt2DDZERGR2JB+52b59O4KDg7Fy5Up4e3sjOjoa/v7+uHbtGlxcXEpdLyUlBRMnTsTbb7+tx24N0969e5GUlCSqTZ48GeXLl5emISIiIglJPnKzePFiDBkyBAMGDEDjxo2xcuVK2NnZYe3ataWuI5fL0a9fP4SHh6NOnTp67NbwhIeHKwWbsLAwBhsiIjJbkoabwsJCnDlzBn5+foqahYUF/Pz8kJiYWOp6ERERcHFxwaBBg176HgUFBcjOzhY9TIGqaahatXoiLi4M+/ZJ1BQREZEBkHRa6sGDB5DL5XB1dRXVXV1dcfXqVZXrHD9+HN98843SaEVpoqKiVB5ka8x27NiBK1euiGqhoaHo0MFacbVhXruGiIjMleTTUprIyclB//79sXr1alStWlWtdUJDQ5GVlaV43LlzR8dd6o4gCAgPD1cKNmFhYbC2tkZICODjw6sNExGReZN05KZq1aqwtLRERkaGqJ6RkQE3Nzel5W/duoWUlBTRhehKSkoAAOXKlcO1a9dQt25d0To2NjawsbHRQff6lZaWhlWrVolqH374IZo0aaJ4zqsNExERSRxurK2t0apVK8THxytO5y4pKUF8fDxGjx6ttHzDhg1x4cIFUW369OnIycnBl19+CXcTva31t99+i+TkZFFt2rRpKFdO8pPdiIiIDI7k347BwcEIDAxE69at0bZtW0RHRyMvLw8DBgwAAAQEBKBGjRqIioqCra0tmjZtKlrfyckJAJTqpkAQBERERIhq5cuXx+TJkyXqiIiIyPBJHm769u2L+/fvY+bMmUhPT0eLFi1w8OBBxUHGqampsLAwqkODtCI1NRXr1q0T1T755BPUr19foo6IiIiMg0wQBEHqJvQpOzsbjo6OyMrKgoODg9TtqPT1118jPT1dVJsxY4ZZhjwiIiJAs+9vyUdu6F8lJSWYPXu2qFalShWVxx8RERGRagw3BuLWrVvYtGmTqBYQEABPT0+JOiIiIjJODDcGIDo6GllZWaLazJkzIZPJJOqIiIjIeDHcSEgul2POnDmiWs2aNdW6rQQRERGpxnAjkatXr2L79u2i2qBBg1CzZk2JOiIiIjINDDcSiIyMRFFRkajGaSgiIiLtYLjRo+LiYsydO1dUq1evHvr16ydRR0RERKaH4UZP/vjjD+zevVtUGz58uNId0YmIiOjVMNzoQXh4uFItLCxMgk6IiIhMH8ONDqk6G6pp06bo06ePRB0RERGZPoYbHbl79y5Wr14tqo0ePRpVqlSRqCMiIiLzwJsV6cDBgwdFwSY/vzzi4sIYbIiIiPSAIzdaVFRUhMjISFGtTp1PsGJFfYSESNQUERGRmWG40ZLi4mKlYDNlyhTY2tqif3+JmiIiIjJDDDdakp6ervi9k1MTjBv3oYTdEBERmS+GGy2pWbMmkpI+xK+/OqNePReMGyd1R0REROaJ4UaLBgxogowM8PgaIiIiCTHcaFHPnk8fREREJB2eCk5EREQmheGGiIiITArDDREREZkUhhsiIiIyKQw3REREZFIYboiIiMikMNwQERGRSWG4ISIiIpPCcENEREQmheGGiIiITArDDREREZkUhhsiIiIyKQw3REREZFLM7q7ggiAAALKzsyXuhIiIiNT17Hv72ff4i5hduMnJyQEAuLu7S9wJERERaSonJweOjo4vXEYmqBOBTEhJSQnu3r0Le3t7yGQyqdt5ZdnZ2XB3d8edO3fg4OAgdTtUCu4n48F9ZTy4r4yHNvaVIAjIyclB9erVYWHx4qNqzG7kxsLCAjVr1pS6Da1zcHDgP24jwP1kPLivjAf3lfF41X31shGbZ3hAMREREZkUhhsiIiIyKQw3Rs7GxgZhYWGwsbGRuhV6Ae4n48F9ZTy4r4yHvveV2R1QTERERKaNIzdERERkUhhuiIiIyKQw3BAREZFJYbghIiIik8JwYwRiYmLg4eEBW1tbeHt74+TJk2qtt23bNshkMvTu3Vu3DRIAzfdTZmYmRo0ahWrVqsHGxgb169dHbGysnro1b5ruq+joaDRo0ADly5eHu7s7JkyYgCdPnuipW/N09OhR9OjRA9WrV4dMJsOePXteuk5CQgJatmwJGxsb1KtXD+vXr9d5n6T5vtq1axc6d+4MZ2dnODg4wMfHB3FxcVrtieHGwG3fvh3BwcEICwvD2bNn0bx5c/j7++PevXsvXC8lJQUTJ07E22+/radOzZum+6mwsBCdO3dGSkoKdu7ciWvXrmH16tWoUaOGnjs3P5ruqy1btiAkJARhYWG4cuUKvvnmG2zfvh1Tp07Vc+fmJS8vD82bN0dMTIxayycnJ6Nbt27o2LEjkpKSMH78eAwePFjrX5qkTNN9dfToUXTu3BmxsbE4c+YMOnbsiB49euDcuXPaa0ogg9a2bVth1KhRiudyuVyoXr26EBUVVeo6xcXFQrt27YQ1a9YIgYGBQq9evfTQqXnTdD+tWLFCqFOnjlBYWKivFun/abqvRo0aJXTq1ElUCw4OFt58802d9kn/AiDs3r37hctMnjxZaNKkiajWt29fwd/fX4ed0fPU2VeqNG7cWAgPD9daHxy5MWCFhYU4c+YM/Pz8FDULCwv4+fkhMTGx1PUiIiLg4uKCQYMG6aNNs1eW/bRv3z74+Phg1KhRcHV1RdOmTREZGQm5XK6vts1SWfZVu3btcObMGcXU1e3btxEbG4v33ntPLz2TehITE0X7FQD8/f1f+LOSDENJSQlycnJQuXJlrW3T7G6caUwePHgAuVwOV1dXUd3V1RVXr15Vuc7x48fxzTffICkpSQ8dElC2/XT79m38/PPP6NevH2JjY3Hz5k2MHDkSRUVFCAsL00fbZqks++rTTz/FgwcP8NZbb0EQBBQXF2P48OGcljIw6enpKvdrdnY2Hj9+jPLly0vUGb3MwoULkZubi48//lhr2+TIjQnJyclB//79sXr1alStWlXqdugFSkpK4OLiglWrVqFVq1bo27cvpk2bhpUrV0rdGj0nISEBkZGR+Oqrr3D27Fns2rULBw4cwOzZs6VujcjobdmyBeHh4dixYwdcXFy0tl2O3BiwqlWrwtLSEhkZGaJ6RkYG3NzclJa/desWUlJS0KNHD0WtpKQEAFCuXDlcu3YNdevW1W3TZkjT/QQA1apVg5WVFSwtLRW1Ro0aIT09HYWFhbC2ttZpz+aqLPtqxowZ6N+/PwYPHgwAaNasGfLy8jB06FBMmzYNFhb8P6IhcHNzU7lfHRwcOGpjoLZt24bBgwfju+++U5pSfFX8V2nArK2t0apVK8THxytqJSUliI+Ph4+Pj9LyDRs2xIULF5CUlKR49OzZU3H2gLu7uz7bNxua7icAePPNN3Hz5k1F+ASA69evo1q1agw2OlSWfZWfn68UYJ6FUoG35jMYPj4+ov0KAIcPHy51v5K0tm7digEDBmDr1q3o1q2b9t9Aa4cmk05s27ZNsLGxEdavXy9cvnxZGDp0qODk5CSkp6cLgiAI/fv3F0JCQkpdn2dL6Yem+yk1NVWwt7cXRo8eLVy7dk3Yv3+/4OLiIsyZM0eqj2A2NN1XYWFhgr29vbB161bh9u3bwqFDh4S6desKH3/8sVQfwSzk5OQI586dE86dOycAEBYvXiycO3dO+PPPPwVBEISQkBChf//+iuVv374t2NnZCZMmTRKuXLkixMTECJaWlsLBgwel+ghmQ9N9tXnzZqFcuXJCTEyMkJaWpnhkZmZqrSeGGyOwbNkyoVatWoK1tbXQtm1b4bffflO85uvrKwQGBpa6LsON/mi6n06cOCF4e3sLNjY2Qp06dYS5c+cKxcXFeu7aPGmyr4qKioRZs2YJdevWFWxtbQV3d3dh5MiRwqNHj/TfuBn55ZdfBABKj2f7JjAwUPD19VVap0WLFoK1tbVQp04dYd26dXrv2xxpuq98fX1fuLw2yASB46pERERkOnjMDREREZkUhhsiIiIyKQw3REREZFIYboiIiMikMNwQERGRSWG4ISIiIpPCcENEREQmheGGiKgUHh4eiI6OlroNItIQww0RaeT+/fsYMWIEatWqBRsbG7i5ucHf3x+//vorAEAmk2HPnj3SNqmmDh06QCaTKT2Ki4ulbo2IXgHvCk5EGunTpw8KCwuxYcMG1KlTBxkZGYiPj8fDhw+lbq1MhgwZgoiICFGtXDn+aCQyZhy5ISK1ZWZm4tixY5g/fz46duyI2rVro23btggNDUXPnj3h4eEBAHj//fchk8kUzwFg7969aNmyJWxtbVGnTh2Eh4eLRkgWL16MZs2aoUKFCnB3d8fIkSORm5ureH39+vVwcnLC/v370aBBA9jZ2eHDDz9Efn4+NmzYAA8PD1SqVAljx46FXC5X+zPZ2dnBzc1N9ChNamoqevXqhYoVK8LBwQEff/wxMjIyAABZWVmwtLTE6dOnATy923jlypXxxhtvKNbftGkT3N3d1e6NiMqG4YaI1FaxYkVUrFgRe/bsQUFBgdLrp06dAgCsW7cOaWlpiufHjh1DQEAAxo0bh8uXL+Prr7/G+vXrMXfuXMW6FhYWWLp0KS5duoQNGzbg559/xuTJk0Xbz8/Px9KlS7Ft2zYcPHgQCQkJeP/99xEbG4vY2Fhs3LgRX3/9NXbu3Kn1z15SUoJevXrhn3/+wZEjR3D48GHcvn0bffv2BQA4OjqiRYsWSEhIAABcuHABMpkM586dU4S0I0eOwNfXV+u9EdFztHYLTiIyCzt37hQqVaok2NraCu3atRNCQ0OF8+fPK14HIOzevVu0zjvvvCNERkaKahs3bhSqVatW6vt89913QpUqVRTP161bJwAQbt68qagNGzZMsLOzE3JychQ1f39/YdiwYWp9Fl9fX8HKykqoUKGC4hEcHKx4vXbt2sKSJUsEQRCEQ4cOCZaWlkJqaqri9UuXLgkAhJMnTwqCIAjBwcFCt27dBEEQhOjoaKFv375C8+bNhR9//FEQBEGoV6+esGrVKrV6I6Ky48gNEWmkT58+uHv3Lvbt24cuXbogISEBLVu2xPr160td5/z584iIiFCM/FSsWBFDhgxBWloa8vPzAQA//fQT3nnnHdSoUQP29vbo378/Hj58qHgdeDqFVLduXcVzV1dXeHh4oGLFiqLavXv31P48/fr1Q1JSkuIRGhqqcrkrV67A3d1dNK3UuHFjODk54cqVKwAAX19fHD9+HHK5HEeOHEGHDh3QoUMHJCQk4O7du7h58yY6dOigdm9EVDYMN0SkMVtbW3Tu3BkzZszAiRMnEBQUhLCwsFKXz83NRXh4uChEXLhwATdu3ICtrS1SUlLQvXt3vP766/j+++9x5swZxMTEAAAKCwsV27GyshJtVyaTqayVlJSo/VkcHR1Rr149xaNq1apqr/u89u3bIycnB2fPnsXRo0dF4ebIkSOoXr06XnvttTJvn4jUw1MCiOiVNW7cWHH6t5WVldIBvS1btsS1a9dQr149leufOXMGJSUlWLRoESwsnv6fa8eOHTrtWVONGjXCnTt3cOfOHcXozeXLl5GZmYnGjRsDAJycnPD6669j+fLlsLKyQsOGDeHi4oK+ffti//79PN6GSE84ckNEanv48CE6deqETZs24Y8//kBycjK+++47fPHFF+jVqxeApxe+i4+PR3p6Oh49egQAmDlzJr799luEh4fj0qVLuHLlCrZt24bp06cDAOrVq4eioiIsW7YMt2/fxsaNG7Fy5UrJPqcqfn5+aNasGfr164ezZ8/i5MmTCAgIgK+vL1q3bq1YrkOHDti8ebMiyFSuXBmNGjXC9u3bGW6I9IThhojUVrFiRXh7e2PJkiVo3749mjZtihkzZmDIkCFYvnw5AGDRokU4fPgw3N3d4eXlBQDw9/fH/v37cejQIbRp0wZvvPEGlixZgtq1awMAmjdvjsWLF2P+/Plo2rQpNm/ejKioKMk+pyoymQx79+5FpUqV0L59e/j5+aFOnTrYvn27aDlfX1/I5XLRsTUdOnRQqhGR7sgEQRCkboKIiIhIWzhyQ0RERCaF4YaITNKxY8dEp54//yAi08VpKSIySY8fP8bff/9d6uulnblFRMaP4YaIiIhMCqeliIiIyKQw3BAREZFJYbghIiIik8JwQ0RERCaF4YaIiIhMCsMNERERmRSGGyIiIjIpDDdERERkUv4PxEG+sVUXsb0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW7JJREFUeJzt3XdYFNf+BvB3QaqwYAGxgKAYS2yIipgbKxEUu0nsgr2AiZKoEAuxRIixx5Ybo5jEnsRyrUEUGyRRo1EUMRqwRFCuUgSVsszvD3/MzbiLLrAw7PJ+nodH98zZ2e+Oq/t6zswZhSAIAoiIiIjolYzkLoCIiIhIHzA0EREREWmBoYmIiIhICwxNRERERFpgaCIiIiLSAkMTERERkRYYmoiIiIi0wNBEREREpAWGJiIiIiItMDQRUaWiUCjw6aefyl2GyN/fH87OznKXQURaYGgiItlFRERAoVCIP+bm5njjjTcQGBiIBw8elOlrx8TE4NNPP0V6erpO99ulSxfJe6pevTratWuHTZs2oaCgQCevsXjxYuzdu1cn+yKi16sidwFERIUWLFgAFxcXPH/+HGfOnMH69etx6NAhxMXFwdLSUiev8ezZM1Sp8r9/+mJiYjB//nz4+/vD1tZWJ69RqF69eggLCwMApKam4ttvv8XYsWNx48YNhIeHl3r/ixcvxrvvvov+/fuXel9E9HoMTURUYfTs2RNt27YFAIwbNw41atTA8uXLsW/fPgwdOrTE+y0oKEBubi7Mzc1hbm6uq3Jfy8bGBiNGjBAfT5w4EY0bN8aaNWuwcOFCmJiYlFstRFR6nJ4jogqrW7duAIDExEQAwNKlS9GxY0fUqFEDFhYWcHd3xw8//KD2PIVCgcDAQGzduhVvvvkmzMzMcOTIEXFb4TlNn376KWbMmAEAcHFxEafSkpKS0LlzZ7Rq1UpjXY0bN4a3t3ex34+lpSU6dOiA7OxspKamFtkvOzsbH330ERwdHWFmZobGjRtj6dKlEARB8h6zs7OxZcsWsW5/f/9i10RE2uNIExFVWLdu3QIA1KhRAwCwatUq9O3bF8OHD0dubi527NiB9957DwcOHICvr6/kucePH8euXbsQGBiImjVrajzZeuDAgbhx4wa2b9+OFStWoGbNmgAAOzs7jBw5EuPHj0dcXByaN28uPufcuXO4ceMG5syZU6L39Ndff8HY2LjIqUBBENC3b1+cOHECY8eORevWrXH06FHMmDEDf//9N1asWAEA+O677zBu3Di0b98eEyZMAAA0bNiwRDURkZYEIiKZbd68WQAgHDt2TEhNTRXu3r0r7NixQ6hRo4ZgYWEh3Lt3TxAEQXj69Knkebm5uULz5s2Fbt26SdoBCEZGRsLVq1fVXguAEBoaKj7+4osvBABCYmKipF96erpgbm4uzJo1S9L+wQcfCFWrVhWysrJe+Z46d+4sNGnSREhNTRVSU1OF+Ph44YMPPhAACH369BH7+fn5CfXr1xcf7927VwAgLFq0SLK/d999V1AoFMLNmzfFtqpVqwp+fn6vrIOIdIfTc0RUYXh5ecHOzg6Ojo4YMmQIrKyssGfPHtStWxcAYGFhIfZNS0tDRkYG3n77bfz+++9q++rcuTOaNWtW4lpsbGzQr18/bN++XZwWU6lU2LlzJ/r374+qVau+dh/Xr1+HnZ0d7Ozs0LRpU3z55Zfw9fXFpk2binzOoUOHYGxsjA8++EDS/tFHH0EQBBw+fLjE74mISofTc0RUYaxduxZvvPEGqlSpglq1aqFx48YwMvrf/+0OHDiARYsW4dKlS8jJyRHbFQqF2r5cXFxKXc+oUaOwc+dOnD59Gp06dcKxY8fw4MEDjBw5UqvnOzs74+uvvxaXUWjUqBHs7e1f+Zzbt2+jTp06sLa2lrQ3bdpU3E5E8mBoIqIKo3379uLVcy87ffo0+vbti06dOmHdunWoXbs2TExMsHnzZmzbtk2t/z9HpUrK29sbtWrVwvfff49OnTrh+++/h4ODA7y8vLR6ftWqVbXuS0QVH6fniEgv/PjjjzA3N8fRo0cxZswY9OzZUyeBRNMoVSFjY2MMGzYMP/zwA9LS0rB3714MHToUxsbGpX7dotSvXx/379/HkydPJO3Xr18Xtxd6Ve1EpHsMTUSkF4yNjaFQKKBSqcS2pKSkUq+IXXhuUlErgo8cORJpaWmYOHEisrKyJOsulYVevXpBpVJhzZo1kvYVK1ZAoVCgZ8+eYlvVqlV1vpI5ERWN03NEpBd8fX2xfPly+Pj4YNiwYXj48CHWrl0LV1dXXL58ucT7dXd3BwDMnj0bQ4YMgYmJCfr06SOGKTc3NzRv3hy7d+9G06ZN0aZNG528n6L06dMHXbt2xezZs5GUlIRWrVrh559/xr59+zBt2jTJsgLu7u44duwYli9fjjp16sDFxQUeHh5lWh9RZcaRJiLSC926dcM333yDlJQUTJs2Ddu3b8fnn3+OAQMGlGq/7dq1w8KFC/HHH3/A398fQ4cOVVt4ctSoUQCg9QngpWFkZIT9+/dj2rRpOHDgAKZNm4Zr167hiy++wPLlyyV9ly9fDnd3d8yZMwdDhw7F+vXry7w+ospMIQj/WGKWiIjUrFq1CtOnT0dSUhKcnJzkLoeIZMLQRET0CoIgoFWrVqhRowZOnDghdzlEJCOe00REpEF2djb279+PEydO4MqVK9i3b5/cJRGRzDjSRESkQVJSElxcXGBra4spU6bgs88+k7skIpIZQxMRERGRFnj1HBEREZEWGJqIiIiItMATwXWkoKAA9+/fh7W1NW9tQEREpCcEQcCTJ09Qp04dyQ3CNWFo0pH79+/D0dFR7jKIiIioBO7evYt69eq9sg9Dk45YW1sDeHHQlUqlzNUQERGRNjIzM+Ho6Ch+j78KQ5OOFE7JKZVKhiYiIiI9o82pNTwRnIiIiEgLDE1EREREWmBoIiIiItICz2kqZyqVCnl5eXKXQeXA1NT0tZevEhGR/mBoKieCICAlJQXp6elyl0LlxMjICC4uLjA1NZW7FCIi0gGGpnJSGJjs7e1haWnJBTANXOFip8nJyXBycuKfNxGRAWBoKgcqlUoMTDVq1JC7HCondnZ2uH//PvLz82FiYiJ3OUREVEo84aIcFJ7DZGlpKXMlVJ4Kp+VUKpXMlRARkS4wNJUjTtFULvzzJiIyLAxNRERERFpgaCIiIiLSAkMTvZK/vz8UCgUUCgVMTExQq1YtvPPOO9i0aRMKCgq03k9ERARsbW3LrlAiIqIyxtBEr+Xj44Pk5GQkJSXh8OHD6Nq1Kz788EP07t0b+fn5cpdHREQGThAEXLt2TfYLaxia6LXMzMzg4OCAunXrok2bNvjkk0+wb98+HD58GBEREQCA5cuXo0WLFqhatSocHR0xZcoUZGVlAQCio6MxevRoZGRkiKNWn376KQDgu+++Q9u2bWFtbQ0HBwcMGzYMDx8+lOmdEhFRRfP48WMsWLAAu3fvxqJFi2SthaFJJoIgIDc3t9x/BEHQSf3dunVDq1at8NNPPwF4sfr16tWrcfXqVWzZsgXHjx/HzJkzAQAdO3bEypUroVQqkZycjOTkZHz88ccAXizHsHDhQvzxxx/Yu3cvkpKS4O/vr5MaiYhIv8XExODLL78UH3fo0EHGari4pWzy8vIQFhZW7q8bEhKis9t6NGnSBJcvXwYATJs2TWx3dnbGokWLMGnSJKxbtw6mpqawsbGBQqGAg4ODZB9jxowRf9+gQQOsXr0a7dq1Q1ZWFqysrHRSJxER6ZeCggIsXboUz549E9v69u0LNzc3GaviSBOVgiAI4lpEx44dQ/fu3VG3bl1YW1tj5MiRePToEZ4+ffrKfVy4cAF9+vSBk5MTrK2t0blzZwDAnTt3yrx+IiKqeFJTU7Fw4UJJYAoKCsLdu27o2BHYv1++2jjSJBMTExOEhITI8rq6Eh8fDxcXFyQlJaF3796YPHkyPvvsM1SvXh1nzpzB2LFjkZubW+RK6NnZ2fD29oa3tze2bt0KOzs73LlzB97e3sjNzdVZnUREpB9OnTqFEydOiI/r1q2LsWPHQqFQIDwciI0FwsOBvn3lqY+hSSYKhUJn02RyOH78OK5cuYLp06fjwoULKCgowLJly2Bk9GLwcteuXZL+pqamalc9XL9+HY8ePUJ4eDgcHR0BAOfPny+fN0BERBWGSqVCeHi45IrsAQMGoGXLluLj4OAXgSk4WI4KX2BootfKyclBSkoKVCoVHjx4gCNHjiAsLAy9e/fGqFGjEBcXh7y8PHz55Zfo06cPzp49iw0bNkj24ezsjKysLERFRaFVq1awtLSEk5MTTE1N8eWXX2LSpEmIi4vDwoULZXqXREQkhwcPHqh9Z3z00Udq57X27SvfCFMhntNEr3XkyBHUrl0bzs7O8PHxwYkTJ7B69Wrs27cPxsbGaNWqFZYvX47PP/8czZs3x9atW9VOcu/YsSMmTZqEwYMHw87ODkuWLIGdnR0iIiKwe/duNGvWDOHh4Vi6dKlM75KIiMrb8ePHJYHJ2dkZoaGhFfZCIIWgq2vQK7nMzEzY2NggIyMDSqVSsu358+dITEyEi4sLzM3NZaqQyhv/3ImINFOpVGprLr333nto1qxZudfyqu/vl3F6joiIiMrN/fv38fXXX0vaZsyYUeRFQxUJQxMRERGVi59//hmxsbHiY1dXVwwfPlzGioqHoYmIiIjKVH5+Pj777DNJ25AhQ9C4cWOZKioZhiYiIiIqM/fu3cM333wjaZs5cyYsLCxkqqjkGJqIiIioTBw6dAjnzp0THzdt2hTvv/++jBWVDkMTERER6VReXh4WL14saRs+fDhcXV1lqkg3GJqIiIhIZ27fvo2IiAhJW3BwMMzMzOQpSIcYmoiIiEgn9u3bh0uXLomPW7ZsiQEDBshXkI4xNBEREVGp5Obmqt0JYtSoUXBxcZGporLB26hQheDv74/+/fuLj7t06YJp06aVap+62AcREb1aVFSUWmAKCQkxuMAEcKSJXsPf3x9btmwBAJiYmMDJyQmjRo3CJ598gipVyu7j89NPP8HExESrvtHR0ejatSvS0tJga2tbon0QEVHxzZ8/X/L43j03fP21zHfVLUMMTfRaPj4+2Lx5M3JycnDo0CEEBATAxMQEISEhkn65ubkwNTXVyWtWr169QuyDiIjUZWRkYOXKlZK2+HgfDBvmIU9B5YTTc/RaZmZmcHBwQP369TF58mR4eXlh//794pTaZ599hjp16ogru969exfvv/8+bG1tUb16dfTr1w9JSUni/lQqFYKCgmBra4saNWpg5syZePm+0S9PreXk5GDWrFlwdHSEmZkZXF1d8c033yApKQldu3YFAFSrVg0KhQL+/v4a95GWloZRo0ahWrVqsLS0RM+ePfHnn3+K2yMiImBra4ujR4+iadOmsLKygo+PD5KTk8U+0dHRaN++PapWrQpbW1u89dZbuH37to6ONBFRxXfkyBG1wDRz5kzs2OGBvoY7yASAoYlKwMLCArm5uQBezGUnJCQgMjISBw4cQF5eHry9vWFtbY3Tp0/j7NmzYvgofM6yZcsQERGBTZs24cyZM3j8+DH27NnzytccNWoUtm/fjtWrVyM+Ph5fffUVrKys4OjoiB9//BEAkJCQgOTkZKxatUrjPvz9/XH+/Hns378fsbGxEAQBvXr1Ql5entjn6dOnWLp0Kb777jucOnUKd+7cwccffwzgxW0A+vfvj86dO+Py5cuIjY3FhAkToFAoSn1MiYj0wfz58/Hrr79K2kJDQ/Vyde+S4PQcaU0QBERFReHo0aOYOnUqUlNTUbVqVWzcuFGclvv+++9RUFCAjRs3imFi8+bNsLW1RXR0NHr06IGVK1ciJCQEAwcOBABs2LABR48eLfJ1b9y4gV27diEyMhJeXl4AgAYNGojbC6fh7O3tJec0/dOff/6J/fv34+zZs+jYsSMAYOvWrXB0dMTevXvx3nvvAXixINuGDRvQsGFDAEBgYCAWLFgAAMjMzERGRgZ69+4tbm/atGnxDyQRkZ5JS0vD6tWrJW09e/ZE+/btZapIHhxp0kP79wMdO774tTwcOHAAVlZWMDc3R8+ePTF48GB8+umnAIAWLVpIzmP6448/cPPmTVhbW8PKygpWVlaoXr06nj9/jlu3biEjIwPJycnw8PjfvHeVKlXQtm3bIl//0qVLMDY2RufOnUv8HuLj41GlShXJ69aoUQONGzdGfHy82GZpaSkGIgCoXbs2Hj58COBFOPP394e3tzf69OmDVatWSabuiIgM0b59+9QCU3BwcKULTABHmvRSeDgQG/vi1/KYP+7atSvWr18PU1NT1KlTR3LVXNWqVSV9s7Ky4O7ujq1bt6rtx87OrkSvX57Dvi9fbadQKCTnW23evBkffPABjhw5gp07d2LOnDmIjIxEhw4dyq1GIqLy8vLVccCL6bjKStaRpvXr16Nly5ZQKpVQKpXw9PTE4cOHxe1dunSBQqGQ/EyaNEmyjzt37sDX1xeWlpawt7fHjBkzkJ+fL+kTHR2NNm3aiCcQv7y8OwCsXbsWzs7OMDc3h4eHB3777bcyec+6EBwMeHq++LU8VK1aFa6urnBycnrtMgNt2rTBn3/+CXt7e7i6ukp+bGxsYGNjg9q1a0vmxPPz83HhwoUi99miRQsUFBTg5MmTGrcXjnSpVKoi99G0aVPk5+dLXvfRo0dISEhAs2bNXvmeXubm5oaQkBDExMSgefPm2LZtW7GeT0RU0f33v/9VC0x9+/at1IEJkDk01atXD+Hh4bhw4QLOnz+Pbt26oV+/frh69arYZ/z48UhOThZ/lixZIm5TqVTw9fVFbm4uYmJisGXLFkRERGDevHlin8TERPj6+qJr1664dOkSpk2bhnHjxknOodm5cyeCgoIQGhqK33//Ha1atYK3t7c4LVPR9O0LxMSUzyhTcQ0fPhw1a9ZEv379cPr0aSQmJiI6OhoffPAB7t27BwD48MMPER4ejr179+L69euYMmUK0tPTi9yns7Mz/Pz8MGbMGOzdu1fc565duwAA9evXh0KhwIEDB5CamoqsrCy1fTRq1Aj9+vXD+PHjcebMGfzxxx8YMWIE6tati379+mn13hITExESEoLY2Fjcvn0bP//8M/7880+e10REBmXhwoVYu3atpC0kJARubm4yVVRxyBqa+vTpg169eqFRo0Z444038Nlnn8HKygq//PKL2MfS0hIODg7ij1KpFLf9/PPPuHbtGr7//nu0bt0aPXv2FP+wC6/U2rBhA1xcXLBs2TI0bdoUgYGBePfdd7FixQpxP8uXL8f48eMxevRoNGvWDBs2bIClpSU2bdpUfgfDQFhaWuLUqVNwcnLCwIED0bRpU4wdOxbPnz8X/+w++ugjjBw5En5+fvD09IS1tfVr7020fv16vPvuu5gyZQqaNGmC8ePHIzs7GwBQt25dzJ8/H8HBwahVqxYCAwM17mPz5s1wd3dH79694enpCUEQcOjQIa0XwLS0tMT169cxaNAgvPHGG5gwYQICAgIwceLEYhwhIqKKSRAEzJ8/HwUFBZL20NBQna3Bp+8UwssL5MhEpVJh9+7d8PPzw8WLF9GsWTN06dIFV69ehSAIcHBwQJ8+fTB37lxYWloCAObNm4f9+/dLbg6YmJiIBg0a4Pfff4ebmxs6deqENm3aSNaU2Lx5M6ZNm4aMjAzk5ubC0tISP/zwg+Q2Hn5+fkhPT8e+ffs01puTk4OcnBzxcWZmJhwdHZGRkSEJdgDw/PlzJCYmwsXFBebm5qU/WKQX+OdORPri5s2baueiFi5WWRFnNXQpMzMTNjY2Gr+/Xyb7ieBXrlyBp6cnnj9/DisrK+zZs0c8x2TYsGGoX78+6tSpg8uXL2PWrFlISEjATz/9BABISUlBrVq1JPsrfJySkvLKPpmZmXj27BnS0tKgUqk09rl+/XqRdYeFhWk8QY6IiEifaPouO3YsBGfOmOLOnYp5KohcZA9NjRs3xqVLl5CRkYEffvgBfn5+OHnyJJo1a4YJEyaI/Vq0aIHatWuje/fuuHXrluSycDmEhIQgKChIfFw40kRERKQPBEEQ16H7p9DQULi5ASpV+V1wpC9kD02mpqZwdXUFALi7u+PcuXNYtWoVvvrqK7W+hWvs3Lx5Ew0bNoSDg4PaVW4PHjwAADg4OIi/Frb9s49SqYSFhQWMjY1hbGyssU/hPjQxMzODmZlZMd8tERGR/OLj48WLaQp5eXnhrbfeAvBidIkjTOoq3OKWBQUFknOF/qnw3KXatWsDADw9PXHlyhXJVW6RkZFQKpXiFJ+npyeioqIk+4mMjISnpyeAF6HN3d1d0qegoABRUVFiHyIiIkMxf/58tcA0e/ZsMTBR0WQdaQoJCUHPnj3h5OSEJ0+eYNu2bYiOjsbRo0dx69YtbNu2Db169UKNGjVw+fJlTJ8+HZ06dULLli0BAD169ECzZs0wcuRILFmyBCkpKZgzZw4CAgLEUaBJkyZhzZo1mDlzJsaMGYPjx49j165dOHjwoFhHUFAQ/Pz80LZtW7Rv3x4rV65EdnY2Ro8erdP3W0HOuadywj9vIqpICgoKsHDhQrX2yr72UnHIGpoePnyIUaNGITk5GTY2NmjZsiWOHj2Kd955B3fv3sWxY8fEAOPo6IhBgwZhzpw54vONjY1x4MABTJ48GZ6enqhatSr8/Pwkc7QuLi44ePAgpk+fjlWrVqFevXrYuHEjvL29xT6DBw9Gamoq5s2bh5SUFLRu3RpHjhxROzm8pAovaX/69GmluakhQVz2wtjYWOZKiKiy++OPP7B3715Jm6+v7ytvYUXqKsySA/rudZcsJicnIz09Hfb29rC0tBRvZkuGqaCgAPfv34eJiQmcnJz4501EstF0ddycOXP4H7r/p1dLDlQWhSeVV9RVxkn3jIyMGJiISDYqlQqLFi1Sa+d0XMkxNJUThUKB2rVrw97eHnl5eXKXQ+XA1NQURkYV7loLIqoEzp07h0OHDknaBgwYIJ4TTCXD0FTOCpc4ICIiKguapuPmzZvHUW8dYGgiIiIyAPn5+fjss8/U2jkdpzsMTURERHruzJkzamsSvv/++2jatKlMFRkmhiYiIiI9xum48sPQREREpIdyc3MRFham1s7puLLD0ERERKRnjh8/jtOnT0vaRowYIfvN7A0dQxMREZEe4XScfBiaiIiI9MDz58/x+eefS9oUCgXmzZsnU0WVD0MTERFRBXfo0CGcO3dO0jZ69Gg4OTnJVFHlxNBERERUgWmajuPJ3vJgaCIiIqqAsrOzsXTpUkmbpaUlZsyYIVNFxNBERERUwezZsweXL1+WtI0fPx516tSRqSICGJqIiIgqFE7HVVwMTURERBVAZmYmVqxYIWmrWbMmAgICZKqIXsbQREREJLPt27fjxo0bkrbJkyfD3t5epopIE4YmIiIiGXE6Tn8wNBEREckgLS0Nq1evlrQ5OjpizJgxMlVEr8PQREREVM42b96MO3fuSNqmTp2K6tWry1QRaYOhiYiIqBxxOk5/MTQRERGVg9TUVKxbt07S1qhRIwwbNkymiqi4GJqIiIh0ZP9+IDwcCA4G+vb9X/vatWvx3//+V9J3+vTpUCqV5VwhlYaR3AUQEREZivBwIDb2xa+F5s+frxaYQkNDGZj0EEeaiIiIdCQ4+H8jTcnJyfj3v/8t2d6iRQsMHDhQpuqotBSCIAhyF2EIMjMzYWNjg4yMDP7vgYioklu2bBmysrIkbR9//DGqVq0qU0VUlOJ8f3OkiYiISId4dZzhYmgiIiLSgevXr2Pnzp2StrZt28LX11emikjXGJqIiIhKSdPo0syZM2FhYSFDNVRWGJqIiIhKSBAELFiwQK2d03GGiaGJiIioBC5fvow9e/ZI2rhYpWFjaCIiIiomTdNxs2bNgrm5uQzVUHlhaCIiItISp+MqN4YmIiIiLZw7dw6HDh2StLVq1Qr9+/eXpyAqdwxNREREr6FpOi4kJASmpqYyVENyYWgiIiIqQkFBARYuXKjWzum4yomhiYiISIPTp0/j+PHjkrYOHTrA29tbpopIbgxNREREL9E0HTd79mxUqcKvzcqMf/pERET/T6VSYdGiRWrtnI4jgKGJiIgIABAZGYmYmBhJW5cuXdC5c2eZKqKKhqGJiIgqPU3TcXPnzoWRkZEM1VBFxdBERESVVl5eHhYvXqzWzuk40oShiYiIKqX9+/fj4sWLkjYfHx94eHjIVBFVdAxNRERU6Wiajps3bx4UCoUM1ZC+YGgiIqJKIycnB+Hh4WrtnI4jbTA0ERFRpbBr1y7Ex8dL2vr164fWrVvLUxDpHYYmIiIyeJyOI11gaCIiIoP19OlTfPHFF2rtnI6jkmBoIiIigxQREYHbt29L2t5//300bdpUpopI3zE0ERGRwdE0HcfRJSothiYiIjIYmZmZWLFihVo7AxPpAkMTEREZhHXr1iE1NVXSNmLECDRs2FCmisjQMDQREZHe43QclQeGJiIi0luPHz/Gl19+qdbOwERlgaGJiIj00hdffIGnT59K2saMGQNHR0eZKiJDx9BERER6h9NxJAeGJiIi0hsPHz7E+vXr1doZmKg8MDQREZFe0DS6NHHiRDg4OMhQDVVGDE1ERFThcTqOKgIjOV98/fr1aNmyJZRKJZRKJTw9PXH48GFx+/PnzxEQEIAaNWrAysoKgwYNwoMHDyT7uHPnDnx9fWFpaQl7e3vMmDED+fn5kj7R0dFo06YNzMzM4OrqioiICLVa1q5dC2dnZ5ibm8PDwwO//fZbmbxnIiLS3t9//60WmExMTBiYSBayjjTVq1cP4eHhaNSoEQRBwJYtW9CvXz9cvHgRb775JqZPn46DBw9i9+7dsLGxQWBgIAYOHIizZ88CAFQqFXx9feHg4ICYmBgkJydj1KhRMDExweLFiwEAiYmJ8PX1xaRJk7B161ZERUVh3LhxqF27Nry9vQEAO3fuRFBQEDZs2AAPDw+sXLkS3t7eSEhIgL29vWzHh4ioMtM0uhQYGIgaNWrIUA0RoBAEQZC7iH+qXr06vvjiC7z77ruws7PDtm3b8O677wIArl+/jqZNmyI2NhYdOnTA4cOH0bt3b9y/fx+1atUCAGzYsAGzZs1CamoqTE1NMWvWLBw8eBBxcXHiawwZMgTp6ek4cuQIAMDDwwPt2rXDmjVrAAAFBQVwdHTE1KlTERwcrFXdmZmZsLGxQUZGBpRKpS4PCRFRpcPpOCovxfn+lnV67p9UKhV27NiB7OxseHp64sKFC8jLy4OXl5fYp0mTJnByckJsbCwAIDY2Fi1atBADEwB4e3sjMzMTV69eFfv8cx+FfQr3kZubiwsXLkj6GBkZwcvLS+yjSU5ODjIzMyU/RERUOomJiWqBydbWloGJKgTZTwS/cuUKPD098fz5c1hZWWHPnj1o1qwZLl26BFNTU9ja2kr616pVCykpKQCAlJQUSWAq3F647VV9MjMz8ezZM6SlpUGlUmnsc/369SLrDgsL0/g/ISIiKhlN/6ZOmzYNNjY2MlRDpE72kabGjRvj0qVL+PXXXzF58mT4+fnh2rVrcpf1WiEhIcjIyBB/7t69K3dJRER6q6jpOAYmqkhkH2kyNTWFq6srAMDd3R3nzp3DqlWrMHjwYOTm5iI9PV0y2vTgwQNxTQ4HBwe1q9wKr677Z5+Xr7h78OABlEolLCwsYGxsDGNjY419XrX2h5mZGczMzEr2pomICABw48YNbN++XdJWp04djB8/XqaKiIom+0jTywoKCpCTkwN3d3eYmJggKipK3JaQkIA7d+7A09MTAODp6YkrV67g4cOHYp/IyEgolUo0a9ZM7PPPfRT2KdyHqakp3N3dJX0KCgoQFRUl9iEiIt2bP3++WmD66KOPGJiowpJ1pCkkJAQ9e/aEk5MTnjx5gm3btiE6OhpHjx6FjY0Nxo4di6CgIFSvXh1KpRJTp06Fp6cnOnToAADo0aMHmjVrhpEjR2LJkiVISUnBnDlzEBAQII4CTZo0CWvWrMHMmTMxZswYHD9+HLt27cLBgwfFOoKCguDn54e2bduiffv2WLlyJbKzszF69GhZjgsRkaHj1XGkj2QNTQ8fPsSoUaOQnJwMGxsbtGzZEkePHsU777wDAFixYgWMjIwwaNAg5OTkwNvbG+vWrROfb2xsjAMHDmDy5Mnw9PRE1apV4efnhwULFoh9XFxccPDgQUyfPh2rVq1CvXr1sHHjRnGNJgAYPHgwUlNTMW/ePKSkpKB169Y4cuSI2snhRERUOleuXMFPP/0kaXN1dcXw4cNlqohIexVunSZ9xXWaiIheTdPo0syZM2FhYSFDNUQvFOf7W/YTwYmIyLAJgiCZASjE6TjSNwxNRERUZs6fPy85hxQAWrZsiQEDBshUEVHJMTQREVGZ0DQdFxISAlNTUxmqISo9hiYiItKpgoICLFy4UK2d03Gk7xiaiIhIZ86ePYtjx45J2tq3b4+ePXvKVBGR7jA0ERGRTmiajps9ezaqVOFXDRkGfpKJiKhUVCoVFi1apNbO6TgyNAxNRERUYlFRUThz5oykrVOnTujatatMFRGVHYYmIiIqEU3TcXPnzoWRUYW7rSmRTjA0ERFRseTl5WHx4sVq7ZyOI0PH0ERERFo7cOAALly4IGnr0aMHPD09ZaqIqPwwNBERkVY0TcfNmzcPCoVChmqIyh9DExERvVJOTg7Cw8PV2jkdR5UNQxMRERXphx9+wNWrVyVtffv2hZubm0wVEcmHoYmIiDTidByRFEMTERFJPH36FF988YVaO6fjqLIrdmgyNjZGcnIy7O3tJe2PHj2Cvb09VCqVzoojIqLy9e233yIxMVHS9t5776FZs2YyVURUcRQ7NAmCoLE9JycHpqampS6IiIjkoWk6jqNLRP+jdWhavXo1AEChUGDjxo2wsrISt6lUKpw6dQpNmjTRfYVERFSmnjx5guXLl6u1MzARSWkdmlasWAHgxUjThg0bYGxsLG4zNTWFs7MzNmzYoPsKiYiozGzYsAEPHjyQtA0fPhyurq4yVURUcWkdmgrnuLt27YqffvoJ1apVK7OiiIio7HE6jqh4in1O04kTJ8qiDiIiKidpaWniKRf/xMBE9GrFDk1jxox55fZNmzaVuBgiIipby5YtQ1ZWlqRt9OjRcHJykqkiIv1R7NCUlpYmeZyXl4e4uDikp6ejW7duOiuMiIh0i9NxRKVT7NC0Z88etbaCggJMnjwZDRs21ElRRESkO6mpqVi3bp1aOwMTUfEohKIWXiqmhIQEdOnSBcnJybrYnd7JzMyEjY0NMjIyoFQq5S6HiAgAsGDBArX19SZMmIDatWvLVBFRxVKc72+d3Ubl1q1byM/P19XuiIiolDgdR6RbxQ5NQUFBkseCICA5ORkHDx6En5+fzgojIqKSuX//Pr7++mtJW5UqVTB79myZKiIyDMUOTRcvXpQ8NjIygp2dHZYtW/baK+uIiKhsaRpdCggIQM2aNWWohsiwcJ0mIiIDwek4orJV4nOaHj58iISEBABA48aNYW9vr7OiiIhIe0lJSdiyZYukTalUYvr06TJVRGSYih2aMjMzERAQgO3bt6OgoAAAYGxsjMGDB2Pt2rWwsbHReZFERKSZptGlDz/8ELa2tuVfDJGBMyruE8aPH49ff/0VBw8eRHp6OtLT03HgwAGcP38eEydOLIsaiYhIg6Km4xiYiMpGsddpqlq1Ko4ePYp//etfkvbTp0/Dx8cH2dnZOi1QX3CdJiIqL3/++Se2bdsmaatduzYmTJggU0VE+qtM12mqUaOGxik4GxsbVKtWrbi7IyKiYtA0uvTRRx/ByspKhmqIKpdiT8/NmTMHQUFBSElJEdtSUlIwY8YMzJ07V6fFERHR/xQ1HcfARFQ+ij095+bmhps3byInJ0e8K/adO3dgZmaGRo0aSfr+/vvvuqu0guP0HBGVlbi4OPz444+StoYNG2LEiBEyVURkOMp0eq5fv35QKBQlLo6IiLSnaXRp5syZsLCwkKEaospNZzfsrew40kREuiQIAhYsWKDWzsUqiXSrON/fxT6nqUGDBnj06JFae3p6Oho0aFDc3RER0UsuXLigFpiaN2/OwEQks2JPzyUlJUGlUqm15+Tk4N69ezopioiostI0HRcSEgJTU1MZqiGif9I6NO3fv1/8/dGjRyXLDqhUKkRFRcHFxUW31RERGZj9+4HwcCA4GOjb93/tnI4jqvi0PqfJyOjFTJ5CocDLTzExMYGzszOWLVuG3r17675KPcBzmohIGx07ArGxgKcnEBPzoi0mJgaRkZGSfu3atUOvXr1kqJCocimTq+cK7zPn4uKCc+fOoWbNmqWrkoioEgoO/t9IE6B5Om727NmoUqXE91MnojLCq+d0hCNNRFQcKpUKixYtUmvndBxR+SrTdZo0zbn/07x584q7SyKiSuX48eM4ffq0pO3tt99Gt27dZKqIiLRR7NC0Z88eyeO8vDwkJiaiSpUqaNiwIUMTEdEraJqOmzt3rnjeKBFVXMUOTRcvXlRry8zMhL+/PwYMGKCTooiIDE1eXh4WL16s1s7pOCL9obNzmq5cuYI+ffogKSlJF7vTOzyniYiK8uOPPyIuLk7S1qlTJ3Tt2lWmioioUJme01SUjIwMZGRk6Gp3REQGQdN03Lx583gPTyI9VOzQtHr1asljQRCQnJyM7777Dj179tRZYURE+qCoxSpzcnIQHh6u1p/TcUT6q9jTcy+v+m1kZAQ7Ozt069YNISEhsLa21mmB+oLTc0SVk6bFKr/77jv89ddfkn49evSAp6enDBUS0auU6fRcYmJiiQsjIjI02ixWyek4IsNQonOa0tPTcfPmTQCAq6srbG1tdVkTEZHe6Nv3xc/Tp08xf/4Xats5HUdkOIoVmpKSkhAQEICjR4+K959TKBTw8fHBmjVr4OzsXBY1EhFVaBs2bMCDBw8kbX379oWbm5tMFRFRWdA6NN29excdOnSAiYkJFi5ciKZNmwIArl27hvXr18PT0xPnzp1DvXr1yqxYIiK5FHXCt6bpOI4uERkmrU8EHzt2LG7evImjR4/C3Nxcsu3Zs2fw8fFBo0aNsHHjxjIptKLjieBEhu3lE77T0tLUriYGGJiI9E2ZnAh+5MgR7Ny5Uy0wAYCFhQUWLlyIIUOGFL9aIqIKrHCEqXAdyuBgzaNL77//vjgCT0SGSevQ9N///veV5yw1aNAAjx8/1kVNREQVRnj4ixEm4MUIE6fjiCovre8QWbt2bVy7dq3I7XFxcXBwcCjWi4eFhaFdu3awtraGvb09+vfvj4SEBEmfLl26QKFQSH4mTZok6XPnzh34+vrC0tIS9vb2mDFjBvLz8yV9oqOj0aZNG5iZmcHV1RURERFq9axduxbOzs4wNzeHh4cHfvvtt2K9HyIyPMHBL6bkPvzwIQMTUSWndWjq378/Pv74Y6Smpqpte/jwIWbNmoX+/fsX68VPnjyJgIAA/PLLL4iMjEReXh569OiB7OxsSb/x48cjOTlZ/FmyZIm4TaVSwdfXF7m5uYiJicGWLVsQERGBefPmiX0SExPh6+uLrl274tKlS5g2bRrGjRuHo0ePin127tyJoKAghIaG4vfff0erVq3g7e2Nhw8fFus9EZFh6dsX8Paej+vX10va3333XQYmokpG6xPB09LS4OHhgZSUFIwYMQJNmjSBIAiIj4/Htm3b4ODggF9++QXVq1cvcTGpqamwt7fHyZMn0alTJwAvRppat26NlStXanzO4cOH0bt3b9y/fx+1atUC8OLy31mzZiE1NRWmpqaYNWsWDh48KLlh5pAhQ5Ceno4jR44AADw8PNCuXTusWbMGAFBQUABHR0dMnToVwYWr1r0CTwQnMkwcXSIybMX5/tZ6pKlatWr49ddfMXz4cOzYsQPTpk3D9OnTsWvXLgwbNqzUgQmAeMPfl/ezdetW1KxZE82bN0dISAiePn0qbouNjUWLFi3EwAQA3t7eyMzMxNWrV8U+Xl5ekn16e3sj9v9PVMjNzcWFCxckfYyMjODl5SX2eVlOTg4yMzMlP0RkOBITExmYiEiiWItbVqtWDevXr8e6devEaTo7Ozud3B6goKAA06ZNw1tvvYXmzZuL7cOGDUP9+vVRp04dXL58GbNmzUJCQgJ++uknAEBKSookMAEQH6ekpLyyT2ZmJp49e4a0tDSoVCqNfa5fv66x3rCwMI3/oBKR/tP0d3vEiBFo2LChDNUQUUVRotuoKBQK2Nvb67SQgIAAxMXF4cyZM5L2CRMmiL9v0aIFateuje7du+PWrVuy/gMWEhKCoKAg8XFmZiYcHR1lq4eIdIOjS0RUlBKFJl0LDAzEgQMHcOrUqdeuKO7h4QEAuHnzJho2bAgHBwe1q9wKb2dQeDWfg4OD2i0OHjx4AKVSCQsLCxgbG8PY2Fhjn6KuCDQzM4OZmZn2b5KIKrT4+Hjs2rVLrZ2BiYgKaX1OU1kQBAGBgYHYs2cPjh8/DhcXl9c+59KlSwBeLIEAAJ6enrhy5YrkKrfIyEgolUo0a9ZM7BMVFSXZT2RkJDw9PQEApqamcHd3l/QpKChAVFSU2IeIDNf8+fPVAtPIkSMZmIhIQtaRpoCAAGzbtg379u2DtbW1eA6SjY0NLCwscOvWLWzbtg29evVCjRo1cPnyZUyfPh2dOnVCy5YtAQA9evRAs2bNMHLkSCxZsgQpKSmYM2cOAgICxJGgSZMmYc2aNZg5cybGjBmD48ePY9euXTh48KBYS1BQEPz8/NC2bVu0b98eK1euRHZ2NkaPHl3+B4aIyg2n44hIW1ovOVAmL17ECeSbN2+Gv78/7t69ixEjRiAuLg7Z2dlwdHTEgAEDMGfOHMllgbdv38bkyZMRHR2NqlWrws/PD+Hh4ahS5X+ZMDo6GtOnT8e1a9dQr149zJ07F/7+/pLXXbNmDb744gukpKSgdevWWL16tTgd+DpccoBIv1y8eBH79+9Xa2dgIqpcivP9rVVo0nRTyqJ88MEHWvc1JAxNRPpD0+jSuHHjULduXRmqISI56Tw0aXOuEfBi5Oivv/7SrkoDw9BEpB84HUdE/1Sc72+tzmlKTEzUSWFERHI5e/Ysjh07ptbOwERE2irxieC5ublITExEw4YNJecOERFVBPv3A+HhL264e/Gi+uhSQEAAatasKUNlRKSvir3kwNOnTzF27FhYWlrizTffxJ07dwAAU6dORXh4uM4LJCIqifBwIDZWc2AKDQ1lYCKiYit2aAoJCcEff/yB6OhomJubi+1eXl7YuXOnTosjIiqpkSMj8emnPH+JiHSn2PNqe/fuxc6dO9GhQwfJkgFvvvkmbt26pdPiiIhKQtPJ3tOmTYONjY0M1RCRoSh2aEpNTdV437ns7Gyd3LiXiKikBEHAggUL1No5ukREulDs6bm2bdtKVtIuDEobN27kLUeISDbHjh1TC0xGRkYMTESkM8UeaVq8eDF69uyJa9euIT8/H6tWrcK1a9cQExODkydPlkWNRESvpGk6bubMmbCwsJChGiIyVMUeafrXv/6FS5cuIT8/Hy1atMDPP/8Me3t7xMbGwt3dvSxqJCLSSBCEIherZGAiIl2T9d5zhoQrghOVr/379+PixYuSNgcHB0ycOFGmiohIH+l8RfDMzEytX5yBgYjKmqbRpZCQEJiamspQDRFVFlqFJltbW62vjFOpVKUqiIioKCqVCosWLVJr58neRFQetApNJ06cEH+flJSE4OBg+Pv7i1fLxcbGYsuWLQgLCyubKomo0tu+fTtu3LghaXN1dcXw4cNlqoiIKptin9PUvXt3jBs3DkOHDpW0b9u2Df/+978RHR2ty/r0Bs9pIio7mqbj5syZA2NjYxmqISJDUpzv72JfPRcbG4u2bduqtbdt2xa//fZbcXdHRFSkvLy8Iq+OY2AiovJW7HWaHB0d8fXXX2PJkiWS9o0bN8LR0VFnhRFR5bZx40b8/fffkraWLVtiwIABMlVERJVdsUPTihUrMGjQIBw+fBgeHh4AgN9++w1//vknfvzxR50XSESVj6bRpblz58LIqNiD40REOlPsf4F69eqFP//8E3369MHjx4/x+PFj9OnTBzdu3ECvXr3KokYiqiSeP39e5HQcAxMRyY2LW+oITwQnKp2VK1ciIyND0ubp6YkePXrIVBERVQY6X9zyZenp6fjmm28QHx8PAHjzzTcxZswY2NjYlGR3RFTJaRpdmjdvntbrwxERlYdij3efP38eDRs2xIoVK8TpueXLl6Nhw4b4/fffy6JGIjJQWVlZRU7HMTARUUVT7Om5t99+G66urvj6669RpcqLgar8/HyMGzcOf/31F06dOlUmhVZ0nJ4jKp6FCxeioKBA0tatWze8/fbbMlVERJVRcb6/ix2aLCwscPHiRTRp0kTSfu3aNbRt2xZPnz4tfsUGgKGJSHtFjS4REZW3Ml3cUqlU4s6dO2rtd+/ehbW1dXF3R0SVSHp6OgMTEemtYp8IPnjwYIwdOxZLly5Fx44dAQBnz57FjBkz1G6tQkRUSFNY8vX11XiHASKiiqjYoWnp0qVQKBQYNWoU8vPzAQAmJiaYPHkywsPDdV4gEek/ji4RkSEo8TpNT58+xa1btwAADRs2hKWlpU4L0zc8p4lIXWpqKtatW6fWzsBERBVFma/TBACWlpZo0aJFSZ9ORAZO0+jSoEGD0Lx5cxmqISIqPa1D05gxY7Tqt2nTphIXQ0SGgdNxRGSItA5NERERqF+/Ptzc3MA7rxCRJn///Tc2btyo1s7ARESGQOvQNHnyZGzfvh2JiYkYPXo0RowYgerVq5dlbUSkRzSNLg0fPhyurq4yVENEpHtar9O0du1aJCcnY+bMmfjPf/4DR0dHvP/++zh69ChHnogquaKm4xiYiMiQlPjqudu3byMiIgLffvst8vPzcfXqVVhZWem6Pr3Bq+eoMkpMTMS3336r1s7pOCLSF+Vy9ZyRkREUCgUEQYBKpSrpbohIT2kaXRo9ejScnJxkqIaIqOwV6zYqOTk52L59O9555x288cYbuHLlCtasWYM7d+5U6lEmosqmqOk4BiYiMmRajzRNmTIFO3bsgKOjI8aMGYPt27ejZs2aZVkbEVUw8fHx2LVrl1o7p+OIqDLQ+pwmIyMjODk5wc3NDQqFosh+P/30k86K0yc8p4kMnabRpYkTJ8LBwUGGaoiIdKNMzmkaNWrUK8MSERkuLlZJRFTMxS2JqHK5dOkS9u3bp9bOwERElVGJr54jIsOmaXRp6tSpXNSWiCothiYiUsPpOCIidQxNRCSKjY3Fzz//rNbOwERExNBERP9P0+jSsmXT0by5EsxMREQMTUSVniAIWLBggVq7m1somjcHgoNlKIqIqAJiaCKqxI4fP47Tp09L2iwsLDBz5kwAQN++clRFRFQxMTQRVVKapuNmzJgBS0tLGaohIqr4GJqIKpmipuN4sjcR0asxNBFVIgcOHMCFCxckbfb29pg8ebJMFRER6Q+GJqJKQtN0XEhICExNTWWohohI/zA0ERk4lUqFRYsWqbVzOo6IqHgYmogM2K5duxAfHy9pc3FxwahRo2SqiIhIfzE0ERkoTdNxs2fPRpUq/GtPRFQS/NeTyMDk5eVh8eLFau1ubqFgXiIiKjn+E0pkQDZt2oS7d+9K2u7fb4F//3sgPD25WCURUWkwNBEZCE3TcXPnzsWBA0a4coW3QyEiKi2GJiI99/z5c3z++edq7YVXx/XtyxEmIiJdYGgi0mOrV69GWlqapM3DwwM+Pj4yVUREZLgYmoj0lKbpuHnz5kGhUMhQDRGR4TOS88XDwsLQrl07WFtbw97eHv3790dCQoKkz/PnzxEQEIAaNWrAysoKgwYNwoMHDyR97ty5A19fX1haWsLe3h4zZsxAfn6+pE90dDTatGkDMzMzuLq6IiIiQq2etWvXwtnZGebm5vDw8MBvv/2m8/dMVFrZ2dkaA1NoaCgDExFRGZI1NJ08eRIBAQH45ZdfEBkZiby8PPTo0QPZ2dlin+nTp+M///kPdu/ejZMnT+L+/fsYOHCguF2lUsHX1xe5ubmIiYnBli1bEBERgXnz5ol9EhMT4evri65du+LSpUuYNm0axo0bh6NHj4p9du7ciaCgIISGhuL3339Hq1at4O3tjYcPH5bPwSDSwuLFi7F06VJJW5cuXbi6NxFROVAIgiDIXUSh1NRU2Nvb4+TJk+jUqRMyMjJgZ2eHbdu24d133wUAXL9+HU2bNkVsbCw6dOiAw4cPo3fv3rh//z5q1aoFANiwYQNmzZqF1NRUmJqaYtasWTh48CDi4uLE1xoyZAjS09Nx5MgRAC/OA2nXrh3WrFkDACgoKICjoyOmTp2KYC0uO8rMzISNjQ0yMjKgVCp1fWiIihxdIiKikivO97esI00vy8jIAABUr14dAHDhwgXk5eXBy8tL7NOkSRM4OTkhNjYWABAbG4sWLVqIgQkAvL29kZmZiatXr4p9/rmPwj6F+8jNzcWFCxckfYyMjODl5SX2eVlOTg4yMzMlP0RlISMjg4GJiKgCqDAnghcUFGDatGl466230Lx5cwBASkoKTE1NYWtrK+lbq1YtpKSkiH3+GZgKtxdue1WfzMxMPHv2DGlpaVCpVBr7XL9+XWO9YWFhGr/IiHRJ02esZ8+eaN++vQzVEBFVbhVmpCkgIABxcXHYsWOH3KVoJSQkBBkZGeLPy6swE5VWUaNLDExERPKoECNNgYGBOHDgAE6dOoV69eqJ7Q4ODsjNzUV6erpktOnBgwdwcHAQ+7x8lVvh1XX/7PPyFXcPHjyAUqmEhYUFjI2NYWxsrLFP4T5eZmZmBjMzs5K9YaJX+O9//4u1a9eqtXM6johIXrKONAmCgMDAQOzZswfHjx+Hi4uLZLu7uztMTEwQFRUltiUkJODOnTvw9PQEAHh6euLKlSuSq9wiIyOhVCrRrFkzsc8/91HYp3AfpqamcHd3l/QpKChAVFSU2IeoPMyfP18tMA0cOBBubqHo2BHYv1+mwoiISN6r56ZMmYJt27Zh3759aNy4sdhuY2MDCwsLAMDkyZNx6NAhREREQKlUYurUqQCAmJgYAC+WHGjdujXq1KmDJUuWICUlBSNHjsS4cePEO70nJiaiefPmCAgIwJgxY3D8+HF88MEHOHjwILy9vQG8WHLAz88PX331Fdq3b4+VK1di165duH79utq5Tprw6jkqrVed7N2xIxAbC3h6Av//0SciIh0ozve3rNNz69evB/BinZl/2rx5M/z9/QEAK1asgJGREQYNGoScnBx4e3tj3bp1Yl9jY2McOHAAkydPhqenJ6pWrQo/Pz8sWLBA7OPi4oKDBw9i+vTpWLVqFerVq4eNGzeKgQkABg8ejNTUVMybNw8pKSlo3bo1jhw5olVgIiqN+/fv4+uvv1ZrP3o0FG5uL+4bFxwMhIfzprtERHKqUOs06TOONFFJaBpdGjp0KPz93+DIEhFROdDbdZqIKpOipuPeeOMNBAe/CEwcWSIiqjgqxNVzRJVJUlIStmzZotb+z6vj+vZ98UNERBUHQxNROdI0uuTv74/69evLUA0RERUHQxNROeGtUIiI9BtDE1EZS0hI0LjSPQMTEZF+YWgiKkOaRpcmTJiA2rVry1ANERGVBkMTURnhdBwRkWFhaCLSsT/++AN79+5Va2dgIiLSbwxNRDqkaXQpMDAQNWrUkKEaIiLSJYYmIh3hdBwRkWFjaCIqpV9//RVHjhxRa2dgIiIyLAxNRKWgaXRp+vTpvP8gEZEBYmgiKgFBELBgwQK1do4uEREZLoYmomI6ceIETp06JWkzMzNDMO+uS0Rk0BiaiIpB03TcjBkzYGlpKUM1RERUnhiaiLTA6TgiImJoInqNgwcP4vz585K2mjVrIiAgQKaKiIhIDgxNRK+gaTouODgYZmZmMlRDRERyYmgi0qCgoAALFy5Ua+d0HBFR5cXQRPSS3bt349q1a5I2Z2dn+Pn5yVQRERFVBAxNRP+gaTpu9uzZqFKFf1WIiCo7fhMQAcjPz8dnn32m1s7pOCIiKsTQRJVeREQEbt++LWl788038e677wIA9u8HwsOB4GCgb185KiQiooqAoYkqNU3TcXPnzoWRkZH4ODwciI198StDExFR5WX0+i5EhicnJ0djYAoNDZUEJuDFCJOn54tfiYio8uJIE1U6a9aswaNHjyRt7dq1Q69evTT279uXI0xERMTQRJWMptGlefPmQaFQyFANERHpE4YmqhSys7OxdOlStXZeHUdERNpiaCKDFxYWhtzcXElb586d0aVLF3kKIiIivcTQRAaN03FERKQrDE1kkLKysrBs2TK1dk7HERFRSTE0kcFZvXo10tLSJG0+Pj7w8PCQqSIiIjIEDE1kUIpae4mIiKi0GJrIIKSnp2PVqlVq7QxMRESkKwxNpPcWL16MvLw8SdvQoUPxxhtvyFQREREZIt5GhfTa/Pnz1QJTaGioGJj27wc6dnzxKxERUWkwNJFeSk1N1er8pX/ebJeIiKg0OD1HekdTWPLz84Ozs7Nae3Dwi8DEm+0SEVFpMTSRXinu1XG82S4REekKQxPphfv37+Prr79Wa+fVcUREVF4YmqjC0zS6NH78eNSpU0eGaoiIqLJiaKIKjYtVEhFRRcHQRBUSp+OIiKiiYWiiCmfhwoUoKCiQtE2ZMgV2dnYyVURERMTQRBWMpuk4N7dQMC8REZHcGJqoQrh79y42bdokaatfvz78/f3lKYiIiOglDE0kO02jS0FBQbC2tpahGiIiIs0YmkhWvDqOiIj0BUMTyeLWrVv4/vvvJW1NmjTB4MGDZaqIiIjo1RiaqNxpGl2aMWMGLC0tZaiGiIhIOwxNVG4EQcCCBQvU2jkdR0RE+oChicqFpuk4Nzc39OXddImISE8wNFGZ0zQdFxISAlNTUxmqISIiKhmGJioznI4jIiJDwtBEZeL69evYuXOnpK179+7417/+JVNFREREpcPQRDqnaTpu9uzZqFKFHzciItJfRnIXQIZDEIQiF6t8OTDt3w907PjiVyIiIn3A//qTTly+fBl79uyRtPXs2RPt27fX2D88HIiNffErL6AjIiJ9wNBEpaZpdGnOnDkwNjYu8jnBwS8CU3BwWVZGRESkO7JOz506dQp9+vRBnTp1oFAosHfvXsl2f39/KBQKyY+Pj4+kz+PHjzF8+HAolUrY2tpi7NixyMrKkvS5fPky3n77bZibm8PR0RFLlixRq2X37t1o0qQJzM3N0aJFCxw6dEjn79fQqFSqIqfjXhWYgBejSzExHGUiIiL9IWtoys7ORqtWrbB27doi+/j4+CA5OVn82b59u2T78OHDcfXqVURGRuLAgQM4deoUJkyYIG7PzMxEjx49UL9+fVy4cAFffPEFPv30U/z73/8W+8TExGDo0KEYO3YsLl68iP79+6N///6Ii4vT/Zs2EOfPn8eiRYskbf379+dyAkREZLAUgiAIchcBAAqFAnv27EH//v3FNn9/f6Snp6uNQBWKj49Hs2bNcO7cObRt2xYAcOTIEfTq1Qv37t1DnTp1sH79esyePRspKSniYorBwcHYu3cvrl+/DgAYPHgwsrOzceDAAXHfHTp0QOvWrbFhwwat6s/MzISNjQ0yMjKgVCpLcAT0R3h4OHJyciRtc+fOhZERrysgIiL9Upzv7wr/LRcdHQ17e3s0btwYkydPxqNHj8RtsbGxsLW1FQMTAHh5ecHIyAi//vqr2KdTp06S1ae9vb2RkJCAtLQ0sY+Xl5fkdb29vREbG1tkXTk5OcjMzJT8GLrC6biXA1NoaCgDExERGbwK/U3n4+ODb7/9FlFRUfj8889x8uRJ9OzZEyqVCgCQkpICe3t7yXOqVKmC6tWrIyUlRexTq1YtSZ/Cx6/rU7hdk7CwMNjY2Ig/jo6OpXuzFVxCQoLadNyvv46Gmxun44iIqHKo0FfPDRkyRPx9ixYt0LJlSzRs2BDR0dHo3r27jJW9uHdaUFCQ+DgzM9Ngg5Om6bh58+ZBoVDIVBEREVH5q9Ch6WUNGjRAzZo1cfPmTXTv3h0ODg54+PChpE9+fj4eP34MBwcHAICDgwMePHgg6VP4+HV9CrdrYmZmBjMzs1K/p4osPz8fn332maStYcOGGDFihEwVERERyadCT8+97N69e3j06BFq164NAPD09ER6ejouXLgg9jl+/DgKCgrg4eEh9jl16hTy8vLEPpGRkWjcuDGqVasm9omKipK8VmRkJDw9Pcv6LVVYcXFxaoFp4sSJDExERFRpyTrSlJWVhZs3b4qPExMTcenSJVSvXh3Vq1fH/PnzMWjQIDg4OODWrVuYOXMmXF1d4e3tDQBo2rQpfHx8MH78eGzYsAF5eXkIDAzEkCFDUKdOHQDAsGHDMH/+fIwdOxazZs1CXFwcVq1ahRUrVoiv++GHH6Jz585YtmwZfH19sWPHDpw/f16yLEFlomntJU7HERFRZSfrkgPR0dHo2rWrWrufnx/Wr1+P/v374+LFi0hPT0edOnXQo0cPLFy4UHLS9uPHjxEYGIj//Oc/MDIywqBBg7B69WpYWVmJfS5fvoyAgACcO3cONWvWxNSpUzFr1izJa+7evRtz5sxBUlISGjVqhCVLlqBXr15avxdDWHIgLy8PixcvlrQ1bdoU77//vkwVERERla3ifH9XmHWa9J2+h6aLFy9i/0t3z50yZQrs7OxkqoiIiKjsFef7W69OBKeyUdStUIiIiOh/GJoqsZycHISHh0vaWrdujX79+slUERERUcXF0FRJ/fbbbzh8+LCkberUqahevbpMFREREVVsDE2VEKfjiIiIio+hqRJ59uwZlixZImlr3749evbsKVNFRERE+oOhqZI4e/Ysjh07JmmbNm0abGxsZKqIiIhIvzA0VQKcjiMiIio9hiYDlp2djaVLl0ra3nrrLXh5eclUERERkf5iaDJQJ06cwKlTpyRtH330kWSldCIiItIeQ5MB4nQcERGR7jE0GZDMzEzJjYgBoFu3bnj77bdlqoiIiMhwMDQZiKNHj+KXX36RtM2YMQOWlpYyVURERGRYGJoMAKfjiIiIyh5Dkx5LS0vD6tWrJW3e3t7o0KGDTBUREREZLoYmPXX8+HGcPn1a0jZr1iyYm5vLVBEREZFhY2jSQ1u3bsXNmzclbZyOIyIiKlsMTXrk6dOn+OKLLyRtV6/2xq5d7jJVREREVHkwNOmJa9euYffu3ZK2n3+eg1mzjGWqiIiIqHJhaNIDy5ZtQVZWkvj47bffRrdu3cAZOSIiovLD0FTB3b9/XxKYJk2ahFq1aslXEBERUSVlJHcB9Go2NjZQKl2RlVUTrVvPYWAiIiKSCUeaKriqVati+vThcpdBRERU6XGkiYiIiEgLDE1EREREWmBoIiIiItICQxMRERGRFhiaiIiIiLTA0ERERESkBYYmIiIiIi0wNBERERFpgaGJiIiISAsMTURERERaYGgiIiIi0gJDExEREZEWGJqIiIiItMDQRERERKSFKnIXYCgEQQAAZGZmylwJERERaavwe7vwe/xVGJp05MmTJwAAR0dHmSshIiKi4nry5AlsbGxe2UchaBOt6LUKCgpw//59WFtbQ6FQyF1OmcrMzISjoyPu3r0LpVIpdzmVBo+7PHjc5cHjXv4q6zEXBAFPnjxBnTp1YGT06rOWONKkI0ZGRqhXr57cZZQrpVJZqf5iVRQ87vLgcZcHj3v5q4zH/HUjTIV4IjgRERGRFhiaiIiIiLTA0ETFZmZmhtDQUJiZmcldSqXC4y4PHnd58LiXPx7z1+OJ4ERERERa4EgTERERkRYYmoiIiIi0wNBEREREpAWGJiIiIiItMDRVEqdOnUKfPn1Qp04dKBQK7N27V7Ld398fCoVC8uPj4yPp8/jxYwwfPhxKpRK2trYYO3YssrKyJH0uX76Mt99+G+bm5nB0dMSSJUvUatm9ezeaNGkCc3NztGjRAocOHdL5+60IwsLC0K5dO1hbW8Pe3h79+/dHQkKCpM/z588REBCAGjVqwMrKCoMGDcKDBw8kfe7cuQNfX19YWlrC3t4eM2bMQH5+vqRPdHQ02rRpAzMzM7i6uiIiIkKtnrVr18LZ2Rnm5ubw8PDAb7/9pvP3XBFoc9y7dOmi9nmfNGmSpA+Pe/GsX78eLVu2FBdG9PT0xOHDh8Xt/KyXjdcdd37WdUygSuHQoUPC7NmzhZ9++kkAIOzZs0ey3c/PT/Dx8RGSk5PFn8ePH0v6+Pj4CK1atRJ++eUX4fTp04Krq6swdOhQcXtGRoZQq1YtYfjw4UJcXJywfft2wcLCQvjqq6/EPmfPnhWMjY2FJUuWCNeuXRPmzJkjmJiYCFeuXCnT9y8Hb29vYfPmzUJcXJxw6dIloVevXoKTk5OQlZUl9pk0aZLg6OgoREVFCefPnxc6dOggdOzYUdyen58vNG/eXPDy8hIuXrwoHDp0SKhZs6YQEhIi9vnrr78ES0tLISgoSLh27Zrw5ZdfCsbGxsKRI0fEPjt27BBMTU2FTZs2CVevXhXGjx8v2NraCg8ePCifg1GOtDnunTt3FsaPHy/5vGdkZIjbedyLb//+/cLBgweFGzduCAkJCcInn3wimJiYCHFxcYIg8LNeVl533PlZ1y2GpkqoqNDUr1+/Ip9z7do1AYBw7tw5se3w4cOCQqEQ/v77b0EQBGHdunVCtWrVhJycHLHPrFmzhMaNG4uP33//fcHX11eybw8PD2HixImleEf64eHDhwIA4eTJk4IgCEJ6erpgYmIi7N69W+wTHx8vABBiY2MFQXgRdo2MjISUlBSxz/r16wWlUike55kzZwpvvvmm5LUGDx4seHt7i4/bt28vBAQEiI9VKpVQp04dISwsTPdvtIJ5+bgLwosvkg8//LDI5/C460a1atWEjRs38rNezgqPuyDws65rnJ4jUXR0NOzt7dG4cWNMnjwZjx49ErfFxsbC1tYWbdu2Fdu8vLxgZGSEX3/9VezTqVMnmJqain28vb2RkJCAtLQ0sY+Xl5fkdb29vREbG1uWb61CyMjIAABUr14dAHDhwgXk5eVJjkeTJk3g5OQkHo/Y2Fi0aNECtWrVEvt4e3sjMzMTV69eFfu86pjm5ubiwoULkj5GRkbw8vKqlMe90NatW1GzZk00b94cISEhePr0qbiNx710VCoVduzYgezsbHh6evKzXk5ePu6F+FnXHd6wlwAAPj4+GDhwIFxcXHDr1i188skn6NmzJ2JjY2FsbIyUlBTY29tLnlOlShVUr14dKSkpAICUlBS4uLhI+hT+RUxJSUG1atWQkpIi+ctZ2KdwH4aqoKAA06ZNw1tvvYXmzZsDeHFMTE1NYWtrK+n7z+NR1PEq3PaqPpmZmXj27BnS0tKgUqk09rl+/brO3mNFpOm4A8CwYcNQv3591KlTB5cvX8asWbOQkJCAn376CQCPe0lduXIFnp6eeP78OaysrLBnzx40a9YMly5d4me9DBV13AF+1nWNoYkAAEOGDBF/36JFC7Rs2RINGzZEdHQ0unfvLmNlhiEgIABxcXE4c+aM3KVUKkUd9wkTJoi/b9GiBWrXro3u3bvj1q1baNiwYXmXaTAaN26MS5cuISMjAz/88AP8/Pxw8uRJucsyeEUd92bNmvGzrmOcniONGjRogJo1a+LmzZsAAAcHBzx8+FDSJz8/H48fP4aDg4PY5+WrYQofv65P4XZDFBgYiAMHDuDEiROoV6+e2O7g4IDc3Fykp6dL+v/zeJTmmCqVSlhYWKBmzZowNjbmcX8FDw8PAJB83nnci8/U1BSurq5wd3dHWFgYWrVqhVWrVvGzXsaKOu6a8LNeOgxNpNG9e/fw6NEj1K5dGwDg6emJ9PR0XLhwQexz/PhxFBQUiH8JPT09cerUKeTl5Yl9IiMj0bhxY1SrVk3sExUVJXmtyMhIyfy7oRAEAYGBgdizZw+OHz+uNnXp7u4OExMTyfFISEjAnTt3xOPh6emJK1euSAJrZGQklEqlOPz+umNqamoKd3d3SZ+CggJERUVVyuOuyaVLlwBA8nnncS+9goIC5OTk8LNezgqPuyb8rJeS3GeiU/l48uSJcPHiReHixYsCAGH58uXCxYsXhdu3bwtPnjwRPv74YyE2NlZITEwUjh07JrRp00Zo1KiR8Pz5c3EfPj4+gpubm/Drr78KZ86cERo1aiRZciA9PV2oVauWMHLkSCEuLk7YsWOHYGlpqbbkQJUqVYSlS5cK8fHxQmhoqMEuOTB58mTBxsZGiI6Ollzu+/TpU7HPpEmTBCcnJ+H48ePC+fPnBU9PT8HT01PcXng5cI8ePYRLly4JR44cEezs7DReDjxjxgwhPj5eWLt2rcbLgc3MzISIiAjh2rVrwoQJEwRbW1vJFTOG4nXH/ebNm8KCBQuE8+fPC4mJicK+ffuEBg0aCJ06dRL3weNefMHBwcLJkyeFxMRE4fLly0JwcLCgUCiEn3/+WRAEftbLyquOOz/rusfQVEmcOHFCAKD24+fnJzx9+lTo0aOHYGdnJ5iYmAj169cXxo8fr/Zhf/TokTB06FDByspKUCqVwujRo4UnT55I+vzxxx/Cv/71L8HMzEyoW7euEB4erlbLrl27hDfeeEMwNTUV3nzzTeHgwYNl+t7loul4AxA2b94s9nn27JkwZcoUoVq1aoKlpaUwYMAAITk5WbKfpKQkoWfPnoKFhYVQs2ZN4aOPPhLy8vIkfU6cOCG0bt1aMDU1FRo0aCB5jUJffvml4OTkJJiamgrt27cXfvnll7J427J73XG/c+eO0KlTJ6F69eqCmZmZ4OrqKsyYMUOydo0g8LgX15gxY4T69esLpqamgp2dndC9e3cxMAkCP+tl5VXHnZ913VMIgiCU9+gWERERkb7hOU1EREREWmBoIiIiItICQxMRERGRFhiaiIiIiLTA0ERERESkBYYmIiIiIi0wNBERERFpgaGJiCq0s2fPokWLFjAxMUH//v3lLoeIKjGGJiIqM/7+/lAoFFAoFDAxMYGLiwtmzpyJ58+fa72PoKAgtG7dGomJiYiIiCi7YstRRESEeFyMjY1RrVo1eHh4YMGCBcjIyCj2/hQKBfbu3av7QolIgqGJiMqUj48PkpOT8ddff2HFihX46quvEBoaqvXzb926hW7duqFevXqwtbUtUQ25ubklel5JCIKA/Pz81/ZTKpVITk7GvXv3EBMTgwkTJuDbb79F69atcf/+/XKolIiKi6GJiMqUmZkZHBwc4OjoiP79+8PLywuRkZEAXtwJPSwsDC4uLrCwsECrVq3www8/AACSkpKgUCjw6NEjjBkzBgqFQhxpOnnyJNq3bw8zMzPUrl0bwcHBkqDSpUsXBAYGYtq0aahZsya8vb0RHR0NhUKBo0ePws3NDRYWFujWrRsePnyIw4cPo2nTplAqlRg2bBiePn0q7utVNQIQ93v48GG4u7vDzMwMZ86cee1xUSgUcHBwQO3atdG0aVOMHTsWMTExyMrKwsyZM8V+zs7OWLlypeS5rVu3xqeffipuB4ABAwZAoVDA2dkZSUlJMDIywvnz5yXPW7lyJerXr4+CgoLX1kdE6hiaiKjcxMXFISYmBqampgCAsLAwfPvtt9iwYQOuXr2K6dOnY8SIETh58iQcHR2RnJwMpVKJlStXIjk5GYMHD8bff/+NXr16oV27dvjjjz+wfv16fPPNN1i0aJHktbZs2QJTU1OcPXsWGzZsENs//fRTrFmzBjExMbh79y7ef/99rFy5Etu2bcPBgwfx888/48svvxT7v6rGfwoODkZ4eDji4+PRsmXLEh0fe3t7DB8+HPv374dKpdLqOefOnQMAbN68GcnJyTh37hycnZ3h5eWFzZs3S/pu3rwZ/v7+MDLiP/1EJSLzDYOJyID5+fkJxsbGQtWqVQUzMzMBgGBkZCT88MMPwvPnzwVLS0shJiZG8pyxY8cKQ4cOFR/b2NhI7qj+ySefCI0bNxYKCgrEtrVr1wpWVlaCSqUSBEEQOnfuLLi5uUn2e+LECQGAcOzYMbEtLCxMACDcunVLbJs4caLg7e0tCIKgVY2F+927d6/Wx2Xz5s2CjY2Nxm3r168XAAgPHjwQBEEQ6tevL6xYsULSp1WrVkJoaKj4GICwZ88eSZ+dO3cK1apVE54/fy4IgiBcuHBBUCgUQmJiotZ1EpFUFTkDGxEZvq5du2L9+vXIzs7GihUrUKVKFQwaNAhXr17F06dP8c4770j65+bmws3Nrcj9xcfHw9PTEwqFQmx76623kJWVhXv37sHJyQkA4O7urvH5/xwFqlWrFiwtLdGgQQNJ22+//QYAuHnzptY1tm3b9lWHQWuCIACA5P2VRP/+/REQEIA9e/ZgyJAhiIiIQNeuXcXpPCIqPoYmIipTVatWhaurKwBg06ZNaNWqFb755hs0b94cAHDw4EHUrVtX8hwzMzOdvK4mJiYm4u8Lr+r7J4VCIZ7zk5WVpXWNRb1eccXHx0OpVKJGjRoAACMjIzFIFcrLy3vtfkxNTTFq1Chs3rwZAwcOxLZt27Bq1Sqd1EhUWTE0EVG5MTIywieffIKgoCDcuHEDZmZmuHPnDjp37qz1Ppo2bYoff/wRgiCIozFnz56FtbU16tWrp9N6mzVrVqIaS+rhw4fYtm0b+vfvL553ZGdnh+TkZLFPZmYmEhMTJc8zMTHReA7UuHHj0Lx5c6xbtw75+fkYOHBg2b4BIgPH0ERE5eq9997DjBkz8NVXX+Hjjz/G9OnTUVBQgH/961/IyMjA2bNnoVQq4efnp/H5U6ZMwcqVKzF16lQEBgYiISEBoaGhCAoK0vkJztbW1iWqURuCICAlJQWCICA9PR2xsbFYvHgxbGxsEB4eLvbr1q0bIiIi0KdPH9ja2mLevHkwNjaW7MvZ2RlRUVF46623YGZmhmrVqgF4ETA7dOiAWbNmYcyYMbCwsChxvUTE0ERE5axKlSoIDAzEkiVLkJiYCDs7O4SFheGvv/6Cra0t2rRpg08++aTI59etWxeHDh3CjBkz0KpVK1SvXh1jx47FnDlzyqTehQsXFrtGbWRmZqJ27dpQKBRQKpVo3Lgx/Pz88OGHH0KpVIr9QkJCkJiYiN69e8PGxgYLFy5UG2latmwZgoKC8PXXX6Nu3bpISkoStxUuZTBmzJhS1UtEgEJ4ebKciIgMxsKFC7F7925cvnxZ7lKI9B4X6yAiMkBZWVmIi4vDmjVrMHXqVLnLITIIDE1ERDr25ptvwsrKSuPP1q1by6WGwMBAuLu7o0uXLpyaI9IRTs8REenY7du3i1wWoFatWrC2ti7niohIFxiaiIiIiLTA6TkiIiIiLTA0EREREWmBoYmIiIhICwxNRERERFpgaCIiIiLSAkMTERERkRYYmoiIiIi0wNBEREREpIX/A6MS9ftNb4gwAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHHCAYAAAB9dxZkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYU5JREFUeJzt3XtcFGX7P/DPcloOIqgoB0UhQzE1MVCEVLIoNE9UfkMqASUt8/igIihCmAaRpzyUeTbzgD4amhlqqFmJqAiaeVYISxc1BRQSEOb3hz/madyFABdmWT7v12tftNfeM3PNbbKX9z1zj0IQBAFERERE9MQM5E6AiIiISF+wsCIiIiLSEhZWRERERFrCwoqIiIhIS1hYEREREWkJCysiIiIiLWFhRURERKQlLKyIiIiItISFFREREZGWsLAiokZPoVDgww8/lDsNUUhICJycnOROg4hqgYUVEemkdevWQaFQiC9TU1N06NAB48ePR25ubp0e+8iRI/jwww+Rl5en1f2+8MILknNq3rw5evTogTVr1qC8vFwrx/j444+RlJSklX0RUc0ZyZ0AEVFVZs+eDWdnZzx48AA///wzvvjiC+zZswdnzpyBubm5Vo7x999/w8jof78Ojxw5gtjYWISEhMDa2lorx6jQpk0bxMXFAQBu3bqFr776CqGhobh48SLi4+OfeP8ff/wxhg0bBn9//yfeFxHVHAsrItJpAwYMgIeHBwDg3XffRYsWLbBgwQLs3LkTgYGBtd5veXk5SkpKYGpqClNTU22l+6+srKzwzjvviO/fe+89dOzYEUuXLsVHH30EY2PjesuFiLSPU4FE1KC8+OKLAICsrCwAwLx58+Dt7Y0WLVrAzMwM7u7u+O9//6u2nUKhwPjx47Fx40Z07twZSqUSycnJ4mcV11h9+OGHmDZtGgDA2dlZnLbLzs6Gj48PunXrpjGvjh07ws/Pr8bnY25ujl69eqGwsBC3bt2qtF1hYSGmTJkCR0dHKJVKdOzYEfPmzYMgCJJzLCwsxPr168W8Q0JCapwTEdUeR6yIqEG5cuUKAKBFixYAgM8++wxDhgzB22+/jZKSEmzZsgX/93//h927d2PgwIGSbQ8cOICtW7di/PjxsLGx0XiB+Ouvv46LFy9i8+bNWLhwIWxsbAAALVu2xIgRIzB69GicOXMGXbp0Ebc5fvw4Ll68iKioqFqd09WrV2FoaFjptKMgCBgyZAgOHjyI0NBQuLm5Ye/evZg2bRr+/PNPLFy4EACwYcMGvPvuu+jZsyfGjBkDAGjfvn2tciKiWhKIiHTQ2rVrBQDCDz/8INy6dUu4du2asGXLFqFFixaCmZmZ8McffwiCIAhFRUWS7UpKSoQuXboIL774oiQOQDAwMBB+++03tWMBEGJiYsT3n376qQBAyMrKkrTLy8sTTE1NhenTp0viEydOFCwsLIT79+9XeU4+Pj6Cq6urcOvWLeHWrVvCuXPnhIkTJwoAhMGDB4vtgoODhXbt2onvk5KSBADCnDlzJPsbNmyYoFAohMuXL4sxCwsLITg4uMo8iKjucCqQiHSar68vWrZsCUdHRwwfPhxNmjTBN998g9atWwMAzMzMxLZ3795Ffn4++vTpg5MnT6rty8fHB88880ytc7GyssLQoUOxefNmcQqurKwMiYmJ8Pf3h4WFxb/u4/z582jZsiVatmyJTp06YcmSJRg4cCDWrFlT6TZ79uyBoaEhJk6cKIlPmTIFgiDg+++/r/U5EZF2cSqQiHTasmXL0KFDBxgZGcHW1hYdO3aEgcH//k24e/duzJkzB5mZmSguLhbjCoVCbV/Ozs5PnE9QUBASExPx008/oW/fvvjhhx+Qm5uLESNGVGt7JycnrFy5UlxCwsXFBa1atapym99//x0ODg6wtLSUxDt16iR+TkS6gYUVEem0nj17incFPu6nn37CkCFD0LdvX3z++eewt7eHsbEx1q5di02bNqm1/+foVm35+fnB1tYWX3/9Nfr27Yuvv/4adnZ28PX1rdb2FhYW1W5LRA0PpwKJqMHavn07TE1NsXfvXowaNQoDBgzQStGiabSrgqGhId566y3897//xd27d5GUlITAwEAYGho+8XEr065dO1y/fh337t2TxM+fPy9+XqGq3Imo7rGwIqIGy9DQEAqFAmVlZWIsOzv7iVcer7hWqrKV10eMGIG7d+/ivffew/379yXrUtWFV199FWVlZVi6dKkkvnDhQigUCgwYMECMWVhYaH3FeCKqPk4FElGDNXDgQCxYsAD9+/fHW2+9hZs3b2LZsmV4+umncfr06Vrv193dHQAwc+ZMDB8+HMbGxhg8eLBYcHXv3h1dunTBtm3b0KlTJzz33HNaOZ/KDB48GP369cPMmTORnZ2Nbt26Yd++fdi5cycmT54sWVLB3d0dP/zwAxYsWAAHBwc4OzvD09OzTvMjov/hiBURNVgvvvgiVq9eDZVKhcmTJ2Pz5s345JNP8Nprrz3Rfnv06IGPPvoIp06dQkhICAIDA9UW7wwKCgKAal+0/iQMDAywa9cuTJ48Gbt378bkyZNx9uxZfPrpp1iwYIGk7YIFC+Du7o6oqCgEBgbiiy++qPP8iOh/FILwj2V7iYioWj777DP85z//QXZ2Ntq2bSt3OkSkI1hYERHVkCAI6NatG1q0aIGDBw/KnQ4R6RBeY0VEVE2FhYXYtWsXDh48iF9//RU7d+6UOyUi0jEcsSIiqqbs7Gw4OzvD2toaH3zwAebOnSt3SkSkY1hYEREREWkJ7wokIiIi0hIWVkRERERawovX61B5eTmuX78OS0tLPmaCiIiogRAEAffu3YODg4Pkoe/VwcKqDl2/fh2Ojo5yp0FERES1cO3aNbRp06ZG27CwqkOWlpYAHv3BNG3aVOZsiIiIqDoKCgrg6Ogofo/XBAurOlQx/de0aVMWVkRERA1MbS7j4cXrRERERFrCwoqIiIhIS1hYEREREWkJr7GSWVlZGUpLS+VOg+qBsbExDA0N5U6DiIjqEAsrmQiCAJVKhby8PLlToXpkbW0NOzs7rmtGRKSnWFjJpKKoatWqFczNzflFq+cEQUBRURFu3rwJALC3t5c5IyIiqgssrGRQVlYmFlUtWrSQOx2qJ2ZmZgCAmzdvolWrVpwWJCLSQzpx8fqyZcvg5OQEU1NTeHp64tixY1W237ZtG1xdXWFqaoquXbtiz549ks8FQUB0dDTs7e1hZmYGX19fXLp0SeO+iouL4ebmBoVCgczMTDF+6NAhDB06FPb29rCwsICbmxs2btz4xOcKQLymytzcXCv7o4aj4s+c19UREekn2QurxMREhIWFISYmBidPnkS3bt3g5+cnTpk87siRIwgMDERoaCgyMjLg7+8Pf39/nDlzRmyTkJCAxYsXY/ny5UhLS4OFhQX8/Pzw4MEDtf2Fh4fDwcFB43GeffZZbN++HadPn8bIkSMRFBSE3bt3a+3cOf3X+PDPnIhIzwky69mzpzBu3DjxfVlZmeDg4CDExcVpbP/mm28KAwcOlMQ8PT2F9957TxAEQSgvLxfs7OyETz/9VPw8Ly9PUCqVwubNmyXb7dmzR3B1dRV+++03AYCQkZFRZa6vvvqqMHLkyGqfW35+vgBAyM/Pl8T//vtv4ezZs8Lff/9d7X2RfuCfPRGR7qvs+7s6ZB2xKikpQXp6Onx9fcWYgYEBfH19kZqaqnGb1NRUSXsA8PPzE9tnZWVBpVJJ2lhZWcHT01Oyz9zcXIwePRobNmyo9pRcfn4+mjdvXu3zIyIiosZF1sLq9u3bKCsrg62trSRua2sLlUqlcRuVSlVl+4qfVbURBAEhISF4//334eHhUa1ct27diuPHj2PkyJGVtikuLkZBQYHkpW9CQkKgUCigUChgbGwMW1tbvPzyy1izZg3Ky8urvZ9169bB2tq67hIlIiKSgezXWMlhyZIluHfvHiIjI6vV/uDBgxg5ciRWrlyJzp07V9ouLi4OVlZW4svR0VFbKeuU/v3748aNG8jOzsb333+Pfv36YdKkSRg0aBAePnwod3pERNQIlJeXo6ysTO401MhaWNnY2MDQ0BC5ubmSeG5uLuzs7DRuY2dnV2X7ip9VtTlw4ABSU1OhVCphZGSEp59+GgDg4eGB4OBgyXY//vgjBg8ejIULFyIoKKjK84mMjER+fr74unbtWpXtGyqlUgk7Ozu0bt0azz33HGbMmIGdO3fi+++/x7p16wAACxYsQNeuXWFhYQFHR0d88MEHuH//PoBHd1yOHDkS+fn54ujXhx9+CADYsGEDPDw8YGlpCTs7O7z11luV3shARESN0/fff4+PPvoIq1atkjsVNbIWViYmJnB3d0dKSooYKy8vR0pKCry8vDRu4+XlJWkPAPv37xfbOzs7w87OTtKmoKAAaWlpYpvFixfj1KlTyMzMRGZmprhcQ2JiIubOnStud+jQIQwcOBCffPIJxowZ86/no1Qq0bRpU8mrugRBQElJiSwvQRCqnWdlXnzxRXTr1g07duwA8OhaucWLF+O3337D+vXrceDAAYSHhwMAvL29sWjRIjRt2hQ3btzAjRs3MHXqVACPliH46KOPcOrUKSQlJSE7OxshISFPnB8RETV8paWliI2NFZdlUqlUWvkO0ybZFwgNCwtDcHAwPDw80LNnTyxatAiFhYXitUxBQUFo3bo14uLiAACTJk2Cj48P5s+fj4EDB2LLli04ceIEVqxYAeDR7eyTJ0/GnDlz4OLiAmdnZ8yaNQsODg7w9/cHALRt21aSQ5MmTQAA7du3R5s2bQA8mv4bNGgQJk2ahDfeeEO8PsvExKROLmAvLS0Vz7G+RUZGwsTE5In34+rqitOnTwMAJk+eLMadnJwwZ84cvP/++/j8889hYmICKysrKBQKtZHJUaNGif/91FNPYfHixejRowfu378v/jkREVHjk52djfXr10tiEREROreMjeyFVUBAAG7duoXo6GioVCq4ubkhOTlZvPg8JycHBgb/G1jz9vbGpk2bEBUVhRkzZsDFxQVJSUno0qWL2CY8PByFhYUYM2YM8vLy0Lt3byQnJ8PU1LTaea1fvx5FRUWIi4uTFDw+Pj44dOjQk5+4HhIEQfwf/IcffkBcXBzOnz+PgoICPHz4EA8ePEBRUVGVd2Gmp6fjww8/xKlTp3D37l3xgvicnBw888wz9XIeRESkW5KSknDq1Cnx/bPPPovXXntNxowqpxB0bQxNjxQUFMDKygr5+fmSacEHDx4gKysLzs7OYrEnCIJsq3EbGxtXu+IPCQlBXl4ekpKS1D579tln0bZtWyxduhSurq4YO3YsAgIC0Lx5c/z8888IDQ3F3bt3YW1tjXXr1mHy5MmSh1AXFhaiXbt28PPzw/vvv4+WLVsiJycHfn5+yMjIgJubm3ZOWEaa/uyJiEiz4uJixMfHS2LBwcFwcnLCrl1AfDwQEQEMGaLd41b2/V0dso9Y0SMKhUIr03FyOXDgAH799Vf85z//QXp6OsrLyzF//nxxtHHr1q2S9iYmJmp3c5w/fx5//fUX4uPjxTsqT5w4UT8nQEREOuXSpUvYtGmTJDZjxgwYGxsDeFRUpaY++qntwupJsLCiGisuLoZKpUJZWRlyc3ORnJyMuLg4DBo0CEFBQThz5gxKS0uxZMkSDB48GL/88guWL18u2YeTkxPu37+PlJQUdOvWDebm5mjbti1MTEywZMkSvP/++zhz5gw++ugjmc6SiIjksnnzZly8eFF837NnTwwYMEDSJiLifyNWuqRRrmNFTyY5ORn29vZwcnJC//79cfDgQSxevBg7d+6EoaEhunXrhgULFuCTTz5Bly5dsHHjRrUL8729vfH+++8jICAALVu2REJCAlq2bIl169Zh27ZteOaZZxAfH4958+bJdJZERFTfioqKEBsbKymq3n33XbWiCng0SnXkiG6NVgG8xqpO1eQaK2oc+GdPRKTZ2bNnsW3bNkls5syZMDKq/8k1XmNFREREDZIgCFi7dq1kUe0+ffrgxRdflDGr2mNhRURERLK4d+8eFixYIImNHTsWrVq1kimjJ8fCioiIiOpdZmYmdu7cKb5XKpUIDw+XrF3ZELGwIiIionojCAI+//xz3L59W4z5+vri+eeflzEr7WFhRURERPUiLy8Pn332mSQ2YcKEOnlUnFxYWBEREVGdS0tLQ3Jysvje2toaEydO1Lln/T0pFlZERERUZ8rLy7Fw4ULcv39fjA0cOBAeHh4yZlV3WFgRERFRnbh9+zaWLVsmiU2ePBlWVlYyZVT3WFgRERGR1h0+fBgHDx4U39vb22P06NF6N/X3OBZWpJNCQkKQl5eHpKQkAMALL7wANzc3LFq0qNb71MY+iIioamVlZYiLi0NZWZkYe+211/Dss8/KmFX9YWFFNRISEoL169cDAIyNjdG2bVsEBQVhxowZdfrYgR07dohPNP83hw4dQr9+/XD37l1YW1vXah9ERFRzKpUKX375pSQ2ZcoUNGnSRKaM6h8LK6qx/v37Y+3atSguLsaePXswbtw4GBsbIzIyUtKupKQEJiYmWjmmNm7F1afbeYmIdM3+/ftx5MgR8f1TTz2FESNGyJiRPBr28qYkC6VSCTs7O7Rr1w5jx46Fr68vdu3ahZCQEPj7+2Pu3LlwcHBAx44dAQDXrl3Dm2++CWtrazRv3hxDhw5Fdna2uL+ysjKEhYXB2toaLVq0QHh4OB5/NvgLL7yAyZMni++Li4sxffp0ODo6QqlU4umnn8bq1auRnZ2Nfv36AQCaNWsGhUKBkJAQjfu4e/cugoKC0KxZM5ibm2PAgAG4dOmS+Pm6detgbW2NvXv3olOnTmjSpAn69++PGzduiG0OHTqEnj17wsLCAtbW1nj++efx+++/a6mniYh038OHDxEbGyspqgICAhplUQWwsCItMDMzQ0lJCQAgJSUFFy5cwP79+7F7926UlpbCz88PlpaW+Omnn/DLL7+IBUrFNvPnz8e6deuwZs0a/Pzzz7hz5w6++eabKo8ZFBSEzZs3Y/HixTh37hy+/PJLNGnSBI6Ojti+fTsA4MKFC7hx44baYnQVQkJCcOLECezatQupqakQBAGvvvoqSktLxTZFRUWYN28eNmzYgMOHDyMnJwdTp04F8OiXib+/P3x8fHD69GmkpqZizJgxen9hJhFRhWvXrmHu3LmSWHh4OFxdXWXKSH6cCqRaEwQBKSkp2Lt3LyZMmIBbt27BwsICq1atEqcAv/76a5SXl2PVqlViwbF27VpYW1vj0KFDeOWVV7Bo0SJERkbi9ddfBwAsX74ce/furfS4Fy9exNatW7F//374+voCeDTkXKFiyq9Vq1aSa6z+6dKlS9i1axd++eUXeHt7AwA2btwIR0dHJCUl4f/+7/8AAKWlpVi+fDnat28PABg/fjxmz54NACgoKEB+fj4GDRokft6pU6eadyQRUQP07bff4uTJk+L7Z555Rvzd2ZhxxEoP7NoFeHs/+lkfdu/ejSZNmsDU1BQDBgxAQEAAPvzwQwBA165dJddVnTp1CpcvX4alpSWaNGmCJk2aoHnz5njw4AGuXLmC/Px83LhxA56enuI2RkZGVS4cl5mZCUNDQ/j4+NT6HM6dOwcjIyPJcVu0aIGOHTvi3LlzYszc3FwsmoBHtwvfvHkTwKMCLiQkBH5+fhg8eDA+++wzyTQhEZE+KikpQWxsrKSoGjFiBIuq/48jVnogPh5ITX30c8iQuj9ev3798MUXX8DExAQODg6SuwEtLCwkbe/fvw93d3ds3LhRbT8tW7as1fHNzMxqtV1tPH4XoUKhkFz/tXbtWkycOBHJyclITExEVFQU9u/fj169etVbjkRE9eXq1avYsGGDJBYZGam1G5X0AUes9EBEBODl9ehnfbCwsMDTTz+Ntm3b/usSC8899xwuXbqEVq1a4emnn5a8rKysYGVlBXt7e6SlpYnbPHz4EOnp6ZXus2vXrigvL8ePP/6o8fOKv+D/XEPlcZ06dcLDhw8lx/3rr79w4cIFPPPMM1We0+O6d++OyMhIHDlyBF26dMGmTZtqtD0RUUPw3//+V1JUPffcc4iJiWFR9RgWVnpgyBDgyJH6Ga2qqbfffhs2NjYYOnQofvrpJ2RlZeHQoUOYOHEi/vjjDwDApEmTEB8fj6SkJJw/fx4ffPAB8vLyKt2nk5MTgoODMWrUKCQlJYn73Lp1KwCgXbt2UCgU2L17N27duiV5PlUFFxcXDB06FKNHj8bPP/+MU6dO4Z133kHr1q0xdOjQap1bVlYWIiMjkZqait9//x379u3DpUuXeJ0VEemVv//+G7Gxsfjtt9/E2KhRozB48GAZs9JdLKyoTpmbm+Pw4cNo27YtXn/9dXTq1AmhoaF48OABmjZtCuDR4nEjRoxAcHAwvLy8YGlpiddee63K/X7xxRcYNmwYPvjgA7i6umL06NEoLCwEALRu3RqxsbGIiIiAra0txo8fr3Efa9euhbu7OwYNGgQvLy8IgoA9e/ZUexFRc3NznD9/Hm+88QY6dOiAMWPGYNy4cXjvvfdq0ENERLrr/PnzSEhIkMRmzpwJR0dHmTLSfQrh8QWDSGsKCgpgZWWF/Px8sYgAgAcPHiArKwvOzs4wNTWVMUOqb/yzJ6KGYsOGDbh69ar43svLC6+88oqMGdWfyr6/q4MXrxMREZGosLAQ8+bNk8Tee+892NnZyZRRw8LCioiIiAAAp0+flizQbGhoiMjISBgaGsqYVcPCwoqIiKiREwQBK1eulKzF169fP/Tt21fGrBomFlZERESNWH5+PhYtWiSJjRs3DjY2NvIk1MCxsJIR7xtofPhnTkS65MSJE/juu+/E902aNMF//vMfGBhw0YDaYmElg4rb+YuKiup1FXGSX1FREQD1Fd2JiOqTIAhYvHixZM3A/v37Sx7zRbXDwkoGhoaGsLa2Fp85Z25uLj6gmPSTIAgoKirCzZs3YW1tzQtBiUg2d+7cwZIlSySxSZMmVfrQeqoZFlYyqbhttaK4osbB2tqatywTkWyOHDmC/fv3i+9btmyJsWPH8h/3WsTCSiYKhQL29vZo1aoVSktL5U6H6oGxsTFHqohIFuXl5UhISEBxcbEYGzJkCLp37y5jVvqJhZXMDA0N+WVLRER15ubNm/jiiy8ksbCwMFhaWsqUkX5jYUVERKSnDh48iMOHD4vv27Zti5CQEE791SEWVkRERHqmrKwMc+bMkcSGDRuGzp07y5RR48HCioiISI/8+eefWLVqlSQ2bdo0mJuby5RR48LCioiISE98//33OHbsmPi+Q4cOCAwMlDGjxoeFFRERUQNXWlqKjz/+WBJ766234OLiIlNGjRcLKyIiogYsOzsb69evl8QiIiKgVCplyqhxY2FFRETUQCUlJeHUqVPi+2effRavvfaajBmRTjxlcdmyZXBycoKpqSk8PT0l88OabNu2Da6urjA1NUXXrl2xZ88eyeeCICA6Ohr29vYwMzODr68vLl26pHFfxcXFcHNzg0KhQGZmpuSz06dPo0+fPjA1NYWjoyMSEhKe6DyJiIi04cGDB4iNjZUUVcHBwSyqdIDshVViYiLCwsIQExODkydPolu3bvDz86v0US9HjhxBYGAgQkNDkZGRAX9/f/j7++PMmTNim4SEBCxevBjLly9HWloaLCws4OfnhwcPHqjtLzw8HA4ODmrxgoICvPLKK2jXrh3S09Px6aef4sMPP8SKFSu0d/JEREQ1dOnSJXzyySeS2IwZM+Dk5CRPQiShEARBkDMBT09P9OjRA0uXLgXwaNl9R0dHTJgwAREREWrtAwICUFhYiN27d4uxXr16wc3NDcuXL4cgCHBwcMCUKVMwdepUAEB+fj5sbW2xbt06DB8+XNzu+++/R1hYGLZv347OnTsjIyMDbm5uAIAvvvgCM2fOhEqlgomJCYBHc9ZJSUk4f/58tc6toKAAVlZWyM/PR9OmTWvVP0RE1Ljt2gXExwMREUBh4WZcvHhR/Kxnz54YMGCAjNnppyf5/pZ1xKqkpATp6enw9fUVYwYGBvD19UVqaqrGbVJTUyXtAcDPz09sn5WVBZVKJWljZWUFT09PyT5zc3MxevRobNiwQePaHqmpqejbt69YVFUc58KFC7h7967G3IqLi1FQUCB5ERERPYn4eODUqSJkZMRKiqp3332XRZUOkrWwun37NsrKymBrayuJ29raQqVSadxGpVJV2b7iZ1VtBEFASEgI3n//fXh4eNToOP88xuPi4uJgZWUlvhwdHTW2IyIiqq7AwJ0ID/9UEps5cyZat24tU0ZUlUZ5V+CSJUtw7949REZGanW/kZGRCAsLE98XFBSwuCIioloRBAGzZ8+WxPr06YMXX3xRpoyoOmQtrGxsbGBoaIjc3FxJPDc3F3Z2dhq3sbOzq7J9xc/c3FzY29tL2lRcP3XgwAGkpqaqrfHh4eGBt99+G+vXr6/0OP88xuOUSiXXDSEioid2/fp1rFy5UhIbNWoU/7HeAMg6FWhiYgJ3d3ekpKSIsfLycqSkpMDLy0vjNl5eXpL2ALB//36xvbOzM+zs7CRtCgoKkJaWJrZZvHgxTp06hczMTGRmZorLNSQmJmLu3LnicQ4fPozS0lLJcTp27IhmzZpp4eyJiIjUrV27Vq2omjlzJouqBkL2qcCwsDAEBwfDw8MDPXv2xKJFi1BYWIiRI0cCAIKCgtC6dWvExcUBACZNmgQfHx/Mnz8fAwcOxJYtW3DixAlxGQSFQoHJkydjzpw5cHFxgbOzM2bNmgUHBwf4+/sDANq2bSvJoUmTJgCA9u3bo02bNgAePQogNjYWoaGhmD59Os6cOYPPPvsMCxcurI9uISKiRkbT1J+FhYV4hzs1DLIXVgEBAbh16xaio6OhUqng5uaG5ORk8ULxnJwcGBj8b2DN29sbmzZtQlRUFGbMmAEXFxckJSWhS5cuYpvw8HAUFhZizJgxyMvLQ+/evZGcnAxTU9Nq52VlZYV9+/Zh3LhxcHd3h42NDaKjozFmzBjtnTwRETVqFUspjBuXjcuXpY+lefvtt/H000/LlBnVluzrWOkzrmNFRERV8fYGevRYjObNpcv4zJo1SzKoQPXrSb6/ZR+xIiIiaowePnwIP7+5kpidnR3ee+89mTIibWBhRUREVM9+/vlntRuxeNeffmBhRUREVI9iY2PVYtHR0VAoFDJkQ9rGwoqIiKgeFBcXIz4+Xi0eExMjQzZUV1hYERER1bHvv/8ex44dk8SCgoLg7OwsU0ZUV1hYERER1SFNU38cpdJfLKyIiIjqwP379zF//nxJzMzMDOHh4TJlRPWBhRUREZGWJSYm4vz585LYmDFjJM+wJf3EwoqIiEiLOPXXuLGwIiIi0oI7d+5gyZIlkpi9vT0fhdbIsLAiIiJ6QitXrsT169clsQkTJqB58+YyZURyYWFFRET0BDj1R//EwoqIiKgWbty4gRUrVkhinTp1wptvvilTRqQLWFgRERHVUEJCAv7++29JbMqUKWjSpIlMGZGuYGFFRERUA5z6o6qwsCIiIqrErl1AfDwQEQF06XIVGzZskHzes2dPDBgwQKbsSBexsCIiIqpEfDyQmgpkZMQiI0P6WUREBJRKpTyJkc5iYUVERFSJ6dMFZGbOVotz6o8qw8KKiIhIgyNHjiAzc78k9tJLL6F3794yZUQNAQsrIiKix2i6QH3mzJkwMuLXJlWN/4cQERH9f2VlZZgzZ45anFN/VF0srIiIiAAkJycjLS1NEvPx8cELL7wgT0LUILGwIiKiRk/T1N+sWbNgYGAgQzbUkLGwIiKiRqu4uBjx8fFqcU79UW2xsCIiokZpy5YtuHDhgiQ2aNAguLu7y5QR6QMWVkRE1OhomvqLjo6GQqGQIRvSJ5w8JiIivbZrF+Dt/ejnvXv3Kn3WH4sq0gaOWBERkV6reCzNTz99joyMW5LPhg8fjo4dO8qUGekjFlZERKTXIiIePevvcbxAneoCpwKJiEhv/HPaDwBu3LjBoorqFUesiIhIb1RM+8XHax6lCg0NRZs2bWTIjBoLjlgREZHeiIgAvLwAPz/No1QsqqiuccSKiIj0hqvrRfj5bVaLc+qP6gsLKyIi0guallEYM2YM7O3tZciGGisWVkRE1OBVtjYVUX1jYUVERA3Krl2PLk6PiABatPgFP/zwg1obFlUkFxZWRETUoFTc+afprr/x48ejRYsWMmRF9AgLKyIialCmTxeQmTlbLc5RKtIFLKyIiKjB+Pbbb5GZeVItzqKKdAULKyIiahA0XaA+depUWFhYyJANkWZcIJSIiHTOPx9NU1ZWVuldfyyqSNfIXlgtW7YMTk5OMDU1haenJ44dO1Zl+23btsHV1RWmpqbo2rUr9uzZI/lcEARER0fD3t4eZmZm8PX1xaVLlyRthgwZgrZt28LU1BT29vYYMWIErl+/Lmmzd+9e9OrVC5aWlmjZsiXeeOMNZGdna+WciYioahUXqO/duxlz5syRfNamTRtO/ZHOkrWwSkxMRFhYGGJiYnDy5El069YNfn5+uHnzpsb2R44cQWBgIEJDQ5GRkQF/f3/4+/vjzJkzYpuEhAQsXrwYy5cvR1paGiwsLODn54cHDx6Ibfr164etW7fiwoUL2L59O65cuYJhw4aJn2dlZWHo0KF48cUXkZmZib179+L27dt4/fXX664ziIhIFBEBfPhhLFq1uiiJz5w5E6GhoTJlRfTvFIIgCHId3NPTEz169MDSpUsBAOXl5XB0dMSECRMQERGh1j4gIACFhYXYvXu3GOvVqxfc3NywfPlyCIIABwcHTJkyBVOnTgUA5Ofnw9bWFuvWrcPw4cM15rFr1y74+/ujuLgYxsbG+O9//4vAwEAUFxfDwOBR7fntt99i6NChYpvqKCgogJWVFfLz89G0adMa9Q0RUWP14MEDfPLJJ2pxjlJRfXmS72/ZRqxKSkqQnp4OX1/f/yVjYABfX1+kpqZq3CY1NVXSHgD8/PzE9llZWVCpVJI2VlZW8PT0rHSfd+7cwcaNG+Ht7S0WTO7u7jAwMMDatWtRVlaG/Px8bNiwAb6+vlUWVcXFxSgoKJC8iIio+mJjY9WKKjc3NxZV1GDIVljdvn0bZWVlsLW1lcRtbW2hUqk0bqNSqapsX/GzOvucPn06LCws0KJFC+Tk5GDnzp3iZ87Ozti3bx9mzJgBpVIJa2tr/PHHH9i6dWuV5xQXFwcrKyvx5ejoWGV7IiL6H00XqEdHR2Po0KEyZENUO7JfvC6XadOmISMjA/v27YOhoSGCgoJQMSuqUqkwevRoBAcH4/jx4/jxxx9hYmKCYcOGoaqZ08jISOTn54uva9eu1dfpEBE1WHl5eZXe9adQKGTIiKj2ZFvHysbGBoaGhsjNzZXEc3NzYWdnp3EbOzu7KttX/MzNzZU8zTw3Nxdubm5qx7exsUGHDh3QqVMnODo64ujRo/Dy8sKyZctgZWWFhIQEsf3XX38NR0dHpKWloVevXhrzUyqVUCqV1esAIiLSWFB5enqif//+MmRD9ORkG7EyMTGBu7s7UlJSxFh5eTlSUlLg5eWlcRsvLy9JewDYv3+/2N7Z2Rl2dnaSNgUFBUhLS6t0nxXHBR5dIwUARUVF4kXrFQwNDSVtiYjoyVQ2SsWiihoyWVdeDwsLQ3BwMDw8PNCzZ08sWrQIhYWFGDlyJAAgKCgIrVu3RlxcHABg0qRJ8PHxwfz58zFw4EBs2bIFJ06cwIoVKwAACoUCkydPxpw5c+Di4gJnZ2fMmjULDg4O8Pf3BwCkpaXh+PHj6N27N5o1a4YrV65g1qxZaN++vVh8DRw4EAsXLsTs2bMRGBiIe/fuYcaMGWjXrh26d+9e/x1FRKRHrl+/jpUrV6rFeYE66QNZC6uAgADcunUL0dHRUKlUcHNzQ3JysnjxeU5OjmTkyNvbG5s2bUJUVBRmzJgBFxcXJCUloUuXLmKb8PBwFBYWYsyYMcjLy0Pv3r2RnJwMU1NTAIC5uTl27NiBmJgYFBYWwt7eHv3790dUVJQ4jffiiy9i06ZNSEhIQEJCAszNzeHl5YXk5GSYmZnVYw8REekXTaNUAwYMQM+ePWXIhkj7ZF3HSt9xHSsiokePpYmPB/z8NE/9EemaJ/n+5kOYiYioTq1efR5+folqcRZVpI9YWBERUZ2JjY3Fc89JY4GBgejQoYM8CRHVMRZWRESkVZz6o8aMhRUREWlFRUFlY5MGP79ktc9ZVFFjwMKKiIi0orJRqjFjxkgWbSbSZyysiIhIKzj1R8TCioiIntDhw4dx8OBBtTiLKmqMWFgREVGtaVrwMywsDJaWljJkQyQ/FlZERFRjgiBg9uzZanGOUlFjx8KKiIhqZOfOncjMzJTEmjdvjgkTJsiTEJEOYWFFRETVpmnqLyIiQnzWKlFjx8KKiIj+VWlpKT7++GO1OKf+iKRYWBERUZVWrVqFP//8UxLr2LEjhg8fLlNGRLqrxoWVoaEhbty4gVatWknif/31F1q1aoWysjKtJUdERPWvYgX1iAggI0N96m/WrFkwMDCQITMi3VfjwkoQBI3x4uJimJiYPHFCREQkr/h4IDOzCBkZn6p9xqk/oqpVu7BavHgxAEChUGDVqlVo0qSJ+FlZWRkOHz4MV1dX7WdIRET1asCAj+HnVyqJeXl54ZVXXpEpI6KGo9qF1cKFCwE8GrFavnw5DA0Nxc9MTEzg5OSE5cuXaz9DIiKqN5ru+ouOjoZCoZAhG6KGp9qFVVZWFgCgX79+2LFjB5o1a1ZnSRERUf26c+cOlixZohbn1B9RzdT4GitNz4MiIqKGS9Mo1auvvooePXrIkA1Rw1bjwmrUqFFVfr5mzZpaJ0NERPVLU1HFUSqi2qtxYXX37l3J+9LSUpw5cwZ5eXl48cUXtZYYERHVnT/++AOrV69Wi7OoInoyNS6svvnmG7VYeXk5xo4di/bt22slKSIiqjuaRqmGDx+Ojh07ypANkX5RCJUtTFVDFy5cwAsvvIAbN25oY3d6oaCgAFZWVsjPz0fTpk3lToeIiFN/RNXwJN/fWnukzZUrV/Dw4UNt7Y6IiLTo/PnzSExMVIuzqCLSrhoXVmFhYZL3giDgxo0b+O677xAcHKy1xIiISDs0jVK9++67aN26tQzZEOm3GhdWGRkZkvcGBgZo2bIl5s+f/693DBIRUf3i1B9R/eI6VkREeujYsWP4/vvv1eIsqojqVq2vsbp58yYuXLgAAOjYsSNatWqltaSIiKj2NI1STZw4kU/MIKoHBjXdoKCgACNGjICDgwN8fHzg4+OD1q1b45133kF+fn5d5EhERNUgCEKlU38sqojqR40Lq9GjRyMtLQ3fffcd8vLykJeXh927d+PEiRN477336iJHIiL6F3v37sXs2bMlMRMTE079EdWzGq9jZWFhgb1796J3796S+E8//YT+/fujsLBQqwk2ZFzHiojqg6ZRqvDwcJiZmcmQDVHDV6/rWLVo0QJWVlZqcSsrKw41ExHVo7KyMsyZM0ctzlEqIvnUuLCKiopCWFgYNmzYADs7OwCASqXCtGnTMGvWLK0nSEREUrt2AXv3bkarVhclcUdHRy57QySzGk8Fdu/eHZcvX0ZxcTHatm0LAMjJyYFSqYSLi4uk7cmTJ7WXaQPEqUAiqguapv5mzpwJIyOtPUyDqFGr16nAoUOHQqFQ1HQzIiJ6QsXFxYiPj1eLc+qPSHdo7SHMpI4jVkSkLZ999hny8vIkse7du2PIkCHyJESkx57k+7vGyy089dRT+Ouvv9TieXl5eOqpp2q6OyIi+hexsbFqRVV0dDSLKiIdVOOpwOzsbJSVlanFi4uL8ccff2glKSIiAu7du4cFCxaoxTn1R6S7ql1Y7dq1S/zvvXv3SpZcKCsrQ0pKCpydnbWbHRFRI6XpAvUXX3wRffr0kSEbIqquahdW/v7+AACFQoHg4GDJZ8bGxnBycsL8+fO1mhwRUWNU2WNpiEj3VbuwKi8vBwA4Ozvj+PHjsLGxqbOkiIgao5s3b+KLL75Qi7OoImo4anzxelZWllaLqmXLlsHJyQmmpqbw9PTEsWPHqmy/bds2uLq6wtTUFF27dsWePXsknwuCgOjoaNjb28PMzAy+vr64dOmSpM2QIUPQtm1bmJqawt7eHiNGjMD169fV9jNv3jx06NABSqUSrVu3xty5c7Vz0kREj4mNjVUrql5//XUWVUQNTI0vXn/8IZ+Pi46Orva+EhMTERYWhuXLl8PT0xOLFi2Cn58fLly4gFatWqm1P3LkCAIDAxEXF4dBgwZh06ZN8Pf3x8mTJ9GlSxcAQEJCAhYvXoz169fD2dkZs2bNgp+fH86ePQtTU1MAQL9+/TBjxgzY29vjzz//xNSpUzFs2DAcOXJEPNakSZOwb98+zJs3D127dsWdO3dw586dap8bEVF1ceqPSH/UauX1fyotLUVWVhaMjIzQvn37Gq227unpiR49emDp0qUAHk03Ojo6YsKECYiIiFBrHxAQgMLCQuzevVuM9erVC25ubli+fDkEQYCDgwOmTJmCqVOnAgDy8/Nha2uLdevWYfjw4Rrz2LVrF/z9/VFcXAxjY2OcO3cOzz77LM6cOYOOHTtW+3wex3WsiKgqV69exYYNG9TiLKqI5FWvK69nZGRoTCAkJASvvfZatfdTUlKC9PR0REZGijEDAwP4+voiNTVV4zapqakICwuTxPz8/JCUlATg0TSlSqWCr6+v+LmVlRU8PT2RmpqqsbC6c+cONm7cCG9vbxgbGwMAvv32Wzz11FPYvXs3+vfvD0EQ4Ovri4SEBDRv3rzScyouLkZxcbH4vqCg4N87gogaJU2jVMHBwXBycqr/ZIhIa2p8jZUmTZs2RWxsbI0ewnz79m2UlZXB1tZWEre1tYVKpdK4jUqlqrJ9xc/q7HP69OmwsLBAixYtkJOTg507d4qfXb16Fb///ju2bduGr776CuvWrUN6ejqGDRtW5TnFxcXByspKfDk6OlbZnogap8qm/lhUETV8WimsgEdTbvn5+draXZ2bNm0aMjIysG/fPhgaGiIoKAgVs6Ll5eUoLi7GV199hT59+uCFF17A6tWrcfDgQVy4cKHSfUZGRor9kJ+fj2vXrtXX6RBRA3Dq1CleT0Wk52o8Fbh48WLJe0EQcOPGDWzYsAEDBgyo9n5sbGxgaGiI3NxcSTw3Nxd2dnYat7Gzs6uyfcXP3Nxc2NvbS9q4ubmpHd/GxgYdOnRAp06d4OjoiKNHj8LLywv29vYwMjJChw4dxPadOnUCAOTk5FR63ZVSqYRSqazG2RNRY6OpoPrggw/QsmVLGbIhorpS48Jq4cKFkvcGBgZo2bIlgoODJddL/RsTExO4u7sjJSVFXHy0vLwcKSkpGD9+vMZtvLy8kJKSgsmTJ4ux/fv3w8vLC8CjNbbs7OyQkpIiFlIFBQVIS0vD2LFjK82lYo2uiuujnn/+eTx8+BBXrlxB+/btAQAXL14EALRr167a50hEBPCuP6LGpMaFVVZWltYOHhYWhuDgYHh4eKBnz55YtGgRCgsLMXLkSABAUFAQWrdujbi4OACPlkDw8fHB/PnzMXDgQGzZsgUnTpzAihUrADxaFX7y5MmYM2cOXFxcxOUWHBwcxOItLS0Nx48fR+/evdGsWTNcuXIFs2bNQvv27cUCzdfXF8899xxGjRqFRYsWoby8HOPGjcPLL78sGcUiIqrK4cOHcfDgQbU4iyoi/VXjwgoA8vLycPnyZQDA008/DWtr61odPCAgALdu3UJ0dDRUKhXc3NyQnJwsXnyek5MDA4P/XQbm7e2NTZs2ISoqCjNmzICLiwuSkpLENawAIDw8HIWFhRgzZgzy8vLQu3dvJCcni2tYmZubY8eOHYiJiUFhYSHs7e3Rv39/REVFidN4BgYG+PbbbzFhwgT07dsXFhYWGDBgAB/ZQ0TVpmmUKiwsDJaWljJkQ0T1pUbrWGVnZ2PcuHHYu3eveKG3QqFA//79sXTpUt7R8hiuY0XU+AiCoHEhZY5SETUc9bKO1bVr19CrVy8YGxvjo48+Ei/mPnv2LL744gt4eXnh+PHjaNOmTc2yJyLSE0lJSTh16pQk1qJFi0qvGyUi/VPtEavQ0FBcvnwZe/fuFafVKvz999/o378/XFxcsGrVqjpJtCHiiBVR46Fp6i8yMhImJiYyZENET6JeRqySk5ORmJioVlQBgJmZGT766KNKHxlDRKSvSktL8fHHH6vFOfVH1DhVu7C6fft2lddQPfXUU3xIMRE1KqtWrcKff/4pibm6uiIgIECmjIhIbtUurOzt7XH27NlKr6E6c+ZMpQt7EhHpG01Tf7NmzZLcyUxEjU+1fwP4+/tj6tSpuHXrltpnN2/exPTp08W1ooiI9FVRUVGlC36yqCKial+8fvfuXXh6ekKlUuGdd96Bq6srBEHAuXPnsGnTJtjZ2eHo0aNo3rx5XefcYPDidSL9MnfuXDx8+FAS8/LywiuvvCJTRkRUF+rl4vVmzZohLS0NM2bMwJYtW5CXlwcAsLa2xltvvYWPP/6YRRUR6S1No1TR0dFQKBQyZENEuqpGC4RWEARBnBJs2bIlf7FUgiNWRA3fnTt3sGTJErU47/oj0l/1MmL1TwqFAq1atarNpkREDYamUapXX30VPXr0kCEbImoIalVYERHpu8ouUCciqgoLKyKif/jjjz+wevVqtTiLKiKqDhZWRET/n6ZRquHDh6Njx44yZENEDRELKyIicOqPiLSjWoXV4sWLq73DiRMn1joZIqL6dv78eSQmJqrFWVQRUW1Ua7kFZ2fn6u1MocDVq1efOCl9weUWiHSbplGqd999F61bt5YhGyLSFXW+3EJWVlatEiMi0lWc+iOiulDra6xKSkqQlZWF9u3bw8iIl2oRUcNw7NgxfP/992pxFlVEpA01roiKioowYcIErF+/HgBw8eJFPPXUU5gwYQJat26NiIgIrSdJRKQNmkapJk6ciGbNmsmQDRHpoxo/ij0yMhKnTp3CoUOHYGpqKsZ9fX01XgBKRCQ3QRA0FlXdu8ewqCIirarxiFVSUhISExPRq1cvyTMCO3fujCtXrmg1OSKiJ7V3714cPXpUElMqlRxdJ6I6UePC6tatWxqfE1hYWMiHMRORTtE0ShUeHg4zMzMZsiGixqDGU4EeHh747rvvxPcVxdSqVavg5eWlvcyIiGqprKys0rv+WFQRUV2q8YjVxx9/jAEDBuDs2bN4+PAhPvvsM5w9exZHjhzBjz/+WBc5EhFV244dO/Drr79KYr//3hbnz48Eb/wjorpW4xGr3r17IzMzEw8fPkTXrl2xb98+tGrVCqmpqXB3d6+LHImIqiU2NlatqOrWbSbOnx8JXlJFRPWhWiuvU+1w5XWi+lFcXIz4+Hi1ONemIqLaqPOV1wsKCqq9QxYQRFSfVq5cievXr0tivXr1gp+fn0wZEVFjVq3Cytrautp3/JWVlT1RQkRE1aXpAvXo6GjeoUxEsqlWYXXw4EHxv7OzsxEREYGQkBDxLsDU1FSsX78ecXFxdZMlEdE/FBUV4dNPP1WLc+qPiORW42usXnrpJbz77rsIDAyUxDdt2oQVK1bg0KFD2syvQeM1VkTat2bNGly7dk0S69+/Pzw9PWXKiIj0zZN8f9f4rsDU1FR4eHioxT08PHDs2LGa7o6IqNpiY2PViqq9e2NYVBGRzqhxYeXo6IiVK1eqxVetWgVHR0etJEVE9E93797VeD3V3r0xXEaBiHRKjRcIXbhwId544w18//334r8Sjx07hkuXLmH79u1aT5CIGrdPP/0URUVFklhQUBCcnZ254CcR6Zwaj1i9+uqruHTpEgYPHow7d+7gzp07GDx4MC5evIhXX321LnIkokYqNjZWraiKiYmBs7OzTBkREVWNC4TWIV68TlQ7N27cwIoVK9TivOuPiOpDnS8Q+ri8vDysXr0a586dAwB07twZo0aNgpWVVW12R0Qk0nQt1XvvvQc7OzsZsiEiqpkaTwWeOHEC7du3x8KFC8WpwAULFqB9+/Y4efJkXeRIRI2EpqIqJiaGRRURNRg1ngrs06cPnn76aaxcuRJGRo8GvB4+fIh3330XV69exeHDh+sk0YaIU4FE1XPlyhV8/fXXkpilpSXCwsJkyoiIGrMn+f6ucWFlZmaGjIwMuLq6SuJnz56Fh4eH2oWmjRkLK6J/p2mUatKkSbC2tq7/ZIiIUM8LhDZt2hQ5OTlq8WvXrsHS0rKmuyOiRqyyqT8WVUTUUNX44vWAgACEhoZi3rx58Pb2BgD88ssvmDZtmtpjboiINDl9+jS++eYbSaxdu3YICQmRJyEiIi2p8YjVvHnz8PrrryMoKAhOTk5wcnJCSEgIhg0bhk8++aRWSSxbtgxOTk4wNTWFp6fnvz4aZ9u2bXB1dYWpqSm6du2KPXv2SD4XBAHR0dGwt7eHmZkZfH19cenSJUmbIUOGoG3btjA1NYW9vT1GjBiB69evazze5cuXYWlpyX9FE2lBbGysWlEVHh7OooqI9EKNCysTExN89tlnuHv3LjIzM5GZmYk7d+5g4cKFUCqVNU4gMTERYWFhiImJwcmTJ9GtWzf4+fnh5s2bGtsfOXIEgYGBCA0NRUZGBvz9/eHv748zZ86IbRISErB48WIsX74caWlpsLCwgJ+fHx48eCC26devH7Zu3YoLFy5g+/btuHLlCoYNG6Z2vNLSUgQGBqJPnz41Pjci+h9BECqd+jMzM5MhIyIi7ZN9gVBPT0/06NEDS5cuBQCUl5fD0dEREyZMQISGh4AFBASgsLAQu3fvFmO9evWCm5sbli9fDkEQ4ODggClTpmDq1KkAgPz8fNja2mLdunUYPny4xjx27doFf39/FBcXw9jYWIxPnz4d169fx0svvYTJkycjLy+v2ufGi9eJHvnll1/www8/SGJubm4YOnSoTBkREVWuXhYIHTVqVLXarVmzptoHLykpQXp6OiIjI8WYgYEBfH19kZqaqnGb1NRUtVuw/fz8kJSUBADIysqCSqWCr6+v+LmVlRU8PT2RmpqqsbC6c+cONm7cCG9vb0lRdeDAAWzbtg2ZmZnYsWNHtc+LiP5H0yjVjBkzJH/XiIj0RbULq3Xr1qFdu3bo3r07tDXIdfv2bZSVlcHW1lYSt7W1xfnz5zVuo1KpNLZXqVTi5xWxytpUmD59OpYuXYqioiL06tVLMgr2119/ISQkBF9//XW1q9Xi4mIUFxeL7wsKCqq1HZE+evjwIebOnasW52NpiEifVbuwGjt2LDZv3oysrCyMHDkS77zzDpo3b16XudW5adOmITQ0FL///jtiY2MRFBSE3bt3Q6FQYPTo0XjrrbfQt2/fau8vLi5O47/OiRqbPXv24Pjx45KYj48PXnjhBXkSIiKqJ9W+eH3ZsmW4ceMGwsPD8e2338LR0RFvvvkm9u7dW+sRLBsbGxgaGiI3N1cSz83NrfQRFnZ2dlW2r/hZnX3a2NigQ4cOePnll7Flyxbs2bMHR48eBfBoGnDevHkwMjKCkZERQkNDkZ+fDyMjo0qnOyMjI5Gfny++rl27Vs2eINIfsbGxakXVrFmzWFQRUaNQo7sClUolAgMDsX//fpw9exadO3fGBx98ACcnJ9y/f7/GBzcxMYG7uztSUlLEWHl5OVJSUuDl5aVxGy8vL0l7ANi/f7/Y3tnZGXZ2dpI2BQUFSEtLq3SfFccFIE7lpaaminc9ZmZmYvbs2bC0tERmZiZee+01jftQKpVo2rSp5EXUWDx48KDSu/4MDGp8AzIRUYNU4wVCKxgYGEChUEAQBJSVldU6gbCwMAQHB8PDwwM9e/bEokWLUFhYiJEjRwIAgoKC0Lp1a8TFxQF49KgLHx8fzJ8/HwMHDsSWLVtw4sQJrFixAgCgUCgwefJkzJkzBy4uLnB2dsasWbPg4OAAf39/AEBaWhqOHz+O3r17o1mzZrhy5QpmzZqF9u3bi8VXp06dJHmeOHECBgYG6NKlS63PlUhfbdq0SW2tuMGDB+O5556TKSMiInnUqLAqLi7Gjh07sGbNGvz8888YNGgQli5div79+9f6X6QBAQG4desWoqOjoVKp4ObmhuTkZPHi85ycHMm+vb29sWnTJkRFRWHGjBlwcXFBUlKSpOAJDw9HYWEhxowZg7y8PPTu3RvJyckwNTUFAJibm2PHjh2IiYlBYWEh7O3t0b9/f0RFRdVqLS6ixkzTKFV0dDQUCoUM2RARyava61h98MEH2LJlCxwdHTFq1Ci8/fbbsLGxqev8GjSuY0X67N69e1iwYIFanHf9EVFD9yTf39UurAwMDNC2bVt07969yn+Jcr2n/2FhRfpq6dKl+OuvvySxwMBAdOjQQaaMiIi0p14WCA0KCuLQPhFVeoE6ERHVcIFQImq8bt26hc8//1wtzqKKiOh/an1XIBE1HppGqUJDQ9GmTRsZsiEi0l0srIioSpz6IyKqPhZWRKRRTk4O1q5dK4kZGhoiKipKpoyIiHQfCysiUqNplGr8+PFo0aKFDNkQETUcLKyISIJTf0REtcfCiogAAOfPn0diYqIk1qpVK4wdO1amjIiIGh4WVkSkcZRqypQpaNKkiQzZEBE1XCysiBoxQRAwe/ZstTin/oiIaoeFFVEjdfz4cezZs0cSc3V1RUBAgEwZERE1fCysiBohTVN/ERERUCqVMmRDRKQ/WFgRNSLl5eX46KOP1OKc+iMi0g4WVkSNREpKCn7++WdJrFevXvDz85MpIyIi/cPCiqgR0DT1FxUVBUNDQxmyISLSXyysiPRYSUkJ4uLi1OKc+iMiqhssrIj01I4dO/Drr79KYq+88gq8vLxkyoiISP+xsCLSQ5qm/qKjo6FQKGTIhoio8WBhRaRHCgsLMW/ePLU4p/6IiOoHCysiPbF69Wr88ccfktgbb7yBLl26yJQREVHjw8KKSA9omvrjKBURUf1jYUXUgN29exeLFy9Wi7OoIiKSBwsrogYqISEBf//9tyQWFBQEZ2dnmTIiIiIWVkQNEKf+iIh0Ewsrogbkxo0bWLFihVqcRRURkW5gYUXUQGgapXr//fdha2srQzZERKQJCyuiBoBTf0REDQMLKyIdduXKFXz99deSmKWlJcLCwmTKiIiIqsLCikhHaRqlmjx5MqysrGTIhoiIqoOFFZEO4tQfEVHDxMKKSIecOnUKSUlJkpiTkxOCg4PlSYiIiGqEhRWRjtA0ShUeHg4zMzMZsiEiotpgYUUkM0EQMHv2bLU4p/6IiBoeFlZEMvr555+RkpIiibm5uWHo0KEyZURERE+ChRWRTDRN/c2YMQPGxsYyZENERNrAwoqonj18+BBz585Vi3Pqj4io4WNhRVSPvvvuO5w4cUIS8/HxwQsvvCBPQkREpFUsrIjqiaapv1mzZsHAwECGbIiIqC6wsCKqYw8ePMAnn3yiFufUHxGR/mFhRVSHNm7ciMuXL0tigwcPxnPPPSdTRkREVJdYWBHVEU1Tf9HR0VAoFDJkQ0RE9UEnLu5YtmwZnJycYGpqCk9PTxw7dqzK9tu2bYOrqytMTU3RtWtX7NmzR/K5IAiIjo6Gvb09zMzM4Ovri0uXLknaDBkyBG3btoWpqSns7e0xYsQIXL9+Xfz80KFDGDp0KOzt7WFhYQE3Nzds3LhReydNequgoKDSZ/2xqCIi0m+yF1aJiYkICwtDTEwMTp48iW7dusHPzw83b97U2P7IkSMIDAxEaGgoMjIy4O/vD39/f5w5c0Zsk5CQgMWLF2P58uVIS0uDhYUF/Pz88ODBA7FNv379sHXrVly4cAHbt2/HlStXMGzYMMlxnn32WWzfvh2nT5/GyJEjERQUhN27d9ddZ1CDt3TpUixcuFASCwwM5PVURESNhEIQBEHOBDw9PdGjRw8sXboUAFBeXg5HR0dMmDABERERau0DAgJQWFgoKXB69eoFNzc3LF++HIIgwMHBAVOmTMHUqVMBAPn5+bC1tcW6deswfPhwjXns2rUL/v7+KC4urnSBxoEDB8LW1hZr1qyp1rkVFBTAysoK+fn5aNq0abW2oYarslEqIiJqWJ7k+1vWEauSkhKkp6fD19dXjBkYGMDX1xepqakat0lNTZW0BwA/Pz+xfVZWFlQqlaSNlZUVPD09K93nnTt3sHHjRnh7e1e56nV+fj6aN29e6efFxcUoKCiQvEj/3bp1i0UVEREBkPni9du3b6OsrAy2traSuK2tLc6fP69xG5VKpbG9SqUSP6+IVdamwvTp07F06VIUFRWhV69eVU7zbd26FcePH8eXX35ZaZu4uDiNX7CkvzT9eYeGhqJNmzYyZENERHKT/RorOU2bNg0ZGRnYt28fDA0NERQUBE0zowcPHsTIkSOxcuVKdO7cudL9RUZGIj8/X3xdu3atLtMnmVU2SsWiioio8ZJ1xMrGxgaGhobIzc2VxHNzc2FnZ6dxGzs7uyrbV/zMzc2Fvb29pI2bm5va8W1sbNChQwd06tQJjo6OOHr0KLy8vMQ2P/74IwYPHoyFCxciKCioyvNRKpVQKpVVnzQ1eDk5OVi7dq0kZmRkhJkzZ8qUERER6QpZR6xMTEzg7u6OlJQUMVZeXo6UlBRJcfNPXl5ekvYAsH//frG9s7Mz7OzsJG0KCgqQlpZW6T4rjgs8uk6qwqFDhzBw4EB88sknGDNmTM1PkPRObGysWlE1fvx4FlVERARABxYIDQsLQ3BwMDw8PNCzZ08sWrQIhYWFGDlyJAAgKCgIrVu3RlxcHABg0qRJ8PHxwfz58zFw4EBs2bIFJ06cwIoVKwAACoUCkydPxpw5c+Di4gJnZ2fMmjULDg4O8Pf3BwCkpaXh+PHj6N27N5o1a4YrV65g1qxZaN++vVh8HTx4EIMGDcKkSZPwxhtviNdnmZiYVHkBO+kvXqBORET/RvbCKiAgALdu3UJ0dDRUKhXc3NyQnJwsXnyek5MjeUitt7c3Nm3ahKioKMyYMQMuLi5ISkpCly5dxDbh4eEoLCzEmDFjkJeXh969eyM5ORmmpqYAAHNzc+zYsQMxMTEoLCyEvb09+vfvj6ioKHEqb/369SgqKkJcXJxY1AGAj48PDh06VA89Q7ri3Llz2Lp1qyRma2uL999/X6aMiIhIV8m+jpU+4zpWDZ+mUaopU6agSZMmMmRDRET14Um+v2UfsSLSRYIgYPbs2WpxTv0REVFVWFgRPeb48eNqz590dXVFQECATBkREVFDwcKK6B80Tf1FRERwGQ0iIqoWFlZEeLTcxkcffaQW59QfERHVBAsravTS09PVHmfUq1cv+Pn5yZQRERE1VCysqFHTNPUXFRUFQ0NDGbIhIqKGjoUVNUqlpaX4+OOP1eKc+iMioifBwooanR9//FFtkddhw4ZV+YBtIiKi6pD1WYFE9S02NlatqIqOjkbnzp2xaxfg7Q3s2iVPbkRE1PCxsKJG4cGDB5U+60+hUAAA4uOB1NRHP4mIiGqDU4Gk93bv3o309HRJLCgoCM7OzpJYRMSjoioioj6zIyIifcLCivRaZaNUmgwZ8uhFRERUWyysSC/du3cPCxYskMQsLCwwdepUmTIiIqLGgIUV6Z3Nmzfj4sWLktiYMWNgb28vU0ZERNRYsLAivVKTqT8iIiJtY2FFeuGvv/7C0qVLJbHWrVvj3XfflSkjIiJqjFhYUYP3xRdf4ObNm5LYxIkT0axZM5kyIiKixoqFFTVonPojIiJdwsKKGqQ///wTq1atksQ6d+6MYcOGyZQRERERCytqgOLi4lBSUiKJTZkyBU2aNJEpIyIiokdYWFGDwqk/IiLSZSysqEG4fPkyNm7cKIn16tULfn5+MmVERESkjoUV6TxNo1QRERFQKpUyZENERFQ5FlakswRBwOzZs9XinPojIiJdxcKKdNKvv/6KHTt2SGK+vr54/vnnZcqIiIjo37GwIp2jaepv5syZMDLi/65ERKTb+E1FOqOsrAxz5sxRi3Pqj4iIGgoWVqQTjh49ir1790piQ4cOhZubmzwJERER1QILK5Kdpqm/6OhoKBQKGbIhIiKqPRZWJJuSkhLExcWpxTn1R0REDRULK5LF6dOn8c0330hib731FlxcXGTKiIiI6MmxsKJ6x6k/IiLSVyysqN4UFxcjPj5eEuvcuTOGDRsmU0ZERETaxcKK6kVaWhqSk5MlsfHjx6NFixYyZURERKR9BnInQPovNjZWraiKiYnBL7+0gLc3sGuXTIkRERFpGUesqM4UFhZi3rx5kljPnj0xYMAAAEB8PJCa+ujnkCFyZEhERKRdLKyoThw8eBCHDx+WxP7zn/+gadOm4vuIiEdFVUREfWdHRERUN1hYkdZpuutP09pUQ4ZwpIqIiPQLCyvSmry8PHz22WeSWL9+/dC3b1+ZMiIiIqpfLKxIK3bv3o309HRJbNq0aTA3N5cpIyIiovrHwoqeWHWn/oiIiPSdTiy3sGzZMjg5OcHU1BSenp44duxYle23bdsGV1dXmJqaomvXrtizZ4/kc0EQEB0dDXt7e5iZmcHX1xeXLl2StBkyZAjatm0LU1NT2NvbY8SIEbh+/bqkzenTp9GnTx+YmprC0dERCQkJ2jlhPXHr1i21omrgwIEsqoiIqNGSvbBKTExEWFgYYmJicPLkSXTr1g1+fn64efOmxvZHjhxBYGAgQkNDkZGRAX9/f/j7++PMmTNim4SEBCxevBjLly9HWloaLCws4OfnhwcPHoht+vXrh61bt+LChQvYvn07rly5IlkBvKCgAK+88gratWuH9PR0fPrpp/jwww+xYsWKuuuMBiQxMRGff/65JBYZGQkPDw+ZMiIiIpKfQhAEQc4EPD090aNHDyxduhQAUF5eDkdHR0yYMAERGu7DDwgIQGFhIXbv3i3GevXqBTc3NyxfvhyCIMDBwQFTpkzB1KlTAQD5+fmwtbXFunXrMHz4cI157Nq1C/7+/iguLoaxsTG++OILzJw5EyqVCiYmJgCAiIgIJCUl4fz589U6t4KCAlhZWSE/P1+yzEBDJggCZs+erRbnKBUREemLJ/n+lnXEqqSkBOnp6fD19RVjBgYG8PX1RWpqqsZtUlNTJe0BwM/PT2yflZUFlUolaWNlZQVPT89K93nnzh1s3LgR3t7eMDY2Fo/Tt29fsaiqOM6FCxdw9+5djfspLi5GQUGB5KVP/vzzT7WiatiwYSyqiIiI/j9ZC6vbt2+jrKwMtra2kritrS1UKpXGbVQqVZXtK35WZ5/Tp0+HhYUFWrRogZycHOzcufNfj/PPYzwuLi4OVlZW4svR0VFju4Zo1apVWLVqlSQ2c+ZMdO7cWaaMiIiIdI/s11jJadq0acjIyMC+fftgaGiIoKAgPMnMaGRkJPLz88XXtWvXtJitPARBQGxsLP78808x1qRJE8TExMDIiDeVEhER/ZOs34w2NjYwNDREbm6uJJ6bmws7OzuN29jZ2VXZvuJnbm4u7O3tJW3c3NzUjm9jY4MOHTqgU6dOcHR0xNGjR+Hl5VXpcf55jMcplUoolcp/OeuG4+rVq9iwYYMk9s4776B9+/YyZURERKTbZB2xMjExgbu7O1JSUsRYeXk5UlJS4OXlpXEbLy8vSXsA2L9/v9je2dkZdnZ2kjYFBQVIS0urdJ8VxwUeXSdVcZzDhw+jtLRUcpyOHTuiWbNmNTzThmfhwoVqRdWsWbNYVBEREVVB9qnAsLAwrFy5EuvXr8e5c+cwduxYFBYWYuTIkQCAoKAgREZGiu0nTZqE5ORkzJ8/H+fPn8eHH36IEydOYPz48QAAhUKByZMnY86cOdi1axd+/fVXBAUFwcHBAf7+/gCAtLQ0LF26FJmZmfj9999x4MABBAYGon379mLx9dZbb8HExAShoaH47bffkJiYiM8++wxhYWH120H1rKysDLGxsZIL7+3t7RETEwMDA9n/dyEiItJpsl8kExAQgFu3biE6OhoqlQpubm5ITk4WLxTPycmRfKF7e3tj06ZNiIqKwowZM+Di4oKkpCR06dJFbBMeHo7CwkKMGTMGeXl56N27N5KTk2FqagoAMDc3x44dOxATE4PCwkLY29ujf//+iIqKEqfyrKyssG/fPowbNw7u7u6wsbFBdHQ0xowZU4+9U7/Onj2Lbdu2SWKhoaFo06aNTBkRERE1LLKvY6XPGtI6VpoeSxMdHQ2FQiFDNkRERPJ5ku9v2UesSF4lJSWIi4uTxDp06IDAwECZMiIiImq4WFg1Yunp6ZIV7AFg7NixaNWqlUwZERERNWwsrBqptWvXIicnRxLjCupERERPhoVVI1NaWoqPP/5YEuvevTuGDBkiU0ZERET6g4VVI5KTk4O1a9dKYpMmTYK1tbU8CREREekZFlaNxM6dO5GZmSm+t7bujMTEYejeHeBgFRERkXawsNJzxcXFiI+Pl8RGjBiBd955CqmpQHw8CysiIiJtYWGlxy5fvoyNGzdKYpGRkTAxMUFExKOiKiJCpuSIiIj0EAsrPZWYmIjz58+L793d3TFo0CDx/ZAhHKkiIiLSNhZWeubvv/9GQkKCJDZq1Cg4OjrKlBEREVHjwcJKj5w7dw5bt26VxGbOnAkjI/4xExER1Qd+4+qJ9evXIzs7W3zv7e2Nl19+Wb6EiIiIGiEWVg3c/fv3MX/+fEnsvffeg52dnUwZERERNV4srBqwU6dOISkpSXxvZGSEiIgIGBoaypcUERFRI8bCqgESBAFffvklcnNzxVi/fv3Qt29fGbMiIiIiFlYN0KJFi1BQUCC+HzduHGxsbGTMiIiIiAAWVg2SUqkEAFhaWmLy5MkwMDCQOSMiIiICWFg1SHZ2I7F160OEhVmCNRUREZHuYGHVAM2bZ4bUVKCkhKunExER6RKOdzRAERGAlxef80dERKRrOGLVAPE5f0RERLqJI1ZEREREWsLCioiIiEhLWFgRERERaQkLKyIiIiItYWFFREREpCUsrIiIiIi0hIUVERERkZawsCIiIiLSEhZWRERERFrCwoqIiIhIS1hYEREREWkJCysiIiIiLWFhRURERKQlRnInoM8EQQAAFBQUyJwJERERVVfF93bF93hNsLCqQ/fu3QMAODo6ypwJERER1dS9e/dgZWVVo20UQm3KMaqW8vJyXL9+HZaWllAoFHKnoxUFBQVwdHTEtWvX0LRpU7nT0Rnsl8qxbyrHvtGM/VI59o1m2u4XQRBw7949ODg4wMCgZldNccSqDhkYGKBNmzZyp1EnmjZtyr/UGrBfKse+qRz7RjP2S+XYN5pps19qOlJVgRevExEREWkJCysiIiIiLWFhRTWiVCoRExMDpVIpdyo6hf1SOfZN5dg3mrFfKse+0UyX+oUXrxMRERFpCUesiIiIiLSEhRURERGRlrCwIiIiItISFlZEREREWsLCSs8tW7YMTk5OMDU1haenJ44dO1Zl+23btsHV1RWmpqbo2rUr9uzZI/lcEARER0fD3t4eZmZm8PX1xaVLlyRthgwZgrZt28LU1BT29vYYMWIErl+/Lmlz+vRp9OnTB6ampnB0dERCQoJ2TriadLFfDh06hKFDh8Le3h4WFhZwc3PDxo0btXfS1aSLffNPly9fhqWlJaytrZ/oPGtKV/tFEATMmzcPHTp0gFKpROvWrTF37lztnHQ16Wrf7N27F7169YKlpSVatmyJN954A9nZ2Vo55+qQo18qFBcXw83NDQqFApmZmZLP5P79C+hm32jtd7BAemvLli2CiYmJsGbNGuG3334TRo8eLVhbWwu5ubka2//yyy+CoaGhkJCQIJw9e1aIiooSjI2NhV9//VVsEx8fL1hZWQlJSUnCqVOnhCFDhgjOzs7C33//LbZZsGCBkJqaKmRnZwu//PKL4OXlJXh5eYmf5+fnC7a2tsLbb78tnDlzRti8ebNgZmYmfPnll3XXGf+gq/0yd+5cISoqSvjll1+Ey5cvC4sWLRIMDAyEb7/9tu464zG62jcVSkpKBA8PD2HAgAGClZWV1s+/MrrcLxMmTBA6duwo7Ny5U7h69apw4sQJYd++fXXTERroat9cvXpVUCqVQmRkpHD58mUhPT1d6Nu3r9C9e/e664x/kKtfKkycOFEYMGCAAEDIyMgQ43L//hUE3e0bbf0OZmGlx3r27CmMGzdOfF9WViY4ODgIcXFxGtu/+eabwsCBAyUxT09P4b333hMEQRDKy8sFOzs74dNPPxU/z8vLE5RKpbB58+ZK89i5c6egUCiEkpISQRAE4fPPPxeaNWsmFBcXi22mT58udOzYseYnWQu62i+avPrqq8LIkSOrdV7aoOt9Ex4eLrzzzjvC2rVr67Ww0tV+OXv2rGBkZCScP3++1uf2pHS1b7Zt2yYYGRkJZWVlYptdu3b96985bZGzX/bs2SO4uroKv/32m1rxIPfvX0HQ3b7RpDa/gzkVqKdKSkqQnp4OX19fMWZgYABfX1+kpqZq3CY1NVXSHgD8/PzE9llZWVCpVJI2VlZW8PT0rHSfd+7cwcaNG+Ht7Q1jY2PxOH379oWJiYnkOBcuXMDdu3drd8LVpMv9okl+fj6aN29e7fN7ErreNwcOHMC2bduwbNmyWp9jbehyv3z77bd46qmnsHv3bjg7O8PJyQnvvvsu7ty580TnXF263Dfu7u4wMDDA2rVrUVZWhvz8fGzYsAG+vr5V/p3TBjn7JTc3F6NHj8aGDRtgbm6u8Thy/f4FdLtvNKnN72AWVnrq9u3bKCsrg62trSRua2sLlUqlcRuVSlVl+4qf1dnn9OnTYWFhgRYtWiAnJwc7d+781+P88xh1RZf75XFbt27F8ePHMXLkyOqd3BPS5b7566+/EBISgnXr1tX7g2d1uV+uXr2K33//Hdu2bcNXX32FdevWIT09HcOGDavdydaQLveNs7Mz9u3bhxkzZkCpVMLa2hp//PEHtm7dWruTrQG5+kUQBISEhOD999+Hh4dHjY7zz2PUJV3um8fV9ncwCyuqE9OmTUNGRgb27dsHQ0NDBAUFQeAi/9Xul4MHD2LkyJFYuXIlOnfuLEOm9a+qvhk9ejTeeust9O3bV+Ys619V/VJeXo7i4mJ89dVX6NOnD1544QWsXr0aBw8exIULF2TOvO5V1TcqlQqjR49GcHAwjh8/jh9//BEmJiYYNmyY3v4uWrJkCe7du4fIyEi5U9E5Ne2bJ/kdzMJKT9nY2MDQ0BC5ubmSeG5uLuzs7DRuY2dnV2X7ip/V2aeNjQ06dOiAl19+GVu2bMGePXtw9OjRKo/zz2PUFV3ulwo//vgjBg8ejIULFyIoKKjmJ1lLutw3Bw4cwLx582BkZAQjIyOEhoYiPz8fRkZGWLNmTe1Puhp0uV/s7e1hZGSEDh06iO07deoEAMjJyanpqdaYLvfNsmXLYGVlhYSEBHTv3h19+/bF119/jZSUFKSlpdX+pKtBrn45cOAAUlNToVQqYWRkhKeffhoA4OHhgeDg4CqP889j1CVd7psKT/o7mIWVnjIxMYG7uztSUlLEWHl5OVJSUuDl5aVxGy8vL0l7ANi/f7/Y3tnZGXZ2dpI2BQUFSEtLq3SfFccFHt3iWnGcw4cPo7S0VHKcjh07olmzZjU805rR5X4BHt3uO3DgQHzyyScYM2ZMzU/wCehy36SmpiIzM1N8zZ49G5aWlsjMzMRrr71WuxOuJl3ul+effx4PHz7ElStXxDYXL14EALRr164mp1krutw3RUVFMDCQfsUZGhpK2tYVufpl8eLFOHXqlPj3pGJJgsTERHEJDjl//wK63TeAln4H1+hSd2pQtmzZIiiVSmHdunXC2bNnhTFjxgjW1taCSqUSBEEQRowYIURERIjtf/nlF8HIyEiYN2+ecO7cOSEmJkbjLa3W1tbCzp07hdOnTwtDhw6V3NJ69OhRYcmSJUJGRoaQnZ0tpKSkCN7e3kL79u2FBw8eCILw6G4NW1tbYcSIEcKZM2eELVu2CObm5vW63IIu9suBAwcEc3NzITIyUrhx44b4+uuvv+qlX3S5bx5X33cF6mq/lJWVCc8995zQt29f4eTJk8KJEycET09P4eWXX270fZOSkiIoFAohNjZWuHjxopCeni74+fkJ7dq1E4qKivSyXx6XlZWldueb3L9/BUF3+0Zbv4NZWOm5JUuWCG3bthVMTEyEnj17CkePHhU/8/HxEYKDgyXtt27dKnTo0EEwMTEROnfuLHz33XeSz8vLy4VZs2YJtra2glKpFF566SXhwoUL4uenT58W+vXrJzRv3lxQKpWCk5OT8P777wt//PGHZD+nTp0SevfuLSiVSqF169ZCfHy89k++CrrYL8HBwQIAtZePj0+d9EFldLFvHlffhZUg6G6//Pnnn8Lrr78uNGnSRLC1tRVCQkLqtRgXBN3tm82bNwvdu3cXLCwshJYtWwpDhgwRzp07p/0OqER998vjNBUPgiD/719B0M2+0dbvYIUg6OlVfERERET1jNdYEREREWkJCysiIiIiLWFhRURERKQlLKyIiIiItISFFREREZGWsLAiIiIi0hIWVkRERERawsKKiIiISEtYWBERVSE1NRWGhoYYOHCgJJ6dnQ2FQiG+mjdvDh8fH/z0008yZUpEuoCFFRFRFVavXo0JEybg8OHDuH79utrnP/zwA27cuIHDhw/DwcEBgwYNQm5urgyZEpEuYGFFRFSJ+/fvIzExEWPHjsXAgQOxbt06tTYtWrSAnZ0dunTpghkzZqCgoABpaWn1nywR6QQWVkREldi6dStcXV3RsWNHvPPOO1izZg0qe7zq33//ja+++goAYGJiUp9pEpEOMZI7ASIiXbV69Wq88847AID+/fsjPz8fP/74I1544QWxjbe3NwwMDFBUVARBEODu7o6XXnpJpoyJSG4csSIi0uDChQs4duwYAgMDAQBGRkYICAjA6tWrJe0SExORkZGB7du34+mnn8a6detgbGwsR8pEpAM4YkVEpMHq1avx8OFDODg4iDFBEKBUKrF06VIx5ujoCBcXF7i4uODhw4d47bXXcObMGSiVSjnSJiKZccSKiOgxDx8+xFdffYX58+cjMzNTfJ06dQoODg7YvHmzxu2GDRsGIyMjfP755/WcMRHpChZWRESP2b17N+7evYvQ0FB06dJF8nrjjTfUpgMrKBQKTJw4EfHx8SgqKqrnrIlIF7CwIiJ6zOrVq+Hr6wsrKyu1z9544w2cOHECBQUFGrcNDg5GaWmpZLqQiBoPhVDZvcNEREREVCMcsSIiIiLSEhZWRERERFrCwoqIiIhIS1hYEREREWkJCysiIiIiLWFhRURERKQlLKyIiIiItISFFREREZGWsLAiIiIi0hIWVkRERERawsKKiIiISEtYWBERERFpyf8DDg4g5JIcLsgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT29JREFUeJzt3Xl4TGf/P/D3ZN8ksWQlJEjtFU2IpPqgzbexi25okZCiqKWCJkQilkbVGlR0IR4tUq2GJ0hKUEpq3/clKcVElCREZT2/P/xMncxEJzGTM8v7dV250nzmPmc+xzyPvN33WWSCIAggIiIiIgUTqRsgIiIi0jUMSEREREQVMCARERERVcCARERERFQBAxIRERFRBQxIRERERBUwIBERERFVwIBEREREVAEDEhEREVEFDEhEZNBkMhlmzJghdRsKYWFh8PT0lLoNIvoXDEhEVOOSkpIgk8kUX1ZWVnjppZfw8ccfIycnR6vvfeDAAcyYMQN5eXka3W+XLl1Ex1SnTh20b98eq1atQnl5uUbe47PPPkNKSopG9kVEz2cmdQNEZLxmzpwJLy8vPH78GL/99htWrFiBbdu24cyZM7CxsdHIe/z9998wM/vnr7oDBw4gLi4OYWFhcHR01Mh7PNWgQQPEx8cDAHJzc/Hf//4X4eHhuHTpEubOnfvC+//ss8/wzjvvICQk5IX3RUTPx4BERJLp3r07/Pz8AAAffvgh6tati4ULF2Lz5s0YOHBgtfdbXl6O4uJiWFlZwcrKSlPt/isHBwcMGjRI8fPIkSPRrFkzLFu2DLNmzYK5uXmN9UJEL4ZLbESkM15//XUAQFZWFgBg/vz5CAwMRN26dWFtbQ1fX1/8+OOPStvJZDJ8/PHH+P7779GqVStYWloiLS1N8drTc5BmzJiByZMnAwC8vLwUy2HZ2dno3Lkz2rZtq7KvZs2aITg4uMrHY2Njg44dO6KwsBC5ubmVjissLERERAQ8PDxgaWmJZs2aYf78+RAEQXSMhYWFWLNmjaLvsLCwKvdEROrhDBIR6YyrV68CAOrWrQsAWLJkCfr06YMPPvgAxcXF2LBhA959912kpqaiZ8+eom137dqFH374AR9//DHq1aun8kTot956C5cuXcL69euxaNEi1KtXDwDg5OSEwYMHY/jw4Thz5gxat26t2Obw4cO4dOkSoqOjq3VM165dg6mpaaXLeYIgoE+fPti9ezfCw8Ph4+OD9PR0TJ48GTdv3sSiRYsAAGvXrsWHH36IDh06YMSIEQCAJk2aVKsnIlKDQERUw1avXi0AEHbu3Cnk5uYKN27cEDZs2CDUrVtXsLa2Fv78809BEATh0aNHou2Ki4uF1q1bC6+//rqoDkAwMTERzp49q/ReAITY2FjFz1988YUAQMjKyhKNy8vLE6ysrIRPP/1UVB83bpxga2srPHz48LnH1LlzZ6F58+ZCbm6ukJubK5w/f14YN26cAEDo3bu3YlxoaKjQqFEjxc8pKSkCAGH27Nmi/b3zzjuCTCYTrly5oqjZ2toKoaGhz+2DiDSDS2xEJJmgoCA4OTnBw8MDAwYMgJ2dHX7++WfUr18fAGBtba0Ye//+feTn5+O1117DsWPHlPbVuXNntGzZstq9ODg4oG/fvli/fr1iaausrAzJyckICQmBra3tv+7jwoULcHJygpOTE1q0aIGlS5eiZ8+eWLVqVaXbbNu2Daamphg3bpyoHhERAUEQsH379mofExFVH5fYiEgyy5cvx0svvQQzMzO4uLigWbNmMDH5599tqampmD17Nk6cOIGioiJFXSaTKe3Ly8vrhfsZMmQIkpOTsW/fPvznP//Bzp07kZOTg8GDB6u1vaenJ77++mvFrQu8vb3h7Oz83G3++OMPuLu7o1atWqJ6ixYtFK8TUc1jQCIiyXTo0EFxFVtF+/btQ58+ffCf//wHX375Jdzc3GBubo7Vq1dj3bp1SuOfnW2qruDgYLi4uOC7777Df/7zH3z33XdwdXVFUFCQWtvb2tqqPZaIdBuX2IhIJ/3000+wsrJCeno6hg0bhu7du2skfKiafXrK1NQU77//Pn788Ufcv38fKSkpGDhwIExNTV/4fSvTqFEj3Lp1Cw8ePBDVL1y4oHj9qef1TkSaxYBERDrJ1NQUMpkMZWVlilp2dvYL30n66blEld1Je/Dgwbh//z5GjhyJhw8fiu5rpA09evRAWVkZli1bJqovWrQIMpkM3bt3V9RsbW01fgdwIlKNS2xEpJN69uyJhQsXolu3bnj//fdx584dLF++HE2bNsWpU6eqvV9fX18AwLRp0zBgwACYm5ujd+/eiuDUrl07tG7dGhs3bkSLFi3wyiuvaOR4KtO7d2907doV06ZNQ3Z2Ntq2bYtffvkFmzdvxoQJE0SX8vv6+mLnzp1YuHAh3N3d4eXlBX9/f632R2SsOINERDrp9ddfx7fffgu5XI4JEyZg/fr1+Pzzz9GvX78X2m/79u0xa9YsnDx5EmFhYRg4cKDSTRyHDBkCAGqfnP0iTExMsGXLFkyYMAGpqamYMGECzp07hy+++AILFy4UjV24cCF8fX0RHR2NgQMHYsWKFVrvj8hYyQThmVu1EhERlixZgk8++QTZ2dlo2LCh1O0QkQQYkIiIniEIAtq2bYu6deti9+7dUrdDRBLhOUhERHjyPLQtW7Zg9+7dOH36NDZv3ix1S0QkIc4gERHhyRVyXl5ecHR0xOjRozFnzhypWyIiCTEgEREREVXAq9iIiIiIKmBAIiIiIqqAJ2lXU3l5OW7duoVatWrx9v9ERER6QhAEPHjwAO7u7qKHY1fEgFRNt27dgoeHh9RtEBERUTXcuHEDDRo0qPR1BqRqqlWrFoAnf8D29vYSd0NERETqKCgogIeHh+L3eGUYkKrp6bKavb09AxIREZGe+bfTY3iSNhEREVEFDEhEREREFTAgEREREVXAc5C0rKysDCUlJVK3QVpmbm4OU1NTqdsgIiINYUDSEkEQIJfLkZeXJ3UrVEMcHR3h6urK+2IRERkABiQteRqOnJ2dYWNjw1+aBkwQBDx69Ah37twBALi5uUncERERvSgGJC0oKytThKO6detK3Q7VAGtrawDAnTt34OzszOU2IiI9x5O0teDpOUc2NjYSd0I16ennzXPOiIj0HwOSFnFZzbjw8yYiMhwMSEREREQVMCARERERVcCARCJhYWGQyWSQyWQwNzeHi4sL/u///g+rVq1CeXm52vtJSkqCo6Oj9holIiLSIgYkUtKtWzfcvn0b2dnZ2L59O7p27Yrx48ejV69eKC0tlbo9IiIirWNAIiWWlpZwdXVF/fr18corr2Dq1KnYvHkztm/fjqSkJADAwoUL0aZNG9ja2sLDwwOjR4/Gw4cPAQB79uzB0KFDkZ+fr5iNmjFjBgBg7dq18PPzQ61ateDq6or3339fcf8gIiIiAEhKOo333juCzZvVX7nQNAakGiAIAoqLiyX5EgRBI8fw+uuvo23btti0aRMAwMTEBAkJCTh79izWrFmDXbt2YcqUKQCAwMBALF68GPb29rh9+zZu376NSZMmAXhyCfysWbNw8uRJpKSkIDs7G2FhYRrpkYiI9FtpaSni4uLwxx+b0KrVVixffleyXnijyBpQUlKC+Ph4Sd47KioKFhYWGtlX8+bNcerUKQDAhAkTFHVPT0/Mnj0bH330Eb788ktYWFjAwcEBMpkMrq6uon0MGzZM8d+NGzdGQkIC2rdvj4cPH8LOzk4jfRIRkf75888/8e2334pqY8Y4SdQNAxJVgSAIinv97Ny5E/Hx8bhw4QIKCgpQWlqKx48f49GjR8+9QebRo0cxY8YMnDx5Evfv31ec+H39+nW0bNmyRo6DiIh0y7Zt23D48GHFz82aNcOAAQMk7IgBqUaYm5sjKipKsvfWlPPnz8PLywvZ2dno1asXRo0ahTlz5qBOnTr47bffEB4ejuLi4koDUmFhIYKDgxEcHIzvv/8eTk5OuH79OoKDg1FcXKyxPomISD+UlJTgs88+E9Xef/99eHt7S9TRPxiQaoBMJtPYMpdUdu3ahdOnT+OTTz7B0aNHUV5ejgULFsDE5MlpbD/88INovIWFBcrKykS1Cxcu4K+//sLcuXPh4eEBADhy5EjNHAAREemUP/74Q3Hhz1OffvoprKyspGmoAgYkUlJUVAS5XI6ysjLk5OQgLS0N8fHx6NWrF4YMGYIzZ86gpKQES5cuRe/evbF//34kJiaK9uHp6YmHDx8iIyMDbdu2hY2NDRo2bAgLCwssXboUH330Ec6cOYNZs2ZJdJRERCSVzZs348SJE4qf27Rpg7feeku6hlTgVWykJC0tDW5ubvD09ES3bt2we/duJCQkYPPmzTA1NUXbtm2xcOFCfP7552jdujW+//57pZPQAwMD8dFHH6F///5wcnLCvHnz4OTkhKSkJGzcuBEtW7bE3LlzMX/+fImOkoiIalpRURHi4uJE4WjIkCE6F44AQCZo6jpwI1NQUAAHBwfk5+fD3t5e9Nrjx4+RlZUFLy8vnZkqJO3j505EVLmrV6/iu+++E9U0eaW1up73+/tZXGIjIiIirdq4cSPOnTun+PmVV15B7969Jezo3zEgERERkVY8fvwYn3/+uag2bNgwxYU6uowBiYiIiDRmyxZg7lxg1KiLuHZtg+i1qVOnavT2M9rEgEREREQaM3cu8NJLa3DtWrai1rFjRwQHB0vXVDUwIBEREZFG3L17F8HBy0W14cOHw93dXaKOqo8BiYiIiF7Yjz/+iLNnz4pq0dHRMDU1laijF8OARERERNUmCAJmzpypVI+NjZWgG81hQCIiIqJqkcvlWLlypaj21ltvoU2bNhJ1pDkMSERERFRla9euxbVr10S1adOmwczMMKIFHzVCkggLC0NISIji5y5dumDChAkvtE9N7IOIiJ5PEATExcWJwpGlpSViY2MNJhwBnEGiCsLCwrBmzRoAgLm5ORo2bIghQ4Zg6tSpWv0f/qZNm9S+N8aePXvQtWtX3L9/H46OjtXaBxERVd2NGzewatUqUW3AgAFo1qyZRB1pDwMSKenWrRtWr16NoqIibNu2DWPGjIG5uTmioqJE44qLizX2DJ06deroxD6IiEi1r776Crdv3xbV9PkqtX/DJTZSYmlpCVdXVzRq1AijRo1CUFAQtmzZolgWmzNnDtzd3RX/Yrhx4wbee+89ODo6ok6dOujbty+ys7MV+ysrK8PEiRPh6OiIunXrYsqUKaj4jOSKy2NFRUX49NNP4eHhAUtLSzRt2hTffvstsrOz0bVrVwBA7dq1IZPJEBYWpnIf9+/fx5AhQ1C7dm3Y2Nige/fuuHz5suL1pKQkODo6Ij09HS1atICdnR26desm+gtgz5496NChA2xtbeHo6IhXX30Vf/zxh4b+pImIdF95eTni4uJEfzfWrl0bsbGxBhuOAAYkUoO1tTWKi4sBABkZGbh48SJ27NiB1NRUlJSUIDg4GLVq1cK+ffuwf/9+RdB4us2CBQuQlJSEVatW4bfffsO9e/fw888/P/c9hwwZgvXr1yMhIQHnz5/HypUrYWdnBw8PD/z0008AgIsXL+L27dtYsmSJyn2EhYXhyJEj2LJlCzIzMyEIAnr06IGSkhLFmEePHmH+/PlYu3Yt9u7di+vXr2PSpEkAgNLSUoSEhKBz5844deoUMjMzMWLECMhkshf+MyUi0gfXrl3DrFmzRLXBgwdj3LhxEnVUc7jERpUSBAEZGRlIT0/H2LFjkZubC1tbW3zzzTeKpbXvvvsO5eXl+OabbxTBYfXq1XB0dMSePXvw5ptvYvHixYiKisJbb70FAEhMTER6enql73vp0iX88MMP2LFjB4KCggAAjRs3Vrz+dCnN2dlZdA7Ssy5fvowtW7Zg//79CAwMBAB8//338PDwQEpKCt59910AQElJCRITE9GkSRMAwMcff6y4n0dBQQHy8/PRq1cvxestWrSo+h8kEZEeWrJkCfLy8kS1mJgYo/lHImeQdNyWLUBg4JPvNSU1NRV2dnawsrJC9+7d0b9/f8yYMQMA0KZNG9F5RydPnsSVK1dQq1Yt2NnZwc7ODnXq1MHjx49x9epV5Ofn4/bt2/D391dsY2ZmBj8/v0rf/8SJEzA1NUXnzp2rfQznz5+HmZmZ6H3r1q2LZs2a4fz584qajY2NIvwAgJubG+7cuQPgSRALCwtDcHAwevfujSVLliitvxMRGZqysjLExcWJwpG7uztiY2ONJhwBnEHSeXPnApmZT7736VMz79m1a1esWLECFhYWcHd3F129ZmtrKxr78OFD+Pr64vvvv1faj5OTU7Xe39raulrbVUfFq95kMpno/KjVq1dj3LhxSEtLQ3JyMqKjo7Fjxw507NixxnokIqopFy5cQHJysqgWHh6OBg0aSNSRdDiDpOMiI4GAgCffa4qtrS2aNm2Khg0b/uul/a+88gouX74MZ2dnNG3aVPTl4OAABwcHuLm54eDBg4ptSktLcfTo0Ur32aZNG5SXl+PXX39V+frTGayysrJK99GiRQuUlpaK3vevv/7CxYsX0bJly+ceU0Xt2rVDVFQUDhw4gNatW2PdunVV2p6ISB/Ex8crhaOYmBijDEcAA5LO69MHOHCg5maPquqDDz5AvXr10LdvX+zbtw9ZWVnYs2cPxo0bhz///BMAMH78eMydOxcpKSm4cOECRo8erbSu/SxPT0+EhoZi2LBhSElJUezzhx9+AAA0atQIMpkMqampyM3NxcOHD5X24e3tjb59+2L48OH47bffcPLkSQwaNAj169dH37591Tq2rKwsREVFITMzE3/88Qd++eUXXL58mechEZFBKS0tRVxcnOLCGgBo0qSJ0S2pVcSARC/ExsYGe/fuRcOGDfHWW2+hRYsWCA8Px+PHj2Fvbw8AiIiIwODBgxEaGoqAgADUqlUL/fr1e+5+V6xYgXfeeQejR49G8+bNMXz4cBQWFgIA6tevj7i4OERGRsLFxQUff/yxyn2sXr0avr6+6NWrFwICAiAIArZt26b2zSRtbGxw4cIFvP3223jppZcwYsQIjBkzBiNHjqzCnxARke46deoU5syZI6qNHDkSgwYNkqgj3SETKt6QhtRSUFAABwcH5OfnK4LAU48fP0ZWVha8vLxgZWUlUYdU0/i5E5E+iYuLU6oZw1Vqz/v9/SyepE1ERGREiouLER8fL6q1bt0ab7/9tkQd6SYGJCIiIiNx5MgRbN26VVQbM2YM6tWrJ1FHuosBiYiIyAioWlKLjY2VoBP9wIBERERkwP7++2/MmzdPVHt6AQtVjgFJi3j+u3Hh501EuubAgQPYsWOHqDZ+/PhKH9NE/2BA0oKnl5E/evSoRu8KTdJ69OgRAOW7cxMRSYFLai+GAUkLTE1N4ejoqHiml42NjcFfNmnMBEHAo0ePcOfOHTg6OsLU1FTqlojIiBUWFmL+/Pmi2quvvqp4+DephwFJS1xdXQFAEZLI8Dk6Oio+dyIiKezevRt79+4V1SIiImBnZydRR/qLAUlLZDIZ3Nzc4OzsjJKSEqnbIS0zNzfnzBERSYpLaprFgKRlpqam/MVJRERak5+fj8WLF4tqr7/+Ol577TVpGjIQDEhERER6avv27Th06JCoNnnyZNjY2EjUkeFgQCIiItJDXFLTLgYkIiIiPXLv3j0sXbpUVOvevTs6dOggUUeGiQGJiIhIT6SkpODkyZOiWmRkJCwtLSXqyHAxIBEREekBLqnVLAYkIiIiHXbnzh2sWLFCVOvbty98fHykachIMCARERHpqPXr1+PSpUui2tSpU/lIoxrAgERERKRjBEHAzJkzRTUTExNMnz5doo6MDwMSERGRDrl58ya++eYbUe29995DixYtJOrIODEgERER6YhVq1bhxo0bolp0dDSfyCABBiQiIiKJqVpSs7OzQ0REhEQdkYnUDSxfvhyenp6wsrKCv7+/0i3TK9q4cSOaN28OKysrtGnTBtu2bRO9LggCYmJi4ObmBmtrawQFBeHy5cuiMZcuXULfvn1Rr1492Nvbo1OnTti9e7fGj42IiOjfXLp0SSkcffDBBwxHEpM0ICUnJ2PixImIjY3FsWPH0LZtWwQHB+POnTsqxx84cAADBw5EeHg4jh8/jpCQEISEhODMmTOKMfPmzUNCQgISExNx8OBB2NraIjg4GI8fP1aM6dWrF0pLS7Fr1y4cPXoUbdu2Ra9evSCXy7V+zERERE/FxcVh/fr1otr06dPRtGlTiTqip2SCIAhSvbm/vz/at2+PZcuWAQDKy8vh4eGBsWPHIjIyUml8//79UVhYiNTUVEWtY8eO8PHxQWJiIgRBgLu7OyIiIjBp0iQAT55y7OLigqSkJAwYMAB3796Fk5MT9u7dq3jS8YMHD2Bvb48dO3YgKChIrd4LCgrg4OCA/Px82Nvbv+gfBRERGZGysjLMnj1bVCsqssVnn02SqCPjoe7vb8lmkIqLi3H06FFRIDExMUFQUBAyMzNVbpOZmakUYIKDgxXjs7KyIJfLRWMcHBzg7++vGFO3bl00a9YM//3vf1FYWIjS0lKsXLkSzs7O8PX1rbTfoqIiFBQUiL6IiIiq6uDBg0rh6NSpfujYkeFIl0h2kvbdu3dRVlYGFxcXUd3FxQUXLlxQuY1cLlc5/unS2NPvzxsjk8mwc+dOhISEoFatWjAxMYGzszPS0tJQu3btSvuNj49XeZt3IiIidan6PRITEwOZTCZBN/Q8kp+kXdMEQcCYMWPg7OyMffv24dChQwgJCUHv3r1x+/btSreLiopCfn6+4qviZZhERESVKSkpqfRZagxHukmyGaR69erB1NQUOTk5onpOTg5cXV1VbuPq6vrc8U+/5+TkwM3NTTTm6TNrdu3ahdTUVNy/f1+x9vjll19ix44dWLNmjcpznwDA0tKST0smIqIq27NnD3799VdRbcCAAWjWrJlEHZE6JJtBsrCwgK+vLzIyMhS18vJyZGRkICAgQOU2AQEBovEAsGPHDsV4Ly8vuLq6isYUFBTg4MGDijGPHj0C8OR8p2eZmJigvLz8xQ+MiIjo/4uLi1MKRzExMQxHekDSG0VOnDgRoaGh8PPzQ4cOHbB48WIUFhZi6NChAIAhQ4agfv36iI+PBwCMHz8enTt3xoIFC9CzZ09s2LABR44cwVdffQXgyflFEyZMwOzZs+Ht7Q0vLy9Mnz4d7u7uCAkJAfAkZNWuXRuhoaGIiYmBtbU1vv76a2RlZaFnz56S/DkQEZFhefz4MT7//HOlemxsrATdUHVIGpD69++P3NxcxMTEQC6Xw8fHB2lpaYqTrK9fvy6a6QkMDMS6desQHR2NqVOnwtvbGykpKWjdurVizJQpU1BYWIgRI0YgLy8PnTp1QlpaGqysrAA8WdpLS0vDtGnT8Prrr6OkpAStWrXC5s2b0bZt25r9AyAiIoOzfft2pZseh4aGwtPTU5qGqFokvQ+SPuN9kIiIqKLKTsQm3aHu728+i42IiOgFFRYWYv78+aKatbU1pkyZIlFH9KIYkIiIiF7Apk2bcPr0aVFt+PDhcHd3l6gj0gQGJCIiomrikprhYkAiIiKqovz8fCxevFhUc3JywujRo6VpiDSOAYmIiKgKvvvuO1y9elVUGz16NJycnCTqiLSBAYmIiEhNXFIzHgxIRERE/+Lu3btYvny5qObp6YnQ0FCJOiJtY0AiIiJ6jsTERKXngI4fPx6Ojo7SNEQ1ggGJiIioElxSM14MSERERBXcvn1b8ZzPp1q2bIl3331Xoo6opjEgERERPWPBggV4+PChqBYREQE7OzuJOiIpMCARERH9f1xSo6cYkIiIyOhdv34dq1evFtX8/PzQs2dPiToiqTEgERGRUVM1azRlyhRYW1tL0A3pCgYkIiIySoIgYObMmUp1LqkRwIBERERG6PLly1i3bp2o9tprr+H111+XqCPSNQxIRERkVFQtqUVFRcHCwkKCbkhXMSAREZFR4JIaVQUDEhERGbwzZ87gp59+EtXefPNNBAQESNQR6ToGJCIiMmiqltSio6NhamoqQTekLxiQiIjIIJWXl2PWrFlKdS6pkToYkIiIyODs2LEDBw4cENX69OmDdu3aSdQR6RsGJCIiMiiqltSmT58OExMTCbohfcWAREREBqGkpASfffaZUr1du1gwG1FVMSAREZHe27x5M06cOCGqdevWDf7+/tI0RHqPAYmIiPSaqiW1mJgYyGQyCbohQ8GAREREeunx48f4/PPPleq8So00gQGJiIj0zvfff48rV66Iav369cPLL78sUUdkaBiQiIhIr6haUuOsEWkaAxIREemFhw8fYsGCBUp1hiPSBgYkIiLSeStXroRcLhfVBg4ciJdeekmijsjQMSAREZFO45IaSYEBiYiIdNL9+/eRkJCgVGc4oprAgERERDpn/vz5KCwsFNXCwsLQqFEjiToiY8OAREREOoVLaqQLGJCIiEgn5OTkIDExUanOcERSYEAiIiLJqZo1GjlyJFxdXSXohogBiYiIJMYlNdJFDEhERCSJ69evY/Xq1aKalZUVPv30U4k6IvoHAxIREdU4VbNGY8eORZ06dSTohkgZAxIREdUoLqmRPmBAIiKiGnH58mWsW7dOVHNycsLo0aMl6oiocgxIRESkdapmjSZOnIhatWpJ0A3Rv2NAIiIireKSGukjBiQiItKK06dPY9OmTaJa48aNMXjwYIk6IlIfAxIREWmcqlmjKVOmwNraWoJuiKqOAYmIiDRGEATMnDlTqc4lNdI3DEhERKQRhw4dwvbt20W1l19+Gf369ZOoI6LqY0AiIqIXpmpJLSoqChYWFhJ0Q/TiGJCIiKjaysvLMWvWLKU6l9RI3zEgERFRtezZswe//vqrqBYQEIA333xToo6INIcBiYiIqkzVklp0dDRMTU0l6IZI8xiQiIhIbaWlpZgzZ45SnUtqZGgYkIiISC3btm3D4cOHRbU33ngDnTp1kqgjIu1hQCIion+lakktJiYGMplMgm6ItI8BiYiIKlVUVIS5c+cq1bmkRoaOAYmIiFT64YcfcP78eVGtV69e8PX1lagjoprDgEREREq4pEbGjgGJiIgUCgsLMX/+fKU6l9TI2DAgERERAGD16tW4fv26qPbee++hRYsWEnVEJB0GJCIiUrmkxlkjMmYmVd3A1NQUd+7cUar/9ddfvIMqEZGeyc/PZzgiUqHKM0iCIKisFxUV8anNRER6ZMGCBXj48KGoNnjwYDRu3Fiijoh0h9oBKSEhAQAgk8nwzTffwM7OTvFaWVkZ9u7di+bNm2u+QyIi0jjOGhE9n9oBadGiRQCezCAlJiaKltMsLCzg6emJxMREzXdIREQak5OTo/LvaoYjIjG1z0HKyspCVlYWOnfujJMnTyp+zsrKwsWLF5Geng5/f/8qN7B8+XJ4enrCysoK/v7+OHTo0HPHb9y4Ec2bN4eVlRXatGmDbdu2iV4XBAExMTFwc3ODtbU1goKCcPnyZaX9bN26Ff7+/rC2tkbt2rUREhJS5d6JiPRJXFycUjgaOnQowxGRClU+SXv37t2oXbu2Rt48OTkZEydORGxsLI4dO4a2bdsiODhY5UngAHDgwAEMHDgQ4eHhOH78OEJCQhASEoIzZ84oxsybNw8JCQlITEzEwYMHYWtri+DgYDx+/Fgx5qeffsLgwYMxdOhQnDx5Evv378f777+vkWMiItJFlS2pNWzYUIJuiHSfTKjsrOtKDBs27Lmvr1q1Su19+fv7o3379li2bBkAoLy8HB4eHhg7diwiIyOVxvfv3x+FhYVITU1V1Dp27AgfHx8kJiZCEAS4u7sjIiICkyZNAvDkCg0XFxckJSVhwIABKC0thaenJ+Li4hAeHq52rxUVFBTAwcEB+fn5sLe3r/Z+iIi06fr161i9erVSPTY2Flu2AHPnApGRQJ8+EjRHJAF1f39XeQbp/v37oq87d+5g165d2LRpE/Ly8tTeT3FxMY4ePYqgoKB/mjExQVBQEDIzM1Vuk5mZKRoPAMHBwYrxWVlZkMvlojEODg7w9/dXjDl27Bhu3rwJExMTtGvXDm5ubujevbtoFoqIyBDExcUphaOPPvpIsaQ2dy6QmfnkOxGJVfky/59//lmpVl5ejlGjRqFJkyZq7+fu3bsoKyuDi4uLqO7i4oILFy6o3EYul6scL5fLFa8/rVU25tq1awCAGTNmYOHChfD09MSCBQvQpUsXXLp0CXXq1FH53kVFRSgqKlL8XFBQoO6hEhHVOHWuUouM/GcGiYjEqjyDpHInJiaYOHGi4ko3XVZeXg4AmDZtGt5++234+vpi9erVkMlk2LhxY6XbxcfHw8HBQfHl4eFRUy0TEant8uXLSuFIJpOpPBG7Tx/gwAEurxGporFHjVy9ehWlpaVqj69Xrx5MTU2Rk5Mjqufk5MDV1VXlNq6urs8d//R7Tk4O3NzcRGN8fHwAQFFv2bKl4nVLS0s0btxY6RlEz4qKisLEiRMVPxcUFDAkEZFOUTVrNG7cOI1dWENkTKockJ4NCcCTy+pv376NrVu3IjQ0VO39WFhYwNfXFxkZGYpL7MvLy5GRkYGPP/5Y5TYBAQHIyMjAhAkTFLUdO3YgICAAAODl5QVXV1dkZGQoAlFBQQEOHjyIUaNGAQB8fX1haWmJixcvolOnTgCAkpISZGdno1GjRpX2a2lpCUtLS7WPj4ioJvHGj0SaVeWAdPz4cdHPJiYmcHJywoIFC/71CreKJk6ciNDQUPj5+aFDhw5YvHgxCgsLMXToUADAkCFDUL9+fcTHxwMAxo8fj86dO2PBggXo2bMnNmzYgCNHjuCrr74C8GQaecKECZg9eza8vb3h5eWF6dOnw93dXRHC7O3tFScpenh4oFGjRvjiiy8AAO+++25V/ziIiCR16tQppXNDHR0dMX78eIk6IjIMVQ5Iu3fv1tib9+/fH7m5uYiJiYFcLoePjw/S0tIUJ1lfv34dJib/nCYVGBiIdevWITo6GlOnToW3tzdSUlLQunVrxZgpU6agsLAQI0aMQF5eHjp16oS0tDRYWVkpxnzxxRcwMzPD4MGD8ffff8Pf3x+7du3iNDQR6RVVs0YRERGiR0ERUfVU+T5IT925cwcXL14EADRr1gzOzs4abUzX8T5IRCQVQRAwc+ZMpTqX1Ij+nbq/v6s8g1RQUIAxY8Zg/fr1iivCTE1N0b9/fyxfvhwODg7V75qIiJ5r586d2L9/v6hma9sQkyYNlagjIsNU5YA0fPhwHD9+HFu3blWcHJ2ZmYnx48dj5MiR2LBhg8abJCIi1UtqkydPho2NjQTdEBm2Ki+x2draIj09XXEF2FP79u1Dt27dUFhYqNEGdRWX2IioppSXl2PWrFlKdS6pEVWd1pbY6tatq3IZzcHBgSc5ExFpWEpKCk6ePCmqubq6YuTIkRJ1RGQcqhyQoqOjMXHiRKxdu1ZxY0a5XI7Jkydj+vTpGm+QiMhYqVpSi4qKgoWFhQTdEBmXKi+xtWvXDleuXEFRUREaNmwI4Mnl+JaWlvD29haNPXbsmOY61TFcYiMibSktLcWcOXOU6lxSI3pxWlti69u3L2Qy2Qs1R0REqq1ZswbZ2dmiWrNmzTBgwABpGiIyUtW+D5Kx4wwSEWmaqiW16OhomJqaStANkWFS9/e3SaWvVKJx48b466+/lOp5eXlo3LhxVXdHRGT0ioqKKn2WGsMRkTSqvMSWnZ2NsrIypXpRURH+/PNPjTRFRGQsEhIScP/+fVHNz88PPXv2lKgjIgKqEJC2bNmi+O/09HTRpf5lZWXIyMiAl5eXZrsjIjJgqmaNYmJieJ4nkQ5QOyCFhIQAAGQyGUJDQ0WvmZubw9PTEwsWLNBoc0REhujhw4cq/77kVWpEukPtgPT0uWteXl44fPgw6tWrp7WmiIgM1cyZM1Hx2pguXbqgc+fOEnVERKpU+RykrKwsbfRBRGTQtmwBjh9XfSI2EemeKgekmTNnPvf1mJiYajdDRGSI7t+/j+PHE5TqDEdEuqvKAennn38W/VxSUoKsrCyYmZmhSZMmDEhERM9QdSJ2r1694OvrK0E3RKSuKgek48ePK9UKCgoQFhaGfv36aaQpIiJDUNm9jYhI92nsTtqnT59G7969lW6Rb6h4J20iqoxcLsfKlSuV6gxHRNLT2rPYKpOfn4/8/HxN7Y6ISC+pmjV677330KJFCwm6IaLqqnJASkgQn2goCAJu376NtWvXonv37hprjIhI33BJjchwVDkgLVq0SPSziYkJnJycEBoaiqioKI01RkSkL7Kzs7FmzRqlOsMRkf7ifZCIiF6Aqlmj0NBQeHp61nwzRKQx1ToHKS8vD1euXAEANG3aFI6OjprsiYhIL3BJjchwmVRlcHZ2Nnr27Il69erB398f/v7+qFevHnr16mU0V68REZ0/f57hiMjAqT2DdOPGDXTs2BHm5uaYNWuW4oqMc+fOYcWKFQgICMDhw4fRoEEDrTVLRCQ1VcFo5MiRcHV1laAbItIWte+DFB4ejitXriA9PR1WVlai1/7++29069YN3t7e+Oabb7TSqK7hfZCIjA9njYj0n8bvg5SWlobk5GSlcAQA1tbWmDVrFgYMGFC9bomIdNjRo0eRmpqqVGc4IjJcageku3fvPveqjMaNG+PevXua6ImISGeomjUaN24cateuLUE3RFRT1D5J283NDefOnav09TNnznANnogMSmVLagxHRIZP7YAUEhKCSZMmITc3V+m1O3fu4NNPP0VISIgmeyMiksTevXuVwpFMJuOSGpERUfsk7fv378Pf3x9yuRyDBg1C8+bNIQgCzp8/j3Xr1sHV1RW///476tSpo+2edQJP0iYyTKpmjSIiImBnZydBN0SkaRo/Sbt27do4ePAgpk6dig0bNiAvLw8A4OjoiPfffx+fffaZ0YQjIjI8giBg5syZSnXOGhEZJ7VnkJ4lCIJiqc3JyQkymUzjjek6ziARGY6tW7fiyJEjolrt2rUxbtw4iToiIm3R+AzSs2QyGZydnavdHBGRrlC1pBYZGQlLS0sJuiEiXVGtgEREpO/Kysowe/ZspTqX1IgIYEAiIiO0YcMGXLx4UVTz9PREaGioRB0Rka5hQCIio6JqSW3atGkwM+Nfh0T0D/6NQERGobi4GPHx8Up1LqkRkSpqBaSEhAS1d8irPohI16xcuRJyuVxUe/nll9GvXz+JOiIiXafWZf5eXl7q7Uwmw7Vr1164KX3Ay/yJ9IOqJbXp06fDxETtBwkQkQHR6GX+WVlZGmuMiKgm/P3335g3b55SnUtqRKSOap+DVFxcjKysLDRp0oQnNxKRTvn888/x+PFjUe3VV19FUFCQRB0Rkb6p8hzzo0ePEB4eDhsbG7Rq1QrXr18HAIwdOxZz587VeINERFURFxenFI5iYmIYjoioSqockKKionDy5Ens2bMHVlZWinpQUBCSk5M12hwRkbry8/NVnm8UGxtrlI9DIqIXU+W1sZSUFCQnJ6Njx46iv3RatWqFq1evarQ5IiJ1qApGwcHB6NixowTdEJEhqHJAys3NVfkctsLCQv4rjYhqXGWzRkREL6LKS2x+fn7YunWr4uenoeibb75BQECA5jojInqO3NxchiMi0poqzyB99tln6N69O86dO4fS0lIsWbIE586dw4EDB/Drr79qo0ciIhFVwahfv354+eWXJeiGiAxRlWeQOnXqhBMnTqC0tBRt2rTBL7/8AmdnZ2RmZsLX11cbPRIRKagKR+npsQxHRKRR1bqBUZMmTfD1119ruhciokr9+eef+Pbbb5Xq6emxiIyUoCEiMmhqBaSCggK1d8jHbhCRpqmaNfrggw/QtGlT8JQjItIGtQKSo6Oj2leolZWVvVBDRETP4onYRCQFtQLS7t27Ff+dnZ2NyMhIhIWFKa5ay8zMxJo1axAfH6+dLonI6Fy5cgXff/+9Up3hiIhqgkwQBKEqG7zxxhv48MMPMXDgQFF93bp1+Oqrr7Bnzx5N9qez1H0aMBFVnapZo/DwcDRo0ECCbojIkKj7+7vKV7FlZmbCz89Pqe7n54dDhw5VdXdERCKVLakxHBFRTapyQPLw8FB5Bds333wDDw8PjTRFRMbn1KlTPN+IiHRGlS/zX7RoEd5++21s374d/v7+AIBDhw7h8uXL+OmnnzTeIBEZPlXBaPTo0XBycpKgGyKiaswg9ejRA5cvX0bv3r1x79493Lt3D71798alS5fQo0cPbfRIRAasslkjhiMiklKVT9KmJ3iSNtGLyczMxC+//KJU55IaEWmTur+/q3Un7by8PHz77bc4f/48AKBVq1YYNmwYHBwcqtctERkVVbNGn3zyCf+xQUQ6o8pLbEeOHEGTJk2waNEixRLbwoUL0aRJExw7dkwbPRKRgRAEodIlNYYjItIlVV5ie+2119C0aVN8/fXXMDN7MgFVWlqKDz/8ENeuXcPevXu10qiu4RIbUdXs2LEDBw4cENWsra0xZcoUiToiImOk7u/vKgcka2trHD9+HM2bNxfVz507Bz8/Pzx69Kh6HesZBiQi9amaNZoyZQqsra0l6IaIjJnWbhRpb2+P69evK9Vv3LiBWrVqVXV3RGTAysvLK11SYzgiIl1W5ZO0+/fvj/DwcMyfPx+BgYEAgP3792Py5MlKjx8hIuO1adMmnD59WlRzc3PDiBEjJOqIiEh9VQ5I8+fPh0wmw5AhQ1BaWgoAMDc3x6hRozB37lyNN0hE+kfVrFHbtlMREmIuQTdERFVX5SU2CwsLLFmyBPfv38eJEydw4sQJ3Lt3D4sWLYKlpWW1mli+fDk8PT1hZWUFf3//f32m28aNG9G8eXNYWVmhTZs22LZtm+h1QRAQExMDNzc3WFtbIygoCJcvX1a5r6KiIvj4+EAmk+HEiRPV6p+InigtLVUZjmbMiMW8eQxHRKQ/qhyQnrKxsUGbNm3Qpk0b2NjYVLuB5ORkTJw4EbGxsTh27Bjatm2L4OBg3LlzR+X4AwcOYODAgQgPD8fx48cREhKCkJAQnDlzRjFm3rx5SEhIQGJiIg4ePAhbW1sEBwfj8ePHSvubMmUK3N3dq90/ET2RlJSEOXPmiGrNmzdHu3axCAgAunYFAgOBLVskapCIqArUvopt2LBhau1w1apVVWrA398f7du3x7JlywA8OanTw8MDY8eORWRkpNL4/v37o7CwEKmpqYpax44d4ePjg8TERAiCAHd3d0RERGDSpEkAgPz8fLi4uCApKQkDBgxQbLd9+3ZMnDgRP/30E1q1aoXjx4/Dx8dHrb55FRvRP1TNGkVHR8PU1FTxc2AgkJkJBAQAFa72JyKqMRq/ii0pKQm7d+9GXl4e7t+/X+lXVRQXF+Po0aMICgr6pyETEwQFBSEzM1PlNpmZmaLxABAcHKwYn5WVBblcLhrj4OAAf39/0T5zcnIwfPhwrF27Vq0ZsKKiIhQUFIi+iIzd48ePK71K7dlwBACRkU/CkYp/9xAR6Ry1T9IeNWoU1q9fj6ysLAwdOhSDBg1CnTp1XujN7969i7KyMri4uIjqLi4uuHDhgspt5HK5yvFyuVzx+tNaZWMEQUBYWBg++ugj+Pn5ITs7+197jY+PV/mLgMhYLVmyBHl5eaJa+/btK31odZ8+T76IiPSB2jNIy5cvx+3btzFlyhT873//g4eHB9577z2kp6dD3553u3TpUjx48ABRUVFqbxMVFYX8/HzF140bN7TYIZFui4uLUwpHMTExlYYjIiJ9U6WTtC0tLTFw4EDs2LED586dQ6tWrTB69Gh4enri4cOHVX7zevXqwdTUFDk5OaJ6Tk4OXF1dVW7j6ur63PFPvz9vzK5du5CZmQlLS0uYmZmhadOmAAA/Pz+EhoaqfF9LS0vY29uLvoiMzcOHDytdUpPJZBJ0RESkHdW+is3ExAQymQyCIKCsrKxa+7CwsICvry8yMjIUtfLycmRkZCAgIEDlNgEBAaLxwJNnPD0d7+XlBVdXV9GYgoICHDx4UDEmISEBJ0+eVNym4OltApKTk5WuwiGiJ+Li4rBgwQJRrWvXroiNjZWoIyIi7anSjSKLioqwadMmrFq1Cr/99ht69eqFZcuWoVu3bjAxqV7WmjhxIkJDQ+Hn54cOHTpg8eLFKCwsxNChQwEAQ4YMQf369REfHw8AGD9+PDp37owFCxagZ8+e2LBhA44cOYKvvvoKACCTyTBhwgTMnj0b3t7e8PLywvTp0+Hu7o6QkBAAQMOGDUU92NnZAQCaNGmCBg0aVOs4iAxZZbNGRESGSu2ANHr0aGzYsAEeHh4YNmwY1q9fj3r16r1wA/3790dubi5iYmIgl8vh4+ODtLQ0xUnW169fF4WvwMBArFu3DtHR0Zg6dSq8vb2RkpKC1q1bK8ZMmTIFhYWFGDFiBPLy8tCpUyekpaXBysrqhfslMib37t3D0qVLleoMR0Rk6NS+D5KJiQkaNmyIdu3aPfdcg02bNmmsOV3G+yCRoVM1a9SrVy/4+vpK0A0RkWao+/tb7RmkIUOG8CRMIiPBJTUiMnZqB6SkpCQttkFEuuD27duK8/mexXBERMamSidpE5HhUjVr1L9/fzRv3lyCboiIpMWARERcUiMiqoABiciIZWdnY82aNUp1hiMiMnYMSERGStWsUVhYGBo1aiRBN0REuoUBicgIcUmNiOj5GJCIjMj58+fxww8/KNUZjoiIxBiQiIyEqlmjkSNHVvpgaCIiY8aARGQEuKRGRFQ1DEhEBuzIkSPYunWrUp3hiIjo+RiQiAyUqlmjcePGoXbt2hJ0Q0SkXxiQiAwQl9SIiF4MAxKRAfn111+xZ88eUc3ExATTp0+XpiEiIj3FgERkIFTNGkVERMDOzk6CboiI9BsDEpGeEwQBM2fOVKpzSY2IqPpMpG6AiKovNTVVKRzVqVNHEY62bAECA598JyIi9XEGiUhPqVpSi4yMhKWlpeLnuXOBzMwn3/v0qcnuiIj0G2eQiPRMWVlZpVepPRuOACAyEggIePKdiIjUxxkkIj2yfv16XLp0SVTz8vLCkCFDVI7v04czR0RE1cGARKQnVM0aTZs2DWZm/L8xEZGm8W9WIh1XXFyM+Ph4pTqvUiMi0h4GJCIdlpiYiJycHFGtbdu2CAkJkaYhIiIjwYBEpIO2bAGOH1deUps+fTpMTHhtBRGRtjEgEemYTZse4fTpL5TqXFIjIqo5DEhEOuTzzz/H48ePRbVOnTrhjTfekKgjIiLjxIBEpCNUXaUWExMDmUwmQTdERMaNAYlIYj/+mI+zZxcr1bmkRkQkHQYkIgktXLgQDx48ENWCg4PRsWNHiToiIiKAAYlIMqqW1Nq1iwWzERGR9BiQiGrY/fv3kZCQoFTnkhoRke5gQCKqQapmjd5//314e3tL0A0REVWGAYmohqgKR5w1IiLSTQxIRFqWk5ODxMREpTrDERGR7mJAItIiVbNGw4YNg4eHhwTdEBGRuhiQiLSES2pERPqLAYlIw9atu47Ll1cr1RmOiIj0BwMSkQapmjUaNWoUnJ2dJeiGiIiqiwGJSEO4pEZEZDgYkIhe0LVr17B27VpRzczMDNOmTZOoIyIielEMSEQvQNWs0YQJE+Dg4CBBN0REpCkMSETVxCU1IiLDxYBEVEXnzp3Dxo0bRbWGDRti6NChEnVERESaxoBEVAWqZo0mT54MGxsbCbohIiJtYUAiUoMgCJg5c6ZSnUtqRESGiQGJ6F8cPXoUqampolrLli3x7rvvStQRERFpGwMS0XOoWlKLjIyEpaWlBN0QEVFNYUAiUoFLakRExo0BiaiCffv2YdeuXaJa+/bt0aNHD4k6IiKimsaARPQMVUtq06ZNg5kZ/69CRGRM+Lc+EYCysjLMnj1bqc4lNSIi48SAREYvPT0dv//+u6jWpUsXdO7cWaKOiIhIagxIZNRULalNnz4dJiYmEnRDRES6ggGJjFJxcTHi4+OV6lxSIyIigAGJjNDPP/+MU6dOiWo9evRA+/btJeqIiIh0DQMSGRVVS2oxMTGQyWQSdENERLqKAYmMwt9//4158+Yp1bmkRkREqjAgkcFbu3Ytrl27Jqq9/fbbaN26tUQdERGRrmNAIoOmakmNs0ZERPRvGJDIID148AALFy5UqjMcERGROhiQyOB8+eWXyM3NFdU++OADNG3aVKKOiIhI3zAgkUHhkhoREWkCAxIZhHv37mHp0qVKdYYjIiKqDgYk0ntz585FUVGRqDZs2DB4eHhI1BEREek7BiTSa1xSIyIibWBAIr0kl8uxcuVKpTrDERERaYJOPLJ8+fLl8PT0hJWVFfz9/XHo0KHnjt+4cSOaN28OKysrtGnTBtu2bRO9LggCYmJi4ObmBmtrawQFBeHy5cuK17OzsxEeHg4vLy9YW1ujSZMmiI2NRXFxsVaOjzQrLi5OKRyNGjWK4YiIiDRG8oCUnJyMiRMnIjY2FseOHUPbtm0RHByMO3fuqBx/4MABDBw4EOHh4Th+/DhCQkIQEhKCM2fOKMbMmzcPCQkJSExMxMGDB2Fra4vg4GA8fvwYAHDhwgWUl5dj5cqVOHv2LBYtWoTExERMnTq1Ro6Zqq+yJTVnZ2cJuiEiIkMlEwRBkLIBf39/tG/fHsuWLQMAlJeXw8PDA2PHjkVkZKTS+P79+6OwsBCpqamKWseOHeHj44PExEQIggB3d3dERERg0qRJAID8/Hy4uLggKSkJAwYMUNnHF198gRUrVig9kqIyBQUFcHBwQH5+Puzt7at62FRFf/zxB5KSkkQ1W1tbxWdMRESkDnV/f0t6DlJxcTGOHj2KqKgoRc3ExARBQUHIzMxUuU1mZiYmTpwoqgUHByMlJQUAkJWVBblcjqCgIMXrDg4O8Pf3R2ZmZqUBKT8/H3Xq1Km016KiItGVUgUFBf96fKQZqmaNxo0bh9q1a0vQDRERGQNJl9ju3r2LsrIyuLi4iOouLi6Qy+Uqt5HL5c8d//R7VfZ55coVLF26FCNHjqy01/j4eDg4OCi+eAl5zahsSY3hiIiItEnyc5CkdvPmTXTr1g3vvvsuhg8fXum4qKgo5OfnK75u3LhRg10an0uXLimFIzc3N56ITURENULSJbZ69erB1NQUOTk5onpOTg5cXV1VbuPq6vrc8U+/5+TkwM3NTTTGx8dHtN2tW7fQtWtXBAYG4quvvnpur5aWlrC0tFTruOjFqJo1ioiIgJ2dnQTdEBGRMZJ0BsnCwgK+vr7IyMhQ1MrLy5GRkYGAgACV2wQEBIjGA8COHTsU4728vODq6ioaU1BQgIMHD4r2efPmTXTp0gW+vr5YvXo1TEyMfjJNcoIgVLqkxnBEREQ1SfIbRU6cOBGhoaHw8/NDhw4dsHjxYhQWFmLo0KEAgCFDhqB+/fqIj48HAIwfPx6dO3fGggUL0LNnT2zYsAFHjhxRzADJZDJMmDABs2fPhre3N7y8vDB9+nS4u7sjJCQEwD/hqFGjRpg/f77oye+VzVyRdp08eVJxov1T3t7eeP/996VpiIiIjJrkAal///7Izc1FTEwM5HI5fHx8kJaWpjjJ+vr166LZncDAQKxbtw7R0dGYOnUqvL29kZKSgtatWyvGTJkyBYWFhRgxYgTy8vLQqVMnpKWlwcrKCsCTGacrV67gypUraNCggagfie96YJRUzRp9+umnis+LiIiopkl+HyR9xfsgvThBEDBz5kylOk/EJiIibdGL+yCR8fr999+Rnp4uqvn4+KBv374SdURERPQPBiSqcaqW1KZOnQpzc3MJuiEiIlLGgEQ1pry8HLNmzVKqc0mNiIh0DQMS1Yjjx49jy5Ytotqrr74qeiQMERGRrmBAIq1TtaQ2ffp03nuKiIh0Fn9DkdaUlpaqDEft2sWiUycTVJhQIiIi0hmcQSKtOHDgAHbs2CGqvf3222jdujUCA4HMTGDuXKBPH4kaJCIieg4GJNI4VbNGMTExkMlkAIDIyCfhKDKypjsjIiJSDwMSaUxxcbHikTDPqniVWp8+nDkiIiLdxoBEGrFr1y7s27dPVPvggw/QtGlTiToiIiKqPgYkemH/tqRGRESkbxiQqNr+/vtvzJs3T6nOGz8SEZG+Y0CiaklNTcXRo0dFtaFDh6Jhw4YSdURERKQ5DEhUZaqW1DhrREREhoQBidT28OFDLFiwQFSzs7NDRESERB0RERFpBwMSqWXjxo04d+6cqDZy5Ei4urpK1BEREZH2MCDRv+KSGhERGRsGJKpUXl4elixZIqq5urpi5MiREnVERERUMxiQSKWkpCT88ccfotrHH3+MunXrStQRERFRzWFAIiVcUiMiImPHgEQKubm5+PLLL0W1Jk2aYNCgQRJ1REREJA0GJAIALF++HHfv3hXVJkyYAAcHB4k6IiIikg4DEnFJjYiIqAIGJCN27949LF26VFR7+eWX0a9fP4k6IiIi0g0MSEZq8+bNOHHihKg2adIk2NraStMQERGRDmFAMkJcUiMiIno+BiQjcufOHaxYsUJU69OnD9q1aydRR0RERLqJAclIJCcn48KFC6La1KlTYW5uLlFHREREustE6gZIuwRBQFxcnFI4io2NVYSjLVuAwMAn34mIiIgzSAbt1q1b+Prrr0W1d955B61atRLV5s4FMjOffO/TpyY7JCIi0k0MSAZq27ZtOHz4sKgWHR0NU1NTpbGRkU/CUWRkTXVHRESk2xiQDIwgCEhMTMSdO3cUNVtbW0yaNKnSbfr04cwRERHRsxiQDEh+fj4WL14sqg0aNAhNmjSRpiEiIiI9xYBkIA4fPoxt27YpfnZwcMD48eMhk8kk7IqIiEg/MSDpOUEQsGTJEuTn5ytq3bt3R4cOHSTsioiISL8xIOkxVc9SGz9+PBwdHaVpiIiIyEAwIOmpAwcOYMeOHYqfnZycMGrUKC6pERERaQBvFKlnysvLMW/ePFE46tOnD0aPHq0UjngDSCIiourhDJIeyc3NxZdffimqTZw4EbVq1VI5njeAJCIiqh7OIOmYymZ99u7dKwpH9evXR0xMTKXhCHhy48eAAN4AkoiIqKpkgiAIUjehjwoKCuDg4ID8/HzY29trbL+BgU9mfQICgAMHgLKyMsTHx6OsrEwx5q233kKbNm009p5ERETGQt3f31xi0zHPPvZDLpdj5cqVotcnTZoEW1tbibojIiIyDpxBqiZtzSA9tXPnTuzfv1/xs5eXF4YMGaLx9yEiIjImnEHSU6WlpZgzZ46o9t5776FFixYSdURERGR8GJB0TMVwNGXKFFhbW0vUDRERkXFiQNIx7u7uuHXrFpo1a4YBAwZI3Q4REZFRYkDSMcOHD5e6BSIiIqPH+yARERERVcCARERERFQBAxIRERFRBQxIRERERBUwIBERERFVwIBEREREVAEDEhEREVEFDEhEREREFTAgEREREVXAgERERERUAQMSERERUQUMSEREREQVMCARERERVcCARERERFSBmdQN6CtBEAAABQUFEndCRERE6nr6e/vp7/HKMCBV04MHDwAAHh4eEndCREREVfXgwQM4ODhU+rpM+LcIRSqVl5fj1q1bqFWrFmQymdTtGLyCggJ4eHjgxo0bsLe3l7odegY/G93Fz0Z38bORjiAIePDgAdzd3WFiUvmZRpxBqiYTExM0aNBA6jaMjr29Pf8y0VH8bHQXPxvdxc9GGs+bOXqKJ2kTERERVcCARERERFQBAxLpBUtLS8TGxsLS0lLqVqgCfja6i5+N7uJno/t4kjYRERFRBZxBIiIiIqqAAYmIiIioAgYkIiIiogoYkIiIiIgqYECiGrF8+XJ4enrCysoK/v7+OHTo0HPHb9y4Ec2bN4eVlRXatGmDbdu2iV4XBAExMTFwc3ODtbU1goKCcPnyZcXr2dnZCA8Ph5eXF6ytrdGkSRPExsaiuLhYK8enz2r6s3lWUVERfHx8IJPJcOLECU0dksGQ6rPZunUr/P39YW1tjdq1ayMkJESTh2UwpPh8Ll26hL59+6JevXqwt7dHp06dsHv3bo0fGwEQiLRsw4YNgoWFhbBq1Srh7NmzwvDhwwVHR0chJydH5fj9+/cLpqamwrx584Rz584J0dHRgrm5uXD69GnFmLlz5woODg5CSkqKcPLkSaFPnz6Cl5eX8PfffwuCIAjbt28XwsLChPT0dOHq1avC5s2bBWdnZyEiIqJGjllfSPHZPGvcuHFC9+7dBQDC8ePHtXWYekmqz+bHH38UateuLaxYsUK4ePGicPbsWSE5OVnrx6tvpPp8vL29hR49eggnT54ULl26JIwePVqwsbERbt++rfVjNjYMSKR1HTp0EMaMGaP4uaysTHB3dxfi4+NVjn/vvfeEnj17imr+/v7CyJEjBUEQhPLycsHV1VX44osvFK/n5eUJlpaWwvr16yvtY968eYKXl9eLHIrBkfKz2bZtm9C8eXPh7NmzDEgqSPHZlJSUCPXr1xe++eYbTR+OwZHi88nNzRUACHv37lWMKSgoEAAIO3bs0Nix0RNcYiOtKi4uxtGjRxEUFKSomZiYICgoCJmZmSq3yczMFI0HgODgYMX4rKwsyOVy0RgHBwf4+/tXuk8AyM/PR506dV7kcAyKlJ9NTk4Ohg8fjrVr18LGxkaTh2UQpPpsjh07hps3b8LExATt2rWDm5sbunfvjjNnzmj6EPWaVJ9P3bp10axZM/z3v/9FYWEhSktLsXLlSjg7O8PX11fTh2n0GJBIq+7evYuysjK4uLiI6i4uLpDL5Sq3kcvlzx3/9HtV9nnlyhUsXboUI0eOrNZxGCKpPhtBEBAWFoaPPvoIfn5+GjkWQyPVZ3Pt2jUAwIwZMxAdHY3U1FTUrl0bXbp0wb179178wAyEVJ+PTCbDzp07cfz4cdSqVQtWVlZYuHAh0tLSULt2bY0cG/2DAYkM3s2bN9GtWze8++67GD58uNTtGL2lS5fiwYMHiIqKkroVqqC8vBwAMG3aNLz99tvw9fXF6tWrIZPJsHHjRom7I0EQMGbMGDg7O2Pfvn04dOgQQkJC0Lt3b9y+fVvq9gwOAxJpVb169WBqaoqcnBxRPScnB66uriq3cXV1fe74p9/V2eetW7fQtWtXBAYG4quvvnqhYzE0Un02u3btQmZmJiwtLWFmZoamTZsCAPz8/BAaGvriB2YApPps3NzcAAAtW7ZUvG5paYnGjRvj+vXrL3BEhkXK/++kpqZiw4YNePXVV/HKK6/gyy+/hLW1NdasWaORY6N/MCCRVllYWMDX1xcZGRmKWnl5OTIyMhAQEKBym4CAANF4ANixY4divJeXF1xdXUVjCgoKcPDgQdE+b968iS5duij+FWxiwv+5P0uqzyYhIQEnT57EiRMncOLECcWlzsnJyZgzZ45Gj1FfSfXZ+Pr6wtLSEhcvXlSMKSkpQXZ2Nho1aqSx49N3Un0+jx49AgClv8tMTEwUs3+kQVKfJU6Gb8OGDYKlpaWQlJQknDt3ThgxYoTg6OgoyOVyQRAEYfDgwUJkZKRi/P79+wUzMzNh/vz5wvnz54XY2FiVl8M6OjoKmzdvFk6dOiX07dtXdDnsn3/+KTRt2lR44403hD///FO4ffu24ov+IcVnU1FWVhavYlNBqs9m/PjxQv369YX09HThwoULQnh4uODs7Czcu3ev5g5eD0jx+eTm5gp169YV3nrrLeHEiRPCxYsXhUmTJgnm5ubCiRMnavYPwAgwIFGNWLp0qdCwYUPBwsJC6NChg/D7778rXuvcubMQGhoqGv/DDz8IL730kmBhYSG0atVK2Lp1q+j18vJyYfr06YKLi4tgaWkpvPHGG8LFixcVr69evVoAoPKLxGr6s6mIAalyUnw2xcXFQkREhODs7CzUqlVLCAoKEs6cOaO1Y9RnUnw+hw8fFt58802hTp06Qq1atYSOHTsK27Zt09oxGjOZIAiCdPNXRERERLqHJ2UQERERVcCARERERFQBAxIRERFRBQxIRERERBUwIBERERFVwIBEREREVAEDEhEREVEFDEhEREREFTAgEZFBksvlGDt2LBo3bgxLS0t4eHigd+/eyMjIwL179zB27Fg0a9YM1tbWaNiwIcaNG4f8/HzF9tnZ2ZDJZDhx4oTSvrt06YIJEyaIaufPn0efPn3g4OAAW1tbtG/fng94JdJjZlI3QESkadnZ2Xj11Vfh6OiIL774Am3atEFJSQnS09MxZswY/Pjjj7h16xbmz5+Pli1b4o8//sBHH32EW7du4ccff6zy+129ehWdOnVCeHg44uLiYG9vj7Nnz8LKykoLR0dENYGPGiEig9OjRw+cOnUKFy9ehK2trei1vLw8ODo6Km2zceNGDBo0CIWFhTAzM0N2dja8vLxw/Phx+Pj4iMZ26dIFPj4+WLx4MQBgwIABMDc3x9q1a7V0RERU07jERkQG5d69e0hLS8OYMWOUwhEAleEIAPLz82Fvbw8zs6pNrJeXl2Pr1q146aWXEBwcDGdnZ/j7+yMlJaUa3RORrmBAIiKDcuXKFQiCgObNm6u9zd27dzFr1iyMGDFC6bXAwEDY2dmJvvbt26d4/c6dO3j48CHmzp2Lbt264ZdffkG/fv3w1ltv4ddff9XIMRFRzeM5SERkUKp61kBBQQF69uyJli1bYsaMGUqvJycno0WLFqLaBx98oPjv8vJyAEDfvn3xySefAAB8fHxw4MABJCYmonPnzlU8AiLSBQxIRGRQvL29IZPJcOHChX8d++DBA3Tr1g21atXCzz//DHNzc6UxHh4eaNq0qahmbW2t+O969erBzMwMLVu2FI1p0aIFfvvtt2oeBRFJjUtsRGRQ6tSpg+DgYCxfvhyFhYVKr+fl5QF4MnP05ptvwsLCAlu2bKn2FWcWFhZo3749Ll68KKpfunQJjRo1qtY+iUh6DEhEZHCWL1+OsrIydOjQAT/99BMuX76M8+fPIyEhAQEBAYpwVFhYiG+//RYFBQWQy+WQy+UoKyur8vtNnjwZycnJ+Prrr3HlyhUsW7YM//vf/zB69GgtHB0R1QQusRGRwWncuDGOHTuGOXPmICIiArdv34aTkxN8fX2xYsUKHDt2DAcPHgQApeWzrKwseHp6Vun9+vXrh8TERMTHx2PcuHFo1qwZfvrpJ3Tq1ElTh0RENYz3QSIiIiKqgEtsRERERBUwIBERERFVwIBEREREVAEDEhEREVEFDEhEREREFTAgEREREVXAgERERERUAQMSERERUQUMSEREREQVMCARERERVcCARERERFQBAxIRERFRBf8PhjDEt3u3ggYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaVBJREFUeJzt3Xtczvf/P/DHVXRWsehAaGrOk0Wpjy2mLWS0g2E2oTGGrU8MWUoOY8xhDtM2h8xh4bOJmWUJX4dazuYQw0pjrmRUhFLX6/eHX+95u67Sla7eHR732+265Xpez/f7/Xx3UU+v1/v9ulRCCAEiIiIiqnBGShdAREREVFOx0SIiIiIyEDZaRERERAbCRouIiIjIQNhoERERERkIGy0iIiIiA2GjRURERGQgbLSIiIiIDISNFhEREZGBsNEiInoClUqFadOmKV2GZOjQoWjevLnSZRBRGbDRIqJqKSYmBiqVSnqYmZnhueeew9ixY5GZmWnQYyclJWHatGnIzs6u0P1269ZNdk4NGjRA586dsWrVKmg0mgo5xmeffYa4uLgK2RcRPVkdpQsgInoa06dPh4uLC+7fv48DBw5g+fLl2LFjB06fPg0LC4sKOca9e/dQp86/Py6TkpIQFRWFoUOHwtbWtkKOUaxJkyaYPXs2ACArKwvfffcdgoOD8ccff2DOnDlPvf/PPvsMb731FgIDA596X0T0ZGy0iKha69WrFzp16gQAeP/99/HMM89gwYIF2Lp1KwYNGlTu/Wo0GhQUFMDMzAxmZmYVVe4T2djY4N1335Wef/DBB2jZsiWWLl2KGTNmoG7dupVWCxE9PU4dElGN8vLLLwMA0tLSAABffPEFfHx88Mwzz8Dc3BweHh743//+p7WdSqXC2LFjsX79erRt2xampqaIj4+XXiu+RmvatGn45JNPAAAuLi7SNF96ejp8fX3RoUMHnXW1bNkS/v7+ep+PhYUFunTpgry8PGRlZZWYl5eXh/Hjx8PZ2RmmpqZo2bIlvvjiCwghZOeYl5eHNWvWSHUPHTpU75qIqOw4okVENcqlS5cAAM888wwA4Msvv0Tfvn0xePBgFBQUIDY2Fv3798f27dsREBAg23b37t3YtGkTxo4dCzs7O50XnL/xxhv4448/8P3332PhwoWws7MDADRs2BDvvfceRowYgdOnT6Ndu3bSNocPH8Yff/yB8PDwcp3Tn3/+CWNj4xKnKYUQ6Nu3L/bs2YPg4GC4u7tj586d+OSTT3D16lUsXLgQALB27Vq8//778PT0xMiRIwEALVq0KFdNRFRGgoioGlq9erUAIHbt2iWysrLEX3/9JWJjY8UzzzwjzM3NxZUrV4QQQty9e1e2XUFBgWjXrp14+eWXZXEAwsjISJw5c0brWABEZGSk9HzevHkCgEhLS5PlZWdnCzMzMzFp0iRZ/KOPPhKWlpbizp07pZ6Tr6+vaNWqlcjKyhJZWVkiNTVVfPTRRwKAeO2116S8oKAg0axZM+l5XFycACBmzpwp299bb70lVCqVuHjxohSztLQUQUFBpdZBRBWHU4dEVK35+fmhYcOGcHZ2xsCBA2FlZYUtW7agcePGAABzc3Mp99atW8jJycGLL76IY8eOae3L19cXbdq0KXctNjY26NevH77//ntpyq6oqAgbN25EYGAgLC0tn7iPc+fOoWHDhmjYsCFat26NJUuWICAgAKtWrSpxmx07dsDY2BgfffSRLD5+/HgIIfDLL7+U+5yI6Olw6pCIqrVly5bhueeeQ506dWBvb4+WLVvCyOjf/0Nu374dM2fOxIkTJ5Cfny/FVSqV1r5cXFyeup4hQ4Zg48aN2L9/P1566SXs2rULmZmZeO+998q0ffPmzfHtt99KS1a4ubmhUaNGpW5z+fJlODk5oV69erJ469atpdeJSBlstIioWvP09JTuOnzc/v370bdvX7z00kv46quv4OjoiLp162L16tXYsGGDVv6jo1/l5e/vD3t7e6xbtw4vvfQS1q1bBwcHB/j5+ZVpe0tLyzLnElHVx6lDIqqxfvjhB5iZmWHnzp0YPnw4evXqVSFNjK7RsGLGxsZ455138L///Q+3bt1CXFwcBg0aBGNj46c+bkmaNWuGv//+G7dv35bFz507J71erLTaiajisdEiohrL2NgYKpUKRUVFUiw9Pf2pV0YvvtaqpJXh33vvPdy6dQsffPAB7ty5I1sXyxB69+6NoqIiLF26VBZfuHAhVCoVevXqJcUsLS0rfEV7IioZpw6JqMYKCAjAggUL0LNnT7zzzju4fv06li1bBldXV/z+++/l3q+HhwcA4NNPP8XAgQNRt25dvPbaa1ID1rFjR7Rr1w6bN29G69at8cILL1TI+ZTktddeQ/fu3fHpp58iPT0dHTp0wK+//oqtW7ciJCREtoSDh4cHdu3ahQULFsDJyQkuLi7w8vIyaH1EtRlHtIioxnr55ZexcuVKqNVqhISE4Pvvv8fnn3+O119//an227lzZ8yYMQMnT57E0KFDMWjQIK3FRIcMGQIAZb4I/mkYGRlh27ZtCAkJwfbt2xESEoKzZ89i3rx5WLBggSx3wYIF8PDwQHh4OAYNGoTly5cbvD6i2kwlxCPLBhMRUYX48ssv8d///hfp6elo2rSp0uUQkULYaBERVTAhBDp06IBnnnkGe/bsUbocIlIQr9EiIqogeXl52LZtG/bs2YNTp05h69atSpdERArjiBYRUQVJT0+Hi4sLbG1t8eGHH2LWrFlKl0RECmOjRURERGQgvOuQiIiIyEDYaBEREREZCC+GV5BGo8Hff/+NevXq8WMxiIiIqgkhBG7fvg0nJyfZh9jrwkZLQX///TecnZ2VLoOIiIjK4a+//kKTJk1KzWGjpaB69eoBePhGWVtbK1wNERERlUVubi6cnZ2l3+OlYaOloOLpQmtrazZaRERE1UxZLvvhxfBEREREBsJGi4iIiMhA2GgRERERGQiv0aoGioqK8ODBA6XLoEpgYmLyxFuFiYio+mCjVYUJIaBWq5Gdna10KVRJjIyM4OLiAhMTE6VLISKiCsBGqworbrIaNWoECwsLLmpawxUvYHvt2jU0bdqU7zcRUQ3ARquKKioqkpqsZ555RulyqJI0bNgQf//9NwoLC1G3bl2lyyEioqfEi0GqqOJrsiwsLBSuhCpT8ZRhUVGRwpUQEVFFYKNVxXH6qHbh+01EVLOw0SIiIiIyEDZaRERERAbCRosq3NChQ6FSqaBSqVC3bl3Y29vjlVdewapVq6DRaMq8n5iYGNja2hquUCIiIgNjo0UG0bNnT1y7dg3p6en45Zdf0L17d3z88cfo06cPCgsLlS6PiIhqgXv37kEIoWgNbLTIIExNTeHg4IDGjRvjhRdewJQpU7B161b88ssviImJAQAsWLAA7du3h6WlJZydnfHhhx/izp07AIC9e/di2LBhyMnJkUbHpk2bBgBYu3YtOnXqhHr16sHBwQHvvPMOrl+/rtCZEhFRVaPRaPD5559j7ty5mD59OrZtU64WNlrViBACBQUFijwq4n8EL7/8Mjp06IAff/wRwMNV0BcvXowzZ85gzZo12L17NyZOnAgA8PHxwaJFi2BtbY1r167h2rVrmDBhAoCHS1/MmDEDJ0+eRFxcHNLT0zF06NCnro+IiKq/rKwszJgxA/fv3wcAFBYaY84c5erhgqXVyIMHDzB79mxFjh0WFlYhHwvTqlUr/P777wCAkJAQKd68eXPMnDkTo0aNwldffQUTExPY2NhApVLBwcFBto/hw4dLf3722WexePFidO7cGXfu3IGVldVT10hERNXTvn37sGfPHum5hUVjbNkSjMmTlauJjRZVKiGEtFbUrl27MHv2bJw7dw65ubkoLCzE/fv3cffu3VIXaj169CimTZuGkydP4tatW9IF9hkZGWjTpk2lnAcREVUdRUVFmDNnjuwa4DfeeAPt27fHJ58oWBjYaFUrdevWRVhYmGLHrgipqalwcXFBeno6+vTpg9GjR2PWrFlo0KABDhw4gODgYBQUFJTYaOXl5cHf3x/+/v5Yv349GjZsiIyMDPj7+6OgoKBCaiQiouojMzMT0dHRstj48eOrzAwHG61qRKVSVcj0nVJ2796NU6dO4b///S+OHj0KjUaD+fPnw8jo4aWCmzZtkuWbmJhofRTNuXPn8M8//2DOnDlwdnYGABw5cqRyToCIiKqU3bt3Y//+/dLz5s2bIygoSMGKtFWJi+GXLVuG5s2bw8zMDF5eXjh06FCp+Zs3b0arVq1gZmaG9u3bY8eOHbLXhRCIiIiAo6MjzM3N4efnhwsXLkivp6enIzg4GC4uLjA3N0eLFi0QGRmpNSLy+++/48UXX4SZmRmcnZ0xd+5cvWuprfLz86FWq3H16lUcO3YMn332Gfr164c+ffpgyJAhcHV1xYMHD7BkyRL8+eefWLt2rdb/SJo3b447d+4gMTERN27cwN27d9G0aVOYmJhI223btg0zZsxQ6CyJiEgJRUVFiIqKkjVZ/fv3r3JNFgBAKCw2NlaYmJiIVatWiTNnzogRI0YIW1tbkZmZqTP/4MGDwtjYWMydO1ecPXtWhIeHi7p164pTp05JOXPmzBE2NjYiLi5OnDx5UvTt21e4uLiIe/fuCSGE+OWXX8TQoUPFzp07xaVLl8TWrVtFo0aNxPjx46V95OTkCHt7ezF48GBx+vRp8f333wtzc3Px9ddf61VLaXJycgQAkZOTo/XavXv3xNmzZ6Waq5OgoCABQAAQderUEQ0bNhR+fn5i1apVoqioSMpbsGCBcHR0FObm5sLf31989913AoC4deuWlDNq1CjxzDPPCAAiMjJSCCHEhg0bRPPmzYWpqanw9vYW27ZtEwDE8ePHK/dEDaA6v+9ERJXh6tWrYtq0abJHXl5epdZQ2u/vx6mEUHYlLy8vL3Tu3BlLly4F8HDtC2dnZ4wbNw6TddwmMGDAAOTl5WH79u1SrEuXLnB3d0d0dDSEEHBycsL48eOl5QBycnJgb2+PmJgYDBw4UGcd8+bNw/Lly/Hnn38CAJYvX45PP/0UarVamq6bPHky4uLicO7cuTLV8iS5ubmwsbFBTk4OrK2tZa/dv38faWlpcHFxgZmZ2RP3RTUD33ciopL9+uuvSE5Olp67urpi8ODBlV5Hab+/H6fo1GFBQQGOHj0KPz8/KWZkZAQ/Pz/ZN/JRycnJsnwA8Pf3l/LT0tKgVqtlOTY2NvDy8ipxn8DDZqxBgway47z00kuya6L8/f1x/vx53Lp1q0y1PC4/Px+5ubmyBxEREZWusLAQUVFRst+vgwYNUqTJ0peijdaNGzdQVFQEe3t7Wdze3h5qtVrnNmq1utT84q/67PPixYtYsmQJPvjggyce59FjPKmWx82ePRs2NjbSo/hibiIiItLtypUrmDVrliw2ceJEPPfccwpVpJ9af9fh1atX0bNnT/Tv3x8jRoww6LHCwsIQGhoqPc/NzWWzRUREpMO2bcDWrT+jadN/7yxv3bo13n77bQWr0p+ijZadnR2MjY2RmZkpi2dmZmqtBl7MwcGh1Pzir5mZmXB0dJTluLu7y7b7+++/0b17d/j4+OCbb74p03EePcaTanmcqakpTE1Ndb5GRERED929exfHj89D06b/xgYPHgxXV1fliionRacOTUxM4OHhgcTERCmm0WiQmJgIb29vndt4e3vL8gEgISFByndxcYGDg4MsJzc3FykpKbJ9Xr16Fd26dYOHhwdWr14treX06HH27duHBw8eyI7TsmVL1K9fv0y1EBERkX727duHefPmyWKTJ0+ulk0WUAWmDkNDQxEUFIROnTrB09MTixYtQl5eHoYNGwYAGDJkCBo3bix9xt/HH38MX19fzJ8/HwEBAYiNjcWRI0ekESmVSoWQkBDMnDkTbm5ucHFxwdSpU+Hk5ITAwEAA/zZZzZo1wxdffIGsrCypnuLRqHfeeQdRUVEIDg7GpEmTcPr0aXz55ZdYuHChlPukWoiIiKjsoqKitGKRkZEKVFJxFG+0BgwYgKysLERERECtVsPd3R3x8fHSReYZGRmy0SYfHx9s2LAB4eHhmDJlCtzc3BAXF4d27dpJORMnTkReXh5GjhyJ7OxsdO3aFfHx8dLt8gkJCbh48SIuXryIJk2ayOopXu3CxsYGv/76K8aMGQMPDw/Y2dkhIiICI0eO1KsWIiIiKt2dO3cwf/58Weyll15C9+7dFaqo4ii+jlZtxnW06HF834motklMTMSBAwdksar0WYW66LOOluIjWkRERFQ71cSpwsdVic86JCqPoUOHStfdAUC3bt0QEhLyVPusiH0QEVHpcnJytJosPz+/GtdkARzRIgMYOnQo1qxZAwCoW7cumjZtiiFDhmDKlCmoU8dwf+V+/PFH1K1bt0y5e/fuRffu3XHr1i3Y2tqWax9ERKS/X375BYcOHZLFJk6cCHNzc4UqMiw2WmQQPXv2xOrVq5Gfn48dO3ZgzJgxqFu3LsLCwmR5BQUFso85ehqPfoSSkvsgIiLdasNU4eM4dUgGYWpqCgcHBzRr1gyjR4+Gn58ftm3bJk33zZo1C05OTmjZsiUA4K+//sLbb78NW1tbNGjQAP369UN6erq0v6KiIoSGhsLW1hbPPPMMJk6ciMfv43h82i8/Px+TJk2Cs7MzTE1N4erqipUrVyI9PV26k6V+/fpQqVQYOnSozn3cunULQ4YMQf369WFhYYFevXrhwoUL0usxMTGwtbXFzp070bp1a1hZWaFnz564du2alLN37154enrC0tIStra2+M9//oPLly9X0HeaiKjqu3nzplaT1atXrxrfZAFstKiSmJubo6CgAMDDO0zOnz+PhIQEbN++HQ8ePIC/vz/q1auH/fv34+DBg1LDUrzN/PnzERMTg1WrVuHAgQO4efMmtmzZUuoxhwwZgu+//x6LFy9Gamoqvv76a1hZWcHZ2Rk//PADAOD8+fO4du0avvzyS537GDp0KI4cOYJt27YhOTkZQgj07t1btpDt3bt38cUXX2Dt2rXYt28fMjIyMGHCBAAPPwg1MDAQvr6++P3335GcnIyRI0dCpVI99feUiKg62Lp1K5YsWSKLTZ48GZ6engpVVLk4dUgGJYRAYmIidu7ciXHjxiErKwuWlpZYsWKFNGW4bt06aDQarFixQmpAVq9eDVtbW+zduxevvvoqFi1ahLCwMLzxxhsAgOjoaOzcubPE4/7xxx/YtGkTEhIS4OfnBwB49tlnpdeLpwgbNWoku0brURcuXMC2bdtw8OBB+Pj4AADWr18PZ2dnxMXFoX///gCABw8eIDo6Gi1atAAAjB07FtOnTwfw8BbgnJwc9OnTR3q9devW+n8jiYiqodo4Vfg4jmjVEtu2AT4+D79Whu3bt8PKygpmZmbo1asXBgwYgGnTpgEA2rdvL7su6+TJk7h48SLq1asHKysrWFlZoUGDBrh//z4uXbqEnJwcXLt2DV5eXtI2derUQadOnUo8/okTJ2BsbAxfX99yn0Nqairq1KkjO+4zzzyDli1bIjU1VYpZWFhITRQAODo64vr16wAeNnRDhw6Fv78/XnvtNXz55ZeyaUUiopooKytLq8nq27dvrWuyAI5o1Rpz5gDJyQ+/9u1r+ON1794dy5cvh4mJCZycnGR3G1paWspy79y5Aw8PD6xfv15rPw0bNizX8Svz7pXH71JUqVSy68dWr16Njz76CPHx8di4cSPCw8ORkJCALl26VFqNRESVZfPmzTh79qwsFhYWVmE3PlU3HNGqJSZPBry9H36tDJaWlnB1dUXTpk2fuKTDCy+8gAsXLqBRo0ZwdXWVPWxsbGBjYwNHR0ekpKRI2xQWFuLo0aMl7rN9+/bQaDT4v//7P52vF/+DLyoqKnEfrVu3RmFhoey4//zzD86fP482bdqUek6P69ixI8LCwpCUlIR27dphw4YNem1PRFTVCSEQFRWl1WRFRkbW2iYLYKNVa/TtCyQlVc5olr4GDx4MOzs79OvXD/v370daWhr27t2Ljz76CFeuXAHw8AO858yZg7i4OJw7dw4ffvghsrOzS9xn8+bNERQUhOHDhyMuLk7a56ZNmwAAzZo1g0qlwvbt25GVlYU7d+5o7cPNzQ39+vXDiBEjcODAAZw8eRLvvvsuGjdujH79+pXp3NLS0hAWFobk5GRcvnwZv/76Ky5cuMDrtIioRlGr1dK1qcXefPPNWjlV+Dg2WqQ4CwsL7Nu3D02bNsUbb7yB1q1bIzg4GPfv35c+Q2r8+PF47733EBQUBG9vb9SrVw+vv/56qftdvnw53nrrLXz44Ydo1aoVRowYgby8PABA48aNERUVhcmTJ8Pe3h5jx47VuY/Vq1fDw8MDffr0gbe3N4QQ2LFjR5kXNbWwsMC5c+fw5ptv4rnnnsPIkSMxZswYfPDBB3p8h4iIqq5169bh66+/lsU+/fRTtGvXTqGKqhZ+qLSC+KHS9Di+70RUXQghtEaxTE1NMbmyrlFRED9UmoiIiAzmypUrWLlypSw2cOBAaRFq+hcbLSIiIiqzFStW4OrVq7JYeHg4jI2NFaqoamOjRURERE+ka6rQxsZG9rFlpI2NFhEREZUqPT0da9askcXeffdd2WLNpBsbrSqO9yrULny/iaiqWbZsGW7cuCGLTZ06FUZGXLigLNhoVVHFywfcvXu3Ulc5J2UVf4g2r3UgIqVpNBrMmDFDFmvUqBFGjx6tUEXVExutKsrY2Bi2trbSZ+ZZWFhIH7hMNZNGo0FWVhYsLCyeuJo+EZEhXbx4Uetj0YYOHYpmzZopVFH1xZ/mVZiDgwMASM0W1XxGRkZo2rQpm2oiUsyCBQtw+/ZtWSwiIoI/l8qJjVYVplKp4OjoiEaNGuHBgwdKl0OVwMTEhNc9EJEiioqKMHPmTFnM2dkZw4cPV6iimoGNVjVgbGzMa3aIiMhgUlNTpc+CLfb++++jcePGClVUc7DRIiIiqsU+++wzrVkTThVWHDZaREREtVBhYSFmzZoli7m6umLw4MEKVVQzsdEiIiKqZU6dOoUff/xRFhs1ahTs7e0VqqjmYqNFRERUi0RFRWnFOFVoOGy0iIiIaoGCggLMnj1bFmvbti3eeusthSqqHdhoERER1XDHjh3DTz/9JIuNGTMGdnZ2ClVUe7DRIiIiqsF0TRVGRkYqUEntxEaLiIioBrp//z4+//xzWaxjx47o27evQhXVTmy0iIiIapiUlBTEx8fLYh999BHq16+vUEW1FxstIiKiGoRThVWL4h+qtmzZMjRv3hxmZmbw8vLCoUOHSs3fvHkzWrVqBTMzM7Rv3x47duyQvS6EQEREBBwdHWFubg4/Pz9cuHBBljNr1iz4+PjAwsICtra2WseIiYmBSqXS+Sj+gOe9e/fqfF2tVj/dN4SIiKgc7t69q9VkeXl5sclSmKKN1saNGxEaGorIyEgcO3YMHTp0gL+/v9TMPC4pKQmDBg1CcHAwjh8/jsDAQAQGBuL06dNSzty5c7F48WJER0cjJSUFlpaW8Pf3x/3796WcgoIC9O/fH6NHj9Z5nAEDBuDatWuyh7+/P3x9fdGoUSNZ7vnz52V5j79ORERkaBs2bMC8efNksf/+97/o2bOnQhVRMZUQQih1cC8vL3Tu3BlLly4FAGg0Gjg7O2PcuHGYPHmyVv6AAQOQl5eH7du3S7EuXbrA3d0d0dHREELAyckJ48ePx4QJEwAAOTk5sLe3R0xMDAYOHCjbX0xMDEJCQpCdnV1qnVlZWWjcuDFWrlyJ9957D8DDEa3u3bvj1q1bOkfFyiI3Nxc2NjbIycmBtbV1ufZBRES1G6cKK58+v78VG9EqKCjA0aNH4efn928xRkbw8/NDcnKyzm2Sk5Nl+QDg7+8v5aelpUGtVstybGxs4OXlVeI+y+K7776DhYWFzkXd3N3d4ejoiFdeeQUHDx4sdT/5+fnIzc2VPYiIiMrj5s2bWk3W5ctNsXMnm6yqRLFG68aNGygqKtL6XCV7e/sSr3NSq9Wl5hd/1WefZbFy5Uq88847MDc3l2KOjo6Ijo7GDz/8gB9++AHOzs7o1q0bjh07VuJ+Zs+eDRsbG+nh7Oxc7pqIiKj2WrVqFZYsWSKLtWnzEc6dGwYdE0KkIN51+ATJyclITU3F2rVrZfGWLVuiZcuW0nMfHx9cunQJCxcu1MotFhYWhtDQUOl5bm4umy0iItJLaVOF/ftXdjX0JIo1WnZ2djA2NkZmZqYsnpmZCQcHB53bODg4lJpf/DUzMxOOjo6yHHd393LVuWLFCri7u8PDw+OJuZ6enjhw4ECJr5uamsLU1LRcdRARUe12/fp1LF++XBZzc3PDO++8o1BFVBaKTR2amJjAw8MDiYmJUkyj0SAxMRHe3t46t/H29pblA0BCQoKU7+LiAgcHB1lObm4uUlJSStxnae7cuYNNmzYhODi4TPknTpyQNXhEREQVYenSpVpN1n//+182WdWAolOHoaGhCAoKQqdOneDp6YlFixYhLy8Pw4YNAwAMGTIEjRs3lj5t/OOPP4avry/mz5+PgIAAxMbG4siRI/jmm28AACqVCiEhIZg5cybc3Nzg4uKCqVOnwsnJCYGBgdJxMzIycPPmTWRkZKCoqAgnTpwAALi6usLKykrK27hxIwoLC/Huu+9q1b5o0SK4uLigbdu2uH//PlasWIHdu3fj119/NdB3i4iIaiPeVVi9KdpoDRgwAFlZWYiIiIBarYa7uzvi4+Oli9kzMjJgZPTvoJuPjw82bNiA8PBwTJkyBW5uboiLi0O7du2knIkTJyIvLw8jR45EdnY2unbtivj4eJiZmUk5ERERWLNmjfS8Y8eOAIA9e/agW7duUnzlypV44403dC7fUFBQgPHjx+Pq1auwsLDA888/j127dqF79+4V9e0hIqJa7O+//8a3334riz3//PN4/fXXFaqIykPRdbRqO66jRUREusybNw93796VxSZMmABLS0uFKqJH6fP7m3cdEhERVSGcKqxZ2GgRERFVAZcvX0ZMTIws1rlzZ/Tu3VuZgqhCsNEiIiJSmK5RrEmTJsmuL6bqiY0WERGRQoQQmD59ulacU4U1BxstIiIiBVy6dAnr1q2Txbp27YoePXooVBEZAhstIiKiSqZrqjAsLAwmJiYKVEOGxEaLiIioknCqsPZho0VERFQJUlNTsWnTJlmsR48e6Nq1q0IVUWVgo0VERGRguqYKP/30U9Spw1/DNR3fYSIiIgPRaDSYMWOGVpxThbUHGy0iIiIDOHnyJOLi4mSx3r17o3PnzsoURIpgo0VERFTBdE0VhoeHw9jYWIFqSElstIiIiCpIUVERZs6cqRXnVGHtxUaLiIioAhw+fBg7duyQxQIDA9GhQweFKqKqgI0WERHRU9I1VTh16lQYGRkpUA1VJWy0iIiIyqmwsBCzZs3SinOqkIqx0SIiIiqHgwcPYteuXbLY22+/jdatWytUEVVFbLSIiIj0pGuqMCIiAiqVSoFqqCpjo0VERFRGBQUFmD17tlacU4VUEjZaREREZbB7927s379fFhs8eDBcXV0VqoiqAzZaRERET8CpQiovNlpEREQluH//Pj7//HOtOKcKqazYaBEREemwevVqZGRkyGJDhw5Fs2bNFKqIqiM2WkRERI/RNVXIUSwqDy5ZS0RE9P/l5ubqbLJ27mSTReXDES0iIiIAS5cuxT///COLtWjxLr76qgUmT1aoKKr22GgREVGtV9pU4bvvVnY1VJOw0SIiolrr5s2bWLJkiVac12NRRWGjRUREtdLcuXNx7949WWz48OFwdnZWqCKqidhoERFRrcO7CqmysNEiIqJaIzMzE9HR0VpxNllkKGy0iIioVtA1ivXBBx/AwcFBgWqotmCjRURENR6nCkkpii9YumzZMjRv3hxmZmbw8vLCoUOHSs3fvHkzWrVqBTMzM7Rv3x47duyQvS6EQEREBBwdHWFubg4/Pz9cuHBBljNr1iz4+PjAwsICtra2Oo+jUqm0HrGxsbKcvXv34oUXXoCpqSlcXV0RExOj9/kTEZHhXLlyRavJMjExYZNFlUbRRmvjxo0IDQ1FZGQkjh07hg4dOsDf3x/Xr1/XmZ+UlIRBgwYhODgYx48fR2BgIAIDA3H69GkpZ+7cuVi8eDGio6ORkpICS0tL+Pv74/79+1JOQUEB+vfvj9GjR5da3+rVq3Ht2jXpERgYKL2WlpaGgIAAdO/eHSdOnEBISAjef/997Ny58+m+KUREVCGioqKwcuVKWWzs2LEICwtTqCKqjVRCCKHUwb28vNC5c2csXboUAKDRaODs7Ixx48Zhso5leAcMGIC8vDxs375dinXp0gXu7u6Ijo6GEAJOTk4YP348JkyYAADIycmBvb09YmJiMHDgQNn+YmJiEBISguzsbK1jqVQqbNmyRdZcPWrSpEn4+eefZU3ewIEDkZ2djfj4+DKdf25uLmxsbJCTkwNra+sybUNERE/GqUIyJH1+fys2olVQUICjR4/Cz8/v32KMjODn54fk5GSd2yQnJ8vyAcDf31/KT0tLg1qtluXY2NjAy8urxH2WZsyYMbCzs4OnpydWrVqFR3vSJ9WiS35+PnJzc2UPIiKqOGlpaVpNVv369dlkkWIUuxj+xo0bKCoqgr29vSxub2+Pc+fO6dxGrVbrzFer1dLrxbGScspq+vTpePnll2FhYYFff/0VH374Ie7cuYOPPvqo1Fpyc3Nx7949mJuba+1z9uzZOv+XRURET0/Xz9eQkBDY2NgoUA3RQ7zrsARTp06V/tyxY0fk5eVh3rx5UqNVHmFhYQgNDZWe5+bmcgViIqIKwKlCqqoUmzq0s7ODsbExMjMzZfHMzMwS1zRxcHAoNb/4qz77LCsvLy9cuXIF+fn5pdZibW2tczQLAExNTWFtbS17EBFR+Z0/f16ryWrcuDGbLKoyFGu0TExM4OHhgcTERCmm0WiQmJgIb29vndt4e3vL8gEgISFByndxcYGDg4MsJzc3FykpKSXus6xOnDiB+vXrw9TUtEy1EBGRYUVFRWktuzNhwgS8//77ClVEpE3RqcPQ0FAEBQWhU6dO8PT0xKJFi5CXl4dhw4YBAIYMGYLGjRtj9uzZAICPP/4Yvr6+mD9/PgICAhAbG4sjR47gm2++AfDwTsGQkBDMnDkTbm5ucHFxwdSpU+Hk5CS7ezAjIwM3b95ERkYGioqKcOLECQCAq6srrKys8NNPPyEzMxNdunSBmZkZEhIS8Nlnn0l3MgLAqFGjsHTpUkycOBHDhw/H7t27sWnTJvz888+V880jIqqlhBCYPn26VpyjWFQVKdpoDRgwAFlZWYiIiIBarYa7uzvi4+Oli8wzMjJgZPTvoJuPjw82bNiA8PBwTJkyBW5uboiLi0O7du2knIkTJyIvLw8jR45EdnY2unbtivj4eJiZmUk5ERERWLNmjfS8Y8eOAIA9e/agW7duqFu3LpYtW4b//ve/EELA1dUVCxYswIgRI6RtXFxc8PPPP+O///0vvvzySzRp0gQrVqyAv7+/wb5fRES13e+//44tW7bIYm5ubnjnnXcUqoiodIquo1XbcR0tIqKy03XB+6RJk2T/kSaqDPr8/uZdh0REVKVxqpCqMzZaRERUZR0+fFjrM22ff/55vP766wpVRKQfNlpERFQl6ZoqDAsLg4mJiQLVEJUPGy0iIqpSNBoNZsyYoRXnVCFVR2y0iIioyti/fz92794ti3l5eaFnz54KVUT0dNhoERFRlaBrqvDTTz9FnTr8VUXVF//2EhGRooqKijBz5kytOKcKqSZgo0VERIpJSEhAUlKSLObr64tu3bopUxBRBWOjRUREitA1VTh16lTZJ4IQVXdstIiIqFI9ePAAn332mVacU4VUE7HRIiKiSvPTTz/h2LFjspi/vz+6dOmiUEVEhsVGi4iIKoWuqcKIiAioVCoFqiGqHGy0iIjIoPLz8zFnzhytOKcKqTZgo0VERAazadMmpKamymJ9+/ZFx44dFaqIqHKx0SIiIoPgVCERGy0iIqpgd+/exbx587TinCqk2oiNFhERVZiYmBhcvnxZFuvfvz/atGmjUEVEymKjRUREFULXVCFHsai203v5XWNjY1y/fl0r/s8//8DY2LhCiiIiourj9u3bbLKISqD3iJYQQmc8Pz8fJiYmT10QERFVH3PmzEF+fr4sNnjwYLi6uipUEVHVUuZGa/HixQAAlUqFFStWwMrKSnqtqKgI+/btQ6tWrSq+QiIiqpI4ikX0ZGVutBYuXAjg4YhWdHS0bJrQxMQEzZs3R3R0dMVXSEREVcqNGzewbNkyrTibLCJtZW600tLSAADdu3fHjz/+iPr16xusKCIiqpp0jWIdPjwEI0e6KFANUdWn9zVae/bsMUQdRERUxXGqkEh/ejdaw4cPL/X1VatWlbsYIiKqetRqNb7++mutOJssoifTu9G6deuW7PmDBw9w+vRpZGdn4+WXX66wwoiISHm6RrGCg4PRpEkTBaohqn70brS2bNmiFdNoNBg9ejRatGhRIUUREZHyOFVI9PRUoqSFsfR0/vx5dOvWDdeuXauI3dUKubm5sLGxQU5ODqytrZUuh4gIAJCRkYHVq1drxdlkET2kz+/vCvsInkuXLqGwsLCidkdERArQNYo1evRoNGrUSIFqiKo/vRut0NBQ2XMhBK5du4aff/4ZQUFBFVYYEREZ3rZtwJw5wOTJwPHjnCokqmh6N1rHjx+XPTcyMkLDhg0xf/78J96RSEREVcucOUBW1gUcP75BFlepVIiIiFCoKqKag+toERHVYv7+2qNY48aNQ4MGDRSohqjmKfc1WtevX8f58+cBAC1btuT8PRFRNcO7CokMz0jfDXJzc/Hee+/ByckJvr6+8PX1RePGjfHuu+8iJydH7wKWLVuG5s2bw8zMDF5eXjh06FCp+Zs3b0arVq1gZmaG9u3bY8eOHbLXhRCIiIiAo6MjzM3N4efnhwsXLshyZs2aBR8fH1hYWMDW1lbrGCdPnsSgQYPg7OwMc3NztG7dGl9++aUsZ+/evVCpVFoPtVqt9/eAiKgyHTlyRKvJUqlUbLKIDEDvRmvEiBFISUnBzz//jOzsbGRnZ2P79u04cuQIPvjgA732tXHjRoSGhiIyMhLHjh1Dhw4d4O/vj+vXr+vMT0pKwqBBgxAcHIzjx48jMDAQgYGBOH36tJQzd+5cLF68GNHR0UhJSYGlpSX8/f1x//59KaegoAD9+/fH6NGjdR7n6NGjaNSoEdatW4czZ87g008/RVhYGJYuXaqVe/78eVy7dk16cGSPiKqyqKgo/Pzzz7LYxx9/zOuxiAxE73W0LC0tsXPnTnTt2lUW379/P3r27Im8vLwy78vLywudO3eWGhiNRgNnZ2eMGzcOkydP1sofMGAA8vLysH37dinWpUsXuLu7Izo6GkIIODk5Yfz48ZgwYQIAICcnB/b29oiJicHAgQNl+4uJiUFISAiys7OfWOuYMWOQmpqK3bt3A3g4otW9e3fcunVL56hYWXAdLSKqTJwqJKoY+vz+1ntE65lnnoGNjY1W3MbGBvXr1y/zfgoKCnD06FH4+fn9W4yREfz8/JCcnKxzm+TkZFk+APj7+0v5aWlpUKvVshwbGxt4eXmVuM+yysnJ0XlxqLu7OxwdHfHKK6/g4MGDpe4jPz8fubm5sgcRkaHt37+fU4VECtH7Yvjw8HCEhoZi7dq1cHBwAPDwA0c/+eQTTJ06tcz7uXHjBoqKimBvby+L29vb49y5czq3UavVOvOLr4sq/lpaTnkkJSVh48aNsuF2R0dHREdHo1OnTsjPz8eKFSvQrVs3pKSk4IUXXtC5n9mzZ+v8HyURkaHo+pkzfvx4WFlZKVANUe2jd6O1fPlyXLx4EU2bNkXTpk0BPPy4BlNTU2RlZck+4f3YsWMVV6lCTp8+jX79+iEyMhKvvvqqFG/ZsiVatmwpPffx8cGlS5ewcOFCrF27Vue+wsLCZAu+5ubmwtnZ2XDFE1GtJYTA9OnTteIcxSKqXHo3Wv369YNKpXrqA9vZ2cHY2BiZmZmyeGZmpjRS9jgHB4dS84u/ZmZmwtHRUZbj7u6ud41nz55Fjx49MHLkSISHhz8x39PTEwcOHCjxdVNTU5iamupdBxGRPnbu3InffvtNFrOxsUFISIgyBRHVYno3WtOmTauQA5uYmMDDwwOJiYkIDAwE8PBi+MTERIwdO1bnNt7e3khMTJT9sEhISIC3tzcAwMXFBQ4ODkhMTJQaq9zcXKSkpJR4h2FJzpw5g5dffhlBQUGYNWtWmbY5ceKErMEjIqpsuqYKJ02aBDMzMwWqISK9G61nn30Whw8fxjPPPCOLZ2dn44UXXsCff/5Z5n2FhoYiKCgInTp1gqenJxYtWoS8vDwMGzYMADBkyBA0btwYs2fPBvDwFmRfX1/Mnz8fAQEBiI2NxZEjR/DNN98AeHhxZ0hICGbOnAk3Nze4uLhg6tSpcHJykpo54OFU582bN5GRkYGioiKcOHECAODq6gorKyucPn0aL7/8Mvz9/REaGipd32VsbIyGDRsCABYtWgQXFxe0bdsW9+/fx4oVK7B79278+uuv+n5LiYiemkajwYwZM7TinCokUpbejVZ6ejqKioq04vn5+bhy5Ype+xowYACysrIQEREBtVoNd3d3xMfHSxezZ2RkwMjo3xsjfXx8sGHDBoSHh2PKlClwc3NDXFwc2rVrJ+VMnDgReXl5GDlyJLKzs9G1a1fEx8fL/jcXERGBNWvWSM87duwI4OHHC3Xr1g3/+9//kJWVhXXr1mHdunVSXrNmzZCeng7g4V2T48ePx9WrV2FhYYHnn38eu3btQvfu3fX6HhARPa0tW7bg999/l8WcnJwwYsQIhSoiomJlXkdr27ZtAIDAwECsWbNGtsRDUVEREhMTkZCQIH0sDz0Z19Eioqela6pwypQpqFu3rgLVENUO+vz+LvOIVvHUm0qlQlBQkOy1unXronnz5pg/f77+1RIRkd4KCwt1Xj/KqUKiqqXMjZZGowHw8ILzw4cPw87OzmBFERGRbtu2AQkJ62Bnd0kWf+655zBo0CCFqiKikuh9jVZaWpoh6iAiojI4fjwKj/8/Nzw8HMbGxsoURESl0rvR0rUA3qP4waRERBWvoKBAugP7UZwqJKra9G60tmzZInv+4MEDpKWloU6dOmjRogUbLSKiChYdHa21WHPHjh3Rt29fhSoiorLSu9E6fvy4Viw3NxdDhw7F66+/XiFFERHRQ7ruKoyIiKiQT+ggIsMr8/IOT3Lq1Cm89tpr0jpT9GRc3oGISnLv3j3MnTtXK86pQiLlGWR5hyfJyclBTk5ORe2OiKjW+uKLL5CXlyeL/ec//4Gfn59CFRFReendaC1evFj2XAiBa9euYe3atejVq1eFFUZEVBtxqpCoZtG70Vq4cKHsuZGRERo2bIigoCCEhYVVWGFERLXJ7du3sWDBAq04pwqJqjeuo0VEpDBdo1h+fn74z3/+o0A1RFSRynWNVnZ2Ni5evAgAcHV1ha2tbUXWRERUa+hqsjiKRVRzGOmTnJ6ejoCAANjZ2cHLywteXl6ws7NDnz59eLchEZEebt68ySaLqBYo84jWX3/9hS5duqBu3bqYMWMGWrduDQA4e/Ysli9fDm9vbxw+fBhNmjQxWLFERDWBrgbrtddewwsvvKBANURkSGVeRys4OBgXL17Ezp07YWZmJnvt3r176NmzJ9zc3LBixQqDFFoTcR0totqHo1hE1Z9B1tGKj4/Hxo0btZosADA3N8eMGTMwcOBA/aslIqoFMjMzER0drRVnk0VUs5W50bpx4waaN29e4uvPPvssbt68WRE1ERHVKLpGsfr37482bdooUA0RVaYyN1qOjo44e/ZsiddgnT59Gg4ODhVWGBFRTcCpQqLarcx3HQYGBmLChAnIysrSeu369euYNGkSAgMDK7I2IqJq66+//mKTRURlvxj+1q1b8PLyglqtxrvvvotWrVpBCIHU1FRs2LABDg4O+O2339CgQQND11xj8GJ4oppJV4P17rvvokWLFgpUQ0QVzSAXw9evXx8pKSmYMmUKYmNjkZ2dDQCwtbXFO++8g88++4xNFhHVehzFIqJHlXlE61FCCGkKsWHDhvyw03LiiBZRzXHx4kWsX79eK84mi6jmMciI1qNUKhUaNWpUruKIiGoaXaNYwcHBXMCZiMrXaBER0UOcKiSi0rDRIiIqhzNnzuB///ufVpxNFhE9io0WEZGedI1ijR49mpdUEJEWNlpERHrgVCER6aNMjdbixYvLvMOPPvqo3MUQEVVVR48exfbt27XibLKIqDRlWt7BxcWlbDtTqfDnn38+dVG1BZd3IKoedI1iffTRR6hfv74C1RCR0ip8eYe0tLQKKYyIqLrhVCERPY1yX6NVUFCAtLQ0tGjRAnXq8FIvIqpZDhw4gMTERK04mywi0ofeHdLdu3cxbtw4rFmzBgDwxx9/4Nlnn8W4cePQuHFjTJ48ucKLJCKqTLpGsUJDQ1GvXj0FqiGi6sxI3w3CwsJw8uRJ7N27F2ZmZlLcz88PGzdurNDiiIgqkxCixKlCNllEVB56N1pxcXFYunQpunbtKvuMw7Zt2+LSpUt6F7Bs2TI0b94cZmZm8PLywqFDh0rN37x5M1q1agUzMzO0b98eO3bskL0uhEBERAQcHR1hbm4OPz8/XLhwQZYza9Ys+Pj4wMLCAra2tjqPk5GRgYCAAFhYWKBRo0b45JNPUFhYKMvZu3cvXnjhBZiamsLV1RUxMTF6nz8RVQ0JCQmYPn26LGZlZcWpQiJ6Kno3WllZWToX5cvLy9P7w6U3btyI0NBQREZG4tixY+jQoQP8/f1x/fp1nflJSUkYNGgQgoODcfz4cQQGBiIwMBCnT5+WcubOnYvFixcjOjoaKSkpsLS0hL+/P+7fvy/lFBQUoH///hg9erTO4xQVFSEgIAAFBQVISkrCmjVrEBMTg4iICCknLS0NAQEB6N69O06cOIGQkBC8//772Llzp17fAyJSXlRUFJKSkmSxiRMnYvz48QpVREQ1RZmWd3jUSy+9hP79+2PcuHGoV68efv/9d7i4uGDcuHG4cOEC4uPjy7wvLy8vdO7cGUuXLgUAaDQaODs7Y9y4cTqv9RowYADy8vJka9l06dIF7u7uiI6OhhACTk5OGD9+PCZMmAAAyMnJgb29PWJiYjBw4EDZ/mJiYhASEoLs7GxZ/JdffkGfPn3w999/w97eHgAQHR2NSZMmISsrCyYmJpg0aRJ+/vlnWZM3cOBAZGdnl/l7wOUdiJSl0WgwY8YMrThHsYioNPr8/tZ7ROuzzz7DlClTMHr0aBQWFuLLL7/Eq6++itWrV2PWrFll3k9BQQGOHj0KPz+/f4sxMoKfnx+Sk5N1bpOcnCzLBwB/f38pPy0tDWq1WpZjY2MDLy+vEvdZ0nHat28vNVnFx8nNzcWZM2fKVIsu+fn5yM3NlT2ISBlbt27VarIcHR3ZZBFRhdK70eratStOnDiBwsJCtG/fHr/++isaNWqE5ORkeHh4lHk/N27cQFFRkayZAQB7e3uo1Wqd26jV6lLzi7/qs099jvPoMUrKyc3Nxb1793Tud/bs2bCxsZEezs7OZa6JiCpOVFQUTpw4IYs9/3wYRo4cqUxBRFRjlWsBrBYtWuDbb7+t6FpqvLCwMISGhkrPc3Nz2WwRVaKioiLMnDlTK85RLCIylDI1WvpMcZX1WiM7OzsYGxsjMzNTFs/MzISDg4PObRwcHErNL/6amZkJR0dHWY67u3tZTwEODg5adz8WH/fRY+mqxdraGubm5jr3a2pqClNT0zLXQUQVZ8OGDVp3ILu5ueGdd95RqCIiqg3KNHVoa2uL+vXrl+lRViYmJvDw8JCtvKzRaJCYmAhvb2+d23h7e2ut1JyQkCDlu7i4wMHBQZaTm5uLlJSUEvdZ0nFOnTolu/sxISEB1tbWaNOmTZlqIaKqIyoqSqvJCg8PZ5NFRAZXphGtPXv2SH9OT0/H5MmTMXToUKmpSE5Oxpo1azB79my9Dh4aGoqgoCB06tQJnp6eWLRoEfLy8jBs2DAAwJAhQ9C4cWNpvx9//DF8fX0xf/58BAQEIDY2FkeOHME333wD4OGHWoeEhGDmzJlwc3ODi4sLpk6dCicnJwQGBkrHzcjIwM2bN5GRkYGioiLpWg1XV1dYWVnh1VdfRZs2bfDee+9h7ty5UKvVCA8Px5gxY6QRqVGjRmHp0qWYOHEihg8fjt27d2PTpk34+eef9foeEJHhFBQU6Py5xKlCIqo0Qk8vv/yy2LBhg1Z8/fr1wtfXV9/diSVLloimTZsKExMT4enpKX777TfpNV9fXxEUFCTL37Rpk3juueeEiYmJaNu2rfj5559lr2s0GjF16lRhb28vTE1NRY8ePcT58+dlOUFBQQKA1mPPnj1STnp6uujVq5cwNzcXdnZ2Yvz48eLBgwey/ezZs0e4u7sLExMT8eyzz4rVq1frde45OTkCgMjJydFrOyJ6sq+//lpMmzZN9tiyZYvSZRFRDaDP72+919GysLDAyZMn4ebmJov/8ccfcHd3x927dyumA6wFuI4WkWHo+hidqVOnwshI7xutiYi0GHQdLWdnZ513HK5YsYJ30BGRou7du1fiZxWyySIiJei9vMPChQvx5ptv4pdffoGXlxcA4NChQ7hw4QJ++OGHCi+QiKgsFi5cqHWHtLe3N1599VWFKiIiKsdH8ADAlStX8NVXX+HcuXMAgNatW2PUqFEc0dITpw6JKoauUayIiAi9P3+ViKgs9Pn9Xa5GiyoGGy2ip3Pnzh3Mnz9fK867ConIkPT5/V2uleGzs7OxcuVKpKamAgDatm2L4cOHw8bGpjy7IyLSm65RrB49eqBr164KVENEpJveI1pHjhyBv78/zM3N4enpCQA4fPgw7t27h19//RUvvPCCQQqtiTiiRVQ+JV3wTkRUGQw6dfjiiy/C1dUV3377LerUeTggVlhYiPfffx9//vkn9u3bV/7Kaxk2WkT6uXXrFhYvXqwVZ5NFRJXJoI2Wubk5jh8/jlatWsniZ8+eRadOnbiOlh7YaBGVna5RrD59+sDDw0OBaoioNjPoNVrW1tbIyMjQarT++usv1KtXT9/dERE9EacKiai60rvRGjBgAIKDg/HFF1/Ax8cHAHDw4EF88sknGDRoUIUXSES11/Xr17F8+XKtOJssIqou9G60vvjiC6hUKgwZMgSFhYUAgLp162L06NGYM2dOhRdIRLWTrlGsgwffxJ077dCxI9C3rwJFERHpqdzraN29exeXLl0CALRo0QIWFhYVWlhtwGu0iHTT1WTt3BmJW7eAc+cAb28gKUmBwoiIUAnraAEPP1y6ffv25d2ciEjLlStXsHLlSq14ZGQkIiOBbduAOXOAyZMVKI6IqBzK3GgNHz68THmrVq0qdzFEVHvpGsUaPHgwXF1dped9+3LKkIiqlzI3WjExMWjWrBk6duwIfmoPEVUk3lVIRDVVmRut0aNH4/vvv0daWhqGDRuGd999Fw0aNDBkbURUw/35559Yu3atVpxNFhHVFHpdDJ+fn48ff/wRq1atQlJSEgICAhAcHIxXX30VKpXKkHXWSLwYnmozXaNYw4cPh7OzswLVEBGVnUFXhi92+fJlxMTE4LvvvkNhYSHOnDkDKyurchVcW7HRotqKU4VEVJ1Vyl2HRkZGUKlUEEKgqKiovLsholokNTUVmzZt0oqzySKimkqvRuvRqcMDBw6gT58+WLp0KXr27AkjIyND1UhENYCuUaxRo0bB3t5egWqIiCpHmRutDz/8ELGxsXB2dsbw4cPx/fffw87OzpC1EVENwalCIqqtynyNlpGREZo2bYqOHTuWeuH7jz/+WGHF1XS8RotqumPHjuGnn37SirPJIqLqzCDXaA0ZMoR3FhJRmekaxRo3bhyXhSGiWkWvBUuJiMqCU4VERA+V+65DIqLHHTx4ELt27dKKs8kiotqKjRYRVQhdo1ihoaGoV6+eAtUQEVUNbLSI6KkIITB9+nStOEexiIjYaBHRU0hMTMSBAwdkMQsLC3zyyScKVUREVLWw0SKictE1VThx4kSYm5srUA0RUdXERouI9MKpQiKismOjRURl9tNPP+HYsWOymL29PUaNGqVQRUREVRsbLSIqE11ThWFhYTAxMVGgGiKi6oGNFhGVqqioCDNnztSKc6qQiOjJjJQuAACWLVuG5s2bw8zMDF5eXjh06FCp+Zs3b0arVq1gZmaG9u3bY8eOHbLXhRCIiIiAo6MjzM3N4efnhwsXLshybt68icGDB8Pa2hq2trYIDg7GnTt3pNenTZsGlUql9bC0tJRyYmJitF43MzOrgO8IUdUQGxur1WS1aNGCTRYRURkp3mht3LgRoaGhiIyMxLFjx9ChQwf4+/vj+vXrOvOTkpIwaNAgBAcH4/jx4wgMDERgYCBOnz4t5cydOxeLFy9GdHQ0UlJSYGlpCX9/f9y/f1/KGTx4MM6cOYOEhARs374d+/btw8iRI6XXJ0yYgGvXrskebdq0Qf/+/WX1WFtby3IuX75cwd8hImVERUXh/Pnzstinn36Kd999V6GKiIiqH5UQQihZgJeXFzp37oylS5cCADQaDZydnTFu3DhMnjxZK3/AgAHIy8vD9u3bpViXLl3g7u6O6OhoCCHg5OSE8ePHY8KECQCAnJwc2NvbIyYmBgMHDkRqairatGmDw4cPo1OnTgCA+Ph49O7dG1euXIGTk5PWcU+ePAl3d3fs27cPL774IoCHI1ohISHIzs4u17nr8+nfRJXlwYMH+Oyzz7TiHMUiInpIn9/fio5oFRQU4OjRo/Dz85NiRkZG8PPzQ3Jyss5tkpOTZfkA4O/vL+WnpaVBrVbLcmxsbODl5SXlJCcnw9bWVmqyAMDPzw9GRkZISUnRedwVK1bgueeek5qsYnfu3EGzZs3g7OyMfv364cyZMyWeb35+PnJzc2UPoqpk5cqVWk1W+/bt2WQREZWToo3WjRs3UFRUBHt7e1nc3t4earVa5zZqtbrU/OKvT8pp1KiR7PU6deqgQYMGOo97//59rF+/HsHBwbJ4y5YtsWrVKmzduhXr1q2DRqOBj48Prly5orP22bNnw8bGRno4OzvrzCNSQlRUlNbf3alTp+KNN97Atm2Ajw+wbZtCxRERVVOKX6NVHWzZsgW3b99GUFCQLO7t7Y0hQ4bA3d0dvr6++PHHH9GwYUN8/fXXOvcTFhaGnJwc6fHXX39VRvlEpbp//77OpRsiIyNhZPTwR8ScOUBy8sOvRERUdoou72BnZwdjY2NkZmbK4pmZmXBwcNC5jYODQ6n5xV8zMzPh6Ogoy3F3d5dyHr/YvrCwEDdv3tR53BUrVqBPnz5ao2SPq1u3Ljp27IiLFy/qfN3U1BSmpqal7oOoMi1atAg5OTmyWJcuXeDv7y+LTZ78sMnScdkkERGVQtERLRMTE3h4eCAxMVGKaTQaJCYmwtvbW+c23t7esnwASEhIkPJdXFzg4OAgy8nNzUVKSoqU4+3tjezsbBw9elTK2b17NzQaDby8vGT7TktLw549e7SmDXUpKirCqVOnZA0eUVUVFRWl1WRFRERoNVkA0LcvkJT08CsREZWd4guWhoaGIigoCJ06dYKnpycWLVqEvLw8DBs2DAAwZMgQNG7cGLNnzwYAfPzxx/D19cX8+fMREBCA2NhYHDlyBN988w0AQKVSISQkBDNnzoSbmxtcXFwwdepUODk5ITAwEADQunVr9OzZEyNGjEB0dDQePHiAsWPHYuDAgVp3HK5atQqOjo7o1auXVu3Tp09Hly5d4OrqiuzsbMybNw+XL1/G+++/b8DvGNHTuXPnDubPn68V5wXvREQVT/FGa8CAAcjKykJERATUajXc3d0RHx8vTdNlZGRI14kAgI+PDzZs2IDw8HBMmTIFbm5uiIuLQ7t27aSciRMnIi8vDyNHjkR2dja6du2K+Ph42WKi69evx9ixY9GjRw8YGRnhzTffxOLFi2W1aTQaxMTEYOjQoTA2Ntaq/datWxgxYgTUajXq168PDw8PJCUloU2bNhX9bSKqEDNmzIBGo5HFunfvjpdeekmhioiIajbF19GqzbiOFlWmki54JyIi/ejz+1vxES0iMqzs7Gx8+eWXWnE2WUREhsdGi6gG0zWK1bt3b3Tu3FmBaoiIah82WkQ1FKcKiYiUx0aLqIbJysrCV199pRVnk0VEVPnYaBHVILpGsZKS3sDOne0VqIaIiNhoEdUQupqsnTsjuZo7EZGC2GgRVXPXr1/H8uXLteKRkZHgbCERkbLYaBFVY7pGsY4efQfvv++mQDVERPQ4NlpE1ZSuJqtjR45iERFVJWy0iKqZq1evYsWKFVpx3lVIRFT1sNEiqkZ0jWKNHDkSjo6OClRDRERPwkaLqJrgAqRERNUPGy2iKi4tLQ3fffedVpxNFhFR1cdGi6gK0zWKNWbMGNjZ2SlQDRER6YuNFlEVxalCIqLqj40WURVz/vx5xMbGymKmpqaYzCXeiYiqHTZaRFWIrlGskJAQ2NjYKFANERE9LTZaRFVESQuQssciIqq+2GgRKSw1NRWbNm2SxZo2bYphw4YpVBEREVUUNlpECtI1ivXJJ5/AwsJCgWqIiKiisdEiUoAQAtOnT9eK865CIqKahY0WUSU7ceIEtm7dKou1atUKAwYMUKgiIiIyFDZaRJVI11ThpEmTYGZmpkA1RERkaGy0iCoBpwqJiGonNlpEBvbbb79h586dsljHjh3Rt29fhSoiIqLKwkaLyIB0TRVOmTIFdevWVaAaIiKqbGy0iAxAo9FgxowZWnFOFRIR1S5stIgq2P/93/9h7969spiPjw9eeeUVZQoiIiLFsNEiqkC6pgrDw8NhbGysQDVERKQ0NlpEFaCwsBCzZs3SinOqkIiodmOjRfSUdu7cid9++00We/nll/Hiiy8qVBEREVUVbLSInoKuqcKpU6fCyMhIgWqIiKiqYaNFVA4FBQWYPXu2VpxThURE9Kgq8d/uZcuWoXnz5jAzM4OXlxcOHTpUav7mzZvRqlUrmJmZoX379tixY4fsdSEEIiIi4OjoCHNzc/j5+eHChQuynJs3b2Lw4MGwtraGra0tgoODcefOHen19PR0qFQqrcfjU0RPqoVqnri4OK0mq1evXmyyiIhIi+KN1saNGxEaGorIyEgcO3YMHTp0gL+/P65fv64zPykpCYMGDUJwcDCOHz+OwMBABAYG4vTp01LO3LlzsXjxYkRHRyMlJQWWlpbw9/fH/fv3pZzBgwfjzJkzSEhIwPbt27Fv3z6MHDlS63i7du3CtWvXpIeHh4detVDNEhUVhZMnT8piERER8PT0VKgiIiKqylRCCKFkAV5eXujcuTOWLl0K4OFCj87Ozhg3bhwmT56slT9gwADk5eVh+/btUqxLly5wd3dHdHQ0hBBwcnLC+PHjMWHCBABATk4O7O3tERMTg4EDByI1NRVt2rTB4cOH0alTJwBAfHw8evfujStXrsDJyQnp6elwcXHB8ePH4e7urrP2J9XyJLm5ubCxsUFOTg6sra3L/D2jynf//n18/vnnWnGOYhER1T76/P5WdESroKAAR48ehZ+fnxQzMjKCn58fkpOTdW6TnJwsywcAf39/KT8tLQ1qtVqWY2NjAy8vLyknOTkZtra2UpMFAH5+fjAyMkJKSops33379kWjRo3QtWtXbNu2Ta9aHpefn4/c3FzZg6q+77//XqvJCgwMZJNFRERPpOjF8Ddu3EBRURHs7e1lcXt7e5w7d07nNmq1Wme+Wq2WXi+OlZbTqFEj2et16tRBgwYNpBwrKyvMnz8f//nPf2BkZIQffvgBgYGBiIuLkz4M+Em1PG727Nk671KjqkvX+xUREQGVSqVANUREVN3wrsMS2NnZITQ0VHreuXNn/P3335g3b57UaOkrLCxMts/c3Fw4Ozs/da1U8fLy8vDFF19oxTmKRURE+lC00bKzs4OxsTEyMzNl8czMTDg4OOjcxsHBodT84q+ZmZlwdHSU5RRfa+Xg4KB1sX1hYSFu3rxZ4nGBh9eTJSQklLmWx5mamsLU1LTE/VPVsHLlSly5ckUWGzBgAFq1aqVQRUREVF0peo2WiYkJPDw8kJiYKMU0Gg0SExPh7e2tcxtvb29ZPgAkJCRI+S4uLnBwcJDl5ObmIiUlRcrx9vZGdnY2jh49KuXs3r0bGo0GXl5eJdZ74sQJWfP2pFqo+omKitJqsiIjI9lkERFRuSg+dRgaGoqgoCB06tQJnp6eWLRoEfLy8jBs2DAAwJAhQ9C4cWNp3aKPP/4Yvr6+mD9/PgICAhAbG4sjR47gm2++AQCoVCqEhIRg5syZcHNzg4uLC6ZOnQonJycEBgYCAFq3bo2ePXtixIgRiI6OxoMHDzB27FgMHDgQTk5OAIA1a9bAxMQEHTt2BAD8+OOPWLVqFVasWCHV/qRaqPrIycnBokWLtOKcKiQioqeheKM1YMAAZGVlISIiAmq1Gu7u7oiPj5cuMs/IyJB9nImPjw82bNiA8PBwTJkyBW5uboiLi0O7du2knIkTJyIvLw8jR45EdnY2unbtivj4eJiZmUk569evx9ixY9GjRw8YGRnhzTffxOLFi2W1zZgxA5cvX0adOnXQqlUrbNy4EW+99ZZetVDVt2TJEty8eVMWe++99/Dss88qVBEREdUUiq+jVZtxHS3l6bqrkKNYRERUGn1+fys+okWkhH/++UdaJPdRbLKIiKgisdGiWmfOnDnIz8+XxYKDg9GkSROFKiIiopqKjRbVKpwqJCKiysRGi2qFzMxMnZ8/ySaLiIgMiY0W1Xi6RrFGjRql9fFJREREFY2NFtVonCokIiIlsdGiGumvv/7CqlWrZDFTU1NMnjxZoYqIiKg2YqNFNY6uUaxx48ahQYMGClRDRES1GRstqlE4VUhERFUJGy2qEf7880+sXbtWFmvQoAHGjRunUEVERERstKgG0DWKFRISAhsbGwWqISIi+hcbLarWOFVIRERVGRstqpbOnz+P2NhYWaxJkyYIDg5WqCIiIiJtbLSo2tE1ijVhwgRYWloqUA0REVHJ2GhRtSGEwPTp07XinCokIqKqio0WVQuXLl3CunXrZLGuXbuiR48eClVERET0ZGy0qMrTNVX4/PNhmDrVBHl5QN++ChRFRERUBkZKF0BUEiFEiXcVzptnguRkYM4cBQojIiIqI45oUZWUmpqKTZs2yWI9evRA165dAQCTJz9ssvjRhUREVJWx0aIqR9co1qeffoo6df7969q3L6cMiYio6mOjRVWGRqPBjBkztOK8q5CIiKorNlpUJZw8eRJxcXGyWK9eveDp6alMQURERBWAjRYpTtdUYXh4OIyNjRWohoiIqOKw0SLFFBUVYebMmVpxThUSEVFNwUaLFHH48GHs2LFDFgsMDESHDh0UqoiIiKjisdGiSqdrqnDq1KkwMuKybkREVLOw0aJKU1hYiFmzZmnFOVVIREQ1FRstqhQHDx7Erl27ZLG3334brVu3VqgiIiIiw2OjRQana6owIiICKpVKgWqIiIgqDxstMpiCggLMnj1bK86pQiIiqi3YaJFB7N69G/v375fFBg8eDFdXV4UqIiIiqnxstKjCcaqQiIjoITZaVGHu37+Pzz//XCvOqUIiIqqtqsTCRcuWLUPz5s1hZmYGLy8vHDp0qNT8zZs3o1WrVjAzM0P79u21Fr4UQiAiIgKOjo4wNzeHn58fLly4IMu5efMmBg8eDGtra9ja2iI4OBh37tyRXt+7dy/69esHR0dHWFpawt3dHevXr5ftIyYmBiqVSvYwMzN7yu9G9ZScnKzVZA0dOpRNFhER1WqKN1obN25EaGgoIiMjcezYMXTo0AH+/v64fv26zvykpCQMGjQIwcHBOH78OAIDAxEYGIjTp09LOXPnzsXixYsRHR2NlJQUWFpawt/fH/fv35dyBg8ejDNnziAhIQHbt2/Hvn37MHLkSNlxnn/+efzwww/4/fffMWzYMAwZMgTbt2+X1WNtbY1r165Jj8uXL1fwd6jqi4qKwq+//iqLRUZGolmzZgpVREREVDWohBBCyQK8vLzQuXNnLF26FACg0Wjg7OyMcePGYfLkyVr5AwYMQF5enqzh6dKlC9zd3REdHQ0hBJycnDB+/HhMmDABAJCTkwN7e3vExMRg4MCBSE1NRZs2bXD48GF06tQJABAfH4/evXvjypUrcHJy0llrQEAA7O3tsWrVKgAPR7RCQkKQnZ1drnPPzc2FjY0NcnJyYG1tXa59KCk/Px9z5syRxWxsbBASEqJMQURERJVAn9/fio5oFRQU4OjRo/Dz85NiRkZG8PPzQ3Jyss5tkpOTZfkA4O/vL+WnpaVBrVbLcmxsbODl5SXlJCcnw9bWVmqyAMDPzw9GRkZISUkpsd6cnBw0aNBAFrtz5w6aNWsGZ2dn9OvXD2fOnClx+/z8fOTm5soe1VVKSopWkzVu3Dg2WURERI9QtNG6ceMGioqKYG9vL4vb29tDrVbr3EatVpeaX/z1STmNGjWSvV6nTh00aNCgxONu2rQJhw8fxrBhw6RYy5YtsWrVKmzduhXr1q2DRqOBj48Prly5onMfs2fPho2NjfRwdnbWmVfVRUVFIT4+XhaLjIzUakKJiIhqO8Wv0aoO9uzZg2HDhuHbb79F27Ztpbi3tzeGDBkCd3d3+Pr64scff0TDhg3x9ddf69xPWFgYcnJypMdff/1VWadQIe7du6e1dIOnp6d0wfu2bYCPz8OvREREpPDyDnZ2djA2NkZmZqYsnpmZCQcHB53bODg4lJpf/DUzMxOOjo6yHHd3dynn8YvtCwsLcfPmTa3j/t///R9ee+01LFy4EEOGDCn1fOrWrYuOHTvi4sWLOl83NTWFqalpqfuoqg4cOIDExERZLCQkBDY2NtLzOXOA5OSHX/v2rewKiYiIqh5FR7RMTEzg4eEh+wWu0WiQmJgIb29vndt4e3tr/cJPSEiQ8l1cXODg4CDLyc3NRUpKipTj7e2N7OxsHD16VMrZvXs3NBoNvLy8pNjevXsREBCAzz//XHZHYkmKiopw6tQpWYNXE0RFRWl9zyMjI2VNFgBMngx4ez/8SkRERFVgwdLQ0FAEBQWhU6dO8PT0xKJFi5CXlyddCzVkyBA0btxY+sy8jz/+GL6+vpg/fz4CAgIQGxuLI0eO4JtvvgEAqFQqhISEYObMmXBzc4OLiwumTp0KJycnBAYGAgBat26Nnj17YsSIEYiOjsaDBw8wduxYDBw4ULrjcM+ePejTpw8+/vhjvPnmm9K1WyYmJtK1SNOnT0eXLl3g6uqK7OxszJs3D5cvX8b7779fmd9Cg9H1WYVdu3ZFjx49dOb37cuRLCIiokcp3mgNGDAAWVlZiIiIgFqthru7O+Lj46WL2TMyMmBk9O/Am4+PDzZs2IDw8HBMmTIFbm5uiIuLQ7t27aSciRMnIi8vDyNHjkR2dja6du2K+Ph42WKi69evx9ixY9GjRw8YGRnhzTffxOLFi6XX16xZg7t372L27NmyZsPX1xd79+4FANy6dQsjRoyAWq1G/fr14eHhgaSkJLRp08ZQ365Kk5aWhu+++04WGz9+PKysrBSqiIiIqPpRfB2t2qyqrqP1448/4tSpU7IYV3gnIiJ6SJ/f34qPaFHVoWsB0qFDh3KFdyIionLi8g4EALh48aJWkzVlyhScPNmMSzYQERGVE0e0CBs3bsS5c+ek5507d0bv3r0BcMkGIiKip8FGqxa7d+8e5s6dK4sFBwejSZMm0vPJkx82WVyygYiISH9stGqp8+fPIzY2Vhb79NNPUaeO/K8El2wgIiIqPzZatdD69etlq9d7e3vj1VdfVbAiIiKimomNVi1y9+5dzJs3TxYbOXJkjVvJnoiIqKrgXYc11OMf8Hz27FmtJis8PJxNFhERkQFxRKuG+vduQYGbN9fg8uXL0msvvvgiXn75ZQWrIyIiqh3YaNVQkycDCxbcQffu8/FIj4VRo0ZJH29EREREhsVGq4Zq3vx3dO++RXpet25dTJ48Wfa5kURERGRYbLRqoLt372LLln+brO7du+Oll15SsCIiIqLaiY1WDVSnTh3Y29sjMzMTH374IRo2bKh0SURERLUSG60ayMTEBKNGjVK6DCIiolqPF+wQERERGQgbLSIiIiIDYaNFREREZCBstIiIiIgMhI0WERERkYGw0SIiIiIyEDZaRERERAbCRouIiIjIQNhoERERERkIGy0iIiIiA2GjRURERGQgbLSIiIiIDISNFhEREZGBsNEiIiIiMpA6ShdQmwkhAAC5ubkKV0JERERlVfx7u/j3eGnYaCno9u3bAABnZ2eFKyEiIiJ93b59GzY2NqXmqERZ2jEyCI1Gg7///hv16tWDSqVSuhy95ebmwtnZGX/99Resra2VLsegeK41E8+1ZuK51kxV6VyFELh9+zacnJxgZFT6VVgc0VKQkZERmjRponQZT83a2lrxv/SVhedaM/Fcayaea81UVc71SSNZxXgxPBEREZGBsNEiIiIiMhA2WlRupqamiIyMhKmpqdKlGBzPtWbiudZMPNeaqbqeKy+GJyIiIjIQjmgRERERGQgbLSIiIiIDYaNFREREZCBstIiIiIgMhI1WDbZs2TI0b94cZmZm8PLywqFDh0rN37x5M1q1agUzMzO0b98eO3bskL0uhEBERAQcHR1hbm4OPz8/XLhwQZZz8+ZNDB48GNbW1rC1tUVwcDDu3Lkjvb53717069cPjo6OsLS0hLu7O9avXy/bR0xMDFQqlexhZmZW7c41PT1d6zxUKhV+++03vWqpDuc6bdo0nedqaWkp5ej7vipxnrNmzYKPjw8sLCxga2ur8zgZGRkICAiAhYUFGjVqhE8++QSFhYWynL179+KFF16AqakpXF1dERMTU2rtVfFcT548iUGDBsHZ2Rnm5uZo3bo1vvzyS63z1PW+q9XqanWuAHSeR2xsrNb5Vvf3Vde/w+LH9evXpfOs6u9reno6goOD4eLiAnNzc7Ro0QKRkZEoKCiQ7ef333/Hiy++CDMzMzg7O2Pu3Ll61/LUBNVIsbGxwsTERKxatUqcOXNGjBgxQtja2orMzEyd+QcPHhTGxsZi7ty54uzZsyI8PFzUrVtXnDp1SsqZM2eOsLGxEXFxceLkyZOib9++wsXFRdy7d0/K6dmzp+jQoYP47bffxP79+4Wrq6sYNGiQ9PqsWbNEeHi4OHjwoLh48aJYtGiRMDIyEj/99JOUs3r1amFtbS2uXbsmPdRqdbU717S0NAFA7Nq1S3YuBQUFetVSHc719u3bsnO8du2aaNOmjQgKCpJy9HlflTrPiIgIsWDBAhEaGipsbGy0jlNYWCjatWsn/Pz8xPHjx8WOHTuEnZ2dCAsLk3L+/PNPYWFhIUJDQ8XZs2fFkiVLhLGxsYiPj69W57py5Urx0Ucfib1794pLly6JtWvXCnNzc7FkyRIpZ8+ePQKAOH/+vOx9LSoqqlbnKoQQAMTq1atl5/HoPmrK+3r37l2tf6v+/v7C19dXyqkO7+svv/wihg4dKnbu3CkuXboktm7dKho1aiTGjx8v7SMnJ0fY29uLwYMHi9OnT4vvv/9emJubi6+//lqvWp4WG60aytPTU4wZM0Z6XlRUJJycnMTs2bN15r/99tsiICBAFvPy8hIffPCBEEIIjUYjHBwcxLx586TXs7Ozhampqfj++++FEEKcPXtWABCHDx+Wcn755RehUqnE1atXS6y1d+/eYtiwYdLz1atXl/jDsDqda3Gjdfz48RJrf1It1eVcH3fixAkBQOzbt0+K6fO+KnGejyqp1h07dggjIyNZg7h8+XJhbW0t8vPzhRBCTJw4UbRt21a23YABA4S/v3+1OlddPvzwQ9G9e3fpefEv5Fu3bpVp+6p8rgDEli1bSqy9pr6v169fF3Xr1hXfffedFKtu72uxuXPnChcXF+n5V199JerXry/92xRCiEmTJomWLVuWuZaKwKnDGqigoABHjx6Fn5+fFDMyMoKfnx+Sk5N1bpOcnCzLBwB/f38pPy0tDWq1WpZjY2MDLy8vKSc5ORm2trbo1KmTlOPn5wcjIyOkpKSUWG9OTg4aNGggi925cwfNmjWDs7Mz+vXrhzNnzlTbc+3bty8aNWqErl27Ytu2bXrVUt3OtdiKFSvw3HPP4cUXX5TFy/K+KnWeZZGcnIz27dvD3t5edpzc3FzpXKrDe1peuv6tAoC7uzscHR3xyiuv4ODBgzq3rQ7nOmbMGNjZ2cHT0xOrVq2CeGSZyZr6vn733XewsLDAW2+9pfVadXtfH//7mZycjJdeegkmJiay45w/fx63bt0qUy0VgY1WDXTjxg0UFRXJfhkAgL29fYlz7Gq1utT84q9PymnUqJHs9Tp16qBBgwYlHnfTpk04fPgwhg0bJsVatmyJVatWYevWrVi3bh00Gg18fHxw5cqVanWuVlZWmD9/PjZv3oyff/4ZXbt2RWBgoKzZelIt1eVcH3X//n2sX78ewcHBsnhZ31elzrMsSjrOo8coKSc3Nxf37t2TxavyuT4uKSkJGzduxMiRI6WYo6MjoqOj8cMPP+CHH36As7MzunXrhmPHjmltX9XPdfr06di0aRMSEhLw5ptv4sMPP8SSJUueWEt1f19XrlyJd955B+bm5lKsOr6vFy9exJIlS/DBBx888TiPHkOfn8HlVafC9kSkpz179mDYsGH49ttv0bZtWynu7e0Nb29v6bmPjw9at26Nr7/+GjNmzFCi1HKxs7NDaGio9Lxz5874+++/MW/ePPTt21fBygxry5YtuH37NoKCgmTxmvK+1kanT59Gv379EBkZiVdffVWKt2zZEi1btpSe+/j44NKlS1i4cCHWrl2rRKnlNnXqVOnPHTt2RF5eHubNm4ePPvpIwaoMKzk5GampqVrvVXV7X69evYqePXuif//+GDFihNLlaOGIVg1kZ2cHY2NjZGZmyuKZmZlwcHDQuY2Dg0Op+cVfn5RTfNdKscLCQty8eVPruP/3f/+H1157DQsXLsSQIUNKPZ+6deuiY8eOuHjxYrU810d5eXnJzuNJtVTHc12xYgX69Omj9b/Ex5X0vip1nmVR0nEePUZJOdbW1rJRA6Bqn2uxs2fPokePHhg5ciTCw8OfmO/p6Vml/q2Wl5eXF65cuYL8/PxSa6mu7yvw8N+qu7s7PDw8nphbVd/Xv//+G927d4ePjw+++eabMh3n0WPo8zO4vNho1UAmJibw8PBAYmKiFNNoNEhMTJSNKDzK29tblg8ACQkJUr6LiwscHBxkObm5uUhJSZFyvL29kZ2djaNHj0o5u3fvhkajgZeXlxTbu3cvAgIC8Pnnn8umIUpSVFSEU6dOwdHRsdqd6+NOnDghO48n1VLdzjUtLQ179uzRmjbUpaT3VanzLAtvb2+cOnVK1ngmJCTA2toabdq0KVMt1eVcAeDMmTPo3r07goKCMGvWrDJt8/jf8WJV/Vx1nUf9+vWlDzCuSe8r8PB6yU2bNpXp3ypQNd/Xq1evolu3bvDw8MDq1athZCRvaby9vbFv3z48ePBAdpyWLVuifv36ZaqlQlTYZfVUpcTGxgpTU1MRExMjzp49K0aOHClsbW2lu6Xee+89MXnyZCn/4MGDok6dOuKLL74QqampIjIyUufttra2tmLr1q3i999/F/369dO5DEDHjh1FSkqKOHDggHBzc5MtA7B7925hYWEhwsLCZLcN//PPP1JOVFSUdMvu0aNHxcCBA4WZmZk4c+ZMtTrXmJgYsWHDBpGamipSU1PFrFmzhJGRkVi1apVetVSHcy0WHh4unJycRGFhodZr+ryvSp3n5cuXxfHjx0VUVJSwsrISx48fF8ePHxe3b98WQvy7vMOrr74qTpw4IeLj40XDhg11Lu/wySefiNTUVLFs2bInLgNQFc/11KlTomHDhuLdd9+V/Vu9fv26tI+FCxeKuLg4ceHCBXHq1Cnx8ccfCyMjI7Fr165qda7btm0T3377rTh16pS4cOGC+Oqrr4SFhYWIiIioce9rsRUrVggzMzOddxZWh/f1ypUrwtXVVfTo0UNcuXJF9ne0WHZ2trC3txfvvfeeOH36tIiNjRUWFhZayzvo8zO4PNho1WBLliwRTZs2FSYmJsLT01P89ttv0mu+vr6yNY6EEGLTpk3iueeeEyYmJqJt27bi559/lr2u0WjE1KlThb29vTA1NRU9evQQ58+fl+X8888/YtCgQcLKykpYW1uLYcOGyf6BBwUFCQBaj0fXcAkJCZHqtre3F7179xbHjh2rducaExMjWrduLSwsLIS1tbXw9PQUmzdv1qr9SbVUh3MV4uEt3U2aNBFTpkzRWbe+76sS51nS3889e/ZIOenp6aJXr17C3Nxc2NnZifHjx4sHDx7I9rNnzx7h7u4uTExMxLPPPitWr15d4nlW1XONjIzU+XqzZs2kfXz++eeiRYsWwszMTDRo0EB069ZN7N69u9qd6y+//CLc3d2FlZWVsLS0FB06dBDR0dFa60bVhPe1mLe3t3jnnXd01l0d3tfVq1frPM/Hx49OnjwpunbtKkxNTUXjxo3FnDlztGrX92ewvlRCPHL/KhERERFVGF6jRURERGQgbLSIiIiIDISNFhEREZGBsNEiIiIiMhA2WkREREQGwkaLiIiIyEDYaBEREREZCBstIiIiIgNho0VEVAK1Wo1x48bh2WefhampKZydnfHaa69Jn432wQcfoEWLFjA3N0fDhg3Rr18/nDt3Tto+PT0dKpUKJ06c0Np3t27dEBISIj2/c+cOxo4diyZNmsDc3Bxt2rRBdHS0oU+RiAysjtIFEBFVRenp6fjPf/4DW1tbzJs3D+3bt8eDBw+wc+dOjBkzBufOnYOHhwcGDx6Mpk2b4ubNm5g2bRpeffVVpKWlwdjYWK/jhYaGYvfu3Vi3bh2aN2+OX3/9FR9++CGcnJzQt29fA50lERkaGy0iIh0+/PBDqFQqHDp0CJaWllK8bdu2GD58OABg5MiRUrx58+aYOXMmOnTogPT0dLRo0UKv4yUlJSEoKAjdunWT9v3111/j0KFDbLSIqjFOHRIRPebmzZuIj4/HmDFjZE1WMVtbW61YXl4eVq9eDRcXFzg7O+t9TB8fH2zbtg1Xr16FEAJ79uzBH3/8gVdffbU8p0BEVQQbLSKix1y8eBFCCLRq1eqJuV999RWsrKxgZWWFX375BQkJCTAxMZHl+Pj4SDnFj/3798tylixZgjZt2qBJkyYwMTFBz549sWzZMrz00ksVem5EVLk4dUhE9BghRJlzBw8ejFdeeQXXrl3DF198gbfffhsHDx6EmZmZlLNx40a0bt1aa7tHLVmyBL/99hu2bduGZs2aYd++fRgzZgycnJzg5+f3dCdERIpho0VE9Bg3NzeoVCrZHYQlsbGxgY2NDdzc3NClSxfUr18fW7ZswaBBg6QcZ2dnuLq6yrYzNzeX/nzv3j1MmTIFW7ZsQUBAAADg+eefx4kTJ/DFF1+w0SKqxjh1SET0mAYNGsDf3x/Lli1DXl6e1uvZ2dk6txNCQAiB/Px8vY734MEDPHjwAEZG8h/JxsbG0Gg0eu2LiKoWNlpERDosW7YMRUVF8PT0xA8//IALFy4gNTUVixcvhre3N/7880/Mnj0bR48eRUZGBpKSktC/f3+Ym5ujd+/eeh3L2toavr6++OSTT7B3716kpaUhJiYG3333HV5//XUDnSERVQZOHRIR6fDss8/i2LFjmDVrFsaPH49r166hYcOG8PDwwPLly2FmZob9+/dj0aJFuHXrFuzt7fHSSy8hKSkJjRo10vt4sbGxCAsLw+DBg3Hz5k00a9YMs2bNwqhRowxwdkRUWVRCn6s+iYiIiKjMOHVIREREZCBstIiIiIgMhI0WERERkYGw0SIiIiIyEDZaRERERAbCRouIiIjIQNhoERERERkIGy0iIiIiA2GjRURERGQgbLSIiIiIDISNFhEREZGBsNEiIiIiMpD/BwUQ0tcWXu+PAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAHHCAYAAACFl+2TAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXHZJREFUeJzt3XlYVGX/P/D3DDsoEKIshoqpiUtioAiVpvKIhgtlpWSCSmKmJuESmIK4krknxZOlqLm3GJKihFspoeKSKG4FoV8dXIFEZT2/P/w5T8cZEHSYM8v7dV1cNp+5Z+Zzjum8ve+zyARBEEBERERE9UoudQNERERExoChi4iIiEgLGLqIiIiItIChi4iIiEgLGLqIiIiItIChi4iIiEgLGLqIiIiItIChi4iIiEgLGLqIiIiItIChi4iMnkwmw8yZM6VuQ2nEiBFo0aKF1G0QkYYxdBGRTkpKSoJMJlP+WFpaok2bNhg/fjwKCgrq9bMPHTqEmTNnorCwUKPv++qrr4q2ycHBAV26dMGqVatQVVWlkc+YN28etm3bppH3IiLNMpW6ASKimsyaNQvu7u64f/8+fvvtN3z55ZfYsWMHsrOzYW1trZHPuHfvHkxN//fX4aFDhxAXF4cRI0bA3t5eI5/x0LPPPov58+cDAK5fv461a9ciLCwM58+fR3x8/FO//7x58/Dmm28iKCjoqd+LiDSLoYuIdFq/fv3g7e0NAHjvvffQqFEjLF68GD/99BOCg4Of+H2rqqpQVlYGS0tLWFpaaqrdx7Kzs8O7776rfDxmzBg8//zzWLFiBWbPng0zMzOt9UJE2sXlRSLSK7169QIA5ObmAgAWLlwIPz8/NGrUCFZWVvDy8sJ3332n8jqZTIbx48dj/fr1aN++PSwsLJCamqp87uExXTNnzsSUKVMAAO7u7sqlwLy8PPTo0QOdOnVS29fzzz+PgICAOm+PtbU1unXrhpKSEly/fr3acSUlJZg0aRLc3NxgYWGB559/HgsXLoQgCKJtLCkpwZo1a5R9jxgxos49EVH94EwXEemVP//8EwDQqFEjAMCyZcswcOBADBs2DGVlZdi0aRPeeustpKSkIDAwUPTaPXv2YMuWLRg/fjwcHR3VHqz+xhtv4Pz589i4cSOWLFkCR0dHAEDjxo0xfPhwjB49GtnZ2ejQoYPyNUeOHMH58+cxffr0J9qmv/76CyYmJtUuZQqCgIEDB2Lv3r0ICwuDp6cndu3ahSlTpuD//u//sGTJEgDAunXr8N5776Fr164IDw8HADz33HNP1BMR1QOBiEgHrV69WgAg/PLLL8L169eFS5cuCZs2bRIaNWokWFlZCZcvXxYEQRDu3r0rel1ZWZnQoUMHoVevXqI6AEEulwunT59W+SwAQmxsrPLxZ599JgAQcnNzReMKCwsFS0tL4eOPPxbVP/zwQ8HGxka4c+dOjdvUo0cPoW3btsL169eF69evCzk5OcKHH34oABAGDBigHBcaGio0b95c+Xjbtm0CAGHOnDmi93vzzTcFmUwmXLx4UVmzsbERQkNDa+yDiKTB5UUi0mn+/v5o3Lgx3NzcMHToUDRo0AA//vgjmjZtCgCwsrJSjr19+zaKiorwyiuv4NixYyrv1aNHD7Rr1+6Je7Gzs8OgQYOwceNG5bJeZWUlNm/ejKCgINjY2Dz2Pc6ePYvGjRujcePG8PDwwOeff47AwECsWrWq2tfs2LEDJiYm+PDDD0X1SZMmQRAE7Ny584m3iYi0h8uLRKTTEhIS0KZNG5iamsLJyQnPP/885PL//XsxJSUFc+bMwYkTJ1BaWqqsy2Qylfdyd3d/6n5CQkKwefNm/Prrr+jevTt++eUXFBQUYPjw4bV6fYsWLbBy5UrlZTBat26NJk2a1Piav//+G66urmjYsKGo7uHhoXyeiHQfQxcR6bSuXbsqz1581K+//oqBAweie/fu+OKLL+Di4gIzMzOsXr0aGzZsUBn/71mxJxUQEAAnJyd8++236N69O7799ls4OzvD39+/Vq+3sbGp9VgiMixcXiQivfX999/D0tISu3btwqhRo9CvXz+NBBp1s2QPmZiY4J133sF3332H27dvY9u2bQgODoaJiclTf251mjdvjitXruCff/4R1c+ePat8/qGaeiciaTF0EZHeMjExgUwmQ2VlpbKWl5f31Fdkf3hsVnVXpB8+fDhu376NMWPG4M6dO6LrbtWH1157DZWVlVixYoWovmTJEshkMvTr109Zs7Gx0fiV9IlIM7i8SER6KzAwEIsXL0bfvn3xzjvv4Nq1a0hISECrVq3wxx9/PPH7enl5AQA++eQTDB06FGZmZhgwYIAyjHXu3BkdOnTA1q1b4eHhgRdffFEj21OdAQMGoGfPnvjkk0+Ql5eHTp06Yffu3fjpp58QEREhuiyEl5cXfvnlFyxevBiurq5wd3eHj49PvfZHRLXDmS4i0lu9evXCN998A4VCgYiICGzcuBGffvopXn/99ad63y5dumD27Nk4efIkRowYgeDgYJULl4aEhABArQ+gfxpyuRzJycmIiIhASkoKIiIicObMGXz22WdYvHixaOzixYvh5eWF6dOnIzg4GF9++WW990dEtSMThH9dzpiIiGpl2bJl+Oijj5CXl4dmzZpJ3Q4R6QGGLiKiOhIEAZ06dUKjRo2wd+9eqdshIj3BY7qIiGqppKQEycnJ2Lt3L06dOoWffvpJ6paISI9wpouIqJby8vLg7u4Oe3t7fPDBB5g7d67ULRGRHmHoIiIiItICnr1IREREpAUMXURERERawAPp61FVVRWuXLmChg0b8tYcREREekIQBPzzzz9wdXWFXK65+SmGrnp05coVuLm5Sd0GERERPYFLly7h2Wef1dj7MXTVo4YNGwJ48Jtma2srcTdERERUG8XFxXBzc1N+j2sKQ1c9erikaGtry9BFRESkZzR9aBAPpCciIiLSAoYuIiIiIi2QPHQlJCSgRYsWsLS0hI+PDw4fPlzj+K1bt6Jt27awtLREx44dsWPHDtHzgiAgJiYGLi4usLKygr+/Py5cuCAaM3fuXPj5+cHa2hr29vYqn3Hy5EkEBwfDzc0NVlZW8PDwwLJly556W4mIiMh4SXpM1+bNmxEZGYnExET4+Phg6dKlCAgIwLlz59CkSROV8YcOHUJwcDDmz5+P/v37Y8OGDQgKCsKxY8fQoUMHAMCCBQuwfPlyrFmzBu7u7pgxYwYCAgJw5swZWFpaAgDKysrw1ltvwdfXF998843K52RlZaFJkyb49ttv4ebmhkOHDiE8PBwmJiYYP368RvdBZWUlysvLNfqepJvMzMxgYmIidRtERCQRSW8D5OPjgy5dumDFihUAHlzXys3NDRMmTEBUVJTK+CFDhqCkpAQpKSnKWrdu3eDp6YnExEQIggBXV1dMmjQJkydPBgAUFRXByckJSUlJGDp0qOj9kpKSEBERgcLCwsf2Om7cOOTk5GDPnj213r7i4mLY2dmhqKhI5UB6QRCgUChq9dlkOOzt7eHs7MzrthER6bCavr+fhmQzXWVlZcjKykJ0dLSyJpfL4e/vj4yMDLWvycjIQGRkpKgWEBCAbdu2AQByc3OhUCjg7++vfN7Ozg4+Pj7IyMhQCV11UVRUBAcHhxrHlJaWorS0VPm4uLi42rEPA1eTJk1gbW3NL2EDJwgC7t69i2vXrgEAXFxcJO6IiIi0TbLQdePGDVRWVsLJyUlUd3JywtmzZ9W+RqFQqB2vUCiUzz+sVTfmSRw6dAibN2/Gzz//XOO4+fPnIy4u7rHvV1lZqQxcjRo1euK+SL9YWVkBAK5du4YmTZpwqZGIyMhIfiC9rsvOzsagQYMQGxuLPn361Dg2OjoaRUVFyp9Lly6pHffwGC5ra2uN90u67eHvOY/jIyIyPpKFLkdHR5iYmKCgoEBULygogLOzs9rXODs71zj+4a91ec+anDlzBr1790Z4eDimT5/+2PEWFhbKC6HW5oKoXFI0Pvw9JyIyXpKFLnNzc3h5eSE9PV1Zq6qqQnp6Onx9fdW+xtfXVzQeANLS0pTj3d3d4ezsLBpTXFyMzMzMat+zOqdPn0bPnj0RGhqKuXPn1um1RERERI+S9JIRkZGRCA0Nhbe3N7p27YqlS5eipKQEI0eOBACEhISgadOmmD9/PgBg4sSJ6NGjBxYtWoTAwEBs2rQJR48exVdffQXgwSxCREQE5syZg9atWysvGeHq6oqgoCDl5+bn5+PWrVvIz89HZWUlTpw4AQBo1aoVGjRogOzsbPTq1QsBAQGIjIxUHg9mYmKCxo0ba28HERERkeEQJPb5558LzZo1E8zNzYWuXbsKv//+u/K5Hj16CKGhoaLxW7ZsEdq0aSOYm5sL7du3F37++WfR81VVVcKMGTMEJycnwcLCQujdu7dw7tw50ZjQ0FABgMrP3r17BUEQhNjYWLXPN2/evE7bVlRUJAAQioqKRPV79+4JZ86cEe7du1en99MF/953pqamQpMmTQR/f3/hm2++ESorK2v9PqtXrxbs7Ozqr1Edpc+/90RExqK67++nJel1ugxdddf5uH//PnJzc+Hu7q68YKu+GDFiBAoKCrB69WpUVlaioKAAqampmD9/Pl555RUkJyfD1PTxE6h1uUaaIdHn33siIl1SVVUFQRDq5Uzw+rpOF89epDqzsLCAs7MzmjZtihdffBHTpk3DTz/9hJ07dyIpKQkAsHjxYnTs2BE2NjZwc3PDBx98gDt37gAA9u3bh5EjR6KoqAgymQwymQwzZ84EAKxbtw7e3t5o2LAhnJ2d8c477yivbUVERAQAO3fuxOzZs/H1119L3UqdMHTpCEEQUFZWJsmPJiY7e/XqhU6dOuGHH34A8OBCt8uXL8fp06exZs0a7NmzB1OnTgUA+Pn5YenSpbC1tcXVq1dx9epV5R0EysvLMXv2bJw8eRLbtm1DXl4eRowY8dT9ERGR/isvL0dcXJzyPs0KhUIj32HaIumB9PQ/5eXlyhMGtC06Ohrm5uZP/T5t27bFH3/8AQCIiIhQ1lu0aIE5c+bg/fffxxdffAFzc3PY2dlBJpOpXMpj1KhRyv9u2bIlli9fji5duuDOnTto0KDBU/dIRET6KT8/H6tXrxbV0tM/RufOMgwcKFFTdcTQRRojCILyOlS//PIL5s+fj7Nnz6K4uBgVFRW4f/8+7t69W+NFYbOysjBz5kycPHkSt2/fRlVVFYAHf9jatWunle0gIiLdsn37dhw7dkz5uEOHDli0aDAyMoCKCjB0Ud2YmZmJ7kOp7c/WhJycHLi7uyMvLw/9+/fH2LFjMXfuXDg4OOC3335DWFgYysrKqg1dJSUlCAgIQEBAANavX4/GjRsjPz8fAQEBKCsr00iPRESkP8rKylRWgYYPH46WLVvCzAyIjweioiRq7gkwdOkImUymkSU+qezZswenTp3CRx99hKysLFRVVWHRokWQyx8cNrhlyxbReHNzc1RWVopqZ8+exc2bNxEfHw83NzcAwNGjR7WzAUREpFNyc3Oxdu1aUS0qKgoWFhYAHsxu6csM10MMXVRnpaWlUCgUKpeM6N+/P0JCQpCdnY3y8nJ8/vnnGDBgAA4ePIjExETRe7Ro0QJ37txBeno6OnXqBGtrazRr1gzm5ub4/PPP8f777yM7OxuzZ8+WaCuJiEgqP/74o/IYYQDw9PTEoEGDJOxIM3j2ItVZamoqXFxc0KJFC/Tt2xd79+7F8uXL8dNPP8HExASdOnXC4sWL8emnn6JDhw5Yv369yvSwn58f3n//fQwZMgSNGzfGggUL0LhxYyQlJWHr1q1o164d4uPjsXDhQom2koiItK20tBRxcXGiwDVixAiDCFwAwIuj1iNDvDgqPR3+3hMRqXfx4kWsX79eVJs2bZrGjjuui/q6OCqXF4mIiEhSW7ZsQU5OjvKxt7c3AgMDJeyofjB0ERERkSTu3buHBQsWiGphYWF49tlnJeqofjF0ERERkdadO3cOmzZtEtU++eSTWt2/V18Z7pYRERGRToqLixM97tatGwICAiTqRnsYuoiIiEgrbty4gYSEBFFt9OjRcHV1lagj7WLoIiIionr3/fffIzs7W1TbvXs6YmNNJOpI+xi6iIiIqF49upwIALt2xerVLXw0gaGLiIiI6kVBQYHKHUlef/11vPDCC4iNlagpCTF0ERERkcZt2LABFy5cENWkutipruBtgEgnjRgxAkFBQcrHr776KiIiIp7qPTXxHkREVDNBEBAXFycKXKampoiNjTXqwAVwpovqaMSIEVizZg0AwMzMDM2aNUNISAimTZtWr9dW+eGHH2r9h3Xfvn3o2bMnbt++DXt7+yd6DyIiqrsrV65g5cqVotrbb78NDw8PiTrSLQxdVGd9+/bF6tWrUVpaih07dmDcuHEwMzNDdHS0aFxZWRnMzc018pkODg468R5ERKReUlIS/v77b1Ft+vTpMDExnrMTH4fLi1RnFhYWcHZ2RvPmzTF27Fj4+/sjOTlZuSQ4d+5cuLq64vnnnwcAXLp0CW+//Tbs7e3h4OCAQYMGIS8vT/l+lZWViIyMhL29PRo1aoSpU6fi0fuwP7o0WFpaio8//hhubm6wsLBAq1at8M033yAvLw89e/YEADzzzDOQyWQYMWKE2ve4ffs2QkJC8Mwzz8Da2hr9+vUTTYcnJSXB3t4eu3btgoeHBxo0aIC+ffvi6tWryjH79u1D165dYWNjA3t7e7z00ksqf+kQERmyh8uJ//67z8bGBrGxsQxcj2DooqdmZWWFsrIyAEB6ejrOnTuHtLQ0pKSkoLy8HAEBAWjYsCF+/fVXHDx4UBleHr5m0aJFSEpKwqpVq/Dbb7/h1q1b+PHHH2v8zJCQEGzcuBHLly9HTk4O/vvf/6JBgwZwc3PD999/D+DBLSauXr2KZcuWqX2PESNG4OjRo0hOTkZGRgYEQcBrr72G8vJy5Zi7d+9i4cKFWLduHQ4cOID8/HxMnjwZAFBRUYGgoCD06NEDf/zxBzIyMhAeHg6ZTPbU+5SISB/k5+dj1qxZoto777yj/HuSxLi8SE9MEASkp6dj165dmDBhAq5fvw4bGxt8/fXXymXFb7/9FlVVVfj666+VYWT16tWwt7fHvn370KdPHyxduhTR0dF44403AACJiYnYtWtXtZ97/vx5bNmyBWlpafD39wcAtGzZUvn8w2XEJk2aiI7p+rcLFy4gOTkZBw8ehJ+fHwBg/fr1cHNzw7Zt2/DWW28BAMrLy5GYmIjnnnsOADB+/HjlXzDFxcUoKipC//79lc/zuAUiMhaJiYkoKCgQ1WbMmAG5nPM51eGeMQDJyYCf34NftSElJQUNGjSApaUl+vXrhyFDhmDmzJkAgI4dO4qO4zp58iQuXryIhg0bokGDBmjQoAEcHBxw//59/PnnnygqKsLVq1fh4+OjfI2pqSm8vb2r/fwTJ07AxMQEPXr0eOJtyMnJgampqehzGzVqhOeffx45OTnKmrW1tTJQAYCLiwuuXbsG4EG4GzFiBAICAjBgwAAsW7ZMtPRIRGSIqqqqEBcXJwpcDg4OiI2NZeB6DM50GYD4eCAj48GvAwfW/+f17NkTX375JczNzeHq6io6a9HGxkY09s6dO/Dy8sL69etV3qdx48ZP9PlWVlZP9Lon8ejZjjKZTHS82erVq/Hhhx8iNTUVmzdvxvTp05GWloZu3bpprUciIm3566+/sG7dOlEtJCQE7u7uEnWkXxhJDUBUFODrC63dTsHGxgatWrVCs2bNHnuZiBdffBEXLlxAkyZN0KpVK9GPnZ0d7Ozs4OLigszMTOVrKioqkJWVVe17duzYEVVVVdi/f7/a5x/OtFVWVlb7Hh4eHqioqBB97s2bN3Hu3Dm0a9euxm16VOfOnREdHY1Dhw6hQ4cO2LBhQ51eT0SkD5YtW6YSuGJiYhi46oChywAMHAgcOqSdWa66GjZsGBwdHTFo0CD8+uuvyM3Nxb59+/Dhhx/i8uXLAICJEyciPj4e27Ztw9mzZ/HBBx+gsLCw2vds0aIFQkNDMWrUKGzbtk35nlu2bAEANG/eHDKZDCkpKbh+/Tru3Lmj8h6tW7fGoEGDMHr0aPz22284efIk3n33XTRt2hSDBg2q1bbl5uYiOjoaGRkZ+Pvvv7F7925cuHCBx3URkUGprKxEXFyc6O9lFxcXxMbG8sShOmLoonplbW2NAwcOoFmzZnjjjTfg4eGBsLAw3L9/H7a2tgCASZMmYfjw4QgNDYWvry8aNmyI119/vcb3/fLLL/Hmm2/igw8+QNu2bTF69GiUlJQAAJo2bYq4uDhERUXByckJ48ePV/seq1evhpeXF/r37w9fX18IgoAdO3bU+gKq1tbWOHv2LAYPHow2bdogPDwc48aNw5gxY+qwh4iIdNf58+cxZ84cUW3UqFEIDw+XqCP9JhMevSASaUxxcTHs7OxQVFSkDBgAcP/+feTm5sLd3R2WlpYSdkjaxt97ItIXn376Ke7fvy+qxcTEGMXsVnXf30+LB9ITERGRUkVFBebOnSuqubu7IyQkRKKODAdDFxEREQEATp8+je+++05UCw8Ph4uLi0QdGRaGLiIiIsKsWbNUbsFmLMuJ2sLQRUREZMTKy8sxb948Ua1t27YYMmSIRB0ZLoYuCfEcBuPD33Mi0iUnTpzATz/9JKqNHTsWTZo0kagjw8bQJYGHlyS4e/euVq+uTtK7e/cuANUr3RMRaVtcXJxKLTY2VoJOjAdDlwRMTExgb2+vvIeftbU118wNnCAIuHv3Lq5duwZ7e3uYmJhI3RIRGanS0lLEx8eLai+88MJjr49IT4+hSyLOzs4AoAxeZBzs7e2Vv/dERNp25MgR7NixQ1SbMGECHBwcJOrIuDB0SUQmk8HFxQVNmjRBeXm51O2QFpiZmXGGi4gkw+VE6TF0SczExIRfxEREVG/u3buHBQsWiGre3t4IDAyUqCPjxdBFRERkoA4dOoS0tDRRLSIiAnZ2dhJ1ZNwYuoiIiAwQlxN1D0MXERGRASkpKcHChQtFNT8/P/znP/+RqCN6iKGLiIjIQOzbtw/79+8X1SIjI9GwYUOJOqJ/Y+giIiIyAFxO1H0MXURERHrsn3/+weLFi0W1V199FT169JCoI6oOQxcREZGe2r17NzIyMkS1yZMnw8bGRqKOqCYMXURERHqIy4n6h6GLiIhIjxQWFmLZsmWiWp8+feDr6ytRR1RbDF1ERER6IiUlBVlZWaLaxx9/DEtLS4k6orqQS91AQkICWrRoAUtLS/j4+ODw4cM1jt+6dSvatm0LS0tLdOzYUeXGnYIgICYmBi4uLrCysoK/vz8uXLggGjN37lz4+fnB2toa9vb2aj8nPz8fgYGBsLa2RpMmTTBlyhRUVFQ81bYSERE9qbi4OJXAFRsby8ClRyQNXZs3b0ZkZCRiY2Nx7NgxdOrUCQEBAbh27Zra8YcOHUJwcDDCwsJw/PhxBAUFISgoCNnZ2coxCxYswPLly5GYmIjMzEzY2NggICAA9+/fV44pKyvDW2+9hbFjx6r9nMrKSgQGBqKsrAyHDh3CmjVrkJSUhJiYGM3uACIiose4fPmyyvFbgYGBPH5LD8kEQRCk+nAfHx906dIFK1asAABUVVXBzc0NEyZMQFRUlMr4IUOGoKSkBCkpKcpat27d4OnpicTERAiCAFdXV0yaNAmTJ08GABQVFcHJyQlJSUkYOnSo6P2SkpIQERGBwsJCUX3nzp3o378/rly5AicnJwBAYmIiPv74Y1y/fh3m5ua12r7i4mLY2dmhqKgItra2td4vREREADBv3jyUl5eLalFRUbCwsJCoI+NQX9/fks10lZWVISsrC/7+/v9rRi6Hv7+/yumvD2VkZIjGA0BAQIByfG5uLhQKhWiMnZ0dfHx8qn3P6j6nY8eOysD18HOKi4tx+vTpal9XWlqK4uJi0Q8REdGTiIuLUwlcsbGxDFx6TLID6W/cuIHKykpRsAEAJycnnD17Vu1rFAqF2vEKhUL5/MNadWNqo7rP+fdnqDN//ny1p/ASERHVVm5uLtauXSuq+fr6ok+fPhJ1RJrCsxc1KDo6GpGRkcrHxcXFcHNzk7AjIiLSJ+r+4c7lRMMh2fKio6MjTExMUFBQIKoXFBTA2dlZ7WucnZ1rHP/w17q8Z10+59+foY6FhQVsbW1FP0RERI8jCEK1Fzu1sLBAcjLg5wckJ0vQHGmMZKHL3NwcXl5eSE9PV9aqqqqQnp5e7QXefH19ReMBIC0tTTne3d0dzs7OojHFxcXIzMys00XjfH19cerUKdFZlGlpabC1tUW7du1q/T5ERESPc/78ecyaNUtUe/XVV0VnJ8bHAxkZD34l/SXp8mJkZCRCQ0Ph7e2Nrl27YunSpSgpKcHIkSMBACEhIWjatCnmz58PAJg4cSJ69OiBRYsWITAwEJs2bcLRo0fx1VdfAQBkMhkiIiIwZ84ctG7dGu7u7pgxYwZcXV0RFBSk/Nz8/HzcunUL+fn5qKysxIkTJwAArVq1QoMGDdCnTx+0a9cOw4cPx4IFC6BQKDB9+nSMGzeOU7xERKQx6ma3pk2bBjMzM1EtKupB4FJzYj/pEUlD15AhQ3D9+nXExMRAoVDA09MTqampyoPW8/PzIZf/bzLOz88PGzZswPTp0zFt2jS0bt0a27ZtQ4cOHZRjpk6dipKSEoSHh6OwsBAvv/wyUlNTRRePi4mJwZo1a5SPO3fuDADYu3cvXn31VZiYmCAlJQVjx46Fr68vbGxsEBoaqvIvESIioichCILa75Tqrr01cOCDH9Jvkl6ny9DxOl1ERPSo7OxsfP/996Ia752oW+rr+5tnLxIREWmJuuXE6dOnw8TERIJuSNsYuoiIiOpZVVUVZs+erVLnrXyMC0MXERFRPTp27Bi2b98uqg0YMAAvvviiRB2RVBi6iIiI6om65cQZM2aIThIj48HQRUREpGGVlZWYM2eOSp3LicaNoYuIiEiDfv/9d+zatUtUGzx4sOjyRmScGLqIiIg0RN1yYkxMDGQymQTdkK5h6CIiInpK5eXlmDdvnkqdy4n0bwxdRERET2H//v3Yt2+fqBYcHIw2bdpI0xDpLIYuIiKiJ8TlRKoLhi4iIqI6Ki0tRXx8vEqdy4lUE4YuIiKiOti9ezcyMjJEtZCQELi7u0vUEekLhi4iIqJaUrecyNktqi2GLiIiose4d+8eFixYIKqZmprik08+kagj0kcMXURERDXYvn07jh07JqqFhYXh2Weflagj0lcMXURERNXgciJpEkMXERHRI+7cuYNFixaJara2tvjoo48k6ogMAUMXERHRv2zduhVnzpwR1caMGQNnZ2eJOiJDwdBFRET0/3E5keoTQxcRERm9wsJCLFu2TFRzdnbGmDFjJOqIDBFDFxERGbV169bhr7/+EtXGjRsHR0dHiToiQ8XQRURERovLiaRNDF1ERGR0rl69iq+++kpUa9GiBUJDQyXqiIwBQxcRERkVdbNbEydOhL29vfabIaPC0EVEREaDy4kkJYYuIiIyePn5+Vi9erWo1qBBA0yaNEmijsgYMXQREZFBUze79eGHH+KZZ56RoBsyZnKpGyAiIqov1S0nPvPMM0hOBvz8gORkCRojo8SZLiIiMjgXL17E+vXrRTUnJye8//77ysfx8UBGxoNfBw7UdodkjBi6iIjIoKib3YqMjETDhg1FtaioB4ErKkpbnZGxY+giIiKDUZezEwcO5AwXaRdDFxER6b3Tp0/ju+++E9V4sVPSNQxdRESk19TNbk2ZMgXW1tYSdENUPYYuIiLSS4IgYNasWSp1XuyUdBVDFxER6Z3jx48j+ZFrPbRr1w5vvfWWRB0RPR5DFxER6RV1y4lRUVGwsLCQoBui2mPoIiIivcDlRNJ3DF1ERKTzMjIysHv3blHNy8sL/fv3l6gjorpj6CIiIp2mbjlx2rRpMDMzk6AboifH0EVERDqpqqoKs2fPVqlzOZH0FUMXERHpnL179+LAgQOi2ksvvQR/f3+JOiJ6egxdRESkU9QtJ06fPh0mJiYSdEOkOQxdRESkEyoqKjB37lyVOpcTyVAwdBERkeR27tyJw4cPi2r+/v546aWXJOqISPMYuoiISFLqlhNnzJgBuVwuQTdE9Yehi4iIJFFWVob58+er1LmcSIaKoYuIiLTuxx9/xB9//CGqBQYGwtvbW6KOiOofQxcREWmVuuXEmJgYyGQyCboh0h6GLiIi0op79+5hwYIFKnUuJ5KxYOgiIqJ6t379ely8eFFUe+ONN9CxY0eJOiLSPoYuIiKqV+qWEzm7RcZI8vNxExIS0KJFC1haWsLHx0flOi2P2rp1K9q2bQtLS0t07NgRO3bsED0vCAJiYmLg4uICKysr+Pv748KFC6Ixt27dwrBhw2Brawt7e3uEhYXhzp07ojG7du1Ct27d0LBhQzRu3BiDBw9GXl6eRraZiMgY3Llzh4GL6F8kDV2bN29GZGQkYmNjcezYMXTq1AkBAQG4du2a2vGHDh1CcHAwwsLCcPz4cQQFBSEoKAjZ2dnKMQsWLMDy5cuRmJiIzMxM2NjYICAgAPfv31eOGTZsGE6fPo20tDSkpKTgwIEDCA8PVz6fm5uLQYMGoVevXjhx4gR27dqFGzdu4I033qi/nUFEZEBWrlyJRYsWiWrBwcEMXGTUZIIgCFJ9uI+PD7p06YIVK1YAeHBHeTc3N0yYMAFRUVEq44cMGYKSkhKkpKQoa926dYOnpycSExMhCAJcXV0xadIkTJ48GQBQVFQEJycnJCUlYejQocjJyUG7du1w5MgR5anJqampeO2113D58mW4urriu+++Q3BwMEpLS5UX59u+fTsGDRqE0tJSmJmZ1Wr7iouLYWdnh6KiItja2j7VviIi0hec3SJ9V1/f35LNdJWVlSErK0t0x3i5XA5/f39kZGSofU1GRobKHeYDAgKU43Nzc6FQKERj7Ozs4OPjoxyTkZEBe3t70bVg/P39IZfLkZmZCQDw8vKCXC7H6tWrUVlZiaKiIqxbtw7+/v41Bq7S0lIUFxeLfoiIjEVRUREDF1ENJDuQ/saNG6isrISTk5Oo7uTkhLNnz6p9jUKhUDteoVAon39Yq2lMkyZNRM+bmprCwcFBOcbd3R27d+/G22+/jTFjxqCyshK+vr4qx489av78+Wr/wiEiMnTLli1DYWGhqBYSEgJ3d3dpGiLSQZIfSK+LFAoFRo8ejdDQUBw5cgT79++Hubk53nzzTdS0GhsdHY2ioiLlz6VLl7TYNRGRNOLi4lQCV2xsLAMX0SMkm+lydHSEiYkJCgoKRPWCggI4OzurfY2zs3ON4x/+WlBQABcXF9EYT09P5ZhHD9SvqKjArVu3lK9PSEiAnZ2d6CJ+3377Ldzc3JCZmYlu3bqp7c/CwgIWFhaP23QiIoNw48YNJCQkqNS5nEiknmQzXebm5vDy8kJ6erqyVlVVhfT0dPj6+qp9ja+vr2g8AKSlpSnHu7u7w9nZWTSmuLgYmZmZyjG+vr4oLCxEVlaWcsyePXtQVVUFHx8fAMDdu3dV7m5vYmKi7JGIyNjNmzdPJXC99957DFxENZB0eTEyMhIrV67EmjVrkJOTg7Fjx6KkpAQjR44E8OB4gOjoaOX4iRMnIjU1FYsWLcLZs2cxc+ZMHD16FOPHjwcAyGQyREREYM6cOUhOTsapU6cQEhICV1dXBAUFAQA8PDzQt29fjB49GocPH8bBgwcxfvx4DB06FK6urgAe3HT1yJEjmDVrFi5cuIBjx45h5MiRaN68OTp37qzdnUREpGPi4uJQXl4uqsXGxqJp06YSdUSkHyS9Iv2QIUNw/fp1xMTEQKFQwNPTE6mpqcoD4fPz80UzTn5+ftiwYQOmT5+OadOmoXXr1ti2bRs6dOigHDN16lSUlJQgPDwchYWFePnll5GamgpLS0vlmPXr12P8+PHo3bs35HI5Bg8ejOXLlyuf79WrFzZs2IAFCxZgwYIFsLa2hq+vL1JTU2FlZaWFPUNEpHsUCgX++9//qtQ5u0VUO5Jep8vQ8TpdRGQo1J2ZPXbsWJWzwYkMgc5cp8vExETtFeNv3rypPO6JiIgMR3XX3mLgIqqbOi8vVjcxVlpaCnNz86duiIiIdENubi7Wrl0rqllbW2PKlCkSdUSk32oduh4e8ySTyfD111+jQYMGyucqKytx4MABtG3bVvMdEhGR1qmb3ZowYQIcHBwk6IbIMNQ6dC1ZsgTAg5muxMRE0VKiubk5WrRogcTERM13SEREWsVb+RDVj1qHrtzcXABAz5498cMPP+CZZ56pt6aIiEj7zp49i82bN4tq9+5Z4sCBj8HMRfT06nxM1969e+ujDyIikpC62a327SOweLEdoqIkaIjIANU5dI0aNarG51etWvXEzRARkfbVtJz45pva7obIcNU5dN2+fVv0uLy8HNnZ2SgsLESvXr001hgREdWvP/74Az/++KOo1qhRI+VdPohIs+ocuh79Awo8uB/h2LFj8dxzz2mkKSIiql/qZrcmT54MGxsbCbohMg4aufeiXC5HZGSk8gxHIiLSTYIgVLucyMBFVL80du/FP//8ExUVFZp6OyIi0rDDhw9j586dolqzZs0wcuRIiToiMi51Dl2RkZGix4Ig4OrVq/j5558RGhqqscaIiOjpJScD8fFAQIDq7NbHH38MS0tLCboiMk51Dl3Hjx8XPZbL5WjcuDEWLVr02DMbiYhIu+LjBQQEzFKp82KnRNrH63QRERmolJQUBARkiWpt27bFkCFDJOqIyLg98TFd165dw7lz5wAAzz//PO82T0SkQ9QdLD9t2jSYmZlJ0A0RAU9w9mJxcTGGDx8OV1dX9OjRAz169EDTpk3x7rvvoqioqD56JCKiWqqsrKz27EQGLiJp1Tl0jR49GpmZmfj5559RWFiIwsJCpKSk4OjRoxgzZkx99EhERLWwZcsWzJkzR1Rzd3fn8VtEOkImCIJQlxfY2Nhg165dePnll0X1X3/9FX379kVJSYlGG9RnxcXFsLOzQ1FREWxtbaVuh4gMmLrZrU8++QSmphq7MhCR0aiv7+86/2ls1KgR7OzsVOp2dnZ45plnNNIUERHVTnl5OebNm6dS5+wWke6pc+iaPn06IiMjsW7dOjg7OwMAFAoFpkyZghkzZmi8QSIiUm/VqlW4dOmSqNahQwcMHjxYoo6IqCZ1Xl7s3LkzLl68iNLSUjRr1gwAkJ+fDwsLC7Ru3Vo09tixY5rrVA9xeZGI6ou65cQZM2ZALtfI3d2IjJrOLC8OGjQIMplMYw0QEVHtlZaWIj4+XqXO5UQi3VfnmS6qPc50EZEmLV++HLdv3xbVunbtin79+knUEZFhqq/v7zrPQ7ds2RI3b95UqRcWFqJly5YaaYqIiMTi4uJUAldMTAwDF5EeqfPyYl5eHiorK1XqpaWluHz5skaaIiKiB0pKSrBw4UKVOpcTifRPrUNXcnKy8r937dolumxEZWUl0tPT4e7urtnuiIiM2Lx581BeXi6qvfrqq+jRo4dEHRHR06h16AoKCgIAyGQyhIaGip4zMzNDixYtsGjRIo02R0RkTJKTgfh4ICoKOH5c9ezEmJgYnshEpMdqHbqqqqoAPLilxJEjR+Do6FhvTRERGaP4eODMmSIcP75U5TkuJxLpvzof05Wbm1sffRARGb2AgDgEBIhr/fr1Q9euXaVpiIg0qs6ha9asWTU+HxMT88TNEBEZK3UXO+XsFpFhqXPo+vHHH0WPy8vLkZubC1NTUzz33HMMXUREdXDjxg0kJCSo1Bm4iAxPnUPX8ePHVWrFxcUYMWIEXn/9dY00RURkDNTNbr3++ut44YUXJOiGiOqbxq5If+rUKQwYMAB5eXmaeDuDwCvSE1F1uJxIpLt05t6L1SkqKkJRUZGm3o6IyCBduXIFK1euVKkzcBEZvjqHruXLl4seC4KAq1evYt26dbwdBRFRDdTNbgUHB6NNmzYSdENE2lbn0LVkyRLRY7lcjsaNGyM0NBTR0dEaa4yIyJBwOZGIeJ0uIqJ6lJeXhzVr1qjUGbiIjM8THdNVWFiIixcvAgBatWoFe3t7TfZERGQQ1M1ujRgxAs2bN5egGyKSmrwug/Py8hAYGAhHR0f4+PjAx8cHjo6O6N+/P89aJCL6l+qWExm4iIxXrWe6Ll26hG7dusHMzAyzZ8+Gh4cHAODMmTP48ssv4evriyNHjuDZZ5+tt2aJiHTduXPnsGnTJpU6lxOJqNbX6QoLC8PFixexa9cuWFpaip67d+8e+vbti9atW+Prr7+ul0b1Ea/TRWRc1M1uhYeHw8XFRYJuiOhJSX6drtTUVGzevFklcAGAlZUVZs+ejaFDh2qsMSIifcKzE4nocWodum7cuIEWLVpU+3zLli1x69YtTfRERKQ3Tp48iW3btqnUGbiI6FG1Dl0uLi44c+ZMtcdsZWdnw9nZWWONERHpOnWzW+PHj0ejRo0k6IaIdF2tz14MCgrC5MmTcf36dZXnrl27ho8//hhBQUGa7I2ISGdVt5zIwEVE1an1gfS3b9+Gj48PFAoF3n33XbRt2xaCICAnJwcbNmyAs7Mzfv/9dzg4ONR3z3qDB9ITGZ7MzEykpqaq1LmcSGQ4JD+Q/plnnkFmZiamTZuGTZs2obCwEABgb2+Pd955B/PmzWPgIiKDpm52KyIiAnZ2dhJ0Q0T6ptYzXf8mCIJymbFx48aQyWQab8wQcKaLyDAIgoBZs2ap1Dm7RWSYJJ/p+jeZTIYmTZporAkiIl21d+9eHDhwQFQzNzdHdHS0RB0Rkb56otBFRGQM1C0nTpkyBdbW1hJ0Q0T6rk73XqwPCQkJaNGiBSwtLeHj44PDhw/XOH7r1q1o27YtLC0t0bFjR+zYsUP0vCAIiImJgYuLC6ysrODv748LFy6Ixty6dQvDhg2Dra0t7O3tERYWhjt37qi8z8KFC9GmTRtYWFigadOmmDt3rmY2moh0miAI1Z6dyMBFRE9K0tC1efNmREZGIjY2FseOHUOnTp0QEBCAa9euqR1/6NAhBAcHIywsDMePH0dQUBCCgoKQnZ2tHLNgwQIsX74ciYmJyMzMhI2NDQICAnD//n3lmGHDhuH06dNIS0tDSkoKDhw4gPDwcNFnTZw4EV9//TUWLlyIs2fPIjk5GV27dq2fHUFEOmPHjh0qx281atSIx28R0VN7ogPpNcXHxwddunTBihUrAABVVVVwc3PDhAkTEBUVpTJ+yJAhKCkpQUpKirLWrVs3eHp6IjExEYIgwNXVFZMmTcLkyZMBAEVFRXByckJSUhKGDh2KnJwctGvXDkeOHIG3tzeAB7c4eu2113D58mW4uroiJycHL7zwArKzs/H8888/8fbxQHoi/aJudisqKgoWFhYSdENEUpH0QPrly5fX+g0//PDDWo0rKytDVlaW6GBUuVwOf39/ZGRkqH1NRkYGIiMjRbWAgADlLThyc3OhUCjg7++vfN7Ozg4+Pj7IyMjA0KFDkZGRAXt7e2XgAgB/f3/I5XJkZmbi9ddfx/bt29GyZUukpKSgb9++EAQB/v7+WLBgQY2XxSgtLUVpaanycXFxca32BRFJq6qqCrNnz1apc3aLiDSpVqFryZIltXozmUxW69B148YNVFZWwsnJSVR3cnLC2bNn1b5GoVCoHa9QKJTPP6zVNObRMy9NTU3h4OCgHPPXX3/h77//xtatW7F27VpUVlbio48+wptvvok9e/ZUu03z589X+y9lItJdW7duxZkzZ0S15s2bY8SIEdI0REQGq1ahKzc3t7770ClVVVUoLS3F2rVr0aZNGwDAN998Ay8vL5w7d67aJcfo6GjRTFxxcTHc3Ny00jMR1Z26fyR98sknMDXlid1EpHlPfCB9WVkZzp07h4qKiid6vaOjI0xMTFBQUCCqFxQUVHvjbGdn5xrHP/z1cWMePVC/oqICt27dUo5xcXGBqampMnABgIeHBwAgPz+/2m2ysLCAra2t6IeIdE9FRUW1ZycycBFRfalz6Lp79y7CwsJgbW2N9u3bK0PIhAkTEB8fX+v3MTc3h5eXF9LT05W1qqoqpKenw9fXV+1rfH19ReMBIC0tTTne3d0dzs7OojHFxcXIzMxUjvH19UVhYSGysrKUY/bs2YOqqir4+PgAAF566SVUVFTgzz//VI45f/48gAfLDkSkv5KSklQu/9K+fXsev0VE9a7OoSs6OhonT57Evn37YGlpqaz7+/tj8+bNdXqvyMhIrFy5EmvWrEFOTg7Gjh2LkpISjBw5EgAQEhIiOtB+4sSJSE1NxaJFi3D27FnMnDkTR48exfjx4wE8OKYsIiICc+bMQXJyMk6dOoWQkBC4uroiKCgIwIMZq759+2L06NE4fPgwDh48iPHjx2Po0KFwdXVVbsuLL76IUaNG4fjx48jKysKYMWPwn//8RzT7RUT6JS4uDn///beoNmPGDLz55psSdURExqTO8+jbtm3D5s2b0a1bN9E9F9u3by+aGaqNIUOG4Pr164iJiYFCoYCnpydSU1OVB8Ln5+dDLv9fLvTz88OGDRswffp0TJs2Da1bt8a2bdvQoUMH5ZipU6eipKQE4eHhKCwsxMsvv4zU1FRRQFy/fj3Gjx+P3r17Qy6XY/DgwaIzNOVyObZv344JEyage/fusLGxQb9+/bBo0aK67i4i0gGlpaVqZ+I5u0VE2lTn63RZW1sjOzsbLVu2RMOGDXHy5Em0bNkSJ0+eRPfu3VFUVFRfveodXqeLSHrx8StQWnpTVPP29kZgYKBEHRGRrquv7+86Ly96e3vj559/Vj5+ONv19ddfV3ssFhGRFOLi4lQCV0xMDAMXEUmizsuL8+bNQ79+/XDmzBlUVFRg2bJlOHPmDA4dOoT9+/fXR49ERHVSUlKChQsXqtS5nEhEUqpz6Hr55Zdx4sQJxMfHo2PHjti9ezdefPFFZGRkoGPHjvXRIxFRrc2fPx9lZWWiWo8ePfDqq69K0xAR0f8n6b0XDR2P6SLSLnXX3oqJiRGd9ENE9DiS3nuxLvcQZLggIm0rKirC0qVLVepcTiQiXVKr0GVvb1/rfylWVlY+VUNERHWhbnarb9++yosdExHpilqFrr179yr/Oy8vD1FRURgxYoTybMWMjAysWbMG8+fPr58uiYjUqO5WPkREuqjOx3T17t0b7733HoKDg0X1DRs24KuvvsK+ffs02Z9e4zFdRPXj5s2bWLFihUqdgYuINKG+vr+f6OKoJ0+eROvWrUX18+fPw9PTE3fv3tVYc/qOoYtI89TNbgUFBaFTp04SdENEhkhnLo7q5uaGlStXqtS//vpruLm5aaQpIiJ1qltOZOAiIn1Q5+t0LVmyBIMHD8bOnTuVB6oePnwYFy5cwPfff6/xBomIrl69iq+++kqlzuVEItInT3SdrsuXL+OLL77A2bNnAQAeHh54//33OdP1CC4vEj09dbNbQ4YMQdu2bSXohoiMgc4c00W1x9BF9HR4diIRSUHSi6M+qrCwEN988w1ycnIAAO3bt8eoUaNgZ2enscaIyHj9/fffSEpKUqkzcBGRPqvzTNfRo0cREBAAKysrdO3aFQBw5MgR3Lt3T3kfRnqAM11Edadudis0NBQtWrTQfjNEZJR0ZnnxlVdeQatWrbBy5UqYmj6YKKuoqMB7772Hv/76CwcOHNBYc/qOoYuobricSES6QGdCl5WVFY4fP65yEOuZM2fg7e3N63T9C0MXUe2cP38eGzduVKkzcBGRFHTmmC5bW1vk5+erhK5Lly6hYcOGGmuMiIyDutmt0aNHw9XVVYJuiIjqT51D15AhQxAWFoaFCxfCz88PAHDw4EFMmTJF5dZAREQ14XIiERmTOoeuhQsXQiaTISQkBBUVFQAAMzMzjB07FvHx8RpvkIgMzx9//IEff/xRpd65cyz8/ICoKGDgQAkaIyKqR098na67d+/izz//BAA899xzsLa21mhjhoDHdBGpUje7NW7cODg6OsLPD8jIAHx9gUOHJGiOiAg6dEzXQ9bW1ujYsaPGGiEiw/e45cSoKCA+/sGvRESGptaha9SoUbUat2rVqiduhogM0+HDh7Fz506V+qPHbw0cyGVFIjJctQ5dSUlJaN68OTp37gzeOYiIakvd7FZERATvYEFERqfWoWvs2LHYuHEjcnNzMXLkSLz77rtwcHCoz96ISI8JgoBZs2ap1Hl2IhEZK3ltByYkJODq1auYOnUqtm/fDjc3N7z99tvYtWsXZ76ISGT//v0qgcvU1JSBi4iM2hOfvfjwhrRr165FRUUFTp8+jQYNGmi6P73GsxfJGKlbTpw8eTJsbGwk6IaIqO507uxFuVwOmUwGQRBQWVmpsYaISD9xOZGIqGa1Xl4EgNLSUmzcuBH/+c9/0KZNG5w6dQorVqxAfn4+Z7mIjNjOnTtVAtczzzzDwEVE9C+1nun64IMPsGnTJri5uWHUqFHYuHEjHB0d67M3ItID6pYTP/74Y1haWkrQDRGR7qr1MV1yuRzNmjVD586dIZPJqh33ww8/aKw5fcdjusiQVVVVYfbs2Sp1zm4Rkb6T/JiukJCQGsMWERmP77//HtnZ2aLaw1lwIiJSr04XRyUiUrecOG3aNJiZmUnQDRGR/njisxeJyLhUVFRg7ty5KnUuJxIR1Q5DFxE91tq1a5GbmyuqeXh44O2335aoIyIi/cPQRUQ1UrecOH36dJiYmEjQDRGR/mLoIiK1SktLER8fr1LnciIR0ZNh6CIiFV988QWuX78uqnl5eaF///4SdUREpP8YuohIRN1yYkxMDC8ZQ0T0lBi6iAgAcPfuXXz22WcqdS4nEhFpBkMXEeHTTz/F/fv3RbVXXnkFvXr1kqgjIiLDw9BFZOS4nEhEpB0MXURGqri4GEuWLFGpczmRiKh+MHQRGSF1s1t9+vSBr6+vBN0QERkHhi4iI6MucHF2i4io/jF0ERmJW7du4fPPP1epM3AREWkHQxeREVA3uzVw4EB07txZgm6IiIyTXOoGiKh+Vbec+DBwJScDfn4PfiUiovrD0EVkoBQKRa2O34qPBzIyHvxKRET1h8uLRAZIXdgaMmQI2rZtq1KPinoQuKKitNEZEZHxYugiMjB1PTtx4MAHP0REVL90YnkxISEBLVq0gKWlJXx8fHD48OEax2/duhVt27aFpaUlOnbsiB07doieFwQBMTExcHFxgZWVFfz9/XHhwgXRmFu3bmHYsGGwtbWFvb09wsLCcOfOHbWfd/HiRTRs2BD29vZPtZ1E9Sk/P5+XgyAi0mGSh67NmzcjMjISsbGxOHbsGDp16oSAgABcu3ZN7fhDhw4hODgYYWFhOH78OIKCghAUFITs7GzlmAULFmD58uVITExEZmYmbGxsEBAQILq33LBhw3D69GmkpaUhJSUFBw4cQHh4uMrnlZeXIzg4GK+88ormN55IQ+Li4rB69WpRLSQkhIGLiEiHyARBEKRswMfHB126dMGKFSsAAFVVVXBzc8OECRMQpeYgkyFDhqCkpAQpKSnKWrdu3eDp6YnExEQIggBXV1dMmjQJkydPBgAUFRXByckJSUlJGDp0KHJyctCuXTscOXIE3t7eAIDU1FS89tpruHz5MlxdXZXv/fHHH+PKlSvo3bs3IiIiUFhYWOttKy4uhp2dHYqKimBra/sku4fosTi7RUSkWfX1/S3pTFdZWRmysrLg7++vrMnlcvj7+yMjI0PtazIyMkTjASAgIEA5Pjc3FwqFQjTGzs4OPj4+yjEZGRmwt7dXBi4A8Pf3h1wuR2ZmprK2Z88ebN26FQkJCbXantLSUhQXF4t+iOrLunUXGLiIiPSIpAfS37hxA5WVlXBychLVnZyccPbsWbWvUSgUascrFArl8w9rNY1p0qSJ6HlTU1M4ODgox9y8eRMjRozAt99+W+uUO3/+fLVfgkSapu7/s/feew9NmzaVoBsiIqoNyY/p0lWjR4/GO++8g+7du9f6NdHR0SgqKlL+XLp0qR47JGNV3ewWAxcRkW6TdKbL0dERJiYmKCgoENULCgrg7Oys9jXOzs41jn/4a0FBAVxcXERjPD09lWMePVC/oqICt27dUr5+z549SE5OxsKFCwE8OCOyqqoKpqam+OqrrzBq1CiV3iwsLGBhYVHbzSeqkzVrspGX971KncuJRET6QdKZLnNzc3h5eSE9PV1Zq6qqQnp6Onx9fdW+xtfXVzQeANLS0pTj3d3d4ezsLBpTXFyMzMxM5RhfX18UFhYiKytLOWbPnj2oqqqCj48PgAfHfZ04cUL5M2vWLDRs2BAnTpzA66+/rpkdQFRLcXFxKoHrgw8+YOAiItIjkl8cNTIyEqGhofD29kbXrl2xdOlSlJSUYOTIkQAenPbetGlTzJ8/HwAwceJE9OjRA4sWLUJgYCA2bdqEo0eP4quvvgIAyGQyREREYM6cOWjdujXc3d0xY8YMuLq6IigoCADg4eGBvn37YvTo0UhMTER5eTnGjx+PoUOHKs9c9PDwEPV59OhRyOVydOjQQUt7hugBHixPRGQYJA9dQ4YMwfXr1xETEwOFQgFPT0+kpqYqD4TPz8+HXP6/CTk/Pz9s2LAB06dPx7Rp09C6dWts27ZNFIamTp2KkpIShIeHo7CwEC+//DJSU1NhaWmpHLN+/XqMHz8evXv3hlwux+DBg7F8+XLtbTjRY5w+fRrfffedSp2Bi4hIP0l+nS5Dxut00ZNSN7v10Ucf8f8jIiItqK/vb8lnuohIjMuJRESGiaGLSEccO3YM27dvF9VcXFzU3p6KiIj0D0MXkQ5QN7s1ZcoUWFtbS9ANERHVB4YuIgkJgoBZs2ap1LmcSERkeBi6iLQsORmIjwdGjjyEK1fSRM8999xzePfddyXqjIiI6hNDF5GWxccDAQFxuHJFXI+KiuIdDYiIDBhDF5EWCYKAgAAuJxIRGSOGLiItOXjwIH755RdRrWPHjnjjjTck6oiIiLSJoYtIC9SdnfjJJ5/A1JR/BImIjAX/xieqR5WVlZgzZ45KncuJRETGh6GLqJ6kp6fjt99+E9W6d++Onj17StQRERFJiaGLqB6oW06cMWOG6ObtRERkXBi6iDSovLwc8+bNU6lzOZGIiBi6iDQkJSUFWVlZolqfPn3g6+srUUdERKRLGLqINEDdcmJMTAxkMpkE3RARkS5i6CJ6CqWlpYiPj1epczmRiIgexdBF9IS2bt2KM2fOiGoDBgzAiy++KFFHRESkyxi6iJ4AlxOJiKiuGLqI6uDu3bv47LPPVOpcTiQiosdh6CKqpbVr1yI3N1dUe+utt9CuXTuJOiIiIn3C0EVUC+qWEzm7RUREdcHQRVSDf/75B4sXL1apM3AREVFdMXQRVSMxMREFBQWi2rBhw9CqVSuJOiIiIn3G0EWkBpcTiYhI0xi6iP7l9u3bWL58uUqdgYuIiJ4WQxfR/7do0SLcuXNHVBs5ciSaNWsmUUdERGRIGLqIwOVEIiKqfwxdZNSuX7+OL774QqXOwEVERJrG0EVGa9asWRAEQVQLDw+Hi4uLRB0REZEhY+gio8TlRCIi0jaGLjIqV65cwcqVK0U1U1NTfPLJJxJ1RERExoKhi4yGutmtcePGwdHRUYJuiIjI2DB0kVHgciIREUmNoYsM2t9//42kpCRRrWHDhoiMjJSmISIiMloMXWSw1M1uTZw4Efb29tpvhoiIjB5DFxkkLicSEZGuYegig3LhwgVs2LBBVHNxcUF4eLhEHRERET3A0EUGQ93s1qRJk9CgQQMJuiEiIhJj6CKDwOVEIiLSdQxdpNeys7Px/fffi2otW7bE8OHDJeqIiIhIPYYu0lvqZremTp0KKysrCbohIiKqGUMX6R1BEDBr1iyVOpcTiYhIlzF0kV7JyspCSkqKqNahQwcMHjxYoo6IiIhqh6GL9Ia65cTo6GiYm5tL0A0REVHdMHSRzuNyIhERGQKGLtJphw4dQlpamqjm7e2NwMBAiToiIiJ6MgxdpLPULSd+8sknMDXl/7ZERKR/+O1FOqeqqgqzZ89WqXM5kYiI9BlDF+mUY8eOYfv27aLaK6+8gl69eknUERERkWYwdJHOULec6Ok5Hb16mUjQDRERkWbJpW4AABISEtCiRQtYWlrCx8cHhw8frnH81q1b0bZtW1haWqJjx47YsWOH6HlBEBATEwMXFxdYWVnB398fFy5cEI25desWhg0bBltbW9jb2yMsLAx37txRPr9v3z4MGjQILi4usLGxgaenJ9avX6+5jSalyspKtYFr5sxYfPopAxcRERkGyUPX5s2bERkZidjYWBw7dgydOnVCQEAArl27pnb8oUOHEBwcjLCwMBw/fhxBQUEICgpCdna2csyCBQuwfPlyJCYmIjMzEzY2NggICMD9+/eVY4YNG4bTp08jLS0NKSkpOHDgAMLDw0Wf88ILL+D777/HH3/8gZEjRyIkJETlwpz0dH7//XfMmTNHVBs8eDA6d46Fry8QFSVRY0RERBomEwRBkLIBHx8fdOnSBStWrADw4CBqNzc3TJgwAVFqvnGHDBmCkpISUfjp1q0bPD09kZiYCEEQ4OrqikmTJmHy5MkAgKKiIjg5OSEpKQlDhw5FTk4O2rVrhyNHjsDb2xsAkJqaitdeew2XL1+Gq6ur2l4DAwPh5OSEVatW1WrbiouLYWdnh6KiItja2tZpvxgDdbNbMTExkMlkEnRDRET0QH19f0s601VWVoasrCz4+/sra3K5HP7+/sjIyFD7moyMDNF4AAgICFCOz83NhUKhEI2xs7ODj4+PckxGRgbs7e2VgQsA/P39IZfLkZmZWW2/RUVFcHBwqPb50tJSFBcXi35IVXl5udrAFRsby8BFREQGS9ID6W/cuIHKyko4OTmJ6k5OTjh79qza1ygUCrXjFQqF8vmHtZrGNGnSRPS8qakpHBwclGMetWXLFhw5cgT//e9/q92e+fPnqw0T9D/79+/Hvn37RLXg4GC0adNGmoaIiIi0hGcv1sLevXsxcuRIrFy5Eu3bt692XHR0NCIjI5WPi4uL4ebmpo0W9QKXE4mIyJhJGrocHR1hYmKCgoICUb2goADOzs5qX+Ps7Fzj+Ie/FhQUwMXFRTTG09NTOebRA/UrKipw69Ytlc/dv38/BgwYgCVLliAkJKTG7bGwsICFhUWNY4xRaWkp4uPjVeq82CkRERkTSY/pMjc3h5eXF9LT05W1qqoqpKenw9fXV+1rfH19ReMBIC0tTTne3d0dzs7OojHFxcXIzMxUjvH19UVhYSGysrKUY/bs2YOqqir4+Pgoa/v27UNgYCA+/fRT0ZmNVHu7d+9WCVwhISEMXEREZHQkX16MjIxEaGgovL290bVrVyxduhQlJSUYOXIkgAdf0E2bNsX8+fMBABMnTkSPHj2waNEiBAYGYtOmTTh69Ci++uorAIBMJkNERATmzJmD1q1bw93dHTNmzICrqyuCgoIAAB4eHujbty9Gjx6NxMRElJeXY/z48Rg6dKjyzMW9e/eif//+mDhxIgYPHqw81svc3LzGg+npf6o7WJ6IiMgYSR66hgwZguvXryMmJgYKhQKenp5ITU1VHgifn58Pufx/E3J+fn7YsGEDpk+fjmnTpqF169bYtm0bOnTooBwzdepUlJSUIDw8HIWFhXj55ZeRmpoKS0tL5Zj169dj/Pjx6N27N+RyOQYPHozly5crn1+zZg3u3r2L+fPnKwMfAPTo0UPlQHASu3fvHhYsWCCqmZmZYdq0aRJ1REREJD3Jr9NlyIzxOl3bt2/HsWPHRLWwsDA8++yzEnVERERUN/X1/S35TBcZDi4nEhERVY+hi57anTt3sGjRIlHNzs4OERER0jRERESkgxi66Kls2bIFOTk5otqYMWOqveQHERGRsWLooifG5UQiIqLaY+iiOissLMSyZctENWdnZ4wZM0aijoiIiHQfQxfVybp16/DXX3+JauPGjYOjo6NEHREREekHhi6qNS4nEhERPTmGLnqsf/75B4sXLxbV3N3dH3svSiIiIvofhi6q0S+//IKDBw+KahMnToS9vb00DREREekphi6qFpcTiYiINEf++CFkbIqKilQCl6vrf7BrVyySkyVqioiISM9xpotEfv75Zxw9elRUmzp1Knr3tkJGBhAfDwwcKFFzREREeoyhi5RqWk6MinoQuKKitN0VERGRYWDoIty8eRMrVqwQ1V577TV06dJF+XjgQM5wERERPQ2GLiO3bds2nDx5UlSLioqChYWFRB0REREZJoYuI8azE4mIiLSHocsIlZSUYOHChaLaoEGD4OnpKU1DRERERoChy8hkZ2fj+++/F9WmTZsGMzMziToiIiIyDgxdRkIQBKxatQqXL19W1pyde2DNmlfRuTMPkiciIqpvDF1GQN29E8eOHYugoCa89hYREZGWMHQZuBMnTuCnn35SPra0tMSUKVMgl8t57S0iIiItYugyUIIg4L///S8KCgqUtd69e+Pll19WPua1t4iIiLSHocsAFRUVYenSpaLa+PHj0ahRI2kaIiIiIoYuQ5OVlYWUlBTl4wYNGuCjjz6CXM57mxMREUmJoctACIKAFStW4NatW8paQEAAunXrJmFXRERE9BBDlwG4ffs2li9fLqp9+OGHeOaZZyTqiIiIiB7F0KXnMjMzkZqaqnzs4OCA8ePHQyaTSdgVERERPYqhSw8lJwPx8QL691+K8vJiZT0wMBDe3t4SdkZERETVYejSQ8uX30RAwAqUl/+vFhERATs7O+maIiIiohoxdOmhV15ZofxvJycnjBkzhsuJREREOo6hS48NGjQInp6eUrdBREREtSATBEGQuglDVVxcDDs7OxQVFcHW1lbqdoiIiKgW6uv7m1fMJCIiItIChi4iIiIiLWDoIiIiItIChi4iIiIiLWDoIiIiItIChi4iIiIiLWDoIiIiItIChi4iIiIiLWDoIiIiItIChi4iIiIiLWDoIiIiItIChi4iIiIiLWDoIiIiItIChi4iIiIiLTCVugFDJggCAKC4uFjiToiIiKi2Hn5vP/we1xSGrnr0zz//AADc3Nwk7oSIiIjq6p9//oGdnZ3G3k8maDrGkVJVVRWuXLmChg0bQiaTSd2OTikuLoabmxsuXboEW1tbqdvRa9yXmsH9qDncl5rB/ag5dd2XgiDgn3/+gaurK+RyzR2JxZmueiSXy/Hss89K3YZOs7W15V8mGsJ9qRncj5rDfakZ3I+aU5d9qckZrod4ID0RERGRFjB0EREREWkBQxdJwsLCArGxsbCwsJC6Fb3HfakZ3I+aw32pGdyPmqMr+5IH0hMRERFpAWe6iIiIiLSAoYuIiIhICxi6iIiIiLSAoYuIiIhICxi6qFYSEhLQokULWFpawsfHB4cPH65x/NatW9G2bVtYWlqiY8eO2LFjh+h5QRAQExMDFxcXWFlZwd/fHxcuXBCNuXXrFoYNGwZbW1vY29sjLCwMd+7cUT6/b98+DBo0CC4uLrCxsYGnpyfWr1+vuY2uB7q4H//t4sWLaNiwIezt7Z9qO7VBV/elIAhYuHAh2rRpAwsLCzRt2hRz587VzEbXA13dj7t27UK3bt3QsGFDNG7cGIMHD0ZeXp5Gtrm+SLEv586dCz8/P1hbW1f75zY/Px+BgYGwtrZGkyZNMGXKFFRUVDzVttY3XdyXJ0+eRHBwMNzc3GBlZQUPDw8sW7asbhsmED3Gpk2bBHNzc2HVqlXC6dOnhdGjRwv29vZCQUGB2vEHDx4UTExMhAULFghnzpwRpk+fLpiZmQmnTp1SjomPjxfs7OyEbdu2CSdPnhQGDhwouLu7C/fu3VOO6du3r9CpUyfh999/F3799VehVatWQnBwsPL5uXPnCtOnTxcOHjwoXLx4UVi6dKkgl8uF7du319/OeAq6uh8fKisrE7y9vYV+/foJdnZ2Gt9+TdLlfTlhwgTh+eefF3766Sfhr7/+Eo4ePSrs3r27fnbEU9LV/fjXX38JFhYWQnR0tHDx4kUhKytL6N69u9C5c+f62xlPSap9GRMTIyxevFiIjIxU++e2oqJC6NChg+Dv7y8cP35c2LFjh+Do6ChER0drfB9oiq7uy2+++Ub48MMPhX379gl//vmnsG7dOsHKykr4/PPPa71tDF30WF27dhXGjRunfFxZWSm4uroK8+fPVzv+7bffFgIDA0U1Hx8fYcyYMYIgCEJVVZXg7OwsfPbZZ8rnCwsLBQsLC2Hjxo2CIAjCmTNnBADCkSNHlGN27twpyGQy4f/+7/+q7fW1114TRo4cWfeN1AJd349Tp04V3n33XWH16tU6H7p0dV+eOXNGMDU1Fc6ePauZDa1nuroft27dKpiamgqVlZXKMcnJyYJMJhPKysqecqvrhxT78t+q+3O7Y8cOQS6XCwqFQln78ssvBVtbW6G0tLRO26gturov1fnggw+Enj171mqsIAgClxepRmVlZcjKyoK/v7+yJpfL4e/vj4yMDLWvycjIEI0HgICAAOX43NxcKBQK0Rg7Ozv4+Pgox2RkZMDe3h7e3t7KMf7+/pDL5cjMzKy236KiIjg4ONR9Q+uZru/HPXv2YOvWrUhISHj6ja1nurwvt2/fjpYtWyIlJQXu7u5o0aIF3nvvPdy6dUszG69Burwfvby8IJfLsXr1alRWVqKoqAjr1q2Dv78/zMzMNLMDNEiqfVkbGRkZ6NixI5ycnESfU1xcjNOnT9f6fbRFl/elOnX9zmHoohrduHEDlZWVoj+wAODk5ASFQqH2NQqFosbxD3993JgmTZqInjc1NYWDg0O1n7tlyxYcOXIEI0eOrOXWaY8u78ebN29ixIgRSEpK0oub6uryvvzrr7/w999/Y+vWrVi7di2SkpKQlZWFN9988wm3tv7o8n50d3fH7t27MW3aNFhYWMDe3h6XL1/Gli1bnnBr65dU+7I2qvucf3+GLtHlffmoQ4cOYfPmzQgPD6/1axi6yCDs3bsXI0eOxMqVK9G+fXup29Ero0ePxjvvvIPu3btL3Yreq6qqQmlpKdauXYtXXnkFr776Kr755hvs3bsX586dk7o9vaFQKDB69GiEhobiyJEj2L9/P8zNzfHmm29C4E1USAdkZ2dj0KBBiI2NRZ8+fWr9OoYuqpGjoyNMTExQUFAgqhcUFMDZ2Vnta5ydnWsc//DXx425du2a6PmKigrcunVL5XP379+PAQMGYMmSJQgJCanjFmqHLu/HPXv2YOHChTA1NYWpqSnCwsJQVFQEU1NTrFq16gm3uP7o8r50cXGBqakp2rRpoxzj4eEB4MEZZLpEl/djQkIC7OzssGDBAnTu3Bndu3fHt99+i/T09BoPL5CKVPuyNqr7nH9/hi7R5X350JkzZ9C7d2+Eh4dj+vTpdXotQxfVyNzcHF5eXkhPT1fWqqqqkJ6eDl9fX7Wv8fX1FY0HgLS0NOV4d3d3ODs7i8YUFxcjMzNTOcbX1xeFhYXIyspSjtmzZw+qqqrg4+OjrO3btw+BgYH49NNP6zTFq226vB8zMjJw4sQJ5c+sWbPQsGFDnDhxAq+//rpmdoAG6fK+fOmll1BRUYE///xTOeb8+fMAgObNmz/NZmucLu/Hu3fvQi4Xfz2ZmJgoe9Q1Uu3L2vD19cWpU6dEQTctLQ22trZo165drd9HW3R5XwLA6dOn0bNnT4SGhj7ZpWBqfcg9Ga1NmzYJFhYWQlJSknDmzBkhPDxcsLe3V54NM3z4cCEqKko5/uDBg4KpqamwcOFCIScnR4iNjVV7+q69vb3w008/CX/88YcwaNAgtaeVd+7cWcjMzBR+++03oXXr1qLTyvfs2SNYW1sL0dHRwtWrV5U/N2/e1MJeqTtd3Y+P0oezF3V1X1ZWVgovvvii0L17d+HYsWPC0aNHBR8fH+E///mPFvZK3enqfkxPTxdkMpkQFxcnnD9/XsjKyhICAgKE5s2bC3fv3tXCnqk7qfbl33//LRw/flyIi4sTGjRoIBw/flw4fvy48M8//wiC8L9LRvTp00c4ceKEkJqaKjRu3FjnLxmhi/vy1KlTQuPGjYV3331X9J1z7dq1Wm8bQxfVyueffy40a9ZMMDc3F7p27Sr8/vvvyud69OghhIaGisZv2bJFaNOmjWBubi60b99e+Pnnn0XPV1VVCTNmzBCcnJwECwsLoXfv3sK5c+dEY27evCkEBwcLDRo0EGxtbYWRI0cq/+cXBEEIDQ0VAKj89OjRQ+Pbrym6uB8fpQ+hSxB0d1/+3//9n/DGG28IDRo0EJycnIQRI0bo7D8EBEF39+PGjRuFzp07CzY2NkLjxo2FgQMHCjk5OZrdeA2TYl9W9/fg3r17lWPy8vKEfv36CVZWVoKjo6MwadIkoby8XOPbr0m6uC9jY2PVPt+8efNab5dMEHhUIhEREVF94zFdRERERFrA0EVERESkBQxdRERERFrA0EVERESkBQxdRERERFrA0EVERESkBQxdRERERFrA0EVERESkBQxdRGQUFAoFJkyYgJYtW8LCwgJubm4YMGCAyj3bBEFAv379IJPJsG3bNmU9Ly8PMpkMJ06cUHnvV199FREREcrHP/zwA/r06YNGjRpV+5r79+9j3LhxaNSoERo0aIDBgwer3JCXiAwLQxcRGby8vDx4eXlhz549+Oyzz3Dq1CmkpqaiZ8+eGDdunGjs0qVLIZPJnurzSkpK8PLLL+PTTz+tdsxHH32E7du3Y+vWrdi/fz+uXLmCN95446k+l4h0m6nUDRAR1bcPPvgAMpkMhw8fho2NjbLevn17jBo1Svn4xIkTWLRoEY4ePQoXF5cn/rzhw4cDeBD21CkqKsI333yDDRs2oFevXgCA1atXw8PDA7///ju6dev2xJ9NRLqLM11EZNBu3bqF1NRUjBs3ThS4HrK3twcA3L17F++88w4SEhLg7Oxcrz1lZWWhvLwc/v7+ylrbtm3RrFkzZGRk1OtnE5F0ONNFRAbt4sWLEAQBbdu2rXHcRx99BD8/PwwaNKjGcX5+fpDLxf9evXfvHjw9PWvdk0KhgLm5uTLwPeTk5ASFQlHr9yEi/cLQRUQGTRCEx45JTk7Gnj17cPz48ceO3bx5Mzw8PES1YcOGPXF/RGQ8GLqIyKC1bt0aMpkMZ8+erXbMnj178Oeff6rMPA0ePBivvPIK9u3bp6y5ubmhVatWonFWVlZ16snZ2RllZWUoLCwUfWZBQUG9L20SkXR4TBcRGTQHBwcEBAQgISEBJSUlKs8XFhYiKioKf/zxB06cOKH8AYAlS5Zg9erVGu/Jy8sLZmZmostVnDt3Dvn5+fD19dX45xGRbuBMFxEZvISEBLz00kvo2rUrZs2ahRdeeAEVFRVIS0vDl19+iZycHLUzTM2aNYO7u3udP+/WrVvIz8/HlStXADwIVMCDGS5nZ2fY2dkhLCwMkZGRcHBwgK2tLSZMmABfX1+euUhkwBi6iMjgtWzZEseOHcPcuXMxadIkXL16FY0bN4aXlxe+/PJLjX9ecnIyRo4cqXw8dOhQAEBsbCxmzpwJ4MEsmlwux+DBg1FaWoqAgAB88cUXGu+FiHSHTKjNUaZERERE9FR4TBcRERGRFjB0EREREWkBQxcRERGRFjB0EREREWkBQxcRERGRFjB0EREREWkBQxcRERGRFjB0EREREWkBQxcRERGRFjB0EREREWkBQxcRERGRFjB0EREREWnB/wPmF4nUoNl1xAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAS4pJREFUeJzt3XlYVGX/BvB7QBYBBZXdRsEVV1RQxDKzeAVL1DJDWwA1Lbc01ARTUNEgI0WT9M1yyXItU141SHklM0lzK/ctCBdANAEFZZvz+8Of83aaQRmYmTPL/bkurpzvnHnme07G3D3PmXNkgiAIICIiIjIjFlI3QERERKRvDEBERERkdhiAiIiIyOwwABEREZHZYQAiIiIis8MARERERGaHAYiIiIjMDgMQERERmR0GICIiIjI7DEBEZLRkMhnmzp0rdRtKkZGR8PLykroNIqoFBiAi0qq1a9dCJpMpf2xtbdGuXTtMmjQJBQUFOn3vgwcPYu7cuSgqKtLquM8884xon5o2bYqePXti9erVUCgUWnmPDz74ANu3b9fKWET0eA2kboCITNP8+fPh7e2N+/fv48CBA1ixYgV2796NU6dOwc7OTivvce/ePTRo8L9fYwcPHsS8efMQGRkJJycnrbzHQ0888QQSEhIAAIWFhfjyyy8xZswYXLhwAYmJifUe/4MPPsDLL7+MoUOH1nssIno8BiAi0omBAwfC398fAPDmm2+iWbNmWLx4MXbs2IGRI0fWeVyFQoGKigrY2trC1tZWW+0+lqOjI15//XXl47feegvt27fH8uXLER8fDysrK731QkT1xyUwItKLZ599FgCQnZ0NAEhKSkKfPn3QrFkzNGzYEH5+fvjmm29UXieTyTBp0iR8/fXX6NSpE2xsbJCWlqZ87uE5QHPnzsWMGTMAAN7e3srlqpycHPTr1w++vr5q+2rfvj2Cg4M13h87Ozv07t0bpaWlKCwsrHG70tJSTJs2DXK5HDY2Nmjfvj2SkpIgCIJoH0tLS7Fu3Tpl35GRkRr3RES1xxkgItKLy5cvAwCaNWsGAFi6dCkGDx6M1157DRUVFdi0aROGDx+OnTt34oUXXhC99r///S+2bNmCSZMmwdnZWe2Jxi+99BIuXLiAjRs3YsmSJXB2dgYAuLi44I033sDYsWNx6tQpdO7cWfmaX3/9FRcuXMDs2bPrtE9//PEHLC0ta1xuEwQBgwcPxr59+zBmzBh069YN6enpmDFjBq5du4YlS5YAANavX48333wTvXr1wrhx4wAArVu3rlNPRFRLAhGRFq1Zs0YAIOzdu1coLCwUrly5ImzatElo1qyZ0LBhQ+Hq1auCIAhCWVmZ6HUVFRVC586dhWeffVZUByBYWFgIp0+fVnkvAEJcXJzy8UcffSQAELKzs0XbFRUVCba2tsLMmTNF9XfeeUewt7cX7t69+8h96tevn+Dj4yMUFhYKhYWFwtmzZ4V33nlHACCEhoYqt4uIiBBatmypfLx9+3YBgLBgwQLReC+//LIgk8mES5cuKWv29vZCRETEI/sgIu3hEhgR6URQUBBcXFwgl8sxYsQIODg44LvvvkPz5s0BAA0bNlRue/v2bRQXF6Nv3744duyYylj9+vVDx44d69yLo6MjhgwZgo0bNyqXnqqrq7F582YMHToU9vb2jx3j3LlzcHFxgYuLCzp06IBPPvkEL7zwAlavXl3ja3bv3g1LS0u88847ovq0adMgCAK+//77Ou8TEdUPl8CISCdSUlLQrl07NGjQAG5ubmjfvj0sLP73/1w7d+7EggULcOLECZSXlyvrMplMZSxvb+969xMeHo7Nmzfjp59+wtNPP429e/eioKAAb7zxRq1e7+XlhVWrVim/2t+2bVu4uro+8jV//vknPD090ahRI1G9Q4cOyueJSBoMQESkE7169VJ+C+yffvrpJwwePBhPP/00Pv30U3h4eMDKygpr1qzBhg0bVLb/+2xRXQUHB8PNzQ1fffUVnn76aXz11Vdwd3dHUFBQrV5vb29f622JyPBxCYyI9O7bb7+Fra0t0tPTMXr0aAwcOFAr4ULd7NFDlpaWePXVV/HNN9/g9u3b2L59O0aOHAlLS8t6v29NWrZsievXr+POnTui+rlz55TPP/So3olI+xiAiEjvLC0tIZPJUF1drazl5OTU+0rID8/lqelK0G+88QZu376Nt956C3fv3hVd10cXnn/+eVRXV2P58uWi+pIlSyCTyTBw4EBlzd7eXutXsCaimnEJjIj07oUXXsDixYsREhKCV199FTdu3EBKSgratGmD33//vc7j+vn5AQDef/99jBgxAlZWVggNDVUGo+7du6Nz587YunUrOnTogB49emhlf2oSGhqK/v374/3330dOTg58fX3xww8/YMeOHZg6daroq+5+fn7Yu3cvFi9eDE9PT3h7eyMgIECn/RGZM84AEZHePfvss/jiiy+Qn5+PqVOnYuPGjfjwww/x4osv1mvcnj17Ij4+Hr/99hsiIyMxcuRIlYsUhoeHA0CtT36uDwsLC6SmpmLq1KnYuXMnpk6dijNnzuCjjz7C4sWLRdsuXrwYfn5+mD17NkaOHIkVK1bovD8icyYThL9djpSIyMQtXboU7777LnJyctCiRQup2yEiiTAAEZHZEAQBvr6+aNasGfbt2yd1O0QkIZ4DREQmr7S0FKmpqdi3bx9OnjyJHTt2SN0SEUmMM0BEZPJycnLg7e0NJycnTJgwAQsXLpS6JSKSGAMQERERmR1+C4yIiIjMDgMQERERmR2eBK2GQqHA9evX0ahRI16enoiIyEgIgoA7d+7A09NTdPNldRiA1Lh+/TrkcrnUbRAREVEdXLlyBU888cQjt2EAUqNRo0YAHhzAxo0bS9wNERER1UZJSQnkcrnyc/xRGIDUeLjs1bhxYwYgIiIiI1Ob01d4EjQRERGZHQYgIiIiMjsMQERERGR2eA5QPVRXV6OyslLqNkjHrKysYGlpKXUbRESkRQxAdSAIAvLz81FUVCR1K6QnTk5OcHd353WhiIhMBANQHTwMP66urrCzs+OHogkTBAFlZWW4ceMGAMDDw0PijoiISBsYgDRUXV2tDD/NmjWTuh3Sg4YNGwIAbty4AVdXVy6HERGZAJ4EraGH5/zY2dlJ3Anp08N/3zzni4jINDAA1RGXvcwL/30TEZkWBiAiIiIyOwxAREREZHYYgMxIZGQkZDIZZDIZrKys4Obmhn/9619YvXo1FApFrcdZu3YtnJycdNcoERGRjjEAmZmQkBDk5eUhJycH33//Pfr3748pU6Zg0KBBqKqqkro9IiIyA/fu3ZO6BQYgc2NjYwN3d3c0b94cPXr0wKxZs7Bjxw58//33WLt2LQBg8eLF6NKlC+zt7SGXyzFhwgTcvXsXAJCZmYlRo0ahuLhYOZs0d+5cAMD69evh7++PRo0awd3dHa+++qry+jlEREQlJSWYN28eFi1ahO3bt0vaCwOQFgiCgIqKCr3/CIKglf6fffZZ+Pr6Ytu2bQAACwsLLFu2DKdPn8a6devw3//+F++99x4AoE+fPkhOTkbjxo2Rl5eHvLw8TJ8+HcCDr4jHx8fjt99+w/bt25GTk4PIyEit9EhERMbt+PHjWLJkifKxo6OjhN3wQohaUVlZiYSEBL2/b0xMDKytrbUylo+PD37//XcAwNSpU5V1Ly8vLFiwAG+//TY+/fRTWFtbw9HRETKZDO7u7qIxRo8erfxzq1atsGzZMvTs2RN3796Fg4ODVvokIiLjIggCVqxYgcLCQmXt/Pl/oXv3PhJ2xQBE/08QBOW1bvbu3YuEhAScO3cOJSUlqKqqwv3791FWVvbIC0AePXoUc+fOxW+//Ybbt28rT6zOzc1Fx44d9bIfRERkOIqLi5GcnCyq/fTTJGRkNENODjB4sCRtAWAA0gorKyvExMRI8r7acvbsWXh7eyMnJweDBg3C+PHjsXDhQjRt2hQHDhzAmDFjUFFRUWMAKi0tRXBwMIKDg/H111/DxcUFubm5CA4ORkVFhdb6JCIi4/Drr79i9+7dyseOjo6YMmUK/vMfGcrKgOhoCZsDA5BWyGQyrS1FSeG///0vTp48iXfffRdHjx6FQqHAxx9/DAuLB6eIbdmyRbS9tbU1qqurRbVz587h1q1bSExMhFwuBwAcOXJEPztAREQGQxAEfPLJJ7h9+7ayNnDgQPTq1QvAg1kfKWd+HmIAMjPl5eXIz89HdXU1CgoKkJaWhoSEBAwaNAjh4eE4deoUKisr8cknnyA0NBQ///wzVq5cKRrDy8sLd+/eRUZGBnx9fWFnZ4cWLVrA2toan3zyCd5++22cOnUK8fHxEu0lERFJ4a+//sInn3wiqk2ZMsUgrx3Hb4GZmbS0NHh4eMDLywshISHYt28fli1bhh07dsDS0hK+vr5YvHgxPvzwQ3Tu3Blff/21ygneffr0wdtvv42wsDC4uLhg0aJFcHFxwdq1a7F161Z07NgRiYmJSEpKkmgviYhI33755RdR+GnWrBliY2MNMvwAgEzQ1nepTUhJSQkcHR1RXFyMxo0bi567f/8+srOz4e3tDVtbW4k6JH3jv3ciIvUUCgUWL16M0tJSZW3QoEHw8/PTey+P+vz+Jy6BERERUZ3cvHkTKSkpotq777772PBhCBiAiIiISGMHDhxARkaG8rG7uzvGjRunvKSKoWMAIiIiolpTKBT48MMPRZc4GTp0KHx9fSXsSnMMQERERFQrp0+fxjfffCOqRUVFoVGjRhJ1VHcMQERERPRY8+bNEz22t5dj2rRRRrPk9U/8GjwRERHVqLKyUiX8HDnSA9u2jTba8ANwBoiIiIhqcOLECezYsUNU8/GZgPR0F8lvZVFfDEBERESk4p+zPgAQFxcHAAgL03c32scARERERErl5eVITEwU1Xx9fTF06FBpGtIRngNEWhcZGSn6D+WZZ57B1KlT6zWmNsYgIqJH+/XXX1XCz+TJk00u/ACcATIrkZGRWLduHQDAysoKLVq0QHh4OGbNmoUGDXT3V2Hbtm2wsrKq1baZmZno378/bt++Lbp/jCZjEBGR5h615GWKGIDMTEhICNasWYPy8nLs3r0bEydOhJWVFWJiYkTbVVRUwNraWivv2bRpU4MYg4iIVN27dw+LFi0S1Xr27Innn39eoo70g0tgZsbGxgbu7u5o2bIlxo8fj6CgIKSmpiqXrRYuXAhPT0+0b98eAHDlyhW88sorcHJyQtOmTTFkyBDk5OQox6uurkZUVBScnJzQrFkzvPfee/jn/XX/uXxVXl6OmTNnQi6Xw8bGBm3atMEXX3yBnJwc9O/fHwDQpEkTyGQyREZGqh3j9u3bCA8PR5MmTWBnZ4eBAwfi4sWLyufXrl0LJycnpKeno0OHDnBwcEBISAjy8vKU22RmZqJXr16wt7eHk5MTnnzySfz5559aOtJERIbv4MGDKuFn6tSpJh9+AAYgs9ewYUPl5cwzMjJw/vx57NmzBzt37kRlZSWCg4PRqFEj/PTTT/j555+VQeLhaz7++GOsXbsWq1evxoEDB/DXX3/hu+++e+R7hoeHY+PGjVi2bBnOnj2Lf//733BwcIBcLse3334LADh//jzy8vKwdOlStWNERkbiyJEjSE1NRVZWFgRBwPPPP4/KykrlNmVlZUhKSsL69euxf/9+5ObmYvr06QCAqqoqDB06FP369cPvv/+OrKwso7qHDRFRfc2bNw979uwR1eLi4uDo6ChRR/rFJTAzJQgCMjIykJ6ejsmTJ6OwsBD29vb4/PPPlUtfX331FRQKBT7//HNlMFizZg2cnJyQmZmJAQMGIDk5GTExMXjppZcAACtXrkR6enqN73vhwgVs2bIFe/bsQVBQEACgVatWyucfLnW5urqKzgH6u4sXLyI1NRU///wz+vTpAwD4+uuvIZfLsX37dgwfPhzAg4t3rVy5Eq1btwYATJo0CfPnzwcAlJSUoLi4GIMGDVI+36FDB80PJBGRkSktLUVSUpKo9uSTTyp/J5sLzgBJKDUV6NPnwT/1ZefOnXBwcICtrS0GDhyIsLAwzJ07FwDQpUsX0Xk/v/32Gy5duoRGjRrBwcEBDg4OaNq0Ke7fv4/Lly+juLgYeXl5CAgIUL6mQYMG8Pf3r/H9T5w4AUtLS/Tr16/O+3D27Fk0aNBA9L7NmjVD+/btcfbsWWXNzs5OGW4AwMPDAzdu3ADwIGhFRkYiODgYoaGhWLp0qWh5jIjIFGVmZqqEn6ioKLMLPwBngCSVmAhkZT345+DB+nnP/v37Y8WKFbC2toanp6fo21/29vaibe/evQs/Pz98/fXXKuO4uLjU6f0bNmxYp9fVxT+/NSaTyUTnJ61ZswbvvPMO0tLSsHnzZsyePRt79uxB79699dYjEZG+mNu3vB6HM0ASio4GAgOh18uJ29vbo02bNmjRosVjv/reo0cPXLx4Ea6urmjTpo3ox9HREY6OjvDw8MChQ4eUr6mqqsLRo0drHLNLly5QKBT48ccf1T7/cAaqurq6xjE6dOiAqqoq0fveunUL58+fR8eOHR+5T//UvXt3xMTE4ODBg+jcuTM2bNig0euJiAzdnTt3VMJP//79zTr8AAxAkho8GDh4UH+zP5p67bXX4OzsjCFDhuCnn35CdnY2MjMz8c477+Dq1asAgClTpiAxMRHbt2/HuXPnMGHCBBQVFdU4ppeXFyIiIjB69Ghs375dOeaWLVsAAC1btoRMJsPOnTtRWFiIu3fvqozRtm1bDBkyBGPHjsWBAwfw22+/4fXXX0fz5s0xZMiQWu1bdnY2YmJikJWVhT///BM//PADLl68yPOAiMik7NmzB4sXLxbVZsyYgaefflqijgwHAxDVyM7ODvv370eLFi3w0ksvoUOHDhgzZgzu37+Pxo0bAwCmTZuGN954AxEREQgMDESjRo3w4osvPnLcFStW4OWXX8aECRPg4+ODsWPHorS0FADQvHlzzJs3D9HR0XBzc8OkSZPUjrFmzRr4+flh0KBBCAwMhCAI2L17d60vlmhnZ4dz585h2LBhaNeuHcaNG4eJEyfirbfe0uAIEREZrnnz5uHgwYOiWlxcHOzs7CTqyLDIhH9etIVQUlICR0dHFBcXKz/oH7p//z6ys7Ph7e0NW1tbiTokfeO/dyIyFkVFRSqXEAkODjaL8xsf9fn9TzwJmoiIyETs3LlT5TzMmTNn8n/c1GAAIiIiMgH8lpdmGICIiIiM2K1bt7B8+XJRbdCgQfDz85OoI+PAAERERGSktm3bhpMnT4pqMTExWruZtSljAKojnjtuXvjvm4gMDZe86ocBSEMPv2ZdVlam16sak7TKysoAqF5dmohI327cuIEVK1aIai+++CK6du0qUUfGiQFIQ5aWlnByclLeU8rOzo53EDdhgiCgrKwMN27cgJOTEywtLaVuiYjM2KZNm3D+/HlRbdasWfyfszpgAKoDd3d3AFCGIDJ9Tk5Oyn/vRET6JggC5s+fL6pZWFhgzpw5EnVk/BiA6kAmk8HDwwOurq6orKyUuh3SMSsrK878EJFkrl+/jlWrVolqr7zyCm/dU08MQPVgaWnJD0YiItKZdevWIScnR1SbPXs2P3u0gAGIiIjIwKhb8rK3t8f06dMl6sj0MAAREREZkCtXrmD16tWi2quvvoq2bdtK1JFpMoi7waekpMDLywu2trYICAjA4cOHa9x21apV6Nu3L5o0aYImTZogKChIZfvIyEjIZDLRT0hIiK53g4iIqF4+++wzlfAzZ84chh8dkDwAbd68GVFRUYiLi8OxY8fg6+uL4ODgGr9hlZmZiZEjR2Lfvn3IysqCXC7HgAEDcO3aNdF2ISEhyMvLU/5s3LhRH7tDRESkMYVCgXnz5iEvL09Za9q0KeLi4mBhIflHtUmSCRJf4jYgIAA9e/ZU3sdEoVBALpdj8uTJiI6Ofuzrq6ur0aRJEyxfvhzh4eEAHswAFRUVYfv27XXqqaSkBI6OjiguLkbjxo3rNAYREVFt/PHHH1i/fr2oFh4eDm9vb4k6Ml6afH5LGisrKipw9OhRBAUFKWsWFhYICgpCVlZWrcYoKytDZWUlmjZtKqpnZmbC1dUV7du3x/jx43Hr1i2t9k5ERFRfy5YtUwk/sbGxDD96IOlJ0Ddv3kR1dTXc3NxEdTc3N5w7d65WY8ycOROenp6iEBUSEoKXXnoJ3t7euHz5MmbNmoWBAwciKytL7VcHy8vLUV5ernxcUlJSxz0iIiJ6PIVCgfj4eFHNw8MD48aNk6gj82PU3wJLTEzEpk2bkJmZCVtbW2V9xIgRyj936dIFXbt2RevWrZGZmYnnnntOZZyEhAS1N5UjIiLStgsXLqiclzp69GjI5XKJOjJPki6BOTs7w9LSEgUFBaJ6QUHBY287kJSUhMTERPzwww+PvQFcq1at4OzsjEuXLql9PiYmBsXFxcqfK1euaLYjREREtfDRRx+phJ/Y2FiGHwlIGoCsra3h5+eHjIwMZU2hUCAjIwOBgYE1vm7RokWIj49HWloa/P39H/s+V69exa1bt+Dh4aH2eRsbGzRu3Fj0Q0REpC3V1dWYN28eysrKlDVvb2/ExcXxhtoSkXwJLCoqChEREfD390evXr2QnJyM0tJSjBo1CsCDM+GbN2+OhIQEAMCHH36I2NhYbNiwAV5eXsjPzwcAODg4wMHBAXfv3sW8efMwbNgwuLu74/Lly3jvvffQpk0bBAcHS7afRERkns6cOYOtW7eKauPGjavxf8pJPyQPQGFhYSgsLERsbCzy8/PRrVs3pKWlKU+Mzs3NFV0DYcWKFaioqMDLL78sGicuLg5z586FpaUlfv/9d6xbtw5FRUXw9PTEgAEDEB8fDxsbG73uGxERmTd155fGxsZy1scASH4dIEPE6wAREVF9lJeXIzExUVTz8fFBWFiYRB2ZB00+vyWfASIiIjIlP/zwg8q17PgtL8PDAERERKQl6pa84uLiJOiEHoc3GCEiIqqnsrIylfBjbW2NuLg4pKYCffoAqakSNUdqcQaIiIioHlJTU3H8+HFR7c0330Tz5s0BAImJQFbWg38OHixFh6QOAxAREVEd1WbJKzr6Qfipxf29SY8YgIiIiDR09+5dfPzxx6Kao6Mjpk6dqrLt4MGc+TFEDEBEREQa2Lp1K86cOSOqvf322yo39ibDxgBERERUS/yWl+lgACIiInqMoqIiLF26VFTz8PDAuHHjJOqI6osBiIiI6BHWr1+PP/74Q1SbNGkSmjVrJlFHpA0MQERERDXgkpfpYgAiIiL6h1u3bmH58uWimre3N8LDwyXqiLSNAYiIiOhvPvvsM+Tl5YlqU6ZMgZOTkzQNkU4wABEREf0/LnmZDwYgIiIyewUFBVi5cqWo1rFjRwwfPlyijkjXGICIiMisLV26FEVFRaJaVFQUGjVqJE1DpBcMQEREZLa45GW+GICIiMjsXL16FV988YWo1r17dwzmTbvMBgMQERGZlYSEBFRUVIhqM2bMgJ2dnUQdkRQYgIiIyGxwyYseYgAiIiKTl5OTg3Xr1olqgYGBGDBggEQdkdQYgIiIyKSpm/WJjo6GjY2NBN2QoWAAIiIikyQIAubPn69S55IXAQxARERkgi5evIgNGzaIas888wz69esnUUdkaBiAiIjIpKhb8po1axasrKwk6IYMFQMQERGZBC55kSYYgIiIyOidPn0a33zzjagWHByM3r17S9QRGToGICIiMmrqlrxmz54NS0tLCbohY8EARERERkmhUCA+Pl6lziUvqg0GICIiMjrHjx9HamqqqBYaGooePXpI1BEZGwYgIiIyKuqWvObMmQMLCwsJuiFjxQBERERGoaqqCgsXLlSpc8mL6oIBiIiIDN7u3bvx66+/imr/+te/0KdPH4k6ImPHAERERAZN3ZJXbGwsZDKZBN2QqeCCKRERGaSKigq14ScuLg7/+Y8MffoA/zgPmqjWOANEREQGZ9u2bTh58qSoNmjQIPj5+QEAEhOBrKwH/xw8WIoOydgxABERkUGpzZJXdPSD8BMdrc/OyJQwABERkUG4d+8eFi1apFJX9y2vwYM580P1wwBERESS++qrr3D58mVRbdiwYejcubNEHZGpYwAiIiJJ1XSiM5EuMQAREZEk7t69i48//lilzvBD+sAAREREevfZZ58hLy9PVBs5ciTatWsnUUdkbhiAiIhIr7jkRYaAAYiIiPSiqKgIS5cuVakz/JAUGICIiEjnkpOTUVxcLKpFRETAy8tLmobI7DEAERGRTnHJiwwRAxAREenEzZs3kZKSolJn+CFDwABERERat3DhQlRVVYlqY8eOhaenp0QdEYkxABERkVZxyYuMAQMQERFpRV5eHj777DOVOsMPGSIGICIiqjd1sz4TJkyAi4uLBN0QPR4DEBER1QuXvMgYMQAREVGd5ObmYs2aNaKavb09pk+fLlFHRLVnIXUDAJCSkgIvLy/Y2toiICAAhw8frnHbVatWoW/fvmjSpAmaNGmCoKAgle0FQUBsbCw8PDzQsGFDBAUF4eLFi7reDSIiszFv3jyV8PPOO+8w/JDRkDwAbd68GVFRUYiLi8OxY8fg6+uL4OBg3LhxQ+32mZmZGDlyJPbt24esrCzI5XIMGDAA165dU26zaNEiLFu2DCtXrsShQ4dgb2+P4OBg3L9/X1+7RURksmpa8mrSpIkE3RDVjUwQBEHKBgICAtCzZ08sX74cAKBQKCCXyzF58mRER0c/9vXV1dVo0qQJli9fjvDwcAiCAE9PT0ybNk35fyLFxcVwc3PD2rVrMWLEiMeOWVJSAkdHRxQXF6Nx48b120EiIhNx6dIlfP3116Kaq6srxo8fL1FHRGKafH5Leg5QRUUFjh49ipiYGGXNwsICQUFByMrKqtUYZWVlqKysRNOmTQEA2dnZyM/PR1BQkHIbR0dHBAQEICsrS20AKi8vR3l5ufJxSUlJXXeJiMgkqZv1iYqKQqNGjSTohqj+JF0Cu3nzJqqrq+Hm5iaqu7m5IT8/v1ZjzJw5E56ensrA8/B1moyZkJAAR0dH5Y9cLtd0V4iITFZNS14MP2TMjPpbYImJidi0aRMyMzNha2tb53FiYmIQFRWlfFxSUsIQRERm78yZM9i6dauo5uXlhYiICIk6ItIeSQOQs7MzLC0tUVBQIKoXFBTA3d39ka9NSkpCYmIi9u7di65duyrrD19XUFAADw8P0ZjdunVTO5aNjQ1sbGzquBdERKZH3azPjBkzYGdnJ0E3RNon6RKYtbU1/Pz8kJGRoawpFApkZGQgMDCwxtctWrQI8fHxSEtLg7+/v+g5b29vuLu7i8YsKSnBoUOHHjkmERE9uIxITUteDD9kSiRfAouKikJERAT8/f3Rq1cvJCcno7S0FKNGjQIAhIeHo3nz5khISAAAfPjhh4iNjcWGDRvg5eWlPK/HwcEBDg4OkMlkmDp1KhYsWIC2bdvC29sbc+bMgaenJ4YOHSrVbhIRGbzjx48jNTVVVOvYsSOGDx8uUUdEuiN5AAoLC0NhYSFiY2ORn5+Pbt26IS0tTXkSc25uLiws/jdRtWLFClRUVODll18WjRMXF4e5c+cCAN577z2UlpZi3LhxKCoqwlNPPYW0tLR6nSdERGTK1M36REdH8/QAMlmSXwfIEPE6QERkLgRBwPz581XqvJcXGSOjuQ4QERFJ55dffkF6erqo1qNHD4SGhkrUEZH+MAAREZkhdUtes2bNgpWVlQTdEOkfAxARkRlRKBSIj49XqXPJi8wNAxARkZnIzMzEjz/+KKo9+eSTolsHEZkLBiAiIjOgbslr9uzZsLS0lKAbIukxABERmbCqqiosXLhQpc4lLzJ3GgcgS0tL5OXlwdXVVVS/desWXF1dUV1drbXmiIio7tLS0nDo0CFR7bnnnsNTTz0lUUdEhkPjAFTTZYPKy8thbW1d74aIiKj+1C15zZkzR3RhWSJzVusAtGzZMgCATCbD559/DgcHB+Vz1dXV2L9/P3x8fLTfIRER1VpFRYXy1kF/xyUvIrFaB6AlS5YAeDADtHLlStGJc9bW1vDy8sLKlSu13yEREdXK119/jUuXLolqnp5BGDv2SYk6IjJctQ5A2dnZAID+/ftj27ZtaNKkic6aIiIizahb8oqNjYVMJpOgGyLDp/E5QPv27dNFH0REVAf37t3DokWLVOpc8iJ6NI0D0OjRox/5/OrVq+vcDBER1d6qVatw/fp1UW3QoEHw8/OTqCMi46FxALp9+7bocWVlJU6dOoWioiI8++yzWmuMiIhqpm7Ji7M+RLWncQD67rvvVGoKhQLjx49H69attdIUERGpd+fOHSxevFilzvBDpBmZUNOFfTR0/vx5PPPMM8jLy9PGcJIqKSmBo6MjiouL0bhxY6nbISIC8ODbuCUlJaLasGHD0LlzZ4k6IjIsmnx+a+1WGJcvX0ZVVZW2hiMior/hkheRdmkcgKKiokSPBUFAXl4edu3ahYiICK01RkRkzlJTgcRE4N13b+PMmWUqzzP8ENWPxgHo+PHjoscWFhZwcXHBxx9//NhviBERUe0kJgLPPbcAZ86I76/46quvom3bthJ1RWQ6eB0gIiIDFBzMJS8iXarzOUA3btzA+fPnAQDt27dXuTs8ERFp7vr161i1apVKneGHSLs0DkAlJSWYOHEiNm7cCIVCAQCwtLREWFgYUlJS4OjoqPUmiYjMgboTnSMjI9GyZUsJuiEybRaavmDs2LE4dOgQdu3ahaKiIhQVFWHnzp04cuQI3nrrLV30SERk8mr6lhfDD5FuaHwdIHt7e6Snp+Opp54S1X/66SeEhISgtLRUqw1KgdcBIiJ9yc7OxpdffqlS55IXkeZ0eh2gZs2aqV3mcnR05B3iiYg0wCUvIulovAQ2e/ZsREVFIT8/X1nLz8/HjBkzMGfOHK02R0RkqrjkRSQtjZfAunfvjkuXLqG8vBwtWrQAAOTm5sLGxkbl2hTHjh3TXqd6xCUwItKVc+fOYfPmzSp1LnkR1Z9Ol8CGDBkCmUxW5+aIiMyVulmft956C+7u7hJ0Q2TetHYzVFPCGSAi0jbey4tI9zT5/Nb4HKBWrVrh1q1bKvWioiK0atVK0+GIiEzab7/9xvBDZIA0XgLLyclBdXW1Sr28vBxXr17VSlNERKZAXfCZNGkSmjVrJkE3RPR3tQ5Aqampyj+np6eLvgpfXV2NjIwMeHt7a7c7IiIjxVkfIsNW6wA0dOhQAIBMJkNERIToOSsrK3h5eeHjjz/WanNERMbml19+QXp6ukqd4YfIsNQ6AD2875e3tzd+/fVXODs766wpIiJjk5oKHD+uOuvz7rvv8ssURAZI43OAsrOzddEHEZHREgQBx4/PV6lz1ofIcGkcgObPV/2P/O9iY2Pr3AwRkbHZt28f9u/fL6rZ2NggOjpaoo6IqDY0DkDfffed6HFlZSWys7PRoEEDtG7dmgGIiMyGuhOdZ8yYATs7Owm6ISJNaByAjh8/rlIrKSlBZGQkXnzxRa00RURkyARBUDsbziUvIuOhtStBnzx5EqGhocjJydHGcJLilaCJqCa7du3CkSNHRDVnZ2dMnDhRoo6I6CGd3gusJsXFxSguLtbWcEREBkfdkld0dDRsbGwk6IaI6kPjALRs2TLRY0EQkJeXh/Xr12PgwIFaa4yIyFAoFArEx8er1LnkRWS8NA5AS5YsET22sLCAi4sLIiIiEBMTo7XGiIgMwdatW3HmzBlRzcvLS+WCsERkXHgdICKiGqhb8nr//ffRoIHWzh4gIonU6b/ioqIiXLp0CQDQpk0bODk5abMnIiJJVVZW4oMPPlCpc8mLyHRoFIBycnIwceJEpKen4+GXx2QyGUJCQrB8+XJ4eXnpokciIr1Zs2YNcnNzRbVOnTrh5ZdflqgjItKFWgegK1euoHfv3rCyskJ8fDw6dOgAADhz5gxWrFiBwMBA/Prrr3jiiSd01iwRkS6pW/KaM2cOLCwsJOiGiHSp1tcBGjNmDC5duoT09HTY2tqKnrt37x5CQkLQtm1bfP755zppVJ94HSAi81JeXo7ExESVOpe8iIyLTq4DlJaWhs2bN6uEHwBo2LAh4uPjMWLECM27JSKS0CeffIK//vpLVOvZsyeef/55iToiIn2odQC6efPmI8/xadWqlcovESIiQ6ZuySs2NhYymUyCbohIn2q9sO3h4aFyLYy/O3XqFNzd3bXSFBGRLpWWlqoNP3FxcQw/RGai1jNAQ4cOxfTp05GRkQEXFxfRczdu3MDMmTMxdOhQbfdHRKRVCQkJqKioENX69euHZ555RpqGiEgStT4J+vbt2wgICEB+fj5ef/11+Pj4QBAEnD17Fhs2bIC7uzt++eUXNG3aVNc96xxPgiYyTVzyIjJtmnx+13oJrEmTJjh06BBee+01bNq0CVOnTsW7776LLVu24NVXX61z+ElJSYGXlxdsbW0REBCAw4cP17jt6dOnMWzYMHh5eUEmkyE5OVllm7lz50Imk4l+fHx8NO6LiExHcXExl7yISESjCyE2adIEK1aswKefforCwkIAgIuLS51/gWzevBlRUVFYuXIlAgICkJycjODgYJw/fx6urq4q25eVlaFVq1YYPnw43n333RrH7dSpE/bu3at8zMvWE5kvdcEnJCQEAQEBEnRDRIaiTslAJpOpDSiaWrx4McaOHYtRo0YBAFauXIldu3Zh9erViI6OVtm+Z8+e6NmzJwCoff6hBg0a8IRsIqpx1oeISLLLm1ZUVODo0aMICgr6XzMWFggKCkJWVla9xr548SI8PT3RqlUrvPbaayqXtf+n8vJylJSUiH6IyHjdvHmT4YeIHkmytaGbN2+iuroabm5uorqbmxvOnTtX53EDAgKwdu1atG/fHnl5eZg3bx769u2LU6dOoVGjRmpfk5CQoPaXJREZH3X/Lb/44ovo2rWrBN0QkaEyuZNjBg4cqPxz165dERAQgJYtW2LLli0YM2aM2tfExMQgKipK+bikpARyuVznvRKRdnHWh4hqS7IA5OzsDEtLSxQUFIjqBQUFWj1/x8nJCe3atcOlS5dq3MbGxgY2NjZae08i0q+8vDx89tlnKnWGHyKqSa0C0LJly2o94DvvvFOr7aytreHn54eMjAzlBRQVCgUyMjIwadKkWr/f49y9exeXL1/GG2+8obUxichwqJv1GTFiBNq3by9BN0RkLGoVgJYsWVKrwWQyWa0DEABERUUhIiIC/v7+6NWrF5KTk1FaWqr8Vlh4eDiaN2+OhIQEAA9OnH54O46Kigpcu3YNJ06cgIODA9q0aQMAmD59OkJDQ9GyZUtcv34dcXFxsLS0xMiRI2vdFxEZBy55EVFd1SoAZWdn6+TNw8LCUFhYiNjYWOTn56Nbt25IS0tTnhidm5sLC4v/fVHt+vXr6N69u/JxUlISkpKS0K9fP2RmZgIArl69ipEjR+LWrVtwcXHBU089hV9++UXl9h1EZLz+/PNPrF27VqXO8ENEtVXrW2H8U0VFBbKzs9G6dWuTu9Agb4VBZLjUzfpERETAy8tL/80QkUHRya0wHiorK8OYMWNgZ2eHTp06Ka+xM3nyZCQmJtatYyKiWqhpyYvhh4g0pXEAiomJwW+//YbMzEzY2toq60FBQdi8ebNWmyMiAoALFy7wfB8i0iqN1662b9+OzZs3o3fv3qJ7gHXq1AmXL1/WanNEROqCz7hx4+Dh4SFBN0RkKjQOQIWFhWrvA1ZaWsq7KhORVnHWh4h0ReMlMH9/f+zatUv5+GHo+fzzzxEYGKi9zojIbP3+++8MP0SkUxrPAH3wwQcYOHAgzpw5g6qqKixduhRnzpzBwYMH8eOPP+qiRyIyI+qCz8SJE+Hs7CxBN0RkqjSeAXrqqadw4sQJVFVVoUuXLvjhhx/g6uqKrKws+Pn56aJHIjIT6sJP9+5xDD9EpHV1vg6QKeN1gIj069ChQ0hLS1Opc8mLiDShyed3rZbASkpKav3mDAxEpAl1sz5Tp06Fo6OjBN0QkbmoVQBycnKq9Te8qqur69UQEZkHQRAwf/58lTpnfYhIH2oVgPbt26f8c05ODqKjoxEZGan81ldWVhbWrVunvGkpEdGjZGZmqnxpwtraGjExMRJ1RETmRuNzgJ577jm8+eabKndX37BhAz777DPlTUmNGc8BItIddUte06dPh729vQTdEJEp0em9wLKysuDv769S9/f3x+HDhzUdjojMhCAINV7bh+GHiPRN4wAkl8uxatUqlfrnn38OuVyulaaIyLR8//33Kuf7NG3alOf7EJFkNL4Q4pIlSzBs2DB8//33CAgIAAAcPnwYFy9exLfffqv1BonIuKmb9YmOjoaNjY0E3RARPaDxDNDzzz+PixcvIjQ0FH/99Rf++usvhIaG4sKFC3j++ed10SMRGSGFQlHjkhfDDxFJjRdCVIMnQRPVz7fffotTp06Jai1atMCoUaMk6oiIzIHWL4T4T0VFRfjiiy9w9uxZAECnTp0wevRoXriMiNTO+syaNQtWVlYSdENEpJ7GS2BHjhxB69atsWTJEuUS2OLFi9G6dWscO3ZMFz0SkRGoqqqqccmL4YeIDI3GS2B9+/ZFmzZtsGrVKjRo8GACqaqqCm+++Sb++OMP7N+/XyeN6hOXwIg0s27dOuTk5IhqHTt2xPDhw6VpiIjMkiaf3xoHoIYNG+L48ePw8fER1c+cOQN/f3+UlZVp3rGBYQAiqj11sz5z5syBhYXGE8xERPWi0wshNm7cGLm5uSr1K1euoFGjRpoOR0RGqry8vMYlL4YfIjJ0Gp8EHRYWhjFjxiApKQl9+vQBAPz888+YMWOGyu0xiMg0ffrppygsLBTVcnP9MWTICxJ1RESkGY0DUFJSEmQyGcLDw1FVVQUAsLKywvjx45GYmKj1BonIsKib9UlKisXduzKcPQsMHixBU0REGqrzdYDKyspw+fJlAEDr1q1hZ2en1cakxHOAiFSVlZXho48+Uqmnp8ehf39g3z4gOpoBiIiko9OToM0BAxCR2Icffoj79++Lak8//TT69+8vUUdERKp0ciHE0aNH12q71atX13ZIIjIC6pa8YmNjIZPJJOiGiEg7ah2A1q5di5YtW6J79+7gpBGR6SspKcGSJUtU6ryDOxGZgloHoPHjx2Pjxo3Izs7GqFGj8Prrr6Np06a67I2IJKJu1ic4OBi9e/eWoBsiIu2r9cU6UlJSkJeXh/feew//+c9/IJfL8corryA9PZ0zQkQmpKZr+zD8EJEpqfNJ0H/++SfWrl2LL7/8ElVVVTh9+jQcHBy03Z8keBI0maNbt25h+fLlKnUueRGRsdD53eABwMLCAjKZDIIgoLq6uq7DEJEBUDfrM2TIEHTr1k3/zRAR6YFG16svLy/Hxo0b8a9//Qvt2rXDyZMnsXz5cuTm5prM7A+RualpyYvhh4hMWa1ngCZMmIBNmzZBLpdj9OjR2LhxI5ydnXXZGxHpUH5+Pv7973+r1LnkRUTmoNbnAFlYWKBFixbo3r37I6//sW3bNq01JxWeA0SmTt2sT1hYGHx8fCTohohIO3RyDlB4eDgvfEZkAmpa8iIiMicaXQiRiIxXbm4u1qxZo1Jn+CEic1Tnb4ERkfFQN+sTHh4Ob29vCbohIpIeAxCRieOSFxGRKgYgIhN18eJFbNiwQaXO8ENExABEZJLUzfqMHTsWnp6eEnRDRGR4GICITAyXvIiIHo8BiMhEnDx5Uu11uBh+iIhUMQARmQB1sz4TJkyAi4uLBN0QERk+BiAiI8clLyIizTEAERmpX3/9Fbt371apM/wQET0eAxCREVI36zNlyhQ4OTnpvxkiIiPEAERkZLjkRURUfwxAREZi//792Ldvn6hmaWmJ2bNnS9QREZHxYgAiMgLqZn2mT58Oe3t7CbohIjJ+FlI3QEQ1EwShxiUve3t7pKYCffoAqakSNEdEZMQ4A0RkoNLS0nDo0CFRzcnJCVOmTFE+TkwEsrIe/HPwYH13SERkvCSfAUpJSYGXlxdsbW0REBCAw4cP17jt6dOnMWzYMHh5eUEmkyE5ObneYxIZonnz5qmEn5kzZ4rCDwBERwOBgQ/+SUREtSdpANq8eTOioqIQFxeHY8eOwdfXF8HBwbhx44ba7cvKytCqVSskJibC3d1dK2MSGRKFQlHjkpetra1KffBg4OBBzv4QEWlKJgiCINWbBwQEoGfPnli+fDmAB7/85XI5Jk+ejOjH/C+tl5cXpk6diqlTp2ptzIdKSkrg6OiI4uJiNG7cWPMdI6qDbdu24eTJk6LaE088gTFjxkjUERGRcdHk81uyc4AqKipw9OhRxMTEKGsWFhYICgpCVlaWXscsLy9HeXm58nFJSUmd3p+ortTN+syaNQtWVlYSdENEZPokWwK7efMmqqur4ebmJqq7ubkhPz9fr2MmJCTA0dFR+SOXy+v0/kSaqqqqqnHJi+GHiEh3+C0wADExMYiKilI+LikpYQginVu/fj3++OMPUc3HxwdhYWESdUREZD4kC0DOzs6wtLREQUGBqF5QUFDjCc66GtPGxgY2NjZ1ek8iTaWmAsePq876zJ49G5aWlhJ0RERkfiRbArO2toafnx8yMjKUNYVCgYyMDAQGBhrMmETa9N13FWrDT1xcHMMPEZEeSboEFhUVhYiICPj7+6NXr15ITk5GaWkpRo0aBQAIDw9H8+bNkZCQAODBSc5nzpxR/vnatWs4ceIEHBwc0KZNm1qNSSSVFStWqFyOoUePHggNDZWoIyIi8yVpAAoLC0NhYSFiY2ORn5+Pbt26IS0tTXkSc25uLiws/jdJdf36dXTv3l35OCkpCUlJSejXrx8yMzNrNSaRFNSd6BwbGwuZTCZBN0REJOl1gAwVrwNE2rJtWxlOnvxIpR4XFydBN0REps0orgNEZOrWrl2LP//8U1S7fPkpfPnlcxJ1REREDzEAEemAuiWv9PRYREdzyYuIyBAwABFpUWlpKZKSklTqcXFx4KoXEZHhYAAi0pKUlBTcvHlTVBs6dCh8fX0l6oiIiGrCAESkBTXdzoKIiAwTAxBRPRQXFyM5OVmlzvBDRGTYGICI6mjRokW4d++eqBYWFgYfHx+JOiIiotpiACKqAy55EREZNwYgIg1s2XILZ88uV6kz/BARGRcGIKJaUjfrEx4eDm9vbwm6ISKi+mAAIqoFLnkREZkWBiCiR7hx4wZWrFihUmf4ISIybgxARDVQN+szbtw4eHh4SNANERFpEwMQkRpc8iIiMm0MQER/c+3aNXz++eeiWoMGDfD+++9L1BEREekCAxDR/1M36zNx4kQ4OztL0A0REekSAxARuORFRGRuGIDIrOXk5GDdunWimpOTE6ZMmSJRR0REpA8MQGS21M36TJkyBU5OTvpvhoiI9IoBiMwSl7yIiMwbAxCZlQsXLmDjxo2imqenJ8aOHStRR0REJAUGIDIb6mZ9pk2bBgcHBwm6ISIiKTEAkVngkhcREf0dAxCZtFOnTuHbb78V1Vq3bo3XX39doo6IiMgQMACRyVI36/Pee++hYcOGEnRDRESGhAGITI4gCJg/f75KnUteRET0EAMQmZSjR49i586dolqXLl3w0ksvSdQREREZIgYgMhnqlrxiYmJgbW0tQTdERGTIGIDI6HHJi4iINMUAREbt559/xt69e0W1nj174vnnn5eoIyIiMgYMQGS01C15vf/++2jQgH+tiYjo0fhJQUanuroaCxYsUKlzyYuIiGqLAYiMSkZGBg4cOCCqPf300+jfv79EHRERkTFiACKjoW7Ja86cObCwsJCgGyIiMmYMQGTwqqqqsHDhQpU6l7yIiKiuGIDIoO3atQtHjhwR1QYMGIDAwECJOiIiIlPAAEQGS92SV2xsLGQymQTdEBGRKWEAIoNTXl6OxMRElTqXvIiISFsYgMigfPPNNzh9+rSoFhoaih49ekjUERERmSIGIDIYXPIiIiJ9YQAiyZWVleGjjz5SqXPJi4iIdIUBiCT15ZdfIjs7W1R7+eWX0alTJ4k6IiIic8AARJJRt+TFWR8iItIHBiDSuzt37mDx4sUqdYYfIiLSFwYg0quVK1eioKBAVHvttdfQpk0biToiIiJzxABEesMlLyIiMhQMQKRzt2/fxrJly1TqDD9ERCQVBiDSqcWLF+POnTuiWmRkJFq2bClRR0RERAxApENc8iIiIkPFAERaV1hYiE8//VSlzvBDRESGggGItGr+/PkQBEFUGzt2LDw9PSXqiIiISBUDEGkNl7yIiMhYWEjdAACkpKTAy8sLtra2CAgIwOHDhx+5/datW+Hj4wNbW1t06dIFu3fvFj0fGRkJmUwm+gkJCdHlLpi1mzdvqoQfmcyC4YeIiAyW5AFo8+bNiIqKQlxcHI4dOwZfX18EBwfjxo0barc/ePAgRo4ciTFjxuD48eMYOnQohg4dilOnTom2CwkJQV5envJn48aN+tgds/Pvf/8bKSkpotqSJVOQljZHoo6IiIgeTyb884QNPQsICEDPnj2xfPlyAIBCoYBcLsfkyZMRHR2tsn1YWBhKS0uxc+dOZa13797o1q0bVq5cCeDBDFBRURG2b99ep55KSkrg6OiI4uJiNG7cuE5jmAN1S17du8chMRGIjgYGD5agKSIiMluafH5Leg5QRUUFjh49ipiYGGXNwsICQUFByMrKUvuarKwsREVFiWrBwcEqYSczMxOurq5o0qQJnn32WSxYsADNmjVTO2Z5eTnKy8uVj0tKSuq4R+ahoKBAGTYf6tixI4YPHw6AwYeIiAyfpAHo5s2bqK6uhpubm6ju5uaGc+fOqX1Nfn6+2u3z8/OVj0NCQvDSSy/B29sbly9fxqxZszBw4EBkZWXB0tJSZcyEhAS1sxmkKjk5GcXFxaLatGnT4ODgIFFHREREmjPJb4GNGDFC+ecuXbqga9euaN26NTIzM/Hcc8+pbB8TEyOaVSopKYFcLtdLr8aE3/IiIiJTIWkAcnZ2hqWlpcrdwQsKCuDu7q72Ne7u7hptDwCtWrWCs7MzLl26pDYA2djYwMbGpg57YB6uXr2KL774QlTr3r07BnOti4iIjJSk3wKztraGn58fMjIylDWFQoGMjAwEBgaqfU1gYKBoewDYs2dPjdsDDz7Ab926BQ8PD+00bkYSEhJUws+MGTMYfoiIyKhJvgQWFRWFiIgI+Pv7o1evXkhOTkZpaSlGjRoFAAgPD0fz5s2RkJAAAJgyZQr69euHjz/+GC+88AI2bdqEI0eO4LPPPgMA3L17F/PmzcOwYcPg7u6Oy5cv47333kObNm0QHBws2X4aIy55ERGRqZI8AIWFhaGwsBCxsbHIz89Ht27dkJaWpjzROTc3FxYW/5uo6tOnDzZs2IDZs2dj1qxZaNu2LbZv347OnTsDACwtLfH7779j3bp1KCoqgqenJwYMGID4+Hguc9VSdnY2vvzyS1EtMDAQAwYMkKgjIiIi7ZL8OkCGyJyvA6Ru1ic6OprhkYiIDJ7RXAeIDIcgCJg/f75KnUteRERkihiACBcvXsSGDRtEtWeeeQb9+vWTqCMiIiLdYgAyc+qWvGbNmgUrKysJuiEiItIPBiAzxSUvIiIyZwxAZuj06dP45ptvRLXg4GD07t1boo6IiIj0iwHIzKhb8po9e7bae6QRERGZKgYgM6FQKBAfH69S55IXERGZIwYgM3D8+HGkpqaKaqGhoejRo4dEHREREUmLAcjEqVvymjNnjujq2kREROaGAchEccmLiIioZgxAJkjdhQ29vIYhIqKzRB0REREZFgYgE5OUlITS0lJRbe7cWAQGyhARIVFTREREBoYByERUV1djwYIFolrLli3RtGkkAgOB6GiJGiMiIjJADEAm4MyZM9i6dauoNnbsWHh6egIABg+WoisiIiLDxQBk5OLj46FQKES12NhYyGQyiToiIiIyfAxARqqyshIffPCBqNauXTuMHDlSoo6IiIiMBwOQEbp8+TK++uorUW38+PFwdXWVqCMiIiLjwgBkZDIyMnDgwAFRjdf2ISIi0gwDkJFQ9y2va9e6YdCgIRJ1REREZLwYgIzA9evXsWrVKlHtv/+dgf377XDqFL/lRUREpCkGIAOXnp6OX375Rfm4bdu2ePXVV9G9O1BZyev7EBER1QUDkIGqqqrCwoULRbWRI0eiXbt2AB7M+nDmh4iIqG4YgAzQlStXsHr1alFt5syZsLW1lagjIiIi08IAZGB27dqFI0eOKB937NgRw4cPl7AjIiIi08MAZCDUXdjw9ddfR+vWrSXqiIiIyHQxABmAnJwcrFu3TlSLjo6GjY2NRB0RERGZNgYgie3YsQMnTpxQPu7atStefPFF6RoiIiIyAwxAEikvL0diYqKoFhERAS8vL2kaIiIiMiMMQBL4448/sH79elEtJiYG1tbWEnVERERkXhiA9Gzp0m9QVHRa+bhHjx4IDQ2VsCMiIiLzwwCkR5cuXRKFn9GjR0Mul0vYERERkXliANIjOzs7WFhYQ6GogK/vLMjlVlK3REREZJZkgiAIUjdhaEpKSuDo6Iji4mI0btxY6naIiIioFjT5/LbQU09EREREBoMBiIiIiMwOAxARERGZHQYgIiIiMjsMQERERGR2GICIiIjI7DAAERERkdlhACIiIiKzwwBEREREZocBiIiIiMwOAxARERGZHQYgIiIiMjsMQERERGR2GICIiIjI7DSQugFDJAgCAKCkpETiToiIiKi2Hn5uP/wcfxQGIDXu3LkDAJDL5RJ3QkRERJq6c+cOHB0dH7mNTKhNTDIzCoUC169fR6NGjSCTyaRuxyCVlJRALpfjypUraNy4sdTtmAQeU+3jMdUuHk/t4zHVLkEQcOfOHXh6esLC4tFn+XAGSA0LCws88cQTUrdhFBo3bsz/aLWMx1T7eEy1i8dT+3hMtedxMz8P8SRoIiIiMjsMQERERGR2GICoTmxsbBAXFwcbGxupWzEZPKbax2OqXTye2sdjKh2eBE1ERERmhzNAREREZHYYgIiIiMjsMAARERGR2WEAIiIiIrPDAEQAgJSUFHh5ecHW1hYBAQE4fPjwI7ffunUrfHx8YGtriy5dumD37t2i5yMjIyGTyUQ/ISEhutwFg6PJMT19+jSGDRsGLy8vyGQyJCcn13tMU6TtYzp37lyVv6c+Pj463APDo8kxXbVqFfr27YsmTZqgSZMmCAoKUtleEATExsbCw8MDDRs2RFBQEC5evKjr3TAo2j6m/H2qGwxAhM2bNyMqKgpxcXE4duwYfH19ERwcjBs3bqjd/uDBgxg5ciTGjBmD48ePY+jQoRg6dChOnTol2i4kJAR5eXnKn40bN+pjdwyCpse0rKwMrVq1QmJiItzd3bUypqnRxTEFgE6dOon+nh44cEBXu2BwND2mmZmZGDlyJPbt24esrCzI5XIMGDAA165dU26zaNEiLFu2DCtXrsShQ4dgb2+P4OBg3L9/X1+7JSldHFPAvH+f6oxAZq9Xr17CxIkTlY+rq6sFT09PISEhQe32r7zyivDCCy+IagEBAcJbb72lfBwRESEMGTJEJ/0aA02P6d+1bNlSWLJkiVbHNAW6OKZxcXGCr6+vFrs0LvX9O1VVVSU0atRIWLdunSAIgqBQKAR3d3fho48+Um5TVFQk2NjYCBs3btRu8wZK28dUEPj7VFc4A2TmKioqcPToUQQFBSlrFhYWCAoKQlZWltrXZGVlibYHgODgYJXtMzMz4erqivbt22P8+PG4deuW9nfAANXlmEoxpjHR5f5fvHgRnp6eaNWqFV577TXk5ubWt12joI1jWlZWhsrKSjRt2hQAkJ2djfz8fNGYjo6OCAgI4N/TOh7Th8z196kuMQCZuZs3b6K6uhpubm6iupubG/Lz89W+Jj8//7Hbh4SE4Msvv0RGRgY+/PBD/Pjjjxg4cCCqq6u1vxMGpi7HVIoxjYmu9j8gIABr165FWloaVqxYgezsbPTt2xd37typb8sGTxvHdObMmfD09FR+4D98Hf+eau+YAub9+1SXeDd40okRI0Yo/9ylSxd07doVrVu3RmZmJp577jkJOyP6n4EDByr/3LVrVwQEBKBly5bYsmULxowZI2Fnhi8xMRGbNm1CZmYmbG1tpW7HJNR0TPn7VDc4A2TmnJ2dYWlpiYKCAlG9oKCgxhNH3d3dNdoeAFq1agVnZ2dcunSp/k0buLocUynGNCb62n8nJye0a9eOf08fc0yTkpKQmJiIH374AV27dlXWH76Of0+1d0zVMaffp7rEAGTmrK2t4efnh4yMDGVNoVAgIyMDgYGBal8TGBgo2h4A9uzZU+P2AHD16lXcunULHh4e2mncgNXlmEoxpjHR1/7fvXsXly9f5t/TRxzTRYsWIT4+HmlpafD39xc95+3tDXd3d9GYJSUlOHToEP+e1vGYqmNOv091SuqzsEl6mzZtEmxsbIS1a9cKZ86cEcaNGyc4OTkJ+fn5giAIwhtvvCFER0crt//555+FBg0aCElJScLZs2eFuLg4wcrKSjh58qQgCIJw584dYfr06UJWVpaQnZ0t7N27V+jRo4fQtm1b4f79+5Lso75pekzLy8uF48ePC8ePHxc8PDyE6dOnC8ePHxcuXrxY6zFNnS6O6bRp04TMzEwhOztb+Pnnn4WgoCDB2dlZuHHjht73TwqaHtPExETB2tpa+Oabb4S8vDzlz507d0TbODk5CTt27BB+//13YciQIYK3t7dw7949ve+fFLR9TPn7VHcYgEgQBEH45JNPhBYtWgjW1tZCr169hF9++UX5XL9+/YSIiAjR9lu2bBHatWsnWFtbC506dRJ27dqlfK6srEwYMGCA4OLiIlhZWQktW7YUxo4dazYf1A9pckyzs7MFACo//fr1q/WY5kDbxzQsLEzw8PAQrK2thebNmwthYWHCpUuX9LhH0tPkmLZs2VLtMY2Li1Nuo1AohDlz5ghubm6CjY2N8Nxzzwnnz5/X4x5JT5vHlL9PdUcmCIKg3zknIiIiImnxHCAiIiIyOwxAREREZHYYgIiIiMjsMAARERGR2WEAIiIiIrPDAERERERmhwGIiIiIzA4DEBEREZkdBiAiMnr5+fmYPHkyWrVqBRsbG8jlcoSGhirvyeTl5YXk5GSV182dOxfdunVTO+amTZsgk8kwdOhQ3TVORJJpIHUDRET1kZOTgyeffBJOTk746KOP0KVLF1RWViI9PR0TJ07EuXPn6jTm9OnT0bdvXx10TESGgAGIiIzahAkTIJPJcPjwYdjb2yvrnTp1wujRozUer7q6Gq+99hrmzZuHn376CUVFRVrslogMBZfAiMho/fXXX0hLS8PEiRNF4echJycnjcecP38+XF1dMWbMGC10SESGijNARGS0Ll26BEEQ4OPj89htZ86cidmzZ4tqFRUV6Nixo/LxgQMH8MUXX+DEiRPabpWIDAwDEBEZLUEQar3tjBkzEBkZKaotW7YM+/fvBwDcuXMHb7zxBlatWgVnZ2dttklEBogBiIiMVtu2bSGTyWp1orOzszPatGkjqjVt2lT558uXLyMnJwehoaHKmkKhAAA0aNAA58+fR+vWrbXUORFJjecAEZHRatq0KYKDg5GSkoLS0lKV5zU5gdnHxwcnT57EiRMnlD+DBw9G//79ceLECcjlci12TkRS4wwQERm1lJQUPPnkk+jVqxfmz5+Prl27oqqqCnv27MGKFStw9uzZWo1ja2uLzp07i2oPT6L+Z52IjB8DEBEZtVatWuHYsWNYuHAhpk2bhry8PLi4uMDPzw8rVqyQuj0iMlAyQZOzCImIiIhMAM8BIiIiIrPDAERERERmhwGIiIiIzA4DEBEREZkdBiAiIiIyOwxAREREZHYYgIiIiMjsMAARERGR2WEAIiIiIrPDAERERERmhwGIiIiIzA4DEBEREZmd/wPhTdHXVfCNdgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXORJREFUeJzt3XlcVGX7P/DPMLKICAgii7K4Y0JiqIjfJ1HjEZdUkp5ITcDIJVekTFGE0BRyzyUt07RSMUuRzDAlTUvKVNBcwCWQTEBNAQUFZM7vD39OHWZQwBnODPN5v168cq655z7X7THn8r7vc45MEAQBRERERKRkJHUCRERERLqGBRIRERFRFSyQiIiIiKpggURERERUBQskIiIioipYIBERERFVwQKJiIiIqAoWSERERERVsEAiIiIiqoIFEhE1aDKZDO+++67UaSiFhYXBzc1N6jSI6AlYIBFRvdu0aRNkMpnyx8zMDB06dMDkyZNRUFCg1WMfPXoU7777LgoLCzXab58+fURjsrGxQffu3bFx40YoFAqNHGPhwoVISkrSSF9E9HiNpE6AiAzXvHnz0Lp1a9y/fx8//fQT1q5di7179+LMmTMwNzfXyDHu3buHRo3++avu6NGjiIuLQ1hYGKytrTVyjEdatWqF+Ph4AMCNGzfw2WefITw8HBcuXEBCQsJT979w4UK8/PLLCAwMfOq+iOjxWCARkWQGDhyIbt26AQDeeOMN2NraYtmyZdi9ezdGjBhR534VCgXKy8thZmYGMzMzTaX7RFZWVnjttdeUr8ePH4+OHTti9erVmD9/PoyNjestFyJ6OlxiIyKd0a9fPwBAdnY2AGDJkiXo1asXbG1t0bhxY3h7e+Orr75S+ZxMJsPkyZOxZcsWdO7cGaampkhJSVG+92gP0rvvvosZM2YAAFq3bq1cDsvJyYGfnx+6dOmiNq+OHTsiICCg1uMxNzdHz549UVJSghs3blTbrqSkBG+99RacnZ1hamqKjh07YsmSJRAEQTTGkpISbN68WZl3WFhYrXMioprhDBIR6YzLly8DAGxtbQEAH3zwAYYOHYpRo0ahvLwciYmJ+N///oc9e/Zg8ODBos/+8MMP+PLLLzF58mQ0b95c7Ubo4cOH48KFC9i2bRuWL1+O5s2bAwDs7OwwevRojB07FmfOnIGHh4fyM7/99hsuXLiA6OjoOo3pjz/+gFwur3Y5TxAEDB06FAcPHkR4eDi8vLywb98+zJgxA3/99ReWL18OAPj888/xxhtvoEePHhg3bhwAoG3btnXKiYhqQCAiqmeffvqpAEA4cOCAcOPGDeHPP/8UEhMTBVtbW6Fx48bC1atXBUEQhNLSUtHnysvLBQ8PD6Ffv36iOADByMhIOHv2rMqxAAixsbHK14sXLxYACNnZ2aJ2hYWFgpmZmTBz5kxRfOrUqUKTJk2Eu3fvPnZMfn5+gru7u3Djxg3hxo0bwvnz54WpU6cKAIQhQ4Yo24WGhgqurq7K10lJSQIA4b333hP19/LLLwsymUy4dOmSMtakSRMhNDT0sXkQkWZwiY2IJOPv7w87Ozs4Ozvj1VdfhYWFBXbt2oWWLVsCABo3bqxse/v2bRQVFeH555/HyZMnVfry8/PDM888U+dcrKysMGzYMGzbtk25tFVZWYnt27cjMDAQTZo0eWIfmZmZsLOzg52dHTp16oRVq1Zh8ODB2LhxY7Wf2bt3L+RyOaZOnSqKv/XWWxAEAd99912dx0REdcclNiKSzJo1a9ChQwc0atQI9vb26NixI4yM/vl32549e/Dee+8hIyMDZWVlyrhMJlPpq3Xr1k+dT0hICLZv344jR46gd+/eOHDgAAoKCjB69Ogafd7NzQ3r169X3rqgffv2aNGixWM/c+XKFTg5OaFp06aieKdOnZTvE1H9Y4FERJLp0aOH8iq2qo4cOYKhQ4eid+/e+PDDD+Ho6AhjY2N8+umn2Lp1q0r7f8821VVAQADs7e3xxRdfoHfv3vjiiy/g4OAAf3//Gn2+SZMmNW5LRLqNS2xEpJO+/vprmJmZYd++fXj99dcxcOBAjRQf6mafHpHL5Rg5ciS++uor3L59G0lJSRgxYgTkcvlTH7c6rq6uuHbtGu7cuSOKZ2ZmKt9/5HG5E5FmsUAiIp0kl8shk8lQWVmpjOXk5Dz1naQf7SWq7k7ao0ePxu3btzF+/HjcvXtXdF8jbRg0aBAqKyuxevVqUXz58uWQyWQYOHCgMtakSRON3wGciNTjEhsR6aTBgwdj2bJlGDBgAEaOHInr169jzZo1aNeuHU6fPl3nfr29vQEAc+bMwauvvgpjY2MMGTJEWTh17doVHh4e2LFjBzp16oTnnntOI+OpzpAhQ9C3b1/MmTMHOTk56NKlC77//nvs3r0bERERokv5vb29ceDAASxbtgxOTk5o3bo1fHx8tJofkaHiDBIR6aR+/fphw4YNyM/PR0REBLZt24b3338fL7300lP12717d8yfPx+nTp1CWFgYRowYoXITx5CQEACo8ebsp2FkZITk5GRERERgz549iIiIwLlz57B48WIsW7ZM1HbZsmXw9vZGdHQ0RowYgbVr12o9PyJDJROEf92qlYiI8MEHH2D69OnIycmBi4uL1OkQkQRYIBER/YsgCOjSpQtsbW1x8OBBqdMhIolwDxIRER4+Dy05ORkHDx7E77//jt27d0udEhFJiDNIRER4eIVc69atYW1tjYkTJ2LBggVSp0REEmKBRERERFQFr2IjIiIiqoIFEhEREVEV3KRdRwqFAteuXUPTpk15+38iIiI9IQgC7ty5AycnJ9HDsatigVRH165dg7Ozs9RpEBERUR38+eefaNWqVbXvs0Cqo6ZNmwJ4+BtsaWkpcTZERERUE8XFxXB2dlZ+j1eHBVIdPVpWs7S0ZIFERESkZ560PYabtImIiIiqYIFEREREVAULJCIiIqIquAdJyyorK1FRUSF1GqRlxsbGkMvlUqdBREQawgJJSwRBQH5+PgoLC6VOheqJtbU1HBwceF8sIqIGgAWSljwqjlq0aAFzc3N+aTZggiCgtLQU169fBwA4OjpKnBERET0tFkhaUFlZqSyObG1tpU6H6kHjxo0BANevX0eLFi243EZEpOe4SVsLHu05Mjc3lzgTqk+Pzjf3nBER6T8WSFrEZTXDwvNNRNRwsEAiIiIiqoIFEhEREVEVLJBIJCwsDDKZDDKZDMbGxrC3t8d///tfbNy4EQqFosb9bNq0CdbW1tpLlIiISItYIJGKAQMGIC8vDzk5Ofjuu+/Qt29fTJs2DS+++CIePHggdXpERGQApL7ghQUSqTA1NYWDgwNatmyJ5557DrNnz8bu3bvx3XffYdOmTQCAZcuWwdPTE02aNIGzszMmTpyIu3fvAgAOHTqEMWPGoKioSDkb9e677wIAPv/8c3Tr1g1NmzaFg4MDRo4cqbx/EBERUX5+PuLi4rBw4UL89ddfkuXBAqkeCIKA8vJySX4EQdDIGPr164cuXbpg586dAAAjIyOsXLkSZ8+exebNm/HDDz/gnXfeAQD06tULK1asgKWlJfLy8pCXl4e3334bwMN/EcyfPx+nTp1CUlIScnJyEBYWppEciYhIv+3btw8fffSR8vXPP5tKlgtvFFkPKioqEB8fL8mxo6KiYGJiopG+3N3dcfr0aQBARESEMu7m5ob33nsPEyZMwIcffggTExNYWVlBJpPBwcFB1Mfrr7+u/HWbNm2wcuVKdO/eHXfv3oWFhYVG8iQiIv1SUVGBhQsXimKJia+gWbPmeOUVaXLiDBLVmCAIynv9HDhwAC+88AJatmyJpk2bYvTo0fj7779RWlr62D5OnDiBIUOGwMXFBU2bNoWfnx8AIDc3V+v5ExGR7rly5YpKceTp+Q6aNeuEWbMkSgqcQaoXxsbGiIqKkuzYmnL+/Hm0bt0aOTk5ePHFF/Hmm29iwYIFsLGxwU8//YTw8HCUl5dXewfxkpISBAQEICAgAFu2bIGdnR1yc3MREBCA8vJyjeVJRET6YdeuXcqVCQDw8PBAUFAQAGD4cKmyeogFUj2QyWQaW+aSyg8//IDff/8d06dPx4kTJ6BQKLB06VIYGT2chPzyyy9F7U1MTFBZWSmKZWZm4u+//0ZCQgKcnZ0BAMePH6+fARARkc64f/8+3n//fVEsJCQErVu3ligjVSyQSEVZWRny8/NRWVmJgoICpKSkID4+Hi+++CJCQkJw5swZVFRUYNWqVRgyZAh+/vlnrFu3TtSHm5sb7t69i9TUVHTp0gXm5uZwcXGBiYkJVq1ahQkTJuDMmTOYP3++RKMkIiIpZGVlITExURSbPXu2Rlc8NIF7kEhFSkoKHB0d4ebmhgEDBuDgwYNYuXIldu/eDblcji5dumDZsmV4//334eHhgS1btqhsQu/VqxcmTJiA4OBg2NnZYdGiRbCzs8OmTZuwY8cOPPPMM0hISMCSJUskGiUREdW3zz//XFQc9ejRA7GxsTpXHAGATNDUdeAGpri4GFZWVigqKoKlpaXovfv37yM7OxutW7eGmZmZRBlSfeN5JyJS7+7du1i6dKkoNnbsWDg5OdV7Lo/7/v43yWeQ1qxZAzc3N5iZmcHHxwfHjh2rtu3Zs2cRFBQENzc3yGQyrFixQqXN4cOHMWTIEDg5OUEmkyEpKUmljSAIiImJgaOjIxo3bgx/f39cvHhRg6MiIiIiADh16pSoOJLL5YiOjpakOKoNSQuk7du3IzIyErGxsTh58iS6dOmCgICAau+sXFpaijZt2iAhIUHl/jqPlJSUoEuXLlizZk21x120aBFWrlyJdevW4ddff0WTJk0QEBCA+/fva2RcREREhk4QBKxdu1Y0UdG3b19ER0dDLpdLl1gNSbrE5uPjg+7du2P16tUAAIVCAWdnZ0yZMgWznnDzAzc3N0RERIhuWFiVTCbDrl27EBgYqIwJggAnJye89dZbyrs7FxUVwd7eHps2bcKrr75ao9y5xEZV8bwTET1UWFiIDz74QBSbNGkSmjdvLlFG/9D5Jbby8nKcOHEC/v7+/yRjZAR/f3+kpaVp7bjZ2dnIz88XHdfKygo+Pj6PPW5ZWRmKi4tFP0RERCT2yy+/iIojKysrxMTE6ERxVBuSXeZ/8+ZNVFZWwt7eXhS3t7dHZmam1o6bn5+vPE7V4z56T534+HjExcVpLS8iIiJ99uj+eP9+osLgwYPRrVs3CbOqO8k3aeuLqKgoFBUVKX/+/PNPqVMiIiLSCdevX8f8+fNFxVFERITeFkeAhDNIzZs3h1wuR0FBgSheUFBQ7QZsTXjUd0FBARwdHUXH9fLyqvZzpqamMDWV7qnCREREuuiHH37AkSNHlK9btWqF119/XfnsTn0l2QySiYkJvL29kZqaqowpFAqkpqbC19dXa8dt3bo1HBwcRMctLi7Gr7/+qtXjEhERNSQPHjxAXFycqDh6+eWXER4ervfFESDxo0YiIyMRGhqKbt26oUePHlixYgVKSkowZswYAA+fy9KyZUvlXZrLy8tx7tw55a//+usvZGRkwMLCAu3atQPw8GZUly5dUh4jOzsbGRkZsLGxgYuLC2QyGSIiIvDee++hffv2aN26NebOnQsnJyfR1W5ERESk3tWrV7FhwwZRbMaMGdU+rFwfSVogBQcH48aNG4iJiUF+fj68vLyQkpKi3ECdm5urfBgqAFy7dg1du3ZVvl6yZAmWLFkCPz8/HDp0CMDDh5/27dtX2SYyMhIAEBoaik2bNgEA3nnnHZSUlGDcuHEoLCzEf/7zH6SkpPDS7HoUFhaGwsJC5f0x+vTpAy8vL7U3/6wpTfRBRESP98033+DkyZPK1x07dqzxLXL0CR81UkcN9T5IYWFh2Lx5MwDA2NgYLi4uCAkJwezZs9Gokebq6aoF0q1bt2BsbIymTZs+8bOHDh1C3759cfv2bVhbWyvjtelDG/T5vBMRPUlZWRkSEhJEsVGjRilXcPRFTe+DJOkMEummAQMG4NNPP0VZWRn27t2LSZMmwdjYGFFRUaJ25eXlMDEx0cgxbWxsdKIPIiJSdenSJWzZskUUi4qK0th3gC7iZf6kwtTUFA4ODnB1dcWbb74Jf39/JCcnIywsDIGBgViwYAGcnJzQsWNHAMCff/6JV155BdbW1rCxscGwYcOQk5Oj7K+yshKRkZGwtraGra0t3nnnHVSduOzTp4/oruhlZWWYOXMmnJ2dYWpqinbt2mHDhg3IyclRLqE2a9YMMpkMYWFhavu4ffs2QkJC0KxZM5ibm2PgwIGiZ+5t2rQJ1tbW2LdvHzp16gQLCwsMGDAAeXl5yjaHDh1Cjx490KRJE1hbW+P//u//cOXKFQ39ThMR6b7ExERRceTt7Y3Y2NgGXRwBLJCoBho3bozy8nIAQGpqKrKysrB//37s2bMHFRUVCAgIQNOmTXHkyBH8/PPPykLj0WeWLl2KTZs2YePGjfjpp59w69Yt7Nq167HHDAkJwbZt27By5UqcP38eH330ESwsLODs7Iyvv/4aAJCVlYW8vDyV29k/EhYWhuPHjyM5ORlpaWkQBAGDBg1CRUWFsk1paSmWLFmCzz//HIcPH0Zubq7yETQPHjxAYGAg/Pz8cPr0aaSlpWHcuHEN4uoMIqInKS0tRVxcHLKyspSx8PBwvPjiixJmVX+4xEbVEgQBqamp2LdvH6ZMmYIbN26gSZMm+OSTT5T/cvjiiy+gUCjwySefKAuHTz/9FNbW1jh06BD69++PFStWICoqCsOHDwcArFu3Dvv27av2uBcuXMCXX36J/fv3Kx8J06ZNG+X7j5bSWrRoIdqD9G8XL15EcnIyfv75Z/Tq1QsAsGXLFjg7OyMpKQn/+9//AAAVFRVYt24d2rZtCwCYPHky5s2bB+DhOnVRURFefPFF5fudOnWq/W8kEZGeOXPmjPIfo4/MmTNHo3tRdR1nkHRccjLQq9fD/9aXPXv2wMLCAmZmZhg4cCCCg4Px7rvvAgA8PT1F06qnTp3CpUuX0LRpU1hYWMDCwgI2Nja4f/8+Ll++jKKiIuTl5cHHx0f5mUaNGj327qoZGRmQy+Xw8/Or8xjOnz+PRo0aiY5ra2uLjh074vz588qYubm5svgBAEdHR1y/fh3Aw0IsLCwMAQEBGDJkCD744APR8hsRUUMjCAI++eQTUXH0/PPPIzY21qCKI4AzSDovIQFIS3v436FD6+eYffv2xdq1a2FiYgInJyfR/xRNmjQRtb179y68vb1VNu8BgJ2dXZ2O37hx4zp9ri6MjY1Fr2UymWh/1KeffoqpU6ciJSUF27dvR3R0NPbv34+ePXvWW45ERPWhqKhI5TYpb775Jlq0aCFNQhLjDJKOmzUL8PV9+N/60qRJE7Rr1w4uLi5P/BfDc889h4sXL6JFixZo166d6MfKygpWVlZwdHTEr7/+qvzMgwcPcOLEiWr79PT0hEKhwI8//qj2/UczWJWVldX20alTJzx48EB03L///htZWVl45plnHjumqrp27YqoqCgcPXoUHh4e2Lp1a60+T0Sk63777TdRcWRubo65c+cabHEEsEDSeUOHAkeP1t/sUW2NGjUKzZs3x7Bhw3DkyBFkZ2fj0KFDmDp1Kq5evQoAmDZtGhISEpCUlITMzExMnDgRhYWF1fbp5uaG0NBQvP7660hKSlL2+eWXXwIAXF1dIZPJsGfPHty4cQN3795V6aN9+/YYNmwYxo4di59++gmnTp3Ca6+9hpYtW2LYsGE1Glt2djaioqKQlpaGK1eu4Pvvv8fFixe5D4mIGgxBELB8+XLs3btXGQsICMCMGTNEN2o2RIY9enpq5ubmOHz4MFxcXDB8+HB06tQJ4eHhuH//vvIGXG+99RZGjx6N0NBQ+Pr6omnTpnjppZce2+/atWvx8ssvY+LEiXB3d8fYsWNRUlICAGjZsiXi4uIwa9Ys2NvbY/LkyWr7+PTTT+Ht7Y0XX3wRvr6+EAQBe/fuVVlWe9zYMjMzERQUhA4dOmDcuHGYNGkSxo8fX4vfISIi3XTz5k3MmzcPxcXFyti0adO4heD/452066ih3kmb6o7nnYj0xeHDh3Hw4EHl6xYtWmDChAkGcRsT3kmbiIiIRCorK7Fw4UIoFAplLDAwEF26dJEwK93EAomIiMgAXLt2DevXrxfF3nrrLVhYWEiUkW5jgURERNTAfffddzh27JjydZs2bTB69GgJM9J9LJCIiIgaqPLycsTHx4tir776qvJZmlQ9FkhaxP3vhoXnm4h0SXZ2Nj777DNRbObMmbyIpIZYIGnBo8vIS0tL6/Wu0CSt0tJSAKp35yYiqm9fffUVzp49q3z97LPPPvH2KiTGAkkL5HI5rK2tlc/0Mjc3N4hLJw2VIAgoLS3F9evXYW1tDblcLnVKRGSg7t27h0WLFoliYWFhcHV1lSgj/cUCSUscHBwAQFkkUcNnbW2tPO9ERPXt/PnzyicOPDJ79mzOatcRCyQtkclkcHR0RIsWLVBRUSF1OqRlxsbGnDkiIkkIgoDNmzfjypUrypivry/69+8vYVb6jwWSlsnlcn5xEhGRVty5cwfLli0TxcaPH8/ZbA1ggURERKSH0tPTkZycrHxtbGyMmTNn8h/lGsICiYiISI8IgoDVq1fj1q1bytgLL7yA//znPxJm1fCwQCIiItITt27dwqpVq0SxKVOmwMbGRqKMGi4WSERERHrg559/xoEDB5SvbWxsMHnyZN5GRktYIBEREekwhUKB999/H+Xl5crYkCFD8Nxzz0mYVcPHAomIiEhH5efn46OPPhLFIiMj0bRpU4kyMhwskIiIiHTQ/v37cfToUeVrV1dXhIaGckmtnrBAIiIi0iEVFRVYuHChKPbKK6+gU6dOEmVkmFggERER6YgrV65g06ZNotg777zDB59LgAUSERGRDkhKSsKpU6eUr5955hn873//kzAjw8YCiYiISEL379/H+++/L4qNHj0abdq0kSgjAlggERERSebChQvYtm2bKBYVFQUTExOJMqJHWCARERHVk+RkICEBmDULuHNnCy5duqR8r3v37hg0aJCE2dG/sUAiIiKqJwkJwOnTJUhPXyKKv/HGG2jZsqVEWZE6LJCIiIjqSXj4MVy9+p3ytUwmw5w5cyCXyyXMitQxkjoBAFizZg3c3NxgZmYGHx8fHDt2rNq2Z8+eRVBQENzc3CCTybBixYo69dmnTx/IZDLRz4QJEzQ5LCIiIgCAIAiIi4sTFUd9+vRBTEwMiyMdJXmBtH37dkRGRiI2NhYnT55Ely5dEBAQgOvXr6ttX1paijZt2iAhIQEODg5P1efYsWORl5en/Fm0aJHGx0dERIbtypUrmDdvnig2ceJE+Pn5SZQR1YRMEARBygR8fHzQvXt3rF69GsDDh/I5OztjypQpmDVr1mM/6+bmhoiICERERNS6zz59+sDLy6vaGagnKS4uhpWVFYqKimBpaVmnPoiIqGFbtWoVbt26JYpFR0dz1khCNf3+lnQGqby8HCdOnIC/v78yZmRkBH9/f6SlpWm9zy1btqB58+bw8PBAVFQUSktLq+23rKwMxcXFoh8iIiJ1KisrERcXJyqO7OzsEBsby+JIT0i6SfvmzZuorKyEvb29KG5vb4/MzEyt9jly5Ei4urrCyckJp0+fxsyZM5GVlYWdO3eq7Tc+Ph5xcXF1yomIiAzH2bNn8dVXX4liY8aMgYuLi0QZUV0Y7FVs48aNU/7a09MTjo6OeOGFF3D58mW0bdtWpX1UVBQiIyOVr4uLi+Hs7FwvuRIRkX5Q9w/pmJgYyGQyCbKhpyFpgdS8eXPI5XIUFBSI4gUFBdVuwNZWnz4+PgCAS5cuqS2QTE1NYWpqWqeciIioYSsrK0NCQoIo1rFjR7z66qsSZURPS9I9SCYmJvD29kZqaqoyplAokJqaCl9f33rtMyMjAwDg6OhYp+MSEZFh+vXXX1WKo4kTJ7I40nOSL7FFRkYiNDQU3bp1Q48ePbBixQqUlJRgzJgxAICQkBC0bNkS8fHxAB5uwj537pzy13/99RcyMjJgYWGBdu3a1ajPy5cvY+vWrRg0aBBsbW1x+vRpTJ8+Hb1798azzz4rwe8CERHpI3VLarGxsRJkQpomeYEUHByMGzduICYmBvn5+fDy8kJKSopyk3Vubi6MjP6Z6Lp27Rq6du2qfL1kyRIsWbIEfn5+OHToUI36NDExwYEDB5SFk7OzM4KCghAdHV1/AyciIr119+5dLF26VBTz8fHBgAEDJMqINE3y+yDpK94HiYjIMH3//fcqt42JjIxE06ZNJcqIaqOm39+SzyARERHpCy6pGQ4WSERERE/w999/K5/O8Mh///tf9OrVS6KMSNtYIBERET3Gjh07lBcHPTJz5kyYmZlJlBHVBxZIREREagiCoPKQWYBLaoaCBRIREVEVV69exYYNG0Sx4cOHw9PTU6KMqL6xQCIiIvqXjz/+GHl5eaLYnDlz0KgRvzINCc82ERERHj51Yf78+aKYpaUlpk+fLlFGJCUWSEREZPAuXLiAbdu2iWIhISFo3bq1RBmR1FggERGRQVu4cCEqKipEsZiYGMhkMokyIl3AAomIiAxSRUUFFi5cKIq5ubkhNDRUooxIl7BAIiIig3Py5El88803otj48ePh4OAgUUaka1ggERGRQeHjQqgmWCAREZFBKC0txeLFi0Wxrl27YujQoRJlRLqMBRIRETV4hw4dwo8//iiKTZs2DdbW1tIkRDqPBRIRETVoXFKjumCBREREDVJhYSE++OADUaxPnz7w8/OTKCPSJyyQiIiowdm9ezcyMjJEsRkzZsDc3FyahEjvsEAiIqIGhUtqpAkskIiISG8lJwMJCcCsWUD37nn4+OOPRe8PHToUXbt2lSg70mcskIiISG8lJABpaUBq6iakp18RvTd79mwYGxtLlBnpOxZIRESkt2bOVCAjY74oZmJigqioKIkyooaCBRIREemlAwcOICPjZ1FsxIgR6NChg0QZUUPCAomIiPSOuo3YXl5z0aGDkQTZUEPEAomIiPRGWVkZEhISVOK8So00jQUSERHpha1bt+LixYui2MCBA9GjRw+JMqKGjAUSERHpPHVLajExMZDJZBJkQ4aABRIREemsoqIirFixQiXOJTXSNhZIRESkk5YsWYKSkhJRbOTIkWjfvr1EGZEhYYFEREQ6h48LIamxQCIiIp3x119/4ZNPPlGJszii+sYCiYiIdIK6WaMJEybA3t5egmzI0LFAIiIiyXFJjXQNCyQiIpLMuXPnsGPHDlHM1tYWkydPligjoodYIBERkSTUzRq99dZbsLCwkCAbIjGdeGjNmjVr4ObmBjMzM/j4+ODYsWPVtj179iyCgoLg5uYGmUym9v4YNenz/v37mDRpEmxtbWFhYYGgoCAUFBRoclhERKSGIAjVLqmxOCJdIXmBtH37dkRGRiI2NhYnT55Ely5dEBAQgOvXr6ttX1paijZt2iAhIQEODg517nP69On45ptvsGPHDvz444+4du0ahg8frpUxEhERkJwMjBr1E+bNmyeKe3h4cL8R6RyZIAiClAn4+Pige/fuWL16NQBAoVDA2dkZU6ZMwaxZsx77WTc3N0RERCAiIqJWfRYVFcHOzg5bt27Fyy+/DADIzMxEp06dkJaWhp49ez4x7+LiYlhZWaGoqAiWlpZ1GDkRkWFRN2s0e/ZsGBsbS5ANGaqafn9LOoNUXl6OEydOwN/fXxkzMjKCv78/0tLStNbniRMnUFFRIWrj7u4OFxeXOh+XiIjUKy8vr3ZJjcUR6SpJN2nfvHkTlZWVKve4sLe3R2Zmptb6zM/Ph4mJCaytrVXa5Ofnq+23rKwMZWVlytfFxcV1yo+IyJCsX78e165dE8X69euH559/XqKMiGqGV7HVUHx8vNp/ARERkXrq/s6MiYmBTCaTIBui2pF0ia158+aQy+UqV48VFBRUuwFbE306ODigvLwchYWFNT5uVFQUioqKlD9//vlnnfIjImroioqKql1SY3FE+kLSAsnExATe3t5ITU1VxhQKBVJTU+Hr66u1Pr29vWFsbCxqk5WVhdzc3GqPa2pqCktLS9EPERGJxcXFqdx+ZdCgQbxKjfSO5EtskZGRCA0NRbdu3dCjRw+sWLECJSUlGDNmDAAgJCQELVu2RHx8PICHm/3OnTun/PVff/2FjIwMWFhYoF27djXq08rKCuHh4YiMjISNjQ0sLS0xZcoU+Pr61ugKNiIiEktOBtLT+bgQajgkL5CCg4Nx48YNxMTEID8/H15eXkhJSVFuss7NzYWR0T8TXdeuXUPXrl2Vr5csWYIlS5bAz88Phw4dqlGfALB8+XIYGRkhKCgIZWVlCAgIwIcfflg/gyYiakCys7ORnv6ZSpzFEekzye+DpK94HyQiIvUbsUePHo02bdpIkA3Rk9X0+1vyGSQiItJP1W3EJmoIWCAREVGNJCcDCQlAePhvuHp1r8r7LI6oIWGBRERENZKQAAQExOHqVXF8/Pjxdb41C5GuYoFERERPJAgCAgLmqcQ5a0QNFQskIiJ6rB07dihvr/JvLI6oIWOBRERE1VK3EXvt2kiEhzeVIBui+sMCiYiIVFRUVGDhwoUq8djYWHDiiAwBCyQiIhJZtGgR7t27J4pZWVkhIiJCmoSIJMACiYiIlNQtqc2ZMweNGvHrggwL/8QTERGKi4uxfPlylTg3YpOhYoFERGTg1M0aeXl5YdiwYRJkQ6QbWCARERkwdcVRTEwMZDKZBNkQ6Q6j2n5ALpfj+vXrKvG///4bcrlcI0kREZF2/fnnn9U+S43FEVEdZpAEQVAbLysrg4mJyVMnRERE2qWuMDp3biBGjeohQTZEuqnGBdLKlSsBADKZDJ988gksLCyU71VWVuLw4cNwd3fXfIZERKQx1c0aEZFYjQukR1c3CIKAdevWiZbTTExM4ObmhnXr1mk+QyIiemrp6elITk5WibM4IlKvxgVSdnY2AKBv377YuXMnmjVrprWkiIhIc9TNGoWGhsLNza3+kyHSE7Xeg3Tw4EFt5EFERFrAJTWiuql1gfT6668/9v2NGzfWORkiItKMvXv34rffflOJszgiqplaF0i3b98Wva6oqMCZM2dQWFiIfv36aSwxIiKqG3WzRtOmTYO1tXX9J0Okp2pdIO3atUslplAo8Oabb6Jt27YaSYqIiGouORlISABmzqxERsZ7Ku9z1oio9mRCdTc2qqWsrCz06dMHeXl5muhO5xUXF8PKygpFRUWwtLSUOh0iMmC9egFeXmthby++ia+RkRHmzp0rUVZEuqmm398ae9TI5cuX8eDBA011R0RENRQQoLqkFhUVxZv3Ej2FWhdIkZGRoteCICAvLw/ffvstQkNDNZYYERE9XmlpKRYvXqwS37cvFlxVI3o6tS6Q0tPTRa+NjIxgZ2eHpUuXPvEKNyIi0gx1G7GbNm2Hr74ahVmzJEiIqIHR2B4kQ8M9SEQkFXXFUUxMDB8yS1QDWt+DdP36dWRlZQEAOnbsiBYtWtS1KyIiqoGCggK1j3TiVWpEmlfrAqm4uBiTJk3Ctm3boFAoAAByuRzBwcFYs2YNrKysNJ4kEZGhUzdr1KdPH/j5+UmQDVHDZ1TbD4wdOxa//vorvv32WxQWFqKwsBB79uzB8ePHMX78eG3kSERk0Kp7XAiLIyLtqfUepCZNmmDfvn34z3/+I4ofOXIEAwYMQElJiUYT1FXcg0RE2vbHH3/g888/V4lzSY2o7rS2B8nW1lbtMpqVlRWaNWtW2+6IiOj/e3RH7FmzgPR01VmjkyeDsXu3uwSZERmeWi+xRUdHIzIyEvn5+cpYfn4+ZsyYwTu2EhE9hYQEIC1NfXG0b18swsNZHBHVl1ovsXXt2hWXLl1CWVkZXFxcAAC5ubkwNTVF+/btRW1PnjypuUx1DJfYiEjTNmw4hqtXv1OJc0mNSHO0tsQ2bNgw3muDiEjD1G3Enjx5MmxtbSXIhoh4o8g64gwSEWmCIAiYN2+eSpyzRkTaUdPv71rvQWrTpg3+/vtvlXhhYSHatGlT2+4AAGvWrIGbmxvMzMzg4+ODY8eOPbb9jh074O7uDjMzM3h6emLv3r2i9wsKChAWFgYnJyeYm5tjwIABuHjxoqhNnz59IJPJRD8TJkyoU/5ERHWRkpKiUhxZWlqyOCLSAbUukHJyclBZWakSLysrw9WrV2udwPbt2xEZGYnY2FicPHkSXbp0QUBAAK5fv662/dGjRzFixAiEh4cjPT0dgYGBCAwMxJkzZwA8/NdYYGAg/vjjD+zevRvp6elwdXWFv7+/yi0Ixo4di7y8POXPokWLap0/EVFdxMXF4ddffxXFZs2ahenTp0uUERH9W42X2JKTkwEAgYGB2Lx5s+hS/8rKSqSmpmL//v3Kx4/UlI+PD7p3747Vq1cDABQKBZydnTFlyhTMUvPExeDgYJSUlGDPnj3KWM+ePeHl5YV169bhwoUL6NixI86cOYPOnTsr+3RwcMDChQvxxhtvAHg4g+Tl5YUVK1bUKt9HuMRGRHVRUVGBhQsXqsQ5a0RUPzS+STswMBAAIJPJEBoaKnrP2NgYbm5uWLp0aa2SLC8vx4kTJxAVFaWMGRkZwd/fH2lpaWo/k5aWhsjISFEsICAASUlJAB7OZAGAmZmZqE9TU1P89NNPygIJALZs2YIvvvgCDg4OGDJkCObOnQtzc3O1xy0rK1P2DTz8DSYiqo1PP/0Uubm5oliXLl2Uf78Ske6ocYH06LlrrVu3xm+//YbmzZs/9cFv3ryJyspK2Nvbi+L29vbIzMxU+5n8/Hy17R/dl8nd3R0uLi6IiorCRx99hCZNmmD58uW4evUq8vLylJ8ZOXIkXF1d4eTkhNOnT2PmzJnIysrCzp071R43Pj5e7VUmREQ1oe7vj7lz58LIqNY7HYioHtT6Mv/s7Gxt5KExxsbG2LlzJ8LDw2FjYwO5XA5/f38MHDgQ/15NHDdunPLXnp6ecHR0xAsvvIDLly+jbdu2Kv1GRUWJZq6Ki4vh7Oys3cEQkd67c+cOli1bphLnkhqRbqt1gaTuctR/i4mJqXFfzZs3h1wuR0FBgSheUFAABwcHtZ9xcHB4Yntvb29kZGSgqKgI5eXlsLOzg4+PD7p161ZtLj4+PgCAS5cuqS2QTE1NYWpqWuOxERGpmzUKCAhAz549JciGiGqj1gXSrl27RK8rKiqQnZ2NRo0aoW3btrUqkExMTODt7Y3U1FTlGrxCoUBqaiomT56s9jO+vr5ITU1FRESEMrZ//374+vqqtH20kfzixYs4fvw45s+fX20uGRkZAABHR8ca509EVB11xRFnjYj0R60LpPT0dJVYcXExwsLC8NJLL9U6gcjISISGhqJbt27o0aMHVqxYgZKSEowZMwYAEBISgpYtWyI+Ph4AMG3aNPj5+WHp0qUYPHgwEhMTcfz4cXz88cfKPnfs2AE7Ozu4uLjg999/x7Rp0xAYGIj+/fsDAC5fvoytW7di0KBBsLW1xenTpzF9+nT07t0bzz77bK3HQET0SF5enujvo0dYHBHpl1oXSOpYWloiLi4OQ4YMwejRo2v12eDgYNy4cQMxMTHIz8+Hl5cXUlJSlBuxc3NzRZsYe/Xqha1btyI6OhqzZ89G+/btkZSUBA8PD2WbvLw8REZGoqCgAI6OjggJCRE9SNfExAQHDhxQFmPOzs4ICgpCdHT0U/5OEJEhUzdrNHLkSJXnVBKR7tPYo0Z++uknDBkyBLdv39ZEdzqP90Eion/jkhqRftDaw2pXrlwpei0IAvLy8vD5559j4MCBtc+UiEiPnTt3Djt27FCJszgi0m+1LpCWL18uem1kZAQ7OzuEhoaKbvhIRNTQqZs1evPNN9GiRQsJsiEiTWpw90EiItI2QRDU3vKEs0ZEDUedNmkXFhbi0qVLAIB27drB2tpakzkREemsw4cP4+DBg6KYmZkZZs6cKVFGRKQNtSqQcnJyMGnSJOzbt095V2qZTIYBAwZg9erVcHNz00aOREQ6Qd2S2ttvv40mTZpIkA0RaVONC6Q///wTPXv2hLGxMebPn49OnToBeLhBce3atfD19cVvv/2GVq1aaS1ZIiIpVFZW4r333lOJc0mNqOGq8WX+4eHhuHTpEvbt2wczMzPRe/fu3cOAAQPQvn17fPLJJ1pJVNfwMn8iw7B9+3aVh2e3b98eI0eOlCgjInoaGr/MPyUlBdu3b1cpjgCgcePGmD9/Pl599dW6ZUtEpIPULanNmTMHjRpp5B67RKTDavx/+c2bNx+7x6hNmza4deuWJnIiIpJUaWkpFi9erBLnkhqR4ahxgeTo6Ihz585Vu8fozJkzcHBw0FhiRERSWLp0Ke7evSuKPf/88+jXr59EGRGRFGpcIAUGBuLtt99Gamoq7OzsRO9dv34dM2fORGBgoKbzIyKqN+qW1GJiYiCTySTIhoikVONN2rdv34aPjw/y8/Px2muvwd3dHYIg4Pz589i6dSscHBzwyy+/wMbGRts56wRu0iZqOG7evIk1a9aoxLmkRtTwaHyTdrNmzfDrr79i9uzZSExMRGFhIQDA2toaI0eOxMKFCw2mOCKihkPdrFFQUBA8PDwkyIaIdEWNZ5D+TRAE3LhxAwBgZ2dnkNPPnEEi0n/qiiPOGhE1bBqfQfo3mUzGhzESkV5KTgbWr7+Mbt2+UHmPxRERPcKbeRCRQUlPj0O3buLYG2+8gZYtW0qTEBHpJBZIRGQwuKRGRDXFAomIGrxjx47hu+++U4mzOCKi6rBAIqIGTd2s0fTp03lxBRE9Vo0KpJUrV9a4w6lTp9Y5GSIiTVEoFJg/f75KnLNGRFQTNbrMv3Xr1jXrTCbDH3/88dRJ6QNe5k+ku7755hucPHlSFHNycsLYsWMlyoiIdIVGL/PPzs7WWGJERNqSnPzwKrWqoqKiYGJiIkFGRKSvjOr6wfLycmRlZeHBgweazIeIqE4qKirUFkexsbEsjoio1mq9Sbu0tBRTpkzB5s2bAQAXLlxAmzZtMGXKFLRs2RKzZs3SeJJERI/z9ddf48yZM6JY9+7dMWjQIIkyIiJ9V+sZpKioKJw6dQqHDh2CmZmZMu7v74/t27drNDkioieJi4tTKY5iYmJYHBHRU6n1DFJSUhK2b9+Onj17ip7B1rlzZ1y+fFmjyRERVefOnTtYtmyZSpxXqRGRJtS6QLpx44ba57CVlJQY5ENriaj+rV69Gn///bco9sorr6BTp04SZUREDU2tl9i6deuGb7/9Vvn6UVH0ySefwNfXV3OZERGpERcXp1IcxcbGsjgiIo2q9QzSwoULMXDgQJw7dw4PHjzABx98gHPnzuHo0aP48ccftZEjEREKCgqwbt06lTiX1IhIG2pdIP3nP/9BRkYGEhIS4Onpie+//x7PPfcc0tLS4OnpqY0cicjAqXtcyBtvvIGWLVtKkA0RGYIa3UmbVPFO2kT1Q11xxFkjIqorjd5Ju7i4uMYHZrFARJpw4cIFbNu2TRSzsLDAW2+9JVFGRGRIalQgWVtb1/gKtcrKyqdKiIhI3axRREQErKysJMiGiAxRjQqkgwcPKn+dk5ODWbNmISwsTHnVWlpaGjZv3oz4+HjtZElEBkEQBMybN08lziU1Iqpvtd6D9MILL+CNN97AiBEjRPGtW7fi448/xqFDhzSZn87iHiQizfr111+RkpIiinXo0EHl7xoioqdR0+/vWt8HKS0tDd26dVOJd+vWDceOHattdwCANWvWwM3NDWZmZvDx8XliPzt27IC7uzvMzMzg6emJvXv3it4vKChAWFgYnJycYG5ujgEDBuDixYuiNvfv38ekSZNga2sLCwsLBAUFoaCgoE75E9HTiYuLUymOZs2axeKIiCRT6wLJ2dkZ69evV4l/8skncHZ2rnUC27dvR2RkJGJjY3Hy5El06dIFAQEBuH79utr2R48exYgRIxAeHo709HQEBgYiMDBQ+SwmQRAQGBiIP/74A7t370Z6ejpcXV3h7++PkpISZT/Tp0/HN998gx07duDHH3/EtWvXMHz48FrnT0R19+DBg2qvUjM1NZUgIyKih2q9xLZ3714EBQWhXbt28PHxAQAcO3YMFy9exNdff13rB0T6+Pige/fuWL16NQBAoVDA2dkZU6ZMwaxZs1TaBwcHo6SkBHv27FHGevbsCS8vL6xbtw4XLlxAx44dcebMGXTu3FnZp4ODAxYuXIg33ngDRUVFsLOzw9atW/Hyyy8DADIzM9GpUyekpaWhZ8+eT8ybS2xET2fPnj04ceKEKPaf//wHL7zwgkQZEZEh0NoS26BBg3Dx4kUMGTIEt27dwq1btzBkyBBcuHCh1sVReXk5Tpw4AX9//38SMjKCv78/0tLS1H4mLS1N1B4AAgIClO3LysoAAGZmZqI+TU1N8dNPPwEATpw4gYqKClE/7u7ucHFxqfa4ZWVlKC4uFv0QUd3ExcWpFEdz585lcUREOqPWd9IGgFatWmHhwoVPffCbN2+isrIS9vb2ori9vT0yMzPVfiY/P19t+/z8fAD/FDpRUVH46KOP0KRJEyxfvhxXr15FXl6esg8TExNYW1tX209V8fHxapcCiKjmSktLsXjxYpU4r1IjIl1TpwKpsLAQGzZswPnz5wEAnTt3xuuvv64T9ygxNjbGzp07ER4eDhsbG8jlcvj7+2PgwIF4mpuGR0VFITIyUvm6uLi4TnuuiAzVhg0bcPXqVVFs2LBh8PLykiYhIqLHqHWBdPz4cQQEBKBx48bo0aMHAGDZsmVYsGCB8rlsNdW8eXPI5XKVq8cKCgrg4OCg9jMODg5PbO/t7Y2MjAwUFRWhvLwcdnZ28PHxUV595+DggPLychQWFopmkR53XFNTU24aJaojPi6EiPRNrfcgTZ8+HUOHDkVOTg527tyJnTt3Ijs7Gy+++CIiIiJq1ZeJiQm8vb2RmpqqjCkUCqSmpipvQlmVr6+vqD0A7N+/X217Kysr2NnZ4eLFizh+/DiGDRsG4GEBZWxsLOonKysLubm51R6XiGrv77//ZnFERHqpTjNI69evR6NG/3y0UaNGeOedd9TeH+lJIiMjERoaim7duqFHjx5YsWIFSkpKMGbMGABASEgIWrZsqbxL97Rp0+Dn54elS5di8ODBSExMxPHjx/Hxxx8r+9yxYwfs7Ozg4uKC33//HdOmTUNgYCD69+8P4GHhFB4ejsjISNjY2MDS0hJTpkyBr69vja5gI6InmzdvnsqydmhoKNzc3KRJiIioFmpdIFlaWiI3Nxfu7u6i+J9//ommTZvWOoHg4GDcuHEDMTExyM/Ph5eXF1JSUpQbsXNzc2Fk9M9EV69evbB161ZER0dj9uzZaN++PZKSkuDh4aFsk5eXh8jISBQUFMDR0REhISGYO3eu6LjLly+HkZERgoKCUFZWhoCAAHz44Ye1zp+IVHHWiIj0Xa3vgzR16lTs2rULS5YsQa9evQAAP//8M2bMmIGgoCCsWLFCG3nqHN4HiUhVTk4ONm/eLIrJZDLExMRIlBERkVhNv79rPYO0ZMkSyGQyhISE4MGDBwAeXjn25ptvIiEhoe4ZE5FeUzdrNHnyZNja2kqQDRHR06n1DNIjpaWluHz5MgCgbdu2MDc312hiuo4zSET/4JIaEekLrc0gPWJubg5PT8+6fpyIGoCMjAzs3r1bFHN2dsbrr78uUUZERJpR4wKppn/hbdy4sc7JEJH+UDdrNGPGDIObTSaihqnGBdKmTZvg6uqKrl27PtUdqYlIvykUCsyfP18lziU1ImpIalwgvfnmm9i2bRuys7MxZswYvPbaa7CxsdFmbkSkY3744QccOXJEFOvWrRsGDx4sUUZERNpRq03aZWVl2LlzJzZu3IijR49i8ODBCA8PR//+/SGTybSZp87hJm0yNOqW1KKjoyGXyyXIhoiobmr6/V3nq9iuXLmCTZs24bPPPsODBw9w9uxZWFhY1DlhfcMCiQxFWVmZ2lt4cEmNiPSR1q9iMzIygkwmgyAIqKysrGs3RKTDtm3bhgsXLohiAwYMgI+Pj0QZERHVj1o9rLasrAzbtm3Df//7X3To0AG///47Vq9ejdzcXIOaPSIyBHFxcSrFUUxMDIsjIjIINZ5BmjhxIhITE5X3ONm2bRuaN2+uzdyISAJFRUVqHxnEJTUiMiQ13oNkZGQEFxcXdO3a9bEbsnfu3Kmx5HQZ9yBRQ7R06VLcvXtXFBs5ciTat28vUUZERJql8T1IISEhBnelGpEh4eNCiIj+UasbRRJRw3Pt2jWsX79eJc7iiIgMWZ2vYiMi/adu1mjChAmwt7eXIBsiIt3BAonIQHFJjYioeiyQiAzM+fPn8eWXX4pitra2mDx5skQZERHpHhZIRAZE3axRZGQkmjZtKkE2RES6iwUSkQEQBAHz5s1TiXNJjYhIPRZIRA3czz//jAMHDohinTt3xssvvyxRRkREuo8FElEDpm5JLSoqCiYmJhJkQ0SkP1ggETVAFRUVWLhwoUqcS2pERDXDAomogdm1axdOnz4tivXt2xe9e/eWKCMiIv3DAomoAVG3pBYTE8PHBBER1RILJKIG4O7du1i6dKlKnEtqRER1wwKJSM+tXbsW169fF8WCgoLg4eEhUUZERPqPBRKRHuPjQoiItIMFEpEeun79OtauXasSZ3FERKQZLJCI9Iy6WaPXX38dzs7OEmRDRNQwsUAi0iNcUiMiqh8skIj0wOXLl/HFF1+IYmZmZpg5c6ZEGRERNWwskIh0nLpZo6lTp6JZs2YSZENEZBhYIBHpKEEQMG/ePJU4l9SIiLSPBRKRDjp+/Di+/fZbUaxt27Z47bXXJMqIiMiwGEmdAACsWbMGbm5uMDMzg4+PD44dO/bY9jt27IC7uzvMzMzg6emJvXv3it6/e/cuJk+ejFatWqFx48Z45plnsG7dOlGbPn36QCaTiX4mTJig8bER1VZcXJxKcTRz5kwWR0RE9UjyAmn79u2IjIxEbGwsTp48iS5duiAgIEDlzsCPHD16FCNGjEB4eDjS09MRGBiIwMBAnDlzRtkmMjISKSkp+OKLL3D+/HlERERg8uTJSE5OFvU1duxY5OXlKX8WLVqk1bESPU5lZWW1V6mZmZlJkBERkeGSCYIgSJmAj48PunfvjtWrVwMAFAoFnJ2dMWXKFMyaNUulfXBwMEpKSrBnzx5lrGfPnvDy8lLOEnl4eCA4OBhz585VtvH29sbAgQPx3nvvAXg4g+Tl5YUVK1bUKe/i4mJYWVmhqKgIlpaWdeqD6JF9+/bhl19+EcV8fX3Rv39/iTIiImqYavr9LekMUnl5OU6cOAF/f39lzMjICP7+/khLS1P7mbS0NFF7AAgICBC179WrF5KTk/HXX39BEAQcPHgQFy5cUPmy2bJlC5o3bw4PDw9ERUWhtLS02lzLyspQXFws+iHShLi4OJXiKDo6msUREZGEJN2kffPmTVRWVsLe3l4Ut7e3R2ZmptrP5Ofnq22fn5+vfL1q1SqMGzcOrVq1QqNGjWBkZIT169ejd+/eyjYjR46Eq6srnJyccPr0acycORNZWVnYuXOn2uPGx8erXf4gqqv79+/j/fffV4nzKjUiIuk1yKvYVq1ahV9++QXJyclwdXXF4cOHMWnSJDg5OSlnn8aNG6ds7+npCUdHR7zwwgu4fPky2rZtq9JnVFQUIiMjla+Li4v5aAeqs82bNyMnJ0cUGzJkCJ577jlpEiIiIhFJC6TmzZtDLpejoKBAFC8oKICDg4Pazzg4ODy2/b179zB79mzs2rULgwcPBgA8++yzyMjIwJIlS1SW5x7x8fEBAFy6dEltgWRqagpTU9PaDZBIDXUzkTExMZDJZBJkQ0RE6ki6B8nExATe3t5ITU1VxhQKBVJTU+Hr66v2M76+vqL2ALB//35l+4qKClRUVMDISDw0uVwOhUJRbS4ZGRkAAEdHx7oMheiJbt++Xe1VaiyOiIh0i+RLbJGRkQgNDUW3bt3Qo0cPrFixAiUlJRgzZgwAICQkBC1btkR8fDwAYNq0afDz88PSpUsxePBgJCYm4vjx4/j4448BAJaWlvDz88OMGTPQuHFjuLq64scff8Rnn32GZcuWAXj4XKutW7di0KBBsLW1xenTpzF9+nT07t0bzz77rDS/EdSgxcfHo7y8XBQbPXo02rRpI1FGRET0OJIXSMHBwbhx4wZiYmKQn58PLy8vpKSkKDdi5+bmimaDevXqha1btyI6OhqzZ89G+/btkZSUBA8PD2WbxMREREVFYdSoUbh16xZcXV2xYMEC5Y0gTUxMcODAAWUx5uzsjKCgIERHR9fv4MkgVDdrREREukvy+yDpK94HiZ4kNzcXn376qUqcxRERkXRq+v0t+QwSUUOkbtZo4sSJsLOzkyAbIiKqLRZIRBrGJTUiIv3HAolIQ37//XeVG406OjqK7rlFRET6gQUSkQaomzV6++230aRJEwmyISKip8UCiegpKBQKzJ8/XyXOJTUiIv3GAomojg4dOoQff/xRFPPy8sKwYcMkyoiIiDSFBRJRHahbUpszZw4aNeL/UkREDQH/NieqhfLycuVd3f+NS2pERA0LCySiGvryyy9x/vx5Uax///7VPjeQiIj0FwskohpQt6QWExPDh8wSETVQLJCIHqO4uBjLly9XiXNJjYioYWOBRFSNDz74AIWFhaJYcHAw3N3dpUmIiIjqDQskIjX4uBAiIsPGAonoX/Ly8vDxxx+rxFkcEREZFhZIRP+fulmjcePGwdHRUYJsiIhISiyQiMAlNSIiEmOBRAYtKysLiYmJopiVlRUiIiKkSYiIiHQCCyQyWOpmjaZPnw5LS0sJsiEiIl3CAokMjiAImDdvnkqcS2pERPQICyQyKL/88gv27dsnirm7uyM4OFiijIiISBexQCKDoW5JLSoqCiYmJhJkQ0REuowFEjV4Dx48wIIFC1TiXFIjIqLqsECiBu2bb77ByZMnRbHevXujb9++EmVERET6gAUSNVjqltTmzp0LIyMjCbIhIiJ9wgKJGpzS0lIsXrxYJc4lNSIiqikWSNSgrF+/HteuXRPFXnrpJTz77LMSZURERPqIBRI1GHxcCBERaQoLJNJ7N2/exJo1a1TiLI6IiKiuWCCRXlM3azRmzBi4uLhIkA0RETUULJBIb3FJjYiItIUFEumd7OxsfPbZZ6JYo0aNMGfOHIkyIiKihoYFEukVdbNGU6ZMgY2NjQTZEBFRQ8UCifSCIAiYN2+eSpxLakREpA0skEjnpaenIzk5WRRzdXVFWFiYNAkREVGDxwKJdJq6JbV33nkHjRs3liAbIiIyFDrxUKo1a9bAzc0NZmZm8PHxwbFjxx7bfseOHXB3d4eZmRk8PT2xd+9e0ft3797F5MmT0apVKzRu3BjPPPMM1q1bJ2pz//59TJo0Cba2trCwsEBQUBAKCgo0PjaqG4VCUe1VaiyOiIhI2yQvkLZv347IyEjExsbi5MmT6NKlCwICAnD9+nW17Y8ePYoRI0YgPDwc6enpCAwMRGBgIM6cOaNsExkZiZSUFHzxxRc4f/48IiIiMHnyZNEyzfTp0/HNN99gx44d+PHHH3Ht2jUMHz5c6+OlJ9u/fz/mz58vivXo0YP7jYiIqN7IBEEQpEzAx8cH3bt3x+rVqwE8nDlwdnbGlClTMGvWLJX2wcHBKCkpwZ49e5Sxnj17wsvLSzlL5OHhgeDgYMydO1fZxtvbGwMHDsR7772HoqIi2NnZYevWrXj55ZcBAJmZmejUqRPS0tLQs2fPJ+ZdXFwMKysrFBUVwdLS8ql+D+gf6maNoqOjIZfLJciGiIgampp+f0s6g1ReXo4TJ07A399fGTMyMoK/vz/S0tLUfiYtLU3UHgACAgJE7Xv16oXk5GT89ddfEAQBBw8exIULF9C/f38AwIkTJ1BRUSHqx93dHS4uLtUet6ysDMXFxaIf0pz79+9Xu6TG4oiIiOqbpJu0b968icrKStjb24vi9vb2yMzMVPuZ/Px8te3z8/OVr1etWoVx48ahVatWaNSoEYyMjLB+/Xr07t1b2YeJiQmsra0f28+/xcfHq/0Cp6e3ZcsWXLp0SRQbNGgQunfvLlFGRERk6BrkVWyrVq3CL7/8guTkZLi6uuLw4cOYNGkSnJycVGafaioqKgqRkZHK18XFxXB2dtZUygZLXdEZExMDmUwmQTZEREQPSVogNW/eHHK5XOXqsYKCAjg4OKj9jIODw2Pb37t3D7Nnz8auXbswePBgAMCzzz6LjIwMLFmyBP7+/nBwcEB5eTkKCwtFs0iPO66pqSlMTU3rOlSqorCwEB988IFKnBuxiYhIF0i6B8nExATe3t5ITU1VxhQKBVJTU+Hr66v2M76+vqL2wMOrnh61r6ioQEVFBYyMxEOTy+VQKBQAHm7YNjY2FvWTlZWF3Nzcao9LmrNo0SKV4mjUqFEsjoiISGdIvsQWGRmJ0NBQdOvWDT169MCKFStQUlKCMWPGAABCQkLQsmVLxMfHAwCmTZsGPz8/LF26FIMHD0ZiYiKOHz+Ojz/+GABgaWkJPz8/zJgxA40bN4arqyt+/PFHfPbZZ1i2bBkAwMrKCuHh4YiMjISNjQ0sLS0xZcoU+Pr61ugKNqq76jZiExER6RLJC6Tg4GDcuHEDMTExyM/Ph5eXF1JSUpQbsXNzc0WzQb169cLWrVsRHR2N2bNno3379khKSoKHh4eyTWJiIqKiojBq1CjcunULrq6uWLBgASZMmKBss3z5chgZGSEoKAhlZWUICAjAhx9+WH8DNzBXr17Fhg0bVOIsjoiISBdJfh8kfcX7INWculmjN998Ey1atJAgGyIiMmQ1/f6WfAaJGjYuqRERkT5igURakZOTg82bN4tidnZ2mDhxokQZERER1RwLJNI4dbNGHh5vISjIQoJsiIiIak/yh9VSwyEIgtri6N13Y7F0KYsjIiLSH5xBIo04ffo0du3aJYr169cPt28/D19fQM1zh4mIiHQWCyR6aupmjebMmYNGjR7+8Ro6tL4zIiIiejoskKjOHjx4gAULFqjEeZUaERHpOxZIVCeHDx/GwYMHRbHhw4fD09NTooyIiIg0hwUS1Zq6JbWYmBjIZDIJsiEiItI8FkhUY/fu3cOiRYtU4lxSIyKihoYFEtVIUlISTp06JYqFhYXB1dVVooyIiIi0hwUSPREfF0JERIaGBRJV6/bt21i5cqUoZmNjgylTpkiUERERUf1ggURqrV+/HteuXRPFJk2ahObNm0uUERERUf1hgUQquKRGRESGjgUSKV29ehUbNmwQxdzd3REcHCxRRkRERNJggUQAgPnz50OhUIhib731Fiws+JBZIiIyPCyQDJwgCJg3b55KnEtqRERkyFggGbDMzExs375dFPu///s/+Pv7S5QRERGRbmCBZKDUbcSOioqCiYmJBNkQERHpFhZIBkahUGD+/PkqcS6pERER/YMFkgG5ePEitm7dKoq9+OKL8Pb2ligjIiIi3cQCyUAkJCSgrKxMFJs7dy6MjIwkyoiIiEh38duxgauoqEBcXJyoOLKwcMW+fbHYs4enn4iISB3OIDVg6enpSE5OFsXGjx+P4cMdkJYGJCQAQ4dKlBwREZEOY4HUQH311Vc4e/asKPZoI/asWQ+Lo1mzpMiMiIhI97FAamAqKiqwcOFCUczLywvDhg1Tvh46lDNHREREj8MCqQG5cuUKNm3aJIrNmDED5ubm0iRERESkp1ggNRC7du3C6dOnla89PDwQFBQkYUZERET6i5cx6bn79+8jLi5OVByFhoYiKCgIyclAr15AlX3aRERE9AScQdJjWVlZSExMFMVmz54NY2NjAA83YvNqNSIiotpjgaSnPv/8c/zxxx/K1z4+PhgwYICoDa9WIyIiqhsWSHrm7t27WLp0qSg2duxYODk5qbTl1WpERER1wwJJj5w6dQpJSUnK13K5HFFRUZDL5dIlRURE1ADpxCbtNWvWwM3NDWZmZvDx8cGxY8ce237Hjh1wd3eHmZkZPD09sXfvXtH7MplM7c/ixYuVbdzc3FTeT0hI0Mr4npYgCPjwww9FxVG/fv0QHR3N4oiIiEgLJC+Qtm/fjsjISMTGxuLkyZPo0qULAgICcP36dbXtjx49ihEjRiA8PBzp6ekIDAxEYGAgzpw5o2yTl5cn+tm4cSNkMpnKZe/z5s0TtZsyZYpWx1oXt2/fxrx583Djxg1lbPLkyXj++eclzIqIiKhhkwmCIEiZgI+PD7p3747Vq1cDABQKBZydnTFlyhTMUrO7ODg4GCUlJdizZ48y1rNnT3h5eWHdunVqjxEYGIg7d+4gNTVVGXNzc0NERAQiIiLqlHdxcTGsrKxQVFQES0vLOvXxJGlpafj++++Vr62trTF16lTIZDKtHI+IiKihq+n3t6QzSOXl5Thx4gT8/f2VMSMjI/j7+yMtLU3tZ9LS0kTtASAgIKDa9gUFBfj2228RHh6u8l5CQgJsbW3RtWtXLF68GA8ePHiK0WiOQqHAokWLRMXR4MGDMW3aNBZHRERE9UDSTdo3b95EZWUl7O3tRXF7e3tkZmaq/Ux+fr7a9vn5+Wrbb968GU2bNsXw4cNF8alTp+K5556DjY0Njh49iqioKOTl5WHZsmVq+ykrK0NZWZnydXFx8RPHVxd37txRyWH69Olam6UiIiIiVQ3+KraNGzdi1KhRMDMzE8UjIyOVv3722WdhYmKC8ePHIz4+Hqampir9xMfHIy4uTuv5pqenK3/dqlUrvP7665w1IiIiqmeSFkjNmzeHXC5HQUGBKF5QUAAHBwe1n3FwcKhx+yNHjiArKwvbt29/Yi4+Pj548OABcnJy0LFjR5X3o6KiREVVcXExnJ2dn9hvbXXu3BlFRUVo06YNOnfurPH+iYiI6Mkk3YNkYmICb29v0eZphUKB1NRU+Pr6qv2Mr6+vqD0A7N+/X237DRs2wNvbG126dHliLhkZGTAyMkKLFi3Uvm9qagpLS0vRjzbY2tpiyJAhLI6IiIgkJPll/pGRkVi/fj02b96M8+fP480330RJSQnGjBkDAAgJCUFUVJSy/bRp05CSkoKlS5ciMzMT7777Lo4fP47JkyeL+i0uLsaOHTvwxhtvqBwzLS0NK1aswKlTp/DHH39gy5YtmD59Ol577TU0a9ZMuwN+Aj5gloiISHqS70EKDg7GjRs3EBMTg/z8fHh5eSElJUW5ETs3NxdGRv/Ucb169cLWrVsRHR2N2bNno3379khKSoKHh4eo38TERAiCgBEjRqgc09TUFImJiXj33XdRVlaG1q1bY/r06aIlNKnwAbNERETSk/w+SPpKW/dBSk7+5wGzLJCIiIg0q6bf35LPIJEYHzBLREQkPcn3IBERERHpGhZIRERERFWwQCIiIiKqggUSERERURUskIiIiIiqYIFEREREVAULJCIiIqIqWCARERERVcECiYiIiKgKFkhEREREVbBAIiIiIqqCBRIRERFRFSyQiIiIiKpoJHUC+koQBABAcXGxxJkQERFRTT363n70PV4dFkh1dOfOHQCAs7OzxJkQERFRbd25cwdWVlbVvi8TnlRCkVoKhQLXrl1D06ZNIZPJNN5/cXExnJ2d8eeff8LS0lLj/esiQxwzwHFz3IaB4+a4dYUgCLhz5w6cnJxgZFT9TiPOINWRkZERWrVqpfXjWFpa6twfLm0zxDEDHLeh4bgNC8etWx43c/QIN2kTERERVcECiYiIiKgKFkg6ytTUFLGxsTA1NZU6lXpjiGMGOG6O2zBw3By3vuEmbSIiIqIqOINEREREVAULJCIiIqIqWCARERERVcECiYiIiKgKFkhasmbNGri5ucHMzAw+Pj44duzYY9vv2LED7u7uMDMzg6enJ/bu3St6XyaTqf1ZvHixso2bm5vK+wkJCVoZX3U0Pe67d+9i8uTJaNWqFRo3boxnnnkG69atE7W5f/8+Jk2aBFtbW1hYWCAoKAgFBQUaH1t1pBhznz59VM71hAkTND62x9H0uAsKChAWFgYnJyeYm5tjwIABuHjxoqiN1OcakGbc+na+z549i6CgIOXfSStWrKhTn/p2vjU17oZ4vg8fPowhQ4bAyckJMpkMSUlJKm0EQUBMTAwcHR3RuHFj+Pv7q/y/UK8E0rjExETBxMRE2Lhxo3D27Flh7NixgrW1tVBQUKC2/c8//yzI5XJh0aJFwrlz54To6GjB2NhY+P3335Vt8vLyRD8bN24UZDKZcPnyZWUbV1dXYd68eaJ2d+/e1fp4H9HGuMeOHSu0bdtWOHjwoJCdnS189NFHglwuF3bv3q1sM2HCBMHZ2VlITU0Vjh8/LvTs2VPo1auX1scrCNKN2c/PTxg7dqzoXBcVFWl9vI9oetwKhULo2bOn8PzzzwvHjh0TMjMzhXHjxgkuLi6iP8NSnmtBkG7c+na+jx07Jrz99tvCtm3bBAcHB2H58uV16lPfzremxt0Qz/fevXuFOXPmCDt37hQACLt27VJpk5CQIFhZWQlJSUnCqVOnhKFDhwqtW7cW7t27p+ER1gwLJC3o0aOHMGnSJOXryspKwcnJSYiPj1fb/pVXXhEGDx4sivn4+Ajjx4+v9hjDhg0T+vXrJ4q5urqq/YNZX7Qx7s6dOwvz5s0TtXnuueeEOXPmCIIgCIWFhYKxsbGwY8cO5fvnz58XAAhpaWlPPaYnkWLMgvDwL9Bp06ZpYAR1o+lxZ2VlCQCEM2fOiPq0s7MT1q9fLwiC9OdaEKQZtyDo3/n+t+r+XnpSn/p4vv+truMWhIZ5vv9NXYGkUCgEBwcHYfHixcpYYWGhYGpqKmzbtq1W+WsKl9g0rLy8HCdOnIC/v78yZmRkBH9/f6Slpan9TFpamqg9AAQEBFTbvqCgAN9++y3Cw8NV3ktISICtrS26du2KxYsX48GDB08xmprT1rh79eqF5ORk/PXXXxAEAQcPHsSFCxfQv39/AMCJEydQUVEh6sfd3R0uLi7VHldTpBrzI1u2bEHz5s3h4eGBqKgolJaWanB01dPGuMvKygAAZmZmoj5NTU3x008/AZD2XAPSjfsRfTrfmuhTH8+3JvtsSOe7JrKzs5Gfny86rpWVFXx8fOrlfKvDh9Vq2M2bN1FZWQl7e3tR3N7eHpmZmWo/k5+fr7Z9fn6+2vabN29G06ZNMXz4cFF86tSpeO6552BjY4OjR48iKioKeXl5WLZs2VOMqGa0Ne5Vq1Zh3LhxaNWqFRo1agQjIyOsX78evXv3VvZhYmICa2vrx/ajDVKNGQBGjhwJV1dXODk54fTp05g5cyaysrKwc+dODY5QPW2M+9EXX1RUFD766CM0adIEy5cvx9WrV5GXl6fsQ6pzDUg3bkD/zrcm+tTH862pPhva+a6JR+e0Nt+F2sYCSQ9t3LgRo0aNEv2rEwAiIyOVv3722WdhYmKC8ePHIz4+Xm9v975q1Sr88ssvSE5OhqurKw4fPoxJkybByclJ5V/mDUVNxjxu3Dhle09PTzg6OuKFF17A5cuX0bZtW6lSrzNjY2Ps3LkT4eHhsLGxgVwuh7+/PwYOHAihAd/sv6bjbmjnmx6P51s3sEDSsObNm0Mul6tcaVFQUAAHBwe1n3FwcKhx+yNHjiArKwvbt29/Yi4+Pj548OABcnJy0LFjx1qMova0Me579+5h9uzZ2LVrFwYPHgzgYeGXkZGBJUuWwN/fHw4ODigvL0dhYaHoX5qPO66mSDVmdXx8fAAAly5d0vpfoNr6M+7t7Y2MjAwUFRWhvLwcdnZ28PHxQbdu3ZR9SHWuAenGrY6un29N9KmP51tbfer7+a6JR30XFBTA0dFRdFwvLy+tHfdxuAdJw0xMTODt7Y3U1FRlTKFQIDU1Fb6+vmo/4+vrK2oPAPv371fbfsOGDfD29kaXLl2emEtGRgaMjIzQokWLWo6i9rQx7oqKClRUVMDISPzHVC6XQ6FQAHj45WJsbCzqJysrC7m5udUeV1OkGrM6GRkZACD6i0VbtP1n3MrKCnZ2drh48SKOHz+OYcOGAZD2XAPSjVsdXT/fmuhTH8+3tvrU9/NdE61bt4aDg4PouMXFxfj111/r5XyrJcnW8AYuMTFRMDU1FTZt2iScO3dOGDdunGBtbS3k5+cLgiAIo0ePFmbNmqVs//PPPwuNGjUSlixZIpw/f16IjY1VufRbEAShqKhIMDc3F9auXatyzKNHjwrLly8XMjIyhMuXLwtffPGFYGdnJ4SEhGh3sP+ijXH7+fkJnTt3Fg4ePCj88ccfwqeffiqYmZkJH374obLNhAkTBBcXF+GHH34Qjh8/Lvj6+gq+vr4NdsyXLl0S5s2bJxw/flzIzs4Wdu/eLbRp00bo3bt3vYxZW+P+8ssvhYMHDwqXL18WkpKSBFdXV2H48OGi40p5rgVBmnHr4/kuKysT0tPThfT0dMHR0VF4++23hfT0dOHixYs17lMQ9O98a2LcDfV837lzR9kGgLBs2TIhPT1duHLlirJNQkKCYG1tLezevVs4ffq0MGzYMF7m3xCtWrVKcHFxEUxMTIQePXoIv/zyi/I9Pz8/ITQ0VNT+yy+/FDp06CCYmJgInTt3Fr799luVPj/66COhcePGQmFhocp7J06cEHx8fAQrKyvBzMxM6NSpk7Bw4ULh/v37Gh/b42h63Hl5eUJYWJjg5OQkmJmZCR07dhSWLl0qKBQKZZt79+4JEydOFJo1ayaYm5sLL730kpCXl6fVcf5bfY85NzdX6N27t2BjYyOYmpoK7dq1E2bMmFGv90kRBM2P+4MPPhBatWolGBsbCy4uLkJ0dLRQVlYmaiP1uRaE+h+3Pp7v7OxsAYDKj5+fX437FAT9O9+aGHdDPd8HDx5U2+bf/SgUCmHu3LmCvb29YGpqKrzwwgtCVlZWPYxWPZkgNOAdkERERER1wD1IRERERFWwQCIiIiKqggUSERERURUskIiIiIiqYIFEREREVAULJCIiIqIqWCARERERVcECiYiIiKgKFkhEZJDy8/MxZcoUtGnTBqampnB2dsaQIUNEz4I6evQoBg0ahGbNmsHMzAyenp5YtmwZKisrJcyciOoDCyQiMjg5OTnw9vbGDz/8gMWLF+P3339HSkoK+vbti0mTJgEAdu3aBT8/P7Rq1QoHDx5EZmYmpk2bhvfeew+vvvoq+BACooaNjxohIoMzaNAgnD59GllZWWjSpInovcLCQhgbG8PV1RV+fn74+uuvRe9/8803GDp0KBITExEcHFyfaRNRPeIMEhEZlFu3biElJQWTJk1SKY4AwNraGt9//z3+/vtvvP322yrvDxkyBB06dMC2bdvqI10ikggLJCIyKJcuXYIgCHB3d6+2zYULFwAAnTp1Uvu+u7u7sg0RNUwskIjIoNRmVwF3IBAZLhZIRGRQ2rdvD5lMhszMzGrbdOjQAQBw/vx5te+fP39e2YaIGiYWSERkUGxsbBAQEIA1a9agpKRE5f3CwkL0798fNjY2WLp0qcr7ycnJuHjxIkaMGFEf6RKRRFggEZHBWbNmDSorK9GjRw98/fXXuHjxIs6fP4+VK1fC19cXTZo0wUcffYTdu3dj3LhxOH36NHJycrBhwwaEhYXh5ZdfxiuvvCL1MIhIi3iZPxEZpLy8PCxYsAB79uxBXl4e7Ozs4O3tjenTp6NPnz4AgCNHjmDBggVIS0vD/fv30b59e4wZMwYRERGQy+XSDoCItIoFEhEREVEVXGIjIiIiqoIFEhEREVEVLJCIiIiIqmCBRERERFQFCyQiIiKiKlggEREREVXBAomIiIioChZIRERERFWwQCIiIiKqggUSERERURUskIiIiIiqYIFEREREVMX/A2CZVmIbpyOLAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXfZJREFUeJzt3XlcVGX7P/DPDLsLoCAghoIbmpIYKEKLG0/gklI+pWQsxkMuuYVhYAShKZpLuCWZ5ZbmVhJfMwlR0xJTETX3XEhFQVwAxWSb8/vDn5OHGXAGB84wfN6v17yMa+5z5rpPNlzd933uIxMEQQARERERKcmlToCIiIhI37BAIiIiIqqEBRIRERFRJSyQiIiIiCphgURERERUCQskIiIiokpYIBERERFVwgKJiIiIqBIWSERERESVsEAiIoMmk8nwySefSJ2GUmhoKJydnaVOg4iegAUSEdW5VatWQSaTKV/m5ubo2LEjxo8fj7y8vFr97P379+OTTz5BQUGBTs/bp08fUZ+aN2+OHj164JtvvoFCodDJZ8yaNQvJyck6ORcRVc9Y6gSIqOGaPn06XFxc8ODBA/z2229YtmwZtm/fjhMnTqBRo0Y6+Yx//vkHxsb/ftXt378f8fHxCA0NhbW1tU4+45FnnnkGCQkJAID8/HysWbMGYWFhOHfuHGbPnv3U5581axb++9//IiAg4KnPRUTVY4FERJIZMGAAPD09AQD/+9//YGNjgwULFuDHH39EYGBgjc+rUChQWloKc3NzmJub6yrdJ7KyssLbb7+t/Hn06NFwdXXFkiVLMGPGDJiYmNRZLkT0dDjFRkR6o1+/fgCAS5cuAQDmzZsHHx8f2NjYwMLCAh4eHtiyZYvKcTKZDOPHj8e6devQpUsXmJmZYceOHcr3Hq1B+uSTTxAZGQkAcHFxUU6HZWdno3fv3ujWrZvavFxdXeHn56d1fxo1aoRevXqhuLgY+fn5VbYrLi7GlClT4OTkBDMzM7i6umLevHkQBEHUx+LiYqxevVqZd2hoqNY5EZFmOIJERHrjwoULAAAbGxsAwMKFCzFkyBCMHDkSpaWl2LBhA9544w1s27YNgwYNEh27a9cubNq0CePHj4etra3ahdCvv/46zp07h++++w6ff/45bG1tAQAtWrRAUFAQwsPDceLECXTt2lV5zKFDh3Du3DnExMTUqE8XL16EkZFRldN5giBgyJAh2L17N8LCwuDu7o7U1FRERkYiJycHn3/+OQBg7dq1+N///oeePXvi3XffBQC0a9euRjkRkQYEIqI6tnLlSgGAsHPnTiE/P1+4cuWKsGHDBsHGxkawsLAQrl69KgiCINy/f190XGlpqdC1a1ehX79+ojgAQS6XCydPnlT5LABCXFyc8ue5c+cKAIRLly6J2hUUFAjm5ubChx9+KIpPnDhRaNy4sXDv3r1q+9S7d2+hU6dOQn5+vpCfny+cPn1amDhxogBAePXVV5XtQkJChDZt2ih/Tk5OFgAIn376qeh8//3vfwWZTCacP39eGWvcuLEQEhJSbR5EpBucYiMiyfj6+qJFixZwcnLCiBEj0KRJE2zduhWtWrUCAFhYWCjb3rlzB4WFhXjppZdw5MgRlXP17t0bzz77bI1zsbKywtChQ/Hdd98pp7YqKiqwceNGBAQEoHHjxk88x5kzZ9CiRQu0aNECnTt3xuLFizFo0CB88803VR6zfft2GBkZYeLEiaL4lClTIAgCfv755xr3iYhqjlNsRCSZpUuXomPHjjA2Noa9vT1cXV0hl//7/23btm3Dp59+iqNHj6KkpEQZl8lkKudycXF56nyCg4OxceNG7Nu3Dy+//DJ27tyJvLw8BAUFaXS8s7MzvvrqK+XWBR06dICdnV21x/z9999wdHRE06ZNRfHOnTsr3yeiuscCiYgk07NnT+VdbJXt27cPQ4YMwcsvv4wvvvgCLVu2hImJCVauXIn169ertH98tKmm/Pz8YG9vj2+//RYvv/wyvv32Wzg4OMDX11ej4xs3bqxxWyLSb5xiIyK99P3338Pc3Bypqal45513MGDAAJ0UH+pGnx4xMjLCW2+9hS1btuDOnTtITk5GYGAgjIyMnvpzq9KmTRtcu3YNd+/eFcXPnDmjfP+R6nInIt1igUREesnIyAgymQwVFRXKWHZ29lPvJP1oLVFVO2kHBQXhzp07GD16NO7duyfa16g2DBw4EBUVFViyZIko/vnnn0Mmk2HAgAHKWOPGjXW+AzgRqccpNiLSS4MGDcKCBQvg7++Pt956Czdu3MDSpUvRvn17HD9+vMbn9fDwAAB89NFHGDFiBExMTPDqq68qC6fu3buja9eu2Lx5Mzp37oznn39eJ/2pyquvvoq+ffvio48+QnZ2Nrp164ZffvkFP/74IyZPniy6ld/DwwM7d+7EggUL4OjoCBcXF3h5edVqfkQNFUeQiEgv9evXD19//TVyc3MxefJkfPfdd5gzZw5ee+21pzpvjx49MGPGDBw7dgyhoaEIDAxU2cQxODgYADRenP005HI5UlJSMHnyZGzbtg2TJ0/GqVOnMHfuXCxYsEDUdsGCBfDw8EBMTAwCAwOxbNmyWs+PqKGSCcJjW7USEREWLlyI999/H9nZ2WjdurXU6RCRBFggERE9RhAEdOvWDTY2Nti9e7fU6RCRRLgGiYgID5+HlpKSgt27d+PPP//Ejz/+KHVKRCQhjiAREeHhHXIuLi6wtrbGuHHjMHPmTKlTIiIJsUAiIiIiqoR3sRERERFVwgKJiIiIqBIu0q4hhUKBa9euoWnTptz+n4iIqJ4QBAF3796Fo6Oj6OHYlbFAqqFr167ByclJ6jSIiIioBq5cuYJnnnmmyvdZINVQ06ZNATy8wJaWlhJnQ0RERJooKiqCk5OT8vd4VVgg1dCjaTVLS0sWSERERPXMk5bHcJE2ERERUSUskIiIiIgqYYFEREREVAnXINWyiooKlJWVSZ0G1TITExMYGRlJnQYREekIC6RaIggCcnNzUVBQIHUqVEesra3h4ODAfbGIiAwAC6Ra8qg4srOzQ6NGjfhL04AJgoD79+/jxo0bAICWLVtKnBERET0tFki1oKKiQlkc2djYSJ0O1QELCwsAwI0bN2BnZ8fpNiKieo6LtGvBozVHjRo1kjgTqkuP/n1zzRkRUf3HAqkWcVqtYeG/byIiw8ECiYiIiKgSFkhERERElbBAIpHQ0FDIZDLIZDKYmJjA3t4e//nPf/DNN99AoVBofJ5Vq1bB2tq69hIlIiKqRSyQSIW/vz+uX7+O7Oxs/Pzzz+jbty8mTZqEwYMHo7y8XOr0iIiIah0LJFJhZmYGBwcHtGrVCs8//zymTZuGH3/8ET///DNWrVoFAFiwYAHc3NzQuHFjODk5Ydy4cbh37x4AYM+ePRg1ahQKCwuVo1GffPIJAGDt2rXw9PRE06ZN4eDggLfeeku5fxAREREApKQAPj4P/5QKC6Q6IAgCSktLJXkJgqCTPvTr1w/dunXDDz/8AACQy+VYtGgRTp48idWrV2PXrl2YOnUqAMDHxweJiYmwtLTE9evXcf36dXzwwQcAHt4CP2PGDBw7dgzJycnIzs5GaGioTnIkIiLDMHs2kJHx8E+pcKPIOlBWVoaEhARJPjs6OhqmpqY6OVenTp1w/PhxAMDkyZOVcWdnZ3z66acYM2YMvvjiC5iamsLKygoymQwODg6ic7zzzjvKf27bti0WLVqEHj164N69e2jSpIlO8iQiovotKuphcRQVJV0OLJBIY4IgKPf62blzJxISEnDmzBkUFRWhvLwcDx48wP3796vdIDMzMxOffPIJjh07hjt37igXfl++fBnPPvtsnfSDiIj025AhD19SYoFUB0xMTBAdHS3ZZ+vK6dOn4eLiguzsbAwePBhjx47FzJkz0bx5c/z2228ICwtDaWlplQVScXEx/Pz84Ofnh3Xr1qFFixa4fPky/Pz8UFpaqrM8iYiInhYLpDogk8l0Ns0llV27duHPP//E+++/j8zMTCgUCsyfPx9y+cNlbJs2bRK1NzU1RUVFhSh25swZ3Lp1C7Nnz4aTkxMA4PDhw3XTASIiqjdKS0tx//59SbeL0YtF2kuXLoWzszPMzc3h5eWFgwcPVtt+8+bN6NSpE8zNzeHm5obt27eL3n98L59HL39/f7XnKikpgbu7O2QyGY4ePaqrLtVrJSUlyM3NRU5ODo4cOYJZs2Zh6NChGDx4MIKDg9G+fXuUlZVh8eLFuHjxItauXYukpCTROZydnXHv3j2kp6fj5s2buH//Plq3bg1TU1PlcSkpKZgxY4ZEvSQiIn3066+/IiEhAQsXLsStW7cky0PyAmnjxo2IiIhAXFwcjhw5gm7dusHPz6/KW7/379+PwMBAhIWFISsrCwEBAQgICMCJEydE7R7t5fPo9d1336k939SpU+Ho6KjzftVnO3bsQMuWLeHs7Ax/f3/s3r0bixYtwo8//ggjIyN069YNCxYswJw5c9C1a1esW7dOZRG6j48PxowZg+HDh6NFixb47LPP0KJFC6xatQqbN2/Gs88+i9mzZ2PevHkS9ZKIiPRJeXk54uPjsWfPHmWsadOmkuUjE3R1H3gNeXl5oUePHliyZAkAQKFQwMnJCRMmTECUmuXrw4cPR3FxMbZt26aM9erVC+7u7spRjNDQUBQUFCA5Obnaz/75558RERGB77//Hl26dEFWVhbc3d01yruoqAhWVlYoLCyEpaWl6L0HDx7g0qVLcHFxgbm5uUbno/qP/96JiKqXkvLv3WmPL8K+cuUKvvnmG1HbDz74AI0bN9Z5DtX9/n6cpCNIpaWlyMzMhK+vrzIml8vh6+uLjIwMtcdkZGSI2gOAn5+fSvs9e/bAzs4Orq6uGDt2rMowXV5eHsLDw7F27dpq77p6pKSkBEVFRaIXERERaU7d/kY//vijqDjq2LEj4uLiaqU40oakBdLNmzdRUVEBe3t7Udze3h65ublqj8nNzX1ie39/f6xZswbp6emYM2cOfv31VwwYMEC5aFgQBISGhmLMmDHw9PTUKNeEhARYWVkpX48WGRMREZFmoqIAb++Hfz548ADx8fGi9b9vv/02AgMDpUvwMQZ5F9uIESOU/+zm5obnnnsO7dq1w549e9C/f38sXrwYd+/e1erW++joaERERCh/LioqYpFERESkhUf7G509exZz5mwQvafLjY11QdICydbWFkZGRsjLyxPF8/LyVHZgfsTBwUGr9sDDHZttbW1x/vx59O/fH7t27UJGRgbMzMxE7Tw9PTFy5EisXr1a5RxmZmYq7YmIiEhzgiBg9erV+Pvvv5Wxnj17YsCAARJmpZ6kU2ympqbw8PBAenq6MqZQKJCeng5vb2+1x3h7e4vaA0BaWlqV7QHg6tWruHXrFlq2bAkAWLRoEY4dO4ajR4/i6NGjym0CNm7ciJkzZz5tt4iIiKiSnJwcTJ8+XVQcvfvuu3pZHAF6MMUWERGBkJAQeHp6omfPnkhMTERxcTFGjRoFAAgODkarVq2Ut5FPmjQJvXv3xvz58zFo0CBs2LABhw8fxvLlywEA9+7dQ3x8PIYNGwYHBwdcuHABU6dORfv27eHn5wcAaN26tSiHR88Aa9euHZ555pm66joREVGDkJSUpDL7ExMTAyMjI4kyejLJC6Thw4cjPz8fsbGxyM3Nhbu7O3bs2KFciH358mXlbs3Aw/111q9fj5iYGEybNg0dOnRAcnIyunbtCgAwMjLC8ePHsXr1ahQUFMDR0RGvvPIKZsyYwSkyIiKiOlRRUYFPP/1UFGvSpAmmTJkiUUaak3wfpPqK+yBRZfz3TkT0r5MnT2LLli2iWHBwMFxcXCTK6CFN90GSfASJiIiIDEt8fLxKLDY2FjKZTIJsakbyR41QwxQaGoqAgADlz3369MHkyZOf6py6OAcREdXco72NHufq6oq4uLh6VRwBHEGiSkJDQ5XbHJiYmKB169YIDg7GtGnTYGxce39dfvjhB5iYmGjUds+ePejbty/u3LkjetKzNucgIiLd2rt3L3bv3i2KjR8/HjY2NhJl9HRYIJEKf39/rFy5EiUlJdi+fTvee+89mJiYqGysWVpaqrNNvZo3b64X5yAiIu2pm1KLi4uTIBPd4RQbqTAzM4ODgwPatGmDsWPHwtfXFykpKcppsZkzZ8LR0RGurq4AHj5k8M0334S1tTWaN2+OoUOHIjs7W3m+iooKREREwNraGjY2Npg6dSoq3xtQeXqspKQEH374IZycnGBmZob27dvj66+/RnZ2Nvr27QsAaNasGWQyGUJDQ9We486dOwgODkazZs3QqFEjDBgwAH/99Zfy/VWrVsHa2hqpqano3LkzmjRpAn9/f1y/fl3ZZs+ePejZsycaN24Ma2trvPDCC6I9PIiIGrLbt2+rFEcvv/xyvS+OABZIpAELCwuUlpYCANLT03H27FmkpaVh27ZtKCsrg5+fH5o2bYp9+/bh999/VxYaj46ZP38+Vq1ahW+++Qa//fYbbt++ja1bt1b7mcHBwfjuu++waNEinD59Gl9++SWaNGkCJycnfP/99wAeblV//fp1LFy4UO05QkNDcfjwYaSkpCAjIwOCIGDgwIEoKytTtrl//z7mzZuHtWvXYu/evbh8+TI++OADAEB5eTkCAgLQu3dvHD9+HBkZGXj33Xfr3Tw6EVFt2LJlCxYvXiyKRUZGKv8ntr7jFBtVSRAEpKenIzU1FRMmTEB+fj4aN26MFStWKKfWvv32WygUCqxYsUJZOKxcuRLW1tbYs2cPXnnlFSQmJiI6Ohqvv/46gIcbhqWmplb5uefOncOmTZuQlpYGX19fAA8fF/PIo6k0Ozs70Rqkx/31119ISUnB77//Dh8fHwDAunXr4OTkhOTkZLzxxhsAgLKyMiQlJaFdu3YAHs6XT58+HcDDW0ELCwsxePBg5fudO3fW/kISERkQQRCU35OPM4RRo8dxBEnPpaQAPj4P/6wr27ZtQ5MmTWBubo4BAwZg+PDh+OSTTwA8fPjv4+uOjh07hvPnz6Np06Zo0qQJmjRpgubNm+PBgwe4cOECCgsLcf36dXh5eSmPMTY2hqenZ5Wff/ToURgZGaF379417sPp06dhbGws+lwbGxu4urri9OnTylijRo2UxQ8AtGzZEjdu3ADwsBALDQ2Fn58fXn31VSxcuFA0/UZE1ND8/fffKsXR66+/bnDFEcARJL03ezaQkfHwzyFD6uYz+/bti2XLlsHU1BSOjo6iu9caN24sanvv3j14eHhg3bp1Kudp0aJFjT7fwsKiRsfVROW73mQymWh91MqVKzFx4kTs2LEDGzduRExMDNLS0tCrV686y5GISB8sWrQId+7cEcX0/XEhT4MjSHouKgrw9n74Z11p3Lgx2rdvj9atWz/x1v7nn38ef/31F+zs7NC+fXvRy8rKClZWVmjZsiX++OMP5THl5eXIzMys8pxubm5QKBT49ddf1b7/aASroqKiynN07twZ5eXlos+9desWzp49i2effbbaPlXWvXt3REdHY//+/ejatSvWr1+v1fFERPVZeXk54uPjRcWRra0t4uLiDLY4Algg6b0hQ4D9++tu9EhbI0eOhK2tLYYOHYp9+/bh0qVL2LNnDyZOnIirV68CePiA4dmzZyM5ORlnzpzBuHHjUFBQUOU5nZ2dERISgnfeeQfJycnKc27atAkA0KZNG8hkMmzbtg35+fm4d++eyjk6dOiAoUOHIjw8HL/99huOHTuGt99+G61atcLQoUM16tulS5cQHR2NjIwM/P333/jll1/w119/cR0SETUYx44dw8yZM0Wxd955B++9955EGdUdFkj0VBo1aoS9e/eidevWeP3119G5c2eEhYXhwYMHymfcTJkyBUFBQQgJCYG3tzeaNm2K1157rdrzLlu2DP/9738xbtw4dOrUCeHh4SguLgYAtGrVCvHx8YiKioK9vT3Gjx+v9hwrV66Eh4cHBg8eDG9vbwiCgO3bt2u8mWSjRo1w5swZDBs2DB07dsS7776L9957D6NHj9biChER1U/x8fFITk4WxWJjY+Hk5CRNQnWMD6utIT6slirjv3ciMgTFxcWYN2+eKPbcc8898X9s6ws+rJaIiIi0kp6ejt9++00UmzhxIpo1ayZRRtJhgUREREQG+biQp8ECiYiIqAHLz8/HF198IYr1798fL774okQZ6QcWSERERA3U+vXrRc+oBIAPP/yQ6yjBAqlWcf17w8J/30RUH6SkALNnC/DzM/zHhTwNFki14NFt5Pfv36/TXaFJWvfv3wegujs3EZE++eqrC/Dz+1YUe/PNN7nHWyUskGqBkZERrK2tlc/0atSoEZ8Ab8AEQcD9+/dx48YNWFtbG/TOskRUv8XHx6PyozA//vhjyOXcFrEyFki1xMHBAQCURRIZPmtra+W/dyIiffLgwQPMmTNHFHN0dER4eLhEGek/Fki1RCaToWXLlrCzs0NZWZnU6VAtMzEx4cgREemllJQUZGVliWIhISFwdnaWJqF6ggVSLTMyMuIvTiIikgT3Nqo5FkhEREQG5tatW1iyZIko1rRpU0REREiUUf3DAomIiMiALFq0CHfu3BHFxo0bhxYtWkiUUf3EAomIiMhAcEpNd1ggERER1XPnz5/HunXrRLHnnnsOr732mkQZ1X8skIiIiOoxdaNGU6dO5UbFT4kFEhERUT1UUVGBTz/9VCXOKTXdYIFERERUz+zfvx9paWmimL+/P7y8vCTKyPCwQCIiIqpH1E2p8XEhuscCiYiIqB64f/8+5s6dqxLnlFrtYIFERESk5zZv3oxTp06JYsHBwXBxcZEoI8PHAomIiEiPcW8jabBAIiIi0kN5eXlISkoSxezs7DB27FiJMmpYWCARERHpmc8++wz//POPKDZhwgQ0b95coowaHr1Y8r506VI4OzvD3NwcXl5eOHjwYLXtN2/ejE6dOsHc3Bxubm7Yvn276P3Q0FDIZDLRy9/fX/l+dnY2wsLC4OLiAgsLC7Rr1w5xcXEoLS2tlf4RERFpQhAExMfHqxRHcXFxLI7qmOQjSBs3bkRERASSkpLg5eWFxMRE+Pn54ezZs7Czs1Npv3//fgQGBiIhIQGDBw/G+vXrERAQgCNHjqBr167Kdv7+/li5cqXyZzMzM+U/nzlzBgqFAl9++SXat2+PEydOIDw8HMXFxZg3b17tdpiIiEiN06dPY9OmTaKYp6cnBg0aJFFGDZtMEARBygS8vLzQo0cPLFmyBACgUCjg5OSECRMmICoqSqX98OHDUVxcjG3btiljvXr1gru7u3KuNjQ0FAUFBUhOTtY4j7lz52LZsmW4ePGiRu2LiopgZWWFwsJCWFpaavw5RERElalbiB0VFSX6n3vSDU1/f0s6xVZaWorMzEz4+voqY3K5HL6+vsjIyFB7TEZGhqg9APj5+am037NnD+zs7ODq6oqxY8fi1q1b1eZSWFjI4UsiIqpT5eXlVd6lxuJIWpJOsd28eRMVFRWwt7cXxe3t7XHmzBm1x+Tm5qptn5ubq/zZ398fr7/+OlxcXHDhwgVMmzYNAwYMQEZGBoyMjFTOef78eSxevLja6bWSkhKUlJQofy4qKtKoj0REROrs2bMHv/76qyg2ZMgQdO/eXaKM6HGSr0GqDSNGjFD+s5ubG5577jm0a9cOe/bsQf/+/UVtc3Jy4O/vjzfeeAPh4eFVnjMhIUFtlU9ERKQtdb9PYmNjIZPJJMiG1JF0is3W1hZGRkbIy8sTxfPy8uDg4KD2GAcHB63aA0Dbtm1ha2uL8+fPi+LXrl1D37594ePjg+XLl1eba3R0NAoLC5WvK1euVNueiIiosrt371Y5pcbiSL9IWiCZmprCw8MD6enpyphCoUB6ejq8vb3VHuPt7S1qDwBpaWlVtgeAq1ev4tatW2jZsqUylpOTgz59+sDDwwMrV6584kP+zMzMYGlpKXoRERFpau3atViwYIEo9s4773BXbD0l+RRbREQEQkJC4OnpiZ49eyIxMRHFxcUYNWoUgIfPmmnVqhUSEhIAAJMmTULv3r0xf/58DBo0CBs2bMDhw4eVI0D37t1DfHw8hg0bBgcHB1y4cAFTp05F+/bt4efnB+Df4qhNmzaYN28e8vPzlflUNxJFRERUE3xcSP0jeYE0fPhw5OfnIzY2Frm5uXB3d8eOHTuUC7EvX74sGt3x8fHB+vXrERMTg2nTpqFDhw5ITk5W7oFkZGSE48ePY/Xq1SgoKICjoyNeeeUVzJgxQ3lHQFpaGs6fP4/z58/jmWeeEeUj8a4HRERkQHJycrBixQpRrHXr1spBANJfku+DVF9xHyQiIqqOulGj999/n78zJKbp72/JR5CIiIgMiSAImD59ukqcU2r1CwskIiIiHTl+/Di2bt0qir3wwgsqGxyT/mOBREREpAPqptSmTZsGExMTCbKhp8UCiYiI6CmUlpYq77R+HKfU6jcWSERERDWUmpqKAwcOiGLDhg1T3llN9RcLJCIiohrg40IMGwskIiIiLRQUFGDhwoWimLGxMT766COJMqLawAKJiIhIQytWrEBOTo4o9u6774oeZUWGgQUSERGRBvi4kIaFBRIREVE1/v77b6xatUoU69ixIwIDA6VJiOoECyQiIqIqqBs1+uCDD9C4cWMJsqG6xAKJiIioEoVCgRkzZqjEOaXWcLBAIiIieszhw4fx008/iWL9+vXDSy+9JFFGJAUWSERERP+fuim1mJgYGBkZSZANSYkFEhERNXgPHjzAnDlzVOKcUmu4WCAREVGDlpKSgqysLFFsxIgRcHV1lSgj0gcskIiIqMHi3kZUFRZIRETU4Ny6dQtLliwRxZo2bYqIiAiJMiJ9wwKJiIgalMWLF+P27dui2Lhx49CiRQuJMiJ9xAKJiIgaDE6pkaZYIBERkcE7f/481q1bJ4o999xzeO211yTKiPQdCyQiIjJo6kaNpk6dCgsLCwmyofqCBRIRERmkiooKfPrppypxTqmRJlggERGRwdm/fz/S0tJEMX9/f3h5eUmUEdU3LJCIiMigqJtS+/jjjyGXyyXIhuorFkhERGQQ7t+/j7lz56rEOaVGNcECiYiI6r3Nmzfj1KlTolhQUBDatm0rUUZU37FAIiKieo17G1FtYIFERET1Ul5eHpKSkkQxOzs7jB07VqKMyJCwQCIionrns88+wz///COKTZgwAc2bN5coIzI0LJCIiKjeEAQB06dPV4lzSo10jQUSERHVC6dPn8amTZtEMU9PTwwaNEiijMiQsUAiIiK9p24hdlRUFMzMzCTIhhoCFkhERKS3ysvLMXPmTJU4p9SotrFAIiIivZSamooDBw6IYkOGDEH37t0lyogaEhZIRESkd9RNqcXGxkImk0mQDTVELJCIiEhv3LlzB4sWLVKJc0qN6ppePLlv6dKlcHZ2hrm5Oby8vHDw4MFq22/evBmdOnWCubk53NzcsH37dtH7oaGhkMlkope/v7+oze3btzFy5EhYWlrC2toaYWFhuHfvns77RkREmpk5c6ZKcRQYGMjiiCQheYG0ceNGREREIC4uDkeOHEG3bt3g5+eHGzduqG2/f/9+BAYGIiwsDFlZWQgICEBAQABOnDghaufv74/r168rX999953o/ZEjR+LkyZNIS0vDtm3bsHfvXrz77ru11k8iIqpafHw8ysvLRbG4uDh07NhRooyooZMJgiBImYCXlxd69OiBJUuWAAAUCgWcnJwwYcIEREVFqbQfPnw4iouLsW3bNmWsV69ecHd3V245HxoaioKCAiQnJ6v9zNOnT+PZZ5/FoUOH4OnpCQDYsWMHBg4ciKtXr8LR0fGJeRcVFcHKygqFhYWwtLTUtttERATgwoUL+Pbbb1XicXFxSEkBZs8GoqKAIUMkSI4Mkqa/vyUdQSotLUVmZiZ8fX2VMblcDl9fX2RkZKg9JiMjQ9QeAPz8/FTa79mzB3Z2dnB1dcXYsWNx69Yt0Tmsra2VxREA+Pr6Qi6X448//lD7uSUlJSgqKhK9iIio5uLj41WKo/Hjxyun1GbPBjIyHv5JVNckLZBu3ryJiooK2Nvbi+L29vbIzc1Ve0xubu4T2/v7+2PNmjVIT0/HnDlz8Ouvv2LAgAGoqKhQnsPOzk50DmNjYzRv3rzKz01ISICVlZXy5eTkpHV/iYjo4eNC1N2lFhcXBxsbG+XPUVGAt/fDP4nqmkHexTZixAjlP7u5ueG5555Du3btsGfPHvTv379G54yOjkZERITy56KiIhZJRERa2rdvH3bt2iWKdejQAW+99ZZK2yFDOLVG0pG0QLK1tYWRkRHy8vJE8by8PDg4OKg9xsHBQav2ANC2bVvY2tri/Pnz6N+/PxwcHFQWgZeXl+P27dtVnsfMzIxb2hMRPQV1o0bR0dEwNTWVIBui6kk6xWZqagoPDw+kp6crYwqFAunp6fD29lZ7jLe3t6g9AKSlpVXZHgCuXr2KW7duoWXLlspzFBQUIDMzU9lm165dUCgU8PLyepouERFRJSUlJVVOqbE4In0l+RRbREQEQkJC4OnpiZ49eyIxMRHFxcUYNWoUACA4OBitWrVCQkICAGDSpEno3bs35s+fj0GDBmHDhg04fPgwli9fDgC4d+8e4uPjMWzYMDg4OODChQuYOnUq2rdvDz8/PwBA586d4e/vj/DwcCQlJaGsrAzjx4/HiBEjNLqDjYiINLNmzRpcunRJFPvPf/4DHx8fiTIi0ozkBdLw4cORn5+P2NhY5Obmwt3dHTt27FAuxL58+TLk8n8Hunx8fLB+/XrExMRg2rRp6NChA5KTk9G1a1cAgJGREY4fP47Vq1ejoKAAjo6OeOWVVzBjxgzRFNm6deswfvx49O/fH3K5HMOGDVO7eysREdUMHxdC9Znk+yDVV9wHiYhIvfz8fHzxxRcqce6ITfpA09/fko8gERGR4VA3ahQcHAwXFxcJsiGqORZIRESkE1UtxCaqj1ggERHRU/nzzz/xww8/iGLm5ub48MMPJcqI6OmxQCIiohpTN2o0efJkWFlZSZANke6wQCIiIq0pFArMmDFDJc4pNTIULJCIiEgrmzdvxqlTp0SxwsKW6NPnXYkyItI9FkhERKQxdVNqaWnT8PvvJjhwgM9OI8PBAomIiJ7o3r17mD9/vko8Li4O3bsDs2cDUVESJEZUS1ggERFRtdSNGvXu3Rt9+vQB8HDUiCNHZGhYIBERUZW4txE1VCyQiIhIxcWLF7F27VqVOIsjaii0LpCMjIxw/fp12NnZieK3bt2CnZ0dKioqdJYcERHVPXWjRoGBgejYsaME2RBJQ67tAVU927akpASmpqZPnRAREUlHXXHUvXscQkM7IiVFgoSIJKLxCNKiRYsAADKZDCtWrECTJk2U71VUVGDv3r3o1KmT7jMkIqJat3v3buzdu1clHhcXBx8fICPj4Z1qXIxNDYXGBdLnn38O4OEIUlJSEoyMjJTvmZqawtnZGUlJSbrPkIiIapW6UaNJkybB2toawMPb93kbPzU0GhdIly5dAgD07dsXP/zwA5o1a1ZrSRERUe0rLy/HzJkzVeLdu8dh4MCHBdGjW/g5ckQNjUyoalERVauoqAhWVlYoLCyEpaWl1OkQEWll2bJluHHjhijWqlUr/O9//1NOqXl7A/v3S5QgUS3R9Pe31nexvfPOO9W+/80332h7SiIiqkPqptRiYmKUSyc4pUZUgwLpzp07op/Lyspw4sQJFBQUoF+/fjpLjIiIdOv27dtYvHixSrzy3kacUiOqQYG0detWlZhCocDYsWPRrl07nSRFRES6pW7UqF+/fnjppZckyIZI/+lsDdLZs2fRp08fXL9+XRen03tcg0RE9QUfF0L0r1pbg1SVCxcuoLy8XFenIyKip3T69Gls2rRJJc7iiOjJtC6QIiIiRD8LgoDr16/jp59+QkhIiM4SIyKimlM3ahQSEgJnZ+e6T4aoHtK6QMrKyhL9LJfL0aJFC8yfP/+Jd7gREVHtEgQB06dPV4lz1IhIO1oXSLt3766NPIiI6Clt374dhw4dUomzOCLSXo3XIN24cQNnz54FALi6usLOzk5nSRERkXbUTalNmTJF9NxMItKcXNsDioqKEBQUBEdHR/Tu3Ru9e/dGq1at8Pbbb6OwsLA2ciQioio8ePCgyrvUWBwR1ZzWI0jh4eHIysrCTz/9BG9vbwBARkYGJk2ahNGjR2PDhg06T5KIiFSpK4w6duyIwMBACbIhMixa74PUuHFjpKam4sUXXxTF9+3bB39/fxQXF+s0QX3FfZCISErqiqOPP/4YcrnWEwNEDYqmv7+1/i/JxsYGVlZWKnErKys0a9ZM29MREZEWcnJy1BZHqalx2LaNxRGRrmj9X1NMTAwiIiKQm5urjOXm5iIyMhIff/yxTpMjIqJ/xcfHY8WKFaJY3759kZoah4yMhw+YJSLd0HqKrXv37jh//jxKSkrQunVrAMDly5dhZmaGDh06iNoeOXJEd5nqGU6xEVFdqu5xISkpD4ujqCg+ZJboSWrtUSNDhw6FTCZ7quSIiEgz+/fvR1pamkr88b2NhgxhYUSkazp7WG1DwxEkIqpt6kaNRo0apRy9JyLt1doi7bZt2+LWrVsq8YKCArRt21bb0xERUSWCIFQ5pcbiiKhuaD3Flp2djYqKCpV4SUkJrl69qpOkiIgaqq+//lrtdykfF0JUtzQeQUpJSUFKSgoAIDU1VflzSkoKtm7dihkzZsDFxUXrBJYuXQpnZ2eYm5vDy8sLBw8erLb95s2b0alTJ5ibm8PNzQ3bt2+vsu2YMWMgk8mQmJgoip87dw5Dhw6Fra0tLC0t8eKLL/IZc0Qkufj4eJXiKDIyksURkQQ0HkEKCAgAAMhkMoSEhIjeMzExgbOzM+bPn6/Vh2/cuBERERFISkqCl5cXEhMT4efnh7Nnz6p9ttv+/fsRGBiIhIQEDB48GOvXr0dAQACOHDmCrl27itpu3boVBw4cgKOjo8p5Bg8ejA4dOmDXrl2wsLBAYmIiBg8ejAsXLsDBwUGrPhARPa3i4mLMmzdPJc7CiEg6Wi/SdnFxwaFDh2Bra/vUH+7l5YUePXpgyZIlAACFQgEnJydMmDABUVFRKu2HDx+O4uJibNu2TRnr1asX3N3dkZSUpIzl5OTAy8sLqampGDRoECZPnozJkycDAG7evIkWLVpg7969eOmllwAAd+/ehaWlJdLS0uDr66tR7lykTUS6oG6tkYuLC4KDgyXIhsjw1doi7UuXLumkOCotLUVmZqaoIJHL5fD19UVGRobaYzIyMlQKGD8/P1F7hUKBoKAgREZGokuXLirnsLGxgaurK9asWYPi4mKUl5fjyy+/hJ2dHTw8PKrMt6SkBEVFRaIXEdHTUFccxcbGsjgi0gNaL9KePn16te/HxsZqdJ6bN2+ioqIC9vb2ori9vT3OnDmj9pjc3Fy17R/f1XvOnDkwNjbGxIkT1Z5DJpNh586dCAgIQNOmTSGXy2FnZ4cdO3ZU+6iUhIQEtV9mRETaunTpEtasWaMS55Qakf7QukDaunWr6OeysjJcunQJxsbGaNeuncYFUm3IzMzEwoULceTIkSo3sxQEAe+99x7s7Oywb98+WFhYYMWKFXj11Vdx6NAhtGzZUu1x0dHRiIiIUP5cVFQEJyenWukHERkudf+jNXDgQPTo0UOCbIioKloXSFlZWSqxoqIihIaG4rXXXtP4PLa2tjAyMkJeXp4onpeXV+VCaQcHh2rb79u3Dzdu3BDtE1JRUYEpU6YgMTER2dnZ2LVrF7Zt24Y7d+4o5x6/+OILpKWlYfXq1WrXPgGAmZkZzMzMNO4fEVFl1T0uhIj0i04e/WxpaYn4+HitHlZramoKDw8PpKenK2MKhQLp6enw9vZWe4y3t7eoPQCkpaUp2wcFBeH48eM4evSo8uXo6IjIyEikpqYCAO7fvw/g4Xqnx8nlcigUCo3zJyLSVHp6OosjonpG6xGkqhQWFqKwsFCrYyIiIhASEgJPT0/07NkTiYmJKC4uxqhRowAAwcHBaNWqFRISEgAAkyZNQu/evTF//nwMGjQIGzZswOHDh7F8+XIADxdg29jYiD7DxMQEDg4OcHV1BfCwyGrWrBlCQkIQGxsLCwsLfPXVV7h06RIGDRr0tJeBiEhEXWE0evRobilCpOe0LpAWLVok+lkQBFy/fh1r167FgAEDtDrX8OHDkZ+fj9jYWOTm5sLd3R07duxQLsS+fPmyaKTHx8cH69evR0xMDKZNm4YOHTogOTlZZQ+k6tja2mLHjh346KOP0K9fP5SVlaFLly748ccf0a1bN63yJyKqSkVFBT799FOVOEeNiOqHGu2D9Di5XI4WLVqgX79+iI6ORtOmTXWaoL7iPkhEVJWFCxeioKBAJc7iiEh6mv7+1noE6dKlS0+VGBGRIVM3pRYVFcWbPIjqmRqtQSooKMD58+cBAO3bt4e1tbUucyIiqncKCgqwcOFClThHjYjqJ60KpOzsbLz33ntITU3Fo5k5mUwGf39/LFmyBM7OzrWRIxGRXlM3atS1a1cMGzZMgmyISBc0LpCuXLmCXr16wcTEBDNmzEDnzp0BAKdOncKyZcvg7e2NQ4cO4Zlnnqm1ZImI9A1v3ycyTBov0g4LC8P58+eRmpoKc3Nz0Xv//PMP/P390aFDB6xYsaJWEtU3XKRN1LCdPn0amzZtUomzOCLSbzpfpL1jxw5s3LhRpTgCAAsLC8yYMQMjRoyoWbZERPWIulGj119/HW5ubhJkQ0S1QeMC6ebNm9WuMWrbti1u376ti5yIiPQWp9SIGgaNC6SWLVvi1KlTVa4xOnHiBHeGJSKD9X//9384cuSISpzFEZFh0rhACggIwAcffID09HS0aNFC9N6NGzfw4YcfIiAgQNf5ERFJTt2o0fjx41UebUREhkPjRdp37tyBl5cXcnNz8fbbb6NTp04QBAGnT5/G+vXr4eDggAMHDqB58+a1nbNe4CJtIsNXVlaGWbNmqcQ5akRUf+l8kXazZs3wxx9/YNq0adiwYYNyG31ra2u89dZbmDVrVoMpjojI8M2YMQMKhUIUMzc3x4cffihRRkRUl7R+Fhvw8AG1+fn5AIAWLVpAJpPpPDF9xxEkIsOlbkrto48+grFxjR4+QER6pNaexQY83D3bzs6uxskREemj/Px8fPHFFypxTqkRNTz83yEiIqgfNerZsycGDBggQTZEJDUWSETU4HFvIyKqjAUSETVYVT0upHt3FkdEDR0LJCJqkNSNGh08GILt253h7Q0MGSJBUkSkNzQqkBYtWqTxCSdOnFjjZIiIapsgCJg+fbpKPC4uDikpwJ07QFSUBIkRkV7R6DZ/FxcXzU4mk+HixYtPnVR9wNv8ieqf7du349ChQypxrjciajh0epv/pUuXdJYYEZEU1E2pTZkyBU2aNJEgGyLSd/KaHlhaWoqzZ8+ivLxcl/kQEelUSUlJlXepsTgioqpovUj7/v37mDBhAlavXg0AOHfuHNq2bYsJEyagVatWiOLkPRHpiblz5+L+/fuiWMeOHREYGChRRkRUX2g9ghQdHY1jx45hz549MDc3V8Z9fX2xceNGnSZHRFRT8fHxKsXRxx9/zOKIiDSi9QhScnIyNm7ciF69eomewdalSxdcuHBBp8kREWkrLy8PSUlJKnEuxCYibWhdIOXn56t9DltxcXGDfGgtEekPdWuNBg4ciB49ekiQDRHVZ1pPsXl6euKnn35S/vyoKFqxYgW8vb11lxkRkRaqWojN4oiIakLrEaRZs2ZhwIABOHXqFMrLy7Fw4UKcOnUK+/fvx6+//lobORIRVSkrKwspKSkqcU6pEdHT0LpAevHFF3H06FHMnj0bbm5u+OWXX/D8888jIyMDbm5utZEjEZFa6kaNwsPD4ejoKEE2RGRINNpJm1RxJ20i6VT3uBAiourodCftoqIijT+YxQIR1aYtW7bg5MmTopiRkRFiYmIkyoiIDJFGBZK1tbXGd6hVVFQ8VUJERFVRN6X24YcfivZkIyLSBY0KpN27dyv/OTs7G1FRUQgNDVXetZaRkYHVq1cjISGhdrIkogbt/v37mDt3rkqcU2pEVFu0XoPUv39//O9//1PZjXb9+vVYvnw59uzZo8v89BbXIBHVDXWjRu7u7hg6dKgE2RBRfafp72+t90HKyMiAp6enStzT0xMHDx7U9nRERFVSVxzFxsayOCKiWqd1geTk5ISvvvpKJb5ixQo4OTnpJCkiatiuXr1a5caP3LGfiOqC1vsgff755xg2bBh+/vlneHl5AQAOHjyIv/76C99//73OEySihkVdYfT6669znzUiqlNajyANHDgQf/31F1599VXcvn0bt2/fxquvvopz585h4MCBtZEjETUQVY0asTgiorqmdYEEAM888wxmzZqFH374AT/88ANmzpxZ4+m1pUuXwtnZGebm5vDy8nriOqbNmzejU6dOMDc3h5ubG7Zv315l2zFjxkAmkyExMVHlvZ9++gleXl6wsLBAs2bNEBAQUKP8iejpZWRkVFkcERFJQespNgAoKCjA119/jdOnTwMAunTpgnfeeQdWVlZanWfjxo2IiIhAUlISvLy8kJiYCD8/P5w9exZ2dnYq7ffv34/AwEAkJCRg8ODBWL9+PQICAnDkyBF07dpV1Hbr1q04cOCA2kcOfP/99wgPD8esWbPQr18/lJeX48SJE1rlTkS6oa4wGjduHFq0aCFBNkRED2l9m//hw4fh5+cHCwsL9OzZEwBw6NAh/PPPP8rnsmnKy8sLPXr0wJIlSwAACoUCTk5OmDBhAqKiolTaDx8+HMXFxdi2bZsy1qtXL7i7uyMpKUkZy8nJgZeXF1JTUzFo0CBMnjwZkydPBgCUl5fD2dkZ8fHxCAsL06brIrzNn+jpKBQKzJgxQyXOUSMiqk21dpv/+++/jyFDhiA7O1s5xXbp0iUMHjxYWYRoorS0FJmZmfD19f03Gbkcvr6+yMjIUHtMRkaGqD0A+Pn5idorFAoEBQUhMjISXbp0UTnHkSNHkJOTA7lcju7du6Nly5YYMGDAE0eQSkpKUFRUJHoRUc2sWbNGpTiysrJicUREekPrKbbDhw/jq6++grHxv4caGxtj6tSpavdHqsrNmzdRUVEBe3t7Udze3h5nzpxRe0xubq7a9rm5ucqf58yZA2NjY0ycOFHtOS5evAgA+OSTT7BgwQI4Oztj/vz56NOnD86dO4fmzZurPS4hIUHtVAARaUfdf0fR0dEwNTWVIBsiIvW0HkGytLTE5cuXVeJXrlxB06ZNdZJUTWVmZmLhwoVYtWpVlXulKBQKAMBHH32EYcOGwcPDAytXroRMJsPmzZurPHd0dDQKCwuVrytXrtRKH4gMVVFRUZULsVkcEZG+0XoEafjw4QgLC8O8efPg4+MDAPj9998RGRmp8viR6tja2sLIyAh5eXmieF5eHhwcHNQe4+DgUG37ffv24caNG2jdurXy/YqKCkyZMgWJiYnIzs5Gy5YtAQDPPvusso2ZmRnatm2rtvB7vI2ZmZnG/SOif6krjLy9vfHKK69IkA0R0ZNpXSDNmzcPMpkMwcHBKC8vBwCYmJhg7NixmD17tsbnMTU1hYeHB9LT05W32CsUCqSnp2P8+PFqj/H29kZ6erporVNaWpryoblBQUFq1ygFBQVh1KhRAAAPDw+YmZnh7NmzePHFFwEAZWVlyM7ORps2bTTOn4g0w9v3iag+0rpAMjU1xcKFC5GQkIALFy4AANq1a4dGjRpp/eEREREICQmBp6cnevbsicTERBQXFyuLmeDgYLRq1QoJCQkAgEmTJqF3796YP38+Bg0ahA0bNuDw4cNYvnw5AMDGxgY2NjaizzAxMYGDgwNcXV0BPJwiHDNmDOLi4uDk5IQ2bdoonxL+xhtvaN0HIlLv4sWLWLt2rUqcxRER1Qc12gcJABo1avTUu9sOHz4c+fn5iI2NRW5uLtzd3bFjxw7lQuzLly9DLv93mZSPjw/Wr1+PmJgYTJs2DR06dEBycrLKHkhPMnfuXBgbGyMoKAj//PMPvLy8sGvXLjRr1uyp+kNED6kbNQoMDETHjh0lyIaISHsa74P0zjvvaHTCb7755qkSqi+4DxKRepxSIyJ9punvb41HkFatWoU2bdqge/fu0HJvSSJqAHbv3o29e/eqxFkcEVF9pHGBNHbsWHz33Xe4dOkSRo0ahbfffrvKPYOIqGFRN2o0adIkWFtb130yREQ6oPE+SEuXLsX169cxdepU/N///R+cnJzw5ptvIjU1lSNKRA1UeXl5lVNqLI6IqD7T+llsj/z9999YtWoV1qxZg/Lycpw8eRJNmjTRdX56i2uQqKFbtmwZbty4IYo5OjoiPDxcooyIiJ5M52uQKpPL5ZDJZBAEARUVFTU9DRHVQ+pGjWJiYmBkZCRBNkREuqfVo0ZKSkrw3Xff4T//+Q86duyIP//8E0uWLMHly5cb1OgRUUN1+/btKqfUWBwRkSHReARp3Lhx2LBhA5ycnPDOO+/gu+++g62tbW3mRkR6RF1h1LdvX7z88ssSZENEVLs0XoMkl8vRunVrdO/evcoHwQLADz/8oLPk9BnXIFFDwr2NiMhQ6HwNUnBwcLWFEREZntOnT2PTpk0qcRZHRGTotNookogaDnWjRiEhIXB2dq77ZIiI6phWi7SJyPAJgqC2OEpNjWNxREQNRo1v8yciw7N9+3YcOnRIJZ6aGoeoKAkSIiKSCAskIgKgfkptypQpaNKkCbjkiIgaGhZIRA1cSUkJZs+erRLnQmwiashYIBE1YJ999hn++ecfUaxDhw546623JMqIiEg/sEAiaqDUTal9/PHHkMt57wYREQskogYmLy8PSUlJKnFOqRER/YsFEpGBS0kBZs8GoqKArCzVUaOBAweiR48eEmRGRKS/WCARGbjZs4GMDPXFEUeNiIjUY4FEZODCw7Pg55eiEmdxRERUNRZIRAZM3ULsjIxw7NjhKEE2RET1BwskIgMkCAKmT5+uEueO2EREmmGBRGRgVqxYgZycHJV4XFwcd8QmItIQCyQiA6JuSi0yMhKNGjWSIBsiovqLBRKRASguLsa8efNU4lyITURUMyyQiOo5daNGLi4uCA4OliAbIiLDwAKJqB5TVxzFxsZCJpNJkA0RkeFggURUD128eBFr165ViXNKjYhIN1ggEemRxx8LMmSI+jbqRo34uBAiIt1igUSkRx49FmT2bPUFkrriiKNGRES6xwKJSI9ERf07gvS49PR0/PbbbyrtWRwREdUOFkhEemTIENWRI3WjRqNHj4aDg0MdZUVE1PCwQCLSUxUVFfj0009V4hw1IiKqfSyQiPTQmjVrcOnSJZU4iyMiorrBAolIz6ibUtu5MxqRkaYSZENE1DCxQCLSE1U9LiQ1NQ4ZGUBFRdW3/hMRkW7JpU4AAJYuXQpnZ2eYm5vDy8sLBw8erLb95s2b0alTJ5ibm8PNzQ3bt2+vsu2YMWMgk8mQmJio9v2SkhK4u7tDJpPh6NGjT9ELopqbO3euSnHk7e2NuLg4REUB3t6qd7YREVHtkbxA2rhxIyIiIhAXF4cjR46gW7du8PPzw40bN9S2379/PwIDAxEWFoasrCwEBAQgICAAJ06cUGm7detWHDhwAI6OjlV+/tSpU6t9n6i2xcfH4/79+6JYbGwsXnnlFQAPR4327+foERFRXZK8QFqwYAHCw8MxatQoPPvss0hKSkKjRo3wzTffqG2/cOFC+Pv7IzIyEp07d8aMGTPw/PPPY8mSJaJ2OTk5mDBhAtatWwcTExO15/r555/xyy+/qJ3WIKptV69erXLjRz5LjYhIWpKuQSotLUVmZiaio6OVMblcDl9fX2RkZKg9JiMjAxEREaKYn58fkpOTlT8rFAoEBQUhMjISXbp0UXuevLw8hIeHIzk5GY0aNXpiriUlJSgpKVH+XFRU9MRjiKqirjAKCQmBs7Nz3SdDREQqJB1BunnzJioqKmBvby+K29vbIzc3V+0xubm5T2w/Z84cGBsbY+LEiWrPIQgCQkNDMWbMGHh6emqUa0JCAqysrJQvJycnjY6jhislBfDxefjn46oaNWJxRESkPySfYtO1zMxMLFy4EKtWrapymmLx4sW4e/euaOTqSaKjo1FYWKh8XblyRVcpk4F6/LlqAHDw4EGV4sjY2Jh7GxER6SFJp9hsbW1hZGSEvLw8UTwvL6/Kxyg4ODhU237fvn24ceMGWrdurXy/oqICU6ZMQWJiIrKzs7Fr1y5kZGTAzMxMdB5PT0+MHDkSq1evVvlcMzMzlfZE1Xn8uWrqRo0iIiLQtGlTCTIjIqInkXQEydTUFB4eHkhPT1fGFAoF0tPT4e3trfYYb29vUXsASEtLU7YPCgrC8ePHcfToUeXL0dERkZGRSE1NBQAsWrQIx44dU77/aJuAjRs3YubMmbXRVWqAhgwB9u4tR1aW+ik1FkdERPpL8o0iIyIiEBISAk9PT/Ts2ROJiYkoLi7GqFGjAADBwcFo1aoVEhISAACTJk1C7969MX/+fAwaNAgbNmzA4cOHsXz5cgCAjY0NbGxsRJ9hYmICBwcHuLq6AoBodAkAmjRpAgBo164dnnnmmVrtLzUcmzZtwunTp0UxNzc3vP766xJlREREmpK8QBo+fDjy8/MRGxuL3NxcuLu7Y8eOHcqF2JcvX4Zc/u9Al4+PD9avX4+YmBhMmzYNHTp0QHJyMrp27SpVF4hUqJtSi4mJgZGRkQTZEBGRtmSCIAhSJ1EfFRUVwcrKCoWFhbC0tJQ6HdIThYWFandt50JsIiL9oOnvb8lHkIgMhbpRo8GDB8PDw0OCbIiI6GmwQCLSgar2NiIiovqJBRLRU7h48SLWrl2rEmdxRERUv7FAIqohdaNG4eHhfPgxEZEBYIFEpCVBEDB9+nSVOEeNiIgMh8E9aoRIlyo/T23fvn0qxZGVlRWLIyIiA8MRJKJqPP48NXU7YkdGRqJRo0YSZEZERLWJI0hE1YiKAl54oQx+furvUmNxRERkmDiCRFQNuXwb/vOfTFGsR48eGDhwoEQZERFRXWCBRFQFdXeppabGont3mQTZEBFRXeIUG1ElxcXFVRRHccjIkGH2bAmSIiKiOsURJKLHpKSkICsrSxQbPXo0HBwc0L37w8XaUVESJUdERHWGBRLR//ekx4UMGfLwRUREho8FEjV4eXl5SEpKEsW6deuGgIAAaRIiIiLJsUCiBu2LL75Afn6+KDZlyhQ0adJEooyIiEgfsECiBomPCyEiouqwQKIG5+zZs9iwYYMo5ufnh169ekmUERER6RsWSNSgqFuI/dFHH8HYmP8pEBHRv/hbgRqEsrIyzJo1SyXOKTUiIlKHBRIZvN9//x07d+4UxUaOHIn27dtLlBEREek7Fkhk0NRNqcXGxkIm4+NCiIioaiyQyCDdvXsXCxYsEMVatmyJd999V6KMiIioPmGBRAZny5YtOHnypCg2btw4tGjRQqKMiIiovmGBRAblSY8LISIi0gQLJDII165dw1dffSWKeXp6YtCgQRJlRERE9RkLJKr3FixYgLt374piU6dOhYWFhUQZERFRfccCieotPi6EiIhqCwskqpdOnjyJLVu2iGKDBw+Gh4eHRBkREZEhYYFE9Y66hdgxMTEwMjKSIBsiIjJELJCo3igtLUVCQoIoJpPJEBsbK1FGRERkqFggUb2we/du7N27VxQLCQmBs7OzNAkREZFBY4FEeo97GxERUV1jgUR6q6CgAAsXLhTFXFxcEBwcLFFGRETUULBAIr20bt06nD9/XhSbMGECmjdvLlFGRETUkLBAIr3DKTUiIpIaCyTSG5cvX8bKlStFsRdeeAG+vr4SZURERA2VXOoEAGDp0qVwdnaGubk5vLy8cPDgwWrbb968GZ06dYK5uTnc3Nywffv2KtuOGTMGMpkMiYmJylh2djbCwsLg4uICCwsLtGvXDnFxcSgtLdVVl0hLs2bNUimOoqKiWBwREZEkJC+QNm7ciIiICMTFxeHIkSPo1q0b/Pz8cOPGDbXt9+/fj8DAQISFhSErKwsBAQEICAjAiRMnVNpu3boVBw4cgKOjoyh+5swZKBQKfPnllzh58iQ+//xzJCUlYdq0abXSR6qaQqFAfHw8ysrKRPG4uDiYmZlJlBURETV0MkEQBCkT8PLyQo8ePbBkyRIAD39hOjk5YcKECYiKilJpP3z4cBQXF2Pbtm3KWK9eveDu7o6kpCRlLCcnB15eXkhNTcWgQYMwefJkTJ48uco85s6di2XLluHixYsa5V1UVAQrKysUFhbC0tJSw97S444ePYoff/xRFHvttdfw3HPPSZQREREZOk1/f0u6Bqm0tBSZmZmIjo5WxuRyOXx9fZGRkaH2mIyMDERERIhifn5+SE5OVv6sUCgQFBSEyMhIdOnSRaNcCgsLeYdUHVK3EPvjjz+GXC75oCYREZG0BdLNmzdRUVEBe3t7Udze3h5nzpxRe0xubq7a9rm5ucqf58yZA2NjY0ycOFGjPM6fP4/Fixdj3rx5VbYpKSlBSUmJ8ueioiKNzk1i//zzDz777DNRrFGjRoiMjJQoIyIiIlUGdxdbZmYmFi5ciCNHjkAmkz2xfU5ODvz9/fHGG28gPDy8ynYJCQlqRz1Ic6mpqThw4IAoFhYWhmeeeUaijIiIiNSTdD7D1tYWRkZGyMvLE8Xz8vLg4OCg9hgHB4dq2+/btw83btxA69atYWxsDGNjY/z999+YMmWKynO7rl27hr59+8LHxwfLly+vNtfo6GgUFhYqX1euXNGytw1bfHy8SnEUFxfH4oiIiPSSpAWSqakpPDw8kJ6erowpFAqkp6fD29tb7THe3t6i9gCQlpambB8UFITjx4/j6NGjypejoyMiIyORmpqqPCYnJwd9+vSBh4cHVq5c+cS1L2ZmZrC0tBS96Mlu3bqlMvLWqVMnbvxIRER6TfIptoiICISEhMDT0xM9e/ZEYmIiiouLMWrUKABAcHAwWrVqhYSEBADApEmT0Lt3b8yfPx+DBg3Chg0bcPjwYeUIkI2NDWxsbESfYWJiAgcHB7i6ugL4tzhq06YN5s2bh/z8fGXbqkauSHtff/01rl69KopNnjwZVlZWEmVERESkGckLpOHDhyM/Px+xsbHIzc2Fu7s7duzYoVyIffnyZdHojo+PD9avX4+YmBhMmzYNHTp0QHJyMrp27arxZ6alpeH8+fM4f/68yhSPxLseGARBEDB9+nSVOEeNiIiovpB8H6T6ivsgqXfx4kWsXbtWFOvbty9efvlliTIiIiL6V73YB4kMi7q7/KKjo2FqaipBNkRERDXHAomeWkVFBT799FOVOKfUiIiovmKBRE/l4MGD+Pnnn0WxN998E507d5YoIyIioqfHAolqTN2UWmxsrEYbdBIREekzFkikteLiYpXHsjRr1kzjR7sQERHpOxZIpJWUlBRkZWWJYqNHj+b+UUREZFBYIJHG1E2pcSE2EREZIhZI9ER5eXlISkoSxbp164aAgABpEiIiIqplLJCoWl988YXoUSwAMGXKFDRp0kSijIiIiGofCyRSi48LISKihowFEqk4e/YsNmzYIIr5+fmhV69eEmVERERUt1ggkYi6hdgfffQRjI35V4WIiBoO/tYjAEBZWRlmzZqlEueUGhERNUQskAi///47du7cKYqNHDkS7du3lygjIiIiabFAauD4uBAiIiJVLJAaqLt372LBggWimKOjI8LDwyXKiIiISH+wQGqAtmzZgpMnT4pi7733HmxtbSXKiIiISL+wQGpg+LgQIiKiJ2OB1EBcu3YNX331lSjWo0cPDBw4UKKMiIiI9BcLpAZgwYIFuHv3rig2depUWFhYSJQRERGRfmOBZMD4uBAiIqKaYYFkoE6ePIktW7aIYoMHD4aHh4dEGREREdUfLJAMREoKMHs2EBUFZGWpLsSOiYmBkZGRBJkRERHVPyyQDMTs2UBmZimyshJEcblcjo8//liirIiIiOonFkgGIiRkN/z89laKhcDZ2VmahIiIiOoxFkgGgHsbERER6RYLpHrs++/v4sQJ8eNCXFxcEBwcLFFGREREhoEFUj11+vRpnDixSRSbOHEimjVrJlFGREREhoMFUj307bff4sKFC6IYp9SIiIh0hwVSPXLv3j3Mnz9fFBsxYgRcXV0lyoiIiMgwsUCqJ7KyspCSkqL8WS6XY9q0adzbiIiIqBawQNJzgiBg8eLFuHPnjjLWr18/vPTSSxJmRUREZNjkUidAYikpgI/Pwz9v3ryJ6dOni4qjCRMmsDgiIiKqZRxB0jOzZwMZGcDmzb8iK2uPMm5ra4tx48ZBJpNJlxwREVEDwQJJz0ydWo5jx2aKYgEBAejWrZtEGRERETU8LJD0TOXi6IMPPkDjxo0lyoaIiKhhYoGkZxwdHXHt2jV07NgRgYGBUqdDRETUIOnFIu2lS5fC2dkZ5ubm8PLywsGDB6ttv3nzZnTq1Anm5uZwc3PD9u3bq2w7ZswYyGQyJCYmiuK3b9/GyJEjYWlpCWtra4SFheHevXu66M5TCQ8PR1xcHIsjIiIiCUleIG3cuBERERGIi4vDkSNH0K1bN/j5+eHGjRtq2+/fvx+BgYEICwtDVlYWAgICEBAQgBMnTqi03bp1Kw4cOABHR0eV90aOHImTJ08iLS0N27Ztw969e/Huu+/qvH9ERERU/8gEQRCkTMDLyws9evTAkiVLAAAKhQJOTk6YMGECoqKiVNoPHz4cxcXF2LZtmzLWq1cvuLu7IykpSRnLycmBl5cXUlNTMWjQIEyePBmTJ08G8PA5Zs8++ywOHToET09PAMCOHTswcOBAXL16VW1BVVlRURGsrKxQWFgIS0vLp7kEREREVEc0/f0t6QhSaWkpMjMz4evrq4zJ5XL4+voiIyND7TEZGRmi9gDg5+cnaq9QKBAUFITIyEh06dJF7Tmsra2VxREA+Pr6Qi6X448//lD7uSUlJSgqKhK9iIiIyDBJWiDdvHkTFRUVsLe3F8Xt7e2Rm5ur9pjc3Nwntp8zZw6MjY0xceLEKs9hZ2cnihkbG6N58+ZVfm5CQgKsrKyULycnpyf2j4iIiOonydcg6VpmZiYWLlyIVatW6XRTxejoaBQWFipfV65c0dm5iYiISL9IWiDZ2trCyMgIeXl5onheXh4cHBzUHuPg4FBt+3379uHGjRto3bo1jI2NYWxsjL///htTpkyBs7Oz8hyVF4GXl5fj9u3bVX6umZkZLC0tRS8iIiIyTJIWSKampvDw8EB6eroyplAokJ6eDm9vb7XHeHt7i9oDQFpamrJ9UFAQjh8/jqNHjypfjo6OiIyMRGpqqvIcBQUFyMzMVJ5j165dUCgU8PLy0nU3iYiIqJ6RfKPIiIgIhISEwNPTEz179kRiYiKKi4sxatQoAEBwcDBatWqFhIQEAMCkSZPQu3dvzJ8/H4MGDcKGDRtw+PBhLF++HABgY2MDGxsb0WeYmJjAwcEBrq6uAIDOnTvD398f4eHhSEpKQllZGcaPH48RI0ZodAcbERERGTbJC6Thw4cjPz8fsbGxyM3Nhbu7O3bs2KFciH358mXI5f8OdPn4+GD9+vWIiYnBtGnT0KFDByQnJ6Nr165afe66deswfvx49O/fH3K5HMOGDcOiRYt02jciIiKqnyTfB6m+4j5IRERE9U+92AeJiIiISB+xQCIiIiKqhAUSERERUSUskIiIiIgqkfwutvrq0dp2PpONiIio/nj0e/tJ96ixQKqhu3fvAgCfyUZERFQP3b17F1ZWVlW+z9v8a0ihUODatWto2rSp1s98KyoqgpOTE65cudJgtwjgNeA1AHgNGnr/AV4DgNegrvsvCALu3r0LR0dH0T6LlXEEqYbkcjmeeeaZpzoHn+nGawDwGgC8Bg29/wCvAcBrUJf9r27k6BEu0iYiIiKqhAUSERERUSUskCRgZmaGuLg4mJmZSZ2KZHgNeA0AXoOG3n+A1wDgNdDX/nORNhEREVElHEEiIiIiqoQFEhEREVElLJCIiIiIKmGBRERERFQJC6QaWrp0KZydnWFubg4vLy8cPHiw2vabN29Gp06dYG5uDjc3N2zfvr3KtmPGjIFMJkNiYqIofvv2bYwcORKWlpawtrZGWFgY7t27p4vuaK2u+5+dnY2wsDC4uLjAwsIC7dq1Q1xcHEpLS3XVJa1J8XfgkZKSEri7u0Mmk+Ho0aNP0YunI9U1+Omnn+Dl5QULCws0a9YMAQEBT9mTmpGi/+fOncPQoUNha2sLS0tLvPjii9i9e7cuulMjur4GoaGhkMlkope/v7+ojT59FwJ1fw0awvehJn8PHqm170OBtLZhwwbB1NRU+Oabb4STJ08K4eHhgrW1tZCXl6e2/e+//y4YGRkJn332mXDq1CkhJiZGMDExEf7880+Vtj/88IPQrVs3wdHRUfj8889F7/n7+wvdunUTDhw4IOzbt09o3769EBgYWBtdrJYU/f/555+F0NBQITU1Vbhw4YLw448/CnZ2dsKUKVNqq5vVkurvwCMTJ04UBgwYIAAQsrKydNgzzUl1DbZs2SI0a9ZMWLZsmXD27Fnh5MmTwsaNG2uji9WSqv8dOnQQBg4cKBw7dkw4d+6cMG7cOKFRo0bC9evXa6Ob1aqNaxASEiL4+/sL169fV75u374tOo++fBcKgjTXoCF8H2ry9+CR2vo+ZIFUAz179hTee+895c8VFRWCo6OjkJCQoLb9m2++KQwaNEgU8/LyEkaPHi2KXb16VWjVqpVw4sQJoU2bNqIvxlOnTgkAhEOHDiljP//8syCTyYScnBwd9EpzUvRfnc8++0xwcXGpWSeekpTXYPv27UKnTp2EkydPSlogSXENysrKhFatWgkrVqzQXUdqSIr+5+fnCwCEvXv3KmNFRUUCACEtLU0HvdJObVyDkJAQYejQoVV+pj59FwqCNNdAHUP7PtT0GtTm9yGn2LRUWlqKzMxM+Pr6KmNyuRy+vr7IyMhQe0xGRoaoPQD4+fmJ2isUCgQFBSEyMhJdunRRew5ra2t4enoqY76+vpDL5fjjjz+etlsak6r/6hQWFqJ58+Y16MXTkfIa5OXlITw8HGvXrkWjRo100JuakeoaHDlyBDk5OZDL5ejevTtatmyJAQMG4MSJEzrqmWak6r+NjQ1cXV2xZs0aFBcXo7y8HF9++SXs7Ozg4eGho95pprauAQDs2bMHdnZ2cHV1xdixY3Hr1i3ROfThuxCQ7hqoY2jfh8CTr0Ftfx+yQNLSzZs3UVFRAXt7e1Hc3t4eubm5ao/Jzc19Yvs5c+bA2NgYEydOrPIcdnZ2opixsTGaN29e5efWBqn6X9n58+exePFijB49WssePD2proEgCAgNDcWYMWNEvxykINU1uHjxIgDgk08+QUxMDLZt24ZmzZqhT58+uH379tN0SStS9V8mk2Hnzp3IyspC06ZNYW5ujgULFmDHjh1o1qzZU/ZKO7V1Dfz9/bFmzRqkp6djzpw5+PXXXzFgwABUVFQoz6EP34WAdNegMkP8PnzSNaiL70PjWjkraSUzMxMLFy7EkSNHIJPJpE6nzmnb/5ycHPj7++ONN95AeHh4HWRY+zS5BosXL8bdu3cRHR1dx9nVDU2ugUKhAAB89NFHGDZsGABg5cqVeOaZZ7B582ZJfkHoiib9FwQB7733Huzs7LBv3z5YWFhgxYoVePXVV3Ho0CG0bNmyjrPWvREjRij/2c3NDc899xzatWuHPXv2oH///hJmVne0uQaG+H0IPPka1MX3IUeQtGRrawsjIyPk5eWJ4nl5eXBwcFB7jIODQ7Xt9+3bhxs3bqB169YwNjaGsbEx/v77b0yZMgXOzs7Kc9y4cUN0jvLycty+fbvKz60NUvX/kWvXrqFv377w8fHB8uXLddcxLUh1DXbt2oWMjAyYmZnB2NgY7du3BwB4enoiJCREx72snlTX4FEB8OyzzyrPYWZmhrZt2+Ly5cu66t4TSfl3YNu2bdiwYQNeeOEFPP/88/jiiy9gYWGB1atX676j1aiNa6BO27ZtYWtri/PnzyvPoQ/fhYB01+ARQ/0+VKfyNaiL70MWSFoyNTWFh4cH0tPTlTGFQoH09HR4e3urPcbb21vUHgDS0tKU7YOCgnD8+HEcPXpU+XJ0dERkZCRSU1OV5ygoKEBmZqbyHLt27YJCoYCXl5euu1klqfoPPPw/pT59+sDDwwMrV66EXC7NX1+prsGiRYtw7Ngx5fuPbovduHEjZs6cWRtdrZJU18DDwwNmZmY4e/as8hxlZWXIzs5GmzZtdN3NKknV//v37wOAyt99uVyuHF2rK7VxDdS5evUqbt26pSyO9eW7EJDuGgCG/X2oTuVrUCffhzpb7t2AbNiwQTAzMxNWrVolnDp1Snj33XcFa2trITc3VxAEQQgKChKioqKU7X///XfB2NhYmDdvnnD69GkhLi6uytt7H1F3B5O/v7/QvXt34Y8//hB+++03oUOHDpLd5l/X/b969arQvn17oX///sLVq1dFt35KQaq/A4+7dOmS5Lf5S3ENJk2aJLRq1UpITU0Vzpw5I4SFhQl2dnZV3gJcW6Tof35+vmBjYyO8/vrrwtGjR4WzZ88KH3zwgWBiYiIcPXq01vpaFV1fg7t37woffPCBkJGRIVy6dEnYuXOn8PzzzwsdOnQQHjx4oDyPvnwXCoI018DQvw81/XvwuNr4PmSBVEOLFy8WWrduLZiamgo9e/YUDhw4oHyvd+/eQkhIiKj9pk2bhI4dOwqmpqZCly5dhJ9++qna86v7xXDr1i0hMDBQaNKkiWBpaSmMGjVKuHv3rq66pJW67v/KlSsFAGpfUpHi78DjpC6QBEGaa1BaWipMmTJFsLOzE5o2bSr4+voKJ06c0FWXtCJF/w8dOiS88sorQvPmzYWmTZsKvXr1ErZv366rLmlNl9fg/v37wiuvvCK0aNFCMDExEdq0aSOEh4crf9E+ok/fhYJQ99fA0L8PNf178Lja+D6UCYIg6GYsioiIiMgwcA0SERERUSUskIiIiIgqYYFEREREVAkLJCIiIqJKWCARERERVcICiYiIiKgSFkhERERElbBAIiIiIqqEBRIRNQi5ubmYMGEC2rZtCzMzMzg5OeHVV18VPRNq//79GDhwIJo1awZzc3O4ublhwYIFqKioULbJzs5GWFgYXFxcYGFhgXbt2iEuLg6lpaVSdIuIaomx1AkQEdW27OxsvPDCC7C2tsbcuXPh5uaGsrIypKam4r333sOZM2ewdetWvPnmmxg1ahR2794Na2tr7Ny5E1OnTkVGRgY2bdoEmUyGM2fOQKFQ4Msvv0T79u1x4sQJhIeHo7i4GPPmzZO6q0SkI3zUCBEZvIEDB+L48eM4e/YsGjduLHqvoKAAJiYmaNOmDXr37o3vv/9e9P7//d//YciQIdiwYQOGDx+u9vxz587FsmXLcPHixVrrAxHVLU6xEZFBu337Nnbs2IH33ntPpTgCAGtra/zyyy+4desWPvjgA5X3X331VXTs2BHfffddlZ9RWFiI5s2b6zRvIpIWCyQiMmjnz5+HIAjo1KlTlW3OnTsHAOjcubPa9zt16qRso+78ixcvxujRo58+WSLSGyyQiMigabOKQNsVBzk5OfD398cbb7yB8PBwbVMjIj3GAomIDFqHDh2Ui6ur0rFjRwDA6dOn1b5/+vRpZZtHrl27hr59+8LHxwfLly/XXcJEpBdYIBGRQWvevDn8/PywdOlSFBcXq7xfUFCAV155Bc2bN8f8+fNV3k9JScFff/2FwMBAZSwnJwd9+vSBh4cHVq5cCbmcX6VEhoZ3sRGRwbt48SJeeOEFNG/eHNOnT8dzzz2H8vJypKWlYdmyZTh9+jS2bNmCESNG4J133sH48eNhaWmJ9PR0REZGon///srb/B8VR23atMHq1athZGSk/BwHBwcJe0lEusQCiYgahOvXr2PmzJnYtm0brl+/jhYtWsDDwwPvv/8++vTpAwDYt28fZs6ciYyMDDx48AAdOnTAqFGjMHnyZGUhtGrVKowaNUrtZ/DrlMhwsEAiIiIiqoQT50RERESVsEAiIiIiqoQFEhEREVElLJCIiIiIKmGBRERERFQJCyQiIiKiSlggEREREVXCAomIiIioEhZIRERERJWwQCIiIiKqhAUSERERUSUskIiIiIgq+X9dQAx5y32FtwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATsRJREFUeJzt3XlYVGX/P/D3sK+yKZui4L6kYqKo33IpCktF7bFcUkBNKzU1ygQXEDewyN2w3LMUfcqFzMAkME1Mc81ENAN3FktAIQFnzu8Pf87TaQZlcGbOLO/XdXHZfObMzeccF97d91lkgiAIICIiIjIjFlI3QERERKRvDEBERERkdhiAiIiIyOwwABEREZHZYQAiIiIis8MARERERGaHAYiIiIjMDgMQERERmR0GICIiIjI7DEBEZLRkMhnmzJkjdRtKkZGR8Pf3l7oNIqoFBiAi0qqNGzdCJpMpv+zs7NCyZUtMmjQJhYWFOv3ehw8fxpw5c1BSUqLVcXv37i3aJ3d3d3Tp0gXr16+HQqHQyvdYuHAhdu3apZWxiOjxrKRugIhM09y5cxEQEIB79+7h0KFDSE5Oxt69e3H27Fk4ODho5Xv8/fffsLL63z9jhw8fRnx8PCIjI+Hq6qqV7/FQo0aNkJCQAAAoLi7G559/jrFjx+LChQtITEx84vEXLlyIIUOGYNCgQU88FhE9HgMQEenESy+9hKCgIADAG2+8AQ8PDyxevBi7d+/G8OHD6zyuQqFAVVUV7OzsYGdnp612H8vFxQUjR45Uvn7zzTfRqlUrrFy5EvPmzYO1tbXeeiGiJ8clMCLSi+eeew4AkJeXBwBISkpCjx494OHhAXt7e3Tu3BlfffWVyudkMhkmTZqEL7/8Eu3atYOtrS3S0tKU7z08B2jOnDmYNm0aACAgIEC5XJWfn49evXqhY8eOavtq1aoVQkNDNd4fBwcHdOvWDeXl5SguLq5xu/Lycrz33nvw8/ODra0tWrVqhaSkJAiCINrH8vJybNq0Sdl3ZGSkxj0RUe1xBoiI9OLSpUsAAA8PDwDAsmXLEBYWhtdffx1VVVVISUnBq6++ij179qBfv36iz/7www/Yvn07Jk2ahPr166s90fiVV17BhQsXsHXrVixZsgT169cHADRo0ACjRo3CuHHjcPbsWTz11FPKzxw7dgwXLlzArFmz6rRPf/zxBywtLWtcbhMEAWFhYcjMzMTYsWMRGBiI9PR0TJs2DdevX8eSJUsAAJs3b8Ybb7yBrl27Yvz48QCAZs2a1aknIqolgYhIizZs2CAAEPbv3y8UFxcLV69eFVJSUgQPDw/B3t5euHbtmiAIglBRUSH6XFVVlfDUU08Jzz33nKgOQLCwsBB+++03le8FQIiLi1O+/uijjwQAQl5enmi7kpISwc7OTpg+fbqoPnnyZMHR0VG4e/fuI/epV69eQuvWrYXi4mKhuLhYyMnJESZPniwAEAYMGKDcLiIiQmjSpIny9a5duwQAwvz580XjDRkyRJDJZMLvv/+urDk6OgoRERGP7IOItIdLYESkEyEhIWjQoAH8/PwwbNgwODk5YefOnWjYsCEAwN7eXrnt7du3UVpaimeffRYnTpxQGatXr15o27ZtnXtxcXHBwIEDsXXrVuXSk1wux7Zt2zBo0CA4Ojo+dozz58+jQYMGaNCgAdq0aYMVK1agX79+WL9+fY2f2bt3LywtLTF58mRR/b333oMgCPjuu+/qvE9E9GS4BEZEOrFq1Sq0bNkSVlZW8PLyQqtWrWBh8b//59qzZw/mz5+PU6dOobKyUlmXyWQqYwUEBDxxP+Hh4di2bRsOHjyInj17Yv/+/SgsLMSoUaNq9Xl/f3+sWbNGeWl/ixYt4Onp+cjPXL58Gb6+vnB2dhbV27Rpo3yfiKTBAEREOtG1a1flVWD/dvDgQYSFhaFnz5745JNP4OPjA2tra2zYsAFbtmxR2f6fs0V1FRoaCi8vL3zxxRfo2bMnvvjiC3h7eyMkJKRWn3d0dKz1tkRk+LgERkR69/XXX8POzg7p6ekYM2YMXnrpJa2EC3WzRw9ZWlpixIgR+Oqrr3D79m3s2rULw4cPh6Wl5RN/35o0adIEN27cwJ07d0T18+fPK99/6FG9E5H2MQARkd5ZWlpCJpNBLpcra/n5+U98J+SH5/LUdCfoUaNG4fbt23jzzTdx9+5d0X19dOHll1+GXC7HypUrRfUlS5ZAJpPhpZdeUtYcHR21fgdrIqoZl8CISO/69euHxYsXo2/fvhgxYgSKioqwatUqNG/eHGfOnKnzuJ07dwYAzJw5E8OGDYO1tTUGDBigDEadOnXCU089hf/+979o06YNnn76aa3sT00GDBiAPn36YObMmcjPz0fHjh2xb98+7N69G1OnThVd6t65c2fs378fixcvhq+vLwICAhAcHKzT/ojMGWeAiEjvnnvuOaxbtw4FBQWYOnUqtm7dikWLFmHw4MFPNG6XLl0wb948nD59GpGRkRg+fLjKTQrDw8MBoNYnPz8JCwsLpKamYurUqdizZw+mTp2Kc+fO4aOPPsLixYtF2y5evBidO3fGrFmzMHz4cCQnJ+u8PyJzJhOEf9yOlIjIxC1btgzvvvsu8vPz0bhxY6nbISKJMAARkdkQBAEdO3aEh4cHMjMzpW6HiCTEc4CIyOSVl5cjNTUVmZmZ+PXXX7F7926pWyIiiXEGiIhMXn5+PgICAuDq6ooJEyZgwYIFUrdERBJjACIiIiKzw6vAiIiIyOwwABEREZHZ4UnQaigUCty4cQPOzs68PT0REZGREAQBd+7cga+vr+jhy+owAKlx48YN+Pn5Sd0GERER1cHVq1fRqFGjR27DAKSGs7MzgAcHsF69ehJ3Q0RERLVRVlYGPz8/5c/xR2EAUuPhsle9evUYgIiIiIxMbU5f4UnQREREZHYYgIiIiMjsMAARERGR2eE5QE9ALpejurpa6jZIx6ytrWFpaSl1G0REpEUMQHUgCAIKCgpQUlIidSukJ66urvD29uZ9oYiITAQDUB08DD+enp5wcHDgD0UTJggCKioqUFRUBADw8fGRuCMiItIGBiANyeVyZfjx8PCQuh3SA3t7ewBAUVERPD09uRxGRGQCeBK0hh6e8+Pg4CBxJ6RPD3+/ec4XEZFpYACqIy57mRf+fhMRmRYGICIiIjI7DEBERERkdhiAzEhkZCRkMhlkMhmsra3h5eWFF154AevXr4dCoaj1OBs3boSrq6vuGiUiItIxBiAz07dvX9y8eRP5+fn47rvv0KdPH0yZMgX9+/fH/fv3pW6PiIjMgCFcUMIAZGZsbW3h7e2Nhg0b4umnn8aMGTOwe/dufPfdd9i4cSMAYPHixWjfvj0cHR3h5+eHCRMm4O7duwCArKwsjB49GqWlpcrZpDlz5gAANm/ejKCgIDg7O8Pb2xsjRoxQ3j+HiIiorKwM8fHxWLhwIXJyciTthQFICwRBQFVVld6/BEHQSv/PPfccOnbsiB07dgAALCwssHz5cvz222/YtGkTfvjhB3zwwQcAgB49emDp0qWoV68ebt68iZs3b+L9998H8CDRz5s3D6dPn8auXbuQn5+PyMhIrfRIRETG7eTJk1iyZInyta2trYTd8EaIWlFdXY2EhAS9f9+YmBjY2NhoZazWrVvjzJkzAICpU6cq6/7+/pg/fz7eeustfPLJJ7CxsYGLiwtkMhm8vb1FY4wZM0b5302bNsXy5cvRpUsX3L17F05OTlrpk4iIjIsgCEhOTkZxcbGylpv7As6ebYqmTaXriwGIADz4A/rwXjf79+9HQkICzp8/j7KyMty/fx/37t1DRUXFI28Aefz4ccyZMwenT5/G7du3lSdWX7lyBW3bttXLfhARkeEoLS3F0qVLRbWDBychI8MD+flAWJgkbQFgANIKa2trxMTESPJ9tSUnJwcBAQHIz89H//798fbbb2PBggVwd3fHoUOHMHbsWFRVVdUYgMrLyxEaGorQ0FB8+eWXaNCgAa5cuYLQ0FBUVVVprU8iIjIOx44dw969e5WvXVxcMGXKFHzzjQwVFUB0tITNgQFIK2QymdaWoqTwww8/4Ndff8W7776L48ePQ6FQ4OOPP4aFxYNTxLZv3y7a3sbGBnK5XFQ7f/48/vzzTyQmJsLPzw8A8Msvv+hnB4iIyGAIgoAVK1bg9u3bytpLL72Erl27Angw6yPlzM9DDEBmprKyEgUFBZDL5SgsLERaWhoSEhLQv39/hIeH4+zZs6iursaKFSswYMAA/PTTT1i9erVoDH9/f9y9excZGRno2LEjHBwc0LhxY9jY2GDFihV46623cPbsWcybN0+ivSQiIin89ddfWLFihag2ZcoUg7x3HK8CMzNpaWnw8fGBv78/+vbti8zMTCxfvhy7d++GpaUlOnbsiMWLF2PRokV46qmn8OWXX6qc4N2jRw+89dZbGDp0KBo0aIAPP/wQDRo0wMaNG/Hf//4Xbdu2RWJiIpKSkiTaSyIi0rcjR46Iwo+HhwdiY2MNMvwAgEzQ1rXUJqSsrAwuLi4oLS1FvXr1RO/du3cPeXl5CAgIgJ2dnUQdkr7x952ISD2FQoHFixejvLxcWevfvz86d+6s914e9fP737gERkRERHVy69YtrFq1SlR79913Hxs+DAEDEBEREWns0KFDyMjIUL729vbG+PHjlbdUMXQMQERERFRrCoUCixYtEt3iZNCgQejYsaOEXWmOAYiIiIhqpaioCMnJyaJaVFQUnJ2dJeqo7hiAiIiI6LGysrJw4MAB5Ws/Pz+MHj3aaJa8/o0BiIiIiGokl8uxcOFC5eONAOA///kPnnrqKQm7enIMQERERKRWQUEBPv30U1Ht/fffh6Ojo0QdaQ8DEBEREanYv38/fvrpJ+XrgIAAhIeHS9iRdjEAERERkdL9+/exYMECUW3o0KFo3bq1RB3pBh+FQVoXGRmJQYMGKV/37t0bU6dOfaIxtTEGERE92vXr11XCzwcffGBy4QfgDJBZiYyMxKZNmwAA1tbWaNy4McLDwzFjxgxYWenuj8KOHTtgbW1dq22zsrLQp08f3L59W/T8GE3GICIizaWlpeHnn39Wvm7VqhWGDRsmYUe6xQBkZvr27YsNGzagsrISe/fuxcSJE2FtbY2YmBjRdlVVVbCxsdHK93R3dzeIMYiISFV1dTUWLlwoqo0YMQItWrSQqCP94BKYmbG1tYW3tzeaNGmCt99+GyEhIUhNTVUuWy1YsAC+vr5o1aoVAODq1at47bXX4OrqCnd3dwwcOBD5+fnK8eRyOaKiouDq6goPDw988MEH+Pfzdf+9fFVZWYnp06fDz88Ptra2aN68OdatW4f8/Hz06dMHAODm5gaZTIbIyEi1Y9y+fRvh4eFwc3ODg4MDXnrpJVy8eFH5/saNG+Hq6or09HS0adMGTk5O6Nu3L27evKncJisrC127doWjoyNcXV3xf//3f7h8+bKWjjQRkeG7cuWKSviZPn26yYcfgAHI7Nnb2ytvZ56RkYHc3Fx8//332LNnD6qrqxEaGgpnZ2ccPHgQP/30kzJIPPzMxx9/jI0bN2L9+vU4dOgQ/vrrL+zcufOR3zM8PBxbt27F8uXLkZOTg08//RROTk7w8/PD119/DQDIzc3FzZs3sWzZMrVjREZG4pdffkFqaiqys7MhCAJefvllVFdXK7epqKhAUlISNm/ejB9//BFXrlzB+++/D+DBSX6DBg1Cr169cObMGWRnZxvVM2yIiJ7UN998gw0bNihft2vXDnFxcbCzs5OwK/3hEpiZEgQBGRkZSE9PxzvvvIPi4mI4Ojpi7dq1yqWvL774AgqFAmvXrlUGgw0bNsDV1RVZWVl48cUXsXTpUsTExOCVV14BAKxevRrp6ek1ft8LFy5g+/bt+P777xESEgIAaNq0qfL9h0tdnp6eonOA/unixYtITU3FTz/9hB49egAAvvzyS/j5+WHXrl149dVXATyY1l29ejWaNWsGAJg0aRLmzp0LACgrK0NpaSn69++vfL9NmzaaH0giIiNTVVWFhIQEUW3UqFGif4vNAWeAJJSaCvTo8eBXfdmzZw+cnJxgZ2eHl156CUOHDsWcOXMAAO3btxed93P69Gn8/vvvcHZ2hpOTE5ycnODu7o579+7h0qVLKC0txc2bNxEcHKz8jJWVFYKCgmr8/qdOnYKlpSV69epV533IycmBlZWV6Pt6eHigVatWyMnJUdYcHByU4QYAfHx8UFRUBOBB0IqMjERoaCgGDBiAZcuWiZbHiIhMUV5enkr4iY6ONrvwA3AGSFKJiUB29oNfw8L08z379OmD5ORk2NjYwNfXV3T117/v7Hn37l107twZX375pco4DRo0qNP3t7e3r9Pn6uLfV43JZDLR+UkbNmzA5MmTkZaWhm3btmHWrFn4/vvv0a1bN731SESkLzt37sSZM2eUrzt27Ci6ZYm54QyQhKKjge7dH/yqL46OjmjevDkaN2782Evfn376aVy8eBGenp5o3ry56MvFxQUuLi7w8fERXTZ5//59HD9+vMYx27dvD4VCIXqg3j89nIGSy+U1jtGmTRvcv39f9H3//PNP5Obmom3bto/cp3/r1KkTYmJicPjwYTz11FPYsmWLRp8nIjJ0lZWViI+PF4Wff9+vzRwxAEkoLAw4fFh/sz+aev3111G/fn0MHDgQBw8eRF5eHrKysjB58mRcu3YNADBlyhQkJiZi165dOH/+PCZMmICSkpIax/T390dERATGjBmDXbt2Kcfcvn07AKBJkyaQyWTYs2cPiouLcffuXZUxWrRogYEDB2LcuHE4dOgQTp8+jZEjR6Jhw4YYOHBgrfYtLy8PMTExyM7OxuXLl7Fv3z5cvHiR5wERkUm5dOkSEhMTRbUZM2agSZMmEnVkOBiAqEYODg748ccf0bhxY7zyyito06YNxo4di3v37qFevXoAgPfeew+jRo1CREQEunfvDmdnZwwePPiR4yYnJ2PIkCGYMGECWrdujXHjxqG8vBwA0LBhQ8THxyM6OhpeXl6YNGmS2jE2bNiAzp07o3///ujevTsEQcDevXtrfbNEBwcHnD9/Hv/5z3/QsmVLjB8/HhMnTsSbb76pwREiIjJc27dvxxdffKF8HRQUhLi4ON5U9v+TCf++aQuhrKwMLi4uKC0tVf6gf+jevXvIy8tDQECA2VwqSPx9JyLjkJoKJCXdw/PPLxLVx4wZAz8/P4m60p9H/fz+N54ETUREZCLWrbuA55/fKqrNnDlTp487MlY8IkRERCYgPj4eTz/9v9fdunVDaGiodA0ZOAYgIiIiI/bnn39i5cqVotq4cePg6+srUUfGgQGIiIjISO3YsQO//vqrqBYTE6O1h1mbMgagOuK54+aFv99EZGji4+NVanFxcRJ0YpwYgDT08PLBiooKvd7VmKRVUVEBQPXu0kRE+lZUVITk5GRRbfDgwejQoYNEHRknBiANWVpawtXVVflMKQcHBz5B3IQJgoCKigoUFRXB1dUVlpaWUrdERGYsJSUFubm5otqMGTP4P2d1wABUB97e3gCgDEFk+lxdXZW/70RE+pSaCiQmCggNnSuqW1paYtasWRJ1ZfwYgOpAJpPBx8cHnp6eqK6ulrod0jFra2vO/BCRZNasuYTQ0C9Etddee42P7nlCDEBPwNLSkj8YiYhIZ+Lj4xEUJK7NmjWLP3u0gAGIiIjIwAiCgLlz56rUeZWX9jAAERERGZCzZ8/i66+/FtVCQ0PRrVs3iToyTQxAREREBkLdvX245KUbFlI3AACrVq2Cv78/7OzsEBwcjKNHj9a47Y4dOxAUFARXV1c4OjoiMDAQmzdvVr5fXV2N6dOno3379nB0dISvry/Cw8Nx48YNfewKERGRxhQKRY03NmT40Q3JZ4C2bduGqKgorF69GsHBwVi6dClCQ0ORm5sLT09Ple3d3d0xc+ZMtG7dGjY2NtizZw9Gjx4NT09PhIaGoqKiAidOnMDs2bPRsWNH3L59G1OmTEFYWBh++eUXCfaQiIioZidOnMA333wjqoWFhaFTp04SdWQeZILE9/gPDg5Gly5dlA9yUygU8PPzwzvvvIPo6OhajfH000+jX79+mDdvntr3jx07hq5du+Ly5cto3LjxY8crKyuDi4sLSktLUa9evdrvDBERkQbUzfrMnj0bFhYGsUBjdDT5+S3pEa6qqsLx48cREhKirFlYWCAkJATZ2dmP/bwgCMjIyEBubi569uxZ43alpaWQyWRwdXXVRttERERPRC6X17jkxfCjH5Iugd26dQtyuRxeXl6iupeXF86fP1/j50pLS9GwYUNUVlbC0tISn3zyCV544QW12967dw/Tp0/H8OHDa0yDlZWVqKysVL4uKyurw94QERE9XnZ2Nvbt2yeqDRkyBO3atZOoI/Mk+TlAdeHs7IxTp07h7t27yMjIQFRUFJo2bYrevXuLtquursZrr70GQRBUHhz3TwkJCWqTOBERkTap+1kTGxvLZ0pKQNIAVL9+fVhaWqKwsFBULywsfORzlywsLNC8eXMAQGBgIHJycpCQkCAKQA/Dz+XLl/HDDz88ci0wJiYGUVFRytdlZWXw8/Or414RERGJVVdXY+HChSp13thQOpIGIBsbG3Tu3BkZGRkYNGgQgAcnQWdkZGDSpEm1HkehUIiWsB6Gn4sXLyIzMxMeHh6P/LytrS1sbW3rtA9ERESPcuDAAWRlZYlqw4cPR8uWLaVpiAAYwBJYVFQUIiIiEBQUhK5du2Lp0qUoLy/H6NGjAQDh4eFo2LAhEhISADxYrgoKCkKzZs1QWVmJvXv3YvPmzcolrurqagwZMgQnTpzAnj17IJfLUVBQAODBJfQ2NjbS7CgREZkdLnkZLskD0NChQ1FcXIzY2FgUFBQgMDAQaWlpyhOjr1y5Ijojvry8HBMmTMC1a9dgb2+P1q1b44svvsDQoUMBANevX0dqaiqAB8tj/5SZmalynhAREZG2VVZWIjExUaXOJS/DIfl9gAwR7wNERER1lZ6ejiNHjohqERER8Pf3l6YhM6LJz2/JZ4CIiIhMRU339iHDwwBERET0hCoqKvDRRx+JajY2NoiJiZGoI3ocBiAiIqInkJqaipMnT4pqb7zxBho2bChRR1QbDEBERER1xCUv48UAREREpKHbt29j+fLlopqrqyumTJkiUUekKQYgIiIiDSxevBh37twR1Vq3fgtDh3rV8AkyRAxAREREtcQlL9PBAERERPQYxcXF+OSTT1TqDD/GiwGIiIjoEebOnYt/3zN43Lhx8PX1lagj0gYGICIiohpwyct0MQARERH9y40bN7BmzRpRzcLCArNnz5aoI9I2BiAiIqJ/UDfrM2HCBDRo0ECCbkhXGICIiIj+Py55mQ8GICIiMnuXL1/Gxo0bRTVnZ2dERUVJ0xDpHAMQERGZNXWzPlOmTIGrq6v+myG9YQAiIiKzxSUv88UAREREZufixYvYsmWLqObt7Y0333xToo5I3xiAiIjIrKib9YmKioKzs7ME3ZBUGICIiMhscMmLHmIAIiIik/fbb7/hq6++EtWaNm2KUaNGSdQRSY0BiIiITJq6WZ8PPvgA9vb2EnRDhoIBiIiITJIgCJg7d65KnUteBDAAERGRCTp+/Dj27NkjqrVr1w5DhgyRqCMyNAxARERkUtQteUVHR8PW1laCbshQMQAREZFJ4JIXaYIBiIiIjF52djb27dsnqgUFBaFfv34SdUSGjgGIiIiMmrolr5kzZ8LKij/iqGb800FEREZJoVBg3rx5KnUueVFtMAAREZHR+eGHH3Dw4EFR7ZlnnsHzzz8vUUdkbBiAiIjIqKhb8po1axYsLS0l6IaMFQMQEREZhfv372PBggUqdS55UV0wABERkcHbu3cvjh07JqqFhITg//7v/yTqiIwdAxARERk0dUtesbGxkMlkEnRDpoIBiIiIDFJVVRUSEhJU6lzyIm1gACIiIoPz9ddf4+zZs6Ja//790blzZ4k6IlPDAERERAaFS16kDwxARERkECoqKvDRRx+p1LnkRbrAAERERJJKTQUOHFiNevUKRfXGjQdg9OinJeqKTB0DEBERSerkyXjUqyeucdaHdI0BiIiIJFFWVoYlS5ao1Bl+SB8YgIiISO8+/vhj3L17V1R79dVX0bZtW4k6InPDAERERHql7iovzvqQvjEAERGRXhQVFSE5OVmlzvBDUmAAIiIirUtNBRITgehoICxM/azP66+/jubNm0vQHREDEBER6UBiIpCd/eDXkydVw0+nTnFg9iEpMQAREZHWRUcDycnX0K3bOpX3uORFhoABiIiItO7kyXh06yauccmLDAkDEBERaRWv8iJjwABERERacf78eWzbtk2lzvBDhogBiIiInpi6WZ9Ro0ahadOmEnRD9HgMQERE9ES45EXGiAGIiIjqJCcnB9u3b1epd+rE8EOGjwGIiIg0pm7W58iRsfjuu0YSdEOkOQupGyAiIuOiLvykp8fh7bcZfsh4cAaIiIhq5eTJk0hNTVWpx8XFgaf8kLFhACIiosdSN+vzzjvvwN3dXYJuiJ4cAxARET0Sr/IiU2QQ5wCtWrUK/v7+sLOzQ3BwMI4ePVrjtjt27EBQUBBcXV3h6OiIwMBAbN68WbSNIAiIjY2Fj48P7O3tERISgosXL+p6N4iITMrhw4cZfshkST4DtG3bNkRFRWH16tUIDg7G0qVLERoaitzcXHh6eqps7+7ujpkzZ6J169awsbHBnj17MHr0aHh6eiI0NBQA8OGHH2L58uXYtGkTAgICMHv2bISGhuLcuXOws7PT9y4SERkddcEnKioKzs7OEnRDpH0yQRAEKRsIDg5Gly5dsHLlSgCAQqGAn58f3nnnHURHR9dqjKeffhr9+vXDvHnzIAgCfH198d577+H9998HAJSWlsLLywsbN27EsGHDHjteWVkZXFxcUFpainr16tV954iIjIwgCJg7d65KnbM+ZAw0+fkt6RJYVVUVjh8/jpCQEGXNwsICISEhyM7OfuznBUFARkYGcnNz0bNnTwBAXl4eCgoKRGO6uLggODi4xjErKytRVlYm+iIiMjcZGRkq4cfBwYHhh0ySpEtgt27dglwuh5eXl6ju5eWF8+fP1/i50tJSNGzYEJWVlbC0tMQnn3yCF154AQBQUFCgHOPfYz58798SEhLUTvcSEZkLdf8GTps2DQ4ODhJ0Q6R7BnEStKacnZ1x6tQpHDt2DAsWLEBUVBSysrLqPF5MTAxKS0uVX1evXtVes0REBkwQhBpPdGb4IVMm6QxQ/fr1YWlpicLCQlG9sLAQ3t7eNX7OwsICzZs3BwAEBgYiJycHCQkJ6N27t/JzhYWF8PHxEY0ZGBiodjxbW1vY2to+4d4QERmXb775BidOnBDVPD098fbbb0vUEZH+SDoDZGNjg86dOyMjI0NZUygUyMjIQPfu3Ws9jkKhQGVlJQAgICAA3t7eojHLysrw888/azQmEZEpi4+PVwk/MTExDD9kNiS/DD4qKgoREREICgpC165dsXTpUpSXl2P06NEAgPDwcDRs2BAJCQkAHpyvExQUhGbNmqGyshJ79+7F5s2bkZycDACQyWSYOnUq5s+fjxYtWigvg/f19cWgQYOk2k0iIoMgl8sxf/58lTpPdCZzI3kAGjp0KIqLixEbG4uCggIEBgYiLS1NeRLzlStXYGHxv4mq8vJyTJgwAdeuXYO9vT1at26NL774AkOHDlVu88EHH6C8vBzjx49HSUkJnnnmGaSlpfEeQERk1lJSUpCbmyuqNW3aFKNGjZKoIyLpSH4fIEPE+wARkalRd6LzzJkzYWUl+f8HE2mNJj+/+SefiMiEVVdXY+HChSp1LnmRudM4AFlaWuLmzZsqj6n4888/4enpCblcrrXmiIio7tatW4dr166Jau3bt8crr7wiUUdEhkPjq8BqWjGrrKyEjY3NEzdERESaS00FevR48CvwYMnr3+Fn9uzZDD9E/1+tZ4CWL18O4MFVVmvXroWTk5PyPblcjh9//BGtW7fWfodERPRYiYlAdjaQlHQPJ08uUnmfS15EYrUOQEuWLAHwYAZo9erVsLS0VL5nY2MDf39/rF69WvsdEhHRY0VHAz/9tAwODiWienBwMPr27StNU0QGrNYBKC8vDwDQp08f7NixA25ubjprioiINHPyZDz+/eSK2NhYyGQyaRoiMnAanwSdmZmpiz6IiEgDqakPlr3ee68cZ88mqbzPJS+iR9M4AI0ZM+aR769fv77OzRARUe0kJgLPPz8fZ8+Kr7zt06cPevbsKVFXRMZD4wB0+/Zt0evq6mqcPXsWJSUleO6557TWGBER1Sw0VP0T3ImodjQOQDt37lSpKRQKvP3222jWrJlWmiIiIvVKSkqwbNkylTrDD5FmtPYojNzcXPTu3Rs3b97UxnCS4qMwiMgQqXucxcsvv4wuXbpI0A2R4ZHkURiXLl3C/fv3tTUcERH9g7rww1kforrTOABFRUWJXguCgJs3b+Lbb79FRESE1hojIiKguLgYn3zyiUqd4YfoyWgcgE6ePCl6bWFhgQYNGuDjjz9+7BViRERUe+pmfV555RW0b99egm6ITAvvA0REZIC45EWkW3U+B6ioqAi5ubkAgFatWqk8HZ6IiDR348YNrFmzRqXO8EOkXRoHoLKyMkycOBFbt26FQqEAAFhaWmLo0KFYtWoVXFxctN4kEZE5UDfrM2LECLRo0UKCbohMm4WmHxg3bhx+/vlnfPvttygpKUFJSQn27NmDX375BW+++aYueiQiMnk1LXkx/BDphsb3AXJ0dER6ejqeeeYZUf3gwYPo27cvysvLtdqgFHgfICLSl7y8PHz++ecqdS55EWlOp/cB8vDwULvM5eLiwifEExFpQN2sT2RkJJo0aSJBN0TmReMlsFmzZiEqKgoFBQXKWkFBAaZNm4bZs2drtTkiIlNV05IXww+Rfmi8BNapUyf8/vvvqKysROPGjQEAV65cga2trcpa9YkTJ7TXqR5xCYyIdOX8+fPYtm2bSp1LXkRPTqdLYAMHDoRMJqtzc0RE5krdrM+bb74Jb29vCbohMm9aexiqKeEMEBFpG29sSKR7mvz81vgcoKZNm+LPP/9UqZeUlKBp06aaDkdEZJJSU4EePYANG04x/BAZII2XwPLz8yGXy1XqlZWVuHbtmlaaIiIydomJQGhoPK5cEdcnTZoEDw8PaZoiIqVaB6DU1FTlf6enp4suhZfL5cjIyEBAQIB2uyMiMlKhoZz1ITJktQ5AgwYNAgDIZDJERESI3rO2toa/vz8+/vhjrTZHRGRsjhw5gvT0dJU6ww+RYal1AHr43K+AgAAcO3YM9evX11lTRETGSN25Pu+++y4vpiAyQBqfA5SXl6eLPoiIjJYgCJg7d65KnbM+RIZL4wCk7i/5P8XGxta5GSIiY5OZmYkff/xRVLO1tUV0dLREHRFRbWgcgHbu3Cl6XV1djby8PFhZWaFZs2YMQERkNtQteU2bNg0ODg4SdENEmtA4AJ08eVKlVlZWhsjISAwePFgrTRERGTIueREZP63dCfrXX3/FgAEDkJ+fr43hJMU7QRNRTfbs2YPjx4+LavXr18fEiRMl6oiIHtLps8BqUlpaitLSUm0NR0RkcNQteUVHR8PW1laCbojoSWgcgJYvXy56LQgCbt68ic2bN+Oll17SWmNERIZCLpdj/vz5KnUueREZL40D0JIlS0SvLSws0KBBA0RERCAmJkZrjRERGYLt27cjJydHVPP391e5ISwRGRfeB4iIqAbqlrxmzpwJKyutnT1ARBKp09/ikpIS/P777wCA5s2bw9XVVZs9ERFJqrq6GgsXLlSpc8mLyHRoFIDy8/MxceJEpKen4+HFYzKZDH379sXKlSvh7++vix6JiPRmw4YNuPKvR7i3a9cOQ4YMkagjItKFWgegq1evolu3brC2tsa8efPQpk0bAMC5c+eQnJyM7t2749ixY2jUqJHOmiUi0iV1S16zZ8+GhYWFBN0QkS7V+j5AY8eOxe+//4709HTY2dmJ3vv777/Rt29ftGjRAmvXrtVJo/rE+wARmZfKykokJiaq1LnkRWRcdHIfoLS0NGzbtk0l/ACAvb095s2bh2HDhmneLRGRhJYvX47bt2+Lal26dMHLL78sUUdEpA+1DkC3bt165Dk+TZs2xV9//aWNnoiI9ELdkldsbCxkMpkE3RCRPtV6YdvHxwfnzp2r8f2zZ8/C29tbK00REelSeXm52vATFxfH8ENkJmo9AzRo0CC8//77yMjIQIMGDUTvFRUVYfr06Rg0aJC2+yMi0qqFCxeiurpaVOvVqxd69+4tTUNEJIlanwR9+/ZtBAcHo6CgACNHjkTr1q0hCAJycnKwZcsWeHt748iRI3B3d9d1zzrHk6CJTBOXvIhMm05OgnZzc8PPP/+MGTNmICUlBSUlJQAAV1dXjBgxAgsXLjSJ8ENEpqe0tBRLly5VqfMqLyLzVesZoH8SBAHFxcUAgAYNGpjc/z1xBojIdKib9enbty+Cg4Ml6IaIdEknM0D/JJPJ4OnpWafmiIj0paYTnYmI+EQ/IjI5t27dwqpVq1TqDD9E9BADEBGZFHWzPoMHD0aHDh0k6IaIDBUDEBGZDC55EVFtMQARkdG7ceMG1qxZo1Jn+CGimtQqAC1fvrzWA06ePLnOzRARaUrdrM+wYcPQqlUrCbohImNRq8vgAwICajeYTIY//vjjiZuSGi+DJzIOXPIion/S+mXweXl5WmmMiEgb8vPzsWnTJpU6ww8R1VatH4b6b1VVVcjNzcX9+/efqIFVq1bB398fdnZ2CA4OxtGjR2vcds2aNXj22Wfh5uYGNzc3hISEqGx/9+5dTJo0CY0aNYK9vT3atm2L1atXP1GPRGQ44uPjVcJPREQEww8RaUTjAFRRUYGxY8fCwcEB7dq1w5UrVwAA77zzDhITEzUaa9u2bYiKikJcXBxOnDiBjh07IjQ0FEVFRWq3z8rKwvDhw5GZmYns7Gz4+fnhxRdfxPXr15XbREVFIS0tDV988QVycnIwdepUTJo0CampqZruKhEZmJqWvPz9/fXfDBEZNY0DUExMDE6fPo2srCzY2dkp6yEhIdi2bZtGYy1evBjjxo3D6NGjlTM1Dg4OWL9+vdrtv/zyS0yYMAGBgYFo3bo11q5dC4VCgYyMDOU2hw8fRkREBHr37g1/f3+MHz8eHTt2fOTMEhEZttzcXJ7vQ0RapfFl8Lt27cK2bdvQrVs30TPA2rVrh0uXLtV6nKqqKhw/fhwxMTHKmoWFBUJCQpCdnV2rMSoqKlBdXS16CGuPHj2QmpqKMWPGwNfXF1lZWbhw4QKWLFlS4ziVlZWorKxUvi4rK6v1fhCRbqkLPuPHj4ePj48E3RCRqdB4Bqi4uFjtc8DKy8s1eijqrVu3IJfL4eXlJap7eXmhoKCgVmNMnz4dvr6+CAkJUdZWrFiBtm3bolGjRrCxsUHfvn2xatUq9OzZs8ZxEhIS4OLiovzy8/Or9X4Qke7UNOvD8ENET0rjABQUFIRvv/1W+fph6Fm7di26d++uvc4eIzExESkpKdi5c6doKW7FihU4cuQIUlNTcfz4cXz88ceYOHEi9u/fX+NYMTExKC0tVX5dvXpVH7tARDU4c+aM2vDTqROXvIhIOzReAlu4cCFeeuklnDt3Dvfv38eyZctw7tw5HD58GAcOHKj1OPXr14elpSUKCwtF9cLCQnh7ez/ys0lJSUhMTMT+/ftFz/f5+++/MWPGDOzcuRP9+vUDAHTo0AGnTp1CUlKSaKbon2xtbWFra1vr3olId9QFn4kTJ6J+/foSdENEpkrjGaBnnnkGp06dwv3799G+fXvs27cPnp6eyM7ORufOnWs9jo2NDTp37iw6gfnhCc2Pmkn68MMPMW/ePKSlpSEoKEj0XnV1Naqrq2FhId4tS0tLKBSKWvdGRNKoacmL4YeItK1OzwJr1qyZ2ufuaCoqKgoREREICgpC165dsXTpUpSXl2P06NEAgPDwcDRs2BAJCQkAgEWLFiE2NhZbtmyBv7+/8lwhJycnODk5oV69eujVqxemTZsGe3t7NGnSBAcOHMDnn3+OxYsXP3G/RKQbP//8M9LS0lTqvMqLiHSlVgFIk6uiNHl0xNChQ1FcXIzY2FgUFBQgMDAQaWlpyhOjr1y5IprNSU5ORlVVFYYMGSIaJy4uDnPmzAEApKSkICYmBq+//jr++usvNGnSBAsWLMBbb71V676ISH/UzfpMnToVLi4uEnRDROaiVs8Cs7CwqPUVXnK5/ImbkhqfBUake4IgYO7cuSp1zvoQUV1p/VlgmZmZyv/Oz89HdHQ0IiMjlefqZGdnY9OmTcqlKiKiR8nKylK5aMLa2hozZsyQqCMiMje1mgH6p+effx5vvPEGhg8fLqpv2bIFn332GbKysrTZnyQ4A0SkO+qWvN5//304OjpK0A0RmRJNfn5rfBVYdna2ytVXwIP7A/FxE0RUE0EQarzKi+GHiPRN4wDk5+en9gqwtWvX8g7KRKTW3r17Vc73cXd35/k+RCQZjS+DX7JkCf7zn//gu+++Q3BwMADg6NGjuHjxIr7++mutN0hExk3drE90dDRvPkpEktJ4Bujll1/GxYsXMWDAAPz111/466+/MGDAAFy4cAEvv/yyLnokIiOkUChqXPJi+CEiqWl8ErQ54EnQRE/m+++/x+HDh0W1xo0bK29ySkSkC1q/DP7fSkpKsG7dOuTk5AAA2rVrhzFjxvDGZUSkdtZnxowZsLa2lqAbIiL1NF4C++WXX9CsWTMsWbJEuQS2ePFiNGvWDCdOnNBFj0RkBORyeY1PcGf4ISJDo/ES2LPPPovmzZtjzZo1sLJ6MIF0//59vPHGG/jjjz/w448/6qRRfeISGJFmVq5MxZ9/nhTVunfvjhdffFGijojIHGny81vjAGRvb4+TJ0+idevWovq5c+cQFBSEiooKzTs2MAxARLWnbtZn9uzZouf4ERHpg05vhFivXj1cuXJFpX716lU4OztrOhwRGanq6uoar/Ji+CEiQ6fxSdBDhw7F2LFjkZSUhB49egAAfvrpJ0ybNk3l8RhEZJp2796NU6dOiWp9+vRBz549pWmIiEhDGgegpKQkyGQyhIeH4/79+wAePMTw7bffRmJiotYbJCLDom7WJzY2FjKZTIJuiIjqps73AaqoqMClS5cAAM2aNYODg4NWG5MSzwEiUnXv3j0sWrRIpc7HWRCRodD5fYAAwMHBAe3bt6/rx4nIiGzbtg3nz58X1QYOHIjAwEBpGiIiekK1DkBjxoyp1Xbr16+vczNEZHi45EVEpqjWAWjjxo1o0qQJOnXqBD49g8j0lZeXIykpSaXOJS8iMgW1DkBvv/02tm7diry8PIwePRojR46Eu7u7LnsjIols2LBB5XYXr732Gtq0aSNRR0RE2lXrm3WsWrUKN2/exAcffIBvvvkGfn5+eO2115Cens4ZISITEh8frxJ+4uLiGH6IyKTU+Sqwy5cvY+PGjfj8889x//59/Pbbb3ByctJ2f5LgVWBkjsrKyrBkyRKVOpe8iMhY6OUqMAsLC8hkMgiCALlcXtdhiMgArFq1Crdu3RLVRo4ciWbNmknUERGRbml0v/rKykps3boVL7zwAlq2bIlff/0VK1euxJUrV0xm9ofI3MTHx6uEn7i4OIYfIjJptZ4BmjBhAlJSUuDn54cxY8Zg69atqF+/vi57IyId+uuvv7BixQqVOpe8iMgc1PocIAsLCzRu3BidOnV65P0/duzYobXmpMJzgMjUffjhh/j7779FtTFjxsDPz0+ijoiInpxOzgEKDw/njc+ITEBNT3AnIjInGt0IkYiMV2FhIVavXq1SZ/ghInNU56vAiMh4qJv1efPNN+Ht7S1BN0RE0mMAIjJxXPIiIlLFAERkoq5du4Z169aJajY2NoiJiZGoIyIiw8EARGSC1M36TJo0CR4eHhJ0Q0RkeBiAiEwMl7yIiB6PAYjIROTl5eHzzz8X1dzc3DB58mSJOiIiMlwMQEQmQN2sz9SpU+Hi4iJBN0REho8BiMjIccmLiEhzDEBERio3NxcpKSmiWqNGjTB27FiJOiIiMh4MQERGSN2sz/vvvw9HR0cJuiEiMj4MQERGRBAEzJ07V6XOJS8iIs0wABEZiTNnzmDnzp2iWosWLTBixAiJOiIiMl4MQERGQN2S1/Tp02FnZydBN0RExo8BiMiAccmLiEg3GICIDNSxY8ewd+9eUa1Dhw4YPHiwRB0REZkOBiAiA6RuySsmJgY2NjYSdENEZHoYgIgMiEKhwLx581TqXPIiItIuBiAiA3Ho0CFkZGSIasHBwejbt69EHRERmS4GICIDoG7Ja+bMmbCy4l9RIiJd4L+uRBKSy+WYP3++Sp1LXkREusUARCSR77//HocPHxbVevXqhd69e0vTEBGRGWEAIpKAuiWv2bNnw8LCQoJuiIjMDwMQkR5VV1dj4cKFKnUueRER6RcDEJGefPPNNzhx4oSoFhoaim7duknUERGR+WIAItIDdUtesbGxkMlkEnRDREQMQEQ6VFlZicTERJU6l7yIiKTFAESkI9u3b0dOTo6oFhYWhk6dOknUERERPcQARKQDXPIiIjJsDEBEWlRRUYGPPvpIpc4lLyIiw8IARKQlGzduxOXLl0W1V199FW3btpWoIyIiqonkd11btWoV/P39YWdnh+DgYBw9erTGbdesWYNnn30Wbm5ucHNzQ0hIiNrtc3JyEBYWBhcXFzg6OqJLly64cuWKLneDzFx8fLxK+ImLi2P4ISIyUJIGoG3btiEqKgpxcXE4ceIEOnbsiNDQUBQVFandPisrC8OHD0dmZiays7Ph5+eHF198EdevX1duc+nSJTzzzDNo3bo1srKycObMGcyePRt2dnb62i0yI3fu3FF7vg+XvIiIDJtMEARBqm8eHByMLl26YOXKlQAAhUIBPz8/vPPOO4iOjn7s5+VyOdzc3LBy5UqEh4cDAIYNGwZra2ts3ry5zn2VlZXBxcUFpaWlqFevXp3HIdP2ySefoLi4WFR7/fXX0bx5c4k6IiIyb5r8/JZsBqiqqgrHjx9HSEjI/5qxsEBISAiys7NrNUZFRQWqq6vh7u4O4EGA+vbbb9GyZUuEhobC09MTwcHB2LVr1yPHqaysRFlZmeiL6FHi4+NVwk9cXBzDDxGRkZAsAN26dQtyuRxeXl6iupeXFwoKCmo1xvTp0+Hr66sMUUVFRbh79y4SExPRt29f7Nu3D4MHD8Yrr7yCAwcO1DhOQkICXFxclF9+fn513zEyabdv3+aSFxGRCTDaq8ASExORkpKCrKws5fk9CoUCADBw4EC8++67AIDAwEAcPnwYq1evRq9evdSOFRMTg6ioKOXrsrIyhiBSkZSUhPLyclFt9OjRaNy4sUQdERFRXUkWgOrXrw9LS0sUFhaK6oWFhfD29n7kZ5OSkpCYmIj9+/ejQ4cOojGtrKxUrrxp06YNDh06VON4tra2sLW1rcNekLngrA8RkWmRbAnMxsYGnTt3RkZGhrKmUCiQkZGB7t271/i5Dz/8EPPmzUNaWhqCgoJUxuzSpQtyc3NF9QsXLqBJkyba3QEyC0VFRQw/REQmSNIlsKioKERERCAoKAhdu3bF0qVLUV5ejtGjRwMAwsPD0bBhQyQkJAAAFi1ahNjYWGzZsgX+/v7Kc4WcnJzg5OQEAJg2bRqGDh2Knj17ok+fPkhLS8M333yDrKwsSfaRjJe64DN+/Hj4+PhI0A0REWmTpAFo6NChKC4uRmxsLAoKChAYGIi0tDTlidFXrlyBhcX/JqmSk5NRVVWFIUOGiMaJi4vDnDlzAACDBw/G6tWrkZCQgMmTJ6NVq1b4+uuv8cwzz+htv8j4cdaHiMi0SXofIEPF+wCZr+vXr2Pt2rWimpWVFWbOnClRR0REVFua/Pw22qvAiLRN3azPxIkTUb9+fQm6ISIiXWIAIgKXvIiIzA0DEJm1/Px8bNq0SVRzcXHB1KlTpWmIiIj0ggGIzJa6WZ8pU6bA1dVV/80QEZFeMQCRWeKSFxGReWMAIrNy7do1rFu3TlTz8fHB+PHjJeqIiIikwABEZmPBggW4f/++qPbBBx/A3t5eoo6IiEgqDEBkFrjkRURE/yTZs8CI9OGPP/5QCT89evRAXFwcUlOBHj2A1FSJmiMiIslwBohMlrpZn+joaNja2gIAEhOB7OwHv4aF6bs7IiKSEmeAyOQIglDjktfD8AMA0dFA9+4PfiUiIvPCGSAyKbm5uUhJSRHV+vTpg549e6psGxbGmR8iInPFAEQmQ92sz4wZM2BtbS1BN0REZMgYgMjoCYKAuXPnqtR5lRcREdWEAYiM2tmzZ/H111+Lan379kVwcLBEHRERkTFgACKjpW7Ja9asWbC0tJSgGyIiMiYMQGR0FAoF5s2bp1LnkhcREdUWAxAZlRMnTuCbb74R1cLCwtCpUyeJOiIiImPEAERGQ92S1+zZs2FhwdtZERGRZhiAyODJ5XLMnz9fpc4lLyIiqisGIDJo2dnZ2Ldvn6g2ZMgQtGvXTqKOiIjIFDAAkcFSt+QVGxsLmUwmQTdERGRKGIDI4FRXV2PhwoUqdS55ERGRtjAAkUE5cOAAsrKyRLURI0agRYsW0jREREQmiQGIDAaXvIiISF8YgEhylZWVSExMVKlzyYuIiHSFAYgklZ6ejiNHjohq4eHhCAgIkKgjIiIyBwxAJBl1S16c9SEiIn1gACK9q6iowEcffSSq2djYICYmRqKOiIjI3DAAkV6lpqbi5MmTotobb7yBhg0bStQRERGZIwYg0hsueRERkaFgACKdu3v3Lj7++GNRzcXFBVOnTpWmISIiMnsMQKRT27dvR05Ojqj21ltvwcvLS6KOiIiIGIBIh7jkRUREhooBiLSuvLwcSUlJopqPjw/Gjx8vUUdERERiDECkVeqe5RUVFQVnZ2dpGiIiIlLDQuoGyHTEx8erhJ9OneIQGuqM1FRpeiIiIlKHM0D0xO7cuYPFixeLar1790avXr3QoweQnQ0kJgJhYRI1SERE9C8MQPREvv/+exw+fFhUe//99+Ho6AgAiI5+EH6io6XojoiISD0GIKqz2lzlFRbGmR8iIjI8DECksZKSEixbtkxUe/HFF9G9e3eJOiIiItIMAxBp5Ntvv8Uvv/wiqk2fPh12dnYSdURERKQ5BiCqNd7YkIiITAUDED3Wn3/+iZUrV4pq/fr1Q1BQkEQdERERPRkGIHqknTt34syZM6JadHQ0bG1tJeqIiIjoyTEAUY245EVERKaKAYhUFBUVITk5WVQbNGgQOnbsKFFHRERE2sUARCIpKSnIzc0V1WbMmAFra2uJOiIiItI+BiACAAiCgLlz54pqFhYWmD17tkQdERER6Q4DEOHmzZv47LPPRLVXX30Vbdu2lagjIiIi3WIAMnOff/458vLyRLVZs2bB0tJSoo6IiIh0jwHITKlb8nJwcMC0adMk6oiIiEh/GIDM0NWrV7F+/XpRbfjw4WjZsqVEHREREekXA5CZ+eyzz3Dz5k1Rbfbs2bCwsJCoIyIiIv1jADIT6pa83NzcMHnyZIk6IiIikg4DkBnIy8vD559/LqqNGjUKTZs2lagjIiIiaRnEuseqVavg7+8POzs7BAcH4+jRozVuu2bNGjz77LNwc3ODm5sbQkJCHrn9W2+9BZlMhqVLl+qgc8O3YsUKlfAze/Zshh8iIjJrkgegbdu2ISoqCnFxcThx4gQ6duyI0NBQFBUVqd0+KysLw4cPR2ZmJrKzs+Hn54cXX3wR169fV9l2586dOHLkCHx9fXW9GwZHoVAgPj4ef/31l7Lm4+ODuLg4nu9DRERmTyYIgiBlA8HBwejSpQtWrlwJ4MEPbj8/P7zzzjuIjo5+7Oflcjnc3NywcuVKhIeHK+vXr19HcHAw0tPT0a9fP0ydOhVTp06tVU9lZWVwcXFBaWkp6tWrV6f9ktLFixexZcsWUW3MmDHw8/OTqCMiIiLd0+Tnt6TnAFVVVeH48eOIiYlR1iwsLBASEoLs7OxajVFRUYHq6mq4u7srawqFAqNGjcK0adPQrl07rfdtyD766CNUVFSIarGxsZDJZBJ1REREZHgkDUC3bt2CXC6Hl5eXqO7l5YXz58/Xaozp06fD19cXISEhytqiRYtgZWVV6yucKisrUVlZqXxdVlZWq88ZErlcjvnz54tq/v7+iIiIkKgjIiIiw2XUV4ElJiYiJSUFWVlZsLOzAwAcP34cy5Ytw4kTJ2o965GQkID4+HhdtqpT586dw3//+19Rbdy4cWZ57hMREVFtSHo2bP369WFpaYnCwkJRvbCwEN7e3o/8bFJSEhITE7Fv3z506NBBWT948CCKiorQuHFjWFlZwcrKCpcvX8Z7770Hf39/tWPFxMSgtLRU+XX16tUn3jd9mTdvnkr4iY2NZfghIiJ6BElngGxsbNC5c2dkZGRg0KBBAB6cv5ORkYFJkybV+LkPP/wQCxYsQHp6OoKCgkTvjRo1SrQcBgChoaEYNWoURo8erXY8W1tb2NraPtnO6Fl1dTUWLlwoqrVq1QrDhg2TqCMiIiLjIfkSWFRUFCIiIhAUFISuXbti6dKlKC8vV4aV8PBwNGzYEAkJCQAenN8TGxuLLVu2wN/fHwUFBQAAJycnODk5wcPDAx4eHqLvYW1tDW9vb7Rq1Uq/O6cjp0+fxq5du0S1t99+G56entI0REREZGQkD0BDhw5FcXExYmNjUVBQgMDAQKSlpSlPjL5y5YrovjXJycmoqqrCkCFDROPExcVhzpw5+mxdErt27cLp06dFtbi4OIm6ISIiMk6S3wfIEBnifYDUXeXl5tYBkycPlqgjIiIiw2I09wGi2rlx4wbWrFkjqiUlvYf27Z3AZ5kSERFpjgHIwKWnp+PIkSPK1y1atICT0wi0bw/U4kbZREREpAYDkIG6f/8+FixYIKoNHz4cLVu2BACEhUnRFRERkWlgADJAV69exfr160W16dOnK2/2SERERE+GAcjAfPvtt/jll1+Ur9u2bYtXX31Vwo6IiIhMDwOQgVB3Y8ORI0eiWbNmEnVERERkuhiADEB+fj42bdokqkVHRxvd3amJiIiMBQOQxHbv3o1Tp04pX3fo0AGDB/PePkRERLrEACSRyspKJCYmimoRERE1PrCViIiItIcBSAJ//PEHNm/eLKrFxMTAxsZGoo6IiIjMCwOQnn311Vf47bfflK+ffvppDBgwQMKOiIiIzA8DkB7t27dPFH7GjBkDPz8/CTsiIiIyTxaP34S0xd3dXfnf338/g+GHiIhIIpwB0qOgoCDcuBGExEQ+x4uIiEhKDEB6FhbG53gRERFJjUtgREREZHYYgIiIiMjsMAARERGR2WEAIiIiIrPDAERERERmhwGIiIiIzA4DEBEREZkdBiAiIiIyOwxAREREZHYYgIiIiMjsMAARERGR2WEAIiIiIrPDAERERERmh0+DV0MQBABAWVmZxJ0QERFRbT38uf3w5/ijMACpcefOHQCAn5+fxJ0QERGRpu7cuQMXF5dHbiMTahOTzIxCocCNGzfg7OwMmUwmdTsaKSsrg5+fH65evYp69epJ3Y5J47HWHx5r/eGx1h8ea+0TBAF37tyBr68vLCwefZYPZ4DUsLCwQKNGjaRu44nUq1ePf6H0hMdaf3is9YfHWn94rLXrcTM/D/EkaCIiIjI7DEBERERkdhiATIytrS3i4uJga2srdSsmj8daf3is9YfHWn94rKXFk6CJiIjI7HAGiIiIiMwOAxARERGZHQYgIiIiMjsMQERERGR2GICMwKpVq+Dv7w87OzsEBwfj6NGjNW67Zs0aPPvss3Bzc4ObmxtCQkIeuf1bb70FmUyGpUuX6qBz46OLY52Tk4OwsDC4uLjA0dERXbp0wZUrV3S5GwZP28f57t27mDRpEho1agR7e3u0bdsWq1ev1vVuGAVNjvWOHTsQFBQEV1dXODo6IjAwEJs3bxZtIwgCYmNj4ePjA3t7e4SEhODixYu63g2joM1jXV1djenTp6N9+/ZwdHSEr68vwsPDcePGDX3sinkQyKClpKQINjY2wvr164XffvtNGDdunODq6ioUFhaq3X7EiBHCqlWrhJMnTwo5OTlCZGSk4OLiIly7dk1l2x07dggdO3YUfH19hSVLluh4TwyfLo7177//Lri7uwvTpk0TTpw4Ifz+++/C7t27axzTHOjiOI8bN05o1qyZkJmZKeTl5QmffvqpYGlpKezevVtfu2WQND3WmZmZwo4dO4Rz584Jv//+u7B06VLB0tJSSEtLU26TmJgouLi4CLt27RJOnz4thIWFCQEBAcLff/+tr90ySNo+1iUlJUJISIiwbds24fz580J2drbQtWtXoXPnzvrcLZPGAGTgunbtKkycOFH5Wi6XC76+vkJCQkKtPn///n3B2dlZ2LRpk6h+7do1oWHDhsLZs2eFJk2aMAAJujnWQ4cOFUaOHKn1Xo2ZLo5zu3bthLlz54q2e/rpp4WZM2dqp2kj9aTHWhAEoVOnTsKsWbMEQRAEhUIheHt7Cx999JHy/ZKSEsHW1lbYunWr9ho3Qto+1uocPXpUACBcvnz5iXqlB7gEZsCqqqpw/PhxhISEKGsWFhYICQlBdnZ2rcaoqKhAdXU13N3dlTWFQoFRo0Zh2rRpaNeundb7Nka6ONYKhQLffvstWrZsidDQUHh6eiI4OBi7du3SxS4YBV39me7RowdSU1Nx/fp1CIKAzMxMXLhwAS+++KLW98FYPOmxFgQBGRkZyM3NRc+ePQEAeXl5KCgoEI3p4uKC4ODgWv/+mSJdHGt1SktLIZPJ4Orqqo22zR4DkAG7desW5HI5vLy8RHUvLy8UFBTUaozp06fD19dX9Bdz0aJFsLKywuTJk7XarzHTxbEuKirC3bt3kZiYiL59+2Lfvn0YPHgwXnnlFRw4cEDr+2AMdPVnesWKFWjbti0aNWoEGxsb9O3bF6tWrXrkDxNTV9djXVpaCicnJ9jY2KBfv35YsWIFXnjhBQBQfu5Jfv9MkS6O9b/du3cP06dPx/Dhw/ngVC3h0+BNWGJiIlJSUpCVlQU7OzsAwPHjx7Fs2TKcOHECMplM4g5Nh7pjrVAoAAADBw7Eu+++CwAIDAzE4cOHsXr1avTq1Uuyfo2VuuMMPAhAR44cQWpqKpo0aYIff/wREydOVAlK9HjOzs44deoU7t69i4yMDERFRaFp06bo3bu31K2ZnNoe6+rqarz22msQBAHJycnSNGuCGIAMWP369WFpaYnCwkJRvbCwEN7e3o/8bFJSEhITE7F//3506NBBWT948CCKiorQuHFjZU0ul+O9997D0qVLkZ+fr9V9MBa6ONb169eHlZUV2rZtK9q+TZs2OHTokPaaNyK6OM5///03ZsyYgZ07d6Jfv34AgA4dOuDUqVNISkoy2wBU12NtYWGB5s2bA3gQ2HNycpCQkIDevXsrP1dYWAgfHx/RmIGBgdrfCSOhi2P90MPwc/nyZfzwww+c/dEiLoEZMBsbG3Tu3BkZGRnKmkKhQEZGBrp3717j5z788EPMmzcPaWlpCAoKEr03atQonDlzBqdOnVJ++fr6Ytq0aUhPT9fZvhg6XRxrGxsbdOnSBbm5uaL6hQsX0KRJE+3ugJHQxXGurq5GdXU1LCzE/5xZWloqZ+HMUV2P9b8pFApUVlYCAAICAuDt7S0as6ysDD///LNGY5oaXRxr4H/h5+LFi9i/fz88PDy02rfZk/YcbHqclJQUwdbWVti4caNw7tw5Yfz48YKrq6tQUFAgCIIgjBo1SoiOjlZun5iYKNjY2AhfffWVcPPmTeXXnTt3avwevArsAV0c6x07dgjW1tbCZ599Jly8eFFYsWKFYGlpKRw8eFDv+2codHGce/XqJbRr107IzMwU/vjjD2HDhg2CnZ2d8Mknn+h9/wyJpsd64cKFwr59+4RLly4J586dE5KSkgQrKythzZo1ym0SExMFV1dXYffu3cKZM2eEgQMH8jJ4QfvHuqqqSggLCxMaNWoknDp1SvRnv7KyUpJ9NDUMQEZgxYoVQuPGjQUbGxuha9euwpEjR5Tv9erVS4iIiFC+btKkiQBA5SsuLq7G8RmA/kcXx3rdunVC8+bNBTs7O6Fjx47Crl279LQ3hkvbx/nmzZtCZGSk4OvrK9jZ2QmtWrUSPv74Y0GhUOhxrwyTJsd65syZyj+rbm5uQvfu3YWUlBTReAqFQpg9e7bg5eUl2NraCs8//7yQm5urr90xaNo81nl5eWr/3AMQMjMz9bhXpksmCIKg1yknIiIiIonxHCAiIiIyOwxAREREZHYYgIiIiMjsMAARERGR2WEAIiIiIrPDAERERERmhwGIiIiIzA4DEBEREZkdBiAiMjmRkZEYNGiQSj0rKwsymQwlJSXIysrCwIED4ePjA0dHRwQGBuLLL7/Uf7NEJAkGICIyS4cPH0aHDh3w9ddf48yZMxg9ejTCw8OxZ88eqVsjIj2wkroBIiIpzJgxQ/R6ypQp2LdvH3bs2IH+/ftL1BUR6QtngIiI/r/S0lK4u7tL3QYR6QFngIjIJO3ZswdOTk6imlwur3H77du349ixY/j000913RoRGQAGICIySX369EFycrKo9vPPP2PkyJEq22ZmZmL06NFYs2YN2rVrp68WiUhCDEBEZJIcHR3RvHlzUe3atWsq2x04cAADBgzAkiVLEB4erq/2iEhiPAeIiMxWVlYW+vXrh0WLFmH8+PFSt0NEesQZICIyS5mZmejfvz+mTJmC//znPygoKAAA2NjY8ERoIjPAGSAiMkubNm1CRUUFEhIS4OPjo/x65ZVXpG6NiPRAJgiCIHUTRERERPrEGSAiIiIyOwxAREREZHYYgIiIiMjsMAARERGR2WEAIiIiIrPDAERERERmhwGIiIiIzA4DEBEREZkdBiAiIiIyOwxAREREZHYYgIiIiMjsMAARERGR2fl/yZpkNVHLBzAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATcRJREFUeJzt3Xl4TGf/P/D3JCSRnYhEIrJQO6ERQVtBtbFTtKo0i6VqqeYbXUQRQSUeaivFQ9HFEqVIFammQlXUGkuIrSFKErEkISHLzPn94Weens6ETDIzZ5b367pyMZ85ueczh8q7932fMzJBEAQQERERmRELqRsgIiIi0jcGICIiIjI7DEBERERkdhiAiIiIyOwwABEREZHZYQAiIiIis8MARERERGaHAYiIiIjMDgMQERERmR0GICIyWjKZDDNnzpS6DaXw8HD4+PhI3QYRVQIDEBFp1fr16yGTyZRfNjY2aNKkCSZOnIjc3Fydvvbhw4cxc+ZM5Ofna3Xcrl27it5TnTp1EBgYiLVr10KhUGjlNebOnYsdO3ZoZSwier4aUjdARKZp1qxZ8PX1xePHj3Ho0CGsWLECu3fvxrlz52Bra6uV13j06BFq1PjfP2OHDx9GbGwswsPD4ezsrJXXeKpBgwaIi4sDAOTl5eHbb7/FqFGjcOnSJcTHx1d7/Llz52LIkCEYOHBgtccioudjACIinejVqxfat28PABg9ejRcXFywcOFC7Ny5E8OGDavyuAqFAqWlpbCxsYGNjY222n0uJycnjBgxQvl47NixaNq0KZYtW4bZs2ejZs2aeuuFiKqPS2BEpBfdu3cHAGRmZgIAFixYgM6dO8PFxQW1atVCQEAAtm7dqvJ9MpkMEydOxIYNG9CyZUtYW1tj7969yuee7gGaOXMmPv74YwCAr6+vcrnq2rVrCA4Ohr+/v9q+mjZtipCQEI3fj62tLTp27IiioiLk5eVVeFxRUREmT54MLy8vWFtbo2nTpliwYAEEQRC9x6KiInzzzTfKvsPDwzXuiYgqjzNARKQXV69eBQC4uLgAAJYsWYL+/ftj+PDhKC0txebNm/Hmm29i165d6NOnj+h7f/vtN2zZsgUTJ05E3bp11W40HjRoEC5duoRNmzZh0aJFqFu3LgDA1dUV7777LsaMGYNz586hVatWyu85duwYLl26hGnTplXpPf3111+wtLSscLlNEAT0798f+/fvx6hRo9C2bVskJSXh448/xs2bN7Fo0SIAwHfffYfRo0ejQ4cOeO+99wAAjRo1qlJPRFRJAhGRFq1bt04AIPz6669CXl6ecOPGDWHz5s2Ci4uLUKtWLeHvv/8WBEEQiouLRd9XWloqtGrVSujevbuoDkCwsLAQ0tPTVV4LgBATE6N8PH/+fAGAkJmZKTouPz9fsLGxET799FNRfdKkSYKdnZ3w8OHDZ76n4OBgoVmzZkJeXp6Ql5cnXLhwQZg0aZIAQOjXr5/yuLCwMMHb21v5eMeOHQIAYc6cOaLxhgwZIshkMuHKlSvKmp2dnRAWFvbMPohIe7gERkQ60aNHD7i6usLLywtvv/027O3tsX37dnh6egIAatWqpTz2/v37KCgowCuvvIKTJ0+qjBUcHIwWLVpUuRcnJycMGDAAmzZtUi49yeVyJCQkYODAgbCzs3vuGBkZGXB1dYWrqyuaN2+OL7/8En369MHatWsr/J7du3fD0tISkyZNEtUnT54MQRCwZ8+eKr8nIqoeLoERkU4sX74cTZo0QY0aNeDm5oamTZvCwuJ//8+1a9cuzJkzB2lpaSgpKVHWZTKZyli+vr7V7ic0NBQJCQn4/fff0aVLF/z666/Izc3Fu+++W6nv9/HxwerVq5WX9r/wwguoV6/eM7/n+vXr8PDwgIODg6jevHlz5fNEJA0GICLSiQ4dOiivAvu333//Hf3790eXLl3w1VdfoX79+qhZsybWrVuHjRs3qhz/z9miqgoJCYGbmxu+//57dOnSBd9//z3c3d3Ro0ePSn2/nZ1dpY8lIsPHJTAi0rtt27bBxsYGSUlJGDlyJHr16qWVcKFu9ugpS0tLvPPOO9i6dSvu37+PHTt2YNiwYbC0tKz261bE29sbt27dwoMHD0T1jIwM5fNPPat3ItI+BiAi0jtLS0vIZDLI5XJl7dq1a9W+E/LTvTwV3Qn63Xffxf379zF27Fg8fPhQdF8fXejduzfkcjmWLVsmqi9atAgymQy9evVS1uzs7LR+B2siqhiXwIhI7/r06YOFCxeiZ8+eeOedd3D79m0sX74cjRs3xpkzZ6o8bkBAAADgs88+w9tvv42aNWuiX79+ymDUrl07tGrVCj/88AOaN2+OF198USvvpyL9+vVDt27d8Nlnn+HatWvw9/fHL7/8gp07dyIyMlJ0qXtAQAB+/fVXLFy4EB4eHvD19UVQUJBO+yMyZ5wBIiK96969O77++mvk5OQgMjISmzZtwrx58/DGG29Ua9zAwEDMnj0bp0+fRnh4OIYNG6Zyk8LQ0FAAqPTm5+qwsLBAYmIiIiMjsWvXLkRGRuL8+fOYP38+Fi5cKDp24cKFCAgIwLRp0zBs2DCsWLFC5/0RmTOZIPzjdqRERCZuyZIl+L//+z9cu3YNDRs2lLodIpIIAxARmQ1BEODv7w8XFxfs379f6naISELcA0REJq+oqAiJiYnYv38/zp49i507d0rdEhFJjDNARGTyrl27Bl9fXzg7O2P8+PH4/PPPpW6JiCTGAERERERmh1eBERERkdlhACIiIiKzw03QaigUCty6dQsODg68PT0REZGREAQBDx48gIeHh+jDl9VhAFLj1q1b8PLykroNIiIiqoIbN26gQYMGzzyGAUgNBwcHAE9OoKOjo8TdEBERUWUUFhbCy8tL+XP8WRiA1Hi67OXo6MgAREREZGQqs32Fm6CJiIjI7DAAERERkdlhACIiIiKzwz1A1SCXy1FWViZ1G6QHVlZWz72kkoiIjAcDUBUIgoCcnBzk5+dL3QrpiYWFBXx9fWFlZSV1K0REpAUMQFXwNPzUq1cPtra2vFmiiXt6Y8zs7Gw0bNiQf95ERCaAAUhDcrlcGX5cXFykbof0xNXVFbdu3UJ5eTlq1qwpdTtERFRN3NSgoad7fmxtbSXuhPTp6dKXXC6XuBMiItIGBqAq4jKIeeGfNxGRaWEAIiIiIrPDAERERERmhwHIjISHh0Mmk0Emk6FmzZpwc3PDa6+9hrVr10KhUFR6nPXr18PZ2Vl3jRIREekYA5CZ6dmzJ7Kzs3Ht2jXs2bMH3bp1w4cffoi+ffuivLxc6vaIiMgMPHr0SOoWGIDMjbW1Ndzd3eHp6YkXX3wRU6dOxc6dO7Fnzx6sX78eALBw4UK0bt0adnZ28PLywvjx4/Hw4UMAQEpKCiIiIlBQUKCcTZo5cyYA4LvvvkP79u3h4OAAd3d3vPPOO7h9+7ZE75SIiAxNaWkpYmNj8Z///AeffroUiYnS9cIApAWCIKC0tFTvX4IgaKX/7t27w9/fHz/++COAJ3c9Xrp0KdLT0/HNN9/gt99+wyeffAIA6Ny5MxYvXgxHR0dkZ2cjOzsbH330EYAntwiYPXs2Tp8+jR07duDatWsIDw/XSo9ERGTcMjMzERcXp3ycnV0b8fHS9cMbIWpBWVmZ6A9VX6Kjo7X20QzNmjXDmTNnAACRkZHKuo+PD+bMmYP3338fX331FaysrODk5ASZTAZ3d3fRGCNHjlT+3s/PD0uXLkVgYCAePnwIe3t7rfRJRETGZ9u2bTh37pzysYtLOyQl9ceUKdL1xABEAJ7MYj29182vv/6KuLg4ZGRkoLCwEOXl5Xj8+DGKi4ufeQPIEydOYObMmTh9+jTu37+v3FidlZWFFi1a6OV9EBGR4Xj8+DHmzZsnqoWHh8Pb2xsTJ0rU1P/HAKQFNWvWRHR0tCSvqy0XLlyAr68vrl27hr59+2LcuHH4/PPPUadOHRw6dAijRo1CaWlphQGoqKgIISEhCAkJwYYNG+Dq6oqsrCyEhISgtLRUa30SEZFxuHLlCjZs2CCqTZ061WA+TogBSAtkMplRf0r4b7/9hrNnz+L//u//cOLECSgUCnzxxRewsHiyRWzLli2i462srFQ+EiIjIwN3795FfHw8vLy8AADHjx/XzxsgIiKDkpCQgIyMDOXjwMBA9O7dW8KOVDEAmZmSkhLk5ORALpcjNzcXe/fuRVxcHPr27YvQ0FCcO3cOZWVl+PLLL9GvXz/88ccfWLlypWgMHx8fPHz4EMnJyfD394etrS0aNmwIKysrfPnll3j//fdx7tw5zJ49W6J3SUREUrh//z6WLl0qqo0aNQoNGjSQqKOK8SowM7N3717Ur18fPj4+6NmzJ/bv34+lS5di586dsLS0hL+/PxYuXIh58+ahVatW2LBhg8oG786dO+P999/H0KFD4erqiv/85z9wdXXF+vXr8cMPP6BFixaIj4/HggULJHqXRESkb4mJiSrh57PPPjPI8AMAMkFb11KbkMLCQjg5OaGgoACOjo6i5x4/fozMzEz4+vrCxsZGog5J3/jnTkRUsdjYWJVau3Yx6N9fv3086+f3v3EJjIiIiKrkzp07WL58uajWr18/vPjiixJ1VHkMQERERKSxrVu3Ij09XVTT5v3pdI0BiIiIiCpNEATMmjVLpR4TEyNBN1XHAERERESVkpOTg1WrVolqgwYNQuvWrSXqqOoYgIiIiOi5NmzYgCtXrohqn332GWrUMM4oYZxdExERkV6oW/KqWbMmpk6dKlFH2sEARERERGrdvHkTa9asEdWGDh2KZs2aSdSR9jAAERERkYq1a9fixo0botq0adNgaWkpUUfaxQBERERESuqWvBwcHBAVFSVRR7rBj8IgrQsPD8fAgQOVj7t27YrIyMhqjamNMYiI6NmuX7+uEn6GDx9ucuEH4AyQWQkPD8c333wD4MkGtoYNGyI0NBRTp07V6S7+H3/8ETVr1qzUsSkpKejWrRvu378PZ2fnKo1BRESaW7FiBW7fvi2qTZ8+HRYWpjlXwgBkZnr27Il169ahpKQEu3fvxoQJE1CzZk1ER0eLjistLdXa3Tzr1KljEGMQEZEqhUKB2bNni2qurq4YP368RB3ph0HEuuXLl8PHxwc2NjYICgrC0aNHKzw2PT0dgwcPho+PD2QyGRYvXqxyzMyZMyGTyURfprBjXRusra3h7u4Ob29vjBs3Dj169EBiYqJy2erzzz+Hh4cHmjZtCgC4ceMG3nrrLTg7O6NOnToYMGAArl27phxPLpcjKioKzs7OcHFxwSeffIJ/f77uv5evSkpK8Omnn8LLywvW1tZo3Lgxvv76a1y7dg3dunUDANSuXRsymQzh4eFqx7h//z5CQ0NRu3Zt2NraolevXrh8+bLy+fXr18PZ2RlJSUlo3rw57O3t0bNnT2RnZyuPSUlJQYcOHWBnZwdnZ2e89NJLuH79upbONBGR4bt69apK+AkLCzP58AMYQABKSEhAVFQUYmJicPLkSfj7+yMkJERlGu6p4uJi+Pn5IT4+Hu7u7hWO27JlS2RnZyu/Dh06pKu3YNRq1aqF0tJSAEBycjIuXryIffv2YdeuXSgrK0NISAgcHBzw+++/448//lAGiaff88UXX2D9+vVYu3YtDh06hHv37mH79u3PfM3Q0FBs2rQJS5cuxYULF7Bq1SrY29vDy8sL27ZtAwBcvHgR2dnZWLJkidoxwsPDcfz4cSQmJiI1NRWCIKB3794oKytTHlNcXIwFCxbgu+++w8GDB5GVlYWPPvoIAFBeXo6BAwciODgYZ86cQWpqKt577z3IZLJqn1MiImOwaNEifP/996LajBkz4OPjI01Deib5EtjChQsxZswYREREAABWrlyJn3/+GWvXrsWUKVNUjg8MDERgYCAAqH3+qRo1ajwzIJk7QRCQnJyMpKQkfPDBB8jLy4OdnR3WrFmjXPr6/vvvoVAosGbNGmUwWLduHZydnZGSkoLXX38dixcvRnR0NAYNGgTgyZ9fUlJSha976dIlbNmyBfv27UOPHj0AAH5+fsrnny511atXT7QH6J8uX76MxMRE/PHHH+jcuTOAJ3co9fLywo4dO/Dmm28CAMrKyrBy5Uo0atQIADBx4kTl5r7CwkIUFBSgb9++yuebN2+u+YkkIjIycrkcc+bMEdUaNGiAUaNGSdSRNCSdASotLcWJEyeUPwgBwMLCAj169EBqamq1xr58+TI8PDzg5+eH4cOHIysrq8JjS0pKUFhYKPrSl8REoHPnJ7/qw65du2Bvbw8bGxv06tULQ4cOxcyZMwEArVu3Fu37OX36NK5cuQIHBwfY29vD3t4ederUwePHj3H16lUUFBQgOzsbQUFByu+pUaMG2rdvX+Hrp6WlwdLSEsHBwVV+DxcuXECNGjVEr+vi4oKmTZviwoULypqtra0y3ABA/fr1lTOLderUQXh4OEJCQtCvXz8sWbJEtDxGRGSKMjIyVMLPqFGjzC78ABLPAN25cwdyuRxubm6iupubGzIyMqo8blBQENavX4+mTZsiOzsbsbGxeOWVV3Du3Dk4ODioHB8XF4fY2Ngqv151xMcDqalPfu3fX/ev161bN6xYsQJWVlbw8PAQXf1lZ2cnOvbhw4cICAjAhg0bVMZxdXWt0uvXqlWrSt9XFf++akwmk4n2J61btw6TJk3C3r17kZCQgGnTpmHfvn3o2LGj3nokItKXuLg45faFp2bMmGG2S/+S7wHShV69euHNN99EmzZtEBISgt27dyM/Px9btmxRe3x0dDQKCgqUX/++86UuTZkCdOr05Fd9sLOzQ+PGjdGwYcPnXvr+4osv4vLly6hXrx4aN24s+nJycoKTkxPq16+PP//8U/k95eXlOHHiRIVjtm7dGgqFAgcOHFD7/NMZKLlcXuEYzZs3R3l5ueh17969i4sXL6JFixbPfE//1q5dO0RHR+Pw4cNo1aoVNm7cqNH3ExEZuvLycsTGxorCT6NGjRATE2O24QeQOADVrVsXlpaWyM3NFdVzc3O1un/H2dkZTZo0UfkU26esra3h6Ogo+tKX/v2Bw4f1M/ujqeHDh6Nu3boYMGAAfv/9d2RmZiIlJQWTJk3C33//DQD48MMPER8fjx07diAjIwPjx49Hfn5+hWP6+PggLCwMI0eOxI4dO5RjPg2n3t7ekMlk2LVrF/Ly8vDw4UOVMV544QUMGDAAY8aMwaFDh3D69GmMGDECnp6eGDBgQKXeW2ZmJqKjo5Gamorr16/jl19+weXLl7kPiIhMyrlz5/D555+LamPHjsWIESMk6shwSBqArKysEBAQgOTkZGVNoVAgOTkZnTp10trrPHz4EFevXkX9+vW1NqY5sLW1xcGDB9GwYUMMGjQIzZs3x6hRo/D48WNlSJw8eTLeffddhIWFoVOnTnBwcMAbb7zxzHFXrFiBIUOGYPz48WjWrBnGjBmDoqIiAICnpydiY2MxZcoUuLm5YeLEiWrHWLduHQICAtC3b1906tQJgiBg9+7dlb5Zoq2tLTIyMjB48GA0adIE7733HiZMmICxY8dqcIaIiAxXbGys8srap2bMmMELhP4/mfDvm7boWUJCAsLCwrBq1Sp06NABixcvxpYtW5CRkQE3NzeEhobC09MTcXFxAJ5snD5//jwAoHfv3hg+fDiGDx8Oe3t7NG7cGADw0UcfoV+/fvD29satW7cQExODtLQ0nD9/vlJ7VwoLC+Hk5ISCggKV2aDHjx8jMzMTvr6+sLGx0fLZIEPFP3ciMhaPHz/GvHnzRLUWLVoor5A1Zc/6+f1vkl8GP3ToUOTl5WHGjBnIyclB27ZtsXfvXuXG6KysLNFtuG/duoV27dopHy9YsAALFixAcHAwUlJSAAB///03hg0bhrt378LV1RUvv/wyjhw5UuWNu0RERMZgz549KjcTHj9+PH/+qSH5DJAh4gwQ/Rv/3InI0Km7mjkpKQaHD0vQjESMagaIiIiIqq6oqAgLFiwQ1Swta2H37k/0doWxMWIAIiIiMlLbt2/HmTNnRLUxY8bAw8MD06ZJ1JSRYACqIq4cmhf+eRORoVG35BUTEyNBJ8aJAUhDTy+zLi4u1utdjUlaT28gZmlpKXEnRGTuCgsLsWjRIlHNxcWlwtuGkHoMQBqytLSEs7Oz8jOlbG1tzfpOmuZAoVAgLy8Ptra2z717NhGRLm3atAmXLl0S1caNG4d69epJ1JHx4r/mVfD0JlJPQxCZPgsLCzRs2JBhl4gkwyUv7WIAqgKZTIb69eujXr16KCsrk7od0gMrKyvR/aiIiPTl/v37WLp0qajm6emJ0aNHS9SRaWAAqgZLS0vuCSEiIp1Zt24dsrKyRLUPPvgAderUkagj08EAREREZIC45KVbDEBEREQGJC8vD1999ZWo1rhxYwwfPlyijkwTAxAREZGB+Oqrr5CXlyeqRUZGwsnJSaKOTBcDEBERkQHgkpd+MQARERFJKDs7G//9739FtdatW2PQoEESdWQeGICIiIgk8sUXX+Dhw4ei2kcffQQ7OzuJOjIfDEBEREQS4JKXtBiAiIiI9CgrKwvr1q0T1QICAtC3b1+JOjJPDEBERER6Mnv2bCgUClHtk08+4YdrS4ABiIiISMcEQcCsWbNU6lzykg4DEBERkQ5dvXoV33//vaj20ksvoUePHhJ1RAADEBERkc6o2+gcHR0NKysrCbqhf2IAIiIi0jIueRk+BiAiIiItysjIQEJCgqjWvXt3vPLKKxJ1ROowABEREWmJuiWvqVOnombNmhJ0Q8/CAERERFRNXPIyPgxARERE1XDmzBls375dVOvZsyeCgoIk6ogqgwGIiIioitQteU2bNg2WlpYSdEOaYAAiIiLSkEKhwOzZs1XqXPIyHgxAREREGjh+/Dh+/vlnUW3AgAFo27atNA1RlTAAERERVZK6Ja/p06fDwsJCgm6oOhiAiIiInqO8vByff/65Sp1LXsaLAYiIiOgZDh8+jH379olqb775Jlq0aCFRR6QNDEBEREQVULfkNWPGDMhkMgm6IW1iACIiIvqX0tJSxMXFqdS55GU6GICIiIj+Yf/+/Th48KCo9s477+CFF16QqCPSBQYgIiKi/49LXuaDAYiIiMze48ePMW/ePJU6l7xMFwMQERGZtb179+LPP/8U1cLCwuDj4yNNQ6QXDEBERGS21C15cdbHPDAAERGR2SkuLsb8+fNFNRsbG3z66acSdUT6xgBERERmZefOnUhLSxPVRo8eDU9PT2kaIkkwABERkdngkhc9xQBEREQm78GDB1i4cKGoVrt2bUyaNEmijkhqDEBERGTSEhISkJGRIaq9//77cHNzk6gjMgQMQEREZLK45EUVYQAiIiKTk5+fjyVLlohqHh4eGDNmjEQdkaFhACIiIpOyfv16XL9+XVSbOHEiXFxcJOqIDBEDEBERmQwueVFlMQAREZHRu3PnDpYvXy6qNWrUCCNGjJCoIzJ0DEBERGTUVq5cidzcXFEtMjISTk5OEnVExsBC6gYAYPny5fDx8YGNjQ2CgoJw9OjRCo9NT0/H4MGD4ePjA5lMhsWLFz9z7Pj4eMhkMkRGRmq3aSIiklxsbKxK+ImJiWH4oeeSPAAlJCQgKioKMTExOHnyJPz9/RESEoLbt2+rPb64uBh+fn6Ij4+Hu7v7M8c+duwYVq1ahTZt2uiidSIikkhOTo7Kfp+WLVtyvw9VmuQBaOHChRgzZgwiIiLQokULrFy5Era2tli7dq3a4wMDAzF//ny8/fbbsLa2rnDchw8fYvjw4Vi9ejVq166tq/aJiEjPFi1ahFWrVolqkydPxpAhQyTqiIyRpAGotLQUJ06cQI8ePZQ1CwsL9OjRA6mpqdUae8KECejTp49o7IqUlJSgsLBQ9EVERIYnNjZW5d/omJgY2NvbS9QRGStJN0HfuXMHcrlc5Xbkbm5uKrct18TmzZtx8uRJHDt2rFLHx8XFqb10koiIDMONGzdUVgZefPFF9OvXT6KOyNiZ3FVgN27cwIcffoh9+/bBxsamUt8THR2NqKgo5ePCwkJ4eXnpqkUiItLA559/jvLyclHtk08+Qa1atSTqiEyBpAGobt26sLS0VNnBn5ub+9wNzhU5ceIEbt++jRdffFFZk8vlOHjwIJYtW4aSkhJYWlqKvsfa2vqZ+4mIiEgavLEh6YqkAcjKygoBAQFITk7GwIEDAQAKhQLJycmYOHFilcZ89dVXcfbsWVEtIiICzZo1w6effqoSfoiIyPD89ddf+O6770S1zp0747XXXpOoIzI1ki+BRUVFISwsDO3bt0eHDh2wePFiFBUVISIiAgAQGhoKT09PxMXFAXiycfr8+fPK39+8eRNpaWmwt7dH48aN4eDggFatWolew87ODi4uLip1IiIyPOpmfaZMmcKZetIqyQPQ0KFDkZeXhxkzZiAnJwdt27bF3r17lRujs7KyYGHxv4vVbt26hXbt2ikfL1iwAAsWLEBwcDBSUlL03T4REWmJIAiYNWuWSp1LXqQLMkEQBKmbMDSFhYVwcnJCQUEBHB0dpW6HiMjkXbx4EZs3bxbVunXrhi5dukjUERkjTX5+Sz4DRERE5k3dktfUqVNRs2ZNCbohc8EAREREkuCSF0mJAYiIiPTu3Llz2LZtm6gWEhKCjh07StQRmRsGICIi0it1S17Tpk3jbUpIrxiAiIhILxQKBWbPnq1S55IXSYEBiIiIdO7kyZP46aefRLX+/fuLbmtCpE8MQEREpFPqlrymT58uuscbkb4xABERkU7I5XLMmTNHpc4lLzIEDEBERKR1qamp+OWXX0S1IUOGoGXLlhJ1RCTGAERERFqlbslrxowZkMlkEnRDpB4DEBERaUVZWRnmzp2rUueSFxkiBiAiIqq2lJQUHDhwQFQbNmwYmjRpIlFHRM/GAERERNXCJS8yRgxARERUJSUlJYiPj1epc8mLjAEDEBERaSwpKQlHjhwR1UJDQ+Hr6ytRR0SaYQAiIiKNqFvy4qwPGRsGICIiqpTi4mLMnz9fVLOyskJ0dLREHRFVHQMQERE9V2JiIk6dOiWqjR49Gp6enhJ1RFQ9DEBERPRMXPIiU8QAREREaj18+BBffPGFqObk5ITIyEhpGiLSIgYgIiJSsWXLFly4cEFUe//99+Hm5iZRR0TaxQBEREQiXPIic8AAREREAIC8vDx89dVXopq7uzvGjh0rUUdEusMAREREmD17NhQKhaj2++8T8euvLhJ1RKRbDEBERGZO3ZJXUlIMpkyRoBkiPWEAIiIyU7du3cLq1atFNQsLC0yfPh3c8kOmjgGIiMgMqZv1GT9+PFxdXSXohkj/GICIiMwMr/IiYgAiIjIb169fx/r160U1BwcHREVFSdMQkYQYgIiIzIC6WZ8PP/wQzs7O+m+GyAAwABERmTgueRGp0jgAWVpaIjs7G/Xq1RPV7969i3r16kEul2utOSIiqrrLly9j48aNohpvbEj0hMYBSBAEtfWSkhJYWVlVuyEiIqo+dbM+UVFRcHBwkKAbIsNT6QC0dOlSAIBMJsOaNWtgb2+vfE4ul+PgwYNo1qyZ9jskIiKNcMmL6PkqHYAWLVoE4MkM0MqVK2Fpaal8zsrKCj4+Pli5cqX2OyQioudKTATWrUtH27ZbRXU/Pz+8++67EnVFZLgqHYAyMzMBAN26dcOPP/6I2rVr66wpIiLSzKlTsWjbVlxr3foTDBpUS5J+iAydxnuA9u/fr4s+iIioCgRBwKxZs1TqXPIiejaNA9DIkSOf+fzatWur3AwREVXekSNHkJSUJKq1aNECb775pkQdERkPjQPQ/fv3RY/Lyspw7tw55Ofno3v37lprjIiIKqZuo/OUKVNgbW0tQTdExkfjALR9+3aVmkKhwLhx49CoUSOtNEVEROopFArMnj1bpc4lLyLNyISKbuyjoYsXL6Jr167Izs7WxnCSKiwshJOTEwoKCuDo6Ch1O0REAICdO3ciLS1NVGvZsiWGDBkiTUNEBkaTn99a+yiMq1evory8XFvDERHRP6hb8vr112i0a8cb0BJVhcYB6N+fGiwIArKzs/Hzzz8jLCxMa40REdGTG83OmTNHpZ6UFIPUVEAuB/r3l6AxIiOncQA6deqU6LGFhQVcXV3xxRdfPPcKMSIiqrxNmzbh0qVLolrjxo0xfPhwtGsHxMcDU6ZI1ByRkdPaHiBTwj1ARCQ1dUte06ZNE92Fn4jE9LIH6Pbt27h48SIAoGnTpiqfDk9ERJorKyvD3LlzVeq8yotIuzQOQIWFhZgwYQI2bdoEhUIBALC0tMTQoUOxfPlyODk5ab1JIiJzsHr1aty6dUtU8/f3x8CBA6VpiMiEWWj6DWPGjMGff/6Jn3/+Gfn5+cjPz8euXbtw/PhxjB07Vhc9EhGZvNjYWJXwM336dIYfIh3ReA+QnZ0dkpKS8PLLL4vqv//+O3r27ImioiKtNigF7gEiIn15/Pgx5s2bp1LnkheR5jT5+a3xDJCLi4vaZS4nJ6cqf0L88uXL4ePjAxsbGwQFBeHo0aMVHpueno7BgwfDx8cHMpkMixcvVjlmxYoVaNOmDRwdHeHo6IhOnTphz549VeqNiEhXFi1apBJ+OnXqxPBDpAcaB6Bp06YhKioKOTk5ylpOTg4+/vhjTJ8+XeMGEhISEBUVhZiYGJw8eRL+/v4ICQnB7du31R5fXFwMPz8/xMfHw93dXe0xDRo0QHx8PE6cOIHjx4+je/fuGDBgANLT0zXuj4hIF2JjY1FYWCiqzZgxA6+//rpEHRGZF42XwNq1a4crV66gpKQEDRs2BABkZWXB2toaL7zwgujYkydPPne8oKAgBAYGYtmyZQCefM6Nl5cXPvjgA0x5zg0ufHx8EBkZicjIyOe+Tp06dTB//nyMGjXqucdyCYyIdOXhw4f44osvVOqc9SGqPp1eBj9gwADIZLIqN/dPpaWlOHHiBKKjo5U1CwsL9OjRA6mpqVp5Dblcjh9++AFFRUXo1KmTVsYkItJEYuKTmxaGhMwCIP5/zldffVVlTyUR6Z7GAWjmzJlae/E7d+5ALpfDzc1NVHdzc0NGRka1xj579iw6deqEx48fw97eHtu3b0eLFi3UHltSUoKSkhLl439PSxMRVceT8KN6Y0PO+hBJR+M9QH5+frh7965KPT8/H35+flppShuaNm2KtLQ0/Pnnnxg3bhzCwsJw/vx5tcfGxcXByclJ+eXl5aXnbonIVN29e5fhh8gAaTwDdO3aNcjlcpV6SUkJ/v77b43Gqlu3LiwtLZGbmyuq5+bmVrjBubKsrKzQuHFjAEBAQACOHTuGJUuWYNWqVSrHRkdHiz7ktbCwkCGIiKpN3cdZ9OnTB+3bt5egGyL6p0oHoMTEROXvk5KSRJfCy+VyJCcnw9fXV6MXt7KyQkBAAJKTk5U3+1IoFEhOTsbEiRM1Gut5FAqFaJnrn6ytrWFtba3V1yMi86Yu/HDWh8hwVDoAPQ0oMpkMYWFhoudq1qwJHx8ftVc2PE9UVBTCwsLQvn17dOjQAYsXL0ZRUREiIiIAAKGhofD09ERcXByAJxunny5llZaW4ubNm0hLS4O9vb1yxic6Ohq9evVCw4YN8eDBA2zcuBEpKSlISkrSuD8iIk1kZ2fjv//9r0qd4YfIsFQ6AD393C9fX18cO3YMdevW1UoDQ4cORV5eHmbMmIGcnBy0bdsWe/fuVW6MzsrKgoXF/7Yq3bp1C+3atVM+XrBgARYsWIDg4GCkpKQAePJBraGhocjOzoaTkxPatGmDpKQkvPbaa1rpmYhIHS55ERkPje8DZA54HyAi0hSXvIikp9P7AM2aNeuZz8+YMUPTIYmIjFZmZia+/fZblTrDD5Fh0zgAbd++XfS4rKwMmZmZqFGjBho1asQARERmQ92sz5AhQ9CyZUsJuiEiTWgcgE6dOqVSKywsRHh4ON544w2tNEVEZOi45EVk3LS2B+js2bPo168frl27po3hJMU9QERUkYyMDCQkJKjUGX6IpKfTPUAVKSgoQEFBgbaGIyIyOOpmfUaMGIFGjRpJ0A0RVYfGAWjp0qWix4IgIDs7G9999x169eqltcaIiAwJl7yITIvGAWjRokWixxYWFnB1dUVYWJjoU92JiExBWloadu7cqVJn+CEybhoHoMzMTF30QURkcNTN+owaNQoNGjSQoBsi0qYq7QHKz8/HlStXAACNGzeGs7OzNnsiIpIcl7yITJvF8w/5n2vXrqFPnz6oW7cugoKCEBQUhLp166Jv374mcfUXEdHhw4cZfojMQKVngG7cuIGOHTuiZs2amD17Npo3bw4AOH/+PFasWIFOnTrh2LFjnBomIqOlLviMHz8erq6uEnRDRLpU6fsAjRo1CleuXEFSUhJsbGxEzz169Ag9e/bECy+8gDVr1uikUX3ifYCIzA9nfYiMn07uA7R3714kJCSohB8AqFWrFmbPno23335b826JiCT066+/4o8//lCpM/wQmbZKB6A7d+7Ax8enwuf9/Pxw7949bfRERKQX6mZ9PvzwQ17YQWQGKr0Jun79+jh//nyFz587dw7u7u5aaYqISJcEQahwyYvhh8g8VHoGaODAgfjoo4+QnJyssiHw9u3b+PTTTzFw4EBt90dEpFU7d+5EWlqaSp1LXkTmpdKboO/fv4+goCDk5ORgxIgRaNasGQRBwIULF7Bx40a4u7vjyJEjqFOnjq571jlugiYyTepmfT766CPY2dlJ0A0RaZtONkHXrl0bf/75J6ZOnYrNmzcjPz8fAODs7Ix33nkHc+fONYnwQ0SmR6FQYPbs2Sp1zvoQma9KzwD9kyAIyMvLAwC4urpCJpNpvTEpcQaIyHRs2LBBeef6pywtLTFt2jSJOiIiXdHJDNA/yWQy1KtXr0rNERHpi7olrylTpsDa2lqCbojIkFQpABERGTK5XI45c+ao1LnkRURPMQARkUlZtWoVcnJyRLXatWtj0qRJEnVERIaIAYiITIa6Ja/PPvsMNWrwnzoiEuO/CkRk9EpLSxEXF6dS55IXEVWkUgFo6dKllR6Q08xEpE/z589HcXGxqObt7Y3w8HBpGiIio1Cpy+B9fX0rN5hMhr/++qvaTUmNl8ETGQd1S17Tp0+HhUWlP+WHiEyI1i+Dz8zM1EpjRETa8OjRI/znP/9RqXPJi4gqq8p7gEpLS5GZmYlGjRpxgyER6Y26WZ+WLVtiyJAhEnRDRMZK43ni4uJijBo1Cra2tmjZsiWysrIAAB988AHi4+O13iAR0VPqws+MGTMYfohIYxoHoOjoaJw+fRopKSmwsbFR1nv06IGEhAStNkdEBAAPHjxQG35iYmJM7qN4iEg/NF672rFjBxISEtCxY0fRPzwtW7bE1atXtdocEZG64NOhQwf06tVLgm6IyFRoHIDy8vLUfg5YUVER/0+MiLSqolkfIqLq0ngJrH379vj555+Vj5+GnjVr1qBTp07a64yIzNa9e/cYfohIpzSeAZo7dy569eqF8+fPo7y8HEuWLMH58+dx+PBhHDhwQBc9EpEZURd8unbtiuDgYAm6ISJTpfEM0Msvv4y0tDSUl5ejdevW+OWXX1CvXj2kpqYiICBAFz0SkYlKTAQ6d37yK1DxkhfDDxFpW6XuBG1ueCdoIv3o3BlITQVefz0HnTuvUnmeS15EpAmt3wm6sLCw0i/OwEBElTVlCnDqlOqsT+/evREYGChBR0RkLioVgJydnSt9hZdcLq9WQ0RkPtSFH876EJE+VCoA7d+/X/n7a9euYcqUKQgPD1de9ZWamopvvvkGcXFxuumSiEzKrVu3sHr1apU6ww8R6YvGe4BeffVVjB49GsOGDRPVN27ciP/+979ISUnRZn+S4B4gIt1Rt9F58ODBaNWqlQTdEJEp0eTnt8ZXgaWmpqJ9+/Yq9fbt2+Po0aOaDkdEZqSiq7wYfohI3zQOQF5eXmqnrtesWQMvLy+tNEVEpiUzM5M3NiQig6LxjRAXLVqEwYMHY8+ePQgKCgIAHD16FJcvX8a2bdu03iARGTd1wSc8PBze3t4SdENE9ITGM0C9e/fG5cuX0a9fP9y7dw/37t1Dv379cOnSJfTu3VsXPRKRkapo1ofhh4ikxhshqsFN0ETVc/r0aezYsUOlziUvItIlrd8I8d/y8/Px9ddf48KFCwCAli1bYuTIkXBycqrKcERkQtTN+owcOZJ7BInIoGi8BHb8+HE0atQIixYtUi6BLVy4EI0aNcLJkyd10SMRGYmKlrwYfojI0Gi8BPbKK6+gcePGWL16NWrUeDKBVF5ejtGjR+Ovv/7CwYMHddKoPnEJjEgzR44cQVJSkkqdS15EpE+a/PzWOADVqlULp06dQrNmzUT18+fPo3379iguLta8YwPDAERUeepmfcaNG4d69eopHycmAvHxTz77q39/fXZHROZEpzdCdHR0RFZWlkr9xo0bcHBw0HQ4AMDy5cvh4+MDGxsbBAUFPfOGiunp6Rg8eDB8fHwgk8mwePFilWPi4uIQGBgIBwcH1KtXDwMHDsTFixer1BsRVayiJa9/hh/gSfhJTX3yKxGRIdA4AA0dOhSjRo1CQkICbty4gRs3bmDz5s1qPx6jMhISEhAVFYWYmBicPHkS/v7+CAkJwe3bt9UeX1xcDD8/P8THx8Pd3V3tMQcOHMCECRNw5MgR7Nu3D2VlZXj99ddRVFSkcX9EpOq3337T6MaGU6YAnTo9+ZWIyBBovARWWlqKjz/+GCtXrkR5eTkAoGbNmhg3bhzi4+NhbW2tUQNBQUEIDAzEsmXLAAAKhQJeXl744IMPMOU5/1r6+PggMjISkZGRzzwuLy8P9erVw4EDB9ClS5fn9sQlMKKKqQs+kyZNQu3atSXohojof3R6GbyVlRWWLFmCuLg4XL16FQDQqFEj2NraatxoaWkpTpw4gejoaGXNwsICPXr0QGpqqsbjVaSgoAAAUKdOHa2NSWRuBEHArFmzVOrc6ExExqhK9wECAFtbW7Ru3bpaL37nzh3I5XK4ubmJ6m5ubsjIyKjW2E8pFApERkbipZdeqvADF0tKSlBSUqJ8XFhYqJXXJjIVP/30k9rbXDD8EJGxqnQAGjlyZKWOW7t2bZWb0YUJEybg3LlzOHToUIXHxMXFqZ3WJyL1S16TJ0+Gvb29BN0QEWlHpQPQ+vXr4e3tjXbt2kFbn55Rt25dWFpaIjc3V1TPzc2tcIOzJiZOnIhdu3bh4MGDaNCgQYXHRUdHIyoqSvm4sLCQN24js8clLyIyZZUOQOPGjcOmTZuQmZmJiIgIjBgxotp7aqysrBAQEIDk5GQMHDgQwJMlq+TkZEycOLHK4wqCgA8++ADbt29HSkoKfH19n3m8tbW1xpu3iUzZ5s2bVW4dIZPJMGPGDIk6IiLSrkpfBr98+XJkZ2fjk08+wU8//QQvLy+89dZbSEpKqtaMUFRUFFavXo1vvvkGFy5cwLhx41BUVISIiAgAQGhoqGiTdGlpKdLS0pCWlobS0lLcvHkTaWlpuHLlivKYCRMm4Pvvv8fGjRvh4OCAnJwc5OTk4NGjR1Xuk8hcxMbGqoSfTz/9lOGHiExKlT8N/vr161i/fj2+/fZblJeXIz09vcp7ApYtW4b58+cjJycHbdu2xdKlSxEUFAQA6Nq1K3x8fLB+/XoAwLVr19TO6AQHByMlJeXJm5LJ1L7OunXrEB4e/tx+eBk8mSO5XI45c+ao1LnkRUTGQuefBg88uVxdJpNBEATI5fKqDgPgyV6dipa8noaap3x8fJ4746StPUpE5mL16tW4deuWqObk5PTce2wRERkrjQJQSUkJfvzxR6xduxaHDh1C3759sWzZMvTs2RMWFhrfVJqIDIC6q7ymTp2KmjVrStANEZF+VDoAjR8/Hps3b4aXlxdGjhyJTZs2oW7durrsjYh0qKysDHPnzlWpc8mLiMxBpfcAWVhYoGHDhmjXrl2Fe2wA4Mcff9Rac1LhHiAydQsXLsSDBw9EtQYNGmDUqFESdUREVH062QMUGhr6zOBDRMZB3ZLXtGnTYGlpKUE3RETS0OhGiERkvB4/fox58+ap1LnkRUTmqMpXgRGR8VA369O8eXO89dZbEnRDRCQ9BiAiE6cu/MyYMYNL2kRk1hiAiEzUgwcPsHDhQpU6l7yIiBiAiEySulmf9u3bo0+fPhJ0Q0RkeBiAiEwMl7yIiJ6PAYjIRNy7dw9ffvmlSp1LXkREqhiAiEyAulmfLl26oFu3bhJ0Q0Rk+BiAiIycuvDDWR8iomdjACIyUrm5uVi5cqVKneGHiOj5GICIjERiIhAfD0yZApw6pTrr06tXL3To0EGCzoiIjA8DEJGRiI8HUlPVhx/O+hARaYYBiMhITJyYhZCQdSp1hh8iIs0xABEZAXUbnQcNGoTWrVtL0A0RkfFjACIycLzKi4hI+xiAiAzU5cuXsXHjRpU6ww8RUfUxABEZIHWzPn5+72DFihfQrh3Qv78ETRERmRALqRsgoicSE4HOnSte8lqx4gWkpj65GoyIiKqHAYjIQHzzzVmEhFS832fKFKBTpye/EhFR9cgEQRCkbsLQFBYWwsnJCQUFBXB0dJS6HTID6mZ9IiIi0LBhQwm6ISIyTpr8/OYeICKJ8SovIiL9YwAiksiZM2ewfft2lTrDDxGR7jEAEUlA3azPhAkTULduXQm6ISIyPwxARHrGJS8iIukxABHpyddf/4m//96rUmf4ISLSPwYgIj1QN+sTGRkJJycnCbohIiIGICIdEgQBs2bNUqlz1oeISFoMQEQ6cvz4cfz888+imqenJ0aPHi1RR0RE9BQDEJEOqFvy+uSTT1CrVi0JuiEion9jACLSIi55EREZBwYgIi05dOgQkpOTRbUmTZpg2LBhEnVEREQVYQAi0gJ1S17R0dGwsrKSoBsiInoeBiCialAoFJg9e7ZKnUteRESGjQGIqIr27duHw4cPi2pt27bFgAEDJOqIiIgqiwGIqArULXl99tlnqFGD/0kRERkD/mtNpAG5XI45c+ao1LnkRURkXBiAiCopMTERp06dEtU6deqE119/XaKOiIioqhiAiCpB3ZLX9OnTYWFhIUE3RERUXQxARM9QWlqKuLg4lTqXvIiIjBsDEFEFEhISkJGRIap169YNXbp0kagjIiLSFgYgIjXULXnNmDEDMplMgm6IiEjbGICI/uHx48eYN2+eSp1LXkREpoUBiOj/W7duHbKyskS13r17IzAwUKKOiIhIVxiAiMAlLyIic8MARGatqKgICxYsUKlzyYuIyLRJfhOT5cuXw8fHBzY2NggKCsLRo0crPDY9PR2DBw+Gj48PZDIZFi9erHLMwYMH0a9fP3h4eEAmk2HHjh26a56M2rJly1TCzxtvvMHwQ0RkBiQNQAkJCYiKikJMTAxOnjwJf39/hISE4Pbt22qPLy4uhp+fH+Lj4+Hu7q72mKKiIvj7+2P58uW6bJ2MXGxsLO7evSuqxcTEoE2bNhJ1RERE+iRpAFq4cCHGjBmDiIgItGjRAitXroStrS3Wrl2r9vjAwEDMnz8fb7/9NqytrdUe06tXL8yZMwdvvPGGLlsnI5GYCHTu/ORXAHj48KHa/T6c9SEiMi+S7QEqLS3FiRMnEB0draxZWFigR48eSE1NlaotMjHx8UBq6pNfCwq+w19//SV63s/vbbz7blOJuiMiIqlIFoDu3LkDuVwONzc3Ud3NzU3l7ru6VlJSgpKSEuXjwsJCvb4+6c6UKU/CT0hILP6VfTjrQ0RkxiTfBG0I4uLi4OTkpPzy8vKSuiXSki5d8hESIl7ykslkDD9ERGZOshmgunXrwtLSErm5uaJ6bm5uhRucdSU6OhpRUVHKx4WFhQxBJmD37t04duyYqPbee++hfv36EnVERESGQrIZICsrKwQEBCA5OVlZUygUSE5ORqdOnfTai7W1NRwdHUVfZFz+vdk5NjZWJfzExMQw/BAREQCJb4QYFRWFsLAwtG/fHh06dMDixYtRVFSEiIgIAEBoaCg8PT0RFxcH4MnG6fPnzyt/f/PmTaSlpcHe3h6NGzcG8OQqnytXrihfIzMzE2lpaahTpw4aNmyo53dI+vJ0s/OiRYU4dWqR6LlWrVph8ODBEnVGRESGSCYIgiBlA8uWLcP8+fORk5ODtm3bYunSpQgKCgIAdO3aFT4+Pli/fj0A4Nq1a/D19VUZIzg4GCkpKQCAlJQUdOvWTeWYsLAw5TjPU1hYCCcnJxQUFHA2yEgkJgK7du2Ap+dpUT0yMhJOTk4SdUVERPqkyc9vyQOQIWIAMj68tw8REWny85ufBUZG7f79+1i6dKmoFhAQgL59+0rUERERGQMGIDJamzdvxsWLF0W1yZMnw97eXqKOiIjIWDAAkVHikhcREVUHAxAZlby8PHz11VeiWufOnfHaa69J1BERERkjBiAyGuvXr8f169dFtY8//hi2trYSdURERMaKAYiMApe8iIhImxiAyKDl5ORg1apVolrXrl0RHBwsUUdERGQKGIDIYK1cuVLls+KmTJkCa2triToiIiJTwQBEBolLXkREpEsMQGRQ/v77b3z99dei2uuvv673D8glIiLTxgBEBmPx4sUoKCgQ1aZOnYqaNWtK1BEREZkqBiCSnCAImDVrlkqdS15ERKQrDEAkqczMTHz77beiWt++fREQECBRR0REZA4YgEgycXFxKC0tFdU+++wz1KjBv5ZERKRb/ElDesclLyIikhoDEOnVpUuXsGnTJlFt0KBBaN26tUQdERGROWIAIr1Rd2+f6dOnw8LCQoJuiIjInDEAkc4pFArMnj1bpc4lLyIikgoDEOlUeno6tm7dKqoNHToUzZo1k6gjIiIiBiDSIS55ERGRoWIAIq2Ty+WYM2eOqGZhYYHp06dL1BEREZEYAxBpVVpaGnbu3CmqjRgxAo0aNZKoIyIiIlUMQKQ16pa8ZsyYAZlMJkE3REREFWMAomorKyvD3LlzRTV7e3tMnjxZoo6IiIiejQGIquXo0aPYs2ePqBYeHg5vb2+JOiIiIno+BiCqMi55ERGRsWIAIo2VlpYiLi5OVHNxccHEiRMl6oiIiEgzDECkkUOHDiE5OVlUGzNmDDw8PCTqiIiISHMMQPRciYlAfDwQEqK65MWPsyAiImPEAETPtWDBY4SEzBPVGjRogFGjRknUERERUfUwANEzZWRk4NVXE0S1999/H25ubhJ1REREVH0MQFShZcuW4e7du6Ial7yIiMgUMACR0tO9Ph9/XIIzZ+JFz4WEhKBjx44SdUZERKRdDECkFB8PFBaew5kz20T1yZMnw97eXqKuiIiItI8BiJT69l2IsrIHysf8BHciIjJVDEAEuVyOrVu3isJP3759ERAQIGFXREREusMAZOby8/OxdetW3Lx5U1n7+OOPYWtrK2FXREREusUAZMYyMjKwc+dOPH78GDY2NhgwYACaNWsmdVtEREQ6xwBkhsrLy7Fv3z4cPXoUwJObGg4ePBjOzs7SNkZERKQnDEBm5t69e9i6dSuys7MBAJ07d0b37t1haWkpcWdERET6wwBkRtLT0/HTTz+hpKQEtWrVwsCBA9GkSROp2yIiItI7BiAzUF5ejqSkJBw/fhwA0LBhQwwePBiOjo4Sd0ZERCQNBiATd/fuXfzwww/Izc0FALz88svo1q0bLCwsJO6MiIhIOgxAJuzs2bPYtWsXSktLYWtri0GDBqFRo0ZSt0VERCQ5BiATVFZWhj179uDUqVMAAB8fHwwaNAgODg4Sd0ZERGQYGIBMTF5eHrZu3Yrbt28DAIKDg9GlSxcueREREf0DA5AJSUtLw+7du1FWVgZ7e3sMGjQIvr6+UrdFRERkcBiATEBpaSl2796N06dPAwD8/Pzwxhtv8BPciYiIKsAAZORu376NH374AXfu3IFMJkPXrl3x8ssvc8mLiIjoGQzip+Ty5cvh4+MDGxsbBAUFKT+iQZ309HQMHjwYPj4+kMlkWLx4cbXHNEaCIODkyZNYvXo17ty5AwcHB4SFhXG/DxERUSVI/pMyISEBUVFRiImJwcmTJ+Hv74+QkBDlJt5/Ky4uhp+fH+Lj4+Hu7q6VMY1NSUkJtm/fjp9++gnl5eVo3Lgxxo4dC29vb6lbIyIiMgoyQRAEKRsICgpCYGAgli1bBgBQKBTw8vLCBx98gClTpjzze318fBAZGYnIyEitjQkAhYWFcHJyQkFBgcHdLTknJwdbt27F3bt3IZPJ8Oqrr6Jz586QyWRSt0ZERCQpTX5+SzoDVFpaihMnTqBHjx7KmoWFBXr06IHU1FSDGdMQCIKAY8eOYc2aNbh79y4cHR0RERGBl156ieGHiIhIQ5Jugr5z5w7kcjnc3NxEdTc3N2RkZOhtzJKSEpSUlCgfFxYWVum1deXx48fYtWsX0tPTAQBNmjTBgAEDYGtrK3FnRERExolXgQGIi4tDbGys1G2odevWLWzduhX3799XzmR17NiRsz5ERETVIGkAqlu3LiwtLZUf1PlUbm5uhRucdTFmdHQ0oqKilI8LCwvh5eVVpdfXFkEQcPToUezbtw9yuRzOzs4YMmQIPD09Je2LiIjIFEi6B8jKygoBAQFITk5W1hQKBZKTk9GpUye9jWltbQ1HR0fRl5QePXqELVu2YO/evZDL5WjWrBnGjh3L8ENERKQlki+BRUVFISwsDO3bt0eHDh2wePFiFBUVISIiAgAQGhoKT09PxMXFAXiyyfn8+fPK39+8eRNpaWmwt7dH48aNKzWmIfv777+xbds25Ofnw9LSEq+//joCAwO55EVERKRFkgegoUOHIi8vDzNmzEBOTg7atm2LvXv3KjcxZ2VliW7sd+vWLbRr1075eMGCBViwYAGCg4ORkpJSqTENkSAISE1NRXJyMhQKBWrXro0hQ4bAw8ND6taIiIhMjuT3ATJE+r4PUHFxMXbu3IlLly4BAFq2bIm+ffvCxsZG569NRERkKjT5+S35DJC5y8rKwrZt21BYWAhLS0v07NkTAQEBXPIiIiLSIQYgiQiCgD/++AO//fYbBEGAi4sLhgwZUuWr34iIiKjyGIAkUFRUhB07duDKlSsAgNatW6NPnz6wtraWuDMiIiLzwACkZ9evX8e2bdvw4MED1KhRA71790bbtm255EVERKRHDEB6dPz4cfz8824AAmxs6iIi4k3Uq1dP6raIiIjMjqQ3QjQ3Hh4eUChkOHWqLXbtGsPwQ0REJBEGID3y8PBAy5bjcPv2AHz8sZXU7RAREZkt3gdIDX3fB4iIiIiqT5Of35wBIiIiIrPDAERERERmhwGIiIiIzA4DEBEREZkdBiAiIiIyOwxAREREZHYYgIiIiMjsMAARERGR2WEAIiIiIrPDAERERERmhwGIiIiIzA4DEBEREZkdBiAiIiIyOzWkbsAQCYIA4MmnyhIREZFxePpz++nP8WdhAFLjwYMHAAAvLy+JOyEiIiJNPXjwAE5OTs88RiZUJiaZGYVCgVu3bsHBwQEymUzqdpQKCwvh5eWFGzduwNHRUep2jA7PX/XxHFYfz2H18PxVnymfQ0EQ8ODBA3h4eMDC4tm7fDgDpIaFhQUaNGggdRsVcnR0NLm/tPrE81d9PIfVx3NYPTx/1Weq5/B5Mz9PcRM0ERERmR0GICIiIjI7DEBGxNraGjExMbC2tpa6FaPE81d9PIfVx3NYPTx/1cdz+AQ3QRMREZHZ4QwQERERmR0GICIiIjI7DEBERERkdhiAiIiIyOwwAElo+fLl8PHxgY2NDYKCgnD06NEKj01PT8fgwYPh4+MDmUyGxYsXV3tMU6Dtc3jw4EH069cPHh4ekMlk2LFjh+6aNwDaPn9xcXEIDAyEg4MD6tWrh4EDB+LixYs6fAfS0/Y5XLFiBdq0aaO8SV2nTp2wZ88eHb4D6eni38Kn4uPjIZPJEBkZqd2mDYi2z9/MmTMhk8lEX82aNdPhO5AGA5BEEhISEBUVhZiYGJw8eRL+/v4ICQnB7du31R5fXFwMPz8/xMfHw93dXStjGjtdnMOioiL4+/tj+fLlumzdIOji/B04cAATJkzAkSNHsG/fPpSVleH1119HUVGRLt+KZHRxDhs0aID4+HicOHECx48fR/fu3TFgwACkp6fr8q1IRhfn8Kljx45h1apVaNOmjS5aNwi6On8tW7ZEdna28uvQoUO6egvSEUgSHTp0ECZMmKB8LJfLBQ8PDyEuLu653+vt7S0sWrRIq2MaI12cw38CIGzfvr2aXRouXZ8/QRCE27dvCwCEAwcOVKdVg6WPcygIglC7dm1hzZo1VW3ToOnqHD548EB44YUXhH379gnBwcHChx9+qKWODYsuzl9MTIzg7++vxS4NE2eAJFBaWooTJ06gR48eypqFhQV69OiB1NRUgxnTkJnb+9U2fZ2/goICAECdOnW0Nqah0Mc5lMvl2Lx5M4qKitCpUyetjGlIdHkOJ0yYgD59+ojGNjW6PH+XL1+Gh4cH/Pz8MHz4cGRlZVW3XYPDACSBO3fuQC6Xw83NTVR3c3NDTk6OwYxpyMzt/WqbPs6fQqFAZGQkXnrpJbRq1UorYxoSXZ7Ds2fPwt7eHtbW1nj//fexfft2tGjRolpjGiJdncPNmzfj5MmTiIuLq26LBk1X5y8oKAjr16/H3r17sWLFCmRmZuKVV17BgwcPqtuyQeGnwRORTkyYMAHnzp0zzb0DOta0aVOkpaWhoKAAW7duRVhYGA4cOGCSIUjbbty4gQ8//BD79u2DjY2N1O0YpV69eil/36ZNGwQFBcHb2xtbtmzBqFGjJOxMuxiAJFC3bl1YWloiNzdXVM/NzX3upj59jmnIzO39apuuz9/EiROxa9cuHDx4EA0aNKj2eIZIl+fQysoKjRs3BgAEBATg2LFjWLJkCVatWlWtcQ2NLs7hiRMncPv2bbz44ovKmlwux8GDB7Fs2TKUlJTA0tKyWn0bCn39O+js7IwmTZrgypUrWhvTEHAJTAJWVlYICAhAcnKysqZQKJCcnFzldX5djGnIzO39apuuzp8gCJg4cSK2b9+O3377Db6+vtpo1yDp8++gQqFASUmJVsc0BLo4h6+++irOnj2LtLQ05Vf79u0xfPhwpKWlmUz4AfT3d/Dhw4e4evUq6tevr7UxDQFngCQSFRWFsLAwtG/fHh06dMDixYtRVFSEiIgIAEBoaCg8PT2Va9ilpaU4f/688vc3b95EWloa7O3tlf+n+LwxTY0uzuHDhw9F/5eTmZmJtLQ01KlTBw0bNtTzO9QtXZy/CRMmYOPGjdi5cyccHByU+xCcnJxQq1YtCd6lbuniHEZHR6NXr15o2LAhHjx4gI0bNyIlJQVJSUnSvEkd0/Y5dHBwUNlzZmdnBxcXF5Pci6aLv4MfffQR+vXrB29vb9y6dQsxMTGwtLTEsGHDpHmTuiL1ZWjm7MsvvxQaNmwoWFlZCR06dBCOHDmifC44OFgICwtTPs7MzBQAqHwFBwdXekxTpO1zuH//frXH/HMcU6Lt86fueQDCunXr9Pem9Ezb53DkyJGCt7e3YGVlJbi6ugqvvvqq8Msvv+jxHemfLv4t/CdTvgxeELR//oYOHSrUr19fsLKyEjw9PYWhQ4cKV65c0eM70g+ZIAiCztIVERERkQHiHiAiIiIyOwxAREREZHYYgIiIiMjsMAARERGR2WEAIiIiIrPDAERERERmhwGIiIiIzA4DEBEREZkdBiAiMmrh4eEYOHCgSj0lJQUymQz5+flISUnBgAEDUL9+fdjZ2aFt27bYsGGDyvfcu3cPkZGR8Pb2hpWVFTw8PDBy5EhkZWXp4Z0QkT4xABGRyTt8+DDatGmDbdu24cyZM4iIiEBoaCh27dqlPObevXvo2LEjfv31V6xcuRJXrlzB5s2bceXKFQQGBuKvv/6S8B0QkbbxozCIyKiFh4cjPz8fO3bsENVTUlLQrVs33L9/H87Ozirf16dPH7i5uWHt2rUAgHHjxuG7777DlStX4O7urjzu0aNHeOGFF9C6dWvs2bNHl2+FiPSIM0BEZJYKCgpQp04dAIBCocDmzZsxfPhwUfgBgFq1amH8+PFISkrCvXv3pGiViHSghtQNEBFV165du2Bvby+qyeXyCo/fsmULjh07hlWrVgEA8vLykJ+fj+bNm6s9vnnz5hAEAVeuXEGHDh201zgRSYYBiIiMXrdu3bBixQpR7c8//8SIESNUjt2/fz8iIiKwevVqtGzZUvQcdwQQmQ8GICIyenZ2dmjcuLGo9vfff6scd+DAAfTr1w+LFi1CaGiosu7q6gpnZ2dcuHBB7fgXLlyATCZTeQ0iMl7cA0REZiElJQV9+vTBvHnz8N5774mes7CwwFtvvYWNGzciJydH9NyjR4/w1VdfISQkRLlniIiMHwMQEZm8/fv3o0+fPpg0aRIGDx6MnJwc5OTkiDY1z507F+7u7njttdewZ88e3LhxAwcPHkRISAjKysqwfPlyCd8BEWkbAxARmbxvvvkGxcXFiIuLQ/369ZVfgwYNUh7j4uKCI0eOoFu3bhg7diwaNWqEt956C40aNcKxY8fg5+cn4TsgIm3jfYCIiIjI7HAGiIiIiMwOAxARERGZHQYgIiIiMjsMQERERGR2GICIiIjI7DAAERERkdlhACIiIiKzwwBEREREZocBiIiIiMwOAxARERGZHQYgIiIiMjsMQERERGR2/h9IIhcQ8UX7PAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATzZJREFUeJzt3XlcVPX+P/DXzLCDgiuLoiCWWwoqSlq5FIZeE5frjUxlsWxRc8ENXCBX0BAX3MoyzUzte1PkWolXxNTELE3NRFwSTWVzAQQUcOb8/vDn3E4zKAMznFlez8eDx73znjOH9zla8+rzOedzZIIgCCAiIiKyIHKpGyAiIiKqawxAREREZHEYgIiIiMjiMAARERGRxWEAIiIiIovDAEREREQWhwGIiIiILA4DEBEREVkcBiAiIiKyOAxARGSyZDIZPvzwQ6nbUAsPD4eXl5fUbRBRNTAAEZFebdq0CTKZTP1jZ2eHZ599FhMmTEBeXp5Bf/fRo0fx4YcforCwUK/77dOnj+iYGjZsiG7dumHjxo1QqVR6+R2LFy9GcnKyXvZFRE9nJXUDRGSe5s+fD29vbzx48ABHjhzBunXr8N133+Hs2bNwcHDQy++4f/8+rKz+96+xo0ePYt68eQgPD4eLi4tefsdjzZs3R1xcHACgoKAAX3zxBd566y1cuHAB8fHxtd7/4sWLMXz4cAwZMqTW+yKip2MAIiKDGDBgAPz9/QEAb7/9Nho1aoTExETs3r0bI0aMqPF+VSoVKioqYGdnBzs7O321+1TOzs4YNWqU+vW7776LNm3aYPXq1ViwYAGsra3rrBciqj1OgRFRnXj55ZcBAFeuXAEAJCQkoGfPnmjUqBHs7e3RtWtX/Pvf/9b4nEwmw4QJE7B161Z06NABtra22Lt3r/q9x9cAffjhh5g+fToAwNvbWz1dlZ2djd69e8PX11drX23atEFQUJDOx+Pg4IDnn38epaWlKCgoqHK70tJSTJ06FZ6enrC1tUWbNm2QkJAAQRBEx1haWorNmzer+w4PD9e5JyKqPo4AEVGduHz5MgCgUaNGAICVK1ciODgYI0eOREVFBbZv345//etf2LNnDwYOHCj67IEDB/D1119jwoQJaNy4sdYLjYcNG4YLFy5g27ZtWL58ORo3bgwAaNKkCUaPHo2xY8fi7NmzeO6559Sf+fnnn3HhwgXMmTOnRsf0xx9/QKFQVDndJggCgoODkZ6ejrfeegt+fn5ITU3F9OnTcePGDSxfvhwAsGXLFrz99tvo3r073nnnHQCAj49PjXoiomoSiIj06PPPPxcACPv37xcKCgqEP//8U9i+fbvQqFEjwd7eXrh+/bogCIJQVlYm+lxFRYXw3HPPCS+//LKoDkCQy+XC77//rvG7AAixsbHq1x999JEAQLhy5Ypou8LCQsHOzk6YOXOmqD5x4kTB0dFRKCkpeeIx9e7dW2jbtq1QUFAgFBQUCJmZmcLEiRMFAMKgQYPU24WFhQktW7ZUv05OThYACAsXLhTtb/jw4YJMJhMuXbqkrjk6OgphYWFP7IOI9IdTYERkEIGBgWjSpAk8PT3xxhtvwMnJCbt27UKzZs0AAPb29upt7969i6KiIrz00ks4efKkxr569+6N9u3b17gXZ2dnDB48GNu2bVNPPSmVSuzYsQNDhgyBo6PjU/dx/vx5NGnSBE2aNEG7du2QlJSEgQMHYuPGjVV+5rvvvoNCocDEiRNF9alTp0IQBHz//fc1PiYiqh1OgRGRQaxZswbPPvssrKys4OrqijZt2kAu/99/c+3ZswcLFy7EqVOnUF5erq7LZDKNfXl7e9e6n9DQUOzYsQOHDx9Gr169sH//fuTl5WH06NHV+ryXlxc2bNigvrX/mWeeQdOmTZ/4matXr8LDwwP16tUT1du1a6d+n4ikwQBERAbRvXt39V1gf3f48GEEBwejV69eWLt2Ldzd3WFtbY3PP/8cX331lcb2fx0tqqmgoCC4urriyy+/RK9evfDll1/Czc0NgYGB1fq8o6NjtbclIuPHKTAiqnPffPMN7OzskJqaijFjxmDAgAF6CRfaRo8eUygUePPNN/Hvf/8bd+/eRXJyMkaMGAGFQlHr31uVli1b4ubNm7h3756ofv78efX7jz2pdyLSPwYgIqpzCoUCMpkMSqVSXcvOzq71SsiPr+WpaiXo0aNH4+7du3j33XdRUlIiWtfHEP7xj39AqVRi9erVovry5cshk8kwYMAAdc3R0VHvK1gTUdU4BUZEdW7gwIFITExE//798eabbyI/Px9r1qxB69atcebMmRrvt2vXrgCA2bNn44033oC1tTUGDRqkDkadO3fGc889h//7v/9Du3bt0KVLF70cT1UGDRqEvn37Yvbs2cjOzoavry/27duH3bt3Y/LkyaJb3bt27Yr9+/cjMTERHh4e8Pb2RkBAgEH7I7JkHAEiojr38ssv47PPPkNubi4mT56Mbdu2YcmSJRg6dGit9tutWzcsWLAAp0+fRnh4OEaMGKGxSGFoaCgAVPvi59qQy+VISUnB5MmTsWfPHkyePBnnzp3DRx99hMTERNG2iYmJ6Nq1K+bMmYMRI0Zg3bp1Bu+PyJLJBOEvy5ESEZm5lStXYsqUKcjOzkaLFi2kboeIJMIAREQWQxAE+Pr6olGjRkhPT5e6HSKSEK8BIiKzV1paipSUFKSnp+O3337D7t27pW6JiCTGESAiMnvZ2dnw9vaGi4sLxo0bh0WLFkndEhFJjAGIiIiILA7vAiMiIiKLwwBEREREFocXQWuhUqlw8+ZN1KtXj8vTExERmQhBEHDv3j14eHiIHr6sDQOQFjdv3oSnp6fUbRAREVEN/Pnnn2jevPkTt2EA0qJevXoAHp3A+vXrS9wNERERVUdxcTE8PT3V3+NPwgCkxeNpr/r16zMAERERmZjqXL7Ci6CJiIjI4jAAERERkcVhACIiIiKLw2uAakGpVKKyslLqNsjArK2toVAopG6DiIj0iAGoBgRBQG5uLgoLC6VuheqIi4sL3NzcuC4UEZGZYACqgcfhp2nTpnBwcOCXohkTBAFlZWXIz88HALi7u0vcERER6QMDkI6USqU6/DRq1EjqdqgO2NvbAwDy8/PRtGlTTocREZkBXgSto8fX/Dg4OEjcCdWlx3/evOaLiMg8MADVEKe9LAv/vImIzAsDEBEREVkcBiAiIiKyOAxAFiQ8PBwymQwymQzW1tZwdXVFv379sHHjRqhUqmrvZ9OmTXBxcTFco0RERAbGAGRh+vfvj5ycHGRnZ+P7779H3759MWnSJLz22mt4+PCh1O0REZEFMIYbShiALIytrS3c3NzQrFkzdOnSBbNmzcLu3bvx/fffY9OmTQCAxMREdOzYEY6OjvD09MS4ceNQUlICADh48CAiIiJQVFSkHk368MMPAQBbtmyBv78/6tWrBzc3N7z55pvq9XOIiIiKi4sxb948LF68GJmZmZL2wgCkB4IgoKKios5/BEHQS/8vv/wyfH19sXPnTgCAXC7HqlWr8Pvvv2Pz5s04cOAAZsyYAQDo2bMnVqxYgfr16yMnJwc5OTmYNm0agEeJfsGCBTh9+jSSk5ORnZ2N8PBwvfRIRESm7ddff8Xy5cvVr21tbSXshgsh6kVlZSXi4uLq/PdGR0fDxsZGL/tq27Ytzpw5AwCYPHmyuu7l5YWFCxfivffew9q1a2FjYwNnZ2fIZDK4ubmJ9jFmzBj1/2/VqhVWrVqFbt26oaSkBE5OTnrpk4iITIsgCFi3bh0KCgrUtX79+qFVq1YSdsURIPr/BEFQr3Wzf/9+vPLKK2jWrBnq1auH0aNH4/bt2ygrK3viPk6cOIFBgwahRYsWqFevHnr37g0AuHbtmsH7JyIi41NYWIj58+eLwk+7dhMwbVpPpKRI2Bg4AqQX1tbWiI6OluT36ktmZia8vb2RnZ2N1157De+//z4WLVqEhg0b4siRI3jrrbdQUVFR5QrYpaWlCAoKQlBQELZu3YomTZrg2rVrCAoKQkVFhd76JCIi0/Dzzz/ju+++U792dnbGpEmT8MILMmRkAPHxQHCwdP0xAOmBTCbT21SUFA4cOIDffvsNU6ZMwYkTJ6BSqbBs2TLI5Y8GCL/++mvR9jY2NlAqlaLa+fPncfv2bcTHx8PT0xMA8Msvv9TNARARkdEQBAGrVq1CYWGhujZgwAB0794dABAV9Sj8REVJ1OD/xwBkYcrLy5GbmwulUom8vDzs3bsXcXFxeO211xAaGoqzZ8+isrISSUlJGDRoEH788UesX79etA8vLy+UlJQgLS0Nvr6+cHBwQIsWLWBjY4OkpCS89957OHv2LBYsWCDRURIRkRTu3LmDpKQkUW3SpEmiteOCg6Ud+XmM1wBZmL1798Ld3R1eXl7o378/0tPTsWrVKuzevRsKhQK+vr5ITEzEkiVL8Nxzz2Hr1q0aF3j37NkT7733HkJCQtCkSRMsXboUTZo0waZNm/B///d/aN++PeLj45GQkCDRURIRUV3LyMgQhZ/GjRsjJibGaBfOlQn6upfajBQXF8PZ2RlFRUWoX7++6L0HDx7gypUr8Pb2hp2dnUQdUl3jnzsRkXaPL5v4640ygwYNQpcuXeq8lyd9f/8dp8CIiIioRm7duoU1a9aIalOmTHlq+DAGDEBERESks8OHD+PAgQPq1x4eHnj77bfVS6oYOwYgIiIiqjaVSoX4+HjR87yGDh2KTp06SdiV7hiAiIiIqFry8vI07gyeOnWqSa72zwBERERET3XgwAEcPnxY/bply5YICwszmSmvv2MAIiIioioplUosXLhQVPvXv/6F9u3bS9SRfjAAERERkVY3b97Ehg0bRLXp06dX+VgkU8IARERERBr27duHjIwM9evWrVtj5MiREnakXwxAREREpPbw4UMsWrRIVHvjjTfQpk0biToyDD4Kg/QuPDwcQ4YMUb/u06cPJk+eXKt96mMfRET0ZNevX9cIPzNmzDC78ANwBMiihIeHY/PmzQAAa2trtGjRAqGhoZg1axasrAz3V2Hnzp2wtrau1rYHDx5E3759cffuXdHzY3TZBxER6e7bb7/FL7/8on7drl07vP766xJ2ZFhGMQK0Zs0aeHl5wc7ODgEBATh+/HiV2+7cuRP+/v5wcXGBo6Mj/Pz8sGXLliq3f++99yCTybBixQoDdG56+vfvj5ycHFy8eBFTp07Fhx9+iI8++khju4qKCr39zoYNG6JevXqS74OIiDRVVlZi3rx5ovAzcuRIsw4/gBEEoB07diAyMhKxsbE4efIkfH19ERQUhPz8fK3bN2zYELNnz0ZGRgbOnDmDiIgIREREIDU1VWPbXbt24dixY/Dw8DD0YZgMW1tbuLm5oWXLlnj//fcRGBiIlJQU9bTVokWL4OHhoR7u/PPPP/H666/DxcUFDRs2xODBg5Gdna3en1KpRGRkJFxcXNCoUSPMmDEDf3++7t+nr8rLyzFz5kx4enrC1tYWrVu3xmeffYbs7Gz07dsXANCgQQPIZDKEh4dr3cfdu3cRGhqKBg0awMHBAQMGDMDFixfV72/atAkuLi5ITU1Fu3bt4OTkpA5/jx08eBDdu3eHo6MjXFxc8MILL+Dq1at6OtNERMbv6tWrWLx4sagWFRWF1q1bS9RR3ZE8ACUmJmLs2LGIiIhA+/btsX79ejg4OGDjxo1at+/Tpw+GDh2Kdu3awcfHB5MmTUKnTp1w5MgR0XY3btzABx98gK1bt3Lq5Ans7e3Voz1paWnIysrCf//7X+zZsweVlZUICgpCvXr1cPjwYfz444/qIPH4M8uWLcOmTZuwceNGHDlyBHfu3MGuXbue+DtDQ0Oxbds2rFq1CpmZmfj444/h5OQET09PfPPNNwCArKws5OTkYOXKlVr3ER4ejl9++QUpKSnIyMiAIAj4xz/+IVqavaysDAkJCdiyZQsOHTqEa9euYdq0aQAeXeQ3ZMgQ9O7dG2fOnEFGRgbeeecdk13Qi4hIV7t378amTZvUrzt16oTY2FjY2tpK11QdkvQaoIqKCpw4cQLR0dHqmlwuR2BgoOjWu6oIgoADBw4gKysLS5YsUddVKhVGjx6N6dOno0OHDk/dT3l5OcrLy9Wvi4uLdTwS0yMIAtLS0pCamooPPvgABQUFcHR0xKeffgobGxsAwJdffgmVSoVPP/1UHQw+//xzuLi44ODBg3j11VexYsUKREdHY9iwYQCA9evXax2Ne+zChQv4+uuv8d///heBgYEAgFatWqnfb9iwIQCgadOmomuA/urixYtISUnBjz/+iJ49ewIAtm7dCk9PTyQnJ+Nf//oXgEfDuuvXr4ePjw8AYMKECZg/fz6AR3/GRUVFeO2119Tvt2vXTvcTSURkYsrLyxEfHy+qhYaGwtvbW6KOpCHpCNCtW7egVCrh6uoqqru6uiI3N7fKzxUVFcHJyQk2NjYYOHAgkpKS0K9fP/X7S5YsgZWVFSZOnFitPuLi4uDs7Kz+8fT0rNkB6SglBejZ89H/1pU9e/bAyckJdnZ2GDBgAEJCQvDhhx8CADp27KgOPwBw+vRpXLp0CfXq1YOTkxOcnJzQsGFDPHjwAJcvX0ZRURFycnIQEBCg/oyVlRX8/f2r/P2nTp2CQqFA7969a3wMmZmZsLKyEv3eRo0aoU2bNsjMzFTXHBwc1OEGANzd3dVTqw0bNkR4eDiCgoIwaNAgrFy5UjQ9RkRkjv744w+N8BMdHW1x4Qcw0bvA6tWrh1OnTqGkpARpaWmIjIxEq1at0KdPH5w4cQIrV67EyZMnqz2dER0djcjISPXr4uLiOglB8fFARsaj/w0ONvivAwD07dsX69atg42NDTw8PER3fzk6Ooq2LSkpQdeuXbF161aN/TRp0qRGv9/e3r5Gn6uJv099ymQy0fVJn3/+OSZOnIi9e/dix44dmDNnDv773//i+eefr7MeiYjqyr///W/8/vvv6tddunTBoEGDJOxIWpKOADVu3BgKhQJ5eXmiel5eHtzc3Kr8nFwuR+vWreHn54epU6di+PDhiIuLAwAcPnwY+fn5aNGiBaysrGBlZYWrV69i6tSp8PLy0ro/W1tb1K9fX/RTF6KigB49Hv1vXXF0dETr1q3V5+dJunTpgosXL6Jp06Zo3bq16OfxaJm7uzt++ukn9WcePnyIEydOVLnPjh07QqVS4YcfftD6/uMRKKVSWeU+2rVrh4cPH4p+7+3bt5GVlaXzs2k6d+6M6OhoHD16FM899xy++uornT5PRGTsHjx4gHnz5onCz5gxYyw6/AASByAbGxt07doVaWlp6ppKpUJaWhp69OhR7f2oVCr1NTyjR4/GmTNncOrUKfWPh4cHpk+f/sRrU6QQHAwcPVp3oz+6GjlyJBo3bozBgwfj8OHDuHLlCg4ePIiJEyfi+vXrAIBJkyYhPj4eycnJOH/+PMaNG4fCwsIq9+nl5YWwsDCMGTMGycnJ6n1+/fXXAB49XVgmk2HPnj0oKChASUmJxj6eeeYZDB48GGPHjsWRI0dw+vRpjBo1Cs2aNcPgwYOrdWxXrlxBdHQ0MjIycPXqVezbtw8XL17kdUBEZFYuXLggukYWAGbNmlVnl3oYM8mnwCIjIxEWFgZ/f390794dK1asQGlpKSIiIgA8ujCrWbNm6hGeuLg4+Pv7w8fHB+Xl5fjuu++wZcsWrFu3DsCja0EaNWok+h3W1tZwc3Mzy5UsDcnBwQGHDh3CzJkzMWzYMNy7dw/NmjXDK6+8oh4lmzp1KnJychAWFga5XI4xY8Zg6NChKCoqqnK/69atw6xZszBu3Djcvn0bLVq0wKxZswAAzZo1w7x58xAVFYWIiAiEhoaK7lJ47PPPP8ekSZPw2muvoaKiAr169cJ3331X7Tv+HBwccP78eWzevBm3b9+Gu7s7xo8fj3fffVf3E0VEZIS2bduGCxcuqF8HBASgf//+EnZkXGTC3xdtkcDq1avx0UcfITc3F35+fli1apX6Atc+ffrAy8tL/SU4Z84c7NixA9evX4e9vT3atm2LSZMmISQkpMr9e3l5YfLkydV+lEJxcTGcnZ1RVFSkMR324MEDXLlyBd7e3rCzs6vR8ZLp4Z87EZmKsrIyjQVux44daxFr4j3p+/vvjCIAGRsGIPo7/rkTkSnIzMxUX1Lw2OzZsw36uCNjoksAsowzQkREZOY2b94sWqn/hRdeUK+3RpoYgIiIiExYaWkpEhISRLV33333iXdTEwMQERGRyfrtt9+wc+dO9WuFQoHo6GgoFAoJuzINDEA1xEunLAv/vInImAiCgM8++ww3btxQ1/r06VOrVfYtDQOQjh7fZl1WVlanqxqTtMrKygBori5NRFTX7t27h8TERFFt3LhxNV6h31IxAOlIoVDAxcVF/UwpBwcHPkHcjAmCgLKyMuTn58PFxYXDykQkqV9//RUpf3mApL29PaZNmwa5XNJ1jU0SA1ANPL6w7HEIIvPn4uLCCwqJSDKCIGD9+vWi751+/fqhZ8+eEnZl2hiAakAmk8Hd3R1NmzZFZWWl1O2QgVlbW3Pkh4gkU1RUhBUrVohqEyZM0HjqAemGAagWFAoFvxiJiMhgfvnlF3z77bfq1/Xr18fkyZN56YUeMAAREREZGUEQsGrVKtHDpQcMGIDu3btL15SZYQAiIiIyInfu3EFSUpKoNmnSJLi4uEjTkJliACIiIjISx44dQ2pqqvp1o0aNMH78eE55GQADEBERkcRUKhUSExNRWlqqrr322mvo2rWrhF2ZNwYgIiIiCd26dQtr1qwR1aZMmfLUp5lT7TAAERERSeTw4cM4cOCA+rW7uzvGjh3LKa86wABERERUx1QqFeLj40VryQ0ZMgS+vr4SdmVZGICIiIjqUF5eHtavXy+qTZ06FU5OThJ1ZJkYgIiIiOpIeno6Dh06pH7dokULhIeHc8pLAgxAREREBqZUKrFw4UJRbfjw4ejQoYNEHREDEBERkQHl5OTgk08+EdWmTZsGR0dHiToigAGIiIjIYPbt24eMjAz1ax8fH4waNUrCjugxBiAiIiI9S05+iNOnF4lqISEhaNu2rUQd0d8xABEREenRTz/9hNOn94pqM2bMgL29vUQdkTYMQERERHoyb9480Wtn57aYPDlEom7oSRiAiIiIaqmsrAwfffSRqNarVy/07dtXoo7oaRiAiIiIauHvj7MA+CwvU8AAREREVEN/n/ICgNjYWAk6IV0xABEREemopKQEy5YtE9U45WVaGICIiIiqKSUF+OabNLRqdURU58KGpocBiIiIqJp+/XUeWrUS1zjlZZoYgIiIiJ4iPz8f69atE9UCAwPxwgsvSNQR1RYDEBER0ROsWrUKd+/eFdW4sKHpYwAiIiKqAu/yMl8MQERERH9z48YNfPrpp6Kan58fBg8eLFFHpG8MQERERH8RHx+P8vJyUW369OlwcHCQqCMyBAYgIiKi/49TXpaDAYiIiCxednY2Nm/eLKo9//zzCAoKkqgjMjQGICIismjaRn2ioqJga2srQTdUVxiAiIjIIgmCgPnz52vUOeVlGRiAiIjI4ly4cAHbtm0T1fr06YPevXtL1BHVNQYgIiKyKNqmvGbNmgVra2sJuiGpMAAREZFF4JQX/RUDEBERmb2zZ8/im2++EdWCgoLw/PPPS9QRSY0BiIiIzJq2Ka85c+ZAoVBI0A0ZC7nUDRAREelTSgrQsyewe7eqyoUNGX6II0BERGRW4uOB8vITOHVqj6geHByMzp07S9QVGRsGICIiMitBQZqjPnPnzoVczkkP+h8GICIiMguVlZVYvHixRp13eZE2DEBERGTy9uzZgxMnTohqw4cPR4cOHSTqiIwdAxAREZk0bRc6x8TEQCaTSdANmQoGICIiMknl5eWIj4/XqHPKi6qDAYiIiEzO119/jczMTFGNd3mRLhiAiIjIpHDKi/SB9wQSEZFRe7yw4c6dZVUubMjwQ7riCBARERm1+HigTZtN+O23q6L6v/71L7Rv316irsjUGcUI0Jo1a+Dl5QU7OzsEBATg+PHjVW67c+dO+Pv7w8XFBY6OjvDz88OWLVvU71dWVmLmzJno2LEjHB0d4eHhgdDQUNy8ebMuDoWIiPQsKGgevLzE4Sc2Npbhh2pF8gC0Y8cOREZGIjY2FidPnoSvry+CgoKQn5+vdfuGDRti9uzZyMjIwJkzZxAREYGIiAikpqYCAMrKynDy5EnMnTsXJ0+exM6dO5GVlYXg4OC6PCwiIqqlu3fvVjnlRVRbMkEQBCkbCAgIQLdu3bB69WoAgEqlgqenJz744ANERUVVax9dunTBwIEDsWDBAq3v//zzz+jevTuuXr2KFi1aPHV/xcXFcHZ2RlFREerXr1/9gyEiohpLSXk03RUVBfz6q2bwGTVqFHx8fCTojEyFLt/fko4AVVRU4MSJEwgMDFTX5HI5AgMDkZGR8dTPC4KAtLQ0ZGVloVevXlVuV1RUBJlMBhcXF63vl5eXo7i4WPRDRER1Kz4eyMjQHn5iY2MZfkivJL0I+tatW1AqlXB1dRXVXV1dcf78+So/V1RUhGbNmqG8vBwKhQJr165Fv379tG774MEDzJw5EyNGjKgyDcbFxWkdZiUiorozaVIegoLWa9Q55UWGYJJ3gdWrVw+nTp1CSUkJ0tLSEBkZiVatWqFPnz6i7SorK/H6669DEASsW7euyv1FR0cjMjJS/bq4uBienp6Gap+IiP5G23+Ejhw5Eq1bt5agG7IEkgagxo0bQ6FQIC8vT1TPy8uDm5tblZ+Ty+Xqfyj8/PyQmZmJuLg4UQB6HH6uXr2KAwcOPHEu0NbWFra2trU7GCIiqhFe6ExSkPQaIBsbG3Tt2hVpaWnqmkqlQlpaGnr06FHt/ahUKpSXl6tfPw4/Fy9exP79+9GoUSO99k1ERLV3+fJlhh+SjORTYJGRkQgLC4O/vz+6d++OFStWoLS0FBEREQCA0NBQNGvWDHFxcQAeXa/j7+8PHx8flJeX47vvvsOWLVvUU1yVlZUYPnw4Tp48iT179kCpVCI3NxfAo1vobWxspDlQIiIL97S7vEaPHo1WrVpJ0BlZIskDUEhICAoKChATE4Pc3Fz4+flh79696gujr127Brn8fwNVpaWlGDduHK5fvw57e3u0bdsWX375JUJCQgAAN27cQEpKCoBH02N/lZ6ernGdEBER1Y2n3eVFVJckXwfIGHEdICIi/du8+Syys7/RqDP8kL7o8v0t+QgQERGZP23X+rz99tto1qyZBN0QMQAREZGB8UJnMkYMQEREZBCnTp3C7t27NeoMP2QMGICIiEhvHt/pFRSkOeozYcIELktCRoMBiIiI9Kaq8MNRHzI2DEBERKQX+/fvR1DQjxp1hh8yRgxARERUa9oudJ4yZQqXEiGjxQBEREQ1JggC5s+fr1HnqA8ZOwYgIiKqkd27d+PUqVMadYYfMgUMQEREpDNtU17Tpk2Do6OjBN0Q6Y4BiIiIqk2lUmHBggUadY76kKlhACIiomrZsmUL/vjjD1HN2toas2bNkqgjoppjACIioqfSNuUVFRUFW1tbCbohqj251A0QEZHxSUkBevYEkpMfVvksL4YfMmUcASIiIg3x8UDnzmtx+nSBqN64cWOMHz9eoq6I9IcBiIiINGh7nMXs2bNhZcWvDTIPnAIjIiL1lNeuXeVVTnkx/JA54d9mIiLCzJnAsGGLceZMpajeqlUrjB49WqKuiAyHAYiIiPDGG5qjPnPnzoVczokCMk8MQEREFuz+/ftYunSpRp0LG5K5YwAiIrJQCQkJKC0tFdV8fX0xZMgQaRoiqkMMQEREFkjbhc4xMTGQyWQSdENU9xiAiIgsyL1795CYmKhR55QXWRoGICIiC6Ft1Kdfv37o2bOnBN0QSYsBiIjIAlS1tg+RpWIAIiIyY3fu3EFSUpJGneGHLJ3OAUihUCAnJwdNmzYV1W/fvo2mTZtCqVTqrTkiIqo5baM+wcHB6Ny5swTdEBkXnQOQIAha6+Xl5bCxsal1Q0REVHuc8iJ6smoHoFWrVgEAZDIZPv30Uzg5OanfUyqVOHToENq2bav/DomIqNq2b89FVtbHGnWGHyKxageg5cuXA3g0ArR+/XooFAr1ezY2NvDy8sL69ev13yEREVWLtlGfkJAQ/scpkRbVDkBXrlwBAPTt2xc7d+5EgwYNDNYUERHphlNeRLrR+Rqg9PR0Q/RBREQ1cPXqVWzatEmjzvBD9GQ6B6AxY8Y88f2NGzfWuBkiIqo+baM+YWFh8PLyqvtmiEyMzgHo7t27oteVlZU4e/YsCgsL8fLLL+utMSIiqhqnvIhqR+cAtGvXLo2aSqXC+++/Dx8fH700RURE2mVlZWH79u0adYYfIt3IhKoW9tFRVlYW+vTpg5ycHH3sTlLFxcVwdnZGUVER6tevL3U7REQAtI/6vPPOO3B3d5egGyLjo8v3t94ehXH58mU8fPhQX7sjIqK/4JQXkX7pHIAiIyNFrwVBQE5ODr799luEhYXprTEiIgJOnz6N5ORkjTrDD1Ht6ByAfv31V9FruVyOJk2aYNmyZU+9Q4yIiKpP26jPhAkT0KhRIwm6ITIvXAeIiMgIccqLyLBqfA1Qfn4+srKyAABt2rTReDo8ERHp7tixY0hNTdWoM/wQ6ZfOAai4uBjjx4/Htm3boFKpAAAKhQIhISFYs2YNnJ2d9d4kEZEl0DbqM2XKFN6NSmQAcl0/MHbsWPz000/49ttvUVhYiMLCQuzZswe//PIL3n33XUP0SERk1gRBqHLKi+GHyDB0XgfI0dERqampePHFF0X1w4cPo3///igtLdVrg1LgOkBEVFfS0tJw5MgRUc3Ozg4zZ86UqCMi02XQdYAaNWqkdZrL2dmZT4gnItKBtlGf6dOnw8HBQYJuiCyLzlNgc+bMQWRkJHJzc9W13NxcTJ8+HXPnztVrc0RE5uhJU14MP0R1Q+cpsM6dO+PSpUsoLy9HixYtAADXrl2Dra0tnnnmGdG2J0+e1F+ndYhTYERkKP/5z380/t3YtGlTvP/++xJ1RGQ+DDoFNnjwYMhksho3R0RkqbSN+kRHR8PGxkaCbogsm94ehmpOOAJERPqkVCqxcOFCjTrX9iHSL12+v3W+BqhVq1a4ffu2Rr2wsBCtWrXSdXdERGZt27ZtGuHn1i0fdO7M8EMkJZ2nwLKzs6FUKjXq5eXluH79ul6aIiIyB9qmvObMmQOFQiFBN0T0V9UOQCkpKer/n5qaKroVXqlUIi0tDd7e3vrtjojIBFVWVmLx4sUadU55ERmPagegIUOGAABkMhnCwsJE71lbW8PLywvLli3Ta3NERKZmw4YNuHnzpqjm6+ur/ncoERmHagegx8/98vb2xs8//4zGjRsbrCkiIlOkbcpr7ty5kMt1vtySiAxM52uArly5Yog+iIhM1v3797F06VKNOqe8iIyXzgFo/vz5T3w/JiZG5ybWrFmDjz76CLm5ufD19UVSUhK6d++uddudO3di8eLFuHTpEiorK/HMM89g6tSpGD16tHobQRAQGxuLDRs2oLCwEC+88ALWrVunsVAjEVFtLVu2DCUlJaJajx498Oqrr0rUERFVh84BaNeuXaLXlZWVuHLlCqysrODj46NzANqxYwciIyOxfv16BAQEYMWKFQgKCkJWVhaaNm2qsX3Dhg0xe/ZstG3bFjY2NtizZw8iIiLQtGlTBAUFAQCWLl2KVatWYfPmzfD29sbcuXMRFBSEc+fOwc7OTtdDJiLSStuUV0xMDBeLJTIBelkIsbi4GOHh4Rg6dKhoJKY6AgIC0K1bN6xevRrAo2uNPD098cEHHyAqKqpa++jSpQsGDhyIBQsWQBAEeHh4YOrUqZg2bRoAoKioCK6urti0aRPeeOONah0PF0Ikoqrcu3cPiYmJGnVOeRFJy6ALIWpTv359zJs3T+eHoVZUVODEiRMIDAz8X0NyOQIDA5GRkfHUzwuCgLS0NGRlZaFXr14AHl2jlJubK9qns7MzAgICqrVPIqInmTdvnkb4eeWVVxh+iEyMzlNgVSkqKkJRUZFOn7l16xaUSiVcXV1FdVdXV5w/f/6Jv6tZs2YoLy+HQqHA2rVr0a9fPwBQP6Ve2z7/+gT7vyovL0d5ebn6dXFxsU7HQUSWoaonuBOR6dE5AK1atUr0WhAE5OTkYMuWLRgwYIDeGnuSevXq4dSpUygpKUFaWhoiIyPRqlUr9OnTp0b7i4uL0/ovNiIiALhz5w6SkpI06gw/RKZL5wC0fPly0Wu5XI4mTZogLCwM0dHROu2rcePGUCgUyMvLE9Xz8vLg5uZW5efkcjlat24NAPDz80NmZibi4uLQp08f9efy8vLg7u4u2qefn5/W/UVHRyMyMlL9uri4GJ6enjodCxGZJ23/cRQcHIzOnTtL0A0R6Yuk6wDZ2Niga9euSEtLU6+SqlKpkJaWhgkTJlR7PyqVSj2F5e3tDTc3N6SlpakDT3FxMX766Se8//77Wj9va2sLW1vbWh0LEZkfTnkRma8aXQNUWFiIS5cuAQBat24NFxeXGjcQGRmJsLAw+Pv7o3v37lixYgVKS0sREREBAAgNDUWzZs0QFxcH4NF0lb+/P3x8fFBeXo7vvvsOW7Zswbp16wA8elTH5MmTsXDhQjzzzDPq2+A9PDy4FD0RVUtubi4+/vhjjTrDD5H50CkAZWdnY/z48UhNTcXju+dlMhn69++P1atXw8vLS+cGQkJCUFBQgJiYGOTm5sLPzw979+5VX8R87do10TLypaWlGDduHK5fvw57e3u0bdsWX375JUJCQtTbzJgxA6WlpXjnnXdQWFiIF198EXv37uUaQET0VNpGfV5//XW0a9dOgm6IyFCqvQ7Qn3/+iW7dusHa2hrjxo1T/8vg3LlzWLduHR4+fIiff/4ZzZs3N2jDdYHrABFZJk55EZk2Xb6/qx2A3nrrLVy6dAmpqakaIyn3799H//798cwzz+DTTz+teedGggGIyLJcu3YNn3/+uUad4YfItOjy/V3tKbC9e/dix44dWqeR7O3tsWDBgmqtskxEZEy0jfqEhobC29tbgm6IqK5UOwDdunXridf4tGrVCnfu3NFHT0REdYJTXkSWq9oByN3dHefOnavyGp+zZ88+ce0eIiJjceHCBWzbtk2jzvBDZDmqHYCGDBmCadOmIS0tDU2aNBG9l5+fj5kzZ/I2cyIyetpGfcaOHQsPDw8JuiEiqVT7Iui7d+8iICAAubm5GDVqFNq2bQtBEJCZmYmvvvoKbm5uOHbsGBo2bGjong2OF0ETmSdOeRGZN4NcBN2gQQP89NNPmDVrFrZv347CwkIAgIuLC958800sXrzYLMIPEZmfM2fOYNeuXRp1hh8iy1XtEaC/EgQBBQUFAIAmTZpAJpPpvTEpcQSIyHxoG/UZP348GjduLEE3RGRIBhkB+iuZTIamTZvWqDkiorrCKS8iqkqNAhARkTE7duwYUlNTNeoMP0T0GAMQEZkVbaM+kydPhrOzswTdEJGxYgAiIrMgCALmz5+vUeeoDxFpwwBERCYvPT0dhw4dEtVsbW0RFRUlUUdEZOyqFYBWrVpV7R1OnDixxs0QEelK25TX9OnT4eDgIEE3RGQqqnUbfHUfCiiTyfDHH3/Uuimp8TZ4IuPHKS8i+ju93wZ/5coVvTRGRKQPe/bswYkTJ0S1xo0bY/z48RJ1RESmpsbXAFVUVODKlSvw8fGBlRUvJSKiuqFtyisqKgq2trYSdENEpkqu6wfKysrw1ltvwcHBAR06dMC1a9cAAB988AHi4+P13iAREQAolcoqFzZk+CEiXekcgKKjo3H69GkcPHgQdnZ26npgYCB27Nih1+aIiABgx44dWLhwoajm7e3N632IqMZ0nrtKTk7Gjh078Pzzz4ueAdahQwdcvnxZr80REWkb9dm3bzZmzuTUOxHVnM4jQAUFBVqfA1ZaWmp2D0UlIulUVlZqDT+pqbE4etQKnHEnotrQ+T+h/P398e233+KDDz4AAHXo+fTTT9GjRw/9dkdEFmnr1q24dOmSqNaxY0cMGzYMnTsD8fEA1zgkotrQOQAtXrwYAwYMwLlz5/Dw4UOsXLkS586dw9GjR/HDDz8YokcisiDaRn3mzp0LufzRgHVw8KMfIqLa0HkK7MUXX8SpU6fw8OFDdOzYEfv27UPTpk2RkZGBrl27GqJHIrIADx480Bp+OneOxYsvypGSIkFTRGS2qrUStKXhStBEdevjjz9Gbm6uqNa7d2/06dMHPXsCGRlAjx7A0aMSNUhEJkHvK0EXFxdX+5czMBCRLrSN+sTExKivL4yK4jU/RKR/1RoBksvl1b7DS6lU1ropqXEEiMjwSktLkZCQoFHn2j5EVFN6HwFKT09X///s7GxERUUhPDxcfddXRkYGNm/ejLi4uFq0TUSWIiEhAaWlpaJa//79ERAQIFFHRGRpdL4G6JVXXsHbb7+NESNGiOpfffUVPvnkExw8eFCf/UmCI0BEhlPV4yyIiGpLl+9vne8Cy8jIgL+/v0bd398fx48f13V3RGQh7t27x/BDREZD53WAPD09sWHDBixdulRU//TTT+Hp6am3xojIfGi7yyskJARt27aVqCMisnQ6B6Dly5fjn//8J77//nv1fP3x48dx8eJFfPPNN3pvkIhMW1Vr+4wZ8+jOLi5qSERSqNE6QNevX8fatWtx/vx5AEC7du3w3nvvmc0IEK8BIqq9u3fvYtWqVRr12NhYru1DRAahy/c3F0LUggGIqHaWLVuGkpISUS08PBwtW7YEAKSk/G9tH44AEZG+6P02+L8rLCzEZ599hszMTABAhw4dMGbMGDg7O9dkd0RkRqpzoTOf50VEUtP5LrBffvkFPj4+WL58Oe7cuYM7d+4gMTERPj4+OHnypCF6JCITUFBQwLu8iMhk6DwF9tJLL6F169bYsGEDrKweDSA9fPgQb7/9Nv744w8cOnTIII3WJU6BEelGW/B555134O7uLkE3RGSpDHoNkL29PX799VeN21fPnTsHf39/lJWV6d6xkWEAIqo+jvoQkbEw6EKI9evXx7Vr1zTqf/75J+rVq6fr7ojIRN24cUMj/FhZWTH8EJFJ0Pki6JCQELz11ltISEhAz549AQA//vgjpk+frvF4DCIyT9pGfcaPH4/GjRtL0A0Rke50DkAJCQmQyWQIDQ3Fw4cPAQDW1tZ4//33ER8fr/cGici4cMqLiMxBjdcBKisrw+XLlwEAPj4+cHBw0GtjUuI1QESarly5gi+++EJUc3FxwaRJkyTqiIhIzODrAAGAg4MDOnbsWNOPE5EJ0TbqM3nyZK79RUQmq9oBaMyYMdXabuPGjTVuhoiMD6e8iMgcVTsAbdq0CS1btkTnzp3Bp2cQmb/z589jx44dolrz5s3x1ltvSdQREZH+VDsAvf/++9i2bRuuXLmCiIgIjBo1Cg0bNjRkb0QkEW2jPtOmTYOjo6ME3RAR6V+11wFas2YNcnJyMGPGDPznP/+Bp6cnXn/9daSmpnJEiMhMCIJQ5ZQXww8RmZMa3wV29epVbNq0CV988QUePnyI33//HU5OTvruTxK8C4ws0enTp5GcnCyqPfvss1zfi4hMRp3cBSaXyyGTySAIApRKZU13Q0RGQNuoz8yZM2FnZydBN0REhqfTozDKy8uxbds29OvXD88++yx+++03rF69GteuXTOb0R8iS/KkKS+GHyIyZ9UeARo3bhy2b98OT09PjBkzBtu2beOy90Qm7Pjx4/j+++9FNT8/PwwePFiijoiI6k61rwGSy+Vo0aIFOnfuDJlMVuV2O3fu1FtzUuE1QGTutI36zJo1C9bW1hJ0Q0SkHwa5Big0NPSJwYeIjJ9KpcKCBQs06lzYkIgsjU4LIRKR6frhhx9w8OBBUa1Hjx549dVXpWmIiEhCNb4LjIhMh7Yprzlz5kChUEjQDRGR9BiAiMzYw4cPsWjRIo06p7yIyNLpdBu8IaxZswZeXl6ws7NDQEAAjh8/XuW2GzZswEsvvYQGDRqgQYMGCAwM1Ni+pKQEEyZMQPPmzWFvb4/27dtj/fr1hj4MIqOzd+9ejfDz8ssvM/wQEUHiALRjxw5ERkYiNjYWJ0+ehK+vL4KCgpCfn691+4MHD2LEiBFIT09HRkYGPD098eqrr+LGjRvqbSIjI7F37158+eWXyMzMxOTJkzFhwgSkpKTU1WERSW7evHn46aefRLW5c+fipZdekqgjIiLjUuNHYehDQEAAunXrhtWrVwN4dIeKp6cnPvjgA0RFRT3180qlEg0aNMDq1asRGhoKAHjuuecQEhKCuXPnqrfr2rUrBgwYgIULF1arL94GT6aqoqICcXFxGnWO+hCRJdDl+1uyEaCKigqcOHECgYGB/2tGLkdgYCAyMjKqtY+ysjJUVlaKnkrfs2dPpKSk4MaNGxAEAenp6bhw4cIT73QpLy9HcXGx6IfI1OzatUsj/PzjH/9g+CEi0kKyi6Bv3boFpVIJV1dXUd3V1RXnz5+v1j5mzpwJDw8PUYhKSkrCO++8g+bNm8PKygpyuRwbNmxAr169qtxPXFyc1rtkiEyFtr+/MTExXLuLiKgKkl8EXVPx8fHYvn07du3aJXpmUVJSEo4dO4aUlBScOHECy5Ytw/jx47F///4q9xUdHY2ioiL1z59//lkXh0BUa/fv36/yWV4MP0REVZNsBKhx48ZQKBTIy8sT1fPy8uDm5vbEzyYkJCA+Ph779+9Hp06d1PX79+9j1qxZ2LVrFwYOHAgA6NSpE06dOoWEhATRSNFf2drawtbWtpZHRFS3vvzyS1y+fFlUGzZsGDp27ChRR0REpkOyESAbGxt07doVaWlp6ppKpUJaWhp69OhR5eeWLl2KBQsWYO/evfD39xe9V1lZicrKSsjl4sNSKBRQqVT6PQAiCc2bN08j/MTGxjL8EBFVk6QLIUZGRiIsLAz+/v7o3r07VqxYgdLSUkRERAB49PyxZs2aqS/sXLJkCWJiYvDVV1/By8sLubm5AAAnJyc4OTmhfv366N27N6ZPnw57e3u0bNkSP/zwA7744gskJiZKdpxE+lJSUoJly5Zp1HmhMxGRbiQNQCEhISgoKEBMTAxyc3Ph5+eHvXv3qi+Mvnbtmmg0Z926daioqMDw4cNF+4mNjcWHH34IANi+fTuio6MxcuRI3LlzBy1btsSiRYvw3nvv1dlxERnCJ598gpycHFFtxIgRePbZZyXqiIjIdEm6DpCx4jpAZGyqutCZiIj+R5fvbz4LjMiIFRYWYuXKlRp1hh8iotphACIyUomJibh3756oFhYWBi8vL2kaIiIyIwxAREaIU15ERIbFAERkRAoKCrB27VqNOsMPEZF+MQARGYn58+fj7/ckjB07Fh4eHhJ1RERkvhiAiIwAp7yIiOoWAxCRhG7evIkNGzaIagqFAnPmzJGoIyIiy8AARCQRbaM+48ePR+PGjSXohojIsjAAEUmAU15ERNJiACKqQ9nZ2di8ebOo5uzsjMmTJ0vTEBGRhWIAIqoj2kZ9Jk2aBBcXl7pvhojIwjEAEdUBTnkRERkXBiAiA8rKysL27dtFNQ8PD4wdO1aijoiICGAAIjIYbaM+U6dOhZOTkwTdEBHRXzEAEemZIAiYP3++Rp1TXkRExoMBiEiPzpw5g127dolqrVu3xsiRIyXqiIiItGEAItITbVNeM2fOhJ2dnQTdEBHRkzAAEdUSp7yIiEwPAxBRLRw/fhzff/+9qObr64shQ4ZI0xAREVULAxBRDWmb8oqOjoaNjY0E3RARkS4YgIh0pFKpsGDBAo06p7yIiEwHAxCRDg4dOoT09HRR7fnnn0dQUJBEHRERUU0wABFVk7Yprzlz5kChUEjQDRER1QYDENFTKJVKLFy4UKPOKS8iItPFAET0BKmpqTh27Jio1rdvX/Tq1UuijoiISB8YgIiqoG3Ka+7cuZDL5RJ0Q0RE+sQARPQ3FRUViIuL06hzyouIyHwwABH9RXJyMk6fPi2qDRgwAN27d5eoIyIiMgQGIKL/T9uUV0xMDGQymQTdEBGRITEAkcV78OABlixZolHnlBcRkfliACKLtnXrVly6dElUGzp0KDp16iRRR0REVBcYgMhiccqLiMhyMQCRxSkpKcGyZcs06pzyIiKyHAxAZFE2bNiAmzdvimpvvPEG2rRpI1FHREQkBQYgshjaprw46kNEZJkYgMjsFRYWYuXKlRp1hh8iIsvFAERmbcWKFSgqKhLVwsLC4OXlJU1DRERkFBiAyGxxyouIiKrCAERmp6CgAGvXrtWoM/wQEdFjDEBkVhYuXAilUimqjR07Fh4eHhJ1RERExogBiMwGp7yIiKi6GIDI5N28eRMbNmwQ1WQyGWJiYiTqiIiIjB0DEJm0BQsWQKVSiWrjxo1DkyZNJOqIiIhMAQMQmSxOeRERUU0xAJHJyc3NxccffyyqPXhQD3FxkRJ1REREpoYBiEzK8uXLUVxcLKqlp09FZKSTRB0REZEpYgAik1HVlBdnvYiISFcMQGT0rl+/js8++0xU69KlCwYNGiRRR0REZOoYgMioLVq0CA8fPhTVZsyYAXt7e4k6IiIic8AAREaLd3kREZGhMACR0fnjjz+wZcsWUa1nz57o16+fRB0REZG5YQAio6Jt1CcqKgq2trYSdENEROaKAYiMgiAImD9/vkadU15ERGQIDEAkufPnz2PHjh2i2ssvv4yXXnpJoo6IiMjcMQCRpLRNec2aNQvW1tYSdENERJZCLnUDa9asgZeXF+zs7BAQEIDjx49Xue2GDRvw0ksvoUGDBmjQoAECAwO1bp+ZmYng4GA4OzvD0dER3bp1w7Vr1wx5GKQjQRCqvMuL4YeIiAxN0gC0Y8cOREZGIjY2FidPnoSvry+CgoKQn5+vdfuDBw9ixIgRSE9PR0ZGBjw9PfHqq6/ixo0b6m0uX76MF198EW3btsXBgwdx5swZzJ07F3Z2dnV1WPQUZ86c0bjeZ8CAAbzeh4iI6oxMEARBql8eEBCAbt26YfXq1QAAlUoFT09PfPDBB4iKinrq55VKJRo0aIDVq1cjNDQUAPDGG2/A2tpa4zZqXRQXF8PZ2RlFRUWoX79+jfdDmrSN+syZMwcKhUKCboiIyJzo8v0t2QhQRUUFTpw4gcDAwP81I5cjMDAQGRkZ1dpHWVkZKisr0bBhQwCPAtS3336LZ599FkFBQWjatCkCAgKQnJz8xP2Ul5ejuLhY9EP6pVQqq5zyYvghIqK6JlkAunXrFpRKJVxdXUV1V1dX5ObmVmsfM2fOhIeHhzpE5efno6SkBPHx8ejfvz/27duHoUOHYtiwYfjhhx+q3E9cXBycnZ3VP56enjU/MNLwyy+/YOHChaLakCFDOOVFRESSMdm7wOLj47F9+3YcPHhQfX2PSqUCAAwePBhTpkwBAPj5+eHo0aNYv349evfurXVf0dHRiIyMVL8uLi5mCNITbaM+c+fOhVwu+fX3RERkwSQLQI0bN4ZCoUBeXp6onpeXBzc3tyd+NiEhAfHx8di/fz86deok2qeVlRXat28v2r5du3Y4cuRIlfuztbXlSsN69vDhQyxatEijzlEfIiIyBpIFIBsbG3Tt2hVpaWkYMmQIgEcjOGlpaZgwYUKVn1u6dCkWLVqE1NRU+Pv7a+yzW7duyMrKEtUvXLiAli1b6v0YSLsjR44gLS1NVHv99dfRrl07iToiIiISk3QKLDIyEmFhYfD390f37t2xYsUKlJaWIiIiAgAQGhqKZs2aIS4uDgCwZMkSxMTE4KuvvoKXl5f6WiEnJyc4OTkBAKZPn46QkBD06tULffv2xd69e/Gf//wHBw8elOQYLY22Ka+YmBjIZDIJuiEiItJO0gAUEhKCgoICxMTEIDc3F35+fti7d6/6wuhr166JrhVZt24dKioqMHz4cNF+YmNj8eGHHwIAhg4divXr1yMuLg4TJ05EmzZt8M033+DFF1+ss+OyRBUVFeqg+lec8iIiImMk6TpAxorrAOlm//79+PHHH0W1UaNGwcfHR6KOiIjIEuny/W2yd4GRceCUFxERmSIGIKqR+/fvY+nSpaKaTCZDTEyMRB0RERFVHwMQ6ezbb7/FL7/8IqpFRESgRYsWEnVERESkGwYg0klVj7MgIiIyJQxAVC0PHjzAkiVLRDUrK0fMnj1Noo6IiIhqjgGInurYsWNITU0V1VasmIh27Rpg9myJmiIiIqoFBiB6Im1TXp07x6JdOyAqSoKGiIiI9IABiLQqKyvDRx99JKo9//zzCAoKAgAEB0vRFRERkX4wAJGGQ4cOIT09XVSbMmUKF4UkIiKzwQBEIrzLi4iILAEDEAEA7t27h8TERFGtd+/e6NOnjzQNERERGRADEGl9lte0adPg6OgoUUdERESGxQBk4TjlRURElogByEIVFRVhxYoVolq/fv3Qs2dPaRoiIiKqQwxAFkjbs7xmzJgBe3t7iToiIiKqWwxAFoZTXkRERAxAFuP27dtYvXq1qDZw4ED4+/tL1BEREZF0GIAswK5du3DmzBlRLSoqCra2thJ1REREJC0GIDPHKS8iIiJNDEBmKj8/H+vWrRPVhgwZAl9fX4k6IiIiMh4MQGZo27ZtuHDhgqg2a9YsWFtbS9QRERGRcWEAMiOCIGD+/Pmimlwux9y5cyXqiIiIyDgxAJmJmzdvYsOGDaLa66+/jnbt2knUERERkfFiADIDmzZtwtWrV0W1OXPmQKFQSNQRERGRcWMAMmHaprwcHR0xbdo0iToiIiIyDQxAJuratWv4/PPPRbU333wTzzzzjEQdERERmQ4GIBP0ySefICcnR1SbO3cu5HK5RB0RERGZFgYgEyIIAlauXImioiJ1rVGjRpgwYYKEXREREZkeBiATcefOHSQlJYlqrVuHYeRIL2kaIiIiMmEMQCYgIyMD+/btU78uKWmMhIRx6NFDhpEjJWyMiIjIRDEAGTGVSoXExESUlpaqa4MGDcL1613w449AVJSEzREREZkwBiAjdevWLaxZs0ZUmzJlCurXr48uXYDgYIkaIyIiMgMMQEbo8OHDOHDggPq1u7s7xo4dC5lMJmFXRERE5oMByIioVCrEx8ejsrJSXRs6dCg6deokYVdERETmhwHISOTl5WH9+vWi2tSpU+Hk5CRRR0REROaLAcgIHDhwAIcPH1a/btGiBcLDwznlRUREZCAMQBJSKpVYuHChqDZ8+HB06NBBoo6IiIgsAwOQRHJycvDJJ5+IatOnT4eDg4NEHREREVkOBiAJ7Nu3DxkZGerXPj4+GDVqlIQdERERWRYGoDqkUqmwYMECUS0kJARt27aVqCMiIiLLxABUhzIzM0WvZ8yYAXt7e4m6ISIislxyqRuwJB4eHsjPfwanT3dCamosww8REZFEGIDqUIMGDRAU9CZyc4fyOV5EREQS4hRYHQsO5nO8iIiIpMYRICIiIrI4DEBERERkcRiAiIiIyOIwABEREZHFYQAiIiIii8MARERERBaHAYiIiIgsDgMQERERWRwGICIiIrI4DEBERERkcRiAiIiIyOIwABEREZHFYQAiIiIii8OnwWshCAIAoLi4WOJOiIiIqLoef28//h5/EgYgLe7duwcA8PT0lLgTIiIi0tW9e/fg7Oz8xG1kQnVikoVRqVS4efMm6tWrB5lMJnU7ZqW4uBienp74888/Ub9+fanbMUs8x4bF82t4PMeGZ67nWBAE3Lt3Dx4eHpDLn3yVD0eAtJDL5WjevLnUbZi1+vXrm9U/dMaI59iweH4Nj+fY8MzxHD9t5OcxXgRNREREFocBiIiIiCwOAxDVKVtbW8TGxsLW1lbqVswWz7Fh8fwaHs+x4fEc8yJoIiIiskAcASIiIiKLwwBEREREFocBiIiIiCwOAxARERFZHAYgqpU1a9bAy8sLdnZ2CAgIwPHjx6vcdsOGDXjppZfQoEEDNGjQAIGBgVq3z8zMRHBwMJydneHo6Ihu3brh2rVrhjwMo6bvc1xSUoIJEyagefPmsLe3R/v27bF+/XpDH4ZR0+Uc79y5E/7+/nBxcYGjoyP8/PywZcsW0TaCICAmJgbu7u6wt7dHYGAgLl68aOjDMGr6PMeVlZWYOXMmOnbsCEdHR3h4eCA0NBQ3b96si0MxWvr+e/xX7733HmQyGVasWGGAziUiENXQ9u3bBRsbG2Hjxo3C77//LowdO1ZwcXER8vLytG7/5ptvCmvWrBF+/fVXITMzUwgPDxecnZ2F69evq7e5dOmS0LBhQ2H69OnCyZMnhUuXLgm7d++ucp/mzhDneOzYsYKPj4+Qnp4uXLlyRfj4448FhUIh7N69u64Oy6joeo7T09OFnTt3CufOnRMuXbokrFixQlAoFMLevXvV28THxwvOzs5CcnKycPr0aSE4OFjw9vYW7t+/X1eHZVT0fY4LCwuFwMBAYceOHcL58+eFjIwMoXv37kLXrl3r8rCMiiH+Hj+2c+dOwdfXV/Dw8BCWL19u4COpOwxAVGPdu3cXxo8fr36tVCoFDw8PIS4urlqff/jwoVCvXj1h8+bN6lpISIgwatQovfdqqgxxjjt06CDMnz9ftF2XLl2E2bNn66dpE1PbcywIgtC5c2dhzpw5giAIgkqlEtzc3ISPPvpI/X5hYaFga2srbNu2TX+NmxB9n2Ntjh8/LgAQrl69WqteTZWhzvH169eFZs2aCWfPnhVatmxpVgGIU2BUIxUVFThx4gQCAwPVNblcjsDAQGRkZFRrH2VlZaisrETDhg0BPHoI7bfffotnn30WQUFBaNq0KQICApCcnGyIQzB6hjjHANCzZ0+kpKTgxo0bEAQB6enpuHDhAl599VW9H4Oxq+05FgQBaWlpyMrKQq9evQAAV65cQW5urmifzs7OCAgIqPafmzkxxDnWpqioCDKZDC4uLvpo26QY6hyrVCqMHj0a06dPR4cOHQzSu5QYgKhGbt26BaVSCVdXV1Hd1dUVubm51drHzJkz4eHhof6HNj8/HyUlJYiPj0f//v2xb98+DB06FMOGDcMPP/yg92MwdoY4xwCQlJSE9u3bo3nz5rCxsUH//v2xZs2aJ365mKuanuOioiI4OTnBxsYGAwcORFJSEvr16wcA6s/V5s/NnBjiHP/dgwcPMHPmTIwYMcLsHuxZHYY6x0uWLIGVlRUmTpxosN6lxKfBkyTi4+Oxfft2HDx4EHZ2dgAe/dcGAAwePBhTpkwBAPj5+eHo0aNYv349evfuLVm/pkjbOQYeBaBjx44hJSUFLVu2xKFDhzB+/HiNoERVq1evHk6dOoWSkhKkpaUhMjISrVq1Qp8+faRuzWxU9xxXVlbi9ddfhyAIWLdunTTNmqgnneMTJ05g5cqVOHnyJGQymdStGgQDENVI48aNoVAokJeXJ6rn5eXBzc3tiZ9NSEhAfHw89u/fj06dOon2aWVlhfbt24u2b9euHY4cOaK/5k2EIc7x/fv3MWvWLOzatQsDBw4EAHTq1AmnTp1CQkKCxQWgmp5juVyO1q1bA3gU0jMzMxEXF4c+ffqoP5eXlwd3d3fRPv38/PR/EEbOEOf4scfh5+rVqzhw4IBFjv4AhjnHhw8fRn5+Plq0aKHeXqlUYurUqVixYgWys7MNcix1iVNgVCM2Njbo2rUr0tLS1DWVSoW0tDT06NGjys8tXboUCxYswN69e+Hv76+xz27duiErK0tUv3DhAlq2bKnfAzABhjjHlZWVqKyshFwu/kdfoVCoR+AsSU3P8d+pVCqUl5cDALy9veHm5ibaZ3FxMX766Sed9mkuDHGOgf+Fn4sXL2L//v1o1KiRXvs2JYY4x6NHj8aZM2dw6tQp9Y+HhwemT5+O1NRUvR+DJCS9BJtM2vbt2wVbW1th06ZNwrlz54R33nlHcHFxEXJzcwVBEITRo0cLUVFR6u3j4+MFGxsb4d///reQk5Oj/rl37556m507dwrW1tbCJ598Ily8eFFISkoSFAqFcPjw4To/PmNgiHPcu3dvoUOHDkJ6errwxx9/CJ9//rlgZ2cnrF27ts6Pzxjoeo4XL14s7Nu3T7h8+bJw7tw5ISEhQbCyshI2bNig3iY+Pl5wcXERdu/eLZw5c0YYPHiwxd8Gr89zXFFRIQQHBwvNmzcXTp06Jfq7Xl5eLskxSs0Qf4//ztzuAmMAolpJSkoSWrRoIdjY2Ajdu3cXjh07pn6vd+/eQlhYmPp1y5YtBQAaP7GxsaJ9fvbZZ0Lr1q0FOzs7wdfXV0hOTq6jozFO+j7HOTk5Qnh4uODh4SHY2dkJbdq0EZYtWyaoVKo6PCrjoss5nj17tvrvZ4MGDYQePXoI27dvF+1PpVIJc+fOFVxdXQVbW1vhlVdeEbKysurqcIySPs/xlStXtP49ByCkp6fX4VEZF33/Pf47cwtAMkEQhLofdyIiIiKSDq8BIiIiIovDAEREREQWhwGIiIiILA4DEBEREVkcBiAiIiKyOAxAREREZHEYgIiIiMjiMAARERGRxWEAIiKzEx4eDplMhvj4eFE9OTlZ/WTrgwcPYvDgwXB3d4ejoyP8/PywdetWKdolIgkwABGRWbKzs8OSJUtw9+5dre8fPXoUnTp1wjfffIMzZ84gIiICoaGh2LNnTx13SkRS4KMwiMjshIeH4/bt27h06RIGDRqEpUuXAng0AjR06FBU9a+9gQMHwtXVFRs3bqzLdolIAhwBIiKzpFAosHjxYiQlJeH69evV+kxRUREaNmxo4M6IyBgwABGR2Ro6dCj8/PwQGxv71G2//vpr/Pzzz4iIiKiDzohIagxARGTWlixZgs2bNyMzM7PKbdLT0xEREYENGzagQ4cOddgdEUmFAYiIzFqvXr0QFBSE6Ohore//8MMPGDRoEJYvX47Q0NA67o6IpGIldQNERIYWHx8PPz8/tGnTRlQ/ePAgXnvtNSxZsgTvvPOORN0RkRQYgIjI7HXs2BEjR47EqlWr1LX09HS89tprmDRpEv75z38iNzcXAGBjY8MLoYksAKfAiMgizJ8/HyqVSv168+bNKCsrQ1xcHNzd3dU/w4YNk7BLIqorXAeIiIiILA5HgIiIiMjiMAARERGRxWEAIiIiIovDAEREREQWhwGIiIiILA4DEBEREVkcBiAiIiKyOAxAREREZHEYgIiIiMjiMAARERGRxWEAIiIiIovDAEREREQW5/8B3yf926nDWSoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYXhJREFUeJzt3XlclNX+B/DPgOzLAMqqoLjvS2qKSy6hYKbiUmkpct1KUaMsAxfcBdfSW+GtFO3eENMEzVRyAUxFS9PcUQlCE9TrFRCURTi/P/w59TiDMgg8s3zer9e8vHPmPM98zx3H+XTOsyiEEAJERERERsRE7gKIiIiIahoDEBERERkdBiAiIiIyOgxAREREZHQYgIiIiMjoMAARERGR0WEAIiIiIqPDAERERERGhwGIiIiIjA4DEBHpLYVCgfnz58tdhkpQUBAaNGggdxlEVAEMQERUpTZu3AiFQqF6WFpaomnTppg6dSpu3rxZre999OhRzJ8/Hzk5OVW63969e0vG5OTkhM6dO2PDhg0oKyurkvdYunQp4uPjq2RfRPRsteQugIgM08KFC+Ht7Y3CwkIcPnwYUVFR2L17N86dOwdra+sqeY8HDx6gVq2//hk7evQoFixYgKCgIDg4OFTJezxWr149REREAABu376Nr7/+GuPHj8fly5cRGRn53PtfunQpRowYgYCAgOfeFxE9GwMQEVWLAQMGoFOnTgCACRMmoHbt2li9ejV27NiBUaNGVXq/ZWVlKC4uhqWlJSwtLauq3GdSKpUYPXq06vnbb7+NZs2a4dNPP8WiRYtgZmZWY7UQ0fPjEhgR1Yi+ffsCANLT0wEAK1euRLdu3VC7dm1YWVmhY8eO2LZtm9p2CoUCU6dOxTfffINWrVrBwsICe/fuVb32+Big+fPn48MPPwQAeHt7q5arMjIy0KtXL7Rr105jXc2aNYOfn5/W47G2tkbXrl1RUFCA27dvl9uvoKAAM2bMgKenJywsLNCsWTOsXLkSQgjJGAsKCrBp0yZV3UFBQVrXREQVxxkgIqoRaWlpAIDatWsDANasWYPBgwfjrbfeQnFxMWJjY/Haa69h165dGDhwoGTbgwcP4ttvv8XUqVNRp04djQcaDxs2DJcvX8bmzZvx8ccfo06dOgAAZ2dnjBkzBhMnTsS5c+fQunVr1Ta//PILLl++jDlz5lRqTL///jtMTU3LXW4TQmDw4MFITEzE+PHj0b59eyQkJODDDz/En3/+iY8//hgA8O9//xsTJkzAiy++iEmTJgEAGjVqVKmaiKiCBBFRFYqOjhYAxP79+8Xt27fFtWvXRGxsrKhdu7awsrIS169fF0IIcf/+fcl2xcXFonXr1qJv376SdgDCxMREnD9/Xu29AIh58+apnq9YsUIAEOnp6ZJ+OTk5wtLSUnz00UeS9unTpwsbGxuRn5//1DH16tVLNG/eXNy+fVvcvn1bXLx4UUyfPl0AEIMGDVL1Gzt2rKhfv77qeXx8vAAgFi9eLNnfiBEjhEKhEFevXlW12djYiLFjxz61DiKqOlwCI6Jq4evrC2dnZ3h6emLkyJGwtbVFXFwc6tatCwCwsrJS9b179y5yc3PRs2dP/Prrr2r76tWrF1q2bFnpWpRKJYYMGYLNmzerlp5KS0uxZcsWBAQEwMbG5pn7uHTpEpydneHs7IwWLVrgn//8JwYOHIgNGzaUu83u3bthamqK6dOnS9pnzJgBIQT27NlT6TER0fNhAHqGQ4cOYdCgQfDw8IBCoaj201QjIiLQuXNn2NnZwcXFBQEBAUhNTZX0KSwsRHBwMGrXrg1bW1sMHz682k8vJtLWZ599hn379iExMREXLlzA77//LjnWZteuXejatSssLS3h5OQEZ2dnREVFITc3V21f3t7ez11PYGAgMjMz8dNPPwEA9u/fj5s3b2LMmDEV2r5BgwbYt28f9u/fj8OHDyM7Oxu7du1SLbVp8scff8DDwwN2dnaS9hYtWqheJyJ5MAA9Q0FBAdq1a4fPPvusRt4vOTkZwcHBOHbsGPbt24eSkhL0798fBQUFqj7vvfcevv/+e2zduhXJycm4ceMGhg0bViP1EVXUiy++CF9fX/Tu3RstWrSAiclf/9z89NNPGDx4MCwtLfH5559j9+7d2LdvH958803JwcGP/X22qLL8/Pzg6uqK//znPwCA//znP3Bzc4Ovr2+FtrexsYGvry9efvlldO/eHS4uLs9dExHJhwdBP8OAAQMwYMCAcl8vKirC7NmzsXnzZuTk5KB169ZYtmwZevfuXan3e3x2y2MbN26Ei4sLTp48iZdeegm5ublYv349YmJiVGfVREdHo0WLFjh27Bi6du1aqfclqknfffcdLC0tkZCQAAsLC1V7dHT0c+1XoVCU+5qpqSnefPNNbNy4EcuWLUN8fDwmTpwIU1PT53rPp6lfvz7279+Pe/fuSWaBLl26pHq9IrUTUdXjDNBzmjp1KlJSUhAbG4szZ87gtddeg7+/P65cuVIl+3+8HODk5AQAOHnyJEpKSiT/1dq8eXN4eXkhJSWlSt6TqLqZmppCoVCgtLRU1ZaRkfHcS8yPj+Up70rQY8aMwd27d/H2228jPz9fcl2f6vDKK6+gtLQUn376qaT9448/hkKhkPzHlY2NTZVfwZqIyscZoOeQmZmJ6OhoZGZmwsPDAwDwwQcfYO/evYiOjsbSpUufa/9lZWUICQlB9+7dVafuZmdnw9zcXO20W1dXV2RnZz/X+xHVlIEDB2L16tXw9/fHm2++iVu3buGzzz5D48aNcebMmUrvt2PHjgCA2bNnY+TIkTAzM8OgQYNUwahDhw5o3bo1tm7dihYtWuCFF16okvGUZ9CgQejTpw9mz56NjIwMtGvXDj/++CN27NiBkJAQyanuHTt2xP79+7F69Wp4eHjA29sbXbp0qdb6iIwZZ4Cew9mzZ1FaWoqmTZvC1tZW9UhOTlZd8+TSpUuSewhpeoSGhmrcf3BwMM6dO4fY2NiaHBZRtevbty/Wr1+P7OxshISEYPPmzVi2bBmGDh36XPvt3LkzFi1ahN9++w1BQUEYNWqU2kUKAwMDAaDCBz8/DxMTE+zcuRMhISHYtWsXQkJCcOHCBaxYsQKrV6+W9F29ejU6duyIOXPmYNSoUYiKiqr2+oiMmUJoOuKQNFIoFIiLi1Pdq2fLli146623cP78ebXjCGxtbeHm5obi4mL8/vvvT91v7dq14ezsLGmbOnUqduzYgUOHDknOgDl48CBefvll3L17VzILVL9+fYSEhOC99957vkESGbg1a9bgvffeQ0ZGBry8vOQuh4hkwiWw59ChQweUlpbi1q1b6Nmzp8Y+5ubmaN68eYX3KYTAtGnTEBcXh6SkJLXTfzt27AgzMzMcOHAAw4cPBwCkpqYiMzMTPj4+lR8MkREQQmD9+vXo1asXww+RkWMAeob8/HxcvXpV9Tw9PR2nT5+Gk5MTmjZtirfeeguBgYFYtWoVOnTogNu3b+PAgQNo27at2uX8KyI4OBgxMTHYsWMH7OzsVMf1KJVKWFlZQalUYvz48Xj//ffh5OQEe3t7TJs2DT4+PjwDjKgcBQUF2LlzJxITE3H27Fns2LFD7pKISG4yXoVaLyQmJgoAao/Hl6wvLi4W4eHhokGDBsLMzEy4u7uLoUOHijNnzlTq/TS9FwARHR2t6vPgwQMxZcoU4ejoKKytrcXQoUNFVlZWFYyWyDClp6cLAMLBwUHMmjVL7nKISAfwGCAiIiIyOjwLjIiIiIwOAxAREREZHR4ErUFZWRlu3LgBOzs7Xp6eiIhITwghcO/ePXh4eEjuP6gJA5AGN27cgKenp9xlEBERUSVcu3YN9erVe2ofBiANHt+08Nq1a7C3t5e5GiIiIqqIvLw8eHp6Sm4+XB4GIA0eL3vZ29szABEREemZihy+woOgiYiIyOgwABEREZHRYQAiIiIio8NjgJ5DaWkpSkpK5C6DqpmZmRlMTU3lLoOIiKoQA1AlCCGQnZ2NnJwcuUuhGuLg4AA3NzdeF4qIyEAwAFXC4/Dj4uICa2tr/igaMCEE7t+/j1u3bgEA3N3dZa6IiIiqAgOQlkpLS1Xhp3bt2nKXQzXAysoKAHDr1i24uLhwOYyIyADwIGgtPT7mx9raWuZKqCY9/rx5zBcRkWGQNQBFRUWhbdu2qgsO+vj4YM+ePeX27927NxQKhdpj4MCBqj5BQUFqr/v7+1d57Vz2Mi78vImIDIusS2D16tVDZGQkmjRpAiEENm3ahCFDhuDUqVNo1aqVWv/t27ejuLhY9fzOnTto164dXnvtNUk/f39/REdHq55bWFhU3yCIiIhI78gagAYNGiR5vmTJEkRFReHYsWMaA5CTk5PkeWxsLKytrdUCkIWFBdzc3Kq+YCIiIjIIOnMMUGlpKWJjY1FQUAAfH58KbbN+/XqMHDkSNjY2kvakpCS4uLigWbNmmDx5Mu7cufPU/RQVFSEvL0/yMER/Xx40MzODq6sr+vXrhw0bNqCsrKzC+9m4cSMcHByqr1AiIqJqJnsAOnv2LGxtbWFhYYF33nkHcXFxaNmy5TO3+/nnn3Hu3DlMmDBB0u7v74+vv/4aBw4cwLJly5CcnIwBAwagtLS03H1FRERAqVSqHp6ens89Ll3l7++PrKwsZGRkYM+ePejTpw/effddvPrqq3j48KHc5RERkRHQiRNKhMyKiorElStXxIkTJ0RoaKioU6eOOH/+/DO3mzRpkmjTps0z+6WlpQkAYv/+/eX2KSwsFLm5uarHtWvXBACRm5ur1vfBgwfiwoUL4sGDB898b10zduxYMWTIELX2AwcOCADiyy+/FEIIsWrVKtG6dWthbW0t6tWrJyZPnizu3bsnhBAiMTFRAJA85s2bJ4QQ4uuvvxYdO3YUtra2wtXVVYwaNUrcvHmzpoZXrfT5cyci0hW5ubli/vz5Yv78+eLChQvVsv/yfr+fJPsMkLm5ORo3boyOHTsiIiIC7dq1w5o1a566TUFBAWJjYzF+/Phn7r9hw4aoU6cOrl69Wm4fCwsL1Zlojx/aEEKguLi4xh9CCK3qLE/fvn3Rrl07bN++HQBgYmKCtWvX4vz589i0aRMOHjyImTNnAgC6deuGTz75BPb29sjKykJWVhY++OADAI8S/aJFi/Dbb78hPj4eGRkZCAoKqpIaiYhIv/3666/4+OOPVc/lPkFJ5y6EWFZWhqKioqf22bp1K4qKijB69Ohn7u/69eu4c+dOtV7Bt6SkBBEREdW2//KEhYXB3Ny8SvbVvHlznDlzBgAQEhKiam/QoAEWL16Md955B59//jnMzc2hVCqhUCjUDjQfN26c6n83bNgQa9euRefOnZGfnw9bW9sqqZOIiPSLEAKff/45/vvf/6ra+vXrh4YNG8pYlcwBKCwsDAMGDICXlxfu3buHmJgYJCUlISEhAQAQGBiIunXrqoWL9evXIyAgQO1KzPn5+ViwYAGGDx8ONzc3pKWlYebMmWjcuDH8/PxqbFz6SAihutbN/v37ERERgUuXLiEvLw8PHz5EYWEh7t+//9QLQJ48eRLz58/Hb7/9hrt376oOrM7MzKzQcV1ERGRYMjIysGnTJknbtGnT1M7qloOsAejWrVsIDAxEVlYWlEol2rZti4SEBPTr1w/Aox9OExPpKl1qaioOHz6MH3/8UW1/pqamOHPmDDZt2oScnBx4eHigf//+WLRoUbVOtZmZmSEsLKza9v+0960qFy9ehLe3NzIyMvDqq69i8uTJWLJkCZycnHD48GGMHz8excXF5QaggoIC+Pn5wc/PD9988w2cnZ2RmZkJPz8/ybWbiIjIOPzzn//E//73P9VzBwcHTJ8+XWcuLCtrAFq/fv1TX09KSlJra9asWbnHvlhZWalmj2qSQqGosqUoORw8eBBnz57Fe++9h5MnT6KsrAyrVq1Shc9vv/1W0t/c3FztrLpLly7hzp07iIyMVJ1Fd+LEiZoZABER6YzS0lIsXrxY0ubu7o5JkyYBAHbuBCIjgdBQYPBgOSp8ROeOAaLqVVRUhOzsbJSWluLmzZvYu3cvIiIi8OqrryIwMBDnzp1DSUkJ/vnPf2LQoEE4cuQI1q1bJ9lHgwYNkJ+fjwMHDqBdu3awtraGl5cXzM3N8c9//hPvvPMOzp07h0WLFsk0SiIiksPly5exefNmSds//vEPeHl5qZ5HRgIpKY/+lDMAyX4WGNWsvXv3wt3dHQ0aNIC/vz8SExOxdu1a7NixA6ampmjXrh1Wr16NZcuWoXXr1vjmm2/UjsHq1q0b3nnnHbzxxhtwdnbG8uXL4ezsjI0bN2Lr1q1o2bIlIiMjsXLlSplGSURENS0yMlIt/ISHh0vCD/Bo5sfH59GfclKIqjqX2oDk5eVBqVQiNzdX7ZT4wsJCpKenw9vbG5aWljJVSDWNnzsRkWYPHz7EkiVLJG0NGzbEmDFjaryWp/1+P4kzQERERFQpZ86cUQs/b7/9tiT87NwJdOv26E9dwmOAiIiISGsLFixQawsPD1c7y0tXjvl5EgMQERERVVhxcbHasaGtW7fG8OHDNfYPDf3rrC9dwgBEREREFfLLL79g9+7dkrbg4GDUqVOn3G0GD9atmZ/HGICIiIjomTQtec2bN0+GSqoGAxARERGV68GDB1i+fLmkrVOnThg4cKBMFVUNBiAiIiLS6PDhwzhw4ICkLSQkBEqlUqaKqg4DEBEREakxtCWvJzEAERERkUp+fj5WrVolaevZsyf69u0rU0XVgxdCpCoXFBSEgIAA1fPevXsjJCTkufZZFfsgIqKn27dvn1r4mTFjhsGFH4AzQEYlKCgImzZtAgCYmZnBy8sLgYGBmDVrFmrVqr6/Ctu3b4eZmVmF+iYlJaFPnz64e/cuHBwcKrUPIiLSnqEveT2JAcjI+Pv7Izo6GkVFRdi9ezeCg4NhZmaGsLAwSb/i4mKYm5tXyXs6OTnpxD6IiEhdTk4O1qxZI2nr168funXrJlNFNYNLYEbGwsICbm5uqF+/PiZPngxfX1/s3LlTtWy1ZMkSeHh4oFmzZgCAa9eu4fXXX4eDgwOcnJwwZMgQZGRkqPZXWlqK999/Hw4ODqhduzZmzpyJJ++v++TyVVFRET766CN4enrCwsICjRs3xvr165GRkYE+ffoAABwdHaFQKBAUFKRxH3fv3kVgYCAcHR1hbW2NAQMG4MqVK6rXN27cCAcHByQkJKBFixawtbWFv78/srKyVH2SkpLw4osvwsbGBg4ODujevTv++OOPKvp/mohI933//fdq4eejjz4y+PADMAAZPSsrKxQXFwMADhw4gNTUVOzbtw+7du1CSUkJ/Pz8YGdnh59++glHjhxRBYnH26xatQobN27Ehg0bcPjwYfzvf/9DXFzcU98zMDAQmzdvxtq1a3Hx4kX861//gq2tLTw9PfHdd98BAFJTU5GVlaX2xXwsKCgIJ06cwM6dO5GSkgIhBF555RWUlJSo+ty/fx8rV67Ev//9bxw6dAiZmZn44IMPADy6e3FAQAB69eqFM2fOICUlBZMmTVK7hw0RkaFasGABfv31V0nbvHnzYGlpKVNFNYtLYEZKCIEDBw4gISEB06ZNw+3bt2FjY4OvvvpKtfT1n//8B2VlZfjqq69UwSA6OhoODg5ISkpC//798cknnyAsLAzDhg0DAKxbtw4JCQnlvu/ly5fx7bffYt++ffD19QUANGzYUPX646UuFxcXyTFAf3flyhXs3LkTR44cUf1XyjfffANPT0/Ex8fjtddeAwCUlJRg3bp1aNSoEQBg6tSpWLhwIQAgLy8Pubm5ePXVV1Wvt2jRQvv/I4mI9Mzt27fx+eefS9peffVVdOzYUaaK5MEZIBnt3Al06/boz5qya9cu2NrawtLSEgMGDMAbb7yB+fPnAwDatGkjOe7nt99+w9WrV2FnZwdbW1vY2trCyckJhYWFSEtLQ25uLrKystClSxfVNrVq1UKnTp3Kff/Tp0/D1NQUvXr1qvQYLl68iFq1aknet3bt2mjWrBkuXryoarO2tlaFGwBwd3fHrVu3ADwKWkFBQfDz88OgQYOwZs0ayfIYEZEh+vbbb9XCT1hYmNGFH4AzQLKKjARSUh79WVM3iuvTpw+ioqJgbm4ODw8PydlfNjY2kr75+fno2LEjvvnmG7X9ODs7V+r9raysKrVdZTx51phCoZAcnxQdHY3p06dj79692LJlC+bMmYN9+/aha9euNVYjEVFNEEKoZsD/zpDP8noWzgDJKDQU8PF59GdNsbGxQePGjeHl5fXMU99feOEFXLlyBS4uLmjcuLHkoVQqoVQq4e7ujuPHj6u2efjwIU6ePFnuPtu0aYOysjIkJydrfP3xDFRpaWm5+2jRogUePnwoed87d+4gNTUVLVu2fOqYntShQweEhYXh6NGjaN26NWJiYrTanohI112+fFkt/AwfPtyoww/AACSrwYOBo0drbvZHW2+99Rbq1KmDIUOG4KeffkJ6ejqSkpIwffp0XL9+HQDw7rvvIjIyEvHx8bh06RKmTJmCnJyccvfZoEEDjB07FuPGjUN8fLxqn99++y0AoH79+lAoFNi1axdu376N/Px8tX00adIEQ4YMwcSJE3H48GH89ttvGD16NOrWrYshQ4ZUaGzp6ekICwtDSkoK/vjjD/z444+4cuUKjwMiIoOyYMECbN68WdI2a9YstG7dWqaKdAcDEJXL2toahw4dgpeXF4YNG4YWLVpg/PjxKCwshL29PYBHVwgdM2YMxo4dCx8fH9jZ2WHo0KFP3W9UVBRGjBiBKVOmoHnz5pg4cSIKCgoAAHXr1sWCBQsQGhoKV1dXTJ06VeM+oqOj0bFjR7z66qvw8fGBEAK7d++u8MUSra2tcenSJQwfPhxNmzbFpEmTEBwcjLfffluL/4eIiHSTEELjhQ0TEuZhzx5eVBYAFOLJi7YQ8vLyoFQqkZubq/qhf6ywsBDp6enw9vY2mlMFiZ87EemPM2fOqF2OxM/PD++/3xUpKY8OvTh6VKbiqtnTfr+fxIOgiYiIDISmWZ85c+bA1NQUoaGPTrqpyeNOdRkDEBERkZ4rLS3F4sWL1dr/fqDz4MG6e8ypHBiAiIiI9Njx48exd+9eSVtAQADatWsnU0X6gQGIiIhIT2la8goPD+dtfSqAAaiSeOy4ceHnTUS6pKSkBEuXLlVrN/Zr+2iDAUhLj0+zvn//fo1e1Zjkdf/+fQDqV5cmIqppiYmJOHTokKRt5MiRaNasmUwV6ScGIC2ZmprCwcFBdU8pa2trTjUaMCEE7t+/j1u3bsHBwQGmpqZyl0RERoxLXlVH1gAUFRWFqKgoZGRkAABatWqF8PBwDBgwQGP/jRs34h//+IekzcLCAoWFharnQgjMmzcPX375JXJyctC9e3dERUWhSZMmVVa3m5sbAKhCEBk+BwcH1edORFTTCgsLsWzZMrV2LnlVnqwBqF69eoiMjESTJk0ghMCmTZswZMgQnDp1Cq1atdK4jb29PVJTU1XPn0y9y5cvx9q1a7Fp0yZ4e3tj7ty58PPzw4ULF6rsAnYKhQLu7u5wcXFBSUlJleyTdJeZmRlnfohINj/88ANOnDghaRs7diwaNGggT0EGQtYANGjQIMnzJUuWICoqCseOHSs3ACkUinL/S1wIgU8++QRz5sxR3RPq66+/hqurK+Lj4zFy5Mgqrd/U1JQ/jEREVG00LXlx1qdq6My9wEpLSxEbG4uCggL4+PiU2y8/Px/169eHp6cnhgwZgvPnz6teS09PR3Z2Nnx9fVVtSqUSXbp0QUpKSrn7LCoqQl5enuRBREQkl/z8fLXwY2Njw/BThWQ/CPrs2bPw8fFBYWEhbG1tERcXh5YtW2rs26xZM2zYsAFt27ZFbm4uVq5ciW7duuH8+fOoV68esrOzAQCurq6S7VxdXVWvaRIREaExZRMREdW0b7/9FhcvXpS0TZo0Ce7u7jJVZJhkvxlqcXExMjMzkZubi23btuGrr75CcnJyuSHo70pKStCiRQuMGjUKixYtwtGjR9G9e3fcuHFD8hfl9ddfh0KhwJYtWzTup6ioCEVFRarneXl58PT0rNDN1IiIiKoKl7yej17dDNXc3ByNGzcGAHTs2BG//PIL1qxZg3/961/P3NbMzAwdOnTA1atXAfx1dtbNmzclAejmzZto3759ufuxsLCAhYXFc4yCiIio8u7evYu1a9dK2tzc3PD222/LVJHhkz0APamsrEwyG/M0paWlOHv2LF555RUAgLe3N9zc3HDgwAFV4MnLy8Px48cxefLk6iqZiIio0jZs2IBr165J2qZOnYratWvLVJFxkDUAhYWFYcCAAfDy8sK9e/cQExODpKQkJCQkAAACAwNRt25dREREAAAWLlyIrl27onHjxsjJycGKFSvwxx9/YMKECQAenSEWEhKCxYsXo0mTJqrT4D08PBAQECDXMImIiDTikpd8ZA1At27dQmBgILKysqBUKtG2bVskJCSgX79+AIDMzEyYmPx1otrdu3cxceJEZGdnw9HRER07dsTRo0clxwvNnDkTBQUFmDRpEnJyctCjRw/s3bu3yq4BRERE9Lxu3bqFqKgoSVuTJk3w5ptvylSR8ZH9IGhdpM1BVERERNpYs2YNcnJyJG3vvfcef2+qgF4dBE1ERGQsuOSlOxiAiIiIqtm1a9ewYcMGSVv79u1Vdy2gmscAREREVI0WLVqEsrIySduHH34Ia2trmSoigAGIiIioWgghsHDhQrV2LnnpBgYgIiKiKnb16lV88803krZu3bqpznIm+TEAERERVSFNBzqHhYXB3NxchmqoPAxAREREVYBLXvqFAYiIiOg5nT9/Htu2bZO0+fr6onv37jJVRM/CAERERPQcNC15zZ49G7Vq8SdWl/HTISIiqoSysjIsWrRIrZ1LXvqBAYiIiEhLJ06cwA8//CBpGzx4MDp06CBTRaQtBiAiIiItaFrymjt3ruTm3aT7GICIiIgqoKSkBEuXLlVr55KXfmIAIiIieoZDhw4hMTFR0vb666+jRYsWMlVEz4sBiIiI6Ck0LXmFh4dDoVDIUA1VFQYgIiIiDYqKihAZGanWziUvw8AARERE9IS9e/fi+PHjkrbAwEB4e3vLVBFVNQYgIiKiv9G05MVZH8PDAERERASgoKAAK1eulLRZWlrio48+kqkiqk4MQEREZPS+++47nDt3TtI2YcIE1K1bV6aKqLoxABERkVHjkpdxYgAiIiKjlJOTgzVr1kjanJ2dMWXKFJkqoprEAEREREZn06ZNyMjIkLQFBwejTp068hRENY4BiIiIjAqXvAhgACIiIiNx+/ZtfP7555I2b29vBAYGylQRyYkBiIiIDN5nn32G//73v5K2kJAQKJVKmSoiuTEAERGRQeOSF2nCAERERAbpzz//xFdffSVpa9OmDYYNGyZTRaRLGICIiMjgREREoLi4WNL2wQcfwMbGRqaKSNcwABERkUHhkhdVBAMQEREZhN9//x3//ve/JW1du3aFn5+fTBWRLjOR882joqLQtm1b2Nvbw97eHj4+PtizZ0+5/b/88kv07NkTjo6OcHR0hK+vL37++WdJn6CgICgUCsnD39+/uodCREQyWrBggVr4CQ0NZfihcskagOrVq4fIyEicPHkSJ06cQN++fTFkyBCcP39eY/+kpCSMGjUKiYmJSElJgaenJ/r3748///xT0s/f3x9ZWVmqx+bNm2tiOEREVMOEEOUueVlYWMhQEekLhRBCyF3E3zk5OWHFihUYP378M/uWlpbC0dERn376qepCVkFBQcjJyUF8fHyla8jLy4NSqURubi7s7e0rvR8iIqo+Fy9exLfffitp69u3L3r27ClTRSQ3bX6/deYYoNLSUmzduhUFBQXw8fGp0Db3799HSUkJnJycJO1JSUlwcXGBo6Mj+vbti8WLF6N27drl7qeoqAhFRUWq53l5eZUbBBER1QhNsz6zZ89GrVo687NGOk72vylnz56Fj48PCgsLYWtri7i4OLRs2bJC23700Ufw8PCAr6+vqs3f3x/Dhg2Dt7c30tLSMGvWLAwYMAApKSkwNTXVuJ+IiAiNXyYiItItZWVlWLRokVo7z/Iibcm+BFZcXIzMzEzk5uZi27Zt+Oqrr5CcnPzMEBQZGYnly5cjKSkJbdu2Lbff77//jkaNGmH//v14+eWXNfbRNAPk6enJJTAiIh3y66+/4vvvv5e0DRw4EJ06dZKpItI1erUEZm5ujsaNGwMAOnbsiF9++QVr1qzBv/71r3K3WblyJSIjI7F///6nhh8AaNiwIerUqYOrV6+WG4AsLCx4sBwRkQ7TNEs/d+5cmJjIei4P6THZA9CTysrKJLMxT1q+fDmWLFmChISECqX+69ev486dO3B3d6/KMomIqAY8fPgQS5YsUWvnkhc9L1kDUFhYGAYMGAAvLy/cu3cPMTExSEpKQkJCAgAgMDAQdevWRUREBABg2bJlCA8PR0xMDBo0aIDs7GwAgK2tLWxtbZGfn48FCxZg+PDhcHNzQ1paGmbOnInGjRvzWhBERHrmyJEj2L9/v6RtxIgRaNWqlUwVkSGRNQDdunULgYGByMrKglKpRNu2bZGQkIB+/foBADIzMyXTm1FRUSguLsaIESMk+5k3bx7mz58PU1NTnDlzBps2bUJOTg48PDzQv39/LFq0iEtcRER6RNOSV3h4OBQKhQzVkCGS/SBoXcTrABERyaO4uFg16/93XPKiitCrg6CJiIgAYN++fTh69KikbfTo0WjUqJFMFZEhYwAiIiLZccmLahoDEBERyeb+/ftYsWKFpM3U1BRz5syRqSIyFgxAREQki/j4ePz222+StnHjxsHT01OmisiYMAAREVGNK+8O7kQ1hQGIiIhqTF5eHj7++GNJm6OjI6ZPny5TRWSsGICIiKhGfPPNN7h69aqkbfLkyXBxcZGpIjJmDEBERFTtuORFuoYBiIiIqs2dO3fw6aefStq8vLzwj3/8Q6aKiB5hACIiomqxbt063Lx5U9I2ffp0ODo6ylQR0V8YgIiIqMpxyYt0HQMQERFVmaysLHzxxReStpYtW+K1116TqSIizRiAiIioSqxYsQL379+XtM2YMQO2trYyVURUPgYgIiJ6blzyIn3DAERERJWWkZGBTZs2Sdo6deqEgQMHylQRUcUwABERUaVomvX56KOPYGlpKUM1RNphACIiIq0IIbBw4UK1di55kT5hACIiogpLTU1FbGyspK1Xr17o3bu3PAURVRIDEBERVYimJa9Zs2bBzMxMhmqIng8DEBERPVVZWRkWLVqk1s4lL9JnDEBERFSu06dPY8eOHZI2f39/dOnSRaaKiKoGAxAREWmkaclrzpw5MDU1laEaoqrFAERERBIPHz7EkiVL1Nq55EWGhAGIiIhUfvjhB5w4cULSNmzYMLRp00amioiqBwMQEREB0Lzk1b59ONq0UchQDVH1YgAiIjJyRUVFiIyMVGvnkhcZMgYgIiIjFhsbi9TUVEnboEGD8MILL8hUEVHNYAAiIjJSmpa8wsPDoVBwyYsMHwMQEZGRyc/Px6pVq9TaueRFxoQBiIjIiHzxxRfIysqStL3xxhto3ry5TBURyYMBiIjISGha8uKsDxkrEznfPCoqCm3btoW9vT3s7e3h4+ODPXv2PHWbrVu3onnz5rC0tESbNm2we/duyetCCISHh8Pd3R1WVlbw9fXFlStXqnMYREQ67e7duww/RE+QNQDVq1cPkZGROHnyJE6cOIG+fftiyJAhOH/+vMb+R48exahRozB+/HicOnUKAQEBCAgIwLlz51R9li9fjrVr12LdunU4fvw4bGxs4Ofnh8LCwpoaFhGRzlixYgXWrl0raRs7dizDDxk9hRBCaLOBqakpsrKy4OLiImm/c+cOXFxcUFpa+lwFOTk5YcWKFRg/frzaa2+88QYKCgqwa9cuVVvXrl3Rvn17rFu3DkIIeHh4YMaMGfjggw8AALm5uXB1dcXGjRsxcuTICtWQl5cHpVKJ3Nxc2NvbP9d4iIjkwlkfMjba/H5rPQNUXl4qKiqCubm5trtTKS0tRWxsLAoKCuDj46OxT0pKCnx9fSVtfn5+SElJAQCkp6cjOztb0kepVKJLly6qPkREhi47O5vhh+gZKnwQ9OMpVIVCga+++gq2traq10pLS3Ho0KFKnUVw9uxZ+Pj4oLCwELa2toiLi0PLli019s3Ozoarq6ukzdXVFdnZ2arXH7eV10eToqIiFBUVqZ7n5eVpPQ4iIl2gKfi8/fbbcHNzk6EaIt1V4QD08ccfA3g0A7Ru3TqYmpqqXjM3N0eDBg2wbt06rQto1qwZTp8+jdzcXGzbtg1jx45FcnJyuSGoOkRERGj8R4OISJ9w1oeo4iocgNLT0wEAffr0wfbt2+Ho6FglBZibm6Nx48YAgI4dO+KXX37BmjVr8K9//Uutr5ubG27evClpu3nzpuq/bB7/efPmTbi7u0v6tG/fvtwawsLC8P7776ue5+XlwdPTs9JjIiKqCTt3ApGRwNSpf+DKlY2S16ysrDBz5kx5CiPSA1ofA5SYmFhl4UeTsrIyyXLU3/n4+ODAgQOStn379qmOGfL29oabm5ukT15eHo4fP17ucUUAYGFhoToV//GDiEjXRUYCfn4L1MLP9OnTGX6InkHrCyGOGzfuqa9v2LChwvsKCwvDgAED4OXlhXv37iEmJgZJSUlISEgAAAQGBqJu3bqIiIgAALz77rvo1asXVq1ahYEDByI2NhYnTpzAF198AeDR8UkhISFYvHgxmjRpAm9vb8ydOxceHh4ICAjQdqhERDrNz49LXkSVpXUAunv3ruR5SUkJzp07h5ycHPTt21erfd26dQuBgYHIysqCUqlE27ZtkZCQgH79+gEAMjMzYWLy1yRVt27dEBMTgzlz5mDWrFlo0qQJ4uPj0bp1a1WfmTNnoqCgAJMmTUJOTg569OiBvXv3wtLSUtuhEhHppEuXLmHLli2SNnd3d0yaNEmmioj0j9bXAdKkrKwMkydPRqNGjQxi2pXXASIiXaXpQOcZM2ZIzswlMlbVeh0gjTsxMcH777+vOlOMiIiqlhCi3LO8GH6ItFdlN0NNS0vDw4cPq2p3RET0/3766SccPHhQ0ubk5IRp06bJVBGR/tM6AP39dHHg0X+VZGVl4YcffsDYsWOrrDAiItK85DVz5kxYWVnJUA2R4dA6AJ06dUry3MTEBM7Ozli1atUzzxAjIiJ1j6/nExoKDB78qK2srAyLFi1S68uzvIiqRpUcBG1oeBA0EdWkbt2AlBTAxwc4ehT44YcfcOLECUkfb29vBAYGylQhkX7Q5ve70scA3bp1C6mpqQAe3c7iybvDExFRxYSG/jUDpGnJa9asWTAzM5OhMiLDpfVZYHl5eRgzZgw8PDzQq1cv9OrVC3Xr1sXo0aORm5tbHTUSERm0wYOBQ4ce4tQpzWd5MfwQVT2tA9DEiRNx/Phx/PDDD8jJyUFOTg527dqFEydO4O23366OGomIDFp0dDSWLFkiaWvfvj2P9yGqRlofA2RjY4OEhAT06NFD0v7TTz/B398fBQUFVVqgHHgMEBHVFE1LXnPnzpVcBZ+IKqZaL4RYu3ZtKJVKtXalUlmtN0klIjIkDx48KPfChs8KPzt3PjpweufO6qqOyPBpfRD0nDlz8P777+Pf//433NzcAADZ2dn48MMPMXfu3CovkIjI0KxcuVJttrxLly7w9/ev0PaRkY/OGouM/Ou0eSLSjtZLYB06dMDVq1dRVFQELy8vAI9uWmphYYEmTZpI+v76669VV2kN4hIYEVUXTbM+4eHhUCgUFd6HpusGEVE1nwY/ZMgQrb6oRET06B9mTfdLrMyBzoMHM/gQPS9eCFEDzgARUVXSNOvj6+uL7t27y1ANkeGq1oOgGzZsiDt37qi15+TkoGHDhtrujojIoJV3oDPDD5G8tF4Cy8jIQGlpqVp7UVERrl+/XiVFERHpu9u3b+Pzzz9Xa+e1fYh0Q4UD0M6/nW+ZkJAgORW+tLQUBw4cgLe3d9VWR0SkhzTN+gwdOhRt27aVoRoi0qTCASggIAAAoFAoMHbsWMlrZmZmaNCgAVatWlWlxRER6ZvylryISLdUOACVlZUBeHRH4l9++QV16tSptqKIiPRNZmYmoqOj1doZfoh0k9bHAKWnp1dHHUREekvTrM/o0aPRqFEjGaohoorQOgAtXLjwqa+Hh4dXuhgiIn3DJS8i/aR1AIqLi5M8LykpQXp6OmrVqoVGjRoxABGRUUhNTUVsbKxaO8MPkX7QOgCdOnVKrS0vLw9BQUEYOnRolRRFRCS3p91uQtOsz8SJE+Hh4VFD1RHR86qyK0GfPXsWgwYNQkZGRlXsTla8EjQRdev26IajPj7A0aN/tXPJi0h3Veu9wMqTm5uL3NzcqtodEZGsQkP/mgECgJMnT2LXrl1q/Rh+iPST1gFo7dq1kudCCGRlZeHf//43BgwYUGWFERHJ6e83HNU06zNt2jQ4OTnVcFVEVFW0DkBP3s3YxMQEzs7OGDt2LMLCwqqsMCIiXcAlLyLDxOsAERFpcPDgQfz0009q7Qw/RIahUscA5eTk4OrVqwCAxo0bw8HBoSprIiKSlaZZnxkzZsDW1laGaoioOpho0zkjIwMDBw5EnTp10KVLF3Tp0gV16tTBq6++ahBnfxGRcRNClLvkxfBDZFgqPAN07do1dO3aFWZmZli0aBFatGgBALhw4QKioqLg4+ODX375BfXq1au2YomIqss333yjmtn+Oy55ERmmCs8AzZ8/H82aNcOVK1cQFhaGgIAABAQEYNasWbh8+TKaNm2K+fPna/XmERER6Ny5M+zs7ODi4oKAgACkpqY+dZvevXtDoVCoPQYOHKjqExQUpPa6v7+/VrURkfFYsGCBWvj56KOPGH6IDFiFZ4D27t2LLVu2wNLSUu01KysrLFq0CCNHjtTqzZOTkxEcHIzOnTvj4cOHmDVrFvr3748LFy7AxsZG4zbbt29HcXGx6vmdO3fQrl07vPbaa5J+/v7+kjszW1hYaFUbERm+kpISLF26VK2dwYfI8FU4AP33v/9FgwYNyn29YcOG+N///qfVm+/du1fyfOPGjXBxccHJkyfx0ksvadzmyetuxMbGwtraWi0AWVhYwM3NTat6iMh4aDrWx9TUFHPmzJGhGiKqaRUOQO7u7rhw4UK5x/icO3fuuQPH4ytJa3NxsfXr12PkyJFqM0ZJSUlwcXGBo6Mj+vbti8WLF6N27drPVR8RGQZN4Wf27NmoVavKLo5PRDquwvcCCwkJwcGDB3HgwAE4OztLXrt16xb69euHPn364JNPPqlUIWVlZRg8eDBycnJw+PDhCm3z888/o0uXLjh+/DhefPFFVfvjWSFvb2+kpaVh1qxZsLW1RUpKCkxNTdX2U1RUhKKiItXzvLw8eHp68l5gRAbm/v37WLFihVo7l7yIDIM29wKrcAC6e/cuunTpguzsbIwePRrNmzeHEAIXL15ETEwM3NzccOzYsUpfGn7y5MnYs2cPDh8+XOEzyd5++22kpKTgzJkzT+33+++/o1GjRti/fz9efvlltdfnz5+v8b8IGYCIDIem77i7uzsmTZokQzVEVB2qJQABj0LQrFmzsGXLFuTk5AAAHBwc8Prrr2Pp0qWVDj9Tp07Fjh07cOjQIXh7e1dom4KCAnh4eGDhwoV49913n9nf2dkZixcvxttvv632GmeAiAybpvATHh4OhUKher5z5183P318DzAi0i/VFoAeE0Lg9u3bAB4Fi7//I6LtfqZNm4a4uDgkJSWhSZMmFd5248aNeOedd/Dnn38+89ie69evw8vLC/Hx8RhcgX/ZtPk/kIh01927d9Vu4AxoXvLq1g1ISQF8fICjR2uiOiKqatr8flfqiD+FQgEXF5dKFfd3wcHBiImJwY4dO2BnZ4fs7GwAgFKphJWVFQAgMDAQdevWRUREhGTb9evXIyAgQC385OfnY8GCBRg+fDjc3NyQlpaGmTNnonHjxvDz83vumolIP2ia9WnVqhVGjBihsX9o6F8zQERk+GQ95SEqKgrAo4sb/l10dDSCgoIAAJmZmTAxkV6vMTU1FYcPH8aPP/6otk9TU1OcOXMGmzZtQk5ODjw8PNC/f38sWrSI1wIiMhKVuYP74MFc+iIyJpVaAjN0XAIj0k83btzAl19+qdbOs7yIjEO1L4EREekaTbM+PXr00HjmJxERAxAR6b3KLHkRkXGrUADSdBZFeaZPn17pYoiItHHlyhXExMSotTP8ENGzVOgYoIpem0ehUOD3339/7qLkxmOAiHSfplmfgQMHolOnTjJUQ0S6oMqPAUpPT6+SwoiIqgKXvIjoeVX6GKDi4mKkp6ejUaNGvIEgEdWIX3/9Fd9//71aO8MPEWlL6+Ry//59TJs2DZs2bQIAXL58GQ0bNsS0adNQt25dhPIqYkRUDTTN+owaNQpNmzaVoRoi0ncmz+4iFRYWht9++w1JSUmwtLRUtfv6+mLLli1VWhwREVD+khfDDxFVltYzQPHx8diyZQu6du0quQdYq1atkJaWVqXFEZFxS0xMxKFDh9TaueRFRM9L6wB0+/ZtjfcBKygoqPRNUYmInqRp1mfChAmoW7euDNUQkaHRegmsU6dO+OGHH1TPH4eer776Cj4+PlVXGREZrfKWvBh+iKiqaD0DtHTpUgwYMAAXLlzAw4cPsWbNGly4cAFHjx5FcnJyddRIREbim2++wdWrV9XaueRFRFVN6wDUo0cPnD59GpGRkWjTpg1+/PFHvPDCC0hJSUGbNm2qo0YiMgKaZn2mTZsGJycnGaohIkNXqQv4NGrUSOMdl4mItCWEwMKFC9XaO3SYB2YfIqouFQpAeXl5Fd4hbx1BRBX18ccfa/z3hUteRFTdKhSAHBwcKnyGV2lp6XMVRETGQdOS14wZM2BraytDNURkbCoUgBITE1X/OyMjA6GhoQgKClKd9ZWSkoJNmzYhIiKieqokIoPx8OFDLFmyRK2dsz5EVJMqdDf4v3v55ZcxYcIEjBo1StIeExODL774AklJSVVZnyx4N3ii6qFp1gdg+CGiqqHN77fWAcja2hq//fYbmjRpImm/fPky2rdvj/v372tfsY5hACKqeprCT1hYGMzNzWWohogMkTa/31pfCNHT01PjGWBfffUVPD09td0dERm4Bw8elHthQ4YfIpKL1qfBf/zxxxg+fDj27NmDLl26AAB+/vlnXLlyBd99912VF0hE+ktT8KlVqxZmz54tQzVERH/RegkMAK5fv47PP/8cly5dAgC0aNEC77zzjsHMAHEJjOj5aQo/c+fOhYmJ1hPPREQVUq3HABkDBiCiysvJycGaNWvU2nmgMxFVN21+vyt1JeicnBysX78eFy9eBAC0atUK48aNg1KprMzuiMhAaJr1qVu3LiZMmCBDNURE5dN6BujEiRPw8/ODlZUVXnzxRQDAL7/8ggcPHqjuC6bvOANEpD1N4Sc8PLzCF1ElInpe1boE1rNnTzRu3BhffvklatV6NIH08OFDTJgwAb///jsOHTpU+cp1BAMQUcXduHFD45mhXPIioppWrQHIysoKp06dQvPmzSXtFy5cQKdOnXgdICIjomnWp23bthg6dKgM1RCRsavWY4Ds7e2RmZmpFoCuXbsGOzs7bXdHRHqqvGv7EBHpA60D0BtvvIHx48dj5cqV6NatGwDgyJEj+PDDD9Vuj0FEhufy5cvYvHmzWjvDDxHpE60D0MqVK6FQKBAYGIiHDx8CAMzMzDB58mRERkZWeYFEpDs0zfr07t0bvXr1kqEaIqLKq/R1gO7fv4+0tDQAQKNGjWBtbV2lhcmJxwARqeOSFxHpumq9F9hj1tbWaNOmDdq0aVPp8BMREYHOnTvDzs4OLi4uCAgIQGpq6lO32bhxIxQKheRhaWkp6SOEQHh4ONzd3WFlZQVfX19cuXKlUjUSGbsTJ04w/BCRwanwEti4ceMq1G/Dhg0VfvPk5GQEBwejc+fOePjwIWbNmoX+/fvjwoULsLGxKXc7e3t7SVB68jojy5cvx9q1a7Fp0yZ4e3tj7ty58PPzw4ULF9TCEhGVT1PwGTJkCNq3b1/zxRARVaEKB6CNGzeifv366NChA6rq7hl79+5Vew8XFxecPHkSL730UrnbKRQKuLm5aXxNCIFPPvkEc+bMwZAhQwAAX3/9NVxdXREfH4+RI0dWSe1Eho6zPkRkyCocgCZPnozNmzcjPT0d//jHPzB69Gg4OTlVaTG5ubkA8Mz95ufno379+igrK8MLL7yApUuXolWrVgCA9PR0ZGdnw9fXV9VfqVSiS5cuSElJYQAi+n87dwKRkUBoKDB48F/t+/fvx5EjR9T6M/wQkSGp8DFAn332GbKysjBz5kx8//338PT0xOuvv46EhIQqmREqKytDSEgIunfvjtatW5fbr1mzZtiwYQN27NiB//znPygrK0O3bt1w/fp1AEB2djYAwNXVVbKdq6ur6rUnFRUVIS8vT/IgMnSRkUBKyqM/H1uwYIFa+BkzZgzDDxEZHK0OgrawsMCoUaOwb98+XLhwAa1atcKUKVPQoEED5OfnP1chwcHBOHfuHGJjY5/az8fHB4GBgWjfvj169eqF7du3w9nZGf/6178q/d4RERFQKpWqh6enZ6X3RaQvQkMBH59HfwLlL3k1bNiwhisjIqp+lT4LzMTEBAqFAkIIlJaWPlcRU6dOxa5du5CYmIh69eppta2ZmRk6dOiAq1evAoDq2KCbN29K+t28ebPc44bCwsKQm5urely7dq0SoyDSL4MHA0ePAoWF3/J4HyIyOloFoKKiImzevBn9+vVD06ZNcfbsWXz66afIzMyEra2t1m8uhMDUqVMRFxeHgwcPwtvbW+t9lJaW4uzZs3B3dwcAeHt7w83NDQcOHFD1ycvLw/Hjx+Hj46NxHxYWFrC3t5c8iIzBggULcPHiRUnbO++8w/BDRAavwgdBT5kyBbGxsfD09MS4ceOwefNm1KlT57nePDg4GDExMdixYwfs7OxUx+golUpYWVkBAAIDA1G3bl1EREQAABYuXIiuXbuicePGyMnJwYoVK/DHH39gwoQJAB6dIRYSEoLFixejSZMmqtPgPTw8EBAQ8Fz1EhkKIQQWLlyo1s7gQ0TGosIBaN26dfDy8kLDhg2RnJyM5ORkjf22b99e4TePiooC8OhS+n8XHR2NoKAgAEBmZiZMTP6aqLp79y4mTpyI7OxsODo6omPHjjh69Chatmyp6jNz5kwUFBRg0qRJyMnJQY8ePbB3715eA4gIwKZNm5CRkaHWzvBDRMakwrfCCAoKUrvgoCbR0dHPXZTceCsMMlSajvV57733+PeciAyCNr/fWl0IkYj0U2lpKRYvXqzWzlkfIjJWWt8Nnoj0y+rVq3Hv3j21doYfIjJmDEBEBkzTkldoaCgsLCxkqIaISHcwABEZoKKiIkT+/RLP/4+zPkREjzAAERkYTbM+tra2mDFjhgzVEBHpJgYgIgOiKfzMmTMHpqamMlRDRKS7GICIDMC9e/ewevVqtXYueRERacYARKTnNM36eHt7IzAwUIZqiIj0AwMQkR7TFH7Cw8MrdNFSIiJjxgBEpIf++9//4rPPPlNr55IXEVHFMAAR6RlNsz4vvPACBg0aJEM1RET6iQGISI9oCj+c9SEi0h4DEJEeyMzM1HijYYYfIqLKYQAi0nGaZn1efvll9OjRQ4ZqiIgMAwMQkQ7jkhcRUfVgACLSQRcuXMDWrVvV2hl+iIiqBgMQkY7RNOszdOhQtG3bVoZqiIgMEwMQkcx27gQiI4HQUODUKS55ERHVBAYgIplFRgJlZcdw6lSC2msMP0RE1YMBiEhmfn7qsz6BgYHw9vaWoRoiIuPAAEQkI57lRUQkDwYgIhkcOnQIiYmJau0MP0RENYMBiKiGaZr1CQ4ORp06dWSohojIOJnIXQCRIZo9G7Cze/TnY0KIcpe8GH6IiGqWQggh5C5C1+Tl5UGpVCI3Nxf29vZyl0N6yM4OyM8HLC2BDh2AN9/8Hnfu/KrWj0teRERVR5vfby6BEVUDf39g+3bA2vrRWV537khfnzFjBmxtbeUpjoiIGICIqsOffwJClGH69EVqr3HWh4hIfgxARNVg1Kgd8PM7LWkzNTXFnDlz5CmIiIgkGICIqpimA51DQ0NhYWEhQzVERKQJAxBRFSktLcXixYvV2rnkRUSkexiAiKrATz/9hIMHD0ra+vXrh27duslUERERPQ0DENFz0rTkNXfuXJiY8DJbRES6StZ/oSMiItC5c2fY2dnBxcUFAQEBSE1Nfeo2X375JXr27AlHR0c4OjrC19cXP//8s6RPUFAQFAqF5OHv71+dQyEjVFJSUu6FDRl+iIh0m6wzQMnJyQgODkbnzp3x8OFDzJo1C/3798eFCxdgY2OjcZukpCSMGjUK3bp1g6WlJZYtW4b+/fvj/PnzqFu3rqqfv78/oqOjVc95ACpVpb179+L48eOStoCAALRr106mioiISBs6dSXo27dvw8XFBcnJyXjppZcqtE1paSkcHR3x6aefIjAwEMCjGaCcnBzEx8dXqg5eCZqeRtOsT3h4OBQKhQzVEBHRY9r8fuvUPH1ubi4AwMnJqcLb3L9/HyUlJWrbJCUlwcXFBc2aNcPkyZNx58lL8f5NUVER8vLyJA+iJz148KDcJS+GHyIi/aIzM0BlZWUYPHgwcnJycPjw4QpvN2XKFCQkJOD8+fOwtLQEAMTGxsLa2hre3t5IS0vDrFmzYGtri5SUFJiamqrtY/78+Rp/2DgDRI9t27YN58+fl7SNGjUKTZs2lakiIiJ6kjYzQDoTgCZPnow9e/bg8OHDqFevXoW2iYyMxPLly5GUlIS2bduW2+/3339Ho0aNsH//frz88stqrxcVFaGoqEj1PC8vD56engxARmznTiAyEggNBU6d0jzrQ0REukXvlsCmTp2KXbt2ITExscLhZ+XKlYiMjMSPP/741PADAA0bNkSdOnVw9epVja9bWFjA3t5e8iDjFhkJnD17j+GHiMhAyXoWmBAC06ZNQ1xcHJKSkuDt7V2h7ZYvX44lS5YgISEBnTp1emb/69ev486dO3B3d3/ekslIDB++EX5+f0jagoKCUL9+fZkqIiKiqiRrAAoODkZMTAx27NgBOzs7ZGdnAwCUSiWsrKwAAIGBgahbty4iIiIAAMuWLUN4eDhiYmLQoEED1Ta2trawtbVFfn4+FixYgOHDh8PNzQ1paWmYOXMmGjduDD8/P3kGSnqlvAOdiYjIcMi6BBYVFYXc3Fz07t0b7u7uqseWLVtUfTIzM5GVlSXZpri4GCNGjJBss3LlSgCP7rh95swZDB48GE2bNsX48ePRsWNH/PTTT7wWED3VvXv31MJPrVq1GH6IiAyQzhwErUt4HSDjs2PHDpw+fVrSNn36dDg6OspTEBERaU2b32/eC4yMHpe8iIiMDwMQGa27d+9i7dq1krYOHTpg8ODBMlVEREQ1hQGIjFJMTAyuXLkiaXv//fdhZ2cnU0VERFSTGIDI6HDJi4iIGIDIaNy8eRPr1q2TtHXv3h2+vr4yVURERHJhACKj8OWXX+LGjRuStpkzZ6quN0VERMaFAYgMHpe8iIjoSQxAZLCuX7+O9evXS9p8fX3RvXt3mSoiIiJdwQBEBumTTz5Bbm6upC0sLAzm5uYyVURERLqEAYgMihACCxcuVGvnkhcREf0dAxAZjLS0NPznP/+RtL366qvo2LGjTBUREZGuYgAig7Bo0SKUlZVJ2mbPno1atfhXnIiI1PHXgfRaWVkZFi1apNbOJS8iInoaBiDSWxcvXsS3334raRsxYgRatWolU0VERKQvGIBIL2m6ts/cuXNhYmIiQzVERKRvGIBIr5SWlmLx4sVq7VzyIiIibTAAkd749ddf8f3330va3nrrLTRu3FimioiISF8xAJFe0LTkFR4eDoVCIUM1RESk7xiASKeVlJRg6dKlkjZbW1vMmDFDpoqIiMgQMACRzjp69Cj27dsnaRs3bhw8PT1lqoiIiAwFAxDpJN7BnYiIqhMDEOmUwsJCLFu2TNLm7u6OSZMmyVQREREZIgYg0hkHDhzA4cOHJW3vvPMOXF1dZaqIiIgMFQMQ6QQueRERUU1iACJZ5efnY9WqVZK2Jk2a4M0335SpIiIiMgYMQCSb77//Hr/++qukbdq0aXBycpKpIiIiMhYMQCQLLnkREZGcGICoRuXk5GDNmjWStnbt2iEgIECegoiIyCgxAFGN+fbbb3Hx4kVJ23vvvQd7e3uZKiIiImPFAEQ1gkteRESkSxiAqFrdvn0bn3/+uaSta9eu8PPzk6kiIiIiwETON4+IiEDnzp1hZ2cHFxcXBAQEIDU19Znbbd26Fc2bN4elpSXatGmD3bt3S14XQiA8PBzu7u6wsrKCr68vrly5Ul3DIA127gRCQjaohZ8PP/yQ4YeIiGQnawBKTk5GcHAwjh07hn379qGkpAT9+/dHQUFBudscPXoUo0aNwvjx43Hq1CkEBAQgICAA586dU/VZvnw51q5di3Xr1uH48eOwsbGBn58fCgsLa2JYBODUqQVwdLwmaZs3bx6sra1lqoiIiOgvCiGEkLuIx27fvg0XFxckJyfjpZde0tjnjTfeQEFBAXbt2qVq69q1K9q3b49169ZBCAEPDw/MmDEDH3zwAQAgNzcXrq6u2LhxI0aOHPnMOvLy8qBUKpGbm8sDdLWk6Syvvn37omfPnjJVRERExkKb329ZZ4CelJubCwBPvRBeSkoKfH19JW1+fn5ISUkBAKSnpyM7O1vSR6lUokuXLqo+TyoqKkJeXp7kQdo7ePCgWviZNWsWww8REekcnTkIuqysDCEhIejevTtat25dbr/s7Gy1m2O6uroiOztb9frjtvL6PCkiIkLjWUpUMUIILFy4UNLWoEEDjB07VqaKiIiInk5nAlBwcDDOnTundjfwmhAWFob3339f9TwvLw+enp41Xoc++u9//4vPPvtM0jZ27Fg0aNBAnoKIiIgqQCcC0NSpU7Fr1y4cOnQI9erVe2pfNzc33Lx5U9J28+ZNuLm5qV5/3Obu7i7p0759e437tLCwgIWFxXOMwDilp6fj66+/lrTNmTMHpqamMlVERERUMbIeAySEwNSpUxEXF4eDBw/C29v7mdv4+PjgwIEDkrZ9+/bBx8cHAODt7Q03NzdJn7y8PBw/flzVh56PEAI///yzJPzcvNkC8+bNY/ghIiK9IOsMUHBwMGJiYrBjxw7Y2dmpjtFRKpWwsrICAAQGBqJu3bqIiIgAALz77rvo1asXVq1ahYEDByI2NhYnTpzAF198AQBQKBQICQnB4sWL0aRJE3h7e2Pu3Lnw8PDg/aaqQGFhIXbu3Km6pYW5uQP27RuLkBAHeQsjIiLSgqwBKCoqCgDQu3dvSXt0dDSCgoIAAJmZmTAx+Wuiqlu3boiJicGcOXMwa9YsNGnSBPHx8ZIDp2fOnImCggJMmjQJOTk56NGjB/bu3QtLS8tqH5Mh+/PPP7Ft2zbk5OTAxMQE/fr1Q5cuXRAWppC7NCIiIq3o1HWAdAWvAyQlhMCxY8ewf/9+lJWVwcHBASNGjEDdunXlLo2IiEhFm99vnTgImnTX/fv3sWPHDly+fBkA0LJlSwwaNIizaUREpNcYgKhcmZmZ+O6775CXlwdTU1P4+fmhU6dOUCi45EVERPqNAYjUCCFw+PBhJCYmQgiB2rVrY8SIEapLDBAREek7BiCSKCgoQFxcHNLS0gAAbdq0wcCBA3mdJCIiMigMQKSSnp6O7du3Iz8/H7Vq1cIrr7yC9u3bc8mLiIgMDgMQoaysDIcOHUJycjIAwNnZGSNGjICLi4vMlREREVUPBiAjd+/ePWzfvh0ZGRkAgA4dOmDAgAEwMzOTtzAiIqJqxABkxK5evYq4uDjcv38fZmZmePXVV9G2bVu5yyIiIqp2DEBGqLS0FImJiThy5AgAwNXVFa+99hpq164tc2VEREQ1gwHIyOTm5uK7777DtWvXAACdOnWCn58fatXiXwUiIjIe/NUzIqmpqdixYwcePHgACwsLDB48GC1btpS7LCIiohrHAGQESktLsX//fhw7dgwA4OHhgREjRsDR0VHmyoiIiOTBAGTg7t69i23btuHGjRsAgK5du8LX1xempqYyV0ZERCQfBiADduHCBezcuRNFRUWwtLREQEAAmjVrJndZREREsmMAMkAPHz5EQkICTpw4AQDw9PTE8OHDoVQqZa6MiIhINzAAGZg7d+5g69atuHnzJgCge/fu6NOnD5e8iIiI/oYByICcPXsWu3btQnFxMaytrTF06FA0btxY7rKIiIh0DgOQASgpKcGePXtw6tQpAECDBg0wbNgw2NnZyVwZERGRbmIA0nO3bt3Ctm3bcPv2bQBAr1698NJLL8HExETmyoiIiHQXA5CeEkLg9OnT2L17Nx4+fAhbW1sMGzYM3t7ecpdGRESk8xiA9FBRURF2796NM2fOAAAaNmyIoUOHwtbWVubKiIiI9AMDkJ7Jzs7Gtm3bcOfOHSgUCvTp0wc9evSAQqGQuzQiIiK9wQCkJ4QQOHnyJPbu3YvS0lLY29tj+PDh8PLykrs0IiIivcMApAcKCwvx/fff48KFCwCApk2bYsiQIbC2tpa5MiIiIv3EAKTj/vzzT3z33Xe4e/cuTExM4Ovri65du3LJi4iI6DkwAOkoIQSOHz+Offv2oaysDA4ODhgxYgTq1q0rd2lERER6jwFIBz148AA7duxAamoqAKBFixYYPHgwLC0tZa6MiIjIMDAA6Zhr165h27ZtyMvLg6mpKfr374/OnTtzyYuIiKgKMQDpCCEEjhw5goMHD0IIAScnJ4wYMQLu7u5yl0ZERGRwGIB0QEFBAeLj43H16lUAQOvWrfHqq6/CwsJC5sqIiIgMEwOQzDIyMrB9+3bcu3cPtWrVwoABA9ChQwcueREREVUjWe+YeejQIQwaNAgeHh5QKBSIj49/av+goCAoFAq1R6tWrVR95s+fr/Z68+bNq3kk2isrK0NycjK+/vpr3Lt3D3Xq1MHEiRPxwgsvMPwQERFVM1lngAoKCtCuXTuMGzcOw4YNe2b/NWvWIDIyUvX84cOHaNeuHV577TVJv1atWmH//v2q57Vq6dZE17179xAXF4f09HQAQPv27TFgwACYm5vLXBkREZFxkDUZDBgwAAMGDKhwf6VSCaVSqXoeHx+Pu3fv4h//+IekX61ateDm5lZldValtLQ0xMXFoaCgAGZmZhg4cCDatWsnd1lERERGRbemRrS0fv16+Pr6on79+pL2K1euwMPDA5aWlvDx8UFERMRT75lVVFSEoqIi1fO8vLxqqfenn37CwYMHAQCurq4YMWIE6tSpUy3vRUREROWT9Rig53Hjxg3s2bMHEyZMkLR36dIFGzduxN69exEVFYX09HT07NkT9+7dK3dfERERqtklpVIJT0/PaqnZ0dERAHDtWke4uY1n+CEiIpKJQggh5C4CABQKBeLi4hAQEFCh/hEREVi1ahVu3Ljx1GNncnJyUL9+faxevRrjx4/X2EfTDJCnpydyc3Nhb2+v1Tiexd//TyQk1IWPD3D0aJXumoiIyKjl5eVBqVRW6PdbL5fAhBDYsGEDxowZ88wDhx0cHNC0aVPVNXY0sbCwqLFr7kyZUhd5eUBoaI28HREREWmgl0tgycnJuHr1arkzOn+Xn5+PtLQ0nbmi8uDBj2Z+Bg+WuxIiIiLjJWsAys/Px+nTp3H69GkAQHp6Ok6fPo3MzEwAQFhYGAIDA9W2W79+Pbp06YLWrVurvfbBBx8gOTkZGRkZOHr0KIYOHQpTU1OMGjWqWsdCRERE+kPWJbATJ06gT58+qufvv/8+AGDs2LHYuHEjsrKyVGHosdzcXHz33XdYs2aNxn1ev34do0aNwp07d+Ds7IwePXrg2LFjcHZ2rr6BEBERkV7RmYOgdYk2B1ERERGRbtDm91svjwEiIiIieh4MQERERGR0GICIiIjI6DAAERERkdFhACIiIiKjwwBERERERocBiIiIiIwOAxAREREZHQYgIiIiMjoMQERERGR0ZL0XmK56fHeQvLw8mSshIiKiinr8u12Ru3wxAGlw7949AICnp6fMlRAREZG27t27B6VS+dQ+vBmqBmVlZbhx4wbs7OygUCiqdN95eXnw9PTEtWvXDPJGq4Y+PoBjNASGPj7A8Mdo6OMDOMbKEELg3r178PDwgInJ04/y4QyQBiYmJqhXr161voe9vb3B/oUGDH98AMdoCAx9fIDhj9HQxwdwjNp61szPYzwImoiIiIwOAxAREREZHQagGmZhYYF58+bBwsJC7lKqhaGPD+AYDYGhjw8w/DEa+vgAjrG68SBoIiIiMjqcASIiIiKjwwBERERERocBiIiIiIwOAxAREREZHQag53Do0CEMGjQIHh4eUCgUiI+Pf2r/oKAgKBQKtUerVq1UfebPn6/2evPmzat5JJpFRESgc+fOsLOzg4uLCwICApCamvrM7bZu3YrmzZvD0tISbdq0we7duyWvCyEQHh4Od3d3WFlZwdfXF1euXKmuYTxVZcb45ZdfomfPnnB0dISjoyN8fX3x888/S/po+qz9/f2rcygaVWZ8GzduVKvd0tJS0kffP8PevXtr/C4OHDhQ1UdXPkMAiIqKQtu2bVUXi/Px8cGePXueuo0+fQ+1HZ8+fQcf03aM+vY91HZ8uvAdZAB6DgUFBWjXrh0+++yzCvVfs2YNsrKyVI9r167ByckJr732mqRfq1atJP0OHz5cHeU/U3JyMoKDg3Hs2DHs27cPJSUl6N+/PwoKCsrd5ujRoxg1ahTGjx+PU6dOISAgAAEBATh37pyqz/Lly7F27VqsW7cOx48fh42NDfz8/FBYWFgTw5KozBiTkpIwatQoJCYmIiUlBZ6enujfvz/+/PNPST9/f3/J57h58+bqHo6ayowPeHRV1r/X/scff0he1/fPcPv27ZLxnTt3DqampmrfRV34DAGgXr16iIyMxMmTJ3HixAn07dsXQ4YMwfnz5zX217fvobbj06fv4GPajhHQr++htuPTie+goCoBQMTFxWm1TVxcnFAoFCIjI0PVNm/ePNGuXbuqLa6K3Lp1SwAQycnJ5fZ5/fXXxcCBAyVtXbp0EW+//bYQQoiysjLh5uYmVqxYoXo9JydHWFhYiM2bN1dP4VqoyBif9PDhQ2FnZyc2bdqkahs7dqwYMmRINVT4fCoyvujoaKFUKst93RA/w48//ljY2dmJ/Px8VZuufoaPOTo6iq+++krja/r+PRTi6eN7kj59B//uaWPU9++hENp9hnJ8BzkDJKP169fD19cX9evXl7RfuXIFHh4eaNiwId566y1kZmbKVKFUbm4uAMDJyancPikpKfD19ZW0+fn5ISUlBQCQnp6O7OxsSR+lUokuXbqo+sipImN80v3791FSUqK2TVJSElxcXNCsWTNMnjwZd+7cqdJaK6Oi48vPz0f9+vXh6emp9l9xhvgZrl+/HiNHjoSNjY2kXRc/w9LSUsTGxqKgoAA+Pj4a++jz97Ai43uSPn0HgYqPUV+/h5X5DOX4DvJmqDK5ceMG9uzZg5iYGEl7ly5dsHHjRjRr1gxZWVlYsGABevbsiXPnzsHOzk6maoGysjKEhISge/fuaN26dbn9srOz4erqKmlzdXVFdna26vXHbeX1kUtFx/ikjz76CB4eHpJ/iPz9/TFs2DB4e3sjLS0Ns2bNwoABA5CSkgJTU9PqKP+ZKjq+Zs2aYcOGDWjbti1yc3OxcuVKdOvWDefPn0e9evUM7jP8+eefce7cOaxfv17Srmuf4dmzZ+Hj44PCwkLY2toiLi4OLVu21NhXH7+H2ozvSfryHdRmjPr4PazsZyjbd7Da5paMDLRcAlu6dKmoXbu2KCoqemq/u3fvCnt7+wpPI1aXd955R9SvX19cu3btqf3MzMxETEyMpO2zzz4TLi4uQgghjhw5IgCIGzduSPq89tpr4vXXX6/aorVU0TH+XUREhHB0dBS//fbbU/ulpaUJAGL//v3PW2alVWZ8QghRXFwsGjVqJObMmSOEMLzPcNKkSaJNmzbP7Cf3Z1hUVCSuXLkiTpw4IUJDQ0WdOnXE+fPnNfbVx++hNuP7O336DlZ2jELox/ewsuOT6zvIJTAZCCGwYcMGjBkzBubm5k/t6+DggKZNm+Lq1as1VJ26qVOnYteuXUhMTES9evWe2tfNzQ03b96UtN28eRNubm6q1x+3lddHDtqM8bGVK1ciMjISP/74I9q2bfvUvg0bNkSdOnVk+xwrM77HzMzM0KFDB1XthvQZFhQUIDY2FuPHj39mX7k/Q3NzczRu3BgdO3ZEREQE2rVrhzVr1mjsq4/fQ23G95g+fQeByo3xMX34HlZmfHJ+BxmAZJCcnIyrV69W6APPz89HWloa3N3da6AyKSEEpk6diri4OBw8eBDe3t7P3MbHxwcHDhyQtO3bt0+1Duzt7Q03NzdJn7y8PBw/frzCa8VVqTJjBB6dfbFo0SLs3bsXnTp1emb/69ev486dOzX+OVZ2fH9XWlqKs2fPqmo3lM8QeHSqeFFREUaPHv3MvnJ9huUpKytDUVGRxtf07XuoydPGB+jPd/BpnjXGv9P176EmFRmfrN/BKplHMlL37t0Tp06dEqdOnRIAxOrVq8WpU6fEH3/8IYQQIjQ0VIwZM0Ztu9GjR4suXbpo3OeMGTNEUlKSSE9PF0eOHBG+vr6iTp064tatW9U6Fk0mT54slEqlSEpKEllZWarH/fv3VX3GjBkjQkNDVc+PHDkiatWqJVauXCkuXrwo5s2bJ8zMzMTZs2dVfSIjI4WDg4PYsWOHOHPmjBgyZIjw9vYWDx48qNHxCVG5MUZGRgpzc3Oxbds2yTb37t0TQjz6e/HBBx+IlJQUkZ6eLvbv3y9eeOEF0aRJE1FYWKjz41uwYIFISEgQaWlp4uTJk2LkyJHC0tJSMpWt75/hYz169BBvvPGGWrsufYZCPPq3JDk5WaSnp4szZ86I0NBQoVAoxI8//iiE0P/vobbj06fvYGXHqG/fQ23H95ic30EGoOeQmJgoAKg9xo4dK4R4dApfr169JNvk5OQIKysr8cUXX2jc5xtvvCHc3d2Fubm5qFu3rnjjjTfE1atXq3kkmmkaGwARHR2t6tOrVy/VeB/79ttvRdOmTYW5ublo1aqV+OGHHySvl5WViblz5wpXV1dhYWEhXn75ZZGamloDI1JXmTHWr19f4zbz5s0TQghx//590b9/f+Hs7CzMzMxE/fr1xcSJE0V2dnbNDk5UbnwhISHCy8tLmJubC1dXV/HKK6+IX3/9VbJfff8MhRDi0qVLAoDqH+i/06XPUAghxo0bJ+rXry/Mzc2Fs7OzePnllyV16/v3UNvx6dN38DFtx6hv38PK/B2V+zuoEEKIqplLIiIiItIPPAaIiIiIjA4DEBERERkdBiAiIiIyOgxAREREZHQYgIiIiMjoMAARERGR0WEAIiIiIqPDAEREREQaHTp0CIMGDYKHhwcUCgXi4+Or9f0iIiLQuXNn2NnZwcXFBQEBAUhNTZX0KSwsRHBwMGrXrg1bW1sMHz5c7Z5oFcEAREQG6dq1axg3bhw8PDxgbm6O+vXr491338WdO3cAACUlJfjoo4/Qpk0b2NjYwMPDA4GBgbhx44bMlRPpjoKCArRr1w6fffZZjbxfcnIygoODcezYMezbtw8lJSXo378/CgoKVH3ee+89fP/999i6dSuSk5Nx48YNDBs2TOv34pWgicjg/P777/Dx8UHTpk2xePFieHt74/z58/jwww9RXFyMY8eOwdTUFCNGjMDEiRPRrl073L17F++++y5KS0tx4sQJuYdApHMUCgXi4uIQEBCgaisqKsLs2bOxefNm5OTkoHXr1li2bBl69+5dJe95+/ZtuLi4IDk5GS+99BJyc3Ph7OyMmJgYjBgxAgBw6dIltGjRAikpKejatWuF912rSiokItIhwcHBMDc3x48//ggrKysAgJeXFzp06IBGjRph9uzZiIqKwr59+yTbffrpp3jxxReRmZkJLy8vOUon0itTp07FhQsXEBsbCw8PD8TFxcHf3x9nz55FkyZNnnv/ubm5AAAnJycAwMmTJ1FSUgJfX19Vn+bNm8PLy0vrAMQlMCIyKP/73/+QkJCAKVOmqMLPY25ubnjrrbewZcsWaJr8zs3NhUKhgIODQw1VS6S/MjMzER0dja1bt6Jnz55o1KgRPvjgA/To0QPR0dHPvf+ysjKEhISge/fuaN26NQAgOzsb5ubmat9RV1dXZGdna7V/BiAiMihXrlyBEAItWrTQ+HqLFi1w9+5d3L59W9JeWFiIjz76CKNGjYK9vX1NlEqk186ePYvS0lI0bdoUtra2qkdycjLS0tIAPFqeUigUT32EhoZq3H9wcDDOnTuH2NjYaqmfS2BEZJC0ObyxpKQEr7/+OoQQiIqKqsaqiAxHfn4+TE1NcfLkSZiamkpes7W1BQA0bNgQFy9efOp+ateurdY2depU7Nq1C4cOHUK9evVU7W5ubiguLkZOTo5kFujmzZtwc3PTqn4GICIyKI0bN4ZCocDFixcxdOhQtdcvXrwIR0dHODs7A/gr/Pzxxx84ePAgZ3+IKqhDhw4oLS3FrVu30LNnT419zM3N0bx58wrvUwiBadOmIS4uDklJSfD29pa83rFjR5iZmeHAgQMYPnw4ACA1NRWZmZnw8fHRqn6eBUZEBsfPzw/nz5/HlStXJMcBZWdno1GjRggMDERUVJQq/Fy5cgWJiYmqUEREj+Tn5+Pq1asAHgWe1atXo0+fPnBycoKXlxdGjx6NI0eOYNWqVejQoQNu376NAwcOoG3bthg4cKDW7zdlyhTExMRgx44daNasmapdqVSqvsuTJ0/G7t27sXHjRtjb22PatGkAgKNHj2r3ZoKIyMBcvnxZ1KlTR/Ts2VMkJyeLzMxMsWfPHtG6dWvRpEkTcefOHVFcXCwGDx4s6tWrJ06fPi2ysrJUj6KiIrmHQKQTEhMTBQC1x9ixY4UQQhQXF4vw8HDRoEEDYWZmJtzd3cXQoUPFmTNnKvV+mt4LgIiOjlb1efDggZgyZYpwdHQU1tbWYujQoSIrK0vr9+IMEBEZpD/++APz5s3D3r178b///Q9ubm4ICAjAvHnzULt2bWRkZKhNrz+WmJhYZdcxISLdxABERERERoenwRMREZHRYQAiIiIio8MAREREREaHAYiIiIiMDgMQERERGR0GICIiIjI6DEBERERkdBiAiIiIyOgwABEREZHRYQAiIiIio8MAREREREaHAYiIiIiMzv8BY4LAtvOCEwYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUI5JREFUeJzt3XtcVHX+P/DXcB0uMqAgAwSCgqmBYNxETTApNCtJ20UrRX9etra8hK6Bq6BlobZe1kvettQ0F9J1zVyXUryUynoBLDF10yBMAUVzUEBQ5vP7wy9nmwEUhoHD5fV8POah85nPOfM+Z1l59Tmf8zkKIYQAEREREUlM5C6AiIiIqKVhQCIiIiLSw4BEREREpIcBiYiIiEgPAxIRERGRHgYkIiIiIj0MSERERER6GJCIiIiI9DAgEREREelhQCKiVmvevHlQKBT16qtQKDBv3rwmrSciIgIREREtdn9EVH8MSETUaJs2bYJCoZBeZmZmcHNzw7hx43DlyhW5y2txPD09dc5X586d8dRTT+Gf//ynUfZfVlaGefPm4dChQ0bZH1F7xIBEREbz7rvvYsuWLVi7di2GDh2KrVu3Ijw8HHfv3m2S75szZw7Ky8ubZN9NLSAgAFu2bMGWLVswc+ZMXL16FSNGjMDatWsbve+ysjLMnz+fAYmoEczkLoCI2o6hQ4ciKCgIADBx4kQ4Ojpi0aJF2L17N37/+98b/fvMzMxgZtY6/xlzc3PDa6+9Jr0fO3YsvL29sWzZMrz++usyVkZEAEeQiKgJPfXUUwCAS5cu6bSfP38eL7/8Mjp27AilUomgoCDs3r1bp8+9e/cwf/58+Pj4QKlUolOnThgwYAD27dsn9altDlJFRQXefvttODk5oUOHDnjxxRfxyy+/1Kht3Lhx8PT0rNFe2z43btyIp59+Gp07d4alpSV69eqFNWvWNOhcPIparUbPnj2Rm5v70H7Xrl3DhAkT4OzsDKVSCX9/f2zevFn6PC8vD05OTgCA+fPnS5fxmnr+FVFb0zr/04uIWoW8vDwAgIODg9R29uxZ9O/fH25uboiPj4eNjQ0+//xzREdH4x//+AdeeuklAA+CSnJyMiZOnIiQkBCUlJTg1KlTyMrKwjPPPFPnd06cOBFbt27FK6+8gn79+uHAgQMYNmxYo45jzZo1eOKJJ/Diiy/CzMwMX375Jf74xz9Cq9XizTffbNS+q927dw+XL19Gp06d6uxTXl6OiIgIXLx4EW+99Ra8vLywfft2jBs3Drdu3cK0adPg5OSENWvW4I033sBLL72EESNGAAB69+5tlDqJ2g1BRNRIGzduFADE/v37xfXr18Xly5fFjh07hJOTk7C0tBSXL1+W+g4ePFj4+fmJu3fvSm1arVb069dP+Pj4SG3+/v5i2LBhD/3epKQk8dt/xk6fPi0AiD/+8Y86/V555RUBQCQlJUltsbGxokuXLo/cpxBClJWV1egXFRUlunbtqtMWHh4uwsPDH1qzEEJ06dJFPPvss+L69evi+vXr4rvvvhOjRo0SAMSUKVPq3N/y5csFALF161aprbKyUoSFhQlbW1tRUlIihBDi+vXrNY6XiBqGl9iIyGgiIyPh5OQEd3d3vPzyy7CxscHu3bvx2GOPAQBu3ryJAwcO4Pe//z1u376N4uJiFBcX48aNG4iKisKPP/4o3fVmb2+Ps2fP4scff6z39+/duxcAMHXqVJ326dOnN+q4rKyspL9rNBoUFxcjPDwcP/30EzQajUH7/Prrr+Hk5AQnJyf4+/tj+/btGDNmDBYtWlTnNnv37oVarcbo0aOlNnNzc0ydOhV37tzB4cOHDaqFiGriJTYiMprVq1eje/fu0Gg0+OSTT/DNN9/A0tJS+vzixYsQQmDu3LmYO3durfu4du0a3Nzc8O6772L48OHo3r07fH19MWTIEIwZM+ahl4p+/vlnmJiYoFu3bjrtjz/+eKOO6+jRo0hKSkJGRgbKysp0PtNoNFCpVA3eZ2hoKBYsWACFQgFra2v07NkT9vb2D93m559/ho+PD0xMdP/btmfPntLnRGQcDEhEZDQhISHSXWzR0dEYMGAAXnnlFVy4cAG2trbQarUAgJkzZyIqKqrWfXh7ewMABg4ciEuXLuGLL77A119/jb/97W9YtmwZ1q5di4kTJza61roWmKyqqtJ5f+nSJQwePBg9evTA0qVL4e7uDgsLC+zduxfLli2TjqmhHB0dERkZadC2RNT0GJCIqEmYmpoiOTkZgwYNwqpVqxAfH4+uXbsCeHBZqD7hoGPHjhg/fjzGjx+PO3fuYODAgZg3b16dAalLly7QarW4dOmSzqjRhQsXavR1cHDArVu3arTrj8J8+eWXqKiowO7du+Hh4SG1Hzx48JH1G1uXLl3w/fffQ6vV6owinT9/XvocqDv8EVH9cQ4SETWZiIgIhISEYPny5bh79y46d+6MiIgIrFu3DgUFBTX6X79+Xfr7jRs3dD6ztbWFt7c3Kioq6vy+oUOHAgBWrFih0758+fIafbt16waNRoPvv/9eaisoKKixmrWpqSkAQAghtWk0GmzcuLHOOprKc889h8LCQqSmpkpt9+/fx8qVK2Fra4vw8HAAgLW1NQDUGgCJqH44gkRETepPf/oTfve732HTpk14/fXXsXr1agwYMAB+fn6YNGkSunbtiqKiImRkZOCXX37Bd999BwDo1asXIiIiEBgYiI4dO+LUqVPYsWMH3nrrrTq/KyAgAKNHj8ZHH30EjUaDfv36IT09HRcvXqzRd9SoUXjnnXfw0ksvYerUqSgrK8OaNWvQvXt3ZGVlSf2effZZWFhY4IUXXsAf/vAH3LlzBxs2bEDnzp1rDXlNafLkyVi3bh3GjRuHzMxMeHp6YseOHTh69CiWL1+ODh06AHgwqbxXr15ITU1F9+7d0bFjR/j6+sLX17dZ6yVq1eS+jY6IWr/q2/xPnjxZ47OqqirRrVs30a1bN3H//n0hhBCXLl0SY8eOFWq1Wpibmws3Nzfx/PPPix07dkjbLViwQISEhAh7e3thZWUlevToId5//31RWVkp9antlvzy8nIxdepU0alTJ2FjYyNeeOEFcfny5Vpve//666+Fr6+vsLCwEI8//rjYunVrrfvcvXu36N27t1AqlcLT01MsWrRIfPLJJwKAyM3Nlfo15Db/Ry1hUNf+ioqKxPjx44Wjo6OwsLAQfn5+YuPGjTW2PXbsmAgMDBQWFha85Z/IAAohfjNuTEREREScg0RERESkjwGJiIiISA8DEhEREZEeBiQiIiIiPQxIRERERHoYkIiIiIj0cKFIA2m1Wly9ehUdOnTgsv5ERESthBACt2/fhqura40HP/8WA5KBrl69Cnd3d7nLICIiIgNcvnwZjz32WJ2fMyAZqHpJ/8uXL8POzk7maoiIiKg+SkpK4O7uLv0erwsDkoGqL6vZ2dkxIBEREbUyj5oew0naRERERHoYkIiIiIj0MCARERER6eEcJCIiahOqqqpw7949ucsgmZmbm8PU1LTR+2FAIiKiVk0IgcLCQty6dUvuUqiFsLe3h1qtbtQ6hQxIRETUqlWHo86dO8Pa2pqL97ZjQgiUlZXh2rVrAAAXFxeD98WARERErVZVVZUUjjp16iR3OdQCWFlZAQCuXbuGzp07G3y5jZO0iYio1aqec2RtbS1zJdSSVP88NGZOGgMSERG1erysRr9ljJ8HBiQiIiIiPQxIRERE1OQ8PT2xfPlyucuoNwYkImo1CjTlOHapGAWacrlLITKK69ev44033oCHhwcsLS2hVqsRFRWFo0ePAnhwqWjXrl3yFllPERERUCgUNV7379+XuzSD8C42ImoVUk/mI2HnGWgFYKIAkkf4ISbYQ+6yiBpl5MiRqKysxObNm9G1a1cUFRUhPT0dN27ckLs0g0yaNAnvvvuuTpuZWeuMGhxBIqIWr0BTLoUjANAKYPbOHI4kUat269YtfPvtt1i0aBEGDRqELl26ICQkBAkJCXjxxRfh6ekJAHjppZegUCik9wDwxRdf4Mknn4RSqUTXrl0xf/58nZGapUuXws/PDzY2NnB3d8cf//hH3LlzR/p806ZNsLe3x549e/D444/D2toaL7/8MsrKyrB582Z4enrCwcEBU6dORVVVVb2PydraGmq1WudVl/z8fAwfPhy2traws7PD73//exQVFQEANBoNTE1NcerUKQCAVqtFx44d0bdvX2n7rVu3wt3dvd61NRQDEhG1eLnFpVI4qlYlBPKKy+QpiNqs5ryMa2trC1tbW+zatQsVFRU1Pj958iQAYOPGjSgoKJDef/vttxg7diymTZuGH374AevWrcOmTZvw/vvvS9uamJhgxYoVOHv2LDZv3owDBw5g1qxZOvsvKyvDihUrkJKSgrS0NBw6dAgvvfQS9u7di71792LLli1Yt24dduzYYfRj12q1GD58OG7evInDhw9j3759+OmnnxATEwMAUKlUCAgIwKFDhwAAZ86cgUKhQHZ2thT0Dh8+jPDwcKPXVo0BiYhaPC9HG5jo3bVrqlDA05Fr35DxpJ7MR/+FB/DKhuPov/AAUk/mN+n3mZmZYdOmTdi8eTPs7e3Rv39/zJ49G99//z0AwMnJCcD/HptR/X7+/PmIj49HbGwsunbtimeeeQbvvfce1q1bJ+17+vTpGDRoEDw9PfH0009jwYIF+Pzzz3W+/969e1izZg369OmDgQMH4uWXX8aRI0fw8ccfo1evXnj++ecxaNAgHDx4sN7H9NFHH0nBz9bWFjNmzKi1X3p6Os6cOYNt27YhMDAQoaGh+PTTT3H48GEpCEZEREgB6dChQ3jmmWfQs2dPHDlyRGpjQCKids1FZYXkEX4w/b+1TUwVCnwwwhcuKiuZK6O2Qq7LuCNHjsTVq1exe/duDBkyBIcOHcKTTz6JTZs21bnNd999h3fffVcniEyaNAkFBQUoK3swqrp//34MHjwYbm5u6NChA8aMGYMbN25InwMPLod169ZNeu/s7AxPT0/Y2trqtFU/tqM+Xn31VZw+fVp6JSQk1Nrv3LlzcHd317lE1qtXL9jb2+PcuXMAgPDwcBw5cgRVVVU4fPgwIiIipNB09epVXLx4EREREfWuraFa58wpImp3YoI9MLC7E/KKy+DpaM1wREb1sMu4Tf2zplQq8cwzz+CZZ57B3LlzMXHiRCQlJWHcuHG19r9z5w7mz5+PESNG1LqvvLw8PP/883jjjTfw/vvvo2PHjjhy5AgmTJiAyspKaZVpc3NznW0VCkWtbVqttt7HolKp4O3tXe/+DzNw4EDcvn0bWVlZ+Oabb/DBBx9ArVZj4cKF8Pf3h6urK3x8fIzyXbVhQCKiVsNFZcVgRE2i+jLub0OSXJdxe/XqJd3ab25uXmOS9JNPPokLFy7UGUQyMzOh1WqxZMkSmJg8uFCkf3lNbj179sTly5dx+fJlaRTphx9+wK1bt9CrVy8ADy4t9u7dG6tWrYK5uTl69OiBzp07IyYmBnv27GnSy2sAL7ERERHJchn3xo0bePrpp7F161Z8//33yM3Nxfbt27F48WIMHz4cwIPFFdPT01FYWIhff/0VAJCYmIhPP/0U8+fPx9mzZ3Hu3DmkpKRgzpw5AABvb2/cu3cPK1euxE8//YQtW7Zg7dq1TXYchoiMjISfnx9effVVZGVl4cSJExg7dizCw8MRFBQk9YuIiMBnn30mhaGOHTuiZ8+eSE1NZUAiIiJqDjHBHjgSPwh/n9QXR+IHNfk6W7a2tggNDcWyZcswcOBA+Pr6Yu7cuZg0aRJWrVoFAFiyZAn27dsHd3d39OnTBwAQFRWFPXv24Ouvv0ZwcDD69u2LZcuWoUuXLgAAf39/LF26FIsWLYKvry8+++wzJCcnN+mxNJRCocAXX3wBBwcHDBw4EJGRkejatStSU1N1+oWHh6OqqkpnrlFERESNtiapUQghHt2N9JWUlEClUkGj0cDOzk7ucoiI2qW7d+8iNzcXXl5eUCqVcpdDLcTDfi7q+/ubI0hEREREehiQiIiI6KG+/fZbnWUF9F9tEe9iIyIioocKCgrC6dOn5S6jWbWIEaTVq1fD09MTSqUSoaGhOHHixEP7b9++HT169IBSqYSfnx/27t2r8/nOnTvx7LPPolOnTlAoFDX+R7158yamTJmCxx9/HFZWVvDw8MDUqVOh0WiMfWhEREStnpWVFby9vet8tUWyB6TU1FTExcUhKSkJWVlZ8Pf3R1RUVJ0rdx47dgyjR4/GhAkTkJ2djejoaERHRyMnJ0fqU1paigEDBmDRokW17uPq1au4evUq/vKXvyAnJwebNm1CWloaJkyY0CTHSERETYv3G9FvGePnQfa72EJDQxEcHCzd0qjVauHu7o4pU6YgPj6+Rv+YmBiUlpZiz549Ulvfvn0REBBQY52HvLw8eHl5ITs7GwEBAQ+tY/v27XjttddQWloKM7NHX3nkXWxERPKrqqrCf//7X3Tu3BmdOnWSuxxqIW7cuIFr166he/fuMDU11fmsvr+/ZZ2DVFlZiczMTJ1ntZiYmCAyMhIZGRm1bpORkYG4uDidtqioKGnVUUNVn6i6wlFFRYXO05ZLSkoa9X1ERNR4pqamsLe3l646WFtbQ6FQPGIraquEECgrK8O1a9dgb29fIxw1hKwBqbi4GFVVVXB2dtZpd3Z2xvnz52vdprCwsNb+hYWFjarjvffew+TJk+vsk5ycjPnz5xv8HURE1DTUajUANOihqtS22dvbSz8Xhmr3d7GVlJRg2LBh6NWrF+bNm1dnv4SEBJ2Rq5KSEp2nEBMRkTwUCgVcXFzQuXNn3Lt3T+5ySGbm5uaNGjmqJmtAcnR0hKmpKYqKinTai4qK6kx+arW6Qf0f5vbt2xgyZAg6dOiAf/7znzWeYvxblpaWsLS0bPB3EBFR8zA1NTXKL0YiQOa72CwsLBAYGIj09HSpTavVIj09HWFhYbVuExYWptMfAPbt21dn/7qUlJTg2WefhYWFBXbv3s0l6omIiEgi+yW2uLg4xMbGIigoCCEhIVi+fDlKS0sxfvx4AMDYsWPh5uYmPWhv2rRpCA8Px5IlSzBs2DCkpKTg1KlTWL9+vbTPmzdvIj8/H1evXgUAXLhwAcCD0Se1Wi2Fo7KyMmzduhUlJSXSpGsnJyf+FwgREVE7J3tAiomJwfXr15GYmIjCwkIEBAQgLS1Nmoidn58PE5P/DXT169cP27Ztw5w5czB79mz4+Phg165d8PX1lfrs3r1bClgAMGrUKABAUlIS5s2bh6ysLBw/fhwAaixwlZubC09Pz6Y6XCIiImoFZF8HqbXiOkhEREStT31/f8u+kjYRERFRS8OARERERKSHAYmIiIhIDwMSERERkR4GJCIiIiI9DEhEzaRAU45jl4pRoCmXuxQiInoE2ddBImoPUk/mI2HnGWgFYKIAkkf4ISbYQ+6yiIioDhxBImpiBZpyKRwBgFYAs3fmcCSJiKgFY0AiamK5xaVSOKpWJQTyisvkKYiIiB6JAYmoiXk52sBEodtmqlDA09FanoKIiOiRGJCImpiLygrJI/xgqniQkkwVCnwwwhcuKiuZKyMiorpwkjZRM4gJ9sDA7k7IKy6Dp6M1wxERUQvHgETUTFxUVgxGREStBC+xEREREelhQCIiIiLSw4BEREREpIcBiYiIiEgPAxIRERGRHgYkIiIiIj0MSERERER6GJCIiIiI9DAgEREREelhQCKidq9AU45jl4pRoCmXuxQiaiH4qBEiatdST+YjYecZaAVgogCSR/ghJthD7rKISGYcQSKidqtAUy6FIwDQCmD2zhyOJBERAxIRtV+5xaVSOKpWJQTyisvkKYiIWgwGJCJqt7wcbWCi0G0zVSjg6WgtT0FE1GIwIBFRu+WiskLyCD+YKh6kJFOFAh+M8IWLykrmyohIbpykTUTtWkywB3qoO+Bk3q8I9nSAv7uD3CURUQvAgERE7RrvYiOi2vASGxG1W7yLjYjqwoBERO1CbYtB8i42IqoLL7ERUZtX12W06rvYfhuSeBcbEQEcQSKiNu5hl9F4FxsR1YUjSETUpj3sMpqLygoxwR4Y2N0JecVl8HS0ZjgiIgAMSETUxtXnMpqLyorBiIh08BIbEbVpvIxGRIbgCBIRtXm8jEZEDcWARETtAi+jEVFD8BIbERERkR4GJCIiIiI9DEhEREREehiQiIiIiPS0iIC0evVqeHp6QqlUIjQ0FCdOnHho/+3bt6NHjx5QKpXw8/PD3r17dT7fuXMnnn32WXTq1AkKhQKnT5+usY+7d+/izTffRKdOnWBra4uRI0eiqKjImIdFRERErZTsASk1NRVxcXFISkpCVlYW/P39ERUVhWvXrtXa/9ixYxg9ejQmTJiA7OxsREdHIzo6Gjk5OVKf0tJSDBgwAIsWLarze99++218+eWX2L59Ow4fPoyrV69ixIgRRj8+IiIian0UQgjx6G5NJzQ0FMHBwVi1ahUAQKvVwt3dHVOmTEF8fHyN/jExMSgtLcWePXuktr59+yIgIABr167V6ZuXlwcvLy9kZ2cjICBAatdoNHBycsK2bdvw8ssvAwDOnz+Pnj17IiMjA3379n1k3SUlJVCpVNBoNLCzszPk0ImIiKiZ1ff3t6wjSJWVlcjMzERkZKTUZmJigsjISGRkZNS6TUZGhk5/AIiKiqqzf20yMzNx7949nf306NEDHh4ede6noqICJSUlOi8iIiJqm2QNSMXFxaiqqoKzs7NOu7OzMwoLC2vdprCwsEH969qHhYUF7O3t672f5ORkqFQq6eXu7l7v7yMiIqLWRfY5SK1FQkICNBqN9Lp8+bLcJREREVETkfVRI46OjjA1Na1x91hRURHUanWt26jV6gb1r2sflZWVuHXrls4o0sP2Y2lpCUtLy3p/BxEREbVeso4gWVhYIDAwEOnp6VKbVqtFeno6wsLCat0mLCxMpz8A7Nu3r87+tQkMDIS5ubnOfi5cuID8/PwG7YeIiIjaJtkfVhsXF4fY2FgEBQUhJCQEy5cvR2lpKcaPHw8AGDt2LNzc3JCcnAwAmDZtGsLDw7FkyRIMGzYMKSkpOHXqFNavXy/t8+bNm8jPz8fVq1cBPAg/wIORI7VaDZVKhQkTJiAuLg4dO3aEnZ0dpkyZgrCwsHrdwUZERERtm+wBKSYmBtevX0diYiIKCwsREBCAtLQ0aSJ2fn4+TEz+N9DVr18/bNu2DXPmzMHs2bPh4+ODXbt2wdfXV+qze/duKWABwKhRowAASUlJmDdvHgBg2bJlMDExwciRI1FRUYGoqCh89NFHzXDERERE1NLJvg5Sa8V1kIiIiFqfVrEOEhEREVFLxIBEREREpIcBiYiIiEgPAxIRERGRHgYkIiIiIj0MSERERER6GJCIiIiI9DAgEREREelhQCIiIiLSw4BEREREpIcBiYiIiEgPAxIRERGRHgYkIiIiIj0MSERERER6GJCIiIiI9DAgEREREelhQCIiIiLSw4BEREREpIcBiYiIiEgPAxIRERGRHgYkIiIiIj0MSERERER6GJCIiIiI9DAgEREREelhQCIiIiLSw4BEREREpIcBiYiIiEgPAxIRERGRHgYkIiIiIj0MSERERER6GJCIiIiI9DAgEREREelhQCIiIiLSw4BEREREpIcBiYiIiEgPAxIRERGRHgYkIiIiIj0MSERERER6GJCIiIiI9DAgEREREelhQCIiIiLSw4BEREREpIcBiYiIiEgPAxIRERGRnhYRkFavXg1PT08olUqEhobixIkTD+2/fft29OjRA0qlEn5+fti7d6/O50IIJCYmwsXFBVZWVoiMjMSPP/6o0+e///0vhg8fDkdHR9jZ2WHAgAE4ePCg0Y+NiIiIWh/ZA1Jqairi4uKQlJSErKws+Pv7IyoqCteuXau1/7FjxzB69GhMmDAB2dnZiI6ORnR0NHJycqQ+ixcvxooVK7B27VocP34cNjY2iIqKwt27d6U+zz//PO7fv48DBw4gMzMT/v7+eP7551FYWNjkx0xEREQtm0IIIeQsIDQ0FMHBwVi1ahUAQKvVwt3dHVOmTEF8fHyN/jExMSgtLcWePXuktr59+yIgIABr166FEAKurq6YMWMGZs6cCQDQaDRwdnbGpk2bMGrUKBQXF8PJyQnffPMNnnrqKQDA7du3YWdnh3379iEyMvKRdZeUlEClUkGj0cDOzs4Yp4KIiIiaWH1/f8s6glRZWYnMzEydQGJiYoLIyEhkZGTUuk1GRkaNABMVFSX1z83NRWFhoU4flUqF0NBQqU+nTp3w+OOP49NPP0VpaSnu37+PdevWoXPnzggMDKz1eysqKlBSUqLzIiIiorZJ1oBUXFyMqqoqODs767Q7OzvXeamrsLDwof2r/3xYH4VCgf379yM7OxsdOnSAUqnE0qVLkZaWBgcHh1q/Nzk5GSqVSnq5u7s3/ICJiIioVZB9DpIchBB488030blzZ3z77bc4ceIEoqOj8cILL6CgoKDWbRISEqDRaKTX5cuXm7lqIiIiai6yBiRHR0eYmpqiqKhIp72oqAhqtbrWbdRq9UP7V//5sD4HDhzAnj17kJKSgv79++PJJ5/ERx99BCsrK2zevLnW77W0tISdnZ3Oi4iIiNomWQOShYUFAgMDkZ6eLrVptVqkp6cjLCys1m3CwsJ0+gPAvn37pP5eXl5Qq9U6fUpKSnD8+HGpT1lZGYAH851+y8TEBFqttvEHRkRERK2amdwFxMXFITY2FkFBQQgJCcHy5ctRWlqK8ePHAwDGjh0LNzc3JCcnAwCmTZuG8PBwLFmyBMOGDUNKSgpOnTqF9evXA3gwv2j69OlYsGABfHx84OXlhblz58LV1RXR0dEAHoQsBwcHxMbGIjExEVZWVtiwYQNyc3MxbNgwWc4DERERtRwGBSQPDw9EREQgPDwcERER6Natm8EFxMTE4Pr160hMTERhYSECAgKQlpYmTbLOz8/XGenp168ftm3bhjlz5mD27Nnw8fHBrl274OvrK/WZNWsWSktLMXnyZNy6dQsDBgxAWloalEolgAeX9tLS0vDnP/8ZTz/9NO7du4cnnngCX3zxBfz9/Q0+FiIiImobDFoHaevWrfjmm29w6NAhXLx4EW5ubggPD5cCk4+PT1PU2qJwHSQiIqLWp76/vxu9UGRBQQEOHz6MPXv2IDU1FVqtFlVVVY3ZZavAgERERNT61Pf3t8FzkMrKynDkyBEcOnQIBw8eRHZ2Nnx9fREREWHoLomIiIhaBIMCUr9+/ZCdnY2ePXsiIiIC8fHxGDhwYJ2LLBIRERG1Jgbd5n/+/HnY2NigR48e6NGjB3r27MlwRERERG2GQQHpxo0bOHDgAPr27YuvvvoK/fv3h5ubG1555RVs2LDB2DUSERERNatGT9IWQiAzMxOrVq3CZ599xknaRERE1GI16STtrKwsHDp0CIcOHcKRI0dw+/Zt+Pn5YcqUKQgPDze4aCIiIqKWwKCAFBISgj59+iA8PByTJk3CwIEDoVKpjF0bEZHRFGjKkVtcCi9HG7iorOQuh4haOIMC0s2bN3lZiYhajdST+UjYeQZaAZgogOQRfogJ9pC7LCJqwQwKSNXhKDMzE+fOnQMA9OrVC08++aTxKiMiMoICTbkUjgBAK4DZO3MwsLsTR5KIqE4GBaRr164hJiYGhw8fhr29PQDg1q1bGDRoEFJSUuDk5GTMGomIDJZbXCqFo2pVQiCvuIwBiYjqZNBt/lOmTMGdO3dw9uxZ3Lx5Ezdv3kROTg5KSkowdepUY9dIRGQwL0cbmCh020wVCng6WstTEFETKdCU49ilYhRoyuUupU0w6DZ/lUqF/fv3Izg4WKf9xIkTePbZZ3Hr1i1j1ddi8TZ/otYj9WQ+Zu/MQZUQMFUo8MEIX85BojaF8+zqr0lv89dqtTA3N6/Rbm5uDq1Wa8guiYiaTEywBwZ2d0JecRk8Ha15aY3aFM6zaxoGXWJ7+umnMW3aNFy9elVqu3LlCt5++20MHjzYaMURERmLi8oKYd068RcGtTkPm2dHhjMoIK1atQolJSXw9PREt27d0K1bN3h5eaGkpAQrV640do1ERERUB86zaxoGXWJzd3dHVlYW9u/fj/PnzwMAevbsicjISKMWR0RERA/norJC8gi/GvPsOFraOI1+Flt7xUnaRETUkhRoyjnPrh6MPkl7xYoV9f5y3upPRETUvFxUVgxGRlTvESQvL6/67VChwE8//dSooloDjiARERG1PkYfQcrNzTVKYUREREQtXYPuYuMaR0RERNQeNCggmZub49q1a9L7P/3pT7h586bRiyIiIpITH9tBDQpI+tOV1q1b1y4eK0JERO1H6sl89F94AK9sOI7+Cw8g9WS+3CWRDAxaKLIaVwggIqK2pK7HdnAkqf1pVEAiIiJqS/jYDqrW4JW0ExMTYW39YPnyyspKvP/++1CpVDp9li5dapzqiIiImlH1Yzt+G5L42I72qUEBaeDAgbhw4YL0vl+/fjXWPFIoFPqbERERtQp8bAdV46NGDMSFIomI2i4+tqPtqu/v7yadg2RnZ9cuVtUmIqK2xUVlhbBunRiO2rEmDUgcnCIiIqLWiHexEREREelhQCIiIiLSw4BEREREpKdJAxJv+SciIqLWiJO0iYiIiPQ0aUD697//DTc3t6b8CiIiIoMUaMpx7FIxn7NGtWrwo0aAByNDO3bswMGDB3Ht2jVotVqdz3fu3AkAGDBgQOMrJCIiMrLUk/nSQ2lNFEDyCD/EBHvIXRa1IAaNIE2fPh1jxoxBbm4ubG1toVKpdF5EREQtVYGmXApHwIPnrs3emcORJNJh0AjSli1bsHPnTjz33HPGroeIiKhJ5RaX6jyMFgCqhEBecRlXziaJQSNIKpUKXbt2NXYtRERETc7L0QYmejdZmyoU8HS0lqcgapEMCkjz5s3D/PnzUV7O4UgiImpdXFRWSB7hB9P/W4rGVKHAByN8OXpEOhTCgHvxy8vL8dJLL+Ho0aPw9PSEubm5zudZWVlGK7Clqu/TgImIqGUq0JQjr7gMno7WDEftSH1/fxs0ghQbG4vMzEy89tprGDlyJIYPH67zaqjVq1fD09MTSqUSoaGhOHHixEP7b9++HT169IBSqYSfnx/27t2r87kQAomJiXBxcYGVlRUiIyPx448/1tjPv/71L4SGhsLKygoODg6Ijo5ucO1ERNQ6uaisENatE8MR1U4YwNraWnz77beGbFpDSkqKsLCwEJ988ok4e/asmDRpkrC3txdFRUW19j969KgwNTUVixcvFj/88IOYM2eOMDc3F2fOnJH6LFy4UKhUKrFr1y7x3XffiRdffFF4eXmJ8vJyqc+OHTuEg4ODWLNmjbhw4YI4e/asSE1NrXfdGo1GABAajcbwgyciIqJmVd/f3wZdYuvRowc+//xz9O7du9EBLTQ0FMHBwVi1ahUAQKvVwt3dHVOmTEF8fHyN/jExMSgtLcWePXuktr59+yIgIABr166FEAKurq6YMWMGZs6cCQDQaDRwdnbGpk2bMGrUKNy/fx+enp6YP38+JkyYYFDdvMRGRETU+jTpJbYlS5Zg1qxZyMvLM7Q+AEBlZSUyMzMRGRn5v4JMTBAZGYmMjIxat8nIyNDpDwBRUVFS/9zcXBQWFur0UalUCA0NlfpkZWXhypUrMDExQZ8+feDi4oKhQ4ciJyenzlorKipQUlKi8yIiIqK2yaCA9Nprr+HgwYPo1q0bOnTogI4dO+q86qu4uBhVVVVwdnbWaXd2dkZhYWGt2xQWFj60f/WfD+vz008/AXhwN96cOXOwZ88eODg4ICIiAjdv3qz1e5OTk3UWw3R3d6/3cRIREbVW7fWRLAYtFLl8+XIjl9G8qh+N8uc//xkjR44EAGzcuBGPPfYYtm/fjj/84Q81tklISEBcXJz0vqSkhCGJiIjatPb8SBaDAlJsbKxRvtzR0RGmpqYoKirSaS8qKoJara51G7Va/dD+1X8WFRXBxcVFp09AQAAASO29evWSPre0tETXrl2Rn59f6/daWlrC0tKyAUdHRETUetX1SJaB3Z3axZ1/Bl1i+627d+8aPDfHwsICgYGBSE9Pl9q0Wi3S09MRFhZW6zZhYWE6/QFg3759Un8vLy+o1WqdPiUlJTh+/LjUJzAwEJaWlrhw4YLU5969e8jLy0OXLl3qXT8REVFb9bBHsrQHBo0glZaW4p133sHnn3+OGzdu1Pi8qqqq3vuKi4tDbGwsgoKCEBISguXLl6O0tBTjx48HAIwdOxZubm5ITk4GAEybNg3h4eFYsmQJhg0bhpSUFJw6dQrr168HACgUCkyfPh0LFiyAj48PvLy8MHfuXLi6ukrrHNnZ2eH1119HUlIS3N3d0aVLF3z44YcAgN/97neGnBIiIqI2pfqRLL8NSe3pkSwGBaRZs2bh4MGDWLNmDcaMGYPVq1fjypUrWLduHRYuXNigfcXExOD69etITExEYWEhAgICkJaWJk2yzs/Ph4nJ/wa6+vXrh23btmHOnDmYPXs2fHx8sGvXLvj6+urUV1paismTJ+PWrVsYMGAA0tLSoFQqpT4ffvghzMzMMGbMGJSXlyM0NBQHDhyAg4ODIaeEiIioTal+JMvsnTmoEqLdPZLFoHWQPDw88OmnnyIiIgJ2dnbIysqCt7c3tmzZgr///e81VrZui7gOEhERtQdt7ZEsTboO0s2bN9G1a1cADy5XVd8aP2DAAHzzzTeG7JKIiIhaoPb6SBaDAlLXrl2Rm5sL4H+ragPAl19+CXt7e6MVR0RERCQHgwLS+PHj8d133wEA4uPjsXr1aiiVSrz99tv405/+ZNQCiYiIiJqbQXOQ9P3888/IzMyEt7e3UZ7P1hpwDhIREVHrU9/f3wbdxfZbd+/eRZcuXbh+EBEREbUZBl1iq6qqwnvvvQc3NzfY2tpKzzabO3cuPv74Y6MWSERERNTcDApI77//PjZt2oTFixfDwsJCavf19cXf/vY3oxVHREREJAeDAtKnn36K9evX49VXX4WpqanU7u/vj/PnzxutOCIiIiI5GBSQrly5Am9v7xrtWq0W9+7da3RRRERERHIyKCD16tUL3377bY32HTt2oE+fPo0uioiIiEhOBt3FlpiYiNjYWFy5cgVarRY7d+7EhQsX8Omnn2LPnj3GrpGIiIioWRk0gjR8+HB8+eWX2L9/P2xsbJCYmIhz587hyy+/xDPPPGPsGomIiIialVEWimyPuFAkEZH8CjTlyC0uhZejTbt7VhgZpkkfVtu1a1fcuHGjRvutW7ekh9gSERE1pdST+ei/8ABe2XAc/RceQOrJfLlLojbEoICUl5eHqqqqGu0VFRW4cuVKo4siIiJ6mAJNORJ2noH2/66BaAUwe2cOCjTl8hZGbUaDJmnv3r1b+vtXX30FlUolva+qqkJ6ejo8PT2NVhwREVFtcotLpXBUrUoI5BWX8VIbGUWDAlJ0dDQAQKFQIDY2Vuczc3NzeHp6YsmSJUYrjoiIqDZejjYwUUAnJJkqFPB0tJavKGpTGnSJTavVQqvVwsPDA9euXZPea7VaVFRU4MKFC3j++eebqlYiIiIAgIvKCskj/GCqUAB4EI4+GOHL0SMymgaNIGVkZODGjRvIzc2V2j799FMkJSWhtLQU0dHRWLlyJSwtLY1eKBER0W/FBHtgYHcn5BWXwdPRmuGIjKpBI0jz58/H2bNnpfdnzpzBhAkTEBkZifj4eHz55ZdITk42epFERES1cVFZIaxbJ4YjMroGBaTvvvsOgwcPlt6npKQgNDQUGzZsQFxcHFasWIHPP//c6EUSERERNacGBaRff/0Vzs7O0vvDhw9j6NCh0vvg4GBcvnzZeNURERERyaBBAcnZ2Vmaf1RZWYmsrCz07dtX+vz27dswNzc3boVEREREzaxBAem5555DfHw8vv32WyQkJMDa2hpPPfWU9Pn333+Pbt26Gb3I9qRAU45jl4q52BkREZGMGnQX23vvvYcRI0YgPDwctra22Lx5MywsLKTPP/nkEzz77LNGL7K9SD2ZL60Ma6IAkkf4ISbYQ+6yiIiI2h2DHlar0Whga2sLU1NTnfabN2/C1tZWJzS1VcZ+WG2Bphz9Fx6osejZkfhBvDuDiIjISJr0YbUqlapGOAKAjh07totw1BQetmw+ERERNS+DAhIZX/Wy+b/FZfOJiIjkwYDUQnDZfCIiopajQZO0qWlx2XwiIqKWgQGphXFRWTEYERERyYyX2IiIiIj0MCARERER6WFAIiIiItLDgERERESkhwGJiIiISA8DEhEREZEeBiQiIiIiPQxIRERERHoYkIiIiIj0MCARERER6WFAIiIiItLDgERERESkp0UEpNWrV8PT0xNKpRKhoaE4ceLEQ/tv374dPXr0gFKphJ+fH/bu3avzuRACiYmJcHFxgZWVFSIjI/Hjjz/Wuq+KigoEBARAoVDg9OnTxjokIiIiasVkD0ipqamIi4tDUlISsrKy4O/vj6ioKFy7dq3W/seOHcPo0aMxYcIEZGdnIzo6GtHR0cjJyZH6LF68GCtWrMDatWtx/Phx2NjYICoqCnfv3q2xv1mzZsHV1bXJjo+IiIhaH4UQQshZQGhoKIKDg7Fq1SoAgFarhbu7O6ZMmYL4+Pga/WNiYlBaWoo9e/ZIbX379kVAQADWrl0LIQRcXV0xY8YMzJw5EwCg0Wjg7OyMTZs2YdSoUdJ2//73vxEXF4d//OMfeOKJJ5CdnY2AgIB61V1SUgKVSgWNRgM7O7tGnAEiIiJqLvX9/S3rCFJlZSUyMzMRGRkptZmYmCAyMhIZGRm1bpORkaHTHwCioqKk/rm5uSgsLNTpo1KpEBoaqrPPoqIiTJo0CVu2bIG1tbUxD4uIiIhaOVkDUnFxMaqqquDs7KzT7uzsjMLCwlq3KSwsfGj/6j8f1kcIgXHjxuH1119HUFBQvWqtqKhASUmJzouIiIjaJtnnIMlh5cqVuH37NhISEuq9TXJyMlQqlfRyd3dvwgqJiIhITrIGJEdHR5iamqKoqEinvaioCGq1utZt1Gr1Q/tX//mwPgcOHEBGRgYsLS1hZmYGb29vAEBQUBBiY2Nr/d6EhARoNBrpdfny5QYeLREREbUWsgYkCwsLBAYGIj09XWrTarVIT09HWFhYrduEhYXp9AeAffv2Sf29vLygVqt1+pSUlOD48eNSnxUrVuC7777D6dOncfr0aWmZgNTUVLz//vu1fq+lpSXs7Ox0XkRERNQ2mcldQFxcHGJjYxEUFISQkBAsX74cpaWlGD9+PABg7NixcHNzQ3JyMgBg2rRpCA8Px5IlSzBs2DCkpKTg1KlTWL9+PQBAoVBg+vTpWLBgAXx8fODl5YW5c+fC1dUV0dHRAAAPDw+dGmxtbQEA3bp1w2OPPdZMR05EREQtlewBKSYmBtevX0diYiIKCwsREBCAtLQ0aZJ1fn4+TEz+N9DVr18/bNu2DXPmzMHs2bPh4+ODXbt2wdfXV+oza9YslJaWYvLkybh16xYGDBiAtLQ0KJXKZj8+IiIian1kXwepteI6SERERK1Pq1gHidqGAk05jl0qRoGmXO5SiIiIjEL2S2zUuqWezEfCzjPQCsBEASSP8ENMsMejNyQiImrBOIJEBivQlEvhCAC0Api9M4cjSURE1OoxIJHBcotLpXBUrUoI5BWXyVMQERGRkTAgkcG8HG1gotBtM1Uo4OnIZ9sREVHrxoBEBnNRWSF5hB9MFQ9SkqlCgQ9G+MJFZSVzZURERI3DSdrUKDHBHhjY3Ql5xWXwdLRmOCIiojaBAYkazUVlxWBE1IIUaMqRW1wKL0cb/n+TyEAMSEREbQiX3iAyDs5BIiJqI7j0BpHxMCAREbURXHqDyHgYkIiI2gguvUFkPAxIRERtBJfeIDIeTtImImpDuPQGkXEwIBERtTFceoOo8XiJjYiIiEgPAxIRERGRHgYkIiIiIj0MSERERER6GJCIiIiI9DAgEREREelhQCIiIiLSw4BEREREpIcBiYiIiEgPAxIRERGRHgYkIiIiIj0MSERERER6GJCIiIiI9DAgEREREelhQCIiIiLSw4BEREREpIcBiYiIiEgPAxIRERE1uwJNOY5dKkaBplzuUmplJncBRERE1L6knsxHws4z0ArARAEkj/BDTLCH3GXp4AgSERERNZsCTbkUjgBAK4DZO3Na3EgSAxIRERE1m9ziUikcVasSAnnFZfIUVAcGJCIiImo2Xo42MFHotpkqFPB0tJanoDowIBERUb209Em11Dq4qKyQPMIPpooHKclUocAHI3zhorKSuTJdnKRNRESP1Bom1VLrERPsgYHdnZBXXAZPR+sWF44AjiAREdEjtJZJtdS6uKisENatU4sMRwADEhERPUJrmVRLZEwMSNRicb4DUcvQWibVEhkTAxK1SKkn89F/4QG8suE4+i88gNST+XKXRNRutZZJtUTGpBBCiEd3I30lJSVQqVTQaDSws7OTu5w2pUBTjv4LD+gM6ZsqFDgSP4j/IBPJqEBT3qIn1RLVR31/f7eIEaTVq1fD09MTSqUSoaGhOHHixEP7b9++HT169IBSqYSfnx/27t2r87kQAomJiXBxcYGVlRUiIyPx448/Sp/n5eVhwoQJ8PLygpWVFbp164akpCRUVlY2yfFRw3C+A1HL1NIn1RIZk+wBKTU1FXFxcUhKSkJWVhb8/f0RFRWFa9eu1dr/2LFjGD16NCZMmIDs7GxER0cjOjoaOTk5Up/FixdjxYoVWLt2LY4fPw4bGxtERUXh7t27AIDz589Dq9Vi3bp1OHv2LJYtW4a1a9di9uzZzXLM9HCc70BERHKT/RJbaGgogoODsWrVKgCAVquFu7s7pkyZgvj4+Br9Y2JiUFpaij179khtffv2RUBAANauXQshBFxdXTFjxgzMnDkTAKDRaODs7IxNmzZh1KhRtdbx4YcfYs2aNfjpp5/qVTcvsTWt1JP5mL0zB1VCSPMduOYKERE1Vn1/f8u6UGRlZSUyMzORkJAgtZmYmCAyMhIZGRm1bpORkYG4uDidtqioKOzatQsAkJubi8LCQkRGRkqfq1QqhIaGIiMjo86ApNFo0LFjxzprraioQEVFhfS+pKTkkcdHhmsNi4gREVHbJesltuLiYlRVVcHZ2Vmn3dnZGYWFhbVuU1hY+ND+1X82ZJ8XL17EypUr8Yc//KHOWpOTk6FSqaSXu7v7ww+OGo3zHYiISC6yz0GS25UrVzBkyBD87ne/w6RJk+rsl5CQAI1GI70uX77cjFUSUUvF9bqI2iZZL7E5OjrC1NQURUVFOu1FRUVQq9W1bqNWqx/av/rPoqIiuLi46PQJCAjQ2e7q1asYNGgQ+vXrh/Xr1z+0VktLS1haWtbruIiofeDzyYjaLllHkCwsLBAYGIj09HSpTavVIj09HWFhYbVuExYWptMfAPbt2yf19/Lyglqt1ulTUlKC48eP6+zzypUriIiIQGBgIDZu3AgTk3Y/mEZEDcDnkxG1bbKOIAFAXFwcYmNjERQUhJCQECxfvhylpaUYP348AGDs2LFwc3NDcnIyAGDatGkIDw/HkiVLMGzYMKSkpODUqVPSCJBCocD06dOxYMEC+Pj4wMvLC3PnzoWrqyuio6MB/C8cdenSBX/5y19w/fp1qZ66Rq6IiH7rYet1cd4cUesne0CKiYnB9evXkZiYiMLCQgQEBCAtLU2aZJ2fn68zutOvXz9s27YNc+bMwezZs+Hj44Ndu3bB19dX6jNr1iyUlpZi8uTJuHXrFgYMGIC0tDQolUoAD0acLl68iIsXL+Kxxx7TqYcLixNRfVSv16W/4jvX6yJqG2RfB6m14jpIRMT1uohan1axDhIRUWvG9bqI2i4GJCKiRnBRWTEYEbVBvHWLiIiISA8DEhEREZEeBiQiIiIiPQxIRERERHoYkIiIiIj0MCARERER6WFAIiIiItLDgERERESkhwGJiIiIWpQCTTmOXSpGgaZcthq4kjYRERG1GKkn85Gw8wy0AjBRAMkj/GR5xiFHkIiIiKhFKNCUS+EIALQCmL0zR5aRJAYkIiIiahFyi0ulcFStSgjkFZc1ey0MSERERNQieDnawESh22aqUMDT0brZa2FAIiIiohbBRWWF5BF+MFU8SEmmCgU+GOELF5VVs9fCSdpERETUYsQEe2BgdyfkFZfB09FalnAEMCARERFRC+OispItGFXjJTYiIiIiPQxIRERERHoYkIiIiIj0MCARERER6WFAIiIiItLDgERERESkhwGJiIiISA8DEhEREZEeBiQiIiIiPQxIRERERHoYkIiIiIj0MCARERER6WFAIiIiItLDgERERESkhwGJiIiISA8DEhEREZEeBiQiIiIiPQxIRERERHoYkIiIiIj0MCARERER6WFAIiIiItLDgERE1MYUaMpx7FIxCjTlcpdC1GqZyV0AEREZT+rJfCTsPAOtAEwUQPIIP8QEe8hdFlGrwxEkIqI2okBTLoUjANAKYPbOHI4kERmAAYmIqI3ILS6VwlG1KiGQV1wmT0FErViLCEirV6+Gp6cnlEolQkNDceLEiYf23759O3r06AGlUgk/Pz/s3btX53MhBBITE+Hi4gIrKytERkbixx9/1Olz8+ZNvPrqq7Czs4O9vT0mTJiAO3fuGP3YiIiai5ejDUwUum2mCgU8Ha3lKYioFZM9IKWmpiIuLg5JSUnIysqCv78/oqKicO3atVr7Hzt2DKNHj8aECROQnZ2N6OhoREdHIycnR+qzePFirFixAmvXrsXx48dhY2ODqKgo3L17V+rz6quv4uzZs9i3bx/27NmDb775BpMnT27y4yUiaiouKiskj/CDqeJBSjJVKPDBCF+4qKxkroyo9VEIIcSjuzWd0NBQBAcHY9WqVQAArVYLd3d3TJkyBfHx8TX6x8TEoLS0FHv27JHa+vbti4CAAKxduxZCCLi6umLGjBmYOXMmAECj0cDZ2RmbNm3CqFGjcO7cOfTq1QsnT55EUFAQACAtLQ3PPfccfvnlF7i6uj6y7pKSEqhUKmg0GtjZ2RnjVBARGUWBphx5xWXwdLRmOCLSU9/f37KOIFVWViIzMxORkZFSm4mJCSIjI5GRkVHrNhkZGTr9ASAqKkrqn5ubi8LCQp0+KpUKoaGhUp+MjAzY29tL4QgAIiMjYWJiguPHj9f6vRUVFSgpKdF5ERG1RC4qK4R168RwRNQIsgak4uJiVFVVwdnZWafd2dkZhYWFtW5TWFj40P7Vfz6qT+fOnXU+NzMzQ8eOHev83uTkZKhUKunl7u5ez6MkIiKi1kb2OUitRUJCAjQajfS6fPmy3CURERFRE5E1IDk6OsLU1BRFRUU67UVFRVCr1bVuo1arH9q/+s9H9dGfBH7//n3cvHmzzu+1tLSEnZ2dzouIiIjaJlkDkoWFBQIDA5Geni61abVapKenIywsrNZtwsLCdPoDwL59+6T+Xl5eUKvVOn1KSkpw/PhxqU9YWBhu3bqFzMxMqc+BAweg1WoRGhpqtOMjIiKi1kn2R43ExcUhNjYWQUFBCAkJwfLly1FaWorx48cDAMaOHQs3NzckJycDAKZNm4bw8HAsWbIEw4YNQ0pKCk6dOoX169cDABQKBaZPn44FCxbAx8cHXl5emDt3LlxdXREdHQ0A6NmzJ4YMGYJJkyZh7dq1uHfvHt566y2MGjWqXnewERERUdsme0CKiYnB9evXkZiYiMLCQgQEBCAtLU2aZJ2fnw8Tk/8NdPXr1w/btm3DnDlzMHv2bPj4+GDXrl3w9fWV+syaNQulpaWYPHkybt26hQEDBiAtLQ1KpVLq89lnn+Gtt97C4MGDYWJigpEjR2LFihXNd+BERETUYsm+DlJrxXWQiIiIWp9WsQ4SERERUUvEgERERESkhwGJiIiISA8DEhEREZEe2e9ia62q57bzmWxEREStR/Xv7Ufdo8aAZKDbt28DAJ/JRkRE1Ardvn0bKpWqzs95m7+BtFotrl69ig4dOkChUNT4vKSkBO7u7rh8+TKXAagDz9HD8fw8Gs/Ro/EcPRrP0aO1pXMkhMDt27fh6uqqs86iPo4gGcjExASPPfbYI/vxuW2PxnP0cDw/j8Zz9Gg8R4/Gc/RobeUcPWzkqBonaRMRERHpYUAiIiIi0sOA1EQsLS2RlJQES0tLuUtpsXiOHo7n59F4jh6N5+jReI4erT2eI07SJiIiItLDESQiIiIiPQxIRERERHoYkIiIiIj0MCARERER6WFAaoTVq1fD09MTSqUSoaGhOHHiRJ19z549i5EjR8LT0xMKhQLLly9vvkJl0pDzs2HDBjz11FNwcHCAg4MDIiMjH9q/rWjIOdq5cyeCgoJgb28PGxsbBAQEYMuWLc1YrTwaco5+KyUlBQqFAtHR0U1bYAvQkHO0adMmKBQKnZdSqWzGauXR0J+jW7du4c0334SLiwssLS3RvXt37N27t5mqlUdDzlFERESNnyOFQoFhw4Y1Y8VNTJBBUlJShIWFhfjkk0/E2bNnxaRJk4S9vb0oKiqqtf+JEyfEzJkzxd///nehVqvFsmXLmrfgZtbQ8/PKK6+I1atXi+zsbHHu3Dkxbtw4oVKpxC+//NLMlTefhp6jgwcPip07d4offvhBXLx4USxfvlyYmpqKtLS0Zq68+TT0HFXLzc0Vbm5u4qmnnhLDhw9vnmJl0tBztHHjRmFnZycKCgqkV2FhYTNX3bwaeo4qKipEUFCQeO6558SRI0dEbm6uOHTokDh9+nQzV958GnqObty4ofMzlJOTI0xNTcXGjRubt/AmxIBkoJCQEPHmm29K76uqqoSrq6tITk5+5LZdunRp8wGpMedHCCHu378vOnToIDZv3txUJcqusedICCH69Okj5syZ0xTltQiGnKP79++Lfv36ib/97W8iNja2zQekhp6jjRs3CpVK1UzVtQwNPUdr1qwRXbt2FZWVlc1Vouwa++/RsmXLRIcOHcSdO3eaqsRmx0tsBqisrERmZiYiIyOlNhMTE0RGRiIjI0PGyloGY5yfsrIy3Lt3Dx07dmyqMmXV2HMkhEB6ejouXLiAgQMHNmWpsjH0HL377rvo3LkzJkyY0BxlysrQc3Tnzh106dIF7u7uGD58OM6ePdsc5crCkHO0e/duhIWF4c0334SzszN8fX3xwQcfoKqqqrnKblbG+Df7448/xqhRo2BjY9NUZTY7BiQDFBcXo6qqCs7Ozjrtzs7OKCwslKmqlsMY5+edd96Bq6urzv9h2xJDz5FGo4GtrS0sLCwwbNgwrFy5Es8880xTlysLQ87RkSNH8PHHH2PDhg3NUaLsDDlHjz/+OD755BN88cUX2Lp1K7RaLfr164dffvmlOUpudoaco59++gk7duxAVVUV9u7di7lz52LJkiVYsGBBc5Tc7Br7b/aJEyeQk5ODiRMnNlWJsjCTuwAifQsXLkRKSgoOHTrULiaPNkSHDh1w+vRp3LlzB+np6YiLi0PXrl0REREhd2myu337NsaMGYMNGzbA0dFR7nJarLCwMISFhUnv+/Xrh549e2LdunV47733ZKys5dBqtejcuTPWr18PU1NTBAYG4sqVK/jwww+RlJQkd3ktzscffww/Pz+EhITIXYpRMSAZwNHREaampigqKtJpLyoqglqtlqmqlqMx5+cvf/kLFi5ciP3796N3795NWaasDD1HJiYm8Pb2BgAEBATg3LlzSE5ObpMBqaHn6NKlS8jLy8MLL7wgtWm1WgCAmZkZLly4gG7dujVt0c3MGP8WmZubo0+fPrh48WJTlCg7Q86Ri4sLzM3NYWpqKrX17NkThYWFqKyshIWFRZPW3Nwa83NUWlqKlJQUvPvuu01Zoix4ic0AFhYWCAwMRHp6utSm1WqRnp6u819m7ZWh52fx4sV47733kJaWhqCgoOYoVTbG+hnSarWoqKhoihJl19Bz1KNHD5w5cwanT5+WXi+++CIGDRqE06dPw93dvTnLbxbG+DmqqqrCmTNn4OLi0lRlysqQc9S/f39cvHhRCtgA8N///hcuLi5tLhwBjfs52r59OyoqKvDaa681dZnNT+5Z4q1VSkqKsLS0FJs2bRI//PCDmDx5srC3t5dulx0zZoyIj4+X+ldUVIjs7GyRnZ0tXFxcxMyZM0V2drb48ccf5TqEJtXQ87Nw4UJhYWEhduzYoXPr6O3bt+U6hCbX0HP0wQcfiK+//lpcunRJ/PDDD+Ivf/mLMDMzExs2bJDrEJpcQ8+RvvZwF1tDz9H8+fPFV199JS5duiQyMzPFqFGjhFKpFGfPnpXrEJpcQ89Rfn6+6NChg3jrrbfEhQsXxJ49e0Tnzp3FggUL5DqEJmfo/9cGDBggYmJimrvcZsGA1AgrV64UHh4ewsLCQoSEhIj//Oc/0mfh4eEiNjZWep+bmysA1HiFh4c3f+HNpCHnp0uXLrWen6SkpOYvvBk15Bz9+c9/Ft7e3kKpVAoHBwcRFhYmUlJSZKi6eTXkHOlrDwFJiIado+nTp0t9nZ2dxXPPPSeysrJkqLp5NfTn6NixYyI0NFRYWlqKrl27ivfff1/cv3+/matuXg09R+fPnxcAxNdff93MlTYPhRBCyDR4RURERNQicQ4SERERkR4GJCIiIiI9DEhEREREehiQiIiIiPQwIBERERHpYUAiIiIi0sOARERERKSHAYmIqIUbN24coqOj5S6DqF1hQCIig40bNw4KhUJ6derUCUOGDMH3338vd2lG8dtjq34NGDCgyb4vLy8PCoUCp0+f1mn/61//ik2bNjXZ9xJRTQxIRNQoQ4YMQUFBAQoKCpCeng4zMzM8//zzcpdlNBs3bpSOr6CgALt37661371795qsBpVKBXt7+ybbPxHVxIBERI1iaWkJtVoNtVqNgIAAxMfH4/Lly7h+/TqefvppvPXWWzr9r1+/DgsLC+nJ4Z6ennjvvfcwevRo2NjYwM3NDatXr9bZZunSpfDz84ONjQ3c3d3xxz/+EXfu3JE+//nnn/HCCy/AwcEBNjY2eOKJJ7B3714AwK+//opXX30VTk5OsLKygo+PDzZu3Fjv47O3t5eOT61Wo2PHjtJIT2pqKsLDw6FUKvHZZ5/hxo0bGD16NNzc3GBtbQ0/Pz/8/e9/19mfVqvF4sWL4e3tDUtLS3h4eOD9998HAHh5eQEA+vTpA4VCgYiICAA1L7FVVFRg6tSp6Ny5M5RKJQYMGICTJ09Knx86dAgKhQLp6ekICgqCtbU1+vXrhwsXLtT7uInaOwYkIjKaO3fuYOvWrfD29kanTp0wceJEbNu2DRUVFVKfrVu3ws3NDU8//bTU9uGHH8Lf3x/Z2dmIj4/HtGnTsG/fPulzExMTrFixAmfPnsXmzZtx4MABzJo1S/r8zTffREVFBb755hucOXMGixYtgq2tLQBg7ty5+OGHH/Dvf/8b586dw5o1a+Do6GiU462u9dy5c4iKisLdu3cRGBiIf/3rX8jJycHkyZMxZswYnDhxQtomISEBCxculOratm0bnJ2dAUDqt3//fhQUFGDnzp21fu+sWbPwj3/8A5s3b0ZWVha8vb0RFRWFmzdv6vT785//jCVLluDUqVMwMzPD//t//88ox03ULsj9tFwiar1iY2OFqampsLGxETY2NgKAcHFxEZmZmUIIIcrLy4WDg4NITU2Vtundu7eYN2+e9L5Lly5iyJAhOvuNiYkRQ4cOrfN7t2/fLjp16iS99/Pz09nnb73wwgti/PjxBh0fAKFUKqXjs7GxEf/85z9Fbm6uACCWL1/+yH0MGzZMzJgxQwghRElJibC0tBQbNmyotW/1frOzs3XaY2NjxfDhw4UQQty5c0eYm5uLzz77TPq8srJSuLq6isWLFwshhDh48KAAIPbv3y/1+de//iUAiPLy8oacAqJ2iyNIRNQogwYNwunTp3H69GmcOHECUVFRGDp0KH7++WcolUqMGTMGn3zyCQAgKysLOTk5GDdunM4+wsLCarw/d+6c9H7//v0YPHgw3Nzc0KFDB4wZMwY3btxAWVkZAGDq1KlYsGAB+vfvj6SkJJ1J4m+88QZSUlIQEBCAWbNm4dixYw06vmXLlknHd/r0aTzzzDPSZ0FBQTp9q6qq8N5778HPzw8dO3aEra0tvvrqK+Tn5wMAzp07h4qKCgwePLhBNfzWpUuXcO/ePfTv319qMzc3R0hIiM45A4DevXtLf3dxcQEAXLt2zeDvJmpPGJCIqFFsbGzg7e0Nb29vBAcH429/+xtKS0uxYcMGAMDEiROxb98+/PLLL9i4cSOefvppdOnSpd77z8vLw/PPP4/evXvjH//4BzIzM6U5SpWVldJ3/PTTTxgzZgzOnDmDoKAgrFy5EgCksPb222/j6tWrGDx4MGbOnFnv71er1dLxeXt7w8bGRufYf+vDDz/EX//6V7zzzjs4ePAgTp8+jaioKKlOKyuren+vMZibm0t/VygUAB7MgSKiR2NAIiKjUigUMDExQXl5OQDAz88PQUFB2LBhA7Zt21brPJj//Oc/Nd737NkTAJCZmQmtVoslS5agb9++6N69O65evVpjH+7u7nj99dexc+dOzJgxQwpoAODk5ITY2Fhs3boVy5cvx/r16415yJKjR49i+PDheO211+Dv74+uXbviv//9r/S5j48PrKyspAnq+iwsLAA8GImqS7du3WBhYYGjR49Kbffu3cPJkyfRq1cvIx0JEZnJXQARtW4VFRUoLCwE8OCOsVWrVuHOnTt44YUXpD4TJ07EW2+9BRsbG7z00ks19nH06FEsXrwY0dHR2LdvH7Zv345//etfAABvb2/cu3cPK1euxAsvvICjR49i7dq1OttPnz4dQ4cORffu3fHrr7/i4MGDUsBKTExEYGAgnnjiCVRUVGDPnj3SZ8bm4+ODHTt24NixY3BwcMDSpUtRVFQkBRelUol33nkHs2bNgoWFBfr374/r16/j7NmzmDBhAjp37gwrKyukpaXhscceg1KphEql0vkOGxsbvPHGG/jTn/6Ejh07wsPDA4sXL0ZZWRkmTJjQJMdF1B5xBImIGiUtLQ0uLi5wcXFBaGgoTp48ie3bt0u3qAPA6NGjYWZmhtGjR0OpVNbYx4wZM3Dq1Cn06dMHCxYswNKlSxEVFQUA8Pf3x9KlS7Fo0SL4+vris88+Q3Jyss72VVVVePPNN9GzZ08MGTIE3bt3x0cffQTgwahMQkICevfujYEDB8LU1BQpKSlNci7mzJmDJ598ElFRUYiIiIBara6xAvbcuXMxY8YMJCYmomfPnoiJiZHmBZmZmWHFihVYt24dXF1dMXz48Fq/Z+HChRg5ciTGjBmDJ598EhcvXsRXX30FBweHJjkuovZIIYQQchdBRG1bXl4eunXrhpMnT+LJJ5/U+czT0xPTp0/H9OnT5SmOiKgWvMRGRE3m3r17uHHjBubMmYO+ffvWCEdERC0VL7ERUZM5evQoXFxccPLkyRrzhuT2wQcfwNbWttbX0KFD5S6PiGTGS2xE1C7dvHmzxsrT1aysrODm5tbMFRFRS8KARERERKSHl9iIiIiI9DAgEREREelhQCIiIiLSw4BEREREpIcBiYiIiEgPAxIRERGRHgYkIiIiIj0MSERERER6/j/98aUivLwthwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARjNJREFUeJzt3X2czXX+//HnmesrcwZzSRhCWINc1VAoashWGrurKw1L+01UripspbBGdkNy1SrDpuKr9E2ylUR9GWUihayiETIzDDtnjGGMmffvj75zfp1FZs7MmTPz8bjfbud2M+/P+3zO6/NuOM/en4u3zRhjBAAAYFE+3i4AAADAkwg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AGqEZ599VjabrVx9bTabnn32WY/W06tXL/Xq1avG7g9A+RF2ALhYunSpbDab8+Xn56eGDRtqyJAh+umnn7xdXo0THx/vMl7R0dG68cYb9c4771TJ/gsLC/Xss89q06ZNVbI/4EpE2AFwUVOmTNFrr72mRYsWqV+/flq+fLl69uyps2fPeuTznnrqKZ05c8Yj+/a0Dh066LXXXtNrr72m8ePH6+jRo0pOTtaiRYsqve/CwkI999xzhB2gEvy8XQCAmqlfv37q3LmzJGn48OGKjIzU888/rzVr1ugPf/hDlX+en5+f/Pxq5z9JDRs21P333+/8+YEHHlDz5s01e/ZsPfTQQ16sDIDEzA6AcrrxxhslSQcOHHBp/9e//qXf/e53qlevnoKCgtS5c2etWbPGpU9xcbGee+45tWjRQkFBQapfv75uuOEGrV+/3tnnYtfsFBUVacyYMYqKilKdOnV0xx136MiRIxfUNmTIEMXHx1/QfrF9pqWl6eabb1Z0dLQCAwPVpk0bLVy4sEJjcTmxsbFq3bq1MjMzf7XfsWPHNGzYMMXExCgoKEjt27fXsmXLnNsPHjyoqKgoSdJzzz3nPFXm6euVAKupnf8bBaDaHTx4UJJUt25dZ9uePXvUvXt3NWzYUBMmTFBoaKj++7//WwMGDNDbb7+tu+66S9LPoSM1NVXDhw9X165dlZ+fry+//FI7duzQLbfccsnPHD58uJYvX657771X3bp10yeffKL+/ftX6jgWLlyo3/zmN7rjjjvk5+en9957Tw8//LBKS0s1cuTISu27THFxsQ4fPqz69etfss+ZM2fUq1cv7d+/X6NGjVLTpk21atUqDRkyRHl5eXrssccUFRWlhQsXasSIEbrrrruUnJwsSWrXrl2V1AlcMQwA/EJaWpqRZD7++GNz/Phxc/jwYfPWW2+ZqKgoExgYaA4fPuzs27t3b5OQkGDOnj3rbCstLTXdunUzLVq0cLa1b9/e9O/f/1c/d/LkyeaX/yTt3LnTSDIPP/ywS797773XSDKTJ092tqWkpJgmTZpcdp/GGFNYWHhBv6SkJNOsWTOXtp49e5qePXv+as3GGNOkSRNz6623muPHj5vjx4+br7/+2tx9991GknnkkUcuub85c+YYSWb58uXOtnPnzpnExEQTFhZm8vPzjTHGHD9+/ILjBVAxnMYCcFF9+vRRVFSUGjVqpN/97ncKDQ3VmjVrdNVVV0mSTp48qU8++UR/+MMfdOrUKeXm5io3N1cnTpxQUlKSvv/+e+fdWxEREdqzZ4++//77cn/+unXrJEmPPvqoS/vo0aMrdVzBwcHOPzscDuXm5qpnz5764Ycf5HA43NrnRx99pKioKEVFRal9+/ZatWqVBg8erOeff/6S71m3bp1iY2N1zz33ONv8/f316KOPqqCgQJ9++qlbtQC4EKexAFzU/Pnz1bJlSzkcDi1ZskSfffaZAgMDndv3798vY4yefvppPf300xfdx7Fjx9SwYUNNmTJFd955p1q2bKm2bduqb9++Gjx48K+ejvnxxx/l4+Ojq6++2qX9mmuuqdRxbdmyRZMnT9bWrVtVWFjoss3hcMhut1d4n9ddd52mTZsmm82mkJAQtW7dWhEREb/6nh9//FEtWrSQj4/r/3O2bt3auR1A1SDsALiorl27Ou/GGjBggG644Qbde++92rdvn8LCwlRaWipJGj9+vJKSki66j+bNm0uSevTooQMHDujdd9/VRx99pFdeeUWzZ8/WokWLNHz48ErXeqmHEZaUlLj8fODAAfXu3VutWrXSrFmz1KhRIwUEBGjdunWaPXu285gqKjIyUn369HHrvQA8j7AD4LJ8fX2Vmpqqm266SfPmzdOECRPUrFkzST+feinPF329evU0dOhQDR06VAUFBerRo4eeffbZS4adJk2aqLS0VAcOHHCZzdm3b98FfevWrau8vLwL2v9zduS9995TUVGR1qxZo8aNGzvbN27ceNn6q1qTJk30zTffqLS01GV251//+pdzu3TpIAeg/LhmB0C59OrVS127dtWcOXN09uxZRUdHq1evXnr55ZeVlZV1Qf/jx487/3zixAmXbWFhYWrevLmKioou+Xn9+vWTJM2dO9elfc6cORf0vfrqq+VwOPTNN98427Kysi54irGvr68kyRjjbHM4HEpLS7tkHZ5y2223KTs7WytXrnS2nT9/Xi+99JLCwsLUs2dPSVJISIgkXTTMASgfZnYAlNvjjz+u3//+91q6dKkeeughzZ8/XzfccIMSEhL04IMPqlmzZsrJydHWrVt15MgRff3115KkNm3aqFevXurUqZPq1aunL7/8Um+99ZZGjRp1yc/q0KGD7rnnHi1YsEAOh0PdunXThg0btH///gv63n333XryySd111136dFHH1VhYaEWLlyoli1baseOHc5+t956qwICAnT77bfrv/7rv1RQUKDFixcrOjr6ooHNk/70pz/p5Zdf1pAhQ7R9+3bFx8frrbfe0pYtWzRnzhzVqVNH0s8XVLdp00YrV65Uy5YtVa9ePbVt21Zt27at1nqBWs3bt4MBqFnKbj3PyMi4YFtJSYm5+uqrzdVXX23Onz9vjDHmwIED5oEHHjCxsbHG39/fNGzY0Pz2t781b731lvN906ZNM127djUREREmODjYtGrVyvzlL38x586dc/a52G3iZ86cMY8++qipX7++CQ0NNbfffrs5fPjwRW/F/uijj0zbtm1NQECAueaaa8zy5csvus81a9aYdu3amaCgIBMfH2+ef/55s2TJEiPJZGZmOvtV5Nbzy91Wf6n95eTkmKFDh5rIyEgTEBBgEhISTFpa2gXvTU9PN506dTIBAQHchg64wWbML+ZzAQAALIZrdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKXxUEFJpaWlOnr0qOrUqcOj2QEAqCWMMTp16pQaNGhwwaK6v0TYkXT06FE1atTI22UAAAA3HD58WFddddUltxN2JOdj2Q8fPqzw8HAvVwMAAMojPz9fjRo1cn6PXwphR/9/VeHw8HDCDgAAtczlLkHhAmUAAGBphB0AAGBphB0AAGBpXLNTASUlJSouLvZ2GbAYf39/+fr6ersMALAswk45GGOUnZ2tvLw8b5cCi4qIiFBsbCzPeQIADyDslENZ0ImOjlZISAhfSKgyxhgVFhbq2LFjkqS4uDgvVwQA1kPYuYySkhJn0Klfv763y4EFBQcHS5KOHTum6OhoTmkBQBXjAuXLKLtGJyQkxMuVwMrKfr+4JgwAqh5hp5w4dQVP4vcLADyHsAMAACyNsINftWXLFiUkJMjf318DBgzwdjkAAFQYYcfChgwZIpvNJpvNJn9/fzVt2lRPPPGEzp49W+59jB07Vh06dFBmZqaWLl3quWKr0dKlS53j4uvrq7p16+q6667TlClT5HA4Krw/m82m//mf/6n6QgFUiSzHGaUfyFWW44y3S4GXcDeWxfXt21dpaWkqLi7W9u3blZKSIpvNpueff75c7z9w4IAeeughXXXVVW7XcO7cOQUEBLj9/oowxqikpER+fr/+qx0eHq59+/bJGKO8vDylp6crNTVVaWlp2rJlixo0aFAt9QLwrJUZhzRx9S6VGsnHJqUmJ2hQl8beLgvVjJkdiwsMDFRsbKwaNWqkAQMGqE+fPlq/fr0kqbS0VKmpqWratKmCg4PVvn17vfXWW5KkgwcPymaz6cSJE/rjH/8om83mnNn59NNP1bVrVwUGBiouLk4TJkzQ+fPnnZ/Zq1cvjRo1SqNHj1ZkZKSSkpK0adMm2Ww2ffjhh7r22msVHBysm2++WceOHdM///lPtW7dWuHh4br33ntVWFjo3Nev1SjJud9//vOf6tSpkwIDA7V58+bLjovNZlNsbKzi4uLUunVrDRs2TOnp6SooKNATTzzh7BcfH685c+a4vLdDhw569tlnndsl6a677pLNZlN8fLwOHjwoHx8fffnlly7vmzNnjpo0aaLS0tLL1geg8rIcZ5xBR5JKjTRp9W5meK5AhJ1q5O2p1N27dys9Pd05y5Kamqp//OMfWrRokfbs2aMxY8bo/vvv16effqpGjRopKytL4eHhmjNnjrKysjRo0CD99NNPuu2229SlSxd9/fXXWrhwoV599VVNmzbN5bOWLVumgIAAbdmyRYsWLXK2P/vss5o3b57S09N1+PBh/eEPf9CcOXP0xhtv6P3339dHH32kl156ydn/12r8pQkTJmjGjBnau3ev2rVr59b4REdH67777tOaNWtUUlJSrvdkZGRIktLS0pSVlaWMjAzFx8erT58+SktLc+mblpamIUOGyMeHv3ZAdcjMPe0MOmVKjNHB3MKLvwGWxWmsauKtqdS1a9cqLCxM58+fV1FRkXx8fDRv3jwVFRVp+vTp+vjjj5WYmChJatasmTZv3qyXX35ZPXv2dC5fYLfbFRsbK0lasGCBGjVqpHnz5slms6lVq1Y6evSonnzyST3zzDPOL/IWLVpo5syZzjqysrIkSdOmTVP37t0lScOGDdPEiRN14MABNWvWTJL0u9/9Ths3btSTTz5ZrhrLTJkyRbfcckulx6tVq1Y6deqUTpw4oejo6Mv2j4qKkvT/l3soM3z4cD300EOaNWuWAgMDtWPHDu3atUvvvvtupWsEUD5NI0PlY5NL4PG12RQfyXPTrjT8L2Y18OZU6k033aSdO3fqiy++UEpKioYOHaqBAwdq//79Kiws1C233KKwsDDn6x//+IcOHDhwyf3t3btXiYmJLs+F6d69uwoKCnTkyBFnW6dOnS76/l/OusTExCgkJMQZdMraypZOqEiNnTt3rtjAXIIxP/9HquxzbwYMGCBfX1+98847kn6+KPqmm25ynvYC4Hlx9mClJifI9//+PvvabJqe3FZx9mAvV4bqxsxONfi1qVRP/6ULDQ1V8+bNJUlLlixR+/bt9eqrr6pt27aSpPfff18NGzZ0eU9gYGCVfO7F+Pv7O/9cdpfYL9lsNuc1LQUFBeWu8VKfV1F79+5VeHi4c2kQHx8fZwAqU56nHAcEBOiBBx5QWlqakpOT9cYbb+jFF1+skhoBlN+gLo3Vo2WUDuYWKj4yhKBzhSLsVIOaMpXq4+OjSZMmaezYsfruu+8UGBioQ4cOuZwOupzWrVvr7bffljHGOfuxZcsW1alTp1J3bF1MmzZt3KrRXceOHdMbb7yhAQMGOE/HRUVFOU/BSVJ+fr4yMzNd3ufv73/Ra3yGDx+utm3basGCBTp//rySk5M9ewAALirOHkzIucJxGqsa1KSp1N///vfy9fXVyy+/rPHjx2vMmDFatmyZDhw4oB07duill17SsmXLLvn+hx9+WIcPH9Yjjzyif/3rX3r33Xc1efJkjR07tsovvK1Tp45bNZaHMUbZ2dnKysrS3r17tWTJEnXr1k12u10zZsxw9rv55pv12muv6X//93+1a9cupaSkXLBQZ3x8vDZs2KDs7Gz9+9//dra3bt1a119/vZ588kndc889zgU/AQDVi5mdalJTplL9/Pw0atQozZw5U5mZmYqKilJqaqp++OEHRUREqGPHjpo0adIl39+wYUOtW7dOjz/+uNq3b6969epp2LBheuqppzxS79SpUytcY3nk5+crLi5ONptN4eHhuuaaa5SSkqLHHntM4eHhzn4TJ05UZmamfvvb38put2vq1KkXzOy88MILGjt2rBYvXqyGDRvq4MGDzm1lt7T/8Y9/rFS9AAD32cx/XpBwBcrPz5fdbpfD4XD5opOks2fPKjMzU02bNlVQUJCXKkRtNXXqVK1atUrffPPNr/bj9wwAKu7Xvr9/idNYgAcUFBRo9+7dmjdvnh555BFvlwMAVzTCDiznN7/5jcut6r98vf7669VSw6hRo9SpUyf16tWLU1gA4GVcswPLWbdu3SVvD4+JiamWGpYuXWqZhVMBoLYj7MBymjRp4u0SAAA1CKexyonruOFJ/H4BgOcQdi6j7Am/v1yJG6hqZb9f//lEaQBA5XEa6zJ8fX0VERHhXK8pJCSk0usmAWWMMSosLNSxY8cUERFxwQMLAQCVR9gph7LVrMsCD1DV/nPVdABA1SHslIPNZlNcXJyio6PLtQgkUBH+/v7M6ACABxF2KsDX15cvJQAAahkuUAYAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AHgFVmOM0o/kKssxxlvlwLA4vy8XQCAK8/KjEOauHqXSo3kY5NSkxM0qEtjb5cFwKKY2QFQrbIcZ5xBR5JKjTRp9W5meAB4DGEHQLXKzD3tDDplSozRwdxC7xQEwPIIOwCqVdPIUPnYXNt8bTbFR4Z4pyAAlkfYAVCt4uzBSk1OkK/t58Tja7NpenJbxdmDvVwZajMueMev4QJlANVuUJfG6tEySgdzCxUfGULQQaVwwTsuh5kdAF4RZw9W4tX1CTqoFC54R3kQdgAAtRYXvKM8CDsAgFqLC95RHoQdwA1cDAnUDFzwjvKoUWFnxowZstlsGj16tLPt7NmzGjlypOrXr6+wsDANHDhQOTk5Lu87dOiQ+vfvr5CQEEVHR+vxxx/X+fPnq7l6XClWZhxS9xmf6N7FX6j7jE+0MuOQt0vCLxBErzyDujTW5gk36c0Hr9fmCTdxcTIuUGPuxsrIyNDLL7+sdu3aubSPGTNG77//vlatWiW73a5Ro0YpOTlZW7ZskSSVlJSof//+io2NVXp6urKysvTAAw/I399f06dP98ahwMIudTFkj5ZR/J9kDcBdOVeuOHswfwdxSTViZqegoED33XefFi9erLp16zrbHQ6HXn31Vc2aNUs333yzOnXqpLS0NKWnp+vzzz+XJH300Uf69ttvtXz5cnXo0EH9+vXT1KlTNX/+fJ07d85bhwSL4mLImou7cgBcSo0IOyNHjlT//v3Vp08fl/bt27eruLjYpb1Vq1Zq3Lixtm7dKknaunWrEhISFBMT4+yTlJSk/Px87dmz56KfV1RUpPz8fJcXUB5cDFlzEUQBXIrXw86KFSu0Y8cOpaamXrAtOztbAQEBioiIcGmPiYlRdna2s88vg07Z9rJtF5Oamiq73e58NWrUqAqOBFcCLoasuQiiAC7Fq9fsHD58WI899pjWr1+voKCgavvciRMnauzYsc6f8/PzCTwoN57+WzOVBdFJq3erxBiCKAAnr4ad7du369ixY+rYsaOzraSkRJ999pnmzZunDz/8UOfOnVNeXp7L7E5OTo5iY2MlSbGxsdq2bZvLfsvu1irr858CAwMVGBhYxUeDKwkXQ9ZMBFEAF+PV01i9e/fWrl27tHPnTuerc+fOuu+++5x/9vf314YNG5zv2bdvnw4dOqTExERJUmJionbt2qVjx445+6xfv17h4eFq06ZNtR8TAO9iGQoA/8mrMzt16tRR27ZtXdpCQ0NVv359Z/uwYcM0duxY1atXT+Hh4XrkkUeUmJio66+/XpJ06623qk2bNho8eLBmzpyp7OxsPfXUUxo5ciSzNwAAoOY8Z+dSZs+eLR8fHw0cOFBFRUVKSkrSggULnNt9fX21du1ajRgxQomJiQoNDVVKSoqmTJnixaoBAEBNYTPGmMt3s7b8/HzZ7XY5HA6Fh4d7uxwAAFAO5f3+9vqt5wAAAJ5E2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AFgKVmOM0o/kKssxxlvlwKghvDzdgEAUFVWZhzSxNW7VGokH5uUmpygQV0ae7ssAF7GzA4AS8hynHEGHUkqNdKk1buZ4QFA2AFgDZm5p51Bp0yJMTqYW+idggDUGIQdAJbQNDJUPjbXNl+bTfGRId4pCECNQdgBYAlx9mClJifI1/Zz4vG12TQ9ua3i7MFergyAt3GBMgDLGNSlsXq0jNLB3ELFR4YQdABIIuwAsJg4ezAhB4ALTmMBAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAGqELMcZpR/IZaV6VDmeoAwA8LqVGYc0cfUulRrJxyalJidoUJfG3i4LFsHMDgDAq7IcZ5xBR5JKjTRp9W5meFBlCDsAAK/KzD3tDDplSozRwdxC7xQEyyHsAAC8qmlkqHxsrm2+NpviI0O8UxAsh7ADAPCqOHuwUpMT5Gv7OfH42myantyW1etRZbhAGQDgdYO6NFaPllE6mFuo+MgQgg6qFGEHAFAjxNmDCTnwCE5jAQAASyPsAAAASyPsAKh1eNIugIrgmh0AtQpP2gVQUczsAKg1eNIuAHcQdgDUGjxpF4A7CDsAag2etAvAHYQdALUGT9oF4A4uUAZQq/CkXQAVRdgBUOvwpF0AFcFpLAAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGleDTsLFy5Uu3btFB4ervDwcCUmJuqf//ync/vZs2c1cuRI1a9fX2FhYRo4cKBycnJc9nHo0CH1799fISEhio6O1uOPP67z589X96EAAIAayu2wEx8frylTpujQoUNuf/hVV12lGTNmaPv27fryyy918803684779SePXskSWPGjNF7772nVatW6dNPP9XRo0eVnJzsfH9JSYn69++vc+fOKT09XcuWLdPSpUv1zDPPuF0TAACwGOOm2bNnm/bt2xtfX1/Tp08f8+abb5qzZ8+6uzununXrmldeecXk5eUZf39/s2rVKue2vXv3Gklm69atxhhj1q1bZ3x8fEx2drazz8KFC014eLgpKioq92c6HA4jyTgcjkrXDwAAqkd5v7/dntkZPXq0du7cqW3btql169Z65JFHFBcXp1GjRmnHjh0V3l9JSYlWrFih06dPKzExUdu3b1dxcbH69Onj7NOqVSs1btxYW7dulSRt3bpVCQkJiomJcfZJSkpSfn6+c3boYoqKipSfn+/yAgAA1lTpa3Y6duyouXPn6ujRo5o8ebJeeeUVdenSRR06dNCSJUtkjPnV9+/atUthYWEKDAzUQw89pHfeeUdt2rRRdna2AgICFBER4dI/JiZG2dnZkqTs7GyXoFO2vWzbpaSmpsputztfjRo1cuPIAQBAbVDpsFNcXKz//u//1h133KFx48apc+fOeuWVVzRw4EBNmjRJ991336++/5prrtHOnTv1xRdfaMSIEUpJSdG3335b2bJ+1cSJE+VwOJyvw4cPe/TzAACA9/i5+8YdO3YoLS1Nb775pnx8fPTAAw9o9uzZatWqlbPPXXfdpS5duvzqfgICAtS8eXNJUqdOnZSRkaEXX3xRgwYN0rlz55SXl+cyu5OTk6PY2FhJUmxsrLZt2+ayv7K7tcr6XExgYKACAwMrdLwAAKB2cntmp0uXLvr++++1cOFC/fTTT/rb3/7mEnQkqWnTprr77rsrtN/S0lIVFRWpU6dO8vf314YNG5zb9u3bp0OHDikxMVGSlJiYqF27dunYsWPOPuvXr1d4eLjatGnj7qEBAAALcXtm54cfflCTJk1+tU9oaKjS0tIuuX3ixInq16+fGjdurFOnTumNN97Qpk2b9OGHH8put2vYsGEaO3as6tWrp/DwcD3yyCNKTEzU9ddfL0m69dZb1aZNGw0ePFgzZ85Udna2nnrqKY0cOZKZGwAAIKkSYeemm25SRkaG6tev79Kel5enjh076ocffrjsPo4dO6YHHnhAWVlZstvtateunT788EPdcsstkqTZs2fLx8dHAwcOVFFRkZKSkrRgwQLn+319fbV27VqNGDFCiYmJCg0NVUpKiqZMmeLuYQEAAIuxmcvdLnUJPj4+ys7OVnR0tEt7Tk6OGjdurKKioiopsDrk5+fLbrfL4XAoPDzc2+UAAIByKO/3d4VndtasWeP8c9nppjIlJSXasGGD4uPjK7pbAAAAj6hw2BkwYIAkyWazKSUlxWWbv7+/4uPj9cILL1RJcQAAAJVV4bBTWloq6ec7rTIyMhQZGVnlRQEAAFQVty9QzszMrMo6AAAAPMLtsHO5O55YeRwAANQEboedd955x+Xn4uJiZWZmys/PT1dffTVhBwAA1Ahuh52vvvrqgrb8/HwNGTJEd911V6WKAgAAqCqVXgj0l8LDw/Xcc8/p6aefrsrdAgAAuK1Kw44k50riAAAANYHbp7Hmzp3r8rMxRllZWXrttdfUr1+/ShcGAABQFdwOO7Nnz3b52cfHR1FRUUpJSdHEiRMrXRgAAEBV4Dk7AADA0ip1zY4xRrm5uTpx4kRV1QMAAFCl3Ao72dnZeuCBB1S3bl3FxMQoOjpadevW1R//+Efl5ORUdY0AAABuq/BprPz8fHXr1k0FBQUaOnSoWrVqJWOMvv32W7355pvavHmzduzYobCwME/UCwAAUCEVDjsvvviifH19tWfPHkVFRblse+qpp9S9e3fNnTtXkyZNqrIiAQAA3FXh01jvv/++Jk2adEHQkaTo6GhNnDhR7733XpUUBwAAUFkVDjvfffedunXrdsnt3bp10759+ypVFAAAQFWpcNjJz89XRETEJbdHREQoPz+/MjUBAABUmQqHHWOMfHwu/TabzSZjTKWKAgAAqCoVvkDZGKOWLVvKZrNdcjsAAEBNUeGwk5aW5ok6AAAAPKLCYSclJaVC/d98803dcccdCg0NrehHAQAAVFqllosoj//6r//iqcoAAMBrPB52uIYHANyX5Tij9AO5ynKc8XYpQK3l9qrnAADPWplxSBNX71KpkXxsUmpyggZ1aeztsoBax+MzOwCAistynHEGHUkqNdKk1buZ4QHcQNgBgBooM/e0M+iUKTFGB3MLvVMQUIsRdgCgBmoaGSqf/3icma/NpvjIEO8UBNRiboWdkpISffbZZ8rLy7ts3yZNmsjf39+djwGAK1acPVipyQny/b8HuPrabJqe3FZx9mAvVwbUPjbj5u1SQUFB2rt3r5o2bVrVNVW7/Px82e12ORwOhYeHe7scAHDKcpzRwdxCxUeGEHSA/1De72+378Zq27atfvjhB0uEHQCoqeLswYQcoJLcvmZn2rRpGj9+vNauXausrCzl5+e7vAAAAGoCt09j/XLl818uCmqMkc1mU0lJSeWrqyacxgIAoPbx+GmsjRs3uvtWAACAauN22OnZs2dV1gEAAOARlXrOzv/+7//q/vvvV7du3fTTTz9Jkl577TVt3ry5SooDAACoLLfDzttvv62kpCQFBwdrx44dKioqkiQ5HA5Nnz69ygoEAFQ9FhjFlaRSd2MtWrRIixcvdnloYPfu3bVjx44qKQ4AUPVWZhxS9xmf6N7FX6j7jE+0MuOQt0sCPMrtsLNv3z716NHjgna73V6uJysDAKofC4ziSuR22ImNjdX+/fsvaN+8ebOaNWtWqaIAAJ7BAqO4Erkddh588EE99thj+uKLL2Sz2XT06FG9/vrrGj9+vEaMGFGVNQIAqggLjOJK5Pat5xMmTFBpaal69+6twsJC9ejRQ4GBgRo/frweeeSRqqwRAFBFyhYYnbR6t0qMYYFRXBHcfoJymXPnzmn//v0qKChQmzZtFBYWVlW1VRueoAzgSsMCo7ACjz9BuUxAQIDatGlT2d0AAKoRC4ziSuJ22Dl79qxeeuklbdy4UceOHVNpaanLdm4/BwAANYHbYWfYsGH66KOP9Lvf/U5du3Z1WQwUAACgpnA77Kxdu1br1q1T9+7dq7IeAACAKuX2recNGzZUnTp1qrIWAACAKud22HnhhRf05JNP6scff6zKegAAAKqU26exOnfurLNnz6pZs2YKCQlxWR9Lkk6ePFnp4gAAACrL7bBzzz336KefftL06dMVExPDBcoAqk2W44wyc0+raWQot08DuCy3w056erq2bt2q9u3bV2U9APCrVmYcci5k6WOTUpMTNKhLY2+XBaAGc/uanVatWunMGVbJBVB9WLEbgDvcDjszZszQuHHjtGnTJp04cUL5+fkuLwCoaqzYDcAdbp/G6tu3rySpd+/eLu3GGNlsNpWUlFSuMgD4D2Urdv8y8LBiN4DLcTvsbNy4sSrrAIDLYsVuAO5wa9Xz4uJi9e3bV4sWLVKLFi08UVe1YtVzoHZhxW4AkodXPff399c333zjdnEAUBms2A2gIty+QPn+++/Xq6++WpW1AAAAVDm3r9k5f/68lixZoo8//lidOnVSaGioy/ZZs2ZVujgAAIDKcjvs7N69Wx07dpQkfffddy7beJoyAACoKbgbCwAAWJrb1+z80pEjR3TkyJEKvy81NVVdunRRnTp1FB0drQEDBmjfvn0ufc6ePauRI0eqfv36CgsL08CBA5WTk+PS59ChQ+rfv79CQkIUHR2txx9/XOfPn6/UMQEAAGtwO+yUlpZqypQpstvtatKkiZo0aaKIiAhNnTpVpaWl5drHp59+qpEjR+rzzz/X+vXrVVxcrFtvvVWnT5929hkzZozee+89rVq1Sp9++qmOHj2q5ORk5/aSkhL1799f586dU3p6upYtW6alS5fqmWeecffQAACAlRg3TZgwwURFRZkFCxaYr7/+2nz99ddm/vz5JioqykyaNMmtfR47dsxIMp9++qkxxpi8vDzj7+9vVq1a5eyzd+9eI8ls3brVGGPMunXrjI+Pj8nOznb2WbhwoQkPDzdFRUXl+lyHw2EkGYfD4VbdVnI0r9Bs2X/cHM0r9HYpAAD8qvJ+f7t9zc6yZcv0yiuv6I477nC2tWvXTg0bNtTDDz+sv/zlLxXep8PhkCTVq1dPkrR9+3YVFxerT58+zj6tWrVS48aNtXXrVl1//fXaunWrEhISFBMT4+yTlJSkESNGaM+ePbr22msv+JyioiIVFRU5f2Ytr5+xmjQAwIrcPo118uRJtWrV6oL2Vq1a6eTJkxXeX2lpqUaPHq3u3burbdu2kqTs7GwFBAQoIiLCpW9MTIyys7OdfX4ZdMq2l227mNTUVNntduerUaNGFa7XalhNGgBgVW6Hnfbt22vevHkXtM+bN0/t27ev8P5Gjhyp3bt3a8WKFe6WVG4TJ06Uw+Fwvg4fPuzxz6zpWE0aAGBVbp/Gmjlzpvr376+PP/5YiYmJkqStW7fq8OHDWrduXYX2NWrUKK1du1afffaZrrrqKmd7bGyszp07p7y8PJfZnZycHMXGxjr7bNu2zWV/ZXdrlfX5T4GBgQoMDKxQjVbHatIAAKtye2anZ8+e+u6773TXXXcpLy9PeXl5Sk5O1r59+3TjjTeWax/GGI0aNUrvvPOOPvnkEzVt2tRle6dOneTv768NGzY42/bt26dDhw45A1ZiYqJ27dqlY8eOOfusX79e4eHhatOmjbuHd8UpW03a9/8eCMlq0gAAq6jQqufJyclaunSpwsPD9Y9//EODBg2q1AzJww8/rDfeeEPvvvuurrnmGme73W5XcPDPX7IjRozQunXrnJ/7yCOPSJLS09Ml/XzreYcOHdSgQQPNnDlT2dnZGjx4sIYPH67p06eXqw5WPf//WE0aAFBblPf7u0JhJyAgQD/++KPi4uLk6+urrKwsRUdHu13kpZaVSEtL05AhQyT9/FDBcePG6c0331RRUZGSkpK0YMECl1NUP/74o0aMGKFNmzYpNDRUKSkpmjFjhvz8yneWjrADAEDt45Gw065dO3Xs2FE33XSThg4dqrlz515y5w888EDFq/YSwg4AALWPR8JOenq6xo4dqwMHDujkyZOqU6fORWdnbDabW7efewthBwCA2scjYeeXfHx8lJ2dXanTWDUFYQcAgNqnvN/fbt+NlZmZqaioKHffDgAAUC3cDjtNmjTR5s2bdf/99ysxMVE//fSTJOm1117T5s2bq6xAAACAynA77Lz99ttKSkpScHCwvvrqK+daUw6Ho9y3fAMAAHia22Fn2rRpWrRokRYvXix/f39ne/fu3bVjx44qKQ4AAKCy3A47+/btU48ePS5ot9vtysvLq0xNAAAAVcbtsBMbG6v9+/df0L5582Y1a9asUkUBAABUFbfDzoMPPqjHHntMX3zxhWw2m44eParXX39d48aN04gRI6qyRgAAALe5ver5hAkTVFpaqt69e6uwsFA9evRQYGCgHn/8cQ0fPrwqawQAAHCb2zM7NptNf/7zn3Xy5Ent3r1bn3/+uY4fPy673X7B6uUAAADeUuGwU1RUpIkTJ6pz587q3r271q1bpzZt2mjPnj265ppr9OKLL2rMmDGeqBUAAKDCKnwa65lnntHLL7+sPn36KD09Xb///e81dOhQff7553rhhRf0+9//Xr6+vp6oFQAAoMIqHHZWrVqlf/zjH7rjjju0e/dutWvXTufPn9fXX3990UVBAQAAvKnCp7GOHDmiTp06SZLatm2rwMBAjRkzhqADAABqpAqHnZKSEgUEBDh/9vPzU1hYWJUWBQAAUFUqfBrLGKMhQ4YoMDBQknT27Fk99NBDCg0Ndem3evXqqqkQAACgEiocdlJSUlx+vv/++6usGAAAgKpW4bCTlpbmiToAAAA8wu2HCgIAANQGhB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AqMGyHGeUfiBXWY4z3i4FqLX8vF0AAODiVmYc0sTVu1RqJB+blJqcoEFdGnu7LKDWYWYHAGqgLMcZZ9CRpFIjTVq9mxkewA2EHQCogTJzTzuDTpkSY3Qwt9A7BQG1GGEHAGqgppGh8rG5tvnabIqPDPFOQUAtRtgBgBoozh6s1OQE+dp+Tjy+NpumJ7dVnD3Yy5UBtQ8XKANADTWoS2P1aBmlg7mFio8MIegAbiLsAEANFmcPJuQAlcRpLAAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQ9iTRsAALyPu7E8hDVtAACoGZjZ8QDWtAEAoOYg7HgAa9oAAFBzEHY8gDVtAACoOQg7HsCaNgAA1BxcoOwhrGkDAEDNQNjxINa0AQDA+ziNBQAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALM2rYeezzz7T7bffrgYNGshms+l//ud/XLYbY/TMM88oLi5OwcHB6tOnj77//nuXPidPntR9992n8PBwRUREaNiwYSooKKjGowAAADWZV8PO6dOn1b59e82fP/+i22fOnKm5c+dq0aJF+uKLLxQaGqqkpCSdPXvW2ee+++7Tnj17tH79eq1du1afffaZ/vSnP1XXIQAAgBrOZowxl+/meTabTe+8844GDBgg6edZnQYNGmjcuHEaP368JMnhcCgmJkZLly7V3Xffrb1796pNmzbKyMhQ586dJUkffPCBbrvtNh05ckQNGjQo12fn5+fLbrfL4XAoPDzcI8cHoObLcpxRZu5pNY0M5YGgQC1Q3u/vGnvNTmZmprKzs9WnTx9nm91u13XXXaetW7dKkrZu3aqIiAhn0JGkPn36yMfHR1988cUl911UVKT8/HyXF4Ar28qMQ+o+4xPdu/gLdZ/xiVZmHPJ2SQCqSI0NO9nZ2ZKkmJgYl/aYmBjntuzsbEVHR7ts9/PzU7169Zx9LiY1NVV2u935atSoURVXD6A2yXKc0cTVu1T6f/PcpUaatHq3shxnvFsYgCpRY8OOJ02cOFEOh8P5Onz4sLdLAuBFmbmnnUGnTIkxOphb6J2CAFSpGht2YmNjJUk5OTku7Tk5Oc5tsbGxOnbsmMv28+fP6+TJk84+FxMYGKjw8HCXF4ArV9PIUPnYXNt8bTbFR4Z4pyAAVarGhp2mTZsqNjZWGzZscLbl5+friy++UGJioiQpMTFReXl52r59u7PPJ598otLSUl133XXVXjOA2inOHqzU5AT52n5OPL42m6Ynt+UiZcAi/Lz54QUFBdq/f7/z58zMTO3cuVP16tVT48aNNXr0aE2bNk0tWrRQ06ZN9fTTT6tBgwbOO7Zat26tvn376sEHH9SiRYtUXFysUaNG6e677y73nVgAIEmDujRWj5ZROphbqPjIEIIOYCFevfV806ZNuummmy5oT0lJ0dKlS2WM0eTJk/X3v/9deXl5uuGGG7RgwQK1bNnS2ffkyZMaNWqU3nvvPfn4+GjgwIGaO3euwsLCyl0Ht54DAFD7lPf7u8Y8Z8ebCDsAANQ+tf45OwAAAFWBsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAAColy3FG6QdyleU44+1SLsrP2wUAAIDaa2XGIU1cvUulRvKxSanJCRrUpbG3y3LBzA4AAHBLluOMM+hIUqmRJq3eXeNmeAg7AADALZm5p51Bp0yJMTqYW+idgi6BsAMAANzSNDJUPjbXNl+bTfGRId4p6BIIOwAAwC1x9mClJifI1/Zz4vG12TQ9ua3i7MFerswVFygDAAC3DerSWD1aRulgbqHiI0NqXNCRCDsAAKCS4uzBNTLklOE0FgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDqpFluOM0g/kKstxxtulAACuMKx6Do9bmXFIE1fvUqmRfGxSanKCBnVp7O2yAABXCGZ24FFZjjPOoCNJpUaatHo3MzwAcIWoCTP7zOzAozJzTzuDTpkSY3Qwt1Bx9mDvFAUANVyW44wyc0+raWRorf63sqbM7BN24FFNI0PlY5NL4PG12RQfGeK9ogCgBqspAaGyLjWz36NlVLUHOE5jwaPi7MFKTU6Qr80m6eegMz25ba3+PxUA8BQrnfr/tZn96sbMDjxuUJfG6tEySgdzCxUfGULQAYBLsNKp/5o0s8/MDqpFnD1YiVfXr3V/WQGgOpUFhF+qraf+a9LMPjM7AADUEGUBYdLq3Soxptaf+q8pM/uEHQAAahBPBgRv3OUVZw/2elgj7AAAUMN4IiBY5S4vd3DNDgAAFmelu7zcQdgBAMDiatJt4N5A2AEAwOKsdJeXOwg7AABYXE26DdwbuEAZAIArQE25DdwbCDsAAFwhasJt4N5gmdNY8+fPV3x8vIKCgnTddddp27Zt3i4JAADUAJYIOytXrtTYsWM1efJk7dixQ+3bt1dSUpKOHTvm7dIAAICXWSLszJo1Sw8++KCGDh2qNm3aaNGiRQoJCdGSJUu8XRoAAPCyWh92zp07p+3bt6tPnz7ONh8fH/Xp00dbt2696HuKioqUn5/v8gIAANZU68NObm6uSkpKFBMT49IeExOj7Ozsi74nNTVVdrvd+WrUqFF1lAoAALyg1ocdd0ycOFEOh8P5Onz4sLdLAgAAHlLrbz2PjIyUr6+vcnJyXNpzcnIUGxt70fcEBgYqMDCwOsoDAABeVutndgICAtSpUydt2LDB2VZaWqoNGzYoMTHRi5UBAICaoNbP7EjS2LFjlZKSos6dO6tr166aM2eOTp8+raFDh3q7NAAA4GWWCDuDBg3S8ePH9cwzzyg7O1sdOnTQBx98cMFFywAA4MpjM8aYy3eztvz8fNntdjkcDoWHh3u7HAAAUA7l/f62xMxOZZXlPZ63AwBA7VH2vX25eRvCjqRTp05JEs/bAQCgFjp16pTsdvslt3MaSz/fvXX06FHVqVNHNpvtgu35+flq1KiRDh8+zGmui2B8Lo8xujzG6PIYo8tjjC7PSmNkjNGpU6fUoEED+fhc+gZzZnb08/ISV1111WX7hYeH1/pfDE9ifC6PMbo8xujyGKPLY4wuzypj9GszOmVq/XN2AAAAfg1hBwAAWBphpxwCAwM1efJklpi4BMbn8hijy2OMLo8xujzG6PKuxDHiAmUAAGBpzOwAAABLI+wAAABLI+wAAABLI+wAAABLI+xImj9/vuLj4xUUFKTrrrtO27Ztu2TfPXv2aODAgYqPj5fNZtOcOXOqr1AvqsgYLV68WDfeeKPq1q2runXrqk+fPr/a3yoqMkarV69W586dFRERodDQUHXo0EGvvfZaNVbrHRUZo19asWKFbDabBgwY4NkCa4CKjNHSpUtls9lcXkFBQdVYrXdU9PcoLy9PI0eOVFxcnAIDA9WyZUutW7eumqr1joqMUa9evS74PbLZbOrfv381Vuxh5gq3YsUKExAQYJYsWWL27NljHnzwQRMREWFycnIu2n/btm1m/Pjx5s033zSxsbFm9uzZ1VuwF1R0jO69914zf/5889VXX5m9e/eaIUOGGLvdbo4cOVLNlVefio7Rxo0bzerVq823335r9u/fb+bMmWN8fX3NBx98UM2VV5+KjlGZzMxM07BhQ3PjjTeaO++8s3qK9ZKKjlFaWpoJDw83WVlZzld2dnY1V129KjpGRUVFpnPnzua2224zmzdvNpmZmWbTpk1m586d1Vx59anoGJ04ccLld2j37t3G19fXpKWlVW/hHnTFh52uXbuakSNHOn8uKSkxDRo0MKmpqZd9b5MmTa6IsFOZMTLGmPPnz5s6deqYZcuWeapEr6vsGBljzLXXXmueeuopT5RXI7gzRufPnzfdunUzr7zyiklJSbF82KnoGKWlpRm73V5N1dUMFR2jhQsXmmbNmplz585VV4leV9l/j2bPnm3q1KljCgoKPFVitbuiT2OdO3dO27dvV58+fZxtPj4+6tOnj7Zu3erFymqOqhijwsJCFRcXq169ep4q06sqO0bGGG3YsEH79u1Tjx49PFmq17g7RlOmTFF0dLSGDRtWHWV6lbtjVFBQoCZNmqhRo0a68847tWfPnuoo1yvcGaM1a9YoMTFRI0eOVExMjNq2bavp06erpKSkusquVlXxb/arr76qu+++W6GhoZ4qs9pd0WEnNzdXJSUliomJcWmPiYlRdna2l6qqWapijJ588kk1aNDA5S+flbg7Rg6HQ2FhYQoICFD//v310ksv6ZZbbvF0uV7hzhht3rxZr776qhYvXlwdJXqdO2N0zTXXaMmSJXr33Xe1fPlylZaWqlu3bjpy5Eh1lFzt3BmjH374QW+99ZZKSkq0bt06Pf3003rhhRc0bdq06ii52lX23+xt27Zp9+7dGj58uKdK9ApWPYdHzZgxQytWrNCmTZuuiAsnK6JOnTrauXOnCgoKtGHDBo0dO1bNmjVTr169vF2a1506dUqDBw/W4sWLFRkZ6e1yaqzExEQlJiY6f+7WrZtat26tl19+WVOnTvViZTVHaWmpoqOj9fe//12+vr7q1KmTfvrpJ/31r3/V5MmTvV1ejfPqq68qISFBXbt29XYpVeqKDjuRkZHy9fVVTk6OS3tOTo5iY2O9VFXNUpkx+tvf/qYZM2bo448/Vrt27TxZple5O0Y+Pj5q3ry5JKlDhw7au3evUlNTLRl2KjpGBw4c0MGDB3X77bc720pLSyVJfn5+2rdvn66++mrPFl3NquLfI39/f1177bXav3+/J0r0OnfGKC4uTv7+/vL19XW2tW7dWtnZ2Tp37pwCAgI8WnN1q8zv0enTp7VixQpNmTLFkyV6xRV9GisgIECdOnXShg0bnG2lpaXasGGDy/8tXcncHaOZM2dq6tSp+uCDD9S5c+fqKNVrqur3qLS0VEVFRZ4o0esqOkatWrXSrl27tHPnTufrjjvu0E033aSdO3eqUaNG1Vl+taiK36OSkhLt2rVLcXFxnirTq9wZo+7du2v//v3OsCxJ3333neLi4iwXdKTK/R6tWrVKRUVFuv/++z1dZvXz9hXS3rZixQoTGBholi5dar799lvzpz/9yURERDhv3xw8eLCZMGGCs39RUZH56quvzFdffWXi4uLM+PHjzVdffWW+//57bx2Cx1V0jGbMmGECAgLMW2+95XI746lTp7x1CB5X0TGaPn26+eijj8yBAwfMt99+a/72t78ZPz8/s3jxYm8dgsdVdIz+05VwN1ZFx+i5554zH374oTlw4IDZvn27ufvuu01QUJDZs2ePtw7B4yo6RocOHTJ16tQxo0aNMvv27TNr16410dHRZtq0ad46BI9z9+/aDTfcYAYNGlTd5VaLKz7sGGPMSy+9ZBo3bmwCAgJM165dzeeff+7c1rNnT5OSkuL8OTMz00i64NWzZ8/qL7waVWSMmjRpctExmjx5cvUXXo0qMkZ//vOfTfPmzU1QUJCpW7euSUxMNCtWrPBC1dWrImP0n66EsGNMxcZo9OjRzr4xMTHmtttuMzt27PBC1dWror9H6enp5rrrrjOBgYGmWbNm5i9/+Ys5f/58NVddvSo6Rv/617+MJPPRRx9Vc6XVw2aMMV6aVAIAAPC4K/qaHQAAYH2EHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQCoRkOGDNGAAQO8XQZwRSHsAJD085ewzWZzvurXr6++ffvqm2++8XZpVeKXx1b2uuGGGzz2eQcPHpTNZtPOnTtd2l988UUtXbrUY58L4EKEHQBOffv2VVZWlrKysrRhwwb5+fnpt7/9rbfLqjJpaWnO48vKytKaNWsu2q+4uNhjNdjtdkVERHhs/wAuRNgB4BQYGKjY2FjFxsaqQ4cOmjBhgg4fPqzjx4/r5ptv1qhRo1z6Hz9+XAEBAc4VluPj4zV16lTdc889Cg0NVcOGDTV//nyX98yaNUsJCQkKDQ1Vo0aN9PDDD6ugoMC5/ccff9Ttt9+uunXrKjQ0VL/5zW+0bt06SdK///1v3XfffYqKilJwcLBatGihtLS0ch9fRESE8/hiY2NVr1495wzMypUr1bNnTwUFBen111/XiRMndM8996hhw4YKCQlRQkKC3nzzTZf9lZaWaubMmWrevLkCAwPVuHFj/eUvf5EkNW3aVJJ07bXXymazqVevXpIuPI1VVFSkRx99VNHR0QoKCtINN9ygjIwM5/ZNmzbJZrNpw4YN6ty5s0JCQtStWzft27ev3McNXOkIOwAuqqCgQMuXL1fz5s1Vv359DR8+XG+88YaKioqcfZYvX66GDRvq5ptvdrb99a9/Vfv27fXVV19pwoQJeuyxx7R+/Xrndh8fH82dO1d79uzRsmXL9Mknn+iJJ55wbh85cqSKior02WefadeuXXr++ecVFhYmSXr66af17bff6p///Kf27t2rhQsXKjIyskqOt6zWvXv3KikpSWfPnlWnTp30/vvva/fu3frTn/6kwYMHa9u2bc73TJw4UTNmzHDW9cYbbygmJkaSnP0+/vhjZWVlafXq1Rf93CeeeEJvv/22li1bph07dqh58+ZKSkrSyZMnXfr9+c9/1gsvvKAvv/xSfn5++uMf/1glxw1cEby9EimAmiElJcX4+vqa0NBQExoaaiSZuLg4s337dmOMMWfOnDF169Y1K1eudL6nXbt25tlnn3X+3KRJE9O3b1+X/Q4aNMj069fvkp+7atUqU79+fefPCQkJLvv8pdtvv90MHTrUreOTZIKCgpzHFxoaat555x2TmZlpJJk5c+Zcdh/9+/c348aNM8YYk5+fbwIDA83ixYsv2rdsv1999ZVL+y9Xby8oKDD+/v7m9ddfd24/d+6cadCggZk5c6YxxpiNGzcaSebjjz929nn//feNJHPmzJmKDAFwxWJmB4DTTTfdpJ07d2rnzp3atm2bkpKS1K9fP/34448KCgrS4MGDtWTJEknSjh07tHv3bg0ZMsRlH4mJiRf8vHfvXufPH3/8sXr37q2GDRuqTp06Gjx4sE6cOKHCwkJJ0qOPPqpp06ape/fumjx5sssF0iNGjNCKFSvUoUMHPfHEE0pPT6/Q8c2ePdt5fDt37tQtt9zi3Na5c2eXviUlJZo6daoSEhJUr149hYWF6cMPP9ShQ4ckSXv37lVRUZF69+5doRp+6cCBAyouLlb37t2dbf7+/uratavLmElSu3btnH+Oi4uTJB07dsztzwauJIQdAE6hoaFq3ry5mjdvri5duuiVV17R6dOntXjxYknS8OHDtX79eh05ckRpaWm6+eab1aRJk3Lv/+DBg/rtb3+rdu3a6e2339b27dud1/ScO3fO+Rk//PCDBg8erF27dqlz58566aWXJMkZvMaMGaOjR4+qd+/eGj9+fLk/PzY21nl8zZs3V2hoqMux/9Jf//pXvfjii3ryySe1ceNG7dy5U0lJSc46g4ODy/25VcHf39/5Z5vNJunna4YAXB5hB8Al2Ww2+fj46MyZM5KkhIQEde7cWYsXL9Ybb7xx0etGPv/88wt+bt26tSRp+/btKi0t1QsvvKDrr79eLVu21NGjRy/YR6NGjfTQQw9p9erVGjdunDNsSVJUVJRSUlK0fPlyzZkzR3//+9+r8pCdtmzZojvvvFP333+/2rdvr2bNmum7775zbm/RooWCg4OdF2f/p4CAAEk/zxBdytVXX62AgABt2bLF2VZcXKyMjAy1adOmio4EgJ+3CwBQcxQVFSk7O1vSz3c+zZs3TwUFBbr99tudfYYPH65Ro0YpNDRUd9111wX72LJli2bOnKkBAwZo/fr1WrVqld5//31JUvPmzVVcXKyXXnpJt99+u7Zs2aJFixa5vH/06NHq16+fWrZsqX//+9/auHGjMyw988wz6tSpk37zm9+oqKhIa9eudW6rai1atNBbb72l9PR01a1bV7NmzVJOTo4zhAQFBenJJ5/UE088oYCAAHXv3l3Hjx/Xnj17NGzYMEVHRys4OFgffPCBrrrqKgUFBclut7t8RmhoqEaMGKHHH39c9erVU+PGjTVz5kwVFhZq2LBhHjku4ErEzA4Apw8++EBxcXGKi4vTddddp4yMDK1atcp527Qk3XPPPfLz89M999yjoKCgC/Yxbtw4ffnll7r22ms1bdo0zZo1S0lJSZKk9u3ba9asWXr++efVtm1bvf7660pNTXV5f0lJiUaOHKnWrVurb9++atmypRYsWCDp59mSiRMnql27durRo4d8fX21YsUKj4zFU089pY4dOyopKUm9evVSbGzsBU8+fvrppzVu3Dg988wzat26tQYNGuS8jsbPz09z587Vyy+/rAYNGujOO++86OfMmDFDAwcO1ODBg9WxY0ft379fH374oerWreuR4wKuRDZjjPF2EQBqj4MHD+rqq69WRkaGOnbs6LItPj5eo0eP1ujRo71THABcBKexAJRLcXGxTpw4oaeeekrXX3/9BUEHAGoqTmMBKJctW7YoLi5OGRkZF1xn423Tp09XWFjYRV/9+vXzdnkAvIzTWABqvZMnT17wxOEywcHBatiwYTVXBKAmIewAAABL4zQWAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwtP8HnpRXIVSgkA0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARbRJREFUeJzt3Xl4FeX9///XyQlZCHAgZMdA2BUIgbLE4AKUaECkIK0GVLaC/UhdSiMqsQpYKUGqiAoFi4GAtBBRXKoUhSjlg6CsqYLIV2gwLEkgVBKyGCCZ3x/8OB+PSSAJSSYn83xc11zl3HPPnPfMRTkv77lnxmYYhiEAAAAL8TC7AAAAgPpGAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAALQYM2ePVs2m61KfW02m2bPnl2n9QwaNEiDBg1qsPsDUHUEIABXlZKSIpvN5lw8PT3Vpk0bTZw4USdOnDC7vAYnIiLC5XwFBQXplltu0TvvvFMr+y8qKtLs2bO1ZcuWWtkfYEUEIABV9sc//lFvvPGGli5dqmHDhmn16tUaOHCgfvjhhzr5vqefflrFxcV1su+61qtXL73xxht64403NH36dJ08eVKjR4/W0qVLr3nfRUVFevbZZwlAwDXwNLsAAO5j2LBh6tu3ryRpypQpCggI0PPPP6/3339f99xzT61/n6enpzw93fOfqTZt2uj+++93fh4/frw6deqkl156SQ8++KCJlQGQGAECcA1uueUWSdKRI0dc2r/55hv96le/kr+/v3x8fNS3b1+9//77Ln0uXLigZ599Vp07d5aPj49at26tm2++WZs2bXL2qWgOUElJiX7/+98rMDBQzZs31y9+8QsdP368XG0TJ05UREREufaK9rlixQr9/Oc/V1BQkLy9vdWtWzctWbKkWufiakJCQnTDDTcoIyPjiv1OnTqlyZMnKzg4WD4+PoqKitLKlSud648eParAwEBJ0rPPPuu8zFbX85+AxsY9/9MKQINw9OhRSVKrVq2cbQcOHNBNN92kNm3aaMaMGfLz89Obb76pUaNG6e2339Zdd90l6VIQSUpK0pQpU9S/f3/l5+dr9+7d2rt3r2677bZKv3PKlClavXq17r33Xg0YMECffPKJhg8ffk3HsWTJEnXv3l2/+MUv5OnpqX/84x/67W9/q7KyMj300EPXtO/LLly4oGPHjql169aV9ikuLtagQYN0+PBhPfzww2rfvr3WrVuniRMn6uzZs/rd736nwMBALVmyRFOnTtVdd92l0aNHS5J69uxZK3UClmEAwFWsWLHCkGRs3rzZOH36tHHs2DHjrbfeMgIDAw1vb2/j2LFjzr5DhgwxIiMjjR9++MHZVlZWZgwYMMDo3Lmzsy0qKsoYPnz4Fb931qxZxo//mUpPTzckGb/97W9d+t17772GJGPWrFnOtgkTJhjt2rW76j4NwzCKiorK9YuLizM6dOjg0jZw4EBj4MCBV6zZMAyjXbt2xu23326cPn3aOH36tPHvf//bGDNmjCHJeOSRRyrd38KFCw1JxurVq51t58+fN2JiYoxmzZoZ+fn5hmEYxunTp8sdL4Dq4RIYgCqLjY1VYGCgwsPD9atf/Up+fn56//33dd1110mS/vvf/+qTTz7RPffco3Pnzik3N1e5ubk6c+aM4uLi9O233zrvGmvZsqUOHDigb7/9tsrfv2HDBknSo48+6tI+bdq0azouX19f55/z8vKUm5urgQMH6j//+Y/y8vJqtM+PP/5YgYGBCgwMVFRUlNatW6dx48bp+eefr3SbDRs2KCQkRGPHjnW2NWnSRI8++qgKCgr0r3/9q0a1ACiPAHQVW7du1YgRIxQWFiabzaZ33323Tr/v8vyEHy/XX399nX4nUFWLFy/Wpk2b9NZbb+mOO+5Qbm6uvL29nesPHz4swzD0zDPPOH/8Ly+zZs2SdGmOi3TpjrKzZ8+qS5cuioyM1OOPP64vv/zyit//3XffycPDQx07dnRp79q16zUd12effabY2Fj5+fmpZcuWCgwM1FNPPSVJNQ5A0dHR2rRpkzZv3qzt27crNzdXq1atcglbP/Xdd9+pc+fO8vBw/af5hhtucK4HUDuYA3QVhYWFioqK0q9//Wvntfa61r17d23evNn52V3vgkHj079/f+ddYKNGjdLNN9+se++9V4cOHVKzZs1UVlYmSZo+fbri4uIq3EenTp0kSbfeequOHDmi9957Tx9//LFef/11vfTSS1q6dKmmTJlyzbVW9gDF0tJSl89HjhzRkCFDdP3112vBggUKDw+Xl5eXNmzYoJdeesl5TNUVEBCg2NjYGm0LoO7xy3oVw4YN07BhwypdX1JSoj/84Q9as2aNzp49qx49euj555+/pqe7enp6KiQkpMbbA/XBbrcrKSlJgwcP1qJFizRjxgx16NBB0qXLNlX58ff399ekSZM0adIkFRQU6NZbb9Xs2bMrDUDt2rVTWVmZjhw54jLqc+jQoXJ9W7VqpbNnz5Zr/+koyj/+8Q+VlJTo/fffV9u2bZ3tn3766VXrr23t2rXTl19+qbKyMpdRoG+++ca5Xqo83AGoOi6BXaOHH35YO3bs0Nq1a/Xll1/q7rvv1tChQ6s1r+Gnvv32W4WFhalDhw667777lJmZWYsVA7Vn0KBB6t+/vxYuXKgffvhBQUFBGjRokF577TVlZWWV63/69Gnnn8+cOeOyrlmzZurUqZNKSkoq/b7L/zHyyiuvuLQvXLiwXN+OHTsqLy/P5bJaVlZWuacx2+12SZJhGM62vLw8rVixotI66sodd9yh7OxspaamOtsuXryoV199Vc2aNdPAgQMlSU2bNpWkCgMegKphBOgaZGZmasWKFcrMzFRYWJikS0P/Gzdu1IoVKzR37txq7zM6OlopKSnq2rWrsrKy9Oyzz+qWW27R/v371bx589o+BOCaPf7447r77ruVkpKiBx98UIsXL9bNN9+syMhIPfDAA+rQoYNycnK0Y8cOHT9+XP/+978lSd26ddOgQYPUp08f+fv7a/fu3Xrrrbf08MMPV/pdvXr10tixY/WXv/xFeXl5GjBggNLS0nT48OFyfceMGaMnn3xSd911lx599FEVFRVpyZIl6tKli/bu3evsd/vtt8vLy0sjRozQ//zP/6igoEDLli1TUFBQhSGuLv3mN7/Ra6+9pokTJ2rPnj2KiIjQW2+9pc8++0wLFy50/hvg6+urbt26KTU1VV26dJG/v7969OihHj161Gu9gFsz+zY0dyLJeOedd5yfP/jgA0OS4efn57J4enoa99xzj2EYhnHw4EFD0hWXJ598stLv/P77740WLVoYr7/+el0fHlCpy7fB79q1q9y60tJSo2PHjkbHjh2NixcvGoZhGEeOHDHGjx9vhISEGE2aNDHatGlj3HnnncZbb73l3G7OnDlG//79jZYtWxq+vr7G9ddfb/zpT38yzp8/7+xT0S3rxcXFxqOPPmq0bt3a8PPzM0aMGGEcO3aswtvCP/74Y6NHjx6Gl5eX0bVrV2P16tUV7vP99983evbsafj4+BgRERHG888/byxfvtyQZGRkZDj7Vec2+Kvd4l/Z/nJycoxJkyYZAQEBhpeXlxEZGWmsWLGi3Lbbt283+vTpY3h5eXFLPFADNsP40bgvrshms+mdd97RqFGjJEmpqam67777dODAAecw+mXNmjVTSEiIzp8/r//85z9X3G/r1q2dT3atSL9+/RQbG6ukpKRrPgYAAMAlsGvSu3dvlZaW6tSpU85XAvyUl5fXNd3GXlBQoCNHjmjcuHE13gcAAHBFALqKgoICl/kFGRkZSk9Pl7+/v7p06aL77rtP48eP14svvqjevXvr9OnTSktLU8+ePWv0eP7p06drxIgRateunU6ePKlZs2bJbre7PBgNAABcGy6BXcWWLVs0ePDgcu0TJkxQSkqKLly4oDlz5mjVqlU6ceKEAgICdOONN+rZZ59VZGRktb9vzJgx2rp1q86cOaPAwEDdfPPN+tOf/lTuwW8AAKDmCEAAAMByeA4QAACwHAIQAACwHCZBV6CsrEwnT55U8+bNeeQ8AABuwjAMnTt3TmFhYeVeKvxTBKAKnDx5UuHh4WaXAQAAauDYsWO67rrrrtiHAFSBy4+bP3bsmFq0aGFyNQAAoCry8/MVHh5epVdHEYAqcPmyV4sWLQhAAAC4mapMX2ESNAAAsBwCEAAAsBwCEAAAsBzmAF2D0tJSXbhwwewyTNWkSRPZ7XazywAAoFoIQDVgGIays7N19uxZs0tpEFq2bKmQkBCemQQAcBsEoBq4HH6CgoLUtGlTy/7wG4ahoqIinTp1SpIUGhpqckUAAFQNAaiaSktLneGndevWZpdjOl9fX0nSqVOnFBQUxOUwAIBbYBJ0NV2e89O0aVOTK2k4Lp8Lq8+HAgC4DwJQDVn1sldFOBcAAHdjagDaunWrRowYobCwMNlsNr377rtX7D9x4kTZbLZyS/fu3Z19Zs+eXW799ddfX8dHAgAA3ImpAaiwsFBRUVFavHhxlfq//PLLysrKci7Hjh2Tv7+/7r77bpd+3bt3d+m3bdu2uigfAAC4KVMD0LBhwzRnzhzdddddVervcDgUEhLiXHbv3q3vv/9ekyZNcunn6enp0i8gIKAuyndbO3bskN1u1/Dhw13ajx496jJy5u/vr4EDB+p///d/TaoUACBJWXnF2n4kV1l5xWaX0mi49Ryg5ORkxcbGql27di7t3377rcLCwtShQwfdd999yszMvOJ+SkpKlJ+f77I0ZsnJyXrkkUe0detWnTx5stz6zZs3KysrS1u3blVYWJjuvPNO5eTkmFApACB1V6ZumveJ7l32hW6a94lSd135Nw1V47YB6OTJk/rnP/+pKVOmuLRHR0crJSVFGzdu1JIlS5SRkaFbbrlF586dq3RfSUlJcjgcziU8PLyuyzdNQUGBUlNTNXXqVA0fPlwpKSnl+rRu3VohISHq0aOHnnrqKeXn5+uLL76o/2IBwOKy8oqVuP4rlRmXPpcZ0lPr9zMSVAvcNgCtXLlSLVu21KhRo1zahw0bprvvvls9e/ZUXFycNmzYoLNnz+rNN9+sdF+JiYnKy8tzLseOHavj6i8xY0jzzTff1PXXX6+uXbvq/vvv1/Lly2UYRoV9i4uLtWrVKkmSl5dXvdUIALgkI7fQGX4uKzUMHc0tMqegRsQtH4RoGIaWL1+ucePGXfWHuWXLlurSpYsOHz5caR9vb295e3vXdplXlLor05nqPWxS0uhIxfdrW+ffm5ycrPvvv1+SNHToUOXl5elf//qXBg0a5OwzYMAAeXh4qKioSIZhqE+fPhoyZEid1wYAcNU+wE8eNrmEILvNpogAnkV3rdxyBOhf//qXDh8+rMmTJ1+1b0FBgY4cOdKgXtNg1pDmoUOHtHPnTo0dO1bSpcni8fHxSk5OdumXmpqqffv26e2331anTp2UkpKiJk2a1GltAIDyQh2+ShodKfv//7w1u82muaN7KNTha3Jl7s/UEaCCggKXkZmMjAylp6fL399fbdu2VWJiok6cOOG8DHNZcnKyoqOj1aNHj3L7nD59ukaMGKF27drp5MmTmjVrlux2u/NHvyG40pBmXf6lTk5O1sWLFxUWFuZsMwxD3t7eWrRokbMtPDxcnTt3VufOnXXx4kXddddd2r9/f72PkgEApPh+bXVrl0AdzS1SREBTwk8tMXUEaPfu3erdu7d69+4tSUpISFDv3r01c+ZMSVJWVla5O7jy8vL09ttvVzr6c/z4cY0dO1Zdu3bVPffco9atW+vzzz9XYGBg3R5MNVwe0vyxuh7SvHjxolatWqUXX3xR6enpzuXf//63wsLCtGbNmgq3+9WvfiVPT0/95S9/qbPaAABXFurwVUzH1oSfWmTqCNCgQYMqnYArqcI7lBwOh4qKKp/8tXbt2toorU5dHtJ8av1+lRpGvQxpfvDBB/r+++81efJkORwOl3W//OUvlZycrKFDh5bbzmaz6dFHH9Xs2bP1P//zP7wDDQDQKLjlHKDGIL5fW22bMVhrHrhR22YMrvMJ0JefmfTT8CNdCkC7d++u9PlHEyZM0IULF1wukwEA4M7c8i6wxiLU4Vtvw5n/+Mc/Kl3Xv39/50hcRSNyTZs21X//+986qw0AgPrGCBAAALAcAhAAALAcAhAAALAcAhAAALAcAlANXen2favhXAAA3A0BqJouvxLiSs8isprL54LXZQAA3AW3wVeT3W5Xy5YtderUKUmXbhG32WxX2apxMgxDRUVFOnXqlFq2bCm73W52SQAAVAkBqAZCQkIkyRmCrK5ly5bOcwIAgDsgANWAzWZTaGiogoKCdOHCBbPLMVWTJk0Y+QEAuB0C0DWw2+38+AMA4IaYBA0AACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAgEVl5RVr+5FcZeUVm11KveNdYAAAWFDqrkwlrv9KZYbkYZOSRkcqvl9bs8uqN4wAAQBgMVl5xc7wI0llhvTU+v2WGgkiAAEAYDEZuYXO8HNZqWHoaG6ROQWZgAAEAIDFtA/wk4fNtc1usykioKk5BZmAAAQAgMWEOnyVNDpSdtulFGS32TR3dA+FOnxNrqz+MAkaAAALiu/XVrd2CdTR3CJFBDS1VPiRCEAAAFhWqMPXcsHnMi6BAQAAyyEAAQAAyyEA1TMrP3UTAICGgjlA9cjqT90EAKChYASonvDUTQAAGg4CUD3hqZsAADQcBKB6wlM3AQBoOAhA9YSnbgIA0HAwCboeWf2pmwAANBSmjgBt3bpVI0aMUFhYmGw2m959990r9t+yZYtsNlu5JTs726Xf4sWLFRERIR8fH0VHR2vnzp11eBTVE+rwVUzH1oQfAABMZGoAKiwsVFRUlBYvXlyt7Q4dOqSsrCznEhQU5FyXmpqqhIQEzZo1S3v37lVUVJTi4uJ06tSp2i4fAAC4KVMvgQ0bNkzDhg2r9nZBQUFq2bJlhesWLFigBx54QJMmTZIkLV26VB9++KGWL1+uGTNmXEu5AACgkXDLSdC9evVSaGiobrvtNn322WfO9vPnz2vPnj2KjY11tnl4eCg2NlY7duyodH8lJSXKz893WQAAQOPlVgEoNDRUS5cu1dtvv623335b4eHhGjRokPbu3StJys3NVWlpqYKDg122Cw4OLjdP6MeSkpLkcDicS3h4eJ0eBwAAMJdb3QXWtWtXde3a1fl5wIABOnLkiF566SW98cYbNd5vYmKiEhISnJ/z8/MJQQAANGJuFYAq0r9/f23btk2SFBAQILvdrpycHJc+OTk5CgkJqXQf3t7e8vb2rtM6AQBAw+FWl8Aqkp6ertDQUEmSl5eX+vTpo7S0NOf6srIypaWlKSYmxqwSAQBAA2PqCFBBQYEOHz7s/JyRkaH09HT5+/urbdu2SkxM1IkTJ7Rq1SpJ0sKFC9W+fXt1795dP/zwg15//XV98skn+vjjj537SEhI0IQJE9S3b1/1799fCxcuVGFhofOuMAAAAFMD0O7duzV48GDn58vzcCZMmKCUlBRlZWUpMzPTuf78+fN67LHHdOLECTVt2lQ9e/bU5s2bXfYRHx+v06dPa+bMmcrOzlavXr20cePGchOjAQCAddkMwzCu3s1a8vPz5XA4lJeXpxYtWphdDgAAqILq/H67/RwgAACA6iIAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAXB7WXnF2n4kV1l5xWaXAsBNeJpdAABci9RdmUpc/5XKDMnDJiWNjlR8v7ZmlwWggWMECIDbysordoYfSSozpKfW72ckCMBVEYAAuK2M3EJn+Lms1DB0NLfInIIAuA0CEAC31T7ATx421za7zaaIgKbmFATAbRCAALitUIevkkZHym67lILsNpvmju6hUIevyZUBaOiYBA3ArcX3a6tbuwTqaG6RIgKaEn4AVAkBCIDbC3X4EnwAVAuXwAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOWYGoC2bt2qESNGKCwsTDabTe++++4V+69fv1633XabAgMD1aJFC8XExOijjz5y6TN79mzZbDaX5frrr6/DowAAAO7G1ABUWFioqKgoLV68uEr9t27dqttuu00bNmzQnj17NHjwYI0YMUL79u1z6de9e3dlZWU5l23bttVF+QAAwE2Z+jLUYcOGadiwYVXuv3DhQpfPc+fO1Xvvvad//OMf6t27t7Pd09NTISEhtVUmAABoZNx6DlBZWZnOnTsnf39/l/Zvv/1WYWFh6tChg+677z5lZmZecT8lJSXKz893WQAAQOPl1gHohRdeUEFBge655x5nW3R0tFJSUrRx40YtWbJEGRkZuuWWW3Tu3LlK95OUlCSHw+FcwsPD66N8AABgEpthGIbZRUiSzWbTO++8o1GjRlWp/9///nc98MADeu+99xQbG1tpv7Nnz6pdu3ZasGCBJk+eXGGfkpISlZSUOD/n5+crPDxceXl5atGiRbWOAwAAmCM/P18Oh6NKv9+mzgGqqbVr12rKlClat27dFcOPJLVs2VJdunTR4cOHK+3j7e0tb2/v2i4TAAA0UG53CWzNmjWaNGmS1qxZo+HDh1+1f0FBgY4cOaLQ0NB6qA4AALgDU0eACgoKXEZmMjIylJ6eLn9/f7Vt21aJiYk6ceKEVq1aJenSZa8JEybo5ZdfVnR0tLKzsyVJvr6+cjgckqTp06drxIgRateunU6ePKlZs2bJbrdr7Nix9X+AAACgQTJ1BGj37t3q3bu38xb2hIQE9e7dWzNnzpQkZWVludzB9de//lUXL17UQw89pNDQUOfyu9/9ztnn+PHjGjt2rLp27ap77rlHrVu31ueff67AwMD6PTgAANBgNZhJ0A1JdSZRAQCAhqE6v99uNwcIAADgWhGAAACA5RCAAKASWXnF2n4kV1l5xWaXAqCWueVzgACgrqXuylTi+q9UZkgeNilpdKTi+7U1uywAtYQRIAD4iay8Ymf4kaQyQ3pq/X5GgoBGhAAEAD+RkVvoDD+XlRqGjuYWmVMQgFpHAAKAn2gf4CcPm2ub3WZTREBTcwoCUOsIQADwE6EOXyWNjpTddikF2W02zR3dQ6EOX5MrA1BbmAQNABWI79dWt3YJ1NHcIkUENCX8AI0MAQgAKhHq8CX4AI0Ul8AAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAuD1eWgqgurgNHoBb46WlAGqCESAAbouXlgKoKQIQgAahJpexeGkpgJriEhgA09X0Mtbll5b+OAQ19peWZuUVKyO3UO0D/HhKNXANGAECYKpruYxltZeWpu7K1E3zPtG9y77QTfM+UequTLNLAtwWI0AATHWly1hVCTJWeWlpZUHx1i6BjfaYgbpEAAJgqtq4jGWFl5Zea1AE4IpLYABMZbXLWDV1OSj+WGOf7wTUJUaAAJjOKpexrsXloPjU+v0qNQyCInCNCEAAGgQrXMa6VgRFoPYQgADAjRAUgdrBHCAAAGA5BCAAcCO8+BWoHVwCAwA3wYtfgdrDCBAAuAFe/ArULgIQALgBXvwK1C4CEAC4AR6ECNQuAhAAuAGemA3ULiZBA4Cb4EGIQO0hAAGAG+FBiEDt4BIYAACoVe7wvCpGgAAAQK1xl+dVMQIEAABqhTs9r8rUALR161aNGDFCYWFhstlsevfdd6+6zZYtW/Szn/1M3t7e6tSpk1JSUsr1Wbx4sSIiIuTj46Po6Gjt3Lmz9osHAAAu3Ol5VaYGoMLCQkVFRWnx4sVV6p+RkaHhw4dr8ODBSk9P17Rp0zRlyhR99NFHzj6pqalKSEjQrFmztHfvXkVFRSkuLk6nTp2qq8MAAAByr+dV2QzDMK7ere7ZbDa98847GjVqVKV9nnzySX344Yfav3+/s23MmDE6e/asNm7cKEmKjo5Wv379tGjRIklSWVmZwsPD9cgjj2jGjBlVqiU/P18Oh0N5eXlq0aJFzQ8KlpGVV6yM3EK1D/DjDh0Alpa6K1NPrd+vUsNwPq+qvuYAVef3260mQe/YsUOxsbEubXFxcZo2bZok6fz589qzZ48SExOd6z08PBQbG6sdO3ZUut+SkhKVlJQ4P+fn59du4WjU3GXCHwDUB3d5XpVbTYLOzs5WcHCwS1twcLDy8/NVXFys3NxclZaWVtgnOzu70v0mJSXJ4XA4l/Dw8DqpH42PO034A4D6EurwVUzH1g02/EhuFoDqSmJiovLy8pzLsWPHzC4JbsKdJvwBAP6PW10CCwkJUU5OjktbTk6OWrRoIV9fX9ntdtnt9gr7hISEVLpfb29veXt710nNaNwuT/j7cQhqqBP+AAD/x61GgGJiYpSWlubStmnTJsXExEiSvLy81KdPH5c+ZWVlSktLc/YBahMvqAQA92TqCFBBQYEOHz7s/JyRkaH09HT5+/urbdu2SkxM1IkTJ7Rq1SpJ0oMPPqhFixbpiSee0K9//Wt98sknevPNN/Xhhx8695GQkKAJEyaob9++6t+/vxYuXKjCwkJNmjSp3o8P1uAuE/4AAP/H1AC0e/duDR482Pk5ISFBkjRhwgSlpKQoKytLmZmZzvXt27fXhx9+qN///vd6+eWXdd111+n1119XXFycs098fLxOnz6tmTNnKjs7W7169dLGjRvLTYwGahMvqAQA99JgngPUkPAcIAAA3E91fr/dag4QGg93eFMwAKDxcqu7wNA48OBAAIDZGAFCveLBgQCAhoAAhHrFgwMBAA0BAQj1yp3eFAwAaLxqLQD98MMPeuGFF2prd2ikeHAgAKAhqNZt8KdPn9YXX3whLy8vDRkyRHa7XRcuXNBf/vIXJSUl6eLFi8rNza3LeusFt8HXvay8Yh4cCACoVdX5/a7yXWDbtm3TnXfeqfz8fNlsNvXt21crVqzQqFGj5OnpqdmzZ2vChAnXXDysgQcHAgDMVOVLYE8//bTuuOMOffnll0pISNCuXbt01113ae7cufr666/14IMPyteXHzQAANDwVfkSWOvWrfW///u/6tatm4qLi9WsWTOtX79eI0eOrOsa6x2XwAAAcD918iTo77//XgEBAZIkX19fNW3aVD169Li2SgEAAExQrSdBf/3118rOzpYkGYahQ4cOqbCw0KVPz549a686AACAOlDlS2AeHh6y2Wy6UnebzabS0tJaK84sXAIDAMD91MldYBkZGVftc+7cuaruDgAAwDRVDkDt2rWrsP3cuXNas2aNkpOTtXv37kYxAgSg8cjKK1ZGbqHaB/jx6AUATjV+G/zWrVuVnJyst99+W2FhYRo9erQWLVpUm7UBwDVJ3ZXpfPmuh01KGh2p+H5tzS4LQANQrQCUnZ2tlJQUJScnKz8/X/fcc49KSkr07rvvqlu3bnVVIwBUW1ZesTP8SFKZIT21fr9u7RLISBCAqt8GP2LECHXt2lVffvmlFi5cqJMnT+rVV1+ty9oAoMYycgud4eeyUsPQ0dwicwoC0KBUeQTon//8px599FFNnTpVnTt3rsuaAOCatQ/wk4dNLiHIbrMpIqCpeUUBaDCqPAK0bds2nTt3Tn369FF0dLQWLVrUKF58CqBxCnX4Kml0pOw2m6RL4Wfu6B5c/gIgqZpvg5ekwsJCpaamavny5dq5c6dKS0u1YMEC/frXv1bz5s3rqs56xXOAgMYjK69YR3OLFBHQlPADNHLV+f2udgD6sUOHDik5OVlvvPGGzp49q9tuu03vv/9+TXfXYBCA/g+3EAMA3EWdvAusIl27dtX8+fN1/PhxrVmz5lp2hQYodVembpr3ie5d9oVumveJUndlml0SAAC14ppGgBorRoAujfzcNO+TchNIt80YzEgQAKBBqrcRIDRe3EIMAGjMCECo0OVbiH+MW4gBAI0FAQgV4hZiAEBjVuN3gaHxi+/XVrd2CeQWYgBAo0MAwhWFOnwJPgCARodLYAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAatay8Ym0/kqusvGKzSwHQgPAkaACNVuquTCWu/0plhuRhk5JGRyq+X1uzywLQADSIEaDFixcrIiJCPj4+io6O1s6dOyvtO2jQINlstnLL8OHDnX0mTpxYbv3QoUPr41AANBBZecXO8CNJZYb01Pr9jAQBkNQARoBSU1OVkJCgpUuXKjo6WgsXLlRcXJwOHTqkoKCgcv3Xr1+v8+fPOz+fOXNGUVFRuvvuu136DR06VCtWrHB+9vb2rruDANDgZOQWOsPPZaWGoaO5RbzfDoD5I0ALFizQAw88oEmTJqlbt25aunSpmjZtquXLl1fY39/fXyEhIc5l06ZNatq0abkA5O3t7dKvVatW9XE4ABqI9gF+8rC5ttltNkUENDWnIAANiqkB6Pz589qzZ49iY2OdbR4eHoqNjdWOHTuqtI/k5GSNGTNGfn5+Lu1btmxRUFCQunbtqqlTp+rMmTOV7qOkpET5+fkuCwD3FurwVdLoSNltl1KQ3WbT3NE9GP2pBJPFYTWmXgLLzc1VaWmpgoODXdqDg4P1zTffXHX7nTt3av/+/UpOTnZpHzp0qEaPHq327dvryJEjeuqppzRs2DDt2LFDdru93H6SkpL07LPPXtvBAGhw4vu11a1dAnU0t0gRAU0JP5VgsjisyPQ5QNciOTlZkZGR6t+/v0v7mDFjnH+OjIxUz5491bFjR23ZskVDhgwpt5/ExEQlJCQ4P+fn5ys8PLzuCgdQb0IdvgSfK6hssvitXQI5b2jUTL0EFhAQILvdrpycHJf2nJwchYSEXHHbwsJCrV27VpMnT77q93To0EEBAQE6fPhwheu9vb3VokULlwUArOBKk8WBxszUAOTl5aU+ffooLS3N2VZWVqa0tDTFxMRccdt169appKRE999//1W/5/jx4zpz5oxCQ0OvuWYAaEyYLA6rMv0usISEBC1btkwrV67UwYMHNXXqVBUWFmrSpEmSpPHjxysxMbHcdsnJyRo1apRat27t0l5QUKDHH39cn3/+uY4ePaq0tDSNHDlSnTp1UlxcXL0cEwC4CyaLw6pMnwMUHx+v06dPa+bMmcrOzlavXr20ceNG58TozMxMeXi45rRDhw5p27Zt+vjjj8vtz26368svv9TKlSt19uxZhYWF6fbbb9dzzz3Hs4AAoAJMFocV2QzDMK7ezVry8/PlcDiUl5fHfCAAANxEdX6/Tb8EBgAAUN8IQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQAAAoN5k5RVr+5FcZeUVm1qH6e8CAwAA1pC6K1OJ679SmSF52KSk0ZGK79fWlFoYAQIAAHUuK6/YGX4kqcyQnlq/37SRIAIQAACocxm5hc7wc1mpYehobpEp9RCAAABAnWsf4CcPm2ub3WZTREBTU+ohAAEAgDoX6vBV0uhI2W2XUpDdZtPc0T0U6vA1pR4mQQMAgHoR36+tbu0SqKO5RYoIaGpa+JEIQAAAoB6FOnxNDT6XcQkMAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYToMIQIsXL1ZERIR8fHwUHR2tnTt3Vto3JSVFNpvNZfHx8XHpYxiGZs6cqdDQUPn6+io2NlbffvttXR8GAABwE6YHoNTUVCUkJGjWrFnau3evoqKiFBcXp1OnTlW6TYsWLZSVleVcvvvuO5f18+fP1yuvvKKlS5fqiy++kJ+fn+Li4vTDDz/U9eEAAAA3YHoAWrBggR544AFNmjRJ3bp109KlS9W0aVMtX7680m1sNptCQkKcS3BwsHOdYRhauHChnn76aY0cOVI9e/bUqlWrdPLkSb377rv1cEQAAKChMzUAnT9/Xnv27FFsbKyzzcPDQ7GxsdqxY0el2xUUFKhdu3YKDw/XyJEjdeDAAee6jIwMZWdnu+zT4XAoOjq60n2WlJQoPz/fZQEAAI2XqQEoNzdXpaWlLiM4khQcHKzs7OwKt+natauWL1+u9957T6tXr1ZZWZkGDBig48ePS5Jzu+rsMykpSQ6Hw7mEh4df66EBAIAGzPRLYNUVExOj8ePHq1evXho4cKDWr1+vwMBAvfbaazXeZ2JiovLy8pzLsWPHarFiAADQ0JgagAICAmS325WTk+PSnpOTo5CQkCrto0mTJurdu7cOHz4sSc7tqrNPb29vtWjRwmUBAACNl6kByMvLS3369FFaWpqzraysTGlpaYqJianSPkpLS/XVV18pNDRUktS+fXuFhIS47DM/P19ffPFFlfcJAAAaN0+zC0hISNCECRPUt29f9e/fXwsXLlRhYaEmTZokSRo/frzatGmjpKQkSdIf//hH3XjjjerUqZPOnj2rP//5z/ruu+80ZcoUSZfuEJs2bZrmzJmjzp07q3379nrmmWcUFhamUaNGmXWYAACgATE9AMXHx+v06dOaOXOmsrOz1atXL23cuNE5iTkzM1MeHv83UPX999/rgQceUHZ2tlq1aqU+ffpo+/bt6tatm7PPE088ocLCQv3mN7/R2bNndfPNN2vjxo3lHpgIAACsyWYYhmF2EQ1Nfn6+HA6H8vLymA8EAICbqM7vt9vdBQYAAHCtCEAAAMByCEAAAMByCEAAAMByCEAAAEvJyivW9iO5ysorNrsUmMj02+ABAKgvqbsylbj+K5UZkodNShodqfh+bc0uCyZgBAgAYAlZecXO8CNJZYb01Pr9jARZFAEIAGAJGbmFzvBzWalh6GhukTkFwVQEIACAJbQP8JOHzbXNbrMpIqCpOQXBVAQgAIAlhDp8lTQ6UnbbpRRkt9k0d3QPhTp8Ta4MZmASNADAMuL7tdWtXQJ1NLdIEQFNCT8WRgACAFhKqMOX4AMugQEAAOshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAGp2svGJtP5KrrLxis0tBA+VpdgEAANSm1F2ZSlz/lcoMycMmJY2OVHy/tmaXhQaGESAAQKORlVfsDD+SVGZIT63fz0gQyiEAAQAajYzcQmf4uazUMHQ0t8icgtBgEYAAAI1G+wA/edhc2+w2myICmppTEBosAhAAoNEIdfgqaXSk7LZLKchus2nu6B4KdfiaXBkamgYRgBYvXqyIiAj5+PgoOjpaO3furLTvsmXLdMstt6hVq1Zq1aqVYmNjy/WfOHGibDabyzJ06NC6PgwAQAMQ36+tts0YrDUP3KhtMwYzARoVMj0ApaamKiEhQbNmzdLevXsVFRWluLg4nTp1qsL+W7Zs0dixY/Xpp59qx44dCg8P1+23364TJ0649Bs6dKiysrKcy5o1a+rjcAAADUCow1cxHVsz8oNK2QzDMK7ere5ER0erX79+WrRokSSprKxM4eHheuSRRzRjxoyrbl9aWqpWrVpp0aJFGj9+vKRLI0Bnz57Vu+++W6Oa8vPz5XA4lJeXpxYtWtRoHwAAoH5V5/fb1BGg8+fPa8+ePYqNjXW2eXh4KDY2Vjt27KjSPoqKinThwgX5+/u7tG/ZskVBQUHq2rWrpk6dqjNnzlS6j5KSEuXn57ssAACg8TI1AOXm5qq0tFTBwcEu7cHBwcrOzq7SPp588kmFhYW5hKihQ4dq1apVSktL0/PPP69//etfGjZsmEpLSyvcR1JSkhwOh3MJDw+v+UEBAIAGz62fBD1v3jytXbtWW7ZskY+Pj7N9zJgxzj9HRkaqZ8+e6tixo7Zs2aIhQ4aU209iYqISEhKcn/Pz8wlBAAA0YqaOAAUEBMhutysnJ8elPScnRyEhIVfc9oUXXtC8efP08ccfq2fPnlfs26FDBwUEBOjw4cMVrvf29laLFi1cFgAA0HiZGoC8vLzUp08fpaWlOdvKysqUlpammJiYSrebP3++nnvuOW3cuFF9+/a96vccP35cZ86cUWhoaK3UDQAA3Jvpt8EnJCRo2bJlWrlypQ4ePKipU6eqsLBQkyZNkiSNHz9eiYmJzv7PP/+8nnnmGS1fvlwRERHKzs5Wdna2CgoKJEkFBQV6/PHH9fnnn+vo0aNKS0vTyJEj1alTJ8XFxZlyjAAAoGExfQ5QfHy8Tp8+rZkzZyo7O1u9evXSxo0bnROjMzMz5eHxfzltyZIlOn/+vH71q1+57GfWrFmaPXu27Ha7vvzyS61cuVJnz55VWFiYbr/9dj333HPy9vau12MDAAANk+nPAWqIeA4QAADux22eAwQAAGAGAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAoEHKyivW9iO5ysorNrsUNEKeZhcAAMBPpe7KVOL6r1RmSB42KWl0pOL7tTW7LDQijAABABqUrLxiZ/iRpDJDemr9fkaCUKsIQACABiUjt9AZfi4rNQwdzS0ypyA0SgQgAECD0j7ATx421za7zaaIgKbmFIRGiQAEAGhQQh2+ShodKbvtUgqy22yaO7qHQh2+JleGxoRJ0ACABie+X1vd2iVQR3OLFBHQlPCDWkcAAgA0SKEOX4IP6gyXwAAAgOUQgAAAgOUQgAAAgOU0iAC0ePFiRUREyMfHR9HR0dq5c+cV+69bt07XX3+9fHx8FBkZqQ0bNrisNwxDM2fOVGhoqHx9fRUbG6tvv/22Lg8BAAC4EdMDUGpqqhISEjRr1izt3btXUVFRiouL06lTpyrsv337do0dO1aTJ0/Wvn37NGrUKI0aNUr79+939pk/f75eeeUVLV26VF988YX8/PwUFxenH374ob4OCwAANGA2wzCMq3erO9HR0erXr58WLVokSSorK1N4eLgeeeQRzZgxo1z/+Ph4FRYW6oMPPnC23XjjjerVq5eWLl0qwzAUFhamxx57TNOnT5ck5eXlKTg4WCkpKRozZsxVa8rPz5fD4VBeXp5atGhRS0cKAADqUnV+v00dATp//rz27Nmj2NhYZ5uHh4diY2O1Y8eOCrfZsWOHS39JiouLc/bPyMhQdna2Sx+Hw6Ho6OhK9wkAAKzF1OcA5ebmqrS0VMHBwS7twcHB+uabbyrcJjs7u8L+2dnZzvWX2yrr81MlJSUqKSlxfs7Pz6/egQAAALdi+hyghiApKUkOh8O5hIeHm10SAACoQ6YGoICAANntduXk5Li05+TkKCQkpMJtQkJCrtj/8v9WZ5+JiYnKy8tzLseOHavR8QAAAPdgagDy8vJSnz59lJaW5mwrKytTWlqaYmJiKtwmJibGpb8kbdq0ydm/ffv2CgkJcemTn5+vL774otJ9ent7q0WLFi4LAABovEx/F1hCQoImTJigvn37qn///lq4cKEKCws1adIkSdL48ePVpk0bJSUlSZJ+97vfaeDAgXrxxRc1fPhwrV27Vrt379Zf//pXSZLNZtO0adM0Z84cde7cWe3bt9czzzyjsLAwjRo1qko1Xb4xjrlAAAC4j8u/21W6wd1oAF599VWjbdu2hpeXl9G/f3/j888/d64bOHCgMWHCBJf+b775ptGlSxfDy8vL6N69u/Hhhx+6rC8rKzOeeeYZIzg42PD29jaGDBliHDp0qMr1HDt2zJDEwsLCwsLC4obLsWPHrvpbb/pzgBqisrIynTx5Us2bN5fNZiu3Pj8/X+Hh4Tp27BiXyyrBObo6ztGVcX6ujnN0dZyjq2tM58gwDJ07d05hYWHy8LjyLB/TL4E1RB4eHrruuuuu2o/5QlfHObo6ztGVcX6ujnN0dZyjq2ss58jhcFSpH7fBAwAAyyEAAQAAyyEA1YC3t7dmzZolb29vs0tpsDhHV8c5ujLOz9Vxjq6Oc3R1Vj1HTIIGAACWwwgQAACwHAIQAACwHAIQAACwHAIQAACwHAJQJRYvXqyIiAj5+PgoOjpaO3furLTvgQMH9Mtf/lIRERGy2WxauHBh/RVqouqco2XLlumWW25Rq1at1KpVK8XGxl6xf2NQnfOzfv169e3bVy1btpSfn5969eqlN954ox6rNUd1ztGPrV27Vjabrcrv93Nn1TlHKSkpstlsLouPj089VmuO6v49Onv2rB566CGFhobK29tbXbp00YYNG+qpWnNU5xwNGjSo3N8jm82m4cOH12PF9aDKL8iykLVr1xpeXl7G8uXLjQMHDhgPPPCA0bJlSyMnJ6fC/jt37jSmT59urFmzxggJCTFeeuml+i3YBNU9R/fee6+xePFiY9++fcbBgweNiRMnGg6Hwzh+/Hg9V14/qnt+Pv30U2P9+vXG119/bRw+fNhYuHChYbfbjY0bN9Zz5fWnuufosoyMDKNNmzbGLbfcYowcObJ+ijVJdc/RihUrjBYtWhhZWVnOJTs7u56rrl/VPUclJSVG3759jTvuuMPYtm2bkZGRYWzZssVIT0+v58rrT3XP0ZkzZ1z+Du3fv9+w2+3GihUr6rfwOkYAqkD//v2Nhx56yPm5tLTUCAsLM5KSkq66bbt27SwRgK7lHBmGYVy8eNFo3ry5sXLlyroq0VTXen4MwzB69+5tPP3003VRXoNQk3N08eJFY8CAAcbrr79uTJgwodEHoOqeoxUrVhgOh6OeqmsYqnuOlixZYnTo0ME4f/58fZVoumv99+ill14ymjdvbhQUFNRViabgEthPnD9/Xnv27FFsbKyzzcPDQ7GxsdqxY4eJlTUctXGOioqKdOHCBfn7+9dVmaa51vNjGIbS0tJ06NAh3XrrrXVZqmlqeo7++Mc/KigoSJMnT66PMk1V03NUUFCgdu3aKTw8XCNHjtSBAwfqo1xT1OQcvf/++4qJidFDDz2k4OBg9ejRQ3PnzlVpaWl9lV2vauPf6+TkZI0ZM0Z+fn51VaYpCEA/kZubq9LSUgUHB7u0BwcHKzs726SqGpbaOEdPPvmkwsLCXP5P2VjU9Pzk5eWpWbNm8vLy0vDhw/Xqq6/qtttuq+tyTVGTc7Rt2zYlJydr2bJl9VGi6Wpyjrp27arly5frvffe0+rVq1VWVqYBAwbo+PHj9VFyvavJOfrPf/6jt956S6WlpdqwYYOeeeYZvfjii5ozZ059lFzvrvXf6507d2r//v2aMmVKXZVoGt4Gj3o3b948rV27Vlu2bLHEBM2qat68udLT01VQUKC0tDQlJCSoQ4cOGjRokNmlme7cuXMaN26cli1bpoCAALPLabBiYmIUExPj/DxgwADdcMMNeu211/Tcc8+ZWFnDUVZWpqCgIP31r3+V3W5Xnz59dOLECf35z3/WrFmzzC6vwUlOTlZkZKT69+9vdim1jgD0EwEBAbLb7crJyXFpz8nJUUhIiElVNSzXco5eeOEFzZs3T5s3b1bPnj3rskzT1PT8eHh4qFOnTpKkXr166eDBg0pKSmqUAai65+jIkSM6evSoRowY4WwrKyuTJHl6eurQoUPq2LFj3RZdz2rj36ImTZqod+/eOnz4cF2UaLqanKPQ0FA1adJEdrvd2XbDDTcoOztb58+fl5eXV53WXN+u5e9RYWGh1q5dqz/+8Y91WaJpuAT2E15eXurTp4/S0tKcbWVlZUpLS3P5Lysrq+k5mj9/vp577jlt3LhRffv2rY9STVFbf4fKyspUUlJSFyWarrrn6Prrr9dXX32l9PR05/KLX/xCgwcPVnp6usLDw+uz/HpRG3+PSktL9dVXXyk0NLSuyjRVTc7RTTfdpMOHDzsDtCT9v//3/xQaGtrowo90bX+P1q1bp5KSEt1///11XaY5zJ6F3RCtXbvW8Pb2NlJSUoyvv/7a+M1vfmO0bNnSeTvpuHHjjBkzZjj7l5SUGPv27TP27dtnhIaGGtOnTzf27dtnfPvtt2YdQp2r7jmaN2+e4eXlZbz11lsut1eeO3fOrEOoU9U9P3PnzjU+/vhj48iRI8bXX39tvPDCC4anp6exbNkysw6hzlX3HP2UFe4Cq+45evbZZ42PPvrIOHLkiLFnzx5jzJgxho+Pj3HgwAGzDqHOVfccZWZmGs2bNzcefvhh49ChQ8YHH3xgBAUFGXPmzDHrEOpcTf+/dvPNNxvx8fH1XW69IQBV4tVXXzXatm1reHl5Gf379zc+//xz57qBAwcaEyZMcH7OyMgwJJVbBg4cWP+F16PqnKN27dpVeI5mzZpV/4XXk+qcnz/84Q9Gp06dDB8fH6NVq1ZGTEyMsXbtWhOqrl/VOUc/ZYUAZBjVO0fTpk1z9g0ODjbuuOMOY+/evSZUXb+q+/do+/btRnR0tOHt7W106NDB+NOf/mRcvHixnquuX9U9R998840hyfj444/rudL6YzMMwzBp8AkAAMAUzAECAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACABNNnDhRo0aNMrsMwHIIQAAqNHHiRNlsNufSunVrDR06VF9++aXZpdWKHx/b5eXmm2+us+87evSobDab0tPTXdpffvllpaSk1Nn3AqgYAQhApYYOHaqsrCxlZWUpLS1Nnp6euvPOO80uq9asWLHCeXxZWVl6//33K+x34cKFOqvB4XCoZcuWdbZ/ABUjAAGolLe3t0JCQhQSEqJevXppxowZOnbsmE6fPq2f//znevjhh136nz59Wl5eXs43T0dEROi5557T2LFj5efnpzZt2mjx4sUu2yxYsECRkZHy8/NTeHi4fvvb36qgoMC5/rvvvtOIESPUqlUr+fn5qXv37tqwYYMk6fvvv9d9992nwMBA+fr6qnPnzlqxYkWVj69ly5bO4wsJCZG/v79zpCY1NVUDBw6Uj4+P/va3v+nMmTMaO3as2rRpo6ZNmyoyMlJr1qxx2V9ZWZnmz5+vTp06ydvbW23bttWf/vQnSVL79u0lSb1795bNZtOgQYMklb8EVlJSokcffVRBQUHy8fHRzTffrF27djnXb9myRTabTWlpaerbt6+aNm2qAQMG6NChQ1U+bgAEIABVVFBQoNWrV6tTp05q3bq1pkyZor///e8qKSlx9lm9erXatGmjn//85862P//5z4qKitK+ffs0Y8YM/e53v9OmTZuc6z08PPTKK6/owIEDWrlypT755BM98cQTzvUPPfSQSkpKtHXrVn311Vd6/vnn1axZM0nSM888o6+//lr//Oc/dfDgQS1ZskQBAQG1cryXaz148KDi4uL0ww8/qE+fPvrwww+1f/9+/eY3v9G4ceO0c+dO5zaJiYmaN2+es66///3vCg4OliRnv82bNysrK0vr16+v8HufeOIJvf3221q5cqX27t2rTp06KS4uTv/9739d+v3hD3/Qiy++qN27d8vT01O//vWva+W4Acsw+22sABqmCRMmGHa73fDz8zP8/PwMSUZoaKixZ88ewzAMo7i42GjVqpWRmprq3KZnz57G7NmznZ/btWtnDB061GW/8fHxxrBhwyr93nXr1hmtW7d2fo6MjHTZ54+NGDHCmDRpUo2OT5Lh4+PjPD4/Pz/jnXfeMTIyMgxJxsKFC6+6j+HDhxuPPfaYYRiGkZ+fb3h7exvLli2rsO/l/e7bt8+l/cdvtS8oKDCaNGli/O1vf3OuP3/+vBEWFmbMnz/fMAzD+PTTTw1JxubNm519PvzwQ0OSUVxcXJ1TAFgaI0AAKjV48GClp6crPT1dO3fuVFxcnIYNG6bvvvtOPj4+GjdunJYvXy5J2rt3r/bv36+JEye67CMmJqbc54MHDzo/b968WUOGDFGbNm3UvHlzjRs3TmfOnFFRUZEk6dFHH9WcOXN00003adasWS6TsKdOnaq1a9eqV69eeuKJJ7R9+/ZqHd9LL73kPL709HTddtttznV9+/Z16VtaWqrnnntOkZGR8vf3V7NmzfTRRx8pMzNTknTw4EGVlJRoyJAh1arhx44cOaILFy7opptucrY1adJE/fv3dzlnktSzZ0/nn0NDQyVJp06dqvF3A1ZDAAJQKT8/P3Xq1EmdOnVSv3799Prrr6uwsFDLli2TJE2ZMkWbNm3S8ePHtWLFCv385z9Xu3btqrz/o0eP6s4771TPnj319ttva8+ePc45QufPn3d+x3/+8x+NGzdOX331lfr27atXX31Vkpxh7Pe//71OnjypIUOGaPr06VX+/pCQEOfxderUSX5+fi7H/mN//vOf9fLLL+vJJ5/Up59+qvT0dMXFxTnr9PX1rfL31oYmTZo4/2yz2SRdmoMEoGoIQACqzGazycPDQ8XFxZKkyMhI9e3bV8uWLdPf//73CuehfP755+U+33DDDZKkPXv2qKysTC+++KJuvPFGdenSRSdPniy3j/DwcD344INav369HnvsMWcAk6TAwEBNmDBBq1ev1sKFC/XXv/61Ng/Z6bPPPtPIkSN1//33KyoqSh06dND/+3//z7m+c+fO8vX1dU4A/ykvLy9Jl0aSKtOxY0d5eXnps88+c7ZduHBBu3btUrdu3WrpSABIkqfZBQBouEpKSpSdnS3p0h1XixYtUkFBgUaMGOHsM2XKFD388MPy8/PTXXfdVW4fn332mebPn69Ro0Zp06ZNWrdunT788ENJUqdOnXThwgW9+uqrGjFihD777DMtXbrUZftp06Zp2LBh6tKli77//nt9+umnzgA1c+ZM9enTR927d1dJSYk++OAD57ra1rlzZ7311lvavn27WrVqpQULFignJ8cZTHx8fPTkk0/qiSeekJeXl2666SadPn1aBw4c0OTJkxUUFCRfX19t3LhR1113nXx8fORwOFy+w8/PT1OnTtXjjz8uf39/tW3bVvPnz1dRUZEmT55cJ8cFWBUjQAAqtXHjRoWGhio0NFTR0dHatWuX1q1b57yFW5LGjh0rT09PjR07Vj4+PuX28dhjj2n37t3q3bu35syZowULFiguLk6SFBUVpQULFuj5559Xjx499Le//U1JSUku25eWluqhhx7SDTfcoKFDh6pLly76y1/+IunSqEpiYqJ69uypW2+9VXa7XWvXrq2Tc/H000/rZz/7meLi4jRo0CCFhISUe4LzM888o8cee0wzZ87UDTfcoPj4eOe8HE9PT73yyit67bXXFBYWppEjR1b4PfPmzdMvf/lLjRs3Tj/72c90+PBhffTRR2rVqlWdHBdgVTbDMAyziwDgvo4ePaqOHTtq165d+tnPfuayLiIiQtOmTdO0adPMKQ4AKsElMAA1cuHCBZ05c0ZPP/20brzxxnLhBwAaMi6BAaiRzz77TKGhodq1a1e5eTtmmzt3rpo1a1bhMmzYMLPLA9AAcAkMQKPz3//+t9yTky/z9fVVmzZt6rkiAA0NAQgAAFgOl8AAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDl/H/JLfBI9jGXnwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHHCAYAAADzrV8YAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAU5tJREFUeJzt3XtcVHX+P/DXcJkZRJmBEAZZBLyAZnhJg8UbtpJgrgu5uxoZi34x27J1W7uoW4pdIXTL1bU0t7RvbYKa+7VVKwl1/aqIhpiCxqphmQKKxAwIojLv3x99Ob8mEBkEDpfX8/E4D5zPeZ9z3uc8lHl5zpkzGhEREBEREZEqHNRugIiIiKgrYxgjIiIiUhHDGBEREZGKGMaIiIiIVMQwRkRERKQihjEiIiIiFTGMEREREamIYYyIiIhIRQxjRERERCpiGCMiaoIlS5ZAo9E0qVaj0WDJkiWt2s+4ceMwbty4drs+Imo6hjEi6lDWr18PjUajTE5OTvD19cWMGTNw/vx5tdtrdwICAmyOl5eXF8aMGYN//vOfLbL+qqoqLFmyBHv27GmR9RF1RQxjRNQhvfjii3j//fexevVqTJw4ER988AEiIiJw9erVVtne888/j+rq6lZZd2sbOnQo3n//fbz//vt4+umnceHCBUyZMgWrV6++7XVXVVXhhRdeYBgjug1OajdARNQcEydOxIgRIwAAs2bNgqenJ1577TV8/PHHmDp1aotvz8nJCU5OHfNXpq+vLx5++GHl9e9+9zv069cPb7zxBn7/+9+r2BkRATwzRkSdxJgxYwAAZ86csRn/6quv8Jvf/AYeHh7Q6/UYMWIEPv74Y5ua69ev44UXXkD//v2h1+txxx13YPTo0cjIyFBqGrpnrKamBn/605/Qs2dP9OjRA7/61a/w3Xff1ettxowZCAgIqDfe0DrXrVuHX/ziF/Dy8oJOp8Odd96Jt956y65jcSsmkwkDBw5EYWFho3UXL15EYmIivL29odfrMWTIELz33nvK/LNnz6Jnz54AgBdeeEG5FNra98sRdTYd8795REQ/cfbsWQCAu7u7Mpafn49Ro0bB19cXCxYsgKurKzZu3IjY2Fh89NFHeOCBBwD8EIqSk5Mxa9YshIaGwmKx4IsvvsCRI0dw33333XSbs2bNwgcffICHHnoII0eOxK5duzBp0qTb2o+33noLgwYNwq9+9Ss4OTnhX//6Fx5//HFYrVbMmTPnttZd5/r16zh37hzuuOOOm9ZUV1dj3LhxOH36NJ544gkEBgZi06ZNmDFjBsrLy/HHP/4RPXv2xFtvvYXHHnsMDzzwAKZMmQIAGDx4cIv0SdRlCBFRB7Ju3ToBIJ9//rlcunRJzp07J5s3b5aePXuKTqeTc+fOKbXjx4+XkJAQuXr1qjJmtVpl5MiR0r9/f2VsyJAhMmnSpEa3m5SUJD/+lXn06FEBII8//rhN3UMPPSQAJCkpSRlLSEgQf3//W65TRKSqqqpeXVRUlPTp08dmLCIiQiIiIhrtWUTE399fJkyYIJcuXZJLly7Jl19+KQ8++KAAkD/84Q83Xd/y5csFgHzwwQfK2LVr1yQ8PFy6d+8uFotFREQuXbpUb3+JyD68TElEHVJkZCR69uwJPz8//OY3v4Grqys+/vhj/OxnPwMAlJWVYdeuXZg6dSoqKipQWlqK0tJSXL58GVFRUTh16pTy6Uuj0Yj8/HycOnWqydvfsWMHAGDu3Lk2408++eRt7ZeLi4vyZ7PZjNLSUkRERODrr7+G2Wxu1jp37tyJnj17omfPnhgyZAg2bdqE+Ph4vPbaazddZseOHTCZTIiLi1PGnJ2dMXfuXFRWVuLf//53s3ohovp4mZKIOqRVq1YhKCgIZrMZ7777Lvbu3QudTqfMP336NEQEixYtwqJFixpcx8WLF+Hr64sXX3wRMTExCAoKwl133YXo6GjEx8c3erntm2++gYODA/r27WszHhwcfFv7tX//fiQlJSErKwtVVVU288xmMwwGg93rDAsLw8svvwyNRoNu3bph4MCBMBqNjS7zzTffoH///nBwsP0/+8CBA5X5RNQyGMaIqEMKDQ1VPk0ZGxuL0aNH46GHHkJBQQG6d+8Oq9UKAHj66acRFRXV4Dr69esHABg7dizOnDmDrVu3YufOnfj73/+ON954A6tXr8asWbNuu9ebPSy2trbW5vWZM2cwfvx4DBgwAK+//jr8/Pyg1WqxY8cOvPHGG8o+2cvT0xORkZHNWpaIWh/DGBF1eI6OjkhOTsa9996Lv/3tb1iwYAH69OkD4IdLa00JIh4eHpg5cyZmzpyJyspKjB07FkuWLLlpGPP394fVasWZM2dszoYVFBTUq3V3d0d5eXm98Z+eXfrXv/6FmpoafPzxx+jdu7cyvnv37lv239L8/f1x7NgxWK1Wm7NjX331lTIfuHnQJKKm4z1jRNQpjBs3DqGhoVi+fDmuXr0KLy8vjBs3DmvWrEFRUVG9+kuXLil/vnz5ss287t27o1+/fqipqbnp9iZOnAgAWLFihc348uXL69X27dsXZrMZx44dU8aKiorqPQXf0dERACAiypjZbMa6detu2kdruf/++1FcXIz09HRl7MaNG1i5ciW6d++OiIgIAEC3bt0AoMGwSURNwzNjRNRpPPPMM/jtb3+L9evX4/e//z1WrVqF0aNHIyQkBI888gj69OmDkpISZGVl4bvvvsOXX34JALjzzjsxbtw4DB8+HB4eHvjiiy+wefNmPPHEEzfd1tChQxEXF4c333wTZrMZI0eORGZmJk6fPl2v9sEHH8T8+fPxwAMPYO7cuaiqqsJbb72FoKAgHDlyRKmbMGECtFotJk+ejEcffRSVlZVYu3YtvLy8GgyUrWn27NlYs2YNZsyYgZycHAQEBGDz5s3Yv38/li9fjh49egD44QMHd955J9LT0xEUFAQPDw/cdddduOuuu9q0X6IOTe2PcxIR2aPu0RaHDx+uN6+2tlb69u0rffv2lRs3boiIyJkzZ+R3v/udmEwmcXZ2Fl9fX/nlL38pmzdvVpZ7+eWXJTQ0VIxGo7i4uMiAAQPklVdekWvXrik1DT2Gorq6WubOnSt33HGHuLq6yuTJk+XcuXMNPuph586dctddd4lWq5Xg4GD54IMPGlznxx9/LIMHDxa9Xi8BAQHy2muvybvvvisApLCwUKmz59EWt3psx83WV1JSIjNnzhRPT0/RarUSEhIi69atq7fsgQMHZPjw4aLVavmYC6Jm0Ij86Hw4EREREbUp3jNGREREpCKGMSIiIiIVMYwRERERqYhhjIiIiEhFDGNEREREKmIYIyIiIlIRH/razlmtVly4cAE9evTg144QERF1ECKCiooK9OrVy+YrxRrCMNbOXbhwAX5+fmq3QURERM1w7tw5/OxnP2u0hmGsnav7ypFz587Bzc1N5W6IiIioKSwWC/z8/JT38cYwjLVzdZcm3dzcGMaIiIg6mKbcYsQb+ImIiIhUxDBGREREpCKGMSIiIiIV8Z4xIiKiLqC2thbXr19Xu41Ow9nZGY6Oji2yLoYxIiKiTkxEUFxcjPLycrVb6XSMRiNMJtNtPweUYYyIiKgTqwtiXl5e6NatGx8g3gJEBFVVVbh48SIAwMfH57bWxzBGRETUSdXW1ipB7I477lC7nU7FxcUFAHDx4kV4eXnd1iVL3sBPRETUSdXdI9atWzeVO+mc6o7r7d6LxzBGRETUyfHSZOtoqePKMEZERESkIoYxIiIiIhUxjFGHUWSuxoEzpSgyV6vdChERtZHi4mL84Q9/QJ8+faDT6eDn54fJkycjMzMTZWVl+MMf/oDg4GC4uLigd+/emDt3Lsxms7L82bNnodFocPTo0XrrHjduHJ588kmbsZMnT+JXv/oVDAYDXF1dcc899+Dbb79t1X3kpympQ0g//C0WbjkOqwAOGiB5Sgim3dNb7baIiKgVnT17FqNGjYLRaMTSpUsREhKC69ev47PPPsOcOXOwefNmXLhwAcuWLcOdd96Jb775Br///e9x4cIFbN682e7tnTlzBqNHj0ZiYiJeeOEFuLm5IT8/H3q9vhX27v9jGKN2r8hcrQQxALAK8OcteRgb1BM+Bhd1myMiolbz+OOPQ6PR4NChQ3B1dVXGBw0ahP/6r/+C0WjERx99pIz37dsXr7zyCh5++GHcuHEDTk72xZznnnsO999/P1JTU23W2dp4mZLavcLSK0oQq1MrgrOlVeo0RETURbXl7SJlZWX49NNPMWfOHJsgVsdoNDa4nNlshpubm91BzGq1Yvv27QgKCkJUVBS8vLwQFhaG//mf/2lG9/ZhGKN2L9DTFQ4/+fSwo0aDAE8+N4eIqK2kH/4Wo1J24aG12RiVsgvph1v3PqrTp09DRDBgwIAmL1NaWoqXXnoJs2fPrjdv5MiR6N69u830v//7v8r8ixcvorKyEikpKYiOjsbOnTvxwAMPYMqUKfj3v//dIvt0M7xMSe2ej8EFyVNC8OcteagVgaNGg1en3MVLlEREbUSN20VE5NZFP2KxWDBp0iTceeedWLJkSb356enpGDhwoM3Y9OnTlT9brVYAQExMDP70pz8BAIYOHYoDBw5g9erViIiIsHMPmo5hjDqEaff0xtignjhbWoUAz24MYkREbaix20Va6/dx//79odFo8NVXX92ytqKiAtHR0ejRowf++c9/wtnZuV6Nn58f+vXrZzNW95VGAODp6QknJyfceeedNjUDBw7Evn37mrkXTcPLlNRh+BhcEN73DgYxIqI2psbtIh4eHoiKisKqVatw5cqVevPLy8sB/HBGbMKECdBqtfj444+b/clHrVaLe+65BwUFBTbj//nPf+Dv79+sdTYVwxgRERE1qu52Ecf/+/qftrpdZNWqVaitrUVoaCg++ugjnDp1CidPnsSKFSsQHh6uBLErV67gnXfegcViQXFxMYqLi1FbW2v39p555hmkp6dj7dq1OH36NP72t7/hX//6Fx5//PFW2Lv/j5cpiYiI6JbUuF2kT58+OHLkCF555RU89dRTKCoqQs+ePTF8+HC89dZbOHLkCLKzswGg3iXIwsJCBAQE2LW9Bx54AKtXr0ZycjLmzp2L4OBgfPTRRxg9enRL7VKDNGLvHXLUpiwWCwwGg/JRXSIioqa6evUqCgsLERgY2OoPLu2KGju+9rx/8zIlERERkYoYxoiIiIhUxDBGREREpCKGMSIiIiIVMYwRERF1cvysXutoqePKMEZERNRJ1T2JvqqqSuVOOqe649rQE//tweeMERERdVKOjo4wGo24ePEiAKBbt27QaDS3WIpuRURQVVWFixcvwmg0wtHR8bbWxzBGRETUiZlMJgBQAhm1HKPRqBzf28EwRkRE1IlpNBr4+PjAy8sL169fV7udTsPZ2fm2z4jVYRgjIiLqAhwdHVssPFDL4g38RERERCpiGCMiIiJSEcMYERERkYoYxoiIiIhUxDBGREREpCKGMSIiIiIVqR7GVq1ahYCAAOj1eoSFheHQoUON1m/atAkDBgyAXq9HSEgIduzYYTNfRLB48WL4+PjAxcUFkZGROHXqlE1NWVkZpk+fDjc3NxiNRiQmJqKyslKZf/XqVcyYMQMhISFwcnJCbGxsvT727NkDjUZTbyouLr6t/SMiIqKuRdUwlp6ejnnz5iEpKQlHjhzBkCFDEBUVddOnBB84cABxcXFITExEbm4uYmNjERsbi7y8PKUmNTUVK1aswOrVq5GdnQ1XV1dERUXh6tWrSs306dORn5+PjIwMbNu2DXv37sXs2bOV+bW1tXBxccHcuXMRGRnZ6D4UFBSgqKhImby8vJq9f0RERNQFiYpCQ0Nlzpw5yuva2lrp1auXJCcnN1g/depUmTRpks1YWFiYPProoyIiYrVaxWQyydKlS5X55eXlotPpZMOGDSIicuLECQEghw8fVmo++eQT0Wg0cv78+XrbTEhIkJiYmHrju3fvFgDy/ffft9j+NcRsNgsAMZvNTV6GiIiI1GXP+7dqZ8auXbuGnJwcmzNPDg4OiIyMRFZWVoPLZGVl1TtTFRUVpdQXFhaiuLjYpsZgMCAsLEypycrKgtFoxIgRI5SayMhIODg4IDs72+79GDp0KHx8fHDfffdh//79t7V/AFBTUwOLxWIzERERUeelWhgrLS1FbW0tvL29bca9vb3r3XdVp7i4uNH6up+3qvnxpUQAcHJygoeHx0232xAfHx+sXr0aH330ET766CP4+flh3LhxOHLkSLP3DwCSk5NhMBiUyc/Pr8k9ERERUcfD76ZspuDgYAQHByuvR44ciTNnzuCNN97A+++/3+z1Lly4EPPmzVNeWywWBjIiIqJOTLUzY56ennB0dERJSYnNeElJCUwmU4PLmEymRuvrft6q5qc30N+4cQNlZWU33W5ThYaG4vTp0wCat38AoNPp4ObmZjMRERFR56VaGNNqtRg+fDgyMzOVMavViszMTISHhze4THh4uE09AGRkZCj1gYGBMJlMNjUWiwXZ2dlKTXh4OMrLy5GTk6PU7Nq1C1arFWFhYbe1T0ePHoWPj0+z94+IiIi6HlUvU86bNw8JCQkYMWIEQkNDsXz5cly5cgUzZ84EAPzud7+Dr68vkpOTAQB//OMfERERgb/85S+YNGkS0tLS8MUXX+Dtt98GAGg0Gjz55JN4+eWX0b9/fwQGBmLRokXo1auX8qywgQMHIjo6Go888ghWr16N69ev44knnsCDDz6IXr16Kb2dOHEC165dQ1lZGSoqKnD06FEAP9ywDwDLly9HYGAgBg0ahKtXr+Lvf/87du3ahZ07dzZ5/4iIiIhUfbSFiMjKlSuld+/eotVqJTQ0VA4ePKjMi4iIkISEBJv6jRs3SlBQkGi1Whk0aJBs377dZr7VapVFixaJt7e36HQ6GT9+vBQUFNjUXL58WeLi4qR79+7i5uYmM2fOlIqKCpsaf39/AVBvqvPaa69J3759Ra/Xi4eHh4wbN0527dpl1/41BR9tQURE1PHY8/6tERFRMQvSLVgsFhgMBpjNZt4/RkRE1EHY8/6t+tchEREREXVlDGNEREREKmIYIyIiIlIRwxgRERGRihjGiIiIiFTEMEZERESkIoYx6vKKzNU4cKYUReZqtVshIqIuiF8UTl1a+uFvsXDLcVgFcNAAyVNCMO2e3mq3RUREXQjPjFGXVWSuVoIYAFgF+POWPJ4hIyKiNsUwRl1WYekVJYjVqRXB2dIqdRoiagQvpxN1XrxMSV1WoKcrHDSwCWSOGg0CPLup1xRRA3g5nahz45kx6rJ8DC5InhICR40GwA9B7NUpd8HH4KJyZ0T/Hy+nE3V+PDNGXdq0e3pjbFBPnC2tQoBnNwYxancau5zOv69EnQPDGHV5PgYXvqlRu8XL6USdHy9TEhG1Y7ycTtT58cwYEVE7x8vpRJ0bwxgRUQfAy+lEnRcvUxIRERGpiGGMiIiISEUMY0REREQqYhgjIiIiUhHDGBEREZGKGMaIiIiIVMQwRkRERKQihjEiIiIiFTGMEREREamIYYyIiIhIRQxjRERERCpiGCMiIiJSEcMYERERkYoYxoiIiIhUxDBGREREpCKGMSIiIiIVMYwRERERqYhhjIiIiEhFDGNEREREKmIYIyIiIlIRwxgRERGRihjGiIiIiFTEMEZERESkItXD2KpVqxAQEAC9Xo+wsDAcOnSo0fpNmzZhwIAB0Ov1CAkJwY4dO2zmiwgWL14MHx8fuLi4IDIyEqdOnbKpKSsrw/Tp0+Hm5gaj0YjExERUVlYq869evYoZM2YgJCQETk5OiI2NrdfHli1bcN9996Fnz55wc3NDeHg4PvvsM5uaJUuWQKPR2EwDBgyw8wgRERFRZ6ZqGEtPT8e8efOQlJSEI0eOYMiQIYiKisLFixcbrD9w4ADi4uKQmJiI3NxcxMbGIjY2Fnl5eUpNamoqVqxYgdWrVyM7Oxuurq6IiorC1atXlZrp06cjPz8fGRkZ2LZtG/bu3YvZs2cr82tra+Hi4oK5c+ciMjKywV727t2L++67Dzt27EBOTg7uvfdeTJ48Gbm5uTZ1gwYNQlFRkTLt27fvdg4ZERERdTaiotDQUJkzZ47yura2Vnr16iXJyckN1k+dOlUmTZpkMxYWFiaPPvqoiIhYrVYxmUyydOlSZX55ebnodDrZsGGDiIicOHFCAMjhw4eVmk8++UQ0Go2cP3++3jYTEhIkJiamSftz5513ygsvvKC8TkpKkiFDhjRp2Zsxm80CQMxm822th4iopV0or5L9py/JhfIqtVshanfsef9W7czYtWvXkJOTY3PmycHBAZGRkcjKympwmaysrHpnqqKiopT6wsJCFBcX29QYDAaEhYUpNVlZWTAajRgxYoRSExkZCQcHB2RnZzd7f6xWKyoqKuDh4WEzfurUKfTq1Qt9+vTB9OnT8e233zZ7G0RE7UX64W8xKmUXHlqbjVEpu5B+mL/biJpLtTBWWlqK2tpaeHt724x7e3ujuLi4wWWKi4sbra/7easaLy8vm/lOTk7w8PC46XabYtmyZaisrMTUqVOVsbCwMKxfvx6ffvop3nrrLRQWFmLMmDGoqKi46XpqampgsVhsJiKi9qTIXI2FW47DKj+8tgrw5y15KDJXq9sYUQel+g38ncGHH36IF154ARs3brQJehMnTsRvf/tbDB48GFFRUdixYwfKy8uxcePGm64rOTkZBoNBmfz8/NpiF4iImqyw9IoSxOrUiuBsaZU6DRF1cKqFMU9PTzg6OqKkpMRmvKSkBCaTqcFlTCZTo/V1P29V89MPCNy4cQNlZWU33W5j0tLSMGvWLGzcuPGmN/vXMRqNCAoKwunTp29as3DhQpjNZmU6d+6c3T0REbWmQE9XOGhsxxw1GgR4dlOnIaIOTrUwptVqMXz4cGRmZipjVqsVmZmZCA8Pb3CZ8PBwm3oAyMjIUOoDAwNhMplsaiwWC7Kzs5Wa8PBwlJeXIycnR6nZtWsXrFYrwsLC7NqHDRs2YObMmdiwYQMmTZp0y/rKykqcOXMGPj4+N63R6XRwc3OzmYiI2hMfgwuSp4TAUfNDInPUaPDqlLvgY3BRuTOiDqoNPlBwU2lpaaLT6WT9+vVy4sQJmT17thiNRikuLhYRkfj4eFmwYIFSv3//fnFycpJly5bJyZMnJSkpSZydneX48eNKTUpKihiNRtm6dascO3ZMYmJiJDAwUKqrq5Wa6OhoGTZsmGRnZ8u+ffukf//+EhcXZ9Nbfn6+5ObmyuTJk2XcuHGSm5srubm5yvx//OMf4uTkJKtWrZKioiJlKi8vV2qeeuop2bNnjxQWFsr+/fslMjJSPD095eLFi00+Rvw0JRG1VxfKq+TA6VJ+mpKoAfa8f6saxkREVq5cKb179xatViuhoaFy8OBBZV5ERIQkJCTY1G/cuFGCgoJEq9XKoEGDZPv27TbzrVarLFq0SLy9vUWn08n48eOloKDApuby5csSFxcn3bt3Fzc3N5k5c6ZUVFTY1Pj7+wuAetOPe2to/o/7nTZtmvj4+IhWqxVfX1+ZNm2anD592q7jwzBGRETU8djz/q0REWnojBm1DxaLBQaDAWazmZcsiYiIOgh73r/5aUoiIiIiFTGMEREREamIYYyIiIhIRQxjRERERCpiGCMiIiJSEcMYERERkYoYxoiIiIhUxDBGREREpCKGMSIiIiIVMYx1YUXmahw4U4oic7XarRAREXVZTmo3QOpIP/wtFm45DqsADhogeUoIpt3TW+22iIiIuhyeGeuCiszVShADAKsAf96SxzNkREREKmAY64IKS68oQaxOrQjOllap0xAREVEXxjDWBQV6usJBYzvmqNEgwLObOg0RERF1YQxjXZCPwQXJU0LgqPkhkTlqNHh1yl3wMbio3BkREVHXwxv4u6hp9/TG2KCeOFtahQDPbgxiREREKmEY68J8DC4MYURERCrjZUoiIiIiFTGMEREREamIYYyIiIhIRQxjRERERCpiGCMiIiJSEcMYERERkYoYxoiIiIhUxDBGREREpCKGMSIiIiIVMYwRERERqYhhjIiIiEhFDGNEREREKmIYIyIiIlIRwxgRERGRihjGiIiIiFTEMEZERESkIoYxIiIiIhUxjBERERGpiGGMiIiISEUMY0REREQqYhgjIiIiUhHDGBEREZGKGMaIiIiIVMQwRkRERKQi1cPYqlWrEBAQAL1ej7CwMBw6dKjR+k2bNmHAgAHQ6/UICQnBjh07bOaLCBYvXgwfHx+4uLggMjISp06dsqkpKyvD9OnT4ebmBqPRiMTERFRWVirzr169ihkzZiAkJAROTk6IjY1tsJc9e/bg7rvvhk6nQ79+/bB+/frb3j8iIiLqWlQNY+np6Zg3bx6SkpJw5MgRDBkyBFFRUbh48WKD9QcOHEBcXBwSExORm5uL2NhYxMbGIi8vT6lJTU3FihUrsHr1amRnZ8PV1RVRUVG4evWqUjN9+nTk5+cjIyMD27Ztw969ezF79mxlfm1tLVxcXDB37lxERkY22EthYSEmTZqEe++9F0ePHsWTTz6JWbNm4bPPPmv2/hEREVEXJCoKDQ2VOXPmKK9ra2ulV69ekpyc3GD91KlTZdKkSTZjYWFh8uijj4qIiNVqFZPJJEuXLlXml5eXi06nkw0bNoiIyIkTJwSAHD58WKn55JNPRKPRyPnz5+ttMyEhQWJiYuqNP/vsszJo0CCbsWnTpklUVFSz968hZrNZAIjZbG7yMkRERKQue96/VTszdu3aNeTk5NiceXJwcEBkZCSysrIaXCYrK6vemaqoqCilvrCwEMXFxTY1BoMBYWFhSk1WVhaMRiNGjBih1ERGRsLBwQHZ2dlN7v9WvTRn/wCgpqYGFovFZiIiIqLOS7UwVlpaitraWnh7e9uMe3t7o7i4uMFliouLG62v+3mrGi8vL5v5Tk5O8PDwuOl27enFYrGgurq6WfsHAMnJyTAYDMrk5+fX5J6IiIio41H9Bn6ytXDhQpjNZmU6d+6c2i0RERFRK3JSa8Oenp5wdHRESUmJzXhJSQlMJlODy5hMpkbr636WlJTAx8fHpmbo0KFKzU9voL9x4wbKyspuul17enFzc4OLiwscHR3t3j8A0Ol00Ol0Te6DiIiIOjbVzoxptVoMHz4cmZmZypjVakVmZibCw8MbXCY8PNymHgAyMjKU+sDAQJhMJpsai8WC7OxspSY8PBzl5eXIyclRanbt2gWr1YqwsLAm93+rXpqzf0RERNQFtcEHCm4qLS1NdDqdrF+/Xk6cOCGzZ88Wo9EoxcXFIiISHx8vCxYsUOr3798vTk5OsmzZMjl58qQkJSWJs7OzHD9+XKlJSUkRo9EoW7dulWPHjklMTIwEBgZKdXW1UhMdHS3Dhg2T7Oxs2bdvn/Tv31/i4uJsesvPz5fc3FyZPHmyjBs3TnJzcyU3N1eZ//XXX0u3bt3kmWeekZMnT8qqVavE0dFRPv300ybvX1Pw05REREQdjz3v36qGMRGRlStXSu/evUWr1UpoaKgcPHhQmRcRESEJCQk29Rs3bpSgoCDRarUyaNAg2b59u818q9UqixYtEm9vb9HpdDJ+/HgpKCiwqbl8+bLExcVJ9+7dxc3NTWbOnCkVFRU2Nf7+/gKg3vRju3fvlqFDh4pWq5U+ffrIunXr7Nq/pmAYIyIi6njsef/WiIiodlqObsliscBgMMBsNsPNzU3tdoiIqAUVmatRWHoFgZ6u8DG4qN0OtSB73r9Vu4GfiIioK0s//C0WbjkOqwAOGiB5Sgim3dNb7bZIBXy0BRERURsrMlcrQQwArAL8eUseiszV6jZGqmAYIyIiamOFpVeUIFanVgRnS6vUaYhUxTBGRETUxgI9XeGgsR1z1GgQ4NlNnYZIVQxjREREbczH4ILkKSFw1PyQyBw1Grw65S7exN9F8QZ+IiIiFUy7pzfGBvXE2dIqBHh2YxDrwhjGiIiIVOJjcGEII16mJCIiIlITwxgRERGRihjGiIiIiFTEMEZERESkIoYxIiIiIhUxjBERERGpiGGMiIiISEV2hbHvvvsOpaWlyuv//d//xfTp0zFmzBg8/PDDyMrKavEGiYiIiDozu8LYr3/9axw8eBAAsHXrVowbNw6VlZUYNWoUqqqqEBERgW3btrVKo0RERESdkUZE5NZlP+jevTuOHz+OwMBA/PznP8cDDzyA+fPnK/P/9re/4d1338WRI0dapdmuyGKxwGAwwGw2w83NTe12iIiIqAnsef+268yYk5MTKioqAACFhYWYOHGizfyJEyeioKDAznaJiIiIui67wlhERAQ2bNgAABg2bBj27NljM3/37t3w9fVtseaIiIiIOju7vig8JSUFY8aMwYULFzB69Gg899xzOHz4MAYOHIiCggKkp6dj9erVrdUrERERUadj1z1jAHDmzBk8//zz2L59OyorKwH8cPnynnvuwTPPPIPY2NjW6LPL4j1jREREHY897992h7E6IoKLFy/CarXC09MTzs7OzWqWGscwRkRE1PHY8/5t12XKH9NoNPD29m7u4kREREQEO8PYvHnzmlT3+uuvN6sZIiIioq7GrjCWm5tr83rfvn0YPnw4XFxclDGNRtMynRERERF1AXaFsd27d9u87tGjBz788EP06dOnRZsiIiIi6ir4ReFEREREKmIYIyIiIlIRwxgRERGRiuy6Z+zYsWM2r0UEX331lfLw1zqDBw++/c6IiIiIugC7Hvrq4OAAjUaDhhapG9doNKitrW3RJrsyPvSViIio42m1h74WFhbeVmNEREREZMuuMObv799afRARERF1Sc26gd9qtd50/Ntvv72thoiIiIi6ErvCmMViwdSpU+Hq6gpvb28sXrzY5v6wS5cuITAwsMWbJCIiIuqs7LpMuWjRInz55Zd4//33UV5ejpdffhlHjhzBli1boNVqAaDBm/uJiIiIqGF2nRn7n//5H6xZswa/+c1vMGvWLHzxxRe4dOkSJk+ejJqaGgD8bkoitRWZq3HgTCmKzNVqt0JERE1gVxi7dOmSzU38np6e+Pzzz1FRUYH7778fVVVVLd4gETVd+uFvMSplFx5am41RKbuQfpj3cBIRtXd2hbHevXvj5MmTNmM9evTAzp07UV1djQceeKBFmyOipisyV2PhluOw/t+dAlYB/rwlj2fIiIjaObvC2H333Yd169bVG+/evTs+++wz6PX6FmuMiOxTWHpFCWJ1akVwtpRnrImI2jO7wtiLL76IF154ocF5PXr0QEZGBnbt2mV3E6tWrUJAQAD0ej3CwsJw6NChRus3bdqEAQMGQK/XIyQkBDt27LCZLyJYvHgxfHx84OLigsjISJw6dcqmpqysDNOnT4ebmxuMRiMSExPrfa3TsWPHMGbMGOj1evj5+SE1NdVm/rhx46DRaOpNkyZNUmpmzJhRb350dLTdx4joVgI9XeHwk1s2HTUaBHh2U6chIiJqErvCWG5uLn7zm9/AYrHUm2c2m/Hzn//c7hv409PTMW/ePCQlJeHIkSMYMmQIoqKicPHixQbrDxw4gLi4OCQmJiI3NxexsbGIjY1FXl6eUpOamooVK1Zg9erVyM7OhqurK6KionD16lWlZvr06cjPz0dGRga2bduGvXv3Yvbs2cp8i8WCCRMmwN/fHzk5OVi6dCmWLFmCt99+W6nZsmULioqKlCkvLw+Ojo747W9/a9NzdHS0Td2GDRvsOkZETeFjcEHylBA4/t+/QUeNBq9OuQs+BheVOyMiokaJHSZPniyvv/76Tef/9a9/ldjYWHtWKaGhoTJnzhzldW1trfTq1UuSk5MbrJ86dapMmjTJZiwsLEweffRRERGxWq1iMplk6dKlyvzy8nLR6XSyYcMGERE5ceKEAJDDhw8rNZ988oloNBo5f/68iIi8+eab4u7uLjU1NUrN/PnzJTg4+Kb78sYbb0iPHj2ksrJSGUtISJCYmJhbHYabMpvNAkDMZnOz10Fdy4XyKjlwulQulFep3QoRUZdlz/u3XWfGvvzyy0YvsU2YMAE5OTlNXt+1a9eQk5ODyMhIZczBwQGRkZHIyspqcJmsrCybegCIiopS6gsLC1FcXGxTYzAYEBYWptRkZWXBaDRixIgRSk1kZCQcHByQnZ2t1IwdO1Z5flrddgoKCvD999832Ns777yDBx98EK6urjbje/bsgZeXF4KDg/HYY4/h8uXLNz0mNTU1sFgsNhORPXwMLgjvewfPiBERdRB2hbGSkhI4OzvfdL6TkxMuXbrU5PWVlpaitrYW3t7eNuPe3t4oLi5ucJni4uJG6+t+3qrGy8urXu8eHh42NQ2t48fb+LFDhw4hLy8Ps2bNshmPjo7Gf//3fyMzMxOvvfYa/v3vf2PixIk231zwY8nJyTAYDMrk5+fXYB0RERF1DnY9gd/X1xd5eXno169fg/OPHTsGHx+fFmmso3nnnXcQEhKC0NBQm/EHH3xQ+XNISAgGDx6Mvn37Ys+ePRg/fny99SxcuBDz5s1TXlssFgYyIiKiTsyuM2P3338/Fi1aZHMjfJ3q6mokJSXhl7/8ZZPX5+npCUdHR5SUlNiMl5SUwGQyNbiMyWRqtL7u561qfvoBgRs3bqCsrMympqF1/Hgbda5cuYK0tDQkJiY2vsMA+vTpA09PT5w+fbrB+TqdDm5ubjYTERERdV52hbHnn38eZWVlCAoKQmpqKrZu3YqtW7fitddeQ3BwMMrKyvDcc881eX1arRbDhw9HZmamMma1WpGZmYnw8PAGlwkPD7epB4CMjAylPjAwECaTyabGYrEgOztbqQkPD0d5ebnN/W27du2C1WpFWFiYUrN3715cv37dZjvBwcFwd3e32f6mTZtQU1ODhx9++Jb7/N133+Hy5ctd9gwiERER/YS9nw44e/asTJw4URwcHESj0YhGoxEHBweZOHGifP3113Z/2iAtLU10Op2sX79eTpw4IbNnzxaj0SjFxcUiIhIfHy8LFixQ6vfv3y9OTk6ybNkyOXnypCQlJYmzs7McP35cqUlJSRGj0Shbt26VY8eOSUxMjAQGBkp1dbVSEx0dLcOGDZPs7GzZt2+f9O/fX+Li4pT55eXl4u3tLfHx8ZKXlydpaWnSrVs3WbNmTb19GD16tEybNq3eeEVFhTz99NOSlZUlhYWF8vnnn8vdd98t/fv3l6tXrzbp+PDTlERERB2PPe/fdoexOmVlZXLo0CHJzs6WsrKy5q5GRERWrlwpvXv3Fq1WK6GhoXLw4EFlXkREhCQkJNjUb9y4UYKCgkSr1cqgQYNk+/btNvOtVqssWrRIvL29RafTyfjx46WgoMCm5vLlyxIXFyfdu3cXNzc3mTlzplRUVNjUfPnllzJ69GjR6XTi6+srKSkp9Xr/6quvBIDs3Lmz3ryqqiqZMGGC9OzZU5ydncXf318eeeQRJWg2BcMYERFRx2PP+7dGRKTRU2ekKovFAoPBALPZzPvHiIiIOgh73r/tumeMiIiIiFoWwxgRERGRihjGiIiIiFTEMEZERESkIoYxIiIiIhUxjBERERGpiGGMiIiISEUMY0REREQqYhgjIiIiUhHDGBEREZGKGMaIiIiIVMQwRkRERKQihjEiIiIiFTGMEREREamIYYyIiIhIRQxjRERERCpiGCMiIiJSEcMYERERkYoYxoiIiIhUxDBGREREpCKGMSIiIiIVMYwRERERqYhhjIiIiEhFDGNEREREKmIYIyIiIlIRwxgRERGRihjGiIiIiFTEMEZERESkIoYxIiIiIhUxjBERERGpiGGMiIiISEUMY0REREQqYhgjIiIiUhHDGBEREZGKGMaIiIiIVMQwRkRERKQihjEiIiIiFTGMEREREamIYYyIiIhIRQxjRERERCpqF2Fs1apVCAgIgF6vR1hYGA4dOtRo/aZNmzBgwADo9XqEhIRgx44dNvNFBIsXL4aPjw9cXFwQGRmJU6dO2dSUlZVh+vTpcHNzg9FoRGJiIiorK21qjh07hjFjxkCv18PPzw+pqak289evXw+NRmMz6fV6u3shIiKirkv1MJaeno558+YhKSkJR44cwZAhQxAVFYWLFy82WH/gwAHExcUhMTERubm5iI2NRWxsLPLy8pSa1NRUrFixAqtXr0Z2djZcXV0RFRWFq1evKjXTp09Hfn4+MjIysG3bNuzduxezZ89W5lssFkyYMAH+/v7IycnB0qVLsWTJErz99ts2/bi5uaGoqEiZvvnmG5v5TemFiIiIujBRWWhoqMyZM0d5XVtbK7169ZLk5OQG66dOnSqTJk2yGQsLC5NHH31URESsVquYTCZZunSpMr+8vFx0Op1s2LBBREROnDghAOTw4cNKzSeffCIajUbOnz8vIiJvvvmmuLu7S01NjVIzf/58CQ4OVl6vW7dODAbDTfetKb3citlsFgBiNpubVE9ERETqs+f9W9UzY9euXUNOTg4iIyOVMQcHB0RGRiIrK6vBZbKysmzqASAqKkqpLywsRHFxsU2NwWBAWFiYUpOVlQWj0YgRI0YoNZGRkXBwcEB2drZSM3bsWGi1WpvtFBQU4Pvvv1fGKisr4e/vDz8/P8TExCA/P1+Z15RefqqmpgYWi8VmIiIios5L1TBWWlqK2tpaeHt724x7e3ujuLi4wWWKi4sbra/7easaLy8vm/lOTk7w8PCwqWloHT/eRnBwMN59911s3boVH3zwAaxWK0aOHInvvvuuyb38VHJyMgwGgzL5+fk1WEdERESdg+r3jHVk4eHh+N3vfoehQ4ciIiICW7ZsQc+ePbFmzZpmr3PhwoUwm83KdO7cuRbsmIiIiNobVcOYp6cnHB0dUVJSYjNeUlICk8nU4DImk6nR+rqft6r56QcEbty4gbKyMpuahtbx4238lLOzM4YNG4bTp083uZef0ul0cHNzs5mIiIio81I1jGm1WgwfPhyZmZnKmNVqRWZmJsLDwxtcJjw83KYeADIyMpT6wMBAmEwmmxqLxYLs7GylJjw8HOXl5cjJyVFqdu3aBavVirCwMKVm7969uH79us12goOD4e7u3mBvtbW1OH78OHx8fJrcCxEREbWeInM1DpwpRZG5Wu1Wbq4NPlDQqLS0NNHpdLJ+/Xo5ceKEzJ49W4xGoxQXF4uISHx8vCxYsECp379/vzg5OcmyZcvk5MmTkpSUJM7OznL8+HGlJiUlRYxGo2zdulWOHTsmMTExEhgYKNXV1UpNdHS0DBs2TLKzs2Xfvn3Sv39/iYuLU+aXl5eLt7e3xMfHS15enqSlpUm3bt1kzZo1Ss0LL7wgn332mZw5c0ZycnLkwQcfFL1eL/n5+Xb10hh+mpKIiKh50g59I4ELton//G0SuGCbpB36ps22bc/7t+phTERk5cqV0rt3b9FqtRIaGioHDx5U5kVEREhCQoJN/caNGyUoKEi0Wq0MGjRItm/fbjPfarXKokWLxNvbW3Q6nYwfP14KCgpsai5fvixxcXHSvXt3cXNzk5kzZ0pFRYVNzZdffimjR48WnU4nvr6+kpKSYjP/ySefVPr29vaW+++/X44cOWJ3L41hGCMiIrLfhfIqJYjVTX0WbJcL5VVtsn173r81IiLqnpujxlgsFhgMBpjNZt4/RkRE1EQHzpTiobXZ9cY3PPJzhPe9o9W3b8/7Nz9NSURERJ1OoKcrHDS2Y44aDQI8u6nTUCMYxoiIiKjT8TG4IHlKCBw1PyQyR40Gr065Cz4GF5U7q89J7QaIiIiIWsO0e3pjbFBPnC2tQoBnt3YZxACGMSKieorM1SgsvYJAT9d2+8ubiJrGx+DS7v8dM4wREf1I+uFvsXDLcVgFcNAAyVNCMO2e3mq3RUSdGO8ZIyL6P0XmaiWIAYBVgD9vyWvfD4skog6PYYyI6P8Ull5RglidWhGcLa1q8jo6xNO+iahd4WVKIqL/U/dR+B8HMns+Cs9LnETUHDwzRkT0f27no/C8xElEzcUzY0REP9Lcj8I3domzvX+Si4jUxTBGRPQTzfko/O1e4iSirouXKYmIWkBHeto3EbUvPDNGRNRCbnWJkw+TJaKGMIwREbWgm13i5CctiehmeJmSiKiV8ZOWRNQYhjEiolbWEg+TJaLOi2GMiKiV1X3S8sf4SUsiqsMwRkTUyvhJSyJqDG/gJyJqA819mCwRdX4MY0REbaQ5D5Mlos6PlymJiIiIVMQwRkRERKQihjEiIiIiFTGMERG1kSJzNQ6cKeXDXonIBm/gJyJqA/w6JCK6GZ4ZIyJqZfw6JCJqDMMYEVEr49chEVFjGMaIiFoZvw6JiBrDMEZE1Mr4dUhE1BjewE9E1Ab4dUhEdDMMY0REbYRfh0REDeFlSiIiIiIVMYwREVGz8CG2RC2DlymJiMhufIgtUcvhmTEiIrILH2JL1LIYxoiIyC58iC1Ry2IYIyIiu/AhtkQti2GMiIjswofYErUs3sBPRER240NsiVoOwxgRETULH2JL1DJ4mZKIiIhIRe0ijK1atQoBAQHQ6/UICwvDoUOHGq3ftGkTBgwYAL1ej5CQEOzYscNmvohg8eLF8PHxgYuLCyIjI3Hq1CmbmrKyMkyfPh1ubm4wGo1ITExEZWWlTc2xY8cwZswY6PV6+Pn5ITU11Wb+2rVrMWbMGLi7u8Pd3R2RkZH1ep8xYwY0Go3NFB0dbe8hIiIiok5K9TCWnp6OefPmISkpCUeOHMGQIUMQFRWFixcvNlh/4MABxMXFITExEbm5uYiNjUVsbCzy8vKUmtTUVKxYsQKrV69GdnY2XF1dERUVhatXryo106dPR35+PjIyMrBt2zbs3bsXs2fPVuZbLBZMmDAB/v7+yMnJwdKlS7FkyRK8/fbbSs2ePXsQFxeH3bt3IysrC35+fpgwYQLOnz9v03N0dDSKioqUacOGDS11+IiIiKijE5WFhobKnDlzlNe1tbXSq1cvSU5ObrB+6tSpMmnSJJuxsLAwefTRR0VExGq1islkkqVLlyrzy8vLRafTyYYNG0RE5MSJEwJADh8+rNR88sknotFo5Pz58yIi8uabb4q7u7vU1NQoNfPnz5fg4OCb7suNGzekR48e8t577yljCQkJEhMTc6vDcFNms1kAiNlsbvY6iIiIqG3Z8/6t6pmxa9euIScnB5GRkcqYg4MDIiMjkZWV1eAyWVlZNvUAEBUVpdQXFhaiuLjYpsZgMCAsLEypycrKgtFoxIgRI5SayMhIODg4IDs7W6kZO3YstFqtzXYKCgrw/fffN9hbVVUVrl+/Dg8PD5vxPXv2wMvLC8HBwXjsscdw+fLlmx6TmpoaWCwWm4mIiIg6L1XDWGlpKWpra+Ht7W0z7u3tjeLi4gaXKS4ubrS+7uetary8vGzmOzk5wcPDw6amoXX8eBs/NX/+fPTq1csmCEZHR+O///u/kZmZiddeew3//ve/MXHiRNTW1ja4juTkZBgMBmXy8/NrsI6IiIg6Bz7aooWkpKQgLS0Ne/bsgV6vV8YffPBB5c8hISEYPHgw+vbtiz179mD8+PH11rNw4ULMmzdPeW2xWBjIiIiIOjFVz4x5enrC0dERJSUlNuMlJSUwmUwNLmMymRqtr/t5q5qffkDgxo0bKCsrs6lpaB0/3kadZcuWISUlBTt37sTgwYMb3ec+ffrA09MTp0+fbnC+TqeDm5ubzURERESdl6phTKvVYvjw4cjMzFTGrFYrMjMzER4e3uAy4eHhNvUAkJGRodQHBgbCZDLZ1FgsFmRnZys14eHhKC8vR05OjlKza9cuWK1WhIWFKTV79+7F9evXbbYTHBwMd3d3ZSw1NRUvvfQSPv30U5t70G7mu+++w+XLl+Hj43PLWiIiIuoC2uADBY1KS0sTnU4n69evlxMnTsjs2bPFaDRKcXGxiIjEx8fLggULlPr9+/eLk5OTLFu2TE6ePClJSUni7Owsx48fV2pSUlLEaDTK1q1b5dixYxITEyOBgYFSXV2t1ERHR8uwYcMkOztb9u3bJ/3795e4uDhlfnl5uXh7e0t8fLzk5eVJWlqadOvWTdasWWOzHa1WK5s3b5aioiJlqqioEBGRiooKefrppyUrK0sKCwvl888/l7vvvlv69+8vV69ebdLx4acpiYiIOh573r9VD2MiIitXrpTevXuLVquV0NBQOXjwoDIvIiJCEhISbOo3btwoQUFBotVqZdCgQbJ9+3ab+VarVRYtWiTe3t6i0+lk/PjxUlBQYFNz+fJliYuLk+7du4ubm5vMnDlTCVF1vvzySxk9erTodDrx9fWVlJQUm/n+/v4CoN6UlJQkIiJVVVUyYcIE6dmzpzg7O4u/v7888sgjStBsCoYxIiKijsee92+NiIhqp+XoliwWCwwGA8xmM+8fI6IuochcjcLSKwj0dOV3X1KHZc/7Nz9NSURE7Ub64W+xcMtxWAVw0ADJU0Iw7Z7eard1WwGR4ZJuhWGMiIjahSJztRLEAMAqwJ+35GFsUE9VQ8ztBMT2Gi6pfVH9uymJiIgAoLD0ihLE6tSK4GxplToN4eYBschc3arLUtfCMEZERO1CoKcrHDS2Y44aDQI8u6nTEG4vILbHcEntE8MYERG1Cz4GFyRPCYGj5odE5qjR4NUpd6l6ifJ2AmJ7DJfUPvGeMSIiajem3dMbY4N64mxpFQI8u6l+w3tdQPzzljzUitgVEG9nWepa+GiLdo6PtiAiUl+RubrZAfF2lqWOi4+2ICIiakE+BpdmB6nbWZa6Bt4zRkRERKQihjEiohZUZK7GgTOlfHwBETUZL1MSEbUQPuCTqGNpL9+OwDBGRNQC2uvT44moYe3pP0+8TElE1AL4gE+ijqO9fTsCwxgRUQvgAz6JOo729p8nhjEiohbQHp8eT0QNa2//eeI9Y0RELaS9PT2eiBrW3r4dgWGMiKgF8QGfRB1De/rPE8MYERERdUnt5T9PvGeMiIiISEUMY0REREQqYhgjIiIiUhHDGBEREZGKGMaIiIiIVMQwRkRERKQihjEiIiIiFTGMEREREamIYYyIiIhIRQxjRERERCpiGCMiIiJSEcMYERERkYoYxoiIiIhUxDBGREREpCKGMSIiIiIVMYwRERERqYhhjIiIiEhFDGNEREREKmIYIyIiIlIRwxgRERGRihjGiIiIiFTEMEZERESqKzJX48CZUhSZq9Vupc21izC2atUqBAQEQK/XIywsDIcOHWq0ftOmTRgwYAD0ej1CQkKwY8cOm/kigsWLF8PHxwcuLi6IjIzEqVOnbGrKysowffp0uLm5wWg0IjExEZWVlTY1x44dw5gxY6DX6+Hn54fU1NRW6YWIiKgrSz/8LUal7MJDa7MxKmUX0g9/q3ZLbUr1MJaeno558+YhKSkJR44cwZAhQxAVFYWLFy82WH/gwAHExcUhMTERubm5iI2NRWxsLPLy8pSa1NRUrFixAqtXr0Z2djZcXV0RFRWFq1evKjXTp09Hfn4+MjIysG3bNuzduxezZ89W5lssFkyYMAH+/v7IycnB0qVLsWTJErz99tst3gsREVFH0dJnsIrM1Vi45Tis8sNrqwB/3pLXtc6QicpCQ0Nlzpw5yuva2lrp1auXJCcnN1g/depUmTRpks1YWFiYPProoyIiYrVaxWQyydKlS5X55eXlotPpZMOGDSIicuLECQEghw8fVmo++eQT0Wg0cv78eRERefPNN8Xd3V1qamqUmvnz50twcHCL9nIrZrNZAIjZbG5SPRERUWtJO/SNBC7YJv7zt0nggm2Sduib217n/tOXxH/+tnrTgdOlLdCxeux5/1b1zNi1a9eQk5ODyMhIZczBwQGRkZHIyspqcJmsrCybegCIiopS6gsLC1FcXGxTYzAYEBYWptRkZWXBaDRixIgRSk1kZCQcHByQnZ2t1IwdOxZardZmOwUFBfj+++9brJefqqmpgcVisZmIiIjU1lpnsAI9XeGgsR1z1GgQ4NntttbbkagaxkpLS1FbWwtvb2+bcW9vbxQXFze4THFxcaP1dT9vVePl5WUz38nJCR4eHjY1Da3jx9toiV5+Kjk5GQaDQZn8/PwarCMiImpLhaVXlCBWp1YEZ0urbmu9PgYXJE8JgaPmh0TmqNHg1Sl3wcfgclvr7Uic1G6AbC1cuBDz5s1TXlssFgYyIiJSXd0ZrB8HspY6gzXtnt4YG9QTZ0urEODZrUsFMUDlM2Oenp5wdHRESUmJzXhJSQlMJlODy5hMpkbr637equanHxC4ceMGysrKbGoaWsePt9ESvfyUTqeDm5ubzURERKS21j6D5WNwQXjfO7pcEANUDmNarRbDhw9HZmamMma1WpGZmYnw8PAGlwkPD7epB4CMjAylPjAwECaTyabGYrEgOztbqQkPD0d5eTlycnKUml27dsFqtSIsLEyp2bt3L65fv26zneDgYLi7u7dYL0RERB3FtHt6Y9+Ce7HhkZ9j34J7Me2e3mq31Dm0wQcKGpWWliY6nU7Wr18vJ06ckNmzZ4vRaJTi4mIREYmPj5cFCxYo9fv37xcnJydZtmyZnDx5UpKSksTZ2VmOHz+u1KSkpIjRaJStW7fKsWPHJCYmRgIDA6W6ulqpiY6OlmHDhkl2drbs27dP+vfvL3Fxccr88vJy8fb2lvj4eMnLy5O0tDTp1q2brFmzpsV7aQw/TUlERNTx2PP+rXoYExFZuXKl9O7dW7RarYSGhsrBgweVeREREZKQkGBTv3HjRgkKChKtViuDBg2S7du328y3Wq2yaNEi8fb2Fp1OJ+PHj5eCggKbmsuXL0tcXJx0795d3NzcZObMmVJRUWFT8+WXX8ro0aNFp9OJr6+vpKSk1Ou9JXppDMMYERFRx2PP+7dGRKTxc2ekJovFAoPBALPZzPvHiIiIOgh73r9VfwI/ERERUVfGMEZERESkIoYxIiIiIhUxjBERERGpiGGMiIiISEUMY0REREQqYhgjIiIiUhHDGBEREZGKGMaIiIiIVOSkdgPUuLovSLBYLCp3QkRERE1V977dlC86Yhhr5yoqKgAAfn5+KndCRERE9qqoqIDBYGi0ht9N2c5ZrVZcuHABPXr0gEajqTffYrHAz88P586d43dX3gSP0a3xGDWOx+fWeIxujcfo1jrTMRIRVFRUoFevXnBwaPyuMJ4Za+ccHBzws5/97JZ1bm5uHf4vbmvjMbo1HqPG8fjcGo/RrfEY3VpnOUa3OiNWhzfwExEREamIYYyIiIhIRQxjHZxOp0NSUhJ0Op3arbRbPEa3xmPUOB6fW+MxujUeo1vrqseIN/ATERERqYhnxoiIiIhUxDBGREREpCKGMSIiIiIVMYwRERERqYhhrANYtWoVAgICoNfrERYWhkOHDt20Nj8/H7/+9a8REBAAjUaD5cuXt12jKrLnGK1duxZjxoyBu7s73N3dERkZ2Wh9Z2DP8dmyZQtGjBgBo9EIV1dXDB06FO+//34bdqsOe47Rj6WlpUGj0SA2NrZ1G2wH7DlG69evh0ajsZn0en0bdqsOe/8elZeXY86cOfDx8YFOp0NQUBB27NjRRt2qw55jNG7cuHp/jzQaDSZNmtSGHbcBoXYtLS1NtFqtvPvuu5Kfny+PPPKIGI1GKSkpabD+0KFD8vTTT8uGDRvEZDLJG2+80bYNq8DeY/TQQw/JqlWrJDc3V06ePCkzZswQg8Eg3333XRt33jbsPT67d++WLVu2yIkTJ+T06dOyfPlycXR0lE8//bSNO2879h6jOoWFheLr6ytjxoyRmJiYtmlWJfYeo3Xr1ombm5sUFRUpU3FxcRt33bbsPUY1NTUyYsQIuf/++2Xfvn1SWFgoe/bskaNHj7Zx523H3mN0+fJlm79DeXl54ujoKOvWrWvbxlsZw1g7FxoaKnPmzFFe19bWSq9evSQ5OfmWy/r7+3eJMHY7x0hE5MaNG9KjRw957733WqtFVd3u8RERGTZsmDz//POt0V670JxjdOPGDRk5cqT8/e9/l4SEhE4fxuw9RuvWrRODwdBG3bUP9h6jt956S/r06SPXrl1rqxZVd7u/j9544w3p0aOHVFZWtlaLquBlynbs2rVryMnJQWRkpDLm4OCAyMhIZGVlqdhZ+9ESx6iqqgrXr1+Hh4dHa7Wpmts9PiKCzMxMFBQUYOzYsa3Zqmqae4xefPFFeHl5ITExsS3aVFVzj1FlZSX8/f3h5+eHmJgY5Ofnt0W7qmjOMfr4448RHh6OOXPmwNvbG3fddRdeffVV1NbWtlXbbaolfl+/8847ePDBB+Hq6tpabaqCYawdKy0tRW1tLby9vW3Gvb29UVxcrFJX7UtLHKP58+ejV69eNr8gOovmHh+z2Yzu3btDq9Vi0qRJWLlyJe67777WblcVzTlG+/btwzvvvIO1a9e2RYuqa84xCg4OxrvvvoutW7figw8+gNVqxciRI/Hdd9+1RcttrjnH6Ouvv8bmzZtRW1uLHTt2YNGiRfjLX/6Cl19+uS1abnO3+/v60KFDyMvLw6xZs1qrRdU4qd0AkZpSUlKQlpaGPXv2dImbi5uqR48eOHr0KCorK5GZmYl58+ahT58+GDdunNqtqa6iogLx8fFYu3YtPD091W6n3QoPD0d4eLjyeuTIkRg4cCDWrFmDl156ScXO2g+r1QovLy+8/fbbcHR0xPDhw3H+/HksXboUSUlJarfX7rzzzjsICQlBaGio2q20OIaxdszT0xOOjo4oKSmxGS8pKYHJZFKpq/bldo7RsmXLkJKSgs8//xyDBw9uzTZV09zj4+DggH79+gEAhg4dipMnTyI5OblThjF7j9GZM2dw9uxZTJ48WRmzWq0AACcnJxQUFKBv376t23Qba4nfRc7Ozhg2bBhOnz7dGi2qrjnHyMfHB87OznB0dFTGBg4ciOLiYly7dg1arbZVe25rt/P36MqVK0hLS8OLL77Ymi2qhpcp2zGtVovhw4cjMzNTGbNarcjMzLT5H2dX1txjlJqaipdeegmffvopRowY0RatqqKl/g5ZrVbU1NS0Rouqs/cYDRgwAMePH8fRo0eV6Ve/+hXuvfdeHD16FH5+fm3Zfptoib9HtbW1OH78OHx8fFqrTVU15xiNGjUKp0+fVsI8APznP/+Bj49PpwtiwO39Pdq0aRNqamrw8MMPt3ab6lD7EwTUuLS0NNHpdLJ+/Xo5ceKEzJ49W4xGo/IR8fj4eFmwYIFSX1NTI7m5uZKbmys+Pj7y9NNPS25urpw6dUqtXWh19h6jlJQU0Wq1snnzZpuPTFdUVKi1C63K3uPz6quvys6dO+XMmTNy4sQJWbZsmTg5OcnatWvV2oVWZ+8x+qmu8GlKe4/RCy+8IJ999pmcOXNGcnJy5MEHHxS9Xi/5+flq7UKrs/cYffvtt9KjRw954oknpKCgQLZt2yZeXl7y8ssvq7ULra65/9ZGjx4t06ZNa+t22wzDWAewcuVK6d27t2i1WgkNDZWDBw8q8yIiIiQhIUF5XVhYKADqTREREW3feBuy5xj5+/s3eIySkpLavvE2Ys/xee6556Rfv36i1+vF3d1dwsPDJS0tTYWu25Y9x+inukIYE7HvGD355JNKrbe3t9x///1y5MgRFbpuW/b+PTpw4ICEhYWJTqeTPn36yCuvvCI3btxo467blr3H6KuvvhIAsnPnzjbutO1oRERUOilHRERE1OXxnjEiIiIiFTGMEREREamIYYyIiIhIRQxjRERERCpiGCMiIiJSEcMYERERkYoYxoiIiIhUxDBGREQAgBkzZiA2NlbtNoi6HIYxImr3ZsyYAY1Go0x33HEHoqOjcezYMbVbaxE/3re6afTo0a22vbNnz0Kj0eDo0aM243/961+xfv36VtsuETWMYYyIOoTo6GgUFRWhqKgImZmZcHJywi9/+Uu122ox69atU/avqKgIH3/8cYN1169fb7UeDAYDjEZjq62fiBrGMEZEHYJOp4PJZILJZMLQoUOxYMECnDt3DpcuXcIvfvELPPHEEzb1ly5dglarRWZmJgAgICAAL730EuLi4uDq6gpfX1+sWrXKZpnXX38dISEhcHV1hZ+fHx5//HFUVlYq87/55htMnjwZ7u7ucHV1xaBBg7Bjxw4AwPfff4/p06ejZ8+ecHFxQf/+/bFu3bom75/RaFT2z2QywcPDQzmDlZ6ejoiICOj1evzjH//A5cuXERcXB19fX3Tr1g0hISHYsGGDzfqsVitSU1PRr18/6HQ69O7dG6+88goAIDAwEAAwbNgwaDQajBs3DkD9y5Q1NTWYO3cuvLy8oNfrMXr0aBw+fFiZv2fPHmg0GmRmZmLEiBHo1q0bRo4ciYKCgibvNxExjBFRB1RZWYkPPvgA/fr1wx133IFZs2bhww8/RE1NjVLzwQcfwNfXF7/4xS+UsaVLl2LIkCHIzc3FggUL8Mc//hEZGRnKfAcHB6xYsQL5+fl47733sGvXLjz77LPK/Dlz5qCmpgZ79+7F8ePH8dprr6F79+4AgEWLFuHEiRP45JNPcPLkSbz11lvw9PRskf2t6/XkyZOIiorC1atXMXz4cGzfvh15eXmYPXs24uPjcejQIWWZhQsXIiUlRenrww8/hLe3NwAodZ9//jmKioqwZcuWBrf77LPP4qOPPsJ7772HI0eOoF+/foiKikJZWZlN3XPPPYe//OUv+OKLL+Dk5IT/+q//apH9Juoy1P6mciKiW0lISBBHR0dxdXUVV1dXASA+Pj6Sk5MjIiLV1dXi7u4u6enpyjKDBw+WJUuWKK/9/f0lOjraZr3Tpk2TiRMn3nS7mzZtkjvuuEN5HRISYrPOH5s8ebLMnDmzWfsHQPR6vbJ/rq6u8s9//lMKCwsFgCxfvvyW65g0aZI89dRTIiJisVhEp9PJ2rVrG6ytW29ubq7NeEJCgsTExIiISGVlpTg7O8s//vEPZf61a9ekV69ekpqaKiIiu3fvFgDy+eefKzXbt28XAFJdXW3PISDq0nhmjIg6hHvvvRdHjx7F0aNHcejQIURFRWHixIn45ptvoNfrER8fj3fffRcAcOTIEeTl5WHGjBk26wgPD6/3+uTJk8rrzz//HOPHj4evry969OiB+Ph4XL58GVVVVQCAuXPn4uWXX8aoUaOQlJRk8wGCxx57DGlpaRg6dCieffZZHDhwwK79e+ONN5T9O3r0KO677z5l3ogRI2xqa2tr8dJLLyEkJAQeHh7o3r07PvvsM3z77bcAgJMnT6Kmpgbjx4+3q4cfO3PmDK5fv45Ro0YpY87OzggNDbU5ZgAwePBg5c8+Pj4AgIsXLzZ720RdDcMYEXUIrq6u6NevH/r164d77rkHf//733HlyhWsXbsWADBr1ixkZGTgu+++w7p16/CLX/wC/v7+TV7/2bNn8ctf/hKDBw/GRx99hJycHOWesmvXrinb+PrrrxEfH4/jx49jxIgRWLlyJQAowfBPf/oTLly4gPHjx+Ppp59u8vZNJpOyf/369YOrq6vNvv/Y0qVL8de//hXz58/H7t27cfToUURFRSl9uri4NHm7LcHZ2Vn5s0ajAfDDPWtE1DQMY0TUIWk0Gjg4OKC6uhoAEBISghEjRmDt2rX48MMPG7xv6eDBg/VeDxw4EACQk5MDq9WKv/zlL/j5z3+OoKAgXLhwod46/Pz88Pvf/x5btmzBU089pYRBAOjZsycSEhLwwQcfYPny5Xj77bdbcpcV+/fvR0xMDB5++GEMGTIEffr0wX/+8x9lfv/+/eHi4qJ8eOGntFotgB/OsN1M3759odVqsX//fmXs+vXrOHz4MO68884W2hMiAgAntRsgImqKmpoaFBcXA/jhk4t/+9vfUFlZicmTJys1s2bNwhNPPAFXV1c88MAD9daxf/9+pKamIjY2FhkZGdi0aRO2b98OAOjXrx+uX7+OlStXYvLkydi/fz9Wr15ts/yTTz6JiRMnIigoCN9//z12796thLnFixdj+PDhGDRoEGpqarBt2zZlXkvr378/Nm/ejAMHDsDd3R2vv/46SkpKlJCk1+sxf/58PPvss9BqtRg1ahQuXbqE/Px8JCYmwsvLCy4uLvj000/xs5/9DHq9HgaDwWYbrq6ueOyxx/DMM8/Aw8MDvXv3RmpqKqqqqpCYmNgq+0XUVfHMGBF1CJ9++il8fHzg4+ODsLAwHD58GJs2bVIeywAAcXFxcHJyQlxcHPR6fb11PPXUU/jiiy8wbNgwvPzyy3j99dcRFRUFABgyZAhef/11vPbaa7jrrrvwj3/8A8nJyTbL19bWYs6cORg4cCCio6MRFBSEN998E8APZ5sWLlyIwYMHY+zYsXB0dERaWlqrHIvnn38ed999N6KiojBu3DiYTKZ6T85ftGgRnnrqKSxevBgDBw7EtGnTlPu4nJycsGLFCqxZswa9evVCTExMg9tJSUnBr3/9a8THx+Puu+/G6dOn8dlnn8Hd3b1V9ouoq9KIiKjdBBFRSzh79iz69u2Lw4cP4+6777aZFxAQgCeffBJPPvmkOs0REd0EL1MSUYd3/fp1XL58Gc8//zx+/vOf1wtiRETtGS9TElGHt3//fvj4+ODw4cP17vNS26uvvoru3bs3OE2cOFHt9oioHeBlSiKiVlRWVlbvifV1XFxc4Ovr28YdEVF7wzBGREREpCJepiQiIiJSEcMYERERkYoYxoiIiIhUxDBGREREpCKGMSIiIiIVMYwRERERqYhhjIiIiEhFDGNEREREKvp/9zNkIZ5uoR4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP5pJREFUeJzt3XtcVVX+//H3AeQq4oWrCqKipomXvCRqimXhJdOcKbPGW2lT6bccu9pUdidtNMtMy0atnEZH03LKMe/1TeznlUlNnTQQSyAohUBEhfX7o69nIvBylMOGfV7Px+M8Hp291977s5fAebf22vs4jDFGAAAANuFldQEAAACViXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADwBJPP/20HA7HRbV1OBx6+umn3VpPYmKiEhMTq+3+AFw8wg3g4RYuXCiHw+F8+fj4qFGjRho9erS+//57q8urdmJjY8v0V3h4uK655hqtWLGiUvZ/4sQJPf3009q0aVOl7A/wRIQbAJKkZ599Vu+9957mzp2r/v37a9GiRerdu7dOnjzpluM98cQTKioqcsu+3a1Dhw5677339N577+mhhx7S0aNHNXToUM2dO/ey933ixAk988wzhBvgMvhYXQCA6qF///7q3LmzJGns2LEKDQ3V1KlTtXLlSt16662VfjwfHx/5+NTMP0GNGjXSH/7wB+f7kSNHKi4uTq+88oruueceCysDIDFyA+AcrrnmGknSoUOHyizfv3+/fv/736t+/fry9/dX586dtXLlyjJtTp8+rWeeeUYtWrSQv7+/GjRooJ49e2rt2rXONhXNuSkuLtaf/vQnhYWFKTg4WDfddJO+++67crWNHj1asbGx5ZZXtM8FCxbo2muvVXh4uPz8/NSmTRvNmTPHpb64kMjISLVu3VppaWnnbffDDz/orrvuUkREhPz9/dW+fXu98847zvXp6ekKCwuTJD3zzDPOS1/unm8E2E3N/N8mAG6Xnp4uSapXr55z2d69e9WjRw81atRIjz32mIKCgvSPf/xDQ4YM0QcffKCbb75Z0i8hIzk5WWPHjlXXrl2Vn5+v7du3a+fOnbr++uvPecyxY8dq0aJFuv3229W9e3dt2LBBAwcOvKzzmDNnjq688krddNNN8vHx0T//+U/dd999Ki0t1fjx4y9r32edPn1aR44cUYMGDc7ZpqioSImJiTp48KAmTJigpk2baunSpRo9erSOHz+uBx54QGFhYZozZ47uvfde3XzzzRo6dKgkqV27dpVSJ+AxDACPtmDBAiPJrFu3zuTk5JgjR46YZcuWmbCwMOPn52eOHDnibHvdddeZ+Ph4c/LkSeey0tJS0717d9OiRQvnsvbt25uBAwee97hTpkwxv/4TlJqaaiSZ++67r0y722+/3UgyU6ZMcS4bNWqUadKkyQX3aYwxJ06cKNcuKSnJNGvWrMyy3r17m969e5+3ZmOMadKkibnhhhtMTk6OycnJMf/+97/NbbfdZiSZ//mf/znn/mbOnGkkmUWLFjmXnTp1yiQkJJjatWub/Px8Y4wxOTk55c4XgGu4LAVAktS3b1+FhYUpOjpav//97xUUFKSVK1eqcePGkqSffvpJGzZs0K233qqff/5Zubm5ys3N1Y8//qikpCR98803zrur6tatq7179+qbb7656OOvWrVKknT//feXWT5x4sTLOq+AgADnf+fl5Sk3N1e9e/fWt99+q7y8vEva55o1axQWFqawsDC1b99eS5cu1YgRIzR16tRzbrNq1SpFRkZq+PDhzmW1atXS/fffr4KCAn322WeXVAuA8jw63Hz++ecaNGiQGjZsKIfDoQ8//NCtxzs7H+DXryuuuMKtxwQu1uzZs7V27VotW7ZMAwYMUG5urvz8/JzrDx48KGOMnnzySecH+9nXlClTJP0yp0T65c6r48ePq2XLloqPj9fDDz+sr7766rzHP3z4sLy8vNS8efMyy1u1anVZ57V582b17dtXQUFBqlu3rsLCwvT4449L0iWHm6uvvlpr167VunXrlJKSotzcXL377rtlgtRvHT58WC1atJCXV9k/u61bt3auB1A5PHrOTWFhodq3b68777zTeW3b3a688kqtW7fO+b6m3i0C++natavzbqkhQ4aoZ8+euv3223XgwAHVrl1bpaWlkqSHHnpISUlJFe4jLi5OktSrVy8dOnRIH330kdasWaO3335br7zyiubOnauxY8dedq3nevhfSUlJmfeHDh3SddddpyuuuEIzZsxQdHS0fH19tWrVKr3yyivOc3JVaGio+vbte0nbAnA/j/5k7d+/v/r373/O9cXFxfrzn/+sv//97zp+/Ljatm2rqVOnXtZTR318fBQZGXnJ2wNVwdvbW8nJyerTp49ef/11PfbYY2rWrJmkXy6lXMwHe/369TVmzBiNGTNGBQUF6tWrl55++ulzhpsmTZqotLRUhw4dKjNac+DAgXJt69Wrp+PHj5db/tvRj3/+858qLi7WypUrFRMT41y+cePGC9Zf2Zo0aaKvvvpKpaWlZUZv9u/f71wvnTu4Abh4Hn1Z6kImTJigLVu2aPHixfrqq690yy23qF+/fi7NI/itb775Rg0bNlSzZs10xx13KCMjoxIrBipPYmKiunbtqpkzZ+rkyZMKDw9XYmKi3nzzTWVmZpZrn5OT4/zvH3/8scy62rVrKy4uTsXFxec83tn/0XjttdfKLJ85c2a5ts2bN1deXl6ZS12ZmZnlnhLs7e0tSTLGOJfl5eVpwYIF56zDXQYMGKCsrCwtWbLEuezMmTOaNWuWateurd69e0uSAgMDJanC8Abg4nj0yM35ZGRkaMGCBcrIyFDDhg0l/TIcv3r1ai1YsEAvvviiy/u8+uqrtXDhQrVq1UqZmZl65plndM0112jPnj0KDg6u7FMALtvDDz+sW265RQsXLtQ999yj2bNnq2fPnoqPj9e4cePUrFkzZWdna8uWLfruu+/073//W5LUpk0bJSYmqlOnTqpfv762b9+uZcuWacKECec8VocOHTR8+HC98cYbysvLU/fu3bV+/XodPHiwXNvbbrtNjz76qG6++Wbdf//9OnHihObMmaOWLVtq586dznY33HCDfH19NWjQIP3xj39UQUGB5s2bp/Dw8AoDmjvdfffdevPNNzV69Gjt2LFDsbGxWrZsmTZv3qyZM2c6/wYEBASoTZs2WrJkiVq2bKn69eurbdu2atu2bZXWC9RoVt+uVV1IMitWrHC+//jjj40kExQUVObl4+Njbr31VmOMMfv27TOSzvt69NFHz3nMY8eOmTp16pi3337b3acHnNPZW8G3bdtWbl1JSYlp3ry5ad68uTlz5owxxphDhw6ZkSNHmsjISFOrVi3TqFEjc+ONN5ply5Y5t3v++edN165dTd26dU1AQIC54oorzAsvvGBOnTrlbFPRbdtFRUXm/vvvNw0aNDBBQUFm0KBB5siRIxXeGr1mzRrTtm1b4+vra1q1amUWLVpU4T5Xrlxp2rVrZ/z9/U1sbKyZOnWqmT9/vpFk0tLSnO1cuRX8Qre5n2t/2dnZZsyYMSY0NNT4+vqa+Ph4s2DBgnLbpqSkmE6dOhlfX19uCwcugcOYX43XejCHw6EVK1ZoyJAhkqQlS5bojjvu0N69e51D22fVrl1bkZGROnXqlL799tvz7rdBgwbOJ45WpEuXLurbt6+Sk5Mv+xwAAACXpc6pY8eOKikp0Q8//OB8DP1v+fr6Xtat3AUFBTp06JBGjBhxyfsAAABleXS4KSgoKHM9Py0tTampqapfv75atmypO+64QyNHjtT06dPVsWNH5eTkaP369WrXrt0lPRL+oYce0qBBg9SkSRMdPXpUU6ZMkbe3d5mHegEAgMvj0ZelNm3apD59+pRbPmrUKC1cuFCnT5/W888/r3fffVfff/+9QkND1a1bNz3zzDOKj493+Xi33XabPv/8c/34448KCwtTz5499cILL5R7aBkAALh0Hh1uAACA/fCcGwAAYCuEGwAAYCseN6G4tLRUR48eVXBwMI85BwCghjDG6Oeff1bDhg3LfQHtb3lcuDl69Kiio6OtLgMAAFyCI0eOqHHjxudt43Hh5uwjzo8cOaI6depYXA0AALgY+fn5io6OvqivK/K4cHP2UlSdOnUINwAA1DAXM6WECcUAAMBWCDcAAMBWCDcAAMBWPG7ODQAAlaG0tFSnTp2yugxb8fX1veBt3heDcAMAgItOnTqltLQ0lZaWWl2KrXh5ealp06by9fW9rP0QbgAAcIExRpmZmfL29lZ0dHSljDTgvw/ZzczMVExMzGU9aJdwAwCAC86cOaMTJ06oYcOGCgwMtLocWwkLC9PRo0d15swZ1apV65L3Q9wEAMAFJSUlknTZl05Q3tk+PdvHl4pwAwDAJeD7CStfZfUp4QYAANgK4QYAANgK4QaAR8rMK1LKoVxl5hVZXQpQpbKysvQ///M/atasmfz8/BQdHa1BgwZp/fr1kqQ//vGPat68uQICAhQWFqbBgwdr//79zu3T09PlcDiUmppabt+JiYmaOHGi831BQYEmTJigxo0bKyAgQG3atNHcuXPdfYrcLQXA8yzZlqHJy3er1EheDil5aLyGdYmxuizA7dLT09WjRw/VrVtXL7/8suLj43X69Gl9+umnGj9+vPbv369OnTrpjjvuUExMjH766Sc9/fTTuuGGG5SWliZvb2+Xjjdp0iRt2LBBixYtUmxsrNasWaP77rtPDRs21E033eSmsyTcAPAwmXlFzmAjSaVGenz5HvVqGaaokABriwPc7L777pPD4dDWrVsVFBTkXH7llVfqzjvvlCTdfffdzuWxsbF6/vnn1b59e6Wnp6t58+YuHS8lJUWjRo1SYmKic99vvvmmtm7d6tZww2UpAB4lLbfQGWzOKjFG6bknrCkIHq0qL4/+9NNPWr16tcaPH18m2JxVt27dcssKCwu1YMECNW3aVNHR0S4fs3v37lq5cqW+//57GWO0ceNG/ec//9ENN9xwKadw0Ri5AeBRmoYGycuhMgHH2+FQbCgPY0PVqurLowcPHpQxRldcccUF277xxht65JFHVFhYqFatWmnt2rXlnuvTvXv3ck9nLioqUocOHZzvZ82apbvvvluNGzeWj4+PvLy8NG/ePPXq1atSzulcGLkB4FGiQgKUPDRe3v/3PA1vh0MvDm3LJSlUqXNdHnXnCI4x5sKN/s8dd9yhXbt26bPPPlPLli1166236uTJk2XaLFmyRKmpqWVenTt3LtNm1qxZ+vLLL7Vy5Urt2LFD06dP1/jx47Vu3bpKOadzYeQGgMcZ1iVGvVqGKT33hGJDAwk2qHLnuzzqrp/HFi1ayOFwlLnz6VxCQkIUEhKiFi1aqFu3bqpXr55WrFih4cOHO9tER0crLi6uzHYBAf+tvaioSI8//rhWrFihgQMHSpLatWun1NRU/eUvf1Hfvn0r6czKY+QGgEeKCglQQvMGBBtY4uzl0V9z9+XR+vXrKykpSbNnz1ZhYWG59cePH69wO2OMjDEqLi526XinT5/W6dOny1268vb2dvu3qRNuAACoYlZdHp09e7ZKSkrUtWtXffDBB/rmm2+0b98+vfbaa0pISNC3336r5ORk7dixQxkZGUpJSdEtt9yigIAADRgwwKVj1alTR71799bDDz+sTZs2KS0tTQsXLtS7776rm2++2U1n+AtLL0slJydr+fLl2r9/vwICAtS9e3dNnTpVrVq1Ouc2Cxcu1JgxY8os8/PzK3ctEACA6syKy6PNmjXTzp079cILL+jBBx9UZmamwsLC1KlTJ82ZM0f+/v763//9X82cOVPHjh1TRESEevXqpZSUFIWHh7t8vMWLF2vy5Mm644479NNPP6lJkyZ64YUXdM8997jh7P7LYVyZYVTJ+vXrp9tuu01dunTRmTNn9Pjjj2vPnj36+uuvK7xNTfol3DzwwAM6cOCAc5nD4VBERMRFHTM/P18hISHKy8tTnTp1KuU8AACe4+TJk0pLS1PTpk3l7+9vdTm2cr6+deXz29KRm9WrV5d5v3DhQoWHh2vHjh3nvU3M4XAoMjLS3eUBAIAaqFrNucnLy5P0y6Sn8ykoKFCTJk0UHR2twYMHa+/evedsW1xcrPz8/DIvAABgX9Um3JSWlmrixInq0aOH2rZte852rVq10vz58/XRRx9p0aJFKi0tVffu3fXdd99V2D45Odl5S1tISMglPWERAADUHJbOufm1e++9V//617/0xRdfqHHjxhe93enTp9W6dWsNHz5czz33XLn1xcXFZW5fy8/PV3R0NHNuAACXhDk37mOLOTdnTZgwQR9//LE+//xzl4KNJNWqVUsdO3bUwYMHK1zv5+cnPz+/yigTAACnajI2YCuV1aeWXpYyxmjChAlasWKFNmzYoKZNm7q8j5KSEu3evVtRUVFuqBAAgLK8vb0lSadOnbK4Evs526dn+/hSWTpyM378eL3//vv66KOPFBwcrKysLEm/PPb57COcR44cqUaNGik5OVmS9Oyzz6pbt26Ki4vT8ePH9fLLL+vw4cMaO3asZecBAPAcPj4+CgwMVE5OjmrVqlXuCby4NKWlpcrJyVFgYKB8fC4vnlgabubMmSNJSkxMLLN8wYIFGj16tCQpIyOjzA/OsWPHNG7cOGVlZalevXrq1KmTUlJS1KZNm6oqGwDgwRwOh6KiopSWlqbDhw9bXY6teHl5KSYmRg6H48KNz6PaTCiuKjzEDwBQGUpLS7k0Vcl8fX3PORJW4yYUAwBQ03h5eXG3VDXFhUIAAGArhBsAAGArhBtUusy8IqUcylVmXpHVpQAAPBBzblCplmzL0OTlu1VqJC+HlDw0XsO6xFhdFgDAgzByg0qTmVfkDDaSVGqkx5fvYQQHAFClCDeoNGm5hc5gc1aJMUrPPWFNQQAAj0S4QaVpGhokr988d8nb4VBsaKA1BQEAPBLhBpUmKiRAyUPj5f1/T5b0djj04tC2igoJsLgyAIAnYUKxB8vMK1JabqGahgZVWgAZ1iVGvVqGKT33hGJDAwk2AIAqR7jxUO68qykqJIBQAwCwDJelPBB3NQEA7Ixw44G4qwkAYGeEGw/EXU0AADsj3Hgg7moCANgZE4o9FHc1AQDsinDjwbirCQBgR1yWAgAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4qUSZeUVKOZSrzLwiq0sBAMBj+VhdgF0s2Zahyct3q9RIXg4peWi8hnWJsbosAAA8DiM3lSAzr8gZbCSp1EiPL9/DCA4AABYg3FSCtNxCZ7A5q8QYpeeesKYgAAA8GOGmEjQNDZKXo+wyb4dDsaGB1hQEAIAHI9xUgqiQACUPjZe345eE4+1w6MWhbRUVEmBxZQAAeB4mFFeSYV1i1KtlmNJzTyg2NJBgAwCARQg3lSgqJIBQAwCAxbgsBQAAbMXScJOcnKwuXbooODhY4eHhGjJkiA4cOHDB7ZYuXaorrrhC/v7+io+P16pVq6qgWgAAUBNYGm4+++wzjR8/Xl9++aXWrl2r06dP64YbblBhYeE5t0lJSdHw4cN11113adeuXRoyZIiGDBmiPXv2VGHlAACgunIYY8yFm1WNnJwchYeH67PPPlOvXr0qbDNs2DAVFhbq448/di7r1q2bOnTooLlz517wGPn5+QoJCVFeXp7q1KlTabUDAAD3ceXzu1rNucnLy5Mk1a9f/5xttmzZor59+5ZZlpSUpC1btri1NnguvjMMAGqWanO3VGlpqSZOnKgePXqobdu252yXlZWliIiIMssiIiKUlZVVYfvi4mIVFxc73+fn51dOwfAIfGcYANQ81WbkZvz48dqzZ48WL15cqftNTk5WSEiI8xUdHV2p+4d98Z1hAFAzVYtwM2HCBH388cfauHGjGjdufN62kZGRys7OLrMsOztbkZGRFbafPHmy8vLynK8jR45UWt2wN74zDABqJkvDjTFGEyZM0IoVK7RhwwY1bdr0gtskJCRo/fr1ZZatXbtWCQkJFbb38/NTnTp1yryAi8F3hgFAzWRpuBk/frwWLVqk999/X8HBwcrKylJWVpaKiv477D9y5EhNnjzZ+f6BBx7Q6tWrNX36dO3fv19PP/20tm/frgkTJlhxCrAxvjMMAGomS28FdzgcFS5fsGCBRo8eLUlKTExUbGysFi5c6Fy/dOlSPfHEE0pPT1eLFi00bdo0DRgw4KKOya3gcFVmXhHfGQYAFnPl87taPeemKhBuAACoeWrsc24AAAAuF+EGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAKqJzLwipRzK5ZvngcvkY3UBAABpybYMTV6+W6VG8nJIyUPjNaxLjNVlATUSIzcAYLHMvCJnsJGkUiM9vnwPIzjAJSLcAIDF0nILncHmrBJjlJ57wpqCgBqOcAMAFmsaGiQvR9ll3g6HYkMDrSkIqOEINwBgsaiQACUPjZe345eE4+1w6MWhbRUVEmBxZUDNxIRiAKgGhnWJUa+WYUrPPaHY0ECCDXAZCDcAUE1EhQQQaoBKwGUpAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK5aGm88//1yDBg1Sw4YN5XA49OGHH563/aZNm+RwOMq9srKyqqZgAABQ7VkabgoLC9W+fXvNnj3bpe0OHDigzMxM5ys8PNxNFQIAgJrGx8qD9+/fX/3793d5u/DwcNWtW7fyCwIAADVejZxz06FDB0VFRen666/X5s2bz9u2uLhY+fn5ZV4AAMC+alS4iYqK0ty5c/XBBx/ogw8+UHR0tBITE7Vz585zbpOcnKyQkBDnKzo6ugorBgAAVc1hjDFWFyFJDodDK1as0JAhQ1zarnfv3oqJidF7771X4fri4mIVFxc73+fn5ys6Olp5eXmqU6fO5ZQMAACqSH5+vkJCQi7q89vSOTeVoWvXrvriiy/Oud7Pz09+fn5VWBEAALBSjbosVZHU1FRFRUVZXQYAAKgmLB25KSgo0MGDB53v09LSlJqaqvr16ysmJkaTJ0/W999/r3fffVeSNHPmTDVt2lRXXnmlTp48qbffflsbNmzQmjVrrDoFAABQzVgabrZv364+ffo430+aNEmSNGrUKC1cuFCZmZnKyMhwrj916pQefPBBff/99woMDFS7du20bt26MvsAAACerdpMKK4qrkxIAgAA1YMrn981fs4NAADArxFuAACArRBuAACArRBuAACArbgcbj7++GM99dRTzu902rBhgwYMGKB+/frprbfeqvQCAQAAXOFSuHnzzTd18803a9WqVRowYIAWLVqkIUOGqFGjRoqNjdXEiRP16quvuqtWAACAC3LpOTevvfaa3njjDY0bN04bN27UgAEDNH36dN13332SpG7dumnatGl64IEH3FIsAADAhbg0cpOWlqakpCRJUp8+fVRSUqJevXo51ycmJurw4cOVWyEAAIALXAo3DRo0cIaXo0eP6syZM2WeIHz48GHVr1+/cisEAABwgUuXpQYPHqy77rpLo0aN0sqVKzVy5Eg9+OCD8vLyksPh0MMPP6wbbrjBXbUCAABckEvhZurUqTp16pQWL16s7t27a9asWXrttdc0ePBgnT59Wr1791ZycrK7agUAALigSvluqZMnT+r06dMKDg6ujJrciu+WAgCg5nHl87tSvhXc399f/v7+lbErAACAy+JSuJk0adJFtZsxY8YlFQMAAHC5XAo3u3btKvP+iy++UKdOnRQQEOBc5nA4KqcyAACAS+BSuNm4cWOZ98HBwXr//ffVrFmzSi0KAADgUvHFmQAAwFYINwAAwFYINwAAwFZcmnPz1VdflXlvjNH+/ftVUFBQZnm7du0uvzIAAIBL4NJD/M5+zUJFm5xd7nA4VFJSUqlFViYe4gcAQM3jtof4paWlXVZhAAAA7uZSuGnSpIm76gAAAKgULk8oNsYoLS1NZ86ckSSdOnVKS5Ys0bvvvqvc3NxKLxAAAMAVLo3cHDhwQElJSTpy5IiaNWumNWvW6JZbbtH+/ftljFFgYKBSUlLUokULd9ULAABwXi6N3Dz66KNq3769UlNTdeONN2rgwIFq3Lixjh07pp9++kkJCQl69tln3VUrAADABbl0t1R4eLjWrFmjDh06qLCwUMHBwfr888/Vs2dPSVJKSoqGDx+uw4cPu63gy8XdUgAA1DyufH67NHJTUFCg+vXrS5KCgoIUFBSkqKgo5/ro6GhlZ2dfQskAAACVw6Vw07BhQ2VkZDjfT5s2TeHh4c73OTk5qlevXuVVBwAA4CKXwk3fvn21f/9+5/t7771XwcHBzvdr1qzRVVddVXnVAQDwG5l5RUo5lKvMvCKrS0E15dKcmwtJT0+Xn59fmUtV1Q1zbgCg5lqyLUOTl+9WqZG8HFLy0HgN6xJjdVmoAm6bc7Nhwwa1adNG+fn55dbl5eVp4MCBOnjwoGvVAgBwETLzipzBRpJKjfT48j2M4KAcl8LNzJkzNW7cuAoTU0hIiP74xz9qxowZlVYcAABnpeUWOoPNWSXGKD33hDUFodpyKdz8+9//Vr9+/c65/oYbbtCOHTsuuygAAH6raWiQvBxll3k7HIoNDbSmIFRbLoWb7Oxs1apV65zrfXx8lJOTc9lFAQDwW1EhAUoeGi9vxy8Jx9vh0ItD2yoqJMDiylDduPT1C40aNdKePXsUFxdX4fqvvvqqWk8mBgDUbMO6xKhXyzCl555QbGggwQYVcmnkZsCAAXryySd18uTJcuuKioo0ZcoU3XjjjZVWHAAAvxUVEqCE5g0INjgnl24Fz87O1lVXXSVvb29NmDBBrVq1kiTt379fs2fPVklJiXbu3KmIiAi3FXy5uBUcAICax5XPb5cuS0VERCglJUX33nuvJk+erLO5yOFwKCkpSbNnz67WwQYAANifS+FGkpo0aaJVq1bp2LFjOnjwoIwxatGiBV+7AAAAqgWXw81Z9erVU5cuXSqzFgAAgMvm0oRiAACA6o5wAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbMXScPP5559r0KBBatiwoRwOhz788MMLbrNp0yZdddVV8vPzU1xcnBYuXOj2OgEAQM1habgpLCxU+/btNXv27Itqn5aWpoEDB6pPnz5KTU3VxIkTNXbsWH366adurhQAANQUPlYevH///urfv/9Ft587d66aNm2q6dOnS5Jat26tL774Qq+88oqSkpLcVSYAoJJl5hUpLbdQTUODFBUSYHU5sBlLw42rtmzZor59+5ZZlpSUpIkTJ1pTEADAZUu2ZWjy8t0qNZKXQ0oeGq9hXWKsLgs2UqMmFGdlZSkiIqLMsoiICOXn56uoqKjCbYqLi5Wfn1/mBQCwRmZekTPYSFKpkR5fvkeZeRX/DQcuRY0KN5ciOTlZISEhzld0dLTVJQGAx0rLLXQGm7NKjFF67glrCoIt1ahwExkZqezs7DLLsrOzVadOHQUEVHzNdvLkycrLy3O+jhw5UhWlAgAq0DQ0SF6Ossu8HQ7FhgZaUxBsqUaFm4SEBK1fv77MsrVr1yohIeGc2/j5+alOnTplXgAAa0SFBCh5aLy8Hb8kHG+HQy8ObcukYlQqSycUFxQU6ODBg873aWlpSk1NVf369RUTE6PJkyfr+++/17vvvitJuueee/T666/rkUce0Z133qkNGzboH//4hz755BOrTgEA4KJhXWLUq2WY0nNPKDY0kGCDSmdpuNm+fbv69OnjfD9p0iRJ0qhRo7Rw4UJlZmYqIyPDub5p06b65JNP9Kc//UmvvvqqGjdurLfffpvbwAGghokKCSDUwG0cxhhz4Wb2kZ+fr5CQEOXl5XGJCgCAGsKVz+8aNecGAADgQgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADgomXmFSnlUK4y84qsLuWcfKwuAAAA1AxLtmVo8vLdKjWSl0NKHhqvYV1irC6rHEZuAADABWXmFTmDjSSVGunx5Xuq5QgO4QYAAFxQWm6hM9icVWKM0nNPWFPQeRBuAADABTUNDZKXo+wyb4dDsaGB1hR0HoQbAABwQVEhAUoeGi9vxy8Jx9vh0ItD2yoqJMDiyspjQjEAALgow7rEqFfLMKXnnlBsaGC1DDYS4QYAALggKiSg2oaas7gsBQAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbKVahJvZs2crNjZW/v7+uvrqq7V169Zztl24cKEcDkeZl7+/fxVWCwAAqjPLw82SJUs0adIkTZkyRTt37lT79u2VlJSkH3744Zzb1KlTR5mZmc7X4cOHq7BiAABQnVkebmbMmKFx48ZpzJgxatOmjebOnavAwEDNnz//nNs4HA5FRkY6XxEREVVYMQAAqM4sDTenTp3Sjh071LdvX+cyLy8v9e3bV1u2bDnndgUFBWrSpImio6M1ePBg7d2795xti4uLlZ+fX+YFAADsy9Jwk5ubq5KSknIjLxEREcrKyqpwm1atWmn+/Pn66KOPtGjRIpWWlqp79+767rvvKmyfnJyskJAQ5ys6OrrSzwMAAFQfll+WclVCQoJGjhypDh06qHfv3lq+fLnCwsL05ptvVth+8uTJysvLc76OHDlSxRUDAICq5GPlwUNDQ+Xt7a3s7Owyy7OzsxUZGXlR+6hVq5Y6duyogwcPVrjez89Pfn5+l10rAACoGSwdufH19VWnTp20fv1657LS0lKtX79eCQkJF7WPkpIS7d69W1FRUe4qEwAA1CCWjtxI0qRJkzRq1Ch17txZXbt21cyZM1VYWKgxY8ZIkkaOHKlGjRopOTlZkvTss8+qW7duiouL0/Hjx/Xyyy/r8OHDGjt2rJWnAQAAqgnLw82wYcOUk5Ojp556SllZWerQoYNWr17tnGSckZEhL6//DjAdO3ZM48aNU1ZWlurVq6dOnTopJSVFbdq0seoUAKBSZOYVKS23UE1DgxQVEmB1Oagi/LtXPocxxlhdRFXKz89XSEiI8vLyVKdOHavLAQBJ0pJtGZq8fLdKjeTlkJKHxmtYlxiry4Kb8e9+8Vz5/K5xd0sBgN1k5hU5P+AkqdRIjy/fo8y8ImsLg1vx7+4+hBsAsFhabqHzA+6sEmOUnnvCmoJQJfh3dx/CDQBYrGlokLwcZZd5OxyKDQ20piBUCXf/u2fmFSnlUK5HjgQRbgDAYlEhAUoeGi9vxy+fdN4Oh14c2pbJpTbnzn/3Jdsy1OOlDbp93v9Tj5c2aMm2jMveZ03ChGIAqCYy84qUnntCsaGBBBsPUtn/7pl5Rerx0oYyl7y8HQ598VifGv1z5crnt+W3ggMAfhEVElCjP3xwaSr73/18c3k85eeLy1IAANgIc7gINwAA2ApzuLgsBQCA7QzrEqNeLcM8dg4X4QYAABvy5DlcXJYCAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBUK1l5hUp5VCuMvOKrC4FQA3BQ/wAVFtLtmVo8vLdKjWSl0NKHhqvYV1irC4LQDXHyA2Aaikzr8gZbCSp1EiPL9/DCA6ACyLcAKiW0nILncHmrBJjlJ57wpqCUGNwKRNclgJQLTUNDZKXQ2UCjrfDodjQQOuKQrXHpUxIjNwAqKaiQgKUPDRe3g6HpF+CzYtD23rsFwHiwriUibMYuQFQbQ3rEqNeLcOUnntCsaGBBBuc1/kuZfKz41kINwCqtaiQAD6YcFG4lImzuCwFALAFLmXiLEZuAAC2waVMSIQbAIDNcCkTXJYCAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBUKNl5hUp5VCuMvOKrC4FgKrH7yRfvwCgxlqyLUOTl+9WqZG8HFLy0HgN6xJjdVmAx6ouv5OM3ACokTLzipx/RCWp1EiPL9/DCA5gker0O0m4AVCtnWuIOy230PlH9KwSY5See6IKqwNwVnX6neSyFIBq63xD3E1Dg+TlUJk/pt4Oh2JDAy2qFvBs1el3kpEbANXShYa4o0IClDw0Xt4Oh6Rf/oi+OLStokICrCoZ8GjV6XeSkRsA1dL5hrjP/rEc1iVGvVqGKT33hGJDAwk2gMWqy+8k4QZAtXSxQ9xRIQGEGqAaqQ6/k1yWAlAtVachbgA1CyM3AKqt6jLEDaBmIdwAcLvMvCKl5RaqaWiQywGlOgxxA6hZCDcA3Kq6PLEUgOdgzg0At6lOTywF4DkINwDcpjo9sRSA5yDcAHCbs7dz/xpPEQbgboQbAG7D7dzVx7m+owuwIyYUA3Arbue2HpO64WkYuQHgdlEhAUpo3sAtwYYRifNjUjc8UbUIN7Nnz1ZsbKz8/f119dVXa+vWredtv3TpUl1xxRXy9/dXfHy8Vq1aVUWVAqhOlmzLUI+XNuj2ef9PPV7aoCXbMqwuqdphUjc8keXhZsmSJZo0aZKmTJminTt3qn379kpKStIPP/xQYfuUlBQNHz5cd911l3bt2qUhQ4ZoyJAh2rNnTxVXDsBKjEhcHCZ1wxNZHm5mzJihcePGacyYMWrTpo3mzp2rwMBAzZ8/v8L2r776qvr166eHH35YrVu31nPPPaerrrpKr7/+ehVXDsBKjEhcHCZ1wxNZOqH41KlT2rFjhyZPnuxc5uXlpb59+2rLli0VbrNlyxZNmjSpzLKkpCR9+OGHFbYvLi5WcXGx831+fv7lFw7Achf7reFgUjc8j6UjN7m5uSopKVFERESZ5REREcrKyqpwm6ysLJfaJycnKyQkxPmKjo6unOIBWIoRCde4c1I3UN3Y/lbwyZMnlxnpyc/PJ+AANsGIBICKWBpuQkND5e3trezs7DLLs7OzFRkZWeE2kZGRLrX38/OTn59f5RQMoNrhW8MB/Jall6V8fX3VqVMnrV+/3rmstLRU69evV0JCQoXbJCQklGkvSWvXrj1newAA4Fksvyw1adIkjRo1Sp07d1bXrl01c+ZMFRYWasyYMZKkkSNHqlGjRkpOTpYkPfDAA+rdu7emT5+ugQMHavHixdq+fbveeustK08DAABUE5aHm2HDhiknJ0dPPfWUsrKy1KFDB61evdo5aTgjI0NeXv8dYOrevbvef/99PfHEE3r88cfVokULffjhh2rbtq1VpwAAAKoRhzHGXLiZfeTn5yskJER5eXmqU6eO1eUAAICL4Mrnt+UP8QMAAKhMhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArlj/Er6qdfaxPfn6+xZUAAICLdfZz+2Iez+dx4ebnn3+WJL4ZHACAGujnn39WSEjIedt43BOKS0tLdfToUQUHB8vhcJRbn5+fr+joaB05coQnGJ8DfXRh9NGF0UfnR/9cGH10YXbqI2OMfv75ZzVs2LDM1zJVxONGbry8vNS4ceMLtqtTp06N/0FwN/rowuijC6OPzo/+uTD66MLs0kcXGrE5iwnFAADAVgg3AADAVgg3v+Hn56cpU6bIz8/P6lKqLfrowuijC6OPzo/+uTD66MI8tY88bkIxAACwN0ZuAACArRBuAACArRBuAACArRBuAACArXhkuJk9e7ZiY2Pl7++vq6++Wlu3bj1n27179+p3v/udYmNj5XA4NHPmzKor1EKu9NG8efN0zTXXqF69eqpXr5769u173vZ24UofLV++XJ07d1bdunUVFBSkDh066L333qvCaq3hSh/92uLFi+VwODRkyBD3FmgxV/pn4cKFcjgcZV7+/v5VWK01XP0ZOn78uMaPH6+oqCj5+fmpZcuWWrVqVRVVaw1X+igxMbHcz5HD4dDAgQOrsOIqYDzM4sWLja+vr5k/f77Zu3evGTdunKlbt67Jzs6usP3WrVvNQw89ZP7+97+byMhI88orr1RtwRZwtY9uv/12M3v2bLNr1y6zb98+M3r0aBMSEmK+++67Kq686rjaRxs3bjTLly83X3/9tTl48KCZOXOm8fb2NqtXr67iyquOq310VlpammnUqJG55pprzODBg6umWAu42j8LFiwwderUMZmZmc5XVlZWFVddtVzto+LiYtO5c2czYMAA88UXX5i0tDSzadMmk5qaWsWVVx1X++jHH38s8zO0Z88e4+3tbRYsWFC1hbuZx4Wbrl27mvHjxzvfl5SUmIYNG5rk5OQLbtukSROPCDeX00fGGHPmzBkTHBxs3nnnHXeVaLnL7SNjjOnYsaN54okn3FFetXApfXTmzBnTvXt38/bbb5tRo0bZOty42j8LFiwwISEhVVRd9eBqH82ZM8c0a9bMnDp1qqpKtNzl/i165ZVXTHBwsCkoKHBXiZbwqMtSp06d0o4dO9S3b1/nMi8vL/Xt21dbtmyxsLLqozL66MSJEzp9+rTq16/vrjItdbl9ZIzR+vXrdeDAAfXq1cudpVrmUvvo2WefVXh4uO66666qKNMyl9o/BQUFatKkiaKjozV48GDt3bu3Ksq1xKX00cqVK5WQkKDx48crIiJCbdu21YsvvqiSkpKqKrtKVcbf67/+9a+67bbbFBQU5K4yLeFR4SY3N1clJSWKiIgoszwiIkJZWVkWVVW9VEYfPfroo2rYsGGZXzg7udQ+ysvLU+3ateXr66uBAwdq1qxZuv76691driUupY+++OIL/fWvf9W8efOqokRLXUr/tGrVSvPnz9dHH32kRYsWqbS0VN27d9d3331XFSVXuUvpo2+//VbLli1TSUmJVq1apSeffFLTp0/X888/XxUlV7nL/Xu9detW7dmzR2PHjnVXiZbxuG8Fh3u99NJLWrx4sTZt2uQRkx1dERwcrNTUVBUUFGj9+vWaNGmSmjVrpsTERKtLs9zPP/+sESNGaN68eQoNDbW6nGopISFBCQkJzvfdu3dX69at9eabb+q5556zsLLqo7S0VOHh4Xrrrbfk7e2tTp066fvvv9fLL7+sKVOmWF1etfPXv/5V8fHx6tq1q9WlVDqPCjehoaHy9vZWdnZ2meXZ2dmKjIy0qKrq5XL66C9/+YteeuklrVu3Tu3atXNnmZa61D7y8vJSXFycJKlDhw7at2+fkpOTbRluXO2jQ4cOKT09XYMGDXIuKy0tlST5+PjowIEDat68uXuLrkKV8beoVq1a6tixow4ePOiOEi13KX0UFRWlWrVqydvb27msdevWysrK0qlTp+Tr6+vWmqva5fwcFRYWavHixXr22WfdWaJlPOqylK+vrzp16qT169c7l5WWlmr9+vVl/o/Ik11qH02bNk3PPfecVq9erc6dO1dFqZaprJ+j0tJSFRcXu6NEy7naR1dccYV2796t1NRU5+umm25Snz59lJqaqujo6Kos3+0q42eopKREu3fvVlRUlLvKtNSl9FGPHj108OBBZzCWpP/85z+KioqyXbCRLu/naOnSpSouLtYf/vAHd5dpDatnNFe1xYsXGz8/P7Nw4ULz9ddfm7vvvtvUrVvXeUvliBEjzGOPPeZsX1xcbHbt2mV27dploqKizEMPPWR27dplvvnmG6tOwe1c7aOXXnrJ+Pr6mmXLlpW5xfDnn3+26hTcztU+evHFF82aNWvMoUOHzNdff23+8pe/GB8fHzNv3jyrTsHtXO2j37L73VKu9s8zzzxjPv30U3Po0CGzY8cOc9tttxl/f3+zd+9eq07B7Vzto4yMDBMcHGwmTJhgDhw4YD7++GMTHh5unn/+eatOwe0u9fesZ8+eZtiwYVVdbpXxuHBjjDGzZs0yMTExxtfX13Tt2tV8+eWXznW9e/c2o0aNcr5PS0szksq9evfuXfWFVyFX+qhJkyYV9tGUKVOqvvAq5Eof/fnPfzZxcXHG39/f1KtXzyQkJJjFixdbUHXVcqWPfsvu4cYY1/pn4sSJzrYRERFmwIABZufOnRZUXbVc/RlKSUkxV199tfHz8zPNmjUzL7zwgjlz5kwVV121XO2j/fv3G0lmzZo1VVxp1XEYY4xFg0YAAACVzqPm3AAAAPsj3AAAAFsh3AAAAFsh3AAAAFsh3AAAAFsh3AAAAFsh3AAAAFsh3ACAG40ePVpDhgyxugzAoxBuAA81evRoORwO56tBgwbq16+fvvrqK6tLqxS/Prezr549e7rteOnp6XI4HEpNTS2z/NVXX9XChQvddlwA5RFuAA/Wr18/ZWZmKjMzU+vXr5ePj49uvPFGq8uqNAsWLHCeX2ZmplauXFlhu9OnT7uthpCQENWtW9dt+wdQHuEG8GB+fn6KjIxUZGSkOnTooMcee0xHjhxRTk6Orr32Wk2YMKFM+5ycHPn6+jq/hTg2NlbPPfechg8frqCgIDVq1EizZ88us82MGTMUHx+voKAgRUdH67777lNBQYFz/eHDhzVo0CDVq1dPQUFBuvLKK7Vq1SpJ0rFjx3THHXcoLCxMAQEBatGihRYsWHDR51e3bl3n+UVGRqp+/frOEZYlS5aod+/e8vf319/+9jf9+OOPGj58uBo1aqTAwEDFx8fr73//e5n9lZaWatq0aYqLi5Ofn59iYmL0wgsvSJKaNm0qSerYsaMcDocSExMllb8sVVxcrPvvv1/h4eHy9/dXz549tW3bNuf6TZs2yeFwaP369ercubMCAwPVvXt3HThw4KLPG/B0hBsAkqSCggItWrRIcXFxatCggcaOHav3339fxcXFzjaLFi1So0aNdO211zqXvfzyy2rfvr127dqlxx57TA888IDWrl3rXO/l5aXXXntNe/fu1TvvvKMNGzbokUceca4fP368iouL9fnnn2v37t2aOnWqateuLUl68skn9fXXX+tf//qX9u3bpzlz5ig0NLRSzvdsrfv27VNSUpJOnjypTp066ZNPPtGePXt09913a8SIEdq6datzm8mTJ+ull15y1vX+++8rIiJCkpzt1q1bp8zMTC1fvrzC4z7yyCP64IMP9M4772jnzp2Ki4tTUlKSfvrppzLt/vznP2v69Onavn27fHx8dOedd1bKeQMewepv7gRgjVGjRhlvb28TFBRkgoKCjCQTFRVlduzYYYwxpqioyNSrV88sWbLEuU27du3M008/7XzfpEkT069fvzL7HTZsmOnfv/85j7t06VLToEED5/v4+Pgy+/y1QYMGmTFjxlzS+Uky/v7+zvMLCgoyK1asMGlpaUaSmTlz5gX3MXDgQPPggw8aY4zJz883fn5+Zt68eRW2PbvfXbt2lVn+6283LygoMLVq1TJ/+9vfnOtPnTplGjZsaKZNm2aMMWbjxo1Gklm3bp2zzSeffGIkmaKiIle6APBYjNwAHqxPnz5KTU1Vamqqtm7dqqSkJPXv31+HDx+Wv7+/RowYofnz50uSdu7cqT179mj06NFl9pGQkFDu/b59+5zv161bp+uuu06NGjVScHCwRowYoR9//FEnTpyQJN1///16/vnn1aNHD02ZMqXMhOZ7771XixcvVocOHfTII48oJSXFpfN75ZVXnOeXmpqq66+/3rmuc+fOZdqWlJToueeeU3x8vOrXr6/atWvr008/VUZGhiRp3759Ki4u1nXXXedSDb926NAhnT59Wj169HAuq1Wrlrp27VqmzySpXbt2zv+OioqSJP3www+XfGzAkxBuAA8WFBSkuLg4xcXFqUuXLnr77bdVWFioefPmSZLGjh2rtWvX6rvvvtOCBQt07bXXqkmTJhe9//T0dN14441q166dPvjgA+3YscM5J+fUqVPOY3z77bcaMWKEdu/erc6dO2vWrFmS5Axaf/rTn3T06FFdd911euihhy76+JGRkc7zi4uLU1BQUJlz/7WXX35Zr776qh599FFt3LhRqampSkpKctYZEBBw0cetDLVq1XL+t8PhkPTLnB8AF0a4AeDkcDjk5eWloqIiSVJ8fLw6d+6sefPm6f33369w3seXX35Z7n3r1q0lSTt27FBpaammT5+ubt26qWXLljp69Gi5fURHR+uee+7R8uXL9eCDDzrDlSSFhYVp1KhRWrRokWbOnKm33nqrMk/ZafPmzRo8eLD+8Ic/qH379mrWrJn+85//ONe3aNFCAQEBzsnUv+Xr6yvplxGgc2nevLl8fX21efNm57LTp09r27ZtatOmTSWdCQAfqwsAYJ3i4mJlZWVJ+uXOpNdff10FBQUaNGiQs83YsWM1YcIEBQUF6eabby63j82bN2vatGkaMmSI1q5dq6VLl+qTTz6RJMXFxen06dOaNWuWBg0apM2bN2vu3Llltp84caL69++vli1b6tixY9q4caMzHD311FPq1KmTrrzyShUXF+vjjz92rqtsLVq00LJly5SSkqJ69eppxowZys7OdoYOf39/Pfroo3rkkUfk6+urHj16KCcnR3v37tVdd92l8PBwBQQEaPXq1WrcuLH8/f0VEhJS5hhBQUG699579fDDD6t+/fqKiYnRtGnTdOLECd11111uOS/AEzFyA3iw1atXKyoqSlFRUbr66qu1bds2LV261HkbsyQNHz5cPj4+Gj58uPz9/cvt48EHH9T27dvVsWNHPf/885oxY4aSkpIkSe3bt9eMGTM0depUtW3bVn/729+UnJxcZvuSkhKNHz9erVu3Vr9+/dSyZUu98cYbkn4ZDZk8ebLatWunXr16ydvbW4sXL3ZLXzzxxBO66qqrlJSUpMTEREVGRpZ7svCTTz6pBx98UE899ZRat26tYcOGOefB+Pj46LXXXtObb76phg0bavDgwRUe56WXXtLvfvc7jRgxQldddZUOHjyoTz/9VPXq1XPLeQGeyGGMMVYXAaD6Sk9PV/PmzbVt2zZdddVVZdbFxsZq4sSJmjhxojXFAUAFuCwFoEKnT5/Wjz/+qCeeeELdunUrF2wAoLrishSACm3evFlRUVHatm1buXkyVnvxxRdVu3btCl/9+/e3ujwAFuOyFIAa56effir3RN+zAgIC1KhRoyquCEB1QrgBAAC2wmUpAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK/8ff2e7E14ueC0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASQNJREFUeJzt3Xl8FdX9//H3zQ1ZCORCSMiCCWF3IRAMEMMioNGAlEqxFdCyFbQqajFaBasgbkFUxCUFiywuVSiKSpVGIUh5CChrylKkEhMDkgSCkpCFBHLn9wc/7tdrEsh+czOv5+Mxj3rPnJn7mSly3545M2MxDMMQAACAiXi4ugAAAIDGRgACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwAC0GQ98cQTslgs1eprsVj0xBNPNGg9Q4cO1dChQ5vs/gBUHwEIwCWtWLFCFovFsXh6eqpDhw6aPHmyfvjhB1eX1+RERkY6na/27dtr8ODB+vDDD+tl/8XFxXriiSe0adOmetkfYEYEIADV9uSTT+rtt9/W4sWLNWLECL3zzjsaMmSIzpw50yDf99hjj6mkpKRB9t3QoqOj9fbbb+vtt9/WQw89pGPHjmnMmDFavHhxnfddXFysuXPnEoCAOvB0dQEA3MeIESPUt29fSdK0adMUGBio5557TmvXrtWtt95a79/n6ekpT0/3/GuqQ4cO+v3vf+/4PHHiRHXt2lUvvfSS7rrrLhdWBkBiBAhAHQwePFiSlJ6e7tT+zTff6Le//a0CAgLk4+Ojvn37au3atU59zp49q7lz56pbt27y8fFRu3btNGjQIK1fv97Rp7I5QKWlpXrggQcUFBSk1q1b69e//rWOHj1aobbJkycrMjKyQntl+1y+fLmuu+46tW/fXt7e3rryyiu1aNGiGp2LSwkJCdEVV1yhjIyMi/Y7fvy4pk6dquDgYPn4+Kh379568803HeszMzMVFBQkSZo7d67jMltDz38Cmhv3/E8rAE1CZmamJKlt27aOtgMHDmjgwIHq0KGDZs6cKT8/P/3jH//Q6NGj9cEHH+g3v/mNpPNBJCkpSdOmTVP//v1VUFCgnTt3avfu3brhhhuq/M5p06bpnXfe0W233aYBAwZo48aNGjlyZJ2OY9GiRbrqqqv061//Wp6envrnP/+pe+65R3a7XdOnT6/Tvi84e/asjhw5onbt2lXZp6SkREOHDtXhw4d17733qlOnTlq9erUmT56sU6dO6U9/+pOCgoK0aNEi3X333frNb36jMWPGSJJ69epVL3UCpmEAwCUsX77ckGRs2LDBOHHihHHkyBHj/fffN4KCggxvb2/jyJEjjr7XX3+9ERUVZZw5c8bRZrfbjQEDBhjdunVztPXu3dsYOXLkRb93zpw5xs//mkpLSzMkGffcc49Tv9tuu82QZMyZM8fRNmnSJKNjx46X3KdhGEZxcXGFfgkJCUbnzp2d2oYMGWIMGTLkojUbhmF07NjRuPHGG40TJ04YJ06cMP7zn/8Y48aNMyQZ9913X5X7W7hwoSHJeOeddxxtZWVlRlxcnNGqVSujoKDAMAzDOHHiRIXjBVAzXAIDUG3x8fEKCgpSeHi4fvvb38rPz09r167VZZddJkn68ccftXHjRt166606ffq08vLylJeXp5MnTyohIUHffvut466xNm3a6MCBA/r222+r/f3r1q2TJN1///1O7TNmzKjTcfn6+jr+OT8/X3l5eRoyZIi+++475efn12qfn3/+uYKCghQUFKTevXtr9erVmjBhgp577rkqt1m3bp1CQkI0fvx4R1uLFi10//33q7CwUP/+979rVQuAighAl7B582aNGjVKYWFhslgs+uijjxr0+y7MT/j5cvnllzfodwLVlZycrPXr1+v999/XTTfdpLy8PHl7ezvWHz58WIZh6PHHH3f8+F9Y5syZI+n8HBfp/B1lp06dUvfu3RUVFaU///nP2rt370W///vvv5eHh4e6dOni1N6jR486HdeWLVsUHx8vPz8/tWnTRkFBQXr00UclqdYBKDY2VuvXr9eGDRu0detW5eXl6a233nIKW7/0/fffq1u3bvLwcP6r+YorrnCsB1A/mAN0CUVFRerdu7f+8Ic/OK61N7SrrrpKGzZscHx217tg0Pz079/fcRfY6NGjNWjQIN122206dOiQWrVqJbvdLkl66KGHlJCQUOk+unbtKkm69tprlZ6ero8//liff/653njjDb300ktavHixpk2bVudaq3qAYnl5udPn9PR0XX/99br88su1YMEChYeHy8vLS+vWrdNLL73kOKaaCgwMVHx8fK22BdDw+GW9hBEjRmjEiBFVri8tLdVf/vIXvffeezp16pR69uyp5557rk5Pd/X09FRISEittwcag9VqVVJSkoYNG6bXXntNM2fOVOfOnSWdv2xTnR//gIAATZkyRVOmTFFhYaGuvfZaPfHEE1UGoI4dO8putys9Pd1p1OfQoUMV+rZt21anTp2q0P7LUZR//vOfKi0t1dq1axUREeFo/+KLLy5Zf33r2LGj9u7dK7vd7jQK9M033zjWS1WHOwDVxyWwOrr33nu1bds2rVy5Unv37tXvfvc7DR8+vEbzGn7p22+/VVhYmDp37qzbb79dWVlZ9VgxUH+GDh2q/v37a+HChTpz5ozat2+voUOH6vXXX1d2dnaF/idOnHD888mTJ53WtWrVSl27dlVpaWmV33fhP0ZeeeUVp/aFCxdW6NulSxfl5+c7XVbLzs6u8DRmq9UqSTIMw9GWn5+v5cuXV1lHQ7npppuUk5OjVatWOdrOnTunV199Va1atdKQIUMkSS1btpSkSgMegOphBKgOsrKytHz5cmVlZSksLEzS+aH/lJQULV++XM8++2yN9xkbG6sVK1aoR48eys7O1ty5czV48GDt379frVu3ru9DAOrsz3/+s373u99pxYoVuuuuu5ScnKxBgwYpKipKd9xxhzp37qzc3Fxt27ZNR48e1X/+8x9J0pVXXqmhQ4cqJiZGAQEB2rlzp95//33de++9VX5XdHS0xo8fr7/+9a/Kz8/XgAEDlJqaqsOHD1foO27cOD3yyCP6zW9+o/vvv1/FxcVatGiRunfvrt27dzv63XjjjfLy8tKoUaP0xz/+UYWFhVqyZInat29faYhrSHfeeadef/11TZ48Wbt27VJkZKTef/99bdmyRQsXLnT8HeDr66srr7xSq1atUvfu3RUQEKCePXuqZ8+ejVov4NZcfRuaO5FkfPjhh47Pn3zyiSHJ8PPzc1o8PT2NW2+91TAMwzh48KAh6aLLI488UuV3/vTTT4a/v7/xxhtvNPThAVW6cBv8jh07KqwrLy83unTpYnTp0sU4d+6cYRiGkZ6ebkycONEICQkxWrRoYXTo0MH41a9+Zbz//vuO7Z5++mmjf//+Rps2bQxfX1/j8ssvN5555hmjrKzM0aeyW9ZLSkqM+++/32jXrp3h5+dnjBo1yjhy5Eilt4V//vnnRs+ePQ0vLy+jR48exjvvvFPpPteuXWv06tXL8PHxMSIjI43nnnvOWLZsmSHJyMjIcPSryW3wl7rFv6r95ebmGlOmTDECAwMNLy8vIyoqyli+fHmFbbdu3WrExMQYXl5e3BIP1ILFMH427ouLslgs+vDDDzV69GhJ0qpVq3T77bfrwIEDjmH0C1q1aqWQkBCVlZXpu+++u+h+27Vr53iya2X69eun+Ph4JSUl1fkYAAAAl8DqpE+fPiovL9fx48cdrwT4JS8vrzrdxl5YWKj09HRNmDCh1vsAAADOCECXUFhY6DS/ICMjQ2lpaQoICFD37t11++23a+LEiXrxxRfVp08fnThxQqmpqerVq1etHs//0EMPadSoUerYsaOOHTumOXPmyGq1Oj0YDQAA1A2XwC5h06ZNGjZsWIX2SZMmacWKFTp79qyefvppvfXWW/rhhx8UGBioa665RnPnzlVUVFSNv2/cuHHavHmzTp48qaCgIA0aNEjPPPNMhQe/AQCA2iMAAQAA0+E5QAAAwHQIQAAAwHSYBF0Ju92uY8eOqXXr1jxyHgAAN2EYhk6fPq2wsLAKLxX+JQJQJY4dO6bw8HBXlwEAAGrhyJEjuuyyyy7ax6UBaPPmzXr++ee1a9cuxzt6LjxksDKTJ0/Wm2++WaH9yiuv1IEDByRJTzzxhObOneu0vkePHo6XCVbHhcfNHzlyRP7+/tXeDgAAuE5BQYHCw8Or9eoolwagoqIi9e7dW3/4wx80ZsyYS/Z/+eWXNW/ePMfnc+fOqXfv3vrd737n1O+qq67Shg0bHJ89PWt2mBcue/n7+xOAAABwM9WZvuLSADRixAjH252rw2azyWazOT5/9NFH+umnnzRlyhSnfp6engoJCam3OgEAQPPi1neBLV26VPHx8erYsaNT+7fffquwsDB17txZt99+u7Kysi66n9LSUhUUFDgtAACg+XLbAHTs2DH961//0rRp05zaY2NjtWLFCqWkpGjRokXKyMjQ4MGDdfr06Sr3lZSU5BhdstlsTIAGAKCZazJPgv7lm9YvJSkpSS+++KKOHTsmLy+vKvudOnVKHTt21IIFCzR16tRK+5SWlqq0tNTx+cIkqvz8fOYAAQAqZbfbVVZW5uoyTKVFixayWq1Vri8oKJDNZqvW77db3gZvGIaWLVumCRMmXDT8SFKbNm3UvXt3pxea/pK3t7e8vb3ru0wAQDNVVlamjIwM2e12V5diOm3atFFISEidn9PnlgHo3//+tw4fPlzliM7PFRYWKj09XRMmTGiEygAAzZ1hGMrOzpbValV4ePglH7iH+mEYhoqLi3X8+HFJUmhoaJ3259IAVFhY6DQyk5GRobS0NAUEBCgiIkKzZs3SDz/8oLfeestpu6VLlyo2NlY9e/assM+HHnpIo0aNUseOHXXs2DHNmTNHVqtV48ePb/DjAQA0f+fOnVNxcbHCwsLUsmVLV5djKr6+vpKk48ePq3379he9HHYpLg1AO3fu1LBhwxyfExMTJUmTJk3SihUrlJ2dXeEOrvz8fH3wwQd6+eWXK93n0aNHNX78eJ08eVJBQUEaNGiQvvrqKwUFBTXcgQAATKO8vFySLjkFAw3jQug8e/as+wagoUOH6mJzsFesWFGhzWazqbi4uMptVq5cWR+lAQBwUbwr0jXq67xz4RIAAJgOAQgAAJgOAQgAqpCdX6Kt6XnKzi9xdSlAvcnJydF9992nzp07y9vbW+Hh4Ro1apRSU1Od+hmGoREjRshiseijjz5ytGdmZspisSgtLa3CvocOHaoZM2Y4Pq9Zs0Y33nij2rVrV+U2Z86c0fTp09WuXTu1atVKt9xyi3Jzc+vpaKtGAAKASqzakaWB8zbqtiVfa+C8jVq14+Kv1AHcQWZmpmJiYrRx40Y9//zz2rdvn1JSUjRs2DBNnz7dqe/ChQvrPN+mqKhIgwYN0nPPPVdlnwceeED//Oc/tXr1av373//WsWPHqvWC9Lpyy+cAAUBDys4v0aw1+2T///do2A3p0TX7dW33IIXafF1bHFAH99xzjywWi7Zv3y4/Pz9H+1VXXaU//OEPjs9paWl68cUXtXPnzjo9b+fCM/gyMzMrXZ+fn6+lS5fq3Xff1XXXXSdJWr58ua644gp99dVXuuaaa2r93ZfCCBAA/EJGXpEj/FxQbhjKzKv6DlSgNhrzMuuPP/6olJQUTZ8+3Sn8XNCmTRtJUnFxsW677TYlJycrJCSkQWvatWuXzp49q/j4eEfb5ZdfroiICG3btq1Bv5sRIAD4hU6BfvKwyCkEWS0WRQby0DvUn1U7shwjjR4WKWlMlMb2i2iw7zt8+LAMw9Dll19+0X4PPPCABgwYoJtvvvmi/QYMGFDhKdglJSWKjo6udk05OTny8vJyhK8LgoODlZOTU+391AYBCAB+IdTmq6QxUXp0zX6VG4asFoueHdOTy1+oN664zFqdd5+vXbtWGzdu1J49ey7Zd9WqVbriiiuc2m6//fZa19fYCEAAUImx/SJ0bfcgZeYVKzKwJeEH9epil1kb6s9at27dZLFY9M0331TZZ+PGjUpPT68wInPLLbdo8ODB2rRpk6MtPDxcXbt2dep34VUV1RUSEqKysjKdOnXK6Ttzc3Mb/PIbc4AAoAqhNl/FdWlH+EG9u3CZ9eca+jJrQECAEhISlJycrKKiogrrT506pZkzZ2rv3r1KS0tzLJL00ksvafny5fVeU0xMjFq0aOF0C/6hQ4eUlZWluLi4ev++n2MECACARuaqy6zJyckaOHCg+vfvryeffFK9evXSuXPntH79ei1atEgHDx6sdOQlIiJCnTp1qvH3/fjjj8rKytKxY8cknQ830vmRn5CQENlsNk2dOlWJiYkKCAiQv7+/7rvvPsXFxTXoHWASAQgAAJdwxWXWzp07a/fu3XrmmWf04IMPKjs7W0FBQYqJidGiRYvq/fvWrl2rKVOmOD6PGzdOkjRnzhw98cQTks6PLnl4eOiWW25RaWmpEhIS9Ne//rXea/kli1GdWVEmU1BQIJvNpvz8fPn7+7u6HABAE3LmzBllZGSoU6dO8vHxcXU5pnOx81+T32/mAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAUAvN4R6isnN2FZ45q7JzdleXUm31dd65DR4AgBqwWq2SpLKysho/+bgp+bGoVD/8VCJDkkVSh7a+CvDzdnVZl1RcfP6lxC1atKjTfghAAADUgKenp1q2bKkTJ06oRYsWFV4I6g7Kztl1NK9QF8ZSDElHT5yVp+EnL8+meTyGYai4uFjHjx9XmzZtHEG0tghAAADUgMViUWhoqDIyMvT999+7upxaKT1brhOFZRXa7QVe8m5Rt2DR0Nq0aVMv7wkjAAEAUENeXl7q1q2bysoqhgh3cPz0Gd275Cv9fDqNh8Wiv98Rq/atm+7DHVu0aFHnkZ8LCEAAANSCh4dHoz0JOju/RBl5ReoU6Fcvr8yI8PHRfTdcWeFdZBFBbeperJsgAAEA0ISt2pGlWWv2yW5IHhYpaUyUxvaLqPN+XfEusqakac50AgAAys4vcYQfSbIb0qNr9is7v6Re9h9q81Vcl3amCz8SAQgAgCYrI6/IEX4uKDcMZeYVu6agZoQABABAE9Up0E8eFuc2q8WiyMCWrimoGSEAAQDQRIXafJU0JkpWy/kUdGGyshkvWdU3JkEDANCEmX2yckMhAAEA0MSF2nwJPvWMS2AAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0XBqANm/erFGjRiksLEwWi0UfffTRRftv2rRJFoulwpKTk+PULzk5WZGRkfLx8VFsbKy2b9/egEcBAADcjUsDUFFRkXr37q3k5OQabXfo0CFlZ2c7lvbt2zvWrVq1SomJiZozZ452796t3r17KyEhQcePH6/v8gEAgJty6ctQR4wYoREjRtR4u/bt26tNmzaVrluwYIHuuOMOTZkyRZK0ePFiffrpp1q2bJlmzpxZl3IBAEAz4ZZzgKKjoxUaGqobbrhBW7ZscbSXlZVp165dio+Pd7R5eHgoPj5e27Ztq3J/paWlKigocFoAAEDz5VYBKDQ0VIsXL9YHH3ygDz74QOHh4Ro6dKh2794tScrLy1N5ebmCg4OdtgsODq4wT+jnkpKSZLPZHEt4eHiDHgcAAHAtl14Cq6kePXqoR48ejs8DBgxQenq6XnrpJb399tu13u+sWbOUmJjo+FxQUEAIAgCgGXOrAFSZ/v3768svv5QkBQYGymq1Kjc316lPbm6uQkJCqtyHt7e3vL29G7ROAADQdLjVJbDKpKWlKTQ0VJLk5eWlmJgYpaamOtbb7XalpqYqLi7OVSUCAIAmxqUjQIWFhTp8+LDjc0ZGhtLS0hQQEKCIiAjNmjVLP/zwg9566y1J0sKFC9WpUyddddVVOnPmjN544w1t3LhRn3/+uWMfiYmJmjRpkvr27av+/ftr4cKFKioqctwVBgAA4NIAtHPnTg0bNszx+cI8nEmTJmnFihXKzs5WVlaWY31ZWZkefPBB/fDDD2rZsqV69eqlDRs2OO1j7NixOnHihGbPnq2cnBxFR0crJSWlwsRoAABgXhbDMAxXF9HUFBQUyGazKT8/X/7+/q4uBwAAVENNfr/dfg4QAABATRGAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6bg0AG3evFmjRo1SWFiYLBaLPvroo4v2X7NmjW644QYFBQXJ399fcXFx+uyzz5z6PPHEE7JYLE7L5Zdf3oBHAQAA3I1LA1BRUZF69+6t5OTkavXfvHmzbrjhBq1bt067du3SsGHDNGrUKO3Zs8ep31VXXaXs7GzH8uWXXzZE+QAAwE15uvLLR4wYoREjRlS7/8KFC50+P/vss/r444/1z3/+U3369HG0e3p6KiQkpL7KBAAAzYxbzwGy2+06ffq0AgICnNq//fZbhYWFqXPnzrr99tuVlZV10f2UlpaqoKDAaQEAAM2XWwegF154QYWFhbr11lsdbbGxsVqxYoVSUlK0aNEiZWRkaPDgwTp9+nSV+0lKSpLNZnMs4eHhjVE+AABwEYthGIari5Aki8WiDz/8UKNHj65W/3fffVd33HGHPv74Y8XHx1fZ79SpU+rYsaMWLFigqVOnVtqntLRUpaWljs8FBQUKDw9Xfn6+/P39a3QcAADANQoKCmSz2ar1++3SOUC1tXLlSk2bNk2rV6++aPiRpDZt2qh79+46fPhwlX28vb3l7e1d32UCAIAmyu0ugb333nuaMmWK3nvvPY0cOfKS/QsLC5Wenq7Q0NBGqA4AALgDl44AFRYWOo3MZGRkKC0tTQEBAYqIiNCsWbP0ww8/6K233pJ0/rLXpEmT9PLLLys2NlY5OTmSJF9fX9lsNknSQw89pFGjRqljx446duyY5syZI6vVqvHjxzf+AQIAgCbJpSNAO3fuVJ8+fRy3sCcmJqpPnz6aPXu2JCk7O9vpDq6//e1vOnfunKZPn67Q0FDH8qc//cnR5+jRoxo/frx69OihW2+9Ve3atdNXX32loKCgxj04AADQZDWZSdBNSU0mUQEAgKahJr/fbjcHCAAAoK4IQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQADgRrLzS7Q1PU/Z+SWuLgVwa56uLgAAUD2rdmRp1pp9shuSh0VKGhOlsf0iXF0W4JYYAQIAN5CdX+IIP5JkN6RH1+xnJAioJQIQALiBjLwiR/i5oNwwlJlX7JqCADdHAAIAN9Ap0E8eFuc2q8WiyMCWrikIcHMEIABwA6E2XyWNiZLVcj4FWS0WPTump0Jtvi6uDHBPTIIGADcxtl+Eru0epMy8YkUGtiT8AHVAAAIANxJq8yX4APWAS2AAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0XBqANm/erFGjRiksLEwWi0UfffTRJbfZtGmTrr76anl7e6tr165asWJFhT7JycmKjIyUj4+PYmNjtX379vovHgAAuC2XBqCioiL17t1bycnJ1eqfkZGhkSNHatiwYUpLS9OMGTM0bdo0ffbZZ44+q1atUmJioubMmaPdu3erd+/eSkhI0PHjxxvqMAAAgJuxGIZhuLoISbJYLPrwww81evToKvs88sgj+vTTT7V//35H27hx43Tq1CmlpKRIkmJjY9WvXz+99tprkiS73a7w8HDdd999mjlzZrVqKSgokM1mU35+vvz9/Wt/UAAAoNHU5PfbreYAbdu2TfHx8U5tCQkJ2rZtmySprKxMu3btcurj4eGh+Ph4R5/KlJaWqqCgwGkBAADNl1sFoJycHAUHBzu1BQcHq6CgQCUlJcrLy1N5eXmlfXJycqrcb1JSkmw2m2MJDw9vkPoBAEDT4FYBqKHMmjVL+fn5juXIkSOuLgkAUAfZ+SXamp6n7PwSV5eCJsrT1QXUREhIiHJzc53acnNz5e/vL19fX1mtVlmt1kr7hISEVLlfb29veXt7N0jNAIDGtWpHlmat2Se7IXlYpKQxURrbL8LVZaGJcasRoLi4OKWmpjq1rV+/XnFxcZIkLy8vxcTEOPWx2+1KTU119AEANF/Z+SWO8CNJdkN6dM1+RoJQgUsDUGFhodLS0pSWlibp/G3uaWlpysrKknT+0tTEiRMd/e+66y599913evjhh/XNN9/or3/9q/7xj3/ogQcecPRJTEzUkiVL9Oabb+rgwYO6++67VVRUpClTpjTqsQEAGl9GXpEj/FxQbhjKzCt2TUFoslx6CWznzp0aNmyY43NiYqIkadKkSVqxYoWys7MdYUiSOnXqpE8//VQPPPCAXn75ZV122WV64403lJCQ4OgzduxYnThxQrNnz1ZOTo6io6OVkpJSYWI0AKD56RToJw+LnEKQ1WJRZGBL1xWFJqlWzwHavn27tm3b5rizKiQkRHFxcerfv3+9F+gKPAcIANzXqh1ZenTNfpUbhqwWi54d05M5QCZRk9/vGgWg48eP65ZbbtGWLVsUERHhGFXJzc1VVlaWBg4cqA8++EDt27ev2xG4GAEIANxbdn6JMvOKFRnYUqE2X1eXg0bSYA9CvOeee1ReXq6DBw8qMzNTX3/9tb7++mtlZmbq4MGDstvtmj59ep2KBwCgrkJtvorr0o7wgyrVaASodevW2rx5s/r06VPp+l27dmno0KE6ffp0vRXoCowAAQDgfhpsBMjb2/uir4k4ffo0z9MBAABNXo0C0NixYzVp0iR9+OGHTkGooKBAH374oaZMmaLx48fXe5EAAAD1qUa3wS9YsEB2u13jxo3TuXPn5OXlJen8S0g9PT01depUvfDCCw1SKAAAQH2p1W3wBQUF2rVrl9Nt8DExMc1mvgxzgAAAcD81+f2u1YMQ/f39nR5gCAAA4E7q9VUYubm5evLJJ+tzlwAAAPWuXgNQTk6O5s6dW5+7BAAAqHc1ugS2d+/ei64/dOhQnYoBAABoDDUKQNHR0bJYLKps3vSFdovFUm/FAQAANIQaBaCAgADNnz9f119/faXrDxw4oFGjRtVLYQAAAA2lRgEoJiZGx44dU8eOHStdf+rUqUpHhwAAAJqSGgWgu+66S0VFRVWuj4iI0PLly+tcFAAAQEOq1YMQmzsehAgAgPtpsJehAgDQWLLzS7Q1PU/Z+SWuLgXNUI0ugSUmJlar34IFC2pVDAAAkrRqR5ZmrdknuyF5WKSkMVEa2y/C1WWhGalRANqzZ4/T5y+//FIxMTHy9fV1tHEbPACgLrLzSxzhR5LshvTomv26tnuQQm2+F98YqKYaBaAvvvjC6XPr1q317rvvqnPnzvVaFADAvDLyihzh54Jyw1BmXjEBCPWGOUAAgCalU6CfPH5xMcFqsSgysKVrCkKzRAACADQpoTZfJY2JkvX/T6mwWix6dkxPRn9Qr2p0CQwAgMYwtl+Eru0epMy8YkUGtiT8oN7V6WWohmHom2++UWFhoVN7r1696l4ZAMDUQm2+BB80mBo9CNHDw6NaL0MtLy+v1yIbGw9CBADA/dTk97tGI0AZGRl1KgwAAKApqFEAquolqAAAAO6kXu4Cu+666/T999/Xx64AAAAaXI1GgNauXVtp++bNm/XJJ58oPDxckvTrX/+67pUBAAA0kHqbBO3YIZOgm5Xs/BJl5BWpU6Afd2MAAJq0BpsEnZCQIKvVqmXLlql9+/aO9hYtWug///mPrrzyytpVjCaJlxECAJqrGs0B+te//qXrr79effv21SeffNJQNaEJqOplhNn5Ja4tDACAelDjSdAPPPCA1q5dq0ceeUR//OMfVVxc3BB1wcUu9jJCAADcXa3uAouOjtbOnTtlsVgUHR190TlBcE+8jBAA0JzV+jZ4X19fLV68WC+88ILuu+8+BQYG1mddcDFeRggAaM5qdBfYxo0bde+99+qrr76qMLs6Pz9fAwYM0OLFizV48OB6L7QxcRfY/8nOL+FlhACAetOQdxc32F1gCxcu1B133FHpTm02m/74xz9qwYIFbh+A8H94GSEAoL40pbuLa3QJ7D//+Y+GDx9e5fobb7xRu3btqnNRAACgeWlqdxfXKADl5uaqRYsWVa739PTUiRMn6lwUAABoXpra3cU1CkAdOnTQ/v37q1y/d+9ehYaG1rkoNH/Z+SXamp7Hc4UAwCSa2t3FNQpAN910kx5//HGdOXOmwrqSkhLNmTNHv/rVr2pcRHJysiIjI+Xj46PY2Fht3769yr5Dhw6VxWKpsIwcOdLRZ/LkyRXWX+zSHRrXqh1ZGjhvo25b8rUGztuoVTuyXF0SAKCBNbW7i2t0F1hubq6uvvpqWa1W3XvvverRo4ck6ZtvvlFycrLKy8u1e/duBQcHV7uAVatWaeLEiVq8eLFiY2O1cOFCrV69WocOHXJ63cYFP/74o8rKyhyfT548qd69e+uNN97Q5MmTJZ0PQLm5uVq+fLmjn7e3t9q2bVutmrgLrOFk55do4LyNTsOgVotFX84cxmRrADCBhry7uMHuAgsODtbWrVt19913a9asWY4HIFosFiUkJCg5OblG4UeSFixYoDvuuENTpkyRJC1evFiffvqpli1bppkzZ1boHxAQ4PR55cqVatmypX73u985tXt7eyskJKRGtaDhXewaMAEIAJq/pnJ3cY0CkCR17NhR69at008//aTDhw/LMAx169at2qMrP1dWVqZdu3Zp1qxZjjYPDw/Fx8dr27Zt1drH0qVLNW7cOPn5+Tm1b9q0Se3bt1fbtm113XXX6emnn1a7du1qXCPq14VrwL8cAeIJ0wCAxlTjAHRB27Zt1a9fvzp9eV5ensrLyyuMGgUHB+ubb7655Pbbt2/X/v37tXTpUqf24cOHa8yYMerUqZPS09P16KOPasSIEdq2bZusVmuF/ZSWlqq0tNTxuaCgoJZHhEu5cA340TX7VW4YLr8GDAAwp1oHoKZg6dKlioqKUv/+/Z3ax40b5/jnqKgo9erVS126dNGmTZt0/fXXV9hPUlKS5s6d2+D14ryx/SJ0bfcgnjANAHCZWr8LrD4EBgbKarUqNzfXqT03N/eS83eKioq0cuVKTZ069ZLf07lzZwUGBurw4cOVrp81a5by8/Mdy5EjR6p/EKiVUJuv4rq0I/wAAFzCpQHIy8tLMTExSk1NdbTZ7XalpqYqLi7uotuuXr1apaWl+v3vf3/J7zl69KhOnjxZ5TOKvL295e/v77QAAIDmy6UBSJISExO1ZMkSvfnmmzp48KDuvvtuFRUVOe4KmzhxotMk6QuWLl2q0aNHV5jYXFhYqD//+c/66quvlJmZqdTUVN18883q2rWrEhISGuWYAABA0+byOUBjx47ViRMnNHv2bOXk5Cg6OlopKSmOidFZWVny8HDOaYcOHdKXX36pzz//vML+rFar9u7dqzfffFOnTp1SWFiYbrzxRj311FPy9vZulGO6mIZ8Cy4AAKieGj0I0Swa6kGITektuAAANDc1+f12+SUws2hqb8EFAMDMCECNpKm9BRcAADMjADWSpvYWXAAAzIwA1Eia2ltwAQAwM5ffBWYmPAEZAICmgQDUyJrKW3ABADAzLoEBAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABcHvZ+SXamp6n7PwSV5cCwE14uroAAKiLVTuyNGvNPtkNycMiJY2J0th+Ea4uC0ATxwgQgCahNqM42fkljvAjSXZDenTNfkaCAFwSI0AAXK62ozgZeUWO8HNBuWEoM69YoTbfBqoWQHPACBAAl6rLKE6nQD95WJzbrBaLIgNbNkClAJoTAhAAl7rYKM6lhNp8lTQmSlbL+RRktVj07JiejP4AuCQugQFwqQujOD8PQTUZxRnbL0LXdg9SZl6xIgNbEn4AVAsjQABcqj5GcUJtvorr0o7wA6DaGAEC4HKM4gBobE1iBCg5OVmRkZHy8fFRbGystm/fXmXfFStWyGKxOC0+Pj5OfQzD0OzZsxUaGipfX1/Fx8fr22+/bejDAFAHjOIAaEwuD0CrVq1SYmKi5syZo927d6t3795KSEjQ8ePHq9zG399f2dnZjuX77793Wj9//ny98sorWrx4sb7++mv5+fkpISFBZ86caejDAQAAbsDlAWjBggW64447NGXKFF155ZVavHixWrZsqWXLllW5jcViUUhIiGMJDg52rDMMQwsXLtRjjz2mm2++Wb169dJbb72lY8eO6aOPPmqEIwLQlPCaDACVcWkAKisr065duxQfH+9o8/DwUHx8vLZt21bldoWFherYsaPCw8N1880368CBA451GRkZysnJcdqnzWZTbGxslfssLS1VQUGB0wLA/a3akaWB8zbqtiVfa+C8jVq1I8vVJQFoIlwagPLy8lReXu40giNJwcHBysnJqXSbHj16aNmyZfr444/1zjvvyG63a8CAATp69KgkObaryT6TkpJks9kcS3h4eF0PDYCL8ZoMABfj8ktgNRUXF6eJEycqOjpaQ4YM0Zo1axQUFKTXX3+91vucNWuW8vPzHcuRI0fqsWIArlCXBywCaP5cGoACAwNltVqVm5vr1J6bm6uQkJBq7aNFixbq06ePDh8+LEmO7WqyT29vb/n7+zstQE0wz6Tp4TUZAC7GpQHIy8tLMTExSk1NdbTZ7XalpqYqLi6uWvsoLy/Xvn37FBoaKknq1KmTQkJCnPZZUFCgr7/+utr7BGqCeSZNE6/JAHAxLn8QYmJioiZNmqS+ffuqf//+WrhwoYqKijRlyhRJ0sSJE9WhQwclJSVJkp588kldc8016tq1q06dOqXnn39e33//vaZNmybp/B1iM2bM0NNPP61u3bqpU6dOevzxxxUWFqbRo0e76jDRTFU1z+Ta7kH80DYBPGARQFVcHoDGjh2rEydOaPbs2crJyVF0dLRSUlIck5izsrLk4fF/A1U//fST7rjjDuXk5Kht27aKiYnR1q1bdeWVVzr6PPzwwyoqKtKdd96pU6dOadCgQUpJSanwwESgri42z4Qf26Yh1ObL/xcAKrAYhmFcupu5FBQUyGazKT8/n/lAuKjs/BINnLexwos8v5w5jB9dAGhkNfn9dru7wICmhHkmAOCeXH4JDHB3zDMBAPdDAALqAfNMAMC9cAkMAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIQLOWnV+irel5ys4vcXUpAJoQngQNoNlatSNLs9bsk92QPCxS0pgoje0X4eqyADQBjAABaJay80sc4UeS7Ib06Jr9jAQBkEQAAtBMZeQVOcLPBeWGocy8YtcUBKBJIQABaJY6BfrJw+LcZrVYFBnY0jUFAWhSCEAAmqVQm6+SxkTJajmfgqwWi54d01OhNl8XVwagKWASNIBma2y/CF3bPUiZecWKDGxJ+AHgQAAC0KyF2nwJPgAq4BIYAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAEDZ+SXamp6n7PwSV5cCNApehgoAJrdqR5ZmrdknuyF5WKSkMVEa2y/C1WUBDYoRIAAwsez8Ekf4kSS7IT26Zj8jQWj2CEAAYGIZeUWO8HNBuWEoM6/YNQUBjYQABAAm1inQTx4W5zarxaLIwJauKQhoJAQgADCxUJuvksZEyWo5n4KsFoueHdNToTZfF1cGNCwmQQOAyY3tF6FruwcpM69YkYEtCT8wBQIQAEChNl+CD0yFS2AAAMB0CEAAAMB0mkQASk5OVmRkpHx8fBQbG6vt27dX2XfJkiUaPHiw2rZtq7Zt2yo+Pr5C/8mTJ8tisTgtw4cPb+jDAAAAbsLlAWjVqlVKTEzUnDlztHv3bvXu3VsJCQk6fvx4pf03bdqk8ePH64svvtC2bdsUHh6uG2+8UT/88INTv+HDhys7O9uxvPfee41xOAAAwA1YDMMwLt2t4cTGxqpfv3567bXXJEl2u13h4eG67777NHPmzEtuX15errZt2+q1117TxIkTJZ0fATp16pQ++uijWtVUUFAgm82m/Px8+fv712ofAACgcdXk99ulI0BlZWXatWuX4uPjHW0eHh6Kj4/Xtm3bqrWP4uJinT17VgEBAU7tmzZtUvv27dWjRw/dfffdOnnyZJX7KC0tVUFBgdMCAACaL5cGoLy8PJWXlys4ONipPTg4WDk5OdXaxyOPPKKwsDCnEDV8+HC99dZbSk1N1XPPPad///vfGjFihMrLyyvdR1JSkmw2m2MJDw+v/UEBAIAmz62fAzRv3jytXLlSmzZtko+Pj6N93Lhxjn+OiopSr1691KVLF23atEnXX399hf3MmjVLiYmJjs8FBQWEIAAAmjGXjgAFBgbKarUqNzfXqT03N1chISEX3faFF17QvHnz9Pnnn6tXr14X7du5c2cFBgbq8OHDla739vaWv7+/0wIAAJovlwYgLy8vxcTEKDU11dFmt9uVmpqquLi4KrebP3++nnrqKaWkpKhv376X/J6jR4/q5MmTCg0NrZe6AQDuKzu/RFvT85SdX+LqUuBCLr8ElpiYqEmTJqlv377q37+/Fi5cqKKiIk2ZMkWSNHHiRHXo0EFJSUmSpOeee06zZ8/Wu+++q8jISMdcoVatWqlVq1YqLCzU3LlzdcsttygkJETp6el6+OGH1bVrVyUkJLjsOAEArrdqR5ZmrdknuyF5WKSkMVEa2y/C1WXBBVwegMaOHasTJ05o9uzZysnJUXR0tFJSUhwTo7OysuTh8X8DVYsWLVJZWZl++9vfOu1nzpw5euKJJ2S1WrV37169+eabOnXqlMLCwnTjjTfqqaeekre3d6MeGwCg6cjOL3GEH0myG9Kja/br2u5BvAfNhFz+HKCmiOcAAUDzszU9T7ct+bpC+3t3XKO4Lu1cUBHqm9s8BwgAgMbSKdBPHhbnNqvFosjAlq4pCC5FAAIAmEKozVdJY6JktZxPQVaLRc+O6cnlL5Ny+RwgAAAay9h+Ebq2e5Ay84oVGdiS8GNiBCAAgKmE2nwJPuASGAAAMB8CEAAAMB0CEAC3x5N9AdQUc4AAuDWe7AugNhgBAuC2qnqyLyNBAC6FAATAbWXkFTnCzwXlhqHMvGLXFATAbRCAALgtnuwLoLYIQADcFk/2BVBbTIIG4NZ4si+A2iAAAXB7PNkXaFqy80uUkVekToF+TfbfTQIQAACoN+7yaArmAAEAgHrhTo+mIAABAIB64U6PpiAAAQCAeuFOj6YgAAEAgHrhTo+mYBI0AACoN+7yaAoCEAAAqFfu8GgKLoEBAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABgBvJzi/R1vQ8ZeeXuLoUwK3xLjAAcBOrdmRp1pp9shuSh0VKGhOlsf0iXF0W4JYYAQIAN5CdX+IIP5JkN6RH1+xnJAioJQIQALiBjLwiR/i5oNwwlJlX7JqCADdHAAIAN9Ap0E8eFuc2q8WiyMCWrikIcHMEIABwA6E2XyWNiZLVcj4FWS0WPTump0Jtvi6uDHBPTIIGADcxtl+Eru0epMy8YkUGtiT8AHVAAAIANxJq8yX4APWAS2AAAMB0mkQASk5OVmRkpHx8fBQbG6vt27dftP/q1at1+eWXy8fHR1FRUVq3bp3TesMwNHv2bIWGhsrX11fx8fH69ttvG/IQAACAG3F5AFq1apUSExM1Z84c7d69W71791ZCQoKOHz9eaf+tW7dq/Pjxmjp1qvbs2aPRo0dr9OjR2r9/v6PP/Pnz9corr2jx4sX6+uuv5efnp4SEBJ05c6axDgsAADRhFsMwjEt3azixsbHq16+fXnvtNUmS3W5XeHi47rvvPs2cObNC/7Fjx6qoqEiffPKJo+2aa65RdHS0Fi9eLMMwFBYWpgcffFAPPfSQJCk/P1/BwcFasWKFxo0bd8maCgoKZLPZlJ+fL39//3o6UgAA0JBq8vvt0hGgsrIy7dq1S/Hx8Y42Dw8PxcfHa9u2bZVus23bNqf+kpSQkODon5GRoZycHKc+NptNsbGxVe6ztLRUBQUFTgsAAGi+XBqA8vLyVF5eruDgYKf24OBg5eTkVLpNTk7ORftf+N+a7DMpKUk2m82xhIeH1+p4AACAe3D5HKCmYNasWcrPz3csR44ccXVJAACgAbk0AAUGBspqtSo3N9epPTc3VyEhIZVuExISctH+F/63Jvv09vaWv7+/0wIAAJovlwYgLy8vxcTEKDU11dFmt9uVmpqquLi4SreJi4tz6i9J69evd/Tv1KmTQkJCnPoUFBTo66+/rnKfAADAXFz+JOjExERNmjRJffv2Vf/+/bVw4UIVFRVpypQpkqSJEyeqQ4cOSkpKkiT96U9/0pAhQ/Tiiy9q5MiRWrlypXbu3Km//e1vkiSLxaIZM2bo6aefVrdu3dSpUyc9/vjjCgsL0+jRo111mAAAoAlxeQAaO3asTpw4odmzZysnJ0fR0dFKSUlxTGLOysqSh8f/DVQNGDBA7777rh577DE9+uij6tatmz766CP17NnT0efhhx9WUVGR7rzzTp06dUqDBg1SSkqKfHx8Gv34AABA0+Py5wA1Rfn5+WrTpo2OHDnCfCAAANxEQUGBwsPDderUKdlstov2dfkIUFN0+vRpSeJ2eAAA3NDp06cvGYAYAaqE3W7XsWPH1Lp1a1kslgrrLyRMRoiqxjm6NM7RxXF+Lo1zdGmco0trTufIMAydPn1aYWFhTtNnKsMIUCU8PDx02WWXXbIft8xfGufo0jhHF8f5uTTO0aVxji6tuZyjS438XMCDEAEAgOkQgAAAgOkQgGrB29tbc+bMkbe3t6tLabI4R5fGObo4zs+lcY4ujXN0aWY9R0yCBgAApsMIEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CUBWSk5MVGRkpHx8fxcbGavv27VX2PXDggG655RZFRkbKYrFo4cKFjVeoC9XkHC1ZskSDBw9W27Zt1bZtW8XHx1+0f3NQk/OzZs0a9e3bV23atJGfn5+io6P19ttvN2K1rlGTc/RzK1eulMVi0ejRoxu2wCagJudoxYoVslgsTosZXgJd0z9Hp06d0vTp0xUaGipvb291795d69ata6RqXaMm52jo0KEV/hxZLBaNHDmyEStuBAYqWLlypeHl5WUsW7bMOHDggHHHHXcYbdq0MXJzcyvtv337duOhhx4y3nvvPSMkJMR46aWXGrdgF6jpObrtttuM5ORkY8+ePcbBgweNyZMnGzabzTh69GgjV944anp+vvjiC2PNmjXGf//7X+Pw4cPGwoULDavVaqSkpDRy5Y2npufogoyMDKNDhw7G4MGDjZtvvrlxinWRmp6j5cuXG/7+/kZ2drZjycnJaeSqG1dNz1FpaanRt29f46abbjK+/PJLIyMjw9i0aZORlpbWyJU3npqeo5MnTzr9Gdq/f79htVqN5cuXN27hDYwAVIn+/fsb06dPd3wuLy83wsLCjKSkpEtu27FjR1MEoLqcI8MwjHPnzhmtW7c23nzzzYYq0aXqen4MwzD69OljPPbYYw1RXpNQm3N07tw5Y8CAAcYbb7xhTJo0qdkHoJqeo+XLlxs2m62RqmsaanqOFi1aZHTu3NkoKytrrBJdrq5/H7300ktG69atjcLCwoYq0SW4BPYLZWVl2rVrl+Lj4x1tHh4eio+P17Zt21xYWdNRH+eouLhYZ8+eVUBAQEOV6TJ1PT+GYSg1NVWHDh3Stdde25Clukxtz9GTTz6p9u3ba+rUqY1RpkvV9hwVFhaqY8eOCg8P180336wDBw40RrkuUZtztHbtWsXFxWn69OkKDg5Wz5499eyzz6q8vLyxym5U9fH39dKlSzVu3Dj5+fk1VJkuQQD6hby8PJWXlys4ONipPTg4WDk5OS6qqmmpj3P0yCOPKCwszOlfyuaitucnPz9frVq1kpeXl0aOHKlXX31VN9xwQ0OX6xK1OUdffvmlli5dqiVLljRGiS5Xm3PUo0cPLVu2TB9//LHeeecd2e12DRgwQEePHm2Mkhtdbc7Rd999p/fff1/l5eVat26dHn/8cb344ot6+umnG6PkRlfXv6+3b9+u/fv3a9q0aQ1VosvwNng0unnz5mnlypXatGmTKSZoVlfr1q2VlpamwsJCpaamKjExUZ07d9bQoUNdXZrLnT59WhMmTNCSJUsUGBjo6nKarLi4OMXFxTk+DxgwQFdccYVef/11PfXUUy6srOmw2+1q3769/va3v8lqtSomJkY//PCDnn/+ec2ZM8fV5TU5S5cuVVRUlPr37+/qUuodAegXAgMDZbValZub69Sem5urkJAQF1XVtNTlHL3wwguaN2+eNmzYoF69ejVkmS5T2/Pj4eGhrl27SpKio6N18OBBJSUlNcsAVNNzlJ6erszMTI0aNcrRZrfbJUmenp46dOiQunTp0rBFN7L6+LuoRYsW6tOnjw4fPtwQJbpcbc5RaGioWrRoIavV6mi74oorlJOTo7KyMnl5eTVozY2tLn+OioqKtHLlSj355JMNWaLLcAnsF7y8vBQTE6PU1FRHm91uV2pqqtN/WZlZbc/R/Pnz9dRTTyklJUV9+/ZtjFJdor7+DNntdpWWljZEiS5X03N0+eWXa9++fUpLS3Msv/71rzVs2DClpaUpPDy8MctvFPXx56i8vFz79u1TaGhoQ5XpUrU5RwMHDtThw4cdAVqS/ve//yk0NLTZhR+pbn+OVq9erdLSUv3+979v6DJdw9WzsJuilStXGt7e3saKFSuM//73v8add95ptGnTxnE76YQJE4yZM2c6+peWlhp79uwx9uzZY4SGhhoPPfSQsWfPHuPbb7911SE0uJqeo3nz5hleXl7G+++/73R75enTp111CA2qpufn2WefNT7//HMjPT3d+O9//2u88MILhqenp7FkyRJXHUKDq+k5+iUz3AVW03M0d+5c47PPPjPS09ONXbt2GePGjTN8fHyMAwcOuOoQGlxNz1FWVpbRunVr49577zUOHTpkfPLJJ0b79u2Np59+2lWH0OBq++/aoEGDjLFjxzZ2uY2GAFSFV1991YiIiDC8vLyM/v37G1999ZVj3ZAhQ4xJkyY5PmdkZBiSKixDhgxp/MIbUU3OUceOHSs9R3PmzGn8whtJTc7PX/7yF6Nr166Gj4+P0bZtWyMuLs5YuXKlC6puXDU5R79khgBkGDU7RzNmzHD0DQ4ONm666SZj9+7dLqi6cdX0z9HWrVuN2NhYw9vb2+jcubPxzDPPGOfOnWvkqhtXTc/RN998Y0gyPv/880autPFYDMMwXDT4BAAA4BLMAQIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAF5o8ebJGjx7t6jIA0yEAAajU5MmTZbFYHEu7du00fPhw7d2719Wl1YufH9uFZdCgQQ32fZmZmbJYLEpLS3Nqf/nll7VixYoG+14AlSMAAajS8OHDlZ2drezsbKWmpsrT01O/+tWvXF1WvVm+fLnj+LKzs7V27dpK+509e7bBarDZbGrTpk2D7R9A5QhAAKrk7e2tkJAQhYSEKDo6WjNnztSRI0d04sQJXXfddbr33nud+p84cUJeXl6ON09HRkbqqaee0vjx4+Xn56cOHTooOTnZaZsFCxYoKipKfn5+Cg8P1z333KPCwkLH+u+//16jRo1S27Zt5efnp6uuukrr1q2TJP3000+6/fbbFRQUJF9fX3Xr1k3Lly+v9vG1adPGcXwhISEKCAhwjNSsWrVKQ4YMkY+Pj/7+97/r5MmTGj9+vDp06KCWLVsqKipK7733ntP+7Ha75s+fr65du8rb21sRERF65plnJEmdOnWSJPXp00cWi0VDhw6VVPESWGlpqe6//361b99ePj4+GjRokHbs2OFYv2nTJlksFqWmpqpv375q2bKlBgwYoEOHDlX7uAEQgABUU2Fhod555x117dpV7dq107Rp0/Tuu++qtLTU0eedd95Rhw4ddN111znann/+efXu3Vt79uzRzJkz9ac//Unr1693rPfw8NArr7yiAwcO6M0339TGjRv18MMPO9ZPnz5dpaWl2rx5s/bt26fnnntOrVq1kiQ9/vjj+u9//6t//etfOnjwoBYtWqTAwMB6Od4LtR48eFAJCQk6c+aMYmJi9Omnn2r//v268847NWHCBG3fvt2xzaxZszRv3jxHXe+++66Cg4MlydFvw4YNys7O1po1ayr93ocfflgffPCB3nzzTe3evVtdu3ZVQkKCfvzxR6d+f/nLX/Tiiy9q586d8vT01B/+8Id6OW7ANFz9NlYATdOkSZMMq9Vq+Pn5GX5+foYkIzQ01Ni1a5dhGIZRUlJitG3b1li1apVjm169ehlPPPGE43PHjh2N4cOHO+137NixxogRI6r83tWrVxvt2rVzfI6KinLa58+NGjXKmDJlSq2OT5Lh4+PjOD4/Pz/jww8/NDIyMgxJxsKFCy+5j5EjRxoPPvigYRiGUVBQYHh7extLliyptO+F/e7Zs8ep/edvtS8sLDRatGhh/P3vf3esLysrM8LCwoz58+cbhmEYX3zxhSHJ2LBhg6PPp59+akgySkpKanIKAFNjBAhAlYYNG6a0tDSlpaVp+/btSkhI0IgRI/T999/Lx8dHEyZM0LJlyyRJu3fv1v79+zV58mSnfcTFxVX4fPDgQcfnDRs26Prrr1eHDh3UunVrTZgwQSdPnlRxcbEk6f7779fTTz+tgQMHas6cOU6TsO+++26tXLlS0dHRevjhh7V169YaHd9LL73kOL60tDTdcMMNjnV9+/Z16lteXq6nnnpKUVFRCggIUKtWrfTZZ58pKytLknTw4EGVlpbq+uuvr1ENP5eenq6zZ89q4MCBjrYWLVqof//+TudMknr16uX459DQUEnS8ePHa/3dgNkQgABUyc/PT127dlXXrl3Vr18/vfHGGyoqKtKSJUskSdOmTdP69et19OhRLV++XNddd506duxY7f1nZmbqV7/6lXr16qUPPvhAu3btcswRKisrc3zHd999pwkTJmjfvn3q27evXn31VUlyhLEHHnhAx44d0/XXX6+HHnqo2t8fEhLiOL6uXbvKz8/P6dh/7vnnn9fLL7+sRx55RF988YXS0tKUkJDgqNPX17fa31sfWrRo4fhni8Ui6fwcJADVQwACUG0Wi0UeHh4qKSmRJEVFRalv375asmSJ3n333UrnoXz11VcVPl9xxRWSpF27dslut+vFF1/UNddco+7du+vYsWMV9hEeHq677rpLa9as0YMPPugIYJIUFBSkSZMm6Z133tHChQv1t7/9rT4P2WHLli26+eab9fvf/169e/dW586d9b///c+xvlu3bvL19XVMAP8lLy8vSedHkqrSpUsXeXl5acuWLY62s2fPaseOHbryyivr6UgASJKnqwsA0HSVlpYqJydH0vk7rl577TUVFhZq1KhRjj7Tpk3TvffeKz8/P/3mN7+psI8tW7Zo/vz5Gj16tNavX6/Vq1fr008/lSR17dpVZ8+e1auvvqpRo0Zpy5YtWrx4sdP2M2bM0IgRI9S9e3f99NNP+uKLLxwBavbs2YqJidFVV12l0tJSffLJJ4519a1bt256//33tXXrVrVt21YLFixQbm6uI5j4+PjokUce0cMPPywvLy8NHDhQJ06c0IEDBzR16lS1b99evr6+SklJ0WWXXSYfHx/ZbDan7/Dz89Pdd9+tP//5zwoICFBERITmz5+v4uJiTZ06tUGOCzArRoAAVCklJUWhoaEKDQ1VbGysduzYodWrVztu4Zak8ePHy9PTU+PHj5ePj0+FfTz44IPauXOn+vTpo6effloLFixQQkKCJKl3795asGCBnnvuOfXs2VN///vflZSU5LR9eXm5pk+friuuuELDhw9X9+7d9de//lXS+VGVWbNmqVevXrr22mtltVq1cuXKBjkXjz32mK6++molJCRo6NChCgkJqfAE58cff1wPPvigZs+erSuuuEJjx451zMvx9PTUK6+8otdff11hYWG6+eabK/2eefPm6ZZbbtGECRN09dVX6/Dhw/rss8/Utm3bBjkuwKwshmEYri4CgPvKzMxUly5dtGPHDl199dVO6yIjIzVjxgzNmDHDNcUBQBW4BAagVs6ePauTJ0/qscce0zXXXFMh/ABAU8YlMAC1smXLFoWGhmrHjh0V5u242rPPPqtWrVpVuowYMcLV5QFoArgEBqDZ+fHHHys8OfkCX19fdejQoZErAtDUEIAAAIDpcAkMAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYzv8DaC5RSsuHRiQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAS5hJREFUeJzt3XtcVXW+//H3BuUi6kZDuRgKKV5K0gaFwSytmNCcjLGLWaPmsbTCKQ9ddVSsLEqzTMeyrMzHdNEsp5xyLKPm1ynNO6WmHjVIS0DJ2CQgKPv7+6PjGneCwhLYIK/n47EftNf6rLU+65uy367bdhhjjAAAAFAjPt5uAAAAoDEiRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBOKdNnz5dDoejWrUOh0PTp0+v034GDhyogQMHNtj1Aag+QhSAevHaa6/J4XBYr2bNmqlDhw667bbb9OOPP3q7vQYnKirKY7zat2+vyy67TP/4xz9qZf0lJSWaPn26/v3vf9fK+oCmiBAFoF49+uij+vvf/64FCxZo8ODBev311zVgwAAdPXq0TrY3ZcoUlZaW1sm661rv3r3197//XX//+991//3368CBAxo2bJgWLFhw1usuKSnRI488QogCzkIzbzcAoGkZPHiw+vTpI0m6/fbbFRISoqeeekorVqzQTTfdVOvba9asmZo1a5y/6jp06KA///nP1vtRo0apS5cuevbZZ3XnnXd6sTMAEkeiAHjZZZddJknau3evx/SdO3fqhhtuUNu2bRUQEKA+ffpoxYoVHjXHjh3TI488opiYGAUEBOi8885T//79tXr1aqumsmuiysrK9N///d9q166dWrVqpaFDh+qHH344pbfbbrtNUVFRp0yvbJ2LFi3SlVdeqfbt28vf318XXnihXnjhhRqNxZmEhYWpR48eys7OPm3dwYMHNXbsWIWGhiogIEC9evXS4sWLrfk5OTlq166dJOmRRx6xThnW9fVgwLmmcf7zDMA5IycnR5LUpk0ba9r27dt16aWXqkOHDnr44YcVFBSkt99+WykpKXr33Xf1pz/9SdKvYSYjI0O333674uPjVVRUpI0bN2rz5s36wx/+UOU2b7/9dr3++uu65ZZb1K9fP3366acaMmTIWe3HCy+8oIsuukhDhw5Vs2bN9M9//lN333233G63UlNTz2rdJxw7dkz79+/XeeedV2VNaWmpBg4cqD179mjChAmKjo7WsmXLdNttt6mwsFD33nuv2rVrpxdeeEF33XWX/vSnP2nYsGGSpIsvvrhW+gSaDAMA9WDRokVGkvnkk0/MoUOHzP79+80777xj2rVrZ/z9/c3+/fut2quuusrExsaao0ePWtPcbrfp16+fiYmJsab16tXLDBky5LTbTU9PNyf/qsvKyjKSzN133+1Rd8sttxhJJj093Zo2evRo06lTpzOu0xhjSkpKTqlLTk42F1xwgce0AQMGmAEDBpy2Z2OM6dSpk7n66qvNoUOHzKFDh8zXX39tbr75ZiPJ/OUvf6lyfXPmzDGSzOuvv25NKy8vN4mJiaZly5amqKjIGGPMoUOHTtlfADXD6TwA9SopKUnt2rVTZGSkbrjhBgUFBWnFihU6//zzJUmHDx/Wp59+qptuukm//PKLCgoKVFBQoJ9++knJycnavXu3dTdfcHCwtm/frt27d1d7+ytXrpQk3XPPPR7TJ06ceFb7FRgYaP23y+VSQUGBBgwYoO+++04ul8vWOj/++GO1a9dO7dq1U69evbRs2TKNHDlSTz31VJXLrFy5UmFhYRoxYoQ1rXnz5rrnnnt05MgR/b//9/9s9QLgVJzOA1Cv5s+fr65du8rlcunVV1/V559/Ln9/f2v+nj17ZIzR1KlTNXXq1ErXcfDgQXXo0EGPPvqorrvuOnXt2lU9e/bUoEGDNHLkyNOelvr+++/l4+Ojzp07e0zv1q3bWe3Xl19+qfT0dK1du1YlJSUe81wul5xOZ43XmZCQoBkzZsjhcKhFixbq0aOHgoODT7vM999/r5iYGPn4eP4buUePHtZ8ALWDEAWgXsXHx1t356WkpKh///665ZZbtGvXLrVs2VJut1uSdP/99ys5ObnSdXTp0kWSdPnll2vv3r16//339fHHH+vll1/Ws88+qwULFuj2228/616rekhnRUWFx/u9e/fqqquuUvfu3fXMM88oMjJSfn5+WrlypZ599llrn2oqJCRESUlJtpYFUPcIUQC8xtfXVxkZGbriiiv0t7/9TQ8//LAuuOACSb+egqpOgGjbtq3GjBmjMWPG6MiRI7r88ss1ffr0KkNUp06d5Ha7tXfvXo+jT7t27Tqltk2bNiosLDxl+m+P5vzzn/9UWVmZVqxYoY4dO1rTP/vsszP2X9s6deqkb775Rm632+No1M6dO635UtUBEUD1cU0UAK8aOHCg4uPjNWfOHB09elTt27fXwIED9eKLLyo3N/eU+kOHDln//dNPP3nMa9mypbp06aKysrIqtzd48GBJ0ty5cz2mz5kz55Tazp07y+Vy6ZtvvrGm5ebmnvLUcF9fX0mSMcaa5nK5tGjRoir7qCvXXHON8vLytHTpUmva8ePHNW/ePLVs2VIDBgyQJLVo0UKSKg2JAKqHI1EAvO6BBx7QjTfeqNdee0133nmn5s+fr/79+ys2NlZ33HGHLrjgAuXn52vt2rX64Ycf9PXXX0uSLrzwQg0cOFBxcXFq27atNm7cqHfeeUcTJkyoclu9e/fWiBEj9Pzzz8vlcqlfv37KzMzUnj17Tqm9+eab9dBDD+lPf/qT7rnnHpWUlOiFF15Q165dtXnzZqvu6quvlp+fn6699lqNHz9eR44c0cKFC9W+fftKg2BdGjdunF588UXddttt2rRpk6KiovTOO+/oyy+/1Jw5c9SqVStJv14If+GFF2rp0qXq2rWr2rZtq549e6pnz5712i/QqHn79kAATcOJRxxs2LDhlHkVFRWmc+fOpnPnzub48ePGGGP27t1rRo0aZcLCwkzz5s1Nhw4dzB//+EfzzjvvWMvNmDHDxMfHm+DgYBMYGGi6d+9uHn/8cVNeXm7VVPY4gtLSUnPPPfeY8847zwQFBZlrr73W7N+/v9Jb/j/++GPTs2dP4+fnZ7p162Zef/31Ste5YsUKc/HFF5uAgAATFRVlnnrqKfPqq68aSSY7O9uqq8kjDs70+Iaq1pefn2/GjBljQkJCjJ+fn4mNjTWLFi06Zdk1a9aYuLg44+fnx+MOABscxpx0/BkAAADVwjVRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAYetlmH3G63Dhw4oFatWvEVCwAANBLGGP3yyy+KiIg45cu8T0aIqkMHDhxQZGSkt9sAAAA27N+/X+eff36V8wlRdejE1yvs379frVu39nI3AACgOoqKihQZGWl9jleFEFWHTpzCa926NSEKAIBG5kyX4nBhOQAAgA2EKAAAABsIUQAAADZwTRQAAI2c2+1WeXm5t9toNJo3by5fX9+zXg8hCgCARqy8vFzZ2dlyu93ebqVRCQ4OVlhY2Fk9x5EQBQBAI2WMUW5urnx9fRUZGXnaB0PiV8YYlZSU6ODBg5Kk8PBw2+siRAEA0EgdP35cJSUlioiIUIsWLbzdTqMRGBgoSTp48KDat29v+9QekRUAgEaqoqJCkuTn5+flThqfE6Hz2LFjttdBiAIAoJHj+1lrrjbGjBAFAABgAyEKAADABkIUANSxXFep1uwtUK6r1NutAA1KXl6e/vKXv+iCCy6Qv7+/IiMjde211yozM1OSFBUVpTlz5pyy3PTp09W7d+9K17lkyRI5HA6lpKTUXeP/h7vzAKAOLd2wT5OWb5XbSD4OKWNYrIb37ejttgCvy8nJ0aWXXqrg4GDNmjVLsbGxOnbsmD766COlpqZq586dttZ5//3367LLLquDjk9FiAKAOpLrKrUClCS5jTR5+TZd3rWdwp2B3m0O8LK7775bDodD69evV1BQkDX9oosu0n/913/VeH0VFRW69dZb9cgjj+h//ud/VFhYWIvdVo7TeQBQR7ILiq0AdUKFMcopKPFOQ8Bp1Odp58OHD2vVqlVKTU31CFAnBAcH13idjz76qNq3b6+xY8fWQofVw5EoAKgj0SFB8nHII0j5OhyKCuGhiGhY6vu08549e2SMUffu3c9Y+9BDD2nKlCke08rLy3XhhRda77/44gu98sorysrKqu1WT4sjUQBQR8KdgcoYFivf/3seja/DoSeG9eRUHhqUqk471+URKWPMmYv+zwMPPKCsrCyP15133mnN/+WXXzRy5EgtXLhQISEhddFulTgSBQB1aHjfjrq8azvlFJQoKqQFAQoNzulOO9fVn9eYmBg5HI5qXTweEhKiLl26eExr27at9d979+5VTk6Orr32WmvaiS9jbtasmXbt2qXOnTvXUueeGsSRqPnz5ysqKkoBAQFKSEjQ+vXrT1u/bNkyde/eXQEBAYqNjdXKlSs95htjNG3aNIWHhyswMFBJSUnavXu3R83QoUPVsWNHBQQEKDw8XCNHjtSBAwc8ar755htddtllCggIUGRkpGbOnFk7OwygSQl3Biqx83kEKDRIJ047n6yuTzu3bdtWycnJmj9/voqLi0+ZX5OLwrt3766tW7d6HKkaOnSorrjiCmVlZSkyMrIWO/fk9RC1dOlSpaWlKT09XZs3b1avXr2UnJxsfbvyb61Zs0YjRozQ2LFjtWXLFqWkpCglJUXbtm2zambOnKm5c+dqwYIFWrdunYKCgpScnKyjR49aNVdccYXefvtt7dq1S++++6727t2rG264wZpfVFSkq6++Wp06ddKmTZs0a9YsTZ8+XS+99FLdDQYAAPXMW6ed58+fr4qKCsXHx+vdd9/V7t27tWPHDs2dO1eJiYnVXk9AQIB69uzp8QoODlarVq3Us2fPuv1eQeNl8fHxJjU11XpfUVFhIiIiTEZGRqX1N910kxkyZIjHtISEBDN+/HhjjDFut9uEhYWZWbNmWfMLCwuNv7+/eeutt6rs4/333zcOh8OUl5cbY4x5/vnnTZs2bUxZWZlV89BDD5lu3bpVe99cLpeRZFwuV7WXAQCgukpLS823335rSktLz3pdBwpLzJo9BeZAYUktdFbNbR44YFJTU02nTp2Mn5+f6dChgxk6dKj57LPPjDHGdOrUyTz77LOnLJeenm569epV5XpHjx5trrvuutNu+3RjV93Pb4cxNbi6q5aVl5erRYsWeueddzyeLDp69GgVFhbq/fffP2WZjh07Ki0tTRMnTrSmpaen67333tPXX3+t7777Tp07d9aWLVs8nmY6YMAA9e7dW88999wp6zx8+LDuuusu/fjjj/riiy8kSaNGjVJRUZHee+89q+6zzz7TlVdeqcOHD6tNmzanrKesrExlZWXW+6KiIkVGRsrlcql169Y1GBkAAM7s6NGjys7OVnR0tAICArzdTqNyurErKiqS0+k84+e3V0/nFRQUqKKiQqGhoR7TQ0NDlZeXV+kyeXl5p60/8bM663zooYcUFBSk8847T/v27fMIbVVt5+Rt/FZGRoacTqf1qsvzsAAAwLu8fk2UNz3wwAPasmWLPv74Y/n6+mrUqFE1uu3ytyZNmiSXy2W99u/fX4vdAgCAhsSrjzgICQmRr6+v8vPzPabn5+crLCys0mXCwsJOW3/iZ35+vsLDwz1qfvtlhSEhIQoJCVHXrl3Vo0cPRUZG6quvvlJiYmKV2zl5G7/l7+8vf3//M+w1AAA4F3j1SJSfn5/i4uKsb2uWfn22Q2ZmZpVX5icmJnrUS9Lq1aut+ujoaIWFhXnUFBUVad26dae92v/EMyVOXNOUmJiozz//XMeOHfPYTrdu3Sq9HgoAADQtXj+dl5aWpoULF2rx4sXasWOH7rrrLhUXF2vMmDGSfr3Ae9KkSVb9vffeq1WrVmn27NnauXOnpk+fro0bN2rChAmSJIfDoYkTJ2rGjBlasWKFtm7dqlGjRikiIsK6eH3dunX629/+pqysLH3//ff69NNPNWLECHXu3NkKWrfccov8/Pw0duxYbd++XUuXLtVzzz2ntLS0+h0gAADOwIv3iDVatTFmXn9i+fDhw3Xo0CFNmzZNeXl56t27t1atWmVdxL1v3z75+Pwn6/Xr109vvvmmpkyZosmTJysmJkbvvfeeevbsadU8+OCDKi4u1rhx41RYWKj+/ftr1apV1tX3LVq00PLly5Wenq7i4mKFh4dr0KBBmjJlinU6zul06uOPP1Zqaqri4uIUEhKiadOmady4cfU4OgAAVM3X11fSr3e7BwbyMNeaKCn59YvAmzdvbnsdXn3EwbmuurdIAgBghzFG+/bt07FjxxQREeFx0AGVM8aopKREBw8eVHBwsMf10ydU9/Pb60eiAACAPQ6HQ+Hh4crOztb333/v7XYaleDg4CpvFKsuQhQAAI2Yn5+fYmJiVF5e7u1WGo3mzZtbp0LPBiEKAIBGzsfHhyeWewEnTwEAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABsy3WVas3eAuW6Sr3dSr3jC4gBAIAtSzfs06TlW+U2ko9DyhgWq+F9O3q7rXrDkSgAAFBjua5SK0BJkttIk5dva1JHpAhRAACgxrILiq0AdUKFMcopKPFOQ15AiAIAADUWHRIkH4fnNF+HQ1EhLbzTkBcQogAAQI2FOwOVMSxWvo5fk5Svw6EnhvVUuDPQy53VHy4sBwCgCch1lSq7oFjRIUG1FnSG9+2oy7u2U05BiaJCWjSpACURogAAOOfV5V104c7AJheeTuB0HgAA5zDuoqs7hCgAAM5h3EVXdwhRAACcw7iLru4QogAAOIdxF13d4cJyAADOcU39Lrq6QogCAKAJaMp30dUVTucBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANjQIELU/PnzFRUVpYCAACUkJGj9+vWnrV+2bJm6d++ugIAAxcbGauXKlR7zjTGaNm2awsPDFRgYqKSkJO3evduan5OTo7Fjxyo6OlqBgYHq3Lmz0tPTVV5e7lHjcDhOeX311Ve1u/MAAKBR8nqIWrp0qdLS0pSenq7NmzerV69eSk5O1sGDByutX7NmjUaMGKGxY8dqy5YtSklJUUpKirZt22bVzJw5U3PnztWCBQu0bt06BQUFKTk5WUePHpUk7dy5U263Wy+++KK2b9+uZ599VgsWLNDkyZNP2d4nn3yi3Nxc6xUXF1c3AwEAABoVhzHGeLOBhIQE9e3bV3/7298kSW63W5GRkfrLX/6ihx9++JT64cOHq7i4WB988IE17fe//7169+6tBQsWyBijiIgI3Xfffbr//vslSS6XS6GhoXrttdd08803V9rHrFmz9MILL+i7776T9OuRqOjoaG3ZskW9e/e2tW9FRUVyOp1yuVxq3bq1rXUAAID6Vd3Pb68eiSovL9emTZuUlJRkTfPx8VFSUpLWrl1b6TJr1671qJek5ORkqz47O1t5eXkeNU6nUwkJCVWuU/o1aLVt2/aU6UOHDlX79u3Vv39/rVix4rT7U1ZWpqKiIo8XAAA4N3k1RBUUFKiiokKhoaEe00NDQ5WXl1fpMnl5eaetP/GzJuvcs2eP5s2bp/Hjx1vTWrZsqdmzZ2vZsmX68MMP1b9/f6WkpJw2SGVkZMjpdFqvyMjIKmsBAEDj1szbDXjbjz/+qEGDBunGG2/UHXfcYU0PCQlRWlqa9b5v3746cOCAZs2apaFDh1a6rkmTJnksU1RURJACAOAc5dUjUSEhIfL19VV+fr7H9Pz8fIWFhVW6TFhY2GnrT/yszjoPHDigK664Qv369dNLL710xn4TEhK0Z8+eKuf7+/urdevWHi8AAHBu8mqI8vPzU1xcnDIzM61pbrdbmZmZSkxMrHSZxMREj3pJWr16tVUfHR2tsLAwj5qioiKtW7fOY50//vijBg4cqLi4OC1atEg+PmceiqysLIWHh9doHwEAwLnJ66fz0tLSNHr0aPXp00fx8fGaM2eOiouLNWbMGEnSqFGj1KFDB2VkZEiS7r33Xg0YMECzZ8/WkCFDtGTJEm3cuNE6kuRwODRx4kTNmDFDMTExio6O1tSpUxUREaGUlBRJ/wlQnTp10tNPP61Dhw5Z/Zw4WrV48WL5+fnpkksukSQtX75cr776ql5++eX6GhoAANCAeT1EDR8+XIcOHdK0adOUl5en3r17a9WqVdaF4fv27fM4StSvXz+9+eabmjJliiZPnqyYmBi999576tmzp1Xz4IMPqri4WOPGjVNhYaH69++vVatWKSAgQNKvR6727NmjPXv26Pzzz/fo5+QnPjz22GP6/vvv1axZM3Xv3l1Lly7VDTfcUJfDAQAAGgmvPyfqXMZzogAAaHwaxXOiAAAAGitCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2NAgQtT8+fMVFRWlgIAAJSQkaP369aetX7Zsmbp3766AgADFxsZq5cqVHvONMZo2bZrCw8MVGBiopKQk7d6925qfk5OjsWPHKjo6WoGBgercubPS09NVXl7usZ5vvvlGl112mQICAhQZGamZM2fW3k4DAIBGzeshaunSpUpLS1N6ero2b96sXr16KTk5WQcPHqy0fs2aNRoxYoTGjh2rLVu2KCUlRSkpKdq2bZtVM3PmTM2dO1cLFizQunXrFBQUpOTkZB09elSStHPnTrndbr344ovavn27nn32WS1YsECTJ0+21lFUVKSrr75anTp10qZNmzRr1ixNnz5dL730Ut0OCAAAaByMl8XHx5vU1FTrfUVFhYmIiDAZGRmV1t90001myJAhHtMSEhLM+PHjjTHGuN1uExYWZmbNmmXNLywsNP7+/uatt96qso+ZM2ea6Oho6/3zzz9v2rRpY8rKyqxpDz30kOnWrVu1983lchlJxuVyVXsZAADgXdX9/Pbqkajy8nJt2rRJSUlJ1jQfHx8lJSVp7dq1lS6zdu1aj3pJSk5Otuqzs7OVl5fnUeN0OpWQkFDlOiXJ5XKpbdu2Htu5/PLL5efn57GdXbt26eeff650HWVlZSoqKvJ4AQCAc5NXQ1RBQYEqKioUGhrqMT00NFR5eXmVLpOXl3fa+hM/a7LOPXv2aN68eRo/fvwZt3PyNn4rIyNDTqfTekVGRlZaBwAAGj+vXxPlbT/++KMGDRqkG2+8UXfcccdZrWvSpElyuVzWa//+/bXUJQDUrlxXqdbsLVCuq9TbrQCNVjNvbjwkJES+vr7Kz8/3mJ6fn6+wsLBKlwkLCztt/Ymf+fn5Cg8P96jp3bu3x3IHDhzQFVdcoX79+p1ywXhV2zl5G7/l7+8vf3//SucBQEOxdMM+TVq+VW4j+TikjGGxGt63o7fbAhodrx6J8vPzU1xcnDIzM61pbrdbmZmZSkxMrHSZxMREj3pJWr16tVUfHR2tsLAwj5qioiKtW7fOY50//vijBg4cqLi4OC1atEg+Pp5DkZiYqM8//1zHjh3z2E63bt3Upk0b+zsNAF6U6yq1ApQkuY00efk2jkgBNnj9dF5aWpoWLlyoxYsXa8eOHbrrrrtUXFysMWPGSJJGjRqlSZMmWfX33nuvVq1apdmzZ2vnzp2aPn26Nm7cqAkTJkiSHA6HJk6cqBkzZmjFihXaunWrRo0apYiICKWkpEj6T4Dq2LGjnn76aR06dEh5eXke1zrdcsst8vPz09ixY7V9+3YtXbpUzz33nNLS0upvcACglmUXFFsB6oQKY5RTUOKdhoBGzKun8yRp+PDhOnTokKZNm6a8vDz17t1bq1atsi7i3rdvn8dRon79+unNN9/UlClTNHnyZMXExOi9995Tz549rZoHH3xQxcXFGjdunAoLC9W/f3+tWrVKAQEBkn49orRnzx7t2bNH559/vkc/xvz628XpdOrjjz9Wamqq4uLiFBISomnTpmncuHF1PSQAUGeiQ4Lk45BHkPJ1OBQV0sJ7TQGNlMOcSA2odUVFRXI6nXK5XGrdurW32wEASb9eEzV5+TZVGCNfh0NPDOvJNVHASar7+e31I1EAgPo1vG9HXd61nXIKShQV0kLhzkBvtwQ0SoQoAGiCwp2BhCfgLHn9wnIAAIDGiBAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAUIlcV6nW7C1QrqvU262ggWrm7QYAAGholm7Yp0nLt8ptJB+HlDEsVsP7dvR2W2hgOBIFAMBJcl2lVoCSJLeRJi/fxhEpnIIQBQDASbILiq0AdUKFMcopKPFOQ2iwCFEAAJwkOiRIPg7Pab4Oh6JCWninITRYhCgAAE4S7gxUxrBY+Tp+TVK+DoeeGNZT4c5AL3eGhoYLywEA+I3hfTvq8q7tlFNQoqiQFgQoVIoQBQBAJcKdgYQnnBan8wAAAGwgRAEAANhAiAIAALChVkJUdna2jh8/XhurAgAAaBRqJUR169ZNu3fvro1VAQAANAo1ujtv2LBhlU6vqKjQPffco1atWkmSli9ffvadAQAANGA1OhL13nvv6fDhw3I6nR4vSWrZsqXHewAAgHOZwxhjzlz2qyVLluiBBx7Qo48+qjFjxljTmzdvrq+//loXXnhhnTTZWBUVFcnpdMrlcql169bebgcAAFRDdT+/a3Qk6uabb9b//M//6JVXXtH111+vn3/++awbBQAAaIxqfGF5VFSUPv/8c/Xs2VO9evXSRx99JIfDceYFAQAAakmuq1Rr9hYo11XqtR5sfe2Lj4+PHnnkEf3hD3/QqFGjVFFRUdt9AQAAVGrphn2atHyr3EbycUgZw2I1vG/Heu/jrB5x0L9/f33zzTfavHmzOnfuXFs9AQAAVCrXVWoFKElyG2ny8m1eOSJ11s+JatmypXr16iV/f//a6AcAAKBK2QXFVoA6ocIY5RSU1HsvNTqdd8kll1Tr+qfNmzfbbggAAKAq0SFB8nHII0j5OhyKCmlR773UKESlpKRY/22MUUZGhu688061bdu2tvsCAAA4RbgzUBnDYjV5+TZVGCNfh0NPDOupcGdgvfdSo+dE/VarVq309ddf64ILLqjNns4ZPCcKAIC6kesqVU5BiaJCWtR6gKru57etu/MAAAC8KdwZ6JWjTyerlS8gBgAAaGoIUQAAADbU6HTe3LlzPd4fP35cr732mkJCQjym33PPPWffGQAAQANWowvLo6Ojz7xCh0PfffddtRuYP3++Zs2apby8PPXq1Uvz5s1TfHx8lfXLli3T1KlTlZOTo5iYGD311FO65pprrPnGGKWnp2vhwoUqLCzUpZdeqhdeeEExMTFWzeOPP64PP/xQWVlZ8vPzU2FhYaX78VtvvfWWbr755mrvGxeWAwDQ+NTJFxBnZ2ef8VWTALV06VKlpaUpPT1dmzdvVq9evZScnKyDBw9WWr9mzRqNGDFCY8eO1ZYtW5SSkqKUlBRt27bNqpk5c6bmzp2rBQsWaN26dQoKClJycrKOHj1q1ZSXl+vGG2/UXXfdddr+Fi1apNzcXOt18iMeAABAE2dqIDMz0/To0cO4XK5T5hUWFpoLL7zQfP7559VeX3x8vElNTbXeV1RUmIiICJORkVFp/U033WSGDBniMS0hIcGMHz/eGGOM2+02YWFhZtasWR59+fv7m7feeuuU9S1atMg4nc5KtyXJ/OMf/6j2vlTG5XIZSZWOFwAAaJiq+/ldoyNRc+bM0R133FHpoS2n06nx48frmWeeqda6ysvLtWnTJiUlJVnTfHx8lJSUpLVr11a6zNq1az3qJSk5Odmqz87OVl5enkeN0+lUQkJCles8ndTUVIWEhCg+Pl6vvvqqzBnOfJaVlamoqMjjBQAAzk01ClFff/21Bg0aVOX8q6++Wps2barWugoKClRRUaHQ0FCP6aGhocrLy6t0mby8vNPWn/hZk3VW5dFHH9Xbb7+t1atX6/rrr9fdd9+tefPmnXaZjIwMOZ1O6xUZGVmjbQIAgMajRnfn5efnq3nz5lWvrFkzHTp06KybagimTp1q/fcll1yi4uJizZo167R3Hk6aNElpaWnW+6KiIoIUAADnqBodierQoYPHRdy/9c033yg8PLxa6woJCZGvr6/y8/M9pufn5yssLKzSZcLCwk5bf+JnTdZZXQkJCfrhhx9UVlZWZY2/v79at27t8QIAAOemGoWoa665RlOnTvW40+2E0tJSpaen649//GO11uXn56e4uDhlZmZa09xutzIzM5WYmFjpMomJiR71krR69WqrPjo6WmFhYR41RUVFWrduXZXrrK6srCy1adNG/v7+Z7WepijXVao1ewuU6yr1disAANSaGp3OmzJlipYvX66uXbtqwoQJ6tatmyRp586dmj9/vioqKvTXv/612utLS0vT6NGj1adPH8XHx2vOnDkqLi7WmDFjJEmjRo1Shw4dlJGRIUm69957NWDAAM2ePVtDhgzRkiVLtHHjRr300kuSfn2208SJEzVjxgzFxMQoOjpaU6dOVUREhMfjCfbt26fDhw9r3759qqioUFZWliSpS5cuatmypf75z38qPz9fv//97xUQEKDVq1friSee0P3331+T4YKkpRv2adLyrXIbycchZQyL1fC+Hb3dFoAmJNdVquyCYkWHBHn9u9ZwjqnpbX85OTlm8ODBxsfHxzgcDuNwOIyPj48ZPHiw+e6772p8G+G8efNMx44djZ+fn4mPjzdfffWVNW/AgAFm9OjRHvVvv/226dq1q/Hz8zMXXXSR+fDDDz3mu91uM3XqVBMaGmr8/f3NVVddZXbt2uVRM3r0aCPplNdnn31mjDHmX//6l+ndu7dp2bKlCQoKMr169TILFiwwFRUVNdq3pv6IgwOFJSb64Q9Mp4f+87rg4Q/NgcISb7cGoIlYsv576/dQ9MMfmCXrv/d2S2gEqvv5XaMnlp/s559/1p49e2SMUUxMjNq0aVNrwe5c0dSfWL5mb4FuWbjulOlv3fF7JXY+zwsdAWhKcl2luvTJT+U+6VPO1+HQFw9fwREpnFZ1P79rdDrvZG3atFHfvn3tLo4mIDokSD4OnfILLCqkhfeaAtBkZBcUe/z+kaQKY5RTUEKIQq2o0YXlQE2EOwOVMSxWvv/3PYS+DoeeGNaTX14A6sWJf8idjH/IoTbZPhIFVMfwvh11edd2yikoUVRICwIUgHpz4h9yk5dvU4Ux/EMOtY4QhToX7gzklxYAr+AfcqhLhCgAwDmNf8ihrnBNFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRKFR48uNAQDewt15aLT4cmMAgDdxJAqNUq6r1ApQ0q9fLTN5+TaOSAEA6g0hCo3S6b4TCwCA+kCIQqPEd2IBALyNEIVGiS83BgB4GxeWo9HiO7EAAN5EiEKjxndiAQC8hdN5AAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAJxTcl2lWrO3QLmuUm+3AuAc18zbDQBAbVm6YZ8mLd8qt5F8HFLGsFgN79vR220BOEdxJArAOSHXVWoFKElyG2ny8m0ckQJQZwhRAM4J2QXFVoA6ocIY5RSUeKchAOc8r4eo+fPnKyoqSgEBAUpISND69etPW79s2TJ1795dAQEBio2N1cqVKz3mG2M0bdo0hYeHKzAwUElJSdq9e7dHzeOPP65+/fqpRYsWCg4OrnQ7+/bt05AhQ9SiRQu1b99eDzzwgI4fP35W+wqg7kSHBMnH4TnN1+FQVEgL7zQE4Jzn1RC1dOlSpaWlKT09XZs3b1avXr2UnJysgwcPVlq/Zs0ajRgxQmPHjtWWLVuUkpKilJQUbdu2zaqZOXOm5s6dqwULFmjdunUKCgpScnKyjh49atWUl5frxhtv1F133VXpdioqKjRkyBCVl5drzZo1Wrx4sV577TVNmzatdgcAQK0JdwYqY1isfB2/Jilfh0NPDOupcGeglzsDcM4yXhQfH29SU1Ot9xUVFSYiIsJkZGRUWn/TTTeZIUOGeExLSEgw48ePN8YY43a7TVhYmJk1a5Y1v7Cw0Pj7+5u33nrrlPUtWrTIOJ3OU6avXLnS+Pj4mLy8PGvaCy+8YFq3bm3KysqqvX8ul8tIMi6Xq9rLADg7BwpLzJo9BeZAYYm3WwHQSFX389trR6LKy8u1adMmJSUlWdN8fHyUlJSktWvXVrrM2rVrPeolKTk52arPzs5WXl6eR43T6VRCQkKV66xqO7GxsQoNDfXYTlFRkbZv317lcmVlZSoqKvJ41QVu4QaqFu4MVGLn82p8BIq/VwBqymuPOCgoKFBFRYVHUJGk0NBQ7dy5s9Jl8vLyKq3Py8uz5p+YVlVNdVS1nZO3UZmMjAw98sgj1d6OHdzCDdQ+/l4BsMPrF5afSyZNmiSXy2W99u/fX6vr5xZuoPbx9wqAXV4LUSEhIfL19VV+fr7H9Pz8fIWFhVW6TFhY2GnrT/ysyTprsp2Tt1EZf39/tW7d2uNVm7iFG6h9/L0CYJfXQpSfn5/i4uKUmZlpTXO73crMzFRiYmKlyyQmJnrUS9Lq1aut+ujoaIWFhXnUFBUVad26dVWus6rtbN261eMuwdWrV6t169a68MILq72e2sYt3EDt4+8VALu8ejovLS1NCxcu1OLFi7Vjxw7dddddKi4u1pgxYyRJo0aN0qRJk6z6e++9V6tWrdLs2bO1c+dOTZ8+XRs3btSECRMkSQ6HQxMnTtSMGTO0YsUKbd26VaNGjVJERIRSUlKs9ezbt09ZWVnat2+fKioqlJWVpaysLB05ckSSdPXVV+vCCy/UyJEj9fXXX+ujjz7SlClTlJqaKn9///oboN/gFm6g9vH3CoBt9XS3YJXmzZtnOnbsaPz8/Ex8fLz56quvrHkDBgwwo0eP9qh/++23TdeuXY2fn5+56KKLzIcffugx3+12m6lTp5rQ0FDj7+9vrrrqKrNr1y6PmtGjRxtJp7w+++wzqyYnJ8cMHjzYBAYGmpCQEHPfffeZY8eO1Wjf6uoRB9zCDdQ+/l4BOKG6n98OY4w5TcbCWSgqKpLT6ZTL5ar166MAAEDdqO7nN3fnAQAA2ECIAoBq4GGcAH7Law/bBIDGgodxAqgMR6IA4DR4GCeAqhCiAOA0eBgngKoQogDgNHgYJ4CqEKIA4DR4GCeAqnBhOQCcwfC+HXV513bKKShRVEgLAhQASYQoAKiWcGcg4QmAB07nAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUA1ZDrKtWavQXKdZV6uxUADQTfnQcAZ7B0wz5NWr5VbiP5OKSMYbEa3rejt9sC4GUciQIaCI50NEy5rlIrQEmS20iTl2/j/xMAjkQBDQFHOhqu7IJiK0CdUGGMcgpKFO4M9E5TABoEjkQBXsaRjoYtOiRIPg7Pab4Oh6JCWninIQANBiEK8LLTHemA94U7A5UxLFa+jl+TlK/DoSeG9eQoFABO5wHeduJIx8lBiiMdDcvwvh11edd2yikoUVRICwIUAEkciQK8jiMdjUO4M1CJnc/j/wsAC0eigAaAIx0A0PgQooAGItwZSHgCgEaE03kAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsaRIiaP3++oqKiFBAQoISEBK1fv/609cuWLVP37t0VEBCg2NhYrVy50mO+MUbTpk1TeHi4AgMDlZSUpN27d3vUHD58WLfeeqtat26t4OBgjR07VkeOHLHm5+TkyOFwnPL66quvam/HAQBAo+X1ELV06VKlpaUpPT1dmzdvVq9evZScnKyDBw9WWr9mzRqNGDFCY8eO1ZYtW5SSkqKUlBRt27bNqpk5c6bmzp2rBQsWaN26dQoKClJycrKOHj1q1dx6663avn27Vq9erQ8++ECff/65xo0bd8r2PvnkE+Xm5lqvuLi42h8EAADQ+Bgvi4+PN6mpqdb7iooKExERYTIyMiqtv+mmm8yQIUM8piUkJJjx48cbY4xxu90mLCzMzJo1y5pfWFho/P39zVtvvWWMMebbb781ksyGDRusmn/961/G4XCYH3/80RhjTHZ2tpFktmzZYnvfXC6XkWRcLpftdQAAgPpV3c9vrx6JKi8v16ZNm5SUlGRN8/HxUVJSktauXVvpMmvXrvWol6Tk5GSrPjs7W3l5eR41TqdTCQkJVs3atWsVHBysPn36WDVJSUny8fHRunXrPNY9dOhQtW/fXv3799eKFStOuz9lZWUqKiryeAEAgHOTV0NUQUGBKioqFBoa6jE9NDRUeXl5lS6Tl5d32voTP89U0759e4/5zZo1U9u2ba2ali1bavbs2Vq2bJk+/PBD9e/fXykpKacNUhkZGXI6ndYrMjLyTEMAAAAaqWbebqChCgkJUVpamvW+b9++OnDggGbNmqWhQ4dWusykSZM8likqKiJIAQBwjvLqkaiQkBD5+voqPz/fY3p+fr7CwsIqXSYsLOy09Sd+nqnmtxeuHz9+XIcPH65yu5KUkJCgPXv2VDnf399frVu39ngBAIBzk1dDlJ+fn+Li4pSZmWlNc7vdyszMVGJiYqXLJCYmetRL0urVq6366OhohYWFedQUFRVp3bp1Vk1iYqIKCwu1adMmq+bTTz+V2+1WQkJClf1mZWUpPDy85jsKAADOOV4/nZeWlqbRo0erT58+io+P15w5c1RcXKwxY8ZIkkaNGqUOHTooIyNDknTvvfdqwIABmj17toYMGaIlS5Zo48aNeumllyRJDodDEydO1IwZMxQTE6Po6GhNnTpVERERSklJkST16NFDgwYN0h133KEFCxbo2LFjmjBhgm6++WZFRERIkhYvXiw/Pz9dcsklkqTly5fr1Vdf1csvv1zPIwQAABoir4eo4cOH69ChQ5o2bZry8vLUu3dvrVq1yrowfN++ffLx+c8Bs379+unNN9/UlClTNHnyZMXExOi9995Tz549rZoHH3xQxcXFGjdunAoLC9W/f3+tWrVKAQEBVs0bb7yhCRMm6KqrrpKPj4+uv/56zZ0716O3xx57TN9//72aNWum7t27a+nSpbrhhhvqeEQAAEBj4DDGGG83ca4qKiqS0+mUy+Xi+igAABqJ6n5+e/2J5QAAAI0RIQoAABtyXaVas7dAua5Sb7cCL/H6NVEAADQ2Szfs06TlW+U2ko9DyhgWq+F9O3q7LdQzjkQBAFADua5SK0BJkttIk5dv44hUE0SIAgCgBrILiq0AdUKFMcopKPFOQ/AaQhQAADUQHRIkH4fnNF+HQ1EhLbzTELyGEAUAqDVN4WLrcGegMobFytfxa5LydTj0xLCeCncGerkz1DcuLAcA1IqmdLH18L4ddXnXdsopKFFUSAsCVBPFkSgAwFlrihdbhzsDldj5PAJUE0aIAgCcNS62RlNEiAIAnDUutkZTRIgCAJw1LrZGU8SF5QCAWsHF1mhqCFEAgFoT7gwkPKHJ4HQeAACADYQoAADQIDX0h7dyOg8AADQ4jeHhrRyJAgAADUpjeXgrIQoAADQojeXhrYQoAADQoDSWh7cSogAAQIPSWB7eyoXlAACgwWkMD28lRAEAgAapoT+8ldN5AAAANhCiAEAN/6F+ABoeTucBaPIaw0P9ADQ8HIkC0KQ1lof6AWh4CFEAmrTG8lA/AA0PIQpAk9ZYHuoHoOEhRAFo0hrLQ/0ANDxcWA6gyWsMD/UD0PAQogBADf+hfgAaHk7nAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAA0QXxXIHD2uDsPAJoYvisQqB0ciQKAJoTvCgRqDyEKAJoQvisQqD2EKABoQviuQKD2EKIAoAnhuwKB2sOF5QDQxPBdgUDtIEQBQBPEdwUCZ4/TeQAAADYQogAAAGxoECFq/vz5ioqKUkBAgBISErR+/frT1i9btkzdu3dXQECAYmNjtXLlSo/5xhhNmzZN4eHhCgwMVFJSknbv3u1Rc/jwYd16661q3bq1goODNXbsWB05csSj5ptvvtFll12mgIAARUZGaubMmbWzwwAAoNHzeohaunSp0tLSlJ6ers2bN6tXr15KTk7WwYMHK61fs2aNRowYobFjx2rLli1KSUlRSkqKtm3bZtXMnDlTc+fO1YIFC7Ru3ToFBQUpOTlZR48etWpuvfVWbd++XatXr9YHH3ygzz//XOPGjbPmFxUV6eqrr1anTp20adMmzZo1S9OnT9dLL71Ud4MBAAAaD+Nl8fHxJjU11XpfUVFhIiIiTEZGRqX1N910kxkyZIjHtISEBDN+/HhjjDFut9uEhYWZWbNmWfMLCwuNv7+/eeutt4wxxnz77bdGktmwYYNV869//cs4HA7z448/GmOMef75502bNm1MWVmZVfPQQw+Zbt26VXvfXC6XkWRcLle1lwEAAN5V3c9vrx6JKi8v16ZNm5SUlGRN8/HxUVJSktauXVvpMmvXrvWol6Tk5GSrPjs7W3l5eR41TqdTCQkJVs3atWsVHBysPn36WDVJSUny8fHRunXrrJrLL79cfn5+HtvZtWuXfv7550p7KysrU1FRkccLAACcm7waogoKClRRUaHQ0FCP6aGhocrLy6t0mby8vNPWn/h5ppr27dt7zG/WrJnatm3rUVPZOk7exm9lZGTI6XRar8jIyMp3HAAANHpevybqXDJp0iS5XC7rtX//fm+3BAAA6ohXQ1RISIh8fX2Vn5/vMT0/P19hYWGVLhMWFnba+hM/z1Tz2wvXjx8/rsOHD3vUVLaOk7fxW/7+/mrdurXHCwAAnJu8GqL8/PwUFxenzMxMa5rb7VZmZqYSExMrXSYxMdGjXpJWr15t1UdHRyssLMyjpqioSOvWrbNqEhMTVVhYqE2bNlk1n376qdxutxISEqyazz//XMeOHfPYTrdu3dSmTZuz3HMAANDo1dOF7lVasmSJ8ff3N6+99pr59ttvzbhx40xwcLDJy8szxhgzcuRI8/DDD1v1X375pWnWrJl5+umnzY4dO0x6erpp3ry52bp1q1Xz5JNPmuDgYPP++++bb775xlx33XUmOjralJaWWjWDBg0yl1xyiVm3bp354osvTExMjBkxYoQ1v7Cw0ISGhpqRI0eabdu2mSVLlpgWLVqYF198sdr7xt15AAA0PtX9/Pb6d+cNHz5chw4d0rRp05SXl6fevXtr1apV1kXc+/btk4/Pfw6Y9evXT2+++aamTJmiyZMnKyYmRu+995569uxp1Tz44IMqLi7WuHHjVFhYqP79+2vVqlUKCAiwat544w1NmDBBV111lXx8fHT99ddr7ty51nyn06mPP/5YqampiouLU0hIiKZNm+bxLKkzMcZIEnfpAQDQiJz43D7xOV4VhzlTBWz74YcfuEMPAIBGav/+/Tr//POrnE+IqkNut1sHDhxQq1at5HA4POYVFRUpMjJS+/fv5wL0KjBGZ8YYnRljdGaM0ZkxRqd3ro2PMUa//PKLIiIiPM6G/ZbXT+edy3x8fE6bYCVxF181MEZnxhidGWN0ZozRmTFGp3cujY/T6TxjDc+JAgAAsIEQBQAAYAMhykv8/f2Vnp4uf39/b7fSYDFGZ8YYnRljdGaM0ZkxRqfXVMeHC8sBAABs4EgUAACADYQoAAAAGwhRAAAANhCiAAAAbCBE1aH58+crKipKAQEBSkhI0Pr166us3b59u66//npFRUXJ4XBozpw59deoF9VkjBYuXKjLLrtMbdq0UZs2bZSUlHTa+nNFTcZo+fLl6tOnj4KDgxUUFKTevXvr73//ez126x01GaOTLVmyRA6HQykpKXXbYANQkzF67bXX5HA4PF4nf/fouaimf4YKCwuVmpqq8PBw+fv7q2vXrlq5cmU9desdNRmjgQMHnvJnyOFwaMiQIfXYcT2o2+9BbrqWLFli/Pz8zKuvvmq2b99u7rjjDhMcHGzy8/MrrV+/fr25//77zVtvvWXCwsLMs88+W78Ne0FNx+iWW24x8+fPN1u2bDE7duwwt912m3E6neaHH36o587rT03H6LPPPjPLly833377rdmzZ4+ZM2eO8fX1NatWrarnzutPTcfohOzsbNOhQwdz2WWXmeuuu65+mvWSmo7RokWLTOvWrU1ubq71ysvLq+eu609Nx6esrMz06dPHXHPNNeaLL74w2dnZ5t///rfJysqq587rT03H6KeffvL487Nt2zbj6+trFi1aVL+N1zFCVB2Jj483qamp1vuKigoTERFhMjIyzrhsp06dmkSIOpsxMsaY48ePm1atWpnFixfXVYted7ZjZIwxl1xyiZkyZUpdtNcg2Bmj48ePm379+pmXX37ZjB49+pwPUTUdo0WLFhmn01lP3XlfTcfnhRdeMBdccIEpLy+vrxa97mx/Fz377LOmVatW5siRI3XVoldwOq8OlJeXa9OmTUpKSrKm+fj4KCkpSWvXrvViZw1HbYxRSUmJjh07prZt29ZVm151tmNkjFFmZqZ27dqlyy+/vC5b9Rq7Y/Too4+qffv2Gjt2bH206VV2x+jIkSPq1KmTIiMjdd1112n79u310W69szM+K1asUGJiolJTUxUaGqqePXvqiSeeUEVFRX21Xa9q4/f1K6+8optvvllBQUF11aZXEKLqQEFBgSoqKhQaGuoxPTQ0VHl5eV7qqmGpjTF66KGHFBER4fEX+1xid4xcLpdatmwpPz8/DRkyRPPmzdMf/vCHum7XK+yM0RdffKFXXnlFCxcurI8Wvc7OGHXr1k2vvvqq3n//fb3++utyu93q16+ffvjhh/pouV7ZGZ/vvvtO77zzjioqKrRy5UpNnTpVs2fP1owZM+qj5Xp3tr+v169fr23btun222+vqxa9ppm3GwDsePLJJ7VkyRL9+9//PucveK2pVq1aKSsrS0eOHFFmZqbS0tJ0wQUXaODAgd5uzet++eUXjRw5UgsXLlRISIi322mwEhMTlZiYaL3v16+fevTooRdffFGPPfaYFztrGNxut9q3b6+XXnpJvr6+iouL048//qhZs2YpPT3d2+01OK+88opiY2MVHx/v7VZqHSGqDoSEhMjX11f5+fke0/Pz8xUWFualrhqWsxmjp59+Wk8++aQ++eQTXXzxxXXZplfZHSMfHx916dJFktS7d2/t2LFDGRkZ52SIqukY7d27Vzk5Obr22mutaW63W5LUrFkz7dq1S507d67bputZbfw+at68uS655BLt2bOnLlr0KjvjEx4erubNm8vX19ea1qNHD+Xl5am8vFx+fn512nN9O5s/Q8XFxVqyZIkeffTRumzRazidVwf8/PwUFxenzMxMa5rb7VZmZqbHv+6aMrtjNHPmTD322GNatWqV+vTpUx+tek1t/Tlyu90qKyurixa9rqZj1L17d23dulVZWVnWa+jQobriiiuUlZWlyMjI+my/XtTGn6OKigpt3bpV4eHhddWm19gZn0svvVR79uyxArgk/e///q/Cw8PPuQAlnd2foWXLlqmsrEx//vOf67pN7/D2le3nqiVLlhh/f3/z2muvmW+//daMGzfOBAcHW7cJjxw50jz88MNWfVlZmdmyZYvZsmWLCQ8PN/fff7/ZsmWL2b17t7d2oc7VdIyefPJJ4+fnZ9555x2PW2d/+eUXb+1CnavpGD3xxBPm448/Nnv37jXffvutefrpp02zZs3MwoULvbULda6mY/RbTeHuvJqO0SOPPGI++ugjs3fvXrNp0yZz8803m4CAALN9+3Zv7UKdqun47Nu3z7Rq1cpMmDDB7Nq1y3zwwQemffv2ZsaMGd7ahTpn9+9Z//79zfDhw+u73XpDiKpD8+bNMx07djR+fn4mPj7efPXVV9a8AQMGmNGjR1vvs7OzjaRTXgMGDKj/xutRTcaoU6dOlY5Renp6/Tdej2oyRn/9619Nly5dTEBAgGnTpo1JTEw0S5Ys8ULX9asmY/RbTSFEGVOzMZo4caJVGxoaaq655hqzefNmL3Rdf2r6Z2jNmjUmISHB+Pv7mwsuuMA8/vjj5vjx4/Xcdf2q6Rjt3LnTSDIff/xxPXdafxzGGOOlg2AAAACNFtdEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogDgHHDbbbcpJSXF220ATQohCkCduu222+RwOKzXeeedp0GDBumbb77xdmu14uR9O/Hq379/nW0vJydHDodDWVlZHtOfe+45vfbaa3W2XQCnIkQBqHODBg1Sbm6ucnNzlZmZqWbNmumPf/yjt9uqNYsWLbL2Lzc3VytWrKi07tixY3XWg9PpVHBwcJ2tH8CpCFEA6py/v7/CwsIUFham3r176+GHH9b+/ft16NAhXXnllZowYYJH/aFDh+Tn52d9a3xUVJQee+wxjRgxQkFBQerQoYPmz5/vscwzzzyj2NhYBQUFKTIyUnfffbeOHDlizf/+++917bXXqk2bNgoKCtJFF12klStXSpJ+/vln3XrrrWrXrp0CAwMVExOjRYsWVXv/goODrf0LCwtT27ZtrSNGS5cu1YABAxQQEKA33nhDP/30k0aMGKEOHTqoRYsWio2N1VtvveWxPrfbrZkzZ6pLly7y9/dXx44d9fjjj0uSoqOjJUmXXHKJHA6HBg4cKOnU03llZWW655571L59ewUEBKh///7asGGDNf/f//63HA6HMjMz1adPH7Vo0UL9+vXTrl27qr3fQFNHiAJQr44cOaLXX39dXbp00Xnnnafbb79db775psrKyqya119/XR06dNCVV15pTZs1a5Z69eqlLVu26OGHH9a9996r1atXW/N9fHw0d+5cbd++XYsXL9ann36qBx980JqfmpqqsrIyff7559q6daueeuoptWzZUpI0depUffvtt/rXv/6lHTt26IUXXlBISEit7O+JXnfs2KHk5GQdPXpUcXFx+vDDD7Vt2zaNGzdOI0eO1Pr1661lJk2apCeffNLq680331RoaKgkWXWffPKJcnNztXz58kq3++CDD+rdd9/V4sWLtXnzZnXp0kXJyck6fPiwR91f//pXzZ49Wxs3blSzZs30X//1X7Wy30CT4O1vQAZwbhs9erTx9fU1QUFBJigoyEgy4eHhZtOmTcYYY0pLS02bNm3M0qVLrWUuvvhiM336dOt9p06dzKBBgzzWO3z4cDN48OAqt7ts2TJz3nnnWe9jY2M91nmya6+91owZM8bW/kkyAQEB1v4FBQWZf/zjHyY7O9tIMnPmzDnjOoYMGWLuu+8+Y4wxRUVFxt/f3yxcuLDS2hPr3bJli8f00aNHm+uuu84YY8yRI0dM8+bNzRtvvGHNLy8vNxEREWbmzJnGGGM+++wzI8l88sknVs2HH35oJJnS0tKaDAHQZHEkCkCdu+KKK5SVlaWsrCytX79eycnJGjx4sL7//nsFBARo5MiRevXVVyVJmzdv1rZt23Tbbbd5rCMxMfGU9zt27LDef/LJJ7rqqqvUoUMHtWrVSiNHjtRPP/2kkpISSdI999yjGTNm6NJLL1V6errHhe133XWXlixZot69e+vBBx/UmjVrarR/zz77rLV/WVlZ+sMf/mDN69Onj0dtRUWFHnvsMcXGxqpt27Zq2bKlPvroI+3bt0+StGPHDpWVlemqq66qUQ8n27t3r44dO6ZLL73Umta8eXPFx8d7jJkkXXzxxdZ/h4eHS5IOHjxoe9tAU0KIAlDngoKC1KVLF3Xp0kV9+/bVyy+/rOLiYi1cuFCSdPvtt2v16tX64YcftGjRIl155ZXq1KlTtdefk5OjP/7xj7r44ov17rvvatOmTdY1U+Xl5dY2vvvuO40cOVJbt25Vnz59NG/ePEmyAt1///d/68CBA7rqqqt0//33V3v7YWFh1v516dJFQUFBHvt+slmzZum5557TQw89pM8++0xZWVlKTk62+gwMDKz2dmtD8+bNrf92OBySfr0mC8CZEaIA1DuHwyEfHx+VlpZKkmJjY9WnTx8tXLhQb775ZqXX5Xz11VenvO/Ro4ckadOmTXK73Zo9e7Z+//vfq2vXrjpw4MAp64iMjNSdd96p5cuX67777rNCnCS1a9dOo0eP1uuvv645c+bopZdeqs1dtnz55Ze67rrr9Oc//1m9evXSBRdcoP/93/+15sfExCgwMNC6qP63/Pz8JP16RKsqnTt3lp+fn7788ktr2rFjx7RhwwZdeOGFtbQnAJp5uwEA576ysjLl5eVJ+vVOuL/97W86cuSIrr32Wqvm9ttv14QJExQUFKQ//elPp6zjyy+/1MyZM5WSkqLVq1dr2bJl+vDDDyVJXbp00bFjxzRv3jxde+21+vLLL7VgwQKP5SdOnKjBgwera9eu+vnnn/XZZ59ZIWzatGmKi4vTRRddpLKyMn3wwQfWvNoWExOjd955R2vWrFGbNm30zDPPKD8/3wo3AQEBeuihh/Tggw/Kz89Pl156qQ4dOqTt27dr7Nixat++vQIDA7Vq1Sqdf/75CggIkNPp9NhGUFCQ7rrrLj3wwANq27atOnbsqJkzZ6qkpERjx46tk/0CmiKORAGoc6tWrVJ4eLjCw8OVkJCgDRs2aNmyZdbt+ZI0YsQINWvWTCNGjFBAQMAp67jvvvu0ceNGXXLJJZoxY4aeeeYZJScnS5J69eqlZ555Rk899ZR69uypN954QxkZGR7LV1RUKDU1VT169NCgQYPUtWtXPf/885J+PbozadIkXXzxxbr88svl6+urJUuW1MlYTJkyRb/73e+UnJysgQMHKiws7JQnjU+dOlX33Xefpk2bph49emj48OHWdUrNmjXT3Llz9eKLLyoiIkLXXXddpdt58skndf3112vkyJH63e9+pz179uijjz5SmzZt6mS/gKbIYYwx3m4CAHJyctS5c2dt2LBBv/vd7zzmRUVFaeLEiZo4caJ3mgOASnA6D4BXHTt2TD/99JOmTJmi3//+96cEKABoqDidB8CrvvzyS4WHh2vDhg2nXMfkbU888YRatmxZ6Wvw4MHebg+Al3E6DwCqcPjw4VOe8H1CYGCgOnToUM8dAWhICFEAAAA2cDoPAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYMP/B4NlHsMhZIDNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWDJJREFUeJzt3XtcVHX+P/DXcJkZxJiREAZcFEzwSmoiLGZiKxuma5DbVyXXCz8St9Uts7a0Tam2wltlum6au+o+sgQtN1s1i8DWr4JIqKlgpC6WFYMiMYgi6sz794c/z68R5KIeDpfX8/E4D+R83uec9zkPc16d2+hEREBEREREt52L1g0QERERtVUMWkREREQqYdAiIiIiUgmDFhEREZFKGLSIiIiIVMKgRURERKQSBi0iIiIilTBoEREREamEQYuIiIhIJQxaRNTuvfjii9DpdI2q1el0ePHFF1XtZ/jw4Rg+fHiLXR8RNR6DFhG1GOvWrYNOp1MmNzc3dOnSBVOnTsUPP/ygdXstTlBQkNPx8vX1xX333Yd//etft2X9Fy5cwIsvvogvvvjitqyPqD1i0CKiFufll1/Gu+++i5UrV+LBBx/E+vXrER0djYsXL6qyvRdeeAHV1dWqrFttAwYMwLvvvot3330XzzzzDH788UeMHTsWK1euvOV1X7hwAS+99BKDFtEtcNO6ASKi6z344IMIDw8HADz22GPw8fHBwoUL8fHHH2PcuHG3fXtubm5wc2ud/xx26dIFv/vd75TfJ0+ejB49euDNN9/E73//ew07IyKAZ7SIqBW47777AAAnTpxwmv/111/jkUcegbe3N4xGI8LDw/Hxxx871Vy+fBkvvfQSQkJCYDQaceedd2Lo0KHIyMhQauq6R6umpgZPPfUUOnfujDvuuAMPPfQQvv/++1q9TZ06FUFBQbXm17XOtWvX4le/+hV8fX1hMBjQp08fvP322006Fg2xWCzo3bs3iouL6607ffo0kpKS4OfnB6PRiP79++Of//ynMn7y5El07twZAPDSSy8plyfVvj+NqK1pnf8LR0TtysmTJwEAnTp1UuYVFBTg3nvvRZcuXTBnzhx4enpi48aNiI+Px4cffoiHH34YwNXAk5qaisceewwRERGorKzEl19+if379+PXv/71Dbf52GOPYf369Xj00UcxZMgQZGVlYfTo0be0H2+//Tb69u2Lhx56CG5ubvj3v/+NP/zhD3A4HJgxY8Ytrfuay5cv49SpU7jzzjtvWFNdXY3hw4fj+PHjmDlzJoKDg7Fp0yZMnToVFRUVePLJJ9G5c2e8/fbbePzxx/Hwww9j7NixAIC77777tvRJ1G4IEVELsXbtWgEgn3/+uZw5c0ZOnTolH3zwgXTu3FkMBoOcOnVKqR0xYoSEhYXJxYsXlXkOh0OGDBkiISEhyrz+/fvL6NGj691uSkqK/Pyfw4MHDwoA+cMf/uBU9+ijjwoASUlJUeZNmTJFunXr1uA6RUQuXLhQqy42Nla6d+/uNC86Olqio6Pr7VlEpFu3bvLAAw/ImTNn5MyZM/LVV1/JhAkTBID88Y9/vOH6li5dKgBk/fr1yrxLly5JVFSUdOzYUSorK0VE5MyZM7X2l4iahpcOiajFiYmJQefOnREYGIhHHnkEnp6e+Pjjj/GLX/wCAFBeXo6srCyMGzcO586dQ1lZGcrKynD27FnExsbi2LFjylOKZrMZBQUFOHbsWKO3v337dgDAE0884TR/1qxZt7RfHh4eyp9tNhvKysoQHR2N//73v7DZbDe1zs8++wydO3dG586d0b9/f2zatAmTJk3CwoULb7jM9u3bYbFYkJCQoMxzd3fHE088gaqqKvznP/+5qV6IqDZeOiSiFmfFihUIDQ2FzWbDmjVrsGvXLhgMBmX8+PHjEBHMmzcP8+bNq3Mdp0+fRpcuXfDyyy8jLi4OoaGh6NevH0aOHIlJkybVewns22+/hYuLC+666y6n+T179ryl/dqzZw9SUlKQk5ODCxcuOI3ZbDaYTKYmrzMyMhKvvPIKdDodOnTogN69e8NsNte7zLfffouQkBC4uDj/v3bv3r2VcSK6PRi0iKjFiYiIUJ46jI+Px9ChQ/Hoo4+iqKgIHTt2hMPhAAA888wziI2NrXMdPXr0AAAMGzYMJ06cwJYtW/DZZ5/h73//O958802sXLkSjz322C33eqMXndrtdqffT5w4gREjRqBXr1544403EBgYCL1ej+3bt+PNN99U9qmpfHx8EBMTc1PLEpH6GLSIqEVzdXVFamoq7r//fvz1r3/FnDlz0L17dwBXL3c1JmR4e3sjMTERiYmJqKqqwrBhw/Diiy/eMGh169YNDocDJ06ccDqLVVRUVKu2U6dOqKioqDX/+rNC//73v1FTU4OPP/4YXbt2Vebv3Lmzwf5vt27duuHQoUNwOBxOZ7W+/vprZRy4cYgkosbjPVpE1OINHz4cERERWLp0KS5evAhfX18MHz4cq1atQklJSa36M2fOKH8+e/as01jHjh3Ro0cP1NTU3HB7Dz74IABg2bJlTvOXLl1aq/auu+6CzWbDoUOHlHklJSW13s7u6uoKABARZZ7NZsPatWtv2IdaRo0aBavVivT0dGXelStXsHz5cnTs2BHR0dEAgA4dOgBAnUGSiBqHZ7SIqFX405/+hP/5n//BunXr8Pvf/x4rVqzA0KFDERYWhmnTpqF79+4oLS1FTk4Ovv/+e3z11VcAgD59+mD48OEYNGgQvL298eWXX+KDDz7AzJkzb7itAQMGICEhAX/7299gs9kwZMgQZGZm4vjx47VqJ0yYgOeeew4PP/wwnnjiCVy4cAFvv/02QkNDsX//fqXugQcegF6vx5gxYzB9+nRUVVVh9erV8PX1rTMsqik5ORmrVq3C1KlTkZ+fj6CgIHzwwQfYs2cPli5dijvuuAPA1Zv3+/Tpg/T0dISGhsLb2xv9+vVDv379mrVfolZN68ceiYiuufZ6h7y8vFpjdrtd7rrrLrnrrrvkypUrIiJy4sQJmTx5slgsFnF3d5cuXbrIb37zG/nggw+U5V555RWJiIgQs9ksHh4e0qtXL3n11Vfl0qVLSk1dr2Korq6WJ554Qu68807x9PSUMWPGyKlTp+p83cFnn30m/fr1E71eLz179pT169fXuc6PP/5Y7r77bjEajRIUFCQLFy6UNWvWCAApLi5W6pryeoeGXl1xo/WVlpZKYmKi+Pj4iF6vl7CwMFm7dm2tZbOzs2XQoEGi1+v5qgeim6AT+dl5bCIiIiK6bXiPFhEREZFKGLSIiIiIVMKgRURERKQSBi0iIiIilTBoEREREamEQYuIiIhIJS3ihaUrVqzA4sWLYbVa0b9/fyxfvhwRERE3rN+0aRPmzZuHkydPIiQkBAsXLsSoUaOUcRFBSkoKVq9ejYqKCtx77714++23ERISotSUl5fjj3/8I/7973/DxcUFv/3tb/HWW2+hY8eOtbZ3/PhxDBw4EK6urrXekNxQL/VxOBz48ccfcccdd/CrLoiIiFoJEcG5c+cQEBBQ68vZ6yrWVFpamuj1elmzZo0UFBTItGnTxGw2S2lpaZ31e/bsEVdXV1m0aJEUFhbKCy+8IO7u7nL48GGlZsGCBWIymeSjjz6Sr776Sh566CEJDg6W6upqpWbkyJHSv39/2bt3r/zv//6v9OjRQxISEmpt79KlSxIeHi4PPvigmEymJvdSn2svP+TEiRMnTpw4tb7p1KlTDX7Wa/7C0sjISAwePBh//etfAVw9yxMYGIg//vGPmDNnTq368ePH4/z589i6dasy75e//CUGDBiAlStXQkQQEBCAp59+Gs888wyAq98n5ufnh3Xr1mHChAk4evQo+vTpg7y8PISHhwMAduzYgVGjRuH7779HQECAsu7nnnsOP/74I0aMGIFZs2Y5ndFqqJeG2Gw2mM1mnDp1Cl5eXk07cERERKSJyspKBAYGoqKiAiaTqd5aTS8dXrp0Cfn5+Zg7d64yz8XFBTExMcjJyalzmZycHMyePdtpXmxsLD766CMAQHFxMaxWK2JiYpRxk8mEyMhI5OTkYMKECcjJyYHZbFZCFgDExMTAxcUFubm5ePjhhwEAWVlZ2LRpEw4ePIjNmzc3uZfr1dTUOH2R7blz5wAAXl5eDFpEREStTGNu+9H0ZviysjLY7Xb4+fk5zffz84PVaq1zGavVWm/9tZ8N1fj6+jqNu7m5wdvbW6k5e/Yspk6dinXr1t0wBDXUy/VSU1NhMpmUKTAwsM46IiIiahv41OENTJs2DY8++iiGDRt229Y5d+5c2Gw2ZTp16tRtWzcRERG1PJoGLR8fH7i6uqK0tNRpfmlpKSwWS53LWCyWeuuv/Wyo5vTp007jV65cQXl5uVKTlZWFJUuWwM3NDW5ubkhKSoLNZoObmxvWrFnTqF6uZzAYlMuEvFxIRETU9ml6j5Zer8egQYOQmZmJ+Ph4AFdvhs/MzMTMmTPrXCYqKgqZmZmYNWuWMi8jIwNRUVEAgODgYFgsFmRmZmLAgAEArt60lpubi8cff1xZR0VFBfLz8zFo0CAAV4OVw+FAZGQkgKv3X9ntdmUbW7ZswcKFC5GdnY0uXbo0qpfbxW634/Lly7d1na2Vu7s7XF1dtW6DiIioUTR/j9bs2bMxZcoUhIeHIyIiAkuXLsX58+eRmJgIAJg8eTK6dOmC1NRUAMCTTz6J6OhovP766xg9ejTS0tLw5Zdf4p133gFw9ca0WbNm4ZVXXkFISAiCg4Mxb948BAQEKGGud+/eGDlyJKZNm4aVK1fi8uXLmDlzJiZMmKA8cdi7d2+nPr/88ku4uLigX79+yryGerlVIgKr1Vrr3V3tndlshsVi4bvHiIioxdM8aI0fPx5nzpzB/PnzYbVaMWDAAOzYsUO5yfy7775zehnYkCFD8P777+OFF17A888/j5CQEHz00UdOAejZZ5/F+fPnkZycjIqKCgwdOhQ7duyA0WhUat577z3MnDkTI0aMUF5YumzZsib13phebsW1kOXr64sOHTq0+2AhIrhw4YJy2dff31/jjoiIiOqn+Xu02rPKykqYTCbYbLZa92vZ7XZ888038PX1xZ133qlRhy3T2bNncfr0aYSGhvIyIhERNbv6Pr+vx6cOW6hr92R16NBB405anmvHhPetERFRS8eg1cK198uFdeExISKi1oJBi4iIiEglDFpEREREKmHQIlVYrVb88Y9/RPfu3WEwGBAYGIgxY8YgMzNTqcnOzsaoUaPQqVMnGI1GhIWF4Y033nB6fxkRaaPEVo3sE2UosVVr3QpRq6b56x2o7Tl58iTuvfdemM1mLF68GGFhYbh8+TI+/fRTzJgxA19//TX+9a9/Ydy4cUhMTMTOnTthNpvx+eef49lnn0VOTg42btzIe7GINJKe9x3mbj4MhwAuOiB1bBjGD+6qdVtErRJf76Ch+h4PvXjxIoqLixEcHOz0/q/WYNSoUTh06BCKiorg6enpNFZRUQF3d3d069YN0dHR+PDDD53G//3vf+Ohhx5CWloaxo8fX+f6W/OxIWrpSmzVuHdBFhw/+2Rw1emwe8798Dd5aNcYUQvC1ztQLc11GaC8vBw7duzAjBkzaoUs4Opb3T/77DOcPXsWzzzzTK3xMWPGIDQ0FBs2bFC1TyKqW3HZeaeQBQB2EZwsu6BNQ0StHC8dtgPNeRng+PHjEBH06tXrhjXffPMNgNpfc3RNr169lBoial7BPp5w0aHWGa0gH77Tj+hm8IxWG1diq1ZCFnD1H8/nNx9R7cxWU65E86o1Ucvjb/JA6tgwuP6/eyRddTq8NrYfLxtSi9QaHtrgGa02rr7LAGr8wxkSEgKdToevv/76hjWhoaEAgKNHj2LIkCG1xo8ePYo+ffrc9t6IqHHGD+6KYaGdcbLsAoJ8OjBkUYvUWh7a4BmtNu7aZYCfU/MygLe3N2JjY7FixQqcP3++1nhFRQUeeOABeHt74/XXX681/vHHH+PYsWNISEhQpT8iahx/kwei7rqTIYtapOa+WnMrGLTaOC0uA6xYsQJ2ux0RERH48MMPcezYMRw9ehTLli1DVFQUPD09sWrVKmzZsgXJyck4dOgQTp48iX/84x+YOnUqHnnkEYwbN061/oiIqHVrTQ9t8NJhO9DclwG6d++O/fv349VXX8XTTz+NkpISdO7cGYMGDcLbb78NAHjkkUewc+dOvPrqq7jvvvtw8eJFhISE4M9//jNmzZrFd2gREdENtaaHNvgeLQ211fdoqY3HhoiI0vO+w/Obj8Auolytaa57tJryHi2e0SIiIqJWp7U8tMGgRURERK2Sv8mjxQasa3gzPBEREZFKGLSIiIiIVMKg1cLxWYXaeEyIiKi1YNBqodzd3QEAFy60vHeCaO3aMbl2jIiIiFoq3gzfQrm6usJsNuP06dMAgA4dOrT7d0uJCC5cuIDTp0/DbDbD1dVV65aIiIjqxaDVglksFgBQwhZdZTablWNDRETUkjFotWA6nQ7+/v7w9fXF5cuXtW6nRXB3d+eZLCIiapQSWzWKy84j2MdTs9dAMGi1Aq6urgwXRERETZCe953yxdMuOiB1bFizvTn+53gzPBEREbUpJbZqJWQBV78T8fnNR1Biq272Xhi0iIiIqE0pLjvv9IXTAGAXwcmy5n+Sn0GLiIiI2pRgH0+4XPegvqtOhyCfDs3eC4MWERERtSn+Jg+kjg2D6/97LZKrTofXxvbT5IZ43gxPREREbc74wV0xLLQzTpZdQJBPBz51SERERHQ7+Zs8NAtY1/DSIREREZFKGLSIiIiIVNIigtaKFSsQFBQEo9GIyMhI7Nu3r976TZs2oVevXjAajQgLC8P27dudxkUE8+fPh7+/Pzw8PBATE4Njx4451ZSXl2PixInw8vKC2WxGUlISqqqqlPGioiLcf//98PPzg9FoRPfu3fHCCy84vaF93bp10Ol0TpPRaLwNR4SIiIjaAs2DVnp6OmbPno2UlBTs378f/fv3R2xs7A2/3y87OxsJCQlISkrCgQMHEB8fj/j4eBw5ckSpWbRoEZYtW4aVK1ciNzcXnp6eiI2NxcWLF5WaiRMnoqCgABkZGdi6dSt27dqF5ORkZdzd3R2TJ0/GZ599hqKiIixduhSrV69GSkqKUz9eXl4oKSlRpm+//fY2HyEiIiJqtURjERERMmPGDOV3u90uAQEBkpqaWmf9uHHjZPTo0U7zIiMjZfr06SIi4nA4xGKxyOLFi5XxiooKMRgMsmHDBhERKSwsFACSl5en1HzyySei0+nkhx9+uGGvTz31lAwdOlT5fe3atWIymRq/s9ex2WwCQGw2202vg4iIiJpXUz6/NT2jdenSJeTn5yMmJkaZ5+LigpiYGOTk5NS5TE5OjlM9AMTGxir1xcXFsFqtTjUmkwmRkZFKTU5ODsxmM8LDw5WamJgYuLi4IDc3t87tHj9+HDt27EB0dLTT/KqqKnTr1g2BgYGIi4tDQUHBDfe3pqYGlZWVThMRERG1XZoGrbKyMtjtdvj5+TnN9/Pzg9VqrXMZq9Vab/21nw3V+Pr6Oo27ubnB29u71naHDBkCo9GIkJAQ3HfffXj55ZeVsZ49e2LNmjXYsmUL1q9fD4fDgSFDhuD777+vs/fU1FSYTCZlCgwMrLOOiIiI2gbN79Fq6dLT07F//368//772LZtG5YsWaKMRUVFYfLkyRgwYACio6OxefNmdO7cGatWrapzXXPnzoXNZlOmU6dONdduEBERkQY0fWGpj48PXF1dUVpa6jS/tLQUFoulzmUsFku99dd+lpaWwt/f36lmwIABSs31N9tfuXIF5eXltbZ77axTnz59YLfbkZycjKeffhqurq61enN3d8fAgQNx/PjxOns3GAwwGAx1jhEREVHbo+kZLb1ej0GDBiEzM1OZ53A4kJmZiaioqDqXiYqKcqoHgIyMDKU+ODgYFovFqaayshK5ublKTVRUFCoqKpCfn6/UZGVlweFwIDIy8ob9OhwOXL58GQ6Ho85xu92Ow4cPOwU8IiIiar80/wqe2bNnY8qUKQgPD0dERASWLl2K8+fPIzExEQAwefJkdOnSBampqQCAJ598EtHR0Xj99dcxevRopKWl4csvv8Q777wDANDpdJg1axZeeeUVhISEIDg4GPPmzUNAQADi4+MBAL1798bIkSMxbdo0rFy5EpcvX8bMmTMxYcIEBAQEAADee+89uLu7IywsDAaDAV9++SXmzp2L8ePHw93dHQDw8ssv45e//CV69OiBiooKLF68GN9++y0ee+yxZj6KRERE1BJpHrTGjx+PM2fOYP78+bBarRgwYAB27Nih3Mz+3XffwcXl/594GzJkCN5//3288MILeP755xESEoKPPvoI/fr1U2qeffZZnD9/HsnJyaioqMDQoUOxY8cOp5eJvvfee5g5cyZGjBgBFxcX/Pa3v8WyZcuUcTc3NyxcuBDffPMNRATdunXDzJkz8dRTTyk1P/30E6ZNmwar1YpOnTph0KBByM7ORp8+fdQ8ZERERNRK6EREtG6ivaqsrITJZILNZoOXl5fW7RAREVEjNOXzm08dEhEREamEQYuIiIhIJQxaRERERCph0CIiIiJSCYMWERERkUoYtIiIiIhUwqBFREREpBIGLSIiIiKVMGgRERERqYRBi4iIiEglDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUMWkREREQqYdAiIiIiUgmDFhEREZFKGLSIiIiIVMKgRURERKQSBi0iIiIilTBoEREREamEQYuIiIhIJQxaRERERCph0CIiIiJSCYMWERERkUoYtIiIiIhUwqBFREREpBIGLSIiIiKVMGgRERERqaRFBK0VK1YgKCgIRqMRkZGR2LdvX731mzZtQq9evWA0GhEWFobt27c7jYsI5s+fD39/f3h4eCAmJgbHjh1zqikvL8fEiRPh5eUFs9mMpKQkVFVVKeNFRUW4//774efnB6PRiO7du+OFF17A5cuXm9QLERERtV+aB6309HTMnj0bKSkp2L9/P/r374/Y2FicPn26zvrs7GwkJCQgKSkJBw4cQHx8POLj43HkyBGlZtGiRVi2bBlWrlyJ3NxceHp6IjY2FhcvXlRqJk6ciIKCAmRkZGDr1q3YtWsXkpOTlXF3d3dMnjwZn332GYqKirB06VKsXr0aKSkpTeqFiIiI2jHRWEREhMyYMUP53W63S0BAgKSmptZZP27cOBk9erTTvMjISJk+fbqIiDgcDrFYLLJ48WJlvKKiQgwGg2zYsEFERAoLCwWA5OXlKTWffPKJ6HQ6+eGHH27Y61NPPSVDhw5tdC8NsdlsAkBsNluj6omIiEh7Tfn81vSM1qVLl5Cfn4+YmBhlnouLC2JiYpCTk1PnMjk5OU71ABAbG6vUFxcXw2q1OtWYTCZERkYqNTk5OTCbzQgPD1dqYmJi4OLigtzc3Dq3e/z4cezYsQPR0dGN7uV6NTU1qKysdJqIiIio7dI0aJWVlcFut8PPz89pvp+fH6xWa53LWK3Weuuv/WyoxtfX12nczc0N3t7etbY7ZMgQGI1GhISE4L777sPLL7/c6F6ul5qaCpPJpEyBgYF11hEREVHboPk9Wi1deno69u/fj/fffx/btm3DkiVLbnpdc+fOhc1mU6ZTp07dxk6JiIiopXHTcuM+Pj5wdXVFaWmp0/zS0lJYLJY6l7FYLPXWX/tZWloKf39/p5oBAwYoNdffbH/lyhWUl5fX2u61s059+vSB3W5HcnIynn76abi6ujbYy/UMBgMMBkOdY0RERNT2aHpGS6/XY9CgQcjMzFTmORwOZGZmIioqqs5loqKinOoBICMjQ6kPDg6GxWJxqqmsrERubq5SExUVhYqKCuTn5ys1WVlZcDgciIyMvGG/DocDly9fhsPhaFQvRERE1M41w8359UpLSxODwSDr1q2TwsJCSU5OFrPZLFarVUREJk2aJHPmzFHq9+zZI25ubrJkyRI5evSopKSkiLu7uxw+fFipWbBggZjNZtmyZYscOnRI4uLiJDg4WKqrq5WakSNHysCBAyU3N1d2794tISEhkpCQoIyvX79e0tPTpbCwUE6cOCHp6ekSEBAgEydObFIv9eFTh0RERK1PUz6/NQ9aIiLLly+Xrl27il6vl4iICNm7d68yFh0dLVOmTHGq37hxo4SGhoper5e+ffvKtm3bnMYdDofMmzdP/Pz8xGAwyIgRI6SoqMip5uzZs5KQkCAdO3YULy8vSUxMlHPnzinjaWlpcs8990jHjh3F09NT+vTpI6+99ppTWGtML/Vh0CIiImp9mvL5rRMR0facWvtVWVkJk8kEm80GLy8vrdshIiKiRmjK5zefOiQiIiJSCYMWERERkUoYtIiIiIhUwqBFREREpBIGLSIiIiKVMGgREVGzKrFVI/tEGUps1Vq3QqQ6Tb+Ch4iI2pf0vO8wd/NhOARw0QGpY8MwfnBXrdsiUg3PaBERUbMosVUrIQsAHAI8v/kIz2xRm8agRUREzaK47LwSsq6xi+Bk2QVtGiJqBgxaRETULIJ9POGic57nqtMhyKeDNg0RNQMGLSIiahb+Jg+kjg2Dq+5q2nLV6fDa2H7wN3lo3BmRengzPBERNZvxg7tiWGhnnCy7gCCfDm0+ZJXYqlFcdh7BPp5tfl+pbgxaRETUrPxNHu0idPAJSwJ46ZCIiOi24xOWdA2DFhGRxvgCz7aHT1jSNbx0SESkIV5eapuuPWH587DFJyzbJ57RIiLSCC8vtV18wpKu4RktIiKN1Hd5SesPZD4td+va2xOWVDcGLSIijbTUy0u8nHn7tJcnLOnGeOmQiEgjLfHyEi9nEt1ePKNFRKShlnZ5qSVfziRqjRi0iIg01pIuL7XUy5lErRUvHRIRkaIlXs4kas14RouIiJy0tMuZRK0ZgxYREdXSki5nErVmvHRIREREpBIGLSIiIiKVMGgRERERqYRBi4iIiFRVYqtG9omydvniW94MT0RERKpp71/pxDNaREREpAp+pRODFhEREamkvq90ai8YtIiIiEgV177S6efa21c6tYigtWLFCgQFBcFoNCIyMhL79u2rt37Tpk3o1asXjEYjwsLCsH37dqdxEcH8+fPh7+8PDw8PxMTE4NixY0415eXlmDhxIry8vGA2m5GUlISqqipl/IsvvkBcXBz8/f3h6emJAQMG4L333nNax7p166DT6Zwmo9F4i0eDiIiobeBXOrWAoJWeno7Zs2cjJSUF+/fvR//+/REbG4vTp0/XWZ+dnY2EhAQkJSXhwIEDiI+PR3x8PI4cOaLULFq0CMuWLcPKlSuRm5sLT09PxMbG4uLFi0rNxIkTUVBQgIyMDGzduhW7du1CcnKy03buvvtufPjhhzh06BASExMxefJkbN261akfLy8vlJSUKNO33357m48QERFR6zV+cFfsnnM/Nkz7JXbPub9d3QgPABCNRUREyIwZM5Tf7Xa7BAQESGpqap3148aNk9GjRzvNi4yMlOnTp4uIiMPhEIvFIosXL1bGKyoqxGAwyIYNG0REpLCwUABIXl6eUvPJJ5+ITqeTH3744Ya9jho1ShITE5Xf165dKyaTqfE7ex2bzSYAxGaz3fQ6iIiIqHk15fNb0zNaly5dQn5+PmJiYpR5Li4uiImJQU5OTp3L5OTkONUDQGxsrFJfXFwMq9XqVGMymRAZGanU5OTkwGw2Izw8XKmJiYmBi4sLcnNzb9ivzWaDt7e307yqqip069YNgYGBiIuLQ0FBQSP3noiIiNo6TYNWWVkZ7HY7/Pz8nOb7+fnBarXWuYzVaq23/trPhmp8fX2dxt3c3ODt7X3D7W7cuBF5eXlITExU5vXs2RNr1qzBli1bsH79ejgcDgwZMgTff/99neuoqalBZWWl00RERERtl+b3aLUGO3fuRGJiIlavXo2+ffsq86OiojB58mQMGDAA0dHR2Lx5Mzp37oxVq1bVuZ7U1FSYTCZlCgwMbK5dICIiIg1oGrR8fHzg6uqK0tJSp/mlpaWwWCx1LmOxWOqtv/azoZrrb7a/cuUKysvLa233P//5D8aMGYM333wTkydPrnd/3N3dMXDgQBw/frzO8blz58JmsynTqVOn6l0fERERtW6aBi29Xo9BgwYhMzNTmedwOJCZmYmoqKg6l4mKinKqB4CMjAylPjg4GBaLxammsrISubm5Sk1UVBQqKiqQn5+v1GRlZcHhcCAyMlKZ98UXX2D06NFYuHCh0xOJN2K323H48GH4+/vXOW4wGODl5eU0ERERURvWDDfn1ystLU0MBoOsW7dOCgsLJTk5Wcxms1itVhERmTRpksyZM0ep37Nnj7i5ucmSJUvk6NGjkpKSIu7u7nL48GGlZsGCBWI2m2XLli1y6NAhiYuLk+DgYKmurlZqRo4cKQMHDpTc3FzZvXu3hISESEJCgjKelZUlHTp0kLlz50pJSYkynT17Vql56aWX5NNPP5UTJ05Ifn6+TJgwQYxGoxQUFDRq3/nUIRERUevTlM9vzYOWiMjy5cula9euotfrJSIiQvbu3auMRUdHy5QpU5zqN27cKKGhoaLX66Vv376ybds2p3GHwyHz5s0TPz8/MRgMMmLECCkqKnKqOXv2rCQkJEjHjh3Fy8tLEhMT5dy5c8r4lClTBECtKTo6WqmZNWuW0refn5+MGjVK9u/f3+j9ZtAiIiJqfZry+a0TEbnh6S5SVWVlJUwmE2w2Gy8jEhERtRJN+fzmU4dEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtahFKbNXIPlGGElu11q0QERHdNm5aN0CUnvcd5m4+DIcALjogdWwYxg/uqnVbREREt4xntEhTJbZqJWQBgEOA5zcf4ZktIiJqExi0SFPFZeeVkHWNXQQnyy5o0xAREdFtxKBFmgr28YSLznmeq06HIJ8O2jRERER0GzFokab8TR5IHRsGV93VtOWq0+G1sf3gb/LQuDMiIqJbx5vhSXPjB3fFsNDOOFl2AUE+HRiyiIiozWDQohbB3+TBgEVERG0OLx0SERERqYRBi4iIiEglDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUMWkREREQqYdAiIiIiUgmDFhEREZFKGLSIiIiIVMKgRURERKQSBi0iIiIilTBoEREREamEQYuIiIhIJQxaRERERCph0CIiIiJSCYMWERERkUpaRNBasWIFgoKCYDQaERkZiX379tVbv2nTJvTq1QtGoxFhYWHYvn2707iIYP78+fD394eHhwdiYmJw7Ngxp5ry8nJMnDgRXl5eMJvNSEpKQlVVlTL+xRdfIC4uDv7+/vD09MSAAQPw3nvvNbkXIiIiar9uKmht2rQJY8eORb9+/dCvXz+MHTsWH3zwwU01kJ6ejtmzZyMlJQX79+9H//79ERsbi9OnT9dZn52djYSEBCQlJeHAgQOIj49HfHw8jhw5otQsWrQIy5Ytw8qVK5GbmwtPT0/Exsbi4sWLSs3EiRNRUFCAjIwMbN26Fbt27UJycrLTdu6++258+OGHOHToEBITEzF58mRs3bq1Sb0QEVHLVmKrRvaJMpTYqrVuhdoiaQK73S7jxo0TnU4nPXv2lLi4OImLi5PQ0FBxcXGR8ePHi8PhaMoqJSIiQmbMmOG0jYCAAElNTa2zfty4cTJ69GineZGRkTJ9+nQREXE4HGKxWGTx4sXKeEVFhRgMBtmwYYOIiBQWFgoAycvLU2o++eQT0el08sMPP9yw11GjRkliYmKje2mIzWYTAGKz2RpVT0REt1favm8leM5W6fbcVgmes1XS9n2rdUvUCjTl87tJZ7TeeustfP755/j444/x9ddf46OPPsJHH32EoqIi/Otf/0JGRgbeeuutRq/v0qVLyM/PR0xMjDLPxcUFMTExyMnJqXOZnJwcp3oAiI2NVeqLi4thtVqdakwmEyIjI5WanJwcmM1mhIeHKzUxMTFwcXFBbm7uDfu12Wzw9vZudC/Xq6mpQWVlpdNERETaKLFVY+7mw3DI1d8dAjy/+QjPbNFt1aSgtXbtWixevBi/+c1vao099NBDWLRoEdasWdPo9ZWVlcFut8PPz89pvp+fH6xWa53LWK3Weuuv/WyoxtfX12nczc0N3t7eN9zuxo0bkZeXh8TExEb3cr3U1FSYTCZlCgwMrLOOiIjUV1x2XglZ19hFcLLsgjYNUZvUpKB17NixWmdwfq6um87bgp07dyIxMRGrV69G3759b3o9c+fOhc1mU6ZTp07dxi6JiKgpgn084aJznueq0yHIp4M2DVGb1KSg5eHhgYqKihuOV1ZWwmg0Nnp9Pj4+cHV1RWlpqdP80tJSWCyWOpexWCz11l/72VDN9TfbX7lyBeXl5bW2+5///AdjxozBm2++icmTJzepl+sZDAZ4eXk5TUREpA1/kwdSx4bBVXc1bbnqdHhtbD/4mzw07ozakiYFraioKLz99ts3HF+xYgWioqIavT69Xo9BgwYhMzNTmedwOJCZmXnD9URFRTnVA0BGRoZSHxwcDIvF4lRTWVmJ3NxcpSYqKgoVFRXIz89XarKysuBwOBAZGanM++KLLzB69GgsXLjQ6YnExvZCREQt2/jBXbF7zv3YMO2X2D3nfowf3FXrlqitacpd9nv27BF3d3f5n//5H8nNzRWbzSYVFRWSk5MjjzzyiLi7u8vu3bubdOd+WlqaGAwGWbdunRQWFkpycrKYzWaxWq0iIjJp0iSZM2eOUw9ubm6yZMkSOXr0qKSkpIi7u7scPnxYqVmwYIGYzWbZsmWLHDp0SOLi4iQ4OFiqq6uVmpEjR8rAgQMlNzdXdu/eLSEhIZKQkKCMZ2VlSYcOHWTu3LlSUlKiTGfPnm1SL/XhU4dEREStT1M+v5sUtERENm/eLD4+PuLi4uI03XnnnfLBBx/cVMPLly+Xrl27il6vl4iICNm7d68yFh0dLVOmTHGq37hxo4SGhoper5e+ffvKtm3bnMYdDofMmzdP/Pz8xGAwyIgRI6SoqMip5uzZs5KQkCAdO3YULy8vSUxMlHPnzinjU6ZMEQC1pujo6Cb1Uh8GLSIiotanKZ/fOhGRG57uuoELFy7g008/VW58Dw0NxQMPPIAOHXgDYVNUVlbCZDLBZrPxfi0iIqJWoimf325NWXFWVhZmzpyJvXv34uGHH3Yas9ls6Nu3L1auXIn77ruv6V0TERERtTFNuhl+6dKlmDZtWp3pzWQyYfr06XjjjTduW3NERERErVmTgtZXX32FkSNH3nD8gQcecHqSj4iIiKg9a1LQKi0thbu7+w3H3dzccObMmVtuioiIiKgtaFLQ6tKlC44cOXLD8UOHDsHf3/+WmyIiImoNSmzVyD5Rxu9HpBtq0s3wo0aNwrx58zBy5Mhab4Cvrq5GSkpKnd+DSERE1Nak532nfCm1iw5IHRvGF55SLU16vUNpaSnuueceuLq6YubMmejZsycA4Ouvv8aKFStgt9uxf//+Wl+0THXj6x2IiFqnEls17l2Q5fSl1K46HXbPuZ9f4dMOqPZ6Bz8/P2RnZ+Pxxx/H3LlzcS2j6XQ6xMbGYsWKFQxZRETU5hWXnXcKWQBgF8HJsgsMWuSkSUELALp164bt27fjp59+wvHjxyEiCAkJQadOndToj4iIqMUJ9vGEiw61zmgF+fDF3eSsSTfD/1ynTp0wePBgREREMGQREVG74m/yQOrYMLjqdACuhqzXxvbj2SyqpclntIiIiAgYP7grhoV2xsmyCwjy6cCQRXVi0CIiIrpJ/iYPBiyq101fOiQiIiKi+jFoEREREamEQYuIiIhIJQxaRERERCph0CIiIiJSCYMWERERkUoYtKhNK7FVI/tEGUps1Vq3QkRE7RDfo0VtVnred5i7+TAcArjogNSxYRg/uKvWbRERUTvCM1rUJpXYqpWQBVz9PrLnNx/hmS0iImpWDFrUJhWXnXf6slcAsIvgZNkFbRoiIqJ2iUGL2qRgH0+46Jznuep0CPLpoE1DRETULjFoUZvkb/JA6tgwuOqupi1XnQ6vje3H7yQjIqJmxZvhqc0aP7grhoV2xsmyCwjy6cCQRUREzY5Bi9o0f5MHAxYREWmGlw6JiIiIVMKgRURERKQSBi0iIiIilTBoEREREamEQYuIiIhIJQxaRERERCph0CIiIiJSieZBa8WKFQgKCoLRaERkZCT27dtXb/2mTZvQq1cvGI1GhIWFYfv27U7jIoL58+fD398fHh4eiImJwbFjx5xqysvLMXHiRHh5ecFsNiMpKQlVVVXK+MWLFzF16lSEhYXBzc0N8fHxtfr44osvoNPpak1Wq/XmDwYRERG1KZoGrfT0dMyePRspKSnYv38/+vfvj9jYWJw+fbrO+uzsbCQkJCApKQkHDhxAfHw84uPjceTIEaVm0aJFWLZsGVauXInc3Fx4enoiNjYWFy9eVGomTpyIgoICZGRkYOvWrdi1axeSk5OVcbvdDg8PDzzxxBOIiYmpdx+KiopQUlKiTL6+vrd4VIiIiKjNEA1FRETIjBkzlN/tdrsEBARIampqnfXjxo2T0aNHO82LjIyU6dOni4iIw+EQi8UiixcvVsYrKirEYDDIhg0bRESksLBQAEheXp5S88knn4hOp5Mffvih1janTJkicXFxtebv3LlTAMhPP/3U6P29ns1mEwBis9lueh1ERETUvJry+a3ZGa1Lly4hPz/f6YyRi4sLYmJikJOTU+cyOTk5tc4wxcbGKvXFxcWwWq1ONSaTCZGRkUpNTk4OzGYzwsPDlZqYmBi4uLggNze3yfsxYMAA+Pv749e//jX27NlTb21NTQ0qKyudJrWU2KqRfaIMJbZq1bZBRERE9dMsaJWVlcFut8PPz89pvp+f3w3vc7JarfXWX/vZUM31l/fc3Nzg7e3dpPur/P39sXLlSnz44Yf48MMPERgYiOHDh2P//v03XCY1NRUmk0mZAgMDG729pkjP+w73LsjCo6tzce+CLKTnfafKdoiIiKh+/FLpm9SzZ0/07NlT+X3IkCE4ceIE3nzzTbz77rt1LjN37lzMnj1b+b2ysvK2h60SWzXmbj4Mh1z93SHA85uPYFhoZ365MhERUTPT7IyWj48PXF1dUVpa6jS/tLQUFoulzmUsFku99dd+NlRz/c32V65cQXl5+Q2321gRERE4fvz4DccNBgO8vLycptutuOy8ErKusYvgZNmF274tIiIiqp9mQUuv12PQoEHIzMxU5jkcDmRmZiIqKqrOZaKiopzqASAjI0OpDw4OhsVicaqprKxEbm6uUhMVFYWKigrk5+crNVlZWXA4HIiMjLylfTp48CD8/f1vaR23KtjHEy4653muOh2CfDpo0xAREVE7pumlw9mzZ2PKlCkIDw9HREQEli5divPnzyMxMREAMHnyZHTp0gWpqakAgCeffBLR0dF4/fXXMXr0aKSlpeHLL7/EO++8AwDQ6XSYNWsWXnnlFYSEhCA4OBjz5s1DQECA8i6s3r17Y+TIkZg2bRpWrlyJy5cvY+bMmZgwYQICAgKU3goLC3Hp0iWUl5fj3LlzOHjwIICrN78DwNKlSxEcHIy+ffvi4sWL+Pvf/46srCx89tlnzXPwbsDf5IHUsWF4fvMR2EXgqtPhtbH9eNmQiIhIC83wFGS9li9fLl27dhW9Xi8RERGyd+9eZSw6OlqmTJniVL9x40YJDQ0VvV4vffv2lW3btjmNOxwOmTdvnvj5+YnBYJARI0ZIUVGRU83Zs2clISFBOnbsKF5eXpKYmCjnzp1zqunWrZsAqDVds3DhQrnrrrvEaDSKt7e3DB8+XLKyspq072q+3uHHiguSfbxMfqy4cNvXTURE1J415fNbJyJSTw4jFVVWVsJkMsFms6lyvxYRERHdfk35/Nb8K3iIiIiI2ioGLSIiIiKVMGgRERERAH6riBr4wlIiIiJCet53yguvXXRA6tgwjB/cVeu2Wj2e0SIiImrnbvStIjyzdesYtIiIiNo5fquIehi0iIiI2jl+q4h6GLSIiIjauWvfKuKqu5q2+K0itw9vhiciIiKMH9wVw0I742TZBQT5dGDIuk0YtIiIiAjA1TNbDFi3Fy8dEhEREamEQYuIiIhIJQxaRERERCph0CIiIiJSCYMWERERkUoYtIiIiIhUwqBFREREpBIGLSIiIiKVMGgRERERqYRBi4iIiEglDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUMWkREREQqYdAiIiIiUgmDFhEREZFKGLSIiIiIVMKgRURERKQSzYPWihUrEBQUBKPRiMjISOzbt6/e+k2bNqFXr14wGo0ICwvD9u3bncZFBPPnz4e/vz88PDwQExODY8eOOdWUl5dj4sSJ8PLygtlsRlJSEqqqqpTxixcvYurUqQgLC4Obmxvi4+Pr7OWLL77APffcA4PBgB49emDdunU3dQyIiIiobdI0aKWnp2P27NlISUnB/v370b9/f8TGxuL06dN11mdnZyMhIQFJSUk4cOAA4uPjER8fjyNHjig1ixYtwrJly7By5Urk5ubC09MTsbGxuHjxolIzceJEFBQUICMjA1u3bsWuXbuQnJysjNvtdnh4eOCJJ55ATExMnb0UFxdj9OjRuP/++3Hw4EHMmjULjz32GD799NPbdHSIiIio1RMNRUREyIwZM5Tf7Xa7BAQESGpqap3148aNk9GjRzvNi4yMlOnTp4uIiMPhEIvFIosXL1bGKyoqxGAwyIYNG0REpLCwUABIXl6eUvPJJ5+ITqeTH374odY2p0yZInFxcbXmP/vss9K3b1+neePHj5fY2NgG9vr/s9lsAkBsNlujlyEiIiJtNeXzW7MzWpcuXUJ+fr7TGSMXFxfExMQgJyenzmVycnJqnWGKjY1V6ouLi2G1Wp1qTCYTIiMjlZqcnByYzWaEh4crNTExMXBxcUFubm6j+2+ol7rU1NSgsrLSaSIiIqK2S7OgVVZWBrvdDj8/P6f5fn5+sFqtdS5jtVrrrb/2s6EaX19fp3E3Nzd4e3vfcLtN6aWyshLV1dV1LpOamgqTyaRMgYGBjd4eERERtT6a3wzfnsydOxc2m02ZTp06pXVLREREpCLNgpaPjw9cXV1RWlrqNL+0tBQWi6XOZSwWS7311342VHP9zfZXrlxBeXn5DbfblF68vLzg4eFR5zIGgwFeXl5OExEREbVdmgUtvV6PQYMGITMzU5nncDiQmZmJqKioOpeJiopyqgeAjIwMpT44OBgWi8WpprKyErm5uUpNVFQUKioqkJ+fr9RkZWXB4XAgMjKy0f031AsRERGRpk8dpqWlicFgkHXr1klhYaEkJyeL2WwWq9UqIiKTJk2SOXPmKPV79uwRNzc3WbJkiRw9elRSUlLE3d1dDh8+rNQsWLBAzGazbNmyRQ4dOiRxcXESHBws1dXVSs3IkSNl4MCBkpubK7t375aQkBBJSEhw6q2goEAOHDggY8aMkeHDh8uBAwfkwIEDyvh///tf6dChg/zpT3+So0ePyooVK8TV1VV27NjR6P3nU4dEREStT1M+vzUNWiIiy5cvl65du4per5eIiAjZu3evMhYdHS1Tpkxxqt+4caOEhoaKXq+Xvn37yrZt25zGHQ6HzJs3T/z8/MRgMMiIESOkqKjIqebs2bOSkJAgHTt2FC8vL0lMTJRz58451XTr1k0A1Jp+bufOnTJgwADR6/XSvXt3Wbt2bZP2nUGLiIio9WnK57dORESz02ntXGVlJUwmE2w2G+/XIiIiaiWa8vnNpw6JiIiIVMKgRURERKQSBi0iIiIilTBoEREREamEQYuIiIhIJQxaRERERCph0CIiIiJSCYMWERERkUoYtIiIiIhUwqBFREREpBIGLSIiIiKVMGgRERERqYRBi4iIiEglDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiKiRSmzVyD5RhhJbtdatEFEr4aZ1A0RErUF63neYu/kwHAK46IDUsWEYP7ir1m0RUQvHM1pERA0osVUrIQsAHAI8v/kIz2wRUYMYtIiIGlBcdl4JWdfYRXCy7II2DRFRq8GgRUTUgGAfT7jonOe56nQI8umgTUNE1GowaBERNcDf5IHUsWFw1V1NW646HV4b2w/+Jg+NOyOilo43wxMRNcL4wV0xLLQzTpZdQJBPB4YsImoUBi0iokbyN3kwYBFRk/DSIREREZFKGLSIiIiIVMKgRURERKQSBi0iIiIilTBoEREREamEQYuIiIhIJS0iaK1YsQJBQUEwGo2IjIzEvn376q3ftGkTevXqBaPRiLCwMGzfvt1pXEQwf/58+Pv7w8PDAzExMTh27JhTTXl5OSZOnAgvLy+YzWYkJSWhqqrKqebQoUO47777YDQaERgYiEWLFjmNr1u3DjqdzmkyGo23cCSIiIioLdE8aKWnp2P27NlISUnB/v370b9/f8TGxuL06dN11mdnZyMhIQFJSUk4cOAA4uPjER8fjyNHjig1ixYtwrJly7By5Urk5ubC09MTsbGxuHjxolIzceJEFBQUICMjA1u3bsWuXbuQnJysjFdWVuKBBx5At27dkJ+fj8WLF+PFF1/EO++849SPl5cXSkpKlOnbb7+9zUeIiIiIWi3RWEREhMyYMUP53W63S0BAgKSmptZZP27cOBk9erTTvMjISJk+fbqIiDgcDrFYLLJ48WJlvKKiQgwGg2zYsEFERAoLCwWA5OXlKTWffPKJ6HQ6+eGHH0RE5G9/+5t06tRJampqlJrnnntOevbsqfy+du1aMZlMN7nnIjabTQCIzWa76XUQERFR82rK57emZ7QuXbqE/Px8xMTEKPNcXFwQExODnJycOpfJyclxqgeA2NhYpb64uBhWq9WpxmQyITIyUqnJycmB2WxGeHi4UhMTEwMXFxfk5uYqNcOGDYNer3faTlFREX766SdlXlVVFbp164bAwEDExcWhoKDghvtbU1ODyspKp4mIiIjaLk2DVllZGex2O/z8/Jzm+/n5wWq11rmM1Wqtt/7az4ZqfH19ncbd3Nzg7e3tVFPXOn6+jZ49e2LNmjXYsmUL1q9fD4fDgSFDhuD777+vs/fU1FSYTCZlCgwMrLOOiIiI2gbN79FqzaKiojB58mQMGDAA0dHR2Lx5Mzp37oxVq1bVWT937lzYbDZlOnXqVDN3TERERM1J06Dl4+MDV1dXlJaWOs0vLS2FxWKpcxmLxVJv/bWfDdVcf7P9lStXUF5e7lRT1zp+vo3rubu7Y+DAgTh+/Hid4waDAV5eXk4TERERtV2aBi29Xo9BgwYhMzNTmedwOJCZmYmoqKg6l4mKinKqB4CMjAylPjg4GBaLxammsrISubm5Sk1UVBQqKiqQn5+v1GRlZcHhcCAyMlKp2bVrFy5fvuy0nZ49e6JTp0519ma323H48GH4+/s35TAQERFRW9UMN+fXKy0tTQwGg6xbt04KCwslOTlZzGazWK1WERGZNGmSzJkzR6nfs2ePuLm5yZIlS+To0aOSkpIi7u7ucvjwYaVmwYIFYjabZcuWLXLo0CGJi4uT4OBgqa6uVmpGjhwpAwcOlNzcXNm9e7eEhIRIQkKCMl5RUSF+fn4yadIkOXLkiKSlpUmHDh1k1apVSs1LL70kn376qZw4cULy8/NlwoQJYjQapaCgoFH7zqcOiYiIWp+mfH5rHrRERJYvXy5du3YVvV4vERERsnfvXmUsOjpapkyZ4lS/ceNGCQ0NFb1eL3379pVt27Y5jTscDpk3b574+fmJwWCQESNGSFFRkVPN2bNnJSEhQTp27CheXl6SmJgo586dc6r56quvZOjQoWIwGKRLly6yYMECp/FZs2Ypffv5+cmoUaNk//79jd5vBi0iIqLWpymf3zoREW3PqbVflZWVMJlMsNlsvF+LiIiolWjK5zefOiQiIiJSCYMWERERkUoYtIhakRJbNbJPlKHEVq11K0RE1AhuWjdARI2Tnvcd5m4+DIcALjogdWwYxg/uqnVbRERUD57RImoFSmzVSsgCAIcAz28+wjNbREQtHIMWUStQXHZeCVnX2EVwsuyCNg0REVGjMGgRtQLBPp5w0TnPc9XpEOTTQZuGWjHe50ZEzYlBi6gV8Dd5IHVsGFx1V9OWq06H18b2g7/JQ+POWpf0vO9w74IsPLo6F/cuyEJ63ndat0REbRxfWKohvrCUmqrEVo2TZRcQ5NOBIauJSmzVuHdBltMlWFedDrvn3M9jSURN0pTPbz51SNSK+Js8GApuUn33ufGYEpFaeOmQiNoF3udGRFpg0CKidoH3uRGRFnjpkIjajfGDu2JYaGfe50ZEzYZBi4jaFd7nRkTNiZcOiYiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUMWkREREQqYdAiIiIiUgmDFhEREZFKGLSIiG6TEls1sk+UocRWrXUrRNRC8M3wRES3QXred5i7+TAcArjogNSxYRg/uKvWbRGRxnhGi4joFpXYqpWQBQAOAZ7ffIRntoiIQYuI6FYVl51XQtY1dhGcLLugTUNE1GIwaBER3aJgH0+46Jznuep0CPLpoE1DRNRiMGgREd0if5MHUseGwVV3NW256nR4bWw/+Js8NO6MiLTGm+GJiG6D8YO7YlhoZ5wsu4Agnw4MWUQEgGe0iIhuK4E0XERE7QbPaBERNVKJrRrFZecR7ONZ64wVX+9ARHVh0CIiaoT6gtSNXu8wLLQzLyEStXO8dEhE1ICG3pPF1zsQ0Y20iKC1YsUKBAUFwWg0IjIyEvv27au3ftOmTejVqxeMRiPCwsKwfft2p3ERwfz58+Hv7w8PDw/ExMTg2LFjTjXl5eWYOHEivLy8YDabkZSUhKqqKqeaQ4cO4b777oPRaERgYCAWLVrU5F6IqPVrKEjx9Q5EdCOaB6309HTMnj0bKSkp2L9/P/r374/Y2FicPn26zvrs7GwkJCQgKSkJBw4cQHx8POLj43HkyBGlZtGiRVi2bBlWrlyJ3NxceHp6IjY2FhcvXlRqJk6ciIKCAmRkZGDr1q3YtWsXkpOTlfHKyko88MAD6NatG/Lz87F48WK8+OKLeOedd5rUCxG1fg0FKb7egYhuSDQWEREhM2bMUH632+0SEBAgqampddaPGzdORo8e7TQvMjJSpk+fLiIiDodDLBaLLF68WBmvqKgQg8EgGzZsEBGRwsJCASB5eXlKzSeffCI6nU5++OEHERH529/+Jp06dZKamhql5rnnnpOePXs2upeG2Gw2ASA2m61R9USknbR930r3Oduk23NbpfucbZK279taNT9WXJDs42XyY8UFDTokoubSlM9vTc9oXbp0Cfn5+YiJiVHmubi4ICYmBjk5OXUuk5OT41QPALGxsUp9cXExrFarU43JZEJkZKRSk5OTA7PZjPDwcKUmJiYGLi4uyM3NVWqGDRsGvV7vtJ2ioiL89NNPjerlejU1NaisrHSaiKh1GD+4K3bPuR8bpv0Su+fcX+cThf4mD0TddSfPZBGRQtOgVVZWBrvdDj8/P6f5fn5+sFqtdS5jtVrrrb/2s6EaX19fp3E3Nzd4e3s71dS1jp9vo6FerpeamgqTyaRMgYGBddYRUcvEIEVETaX5PVrtydy5c2Gz2ZTp1KlTWrdEREREKtI0aPn4+MDV1RWlpaVO80tLS2GxWOpcxmKx1Ft/7WdDNdffbH/lyhWUl5c71dS1jp9vo6FermcwGODl5eU0ERERUduladDS6/UYNGgQMjMzlXkOhwOZmZmIioqqc5moqCinegDIyMhQ6oODg2GxWJxqKisrkZubq9RERUWhoqIC+fn5Sk1WVhYcDgciIyOVml27duHy5ctO2+nZsyc6derUqF6IiIionWuGm/PrlZaWJgaDQdatWyeFhYWSnJwsZrNZrFariIhMmjRJ5syZo9Tv2bNH3NzcZMmSJXL06FFJSUkRd3d3OXz4sFKzYMECMZvNsmXLFjl06JDExcVJcHCwVFdXKzUjR46UgQMHSm5uruzevVtCQkIkISFBGa+oqBA/Pz+ZNGmSHDlyRNLS0qRDhw6yatWqJvVSHz51SERE1Po05fNb86AlIrJ8+XLp2rWr6PV6iYiIkL179ypj0dHRMmXKFKf6jRs3SmhoqOj1eunbt69s27bNadzhcMi8efPEz89PDAaDjBgxQoqKipxqzp49KwkJCdKxY0fx8vKSxMREOXfunFPNV199JUOHDhWDwSBdunSRBQsW1Oq9oV7qw6BFRETU+jTl81snIvyqeY1UVlbCZDLBZrPxfi0iIqJWoimf33zqkIiIiEglDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTipnUD7dm1Bz755dJEREStx7XP7ca8uIFBS0Pnzp0DAH65NBERUSt07tw5mEymemv4Hi0NORwO/Pjjj7jjjjug0+lqjVdWViIwMBCnTp3ie7ZugMeoYTxGDeMxqh+PT8N4jBrWlo6RiODcuXMICAiAi0v9d2HxjJaGXFxc8Itf/KLBOn4BdcN4jBrGY9QwHqP68fg0jMeoYW3lGDV0Jusa3gxPREREpBIGLSIiIiKVMGi1YAaDASkpKTAYDFq30mLxGDWMx6hhPEb14/FpGI9Rw9rrMeLN8EREREQq4RktIiIiIpUwaBERERGphEGLiIiISCUMWkREREQqYdDS2IoVKxAUFASj0YjIyEjs27fvhrUFBQX47W9/i6CgIOh0OixdurT5GtVQU47R6tWrcd9996FTp07o1KkTYmJi6q1vK5pyjDZv3ozw8HCYzWZ4enpiwIABePfdd5uxW2005Rj9XFpaGnQ6HeLj49VtUGNNOT7r1q2DTqdzmoxGYzN2q42m/h2qqKjAjBkz4O/vD4PBgNDQUGzfvr2ZutVGU47R8OHDa/090ul0GD16dDN23AyENJOWliZ6vV7WrFkjBQUFMm3aNDGbzVJaWlpn/b59++SZZ56RDRs2iMVikTfffLN5G9ZAU4/Ro48+KitWrJADBw7I0aNHZerUqWIymeT7779v5s6bT1OP0c6dO2Xz5s1SWFgox48fl6VLl4qrq6vs2LGjmTtvPk09RtcUFxdLly5d5L777pO4uLjmaVYDTT0+a9euFS8vLykpKVEmq9XazF03r6Yeo5qaGgkPD5dRo0bJ7t27pbi4WL744gs5ePBgM3fefJp6jM6ePev0d+jIkSPi6uoqa9eubd7GVcagpaGIiAiZMWOG8rvdbpeAgABJTU1tcNlu3bq1i6B1K8dIROTKlStyxx13yD//+U+1WtTcrR4jEZGBAwfKCy+8oEZ7LcLNHKMrV67IkCFD5O9//7tMmTKlTQetph6ftWvXislkaqbuWoamHqO3335bunfvLpcuXWquFjV3q/8Wvfnmm3LHHXdIVVWVWi1qgpcONXLp0iXk5+cjJiZGmefi4oKYmBjk5ORo2FnLcTuO0YULF3D58mV4e3ur1aambvUYiQgyMzNRVFSEYcOGqdmqZm72GL388svw9fVFUlJSc7SpmZs9PlVVVejWrRsCAwMRFxeHgoKC5mhXEzdzjD7++GNERUVhxowZ8PPzQ79+/fDaa6/Bbrc3V9vN6nb8e/2Pf/wDEyZMgKenp1ptaoJBSyNlZWWw2+3w8/Nzmu/n5wer1apRVy3L7ThGzz33HAICApz+429LbvYY2Ww2dOzYEXq9HqNHj8by5cvx61//Wu12NXEzx2j37t34xz/+gdWrVzdHi5q6mePTs2dPrFmzBlu2bMH69evhcDgwZMgQfP/9983RcrO7mWP03//+Fx988AHsdju2b9+OefPm4fXXX8crr7zSHC03u1v993rfvn04cuQIHnvsMbVa1Iyb1g0QqWXBggVIS0vDF1980S5u1G2KO+64AwcPHkRVVRUyMzMxe/ZsdO/eHcOHD9e6Nc2dO3cOkyZNwurVq+Hj46N1Oy1SVFQUoqKilN+HDBmC3r17Y9WqVfjLX/6iYWcth8PhgK+vL9555x24urpi0KBB+OGHH7B48WKkpKRo3V6L849//ANhYWGIiIjQupXbjkFLIz4+PnB1dUVpaanT/NLSUlgsFo26allu5RgtWbIECxYswOeff467775bzTY1dbPHyMXFBT169AAADBgwAEePHkVqamqbDFpNPUYnTpzAyZMnMWbMGGWew+EAALi5uaGoqAh33XWXuk03o9vxb5G7uzsGDhyI48ePq9Gi5m7mGPn7+8Pd3R2urq7KvN69e8NqteLSpUvQ6/Wq9tzcbuXv0fnz55GWloaXX35ZzRY1w0uHGtHr9Rg0aBAyMzOVeQ6HA5mZmU7/p9ie3ewxWrRoEf7yl79gx44dCA8Pb45WNXO7/h45HA7U1NSo0aLmmnqMevXqhcOHD+PgwYPK9NBDD+H+++/HwYMHERgY2Jztq+52/B2y2+04fPgw/P391WpTUzdzjO69914cP35cCekA8M0338Df37/NhSzg1v4ebdq0CTU1Nfjd736ndpva0Ppu/PYsLS1NDAaDrFu3TgoLCyU5OVnMZrPymPSkSZNkzpw5Sn1NTY0cOHBADhw4IP7+/vLMM8/IgQMH5NixY1rtguqaeowWLFgger1ePvjgA6fHhs+dO6fVLqiuqcfotddek88++0xOnDghhYWFsmTJEnFzc5PVq1drtQuqa+oxul5bf+qwqcfnpZdekk8//VROnDgh+fn5MmHCBDEajVJQUKDVLqiuqcfou+++kzvuuENmzpwpRUVFsnXrVvH19ZVXXnlFq11Q3c3+dzZ06FAZP358c7fbbBi0NLZ8+XLp2rWr6PV6iYiIkL179ypj0dHRMmXKFOX34uJiAVBrio6Obv7Gm1FTjlG3bt3qPEYpKSnN33gzasox+vOf/yw9evQQo9EonTp1kqioKElLS9Og6+bVlGN0vbYetESadnxmzZql1Pr5+cmoUaNk//79GnTdvJr6dyg7O1siIyPFYDBI9+7d5dVXX5UrV640c9fNq6nH6OuvvxYA8tlnnzVzp81HJyKi0ck0IiIiojaN92gRERERqYRBi4iIiEglDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIqJ2YurUqYiPj9e6DaJ2hUGLiDQ3depU6HQ6ZbrzzjsxcuRIHDp0SOvWbouf79u1aejQoapt7+TJk9DpdDh48KDT/Lfeegvr1q1TbbtEVBuDFhG1CCNHjkRJSQlKSkqQmZkJNzc3/OY3v9G6rdtm7dq1yv6VlJTg448/rrPu8uXLqvVgMplgNptVWz8R1cagRUQtgsFggMVigcViwYABAzBnzhycOnUKZ86cwa9+9SvMnDnTqf7MmTPQ6/XIzMwEAAQFBeEvf/kLEhIS4OnpiS5dumDFihVOy7zxxhsICwuDp6cnAgMD8Yc//AFVVVXK+LfffosxY8agU6dO8PT0RN++fbF9+3YAwE8//YSJEyeic+fO8PDwQEhICNauXdvo/TObzcr+WSwWeHt7K2ee0tPTER0dDaPRiPfeew9nz55FQkICunTpgg4dOiAsLAwbNmxwWp/D4cCiRYvQo0cPGAwGdO3aFa+++ioAIDg4GAAwcOBA6HQ6DB8+HEDtS4c1NTV44okn4OvrC6PRiKFDhyIvL08Z/+KLL6DT6ZCZmYnw8HB06NABQ4YMQVFRUaP3m6i9Y9AiohanqqoK69evR48ePXDnnXfisccew/vvv4+amhqlZv369ejSpQt+9atfKfMWL16M/v3748CBA5gzZw6efPJJZGRkKOMuLi5YtmwZCgoK8M9//hNZWVl49tlnlfEZM2agpqYGu3btwuHDh7Fw4UJ07NgRADBv3jwUFhbik08+wdGjR/H222/Dx8fntuzvtV6PHj2K2NhYXLx4EYMGDcK2bdtw5MgRJCcnY9KkSdi3b5+yzNy5c7FgwQKlr/fffx9+fn4AoNR9/vnnKCkpwebNm+vc7rPPPosPP/wQ//znP7F//3706NEDsbGxKC8vd6r785//jNdffx1ffvkl3Nzc8H/+z/+5LftN1C5o/a3WRERTpkwRV1dX8fT0FE9PTwEg/v7+kp+fLyIi1dXV0qlTJ0lPT1eWufvuu+XFF19Ufu/WrZuMHDnSab3jx4+XBx988Ibb3bRpk9x5553K72FhYU7r/LkxY8ZIYmLiTe0fADEajcr+eXp6yr/+9S8pLi4WALJ06dIG1zF69Gh5+umnRUSksrJSDAaDrF69us7aa+s9cOCA0/wpU6ZIXFyciIhUVVWJu7u7vPfee8r4pUuXJCAgQBYtWiQiIjt37hQA8vnnnys127ZtEwBSXV3dlENA1G7xjBYRtQj3338/Dh48iIMHD2Lfvn2IjY3Fgw8+iG+//RZGoxGTJk3CmjVrAAD79+/HkSNHMHXqVKd1REVF1fr96NGjyu+ff/45RowYgS5duuCOO+7ApEmTcPbsWVy4cAEA8MQTT+CVV17Bvffei5SUFKeb8R9//HGkpaVhwIABePbZZ5Gdnd2k/XvzzTeV/Tt48CB+/etfK2Ph4eFOtXa7HX/5y18QFhYGb29vdOzYEZ9++im+++47AMDRo0dRU1ODESNGNKmHnztx4gQuX76Me++9V5nn7u6OiIgIp2MGAHfffbfyZ39/fwDA6dOnb3rbRO0JgxYRtQienp7o0aMHevTogcGDB+Pvf/87zp8/j9WrVwMAHnvsMWRkZOD777/H2rVr8atf/QrdunVr9PpPnjyJ3/zmN7j77rvx4YcfIj8/X7mH69KlS8o2/vvf/2LSpEk4fPgwwsPDsXz5cgBQQt9TTz2FH3/8ESNGjMAzzzzT6O1bLBZl/3r06AFPT0+nff+5xYsX46233sJzzz2HnTt34uDBg4iNjVX69PDwaPR2bwd3d3flzzqdDsDVe8SIqGEMWkTUIul0Ori4uKC6uhoAEBYWhvDwcKxevRrvv/9+nfcJ7d27t9bvvXv3BgDk5+fD4XDg9ddfxy9/+UuEhobixx9/rLWOwMBA/P73v8fmzZvx9NNPK0EPADp37owpU6Zg/fr1WLp0Kd55553bucuKPXv2IC4uDr/73e/Qv39/dO/eHd98840yHhISAg8PD+VBgOvp9XoAV8+M3chdd90FvV6PPXv2KPMuX76MvLw89OnT5zbtCRG5ad0AERFw9Qk4q9UK4OoTfn/9619RVVWFMWPGKDWPPfYYZs6cCU9PTzz88MO11rFnzx4sWrQI8fHxyMjIwKZNm7Bt2zYAQI8ePXD58mUsX74cY8aMwZ49e7By5Uqn5WfNmoUHH3wQoaGh+Omnn7Bz504lqM2fPx+DBg1C3759UVNTg61btypjt1tISAg++OADZGdno1OnTnjjjTdQWlqqBCCj0YjnnnsOzz77LPR6Pe69916cOXMGBQUFSEpKgq+vLzw8PLBjxw784he/gNFohMlkctqGp6cnHn/8cfzpT3+Ct7c3unbtikWLFuHChQtISkpSZb+I2iOe0SKiFmHHjh3w9/eHv78/IiMjkZeXh02bNimvJgCAhIQEuLm5ISEhAUajsdY6nn76aXz55ZcYOHAgXnnlFbzxxhuIjY0FAPTv3x9vvPEGFi5ciH79+uG9995Damqq0/J2ux0zZsxA7969MXLkSISGhuJvf/sbgKtniebOnYu7774bw4YNg6urK9LS0lQ5Fi+88ALuuecexMbGYvjw4bBYLLXe6D5v3jw8/fTTmD9/Pnr37o3x48cr9025ublh2bJlWLVqFQICAhAXF1fndhYsWIDf/va3mDRpEu655x4cP34cn376KTp16qTKfhG1RzoREa2bICJqjJMnT+Kuu+5CXl4e7rnnHqexoKAgzJo1C7NmzdKmOSKiOvDSIRG1eJcvX8bZs2fxwgsv4Je//GWtkEVE1FLx0iERtXh79uyBv78/8vLyat1XpbXXXnsNHTt2rHN68MEHtW6PiDTGS4dERLegvLy81pvUr/Hw8ECXLl2auSMiakkYtIiIiIhUwkuHRERERCph0CIiIiJSCYMWERERkUoYtIiIiIhUwqBFREREpBIGLSIiIiKVMGgRERERqYRBi4iIiEgl/xf/7FZDLExFiQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATGhJREFUeJzt3X1cVHXe//H3AHIjBqgooKHgDWqKN2kQWmnJhuma5rYpuab+LNtd29ar2tLdzNqtMK300nXT3FW71lIz3bVVswx1+6mEhJqK5qppmQGKxuANojLf3x/9PFcTqIxyGG5ez8djHjTn+5kzn/N9kPPmnDPnOIwxRgAAAKh0Pt5uAAAAoLYiaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAajznn/+eTkcjgrVOhwOPf/887b206dPH/Xp06farg9AxRG0AFQbCxculMPhsB5+fn5q3ry5Ro0apaNHj3q7vWonJibGbb6aNm2q22+/Xf/4xz8qZf1nz57V888/r40bN1bK+oC6iKAFoNr54x//qL///e+aM2eO7rnnHi1atEi9e/fWuXPnbHm/Z599VsXFxbas225du3bV3//+d/3973/XU089pW+//VZDhgzRnDlzrnvdZ8+e1QsvvEDQAq6Dn7cbAIAfu+eee9SjRw9J0sMPP6zw8HC98sorev/99/XAAw9U+vv5+fnJz69m/nPYvHlz/eIXv7CeP/TQQ2rTpo2mT5+uX/7yl17sDIDEHi0ANcDtt98uSTp48KDb8i+++EL333+/GjVqpMDAQPXo0UPvv/++W82FCxf0wgsvqG3btgoMDFTjxo112223ad26dVZNeedolZSU6L/+67/UpEkT3XDDDbr33nv1zTfflOlt1KhRiomJKbO8vHUuWLBAd911l5o2baqAgADddNNNeuONNzyai6uJjIxUhw4ddOjQoSvWHTt2TGPGjFFERIQCAwPVpUsXvfXWW9b44cOH1aRJE0nSCy+8YB2etPv8NKC2qZl/wgGoUw4fPixJatiwobUsJydHvXr1UvPmzTVhwgQFBwfr3Xff1eDBg7V8+XLdd999kr4PPGlpaXr44YeVkJCgoqIiffbZZ9q2bZt+8pOfXPY9H374YS1atEgPPvigevbsqfXr12vAgAHXtR1vvPGGOnbsqHvvvVd+fn7617/+pV//+tdyuVwaN27cda37kgsXLujIkSNq3LjxZWuKi4vVp08fHThwQI899phiY2O1bNkyjRo1SoWFhfrtb3+rJk2a6I033tCvfvUr3XfffRoyZIgkqXPnzpXSJ1BnGACoJhYsWGAkmY8//tgcP37cHDlyxLz33numSZMmJiAgwBw5csSq7du3r4mPjzfnzp2zlrlcLtOzZ0/Ttm1ba1mXLl3MgAEDrvi+kydPNj/853DHjh1Gkvn1r3/tVvfggw8aSWby5MnWspEjR5qWLVtedZ3GGHP27NkydSkpKaZVq1Zuy3r37m169+59xZ6NMaZly5bm7rvvNsePHzfHjx83n3/+uRk2bJiRZH7zm99cdn0zZswwksyiRYusZefPnzdJSUmmQYMGpqioyBhjzPHjx8tsLwDPcOgQQLWTnJysJk2aKDo6Wvfff7+Cg4P1/vvv68Ybb5QknTx5UuvXr9cDDzygU6dOqaCgQAUFBTpx4oRSUlK0f/9+61uKYWFhysnJ0f79+yv8/mvWrJEkPf74427Lx48ff13bFRQUZP230+lUQUGBevfurS+//FJOp/Oa1vnRRx+pSZMmatKkibp06aJly5ZpxIgReuWVVy77mjVr1igyMlKpqanWsnr16unxxx/X6dOn9e9///uaegFQFocOAVQ7s2fPVlxcnJxOp+bPn69PPvlEAQEB1viBAwdkjNGkSZM0adKkctdx7NgxNW/eXH/84x81aNAgxcXFqVOnTurXr59GjBhxxUNgX331lXx8fNS6dWu35e3atbuu7dq8ebMmT56sjIwMnT171m3M6XQqNDTU43UmJibqxRdflMPhUP369dWhQweFhYVd8TVfffWV2rZtKx8f97+1O3ToYI0DqBwELQDVTkJCgvWtw8GDB+u2227Tgw8+qH379qlBgwZyuVySpKeeekopKSnlrqNNmzaSpDvuuEMHDx7UypUr9dFHH+mvf/2rpk+frjlz5ujhhx++7l4vd6HT0tJSt+cHDx5U37591b59e73++uuKjo6Wv7+/1qxZo+nTp1vb5Knw8HAlJydf02sB2I+gBaBa8/X1VVpamu688079+c9/1oQJE9SqVStJ3x/uqkjIaNSokUaPHq3Ro0fr9OnTuuOOO/T8889fNmi1bNlSLpdLBw8edNuLtW/fvjK1DRs2VGFhYZnlP94r9K9//UslJSV6//331aJFC2v5hg0brtp/ZWvZsqV27twpl8vltlfriy++sMaly4dIABXHOVoAqr0+ffooISFBM2bM0Llz59S0aVP16dNHc+fOVW5ubpn648ePW/994sQJt7EGDRqoTZs2Kikpuez73XPPPZKkmTNnui2fMWNGmdrWrVvL6XRq586d1rLc3NwyV2f39fWVJBljrGVOp1MLFiy4bB926d+/v/Ly8rR06VJr2cWLFzVr1iw1aNBAvXv3liTVr19fksoNkgAqhj1aAGqE3/3ud/r5z3+uhQsX6pe//KVmz56t2267TfHx8XrkkUfUqlUr5efnKyMjQ998840+//xzSdJNN92kPn36qHv37mrUqJE+++wzvffee3rssccu+15du3ZVamqq/vKXv8jpdKpnz55KT0/XgQMHytQOGzZMzzzzjO677z49/vjjOnv2rN544w3FxcVp27ZtVt3dd98tf39/DRw4UI8++qhOnz6tefPmqWnTpuWGRTuNHTtWc+fO1ahRo5Sdna2YmBi999572rx5s2bMmKEbbrhB0vcn7990001aunSp4uLi1KhRI3Xq1EmdOnWq0n6BGs3bX3sEgEsuXd4hKyurzFhpaalp3bq1ad26tbl48aIxxpiDBw+ahx56yERGRpp69eqZ5s2bm5/+9Kfmvffes1734osvmoSEBBMWFmaCgoJM+/btzUsvvWTOnz9v1ZR3KYbi4mLz+OOPm8aNG5vg4GAzcOBAc+TIkXIvd/DRRx+ZTp06GX9/f9OuXTuzaNGictf5/vvvm86dO5vAwEATExNjXnnlFTN//nwjyRw6dMiq8+TyDle7dMXl1pefn29Gjx5twsPDjb+/v4mPjzcLFiwo89otW7aY7t27G39/fy71AFwDhzE/2I8NAACASsM5WgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhAuWepHL5dK3336rG264gVtdAABQQxhjdOrUKTVr1qzMzdl/jKDlRd9++62io6O93QYAALgGR44c0Y033njFGoKWF126zcWRI0cUEhLi5W4AAEBFFBUVKTo62vocvxKClhddOlwYEhJC0AIAoIapyGk/nAwPAABgE4IWAACATQhaAAAANuEcLQAA6oDS0lJduHDB223UGP7+/le9dENFELQAAKjFjDHKy8tTYWGht1upUXx8fBQbGyt/f//rWg9BCwCAWuxSyGratKnq16/PBbIr4NIFxXNzc9WiRYvrmjOCFgAAtVRpaakVsho3buztdmqUJk2a6Ntvv9XFixdVr169a14PJ8MDAFBLXTonq379+l7upOa5dMiwtLT0utZD0AIAoJbjcKHnKmvOCFoAAAA2IWgBAADYhKAFAF6W6yzWloMFynUWe7sVoFrJy8vTb37zG7Vq1UoBAQGKjo7WwIEDlZ6ebtVs2bJF/fv3V8OGDRUYGKj4+Hi9/vrrbudWHT58WGPGjFFsbKyCgoLUunVrTZ48WefPn7d9G/jWIQB40dKsrzVxxS65jOTjkNKGxGvoLS283RbgdYcPH1avXr0UFhamadOmKT4+XhcuXNCHH36ocePG6YsvvtA//vEPPfDAAxo9erQ2bNigsLAwffzxx3r66aeVkZGhd999Vw6HQ1988YVcLpfmzp2rNm3aaPfu3XrkkUd05swZvfrqq7Zuh8MYY2x9B1xWUVGRQkND5XQ6FRIS4u12AFSxXGexek1ZL9cP/hX2dTi0acKdigoN8l5jqDXOnTunQ4cOKTY2VoGBgd5uxyP9+/fXzp07tW/fPgUHB7uNFRYWql69emrZsqV69+6t5cuXu43/61//0r333qslS5Zo6NCh5a5/2rRpeuONN/Tll1+WO36lufPk85tDhwDgJYcKzriFLEkqNUaHC856pyHgCqryEPfJkye1du1ajRs3rkzIkqSwsDB99NFHOnHihJ566qky4wMHDlRcXJwWL1582fdwOp1q1KhRpfZdHg4dAoCXxIYHy8ehMnu0YsK55hGql6o+xH3gwAEZY9S+ffvL1vznP/+RJHXo0KHc8fbt21s15a1/1qxZth82lNijBQBeExUapLQh8fL9/9fr8XU49PKQThw2RLWS6yy2Qpb0/R8Gv1+x29Y9W56c1eTpGVBHjx5Vv3799POf/1yPPPKIp615jD1aAOBFQ29poTvimuhwwVnFhNcnZKHaudIhbrt+X9u2bWudxH45cXFxkqS9e/eqZ8+eZcb37t2rm266yW3Zt99+qzvvvFM9e/bUm2++WblNXwZ7tADAy6JCg5TUujEhC9XSpUPcP2T3Ie5GjRopJSVFs2fP1pkzZ8qMFxYW6u6771ajRo302muvlRl///33tX//fqWmplrLjh49qj59+qh79+5asGCBfHyqJgIRtAAAwGV56xD37NmzVVpaqoSEBC1fvlz79+/X3r17NXPmTCUlJSk4OFhz587VypUrNXbsWO3cuVOHDx/W3/72N40aNUr333+/HnjgAUn/G7JatGihV199VcePH1deXp7y8vJs3QaJQ4cAAOAqvHGIu1WrVtq2bZteeuklPfnkk8rNzVWTJk3UvXt3vfHGG5Kk+++/Xxs2bNBLL72k22+/XefOnVPbtm31hz/8QePHj7fuV7hu3TodOHBABw4c0I033uj2PnZf5YrraHkR19ECANipJl9Hy9u4jhYAAEA1R9ACAACwCUELAADAJgQtAAAAmxC0AACo5fjem+cqa84IWgAA1FL16tWTJJ09y43KPXX+/HlJkq+v73Wth+toAQBQS/n6+iosLEzHjh2TJNWvX9+6thQuz+Vy6fjx46pfv778/K4vKhG0AACoxSIjIyXJCluoGB8fH7Vo0eK6gylBCwCAWszhcCgqKkpNmzbVhQsXvN1OjeHv718p90MkaAEAUAf4+vpe9/lG8BwnwwMAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgk2oRtGbPnq2YmBgFBgYqMTFRW7duvWL9smXL1L59ewUGBio+Pl5r1qxxGzfG6LnnnlNUVJSCgoKUnJys/fv3u9WcPHlSw4cPV0hIiMLCwjRmzBidPn3aGt+4caMGDRqkqKgoBQcHq2vXrnr77bfd1rFw4UI5HA63R2Bg4HXOBgAAqC28HrSWLl2qJ554QpMnT9a2bdvUpUsXpaSk6NixY+XWb9myRampqRozZoy2b9+uwYMHa/Dgwdq9e7dVM3XqVM2cOVNz5sxRZmamgoODlZKSonPnzlk1w4cPV05OjtatW6dVq1bpk08+0dixY93ep3Pnzlq+fLl27typ0aNH66GHHtKqVavc+gkJCVFubq71+Oqrryp5hgAAQI1lvCwhIcGMGzfOel5aWmqaNWtm0tLSyq1/4IEHzIABA9yWJSYmmkcffdQYY4zL5TKRkZFm2rRp1nhhYaEJCAgwixcvNsYYs2fPHiPJZGVlWTUffPCBcTgc5ujRo5fttX///mb06NHW8wULFpjQ0NCKb+yPOJ1OI8k4nc5rXgcAAKhannx+e3WP1vnz55Wdna3k5GRrmY+Pj5KTk5WRkVHuazIyMtzqJSklJcWqP3TokPLy8txqQkNDlZiYaNVkZGQoLCxMPXr0sGqSk5Pl4+OjzMzMy/brdDrVqFEjt2WnT59Wy5YtFR0drUGDBiknJ+eyry8pKVFRUZHbA9/LdRZry8EC5TqLvd0KAACVxqtBq6CgQKWlpYqIiHBbHhERoby8vHJfk5eXd8X6Sz+vVtO0aVO3cT8/PzVq1Oiy7/vuu+8qKytLo0ePtpa1a9dO8+fP18qVK7Vo0SK5XC717NlT33zzTbnrSEtLU2hoqPWIjo4ut66uWZr1tXpNWa8H52Wq15T1Wpr1tbdbAgCgUnj9HK2aYMOGDRo9erTmzZunjh07WsuTkpL00EMPqWvXrurdu7dWrFihJk2aaO7cueWuZ+LEiXI6ndbjyJEjVbUJ1Vaus1gTV+ySy3z/3GWk36/YzZ4tAECt4NWgFR4eLl9fX+Xn57stz8/PV2RkZLmviYyMvGL9pZ9Xq/nxyfYXL17UyZMny7zvv//9bw0cOFDTp0/XQw89dMXtqVevnrp166YDBw6UOx4QEKCQkBC3R113qOCMFbIuKTVGhwvOeqchAAAqkVeDlr+/v7p376709HRrmcvlUnp6upKSksp9TVJSklu9JK1bt86qj42NVWRkpFtNUVGRMjMzrZqkpCQVFhYqOzvbqlm/fr1cLpcSExOtZRs3btSAAQP0yiuvuH0j8XJKS0u1a9cuRUVFVWDrIUmx4cHycbgv83U4FBNe3zsNAQBQmarg5PwrWrJkiQkICDALFy40e/bsMWPHjjVhYWEmLy/PGGPMiBEjzIQJE6z6zZs3Gz8/P/Pqq6+avXv3msmTJ5t69eqZXbt2WTVTpkwxYWFhZuXKlWbnzp1m0KBBJjY21hQXF1s1/fr1M926dTOZmZlm06ZNpm3btiY1NdUaX79+valfv76ZOHGiyc3NtR4nTpywal544QXz4YcfmoMHD5rs7GwzbNgwExgYaHJyciq07Xzr8HtLtn5lWk1YbVo+s8q0mrDaLNn6lbdbAgDgsjz5/PZ60DLGmFmzZpkWLVoYf39/k5CQYD799FNrrHfv3mbkyJFu9e+++66Ji4sz/v7+pmPHjmb16tVu4y6Xy0yaNMlERESYgIAA07dvX7Nv3z63mhMnTpjU1FTToEEDExISYkaPHm1OnTpljY8cOdJIKvPo3bu3VTN+/Hir74iICNO/f3+zbdu2Cm83Qet/fVt41mw5UGC+LTzr7VYAALgiTz6/HcYYc9ndXbBVUVGRQkND5XQ6OV8LAIAawpPPb751CAAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFooVbLdRZry8EC5TqLvd0KAKAO8vN2A4BdlmZ9rYkrdsllJB+HlDYkXkNvaeHttgAAdQh7tFAr5TqLrZAlSS4j/X7FbvZsAQCqFEELtdKhgjNWyLqk1BgdLjjrnYYAAHUSQQu1Umx4sHwc7st8HQ7FhNf3TkMAgDqJoIVaKSo0SGlD4uXr+D5t+TocenlIJ0WFBnm5MwBAXcLJ8Ki1ht7SQnfENdHhgrOKCa9PyAIAVDmCFmq1qNAgAhYAwGs4dAgAAGATghYAAIBNCFoAAAA2IWgBAMrg9lVA5eBkeACAG25fBVQe9mgBACzcvgqoXNUiaM2ePVsxMTEKDAxUYmKitm7desX6ZcuWqX379goMDFR8fLzWrFnjNm6M0XPPPaeoqCgFBQUpOTlZ+/fvd6s5efKkhg8frpCQEIWFhWnMmDE6ffq0Nb5x40YNGjRIUVFRCg4OVteuXfX222973AsA1CTcvgqoXF4PWkuXLtUTTzyhyZMna9u2berSpYtSUlJ07Nixcuu3bNmi1NRUjRkzRtu3b9fgwYM1ePBg7d6926qZOnWqZs6cqTlz5igzM1PBwcFKSUnRuXPnrJrhw4crJydH69at06pVq/TJJ59o7Nixbu/TuXNnLV++XDt37tTo0aP10EMPadWqVR71AgA1CbevAiqXwxhjrl5mn8TERN1yyy3685//LElyuVyKjo7Wb37zG02YMKFM/dChQ3XmzBm3wHPrrbeqa9eumjNnjowxatasmZ588kk99dRTkiSn06mIiAgtXLhQw4YN0969e3XTTTcpKytLPXr0kCStXbtW/fv31zfffKNmzZqV2+uAAQMUERGh+fPnV6iXqykqKlJoaKicTqdCQkIqOGMAYK+lWV/r9yt2q9QY6/ZVnKMF/C9PPr+9ukfr/Pnzys7OVnJysrXMx8dHycnJysjIKPc1GRkZbvWSlJKSYtUfOnRIeXl5bjWhoaFKTEy0ajIyMhQWFmaFLElKTk6Wj4+PMjMzL9uv0+lUo0aNKtzLj5WUlKioqMjtAQDVzdBbWmjThDu1+JFbtWnCnYQs4Dp4NWgVFBSotLRUERERbssjIiKUl5dX7mvy8vKuWH/p59VqmjZt6jbu5+enRo0aXfZ93333XWVlZWn06NEV7uXH0tLSFBoaaj2io6PLrQMAb4sKDVJS68bcwgq4Tl4/R6sm2LBhg0aPHq158+apY8eO17yeiRMnyul0Wo8jR45UYpcAAKC68WrQCg8Pl6+vr/Lz892W5+fnKzIystzXREZGXrH+0s+r1fz4ZPuLFy/q5MmTZd733//+twYOHKjp06froYce8qiXHwsICFBISIjbAwAA1F5eDVr+/v7q3r270tPTrWUul0vp6elKSkoq9zVJSUlu9ZK0bt06qz42NlaRkZFuNUVFRcrMzLRqkpKSVFhYqOzsbKtm/fr1crlcSkxMtJZt3LhRAwYM0CuvvOL2jcSK9gIAAOo442VLliwxAQEBZuHChWbPnj1m7NixJiwszOTl5RljjBkxYoSZMGGCVb9582bj5+dnXn31VbN3714zefJkU69ePbNr1y6rZsqUKSYsLMysXLnS7Ny50wwaNMjExsaa4uJiq6Zfv36mW7duJjMz02zatMm0bdvWpKamWuPr16839evXNxMnTjS5ubnW48SJEx71ciVOp9NIMk6n85rnDwAAVC1PPr+9HrSMMWbWrFmmRYsWxt/f3yQkJJhPP/3UGuvdu7cZOXKkW/27775r4uLijL+/v+nYsaNZvXq127jL5TKTJk0yERERJiAgwPTt29fs27fPrebEiRMmNTXVNGjQwISEhJjRo0ebU6dOWeMjR440kso8evfu7VEvV0LQAgCg5vHk89vr19Gqy+y8jlaus1iHCs4oNjyYbw0BAFCJPPn85qbStRA3hAUAoHrg8g61DDeEBQCg+iBo1TLcEBYAgOqDoFXLcENYAACqD4JWLRMVGqS0IfHydXyfti7dEJYT4gEAqHqcDF8LDb2lhe6Ia6LDBWcVE16fkAUAgJcQtGqpqNAgAhYAAF7GoUMAAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAtsp1FmvLwQLlOou93UqV8/N2AwAAoPZamvW1Jq7YJZeRfBxS2pB4Db2lhbfbqjLs0QIAALbIdRZbIUuSXEb6/YrddWrPFkELAADY4lDBGStkXVJqjA4XnPVOQ15A0AIAALaIDQ+Wj8N9ma/DoZjw+t5pyAsIWgAAwBZRoUFKGxIvX8f3acvX4dDLQzopKjTIy51VHU6GBwAAthl6SwvdEddEhwvOKia8fp0KWRJBCwAA2CwqNKjOBaxLOHQIAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOPgtaFCxf09NNPq02bNkpISND8+fPdxvPz8+Xr6+tRA7Nnz1ZMTIwCAwOVmJiorVu3XrF+2bJlat++vQIDAxUfH681a9a4jRtj9NxzzykqKkpBQUFKTk7W/v373WpOnjyp4cOHKyQkRGFhYRozZoxOnz5tjZ87d06jRo1SfHy8/Pz8NHjw4DJ9bNy4UQ6Ho8wjLy/Po+0HAAC1l0dB66WXXtL//M//6Je//KXuvvtuPfHEE3r00UfdaowxFV7f0qVL9cQTT2jy5Mnatm2bunTpopSUFB07dqzc+i1btig1NVVjxozR9u3bNXjwYA0ePFi7d++2aqZOnaqZM2dqzpw5yszMVHBwsFJSUnTu3DmrZvjw4crJydG6deu0atUqffLJJxo7dqw1XlpaqqCgID3++ONKTk6+4jbs27dPubm51qNp06YV3n4AAFDLGQ+0adPG/Otf/7Ke79+/37Rp08aMGjXKuFwuk5eXZ3x8fCq8voSEBDNu3DjreWlpqWnWrJlJS0srt/6BBx4wAwYMcFuWmJhoHn30UWOMMS6Xy0RGRppp06ZZ44WFhSYgIMAsXrzYGGPMnj17jCSTlZVl1XzwwQfG4XCYo0ePlnnPkSNHmkGDBpVZvmHDBiPJfPfddxXe3h9zOp1GknE6nde8DgAAULU8+fz2aI/W0aNH1alTJ+t5mzZttHHjRm3ZskUjRoxQaWlphdd1/vx5ZWdnu+0x8vHxUXJysjIyMsp9TUZGRpk9TCkpKVb9oUOHlJeX51YTGhqqxMREqyYjI0NhYWHq0aOHVZOcnCwfHx9lZmZWuP9LunbtqqioKP3kJz/R5s2br1hbUlKioqIitwcAAKi9PApakZGROnjwoNuy5s2ba8OGDcrKytKoUaMqvK6CggKVlpYqIiLCbXlERMRlz3PKy8u7Yv2ln1er+fHhPT8/PzVq1Mij86uioqI0Z84cLV++XMuXL1d0dLT69Omjbdu2XfY1aWlpCg0NtR7R0dEVfj8AAFDzeBS07rrrLr3zzjtlljdr1kzr16/XoUOHKq2x6q5du3Z69NFH1b17d/Xs2VPz589Xz549NX369Mu+ZuLEiXI6ndbjyJEjVdgxAACoan6eFE+aNElffPFFuWPNmzfXv//9b61bt65C6woPD5evr6/y8/Pdlufn5ysyMrLc10RGRl6x/tLP/Px8RUVFudV07drVqvnxyfYXL17UyZMnL/u+FZWQkKBNmzZddjwgIEABAQHX9R4AAKDm8GiPVsuWLZWSknLZ8WbNmmnkyJEVWpe/v7+6d++u9PR0a5nL5VJ6erqSkpLKfU1SUpJbvSStW7fOqo+NjVVkZKRbTVFRkTIzM62apKQkFRYWKjs726pZv369XC6XEhMTK9T75ezYscMt4AEA6rZcZ7G2HCxQrrPY263ASzzao3XJsmXLtHjxYv3nP/+RJMXFxenBBx/U/fff79F6nnjiCY0cOVI9evRQQkKCZsyYoTNnzmj06NGSpIceekjNmzdXWlqaJOm3v/2tevfurddee00DBgzQkiVL9Nlnn+nNN9+UJDkcDo0fP14vvvii2rZtq9jYWE2aNEnNmjWzroXVoUMH9evXT4888ojmzJmjCxcu6LHHHtOwYcPUrFkzq7c9e/bo/PnzOnnypE6dOqUdO3ZIkrVnbMaMGYqNjVXHjh117tw5/fWvf9X69ev10UcfXcuUAgBqmaVZX2viil1yGcnHIaUNidfQW1p4uy1UMY+ClsvlUmpqqpYtW6a4uDi1b99ekpSTk6OhQ4fq5z//uRYvXiyHw1Gh9Q0dOlTHjx/Xc889p7y8PHXt2lVr1661Tmb/+uuv5ePzvzvdevbsqXfeeUfPPvusfv/736tt27b65z//6fZNyKefflpnzpzR2LFjVVhYqNtuu01r165VYGCgVfP222/rscceU9++feXj46Of/exnmjlzpltv/fv311dffWU979atm6T/vU7Y+fPn9eSTT+ro0aOqX7++OnfurI8//lh33nmnJ1MKAKiFcp3FVsiSJJeRfr9it+6Ia6Ko0CDvNocq5TCm4lcYnT59ul588UW99dZb+ulPf+o29v7772v06NGaNGmSxo8fX9l91kpFRUUKDQ2V0+lUSEiIt9sBAFSSLQcL9OC8spcMWvzIrUpq3dgLHaEyefL57dE5WgsWLNC0adPKhCxJuvfeezV16tQyt+UBAKCuiQ0Pls+PDu74OhyKCa/vnYbgNR4Frf3791/xljTl3VcQAIC6Jio0SGlD4uX7/0+l8XU49PKQThw2rIM8OkcrKChIhYWFatGi/JP5ioqK3M6FAgCgrhp6SwvdEddEhwvOKia8PiGrjvJoj1ZSUpLeeOONy47Pnj37spdmAACgrokKDVJS68aErDrMoz1af/jDH9SnTx+dOHFCTz31lNq3by9jjPbu3avXXntNK1eu1IYNG+zqFQAAoEbxKGj17NlTS5cu1dixY7V8+XK3sYYNG2rx4sXq1atXpTYIAABQU3l0eYdLzp49qw8//NA68T0uLk5333236tfn2xSe4PIOAADUPJ58fnu0R2v9+vV67LHH9Omnn+q+++5zG3M6nerYsaPmzJmj22+/3fOuAQAAahmPToafMWOGHnnkkXLTW2hoqB599FG9/vrrldYcAABATeZR0Pr888/Vr1+/y47ffffdbjdrBgAAqMs8Clr5+fmqV6/eZcf9/Px0/Pjx624KAACgNvAoaDVv3ly7d+++7PjOnTsVFRV13U0BAADUBh4Frf79+2vSpEk6d+5cmbHi4mJNnjy53PsgAgCA6i/XWawtBwuU6yz2diu1hkeXd8jPz9fNN98sX19fPfbYY2rXrp0k6YsvvtDs2bNVWlqqbdu2KSIiwraGaxMu7wAAqC6WZn2tiSt2yWUkH4eUNiReQ28p/5Z7dZ0nn98eX0frq6++0q9+9St9+OGHuvRSh8OhlJQUzZ49W7GxsdfeeR1D0AIAVAe5zmL1mrJerh8kAl+HQ5sm3Mntg8ph23W0JKlly5Zas2aNvvvuOx04cEDGGLVt21YNGza85oYBAID3HCo44xayJKnUGB0uOEvQuk4eB61LGjZsqFtuuaUyewEAAF4QGx4sH4fK7NGKCeeOL9fLo5PhAQBA7RMVGqS0IfHydTgkfR+yXh7Sib1ZleCa92gBAIDaY+gtLXRHXBMdLjirmPD6hKxKQtACAACSvt+zRcCqXBw6BAAAsAlBCwAAwCYELQAAAJsQtACggq52exJuXwLgxzgZHgAq4Gq3J+H2JUD1k+ss1qGCM4oND/baSf7s0QKAq8h1FlshSvr+oo6/X7Hb2nN1tXEAVW9p1tfqNWW9HpyXqV5T1mtp1tde6YOgBaBOuZbDe1e6PUlFxgFUrer0xw+HDgHUGdd6eO9qtyfh9iVA9VKd7t3IHi0AdcL1/IV7tduTcPsSoHq59MfPD3nrjx/2aAGoE673L9yr3Z6E25cA1celP35+v2K3So3x6h8/BC0AdUJlHN672u1JuH0JUH1Ulz9+OHQIoE7g8B5Q90SFBimpdWOv/n/OHi0AdUZ1+QsXQN1B0AJQp3B4D0BV4tAhAACATQhaAFBJuNchgB/j0CEAVALudQigPOzRAoDrVJ1u9wGgeiFoAcB14l6HAC6HoAUA16k63e4DQPVC0AKA68TFUGs2vsQAO3EyPABUAi6GWjPxJQbYjT1aAFBJqsPtPlBxfIkBVYGgBQCok/gSA6oCQQsAUCfxJQZUBYIWAKBO4ksMqAqcDA8AqLP4EgPsRtACANRpUaFBBCzYhkOHQA3C9X4AoGbxetCaPXu2YmJiFBgYqMTERG3duvWK9cuWLVP79u0VGBio+Ph4rVmzxm3cGKPnnntOUVFRCgoKUnJysvbv3+9Wc/LkSQ0fPlwhISEKCwvTmDFjdPr0aWv83LlzGjVqlOLj4+Xn56fBgweX28vGjRt18803KyAgQG3atNHChQuvaQ6Ailia9bV6TVmvB+dlqteU9Vqa9bW3WwLqPP74wdV4NWgtXbpUTzzxhCZPnqxt27apS5cuSklJ0bFjx8qt37Jli1JTUzVmzBht375dgwcP1uDBg7V7926rZurUqZo5c6bmzJmjzMxMBQcHKyUlRefOnbNqhg8frpycHK1bt06rVq3SJ598orFjx1rjpaWlCgoK0uOPP67k5ORyezl06JAGDBigO++8Uzt27ND48eP18MMP68MPP6yk2QH+F9f7Aaof/vhBRTiMMebqZfZITEzULbfcoj//+c+SJJfLpejoaP3mN7/RhAkTytQPHTpUZ86c0apVq6xlt956q7p27ao5c+bIGKNmzZrpySef1FNPPSVJcjqdioiI0MKFCzVs2DDt3btXN910k7KystSjRw9J0tq1a9W/f3998803atasmdt7jho1SoWFhfrnP//ptvyZZ57R6tWr3ULesGHDVFhYqLVr11Zo+4uKihQaGiqn06mQkJAKvQZ105aDBXpwXmaZ5YsfuVVJrRt7oSOgbst1FqvXlPVu1+HydTi0acKdnO9VB3jy+e21PVrnz59Xdna22x4jHx8fJScnKyMjo9zXZGRklNnDlJKSYtUfOnRIeXl5bjWhoaFKTEy0ajIyMhQWFmaFLElKTk6Wj4+PMjPLfpBdztV6KU9JSYmKiorcHkBFcL0foHrhYqeoKK8FrYKCApWWlioiIsJteUREhPLy8sp9TV5e3hXrL/28Wk3Tpk3dxv38/NSoUaPLvq8nvRQVFam4uPzDOWlpaQoNDbUe0dHRFX4/1G1c7weoXvjjBxXF5R2q0MSJE/XEE09Yz4uKighbqDCu9wNUH5f++Pn9it0qNYY/fnBZXgta4eHh8vX1VX5+vtvy/Px8RUZGlvuayMjIK9Zf+pmfn6+oqCi3mq5du1o1Pz7Z/uLFizp58uRl39eTXkJCQhQUVP7/aAEBAQoICKjwewA/xvV+gOqDP35QEV47dOjv76/u3bsrPT3dWuZyuZSenq6kpKRyX5OUlORWL0nr1q2z6mNjYxUZGelWU1RUpMzMTKsmKSlJhYWFys7OtmrWr18vl8ulxMTECvd/tV4AALVfVGiQklo3JmTh8owXLVmyxAQEBJiFCxeaPXv2mLFjx5qwsDCTl5dnjDFmxIgRZsKECVb95s2bjZ+fn3n11VfN3r17zeTJk029evXMrl27rJopU6aYsLAws3LlSrNz504zaNAgExsba4qLi62afv36mW7dupnMzEyzadMm07ZtW5OamurWW05Ojtm+fbsZOHCg6dOnj9m+fbvZvn27Nf7ll1+a+vXrm9/97ndm7969Zvbs2cbX19esXbu2wtvvdDqNJON0Oj2dOgAA4CWefH57NWgZY8ysWbNMixYtjL+/v0lISDCffvqpNda7d28zcuRIt/p3333XxMXFGX9/f9OxY0ezevVqt3GXy2UmTZpkIiIiTEBAgOnbt6/Zt2+fW82JEydMamqqadCggQkJCTGjR482p06dcqtp2bKlkVTm8UMbNmwwXbt2Nf7+/qZVq1ZmwYIFHm07QQsAgJrHk89vr15Hq67jOloAANQ8NeI6WgAAALUdQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAoAKynUWa8vBAuU6i73dCoAaws/bDQBATbA062tNXLFLLiP5OKS0IfEaeksLb7cFoJpjjxYAXEWus9gKWZLkMtLvV+xmzxaAqyJoAcBVHCo4Y4WsS0qN0eGCs95pCECNQdACgKuIDQ+Wj8N9ma/DoZjw+t5pCECNQdACgKuICg1S2pB4+Tq+T1u+DodeHtJJUaFBXu4MQHVXLYLW7NmzFRMTo8DAQCUmJmrr1q1XrF+2bJnat2+vwMBAxcfHa82aNW7jxhg999xzioqKUlBQkJKTk7V//363mpMnT2r48OEKCQlRWFiYxowZo9OnT7vV7Ny5U7fffrsCAwMVHR2tqVOnuo0vXLhQDofD7REYGHgdMwGguhp6SwttmnCnFj9yqzZNuJMT4QFUiNeD1tKlS/XEE09o8uTJ2rZtm7p06aKUlBQdO3as3PotW7YoNTVVY8aM0fbt2zV48GANHjxYu3fvtmqmTp2qmTNnas6cOcrMzFRwcLBSUlJ07tw5q2b48OHKycnRunXrtGrVKn3yyScaO3asNV5UVKS7775bLVu2VHZ2tqZNm6bnn39eb775pls/ISEhys3NtR5fffVVJc8QgOoiKjRISa0bsycLQMUZL0tISDDjxo2znpeWlppmzZqZtLS0cusfeOABM2DAALdliYmJ5tFHHzXGGONyuUxkZKSZNm2aNV5YWGgCAgLM4sWLjTHG7Nmzx0gyWVlZVs0HH3xgHA6HOXr0qDHGmL/85S+mYcOGpqSkxKp55plnTLt27aznCxYsMKGhode45cY4nU4jyTidzmteBwAAqFqefH57dY/W+fPnlZ2dreTkZGuZj4+PkpOTlZGRUe5rMjIy3OolKSUlxao/dOiQ8vLy3GpCQ0OVmJho1WRkZCgsLEw9evSwapKTk+Xj46PMzEyr5o477pC/v7/b++zbt0/fffedtez06dNq2bKloqOjNWjQIOXk5Fx2e0tKSlRUVOT2AAAAtZdXg1ZBQYFKS0sVERHhtjwiIkJ5eXnlviYvL++K9Zd+Xq2madOmbuN+fn5q1KiRW0156/jhe7Rr107z58/XypUrtWjRIrlcLvXs2VPffPNNub2npaUpNDTUekRHR5dbBwAAagevn6NVkyUlJemhhx5S165d1bt3b61YsUJNmjTR3Llzy62fOHGinE6n9Thy5EgVdwwAAKqSV4NWeHi4fH19lZ+f77Y8Pz9fkZGR5b4mMjLyivWXfl6t5scn21+8eFEnT550qylvHT98jx+rV6+eunXrpgMHDpQ7HhAQoJCQELcHAACovbwatPz9/dW9e3elp6dby1wul9LT05WUlFTua5KSktzqJWndunVWfWxsrCIjI91qioqKlJmZadUkJSWpsLBQ2dnZVs369evlcrmUmJho1XzyySe6cOGC2/u0a9dODRs2LLe30tJS7dq1S1FRUZ5MAwAAqK2q4OT8K1qyZIkJCAgwCxcuNHv27DFjx441YWFhJi8vzxhjzIgRI8yECROs+s2bNxs/Pz/z6quvmr1795rJkyebevXqmV27dlk1U6ZMMWFhYWblypVm586dZtCgQSY2NtYUFxdbNf369TPdunUzmZmZZtOmTaZt27YmNTXVGi8sLDQRERFmxIgRZvfu3WbJkiWmfv36Zu7cuVbNCy+8YD788ENz8OBBk52dbYYNG2YCAwNNTk5Ohbadbx0CAFDzePL57fWgZYwxs2bNMi1atDD+/v4mISHBfPrpp9ZY7969zciRI93q3333XRMXF2f8/f1Nx44dzerVq93GXS6XmTRpkomIiDABAQGmb9++Zt++fW41J06cMKmpqaZBgwYmJCTEjB492pw6dcqt5vPPPze33XabCQgIMM2bNzdTpkxxGx8/frzVd0REhOnfv7/Ztm1bhbeboAUAQM3jyee3wxhjrrzPC3YpKipSaGionE4n52sBAFBDePL5zbcOAQAAbELQAgAAsAlBCwAAwCYELQAAUCPlOou15WCBcp3F3m7lsvy83QAAAICnlmZ9rYkrdsllJB+HlDYkXkNvaeHttspgjxYAAKhRcp3FVsiSJJeRfr9id7Xcs0XQAgAANcqhgjNWyLqk1BgdLjjrnYaugKAFAABqlNjwYPk43Jf5OhyKCa/vnYaugKAFAABqlKjQIKUNiZev4/u05etw6OUhnRQVGuTlzsriZHgAQJXKdRbrUMEZxYYHV8sPRtQMQ29poTvimuhwwVnFhNevtr9LBC0AQJWpKd8UQ80QFRpUbQPWJRw6BABUiZr0TTGgshC0AABVoiZ9UwyoLAQtAECVqEnfFAMqC0ELAFAlatI3xYDKwsnwAIAqU1O+KQZUFoIWAKBK1YRvigGVhUOHAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgCgjFxnsbYcLFCus9jbrQA1mp+3GwAAVC9Ls77WxBW75DKSj0NKGxKvobe08HZbQI3EHi0AgCXXWWyFLElyGen3K3azZwu4RgQtAIDlUMEZK2RdUmqMDhec9U5DQA1H0AIAWGLDg+XjcF/m63AoJry+dxoCarhqEbRmz56tmJgYBQYGKjExUVu3br1i/bJly9S+fXsFBgYqPj5ea9ascRs3xui5555TVFSUgoKClJycrP3797vVnDx5UsOHD1dISIjCwsI0ZswYnT592q1m586duv322xUYGKjo6GhNnTrV414AoCaJCg1S2pB4+Tq+T1u+DodeHtJJUaFBXu4MqKGMly1ZssT4+/ub+fPnm5ycHPPII4+YsLAwk5+fX2795s2bja+vr5k6darZs2ePefbZZ029evXMrl27rJopU6aY0NBQ889//tN8/vnn5t577zWxsbGmuLjYqunXr5/p0qWL+fTTT83//b//17Rp08akpqZa406n00RERJjhw4eb3bt3m8WLF5ugoCAzd+5cj3q5EqfTaSQZp9Pp6bQBgK2+LTxrthwoMN8WnvV2K0C148nnt9eDVkJCghk3bpz1vLS01DRr1sykpaWVW//AAw+YAQMGuC1LTEw0jz76qDHGGJfLZSIjI820adOs8cLCQhMQEGAWL15sjDFmz549RpLJysqyaj744APjcDjM0aNHjTHG/OUvfzENGzY0JSUlVs0zzzxj2rVrV+FeroagBQBAzePJ57dXDx2eP39e2dnZSk5Otpb5+PgoOTlZGRkZ5b4mIyPDrV6SUlJSrPpDhw4pLy/PrSY0NFSJiYlWTUZGhsLCwtSjRw+rJjk5WT4+PsrMzLRq7rjjDvn7+7u9z759+/Tdd99VqBcAAFC3eTVoFRQUqLS0VBEREW7LIyIilJeXV+5r8vLyrlh/6efVapo2beo27ufnp0aNGrnVlLeOH77H1Xr5sZKSEhUVFbk9AABA7VUtToavK9LS0hQaGmo9oqOjvd0SAACwkVeDVnh4uHx9fZWfn++2PD8/X5GRkeW+JjIy8or1l35erebYsWNu4xcvXtTJkyfdaspbxw/f42q9/NjEiRPldDqtx5EjR8qtAwAAtYNXg5a/v7+6d++u9PR0a5nL5VJ6erqSkpLKfU1SUpJbvSStW7fOqo+NjVVkZKRbTVFRkTIzM62apKQkFRYWKjs726pZv369XC6XEhMTrZpPPvlEFy5ccHufdu3aqWHDhhXq5ccCAgIUEhLi9gAAALVYFZycf0VLliwxAQEBZuHChWbPnj1m7NixJiwszOTl5RljjBkxYoSZMGGCVb9582bj5+dnXn31VbN3714zefLkci/vEBYWZlauXGl27txpBg0aVO7lHbp162YyMzPNpk2bTNu2bd0u71BYWGgiIiLMiBEjzO7du82SJUtM/fr1y1ze4Wq9XAnfOgQAoOapUZd3MMaYWbNmmRYtWhh/f3+TkJBgPv30U2usd+/eZuTIkW717777romLizP+/v6mY8eOZvXq1W7jLpfLTJo0yURERJiAgADTt29fs2/fPreaEydOmNTUVNOgQQMTEhJiRo8ebU6dOuVW8/nnn5vbbrvNBAQEmObNm5spU6aU6f1qvVwJQQsAgJrHk89vhzHGXHmfF+xSVFSk0NBQOZ1ODiMCAFBDePL5zbcOAQAAbELQAgAAsAlBCwAAwCZ+3m6gLrt0ehxXiAcAoOa49LldkdPcCVpedOrUKUniCvEAANRAp06dUmho6BVr+NahF7lcLn377be64YYb5HA4yowXFRUpOjpaR44c4VuJl8EcXR1zdHXM0ZUxP1fHHF1dbZojY4xOnTqlZs2aycfnymdhsUfLi3x8fHTjjTdetY6ryF8dc3R1zNHVMUdXxvxcHXN0dbVljq62J+sSToYHAACwCUELAADAJgStaiwgIECTJ09WQECAt1uptpijq2OOro45ujLm5+qYo6urq3PEyfAAAAA2YY8WAACATQhaAAAANiFoAQAA2ISgBQAAYBOClpfNnj1bMTExCgwMVGJiorZu3XrZ2pycHP3sZz9TTEyMHA6HZsyYUXWNepEnczRv3jzdfvvtatiwoRo2bKjk5OQr1tcWnszRihUr1KNHD4WFhSk4OFhdu3bV3//+9yrs1js8maMfWrJkiRwOhwYPHmxvg17myfwsXLhQDofD7REYGFiF3XqHp79DhYWFGjdunKKiohQQEKC4uDitWbOmirr1Dk/mqE+fPmV+jxwOhwYMGFCFHVcBA69ZsmSJ8ff3N/Pnzzc5OTnmkUceMWFhYSY/P7/c+q1bt5qnnnrKLF682ERGRprp06dXbcNe4OkcPfjgg2b27Nlm+/btZu/evWbUqFEmNDTUfPPNN1XcedXxdI42bNhgVqxYYfbs2WMOHDhgZsyYYXx9fc3atWuruPOq4+kcXXLo0CHTvHlzc/vtt5tBgwZVTbNe4On8LFiwwISEhJjc3FzrkZeXV8VdVy1P56ikpMT06NHD9O/f32zatMkcOnTIbNy40ezYsaOKO686ns7RiRMn3H6Hdu/ebXx9fc2CBQuqtnGbEbS8KCEhwYwbN856Xlpaapo1a2bS0tKu+tqWLVvWiaB1PXNkjDEXL140N9xwg3nrrbfsatHrrneOjDGmW7du5tlnn7WjvWrhWubo4sWLpmfPnuavf/2rGTlyZK0OWp7Oz4IFC0xoaGgVdVc9eDpHb7zxhmnVqpU5f/58VbXoddf7b9H06dPNDTfcYE6fPm1Xi17BoUMvOX/+vLKzs5WcnGwt8/HxUXJysjIyMrzYWfVRGXN09uxZXbhwQY0aNbKrTa+63jkyxig9PV379u3THXfcYWerXnOtc/THP/5RTZs21ZgxY6qiTa+51vk5ffq0WrZsqejoaA0aNEg5OTlV0a5XXMscvf/++0pKStK4ceMUERGhTp066eWXX1ZpaWlVtV2lKuPf67/97W8aNmyYgoOD7WrTKwhaXlJQUKDS0lJFRES4LY+IiFBeXp6XuqpeKmOOnnnmGTVr1sztf/7a5FrnyOl0qkGDBvL399eAAQM0a9Ys/eQnP7G7Xa+4ljnatGmT/va3v2nevHlV0aJXXcv8tGvXTvPnz9fKlSu1aNEiuVwu9ezZU998801VtFzlrmWOvvzyS7333nsqLS3VmjVrNGnSJL322mt68cUXq6LlKne9/15v3bpVu3fv1sMPP2xXi17j5+0GALtMmTJFS5Ys0caNG+vEibqeuOGGG7Rjxw6dPn1a6enpeuKJJ9SqVSv16dPH26153alTpzRixAjNmzdP4eHh3m6nWkpKSlJSUpL1vGfPnurQoYPmzp2rP/3pT17srPpwuVxq2rSp3nzzTfn6+qp79+46evSopk2bpsmTJ3u7vWrnb3/7m+Lj45WQkODtViodQctLwsPD5evrq/z8fLfl+fn5ioyM9FJX1cv1zNGrr76qKVOm6OOPP1bnzp3tbNOrrnWOfHx81KZNG0lS165dtXfvXqWlpdXKoOXpHB08eFCHDx/WwIEDrWUul0uS5Ofnp3379ql169b2Nl2FKuPfonr16qlbt246cOCAHS163bXMUVRUlOrVqydfX19rWYcOHZSXl6fz58/L39/f1p6r2vX8Hp05c0ZLlizRH//4Rztb9BoOHXqJv7+/unfvrvT0dGuZy+VSenq621+Kddm1ztHUqVP1pz/9SWvXrlWPHj2qolWvqazfI5fLpZKSEjta9DpP56h9+/batWuXduzYYT3uvfde3XnnndqxY4eio6Orsn3bVcbvUGlpqXbt2qWoqCi72vSqa5mjXr166cCBA1ZIl6T//Oc/ioqKqnUhS7q+36Nly5appKREv/jFL+xu0zu8fTZ+XbZkyRITEBBgFi5caPbs2WPGjh1rwsLCrK9JjxgxwkyYMMGqLykpMdu3bzfbt283UVFR5qmnnjLbt283+/fv99Ym2M7TOZoyZYrx9/c37733ntvXhk+dOuWtTbCdp3P08ssvm48++sgcPHjQ7Nmzx7z66qvGz8/PzJs3z1ubYDtP5+jHavu3Dj2dnxdeeMF8+OGH5uDBgyY7O9sMGzbMBAYGmpycHG9tgu08naOvv/7a3HDDDeaxxx4z+/btM6tWrTJNmzY1L774orc2wXbX+v/ZbbfdZoYOHVrV7VYZgpaXzZo1y7Ro0cL4+/ubhIQE8+mnn1pjvXv3NiNHjrSeHzp0yEgq8+jdu3fVN16FPJmjli1bljtHkydPrvrGq5Anc/SHP/zBtGnTxgQGBpqGDRuapKQks2TJEi90XbU8maMfq+1ByxjP5mf8+PFWbUREhOnfv7/Ztm2bF7quWp7+Dm3ZssUkJiaagIAA06pVK/PSSy+ZixcvVnHXVcvTOfriiy+MJPPRRx9VcadVx2GMMV7amQYAAFCrcY4WAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAdcSoUaM0ePBgb7cB1CkELQBeN2rUKDkcDuvRuHFj9evXTzt37vR2a5Xih9t26XHbbbfZ9n6HDx+Ww+HQjh073Jb/93//txYuXGjb+wIoi6AFoFro16+fcnNzlZubq/T0dPn5+emnP/2pt9uqNAsWLLC2Lzc3V++//365dRcuXLCth9DQUIWFhdm2fgBlEbQAVAsBAQGKjIxUZGSkunbtqgkTJujIkSM6fvy47rrrLj322GNu9cePH5e/v7/S09MlSTExMfrTn/6k1NRUBQcHq3nz5po9e7bba15//XXFx8crODhY0dHR+vWvf63Tp09b41999ZUGDhyohg0bKjg4WB07dtSaNWskSd99952GDx+uJk2aKCgoSG3bttWCBQsqvH1hYWHW9kVGRqpRo0bWnqelS5eqd+/eCgwM1Ntvv60TJ04oNTVVzZs3V/369RUfH6/Fixe7rc/lcmnq1Klq06aNAgIC1KJFC7300kuSpNjYWElSt27d5HA41KdPH0llDx2WlJTo8ccfV9OmTRUYGKjbbrtNWVlZ1vjGjRvlcDiUnp6uHj16qH79+urZs6f27dtX4e0G6jqCFoBq5/Tp01q0aJHatGmjxo0b6+GHH9Y777yjkpISq2bRokVq3ry57rrrLmvZtGnT1KVLF23fvl0TJkzQb3/7W61bt84a9/Hx0cyZM5WTk6O33npL69ev19NPP22Njxs3TiUlJfrkk0+0a9cuvfLKK2rQoIEkadKkSdqzZ48++OAD7d27V2+88YbCw8MrZXsv9bp3716lpKTo3Llz6t69u1avXq3du3dr7NixGjFihLZu3Wq9ZuLEiZoyZYrV1zvvvKOIiAhJsuo+/vhj5ebmasWKFeW+79NPP63ly5frrbfe0rZt29SmTRulpKTo5MmTbnV/+MMf9Nprr+mzzz6Tn5+f/s//+T+Vst1AneDtu1oDwMiRI42vr68JDg42wcHBRpKJiooy2dnZxhhjiouLTcOGDc3SpUut13Tu3Nk8//zz1vOWLVuafv36ua136NCh5p577rns+y5btsw0btzYeh4fH++2zh8aOHCgGT169DVtnyQTGBhobV9wcLD5xz/+YQ4dOmQkmRkzZlx1HQMGDDBPPvmkMcaYoqIiExAQYObNm1du7aX1bt++3W35yJEjzaBBg4wxxpw+fdrUq1fPvP3229b4+fPnTbNmzczUqVONMcZs2LDBSDIff/yxVbN69WojyRQXF3syBUCdxR4tANXCnXfeqR07dmjHjh3aunWrUlJSdM899+irr75SYGCgRowYofnz50uStm3bpt27d2vUqFFu60hKSirzfO/evdbzjz/+WH379lXz5s11ww03aMSIETpx4oTOnj0rSXr88cf14osvqlevXpo8ebLbyfi/+tWvtGTJEnXt2lVPP/20tmzZ4tH2TZ8+3dq+HTt26Cc/+Yk11qNHD7fa0tJS/elPf1J8fLwaNWqkBg0a6MMPP9TXX38tSdq7d69KSkrUt29fj3r4oYMHD+rChQvq1auXtaxevXpKSEhwmzNJ6ty5s/XfUVFRkqRjx45d83sDdQlBC0C1EBwcrDZt2qhNmza65ZZb9Ne//lVnzpzRvHnzJEkPP/yw1q1bp2+++UYLFizQXXfdpZYtW1Z4/YcPH9ZPf/pTde7cWcuXL1d2drZ1Dtf58+et9/jyyy81YsQI7dq1Sz169NCsWbMkyQp9//Vf/6Vvv/1Wffv21VNPPVXh94+MjLS2r02bNgoODnbb9h+aNm2a/vu//1vPPPOMNmzYoB07diglJcXqMygoqMLvWxnq1atn/bfD4ZD0/TliAK6OoAWgWnI4HPLx8VFxcbEkKT4+Xj169NC8efP0zjvvlHue0KefflrmeYcOHSRJ2dnZcrlceu2113TrrbcqLi5O3377bZl1REdH65e//KVWrFihJ5980gp6ktSkSRONHDlSixYt0owZM/Tmm29W5iZbNm/erEGDBukXv/iFunTpolatWuk///mPNd62bVsFBQVZXwT4MX9/f0nf7xm7nNatW8vf31+bN2+2ll24cEFZWVm66aabKmlLAPh5uwEAkL7/BlxeXp6k77/h9+c//1mnT5/WwIEDrZqHH35Yjz32mIKDg3XfffeVWcfmzZs1depUDR48WOvWrdOyZcu0evVqSVKbNm104cIFzZo1SwMHDtTmzZs1Z84ct9ePHz9e99xzj+Li4vTdd99pw4YNVlB77rnn1L17d3Xs2FElJSVatWqVNVbZ2rZtq/fee09btmxRw4YN9frrrys/P98KQIGBgXrmmWf09NNPy9/fX7169dLx48eVk5OjMWPGqGnTpgoKCtLatWt14403KjAwUKGhoW7vERwcrF/96lf63e9+p0aNGqlFixaaOnWqzp49qzFjxtiyXUBdxB4tANXC2rVrFRUVpaioKCUmJiorK0vLli2zLk0gSampqfLz81NqaqoCAwPLrOPJJ5/UZ599pm7duunFF1/U66+/rpSUFElSly5d9Prrr+uVV15Rp06d9PbbbystLc3t9aWlpRo3bpw6dOigfv36KS4uTn/5y18kfb+XaOLEiercubPuuOMO+fr6asmSJbbMxbPPPqubb75ZKSkp6tOnjyIjI8tc0X3SpEl68skn9dxzz6lDhw4aOnSodd6Un5+fZs6cqblz56pZs2YaNGhQue8zZcoU/exnP9OIESN0880368CBA/rwww/VsGFDW7YLqIscxhjj7SYAoCIOHz6s1q1bKysrSzfffLPbWExMjMaPH6/x48d7pzkAKAeHDgFUexcuXNCJEyf07LPP6tZbby0TsgCguuLQIYBqb/PmzYqKilJWVlaZ86q87eWXX1aDBg3Kfdxzzz3ebg+Al3HoEACuw8mTJ8tcSf2SoKAgNW/evIo7AlCdELQAAABswqFDAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAm/w+Z2tKYQO6/ggAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAS0ZJREFUeJzt3XtYVWXe//HPBuQgykZDDjoolJqWpI4KYSaWTGhmks1k5Hh6LJvGphxrShsPnTHt4FhOlk3aZOWh8elgZhlqXSmhoU6ectTB1AIUjY0KgrLv3x89rl87UWEpbA7v13Xti7jXd631XXfm/rT2Wms7jDFGAAAAqBIfbzcAAABQFxGiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogDUa48++qgcDkelah0Ohx599NFq7adPnz7q06dPrd0egMojRAGoEfPnz5fD4bBefn5+atWqlUaOHKnvv//e2+3VOjExMR7zFR4ermuvvVb/+7//e1G2X1xcrEcffVRr1qy5KNsDGiJCFIAa9fjjj+vNN9/UnDlz1L9/fy1YsEBJSUk6ceJEtexv0qRJKikpqZZtV7cuXbrozTff1JtvvqkHH3xQP/zwgwYPHqw5c+Zc8LaLi4v12GOPEaKAC+Dn7QYANCz9+/dX9+7dJUl33nmnwsLC9Mwzz+iDDz7QbbfddtH35+fnJz+/uvlXXatWrfT73//e+n348OFq27atXnjhBf3hD3/wYmcAJM5EAfCya6+9VpK0Z88ej/Fvv/1Wv/3tb9W8eXMFBgaqe/fu+uCDDzxqTp48qccee0zt2rVTYGCgLrnkEvXq1UsrV660aiq6Jqq0tFR//vOf1aJFCzVt2lQ333yzDhw4cEZvI0eOVExMzBnjFW1z3rx5uv766xUeHq6AgABdccUVevnll6s0F+cTGRmpjh07Kicn55x1Bw8e1OjRoxUREaHAwEB17txZb7zxhrV87969atGihSTpsccesz4yrO7rwYD6pm7+7xmAemPv3r2SpGbNmllj27Zt0zXXXKNWrVppwoQJCg4O1uLFi5Wamqp//etfuuWWWyT9FGbS09N15513Kj4+XkVFRfr666+1ceNG/eY3vznrPu+8804tWLBAd9xxh3r27KlVq1ZpwIABF3QcL7/8sq688krdfPPN8vPz04cffqg//vGPcrvdGjt27AVt+7STJ09q//79uuSSS85aU1JSoj59+mj37t269957FRsbqyVLlmjkyJEqLCzU/fffrxYtWujll1/WPffco1tuuUWDBw+WJF111VUXpU+gwTAAUAPmzZtnJJnPPvvMHDp0yOzfv9+8++67pkWLFiYgIMDs37/fqu3bt6+Ji4szJ06csMbcbrfp2bOnadeunTXWuXNnM2DAgHPud+rUqebnf9Vt3rzZSDJ//OMfPeruuOMOI8lMnTrVGhsxYoRp06bNebdpjDHFxcVn1KWkpJhLL73UYywpKckkJSWds2djjGnTpo254YYbzKFDh8yhQ4fMv//9b3P77bcbSeZPf/rTWbc3c+ZMI8ksWLDAGisrKzOJiYmmSZMmpqioyBhjzKFDh844XgBVw8d5AGpUcnKyWrRooejoaP32t79VcHCwPvjgA/3qV7+SJB05ckSrVq3SbbfdpqNHj6qgoEAFBQU6fPiwUlJStGvXLutuvtDQUG3btk27du2q9P6XL18uSbrvvvs8xseNG3dBxxUUFGT9s8vlUkFBgZKSkvTf//5XLpfL1jY//fRTtWjRQi1atFDnzp21ZMkSDRs2TM8888xZ11m+fLkiIyOVlpZmjTVq1Ej33Xefjh07ps8//9xWLwDOxMd5AGrU7Nmz1b59e7lcLr3++uv64osvFBAQYC3fvXu3jDGaPHmyJk+eXOE2Dh48qFatWunxxx/XoEGD1L59e3Xq1En9+vXTsGHDzvmx1HfffScfHx9ddtllHuOXX375BR3X2rVrNXXqVGVmZqq4uNhjmcvlktPprPI2ExIS9OSTT8rhcKhx48bq2LGjQkNDz7nOd999p3bt2snHx/P/kTt27GgtB3BxEKIA1Kj4+Hjr7rzU1FT16tVLd9xxh3bu3KkmTZrI7XZLkh588EGlpKRUuI22bdtKknr37q09e/bo/fff16effqrXXntNL7zwgubMmaM777zzgns920M6y8vLPX7fs2eP+vbtqw4dOuj5559XdHS0/P39tXz5cr3wwgvWMVVVWFiYkpOTba0LoPoRogB4ja+vr9LT03XdddfppZde0oQJE3TppZdK+ukjqMoEiObNm2vUqFEaNWqUjh07pt69e+vRRx89a4hq06aN3G639uzZ43H2aefOnWfUNmvWTIWFhWeM//JszocffqjS0lJ98MEHat26tTW+evXq8/Z/sbVp00bffPON3G63x9mob7/91lounT0gAqg8rokC4FV9+vRRfHy8Zs6cqRMnTig8PFx9+vTRK6+8otzc3DPqDx06ZP3z4cOHPZY1adJEbdu2VWlp6Vn3179/f0nSrFmzPMZnzpx5Ru1ll10ml8ulb775xhrLzc0946nhvr6+kiRjjDXmcrk0b968s/ZRXW688Ubl5eVp0aJF1tipU6f04osvqkmTJkpKSpIkNW7cWJIqDIkAKoczUQC87i9/+Yt+97vfaf78+frDH/6g2bNnq1evXoqLi9Ndd92lSy+9VPn5+crMzNSBAwf073//W5J0xRVXqE+fPurWrZuaN2+ur7/+Wu+++67uvffes+6rS5cuSktL09///ne5XC717NlTGRkZ2r179xm1t99+ux5++GHdcsstuu+++1RcXKyXX35Z7du318aNG626G264Qf7+/ho4cKDuvvtuHTt2THPnzlV4eHiFQbA6jRkzRq+88opGjhyp7OxsxcTE6N1339XatWs1c+ZMNW3aVNJPF8JfccUVWrRokdq3b6/mzZurU6dO6tSpU432C9Rp3r49EEDDcPoRBxs2bDhjWXl5ubnsssvMZZddZk6dOmWMMWbPnj1m+PDhJjIy0jRq1Mi0atXK3HTTTebdd9+11nvyySdNfHy8CQ0NNUFBQaZDhw7mqaeeMmVlZVZNRY8jKCkpMffdd5+55JJLTHBwsBk4cKDZv39/hbf8f/rpp6ZTp07G39/fXH755WbBggUVbvODDz4wV111lQkMDDQxMTHmmWeeMa+//rqRZHJycqy6qjzi4HyPbzjb9vLz882oUaNMWFiY8ff3N3FxcWbevHlnrLtu3TrTrVs34+/vz+MOABscxvzs/DMAAAAqhWuiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA08bLMaud1u/fDDD2ratClfsQAAQB1hjNHRo0fVsmXLM77M++cIUdXohx9+UHR0tLfbAAAANuzfv1+/+tWvzrqcEFWNTn+9wv79+xUSEuLlbgAAQGUUFRUpOjraeh8/G0JUNTr9EV5ISAghCgCAOuZ8l+JwYTkAAIANhCgAAAAbCFEAAAA2cE2Ul5WXl+vkyZPebsPrGjVqJF9fX2+3AQBApRGivMQYo7y8PBUWFnq7lVojNDRUkZGRPFMLAFAnEKK85HSACg8PV+PGjRt0cDDGqLi4WAcPHpQkRUVFebkjAADOjxDlBeXl5VaAuuSSS7zdTq0QFBQkSTp48KDCw8P5aA8AUOtxYbkXnL4GqnHjxl7upHY5PR9cIwYAqAsIUV7UkD/CqwjzAQCoSwhRAAAANng9RM2ePVsxMTEKDAxUQkKC1q9ff876JUuWqEOHDgoMDFRcXJyWL1/usdwYoylTpigqKkpBQUFKTk7Wrl27PGqeeuop9ezZU40bN1ZoaOgZ+/j3v/+ttLQ0RUdHKygoSB07dtTf/va3Cz5WAABQf3g1RC1atEjjx4/X1KlTtXHjRnXu3FkpKSnWXVq/tG7dOqWlpWn06NHatGmTUlNTlZqaqq1bt1o106dP16xZszRnzhxlZWUpODhYKSkpOnHihFVTVlam3/3ud7rnnnsq3E92drbCw8O1YMECbdu2TX/96181ceJEvfTSSxd3AuqgkSNHKjU19YzxNWvWyOFwqLCwUGvWrNGgQYMUFRWl4OBgdenSRW+99VbNNwsAsOS6SrRuT4FyXSXebqX+MF4UHx9vxo4da/1eXl5uWrZsadLT0yusv+2228yAAQM8xhISEszdd99tjDHG7XabyMhIM2PGDGt5YWGhCQgIMO+8884Z25s3b55xOp2V6vWPf/yjue666ypVe5rL5TKSjMvl8hgvKSkx27dvNyUlJVXaXm0wYsQIM2jQoDPGV69ebSSZH3/80Tz11FNm0qRJZu3atWb37t1m5syZxsfHx3z44Yfn3HZdnhcAqM0Wrv/OxE5YZto8vMzETlhmFq7/ztst1Wpne//+Ja+diSorK1N2draSk5OtMR8fHyUnJyszM7PCdTIzMz3qJSklJcWqz8nJUV5enkeN0+lUQkLCWbdZWS6XS82bN7+gbTQUjzzyiJ544gn17NlTl112me6//37169dPS5cu9XZrANDg5LpKNHHpFrnNT7+7jfTI0q2ckboIvPacqIKCApWXlysiIsJjPCIiQt9++22F6+Tl5VVYn5eXZy0/PXa2GjvWrVunRYsW6aOPPjpnXWlpqUpLS63fi4qKbO+zKnJdJcopOK7YsGBFOYNqZJ9V5XK51LFjR2+3AQANTk7BcStAnVZujPYWFNfa94y6godtnsfWrVs1aNAgTZ06VTfccMM5a9PT0/XYY4/VUGc/WbRhn/V/GD4OKX1wnIb0aF2t+1y2bJmaNGniMVZeXn7W+sWLF2vDhg165ZVXqrUvAMCZYsOC5eOQR5DydTgUE8azCi+U1z7OCwsLk6+vr/Lz8z3G8/PzFRkZWeE6kZGR56w//bMq2zyX7du3q2/fvhozZowmTZp03vqJEyfK5XJZr/3791d5n1XhrVO01113nTZv3uzxeu211yqsXb16tUaNGqW5c+fqyiuvrNa+AABninIGKX1wnHz/71l8vg6Hnh7cibNQF4HXzkT5+/urW7duysjIsO72crvdysjI0L333lvhOomJicrIyNC4ceOssZUrVyoxMVGSFBsbq8jISGVkZKhLly6SfvpILSsr66x34p3Ntm3bdP3112vEiBF66qmnKrVOQECAAgICqrSfC+GtU7TBwcFq27atx9iBAwfOqPv88881cOBAvfDCCxo+fHi19QMAOLchPVqrd/sW2ltQrJiwxgSoi8SrH+eNHz9eI0aMUPfu3RUfH6+ZM2fq+PHjGjVqlCRp+PDhatWqldLT0yVJ999/v5KSkvTcc89pwIABWrhwob7++mu9+uqrkn564vW4ceP05JNPql27doqNjdXkyZPVsmVLj9vy9+3bpyNHjmjfvn0qLy/X5s2bJUlt27ZVkyZNtHXrVl1//fVKSUnR+PHjreupfH191aJFi5qboPOozado16xZo5tuuknPPPOMxowZ4+12AKDBi3IGEZ4uMq+GqCFDhujQoUOaMmWK8vLy1KVLF61YscK6MHzfvn3y8fn/nzj27NlTb7/9tiZNmqRHHnlE7dq103vvvadOnTpZNQ899JCOHz+uMWPGqLCwUL169dKKFSsUGBho1UyZMkVvvPGG9XvXrl0l/fTRU58+ffTuu+/q0KFDWrBggRYsWGDVtWnTRnv37q2u6aiy06doH1m6VeXG1JpTtKtXr9ZNN92k+++/X7feeqsVQv39/bnDEQBQbziMMeb8ZbCjqKhITqdTLpdLISEh1viJEyeUk5Oj2NhYj3BnV66rpMZO0Y4cOVKFhYV67733PMbXrFmj6667Tj/++KPGjRvnEVJPS0pK0po1a8667Ys9LwAA2HG29+9fIkRVo5oKUfUF8wIAqA0qG6K8/t15AAAAdREhCgAAwAZCFAAAgA2EKAAAABsIUV7ENf2emA8AQF1CiPKCRo0aSZKKi4u93Entcno+Ts8PAAC1GV9A7AW+vr4KDQ3VwYMHJUmNGzeW4/++06ghMsaouLhYBw8eVGhoqHx9fb3dEgAA50WI8pLTX4h8OkhBCg0NtfVF0QAAeAMhykscDoeioqIUHh6ukydPersdr2vUqBFnoAAAdQohyst8fX0JDwAA1EFcWA4AAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAKABijXVaJ1ewqU6yrxditAneXn7QYAADVr0YZ9mrh0i9xG8nFI6YPjNKRHa2+3BdQ5nIkCgAYk11ViBShJchvpkaVbOSMF2ECIAoAGJKfguBWgTis3RnsLir3TEFCHEaIAoAGJDQuWj8NzzNfhUExYY+80BNRhhCgAaECinEFKHxwnX8dPScrX4dDTgzspyhnk5c6AuocLywGggRnSo7V6t2+hvQXFiglrTIACbCJEAUA1y3WVKKfguGLDgmtNYIlyBtWaXoC6ihAFANWIxwkA9RfXRAFANeFxAkD9RogCgGrC4wSA+o0QBQDVhMcJAPUbIQoAqgmPEwDqN6+HqNmzZysmJkaBgYFKSEjQ+vXrz1m/ZMkSdejQQYGBgYqLi9Py5cs9lhtjNGXKFEVFRSkoKEjJycnatWuXR81TTz2lnj17qnHjxgoNDa1wP/v27dOAAQPUuHFjhYeH6y9/+YtOnTp1QccKoOEZ0qO1vpxwnd6562p9OeE6LioH6hGvhqhFixZp/Pjxmjp1qjZu3KjOnTsrJSVFBw8erLB+3bp1SktL0+jRo7Vp0yalpqYqNTVVW7dutWqmT5+uWbNmac6cOcrKylJwcLBSUlJ04sQJq6asrEy/+93vdM8991S4n/Lycg0YMEBlZWVat26d3njjDc2fP19Tpky5uBMAoEGIcgYp8bJLOAMF1DfGi+Lj483YsWOt38vLy03Lli1Nenp6hfW33XabGTBggMdYQkKCufvuu40xxrjdbhMZGWlmzJhhLS8sLDQBAQHmnXfeOWN78+bNM06n84zx5cuXGx8fH5OXl2eNvfzyyyYkJMSUlpZW+vhcLpeRZFwuV6XXAQAA3lXZ92+vnYkqKytTdna2kpOTrTEfHx8lJycrMzOzwnUyMzM96iUpJSXFqs/JyVFeXp5HjdPpVEJCwlm3ebb9xMXFKSIiwmM/RUVF2rZt21nXKy0tVVFRkccLAADUT14LUQUFBSovL/cIKpIUERGhvLy8CtfJy8s7Z/3pn1XZZlX28/N9VCQ9PV1Op9N6RUdHV3qfAACgbvH6heX1ycSJE+VyuazX/v37vd0SAACoJl4LUWFhYfL19VV+fr7HeH5+viIjIytcJzIy8pz1p39WZZtV2c/P91GRgIAAhYSEeLwAAED95LUQ5e/vr27duikjI8Mac7vdysjIUGJiYoXrJCYmetRL0sqVK6362NhYRUZGetQUFRUpKyvrrNs82362bNnicZfgypUrFRISoiuuuKLS2wEAAPWXV7+AePz48RoxYoS6d++u+Ph4zZw5U8ePH9eoUaMkScOHD1erVq2Unp4uSbr//vuVlJSk5557TgMGDNDChQv19ddf69VXX5UkORwOjRs3Tk8++aTatWun2NhYTZ48WS1btlRqaqq133379unIkSPat2+fysvLtXnzZklS27Zt1aRJE91www264oorNGzYME2fPl15eXmaNGmSxo4dq4CAgBqdIwAAUEvV0N2CZ/Xiiy+a1q1bG39/fxMfH2+++uora1lSUpIZMWKER/3ixYtN+/btjb+/v7nyyivNRx995LHc7XabyZMnm4iICBMQEGD69u1rdu7c6VEzYsQII+mM1+rVq62avXv3mv79+5ugoCATFhZmHnjgAXPy5MkqHRuPOAAAoO6p7Pu3wxhjzpGxcAGKiorkdDrlcrm4PgoAgDqisu/f3J0HAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAbMt1lWjdngLlukq83UqN8/N2AwAAoG5atGGfJi7dIreRfBxS+uA4DenR2ttt1RjORAEAgCrLdZVYAUqS3EZ6ZOnWBnVGihAFAACqLKfguBWgTis3RnsLir3TkBcQogAAQJXFhgXLx+E55utwKCassXca8gJCFAAAqLIoZ5DSB8fJ1/FTkvJ1OPT04E6KcgZ5ubOaw4XlAADAliE9Wqt3+xbaW1CsmLDGDSpASYQoAABwAaKcQQ0uPJ3Gx3kAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADV4PUbNnz1ZMTIwCAwOVkJCg9evXn7N+yZIl6tChgwIDAxUXF6fly5d7LDfGaMqUKYqKilJQUJCSk5O1a9cuj5ojR45o6NChCgkJUWhoqEaPHq1jx4551HzyySe6+uqr1bRpU7Vo0UK33nqr9u7de1GOGQAA1H1eDVGLFi3S+PHjNXXqVG3cuFGdO3dWSkqKDh48WGH9unXrlJaWptGjR2vTpk1KTU1Vamqqtm7datVMnz5ds2bN0pw5c5SVlaXg4GClpKToxIkTVs3QoUO1bds2rVy5UsuWLdMXX3yhMWPGWMtzcnI0aNAgXX/99dq8ebM++eQTFRQUaPDgwdU3GQAAoG4xXhQfH2/Gjh1r/V5eXm5atmxp0tPTK6y/7bbbzIABAzzGEhISzN13322MMcbtdpvIyEgzY8YMa3lhYaEJCAgw77zzjjHGmO3btxtJZsOGDVbNxx9/bBwOh/n++++NMcYsWbLE+Pn5mfLycqvmgw8+MA6Hw5SVlVX6+Fwul5FkXC5XpdcBAADeVdn3b6+diSorK1N2draSk5OtMR8fHyUnJyszM7PCdTIzMz3qJSklJcWqz8nJUV5enkeN0+lUQkKCVZOZmanQ0FB1797dqklOTpaPj4+ysrIkSd26dZOPj4/mzZun8vJyuVwuvfnmm0pOTlajRo3OekylpaUqKiryeAEAgPrJayGqoKBA5eXlioiI8BiPiIhQXl5ehevk5eWds/70z/PVhIeHeyz38/NT8+bNrZrY2Fh9+umneuSRRxQQEKDQ0FAdOHBAixcvPucxpaeny+l0Wq/o6Ohz1gMAgLrL6xeW10Z5eXm66667NGLECG3YsEGff/65/P399dvf/lbGmLOuN3HiRLlcLuu1f//+GuwaAADUJD9v7TgsLEy+vr7Kz8/3GM/Pz1dkZGSF60RGRp6z/vTP/Px8RUVFedR06dLFqvnlheunTp3SkSNHrPVnz54tp9Op6dOnWzULFixQdHS0srKydPXVV1fYX0BAgAICAs536AAAoB7w2pkof39/devWTRkZGdaY2+1WRkaGEhMTK1wnMTHRo16SVq5cadXHxsYqMjLSo6aoqEhZWVlWTWJiogoLC5WdnW3VrFq1Sm63WwkJCZKk4uJi+fh4To2vr6/VIwAAgFfvzlu4cKEJCAgw8+fPN9u3bzdjxowxoaGhJi8vzxhjzLBhw8yECROs+rVr1xo/Pz/z7LPPmh07dpipU6eaRo0amS1btlg106ZNM6Ghoeb9998333zzjRk0aJCJjY01JSUlVk2/fv1M165dTVZWlvnyyy9Nu3btTFpamrU8IyPDOBwO89hjj5n//Oc/Jjs726SkpJg2bdqY4uLiSh8fd+cBAFD3VPb926shyhhjXnzxRdO6dWvj7+9v4uPjzVdffWUtS0pKMiNGjPCoX7x4sWnfvr3x9/c3V155pfnoo488lrvdbjN58mQTERFhAgICTN++fc3OnTs9ag4fPmzS0tJMkyZNTEhIiBk1apQ5evSoR80777xjunbtaoKDg02LFi3MzTffbHbs2FGlYyNEAQBQ91T2/dthzDmulMYFKSoqktPplMvlUkhIiLfbAQAAlVDZ92/uzgMAALCBEAUAAGADIQoAGqBcV4nW7SlQrqvE260AdZbXnhMFAPCORRv2aeLSLXIbycchpQ+O05Aerb3dFlDncCYKABqQXFeJFaAkyW2kR5Zu5YwUYAMhCgAakJyC41aAOq3cGO0tKPZOQ0AdRogCgAYkNixYPg7PMV+HQzFhjb3TEFCHEaIAoAGJcgYpfXCcfB0/JSlfh0NPD+6kKGeQlzsD6h4uLAeABmZIj9bq3b6F9hYUKyasMQEKsIkQBQANUJQziPAEXCA+zgMAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIiqg3JdJVq3p4BvXQcAwIt4Ynkds2jDPk1cukVuI/k4pPTBcRrSo7W32wIAoMHhTFQdkusqsQKUJLmN9MjSrZyRAgDACwhRdUhOwXErQJ1Wboz2FhR7pyEAABowQlQdEhsWLB+H55ivw6GYsMbeaQgAgAaMEFWHRDmDlD44Tr6On5KUr8Ohpwd34pvYAQDwAi4sr2OG9Git3u1baG9BsWLCGhOgAADwEkJUHRTlDCI8AQDgZXycBwAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRKHa5bpKtG5PAd/xBwCoV3hOFKrVog37rC9N9nFI6YPjNKRHa2+3BQDABeNMFKpNrqvEClCS5DbSI0u3ckYKAFAvEKJQbXIKjlsB6rRyY7S3oNg7DQEAcBERolBtYsOC5ePwHPN1OBQT1tg7DQEAcBERolBtopxBSh8cJ1/HT0nK1+HQ04M78b1/AIB6gQvLUa2G9Git3u1baG9BsWLCGhOgAAD1BiEK1S7KGUR4AgDUO1X+OG/58uW688479dBDD+nbb7/1WPbjjz/q+uuvv2jNAQAA1FZVClFvv/22br75ZuXl5SkzM1Ndu3bVW2+9ZS0vKyvT559/ftGbBAAAqG2q9HHejBkz9Pzzz+u+++6TJC1evFj/8z//oxMnTmj06NHV0iAAoO7IdZUop+C4YsOC+Rgf9V6VQtSuXbs0cOBA6/fbbrtNLVq00M0336yTJ0/qlltuuegNAgDqBr6hAA1NlUJUSEiI8vPzFRsba41dd911WrZsmW666SYdOHDgojcIAKj9zvYNBb3bt+CMFOqtKl0TFR8fr48//viM8aSkJH344YeaOXPmxeoLAFCH8A0FaIiqFKL+/Oc/KzAwsMJlffr00Ycffqjhw4dXqYHZs2crJiZGgYGBSkhI0Pr1689Zv2TJEnXo0EGBgYGKi4vT8uXLPZYbYzRlyhRFRUUpKChIycnJ2rVrl0fNkSNHNHToUIWEhCg0NFSjR4/WsWPHztjOs88+q/bt2ysgIECtWrXSU089VaVjA4CGgm8oQENUpRDVtWtXjR07VkVFRRW+unXrpr/97W+V3t6iRYs0fvx4TZ06VRs3blTnzp2VkpKigwcPVli/bt06paWlafTo0dq0aZNSU1OVmpqqrVu3WjXTp0/XrFmzNGfOHGVlZSk4OFgpKSk6ceKEVTN06FBt27ZNK1eu1LJly/TFF19ozJgxHvu6//779dprr+nZZ5/Vt99+qw8++EDx8fFVmS4AaDD4hgI0SKYKHA6H8fHxOe+rsuLj483YsWOt38vLy03Lli1Nenp6hfW33XabGTBggMdYQkKCufvuu40xxrjdbhMZGWlmzJhhLS8sLDQBAQHmnXfeMcYYs337diPJbNiwwar5+OOPjcPhMN9//71V4+fnZ7799ttKH0tFXC6XkWRcLtcFbQdA9fuhsNis3X3I/FBY7O1W6rQfCovNut0FzCPqtMq+f1fpwvLVq1f/PHzpxhtv1GuvvaZWrVpVObyVlZUpOztbEydOtMZ8fHyUnJyszMzMCtfJzMzU+PHjPcZSUlL03nvvSZJycnKUl5en5ORka7nT6VRCQoIyMzN1++23KzMzU6GhoerevbtVk5ycLB8fH2VlZemWW27Rhx9+qEsvvVTLli1Tv379ZIxRcnKypk+frubNm1f5WAHUbtxVdvHwDQVoSKoUopKSkjx+9/X11dVXX61LL720yjsuKChQeXm5IiIiPMYjIiLOeBL6aXl5eRXW5+XlWctPj52rJjw83GO5n5+fmjdvbtX897//1XfffaclS5bon//8p8rLy/XnP/9Zv/3tb7Vq1aqzHlNpaalKS0ut34uKis5aC6B24K4yAHZV+WtfGgK3263S0lL985//1LXXXqs+ffroH//4h1avXq2dO3eedb309HQ5nU7rFR0dXYNdA7CDu8oA2OW1EBUWFiZfX1/l5+d7jOfn5ysyMrLCdSIjI89Zf/rn+Wp+eeH6qVOndOTIEasmKipKfn5+at++vVXTsWNHSdK+ffvOekwTJ06Uy+WyXvv37z9rLYDagbvKANh1wSHK4XCcv6gC/v7+6tatmzIyMqwxt9utjIwMJSYmVrhOYmKiR70krVy50qqPjY1VZGSkR01RUZGysrKsmsTERBUWFio7O9uqWbVqldxutxISEiRJ11xzjU6dOqU9e/ZYNf/5z38kSW3atDnrMQUEBCgkJMTjBaB2464yAHY5jDHm/GU/GTx4sMfvH374oa6//noFBwd7jC9durRS21u0aJFGjBihV155RfHx8Zo5c6YWL16sb7/9VhERERo+fLhatWql9PR0ST894iApKUnTpk3TgAEDtHDhQj399NPauHGjOnXqJEl65plnNG3aNL3xxhuKjY3V5MmT9c0332j79u3WM6769++v/Px8zZkzRydPntSoUaPUvXt3vf3225J+CnM9evRQkyZNNHPmTLndbo0dO1YhISH69NNPKztdKioqktPplMvlIlABtVyuq0R7C4oVE9aYAAU0cJV9/67SheVOp9Pj99///vf2uvs/Q4YM0aFDhzRlyhTl5eWpS5cuWrFihXVh+L59++Tj8/9PlvXs2VNvv/22Jk2apEceeUTt2rXTe++9ZwUoSXrooYd0/PhxjRkzRoWFherVq5dWrFjh8ZDQt956S/fee6/69u0rHx8f3XrrrZo1a5a13MfHRx9++KH+9Kc/qXfv3goODlb//v313HPPXdDxAqi9uKsMQFVV6UwUqoYzUQAA1D2Vff/m7jwAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiEKdlusq0bo9Bcp1lXi7FQBAA+Pn7QYAuxZt2KeJS7fIbSQfh5Q+OE5DerT2dlsAgAaCM1Gok3JdJVaAkiS3kR5ZupUzUgCAGkOIQp2UU3DcClCnlRujvQXF3mkIANDgEKJQJ8WGBcvH4Tnm63AoJqyxdxoCADQ4hCjUSVHOIKUPjpOv46ck5etw6OnBnRTlDPJyZwCAhoILy1FnDenRWr3bt9DegmLFhDUmQAEAahQhCnValDOI8AQA8Ao+zgMAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwIZaEaJmz56tmJgYBQYGKiEhQevXrz9n/ZIlS9ShQwcFBgYqLi5Oy5cv91hujNGUKVMUFRWloKAgJScna9euXR41R44c0dChQxUSEqLQ0FCNHj1ax44dq3B/u3fvVtOmTRUaGnpBxwkAAOoPr4eoRYsWafz48Zo6dao2btyozp07KyUlRQcPHqywft26dUpLS9Po0aO1adMmpaamKjU1VVu3brVqpk+frlmzZmnOnDnKyspScHCwUlJSdOLECatm6NCh2rZtm1auXKlly5bpiy++0JgxY87Y38mTJ5WWlqZrr7324h88AACosxzGGOPNBhISEtSjRw+99NJLkiS3263o6Gj96U9/0oQJE86oHzJkiI4fP65ly5ZZY1dffbW6dOmiOXPmyBijli1b6oEHHtCDDz4oSXK5XIqIiND8+fN1++23a8eOHbriiiu0YcMGde/eXZK0YsUK3XjjjTpw4IBatmxpbfvhhx/WDz/8oL59+2rcuHEqLCys9LEVFRXJ6XTK5XIpJCTEzvQAAIAaVtn3b6+eiSorK1N2draSk5OtMR8fHyUnJyszM7PCdTIzMz3qJSklJcWqz8nJUV5enkeN0+lUQkKCVZOZmanQ0FArQElScnKyfHx8lJWVZY2tWrVKS5Ys0ezZsyt1PKWlpSoqKvJ4AQCA+smrIaqgoEDl5eWKiIjwGI+IiFBeXl6F6+Tl5Z2z/vTP89WEh4d7LPfz81Pz5s2tmsOHD2vkyJGaP39+pc8ipaeny+l0Wq/o6OhKrQcAAOoer18TVVvddddduuOOO9S7d+9KrzNx4kS5XC7rtX///mrsEAAAeJNXQ1RYWJh8fX2Vn5/vMZ6fn6/IyMgK14mMjDxn/emf56v55YXrp06d0pEjR6yaVatW6dlnn5Wfn5/8/Pw0evRouVwu+fn56fXXX6+wt4CAAIWEhHi8AABA/eTVEOXv769u3bopIyPDGnO73crIyFBiYmKF6yQmJnrUS9LKlSut+tjYWEVGRnrUFBUVKSsry6pJTExUYWGhsrOzrZpVq1bJ7XYrISFB0k/XTW3evNl6Pf7442ratKk2b96sW2655eJMAAAAqLP8vN3A+PHjNWLECHXv3l3x8fGaOXOmjh8/rlGjRkmShg8frlatWik9PV2SdP/99yspKUnPPfecBgwYoIULF+rrr7/Wq6++KklyOBwaN26cnnzySbVr106xsbGaPHmyWrZsqdTUVElSx44d1a9fP911112aM2eOTp48qXvvvVe33367dWdex44dPfr8+uuv5ePjo06dOtXQzAAAgNrM6yFqyJAhOnTokKZMmaK8vDx16dJFK1assC4M37dvn3x8/v8Js549e+rtt9/WpEmT9Mgjj6hdu3Z67733PMLNQw89pOPHj2vMmDEqLCxUr169tGLFCgUGBlo1b731lu6991717dtXPj4+uvXWWzVr1qyaO3AAAFCnef05UfUZz4kCAKDuqRPPiQIAAKirCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQCAWinXVaJ1ewqU6yrxdisV8vN2AwAAAL+0aMM+TVy6RW4j+Tik9MFxGtKjtbfb8sCZKAAAUKvkukqsACVJbiM9snRrrTsjRYgCAAC1Sk7BcStAnVZujPYWFHunobMgRAGAav+1F0BDEhsWLB+H55ivw6GYsMbeaegsCFEAGrxFG/bpmmmrdMfcLF0zbZUWbdjn7ZaABi3KGaT0wXHydfyUpHwdDj09uJOinEFe7syTwxhjzl8GO4qKiuR0OuVyuRQSEuLtdgBUINdVomumrfL46MDX4dCXE66rdX9hAw1NrqtEewuKFRPWuEb/e6zs+zd35wFo0M517QUhCvCuKGdQrf7vkI/zADRodeXaCwC1DyEKQINWV669AFD78HEegAZvSI/W6t2+hVeuvQBQdxGiAEC1/9oLALVPrfg4b/bs2YqJiVFgYKASEhK0fv36c9YvWbJEHTp0UGBgoOLi4rR8+XKP5cYYTZkyRVFRUQoKClJycrJ27drlUXPkyBENHTpUISEhCg0N1ejRo3Xs2DFr+Zo1azRo0CBFRUUpODhYXbp00VtvvXXxDhoAANRpXg9RixYt0vjx4zV16lRt3LhRnTt3VkpKig4ePFhh/bp165SWlqbRo0dr06ZNSk1NVWpqqrZu3WrVTJ8+XbNmzdKcOXOUlZWl4OBgpaSk6MSJE1bN0KFDtW3bNq1cuVLLli3TF198oTFjxnjs56qrrtK//vUvffPNNxo1apSGDx+uZcuWVd9kAACAOsPrz4lKSEhQjx499NJLL0mS3G63oqOj9ac//UkTJkw4o37IkCE6fvy4R5i5+uqr1aVLF82ZM0fGGLVs2VIPPPCAHnzwQUmSy+VSRESE5s+fr9tvv107duzQFVdcoQ0bNqh79+6SpBUrVujGG2/UgQMH1LJlywp7HTBggCIiIvT6669X6th4ThQAAHVPZd+/vXomqqysTNnZ2UpOTrbGfHx8lJycrMzMzArXyczM9KiXpJSUFKs+JydHeXl5HjVOp1MJCQlWTWZmpkJDQ60AJUnJycny8fFRVlbWWft1uVxq3rz5WZeXlpaqqKjI4wUAAOonr4aogoIClZeXKyIiwmM8IiJCeXl5Fa6Tl5d3zvrTP89XEx4e7rHcz89PzZs3P+t+Fy9erA0bNmjUqFFnPZ709HQ5nU7rFR0dfdZaAABQt3n9mqi6YPXq1Ro1apTmzp2rK6+88qx1EydOlMvlsl779++vwS4BAEBN8mqICgsLk6+vr/Lz8z3G8/PzFRkZWeE6kZGR56w//fN8Nb+8cP3UqVM6cuTIGfv9/PPPNXDgQL3wwgsaPnz4OY8nICBAISEhHi8AAFA/eTVE+fv7q1u3bsrIyLDG3G63MjIylJiYWOE6iYmJHvWStHLlSqs+NjZWkZGRHjVFRUXKysqyahITE1VYWKjs7GyrZtWqVXK73UpISLDG1qxZowEDBuiZZ57xuHMPAABAxssWLlxoAgICzPz588327dvNmDFjTGhoqMnLyzPGGDNs2DAzYcIEq37t2rXGz8/PPPvss2bHjh1m6tSpplGjRmbLli1WzbRp00xoaKh5//33zTfffGMGDRpkYmNjTUlJiVXTr18/07VrV5OVlWW+/PJL065dO5OWlmYtX7VqlWncuLGZOHGiyc3NtV6HDx+u9LG5XC4jybhcrguZIgC1wA+FxWbt7kPmh8Jib7cCoJpV9v3b6yHKGGNefPFF07p1a+Pv72/i4+PNV199ZS1LSkoyI0aM8KhfvHixad++vfH39zdXXnml+eijjzyWu91uM3nyZBMREWECAgJM3759zc6dOz1qDh8+bNLS0kyTJk1MSEiIGTVqlDl69Ki1fMSIEUbSGa+kpKRKHxchCqgfFq7/zsROWGbaPLzMxE5YZhau/87bLQGoRpV9//b6c6LqM54TBdR9ua4SXTNtldw/+5vS1+HQlxOu42tigHqqTjwnCgBqu5yC4x4BSpLKjdHegmLvNASg1iBEAcA5xIYFy8fhOebrcCgmrLF3GgJQaxCiAOAcopxBSh8cJ1/HT0nK1+HQ04M78VEeAPl5uwEAqO2G9Git3u1baG9BsWLCGhOg6phcV4lyCo4rNiyYf3e4qAhRAFAJUc4g3oDroEUb9mni0i1yG8nHIaUPjtOQHq293RbqCT7OAwDUS7muEitASZLbSI8s3apcV4l3G0O9QYgCANRL3FmJ6kaIAgDUS9xZiepGiAIA1EvcWYnqxoXlAOoV7sTCz3FnJaoTIQpAvcGdWKgId1aiuvBxHoB6gTuxANQ0QhSAeoE7sQDUNEIUgHqBO7FQ03JdJVq3p4CznQ0YIQpAvcCdWKhJizbs0zXTVumOuVm6ZtoqLdqwz9stwQscxhhz/jLYUVRUJKfTKZfLpZCQEG+3AzQIua4S7sRCtcp1leiaaas8Pj72dTj05YTr+DNXT1T2/Zu78wDUK9yJhep2ruvv+LPXsPBxHgAAVcD1dziNEAUAQBVw/R1O4+M8oJbgSdtA3cGT0CERooBagSdtA3UP19+Bj/MAL+NJ20DtxHOgcD6ciQK8jDt9gNqHs8OoDM5EAV7GnT5A7cLZYVQWIQrwMu70AWoXvocRlcXHeUAtwJ0+QO1x+uzwL59Iztlh/BJnooBaIsoZpMTLLiFAAV7G2WFUFmeiAAD4Bc4OozIIUQAAVIDnQNVuteEBxYQoAABQp9SWR1BwTRQAAKgzatMjKAhRAACgzqhNj6AgRAEAgDqjNj2gmBAFAADqjNr0CAouLAcAAHVKbXkEBSEKAADUObXhERR8nAcAAGADIQoAKiHXVaJ1ewq8chs1gNqJj/MA4Dxqy4P9ANQunIkCgHOoTQ/2A1C7EKIA4Bxq04P9ANQuhCgAOIfa9GA/ALULIQoAzqE2PdgPQO3CheUAcB615cF+AGoXQhQAVEJteLAfgNqFj/MAAABsqBUhavbs2YqJiVFgYKASEhK0fv36c9YvWbJEHTp0UGBgoOLi4rR8+XKP5cYYTZkyRVFRUQoKClJycrJ27drlUXPkyBENHTpUISEhCg0N1ejRo3Xs2DGPmm+++UbXXnutAgMDFR0drenTp1+cAwYAAHWe10PUokWLNH78eE2dOlUbN25U586dlZKSooMHD1ZYv27dOqWlpWn06NHatGmTUlNTlZqaqq1bt1o106dP16xZszRnzhxlZWUpODhYKSkpOnHihFUzdOhQbdu2TStXrtSyZcv0xRdfaMyYMdbyoqIi3XDDDWrTpo2ys7M1Y8YMPfroo3r11VerbzIAAEDdYbwsPj7ejB071vq9vLzctGzZ0qSnp1dYf9ttt5kBAwZ4jCUkJJi7777bGGOM2+02kZGRZsaMGdbywsJCExAQYN555x1jjDHbt283ksyGDRusmo8//tg4HA7z/fffG2OM+fvf/26aNWtmSktLrZqHH37YXH755ZU+NpfLZSQZl8tV6XUAAIB3Vfb926tnosrKypSdna3k5GRrzMfHR8nJycrMzKxwnczMTI96SUpJSbHqc3JylJeX51HjdDqVkJBg1WRmZio0NFTdu3e3apKTk+Xj46OsrCyrpnfv3vL39/fYz86dO/Xjjz9W2FtpaamKioo8XgAAoH7yaogqKChQeXm5IiIiPMYjIiKUl5dX4Tp5eXnnrD/983w14eHhHsv9/PzUvHlzj5qKtvHzffxSenq6nE6n9YqOjq74wAEAQJ3n9Wui6pOJEyfK5XJZr/3793u7JQAAUE28GqLCwsLk6+ur/Px8j/H8/HxFRkZWuE5kZOQ560//PF/NLy9cP3XqlI4cOeJRU9E2fr6PXwoICFBISIjHCwAA1E9eDVH+/v7q1q2bMjIyrDG3262MjAwlJiZWuE5iYqJHvSStXLnSqo+NjVVkZKRHTVFRkbKysqyaxMREFRYWKjs726pZtWqV3G63EhISrJovvvhCJ0+e9NjP5ZdfrmbNml3gkQMAgDqvhi50P6uFCxeagIAAM3/+fLN9+3YzZswYExoaavLy8owxxgwbNsxMmDDBql+7dq3x8/Mzzz77rNmxY4eZOnWqadSokdmyZYtVM23aNBMaGmref/99880335hBgwaZ2NhYU1JSYtX069fPdO3a1WRlZZkvv/zStGvXzqSlpVnLCwsLTUREhBk2bJjZunWrWbhwoWncuLF55ZVXKn1s3J0HAEDdU9n3b6+HKGOMefHFF03r1q2Nv7+/iY+PN1999ZW1LCkpyYwYMcKjfvHixaZ9+/bG39/fXHnlleajjz7yWO52u83kyZNNRESECQgIMH379jU7d+70qDl8+LBJS0szTZo0MSEhIWbUqFHm6NGjHjX//ve/Ta9evUxAQIBp1aqVmTZtWpWOixAFAEDdU9n3b4cxxnj3XFj95XK5FBoaqv3793N9FAAAdURRUZGio6NVWFgop9N51jq+gLgaHT16VJJ41AEAAHXQ0aNHzxmiOBNVjdxut3744Qc1bdpUDofDY9nplMtZqrNjjs6POTo/5uj8mKPzY47Orb7NjzFGR48eVcuWLeXjc/Z78DgTVY18fHz0q1/96pw1PArh/Jij82OOzo85Oj/m6PyYo3OrT/NzrjNQp/GwTQAAABsIUQAAADYQorwkICBAU6dOVUBAgLdbqbWYo/Njjs6POTo/5uj8mKNza6jzw4XlAAAANnAmCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQoqrR7NmzFRMTo8DAQCUkJGj9+vVnrd22bZtuvfVWxcTEyOFwaObMmTXXqBdVZY7mzp2ra6+9Vs2aNVOzZs2UnJx8zvr6oipztHTpUnXv3l2hoaEKDg5Wly5d9Oabb9Zgt95RlTn6uYULF8rhcCg1NbV6G6wFqjJH8+fPl8Ph8HgFBgbWYLc1r6p/hgoLCzV27FhFRUUpICBA7du31/Lly2uoW++oyhz16dPnjD9DDodDAwYMqMGOa0B1fxNyQ7Vw4ULj7+9vXn/9dbNt2zZz1113mdDQUJOfn19h/fr1682DDz5o3nnnHRMZGWleeOGFmm3YC6o6R3fccYeZPXu22bRpk9mxY4cZOXKkcTqd5sCBAzXcec2p6hytXr3aLF261Gzfvt3s3r3bzJw50/j6+poVK1bUcOc1p6pzdFpOTo5p1aqVufbaa82gQYNqplkvqeoczZs3z4SEhJjc3FzrlZeXV8Nd15yqzk9paanp3r27ufHGG82XX35pcnJyzJo1a8zmzZtruPOaU9U5Onz4sMefn61btxpfX18zb968mm28mhGiqkl8fLwZO3as9Xt5eblp2bKlSU9PP++6bdq0aRAh6kLmyBhjTp06ZZo2bWreeOON6mrR6y50jowxpmvXrmbSpEnV0V6tYGeOTp06ZXr27Glee+01M2LEiHofoqo6R/PmzTNOp7OGuvO+qs7Pyy+/bC699FJTVlZWUy163YX+XfTCCy+Ypk2bmmPHjlVXi17Bx3nVoKysTNnZ2UpOTrbGfHx8lJycrMzMTC92VntcjDkqLi7WyZMn1bx58+pq06sudI6MMcrIyNDOnTvVu3fv6mzVa+zO0eOPP67w8HCNHj26Jtr0KrtzdOzYMbVp00bR0dEaNGiQtm3bVhPt1jg78/PBBx8oMTFRY8eOVUREhDp16qSnn35a5eXlNdV2jboYf1//4x//0O23367g4ODqatMrCFHVoKCgQOXl5YqIiPAYj4iIUF5enpe6ql0uxhw9/PDDatmypcd/2PWJ3TlyuVxq0qSJ/P39NWDAAL344ov6zW9+U93teoWdOfryyy/1j3/8Q3Pnzq2JFr3Ozhxdfvnlev311/X+++9rwYIFcrvd6tmzpw4cOFATLdcoO/Pz3//+V++++67Ky8u1fPlyTZ48Wc8995yefPLJmmi5xl3o39fr16/X1q1bdeedd1ZXi17j5+0GADumTZumhQsXas2aNfX+gteqatq0qTZv3qxjx44pIyND48eP16WXXqo+ffp4uzWvO3r0qIYNG6a5c+cqLCzM2+3UWomJiUpMTLR+79mzpzp27KhXXnlFTzzxhBc7qx3cbrfCw8P16quvytfXV926ddP333+vGTNmaOrUqd5ur9b5xz/+obi4OMXHx3u7lYuOEFUNwsLC5Ovrq/z8fI/x/Px8RUZGeqmr2uVC5ujZZ5/VtGnT9Nlnn+mqq66qzja9yu4c+fj4qG3btpKkLl26aMeOHUpPT6+XIaqqc7Rnzx7t3btXAwcOtMbcbrckyc/PTzt37tRll11WvU3XsIvx91GjRo3UtWtX7d69uzpa9Co78xMVFaVGjRrJ19fXGuvYsaPy8vJUVlYmf3//au25pl3In6Hjx49r4cKFevzxx6uzRa/h47xq4O/vr27duikjI8Mac7vdysjI8Pi/u4bM7hxNnz5dTzzxhFasWKHu3bvXRKtec7H+HLndbpWWllZHi15X1Tnq0KGDtmzZos2bN1uvm2++Wdddd502b96s6Ojommy/RlyMP0fl5eXasmWLoqKiqqtNr7EzP9dcc412795tBXBJ+s9//qOoqKh6F6CkC/sztGTJEpWWlur3v/99dbfpHd6+sr2+WrhwoQkICDDz588327dvN2PGjDGhoaHWbcLDhg0zEyZMsOpLS0vNpk2bzKZNm0xUVJR58MEHzaZNm8yuXbu8dQjVrqpzNG3aNOPv72/effddj1tnjx496q1DqHZVnaOnn37afPrpp2bPnj1m+/bt5tlnnzV+fn5m7ty53jqEalfVOfqlhnB3XlXn6LHHHjOffPKJ2bNnj8nOzja33367CQwMNNu2bfPWIVSrqs7Pvn37TNOmTc29995rdu7caZYtW2bCw8PNk08+6a1DqHZ2/zvr1auXGTJkSE23W2MIUdXoxRdfNK1btzb+/v4mPj7efPXVV9aypKQkM2LECOv3nJwcI+mMV1JSUs03XoOqMkdt2rSpcI6mTp1a843XoKrM0V//+lfTtm1bExgYaJo1a2YSExPNwoULvdB1zarKHP1SQwhRxlRtjsaNG2fVRkREmBtvvNFs3LjRC13XnKr+GVq3bp1JSEgwAQEB5tJLLzVPPfWUOXXqVA13XbOqOkfffvutkWQ+/fTTGu605jiMMcZLJ8EAAADqLK6JAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAFAPTBy5EilpqZ6uw2gQSFEAahWI0eOlMPhsF6XXHKJ+vXrp2+++cbbrV0UPz+2069evXpV2/727t0rh8OhzZs3e4z/7W9/0/z586ttvwDORIgCUO369eun3Nxc5ebmKiMjQ35+frrpppu83dZFM2/ePOv4cnNz9cEHH1RYd/LkyWrrwel0KjQ0tNq2D+BMhCgA1S4gIECRkZGKjIxUly5dNGHCBO3fv1+HDh3S9ddfr3vvvdej/tChQ/L397e+NT4mJkZPPPGE0tLSFBwcrFatWmn27Nke6zz//POKi4tTcHCwoqOj9cc//lHHjh2zln/33XcaOHCgmjVrpuDgYF155ZVavny5JOnHH3/U0KFD1aJFCwUFBaldu3aaN29epY8vNDTUOr7IyEg1b97cOmO0aNEiJSUlKTAwUG+99ZYOHz6stLQ0tWrVSo0bN1ZcXJzeeecdj+253W5Nnz5dbdu2VUBAgFq3bq2nnnpKkhQbGytJ6tq1qxwOh/r06SPpzI/zSktLdd999yk8PFyBgYHq1auXNmzYYC1fs2aNHA6HMjIy1L17dzVu3Fg9e/bUzp07K33cQENHiAJQo44dO6YFCxaobdu2uuSSS3TnnXfq7bffVmlpqVWzYMECtWrVStdff701NmPGDHXu3FmbNm3ShAkTdP/992vlypXWch8fH82aNUvbtm3TG2+8oVWrVumhhx6ylo8dO1alpaX64osvtGXLFj3zzDNq0qSJJGny5Mnavn27Pv74Y+3YsUMvv/yywsLCLsrxnu51x44dSklJ0YkTJ9StWzd99NFH2rp1q8aMGaNhw4Zp/fr11joTJ07UtGnTrL7efvttRURESJJV99lnnyk3N1dLly6tcL8PPfSQ/vWvf+mNN97Qxo0b1bZtW6WkpOjIkSMedX/961/13HPP6euvv5afn5/+53/+56IcN9AgePsbkAHUbyNGjDC+vr4mODjYBAcHG0kmKirKZGdnG2OMKSkpMc2aNTOLFi2y1rnqqqvMo48+av3epk0b069fP4/tDhkyxPTv3/+s+12yZIm55JJLrN/j4uI8tvlzAwcONKNGjbJ1fJJMYGCgdXzBwcHmf//3f01OTo6RZGbOnHnebQwYMMA88MADxhhjioqKTEBAgJk7d26Ftae3u2nTJo/xESNGmEGDBhljjDl27Jhp1KiReeutt6zlZWVlpmXLlmb69OnGGGNWr15tJJnPPvvMqvnoo4+MJFNSUlKVKQAaLM5EAah21113nTZv3qzNmzdr/fr1SklJUf/+/fXdd98pMDBQw4YN0+uvvy5J2rhxo7Zu3aqRI0d6bCMxMfGM33fs2GH9/tlnn6lv375q1aqVmjZtqmHDhunw4cMqLi6WJN1333168skndc0112jq1KkeF7bfc889Wrhwobp06aKHHnpI69atq9LxvfDCC9bxbd68Wb/5zW+sZd27d/eoLS8v1xNPPKG4uDg1b95cTZo00SeffKJ9+/ZJknbs2KHS0lL17du3Sj383J49e3Ty5Eldc8011lijRo0UHx/vMWeSdNVVV1n/HBUVJUk6ePCg7X0DDQkhCkC1Cw4OVtu2bdW2bVv16NFDr732mo4fP665c+dKku68806tXLlSBw4c0Lx583T99derTZs2ld7+3r17ddNNN+mqq67Sv/71L2VnZ1vXTJWVlVn7+O9//6thw4Zpy5Yt6t69u1588UVJsgLdn//8Z/3www/q27evHnzwwUrvPzIy0jq+tm3bKjg42OPYf27GjBn629/+pocfflirV6/W5s2blZKSYvUZFBRU6f1eDI0aNbL+2eFwSPrpmiwA50eIAlDjHA6HfHx8VFJSIkmKi4tT9+7dNXfuXL399tsVXpfz1VdfnfF7x44dJUnZ2dlyu9167rnndPXVV6t9+/b64YcfzthGdHS0/vCHP2jp0qV64IEHrBAnSS1atNCIESO0YMECzZw5U6+++urFPGTL2rVrNWjQIP3+979X586ddemll+o///mPtbxdu3YKCgqyLqr/JX9/f0k/ndE6m8suu0z+/v5au3atNXby5Elt2LBBV1xxxUU6EgB+3m4AQP1XWlqqvLw8ST/dCffSSy/p2LFjGjhwoFVz55136t5771VwcLBuueWWM7axdu1aTZ8+XampqVq5cqWWLFmijz76SJLUtm1bnTx5Ui+++KIGDhyotWvXas6cOR7rjxs3Tv3791f79u31448/avXq1VYImzJlirp166Yrr7xSpaWlWrZsmbXsYmvXrp3effddrVu3Ts2aNdPzzz+v/Px8K9wEBgbq4Ycf1kMPPSR/f39dc801OnTokLZt26bRo0crPDxcQUFBWrFihX71q18pMDBQTqfTYx/BwcG655579Je//EXNmzdX69atNX36dBUXF2v06NHVclxAQ8SZKADVbsWKFYqKilJUVJQSEhK0YcMGLVmyxLo9X5LS0tLk5+entLQ0BQYGnrGNBx54QF9//bW6du2qJ598Us8//7xSUlIkSZ07d9bzzz+vZ555Rp06ddJbb72l9PR0j/XLy8s1duxYdezYUf369VP79u3197//XdJPZ3cmTpyoq666Sr1795avr68WLlxYLXMxadIk/frXv1ZKSor69OmjyMjIM540PnnyZD3wwAOaMmWKOnbsqCFDhljXKfn5+WnWrFl65ZVX1LJlSw0aNKjC/UybNk233nqrhg0bpl//+tfavXu3PvnkEzVr1qxajgtoiBzGGOPtJgBg7969uuyyy7Rhwwb9+te/9lgWExOjcePGady4cd5pDgAqwMd5ALzq5MmTOnz4sCZNmqSrr776jAAFALUVH+cB8Kq1a9cqKipKGzZsOOM6Jm97+umn1aRJkwpf/fv393Z7ALyMj/MA4CyOHDlyxhO+TwsKClKrVq1quCMAtQkhCgAAwAY+zgMAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADY8P8A2swRbPCsZ90AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASZdJREFUeJzt3XtclHXe//H3AA4gCmgggyaCqWlKaipIB7GkxTKTbO+MzNTVbFvbaq0tbVM7Y9rB1XWzbNPurDy03nemdjDUeqSEiLp5ylVXUxNQNAYPiMp8f3/087qbRIVLYEBfz8djHsj3+lwzn+srOm+u0ziMMUYAAACoFD9fNwAAAFAXEaIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAFzUnnnmGTkcjgrVOhwOPfPMM9XaT8+ePdWzZ89a+3wAKo4QBaBGzJo1Sw6Hw3oEBASoWbNmGjJkiH788Udft1frxMbGes1XkyZNdMMNN+h//ud/quT5jx07pmeeeUYrVqyokucDLkWEKAA16rnnntN7772n6dOn65ZbbtHs2bOVnJys48ePV8vrPf300yopKamW565unTp10nvvvaf33ntPjz/+uPbt26f+/ftr+vTpF/zcx44d07PPPkuIAi5AgK8bAHBpueWWW9S1a1dJ0vDhwxUREaGXX35ZCxcu1F133VXlrxcQEKCAgLr5X12zZs107733Wt/fd999atWqlV5//XX9/ve/92FnACT2RAHwsRtuuEGStGPHDq/x77//Xr/97W/VuHFjBQUFqWvXrlq4cKFXzcmTJ/Xss8+qdevWCgoK0mWXXabrr79eS5cutWrKOyeqtLRUf/rTnxQZGamGDRvq9ttv1969e8/obciQIYqNjT1jvLznnDlzpm666SY1adJEgYGBuuqqq/TGG29Uai7Ox+VyqV27dtq5c+c56/bv369hw4YpKipKQUFB6tixo959911r+a5duxQZGSlJevbZZ61DhtV9Phhwsambv54BuGjs2rVLktSoUSNrbNOmTbruuuvUrFkzjR49WiEhIZo3b57S0tL0z3/+U3fccYekn8NMRkaGhg8froSEBBUXF2vNmjVau3atbr755rO+5vDhwzV79mzdc889uvbaa7Vs2TL16dPngrbjjTfeUPv27XX77bcrICBAn3zyif7whz/I4/Fo5MiRF/Tcp508eVJ79uzRZZdddtaakpIS9ezZU9u3b9dDDz2kuLg4zZ8/X0OGDFFRUZEeeeQRRUZG6o033tCDDz6oO+64Q/3795ckXX311VXSJ3DJMABQA2bOnGkkmS+//NIcOHDA7Nmzx3z00UcmMjLSBAYGmj179li1vXr1MvHx8eb48ePWmMfjMddee61p3bq1NdaxY0fTp0+fc77u+PHjzS//q1u/fr2RZP7whz941d1zzz1Gkhk/frw1NnjwYNOiRYvzPqcxxhw7duyMutTUVNOyZUuvseTkZJOcnHzOno0xpkWLFuY3v/mNOXDggDlw4ID517/+Ze6++24jyfzxj3886/NNnjzZSDKzZ8+2xk6cOGGSkpJMgwYNTHFxsTHGmAMHDpyxvQAqh8N5AGpUSkqKIiMj1bx5c/32t79VSEiIFi5cqMsvv1ySdOjQIS1btkx33XWXDh8+rMLCQhUWFurgwYNKTU3Vtm3brKv5wsPDtWnTJm3btq3Cr79kyRJJ0sMPP+w1/uijj17QdgUHB1t/drvdKiwsVHJysv7zn//I7Xbbes4vvvhCkZGRioyMVMeOHTV//nwNGjRIL7/88lnXWbJkiVwul9LT062xevXq6eGHH9aRI0f01Vdf2eoFwJk4nAegRk2bNk1t2rSR2+3WO++8o6+//lqBgYHW8u3bt8sYo7Fjx2rs2LHlPsf+/fvVrFkzPffcc+rXr5/atGmjDh06qHfv3ho0aNA5D0v98MMP8vPz0xVXXOE1fuWVV17Qdq1cuVLjx49XVlaWjh075rXM7XYrLCys0s+ZmJioF154QQ6HQ/Xr11e7du0UHh5+znV++OEHtW7dWn5+3r8jt2vXzloOoGoQogDUqISEBOvqvLS0NF1//fW65557tHXrVjVo0EAej0eS9Pjjjys1NbXc52jVqpUkqUePHtqxY4c+/vhjffHFF3r77bf1+uuva/r06Ro+fPgF93q2m3SWlZV5fb9jxw716tVLbdu21WuvvabmzZvL6XRqyZIlev31161tqqyIiAilpKTYWhdA9SNEAfAZf39/ZWRk6MYbb9Tf/vY3jR49Wi1btpT08yGoigSIxo0ba+jQoRo6dKiOHDmiHj166JlnnjlriGrRooU8Ho927Njhtfdp69atZ9Q2atRIRUVFZ4z/em/OJ598otLSUi1cuFAxMTHW+PLly8/bf1Vr0aKFvvvuO3k8Hq+9Ud9//721XDp7QARQcZwTBcCnevbsqYSEBE2ePFnHjx9XkyZN1LNnT7355pvKy8s7o/7AgQPWnw8ePOi1rEGDBmrVqpVKS0vP+nq33HKLJGnKlCle45MnTz6j9oorrpDb7dZ3331njeXl5Z1x13B/f39JkjHGGnO73Zo5c+ZZ+6gut956q/Lz8zV37lxr7NSpU5o6daoaNGig5ORkSVL9+vUlqdyQCKBi2BMFwOf+/Oc/67/+6780a9Ys/f73v9e0adN0/fXXKz4+Xvfff79atmypgoICZWVlae/evfrXv/4lSbrqqqvUs2dPdenSRY0bN9aaNWv00Ucf6aGHHjrra3Xq1Enp6en6+9//LrfbrWuvvVaZmZnavn37GbV33323nnzySd1xxx16+OGHdezYMb3xxhtq06aN1q5da9X95je/kdPpVN++ffXAAw/oyJEjmjFjhpo0aVJuEKxOI0aM0JtvvqkhQ4YoNzdXsbGx+uijj7Ry5UpNnjxZDRs2lPTzifBXXXWV5s6dqzZt2qhx48bq0KGDOnToUKP9AnWary8PBHBpOH2Lg5ycnDOWlZWVmSuuuMJcccUV5tSpU8YYY3bs2GHuu+8+43K5TL169UyzZs3MbbfdZj766CNrvRdeeMEkJCSY8PBwExwcbNq2bWtefPFFc+LECaumvNsRlJSUmIcffthcdtllJiQkxPTt29fs2bOn3Ev+v/jiC9OhQwfjdDrNlVdeaWbPnl3ucy5cuNBcffXVJigoyMTGxpqXX37ZvPPOO0aS2blzp1VXmVscnO/2DWd7voKCAjN06FATERFhnE6niY+PNzNnzjxj3VWrVpkuXboYp9PJ7Q4AGxzG/GL/MwAAACqEc6IAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADdxssxp5PB7t27dPDRs25CMWAACoI4wxOnz4sJo2bXrGh3n/EiGqGu3bt0/Nmzf3dRsAAMCGPXv26PLLLz/rckJUNTr98Qp79uxRaGioj7sBAAAVUVxcrObNm1vv42dDiKpGpw/hhYaGEqIAAKhjzncqDieWAwAA2ECIAgAAsIEQBQAAYAPnRPlYWVmZTp486es26hSn03nOS04BAKgJhCgfMcYoPz9fRUVFvm6lzvHz81NcXJycTqevWwEAXMIIUT5yOkA1adJE9evX52acFXT6BqZ5eXmKiYlh3gAAPkOI8oGysjIrQF122WW+bqfOiYyM1L59+3Tq1CnVq1fP1+0AAC5RnFjiA6fPgapfv76PO6mbTh/GKysr83EnAIBLGSHKhzgUZQ/zBgCoDQhRAAAANhCiAAAAbCBEoVKGDBmitLS0M8ZXrFghh8OhoqIirVixQv369VN0dLRCQkLUqVMnvf/++2esc+jQIT366KNq0aKFnE6nmjZtqt/97nfavXt3DWwJAFxa8twlWrWjUHnuEl+3ctHg6jxUuVWrVunqq6/Wk08+qaioKC1atEj33XefwsLCdNttt0n6OUB1795dTqdT06dPV/v27bVr1y49/fTT6tatm7KystSyZUsfbwkAXBzm5uzWmAUb5DGSn0PK6B+vAd1ifN1WnUeIQpV76qmnvL5/5JFH9MUXX2jBggVWiPrLX/6iffv2afv27XK5XJKkmJgYff7552rdurVGjhypTz/9tMZ7B4CLTZ67xApQkuQx0lMLNqpHm0hFhwX7trk6jsN5F4G6sIvW7XarcePGkn6+YeacOXM0cOBAK0CdFhwcrD/84Q/6/PPPdejQIV+0CgAXlZ2FR60AdVqZMdpVeMw3DV1E2BNVx/liF+2iRYvUoEEDr7Fz3bNp3rx5ysnJ0ZtvvilJOnDggIqKitSuXbty69u1aydjjLZv366EhISqaxwALkFxESHyc8grSPk7HIqN4F6FF4o9UXXY2XbRVvceqRtvvFHr16/3erz99tvl1i5fvlxDhw7VjBkz1L59e69lxphy1wEAVJ3osGBl9I+X//+/x56/w6GX+nfgUF4VYE9UHXauXbTV+Y8jJCRErVq18hrbu3fvGXVfffWV+vbtq9dff1333XefNR4ZGanw8HBt2bKl3OffsmWLHA7HGa8BALBnQLcY9WgTqV2FxxQbUZ8AVUXYE1WHnd5F+0u1ZRftihUr1KdPH7388ssaMWKE1zI/Pz/ddddd+uCDD5Sfn++1rKSkRH//+9+VmppqnUMFALhw0WHBSrriMgJUFSJE1WG1dRft8uXL1adPHz388MO68847lZ+fr/z8fK8TxV966SW5XC7dfPPN+vTTT7Vnzx59/fXXSk1N1cmTJzVt2jQfbgEAAOfH4bw6rjbuon333Xd17NgxZWRkKCMjwxpPTk7WihUrJEmXXXaZvv32Wz333HN64IEHlJ+fr8aNG+uWW27R7NmzFRPD/UsAALWbw3B2b7UpLi5WWFiY3G63QkNDrfHjx49r586diouLU1BQkA87rJuYPwBAdTrb+/evcTgPAADABkIUAACADYQoAAAAG3weoqZNm6bY2FgFBQUpMTFRq1evPmf9/Pnz1bZtWwUFBSk+Pl5LlizxWm6M0bhx4xQdHa3g4GClpKRo27ZtXjUvvviirr32WtWvX1/h4eHlvs7u3bvVp08f1a9fX02aNNGf//xnnTp16oK2FQAAXDx8GqLmzp2rUaNGafz48Vq7dq06duyo1NRU7d+/v9z6VatWKT09XcOGDdO6deuUlpamtLQ0bdy40aqZOHGipkyZounTpys7O1shISFKTU3V8ePHrZoTJ07ov/7rv/Tggw+W+zplZWXq06ePTpw4oVWrVundd9/VrFmzNG7cuCrdfs7pt4d5AwDUCsaHEhISzMiRI63vy8rKTNOmTU1GRka59XfddZfp06eP11hiYqJ54IEHjDHGeDwe43K5zKRJk6zlRUVFJjAw0Hz44YdnPN/MmTNNWFjYGeNLliwxfn5+Jj8/3xp74403TGhoqCktLa3w9rndbiPJuN1ur/FTp06ZzZs3m8LCwgo/F/5PUVGR2bx5szlx4oSvWwEAXITO9v79az67T9SJEyeUm5urMWPGWGN+fn5KSUlRVlZWuetkZWVp1KhRXmOpqan63//9X0nSzp07lZ+fr5SUFGt5WFiYEhMTlZWVpbvvvrtCvWVlZSk+Pl5RUVFer/Pggw9q06ZN6ty5c7nrlZaWqrS01Pq+uLi43Dp/f3+Fh4dbe9zq168vh8NRbi28eTweHThwQPXr11dAALc5AwD4js/ehQoLC1VWVuYVVCQpKipK33//fbnr5Ofnl1t/+qNDTn89V01FnO11fvka5cnIyNCzzz5boddwuVySdNZDlzg7Pz8/xcTEEDwBAD7Fr/JVaMyYMV57yoqLi9W8efNyax0Oh6Kjo9WkSROdPHmyplq8KDidTvn5+fyaCADAJc5nISoiIkL+/v4qKCjwGi8oKLD20vyay+U6Z/3prwUFBYqOjvaq6dSpU4V7c7lcZ1wlePp1z9abJAUGBiowMLDCryP9fGjP39+/UusAAADf89mv806nU126dFFmZqY15vF4lJmZqaSkpHLXSUpK8qqXpKVLl1r1cXFxcrlcXjXFxcXKzs4+63Oe7XU2bNjgdaht6dKlCg0N1VVXXVXh5wEAABcvnx7OGzVqlAYPHqyuXbsqISFBkydP1tGjRzV06FBJ0n333admzZpZH2L7yCOPKDk5Wa+++qr69OmjOXPmaM2aNXrrrbck/XyI7NFHH9ULL7yg1q1bKy4uTmPHjlXTpk2VlpZmve7u3bt16NAh7d69W2VlZVq/fr0kqVWrVmrQoIF+85vf6KqrrtKgQYM0ceJE5efn6+mnn9bIkSMrvacJAABcpGroasGzmjp1qomJiTFOp9MkJCSYb7/91lqWnJxsBg8e7FU/b94806ZNG+N0Ok379u3N4sWLvZZ7PB4zduxYExUVZQIDA02vXr3M1q1bvWoGDx5sJJ3xWL58uVWza9cuc8stt5jg4GATERFhHnvsMXPy5MlKbVtFL5EEAAC1R0Xfvx3GcOfC6lLRT4EGAAC1R0Xfv7nECQAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANjg8xA1bdo0xcbGKigoSImJiVq9evU56+fPn6+2bdsqKChI8fHxWrJkiddyY4zGjRun6OhoBQcHKyUlRdu2bfOqOXTokAYOHKjQ0FCFh4dr2LBhOnLkiFfN559/ru7du6thw4aKjIzUnXfeqV27dlXJNgMAgLrPpyFq7ty5GjVqlMaPH6+1a9eqY8eOSk1N1f79+8utX7VqldLT0zVs2DCtW7dOaWlpSktL08aNG62aiRMnasqUKZo+fbqys7MVEhKi1NRUHT9+3KoZOHCgNm3apKVLl2rRokX6+uuvNWLECGv5zp071a9fP910001av369Pv/8cxUWFqp///7VNxkAAKBuMT6UkJBgRo4caX1fVlZmmjZtajIyMsqtv+uuu0yfPn28xhITE80DDzxgjDHG4/EYl8tlJk2aZC0vKioygYGB5sMPPzTGGLN582YjyeTk5Fg1n376qXE4HObHH380xhgzf/58ExAQYMrKyqyahQsXGofDYU6cOFHh7XO73UaScbvdFV4HAAD4VkXfv322J+rEiRPKzc1VSkqKNebn56eUlBRlZWWVu05WVpZXvSSlpqZa9Tt37lR+fr5XTVhYmBITE62arKwshYeHq2vXrlZNSkqK/Pz8lJ2dLUnq0qWL/Pz8NHPmTJWVlcntduu9995TSkqK6tWrd9ZtKi0tVXFxsdcDAABcnHwWogoLC1VWVqaoqCiv8aioKOXn55e7Tn5+/jnrT389X02TJk28lgcEBKhx48ZWTVxcnL744gs99dRTCgwMVHh4uPbu3at58+adc5syMjIUFhZmPZo3b37OegAAUHf5/MTy2ig/P1/333+/Bg8erJycHH311VdyOp367W9/K2PMWdcbM2aM3G639dizZ08Ndg0AAGpSgK9eOCIiQv7+/iooKPAaLygokMvlKncdl8t1zvrTXwsKChQdHe1V06lTJ6vm1yeunzp1SocOHbLWnzZtmsLCwjRx4kSrZvbs2WrevLmys7PVvXv3cvsLDAxUYGDg+TYdAABcBHy2J8rpdKpLly7KzMy0xjwejzIzM5WUlFTuOklJSV71krR06VKrPi4uTi6Xy6umuLhY2dnZVk1SUpKKioqUm5tr1Sxbtkwej0eJiYmSpGPHjsnPz3tq/P39rR4BAAB8enXenDlzTGBgoJk1a5bZvHmzGTFihAkPDzf5+fnGGGMGDRpkRo8ebdWvXLnSBAQEmFdeecVs2bLFjB8/3tSrV89s2LDBqpkwYYIJDw83H3/8sfnuu+9Mv379TFxcnCkpKbFqevfubTp37myys7PNN998Y1q3bm3S09Ot5ZmZmcbhcJhnn33W/Pvf/za5ubkmNTXVtGjRwhw7dqzC28fVeQAA1D0Vff/2aYgyxpipU6eamJgY43Q6TUJCgvn222+tZcnJyWbw4MFe9fPmzTNt2rQxTqfTtG/f3ixevNhrucfjMWPHjjVRUVEmMDDQ9OrVy2zdutWr5uDBgyY9Pd00aNDAhIaGmqFDh5rDhw971Xz44Yemc+fOJiQkxERGRprbb7/dbNmypVLbRogCAKDuqej7t8OYc5wpjQtSXFyssLAwud1uhYaG+rodAABQARV9/+bqPAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgBJee4SrdpRqDx3ia9bAVBHBPi6AQDwtbk5uzVmwQZ5jOTnkDL6x2tAtxhftwWglmNPFIBLWp67xApQkuQx0lMLNrJHCsB5EaIAXNJ2Fh61AtRpZcZoV+Ex3zQEoM4gRAG4pMVFhMjP4T3m73AoNqK+bxoCUGcQogBc0qLDgpXRP17+jp+TlL/DoZf6d1B0WLCPOwNQ23FiOYBL3oBuMerRJlK7Co8pNqI+AQpAhRCiAEA/75EiPAGoDA7nAQAA2ECIAgAAsMHnIWratGmKjY1VUFCQEhMTtXr16nPWz58/X23btlVQUJDi4+O1ZMkSr+XGGI0bN07R0dEKDg5WSkqKtm3b5lVz6NAhDRw4UKGhoQoPD9ewYcN05MiRM57nlVdeUZs2bRQYGKhmzZrpxRdfrJqNBgAAdZ5PQ9TcuXM1atQojR8/XmvXrlXHjh2Vmpqq/fv3l1u/atUqpaena9iwYVq3bp3S0tKUlpamjRs3WjUTJ07UlClTNH36dGVnZyskJESpqak6fvy4VTNw4EBt2rRJS5cu1aJFi/T1119rxIgRXq/1yCOP6O2339Yrr7yi77//XgsXLlRCQkL1TAQAAKh7jA8lJCSYkSNHWt+XlZWZpk2bmoyMjHLr77rrLtOnTx+vscTERPPAAw8YY4zxeDzG5XKZSZMmWcuLiopMYGCg+fDDD40xxmzevNlIMjk5OVbNp59+ahwOh/nxxx+tmoCAAPP9999f0Pa53W4jybjd7gt6HgAAUHMq+v7tsz1RJ06cUG5urlJSUqwxPz8/paSkKCsrq9x1srKyvOolKTU11arfuXOn8vPzvWrCwsKUmJho1WRlZSk8PFxdu3a1alJSUuTn56fs7GxJ0ieffKKWLVtq0aJFiouLU2xsrIYPH65Dhw6dc5tKS0tVXFzs9QCA2ogPXAYunM9CVGFhocrKyhQVFeU1HhUVpfz8/HLXyc/PP2f96a/nq2nSpInX8oCAADVu3Niq+c9//qMffvhB8+fP13//939r1qxZys3N1W9/+9tzblNGRobCwsKsR/Pmzc9ZDwC+MDdnt66bsEz3zMjWdROWaW7Obl+3BNRJPj+xvDbyeDwqLS3Vf//3f+uGG25Qz5499Y9//EPLly/X1q1bz7remDFj5Ha7rceePXtqsGsAOD8+cBmoOj4LUREREfL391dBQYHXeEFBgVwuV7nruFyuc9af/nq+ml+fuH7q1CkdOnTIqomOjlZAQIDatGlj1bRr106StHv32X9jCwwMVGhoqNcDAGoTPnAZqDo+C1FOp1NdunRRZmamNebxeJSZmamkpKRy10lKSvKql6SlS5da9XFxcXK5XF41xcXFys7OtmqSkpJUVFSk3Nxcq2bZsmXyeDxKTEyUJF133XU6deqUduzYYdX8+9//liS1aNHiQjYbAHyKD1wGqlANneherjlz5pjAwEAza9Yss3nzZjNixAgTHh5u8vPzjTHGDBo0yIwePdqqX7lypQkICDCvvPKK2bJlixk/frypV6+e2bBhg1UzYcIEEx4ebj7++GPz3XffmX79+pm4uDhTUlJi1fTu3dt07tzZZGdnm2+++ca0bt3apKenW8vLysrMNddcY3r06GHWrl1r1qxZYxITE83NN99cqe3j6jwAtdGc1T+YlqMXmxZPLjItRy82c1b/4OuWgFqlou/fPg1RxhgzdepUExMTY5xOp0lISDDffvuttSw5OdkMHjzYq37evHmmTZs2xul0mvbt25vFixd7Lfd4PGbs2LEmKirKBAYGml69epmtW7d61Rw8eNCkp6ebBg0amNDQUDN06FBz+PBhr5off/zR9O/f3zRo0MBERUWZIUOGmIMHD1Zq2whRAGqrfUXHzKrthWZf0TFftwLUOhV9/3YYY8y591XBruLiYoWFhcntdnN+FAAAdURF37+5Og8AAMAGQhQAAIANhCgAqGbcHRy4OAX4ugEAuJjNzdlt3dzSzyFl9I/XgG4xvm4LQBWwvSeqqKhIa9as0Zo1a1RUVFSFLQHAxYG7gwMXt0qHqF27dqlPnz6KiIhQYmKiEhMTFRERodtuu027du2qhhYBoG6qzXcH5xAjcOEqdThvz5496t69u+rVq6fnn3/e+iiUzZs364033lBSUpJycnJ0+eWXV0uzAFCXnL47+C+DVG24OziHGIGqUan7RA0bNkzbt2/X559/rqCgIK9lJSUl6t27t1q3bq233367yhuti7hPFIC5Obv11IKNKjNG/g6HXurfwaeBJc9dousmLDsj2H0z+kZFhwX7rC+gNqno+3el9kR99tlnmjt37hkBSpKCg4P1/PPP6+677658twBwkRrQLUY92kRqV+ExxUbU93lQOdchRl/3BtQ1lQpRhYWFio2NPevyli1b6tChQxfaEwBcVKLDgmtNQKmthxiBuqhSJ5ZHR0dr8+bNZ12+ceNGuVyuC24KAFA9osOCldE/Xv4OhyRZhxhrS8gD6pJK7YlKS0vT448/rszMTEVGRnot279/v5588kmlpaVVZX8AgCpW2w4xAnVVpU4s/+mnn5SYmKj8/Hzde++9atu2rYwx2rJliz744AO5XC59++23aty4cXX2XGdwYjkAAHVPtZxY3qhRI2VnZ+upp57SnDlzrJtshoeH65577tFLL71EgAIAAJeESu2J+iVjjA4cOCBJioyMlOP/H1/H/2FPFAAAdU+17In6JYfDoSZNmthdHQAAoE6r9Me+LFmyRMOHD9cTTzyhLVu2eC376aefdNNNN1VZcwAAALVVpULUBx98oNtvv135+fnKysrSNddco/fff99afuLECX311VdV3iQAAEBtU6nDeZMmTdJrr72mhx9+WJI0b948/e53v9Px48c1bNiwamkQAACgNqpUiNq2bZv69u1rfX/XXXcpMjJSt99+u06ePKk77rijyhsEAAC1V567RDsLjyouIuSSu+dYpUJUaGioCgoKFBcXZ43deOONWrRokW677Tbt3bu3yhsEAAC109yc3RqzYIM8RvJzSBn94336Ads1rVLnRCUkJOjTTz89Yzw5OVmffPKJJk+eXFV9AQCAWizPXWIFKOnnz2N8asFG5blLfNtYDapUiPrTn/6koKCgcpf17NlTn3zyie67774qaQwAANReOwuPen2QtSSVGaNdhcd805APVOpwXufOndW5c2cVFxeXu7xLly7q0qVLlTQGAABqr7iIEPk55BWk/B0OxUbU911TNaxSISo8PLxCdyYvKyuz3RAAAKj9osOCldE/Xk8t2KgyY+TvcOil/h0uqZPLKxWili9fbv3ZGKNbb71Vb7/9tpo1a1bljQEAgNptQLcY9WgTqV2FxxQbUb9GA1RtuCqwUiEqOTnZ63t/f391795dLVu2rNKmAABA3RAdFlzjIaa2XBVY6Y99AQAA8JXadFUgIQoAANQZtemqwAsOURU50RwAAKAqnL4q8Jd8dVVgpc6J6t+/v9f3x48f1+9//3uFhIR4jS9YsODCOwMAAPiV2nRVYKVCVFhYmNf39957b5U2AwAAcD6+vCrwlxzGGHP+MthRXFyssLAwud1uhYaG+rodAABQARV9/+bEcgAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAUGXy3CVataPQJ59jBtS0St1sEwCAs5mbs9v6YFg/h5TRP14DusX4ui2g2rAnCgBwwfLcJVaAkiSPkZ5asJE9UrioEaIAABdsZ+FRK0CdVmaMdhUe801DQA0gRAGAOJfnQsVFhMjP4T3m73AoNqK+bxoCagAhCsAlb27Obl03YZnumZGt6yYs09yc3b5uqc6JDgtWRv94+Tt+TlL+Dode6t/BZx8MC9QEPoC4GvEBxEDtl+cu0XUTlnkdivJ3OPTN6BsJADbkuUu0q/CYYiPqM3+osyr6/s3VeQAuaec6l4cQUHnRYcHMGy4ZHM4DcEnjXB4AdhGiAFzSOJcHgF0czgNwyRvQLUY92kRyLg+ASiFEAYA4lwdA5XE4DwAAwAZCFAAAgA2EKAAAABtqRYiaNm2aYmNjFRQUpMTERK1evfqc9fPnz1fbtm0VFBSk+Ph4LVmyxGu5MUbjxo1TdHS0goODlZKSom3btnnVHDp0SAMHDlRoaKjCw8M1bNgwHTlypNzX2759uxo2bKjw8PAL2k4AAHDx8HmImjt3rkaNGqXx48dr7dq16tixo1JTU7V///5y61etWqX09HQNGzZM69atU1pamtLS0rRx40arZuLEiZoyZYqmT5+u7OxshYSEKDU1VcePH7dqBg4cqE2bNmnp0qVatGiRvv76a40YMeKM1zt58qTS09N1ww03VP3GAwCAOsvnH/uSmJiobt266W9/+5skyePxqHnz5vrjH/+o0aNHn1E/YMAAHT16VIsWLbLGunfvrk6dOmn69Okyxqhp06Z67LHH9Pjjj0uS3G63oqKiNGvWLN19993asmWLrrrqKuXk5Khr166SpM8++0y33nqr9u7dq6ZNm1rP/eSTT2rfvn3q1auXHn30URUVFVV42/jYFwAA6p6Kvn/7dE/UiRMnlJubq5SUFGvMz89PKSkpysrKKnedrKwsr3pJSk1Ntep37typ/Px8r5qwsDAlJiZaNVlZWQoPD7cClCSlpKTIz89P2dnZ1tiyZcs0f/58TZs2rULbU1paquLiYq8HgJqV5y7Rqh2FynOX+LoVABc5n94nqrCwUGVlZYqKivIaj4qK0vfff1/uOvn5+eXW5+fnW8tPj52rpkmTJl7LAwIC1LhxY6vm4MGDGjJkiGbPnl3hvUgZGRl69tlnK1QLoOrNzdmtMQs2yGMkP4eU0T9eA7rF+LotABcpn58TVVvdf//9uueee9SjR48KrzNmzBi53W7rsWfPnmrpjd+0gTPluUusACVJHiM9tWAj/04AVBuf7omKiIiQv7+/CgoKvMYLCgrkcrnKXcflcp2z/vTXgoICRUdHe9V06tTJqvn1ieunTp3SoUOHrPWXLVumhQsX6pVXXpH08xV/Ho9HAQEBeuutt/S73/3ujN4CAwMVGBhY0c23hd+0gfLtLDxqBajTyozRrsJj3IkcQLXw6Z4op9OpLl26KDMz0xrzeDzKzMxUUlJSueskJSV51UvS0qVLrfq4uDi5XC6vmuLiYmVnZ1s1SUlJKioqUm5urlWzbNkyeTweJSYmSvr5vKn169dbj+eee04NGzbU+vXrdccdd1TNBFQSv2kDZxcXESI/h/eYv8Oh2Ij6vmkIwEXP55+dN2rUKA0ePFhdu3ZVQkKCJk+erKNHj2ro0KGSpPvuu0/NmjVTRkaGJOmRRx5RcnKyXn31VfXp00dz5szRmjVr9NZbb0mSHA6HHn30Ub3wwgtq3bq14uLiNHbsWDVt2lRpaWmSpHbt2ql37966//77NX36dJ08eVIPPfSQ7r77buvKvHbt2nn1uWbNGvn5+alDhw41NDNn4jdt4Oyiw4KV0T9eTy3YqDJj5O9w6KX+Hfi3AaDa+DxEDRgwQAcOHNC4ceOUn5+vTp066bPPPrNODN+9e7f8/P5vh9m1116rDz74QE8//bSeeuoptW7dWv/7v//rFW6eeOIJHT16VCNGjFBRUZGuv/56ffbZZwoKCrJq3n//fT300EPq1auX/Pz8dOedd2rKlCk1t+E2nP5N+5dBit+0gf8zoFuMerSJ1K7CY4qNqE+AAlCtfH6fqItZddwnam7O7jN+0+acKAAAqk5F3799vicKlcNv2gAA1A6EqDooOiyY8AQAgI9xnygAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAAC1Up67RKt2FCrPXeLrVsoV4OsGAAAAfm1uzm6NWbBBHiP5OaSM/vEa0C3G1215YU8UAACoVfLcJVaAkiSPkZ5asLHW7ZEiRAEAgFplZ+FRK0CdVmaMdhUe801DZ0GIAgAAtUpcRIj8HN5j/g6HYiPq+6ahsyBEAQCAWiU6LFgZ/ePl7/g5Sfk7HHqpfwdFhwX7uDNvnFgOAABqnQHdYtSjTaR2FR5TbET9WhegJEIUAACopaLDgmtleDqNw3kAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABtqRYiaNm2aYmNjFRQUpMTERK1evfqc9fPnz1fbtm0VFBSk+Ph4LVmyxGu5MUbjxo1TdHS0goODlZKSom3btnnVHDp0SAMHDlRoaKjCw8M1bNgwHTlyxFq+YsUK9evXT9HR0QoJCVGnTp30/vvvV91GAwCAOs3nIWru3LkaNWqUxo8fr7Vr16pjx45KTU3V/v37y61ftWqV0tPTNWzYMK1bt05paWlKS0vTxo0brZqJEydqypQpmj59urKzsxUSEqLU1FQdP37cqhk4cKA2bdqkpUuXatGiRfr66681YsQIr9e5+uqr9c9//lPfffedhg4dqvvuu0+LFi2qvskAAAB1hsMYY3zZQGJiorp166a//e1vkiSPx6PmzZvrj3/8o0aPHn1G/YABA3T06FGvMNO9e3d16tRJ06dPlzFGTZs21WOPPabHH39ckuR2uxUVFaVZs2bp7rvv1pYtW3TVVVcpJydHXbt2lSR99tlnuvXWW7V37141bdq03F779OmjqKgovfPOOxXatuLiYoWFhcntdis0NLRS8wIAAHyjou/fPt0TdeLECeXm5iolJcUa8/PzU0pKirKysspdJysry6teklJTU636nTt3Kj8/36smLCxMiYmJVk1WVpbCw8OtACVJKSkp8vPzU3Z29ln7dbvdaty48VmXl5aWqri42OsBAAAuTj4NUYWFhSorK1NUVJTXeFRUlPLz88tdJz8//5z1p7+er6ZJkyZeywMCAtS4ceOzvu68efOUk5OjoUOHnnV7MjIyFBYWZj2aN29+1loAAFC3+fycqLpg+fLlGjp0qGbMmKH27duftW7MmDFyu93WY8+ePTXYJQAAqEk+DVERERHy9/dXQUGB13hBQYFcLle567hcrnPWn/56vppfn7h+6tQpHTp06IzX/eqrr9S3b1+9/vrruu+++865PYGBgQoNDfV6AACAi5NPQ5TT6VSXLl2UmZlpjXk8HmVmZiopKancdZKSkrzqJWnp0qVWfVxcnFwul1dNcXGxsrOzrZqkpCQVFRUpNzfXqlm2bJk8Ho8SExOtsRUrVqhPnz56+eWXva7cAwAAkPGxOXPmmMDAQDNr1iyzefNmM2LECBMeHm7y8/ONMcYMGjTIjB492qpfuXKlCQgIMK+88orZsmWLGT9+vKlXr57ZsGGDVTNhwgQTHh5uPv74Y/Pdd9+Zfv36mbi4OFNSUmLV9O7d23Tu3NlkZ2ebb775xrRu3dqkp6dby5ctW2bq169vxowZY/Ly8qzHwYMHK7xtbrfbSDJut/tCpggAANSgir5/+zxEGWPM1KlTTUxMjHE6nSYhIcF8++231rLk5GQzePBgr/p58+aZNm3aGKfTadq3b28WL17stdzj8ZixY8eaqKgoExgYaHr16mW2bt3qVXPw4EGTnp5uGjRoYEJDQ83QoUPN4cOHreWDBw82ks54JCcnV3i7CFEAANQ9FX3/9vl9oi5m3CcKAIC6p07cJwoAAKCuIkQBQAXkuUu0akeh8twlvm4FlcTfHapLgK8bAIDabm7Obo1ZsEEeI/k5pIz+8RrQLcbXbaEC+LtDdWJPFACcQ567xHoTliSPkZ5asJG9GnUAf3eoboQoADiHnYVHrTfh08qM0a7CY75pCBXG3x2qGyEKAM4hLiJEfg7vMX+HQ7ER9X3TECqMvztUN0IUAJxDdFiwMvrHy9/x87uxv8Ohl/p3UHRYsI87w/nwd4fqxn2iqhH3iQIuHnnuEu0qPKbYiPq8Cdcx/N2hsir6/s3VeQBQAdFhwbwB11F2/+7y3CXaWXhUcREh/N2jXIQoAAB+hVsjoCI4JwoAgF/g1gioKEIUAAC/wK0RUFGEKAAAfoFbI6CiCFEAAPwCt0ZARXFiOQAAvzKgW4x6tInk1gg4J0IUAADl4LYWOB8O5wEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQBgQ567RKt2FCrPXeLrVuAjAb5uAACAumZuzm6NWbBBHiP5OaSM/vEa0C3G122hhrEnCgCASshzl1gBSpI8RnpqwUb2SF2CCFEAAFTCzsKjVoA6rcwY7So85puG4DOEKAAAKiEuIkR+Du8xf4dDsRH1fdMQfIYQBQBAJUSHBSujf7z8HT8nKX+HQy/176DosGAfd4aaxonlQC2R5y7RzsKjiosI4T9joJYb0C1GPdpEalfhMcVG1Off7CWKEAXUAlzpA9Q90WHBhKdLHIfzAB/jSh8AqJsIUah23JDu3LjSBwDqJg7noVpxmOr8Tl/p88sgxZU+AFD7sScK1YbDVBXDlT4AUDexJwrV5lyHqQgI3rjSBwDqHkIUqg2HqSqHK30AoG7hcB6qDYepAAAXM/ZEoVpV92EqblAJAPAVQhSqXXUdpuLKPwCAL3E4D3USV/4BAHyNEIU6iRtUAgB8jRCFOun0lX+/xJV/qE7ceR/ArxGiUCdx5R9q0tyc3bpuwjLdMyNb101Yprk5u33dEoBawGGMMecvgx3FxcUKCwuT2+1WaGior9u5KOW5S7hBJapVnrtE101Ydsb9zr4ZfSM/c8BFqqLv37ViT9S0adMUGxuroKAgJSYmavXq1eesnz9/vtq2baugoCDFx8dryZIlXsuNMRo3bpyio6MVHByslJQUbdu2zavm0KFDGjhwoEJDQxUeHq5hw4bpyJEjXjXfffedbrjhBgUFBal58+aaOHFi1Wwwqkx0WLCSrriMNzNUG86/A3A2Pg9Rc+fO1ahRozR+/HitXbtWHTt2VGpqqvbv319u/apVq5Senq5hw4Zp3bp1SktLU1pamjZu3GjVTJw4UVOmTNH06dOVnZ2tkJAQpaam6vjx41bNwIEDtWnTJi1dulSLFi3S119/rREjRljLi4uL9Zvf/EYtWrRQbm6uJk2apGeeeUZvvfVW9U0GgFqH8+8AnJXxsYSEBDNy5Ejr+7KyMtO0aVOTkZFRbv1dd91l+vTp4zWWmJhoHnjgAWOMMR6Px7hcLjNp0iRreVFRkQkMDDQffvihMcaYzZs3G0kmJyfHqvn000+Nw+EwP/74ozHGmL///e+mUaNGprS01Kp58sknzZVXXlnhbXO73UaScbvdFV4HQO0zZ/UPpuXoxabFk4tMy9GLzZzVP/i6JQDVqKLv3z7dE3XixAnl5uYqJSXFGvPz81NKSoqysrLKXScrK8urXpJSU1Ot+p07dyo/P9+rJiwsTImJiVZNVlaWwsPD1bVrV6smJSVFfn5+ys7Otmp69Oghp9Pp9Tpbt27VTz/9VG5vpaWlKi4u9noAqPsGdIvRN6Nv1If3d9c3o2/kpq4AJPn4cF5hYaHKysoUFRXlNR4VFaX8/Pxy18nPzz9n/emv56tp0qSJ1/KAgAA1btzYq6a85/jla/xaRkaGwsLCrEfz5s3L33AAdQ7n3wH4NZ+fE3UxGTNmjNxut/XYs2ePr1sCAADVxKchKiIiQv7+/iooKPAaLygokMvlKncdl8t1zvrTX89X8+sT10+dOqVDhw551ZT3HL98jV8LDAxUaGio1wMAAFycfBqinE6nunTposzMTGvM4/EoMzNTSUlJ5a6TlJTkVS9JS5cuterj4uLkcrm8aoqLi5WdnW3VJCUlqaioSLm5uVbNsmXL5PF4lJiYaNV8/fXXOnnypNfrXHnllWrUqNEFbjkAAKjzauhE97OaM2eOCQwMNLNmzTKbN282I0aMMOHh4SY/P98YY8ygQYPM6NGjrfqVK1eagIAA88orr5gtW7aY8ePHm3r16pkNGzZYNRMmTDDh4eHm448/Nt99953p16+fiYuLMyUlJVZN7969TefOnU12drb55ptvTOvWrU16erq1vKioyERFRZlBgwaZjRs3mjlz5pj69eubN998s8LbxtV5AADUPRV9//Z5iDLGmKlTp5qYmBjjdDpNQkKC+fbbb61lycnJZvDgwV718+bNM23atDFOp9O0b9/eLF682Gu5x+MxY8eONVFRUSYwMND06tXLbN261avm4MGDJj093TRo0MCEhoaaoUOHmsOHD3vV/Otf/zLXX3+9CQwMNM2aNTMTJkyo1HYRogAAqHsq+v7Nx75UIz72BQCAuqdOfewLAABAXUOIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA0Bvm7gYnb6wkc+iBgAgLrj9Pv2+W5gQIiqRocPH5YkPogYAIA66PDhwwoLCzvrcu4TVY08Ho/27dunhg0byuFweC0rLi5W8+bNtWfPHu4hdRbM0fkxR+fHHJ0fc3R+zNG5XWzzY4zR4cOH1bRpU/n5nf3MJ/ZEVSM/Pz9dfvnl56zhg4rPjzk6P+bo/Jij82OOzo85OreLaX7OtQfqNE4sBwAAsIEQBQAAYAMhykcCAwM1fvx4BQYG+rqVWos5Oj/m6PyYo/Njjs6POTq3S3V+OLEcAADABvZEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCVDWaNm2aYmNjFRQUpMTERK1evfqstZs2bdKdd96p2NhYORwOTZ48ueYa9aHKzNGMGTN0ww03qFGjRmrUqJFSUlLOWX+xqMwcLViwQF27dlV4eLhCQkLUqVMnvffeezXYrW9UZo5+ac6cOXI4HEpLS6veBmuByszRrFmz5HA4vB5BQUE12G3Nq+zPUFFRkUaOHKno6GgFBgaqTZs2WrJkSQ116xuVmaOePXue8TPkcDjUp0+fGuy4BhhUizlz5hin02neeecds2nTJnP//feb8PBwU1BQUG796tWrzeOPP24+/PBD43K5zOuvv16zDftAZefonnvuMdOmTTPr1q0zW7ZsMUOGDDFhYWFm7969Ndx5zansHC1fvtwsWLDAbN682Wzfvt1MnjzZ+Pv7m88++6yGO685lZ2j03bu3GmaNWtmbrjhBtOvX7+aadZHKjtHM2fONKGhoSYvL8965Ofn13DXNaey81NaWmq6du1qbr31VvPNN9+YnTt3mhUrVpj169fXcOc1p7JzdPDgQa+fn40bNxp/f38zc+bMmm28mhGiqklCQoIZOXKk9X1ZWZlp2rSpycjIOO+6LVq0uCRC1IXMkTHGnDp1yjRs2NC8++671dWiz13oHBljTOfOnc3TTz9dHe3VCnbm6NSpU+baa681b7/9thk8ePBFH6IqO0czZ840YWFhNdSd71V2ft544w3TsmVLc+LEiZpq0ecu9P+i119/3TRs2NAcOXKkulr0CQ7nVYMTJ04oNzdXKSkp1pifn59SUlKUlZXlw85qj6qYo2PHjunkyZNq3LhxdbXpUxc6R8YYZWZmauvWrerRo0d1tuozdufoueeeU5MmTTRs2LCaaNOn7M7RkSNH1KJFCzVv3lz9+vXTpk2baqLdGmdnfhYuXKikpCSNHDlSUVFR6tChg1566SWVlZXVVNs1qir+v/7HP/6hu+++WyEhIdXVpk8QoqpBYWGhysrKFBUV5TUeFRWl/Px8H3VVu1TFHD355JNq2rSp1z/si4ndOXK73WrQoIGcTqf69OmjqVOn6uabb67udn3Czhx98803+sc//qEZM2bURIs+Z2eOrrzySr3zzjv6+OOPNXv2bHk8Hl177bXau3dvTbRco+zMz3/+8x999NFHKisr05IlSzR27Fi9+uqreuGFF2qi5Rp3of9fr169Whs3btTw4cOrq0WfCfB1A4AdEyZM0Jw5c7RixYqL/oTXymrYsKHWr1+vI0eOKDMzU6NGjVLLli3Vs2dPX7fmc4cPH9agQYM0Y8YMRURE+LqdWispKUlJSUnW99dee63atWunN998U88//7wPO6sdPB6PmjRporfeekv+/v7q0qWLfvzxR02aNEnjx4/3dXu1zj/+8Q/Fx8crISHB161UOUJUNYiIiJC/v78KCgq8xgsKCuRyuXzUVe1yIXP0yiuvaMKECfryyy919dVXV2ebPmV3jvz8/NSqVStJUqdOnbRlyxZlZGRclCGqsnO0Y8cO7dq1S3379rXGPB6PJCkgIEBbt27VFVdcUb1N17Cq+P+oXr166ty5s7Zv314dLfqUnfmJjo5WvXr15O/vb421a9dO+fn5OnHihJxOZ7X2XNMu5Gfo6NGjmjNnjp577rnqbNFnOJxXDZxOp7p06aLMzExrzOPxKDMz0+u3u0uZ3TmaOHGinn/+eX322Wfq2rVrTbTqM1X1c+TxeFRaWlodLfpcZeeobdu22rBhg9avX289br/9dt14441av369mjdvXpPt14iq+DkqKyvThg0bFB0dXV1t+oyd+bnuuuu0fft2K4BL0r///W9FR0dfdAFKurCfofnz56u0tFT33ntvdbfpG74+s/1iNWfOHBMYGGhmzZplNm/ebEaMGGHCw8Oty4QHDRpkRo8ebdWXlpaadevWmXXr1pno6Gjz+OOPm3Xr1plt27b5ahOqXWXnaMKECcbpdJqPPvrI69LZw4cP+2oTql1l5+ill14yX3zxhdmxY4fZvHmzeeWVV0xAQICZMWOGrzah2lV2jn7tUrg6r7Jz9Oyzz5rPP//c7Nixw+Tm5pq7777bBAUFmU2bNvlqE6pVZedn9+7dpmHDhuahhx4yW7duNYsWLTJNmjQxL7zwgq82odrZ/Xd2/fXXmwEDBtR0uzWGEFWNpk6damJiYozT6TQJCQnm22+/tZYlJyebwYMHW9/v3LnTSDrjkZycXPON16DKzFGLFi3KnaPx48fXfOM1qDJz9Je//MW0atXKBAUFmUaNGpmkpCQzZ84cH3RdsyozR792KYQoYyo3R48++qhVGxUVZW699Vazdu1aH3Rdcyr7M7Rq1SqTmJhoAgMDTcuWLc2LL75oTp06VcNd16zKztH3339vJJkvvviihjutOQ5jjPHRTjAAAIA6i3OiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQBwERgyZIjS0tJ83QZwSSFEAahWQ4YMkcPhsB6XXXaZevfure+++87XrVWJX27b6cf1119fba+3a9cuORwOrV+/3mv8r3/9q2bNmlVtrwvgTIQoANWud+/eysvLU15enjIzMxUQEKDbbrvN121VmZkzZ1rbl5eXp4ULF5Zbd/LkyWrrISwsTOHh4dX2/ADORIgCUO0CAwPlcrnkcrnUqVMnjR49Wnv27NGBAwd000036aGHHvKqP3DggJxOp/Wp8bGxsXr++eeVnp6ukJAQNWvWTNOmTfNa57XXXlN8fLxCQkLUvHlz/eEPf9CRI0es5T/88IP69u2rRo0aKSQkRO3bt9eSJUskST/99JMGDhyoyMhIBQcHq3Xr1po5c2aFty88PNzaPpfLpcaNG1t7jObOnavk5GQFBQXp/fff18GDB5Wenq5mzZqpfv36io+P14cffuj1fB6PRxMnTlSrVq0UGBiomJgYvfjii5KkuLg4SVLnzp3lcDjUs2dPSWcezistLdXDDz+sJk2aKCgoSNdff71ycnKs5StWrJDD4VBmZqa6du2q+vXr69prr9XWrVsrvN3ApY4QBaBGHTlyRLNnz1arVq102WWXafjw4frggw9UWlpq1cyePVvNmjXTTTfdZI1NmjRJHTt21Lp16zR69Gg98sgjWrp0qbXcz89PU6ZM0aZNm/Tuu+9q2bJleuKJJ6zlI0eOVGlpqb7++mtt2LBBL7/8sho0aCBJGjt2rDZv3qxPP/1UW7Zs0RtvvKGIiIgq2d7TvW7ZskWpqak6fvy4unTposWLF2vjxo0aMWKEBg0apNWrV1vrjBkzRhMmTLD6+uCDDxQVFSVJVt2XX36pvLw8LViwoNzXfeKJJ/TPf/5T7777rtauXatWrVopNTVVhw4d8qr7y1/+oldffVVr1qxRQECAfve731XJdgOXBF9/AjKAi9vgwYONv7+/CQkJMSEhIUaSiY6ONrm5ucYYY0pKSkyjRo3M3LlzrXWuvvpq88wzz1jft2jRwvTu3dvreQcMGGBuueWWs77u/PnzzWWXXWZ9Hx8f7/Wcv9S3b18zdOhQW9snyQQFBVnbFxISYv7nf/7H7Ny500gykydPPu9z9OnTxzz22GPGGGOKi4tNYGCgmTFjRrm1p5933bp1XuODBw82/fr1M8YYc+TIEVOvXj3z/vvvW8tPnDhhmjZtaiZOnGiMMWb58uVGkvnyyy+tmsWLFxtJpqSkpDJTAFyy2BMFoNrdeOONWr9+vdavX6/Vq1crNTVVt9xyi3744QcFBQVp0KBBeueddyRJa9eu1caNGzVkyBCv50hKSjrj+y1btljff/nll+rVq5eaNWumhg0batCgQTp48KCOHTsmSXr44Yf1wgsv6LrrrtP48eO9Tmx/8MEHNWfOHHXq1ElPPPGEVq1aVante/31163tW79+vW6++WZrWdeuXb1qy8rK9Pzzzys+Pl6NGzdWgwYN9Pnnn2v37t2SpC1btqi0tFS9evWqVA+/tGPHDp08eVLXXXedNVavXj0lJCR4zZkkXX311dafo6OjJUn79++3/drApYQQBaDahYSEqFWrVmrVqpW6deumt99+W0ePHtWMGTMkScOHD9fSpUu1d+9ezZw5UzfddJNatGhR4efftWuXbrvtNl199dX65z//qdzcXOucqRMnTliv8Z///EeDBg3Shg0b1LVrV02dOlWSrED3pz/9Sfv27VOvXr30+OOPV/j1XS6XtX2tWrVSSEiI17b/0qRJk/TXv/5VTz75pJYvX67169crNTXV6jM4OLjCr1sV6tWrZ/3Z4XBI+vmcLADnR4gCUOMcDof8/PxUUlIiSYqPj1fXrl01Y8YMffDBB+Wel/Ptt9+e8X27du0kSbm5ufJ4PHr11VfVvXt3tWnTRvv27TvjOZo3b67f//73WrBggR577DErxElSZGSkBg8erNmzZ2vy5Ml66623qnKTLStXrlS/fv107733qmPHjmrZsqX+/e9/W8tbt26t4OBg66T6X3M6nZJ+3qN1NldccYWcTqdWrlxpjZ08eVI5OTm66qqrqmhLAAT4ugEAF7/S0lLl5+dL+vlKuL/97W86cuSI+vbta9UMHz5cDz30kEJCQnTHHXec8RwrV67UxIkTlZaWpqVLl2r+/PlavHixJKlVq1Y6efKkpk6dqr59+2rlypWaPn261/qPPvqobrnlFrVp00Y//fSTli9fboWwcePGqUuXLmrfvr1KS0u1aNEia1lVa926tT766COtWrVKjRo10muvvaaCggIr3AQFBenJJ5/UE088IafTqeuuu04HDhzQpk2bNGzYMDVp0kTBwcH67LPPdPnllysoKEhhYWFerxESEqIHH3xQf/7zn9W4cWPFxMRo4sSJOnbsmIYNG1Yt2wVcitgTBaDaffbZZ4qOjlZ0dLQSExOVk5Oj+fPnW5fnS1J6eroCAgKUnp6uoKCgM57jscce05o1a9S5c2e98MILeu2115SamipJ6tixo1577TW9/PLL6tChg95//31lZGR4rV9WVqaRI0eqXbt26t27t9q0aaO///3vkn7euzNmzBhdffXV6tGjh/z9/TVnzpxqmYunn35a11xzjVJTU9WzZ0+5XK4z7jQ+duxYPfbYYxo3bpzatWunAQMGWOcpBQQEaMqUKXrzzTfVtGlT9evXr9zXmTBhgu68804NGjRI11xzjbZv367PP/9cjRo1qpbtAi5FDmOM8XUTALBr1y5dccUVysnJ0TXXXOO1LDY2Vo8++qgeffRR3zQHAOXgcB4Anzp58qQOHjyop59+Wt27dz8jQAFAbcXhPAA+tXLlSkVHRysnJ+eM85h87aWXXlKDBg3Kfdxyyy2+bg+Aj3E4DwDO4tChQ2fc4fu04OBgNWvWrIY7AlCbEKIAAABs4HAeAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwIb/B6K1rsb/yHKbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAREdJREFUeJzt3Xt8TXe+//H3TiJXktDIhUHSYkqFGJc0qmhlJlRVqnOqatx+1EyHaTttR3FcehX0ZrROdUyLKUq1pqPGKA3aUzKkLqduNZgoRhLC2CmJIPv7+8OxTncFyZJk5fJ6Ph77kWatz1rrs76PyH53rbW/cRljjAAAAFAmPk43AAAAUB0RogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIA1GjPPvusXC5XqWpdLpeeffbZCu2nR48e6tGjR5XdH4DSI0QBqBTz58+Xy+WyXn5+fmrcuLGGDRumf/3rX063V+XExsZ6jVdkZKTuvPNO/fnPfy6X/RcUFOjZZ5/Vhg0bymV/QG1EiAJQqZ5//nm99957mjNnjnr37q2FCxeqe/fuOnfuXIUcb+LEiSosLKyQfVe0hIQEvffee3rvvff09NNP69ixY+rfv7/mzJlzw/suKCjQc889R4gCboCf0w0AqF169+6tjh07SpJGjhypiIgITZ8+XStWrNCDDz5Y7sfz8/OTn1/1/FXXuHFj/eIXv7C+HzJkiJo3b67XX39dv/rVrxzsDIDElSgADrvzzjslSQcPHvRa/s033+jnP/+5GjRooMDAQHXs2FErVqzwqrlw4YKee+45tWjRQoGBgbrpppvUtWtXrV271qop6ZmooqIi/fa3v1XDhg1Vr1493XfffTp69OgVvQ0bNkyxsbFXLC9pn/PmzdPdd9+tyMhIBQQEqHXr1nrrrbfKNBbXEx0drVatWikrK+uadcePH9eIESMUFRWlwMBAtWvXTgsWLLDWHzp0SA0bNpQkPffcc9Ytw4p+Hgyoaarn/54BqDEOHTokSapfv761bPfu3brjjjvUuHFjjRs3TiEhIfrggw+Umpqqjz76SPfff7+kS2EmLS1NI0eOVOfOnZWfn6+vvvpK27Zt009/+tOrHnPkyJFauHChHn74YXXp0kXr1q1Tnz59bug83nrrLd12222677775Ofnp08++US//vWv5fF4NHr06Bva92UXLlzQkSNHdNNNN121prCwUD169NCBAwc0ZswYxcXFadmyZRo2bJhOnz6txx9/XA0bNtRbb72lRx99VPfff7/69+8vSWrbtm259AnUGgYAKsG8efOMJPPZZ5+ZEydOmCNHjpgPP/zQNGzY0AQEBJgjR45YtT179jTx8fHm3Llz1jKPx2O6dOliWrRoYS1r166d6dOnzzWPO2XKFPP9X3U7duwwksyvf/1rr7qHH37YSDJTpkyxlg0dOtQ0a9bsuvs0xpiCgoIr6lJSUszNN9/stax79+6me/fu1+zZGGOaNWtmfvazn5kTJ06YEydOmP/5n/8xDz30kJFkfvOb31x1fzNnzjSSzMKFC61l58+fN0lJSaZu3bomPz/fGGPMiRMnrjhfAGXD7TwAlSo5OVkNGzZUkyZN9POf/1whISFasWKFfvSjH0mSTp06pXXr1unBBx/Ud999p7y8POXl5enkyZNKSUnR/v37rU/zhYeHa/fu3dq/f3+pj79q1SpJ0mOPPea1/Iknnrih8woKCrL+2+12Ky8vT927d9c///lPud1uW/tcs2aNGjZsqIYNG6pdu3ZatmyZBg8erOnTp191m1WrVik6OloDBw60ltWpU0ePPfaYzpw5o88//9xWLwCuxO08AJVq9uzZatmypdxut95991198cUXCggIsNYfOHBAxhhNmjRJkyZNKnEfx48fV+PGjfX888+rX79+atmypdq0aaNevXpp8ODB17wt9e2338rHx0e33HKL1/If//jHN3ReGzdu1JQpU5SRkaGCggKvdW63W2FhYWXeZ2Jiol588UW5XC4FBwerVatWCg8Pv+Y23377rVq0aCEfH+//R27VqpW1HkD5IEQBqFSdO3e2Pp2Xmpqqrl276uGHH9a+fftUt25deTweSdLTTz+tlJSUEvfRvHlzSVK3bt108OBB/eUvf9GaNWv0xz/+Ua+//rrmzJmjkSNH3nCvV5uks7i42Ov7gwcPqmfPnrr11lv12muvqUmTJvL399eqVav0+uuvW+dUVhEREUpOTra1LYCKR4gC4BhfX1+lpaXprrvu0ptvvqlx48bp5ptvlnTpFlRpAkSDBg00fPhwDR8+XGfOnFG3bt307LPPXjVENWvWTB6PRwcPHvS6+rRv374rauvXr6/Tp09fsfyHV3M++eQTFRUVacWKFWratKm1fP369dftv7w1a9ZMX3/9tTwej9fVqG+++cZaL109IAIoPZ6JAuCoHj16qHPnzpo5c6bOnTunyMhI9ejRQ2+//bays7OvqD9x4oT13ydPnvRaV7duXTVv3lxFRUVXPV7v3r0lSbNmzfJaPnPmzCtqb7nlFrndbn399dfWsuzs7CtmDff19ZUkGWOsZW63W/PmzbtqHxXlnnvuUU5OjpYuXWotu3jxot544w3VrVtX3bt3lyQFBwdLUokhEUDpcCUKgON+97vf6T/+4z80f/58/epXv9Ls2bPVtWtXxcfH65FHHtHNN9+s3NxcZWRk6OjRo/qf//kfSVLr1q3Vo0cPdejQQQ0aNNBXX32lDz/8UGPGjLnqsRISEjRw4ED913/9l9xut7p06aL09HQdOHDgitqHHnpIzzzzjO6//3499thjKigo0FtvvaWWLVtq27ZtVt3PfvYz+fv7q2/fvvrlL3+pM2fOaO7cuYqMjCwxCFakUaNG6e2339awYcO0detWxcbG6sMPP9TGjRs1c+ZM1atXT9KlB+Fbt26tpUuXqmXLlmrQoIHatGmjNm3aVGq/QLXm9McDAdQOl6c4yMzMvGJdcXGxueWWW8wtt9xiLl68aIwx5uDBg2bIkCEmOjra1KlTxzRu3Njce++95sMPP7S2e/HFF03nzp1NeHi4CQoKMrfeeqt56aWXzPnz562akqYjKCwsNI899pi56aabTEhIiOnbt685cuRIiR/5X7NmjWnTpo3x9/c3P/7xj83ChQtL3OeKFStM27ZtTWBgoImNjTXTp0837777rpFksrKyrLqyTHFwvekbrra/3NxcM3z4cBMREWH8/f1NfHy8mTdv3hXbbtq0yXTo0MH4+/sz3QFgg8uY711/BgAAQKnwTBQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgck2K5DH49GxY8dUr149/sQCAADVhDFG3333nRo1anTFH/P+PkJUBTp27JiaNGnidBsAAMCGI0eO6Ec/+tFV1xOiKtDlP69w5MgRhYaGOtwNAAAojfz8fDVp0sR6H78aQlQFunwLLzQ0lBAFAEA1c71HcXiwHAAAwAZCFAAAgA2EKAAAABt4JgoAgFqiuLhYFy5ccLoNx9WpU0e+vr43vB9CFAAANZwxRjk5OTp9+rTTrVQZ4eHhio6OvqF5HAlRAADUcJcDVGRkpIKDg2v1BNDGGBUUFOj48eOSpJiYGNv7IkQBAFCDFRcXWwHqpptucrqdKiEoKEiSdPz4cUVGRtq+tceD5QAA1GCXn4EKDg52uJOq5fJ43MgzYoQoAABqgdp8C68k5TEehCgAAAAbCFEAAAA2EKIAoIJluwu16WCest2FTrcCVCvDhg2Ty+XStGnTvJZ//PHH1u24DRs2qF+/foqJiVFISIgSEhK0aNGiSumPEFUN8QsZqD6WZh7WHdPW6eG5m3XHtHVamnnY6ZaAaiUwMFDTp0/Xv//97xLXb9q0SW3bttVHH32kr7/+WsOHD9eQIUO0cuXKCu+NKQ6qmaWZhzV++U55jOTjktL6x2tAp6ZOtwWgBNnuQuvfqyR5jDRh+S51a9lQMWFBzjYHVBPJyck6cOCA0tLSNGPGjCvWT5gwwev7xx9/XGvWrNHy5ct17733Vmhvjl+Jmj17tmJjYxUYGKjExERt2bLlmvXLli3TrbfeqsDAQMXHx2vVqlVe640xmjx5smJiYhQUFKTk5GTt37/fq+all15Sly5dFBwcrPDw8BKPc/jwYfXp00fBwcGKjIzU7373O128ePGGzvVGXe0XMlekgKopK++s9e/1smJjdCivwJmGgHJQ2XdDfH19NXXqVL3xxhs6evRoqbZxu91q0KBBBXfmcIhaunSpnnzySU2ZMkXbtm1Tu3btlJKSYs0i+kObNm3SwIEDNWLECG3fvl2pqalKTU3Vrl27rJoZM2Zo1qxZmjNnjjZv3qyQkBClpKTo3LlzVs358+f1H//xH3r00UdLPE5xcbH69Omj8+fPa9OmTVqwYIHmz5+vyZMnl+8AlBG/kIHqJS4iRD4/+BS1r8ul2Ajm60H15NTt6fvvv18JCQmaMmXKdWs/+OADZWZmavjw4RXel6Mh6rXXXtMjjzyi4cOHq3Xr1pozZ46Cg4P17rvvllj/+9//Xr169dLvfvc7tWrVSi+88IJ+8pOf6M0335R06SrUzJkzNXHiRPXr109t27bVn/70Jx07dkwff/yxtZ/nnntOv/3tbxUfH1/icdasWaM9e/Zo4cKFSkhIUO/evfXCCy9o9uzZOn/+fLmPQ2nxCxmoXmLCgpTWP16+//sArK/Lpan923ArD9WS03dDpk+frgULFmjv3r1XrVm/fr2GDx+uuXPn6rbbbqvwnhwLUefPn9fWrVuVnJz8f834+Cg5OVkZGRklbpORkeFVL0kpKSlWfVZWlnJycrxqwsLClJiYeNV9Xu048fHxioqK8jpOfn6+du/efdXtioqKlJ+f7/UqT/xCBqqfAZ2a6stxd+n9R27Xl+Pu4hlGVFtO3w3p1q2bUlJSNH78+BLXf/755+rbt69ef/11DRkypFJ6cuzB8ry8PBUXF3sFFUmKiorSN998U+I2OTk5Jdbn5ORY6y8vu1pNaVztON8/RknS0tL03HPPlfo4dgzo1FTdWjbUobwCxUYEE6CAaiAmLIh/q6j2Lt8N+X6Qquy7IdOmTVNCQoJ+/OMfey3fsGGD7r33Xk2fPl2jRo2qtH4cf7C8Jhk/frzcbrf1OnLkSIUcJyYsSEm33MQvZQBApakKd0Pi4+M1aNAgzZo1y1q2fv169enTR4899pgeeOAB5eTkKCcnR6dOnarwfhwLUREREfL19VVubq7X8tzcXEVHR5e4TXR09DXrL38tyz7LcpzvH6MkAQEBCg0N9XoBAFBTVIXb088//7w8Ho/1/YIFC1RQUKC0tDTFxMRYr/79+1d4L46FKH9/f3Xo0EHp6enWMo/Ho/T0dCUlJZW4TVJSkle9JK1du9aqj4uLU3R0tFdNfn6+Nm/efNV9Xu04O3fu9PqU4Nq1axUaGqrWrVuXej8AANQ0lXk3ZP78+V4fDJOk2NhYFRUVyRhj1Rhjrnht2LChwvtzdLLNJ598UkOHDlXHjh3VuXNnzZw5U2fPnrU+ljhkyBA1btxYaWlpki5NoNW9e3e9+uqr6tOnj5YsWaKvvvpKf/jDHyRd+ovMTzzxhF588UW1aNFCcXFxmjRpkho1aqTU1FTruIcPH9apU6d0+PBhFRcXa8eOHZKk5s2bq27duvrZz36m1q1ba/DgwZoxY4ZycnI0ceJEjR49WgEBAZU6RgAAoGpyNEQNGDBAJ06c0OTJk5WTk6OEhAStXr3aeoj78OHD8vH5v4tlXbp00eLFizVx4kRNmDBBLVq00Mcff6w2bdpYNWPHjtXZs2c1atQonT59Wl27dtXq1asVGBho1UyePFkLFiywvm/fvr2kS/dVe/ToIV9fX61cuVKPPvqokpKSFBISoqFDh+r555+v6CEBAADVhMtcvh6Gcpefn6+wsDC53W6ejwIAOOLcuXPKyspSXFyc1wWF2u5a41La928+nQcAAGADIQoAgFqAG0/eymM8CFEAANRgderUkSQVFPB3Vr/v8nhcHh87HH2wHAAAVCxfX1+Fh4db0/YEBwfL5XJdZ6uayxijgoICHT9+XOHh4fL19bW9L0IUAAA13OWJor8//2FtFx4eXqaJuEtCiAIAoIZzuVyKiYlRZGSkLly44HQ7jqtTp84NXYG6jBAFAEAt4evrWy7hAZfwYDkAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQooIrIdhdq08E8ZbsLnW6lVmL8AZQVf/YFqAKWZh7W+OU75TGSj0tK6x+vAZ2aOt1WrcH4A7CDK1GAw7LdhdYbuCR5jDRh+S6uiFQSxh+AXYQowGFZeWetN/DLio3RobwCZxqqZRh/AHYRogCHxUWEyMflvczX5VJsRLAzDdUyjD8AuwhRgMNiwoKU1j9evq5L7+S+Lpem9m+jmLAghzurHRh/AHa5jDHm+mWwIz8/X2FhYXK73QoNDXW6HVRx2e5CHcorUGxEMG/gDmD8AVxW2vdvPp0HVBExYUG8eTuI8QdQVtzOAwAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAwIZsd6E2HcxTtrvQ6VbgEGYsBwCgjJZmHtb45TvlMZKPS0rrH68BnZo63RYqGVeiAAAog2x3oRWgJMljpAnLd3FFqhYiRAEAUAZZeWetAHVZsTE6lFfgTENwDCEKAIAyiIsIkY/Le5mvy6XYiGBnGoJjCFEAAJRBTFiQ0vrHy9d1KUn5ulya2r+NYsKCHO4MlY0HywEAKKMBnZqqW8uGOpRXoNiIYAJULUWIAgDAhpiwIMJTLcftPAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAapRsd6E2HcxTtrvQ6VYA1HD82RcANcbSzMMav3ynPEbycUlp/eM1oFNTp9tCNZXtLlRW3lnFRYTw511QIkIUgBoh211oBShJ8hhpwvJd6tayIW+AKDMCOUqD23kAaoSsvLNWgLqs2BgdyitwpiFUW1cL5Nwixg8RogDUCHERIfJxeS/zdbkUGxHsTEOotgjkKC1CFIAaISYsSGn94+XrupSkfF0uTe3fhlt5KDMCOUqLZ6IA1BgDOjVVt5YNdSivQLERwQQo2HI5kE9YvkvFxhDIcVWEKAA1SkxYEG92uGEEcpQGIQoAgBIQyHE9PBMFAABgg+Mhavbs2YqNjVVgYKASExO1ZcuWa9YvW7ZMt956qwIDAxUfH69Vq1Z5rTfGaPLkyYqJiVFQUJCSk5O1f/9+r5pTp05p0KBBCg0NVXh4uEaMGKEzZ8541Xz66ae6/fbbVa9ePTVs2FAPPPCADh06VC7nDAAAqj9HQ9TSpUv15JNPasqUKdq2bZvatWunlJQUHT9+vMT6TZs2aeDAgRoxYoS2b9+u1NRUpaamateuXVbNjBkzNGvWLM2ZM0ebN29WSEiIUlJSdO7cOatm0KBB2r17t9auXauVK1fqiy++0KhRo6z1WVlZ6tevn+6++27t2LFDn376qfLy8tS/f/+KGwwAAFC9GAd17tzZjB492vq+uLjYNGrUyKSlpZVY/+CDD5o+ffp4LUtMTDS//OUvjTHGeDweEx0dbV5++WVr/enTp01AQIB5//33jTHG7Nmzx0gymZmZVs3f/vY343K5zL/+9S9jjDHLli0zfn5+pri42KpZsWKFcblc5vz586U+P7fbbSQZt9td6m0AAICzSvv+7diVqPPnz2vr1q1KTk62lvn4+Cg5OVkZGRklbpORkeFVL0kpKSlWfVZWlnJycrxqwsLClJiYaNVkZGQoPDxcHTt2tGqSk5Pl4+OjzZs3S5I6dOggHx8fzZs3T8XFxXK73XrvvfeUnJysOnXqlM8AAACAas2xEJWXl6fi4mJFRUV5LY+KilJOTk6J2+Tk5Fyz/vLX69VERkZ6rffz81ODBg2smri4OK1Zs0YTJkxQQECAwsPDdfToUX3wwQfXPKeioiLl5+d7vQAAQM3k+IPlVVFOTo4eeeQRDR06VJmZmfr888/l7++vn//85zLGXHW7tLQ0hYWFWa8mTZpUYtcAAKAyORaiIiIi5Ovrq9zcXK/lubm5io6OLnGb6Ojoa9Zf/nq9mh8+uH7x4kWdOnXKqpk9e7bCwsI0Y8YMtW/fXt26ddPChQuVnp5u3fIryfjx4+V2u63XkSNHrjcMAACgmnIsRPn7+6tDhw5KT0+3lnk8HqWnpyspKanEbZKSkrzqJWnt2rVWfVxcnKKjo71q8vPztXnzZqsmKSlJp0+f1tatW62adevWyePxKDExUZJUUFAgHx/vofH19bV6vJqAgACFhoZ6vQBUD9nuQm06mKdsd6HTrQCoLirnOfeSLVmyxAQEBJj58+ebPXv2mFGjRpnw8HCTk5NjjDFm8ODBZty4cVb9xo0bjZ+fn3nllVfM3r17zZQpU0ydOnXMzp07rZpp06aZ8PBw85e//MV8/fXXpl+/fiYuLs4UFhZaNb169TLt27c3mzdvNl9++aVp0aKFGThwoLU+PT3duFwu89xzz5l//OMfZuvWrSYlJcU0a9bMFBQUlPr8+HQeUD0s2fKtiRu30jR7ZqWJG7fSLNnyrdMtAXBQad+/Hf2zLwMGDNCJEyc0efJk5eTkKCEhQatXr7YeDD98+LDXFaEuXbpo8eLFmjhxoiZMmKAWLVro448/Vps2bayasWPH6uzZsxo1apROnz6trl27avXq1QoMDLRqFi1apDFjxqhnz57y8fHRAw88oFmzZlnr7777bi1evFgzZszQjBkzFBwcrKSkJK1evVpBQfwJAKAmyXYXavzynfL87+OOHiNNWL5L3Vo25E9+ALgmlzHXeFIaNyQ/P19hYWFyu93c2gOqqE0H8/Tw3CufdXz/kduVdMtNDnQEwGmlff/m03kAarW4iBD5uLyX+bpcio0IdqYhANUGIQpArRYTFqS0/vHydV1KUr4ul6b2b8OtPADX5egzUQBQFQzo1FTdWjbUobwCxUYEE6AAlAohCgB06YoU4QlAWXA7DwAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAoBSy3YXadDBP2e5Cp1sBUEX4Od0AAFR1SzMPa/zynfIYycclpfWP14BOTZ1uC4DDuBIFANeQ7S60ApQkeYw0YfkurkgBIEQBwLVk5Z21AtRlxcboUF6BMw0BqDIIUQBwDXERIXL9YJnLJcVGBDvSD4CqgxAFAGVlrl8CoOYjRAHANWTlnb0iMxmJ23kACFEAcC1xESHy+cH9PF+Xi9t5AAhRAHAtMWFBSusfL1/XpSTl63Jpav82igkLcrgzAE5jnigAuI4BnZqqW8uGOpRXoNiIYAIUAEmEKAAolZiwIMITAC/czgMAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwwfEQNXv2bMXGxiowMFCJiYnasmXLNeuXLVumW2+9VYGBgYqPj9eqVau81htjNHnyZMXExCgoKEjJycnav3+/V82pU6c0aNAghYaGKjw8XCNGjNCZM2eu2M8rr7yili1bKiAgQI0bN9ZLL71UPicNAACqPUdD1NKlS/Xkk09qypQp2rZtm9q1a6eUlBQdP368xPpNmzZp4MCBGjFihLZv367U1FSlpqZq165dVs2MGTM0a9YszZkzR5s3b1ZISIhSUlJ07tw5q2bQoEHavXu31q5dq5UrV+qLL77QqFGjvI71+OOP649//KNeeeUVffPNN1qxYoU6d+5cMQMBAACqH+Ogzp07m9GjR1vfFxcXm0aNGpm0tLQS6x988EHTp08fr2WJiYnml7/8pTHGGI/HY6Kjo83LL79srT99+rQJCAgw77//vjHGmD179hhJJjMz06r529/+Zlwul/nXv/5l1fj5+Zlvvvnmhs7P7XYbScbtdt/QfgAAQOUp7fu3Y1eizp8/r61btyo5Odla5uPjo+TkZGVkZJS4TUZGhle9JKWkpFj1WVlZysnJ8aoJCwtTYmKiVZORkaHw8HB17NjRqklOTpaPj482b94sSfrkk0908803a+XKlYqLi1NsbKxGjhypU6dOXfOcioqKlJ+f7/UCAAA1k2MhKi8vT8XFxYqKivJaHhUVpZycnBK3ycnJuWb95a/Xq4mMjPRa7+fnpwYNGlg1//znP/Xtt99q2bJl+tOf/qT58+dr69at+vnPf37Nc0pLS1NYWJj1atKkyTXrAQBA9eX4g+VVkcfjUVFRkf70pz/pzjvvVI8ePfTOO+9o/fr12rdv31W3Gz9+vNxut/U6cuRIJXYNAAAqk2MhKiIiQr6+vsrNzfVanpubq+jo6BK3iY6Ovmb95a/Xq/nhg+sXL17UqVOnrJqYmBj5+fmpZcuWVk2rVq0kSYcPH77qOQUEBCg0NNTrBQBwVra7UJsO5inbXeh0K6hhHAtR/v7+6tChg9LT061lHo9H6enpSkpKKnGbpKQkr3pJWrt2rVUfFxen6Ohor5r8/Hxt3rzZqklKStLp06e1detWq2bdunXyeDxKTEyUJN1xxx26ePGiDh48aNX84x//kCQ1a9bsRk4bAFCJlmYe1h3T1unhuZt1x7R1Wpp59f8RBsrKZYwxTh186dKlGjp0qN5++2117txZM2fO1AcffKBvvvlGUVFRGjJkiBo3bqy0tDRJl6Y46N69u6ZNm6Y+ffpoyZIlmjp1qrZt26Y2bdpIkqZPn65p06ZpwYIFiouL06RJk/T1119rz549CgwMlCT17t1bubm5mjNnji5cuKDhw4erY8eOWrx4saRLYa5Tp06qW7euZs6cKY/Ho9GjRys0NFRr1qwp9fnl5+crLCxMbrebq1IAUMmy3YW6Y9o6eb73LufrcunLcXcpJizIucZQ5ZX2/duvEnu6woABA3TixAlNnjxZOTk5SkhI0OrVq60Hww8fPiwfn/+7WNalSxctXrxYEydO1IQJE9SiRQt9/PHHVoCSpLFjx+rs2bMaNWqUTp8+ra5du2r16tVWgJKkRYsWacyYMerZs6d8fHz0wAMPaNasWdZ6Hx8fffLJJ/rNb36jbt26KSQkRL1799arr75aCaMCABUv212orLyziosIqbGBIivvrFeAkqRiY3Qor6DGnjMql6NXomo6rkQBqIqWZh7W+OU75TGSj0tK6x+vAZ2aOt1WueNKFOwq7fs3n84DgFok211oBShJ8hhpwvJdNfKh65iwIKX1j5evyyXpUoCa2r8NAQrlxtHbeQCAylXbbnEN6NRU3Vo21KG8AsVGBNfIc4RzCFEAUIvERYTIx6UrbnHFRgQ711QFiwkLIjyhQnA7DwBqEW5xAeWHK1EAUMtwiwsoH4QoAKiFuMUF3Dhu5wEAANhAiAIAALCBEIVqjT8sCgBwCs9EodqqLbMuAwCqJq5EoVqqTbMuAwCqpjKHqFWrVmnkyJEaO3asvvnmG691//73v3X33XeXW3PA1Vxr1mUAACpDmULU4sWLdd999yknJ0cZGRlq3769Fi1aZK0/f/68Pv/883JvEvihy7Muf19Nn3UZAFC1lClEvfzyy3rttde0cuVK/fd//7cWLFigX/7yl3rnnXcqqj+gRMy6DABwWpkeLN+/f7/69u1rff/ggw+qYcOGuu+++3ThwgXdf//95d4gcDXMugwAcFKZQlRoaKhyc3MVFxdnLbvrrru0cuVK3XvvvTp69Gi5NwhcC7MuAwCcUqbbeZ07d9bf/va3K5Z3795dn3zyiWbOnFlefQEAAFRpZQpRv/3tbxUYGFjiuh49euiTTz7RkCFDyqUxAACAqsxljDHXL4Md+fn5CgsLk9vtVmhoqNPtAACAUijt+3eZnony8fGRy+W6Zo3L5dLFixfLslsAAIBqp0wh6s9//vNV12VkZGjWrFnyeDw33BQAAEBVV6YQ1a9fvyuW7du3T+PGjdMnn3yiQYMG6fnnny+35gAAAKoq238779ixY3rkkUcUHx+vixcvaseOHVqwYIGaNWtWnv0BAABUSWUOUW63W88884yaN2+u3bt3Kz09XZ988onatGlTEf0BAABUSWW6nTdjxgxNnz5d0dHRev/990u8vQcAAFAblGmKAx8fHwUFBSk5OVm+vr5XrVu+fHm5NFfdMcUBAADVT4VMcTBkyJDrTnEAAABQG5QpRM2fP7+C2gAAAKhebH86DwAAoDYjRAEAgCop212oTQfzlO0udLqVEpXpdh4AAEBlWJp5WOOX75THSD4uKa1/vAZ0aup0W164EgUAAKqUbHehFaAkyWOkCct3VbkrUoQoAABQpWTlnbUC1GXFxuhQXoEzDV0FIQoAAFQpcREh8vnBjEq+LpdiI4KdaegqCFEAAKBKiQkLUlr/ePn+79yUvi6XpvZvo5iwIIc788aD5QAAoMoZ0KmpurVsqEN5BYqNCK5yAUoiRAEAgCoqJiyoSoany7idBwAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAoBbKdhdq08E8ZbsLnW4FqLb8nG4AAFC5lmYe1vjlO+Uxko9LSusfrwGdmjrdFlDtcCUKAGqRbHehFaAkyWOkCct3cUUKsIEQBQC1SFbeWStAXVZsjA7lFTjTEFCNEaIAoBaJiwiRj8t7ma/LpdiIYGcaAqoxQhQA1CIxYUFK6x8vX9elJOXrcmlq/zaKCQtyuDOg+uHBcgCoZQZ0aqpuLRvqUF6BYiOCCVCATYQoAKiFYsKCCE/ADeJ2HgAAgA1VIkTNnj1bsbGxCgwMVGJiorZs2XLN+mXLlunWW29VYGCg4uPjtWrVKq/1xhhNnjxZMTExCgoKUnJysvbv3+9Vc+rUKQ0aNEihoaEKDw/XiBEjdObMmRKPd+DAAdWrV0/h4eE3dJ4AAKDmcDxELV26VE8++aSmTJmibdu2qV27dkpJSdHx48dLrN+0aZMGDhyoESNGaPv27UpNTVVqaqp27dpl1cyYMUOzZs3SnDlztHnzZoWEhCglJUXnzp2zagYNGqTdu3dr7dq1Wrlypb744guNGjXqiuNduHBBAwcO1J133ln+Jw8AAKotlzHGXL+s4iQmJqpTp0568803JUkej0dNmjTRb37zG40bN+6K+gEDBujs2bNauXKltez2229XQkKC5syZI2OMGjVqpKeeekpPP/20JMntdisqKkrz58/XQw89pL1796p169bKzMxUx44dJUmrV6/WPffco6NHj6pRo0bWvp955hkdO3ZMPXv21BNPPKHTp0+X+tzy8/MVFhYmt9ut0NBQO8MDAAAqWWnfvx29EnX+/Hlt3bpVycnJ1jIfHx8lJycrIyOjxG0yMjK86iUpJSXFqs/KylJOTo5XTVhYmBITE62ajIwMhYeHWwFKkpKTk+Xj46PNmzdby9atW6dly5Zp9uzZpTqfoqIi5efne70AAEDN5GiIysvLU3FxsaKioryWR0VFKScnp8RtcnJyrll/+ev1aiIjI73W+/n5qUGDBlbNyZMnNWzYMM2fP7/UV5HS0tIUFhZmvZo0aVKq7QAAQPXj+DNRVdUjjzyihx9+WN26dSv1NuPHj5fb7bZeR44cqcAOAQCAkxwNUREREfL19VVubq7X8tzcXEVHR5e4TXR09DXrL3+9Xs0PH1y/ePGiTp06ZdWsW7dOr7zyivz8/OTn56cRI0bI7XbLz89P7777bom9BQQEKDQ01OsFAABqJkdDlL+/vzp06KD09HRrmcfjUXp6upKSkkrcJikpyatektauXWvVx8XFKTo62qsmPz9fmzdvtmqSkpJ0+vRpbd261apZt26dPB6PEhMTJV16bmrHjh3W6/nnn1e9evW0Y8cO3X///eUzAAAAoNpyfMbyJ598UkOHDlXHjh3VuXNnzZw5U2fPntXw4cMlSUOGDFHjxo2VlpYmSXr88cfVvXt3vfrqq+rTp4+WLFmir776Sn/4wx8kSS6XS0888YRefPFFtWjRQnFxcZo0aZIaNWqk1NRUSVKrVq3Uq1cvPfLII5ozZ44uXLigMWPG6KGHHrI+mdeqVSuvPr/66iv5+PioTZs2lTQyAACgKnM8RA0YMEAnTpzQ5MmTlZOTo4SEBK1evdp6MPzw4cPy8fm/C2ZdunTR4sWLNXHiRE2YMEEtWrTQxx9/7BVuxo4dq7Nnz2rUqFE6ffq0unbtqtWrVyswMNCqWbRokcaMGaOePXvKx8dHDzzwgGbNmlV5Jw4AAKo1x+eJqsmYJwoAgOqnWswTBQAAUF0RogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIhChct2F2rTwTxluwudbgUAgHLj53QDqNmWZh7W+OU75TGSj0tK6x+vAZ2aOt0WAAA3jCtRqDDZ7kIrQEmSx0gTlu/iihQAoEYgRKHCZOWdtQLUZcXG6FBegTMNAQBQjghRqDBxESHycXkv83W5FBsR7ExDAACUI0IUKkxMWJDS+sfL13UpSfm6XJrav41iwoIc7gwAgBvHg+WoUAM6NVW3lg11KK9AsRHBBCgAQI1BiEKFiwkLIjwBgMOy3YXKyjuruIgQfieXE0IUAAA1HNPNVAyeiQIAoAar6OlmavOEylyJAgCgBrvWdDM3eluvtl/h4koUAAA1WEVNN8OEyoQoAABqtIqaboYJlbmdBwBAjVcR081cvsL1/SBV2yZU5koUAAC1QExYkJJuuancpjdgQmWuRAEAAJtq+4TKhCgAAGBbbZ5Qmdt5AAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABuqRIiaPXu2YmNjFRgYqMTERG3ZsuWa9cuWLdOtt96qwMBAxcfHa9WqVV7rjTGaPHmyYmJiFBQUpOTkZO3fv9+r5tSpUxo0aJBCQ0MVHh6uESNG6MyZM9b6DRs2qF+/foqJiVFISIgSEhK0aNGi8jtpAABQrTkeopYuXaonn3xSU6ZM0bZt29SuXTulpKTo+PHjJdZv2rRJAwcO1IgRI7R9+3alpqYqNTVVu3btsmpmzJihWbNmac6cOdq8ebNCQkKUkpKic+fOWTWDBg3S7t27tXbtWq1cuVJffPGFRo0a5XWctm3b6qOPPtLXX3+t4cOHa8iQIVq5cmXFDQYAAKg2XMYYc/2yipOYmKhOnTrpzTfflCR5PB41adJEv/nNbzRu3Lgr6gcMGKCzZ896hZnbb79dCQkJmjNnjowxatSokZ566ik9/fTTkiS3262oqCjNnz9fDz30kPbu3avWrVsrMzNTHTt2lCStXr1a99xzj44ePapGjRqV2GufPn0UFRWld999t1Tnlp+fr7CwMLndboWGhpZpXAAAgDNK+/7t6JWo8+fPa+vWrUpOTraW+fj4KDk5WRkZGSVuk5GR4VUvSSkpKVZ9VlaWcnJyvGrCwsKUmJho1WRkZCg8PNwKUJKUnJwsHx8fbd68+ar9ut1uNWjQ4Krri4qKlJ+f7/UCAAA1k6MhKi8vT8XFxYqKivJaHhUVpZycnBK3ycnJuWb95a/Xq4mMjPRa7+fnpwYNGlz1uB988IEyMzM1fPjwq55PWlqawsLCrFeTJk2uWgsAAKo3x5+Jqg7Wr1+v4cOHa+7cubrtttuuWjd+/Hi53W7rdeTIkUrsEgAAVCZHQ1RERIR8fX2Vm5vrtTw3N1fR0dElbhMdHX3N+stfr1fzwwfXL168qFOnTl1x3M8//1x9+/bV66+/riFDhlzzfAICAhQaGur1AgAANZOjIcrf318dOnRQenq6tczj8Sg9PV1JSUklbpOUlORVL0lr16616uPi4hQdHe1Vk5+fr82bN1s1SUlJOn36tLZu3WrVrFu3Th6PR4mJidayDRs2qE+fPpo+fbrXJ/cAAABkHLZkyRITEBBg5s+fb/bs2WNGjRplwsPDTU5OjjHGmMGDB5tx48ZZ9Rs3bjR+fn7mlVdeMXv37jVTpkwxderUMTt37rRqpk2bZsLDw81f/vIX8/XXX5t+/fqZuLg4U1hYaNX06tXLtG/f3mzevNl8+eWXpkWLFmbgwIHW+nXr1png4GAzfvx4k52dbb1OnjxZ6nNzu91GknG73TcyRAAAoBKV9v3b8RBljDFvvPGGadq0qfH39zedO3c2f//736113bt3N0OHDvWq/+CDD0zLli2Nv7+/ue2228xf//pXr/Uej8dMmjTJREVFmYCAANOzZ0+zb98+r5qTJ0+agQMHmrp165rQ0FAzfPhw891331nrhw4daiRd8erevXupz4sQBQBA9VPa92/H54mqyZgnCgCA6qdazBMFAABQXRGiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKABAucl2F2rTwTxluwudbgWocH5ONwAAqBmWZh7W+OU75TGSj0tK6x+vAZ2aOt0WUGG4EgUAuGHZ7kIrQEmSx0gTlu/iihRqNEIUAOCGZeWdtQLUZcXG6FBegTMNAZWAEAUAuGFxESHycXkv83W5FBsR7ExDQCUgRAEAblhMWJDS+sfL13UpSfm6XJrav41iwoIc7gyoODxYDgAoFwM6NVW3lg11KK9AsRHBBCjUeIQoAEC5iQkLIjyh1uB2HgAAgA2EKAAAUO1UhYlduZ0HAACqlaoysStXogAAQLVRlSZ2JUQBAIBqoypN7EqIAgAA1UZVmtiVEAUAAKqNqjSxKw+WAwCAaqWqTOxKiAIAANVOVZjYldt5AAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANjA386rQMYYSVJ+fr7DnQAAgNK6/L59+X38aghRFei7776TJDVp0sThTgAAQFl99913CgsLu+p6l7lezIJtHo9Hx44dU7169eRyubzW5efnq0mTJjpy5IhCQ0Md6rBqY4yujzG6Psbo+hij62OMrq2mjY8xRt99950aNWokH5+rP/nElagK5OPjox/96EfXrAkNDa0RP3AViTG6Psbo+hij62OMro8xuraaND7XugJ1GQ+WAwAA2ECIAgAAsIEQ5ZCAgABNmTJFAQEBTrdSZTFG18cYXR9jdH2M0fUxRtdWW8eHB8sBAABs4EoUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEVaDZs2crNjZWgYGBSkxM1JYtW65au3v3bj3wwAOKjY2Vy+XSzJkzK69RB5VljObOnas777xT9evXV/369ZWcnHzN+pqiLGO0fPlydezYUeHh4QoJCVFCQoLee++9SuzWGWUZo+9bsmSJXC6XUlNTK7bBKqAsYzR//ny5XC6vV2BgYCV2W/nK+jN0+vRpjR49WjExMQoICFDLli21atWqSurWGWUZox49elzxM+RyudSnT59K7LgSGFSIJUuWGH9/f/Puu++a3bt3m0ceecSEh4eb3NzcEuu3bNlinn76afP++++b6Oho8/rrr1duww4o6xg9/PDDZvbs2Wb79u1m7969ZtiwYSYsLMwcPXq0kjuvPGUdo/Xr15vly5ebPXv2mAMHDpiZM2caX19fs3r16kruvPKUdYwuy8rKMo0bNzZ33nmn6devX+U065CyjtG8efNMaGioyc7Otl45OTmV3HXlKev4FBUVmY4dO5p77rnHfPnllyYrK8ts2LDB7Nixo5I7rzxlHaOTJ096/fzs2rXL+Pr6mnnz5lVu4xWMEFVBOnfubEaPHm19X1xcbBo1amTS0tKuu22zZs1qRYi6kTEyxpiLFy+aevXqmQULFlRUi4670TEyxpj27dubiRMnVkR7VYKdMbp48aLp0qWL+eMf/2iGDh1a40NUWcdo3rx5JiwsrJK6c15Zx+ett94yN998szl//nxltei4G/1d9Prrr5t69eqZM2fOVFSLjuB2XgU4f/68tm7dquTkZGuZj4+PkpOTlZGR4WBnVUd5jFFBQYEuXLigBg0aVFSbjrrRMTLGKD09Xfv27VO3bt0qslXH2B2j559/XpGRkRoxYkRltOkou2N05swZNWvWTE2aNFG/fv20e/fuymi30tkZnxUrVigpKUmjR49WVFSU2rRpo6lTp6q4uLiy2q5U5fH7+p133tFDDz2kkJCQimrTEYSoCpCXl6fi4mJFRUV5LY+KilJOTo5DXVUt5TFGzzzzjBo1auT1D7smsTtGbrdbdevWlb+/v/r06aM33nhDP/3pTyu6XUfYGaMvv/xS77zzjubOnVsZLTrOzhj9+Mc/1rvvvqu//OUvWrhwoTwej7p06aKjR49WRsuVys74/POf/9SHH36o4uJirVq1SpMmTdKrr76qF198sTJarnQ3+vt6y5Yt2rVrl0aOHFlRLTrGz+kGADumTZumJUuWaMOGDTX+gdeyqlevnnbs2KEzZ84oPT1dTz75pG6++Wb16NHD6dYc991332nw4MGaO3euIiIinG6nykpKSlJSUpL1fZcuXdSqVSu9/fbbeuGFFxzsrGrweDyKjIzUH/7wB/n6+qpDhw7617/+pZdffllTpkxxur0q55133lF8fLw6d+7sdCvljhBVASIiIuTr66vc3Fyv5bm5uYqOjnaoq6rlRsbolVde0bRp0/TZZ5+pbdu2Fdmmo+yOkY+Pj5o3by5JSkhI0N69e5WWllYjQ1RZx+jgwYM6dOiQ+vbtay3zeDySJD8/P+3bt0+33HJLxTZdycrj91GdOnXUvn17HThwoCJadJSd8YmJiVGdOnXk6+trLWvVqpVycnJ0/vx5+fv7V2jPle1GfobOnj2rJUuW6Pnnn6/IFh3D7bwK4O/vrw4dOig9Pd1a5vF4lJ6e7vV/d7WZ3TGaMWOGXnjhBa1evVodO3asjFYdU14/Rx6PR0VFRRXRouPKOka33nqrdu7cqR07dliv++67T3fddZd27NihJk2aVGb7laI8fo6Ki4u1c+dOxcTEVFSbjrEzPnfccYcOHDhgBXBJ+sc//qGYmJgaF6CkG/sZWrZsmYqKivSLX/yiott0htNPttdUS5YsMQEBAWb+/Plmz549ZtSoUSY8PNz6mPDgwYPNuHHjrPqioiKzfft2s337dhMTE2Oefvpps337drN//36nTqHClXWMpk2bZvz9/c2HH37o9dHZ7777zqlTqHBlHaOpU6eaNWvWmIMHD5o9e/aYV155xfj5+Zm5c+c6dQoVrqxj9EO14dN5ZR2j5557znz66afm4MGDZuvWreahhx4ygYGBZvfu3U6dQoUq6/gcPnzY1KtXz4wZM8bs27fPrFy50kRGRpoXX3zRqVOocHb/nXXt2tUMGDCgstutNISoCvTGG2+Ypk2bGn9/f9O5c2fz97//3VrXvXt3M3ToUOv7rKwsI+mKV/fu3Su/8UpUljFq1qxZiWM0ZcqUym+8EpVljP7zP//TNG/e3AQGBpr69eubpKQks2TJEge6rlxlGaMfqg0hypiyjdETTzxh1UZFRZl77rnHbNu2zYGuK09Zf4Y2bdpkEhMTTUBAgLn55pvNSy+9ZC5evFjJXVeuso7RN998YySZNWvWVHKnlcdljDEOXQQDAACotngmCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUANcCwYcOUmprqdBtArUKIAlChhg0bJpfLZb1uuukm9erVS19//bXTrZWL75/b5VfXrl0r7HiHDh2Sy+XSjh07vJb//ve/1/z58yvsuACuRIgCUOF69eql7OxsZWdnKz09XX5+frr33nudbqvczJs3zzq/7OxsrVixosS6CxcuVFgPYWFhCg8Pr7D9A7gSIQpAhQsICFB0dLSio6OVkJCgcePG6ciRIzpx4oTuvvtujRkzxqv+xIkT8vf3t/5qfGxsrF544QUNHDhQISEhaty4sWbPnu21zWuvvab4+HiFhISoSZMm+vWvf60zZ85Y67/99lv17dtX9evXV0hIiG677TatWrVKkvTvf/9bgwYNUsOGDRUUFKQWLVpo3rx5pT6/8PBw6/yio6PVoEED64rR0qVL1b17dwUGBmrRokU6efKkBg4cqMaNGys4OFjx8fF6//33vfbn8Xg0Y8YMNW/eXAEBAWratKleeuklSVJcXJwkqX379nK5XOrRo4ekK2/nFRUV6bHHHlNkZKQCAwPVtWtXZWZmWus3bNggl8ul9PR0dezYUcHBwerSpYv27dtX6vMGajtCFIBKdebMGS1cuFDNmzfXTTfdpJEjR2rx4sUqKiqyahYuXKjGjRvr7rvvtpa9/PLLateunbZv365x48bp8ccf19q1a631Pj4+mjVrlnbv3q0FCxZo3bp1Gjt2rLV+9OjRKioq0hdffKGdO3dq+vTpqlu3riRp0qRJ2rNnj/72t79p7969euuttxQREVEu53u517179yolJUXnzp1Thw4d9Ne//lW7du3SqFGjNHjwYG3ZssXaZvz48Zo2bZrV1+LFixUVFSVJVt1nn32m7OxsLV++vMTjjh07Vh999JEWLFigbdu2qXnz5kpJSdGpU6e86v7zP/9Tr776qr766iv5+fnp//2//1cu5w3UCk7/BWQANdvQoUONr6+vCQkJMSEhIUaSiYmJMVu3bjXGGFNYWGjq169vli5dam3Ttm1b8+yzz1rfN2vWzPTq1ctrvwMGDDC9e/e+6nGXLVtmbrrpJuv7+Ph4r31+X9++fc3w4cNtnZ8kExgYaJ1fSEiI+fOf/2yysrKMJDNz5szr7qNPnz7mqaeeMsYYk5+fbwICAszcuXNLrL283+3bt3stHzp0qOnXr58xxpgzZ86YOnXqmEWLFlnrz58/bxo1amRmzJhhjDFm/fr1RpL57LPPrJq//vWvRpIpLCwsyxAAtRZXogBUuLvuuks7duzQjh07tGXLFqWkpKh379769ttvFRgYqMGDB+vdd9+VJG3btk27du3SsGHDvPaRlJR0xfd79+61vv/ss8/Us2dPNW7cWPXq1dPgwYN18uRJFRQUSJIee+wxvfjii7rjjjs0ZcoUrwfbH330US1ZskQJCQkaO3asNm3aVKbze/31163z27Fjh376059a6zp27OhVW1xcrBdeeEHx8fFq0KCB6tatq08//VSHDx+WJO3du1dFRUXq2bNnmXr4voMHD+rChQu64447rGV16tRR586dvcZMktq2bWv9d0xMjCTp+PHjto8N1CaEKAAVLiQkRM2bN1fz5s3VqVMn/fGPf9TZs2c1d+5cSdLIkSO1du1aHT16VPPmzdPdd9+tZs2alXr/hw4d0r333qu2bdvqo48+0tatW61nps6fP28d45///KcGDx6snTt3qmPHjnrjjTckyQp0v/3tb3Xs2DH17NlTTz/9dKmPHx0dbZ1f8+bNFRIS4nXu3/fyyy/r97//vZ555hmtX79eO3bsUEpKitVnUFBQqY9bHurUqWP9t8vlknTpmSwA10eIAlDpXC6XfHx8VFhYKEmKj49Xx44dNXfuXC1evLjE53L+/ve/X/F9q1atJElbt26Vx+PRq6++qttvv10tW7bUsWPHrthHkyZN9Ktf/UrLly/XU089ZYU4SWrYsKGGDh2qhQsXaubMmfrDH/5Qnqds2bhxo/r166df/OIXateunW6++Wb94x//sNa3aNFCQUFB1kP1P+Tv7y/p0hWtq7nlllvk7++vjRs3WssuXLigzMxMtW7dupzOBICf0w0AqPmKioqUk5Mj6dIn4d58802dOXNGffv2tWpGjhypMWPGKCQkRPfff/8V+9i4caNmzJih1NRUrV27VsuWLdNf//pXSVLz5s114cIFvfHGG+rbt682btyoOXPmeG3/xBNPqHfv3mrZsqX+/e9/a/369VYImzx5sjp06KDbbrtNRUVFWrlypbWuvLVo0UIffvihNm3apPr16+u1115Tbm6uFW4CAwP1zDPPaOzYsfL399cdd9yhEydOaPfu3RoxYoQiIyMVFBSk1atX60c/+pECAwMVFhbmdYyQkBA9+uij+t3vfqcGDRqoadOmmjFjhgoKCjRixIgKOS+gNuJKFIAKt3r1asXExCgmJkaJiYnKzMzUsmXLrI/nS9LAgQPl5+engQMHKjAw8Ip9PPXUU/rqq6/Uvn17vfjii3rttdeUkpIiSWrXrp1ee+01TZ8+XW3atNGiRYuUlpbmtX1xcbFGjx6tVq1aqVevXmrZsqX+67/+S9Klqzvjx49X27Zt1a1bN/n6+mrJkiUVMhYTJ07UT37yE6WkpKhHjx6Kjo6+YqbxSZMm6amnntLkyZPVqlUrDRgwwHpOyc/PT7NmzdLbb7+tRo0aqV+/fiUeZ9q0aXrggQc0ePBg/eQnP9GBAwf06aefqn79+hVyXkBt5DLGGKebAIBDhw7plltuUWZmpn7yk594rYuNjdUTTzyhJ554wpnmAKAE3M4D4KgLFy7o5MmTmjhxom6//fYrAhQAVFXczgPgqI0bNyomJkaZmZlXPMfktKlTp6pu3bolvnr37u10ewAcxu08ALiKU6dOXTHD92VBQUFq3LhxJXcEoCohRAEAANjA7TwAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADf8fKJibZO3A+/QAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOF5JREFUeJzt3XtYFnX+//HXDchBRA4CgoagoqmJhxV1PeQhNbSy1N3NzEzb3L4VZm61qR1W3Uq0k25pVu6GbVb61bTctsxDmddqrafcPK2rJokJKpo3InSL8Pn90Zf7FwEqCPfMDc/Hdd3X5T0z98x7PgLzuj/zmRmHMcYIAADAhnysLgAAAKAiBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAV2z69OlyOByXtazD4dD06dNrtJ5+/fqpX79+tl0fgMtHUAFqkUWLFsnhcLhffn5+atq0qcaNG6fvvvvO6vJsJyEhoVR7RUdH69prr9XKlSurZf35+fmaPn26NmzYUC3rA+oiggpQC/3pT3/SW2+9pVdffVVDhgzR4sWL1bdvX/3www81sr0nnnhCBQUFNbLumtapUye99dZbeuutt/TII4/o2LFjGjFihF599dUrXnd+fr5mzJhBUAGugJ/VBQCofkOGDFFycrIkafz48YqMjNTs2bO1atUq3XrrrdW+PT8/P/n5eeefk6ZNm+qOO+5wv7/zzjuVmJioOXPm6N5777WwMgASPSpAnXDttddKkg4dOlRq+n/+8x/9+te/VkREhAIDA5WcnKxVq1aVWqawsFAzZsxQq1atFBgYqEaNGql3795au3ate5nyxqi4XC79/ve/V1RUlEJCQnTzzTfr6NGjZWobN26cEhISykwvb53p6em67rrrFB0drYCAALVr104LFiyoVFtcSkxMjNq2bavDhw9fdLkTJ07o7rvvVuPGjRUYGKiOHTvqzTffdM/PyMhQVFSUJGnGjBnu00s1PT4HqG288ysQgErJyMiQJIWHh7un7dmzR7169VLTpk01ZcoUBQcH63//9381bNgwvffeexo+fLikHwNDWlqaxo8fr27duik3N1fbtm3Tjh07NGjQoAq3OX78eC1evFi33367evbsqU8//VQ33njjFe3HggULdM011+jmm2+Wn5+f/v73v+v+++9XcXGxUlNTr2jdJQoLC5WZmalGjRpVuExBQYH69eungwcPasKECWrevLmWLVumcePG6cyZM3rwwQcVFRWlBQsW6L777tPw4cM1YsQISVKHDh2qpU6gzjAAao309HQjyaxbt86cPHnSZGZmmuXLl5uoqCgTEBBgMjMz3csOGDDAJCUlmR9++ME9rbi42PTs2dO0atXKPa1jx47mxhtvvOh2p02bZn7652Tnzp1Gkrn//vtLLXf77bcbSWbatGnuaWPHjjXx8fGXXKcxxuTn55dZLiUlxbRo0aLUtL59+5q+fftetGZjjImPjzfXX3+9OXnypDl58qT597//bW677TYjyTzwwAMVrm/u3LlGklm8eLF72vnz502PHj1MgwYNTG5urjHGmJMnT5bZXwCVw6kfoBYaOHCgoqKiFBcXp1//+tcKDg7WqlWrdNVVV0mSTp8+rU8//VS33nqrzp49q5ycHOXk5OjUqVNKSUnRgQMH3FcJhYWFac+ePTpw4MBlb/+jjz6SJE2cOLHU9EmTJl3RfgUFBbn/7XQ6lZOTo759++qbb76R0+ms0jrXrFmjqKgoRUVFqWPHjlq2bJnGjBmj2bNnV/iZjz76SDExMRo1apR7Wr169TRx4kTl5eXp888/r1ItAMqqNUFl48aNGjp0qJo0aSKHw6H333+/RreXlpamrl27KiQkRNHR0Ro2bJj279/vnn/69Gk98MADuvrqqxUUFKRmzZpp4sSJVf5jClTG/PnztXbtWi1fvlw33HCDcnJyFBAQ4J5/8OBBGWP05JNPug/SJa9p06ZJ+nEMhvTjFURnzpxR69atlZSUpD/84Q/6+uuvL7r9b7/9Vj4+PmrZsmWp6VdfffUV7demTZs0cOBABQcHKywsTFFRUXrsscckqcq/W927d9fatWu1bt06bd68WTk5Ofrb3/5WKhT93LfffqtWrVrJx6f0n9C2bdu65wOoHrVmjMq5c+fUsWNH/fa3v3WfC65Jn3/+uVJTU9W1a1dduHBBjz32mK6//nrt3btXwcHBOnbsmI4dO6bnn39e7dq107fffqt7771Xx44d0/Lly2u8PtRt3bp1c1/1M2zYMPXu3Vu333679u/frwYNGqi4uFiS9MgjjyglJaXcdSQmJkqS+vTpo0OHDumDDz7QmjVr9Je//EVz5szRq6++qvHjx19xrRXdKK6oqKjU+0OHDmnAgAFq06aNXnzxRcXFxcnf318fffSR5syZ496nyoqMjNTAgQOr9FkANa/WBJUhQ4ZoyJAhFc53uVx6/PHH9e677+rMmTNq3769Zs+eXeW7Ta5evbrU+0WLFik6Olrbt29Xnz591L59e7333nvu+S1bttQzzzyjO+64QxcuXPDaSznhfXx9fZWWlqb+/ftr3rx5mjJlilq0aCHpx9MVl3OQjoiI0F133aW77rpLeXl56tOnj6ZPn15hUImPj1dxcbEOHTpUqhflp72OJcLDw3XmzJky03/eK/H3v/9dLpdLq1atUrNmzdzTP/vss0vWX93i4+P19ddfq7i4uFSvyn/+8x/3fKniEAbg8tWaUz+XMmHCBH3xxRdasmSJvv76a/3mN7/R4MGDK3Xe/WJKup0jIiIuukzDhg0JKfC4fv36qVu3bpo7d65++OEHRUdHq1+/fnrttdeUlZVVZvmTJ0+6/33q1KlS8xo0aKDExES5XK4Kt1fypeGll14qNX3u3Llllm3ZsqWcTmep00lZWVll7g7r6+srSTLGuKc5nU6lp6dXWEdNueGGG5Sdna2lS5e6p124cEEvv/yyGjRooL59+0qS6tevL0nlBjEAl6dOHDGPHDmi9PR0HTlyRE2aNJH0Y5f36tWrlZ6erpkzZ17R+ouLizVp0iT16tVL7du3L3eZnJwcPfXUU7rnnnuuaFtAVf3hD3/Qb37zGy1atEj33nuv5s+fr969eyspKUm/+93v1KJFCx0/flxffPGFjh49qn//+9+SpHbt2qlfv37q0qWLIiIitG3bNi1fvlwTJkyocFudOnXSqFGj9Morr8jpdKpnz55av369Dh48WGbZ2267TZMnT9bw4cM1ceJE5efna8GCBWrdurV27NjhXu7666+Xv7+/hg4dqv/5n/9RXl6eFi5cqOjo6HLDVk2655579Nprr2ncuHHavn27EhIStHz5cm3atElz585VSEiIpB8H/7Zr105Lly5V69atFRERofbt21f4dwJAOay+7KgmSDIrV650v//www+NJBMcHFzq5efnZ2699VZjjDH79u0zki76mjx5crnbu/fee018fHypSz9/yul0mm7dupnBgweb8+fPV/v+AiVKLk/eunVrmXlFRUWmZcuWpmXLlubChQvGGGMOHTpk7rzzThMTE2Pq1atnmjZtam666SazfPly9+eefvpp061bNxMWFmaCgoJMmzZtzDPPPFPqZ7m8S4kLCgrMxIkTTaNGjUxwcLAZOnSoyczMLPdy3TVr1pj27dsbf39/c/XVV5vFixeXu85Vq1aZDh06mMDAQJOQkGBmz55t3njjDSPJHD582L1cZS5PvtSl1xWt7/jx4+auu+4ykZGRxt/f3yQlJZn09PQyn928ebPp0qWL8ff351JloAocxvykH7WWcDgcWrlypYYNGyZJWrp0qUaPHq09e/a4u49LNGjQQDExMTp//ry++eabi663UaNG7jtNlpgwYYI++OADbdy4Uc2bNy/zmbNnzyolJUX169fXhx9+qMDAwCvbOQAA6pA6ceqnc+fOKioq0okTJ9y3Ev85f39/tWnT5rLXaYzRAw88oJUrV2rDhg3lhpTc3FylpKQoICBAq1atIqQAAFBJtSao5OXllTr/ffjwYe3cuVMRERFq3bq1Ro8erTvvvFMvvPCCOnfurJMnT2r9+vXq0KFDlW7rnZqaqnfeeUcffPCBQkJClJ2dLUkKDQ1VUFCQcnNzdf311ys/P1+LFy9Wbm6ucnNzJUlRUVFlenYAAEBZtebUz4YNG9S/f/8y08eOHatFixapsLBQTz/9tP72t7/pu+++U2RkpH75y19qxowZSkpKqvT2KrrsMD09XePGjauwHunHEFXeQ9gAAEBptSaoAACA2qfO3EcFAAB4H4IKAACwLa8eTFtcXKxjx44pJCSEW1UDAOAljDE6e/asmjRpUubhnj/n1UHl2LFjiouLs7oMAABQBZmZmbrqqqsuuozlQeW7777T5MmT9fHHHys/P1+JiYlKT093P/n1YkpuU52ZmamGDRvWdKkAAKAa5ObmKi4uzn0cvxhLg8r333+vXr16qX///vr4448VFRWlAwcOKDw8/LI+X3K6p2HDhgQVAAC8zOUM27A0qMyePVtxcXGlnn5a3h1eAQBA3WTpVT+rVq1ScnKyfvOb3yg6OlqdO3fWwoULrSwJAADYiKVB5ZtvvtGCBQvUqlUrffLJJ7rvvvs0ceJEvfnmm+Uu73K53Lei/+kt6QEAQO1k6Z1p/f39lZycrM2bN7unTZw4UVu3btUXX3xRZvnp06drxowZZaY7nc6LjlEpKipSYWFh9RTtxerVq8czhgAAlsvNzVVoaOglj9+SxWNUYmNj1a5du1LT2rZtq/fee6/c5adOnaqHHnrI/b5k1HBFjDHKzs7WmTNnqqXe2iAsLEwxMTHcdwYA4BUsDSq9evXS/v37S03773//q/j4+HKXDwgIUEBAwGWvvySkREdHq379+nX64GyMUX5+vk6cOCHpx5AIAIDdWRpUfv/736tnz56aOXOmbr31Vm3ZskWvv/66Xn/99Sted1FRkTukNGrUqBqq9X5BQUGSpBMnTig6OprTQAAA27N0MG3Xrl21cuVKvfvuu2rfvr2eeuopzZ07V6NHj77idZeMSalfv/4Vr6s2KWkPxuwAALyB5Xemvemmm3TTTTfV2Prr8ume8tAeAABvwtOTAQCAbRFUAACAbRFUbCozM1O//e1v1aRJE/n7+ys+Pl4PPvigTp06JenHMSaTJ09WUlKSgoOD1aRJE9155506duyYxZUDQN2V5SzQ5kM5ynIWWF1KrUFQsaFvvvlGycnJOnDggN59910dPHhQr776qtavX68ePXro9OnTys/P144dO/Tkk09qx44dWrFihfbv36+bb77Z6vIBoE5auvWIes36VLcv/Jd6zfpUS7cesbqkWsHywbQoKzU1Vf7+/lqzZo37kuJmzZqpc+fOatmypR5//HEtWLBAa9euLfW5efPmqVu3bjpy5IiaNWtmRekAUCdlOQs0dcUuFf/fvd6LjfTYit3q0zpKsaFB1hbn5ehRuUye6s47ffq0PvnkE91///3ukFIiJiZGo0eP1tKlS1Xekw+cTqccDofCwsJqtEYAQGmHc865Q0qJImOUkZNvTUG1CD0ql2Hp1iPupOzjkNJGJGlk15rpsThw4ICMMWrbtm2589u2bavvv/9eJ0+eVHR0tHv6Dz/8oMmTJ2vUqFGXfG4CAKB6NY8Mlo9DpcKKr8OhhEju5XWl6FG5hIq682q6Z6Uyz4osLCzUrbfeKmOMFixYUINVAQDKExsapLQRSfL9v3tV+TocmjmiPad9qgE9Kpdwse68mvgBTExMlMPh0L59+zR8+PAy8/ft26fw8HBFRUVJ+v8h5dtvv9Wnn35KbwoAWGRk12bq0zpKGTn5SoisT0ipJvSoXEJJd95P1WR3XqNGjTRo0CC98sorKigo3WuTnZ2tt99+WyNHjpTD4XCHlAMHDmjdunU80wgALBYbGqQeLRsRUqoRQeUSrOjOmzdvnlwul1JSUrRx40ZlZmZq9erVGjRokJo2bapnnnlGhYWF+vWvf61t27bp7bffVlFRkbKzs5Wdna3z58/XWG0AAHgSp34ug6e781q1aqVt27Zp2rRpuvXWW3X69GnFxMRo2LBhmjZtmiIiIpSRkaFVq1ZJkjp16lTq85999pn69etXozUCAOAJBJXLFBsa5NGuvPj4eC1atKjC+QkJCZUacAsAgDfi1A8AALAtggoAALAtggoAALAtggoAALCtWh9UGHBaGu0BAPAmtTao1KtXT5KUn88DoX6qpD1K2gcAADurtZcn+/r6KiwsTCdOnJAk1a9fXw6H4xKfqr2MMcrPz9eJEycUFhYmX19fq0sCAOCSam1QkaSYmBhJcocVSGFhYe52AQDA7mp1UHE4HIqNjVV0dLQKCwutLsdy9erVoycFAOBVanVQKeHr68sBGgAAL1RrB9MCAADvR1ABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2ZWlQmT59uhwOR6lXmzZtrCwJAADYiJ/VBVxzzTVat26d+72fn+UlAQAAm7A8Ffj5+SkmJsbqMgAAgA1ZPkblwIEDatKkiVq0aKHRo0fryJEjFS7rcrmUm5tb6gUAAGovS4NK9+7dtWjRIq1evVoLFizQ4cOHde211+rs2bPlLp+WlqbQ0FD3Ky4uzsMVAwAAT3IYY4zVRZQ4c+aM4uPj9eKLL+ruu+8uM9/lcsnlcrnf5+bmKi4uTk6nUw0bNvRkqQAAoIpyc3MVGhp6Wcdvy8eo/FRYWJhat26tgwcPljs/ICBAAQEBHq4KAABYxfIxKj+Vl5enQ4cOKTY21upSAACADVgaVB555BF9/vnnysjI0ObNmzV8+HD5+vpq1KhRVpYFAABswtJTP0ePHtWoUaN06tQpRUVFqXfv3vryyy8VFRVlZVkAAMAmLA0qS5YssXLzAADA5mw1RgUAAOCnCCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2bBNUZs2aJYfDoUmTJlldCgAAsAlbBJWtW7fqtddeU4cOHawuBQAA2IjlQSUvL0+jR4/WwoULFR4ebnU5AADARiwPKqmpqbrxxhs1cODASy7rcrmUm5tb6gUAAGovPys3vmTJEu3YsUNbt269rOXT0tI0Y8aMGq4KAADYhWU9KpmZmXrwwQf19ttvKzAw8LI+M3XqVDmdTvcrMzOzhqsEAABWchhjjBUbfv/99zV8+HD5+vq6pxUVFcnhcMjHx0cul6vUvPLk5uYqNDRUTqdTDRs2rOmSAQBANajM8duyUz8DBgzQrl27Sk2766671KZNG02ePPmSIQUAANR+lgWVkJAQtW/fvtS04OBgNWrUqMx0AABQN1l+1Q8AAEBFLL3q5+c2bNhgdQkAAMBG6FEBAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVAB4DFZzgJtPpSjLGeB1aUA8BJ+VhcAoG5YuvWIpq7YpWIj+TiktBFJGtm1mdVlAbA5elQA1LgsZ4E7pEhSsZEeW7GbnhUAl0RQAVDjDuecc4eUEkXGKCMn35qCAHgNggqAGtc8Mlg+jtLTfB0OJUTWt6YgAF6DoAKgxsWGBiltRJJ8HT+mFV+HQzNHtFdsaJDFlQGwOwbTAvCIkV2bqU/rKGXk5Cshsj4hBcBlIajgorKcBTqcc07NI4M5sOCKxYYG8XMEoFIIKqgQl5MCAKzGGBWUi8tJAQB2QFBBubicFABgBwQVlIvLSQEAdkBQQbm4nBQAYAcMpkWFuJwUAGA1ggouistJAQBW4tQPAACwLYIKAI/JchZo86EcLnMHKqku/+5w6geAR3ADQaBq6vrvDj0qAGocNxAEqobfHYIKAA/gBoJA1fC7Q1AB4AHcQBCoGn53CCoAPIAbCAJVw++O5DDGmEsvZk+5ubkKDQ2V0+lUw4YNrS4HwCVkOQu4gSBQBbXtd6cyx2+u+gHgMdxAEKiauvy7w6kfAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgW1UKKkePHlVeXl6Z6YWFhdq4ceNlr2fBggXq0KGDGjZsqIYNG6pHjx76+OOPq1ISAACohSoVVLKystStWzfFx8crLCxMd955Z6nAcvr0afXv3/+y13fVVVdp1qxZ2r59u7Zt26brrrtOt9xyi/bs2VOZsqC6/WRNAEDtVakbvo0dO1b79+/XvHnzdObMGU2ZMkUOh0Nr1qxReHi4jh8/rtjYWBUXF1e5oIiICD333HO6++67L7ksN3z7UV1/siYAwLtU5vhdqR6VdevW6aWXXlJycrIGDhyoTZs2KTY2Vtddd51Onz4tSXI4HJdYS/mKioq0ZMkSnTt3Tj169Ch3GZfLpdzc3FKvuo4nawIAarNKBRWn06nw8HD3+4CAAK1YsUIJCQnq37+/Tpw4UekCdu3apQYNGiggIED33nuvVq5cqXbt2pW7bFpamkJDQ92vuLi4Sm+vtuHJmgCA2qxSQaVFixb6+uuvS03z8/PTsmXL1KJFC910002VLuDqq6/Wzp079a9//Uv33Xefxo4dq71795a77NSpU+V0Ot2vzMzMSm+vtuHJmgCA2qxSQWXIkCF6/fXXy0wvCSudOnWqdAH+/v5KTExUly5dlJaWpo4dO+rPf/5zucsGBAS4rxAqedV1PFkTAFCbVeqhhM8884zy8///KYWcnBxJUmRkpPz8/PTee+/pu+++u6KCiouL5XK5rmgddc3Irs3Up3VUrXqyJgAAUiV7VPz8/FRcXKzU1FRFRkaqcePGaty4sSIjIzVhwgTl5eUpPj7+stc3depUbdy4URkZGdq1a5emTp2qDRs2aPTo0ZXekbouNjRIPVo2IqQAAGqVSvWonD59Wj169NB3332n0aNHq23btpKkvXv3atGiRVq/fr02b95casDtxZw4cUJ33nmnsrKyFBoaqg4dOuiTTz7RoEGDKr8nADwiy1mgwznn1DwymGAMoMZV6j4qkyZN0vr167Vu3To1bty41Lzs7Gxdf/31GjBggObMmVPthZaH+6gAnsU9ey4fgQ6oWI3dR+X999/X888/XyakSFJMTIyeffZZrVy5snLVAvAK3LPn8i3dekS9Zn2q2xf+S71mfaqlW49YXRLgtSp9C/1rrrmmwvnt27dXdnb2FRcFwH64Z8/lIdAB1atSQSUyMlIZGRkVzj98+LAiIiKutCYANsQ9ey4PgQ6oXpUKKikpKXr88cd1/vz5MvNcLpeefPJJDR48uNqKA2Af3LPn8tR0oOMBpKhrKjWY9ujRo0pOTlZAQIBSU1PVpk0bGWO0b98+vfLKK3K5XNq2bZvHbm3PYFrA87KcBdyz5xKWbj2ix1bsVpEx7kBXHYOOGcyM2qIyx+9KBRXpx9M7999/v9asWaOSjzocDg0aNEjz5s1TYmJi1SuvJIIKALuq7kCX5SxQr1mfljqt5Otw6J9T+hMY4XUqc/yu1H1UJKl58+b6+OOP9f333+vAgQOSpMTERMamAMBPxIYGVWuAuNjYF4IKarNKB5US4eHh6tatW3XWAgCoQMnYl5/3qDCYGbVdpQbTAgCswWBm1FVV7lEBAHgWDyBFXURQAQAvUt1jXwC749QPAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLYIKAACwLUuDSlpamrp27aqQkBBFR0dr2LBh2r9/v5UlAQAAG7E0qHz++edKTU3Vl19+qbVr16qwsFDXX3+9zp07Z2VZAADAJhzGGGN1ESVOnjyp6Ohoff755+rTp88ll8/NzVVoaKicTqcaNmzogQoBAMCVqszx289DNV0Wp9MpSYqIiCh3vsvlksvlcr/Pzc31SF0AAMAathlMW1xcrEmTJqlXr15q3759ucukpaUpNDTU/YqLi/NwlQAAwJNsc+rnvvvu08cff6x//vOfuuqqq8pdprwelbi4OE79AADgRbzu1M+ECRP04YcfauPGjRWGFEkKCAhQQECABysDAABWsjSoGGP0wAMPaOXKldqwYYOaN29uZTkAAMBmLA0qqampeuedd/TBBx8oJCRE2dnZkqTQ0FAFBQVZWRoAALABS8eoOByOcqenp6dr3Lhxl/w8lycDAOB9vGaMik3G8QIAAJuyzeXJAIC6J8tZoM2HcpTlLLC6FNiULa76AYAsZ4EO55xT88hgxYYyRq0uWLr1iKau2KViI/k4pLQRSRrZtZnVZcFmCCoALMcBq+7Jcha4/88lqdhIj63YrT6towiqKIVTP6hT6Ga2n4oOWPwf1W6Hc865/89LFBmjjJx8awqCbdGjgjqDb+32dLEDFt+sa6/mkcHycajU/72vw6GEyPrWFQVbokcFdQLf2u2r5ID1Uxywar/Y0CCljUiS7//dpsLX4dDMEe0JpyiDHhXUCXxrt6+SA9ZjK3aryBgOWF6oqgOhR3Ztpj6to5SRk6+EyPr8n6NcBBXUCXQz2xsHLO91padUY0OD+P/GRXHqB3UC3cz2FxsapB4tG/F/4kU4per9vOECA3pUUGfwrR2oXpxS9W7ecoEBPSqoU/jWDlQfBkJ7L2/qDSOoAACqhFOq3sub7mPDqR8AQJVxStU7edMFBvSoAACuCKdUvY839YbRowIAQB3kLb1hBBUAAOoob7iPDad+AACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAABAubKcBdp8KMfSpypzZ1oAAFDG0q1HNHXFLhUbycchpY1I0siuzTxeBz0qAACglCxngTukSD8+ZfmxFbst6VkhqAAAgFIO55xzh5QSRcYoIyff47UQVAAAQCnNI4Pl4yg9zdfhUEJkfY/XQlABAAClxIYGKW1EknwdP6YVX4dDM0e0t+RJywymBQAAZYzs2kx9WkcpIydfCZH1LQkpEkEFAABUIDY0yLKAUoJTPwAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYsDSobN27U0KFD1aRJEzkcDr3//vtWlgMAAGzG0qBy7tw5dezYUfPnz7eyDAAAYFN+Vm58yJAhGjJkiJUlAAAAG7M0qFSWy+WSy+Vyv8/NzbWwGgAAUNO8ajBtWlqaQkND3a+4uDirSwIAADXIq4LK1KlT5XQ63a/MzEyrSwIAADXIq079BAQEKCAgwOoyAACAh3hVjwoAAKhbLO1RycvL08GDB93vDx8+rJ07dyoiIkLNmjWzsDIAAGAHlgaVbdu2qX///u73Dz30kCRp7NixWrRokUVVAQAAu7A0qPTr10/GGCtLAAAANsYYFQAAYFsEFQAAYFsEFQCoAVnOAm0+lKMsZ4HVpQBezavuowIA3mDp1iOaumKXio3k45DSRiRpZFeuZASqgh4VAKhGWc4Cd0iRpGIjPbZiNz0rQBURVACgGh3OOecOKSWKjFFGTr41BQFejqACANWoeWSwfBylp/k6HEqIrG9NQYCXI6gAQDWKDQ1S2ogk+Tp+TCu+Dodmjmiv2NAgiysDvBODaQHYQpazQIdzzql5ZLDXH9RHdm2mPq2jlJGTr4TI+l6/P4CVCCoALFcbr5KJDQ0ioADVgFM/ACzFVTIALoagAsBSXCUD4GIIKgAsxVUyAC6GoALAUlwlA+BiGEwLwHJcJQOgIgQVALbAVTIAysOpHwCAbfEUatCjAgCwpdp4fx1UHj0qAADb4f46KEFQAQDYDvfXQQmCCgDAdri/DkoQVAAAtsP9dVCCwbQAAFvi/jqQCCoAABvj/jrg1A8AALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtgkoFspwF2nwoR1nOAqtLAQCgzvKzugA7Wrr1iKau2KViI/k4pLQRSRrZtZnVZQGoQJazQIdzzql5ZLBiQ4OsLgdANSKo/EyWs8AdUiSp2EiPrditPq2j+AMI2BBfLIDajVM/P3M455w7pJQoMkYZOfnWFASgQhV9seCULVB7EFR+pnlksHwcpaf5OhxKiKxvTUEAKsQXC6D2s0VQmT9/vhISEhQYGKju3btry5YtltUSGxqktBFJ8nX8mFZ8HQ7NHNGe0z6ADfHFAqj9LB+jsnTpUj300EN69dVX1b17d82dO1cpKSnav3+/oqOjLalpZNdm6tM6Shk5+UqIrE9IAWyq5IvFYyt2q8gYvlgAtZDDGGMuvVjN6d69u7p27ap58+ZJkoqLixUXF6cHHnhAU6ZMuehnc3NzFRoaKqfTqYYNG3qiXAA2lOUs4IsF4EUqc/y2tEfl/Pnz2r59u6ZOneqe5uPjo4EDB+qLL74os7zL5ZLL5XK/z83N9UidAOwtNjSIgALUUpaOUcnJyVFRUZEaN25canrjxo2VnZ1dZvm0tDSFhoa6X3FxcZ4qFQAAWMAWg2kv19SpU+V0Ot2vzMxMq0sCAAA1yNJTP5GRkfL19dXx48dLTT9+/LhiYmLKLB8QEKCAgABPlQcAACxmaY+Kv7+/unTpovXr17unFRcXa/369erRo4eFlQEAADuw/PLkhx56SGPHjlVycrK6deumuXPn6ty5c7rrrrusLg0AAFjM8qAycuRInTx5Un/84x+VnZ2tTp06afXq1WUG2AIAgLrH8vuoXAnuowIAgPepzPHbq676AQAAdQtBBQAA2BZBBQAA2BZBBQAA2JblV/1ciZJxwDzzBwAA71Fy3L6c63m8OqicPXtWknjmDwAAXujs2bMKDQ296DJefXlycXGxjh07ppCQEDkcjjLzc3NzFRcXp8zMTC5frgBtdGm00aXRRhdH+1wabXRptamNjDE6e/asmjRpIh+fi49C8eoeFR8fH1111VWXXK5hw4Ze/59a02ijS6ONLo02ujja59Joo0urLW10qZ6UEgymBQAAtkVQAQAAtlWrg0pAQICmTZumgIAAq0uxLdro0mijS6ONLo72uTTa6NLqaht59WBaAABQu9XqHhUAAODdCCoAAMC2CCoAAMC2CCoAAMC2vD6ozJ8/XwkJCQoMDFT37t21ZcuWCpfds2ePfvWrXykhIUEOh0Nz5871XKEWqkwbLVy4UNdee63Cw8MVHh6ugQMHXnT52qIybbRixQolJycrLCxMwcHB6tSpk9566y0PVut5lWmfn1qyZIkcDoeGDRtWswXaQGXaaNGiRXI4HKVegYGBHqzWGpX9OTpz5oxSU1MVGxurgIAAtW7dWh999JGHqrVGZdqoX79+ZX6OHA6HbrzxRg9W7AHGiy1ZssT4+/ubN954w+zZs8f87ne/M2FhYeb48ePlLr9lyxbzyCOPmHfffdfExMSYOXPmeLZgC1S2jW6//XYzf/5889VXX5l9+/aZcePGmdDQUHP06FEPV+45lW2jzz77zKxYscLs3bvXHDx40MydO9f4+vqa1atXe7hyz6hs+5Q4fPiwadq0qbn22mvNLbfc4pliLVLZNkpPTzcNGzY0WVlZ7ld2draHq/asyraRy+UyycnJ5oYbbjD//Oc/zeHDh82GDRvMzp07PVy551S2jU6dOlXqZ2j37t3G19fXpKene7bwGubVQaVbt24mNTXV/b6oqMg0adLEpKWlXfKz8fHxdSKoXEkbGWPMhQsXTEhIiHnzzTdrqkTLXWkbGWNM586dzRNPPFET5VmuKu1z4cIF07NnT/OXv/zFjB07ttYHlcq2UXp6ugkNDfVQdfZQ2TZasGCBadGihTl//rynSrTclf4tmjNnjgkJCTF5eXk1VaIlvPbUz/nz57V9+3YNHDjQPc3Hx0cDBw7UF198YWFl9lEdbZSfn6/CwkJFRETUVJmWutI2MsZo/fr12r9/v/r06VOTpVqiqu3zpz/9SdHR0br77rs9UaalqtpGeXl5io+PV1xcnG655Rbt2bPHE+VaoipttGrVKvXo0UOpqalq3Lix2rdvr5kzZ6qoqMhTZXtUdfy9/utf/6rbbrtNwcHBNVWmJbw2qOTk5KioqEiNGzcuNb1x48bKzs62qCp7qY42mjx5spo0aVLql6c2qWobOZ1ONWjQQP7+/rrxxhv18ssva9CgQTVdrsdVpX3++c9/6q9//asWLlzoiRItV5U2uvrqq/XGG2/ogw8+0OLFi1VcXKyePXvq6NGjnijZ46rSRt98842WL1+uoqIiffTRR3ryySf1wgsv6Omnn/ZEyR53pX+vt2zZot27d2v8+PE1VaJlvPrpyahZs2bN0pIlS7Rhw4Y6MdCvMkJCQrRz507l5eVp/fr1euihh9SiRQv169fP6tIsdfbsWY0ZM0YLFy5UZGSk1eXYVo8ePdSjRw/3+549e6pt27Z67bXX9NRTT1lYmX0UFxcrOjpar7/+unx9fdWlSxd99913eu655zRt2jSry7Odv/71r0pKSlK3bt2sLqXaeW1QiYyMlK+vr44fP15q+vHjxxUTE2NRVfZyJW30/PPPa9asWVq3bp06dOhQk2Vaqqpt5OPjo8TERElSp06dtG/fPqWlpdW6oFLZ9jl06JAyMjI0dOhQ97Ti4mJJkp+fn/bv36+WLVvWbNEeVh1/i+rVq6fOnTvr4MGDNVGi5arSRrGxsapXr558fX3d09q2bavs7GydP39e/v7+NVqzp13Jz9G5c+e0ZMkS/elPf6rJEi3jtad+/P391aVLF61fv949rbi4WOvXry/1TaUuq2obPfvss3rqqae0evVqJScne6JUy1TXz1FxcbFcLldNlGipyrZPmzZttGvXLu3cudP9uvnmm9W/f3/t3LlTcXFxnizfI6rjZ6ioqEi7du1SbGxsTZVpqaq0Ua9evXTw4EF30JWk//73v4qNja11IUW6sp+jZcuWyeVy6Y477qjpMq1h9WjeK7FkyRITEBBgFi1aZPbu3WvuueceExYW5r7Mb8yYMWbKlCnu5V0ul/nqq6/MV199ZWJjY80jjzxivvrqK3PgwAGrdqHGVbaNZs2aZfz9/c3y5ctLXfZ29uxZq3ahxlW2jWbOnGnWrFljDh06ZPbu3Wuef/554+fnZxYuXGjVLtSoyrbPz9WFq34q20YzZswwn3zyiTl06JDZvn27ue2220xgYKDZs2ePVbtQ4yrbRkeOHDEhISFmwoQJZv/+/ebDDz800dHR5umnn7ZqF2pcVX/XevfubUaOHOnpcj3Gq4OKMca8/PLLplmzZsbf399069bNfPnll+55ffv2NWPHjnW/P3z4sJFU5tW3b1/PF+5BlWmj+Pj4ctto2rRpni/cgyrTRo8//rhJTEw0gYGBJjw83PTo0cMsWbLEgqo9pzLt83N1IagYU7k2mjRpknvZxo0bmxtuuMHs2LHDgqo9q7I/R5s3bzbdu3c3AQEBpkWLFuaZZ54xFy5c8HDVnlXZNvrPf/5jJJk1a9Z4uFLPcRhjjEWdOQAAABfltWNUAABA7UdQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAYDLMG7cOA0bNszqMoA6h6ACeLlx48bJ4XC4X40aNdLgwYP19ddfW11atfjpvpW8evfuXWPby8jIkMPh0M6dO0tN//Of/6xFixbV2HYBlI+gAtQCgwcPVlZWlrKysrR+/Xr5+fnppptusrqsapOenu7ev6ysLK1atarc5QoLC2ushtDQUIWFhdXY+gGUj6AC1AIBAQGKiYlRTEyMOnXqpClTpigzM1MnT57UddddpwkTJpRa/uTJk/L393c/qTUhIUFPPfWURo0apeDgYDVt2lTz588v9ZkXX3xRSUlJCg4OVlxcnO6//37l5eW553/77bcaOnSowsPDFRwcrGuuuUYfffSRJOn777/X6NGjFRUVpaCgILVq1Urp6emXvX9hYWHu/YuJiVFERIS752Pp0qXq27evAgMD9fbbb+vUqVMaNWqUmjZtqvr16yspKUnvvvtuqfUVFxfr2WefVWJiogICAtSsWTM988wzkqTmzZtLkjp37iyHw6F+/fpJKnvqx+VyaeLEiYqOjlZgYKB69+6trVu3uudv2LBBDodD69evV3JysurXr6+ePXtq//79l73fAAgqQK2Tl5enxYsXKzExUY0aNdL48eP1zjvvyOVyuZdZvHixmjZtquuuu8497bnnnlPHjh311VdfacqUKXrwwQe1du1a93wfHx+99NJL2rNnj9588019+umnevTRR93zU1NT5XK5tHHjRu3atUuzZ89WgwYNJElPPvmk9u7dq48//lj79u3TggULFBkZWS37W1Lrvn37lJKSoh9++EFdunTRP/7xD+3evVv33HOPxowZoy1btrg/M3XqVM2aNctd1zvvvKPGjRtLknu5devWKSsrSytWrCh3u48++qjee+89vfnmm9qxY4cSExOVkpKi06dPl1ru8ccf1wsvvKBt27bJz89Pv/3tb6tlv4E6w+qnIgK4MmPHjjW+vr4mODjYBAcHG0kmNjbWbN++3RhjTEFBgQkPDzdLly51f6ZDhw5m+vTp7vfx8fFm8ODBpdY7cuRIM2TIkAq3u2zZMtOoUSP3+6SkpFLr/KmhQ4eau+66q0r7J8kEBga69y84ONisXLnS/TT0uXPnXnIdN954o3n44YeNMcbk5uaagIAAs3DhwnKXLVnvV199VWr6T58CnZeXZ+rVq2fefvtt9/zz58+bJk2amGeffdYYY8xnn31mJJl169a5l/nHP/5hJJmCgoLKNAFQp9GjAtQC/fv3186dO7Vz505t2bJFKSkpGjJkiL799lsFBgZqzJgxeuONNyRJO3bs0O7duzVu3LhS6+jRo0eZ9/v27XO/X7dunQYMGKCmTZsqJCREY8aM0alTp5Sfny9Jmjhxop5++mn16tVL06ZNKzWY97777tOSJUvUqVMnPfroo9q8eXOl9m/OnDnu/du5c6cGDRrknpecnFxq2aKiIj311FNKSkpSRESEGjRooE8++URHjhyRJO3bt08ul0sDBgyoVA0/dejQIRUWFqpXr17uafXq1VO3bt1KtZkkdejQwf3v2NhYSdKJEyeqvG2griGoALVAcHCwEhMTlZiYqK5du+ovf/mLzp07p4ULF0qSxo8fr7Vr1+ro0aNKT0/Xddddp/j4+Mtef0ZGhm666SZ16NBB7733nrZv3+4ew3L+/Hn3Nr755huNGTNGu3btUnJysl5++WVJcoem3//+9zp27JgGDBigRx555LK3HxMT496/xMREBQcHl9r3n3ruuef05z//WZMnT9Znn32mnTt3KiUlxV1nUFDQZW+3OtSrV8/9b4fDIenHMTIALg9BBaiFHA6HfHx8VFBQIElKSkpScnKyFi5cqHfeeafccRJffvllmfdt27aVJG3fvl3FxcV64YUX9Mtf/lKtW7fWsWPHyqwjLi5O9957r1asWKGHH37YHZQkKSoqSmPHjtXixYs1d+5cvf7669W5y26bNm3SLbfcojvuuEMdO3ZUixYt9N///tc9v1WrVgoKCnIPJP45f39/ST/2zFSkZcuW8vf316ZNm9zTCgsLtXXrVrVr166a9gSAJPlZXQCAK+dyuZSdnS3pxyts5s2bp7y8PA0dOtS9zPjx4zVhwgQFBwdr+PDhZdaxadMmPfvssxo2bJjWrl2rZcuW6R//+IckKTExUYWFhXr55Zc1dOhQbdq0Sa+++mqpz0+aNElDhgxR69at9f333+uzzz5zB50//vGP6tKli6655hq5XC59+OGH7nnVrVWrVlq+fLk2b96s8PBwvfjiizp+/Lg7QAQGBmry5Ml69NFH5e/vr169eunkyZPas2eP7r77bkVHRysoKEirV6/WVVddpcDAQIWGhpbaRnBwsO677z794Q9/UEREhJo1a6Znn31W+fn5uvvuu2tkv4C6ih4VoBZYvXq1YmNjFRsbq+7du2vr1q1atmyZ+9JaSRo1apT8/Pw0atQoBQYGllnHww8/rG3btqlz5856+umn9eKLLyolJUWS1LFjR7344ouaPXu22rdvr7fffltpaWmlPl9UVKTU1FS1bdtWgwcPVuvWrfXKK69I+rGXYurUqerQoYP69OkjX19fLVmypEba4oknntAvfvELpaSkqF+/foqJiSlzR9knn3xSDz/8sP74xz+qbdu2GjlypHvciJ+fn1566SW99tpratKkiW655ZZytzNr1iz96le/0pgxY/SLX/xCBw8e1CeffKLw8PAa2S+grnIYY4zVRQCoeRkZGWrZsqW2bt2qX/ziF6XmJSQkaNKkSZo0aZI1xQFABTj1A9RyhYWFOnXqlJ544gn98pe/LBNSAMDOOPUD1HKbNm1SbGystm7dWmZcidVmzpypBg0alPsaMmSI1eUBsAFO/QCwzOnTp8vcybVEUFCQmjZt6uGKANgNQQUAANgWp34AAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBt/T8uLilyLKYMTQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUadJREFUeJzt3XtcVHX+P/DXMALDRQYV5BYKIooEQaIiaoKFTWUlaYVaSq5p7ZZpaIaugrdC20zXS2ptiWUm6pKasZThXfl6ATQ1NS8QplxEl0EBUZnP7w9/nG2GizDOMAy8no/HPGw+53POvM/5zpd57eec8zkyIYQAEREREUksTF0AERERUXPDgERERESkgwGJiIiISAcDEhEREZEOBiQiIiIiHQxIRERERDoYkIiIiIh0MCARERER6WBAIiIiItLBgEREZmv27NmQyWQN6iuTyTB79myj1hMREYGIiIhmuz0iajgGJCJ6YElJSZDJZNKrTZs28PDwwGuvvYbLly+burxmx8vLS+t4dezYEY899hi+++47g2y/vLwcs2fPxu7duw2yPaLWiAGJiAxm7ty5+Prrr7Fq1So8/fTTWLduHcLDw3Hr1i2jfN7MmTNRUVFhlG0bW3BwML7++mt8/fXXmDp1Kq5cuYJhw4Zh1apVD7zt8vJyzJkzhwGJ6AG0MXUBRNRyPP300+jVqxcA4PXXX4eTkxMWLlyIbdu24eWXXzb457Vp0wZt2pjnnzEPDw+8+uqr0vsxY8aga9euWLx4Md58800TVkZEAEeQiMiIHnvsMQDAhQsXtNrPnDmDF198Ee3bt4dCoUCvXr2wbds2rT537tzBnDlz4OvrC4VCgQ4dOmDAgAHYsWOH1Ke2a5AqKyvx7rvvwtnZGW3btsXzzz+PP/74o0Ztr732Gry8vGq017bNNWvW4PHHH0fHjh1hbW0Nf39/rFy5slHH4n5cXV3Ro0cP5OTk1NuvqKgI48aNg4uLCxQKBYKCgrB27VppeW5uLpydnQEAc+bMkU7jGfv6K6KWxjz/pxcRmYXc3FwAQLt27aS2U6dOoX///vDw8EBcXBzs7OywceNGREVF4d///jdeeOEFAPeCSmJiIl5//XX06dMHpaWlOHr0KLKysjB48OA6P/P111/HunXrMGrUKPTr1w87d+7EkCFDHmg/Vq5ciYcffhjPP/882rRpg++//x5/+9vfoNFo8NZbbz3QtqvduXMHly5dQocOHersU1FRgYiICJw/fx5vv/02vL29sWnTJrz22msoKSnBpEmT4OzsjJUrV+Kvf/0rXnjhBQwbNgwA8MgjjxikTqJWQxARPaA1a9YIAOLnn38WV69eFZcuXRKbN28Wzs7OwtraWly6dEnq+8QTT4jAwEBx69YtqU2j0Yh+/foJX19fqS0oKEgMGTKk3s9NSEgQf/4zduzYMQFA/O1vf9PqN2rUKAFAJCQkSG0xMTGic+fO992mEEKUl5fX6KdSqUSXLl202sLDw0V4eHi9NQshROfOncWTTz4prl69Kq5evSqOHz8uRowYIQCIiRMn1rm9JUuWCABi3bp1Utvt27dFWFiYsLe3F6WlpUIIIa5evVpjf4mocXiKjYgMJjIyEs7OzvD09MSLL74IOzs7bNu2DQ899BAA4Pr169i5cydefvll3LhxA8XFxSguLsa1a9egUqlw7tw56a43R0dHnDp1CufOnWvw56empgIA3nnnHa32yZMnP9B+2djYSP+tVqtRXFyM8PBwXLx4EWq1Wq9t/vTTT3B2doazszOCgoKwadMmjB49GgsXLqxzndTUVLi6umLkyJFSm6WlJd555x3cvHkTe/bs0asWIqqJp9iIyGBWrFiBbt26Qa1W48svv8TevXthbW0tLT9//jyEEJg1axZmzZpV6zaKiorg4eGBuXPnYujQoejWrRsCAgLw1FNPYfTo0fWeKvr9999hYWEBHx8frfbu3bs/0H4dOHAACQkJyMjIQHl5udYytVoNpVLZ6G2GhoZi/vz5kMlksLW1RY8ePeDo6FjvOr///jt8fX1hYaH9v2179OghLSciw2BAIiKD6dOnj3QXW1RUFAYMGIBRo0bh7NmzsLe3h0ajAQBMnToVKpWq1m107doVADBw4EBcuHABW7duxU8//YR//etfWLx4MVatWoXXX3/9gWuta4LJqqoqrfcXLlzAE088AT8/P3zyySfw9PSElZUVUlNTsXjxYmmfGsvJyQmRkZF6rUtExseARERGIZfLkZiYiEGDBmH58uWIi4tDly5dANw7LdSQcNC+fXuMHTsWY8eOxc2bNzFw4EDMnj27zoDUuXNnaDQaXLhwQWvU6OzZszX6tmvXDiUlJTXadUdhvv/+e1RWVmLbtm3o1KmT1L5r16771m9onTt3xi+//AKNRqM1inTmzBlpOVB3+COihuM1SERkNBEREejTpw+WLFmCW7duoWPHjoiIiMDq1auRn59fo//Vq1el/7527ZrWMnt7e3Tt2hWVlZV1ft7TTz8NAFi6dKlW+5IlS2r09fHxgVqtxi+//CK15efn15jNWi6XAwCEEFKbWq3GmjVr6qzDWJ555hkUFBQgOTlZart79y6WLVsGe3t7hIeHAwBsbW0BoNYASEQNwxEkIjKq9957Dy+99BKSkpLw5ptvYsWKFRgwYAACAwMxfvx4dOnSBYWFhcjIyMAff/yB48ePAwD8/f0RERGBkJAQtG/fHkePHsXmzZvx9ttv1/lZwcHBGDlyJD799FOo1Wr069cP6enpOH/+fI2+I0aMwPvvv48XXngB77zzDsrLy7Fy5Up069YNWVlZUr8nn3wSVlZWeO655/DGG2/g5s2b+Pzzz9GxY8daQ54xTZgwAatXr8Zrr72GzMxMeHl5YfPmzThw4ACWLFmCtm3bArh3Ubm/vz+Sk5PRrVs3tG/fHgEBAQgICGjSeonMmqlvoyMi81d9m/+RI0dqLKuqqhI+Pj7Cx8dH3L17VwghxIULF8SYMWOEq6ursLS0FB4eHuLZZ58VmzdvltabP3++6NOnj3B0dBQ2NjbCz89PfPDBB+L27dtSn9puya+oqBDvvPOO6NChg7CzsxPPPfecuHTpUq23vf/0008iICBAWFlZie7du4t169bVus1t27aJRx55RCgUCuHl5SUWLlwovvzySwFA5OTkSP0ac5v//aYwqGt7hYWFYuzYscLJyUlYWVmJwMBAsWbNmhrrHjx4UISEhAgrKyve8k+kB5kQfxo3JiIiIiJeg0RERESkiwGJiIiISAcDEhEREZEOBiQiIiIiHQxIRERERDoYkIiIiIh0cKJIPWk0Gly5cgVt27bltP5ERERmQgiBGzduwN3dvcaDn/+MAUlPV65cgaenp6nLICIiIj1cunQJDz30UJ3LGZD0VD2l/6VLl+Dg4GDiaoiIiKghSktL4enpKf2O14UBSU/Vp9UcHBwYkIiIiMzM/S6P4UXaRERERDoYkIiIiIh0MCARERER6eA1SERE1CJUVVXhzp07pi6DTMzS0hJyufyBt8OAREREZk0IgYKCApSUlJi6FGomHB0d4erq+kDzFDIgERGRWasORx07doStrS0n723FhBAoLy9HUVERAMDNzU3vbTEgERGR2aqqqpLCUYcOHUxdDjUDNjY2AICioiJ07NhR79NtvEibiIjMVvU1R7a2tiauhJqT6u/Dg1yTxoBERERmj6fV6M8M8X1gQCIiIiLSwYBERERERufl5YUlS5aYuowGY0AiIiLkqytw8EIx8tUVpi6lVbl69Sr++te/olOnTrC2toarqytUKhUOHDgA4N6poi1btpi2yAaKiIiATCar8bp7966pS9ML72IjImrlko/kYXrKCWgEYCEDEocFIrp3J1OX1SoMHz4ct2/fxtq1a9GlSxcUFhYiPT0d165dM3Vpehk/fjzmzp2r1damjXlGDY4gERG1YvnqCikcAYBGADNSTnIkqQmUlJRg3759WLhwIQYNGoTOnTujT58+mD59Op5//nl4eXkBAF544QXIZDLpPQBs3boVPXv2hEKhQJcuXTBnzhytkZpPPvkEgYGBsLOzg6enJ/72t7/h5s2b0vKkpCQ4Ojpi+/bt6N69O2xtbfHiiy+ivLwca9euhZeXF9q1a4d33nkHVVVVDd4nW1tbuLq6ar3qkpeXh6FDh8Le3h4ODg54+eWXUVhYCABQq9WQy+U4evQoAECj0aB9+/bo27evtP66devg6enZ4NoaiwGJiKgVyykuk8JRtSohkFtcbpqCTKwpTzXa29vD3t4eW7ZsQWVlZY3lR44cAQCsWbMG+fn50vt9+/ZhzJgxmDRpEn799VesXr0aSUlJ+OCDD6R1LSwssHTpUpw6dQpr167Fzp07MW3aNK3tl5eXY+nSpdiwYQPS0tKwe/duvPDCC0hNTUVqaiq+/vprrF69Gps3bzb4vms0GgwdOhTXr1/Hnj17sGPHDly8eBHR0dEAAKVSieDgYOzevRsAcOLECchkMmRnZ0tBb8+ePQgPDzd4bdUYkIiIWjFvJztY6NwRLZfJ4OXU+uYVSj6Sh/4LdmLU54fQf8FOJB/JM+rntWnTBklJSVi7di0cHR3Rv39/zJgxA7/88gsAwNnZGcD/HptR/X7OnDmIi4tDTEwMunTpgsGDB2PevHlYvXq1tO3Jkydj0KBB8PLywuOPP4758+dj48aNWp9/584drFy5Eo8++igGDhyIF198Efv378cXX3wBf39/PPvssxg0aBB27drV4H369NNPpeBnb2+PKVOm1NovPT0dJ06cwPr16xESEoLQ0FB89dVX2LNnjxQEIyIipIC0e/duDB48GD169MD+/fulNgYkIiIyCjelDRKHBUL+/+eNkctk+HBYANyUNiaurGmZ6lTj8OHDceXKFWzbtg1PPfUUdu/ejZ49eyIpKanOdY4fP465c+dqBZHx48cjPz8f5eX3Rv5+/vlnPPHEE/Dw8EDbtm0xevRoXLt2TVoO3Dsd5uPjI713cXGBl5cX7O3ttdqqH9vREK+88gqOHTsmvaZPn15rv9OnT8PT01PrFJm/vz8cHR1x+vRpAEB4eDj279+Pqqoq7NmzBxEREVJounLlCs6fP4+IiIgG19ZY5nnlFBERGUx0704Y2M0ZucXl8HKybXXhCKj/VKOxj4dCocDgwYMxePBgzJo1C6+//joSEhLw2muv1dr/5s2bmDNnDoYNG1brtnJzc/Hss8/ir3/9Kz744AO0b98e+/fvx7hx43D79m1plmlLS0utdWUyWa1tGo2mwfuiVCrRtWvXBvevz8CBA3Hjxg1kZWVh7969+PDDD+Hq6ooFCxYgKCgI7u7u8PX1Nchn1YYBiYiI4Ka0aZXBqFr1qcY/hyRTnWr09/eXbu23tLSscZF0z549cfbs2TqDSGZmJjQaDRYtWgQLi3sninRPr5lajx49cOnSJVy6dEkaRfr1119RUlICf39/APdOLT7yyCNYvnw5LC0t4efnh44dOyI6Ohrbt2836uk1gKfYiIiITHKq8dq1a3j88cexbt06/PLLL8jJycGmTZvw0UcfYejQoQDuTa6Ynp6OgoIC/Pe//wUAxMfH46uvvsKcOXNw6tQpnD59Ghs2bMDMmTMBAF27dsWdO3ewbNkyXLx4EV9//TVWrVpltP3QR2RkJAIDA/HKK68gKysLhw8fxpgxYxAeHo5evXpJ/SIiIvDNN99IYah9+/bo0aMHkpOTGZCIiIiaQnTvTtgfNwjfju+L/XGDjD4XlL29PUJDQ7F48WIMHDgQAQEBmDVrFsaPH4/ly5cDABYtWoQdO3bA09MTjz76KABApVJh+/bt+Omnn9C7d2/07dsXixcvRufOnQEAQUFB+OSTT7Bw4UIEBATgm2++QWJiolH3pbFkMhm2bt2Kdu3aYeDAgYiMjESXLl2QnJys1S88PBxVVVVa1xpFRETUaDNKjUIIcf9upKu0tBRKpRJqtRoODg6mLoeIqFW6desWcnJy4O3tDYVCYepyqJmo73vR0N9vjiARERER6WBAIiIionrt27dPa1oB3VdLxLvYiIiIqF69evXCsWPHTF1Gk2oWI0grVqyAl5cXFAoFQkNDcfjw4Xr7b9q0CX5+flAoFAgMDERqaqrW8pSUFDz55JPo0KEDZDJZjf+jXr9+HRMnTkT37t1hY2ODTp064Z133oFarTb0rhEREZk9GxsbdO3atc5XS2TygJScnIzY2FgkJCQgKysLQUFBUKlUdc7cefDgQYwcORLjxo1DdnY2oqKiEBUVhZMnT0p9ysrKMGDAACxcuLDWbVy5cgVXrlzBxx9/jJMnTyIpKQlpaWkYN26cUfaRiIiMi/cb0Z8Z4vtg8rvYQkND0bt3b+mWRo1GA09PT0ycOBFxcXE1+kdHR6OsrAzbt2+X2vr27Yvg4OAa8zzk5ubC29sb2dnZCA4OrreOTZs24dVXX0VZWRnatLn/mUfexUZEZHpVVVX47bff0LFjR3To0MHU5VAzce3aNRQVFaFbt26Qy+Vayxr6+23Sa5Bu376NzMxMrWe1WFhYIDIyEhkZGbWuk5GRgdjYWK02lUolzTqqr+oDVVc4qqys1Hracmlp6QN9HhERPTi5XA5HR0fprIOtrS1kMtl91qKWSgiB8vJyFBUVwdHRsUY4agyTBqTi4mJUVVXBxcVFq93FxQVnzpypdZ2CgoJa+xcUFDxQHfPmzcOECRPq7JOYmIg5c+bo/RlERGQcrq6uANCoh6pSy+bo6Ch9L/TV6u9iKy0txZAhQ+Dv74/Zs2fX2W/69OlaI1elpaVaTyEmIiLTkMlkcHNzQ8eOHXHnzh1Tl0MmZmlp+UAjR9VMGpCcnJwgl8tRWFio1V5YWFhn8nN1dW1U//rcuHEDTz31FNq2bYvvvvuuxlOM/8za2hrW1taN/gwiImoacrncID+MRICJ72KzsrJCSEgI0tPTpTaNRoP09HSEhYXVuk5YWJhWfwDYsWNHnf3rUlpaiieffBJWVlbYtm0bp6gnIiIiiclPscXGxiImJga9evVCnz59sGTJEpSVlWHs2LEAgDFjxsDDw0N60N6kSZMQHh6ORYsWYciQIdiwYQOOHj2Kzz77TNrm9evXkZeXhytXrgAAzp49C+De6JOrq6sUjsrLy7Fu3TqUlpZKF107Ozvzf4EQERG1ciYPSNHR0bh69Sri4+NRUFCA4OBgpKWlSRdi5+XlwcLifwNd/fr1w/r16zFz5kzMmDEDvr6+2LJlCwICAqQ+27ZtkwIWAIwYMQIAkJCQgNmzZyMrKwuHDh0CgBoTXOXk5MDLy8tYu0tERERmwOTzIJkrzoNERERkfhr6+23ymbSJiIiImhsGJCIiIiIdDEhEREREOhiQiIiIiHQwIBERERHpYEAiIiIio8lXV+DghWLkqytMXUqjmHweJCIiImqZko/kYXrKCWgEYCEDEocFIrp3J1OX1SAcQSIiIiKDy1dXSOEIADQCmJFy0mxGkhiQiIiIyOByisukcFStSgjkFpebpqBGYkAiIiIig/N2soOFTLtNLpPBy8nWNAU1EgMSERERGZyb0gaJwwIhl91LSXKZDB8OC4Cb0sbElTUML9ImIiIio4ju3QkDuzkjt7gcXk62ZhOOAAYkIiIiMiI3pY1ZBaNqPMVGREREpIMBiYiIiEgHAxIRERGRDgYkIiIiIh0MSEREREQ6GJCIiIiIdDAgEREREelgQCIiIiLSwYBEREREpIMBiYiIWrR8dQUOXihGvrrC1KWQGeGjRoiIqMVKPpKH6SknoBGAhQxIHBaI6N6dTF0WmQGOIBERUYuUr66QwhEAaAQwI+UkR5KoQRiQiIioRcopLpPCUbUqIZBbXG6agsisMCAREVGL5O1kBwuZdptcJoOXk61pCiKzwoBEREQtkpvSBonDAiGX3UtJcpkMHw4LgJvSxsSVkTngRdpERNTk8tUVyCkug7eTnVEDS3TvThjYzRm5xeXwcrJlOKIGY0AiIqIm1dR3lrkpbRiMqNF4io2IiJoM7ywjc8GARETUTLXECQ55ZxmZC55iIyJqhlrqBIfVd5b9OSTxzjJqjjiCRETUzLTk01C8s4zMBUeQiIiamfpOQ7WEIME7y8gcMCARETUzreE0FO8so+aOp9iIiJoZnoYiMj2OIBERNUM8DUVkWgxIRETNFE9DEZkOT7ERERER6WBAIiIiItLBgERERESkgwGJiIiISEezCEgrVqyAl5cXFAoFQkNDcfjw4Xr7b9q0CX5+flAoFAgMDERqaqrW8pSUFDz55JPo0KEDZDIZjh07VmMbt27dwltvvYUOHTrA3t4ew4cPR2FhoSF3i4iIiMyUyQNScnIyYmNjkZCQgKysLAQFBUGlUqGoqKjW/gcPHsTIkSMxbtw4ZGdnIyoqClFRUTh58qTUp6ysDAMGDMDChQvr/Nx3330X33//PTZt2oQ9e/bgypUrGDZsmMH3j4iIiMyPTAgh7t/NeEJDQ9G7d28sX74cAKDRaODp6YmJEyciLi6uRv/o6GiUlZVh+/btUlvfvn0RHByMVatWafXNzc2Ft7c3srOzERwcLLWr1Wo4Oztj/fr1ePHFFwEAZ86cQY8ePZCRkYG+ffvet+7S0lIolUqo1Wo4ODjos+tERETUxBr6+23SEaTbt28jMzMTkZGRUpuFhQUiIyORkZFR6zoZGRla/QFApVLV2b82mZmZuHPnjtZ2/Pz80KlTpzq3U1lZidLSUq0XERERtUwmDUjFxcWoqqqCi4uLVruLiwsKCgpqXaegoKBR/evahpWVFRwdHRu8ncTERCiVSunl6enZ4M8jIiIi82Lya5DMxfTp06FWq6XXpUuXTF0SERERGYlJHzXi5OQEuVxe4+6xwsJCuLq61rqOq6tro/rXtY3bt2+jpKREaxSpvu1YW1vD2tq6wZ9BRERE5sukI0hWVlYICQlBenq61KbRaJCeno6wsLBa1wkLC9PqDwA7duyos39tQkJCYGlpqbWds2fPIi8vr1HbISIiopbJ5A+rjY2NRUxMDHr16oU+ffpgyZIlKCsrw9ixYwEAY8aMgYeHBxITEwEAkyZNQnh4OBYtWoQhQ4Zgw4YNOHr0KD777DNpm9evX0deXh6uXLkC4F74Ae6NHLm6ukKpVGLcuHGIjY1F+/bt4eDggIkTJyIsLKxBd7ARERFRy2bygBQdHY2rV68iPj4eBQUFCA4ORlpamnQhdl5eHiws/jfQ1a9fP6xfvx4zZ87EjBkz4Ovriy1btiAgIEDqs23bNilgAcCIESMAAAkJCZg9ezYAYPHixbCwsMDw4cNRWVkJlUqFTz/9tAn2mIiIiJo7k8+DZK44DxIREZH5MYt5kIiIiIiaIwYkIiIiIh0MSEREREQ6GJCIiIiIdDAgEREREelgQCIiIiLSwYBEREREpIMBiYiIiEgHAxIRERGRDgYkIiIiIh0MSEREREQ6GJCIiIiIdDAgEREREelgQCIiIiLSwYBEREREpIMBiYiIiEgHAxIRERGRDgYkIiIiIh0MSEREREQ6GJCIiIiIdDAgEREREelgQCIiIiLSwYBEREREpIMBiYiIiEgHAxIRERGRDgYkIiIiIh0MSEREREQ6GJCIiIiIdDAgEREREelgQCIiIiLSwYBEREREpIMBiYiIiEgHAxIRERGRDgYkIiIiIh0MSEREREQ6GJCIiIiIdDAgEREREelgQCIiIiLSwYBEREREpIMBiYiIiEgHAxIRERGRDgYkIiIiIh0MSEREREQ6GJCIiIiIdDSLgLRixQp4eXlBoVAgNDQUhw8frrf/pk2b4OfnB4VCgcDAQKSmpmotF0IgPj4ebm5usLGxQWRkJM6dO6fV57fffsPQoUPh5OQEBwcHDBgwALt27TL4vhEREZH5MXlASk5ORmxsLBISEpCVlYWgoCCoVCoUFRXV2v/gwYMYOXIkxo0bh+zsbERFRSEqKgonT56U+nz00UdYunQpVq1ahUOHDsHOzg4qlQq3bt2S+jz77LO4e/cudu7ciczMTAQFBeHZZ59FQUGB0feZiIiImjeZEEKYsoDQ0FD07t0by5cvBwBoNBp4enpi4sSJiIuLq9E/OjoaZWVl2L59u9TWt29fBAcHY9WqVRBCwN3dHVOmTMHUqVMBAGq1Gi4uLkhKSsKIESNQXFwMZ2dn7N27F4899hgA4MaNG3BwcMCOHTsQGRl537pLS0uhVCqhVqvh4OBgiENBRERERtbQ32+TjiDdvn0bmZmZWoHEwsICkZGRyMjIqHWdjIyMGgFGpVJJ/XNyclBQUKDVR6lUIjQ0VOrToUMHdO/eHV999RXKyspw9+5drF69Gh07dkRISEitn1tZWYnS0lKtFxEREbVMJg1IxcXFqKqqgouLi1a7i4tLnae6CgoK6u1f/W99fWQyGX7++WdkZ2ejbdu2UCgU+OSTT5CWloZ27drV+rmJiYlQKpXSy9PTs/E7TERERGbB5NcgmYIQAm+99RY6duyIffv24fDhw4iKisJzzz2H/Pz8WteZPn061Gq19Lp06VITV01ERERNxaQBycnJCXK5HIWFhVrthYWFcHV1rXUdV1fXevtX/1tfn507d2L79u3YsGED+vfvj549e+LTTz+FjY0N1q5dW+vnWltbw8HBQetFRERELZNJA5KVlRVCQkKQnp4utWk0GqSnpyMsLKzWdcLCwrT6A8COHTuk/t7e3nB1ddXqU1paikOHDkl9ysvLAdy73unPLCwsoNFoHnzHiIiIyKy1MXUBsbGxiImJQa9evdCnTx8sWbIEZWVlGDt2LABgzJgx8PDwQGJiIgBg0qRJCA8Px6JFizBkyBBs2LABR48exWeffQbg3vVFkydPxvz58+Hr6wtvb2/MmjUL7u7uiIqKAnAvZLVr1w4xMTGIj4+HjY0NPv/8c+Tk5GDIkCEmOQ5ERETUfOgVkDp16oSIiAiEh4cjIiICPj4+ehcQHR2Nq1evIj4+HgUFBQgODkZaWpp0kXVeXp7WSE+/fv2wfv16zJw5EzNmzICvry+2bNmCgIAAqc+0adNQVlaGCRMmoKSkBAMGDEBaWhoUCgWAe6f20tLS8Pe//x2PP/447ty5g4cffhhbt25FUFCQ3vtCRERELYNe8yCtW7cOe/fuxe7du3H+/Hl4eHggPDxcCky+vr7GqLVZ4TxIRERE5qehv98PPFFkfn4+9uzZg+3btyM5ORkajQZVVVUPskmzwIBERERkfhr6+633NUjl5eXYv38/du/ejV27diE7OxsBAQGIiIjQd5NEREREzYJeAalfv37Izs5Gjx49EBERgbi4OAwcOLDOSRaJiIiIzIlet/mfOXMGdnZ28PPzg5+fH3r06MFwRERERC2GXgHp2rVr2LlzJ/r27Ysff/wR/fv3h4eHB0aNGoXPP//c0DUSERERNakHvkhbCIHMzEwsX74c33zzDS/SJiIiombLqBdpZ2VlYffu3di9ezf279+PGzduIDAwEBMnTkR4eLjeRRMRERE1B3oFpD59+uDRRx9FeHg4xo8fj4EDB0KpVBq6NiIysXx1BXKKy+DtZAc3pY2pyyEiajJ6BaTr16/ztBJRC5d8JA/TU05AIwALGZA4LBDRvTuZuiwioiahV0CqDkeZmZk4ffo0AMDf3x89e/Y0XGVEZDL56gopHAGARgAzUk5iYDdnjiQRUaugV0AqKipCdHQ09uzZA0dHRwBASUkJBg0ahA0bNsDZ2dmQNRJRE8spLpPCUbUqIZBbXM6AREStgl63+U+cOBE3b97EqVOncP36dVy/fh0nT55EaWkp3nnnHUPXSERNzNvJDhYy7Ta5TAYvJ1vTFERErUq+ugIHLxQjX11hshr0us1fqVTi559/Ru/evbXaDx8+jCeffBIlJSWGqq/Z4m3+1NIlH8nDjJSTqBICcpkMHw4L4DVIRGR0xr7+0ai3+Ws0GlhaWtZot7S0hEaj0WeTRNTMRPfuhIHdnJFbXA4vJ1ueWiMio2tO1z/qdYrt8ccfx6RJk3DlyhWp7fLly3j33XfxxBNPGKw4IjItN6UNwnw6MBwRUZOo7/rHpqZXQFq+fDlKS0vh5eUFHx8f+Pj4wNvbG6WlpVi2bJmhayQiIqJWoDld/6jXKTZPT09kZWXh559/xpkzZwAAPXr0QGRkpEGLIyIiotbDTWmDxGGBNa5/NMUo9gM/i6214kXaRERExpGvrjDa9Y8Gv0h76dKlDf5w3upPRERE+nJT2pj82scGjyB5e3s3bIMyGS5evPhARZkDjiARERGZH4OPIOXk5BikMCIiIqLmrlF3sXGOIyIiImoNGhWQLC0tUVRUJL1/7733cP36dYMX1Zo1h+nViYiIWrtGBSTdy5VWr17dKh4r0lSSj+Sh/4KdGPX5IfRfsBPJR/JMXRIREVGrpNdEkdU4Q4Dh1DW9OkeSiIiImt4DBSQynOY0vToREVFr1+iZtOPj42Fre2/K79u3b+ODDz6AUqnU6vPJJ58YprpWpHp69T+HJFNNr05ERNTaNSogDRw4EGfPnpXe9+vXr8acRzKZTHc1aoDmNL06ERFRa8dHjejJWBNFGnN6dSIiotauob/fRr0GycHBoVXMqm1IbkobhPl0YDgiIiIyIaMGJA5OERERkTniXWxEREREOhiQiIiIiHQwIBERERHpMGpA4i3/REREZI54kTYRERGRDqMGpP/85z/w8PAw5kcQkRHlqytw8EIxnwlIRK1Oox81AtwbGdq8eTN27dqFoqIiaDQareUpKSkAgAEDBjx4hURkEslH8qQHKFvIgMRhgYju3cnUZRERNQm9RpAmT56M0aNHIycnB/b29lAqlVovIjJv+eoKKRwB954ROCPlJEeSiKjV0GsE6euvv0ZKSgqeeeYZQ9dDRM1ATnGZ1oOTAaBKCOQWl3OWdyJqFfQaQVIqlejSpYuhayGiZsLbyQ4WOjehymUyeDnZmqYgIqImpldAmj17NubMmYOKCg63E7VEbkobJA4LhPz/T9Uhl8nw4bAAjh4RUashE3rci19RUYEXXngBBw4cgJeXFywtLbWWZ2VlGazA5qqhTwMmMmf56grkFpfDy8mW4YiIWoSG/n7rNYIUExODzMxMvPrqqxg+fDiGDh2q9WqsFStWwMvLCwqFAqGhoTh8+HC9/Tdt2gQ/Pz8oFAoEBgYiNTVVa7kQAvHx8XBzc4ONjQ0iIyNx7ty5Gtv54YcfEBoaChsbG7Rr1w5RUVGNrp2oJXNT2iDMpwPDERG1PkIPtra2Yt++ffqsWsOGDRuElZWV+PLLL8WpU6fE+PHjhaOjoygsLKy1/4EDB4RcLhcfffSR+PXXX8XMmTOFpaWlOHHihNRnwYIFQqlUii1btojjx4+L559/Xnh7e4uKigqpz+bNm0W7du3EypUrxdmzZ8WpU6dEcnJyg+tWq9UCgFCr1frvPBERETWphv5+63WKzc/PDxs3bsQjjzzywAEtNDQUvXv3xvLlywEAGo0Gnp6emDhxIuLi4mr0j46ORllZGbZv3y619e3bF8HBwVi1ahWEEHB3d8eUKVMwdepUAIBarYaLiwuSkpIwYsQI3L17F15eXpgzZw7GjRunV908xUZERGR+jHqKbdGiRZg2bRpyc3P1rQ8AcPv2bWRmZiIyMvJ/BVlYIDIyEhkZGbWuk5GRodUfAFQqldQ/JycHBQUFWn2USiVCQ0OlPllZWbh8+TIsLCzw6KOPws3NDU8//TROnjxZZ62VlZUoLS3VehEREVHLpFdAevXVV7Fr1y74+Pigbdu2aN++vdaroYqLi1FVVQUXFxetdhcXFxQUFNS6TkFBQb39q/+tr8/FixcB3Lsbb+bMmdi+fTvatWuHiIgIXL9+vdbPTUxM1JoM09PTs8H7SUREZO5a26OH9JoocsmSJQYuo2lVPxrl73//O4YPHw4AWLNmDR566CFs2rQJb7zxRo11pk+fjtjYWOl9aWkpQxIREbUKrfHRQ3oFpJiYGIN8uJOTE+RyOQoLC7XaCwsL4erqWus6rq6u9fav/rewsBBubm5afYKDgwFAavf395eWW1tbo0uXLsjLy6v1c62trWFtbd2IvSMiIjJ/dT16aGA35xZ9h6tep9j+7NatW3pfm2NlZYWQkBCkp6dLbRqNBunp6QgLC6t1nbCwMK3+ALBjxw6pv7e3N1xdXbX6lJaW4tChQ1KfkJAQWFtb4+zZs1KfO3fuIDc3F507d25w/URERC1dfY8easn0GkEqKyvD+++/j40bN+LatWs1lldVVTV4W7GxsYiJiUGvXr3Qp08fLFmyBGVlZRg7diwAYMyYMfDw8EBiYiIAYNKkSQgPD8eiRYswZMgQbNiwAUePHsVnn30GAJDJZJg8eTLmz58PX19feHt7Y9asWXB3d5fmOXJwcMCbb76JhIQEeHp6onPnzvjHP/4BAHjppZf0OSREREQtUvWjh/4cklrDo4f0CkjTpk3Drl27sHLlSowePRorVqzA5cuXsXr1aixYsKBR24qOjsbVq1cRHx+PgoICBAcHIy0tTbrIOi8vDxYW/xvo6tevH9avX4+ZM2dixowZ8PX1xZYtWxAQEKBVX1lZGSZMmICSkhIMGDAAaWlpUCgUUp9//OMfaNOmDUaPHo2KigqEhoZi586daNeunT6HhIiIqEWqfvTQjJSTqBKi1Tx6SK95kDp16oSvvvoKERERcHBwQFZWFrp27Yqvv/4a3377bY2ZrVsizoNEREStSUt59JBR50G6fv06unTpAuDe6arqW+MHDBiAvXv36rNJIiIiasZa26OH9ApIXbp0QU5ODoD/zaoNAN9//z0cHR0NVhwRERGRKegVkMaOHYvjx48DAOLi4rBixQooFAq8++67eO+99wxaIBEREVFT0+saJF2///47MjMz0bVrV4M8n80c8BokIiIi89PQ32+97mL7s1u3bqFz586cP4iIiIhaDL1OsVVVVWHevHnw8PCAvb299GyzWbNm4YsvvjBogURERERNTa+A9MEHHyApKQkfffQRrKyspPaAgAD861//MlhxRERERKagV0D66quv8Nlnn+GVV16BXC6X2oOCgnDmzBmDFUdERERkCnoFpMuXL6Nr16412jUaDe7cufPARRERERGZkl4Byd/fH/v27avRvnnzZjz66KMPXBQRERGRKel1F1t8fDxiYmJw+fJlaDQapKSk4OzZs/jqq6+wfft2Q9dIRERE1KT0GkEaOnQovv/+e/z888+ws7NDfHw8Tp8+je+//x6DBw82dI1ERERETcogE0W2Rpwoksjw8tUVyCkug7eTXat53hMRNS2jPqy2S5cuuHbtWo32kpIS6SG2RESNkXwkD/0X7MSozw+h/4KdSD6SZ+qSiKgV0ysg5ebmoqqqqkZ7ZWUlLl++/MBFEVHrkq+uwPSUE9D8//FsjQBmpJxEvrrCtIURUavVqIu0t23bJv33jz/+CKVSKb2vqqpCeno6vLy8DFYcEbUOOcVlUjiqViUEcovLeaqNiEyiUQEpKioKACCTyRATE6O1zNLSEl5eXli0aJHBiiOi1sHbyQ4WMmiFJLlMBi8nW9MVRUStWqNOsWk0Gmg0GnTq1AlFRUXSe41Gg8rKSpw9exbPPvussWolohbKTWmDxGGBkMtkAO6Fow+HBXD0iIhMplEjSBkZGbh27RpycnKktq+++goJCQkoKytDVFQUli1bBmtra4MXSkQtW3TvThjYzRm5xeXwcrJlOCIik2rUCNKcOXNw6tQp6f2JEycwbtw4REZGIi4uDt9//z0SExMNXiQRtQ5uShuE+XRgOCIik2tUQDp+/DieeOIJ6f2GDRsQGhqKzz//HLGxsVi6dCk2btxo8CKJiIiImlKjAtJ///tfuLi4SO/37NmDp59+Wnrfu3dvXLp0yXDVEREREZlAowKSi4uLdP3R7du3kZWVhb59+0rLb9y4AUtLS8NWSERERNTEGhWQnnnmGcTFxWHfvn2YPn06bG1t8dhjj0nLf/nlF/j4+Bi8SCJ6cPnqChy8UMzJF4mIGqBRd7HNmzcPw4YNQ3h4OOzt7bF27VpYWVlJy7/88ks8+eSTBi+SiB5M8pE8aaZqCxmQOCwQ0b07mbosIqJmS6+H1arVatjb20Mul2u1X79+Hfb29lqhqaXiw2rJXOSrK9B/wc4akzDujxvEu8WIqNUx6sNqlUpljXAEAO3bt28V4YjInNT3GA8iIqqdXgGJiMxH9WM8/oyP8SAiqh8DElELx8d4EBE1XqMu0iYi88THeBARNQ4DElEr4aa0YTAiImognmIjIiIi0sGARERERKSDAYmIiIhIBwMSERERkQ4GJCIiIiIdDEhEREREOhiQiIiIiHQwIBERERHpYEAiIiIi0sGARERERKSDAYmIiIhIBwMSERERkY5mEZBWrFgBLy8vKBQKhIaG4vDhw/X237RpE/z8/KBQKBAYGIjU1FSt5UIIxMfHw83NDTY2NoiMjMS5c+dq3VZlZSWCg4Mhk8lw7NgxQ+0SERERmTGTB6Tk5GTExsYiISEBWVlZCAoKgkqlQlFRUa39Dx48iJEjR2LcuHHIzs5GVFQUoqKicPLkSanPRx99hKVLl2LVqlU4dOgQ7OzsoFKpcOvWrRrbmzZtGtzd3Y22f0RERGR+ZEIIYcoCQkND0bt3byxfvhwAoNFo4OnpiYkTJyIuLq5G/+joaJSVlWH79u1SW9++fREcHIxVq1ZBCAF3d3dMmTIFU6dOBQCo1Wq4uLggKSkJI0aMkNb7z3/+g9jYWPz73//Gww8/jOzsbAQHBzeo7tLSUiiVSqjVajg4ODzAESAiIqKm0tDfb5OOIN2+fRuZmZmIjIyU2iwsLBAZGYmMjIxa18nIyNDqDwAqlUrqn5OTg4KCAq0+SqUSoaGhWtssLCzE+PHj8fXXX8PW1taQu0VERERmzqQBqbi4GFVVVXBxcdFqd3FxQUFBQa3rFBQU1Nu/+t/6+ggh8Nprr+HNN99Er169GlRrZWUlSktLtV5ERETUMpn8GiRTWLZsGW7cuIHp06c3eJ3ExEQolUrp5enpacQKiYiIyJRMGpCcnJwgl8tRWFio1V5YWAhXV9da13F1da23f/W/9fXZuXMnMjIyYG1tjTZt2qBr164AgF69eiEmJqbWz50+fTrUarX0unTpUiP3loiIiMyFSQOSlZUVQkJCkJ6eLrVpNBqkp6cjLCys1nXCwsK0+gPAjh07pP7e3t5wdXXV6lNaWopDhw5JfZYuXYrjx4/j2LFjOHbsmDRNQHJyMj744INaP9fa2hoODg5aLyIiImqZ2pi6gNjYWMTExKBXr17o06cPlixZgrKyMowdOxYAMGbMGHh4eCAxMREAMGnSJISHh2PRokUYMmQINmzYgKNHj+Kzzz4DAMhkMkyePBnz58+Hr68vvL29MWvWLLi7uyMqKgoA0KlTJ60a7O3tAQA+Pj546KGHmmjPiYiIqLkyeUCKjo7G1atXER8fj4KCAgQHByMtLU26yDovLw8WFv8b6OrXrx/Wr1+PmTNnYsaMGfD19cWWLVsQEBAg9Zk2bRrKysowYcIElJSUYMCAAUhLS4NCoWjy/SMiIiLzY/J5kMwV50EiIiIyP2YxDxIRERGRrnx1BQ5eKEa+usJkNZj8FBsRERFRteQjeZiecgIaAVjIgMRhgYju3en+KxoYR5CIiIioWchXV0jhCAA0ApiRctIkI0kMSERERNQs5BSXSeGoWpUQyC0ub/JaGJCIiIioWfB2soOFTLtNLpPBy6npn5nKgERERETNgpvSBonDAiGX3UtJcpkMHw4LgJvSpslr4UXaRERE1GxE9+6Egd2ckVtcDi8nW5OEI4ABifSQr65ATnEZvJ3sTPbFJSKilstNaWPy3xcGJGqU5nL7JRERkTHxGiRqsOZ0+yUREZExMSBRgzWn2y+JiIiMiQGJGqw53X5JRERkTAxI1GDN6fZLIiIiY+JF2tQozeX2SyIiImNiQKJGaw63XxIRERkTT7ERERER6WBAIiIiItLBgERERESkgwGJiIiISAcDEhEREZEOBiQiIiIiHQxIRERERDoYkIiIiIh0MCARERER6WBAIiIiItLBgERERESkgwGJiIiISAcDEhEREZEOBiQiIiIiHQxIRERERDoYkIiIiIh0MCARERER6WBAIiIiveWrK3DwQjHy1RWmLoXIoNqYugAiIjJPyUfyMD3lBDQCsJABicMCEd27k6nLIjIIjiAREVGj5asrpHAEABoBzEg5yZEkajEYkIiIqNFyisukcFStSgjkFpebpiAiA2NAIiKiRvN2soOFTLtNLpPBy8nWNAURGRgDElErwYtpyZDclDZIHBYIuexeSpLLZPhwWADclDYmrozIMHiRNlErwItpyRiie3fCwG7OyC0uh5eTLcMRtSgcQSJq4XgxLRmTm9IGYT4dGI6oxWFAImrheDEtEVHjMSARtXC8mJaIzE1zuGaSAYmohePFtERkTpKP5KH/gp0Y9fkh9F+wE8lH8kxSh0wIIe7fjXSVlpZCqVRCrVbDwcHB1OUQ3Ve+uoIX0xJRs5avrkD/BTu1LguQy2TYHzfIYH+3Gvr73SxGkFasWAEvLy8oFAqEhobi8OHD9fbftGkT/Pz8oFAoEBgYiNTUVK3lQgjEx8fDzc0NNjY2iIyMxLlz56Tlubm5GDduHLy9vWFjYwMfHx8kJCTg9u3bRtk/ouaAF9MSUXPXnK6ZNHlASk5ORmxsLBISEpCVlYWgoCCoVCoUFRXV2v/gwYMYOXIkxo0bh+zsbERFRSEqKgonT56U+nz00UdYunQpVq1ahUOHDsHOzg4qlQq3bt0CAJw5cwYajQarV6/GqVOnsHjxYqxatQozZsxokn0mIiKimprTNZMmP8UWGhqK3r17Y/ny5QAAjUYDT09PTJw4EXFxcTX6R0dHo6ysDNu3b5fa+vbti+DgYKxatQpCCLi7u2PKlCmYOnUqAECtVsPFxQVJSUkYMWJErXX84x//wMqVK3Hx4sUG1c1TbERERIaXfCQPM1JOokoI6ZpJQ87b1tDfb5NOFHn79m1kZmZi+vTpUpuFhQUiIyORkZFR6zoZGRmIjY3ValOpVNiyZQsAICcnBwUFBYiMjJSWK5VKhIaGIiMjo86ApFar0b59+zprraysRGVlpfS+tLT0vvtHREREjdNcJiA16Sm24uJiVFVVwcXFRavdxcUFBQUFta5TUFBQb//qfxuzzfPnz2PZsmV444036qw1MTERSqVSenl6eta/c0RERKSX5nDNpMmvQTK1y5cv46mnnsJLL72E8ePH19lv+vTpUKvV0uvSpUtNWOX9NYc5I4iIiFoKk55ic3JyglwuR2FhoVZ7YWEhXF1da13H1dW13v7V/xYWFsLNzU2rT3BwsNZ6V65cwaBBg9CvXz989tln9dZqbW0Na2vrBu1XU+NztoiIiAzLpCNIVlZWCAkJQXp6utSm0WiQnp6OsLCwWtcJCwvT6g8AO3bskPp7e3vD1dVVq09paSkOHTqktc3Lly8jIiICISEhWLNmDSwszHMwjc/ZIiIiMjyTjiABQGxsLGJiYtCrVy/06dMHS5YsQVlZGcaOHQsAGDNmDDw8PJCYmAgAmDRpEsLDw7Fo0SIMGTIEGzZswNGjR6URIJlMhsmTJ2P+/Pnw9fWFt7c3Zs2aBXd3d0RFRQH4Xzjq3LkzPv74Y1y9elWqp66Rq+aqvjkjON8NERGRfkwekKKjo3H16lXEx8ejoKAAwcHBSEtLky6yzsvL0xrd6devH9avX4+ZM2dixowZ8PX1xZYtWxAQECD1mTZtGsrKyjBhwgSUlJRgwIABSEtLg0KhAHBvxOn8+fM4f/48HnroIa16zG1i8eo5I3RnHeVztoiIiPRn8nmQzFVzmgfJ2HNGEBERtRRmMQ8SGUZzmTOCiIiopWBAaiHclDYMRkRERAZinrduERERERkRAxIRERGRDgYkIiIiIh0MSEREREQ6GJCIiIiIdDAgEREREelgQCIiIiLSwYBEREREpIMBiYiImly+ugIHLxQjX11h6lKIasWZtImIqEklH8nD9JQT0AjAQgYkDgvk8yOp2eEIEhERNZl8dYUUjgBAI4AZKSc5kkTNDgMSERE1mZziMikcVasSArnF5aYpiKgODEhERNRkvJ3sYCHTbpPLZPBysjVNQUR1YEAiIqIm46a0QeKwQMhl91KSXCbDh8MC4Ka0MXFlRNp4kTYRETWp6N6dMLCbM3KLy+HlZMtwRM0SAxIRETU5N6UNgxE1azzFRkRERKSDAYmIiIhIBwMSERERkQ4GJCIiIiIdDEhEREREOhiQiIiIiHQwIBERERHpYEAiIiIi0sGARERERKSDAYmIiIhIBwMSERERkQ4GJCIiIiIdDEhEREREOhiQiIiIiHQwIBERERHpYEAiIiIi0sGARERERKSDAYmIiIhIBwMSERERkQ4GJCIiIiIdDEhEREREOhiQiMxMvroCBy8UI19dYepSiIharDamLoCIGi75SB6mp5yARgAWMiBxWCCie3cydVlERC0OR5CIzES+ukIKRwCgEcCMlJMcSSIiMgIGJCIzkVNcJoWjalVCILe43DQFERG1YM0iIK1YsQJeXl5QKBQIDQ3F4cOH6+2/adMm+Pn5QaFQIDAwEKmpqVrLhRCIj4+Hm5sbbGxsEBkZiXPnzmn1uX79Ol555RU4ODjA0dER48aNw82bNw2+b0SG4u1kBwuZdptcJoOXk61pCiIiasFMHpCSk5MRGxuLhIQEZGVlISgoCCqVCkVFRbX2P3jwIEaOHIlx48YhOzsbUVFRiIqKwsmTJ6U+H330EZYuXYpVq1bh0KFDsLOzg0qlwq1bt6Q+r7zyCk6dOoUdO3Zg+/bt2Lt3LyZMmGD0/SXSl5vSBonDAiGX3UtJcpkMHw4LgJvSxsSVERG1PDIhhLh/N+MJDQ1F7969sXz5cgCARqOBp6cnJk6ciLi4uBr9o6OjUVZWhu3bt0ttffv2RXBwMFatWgUhBNzd3TFlyhRMnToVAKBWq+Hi4oKkpCSMGDECp0+fhr+/P44cOYJevXoBANLS0vDMM8/gjz/+gLu7+33rLi0thVKphFqthoODgyEOBVGD5KsrkFtcDi8nW4YjIqJGaujvt0lHkG7fvo3MzExERkZKbRYWFoiMjERGRkat62RkZGj1BwCVSiX1z8nJQUFBgVYfpVKJ0NBQqU9GRgYcHR2lcAQAkZGRsLCwwKFDh2r93MrKSpSWlmq9iEzBTWmDMJ8ODEdEREZk0oBUXFyMqqoquLi4aLW7uLigoKCg1nUKCgrq7V/97/36dOzYUWt5mzZt0L59+zo/NzExEUqlUnp5eno2cC+JiIjI3Jj8GiRzMX36dKjVaul16dIlU5dERERERmLSgOTk5AS5XI7CwkKt9sLCQri6uta6jqura739q/+9Xx/di8Dv3r2L69ev1/m51tbWcHBw0HoRERFRy2TSgGRlZYWQkBCkp6dLbRqNBunp6QgLC6t1nbCwMK3+ALBjxw6pv7e3N1xdXbX6lJaW4tChQ1KfsLAwlJSUIDMzU+qzc+dOaDQahIaGGmz/iIiIyDyZ/FEjsbGxiImJQa9evdCnTx8sWbIEZWVlGDt2LABgzJgx8PDwQGJiIgBg0qRJCA8Px6JFizBkyBBs2LABR48exWeffQYAkMlkmDx5MubPnw9fX194e3tj1qxZcHd3R1RUFACgR48eeOqppzB+/HisWrUKd+7cwdtvv40RI0Y06A42IiIiatlMHpCio6Nx9epVxMfHo6CgAMHBwUhLS5Muss7Ly4OFxf8Guvr164f169dj5syZmDFjBnx9fbFlyxYEBARIfaZNm4aysjJMmDABJSUlGDBgANLS0qBQKKQ+33zzDd5++2088cQTsLCwwPDhw7F06dKm23EiIiJqtkw+D5K54jxIRERE5scs5kEiIiIiao4YkIiIiIh0MCARERER6WBAIiIiItJh8rvYzFX1te18JhsREZH5qP7dvt89agxIerpx4wYA8JlsREREZujGjRtQKpV1Ludt/nrSaDS4cuUK2rZtC5lM9kDbKi0thaenJy5dutRqpwzgMeAxAHgMAB4DgMegte8/YNxjIITAjRs34O7urjXPoi6OIOnJwsICDz30kEG3yWe88RgAPAYAjwHAYwDwGLT2/QeMdwzqGzmqxou0iYiIiHQwIBERERHpYEBqBqytrZGQkABra2tTl2IyPAY8BgCPAcBjAPAYtPb9B5rHMeBF2kREREQ6OIJEREREpIMBiYiIiEgHAxIRERGRDgYkIiIiIh0MSEayYsUKeHl5QaFQIDQ0FIcPH663/5IlS9C9e3fY2NjA09MT7777Lm7duiUtnz17NmQymdbLz8/P2Luht8bs/507dzB37lz4+PhAoVAgKCgIaWlpD7TN5sDQx8DcvgN79+7Fc889B3d3d8hkMmzZsuW+6+zevRs9e/aEtbU1unbtiqSkpBp9zOl7YIxj0NK/B/n5+Rg1ahS6desGCwsLTJ48udZ+mzZtgp+fHxQKBQIDA5Gammr44g3EGMcgKSmpxvdAoVAYZwcMoLHHICUlBYMHD4azszMcHBwQFhaGH3/8sUY/Y/49YEAyguTkZMTGxiIhIQFZWVkICgqCSqVCUVFRrf3Xr1+PuLg4JCQk4PTp0/jiiy+QnJyMGTNmaPV7+OGHkZ+fL73279/fFLvTaI3d/5kzZ2L16tVYtmwZfv31V7z55pt44YUXkJ2drfc2Tc0YxwAwn+8AAJSVlSEoKAgrVqxoUP+cnBwMGTIEgwYNwrFjxzB58mS8/vrrWn8Uze17YIxjALTs70FlZSWcnZ0xc+ZMBAUF1drn4MGDGDlyJMaNG4fs7GxERUUhKioKJ0+eNGTpBmOMYwDcm2X6z9+D33//3VAlG1xjj8HevXsxePBgpKamIjMzE4MGDcJzzz3XtL8LggyuT58+4q233pLeV1VVCXd3d5GYmFhr/7feeks8/vjjWm2xsbGif//+0vuEhAQRFBRklHoNrbH77+bmJpYvX67VNmzYMPHKK6/ovU1TM8YxMKfvgC4A4rvvvqu3z7Rp08TDDz+s1RYdHS1UKpX03ty+B39mqGPQ0r8HfxYeHi4mTZpUo/3ll18WQ4YM0WoLDQ0Vb7zxxgNWaHyGOgZr1qwRSqXSYHU1pcYeg2r+/v5izpw50ntj/z3gCJKB3b59G5mZmYiMjJTaLCwsEBkZiYyMjFrX6devHzIzM6WhwYsXLyI1NRXPPPOMVr9z587B3d0dXbp0wSuvvIK8vDzj7Yie9Nn/ysrKGkPDNjY20v8q1mebpmSMY1DNHL4D+srIyNA6ZgCgUqmkY2Zu3wN93O8YVGvJ34OGaOhxaulu3ryJzp07w9PTE0OHDsWpU6dMXZLRaDQa3LhxA+3btwfQNH8PGJAMrLi4GFVVVXBxcdFqd3FxQUFBQa3rjBo1CnPnzsWAAQNgaWkJHx8fREREaJ1iCw0NRVJSEtLS0rBy5Urk5OTgsccew40bN4y6P42lz/6rVCp88sknOHfuHDQaDXbs2IGUlBTk5+frvU1TMsYxAMznO6CvgoKCWo9ZaWkpKioqzO57oI/7HQOg5X8PGqKu49RSvgcN0b17d3z55ZfYunUr1q1bB41Gg379+uGPP/4wdWlG8fHHH+PmzZt4+eWXATTN7wIDUjOwe/dufPjhh/j000+RlZWFlJQU/PDDD5g3b57U5+mnn8ZLL72ERx55BCqVCqmpqSgpKcHGjRtNWLlh/POf/4Svry/8/PxgZWWFt99+G2PHjoWFRev5ejbkGLTk7wA1HL8HBABhYWEYM2YMgoODER4ejpSUFDg7O2P16tWmLs3g1q9fjzlz5mDjxo3o2LFjk31u6/kFaiJOTk6Qy+UoLCzUai8sLISrq2ut68yaNQujR4/G66+/jsDAQLzwwgv48MMPkZiYCI1GU+s6jo6O6NatG86fP2/wfXgQ+uy/s7MztmzZgrKyMvz+++84c+YM7O3t0aVLF723aUrGOAa1aa7fAX25urrWeswcHBxgY2Njdt8DfdzvGNSmpX0PGqKu49RSvgf6sLS0xKOPPtrivgcbNmzA66+/jo0bN2qdTmuKvwcMSAZmZWWFkJAQpKenS20ajQbp6ekICwurdZ3y8vIaoyVyuRwAIOp4VN7Nmzdx4cIFuLm5Gahyw9Bn/6spFAp4eHjg7t27+Pe//42hQ4c+8DZNwRjHoDbN9Tugr7CwMK1jBgA7duyQjpm5fQ/0cb9jUJuW9j1oCH2OU0tXVVWFEydOtKjvwbfffouxY8fi22+/xZAhQ7SWNcnfA4Nc6k1aNmzYIKytrUVSUpL49ddfxYQJE4Sjo6MoKCgQQggxevRoERcXJ/VPSEgQbdu2Fd9++624ePGi+Omnn4SPj494+eWXpT5TpkwRu3fvFjk5OeLAgQMiMjJSODk5iaKioibfv/tp7P7/3//9n/j3v/8tLly4IPbu3Ssef/xx4e3tLf773/82eJvNjTGOgTl9B4QQ4saNGyI7O1tkZ2cLAOKTTz4R2dnZ4vfffxdCCBEXFydGjx4t9b948aKwtbUV7733njh9+rRYsWKFkMvlIi0tTepjbt8DYxyDlv49EEJI/UNCQsSoUaNEdna2OHXqlLT8wIEDok2bNuLjjz8Wp0+fFgkJCcLS0lKcOHGiSfetoYxxDObMmSN+/PFHceHCBZGZmSlGjBghFAqFVp/mpLHH4JtvvhFt2rQRK1asEPn5+dKrpKRE6mPsvwcMSEaybNky0alTJ2FlZSX69Okj/u///k9aFh4eLmJiYqT3d+7cEbNnzxY+Pj5CoVAIT09P8be//U3rxzE6Olq4ubkJKysr4eHhIaKjo8X58+ebcI8apzH7v3v3btGjRw9hbW0tOnToIEaPHi0uX77cqG02R4Y+Bub2Hdi1a5cAUONVvd8xMTEiPDy8xjrBwcHCyspKdOnSRaxZs6bGds3pe2CMY9Aavge19e/cubNWn40bN4pu3boJKysr8fDDD4sffvihaXZID8Y4BpMnT5b+/8DFxUU888wzIisrq+l2qpEaewzCw8Pr7V/NmH8PZELUcQ6HiIiIqJXiNUhEREREOhiQiIiIiHQwIBERERHpYEAiIiIi0sGARERERKSDAYmIiIhIBwMSERERkQ4GJCKiFmL37t2QyWQoKSkxdSlEZo8BiYga7bXXXoNMJsOCBQu02rds2QKZTCa9F0Lg888/R1hYGBwcHGBvb4+HH34YkyZNavBDNcvLyzF9+nT4+PhAoVDA2dkZ4eHh2Lp1q9THy8sLS5YsMci+GVv1sZPJZLC0tIS3tzemTZuGW7duNWo7ERERmDx5slZbv379kJ+fD6VSacCKiVonBiQi0otCocDChQvx3//+t9blQgiMGjUK77zzDp555hn89NNP+PXXX/HFF19AoVBg/vz5DfqcN998EykpKVi2bBnOnDmDtLQ0vPjii7h27Zohd6dJPfXUU8jPz8fFixexePFirF69GgkJCQ+8XSsrK7i6umqFVCLSk8EeWkJErUZMTIx49tlnhZ+fn3jvvfek9u+++05U/1n59ttvBQCxdevWWreh0Wga9FlKpVIkJSXVuby2ZzZV27dvnxgwYIBQKBTioYceEhMnThQ3b96Uln/11VciJCRE2NvbCxcXFzFy5EhRWFgoLa9+flRaWpoIDg4WCoVCDBo0SBQWForU1FTh5+cn2rZtK0aOHCnKysoatD8xMTFi6NChWm3Dhg0Tjz76qPS+uLhYjBgxQri7uwsbGxsREBAg1q9fr7UN3X3OycmR6v3zcxw3b94s/P39hZWVlejcubP4+OOPG1QnUWvHESQi0otcLseHH36IZcuW4Y8//qix/Ntvv0X37t3x/PPP17p+Q0c5XF1dkZqaihs3btS6PCUlBQ899BDmzp2L/Px85OfnAwAuXLiAp556CsOHD8cvv/yC5ORk7N+/H2+//ba07p07dzBv3jwcP34cW7ZsQW5uLl577bUanzF79mwsX74cBw8exKVLl/Dyyy9jyZIlWL9+PX744Qf89NNPWLZsWYP2R9fJkydx8OBBWFlZSW23bt1CSEgIfvjhB5w8eRITJkzA6NGjcfjwYQDAP//5T4SFhWH8+PHSPnt6etbYdmZmJl5++WWMGDECJ06cwOzZszFr1iwkJSXpVStRq2LqhEZE5ufPoyB9+/YVf/nLX4QQ2iNIfn5+4vnnn9dab9KkScLOzk7Y2dkJDw+PBn3Wnj17xEMPPSQsLS1Fr169xOTJk8X+/fu1+nTu3FksXrxYq23cuHFiwoQJWm379u0TFhYWoqKiotbPOnLkiAAgbty4IYT43wjSzz//LPVJTEwUAMSFCxektjfeeEOoVKoG7U9MTIyQy+XCzs5OWFtbCwDCwsJCbN68ud71hgwZIqZMmSK9Dw8PF5MmTdLqozuCNGrUKDF48GCtPu+9957w9/dvUK1ErRlHkIjogSxcuBBr167F6dOn79v373//O44dO4b4+HjcvHmzQdsfOHAgLl68iPT0dLz44os4deoUHnvsMcybN6/e9Y4fP46kpCTY29tLL5VKBY1Gg5ycHAD3Rliee+45dOrUCW3btkV4eDgAIC8vT2tbjzzyiPTfLi4usLW1RZcuXbTaioqKGrQ/ADBo0CAcO3YMhw4dQkxMDMaOHYvhw4dLy6uqqjBv3jwEBgaiffv2sLe3x48//lijrvs5ffo0+vfvr9XWv39/nDt3DlVVVY3aFlFrw4BERA9k4MCBUKlUmD59ula7r68vzp49q9Xm7OyMrl27omPHjo36DEtLSzz22GN4//338dNPP2Hu3LmYN28ebt++Xec6N2/exBtvvIFjx45Jr+PHj+PcuXPw8fFBWVkZVCoVHBwc8M033+DIkSP47rvvAKDGdi0tLaX/rr777M9kMhk0Gk2D98fOzg5du3ZFUFAQvvzySxw6dAhffPGFtPwf//gH/vnPf+L999/Hrl27cOzYMahUqnr3l4gMq42pCyAi87dgwQIEBweje/fuUtvIkSMxatQobN26FUOHDjXo5/n7++Pu3bu4desWrKysYGVlVWNEpGfPnvj111/RtWvXWrdx4sQJXLt2DQsWLJCu3zl69KhB62wICwsLzJgxA7GxsRg1ahRsbGxw4MABDB06FK+++ioAQKPR4LfffoO/v7+0Xm37rKtHjx44cOCAVtuBAwfQrVs3yOVyw+8MUQvCESQiemCBgYF45ZVXsHTpUqltxIgRePHFFzFixAjMnTsXhw4dQm5uLvbs2YPk5OQG/0BHRERg9erVyMzMRG5uLlJTUzFjxgwMGjQIDg4OAO7Ng7R3715cvnwZxcXFAID3338fBw8exNtvv41jx47h3Llz2Lp1q3SRdqdOnWBlZYVly5bh4sWL2LZt231P2xnLSy+9BLlcjhUrVgC4N/q2Y8cOHDx4EKdPn8Ybb7yBwsJCrXW8vLykY1pcXFzrCNaUKVOQnp6OefPm4bfffsPatWuxfPlyTJ06tUn2i8icMSARkUHMnTtX60daJpMhOTkZS5YsQWpqKp544gl0794df/nLX+Dp6Yn9+/c3aLsqlQpr167Fk08+iR49emDixIlQqVTYuHGj1mfn5ubCx8cHzs7OAO5dN7Rnzx789ttveOyxx/Doo48iPj4e7u7uAO6d7ktKSsKmTZvg7++PBQsW4OOPPzbgEWm4Nm3a4O2338ZHH32EsrIyzJw5Ez179oRKpUJERARcXV0RFRWltc7UqVMhl8vh7+8PZ2fnWq9P6tmzJzZu3IgNGzYgICAA8fHxmDt3bq136hGRNpkQQpi6CCIiIqLmhCNIRERERDoYkIjIpP58G77ua9++faYur1Hy8vLq3Z/G3qZPRKbDU2xEZFL1PbTWw8MDNjY2TVjNg7l79y5yc3PrXO7l5YU2bXjzMJE5YEAiIiIi0sFTbEREREQ6GJCIiIiIdDAgEREREelgQCIiIiLSwYBEREREpIMBiYiIiEgHAxIRERGRDgYkIiIiIh3/D2fa35scwQumAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR4NJREFUeJzt3Xt8z/X///H7e7Pz7C12JAzlsJxyqEY5lFrlUzEVESM6oqT6hG9F9DX16xPl/OuADiSl8z5FCjFJpJAUJsoOrT57D2PYnr8/fPb+9c6wvfd+7729drteLu/LxZ6v5+v1erxevdr7vufrZDPGGAEAAFiUn68LAAAA8CbCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDoAqYdKkSbLZbGXqa7PZNGnSJK/W06NHD/Xo0aPKLg9A2RF2ALhYuHChbDab81OrVi01aNBAQ4cO1W+//ebr8qqc+Ph4l/0VHR2tK664Qu+++65Hll9QUKBJkyZp9erVHlkeUBMRdgCUavLkyXrttdc0b948XXfddXr99dfVvXt3HTt2zCvre+yxx3T06FGvLNvb2rdvr9dee02vvfaaHn74YR08eFDJycmaN29ehZddUFCgJ598krADVEAtXxcAoGq67rrr1KlTJ0nSiBEjFBkZqaeffloffPCBbr31Vo+vr1atWqpVq3r+SmrQoIFuv/12589DhgzRBRdcoOnTp+uee+7xYWUAJEZ2AJTRFVdcIUnas2ePS/uPP/6om2++WXXr1lVwcLA6deqkDz74wKXPiRMn9OSTT+rCCy9UcHCw6tWrp8svv1wrV6509intmp3CwkI9+OCDioqKUu3atXXjjTfq119/Pa22oUOHKj4+/rT20pa5YMECXXnllYqOjlZQUJASEhI0d+7ccu2Lc4mNjVWrVq2UkZFx1n45OTkaPny4YmJiFBwcrHbt2mnRokXO6fv27VNUVJQk6cknn3SeKvP29UqA1VTPP6MAVLp9+/ZJks477zxn244dO9S1a1c1aNBA48aNU1hYmN566y316dNH77zzjvr27SvpVOhITU3ViBEjdMkllyg/P1/ffPONtmzZoquvvvqM6xwxYoRef/11DRw4UF26dNHnn3+u3r17V2g75s6dq4suukg33nijatWqpQ8//FD33XefiouLNXLkyAotu8SJEyd04MAB1atX74x9jh49qh49emj37t0aNWqUmjRpomXLlmno0KHKy8vTAw88oKioKM2dO1f33nuv+vbtq+TkZElS27ZtPVInUGMYAPiLBQsWGEnms88+M7///rs5cOCAefvtt01UVJQJCgoyBw4ccPa96qqrTJs2bcyxY8ecbcXFxaZLly7mwgsvdLa1a9fO9O7d+6zrnThxovnrr6StW7caSea+++5z6Tdw4EAjyUycONHZlpKSYho3bnzOZRpjTEFBwWn9kpKSTNOmTV3aunfvbrp3737Wmo0xpnHjxuaaa64xv//+u/n999/Nd999ZwYMGGAkmdGjR59xeTNmzDCSzOuvv+5sO378uElMTDTh4eEmPz/fGGPM77//ftr2AigfTmMBKFWvXr0UFRWlhg0b6uabb1ZYWJg++OADnX/++ZKkP//8U59//rluvfVWHTp0SLm5ucrNzdUff/yhpKQk/fzzz867t+rUqaMdO3bo559/LvP609LSJEn333+/S/uYMWMqtF0hISHOfzscDuXm5qp79+7au3evHA6HW8tcsWKFoqKiFBUVpXbt2mnZsmUaPHiwnn766TPOk5aWptjYWN12223OtoCAAN1///06fPiw1qxZ41YtAE7HaSwApZo9e7aaN28uh8OhV155RWvXrlVQUJBz+u7du2WM0eOPP67HH3+81GXk5OSoQYMGmjx5sm666SY1b95crVu31rXXXqvBgwef9XTML7/8Ij8/PzVr1sylvUWLFhXarvXr12vixInasGGDCgoKXKY5HA7Z7fZyL/PSSy/VU089JZvNptDQULVq1Up16tQ56zy//PKLLrzwQvn5uf7N2apVK+d0AJ5B2AFQqksuucR5N1afPn10+eWXa+DAgdq1a5fCw8NVXFwsSXr44YeVlJRU6jIuuOACSVK3bt20Z88evf/++1qxYoVeeuklTZ8+XfPmzdOIESMqXOuZHkZYVFTk8vOePXt01VVXqWXLlnruuefUsGFDBQYGKi0tTdOnT3duU3lFRkaqV69ebs0LwPsIOwDOyd/fX6mpqerZs6dmzZqlcePGqWnTppJOnXopyxd93bp1NWzYMA0bNkyHDx9Wt27dNGnSpDOGncaNG6u4uFh79uxxGc3ZtWvXaX3PO+885eXlndb+99GRDz/8UIWFhfrggw/UqFEjZ/sXX3xxzvo9rXHjxvr+++9VXFzsMrrz448/OqdLZw5yAMqOa3YAlEmPHj10ySWXaMaMGTp27Jiio6PVo0cPzZ8/X5mZmaf1//33353//uOPP1ymhYeH64ILLlBhYeEZ13fddddJkl544QWX9hkzZpzWt1mzZnI4HPr++++dbZmZmac9xdjf31+SZIxxtjkcDi1YsOCMdXjL9ddfr6ysLC1dutTZdvLkSc2cOVPh4eHq3r27JCk0NFSSSg1zAMqGkR0AZfbII4/olltu0cKFC3XPPfdo9uzZuvzyy9WmTRvdeeedatq0qbKzs7Vhwwb9+uuv+u677yRJCQkJ6tGjhzp27Ki6devqm2++0dtvv61Ro0adcV3t27fXbbfdpjlz5sjhcKhLly5atWqVdu/efVrfAQMG6NFHH1Xfvn11//33q6CgQHPnzlXz5s21ZcsWZ79rrrlGgYGBuuGGG3T33Xfr8OHDevHFFxUdHV1qYPOmu+66S/Pnz9fQoUO1efNmxcfH6+2339b69es1Y8YM1a5dW9KpC6oTEhK0dOlSNW/eXHXr1lXr1q3VunXrSq0XqNZ8fTsYgKql5NbzTZs2nTatqKjINGvWzDRr1sycPHnSGGPMnj17zJAhQ0xsbKwJCAgwDRo0MP/4xz/M22+/7ZzvqaeeMpdccompU6eOCQkJMS1btjT/+7//a44fP+7sU9pt4kePHjX333+/qVevngkLCzM33HCDOXDgQKm3Yq9YscK0bt3aBAYGmhYtWpjXX3+91GV+8MEHpm3btiY4ONjEx8ebp59+2rzyyitGksnIyHD2K8+t5+e6rf5My8vOzjbDhg0zkZGRJjAw0LRp08YsWLDgtHnT09NNx44dTWBgILehA26wGfOX8VwAAACL4ZodAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaTxUUFJxcbEOHjyo2rVr82h2AACqCWOMDh06pPr165/2Ut2/IuxIOnjwoBo2bOjrMgAAgBsOHDig888//4zTCTuS87HsBw4cUEREhI+rAQAAZZGfn6+GDRs6v8fPhLCj//9W4YiICMIOAADVzLkuQeECZQAAYGmEHQAAYGmEHQAAYGlcswMAqJCioiKdOHHC12XAggICAuTv71/h5RB2AABuMcYoKytLeXl5vi4FFlanTh3FxsZW6Dl4hB0AgFtKgk50dLRCQ0N5KCs8yhijgoIC5eTkSJLi4uLcXhZhBwBQbkVFRc6gU69ePV+XA4sKCQmRJOXk5Cg6OtrtU1pcoAwAKLeSa3RCQ0N9XAmsruQYq8h1YYQdAIDbOHUFb/PEMUbYAQAAlkbYAQCgnNavX682bdooICBAffr08XU5OAfCjhdlOo4qfU+uMh1HfV0KAOC/hg4dKpvNJpvNpoCAADVp0kT//Oc/dezYsTIvY+zYsWrfvr0yMjK0cOFC7xVbiRYuXOjcL/7+/jrvvPN06aWXavLkyXI4HOVens1m03vvvef5Qt3A3VhesnTTfo1fvk3FRvKzSanJbdS/cyNflwUAkHTttddqwYIFOnHihDZv3qyUlBTZbDY9/fTTZZp/z549uueee3T++ee7XcPx48cVGBjo9vzlYYxRUVGRatU6+9d+RESEdu3aJWOM8vLylJ6ertTUVC1YsEDr169X/fr1K6VeT2NkxwsyHUedQUeSio00Yfl2RngAoIoICgpSbGysGjZsqD59+qhXr15auXKlJKm4uFipqalq0qSJQkJC1K5dO7399tuSpH379slms+mPP/7QHXfcIZvN5hzZWbNmjS655BIFBQUpLi5O48aN08mTJ53r7NGjh0aNGqUxY8YoMjJSSUlJWr16tWw2mz799FNdfPHFCgkJ0ZVXXqmcnBz9+9//VqtWrRQREaGBAweqoKDAuayz1SjJudx///vf6tixo4KCgrRu3bpz7hebzabY2FjFxcWpVatWGj58uNLT03X48GH985//dPaLj4/XjBkzXOZt3769Jk2a5JwuSX379pXNZlN8fLz27dsnPz8/ffPNNy7zzZgxQ40bN1ZxcfE563MXYccLMnKPOINOiSJjtC+3oPQZAKCG8+Vp/+3btys9Pd05ypKamqpXX31V8+bN044dO/Tggw/q9ttv15o1a9SwYUNlZmYqIiJCM2bMUGZmpvr376/ffvtN119/vTp37qzvvvtOc+fO1csvv6ynnnrKZV2LFi1SYGCg1q9fr3nz5jnbJ02apFmzZik9PV0HDhzQrbfeqhkzZmjx4sX6+OOPtWLFCs2cOdPZ/2w1/tW4ceM0bdo07dy5U23btnVr/0RHR2vQoEH64IMPVFRUVKZ5Nm3aJElasGCBMjMztWnTJsXHx6tXr15asGCBS98FCxZo6NCh8vPzXiThNJYXNIkMk59NLoHH32ZTfCTPowCAv/PFaf+PPvpI4eHhOnnypAoLC+Xn56dZs2apsLBQU6dO1WeffabExERJUtOmTbVu3TrNnz9f3bt3d766wG63KzY2VpI0Z84cNWzYULNmzZLNZlPLli118OBBPfroo3riiSecX+QXXnihnnnmGWcdmZmZkqSnnnpKXbt2lSQNHz5c48eP1549e9S0aVNJ0s0336wvvvhCjz76aJlqLDF58mRdffXVFd5fLVu21KFDh/THH38oOjr6nP2joqIk/f9XPZQYMWKE7rnnHj333HMKCgrSli1btG3bNr3//vsVrvFsGNnxgjh7iFKT28j/v88G8LfZNDW5teLsIT6uDACqFl+d9u/Zs6e2bt2qjRs3KiUlRcOGDVO/fv20e/duFRQU6Oqrr1Z4eLjz8+qrr2rPnj1nXN7OnTuVmJjo8kyYrl276vDhw/r111+dbR07dix1/r+OusTExCg0NNQZdEraSl6bUJ4aO3XqVL4dcwbGnPoPVNFn3vTp00f+/v569913JZ26KLpnz57O017ewsiOl/Tv3EjdmkdpX26B4iNDCToAUIqznfb35u/NsLAwXXDBBZKkV155Re3atdPLL7+s1q1bS5I+/vhjNWjQwGWeoKAgj6y3NAEBAc5/l9wl9lc2m815Tcvhw4fLXOOZ1ldeO3fuVEREhPPVIH5+fs4AVKIsTzgODAzUkCFDtGDBAiUnJ2vx4sV6/vnnPVLj2RB2vCjOHkLIAYCzqAqn/f38/DRhwgSNHTtWP/30k4KCgrR//36X00Hn0qpVK73zzjsyxjhHP9avX6/atWtX6I6t0iQkJLhVo7tycnK0ePFi9enTx3k6LioqynkKTpLy8/OVkZHhMl9AQECp1/iMGDFCrVu31pw5c3Ty5EklJyd7dwPEaSwAgA9VldP+t9xyi/z9/TV//nw9/PDDevDBB7Vo0SLt2bNHW7Zs0cyZM7Vo0aIzzn/ffffpwIEDGj16tH788Ue9//77mjhxosaOHevxC29r167tVo1lYYxRVlaWMjMztXPnTr3yyivq0qWL7Ha7pk2b5ux35ZVX6rXXXtOXX36pbdu2KSUl5bSXdMbHx2vVqlXKysrSf/7zH2d7q1atdNlll+nRRx/Vbbfd5nzZpzcxsgMA8KmqcNq/Vq1aGjVqlJ555hllZGQoKipKqamp2rt3r+rUqaMOHTpowoQJZ5y/QYMGSktL0yOPPKJ27dqpbt26Gj58uB577DGv1DtlypRy11gW+fn5iouLk81mU0REhFq0aKGUlBQ98MADioiIcPYbP368MjIy9I9//EN2u11Tpkw5bWTnX//6l8aOHasXX3xRDRo00L59+5zTSm5pv+OOOypUb1nZzN9PutVA+fn5stvtcjgcLv8xAQClO3bsmDIyMtSkSRMFBwf7uhxUM1OmTNGyZcv0/fffn7Pv2Y61sn5/cxoLAABUisOHD2v79u2aNWuWRo8eXWnrJewAAFADXHTRRS63qv/188Ybb1RKDaNGjVLHjh3Vo0ePSjuFJXHNDgAANUJaWtoZbw+PiYmplBoWLlzokxenEnYAAKgBGjdu7OsSfIbTWAAAt3GPC7zNE8cYYQcAUG4lT/j965u4AW8oOcb+/lTp8uA0FgCg3Pz9/VWnTh3n+5pCQ0Mr/N4k4K+MMSooKFBOTo7q1Klz2kMLy4OwAwBwS8nbrEsCD+ANf39zujsIOwAAt9hsNsXFxSk6OrpML4EEyisgIKBCIzolCDsAgArx9/f3yBcS4C1coAwAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAFpPpOKr0PbnKdBz1dSlAlVDL1wUAADxn6ab9Gr98m4qN5GeTUpPbqH/nRr4uC/ApRnYAwCIyHUedQUeSio00Yfl2RnhQ4xF2AMAiMnKPOINOiSJjtC+3wDcFAVUEYQcALKJJZJj8bK5t/jab4iNDfVMQUEUQdoAagotWrS/OHqLU5Dbyt51KPP42m6Ymt1acPcTHlQG+xQXKQA3ARas1R//OjdSteZT25RYoPjKUoAOIkR3A8rhoteaJs4cosVk9gg7wX4QdwOK4aBVATUfYASyOi1YB1HSEHcDiuGgVgKdU1xsdqlTYmTZtmmw2m8aMGeNsO3bsmEaOHKl69eopPDxc/fr1U3Z2tst8+/fvV+/evRUaGqro6Gg98sgjOnnyZCVXD1Rd/Ts30rpxPbXkzsu0blxPLk5GtVVdv2ytYOmm/eo67XMNfHGjuk77XEs37fd1SWVWZe7G2rRpk+bPn6+2bdu6tD/44IP6+OOPtWzZMtntdo0aNUrJyclav369JKmoqEi9e/dWbGys0tPTlZmZqSFDhiggIEBTp071xaYAVVKcPYTRHFRr3FXoO2e60aFb86hq8XulSozsHD58WIMGDdKLL76o8847z9nucDj08ssv67nnntOVV16pjh07asGCBUpPT9dXX30lSVqxYoV++OEHvf7662rfvr2uu+46TZkyRbNnz9bx48d9tUkAAA/irkLfqu43OlSJsDNy5Ej17t1bvXr1cmnfvHmzTpw44dLesmVLNWrUSBs2bJAkbdiwQW3atFFMTIyzT1JSkvLz87Vjx45S11dYWKj8/HyXDwCg6qruX7bVXXW/0cHnYefNN9/Uli1blJqaetq0rKwsBQYGqk6dOi7tMTExysrKcvb5a9ApmV4yrTSpqamy2+3OT8OGDT2wJQAAb6nuX7bVXXW/0cGn1+wcOHBADzzwgFauXKng4OBKW+/48eM1duxY58/5+fkEHgCowkq+bCcs364iY6rdl60VVOenc/s07GzevFk5OTnq0KGDs62oqEhr167VrFmz9Omnn+r48ePKy8tzGd3Jzs5WbGysJCk2NlZff/21y3JL7tYq6fN3QUFBCgoK8vDWAAC8qTp/2VpFdb3Rwaensa666ipt27ZNW7dudX46deqkQYMGOf8dEBCgVatWOefZtWuX9u/fr8TERElSYmKitm3bppycHGeflStXKiIiQgkJCZW+TQAA7+FVGHCHT0d2ateurdatW7u0hYWFqV69es724cOHa+zYsapbt64iIiI0evRoJSYm6rLLLpMkXXPNNUpISNDgwYP1zDPPKCsrS4899phGjhzJ6A0AAKg6z9k5k+nTp8vPz0/9+vVTYWGhkpKSNGfOHOd0f39/ffTRR7r33nuVmJiosLAwpaSkaPLkyT6sGgAAVBU2Y4w5dzdry8/Pl91ul8PhUEREhK/LAQAAZVDW72+f33oOAADgTYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAECFZDqOKn1PrjIdR31dClCqWr4uAABQfS3dtF/jl29TsZH8bFJqchv179zI12UBLhjZAQC4JdNx1Bl0JKnYSBOWb2eEB1UOYQcA4JaM3CPOoFOiyBjtyy3wTUHAGRB2AABuaRIZJj+ba5u/zab4yFDfFAScAWEHAOCWOHuIUpPbyN92KvH422yamtxacfYQH1cGuOICZQCA2/p3bqRuzaO0L7dA8ZGhBB1USYQdAECFxNlDCDmo0jiNBQAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wA8ArMh1Hlb4nlzdgA/A5nqAMwOOWbtqv8cu3qdhIfjYpNbmN+ndu5OuyANRQjOwA8KhMx1Fn0JGkYiNNWL6dER4APkPYAeBRGblHnEGnRJEx2pdb4JuCANR4hB0AHtUkMkx+Ntc2f5tN8ZGhvikIQI1H2AHgUXH2EKUmt5G/7VTi8bfZNDW5NW/FBuAzXKAMwOP6d26kbs2jtC+3QPGRoQQdAD5F2AHgFXH2EEIOgCqB01gAAMDSCDsAAMDSCDsAUAl4ojTgO1yzAwBexhOlAd9iZAcAvIgnSgO+R9gBAC/iidKA7xF2AMCLeKI04HuEHQDwIp4oDfgeFygDgJfxRGnAtwg7AFAJeKI04DucxgIAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJbm07Azd+5ctW3bVhEREYqIiFBiYqL+/e9/O6cfO3ZMI0eOVL169RQeHq5+/fopOzvbZRn79+9X7969FRoaqujoaD3yyCM6efJkZW8KAACootwOO/Hx8Zo8ebL279/v9srPP/98TZs2TZs3b9Y333yjK6+8UjfddJN27NghSXrwwQf14YcfatmyZVqzZo0OHjyo5ORk5/xFRUXq3bu3jh8/rvT0dC1atEgLFy7UE0884XZNAADAYoybpk+fbtq1a2f8/f1Nr169zJIlS8yxY8fcXZzTeeedZ1566SWTl5dnAgICzLJly5zTdu7caSSZDRs2GGOMSUtLM35+fiYrK8vZZ+7cuSYiIsIUFhaWeZ0Oh8NIMg6Ho8L1AwCAylHW72+3R3bGjBmjrVu36uuvv1arVq00evRoxcXFadSoUdqyZUu5l1dUVKQ333xTR44cUWJiojZv3qwTJ06oV69ezj4tW7ZUo0aNtGHDBknShg0b1KZNG8XExDj7JCUlKT8/3zk6VJrCwkLl5+e7fAAAgDVV+JqdDh066IUXXtDBgwc1ceJEvfTSS+rcubPat2+vV155RcaYs86/bds2hYeHKygoSPfcc4/effddJSQkKCsrS4GBgapTp45L/5iYGGVlZUmSsrKyXIJOyfSSaWeSmpoqu93u/DRs2NCNLQcAANVBhcPOiRMn9NZbb+nGG2/UQw89pE6dOumll15Sv379NGHCBA0aNOis87do0UJbt27Vxo0bde+99yolJUU//PBDRcs6q/Hjx8vhcDg/Bw4c8Or6AACA79Ryd8YtW7ZowYIFWrJkifz8/DRkyBBNnz5dLVu2dPbp27evOnfufNblBAYG6oILLpAkdezYUZs2bdLzzz+v/v376/jx48rLy3MZ3cnOzlZsbKwkKTY2Vl9//bXL8kru1irpU5qgoCAFBQWVa3sBAED15PbITufOnfXzzz9r7ty5+u233/Tss8+6BB1JatKkiQYMGFCu5RYXF6uwsFAdO3ZUQECAVq1a5Zy2a9cu7d+/X4mJiZKkxMREbdu2TTk5Oc4+K1euVEREhBISEtzdNAAAYCFuj+zs3btXjRs3PmufsLAwLViw4IzTx48fr+uuu06NGjXSoUOHtHjxYq1evVqffvqp7Ha7hg8frrFjx6pu3bqKiIjQ6NGjlZiYqMsuu0ySdM011yghIUGDBw/WM888o6ysLD322GMaOXIkIzcAAEBSBcJOz549tWnTJtWrV8+lPS8vTx06dNDevXvPuYycnBwNGTJEmZmZstvtatu2rT799FNdffXVkqTp06fLz89P/fr1U2FhoZKSkjRnzhzn/P7+/vroo4907733KjExUWFhYUpJSdHkyZPd3SwAAGAxNnOu26XOwM/PT1lZWYqOjnZpz87OVqNGjVRYWOiRAitDfn6+7Ha7HA6HIiIifF0OAAAog7J+f5d7ZOeDDz5w/rvkdFOJoqIirVq1SvHx8eVdLAAAgFeUO+z06dNHkmSz2ZSSkuIyLSAgQPHx8frXv/7lkeIAAAAqqtxhp7i4WNKpO602bdqkyMhIjxcFAADgKW5foJyRkeHJOgAAALzC7bBzrjueePM4AACoCtwOO++++67LzydOnFBGRoZq1aqlZs2aEXYAAECV4HbY+fbbb09ry8/P19ChQ9W3b98KFQUAAOApFX4R6F9FREToySef1OOPP+7JxQIAALjNo2FHkvNN4gAAAFWB26exXnjhBZefjTHKzMzUa6+9puuuu67ChQEAAHiC22Fn+vTpLj/7+fkpKipKKSkpGj9+fIULAwAA8ASeswMAACytQtfsGGOUm5urP/74w1P1AAAAeJRbYScrK0tDhgzReeedp5iYGEVHR+u8887THXfcoezsbE/XCAAA4LZyn8bKz89Xly5ddPjwYQ0bNkwtW7aUMUY//PCDlixZonXr1mnLli0KDw/3Rr0AAADlUu6w8/zzz8vf3187duxQVFSUy7THHntMXbt21QsvvKAJEyZ4rEgAAAB3lfs01scff6wJEyacFnQkKTo6WuPHj9eHH37okeIAAAAqqtxh56efflKXLl3OOL1Lly7atWtXhYoCAADwlHKHnfz8fNWpU+eM0+vUqaP8/PyK1AQAAOAx5Q47xhj5+Z15NpvNJmNMhYoCAADwlHJfoGyMUfPmzWWz2c44HQAAoKood9hZsGCBN+oAAADwinKHnZSUlHL1X7JkiW688UaFhYWVd1UAAAAVVqHXRZTF3XffzVOVAQCAz3g97HANT9WW6Tiq9D25ynQc9XUpAAB4hdtvPUf1t3TTfo1fvk3FRvKzSanJbdS/cyNflwUAgEd5fWQHVVOm46gz6EhSsZEmLN/OCA8AwHIIOzVURu4RZ9ApUWSM9uUW+KYgAAC8hLBTQzWJDJPf3x6V5G+zKT4y1DcFAQDgJW6FnaKiIq1du1Z5eXnn7Nu4cWMFBAS4sxp4UZw9RKnJbeT/34dD+ttsmprcWnH2EB9XBgCAZ9mMm7dLBQcHa+fOnWrSpImna6p0+fn5stvtcjgcioiI8HU5lSrTcVT7cgsUHxlK0AEAVCtl/f52+26s1q1ba+/evZYIOzVZnD2EkAMAsDS3r9l56qmn9PDDD+ujjz5SZmam8vPzXT4AAABVgdunsf765vO/vhTUGCObzaaioqKKV1dJavJpLAAAqiuvn8b64osv3J0VAACg0rgddrp37+7JOgAAALyiQs/Z+fLLL3X77berS5cu+u233yRJr732mtatW+eR4gAAACrK7bDzzjvvKCkpSSEhIdqyZYsKCwslSQ6HQ1OnTvVYgQBOxwtcAaDsKnQ31rx58/Tiiy+6PDSwa9eu2rJli0eKA3C6pZv2q+u0zzXwxY3qOu1zLd2039clAUCV5nbY2bVrl7p163Zau91uL9OTlQGUHy9wBYDyczvsxMbGavfu3ae1r1u3Tk2bNq1QUQBKxwtcAaD83A47d955px544AFt3LhRNptNBw8e1BtvvKGHH35Y9957rydrBPBfvMAVAMrP7VvPx40bp+LiYl111VUqKChQt27dFBQUpIcfflijR4/2ZI0A/qvkBa4Tlm9XkTG8wBUAysDtJyiXOH78uHbv3q3Dhw8rISFB4eHhnqqt0vAEZVQ3vMAVACrhCcolAgMDlZCQUNHFACgHXuAKAGXndtg5duyYZs6cqS+++EI5OTkqLi52mc7t5wAAoCpwO+wMHz5cK1as0M0336xLLrnE5WWgAAAAVYXbYeejjz5SWlqaunbt6sl6AAAAPMrtW88bNGig2rVre7IWAAAAj3M77PzrX//So48+ql9++cWT9QAAAHiU26exOnXqpGPHjqlp06YKDQ11eT+WJP35558VLg4AAKCi3A47t912m3777TdNnTpVMTExXKAMVHGZjqPKyD2iJpFh3LYOoEZxO+ykp6drw4YNateunSfrAeAFSzftd75A1M8mpSa3Uf/OjXxdFgBUCrev2WnZsqWOHuVNy0BVx5vSAdR0boedadOm6aGHHtLq1av1xx9/KD8/3+UDoGrgTekAajq3T2Nde+21kqSrrrrKpd0YI5vNpqKioopVBsAjSt6U/tfAw5vSAdQkboedL774wpN1APAS3pQOoKZz663nJ06c0LXXXqt58+bpwgsv9EZdlYq3nqMm4E3pAKzGq289DwgI0Pfff+92cQAqH29KB1BTuX2B8u23366XX37Zk7UAAAB4nNvX7Jw8eVKvvPKKPvvsM3Xs2FFhYWEu05977rkKFwcAAFBRboed7du3q0OHDpKkn376yWUaT1MGAABVBXdjAQAAS3P7mp2/+vXXX/Xrr7+We77U1FR17txZtWvXVnR0tPr06aNdu3a59Dl27JhGjhypevXqKTw8XP369VN2drZLn/3796t3794KDQ1VdHS0HnnkEZ08ebJC2wQAAKzB7bBTXFysyZMny263q3HjxmrcuLHq1KmjKVOmqLi4uEzLWLNmjUaOHKmvvvpKK1eu1IkTJ3TNNdfoyJEjzj4PPvigPvzwQy1btkxr1qzRwYMHlZyc7JxeVFSk3r176/jx40pPT9eiRYu0cOFCPfHEE+5uGgAAsBLjpnHjxpmoqCgzZ84c891335nvvvvOzJ4920RFRZkJEya4tcycnBwjyaxZs8YYY0xeXp4JCAgwy5Ytc/bZuXOnkWQ2bNhgjDEmLS3N+Pn5maysLGefuXPnmoiICFNYWFim9TocDiPJOBwOt+oGAAClO5hXYNbv/t0czCvw+LLL+v3t9jU7ixYt0ksvvaQbb7zR2da2bVs1aNBA9913n/73f/+33Mt0OBySpLp160qSNm/erBMnTqhXr17OPi1btlSjRo20YcMGXXbZZdqwYYPatGmjmJgYZ5+kpCTde++92rFjhy6++OLT1lNYWKjCwkLnz7zLCwAAz1u6ab/zRcR+Nik1uY36d25U6XW4fRrrzz//VMuWLU9rb9mypf78889yL6+4uFhjxoxR165d1bp1a0lSVlaWAgMDVadOHZe+MTExysrKcvb5a9ApmV4yrTSpqamy2+3OT8OGDctdLwAAOLNMx1Fn0JFOvZ9vwvLtynQcrfRa3A477dq106xZs05rnzVrltq1a1fu5Y0cOVLbt2/Xm2++6W5JZTZ+/Hg5HA7n58CBA15fJwAANUlG7hGXFxBLUpEx2pdbUOm1uH0a65lnnlHv3r312WefKTExUZK0YcMGHThwQGlpaeVa1qhRo/TRRx9p7dq1Ov/8853tsbGxOn78uPLy8lxGd7KzsxUbG+vs8/XXX7ssr+RurZI+fxcUFKSgoKBy1QgAAMquSWSY/GxyCTz+NpviI0MrvRa3R3a6d++un376SX379lVeXp7y8vKUnJysXbt26YorrijTMowxGjVqlN599119/vnnatKkicv0jh07KiAgQKtWrXK27dq1S/v373cGrMTERG3btk05OTnOPitXrlRERIQSEhLc3TwAAFABcfYQpSa3kf9/HzTsb7NpanJrn7yjr1xvPU9OTtbChQsVERGhV199Vf3796/QCMl9992nxYsX6/3331eLFi2c7Xa7XSEhp3bGvffeq7S0NOd6R48eLUlKT0+XdOrW8/bt26t+/fp65plnlJWVpcGDB2vEiBGaOnVqmergrecAAHhHpuOo9uUWKD4y1ONBp6zf3+UKO4GBgfrll18UFxcnf39/ZWZmKjo62u0iz/RaiQULFmjo0KGSTj1U8KGHHtKSJUtUWFiopKQkzZkzx+UU1S+//KJ7771Xq1evVlhYmFJSUjRt2jTVqlW2s3SEHQAAqh+vhJ22bduqQ4cO6tmzp4YNG6YXXnjhjAsfMmRI+av2EcIOAADVj1fCTnp6usaOHas9e/bozz//VO3atUsdnbHZbG7dfu4rhB0AAKofr4Sdv/Lz81NWVlaFTmNVFYQdAACqn7J+f7t9N1ZGRoaioqLcnR0AAKBSuB12GjdurHXr1un2229XYmKifvvtN0nSa6+9pnXr1nmsQAAAgIpwO+y88847SkpKUkhIiL799lvnu6YcDkeZb/kGAADwNrfDzlNPPaV58+bpxRdfVEBAgLO9a9eu2rJli0eKAwAAqCi3w86uXbvUrVu309rtdrvy8vIqUhMAAIDHuB12YmNjtXv37tPa161bp6ZNm1aoKAAAAE9xO+zceeedeuCBB7Rx40bZbDYdPHhQb7zxhh566CHde++9nqwRAADAbW6/9XzcuHEqLi7WVVddpYKCAnXr1k1BQUF65JFHNGLECE/WCAAA4Da3R3ZsNpv+53/+R3/++ae2b9+ur776Sr///rvsdvtpby8HAADwlXKHncLCQo0fP16dOnVS165dlZaWpoSEBO3YsUMtWrTQ888/rwcffNAbtQIAAJRbuU9jPfHEE5o/f7569eql9PR03XLLLRo2bJi++uor/etf/9Itt9wif39/b9QKAABQbuUOO8uWLdOrr76qG2+8Udu3b1fbtm118uRJfffdd6W+FBQAAMCXyn0a69dff1XHjh0lSa1bt1ZQUJAefPBBgg4AAKiSyh12ioqKFBgY6Py5Vq1aCg8P92hRAAAAnlLu01jGGA0dOlRBQUGSpGPHjumee+5RWFiYS7/ly5d7pkIAAIAKKHfYSUlJcfn59ttv91gxAAAAnlbusLNgwQJv1AEAAOAVbj9UEAAAoDog7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AA+lOk4qvQ9ucp0HPV1KQBgWbV8XQBQUy3dtF/jl29TsZH8bFJqchv179zI12UBgOUwsgP4QKbjqDPoSFKxkSYs384IDwB4AWEH8IGM3CPOoFOiyBjtyy3wTUEAYGGEHcAHmkSGyc/m2uZvsyk+MtQ3BQGAhRF2AB+Is4coNbmN/G2nEo+/zaapya0VZw/xcWUAYD1coAz4SP/OjdSteZT25RYoPjKUoAMAXkLYAXwozh5CyAEAL+M0FgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDlAN8U4tACg77sYCqhneqQUA5cPIDlCN8E4tACg/wg5QjfBOLQAoP8IOUI3wTi0AKD/CDlCN8E4tACg/LlAGqhneqQUA5UPYAaoh3qkFAGXHaSwAAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBpPg07a9eu1Q033KD69evLZrPpvffec5lujNETTzyhuLg4hYSEqFevXvr5559d+vz5558aNGiQIiIiVKdOHQ0fPlyHDx+uxK0AAABVmU/DzpEjR9SuXTvNnj271OnPPPOMXnjhBc2bN08bN25UWFiYkpKSdOzYMWefQYMGaceOHVq5cqU++ugjrV27VnfddVdlbQIAAKjibMYYc+5u3mez2fTuu++qT58+kk6N6tSvX18PPfSQHn74YUmSw+FQTEyMFi5cqAEDBmjnzp1KSEjQpk2b1KlTJ0nSJ598ouuvv16//vqr6tevX6Z15+fny263y+FwKCIiwivbVx6ZjqPKyD2iJpFhPDgOAIAzKOv3d5W9ZicjI0NZWVnq1auXs81ut+vSSy/Vhg0bJEkbNmxQnTp1nEFHknr16iU/Pz9t3LjxjMsuLCxUfn6+y6eqWLppv7pO+1wDX9yortM+19JN+31dEgAA1VqVDTtZWVmSpJiYGJf2mJgY57SsrCxFR0e7TK9Vq5bq1q3r7FOa1NRU2e1256dhw4Yert49mY6jGr98m4r/O9ZWbKQJy7cr03HUt4UBAFCNVdmw403jx4+Xw+Fwfg4cOODrkiRJGblHnEGnRJEx2pdb4JuCAACwgCobdmJjYyVJ2dnZLu3Z2dnOabGxscrJyXGZfvLkSf3555/OPqUJCgpSRESEy6cqaBIZJj+ba5u/zab4yFDfFAQAgAVU2bDTpEkTxcbGatWqVc62/Px8bdy4UYmJiZKkxMRE5eXlafPmzc4+n3/+uYqLi3XppZdWes0VFWcPUWpyG/nbTiUef5tNU5Nbc5EyAAAVUMuXKz98+LB2797t/DkjI0Nbt25V3bp11ahRI40ZM0ZPPfWULrzwQjVp0kSPP/646tev77xjq1WrVrr22mt15513at68eTpx4oRGjRqlAQMGlPlOrKqmf+dG6tY8SvtyCxQfGUrQAQCggnx66/nq1avVs2fP09pTUlK0cOFCGWM0ceJE/d//+3+Vl5enyy+/XHPmzFHz5s2dff/880+NGjVKH374ofz8/NSvXz+98MILCg8PL3MdVe3WcwAAcG5l/f6uMs/Z8SXCDgAA1U+1f84OAACAJxB2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACSpEzHUaXvyVWm46ivSwE8qpavCwAA+N7STfs1fvk2FRvJzyalJrdR/86NfF0W4BGM7ABADZfpOOoMOpJUbKQJy7czwgPLIOwAQA2XkXvEGXRKFBmjfbkFvikI8DDCDgDUcE0iw+Rnc23zt9kUHxnqm4IADyPsAEANF2cPUWpyG/nbTiUef5tNU5NbK84e4uPKAM/gAmUAgPp3bqRuzaO0L7dA8ZGhBB1YCmEHACDp1AgPIQdWxGksAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAADgNZmOo0rfk6tMx1Gf1cBbzwEAgFcs3bRf45dvU7GR/GxSanIb9e/cqNLrYGQHAFAhVeEvd1Q9mY6jzqAjScVGmrB8u0+OE0Z2AABuqyp/uaPqycg94gw6JYqM0b7cAsXZQyq1FkZ2AABuqUp/uaPqaRIZJtvf2myS4iNDK70Wwg4AwC1n+8sdKNXf008lIewAANzSJDJMfn/78vK32XzylzuqnozcI/pbFpYx8kkYJuwAANwSZw9RanIb+dtOJR5/m01Tk1tX+vUYqJqqUhjmAmUAgNv6d26kbs2jtC+3QPGRoQQdOJWE4QnLt6vIGJ+GYcIOAKBC4uwhhJxqJtNxVBm5R9QkMsyr/+2qShgm7AAAUINU9uMCqkIY5podAABqiJr6uADCDgAANURNfVwAYQcAgBqiKt0hVZkIOwAA1BA19XEBXKAMAEANUlXukKpMhB0AAGqYqnCHVGWyzGms2bNnKz4+XsHBwbr00kv19ddf+7okAABQBVgi7CxdulRjx47VxIkTtWXLFrVr105JSUnKycnxdWkAAMDHLBF2nnvuOd15550aNmyYEhISNG/ePIWGhuqVV17xdWkAAMDHqn3YOX78uDZv3qxevXo52/z8/NSrVy9t2LCh1HkKCwuVn5/v8gEAANZU7cNObm6uioqKFBMT49IeExOjrKysUudJTU2V3W53fho2bFgZpQIAAB+o9mHHHePHj5fD4XB+Dhw44OuSAACAl1T7W88jIyPl7++v7Oxsl/bs7GzFxsaWOk9QUJCCgoIqozwAAOBj1X5kJzAwUB07dtSqVaucbcXFxVq1apUSExN9WBkAAKgKqv3IjiSNHTtWKSkp6tSpky655BLNmDFDR44c0bBhw3xdGgAA8DFLhJ3+/fvr999/1xNPPKGsrCy1b99en3zyyWkXLQMAgJrHZowx5+5mbfn5+bLb7XI4HIqIiPB1OQAAoAzK+v1tiZGdiirJezxvBwCA6qPke/tc4zaEHUmHDh2SJJ63AwBANXTo0CHZ7fYzTuc0lk7dvXXw4EHVrl1bNputQsvKz89Xw4YNdeDAgRp7Sox9wD6Q2AcS+6Cmb7/EPpC8uw+MMTp06JDq168vP78z32DOyI5OvV7i/PPP9+gyIyIiauyBXYJ9wD6Q2AcS+6Cmb7/EPpC8tw/ONqJToto/ZwcAAOBsCDsAAMDSCDseFhQUpIkTJ9bo11GwD9gHEvtAYh/U9O2X2AdS1dgHXKAMAAAsjZEdAABgaYQdAABgaYQdAABgaYQdAABgaYSdc5g9e7bi4+MVHBysSy+9VF9//fVZ+8+YMUMtWrRQSEiIGjZsqAcffFDHjh1zTp80aZJsNpvLp2XLlt7ejAopzz44ceKEJk+erGbNmik4OFjt2rXTJ598UqFlVgWe3gfV7ThYu3atbrjhBtWvX182m03vvffeOedZvXq1OnTooKCgIF1wwQVauHDhaX2q03HgjX1g9eMgMzNTAwcOVPPmzeXn56cxY8aU2m/ZsmVq2bKlgoOD1aZNG6WlpXm+eA/wxvYvXLjwtGMgODjYOxvgAeXdB8uXL9fVV1+tqKgoRUREKDExUZ9++ulp/bz9u4CwcxZLly7V2LFjNXHiRG3ZskXt2rVTUlKScnJySu2/ePFijRs3ThMnTtTOnTv18ssva+nSpZowYYJLv4suukiZmZnOz7p16ypjc9xS3n3w2GOPaf78+Zo5c6Z++OEH3XPPPerbt6++/fZbt5fpa97YB1L1Og6OHDmidu3aafbs2WXqn5GRod69e6tnz57aunWrxowZoxEjRrj8kqtux4E39oFk7eOgsLBQUVFReuyxx9SuXbtS+6Snp+u2227T8OHD9e2336pPnz7q06ePtm/f7snSPcIb2y+derLwX4+BX375xVMle1x598HatWt19dVXKy0tTZs3b1bPnj11ww03VP53gsEZXXLJJWbkyJHOn4uKikz9+vVNampqqf1HjhxprrzySpe2sWPHmq5duzp/njhxomnXrp1X6vWG8u6DuLg4M2vWLJe25ORkM2jQILeX6Wve2AfV7Tj4K0nm3XffPWuff/7zn+aiiy5yaevfv79JSkpy/lzdjoO/8tQ+sPpx8Ffdu3c3DzzwwGntt956q+ndu7dL26WXXmruvvvuClboXZ7a/gULFhi73e6xuipTefdBiYSEBPPkk086f66M3wWM7JzB8ePHtXnzZvXq1cvZ5ufnp169emnDhg2lztOlSxdt3rzZOfy2d+9epaWl6frrr3fp9/PPP6t+/fpq2rSpBg0apP3793tvQyrAnX1QWFh42hBsSEiI869Vd5bpS97YByWqy3Hgjg0bNrjsM0lKSkpy7rPqdhy441z7oISVj4OyKOt+srLDhw+rcePGatiwoW666Sbt2LHD1yV5TXFxsQ4dOqS6detKqrzfBYSdM8jNzVVRUZFiYmJc2mNiYpSVlVXqPAMHDtTkyZN1+eWXKyAgQM2aNVOPHj1cTmNdeumlWrhwoT755BPNnTtXGRkZuuKKK3To0CGvbo873NkHSUlJeu655/Tzzz+ruLhYK1eu1PLly5WZmen2Mn3JG/tAql7HgTuysrJK3Wf5+fk6evRotTsO3HGufSBZ/zgoizPtJ6scB+fSokULvfLKK3r//ff1+uuvq7i4WF26dNGvv/7q69K84tlnn9Xhw4d16623Sqq87wTCjgetXr1aU6dO1Zw5c7RlyxYtX75cH3/8saZMmeLsc9111+mWW25R27ZtlZSUpLS0NOXl5emtt97yYeWe8/zzz+vCCy9Uy5YtFRgYqFGjRmnYsGHy86s5h1pZ9oHVjwOUDccBEhMTNWTIELVv317du3fX8uXLFRUVpfnz5/u6NI9bvHixnnzySb311luKjo6u1HXXnG+gcoqMjJS/v7+ys7Nd2rOzsxUbG1vqPI8//rgGDx6sESNGqE2bNurbt6+mTp2q1NRUFRcXlzpPnTp11Lx5c+3evdvj21BR7uyDqKgovffeezpy5Ih++eUX/fjjjwoPD1fTpk3dXqYveWMflKYqHwfuiI2NLXWfRUREKCQkpNodB+441z4ojdWOg7I4036yynFQXgEBAbr44ostdwy8+eabGjFihN566y2XU1aV9buAsHMGgYGB6tixo1atWuVsKy4u1qpVq5SYmFjqPAUFBaeNYPj7+0uSzBleQXb48GHt2bNHcXFxHqrcc9zZByWCg4PVoEEDnTx5Uu+8845uuummCi/TF7yxD0pTlY8DdyQmJrrsM0lauXKlc59Vt+PAHefaB6Wx2nFQFu7sJysrKirStm3bLHUMLFmyRMOGDdOSJUvUu3dvl2mV9rvAY5c6W9Cbb75pgoKCzMKFC80PP/xg7rrrLlOnTh2TlZVljDFm8ODBZty4cc7+EydONLVr1zZLliwxe/fuNStWrDDNmjUzt956q7PPQw89ZFavXm0yMjLM+vXrTa9evUxkZKTJycmp9O0ri/Lug6+++sq88847Zs+ePWbt2rXmyiuvNE2aNDH/+c9/yrzMqsYb+6C6HQeHDh0y3377rfn222+NJPPcc8+Zb7/91vzyyy/GGGPGjRtnBg8e7Oy/d+9eExoaah555BGzc+dOM3v2bOPv728++eQTZ5/qdhx4Yx9Y/Tgwxjj7d+zY0QwcONB8++23ZseOHc7p69evN7Vq1TLPPvus2blzp5k4caIJCAgw27Ztq9RtKwtvbP+TTz5pPv30U7Nnzx6zefNmM2DAABMcHOzSpyop7z544403TK1atczs2bNNZmam85OXl+fsUxm/Cwg75zBz5kzTqFEjExgYaC655BLz1VdfOad1797dpKSkOH8+ceKEmTRpkmnWrJkJDg42DRs2NPfdd5/Ll1z//v1NXFycCQwMNA0aNDD9+/c3u3fvrsQtKr/y7IPVq1ebVq1amaCgIFOvXj0zePBg89tvv5VrmVWRp/dBdTsOvvjiCyPptE/JdqekpJju3bufNk/79u1NYGCgadq0qVmwYMFpy61Ox4E39kFNOA5K69+4cWOXPm+99ZZp3ry5CQwMNBdddJH5+OOPK2eDyskb2z9mzBjn/wMxMTHm+uuvN1u2bKm8jSqn8u6D7t27n7V/CW//LrAZc4bzKwAAABbANTsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAUAWtXr1aNptNeXl5vi4FqPYIO0ANN3ToUNlsNk2bNs2l/b333pPNZnP+bIzRiy++qMTEREVERCg8PFwXXXSRHnjggTK/tLCgoEDjx49Xs2bNFBwcrKioKHXv3l3vv/++s098fLxmzJjhkW3ztpJ9Z7PZFBAQoCZNmuif//ynjh07Vq7l9OjRQ2PGjHFp69KlizIzM2W32z1YMVAzEXYAKDg4WE8//bT+85//lDrdGKOBAwfq/vvv1/XXX68VK1bohx9+0Msvv6zg4GA99dRTZVrPPffco+XLl2vmzJn68ccf9cknn+jmm2/WH3/84cnNqVTXXnutMjMztXfvXk2fPl3z58/XxIkTK7zcwMBAxcbGugROAG7y6MsnAFQ7KSkp5h//+Idp2bKleeSRR5zt7777rin5FbFkyRIjybz//vulLqO4uLhM67Lb7WbhwoVnnF7ae3RKfPnll+byyy83wcHB5vzzzzejR482hw8fdk5/9dVXTceOHU14eLiJiYkxt912m8nOznZOL3mnzyeffGLat29vgoODTc+ePU12drZJS0szLVu2NLVr1za33XabOXLkSJm2JyUlxdx0000ubcnJyebiiy92/pybm2sGDBhg6tevb0JCQkzr1q3N4sWLXZbx923OyMhw1vvXd+u9/fbbJiEhwQQGBprGjRubZ599tkx1AjUdIzsA5O/vr6lTp2rmzJn69ddfT5u+ZMkStWjRQjfeeGOp85d19CE2NlZpaWk6dOhQqdOXL1+u888/X5MnT1ZmZqYyMzMlSXv27NG1116rfv366fvvv9fSpUu1bt06jRo1yjnviRMnNGXKFH333Xd67733tG/fPg0dOvS0dUyaNEmzZs1Senq6Dhw4oFtvvVUzZszQ4sWL9fHHH2vFihWaOXNmmbbn77Zv36709HQFBgY6244dO6aOHTvq448/1vbt23XXXXdp8ODB+vrrryVJzz//vBITE3XnnXc6t7lhw4anLXvz5s269dZbNWDAAG3btk2TJk3S448/roULF7pVK1Cj+DptAfCtv45OXHbZZeaOO+4wxriO7LRs2dLceOONLvM98MADJiwszISFhZkGDRqUaV1r1qwx559/vgkICDCdOnUyY8aMMevWrXPp07hxYzN9+nSXtuHDh5u77rrLpe3LL780fn5+5ujRo6Wua9OmTUaSOXTokDHm/4/sfPbZZ84+qampRpLZs2ePs+3uu+82SUlJZdqelJQU4+/vb8LCwkxQUJCRZPz8/Mzbb7991vl69+5tHnroIefP3bt3Nw888IBLn7+P7AwcONBcffXVLn0eeeQRk5CQUKZagZqMkR0ATk8//bQWLVqknTt3nrPv//zP/2jr1q164okndPjw4TItv1u3btq7d69WrVqlm2++WTt27NAVV1yhKVOmnHW+7777TgsXLlR4eLjzk5SUpOLiYmVkZEg6NfJxww03qFGjRqpdu7a6d+8uSdq/f7/Lstq2bev8d0xMjEJDQ9W0aVOXtpycnDJtjyT17NlTW7du1caNG5WSkqJhw4apX79+zulFRUWaMmWK2rRpo7p16yo8PFyffvrpaXWdy86dO9W1a1eXtq5du+rnn39WUVFRuZYF1DSEHQBO3bp1U1JSksaPH+/SfuGFF2rXrl0ubVFRUbrgggsUHR1drnUEBAToiiuu0KOPPqoVK1Zo8uTJmjJlio4fP37GeQ4fPqy7775bW7dudX6+++47/fzzz2rWrJmOHDmipKQkRURE6I033tCmTZv07rvvStJpyw0ICHD+u+Quqr+y2WwqLi4u8/aEhYXpggsuULt27fTKK69o48aNevnll53T/8//+T96/vnn9eijj+qLL77Q1q1blZSUdNbtBeBZtXxdAICqZdq0aWrfvr1atGjhbLvttts0cOBAvf/++7rppps8ur6EhASdPHlSx44dU2BgoAIDA08bqejQoYN++OEHXXDBBaUuY9u2bfrjjz80bdo05/Uu33zzjUfrLAs/Pz9NmDBBY8eO1cCBAxUSEqL169frpptu0u233y5JKi4u1k8//aSEhATnfKVt89+1atVK69evd2lbv369mjdvLn9/f89vDGAhjOwAcNGmTRsNGjRIL7zwgrNtwIABuvnmmzVgwABNnjxZGzdu1L59+7RmzRotXbq0zF+2PXr00Pz587V582bt27dPaWlpmjBhgnr27KmIiAhJp56zs3btWv3222/Kzc2VJD366KNKT0/XqFGjtHXrVv388896//33nRcoN2rUSIGBgZo5c6b27t2rDz744Jynxrzllltukb+/v2bPni3p1KjYypUrlZ6erp07d+ruu+9Wdna2yzzx8fHOfZqbm1vqyNJDDz2kVatWacqUKfrpp5+0aNEizZo1Sw8//HClbBdQnRF2AJxm8uTJLl+4NptNS5cu1YwZM5SWlqarrrpKLVq00B133KGGDRtq3bp1ZVpuUlKSFi1apGuuuUatWrXS6NGjlZSUpLfeestl3fv27VOzZs0UFRUl6dR1NmvWrNFPP/2kK664QhdffLGeeOIJ1a9fX9KpU2oLFy7UsmXLlJCQoGnTpunZZ5/14B4pu1q1amnUqFF65plndOTIET322GPq0KGDkpKS1KNHD8XGxqpPnz4u8zz88MPy9/dXQkKCoqKiSr2ep0OHDnrrrbf05ptvqnXr1nriiSc0efLkUu84A+DKZowxvi4CAADAWxjZAQAAlkbYAeAxf701/O+fL7/80tfllcv+/fvPuj3lvXUcgO9wGguAx5zthaANGjRQSEhIJVZTMSdPntS+ffvOOD0+Pl61anFDK1AdEHYAAIClcRoLAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABY2v8Dzq5kBTbFjK0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARpZJREFUeJzt3XtcVVXi///34SgXNTAFuRiKV0xFNC9EZepEoTmO5pS3ykvZbaaLQzWJnxIvfaT6NGWjTvZpVLQ+KVamzejHNBoz07xbWeYoYXgBFD8JgogK6/eHP8+3E6CAHA6H/Xo+HvsxnnXWXmet/TjDebf22nvbjDFGAAAAFuLl7g4AAADUNgIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQgDpr2rRpstlslaprs9k0bdo0l/anf//+6t+/f51tD0DlEYAAXFFKSopsNptja9CggVq2bKnx48fr6NGj7u5enRMREeF0vFq0aKG+ffvqo48+qpH2z5w5o2nTpmnDhg010h5gRQQgAJU2Y8YMvfPOO5o/f74GDRqkd999V/369dPZs2dd8nnPP/+8ioqKXNK2q3Xv3l3vvPOO3nnnHT3zzDM6duyYhg8frvnz519122fOnNH06dMJQMBVaODuDgDwHIMGDVKvXr0kSRMnTlRgYKBefvllffzxxxoxYkSNf16DBg3UoIFn/plq2bKl7rvvPsfrsWPHqn379nr99df16KOPurFnACRmgABchb59+0qS0tPTncp/+OEH3X333WrWrJl8fX3Vq1cvffzxx051zp8/r+nTp6tDhw7y9fVV8+bNdcstt2j9+vWOOuWtASouLtaf/vQnBQUF6ZprrtHvfvc7HTlypEzfxo8fr4iIiDLl5bW5aNEi/eY3v1GLFi3k4+Ojzp07680336zSsbiSkJAQXX/99crIyLhsvePHj+vBBx9UcHCwfH19FR0drcWLFzveP3TokIKCgiRJ06dPd5xmc/X6J6C+8cz/tAJQJxw6dEiSdO211zrKvvvuO918881q2bKlJk+erMaNG2v58uUaNmyYPvzwQ911112SLgaR5ORkTZw4UX369FF+fr527NihXbt26fbbb6/wMydOnKh3331XY8aM0U033aTPPvtMgwcPvqpxvPnmm+rSpYt+97vfqUGDBvrHP/6hP/zhDyotLdUf//jHq2r7kvPnz+vw4cNq3rx5hXWKiorUv39/HTx4UI8//rjatGmj999/X+PHj9epU6f01FNPKSgoSG+++aYee+wx3XXXXRo+fLgkqVu3bjXST8AyDABcwaJFi4wk8+mnn5oTJ06Yw4cPmw8++MAEBQUZHx8fc/jwYUfd2267zURFRZmzZ886ykpLS81NN91kOnTo4CiLjo42gwcPvuznJiUlmV/+mdqzZ4+RZP7whz841RszZoyRZJKSkhxl48aNM61bt75im8YYc+bMmTL14uPjTdu2bZ3K+vXrZ/r163fZPhtjTOvWrc0dd9xhTpw4YU6cOGG+/vprM2rUKCPJPPHEExW2N3v2bCPJvPvuu46yc+fOmdjYWNOkSROTn59vjDHmxIkTZcYLoGo4BQag0uLi4hQUFKTw8HDdfffdaty4sT7++GNdd911kqT/+7//02effaYRI0bo9OnTys3NVW5urk6ePKn4+HgdOHDAcdVY06ZN9d133+nAgQOV/vw1a9ZIkp588kmn8kmTJl3VuPz8/Bz/zsvLU25urvr166cff/xReXl51Wpz3bp1CgoKUlBQkKKjo/X+++/r/vvv18svv1zhPmvWrFFISIhGjx7tKGvYsKGefPJJFRQU6PPPP69WXwCURQC6go0bN2rIkCEKCwuTzWbTypUrXfp5l9Yn/HLr1KmTSz8TqKx58+Zp/fr1+uCDD3TnnXcqNzdXPj4+jvcPHjwoY4xeeOEFx4//pS0pKUnSxTUu0sUryk6dOqWOHTsqKipKzz77rL755pvLfv5PP/0kLy8vtWvXzqk8MjLyqsb15ZdfKi4uTo0bN1bTpk0VFBSkKVOmSFK1A1BMTIzWr1+vTz/9VJs3b1Zubq6WLFniFLZ+7aefflKHDh3k5eX8p/n66693vA+gZrAG6AoKCwsVHR2tBx54wHGu3dW6dOmiTz/91PHaU6+CQf3Tp08fx1Vgw4YN0y233KIxY8Zo//79atKkiUpLSyVJzzzzjOLj48tto3379pKkW2+9Venp6Vq1apXWrVunv//973r99dc1f/58TZw48ar7WtENFEtKSpxep6en67bbblOnTp302muvKTw8XN7e3lqzZo1ef/11x5iqKjAwUHFxcdXaF4Dr8ct6BYMGDdKgQYMqfL+4uFj/8R//oaVLl+rUqVPq2rWrXn755au6u2uDBg0UEhJS7f2B2mC325WcnKwBAwZo7ty5mjx5stq2bSvp4mmbyvz4N2vWTBMmTNCECRNUUFCgW2+9VdOmTaswALVu3VqlpaVKT093mvXZv39/mbrXXnutTp06Vab817Mo//jHP1RcXKyPP/5YrVq1cpT/61//umL/a1rr1q31zTffqLS01GkW6IcffnC8L1Uc7gBUHqfArtLjjz+uLVu2aNmyZfrmm290zz33aODAgVVa1/BrBw4cUFhYmNq2bat7771XmZmZNdhjoOb0799fffr00ezZs3X27Fm1aNFC/fv311tvvaWsrKwy9U+cOOH498mTJ53ea9Kkidq3b6/i4uIKP+/Sf4z89a9/dSqfPXt2mbrt2rVTXl6e02m1rKysMndjttvtkiRjjKMsLy9PixYtqrAfrnLnnXcqOztbqampjrILFy5ozpw5atKkifr16ydJatSokSSVG/AAVA4zQFchMzNTixYtUmZmpsLCwiRdnPpfu3atFi1apFmzZlW5zZiYGKWkpCgyMlJZWVmaPn26+vbtq7179+qaa66p6SEAV+3ZZ5/VPffco5SUFD366KOaN2+ebrnlFkVFRemhhx5S27ZtlZOToy1btujIkSP6+uuvJUmdO3dW//791bNnTzVr1kw7duzQBx98oMcff7zCz+revbtGjx6tv/3tb8rLy9NNN92ktLQ0HTx4sEzdUaNG6bnnntNdd92lJ598UmfOnNGbb76pjh07ateuXY56d9xxh7y9vTVkyBA98sgjKigo0Ntvv60WLVqUG+Jc6eGHH9Zbb72l8ePHa+fOnYqIiNAHH3ygL7/8UrNnz3b8DfDz81Pnzp2Vmpqqjh07qlmzZuratau6du1aq/0FPJq7L0PzJJLMRx995Hj9z3/+00gyjRs3dtoaNGhgRowYYYwxZt++fUbSZbfnnnuuws/8+eefjb+/v/n73//u6uEBFbp0Gfz27dvLvFdSUmLatWtn2rVrZy5cuGCMMSY9Pd2MHTvWhISEmIYNG5qWLVua3/72t+aDDz5w7Pfiiy+aPn36mKZNmxo/Pz/TqVMn85//+Z/m3LlzjjrlXbJeVFRknnzySdO8eXPTuHFjM2TIEHP48OFyLwtft26d6dq1q/H29jaRkZHm3XffLbfNjz/+2HTr1s34+vqaiIgI8/LLL5uFCxcaSSYjI8NRryqXwV/pEv+K2svJyTETJkwwgYGBxtvb20RFRZlFixaV2Xfz5s2mZ8+extvbm0vigWqwGfOLeV9cls1m00cffaRhw4ZJklJTU3Xvvffqu+++c0yjX9KkSROFhITo3Llz+vHHHy/bbvPmzR13di1P7969FRcXp+Tk5KseAwAA4BTYVenRo4dKSkp0/PhxxyMBfs3b2/uqLmMvKChQenq67r///mq3AQAAnBGArqCgoMBpfUFGRob27NmjZs2aqWPHjrr33ns1duxY/eUvf1GPHj104sQJpaWlqVu3btW6Pf8zzzyjIUOGqHXr1jp27JiSkpJkt9udbowGAACuDqfArmDDhg0aMGBAmfJx48YpJSVF58+f14svvqglS5bo6NGjCgwM1I033qjp06crKiqqyp83atQobdy4USdPnlRQUJBuueUW/ed//meZG78BAIDqIwABAADL4T5AAADAcghAAADAclgEXY7S0lIdO3ZM11xzDbecBwDAQxhjdPr0aYWFhZV5qPCvEYDKcezYMYWHh7u7GwAAoBoOHz6s66677rJ1CEDluHS7+cOHD8vf39/NvQEAAJWRn5+v8PDwSj06igBUjkunvfz9/QlAAAB4mMosX2ERNAAAsBwCEAAAsBwCEAAAsBzWAF2FkpISnT9/3t3dcKuGDRvKbre7uxsAAFQJAagajDHKzs7WqVOn3N2VOqFp06YKCQnhnkkAAI9BAKqGS+GnRYsWatSokWV/+I0xOnPmjI4fPy5JCg0NdXOPAACoHAJQFZWUlDjCT/Pmzd3dHbfz8/OTJB0/flwtWrTgdBgAwCOwCLqKLq35adSokZt7UndcOhZWXw8FAPAcBKBqsuppr/JwLAAAnsatAWjjxo0aMmSIwsLCZLPZtHLlysvWHz9+vGw2W5mtS5cujjrTpk0r836nTp1cPBIAAOBJ3BqACgsLFR0drXnz5lWq/htvvKGsrCzHdvjwYTVr1kz33HOPU70uXbo41du0aZMrug8AADyUWwPQoEGD9OKLL+quu+6qVP2AgACFhIQ4th07dujnn3/WhAkTnOo1aNDAqV5gYKAruu+xtmzZIrvdrsGDBzuVHzp0yGnmrFmzZurXr5+++OILN/UUAFDfZOUVaXN6rrLyitzaD49eA7RgwQLFxcWpdevWTuUHDhxQWFiY2rZtq3vvvVeZmZmXbae4uFj5+flOW322YMECPfHEE9q4caOOHTtW5v1PP/1UWVlZ2rhxo8LCwvTb3/5WOTk5bugpAKA+Sd2eqZtf+kxj3t6qm1/6TKnbL//77EoeG4COHTum//3f/9XEiROdymNiYpSSkqK1a9fqzTffVEZGhvr27avTp09X2FZycrICAgIcW3h4uKu77zYFBQVKTU3VY489psGDByslJaVMnebNmyskJERdu3bVlClTlJ+fr61bt9Z+ZwEA9UZWXpESV3yrUnPxdamRpqzY67aZII8NQIsXL1bTpk01bNgwp/JBgwbpnnvuUbdu3RQfH681a9bo1KlTWr58eYVtJSYmKi8vz7EdPnzYxb2/yB3TgMuXL1enTp0UGRmp++67TwsXLpQxpty6RUVFWrJkiSTJ29u71voIAKh/MnILHeHnkhJjdCj3jFv645E3QjTGaOHChbr//vuv+MPctGlTdezYUQcPHqywjo+Pj3x8fGq6m5eVuj3TkYS9bFLy8CiN7N3K5Z+7YMEC3XfffZKkgQMHKi8vT59//rn69+/vqHPTTTfJy8tLZ86ckTFGPXv21G233ebyvgEA6q82gY3lZZNTCLLbbIoIdM999TxyBujzzz/XwYMH9eCDD16xbkFBgdLT0+vUYxrcNQ24f/9+bdu2TaNHj5Z0cbH4yJEjtWDBAqd6qamp2r17tz788EO1b99eKSkpatiwoUv7BgCo30ID/JQ8PEr2///ecXabTbOGd1VogJ9b+uPWGaCCggKnmZmMjAzt2bNHzZo1U6tWrZSYmKijR486TsNcsmDBAsXExKhr165l2nzmmWc0ZMgQtW7dWseOHVNSUpLsdrvjR78uuNw0oCu/CAsWLNCFCxcUFhbmKDPGyMfHR3PnznWUhYeHq0OHDurQoYMuXLigu+66S3v37q31WTIAQP0ysncr3doxSIdyzygisJHbwo/k5hmgHTt2qEePHurRo4ckKSEhQT169NDUqVMlSVlZWWWu4MrLy9OHH35Y4ezPkSNHNHr0aEVGRmrEiBFq3ry5vvrqKwUFBbl2MFVwaRrwl1w9DXjhwgUtWbJEf/nLX7Rnzx7H9vXXXyssLExLly4td7+7775bDRo00N/+9jeX9Q0AYB2hAX6KbdfcreFHcvMMUP/+/StcgCup3CuUAgICdOZMxQumli1bVhNdc6lL04BTVuxViTG1Mg34z3/+Uz///LMefPBBBQQEOL33+9//XgsWLNDAgQPL7Gez2fTkk09q2rRpeuSRR3gGGgCgXvDINUD1wcjerbRp8gAtfehGbZo8wOULoC/dM+nX4Ue6GIB27NhR4f2Pxo0bp/PnzzudJgMAwJN55FVg9UVogF+tTQH+4x//qPC9Pn36OGbiypuRa9Sokf7v//7PZX0DAKC2MQMEAAAshwAEAAAshwAEAAAshwAEAAAshwBUTZe7fN9qOBYAAE9DAKqiS4+EuNy9iKzm0rHgcRkAAE/BZfBVZLfb1bRpUx0/flzSxUvEbTbbFfaqn4wxOnPmjI4fP66mTZvKbre7u0sAAFQKAagaQkJCJMkRgqyuadOmjmMCAIAnIABVg81mU2hoqFq0aKHz58+7uztu1bBhQ2Z+AAAehwB0Fex2Oz/+AAB4IBZBAwAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQBgcVl5RdqcnqusvCJ3d6XW8CwwAAAsLHV7phJXfKtSI3nZpOThURrZu5W7u+VyzAABAGBRWXlFjvAjSaVGmrJiryVmgghAAABYVEZuoSP8XFJijA7lnnFPh2oRAQgAAItqE9hYXjbnMrvNpojARu7pUC0iAAEAYFGhAX5KHh4lu+1iCrLbbJo1vKtCA/zc3DPXYxE0AAAWNrJ3K93aMUiHcs8oIrCRJcKPRAACAMDyQgP8LBN8LuEUGAAAsBwCEAAAsBwCEFAPWPEurgBwNVgDBHg4q97FFQCuBjNAgAez8l1cAeBqEIAAD2blu7gCwNUgAAEezMp3cQWAq0EAAjyYle/iCgBXg0XQgIez6l1cAeBquHUGaOPGjRoyZIjCwsJks9m0cuXKy9bfsGGDbDZbmS07O9up3rx58xQRESFfX1/FxMRo27ZtLhwF4H6hAX6Kbdec8AMAleTWAFRYWKjo6GjNmzevSvvt379fWVlZjq1FixaO91JTU5WQkKCkpCTt2rVL0dHRio+P1/Hjx2u6+wAAwEO59RTYoEGDNGjQoCrv16JFCzVt2rTc91577TU99NBDmjBhgiRp/vz5Wr16tRYuXKjJkydfTXcBAEA94ZGLoLt3767Q0FDdfvvt+vLLLx3l586d086dOxUXF+co8/LyUlxcnLZs2VJhe8XFxcrPz3faAABA/eVRASg0NFTz58/Xhx9+qA8//FDh4eHq37+/du3aJUnKzc1VSUmJgoODnfYLDg4us07ol5KTkxUQEODYwsPDXToOAADgXh51FVhkZKQiIyMdr2+66Salp6fr9ddf1zvvvFPtdhMTE5WQkOB4nZ+fTwgCAKAe86gAVJ4+ffpo06ZNkqTAwEDZ7Xbl5OQ41cnJyVFISEiFbfj4+MjHx8el/QQAAHWHR50CK8+ePXsUGhoqSfL29lbPnj2VlpbmeL+0tFRpaWmKjY11VxcBAEAd49YZoIKCAh08eNDxOiMjQ3v27FGzZs3UqlUrJSYm6ujRo1qyZIkkafbs2WrTpo26dOmis2fP6u9//7s+++wzrVu3ztFGQkKCxo0bp169eqlPnz6aPXu2CgsLHVeFAQAAuDUA7dixQwMGDHC8vrQOZ9y4cUpJSVFWVpYyMzMd7587d05PP/20jh49qkaNGqlbt2769NNPndoYOXKkTpw4oalTpyo7O1vdu3fX2rVryyyMBgAA1mUzxpgrV7OW/Px8BQQEKC8vT/7+/u7uDgAAqISq/H57/BogAACAqiIAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAARaWlVekzem5ysorcndXAKBWNXB3BwC4R+r2TCWu+FalRvKyScnDozSydyt3dwsAagUzQIAFZeUVOcKPJJUaacqKvcwEAbAMAhBgQRm5hY7wc0mJMTqUe8Y9HQKAWkYAAiyoTWBjedmcy+w2myICG7mnQwBQywhAgAWFBvgpeXiU7LaLKchus2nW8K4KDfBzc88AoHawCBqwqJG9W+nWjkE6lHtGEYGNCD8ALIUABFhYaIAfwQeAJXEKDAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWI5bA9DGjRs1ZMgQhYWFyWazaeXKlZetv2LFCt1+++0KCgqSv7+/YmNj9cknnzjVmTZtmmw2m9PWqVMnF44CAAB4GrcGoMLCQkVHR2vevHmVqr9x40bdfvvtWrNmjXbu3KkBAwZoyJAh2r17t1O9Ll26KCsry7Ft2rTJFd0HAAAeyq0PQx00aJAGDRpU6fqzZ892ej1r1iytWrVK//jHP9SjRw9HeYMGDRQSElJT3QQAAPWMR68BKi0t1enTp9WsWTOn8gMHDigsLExt27bVvffeq8zMzMu2U1xcrPz8fKcNAADUXx4dgF599VUVFBRoxIgRjrKYmBilpKRo7dq1evPNN5WRkaG+ffvq9OnTFbaTnJysgIAAxxYeHl4b3QcAAG5iM8YYd3dCkmw2mz766CMNGzasUvXfe+89PfTQQ1q1apXi4uIqrHfq1Cm1bt1ar732mh588MFy6xQXF6u4uNjxOj8/X+Hh4crLy5O/v3+VxgEAANwjPz9fAQEBlfr9dusaoOpatmyZJk6cqPfff/+y4UeSmjZtqo4dO+rgwYMV1vHx8ZGPj09NdxMAANRRHncKbOnSpZowYYKWLl2qwYMHX7F+QUGB0tPTFRoaWgu9AwAAnsCtM0AFBQVOMzMZGRnas2ePmjVrplatWikxMVFHjx7VkiVLJF087TVu3Di98cYbiomJUXZ2tiTJz89PAQEBkqRnnnlGQ4YMUevWrXXs2DElJSXJbrdr9OjRtT9AAABQJ7l1BmjHjh3q0aOH4xL2hIQE9ejRQ1OnTpUkZWVlOV3B9d///d+6cOGC/vjHPyo0NNSxPfXUU446R44c0ejRoxUZGakRI0aoefPm+uqrrxQUFFS7gwMAAHVWnVkEXZdUZREVAACoG6ry++1xa4AAAACuFgEIAABYDgHIA2TlFWlzeq6y8orc3RUAAOoFj7wPkJWkbs9U4opvVWokL5uUPDxKI3u3cne3AADwaMwA1WFZeUWO8CNJpUaasmIvM0EAAFwlAlAdlpFb6Ag/l5QYo0O5Z9zTIQAA6gkCUB3WJrCxvGzOZXabTRGBjdzTIQAA6gkCUB0WGuCn5OFRstsupiC7zaZZw7sqNMDPzT0DAMCzsQi6jhvZu5Vu7RikQ7lnFBHYiPADAEANIAB5gNAAP4IPAAA1iFNgAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAOAGPOQYcC8ugweAWsZDjgH3YwYIAGoRDzkG6gYCEADUInc95JhTboAzToGhjKy8ImXkFqpNYGPuQA3UsEsPOf5lCHL1Q4455QaUxQwQnKRuz9TNL32mMW9v1c0vfabU7Znu7hJQr9T2Q4455QaUjxkgOFT0h/LWjkHMBAE1qDYfcny5U278/xpWRgCCA38ogdpTWw85dscpN8ATcAoMDpf+UP4SfygBz1bbp9wAT8EMEBwu/aGcsmKvSozhDyVQT9TmKTfAUxCA4IQ/lED9VFun3ABPQQBCGfyhBADUd6wBAgAAlkMAAuoQ7tYLALWDU2BAHcHdegGg9jADBNQB3K0XAGoXAQioA9z1gEwAsCoCEFAHcBNKAKhdBCCgDuBuvQBQu1gEDdQR3IQSAGoPAQioQ7gJJQDUDk6BAQDKxX2pUJ8xAwQAKIP7UqG+YwYIAOCE+1LBCtwagDZu3KghQ4YoLCxMNptNK1euvOI+GzZs0A033CAfHx+1b99eKSkpZerMmzdPERER8vX1VUxMjLZt21bznQeAeor7UsEK3BqACgsLFR0drXnz5lWqfkZGhgYPHqwBAwZoz549mjRpkiZOnKhPPvnEUSc1NVUJCQlKSkrSrl27FB0drfj4eB0/ftxVwwCAeoX7UsEKbMYYc+Vqrmez2fTRRx9p2LBhFdZ57rnntHr1au3du9dRNmrUKJ06dUpr166VJMXExKh3796aO3euJKm0tFTh4eF64oknNHny5Er1JT8/XwEBAcrLy5O/v3/1BwUAHip1e6amrNirEmMc96ViDRB+LSuvSBm5hWoT2LhOXMFald9vj1oEvWXLFsXFxTmVxcfHa9KkSZKkc+fOaefOnUpMTHS87+Xlpbi4OG3ZsqXCdouLi1VcXOx4nZ+fX7MdBwAPw32pcCWevlDeoxZBZ2dnKzg42KksODhY+fn5KioqUm5urkpKSsqtk52dXWG7ycnJCggIcGzh4eEu6T8AeJLQAD/FtmtO+EEZ9WGhvEcFIFdJTExUXl6eYzt8+LC7uwQAQJ1VHxbKe9QpsJCQEOXk5DiV5eTkyN/fX35+frLb7bLb7eXWCQkJqbBdHx8f+fj4uKTPAADUN5cWyv8yBHnaQnmPmgGKjY1VWlqaU9n69esVGxsrSfL29lbPnj2d6pSWliotLc1RBwAAXJ368ABnt84AFRQU6ODBg47XGRkZ2rNnj5o1a6ZWrVopMTFRR48e1ZIlSyRJjz76qObOnas///nPeuCBB/TZZ59p+fLlWr16taONhIQEjRs3Tr169VKfPn00e/ZsFRYWasKECbU+PgAA6itPXyjv1gC0Y8cODRgwwPE6ISFBkjRu3DilpKQoKytLmZmZjvfbtGmj1atX609/+pPeeOMNXXfddfr73/+u+Ph4R52RI0fqxIkTmjp1qrKzs9W9e3etXbu2zMJoAABwdTz5Ac515j5AdQn3AQIAwPNU5ffbo9YAAQAAz5aVV6TN6bluv2Teo64CAwAAnqsu3TyRGSAAAOByde3miQQgAADgcnXt5okEIAAA4HKXbp74S+68eWKNBaCzZ8/q1VdfranmAABAPVLXbp5YpcvgT5w4oa1bt8rb21u33Xab7Ha7zp8/r7/97W9KTk7WhQsXlJub68r+1gougwcAwDWy8opcdvPEqvx+V/oqsE2bNum3v/2t8vPzZbPZ1KtXLy1atEjDhg1TgwYNNG3aNI0bN+6qOw8AAOqvunLzxEqfAnv++ed155136ptvvlFCQoK2b9+uu+66S7NmzdL333+vRx99VH5+7h8QAADAlVT6FFjz5s31xRdfqHPnzioqKlKTJk20YsUKDR061NV9rHWcAgMAwPO45E7QP//8swIDAyVJfn5+atSokbp27Xp1PQUAAHCDKt0J+vvvv1d2drYkyRij/fv3q7Cw0KlOt27daq53AAAALlDpU2BeXl6y2Wy6XHWbzaaSkpIa65y7cAoMAADP45KrwDIyMq5Y5/Tp05VtDgAAwG0qHYBat25dbvnp06e1dOlSLViwQDt27KgXM0AAgOrLyitSRm6h2gQ2rhOXOwPlqfbT4Ddu3KgFCxboww8/VFhYmIYPH665c+fWZN8AAB6mLj3tG7icKgWg7OxspaSkaMGCBcrPz9eIESNUXFyslStXqnPnzq7qIwDAA1T0tO9bOwYxE4Q6p9KXwQ8ZMkSRkZH65ptvNHv2bB07dkxz5sxxZd8AAB6krj3tG7icSs8A/e///q+efPJJPfbYY+rQoYMr+wQA8ECXnvb9yxDkzqd9A5dT6RmgTZs26fTp0+rZs6diYmI0d+7cevHgUwBAzahrT/sGLqdKT4OXpMLCQqWmpmrhwoXatm2bSkpK9Nprr+mBBx7QNddc46p+1iruAwQA1efKp30Dl1OV3+8qB6Bf2r9/vxYsWKB33nlHp06d0u23366PP/64us3VGQQgAABcw5W3SXDJs8DKExkZqVdeeUVHjhzR0qVLr6YpAABQz6Vuz9TNL32mMW9v1c0vfabU7Zlu68tVzQDVV8wAAQBQs7LyinTzS5+VWSS/afKAGpsJqrUZIAAAgMqoa7dJIAABAACXu3SbhF9y520SCEAAAMDl6tptEqr9LDAAAICqGNm7lW7tGFQnbpNAAAIAALUmNMCvTtwfilNgAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAACPlZVXpM3pucrKK3J3V+BhuBM0AMAjpW7PVOKKb1VqJC+blDw8SiN7t3J3t+Ah6sQM0Lx58xQRESFfX1/FxMRo27ZtFdbt37+/bDZbmW3w4MGOOuPHjy/z/sCBA2tjKACAWpCVV+QIP5JUaqQpK/YyE4RKc/sMUGpqqhISEjR//nzFxMRo9uzZio+P1/79+9WiRYsy9VesWKFz5845Xp88eVLR0dG65557nOoNHDhQixYtcrz28fFx3SAAALUqI7fQEX4uKTFGh3LP1InnTKHuc/sM0GuvvaaHHnpIEyZMUOfOnTV//nw1atRICxcuLLd+s2bNFBIS4tjWr1+vRo0alQlAPj4+TvWuvfba2hgOAKAWtAlsLC+bc5ndZlNEYCP3dAgex60B6Ny5c9q5c6fi4uIcZV5eXoqLi9OWLVsq1caCBQs0atQoNW7c2Kl8w4YNatGihSIjI/XYY4/p5MmTFbZRXFys/Px8pw3wJCwEhdWEBvgpeXiU7LaLKchus2nW8K7M/qDS3HoKLDc3VyUlJQoODnYqDw4O1g8//HDF/bdt26a9e/dqwYIFTuUDBw7U8OHD1aZNG6Wnp2vKlCkaNGiQtmzZIrvdXqad5ORkTZ8+/eoGA7gJC0FhVSN7t9KtHYN0KPeMIgIbEX5QJW5fA3Q1FixYoKioKPXp08epfNSoUY5/R0VFqVu3bmrXrp02bNig2267rUw7iYmJSkhIcLzOz89XeHi46zoO1JCKFoLe2jGIHwNYQmiAH991VItbT4EFBgbKbrcrJyfHqTwnJ0chISGX3bewsFDLli3Tgw8+eMXPadu2rQIDA3Xw4MFy3/fx8ZG/v7/TBniCyy0EBQBUzK0ByNvbWz179lRaWpqjrLS0VGlpaYqNjb3svu+//76Ki4t13333XfFzjhw5opMnTyo0NPSq+wzUJSwEBYDqcftVYAkJCXr77be1ePFi7du3T4899pgKCws1YcIESdLYsWOVmJhYZr8FCxZo2LBhat68uVN5QUGBnn32WX311Vc6dOiQ0tLSNHToULVv317x8fG1MiagtrAQFACqx+1rgEaOHKkTJ05o6tSpys7OVvfu3bV27VrHwujMzEx5eTnntP3792vTpk1at25dmfbsdru++eYbLV68WKdOnVJYWJjuuOMOzZw5k3sBoV5iISgAVJ3NGGOuXM1a8vPzFRAQoLy8PNYDAQDgIary++32U2AAAAC1jQAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAKhRWXlF2pyeq6y8Ind3BaiQ258FBgCoP1K3ZypxxbcqNZKXTUoeHqWRvVu5u1tAGcwAAQBqRFZekSP8SFKpkaas2MtMEOokAhAAoEZk5BY6ws8lJcboUO4Z93QIuAwCEACgRrQJbCwvm3OZ3WZTRGAj93QIuAwCEACgRoQG+Cl5eJTstospyG6zadbwrgoN8HNzz4CyWAQNAKgxI3u30q0dg3Qo94wiAhsRflBnEYAAADUqNMCP4IM6j1NgAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcupEAJo3b54iIiLk6+urmJgYbdu2rcK6KSkpstlsTpuvr69THWOMpk6dqtDQUPn5+SkuLk4HDhxw9TAAAICHcHsASk1NVUJCgpKSkrRr1y5FR0crPj5ex48fr3Aff39/ZWVlObaffvrJ6f1XXnlFf/3rXzV//nxt3bpVjRs3Vnx8vM6ePevq4QAAAA/g9gD02muv6aGHHtKECRPUuXNnzZ8/X40aNdLChQsr3MdmsykkJMSxBQcHO94zxmj27Nl6/vnnNXToUHXr1k1LlizRsWPHtHLlyloYEQAAqOvcGoDOnTunnTt3Ki4uzlHm5eWluLg4bdmypcL9CgoK1Lp1a4WHh2vo0KH67rvvHO9lZGQoOzvbqc2AgADFxMRU2GZxcbHy8/OdNgAAUH+5NQDl5uaqpKTEaQZHkoKDg5WdnV3uPpGRkVq4cKFWrVqld999V6Wlpbrpppt05MgRSXLsV5U2k5OTFRAQ4NjCw8OvdmgAAKAOc/spsKqKjY3V2LFj1b17d/Xr108rVqxQUFCQ3nrrrWq3mZiYqLy8PMd2+PDhGuwxAACoa9wagAIDA2W325WTk+NUnpOTo5CQkEq10bBhQ/Xo0UMHDx6UJMd+VWnTx8dH/v7+ThsAAKi/3BqAvL291bNnT6WlpTnKSktLlZaWptjY2Eq1UVJSom+//VahoaGSpDZt2igkJMSpzfz8fG3durXSbQIAgPqtgbs7kJCQoHHjxqlXr17q06ePZs+ercLCQk2YMEGSNHbsWLVs2VLJycmSpBkzZujGG29U+/btderUKf3Xf/2XfvrpJ02cOFHSxSvEJk2apBdffFEdOnRQmzZt9MILLygsLEzDhg1z1zABAEAd4vYANHLkSJ04cUJTp05Vdna2unfvrrVr1zoWMWdmZsrL6/9NVP3888966KGHlJ2drWuvvVY9e/bU5s2b1blzZ0edP//5zyosLNTDDz+sU6dO6ZZbbtHatWvL3DARAABYk80YY9zdibomPz9fAQEBysvLYz0QAAAeoiq/3x53FRgAAMDVIgABAADLIQABAADLIQABAADLIQDVsqy8Im1Oz1VWXpG7uwIAgGW5/TJ4K0ndnqnEFd+q1EheNil5eJRG9m7l7m4BAGA5zADVkqy8Ikf4kaRSI01ZsZeZIAAA3IAAVEsycgsd4eeSEmN0KPeMezoEAICFEYBqSZvAxvKyOZfZbTZFBDZyT4cAALAwAlAtCQ3wU/LwKNltF1OQ3WbTrOFdFRrg5+aeAQBgPSyCrkUje7fSrR2DdCj3jCICGxF+AABwEwJQLQsN8CP4AADgZpwCAwAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAiwsK69Im9NzlZVX5O6uAECtauDuDgBwj9TtmUpc8a1KjeRlk5KHR2lk71bu7hYA1ApmgAALysorcoQfSSo10pQVe5kJAmAZBCDAgjJyCx3h55ISY3Qo94x7OgQAtYwABFhQm8DG8rI5l9ltNkUENnJPhwCglhGAAAsKDfBT8vAo2W0XU5DdZtOs4V0VGuDn5p4BQO2oEwFo3rx5ioiIkK+vr2JiYrRt27YK67799tvq27evrr32Wl177bWKi4srU3/8+PGy2WxO28CBA109DMCjjOzdSpsmD9DSh27UpskDWAANwFLcHoBSU1OVkJCgpKQk7dq1S9HR0YqPj9fx48fLrb9hwwaNHj1a//rXv7RlyxaFh4frjjvu0NGjR53qDRw4UFlZWY5t6dKltTEcwKOEBvgptl1zZn4AWI7NGGOuXM11YmJi1Lt3b82dO1eSVFpaqvDwcD3xxBOaPHnyFfcvKSnRtddeq7lz52rs2LGSLs4AnTp1SitXrqxWn/Lz8xUQEKC8vDz5+/tXqw0AAFC7qvL77dYZoHPnzmnnzp2Ki4tzlHl5eSkuLk5btmypVBtnzpzR+fPn1axZM6fyDRs2qEWLFoqMjNRjjz2mkydPVthGcXGx8vPznTYAAFB/uTUA5ebmqqSkRMHBwU7lwcHBys7OrlQbzz33nMLCwpxC1MCBA7VkyRKlpaXp5Zdf1ueff65BgwappKSk3DaSk5MVEBDg2MLDw6s/KAAAUOd59J2gX3rpJS1btkwbNmyQr6+vo3zUqFGOf0dFRalbt25q166dNmzYoNtuu61MO4mJiUpISHC8zs/PJwQBAFCPuXUGKDAwUHa7XTk5OU7lOTk5CgkJuey+r776ql566SWtW7dO3bp1u2zdtm3bKjAwUAcPHiz3fR8fH/n7+zttAACg/nJrAPL29lbPnj2VlpbmKCstLVVaWppiY2Mr3O+VV17RzJkztXbtWvXq1euKn3PkyBGdPHlSoaGhNdJvAADg2dx+GXxCQoLefvttLV68WPv27dNjjz2mwsJCTZgwQZI0duxYJSYmOuq//PLLeuGFF7Rw4UJFREQoOztb2dnZKigokCQVFBTo2Wef1VdffaVDhw4pLS1NQ4cOVfv27RUfH++WMQIAgLrF7WuARo4cqRMnTmjq1KnKzs5W9+7dtXbtWsfC6MzMTHl5/b+c9uabb+rcuXO6++67ndpJSkrStGnTZLfb9c0332jx4sU6deqUwsLCdMcdd2jmzJny8fGp1bEBAIC6ye33AaqLuA8QAACex2PuAwQAAOAOBCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAtSIrr0ib03OVlVfk7q4AgBq4uwMA6r/U7ZlKXPGtSo3kZZOSh0dpZO9W7u4WAAtjBgiAS2XlFTnCjySVGmnKir3MBAFwKwIQAJfKyC10hJ9LSozRodwz7ukQAIgABMDF2gQ2lpfNucxusykisJF7OgQAIgABcLHQAD8lD4+S3XYxBdltNs0a3lWhAX5u7hkAK2MRNACXG9m7lW7tGKRDuWcUEdiI8APA7QhAAGpFaIAfwQdAncEpMAAAYDkEIAAAYDkEIAAAYDl1IgDNmzdPERER8vX1VUxMjLZt23bZ+u+//746deokX19fRUVFac2aNU7vG2M0depUhYaGys/PT3FxcTpw4IArhwAAADyI2wNQamqqEhISlJSUpF27dik6Olrx8fE6fvx4ufU3b96s0aNH68EHH9Tu3bs1bNgwDRs2THv37nXUeeWVV/TXv/5V8+fP19atW9W4cWPFx8fr7NmztTUsAABQh9mMMebK1VwnJiZGvXv31ty5cyVJpaWlCg8P1xNPPKHJkyeXqT9y5EgVFhbqn//8p6PsxhtvVPfu3TV//nwZYxQWFqann35azzzzjCQpLy9PwcHBSklJ0ahRo67Yp/z8fAUEBCgvL0/+/v41NFIAAOBKVfn9dusM0Llz57Rz507FxcU5yry8vBQXF6ctW7aUu8+WLVuc6ktSfHy8o35GRoays7Od6gQEBCgmJqbCNgEAgLW49T5Aubm5KikpUXBwsFN5cHCwfvjhh3L3yc7OLrd+dna24/1LZRXV+bXi4mIVFxc7Xufn51dtIAAAwKO4fQ1QXZCcnKyAgADHFh4e7u4uAQAAF3JrAAoMDJTdbldOTo5TeU5OjkJCQsrdJyQk5LL1L/1vVdpMTExUXl6eYzt8+HC1xgMAADyDWwOQt7e3evbsqbS0NEdZaWmp0tLSFBsbW+4+sbGxTvUlaf369Y76bdq0UUhIiFOd/Px8bd26tcI2fXx85O/v77QBAID6y+3PAktISNC4cePUq1cv9enTR7Nnz1ZhYaEmTJggSRo7dqxatmyp5ORkSdJTTz2lfv366S9/+YsGDx6sZcuWaceOHfrv//5vSZLNZtOkSZP04osvqkOHDmrTpo1eeOEFhYWFadiwYZXq06UL41gLBACA57j0u12pC9xNHTBnzhzTqlUr4+3tbfr06WO++uorx3v9+vUz48aNc6q/fPly07FjR+Pt7W26dOliVq9e7fR+aWmpeeGFF0xwcLDx8fExt912m9m/f3+l+3P48GEjiY2NjY2Njc0Dt8OHD1/xt97t9wGqi0pLS3Xs2DFdc801stlsV9VWfn6+wsPDdfjwYcueWuMYcAwkjoHEMZA4BhLHwJXjN8bo9OnTCgsLk5fX5Vf5uP0UWF3k5eWl6667rkbbZG0Rx0DiGEgcA4ljIHEMJI6Bq8YfEBBQqXpcBg8AACyHAAQAACyHAORiPj4+SkpKko+Pj7u74jYcA46BxDGQOAYSx0DiGNSV8bMIGgAAWA4zQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQNUwb948RUREyNfXVzExMdq2bdtl68+ePVuRkZHy8/NTeHi4/vSnP+ns2bOO96dNmyabzea0derUydXDuCpVOQbnz5/XjBkz1K5dO/n6+io6Olpr1669qjbdrabH72nfgY0bN2rIkCEKCwuTzWbTypUrr7jPhg0bdMMNN8jHx0ft27dXSkpKmTqe9B1wxTGo79+DrKwsjRkzRh07dpSXl5cmTZpUbr33339fnTp1kq+vr6KiorRmzZqa73wNccUxSElJKfM98PX1dc0AakBVj8GKFSt0++23KygoSP7+/oqNjdUnn3xSpp6r/x4QgKooNTVVCQkJSkpK0q5duxQdHa34+HgdP3683PrvvfeeJk+erKSkJO3bt08LFixQamqqpkyZ4lSvS5cuysrKcmybNm2qjeFUS1WPwfPPP6+33npLc+bM0ffff69HH31Ud911l3bv3l3tNt3JFeOXPOs7UFhYqOjoaM2bN69S9TMyMjR48GANGDBAe/bs0aRJkzRx4kSnP3qe9B2QXHMMpPr9PSguLlZQUJCef/55RUdHl1tn8+bNGj16tB588EHt3r1bw4YN07Bhw7R3796a7HqNccUxkC7eJfmX34Offvqpprpc46p6DDZu3Kjbb79da9as0c6dOzVgwAANGTKk9n8TKv2EUBhjjOnTp4/54x//6HhdUlJiwsLCTHJycrn1//jHP5rf/OY3TmUJCQnm5ptvdrxOSkoy0dHRLumvK1T1GISGhpq5c+c6lQ0fPtzce++91W7TnVwxfk/7DvySJPPRRx9dts6f//xn06VLF6eykSNHmvj4eMdrT/oO/FpNHYP6/j34pX79+pmnnnqqTPmIESPM4MGDncpiYmLMI488cpU9dL2aOgaLFi0yAQEBNdav2lTVY3BJ586dzfTp0x2va+PvATNAVXDu3Dnt3LlTcXFxjjIvLy/FxcVpy5Yt5e5z0003aefOnY6pux9//FFr1qzRnXfe6VTvwIEDCgsLU9u2bXXvvfcqMzPTdQO5CtU5BsXFxWWmb/38/Bz/ZVudNt3FFeO/xFO+A9WxZcsWp2MmSfHx8Y5j5knfgeq60jG4pD5/DyqjssepvisoKFDr1q0VHh6uoUOH6rvvvnN3l1ymtLRUp0+fVrNmzSTV3t8DAlAV5ObmqqSkRMHBwU7lwcHBys7OLnefMWPGaMaMGbrlllvUsGFDtWvXTv3793c6BRYTE6OUlBStXbtWb775pjIyMtS3b1+dPn3apeOpjuocg/j4eL322ms6cOCASktLtX79eq1YsUJZWVnVbtNdXDF+ybO+A9WRnZ1d7jHLz89XUVGRR30HqutKx0Cq/9+DyqjoONWX70FlREZGauHChVq1apXeffddlZaW6qabbtKRI0fc3TWXePXVV1VQUKARI0ZIqr3fBAKQi23YsEGzZs3S3/72N+3atUsrVqzQ6tWrNXPmTEedQYMG6Z577lG3bt0UHx+vNWvW6NSpU1q+fLkbe15z3njjDXXo0EGdOnWSt7e3Hn/8cU2YMEFeXtb4+lVm/PX9O4DK4XsASYqNjdXYsWPVvXt39evXTytWrFBQUJDeeustd3etxr333nuaPn26li9frhYtWtTqZ1vjF6iGBAYGym63Kycnx6k8JydHISEh5e7zwgsv6P7779fEiRMVFRWlu+66S7NmzVJycrJKS0vL3adp06bq2LGjDh48WONjuFrVOQZBQUFauXKlCgsL9dNPP+mHH35QkyZN1LZt22q36S6uGH956vJ3oDpCQkLKPWb+/v7y8/PzqO9AdV3pGJSnvn0PKqOi41RfvgfV0bBhQ/Xo0aPefQ+WLVumiRMnavny5U6nu2rr7wEBqAq8vb3Vs2dPpaWlOcpKS0uVlpam2NjYcvc5c+ZMmZkOu90uSTIVPIatoKBA6enpCg0NraGe15zqHINLfH191bJlS124cEEffvihhg4detVt1jZXjL88dfk7UB2xsbFOx0yS1q9f7zhmnvQdqK4rHYPy1LfvQWVU5zjVdyUlJfr222/r1fdg6dKlmjBhgpYuXarBgwc7vVdrfw9qbDm1RSxbtsz4+PiYlJQU8/3335uHH37YNG3a1GRnZxtjjLn//vvN5MmTHfWTkpLMNddcY5YuXWp+/PFHs27dOtOuXTszYsQIR52nn37abNiwwWRkZJgvv/zSxMXFmcDAQHP8+PFaH19lVPUYfPXVV+bDDz806enpZuPGjeY3v/mNadOmjfn5558r3WZd4orxe9p34PTp02b37t1m9+7dRpJ57bXXzO7du81PP/1kjDFm8uTJ5v7773fU//HHH02jRo3Ms88+a/bt22fmzZtn7Ha7Wbt2raOOJ30HjHHNMajv3wNjjKN+z549zZgxY8zu3bvNd99953j/yy+/NA0aNDCvvvqq2bdvn0lKSjINGzY03377ba2OrbJccQymT59uPvnkE5Oenm527txpRo0aZXx9fZ3q1CVVPQb/8z//Yxo0aGDmzZtnsrKyHNupU6ccdWrj7wEBqBrmzJljWrVqZby9vU2fPn3MV1995XivX79+Zty4cY7X58+fN9OmTTPt2rUzvr6+Jjw83PzhD39w+vEbOXKkCQ0NNd7e3qZly5Zm5MiR5uDBg7U4oqqryjHYsGGDuf76642Pj49p3ry5uf/++83Ro0er1GZdU9Pj97TvwL/+9S8jqcx2adzjxo0z/fr1K7NP9+7djbe3t2nbtq1ZtGhRmXY96TvgimNghe9BefVbt27tVGf58uWmY8eOxtvb23Tp0sWsXr26dgZUDa44BpMmTXL8/yA4ONjceeedZteuXbU3qCqq6jHo16/fZetf4uq/BzZjKjgPAwAAUE+xBggAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAPMCGDRtks9l06tQpd3cFqBcIQACcjB8/XjabTS+99JJT+cqVK2Wz2RyvjTF6++23FRsbK39/fzVp0kRdunTRU089VemHNp45c0aJiYlq166dfH19FRQUpH79+mnVqlWOOhEREZo9e3aNjM3VLh07m82mhg0bqk2bNvrzn/+ss2fPVqmd/v37a9KkSU5lN910k7KyshQQEFCDPQasiwAEoAxfX1+9/PLL+vnnn8t93xijMWPG6Mknn9Sdd96pdevW6fvvv9eCBQvk6+urF198sVKf8+ijj2rFihWaM2eOfvjhB61du1Z33323Tp48WZPDqVUDBw5UVlaWfvzxR73++ut66623lJSUdNXtent7KyQkxCmEArgKNfpgDQAeb9y4cea3v/2t6dSpk3n22Wcd5R999JG59Cdj6dKlRpJZtWpVuW2UlpZW6rMCAgJMSkpKhe+X98ygS7744gtzyy23GF9fX3PdddeZJ554whQUFDjeX7JkienZs6dp0qSJCQ4ONqNHjzY5OTmO9y89v2jt2rWme/fuxtfX1wwYMMDk5OSYNWvWmE6dOplrrrnGjB492hQWFlZqPOPGjTNDhw51Khs+fLjp0aOH43Vubq4ZNWqUCQsLM35+fqZr167mvffec2rj12POyMhw9PeXzxH84IMPTOfOnY23t7dp3bq1efXVVyvVTwDGMAMEoAy73a5Zs2Zpzpw5OnLkSJn3ly5dqsjISP3ud78rd//KzlKEhIRozZo1On36dLnvr1ixQtddd51mzJihrKwsZWVlSZLS09M1cOBA/f73v9c333yj1NRUbdq0SY8//rhj3/Pnz2vmzJn6+uuvtXLlSh06dEjjx48v8xnTpk3T3LlztXnzZh0+fFgjRozQ7Nmz9d5772n16tVat26d5syZU6nx/NrevXu1efNmeXt7O8rOnj2rnj17avXq1dq7d68efvhh3X///dq2bZsk6Y033lBsbKweeughx5jDw8PLtL1z506NGDFCo0aN0rfffqtp06bphRdeUEpKSrX6CliOuxMYgLrll7MYN954o3nggQeMMc4zQJ06dTK/+93vnPZ76qmnTOPGjU3jxo1Ny5YtK/VZn3/+ubnuuutMw4YNTa9evcykSZPMpk2bnOq0bt3avP76605lDz74oHn44Yedyr744gvj5eVlioqKyv2s7du3G0nm9OnTxpj/NwP06aefOuokJycbSSY9Pd1R9sgjj5j4+PhKjWfcuHHGbrebxo0bGx8fHyPJeHl5mQ8++OCy+w0ePNg8/fTTjtf9+vUzTz31lFOdX88AjRkzxtx+++1OdZ599lnTuXPnSvUVsDpmgABU6OWXX9bixYu1b9++K9b9j//4D+3Zs0dTp05VQUFBpdq/9dZb9eOPPyotLU133323vvvuO/Xt21czZ8687H5ff/21UlJS1KRJE8cWHx+v0tJSZWRkSLo4QzJkyBC1atVK11xzjfr16ydJyszMdGqrW7dujn8HBwerUaNGatu2rVPZ8ePHKzUeSRowYID27NmjrVu3aty4cZowYYJ+//vfO94vKSnRzJkzFRUVpWbNmqlJkyb65JNPyvTrSvbt26ebb77Zqezmm2/WgQMHVFJSUqW2ACsiAAGo0K233qr4+HglJiY6lXfo0EH79+93KgsKClL79u3VokWLKn1Gw4YN1bdvXz333HNat26dZsyYoZkzZ+rcuXMV7lNQUKBHHnlEe/bscWxff/21Dhw4oHbt2qmwsFDx8fHy9/fX//zP/2j79u366KOPJKlMuw0bNnT8+9LVW79ks9lUWlpa6fE0btxY7du3V3R0tBYuXKitW7dqwYIFjvf/67/+S2+88Yaee+45/etf/9KePXsUHx9/2fECqHkN3N0BAHXbSy+9pO7duysyMtJRNnr0aI0ZM0arVq3S0KFDa/TzOnfurAsXLujs2bPy9vaWt7d3mRmNG264Qd9//73at29fbhvffvutTp48qZdeesmxfmbHjh012s/K8PLy0pQpU5SQkKAxY8bIz89PX375pYYOHar77rtPklRaWqp///vf6ty5s2O/8sb8a9dff72+/PJLp7Ivv/xSHTt2lN1ur/nBAPUMM0AALisqKkr33nuv/vrXvzrKRo0apbvvvlujRo3SjBkztHXrVh06dEiff/65UlNTK/0D3L9/f7311lvauXOnDh06pDVr1mjKlCkaMGCA/P39JV28D9DGjRt19OhR5ebmSpKee+45bd68WY8//rj27NmjAwcOaNWqVY5F0K1atZK3t7fmzJmjH3/8UR9//PEVT6u5yj333CO73a558+ZJujh7tn79em3evFn79u3TI488opycHKd9IiIiHMc0Nze33Bmop59+WmlpaZo5c6b+/e9/a/HixZo7d66eeeaZWhkX4OkIQACuaMaMGU4/wjabTampqZo9e7bWrFmj2267TZGRkXrggQcUHh6uTZs2Vard+Ph4LV68WHfccYeuv/56PfHEE4qPj9fy5cudPvvQoUNq166dgoKCJF1ct/P555/r3//+t/r27asePXpo6tSpCgsLk3TxdFxKSoref/99de7cWS+99JJeffXVGjwildegQQM9/vjjeuWVV1RYWKjnn39eN9xwg+Lj49W/f3+FhIRo2LBhTvs888wzstvt6ty5s4KCgspdH3TDDTdo+fLlWrZsmbp27aqpU6dqxowZ5V7pBqAsmzHGuLsTAAAAtYkZIAAAYDkEIAAu88vL1H+9ffHFF+7uXpVkZmZedjxVvYwdgHtxCgyAy1zuoagtW7aUn59fLfbm6ly4cEGHDh2q8P2IiAg1aMCFtYCnIAABAADL4RQYAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwnP8PyEQkbvPxHp4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHHCAYAAADzrV8YAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVJxJREFUeJzt3X1YVGX+P/D38DAzCDKj8agh4AP4EKlpsJSKreRorkluqUiGLqZtlrlurdqmqLVB6rdczdL6VrS1KVqWrVJpmJmKaIgPqLlqmGaAITEDAj4wn98ffTk/TyAyCByB9+u6zkVz359zzn3ONeu89z5nzuhEREBEREREmnDSegBERERErRnDGBEREZGGGMaIiIiINMQwRkRERKQhhjEiIiIiDTGMEREREWmIYYyIiIhIQwxjRERERBpiGCMiIiLSEMMYEVEdzJ8/Hzqdrk61Op0O8+fPb9TxDB48GIMHD75pt0dEdccwRkTNSkpKCnQ6nbK4uLigY8eOmDhxIs6ePav18G46QUFBqvPl4+ODgQMH4uOPP26Q7ZeVlWH+/PnYtm1bg2yPqDViGCOiZmnhwoV47733sHLlSgwfPhzvv/8+oqKiUFFR0Sj7e+6551BeXt4o225sffr0wXvvvYf33nsPTz/9NH766SeMHj0aK1euvOFtl5WVYcGCBQxjRDfAResBEBHVx/Dhw9G/f38AwOTJk+Hl5YWXXnoJn376KcaMGdPg+3NxcYGLS/P8J7Njx454+OGHldePPPIIunbtildeeQWPPfaYhiMjIoAzY0TUQgwcOBAAcPLkSVX7d999hwcffBDt27eH0WhE//798emnn6pqLl++jAULFqBbt24wGo245ZZbMGDAAGzZskWpqemesYsXL+Ivf/kLvL290bZtW9x///348ccfq41t4sSJCAoKqtZe0zbfeecd/P73v4ePjw8MBgN69uyJ119/3aFzcT1+fn7o0aMHcnNza607d+4cEhIS4OvrC6PRiN69e+Pdd99V+k+dOgVvb28AwIIFC5RLoY19vxxRS9M8/28eEdFvnDp1CgDQrl07pe3w4cO4++670bFjR8yePRvu7u5Yu3YtYmJi8NFHH+GBBx4A8GsoSkpKwuTJkxEeHg6bzYZvv/0W+/btw7333nvNfU6ePBnvv/8+xo8fj7vuugtbt27FiBEjbug4Xn/9dfTq1Qv3338/XFxc8J///AePP/447HY7pk2bdkPbrnL58mWcOXMGt9xyyzVrysvLMXjwYJw4cQJPPPEEgoODsW7dOkycOBHFxcV46qmn4O3tjddffx1//vOf8cADD2D06NEAgNtvv71BxknUaggRUTPyzjvvCAD58ssv5eeff5YzZ87Ihx9+KN7e3mIwGOTMmTNK7ZAhQyQsLEwqKiqUNrvdLnfddZd069ZNaevdu7eMGDGi1v0mJibK1f9k7t+/XwDI448/rqobP368AJDExESlLT4+XgIDA6+7TRGRsrKyanUWi0U6d+6saouKipKoqKhaxywiEhgYKEOHDpWff/5Zfv75Zzlw4ICMGzdOAMiTTz55ze0tXbpUAMj777+vtF26dEkiIyPFw8NDbDabiIj8/PPP1Y6XiBzDy5RE1CxFR0fD29sbAQEBePDBB+Hu7o5PP/0Ut956KwCgqKgIW7duxZgxY1BSUoLCwkIUFhbi/PnzsFgsOH78uPLtS7PZjMOHD+P48eN13n9aWhoAYPr06ar2GTNm3NBxubm5Kf9ttVpRWFiIqKgofP/997BarfXa5ubNm+Ht7Q1vb2/07t0b69atw4QJE/DSSy9dc520tDT4+fkhNjZWaXN1dcX06dNRWlqKr7/+ul5jIaLqeJmSiJqlFStWICQkBFarFW+//Ta2b98Og8Gg9J84cQIigrlz52Lu3Lk1buPcuXPo2LEjFi5ciFGjRiEkJAS33XYbhg0bhgkTJtR6ue2HH36Ak5MTunTpomoPDQ29oePauXMnEhMTkZGRgbKyMlWf1WqFyWRyeJsRERF44YUXoNPp0KZNG/To0QNms7nWdX744Qd069YNTk7q/8/eo0cPpZ+IGgbDGBE1S+Hh4cq3KWNiYjBgwACMHz8ex44dg4eHB+x2OwDg6aefhsViqXEbXbt2BQAMGjQIJ0+exIYNG7B582b87//+L1555RWsXLkSkydPvuGxXuthsZWVlarXJ0+exJAhQ9C9e3e8/PLLCAgIgF6vR1paGl555RXlmBzl5eWF6Ojoeq1LRI2PYYyImj1nZ2ckJSXhnnvuwauvvorZs2ejc+fOAH69tFaXINK+fXtMmjQJkyZNQmlpKQYNGoT58+dfM4wFBgbCbrfj5MmTqtmwY8eOVatt164diouLq7X/dnbpP//5Dy5evIhPP/0UnTp1Utq/+uqr646/oQUGBuLgwYOw2+2q2bHvvvtO6QeuHTSJqO54zxgRtQiDBw9GeHg4li5dioqKCvj4+GDw4MFYtWoV8vLyqtX//PPPyn+fP39e1efh4YGuXbvi4sWL19zf8OHDAQDLli1TtS9durRabZcuXWC1WnHw4EGlLS8vr9pT8J2dnQEAIqK0Wa1WvPPOO9ccR2O57777kJ+fj9TUVKXtypUrWL58OTw8PBAVFQUAaNOmDQDUGDaJqG44M0ZELcYzzzyDhx56CCkpKXjsscewYsUKDBgwAGFhYXj00UfRuXNnFBQUICMjAz/++CMOHDgAAOjZsycGDx6Mfv36oX379vj222/x4Ycf4oknnrjmvvr06YPY2Fi89tprsFqtuOuuu5Ceno4TJ05Uqx03bhxmzZqFBx54ANOnT0dZWRlef/11hISEYN++fUrd0KFDodfrMXLkSEydOhWlpaV488034ePjU2OgbExTpkzBqlWrMHHiRGRlZSEoKAgffvghdu7ciaVLl6Jt27YAfv3CQc+ePZGamoqQkBC0b98et912G2677bYmHS9Rs6b11zmJiBxR9WiLvXv3VuurrKyULl26SJcuXeTKlSsiInLy5El55JFHxM/PT1xdXaVjx47yhz/8QT788ENlvRdeeEHCw8PFbDaLm5ubdO/eXf7xj3/IpUuXlJqaHkNRXl4u06dPl1tuuUXc3d1l5MiRcubMmRof9bB582a57bbbRK/XS2hoqLz//vs1bvPTTz+V22+/XYxGowQFBclLL70kb7/9tgCQ3Nxcpc6RR1tc77Ed19peQUGBTJo0Sby8vESv10tYWJi888471dbdtWuX9OvXT/R6PR9zQVQPOpGr5sOJiIiIqEnxnjEiIiIiDTGMEREREWmIYYyIiIhIQwxjRERERBpiGCMiIiLSEMMYERERkYb40NebnN1ux08//YS2bdvyZ0eIiIiaCRFBSUkJOnTooPpJsZowjN3kfvrpJwQEBGg9DCIiIqqHM2fO4NZbb621hmHsJlf1kyNnzpyBp6enxqMhIiKiurDZbAgICFA+x2vDMHaTq7o06enpyTBGRETUzNTlFiPewE9ERESkIYYxIiIiIg0xjBERERFpiPeMtRCVlZW4fPmy1sNoMVxdXeHs7Kz1MIiIqBVgGGvmRAT5+fkoLi7Weigtjtlshp+fH5/vRkREjYphrJmrCmI+Pj5o06YNg0MDEBGUlZXh3LlzAAB/f3+NR0RERC0Zw1gzVllZqQSxW265RevhtChubm4AgHPnzsHHx4eXLImIqNHwBv5mrOoesTZt2mg8kpap6rzyXjwiImpMDGMtAC9NNg6eVyIiagoMY0REREQaYhgjIiIi0hDDGGkmPz8fTz75JDp37gyDwYCAgACMHDkS6enpKCoqwpNPPonQ0FC4ubmhU6dOmD59OqxWq7L+qVOnoNPpsH///mrbHjx4MGbMmKFqO3r0KO6//36YTCa4u7vjzjvvxOnTpxv5KImI6GaVZy3HrpOFyLOWazoOfpuSNHHq1CncfffdMJvNWLx4McLCwnD58mV88cUXmDZtGj788EP89NNPWLJkCXr27IkffvgBjz32GH766Sd8+OGHDu/v5MmTGDBgABISErBgwQJ4enri8OHDMBqNjXB0RER0s0vdexpz1h+CXQAnHZA0Ogxj7+ykyVgYxkgTjz/+OHQ6Hfbs2QN3d3elvVevXvjTn/4Es9mMjz76SGnv0qUL/vGPf+Dhhx/GlStX4OLi2Fv373//O+677z4sWrRItU0iImp98qzlShADALsAz67PwaAQb/ib3Jp8PLxMSQCadqq2qKgIn3/+OaZNm6YKYlXMZnON61mtVnh6ejocxOx2OzZt2oSQkBBYLBb4+PggIiICn3zyST1GT0REzV1u4QUliFWpFMGpwjJNxsMwRkjdexp3J2/F+DczcXfyVqTubdz7qE6cOAERQffu3eu8TmFhIZ5//nlMmTKlWt9dd90FDw8P1fLNN98o/efOnUNpaSmSk5MxbNgwbN68GQ888ABGjx6Nr7/+ukGOiYiImo9gL3c4/ebpRc46HYK8tHluJy9TtnJaTNWKyPWLrmKz2TBixAj07NkT8+fPr9afmpqKHj16qNri4uKU/7bb7QCAUaNG4S9/+QsAoE+fPti1axdWrlyJqKgoB4+AiIiaM3+TG5JGh+HZ9TmoFIGzTocXR9+mySVKgGGs1attqrax3pTdunWDTqfDd999d93akpISDBs2DG3btsXHH38MV1fXajUBAQHo2rWrqq3q54wAwMvLCy4uLujZs6eqpkePHtixY0c9j4KIiJqzsXd2wqAQb5wqLEOQVxvNghjAy5StnhZTte3bt4fFYsGKFStw4cKFav3FxcUAfp0RGzp0KPR6PT799NN6f/NRr9fjzjvvxLFjx1Tt//3vfxEYGFivbRIRUfPnb3JDZJdbNA1iAMNYq1c1Vev8fz/901RTtStWrEBlZSXCw8Px0Ucf4fjx4zh69CiWLVuGyMhIJYhduHABb731Fmw2G/Lz85Gfn4/KykqH9/fMM88gNTUVb775Jk6cOIFXX30V//nPf/D44483wtERERHVHS9TkiZTtZ07d8a+ffvwj3/8A3/961+Rl5cHb29v9OvXD6+//jr27duHzMxMAKh2CTI3NxdBQUEO7e+BBx7AypUrkZSUhOnTpyM0NBQfffQRBgwY0FCHREREVC86cfRuampSNpsNJpNJeazD1SoqKpCbm4vg4GA+vLQR8PwSEVF91fb5/Vu8TElERESkIYYxIiIiIg0xjBERERFpiGGMiIiISEMMYy0Av4PROHheiYioKTCMNWNVT6MvK9Pmh01buqrzWtNT/4mIiBoKnzPWjDk7O8NsNuPcuXMAgDZt2kCn011nLboeEUFZWRnOnTsHs9kMZ2dnrYdEREQtGMNYM+fn5wcASiCjhmM2m5XzS0RE1FgYxpo5nU4Hf39/+Pj44PLly1oPp8VwdXXljBgRETUJhrEWwtnZmeGBiIioGeIN/EREREQaYhgjIiIi0hDDGBEREZGGGMaIiIiINMQwRkRERKQhhjEiIiIiDWkexlasWIGgoCAYjUZERERgz549tdavW7cO3bt3h9FoRFhYGNLS0lT9IoJ58+bB398fbm5uiI6OxvHjx1U1RUVFiIuLg6enJ8xmMxISElBaWqr0V1RUYOLEiQgLC4OLiwtiYmKqjWPbtm3Q6XTVlvz8/Bs6PiIiImpdNA1jqampmDlzJhITE7Fv3z707t0bFovlmk+T37VrF2JjY5GQkIDs7GzExMQgJiYGOTk5Ss2iRYuwbNkyrFy5EpmZmXB3d4fFYkFFRYVSExcXh8OHD2PLli3YuHEjtm/fjilTpij9lZWVcHNzw/Tp0xEdHV3rMRw7dgx5eXnK4uPjU+/jIyIiolZINBQeHi7Tpk1TXldWVkqHDh0kKSmpxvoxY8bIiBEjVG0REREydepUERGx2+3i5+cnixcvVvqLi4vFYDDI6tWrRUTkyJEjAkD27t2r1Hz22Wei0+nk7Nmz1fYZHx8vo0aNqtb+1VdfCQD55ZdfGuz4amK1WgWAWK3WOq9DRERE2nLk81uzmbFLly4hKytLNfPk5OSE6OhoZGRk1LhORkZGtZkqi8Wi1Ofm5iI/P19VYzKZEBERodRkZGTAbDajf//+Sk10dDScnJyQmZnp8HH06dMH/v7+uPfee7Fz584bOj4AuHjxImw2m2ohIiKilkuzMFZYWIjKykr4+vqq2n19favdd1UlPz+/1vqqv9erufpSIgC4uLigffv219xvTfz9/bFy5Up89NFH+OijjxAQEIDBgwdj37599T4+AEhKSoLJZFKWgICAOo+JiIiImh/+NmU9hYaGIjQ0VHl911134eTJk3jllVfw3nvv1Xu7c+bMwcyZM5XXNpuNgYyIiKgF02xmzMvLC87OzigoKFC1FxQUwM/Pr8Z1/Pz8aq2v+nu9mt/eQH/lyhUUFRVdc791FR4ejhMnTgCo3/EBgMFggKenp2ohIiKilkuzMKbX69GvXz+kp6crbXa7Henp6YiMjKxxncjISFU9AGzZskWpDw4Ohp+fn6rGZrMhMzNTqYmMjERxcTGysrKUmq1bt8JutyMiIuKGjmn//v3w9/ev9/ERERFR66PpZcqZM2ciPj4e/fv3R3h4OJYuXYoLFy5g0qRJAIBHHnkEHTt2RFJSEgDgqaeeQlRUFP7nf/4HI0aMwJo1a/Dtt9/ijTfeAADodDrMmDEDL7zwArp164bg4GDMnTsXHTp0UJ4V1qNHDwwbNgyPPvooVq5cicuXL+OJJ57AuHHj0KFDB2VsR44cwaVLl1BUVISSkhLs378fwK837APA0qVLERwcjF69eqGiogL/+7//i61bt2Lz5s11Pj4iIiIiTR9tISKyfPly6dSpk+j1egkPD5fdu3crfVFRURIfH6+qX7t2rYSEhIher5devXrJpk2bVP12u13mzp0rvr6+YjAYZMiQIXLs2DFVzfnz5yU2NlY8PDzE09NTJk2aJCUlJaqawMBAAVBtqfLSSy9Jly5dxGg0Svv27WXw4MGydetWh46vLvhoCyIioubHkc9vnYiIhlmQrsNms8FkMsFqtfL+MSIiombCkc9vzX8OiYiIiKg1YxgjIiIi0hDDGBEREZGGGMaIiIiINMQwRkRERKQhhjEiIiIiDTGMERERUauUZy3HrpOFyLOWazoO/lA4ERERtTqpe09jzvpDsAvgpAOSRodh7J2dNBkLZ8aIiIioVcmzlitBDADsAjy7PkezGTKGMXLIzTKlS0REVF+5hReUIFalUgSnCss0GQ8vU1Kd3UxTukRERPUV7OUOJx1UgcxZp0OQVxtNxsOZMaqTm21Kl4iIqL78TW5IGh0GZ50OwK9B7MXRt8Hf5KbJeDgzRnVS25SuVm9eIiKi+hp7ZycMCvHGqcIyBHm10fSzjGGM6uRmm9IlIiK6Uf4mt5tiQoGXKalObrYpXSIiopaCM2NUZzfTlC4REVFLwTBGDrlZpnSJiIhaCl6mJCIiItIQwxgRERGRhhjGiIiIiDTEMEZERESkIYYxIiIiIg0xjBERERFpiGGMiIiISEMMY0REREQaYhgjIiIi0hDDGBEREZGGGMaIiIiINMQwRkRERKQhhjEiIiIiDTGMEREREWmIYYyIiIhIQwxjRERERBpiGCMiIiLSEMMYERERkYYYxoiIiIg0xDBGREREpCGGMSIiIiINMYwRERERaYhhjIiIiEhDmoexFStWICgoCEajEREREdizZ0+t9evWrUP37t1hNBoRFhaGtLQ0Vb+IYN68efD394ebmxuio6Nx/PhxVU1RURHi4uLg6ekJs9mMhIQElJaWKv0VFRWYOHEiwsLC4OLigpiYmGrjWL9+Pe699154e3vD09MTkZGR+OKLL1Q18+fPh06nUy3du3d38AwRERFRS6ZpGEtNTcXMmTORmJiIffv2oXfv3rBYLDh37lyN9bt27UJsbCwSEhKQnZ2NmJgYxMTEICcnR6lZtGgRli1bhpUrVyIzMxPu7u6wWCyoqKhQauLi4nD48GFs2bIFGzduxPbt2zFlyhSlv7KyEm5ubpg+fTqio6NrHMv27dtx7733Ii0tDVlZWbjnnnswcuRIZGdnq+p69eqFvLw8ZdmxY8eNnDIiIiJqaURD4eHhMm3aNOV1ZWWldOjQQZKSkmqsHzNmjIwYMULVFhERIVOnThUREbvdLn5+frJ48WKlv7i4WAwGg6xevVpERI4cOSIAZO/evUrNZ599JjqdTs6ePVttn/Hx8TJq1Kg6HU/Pnj1lwYIFyuvExETp3bt3nda9FqvVKgDEarXe0Haaq5+Ky2TniZ/lp+IyrYdCRERUZ458fms2M3bp0iVkZWWpZp6cnJwQHR2NjIyMGtfJyMioNlNlsViU+tzcXOTn56tqTCYTIiIilJqMjAyYzWb0799fqYmOjoaTkxMyMzPrfTx2ux0lJSVo3769qv348ePo0KEDOnfujLi4OJw+fbre+2htUveext3JWzH+zUzcnbwVqXt57oiIqOXRLIwVFhaisrISvr6+qnZfX1/k5+fXuE5+fn6t9VV/r1fj4+Oj6ndxcUH79u2vud+6WLJkCUpLSzFmzBilLSIiAikpKfj888/x+uuvIzc3FwMHDkRJSck1t3Px4kXYbDbV0hrlWcsxZ/0h2OXX13YBnl2fgzxrubYDIyIiamCa38DfEnzwwQdYsGAB1q5dqwp6w4cPx0MPPYTbb78dFosFaWlpKC4uxtq1a6+5raSkJJhMJmUJCAhoikO46eQWXlCCWJVKEZwqLNNmQERERI1EszDm5eUFZ2dnFBQUqNoLCgrg5+dX4zp+fn611lf9vV7Nb78gcOXKFRQVFV1zv7VZs2YNJk+ejLVr117zZv8qZrMZISEhOHHixDVr5syZA6vVqixnzpxxeEwtQbCXO5x06jZnnQ5BXm20GRAREVEj0SyM6fV69OvXD+np6Uqb3W5Heno6IiMja1wnMjJSVQ8AW7ZsUeqDg4Ph5+enqrHZbMjMzFRqIiMjUVxcjKysLKVm69atsNvtiIiIcOgYVq9ejUmTJmH16tUYMWLEdetLS0tx8uRJ+Pv7X7PGYDDA09NTtbRG/iY3JI0Og7Pu10TmrNPhxdG3wd/kpvHIiIiIGlgTfKHgmtasWSMGg0FSUlLkyJEjMmXKFDGbzZKfny8iIhMmTJDZs2cr9Tt37hQXFxdZsmSJHD16VBITE8XV1VUOHTqk1CQnJ4vZbJYNGzbIwYMHZdSoURIcHCzl5eVKzbBhw6Rv376SmZkpO3bskG7duklsbKxqbIcPH5bs7GwZOXKkDB48WLKzsyU7O1vp//e//y0uLi6yYsUKycvLU5bi4mKl5q9//ats27ZNcnNzZefOnRIdHS1eXl5y7ty5Op8jfpuyTHadKOS3KYmIqFlx5PNb0zAmIrJ8+XLp1KmT6PV6CQ8Pl927dyt9UVFREh8fr6pfu3athISEiF6vl169esmmTZtU/Xa7XebOnSu+vr5iMBhkyJAhcuzYMVXN+fPnJTY2Vjw8PMTT01MmTZokJSUlqprAwEABUG25emw19V893rFjx4q/v7/o9Xrp2LGjjB07Vk6cOOHQ+WntYYyIiKg5cuTzWyciUtOMGd0cbDYbTCYTrFZrq71kSURE1Nw48vnNb1MSERERaYhhjIiIiEhDDGNEREREGmIYIyIiItIQwxgRERGRhhjGiIiIiDTEMEZERESkIYYxIiIiIg0xjBERERFpiGGMiBpUnrUcu04WIs9arvVQiIiaBRetB0BELUfq3tOYs/4Q7AI46YCk0WEYe2cnrYdFRHRT48wYETWIPGu5EsQAwC7As+tzOENGRHQdDGNE1CByCy8oQaxKpQhOFZZpMyAiomaCYYyIGkSwlzucdOo2Z50OQV5ttBkQEVEzwTBGRA3C3+SGpNFhcNb9msicdTq8OPo2+JvcNB4ZEdHNjTfwE1GDGXtnJwwK8capwjIEebVhECMiqgOGMSJqUP4mN4YwIiIH8DIlERERkYYYxoiIiIg0xDBGREREpCGGMSIiIiINMYwRERERaYhhjIiIiEhDDGNEREREGmIYIyIiItIQwxgRERGRhhjGiIiIiDTEMEZERESkIYYxIiIiIg0xjBERERFpiGGMiIiISEMMY0REREQaYhgjIiIi0hDDGBEREZGGGMaIiIiINMQwRkRERKQhhjEiIiIiDTGMEREREWmIYYyIiIhIQwxjRERERBpiGCMiIiLSkOZhbMWKFQgKCoLRaERERAT27NlTa/26devQvXt3GI1GhIWFIS0tTdUvIpg3bx78/f3h5uaG6OhoHD9+XFVTVFSEuLg4eHp6wmw2IyEhAaWlpUp/RUUFJk6ciLCwMLi4uCAmJqbGsWzbtg133HEHDAYDunbtipSUlBs+PiIiImpdNA1jqampmDlzJhITE7Fv3z707t0bFosF586dq7F+165diI2NRUJCArKzsxETE4OYmBjk5OQoNYsWLcKyZcuwcuVKZGZmwt3dHRaLBRUVFUpNXFwcDh8+jC1btmDjxo3Yvn07pkyZovRXVlbCzc0N06dPR3R0dI1jyc3NxYgRI3DPPfdg//79mDFjBiZPnowvvvii3sdHRERErZBoKDw8XKZNm6a8rqyslA4dOkhSUlKN9WPGjJERI0ao2iIiImTq1KkiImK328XPz08WL16s9BcXF4vBYJDVq1eLiMiRI0cEgOzdu1ep+eyzz0Sn08nZs2er7TM+Pl5GjRpVrf1vf/ub9OrVS9U2duxYsVgs9T6+mlitVgEgVqu1zusQERGRthz5/NZsZuzSpUvIyspSzTw5OTkhOjoaGRkZNa6TkZFRbabKYrEo9bm5ucjPz1fVmEwmREREKDUZGRkwm83o37+/UhMdHQ0nJydkZmbWefzXG0t9jg8ALl68CJvNplqIiIio5dIsjBUWFqKyshK+vr6qdl9fX+Tn59e4Tn5+fq31VX+vV+Pj46Pqd3FxQfv27a+5X0fGYrPZUF5eXq/jA4CkpCSYTCZlCQgIqPOYiIiIqPnR/AZ+UpszZw6sVquynDlzRushERERUSNy0WrHXl5ecHZ2RkFBgaq9oKAAfn5+Na7j5+dXa33V34KCAvj7+6tq+vTpo9T89gb6K1euoKio6Jr7dWQsnp6ecHNzg7Ozs8PHBwAGgwEGg6HO4yAiIqLmTbOZMb1ej379+iE9PV1ps9vtSE9PR2RkZI3rREZGquoBYMuWLUp9cHAw/Pz8VDU2mw2ZmZlKTWRkJIqLi5GVlaXUbN26FXa7HREREXUe//XGUp/jIyIiolaoCb5QcE1r1qwRg8EgKSkpcuTIEZkyZYqYzWbJz88XEZEJEybI7NmzlfqdO3eKi4uLLFmyRI4ePSqJiYni6uoqhw4dUmqSk5PFbDbLhg0b5ODBgzJq1CgJDg6W8vJypWbYsGHSt29fyczMlB07dki3bt0kNjZWNbbDhw9Ldna2jBw5UgYPHizZ2dmSnZ2t9H///ffSpk0beeaZZ+To0aOyYsUKcXZ2ls8//7zOx1cX/DYlERFR8+PI57emYUxEZPny5dKpUyfR6/USHh4uu3fvVvqioqIkPj5eVb927VoJCQkRvV4vvXr1kk2bNqn67Xa7zJ07V3x9fcVgMMiQIUPk2LFjqprz589LbGyseHh4iKenp0yaNElKSkpUNYGBgQKg2nK1r776Svr06SN6vV46d+4s77zzjkPHVxcMY0RERM2PI5/fOhERzabl6LpsNhtMJhOsVis8PT0bdNt51nLkFl5AsJc7/E1uDbptIiKi1syRz2/NbuAnbaXuPY056w/BLoCTDkgaHYaxd3bSelhEREStDh9t0QrlWcuVIAYAdgGeXZ+DPGu5tgMjIiJqhRjGWqHcwgtKEKtSKYJThWXaDIiIiKgVYxhrhYK93OGkU7c563QI8mqjzYCIiIhaMYaxVsjf5Iak0WFw1v2ayJx1Orw4+jbexE9ERKQB3sDfSo29sxMGhXjjVGEZgrzaMIgRERFphGGsFfM3uTGEERERaYyXKYmIiIg0xDBGREREpCGGMSIiIiINMYwRERERaYhhjIiIiEhDDGNEREREGmIYIyIiItKQQ2Hsxx9/RGFhofL6m2++QVxcHAYOHIiHH34YGRkZDT5AIiIiopbMoTD2xz/+Ebt37wYAbNiwAYMHD0ZpaSnuvvtulJWVISoqChs3bmyUgRIRERG1RDoRkboWe3h44NChQwgODsbvfvc7PPDAA5g1a5bS/+qrr+Ltt9/Gvn37GmWwrZHNZoPJZILVaoWnp6fWwyEiIqI6cOTz26GZMRcXF5SUlAAAcnNzMXz4cFX/8OHDcezYMQeHS0RERNR6ORTGoqKisHr1agBA3759sW3bNlX/V199hY4dOzbY4IiIiIhaOod+KDw5ORkDBw7ETz/9hAEDBuDvf/879u7dix49euDYsWNITU3FypUrG2usRERERC2OQ/eMAcDJkyfx3HPPYdOmTSgtLQXw6+XLO++8E8888wxiYmIaY5ytFu8ZIyIian4c+fx2OIxVERGcO3cOdrsdXl5ecHV1rddgqXYMY0RERM2PI5/fDl2mvJpOp4Ovr299VyciIiIiOBjGZs6cWae6l19+uV6DISIiImptHApj2dnZqtc7duxAv3794ObmprTpdLqGGRkRERFRK+BQGPvqq69Ur9u2bYsPPvgAnTt3btBBEREREbUW/KFwIiIiIg0xjBERERFpiGGMiIiISEMO3TN28OBB1WsRwXfffac8/LXK7bfffuMjIyIiImoFHHroq5OTE3Q6HWpapapdp9OhsrKyQQfZmvGhr0RERM1Poz30NTc394YGRkRERERqDoWxwMDAxhoHERERUatUrxv47Xb7NdtPnz59QwMiIiIiak0cCmM2mw1jxoyBu7s7fH19MW/ePNX9YT///DOCg4MbfJBERERELZVDlynnzp2LAwcO4L333kNxcTFeeOEF7Nu3D+vXr4derweAGm/uJyIiIqKaOTQz9sknn2DVqlV48MEHMXnyZHz77bf4+eefMXLkSFy8eBEAf5uSiIiIml6etRy7ThYiz1qu9VAc5lAY+/nnn1U38Xt5eeHLL79ESUkJ7rvvPpSVlTX4AImIiIhqk7r3NO5O3orxb2bi7uStSN3bvO5fdyiMderUCUePHlW1tW3bFps3b0Z5eTkeeOCBBh0cERERUW3yrOWYs/4Q7P93l5RdgGfX5zSrGTKHwti9996Ld955p1q7h4cHvvjiCxiNxgYbGBEREdH15BZeUIJYlUoRnCpsPlfrHApjCxcuxIIFC2rsa9u2LbZs2YKtW7c6PIgVK1YgKCgIRqMRERER2LNnT63169atQ/fu3WE0GhEWFoa0tDRVv4hg3rx58Pf3h5ubG6Kjo3H8+HFVTVFREeLi4uDp6Qmz2YyEhIRqP+t08OBBDBw4EEajEQEBAVi0aJGqf/DgwdDpdNWWESNGKDUTJ06s1j9s2DCHzxERERFVF+zlDqff3K7urNMhyKuNNgOqB4fCWHZ2Nh588EHYbLZqfVarFb/73e8cvoE/NTUVM2fORGJiIvbt24fevXvDYrHg3LlzNdbv2rULsbGxSEhIQHZ2NmJiYhATE4OcnBylZtGiRVi2bBlWrlyJzMxMuLu7w2KxoKKiQqmJi4vD4cOHsWXLFmzcuBHbt2/HlClTlH6bzYahQ4ciMDAQWVlZWLx4MebPn4833nhDqVm/fj3y8vKUJScnB87OznjooYdUYx42bJiqbvXq1Q6dIyIiIqqZv8kNSaPD4Px/+cNZp8OLo2+Dv8lN45E5QBwwcuRIefnll6/Z/89//lNiYmIc2aSEh4fLtGnTlNeVlZXSoUMHSUpKqrF+zJgxMmLECFVbRESETJ06VURE7Ha7+Pn5yeLFi5X+4uJiMRgMsnr1ahEROXLkiACQvXv3KjWfffaZ6HQ6OXv2rIiIvPbaa9KuXTu5ePGiUjNr1iwJDQ295rG88sor0rZtWyktLVXa4uPjZdSoUdc7DddktVoFgFit1npvg4iIqKX7qbhMdp0olJ+Ky7Qeiog49vnt0MzYgQMHar3ENnToUGRlZdV5e5cuXUJWVhaio6OVNicnJ0RHRyMjI6PGdTIyMlT1AGCxWJT63Nxc5Ofnq2pMJhMiIiKUmoyMDJjNZvTv31+piY6OhpOTEzIzM5WaQYMGKc9Pq9rPsWPH8Msvv9Q4trfeegvjxo2Du7u7qn3btm3w8fFBaGgo/vznP+P8+fPXPCcXL16EzWZTLURERFQ7f5MbIrvc0rxmxP6PQ2GsoKAArq6u1+x3cXHBzz//XOftFRYWorKyEr6+vqp2X19f5Ofn17hOfn5+rfVVf69X4+PjU23s7du3V9XUtI2r93G1PXv2ICcnB5MnT1a1Dxs2DP/617+Qnp6Ol156CV9//TWGDx+u+uWCqyUlJcFkMilLQEBAjXVERETUMjj0BP6OHTsiJycHXbt2rbH/4MGD8Pf3b5CBNTdvvfUWwsLCEB4ermofN26c8t9hYWG4/fbb0aVLF2zbtg1Dhgyptp05c+Zg5syZymubzcZARkRE1II5NDN23333Ye7cuaob4auUl5cjMTERf/jDH+q8PS8vLzg7O6OgoEDVXlBQAD8/vxrX8fPzq7W+6u/1an77BYErV66gqKhIVVPTNq7eR5ULFy5gzZo1SEhIqP2AAXTu3BleXl44ceJEjf0GgwGenp6qhYiIiFouh8LYc889h6KiIoSEhGDRokXYsGEDNmzYgJdeegmhoaEoKirC3//+9zpvT6/Xo1+/fkhPT1fa7HY70tPTERkZWeM6kZGRqnoA2LJli1IfHBwMPz8/VY3NZkNmZqZSExkZieLiYtX9bVu3boXdbkdERIRSs337dly+fFm1n9DQULRr1061/3Xr1uHixYt4+OGHr3vMP/74I86fP99qZxCJiIjoNxz9dsCpU6dk+PDh4uTkJDqdTnQ6nTg5Ocnw4cPl+++/d/jbBmvWrBGDwSApKSly5MgRmTJlipjNZsnPzxcRkQkTJsjs2bOV+p07d4qLi4ssWbJEjh49KomJieLq6iqHDh1SapKTk8VsNsuGDRvk4MGDMmrUKAkODpby8nKlZtiwYdK3b1/JzMyUHTt2SLdu3SQ2NlbpLy4uFl9fX5kwYYLk5OTImjVrpE2bNrJq1apqxzBgwAAZO3ZstfaSkhJ5+umnJSMjQ3Jzc+XLL7+UO+64Q7p16yYVFRV1Oj/8NiUREVHz48jnt8NhrEpRUZHs2bNHMjMzpaioqL6bERGR5cuXS6dOnUSv10t4eLjs3r1b6YuKipL4+HhV/dq1ayUkJET0er306tVLNm3apOq32+0yd+5c8fX1FYPBIEOGDJFjx46pas6fPy+xsbHi4eEhnp6eMmnSJCkpKVHVHDhwQAYMGCAGg0E6duwoycnJ1cb+3XffCQDZvHlztb6ysjIZOnSoeHt7i6urqwQGBsqjjz6qBM26YBgjIiJqfhz5/NaJiNQ6dUaastlsMJlMsFqtvH+MiIiomXDk89uhe8aIiIiIqGExjBERERFpiGGMiIiISEMMY0REREQaYhgjIiIi0hDDGBEREZGGGMaIiIiINMQwRkRERKQhhjEiIiIiDTGMEREREWmIYYyIiIhIQwxjRERERBpiGCMiIiLSEMMYERERkYYYxoiIiIg0xDBGREREpCGGMSIiIiINMYwRERERaYhhjIiIiEhDDGNEREREGmIYIyIiItIQwxgRERGRhhjGiIiIiDTEMEZERESkIYYxIiIiIg0xjBERERFpiGGMiIiISEMMY0REREQaYhgjIiIi0hDDGBEREZGGGMaIiIiINMQwRkRERKQhhjEiIiIiDTGMEREREWmIYYyIiIhIQwxjRERERBpiGCMiIiLSEMMYERERkYYYxoiIiIg0xDBGREREpKGbIoytWLECQUFBMBqNiIiIwJ49e2qtX7duHbp37w6j0YiwsDCkpaWp+kUE8+bNg7+/P9zc3BAdHY3jx4+raoqKihAXFwdPT0+YzWYkJCSgtLRUVXPw4EEMHDgQRqMRAQEBWLRokao/JSUFOp1OtRiNRofHQkRERK2X5mEsNTUVM2fORGJiIvbt24fevXvDYrHg3LlzNdbv2rULsbGxSEhIQHZ2NmJiYhATE4OcnBylZtGiRVi2bBlWrlyJzMxMuLu7w2KxoKKiQqmJi4vD4cOHsWXLFmzcuBHbt2/HlClTlH6bzYahQ4ciMDAQWVlZWLx4MebPn4833nhDNR5PT0/k5eUpyw8//KDqr8tYiIiIqBUTjYWHh8u0adOU15WVldKhQwdJSkqqsX7MmDEyYsQIVVtERIRMnTpVRETsdrv4+fnJ4sWLlf7i4mIxGAyyevVqERE5cuSIAJC9e/cqNZ999pnodDo5e/asiIi89tpr0q5dO7l48aJSM2vWLAkNDVVev/POO2Iyma55bHUZy/VYrVYBIFartU71REREpD1HPr81nRm7dOkSsrKyEB0drbQ5OTkhOjoaGRkZNa6TkZGhqgcAi8Wi1Ofm5iI/P19VYzKZEBERodRkZGTAbDajf//+Sk10dDScnJyQmZmp1AwaNAh6vV61n2PHjuGXX35R2kpLSxEYGIiAgACMGjUKhw8fVvrqMpbfunjxImw2m2ohIiKilkvTMFZYWIjKykr4+vqq2n19fZGfn1/jOvn5+bXWV/29Xo2Pj4+q38XFBe3bt1fV1LSNq/cRGhqKt99+Gxs2bMD7778Pu92Ou+66Cz/++GOdx/JbSUlJMJlMyhIQEFBjHREREbUMmt8z1pxFRkbikUceQZ8+fRAVFYX169fD29sbq1atqvc258yZA6vVqixnzpxpwBETERHRzUbTMObl5QVnZ2cUFBSo2gsKCuDn51fjOn5+frXWV/29Xs1vvyBw5coVFBUVqWpq2sbV+/gtV1dX9O3bFydOnKjzWH7LYDDA09NTtRAREVHLpWkY0+v16NevH9LT05U2u92O9PR0REZG1rhOZGSkqh4AtmzZotQHBwfDz89PVWOz2ZCZmanUREZGori4GFlZWUrN1q1bYbfbERERodRs374dly9fVu0nNDQU7dq1q3FslZWVOHToEPz9/es8FiIiur48azl2nSxEnrVc66EQNbwm+EJBrdasWSMGg0FSUlLkyJEjMmXKFDGbzZKfny8iIhMmTJDZs2cr9Tt37hQXFxdZsmSJHD16VBITE8XV1VUOHTqk1CQnJ4vZbJYNGzbIwYMHZdSoURIcHCzl5eVKzbBhw6Rv376SmZkpO3bskG7duklsbKzSX1xcLL6+vjJhwgTJycmRNWvWSJs2bWTVqlVKzYIFC+SLL76QkydPSlZWlowbN06MRqMcPnzYobHUht+mJKLWbs2eHyR49kYJnLVRgmdvlDV7ftB6SETX5cjnt+ZhTERk+fLl0qlTJ9Hr9RIeHi67d+9W+qKioiQ+Pl5Vv3btWgkJCRG9Xi+9evWSTZs2qfrtdrvMnTtXfH19xWAwyJAhQ+TYsWOqmvPnz0tsbKx4eHiIp6enTJo0SUpKSlQ1Bw4ckAEDBojBYJCOHTtKcnKyqn/GjBnKuH19feW+++6Tffv2OTyW2jCMEVFr9lNxmRLEqpbOszfJT8VlWg+NqFaOfH7rRES0nZuj2thsNphMJlitVt4/RkStzq6ThRj/Zma19tWP/g6RXW7RYEREdePI5ze/TUlERDetYC93OOnUbc46HYK82mgzIKJGwDBGREQ3LX+TG5JGh8FZ92sic9bp8OLo2+BvctN4ZEQNx0XrARAREdVm7J2dMCjEG6cKyxDk1YZBjFochjEiImpSedZy5BZeQLCXe52Dlb/JjSGMWiyGMSIiajKpe09jzvpDsAvgpAOSRodh7J2dtB4WkaZ4zxgRETWJPGu5EsQAwC7As+tz+CBXavUYxoiIWrmmerp9buEFJYhVqRTBqcKyRt0v0c2OlymJiFqxprxsWPWYiqsDGR9TQcSZMSKiVqupLxvyMRVENePMGBFRK1XbZcPGCkh8TAVRdQxjREStlFaXDfmYCiI1XqYkImqleNmQ6ObAmTEiolaspV82rM8DZomaGsMYEVEr11IvG/IBs9Rc8DIlERG1OHzALDUnDGNERNTi8AGz1JwwjBERUYtT9U3Rq/EBs3SzYhgjIqIWh98UpeaEN/ATEVGL1NK/KUotB8MYERG1WC31m6LUsvAyJREREZGGGMaIiIiINMQwRkRERKQhhjEiIqIGkGctx66ThXywLDmMN/ATERHdIP70Et0IzowRERHdAP70Et0ohjEiIqIbwJ9eohvFMEZERHQD+NNLdKMYxoiIiG4Af3qJbhRv4CciIrpB/OkluhEMY0RERA2AP71E9cXLlEREREQaYhgjohrxAZZERE2DlymJqBo+wJKIqOlwZoyIVPgASyKipsUwRkQqfIAlEVHTYhgjIhU+wJKIqGkxjBGRCh9gSUTUtHgDPxFVwwdYEhE1HYYxIqoRH2BJRNQ0eJmSiIiISEM3RRhbsWIFgoKCYDQaERERgT179tRav27dOnTv3h1GoxFhYWFIS0tT9YsI5s2bB39/f7i5uSE6OhrHjx9X1RQVFSEuLg6enp4wm81ISEhAaWmpqubgwYMYOHAgjEYjAgICsGjRIlX/m2++iYEDB6Jdu3Zo164doqOjq4194sSJ0Ol0qmXYsGGOniIiIiJqoTQPY6mpqZg5cyYSExOxb98+9O7dGxaLBefOnauxfteuXYiNjUVCQgKys7MRExODmJgY5OTkKDWLFi3CsmXLsHLlSmRmZsLd3R0WiwUVFRVKTVxcHA4fPowtW7Zg48aN2L59O6ZMmaL022w2DB06FIGBgcjKysLixYsxf/58vPHGG0rNtm3bEBsbi6+++goZGRkICAjA0KFDcfbsWdWYhw0bhry8PGVZvXp1Q50+IiIiau5EY+Hh4TJt2jTldWVlpXTo0EGSkpJqrB8zZoyMGDFC1RYRESFTp04VERG73S5+fn6yePFipb+4uFgMBoOsXr1aRESOHDkiAGTv3r1KzWeffSY6nU7Onj0rIiKvvfaatGvXTi5evKjUzJo1S0JDQ695LFeuXJG2bdvKu+++q7TFx8fLqFGjrncarslqtQoAsVqt9d4GERERNS1HPr81nRm7dOkSsrKyEB0drbQ5OTkhOjoaGRkZNa6TkZGhqgcAi8Wi1Ofm5iI/P19VYzKZEBERodRkZGTAbDajf//+Sk10dDScnJyQmZmp1AwaNAh6vV61n2PHjuGXX36pcWxlZWW4fPky2rdvr2rftm0bfHx8EBoaij//+c84f/78Nc/JxYsXYbPZVAsRERG1XJqGscLCQlRWVsLX11fV7uvri/z8/BrXyc/Pr7W+6u/1anx8fFT9Li4uaN++vaqmpm1cvY/fmjVrFjp06KAKgsOGDcO//vUvpKen46WXXsLXX3+N4cOHo7KyssZtJCUlwWQyKUtAQECNdURERNQy8NEWDSQ5ORlr1qzBtm3bYDQalfZx48Yp/x0WFobbb78dXbp0wbZt2zBkyJBq25kzZw5mzpypvLbZbAxkRERELZimM2NeXl5wdnZGQUGBqr2goAB+fn41ruPn51drfdXf69X89gsCV65cQVFRkaqmpm1cvY8qS5YsQXJyMjZv3ozbb7+91mPu3LkzvLy8cOLEiRr7DQYDPD09VQsRERG1XJqGMb1ej379+iE9PV1ps9vtSE9PR2RkZI3rREZGquoBYMuWLUp9cHAw/Pz8VDU2mw2ZmZlKTWRkJIqLi5GVlaXUbN26FXa7HREREUrN9u3bcfnyZdV+QkND0a5dO6Vt0aJFeP755/H555+r7kG7lh9//BHnz5+Hv7//dWuJiIioFWiCLxTUas2aNWIwGCQlJUWOHDkiU6ZMEbPZLPn5+SIiMmHCBJk9e7ZSv3PnTnFxcZElS5bI0aNHJTExUVxdXeXQoUNKTXJyspjNZtmwYYMcPHhQRo0aJcHBwVJeXq7UDBs2TPr27SuZmZmyY8cO6datm8TGxir9xcXF4uvrKxMmTJCcnBxZs2aNtGnTRlatWqXaj16vlw8//FDy8vKUpaSkRERESkpK5Omnn5aMjAzJzc2VL7/8Uu644w7p1q2bVFRU1On88NuUREREzY8jn9+ahzERkeXLl0unTp1Er9dLeHi47N69W+mLioqS+Ph4Vf3atWslJCRE9Hq99OrVSzZt2qTqt9vtMnfuXPH19RWDwSBDhgyRY8eOqWrOnz8vsbGx4uHhIZ6enjJp0iQlRFU5cOCADBgwQAwGg3Ts2FGSk5NV/YGBgQKg2pKYmCgiImVlZTJ06FDx9vYWV1dXCQwMlEcffVQJmnXBMEZERNT8OPL5rRMR0Wxajq7LZrPBZDLBarXy/jFqFvKs5cgtvIBgL3f+tiURtVqOfH7z25RE1GBS957GnPWHYBfASQckjQ7D2Ds71WndpgxxDIxEdDNhGCOiBpFnLVeCGADYBXh2fQ4GhXhfN/DcSIhzVFPui4ioLjT/bUoiahlyCy8oQaxKpQhOFZbVut61QlyetbzBx9iU+yIiqiuGMSJqEMFe7nDSqducdToEebWpdb36hrj6aMp9ERHVFcMYETUIf5MbkkaHwVn3ayJz1unw4ujbrnuJsr4hrj6acl9ERHXFe8aIqMGMvbMTBoV441RhGYK82tTp5viqEPfs+hxUitQ5xNVHU+6LiKiu+GiLmxwfbUGtRZ613KEQ11z2RUStEx9tQUTNjr/JrcmCUVPui4joenjPGBEREZGGGMaI6KaQZy3HrpOFfMwEEbU6vExJRJrjg1ipsfDXFqg5YBgjIk3dyJP7iWrDkE/NBS9TEpGm+CBWagz8tQVqThjGiEhTfBArNQaGfGpOGMaISFP1fXI/UW0Y8qk54T1jRKS5+jy5n6g2/LUFak4YxojopsAHsVJDY8in5oJhjIiIWiyGfGoOeM8YERERkYYYxoiIiIg0xDBGREREpCGGMSIiIiINMYwRERERaYhhjIiIiEhDDGNEREREGmIYIyIiItIQwxgRERGRhhjGiIiIiDTEMEZERESkIYYxIiIiIg0xjBERERFpiGGMiIiISEMMY0REREQaYhgjIiIi0hDDGBEREZGGGMaIiIiINMQwRkRERKQhhjEiIiIiDTGMEREREWmIYYyIiIhuGnnWcuw6WYg8a7nWQ2kyN0UYW7FiBYKCgmA0GhEREYE9e/bUWr9u3Tp0794dRqMRYWFhSEtLU/WLCObNmwd/f3+4ubkhOjoax48fV9UUFRUhLi4Onp6eMJvNSEhIQGlpqarm4MGDGDhwIIxGIwICArBo0aJGGQsREREBqXtP4+7krRj/ZibuTt6K1L2ntR5Sk9A8jKWmpmLmzJlITEzEvn370Lt3b1gsFpw7d67G+l27diE2NhYJCQnIzs5GTEwMYmJikJOTo9QsWrQIy5Ytw8qVK5GZmQl3d3dYLBZUVFQoNXFxcTh8+DC2bNmCjRs3Yvv27ZgyZYrSb7PZMHToUAQGBiIrKwuLFy/G/Pnz8cYbbzT4WIiIiFq7PGs55qw/BLv8+touwLPrcxp1huymmYUTjYWHh8u0adOU15WVldKhQwdJSkqqsX7MmDEyYsQIVVtERIRMnTpVRETsdrv4+fnJ4sWLlf7i4mIxGAyyevVqERE5cuSIAJC9e/cqNZ999pnodDo5e/asiIi89tpr0q5dO7l48aJSM2vWLAkNDW3QsVyP1WoVAGK1WutUT0RE1BztPPGzBM7aWG3ZdaKwUfa3Zs8PEjz7130Ez94oa/b80KDbd+TzW9OZsUuXLiErKwvR0dFKm5OTE6Kjo5GRkVHjOhkZGap6ALBYLEp9bm4u8vPzVTUmkwkRERFKTUZGBsxmM/r376/UREdHw8nJCZmZmUrNoEGDoNfrVfs5duwYfvnllwYby29dvHgRNptNtRAREbV0wV7ucNKp25x1OgR5tWnwfWkxC1cbTcNYYWEhKisr4evrq2r39fVFfn5+jevk5+fXWl/193o1Pj4+qn4XFxe0b99eVVPTNq7eR0OM5beSkpJgMpmUJSAgoMY6IiKilsTf5Iak0WFw1v2ayJx1Orw4+jb4m9wafF+5hReUIFalUgSnCssafF914aLJXuma5syZg5kzZyqvbTYbAxkREbUKY+/shEEh3jhVWIYgrzaNEsSA/z8Ld3Uga6xZuLrQdGbMy8sLzs7OKCgoULUXFBTAz8+vxnX8/Pxqra/6e72a335B4MqVKygqKlLV1LSNq/fREGP5LYPBAE9PT9VCRETUWvib3BDZ5ZZGC2JV+2iqWbi60DSM6fV69OvXD+np6Uqb3W5Heno6IiMja1wnMjJSVQ8AW7ZsUeqDg4Ph5+enqrHZbMjMzFRqIiMjUVxcjKysLKVm69atsNvtiIiIUGq2b9+Oy5cvq/YTGhqKdu3aNdhYiIiIqOmNvbMTdsy+B6sf/R12zL4HY+/spN1gGvSrA/WwZs0aMRgMkpKSIkeOHJEpU6aI2WyW/Px8ERGZMGGCzJ49W6nfuXOnuLi4yJIlS+To0aOSmJgorq6ucujQIaUmOTlZzGazbNiwQQ4ePCijRo2S4OBgKS8vV2qGDRsmffv2lczMTNmxY4d069ZNYmNjlf7i4mLx9fWVCRMmSE5OjqxZs0batGkjq1atavCx1IbfpiQiImp+HPn81jyMiYgsX75cOnXqJHq9XsLDw2X37t1KX1RUlMTHx6vq165dKyEhIaLX66VXr16yadMmVb/dbpe5c+eKr6+vGAwGGTJkiBw7dkxVc/78eYmNjRUPDw/x9PSUSZMmSUlJiarmwIEDMmDAADEYDNKxY0dJTk6uNvaGGEttGMaIiIiaH0c+v3UiIrXPnZGWbDYbTCYTrFYr7x8jIiJqJhz5/Nb8CfxERERErRnDGBEREZGGGMaIiIiINMQwRkRERKQhhjEiIiIiDTGMEREREWmIYYyIiIhIQwxjRERERBpiGCMiIiLSkIvWA6DaVf1Ags1m03gkREREVFdVn9t1+aEjhrGbXElJCQAgICBA45EQERGRo0pKSmAymWqt4W9T3uTsdjt++ukntG3bFjqd7oa2ZbPZEBAQgDNnzrTa37nkOeA5AHgOAJ4DgOcA4DlozOMXEZSUlKBDhw5wcqr9rjDOjN3knJyccOuttzboNj09PVvl/+iuxnPAcwDwHAA8BwDPAcBz0FjHf70ZsSq8gZ+IiIhIQwxjRERERBpiGGtFDAYDEhMTYTAYtB6KZngOeA4AngOA5wDgOQB4Dm6W4+cN/EREREQa4swYERERkYYYxoiIiIg0xDBGREREpCGGMSIiIiINMYw1cytWrEBQUBCMRiMiIiKwZ8+eWuuXLl2K0NBQuLm5ISAgAH/5y19QUVGh9M+fPx86nU61dO/evbEP44Y4cg4uX76MhQsXokuXLjAajejduzc+//zzG9qm1hr6+Jvbe2D79u0YOXIkOnToAJ1Oh08++eS662zbtg133HEHDAYDunbtipSUlGo1zek90BjnoKW/D/Ly8jB+/HiEhITAyckJM2bMqLFu3bp16N69O4xGI8LCwpCWltbwg28gjXEOUlJSqr0PjEZj4xxAA3D0HKxfvx733nsvvL294enpicjISHzxxRfV6hr73wOGsWYsNTUVM2fORGJiIvbt24fevXvDYrHg3LlzNdZ/8MEHmD17NhITE3H06FG89dZbSE1NxbPPPquq69WrF/Ly8pRlx44dTXE49eLoOXjuueewatUqLF++HEeOHMFjjz2GBx54ANnZ2fXeppYa4/iB5vUeuHDhAnr37o0VK1bUqT43NxcjRozAPffcg/3792PGjBmYPHmy6h/g5vQeABrnHAAt+31w8eJFeHt747nnnkPv3r1rrNm1axdiY2ORkJCA7OxsxMTEICYmBjk5OQ059AbTGOcA+PXp9Fe/D3744YeGGnKDc/QcbN++Hffeey/S0tKQlZWFe+65ByNHjmz6zwShZis8PFymTZumvK6srJQOHTpIUlJSjfXTpk2T3//+96q2mTNnyt133628TkxMlN69ezfKeBuDo+fA399fXn31VVXb6NGjJS4urt7b1FJjHH9zew9cDYB8/PHHtdb87W9/k169eqnaxo4dKxaLRXndnN4Dv9VQ56Clvw+uFhUVJU899VS19jFjxsiIESNUbRERETJ16tQbHGHja6hz8M4774jJZGqwcTUlR89BlZ49e8qCBQuU103x7wFnxpqpS5cuISsrC9HR0Uqbk5MToqOjkZGRUeM6d911F7KyspTp1e+//x5paWm47777VHXHjx9Hhw4d0LlzZ8TFxeH06dONdyA3oD7n4OLFi9Wm2N3c3JT/x1+fbWqlMY6/SnN5D9RHRkaG6pwBgMViUc5Zc3oP1Nf1zkGVlvw+qIu6nqeWrrS0FIGBgQgICMCoUaNw+PBhrYfUaOx2O0pKStC+fXsATffvAcNYM1VYWIjKykr4+vqq2n19fZGfn1/jOuPHj8fChQsxYMAAuLq6okuXLhg8eLDqMmVERARSUlLw+eef4/XXX0dubi4GDhyIkpKSRj2e+qjPObBYLHj55Zdx/Phx2O12bNmyBevXr0deXl69t6mVxjh+oHm9B+ojPz+/xnNms9lQXl7erN4D9XW9cwC0/PdBXVzrPLWU90FdhIaG4u2338aGDRvw/vvvw26346677sKPP/6o9dAaxZIlS1BaWooxY8YAaLrPBIaxVmTbtm148cUX8dprr2Hfvn1Yv349Nm3ahOeff16pGT58OB566CHcfvvtsFgsSEtLQ3FxMdauXavhyBvOP//5T3Tr1g3du3eHXq/HE088gUmTJsHJqXX8T6Eux9/S3wNUN3wfEABERkbikUceQZ8+fRAVFYX169fD29sbq1at0npoDe6DDz7AggULsHbtWvj4+DTpvlvHJ1AL5OXlBWdnZxQUFKjaCwoK4OfnV+M6c+fOxYQJEzB58mSEhYXhgQcewIsvvoikpCTY7fYa1zGbzQgJCcGJEyca/BhuVH3Ogbe3Nz755BNcuHABP/zwA7777jt4eHigc+fO9d6mVhrj+GtyM78H6sPPz6/Gc+bp6Qk3N7dm9R6or+udg5q0tPdBXVzrPLWU90F9uLq6om/fvi3ufbBmzRpMnjwZa9euVV2SbKp/DxjGmim9Xo9+/fohPT1dabPb7UhPT0dkZGSN65SVlVWbAXJ2dgYAyDV+orS0tBQnT56Ev79/A4284dTnHFQxGo3o2LEjrly5go8++gijRo264W02tcY4/prczO+B+oiMjFSdMwDYsmWLcs6a03ugvq53DmrS0t4HdVGf89TSVVZW4tChQy3qfbB69WpMmjQJq1evxogRI1R9TfbvQYN9FYCa3Jo1a8RgMEhKSoocOXJEpkyZImazWfLz80VEZMKECTJ79mylPjExUdq2bSurV6+W77//XjZv3ixdunSRMWPGKDV//etfZdu2bZKbmys7d+6U6Oho8fLyknPnzjX58dWFo+dg9+7d8tFHH8nJkydl+/bt8vvf/16Cg4Pll19+qfM2byaNcfzN7T1QUlIi2dnZkp2dLQDk5ZdfluzsbPnhhx9ERGT27NkyYcIEpf7777+XNm3ayDPPPCNHjx6VFStWiLOzs3z++edKTXN6D4g0zjlo6e8DEVHq+/XrJ+PHj5fs7Gw5fPiw0r9z505xcXGRJUuWyNGjRyUxMVFcXV3l0KFDTXpsddUY52DBggXyxRdfyMmTJyUrK0vGjRsnRqNRVXMzcfQc/Pvf/xYXFxdZsWKF5OXlKUtxcbFS0xT/HjCMNXPLly+XTp06iV6vl/DwcNm9e7fSFxUVJfHx8crry5cvy/z586VLly5iNBolICBAHn/8cdUH8dixY8Xf31/0er107NhRxo4dKydOnGjCI3KcI+dg27Zt0qNHDzEYDHLLLbfIhAkT5OzZsw5t82bT0Mff3N4DX331lQCotlQdd3x8vERFRVVbp0+fPqLX66Vz587yzjvvVNtuc3oPNMY5aA3vg5rqAwMDVTVr166VkJAQ0ev10qtXL9m0aVPTHFA9NMY5mDFjhvK/A19fX7nvvvtk3759TXdQDnL0HERFRdVaX6Wx/z3QiVzj+hQRERERNTreM0ZERESkIYYxIiIiIg0xjBERERFpiGGMiIiISEMMY0REREQaYhgjIiIi0hDDGBEREZGGGMaIiMgh27Ztg06nQ3FxsdZDIWoRGMaI6KY1ceJE6HQ6JCcnq9o/+eQT6HQ65bWI4M0330RkZCQ8PT3h4eGBXr164amnnqrzDxqXlZVhzpw56NKlC4xGI7y9vREVFYUNGzYoNUFBQVi6dGmDHFtjqzp3Op0Orq6uCA4Oxt/+9jdUVFQ4tJ3BgwdjxowZqra77roLeXl5MJlMDThiotaLYYyIbmpGoxEvvfQSfvnllxr7RQTjx4/H9OnTcd9992Hz5s04cuQI3nrrLRiNRrzwwgt12s9jjz2G9evXY/ny5fjuu+/w+eef48EHH8T58+cb8nCa1LBhw5CXl4fvv/8er7zyClatWoXExMQb3q5er4efn58qEBPRDWjQH1ciImpA8fHx8oc//EG6d+8uzzzzjNL+8ccfS9U/X6tXrxYAsmHDhhq3Ybfb67Qvk8kkKSkp1+yv6TfsqnzzzTcyYMAAMRqNcuutt8qTTz4ppaWlSv+//vUv6devn3h4eIivr6/ExsZKQUGB0l/1e3qff/659OnTR4xGo9xzzz1SUFAgaWlp0r17d2nbtq3ExsbKhQsX6nQ88fHxMmrUKFXb6NGjpW/fvsrrwsJCGTdunHTo0EHc3Nzktttukw8++EC1jd8ec25urjLeq3/X9sMPP5SePXuKXq+XwMBAWbJkSZ3GSUQinBkjopuas7MzXnzxRSxfvhw//vhjtf7Vq1cjNDQU999/f43r13X2xs/PD2lpaSgpKamxf/369bj11luxcOFC5OXlIS8vDwBw8uRJDBs2DH/84x9x8OBBpKamYseOHXjiiSeUdS9fvoznn38eBw4cwCeffIJTp05h4sSJ1fYxf/58vPrqq9i1axfOnDmDMWPGYOnSpfjggw+wadMmbN68GcuXL6/T8fxWTk4Odu3aBb1er7RVVFSgX79+2LRpE3JycjBlyhRMmDABe/bsAQD885//RGRkJB599FHlmAMCAqptOysrC2PGjMG4ceNw6NAhzJ8/H3PnzkVKSkq9xkrU6midBomIruXq2Z3f/e538qc//UlE1DNj3bt3l/vvv1+13lNPPSXu7u7i7u4uHTt2rNO+vv76a7n11lvF1dVV+vfvLzNmzJAdO3aoagIDA+WVV15RtSUkJMiUKVNUbd988404OTlJeXl5jfvau3evAJCSkhIR+f8zY19++aVSk5SUJADk5MmTStvUqVPFYrHU6Xji4+PF2dlZ3N3dxWAwCABxcnKSDz/8sNb1RowYIX/961+V11FRUfLUU0+pan47MzZ+/Hi59957VTXPPPOM9OzZs05jJWrtODNGRM3CSy+9hHfffRdHjx69bu3f//537N+/H/PmzUNpaWmdtj9o0CB8//33SE9Px4MPPojDhw9j4MCBeP7552td78CBA0hJSYGHh4eyWCwW2O125ObmAvh15mjkyJHo1KkT2rZti6ioKADA6dOnVdu6/fbblf/29fVFmzZt0LlzZ1XbuXPn6nQ8AHDPPfdg//79yMzMRHx8PCZNmoQ//vGPSn9lZSWef/55hIWFoX379vDw8MAXX3xRbVzXc/ToUdx9992qtrvvvhvHjx9HZWWlQ9siao0YxoioWRg0aBAsFgvmzJmjau/WrRuOHTumavP29kbXrl3h4+Pj0D5cXV0xcOBAzJo1C5s3b8bChQvx/PPP49KlS9dcp7S0FFOnTsX+/fuV5cCBAzh+/Di6dOmCCxcuwGKxwNPTE//+97+xd+9efPzxxwBQbbuurq7Kf1d9C/JqOp0Odru9zsfj7u6Orl27onfv3nj77beRmZmJt956S+lfvHgx/vnPf2LWrFn46quvsH//flgsllqPl4ganovWAyAiqqvk5GT06dMHoaGhSltsbCzGjx+PDRs2YNSoUQ26v549e+LKlSuoqKiAXq+HXq+vNtNzxx134MiRI+jatWuN2zh06BDOnz+P5ORk5X6rb7/9tkHHWRdOTk549tlnMXPmTIwfPx5ubm7YuXMnRo0ahYcffhgAYLfb8d///hc9e/ZU1qvpmH+rR48e2Llzp6pt586dCAkJgbOzc8MfDFELw5kxImo2wsLCEBcXh2XLlilt48aNw4MPPohx48Zh4cKFyMzMxKlTp/D1118jNTW1zmFg8ODBWLVqFbKysnDq1CmkpaXh2WefxT333ANPT08Avz5nbPv27Th79iwKCwsBALNmzcKuXbvwxBNPYP/+/Th+/Dg2bNig3MDfqVMn6PV6LF++HN9//z0+/fTT6176bCwPPfQQnJ2dsWLFCgC/zipu2bIFu3btwtGjRzF16lQUFBSo1gkKClLOaWFhYY0zc3/961+Rnp6O559/Hv/973/x7rvv4tVXX8XTTz/dJMdF1NwxjBFRs7Jw4UJVINDpdEhNTcXSpUuRlpaGIUOGIDQ0FH/6058QEBCAHTt21Gm7FosF7777LoYOHYoePXrgySefhMViwdq1a1X7PnXqFLp06QJvb28Av97n9fXXX+O///0vBg4ciL59+2LevHno0KEDgF8vmaakpGDdunXo2bMnkpOTsWTJkgY8I3Xn4uKCJ554AosWLcKFCxfw3HPP4Y477oDFYsHgwYPh5+eHmJgY1TpPP/00nJ2d0bNnT3h7e9d4P9kdd9yBtWvXYs2aNbjtttswb948LFy4sMZvjBJRdToREa0HQURERNRacWaMiIiISEMMY0TUKlz96InfLt98843Ww3PI6dOnaz0eRx9NQUTa4mVKImoVavvB8I4dO8LNza0JR3Njrly5glOnTl2zPygoCC4u/LI8UXPBMEZERESkIV6mJCIiItIQwxgRERGRhhjGiIiIiDTEMEZERESkIYYxIiIiIg0xjBERERFpiGGMiIiISEMMY0REREQa+n9us5g4jfCLygAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQKVJREFUeJzt3XlclWX+//H3AWVVMAMBFcR9RUzTQkt0xiQ105xynVxK27R0bNVv5VaRrZZZOtMklWNi5TblzzTNTLHJXEpNywXEDEhKQRBROdfvj8YznUTl4IEDN6/n43Eej859rvu+P/f1OHLeXfd137fNGGMEAABgEV6eLgAAAMCdCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAPGLq1Kmy2Wwlamuz2TR16tQyradbt27q1q1bhd0egJIj3ABVXFJSkmw2m+NVrVo11atXTyNHjtSRI0c8XV6FEx0d7dRfderU0fXXX6+lS5e6ZfsnT57U1KlTtX79erdsD6iKCDcAJEnTp0/Xu+++q7lz56pXr15asGCB4uPjderUqTLZ3+OPP66CgoIy2XZZa9eund599129++67euihh/TTTz9pwIABmjt37mVv++TJk5o2bRrhBrgM1TxdAICKoVevXrr66qslSaNHj1ZISIhmzpypFStWaODAgW7fX7Vq1VStWuX8E1SvXj399a9/dbwfPny4mjRpopdffln33HOPBysDIDFyA+ACrr/+eknSgQMHnJbv3btXt956q2rXri0/Pz9dffXVWrFihVObM2fOaNq0aWratKn8/Px05ZVX6rrrrtOaNWscbYqbc1NYWKi//e1vCg0NVc2aNXXzzTfrxx9/PK+2kSNHKjo6+rzlxW1z/vz5+tOf/qQ6derI19dXrVq10htvvOFSX1xKeHi4WrZsqdTU1Iu2+/nnn3XnnXcqLCxMfn5+io2N1dtvv+34PC0tTaGhoZKkadOmOU59lfV8I8BqKuf/NgEoc2lpaZKkK664wrFs9+7d6tKli+rVq6fHHntMgYGBWrx4sfr3768PP/xQt9xyi6TfQkZiYqJGjx6tTp06KTc3V19//bW2bdumG2644YL7HD16tBYsWKChQ4eqc+fOWrdunfr06XNZx/HGG2+odevWuvnmm1WtWjX9+9//1n333Se73a6xY8de1rbPOXPmjA4fPqwrr7zygm0KCgrUrVs37d+/X+PGjVPDhg31/vvva+TIkTp+/LjGjx+v0NBQvfHGG7r33nt1yy23aMCAAZKktm3buqVOoMowAKq0+fPnG0nm008/NUePHjWHDx82H3zwgQkNDTW+vr7m8OHDjrZ//vOfTUxMjDl16pRjmd1uN507dzZNmzZ1LIuNjTV9+vS56H6nTJlifv8naMeOHUaSue+++5zaDR061EgyU6ZMcSwbMWKEadCgwSW3aYwxJ0+ePK9dQkKCadSokdOy+Ph4Ex8ff9GajTGmQYMGpmfPnubo0aPm6NGj5ptvvjGDBw82ksz9999/we3NmjXLSDILFixwLDt9+rSJi4szNWrUMLm5ucYYY44ePXre8QJwDaelAEiSevToodDQUEVGRurWW29VYGCgVqxYofr160uSfv31V61bt04DBw7UiRMnlJ2drezsbP3yyy9KSEjQvn37HFdX1apVS7t379a+fftKvP+VK1dKkh544AGn5RMmTLis4/L393f8d05OjrKzsxUfH6+DBw8qJyenVNtcvXq1QkNDFRoaqtjYWL3//vu6/fbbNXPmzAuus3LlSoWHh2vIkCGOZdWrV9cDDzygvLw8ff7556WqBcD5qnS42bBhg/r27au6devKZrNp2bJlZbq/c/MBfv9q0aJFme4TKKk5c+ZozZo1+uCDD9S7d29lZ2fL19fX8fn+/ftljNETTzzh+GE/95oyZYqk3+aUSL9deXX8+HE1a9ZMMTExevjhh/Xtt99edP+HDh2Sl5eXGjdu7LS8efPml3VcmzZtUo8ePRQYGKhatWopNDRUkydPlqRSh5trrrlGa9as0aeffqqUlBRlZ2frnXfecQpSf3To0CE1bdpUXl7Of3Zbtmzp+ByAe1TpOTf5+fmKjY3VHXfc4Ti3XdZat26tTz/91PG+sl4tAuvp1KmT42qp/v3767rrrtPQoUP1/fffq0aNGrLb7ZKkhx56SAkJCcVuo0mTJpKkrl276sCBA1q+fLlWr16tN998Uy+//LLmzp2r0aNHX3atF7r5X1FRkdP7AwcO6M9//rNatGihl156SZGRkfLx8dHKlSv18ssvO47JVSEhIerRo0ep1gVQ9qr0L2uvXr3Uq1evC35eWFio//u//9N7772n48ePq02bNpo5c+Zl3XW0WrVqCg8PL/X6QHnw9vZWYmKiunfvrtdee02PPfaYGjVqJOm3Uykl+WGvXbu2Ro0apVGjRikvL09du3bV1KlTLxhuGjRoILvdrgMHDjiN1nz//ffntb3iiit0/Pjx85b/cfTj3//+twoLC7VixQpFRUU5ln/22WeXrN/dGjRooG+//VZ2u91p9Gbv3r2Oz6ULBzcAJVelT0tdyrhx47R582YtWrRI3377rW677TbdeOONLs0j+KN9+/apbt26atSokYYNG6b09HQ3Vgy4T7du3dSpUyfNmjVLp06dUp06ddStWzfNmzdPGRkZ57U/evSo479/+eUXp89q1KihJk2aqLCw8IL7O/c/Gq+++qrT8lmzZp3XtnHjxsrJyXE61ZWRkXHeXYK9vb0lScYYx7KcnBzNnz//gnWUld69eyszM1PJycmOZWfPntXs2bNVo0YNxcfHS5ICAgIkqdjwBqBkqvTIzcWkp6dr/vz5Sk9PV926dSX9Nhy/atUqzZ8/X88884zL27zmmmuUlJSk5s2bKyMjQ9OmTdP111+vXbt2qWbNmu4+BOCyPfzww7rtttuUlJSke+65R3PmzNF1112nmJgYjRkzRo0aNVJWVpY2b96sH3/8Ud98840kqVWrVurWrZs6dOig2rVr6+uvv9YHH3ygcePGXXBf7dq105AhQ/T6668rJydHnTt31tq1a7V///7z2g4ePFiPPvqobrnlFj3wwAM6efKk3njjDTVr1kzbtm1ztOvZs6d8fHzUt29f3X333crLy9M//vEP1alTp9iAVpbuuusuzZs3TyNHjtTWrVsVHR2tDz74QJs2bdKsWbMcfwP8/f3VqlUrJScnq1mzZqpdu7batGmjNm3alGu9QKXm6cu1KgpJZunSpY73H330kZFkAgMDnV7VqlUzAwcONMYYs2fPHiPpoq9HH330gvs8duyYCQoKMm+++WZZHx5wQecuBd+yZct5nxUVFZnGjRubxo0bm7NnzxpjjDlw4IAZPny4CQ8PN9WrVzf16tUzN910k/nggw8c6z311FOmU6dOplatWsbf39+0aNHCPP300+b06dOONsVdtl1QUGAeeOABc+WVV5rAwEDTt29fc/jw4WIvjV69erVp06aN8fHxMc2bNzcLFiwodpsrVqwwbdu2NX5+fiY6OtrMnDnTvPXWW0aSSU1NdbRz5VLwS13mfqHtZWVlmVGjRpmQkBDj4+NjYmJizPz5889bNyUlxXTo0MH4+PhwWThQCjZjfjdeW4XZbDYtXbpU/fv3lyQlJydr2LBh2r17t2No+5waNWooPDxcp0+f1sGDBy+63SuvvNJxx9HidOzYUT169FBiYuJlHwMAAOC01AVdddVVKioq0s8//+y4Df0f+fj4XNal3Hl5eTpw4IBuv/32Um8DAAA4q9LhJi8vz+l8fmpqqnbs2KHatWurWbNmGjZsmIYPH64XX3xRV111lY4ePaq1a9eqbdu2pbol/EMPPaS+ffuqQYMG+umnnzRlyhR5e3s73dQLAABcnip9Wmr9+vXq3r37ectHjBihpKQknTlzRk899ZTeeecdHTlyRCEhIbr22ms1bdo0xcTEuLy/wYMHa8OGDfrll18UGhqq6667Tk8//fR5Ny0DAAClV6XDDQAAsB7ucwMAACyFcAMAACylyk0ottvt+umnn1SzZk1ucw4AQCVhjNGJEydUt27d8x5A+0dVLtz89NNPioyM9HQZAACgFA4fPqz69etftE2VCzfnbnF++PBhBQUFebgaAABQErm5uYqMjCzR44qqXLg5dyoqKCiIcAMAQCVTkiklTCgGAACWQrgBAACWQrgBAACWUuXm3AAA4A52u12nT5/2dBmW4uPjc8nLvEuCcAMAgItOnz6t1NRU2e12T5diKV5eXmrYsKF8fHwuazuEGwAAXGCMUUZGhry9vRUZGemWkQb87ya7GRkZioqKuqwb7RJuAABwwdmzZ3Xy5EnVrVtXAQEBni7HUkJDQ/XTTz/p7Nmzql69eqm3Q9wEAMAFRUVFknTZp05wvnN9eq6PS4twAwBAKfB8QvdzV58SbgAAgKUQbgAAgKUQbjwsI6dAKQeylZFT4OlSAABVQGZmpu6//341atRIvr6+ioyMVN++fbV27VpJ0t13363GjRvL399foaGh6tevn/bu3etYPy0tTTabTTt27Dhv2926ddOECRMc7/Py8jRu3DjVr19f/v7+atWqlebOnVvWh8jVUp6UvCVdk5bslN1IXjYpcUCMBnWM8nRZAACLSktLU5cuXVSrVi09//zziomJ0ZkzZ/TJJ59o7Nix2rt3rzp06KBhw4YpKipKv/76q6ZOnaqePXsqNTVV3t7eLu1v4sSJWrdunRYsWKDo6GitXr1a9913n+rWraubb765jI6ScOMxGTkFjmAjSXYjTV6yS12bhSoi2N+zxQEALOm+++6TzWbTV199pcDAQMfy1q1b64477pAk3XXXXY7l0dHReuqppxQbG6u0tDQ1btzYpf2lpKRoxIgR6tatm2Pb8+bN01dffVWm4YbTUh6Smp3vCDbnFBmjtOyTnikIAFDuynNqwq+//qpVq1Zp7NixTsHmnFq1ap23LD8/X/Pnz1fDhg0VGRnp8j47d+6sFStW6MiRIzLG6LPPPtMPP/ygnj17luYQSoyRGw9pGBIoL5ucAo63zaboEG4IBQBVQXlPTdi/f7+MMWrRosUl277++ut65JFHlJ+fr+bNm2vNmjXn3denc+fO592duaCgQO3atXO8nz17tu666y7Vr19f1apVk5eXl/7xj3+oa9eubjmmC2HkxkMigv2VOCBG3v+9pt/bZtMzA9pwSgoAqoALTU0oyxEcY8ylG/3XsGHDtH37dn3++edq1qyZBg4cqFOnTjm1SU5O1o4dO5xeV199tVOb2bNn68svv9SKFSu0detWvfjiixo7dqw+/fRTtxzThTBy40GDOkapa7NQpWWfVHRIAMEGAKqIi01NKKvfgqZNm8pmszld+XQhwcHBCg4OVtOmTXXttdfqiiuu0NKlSzVkyBBHm8jISDVp0sRpPX///9VeUFCgyZMna+nSperTp48kqW3bttqxY4deeOEF9ejRw01Hdj5GbjwsIthfcY2vJNgAQBVybmrC75X11ITatWsrISFBc+bMUX5+/nmfHz9+vNj1jDEyxqiwsNCl/Z05c0Znzpw579SVt7d3mT9NnXADAEA589TUhDlz5qioqEidOnXShx9+qH379mnPnj169dVXFRcXp4MHDyoxMVFbt25Venq6UlJSdNttt8nf31+9e/d2aV9BQUGKj4/Xww8/rPXr1ys1NVVJSUl65513dMstt5TREf7Go6elEhMTtWTJEu3du1f+/v7q3LmzZs6cqebNm19wnaSkJI0aNcppma+v73nnAgEAqMg8MTWhUaNG2rZtm55++mk9+OCDysjIUGhoqDp06KA33nhDfn5++uKLLzRr1iwdO3ZMYWFh6tq1q1JSUlSnTh2X97do0SJNmjRJw4YN06+//qoGDRro6aef1j333FMGR/c/NuPKDCM3u/HGGzV48GB17NhRZ8+e1eTJk7Vr1y599913xV6mJv0WbsaPH6/vv//escxmsyksLKxE+8zNzVVwcLBycnIUFBTkluMAAFQdp06dUmpqqho2bCg/Pz9Pl2MpF+tbV36/PTpys2rVKqf3SUlJqlOnjrZu3XrRy8RsNpvCw8PLujwAAFAJVag5Nzk5OZJ+m/R0MXl5eWrQoIEiIyPVr18/7d69+4JtCwsLlZub6/QCAADWVWHCjd1u14QJE9SlSxe1adPmgu2aN2+ut956S8uXL9eCBQtkt9vVuXNn/fjjj8W2T0xMdFzSFhwcXKo7LAIAgMrDo3Nufu/ee+/V//t//08bN25U/fr1S7zemTNn1LJlSw0ZMkQzZsw47/PCwkKny9dyc3MVGRnJnBsAQKkw56bsWGLOzTnjxo3TRx99pA0bNrgUbCSpevXquuqqq7R///5iP/f19ZWvr687ygQAwKGCjA1Yirv61KOnpYwxGjdunJYuXap169apYcOGLm+jqKhIO3fuVERERBlUCACAM29vb0nS6dOnPVyJ9Zzr03N9XFoeHbkZO3asFi5cqOXLl6tmzZrKzMyU9Nttn8/dwnn48OGqV6+eEhMTJUnTp0/XtddeqyZNmuj48eN6/vnndejQIY0ePdpjxwEAqDqqVaumgIAAHT16VNWrVz/vDrwoHbvdrqNHjyogIEDVql1ePPFouHnjjTckSd26dXNaPn/+fI0cOVKSlJ6e7vTFOXbsmMaMGaPMzExdccUV6tChg1JSUtSqVavyKhsAUIXZbDZFREQoNTVVhw4d8nQ5luLl5aWoqCjZbLZLN76ICjOhuLxwEz8AgDvY7XZOTbmZj4/PBUfCKt2EYgAAKhsvLy+ulqqgOFEIAAAshXADAAAshXADAADcJiOnQCkHspWRU+CxGphzAwAA3CJ5S7omLdkpu5G8bFLigBgN6hhV7nUwcgMAAC5bRk6BI9hIkt1Ik5fs8sgIDuEGAABcttTsfEewOafIGKVlnyz3Wgg3AADgsjUMCZTXH+69522zKTokoNxrIdwAAIDLFhHsr8QBMfL+792FvW02PTOgjSKC/cu9FiYUAwAAtxjUMUotwmtqS9oxdYy+QrGRV3ikDsINAABwC66WAgAAlsHVUgAAwFK4WgoAAFgKV0sBAABL4WopAABgOYM6Rqlrs1ClZZ9UdEiAR4KNRLgBAABuFBHs77FQcw6npQAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQboAKLiOnQCkHspWRU+DpUgCgUqjm6QIAXFjylnRNWrJTdiN52aTEATEa1DHK02UBQIXGyA1QQWXkFDiCjSTZjTR5yS5GcADgEgg3QAWVmp3vCDbnFBmjtOyTnikIACoJwg1QQTUMCZSXzXmZt82m6JAAzxQEAJUE4QaooCKC/ZU4IEbett8SjrfNpmcGtFFEsL+HKwOAio0JxUAFNqhjlLo2C1Va9klFhwQQbACgBAg3QAUXEexPqAEAF3BaCgAAWIpHw01iYqI6duyomjVrqk6dOurfv7++//77S673/vvvq0WLFvLz81NMTIxWrlxZDtUCAIDKwKPh5vPPP9fYsWP15Zdfas2aNTpz5ox69uyp/Pz8C66TkpKiIUOG6M4779T27dvVv39/9e/fX7t27SrHygEAQEVlM8aYSzcrH0ePHlWdOnX0+eefq2vXrsW2GTRokPLz8/XRRx85ll177bVq166d5s6de8l95ObmKjg4WDk5OQoKCnJb7QAAoOy48vtdoebc5OTkSJJq1659wTabN29Wjx49nJYlJCRo8+bNZVobAABVSWV+rl2FuVrKbrdrwoQJ6tKli9q0aXPBdpmZmQoLC3NaFhYWpszMzGLbFxYWqrCw0PE+NzfXPQUDAGBRlf25dhVm5Gbs2LHatWuXFi1a5NbtJiYmKjg42PGKjIx06/YBALASKzzXrkKEm3Hjxumjjz7SZ599pvr161+0bXh4uLKyspyWZWVlKTw8vNj2kyZNUk5OjuN1+PBht9UNAIDVWOG5dh4NN8YYjRs3TkuXLtW6devUsGHDS64TFxentWvXOi1bs2aN4uLiim3v6+uroKAgpxcAACieFZ5r59FwM3bsWC1YsEALFy5UzZo1lZmZqczMTBUU/G/oa/jw4Zo0aZLj/fjx47Vq1Sq9+OKL2rt3r6ZOnaqvv/5a48aN88QhAABgKVZ4rp1HLwW32WzFLp8/f75GjhwpSerWrZuio6OVlJTk+Pz999/X448/rrS0NDVt2lTPPfecevfuXaJ9cik4AACXlpFTUKGea+fK73eFus9NeSDcAABQ+VTa+9wAAABcLsINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMJNFZORU6CUA9mV6umuAAC4opqnC0D5Sd6S7niMvZdNShwQo0EdozxdFgAAbsXITRWRkVPgCDaSZDfS5CW7GMEBAFgO4aaKSM3OdwSbc4qMUVr2Sc8UBABAGSHcVBENQwLl9YeHsHvbbIoOCfBMQQAAlBHCTRUREeyvxAEx8rb9lnC8bTY9M6BNhXiMPQAA7sSE4ipkUMcodW0WqrTsk4oOCSDYAAAsiXBTxUQE+xNqAACWxmkpAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKR4NNxs2bFDfvn1Vt25d2Ww2LVu27KLt169fL5vNdt4rMzOzfAoGAAAVnkfDTX5+vmJjYzVnzhyX1vv++++VkZHheNWpU6eMKgQAAJVNNU/uvFevXurVq5fL69WpU0e1atVyf0EAAKDSq5Rzbtq1a6eIiAjdcMMN2rRp00XbFhYWKjc31+kFAACsq1KFm4iICM2dO1cffvihPvzwQ0VGRqpbt27atm3bBddJTExUcHCw4xUZGVmOFQMAgPJmM8YYTxchSTabTUuXLlX//v1dWi8+Pl5RUVF69913i/28sLBQhYWFjve5ubmKjIxUTk6OgoKCLqdkAABQTnJzcxUcHFyi32+Pzrlxh06dOmnjxo0X/NzX11e+vr7lWBEAAPCkSnVaqjg7duxQRESEp8sAAAAVhEdHbvLy8rR//37H+9TUVO3YsUO1a9dWVFSUJk2apCNHjuidd96RJM2aNUsNGzZU69atderUKb355ptat26dVq9e7alDAAAAFYxHw83XX3+t7t27O95PnDhRkjRixAglJSUpIyND6enpjs9Pnz6tBx98UEeOHFFAQIDatm2rTz/91GkbAACgaqswE4rLiysTkgAAQMXgyu93pZ9zAwAA8HuEGwAAYCmEGwAAYCmEGwAAYCkuh5uPPvpITz75pOOZTuvWrVPv3r1144036u9//7vbCwQAAHCFS+Fm3rx5uuWWW7Ry5Ur17t1bCxYsUP/+/VWvXj1FR0drwoQJeuWVV8qqVgAAgEty6T43r776ql5//XWNGTNGn332mXr37q0XX3xR9913nyTp2muv1XPPPafx48eXSbEAAACX4tLITWpqqhISEiRJ3bt3V1FRkbp27er4vFu3bjp06JB7KwQAAHCBS+HmyiuvdISXn376SWfPnnW6g/ChQ4dUu3Zt91YIAADgApdOS/Xr10933nmnRowYoRUrVmj48OF68MEH5eXlJZvNpocfflg9e/Ysq1oBAAAuyaVwM3PmTJ0+fVqLFi1S586dNXv2bL366qvq16+fzpw5o/j4eCUmJpZVrQAAAJfklmdLnTp1SmfOnFHNmjXdUVOZ4tlSAABUPq78frvlqeB+fn7y8/Nzx6YAAAAui0vhZuLEiSVq99JLL5WqGAAAgMvlUrjZvn270/uNGzeqQ4cO8vf3dyyz2WzuqQwAAKAUXAo3n332mdP7mjVrauHChWrUqJFbiwIAACgtHpwJAAAshXADAAAshXADAAAsxaU5N99++63Te2OM9u7dq7y8PKflbdu2vfzKAAAASsGlm/ide8xCcaucW26z2VRUVOTWIt2Jm/gBAFD5lNlN/FJTUy+rMAAAgLLmUrhp0KBBWdUBAADgFi5PKDbGKDU1VWfPnpUknT59WsnJyXrnnXeUnZ3t9gIBAABc4dLIzffff6+EhAQdPnxYjRo10urVq3Xbbbdp7969MsYoICBAKSkpatq0aVnVCwAAcFEujdw8+uijio2N1Y4dO3TTTTepT58+ql+/vo4dO6Zff/1VcXFxmj59elnVCgAAcEkuXS1Vp04drV69Wu3atVN+fr5q1qypDRs26LrrrpMkpaSkaMiQITp06FCZFXy5uFoKAIDKx5Xfb5dGbvLy8lS7dm1JUmBgoAIDAxUREeH4PDIyUllZWaUoGQAAwD1cCjd169ZVenq64/1zzz2nOnXqON4fPXpUV1xxhfuqAwAAcJFL4aZHjx7au3ev4/29996rmjVrOt6vXr1a7du3d191AEotI6dAKQeylZFT4OlSAKBcuTTn5lLS0tLk6+vrdKqqomHODaqC5C3pmrRkp+xG8rJJiQNiNKhjlKfLAoBSK7M5N+vWrVOrVq2Um5t73mc5OTnq06eP9u/f71q1ANwqI6fAEWwkyW6kyUt2MYIDoMpwKdzMmjVLY8aMKTYxBQcH6+6779ZLL73ktuIAuC41O98RbM4pMkZp2Sc9UxAAlDOXws0333yjG2+88YKf9+zZU1u3br3sogCUXsOQQHnZnJd522yKDgnwTEEAUM5cCjdZWVmqXr36BT+vVq2ajh49etlFASi9iGB/JQ6Ikbftt4TjbbPpmQFtFBHs7+HKAKB8uPT4hXr16mnXrl1q0qRJsZ9/++23FXoyMVBVDOoYpa7NQpWWfVLRIQEEGwBViksjN71799YTTzyhU6dOnfdZQUGBpkyZoptuusltxQEovYhgf8U1vpJgA6DKcelS8KysLLVv317e3t4aN26cmjdvLknau3ev5syZo6KiIm3btk1hYWFlVvDl4lJwAAAqH1d+v106LRUWFqaUlBTde++9mjRpks7lIpvNpoSEBM2ZM6dCBxsAAGB9LoUbSWrQoIFWrlypY8eOaf/+/TLGqGnTpjx2AQAAVAguh5tzrrjiCnXs2NGdtQAAAFw2lyYUAwAAVHSEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCkeDTcbNmxQ3759VbduXdlsNi1btuyS66xfv17t27eXr6+vmjRpoqSkpDKvEwAAVB4eDTf5+fmKjY3VnDlzStQ+NTVVffr0Uffu3bVjxw5NmDBBo0eP1ieffFLGlQIAgMqimid33qtXL/Xq1avE7efOnauGDRvqxRdflCS1bNlSGzdu1Msvv6yEhISyKhPAJWTkFCg1O18NQwIVEezv6XIAVHEeDTeu2rx5s3r06OG0LCEhQRMmTPBMQQCUvCVdk5bslN1IXjYpcUCMBnWM8nRZAKqwSjWhODMzU2FhYU7LwsLClJubq4KCgmLXKSwsVG5urtMLgHtk5BQ4go0k2Y00eckuZeQU/+8RAMpDpQo3pZGYmKjg4GDHKzIy0tMlAZaRmp3vCDbnFBmjtOyTnikIAFTJwk14eLiysrKclmVlZSkoKEj+/sWf5580aZJycnIcr8OHD5dHqUCV0DAkUF4252XeNpuiQwI8UxAAqJKFm7i4OK1du9Zp2Zo1axQXF3fBdXx9fRUUFOT0AuAeEcH+ShwQI2/bbwnH22bTMwPaMKkYgEd5dEJxXl6e9u/f73ifmpqqHTt2qHbt2oqKitKkSZN05MgRvfPOO5Kke+65R6+99poeeeQR3XHHHVq3bp0WL16sjz/+2FOHAFR5gzpGqWuzUKVln1R0SADBBoDHeTTcfP311+revbvj/cSJEyVJI0aMUFJSkjIyMpSenu74vGHDhvr444/1t7/9Ta+88orq16+vN998k8vAAQ+LCPYn1ACoMGzGGHPpZtaRm5ur4OBg5eTkcIoKAIBKwpXf70o15wYAAOBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAUAVl5BQo5UC2MnIKPF0K4HbVPF0AAKB8JW9J16QlO2U3kpdNShwQo0EdozxdFuA2jNwAQBWSkVPgCDaSZDfS5CW7GMGBpRBuAKAKSc3OdwSbc4qMUVr2Sc8UBJQBwg0AVCENQwLlZXNe5m2zKTokwDMFAWWAcAMAVUhEsL8SB8TI2/ZbwvG22fTMgDaKCPb3cGWA+zChGACqmEEdo9S1WajSsk8qOiSAYAPLIdwAQBUUEexPqIFlcVoKAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYSoUIN3PmzFF0dLT8/Px0zTXX6Kuvvrpg26SkJNlsNqeXn59fOVYLAAAqMo+Hm+TkZE2cOFFTpkzRtm3bFBsbq4SEBP38888XXCcoKEgZGRmO16FDh8qxYgAAUJF5PNy89NJLGjNmjEaNGqVWrVpp7ty5CggI0FtvvXXBdWw2m8LDwx2vsLCwcqwYAABUZB4NN6dPn9bWrVvVo0cPxzIvLy/16NFDmzdvvuB6eXl5atCggSIjI9WvXz/t3r37gm0LCwuVm5vr9AIAANbl0XCTnZ2toqKi80ZewsLClJmZWew6zZs311tvvaXly5drwYIFstvt6ty5s3788cdi2ycmJio4ONjxioyMdPtxAACAisPjp6VcFRcXp+HDh6tdu3aKj4/XkiVLFBoaqnnz5hXbftKkScrJyXG8Dh8+XM4VAwCA8lTNkzsPCQmRt7e3srKynJZnZWUpPDy8RNuoXr26rrrqKu3fv7/Yz319feXr63vZtQIAgMrBoyM3Pj4+6tChg9auXetYZrfbtXbtWsXFxZVoG0VFRdq5c6ciIiLKqkwAAFCJeHTkRpImTpyoESNG6Oqrr1anTp00a9Ys5efna9SoUZKk4cOHq169ekpMTJQkTZ8+Xddee62aNGmi48eP6/nnn9ehQ4c0evRoTx4GAACoIDwebgYNGqSjR4/qySefVGZmptq1a6dVq1Y5Jhmnp6fLy+t/A0zHjh3TmDFjlJmZqSuuuEIdOnRQSkqKWrVq5alDAEokI6dAqdn5ahgSqIhgf0+XAwBloiL8rbMZY4xH9uwhubm5Cg4OVk5OjoKCgjxdDqqI5C3pmrRkp+xG8rJJiQNiNKhjlKfLAgC3Ksu/da78fle6q6WAyiYjp8Dxj12S7EaavGSXMnIKPFsYALhRRfpbR7gBylhqdr7jH/s5RcYoLfukZwoCgDJQkf7WEW6AMtYwJFBeNudl3jabokMCPFMQgColI6dAKQeyy3wEpSL9rSPcAGUsIthfiQNi5G377V+9t82mZwa0YVIxgDKXvCVdXZ5dp6H/+I+6PLtOyVvSy2xfFelvHROKgXKSkVOgtOyTig4JINgAKHMZOQXq8uw6p1NF3jabNj7WvUz/BpXV3zpXfr89fik4UFVEBPsTagCUm4vNgSnLv0UV4W8dp6UAALCgijQHprwRbgAAsKCKNAemvHFaCgAAixrUMUpdm4VWufl+hBsAACysIsyBKW+clgIAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEsKiOnQCkHspWRU+DpUgCgXHETP8CCkreka9KSnbIbycsmJQ6I0aCOUZ4uCwDKBSM3gMVk5BQ4go0k2Y00eckuRnAAVBmEGzfiNAAqgtTsfEewOafIGKVln/RMQQBQzjgt5SacBkBF0TAkUF42OQUcb5tN0SEBnisKAMoRIzduwGkAVCQRwf5KHBAjb5tN0m/B5pkBbarcg/MAVF2M3LjBxU4D8IMCTxjUMUpdm4UqLfukokMC+B4CqFIIN27AaQBURBHB/oQaAFUSp6XcgNMAAABUHIzcuAmnAQAAqBgIN27EaQAAADyP01IAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAgBLLyClQyoFsZeQUWGpfsBYevwAAKJHkLematGSn7EbyskmJA2I0qGNUpd8XrIeRGwDAJWXkFDjChiTZjTR5ya4yGVUpz33Bmgg3AOBmVjydkpqd7wgb5xQZo7Tsk5V6X7AmTksBgBtZ9XRKw5BAednkFDq8bTZFhwRU6n3Bmhi5AQA3sfLplIhgfyUOiJG3zSbpt7DxzIA2igj2r9T7gjUxcgMAbnKx0ylW+GEe1DFKXZuFKi37pKJDAsr0mMpzX7Aewg0AuElVOJ0SEexfbkGjPPcFa+G0FAC4CadTgIqBkRsAcCNOpwCeR7gBADcr79MpGTkFSs3OV8OQQMIUIMINAFRqVr30HLgczLkBgErKypeeA5eDcAMAlRR38gWKR7gBgErq3KXnv2e1S8+B0iDcABWcFZ9TBPfg0nOgeEwoBiowJoviUrj0HDgfIzdABcVkUZRURLC/4hpfWS7BhpFEVAYVItzMmTNH0dHR8vPz0zXXXKOvvvrqou3ff/99tWjRQn5+foqJidHKlSvLqVKg/DBZFBVN8pZ0dXl2nYb+4z/q8uw6JW9J93RJQLE8Hm6Sk5M1ceJETZkyRdu2bVNsbKwSEhL0888/F9s+JSVFQ4YM0Z133qnt27erf//+6t+/v3bt2lXOlQNli8miqEgYSURl4vFw89JLL2nMmDEaNWqUWrVqpblz5yogIEBvvfVWse1feeUV3XjjjXr44YfVsmVLzZgxQ+3bt9drr71WzpUDZYvJoqhIGElEZeLRCcWnT5/W1q1bNWnSJMcyLy8v9ejRQ5s3by52nc2bN2vixIlOyxISErRs2bJi2xcWFqqwsNDxPjc39/ILB8oJk0VRUVSFJ57DOjw6cpOdna2ioiKFhYU5LQ8LC1NmZmax62RmZrrUPjExUcHBwY5XZGSke4oHykl5ThYFLoSRRFQmlr8UfNKkSU4jPbm5uQQcACgFRhJRWXg03ISEhMjb21tZWVlOy7OyshQeHl7sOuHh4S619/X1la+vr3sKBoAqrryfeA6UhkdPS/n4+KhDhw5au3atY5ndbtfatWsVFxdX7DpxcXFO7SVpzZo1F2wPAACqFo+flpo4caJGjBihq6++Wp06ddKsWbOUn5+vUaNGSZKGDx+uevXqKTExUZI0fvx4xcfH68UXX1SfPn20aNEiff311/r73//uycMAAAAVhMfDzaBBg3T06FE9+eSTyszMVLt27bRq1SrHpOH09HR5ef1vgKlz585auHChHn/8cU2ePFlNmzbVsmXL1KZNG08dAgAAqEBsxhhz6WbWkZubq+DgYOXk5CgoKMjT5QAAgBJw5ffb4zfxAwAAcCfCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBSP38SvvJ27rU9ubq6HKwEAACV17ne7JLfnq3Lh5sSJE5LEk8EBAKiETpw4oeDg4Iu2qXJ3KLbb7frpp59Us2ZN2Wy2y9pWbm6uIiMjdfjw4Sp7t2P6gD6Q6AOJPpDoA4k+kMquD4wxOnHihOrWrev0WKbiVLmRGy8vL9WvX9+t2wwKCqqyX+Jz6AP6QKIPJPpAog8k+kAqmz641IjNOUwoBgAAlkK4AQAAlkK4uQy+vr6aMmWKfH19PV2Kx9AH9IFEH0j0gUQfSPSBVDH6oMpNKAYAANbGyA0AALAUwg0AALAUwg0AALAUwg0AALAUws0fzJkzR9HR0fLz89M111yjr7766qLtZ82apebNm8vf31+RkZH629/+plOnTjk+nzp1qmw2m9OrRYsWZX0Yl8WVPjhz5oymT5+uxo0by8/PT7GxsVq1atVlbbMicHcfVKbvwYYNG9S3b1/VrVtXNptNy5Ytu+Q669evV/v27eXr66smTZooKSnpvDaV6TtQFn1Qmb4Dkut9kJGRoaFDh6pZs2by8vLShAkTim33/vvvq0WLFvLz81NMTIxWrlzp/uLdpCz6ICkp6bzvgZ+fX9kcgBu42gdLlizRDTfcoNDQUAUFBSkuLk6ffPLJee3K+u8B4eZ3kpOTNXHiRE2ZMkXbtm1TbGysEhIS9PPPPxfbfuHChXrsscc0ZcoU7dmzR//85z+VnJysyZMnO7Vr3bq1MjIyHK+NGzeWx+GUiqt98Pjjj2vevHmaPXu2vvvuO91zzz265ZZbtH379lJv09PKog+kyvM9yM/PV2xsrObMmVOi9qmpqerTp4+6d++uHTt2aMKECRo9erTTH7TK9h0oiz6QKs93QHK9DwoLCxUaGqrHH39csbGxxbZJSUnRkCFDdOedd2r79u3q37+/+vfvr127drmzdLcpiz6Qfrtz7++/B4cOHXJXyW7nah9s2LBBN9xwg1auXKmtW7eqe/fu6tu3b/n/Jhg4dOrUyYwdO9bxvqioyNStW9ckJiYW237s2LHmT3/6k9OyiRMnmi5dujjeT5kyxcTGxpZJvWXB1T6IiIgwr732mtOyAQMGmGHDhpV6m55WFn1Q2b4H50gyS5cuvWibRx55xLRu3dpp2aBBg0xCQoLjfWX7Dvyeu/qgsn4HjClZH/xefHy8GT9+/HnLBw4caPr06eO07JprrjF33333ZVZY9tzVB/PnzzfBwcFuq6s8udoH57Rq1cpMmzbN8b48/h4wcvNfp0+f1tatW9WjRw/HMi8vL/Xo0UObN28udp3OnTtr69atjuG0gwcPauXKlerdu7dTu3379qlu3bpq1KiRhg0bpvT09LI7kMtQmj4oLCw8b0jV39/f8X+kpdmmJ5VFH5xTWb4Hrtq8ebNTf0lSQkKCo78q23egNC7VB+dY9TtQUiXtJ6vLy8tTgwYNFBkZqX79+mn37t2eLqnM2O12nThxQrVr15ZUfn8PCDf/lZ2draKiIoWFhTktDwsLU2ZmZrHrDB06VNOnT9d1112n6tWrq3HjxurWrZvTaalrrrlGSUlJWrVqld544w2lpqbq+uuv14kTJ8r0eEqjNH2QkJCgl156Sfv27ZPdbteaNWu0ZMkSZWRklHqbnlQWfSBVru+BqzIzM4vtr9zcXBUUFFS670BpXKoPJGt/B0rqQv1kle9BSTRv3lxvvfWWli9frgULFshut6tz58768ccfPV1amXjhhReUl5engQMHSiq/3wTCzWVYv369nnnmGb3++uvatm2blixZoo8//lgzZsxwtOnVq5duu+02tW3bVgkJCVq5cqWOHz+uxYsXe7By93nllVfUtGlTtWjRQj4+Pho3bpxGjRp1ycfRW0lJ+sDq3wNcGt8BSFJcXJyGDx+udu3aKT4+XkuWLFFoaKjmzZvn6dLcbuHChZo2bZoWL16sOnXqlOu+q84v0CWEhITI29tbWVlZTsuzsrIUHh5e7DpPPPGEbr/9do0ePVoxMTG65ZZb9MwzzygxMVF2u73YdWrVqqVmzZpp//79bj+Gy1WaPggNDdWyZcuUn5+vQ4cOae/evapRo4YaNWpU6m16Uln0QXEq8vfAVeHh4cX2V1BQkPz9/Svdd6A0LtUHxbHSd6CkLtRPVvkelEb16tV11VVXWe57sGjRIo0ePVqLFy92OgVVXn8PCDf/5ePjow4dOmjt2rWOZXa7XWvXrlVcXFyx65w8efK8EQpvb29JkrnAI7vy8vJ04MABRUREuKly9ylNH5zj5+enevXq6ezZs/rwww/Vr1+/y96mJ5RFHxSnIn8PXBUXF+fUX5K0Zs0aR39Vtu9AaVyqD4pjpe9ASZWmn6yuqKhIO3futNT34L333tOoUaP03nvvqU+fPk6fldvfA7dNTbaARYsWGV9fX5OUlGS+++47c9ddd5latWqZzMxMY4wxt99+u3nssccc7adMmWJq1qxp3nvvPXPw4EGzevVq07hxYzNw4EBHmwcffNCsX7/epKammk2bNpkePXqYkJAQ8/PPP5f78ZWEq33w5Zdfmg8//NAcOHDAbNiwwfzpT38yDRs2NMeOHSvxNiuasuiDyvQ9OHHihNm+fbvZvn27kWReeukls337dnPo0CFjjDGPPfaYuf322x3tDx48aAICAszDDz9s9uzZY+bMmWO8vb3NqlWrHG0q23egLPqgMn0HjHG9D4wxjvYdOnQwQ4cONdu3bze7d+92fL5p0yZTrVo188ILL5g9e/aYKVOmmOrVq5udO3eW67GVVFn0wbRp08wnn3xiDhw4YLZu3WoGDx5s/Pz8nNpUJK72wb/+9S9TrVo1M2fOHJORkeF4HT9+3NGmPP4eEG7+YPbs2SYqKsr4+PiYTp06mS+//NLxWXx8vBkxYoTj/ZkzZ8zUqVNN48aNjZ+fn4mMjDT33Xef04/aoEGDTEREhPHx8TH16tUzgwYNMvv37y/HI3KdK32wfv1607JlS+Pr62uuvPJKc/vtt5sjR464tM2KyN19UJm+B5999pmRdN7r3DGPGDHCxMfHn7dOu3btjI+Pj2nUqJGZP3/+edutTN+BsuiDyvQdMKZ0fVBc+wYNGji1Wbx4sWnWrJnx8fExrVu3Nh9//HH5HFAplEUfTJgwwfHvICwszPTu3dts27at/A7KRa72QXx8/EXbn1PWfw9sxlzg/AkAAEAlxJwbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAKgA1q9fL5vNpuPHj3u6FKDSI9wAVczIkSNls9n07LPPOi1ftmyZbDab470xRv/4xz8UFxenoKAg1ahRQ61bt9b48eNL/JC/kydPatKkSWrcuLH8/PwUGhqq+Ph4LV++3NEmOjpas2bNcsuxlbVzfWez2VS9enU1bNhQjzzyiE6dOuXSdrp166YJEyY4LevcubMyMjIUHBzsxoqBqolwA1RBfn5+mjlzpo4dO1bs58YYDR06VA888IB69+6t1atX67vvvtM///lP+fn56amnnirRfu655x4tWbJEs2fP1t69e7Vq1Srdeuut+uWXX9x5OOXqxhtvVEZGhg4ePKiXX35Z8+bN05QpUy57uz4+PgoPD3cKmABKya0PcwBQ4Y0YMcLcdNNNpkWLFubhhx92LF+6dKk59yfhvffeM5LM8uXLi92G3W4v0b6Cg4NNUlLSBT8v7jk053zxxRfmuuuuM35+fqZ+/frm/vvvN3l5eY7P33nnHdOhQwdTo0YNExYWZoYMGWKysrIcn597Js6qVatMu3btjJ+fn+nevbvJysoyK1euNC1atDA1a9Y0Q4YMMfn5+SU6nhEjRph+/fo5LRswYIC56qqrHO+zs7PN4MGDTd26dY2/v79p06aNWbhwodM2/njMqampjnp//2y6Dz74wLRq1cr4+PiYBg0amBdeeKFEdQJVHSM3QBXk7e2tZ555RrNnz9aPP/543ufvvfeemjdvrptvvrnY9Us6uhAeHq6VK1fqxIkTxX6+ZMkS1a9fX9OnT1dGRoYyMjIkSQcOHNCNN96ov/zlL/r222+VnJysjRs3aty4cY51z5w5oxkzZuibb77RsmXLlJaWppEjR563j6lTp+q1115TSkqKDh8+rIEDB2rWrFlauHChPv74Y61evVqzZ88u0fH80a5du5SSkiIfHx/HslOnTqlDhw76+OOPtWvXLt111126/fbb9dVXX0mSXnnlFcXFxWnMmDGOY46MjDxv21u3btXAgQM1ePBg7dy5U1OnTtUTTzyhpKSkUtUKVCmeTlcAytfvRx+uvfZac8cddxhjnEduWrRoYW6++Wan9caPH28CAwNNYGCgqVevXon29fnnn5v69eub6tWrm6uvvtpMmDDBbNy40alNgwYNzMsvv+y07M477zR33XWX07IvvvjCeHl5mYKCgmL3tWXLFiPJnDhxwhjzv5GbTz/91NEmMTHRSDIHDhxwLLv77rtNQkJCiY5nxIgRxtvb2wQGBhpfX18jyXh5eZkPPvjgouv16dPHPPjgg4738fHxZvz48U5t/jhyM3ToUHPDDTc4tXn44YdNq1atSlQrUJUxcgNUYTNnztTbb7+tPXv2XLLt//3f/2nHjh168sknlZeXV6Ltd+3aVQcPHtTatWt16623avfu3br++us1Y8aMi673zTffKCkpSTVq1HC8EhISZLfblZqaKum3kY2+ffsqKipKNWvWVHx8vCQpPT3daVtt27Z1/HdYWJgCAgLUqFEjp2U///xziY5Hkrp3764dO3boP//5j0aMGKFRo0bpL3/5i+PzoqIizZgxQzExMapdu7Zq1KihTz755Ly6LmXPnj3q0qWL07IuXbpo3759KioqcmlbQFVDuAGqsK5duyohIUGTJk1yWt60aVN9//33TstCQ0PVpEkT1alTx6V9VK9eXddff70effRRrV69WtOnT9eMGTN0+vTpC66Tl5enu+++Wzt27HC8vvnmG+3bt0+NGzdWfn6+EhISFBQUpH/961/asmWLli5dKknnbbd69eqO/z53ldPv2Ww22e32Eh9PYGCgmjRpotjYWL311lv6z3/+o3/+85+Oz59//nm98sorevTRR/XZZ59px44dSkhIuOjxAnCvap4uAIBnPfvss2rXrp2aN2/uWDZkyBANHTpUy5cvV79+/dy6v1atWuns2bM6deqUfHx85OPjc95IRPv27fXdd9+pSZMmxW5j586d+uWXX/Tss8865qt8/fXXbq2zJLy8vDR58mRNnDhRQ4cOlb+/vzZt2qR+/frpr3/9qyTJbrfrhx9+UKtWrRzrFXfMf9SyZUtt2rTJadmmTZvUrFkzeXt7u/9gAAth5Aao4mJiYjRs2DC9+uqrjmWDBw/WrbfeqsGDB2v69On6z3/+o7S0NH3++edKTk4u8Y9rt27dNG/ePG3dulVpaWlauXKlJk+erO7duysoKEjSb/e52bBhg44cOaLs7GxJ0qOPPqqUlBSNGzdOO3bs0L59+7R8+XLHhOKoqCj5+Pho9uzZOnjwoFasWHHJU11l5bbbbpO3t7fmzJkj6bdRrzVr1iglJUV79uzR3XffraysLKd1oqOjHX2anZ1d7MjRgw8+qLVr12rGjBn64Ycf9Pbbb+u1117TQw89VC7HBVRmhBsAmj59utMPrM1mU3JysmbNmqWVK1fqz3/+s5o3b6477rhDkZGR2rhxY4m2m5CQoLfffls9e/ZUy5Ytdf/99yshIUGLFy922ndaWpoaN26s0NBQSb/Nk/n888/1ww8/6Prrr9dVV12lJ598UnXr1pX02ymypKQkvf/++2rVqpWeffZZvfDCC27skZKrVq2axo0bp+eee075+fl6/PHH1b59eyUkJKhbt24KDw9X//79ndZ56KGH5O3trVatWik0NLTY+Tjt27fX4sWLtWjRIrVp00ZPPvmkpk+fXuwVYQCc2YwxxtNFAAAAuAsjNwAAwFIINwBK7feXav/x9cUXX3i6PJekp6df9HhcvZQbgOdwWgpAqV3sAZr16tWTv79/OVZzec6ePau0tLQLfh4dHa1q1bjAFKgMCDcAAMBSOC0FAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAs5f8DW4DoyItylFUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAShhJREFUeJzt3XtcVVXC//HvAeXiBbyAXAzFu6kIRkqYphZF5lhm5a3JS9ldy+imPiVqTVjTmE0x2pRJTZPSRc2ZfMjCzClNE6W0sUYJwgugOAFyEZSzf3/48zydAAXkcDjsz/v12q/xrL322mvvOcP5ztpr720xDMMQAACAibg5uwMAAACNjQAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEoMlauHChLBZLrepaLBYtXLjQof0ZOXKkRo4c2WTbA1B7BCAAF5SUlCSLxWJbWrRooc6dO2v69Ok6cuSIs7vX5ISGhtqdr06dOmn48OFat25dg7RfWlqqhQsXasuWLQ3SHmBGBCAAtbZ48WL97W9/04oVKzR69Gi98847GjFihE6dOuWQ/T311FMqKytzSNuOFhERob/97W/629/+pscee0xHjx7V+PHjtWLFiotuu7S0VIsWLSIAARehhbM7AMB1jB49WpdffrkkaebMmfLz89Pzzz+vDRs2aMKECQ2+vxYtWqhFC9f8M9W5c2f9/ve/t32eOnWqevbsqZdeekn33XefE3sGQGIECMBFGD58uCQpIyPDrvyHH37Qrbfeqg4dOsjLy0uXX365NmzYYFfn9OnTWrRokXr16iUvLy917NhRw4YN06effmqrU90coPLycj3yyCPy9/dX27ZtdeONN+rw4cNV+jZ9+nSFhoZWKa+uzVWrVunqq69Wp06d5OnpqX79+mn58uV1OhcXEhgYqEsvvVSZmZnnrXfs2DHdddddCggIkJeXl8LDw/XWW2/Z1mdlZcnf31+StGjRIttlNkfPfwKaG9f8v1YAmoSsrCxJUvv27W1l33//va688kp17txZc+fOVevWrfXee+9p3Lhx+vDDD3XzzTdLOhtEEhISNHPmTA0ZMkRFRUXatWuXdu/erWuvvbbGfc6cOVPvvPOOpkyZoqFDh2rz5s0aM2bMRR3H8uXL1b9/f914441q0aKF/vGPf+iBBx6Q1WrVgw8+eFFtn3P69GkdOnRIHTt2rLFOWVmZRo4cqYMHD2rWrFnq1q2b3n//fU2fPl0FBQV6+OGH5e/vr+XLl+v+++/XzTffrPHjx0uSBg4c2CD9BEzDAIALWLVqlSHJ+Oyzz4zjx48bhw4dMj744APD39/f8PT0NA4dOmSre8011xhhYWHGqVOnbGVWq9UYOnSo0atXL1tZeHi4MWbMmPPuNz4+3vj1n6n09HRDkvHAAw/Y1ZsyZYohyYiPj7eVTZs2zejatesF2zQMwygtLa1SLzY21ujevbtd2YgRI4wRI0act8+GYRhdu3Y1rrvuOuP48ePG8ePHjW+//daYNGmSIcmYPXt2je0tW7bMkGS88847trKKigojOjraaNOmjVFUVGQYhmEcP368yvECqBsugQGotZiYGPn7+yskJES33nqrWrdurQ0bNuiSSy6RJP33v//V5s2bNWHCBJ08eVL5+fnKz8/XiRMnFBsbqwMHDtjuGmvXrp2+//57HThwoNb737hxoyTpoYcesiufM2fORR2Xt7e37d+FhYXKz8/XiBEj9NNPP6mwsLBebW7atEn+/v7y9/dXeHi43n//fd1xxx16/vnna9xm48aNCgwM1OTJk21lLVu21EMPPaTi4mJ98cUX9eoLgKoIQBewdetWjR07VsHBwbJYLFq/fr1D93dufsKvl759+zp0n0BtJSYm6tNPP9UHH3ygG264Qfn5+fL09LStP3jwoAzD0NNPP2378T+3xMfHSzo7x0U6e0dZQUGBevfurbCwMD3++OP67rvvzrv/n3/+WW5uburRo4ddeZ8+fS7quL766ivFxMSodevWateunfz9/TV//nxJqncAioqK0qeffqrPPvtM27ZtU35+vt5++227sPVbP//8s3r16iU3N/s/zZdeeqltPYCGwRygCygpKVF4eLjuvPNO27V2R+vfv78+++wz22dXvQsGzc+QIUNsd4GNGzdOw4YN05QpU/Tjjz+qTZs2slqtkqTHHntMsbGx1bbRs2dPSdJVV12ljIwMffTRR9q0aZPeeOMNvfTSS1qxYoVmzpx50X2t6QGKlZWVdp8zMjJ0zTXXqG/fvlq6dKlCQkLk4eGhjRs36qWXXrIdU135+fkpJiamXtsCcDx+WS9g9OjRGj16dI3ry8vL9T//8z9avXq1CgoKNGDAAD3//PMX9XTXFi1aKDAwsN7bA43B3d1dCQkJGjVqlF599VXNnTtX3bt3l3T2sk1tfvw7dOigGTNmaMaMGSouLtZVV12lhQsX1hiAunbtKqvVqoyMDLtRnx9//LFK3fbt26ugoKBK+W9HUf7xj3+ovLxcGzZsUJcuXWzln3/++QX739C6du2q7777Tlar1W4U6IcffrCtl2oOdwBqj0tgF2nWrFnavn271qxZo++++0633Xabrr/++jrNa/itAwcOKDg4WN27d9ftt9+u7OzsBuwx0HBGjhypIUOGaNmyZTp16pQ6deqkkSNH6rXXXlNOTk6V+sePH7f9+8SJE3br2rRpo549e6q8vLzG/Z37PyN//vOf7cqXLVtWpW6PHj1UWFhod1ktJyenytOY3d3dJUmGYdjKCgsLtWrVqhr74Sg33HCDcnNzlZycbCs7c+aMXnnlFbVp00YjRoyQJLVq1UqSqg14AGqHEaCLkJ2drVWrVik7O1vBwcGSzg79p6SkaNWqVXruuefq3GZUVJSSkpLUp08f5eTkaNGiRRo+fLj27duntm3bNvQhABft8ccf12233aakpCTdd999SkxM1LBhwxQWFqa7775b3bt3V15enrZv367Dhw/r22+/lST169dPI0eOVGRkpDp06KBdu3bpgw8+0KxZs2rcV0REhCZPnqy//OUvKiws1NChQ5WamqqDBw9WqTtp0iQ9+eSTuvnmm/XQQw+ptLRUy5cvV+/evbV7925bveuuu04eHh4aO3as7r33XhUXF+v1119Xp06dqg1xjnTPPffotdde0/Tp05WWlqbQ0FB98MEH+uqrr7Rs2TLb3wBvb2/169dPycnJ6t27tzp06KABAwZowIABjdpfwKU5+zY0VyLJWLdune3zP//5T0OS0bp1a7ulRYsWxoQJEwzDMIz9+/cbks67PPnkkzXu85dffjF8fHyMN954w9GHB9To3G3w33zzTZV1lZWVRo8ePYwePXoYZ86cMQzDMDIyMoypU6cagYGBRsuWLY3OnTsbv/vd74wPPvjAtt2zzz5rDBkyxGjXrp3h7e1t9O3b1/jDH/5gVFRU2OpUd8t6WVmZ8dBDDxkdO3Y0WrdubYwdO9Y4dOhQtbeFb9q0yRgwYIDh4eFh9OnTx3jnnXeqbXPDhg3GwIEDDS8vLyM0NNR4/vnnjTfffNOQZGRmZtrq1eU2+Avd4l9Te3l5ecaMGTMMPz8/w8PDwwgLCzNWrVpVZdtt27YZkZGRhoeHB7fEA/VgMYxfjfvivCwWi9atW6dx48ZJkpKTk3X77bfr+++/tw2jn9OmTRsFBgaqoqJCP/3003nb7dixo+3JrtUZPHiwYmJilJCQcNHHAAAAuAR2UQYNGqTKykodO3bM9kqA3/Lw8Lio29iLi4uVkZGhO+64o95tAAAAewSgCyguLrabX5CZman09HR16NBBvXv31u23366pU6fqT3/6kwYNGqTjx48rNTVVAwcOrNfj+R977DGNHTtWXbt21dGjRxUfHy93d3e7B6MBAICLwyWwC9iyZYtGjRpVpXzatGlKSkrS6dOn9eyzz+rtt9/WkSNH5OfnpyuuuEKLFi1SWFhYnfc3adIkbd26VSdOnJC/v7+GDRumP/zhD1Ue/AYAAOqPAAQAAEyH5wABAADTIQABAADTYRJ0NaxWq44ePaq2bdvyyHkAAFyEYRg6efKkgoODq7xU+LcIQNU4evSoQkJCnN0NAABQD4cOHdIll1xy3jpODUBbt27VH//4R6Wlpdne0XPuIYPVmT59ut56660q5f369dP3338vSVq4cKEWLVpkt75Pnz62lwnWxrnHzR86dEg+Pj613g4AADhPUVGRQkJCavXqKKcGoJKSEoWHh+vOO+/U+PHjL1j/5Zdf1pIlS2yfz5w5o/DwcN1222129fr376/PPvvM9rlFi7od5rnLXj4+PgQgAABcTG2mrzg1AI0ePdr2dufa8PX1la+vr+3z+vXr9csvv2jGjBl29Vq0aKHAwMAG6ycAAGheXPousJUrVyomJkZdu3a1Kz9w4ICCg4PVvXt33X777crOzj5vO+Xl5SoqKrJbAABA8+WyAejo0aP63//9X82cOdOuPCoqSklJSUpJSdHy5cuVmZmp4cOH6+TJkzW2lZCQYBtd8vX1ZQI0AADNXJN5EvRv37R+IQkJCfrTn/6ko0ePysPDo8Z6BQUF6tq1q5YuXaq77rqr2jrl5eUqLy+3fT43iaqwsJA5QACAalmtVlVUVDi7G6bSsmVLubu717i+qKhIvr6+tfr9dsnb4A3D0Jtvvqk77rjjvOFHktq1a6fevXvbvdD0tzw9PeXp6dnQ3QQANFMVFRXKzMyU1Wp1dldMp127dgoMDLzo5/S5ZAD64osvdPDgwRpHdH6tuLhYGRkZuuOOOxqhZwCA5s4wDOXk5Mjd3V0hISEXfOAeGoZhGCotLdWxY8ckSUFBQRfVnlMDUHFxsd3ITGZmptLT09WhQwd16dJF8+bN05EjR/T222/bbbdy5UpFRUVpwIABVdp87LHHNHbsWHXt2lVHjx5VfHy83N3dNXnyZIcfDwCg+Ttz5oxKS0sVHBysVq1aObs7puLt7S1JOnbsmDp16nTey2EX4tQAtGvXLo0aNcr2OS4uTpI0bdo0JSUlKScnp8odXIWFhfrwww/18ssvV9vm4cOHNXnyZJ04cUL+/v4aNmyYvv76a/n7+zvuQAAAplFZWSlJF5yCAcc4FzpPnz7tugFo5MiROt8c7KSkpCplvr6+Ki0trXGbNWvWNETXAAA4L94V6RwNdd65cAkAAEyHAAQAAEyHAOQCcgrLtC0jXzmFZc7uCgDAxeXm5mr27Nnq3r27PD09FRISorFjxyo1NdWunmEYGj16tCwWi9avX28rz8rKksViUXp6epW2R44cqTlz5tg+r127Vtddd506duxY4zanTp3Sgw8+qI4dO6pNmza65ZZblJeX10BHWzMCUBOX/E22rlyyWVNe36Erl2xW8jfnf60HAAA1ycrKUmRkpDZv3qw//vGP2rt3r1JSUjRq1Cg9+OCDdnWXLVt20fNtSkpKNGzYMD3//PM11nnkkUf0j3/8Q++//76++OILHT16tFYvSL9YLvkcILPIKSzTvLV7Zf3/88SthjR/7T5d1dtfQb7ezu0cAMDlPPDAA7JYLNq5c6dat25tK+/fv7/uvPNO2+f09HT96U9/0q5duy7qeTvnnsGXlZVV7frCwkKtXLlS7777rq6++mpJ0qpVq3TppZfq66+/1hVXXFHvfV8II0BNWGZ+iS38nFNpGMrKr/kuOACA62jMKQ7//e9/lZKSogcffNAu/JzTrl07SVJpaammTJmixMREBQYGOrRPaWlpOn36tGJiYmxlffv2VZcuXbR9+3aH7psRoCasm19ruVlkF4LcLRaF+vHgLQBwdcnfZNtG+d0sUsL4ME0c3MVh+zt48KAMw1Dfvn3PW++RRx7R0KFDddNNN5233tChQ6s8BbusrEwRERG17lNubq48PDxs4eucgIAA5ebm1rqd+iAANWFBvt5KGB+m+Wv3qdIw5G6x6LnxA7j8BQAuzhlTHGrz7vMNGzZo8+bN2rNnzwXrJicn69JLL7Uru/322+vdv8ZGAGriJg7uoqt6+ysrv1Shfq0IPwDQDJxvioOj/s736tVLFotFP/zwQ411Nm/erIyMjCojMrfccouGDx+uLVu22MpCQkLUs2dPu3rnXlVRW4GBgaqoqFBBQYHdPvPy8hx++Y05QC4gyNdb0T06En4AoJk4N8Xh1xw9xaFDhw6KjY1VYmKiSkpKqqwvKCjQ3Llz9d133yk9Pd22SNJLL72kVatWNXifIiMj1bJlS7tb8H/88UdlZ2crOjq6wff3a4wAAQDQyJw1xSExMVFXXnmlhgwZosWLF2vgwIE6c+aMPv30Uy1fvlz79++vduSlS5cu6tatW53399///lfZ2dk6evSopLPhRjo78hMYGChfX1/dddddiouLU4cOHeTj46PZs2crOjraoXeASQQgAACcwhlTHLp3767du3frD3/4gx599FHl5OTI399fkZGRWr58eYPvb8OGDZoxY4bt86RJkyRJ8fHxWrhwoaSzo0tubm665ZZbVF5ertjYWP3lL39p8L78lsWozawokykqKpKvr68KCwvl4+Pj7O4AAJqQU6dOKTMzU926dZOXl5ezu2M65zv/dfn9Zg4QAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAD10JzuIao4Y1XxqdOqOGN1dlcuqKHOO7fBAwBQB+7u7pKkioqKOj/5uCn6b0m5jvxSJkOSRVLn9t7q0NrT2d2qUWnp2ReCt2zZ8qLaIQABAFAHLVq0UKtWrXT8+HG1bNmyygtBXUnFGasO5xfr3JiKIenw8dNqYbSWR4umdVyGYai0tFTHjh1Tu3btbEG0vghAAADUgcViUVBQkDIzM/Xzzz87uzsXpfx0pY4XV1QptxZ5yLPlxQUMR2nXrl2DvCeMAAQAQB15eHioV69eqqioGh5cybGTpzTr9a/162k1bhaL/n53lDq1bXoPeWzZsuVFj/ycQwACAKAe3NzcXP5J0F28vDT72n5V3knWxb+dw/aZU1imzPwSdfNr7dSXfBOAAAAwscZ8J1nyN9mat3avrIbkZpESxodp4uAuDtvf+TStGU4AAKDRBfl6K7pHR4eGn5zCMlv4kSSrIc1fu085hWUO2+f5EIAAAIDDZeaX2MLPOZWGoaz8Uqf0hwAEAAAcrptfa7lZ7MvcLRaF+rVySn8IQAAAwOGCfL2VMD5M7pazKejchGtnTYRmEjQAAGgUjTnh+kIIQAAAoNEE+Xo7NficwyUwAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOk4NQFu3btXYsWMVHBwsi8Wi9evXn7f+li1bZLFYqiy5ubl29RITExUaGiovLy9FRUVp586dDjwKAADgapwagEpKShQeHq7ExMQ6bffjjz8qJyfHtnTq1Mm2Ljk5WXFxcYqPj9fu3bsVHh6u2NhYHTt2rKG7DwAAXJRTX4Y6evRojR49us7bderUSe3atat23dKlS3X33XdrxowZkqQVK1bo448/1ptvvqm5c+deTHcBAEAz4ZJzgCIiIhQUFKRrr71WX331la28oqJCaWlpiomJsZW5ubkpJiZG27dvr7G98vJyFRUV2S0AAKD5cqkAFBQUpBUrVujDDz/Uhx9+qJCQEI0cOVK7d++WJOXn56uyslIBAQF22wUEBFSZJ/RrCQkJ8vX1tS0hISEOPQ4AAOBcTr0EVld9+vRRnz59bJ+HDh2qjIwMvfTSS/rb3/5W73bnzZunuLg42+eioiJCEAAAzZhLBaDqDBkyRF9++aUkyc/PT+7u7srLy7Ork5eXp8DAwBrb8PT0lKenp0P7CQAAmg6XugRWnfT0dAUFBUmSPDw8FBkZqdTUVNt6q9Wq1NRURUdHO6uLAACgiXHqCFBxcbEOHjxo+5yZman09HR16NBBXbp00bx583TkyBG9/fbbkqRly5apW7du6t+/v06dOqU33nhDmzdv1qZNm2xtxMXFadq0abr88ss1ZMgQLVu2TCUlJba7wgAAAJwagHbt2qVRo0bZPp+bhzNt2jQlJSUpJydH2dnZtvUVFRV69NFHdeTIEbVq1UoDBw7UZ599ZtfGxIkTdfz4cS1YsEC5ubmKiIhQSkpKlYnRAADAvCyGYRjO7kRTU1RUJF9fXxUWFsrHx8fZ3QEAALVQl99vl58DBAAAUFcEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDpODUBbt27V2LFjFRwcLIvFovXr15+3/tq1a3XttdfK399fPj4+io6O1ieffGJXZ+HChbJYLHZL3759HXgUAADA1Tg1AJWUlCg8PFyJiYm1qr9161Zde+212rhxo9LS0jRq1CiNHTtWe/bssavXv39/5eTk2JYvv/zSEd0HAAAuqoUzdz569GiNHj261vWXLVtm9/m5557TRx99pH/84x8aNGiQrbxFixYKDAxsqG4CAIBmxqXnAFmtVp08eVIdOnSwKz9w4ICCg4PVvXt33X777crOzj5vO+Xl5SoqKrJbAABA8+XSAejFF19UcXGxJkyYYCuLiopSUlKSUlJStHz5cmVmZmr48OE6efJkje0kJCTI19fXtoSEhDRG9wEAgJNYDMMwnN0JSbJYLFq3bp3GjRtXq/rvvvuu7r77bn300UeKiYmpsV5BQYG6du2qpUuX6q677qq2Tnl5ucrLy22fi4qKFBISosLCQvn4+NTpOAAAgHMUFRXJ19e3Vr/fTp0DVF9r1qzRzJkz9f777583/EhSu3bt1Lt3bx08eLDGOp6envL09GzobgIAgCbK5S6BrV69WjNmzNDq1as1ZsyYC9YvLi5WRkaGgoKCGqF3AADAFTh1BKi4uNhuZCYzM1Pp6enq0KGDunTponnz5unIkSN6++23JZ297DVt2jS9/PLLioqKUm5uriTJ29tbvr6+kqTHHntMY8eOVdeuXXX06FHFx8fL3d1dkydPbvwDBAAATZJTR4B27dqlQYMG2W5hj4uL06BBg7RgwQJJUk5Ojt0dXH/961915swZPfjggwoKCrItDz/8sK3O4cOHNXnyZPXp00cTJkxQx44d9fXXX8vf379xDw4AADRZTWYSdFNSl0lUAACgaajL77fLzQECAAC4WAQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgVJFTWKZtGfnKKSxzdlcAAHCIFs7uAJqW5G+yNW/tXlkNyc0iJYwP08TBXZzdLQAAGhQjQLDJKSyzhR9JshrS/LX7GAkCADQ7BCDYZOaX2MLPOZWGoaz8Uud0CAAAByEAwaabX2u5WezL3C0Whfq1ck6HAABwEAIQbIJ8vZUwPkzulrMpyN1i0XPjByjI19vJPQMAoGExCRp2Jg7uoqt6+ysrv1Shfq0IPwCAZokAhCqCfL0JPgCAZo1LYAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHScGoC2bt2qsWPHKjg4WBaLRevXr7/gNlu2bNFll10mT09P9ezZU0lJSVXqJCYmKjQ0VF5eXoqKitLOnTsbvvMAAMBlOTUAlZSUKDw8XImJibWqn5mZqTFjxmjUqFFKT0/XnDlzNHPmTH3yySe2OsnJyYqLi1N8fLx2796t8PBwxcbG6tixY446DAAA4GIshmEYzu6EJFksFq1bt07jxo2rsc6TTz6pjz/+WPv27bOVTZo0SQUFBUpJSZEkRUVFafDgwXr11VclSVarVSEhIZo9e7bmzp1bq74UFRXJ19dXhYWF8vHxqf9BAQCARlOX32+XmgO0fft2xcTE2JXFxsZq+/btkqSKigqlpaXZ1XFzc1NMTIytTnXKy8tVVFRktwAAgObLpQJQbm6uAgIC7MoCAgJUVFSksrIy5efnq7Kysto6ubm5NbabkJAgX19f2xISEuKQ/gMAgKbBpQKQo8ybN0+FhYW25dChQ87uEtAocgrLtC0jXzmFZc7uCgA0qhbO7kBdBAYGKi8vz64sLy9PPj4+8vb2lru7u9zd3autExgYWGO7np6e8vT0dEifgaYq+ZtszVu7V1ZDcrNICePDNHFwF2d3CwAahUuNAEVHRys1NdWu7NNPP1V0dLQkycPDQ5GRkXZ1rFarUlNTbXUAnB35ORd+JMlqSPPX7mMkCIBpODUAFRcXKz09Xenp6ZLO3uaenp6u7OxsSWcvTU2dOtVW/7777tNPP/2kJ554Qj/88IP+8pe/6L333tMjjzxiqxMXF6fXX39db731lvbv36/7779fJSUlmjFjRqMeG9CUZeaX2MLPOZWGoaz8Uud0CAAamVMvge3atUujRo2yfY6Li5MkTZs2TUlJScrJybGFIUnq1q2bPv74Yz3yyCN6+eWXdckll+iNN95QbGysrc7EiRN1/PhxLViwQLm5uYqIiFBKSkqVidGAmXXzay03i+xCkLvFolC/Vs7rFAA0ono9B2jnzp3avn277c6qwMBARUdHa8iQIQ3eQWfgOUAwg+RvsjV/7T5VGobcLRY9N34Ac4AAuLS6/H7XKQAdO3ZMt9xyi7766it16dLFNqqSl5en7OxsXXnllfrwww/VqVOnizsCJyMAwSxyCsuUlV+qUL9WCvL1dnZ3AOCiOOxBiA888IAqKyu1f/9+ZWVlaceOHdqxY4eysrK0f/9+Wa1WPfjggxfVeQCNJ8jXW9E9OhJ+AJhOnUaA2rZtq61bt2rQoEHVrk9LS9PIkSN18uTJBuugMzACBACA63HYCJCnp+d5XxNx8uRJnqcDAACavDoFoIkTJ2ratGlat26dXRAqKirSunXrNGPGDE2ePLnBOwkAANCQ6nQb/NKlS2W1WjVp0iSdOXNGHh4eks6+hLRFixa666679OKLLzqkowAAAA2lXrfBFxUVKS0tze42+MjIyGYzX4Y5QAAAuJ66/H7X60GIPj4+dg8wBAAAcCUN+iqMvLw8LV68uCGbBAAAaHANGoByc3O1aNGihmwSAACgwdXpEth333133vU//vjjRXUGAACgMdQpAEVERMhisai6edPnyi0WS4N1DgAAwBHqFIA6dOigF154Qddcc02167///nuNHTu2QToGAADgKHUKQJGRkTp69Ki6du1a7fqCgoJqR4cAAACakjoFoPvuu08lJSU1ru/SpYtWrVp10Z0CAABwpHo9CLG540GIAAC4Hoe9DBUA6iunsEzbMvKVU1jm7K4AQN0ugcXFxdWq3tKlS+vVGQDNU/I32Zq3dq+shuRmkRLGh2ni4C7O7hYAE6tTANqzZ4/d5y+//FKRkZHy9va2lXEbPIBfyykss4UfSbIa0vy1+3RVb38F+Xqff2MAcJA6BaDPP//c7nPbtm317rvvqnv37g3aKQDNR2Z+iS38nFNpGMrKLyUAAXAa5gABcKhufq3l9puBYXeLRaF+rZzTIQAQAQiAgwX5eithfJjc///lcXeLRc+NH8DoDwCnqtMlMACoj4mDu+iq3v7Kyi9VqF8rwg8Ap7uol6EahqEffvhBxcXFduUDBw68+J4BaFaCfL0JPgCajDo9CNHNza1WL0OtrKxs0E42Nh6ECACA66nL73edRoAyMzMvqmMAAABNQZ0CUE0vQQUAAHAlDXIX2NVXX62ff/65IZoCAABwuDqNAG3YsKHa8q1bt+qf//ynQkJCJEk33njjxfcMAADAQRpsErStQSZBAwCAGuQUlikzv0Td/Fo3+J2hDpsEHRsbK3d3d7355pvq1KmTrbxly5b69ttv1a9fv/r1GAAANHtN6cXIdZoD9L//+7+65pprdPnll+uf//yno/oEAACamZpejJxTWOaU/tR5EvQjjzyiDRs26Mknn9S9996r0tJSR/QLAAA0I+d7MbIz1OsusIiICO3atUsWi0URERHnnRMEAADQ1F6MXO/b4L29vbVixQq9+OKLmj17tvz8/BqyXwAAoBlpai9GrtNdYJs3b9asWbP09ddfV5ldXVhYqKFDh2rFihUaPnx4g3e0MXEXGADUnyPv8oHryyksc9iLkR12F9iyZct09913V9uor6+v7r33Xi1dutTlAxAAoH6a0l0+aJqayouR63QJ7Ntvv9X1119f4/rrrrtOaWlpF90pAIDraWp3+QDnU6cAlJeXp5YtW9a4vkWLFjp+/PhFdwoA4Hqa2l0+wPnUKQB17txZ+/btq3H9d999p6CgoIvuFADA9TS1u3zQNOUUlmlbRr7TRwbrFIBuuOEGPf300zp16lSVdWVlZYqPj9fvfve7OnciMTFRoaGh8vLyUlRUlHbu3Flj3ZEjR8pisVRZxowZY6szffr0KuvPd+kOAHDxmtpdPmh6kr/J1pVLNmvK6zt05ZLNSv4m22l9qdNdYHl5ebrsssvk7u6uWbNmqU+fPpKkH374QYmJiaqsrNTu3bsVEBBQ6w4kJydr6tSpWrFihaKiorRs2TK9//77+vHHH+1et3HOf//7X1VUVNg+nzhxQuHh4XrjjTc0ffp0SWcDUF5enlatWmWr5+npqfbt29eqT9wFBgD158i7fOC6cgrLdOWSzXaXSd0tFn05d1SDfU8cdhdYQECAtm3bpvvvv1/z5s2zPQDRYrEoNjZWiYmJdQo/krR06VLdfffdmjFjhiRpxYoV+vjjj/Xmm29q7ty5Vep36NDB7vOaNWvUqlUr3XbbbXblnp6eCgwMrFNfAAAXr6nc5YOm5XxzxJzxfalTAJKkrl27auPGjfrll1908OBBGYahXr161Xp05dcqKiqUlpamefPm2crc3NwUExOj7du316qNlStXatKkSWrdurVd+ZYtW9SpUye1b99eV199tZ599ll17Nixzn0EAAAX79wcsd+OADlrjlidA9A57du31+DBgy9q5/n5+aqsrKwyahQQEKAffvjhgtvv3LlT+/bt08qVK+3Kr7/+eo0fP17dunVTRkaG5s+fr9GjR2v79u1yd3ev0k55ebnKy8ttn4uKiup5RAAAoDrn5ojNX7tPlYbh9Dli9Q5ATcHKlSsVFhamIUOG2JVPmjTJ9u+wsDANHDhQPXr00JYtW3TNNddUaSchIUGLFi1yeH8BADCziYO76Kre/k1ijli93wXWEPz8/OTu7q68vDy78ry8vAvO3ykpKdGaNWt01113XXA/3bt3l5+fnw4ePFjt+nnz5qmwsNC2HDp0qPYHAQAAai3I11vRPTo6fZ6YUwOQh4eHIiMjlZqaaiuzWq1KTU1VdHT0ebd9//33VV5ert///vcX3M/hw4d14sSJGp9R5OnpKR8fH7sFAAA0X04NQJIUFxen119/XW+99Zb279+v+++/XyUlJba7wqZOnWo3SfqclStXaty4cVUmNhcXF+vxxx/X119/raysLKWmpuqmm25Sz549FRsb2yjHBAAAmjanzwGaOHGijh8/rgULFig3N1cRERFKSUmxTYzOzs6Wm5t9Tvvxxx/15ZdfatOmTVXac3d313fffae33npLBQUFCg4O1nXXXadnnnlGnp6ejXJMQGPj7dsAUDd1ehCiWfAgRLgS3r4NAGfV5ffb6ZfAANQfb98GgPohAAEujLdvA0D9EIAAF8bbtwGgfghAgAvj7dsAUD9OvwsMwMVpSk9WBQBXQQACmgHevg0AdcMlMAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIABwgpzCMm3LyFdOYZmzuwKYUgtndwAAzCb5m2zNW7tXVkNys0gJ48M0cXAXZ3cLMBVGgACgEeUUltnCjyRZDWn+2n0OHwlixAmwxwgQADSizPwSW/g5p9IwlJVfqiBfb4fskxEnoCpGgACgEXXzay03i32Zu8WiUL9WDtmfs0acgKaOAAQAjSjI11sJ48PkbjmbgtwtFj03foDDRn/ON+IEmBmXwACgkU0c3EVX9fZXVn6pQv1aOSz8SP834vTrEOTIESfAVTACBABOEOTrregeHR0afs7tpzFHnABXwQgQADRzjTniBLiKJjEClJiYqNDQUHl5eSkqKko7d+6ssW5SUpIsFovd4uXlZVfHMAwtWLBAQUFB8vb2VkxMjA4cOODowwCAJquxRpwAV+H0AJScnKy4uDjFx8dr9+7dCg8PV2xsrI4dO1bjNj4+PsrJybEtP//8s936F154QX/+85+1YsUK7dixQ61bt1ZsbKxOnTrl6MMBAAAuwOkBaOnSpbr77rs1Y8YM9evXTytWrFCrVq305ptv1riNxWJRYGCgbQkICLCtMwxDy5Yt01NPPaWbbrpJAwcO1Ntvv62jR49q/fr1jXBEAGBuPHQRrsCpAaiiokJpaWmKiYmxlbm5uSkmJkbbt2+vcbvi4mJ17dpVISEhuummm/T999/b1mVmZio3N9euTV9fX0VFRdXYZnl5uYqKiuwWAEDdJX+TrSuXbNaU13foyiWblfxNtrO7BFTLqQEoPz9flZWVdiM4khQQEKDc3Nxqt+nTp4/efPNNffTRR3rnnXdktVo1dOhQHT58WJJs29WlzYSEBPn6+tqWkJCQiz00ADAdHroIV+L0S2B1FR0dralTpyoiIkIjRozQ2rVr5e/vr9dee63ebc6bN0+FhYW25dChQw3YYwAwBx66CFfi1ADk5+cnd3d35eXl2ZXn5eUpMDCwVm20bNlSgwYN0sGDByXJtl1d2vT09JSPj4/dAgCom8Z+zQecz5Xnezk1AHl4eCgyMlKpqam2MqvVqtTUVEVHR9eqjcrKSu3du1dBQUGSpG7duikwMNCuzaKiIu3YsaPWbQIA6o6HLpqLq8/3cvqDEOPi4jRt2jRdfvnlGjJkiJYtW6aSkhLNmDFDkjR16lR17txZCQkJkqTFixfriiuuUM+ePVVQUKA//vGP+vnnnzVz5kxJZ+8QmzNnjp599ln16tVL3bp109NPP63g4GCNGzfOWYcJAKbAQxfNoab5Xlf19neZ/86dHoAmTpyo48ePa8GCBcrNzVVERIRSUlJsk5izs7Pl5vZ/A1W//PKL7r77buXm5qp9+/aKjIzUtm3b1K9fP1udJ554QiUlJbrnnntUUFCgYcOGKSUlpcoDEwEADS/I19tlfgRRP+eb7+Uq/91bDMMwLlzNXIqKiuTr66vCwkLmAwEA8Bs5hWW6csnmKi/Z/XLuKKcGoLr8frvcXWAAAMC5msN8L6dfAgMAAK7H1ed7EYAAAEC9uPJ8Ly6BAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQBcVk5hmbZl5CunsMzZXYGL4UnQAACXlPxNtuat3SurIblZpITxYZo4uIuzuwUXwQgQAMDl5BSW2cKPJFkNaf7afYwEodYIQAAAl5OZX2ILP+dUGoay8kud0yG4HAIQAMDldPNrLTeLfZm7xaJQv1bO6RBcDgEIAOBygny9lTA+TO6WsynI3WLRc+MHuOybydH4mAQNAHBJEwd30VW9/ZWVX6pQv1aEH9QJAQgA4LKCfL0JPqgXLoEBAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABzUBOYZm2ZeQrp7DM2V0BAJfAy1ABF5f8Tbbmrd0rqyG5WaSE8WGaOLiLs7sFAE0aI0CAC8spLLOFH0myGtL8tfsYCQKACyAAAS4sM7/EFn7OqTQMZeWXOqdDAOAiCECAC+vm11puFvsyd4tFoX6tnNMhAHARBCDAhQX5eithfJjcLWdTkLvFoufGD1CQr7eTewYATRuToAEXN3FwF13V219Z+aUK9WtF+AGAWiAAAc1AkK83wQcA6oBLYAAAwHQIQAAAwHSaRABKTExUaGiovLy8FBUVpZ07d9ZY9/XXX9fw4cPVvn17tW/fXjExMVXqT58+XRaLxW65/vrrHX0YAADARTg9ACUnJysuLk7x8fHavXu3wsPDFRsbq2PHjlVbf8uWLZo8ebI+//xzbd++XSEhIbruuut05MgRu3rXX3+9cnJybMvq1asb43AAAIALsBiGYVy4muNERUVp8ODBevXVVyVJVqtVISEhmj17tubOnXvB7SsrK9W+fXu9+uqrmjp1qqSzI0AFBQVav359vfpUVFQkX19fFRYWysfHp15tAACAxlWX32+njgBVVFQoLS1NMTExtjI3NzfFxMRo+/bttWqjtLRUp0+fVocOHezKt2zZok6dOqlPnz66//77deLEiRrbKC8vV1FRkd0CAACaL6cGoPz8fFVWViogIMCuPCAgQLm5ubVq48knn1RwcLBdiLr++uv19ttvKzU1Vc8//7y++OILjR49WpWVldW2kZCQIF9fX9sSEhJS/4MCAABNnks/B2jJkiVas2aNtmzZIi8vL1v5pEmTbP8OCwvTwIED1aNHD23ZskXXXHNNlXbmzZunuLg42+eioiJCEAAAzZhTR4D8/Pzk7u6uvLw8u/K8vDwFBgaed9sXX3xRS5Ys0aZNmzRw4MDz1u3evbv8/Px08ODBatd7enrKx8fHbgEAAM2XUwOQh4eHIiMjlZqaaiuzWq1KTU1VdHR0jdu98MILeuaZZ5SSkqLLL7/8gvs5fPiwTpw4oaCgoAbp98XIKSzTtox85RSWObsrAACYltMvgcXFxWnatGm6/PLLNWTIEC1btkwlJSWaMWOGJGnq1Knq3LmzEhISJEnPP/+8FixYoHfffVehoaG2uUJt2rRRmzZtVFxcrEWLFumWW25RYGCgMjIy9MQTT6hnz56KjY112nFKUvI32Zq3dq+shuRmkRLGh2ni4C5O7RMAAGbk9AA0ceJEHT9+XAsWLFBubq4iIiKUkpJimxidnZ0tN7f/G6havny5KioqdOutt9q1Ex8fr4ULF8rd3V3fffed3nrrLRUUFCg4OFjXXXednnnmGXl6ejbqsf1aTmGZLfxIktWQ5q/dp6t6+/MOJwAAGpnTnwPUFDniOUDbMvI15fUdVcpX332Font0bJB9AABgZi7zHCAz6ebXWm4W+zJ3i0Whfq2c0yEAAEyMANRIgny9lTA+TO6WsynI3WLRc+MHcPkLAAAncPocIDOZOLiLrurtr6z8UoX6tSL8AADgJASgRhbk603wAQDAybgEBgAATIcABAAATIcABJgYTyYHYFbMAQJMiieTAzAzRoAAE6rpyeSMBAEwCwIQYEKZ+SW28HNOpWEoK7/UOR0CgEZGAAJMiCeTAzA7AhBgQjyZHIDZMQkaMCmeTA7AzAhAgInxZHKcT05hmTLzS9TNrzXfEzQ7BCAAQBU8JgHNHXOAAAB2eEwCzIAABACww2MSYAYEIACAHR6TADMgAAEA7PCYBJgBk6ABAFXwmAQ0dwQgAEC1eEwCmjMugQEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAFNSE5hmbZl5CunsMzZXQGAZo13gQFNRPI32Zq3dq+shuRmkRLGh2ni4C7O7hYANEuMAAFNQE5hmS38SJLVkOav3cdIEAA4CAEIaAIy80ts4eecSsNQVn6pczoEAM0cAQhoArr5tZabxb7M3WJRqF8r53QIAJo5AhDQBAT5eithfJjcLWdTkLvFoufGD1CQr7eTewYAzROToIEmYuLgLrqqt7+y8ksV6teK8AMADkQAApqQIF9vgg8ANAIugQEAANNpEgEoMTFRoaGh8vLyUlRUlHbu3Hne+u+//7769u0rLy8vhYWFaePGjXbrDcPQggULFBQUJG9vb8XExOjAgQOOPAQAAOBCnB6AkpOTFRcXp/j4eO3evVvh4eGKjY3VsWPHqq2/bds2TZ48WXfddZf27NmjcePGady4cdq3b5+tzgsvvKA///nPWrFihXbs2KHWrVsrNjZWp06daqzDAgAATZjFMAzjwtUcJyoqSoMHD9arr74qSbJarQoJCdHs2bM1d+7cKvUnTpyokpIS/fOf/7SVXXHFFYqIiNCKFStkGIaCg4P16KOP6rHHHpMkFRYWKiAgQElJSZo0adIF+1RUVCRfX18VFhbKx8engY4UAAA4Ul1+v506AlRRUaG0tDTFxMTYytzc3BQTE6Pt27dXu8327dvt6ktSbGysrX5mZqZyc3Pt6vj6+ioqKqrGNsvLy1VUVGS3AACA5supASg/P1+VlZUKCAiwKw8ICFBubm612+Tm5p63/rn/rEubCQkJ8vX1tS0hISH1Oh4AAOAanD4HqCmYN2+eCgsLbcuhQ4ec3SUAAOBATg1Afn5+cnd3V15enl15Xl6eAgMDq90mMDDwvPXP/Wdd2vT09JSPj4/dAgAAmi+nBiAPDw9FRkYqNTXVVma1WpWamqro6Ohqt4mOjrarL0mffvqprX63bt0UGBhoV6eoqEg7duyosU0AAGAuTn8SdFxcnKZNm6bLL79cQ4YM0bJly1RSUqIZM2ZIkqZOnarOnTsrISFBkvTwww9rxIgR+tOf/qQxY8ZozZo12rVrl/76179KkiwWi+bMmaNnn31WvXr1Urdu3fT0008rODhY48aNc9ZhAgCAJsTpAWjixIk6fvy4FixYoNzcXEVERCglJcU2iTk7O1tubv83UDV06FC9++67euqppzR//nz16tVL69ev14ABA2x1nnjiCZWUlOiee+5RQUGBhg0bppSUFHl5eTX68QEAgKbH6c8BaooKCwvVrl07HTp0iPlAAAC4iKKiIoWEhKigoEC+vr7nrev0EaCm6OTJk5LE7fAAALigkydPXjAAMQJUDavVqqNHj6pt27ayWCwX1da5NGrm0STOAedA4hxInAOJcyBxDhx5/IZh6OTJkwoODrabPlMdRoCq4ebmpksuuaRB2+T2es6BxDmQOAcS50DiHEicA0cd/4VGfs7hQYgAAMB0CEAAAMB0CEAO5unpqfj4eHl6ejq7K07DOeAcSJwDiXMgcQ4kzkFTOX4mQQMAANNhBAgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAageEhMTFRoaKi8vL0VFRWnnzp3nrb9s2TL16dNH3t7eCgkJ0SOPPKJTp07Z1i9cuFAWi8Vu6du3r6MP46LU5RycPn1aixcvVo8ePeTl5aXw8HClpKRcVJvO1tDH72rfga1bt2rs2LEKDg6WxWLR+vXrL7jNli1bdNlll8nT01M9e/ZUUlJSlTqu9B1wxDlo7t+DnJwcTZkyRb1795abm5vmzJlTbb33339fffv2lZeXl8LCwrRx48aG73wDccQ5SEpKqvI9aMov867rOVi7dq2uvfZa+fv7y8fHR9HR0frkk0+q1HP03wMCUB0lJycrLi5O8fHx2r17t8LDwxUbG6tjx45VW//dd9/V3LlzFR8fr/3792vlypVKTk7W/Pnz7er1799fOTk5tuXLL79sjMOpl7qeg6eeekqvvfaaXnnlFf373//Wfffdp5tvvll79uypd5vO5Ijjl1zrO1BSUqLw8HAlJibWqn5mZqbGjBmjUaNGKT09XXPmzNHMmTPt/ui50ndAcsw5kJr396C8vFz+/v566qmnFB4eXm2dbdu2afLkybrrrru0Z88ejRs3TuPGjdO+ffsasusNxhHnQDr7lORffw9+/vnnhupyg6vrOdi6dauuvfZabdy4UWlpaRo1apTGjh3b+L8JBupkyJAhxoMPPmj7XFlZaQQHBxsJCQnV1n/wwQeNq6++2q4sLi7OuPLKK22f4+PjjfDwcIf01xHqeg6CgoKMV1991a5s/Pjxxu23317vNp3JEcfvat+BX5NkrFu37rx1nnjiCaN///52ZRMnTjRiY2Ntn13pO/BbDXUOmvv34NdGjBhhPPzww1XKJ0yYYIwZM8auLCoqyrj33nsvsoeO11DnYNWqVYavr2+D9asx1fUcnNOvXz9j0aJFts+N8feAEaA6qKioUFpammJiYmxlbm5uiomJ0fbt26vdZujQoUpLS7MN3f3000/auHGjbrjhBrt6Bw4cUHBwsLp3767bb79d2dnZjjuQi1Cfc1BeXl5l+Nbb29v2/2zr06azOOL4z3GV70B9bN++3e6cSVJsbKztnLnSd6C+LnQOzmnO34PaqO15au6Ki4vVtWtXhYSE6KabbtL333/v7C45jNVq1cmTJ9WhQwdJjff3gABUB/n5+aqsrFRAQIBdeUBAgHJzc6vdZsqUKVq8eLGGDRumli1bqkePHho5cqTdJbCoqCglJSUpJSVFy5cvV2ZmpoYPH66TJ0869Hjqoz7nIDY2VkuXLtWBAwdktVr16aefau3atcrJyal3m87iiOOXXOs7UB+5ubnVnrOioiKVlZW51Hegvi50DqTm/z2ojZrOU3P5HtRGnz599Oabb+qjjz7SO++8I6vVqqFDh+rw4cPO7ppDvPjiiyouLtaECRMkNd5vAgHIwbZs2aLnnntOf/nLX7R7926tXbtWH3/8sZ555hlbndGjR+u2227TwIEDFRsbq40bN6qgoEDvvfeeE3vecF5++WX16tVLffv2lYeHh2bNmqUZM2bIzc0cX7/aHH9z/w6gdvgeQJKio6M1depURUREaMSIEVq7dq38/f312muvObtrDe7dd9/VokWL9N5776lTp06Num9z/AI1ED8/P7m7uysvL8+uPC8vT4GBgdVu8/TTT+uOO+7QzJkzFRYWpptvvlnPPfecEhISZLVaq92mXbt26t27tw4ePNjgx3Cx6nMO/P39tX79epWUlOjnn3/WDz/8oDZt2qh79+71btNZHHH81WnK34H6CAwMrPac+fj4yNvb26W+A/V1oXNQneb2PaiNms5Tc/ke1EfLli01aNCgZvc9WLNmjWbOnKn33nvP7nJXY/09IADVgYeHhyIjI5Wammors1qtSk1NVXR0dLXblJaWVhnpcHd3lyQZNbyGrbi4WBkZGQoKCmqgnjec+pyDc7y8vNS5c2edOXNGH374oW666aaLbrOxOeL4q9OUvwP1ER0dbXfOJOnTTz+1nTNX+g7U14XOQXWa2/egNupznpq7yspK7d27t1l9D1avXq0ZM2Zo9erVGjNmjN26Rvt70GDTqU1izZo1hqenp5GUlGT8+9//Nu655x6jXbt2Rm5urmEYhnHHHXcYc+fOtdWPj4832rZta6xevdr46aefjE2bNhk9evQwJkyYYKvz6KOPGlu2bDEyMzONr776yoiJiTH8/PyMY8eONfrx1UZdz8HXX39tfPjhh0ZGRoaxdetW4+qrrza6detm/PLLL7VusylxxPG72nfg5MmTxp49e4w9e/YYkoylS5cae/bsMX7++WfDMAxj7ty5xh133GGr/9NPPxmtWrUyHn/8cWP//v1GYmKi4e7ubqSkpNjquNJ3wDAccw6a+/fAMAxb/cjISGPKlCnGnj17jO+//962/quvvjJatGhhvPjii8b+/fuN+Ph4o2XLlsbevXsb9dhqyxHnYNGiRcYnn3xiZGRkGGlpacakSZMMLy8vuzpNSV3Pwd///nejRYsWRmJiopGTk2NbCgoKbHUa4+8BAageXnnlFaNLly6Gh4eHMWTIEOPrr7+2rRsxYoQxbdo02+fTp08bCxcuNHr06GF4eXkZISEhxgMPPGD34zdx4kQjKCjI8PDwMDp37mxMnDjROHjwYCMeUd3V5Rxs2bLFuPTSSw1PT0+jY8eOxh133GEcOXKkTm02NQ19/K72Hfj8888NSVWWc8c9bdo0Y8SIEVW2iYiIMDw8PIzu3bsbq1atqtKuK30HHHEOzPA9qK5+165d7eq89957Ru/evQ0PDw+jf//+xscff9w4B1QPjjgHc+bMsf3vICAgwLjhhhuM3bt3N95B1VFdz8GIESPOW/8cR/89sBhGDddhAAAAminmAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAEAANMhAAGAC9iyZYssFosKCgqc3RWgWSAAAbAzffp0WSwWLVmyxK58/fr1slgsts+GYej1119XdHS0fHx81KZNG/Xv318PP/xwrV/aWFpaqnnz5qlHjx7y8vKSv7+/RowYoY8++shWJzQ0VMuWLWuQY3O0c+fOYrGoZcuW6tatm5544gmdOnWqTu2MHDlSc+bMsSsbOnSocnJy5Ovr24A9BsyLAASgCi8vLz3//PP65Zdfql1vGIamTJmihx56SDfccIM2bdqkf//731q5cqW8vLz07LPP1mo/9913n9auXatXXnlFP/zwg1JSUnTrrbfqxIkTDXk4jer6669XTk6OfvrpJ7300kt67bXXFB8ff9Htenh4KDAw0C6EArgIDfpiDQAub9q0acbvfvc7o2/fvsbjjz9uK1+3bp1x7k/G6tWrDUnGRx99VG0bVqu1Vvvy9fU1kpKSalxf3TuDzvnXv/5lDBs2zPDy8jIuueQSY/bs2UZxcbFt/dtvv21ERkYabdq0MQICAozJkycbeXl5tvXn3l+UkpJiREREGF5eXsaoUaOMvLw8Y+PGjUbfvn2Ntm3bGpMnTzZKSkpqdTzTpk0zbrrpJruy8ePHG4MGDbJ9zs/PNyZNmmQEBwcb3t7exoABA4x3333Xro3fHnNmZqatv79+j+AHH3xg9OvXz/Dw8DC6du1qvPjii7XqJwDDYAQIQBXu7u567rnn9Morr+jw4cNV1q9evVp9+vTRjTfeWO32tR2lCAwM1MaNG3Xy5Mlq169du1aXXHKJFi9erJycHOXk5EiSMjIydP311+uWW27Rd999p+TkZH355ZeaNWuWbdvTp0/rmWee0bfffqv169crKytL06dPr7KPhQsX6tVXX9W2bdt06NAhTZgwQcuWLdO7776rjz/+WJs2bdIrr7xSq+P5rX379mnbtm3y8PCwlZ06dUqRkZH6+OOPtW/fPt1zzz264447tHPnTknSyy+/rOjoaN199922Yw4JCanSdlpamiZMmKBJkyZp7969WrhwoZ5++mklJSXVq6+A6Tg7gQFoWn49inHFFVcYd955p2EY9iNAffv2NW688Ua77R5++GGjdevWRuvWrY3OnTvXal9ffPGFcckllxgtW7Y0Lr/8cmPOnDnGl19+aVena9euxksvvWRXdtdddxn33HOPXdm//vUvw83NzSgrK6t2X998840hyTh58qRhGP83AvTZZ5/Z6iQkJBiSjIyMDFvZvffea8TGxtbqeKZNm2a4u7sbrVu3Njw9PQ1Jhpubm/HBBx+cd7sxY8YYjz76qO3ziBEjjIcfftiuzm9HgKZMmWJce+21dnUef/xxo1+/frXqK2B2jAABqNHzzz+vt956S/v3779g3f/5n/9Renq6FixYoOLi4lq1f9VVV+mnn35Samqqbr31Vn3//fcaPny4nnnmmfNu9+233yopKUlt2rSxLbGxsbJarcrMzJR0doRk7Nix6tKli9q2basRI0ZIkrKzs+3aGjhwoO3fAQEBatWqlbp3725XduzYsVodjySNGjVK6enp2rFjh6ZNm6YZM2bolltusa2vrKzUM888o7CwMHXo0EFt2rTRJ598UqVfF7J//35deeWVdmVXXnmlDhw4oMrKyjq1BZgRAQhAja666irFxsZq3rx5duW9evXSjz/+aFfm7++vnj17qlOnTnXaR8uWLTV8+HA9+eST2rRpkxYvXqxnnnlGFRUVNW5TXFyse++9V+np6bbl22+/1YEDB9SjRw+VlJQoNjZWPj4++vvf/65vvvlG69atk6Qq7bZs2dL273N3b/2axWKR1Wqt9fG0bt1aPXv2VHh4uN58803t2LFDK1eutK3/4x//qJdffllPPvmkPv/8c6Wnpys2Nva8xwug4bVwdgcANG1LlixRRESE+vTpYyubPHmypkyZoo8++kg33XRTg+6vX79+OnPmjE6dOiUPDw95eHhUGdG47LLL9O9//1s9e/asto29e/fqxIkTWrJkiW3+zK5duxq0n7Xh5uam+fPnKy4uTlOmTJG3t7e++uor3XTTTfr9738vSbJarfrPf/6jfv362bar7ph/69JLL9VXX31lV/bVV1+pd+/ecnd3b/iDAZoZRoAAnFdYWJhuv/12/fnPf7aVTZo0SbfeeqsmTZqkxYsXa8eOHcrKytIXX3yh5OTkWv8Ajxw5Uq+99prS0tKUlZWljRs3av78+Ro1apR8fHwknX0O0NatW3XkyBHl5+dLkp588klt27ZNs2bNUnp6ug4cOKCPPvrINgm6S5cu8vDw0CuvvKKffvpJGzZsuOBlNUe57bbb5O7ursTERElnR88+/fRTbdu2Tfv379e9996rvLw8u21CQ0Nt5zQ/P7/aEahHH31UqampeuaZZ/Sf//xHb731ll599VU99thjjXJcgKsjAAG4oMWLF9v9CFssFiUnJ2vZsmXauHGjrrnmGvXp00d33nmnQkJC9OWXX9aq3djYWL311lu67rrrdOmll2r27NmKjY3Ve++9Z7fvrKws9ejRQ/7+/pLOztv54osv9J///EfDhw/XoEGDtGDBAgUHB0s6ezkuKSlJ77//vvr166clS5boxRdfbMAzUnstWrTQrFmz9MILL6ikpERPPfWULrvsMsXGxmrkyJEKDAzUuHHj7LZ57LHH5O7urn79+snf37/a+UGXXXaZ3nvvPa1Zs0YDBgzQggULtHjx4mrvdANQlcUwDMPZnQAAAGhMjAABAADTIQABcJhf36b+2+Vf//qXs7tXJ9nZ2ec9nrrexg7AubgEBsBhzvdS1M6dO8vb27sRe3Nxzpw5o6ysrBrXh4aGqkULbqwFXAUBCAAAmA6XwAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOn8P33YhWHCFHqIAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATJ1JREFUeJzt3XtcVXW+//H3BuUiylZDuRgKmZdMBhsKBtPUiaJyMrLy1lFzLK209DDd9KiYNVFak2mW1ZT6myZFy8yZHNOhGiuNyltq2niBNAWUMTaJF5T9/f3RcZ12gsIS2G54PR+P/VC+67O+67uWO/a777pshzHGCAAAANXi5+0BAAAA+CJCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhSAem3q1KlyOBxVqnU4HJo6dWqtjqd3797q3bv3BdsfgKojRAGoE/Pnz5fD4bBejRo1Ups2bXTXXXdp//793h7eBScmJsbjeLVu3Vo9e/bUu+++WyP9Hz16VFOnTtXHH39cI/0BDREhCkCdmjZtmv7yl79o7ty5uvHGG/Xmm2+qV69eOn78eK1sb9KkSTp27Fit9F3bunXrpr/85S/6y1/+ooceekgHDhxQ//79NXfu3PPu++jRo3r88ccJUcB5aOTtAQBoWG688UZdeeWVkqS7775bYWFheuaZZ7R8+XINGDCgxrfXqFEjNWrkm7/q2rRpo//6r/+yfh42bJguvfRSPf/887r33nu9ODIAEjNRALysZ8+ekqTdu3d7tO/YsUO33367WrZsqaCgIF155ZVavny5R83Jkyf1+OOPq0OHDgoKCtJFF12kHj16aPXq1VZNRddEnThxQv/93/+tVq1aqVmzZurXr5++//77M8Z21113KSYm5oz2ivqcN2+efvvb36p169YKDAxUly5d9PLLL1frWJxLRESELrvsMuXm5p617uDBgxo5cqTCw8MVFBSk+Ph4LViwwFqel5enVq1aSZIef/xx65RhbV8PBtQ3vvm/ZwDqjby8PElSixYtrLZt27bp6quvVps2bfTYY48pJCREixcvVlpamt555x3deuutkn4KM5mZmbr77ruVmJiokpISffXVV9qwYYOuu+66Srd59913680339SQIUPUvXt3ffjhh+rbt+957cfLL7+syy+/XP369VOjRo30t7/9Tffff7/cbrfGjBlzXn2fdvLkSe3bt08XXXRRpTXHjh1T7969tWvXLo0dO1axsbFasmSJ7rrrLhUXF2vcuHFq1aqVXn75Zd1333269dZb1b9/f0nSr371qxoZJ9BgGACoA/PmzTOSzD//+U9z6NAhs2/fPvP222+bVq1amcDAQLNv3z6r9tprrzVxcXHm+PHjVpvb7Tbdu3c3HTp0sNri4+NN3759z7rdjIwM8/NfdZs2bTKSzP333+9RN2TIECPJZGRkWG3Dhw837dq1O2efxhhz9OjRM+pSU1PNJZdc4tHWq1cv06tXr7OO2Rhj2rVrZ66//npz6NAhc+jQIbN582YzaNAgI8k88MADlfY3c+ZMI8m8+eabVltZWZlJTk42TZs2NSUlJcYYYw4dOnTG/gKoHk7nAahTKSkpatWqlaKjo3X77bcrJCREy5cv18UXXyxJOnz4sD788EMNGDBAP/74o4qKilRUVKT//Oc/Sk1N1c6dO627+Zo3b65t27Zp586dVd7+ihUrJEkPPvigR/v48ePPa7+Cg4Otv7tcLhUVFalXr17as2ePXC6XrT5XrVqlVq1aqVWrVoqPj9eSJUs0dOhQPfPMM5Wus2LFCkVERGjw4MFWW+PGjfXggw/qyJEj+te//mVrLADOxOk8AHVqzpw56tixo1wul9544w2tWbNGgYGB1vJdu3bJGKPJkydr8uTJFfZx8OBBtWnTRtOmTdMtt9yijh07qmvXrrrhhhs0dOjQs56W+u677+Tn56f27dt7tHfq1Om89uuzzz5TRkaG1q1bp6NHj3osc7lccjqd1e4zKSlJTz75pBwOh5o0aaLLLrtMzZs3P+s63333nTp06CA/P8//R77sssus5QBqBiEKQJ1KTEy07s5LS0tTjx49NGTIEH377bdq2rSp3G63JOmhhx5SampqhX1ceumlkqRrrrlGu3fv1nvvvadVq1bpz3/+s55//nnNnTtXd99993mPtbKHdJaXl3v8vHv3bl177bXq3Lmz/vSnPyk6OloBAQFasWKFnn/+eWufqissLEwpKSm21gVQ+whRALzG399fmZmZ6tOnj1588UU99thjuuSSSyT9dAqqKgGiZcuWGjFihEaMGKEjR47ommuu0dSpUysNUe3atZPb7dbu3bs9Zp++/fbbM2pbtGih4uLiM9p/OZvzt7/9TSdOnNDy5cvVtm1bq/2jjz465/hrWrt27fT111/L7XZ7zEbt2LHDWi5VHhABVB3XRAHwqt69eysxMVEzZ87U8ePH1bp1a/Xu3VuvvPKK8vPzz6g/dOiQ9ff//Oc/HsuaNm2qSy+9VCdOnKh0ezfeeKMkadasWR7tM2fOPKO2ffv2crlc+vrrr622/Pz8M54a7u/vL0kyxlhtLpdL8+bNq3QcteWmm25SQUGBsrKyrLZTp05p9uzZatq0qXr16iVJatKkiSRVGBIBVA0zUQC87uGHH9Ydd9yh+fPn695779WcOXPUo0cPxcXF6Z577tEll1yiwsJCrVu3Tt9//702b94sSerSpYt69+6thIQEtWzZUl999ZXefvttjR07ttJtdevWTYMHD9ZLL70kl8ul7t27Kzs7W7t27TqjdtCgQXr00Ud166236sEHH9TRo0f18ssvq2PHjtqwYYNVd/311ysgIEA333yzRo8erSNHjui1115T69atKwyCtWnUqFF65ZVXdNddd2n9+vWKiYnR22+/rc8++0wzZ85Us2bNJP10IXyXLl2UlZWljh07qmXLluratau6du1ap+MFfJq3bw8E0DCcfsTBl19+ecay8vJy0759e9O+fXtz6tQpY4wxu3fvNsOGDTMRERGmcePGpk2bNuZ3v/udefvtt631nnzySZOYmGiaN29ugoODTefOnc0f//hHU1ZWZtVU9DiCY8eOmQcffNBcdNFFJiQkxNx8881m3759Fd7yv2rVKtO1a1cTEBBgOnXqZN58880K+1y+fLn51a9+ZYKCgkxMTIx55plnzBtvvGEkmdzcXKuuOo84ONfjGyrrr7Cw0IwYMcKEhYWZgIAAExcXZ+bNm3fGumvXrjUJCQkmICCAxx0ANjiM+dn8MwAAAKqEa6IAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADTxssxa53W4dOHBAzZo14ysWAADwEcYY/fjjj4qKijrjy7x/jhBViw4cOKDo6GhvDwMAANiwb98+XXzxxZUuJ0TVotNfr7Bv3z6FhoZ6eTQAAKAqSkpKFB0dbX2OV4YQVYtOn8ILDQ0lRAEA4GPOdSkOF5YDAADYQIgCAACwgRAFAABgA9dEAQDg49xut8rKyrw9DJ/RuHFj+fv7n3c/hCgAAHxYWVmZcnNz5Xa7vT0Un9K8eXNFRESc13McCVEAAPgoY4zy8/Pl7++v6Ojosz4YEj8xxujo0aM6ePCgJCkyMtJ2X4QoAAB81KlTp3T06FFFRUWpSZMm3h6OzwgODpYkHTx4UK1bt7Z9ao/ICgCAjyovL5ckBQQEeHkkvud06Dx58qTtPghRAAD4OL6ftfpq4pgRogAAAGwgRAEAANhAiGpA8l3HtHZ3kfJdx7w9FAAAVFBQoAceeECXXHKJAgMDFR0drZtvvlnZ2dmSpJiYGM2cOfOM9aZOnapu3bpV2OeiRYvkcDiUlpZWewP/X9yd10BkfblXE5ZukdtIfg4ps3+cBl7V1tvDAgA0UHl5ebr66qvVvHlzzZgxQ3FxcTp58qQ++OADjRkzRjt27LDV50MPPaSePXvWwojPRIhqAPJdx6wAJUluI01culXXdGylSGewdwcHAGiQ7r//fjkcDn3xxRcKCQmx2i+//HL9/ve/r3Z/5eXluvPOO/X444/rk08+UXFxcQ2OtmKczmsAcotKrQB1Wrkxyis66p0BAQAuOHV5ycfhw4e1cuVKjRkzxiNAnda8efNq9zlt2jS1bt1aI0eOrIERVg0zUQ1AbFiI/BzyCFL+DodiwngwGwCg7i/52LVrl4wx6ty58zlrH330UU2aNMmjraysTF26dLF+/vTTT/X6669r06ZNNT3Us2ImqgGIdAYrs3+c/P/3mRj+Doee6t+VU3kAgEov+ajNGSljzLmL/tfDDz+sTZs2ebzuvfdea/mPP/6ooUOH6rXXXlNYWFhtDLdSzEQ1EAOvaqtrOrZSXtFRxYQ1IUABACSd/ZKP2vqs6NChgxwOR5UuHg8LC9Oll17q0dayZUvr77t371ZeXp5uvvlmq+30lzE3atRI3377rdq3b19DI/d0QcxEzZkzRzExMQoKClJSUpK++OKLs9YvWbJEnTt3VlBQkOLi4rRixQqP5cYYTZkyRZGRkQoODlZKSop27tzpUdOvXz+1bdtWQUFBioyM1NChQ3XgwAGPmq+//lo9e/ZUUFCQoqOjNX369JrZYS+JdAYruf1FBCgAgOX0JR8/V9uXfLRs2VKpqamaM2eOSktLz1henYvCO3furC1btnjMVPXr1099+vTRpk2bFB0dXYMj9+T1EJWVlaX09HRlZGRow4YNio+PV2pqqvXtyr+0du1aDR48WCNHjtTGjRuVlpamtLQ0bd261aqZPn26Zs2apblz5yonJ0chISFKTU3V8ePHrZo+ffpo8eLF+vbbb/XOO+9o9+7duv32263lJSUluv7669WuXTutX79eM2bM0NSpU/Xqq6/W3sEAAKCOeeuSjzlz5qi8vFyJiYl65513tHPnTm3fvl2zZs1ScnJylfsJCgpS165dPV7NmzdXs2bN1LVr19r9XkHjZYmJiWbMmDHWz+Xl5SYqKspkZmZWWD9gwADTt29fj7akpCQzevRoY4wxbrfbREREmBkzZljLi4uLTWBgoFm4cGGl43jvvfeMw+EwZWVlxhhjXnrpJdOiRQtz4sQJq+bRRx81nTp1qvK+uVwuI8m4XK4qrwMAQFUdO3bMfPPNN+bYsWPn3deB4qNm7a4ic6D4aA2MrIrbPHDAjBkzxrRr184EBASYNm3amH79+pmPPvrIGGNMu3btzPPPP3/GehkZGSY+Pr7SfocPH25uueWWs277bMeuqp/fDmOqcXVXDSsrK1OTJk309ttvezxZdPjw4SouLtZ77713xjpt27ZVenq6xo8fb7VlZGRo2bJl2rx5s/bs2aP27dtr48aNHk8z7dWrl7p166YXXnjhjD4PHz6s++67T/v379enn34qSRo2bJhKSkq0bNkyq+6jjz7Sb3/7Wx0+fFgtWrQ4o58TJ07oxIkT1s8lJSWKjo6Wy+VSaGhoNY4MAADndvz4ceXm5io2NlZBQUHeHo5POduxKykpkdPpPOfnt1dP5xUVFam8vFzh4eEe7eHh4SooKKhwnYKCgrPWn/6zKn0++uijCgkJ0UUXXaS9e/d6hLbKtvPzbfxSZmamnE6n9arN87AAAMC7vH5NlDc9/PDD2rhxo1atWiV/f38NGzasWrdd/tKECRPkcrms1759+2pwtAAA4ELi1UcchIWFyd/fX4WFhR7thYWFioiIqHCdiIiIs9af/rOwsFCRkZEeNb/8ssKwsDCFhYWpY8eOuuyyyxQdHa3PP/9cycnJlW7n59v4pcDAQAUGBp5jrwEAQH3g1ZmogIAAJSQkWN/WLP30bIfs7OxKr8xPTk72qJek1atXW/WxsbGKiIjwqCkpKVFOTs5Zr/Y//UyJ09c0JScna82aNTp58qTHdjp16lTh9VAAAKBh8frpvPT0dL322mtasGCBtm/frvvuu0+lpaUaMWKEpJ8u8J4wYYJVP27cOK1cuVLPPfecduzYoalTp+qrr77S2LFjJUkOh0Pjx4/Xk08+qeXLl2vLli0aNmyYoqKirIvXc3Jy9OKLL2rTpk367rvv9OGHH2rw4MFq3769FbSGDBmigIAAjRw5Utu2bVNWVpZeeOEFpaen1+0BAgDgHLx4j5jPqolj5vUnlg8cOFCHDh3SlClTVFBQoG7dumnlypXWRdx79+6Vn9//Zb3u3bvrrbfe0qRJkzRx4kR16NBBy5YtU9euXa2aRx55RKWlpRo1apSKi4vVo0cPrVy50rr6vkmTJlq6dKkyMjJUWlqqyMhI3XDDDZo0aZJ1Os7pdGrVqlUaM2aMEhISFBYWpilTpmjUqFF1eHQAAKicv7+/pJ/udg8O5kHK1XH06FFJUuPGjW334dVHHNR3Vb1FEgAAO4wx2rt3r06ePKmoqCiPSQdUzBijo0eP6uDBg2revLnH9dOnVfXz2+szUQAAwB6Hw6HIyEjl5ubqu+++8/ZwfErz5s0rvVGsqghRAAD4sICAAHXo0EFlZWXeHorPaNy4sXUq9HwQogAA8HF+fn48sdwLOHkKAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAUCPyXce0dneR8l3HvD2UOsEXEAMAgPOW9eVeTVi6RW4j+TmkzP5xGnhVW28Pq1YxEwUAAM5LvuuYFaAkyW2kiUu31vsZKUIUAAA4L7lFpVaAOq3cGOUVHfXOgOoIIQoAAJyX2LAQ+Tk82/wdDsWENfHOgOoIIQoAAJyXSGewMvvHyd/xU5Lydzj0VP+uinQGe3lktYsLywEAwHkbeFVbXdOxlfKKjiomrEmtB6h81zHlFpUqNizEa2GNEAUAAGpEpDO4TgLNhXInIKfzAACAz7iQ7gQkRAEAAJ9xId0JSIgCAAA+40K6E5AQBQAAfMaFdCcgF5YDAACfUtd3AlaGEAUAAHxOXd0JeDaczgMAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsOGCCFFz5sxRTEyMgoKClJSUpC+++OKs9UuWLFHnzp0VFBSkuLg4rVixwmO5MUZTpkxRZGSkgoODlZKSop07d1rL8/LyNHLkSMXGxio4OFjt27dXRkaGysrKPGocDscZr88//7xmdx4AAPgkr4eorKwspaenKyMjQxs2bFB8fLxSU1N18ODBCuvXrl2rwYMHa+TIkdq4caPS0tKUlpamrVu3WjXTp0/XrFmzNHfuXOXk5CgkJESpqak6fvy4JGnHjh1yu9165ZVXtG3bNj3//POaO3euJk6ceMb2/vnPfyo/P996JSQk1M6BAAAAPsVhjDHeHEBSUpKuuuoqvfjii5Ikt9ut6OhoPfDAA3rsscfOqB84cKBKS0v197//3Wr7zW9+o27dumnu3LkyxigqKkp/+MMf9NBDD0mSXC6XwsPDNX/+fA0aNKjCccyYMUMvv/yy9uzZI+mnmajY2Fht3LhR3bp1s7VvJSUlcjqdcrlcCg0NtdUHAACoW1X9/PbqTFRZWZnWr1+vlJQUq83Pz08pKSlat25dheusW7fOo16SUlNTrfrc3FwVFBR41DidTiUlJVXap/RT0GrZsuUZ7f369VPr1q3Vo0cPLV++/Kz7c+LECZWUlHi8AABA/eTVEFVUVKTy8nKFh4d7tIeHh6ugoKDCdQoKCs5af/rP6vS5a9cuzZ49W6NHj7bamjZtqueee05LlizR+++/rx49eigtLe2sQSozM1NOp9N6RUdHV1oLAAB8WyNvD8Db9u/frxtuuEF33HGH7rnnHqs9LCxM6enp1s9XXXWVDhw4oBkzZqhfv34V9jVhwgSPdUpKSghSAADUU16diQoLC5O/v78KCws92gsLCxUREVHhOhEREWetP/1nVfo8cOCA+vTpo+7du+vVV18953iTkpK0a9euSpcHBgYqNDTU4wUAAOonr4aogIAAJSQkKDs722pzu93Kzs5WcnJyheskJyd71EvS6tWrrfrY2FhFRER41JSUlCgnJ8ejz/3796t3795KSEjQvHnz5Od37kOxadMmRUZGVmsfAQBA/eT103np6ekaPny4rrzySiUmJmrmzJkqLS3ViBEjJEnDhg1TmzZtlJmZKUkaN26cevXqpeeee059+/bVokWL9NVXX1kzSQ6HQ+PHj9eTTz6pDh06KDY2VpMnT1ZUVJTS0tIk/V+AateunZ599lkdOnTIGs/p2aoFCxYoICBAV1xxhSRp6dKleuONN/TnP/+5rg4NAAC4gHk9RA0cOFCHDh3SlClTVFBQoG7dumnlypXWheF79+71mCXq3r273nrrLU2aNEkTJ05Uhw4dtGzZMnXt2tWqeeSRR1RaWqpRo0apuLhYPXr00MqVKxUUFCTpp5mrXbt2adeuXbr44os9xvPzJz488cQT+u6779SoUSN17txZWVlZuv3222vzcAAAAB/h9edE1Wc8JwoAAN/jE8+JAgAA8FWEKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsOGCCFFz5sxRTEyMgoKClJSUpC+++OKs9UuWLFHnzp0VFBSkuLg4rVixwmO5MUZTpkxRZGSkgoODlZKSop07d1rL8/LyNHLkSMXGxio4OFjt27dXRkaGysrKPPr5+uuv1bNnTwUFBSk6OlrTp0+vuZ0GAAA+zeshKisrS+np6crIyNCGDRsUHx+v1NRUHTx4sML6tWvXavDgwRo5cqQ2btyotLQ0paWlaevWrVbN9OnTNWvWLM2dO1c5OTkKCQlRamqqjh8/LknasWOH3G63XnnlFW3btk3PP/+85s6dq4kTJ1p9lJSU6Prrr1e7du20fv16zZgxQ1OnTtWrr75auwcEAAD4BuNliYmJZsyYMdbP5eXlJioqymRmZlZYP2DAANO3b1+PtqSkJDN69GhjjDFut9tERESYGTNmWMuLi4tNYGCgWbhwYaXjmD59uomNjbV+fumll0yLFi3MiRMnrLZHH33UdOrUqcr75nK5jCTjcrmqvA4AAPCuqn5+e3UmqqysTOvXr1dKSorV5ufnp5SUFK1bt67CddatW+dRL0mpqalWfW5urgoKCjxqnE6nkpKSKu1Tklwul1q2bOmxnWuuuUYBAQEe2/n222/1ww8/VNjHiRMnVFJS4vECAAD1k1dDVFFRkcrLyxUeHu7RHh4eroKCggrXKSgoOGv96T+r0+euXbs0e/ZsjR49+pzb+fk2fikzM1NOp9N6RUdHV1gHAAB8n9evifK2/fv364YbbtAdd9yhe+6557z6mjBhglwul/Xat29fDY3S9+S7jmnt7iLlu455eygAANSKRt7ceFhYmPz9/VVYWOjRXlhYqIiIiArXiYiIOGv96T8LCwsVGRnpUdOtWzeP9Q4cOKA+ffqoe/fuZ1wwXtl2fr6NXwoMDFRgYGCFyxqSrC/3asLSLXIbyc8hZfaP08Cr2np7WAAA1CivzkQFBAQoISFB2dnZVpvb7VZ2draSk5MrXCc5OdmjXpJWr15t1cfGxioiIsKjpqSkRDk5OR597t+/X71791ZCQoLmzZsnPz/PQ5GcnKw1a9bo5MmTHtvp1KmTWrRoYX+n67l81zErQEmS20gTl25lRgoAUO94/XReenq6XnvtNS1YsEDbt2/Xfffdp9LSUo0YMUKSNGzYME2YMMGqHzdunFauXKnnnntOO3bs0NSpU/XVV19p7NixkiSHw6Hx48frySef1PLly7VlyxYNGzZMUVFRSktLk/R/Aapt27Z69tlndejQIRUUFHhc6zRkyBAFBARo5MiR2rZtm7KysvTCCy8oPT297g6OD8otKrUC1Gnlxiiv6Kh3BgQAQC3x6uk8SRo4cKAOHTqkKVOmqKCgQN26ddPKlSuti7j37t3rMUvUvXt3vfXWW5o0aZImTpyoDh06aNmyZeratatV88gjj6i0tFSjRo1ScXGxevTooZUrVyooKEjSTzNKu3bt0q5du3TxxRd7jMeYnxKA0+nUqlWrNGbMGCUkJCgsLExTpkzRqFGjavuQ+LTYsBD5OeQRpPwdDsWENfHeoAAAqAUOczo1oMaVlJTI6XTK5XIpNDTU28OpM1lf7tXEpVtVboz8HQ491b8r10QBAHxGVT+/vT4Thfpn4FVtdU3HVsorOqqYsCaKdAZ7e0gAANQ4QhRqRaQzmPAEAKjXvH5hOQAAgC8iRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAM5LvuuY1u4uUr7rmLeHAgB1qpG3BwDAd2V9uVcTlm6R20h+Dimzf5wGXtXW28MCgDrBTBQAW/Jdx6wAJUluI01cupUZKQANBiEKgC25RaVWgDqt3BjlFR31zoAAoI4RogDYEhsWIj+HZ5u/w6GYsCbeGRAA1DFCFABbIp3ByuwfJ3/HT0nK3+HQU/27KtIZ7OWRAUDd4MJyALYNvKqtrunYSnlFRxUT1oQABaBBIUQBOC+RzmDCE4AGidN5AAAANhCiAAAAbCBEAQAA2FAjISo3N1enTp2qia4AAAB8Qo2EqE6dOmnnzp010RUAAIBPqNbdef3796+wvby8XA8++KCaNWsmSVq6dOn5jwwAAOACVq2ZqGXLlunw4cNyOp0eL0lq2rSpx88AAAD1mcMYY85d9pNFixbp4Ycf1rRp0zRixAirvXHjxtq8ebO6dOlSK4P0VSUlJXI6nXK5XAoNDfX2cAAAQBVU9fO7WjNRgwYN0ieffKLXX39dt912m3744YfzHigAAIAvqvaF5TExMVqzZo26du2q+Ph4ffDBB3I4HOdeEQCAKsp3HdPa3UXKdx3z9lCAStn62hc/Pz89/vjjuu666zRs2DCVl5fX9LgAAA1U1pd7NWHpFrmN5OeQMvvHaeBVbb09LOAM5/WIgx49eujrr7/Whg0b1L59+5oaEwCggcp3HbMClCS5jTRx6VZmpHBBOu/nRDVt2lTx8fEKDAysifEAABqw3KJSK0CdVm6M8oqOemdAwFlU63TeFVdcUaXrnzZs2GB7QACAhis2LER+DnkEKX+HQzFhTbw3KKAS1QpRaWlp1t+NMcrMzNS9996rli1b1vS4AAANUKQzWJn94zRx6VaVGyN/h0NP9e+qSGewt4cGnKFaz4n6pWbNmmnz5s265JJLanJM9QbPiQIAe/Jdx5RXdFQxYU0IUKhzVf38tnV3HgAAtSnSGUx4wgWvRr6AGAAAoKEhRAEAANhQrdN5s2bN8vj51KlTmj9/vsLCwjzaH3zwwfMfGQAAwAWsWheWx8bGnrtDh0N79uyp8gDmzJmjGTNmqKCgQPHx8Zo9e7YSExMrrV+yZIkmT56svLw8dejQQc8884xuuukma7kxRhkZGXrttddUXFysq6++Wi+//LI6dOhg1fzxj3/U+++/r02bNikgIEDFxcUV7scvLVy4UIMGDaryvnFhOQAAvqdWvoA4Nzf3nK/qBKisrCylp6crIyNDGzZsUHx8vFJTU3Xw4MEK69euXavBgwdr5MiR2rhxo9LS0pSWlqatW7daNdOnT9esWbM0d+5c5eTkKCQkRKmpqTp+/LhVU1ZWpjvuuEP33XffWcc3b9485efnW6+fP+IBAAA0cKYasrOzzWWXXWZcLtcZy4qLi02XLl3MmjVrqtxfYmKiGTNmjPVzeXm5iYqKMpmZmRXWDxgwwPTt29ejLSkpyYwePdoYY4zb7TYRERFmxowZHuMKDAw0CxcuPKO/efPmGafTWeG2JJl33323yvtSEZfLZSRVeLwAAMCFqaqf39WaiZo5c6buueeeCqe2nE6nRo8erT/96U9V6qusrEzr169XSkqK1ebn56eUlBStW7euwnXWrVvnUS9JqampVn1ubq4KCgo8apxOp5KSkirt82zGjBmjsLAwJSYm6o033pA5x5nPEydOqKSkxOMFAADqp2qFqM2bN+uGG26odPn111+v9evXV6mvoqIilZeXKzw83KM9PDxcBQUFFa5TUFBw1vrTf1anz8pMmzZNixcv1urVq3Xbbbfp/vvv1+zZs8+6TmZmppxOp/WKjo6u1jYBAIDvqNbdeYWFhWrcuHHlnTVqpEOHDp33oC4EkydPtv5+xRVXqLS0VDNmzDjrnYcTJkxQenq69XNJSQlBCgCAeqpaM1Ft2rTxuIj7l77++mtFRkZWqa+wsDD5+/ursLDQo72wsFAREREVrhMREXHW+tN/VqfPqkpKStL333+vEydOVFoTGBio0NBQjxcAAKifqhWibrrpJk2ePNnjTrfTjh07poyMDP3ud7+rUl8BAQFKSEhQdna21eZ2u5Wdna3k5OQK10lOTvaol6TVq1db9bGxsYqIiPCoKSkpUU5OTqV9VtWmTZvUokULBQYGnlc/AADg/OW7jmnt7iLlu455bQzVOp03adIkLV26VB07dtTYsWPVqVMnSdKOHTs0Z84clZeX63/+53+q3F96erqGDx+uK6+8UomJiZo5c6ZKS0s1YsQISdKwYcPUpk0bZWZmSpLGjRunXr166bnnnlPfvn21aNEiffXVV3r11Vcl/fRsp/Hjx+vJJ59Uhw4dFBsbq8mTJysqKsrj8QR79+7V4cOHtXfvXpWXl2vTpk2SpEsvvVRNmzbV3/72NxUWFuo3v/mNgoKCtHr1aj311FN66KGHqnO4ANSwfNcx5RaVKjYshO9VAxqwrC/3asLSLXIbyc8hZfaP08Cr2tb9QKp7219eXp658cYbjZ+fn3E4HMbhcBg/Pz9z4403mj179lT7NsLZs2ebtm3bmoCAAJOYmGg+//xza1mvXr3M8OHDPeoXL15sOnbsaAICAszll19u3n//fY/lbrfbTJ482YSHh5vAwEBz7bXXmm+//dajZvjw4UbSGa+PPvrIGGPMP/7xD9OtWzfTtGlTExISYuLj483cuXNNeXl5tfaNRxwANWfRF9+Z2Mf+bto9+ncT+9jfzaIvvvP2kAB4wYHio9bvgtOvSx573xwoPlpj26jq53e1nlj+cz/88IN27dolY4w6dOigFi1a1Fiwqy94YjlQM/Jdx3T10x/K/bPfVv4Ohz59rA8zUkADs3Z3kYa8lnNG+8J7fqPk9hfVyDaq+vldrdN5P9eiRQtdddVVdlcHgCrLLSr1CFCSVG6M8oqOEqKABiY2LER+Dp3xP1UxYU3qfCzVurAcALzh9C/Nn/PWL00A3hXpDFZm/zj5/+933Po7HHqqf1ev/A+V7ZkoAKgrp39pTly6VeXGePWXJgDvG3hVW13TsZXyio4qJqyJ134XEKIA+IQL5ZcmgAtDpDPY678HCFEAfMaF8EsTAE7jmigAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAAA+x+e+gBgAAMDbLpQvIGYmCgAA+Ix81zErQEk/ff3LxKVbvTIjRYgCAAA+42zfpVnXCFEAAMBnXEjfpUmIAgAAPoMvIAYAALDpQvkuTUIUAADwORfCd2lyOg8AAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAoEryXce0dneR8l3HvD0U4ILQyNsDAABc+LK+3KsJS7fIbSQ/h5TZP04Dr2rr7WEBXsVMFADgrPJdx6wAJUluI01cupUZKTR4hCgAwFnlFpVaAeq0cmOUV3TUOwMCLhBeD1Fz5sxRTEyMgoKClJSUpC+++OKs9UuWLFHnzp0VFBSkuLg4rVixwmO5MUZTpkxRZGSkgoODlZKSop07d3rU/PGPf1T37t3VpEkTNW/evMLt7N27V3379lWTJk3UunVrPfzwwzp16tR57SsA+KLYsBD5OTzb/B0OxYQ18c6AgAuEV0NUVlaW0tPTlZGRoQ0bNig+Pl6pqak6ePBghfVr167V4MGDNXLkSG3cuFFpaWlKS0vT1q1brZrp06dr1qxZmjt3rnJychQSEqLU1FQdP37cqikrK9Mdd9yh++67r8LtlJeXq2/fviorK9PatWu1YMECzZ8/X1OmTKnZAwAAPiDSGazM/nHyd/yUpPwdDj3Vv6sincFeHhngZcaLEhMTzZgxY6yfy8vLTVRUlMnMzKywfsCAAaZv374ebUlJSWb06NHGGGPcbreJiIgwM2bMsJYXFxebwMBAs3DhwjP6mzdvnnE6nWe0r1ixwvj5+ZmCggKr7eWXXzahoaHmxIkTVd4/l8tlJBmXy1XldQDgQnWg+KhZu6vIHCg+6u2hALWqqp/fXpuJKisr0/r165WSkmK1+fn5KSUlRevWratwnXXr1nnUS1JqaqpVn5ubq4KCAo8ap9OppKSkSvusbDtxcXEKDw/32E5JSYm2bdtW6XonTpxQSUmJxwvwFdy+7pvq8t8t0hms5PYXMQMF/C+vPeKgqKhI5eXlHkFFksLDw7Vjx44K1ykoKKiwvqCgwFp+uq2ymqqobDs/30ZFMjMz9fjjj1d5O8CFgtvXfRP/boB3ef3C8vpkwoQJcrlc1mvfvn3eHhJwTty+7pv4dwO8z2shKiwsTP7+/iosLPRoLywsVERERIXrREREnLX+9J/V6bM62/n5NioSGBio0NBQjxdwoeP2dd/EvxvgfV4LUQEBAUpISFB2drbV5na7lZ2dreTk5ArXSU5O9qiXpNWrV1v1sbGxioiI8KgpKSlRTk5OpX1Wtp0tW7Z43CW4evVqhYaGqkuXLlXuB/AF3L7um/h3A7zPq6fz0tPT9dprr2nBggXavn277rvvPpWWlmrEiBGSpGHDhmnChAlW/bhx47Ry5Uo999xz2rFjh6ZOnaqvvvpKY8eOlSQ5HA6NHz9eTz75pJYvX64tW7Zo2LBhioqKUlpamtXP3r17tWnTJu3du1fl5eXatGmTNm3apCNHjkiSrr/+enXp0kVDhw7V5s2b9cEHH2jSpEkaM2aMAgMD6+4AAXWA29d9E/9uwAWgju4WrNTs2bNN27ZtTUBAgElMTDSff/65taxXr15m+PDhHvWLFy82HTt2NAEBAebyyy8377//vsdyt9ttJk+ebMLDw01gYKC59tprzbfffutRM3z4cCPpjNdHH31k1eTl5Zkbb7zRBAcHm7CwMPOHP/zBnDx5slr7xiMO4Eu4fd038e8G1Lyqfn47jDHmLBkL56GkpEROp1Mul4vrowAA8BFV/fzm7jwAAAAbCFEAgAsOD3+FL/DawzYBAKgIDxGFr2AmCgBwweAhovAlhCgAwAWDh4jClxCiAAAXDB4iCl9CiAIAXDB4iCh8CReWAwAuKAOvaqtrOrZSXtFRxYQ1IUDhgkWIAgBccCKdwYQnXPA4nQcAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAKDBy3cd09rdRcp3HfP2UOBD+O48AECDlvXlXk1YukVuI/k5pMz+cRp4VVtvDws+gJkoAECDle86ZgUoSXIbaeLSrcxI1SFfngVkJgoA0GDlFpVaAeq0cmOUV3RUkc5g7wyqAfH1WUBmogAADVZsWIj8HJ5t/g6HYsKaeGdADUh9mAUkRAEAGqxIZ7Ay+8fJ3/FTkvJ3OPRU/67MQtWBs80C+gpO5wEAGrSBV7XVNR1bKa/oqGLCmhCg6sjpWcCfBylfmwVkJgoA0OBFOoOV3P4iAlQdqg+zgMxEAQAAr/D1WUBCFAAA8JpIZ7DPhafTOJ0HAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALDhgghRc+bMUUxMjIKCgpSUlKQvvvjirPVLlixR586dFRQUpLi4OK1YscJjuTFGU6ZMUWRkpIKDg5WSkqKdO3d61Bw+fFh33nmnQkND1bx5c40cOVJHjhyxlufl5cnhcJzx+vzzz2tuxwEAgM/yeojKyspSenq6MjIytGHDBsXHxys1NVUHDx6ssH7t2rUaPHiwRo4cqY0bNyotLU1paWnaunWrVTN9+nTNmjVLc+fOVU5OjkJCQpSamqrjx49bNXfeeae2bdum1atX6+9//7vWrFmjUaNGnbG9f/7zn8rPz7deCQkJNX8QAACA7zFelpiYaMaMGWP9XF5ebqKiokxmZmaF9QMGDDB9+/b1aEtKSjKjR482xhjjdrtNRESEmTFjhrW8uLjYBAYGmoULFxpjjPnmm2+MJPPll19aNf/4xz+Mw+Ew+/fvN8YYk5ubaySZjRs32t43l8tlJBmXy2W7DwAAULeq+vnt1ZmosrIyrV+/XikpKVabn5+fUlJStG7dugrXWbdunUe9JKWmplr1ubm5Kigo8KhxOp1KSkqyatatW6fmzZvryiuvtGpSUlLk5+ennJwcj7779eun1q1bq0ePHlq+fPlZ9+fEiRMqKSnxeAEAgPrJqyGqqKhI5eXlCg8P92gPDw9XQUFBhesUFBSctf70n+eqad26tcfyRo0aqWXLllZN06ZN9dxzz2nJkiV6//331aNHD6WlpZ01SGVmZsrpdFqv6Ojocx0CAADgoxp5ewAXqrCwMKWnp1s/X3XVVTpw4IBmzJihfv36VbjOhAkTPNYpKSkhSAEAUE95dSYqLCxM/v7+Kiws9GgvLCxUREREhetERESctf70n+eq+eWF66dOndLhw4cr3a4kJSUladeuXZUuDwwMVGhoqMcLAADUT14NUQEBAUpISFB2drbV5na7lZ2dreTk5ArXSU5O9qiXpNWrV1v1sbGxioiI8KgpKSlRTk6OVZOcnKzi4mKtX7/eqvnwww/ldruVlJRU6Xg3bdqkyMjI6u8oAACod7x+Oi89PV3Dhw/XlVdeqcTERM2cOVOlpaUaMWKEJGnYsGFq06aNMjMzJUnjxo1Tr1699Nxzz6lv375atGiRvvrqK7366quSJIfDofHjx+vJJ59Uhw4dFBsbq8mTJysqKkppaWmSpMsuu0w33HCD7rnnHs2dO1cnT57U2LFjNWjQIEVFRUmSFixYoICAAF1xxRWSpKVLl+qNN97Qn//85zo+QgAA4ELk9RA1cOBAHTp0SFOmTFFBQYG6deumlStXWheG7927V35+/zdh1r17d7311luaNGmSJk6cqA4dOmjZsmXq2rWrVfPII4+otLRUo0aNUnFxsXr06KGVK1cqKCjIqvnrX/+qsWPH6tprr5Wfn59uu+02zZo1y2NsTzzxhL777js1atRInTt3VlZWlm6//fZaPiIAAMAXOIwxxtuDqK9KSkrkdDrlcrm4PgoAAB9R1c9vrz+xHAAAwBcRonxQvuuY1u4uUr7rmLeHAgBAg+X1a6JQPVlf7tWEpVvkNpKfQ8rsH6eBV7X19rAAAGhwmInyIfmuY1aAkiS3kSYu3cqMFAAAXkCI8iG5RaVWgDqt3BjlFR31zoAAAGjACFE+JDYsRH4OzzZ/h0MxYU28MyAAABowQpQPiXQGK7N/nPwdPyUpf4dDT/XvqkhnsJdHhvqAGxYAoHq4sNzHDLyqra7p2Ep5RUcVE9aEAIUawQ0LAFB9zET5oEhnsJLbX0SAQo3ghgUAsIcQBTRw3LAAAPYQooAGjhsWAMAeQhTQwHHDAgDYw4XlALhhAQBsIEQBkPTTjBThCQCqjtN5AAAANhCiAAC1ige5or7idB4AoNbwIFfUZ8xEAQBqBQ9yRX1HiAIA1Aoe5Ir6jhAFAKgVPMgV9R0hCgBQK3iQK+o7LiwHANQaHuSK+owQBQCoVTzIFfUVp/MAAABsIEQBOC88SBFAQ8XpPAC28SBFAA0ZM1EAbOFBigAaOkIUAFt4kCKAho4QBcAWHqQIoKEjRAGwhQcpAmjouLAcgG08SBFAQ0aIAnBeeJAigIaK03kAAAA2EKIAAABsIEQBAADYQIgCAACwgRAF1EN8nx0A1D7uzgPqGb7PDgDqBjNRQD3C99kBQN0hRAH1CN9nBwB1hxAF1CN8nx0A1B1CFFCP8H12AFB3uLAcqGf4PjsAqBuEKKAe4vvsAKD2cToPAADABkIUAACADRdEiJozZ45iYmIUFBSkpKQkffHFF2etX7JkiTp37qygoCDFxcVpxYoVHsuNMZoyZYoiIyMVHByslJQU7dy506Pm8OHDuvPOOxUaGqrmzZtr5MiROnLkiEfN119/rZ49eyooKEjR0dGaPn16zewwAADweV4PUVlZWUpPT1dGRoY2bNig+Ph4paam6uDBgxXWr127VoMHD9bIkSO1ceNGpaWlKS0tTVu3brVqpk+frlmzZmnu3LnKyclRSEiIUlNTdfz4cavmzjvv1LZt27R69Wr9/e9/15o1azRq1ChreUlJia6//nq1a9dO69ev14wZMzR16lS9+uqrtXcwAACA7zBelpiYaMaMGWP9XF5ebqKiokxmZmaF9QMGDDB9+/b1aEtKSjKjR482xhjjdrtNRESEmTFjhrW8uLjYBAYGmoULFxpjjPnmm2+MJPPll19aNf/4xz+Mw+Ew+/fvN8YY89JLL5kWLVqYEydOWDWPPvqo6dSpU5X3zeVyGUnG5XJVeR0AAOBdVf389upMVFlZmdavX6+UlBSrzc/PTykpKVq3bl2F66xbt86jXpJSU1Ot+tzcXBUUFHjUOJ1OJSUlWTXr1q1T8+bNdeWVV1o1KSkp8vPzU05OjlVzzTXXKCAgwGM73377rX744YcKx3bixAmVlJR4vAAAQP3k1RBVVFSk8vJyhYeHe7SHh4eroKCgwnUKCgrOWn/6z3PVtG7d2mN5o0aN1LJlS4+aivr4+TZ+KTMzU06n03pFR0dXvOMAAMDnef2aqPpkwoQJcrlc1mvfvn3eHhIAAKglXg1RYWFh8vf3V2FhoUd7YWGhIiIiKlwnIiLirPWn/zxXzS8vXD916pQOHz7sUVNRHz/fxi8FBgYqNDTU4wUAAOonr4aogIAAJSQkKDs722pzu93Kzs5WcnJyheskJyd71EvS6tWrrfrY2FhFRER41JSUlCgnJ8eqSU5OVnFxsdavX2/VfPjhh3K73UpKSrJq1qxZo5MnT3psp1OnTmrRosV57jkAAPB5dXShe6UWLVpkAgMDzfz5880333xjRo0aZZo3b24KCgqMMcYMHTrUPPbYY1b9Z599Zho1amSeffZZs337dpORkWEaN25stmzZYtU8/fTTpnnz5ua9994zX3/9tbnllltMbGysOXbsmFVzww03mCuuuMLk5OSYTz/91HTo0MEMHjzYWl5cXGzCw8PN0KFDzdatW82iRYtMkyZNzCuvvFLlfePuPAAAfE9VP7+9/t15AwcO1KFDhzRlyhQVFBSoW7duWrlypXUR9969e+Xn938TZt27d9dbb72lSZMmaeLEierQoYOWLVumrl27WjWPPPKISktLNWrUKBUXF6tHjx5auXKlgoKCrJq//vWvGjt2rK699lr5+fnptttu06xZs6zlTqdTq1at0pgxY5SQkKCwsDBNmTLF41lS52KMkSTu0gMAwIec/tw+/TleGYc5VwVs+/7777lDDwAAH7Vv3z5dfPHFlS4nRNUit9utAwcOqFmzZnI4HOfVV0lJiaKjo7Vv374Ge8F6Qz8GDX3/JY6BxDGQOAYSx0Cq3WNgjNGPP/6oqKgoj7Nhv+T103n1mZ+f31kTrB3c9ccxaOj7L3EMJI6BxDGQOAZS7R0Dp9N5zhqeEwUAAGADIQoAAMAGQpSPCAwMVEZGhgIDA709FK9p6Megoe+/xDGQOAYSx0DiGEgXxjHgwnIAAAAbmIkCAACwgRAFAABgAyEKAADABkIUAACADYQoL5kzZ45iYmIUFBSkpKQkffHFF2etnzlzpjp16qTg4GBFR0frv//7v3X8+HFr+dSpU+VwODxenTt3ru3dOC/VOQYnT57UtGnT1L59ewUFBSk+Pl4rV648rz4vBDV9DHztfbBmzRrdfPPNioqKksPh0LJly865zscff6xf//rXCgwM1KWXXqr58+efUeMr74Pa2P/6/h7Iz8/XkCFD1LFjR/n5+Wn8+PEV1i1ZskSdO3dWUFCQ4uLitGLFipoffA2pjWMwf/78M94HP//+2AtNdY/B0qVLdd1116lVq1YKDQ1VcnKyPvjggzPqavt3ASHKC7KyspSenq6MjAxt2LBB8fHxSk1N1cGDByusf+utt/TYY48pIyND27dv1+uvv66srCxNnDjRo+7yyy9Xfn6+9fr000/rYndsqe4xmDRpkl555RXNnj1b33zzje69917deuut2rhxo+0+va02joHkW++D0tJSxcfHa86cOVWqz83NVd++fdWnTx9t2rRJ48eP19133+3xy9OX3ge1sf9S/X4PnDhxQq1atdKkSZMUHx9fYc3atWs1ePBgjRw5Uhs3blRaWprS0tK0devWmhx6jamNYyD99CTvn78Pvvvuu5oaco2r7jFYs2aNrrvuOq1YsULr169Xnz59dPPNN9f9Z4JBnUtMTDRjxoyxfi4vLzdRUVEmMzOzwvoxY8aY3/72tx5t6enp5uqrr7Z+zsjIMPHx8bUy3tpQ3WMQGRlpXnzxRY+2/v37mzvvvNN2n95WG8fA194HPyfJvPvuu2eteeSRR8zll1/u0TZw4ECTmppq/exr74PTamr/6/t74Od69eplxo0bd0b7gAEDTN++fT3akpKSzOjRo89zhLWvpo7BvHnzjNPprLFx1aXqHoPTunTpYh5//HHr57r4XcBMVB0rKyvT+vXrlZKSYrX5+fkpJSVF69atq3Cd7t27a/369dY05J49e7RixQrddNNNHnU7d+5UVFSULrnkEt15553au3dv7e3IebBzDE6cOHHGVHRwcLD1f9h2+vSm2jgGp/nK+8COdevWeRwzSUpNTbWOma+9D6rrXPt/Wn1+D1RFVY9TfXfkyBG1a9dO0dHRuuWWW7Rt2zZvD6nWuN1u/fjjj2rZsqWkuvtdQIiqY0VFRSovL1d4eLhHe3h4uAoKCipcZ8iQIZo2bZp69Oihxo0bq3379urdu7fH6bykpCTNnz9fK1eu1Msvv6zc3Fz17NlTP/74Y63ujx12jkFqaqr+9Kc/aefOnXK73Vq9erWWLl2q/Px82316U20cA8m33gd2FBQUVHjMSkpKdOzYMZ97H1TXufZfqv/vgaqo7DjVh/dAVXXq1ElvvPGG3nvvPb355ptyu93q3r27vv/+e28PrVY8++yzOnLkiAYMGCCp7j4TCFE+4OOPP9ZTTz2ll156SRs2bNDSpUv1/vvv64knnrBqbrzxRt1xxx361a9+pdTUVK1YsULFxcVavHixF0dec1544QV16NBBnTt3VkBAgMaOHasRI0bIz6/hvIWrcgzq+/sA58Z7AJKUnJysYcOGqVu3burVq5eWLl2qVq1a6ZVXXvH20GrcW2+9pccff1yLFy9W69at63TbDecT6AIRFhYmf39/FRYWerQXFhYqIiKiwnUmT56soUOH6u6771ZcXJxuvfVWPfXUU8rMzJTb7a5wnebNm6tjx47atWtXje/D+bJzDFq1aqVly5aptLRU3333nXbs2KGmTZvqkksusd2nN9XGMajIhfw+sCMiIqLCYxYaGqrg4GCfex9U17n2vyL17T1QFZUdp/rwHrCrcePGuuKKK+rd+2DRokW6++67tXjxYo9Td3X1u4AQVccCAgKUkJCg7Oxsq83tdis7O1vJyckVrnP06NEzZlz8/f0lSaaSrz48cuSIdu/ercjIyBoaec2xcwxOCwoKUps2bXTq1Cm98847uuWWW867T2+ojWNQkQv5fWBHcnKyxzGTpNWrV1vHzNfeB9V1rv2vSH17D1SFneNU35WXl2vLli316n2wcOFCjRgxQgsXLlTfvn09ltXZ74Iau0QdVbZo0SITGBho5s+fb7755hszatQo07x5c1NQUGCMMWbo0KHmscces+ozMjJMs2bNzMKFC82ePXvMqlWrTPv27c2AAQOsmj/84Q/m448/Nrm5ueazzz4zKSkpJiwszBw8eLDO968qqnsMPv/8c/POO++Y3bt3mzVr1pjf/va3JjY21vzwww9V7vNCUxvHwNfeBz/++KPZuHGj2bhxo5Fk/vSnP5mNGzea7777zhhjzGOPPWaGDh1q1e/Zs8c0adLEPPzww2b79u1mzpw5xt/f36xcudKq8aX3QW3sf31/DxhjrPqEhAQzZMgQs3HjRrNt2zZr+WeffWYaNWpknn32WbN9+3aTkZFhGjdubLZs2VKn+1ZVtXEMHn/8cfPBBx+Y3bt3m/Xr15tBgwaZoKAgj5oLSXWPwV//+lfTqFEjM2fOHJOfn2+9iouLrZq6+F1AiPKS2bNnm7Zt25qAgACTmJhoPv/8c2tZr169zPDhw62fT548aaZOnWrat29vgoKCTHR0tLn//vs9PjwHDhxoIiMjTUBAgGnTpo0ZOHCg2bVrVx3uUfVV5xh8/PHH5rLLLjOBgYHmoosuMkOHDjX79++vVp8Xopo+Br72Pvjoo4+MpDNep/d7+PDhplevXmes061bNxMQEGAuueQSM2/evDP69ZX3QW3sf0N4D1RU365dO4+axYsXm44dO5qAgABz+eWXm/fff79udsiG2jgG48ePt/4bCA8PNzfddJPZsGFD3e1UNVX3GPTq1eus9afV9u8ChzGVnA8CAABApbgmCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUADcjHH38sh8Oh4uJibw8F8HmEKAC14q677pLD4dDTTz/t0b5s2TI5HA7rZ2OMXnvtNSUnJys0NFRNmzbV5ZdfrnHjxlX5y1KPHj2qCRMmqH379goKClKrVq3Uq1cvvffee1ZNTEyMZs6cWSP7VttOHzuHw6HGjRsrNjZWjzzyiI4fP16tfnr37q3x48d7tHXv3l35+flyOp01OGKgYSJEAag1QUFBeuaZZ/TDDz9UuNwYoyFDhujBBx/UTTfdpFWrVumbb77R66+/rqCgID355JNV2s69996rpUuXavbs2dqxY4dWrlyp22+/Xf/5z39qcnfq1A033KD8/Hzt2bNHzz//vF555RVlZGScd78BAQGKiIjwCLIAbKrRL5EBgP81fPhw87vf/c507tzZPPzww1b7u+++a07/6lm4cKGRZN57770K+3C73VXaltPpNPPnz690eUXfs3XaJ598Ynr06GGCgoLMxRdfbB544AFz5MgRa/n/+3//zyQkJJimTZua8PBwM3jwYFNYWGgtP/2dXytXrjTdunUzQUFBpk+fPqawsNCsWLHCdO7c2TRr1swMHjzYlJaWVml/hg8fbm655RaPtv79+5srrrjC+rmoqMgMGjTIREVFmeDgYNO1a1fz1ltvefTxy33Ozc21xvvz7958++23TZcuXUxAQIBp166defbZZ6s0TqChYyYKQK3x9/fXU089pdmzZ+v7778/Y/nChQvVqVMn9evXr8L1qzpbEhERoRUrVujHH3+scPnSpUt18cUXa9q0acrPz1d+fr4kaffu3brhhht022236euvv1ZWVpY+/fRTjR071lr35MmTeuKJJ7R582YtW7ZMeXl5uuuuu87YxtSpU/Xiiy9q7dq12rdvnwYMGKCZM2fqrbfe0vvvv69Vq1Zp9uzZVdqfX9q6davWrl2rgIAAq+348eNKSEjQ+++/r61bt2rUqFEaOnSovvjiC0nSCy+8oOTkZN1zzz3WPkdHR5/R9/r16zVgwAANGjRIW7Zs0dSpUzV58mTNnz/f1liBBsXbKQ5A/fTz2ZTf/OY35ve//70xxnMmqnPnzqZfv34e640bN86EhISYkJAQ06ZNmypt61//+pe5+OKLTePGjc2VV15pxo8fbz799FOPmnbt2pnnn3/eo23kyJFm1KhRHm2ffPKJ8fPzM8eOHatwW19++aWRZH788UdjzP/NRP3zn/+0ajIzM40ks3v3bqtt9OjRJjU1tUr7M3z4cOPv729CQkJMYGCgkWT8/PzM22+/fdb1+vbta/7whz9YP/fq1cuMGzfOo+aXM1FDhgwx1113nUfNww8/bLp06VKlsQINGTNRAGrdM888owULFmj79u3nrP2f//kfbdq0SVOmTNGRI0eq1P8111yjPXv2KDs7W7fffru2bdumnj176oknnjjreps3b9b8+fPVtGlT65Wamiq3263c3FxJP83U3HzzzWrbtq2aNWumXr16SZL27t3r0devfvUr6+/h4eFq0qSJLrnkEo+2gwcPVml/JKlPnz7atGmTcnJyNHz4cI0YMUK33Xabtby8vFxPPPGE4uLi1LJlSzVt2lQffPDBGeM6l+3bt+vqq6/2aLv66qu1c+dOlZeXV6svoKEhRAGodddcc41SU1M1YcIEj/YOHTro22+/9Whr1aqVLr30UrVu3bpa22jcuLF69uypRx99VKtWrdK0adP0xBNPqKysrNJ1jhw5otGjR2vTpk3Wa/Pmzdq5c6fat2+v0tJSpaamKjQ0VH/961/15Zdf6t1335WkM/pt3Lix9ffTd9X9nMPhkNvtrvL+hISE6NJLL1V8fLzeeOMN5eTk6PXXX7eWz5gxQy+88IIeffRRffTRR9q0aZNSU1PPur8AalYjbw8AQMPw9NNPq1u3burUqZPVNnjwYA0ZMkTvvfeebrnllhrdXpcuXXTq1CkdP35cAQEBCggIOGNm5de//rW++eYbXXrppRX2sWXLFv3nP//R008/bV1P9NVXX9XoOKvCz89PEydOVHp6uoYMGaLg4GB99tlnuuWWW/Rf//VfkiS3261///vf6tKli7VeRfv8S5dddpk+++wzj7bPPvtMHTt2lL+/f83vDFCPMBMFoE7ExcXpzjvv1KxZs6y2QYMG6fbbb9egQYM0bdo05eTkKC8vT//617+UlZVV5Q/x3r1765VXXtH69euVl5enFStWaOLEierTp49CQ0Ml/fScqDVr1mj//v0qKiqSJD366KNau3atxo4dq02bNmnnzp167733rAvL27Ztq4CAAM2ePVt79uzR8uXLz3mKsLbccccd8vf315w5cyT9NIu3evVqrV27Vtu3b9fo0aNVWFjosU5MTIx1TIuKiiqcCfvDH/6g7OxsPfHEE/r3v/+tBQsW6MUXX9RDDz1UJ/sF+DJCFIA6M23aNI8PcofDoaysLM2cOVMrVqzQtddeq06dOun3v/+9oqOj9emnn1ap39TUVC1YsEDXX3+9LrvsMj3wwANKTU3V4sWLPbadl5en9u3bq1WrVpJ+uo7pX//6l/7973+rZ8+euuKKKzRlyhRFRUVJ+unU4vz587VkyRJ16dJFTz/9tJ599tkaPCJV16hRI40dO1bTp09XaWmpJk2apF//+tdKTU1V7969FRERobS0NI91HnroIfn7+6tLly5q1apVhddL/frXv9bixYu1aNEide3aVVOmTNG0adMqvAMRgCeHMcZ4exAAAAC+hpkoAAAAGwhRAC54P38EwS9fn3zyibeHVy179+496/5U9xEFALyH03kALnhn+yLiNm3aKDg4uA5Hc35OnTqlvLy8SpfHxMSoUSNunAZ8ASEKAADABk7nAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGz4/7LiUtrU2wVFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWWRJREFUeJzt3X1cVGXeP/DPDDAziDFoIAMGggo+kpoGi6noSo3pGuS2KnIrcpu4u1qZPWl3ilkbPm2ZxqZ1r7K/rRQt01bJZDFzFURDzQfM1PAhY1AkBh/wifn+/vDH+TUyIiiH4eHzfr3Oi+a6vufMda57buez55w5RyMiAiIiIiKqc1pnD4CIiIioqWLQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUMWkREREQqYdAiomZv9uzZ0Gg0NarVaDSYPXu2quMZOHAgBg4c2GC3R0Q1x6BFRA1GWloaNBqNsri6uqJt27YYP348zpw54+zhNThBQUF289WmTRv0798fn3/+eZ1s//Lly5g9eza2bt1aJ9sjao4YtIiowZkzZw7++c9/YunSpXj88cfx0UcfISoqCleuXFHl/V577TWUl5ersm219ezZE//85z/xz3/+Ey+++CJ+/vlnjBgxAkuXLr3nbV++fBmvv/46gxbRPXB19gCIiG71+OOPo0+fPgCAp59+Gt7e3pg3bx6++OILjBw5ss7fz9XVFa6ujfOfw7Zt2+K//uu/lNfjxo1Dx44d8c477+CPf/yjE0dGRACPaBFRI9C/f38AwPHjx+3av//+ezz11FNo3bo1DAYD+vTpgy+++MKu5vr163j99dcREhICg8GA+++/H/369UNmZqZS4+garatXr+L555+Hj48P7rvvPjzxxBP46aefqoxt/PjxCAoKqtLuaJsrVqzAb3/7W7Rp0wZ6vR5du3bF+++/X6u5uBOTyYQuXbqgoKCg2rqzZ89iwoQJ8PX1hcFgQI8ePfCPf/xD6T9x4gR8fHwAAK+//rpyelLt69OImprG+T/hiKhZOXHiBACgVatWStuhQ4fwyCOPoG3btpg+fTo8PDywevVqxMbG4rPPPsOTTz4J4GbgSUlJwdNPP43w8HCUlZXh22+/xZ49e/Doo4/e9j2ffvppfPTRRxgzZgz69u2LLVu2YNiwYfe0H++//z66deuGJ554Aq6urvjXv/6FP//5z7DZbJg8efI9bbvS9evXcfr0adx///23rSkvL8fAgQNx7NgxTJkyBcHBwVizZg3Gjx+P0tJSPPfcc/Dx8cH777+PP/3pT3jyyScxYsQIAMCDDz5YJ+MkajaEiKiBWLFihQCQf//733Lu3Dk5ffq0fPrpp+Lj4yN6vV5Onz6t1A4ePFjCwsLkypUrSpvNZpO+fftKSEiI0tajRw8ZNmxYte+bnJwsv/7ncN++fQJA/vznP9vVjRkzRgBIcnKy0paQkCDt2rW74zZFRC5fvlylzmw2S/v27e3aoqKiJCoqqtoxi4i0a9dOHnvsMTl37pycO3dOvvvuOxk9erQAkGeeeea221u0aJEAkI8++khpu3btmkRGRkrLli2lrKxMRETOnTtXZX+JqHZ46pCIGpzo6Gj4+PggICAATz31FDw8PPDFF1/ggQceAACUlJRgy5YtGDlyJC5cuIDi4mIUFxfj/PnzMJvNOHr0qPIrRS8vLxw6dAhHjx6t8ftnZGQAAJ599lm79qlTp97Tfrm7uyv/bbVaUVxcjKioKPz444+wWq13tc3NmzfDx8cHPj4+6NGjB9asWYOxY8di3rx5t10nIyMDJpMJcXFxSpubmxueffZZXLx4Ed98881djYWIquKpQyJqcFJTUxEaGgqr1Yrly5dj27Zt0Ov1Sv+xY8cgIpg5cyZmzpzpcBtnz55F27ZtMWfOHMTExCA0NBTdu3fHkCFDMHbs2GpPgZ08eRJarRYdOnSwa+/UqdM97deOHTuQnJyMnJwcXL582a7ParXCaDTWepsRERF48803odFo0KJFC3Tp0gVeXl7VrnPy5EmEhIRAq7X/39pdunRR+omobjBoEVGDEx4ervzqMDY2Fv369cOYMWNw5MgRtGzZEjabDQDw4osvwmw2O9xGx44dAQADBgzA8ePHsX79emzevBn/+7//i3feeQdLly7F008/fc9jvd2NTisqKuxeHz9+HIMHD0bnzp3x9ttvIyAgADqdDhkZGXjnnXeUfaotb29vREdH39W6RKQ+Bi0iatBcXFyQkpKCQYMG4b333sP06dPRvn17ADdPd9UkZLRu3RqJiYlITEzExYsXMWDAAMyePfu2Qatdu3aw2Ww4fvy43VGsI0eOVKlt1aoVSktLq7TfelToX//6F65evYovvvgCgYGBSvvXX399x/HXtXbt2mH//v2w2Wx2R7W+//57pR+4fYgkoprjNVpE1OANHDgQ4eHhWLRoEa5cuYI2bdpg4MCBWLZsGQoLC6vUnzt3Tvnv8+fP2/W1bNkSHTt2xNWrV2/7fo8//jgAYPHixXbtixYtqlLboUMHWK1W7N+/X2krLCyscnd2FxcXAICIKG1WqxUrVqy47TjUMnToUFgsFqSnpyttN27cwJIlS9CyZUtERUUBAFq0aAEADoMkEdUMj2gRUaPw0ksv4Q9/+APS0tLwxz/+EampqejXrx/CwsIwceJEtG/fHkVFRcjJycFPP/2E7777DgDQtWtXDBw4EL1790br1q3x7bff4tNPP8WUKVNu+149e/ZEXFwc/va3v8FqtaJv377IysrCsWPHqtSOHj0ar7zyCp588kk8++yzuHz5Mt5//32EhoZiz549St1jjz0GnU6H4cOHY9KkSbh48SI+/PBDtGnTxmFYVFNSUhKWLVuG8ePHIy8vD0FBQfj000+xY8cOLFq0CPfddx+Amxfvd+3aFenp6QgNDUXr1q3RvXt3dO/evV7HS9SoOftnj0RElSpv77B79+4qfRUVFdKhQwfp0KGD3LhxQ0REjh8/LuPGjROTySRubm7Stm1b+d3vfieffvqpst6bb74p4eHh4uXlJe7u7tK5c2f5y1/+IteuXVNqHN2Koby8XJ599lm5//77xcPDQ4YPHy6nT592eLuDzZs3S/fu3UWn00mnTp3ko48+crjNL774Qh588EExGAwSFBQk8+bNk+XLlwsAKSgoUOpqc3uHO9264nbbKyoqksTERPH29hadTidhYWGyYsWKKutmZ2dL7969RafT8VYPRHdBI/Kr49hEREREVGd4jRYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUN4oalqampWLBgASwWC3r06IElS5YgPDz8tvVr1qzBzJkzceLECYSEhGDevHkYOnSo0i8iSE5OxocffojS0lI88sgjeP/99xESEqLUlJSU4JlnnsG//vUvaLVa/P73v8e7776Lli1bVnm/Y8eOoVevXnBxcalyh+Q7jaU6NpsNP//8M+677z4+6oKIiKiREBFcuHAB/v7+VR7O7qjYqVatWiU6nU6WL18uhw4dkokTJ4qXl5cUFRU5rN+xY4e4uLjI/PnzJT8/X1577TVxc3OTAwcOKDVz584Vo9Eo69atk++++06eeOIJCQ4OlvLycqVmyJAh0qNHD9m5c6f85z//kY4dO0pcXFyV97t27Zr06dNHHn/8cTEajbUeS3Uqb37IhQsXLly4cGl8y+nTp+/4Xe/0G5ZGRETg4YcfxnvvvQfg5lGegIAAPPPMM5g+fXqV+lGjRuHSpUvYsGGD0vab3/wGPXv2xNKlSyEi8Pf3xwsvvIAXX3wRwM3nifn6+iItLQ2jR4/G4cOH0bVrV+zevRt9+vQBAGzatAlDhw7FTz/9BH9/f2Xbr7zyCn7++WcMHjwYU6dOtTuidaex3InVaoWXlxdOnz4NT0/P2k0cEREROUVZWRkCAgJQWloKo9FYba1TTx1eu3YNeXl5mDFjhtKm1WoRHR2NnJwch+vk5ORg2rRpdm1msxnr1q0DABQUFMBisSA6OlrpNxqNiIiIQE5ODkaPHo2cnBx4eXkpIQsAoqOjodVqkZubiyeffBIAsGXLFqxZswb79u3D2rVraz2WW129etXuQbYXLlwAAHh6ejJoERERNTI1uezHqRfDFxcXo6KiAr6+vnbtvr6+sFgsDtexWCzV1lf+vVNNmzZt7PpdXV3RunVrpeb8+fMYP3480tLSbhuC7jSWW6WkpMBoNCpLQECAwzoiIiJqGvirw9uYOHEixowZgwEDBtTZNmfMmAGr1aosp0+frrNtExERUcPj1KDl7e0NFxcXFBUV2bUXFRXBZDI5XMdkMlVbX/n3TjVnz561679x4wZKSkqUmi1btmDhwoVwdXWFq6srJkyYAKvVCldXVyxfvrxGY7mVXq9XThPydCEREVHT59RrtHQ6HXr37o2srCzExsYCuHkxfFZWFqZMmeJwncjISGRlZWHq1KlKW2ZmJiIjIwEAwcHBMJlMyMrKQs+ePQHcvGgtNzcXf/rTn5RtlJaWIi8vD7179wZwM1jZbDZEREQAuHn9VUVFhfIe69evx7x585CdnY22bdvWaCxERESNhc1mw7Vr15w9jAZDp9Pd+dYNNeD0+2hNmzYNCQkJ6NOnD8LDw7Fo0SJcunQJiYmJAIBx48ahbdu2SElJAQA899xziIqKwl//+lcMGzYMq1atwrfffosPPvgAwM0L06ZOnYo333wTISEhCA4OxsyZM+Hv76+EuS5dumDIkCGYOHEili5diuvXr2PKlCkYPXq08ovDLl262I3z22+/hVarRffu3ZW2O42FiIioMbh27RoKCgpgs9mcPZQGQ6vVIjg4GDqd7p624/SgNWrUKJw7dw6zZs2CxWJBz549sWnTJuUi81OnTtklyr59++KTTz7Ba6+9hldffRUhISFYt26dXQB6+eWXcenSJSQlJaG0tBT9+vXDpk2bYDAYlJqPP/4YU6ZMweDBg5Ubli5evLhWY6/JWIiIiBoyEUFhYSFcXFwQEBBQJ0dxGrvKG4oXFhYiMDDwnm4q7vT7aDVnZWVlMBqNsFqtvF6LiIic4vr16zh27Bj8/f3veE+o5sRqteLnn39Gx44d4ebmZtdXm+9vxlYiIqJmrPJ65Hs9RdbUVM7Hr6/XvhsMWkRERMRn7t6iruaDQYuIiIhIJQxaRERERCph0CKnKbSWI/t4MQqt5c4eChERNVIWiwXPPPMM2rdvD71ej4CAAAwfPhxZWVlKTXZ2NoYOHYpWrVrBYDAgLCwMb7/99j1ff1UTTr+9AzVP6btPYcbaA7AJoNUAKSPCMOrhQGcPi4iIGpETJ07gkUcegZeXFxYsWICwsDBcv34dX331FSZPnozvv/8en3/+OUaOHInExER8/fXX8PLywr///W+8/PLLyMnJwerVq1W9Po23d3Ci5np7h0JrOR6ZuwW2X33yXDQabJ8+CH5Gd+cNjIioGbpy5QoKCgoQHBxsd7/JxmDo0KHYv38/jhw5Ag8PD7u+0tJSuLm5oV27doiKisJnn31m1/+vf/0LTzzxBFatWoVRo0ZV2XZ188LbO1CDVlB8yS5kAUCFCE4UX3bOgIiIqE7U5yUhJSUl2LRpEyZPnlwlZAGAl5cXNm/ejPPnz+PFF1+s0j98+HCEhoZi5cqVqo6Tpw6p3gV7e0CrQZUjWkHeLZw3KCIiuif1fUnIsWPHICLo3LnzbWt++OEHAFUfq1epc+fOSo1aeESL6p2f0R0pI8Lg8v/OibtoNHhrRHeeNiRqpvjDmMav0FquhCzg5v+QfnXtQVX/b1qbK5+ceZUUj2iRU4x6OBADQn1wovgygrxbMGQRNVP8YUzTUN0lIWr9+x4SEgKNRoPvv//+tjWhoaEAgMOHD6Nv375V+g8fPoyuXbuqMr5KPKJFTuNndEdkh/sZsoiaKWccBSF1VF4S8mtqXxLSunVrmM1mpKam4tKlS1X6S0tL8dhjj6F169b461//WqX/iy++wNGjRxEXF6faGAEGLSIichL+MKbpcNYlIampqaioqEB4eDg+++wzHD16FIcPH8bixYsRGRkJDw8PLFu2DOvXr0dSUhL279+PEydO4O9//zvGjx+Pp556CiNHjlR1jDx1SERETsEfxjQtzrgkpH379tizZw/+8pe/4IUXXkBhYSF8fHzQu3dvvP/++wCAp556Cl9//TX+8pe/oH///rhy5QpCQkLwP//zP5g6darqz3jkfbScqLneR4uIqFL67lN4de1BVIgoR0F4jVb9asz30VJTXd1Hi0e0iIjIafjDGGrqGLSIiMip/IzuDFjUZPFieCIiIiKVMGgRERERqYRBi4iIiJx69/SGqK7mg0GLiIioGXNxcQEAXLt2zckjaVgq56Nyfu4WL4YnIiJqxlxdXdGiRQucO3cObm5u0Gp5DMZms+HcuXNo0aIFXF3vLSoxaBERETVjGo0Gfn5+KCgowMmTJ509nAZDq9UiMDDwnm9oyqBFRESNUqG1HAXFlxDs7cHbQ9wjnU6HkJAQnj78FZ1OVydH9xi0iIio0UnffUp5ILVWA6SMCOMd5e+RVqvlneFVwBOxRETUqBRay5WQBdx8VuKraw+i0Fru3IEROcCgRUREjUpB8SW7B1EDQIUIThRfds6AiKrBoEVERI1KsLcHtLdcn+yi0SDIu4VzBkRUDQYtIiJqVPyM7kgZEQaX//drMBeNBm+N6M4L4qlB4sXwRETU6Ix6OBADQn1wovgygrxbMGRRg8WgRUREjZKf0Z0Bixo8njokIiIiUgmDFhEREZFKGkTQSk1NRVBQEAwGAyIiIrBr165q69esWYPOnTvDYDAgLCwMGRkZdv0iglmzZsHPzw/u7u6Ijo7G0aNH7WpKSkoQHx8PT09PeHl5YcKECbh48aLSf+TIEQwaNAi+vr4wGAxo3749XnvtNVy/fl2pSUtLg0ajsVt4szciIiKq5PSglZ6ejmnTpiE5ORl79uxBjx49YDabcfbsWYf12dnZiIuLw4QJE7B3717ExsYiNjYWBw8eVGrmz5+PxYsXY+nSpcjNzYWHhwfMZjOuXLmi1MTHx+PQoUPIzMzEhg0bsG3bNiQlJSn9bm5uGDduHDZv3owjR45g0aJF+PDDD5GcnGw3Hk9PTxQWFioLnxNFRERECnGy8PBwmTx5svK6oqJC/P39JSUlxWH9yJEjZdiwYXZtERERMmnSJBERsdlsYjKZZMGCBUp/aWmp6PV6WblypYiI5OfnCwDZvXu3UvPll1+KRqORM2fO3Haszz//vPTr1095vWLFCjEajTXf2VtYrVYBIFar9a63QURERPWrNt/fTj2ide3aNeTl5SE6Olpp02q1iI6ORk5OjsN1cnJy7OoBwGw2K/UFBQWwWCx2NUajEREREUpNTk4OvLy80KdPH6UmOjoaWq0Wubm5Dt/32LFj2LRpE6KiouzaL168iHbt2iEgIAAxMTE4dOjQbff36tWrKCsrs1uIiIio6XJq0CouLkZFRQV8fX3t2n19fWGxWByuY7FYqq2v/HunmjZt2tj1u7q6onXr1lXet2/fvjAYDAgJCUH//v0xZ84cpa9Tp05Yvnw51q9fj48++gg2mw19+/bFTz/95HDsKSkpMBqNyhIQEOCwjoiIiJoGp1+j1dClp6djz549+OSTT7Bx40YsXLhQ6YuMjMS4cePQs2dPREVFYe3atfDx8cGyZcscbmvGjBmwWq3Kcvr06fraDSIiInICp96w1NvbGy4uLigqKrJrLyoqgslkcriOyWSqtr7yb1FREfz8/OxqevbsqdTcerH9jRs3UFJSUuV9K486de3aFRUVFUhKSsILL7wAFxeXKmNzc3NDr169cOzYMYdj1+v10Ov1DvuIiIio6XHqES2dTofevXsjKytLabPZbMjKykJkZKTDdSIjI+3qASAzM1OpDw4OhslksqspKytDbm6uUhMZGYnS0lLk5eUpNVu2bIHNZkNERMRtx2uz2XD9+nXYbDaH/RUVFThw4IBdwCMiIqLmy+mP4Jk2bRoSEhLQp08fhIeHY9GiRbh06RISExMBAOPGjUPbtm2RkpICAHjuuecQFRWFv/71rxg2bBhWrVqFb7/9Fh988AEAQKPRYOrUqXjzzTcREhKC4OBgzJw5E/7+/oiNjQUAdOnSBUOGDMHEiROxdOlSXL9+HVOmTMHo0aPh7+8PAPj444/h5uaGsLAw6PV6fPvtt5gxYwZGjRoFNzc3AMCcOXPwm9/8Bh07dkRpaSkWLFiAkydP4umnn67nWSQiIqKGyOlBa9SoUTh37hxmzZoFi8WCnj17YtOmTcrF7KdOnYJW+/8PvPXt2xeffPIJXnvtNbz66qsICQnBunXr0L17d6Xm5ZdfxqVLl5CUlITS0lL069cPmzZtsruZ6Mcff4wpU6Zg8ODB0Gq1+P3vf4/Fixcr/a6urpg3bx5++OEHiAjatWuHKVOm4Pnnn1dqfvnlF0ycOBEWiwWtWrVC7969kZ2dja5du6o5ZURERNRIaEREnD2I5qqsrAxGoxFWqxWenp7OHg4RERHVQG2+v/mrQyIiIiKVMGgRERERqYRBi4iIiEglDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUMWkREREQqYdAiIiIiUgmDFhEREZFKGLSIiIiIVMKgRURERKQSBi0iIiIilTBoEREREamEQYuIiIhIJQxaRERERCph0CIiIiJSCYMWERERkUoYtIiIiIhUwqBFREREpBIGLSIiIiKVMGgRERERqYRBi4iIiEglDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpU0iKCVmpqKoKAgGAwGREREYNeuXdXWr1mzBp07d4bBYEBYWBgyMjLs+kUEs2bNgp+fH9zd3REdHY2jR4/a1ZSUlCA+Ph6enp7w8vLChAkTcPHiRaX/yJEjGDRoEHx9fWEwGNC+fXu89tpruH79eq3GQkRERM2X04NWeno6pk2bhuTkZOzZswc9evSA2WzG2bNnHdZnZ2cjLi4OEyZMwN69exEbG4vY2FgcPHhQqZk/fz4WL16MpUuXIjc3Fx4eHjCbzbhy5YpSEx8fj0OHDiEzMxMbNmzAtm3bkJSUpPS7ublh3Lhx2Lx5M44cOYJFixbhww8/RHJycq3GQkRERM2YOFl4eLhMnjxZeV1RUSH+/v6SkpLisH7kyJEybNgwu7aIiAiZNGmSiIjYbDYxmUyyYMECpb+0tFT0er2sXLlSRETy8/MFgOzevVup+fLLL0Wj0ciZM2duO9bnn39e+vXrV+Ox3InVahUAYrVaa1RPREREzleb72+nHtG6du0a8vLyEB0drbRptVpER0cjJyfH4To5OTl29QBgNpuV+oKCAlgsFrsao9GIiIgIpSYnJwdeXl7o06ePUhMdHQ2tVovc3FyH73vs2DFs2rQJUVFRNR7Lra5evYqysjK7hYiIiJoupwat4uJiVFRUwNfX167d19cXFovF4ToWi6Xa+sq/d6pp06aNXb+rqytat25d5X379u0Lg8GAkJAQ9O/fH3PmzKnxWG6VkpICo9GoLAEBAQ7riIiIqGlw+jVaDV16ejr27NmDTz75BBs3bsTChQvvelszZsyA1WpVltOnT9fhSImIiKihcXXmm3t7e8PFxQVFRUV27UVFRTCZTA7XMZlM1dZX/i0qKoKfn59dTc+ePZWaWy+2v3HjBkpKSqq8b+VRp65du6KiogJJSUl44YUX4OLicsex3Eqv10Ov1zvsIyIioqbHqUe0dDodevfujaysLKXNZrMhKysLkZGRDteJjIy0qweAzMxMpT44OBgmk8mupqysDLm5uUpNZGQkSktLkZeXp9Rs2bIFNpsNERERtx2vzWbD9evXYbPZajQWIiIiaubq4eL8aq1atUr0er2kpaVJfn6+JCUliZeXl1gsFhERGTt2rEyfPl2p37Fjh7i6usrChQvl8OHDkpycLG5ubnLgwAGlZu7cueLl5SXr16+X/fv3S0xMjAQHB0t5eblSM2TIEOnVq5fk5ubK9u3bJSQkROLi4pT+jz76SNLT0yU/P1+OHz8u6enp4u/vL/Hx8bUaS3X4q0MiIqLGpzbf304PWiIiS5YskcDAQNHpdBIeHi47d+5U+qKioiQhIcGufvXq1RIaGio6nU66desmGzdutOu32Wwyc+ZM8fX1Fb1eL4MHD5YjR47Y1Zw/f17i4uKkZcuW4unpKYmJiXLhwgWlf9WqVfLQQw9Jy5YtxcPDQ7p27SpvvfWWXViryViqw6BFRETU+NTm+1sjIuLcY2rNV1lZGYxGI6xWKzw9PZ09HCIiIqqB2nx/81eHRERERCph0CIiIiJSCYMWERERkUoYtIiIiIhUwqBFREREpBIGLSKqsUJrObKPF6PQWu7soRARNQpOfQQPETUe6btPYcbaA7AJoNUAKSPCMOrhQGcPi4ioQeMRLSK6o0JruRKyAMAmwKtrD/LIFhHRHTBoEdEdFRRfUkJWpQoRnCi+7JwBERE1EgxaRHRHwd4e0Grs21w0GgR5t3DOgIiIGgkGLSK6Iz+jO1JGhMFFczNtuWg0eGtEd/gZ3Z08MiKiho0XwzdRhdZyFBRfQrC3B78MqU6MejgQA0J9cKL4MoK8W/BzRURUAwxaTRB/HUZq8TO6M2AREdUCTx02Mfx1GBERUcPBoNXE3Muvw3gzSiIiorrFU4dNTOWvw34dtmry6zCebiQiIqp7PKLVxNzNr8N4upGIiEgdPKLVBNX212HVnW7khc9NE3+VSkRUPxi0mqja/Drsbk83UuPE08RERPWHpw6JN6NsRniamIiofvGIFgHgzSibC54mJiKqXwxapODNKJs+niYmIqpfPHVI1IzwNDERUf3iES2iZoaniYmI6g+DFlEzxNPERET1g6cOiYiIiFTCoEVERESkEgYtIiIiIpUwaBEREVG9KLSWI/t4cbO6STIvhiciIiLVNdfHf/GIFhEREamqOT/+i0GLiIiIVFXd47+aOgYtIiIiUlXl479+rbk8/qtBBK3U1FQEBQXBYDAgIiICu3btqrZ+zZo16Ny5MwwGA8LCwpCRkWHXLyKYNWsW/Pz84O7ujujoaBw9etSupqSkBPHx8fD09ISXlxcmTJiAixcvKv1bt25FTEwM/Pz84OHhgZ49e+Ljjz+220ZaWho0Go3dYjAY7nE2iIiImpbm/Pgvpwet9PR0TJs2DcnJydizZw969OgBs9mMs2fPOqzPzs5GXFwcJkyYgL179yI2NhaxsbE4ePCgUjN//nwsXrwYS5cuRW5uLjw8PGA2m3HlyhWlJj4+HocOHUJmZiY2bNiAbdu2ISkpye59HnzwQXz22WfYv38/EhMTMW7cOGzYsMFuPJ6enigsLFSWkydP1vEMERERNX6jHg7E9umDsHLib7B9+qBmcSE8AECcLDw8XCZPnqy8rqioEH9/f0lJSXFYP3LkSBk2bJhdW0REhEyaNElERGw2m5hMJlmwYIHSX1paKnq9XlauXCkiIvn5+QJAdu/erdR8+eWXotFo5MyZM7cd69ChQyUxMVF5vWLFCjEajTXf2VtYrVYBIFar9a63QURERPWrNt/fTj2ide3aNeTl5SE6Olpp02q1iI6ORk5OjsN1cnJy7OoBwGw2K/UFBQWwWCx2NUajEREREUpNTk4OvLy80KdPH6UmOjoaWq0Wubm5tx2v1WpF69at7douXryIdu3aISAgADExMTh06FAN956IiIiaOqcGreLiYlRUVMDX19eu3dfXFxaLxeE6Foul2vrKv3eqadOmjV2/q6srWrdufdv3Xb16NXbv3o3ExESlrVOnTli+fDnWr1+Pjz76CDabDX379sVPP/3kcBtXr15FWVmZ3UJERERNl9Ov0WoMvv76ayQmJuLDDz9Et27dlPbIyEiMGzcOPXv2RFRUFNauXQsfHx8sW7bM4XZSUlJgNBqVJSAgoL52gYiIiJzAqUHL29sbLi4uKCoqsmsvKiqCyWRyuI7JZKq2vvLvnWpuvdj+xo0bKCkpqfK+33zzDYYPH4533nkH48aNq3Z/3Nzc0KtXLxw7dsxh/4wZM2C1WpXl9OnT1W6PiIiIGjenBi2dTofevXsjKytLabPZbMjKykJkZKTDdSIjI+3qASAzM1OpDw4OhslksqspKytDbm6uUhMZGYnS0lLk5eUpNVu2bIHNZkNERITStnXrVgwbNgzz5s2z+0Xi7VRUVODAgQPw8/Nz2K/X6+Hp6Wm3EBERURNWDxfnV2vVqlWi1+slLS1N8vPzJSkpSby8vMRisYiIyNixY2X69OlK/Y4dO8TV1VUWLlwohw8fluTkZHFzc5MDBw4oNXPnzhUvLy9Zv3697N+/X2JiYiQ4OFjKy8uVmiFDhkivXr0kNzdXtm/fLiEhIRIXF6f0b9myRVq0aCEzZsyQwsJCZTl//rxS8/rrr8tXX30lx48fl7y8PBk9erQYDAY5dOhQjfadvzokIiJqfGrz/e30oCUismTJEgkMDBSdTifh4eGyc+dOpS8qKkoSEhLs6levXi2hoaGi0+mkW7dusnHjRrt+m80mM2fOFF9fX9Hr9TJ48GA5cuSIXc358+clLi5OWrZsKZ6enpKYmCgXLlxQ+hMSEgRAlSUqKkqpmTp1qjJuX19fGTp0qOzZs6fG+82gRURE1PjU5vtbIyJy28NdpKqysjIYjUZYrVaeRiQiImokavP9zV8dEhEREamEQYuIiIhIJQxaRERERCph0CIiIiJSCYMWERERkUoYtIiIiKhJKrSWI/t4MQqt5U4bg6vT3pmIiIhIJem7T2HG2gOwCaDVACkjwjDq4cB6HwePaBEREVGTUmgtV0IWANgEeHXtQacc2WLQIiIioialoPiSErIqVYjgRPHleh8LgxYRERE1KcHeHtBq7NtcNBoEebeo97EwaBEREVGT4md0R8qIMLhobqYtF40Gb43oDj+je72PhRfDExERUZMz6uFADAj1wYniywjybuGUkAUwaBEREVET5Wd0d1rAqsRTh0REREQqYdAiIiIiUgmDFhEREZFKGLSIiIiIVMKgRURERKQSBi0iIiIilTBoEREREamEQYuIiIhIJQxaRERERCph0CIiIiJSCYMWERERkUoYtIiIiIhUwqBFREREpBIGLSIiIiKVMGgRERERqYRBi4iIiEglDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkkgYRtFJTUxEUFASDwYCIiAjs2rWr2vo1a9agc+fOMBgMCAsLQ0ZGhl2/iGDWrFnw8/ODu7s7oqOjcfToUbuakpISxMfHw9PTE15eXpgwYQIuXryo9G/duhUxMTHw8/ODh4cHevbsiY8//rjWYyEiIqLm666C1po1azBixAh0794d3bt3x4gRI/Dpp5/e1QDS09Mxbdo0JCcnY8+ePejRowfMZjPOnj3rsD47OxtxcXGYMGEC9u7di9jYWMTGxuLgwYNKzfz587F48WIsXboUubm58PDwgNlsxpUrV5Sa+Ph4HDp0CJmZmdiwYQO2bduGpKQku/d58MEH8dlnn2H//v1ITEzEuHHjsGHDhlqNhYjqV6G1HNnHi1FoLXf2UIiIAKmFiooKGTlypGg0GunUqZPExMRITEyMhIaGilarlVGjRonNZqvNJiU8PFwmT55s9x7+/v6SkpLisH7kyJEybNgwu7aIiAiZNGmSiIjYbDYxmUyyYMECpb+0tFT0er2sXLlSRETy8/MFgOzevVup+fLLL0Wj0ciZM2duO9ahQ4dKYmJijcdyJ1arVQCI1WqtUT0RVW/VrpMSPH2DtHtlgwRP3yCrdp109pCIqAmqzfd3rY5ovfvuu/j3v/+NL774At9//z3WrVuHdevW4ciRI/j888+RmZmJd999t8bbu3btGvLy8hAdHa20abVaREdHIycnx+E6OTk5dvUAYDablfqCggJYLBa7GqPRiIiICKUmJycHXl5e6NOnj1ITHR0NrVaL3Nzc247XarWidevWNR7Lra5evYqysjK7hYjqRqG1HDPWHoBNbr62CfDq2oM8skVETlWroLVixQosWLAAv/vd76r0PfHEE5g/fz6WL19e4+0VFxejoqICvr6+du2+vr6wWCwO17FYLNXWV/69U02bNm3s+l1dXdG6devbvu/q1auxe/duJCYm1ngst0pJSYHRaFSWgIAAh3VEVHsFxZeUkFWpQgQnii87Z0BERKhl0Dp69GiVIzi/5uii86bg66+/RmJiIj788EN069btrrczY8YMWK1WZTl9+nQdjpKoeQv29oBWY9/motEgyLuFcwZERIRaBi13d3eUlpbetr+srAwGg6HG2/P29oaLiwuKiors2ouKimAymRyuYzKZqq2v/Hunmlsvtr9x4wZKSkqqvO8333yD4cOH45133sG4ceNqNZZb6fV6eHp62i1EVDf8jO5IGREGF83NtOWi0eCtEd3hZ3R38siIqDmrVdCKjIzE+++/f9v+1NRUREZG1nh7Op0OvXv3RlZWltJms9mQlZV12+1ERkba1QNAZmamUh8cHAyTyWRXU1ZWhtzcXKUmMjISpaWlyMvLU2q2bNkCm82GiIgIpW3r1q0YNmwY5s2bZ/eLxJqOhYjq16iHA7F9+iCsnPgbbJ8+CKMeDnT2kIiouavNVfY7duwQNzc3+cMf/iC5ublitVqltLRUcnJy5KmnnhI3NzfZvn17ra7cX7Vqlej1eklLS5P8/HxJSkoSLy8vsVgsIiIyduxYmT59ut0YXF1dZeHChXL48GFJTk4WNzc3OXDggFIzd+5c8fLykvXr18v+/fslJiZGgoODpby8XKkZMmSI9OrVS3Jzc2X79u0SEhIicXFxSv+WLVukRYsWMmPGDCksLFSW8+fP12os1eGvDomIiBqf2nx/1ypoiYisXbtWvL29RavV2i3333+/fPrpp3c14CVLlkhgYKDodDoJDw+XnTt3Kn1RUVGSkJBgV7969WoJDQ0VnU4n3bp1k40bN9r122w2mTlzpvj6+oper5fBgwfLkSNH7GrOnz8vcXFx0rJlS/H09JTExES5cOGC0p+QkCAAqixRUVG1Gkt1GLSIiIgan9p8f2tERG57uOs2Ll++jK+++kq58D00NBSPPfYYWrTgRae1UVZWBqPRCKvVyuu1iIiIGonafH+71mbDW7ZswZQpU7Bz5048+eSTdn1WqxXdunXD0qVL0b9//9qPmoiIiKiJqdXF8IsWLcLEiRMdpjej0YhJkybh7bffrrPBERERETVmtQpa3333HYYMGXLb/scee8zul3xEREREzVmtglZRURHc3Nxu2+/q6opz587d86CIiIiImoJaBa22bdvi4MGDt+3fv38//Pz87nlQRNS0FFrLkX28mM8dJKJmp1YXww8dOhQzZ87EkCFDqtwBvry8HMnJyQ6fg0hEzVf67lPKw561GiBlRBhvJEpEzUatbu9QVFSEhx56CC4uLpgyZQo6deoEAPj++++RmpqKiooK7Nmzp8qDlskx3t6BmrpCazkembvF7mHPLhoNtk8fxEfjEFGjpdrtHXx9fZGdnY0//elPmDFjBiozmkajgdlsRmpqKkMWESkKii/ZhSwAqBDBieLLDFpE1CzUKmgBQLt27ZCRkYFffvkFx44dg4ggJCQErVq1UmN8RNSIBXt7QKtBlSNaQd68uTERNQ+1uhj+11q1aoWHH34Y4eHhDFlE5JCf0R0pI8LgotEAuBmy3hrRnUeziKjZqPURLSKi2hj1cCAGhPrgRPFlBHm3YMgiomaFQYuIVOdndGfAIqJm6a5PHRIRERFR9Ri0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUMWkRERNQkFVrLkX28GIXWcqeNgffRIiIioiYnffcpzFh7ADYBtBogZUQYRj0cWO/j4BEtIiIialIKreVKyAJuPm/11bUHnXJki0GLiIiImpSC4kt2D7MHgAoRnCi+XO9jYdAiIiKiJiXY2wNajX2bi0aDIO8W9T4WBi0iIiJqUvyM7kgZEQYXzc205aLR4K0R3Z3yzFVeDE9ERERNzqiHAzEg1Acnii8jyLuF0x5sz6BFRERETZKf0d1pAasSTx0SERERqYRBi4iIiEglDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEqcHrdTUVAQFBcFgMCAiIgK7du2qtn7NmjXo3LkzDAYDwsLCkJGRYdcvIpg1axb8/Pzg7u6O6OhoHD161K6mpKQE8fHx8PT0hJeXFyZMmICLFy8q/VeuXMH48eMRFhYGV1dXxMbGVhnH1q1bodFoqiwWi+XuJ4OIiIiaFKcGrfT0dEybNg3JycnYs2cPevToAbPZjLNnzzqsz87ORlxcHCZMmIC9e/ciNjYWsbGxOHjwoFIzf/58LF68GEuXLkVubi48PDxgNptx5coVpSY+Ph6HDh1CZmYmNmzYgG3btiEpKUnpr6iogLu7O5599llER0dXuw9HjhxBYWGhsrRp0+YeZ4WIiIiaDHGi8PBwmTx5svK6oqJC/P39JSUlxWH9yJEjZdiwYXZtERERMmnSJBERsdlsYjKZZMGCBUp/aWmp6PV6WblypYiI5OfnCwDZvXu3UvPll1+KRqORM2fOVHnPhIQEiYmJqdL+9ddfCwD55Zdfary/t7JarQJArFbrXW+DiIiI6ldtvr+ddkTr2rVryMvLsztipNVqER0djZycHIfr5OTkVDnCZDablfqCggJYLBa7GqPRiIiICKUmJycHXl5e6NOnj1ITHR0NrVaL3NzcWu9Hz5494efnh0cffRQ7duyotvbq1asoKyuzW4gak0JrObKPF6PQWu7soRARNQpOC1rFxcWoqKiAr6+vXbuvr+9tr3OyWCzV1lf+vVPNraf3XF1d0bp161pdX+Xn54elS5fis88+w2effYaAgAAMHDgQe/bsue06KSkpMBqNyhIQEFDj9yNytvTdp/DI3C0Y82EuHpm7Bem7Tzl7SEREDR4fKn2XOnXqhE6dOimv+/bti+PHj+Odd97BP//5T4frzJgxA9OmTVNel5WVMWxRo1BoLceMtQdgk5uvbQK8uvYgBoT6OP2BrUREDZnTjmh5e3vDxcUFRUVFdu1FRUUwmUwO1zGZTNXWV/69U82tF9vfuHEDJSUlt33fmgoPD8exY8du26/X6+Hp6Wm3EDUGBcWXlJBVqUIEJ4ovO2dARESNhNOClk6nQ+/evZGVlaW02Ww2ZGVlITIy0uE6kZGRdvUAkJmZqdQHBwfDZDLZ1ZSVlSE3N1epiYyMRGlpKfLy8pSaLVu2wGazISIi4p72ad++ffDz87unbRA1RMHeHtBq7NtcNBoEebdwzoCIiBoJp546nDZtGhISEtCnTx+Eh4dj0aJFuHTpEhITEwEA48aNQ9u2bZGSkgIAeO655xAVFYW//vWvGDZsGFatWoVvv/0WH3zwAQBAo9Fg6tSpePPNNxESEoLg4GDMnDkT/v7+yr2wunTpgiFDhmDixIlYunQprl+/jilTpmD06NHw9/dXxpafn49r166hpKQEFy5cwL59+wDcvPgdABYtWoTg4GB069YNV65cwf/+7/9iy5Yt2Lx5c/1MHlE98jO6I2VEGF5dexAVInDRaPDWiO48bUhEdCf18CvIai1ZskQCAwNFp9NJeHi47Ny5U+mLioqShIQEu/rVq1dLaGio6HQ66datm2zcuNGu32azycyZM8XX11f0er0MHjxYjhw5Yldz/vx5iYuLk5YtW4qnp6ckJibKhQsX7GratWsnAKoslebNmycdOnQQg8EgrVu3loEDB8qWLVtqte+8vQM1Nj+XXpbsY8Xyc+llZw+FiMhpavP9rRERqSaHkYrKyspgNBphtVp5vRYREVEjUZvvb6c/goeIiIioqWLQIiIiIlIJgxYRERE1SQ3haRa8YSkRERE1Oem7Tyk3WtZqgJQRYRj1cGC9j4NHtIiIiKhJud3TLJxxZItBi4iIiJqUhvQ0CwYtIiIialIa0tMsGLSIiIioSal8moWL5mbacubTLHgxPBERETU5ox4OxIBQH5wovowg7xZOe2QYgxYRERE1SX5Gd6c/k5WnDomIiIhUwqBFREREpBIGLSIiIiKVMGgRERERqYRBi4iIiEglDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUMWkREREQqYdAiIiIiUgmDFhEREZFKGLSIiIiIVMKgRURERKQSBi0iIiIilTBoEREREamEQYuIiIhIJQxaRERERCph0CIiIiJSidODVmpqKoKCgmAwGBAREYFdu3ZVW79mzRp07twZBoMBYWFhyMjIsOsXEcyaNQt+fn5wd3dHdHQ0jh49aldTUlKC+Ph4eHp6wsvLCxMmTMDFixeV/itXrmD8+PEICwuDq6srYmNjHY5l69ateOihh6DX69GxY0ekpaXd1RwQERFR0+TUoJWeno5p06YhOTkZe/bsQY8ePWA2m3H27FmH9dnZ2YiLi8OECROwd+9exMbGIjY2FgcPHlRq5s+fj8WLF2Pp0qXIzc2Fh4cHzGYzrly5otTEx8fj0KFDyMzMxIYNG7Bt2zYkJSUp/RUVFXB3d8ezzz6L6Ohoh2MpKCjAsGHDMGjQIOzbtw9Tp07F008/ja+++qqOZoeIiIgaPXGi8PBwmTx5svK6oqJC/P39JSUlxWH9yJEjZdiwYXZtERERMmnSJBERsdlsYjKZZMGCBUp/aWmp6PV6WblypYiI5OfnCwDZvXu3UvPll1+KRqORM2fOVHnPhIQEiYmJqdL+8ssvS7du3ezaRo0aJWaz+Q57/f9ZrVYBIFartcbrEBERkXPV5vvbaUe0rl27hry8PLsjRlqtFtHR0cjJyXG4Tk5OTpUjTGazWakvKCiAxWKxqzEajYiIiFBqcnJy4OXlhT59+ig10dHR0Gq1yM3NrfH47zQWR65evYqysjK7hYiIiJoupwWt4uJiVFRUwNfX167d19cXFovF4ToWi6Xa+sq/d6pp06aNXb+rqytat2592/etzVjKyspQXl7ucJ2UlBQYjUZlCQgIqPH7ERERUePj9Ivhm5MZM2bAarUqy+nTp509JCIiIlKR04KWt7c3XFxcUFRUZNdeVFQEk8nkcB2TyVRtfeXfO9XcerH9jRs3UFJSctv3rc1YPD094e7u7nAdvV4PT09Pu4WIiIiaLqcFLZ1Oh969eyMrK0tps9lsyMrKQmRkpMN1IiMj7eoBIDMzU6kPDg6GyWSyqykrK0Nubq5SExkZidLSUuTl5Sk1W7Zsgc1mQ0RERI3Hf6exEBERETn1V4erVq0SvV4vaWlpkp+fL0lJSeLl5SUWi0VERMaOHSvTp09X6nfs2CGurq6ycOFCOXz4sCQnJ4ubm5scOHBAqZk7d654eXnJ+vXrZf/+/RITEyPBwcFSXl6u1AwZMkR69eolubm5sn37dgkJCZG4uDi7sR06dEj27t0rw4cPl4EDB8revXtl7969Sv+PP/4oLVq0kJdeekkOHz4sqamp4uLiIps2barx/vNXh0RERI1Pbb6/nRq0RESWLFkigYGBotPpJDw8XHbu3Kn0RUVFSUJCgl396tWrJTQ0VHQ6nXTr1k02btxo12+z2WTmzJni6+srer1eBg8eLEeOHLGrOX/+vMTFxUnLli3F09NTEhMT5cKFC3Y17dq1EwBVll/7+uuvpWfPnqLT6aR9+/ayYsWKWu07gxYREVHjU5vvb42IiNMOpzVzZWVlMBqNsFqtvF6LiIiokajN9zd/dUhERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUMWkREREQqYdAiIiIiUgmDFhEREZFKGLSIiIiIVMKgRURERKQSBi0iIiIilTBoEREREamEQYuIiIhIJQxaRERERCph0CIiIiJSCYMWERERkUoYtIiIiIhUwqBFREREpBIGLSIiIiKVMGgRERERqYRBi4iIiEglDFpEpLpCazmyjxej0Fru7KEQEdUrV2cPgIiatvTdpzBj7QHYBNBqgJQRYRj1cKCzh0VEVC94RIuIVFNoLVdCFgDYBHh17UEe2SKiZoNBi4hUU1B8SQlZlSpEcKL4snMGRERUzxi0iEg1wd4e0Grs21w0GgR5t3DOgIiI6hmDFhGpxs/ojpQRYXDR3ExbLhoN3hrRHX5GdyePjIiofvBieCJS1aiHAzEg1Acnii8jyLsFQxYRNSsMWkSkOj+jOwMWETVLPHVIREREpBIGLSIiIiKVMGgRERERqYRBi4iIiEglDFpEREREKmHQIiIiIlJJgwhaqampCAoKgsFgQEREBHbt2lVt/Zo1a9C5c2cYDAaEhYUhIyPDrl9EMGvWLPj5+cHd3R3R0dE4evSoXU1JSQni4+Ph6ekJLy8vTJgwARcvXrSr2b9/P/r37w+DwYCAgADMnz/frj8tLQ0ajcZuMRgM9zATRERE1JQ4PWilp6dj2rRpSE5Oxp49e9CjRw+YzWacPXvWYX12djbi4uIwYcIE7N27F7GxsYiNjcXBgweVmvnz52Px4sVYunQpcnNz4eHhAbPZjCtXrig18fHxOHToEDIzM7FhwwZs27YNSUlJSn9ZWRkee+wxtGvXDnl5eViwYAFmz56NDz74wG48np6eKCwsVJaTJ0/W8QwRERFRoyVOFh4eLpMnT1ZeV1RUiL+/v6SkpDisHzlypAwbNsyuLSIiQiZNmiQiIjabTUwmkyxYsEDpLy0tFb1eLytXrhQRkfz8fAEgu3fvVmq+/PJL0Wg0cubMGRER+dvf/iatWrWSq1evKjWvvPKKdOrUSXm9YsUKMRqNd7nnIlarVQCI1Wq9620QERFR/arN97dTj2hdu3YNeXl5iI6OVtq0Wi2io6ORk5PjcJ2cnBy7egAwm81KfUFBASwWi12N0WhERESEUpOTkwMvLy/06dNHqYmOjoZWq0Vubq5SM2DAAOh0Orv3OXLkCH755Rel7eLFi2jXrh0CAgIQExODQ4cO3XZ/r169irKyMruFiIiImi6nBq3i4mJUVFTA19fXrt3X1xcWi8XhOhaLpdr6yr93qmnTpo1dv6urK1q3bm1X42gbv36PTp06Yfny5Vi/fj0++ugj2Gw29O3bFz/99JPDsaekpMBoNCpLQECAwzoiIiJqGpx+jVZjFhkZiXHjxqFnz56IiorC2rVr4ePjg2XLljmsnzFjBqxWq7KcPn26nkdMRERE9cmpQcvb2xsuLi4oKiqyay8qKoLJZHK4jslkqra+8u+dam692P7GjRsoKSmxq3G0jV+/x63c3NzQq1cvHDt2zGG/Xq+Hp6en3UJERERNl1ODlk6nQ+/evZGVlaW02Ww2ZGVlITIy0uE6kZGRdvUAkJmZqdQHBwfDZDLZ1ZSVlSE3N1epiYyMRGlpKfLy8pSaLVu2wGazISIiQqnZtm0brl+/bvc+nTp1QqtWrRyOraKiAgcOHICfn19tpoGIiIiaqnq4OL9aq1atEr1eL2lpaZKfny9JSUni5eUlFotFRETGjh0r06dPV+p37Nghrq6usnDhQjl8+LAkJyeLm5ubHDhwQKmZO3eueHl5yfr162X//v0SExMjwcHBUl5ertQMGTJEevXqJbm5ubJ9+3YJCQmRuLg4pb+0tFR8fX1l7NixcvDgQVm1apW0aNFCli1bptS8/vrr8tVXX8nx48clLy9PRo8eLQaDQQ4dOlSjfeevDomIiBqf2nx/Oz1oiYgsWbJEAgMDRafTSXh4uOzcuVPpi4qKkoSEBLv61atXS2hoqOh0OunWrZts3LjRrt9ms8nMmTPF19dX9Hq9DB48WI4cOWJXc/78eYmLi5OWLVuKp6enJCYmyoULF+xqvvvuO+nXr5/o9Xpp27atzJ07165/6tSpyrh9fX1l6NChsmfPnhrvN4MWERFR41Ob72+NiIhzj6k1X2VlZTAajbBarbxei4iIqJGozfc3f3VIREREpBIGLSIiIiKVMGgRERFRg1ZoLUf28WIUWsudPZRac3X2AIiIiIhuJ333KcxYewA2AbQaIGVEGEY9HOjsYdUYj2gRERFRg1RoLVdCFgDYBHh17cFGdWSLQYuIiIgapILiS0rIqlQhghPFl50zoLvAoEVERHWmMV9LQw1PsLcHtBr7NheNBkHeLZwzoLvAoEVERHUiffcpPDJ3C8Z8mItH5m5B+u5Tzh4SNXJ+RnekjAiDi+Zm2nLRaPDWiO7wM7o7eWQ1xxuWOhFvWEpETUWhtRyPzN1id5rHRaPB9umDGtWXIjVMhdZynCi+jCDvFg3i81Sb72/+6pCIiO5ZddfSNIQvRmrc/IzujfZzxFOHRER0z5rCtTREamDQIiKie9YUrqUhUgNPHRIRUZ0Y9XAgBoT6NKhraYicjUGLiIjqTGO+loZIDTx1SERERKQSBi0iIiIilTBoEREREamEQYuIiIhIJQxaRERERCph0CIiIiJSCYMWERERkUoYtIiIiIhUwqBFRER0B4XWcmQfL0ahtdzZQ6FGhneGJyIiqkb67lOYsfYAbAJoNUDKiDCMejjQ2cOiRoJHtIiIiG6j0FquhCwAsAnw6tqDPLJFNcagRUREdBsFxZeUkFWpQgQnii87Z0DU6DBoERER3Uawtwe0Gvs2F40GQd4tnDMganQYtIiIiG7Dz+iOlBFhcNHcTFsuGg3eGtEdfkZ3J4+MGgteDE9ERFSNUQ8HYkCoD04UX0aQdwuGLKoVBi0iImqUCq3lKCi+hGBvD9XDj5/RnQGL7gqDFhFRE1afYaQ+8ZYL1FgwaBERNVFNNYzc7pYLA0J9mlSYpKaBF8MTETVBTfn+T7zlAjUmDSJopaamIigoCAaDAREREdi1a1e19WvWrEHnzp1hMBgQFhaGjIwMu34RwaxZs+Dn5wd3d3dER0fj6NGjdjUlJSWIj4+Hp6cnvLy8MGHCBFy8eNGuZv/+/ejfvz8MBgMCAgIwf/78Wo+FiMgZmnIY4S0XqDFxetBKT0/HtGnTkJycjD179qBHjx4wm804e/asw/rs7GzExcVhwoQJ2Lt3L2JjYxEbG4uDBw8qNfPnz8fixYuxdOlS5ObmwsPDA2azGVeuXFFq4uPjcejQIWRmZmLDhg3Ytm0bkpKSlP6ysjI89thjaNeuHfLy8rBgwQLMnj0bH3zwQa3GQkTkDE05jPCWC9SoiJOFh4fL5MmTldcVFRXi7+8vKSkpDutHjhwpw4YNs2uLiIiQSZMmiYiIzWYTk8kkCxYsUPpLS0tFr9fLypUrRUQkPz9fAMju3buVmi+//FI0Go2cOXNGRET+9re/SatWreTq1atKzSuvvCKdOnWq8VjuxGq1CgCxWq01qiciqo1Vu05K++kbpd0rG6T99I2yatdJZw+pTv1celmyjxXLz6WXnT0UamZq8/3t1CNa165dQ15eHqKjo5U2rVaL6Oho5OTkOFwnJyfHrh4AzGazUl9QUACLxWJXYzQaERERodTk5OTAy8sLffr0UWqio6Oh1WqRm5ur1AwYMAA6nc7ufY4cOYJffvmlRmO51dWrV1FWVma3EBGpZdTDgdg+fRBWTvwNtk8f1CQuhP81P6M7IjvczyNZ1KA5NWgVFxejoqICvr6+du2+vr6wWCwO17FYLNXWV/69U02bNm3s+l1dXdG6dWu7Gkfb+PV73Gkst0pJSYHRaFSWgIAAh3VERHWFYYTIuZx+jVZzMmPGDFitVmU5ffq0s4dEREREKnJq0PL29oaLiwuKiors2ouKimAymRyuYzKZqq2v/Hunmlsvtr9x4wZKSkrsahxt49fvcaex3Eqv18PT09NuISIioqbLqUFLp9Ohd+/eyMrKUtpsNhuysrIQGRnpcJ3IyEi7egDIzMxU6oODg2EymexqysrKkJubq9RERkaitLQUeXl5Ss2WLVtgs9kQERGh1Gzbtg3Xr1+3e59OnTqhVatWNRoLERERNXP1cHF+tVatWiV6vV7S0tIkPz9fkpKSxMvLSywWi4iIjB07VqZPn67U79ixQ1xdXWXhwoVy+PBhSU5OFjc3Nzlw4IBSM3fuXPHy8pL169fL/v37JSYmRoKDg6W8vFypGTJkiPTq1Utyc3Nl+/btEhISInFxcUp/aWmp+Pr6ytixY+XgwYOyatUqadGihSxbtqxWY6kOf3VIRETU+NTm+9vpQUtEZMmSJRIYGCg6nU7Cw8Nl586dSl9UVJQkJCTY1a9evVpCQ0NFp9NJt27dZOPGjXb9NptNZs6cKb6+vqLX62Xw4MFy5MgRu5rz589LXFyctGzZUjw9PSUxMVEuXLhgV/Pdd99Jv379RK/XS9u2bWXu3LlVxn6nsVSHQYuIiKjxqc33t0ZEpPpjXqSWsrIyGI1GWK1WXq9FRETUSNTm+5u/OiQiIiJSCYMWERERkUoYtIiIiIhUwqBFREREpBIGLSIiIiKVuDp7AM1Z5Q8++XBpIiKixqPye7smN25g0HKiCxcuAAAfLk1ERNQIXbhwAUajsdoa3kfLiWw2G37++Wfcd9990Gg097StsrIyBAQE4PTp0832nlycA84BwDkAOAcA5wDgHADqzYGI4MKFC/D394dWW/1VWDyi5URarRYPPPBAnW6TD6vmHACcA4BzAHAOAM4BwDkA1JmDOx3JqsSL4YmIiIhUwqBFREREpBIGrSZCr9cjOTkZer3e2UNxGs4B5wDgHACcA4BzAHAOgIYxB7wYnoiIiEglPKJFREREpBIGLSIiIiKVMGgRERERqYRBi4iIiEglDFoNWGpqKoKCgmAwGBAREYFdu3ZVW79o0SJ06tQJ7u7uCAgIwPPPP48rV64o/bNnz4ZGo7FbOnfurPZu3JPazMH169cxZ84cdOjQAQaDAT169MCmTZvuaZsNQV3PQWP6HGzbtg3Dhw+Hv78/NBoN1q1bd8d1tm7dioceegh6vR4dO3ZEWlpalZrG9BlQYw4a02cAqP0cFBYWYsyYMQgNDYVWq8XUqVMd1q1ZswadO3eGwWBAWFgYMjIy6n7wdUSNOUhLS6vyOTAYDOrsQB2o7RysXbsWjz76KHx8fODp6YnIyEh89dVXVerU/veAQauBSk9Px7Rp05CcnIw9e/agR48eMJvNOHv2rMP6Tz75BNOnT0dycjIOHz6Mv//970hPT8err75qV9etWzcUFhYqy/bt2+tjd+5Kbefgtddew7Jly7BkyRLk5+fjj3/8I5588kns3bv3rrfpbGrMAdB4PgeXLl1Cjx49kJqaWqP6goICDBs2DIMGDcK+ffswdepUPP3003b/uDa2z4AacwA0ns8AUPs5uHr1Knx8fPDaa6+hR48eDmuys7MRFxeHCRMmYO/evYiNjUVsbCwOHjxYl0OvM2rMAXDzjum//hycPHmyroZc52o7B9u2bcOjjz6KjIwM5OXlYdCgQRg+fHj9fycINUjh4eEyefJk5XVFRYX4+/tLSkqKw/rJkyfLb3/7W7u2adOmySOPPKK8Tk5Olh49eqgyXjXUdg78/Pzkvffes2sbMWKExMfH3/U2nU2NOWhsn4NKAOTzzz+vtubll1+Wbt262bWNGjVKzGaz8rqxfQZ+ra7moLF+BkRqNge/FhUVJc8991yV9pEjR8qwYcPs2iIiImTSpEn3OEL11dUcrFixQoxGY52Nqz7Vdg4qde3aVV5//XXldX38e8AjWg3QtWvXkJeXh+joaKVNq9UiOjoaOTk5Dtfp27cv8vLylEOeP/74IzIyMjB06FC7uqNHj8Lf3x/t27dHfHw8Tp06pd6O3IO7mYOrV69WOezt7u6u/C/1u9mmM6kxB5Uay+egtnJycuzmCwDMZrMyX43tM3A37jQHlZrqZ6CmajpPTd3FixfRrl07BAQEICYmBocOHXL2kFRjs9lw4cIFtG7dGkD9/XvAoNUAFRcXo6KiAr6+vnbtvr6+sFgsDtcZM2YM5syZg379+sHNzQ0dOnTAwIED7U4dRkREIC0tDZs2bcL777+PgoIC9O/fHxcuXFB1f+7G3cyB2WzG22+/jaNHj8JmsyEzMxNr165FYWHhXW/TmdSYA6BxfQ5qy2KxOJyvsrIylJeXN7rPwN240xwATfszUFO3m6em8jmoiU6dOmH58uVYv349PvroI9hsNvTt2xc//fSTs4emioULF+LixYsYOXIkgPr7TmDQaiK2bt2Kt956C3/729+wZ88erF27Fhs3bsQbb7yh1Dz++OP4wx/+gAcffBBmsxkZGRkoLS3F6tWrnTjyuvPuu+8iJCQEnTt3hk6nw5QpU5CYmAittvl8zGsyB039c0B3xs8AAUBkZCTGjRuHnj17IioqCmvXroWPjw+WLVvm7KHVuU8++QSvv/46Vq9ejTZt2tTrezefb6BGxNvbGy4uLigqKrJrLyoqgslkcrjOzJkzMXbsWDz99NMICwvDk08+ibfeegspKSmw2WwO1/Hy8kJoaCiOHTtW5/twr+5mDnx8fLBu3TpcunQJJ0+exPfff4+WLVuiffv2d71NZ1JjDhxpyJ+D2jKZTA7ny9PTE+7u7o3uM3A37jQHjjSlz0BN3W6emsrn4G64ubmhV69eTe5zsGrVKjz99NNYvXq13WnC+vr3gEGrAdLpdOjduzeysrKUNpvNhqysLERGRjpc5/Lly1WO3Li4uAAA5DaPs7x48SKOHz8OPz+/Ohp53bmbOahkMBjQtm1b3LhxA5999hliYmLueZvOoMYcONKQPwe1FRkZaTdfAJCZmanMV2P7DNyNO82BI03pM1BTdzNPTV1FRQUOHDjQpD4HK1euRGJiIlauXIlhw4bZ9dXbvwd1dlk91alVq1aJXq+XtLQ0yc/Pl6SkJPHy8hKLxSIiImPHjpXp06cr9cnJyXLffffJypUr5ccff5TNmzdLhw4dZOTIkUrNCy+8IFu3bpWCggLZsWOHREdHi7e3t5w9e7be968majsHO3fulM8++0yOHz8u27Ztk9/+9rcSHBwsv/zyS4232dCoMQeN6XNw4cIF2bt3r+zdu1cAyNtvvy179+6VkydPiojI9OnTZezYsUr9jz/+KC1atJCXXnpJDh8+LKmpqeLi4iKbNm1SahrbZ0CNOWhMnwGR2s+BiCj1vXv3ljFjxsjevXvl0KFDSv+OHTvE1dVVFi5cKIcPH5bk5GRxc3OTAwcO1Ou+1ZQac/D666/LV199JcePH5e8vDwZPXq0GAwGu5qGpLZz8PHHH4urq6ukpqZKYWGhspSWlio19fHvAYNWA7ZkyRIJDAwUnU4n4eHhsnPnTqUvKipKEhISlNfXr1+X2bNnS4cOHcRgMEhAQID8+c9/tvuCHTVqlPj5+YlOp5O2bdvKqFGj5NixY/W4R7VXmznYunWrdOnSRfR6vdx///0yduxYOXPmTK222RDV9Rw0ps/B119/LQCqLJX7nJCQIFFRUVXW6dmzp+h0Omnfvr2sWLGiynYb02dAjTloTJ8BkbubA0f17dq1s6tZvXq1hIaGik6nk27dusnGjRvrZ4fughpzMHXqVOX/D3x9fWXo0KGyZ8+e+tupWqrtHERFRVVbX0ntfw80Irc5r0RERERE94TXaBERERGphEGLiIiISCUMWkREREQqYdAiIiIiUgmDFhEREZFKGLSIiIiIVMKgRURERKQSBi0iIrKzdetWaDQalJaWOnsoRI0egxYROc348eOh0Wgwd+5cu/Z169ZBo9Eor0UEH374ISIjI+Hp6YmWLVuiW7dueO6552r8ANzLly9jxowZ6NChAwwGA3x8fBAVFYX169crNUFBQVi0aFGd7JvaKudOo9HAzc0NwcHBePnll3HlypVabWfgwIGYOnWqXVvfvn1RWFgIo9FYhyMmap4YtIjIqQwGA+bNm4dffvnFYb+IYMyYMXj22WcxdOhQbN68Gfn5+fj73/8Og8GAN998s0bv88c//hFr167FkiVL8P3332PTpk146qmncP78+brcnXo1ZMgQFBYW4scff8Q777yDZcuWITk5+Z63q9PpYDKZ7MIuEd2lOn2gDxFRLSQkJMjvfvc76dy5s7z00ktK++effy6V/zytXLlSAMj69esdbsNms9XovYxGo6Slpd2239Fz0Sr95z//kX79+onBYJAHHnhAnnnmGbl48aLS/3/+z/+R3r17S8uWLcXX11fi4uKkqKhI6a98RtumTZukZ8+eYjAYZNCgQVJUVCQZGRnSuXNnue+++yQuLk4uXbpUo/1JSEiQmJgYu7YRI0ZIr169lNfFxcUyevRo8ff3F3d3d+nevbt88skndtu4dZ8LCgqU8f76WamffvqpdO3aVXQ6nbRr104WLlxYo3ESNXc8okVETuXi4oK33noLS5YswU8//VSlf+XKlejUqROeeOIJh+vX9KiLyWRCRkYGLly44LB/7dq1eOCBBzBnzhwUFhaisLAQAHD8+HEMGTIEv//977F//36kp6dj+/btmDJlirLu9evX8cYbb+C7777DunXrcOLECYwfP77Ke8yePRvvvfcesrOzcfr0aYwcORKLFi3CJ598go0bN2Lz5s1YsmRJjfbnVgcPHkR2djZ0Op3SduXKFfTu3RsbN27EwYMHkZSUhLFjx2LXrl0AgHfffReRkZGYOHGiss8BAQFVtp2Xl4eRI0di9OjROHDgAGbPno2ZM2ciLS3trsZK1Kw4O+kRUfP166Myv/nNb+S///u/RcT+iFbnzp3liSeesFvvueeeEw8PD/Hw8JC2bdvW6L2++eYbeeCBB8TNzU369OkjU6dOle3bt9vVtGvXTt555x27tgkTJkhSUpJd23/+8x/RarVSXl7u8L12794tAOTChQsi8v+PaP373/9WalJSUgSAHD9+XGmbNGmSmM3mGu1PQkKCuLi4iIeHh+j1egEgWq1WPv3002rXGzZsmLzwwgvK66ioKHnuuefsam49ojVmzBh59NFH7Wpeeukl6dq1a43GStSc8YgWETUI8+bNwz/+8Q8cPnz4jrX/8z//g3379mHWrFm4ePFijbY/YMAA/Pjjj8jKysJTTz2FQ4cOoX///njjjTeqXe+7775DWloaWrZsqSxmsxk2mw0FBQUAbh7xGT58OAIDA3HfffchKioKAHDq1Cm7bT344IPKf/v6+qJFixZo3769XdvZs2drtD8AMGjQIOzbtw+5ublISEhAYmIifv/73yv9FRUVeOONNxAWFobWrVujZcuW+Oqrr6qM604OHz6MRx55xK7tkUcewdGjR1FRUVGrbRE1NwxaRNQgDBgwAGazGTNmzLBrDwkJwZEjR+zafHx80LFjR7Rp06ZW7+Hm5ob+/fvjlVdewebNmzFnzhy88cYbuHbt2m3XuXjxIiZNmoR9+/Ypy3fffYejR4+iQ4cOuHTpEsxmMzw9PfHxxx9j9+7d+PzzzwGgynbd3NyU/678teCvaTQa2Gy2Gu+Ph4cHOnbsiB49emD58uXIzc3F3//+d6V/wYIFePfdd/HKK6/g66+/xr59+2A2m6vdXyKqW67OHgARUaW5c+eiZ8+e6NSpk9IWFxeHMWPGYP369YiJianT9+vatStu3LiBK1euQKfTQafTVTlC89BDDyE/Px8dO3Z0uI0DBw7g/PnzmDt3rnJ907ffflun46wJrVaLV199FdOmTcOYMWPg7u6OHTt2ICYmBv/1X/8FALDZbPjhhx/QtWtXZT1H+3yrLl26YMeOHXZtO3bsQGhoKFxcXOp+Z4iaEB7RIqIGIywsDPHx8Vi8eLHSNnr0aDz11FMYPXo05syZg9zcXJw4cQLffPMN0tPTa/xFP3DgQCxbtgx5eXk4ceIEMjIy8Oqrr2LQoEHw9PQEcPM+Wtu2bcOZM2dQXFwMAHjllVeQnZ2NKVOmYN++fTh69CjWr1+vXAwfGBgInU6HJUuW4Mcff8QXX3xxx9ORavnDH/4AFxcXpKamArh5NDAzMxPZ2dk4fPgwJk2ahKKiIrt1goKClDktLi52eETthRdeQFZWFt544w388MMP+Mc//oH33nsPL774Yr3sF1FjxqBFRA3KnDlz7L7sNRoN0tPTsWjRImRkZGDw4MHo1KkT/vu//xsBAQHYvn17jbZrNpvxj3/8A4899hi6dOmCZ555BmazGatXr7Z77xMnTqBDhw7w8fEBcPO6qm+++QY//PAD+vfvj169emHWrFnw9/cHcPM0ZlpaGtasWYOuXbti7ty5WLhwYR3OSM25urpiypQpmD9/Pi5duoTXXnsNDz30EMxmMwYOHAiTyYTY2Fi7dV588UW4uLiga9eu8PHxcXj91kMPPYTVq1dj1apV6N69O2bNmoU5c+Y4/GUlEdnTiIg4exBERERETRGPaBERERGphEGLiJqEX99+4dblP//5j7OHVyunTp2qdn9qe3sGInIenjokoiahuodLt23bFu7u7vU4mntz48YNnDhx4rb9QUFBcHXlj8aJGgMGLSIiIiKV8NQhERERkUoYtIiIiIhUwqBFREREpBIGLSIiIiKVMGgRERERqYRBi4iIiEglDFpEREREKmHQIiIiIlLJ/wV3AY4n0l1rPAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATYdJREFUeJzt3XtcVXW+//H35rIBMUADAQ0FL2gqqWkyWIZOFI6OaU6p6PHCsbQzWXmsJm1Suk2YOeVkTjqdUTpTeUvLJh3L8ZKjEjmoec3U1MwAQ2PjBW/s7++Pfq7TDlRQFlvw9Xw89gP5fj9rre/6zh72u7XWXsthjDECAABAlfPx9gAAAABqK4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghaAa94zzzwjh8NRoVqHw6FnnnnG1vF069ZN3bp1u2rXB6DiCFoArhpZWVlyOBzWy8/PT40aNdLw4cN16NAhbw/vqhMbG+sxXw0aNFDXrl31/vvvV8n6T548qWeeeUarV6+ukvUB1yKCFoCrznPPPae//e1vmjFjhn71q1/p7bffVnJysk6dOmXL9p5++mmVlJTYsm67tW/fXn/729/0t7/9TY8//ri+++479evXTzNmzLjidZ88eVLPPvssQQu4An7eHgAA/NyvfvUrderUSZJ0//33Kzw8XC+99JI+/PBD9e/fv8q35+fnJz+/mvnnsFGjRvqP//gP6/ehQ4eqefPmevXVV/Xggw96cWQAJI5oAagBunbtKknau3evR/uXX36pe++9V/Xr11dgYKA6deqkDz/80KPm7NmzevbZZ9WiRQsFBgbq+uuv12233ably5dbNeVdo3X69Gn993//tyIiInTdddfp7rvv1rfffltmbMOHD1dsbGyZ9vLWOXv2bP3yl79UgwYNFBAQoNatW+uNN96o1FxcSlRUlG688Ubt27fvonWHDx/WiBEjFBkZqcDAQLVr105vvfWW1b9//35FRERIkp599lnr9KTd16cBtU3N/E84ANeU/fv3S5Lq1atntW3fvl233nqrGjVqpHHjxik4OFjz589X3759tXDhQt1zzz2Sfgw8mZmZuv/++9W5c2cVFxfr3//+tzZu3Kg777zzgtu8//779fbbb2vQoEHq0qWLVq5cqV69el3Rfrzxxhtq06aN7r77bvn5+envf/+7fvvb38rtduuhhx66onWfd/bsWR08eFDXX3/9BWtKSkrUrVs37dmzR6NHj1ZcXJwWLFig4cOHq6ioSI8++qgiIiL0xhtv6L/+6790zz33qF+/fpKkm266qUrGCVwzDABcJWbPnm0kmX/+85/m+++/NwcPHjTvvfeeiYiIMAEBAebgwYNW7R133GESEhLMqVOnrDa32226dOliWrRoYbW1a9fO9OrV66LbzcjIMD/9c7h582Yjyfz2t7/1qBs0aJCRZDIyMqy2YcOGmSZNmlxyncYYc/LkyTJ1qamppmnTph5tycnJJjk5+aJjNsaYJk2amLvuust8//335vvvvzdffPGFGThwoJFkHn744Quub+rUqUaSefvtt622M2fOmKSkJFO3bl1TXFxsjDHm+++/L7O/ACqHU4cArjopKSmKiIhQTEyM7r33XgUHB+vDDz/UDTfcIEk6evSoVq5cqf79++vYsWMqLCxUYWGhjhw5otTUVO3evdv6lmJYWJi2b9+u3bt3V3j7S5culSQ98sgjHu1jxoy5ov0KCgqy/u1yuVRYWKjk5GR9/fXXcrlcl7XOTz75RBEREYqIiFC7du20YMECDRkyRC+99NIFl1m6dKmioqKUlpZmtfn7++uRRx7R8ePH9emnn17WWACUxalDAFed6dOnKz4+Xi6XS7NmzdKaNWsUEBBg9e/Zs0fGGE2YMEETJkwodx2HDx9Wo0aN9Nxzz6lPnz6Kj49X27Zt1aNHDw0ZMuSip8AOHDggHx8fNWvWzKO9ZcuWV7Rf69atU0ZGhrKzs3Xy5EmPPpfLpdDQ0EqvMzExUS+88IIcDofq1KmjG2+8UWFhYRdd5sCBA2rRooV8fDz/W/vGG2+0+gFUDYIWgKtO586drW8d9u3bV7fddpsGDRqkXbt2qW7dunK73ZKkxx9/XKmpqeWuo3nz5pKk22+/XXv37tXixYv1ySef6H/+53/06quvasaMGbr//vuveKwXutFpaWmpx+979+7VHXfcoVatWumVV15RTEyMnE6nli5dqldffdXap8oKDw9XSkrKZS0LwH4ELQBXNV9fX2VmZqp79+56/fXXNW7cODVt2lTSj6e7KhIy6tevr/T0dKWnp+v48eO6/fbb9cwzz1wwaDVp0kRut1t79+71OIq1a9euMrX16tVTUVFRmfafHxX6+9//rtOnT+vDDz9U48aNrfZVq1ZdcvxVrUmTJtqyZYvcbrfHUa0vv/zS6pcuHCIBVBzXaAG46nXr1k2dO3fW1KlTderUKTVo0EDdunXTzJkzlZeXV6b++++/t/595MgRj766deuqefPmOn369AW396tf/UqS9Nprr3m0T506tUxts2bN5HK5tGXLFqstLy+vzN3ZfX19JUnGGKvN5XJp9uzZFxyHXXr27Kn8/HzNmzfPajt37pymTZumunXrKjk5WZJUp04dSSo3SAKoGI5oAagRnnjiCd13333KysrSgw8+qOnTp+u2225TQkKCHnjgATVt2lQFBQXKzs7Wt99+qy+++EKS1Lp1a3Xr1k0dO3ZU/fr19e9//1vvvfeeRo8efcFttW/fXmlpafrzn/8sl8ulLl26aMWKFdqzZ0+Z2oEDB+rJJ5/UPffco0ceeUQnT57UG2+8ofj4eG3cuNGqu+uuu+R0OtW7d2+NGjVKx48f15tvvqkGDRqUGxbtNHLkSM2cOVPDhw9Xbm6uYmNj9d5772ndunWaOnWqrrvuOkk/XrzfunVrzZs3T/Hx8apfv77atm2rtm3bVut4gRrN2197BIDzzt/eYcOGDWX6SktLTbNmzUyzZs3MuXPnjDHG7N271wwdOtRERUUZf39/06hRI/PrX//avPfee9ZyL7zwguncubMJCwszQUFBplWrVuYPf/iDOXPmjFVT3q0YSkpKzCOPPGKuv/56ExwcbHr37m0OHjxY7u0OPvnkE9O2bVvjdDpNy5Ytzdtvv13uOj/88ENz0003mcDAQBMbG2teeuklM2vWLCPJ7Nu3z6qrzO0dLnXrigutr6CgwKSnp5vw8HDjdDpNQkKCmT17dpll169fbzp27GicTie3egAug8OYnxzHBgAAQJXhGi0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbMINS73I7Xbru+++03XXXcejLgAAqCGMMTp27JgaNmxY5uHsP0fQ8qLvvvtOMTEx3h4GAAC4DAcPHtQNN9xw0RqClhedf8zFwYMHFRIS4uXRAACAiiguLlZMTIz1OX4xBC0vOn+6MCQkhKAFAEANU5HLfrgYHgAAwCYELQAAAJsQtAAAAGzCNVoAAFwDSktLdfbsWW8Po8ZwOp2XvHVDRRC0AACoxYwxys/PV1FRkbeHUqP4+PgoLi5OTqfzitZD0AIAoBY7H7IaNGigOnXqcIPsCjh/Q/G8vDw1btz4iuaMoAUAQC1VWlpqhazrr7/e28OpUSIiIvTdd9/p3Llz8vf3v+z1cDE8AAC11PlrsurUqePlkdQ8508ZlpaWXtF6CFoAANRynC6svKqaM4IWAACATQhaAAAANiFowZLnKtH6vYXKc5V4eygAACg/P18PP/ywmjZtqoCAAMXExKh3795asWKFVbN+/Xr17NlT9erVU2BgoBISEvTKK694XFu1f/9+jRgxQnFxcQoKClKzZs2UkZGhM2fO2L4PfOsQkqR5G77R+EVb5TaSj0PK7JegAbc09vawAADXqP379+vWW29VWFiYXn75ZSUkJOjs2bP6+OOP9dBDD+nLL7/U+++/r/79+ys9PV2rVq1SWFiY/vnPf+p3v/udsrOzNX/+fDkcDn355Zdyu92aOXOmmjdvrm3btumBBx7QiRMnNGXKFFv3w2GMMbZuARdUXFys0NBQuVwuhYSEeG0cea4S3Tpppdw/eSf4OhxaO667okODvDYuAMCVOXXqlPbt26e4uDgFBgZ6eziV0rNnT23ZskW7du1ScHCwR19RUZH8/f3VpEkTJScna+HChR79f//733X33Xdr7ty5GjBgQLnrf/nll/XGG2/o66+/Lrf/YnNXmc9vTh1C+wpPeIQsSSo1RvsLT3pnQACAq051Xl5y9OhRLVu2TA899FCZkCVJYWFh+uSTT3TkyBE9/vjjZfp79+6t+Ph4zZkz54LbcLlcql+/fpWOuzycOoTiwoPl41CZI1qx4dx3BQBQ/ZeX7NmzR8YYtWrV6oI1X331lSTpxhtvLLe/VatWVk156582bZrtpw0ljmhBUnRokDL7Jcj3/98zxNfh0Iv92nLaEACgPFeJFbKkH/+j/KlF22w9slWZq5oqewXUoUOH1KNHD91333164IEHKju0SuOIFiRJA25prNvjI7S/8KRiw+sQsgAAki5+eYldnxUtWrSwLmK/kPj4eEnSzp071aVLlzL9O3fuVOvWrT3avvvuO3Xv3l1dunTRX/7yl6od9AVwRAuW6NAgJTW7npAFALCcv7zkp+y+vKR+/fpKTU3V9OnTdeLEiTL9RUVFuuuuu1S/fn398Y9/LNP/4Ycfavfu3UpLS7PaDh06pG7duqljx46aPXu2fHyqJwIRtAAAwAV56/KS6dOnq7S0VJ07d9bChQu1e/du7dy5U6+99pqSkpIUHBysmTNnavHixRo5cqS2bNmi/fv3669//auGDx+ue++9V/3795f0fyGrcePGmjJlir7//nvl5+crPz/f1n2QOHUIAAAuwRuXlzRt2lQbN27UH/7wBz322GPKy8tTRESEOnbsqDfeeEOSdO+992rVqlX6wx/+oK5du+rUqVNq0aKFfv/732vMmDHW8wqXL1+uPXv2aM+ePbrhhhs8tmP3Xa64j5YXXS330QIA1E41+T5a3sZ9tAAAAK5yBC0AAACbELQAAABsQtACAACwCUELAIBaju+9VV5VzRlBCwCAWsrf31+SdPLkSS+PpOY5c+aMJMnX1/eK1sN9tAAAqKV8fX0VFhamw4cPS5Lq1Klj3VsKF+Z2u/X999+rTp068vO7sqhE0AIAoBaLioqSJCtsoWJ8fHzUuHHjKw6mBC0AAGoxh8Oh6OhoNWjQQGfPnvX2cGoMp9NZJc9DJGgBAHAN8PX1veLrjVB5XAwPAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE2uiqA1ffp0xcbGKjAwUImJifr8888vWr9gwQK1atVKgYGBSkhI0NKlSz36jTGaOHGioqOjFRQUpJSUFO3evduj5ujRoxo8eLBCQkIUFhamESNG6Pjx41b/6tWr1adPH0VHRys4OFjt27fXO++847GOrKwsORwOj1dgYOAVzgYAAKgtvB605s2bp7FjxyojI0MbN25Uu3btlJqaqsOHD5dbv379eqWlpWnEiBHatGmT+vbtq759+2rbtm1WzeTJk/Xaa69pxowZysnJUXBwsFJTU3Xq1CmrZvDgwdq+fbuWL1+ujz76SGvWrNHIkSM9tnPTTTdp4cKF2rJli9LT0zV06FB99NFHHuMJCQlRXl6e9Tpw4EAVzxAAAKixjJd17tzZPPTQQ9bvpaWlpmHDhiYzM7Pc+v79+5tevXp5tCUmJppRo0YZY4xxu90mKirKvPzyy1Z/UVGRCQgIMHPmzDHGGLNjxw4jyWzYsMGq+cc//mEcDoc5dOjQBcfas2dPk56ebv0+e/ZsExoaWvGd/RmXy2UkGZfLddnrAAAA1asyn99ePaJ15swZ5ebmKiUlxWrz8fFRSkqKsrOzy10mOzvbo16SUlNTrfp9+/YpPz/foyY0NFSJiYlWTXZ2tsLCwtSpUyerJiUlRT4+PsrJybngeF0ul+rXr+/Rdvz4cTVp0kQxMTHq06ePtm/ffsHlT58+reLiYo8XAACwR56rROv3FirPVeK1MXg1aBUWFqq0tFSRkZEe7ZGRkcrPzy93mfz8/IvWn/95qZoGDRp49Pv5+al+/foX3O78+fO1YcMGpaenW20tW7bUrFmztHjxYr399ttyu93q0qWLvv3223LXkZmZqdDQUOsVExNTbh0AALgy8zZ8o1snrdSgN3N066SVmrfhG6+Mw+vXaNUEq1atUnp6ut588021adPGak9KStLQoUPVvn17JScna9GiRYqIiNDMmTPLXc/48ePlcrms18GDB6trFwAAuGbkuUo0ftFWuc2Pv7uN9NSibV45suXVoBUeHi5fX18VFBR4tBcUFCgqKqrcZaKioi5af/7npWp+frH9uXPndPTo0TLb/fTTT9W7d2+9+uqrGjp06EX3x9/fXx06dNCePXvK7Q8ICFBISIjHCwAAVK19hSeskHVeqTHaX3iy2sfi1aDldDrVsWNHrVixwmpzu91asWKFkpKSyl0mKSnJo16Sli9fbtXHxcUpKirKo6a4uFg5OTlWTVJSkoqKipSbm2vVrFy5Um63W4mJiVbb6tWr1atXL7300kse30i8kNLSUm3dulXR0dEV2HsAAGCHuPBg+Tg823wdDsWG16n+wVTDxfkXNXfuXBMQEGCysrLMjh07zMiRI01YWJjJz883xhgzZMgQM27cOKt+3bp1xs/Pz0yZMsXs3LnTZGRkGH9/f7N161arZtKkSSYsLMwsXrzYbNmyxfTp08fExcWZkpISq6ZHjx6mQ4cOJicnx6xdu9a0aNHCpKWlWf0rV640derUMePHjzd5eXnW68iRI1bNs88+az7++GOzd+9ek5ubawYOHGgCAwPN9u3bK7TvfOsQAAB7zP38gGk6bolp8uRHpum4JWbu5weqbN2V+fz2etAyxphp06aZxo0bG6fTaTp37mw+++wzqy85OdkMGzbMo37+/PkmPj7eOJ1O06ZNG7NkyRKPfrfbbSZMmGAiIyNNQECAueOOO8yuXbs8ao4cOWLS0tJM3bp1TUhIiElPTzfHjh2z+ocNG2YklXklJydbNWPGjLHGHRkZaXr27Gk2btxY4f0maAEAYJ/vik6a9XsKzXdFJ6t0vZX5/HYYY8wFD3fBVsXFxQoNDZXL5eJ6LQAAaojKfH7zrUMAAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAANRKea4Srd9bqDxXidfG4Oe1LQMAANhk3oZvNH7RVrmN5OOQMvslaMAtjat9HBzRAgAAtUqeq8QKWZLkNtJTi7Z55cgWQQsAANQq+wpPWCHrvFJjtL/wZLWPhaAFAABqlbjwYPk4PNt8HQ7Fhtep9rEQtAAAQK0SHRqkzH4J8nX8mLZ8HQ692K+tokODqn0sXAwPAABqnQG3NNbt8RHaX3hSseF1vBKyJIIWAACopaJDg7wWsM7j1CEAAIBNCFoAAAA2IWgBAADYhKAFr7kaHo0AAICduBgeXnG1PBoBAAA7cUQL1e5qejQCAAB2uiqC1vTp0xUbG6vAwEAlJibq888/v2j9ggUL1KpVKwUGBiohIUFLly716DfGaOLEiYqOjlZQUJBSUlK0e/duj5qjR49q8ODBCgkJUVhYmEaMGKHjx49b/atXr1afPn0UHR2t4OBgtW/fXu+8806lx4KyrqZHIwAAYCevB6158+Zp7NixysjI0MaNG9WuXTulpqbq8OHD5davX79eaWlpGjFihDZt2qS+ffuqb9++2rZtm1UzefJkvfbaa5oxY4ZycnIUHBys1NRUnTp1yqoZPHiwtm/fruXLl+ujjz7SmjVrNHLkSI/t3HTTTVq4cKG2bNmi9PR0DR06VB999FGlxoKyrqZHIwAAYCeHMcZcusw+iYmJuuWWW/T6669Lktxut2JiYvTwww9r3LhxZeoHDBigEydOeASeX/ziF2rfvr1mzJghY4waNmyoxx57TI8//rgkyeVyKTIyUllZWRo4cKB27typ1q1ba8OGDerUqZMkadmyZerZs6e+/fZbNWzYsNyx9urVS5GRkZo1a1aFxnIpxcXFCg0NlcvlUkhISAVnrHaYt+EbPbVom0qNsR6NwDVaAICaoDKf3149onXmzBnl5uYqJSXFavPx8VFKSoqys7PLXSY7O9ujXpJSU1Ot+n379ik/P9+jJjQ0VImJiVZNdna2wsLCrJAlSSkpKfLx8VFOTs4Fx+tyuVS/fv0Kj+XnTp8+reLiYo/XtWrALY21dlx3zXngF1o7rjshCwBQK3k1aBUWFqq0tFSRkZEe7ZGRkcrPzy93mfz8/IvWn/95qZoGDRp49Pv5+al+/foX3O78+fO1YcMGpaenV3gsP5eZmanQ0FDrFRMTU27dtSI6NEhJza73+uMRAACwi9ev0aoJVq1apfT0dL355ptq06bNZa9n/Pjxcrlc1uvgwYNVOEoAAHC18WrQCg8Pl6+vrwoKCjzaCwoKFBUVVe4yUVFRF60///NSNT+/2P7cuXM6evRome1++umn6t27t1599VUNHTq0UmP5uYCAAIWEhHi8AABA7eXVoOV0OtWxY0etWLHCanO73VqxYoWSkpLKXSYpKcmjXpKWL19u1cfFxSkqKsqjpri4WDk5OVZNUlKSioqKlJuba9WsXLlSbrdbiYmJVtvq1avVq1cvvfTSSx7fSKzoWAAAwDXOeNncuXNNQECAycrKMjt27DAjR440YWFhJj8/3xhjzJAhQ8y4ceOs+nXr1hk/Pz8zZcoUs3PnTpORkWH8/f3N1q1brZpJkyaZsLAws3jxYrNlyxbTp08fExcXZ0pKSqyaHj16mA4dOpicnByzdu1a06JFC5OWlmb1r1y50tSpU8eMHz/e5OXlWa8jR45UaiwX43K5jCTjcrkue/4AAED1qsznt9eDljHGTJs2zTRu3Ng4nU7TuXNn89lnn1l9ycnJZtiwYR718+fPN/Hx8cbpdJo2bdqYJUuWePS73W4zYcIEExkZaQICAswdd9xhdu3a5VFz5MgRk5aWZurWrWtCQkJMenq6OXbsmNU/bNgwI6nMKzk5uVJjuRiCFgAANU9lPr+9fh+ta9m1fB8t1Ex5rhLtKzyhuPBgvi0K4JpVmc9vHioNoEJ4EDgAVB63dwBwSTwIHAAuD0ELwCXxIHAAuDwELQCXxIPAAeDyELQAXFJ0aJAy+yXI1/Fj2jr/IHAuiAeAi+NieAAVMuCWxro9PkL7C08qNrwOIQsAKoCgBaDCokODCFgAUAmcOgQAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAABQLfJcJVq/t1B5rhJvD6Xa+Hl7AAAAoPabt+EbjV+0VW4j+TikzH4JGnBLY28Py3Yc0QIAALbKc5VYIUuS3EZ6atG2a+LIFkELAADYal/hCStknVdqjPYXnvTOgKoRQQsAANgqLjxYPg7PNl+HQ7HhdbwzoGpE0AIAALaKDg1SZr8E+Tp+TFu+Dode7NdW0aFBXh6Z/bgYHgAA2G7ALY11e3yE9heeVGx4nWsiZEkELQAAUE2iQ4OumYB1HqcOAQAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxSqaB19uxZ/e53v1Pz5s3VuXNnzZo1y6O/oKBAvr6+lRrA9OnTFRsbq8DAQCUmJurzzz+/aP2CBQvUqlUrBQYGKiEhQUuXLvXoN8Zo4sSJio6OVlBQkFJSUrR7926PmqNHj2rw4MEKCQlRWFiYRowYoePHj1v9p06d0vDhw5WQkCA/Pz/17du3zDhWr14th8NR5pWfn1+p/QcAALVXpYLWH/7wB/3v//6vHnzwQd11110aO3asRo0a5VFjjKnw+ubNm6exY8cqIyNDGzduVLt27ZSamqrDhw+XW79+/XqlpaVpxIgR2rRpk/r27au+fftq27ZtVs3kyZP12muvacaMGcrJyVFwcLBSU1N16tQpq2bw4MHavn27li9fro8++khr1qzRyJEjrf7S0lIFBQXpkUceUUpKykX3YdeuXcrLy7NeDRo0qPD+AwCAWs5UQvPmzc3f//536/fdu3eb5s2bm+HDhxu3223y8/ONj49PhdfXuXNn89BDD1m/l5aWmoYNG5rMzMxy6/v372969erl0ZaYmGhGjRpljDHG7XabqKgo8/LLL1v9RUVFJiAgwMyZM8cYY8yOHTuMJLNhwwar5h//+IdxOBzm0KFDZbY5bNgw06dPnzLtq1atMpLMDz/8UOH9/TmXy2UkGZfLddnrAAAA1asyn9+VOqJ16NAhtW3b1vq9efPmWr16tdavX68hQ4aotLS0wus6c+aMcnNzPY4Y+fj4KCUlRdnZ2eUuk52dXeYIU2pqqlW/b98+5efne9SEhoYqMTHRqsnOzlZYWJg6depk1aSkpMjHx0c5OTkVHv957du3V3R0tO68806tW7fuorWnT59WcXGxxwsAANRelQpaUVFR2rt3r0dbo0aNtGrVKm3YsEHDhw+v8LoKCwtVWlqqyMhIj/bIyMgLXueUn59/0frzPy9V8/PTe35+fqpfv36lrq+Kjo7WjBkztHDhQi1cuFAxMTHq1q2bNm7ceMFlMjMzFRoaar1iYmIqvD0AAFDzVCpo/fKXv9S7775bpr1hw4ZauXKl9u3bV2UDu9q1bNlSo0aNUseOHdWlSxfNmjVLXbp00auvvnrBZcaPHy+Xy2W9Dh48WI0jBgAA1c2vMsUTJkzQl19+WW5fo0aN9Omnn2r58uUVWld4eLh8fX1VUFDg0V5QUKCoqKhyl4mKirpo/fmfBQUFio6O9qhp3769VfPzi+3PnTuno0ePXnC7FdW5c2etXbv2gv0BAQEKCAi4om0AAICao1JHtJo0aaLU1NQL9jds2FDDhg2r0LqcTqc6duyoFStWWG1ut1srVqxQUlJSucskJSV51EvS8uXLrfq4uDhFRUV51BQXFysnJ8eqSUpKUlFRkXJzc62alStXyu12KzExsUJjv5DNmzd7BDxvynOVaP3eQuW5Srw9FAAArlmVOqJ13oIFCzRnzhx99dVXkqT4+HgNGjRI9957b6XWM3bsWA0bNkydOnVS586dNXXqVJ04cULp6emSpKFDh6pRo0bKzMyUJD366KNKTk7WH//4R/Xq1Utz587Vv//9b/3lL3+RJDkcDo0ZM0YvvPCCWrRoobi4OE2YMEENGza07oV14403qkePHnrggQc0Y8YMnT17VqNHj9bAgQPVsGFDa2w7duzQmTNndPToUR07dkybN2+WJOvI2NSpUxUXF6c2bdro1KlT+p//+R+tXLlSn3zyyeVMaZWat+EbjV+0VW4j+TikzH4JGnBLY28PCwCAa06lgpbb7VZaWpoWLFig+Ph4tWrVSpK0fft2DRgwQPfdd5/mzJkjh8NRofUNGDBA33//vSZOnKj8/Hy1b99ey5Ytsy5m/+abb+Tj838H3bp06aJ3331XTz/9tJ566im1aNFCH3zwgcc3IX/3u9/pxIkTGjlypIqKinTbbbdp2bJlCgwMtGreeecdjR49WnfccYd8fHz0m9/8Rq+99prH2Hr27KkDBw5Yv3fo0EHS/90n7MyZM3rsscd06NAh1alTRzfddJP++c9/qnv37pWZ0iqX5yqxQpYkuY301KJtuj0+QtGhQV4dGwAA1xqHMRW/w+irr76qF154QW+99ZZ+/etfe/R9+OGHSk9P14QJEzRmzJiqHmetVFxcrNDQULlcLoWEhFTJOtfvLdSgN8vepmLOA79QUrPrq2QbAABcyyrz+V2pa7Rmz56tl19+uUzIkqS7775bkydPLvNYHlSvuPBg+fzsgKKvw6HY8DreGRAAANewSgWt3bt3X/SRNOU9VxDVKzo0SJn9EuT7/0/f+jocerFfW04bAgDgBZW6RisoKEhFRUVq3Lj8C6uLi4s9roWCdwy4pbFuj4/Q/sKTig2vQ8gCAMBLKnVEKykpSW+88cYF+6dPn37BWzOgekWHBimp2fWELAAAvKhSR7R+//vfq1u3bjpy5Igef/xxtWrVSsYY7dy5U3/84x+1ePFirVq1yq6xAgAA1CiVClpdunTRvHnzNHLkSC1cuNCjr169epozZ45uvfXWKh0gAABATVWp2zucd/LkSX388cfWhe/x8fG66667VKcO32yrDDtu7wAAAOxVmc/vSh3RWrlypUaPHq3PPvtM99xzj0efy+VSmzZtNGPGDHXt2rXyowYAAKhlKnUx/NSpU/XAAw+Um95CQ0M1atQovfLKK1U2OAAAgJqsUkHriy++UI8ePS7Yf9ddd3k8rBkAAOBaVqmgVVBQIH9//wv2+/n56fvvv7/iQQEAANQGlQpajRo10rZt2y7Yv2XLFkVHR1/xoAAAAGqDSgWtnj17asKECTp16lSZvpKSEmVkZJT7HEQAAIDqlucq0fq9hcpzlXhtDJW6vUNBQYFuvvlm+fr6avTo0WrZsqUk6csvv9T06dNVWlqqjRs3KjIy0rYB1ybc3gEAAHvM2/CNxi/aKreRfBxSZr8EDbil/EcIVlZlPr8rfR+tAwcO6L/+67/08ccf6/yiDodDqampmj59uuLi4i5/5NcYghYAAFUvz1WiWyetlPsnCcfX4dDacd2r5NF0tt1HS5KaNGmipUuX6ocfftCePXtkjFGLFi1Ur169yx4wAABAVdlXeMIjZElSqTHaX3iy2p8BXOmgdV69evV0yy23VOVYAAAArlhceLB8HCpzRCs2vPqfYFOpi+EBAACudtGhQcrslyBfh0PSjyHrxX5tq/1olnQFR7QAAACuVgNuaazb4yO0v/CkYsPreCVkSQQtAABQS0WHBnktYJ3HqUMAAACbELQAAABsQtACAACwCUELAGqxq+ERJHapzfuG2oOL4QGglrLzESTeVpv3DbULR7QAoBbKc5VYQUT68caNTy3aViuO/uS5SjRuoee+jVu0tVbsG2ofghYA1EIXewSJnarjdF7ugR/084f0GiNtPPCDbdsELhenDgGgFvLGI0iq63SeMT+PWefbq3xTwBXjiBYA1ELV/QiS6jxV2Sm2vhw/a3NI6hhbr8q3BVwpjmgBQC1VnY8gudipyqrebnRokCb9JkHjF26VWz8eMcj8TYLX7wAOlIegBQC1WHU9gqS6T1VeLc+xAy6FU4cAgCtW3acqz28zqdn1hCxc1TiiBQCoEhxlAsoiaAEAqkx1naoEagpOHQIAANiEoAUAwCXwXEVcLk4dAgBwETxXEVeCI1oAAFxAbX5mJKoHQQsAgAvw1jMjUXsQtAAAuIDzN2L9KbufGYnahaAFoFbhomVUJW/ciBW1CxfDA6g1uGgZduBGrLgSHNECUCtw0TLsxON+cLkIWgBqBS5aBnA1ImgBqBW4aBnA1YigBaBW4KJlAFcjLoYHUGtw0TKAqw1BC0CtEh0aRMACcNXg1CEAALiq1eT743k9aE2fPl2xsbEKDAxUYmKiPv/884vWL1iwQK1atVJgYKASEhK0dOlSj35jjCZOnKjo6GgFBQUpJSVFu3fv9qg5evSoBg8erJCQEIWFhWnEiBE6fvy41X/q1CkNHz5cCQkJ8vPzU9++fcsdy+rVq3XzzTcrICBAzZs3V1ZW1mXNAVDb1eQ/kgC8a96Gb3TrpJUa9GaObp20UvM2fOPtIVWKV4PWvHnzNHbsWGVkZGjjxo1q166dUlNTdfjw4XLr169fr7S0NI0YMUKbNm1S37591bdvX23bts2qmTx5sl577TXNmDFDOTk5Cg4OVmpqqk6dOmXVDB48WNu3b9fy5cv10Ucfac2aNRo5cqTVX1paqqCgID3yyCNKSUkpdyz79u1Tr1691L17d23evFljxozR/fffr48//riKZgeoHWr6H0kA3lMb7o/nMMaYS5fZIzExUbfccotef/11SZLb7VZMTIwefvhhjRs3rkz9gAEDdOLECX300UdW2y9+8Qu1b99eM2bMkDFGDRs21GOPPabHH39ckuRyuRQZGamsrCwNHDhQO3fuVOvWrbVhwwZ16tRJkrRs2TL17NlT3377rRo2bOixzeHDh6uoqEgffPCBR/uTTz6pJUuWeIS8gQMHqqioSMuWLavQ/hcXFys0NFQul0shISEVWgaoSfJcJbp10kqP+1v5OhxaO64711EBuKT1ews16M2cMu1zHviFkppd74UR/agyn99eO6J15swZ5ebmehwx8vHxUUpKirKzs8tdJjs7u8wRptTUVKt+3759ys/P96gJDQ1VYmKiVZOdna2wsDArZElSSkqKfHx8lJNT9n/MC7nUWMpz+vRpFRcXe7yA2oybiAK4ErXh/nheC1qFhYUqLS1VZGSkR3tkZKTy8/PLXSY/P/+i9ed/XqqmQYMGHv1+fn6qX7/+BbdbmbEUFxerpKT8Q5qZmZkKDQ21XjExMRXeHlAT1YY/kgC8pzbcH4/bO1Sj8ePHa+zYsdbvxcXFhC3Uauf/SD61aJtKjamRfyQBeFdNvz+e14JWeHi4fH19VVBQ4NFeUFCgqKiocpeJioq6aP35nwUFBYqOjvaoad++vVXz84vtz507p6NHj15wu5UZS0hIiIKCyn8TBAQEKCAgoMLbAGqDmv5HEoD31eT743nt1KHT6VTHjh21YsUKq83tdmvFihVKSkoqd5mkpCSPeklavny5VR8XF6eoqCiPmuLiYuXk5Fg1SUlJKioqUm5urlWzcuVKud1uJSYmVnj8lxoLgP8THRqkpGbX19g/lABw2YwXzZ071wQEBJisrCyzY8cOM3LkSBMWFmby8/ONMcYMGTLEjBs3zqpft26d8fPzM1OmTDE7d+40GRkZxt/f32zdutWqmTRpkgkLCzOLFy82W7ZsMX369DFxcXGmpKTEqunRo4fp0KGDycnJMWvXrjUtWrQwaWlpHmPbvn272bRpk+ndu7fp1q2b2bRpk9m0aZPV//XXX5s6deqYJ554wuzcudNMnz7d+Pr6mmXLllV4/10ul5FkXC5XZacOAAB4SWU+v70atIwxZtq0aaZx48bG6XSazp07m88++8zqS05ONsOGDfOonz9/vomPjzdOp9O0adPGLFmyxKPf7XabCRMmmMjISBMQEGDuuOMOs2vXLo+aI0eOmLS0NFO3bl0TEhJi0tPTzbFjxzxqmjRpYiSVef3UqlWrTPv27Y3T6TRNmzY1s2fPrtS+E7QAAKh5KvP57dX7aF3ruI8WAAA1T424jxYAAEBtR9ACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtADYLs9VovV7C5XnKvH2UACgWvl5ewAAard5G77R+EVb5TaSj0PK7JegAbc09vawAKBacEQLgG3yXCVWyJIkt5GeWrSNI1sArhkELQC22Vd4wgpZ55Uao/2FJ70zIACoZgQtALaJCw+Wj8OzzdfhUGx4He8MCACqGUELgG2iQ4OU2S9Bvo4f05avw6EX+7VVdGiQl0cGANXjqgha06dPV2xsrAIDA5WYmKjPP//8ovULFixQq1atFBgYqISEBC1dutSj3xijiRMnKjo6WkFBQUpJSdHu3bs9ao4eParBgwcrJCREYWFhGjFihI4fP+5Rs2XLFnXt2lWBgYGKiYnR5MmTPfqzsrLkcDg8XoGBgVcwE0DtM+CWxlo7rrvmPPALrR3XnQvhAVxTvB605s2bp7FjxyojI0MbN25Uu3btlJqaqsOHD5dbv379eqWlpWnEiBHatGmT+vbtq759+2rbtm1WzeTJk/Xaa69pxowZysnJUXBwsFJTU3Xq1CmrZvDgwdq+fbuWL1+ujz76SGvWrNHIkSOt/uLiYt11111q0qSJcnNz9fLLL+uZZ57RX/7yF4/xhISEKC8vz3odOHCgimcIqPmiQ4OU1Ox6jmQBuPYYL+vcubN56KGHrN9LS0tNw4YNTWZmZrn1/fv3N7169fJoS0xMNKNGjTLGGON2u01UVJR5+eWXrf6ioiITEBBg5syZY4wxZseOHUaS2bBhg1Xzj3/8wzgcDnPo0CFjjDF//vOfTb169czp06etmieffNK0bNnS+n327NkmNDT0MvfcGJfLZSQZl8t12esAAADVqzKf3149onXmzBnl5uYqJSXFavPx8VFKSoqys7PLXSY7O9ujXpJSU1Ot+n379ik/P9+jJjQ0VImJiVZNdna2wsLC1KlTJ6smJSVFPj4+ysnJsWpuv/12OZ1Oj+3s2rVLP/zwg9V2/PhxNWnSRDExMerTp4+2b99+wf09ffq0iouLPV4AAKD28mrQKiwsVGlpqSIjIz3aIyMjlZ+fX+4y+fn5F60///NSNQ0aNPDo9/PzU/369T1qylvHT7fRsmVLzZo1S4sXL9bbb78tt9utLl266Ntvvy137JmZmQoNDbVeMTEx5dYBAIDawevXaNVkSUlJGjp0qNq3b6/k5GQtWrRIERERmjlzZrn148ePl8vlsl4HDx6s5hEDAIDq5NWgFR4eLl9fXxUUFHi0FxQUKCoqqtxloqKiLlp//uelan5+sf25c+d09OhRj5ry1vHTbfycv7+/OnTooD179pTbHxAQoJCQEI8XAACovbwatJxOpzp27KgVK1ZYbW63WytWrFBSUlK5yyQlJXnUS9Ly5cut+ri4OEVFRXnUFBcXKycnx6pJSkpSUVGRcnNzrZqVK1fK7XYrMTHRqlmzZo3Onj3rsZ2WLVuqXr165Y6ttLRUW7duVXR0dGWmAQAA1FbVcHH+Rc2dO9cEBASYrKwss2PHDjNy5EgTFhZm8vPzjTHGDBkyxIwbN86qX7dunfHz8zNTpkwxO3fuNBkZGcbf399s3brVqpk0aZIJCwszixcvNlu2bDF9+vQxcXFxpqSkxKrp0aOH6dChg8nJyTFr1641LVq0MGlpaVZ/UVGRiYyMNEOGDDHbtm0zc+fONXXq1DEzZ860ap599lnz8ccfm71795rc3FwzcOBAExgYaLZv316hfedbhwAA1DyV+fz2etAyxphp06aZxo0bG6fTaTp37mw+++wzqy85OdkMGzbMo37+/PkmPj7eOJ1O06ZNG7NkyRKPfrfbbSZMmGAiIyNNQECAueOOO8yuXbs8ao4cOWLS0tJM3bp1TUhIiElPTzfHjh3zqPniiy/MbbfdZgICAkyjRo3MpEmTPPrHjBljjTsyMtL07NnTbNy4scL7TdACAKDmqcznt8MYYy5+zAt2KS4uVmhoqFwuF9drAQBQQ1Tm85tvHQIAANiEoAUAAGATghYAAIBNCFoAAK/Kc5Vo/d5C5blKvD0UoMr5eXsAAIBr17wN32j8oq1yG8nHIWX2S9CAWxp7e1hAleGIFgDAK/JcJVbIkiS3kZ5atI0jW6hVCFoAAK/YV3jCClnnlRqj/YUnvTMgwAYELQCAV8SFB8vH4dnm63AoNryOdwYE2ICgBQDwiujQIGX2S5Cv48e05etw6MV+bRUdGuTlkQFVh4vhAVRYnqtE+wpPKC48mA9DVIkBtzTW7fER2l94UrHhdXhfodYhaAGoEL4dBrtEhwYRsFBrceoQwCXx7TAAuDwELQCXxLfDAODyELQAXBLfDgOAy0PQAnBJfDsMAC4PF8MDqBC+HQYAlUfQAlBhfDsMACqHU4cAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWcA3Kc5Vo/d5C5blKvD0UAKjV/Lw9AADVa96GbzR+0Va5jeTjkDL7JWjALY29PSwAqJU4ogVcQ/JcJVbIkiS3kZ5atI0jWwBgE4IWcA3ZV3jCClnnlRqj/YUnvTMgAKjlCFrANSQuPFg+Ds82X4dDseF1vDMgAKjlroqgNX36dMXGxiowMFCJiYn6/PPPL1q/YMECtWrVSoGBgUpISNDSpUs9+o0xmjhxoqKjoxUUFKSUlBTt3r3bo+bo0aMaPHiwQkJCFBYWphEjRuj48eMeNVu2bFHXrl0VGBiomJgYTZ48udJjAa4m0aFByuyXIF/Hj2nL1+HQi/3aKjo0yMsjA4BaynjZ3LlzjdPpNLNmzTLbt283DzzwgAkLCzMFBQXl1q9bt874+vqayZMnmx07dpinn37a+Pv7m61bt1o1kyZNMqGhoeaDDz4wX3zxhbn77rtNXFycKSkpsWp69Ohh2rVrZz777DPzr3/9yzRv3tykpaVZ/S6Xy0RGRprBgwebbdu2mTlz5pigoCAzc+bMSo3lYlwul5FkXC5XZacNuCLfFZ006/cUmu+KTnp7KABQ41Tm89vrQatz587moYcesn4vLS01DRs2NJmZmeXW9+/f3/Tq1cujLTEx0YwaNcoYY4zb7TZRUVHm5ZdftvqLiopMQECAmTNnjjHGmB07dhhJZsOGDVbNP/7xD+NwOMyhQ4eMMcb8+c9/NvXq1TOnT5+2ap588knTsmXLCo/lUghaAADUPJX5/PbqqcMzZ84oNzdXKSkpVpuPj49SUlKUnZ1d7jLZ2dke9ZKUmppq1e/bt0/5+fkeNaGhoUpMTLRqsrOzFRYWpk6dOlk1KSkp8vHxUU5OjlVz++23y+l0emxn165d+uGHHyo0FgAAcG3zatAqLCxUaWmpIiMjPdojIyOVn59f7jL5+fkXrT//81I1DRo08Oj38/NT/fr1PWrKW8dPt3Gpsfzc6dOnVVxc7PECAAC111VxMfy1IjMzU6GhodYrJibG20MCAAA28mrQCg8Pl6+vrwoKCjzaCwoKFBUVVe4yUVFRF60///NSNYcPH/boP3funI4ePepRU946frqNS43l58aPHy+Xy2W9Dh48WG4dAACoHbwatJxOpzp27KgVK1ZYbW63WytWrFBSUlK5yyQlJXnUS9Ly5cut+ri4OEVFRXnUFBcXKycnx6pJSkpSUVGRcnNzrZqVK1fK7XYrMTHRqlmzZo3Onj3rsZ2WLVuqXr16FRrLzwUEBCgkJMTjBQAAarFquDj/oubOnWsCAgJMVlaW2bFjhxk5cqQJCwsz+fn5xhhjhgwZYsaNG2fVr1u3zvj5+ZkpU6aYnTt3moyMjHJv7xAWFmYWL15stmzZYvr06VPu7R06dOhgcnJyzNq1a02LFi08bu9QVFRkIiMjzZAhQ8y2bdvM3LlzTZ06dcrc3uFSY7kYvnUIAEDNU6Nu72CMMdOmTTONGzc2TqfTdO7c2Xz22WdWX3Jyshk2bJhH/fz58018fLxxOp2mTZs2ZsmSJR79brfbTJgwwURGRpqAgABzxx13mF27dnnUHDlyxKSlpZm6deuakJAQk56ebo4dO+ZR88UXX5jbbrvNBAQEmEaNGplJkyaVGfulxnIxBC0AAGqeynx+O4wx5uLHvGCX4uJihYaGyuVycRoRAIAaojKf33zrEAAAwCYELQAAAJsQtAAAAGzi5+0BXMvOXx7HHeIBAKg5zn9uV+Qyd4KWFx07dkySuEM8AAA10LFjxxQaGnrRGr516EVut1vfffedrrvuOjkcjitaV3FxsWJiYnTw4MFr9huMzAFzIDEHEnMgMQcScyDZNwfGGB07dkwNGzaUj8/Fr8LiiJYX+fj46IYbbqjSdXLHeeZAYg4k5kBiDiTmQGIOJHvm4FJHss7jYngAAACbELQAAABsQtCqJQICApSRkaGAgABvD8VrmAPmQGIOJOZAYg4k5kC6OuaAi+EBAABswhEtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYEravY9OnTFRsbq8DAQCUmJurzzz+/aP3UqVPVsmVLBQUFKSYmRv/93/+tU6dOWf3PPPOMHA6Hx6tVq1Z278YVqcwcnD17Vs8995yaNWumwMBAtWvXTsuWLbuidV4NqnoOatL7YM2aNerdu7caNmwoh8OhDz744JLLrF69WjfffLMCAgLUvHlzZWVllampSe8BO+agJr0HpMrPQV5engYNGqT4+Hj5+PhozJgx5dYtWLBArVq1UmBgoBISErR06dKqH3wVsWMOsrKyyrwPAgMD7dmBKlDZOVi0aJHuvPNORUREKCQkRElJSfr444/L1Nn994CgdZWaN2+exo4dq4yMDG3cuFHt2rVTamqqDh8+XG79u+++q3HjxikjI0M7d+7UX//6V82bN09PPfWUR12bNm2Ul5dnvdauXVsdu3NZKjsHTz/9tGbOnKlp06Zpx44devDBB3XPPfdo06ZNl71Ob7NjDqSa8z44ceKE2rVrp+nTp1eoft++ferVq5e6d++uzZs3a8yYMbr//vs9/rjWtPeAHXMg1Zz3gFT5OTh9+rQiIiL09NNPq127duXWrF+/XmlpaRoxYoQ2bdqkvn37qm/fvtq2bVtVDr3K2DEH0o93TP/p++DAgQNVNeQqV9k5WLNmje68804tXbpUubm56t69u3r37l39nwkGV6XOnTubhx56yPq9tLTUNGzY0GRmZpZb/9BDD5lf/vKXHm1jx441t956q/V7RkaGadeunS3jtUNl5yA6Otq8/vrrHm39+vUzgwcPvux1epsdc1DT3gfnSTLvv//+RWt+97vfmTZt2ni0DRgwwKSmplq/17T3wE9V1RzU1PeAMRWbg59KTk42jz76aJn2/v37m169enm0JSYmmlGjRl3hCO1XVXMwe/ZsExoaWmXjqk6VnYPzWrdubZ599lnr9+r4e8ARravQmTNnlJubq5SUFKvNx8dHKSkpys7OLneZLl26KDc31zrk+fXXX2vp0qXq2bOnR93u3bvVsGFDNW3aVIMHD9Y333xj345cgcuZg9OnT5c57B0UFGT9l/rlrNOb7JiD82rK+6CysrOzPeZLklJTU635qmnvgctxqTk4r7a+ByqqovNU2x0/flxNmjRRTEyM+vTpo+3bt3t7SLZxu906duyY6tevL6n6/h4QtK5ChYWFKi0tVWRkpEd7ZGSk8vPzy11m0KBBeu6553TbbbfJ399fzZo1U7du3TxOHSYmJiorK0vLli3TG2+8oX379qlr1646duyYrftzOS5nDlJTU/XKK69o9+7dcrvdWr58uRYtWqS8vLzLXqc32TEHUs16H1RWfn5+ufNVXFyskpKSGvceuByXmgOpdr8HKupC81Rb3gcV0bJlS82aNUuLFy/W22+/LbfbrS5duujbb7/19tBsMWXKFB0/flz9+/eXVH2fCQStWmL16tV68cUX9ec//1kbN27UokWLtGTJEj3//PNWza9+9Svdd999uummm5SamqqlS5eqqKhI8+fP9+LIq86f/vQntWjRQq1atZLT6dTo0aOVnp4uH59r521ekTmo7e8DXBrvAUhSUlKShg4dqvbt2ys5OVmLFi1SRESEZs6c6e2hVbl3331Xzz77rObPn68GDRpU67avnU+gGiQ8PFy+vr4qKCjwaC8oKFBUVFS5y0yYMEFDhgzR/fffr4SEBN1zzz168cUXlZmZKbfbXe4yYWFhio+P1549e6p8H67U5cxBRESEPvjgA504cUIHDhzQl19+qbp166pp06aXvU5vsmMOynM1vw8qKyoqqtz5CgkJUVBQUI17D1yOS81BeWrTe6CiLjRPteV9cDn8/f3VoUOHWvc+mDt3ru6//37Nnz/f4zRhdf09IGhdhZxOpzp27KgVK1ZYbW63WytWrFBSUlK5y5w8ebLMkRtfX19JkrnA4yyPHz+uvXv3Kjo6uopGXnUuZw7OCwwMVKNGjXTu3DktXLhQffr0ueJ1eoMdc1Ceq/l9UFlJSUke8yVJy5cvt+arpr0HLsel5qA8tek9UFGXM0+1XWlpqbZu3Vqr3gdz5sxRenq65syZo169enn0Vdvfgyq7rB5Vau7cuSYgIMBkZWWZHTt2mJEjR5qwsDCTn59vjDFmyJAhZty4cVZ9RkaGue6668ycOXPM119/bT755BPTrFkz079/f6vmscceM6tXrzb79u0z69atMykpKSY8PNwcPny42vevIio7B5999plZuHCh2bt3r1mzZo355S9/aeLi4swPP/xQ4XVebeyYg5r0Pjh27JjZtGmT2bRpk5FkXnnlFbNp0yZz4MABY4wx48aNM0OGDLHqv/76a1OnTh3zxBNPmJ07d5rp06cbX19fs2zZMqumpr0H7JiDmvQeMKbyc2CMseo7duxoBg0aZDZt2mS2b99u9a9bt874+fmZKVOmmJ07d5qMjAzj7+9vtm7dWq37VlF2zMGzzz5rPv74Y7N3716Tm5trBg4caAIDAz1qriaVnYN33nnH+Pn5menTp5u8vDzrVVRUZNVUx98DgtZVbNq0aaZx48bG6XSazp07m88++8zqS05ONsOGDbN+P3v2rHnmmWdMs2bNTGBgoImJiTG//e1vPT5gBwwYYKKjo43T6TSNGjUyAwYMMHv27KnGPaq8yszB6tWrzY033mgCAgLM9ddfb4YMGWIOHTpUqXVejap6DmrS+2DVqlVGUpnX+X0eNmyYSU5OLrNM+/btjdPpNE2bNjWzZ88us96a9B6wYw5q0nvAmMubg/LqmzRp4lEzf/58Ex8fb5xOp2nTpo1ZsmRJ9ezQZbBjDsaMGWP9/yAyMtL07NnTbNy4sfp2qpIqOwfJyckXrT/P7r8HDmMucF4JAAAAV4RrtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAICH1atXy+FwqKioyNtDAWo8ghYArxk+fLgcDocmTZrk0f7BBx/I4XBYvxtj9OabbyopKUkhISGqW7eu2rRpo0cffbTCD8A9efKkxo8fr2bNmikwMFARERFKTk7W4sWLrZrY2FhNnTq1SvbNbufnzuFwyN/fX3Fxcfrd736nU6dOVWo93bp105gxYzzaunTpory8PIWGhlbhiIFrE0ELgFcFBgbqpZde0g8//FBuvzFGgwYN0iOPPKKePXvqk08+0Y4dO/TXv/5VgYGBeuGFFyq0nQcffFCLFi3StGnT9OWXX2rZsmW69957deTIkarcnWrVo0cP5eXl6euvv9arr76qmTNnKiMj44rX63Q6FRUV5RF2AVymKn2gDwBUwrBhw8yvf/1r06pVK/PEE09Y7e+//745/+dpzpw5RpJZvHhxuetwu90V2lZoaKjJysq6YH95z0U771//+pe57bbbTGBgoLnhhhvMww8/bI4fP271/+///q/p2LGjqVu3romMjDRpaWmmoKDA6j//jLZly5aZ9u3bm8DAQNO9e3dTUFBgli5dalq1amWuu+46k5aWZk6cOFGh/Rk2bJjp06ePR1u/fv1Mhw4drN8LCwvNwIEDTcOGDU1QUJBp27ateffddz3W8fN93rdvnzXenz4r9b333jOtW7c2TqfTNGnSxEyZMqVC4wSudRzRAuBVvr6+evHFFzVt2jR9++23ZfrnzJmjli1b6u677y53+YoedYmKitLSpUt17NixcvsXLVqkG264Qc8995zy8vKUl5cnSdq7d6969Oih3/zmN9qyZYvmzZuntWvXavTo0dayZ8+e1fPPP68vvvhCH3zwgfbv36/hw4eX2cYzzzyj119/XevXr9fBgwfVv39/TZ06Ve+++66WLFmiTz75RNOmTavQ/vzctm3btH79ejmdTqvt1KlT6tixo5YsWaJt27Zp5MiRGjJkiD7//HNJ0p/+9CclJSXpgQcesPY5JiamzLpzc3PVv39/DRw4UFu3btUzzzyjCRMmKCsr67LGClxTvJ30AFy7fnpU5he/+IX5z//8T2OM5xGtVq1ambvvvttjuUcffdQEBweb4OBg06hRowpt69NPPzU33HCD8ff3N506dTJjxowxa9eu9ahp0qSJefXVVz3aRowYYUaOHOnR9q9//cv4+PiYkpKScre1YcMGI8kcO3bMGPN/R7T++c9/WjWZmZlGktm7d6/VNmrUKJOamlqh/Rk2bJjx9fU1wcHBJiAgwEgyPj4+5r333rvocr169TKPPfaY9XtycrJ59NFHPWp+fkRr0KBB5s477/SoeeKJJ0zr1q0rNFbgWsYRLQBXhZdeeklvvfWWdu7cecna3//+99q8ebMmTpyo48ePV2j9t99+u77++mutWLFC9957r7Zv366uXbvq+eefv+hyX3zxhbKyslS3bl3rlZqaKrfbrX379kn68YhP79691bhxY1133XVKTk6WJH3zzTce67rpppusf0dGRqpOnTpq2rSpR9vhw4crtD+S1L17d23evFk5OTkaNmyY0tPT9Zvf/MbqLy0t1fPPP6+EhATVr19fdevW1ccff1xmXJeyc+dO3XrrrR5tt956q3bv3q3S0tJKrQu41hC0AFwVbr/9dqWmpmr8+PEe7S1atNCuXbs82iIiItS8eXM1aNCgUtvw9/dX165d9eSTT+qTTz7Rc889p+eff15nzpy54DLHjx/XqFGjtHnzZuv1xRdfaPfu3WrWrJlOnDih1NRUhYSE6J133tGGDRv0/vvvS1KZ9fr7+1v/Pv9twZ9yOBxyu90V3p/g4GA1b95c7dq106xZs5STk6O//vWvVv/LL7+sP/3pT3ryySe1atUqbd68WampqRfdXwBVy8/bAwCA8yZNmqT27durZcuWVltaWpoGDRqkxYsXq0+fPlW6vdatW+vcuXM6deqUnE6nnE5nmSM0N998s3bs2KHmzZuXu46tW7fqyJEjmjRpknV907///e8qHWdF+Pj46KmnntLYsWM1aNAgBQUFad26derTp4/+4z/+Q5Lkdrv11VdfqXXr1tZy5e3zz914441at26dR9u6desUHx8vX1/fqt8ZoBbhiBaAq0ZCQoIGDx6s1157zWobOHCg7r33Xg0cOFDPPfeccnJytH//fn366aeaN29ehT/ou3XrppkzZyo3N1f79+/X0qVL9dRTT6l79+4KCQmR9ON9tNasWaNDhw6psLBQkvTkk09q/fr1Gj16tDZv3qzdu3dr8eLF1sXwjRs3ltPp1LRp0/T111/rww8/vOTpSLvcd9998vX11fTp0yX9eDRw+fLlWr9+vXbu3KlRo0apoKDAY5nY2FhrTgsLC8s9ovbYY49pxYoVev755/XVV1/prbfe0uuvv67HH3+8WvYLqMkIWgCuKs8995zHh73D4dC8efM0depULV26VHfccYdatmyp//zP/1RMTIzWrl1bofWmpqbqrbfe0l133aUbb7xRDz/8sFJTUzV//nyPbe/fv1/NmjVTRESEpB+vq/r000/11VdfqWvXrurQoYMmTpyohg0bSvrxNGZWVpYWLFig1q1ba9KkSZoyZUoVzkjF+fn5afTo0Zo8ebJOnDihp59+WjfffLNSU1PVrVs3RUVFqW/fvh7LPP744/L19VXr1q0VERFR7vVbN998s+bPn6+5c+eqbdu2mjhxop577rlyv1kJwJPDGGO8PQgAAIDaiCNaAAAANiFoAagVfnr7hZ+//vWvf3l7eJXyzTffXHR/Knt7BgDew6lDALXCxR4u3ahRIwUFBVXjaK7MuXPntH///gv2x8bGys+PL40DNQFBCwAAwCacOgQAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbPL/AJy11ldzxLNxAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATFxJREFUeJzt3XtcVVX+//H3AeQiCoyBgIZCXvJG6mgQVqLJRGUlWanoqDmWzoyWjt3Ur0rZBTNnMs3J5lI2UynaOF2Msfyi5qSEhlreKjNMK8DIOHjBG2f9/ujr/nUSFbbA4eDr+XicB7H2Z++91nqcOG/37TiMMUYAAACoFh9PdwAAAMAbEaIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiADRojzzyiBwOR5VqHQ6HHnnkkVrtT58+fdSnT596uz0AVUeIAlAnFi1aJIfDYb38/PzUsmVL3XXXXfrmm2883b16JzY21m2+mjdvrmuvvVb//ve/a2T7R48e1SOPPKK1a9fWyPaAixEhCkCdmjlzpv75z39q4cKFuvHGG/XKK68oOTlZx44dq5X9TZs2TeXl5bWy7drWrVs3/fOf/9Q///lPPfDAA/r22281cOBALVy48IK3ffToUT366KOEKOAC+Hm6AwAuLjfeeKN69uwpSbr77rsVHh6up556Sm+99ZYGDRpU4/vz8/OTn593/qlr2bKlfv3rX1u/jxgxQm3bttUzzzyj3/72tx7sGQCJI1EAPOzaa6+VJO3Zs8et/dNPP9Udd9yhZs2aKTAwUD179tRbb73lVnPy5Ek9+uijateunQIDA3XJJZfommuu0apVq6yayq6JOn78uP7whz8oIiJCTZs21a233qqvv/76jL7dddddio2NPaO9sm2+9NJLuu6669S8eXMFBASoU6dOev7556s1F+cTFRWljh07qqCg4Jx1Bw4c0OjRoxUZGanAwEB17dpVL7/8srV87969ioiIkCQ9+uij1inD2r4eDGhovPOfZwAajL1790qSfvGLX1htO3bs0NVXX62WLVtq8uTJCg4O1tKlS5WWlqZ//etfuu222yT9GGYyMzN19913KyEhQWVlZfroo4+0efNm/epXvzrrPu+++2698sorGjp0qHr16qXVq1erf//+FzSO559/Xp07d9att94qPz8/vf322/r9738vl8ulcePGXdC2Tzt58qT279+vSy655Kw15eXl6tOnj7744guNHz9ecXFxWrZsme666y6VlpZqwoQJioiI0PPPP6/f/e53uu222zRw4EBJ0hVXXFEj/QQuGgYA6sBLL71kJJn//d//Nd99953Zv3+/ef31101ERIQJCAgw+/fvt2r79etn4uPjzbFjx6w2l8tlevXqZdq1a2e1de3a1fTv3/+c+83IyDA//VO3detWI8n8/ve/d6sbOnSokWQyMjKstpEjR5rWrVufd5vGGHP06NEz6lJTU81ll13m1pacnGySk5PP2WdjjGndurW5/vrrzXfffWe+++478/HHH5shQ4YYSebee+896/bmzp1rJJlXXnnFajtx4oRJSkoyTZo0MWVlZcYYY7777rszxgugejidB6BOpaSkKCIiQjExMbrjjjsUHByst956S5deeqkk6eDBg1q9erUGDRqkQ4cOqaSkRCUlJfr++++Vmpqq3bt3W3fzhYWFaceOHdq9e3eV95+dnS1Juu+++9zaJ06ceEHjCgoKsv7b6XSqpKREycnJ+vLLL+V0Om1t87333lNERIQiIiLUtWtXLVu2TMOHD9dTTz111nWys7MVFRWl9PR0q61Ro0a67777dPjwYb3//vu2+gLgTJzOA1CnFixYoPbt28vpdOrFF1/UunXrFBAQYC3/4osvZIzR9OnTNX369Eq3ceDAAbVs2VIzZ87UgAED1L59e3Xp0kU33HCDhg8ffs7TUl999ZV8fHzUpk0bt/bLL7/8gsa1fv16ZWRkKDc3V0ePHnVb5nQ6FRoaWu1tJiYm6vHHH5fD4VDjxo3VsWNHhYWFnXOdr776Su3atZOPj/u/kTt27GgtB1AzCFEA6lRCQoJ1d15aWpquueYaDR06VJ999pmaNGkil8slSXrggQeUmppa6Tbatm0rSerdu7f27NmjN998U++9957+9re/6ZlnntHChQt19913X3Bfz/aQzoqKCrff9+zZo379+qlDhw7605/+pJiYGPn7+ys7O1vPPPOMNabqCg8PV0pKiq11AdQ+QhQAj/H19VVmZqb69u2r5557TpMnT9Zll10m6cdTUFUJEM2aNdOoUaM0atQoHT58WL1799Yjjzxy1hDVunVruVwu7dmzx+3o02effXZG7S9+8QuVlpae0f7zozlvv/22jh8/rrfeekutWrWy2tesWXPe/te01q1b65NPPpHL5XI7GvXpp59ay6WzB0QAVcc1UQA8qk+fPkpISNDcuXN17NgxNW/eXH369NELL7ygwsLCM+q/++4767+///57t2VNmjRR27Ztdfz48bPu78Ybb5QkzZs3z6197ty5Z9S2adNGTqdTn3zyidVWWFh4xlPDfX19JUnGGKvN6XTqpZdeOms/astNN92koqIiZWVlWW2nTp3S/Pnz1aRJEyUnJ0uSGjduLEmVhkQAVcORKAAe9+CDD+rOO+/UokWL9Nvf/lYLFizQNddco/j4eN1zzz267LLLVFxcrNzcXH399df6+OOPJUmdOnVSnz591KNHDzVr1kwfffSRXn/9dY0fP/6s++rWrZvS09P15z//WU6nU7169VJOTo6++OKLM2qHDBmihx9+WLfddpvuu+8+HT16VM8//7zat2+vzZs3W3XXX3+9/P39dcstt2js2LE6fPiw/vrXv6p58+aVBsHaNGbMGL3wwgu66667lJ+fr9jYWL3++utav3695s6dq6ZNm0r68UL4Tp06KSsrS+3bt1ezZs3UpUsXdenSpU77C3g1T98eCODicPoRB5s2bTpjWUVFhWnTpo1p06aNOXXqlDHGmD179pgRI0aYqKgo06hRI9OyZUtz8803m9dff91a7/HHHzcJCQkmLCzMBAUFmQ4dOpgnnnjCnDhxwqqp7HEE5eXl5r777jOXXHKJCQ4ONrfccovZv39/pbf8v/fee6ZLly7G39/fXH755eaVV16pdJtvvfWWueKKK0xgYKCJjY01Tz31lHnxxReNJFNQUGDVVecRB+d7fMPZtldcXGxGjRplwsPDjb+/v4mPjzcvvfTSGetu2LDB9OjRw/j7+/O4A8AGhzE/Of4MAACAKuGaKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADD9usRS6XS99++62aNm3KVywAAOAljDE6dOiQWrRoccaXef8UIaoWffvtt4qJifF0NwAAgA379+/XpZdeetblhKhadPrrFfbv36+QkBAP9wYAAFRFWVmZYmJirM/xsyFE1aLTp/BCQkIIUQAAeJnzXYrDheUAAAA2EKIAAABsIEQBAADYwDVRHlZRUaGTJ096uhse16hRI/n6+nq6GwAAVBkhykOMMSoqKlJpaamnu1JvhIWFKSoqimdqAQC8AiHKQ04HqObNm6tx48YXdXAwxujo0aM6cOCAJCk6OtrDPQIA4PwIUR5QUVFhBahLLrnE092pF4KCgiRJBw4cUPPmzTm1BwCo97iw3ANOXwPVuHFjD/ekfjk9H1wjBgDwBoQoD7qYT+FVhvkAAHgTQhQAAIANHg9RCxYsUGxsrAIDA5WYmKiNGzees37ZsmXq0KGDAgMDFR8fr+zsbLflxhjNmDFD0dHRCgoKUkpKinbv3u1W88QTT6hXr15q3LixwsLCztjHxx9/rPT0dMXExCgoKEgdO3bUs88+e8FjBQAADYdHQ1RWVpYmTZqkjIwMbd68WV27dlVqaqp1l9bPbdiwQenp6Ro9erS2bNmitLQ0paWlafv27VbN7NmzNW/ePC1cuFB5eXkKDg5Wamqqjh07ZtWcOHFCd955p373u99Vup/8/Hw1b95cr7zyinbs2KH/+Z//0ZQpU/Tcc8/V7AR4obvuuktpaWlntK9du1YOh0OlpaVau3atBgwYoOjoaAUHB6tbt2569dVX676zAIAGq9BZrg17SlToLPdcJ4wHJSQkmHHjxlm/V1RUmBYtWpjMzMxK6wcNGmT69+/v1paYmGjGjh1rjDHG5XKZqKgo8/TTT1vLS0tLTUBAgFm8ePEZ23vppZdMaGholfr6+9//3vTt27dKtac5nU4jyTidTrf28vJys3PnTlNeXl6t7dUHI0eONAMGDDijfc2aNUaS+eGHH8wTTzxhpk2bZtavX2+++OILM3fuXOPj42Pefvvtc27bm+cFAFB3lmz8ysRNXmFaP7zCxE1eYZZs/KpGt3+2z++f89iRqBMnTig/P18pKSlWm4+Pj1JSUpSbm1vpOrm5uW71kpSammrVFxQUqKioyK0mNDRUiYmJZ91mVTmdTjVr1uyCtnGxmDp1qh577DH16tVLbdq00YQJE3TDDTdo+fLlnu4aAMDLFTrLNWX5NrnMj7+7jDR1+XaPHJHy2HOiSkpKVFFRocjISLf2yMhIffrpp5WuU1RUVGl9UVGRtfx029lq7NiwYYOysrL0zjvvnLPu+PHjOn78uPV7WVmZ7X1WR6GzXAUlRxQXHqzo0KA62Wd1OZ1OdezY0dPdAAB4uYKSI1aAOq3CGO0tOVrnn4E8bPM8tm/frgEDBigjI0PXX3/9OWszMzP16KOP1lHPfpS1aZ+VyH0cUubAeA2+slWt7nPFihVq0qSJW1tFRcVZ65cuXapNmzbphRdeqNV+AQAavrjwYPk45BakfB0OxYbX/bMXPXY6Lzw8XL6+viouLnZrLy4uVlRUVKXrREVFnbP+9M/qbPNcdu7cqX79+mnMmDGaNm3aeeunTJkip9Npvfbv31/tfVaHpw5p9u3bV1u3bnV7/e1vf6u0ds2aNRo1apT++te/qnPnzrXaLwBAwxcdGqTMgfHy/b9nC/o6HHpyYBePnInx2JEof39/9ejRQzk5OdbdXi6XSzk5ORo/fnyl6yQlJSknJ0cTJ0602latWqWkpCRJUlxcnKKiopSTk6Nu3bpJ+vGUWl5e3lnvxDubHTt26LrrrtPIkSP1xBNPVGmdgIAABQQEVGs/F8JThzSDg4PVtm1bt7avv/76jLr3339ft9xyi5555hmNGDGi1voDALi4DL6ylXq3j9DekqOKDW/ssUtZPHo6b9KkSRo5cqR69uyphIQEzZ07V0eOHNGoUaMkSSNGjFDLli2VmZkpSZowYYKSk5P1xz/+Uf3799eSJUv00Ucf6S9/+YukH594PXHiRD3++ONq166d4uLiNH36dLVo0cLttvx9+/bp4MGD2rdvnyoqKrR161ZJUtu2bdWkSRNt375d1113nVJTUzVp0iTreipfX19FRETU3QSdR306pPlza9eu1c0336ynnnpKY8aM8XR3AAANTHRokMevA/ZoiBo8eLC+++47zZgxQ0VFRerWrZtWrlxpXRi+b98++fj8/zOOvXr10muvvaZp06Zp6tSpateund544w116dLFqnnooYd05MgRjRkzRqWlpbrmmmu0cuVKBQYGWjUzZszQyy+/bP3evXt3ST+eeurTp49ef/11fffdd3rllVf0yiuvWHWtW7fW3r17a2s6qu30Ic2py7erwhiPHtL8qTVr1ujmm2/WhAkTdPvtt1sh1N/fnzscAQANhsMYY85fBjvKysoUGhoqp9OpkJAQq/3YsWMqKChQXFycW7izq9BZXmeHNO+66y6VlpbqjTfecGtfu3at+vbtqx9++EETJ050C6mnJScna+3atWfddk3PCwAAdpzt8/vnCFG1qK5CVEPBvAAA6oOqhiiPf3ceAACANyJEAQAA2ECIAgAAsIEQBQAAYAMhyoO4pt8d8wEA8CaEKA9o1KiRJOno0aMe7kn9cno+Ts8PAAD1GV9A7AG+vr4KCwvTgQMHJEmNGzeW4/++A+hiZIzR0aNHdeDAAYWFhcnX19fTXQIA4LwIUR5y+guRTwcpSGFhYba+KBoAAE8gRHmIw+FQdHS0mjdvrpMnT3q6Ox7XqFEjjkABALwKIcrDfH19CQ8AAHghLiwHAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEShVhQ6y7VhT4kKneWe7goAALXCz9MdQMOTtWmfpizfJpeRfBxS5sB4Db6ylae7BQBAjeJIFGpUobPcClCS5DLS1OXbOSIFAGhwCFGoUQUlR6wAdVqFMdpbctQzHQIAoJYQolCj4sKD5eNwb/N1OBQb3tgzHQIAoJYQolCjokODlDkwXr6OH5OUr8OhJwd2UXRokId7BgBAzeLCctS4wVe2Uu/2EdpbclSx4Y0JUACABokQdREpdJaroOSI4sKDaz3YRIcGEZ4AAA0aIeoiwWMHAACoWVwTdRHgsQMAANQ8QtRFgMcOAABQ8whRFwEeOwAAQM0jRF0EeOwAAAA1z+MhasGCBYqNjVVgYKASExO1cePGc9YvW7ZMHTp0UGBgoOLj45Wdne223BijGTNmKDo6WkFBQUpJSdHu3bvdap544gn16tVLjRs3VlhYWKX72bdvn/r376/GjRurefPmevDBB3Xq1KkLGqsnDb6ylT6Y3FeL77lKH0zuy0XlAABcII+GqKysLE2aNEkZGRnavHmzunbtqtTUVB04cKDS+g0bNig9PV2jR4/Wli1blJaWprS0NG3fvt2qmT17tubNm6eFCxcqLy9PwcHBSk1N1bFjx6yaEydO6M4779Tvfve7SvdTUVGh/v3768SJE9qwYYNefvllLVq0SDNmzKjZCahj0aFBSmpzCUegAACoCcaDEhISzLhx46zfKyoqTIsWLUxmZmal9YMGDTL9+/d3a0tMTDRjx441xhjjcrlMVFSUefrpp63lpaWlJiAgwCxevPiM7b300ksmNDT0jPbs7Gzj4+NjioqKrLbnn3/ehISEmOPHj1d5fE6n00gyTqezyusAAADPqurnt8eORJ04cUL5+flKSUmx2nx8fJSSkqLc3NxK18nNzXWrl6TU1FSrvqCgQEVFRW41oaGhSkxMPOs2z7af+Ph4RUZGuu2nrKxMO3bsOOt6x48fV1lZmdsLAAA0TB4LUSUlJaqoqHALKpIUGRmpoqKiStcpKio6Z/3pn9XZZnX289N9VCYzM1OhoaHWKyYmpsr7BAAA3sXjF5Y3JFOmTJHT6bRe+/fv93SXAABALfFYiAoPD5evr6+Ki4vd2ouLixUVFVXpOlFRUeesP/2zOtuszn5+uo/KBAQEKCQkxO0FAAAaJo+FKH9/f/Xo0UM5OTlWm8vlUk5OjpKSkipdJykpya1eklatWmXVx8XFKSoqyq2mrKxMeXl5Z93m2fazbds2t7sEV61apZCQEHXq1KnK2wEAAA2XR7+AeNKkSRo5cqR69uyphIQEzZ07V0eOHNGoUaMkSSNGjFDLli2VmZkpSZowYYKSk5P1xz/+Uf3799eSJUv00Ucf6S9/+YskyeFwaOLEiXr88cfVrl07xcXFafr06WrRooXS0tKs/e7bt08HDx7Uvn37VFFRoa1bt0qS2rZtqyZNmuj6669Xp06dNHz4cM2ePVtFRUWaNm2axo0bp4CAgDqdIwAAUE/V0d2CZzV//nzTqlUr4+/vbxISEsyHH35oLUtOTjYjR450q1+6dKlp37698ff3N507dzbvvPOO23KXy2WmT59uIiMjTUBAgOnXr5/57LPP3GpGjhxpJJ3xWrNmjVWzd+9ec+ONN5qgoCATHh5u7r//fnPy5MlqjY1HHAAA4H2q+vntMMaYc2QsXICysjKFhobK6XRyfRQAAF6iqp/f3J0HAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAakShs1wb9pSo0Fnu6a7UCT9PdwAAAHi/rE37NGX5NrmM5OOQMgfGa/CVrTzdrVrFkSgAAHBBCp3lVoCSJJeRpi7f3uCPSBGiAADABSkoOWIFqNMqjNHekqOe6VAdIUQBAIALEhceLB+He5uvw6HY8Mae6VAdIUQBAIALEh0apMyB8fJ1/JikfB0OPTmwi6JDgzzcs9rFheUAAOCCDb6ylXq3j9DekqOKDW/c4AOURIgCAAA1JDo06KIIT6dxOg8AAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwweMhasGCBYqNjVVgYKASExO1cePGc9YvW7ZMHTp0UGBgoOLj45Wdne223BijGTNmKDo6WkFBQUpJSdHu3bvdag4ePKhhw4YpJCREYWFhGj16tA4fPuxW8+677+qqq65S06ZNFRERodtvv1179+6tkTEDAADv59EQlZWVpUmTJikjI0ObN29W165dlZqaqgMHDlRav2HDBqWnp2v06NHasmWL0tLSlJaWpu3bt1s1s2fP1rx587Rw4ULl5eUpODhYqampOnbsmFUzbNgw7dixQ6tWrdKKFSu0bt06jRkzxlpeUFCgAQMG6LrrrtPWrVv17rvvqqSkRAMHDqy9yQAAAN7FeFBCQoIZN26c9XtFRYVp0aKFyczMrLR+0KBBpn///m5tiYmJZuzYscYYY1wul4mKijJPP/20tby0tNQEBASYxYsXG2OM2blzp5FkNm3aZNX85z//MQ6Hw3zzzTfGGGOWLVtm/Pz8TEVFhVXz1ltvGYfDYU6cOFHl8TmdTiPJOJ3OKq8DAAA8q6qf3x47EnXixAnl5+crJSXFavPx8VFKSopyc3MrXSc3N9etXpJSU1Ot+oKCAhUVFbnVhIaGKjEx0arJzc1VWFiYevbsadWkpKTIx8dHeXl5kqQePXrIx8dHL730kioqKuR0OvXPf/5TKSkpatSo0VnHdPz4cZWVlbm9AABAw+SxEFVSUqKKigpFRka6tUdGRqqoqKjSdYqKis5Zf/rn+WqaN2/uttzPz0/NmjWzauLi4vTee+9p6tSpCggIUFhYmL7++mstXbr0nGPKzMxUaGio9YqJiTlnPQAA8F4ev7C8PioqKtI999yjkSNHatOmTXr//ffl7++vO+64Q8aYs643ZcoUOZ1O67V///467DUAAKhLfp7acXh4uHx9fVVcXOzWXlxcrKioqErXiYqKOmf96Z/FxcWKjo52q+nWrZtV8/ML10+dOqWDBw9a6y9YsEChoaGaPXu2VfPKK68oJiZGeXl5uuqqqyrtX0BAgAICAs43dAAA0AB47EiUv7+/evTooZycHKvN5XIpJydHSUlJla6TlJTkVi9Jq1atsurj4uIUFRXlVlNWVqa8vDyrJikpSaWlpcrPz7dqVq9eLZfLpcTEREnS0aNH5ePjPjW+vr5WHwEAADx6d96SJUtMQECAWbRokdm5c6cZM2aMCQsLM0VFRcYYY4YPH24mT55s1a9fv974+fmZOXPmmF27dpmMjAzTqFEjs23bNqtm1qxZJiwszLz55pvmk08+MQMGDDBxcXGmvLzcqrnhhhtM9+7dTV5envnggw9Mu3btTHp6urU8JyfHOBwO8+ijj5rPP//c5Ofnm9TUVNO6dWtz9OjRKo+Pu/MAAPA+Vf389miIMsaY+fPnm1atWhl/f3+TkJBgPvzwQ2tZcnKyGTlypFv90qVLTfv27Y2/v7/p3Lmzeeedd9yWu1wuM336dBMZGWkCAgJMv379zGeffeZW8/3335v09HTTpEkTExISYkaNGmUOHTrkVrN48WLTvXt3ExwcbCIiIsytt95qdu3aVa2xEaIAAPA+Vf38dhhzjiulcUHKysoUGhoqp9OpkJAQT3cHAABUQVU/v7k7DwAAwAZCFAAAgA2EKKABKnSWa8OeEhU6yz3dFQBosDz2nCgAtSNr0z5NWb5NLiP5OKTMgfEafGUrT3cLABocjkQBDUihs9wKUJLkMtLU5ds5IgUAtYAQBTQgBSVHrAB1WoUx2lty1DMdAoAGjBAFNCBx4cHycbi3+Tocig1v7JkOAUADRogCGpDo0CBlDoyXr+PHJOXrcOjJgV0UHRrk4Z4BQMPDheVAAzP4ylbq3T5Ce0uOKja8MQEKAGoJIQpogKJDgwhPAFDLOJ0HAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBUCSVOgs14Y9JSp0lnu6KwDgFXhiOQBlbdqnKcu3yWUkH4eUOTBeg69s5eluAUC9xpEo4CJX6Cy3ApQkuYw0dfl2jkgBwHkQooCLXEHJEStAnVZhjPaWHPVMhwDASxCigItcXHiwfBzubb4Oh2LDG3umQwDgJQhRwEUuOjRImQPj5ev4MUn5Ohx6cmAXRYcGebhnAFC/cWE5AA2+spV6t4/Q3pKjig1vTIACgCogRAGQ9OMRKcITAFQdp/MAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAADgdQqd5dqwp8Sj3/PJc6IAAIBXydq0z/ridB+HlDkwXoOvbFXn/eBIFAAA8BqFznIrQEmSy0hTl2/3yBEpQhQAAPAaBSVHrAB1WoUx2ltytM77QogCAABeIy48WD4O9zZfh0Ox4Y3rvC+EKAAA4DWiQ4OUOTBevo4fk5Svw6EnB3bxyHd/cmE5AADwKoOvbKXe7SO0t+SoYsMbe+zL0wlRAADA60SHBnksPJ1W7dN52dnZuvvuu/XQQw/p008/dVv2ww8/6LrrrquxzgEAANRX1QpRr732mm699VYVFRUpNzdX3bt316uvvmotP3HihN5///0a7yQAAEB9U63TeU8//bT+9Kc/6b777pMkLV26VL/5zW907NgxjR49ulY6CKBuFDrLVVByRHHhwR4/RA4A3qBaIWr37t265ZZbrN8HDRqkiIgI3XrrrTp58qRuu+22Gu8ggNpXX57+CwDepFohKiQkRMXFxYqLi7Pa+vbtqxUrVujmm2/W119/XeMdBFC7zvb0397tIzgiBQDnUK1rohISEvSf//znjPbk5GS9/fbbmjt3bk31C0AdqU9P/wUAb1KtEPWHP/xBgYGBlS7r06eP3n77bY0YMaJaHViwYIFiY2MVGBioxMREbdy48Zz1y5YtU4cOHRQYGKj4+HhlZ2e7LTfGaMaMGYqOjlZQUJBSUlK0e/dut5qDBw9q2LBhCgkJUVhYmEaPHq3Dhw+fsZ05c+aoffv2CggIUMuWLfXEE09Ua2yAN6hPT/8FAG9SrRDVvXt3jRs3TmVlZZW+evTooWeffbbK28vKytKkSZOUkZGhzZs3q2vXrkpNTdWBAwcqrd+wYYPS09M1evRobdmyRWlpaUpLS9P27dutmtmzZ2vevHlauHCh8vLyFBwcrNTUVB07dsyqGTZsmHbs2KFVq1ZpxYoVWrduncaMGeO2rwkTJuhvf/ub5syZo08//VRvvfWWEhISqjNdgFeoT0//BQCvYqrB4XAYHx+f876qKiEhwYwbN876vaKiwrRo0cJkZmZWWj9o0CDTv39/t7bExEQzduxYY4wxLpfLREVFmaefftpaXlpaagICAszixYuNMcbs3LnTSDKbNm2yav7zn/8Yh8NhvvnmG6vGz8/PfPrpp1UeS2WcTqeRZJxO5wVtB6gL35YeNRu+KDHflh6t9nrrv/iu2usBQH1V1c/val1YvmbNmp+GL910003629/+ppYtW1Y7vJ04cUL5+fmaMmWK1ebj46OUlBTl5uZWuk5ubq4mTZrk1paamqo33nhDklRQUKCioiKlpKRYy0NDQ5WYmKjc3FwNGTJEubm5CgsLU8+ePa2alJQU+fj4KC8vT7fddpvefvttXXbZZVqxYoVuuOEGGWOUkpKi2bNnq1mzZtUeK+AN7Dz9l7v6AFzMqhWikpOT3X739fXVVVddpcsuu6zaOy4pKVFFRYUiIyPd2iMjI894EvppRUVFldYXFRVZy0+3naumefPmbsv9/PzUrFkzq+bLL7/UV199pWXLlukf//iHKioq9Ic//EF33HGHVq9efdYxHT9+XMePH7d+LysrO2st4O24qw/Axa7aX/tyMXC5XDp+/Lj+8Y9/6Nprr1WfPn3097//XWvWrNFnn3121vUyMzMVGhpqvWJiYuqw10Dd4q4+ABc7j4Wo8PBw+fr6qri42K29uLhYUVFRla4TFRV1zvrTP89X8/ML10+dOqWDBw9aNdHR0fLz81P79u2tmo4dO0qS9u3bd9YxTZkyRU6n03rt37//rLWAt+OuPgAXuwsOUQ6H4/xFlfD391ePHj2Uk5NjtblcLuXk5CgpKanSdZKSktzqJWnVqlVWfVxcnKKiotxqysrKlJeXZ9UkJSWptLRU+fn5Vs3q1avlcrmUmJgoSbr66qt16tQp7dmzx6r5/PPPJUmtW7c+65gCAgIUEhLi9gIaKu7qA3CxcxhjzPnLfjRw4EC3399++21dd911Cg4Odmtfvnx5lbaXlZWlkSNH6oUXXlBCQoLmzp2rpUuX6tNPP1VkZKRGjBihli1bKjMzU9KPjzhITk7WrFmz1L9/fy1ZskRPPvmkNm/erC5dukiSnnrqKc2aNUsvv/yy4uLiNH36dH3yySfauXOn9YyrG2+8UcXFxVq4cKFOnjypUaNGqWfPnnrttdck/RjmrrzySjVp0kRz586Vy+XSuHHjFBISovfee6+q06WysjKFhobK6XQSqNBgFTrLtbfkqGLDGxOgADQIVf38rtaF5aGhoW6///rXv7bXu/8zePBgfffdd5oxY4aKiorUrVs3rVy50rowfN++ffLx+f8Hy3r16qXXXntN06ZN09SpU9WuXTu98cYbVoCSpIceekhHjhzRmDFjVFpaqmuuuUYrV650e0joq6++qvHjx6tfv37y8fHR7bffrnnz5lnLfXx89Pbbb+vee+9V7969FRwcrBtvvFF//OMfL2i8QENk564+AGgIqnUkCtXDkSgAALxPVT+/uTsPAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAIDXKXSWa8OeEhU6yz3WBz+P7RkAAMCGrE37NGX5NrmM5OOQMgfGa/CVreq8HxyJAgAAXqPQWW4FKElyGWnq8u0eOSJFiAIAAF6joOSIFaBOqzBGe0uO1nlfCFEAAMBrxIUHy8fh3ubrcCg2vHGd94UQBQAAvEZ0aJAyB8bL1/FjkvJ1OPTkwC6KDg2q875wYTkAAPAqg69spd7tI7S35Khiwxt7JEBJhCgAAOCFokODPBaeTuN0HgAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANtSLELVgwQLFxsYqMDBQiYmJ2rhx4znrly1bpg4dOigwMFDx8fHKzs52W26M0YwZMxQdHa2goCClpKRo9+7dbjUHDx7UsGHDFBISorCwMI0ePVqHDx+udH9ffPGFmjZtqrCwsAsaJwAAaDg8HqKysrI0adIkZWRkaPPmzeratatSU1N14MCBSus3bNig9PR0jR49Wlu2bFFaWprS0tK0fft2q2b27NmaN2+eFi5cqLy8PAUHBys1NVXHjh2zaoYNG6YdO3Zo1apVWrFihdatW6cxY8acsb+TJ08qPT1d1157bc0PHgAAeC2HMcZ4sgOJiYm68sor9dxzz0mSXC6XYmJidO+992ry5Mln1A8ePFhHjhzRihUrrLarrrpK3bp108KFC2WMUYsWLXT//ffrgQcekCQ5nU5FRkZq0aJFGjJkiHbt2qVOnTpp06ZN6tmzpyRp5cqVuummm/T111+rRYsW1rYffvhhffvtt+rXr58mTpyo0tLSKo+trKxMoaGhcjqdCgkJsTM9AACgjlX189ujR6JOnDih/Px8paSkWG0+Pj5KSUlRbm5upevk5ua61UtSamqqVV9QUKCioiK3mtDQUCUmJlo1ubm5CgsLswKUJKWkpMjHx0d5eXlW2+rVq7Vs2TItWLCgSuM5fvy4ysrK3F4AAKBh8miIKikpUUVFhSIjI93aIyMjVVRUVOk6RUVF56w//fN8Nc2bN3db7ufnp2bNmlk133//ve666y4tWrSoykeRMjMzFRoaar1iYmKqtB4AAPA+Hr8mqr665557NHToUPXu3bvK60yZMkVOp9N67d+/vxZ7CAAAPMmjISo8PFy+vr4qLi52ay8uLlZUVFSl60RFRZ2z/vTP89X8/ML1U6dO6eDBg1bN6tWrNWfOHPn5+cnPz0+jR4+W0+mUn5+fXnzxxUr7FhAQoJCQELcXAABomDwaovz9/dWjRw/l5ORYbS6XSzk5OUpKSqp0naSkJLd6SVq1apVVHxcXp6ioKLeasrIy5eXlWTVJSUkqLS1Vfn6+VbN69Wq5XC4lJiZK+vG6qa1bt1qvmTNnqmnTptq6datuu+22mpkAAADgtfw83YFJkyZp5MiR6tmzpxISEjR37lwdOXJEo0aNkiSNGDFCLVu2VGZmpiRpwoQJSk5O1h//+Ef1799fS5Ys0UcffaS//OUvkiSHw6GJEyfq8ccfV7t27RQXF6fp06erRYsWSktLkyR17NhRN9xwg+655x4tXLhQJ0+e1Pjx4zVkyBDrzryOHTu69fOjjz6Sj4+PunTpUkczAwAA6jOPh6jBgwfru+++04wZM1RUVKRu3bpp5cqV1oXh+/btk4/P/z9g1qtXL7322muaNm2apk6dqnbt2umNN95wCzcPPfSQjhw5ojFjxqi0tFTXXHONVq5cqcDAQKvm1Vdf1fjx49WvXz/5+Pjo9ttv17x58+pu4AAAwKt5/DlRDRnPiQIAwPt4xXOiAAAAvBUhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAQK0qdJZrw54SFTrLPd0VoEb5eboDAICGK2vTPk1Zvk0uI/k4pMyB8Rp8ZStPdwuoERyJAgDUikJnuRWgJMllpKnLt3NECg0GIQoAUCsKSo5YAeq0CmO0t+SoZzoE1DBCFAB4sfp8vVFceLB8HO5tvg6HYsMbe6ZDQA0jRAGAl8ratE9Xz1qtoX/N09WzVitr0z5Pd8lNdGiQMgfGy9fxY5LydTj05MAuig4N8nDPgJrhMMaY85fBjrKyMoWGhsrpdCokJMTT3QHQgBQ6y3X1rNVup8t8HQ59MLlvvQsphc5y7S05qtjwxvWub0Blqvr5zd15AOCFznW9UX0LKtGhQfWuT0BN4HQeAHghrjcCPI8QBQBeiOuNAM/jdB4AeKnBV7ZS7/YRXG8EeAghCgC8GNcbAZ5TL07nLViwQLGxsQoMDFRiYqI2btx4zvply5apQ4cOCgwMVHx8vLKzs92WG2M0Y8YMRUdHKygoSCkpKdq9e7dbzcGDBzVs2DCFhIQoLCxMo0eP1uHDh63la9eu1YABAxQdHa3g4GB169ZNr776as0NGgAAeDWPh6isrCxNmjRJGRkZ2rx5s7p27arU1FQdOHCg0voNGzYoPT1do0eP1pYtW5SWlqa0tDRt377dqpk9e7bmzZunhQsXKi8vT8HBwUpNTdWxY8esmmHDhmnHjh1atWqVVqxYoXXr1mnMmDFu+7niiiv0r3/9S5988olGjRqlESNGaMWKFbU3GQAAwGt4/DlRiYmJuvLKK/Xcc89Jklwul2JiYnTvvfdq8uTJZ9QPHjxYR44ccQszV111lbp166aFCxfKGKMWLVro/vvv1wMPPCBJcjqdioyM1KJFizRkyBDt2rVLnTp10qZNm9SzZ09J0sqVK3XTTTfp66+/VosWLSrta//+/RUZGakXX3yxSmPjOVEAAHifqn5+e/RI1IkTJ5Sfn6+UlBSrzcfHRykpKcrNza10ndzcXLd6SUpNTbXqCwoKVFRU5FYTGhqqxMREqyY3N1dhYWFWgJKklJQU+fj4KC8v76z9dTqdatas2VmXHz9+XGVlZW4vAADQMHk0RJWUlKiiokKRkZFu7ZGRkSoqKqp0naKionPWn/55vprmzZu7Lffz81OzZs3Out+lS5dq06ZNGjVq1FnHk5mZqdDQUOsVExNz1loAAODdPH5NlDdYs2aNRo0apb/+9a/q3LnzWeumTJkip9Npvfbv31+HvQQAAHXJoyEqPDxcvr6+Ki4udmsvLi5WVFRUpetERUWds/70z/PV/PzC9VOnTungwYNn7Pf999/XLbfcomeeeUYjRow453gCAgIUEhLi9gIAAA2TR0OUv7+/evTooZycHKvN5XIpJydHSUlJla6TlJTkVi9Jq1atsurj4uIUFRXlVlNWVqa8vDyrJikpSaWlpcrPz7dqVq9eLZfLpcTERKtt7dq16t+/v5566im3O/cAAABkPGzJkiUmICDALFq0yOzcudOMGTPGhIWFmaKiImOMMcOHDzeTJ0+26tevX2/8/PzMnDlzzK5du0xGRoZp1KiR2bZtm1Uza9YsExYWZt58803zySefmAEDBpi4uDhTXl5u1dxwww2me/fuJi8vz3zwwQemXbt2Jj093Vq+evVq07hxYzNlyhRTWFhovb7//vsqj83pdBpJxul0XsgUAQBq2belR836L74z35Ye9XRXUA9U9fPb4yHKGGPmz59vWrVqZfz9/U1CQoL58MMPrWXJyclm5MiRbvVLly417du3N/7+/qZz587mnXfecVvucrnM9OnTTWRkpAkICDD9+vUzn332mVvN999/b9LT002TJk1MSEiIGTVqlDl06JC1fOTIkUbSGa/k5OQqj4sQBQD135KNX5m4yStM64dXmLjJK8ySjV95ukvwsKp+fnv8OVENGc+JAoD6rdBZrqtnrZbrJ5+Evg6HPpjcl6/TuYh5xXOiAADwpIKSI24BSpIqjNHekqOe6RC8CiEKAHDRigsPlo/Dvc3X4VBseGPPdAhehRAFALhoRYcGKXNgvHwdPyYpX4dDTw7swqk8VImfpzsAAFVV6CxXQckRxYUH8yGHGjP4ylbq3T5Ce0uOKja8Me8tVBkhCoBXyNq0T1OWb5PLSD4OKXNgvAZf2crT3UIDER0aRHhCtXE6D0C9V+gstwKUJLmMNHX5dhU6yz3bMQAXNUIUgHqPO6gA1EeEKAD1HndQAaiPCFEA6j3uoAJQH3FhOQCvwB1UnsfdkYA7QhQAr8EdVJ7D3ZHAmTidBwA4J+6OBCpHiAIAnBN3RwKVI0R5oUJnuTbsKeFfgQDqBHdHApUjRHmZrE37dPWs1Rr61zxdPWu1sjbt83SXADRw3B0JVM5hjDHnL4MdZWVlCg0NldPpVEhIyAVvr9BZrqtnrXY7rO7rcOiDyX35Ywag1hU6y7k7EheFqn5+c3eeFznXdQn8QQNQ27g7EnDH6TwvwnUJAADUH4QoL8J1CQAA1B+czvMyPLUZANCQePOT8AlRXojrEgAADYG3Pwmf03kALgjPLQNgR0N4Ej5HogDY5u3/igTgOQ3hjnOORAGwpSH8KxKA5zSEO84JUQBs4fvUAFyIhnDHOafzANhy+l+RP3+Cvjf9KxKAZ3n7HecciQJgS0P4VyQAz4sODVJSm0u88m8HR6IA2Obt/4oEgAtBiAJwQXhuGWqDNz+AERcPQhQAoF7h0RnwFlwTBQCoN3h0BrwJIQoAUG/w6Ax4E0IUAKDeaAgPYMTFgxAFAKg3eHQGvAkXlgMA6hUenQFvQYgCANQ7PDoD3oDTeQAAADYQogAA9U6hs1wb9pTwaAPUa5zOAwDUKzxsE96CI1EAgHqDh23CmxCiAAD1Bg/bhDchRAEA6g0etglvQogCANQbPGwT3oQLywEA9QoP24S3IEQBAOodHrYJb8DpPAAAABvqRYhasGCBYmNjFRgYqMTERG3cuPGc9cuWLVOHDh0UGBio+Ph4ZWdnuy03xmjGjBmKjo5WUFCQUlJStHv3breagwcPatiwYQoJCVFYWJhGjx6tw4cPu9V88sknuvbaaxUYGKiYmBjNnj27ZgYMAAC8nsdDVFZWliZNmqSMjAxt3rxZXbt2VWpqqg4cOFBp/YYNG5Senq7Ro0dry5YtSktLU1pamrZv327VzJ49W/PmzdPChQuVl5en4OBgpaam6tixY1bNsGHDtGPHDq1atUorVqzQunXrNGbMGGt5WVmZrr/+erVu3Vr5+fl6+umn9cgjj+gvf/lL7U0GAADwHsbDEhISzLhx46zfKyoqTIsWLUxmZmal9YMGDTL9+/d3a0tMTDRjx441xhjjcrlMVFSUefrpp63lpaWlJiAgwCxevNgYY8zOnTuNJLNp0yar5j//+Y9xOBzmm2++McYY8+c//9n84he/MMePH7dqHn74YXP55ZdXeWxOp9NIMk6ns8rrAAAAz6rq57dHj0SdOHFC+fn5SklJsdp8fHyUkpKi3NzcStfJzc11q5ek1NRUq76goEBFRUVuNaGhoUpMTLRqcnNzFRYWpp49e1o1KSkp8vHxUV5enlXTu3dv+fv7u+3ns88+0w8//FBp344fP66ysjK3FwAAaJg8GqJKSkpUUVGhyMhIt/bIyEgVFRVVuk5RUdE560//PF9N8+bN3Zb7+fmpWbNmbjWVbeOn+/i5zMxMhYaGWq+YmJjKBw4AALyex6+JakimTJkip9Npvfbv3+/pLgEAgFri0RAVHh4uX19fFRcXu7UXFxcrKiqq0nWioqLOWX/65/lqfn7h+qlTp3Tw4EG3msq28dN9/FxAQIBCQkLcXgAAoGHyaIjy9/dXjx49lJOTY7W5XC7l5OQoKSmp0nWSkpLc6iVp1apVVn1cXJyioqLcasrKypSXl2fVJCUlqbS0VPn5+VbN6tWr5XK5lJiYaNWsW7dOJ0+edNvP5Zdfrl/84hcXOHIAAOD16uhC97NasmSJCQgIMIsWLTI7d+40Y8aMMWFhYaaoqMgYY8zw4cPN5MmTrfr169cbPz8/M2fOHLNr1y6TkZFhGjVqZLZt22bVzJo1y4SFhZk333zTfPLJJ2bAgAEmLi7OlJeXWzU33HCD6d69u8nLyzMffPCBadeunUlPT7eWl5aWmsjISDN8+HCzfft2s2TJEtO4cWPzwgsvVHls3J0HAID3qernt8dDlDHGzJ8/37Rq1cr4+/ubhIQE8+GHH1rLkpOTzciRI93qly5datq3b2/8/f1N586dzTvvvOO23OVymenTp5vIyEgTEBBg+vXrZz777DO3mu+//96kp6ebJk2amJCQEDNq1Chz6NAht5qPP/7YXHPNNSYgIMC0bNnSzJo1q1rjIkQBAOB9qvr57TDGGM8eC2u4nE6nwsLCtH//fq6PAgDAS5SVlSkmJkalpaUKDQ09ax1fQFyLDh06JEk86gAAAC906NChc4YojkTVIpfLpW+//VZNmzaVw+G4oG2dTsUX81Gti30OLvbxS8yBxBxIzIHEHEi1OwfGGB06dEgtWrSQj8/Z78HjSFQt8vHx0aWXXlqj2+TRCczBxT5+iTmQmAOJOZCYA6n25uBcR6BO42GbAAAANhCiAAAAbCBEeYmAgABlZGQoICDA013xmIt9Di728UvMgcQcSMyBxBxI9WMOuLAcAADABo5EAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZClIcsWLBAsbGxCgwMVGJiojZu3HjO+rlz5+ryyy9XUFCQYmJi9Ic//EHHjh2zlj/yyCNyOBxurw4dOtT2MC5Idebg5MmTmjlzptq0aaPAwEB17dpVK1euvKBt1gc1PQfe9j5Yt26dbrnlFrVo0UIOh0NvvPHGeddZu3atfvnLXyogIEBt27bVokWLzqjxlvdBbYy/ob8HCgsLNXToULVv314+Pj6aOHFipXXLli1Thw4dFBgYqPj4eGVnZ9d852tIbczBokWLzngfBAYG1s4AakB152D58uX61a9+pYiICIWEhCgpKUnvvvvuGXW1/beAEOUBWVlZmjRpkjIyMrR582Z17dpVqampOnDgQKX1r732miZPnqyMjAzt2rVLf//735WVlaWpU6e61XXu3FmFhYXW64MPPqiL4dhS3TmYNm2aXnjhBc2fP187d+7Ub3/7W912223asmWL7W16Wm3MgeRd74MjR46oa9euWrBgQZXqCwoK1L9/f/Xt21dbt27VxIkTdffdd7v98fSm90FtjF9q2O+B48ePKyIiQtOmTVPXrl0rrdmwYYPS09M1evRobdmyRWlpaUpLS9P27dtrsus1pjbmQPrxSd4/fR989dVXNdXlGlfdOVi3bp1+9atfKTs7W/n5+erbt69uueWWuv9MMKhzCQkJZty4cdbvFRUVpkWLFiYzM7PS+nHjxpnrrrvOrW3SpEnm6quvtn7PyMgwXbt2rZX+1obqzkF0dLR57rnn3NoGDhxohg0bZnubnlYbc+Bt74OfkmT+/e9/n7PmoYceMp07d3ZrGzx4sElNTbV+97b3wWk1Nf6G/h74qeTkZDNhwoQz2gcNGmT69+/v1paYmGjGjh17gT2sfTU1By+99JIJDQ2tsX7VperOwWmdOnUyjz76qPV7Xfwt4EhUHTtx4oTy8/OVkpJitfn4+CglJUW5ubmVrtOrVy/l5+dbhyG//PJLZWdn66abbnKr2717t1q0aKHLLrtMw4YN0759+2pvIBfAzhwcP378jEPRQUFB1r+w7WzTk2pjDk7zlveBHbm5uW5zJkmpqanWnHnb+6C6zjf+0xrye6AqqjpPDd3hw4fVunVrxcTEaMCAAdqxY4enu1RrXC6XDh06pGbNmkmqu78FhKg6VlJSooqKCkVGRrq1R0ZGqqioqNJ1hg4dqpkzZ+qaa65Ro0aN1KZNG/Xp08ftdF5iYqIWLVqklStX6vnnn1dBQYGuvfZaHTp0qFbHY4edOUhNTdWf/vQn7d69Wy6XS6tWrdLy5ctVWFhoe5ueVBtzIHnX+8COoqKiSuesrKxM5eXlXvc+qK7zjV9q+O+BqjjbPDWE90BVXX755XrxxRf15ptv6pVXXpHL5VKvXr309ddfe7prtWLOnDk6fPiwBg0aJKnuPhMIUV5g7dq1evLJJ/XnP/9Zmzdv1vLly/XOO+/oscces2puvPFG3XnnnbriiiuUmpqq7OxslZaWaunSpR7sec159tln1a5dO3Xo0EH+/v4aP368Ro0aJR+fi+ctXJU5aOjvA5wf7wFIUlJSkkaMGKFu3bopOTlZy5cvV0REhF544QVPd63Gvfbaa3r00Ue1dOlSNW/evE73ffF8AtUT4eHh8vX1VXFxsVt7cXGxoqKiKl1n+vTpGj58uO6++27Fx8frtttu05NPPqnMzEy5XK5K1wkLC1P79u31xRdf1PgYLpSdOYiIiNAbb7yhI0eO6KuvvtKnn36qJk2a6LLLLrO9TU+qjTmoTH1+H9gRFRVV6ZyFhIQoKCjI694H1XW+8Vemob0HquJs89QQ3gN2NWrUSN27d29w74MlS5bo7rvv1tKlS91O3dXV3wJCVB3z9/dXjx49lJOTY7W5XC7l5OQoKSmp0nWOHj16xhEXX19fSZI5y1cfHj58WHv27FF0dHQN9bzm2JmD0wIDA9WyZUudOnVK//rXvzRgwIAL3qYn1MYcVKY+vw/sSEpKcpszSVq1apU1Z972Pqiu842/Mg3tPVAVduapoauoqNC2bdsa1Ptg8eLFGjVqlBYvXqz+/fu7LauzvwU1dok6qmzJkiUmICDALFq0yOzcudOMGTPGhIWFmaKiImOMMcOHDzeTJ0+26jMyMkzTpk3N4sWLzZdffmnee+8906ZNGzNo0CCr5v777zdr1641BQUFZv369SYlJcWEh4ebAwcO1Pn4qqK6c/Dhhx+af/3rX2bPnj1m3bp15rrrrjNxcXHmhx9+qPI265vamANvex8cOnTIbNmyxWzZssVIMn/605/Mli1bzFdffWWMMWby5Mlm+PDhVv2XX35pGjdubB588EGza9cus2DBAuPr62tWrlxp1XjT+6A2xt/Q3wPGGKu+R48eZujQoWbLli1mx44d1vL169cbPz8/M2fOHLNr1y6TkZFhGjVqZLZt21anY6uq2piDRx991Lz77rtmz549Jj8/3wwZMsQEBga61dQn1Z2DV1991fj5+ZkFCxaYwsJC61VaWmrV1MXfAkKUh8yfP9+0atXK+Pv7m4SEBPPhhx9ay5KTk83IkSOt30+ePGkeeeQR06ZNGxMYGGhiYmLM73//e7cPz8GDB5vo6Gjj7+9vWrZsaQYPHmy++OKLOhxR9VVnDtauXWs6duxoAgICzCWXXGKGDx9uvvnmm2ptsz6q6TnwtvfBmjVrjKQzXqfHPXLkSJOcnHzGOt26dTP+/v7msssuMy+99NIZ2/WW90FtjP9ieA9UVt+6dWu3mqVLl5r27dsbf39/07lzZ/POO+/UzYBsqI05mDhxovX/QGRkpLnpppvM5s2b625Q1VTdOUhOTj5n/Wm1/bfAYcxZzgcBAADgrLgmCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAF5G1a9fK4XCotLTU010BvB4hCkCtuOuuu+RwODRr1iy39jfeeEMOh8P63Rijv/71r0pKSlJISIiaNGmizp07a8KECVX+stSjR49qypQpatOmjQIDAxUREaHk5GS9+eabVk1sbKzmzp1bI2OrbafnzuFwqFGjRoqLi9NDDz2kY8eOVWs7ffr00cSJE93aevXqpcLCQoWGhtZgj4GLEyEKQK0JDAzUU089pR9++KHS5cYYDR06VPfdd59uuukmvffee9q5c6f+/ve/KzAwUI8//niV9vPb3/5Wy5cv1/z58/Xpp59q5cqVuuOOO/T999/X5HDq1A033KDCwkJ9+eWXeuaZZ/TCCy8oIyPjgrfr7++vqKgotyALwKYa/RIZAPg/I0eONDfffLPp0KGDefDBB632f//73+b0n57FixcbSebNN9+sdBsul6tK+woNDTWLFi066/LKvmfrtP/+97/mmmuuMYGBgebSSy819957rzl8+LC1/B//+Ifp0aOHadKkiYmMjDTp6emmuLjYWn76O79WrlxpunXrZgIDA03fvn1NcXGxyc7ONh06dDBNmzY16enp5siRI1Uaz8iRI82AAQPc2gYOHGi6d+9u/V5SUmKGDBliWrRoYYKCgkyXLl3Ma6+95raNn4+5oKDA6u9Pv3vz9ddfN506dTL+/v6mdevWZs6cOVXqJ3Cx40gUgFrj6+urJ598UvPnz9fXX399xvLFixfr8ssv16233lrp+lU9WhIVFaXs7GwdOnSo0uXLly/XpZdeqpkzZ6qwsFCFhYWSpD179uiGG27Q7bffrk8++URZWVn64IMPNH78eGvdkydP6rHHHtPHH3+sN954Q3v37tVdd911xj4eeeQRPffcc9qwYYP279+vQYMGae7cuXrttdf0zjvv6L333tP8+fOrNJ6f2759uzZs2CB/f3+r7dixY+rRo4feeecdbd++XWPGjNHw4cO1ceNGSdKzzz6rpKQk3XPPPdaYY2Jizth2fn6+Bg0apCFDhmjbtm165JFHNH36dC1atMhWX4GLiqdTHICG6adHU6666irzm9/8xhjjfiSqQ4cO5tZbb3Vbb8KECSY4ONgEBwebli1bVmlf77//vrn00ktNo0aNTM+ePc3EiRPNBx984FbTunVr88wzz7i1jR492owZM8at7b///a/x8fEx5eXlle5r06ZNRpI5dOiQMeb/H4n63//9X6smMzPTSDJ79uyx2saOHWtSU1OrNJ6RI0caX19fExwcbAICAowk4+PjY15//fVzrte/f39z//33W78nJyebCRMmuNX8/EjU0KFDza9+9Su3mgcffNB06tSpSn0FLmYciQJQ65566im9/PLL2rVr13lr/+d//kdbt27VjBkzdPjw4Sptv3fv3vryyy+Vk5OjO+64Qzt27NC1116rxx577Jzrffzxx1q0aJGaNGlivVJTU+VyuVRQUCDpxyM1t9xyi1q1aqWmTZsqOTlZkrRv3z63bV1xxRXWf0dGRqpx48a67LLL3NoOHDhQpfFIUt++fbV161bl5eVp5MiRGjVqlG6//XZreUVFhR577DHFx8erWbNmatKkid59990z+nU+u3bt0tVXX+3WdvXVV2v37t2qqKio1raAiw0hCkCt6927t1JTUzVlyhS39nbt2umzzz5za4uIiFDbtm3VvHnzau2jUaNGuvbaa/Xwww/rvffe08yZM/XYY4/pxIkTZ13n8OHDGjt2rLZu3Wq9Pv74Y+3evVtt2rTRkSNHlJqaqpCQEL366qvatGmT/v3vf0vSGdtt1KiR9d+n76r7KYfDIZfLVeXxBAcHq23bturatatefPFF5eXl6e9//7u1/Omnn9azzz6rhx9+WGvWrNHWrVuVmpp6zvECqFl+nu4AgIvDrFmz1K1bN11++eVWW3p6uoYOHao333xTAwYMqNH9derUSadOndKxY8fk7+8vf3//M46s/PKXv9TOnTvVtm3bSrexbds2ff/995o1a5Z1PdFHH31Uo/2sCh8fH02dOlWTJk3S0KFDFRQUpPXr12vAgAH69a9/LUlyuVz6/PPP1alTJ2u9ysb8cx07dtT69evd2tavX6/27dvL19e35gcDNCAciQJQJ+Lj4zVs2DDNmzfPahsyZIjuuOMODRkyRDNnzlReXp727t2r999/X1lZWVX+EO/Tp49eeOEF5efna+/evcrOztbUqVPVt29fhYSESPrxOVHr1q3TN998o5KSEknSww8/rA0bNmj8+PHaunWrdu/erTfffNO6sLxVq1by9/fX/Pnz9eWXX+qtt9467ynC2nLnnXfK19dXCxYskPTjUbxVq1Zpw4YN2rVrl8aOHavi4mK3dWJjY605LSkpqfRI2P3336+cnBw99thj+vzzz/Xyyy/rueee0wMPPFAn4wK8GSEKQJ2ZOXOm2we5w+FQVlaW5s6dq+zsbPXr10+XX365fvOb3ygmJkYffPBBlbabmpqql19+Wddff706duyoe++9V6mpqVq6dKnbvvfu3as2bdooIiJC0o/XMb3//vv6/PPPde2116p79+6aMWOGWrRoIenHU4uLFi3SsmXL1KlTJ82aNUtz5sypwRmpOj8/P40fP16zZ8/WkSNHNG3aNP3yl79Uamqq+vTpo6ioKKWlpbmt88ADD8jX11edOnVSREREpddL/fKXv9TSpUu1ZMkSdenSRTNmzNDMmTMrvQMRgDuHMcZ4uhMAAADehiNRAAAANhCiANR7P30Ewc9f//3vfz3dvWrZt2/fOcdT3UcUAPAcTucBqPfO9UXELVu2VFBQUB325sKcOnVKe/fuPevy2NhY+flx4zTgDQhRAAAANnA6DwAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGDD/wNhnUWDlfE2SgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAStBJREFUeJzt3X1cVGX+//H3AA4gCmQgoIGgad6RmgrRjWhSVFaStSq6amZpu925Vpv6TSlrw8zd3MzNtrZst1K0dbPULL+auSqRoZZ3mZmmFWBoDN7gHXP9/ujn+TaJCkdgGHk9H4954Fznc85c53DivLvOzTiMMUYAAACoEj9vdwAAAMAXEaIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAJzXHn/8cTkcjkrVOhwOPf744zXan549e6pnz551dnkAKo8QBaBWzJo1Sw6Hw3oFBASoefPmuuOOO/T99997u3t1Tnx8vMf2atq0qa6++mr95z//qZblHz58WI8//rhWrFhRLcsD6iNCFIBaNWnSJP3rX//SzJkzdcMNN+iNN95Qamqqjhw5UiOf99hjj6msrKxGll3TOnfurH/961/617/+pYcfflg//PCD+vXrp5kzZ57zsg8fPqwnnniCEAWcgwBvdwBA/XLDDTeoW7dukqS77rpLEREReuaZZ/Tuu++qf//+1f55AQEBCgjwzT91zZs3129/+1vr/dChQ3XxxRfrueee0z333OPFngGQGIkC4GVXX321JGnHjh0e7V9++aVuv/12NWnSREFBQerWrZveffddj5rjx4/riSeeUOvWrRUUFKQLL7xQV111lZYuXWrVVHRN1NGjR/WHP/xBkZGRaty4sW655RZ99913p/TtjjvuUHx8/CntFS3ztdde0zXXXKOmTZsqMDBQ7du314svvlilbXE20dHRateunXbu3HnGur1792rEiBGKiopSUFCQOnXqpNdff92avmvXLkVGRkqSnnjiCeuUYU1fDwacb3zzf88AnDd27dolSbrgggusts2bN+vKK69U8+bNNXbsWIWEhGju3LnKyMjQv//9b916662Sfg4z2dnZuuuuu5SUlKTS0lJ99tlnWrduna699trTfuZdd92lN954Q4MGDdIVV1yh5cuXq0+fPue0Hi+++KI6dOigW265RQEBAXrvvff0+9//Xm63W/fee+85Lfuk48ePa8+ePbrwwgtPW1NWVqaePXvq66+/1n333aeEhATNmzdPd9xxh0pKSvTggw8qMjJSL774on73u9/p1ltvVb9+/SRJl156abX0E6g3DADUgtdee81IMv/7v/9rfvzxR7Nnzx7z9ttvm8jISBMYGGj27Nlj1fbu3dskJiaaI0eOWG1ut9tcccUVpnXr1lZbp06dTJ8+fc74uVlZWeaXf+o2bNhgJJnf//73HnWDBg0ykkxWVpbVNmzYMNOiRYuzLtMYYw4fPnxKXXp6umnZsqVHW2pqqklNTT1jn40xpkWLFua6664zP/74o/nxxx/N559/bgYOHGgkmfvvv/+0y5s2bZqRZN544w2r7dixYyYlJcU0atTIlJaWGmOM+fHHH09ZXwBVw+k8ALUqLS1NkZGRio2N1e23366QkBC9++67uuiiiyRJ+/fv1/Lly9W/f38dOHBAxcXFKi4u1r59+5Senq7t27dbd/OFh4dr8+bN2r59e6U/f/HixZKkBx54wKN99OjR57RewcHB1r9dLpeKi4uVmpqqb775Ri6Xy9YyP/zwQ0VGRioyMlKdOnXSvHnzNGTIED3zzDOnnWfx4sWKjo5WZmam1dagQQM98MADOnjwoD7++GNbfQFwKk7nAahVM2bMUJs2beRyufTqq69q5cqVCgwMtKZ//fXXMsZowoQJmjBhQoXL2Lt3r5o3b65Jkyapb9++atOmjTp27Kjrr79eQ4YMOeNpqW+//VZ+fn5q1aqVR/sll1xyTuu1evVqZWVlKTc3V4cPH/aY5nK5FBYWVuVlJicn66mnnpLD4VDDhg3Vrl07hYeHn3Geb7/9Vq1bt5afn+f/I7dr186aDqB6EKIA1KqkpCTr7ryMjAxdddVVGjRokLZt26ZGjRrJ7XZLkh5++GGlp6dXuIyLL75YktSjRw/t2LFDCxYs0IcffqhXXnlFzz33nGbOnKm77rrrnPt6uod0lpeXe7zfsWOHevfurbZt2+ovf/mLYmNj5XQ6tXjxYj333HPWOlVVRESE0tLSbM0LoOYRogB4jb+/v7Kzs9WrVy+98MILGjt2rFq2bCnp51NQlQkQTZo00fDhwzV8+HAdPHhQPXr00OOPP37aENWiRQu53W7t2LHDY/Rp27Ztp9RecMEFKikpOaX916M57733no4ePap3331XcXFxVvtHH3101v5XtxYtWuiLL76Q2+32GI368ssvrenS6QMigMrjmigAXtWzZ08lJSVp2rRpOnLkiJo2baqePXvqpZdeUkFBwSn1P/74o/Xvffv2eUxr1KiRLr74Yh09evS0n3fDDTdIkp5//nmP9mnTpp1S26pVK7lcLn3xxRdWW0FBwSlPDff395ckGWOsNpfLpddee+20/agpN954owoLC5WTk2O1nThxQtOnT1ejRo2UmpoqSWrYsKEkVRgSAVQOI1EAvO6RRx7Rb37zG82aNUv33HOPZsyYoauuukqJiYm6++671bJlSxUVFSk3N1ffffedPv/8c0lS+/bt1bNnT3Xt2lVNmjTRZ599prffflv33XffaT+rc+fOyszM1N/+9je5XC5dccUVWrZsmb7++utTagcOHKhHH31Ut956qx544AEdPnxYL774otq0aaN169ZZddddd52cTqduvvlmjRo1SgcPHtTLL7+spk2bVhgEa9LIkSP10ksv6Y477lB+fr7i4+P19ttva/Xq1Zo2bZoaN24s6ecL4du3b6+cnBy1adNGTZo0UceOHdWxY8da7S/g07x9eyCA+uHkIw7Wrl17yrTy8nLTqlUr06pVK3PixAljjDE7duwwQ4cONdHR0aZBgwamefPm5qabbjJvv/22Nd9TTz1lkpKSTHh4uAkODjZt27Y1f/rTn8yxY8esmooeR1BWVmYeeOABc+GFF5qQkBBz8803mz179lR4y/+HH35oOnbsaJxOp7nkkkvMG2+8UeEy3333XXPppZeaoKAgEx8fb5555hnz6quvGklm586dVl1VHnFwtsc3nG55RUVFZvjw4SYiIsI4nU6TmJhoXnvttVPmXbNmjenatatxOp087gCwwWHML8afAQAAUClcEwUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABs4GGbNcjtduuHH35Q48aN+YoFAAB8hDFGBw4cULNmzU75Mu9fIkTVoB9++EGxsbHe7gYAALBhz549uuiii047nRBVg05+vcKePXsUGhrq5d4AAIDKKC0tVWxsrHUcPx1CVA06eQovNDSUEAUAgI8526U4XFgOAABgAyEKAADABkIUAACADVwT5WXl5eU6fvy4t7vhU5xO5xlvOQUAoDYQorzEGKPCwkKVlJR4uys+x8/PTwkJCXI6nd7uCgCgHiNEecnJANW0aVM1bNiQh3FW0skHmBYUFCguLo7tBgDwGkKUF5SXl1sB6sILL/R2d3xOZGSkfvjhB504cUINGjTwdncAAPUUF5Z4wclroBo2bOjlnvimk6fxysvLvdwTAEB9RojyIk5F2cN2AwDUBYQoAAAAGwhRAAAANhCiUCV33HGHMjIyTmlfsWKFHA6HSkpKtGLFCvXt21cxMTEKCQlR586d9eabb54yz/79+zV69Gi1aNFCTqdTzZo105133qndu3fXwpoAAHxZgatMa3YUq8BV5rU+cHceqt2aNWt06aWX6tFHH1VUVJQWLlyooUOHKiwsTDfddJOknwPU5ZdfLqfTqZkzZ6pDhw7atWuXHnvsMXXv3l25ublq2bKll9cEAFAX5azdrXHzN8ptJD+HlN0vUQO6x9V6PwhRqHbjx4/3eP/ggw/qww8/1Pz5860Q9T//8z/64Ycf9PXXXys6OlqSFBcXpw8++ECtW7fWvffeq/fff7/W+w4AqNsKXGVWgJIkt5HGz9+kHm0iFRMWXKt94XTeeaAuDGmejcvlUpMmTST9/MDMOXPmaPDgwVaAOik4OFi///3v9cEHH2j//v3e6CoAoA7bWXzIClAnlRujXcWHa70vjET5OG8MaS5cuFCNGjXyaDvTM5vmzp2rtWvX6qWXXpIk/fjjjyopKVG7du0qrG/Xrp2MMfr666+VlJRUfR0HAPi8hIgQ+TnkEaT8HQ7FR9T+sxcZifJhpxvSrOkRqV69emnDhg0er1deeaXC2o8++kjDhw/Xyy+/rA4dOnhMM8ZUOA8AAKcTExas7H6J8v//zwz0dzj0dL+OtX4qT2IkyqedaUizJnemkJAQXXzxxR5t33333Sl1H3/8sW6++WY999xzGjp0qNUeGRmp8PBwbd26tcLlb926VQ6H45TPAABAkgZ0j1OPNpHaVXxY8RENvRKgJEaifNrJIc1f8taQ5q+tWLFCffr00TPPPKORI0d6TPPz81P//v311ltvqbCw0GNaWVmZ/va3vyk9Pd26hgoAgF+LCQtWSqsLvRagJEKUT6tLQ5q/9NFHH6lPnz564IEHdNttt6mwsFCFhYUeF4o//fTTio6O1rXXXqv3339fe/bs0cqVK5Wenq7jx49rxowZXlwDAADOjtN5Pq6uDGn+0uuvv67Dhw8rOztb2dnZVntqaqpWrFghSbrwwgv1ySefaNKkSRo1apQKCwvVpEkT3XDDDXrjjTcUF1f7z/sAAKAqHIare2tMaWmpwsLC5HK5FBoaarUfOXJEO3fuVEJCgoKCgrzYQ9/E9gMA1KTTHb9/jdN5AAAANhCiAAAAbCBEAQAA2OD1EDVjxgzFx8crKChIycnJ+vTTT89YP2/ePLVt21ZBQUFKTEzU4sWLPaYbYzRx4kTFxMQoODhYaWlp2r59u0fNn/70J11xxRVq2LChwsPDK/yc3bt3q0+fPmrYsKGaNm2qRx55RCdOnDindQUAAOcPr4aonJwcjRkzRllZWVq3bp06deqk9PR07d27t8L6NWvWKDMzUyNGjND69euVkZGhjIwMbdq0yaqZMmWKnn/+ec2cOVN5eXkKCQlRenq6jhw5YtUcO3ZMv/nNb/S73/2uws8pLy9Xnz59dOzYMa1Zs0avv/66Zs2apYkTJ1br+nNNvz1sNwBAnWC8KCkpydx7773W+/LyctOsWTOTnZ1dYX3//v1Nnz59PNqSk5PNqFGjjDHGuN1uEx0dbZ599llreklJiQkMDDSzZ88+ZXmvvfaaCQsLO6V98eLFxs/PzxQWFlptL774ogkNDTVHjx6t9Pq5XC4jybhcLo/2EydOmC1btpji4uJKLwv/p6SkxGzZssUcO3bM210BAJyHTnf8/jWvPSfq2LFjys/P17hx46w2Pz8/paWlKTc3t8J5cnNzNWbMGI+29PR0vfPOO5KknTt3qrCwUGlpadb0sLAwJScnKzc3VwMHDqxU33Jzc5WYmKioqCiPz/nd736nzZs3q0uXLhXOd/ToUR09etR6X1paWmGdv7+/wsPDrRG3hg0byuFwVFgLT263Wz/++KMaNmyogAAecwYA8B6vHYWKi4tVXl7uEVQkKSoqSl9++WWF8xQWFlZYf/KrQ07+PFNNZZzuc375GRXJzs7WE088UanPiI6OlqTTnrrE6fn5+SkuLo7gCQDwKv5XvhqNGzfOY6SstLRUsbGxFdY6HA7FxMSoadOmOn78eG118bzgdDrl5+f1eyIAAPWc10JURESE/P39VVRU5NFeVFRkjdL8WnR09BnrT/4sKipSTEyMR03nzp0r3bfo6OhT7hI8+bmn65skBQYGKjAwsNKfI/18as/f379K8wAAAO/z2v/OO51Ode3aVcuWLbPa3G63li1bppSUlArnSUlJ8aiXpKVLl1r1CQkJio6O9qgpLS1VXl7eaZd5us/ZuHGjx6m2pUuXKjQ0VO3bt6/0cgAAwPnLq6fzxowZo2HDhqlbt25KSkrStGnTdOjQIQ0fPlySNHToUDVv3tz6EtsHH3xQqamp+vOf/6w+ffpozpw5+uyzz/T3v/9d0s+nyEaPHq2nnnpKrVu3VkJCgiZMmKBmzZopIyPD+tzdu3dr//792r17t8rLy7VhwwZJ0sUXX6xGjRrpuuuuU/v27TVkyBBNmTJFhYWFeuyxx3TvvfdWeaQJAACcp2rpbsHTmj59uomLizNOp9MkJSWZTz75xJqWmppqhg0b5lE/d+5c06ZNG+N0Ok2HDh3MokWLPKa73W4zYcIEExUVZQIDA03v3r3Ntm3bPGqGDRtmJJ3y+uijj6yaXbt2mRtuuMEEBwebiIgI89BDD5njx49Xad0qe4skAACoOyp7/HYYw5MLa0plvwUaAADUHZU9fnOLEwAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALDB6yFqxowZio+PV1BQkJKTk/Xpp5+esX7evHlq27atgoKClJiYqMWLF3tMN8Zo4sSJiomJUXBwsNLS0rR9+3aPmv3792vw4MEKDQ1VeHi4RowYoYMHD3rUfPDBB7r88svVuHFjRUZG6rbbbtOuXbuqZZ0BAIDv82qIysnJ0ZgxY5SVlaV169apU6dOSk9P1969eyusX7NmjTIzMzVixAitX79eGRkZysjI0KZNm6yaKVOm6Pnnn9fMmTOVl5enkJAQpaen68iRI1bN4MGDtXnzZi1dulQLFy7UypUrNXLkSGv6zp071bdvX11zzTXasGGDPvjgAxUXF6tfv341tzEAAIBvMV6UlJRk7r33Xut9eXm5adasmcnOzq6wvn///qZPnz4ebcnJyWbUqFHGGGPcbreJjo42zz77rDW9pKTEBAYGmtmzZxtjjNmyZYuRZNauXWvVvP/++8bhcJjvv//eGGPMvHnzTEBAgCkvL7dq3n33XeNwOMyxY8cqvX4ul8tIMi6Xq9LzAAAA76rs8dtrI1HHjh1Tfn6+0tLSrDY/Pz+lpaUpNze3wnlyc3M96iUpPT3dqt+5c6cKCws9asLCwpScnGzV5ObmKjw8XN26dbNq0tLS5Ofnp7y8PElS165d5efnp9dee03l5eVyuVz617/+pbS0NDVo0OC063T06FGVlpZ6vAAAwPnJayGquLhY5eXlioqK8miPiopSYWFhhfMUFhaesf7kz7PVNG3a1GN6QECAmjRpYtUkJCToww8/1Pjx4xUYGKjw8HB99913mjt37hnXKTs7W2FhYdYrNjb2jPUAAMB3ef3C8rqosLBQd999t4YNG6a1a9fq448/ltPp1O233y5jzGnnGzdunFwul/Xas2dPLfYaAADUpgBvfXBERIT8/f1VVFTk0V5UVKTo6OgK54mOjj5j/cmfRUVFiomJ8ajp3LmzVfPrC9dPnDih/fv3W/PPmDFDYWFhmjJlilXzxhtvKDY2Vnl5ebr88ssr7F9gYKACAwPPtuoAAOA84LWRKKfTqa5du2rZsmVWm9vt1rJly5SSklLhPCkpKR71krR06VKrPiEhQdHR0R41paWlysvLs2pSUlJUUlKi/Px8q2b58uVyu91KTk6WJB0+fFh+fp6bxt/f3+ojAACAV+/OmzNnjgkMDDSzZs0yW7ZsMSNHjjTh4eGmsLDQGGPMkCFDzNixY6361atXm4CAADN16lSzdetWk5WVZRo0aGA2btxo1UyePNmEh4ebBQsWmC+++ML07dvXJCQkmLKyMqvm+uuvN126dDF5eXlm1apVpnXr1iYzM9OavmzZMuNwOMwTTzxhvvrqK5Ofn2/S09NNixYtzOHDhyu9ftydBwCA76ns8durIcoYY6ZPn27i4uKM0+k0SUlJ5pNPPrGmpaammmHDhnnUz50717Rp08Y4nU7ToUMHs2jRIo/pbrfbTJgwwURFRZnAwEDTu3dvs23bNo+affv2mczMTNOoUSMTGhpqhg8fbg4cOOBRM3v2bNOlSxcTEhJiIiMjzS233GK2bt1apXUjRAEA4Hsqe/x2GHOGK6VxTkpLSxUWFiaXy6XQ0FBvdwcAAFRCZY/f3J0HAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAzkmBq0xrdhSrwFXm7a4AQK0K8HYHAPiunLW7NW7+RrmN5OeQsvslakD3OG93CwBqBSNRAGwpcJVZAUqS3EYaP38TI1IA6g1CFABbdhYfsgLUSeXGaFfxYe90CABqGSEKgC0JESHyc3i2+Tscio9o6J0OAUAtI0QBsCUmLFjZ/RLl7/g5Sfk7HHq6X0fFhAV7uWcAUDu4sByAbQO6x6lHm0jtKj6s+IiGBCgA9QohCsA5iQkLJjwBqJc4nQcAAGADIQoAAMAGr4eoGTNmKD4+XkFBQUpOTtann356xvp58+apbdu2CgoKUmJiohYvXuwx3RijiRMnKiYmRsHBwUpLS9P27ds9avbv36/BgwcrNDRU4eHhGjFihA4ePHjKcqZOnao2bdooMDBQzZs315/+9KfqWWkAAODzvBqicnJyNGbMGGVlZWndunXq1KmT0tPTtXfv3grr16xZo8zMTI0YMULr169XRkaGMjIytGnTJqtmypQpev755zVz5kzl5eUpJCRE6enpOnLkiFUzePBgbd68WUuXLtXChQu1cuVKjRw50uOzHnzwQb3yyiuaOnWqvvzyS7377rtKSkqqmQ0BAAB8j/GipKQkc++991rvy8vLTbNmzUx2dnaF9f379zd9+vTxaEtOTjajRo0yxhjjdrtNdHS0efbZZ63pJSUlJjAw0MyePdsYY8yWLVuMJLN27Vqr5v333zcOh8N8//33Vk1AQID58ssvz2n9XC6XkWRcLtc5LQcAANSeyh6/vTYSdezYMeXn5ystLc1q8/PzU1pamnJzcyucJzc316NektLT0636nTt3qrCw0KMmLCxMycnJVk1ubq7Cw8PVrVs3qyYtLU1+fn7Ky8uTJL333ntq2bKlFi5cqISEBMXHx+uuu+7S/v37z7hOR48eVWlpqcervuJLaQEA5zuvhaji4mKVl5crKirKoz0qKkqFhYUVzlNYWHjG+pM/z1bTtGlTj+kBAQFq0qSJVfPNN9/o22+/1bx58/TPf/5Ts2bNUn5+vm6//fYzrlN2drbCwsKsV2xs7Bnrz1c5a3frysnLNejlPF05ebly1u72dpcAAKh2Xr+wvC5yu906evSo/vnPf+rqq69Wz5499Y9//EMfffSRtm3bdtr5xo0bJ5fLZb327NlTi72uG/hSWgBAfeG1EBURESF/f38VFRV5tBcVFSk6OrrCeaKjo89Yf/Ln2Wp+feH6iRMntH//fqsmJiZGAQEBatOmjVXTrl07SdLu3acfVQkMDFRoaKjHq77hS2kBAPWF10KU0+lU165dtWzZMqvN7XZr2bJlSklJqXCelJQUj3pJWrp0qVWfkJCg6Ohoj5rS0lLl5eVZNSkpKSopKVF+fr5Vs3z5crndbiUnJ0uSrrzySp04cUI7duywar766itJUosWLc5ltc97fCktAKDeqKUL3Ss0Z84cExgYaGbNmmW2bNliRo4cacLDw01hYaExxpghQ4aYsWPHWvWrV682AQEBZurUqWbr1q0mKyvLNGjQwGzcuNGqmTx5sgkPDzcLFiwwX3zxhenbt69JSEgwZWVlVs31119vunTpYvLy8syqVatM69atTWZmpjW9vLzcXHbZZaZHjx5m3bp15rPPPjPJycnm2muvrdL61de78+Z8+q1pOXaRafHoQtNy7CIz59Nvvd0lAAAqrbLHb6+GKGOMmT59uomLizNOp9MkJSWZTz75xJqWmppqhg0b5lE/d+5c06ZNG+N0Ok2HDh3MokWLPKa73W4zYcIEExUVZQIDA03v3r3Ntm3bPGr27dtnMjMzTaNGjUxoaKgZPny4OXDggEfN999/b/r162caNWpkoqKizB133GH27dtXpXWrryHKGGN+KDls1nxdbH4oOeztrgAAUCWVPX47jDHmzGNVsKu0tFRhYWFyuVz18vooAAB8UWWP39ydBwAAYAMhCgAAwAZCVD3CU8QBAKg+Ad7uAGpHztrd1kMw/RxSdr9EDege5+1uAQDgs2yPRJWUlOizzz7TZ599ppKSkmrsEqobTxEHAKD6VTlE7dq1S3369FFERISSk5OVnJysiIgI3XTTTdq1a1cNdBHniqeI1z+cugWAmlel03l79uzR5ZdfrgYNGujJJ5+0vgply5YtevHFF5WSkqK1a9fqoosuqpHOwp6TTxH/ZZDiKeLnL07dAkDtqNJzokaMGKGvv/5aH3zwgYKCgjymlZWV6frrr1fr1q31yiuvVHtHfVFdek5UztrdGj9/k8qNkb/Doaf7deTAeh4qcJXpysnLTwnMq8b2UkxYsPc6BgA+pLLH7yqNRC1ZskQ5OTmnBChJCg4O1pNPPqmBAwdWvbeocQO6x6lHm0jtKj6s+IiGHFDPU2c6dcvvHACqV5VCVHFxseLj4087vWXLltq/f/+59gk1JCYsmAPpeY5TtwBQe6p0YXlMTIy2bNly2umbNm1SdHT0OXcKgD0xYcHK7pcof4dDkqxTt4RnAKh+VRqJysjI0MMPP6xly5YpMjLSY9revXv16KOPKiMjozr7B6CKOHULALWjSheW//TTT0pOTlZhYaF++9vfqm3btjLGaOvWrXrrrbcUHR2tTz75RE2aNKnJPvuMunRhOQAAqJwaubD8ggsuUF5ensaPH685c+ZYD9kMDw/XoEGD9PTTTxOgAABAvVClkahfMsboxx9/lCRFRkbK8f+vwcD/YSQKAADfUyMjUb/kcDjUtGlTu7MDAAD4tCp/7cvixYt111136Y9//KO2bt3qMe2nn37SNddcU22dAwAAqKuqFKLeeust3XLLLSosLFRubq4uu+wyvfnmm9b0Y8eO6eOPP672TgIAANQ1VTqd9+yzz+ovf/mLHnjgAUnS3Llzdeedd+rIkSMaMWJEjXQQAACgLqpSiNq+fbtuvvlm633//v0VGRmpW265RcePH9ett95a7R0EAAC+ocBVpp3Fh5QQEVIvnlFXpRAVGhqqoqIiJSQkWG29evXSwoULddNNN+m7776r9g4CAIC6L2ftbo2bv1FuI/k5pOx+ief9F91X6ZqopKQkvf/++6e0p6am6r333tO0adOqq18AAMBHFLjKrAAl/fz9nePnb1KBq8y7HathVQpRf/jDHxQUFFThtJ49e+q9997T0KFDq6VjAADAN+wsPuTxxeeSVG6MdhUf9k6HakmVTud16dJFXbp0UWlpaYXTu3btqq5du1ZLxwAAgG9IiAiRn0MeQcrf4VB8REPvdaoWVClEhYeHV+rJ5OXl5bY7BAAAfEtMWLCy+yVq/PxNKjdG/g6Hnu7X8by/uLxKIeqjjz6y/m2M0Y033qhXXnlFzZs3r/aOAQDqr/p2l9f5YED3OPVoE6ldxYcVH9GwXvzeqhSiUlNTPd77+/vr8ssvV8uWLau1UwCA+qs+3uV1vogJC64X4emkKn/tCwAANaW+3uUF30SIAgDUGfX1Li/4pnMOUZW50BwAgMo4eZfXL9WHu7zgm6p0TVS/fv083h85ckT33HOPQkJCPNrnz59/7j0DANQ79fUuL/imKoWosLAwj/e//e1vq7UzAADUx7u84Jscxhhz9jLYUVpaqrCwMLlcLoWGhnq7OwAAoBIqe/zmwnIAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKgKSfv7NszY5ivqMMACqpSg/bBHB+ylm72/rSVz+HlN0vUQO6x3m7WwBQpzESBdRzBa4yK0BJkttI4+dvYkQKAM6CEAXUczuLD1kB6qRyY7Sr+LB3OgQAPoIQBdRzCREh8nN4tvk7HIqPaOidDqFKuJYN8B5CFFDPxYQFK7tfovwdPycpf4dDT/fryJe++oCctbt15eTlGvRynq6cvFw5a3d7u0tAvcIXENcgvoAYvqTAVaZdxYcVH9GQAOUDClxlunLyco9Tsf4Oh1aN7cXvDzhHlT1+c3ceAEk/j0hx8PUdZ7qWjd8jUDs4nQcAPohr2QDvI0QBgA/iWjbA+zidBwA+akD3OPVoE8m1bICXEKIAwIdxLRvgPZzOAwAAsIEQBQAAYAMhCgAAwIY6EaJmzJih+Ph4BQUFKTk5WZ9++ukZ6+fNm6e2bdsqKChIiYmJWrx4scd0Y4wmTpyomJgYBQcHKy0tTdu3b/eo2b9/vwYPHqzQ0FCFh4drxIgROnjwYIWf9/XXX6tx48YKDw8/p/UEAADnD6+HqJycHI0ZM0ZZWVlat26dOnXqpPT0dO3du7fC+jVr1igzM1MjRozQ+vXrlZGRoYyMDG3atMmqmTJlip5//nnNnDlTeXl5CgkJUXp6uo4cOWLVDB48WJs3b9bSpUu1cOFCrVy5UiNHjjzl844fP67MzExdffXV1b/yAADAZ3n9a1+Sk5PVvXt3vfDCC5Ikt9ut2NhY3X///Ro7duwp9QMGDNChQ4e0cOFCq+3yyy9X586dNXPmTBlj1KxZMz300EN6+OGHJUkul0tRUVGaNWuWBg4cqK1bt6p9+/Zau3atunXrJklasmSJbrzxRn333Xdq1qyZtexHH31UP/zwg3r37q3Ro0erpKSk0uvG174AAOB7Knv89upI1LFjx5Sfn6+0tDSrzc/PT2lpacrNza1wntzcXI96SUpPT7fqd+7cqcLCQo+asLAwJScnWzW5ubkKDw+3ApQkpaWlyc/PT3l5eVbb8uXLNW/ePM2YMaNS63P06FGVlpZ6vADgfFHgKtOaHcUqcJV5uytAneDV50QVFxervLxcUVFRHu1RUVH68ssvK5ynsLCwwvrCwkJr+sm2M9U0bdrUY3pAQICaNGli1ezbt0933HGH3njjjUqPImVnZ+uJJ56oVC0A+JKctbs1bv5GuY3k55Cy+yVqQPc4b3cL8CqvXxNVV919990aNGiQevToUel5xo0bJ5fLZb327NlTgz0EqhejDDidAleZFaAkyW2k8fM3sa+g3vPqSFRERIT8/f1VVFTk0V5UVKTo6OgK54mOjj5j/cmfRUVFiomJ8ajp3LmzVfPrC9dPnDih/fv3W/MvX75c7777rqZOnSrp5zv+3G63AgIC9Pe//1133nnnKX0LDAxUYGBgZVcfqDMYZcCZ7Cw+ZAWok8qN0a7iwzwtHfWaV0einE6nunbtqmXLllltbrdby5YtU0pKSoXzpKSkeNRL0tKlS636hIQERUdHe9SUlpYqLy/PqklJSVFJSYny8/OtmuXLl8vtdis5OVnSz9dNbdiwwXpNmjRJjRs31oYNG3TrrbdWzwYA6gBGGXA2CREh8nN4tvk7HIqPaOidDgF1hNe/O2/MmDEaNmyYunXrpqSkJE2bNk2HDh3S8OHDJUlDhw5V8+bNlZ2dLUl68MEHlZqaqj//+c/q06eP5syZo88++0x///vfJUkOh0OjR4/WU089pdatWyshIUETJkxQs2bNlJGRIUlq166drr/+et19992aOXOmjh8/rvvuu08DBw607sxr166dRz8/++wz+fn5qWPHjrW0ZYDawSgDziYmLFjZ/RI1fv4mlRsjf4dDT/fryP6Bes/rIWrAgAH68ccfNXHiRBUWFqpz585asmSJdWH47t275ef3fwNmV1xxhd566y099thjGj9+vFq3bq133nnHI9z88Y9/1KFDhzRy5EiVlJToqquu0pIlSxQUFGTVvPnmm7rvvvvUu3dv+fn56bbbbtPzzz9feysO1BEnRxl+GaQYZcCvDegepx5tIrWr+LDiIxoSoADVgedEnc94ThR8Rc7a3aeMMnBNFID6qrLHb6+PRAHwPkYZAKDqCFEAJP183QvhCQAqj+dEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFACgRhW4yrRmR7EKXGXe7gpQrQK83QEAwPkrZ+1ujZu/UW4j+Tmk7H6JGtA9ztvdAqoFI1EAgBpR4CqzApQkuY00fv4mRqRw3iBEAQBqxM7iQ1aAOqncGO0qPuydDgHVjBAFAKgRCREh8nN4tvk7HIqPaOidDgHVjBAFAKgRMWHByu6XKH/Hz0nK3+HQ0/06KiYs2Ms9A6oHF5YDAGrMgO5x6tEmUruKDys+oiEBCucVQhQAoEbFhAUTnnBe4nQeAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMCGOhGiZsyYofj4eAUFBSk5OVmffvrpGevnzZuntm3bKigoSImJiVq8eLHHdGOMJk6cqJiYGAUHBystLU3bt2/3qNm/f78GDx6s0NBQhYeHa8SIETp48KA1fcWKFerbt69iYmIUEhKizp07680336y+lQYAAD7N6yEqJydHY8aMUVZWltatW6dOnTopPT1de/furbB+zZo1yszM1IgRI7R+/XplZGQoIyNDmzZtsmqmTJmi559/XjNnzlReXp5CQkKUnp6uI0eOWDWDBw/W5s2btXTpUi1cuFArV67UyJEjPT7n0ksv1b///W998cUXGj58uIYOHaqFCxfW3MYAAAA+w2GMMd7sQHJysrp3764XXnhBkuR2uxUbG6v7779fY8eOPaV+wIABOnTokEeYufzyy9W5c2fNnDlTxhg1a9ZMDz30kB5++GFJksvlUlRUlGbNmqWBAwdq69atat++vdauXatu3bpJkpYsWaIbb7xR3333nZo1a1ZhX/v06aOoqCi9+uqrlVq30tJShYWFyeVyKTQ0tErbBQAAeEdlj99eHYk6duyY8vPzlZaWZrX5+fkpLS1Nubm5Fc6Tm5vrUS9J6enpVv3OnTtVWFjoURMWFqbk5GSrJjc3V+Hh4VaAkqS0tDT5+fkpLy/vtP11uVxq0qTJaacfPXpUpaWlHi8AAHB+8mqIKi4uVnl5uaKiojzao6KiVFhYWOE8hYWFZ6w/+fNsNU2bNvWYHhAQoCZNmpz2c+fOnau1a9dq+PDhp12f7OxshYWFWa/Y2NjT1gIAAN/m9WuifMFHH32k4cOH6+WXX1aHDh1OWzdu3Di5XC7rtWfPnlrsJQAAqE1eDVERERHy9/dXUVGRR3tRUZGio6MrnCc6OvqM9Sd/nq3m1xeunzhxQvv37z/lcz/++GPdfPPNeu655zR06NAzrk9gYKBCQ0M9XgAA4Pzk1RDldDrVtWtXLVu2zGpzu91atmyZUlJSKpwnJSXFo16Sli5datUnJCQoOjrao6a0tFR5eXlWTUpKikpKSpSfn2/VLF++XG63W8nJyVbbihUr1KdPHz3zzDMed+4BAADIeNmcOXNMYGCgmTVrltmyZYsZOXKkCQ8PN4WFhcYYY4YMGWLGjh1r1a9evdoEBASYqVOnmq1bt5qsrCzToEEDs3HjRqtm8uTJJjw83CxYsMB88cUXpm/fviYhIcGUlZVZNddff73p0qWLycvLM6tWrTKtW7c2mZmZ1vTly5ebhg0bmnHjxpmCggLrtW/fvkqvm8vlMpKMy+U6l00EAABqUWWP314PUcYYM336dBMXF2ecTqdJSkoyn3zyiTUtNTXVDBs2zKN+7ty5pk2bNsbpdJoOHTqYRYsWeUx3u91mwoQJJioqygQGBprevXubbdu2edTs27fPZGZmmkaNGpnQ0FAzfPhwc+DAAWv6sGHDjKRTXqmpqZVeL0IUAAC+p7LHb68/J+p8xnOiAADwPT7xnCgAAABfRYgC4DMKXGVas6NYBa4yb3cFNYzfNXxBgLc7AACVkbN2t8bN3yi3kfwcUna/RA3oHuftbqEG8LuGr2AkCkCdV+Aqsw6qkuQ20vj5mxilOA/xu4YvIUQBqPN2Fh+yDqonlRujXcWHvdMh1Bh+1/AlhCgAdV5CRIj8HJ5t/g6H4iMaeqdDqDH8ruFLCFEA6ryYsGBl90uUv+Pno6u/w6Gn+3VUTFiwl3uG6sbvGr6E50TVIJ4TBVSvAleZdhUfVnxEQw6q5zl+1/Cmyh6/uTsPwDkpcJVpZ/EhJUSE1PjBLiYsmANqPcHvGr6AEAXANm5FB1CfcU0UAFu4FR1AfUeIAmALt6IDqO8IUQBs4VZ0APUdIQqALdyKDqC+48JyALYN6B6nHm0iuRUdQL1EiAJwTrgVHUB9xek8AAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgfVOAq05odxSpwlXm7KwAA1FsB3u4AqiZn7W6Nm79RbiP5OaTsfoka0D3O290CAKDeYSTKhxS4yqwAJUluI42fv4kRKQAAvIAQ5UN2Fh+yAtRJ5cZoV/Fh73QIAIB6jBDlQxIiQuTn8GzzdzgUH9HQOx0CAKAeI0T5kJiwYGX3S5S/4+ck5e9w6Ol+HRUTFuzlngEAUP9wYbmPGdA9Tj3aRGpX8WHFRzQkQAEAfFqBq0w7iw8pISLE545phCgfFBMW7HM7GgAAv+brd5xzOg8AANS68+GOc0IUAACoded6x3ldePA0p/MAAECtO3nH+S+DVGXvOK8rpwEZiQIAALXO7h3ndek0ICNRAADAK+zccX6m04C1fdMVIQoAAHhNVe84P5fTgNWN03kAAMBn1KUHTzMSBQAAfMqA7nFqG91Ya3f9pO7xF6hT7AVe6QchCgAA+BTuzgMAAKiiunR3HiEKAAD4jHN9SGd1IkQBAOq9uvD0a1TOybvzfom78wAA8IKctbt15eTlGvRynq6cvFw5a3d7u0s4g7p0d57DGGPOXgY7SktLFRYWJpfLpdDQUG93BwDwKwWuMl05efkpzxxaNbaXVw7KqLwCV1mVHtJZFZU9fteJkagZM2YoPj5eQUFBSk5O1qeffnrG+nnz5qlt27YKCgpSYmKiFi9e7DHdGKOJEycqJiZGwcHBSktL0/bt2z1q9u/fr8GDBys0NFTh4eEaMWKEDh486FHzxRdf6Oqrr1ZQUJBiY2M1ZcqU6llhAECdUJeur0HVxIQFK6XVhV4Nu14PUTk5ORozZoyysrK0bt06derUSenp6dq7d2+F9WvWrFFmZqZGjBih9evXKyMjQxkZGdq0aZNVM2XKFD3//POaOXOm8vLyFBISovT0dB05csSqGTx4sDZv3qylS5dq4cKFWrlypUaOHGlNLy0t1XXXXacWLVooPz9fzz77rB5//HH9/e9/r7mNAQCoVXXp+hr4IONlSUlJ5t5777Xel5eXm2bNmpns7OwK6/v372/69Onj0ZacnGxGjRpljDHG7Xab6Oho8+yzz1rTS0pKTGBgoJk9e7YxxpgtW7YYSWbt2rVWzfvvv28cDof5/vvvjTHG/O1vfzMXXHCBOXr0qFXz6KOPmksuuaTS6+ZyuYwk43K5Kj0PAKB2zfn0W9Ny7CLT4tGFpuXYRWbOp996u0vwssoev706EnXs2DHl5+crLS3NavPz81NaWppyc3MrnCc3N9ejXpLS09Ot+p07d6qwsNCjJiwsTMnJyVZNbm6uwsPD1a1bN6smLS1Nfn5+ysvLs2p69Oghp9Pp8Tnbtm3TTz/9VGHfjh49qtLSUo8XAKBuG9A9TqvG9tLsuy/XqrG9vPLQRvgmr4ao4uJilZeXKyoqyqM9KipKhYWFFc5TWFh4xvqTP89W07RpU4/pAQEBatKkiUdNRcv45Wf8WnZ2tsLCwqxXbGxsxSsOAKhT6sL1NfA9Xr8m6nwybtw4uVwu67Vnzx5vdwkAANQQr4aoiIgI+fv7q6ioyKO9qKhI0dHRFc4THR19xvqTP89W8+sL10+cOKH9+/d71FS0jF9+xq8FBgYqNDTU4wUAAM5PXg1RTqdTXbt21bJly6w2t9utZcuWKSUlpcJ5UlJSPOolaenSpVZ9QkKCoqOjPWpKS0uVl5dn1aSkpKikpET5+flWzfLly+V2u5WcnGzVrFy5UsePH/f4nEsuuUQXXOCdb4sGAAB1SC1d6H5ac+bMMYGBgWbWrFlmy5YtZuTIkSY8PNwUFhYaY4wZMmSIGTt2rFW/evVqExAQYKZOnWq2bt1qsrKyTIMGDczGjRutmsmTJ5vw8HCzYMEC88UXX5i+ffuahIQEU1ZWZtVcf/31pkuXLiYvL8+sWrXKtG7d2mRmZlrTS0pKTFRUlBkyZIjZtGmTmTNnjmnYsKF56aWXKr1u3J0HAIDvqezx2+shyhhjpk+fbuLi4ozT6TRJSUnmk08+saalpqaaYcOGedTPnTvXtGnTxjidTtOhQwezaNEij+lut9tMmDDBREVFmcDAQNO7d2+zbds2j5p9+/aZzMxM06hRIxMaGmqGDx9uDhw44FHz+eefm6uuusoEBgaa5s2bm8mTJ1dpvQhRAAD4nsoev/nalxrE174AAOB7fOprXwAAAHwNIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2BHi7A+ezkzc+8kXEAAD4jpPH7bM9wIAQVYMOHDggSXwRMQAAPujAgQMKCws77XSeE1WD3G63fvjhBzVu3FgOh+OcllVaWqrY2Fjt2bOn3j5zqr5vg/q+/hLbQGIbSGwDiW0g1ew2MMbowIEDatasmfz8Tn/lEyNRNcjPz08XXXRRtS6TLzZmG9T39ZfYBhLbQGIbSGwDqea2wZlGoE7iwnIAAAAbCFEAAAA2EKJ8RGBgoLKyshQYGOjtrnhNfd8G9X39JbaBxDaQ2AYS20CqG9uAC8sBAABsYCQKAADABkIUAACADYQoAAAAGwhRAAAANhCivGTGjBmKj49XUFCQkpOT9emnn56xftq0abrkkksUHBys2NhY/eEPf9CRI0es6Y8//rgcDofHq23btjW9GuekKtvg+PHjmjRpklq1aqWgoCB16tRJS5YsOadl1gXVvQ18bT9YuXKlbr75ZjVr1kwOh0PvvPPOWedZsWKFLrvsMgUGBuriiy/WrFmzTqnxlf2gJtb/fN8HCgoKNGjQILVp00Z+fn4aPXp0hXXz5s1T27ZtFRQUpMTERC1evLj6O19NamIbzJo165T9ICgoqGZWoBpUdRvMnz9f1157rSIjIxUaGqqUlBR98MEHp9TV9N8CQpQX5OTkaMyYMcrKytK6devUqVMnpaena+/evRXWv/XWWxo7dqyysrK0detW/eMf/1BOTo7Gjx/vUdehQwcVFBRYr1WrVtXG6thS1W3w2GOP6aWXXtL06dO1ZcsW3XPPPbr11lu1fv1628v0tprYBpJv7QeHDh1Sp06dNGPGjErV79y5U3369FGvXr20YcMGjR49WnfddZfHH09f2g9qYv2l83sfOHr0qCIjI/XYY4+pU6dOFdasWbNGmZmZGjFihNavX6+MjAxlZGRo06ZN1dn1alMT20D6+Unev9wPvv322+rqcrWr6jZYuXKlrr32Wi1evFj5+fnq1auXbr755to/JhjUuqSkJHPvvfda78vLy02zZs1MdnZ2hfX33nuvueaaazzaxowZY6688krrfVZWlunUqVON9LcmVHUbxMTEmBdeeMGjrV+/fmbw4MG2l+ltNbENfG0/+CVJ5j//+c8Za/74xz+aDh06eLQNGDDApKenW+99bT84qbrW/3zfB34pNTXVPPjgg6e09+/f3/Tp08ejLTk52YwaNeoce1jzqmsbvPbaayYsLKza+lWbqroNTmrfvr154oknrPe18beAkahaduzYMeXn5ystLc1q8/PzU1pamnJzcyuc54orrlB+fr41DPnNN99o8eLFuvHGGz3qtm/frmbNmqlly5YaPHiwdu/eXXMrcg7sbIOjR4+eMhQdHBxs/R+2nWV6U01sg5N8ZT+wIzc312ObSVJ6erq1zXxtP6iqs63/SefzPlAZld1O57uDBw+qRYsWio2NVd++fbV582Zvd6nGuN1uHThwQE2aNJFUe38LCFG1rLi4WOXl5YqKivJoj4qKUmFhYYXzDBo0SJMmTdJVV12lBg0aqFWrVurZs6fH6bzk5GTNmjVLS5Ys0YsvvqidO3fq6quv1oEDB2p0feywsw3S09P1l7/8Rdu3b5fb7dbSpUs1f/58FRQU2F6mN9XENpB8az+wo7CwsMJtVlpaqrKyMp/bD6rqbOsvnf/7QGWcbjudD/tAZV1yySV69dVXtWDBAr3xxhtyu9264oor9N1333m7azVi6tSpOnjwoPr37y+p9o4JhCgfsGLFCj399NP629/+pnXr1mn+/PlatGiRnnzySavmhhtu0G9+8xtdeumlSk9P1+LFi1VSUqK5c+d6sefV569//atat26ttm3byul06r777tPw4cPl51d/duHKbIPzfT/A2bEPQJJSUlI0dOhQde7cWampqZo/f74iIyP10ksvebtr1e6tt97SE088oblz56pp06a1+tn15whUR0RERMjf319FRUUe7UVFRYqOjq5wngkTJmjIkCG66667lJiYqFtvvVVPP/20srOz5Xa7K5wnPDxcbdq00ddff13t63Cu7GyDyMhIvfPOOzp06JC+/fZbffnll2rUqJFatmxpe5neVBPboCJ1eT+wIzo6usJtFhoaquDgYJ/bD6rqbOtfkfNtH6iM022n82EfsKtBgwbq0qXLebcfzJkzR3fddZfmzp3rcequtv4WEKJqmdPpVNeuXbVs2TKrze12a9myZUpJSalwnsOHD58y4uLv7y9JMqf56sODBw9qx44diomJqaaeVx872+CkoKAgNW/eXCdOnNC///1v9e3b95yX6Q01sQ0qUpf3AztSUlI8tpkkLV261NpmvrYfVNXZ1r8i59s+UBl2ttP5rry8XBs3bjyv9oPZs2dr+PDhmj17tvr06eMxrdb+FlTbJeqotDlz5pjAwEAza9Yss2XLFjNy5EgTHh5uCgsLjTHGDBkyxIwdO9aqz8rKMo0bNzazZ88233zzjfnwww9Nq1atTP/+/a2ahx56yKxYscLs3LnTrF692qSlpZmIiAizd+/eWl+/yqjqNvjkk0/Mv//9b7Njxw6zcuVKc80115iEhATz008/VXqZdU1NbANf2w8OHDhg1q9fb9avX28kmb/85S9m/fr15ttvvzXGGDN27FgzZMgQq/6bb74xDRs2NI888ojZunWrmTFjhvH39zdLliyxanxpP6iJ9T/f9wFjjFXftWtXM2jQILN+/XqzefNma/rq1atNQECAmTp1qtm6davJysoyDRo0MBs3bqzVdausmtgGTzzxhPnggw/Mjh07TH5+vhk4cKAJCgryqKlLqroN3nzzTRMQEGBmzJhhCgoKrFdJSYlVUxt/CwhRXjJ9+nQTFxdnnE6nSUpKMp988ok1LTU11QwbNsx6f/z4cfP444+bVq1amaCgIBMbG2t+//vfexw8BwwYYGJiYozT6TTNmzc3AwYMMF9//XUtrlHVVWUbrFixwrRr184EBgaaCy+80AwZMsR8//33VVpmXVTd28DX9oOPPvrISDrldXK9hw0bZlJTU0+Zp3PnzsbpdJqWLVua11577ZTl+sp+UBPrXx/2gYrqW7Ro4VEzd+5c06ZNG+N0Ok2HDh3MokWLameFbKiJbTB69Gjrv4GoqChz4403mnXr1tXeSlVRVbdBamrqGetPqum/BQ5jTnM+CAAAAKfFNVEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAKhHVqxYIYfDoZKSEm93BfB5hCgANeKOO+6Qw+HQ5MmTPdrfeecdORwO670xRi+//LJSUlIUGhqqRo0aqUOHDnrwwQcr/WWphw8f1rhx49SqVSsFBQUpMjJSqampWrBggVUTHx+vadOmVcu61bST287hcKhBgwZKSEjQH//4Rx05cqRKy+nZs6dGjx7t0XbFFVeooKBAYWFh1dhjoH4iRAGoMUFBQXrmmWf0008/VTjdGKNBgwbpgQce0I033qgPP/xQW7Zs0T/+8Q8FBQXpqaeeqtTn3HPPPZo/f76mT5+uL7/8UkuWLNHtt9+uffv2Vefq1Krrr79eBQUF+uabb/Tcc8/ppZdeUlZW1jkv1+l0Kjo62iPIArCpWr9EBgD+v2HDhpmbbrrJtG3b1jzyyCNW+3/+8x9z8k/P7NmzjSSzYMGCCpfhdrsr9VlhYWFm1qxZp51e0fdsnfTf//7XXHXVVSYoKMhcdNFF5v777zcHDx60pv/zn/80Xbt2NY0aNTJRUVEmMzPTFBUVWdNPfufXkiVLTOfOnU1QUJDp1auXKSoqMosXLzZt27Y1jRs3NpmZmebQoUOVWp9hw4aZvn37erT169fPdOnSxXpfXFxsBg4caJo1a2aCg4NNx44dzVtvveWxjF+v886dO63+/vK7N99++23Tvn1743Q6TYsWLczUqVMr1U+gvmMkCkCN8ff319NPP63p06fru+++O2X67Nmzdckll+iWW26pcP7KjpZER0dr8eLFOnDgQIXT58+fr4suukiTJk1SQUGBCgoKJEk7duzQ9ddfr9tuu01ffPGFcnJytGrVKt13333WvMePH9eTTz6pzz//XO+884527dqlO+6445TPePzxx/XCCy9ozZo12rNnj/r3769p06bprbfe0qJFi/Thhx9q+vTplVqfX9u0aZPWrFkjp9NptR05ckRdu3bVokWLtGnTJo0cOVJDhgzRp59+Kkn661//qpSUFN19993WOsfGxp6y7Pz8fPXv318DBw7Uxo0b9fjjj2vChAmaNWuWrb4C9Yq3UxyA89MvR1Muv/xyc+eddxpjPEei2rZta2655RaP+R588EETEhJiQkJCTPPmzSv1WR9//LG56KKLTIMGDUy3bt3M6NGjzapVqzxqWrRoYZ577jmPthEjRpiRI0d6tP33v/81fn5+pqysrMLPWrt2rZFkDhw4YIz5v5Go//3f/7VqsrOzjSSzY8cOq23UqFEmPT29UuszbNgw4+/vb0JCQkxgYKCRZPz8/Mzbb799xvn69OljHnroIet9amqqefDBBz1qfj0SNWjQIHPttdd61DzyyCOmffv2leorUJ8xEgWgxj3zzDN6/fXXtXXr1rPW/s///I82bNigiRMn6uDBg5Vafo8ePfTNN99o2bJluv3227V582ZdffXVevLJJ8843+eff65Zs2apUaNG1is9PV1ut1s7d+6U9PNIzc0336y4uDg1btxYqampkqTdu3d7LOvSSy+1/h0VFaWGDRuqZcuWHm179+6t1PpIUq9evbRhwwbl5eVp2LBhGj58uG677TZrenl5uZ588kklJiaqSZMmatSokT744INT+nU2W7du1ZVXXunRduWVV2r79u0qLy+v0rKA+oYQBaDG9ejRQ+np6Ro3bpxHe+vWrbVt2zaPtsjISF188cVq2rRplT6jQYMGuvrqq/Xoo4/qww8/1KRJk/Tkk0/q2LFjp53n4MGDGjVqlDZs2GC9Pv/8c23fvl2tWrXSoUOHlJ6ertDQUL355ptau3at/vOf/0jSKctt0KCB9e+Td9X9ksPhkNvtrvT6hISE6OKLL1anTp306quvKi8vT//4xz+s6c8++6z++te/6tFHH9VHH32kDRs2KD09/YzrC6B6BXi7AwDqh8mTJ6tz58665JJLrLbMzEwNGjRICxYsUN++fav189q3b68TJ07oyJEjcjqdcjqdp4ysXHbZZdqyZYsuvvjiCpexceNG7du3T5MnT7auJ/rss8+qtZ+V4efnp/Hjx2vMmDEaNGiQgoODtXr1avXt21e//e1vJUlut1tfffWV2rdvb81X0Tr/Wrt27bR69WqPttWrV6tNmzby9/ev/pUBziOMRAGoFYmJiRo8eLCef/55q23gwIG6/fbbNXDgQE2aNEl5eXnatWuXPv74Y+Xk5FT6IN6zZ0+99NJLys/P165du7R48WKNHz9evXr1UmhoqKSfnxO1cuVKff/99youLpYkPfroo1qzZo3uu+8+bdiwQdu3b9eCBQusC8vj4uLkdDo1ffp0ffPNN3r33XfPeoqwpvzmN7+Rv7+/ZsyYIennUbylS5dqzZo12rp1q0aNGqWioiKPeeLj461tWlxcXOFI2EMPPaRly5bpySef1FdffaXXX39dL7zwgh5++OFaWS/AlxGiANSaSZMmeRzIHQ6HcnJyNG3aNC1evFi9e/fWJZdcojvvvFOxsbFatWpVpZabnp6u119/Xdddd53atWun+++/X+np6Zo7d67HZ+/atUutWrVSZGSkpJ+vY/r444/11Vdf6eqrr1aXLl00ceJENWvWTNLPpxZnzZqlefPmqX379po8ebKmTp1ajVuk8gICAnTfffdpypQpOnTokB577DFddtllSk9PV8+ePRUdHa2MjAyPeR5++GH5+/urffv2ioyMrPB6qcsuu0xz587VnDlz1LFjR02cOFGTJk2q8A5EAJ4cxhjj7U4AAAD4GkaiAAAAbCBEAajzfvkIgl+//vvf/3q7e1Wye/fuM65PVR9RAMB7OJ0HoM470xcRN2/eXMHBwbXYm3Nz4sQJ7dq167TT4+PjFRDAjdOALyBEAQAA2MDpPAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIAN/w+/RNx7iFT8/gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARVRJREFUeJzt3XtcVXW+//H33iBXBY6BgKZCXlKTtLwQZmLFDJWVZo3Xo+bRbGaycuym/kzSGlHHKUfzZKdT4UypaJmVOaYHMydlyFDLa5lhagFKjhsVvLG/vz88rtNOVFwCmw2v5+OxH8Z3fdZa3/V1tffb71qs7TDGGAEAAOCyOL3dAQAAAF9EiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCUKs999xzcjgcFap1OBx67rnnqrQ/PXv2VM+ePWvs9gBUHCEKQLXIyMiQw+GwXv7+/mrSpIkefPBB/fDDD97uXo0TFxfnMV6NGjXSLbfcovfee69Stl9SUqLnnntOa9eurZTtAXURIQpAtZoyZYr+9re/ad68ebrzzjv11ltvKTk5WSdOnKiS/U2cOFGlpaVVsu2q1rFjR/3tb3/T3/72Nz355JP68ccf1bdvX82bN++Kt11SUqLJkycTooAr4O/tDgCoW+6880517txZkjRy5EhFRkZq+vTp+uCDD9SvX79K35+/v7/8/X3zra5Jkyb693//d+vnoUOHqmXLlnrppZf029/+1os9AyAxEwXAy2655RZJ0p49ezzad+3apQceeEANGzZUUFCQOnfurA8++MCj5vTp05o8ebJatWqloKAgXXXVVerevbtWr15t1ZR3T9TJkyf1hz/8QVFRUWrQoIHuvfdeHThw4Ly+Pfjgg4qLizuvvbxtvvnmm7rtttvUqFEjBQYGql27dnrllVcuaywuJSYmRm3btlVeXt5F6w4ePKgRI0YoOjpaQUFB6tChg+bPn28t37t3r6KioiRJkydPti4ZVvX9YEBt45v/PANQa+zdu1eS9G//9m9W2/bt23XzzTerSZMmGjdunEJDQ7V48WL16dNH7777ru677z5JZ8NMenq6Ro4cqa5du6q4uFhffPGFNm3apF/96lcX3OfIkSP11ltvadCgQerWrZvWrFmjXr16XdFxvPLKK7ruuut07733yt/fXx9++KF+//vfy+1265FHHrmibZ9z+vRp7d+/X1ddddUFa0pLS9WzZ099++23Gj16tOLj47VkyRI9+OCDOnLkiB5//HFFRUXplVde0e9+9zvdd9996tu3ryTp+uuvr5R+AnWGAYBq8OabbxpJ5n/+53/MoUOHzP79+80777xjoqKiTGBgoNm/f79Ve/vtt5uEhARz4sQJq83tdptu3bqZVq1aWW0dOnQwvXr1uuh+09LSzM/f6rZs2WIkmd///vcedYMGDTKSTFpamtU2bNgw07x580tu0xhjSkpKzqtLTU0111xzjUdbcnKySU5OvmifjTGmefPm5te//rU5dOiQOXTokPnyyy/NgAEDjCTz6KOPXnB7s2bNMpLMW2+9ZbWdOnXKJCUlmfr165vi4mJjjDGHDh0673gBXB4u5wGoVikpKYqKilLTpk31wAMPKDQ0VB988IGuvvpqSdLhw4e1Zs0a9evXT0ePHlVRUZGKior0008/KTU1Vbt377Z+my8iIkLbt2/X7t27K7z/FStWSJIee+wxj/YxY8Zc0XEFBwdb/+1yuVRUVKTk5GR99913crlctra5atUqRUVFKSoqSh06dNCSJUs0ZMgQTZ8+/YLrrFixQjExMRo4cKDVVq9ePT322GM6duyYPv30U1t9AXA+LucBqFZz585V69at5XK59MYbb2jdunUKDAy0ln/77bcyxujZZ5/Vs88+W+42Dh48qCZNmmjKlCnq3bu3Wrdurfbt2+uOO+7QkCFDLnpZ6vvvv5fT6VSLFi082q+99torOq7169crLS1N2dnZKikp8VjmcrkUHh5+2dtMTEzUCy+8IIfDoZCQELVt21YREREXXef7779Xq1at5HR6/hu5bdu21nIAlYMQBaBade3a1frtvD59+qh79+4aNGiQvv76a9WvX19ut1uS9OSTTyo1NbXcbbRs2VKS1KNHD+3Zs0fvv/++Vq1apf/+7//WSy+9pHnz5mnkyJFX3NcLPaSzrKzM4+c9e/bo9ttvV5s2bfTiiy+qadOmCggI0IoVK/TSSy9Zx3S5IiMjlZKSYmtdAFWPEAXAa/z8/JSenq5bb71VL7/8ssaNG6drrrlG0tlLUBUJEA0bNtTw4cM1fPhwHTt2TD169NBzzz13wRDVvHlzud1u7dmzx2P26euvvz6v9t/+7d905MiR89p/OZvz4Ycf6uTJk/rggw/UrFkzq/2TTz65ZP8rW/PmzfXVV1/J7XZ7zEbt2rXLWi5dOCACqDjuiQLgVT179lTXrl01a9YsnThxQo0aNVLPnj316quvKj8//7z6Q4cOWf/9008/eSyrX7++WrZsqZMnT15wf3feeackafbs2R7ts2bNOq+2RYsWcrlc+uqrr6y2/Pz8854a7ufnJ0kyxlhtLpdLb7755gX7UVXuuusuFRQUKDMz02o7c+aM5syZo/r16ys5OVmSFBISIknlhkQAFcNMFACve+qpp/Sb3/xGGRkZ+u1vf6u5c+eqe/fuSkhI0EMPPaRrrrlGhYWFys7O1oEDB/Tll19Kktq1a6eePXuqU6dOatiwob744gu98847Gj169AX31bFjRw0cOFD/+Z//KZfLpW7duikrK0vffvvtebUDBgzQM888o/vuu0+PPfaYSkpK9Morr6h169batGmTVffrX/9aAQEBuueee/Twww/r2LFjeu2119SoUaNyg2BVGjVqlF599VU9+OCDys3NVVxcnN555x2tX79es2bNUoMGDSSdvRG+Xbt2yszMVOvWrdWwYUO1b99e7du3r9b+Aj7N278eCKBuOPeIg40bN563rKyszLRo0cK0aNHCnDlzxhhjzJ49e8zQoUNNTEyMqVevnmnSpIm5++67zTvvvGOt98ILL5iuXbuaiIgIExwcbNq0aWP++Mc/mlOnTlk15T2OoLS01Dz22GPmqquuMqGhoeaee+4x+/fvL/dX/letWmXat29vAgICzLXXXmveeuutcrf5wQcfmOuvv94EBQWZuLg4M336dPPGG28YSSYvL8+qu5xHHFzq8Q0X2l5hYaEZPny4iYyMNAEBASYhIcG8+eab5627YcMG06lTJxMQEMDjDgAbHMb8bP4ZAAAAFcI9UQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGHrZZhdxut3788Uc1aNCAr1gAAMBHGGN09OhRNW7c+Lwv8/45QlQV+vHHH9W0aVNvdwMAANiwf/9+XX311RdcToiqQue+XmH//v0KCwvzcm8AAEBFFBcXq2nTptbn+IUQoqrQuUt4YWFhhCgAAHzMpW7F4cZyAAAAGwhRAAAANhCiAAAAbOCeKAAA6oiysjKdPn3a293wunr16snPz++Kt0OIAgCgljPGqKCgQEeOHPF2V2qMiIgIxcTEXNFzHAlRAADUcucCVKNGjRQSElKnHwBtjFFJSYkOHjwoSYqNjbW9LUIUAAC1WFlZmRWgrrrqKm93p0YIDg6WJB08eFCNGjWyfWmPG8sBAKjFzt0DFRIS4uWe1CznxuNK7hEjRAEAUAfU5Ut45amM8SBEAQAA2ECIAgAAsIEQVYfku0q1YU+R8l2l3u4KAACX9OCDD8rhcGjatGke7cuWLbMux61du1a9e/dWbGysQkND1bFjR7399tvV0j9CVB2RuXGfbp62RoNey9HN09Yoc+M+b3cJNQwhG0BNFBQUpOnTp+tf//pXucs3bNig66+/Xu+++66++uorDR8+XEOHDtXy5curvG884qAOyHeVavzSrXKbsz+7jTRh6Tb1aB2l2PBg73YONULmxn3WOeJ0SOl9E9S/SzNvdwsAlJKSom+//Vbp6emaMWPGecsnTJjg8fPjjz+uVatWaenSpbr77rurtG9en4maO3eu4uLiFBQUpMTERH3++ecXrV+yZInatGmjoKAgJSQkaMWKFR7LjTGaNGmSYmNjFRwcrJSUFO3evduj5o9//KO6deumkJAQRURElLufffv2qVevXgoJCVGjRo301FNP6cyZM1d0rN6SV3TcClDnlBmjvUUl3ukQapQLhWxmpACUp7pnrf38/DR16lTNmTNHBw4cqNA6LpdLDRs2rOKeeTlEZWZmauzYsUpLS9OmTZvUoUMHpaamWk8R/aUNGzZo4MCBGjFihDZv3qw+ffqoT58+2rZtm1UzY8YMzZ49W/PmzVNOTo5CQ0OVmpqqEydOWDWnTp3Sb37zG/3ud78rdz9lZWXq1auXTp06pQ0bNmj+/PnKyMjQpEmTKncAqkl8ZKicv/hNTj+HQ3GRPDMEhGwAFeetW0Puu+8+dezYUWlpaZesXbx4sTZu3Kjhw4dXeb+8GqJefPFFPfTQQxo+fLjatWunefPmKSQkRG+88Ua59X/5y190xx136KmnnlLbtm31/PPP68Ybb9TLL78s6ews1KxZszRx4kT17t1b119/vf7617/qxx9/1LJly6ztTJ48WX/4wx+UkJBQ7n5WrVqlHTt26K233lLHjh1155136vnnn9fcuXN16tSpSh+HqhYbHqz0vgny+9+b8PwcDk3t255LeZBEyAZQMd6etZ4+fbrmz5+vnTt3XrDmk08+0fDhw/Xaa6/puuuuq/I+eS1EnTp1Srm5uUpJSfm/zjidSklJUXZ2drnrZGdne9RLUmpqqlWfl5engoICj5rw8HAlJiZecJsX2k9CQoKio6M99lNcXKzt27dfcL2TJ0+quLjY41VT9O/STJ+Nu1ULH7pJn427lftdYCFkA6gIb89a9+jRQ6mpqRo/fny5yz/99FPdc889eumllzR06NBq6ZPXbiwvKipSWVmZR1CRpOjoaO3atavcdQoKCsqtLygosJafa7tQTUVcaD8/30d50tPTNXny5Arvp7rFhgfzwYhy9e/STD1aR2lvUYniIkM4TwCc59ys9c+DVHXPWk+bNk0dO3bUtdde69G+du1a3X333Zo+fbpGjRpVbf3x+o3ltcn48ePlcrms1/79+73dJaDCYsODldTiKgIUgHLVhFnrhIQEDR48WLNnz7baPvnkE/Xq1UuPPfaY7r//fhUUFKigoECHDx+u8v54LURFRkbKz89PhYWFHu2FhYWKiYkpd52YmJiL1p/783K2eTn7+fk+yhMYGKiwsDCPFwAAtUVNuDVkypQpcrvd1s/z589XSUmJ0tPTFRsba7369u1b5X3xWogKCAhQp06dlJWVZbW53W5lZWUpKSmp3HWSkpI86iVp9erVVn18fLxiYmI8aoqLi5WTk3PBbV5oP1u3bvX4LcHVq1crLCxM7dq1q/B2AACobapz1jojI8PjF8MkKS4uTidPnpQxxqoxxpz3Wrt2bZX3z6sP2xw7dqyGDRumzp07q2vXrpo1a5aOHz9u/Vri0KFD1aRJE6Wnp0s6+wCt5ORk/fnPf1avXr20aNEiffHFF/qv//ovSWe/kXnMmDF64YUX1KpVK8XHx+vZZ59V48aN1adPH2u/+/bt0+HDh7Vv3z6VlZVpy5YtkqSWLVuqfv36+vWvf6127dppyJAhmjFjhgoKCjRx4kQ98sgjCgwMrNYxAgAANZNXQ1T//v116NAhTZo0SQUFBerYsaNWrlxp3cS9b98+OZ3/N1nWrVs3LViwQBMnTtSECRPUqlUrLVu2TO3bt7dqnn76aR0/flyjRo3SkSNH1L17d61cuVJBQUFWzaRJkzR//nzr5xtuuEHS2euqPXv2lJ+fn5YvX67f/e53SkpKUmhoqIYNG6YpU6ZU9ZAAAAAf4TDn5sNQ6YqLixUeHi6Xy8X9UQAArzhx4oTy8vIUHx/vMaFQ111sXCr6+c1v5wEAANhAiAIAoA7gwpOnyhgPQhQAALVYvXr1JEklJXwf5s+dG49z42OHV28sBwAAVcvPz08RERHWY3tCQkLkcDgusVbtZYxRSUmJDh48qIiICPn5+dneFiEKAIBa7tyDon/+/MO6LiIi4rIexF0eQhQAALWcw+FQbGysGjVqpNOnT3u7O15Xr169K5qBOocQBQBAHeHn51cp4QFncWM5AACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKABXJN9Vqg17ipTvKvV2VwD4IF9+D+FrXwDYlrlxn8Yv3Sq3kZwOKb1vgvp3aebtbgHwEb7+HsJMFABb8l2l1pufJLmNNGHpNp/81ySA6lcb3kMIUQBsySs6br35nVNmjPYWlXinQwB8Sm14DyFEAbAlPjJUTodnm5/DobjIEO90CIBPqQ3vIYQoALbEhgcrvW+C/Bxn3wX9HA5N7dteseHBXu4ZAF9QG95DHMYYc+ky2FFcXKzw8HC5XC6FhYV5uztAlch3lWpvUYniIkN86s0PQM1QE99DKvr5zW/nAbgiseHBNeaND4Dv8eX3EC7nAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRPmgfFepNuwp8qlvugYAoLbhieU+JnPjPo1fulVuIzkdUnrfBPXv0szb3QIAoM5hJsqH5LtKrQAlSW4jTVi6jRkpAAC8gBDlQ/KKjlsB6pwyY7S3qMQ7HQIAoA4jRPmQ+MhQOR2ebX4Oh+IiQ7zTIQAA6jBClA+JDQ9Wet8E+TnOJik/h0NT+7b32W+/BgDAl3FjuY/p36WZerSO0t6iEsVFhhCgAADwEkKUD4oNDyY8AQDgZVzOAwAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAqJB8V6k27ClSvqvU210BagS+9gXAFcl3lSqv6LjiI0P5OqJaLHPjPo1fulVuIzkdUnrfBPXv0szb3QK8ihAFwDY+WOuGfFep9fcsSW4jTVi6TT1aRxGcUadxOQ+ALRf6YOVST+2TV3Tc+ns+p8wY7S0q8U6HgBqCEAXAFj5Y6474yFA5HZ5tfg6H4iJDvNMhoIYgRAGwhQ/WuiM2PFjpfRPk5zj7F+7ncGhq3/ZcykOdxz1RAGw598E6Yek2lRnDB2st179LM/VoHaW9RSWKiwzh7xkQIQrAFeCDtW6JDQ/m7xj4GUIUgCvCByuAuop7ogAAAGzweoiaO3eu4uLiFBQUpMTERH3++ecXrV+yZInatGmjoKAgJSQkaMWKFR7LjTGaNGmSYmNjFRwcrJSUFO3evduj5vDhwxo8eLDCwsIUERGhESNG6NixYx41H3/8sW666SY1aNBAUVFRuv/++7V3795KOWYAAOD7vBqiMjMzNXbsWKWlpWnTpk3q0KGDUlNTdfDgwXLrN2zYoIEDB2rEiBHavHmz+vTpoz59+mjbtm1WzYwZMzR79mzNmzdPOTk5Cg0NVWpqqk6cOGHVDB48WNu3b9fq1au1fPlyrVu3TqNGjbKW5+XlqXfv3rrtttu0ZcsWffzxxyoqKlLfvn2rbjAAAIBvMV7UtWtX88gjj1g/l5WVmcaNG5v09PRy6/v162d69erl0ZaYmGgefvhhY4wxbrfbxMTEmD/96U/W8iNHjpjAwECzcOFCY4wxO3bsMJLMxo0brZq///3vxuFwmB9++MEYY8ySJUuMv7+/KSsrs2o++OAD43A4zKlTpyp8fC6Xy0gyLperwusAAADvqujnt9dmok6dOqXc3FylpKRYbU6nUykpKcrOzi53nezsbI96SUpNTbXq8/LyVFBQ4FETHh6uxMREqyY7O1sRERHq3LmzVZOSkiKn06mcnBxJUqdOneR0OvXmm2+qrKxMLpdLf/vb35SSkqJ69epVzgAAAACf5rUQVVRUpLKyMkVHR3u0R0dHq6CgoNx1CgoKLlp/7s9L1TRq1Mhjub+/vxo2bGjVxMfHa9WqVZowYYICAwMVERGhAwcOaPHixRc9ppMnT6q4uNjjBQAAaiev31heExUUFOihhx7SsGHDtHHjRn366acKCAjQAw88IGPMBddLT09XeHi49WratGk19hoAAFQnr4WoyMhI+fn5qbCw0KO9sLBQMTEx5a4TExNz0fpzf16q5pc3rp85c0aHDx+2aubOnavw8HDNmDFDN9xwg3r06KG33npLWVlZ1iW/8owfP14ul8t67d+//1LDAAAAfJTXQlRAQIA6deqkrKwsq83tdisrK0tJSUnlrpOUlORRL0mrV6+26uPj4xUTE+NRU1xcrJycHKsmKSlJR44cUW5urlWzZs0aud1uJSYmSpJKSkrkdHoOjZ+fn9XHCwkMDFRYWJjHCwCqUr6rVBv2FCnfVertrgB1T/Xc516+RYsWmcDAQJORkWF27NhhRo0aZSIiIkxBQYExxpghQ4aYcePGWfXr1683/v7+ZubMmWbnzp0mLS3N1KtXz2zdutWqmTZtmomIiDDvv/+++eqrr0zv3r1NfHy8KS0ttWruuOMOc8MNN5icnBzz2WefmVatWpmBAwday7OysozD4TCTJ08233zzjcnNzTWpqammefPmpqSkpMLHx2/nAahKiz7/3sSPW26aP7PcxI9bbhZ9/r23uwTUChX9/Pbq1770799fhw4d0qRJk1RQUKCOHTtq5cqV1o3h+/bt85gR6tatmxYsWKCJEydqwoQJatWqlZYtW6b27dtbNU8//bSOHz+uUaNG6ciRI+revbtWrlypoKAgq+btt9/W6NGjdfvtt8vpdOr+++/X7NmzreW33XabFixYoBkzZmjGjBkKCQlRUlKSVq5cqeBgvt4CgPflu0o1fulWuf/3Nk23kSYs3aYeraP4Gh6gmjiMucid0rgixcXFCg8Pl8vl4tIegEq1YU+RBr12/j2aCx+6SUktrvJCj4Dao6Kf3/x2HgD4oPjIUDkdnm1+DofiIkO80yGgDiJEAYAPig0PVnrfBPk5ziYpP4dDU/u251IeUI28ek8UAMC+/l2aqUfrKO0tKlFcZAgBCqhmhCgA8GGx4cGEJ8BLuJwHAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQCAOi/fVaoNe4qU7yr1dlfgQ/y93QEAALwpc+M+jV+6VW4jOR1Set8E9e/SzNvdgg9gJgoAUGflu0qtACVJbiNNWLqNGSlUCCEKAFDjVNfltbyi41aAOqfMGO0tKqnS/aJ24HIeAKBGqc7La/GRoXI65BGk/BwOxUWGVMn+ULswEwUAqDGq+/JabHiw0vsmyM/hkHQ2QE3t216x4cFVsj/ULsxEAQBqjItdXquqYNO/SzP1aB2lvUUliosMIUChwghRAIAaw1uX12LDgwlPuGxczgMA1BhcXoMvYSYKAFCjcHkNvoIQBQCocbi8Bl/A5TwAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAG7weoubOnau4uDgFBQUpMTFRn3/++UXrlyxZojZt2igoKEgJCQlasWKFx3JjjCZNmqTY2FgFBwcrJSVFu3fv9qg5fPiwBg8erLCwMEVERGjEiBE6duzYeduZOXOmWrdurcDAQDVp0kR//OMfK+egAQCAz/NqiMrMzNTYsWOVlpamTZs2qUOHDkpNTdXBgwfLrd+wYYMGDhyoESNGaPPmzerTp4/69Omjbdu2WTUzZszQ7NmzNW/ePOXk5Cg0NFSpqak6ceKEVTN48GBt375dq1ev1vLly7Vu3TqNGjXKY1+PP/64/vu//1szZ87Url279MEHH6hr165VMxAAAMD3GC/q2rWreeSRR6yfy8rKTOPGjU16enq59f369TO9evXyaEtMTDQPP/ywMcYYt9ttYmJizJ/+9Cdr+ZEjR0xgYKBZuHChMcaYHTt2GElm48aNVs3f//5343A4zA8//GDV+Pv7m127dl3R8blcLiPJuFyuK9oOAACoPhX9/PbaTNSpU6eUm5urlJQUq83pdColJUXZ2dnlrpOdne1RL0mpqalWfV5engoKCjxqwsPDlZiYaNVkZ2crIiJCnTt3tmpSUlLkdDqVk5MjSfrwww91zTXXaPny5YqPj1dcXJxGjhypw4cPX/SYTp48qeLiYo8XAAConbwWooqKilRWVqbo6GiP9ujoaBUUFJS7TkFBwUXrz/15qZpGjRp5LPf391fDhg2tmu+++07ff/+9lixZor/+9a/KyMhQbm6uHnjggYseU3p6usLDw61X06ZNL1oPAAB8l9dvLK+J3G63Tp48qb/+9a+65ZZb1LNnT73++uv65JNP9PXXX19wvfHjx8vlclmv/fv3V2OvAQBAdfJaiIqMjJSfn58KCws92gsLCxUTE1PuOjExMRetP/fnpWp+eeP6mTNndPjwYasmNjZW/v7+at26tVXTtm1bSdK+ffsueEyBgYEKCwvzeAGoPPmuUm3YU6R8V6m3uwIA3gtRAQEB6tSpk7Kysqw2t9utrKwsJSUllbtOUlKSR70krV692qqPj49XTEyMR01xcbFycnKsmqSkJB05ckS5ublWzZo1a+R2u5WYmChJuvnmm3XmzBnt2bPHqvnmm28kSc2bN7+SwwZgU+bGfbp52hoNei1HN09bo8yNF/4HDQBUB4cxxnhr55mZmRo2bJheffVVde3aVbNmzdLixYu1a9cuRUdHa+jQoWrSpInS09MlnX3EQXJysqZNm6ZevXpp0aJFmjp1qjZt2qT27dtLkqZPn65p06Zp/vz5io+P17PPPquvvvpKO3bsUFBQkCTpzjvvVGFhoebNm6fTp09r+PDh6ty5sxYsWCDpbJjr0qWL6tevr1mzZsntduuRRx5RWFiYVq1aVeHjKy4uVnh4uFwuF7NSwBXId5Xq5mlr5P7Zu5Wfw6HPxt2q2PBg73UMQK1U0c9v/2rs03n69++vQ4cOadKkSSooKFDHjh21cuVK68bwffv2yen8v8mybt26acGCBZo4caImTJigVq1aadmyZVaAkqSnn35ax48f16hRo3TkyBF1795dK1eutAKUJL399tsaPXq0br/9djmdTt1///2aPXu2tdzpdOrDDz/Uo48+qh49eig0NFR33nmn/vznP1fDqNQO+a5S5RUdV3xkKB9yuGJ5Rcc9ApQklRmjvUUlnF8AvMarM1G1XV2dicrcuE/jl26V20hOh5TeN0H9uzTzdrfgw5iJAlCdKvr5zW/noVLlu0qtACVJbiNNWLqNG4FxRWLDg5XeN0F+DoekswFqat/2BCgAXuXVy3mofbjsgqrSv0sz9Wgdpb1FJYqLDOF8AuB1hChUqvjIUDkdOu+yS1xkiPc6hVojNjyY8ASgxuByHioVl10AAHUFM1GodFx2AQDUBYQoVAkuuwAAajsu5wEAANhAiAIAALCBEAUAAHxOTfhCcu6JAgAAPqWmfDMGM1EAAMBn1KRvxrjsELVixQqNHDlSTz/9tHbt2uWx7F//+pduu+22SuscAADAz13smzGq22WFqAULFujee+9VQUGBsrOzdcMNN+jtt9+2lp86dUqffvpppXcSAABA+r9vxvg5b30zxmWFqD/96U968cUXtXz5cv3jH//Q/Pnz9fDDD+v111+vqv4BAABYatI3Y1zWjeW7d+/WPffcY/3cr18/RUVF6d5779Xp06d13333VXoHAQAAfq6mfDPGZYWosLAwFRYWKj4+3mq79dZbtXz5ct199906cOBApXcQAADgl2rCN2Nc1uW8rl276u9///t57cnJyfrwww81a9asyuoXAABAjXZZIeoPf/iDgoKCyl3Ws2dPffjhhxo6dGildAwAAKAmcxhjzKXLYEdxcbHCw8PlcrkUFhbm7e4AAIAKqOjn92XdE+V0OuVwOC5a43A4dObMmcvZLAAAgM+5rBD13nvvXXBZdna2Zs+eLbfbfcWdAgAAqOkuK0T17t37vLavv/5a48aN04cffqjBgwdrypQpldY5AACAmsr2d+f9+OOPeuihh5SQkKAzZ85oy5Ytmj9/vpo3b16Z/QMAAKiRLjtEuVwuPfPMM2rZsqW2b9+urKwsffjhh2rfvn1V9A8AAKBGuqzLeTNmzND06dMVExOjhQsXlnt5DwAAoC64rEccOJ1OBQcHKyUlRX5+fhesW7p0aaV0ztfxiAMAAHxPlTziYOjQoZd8xAEAAEBdcFkhKiMjo4q6AQAA4Fts/3YeAABAXUaIAgBUqXxXqTbsKVK+q9TbXQEq1WVdzgMA4HJkbtyn8Uu3ym0kp0NK75ug/l2aebtbQKVgJgoAUCXyXaVWgJIkt5EmLN3GjBRqDUIUAKBK5BUdtwLUOWXGaG9RiXc6BFQyQhQAoErER4bK+Yun4vg5HIqLDPFOh4BKRogCAFSJ2PBgpfdNkN//Pl/Qz+HQ1L7tFRse7OWeAZWDG8sBAFWmf5dm6tE6SnuLShQXGUKAQq1CiAIAVKnY8GDCE2olLucBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKKAWyneVasOeIuW7Sr3dFQCotfy93QEAlStz4z6NX7pVbiM5HVJ63wT179LM290CgFqHmSigFsl3lVoBSpLcRpqwdBszUgBQBQhRQC2SV3TcClDnlBmjvUUl3ukQANRihCigFomPDJXT4dnm53AoLjLEOx0CgFqMEAXUIrHhwUrvmyA/x9kk5edwaGrf9ooND/ZyzwCg9uHGcqCW6d+lmXq0jtLeohLFRYYQoACgihCigFooNjyY8AQAVYzLeQAAADbUiBA1d+5cxcXFKSgoSImJifr8888vWr9kyRK1adNGQUFBSkhI0IoVKzyWG2M0adIkxcbGKjg4WCkpKdq9e7dHzeHDhzV48GCFhYUpIiJCI0aM0LFjx8rd37fffqsGDRooIiLiio4TAADUHl4PUZmZmRo7dqzS0tK0adMmdejQQampqTp48GC59Rs2bNDAgQM1YsQIbd68WX369FGfPn20bds2q2bGjBmaPXu25s2bp5ycHIWGhio1NVUnTpywagYPHqzt27dr9erVWr58udatW6dRo0adt7/Tp09r4MCBuuWWWyr/4AEAgM9yGGPMpcuqTmJiorp06aKXX35ZkuR2u9W0aVM9+uijGjdu3Hn1/fv31/Hjx7V8+XKr7aabblLHjh01b948GWPUuHFjPfHEE3ryySclSS6XS9HR0crIyNCAAQO0c+dOtWvXThs3blTnzp0lSStXrtRdd92lAwcOqHHjxta2n3nmGf3444+6/fbbNWbMGB05cqTCx1ZcXKzw8HC5XC6FhYXZGR4AAFDNKvr57dWZqFOnTik3N1cpKSlWm9PpVEpKirKzs8tdJzs726NeklJTU636vLw8FRQUeNSEh4crMTHRqsnOzlZERIQVoCQpJSVFTqdTOTk5VtuaNWu0ZMkSzZ07t0LHc/LkSRUXF3u8AABA7eTVEFVUVKSysjJFR0d7tEdHR6ugoKDcdQoKCi5af+7PS9U0atTIY7m/v78aNmxo1fz000968MEHlZGRUeFZpPT0dIWHh1uvpk2bVmg9AADge7x+T1RN9dBDD2nQoEHq0aNHhdcZP368XC6X9dq/f38V9hAAAHiTV0NUZGSk/Pz8VFhY6NFeWFiomJiYcteJiYm5aP25Py9V88sb18+cOaPDhw9bNWvWrNHMmTPl7+8vf39/jRgxQi6XS/7+/nrjjTfK7VtgYKDCwsI8XgAAoHbyaogKCAhQp06dlJWVZbW53W5lZWUpKSmp3HWSkpI86iVp9erVVn18fLxiYmI8aoqLi5WTk2PVJCUl6ciRI8rNzbVq1qxZI7fbrcTEREln75vasmWL9ZoyZYoaNGigLVu26L777qucAQAAAD7L608sHzt2rIYNG6bOnTura9eumjVrlo4fP67hw4dLkoYOHaomTZooPT1dkvT4448rOTlZf/7zn9WrVy8tWrRIX3zxhf7rv/5LkuRwODRmzBi98MILatWqleLj4/Xss8+qcePG6tOnjySpbdu2uuOOO/TQQw9p3rx5On36tEaPHq0BAwZYv5nXtm1bj35+8cUXcjqdat++fTWNDAAAqMm8HqL69++vQ4cOadKkSSooKFDHjh21cuVK68bwffv2yen8vwmzbt26acGCBZo4caImTJigVq1aadmyZR7h5umnn9bx48c1atQoHTlyRN27d9fKlSsVFBRk1bz99tsaPXq0br/9djmdTt1///2aPXt29R04AADwaV5/TlRtxnOiAADwPT7xnCgAAABfRYgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAA+Jx8V6k27ClSvqvUa33w99qeAQAAbMjcuE/jl26V20hOh5TeN0H9uzSr9n4wEwUAAHxGvqvUClCS5DbShKXbvDIjRYgCAAA+I6/ouBWgzikzRnuLSqq9L4QoAADgM+IjQ+V0eLb5ORyKiwyp9r4QogAAgM+IDQ9Wet8E+TnOJik/h0NT+7ZXbHhwtfeFG8sBAIBP6d+lmXq0jtLeohLFRYZ4JUBJzEQBAAAfZWQuXVSFmIkCAAA+hUccAACAWqU6HoBZkx5xwEwUAAC4YtU1O3SxRxxU971RzEQBAIArUp2zQzziAAAA1BrV+QBMHnEAAABqjXOzQz8PUlU5O8QjDgAAQK3gjdmh2PBgJbW4ymsBSmImCgAAVIKaMjtUnQhRAACgUsSGB9eJ8HQOl/MAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANtSIEDV37lzFxcUpKChIiYmJ+vzzzy9av2TJErVp00ZBQUFKSEjQihUrPJYbYzRp0iTFxsYqODhYKSkp2r17t0fN4cOHNXjwYIWFhSkiIkIjRozQsWPHrOVr165V7969FRsbq9DQUHXs2FFvv/125R00AADwaV4PUZmZmRo7dqzS0tK0adMmdejQQampqTp48GC59Rs2bNDAgQM1YsQIbd68WX369FGfPn20bds2q2bGjBmaPXu25s2bp5ycHIWGhio1NVUnTpywagYPHqzt27dr9erVWr58udatW6dRo0Z57Of666/Xu+++q6+++krDhw/X0KFDtXz58qobDAAA4DMcxhhz6bKqk5iYqC5duujll1+WJLndbjVt2lSPPvqoxo0bd159//79dfz4cY8wc9NNN6ljx46aN2+ejDFq3LixnnjiCT355JOSJJfLpejoaGVkZGjAgAHauXOn2rVrp40bN6pz586SpJUrV+quu+7SgQMH1Lhx43L72qtXL0VHR+uNN96o0LEVFxcrPDxcLpdLYWFhlzUuAADAOyr6+e3VmahTp04pNzdXKSkpVpvT6VRKSoqys7PLXSc7O9ujXpJSU1Ot+ry8PBUUFHjUhIeHKzEx0arJzs5WRESEFaAkKSUlRU6nUzk5ORfsr8vlUsOGDS+4/OTJkyouLvZ4AQCA2smrIaqoqEhlZWWKjo72aI+OjlZBQUG56xQUFFy0/tyfl6pp1KiRx3J/f381bNjwgvtdvHixNm7cqOHDh1/weNLT0xUeHm69mjZtesFaAADg27x+T5Qv+OSTTzR8+HC99tpruu666y5YN378eLlcLuu1f//+auwlAACoTl4NUZGRkfLz81NhYaFHe2FhoWJiYspdJyYm5qL15/68VM0vb1w/c+aMDh8+fN5+P/30U91zzz166aWXNHTo0IseT2BgoMLCwjxeAACgdvJqiAoICFCnTp2UlZVltbndbmVlZSkpKancdZKSkjzqJWn16tVWfXx8vGJiYjxqiouLlZOTY9UkJSXpyJEjys3NtWrWrFkjt9utxMREq23t2rXq1auXpk+f7vGbewAAADJetmjRIhMYGGgyMjLMjh07zKhRo0xERIQpKCgwxhgzZMgQM27cOKt+/fr1xt/f38ycOdPs3LnTpKWlmXr16pmtW7daNdOmTTMRERHm/fffN1999ZXp3bu3iY+PN6WlpVbNHXfcYW644QaTk5NjPvvsM9OqVSszcOBAa/maNWtMSEiIGT9+vMnPz7deP/30U4WPzeVyGUnG5XJdyRABAIBqVNHPb6+HKGOMmTNnjmnWrJkJCAgwXbt2Nf/85z+tZcnJyWbYsGEe9YsXLzatW7c2AQEB5rrrrjMfffSRx3K3222effZZEx0dbQIDA83tt99uvv76a4+an376yQwcONDUr1/fhIWFmeHDh5ujR49ay4cNG2YknfdKTk6u8HERogAA8D0V/fz2+nOiajOeEwUAgO/xiedEAQAA+CpCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAVAkpTvKtWGPUXKd5V6uysA4BP8vd0BAN6XuXGfxi/dKreRnA4pvW+C+ndp5u1uAUCNxkwUUMflu0qtACVJbiNNWLqNGSkAuARCFFDH5RUdtwLUOWXGaG9RiXc6BAA+ghAF1HHxkaFyOjzb/BwOxUWGeKdDAOAjCFFAHRcbHqz0vgnyc5xNUn4Oh6b2ba/Y8GAv9wwAajZuLAeg/l2aqUfrKO0tKlFcZAgBCgAqgBAFQNLZGSnCEwBUHJfzAAAAbCBEAQBqHB7+Cl/A5TwAQI3Cw1/hK5iJAgDUGDz8Fb6EEAUAqDF4+Ct8CSEKAFBj8PBX+BJCFACgxuDhr/Al3FgOAKhRePgrfAUhCgBQ4/DwV/gCLucBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAPfnVeFjDGSpOLiYi/3BAAAVNS5z+1zn+MXQoiqQkePHpUkNW3a1Ms9AQAAl+vo0aMKDw+/4HKHuVTMgm1ut1s//vijGjRoIIfDcUXbKi4uVtOmTbV//36FhYVVUg99S10fg7p+/BJjIDEGEmMgMQZS1Y6BMUZHjx5V48aN5XRe+M4nZqKqkNPp1NVXX12p2wwLC6uz/8OcU9fHoK4fv8QYSIyBxBhIjIFUdWNwsRmoc7ixHAAAwAZCFAAAgA2EKB8RGBiotLQ0BQYGersrXlPXx6CuH7/EGEiMgcQYSIyBVDPGgBvLAQAAbGAmCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQorxk7ty5iouLU1BQkBITE/X5559ftH7WrFm69tprFRwcrKZNm+oPf/iDTpw4YS1/7rnn5HA4PF5t2rSp6sO4IpczBqdPn9aUKVPUokULBQUFqUOHDlq5cuUVbbMmqOwx8LXzYN26dbrnnnvUuHFjORwOLVu27JLrrF27VjfeeKMCAwPVsmVLZWRknFfjK+dBVRx/bT8H8vPzNWjQILVu3VpOp1Njxowpt27JkiVq06aNgoKClJCQoBUrVlR+5ytJVYxBRkbGeedBUFBQ1RxAJbjcMVi6dKl+9atfKSoqSmFhYUpKStLHH398Xl1VvxcQorwgMzNTY8eOVVpamjZt2qQOHTooNTVVBw8eLLd+wYIFGjdunNLS0rRz5069/vrryszM1IQJEzzqrrvuOuXn51uvzz77rDoOx5bLHYOJEyfq1Vdf1Zw5c7Rjxw799re/1X333afNmzfb3qa3VcUYSL51Hhw/flwdOnTQ3LlzK1Sfl5enXr166dZbb9WWLVs0ZswYjRw50uPN05fOg6o4fql2nwMnT55UVFSUJk6cqA4dOpRbs2HDBg0cOFAjRozQ5s2b1adPH/Xp00fbtm2rzK5XmqoYA+nsk7x/fh58//33ldXlSne5Y7Bu3Tr96le/0ooVK5Sbm6tbb71V99xzT/V/JhhUu65du5pHHnnE+rmsrMw0btzYpKenl1v/yCOPmNtuu82jbezYsebmm2+2fk5LSzMdOnSokv5Whcsdg9jYWPPyyy97tPXt29cMHjzY9ja9rSrGwNfOg5+TZN57772L1jz99NPmuuuu82jr37+/SU1NtX72tfPgnMo6/tp+DvxccnKyefzxx89r79evn+nVq5dHW2Jionn44YevsIdVr7LG4M033zTh4eGV1q/qdLljcE67du3M5MmTrZ+r472AmahqdurUKeXm5iolJcVqczqdSklJUXZ2drnrdOvWTbm5udY05HfffacVK1borrvu8qjbvXu3GjdurGuuuUaDBw/Wvn37qu5AroCdMTh58uR5U9HBwcHWv7DtbNObqmIMzvGV88CO7OxsjzGTpNTUVGvMfO08uFyXOv5zavM5UBEVHafa7tixY2revLmaNm2q3r17a/v27d7uUpVxu906evSoGjZsKKn63gsIUdWsqKhIZWVlio6O9miPjo5WQUFBuesMGjRIU6ZMUffu3VWvXj21aNFCPXv29Licl5iYqIyMDK1cuVKvvPKK8vLydMstt+jo0aNVejx22BmD1NRUvfjii9q9e7fcbrdWr16tpUuXKj8/3/Y2vakqxkDyrfPAjoKCgnLHrLi4WKWlpT53HlyuSx2/VPvPgYq40DjVhnOgoq699lq98cYbev/99/XWW2/J7XarW7duOnDggLe7ViVmzpypY8eOqV+/fpKq7zOBEOUD1q5dq6lTp+o///M/tWnTJi1dulQfffSRnn/+eavmzjvv1G9+8xtdf/31Sk1N1YoVK3TkyBEtXrzYiz2vPH/5y1/UqlUrtWnTRgEBARo9erSGDx8up7PunMIVGYPafh7g0jgHIElJSUkaOnSoOnbsqOTkZC1dulRRUVF69dVXvd21SrdgwQJNnjxZixcvVqNGjap133XnE6iGiIyMlJ+fnwoLCz3aCwsLFRMTU+46zz77rIYMGaKRI0cqISFB9913n6ZOnar09HS53e5y14mIiFDr1q317bffVvoxXCk7YxAVFaVly5bp+PHj+v7777Vr1y7Vr19f11xzje1telNVjEF5avJ5YEdMTEy5YxYWFqbg4GCfOw8u16WOvzy17RyoiAuNU204B+yqV6+ebrjhhlp3HixatEgjR47U4sWLPS7dVdd7ASGqmgUEBKhTp07Kysqy2txut7KyspSUlFTuOiUlJefNuPj5+UmSzAW++vDYsWPas2ePYmNjK6nnlcfOGJwTFBSkJk2a6MyZM3r33XfVu3fvK96mN1TFGJSnJp8HdiQlJXmMmSStXr3aGjNfOw8u16WOvzy17RyoCDvjVNuVlZVp69atteo8WLhwoYYPH66FCxeqV69eHsuq7b2g0m5RR4UtWrTIBAYGmoyMDLNjxw4zatQoExERYQoKCowxxgwZMsSMGzfOqk9LSzMNGjQwCxcuNN99951ZtWqVadGihenXr59V88QTT5i1a9eavLw8s379epOSkmIiIyPNwYMHq/34KuJyx+Cf//yneffdd82ePXvMunXrzG233Wbi4+PNv/71rwpvs6apijHwtfPg6NGjZvPmzWbz5s1GknnxxRfN5s2bzffff2+MMWbcuHFmyJAhVv13331nQkJCzFNPPWV27txp5s6da/z8/MzKlSutGl86D6ri+Gv7OWCMseo7depkBg0aZDZv3my2b99uLV+/fr3x9/c3M2fONDt37jRpaWmmXr16ZuvWrdV6bBVVFWMwefJk8/HHH5s9e/aY3NxcM2DAABMUFORRU5Nc7hi8/fbbxt/f38ydO9fk5+dbryNHjlg11fFeQIjykjlz5phmzZqZgIAA07VrV/PPf/7TWpacnGyGDRtm/Xz69Gnz3HPPmRYtWpigoCDTtGlT8/vf/97jw7N///4mNjbWBAQEmCZNmpj+/fubb7/9thqP6PJdzhisXbvWtG3b1gQGBpqrrrrKDBkyxPzwww+Xtc2aqLLHwNfOg08++cRIOu917riHDRtmkpOTz1unY8eOJiAgwFxzzTXmzTffPG+7vnIeVMXx14VzoLz65s2be9QsXrzYtG7d2gQEBJjrrrvOfPTRR9VzQDZUxRiMGTPG+n8gOjra3HXXXWbTpk3Vd1CX6XLHIDk5+aL151T1e4HDmAtcDwIAAMAFcU8UAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgDqkLVr18rhcOjIkSPe7grg8whRAKrEgw8+KIfDoWnTpnm0L1u2TA6Hw/rZGKPXXntNSUlJCgsLU/369XXdddfp8ccfr/CXpZaUlGj8+PFq0aKFgoKCFBUVpeTkZL3//vtWTVxcnGbNmlUpx1bVzo2dw+FQvXr1FB8fr6efflonTpy4rO307NlTY8aM8Wjr1q2b8vPzFR4eXok9BuomQhSAKhMUFKTp06frX//6V7nLjTEaNGiQHnvsMd11111atWqVduzYoddff11BQUF64YUXKrSf3/72t1q6dKnmzJmjXbt2aeXKlXrggQf0008/VebhVKs77rhD+fn5+u677/TSSy/p1VdfVVpa2hVvNyAgQDExMR5BFoBNlfolMgDwv4YNG2buvvtu06ZNG/PUU09Z7e+9954599azcOFCI8m8//775W7D7XZXaF/h4eEmIyPjgsvL+56tc/7xj3+Y7t27m6CgIHP11VebRx991Bw7dsxa/te//tV06tTJ1K9f30RHR5uBAweawsJCa/m57/xauXKl6dixowkKCjK33nqrKSwsNCtWrDBt2rQxDRo0MAMHDjTHjx+v0PEMGzbM9O7d26Otb9++5oYbbrB+LioqMgMGDDCNGzc2wcHBpn379mbBggUe2/jlMefl5Vn9/fl3b77zzjumXbt2JiAgwDRv3tzMnDmzQv0E6jpmogBUGT8/P02dOlVz5szRgQMHzlu+cOFCXXvttbr33nvLXb+isyUxMTFasWKFjh49Wu7ypUuX6uqrr9aUKVOUn5+v/Px8SdKePXt0xx136P7779dXX32lzMxMffbZZxo9erS17unTp/X888/ryy+/1LJly7R37149+OCD5+3jueee08svv6wNGzZo//796tevn2bNmqUFCxboo48+0qpVqzRnzpwKHc8vbdu2TRs2bFBAQIDVduLECXXq1EkfffSRtm3bplGjRmnIkCH6/PPPJUl/+ctflJSUpIceesg65qZNm5637dzcXPXr108DBgzQ1q1b9dxzz+nZZ59VRkaGrb4CdYq3UxyA2unnsyk33XST+Y//+A9jjOdMVJs2bcy9997rsd7jjz9uQkNDTWhoqGnSpEmF9vXpp5+aq6++2tSrV8907tzZjBkzxnz22WceNc2bNzcvvfSSR9uIESPMqFGjPNr+8Y9/GKfTaUpLS8vd18aNG40kc/ToUWPM/81E/c///I9Vk56ebiSZPXv2WG0PP/ywSU1NrdDxDBs2zPj5+ZnQ0FATGBhoJBmn02neeeedi67Xq1cv88QTT1g/Jycnm8cff9yj5pczUYMGDTK/+tWvPGqeeuop065duwr1FajLmIkCUOWmT5+u+fPna+fOnZes/X//7/9py5YtmjRpko4dO1ah7ffo0UPfffedsrKy9MADD2j79u265ZZb9Pzzz190vS+//FIZGRmqX7++9UpNTZXb7VZeXp6kszM199xzj5o1a6YGDRooOTlZkrRv3z6PbV1//fXWf0dHRyskJETXXHONR9vBgwcrdDySdOutt2rLli3KycnRsGHDNHz4cN1///3W8rKyMj3//PNKSEhQw4YNVb9+fX388cfn9etSdu7cqZtvvtmj7eabb9bu3btVVlZ2WdsC6hpCFIAq16NHD6Wmpmr8+PEe7a1atdLXX3/t0RYVFaWWLVuqUaNGl7WPevXq6ZZbbtEzzzyjVatWacqUKXr++ed16tSpC65z7NgxPfzww9qyZYv1+vLLL7V79261aNFCx48fV2pqqsLCwvT2229r48aNeu+99yTpvO3Wq1fP+u9zv1X3cw6HQ263u8LHExoaqpYtW6pDhw564403lJOTo9dff91a/qc//Ul/+ctf9Mwzz+iTTz7Rli1blJqaetHjBVC5/L3dAQB1w7Rp09SxY0dde+21VtvAgQM1aNAgvf/+++rdu3el7q9du3Y6c+aMTpw4oYCAAAUEBJw3s3LjjTdqx44datmyZbnb2Lp1q3766SdNmzbNup/oiy++qNR+VoTT6dSECRM0duxYDRo0SMHBwVq/fr169+6tf//3f5ckud1uffPNN2rXrp21XnnH/Ett27bV+vXrPdrWr1+v1q1by8/Pr/IPBqhFmIkCUC0SEhI0ePBgzZ4922obMGCAHnjgAQ0YMEBTpkxRTk6O9u7dq08//VSZmZkV/hDv2bOnXn31VeXm5mrv3r1asWKFJkyYoFtvvVVhYWGSzj4nat26dfrhhx9UVFQkSXrmmWe0YcMGjR49Wlu2bNHu3bv1/vvvWzeWN2vWTAEBAZozZ46+++47ffDBB5e8RFhVfvOb38jPz09z586VdHYWb/Xq1dqwYYN27typhx9+WIWFhR7rxMXFWWNaVFRU7kzYE088oaysLD3//PP65ptvNH/+fL388st68sknq+W4AF9GiAJQbaZMmeLxQe5wOJSZmalZs2ZpxYoVuv3223XttdfqP/7jP9S0aVN99tlnFdpuamqq5s+fr1//+tdq27atHn30UaWmpmrx4sUe+967d69atGihqKgoSWfvY/r000/1zTff6JZbbtENN9ygSZMmqXHjxpLOXlrMyMjQkiVL1K5dO02bNk0zZ86sxBGpOH9/f40ePVozZszQ8ePHNXHiRN14441KTU1Vz549FRMToz59+nis8+STT8rPz0/t2rVTVFRUufdL3XjjjVq8eLEWLVqk9u3ba9KkSZoyZUq5v4EIwJPDGGO83QkAAABfw0wUAACADYQoADXezx9B8MvXP/7xD29377Ls27fvosdzuY8oAOA9XM4DUONd7IuImzRpouDg4GrszZU5c+aM9u7de8HlcXFx8vfnF6cBX0CIAgAAsIHLeQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAb/j/CLPYtDhnl8QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOb1JREFUeJzt3XlclWX+//H3AWQRBRdAUBEUd8Ult1FzK5XMLHXKdXIppyzXcWpcWtxKdKZv2aiZ029GmqlcMreZzFxKnbTFJcvUzAUUFVQyQQTR4Pr94Zfz7QQqIHDuc3g9H4/zeHTuc537fO6rO+53133d920zxhgBAABYkIezCwAAALgZggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggqAOzZjxgzZbLYCtbXZbJoxY0aJ1tO1a1d17drVsusDUHAEFcCNxMXFyWaz2V9eXl6qUaOGRowYoTNnzji7PMuJjIx06K+QkBB16tRJa9asKZb1Z2RkaMaMGdq2bVuxrA8oiwgqgBuaNWuW/vWvf+nNN99Ur1699M4776hLly66evVqifze888/r8zMzBJZd0lr0aKF/vWvf+lf//qXnnnmGZ09e1b9+/fXm2++ecfrzsjI0MyZMwkqwB3wcnYBAIpfr1691Lp1a0nSqFGjFBQUpHnz5mn9+vUaMGBAsf+el5eXvLxc889JjRo19Lvf/c7+ftiwYapbt65ee+01jR492omVAZAYUQHKhE6dOkmSjh8/7rD8+++/18MPP6wqVarI19dXrVu31vr16x3aXL9+XTNnzlS9evXk6+urqlWr6u6779bmzZvtbfKbo5KVlaU//OEPCg4OVsWKFfXggw/q9OnTeWobMWKEIiMj8yzPb51Lly7VPffco5CQEPn4+Khx48ZavHhxofridkJDQ9WoUSPFx8ffst358+f1+OOPq1q1avL19VXz5s319ttv2z9PSEhQcHCwJGnmzJn200slPT8HcDeu+b9AAAolISFBklS5cmX7soMHD6pjx46qUaOGpkyZIn9/f61cuVJ9+/bVBx98oH79+km6ERhiY2M1atQotW3bVmlpadqzZ4/27dunHj163PQ3R40apXfeeUdDhgxRhw4d9Mknn6h37953tB2LFy9WkyZN9OCDD8rLy0v//ve/9fTTTysnJ0djxoy5o3Xnun79uhITE1W1atWbtsnMzFTXrl117NgxjR07VrVr19b777+vESNG6NKlS5owYYKCg4O1ePFiPfXUU+rXr5/69+8vSWrWrFmx1AmUGQaA21i6dKmRZLZs2WIuXLhgEhMTzapVq0xwcLDx8fExiYmJ9rb33nuviY6ONlevXrUvy8nJMR06dDD16tWzL2vevLnp3bv3LX93+vTp5pd/Tvbv328kmaefftqh3ZAhQ4wkM336dPuy4cOHm4iIiNuu0xhjMjIy8rSLiYkxderUcVjWpUsX06VLl1vWbIwxERERpmfPnubChQvmwoUL5ptvvjGDBg0yksy4ceNuur758+cbSeadd96xL7t27Zpp3769qVChgklLSzPGGHPhwoU82wugcDj1A7ih7t27Kzg4WOHh4Xr44Yfl7++v9evXq2bNmpKkixcv6pNPPtGAAQN0+fJlpaSkKCUlRT/++KNiYmJ09OhR+1VClSpV0sGDB3X06NEC//6GDRskSePHj3dYPnHixDvaLj8/P/s/p6amKiUlRV26dNGJEyeUmppapHVu2rRJwcHBCg4OVvPmzfX+++/r0Ucf1bx58276nQ0bNig0NFSDBw+2LytXrpzGjx+v9PR0bd++vUi1AMjLbYLKjh071KdPH1WvXl02m01r164t0d+LjY1VmzZtVLFiRYWEhKhv3746cuSI/fOLFy9q3LhxatCggfz8/FSrVi2NHz++yH9MgcJYtGiRNm/erFWrVun+++9XSkqKfHx87J8fO3ZMxhi98MIL9oN07mv69OmSbszBkG5cQXTp0iXVr19f0dHRevbZZ/Xtt9/e8vdPnjwpDw8PRUVFOSxv0KDBHW3Xzp071b17d/n7+6tSpUoKDg7WtGnTJKnI/221a9dOmzdv1pYtW7Rr1y6lpKTon//8p0Mo+rWTJ0+qXr168vBw/BPaqFEj++cAiofbzFG5cuWKmjdvrscee8x+Lrgkbd++XWPGjFGbNm30888/a9q0aerZs6cOHTokf39/nT17VmfPntUrr7yixo0b6+TJkxo9erTOnj2rVatWlXh9KNvatm1rv+qnb9++uvvuuzVkyBAdOXJEFSpUUE5OjiTpmWeeUUxMTL7rqFu3riSpc+fOOn78uNatW6dNmzbp//2//6fXXntNb775pkaNGnXHtd7sRnHZ2dkO748fP657771XDRs21Kuvvqrw8HB5e3trw4YNeu211+zbVFhBQUHq3r17kb4LoOS5TVDp1auXevXqddPPs7Ky9Nxzz2nZsmW6dOmSmjZtqnnz5hX5bpMbN250eB8XF6eQkBDt3btXnTt3VtOmTfXBBx/YP4+KitLLL7+s3/3ud/r5559d9lJOuB5PT0/FxsaqW7duWrhwoaZMmaI6depIunG6oiAH6SpVqmjkyJEaOXKk0tPT1blzZ82YMeOmQSUiIkI5OTk6fvy4wyjKL0cdc1WuXFmXLl3Ks/zXoxL//ve/lZWVpfXr16tWrVr25Z9++ult6y9uERER+vbbb5WTk+MwqvL999/bP5duHsIAFJzbnPq5nbFjx+rzzz/X8uXL9e233+qRRx7RfffdV6jz7reSO+xcpUqVW7YJCAggpKDUde3aVW3bttX8+fN19epVhYSEqGvXrlqyZImSkpLytL9w4YL9n3/88UeHzypUqKC6desqKyvrpr+X+z8Nf/3rXx2Wz58/P0/bqKgopaamOpxOSkpKynN3WE9PT0mSMca+LDU1VUuXLr1pHSXl/vvvV3JyslasWGFf9vPPP2vBggWqUKGCunTpIkkqX768JOUbxAAUTJk4Yp46dUpLly7VqVOnVL16dUk3hrw3btyopUuXas6cOXe0/pycHE2cOFEdO3ZU06ZN822TkpKi2bNn64knnrij3wKK6tlnn9UjjzyiuLg4jR49WosWLdLdd9+t6Oho/f73v1edOnV07tw5ff755zp9+rS++eYbSVLjxo3VtWtXtWrVSlWqVNGePXu0atUqjR079qa/1aJFCw0ePFhvvPGGUlNT1aFDB23dulXHjh3L03bQoEGaPHmy+vXrp/HjxysjI0OLFy9W/fr1tW/fPnu7nj17ytvbW3369NGTTz6p9PR0vfXWWwoJCck3bJWkJ554QkuWLNGIESO0d+9eRUZGatWqVdq5c6fmz5+vihUrSrox+bdx48ZasWKF6tevrypVqqhp06Y3/TsBIB/OvuyoJEgya9assb//z3/+YyQZf39/h5eXl5cZMGCAMcaYw4cPG0m3fE2ePDnf3xs9erSJiIhwuPTzl1JTU03btm3NfffdZ65du1bs2wvkyr08effu3Xk+y87ONlFRUSYqKsr8/PPPxhhjjh8/boYNG2ZCQ0NNuXLlTI0aNcwDDzxgVq1aZf/eSy+9ZNq2bWsqVapk/Pz8TMOGDc3LL7/ssC/ndylxZmamGT9+vKlatarx9/c3ffr0MYmJiflerrtp0ybTtGlT4+3tbRo0aGDeeeedfNe5fv1606xZM+Pr62siIyPNvHnzzD/+8Q8jycTHx9vbFeby5Ntden2z9Z07d86MHDnSBAUFGW9vbxMdHW2WLl2a57u7du0yrVq1Mt7e3lyqDBSBzZhfjKO6CZvNpjVr1qhv376SpBUrVmjo0KE6ePCgffg4V4UKFRQaGqpr167pxIkTt1xv1apV7XeazDV27FitW7dOO3bsUO3atfN85/Lly4qJiVH58uX1n//8R76+vne2cQAAlCFl4tRPy5YtlZ2drfPnz9tvJf5r3t7eatiwYYHXaYzRuHHjtGbNGm3bti3fkJKWlqaYmBj5+Pho/fr1hBQAAArJbYJKenq6w/nv+Ph47d+/X1WqVFH9+vU1dOhQDRs2TP/zP/+jli1b6sKFC9q6dauaNWtWpNt6jxkzRu+9957WrVunihUrKjk5WZIUGBgoPz8/paWlqWfPnsrIyNA777yjtLQ0paWlSZKCg4PzjOwAAIC83ObUz7Zt29StW7c8y4cPH664uDhdv35dL730kv75z3/qzJkzCgoK0m9+8xvNnDlT0dHRhf69m112uHTpUo0YMeKm9Ug3QlR+D2EDAACO3CaoAAAA91Nm7qMCAABcD0EFAABYlktPps3JydHZs2dVsWJFblUNAICLMMbo8uXLql69ep6He/6aSweVs2fPKjw83NllAACAIkhMTFTNmjVv2cbpQeXMmTOaPHmyPvroI2VkZKhu3bpaunSp/cmvt5J7m+rExEQFBASUdKkAAKAYpKWlKTw83H4cvxWnBpWffvpJHTt2VLdu3fTRRx8pODhYR48eVeXKlQv0/dzTPQEBAQQVAABcTEGmbTg1qMybN0/h4eEOTz/N7w6vAACgbHLqVT/r169X69at9cgjjygkJEQtW7bUW2+95cySAACAhTg1qJw4cUKLFy9WvXr19PHHH+upp57S+PHj9fbbb+fbPisry34r+l/ekh4AALgnp96Z1tvbW61bt9auXbvsy8aPH6/du3fr888/z9N+xowZmjlzZp7lqampt5yjkp2drevXrxdP0S6sXLlyPGMIAOB0aWlpCgwMvO3xW3LyHJWwsDA1btzYYVmjRo30wQcf5Nt+6tSpmjRpkv197qzhmzHGKDk5WZcuXSqWet1BpUqVFBoayn1nAAAuwalBpWPHjjpy5IjDsh9++EERERH5tvfx8ZGPj0+B158bUkJCQlS+fPkyfXA2xigjI0Pnz5+XdCMkAgBgdU4NKn/4wx/UoUMHzZkzRwMGDNBXX32lv/3tb/rb3/52x+vOzs62h5SqVasWQ7Wuz8/PT5J0/vx5hYSEcBoIAGB5Tp1M26ZNG61Zs0bLli1T06ZNNXv2bM2fP19Dhw6943XnzkkpX778Ha/LneT2B3N2AACuwOl3pn3ggQf0wAMPlNj6y/LpnvzQHwAAV8LTkwEAgGURVAAAgGURVCwqMTFRjz32mKpXry5vb29FRERowoQJ+vHHHyXdmGMyefJkRUdHy9/fX9WrV9ewYcN09uxZJ1cOAHAXSamZ2nU8RUmpmU6rgaBiQSdOnFDr1q119OhRLVu2TMeOHdObb76prVu3qn379rp48aIyMjK0b98+vfDCC9q3b59Wr16tI0eO6MEHH3R2+QAAN7Bi9yl1nPuJhrz1pTrO/UQrdp9ySh1On0yLvMaMGSNvb29t2rTJfklxrVq11LJlS0VFRem5557T4sWLtXnzZofvLVy4UG3bttWpU6dUq1YtZ5QOAHADSamZmrr6gHL+9971OUaatvo7da4frLBAv1KthRGVAiqt4a+LFy/q448/1tNPP20PKblCQ0M1dOhQrVixQvk9+SA1NVU2m02VKlUq0RoBAO4tPuWKPaTkyjZGCSkZpV4LIyoFsGL3KXuy9LBJsf2jNbBNyYxYHD16VMYYNWrUKN/PGzVqpJ9++kkXLlxQSEiIffnVq1c1efJkDR48+LbPTQAA4FZqB/nLwyaHsOJpsykyqPTvTcaIym3cbPirpEdWCvOsyOvXr2vAgAEyxmjx4sUlWBUAoCwIC/RTbP9oef7vvbc8bTbN6d+01E/7SIyo3Nathr9K4l9Y3bp1ZbPZdPjwYfXr1y/P54cPH1blypUVHBws6f9CysmTJ/XJJ58wmgIAKBYD29RS5/rBSkjJUGRQeaeEFIkRldvKHf76pZIc/qpatap69OihN954Q5mZjqM2ycnJevfddzVw4EDZbDZ7SDl69Ki2bNnCM40AAMUqLNBP7aOqOi2kSASV23LG8NfChQuVlZWlmJgY7dixQ4mJidq4caN69OihGjVq6OWXX9b169f18MMPa8+ePXr33XeVnZ2t5ORkJScn69q1ayVWGwAApYlTPwVQ2sNf9erV0549ezR9+nQNGDBAFy9eVGhoqPr27avp06erSpUqSkhI0Pr16yVJLVq0cPj+p59+qq5du5ZojQAAlAaCSgGFBfqV6tBXRESE4uLibvp5ZGRkoSbcAgDgijj1AwAALIugAgAALIugAgAALIugAgAALMvtgwoTTh3RHwAAV+K2QaVcuXKSpIyM0n+AkpXl9kdu/wAAYGVue3myp6enKlWqpPPnz0uSypcvL5vNdptvuS9jjDIyMnT+/HlVqlRJnp6ezi4JAIDbctugIkmhoaGSZA8rkCpVqmTvFwAArM6tg4rNZlNYWJhCQkJ0/fp1Z5fjdOXKlWMkBQDgUtw6qOTy9PTkAA0AgAty28m0AADA9RFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZRFUAACAZTk1qMyYMUM2m83h1bBhQ2eWBAAALMTL2QU0adJEW7Zssb/38nJ6SQAAwCKcngq8vLwUGhrq7DIAAIAFOX2OytGjR1W9enXVqVNHQ4cO1alTp27aNisrS2lpaQ4vAADgvpwaVNq1a6e4uDht3LhRixcvVnx8vDp16qTLly/n2z42NlaBgYH2V3h4eClXDAAASpPNGGOcXUSuS5cuKSIiQq+++qoef/zxPJ9nZWUpKyvL/j4tLU3h4eFKTU1VQEBAaZYKAACKKC0tTYGBgQU6fjt9jsovVapUSfXr19exY8fy/dzHx0c+Pj6lXBUAAHAWp89R+aX09HQdP35cYWFhzi4FAABYgFODyjPPPKPt27crISFBu3btUr9+/eTp6anBgwc7sywAAGARTj31c/r0aQ0ePFg//vijgoODdffdd+uLL75QcHCwM8sCAAAW4dSgsnz5cmf+PAAAsDhLzVEBAAD4JYIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLIIKAACwLMsElblz58pms2nixInOLgUAAFiEJYLK7t27tWTJEjVr1szZpQAAAAtxelBJT0/X0KFD9dZbb6ly5crOLgcAAFiI04PKmDFj1Lt3b3Xv3v22bbOyspSWlubwAgAA7svLmT++fPly7du3T7t37y5Q+9jYWM2cObOEqwIAAFbhtBGVxMRETZgwQe+++658fX0L9J2pU6cqNTXV/kpMTCzhKgEAgDPZjDHGGT+8du1a9evXT56envZl2dnZstls8vDwUFZWlsNn+UlLS1NgYKBSU1MVEBBQ0iUDAIBiUJjjt9NO/dx77706cOCAw7KRI0eqYcOGmjx58m1DCgAAcH9OCyoVK1ZU06ZNHZb5+/uratWqeZYDAICyyelX/QAAANyMU6/6+bVt27Y5uwQAAGAhjKgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgAAADLIqgALiApNVO7jqcoKTXT2aUAQKnycnYBAG5txe5Tmrr6gHKM5GGTYvtHa2CbWs4uCwBKBSMqgIUlpWbaQ4ok5Rhp2urvGFkBUGYQVAALi0+5Yg8pubKNUUJKhnMKAoBSRlABLKx2kL88bI7LPG02RQaVd05BAFDKCCqAhYUF+im2f7Q8bTfSiqfNpjn9myos0M/JlQFA6WAyLWBxA9vUUuf6wUpIyVBkUHlCCoAyhaACuICwQD8CCoBSl5SaqfiUK6od5O+0v0EEFQAAkIdVbo3AHBUAAODASrdGIKgAAAAHVro1AkEFAAA4sNKtEQgqAADAgZVujcBkWgAAkIdVbo1AUAEAAPmywq0ROPUDAAAsi6ACALeQlJqpXcdTeGI1LKEs7o+c+gGAm7DKDa8Aqezuj4yoAEA+rHTDK6As748EFQDIh5VueAWU5f2RoAIA+bDSDa+Asrw/ElQAIB9WuuEVUJb3R5sxxty+mTWlpaUpMDBQqampCggIcHY5ANxQUmqm0294BeRyl/2xMMdvrvoBgFuwwg2vgFxlcX/k1A8AALAsggoAALAsggoAALAsggoAALAsggoAALCsIgWV06dPKz09Pc/y69eva8eOHQVez+LFi9WsWTMFBAQoICBA7du310cffVSUkgAAgBsqVFBJSkpS27ZtFRERoUqVKmnYsGEOgeXixYvq1q1bgddXs2ZNzZ07V3v37tWePXt0zz336KGHHtLBgwcLUxYAACgBVnhac6Fu+DZ8+HAdOXJECxcu1KVLlzRlyhTZbDZt2rRJlStX1rlz5xQWFqacnJwiF1SlShX95S9/0eOPP37bttzwDQCAklGST2suzPG7UCMqW7Zs0V//+le1bt1a3bt3186dOxUWFqZ77rlHFy9elCTZbLbbrCV/2dnZWr58ua5cuaL27dvn2yYrK0tpaWkOLwAAULys9LTmQgWV1NRUVa5c2f7ex8dHq1evVmRkpLp166bz588XuoADBw6oQoUK8vHx0ejRo7VmzRo1btw437axsbEKDAy0v8LDwwv9ewAA4Nas9LTmQgWVOnXq6Ntvv3VY5uXlpffff1916tTRAw88UOgCGjRooP379+vLL7/UU089peHDh+vQoUP5tp06dapSU1Ptr8TExEL/HgAAuDUrPa25UEGlV69e+tvf/pZneW5YadGiRaEL8Pb2Vt26ddWqVSvFxsaqefPmev311/Nt6+PjY79CKPcFAACKl5We1lyohxK+/PLLysj4v2GflJQUSVJQUJC8vLz0wQcf6MyZM3dUUE5OjrKysu5oHQAA4M4MbFNLnesHO/1pzYUaUfHy8lJOTo7GjBmjoKAgVatWTdWqVVNQUJDGjh2r9PR0RUREFHh9U6dO1Y4dO5SQkKADBw5o6tSp2rZtm4YOHVroDQEAAMUrLNBP7aOqOvWJzYUaUbl48aLat2+vM2fOaOjQoWrUqJEk6dChQ4qLi9PWrVu1a9cuhwm3t3L+/HkNGzZMSUlJCgwMVLNmzfTxxx+rR48ehd8SAHADSamZik+5otpB/k49OABWUaj7qEycOFFbt27Vli1bVK1aNYfPkpOT1bNnT91777167bXXir3Q/HAfFTgLBxOUhJK8bwVgJSV2H5W1a9fqlVdeyRNSJCk0NFR//vOftWbNmsJVC7iYFbtPqePcTzTkrS/Vce4nWrH7lLNLghuw0n0rACsp9C30mzRpctPPmzZtquTk5DsuCrAqDiYoKVa6bwVgJYUKKkFBQUpISLjp5/Hx8apSpcqd1gRYFgcTlBQr3bcCsJJCBZWYmBg999xzunbtWp7PsrKy9MILL+i+++4rtuIAq7nTg4kVHvAFa7LSfSsAKynUZNrTp0+rdevW8vHx0ZgxY9SwYUMZY3T48GG98cYbysrK0p49e0rt1vZMpoUzrNh9StNWf6dsY+wHk4JMeGSiJAoiKTXT6fetAEpaYY7fhQoq0o3TO08//bQ2bdqk3K/abDb16NFDCxcuVN26dYteeSERVOAshT2YJKVmquPcTxxOG3nabPpsSjcORgDKnMIcvwt1HxVJql27tj766CP99NNPOnr0qCSpbt26zE1BmRIW6FeogHGruS0EFQC4uUIHlVyVK1dW27Zti7MWwG3lzm359YgKEyUB4NYKNZkWQNEwURIAiqbIIyoACscqD/gCAFdCUAFKUWHntgBAWcepHwAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFkEFQAAYFlODSqxsbFq06aNKlasqJCQEPXt21dHjhxxZkkAAMBCnBpUtm/frjFjxuiLL77Q5s2bdf36dfXs2VNXrlxxZlkAAMAibMYY4+wicl24cEEhISHavn27OnfufNv2aWlpCgwMVGpqqgICAkqhQgAAcKcKc/z2KqWaCiQ1NVWSVKVKlXw/z8rKUlZWlv19WlpaqdQFAACcwzKTaXNycjRx4kR17NhRTZs2zbdNbGysAgMD7a/w8PBSrhIAAJQmy5z6eeqpp/TRRx/ps88+U82aNfNtk9+ISnh4OKd+AABwIS536mfs2LH6z3/+ox07dtw0pEiSj4+PfHx8SrEyAADgTE4NKsYYjRs3TmvWrNG2bdtUu3ZtZ5YDAAAsxqlBZcyYMXrvvfe0bt06VaxYUcnJyZKkwMBA+fn5ObM0AABgAU6do2Kz2fJdvnTpUo0YMeK23+fyZAAAXI/LzFGxyDxeAABgUZa5PBnAzSWlZmrX8RQlpWY6uxQAKFWWuOoHwM2t2H1KU1cfUI6RPGxSbP9oDWxTy9llwQ0kpWYqPuWKagf5KyyQeYGwJoIKYGFJqZn2kCJJOUaatvo7da4fzIEFd4QADFfBqR/AwuJTrthDSq5sY5SQkuGcguAWbhaAObXovlz59DEjKoCF1Q7yl4dNDmHF02ZTZFB55xUFl3erAMxInftx9dEzRlQACwsL9FNs/2h5/u+l/J42m+b0b8rBBHckNwD/EgHYPbnD6BkjKoDFDWxTS53rByshJUORQeVLPKQwwdL95Qbgaau/U7YxBGA35g6jZwQVwAWEBfqVyh8VVx8iRsGVdgCGc7jD6WNO/QCQ5B5DxGVVUSdKhgX6qX1UVUKKG3OH08eMqACQ5B5DxGURo2C4HVcfPWNEBYAkJli6IkbBUFCuPHpGUAEgyT2GiMsa7rODsoBTPwDsXH2IuKxxh4mSwO0wogLAgSsPEZc1jIKhLGBEBQBcGKNgcHcEFQBwcaV1nx3AGTj1AwAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgAALIugAgBlVFJqpnYdT+Fpy7A07kwLAGXQit2nNHX1AeUYycMmxfaP1sA2tZxdFpAHIyoAUMYkpWbaQ4p04+nL01Z/x8gKLImgAgBlTHzKFXtIyZVtjBJSMpxTEHALBBUAKGNqB/nLw+a4zNNmU2RQeecUBNwCQQUAypiwQD/F9o+Wp+1GWvG02TSnf1OewAxLYjItAJRBA9vUUuf6wUpIyVBkUHlCCiyLoAIAZVRYoB8BBZbHqR8AAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZBBUAAGBZTg0qO3bsUJ8+fVS9enXZbDatXbvWmeUAAACLcWpQuXLlipo3b65FixY5swwAAGBRXs788V69eqlXr17OLAEAAFiYU4NKYWVlZSkrK8v+Pi0tzYnVAACAkuZSk2ljY2MVGBhof4WHhzu7JAAAUIJcKqhMnTpVqamp9ldiYqKzSwIAACXIpU79+Pj4yMfHx9llAACAUuJSIyoAAKBsceqISnp6uo4dO2Z/Hx8fr/3796tKlSqqVauWEysDAABW4NSgsmfPHnXr1s3+ftKkSZKk4cOHKy4uzklVAQAAq3BqUOnatauMMc4sAQAAWBhzVAAAgGURVAAAgGURVFxYUmqmdh1PUVJqprNLAQCgRLjUfVTwf1bsPqWpqw8ox0geNim2f7QGtuFKKQCAe2FExQUlpWbaQ4ok5Rhp2urvGFkBALgdgooLik+5Yg8pubKNUUJKhnMKAgCghBBUXFDtIH952ByXedpsigwq75yCAAAoIQQVFxQW6KfY/tHytN1IK542m+b0b6qwQD8nVwYAQPFiMq2LGtimljrXD1ZCSoYig8oTUgBYWlJqpuJTrqh2kD9/r1AoBBUXFhbox3/wACyPqxRxJzj1AwAoMVyliDtFUAEAlBiuUsSdIqgAAEoMVyniThFUAAAlhqsUcaeYTAsAKFFcpYg7QVABAJQ4rlJEUXHq5yZ4MjEAAM7HiEo+uOYfAABrYETlV7jmHwAA6yCo/ArX/AMAYB0ElV/hmn8AAKyDoPIrXPMPAIB1MJk2H1zzDwCANRBUboJr/gEAcD5O/QAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAAAAMsiqAClKCk1U7uOpygpNdPZpQCAS/BydgHuJCk1U/EpV1Q7yF9hgX7OLgcWs2L3KU1dfUA5RvKwSbH9ozWwTS1nlwUAlkZQKSYchHArSamZ9v1DknKMNG31d+pcP5hQCwC3wKmfYnCzgxDD+8gVn3LFvn/kyjZGCSkZzikIAFwEQaUYcBDC7dQO8peHzXGZp82myKDyzikIAFyEJYLKokWLFBkZKV9fX7Vr105fffWVs0sqFA5CuJ2wQD/F9o+Wp+3GjuJps2lO/6ac9gGA23D6HJUVK1Zo0qRJevPNN9WuXTvNnz9fMTExOnLkiEJCQpxdXoHkHoSmrf5O2cZwEEK+Brappc71g5WQkqHIoPLsHwBQADZjjLl9s5LTrl07tWnTRgsXLpQk5eTkKDw8XOPGjdOUKVNu+d20tDQFBgYqNTVVAQEBpVHuLSWlZnIQAgDgNgpz/HbqiMq1a9e0d+9eTZ061b7Mw8ND3bt31+eff56nfVZWlrKysuzv09LSSqXOggoL9COgAABQjJw6RyUlJUXZ2dmqVq2aw/Jq1aopOTk5T/vY2FgFBgbaX+Hh4aVVKgAAcAJLTKYtqKlTpyo1NdX+SkxMdHZJAACgBDn11E9QUJA8PT117tw5h+Xnzp1TaGhonvY+Pj7y8fEprfIAAICTOXVExdvbW61atdLWrVvty3JycrR161a1b9/eiZUBAAArcPrlyZMmTdLw4cPVunVrtW3bVvPnz9eVK1c0cuRIZ5cGAACczOlBZeDAgbpw4YJefPFFJScnq0WLFtq4cWOeCbYAAKDscfp9VO6E1e6jAgAAbq8wx2+XuuoHAACULQQVAABgWQQVAABgWQQVAABgWU6/6udO5M4DttozfwAAwM3lHrcLcj2PSweVy5cvSxLP/AEAwAVdvnxZgYGBt2zj0pcn5+Tk6OzZs6pYsaJsNtsdrSstLU3h4eFKTEwss5c60wf0gUQfSPSBRB9I9IFUcn1gjNHly5dVvXp1eXjcehaKS4+oeHh4qGbNmsW6zoCAgDK7Q+aiD+gDiT6Q6AOJPpDoA6lk+uB2Iym5mEwLAAAsi6ACAAAsi6Dyv3x8fDR9+nT5+Pg4uxSnoQ/oA4k+kOgDiT6Q6APJGn3g0pNpAQCAe2NEBQAAWBZBBQAAWBZBBQAAWBZBBQAAWJZbB5VFixYpMjJSvr6+ateunb766qtbtp8/f74aNGggPz8/hYeH6w9/+IOuXr1q/3zGjBmy2WwOr4YNG5b0ZtyRwvTB9evXNWvWLEVFRcnX11fNmzfXxo0b72idVlDcfeBK+8GOHTvUp08fVa9eXTabTWvXrr3td7Zt26a77rpLPj4+qlu3ruLi4vK0caV9oCT6wJX2AanwfZCUlKQhQ4aofv368vDw0MSJE/Nt9/7776thw4by9fVVdHS0NmzYUPzFF5OS6IO4uLg8+4Gvr2/JbEAxKGwfrF69Wj169FBwcLACAgLUvn17ffzxx3nalfTfA7cNKitWrNCkSZM0ffp07du3T82bN1dMTIzOnz+fb/v33ntPU6ZM0fTp03X48GH9/e9/14oVKzRt2jSHdk2aNFFSUpL99dlnn5XG5hRJYfvg+eef15IlS7RgwQIdOnRIo0ePVr9+/fT1118XeZ3OVhJ9ILnOfnDlyhU1b95cixYtKlD7+Ph49e7dW926ddP+/fs1ceJEjRo1yuGPk6vtAyXRB5Lr7ANS4fsgKytLwcHBev7559W8efN82+zatUuDBw/W448/rq+//lp9+/ZV37599d133xVn6cWmJPpAunHH1l/uBydPniyukotdYftgx44d6tGjhzZs2KC9e/eqW7du6tOnT+kfE4ybatu2rRkzZoz9fXZ2tqlevbqJjY3Nt/2YMWPMPffc47Bs0qRJpmPHjvb306dPN82bNy+RektCYfsgLCzMLFy40GFZ//79zdChQ4u8TmcriT5wtf0glySzZs2aW7b505/+ZJo0aeKwbODAgSYmJsb+3tX2gV8qrj5w1X3AmIL1wS916dLFTJgwIc/yAQMGmN69ezssa9eunXnyySfvsMKSV1x9sHTpUhMYGFhsdZWmwvZBrsaNG5uZM2fa35fG3wO3HFG5du2a9u7dq+7du9uXeXh4qHv37vr888/z/U6HDh20d+9e+5DViRMntGHDBt1///0O7Y4eParq1aurTp06Gjp0qE6dOlVyG3IHitIHWVlZeYYt/fz87P+nWJR1OlNJ9EEuV9kPCuvzzz936C9JiomJsfeXq+0DRXG7PsjlrvtAQRW0n9xdenq6IiIiFB4eroceekgHDx50dkklJicnR5cvX1aVKlUkld7fA7cMKikpKcrOzla1atUcllerVk3Jycn5fmfIkCGaNWuW7r77bpUrV05RUVHq2rWrw6mfdu3aKS4uThs3btTixYsVHx+vTp066fLlyyW6PUVRlD6IiYnRq6++qqNHjyonJ0ebN2/W6tWrlZSUVOR1OlNJ9IHkWvtBYSUnJ+fbX2lpacrMzHS5faAobtcHknvvAwV1s35yl/2gIBo0aKB//OMfWrdund555x3l5OSoQ4cOOn36tLNLKxGvvPKK0tPTNWDAAEmld0xwy6BSFNu2bdOcOXP0xhtvaN++fVq9erU+/PBDzZ49296mV69eeuSRR9SsWTPFxMRow4YNunTpklauXOnEyovP66+/rnr16qlhw4by9vbW2LFjNXLkyNs+gtudFKQP3H0/wO2xD0CS2rdvr2HDhqlFixbq0qWLVq9ereDgYC1ZssTZpRW79957TzNnztTKlSsVEhJSqr/tlkegoKAgeXp66ty5cw7Lz507p9DQ0Hy/88ILL+jRRx/VqFGjFB0drX79+mnOnDmKjY1VTk5Ovt+pVKmS6tevr2PHjhX7NtypovRBcHCw1q5dqytXrujkyZP6/vvvVaFCBdWpU6fI63SmkuiD/Fh5Pyis0NDQfPsrICBAfn5+LrcPFMXt+iA/7rQPFNTN+sld9oOiKFeunFq2bOl2+8Hy5cs1atQorVy50uE0T2n9PXDLoOLt7a1WrVpp69at9mU5OTnaunWr2rdvn+93MjIy8owceHp6SpLMTR6HlJ6eruPHjyssLKyYKi8+RemDXL6+vqpRo4Z+/vlnffDBB3rooYfueJ3OUBJ9kB8r7weF1b59e4f+kqTNmzfb+8vV9oGiuF0f5Med9oGCKko/ubvs7GwdOHDArfaDZcuWaeTIkVq2bJl69+7t8Fmp/T0otmm5FrN8+XLj4+Nj4uLizKFDh8wTTzxhKlWqZJKTk40xxjz66KNmypQp9vbTp083FStWNMuWLTMnTpwwmzZtMlFRUWbAgAH2Nn/84x/Ntm3bTHx8vNm5c6fp3r27CQoKMufPny/17SuIwvbBF198YT744ANz/Phxs2PHDnPPPfeY2rVrm59++qnA67SakugDV9oPLl++bL7++mvz9ddfG0nm1VdfNV9//bU5efKkMcaYKVOmmEcffdTe/sSJE6Z8+fLm2WefNYcPHzaLFi0ynp6eZuPGjfY2rrYPlEQfuNI+YEzh+8AYY2/fqlUrM2TIEPP111+bgwcP2j/fuXOn8fLyMq+88oo5fPiwmT59uilXrpw5cOBAqW5bQZVEH8ycOdN8/PHH5vjx42bv3r1m0KBBxtfX16GNlRS2D959913j5eVlFi1aZJKSkuyvS5cu2duUxt8Dtw0qxhizYMECU6tWLePt7W3atm1rvvjiC/tnXbp0McOHD7e/v379upkxY4aJiooyvr6+Jjw83Dz99NMOB6iBAweasLAw4+3tbWrUqGEGDhxojh07VopbVHiF6YNt27aZRo0aGR8fH1O1alXz6KOPmjNnzhRqnVZU3H3gSvvBp59+aiTleeVu8/Dhw02XLl3yfKdFixbG29vb1KlTxyxdujTPel1pHyiJPnClfcCYovVBfu0jIiIc2qxcudLUr1/feHt7myZNmpgPP/ywdDaoCEqiDyZOnGj/76BatWrm/vvvN/v27Su9jSqkwvZBly5dbtk+V0n/PbAZc5PzGgAAAE7mlnNUAACAeyCoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAAAAyyKoAEAx27Ztm2w2my5duuTsUgCXR1ABXNiIESNks9k0d+5ch+Vr166VzWazvzfG6K233lL79u0VEBCgChUqqEmTJpowYUKBH6CWkZGhqVOnKioqSr6+vgoODlaXLl20bt06e5vIyEjNnz+/WLatpOX2nc1mU7ly5VS7dm396U9/0tWrVwu1nq5du2rixIkOyzp06KCkpCQFBgYWY8VA2URQAVycr6+v5s2bp59++infz40xGjJkiMaPH6/7779fmzZt0qFDh/T3v/9dvr6+eumllwr0O6NHj9bq1au1YMECff/999q4caMefvhh/fjjj8W5OaXqvvvuU1JSkk6cOKHXXntNS5Ys0fTp0+94vd7e3goNDXUIiwCKqFhvyA+gVA0fPtw88MADpmHDhubZZ5+1L1+zZo3J/c972bJlRpJZt25dvuvIyckp0G8FBgaauLi4m36e33NBcv33v/81d999t/H19TU1a9Y048aNM+np6fbP//nPf5pWrVqZChUqmGrVqpnBgwebc+fO2T/PfUbJxo0bTYsWLYyvr6/p1q2bOXfunNmwYYNp2LChqVixohk8eLC5cuVKgbZn+PDh5qGHHnJY1r9/f9OyZUv7+5SUFDNo0CBTvXp14+fnZ5o2bWree+89h3X8epvj4+Pt9f7yWWGrVq0yjRs3Nt7e3iYiIsK88sorBaoTKOsYUQFcnKenp+bMmaMFCxbo9OnTeT5ftmyZGjRooAcffDDf7xf0//pDQ0O1YcMGXb58Od/PV69erZo1a2rWrFlKSkpSUlKSJOn48eO677779Nvf/lbffvutVqxYoc8++0xjx461f/f69euaPXu2vvnmG61du1YJCQkaMWJEnt+YMWOGFi5cqF27dikxMVEDBgzQ/Pnz9d577+nDDz/Upk2btGDBggJtz69999132rVrl7y9ve3Lrl69qlatWunDDz/Ud999pyeeeEKPPvqovvrqK0nS66+/rvbt2+v3v/+9fZvDw8PzrHvv3r0aMGCABg0apAMHDmjGjBl64YUXFBcXV6RagTLF2UkJQNH9clTgN7/5jXnssceMMY4jKg0bNjQPPvigw/cmTJhg/P39jb+/v6lRo0aBfmv79u2mZs2aply5cqZ169Zm4sSJ5rPPPnNoExERYV577TWHZY8//rh54oknHJb997//NR4eHiYzMzPf39q9e7eRZC5fvmyM+b8RlS1bttjbxMbGGknm+PHj9mVPPvmkiYmJKdD2DB8+3Hh6ehp/f3/j4+NjJBkPDw+zatWqW36vd+/e5o9//KP9fZcuXcyECRMc2vx6RGXIkCGmR48eDm2effZZ07hx4wLVCpRljKgAbmLevHl6++23dfjw4du2fe6557R//369+OKLSk9PL9D6O3furBMnTmjr1q16+OGHdfDgQXXq1EmzZ8++5fe++eYbxcXFqUKFCvZXTEyMcnJyFB8fL+nGiEOfPn1Uq1YtVaxYUV26dJEknTp1ymFdzZo1s/9ztWrVVL58edWpU8dh2fnz5wu0PZLUrVs37d+/X19++aWGDx+ukSNH6re//a398+zsbM2ePVvR0dGqUqWKKlSooI8//jhPXbdz+PBhdezY0WFZx44ddfToUWVnZxdqXUBZQ1AB3ETnzp0VExOjqVOnOiyvV6+ejhw54rAsODhYdevWVUhISKF+o1y5curUqZMmT56sTZs2adasWZo9e7auXbt20++kp6frySef1P79++2vb775RkePHlVUVJSuXLmimJgYBQQE6N1339Xu3bu1Zs0aScqz3nLlytn/OfdqnV+y2WzKyckp8Pb4+/urbt26at68uf7xj3/oyy+/1N///nf753/5y1/0+uuva/Lkyfr000+1f/9+xcTE3HJ7ARQvL2cXAKD4zJ07Vy1atFCDBg3sywYPHqwhQ4Zo3bp1euihh4r19xo3bqyff/5ZV69elbe3t7y9vfOMENx11106dOiQ6tatm+86Dhw4oB9//FFz5861z+/Ys2dPsdZZEB4eHpo2bZomTZqkIUOGyM/PTzt37tRDDz2k3/3ud5KknJwc/fDDD2rcuLH9e/lt8681atRIO3fudFi2c+dO1a9fX56ensW/MYAbYUQFcCPR0dEaOnSo/vrXv9qXDRo0SA8//LAGDRqkWbNm6csvv1RCQoK2b9+uFStWFPhA2bVrVy1ZskR79+5VQkKCNmzYoGnTpqlbt24KCAiQdOM+Kjt27NCZM2eUkpIiSZo8ebJ27dqlsWPHav/+/Tp69KjWrVtnn0xbq1YteXt7a8GCBTpx4oTWr19/29NJJeWRRx6Rp6enFi1aJOnGaNTmzZu1a9cuHT58WE8++aTOnTvn8J3IyEh7n6akpOQ7ovPHP/5RW7du1ezZs/XDDz/o7bff1sKFC/XMM8+UynYBroygAriZWbNmORwsbTabVqxYofnz52vDhg2699571aBBAz322GMKDw/XZ599VqD1xsTE6O2331bPnj3VqFEjjRs3TjExMVq5cqXDbyckJCgqKkrBwcGSbswr2b59u3744Qd16tRJLVu21Isvvqjq1atLunEaKi4uTu+//74aN26suXPn6pVXXinGHik4Ly8vjR07Vn/+85915coVPf/887rrrrsUExOjrl27KjQ0VH379nX4zjPPPCNPT081btxYwcHB+c5fueuuu7Ry5UotX75cTZs21YsvvqhZs2ble2UTAEc2Y4xxdhEAAAD5YUQFAABYFkEFgCQ5XD7869d///tfZ5dXKKdOnbrl9hT28mIAzsOpHwCSdMuHE9aoUUN+fn6lWM2d+fnnn5WQkHDTzyMjI+XlxUWPgCsgqAAAAMvi1A8AALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALAsggoAALCs/w9mAl2JJ/XbuAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# visualize with IDAES surrogate plotting tools\n", "surrogate_scatter2D(\n", @@ -364,7 +2093,79 @@ "cell_type": "code", "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 2567\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 80\n", + "\n", + "Total number of variables............................: 231\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 192\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 231\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.02e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 3.37e+03 4.81e+01 -1.0 2.05e+04 - 1.35e-02 6.69e-01f 1\n", + " 2 0.0000000e+00 5.15e-02 8.03e+00 -1.0 7.48e+03 - 8.25e-01 1.00e+00h 1\n", + " 3 0.0000000e+00 3.65e-05 2.29e+00 -1.0 1.89e+02 - 6.49e-01 1.00e+00h 1\n", + " 4 0.0000000e+00 1.82e-12 5.38e-16 -1.0 1.51e-01 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 4\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 6.0616859024126514e-15 1.8189894035458565e-12\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 6.0616859024126514e-15 1.8189894035458565e-12\n", + "\n", + "\n", + "Number of objective function evaluations = 5\n", + "Number of objective gradient evaluations = 5\n", + "Number of equality constraint evaluations = 5\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 5\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 4\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.006\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + } + ], "source": [ "# create the IDAES model and flowsheet\n", "m = ConcreteModel()\n", @@ -443,7 +2244,27 @@ "cell_type": "code", "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Steam flowrate = 0.6068368589186967\n", + "Reformer duty = 20991.593615005655\n", + "Mole Fraction Ar = 0.0036876627716784078\n", + "Mole Fraction C2H6 = 0.0041922326063124704\n", + "Mole Fraction C3H8 = 0.000527814905073567\n", + "Mole Fraction C4H10 = 0.0009169578471303844\n", + "Mole Fraction CH4 = 0.12842550728190893\n", + "Mole Fraction CO = 0.09715611233240133\n", + "Mole Fraction CO2 = 0.04595020144165076\n", + "Mole Fraction H2 = 0.2943636734533869\n", + "Mole Fraction H2O = 0.1200063881622875\n", + "Mole Fraction N2 = 0.3067149530501456\n", + "Mole Fraction O2 = 2.4843636525024052e-20\n" + ] + } + ], "source": [ "print(\"Steam flowrate = \", value(m.fs.steam_flowrate))\n", "print(\"Reformer duty = \", value(m.fs.reformer_duty))\n", @@ -474,7 +2295,132 @@ "cell_type": "code", "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 2569\n", + "Number of nonzeros in inequality constraint Jacobian.: 1\n", + "Number of nonzeros in Lagrangian Hessian.............: 80\n", + "\n", + "Total number of variables............................: 233\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 194\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 231\n", + "Total number of inequality constraints...............: 1\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 1\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 -2.9436367e-01 1.82e-12 7.28e-04 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 -2.9565413e-01 1.38e-04 9.97e-03 -1.0 2.30e+02 - 1.00e+00 1.00e+00f 1\n", + " 2 -2.9616875e-01 3.54e-05 4.93e-03 -2.5 1.30e+02 - 1.00e+00 1.00e+00h 1\n", + " 3 -3.0856563e-01 1.70e-02 1.13e-02 -3.8 3.16e+03 - 8.54e-01 1.00e+00f 1\n", + " 4 -3.2143524e-01 2.18e-02 8.85e-03 -3.8 6.31e+03 - 1.00e+00 6.80e-01h 1\n", + " 5 -3.2594841e-01 1.17e-02 4.78e-02 -3.8 3.81e+03 - 1.00e+00 5.71e-01h 1\n", + " 6 -3.2913975e-01 1.75e-02 8.33e-02 -3.8 4.13e+03 - 8.12e-01 1.00e+00h 1\n", + " 7 -3.2865783e-01 1.30e-03 1.59e-04 -3.8 8.47e+02 - 1.00e+00 1.00e+00h 1\n", + " 8 -3.3140527e-01 5.99e-03 7.08e-03 -5.7 3.65e+03 - 7.63e-01 7.29e-01h 1\n", + " 9 -3.3257325e-01 4.36e-03 5.17e-02 -5.7 2.76e+03 - 9.76e-01 4.27e-01h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 -3.3247988e-01 1.96e-05 4.33e-02 -5.7 1.10e+02 - 8.60e-01 1.00e+00h 1\n", + " 11 -3.3249189e-01 1.38e-07 2.73e-07 -5.7 1.37e+01 - 1.00e+00 1.00e+00h 1\n", + " 12 -3.3250034e-01 1.45e-08 4.60e-04 -8.6 5.26e+00 - 1.00e+00 9.68e-01h 1\n", + " 13 -3.3250046e-01 6.69e-11 2.72e-01 -8.6 1.60e-01 - 5.13e-02 1.00e+00f 1\n", + " 14 -3.3250046e-01 3.64e-12 2.50e-14 -8.6 1.86e-03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 14\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: -3.3250045579433241e-01 -3.3250045579433241e-01\n", + "Dual infeasibility......: 2.5035529205297280e-14 2.5035529205297280e-14\n", + "Constraint violation....: 1.2123371804825303e-14 3.6379788070917130e-12\n", + "Complementarity.........: 3.0722667263320647e-09 3.0722667263320647e-09\n", + "Overall NLP error.......: 3.0722667263320647e-09 3.0722667263320647e-09\n", + "\n", + "\n", + "Number of objective function evaluations = 15\n", + "Number of objective gradient evaluations = 15\n", + "Number of equality constraint evaluations = 15\n", + "Number of inequality constraint evaluations = 15\n", + "Number of equality constraint Jacobian evaluations = 15\n", + "Number of inequality constraint Jacobian evaluations = 15\n", + "Number of Lagrangian Hessian evaluations = 14\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.013\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[+ 0.03] solve\n", + "Model status: \n", + "Problem: \n", + "- Lower bound: -inf\n", + " Upper bound: inf\n", + " Number of objectives: 1\n", + " Number of constraints: 232\n", + " Number of variables: 233\n", + " Sense: unknown\n", + "Solver: \n", + "- Status: ok\n", + " Message: Ipopt 3.13.2\\x3a Optimal Solution Found\n", + " Termination condition: optimal\n", + " Id: 0\n", + " Error rc: 0\n", + " Time: 0.01901984214782715\n", + "Solution: \n", + "- number of solutions: 0\n", + " number of solutions displayed: 0\n", + "\n", + "Solve time: 0.027978026002529077\n", + "fs.bypass_frac : 0.10000020212075882\n", + "fs.ng_steam_ratio : 1.100676931942783\n", + "fs.steam_flowrate : 1.1878835613476406\n", + "fs.reformer_duty : 38002.3828518229\n", + "fs.AR : 0.004116895599526309\n", + "fs.C2H6 : 0.0004913978369500205\n", + "fs.C4H10 : 0.00012539103921606313\n", + "fs.C3H8 : 6.923814505429928e-05\n", + "fs.CH4 : 0.017457976165817648\n", + "fs.CO : 0.10608503398940847\n", + "fs.CO2 : 0.05310177709899404\n", + "fs.H2 : 0.3325004557943324\n", + "fs.H2O : 0.14644614887662047\n", + "fs.N2 : 0.3400000016914794\n", + "fs.O2 : 3.2942822113301266e-20\n" + ] + } + ], "source": [ "# unfix input values and add the objective/constraint to the model\n", "m.fs.bypass_frac.unfix()\n", @@ -522,7 +2468,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.16" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization_test.ipynb b/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization_test.ipynb index bae4c938..11d56f16 100644 --- a/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization_test.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization_test.ipynb @@ -1,530 +1,531 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Autothermal Reformer Flowsheet Optimization with OMLT (TensorFlow Keras) Surrogate Object\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "## 1. Introduction\n", + "\n", + "This example demonstrates autothermal reformer optimization leveraging the OMLT package utilizing TensorFlow Keras neural networks. In this notebook, sampled simulation data will be used to train and validate a surrogate model. IDAES surrogate plotting tools will be utilized to visualize the surrogates on training and validation data. Once validated, integration of the surrogate into an IDAES flowsheet will be demonstrated." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Problem Statement \n", + "\n", + "Within the context of a larger NGFC system, the autothermal reformer generates syngas from air, steam and natural gas for use in a solid-oxide fuel cell (SOFC).\n", + "\n", + "## 2.1. Main Inputs: \n", + "- Bypass fraction (dimensionless) - split fraction of natural gas to bypass AR unit and feed directly to the power island\n", + "- NG-Steam Ratio (dimensionless) - proportion of natural relative to steam fed into AR unit operation\n", + "\n", + "## 2.2. Main Outputs:\n", + "- Steam flowrate (kg/s) - inlet steam fed to AR unit\n", + "- Reformer duty (kW) - required energy input to AR unit\n", + "- Composition (dimensionless) - outlet mole fractions of components (Ar, C2H6, C3H8, C4H10, CH4, CO, CO2, H2, H2O, N2, O2)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"AR_PFD.png\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Training and Validating Surrogates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, let's import the required Python, Pyomo and IDAES modules:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Import statements\n", + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "import random as rn\n", + "import tensorflow as tf\n", + "\n", + "# Import Pyomo libraries\n", + "from pyomo.environ import (\n", + " ConcreteModel,\n", + " SolverFactory,\n", + " value,\n", + " Var,\n", + " Constraint,\n", + " Set,\n", + " Objective,\n", + " maximize,\n", + ")\n", + "from pyomo.common.timing import TicTocTimer\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", + "from idaes.core.surrogate.sampling.scaling import OffsetScaler\n", + "from idaes.core.surrogate.keras_surrogate import (\n", + " KerasSurrogate,\n", + " save_keras_json_hd5,\n", + " load_keras_json_hd5,\n", + ")\n", + "from idaes.core.surrogate.plotting.sm_plotter import (\n", + " surrogate_scatter2D,\n", + " surrogate_parity,\n", + " surrogate_residual,\n", + ")\n", + "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "# fix environment variables to ensure consist neural network training\n", + "os.environ[\"PYTHONHASHSEED\"] = \"0\"\n", + "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"\"\n", + "np.random.seed(46)\n", + "rn.seed(1342)\n", + "tf.random.set_seed(62)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.1 Importing Training and Validation Datasets" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this section, we read the dataset from the CSV file located in this directory. 2800 data points were simulated from a rigorous IDAES NGFC flowsheet using a grid sampling method. For simplicity and to reduce training runtime, this example randomly selects 100 data points to use for training/validation. The data is separated using an 80/20 split into training and validation data using the IDAES `split_training_validation()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Auto-reformer training data\n", + "np.set_printoptions(precision=6, suppress=True)\n", + "\n", + "csv_data = pd.read_csv(datafile_path(\"reformer-data.csv\")) # 2800 data points\n", + "data = csv_data.sample(n=100) # randomly sample points for training/validation\n", + "\n", + "input_data = data.iloc[:, :2]\n", + "output_data = data.iloc[:, 2:]\n", + "\n", + "# Define labels, and split training and validation data\n", + "input_labels = input_data.columns\n", + "output_labels = output_data.columns\n", + "\n", + "n_data = data[input_labels[0]].size\n", + "data_training, data_validation = split_training_validation(\n", + " data, 0.8, seed=n_data\n", + ") # seed=100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.2 Training Surrogates with TensorFlow Keras" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TensorFlow Keras provides an interface to pass regression settings, build neural networks and train surrogate models. Keras enables the usage of two API formats: Sequential and Functional. While the Functional API offers more versatility, including multiple input and output layers in a single neural network, the Sequential API is more stable and user-friendly. Further, the Sequential API integrates cleanly with existing IDAES surrogate tools and will be utilized in this example.\n", + "\n", + "In the code below, we build the neural network structure based on our training data structure and desired regression settings. Offline, neural network models were trained for the list of settings below, and the options bolded and italicized were determined to have the minimum mean squared error for the dataset:\n", + "\n", + "- Activation function: relu, sigmoid, ***tanh***\n", + "- Optimizer: ***Adam***, RMSprop, SGD\n", + "- Number of hidden layers: 1, ***2***, 4\n", + "- Number of neurons per layer: 10, 20, ***40***\n", + "\n", + "Typically, Sequential Keras models are built vertically; the dataset is scaled and normalized. The network is defined for the input layer, hidden layers, and output layer for the passed activation functions and network/layer sizes. Then, the model is compiled using the passed optimizer and trained using a desired number of epochs. Keras internally validates while training and updates each epoch's model weight (coefficient) values.\n", + "\n", + "Finally, after training the model, we save the results and model expressions to a folder that contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# capture long output (not required to use surrogate API)\n", + "from io import StringIO\n", + "import sys\n", + "\n", + "stream = StringIO()\n", + "oldstdout = sys.stdout\n", + "sys.stdout = stream\n", + "\n", + "# selected settings for regression (best fit from options above)\n", + "activation, optimizer, n_hidden_layers, n_nodes_per_layer = \"tanh\", \"Adam\", 2, 40\n", + "loss, metrics = \"mse\", [\"mae\", \"mse\"]\n", + "\n", + "# Create data objects for training using scalar normalization\n", + "n_inputs = len(input_labels)\n", + "n_outputs = len(output_labels)\n", + "x = input_data\n", + "y = output_data\n", + "\n", + "input_scaler = None\n", + "output_scaler = None\n", + "input_scaler = OffsetScaler.create_normalizing_scaler(x)\n", + "output_scaler = OffsetScaler.create_normalizing_scaler(y)\n", + "x = input_scaler.scale(x)\n", + "y = output_scaler.scale(y)\n", + "x = x.to_numpy()\n", + "y = y.to_numpy()\n", + "\n", + "# Create Keras Sequential object and build neural network\n", + "model = tf.keras.Sequential()\n", + "model.add(\n", + " tf.keras.layers.Dense(\n", + " units=n_nodes_per_layer, input_dim=n_inputs, activation=activation\n", + " )\n", + ")\n", + "for i in range(1, n_hidden_layers):\n", + " model.add(tf.keras.layers.Dense(units=n_nodes_per_layer, activation=activation))\n", + "model.add(tf.keras.layers.Dense(units=n_outputs))\n", + "\n", + "# Train surrogate (calls optimizer on neural network and solves for weights)\n", + "model.compile(loss=loss, optimizer=optimizer, metrics=metrics)\n", + "mcp_save = tf.keras.callbacks.ModelCheckpoint(\n", + " \".mdl_wts.keras\", save_best_only=True, monitor=\"val_loss\", mode=\"min\"\n", + ")\n", + "history = model.fit(\n", + " x=x, y=y, validation_split=0.2, verbose=1, epochs=1000, callbacks=[mcp_save]\n", + ")\n", + "\n", + "# save model to JSON and create callable surrogate object\n", + "xmin, xmax = [0.1, 0.8], [0.8, 1.2]\n", + "input_bounds = {input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))}\n", + "\n", + "keras_surrogate = KerasSurrogate(\n", + " model,\n", + " input_labels=list(input_labels),\n", + " output_labels=list(output_labels),\n", + " input_bounds=input_bounds,\n", + " input_scaler=input_scaler,\n", + " output_scaler=output_scaler,\n", + ")\n", + "keras_surrogate.save_to_folder(\n", + " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", + ")\n", + "\n", + "# revert back to normal output capture\n", + "sys.stdout = oldstdout\n", + "\n", + "# display first 50 lines and last 50 lines of output\n", + "celloutput = stream.getvalue().split(\"\\n\")\n", + "for line in celloutput[:50]:\n", + " print(line)\n", + "print(\".\")\n", + "print(\".\")\n", + "print(\".\")\n", + "for line in celloutput[-50:]:\n", + " print(line)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.3 Visualizing surrogates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that the surrogate models have been trained, the models can be visualized through scatter, parity, and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates fit the data. Then the validation data will be visualized to confirm the surrogates accurately predict new output values." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(\n", + " keras_surrogate, data_training, filename=\"keras_train_scatter2D.pdf\"\n", + ")\n", + "surrogate_parity(keras_surrogate, data_training, filename=\"keras_train_parity.pdf\")\n", + "surrogate_residual(keras_surrogate, data_training, filename=\"keras_train_residual.pdf\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.4 Model Validation" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(\n", + " keras_surrogate, data_validation, filename=\"keras_val_scatter2D.pdf\"\n", + ")\n", + "surrogate_parity(keras_surrogate, data_validation, filename=\"keras_val_parity.pdf\")\n", + "surrogate_residual(keras_surrogate, data_validation, filename=\"keras_val_residual.pdf\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4. IDAES Flowsheet Integration" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.1 Build and Run IDAES Flowsheet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we will build an IDAES flowsheet and import the surrogate model object. A single Keras neural network model accounts for all input and output variables, and the JSON model serialized earlier may be imported into a single SurrogateBlock() component." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# create the IDAES model and flowsheet\n", + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + "# create flowsheet input variables\n", + "m.fs.bypass_frac = Var(\n", + " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", + ")\n", + "m.fs.ng_steam_ratio = Var(\n", + " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", + ")\n", + "\n", + "# create flowsheet output variables\n", + "m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", + "m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", + "m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", + "m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", + "m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", + "m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", + "m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", + "m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", + "m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", + "m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", + "m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", + "m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", + "m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", + "\n", + "# create input and output variable object lists for flowsheet\n", + "inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", + "outputs = [\n", + " m.fs.steam_flowrate,\n", + " m.fs.reformer_duty,\n", + " m.fs.AR,\n", + " m.fs.C2H6,\n", + " m.fs.C4H10,\n", + " m.fs.C3H8,\n", + " m.fs.CH4,\n", + " m.fs.CO,\n", + " m.fs.CO2,\n", + " m.fs.H2,\n", + " m.fs.H2O,\n", + " m.fs.N2,\n", + " m.fs.O2,\n", + "]\n", + "\n", + "# create the Pyomo/IDAES block that corresponds to the surrogate\n", + "# Keras\n", + "keras_surrogate = KerasSurrogate.load_from_folder(\n", + " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", + ")\n", + "m.fs.surrogate = SurrogateBlock()\n", + "m.fs.surrogate.build_model(\n", + " keras_surrogate,\n", + " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", + " input_vars=inputs,\n", + " output_vars=outputs,\n", + ")\n", + "\n", + "# fix input values and solve flowsheet\n", + "m.fs.bypass_frac.fix(0.5)\n", + "m.fs.ng_steam_ratio.fix(1)\n", + "\n", + "solver = SolverFactory(\"ipopt\")\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's print some model results:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Steam flowrate = \", value(m.fs.steam_flowrate))\n", + "print(\"Reformer duty = \", value(m.fs.reformer_duty))\n", + "print(\"Mole Fraction Ar = \", value(m.fs.AR))\n", + "print(\"Mole Fraction C2H6 = \", value(m.fs.C2H6))\n", + "print(\"Mole Fraction C3H8 = \", value(m.fs.C3H8))\n", + "print(\"Mole Fraction C4H10 = \", value(m.fs.C4H10))\n", + "print(\"Mole Fraction CH4 = \", value(m.fs.CH4))\n", + "print(\"Mole Fraction CO = \", value(m.fs.CO))\n", + "print(\"Mole Fraction CO2 = \", value(m.fs.CO2))\n", + "print(\"Mole Fraction H2 = \", value(m.fs.H2))\n", + "print(\"Mole Fraction H2O = \", value(m.fs.H2O))\n", + "print(\"Mole Fraction N2 = \", value(m.fs.N2))\n", + "print(\"Mole Fraction O2 = \", value(m.fs.O2))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.2 Optimizing the Autothermal Reformer\n", + "Extending this example, we will unfix the input variables and optimize hydrogen production. We will restrict nitrogen below 34 mol% of the product stream and leave all other variables unfixed.\n", + "\n", + "Above, variable values are called in reference to actual objects names; however, as shown below this may be done much more compactly by calling the list objects we created earlier." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# unfix input values and add the objective/constraint to the model\n", + "m.fs.bypass_frac.unfix()\n", + "m.fs.ng_steam_ratio.unfix()\n", + "m.fs.obj = Objective(expr=m.fs.H2, sense=maximize)\n", + "m.fs.con = Constraint(expr=m.fs.N2 <= 0.34)\n", + "\n", + "# solve the model\n", + "tmr = TicTocTimer()\n", + "status = solver.solve(m, tee=True)\n", + "solve_time = tmr.toc(\"solve\")\n", + "\n", + "# print and check results\n", + "assert abs(value(m.fs.H2) - 0.33) <= 0.01\n", + "assert value(m.fs.N2 <= 0.4 + 1e-8)\n", + "print(\"Model status: \", status)\n", + "print(\"Solve time: \", solve_time)\n", + "for var in inputs:\n", + " print(var.name, \": \", value(var))\n", + "for var in outputs:\n", + " print(var.name, \": \", value(var))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + } }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Autothermal Reformer Flowsheet Optimization with OMLT (TensorFlow Keras) Surrogate Object\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "## 1. Introduction\n", - "\n", - "This example demonstrates autothermal reformer optimization leveraging the OMLT package utilizing TensorFlow Keras neural networks. In this notebook, sampled simulation data will be used to train and validate a surrogate model. IDAES surrogate plotting tools will be utilized to visualize the surrogates on training and validation data. Once validated, integration of the surrogate into an IDAES flowsheet will be demonstrated." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Problem Statement \n", - "\n", - "Within the context of a larger NGFC system, the autothermal reformer generates syngas from air, steam and natural gas for use in a solid-oxide fuel cell (SOFC).\n", - "\n", - "## 2.1. Main Inputs: \n", - "- Bypass fraction (dimensionless) - split fraction of natural gas to bypass AR unit and feed directly to the power island\n", - "- NG-Steam Ratio (dimensionless) - proportion of natural relative to steam fed into AR unit operation\n", - "\n", - "## 2.2. Main Outputs:\n", - "- Steam flowrate (kg/s) - inlet steam fed to AR unit\n", - "- Reformer duty (kW) - required energy input to AR unit\n", - "- Composition (dimensionless) - outlet mole fractions of components (Ar, C2H6, C3H8, C4H10, CH4, CO, CO2, H2, H2O, N2, O2)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"AR_PFD.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Training and Validating Surrogates" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First, let's import the required Python, Pyomo and IDAES modules:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Import statements\n", - "import os\n", - "import numpy as np\n", - "import pandas as pd\n", - "import random as rn\n", - "import tensorflow as tf\n", - "\n", - "# Import Pyomo libraries\n", - "from pyomo.environ import (\n", - " ConcreteModel,\n", - " SolverFactory,\n", - " value,\n", - " Var,\n", - " Constraint,\n", - " Set,\n", - " Objective,\n", - " maximize,\n", - ")\n", - "from pyomo.common.timing import TicTocTimer\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", - "from idaes.core.surrogate.sampling.scaling import OffsetScaler\n", - "from idaes.core.surrogate.keras_surrogate import (\n", - " KerasSurrogate,\n", - " save_keras_json_hd5,\n", - " load_keras_json_hd5,\n", - ")\n", - "from idaes.core.surrogate.plotting.sm_plotter import (\n", - " surrogate_scatter2D,\n", - " surrogate_parity,\n", - " surrogate_residual,\n", - ")\n", - "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", - "from idaes.core import FlowsheetBlock\n", - "\n", - "# fix environment variables to ensure consist neural network training\n", - "os.environ[\"PYTHONHASHSEED\"] = \"0\"\n", - "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"\"\n", - "np.random.seed(46)\n", - "rn.seed(1342)\n", - "tf.random.set_seed(62)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.1 Importing Training and Validation Datasets" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this section, we read the dataset from the CSV file located in this directory. 2800 data points were simulated from a rigorous IDAES NGFC flowsheet using a grid sampling method. For simplicity and to reduce training runtime, this example randomly selects 100 data points to use for training/validation. The data is separated using an 80/20 split into training and validation data using the IDAES `split_training_validation()` method." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Auto-reformer training data\n", - "np.set_printoptions(precision=6, suppress=True)\n", - "\n", - "csv_data = pd.read_csv(datafile_path(\"reformer-data.csv\")) # 2800 data points\n", - "data = csv_data.sample(n=100) # randomly sample points for training/validation\n", - "\n", - "input_data = data.iloc[:, :2]\n", - "output_data = data.iloc[:, 2:]\n", - "\n", - "# Define labels, and split training and validation data\n", - "input_labels = input_data.columns\n", - "output_labels = output_data.columns\n", - "\n", - "n_data = data[input_labels[0]].size\n", - "data_training, data_validation = split_training_validation(\n", - " data, 0.8, seed=n_data\n", - ") # seed=100" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.2 Training Surrogates with TensorFlow Keras" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "TensorFlow Keras provides an interface to pass regression settings, build neural networks and train surrogate models. Keras enables the usage of two API formats: Sequential and Functional. While the Functional API offers more versatility, including multiple input and output layers in a single neural network, the Sequential API is more stable and user-friendly. Further, the Sequential API integrates cleanly with existing IDAES surrogate tools and will be utilized in this example.\n", - "\n", - "In the code below, we build the neural network structure based on our training data structure and desired regression settings. Offline, neural network models were trained for the list of settings below, and the options bolded and italicized were determined to have the minimum mean squared error for the dataset:\n", - "\n", - "- Activation function: relu, sigmoid, ***tanh***\n", - "- Optimizer: ***Adam***, RMSprop, SGD\n", - "- Number of hidden layers: 1, ***2***, 4\n", - "- Number of neurons per layer: 10, 20, ***40***\n", - "\n", - "Typically, Sequential Keras models are built vertically; the dataset is scaled and normalized. The network is defined for the input layer, hidden layers, and output layer for the passed activation functions and network/layer sizes. Then, the model is compiled using the passed optimizer and trained using a desired number of epochs. Keras internally validates while training and updates each epoch's model weight (coefficient) values.\n", - "\n", - "Finally, after training the model, we save the results and model expressions to a folder that contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "# capture long output (not required to use surrogate API)\n", - "from io import StringIO\n", - "import sys\n", - "\n", - "stream = StringIO()\n", - "oldstdout = sys.stdout\n", - "sys.stdout = stream\n", - "\n", - "# selected settings for regression (best fit from options above)\n", - "activation, optimizer, n_hidden_layers, n_nodes_per_layer = \"tanh\", \"Adam\", 2, 40\n", - "loss, metrics = \"mse\", [\"mae\", \"mse\"]\n", - "\n", - "# Create data objects for training using scalar normalization\n", - "n_inputs = len(input_labels)\n", - "n_outputs = len(output_labels)\n", - "x = input_data\n", - "y = output_data\n", - "\n", - "input_scaler = None\n", - "output_scaler = None\n", - "input_scaler = OffsetScaler.create_normalizing_scaler(x)\n", - "output_scaler = OffsetScaler.create_normalizing_scaler(y)\n", - "x = input_scaler.scale(x)\n", - "y = output_scaler.scale(y)\n", - "x = x.to_numpy()\n", - "y = y.to_numpy()\n", - "\n", - "# Create Keras Sequential object and build neural network\n", - "model = tf.keras.Sequential()\n", - "model.add(\n", - " tf.keras.layers.Dense(\n", - " units=n_nodes_per_layer, input_dim=n_inputs, activation=activation\n", - " )\n", - ")\n", - "for i in range(1, n_hidden_layers):\n", - " model.add(tf.keras.layers.Dense(units=n_nodes_per_layer, activation=activation))\n", - "model.add(tf.keras.layers.Dense(units=n_outputs))\n", - "\n", - "# Train surrogate (calls optimizer on neural network and solves for weights)\n", - "model.compile(loss=loss, optimizer=optimizer, metrics=metrics)\n", - "mcp_save = tf.keras.callbacks.ModelCheckpoint(\n", - " \".mdl_wts.keras\", save_best_only=True, monitor=\"val_loss\", mode=\"min\"\n", - ")\n", - "history = model.fit(\n", - " x=x, y=y, validation_split=0.2, verbose=1, epochs=1000, callbacks=[mcp_save]\n", - ")\n", - "\n", - "# save model to JSON and create callable surrogate object\n", - "xmin, xmax = [0.1, 0.8], [0.8, 1.2]\n", - "input_bounds = {input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))}\n", - "\n", - "keras_surrogate = KerasSurrogate(\n", - " model,\n", - " input_labels=list(input_labels),\n", - " output_labels=list(output_labels),\n", - " input_bounds=input_bounds,\n", - " input_scaler=input_scaler,\n", - " output_scaler=output_scaler,\n", - ")\n", - "keras_surrogate.save_to_folder(\n", - " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", - ")\n", - "\n", - "# revert back to normal output capture\n", - "sys.stdout = oldstdout\n", - "\n", - "# display first 50 lines and last 50 lines of output\n", - "celloutput = stream.getvalue().split(\"\\n\")\n", - "for line in celloutput[:50]:\n", - " print(line)\n", - "print(\".\")\n", - "print(\".\")\n", - "print(\".\")\n", - "for line in celloutput[-50:]:\n", - " print(line)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.3 Visualizing surrogates" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that the surrogate models have been trained, the models can be visualized through scatter, parity, and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates fit the data. Then the validation data will be visualized to confirm the surrogates accurately predict new output values." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(\n", - " keras_surrogate, data_training, filename=\"keras_train_scatter2D.pdf\"\n", - ")\n", - "surrogate_parity(keras_surrogate, data_training, filename=\"keras_train_parity.pdf\")\n", - "surrogate_residual(keras_surrogate, data_training, filename=\"keras_train_residual.pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.4 Model Validation" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(\n", - " keras_surrogate, data_validation, filename=\"keras_val_scatter2D.pdf\"\n", - ")\n", - "surrogate_parity(keras_surrogate, data_validation, filename=\"keras_val_parity.pdf\")\n", - "surrogate_residual(keras_surrogate, data_validation, filename=\"keras_val_residual.pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4. IDAES Flowsheet Integration" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4.1 Build and Run IDAES Flowsheet" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we will build an IDAES flowsheet and import the surrogate model object. A single Keras neural network model accounts for all input and output variables, and the JSON model serialized earlier may be imported into a single SurrogateBlock() component." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# create the IDAES model and flowsheet\n", - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - "# create flowsheet input variables\n", - "m.fs.bypass_frac = Var(\n", - " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", - ")\n", - "m.fs.ng_steam_ratio = Var(\n", - " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", - ")\n", - "\n", - "# create flowsheet output variables\n", - "m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", - "m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", - "m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", - "m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", - "m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", - "m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", - "m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", - "m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", - "m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", - "m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", - "m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", - "m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", - "m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", - "\n", - "# create input and output variable object lists for flowsheet\n", - "inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", - "outputs = [\n", - " m.fs.steam_flowrate,\n", - " m.fs.reformer_duty,\n", - " m.fs.AR,\n", - " m.fs.C2H6,\n", - " m.fs.C4H10,\n", - " m.fs.C3H8,\n", - " m.fs.CH4,\n", - " m.fs.CO,\n", - " m.fs.CO2,\n", - " m.fs.H2,\n", - " m.fs.H2O,\n", - " m.fs.N2,\n", - " m.fs.O2,\n", - "]\n", - "\n", - "# create the Pyomo/IDAES block that corresponds to the surrogate\n", - "# Keras\n", - "keras_surrogate = KerasSurrogate.load_from_folder(\n", - " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", - ")\n", - "m.fs.surrogate = SurrogateBlock()\n", - "m.fs.surrogate.build_model(\n", - " keras_surrogate,\n", - " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", - " input_vars=inputs,\n", - " output_vars=outputs,\n", - ")\n", - "\n", - "# fix input values and solve flowsheet\n", - "m.fs.bypass_frac.fix(0.5)\n", - "m.fs.ng_steam_ratio.fix(1)\n", - "\n", - "solver = SolverFactory(\"ipopt\")\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's print some model results:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Steam flowrate = \", value(m.fs.steam_flowrate))\n", - "print(\"Reformer duty = \", value(m.fs.reformer_duty))\n", - "print(\"Mole Fraction Ar = \", value(m.fs.AR))\n", - "print(\"Mole Fraction C2H6 = \", value(m.fs.C2H6))\n", - "print(\"Mole Fraction C3H8 = \", value(m.fs.C3H8))\n", - "print(\"Mole Fraction C4H10 = \", value(m.fs.C4H10))\n", - "print(\"Mole Fraction CH4 = \", value(m.fs.CH4))\n", - "print(\"Mole Fraction CO = \", value(m.fs.CO))\n", - "print(\"Mole Fraction CO2 = \", value(m.fs.CO2))\n", - "print(\"Mole Fraction H2 = \", value(m.fs.H2))\n", - "print(\"Mole Fraction H2O = \", value(m.fs.H2O))\n", - "print(\"Mole Fraction N2 = \", value(m.fs.N2))\n", - "print(\"Mole Fraction O2 = \", value(m.fs.O2))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4.2 Optimizing the Autothermal Reformer\n", - "Extending this example, we will unfix the input variables and optimize hydrogen production. We will restrict nitrogen below 34 mol% of the product stream and leave all other variables unfixed.\n", - "\n", - "Above, variable values are called in reference to actual objects names; however, as shown below this may be done much more compactly by calling the list objects we created earlier." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# unfix input values and add the objective/constraint to the model\n", - "m.fs.bypass_frac.unfix()\n", - "m.fs.ng_steam_ratio.unfix()\n", - "m.fs.obj = Objective(expr=m.fs.H2, sense=maximize)\n", - "m.fs.con = Constraint(expr=m.fs.N2 <= 0.34)\n", - "\n", - "# solve the model\n", - "tmr = TicTocTimer()\n", - "status = solver.solve(m, tee=True)\n", - "solve_time = tmr.toc(\"solve\")\n", - "\n", - "# print and check results\n", - "assert abs(value(m.fs.H2) - 0.33) <= 0.01\n", - "assert value(m.fs.N2 <= 0.4 + 1e-8)\n", - "print(\"Model status: \", status)\n", - "print(\"Solve time: \", solve_time)\n", - "for var in inputs:\n", - " print(var.name, \": \", value(var))\n", - "for var in outputs:\n", - " print(var.name, \": \", value(var))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.16" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization_usr.ipynb b/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization_usr.ipynb index bae4c938..11d56f16 100644 --- a/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization_usr.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/omlt/keras_flowsheet_optimization_usr.ipynb @@ -1,530 +1,531 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Autothermal Reformer Flowsheet Optimization with OMLT (TensorFlow Keras) Surrogate Object\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "## 1. Introduction\n", + "\n", + "This example demonstrates autothermal reformer optimization leveraging the OMLT package utilizing TensorFlow Keras neural networks. In this notebook, sampled simulation data will be used to train and validate a surrogate model. IDAES surrogate plotting tools will be utilized to visualize the surrogates on training and validation data. Once validated, integration of the surrogate into an IDAES flowsheet will be demonstrated." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Problem Statement \n", + "\n", + "Within the context of a larger NGFC system, the autothermal reformer generates syngas from air, steam and natural gas for use in a solid-oxide fuel cell (SOFC).\n", + "\n", + "## 2.1. Main Inputs: \n", + "- Bypass fraction (dimensionless) - split fraction of natural gas to bypass AR unit and feed directly to the power island\n", + "- NG-Steam Ratio (dimensionless) - proportion of natural relative to steam fed into AR unit operation\n", + "\n", + "## 2.2. Main Outputs:\n", + "- Steam flowrate (kg/s) - inlet steam fed to AR unit\n", + "- Reformer duty (kW) - required energy input to AR unit\n", + "- Composition (dimensionless) - outlet mole fractions of components (Ar, C2H6, C3H8, C4H10, CH4, CO, CO2, H2, H2O, N2, O2)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"AR_PFD.png\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Training and Validating Surrogates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, let's import the required Python, Pyomo and IDAES modules:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Import statements\n", + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "import random as rn\n", + "import tensorflow as tf\n", + "\n", + "# Import Pyomo libraries\n", + "from pyomo.environ import (\n", + " ConcreteModel,\n", + " SolverFactory,\n", + " value,\n", + " Var,\n", + " Constraint,\n", + " Set,\n", + " Objective,\n", + " maximize,\n", + ")\n", + "from pyomo.common.timing import TicTocTimer\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", + "from idaes.core.surrogate.sampling.scaling import OffsetScaler\n", + "from idaes.core.surrogate.keras_surrogate import (\n", + " KerasSurrogate,\n", + " save_keras_json_hd5,\n", + " load_keras_json_hd5,\n", + ")\n", + "from idaes.core.surrogate.plotting.sm_plotter import (\n", + " surrogate_scatter2D,\n", + " surrogate_parity,\n", + " surrogate_residual,\n", + ")\n", + "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "# fix environment variables to ensure consist neural network training\n", + "os.environ[\"PYTHONHASHSEED\"] = \"0\"\n", + "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"\"\n", + "np.random.seed(46)\n", + "rn.seed(1342)\n", + "tf.random.set_seed(62)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.1 Importing Training and Validation Datasets" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this section, we read the dataset from the CSV file located in this directory. 2800 data points were simulated from a rigorous IDAES NGFC flowsheet using a grid sampling method. For simplicity and to reduce training runtime, this example randomly selects 100 data points to use for training/validation. The data is separated using an 80/20 split into training and validation data using the IDAES `split_training_validation()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Auto-reformer training data\n", + "np.set_printoptions(precision=6, suppress=True)\n", + "\n", + "csv_data = pd.read_csv(datafile_path(\"reformer-data.csv\")) # 2800 data points\n", + "data = csv_data.sample(n=100) # randomly sample points for training/validation\n", + "\n", + "input_data = data.iloc[:, :2]\n", + "output_data = data.iloc[:, 2:]\n", + "\n", + "# Define labels, and split training and validation data\n", + "input_labels = input_data.columns\n", + "output_labels = output_data.columns\n", + "\n", + "n_data = data[input_labels[0]].size\n", + "data_training, data_validation = split_training_validation(\n", + " data, 0.8, seed=n_data\n", + ") # seed=100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.2 Training Surrogates with TensorFlow Keras" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TensorFlow Keras provides an interface to pass regression settings, build neural networks and train surrogate models. Keras enables the usage of two API formats: Sequential and Functional. While the Functional API offers more versatility, including multiple input and output layers in a single neural network, the Sequential API is more stable and user-friendly. Further, the Sequential API integrates cleanly with existing IDAES surrogate tools and will be utilized in this example.\n", + "\n", + "In the code below, we build the neural network structure based on our training data structure and desired regression settings. Offline, neural network models were trained for the list of settings below, and the options bolded and italicized were determined to have the minimum mean squared error for the dataset:\n", + "\n", + "- Activation function: relu, sigmoid, ***tanh***\n", + "- Optimizer: ***Adam***, RMSprop, SGD\n", + "- Number of hidden layers: 1, ***2***, 4\n", + "- Number of neurons per layer: 10, 20, ***40***\n", + "\n", + "Typically, Sequential Keras models are built vertically; the dataset is scaled and normalized. The network is defined for the input layer, hidden layers, and output layer for the passed activation functions and network/layer sizes. Then, the model is compiled using the passed optimizer and trained using a desired number of epochs. Keras internally validates while training and updates each epoch's model weight (coefficient) values.\n", + "\n", + "Finally, after training the model, we save the results and model expressions to a folder that contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# capture long output (not required to use surrogate API)\n", + "from io import StringIO\n", + "import sys\n", + "\n", + "stream = StringIO()\n", + "oldstdout = sys.stdout\n", + "sys.stdout = stream\n", + "\n", + "# selected settings for regression (best fit from options above)\n", + "activation, optimizer, n_hidden_layers, n_nodes_per_layer = \"tanh\", \"Adam\", 2, 40\n", + "loss, metrics = \"mse\", [\"mae\", \"mse\"]\n", + "\n", + "# Create data objects for training using scalar normalization\n", + "n_inputs = len(input_labels)\n", + "n_outputs = len(output_labels)\n", + "x = input_data\n", + "y = output_data\n", + "\n", + "input_scaler = None\n", + "output_scaler = None\n", + "input_scaler = OffsetScaler.create_normalizing_scaler(x)\n", + "output_scaler = OffsetScaler.create_normalizing_scaler(y)\n", + "x = input_scaler.scale(x)\n", + "y = output_scaler.scale(y)\n", + "x = x.to_numpy()\n", + "y = y.to_numpy()\n", + "\n", + "# Create Keras Sequential object and build neural network\n", + "model = tf.keras.Sequential()\n", + "model.add(\n", + " tf.keras.layers.Dense(\n", + " units=n_nodes_per_layer, input_dim=n_inputs, activation=activation\n", + " )\n", + ")\n", + "for i in range(1, n_hidden_layers):\n", + " model.add(tf.keras.layers.Dense(units=n_nodes_per_layer, activation=activation))\n", + "model.add(tf.keras.layers.Dense(units=n_outputs))\n", + "\n", + "# Train surrogate (calls optimizer on neural network and solves for weights)\n", + "model.compile(loss=loss, optimizer=optimizer, metrics=metrics)\n", + "mcp_save = tf.keras.callbacks.ModelCheckpoint(\n", + " \".mdl_wts.keras\", save_best_only=True, monitor=\"val_loss\", mode=\"min\"\n", + ")\n", + "history = model.fit(\n", + " x=x, y=y, validation_split=0.2, verbose=1, epochs=1000, callbacks=[mcp_save]\n", + ")\n", + "\n", + "# save model to JSON and create callable surrogate object\n", + "xmin, xmax = [0.1, 0.8], [0.8, 1.2]\n", + "input_bounds = {input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))}\n", + "\n", + "keras_surrogate = KerasSurrogate(\n", + " model,\n", + " input_labels=list(input_labels),\n", + " output_labels=list(output_labels),\n", + " input_bounds=input_bounds,\n", + " input_scaler=input_scaler,\n", + " output_scaler=output_scaler,\n", + ")\n", + "keras_surrogate.save_to_folder(\n", + " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", + ")\n", + "\n", + "# revert back to normal output capture\n", + "sys.stdout = oldstdout\n", + "\n", + "# display first 50 lines and last 50 lines of output\n", + "celloutput = stream.getvalue().split(\"\\n\")\n", + "for line in celloutput[:50]:\n", + " print(line)\n", + "print(\".\")\n", + "print(\".\")\n", + "print(\".\")\n", + "for line in celloutput[-50:]:\n", + " print(line)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.3 Visualizing surrogates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that the surrogate models have been trained, the models can be visualized through scatter, parity, and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates fit the data. Then the validation data will be visualized to confirm the surrogates accurately predict new output values." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(\n", + " keras_surrogate, data_training, filename=\"keras_train_scatter2D.pdf\"\n", + ")\n", + "surrogate_parity(keras_surrogate, data_training, filename=\"keras_train_parity.pdf\")\n", + "surrogate_residual(keras_surrogate, data_training, filename=\"keras_train_residual.pdf\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.4 Model Validation" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(\n", + " keras_surrogate, data_validation, filename=\"keras_val_scatter2D.pdf\"\n", + ")\n", + "surrogate_parity(keras_surrogate, data_validation, filename=\"keras_val_parity.pdf\")\n", + "surrogate_residual(keras_surrogate, data_validation, filename=\"keras_val_residual.pdf\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4. IDAES Flowsheet Integration" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.1 Build and Run IDAES Flowsheet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we will build an IDAES flowsheet and import the surrogate model object. A single Keras neural network model accounts for all input and output variables, and the JSON model serialized earlier may be imported into a single SurrogateBlock() component." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# create the IDAES model and flowsheet\n", + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + "# create flowsheet input variables\n", + "m.fs.bypass_frac = Var(\n", + " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", + ")\n", + "m.fs.ng_steam_ratio = Var(\n", + " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", + ")\n", + "\n", + "# create flowsheet output variables\n", + "m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", + "m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", + "m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", + "m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", + "m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", + "m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", + "m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", + "m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", + "m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", + "m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", + "m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", + "m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", + "m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", + "\n", + "# create input and output variable object lists for flowsheet\n", + "inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", + "outputs = [\n", + " m.fs.steam_flowrate,\n", + " m.fs.reformer_duty,\n", + " m.fs.AR,\n", + " m.fs.C2H6,\n", + " m.fs.C4H10,\n", + " m.fs.C3H8,\n", + " m.fs.CH4,\n", + " m.fs.CO,\n", + " m.fs.CO2,\n", + " m.fs.H2,\n", + " m.fs.H2O,\n", + " m.fs.N2,\n", + " m.fs.O2,\n", + "]\n", + "\n", + "# create the Pyomo/IDAES block that corresponds to the surrogate\n", + "# Keras\n", + "keras_surrogate = KerasSurrogate.load_from_folder(\n", + " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", + ")\n", + "m.fs.surrogate = SurrogateBlock()\n", + "m.fs.surrogate.build_model(\n", + " keras_surrogate,\n", + " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", + " input_vars=inputs,\n", + " output_vars=outputs,\n", + ")\n", + "\n", + "# fix input values and solve flowsheet\n", + "m.fs.bypass_frac.fix(0.5)\n", + "m.fs.ng_steam_ratio.fix(1)\n", + "\n", + "solver = SolverFactory(\"ipopt\")\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's print some model results:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Steam flowrate = \", value(m.fs.steam_flowrate))\n", + "print(\"Reformer duty = \", value(m.fs.reformer_duty))\n", + "print(\"Mole Fraction Ar = \", value(m.fs.AR))\n", + "print(\"Mole Fraction C2H6 = \", value(m.fs.C2H6))\n", + "print(\"Mole Fraction C3H8 = \", value(m.fs.C3H8))\n", + "print(\"Mole Fraction C4H10 = \", value(m.fs.C4H10))\n", + "print(\"Mole Fraction CH4 = \", value(m.fs.CH4))\n", + "print(\"Mole Fraction CO = \", value(m.fs.CO))\n", + "print(\"Mole Fraction CO2 = \", value(m.fs.CO2))\n", + "print(\"Mole Fraction H2 = \", value(m.fs.H2))\n", + "print(\"Mole Fraction H2O = \", value(m.fs.H2O))\n", + "print(\"Mole Fraction N2 = \", value(m.fs.N2))\n", + "print(\"Mole Fraction O2 = \", value(m.fs.O2))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.2 Optimizing the Autothermal Reformer\n", + "Extending this example, we will unfix the input variables and optimize hydrogen production. We will restrict nitrogen below 34 mol% of the product stream and leave all other variables unfixed.\n", + "\n", + "Above, variable values are called in reference to actual objects names; however, as shown below this may be done much more compactly by calling the list objects we created earlier." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# unfix input values and add the objective/constraint to the model\n", + "m.fs.bypass_frac.unfix()\n", + "m.fs.ng_steam_ratio.unfix()\n", + "m.fs.obj = Objective(expr=m.fs.H2, sense=maximize)\n", + "m.fs.con = Constraint(expr=m.fs.N2 <= 0.34)\n", + "\n", + "# solve the model\n", + "tmr = TicTocTimer()\n", + "status = solver.solve(m, tee=True)\n", + "solve_time = tmr.toc(\"solve\")\n", + "\n", + "# print and check results\n", + "assert abs(value(m.fs.H2) - 0.33) <= 0.01\n", + "assert value(m.fs.N2 <= 0.4 + 1e-8)\n", + "print(\"Model status: \", status)\n", + "print(\"Solve time: \", solve_time)\n", + "for var in inputs:\n", + " print(var.name, \": \", value(var))\n", + "for var in outputs:\n", + " print(var.name, \": \", value(var))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + } }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Autothermal Reformer Flowsheet Optimization with OMLT (TensorFlow Keras) Surrogate Object\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "## 1. Introduction\n", - "\n", - "This example demonstrates autothermal reformer optimization leveraging the OMLT package utilizing TensorFlow Keras neural networks. In this notebook, sampled simulation data will be used to train and validate a surrogate model. IDAES surrogate plotting tools will be utilized to visualize the surrogates on training and validation data. Once validated, integration of the surrogate into an IDAES flowsheet will be demonstrated." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Problem Statement \n", - "\n", - "Within the context of a larger NGFC system, the autothermal reformer generates syngas from air, steam and natural gas for use in a solid-oxide fuel cell (SOFC).\n", - "\n", - "## 2.1. Main Inputs: \n", - "- Bypass fraction (dimensionless) - split fraction of natural gas to bypass AR unit and feed directly to the power island\n", - "- NG-Steam Ratio (dimensionless) - proportion of natural relative to steam fed into AR unit operation\n", - "\n", - "## 2.2. Main Outputs:\n", - "- Steam flowrate (kg/s) - inlet steam fed to AR unit\n", - "- Reformer duty (kW) - required energy input to AR unit\n", - "- Composition (dimensionless) - outlet mole fractions of components (Ar, C2H6, C3H8, C4H10, CH4, CO, CO2, H2, H2O, N2, O2)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"AR_PFD.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Training and Validating Surrogates" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First, let's import the required Python, Pyomo and IDAES modules:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Import statements\n", - "import os\n", - "import numpy as np\n", - "import pandas as pd\n", - "import random as rn\n", - "import tensorflow as tf\n", - "\n", - "# Import Pyomo libraries\n", - "from pyomo.environ import (\n", - " ConcreteModel,\n", - " SolverFactory,\n", - " value,\n", - " Var,\n", - " Constraint,\n", - " Set,\n", - " Objective,\n", - " maximize,\n", - ")\n", - "from pyomo.common.timing import TicTocTimer\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", - "from idaes.core.surrogate.sampling.scaling import OffsetScaler\n", - "from idaes.core.surrogate.keras_surrogate import (\n", - " KerasSurrogate,\n", - " save_keras_json_hd5,\n", - " load_keras_json_hd5,\n", - ")\n", - "from idaes.core.surrogate.plotting.sm_plotter import (\n", - " surrogate_scatter2D,\n", - " surrogate_parity,\n", - " surrogate_residual,\n", - ")\n", - "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", - "from idaes.core import FlowsheetBlock\n", - "\n", - "# fix environment variables to ensure consist neural network training\n", - "os.environ[\"PYTHONHASHSEED\"] = \"0\"\n", - "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"\"\n", - "np.random.seed(46)\n", - "rn.seed(1342)\n", - "tf.random.set_seed(62)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.1 Importing Training and Validation Datasets" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this section, we read the dataset from the CSV file located in this directory. 2800 data points were simulated from a rigorous IDAES NGFC flowsheet using a grid sampling method. For simplicity and to reduce training runtime, this example randomly selects 100 data points to use for training/validation. The data is separated using an 80/20 split into training and validation data using the IDAES `split_training_validation()` method." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Auto-reformer training data\n", - "np.set_printoptions(precision=6, suppress=True)\n", - "\n", - "csv_data = pd.read_csv(datafile_path(\"reformer-data.csv\")) # 2800 data points\n", - "data = csv_data.sample(n=100) # randomly sample points for training/validation\n", - "\n", - "input_data = data.iloc[:, :2]\n", - "output_data = data.iloc[:, 2:]\n", - "\n", - "# Define labels, and split training and validation data\n", - "input_labels = input_data.columns\n", - "output_labels = output_data.columns\n", - "\n", - "n_data = data[input_labels[0]].size\n", - "data_training, data_validation = split_training_validation(\n", - " data, 0.8, seed=n_data\n", - ") # seed=100" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.2 Training Surrogates with TensorFlow Keras" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "TensorFlow Keras provides an interface to pass regression settings, build neural networks and train surrogate models. Keras enables the usage of two API formats: Sequential and Functional. While the Functional API offers more versatility, including multiple input and output layers in a single neural network, the Sequential API is more stable and user-friendly. Further, the Sequential API integrates cleanly with existing IDAES surrogate tools and will be utilized in this example.\n", - "\n", - "In the code below, we build the neural network structure based on our training data structure and desired regression settings. Offline, neural network models were trained for the list of settings below, and the options bolded and italicized were determined to have the minimum mean squared error for the dataset:\n", - "\n", - "- Activation function: relu, sigmoid, ***tanh***\n", - "- Optimizer: ***Adam***, RMSprop, SGD\n", - "- Number of hidden layers: 1, ***2***, 4\n", - "- Number of neurons per layer: 10, 20, ***40***\n", - "\n", - "Typically, Sequential Keras models are built vertically; the dataset is scaled and normalized. The network is defined for the input layer, hidden layers, and output layer for the passed activation functions and network/layer sizes. Then, the model is compiled using the passed optimizer and trained using a desired number of epochs. Keras internally validates while training and updates each epoch's model weight (coefficient) values.\n", - "\n", - "Finally, after training the model, we save the results and model expressions to a folder that contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "# capture long output (not required to use surrogate API)\n", - "from io import StringIO\n", - "import sys\n", - "\n", - "stream = StringIO()\n", - "oldstdout = sys.stdout\n", - "sys.stdout = stream\n", - "\n", - "# selected settings for regression (best fit from options above)\n", - "activation, optimizer, n_hidden_layers, n_nodes_per_layer = \"tanh\", \"Adam\", 2, 40\n", - "loss, metrics = \"mse\", [\"mae\", \"mse\"]\n", - "\n", - "# Create data objects for training using scalar normalization\n", - "n_inputs = len(input_labels)\n", - "n_outputs = len(output_labels)\n", - "x = input_data\n", - "y = output_data\n", - "\n", - "input_scaler = None\n", - "output_scaler = None\n", - "input_scaler = OffsetScaler.create_normalizing_scaler(x)\n", - "output_scaler = OffsetScaler.create_normalizing_scaler(y)\n", - "x = input_scaler.scale(x)\n", - "y = output_scaler.scale(y)\n", - "x = x.to_numpy()\n", - "y = y.to_numpy()\n", - "\n", - "# Create Keras Sequential object and build neural network\n", - "model = tf.keras.Sequential()\n", - "model.add(\n", - " tf.keras.layers.Dense(\n", - " units=n_nodes_per_layer, input_dim=n_inputs, activation=activation\n", - " )\n", - ")\n", - "for i in range(1, n_hidden_layers):\n", - " model.add(tf.keras.layers.Dense(units=n_nodes_per_layer, activation=activation))\n", - "model.add(tf.keras.layers.Dense(units=n_outputs))\n", - "\n", - "# Train surrogate (calls optimizer on neural network and solves for weights)\n", - "model.compile(loss=loss, optimizer=optimizer, metrics=metrics)\n", - "mcp_save = tf.keras.callbacks.ModelCheckpoint(\n", - " \".mdl_wts.keras\", save_best_only=True, monitor=\"val_loss\", mode=\"min\"\n", - ")\n", - "history = model.fit(\n", - " x=x, y=y, validation_split=0.2, verbose=1, epochs=1000, callbacks=[mcp_save]\n", - ")\n", - "\n", - "# save model to JSON and create callable surrogate object\n", - "xmin, xmax = [0.1, 0.8], [0.8, 1.2]\n", - "input_bounds = {input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))}\n", - "\n", - "keras_surrogate = KerasSurrogate(\n", - " model,\n", - " input_labels=list(input_labels),\n", - " output_labels=list(output_labels),\n", - " input_bounds=input_bounds,\n", - " input_scaler=input_scaler,\n", - " output_scaler=output_scaler,\n", - ")\n", - "keras_surrogate.save_to_folder(\n", - " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", - ")\n", - "\n", - "# revert back to normal output capture\n", - "sys.stdout = oldstdout\n", - "\n", - "# display first 50 lines and last 50 lines of output\n", - "celloutput = stream.getvalue().split(\"\\n\")\n", - "for line in celloutput[:50]:\n", - " print(line)\n", - "print(\".\")\n", - "print(\".\")\n", - "print(\".\")\n", - "for line in celloutput[-50:]:\n", - " print(line)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.3 Visualizing surrogates" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that the surrogate models have been trained, the models can be visualized through scatter, parity, and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates fit the data. Then the validation data will be visualized to confirm the surrogates accurately predict new output values." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(\n", - " keras_surrogate, data_training, filename=\"keras_train_scatter2D.pdf\"\n", - ")\n", - "surrogate_parity(keras_surrogate, data_training, filename=\"keras_train_parity.pdf\")\n", - "surrogate_residual(keras_surrogate, data_training, filename=\"keras_train_residual.pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.4 Model Validation" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(\n", - " keras_surrogate, data_validation, filename=\"keras_val_scatter2D.pdf\"\n", - ")\n", - "surrogate_parity(keras_surrogate, data_validation, filename=\"keras_val_parity.pdf\")\n", - "surrogate_residual(keras_surrogate, data_validation, filename=\"keras_val_residual.pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4. IDAES Flowsheet Integration" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4.1 Build and Run IDAES Flowsheet" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we will build an IDAES flowsheet and import the surrogate model object. A single Keras neural network model accounts for all input and output variables, and the JSON model serialized earlier may be imported into a single SurrogateBlock() component." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# create the IDAES model and flowsheet\n", - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - "# create flowsheet input variables\n", - "m.fs.bypass_frac = Var(\n", - " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", - ")\n", - "m.fs.ng_steam_ratio = Var(\n", - " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", - ")\n", - "\n", - "# create flowsheet output variables\n", - "m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", - "m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", - "m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", - "m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", - "m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", - "m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", - "m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", - "m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", - "m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", - "m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", - "m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", - "m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", - "m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", - "\n", - "# create input and output variable object lists for flowsheet\n", - "inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", - "outputs = [\n", - " m.fs.steam_flowrate,\n", - " m.fs.reformer_duty,\n", - " m.fs.AR,\n", - " m.fs.C2H6,\n", - " m.fs.C4H10,\n", - " m.fs.C3H8,\n", - " m.fs.CH4,\n", - " m.fs.CO,\n", - " m.fs.CO2,\n", - " m.fs.H2,\n", - " m.fs.H2O,\n", - " m.fs.N2,\n", - " m.fs.O2,\n", - "]\n", - "\n", - "# create the Pyomo/IDAES block that corresponds to the surrogate\n", - "# Keras\n", - "keras_surrogate = KerasSurrogate.load_from_folder(\n", - " keras_folder_name=\"keras_surrogate\", keras_model_name=\"keras_model\"\n", - ")\n", - "m.fs.surrogate = SurrogateBlock()\n", - "m.fs.surrogate.build_model(\n", - " keras_surrogate,\n", - " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", - " input_vars=inputs,\n", - " output_vars=outputs,\n", - ")\n", - "\n", - "# fix input values and solve flowsheet\n", - "m.fs.bypass_frac.fix(0.5)\n", - "m.fs.ng_steam_ratio.fix(1)\n", - "\n", - "solver = SolverFactory(\"ipopt\")\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's print some model results:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Steam flowrate = \", value(m.fs.steam_flowrate))\n", - "print(\"Reformer duty = \", value(m.fs.reformer_duty))\n", - "print(\"Mole Fraction Ar = \", value(m.fs.AR))\n", - "print(\"Mole Fraction C2H6 = \", value(m.fs.C2H6))\n", - "print(\"Mole Fraction C3H8 = \", value(m.fs.C3H8))\n", - "print(\"Mole Fraction C4H10 = \", value(m.fs.C4H10))\n", - "print(\"Mole Fraction CH4 = \", value(m.fs.CH4))\n", - "print(\"Mole Fraction CO = \", value(m.fs.CO))\n", - "print(\"Mole Fraction CO2 = \", value(m.fs.CO2))\n", - "print(\"Mole Fraction H2 = \", value(m.fs.H2))\n", - "print(\"Mole Fraction H2O = \", value(m.fs.H2O))\n", - "print(\"Mole Fraction N2 = \", value(m.fs.N2))\n", - "print(\"Mole Fraction O2 = \", value(m.fs.O2))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4.2 Optimizing the Autothermal Reformer\n", - "Extending this example, we will unfix the input variables and optimize hydrogen production. We will restrict nitrogen below 34 mol% of the product stream and leave all other variables unfixed.\n", - "\n", - "Above, variable values are called in reference to actual objects names; however, as shown below this may be done much more compactly by calling the list objects we created earlier." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# unfix input values and add the objective/constraint to the model\n", - "m.fs.bypass_frac.unfix()\n", - "m.fs.ng_steam_ratio.unfix()\n", - "m.fs.obj = Objective(expr=m.fs.H2, sense=maximize)\n", - "m.fs.con = Constraint(expr=m.fs.N2 <= 0.34)\n", - "\n", - "# solve the model\n", - "tmr = TicTocTimer()\n", - "status = solver.solve(m, tee=True)\n", - "solve_time = tmr.toc(\"solve\")\n", - "\n", - "# print and check results\n", - "assert abs(value(m.fs.H2) - 0.33) <= 0.01\n", - "assert value(m.fs.N2 <= 0.4 + 1e-8)\n", - "print(\"Model status: \", status)\n", - "print(\"Solve time: \", solve_time)\n", - "for var in inputs:\n", - " print(var.name, \": \", value(var))\n", - "for var in outputs:\n", - " print(var.name, \": \", value(var))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.16" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/omlt/keras_surrogate/keras_model.keras b/idaes_examples/notebooks/docs/surrogates/omlt/keras_surrogate/keras_model.keras index 55b0068b..55a164bf 100644 Binary files a/idaes_examples/notebooks/docs/surrogates/omlt/keras_surrogate/keras_model.keras and b/idaes_examples/notebooks/docs/surrogates/omlt/keras_surrogate/keras_model.keras differ diff --git a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics.ipynb b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics.ipynb index 60c8f350..081f1c08 100644 --- a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics_doc.ipynb b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics_doc.ipynb index 7a3c6798..65686cda 100644 --- a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics_doc.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -207,16 +208,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAG3CAYAAAAU+jfPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArL0lEQVR4nO3df1DU953H8deiwKq4qyCwWCGhNY2hxBh/4dqa8xSD1vH0JHfWxDuTcy6tITaR3N1IJykyzQ25a6emnRjTS3NmMjnPxLszDW0k9TBSbVH8Ea9SExM9OpoKmISw+COAwuf+sOxlAygLy3d3v/t8zOxM9/v97JcPfGr31e+P99thjDECAACwSFy4JwAAAGIL4QMAAFiK8AEAACxF+AAAAJYifAAAAEsRPgAAgKUIHwAAwFKEDwAAYCnCBwAAsBThAwAAWCqo8LFx40Y5HI6A16RJk/z729raVFRUpJSUFCUlJamwsFBNTU0hnzQAAIheQZ/5+MpXvqKGhgb/a//+/f5969evV0VFhXbs2KHq6mqdO3dOy5cvD+mEAQBAdBse9AeGD5fH4+mx3efz6YUXXtC2bds0b948SdLWrVt122236cCBA5o1a9bgZwsAAKJe0OHj/fff1/jx4+V0OuX1elVeXq6srCwdOXJEV65cUX5+vn/spEmTlJWVpZqamj7DR3t7u9rb2/3vu7q61NzcrJSUFDkcjgH8SgAAwGrGGF24cEHjx49XXNz1L6wEFT7y8vL04osv6tZbb1VDQ4PKyso0Z84c1dXVqbGxUQkJCRozZkzAZ9LT09XY2NjnMcvLy1VWVhbMNAAAQIQ6e/asJkyYcN0xQYWPRYsW+f/z5MmTlZeXp5tuukmvvvqqRowYMaBJlpSUqLi42P/e5/MpKytLZ8+elcvlGtAxAQCAtVpbW5WZmanRo0ffcGzQl10+a8yYMfryl7+sU6dOacGCBero6FBLS0vA2Y+mpqZe7xHplpiYqMTExB7bXS4X4QMAgCjTn1smBlXn4+LFizp9+rQyMjI0bdo0xcfHq6qqyr//5MmTOnPmjLxe72B+DAAAsJGgznz83d/9nZYsWaKbbrpJ586dU2lpqYYNG6aVK1fK7XZrzZo1Ki4uVnJyslwul9atWyev18uTLgAAwC+o8PHBBx9o5cqV+vjjj5Wamqqvfe1rOnDggFJTUyVJmzZtUlxcnAoLC9Xe3q6CggI9++yzQzJxAAAQnRzGGBPuSXxWa2ur3G63fD4f93wAABAlgvn+prcLAACwFOEDAABYivABAAAsRfgAAACWInwAAABLET4AAIClCB8AAMBShA8AAGApwgcAALAU4QMAAFiK8AEAACwVVGM5AIhlnV1GtfXNOn+hTWmjnZqZnaxhcY5wTwuIOoQPAOiHyroGlVWcUIOvzb8tw+1U6ZIcLczNCOPMgOjDZRcAuIHKugatffloQPCQpEZfm9a+fFSVdQ1hmhkQnQgfAHAdnV1GZRUnZHrZ172trOKEOrt6GwGgN4QPALiO2vrmHmc8PstIavC1qba+2bpJAVGO8AEA13H+Qt/BYyDjABA+AOC60kY7QzoOAOEDAK5rZnayMtxO9fVArUPXnnqZmZ1s5bSAqEb4AIDrGBbnUOmSHEnqEUC635cuyaHeBxAEwgcA3MDC3AxtWTVVHnfgpRWP26ktq6ZS5wMIEkXGAKAfFuZmaEGOhwqnQAgQPgCgn4bFOeT9Ukq4p4EYYedy/oQPAAAijN3L+XPPBwAAESQWyvkTPgAAiBCxUs6f8AEAQISIlXL+hA8AACJErJTzJ3wAABAhYqWcP+EDAIAIESvl/AkfAABEiFgp50/4AAAggsRCOX+KjAEAEGHsXs6f8IGoZufywwBim53L+RM+ELXsXn4YAOyKez4QlWKh/DAA2BXhA1EnVsoPA4BdET4QdWKl/DAA2BXhA1EnVsoPA4BdET4QdWKl/DAA2BXhA1EnVsoPA4BdET4QdWKl/DAA2BXhA1EpFsoPA4BdUWQMUcvu5YcBwK4IH4hqdi4/DAB2xWUXAABgKcIHAACwFOEDAABYivABAAAsRfgAAACWInwAAABLET4AAIClCB8AAMBShA8AAGApwgcAALAU4QMAAFiK3i5ADOrsMjTkAxA2hA8gxlTWNais4oQafG3+bRlup0qX5GhhbkYYZwYgVnDZBYghlXUNWvvy0YDgIUmNvjatffmoKusawjQzALGE8AHEiM4uo7KKEzK97OveVlZxQp1dvY0AgNAhfAAxora+uccZj88ykhp8baqtb7ZuUgBiEuEDiBHnL/QdPAYyDgAGivABxIi00c6QjgOAgRpU+HjqqafkcDj06KOP+re1tbWpqKhIKSkpSkpKUmFhoZqamgY7TwCDNDM7WRlup/p6oNaha0+9zMxOtnJaAGLQgMPHoUOH9JOf/ESTJ08O2L5+/XpVVFRox44dqq6u1rlz57R8+fJBTxTA4AyLc6h0SY4k9Qgg3e9Ll+RQ7wPAkBtQ+Lh48aLuu+8+Pf/88xo7dqx/u8/n0wsvvKAf/vCHmjdvnqZNm6atW7fqN7/5jQ4cOBCySQMYmIW5Gdqyaqo87sBLKx63U1tWTaXOBwBLDKjIWFFRkRYvXqz8/Hw9+eST/u1HjhzRlStXlJ+f7982adIkZWVlqaamRrNmzepxrPb2drW3t/vft7a2DmRKAPppYW6GFuR4qHAKIGyCDh/bt2/X0aNHdejQoR77GhsblZCQoDFjxgRsT09PV2NjY6/HKy8vV1lZWbDTADAIw+Ic8n4pJdzTQIygnD8+L6jwcfbsWT3yyCPavXu3nM7Q3BFfUlKi4uJi//vW1lZlZmaG5NgAgPCinD96E9Q9H0eOHNH58+c1depUDR8+XMOHD1d1dbV+/OMfa/jw4UpPT1dHR4daWloCPtfU1CSPx9PrMRMTE+VyuQJeAIDoRzl/9CWo8DF//nwdP35cx44d87+mT5+u++67z/+f4+PjVVVV5f/MyZMndebMGXm93pBPHgAQmSjnj+sJ6rLL6NGjlZubG7Bt1KhRSklJ8W9fs2aNiouLlZycLJfLpXXr1snr9fZ6sykAwJ6CKefP/UexZ0BPu1zPpk2bFBcXp8LCQrW3t6ugoEDPPvtsqH8MACCCUc4f1zPo8LF3796A906nU5s3b9bmzZsHe2gAQJSinD+uh94uAICQo5w/rofwAQAIOcr543oIHwCAIUE5f/Ql5DecAgDQjXL+6A3hAwAwpCjnj88jfEQQ+h8AAGIB4SNC0P8AABAruOE0AtD/AAAQSwgfYUb/AwBArCF8hFkw/Q8AALADwkeY0f8AABBrCB9hRv8DAECsIXyEGf0PAACxhvARZvQ/AADEGsJHBKD/AQAgllBkLELQ/wAAECsIHxGE/gcAgFjAZRcAAGApwgcAALAU4QMAAFiK8AEAACxF+AAAAJYifAAAAEsRPgAAgKUIHwAAwFKEDwAAYCnCBwAAsBTl1QFElM4uQ48jwOYIHwAiRmVdg8oqTqjB1+bfluF2qnRJDt2dARvhsguAiFBZ16C1Lx8NCB6S1Ohr09qXj6qyriFMMwMQaoQPAGHX2WVUVnFCppd93dvKKk6os6u3EQCiDeEDQNjV1jf3OOPxWUZSg69NtfXN1k0KwJAhfAAIu/MX+g4eAxkHILIRPgCEXdpoZ0jHAYhshA8AYTczO1kZbqf6eqDWoWtPvczMTrZyWgCGCOEDQNgNi3OodEmOJPUIIN3vS5fkUO8DsAnCB4CIsDA3Q1tWTZXHHXhpxeN2asuqqdT5AGyEImMAIsbC3AwtyPFQ4RSwOcIHgIgyLM4h75dSwj0NAEOI8AEAiFn0EgoPwgcAICbRSyh8uOEUABBz6CUUXoQPAEBMoZdQ+BE+AAAxhV5C4Uf4AADEFHoJhR/hAwAQU+glFH6EDwBATKGXUPgRPgAAMYVeQuFH+AAAxBx6CYUXRcYAADGJXkLhQ/jADVF+GIBd0UsoPAgfuC7KDwMAQo17PtAnyg8DAIYC4QO9ovwwAGCoED7QK8oPAwCGCuEDvaL8MABgqBA+0CvKDwMAhgrhA72i/DAAYKgQPtAryg8DAIYK4QN9ovwwAGAoUGQM10X5YQBAqBE+cEOUHwYAhBKXXQAAgKWCCh9btmzR5MmT5XK55HK55PV6tWvXLv/+trY2FRUVKSUlRUlJSSosLFRTU1PIJw0AAKJXUOFjwoQJeuqpp3TkyBEdPnxY8+bN09KlS/W73/1OkrR+/XpVVFRox44dqq6u1rlz57R8+fIhmTgAAIhODmPMoJpzJCcn6/vf/77uuecepaamatu2bbrnnnskSe+++65uu+021dTUaNasWf06Xmtrq9xut3w+n1wu12CmBgAALBLM9/eA7/no7OzU9u3bdenSJXm9Xh05ckRXrlxRfn6+f8ykSZOUlZWlmpqaPo/T3t6u1tbWgBcAALCvoMPH8ePHlZSUpMTERH3rW9/Szp07lZOTo8bGRiUkJGjMmDEB49PT09XY2Njn8crLy+V2u/2vzMzMoH8JAAAQPYIOH7feequOHTumgwcPau3atVq9erVOnDgx4AmUlJTI5/P5X2fPnh3wsQAAQOQLus5HQkKCJk6cKEmaNm2aDh06pB/96EdasWKFOjo61NLSEnD2o6mpSR6Pp8/jJSYmKjExMfiZAwCAqDToOh9dXV1qb2/XtGnTFB8fr6qqKv++kydP6syZM/J6vYP9MQAAwCaCOvNRUlKiRYsWKSsrSxcuXNC2bdu0d+9evfnmm3K73VqzZo2Ki4uVnJwsl8uldevWyev19vtJFwAAYH9BhY/z58/rr//6r9XQ0CC3263JkyfrzTff1IIFCyRJmzZtUlxcnAoLC9Xe3q6CggI9++yzQzJxAAAQnQZd5yPUqPMBu+jsMjTkAxAzgvn+prEcMAQq6xpUVnFCDb42/7YMt1OlS3K0MDcjjDMDgPCjsRwQYpV1DVr78tGA4CFJjb42rX35qCrrGsI0MwCIDIQPIIQ6u4zKKk6ot2uZ3dvKKk6osyuirnYCgKUIH0AI1dY39zjj8VlGUoOvTbX1zdZNCgAiDOEDCKHzF/oOHgMZBwB2RPgAQihttDOk4wDAjggfQAjNzE5Whtupvh6odejaUy8zs5OtnBYARBTCBxBCw+IcKl2SI0k9Akj3+9IlOdT7ABDTCB9AiC3MzdCWVVPlcQdeWvG4ndqyaip1PgDEPIqMAUNgYW6GFuR4qHAKAL0gfABDZFicQ94vpYR7GogRlPNHNCF8AECUo5w/og33fABAFKOcP6IR4QMAohTl/BGtCB8AEKUo549oRfgAgChFOX9EK8IHAEQpyvkjWhE+ACBKUc4f0YrwAQBRinL+iFaEDwCIYpTzRzSiyBgARDnK+SPaxFz4oAQxADuinD+iSUyFD0oQAwAQfjFzzwcliAEAiAwxET4oQQwAQOSIifBBCWIAACJHTIQPShADABA5YiJ8UIIYAIDIERPhgxLEAABEjpgIH5QgBgAgcsRE+JAoQQwAQKSIqSJjlCAGACD8Yip8SJQgBgAg3GLmsgsAAIgMhA8AAGApwgcAALAU4QMAAFiK8AEAACxF+AAAAJYifAAAAEsRPgAAgKUIHwAAwFKEDwAAYCnCBwAAsFTM9XYBEFs6uwzNJIEIQ/gAYFuVdQ0qqzihBl+bf1uG26nSJTlamJsRxpkBsY3LLgBsqbKuQWtfPhoQPCSp0demtS8fVWVdQ5hmBoDwAcB2OruMyipOyPSyr3tbWcUJdXb1NgLAUCN8ALCd2vrmHmc8PstIavC1qba+2bpJAfAjfACwnfMX+g4eAxkHILQIHwBsJ220M6TjAIQW4QOA7czMTlaG26m+Hqh16NpTLzOzk62cFoA/InwAsJ1hcQ6VLsmRpB4BpPt96ZIc6n0AYUL4AGBLC3MztGXVVHncgZdWPG6ntqyaSp0PIIwoMgbAthbmZmhBjocKp0CEIXwAsLVhcQ55v5QS7mkgBlDKv/8IHwAADBKl/IPDPR8AAAwCpfyDR/gAAGCAKOU/MIQPAAAGiFL+A0P4AABggCjlPzCEDwAABohS/gND+AAAYIAo5T8wQYWP8vJyzZgxQ6NHj1ZaWpqWLVumkydPBoxpa2tTUVGRUlJSlJSUpMLCQjU1NYV00gAARAJK+Q9MUOGjurpaRUVFOnDggHbv3q0rV67o7rvv1qVLl/xj1q9fr4qKCu3YsUPV1dU6d+6cli9fHvKJAwAQCSjlHzyHMWbAz/98+OGHSktLU3V1te666y75fD6lpqZq27ZtuueeeyRJ7777rm677TbV1NRo1qxZNzxma2ur3G63fD6fXC7XQKcGAIClYr3CaTDf34OqcOrz+SRJycnXrmUdOXJEV65cUX5+vn/MpEmTlJWV1Wf4aG9vV3t7e8DkAQCINpTy778B33Da1dWlRx99VF/96leVm5srSWpsbFRCQoLGjBkTMDY9PV2NjY29Hqe8vFxut9v/yszMHOiUECU6u4xqTn+snx37g2pOf0zxHQCIMQM+81FUVKS6ujrt379/UBMoKSlRcXGx/31raysBxMbofwAAGNCZj4cfflg///nP9dZbb2nChAn+7R6PRx0dHWppaQkY39TUJI/H0+uxEhMT5XK5Al6wJ/ofAACkIMOHMUYPP/ywdu7cqT179ig7Oztg/7Rp0xQfH6+qqir/tpMnT+rMmTPyer2hmTGiEv0PAADdgrrsUlRUpG3btulnP/uZRo8e7b+Pw+12a8SIEXK73VqzZo2Ki4uVnJwsl8uldevWyev19utJF9hXMP0PuGELAOwtqPCxZcsWSdLcuXMDtm/dulX333+/JGnTpk2Ki4tTYWGh2tvbVVBQoGeffTYkk0X0ov8BAKBbUOGjPyVBnE6nNm/erM2bNw94UrAf+h8AALrR2wWWoP8BAKAb4QOWoP8BAKAb4QOWof8BAEAaZHl1IFgLczO0IMcT0/0PACDWET5gOfofAEBs47ILAACwFOEDAABYivABAAAsRfgAAACWInwAAABLET4AAIClCB8AAMBShA8AAGApwgcAALAU4QMAAFiK8upAlOjsMvTEAWALhA8gClTWNais4oQafG3+bRlup0qX5NANGEDU4bILEOEq6xq09uWjAcFDkhp9bVr78lFV1jWEaWYAMDCEDyCCdXYZlVWckOllX/e2sooT6uzqbQQARCbCBxDBauube5zx+CwjqcHXptr6ZusmBQCDRPgAItj5C30Hj4GMA4BIQPgAIljaaGdIxwFAJCB8ABFsZnayMtxO9fVArUPXnnqZmZ1s5bQAYFAIH0AEGxbnUOmSHEnqEUC635cuyaHeB4CoQvgAItzC3AxtWTVVHnfgpRWP26ktq6ZS5wNA1KHIGBAFFuZmaEGOhwqnAGyB8AFEiWFxDnm/lBLuaSAGUMofQ43wAQDwo5Q/rMA9HwAASZTyh3UIHwAASvnDUoQPAACl/GEpwgcAgFL+sBThAwBAKX9YivABAKCUPyxF+AAAUMofliJ8AAAkUcof1qHIGADAj1L+sALhAwAQgFL+GGqEj0Gg/wEAAMEjfAwQ/Q8AABgYbjgdAPofAAAwcISPINH/AACAwSF8BIn+BwAADA7hI0j0PwAAYHAIH0Gi/wEAAIND+AgS/Q8AABgcwkeQ6H8AAMDgED4GgP4HAAAMHEXGBoj+BwAADAzhYxDofwAAQPC47AIAACxF+AAAAJYifAAAAEsRPgAAgKUIHwAAwFKEDwAAYCnCBwAAsBThAwAAWIrwAQAALEX4AAAAlqK8OoBB6+wy9DkC0G+EDwCDUlnXoLKKE2rwtfm3ZbidKl2SQ4dnAL3isguAAausa9Dal48GBA9JavS1ae3LR1VZ1xCmmQGIZEGHj1/96ldasmSJxo8fL4fDoddeey1gvzFG3/3ud5WRkaERI0YoPz9f77//fqjmCyBCdHYZlVWckOllX/e2sooT6uzqbQSAWBZ0+Lh06ZLuuOMObd68udf9//zP/6wf//jHeu6553Tw4EGNGjVKBQUFamtr63U8gOhUW9/c44zHZxlJDb421dY3WzcpAFEh6Hs+Fi1apEWLFvW6zxijp59+Wo8//riWLl0qSXrppZeUnp6u1157Td/4xjcGN1sAEeP8hf79H4r+jgMQO0J6z0d9fb0aGxuVn5/v3+Z2u5WXl6eamppeP9Pe3q7W1taAF4DIlzbaGdJxAGJHSMNHY2OjJCk9PT1ge3p6un/f55WXl8vtdvtfmZmZoZwSgCEyMztZGW6n+nqg1qFrT73MzE62cloAokDYn3YpKSmRz+fzv86ePRvuKQHoh2FxDpUuyZGkHgGk+33pkhzqfQDoIaThw+PxSJKampoCtjc1Nfn3fV5iYqJcLlfAC0B0WJiboS2rpsrjDry04nE7tWXVVOp8AOhVSIuMZWdny+PxqKqqSlOmTJEktba26uDBg1q7dm0ofxSACLEwN0MLcjxUOAXQb0GHj4sXL+rUqVP+9/X19Tp27JiSk5OVlZWlRx99VE8++aRuueUWZWdn64knntD48eO1bNmyUM4bQAQZFueQ90sp4Z4GgCgRdPg4fPiw/vRP/9T/vri4WJK0evVqvfjii/qHf/gHXbp0SQ8++KBaWlr0ta99TZWVlXI6ueMdADA49BGyB4cxJqLKD7a2tsrtdsvn83H/BwDAjz5CkS2Y7++wP+0CAMCN0EfIXggfAICIRh8h+yF8AAAiGn2E7IfwAQCIaPQRsh/CBwAgotFHyH4IHwCAiEYfIfshfAAAIhp9hOyH8AEAiHj0EbKXkPZ2AQBgqNBHyD4IHzZFCWIAdkQfIXsgfNgQJYgBAJGMez5shhLEAIBIR/iwEUoQAwCiAeHDRihBDACIBoQPG6EEMQAgGhA+bIQSxACAaED4sBFKEAMAogHhw0YoQQwAiAaED5uhBDEAINJRZMyGKEEMAIhkhA+bogQxAKBbpLXcIHwAAGBjkdhyg3s+AACwqUhtuUH4AADAhiK55QbhAwAAG4rklhuEDwAAbCiSW24QPgAAsKFIbrlB+AAAwIYiueUG4QMAABuK5JYbhA8AAGwqUltuUGQMAAAbi8SWG4QPAABsLtJabhA+gM+ItP4HAGBHhA/gjyKx/wEA2BE3nAKK3P4HAGBHhA/EvEjufwAAdkT4QMyL5P4HAGBHhA/EvEjufwAAdkT4QMyL5P4HAGBHhA/EvEjufwAAdkT4QMyL5P4HAGBHhA9Akdv/AADsiCJjwB9FYv8DALAjwgfwGZHW/wD2RSl/xDLCBwBYjFL+iHXc8wEAFqKUP0D4AADLUMofuIbwAQAWoZQ/cA3hAwAsQil/4BrCBwBYhFL+wDWEDwCwCKX8gWsIHwBgEUr5A9cQPgDAQpTyBygyBgCWo5Q/Yl3Ehw9KEAOwI0r5I5ZFdPigBDEAAPYTsfd87D7RSAliAABsKGLDx1O73qUEMQAANhSx4aOptb3PfZQgBgAgekVs+OgPShADABB9ojp8UIIYAIDoE7HhI92VSAliAABsKGLDx4ZFkyRRghgAALsZsvCxefNm3XzzzXI6ncrLy1NtbW1Qn1+Q46EEMQAANjQkRcZeeeUVFRcX67nnnlNeXp6efvppFRQU6OTJk0pLS+v3cShBDACA/TiMMSEvlpGXl6cZM2bomWeekSR1dXUpMzNT69at04YNG6772dbWVrndbvl8PrlcrlBPDQAADIFgvr9Dfuajo6NDR44cUUlJiX9bXFyc8vPzVVNT02N8e3u72tv/v6aHz+eTdO2XAAAA0aH7e7s/5zRCHj4++ugjdXZ2Kj09PWB7enq63n333R7jy8vLVVZW1mN7ZmZmqKcGAACG2IULF+R2u687JuyN5UpKSlRcXOx/39XVpebmZqWkpMjhiKx7O1pbW5WZmamzZ89ySSiMWIfwYw3CjzUIP9YgkDFGFy5c0Pjx4284NuThY9y4cRo2bJiampoCtjc1Ncnj8fQYn5iYqMTExIBtY8aMCfW0QsrlcvFftAjAOoQfaxB+rEH4sQb/70ZnPLqF/FHbhIQETZs2TVVVVf5tXV1dqqqqktfrDfWPAwAAUWZILrsUFxdr9erVmj59umbOnKmnn35aly5d0gMPPDAUPw4AAESRIQkfK1as0Icffqjvfve7amxs1JQpU1RZWdnjJtRok5iYqNLS0h6XiWAt1iH8WIPwYw3CjzUYuCGp8wEAANCXiO3tAgAA7InwAQAALEX4AAAAliJ8AAAAS8V8+CgvL9eMGTM0evRopaWladmyZTp58mTAmMbGRv3VX/2VPB6PRo0apalTp+o///M/A8Y0Nzfrvvvuk8vl0pgxY7RmzRpdvHjRyl8lam3ZskWTJ0/2F+rxer3atWuXf39bW5uKioqUkpKipKQkFRYW9ihid+bMGS1evFgjR45UWlqa/v7v/15Xr161+leJatdbh+bmZq1bt0633nqrRowYoaysLH3729/292LqxjoMzo3+LXQzxmjRokVyOBx67bXXAvaxBoPTnzWoqanRvHnzNGrUKLlcLt1111369NNP/fv5PugHE+MKCgrM1q1bTV1dnTl27Jj5+te/brKysszFixf9YxYsWGBmzJhhDh48aE6fPm2+973vmbi4OHP06FH/mIULF5o77rjDHDhwwOzbt89MnDjRrFy5Mhy/UtR5/fXXzS9+8Qvz3nvvmZMnT5rvfOc7Jj4+3tTV1RljjPnWt75lMjMzTVVVlTl8+LCZNWuWmT17tv/zV69eNbm5uSY/P9+8/fbb5o033jDjxo0zJSUl4fqVotL11uH48eNm+fLl5vXXXzenTp0yVVVV5pZbbjGFhYX+z7MOg3ejfwvdfvjDH5pFixYZSWbnzp3+7azB4N1oDX7zm98Yl8tlysvLTV1dnXn33XfNK6+8Ytra2vzH4PvgxmI+fHze+fPnjSRTXV3t3zZq1Cjz0ksvBYxLTk42zz//vDHGmBMnThhJ5tChQ/79u3btMg6Hw/zhD3+wZuI2M3bsWPPTn/7UtLS0mPj4eLNjxw7/vnfeecdIMjU1NcYYY9544w0TFxdnGhsb/WO2bNliXC6XaW9vt3zudtK9Dr159dVXTUJCgrly5YoxhnUYKp9fg7ffftt84QtfMA0NDT3CB2swND67Bnl5eebxxx/vcyzfB/0T85ddPq/7NHJycrJ/2+zZs/XKK6+oublZXV1d2r59u9ra2jR37lxJ107BjRkzRtOnT/d/Jj8/X3FxcTp48KCl8492nZ2d2r59uy5duiSv16sjR47oypUrys/P94+ZNGmSsrKyVFNTI+na3//2228PKGJXUFCg1tZW/e53v7P8d7CDz69Db3w+n1wul4YPv1arkHUIrd7W4PLly7r33nu1efPmXntlsQah9fk1OH/+vA4ePKi0tDTNnj1b6enp+pM/+RPt37/f/xm+D/on7F1tI0lXV5ceffRRffWrX1Vubq5/+6uvvqoVK1YoJSVFw4cP18iRI7Vz505NnDhR0rV7QtLS0gKONXz4cCUnJ6uxsdHS3yFaHT9+XF6vV21tbUpKStLOnTuVk5OjY8eOKSEhoUezwfT0dP/ftrGxsUf13O73/P2D09c6fN5HH32k733ve3rwwQf921iH0LjeGqxfv16zZ8/W0qVLe/0saxAafa3BgQMHJEkbN27UD37wA02ZMkUvvfSS5s+fr7q6Ot1yyy18H/QT4eMzioqKVFdXF5BiJemJJ55QS0uL/vu//1vjxo3Ta6+9pr/8y7/Uvn37dPvtt4dptvZy66236tixY/L5fPqP//gPrV69WtXV1eGeVszpax0+G0BaW1u1ePFi5eTkaOPGjeGbrE31tQanTp3Snj179Pbbb4d7irbX1xp0dXVJkr75zW/6e5Xdeeedqqqq0r/+67+qvLw8nNOOKoSPP3r44Yf185//XL/61a80YcIE//bTp0/rmWeeUV1dnb7yla9Iku644w7t27dPmzdv1nPPPSePx6Pz588HHO/q1atqbm7u9dQoekpISPCfSZo2bZoOHTqkH/3oR1qxYoU6OjrU0tIScPajqanJ/7f1eDyqra0NOF730zD8/YPT1zr85Cc/kSRduHBBCxcu1OjRo7Vz507Fx8f7P8s6hEZfazBixAidPn26x1nAwsJCzZkzR3v37mUNQqSvNdiwYYMk9TgbeNttt+nMmTOSxPdBP8X8PR/GGD388MPauXOn9uzZo+zs7ID9ly9fliTFxQX+qYYNG+ZPwV6vVy0tLTpy5Ih//549e9TV1aW8vLwh/g3sqaurS+3t7Zo2bZri4+NVVVXl33fy5EmdOXPGfx3c6/Xq+PHjAf/gd+/eLZfL1eslA/Rf9zpI18543H333UpISNDrr78up9MZMJZ1GBrda7Bhwwb99re/1bFjx/wvSdq0aZO2bt0qiTUYKt1rcPPNN2v8+PE9yjG89957uummmyTxfdBv4b7jNdzWrl1r3G632bt3r2loaPC/Ll++bIwxpqOjw0ycONHMmTPHHDx40Jw6dcr84Ac/MA6Hw/ziF7/wH2fhwoXmzjvvNAcPHjT79+83t9xyC49W9dOGDRtMdXW1qa+vN7/97W/Nhg0bjMPhML/85S+NMdcetc3KyjJ79uwxhw8fNl6v13i9Xv/nux8vvPvuu82xY8dMZWWlSU1N5fHCIF1vHXw+n8nLyzO33367OXXqVMC/latXrxpjWIdQuNG/hc9TH4/asgYDd6M12LRpk3G5XGbHjh3m/fffN48//rhxOp3m1KlT/mPwfXBjMR8+JPX62rp1q3/Me++9Z5YvX27S0tLMyJEjzeTJk3s8evvxxx+blStXmqSkJONyucwDDzxgLly4YPFvE53+5m/+xtx0000mISHBpKammvnz5wf8j+2nn35qHnroITN27FgzcuRI8+d//uemoaEh4Bi///3vzaJFi8yIESPMuHHjzGOPPeZ/BBT9c711eOutt/r8t1JfX+8/BuswODf6t/B5nw8fxrAGg9WfNSgvLzcTJkwwI0eONF6v1+zbty9gP98HN+YwxphwnHEBAACxKebv+QAAANYifAAAAEsRPgAAgKUIHwAAwFKEDwAAYCnCBwAAsBThAwAAWIrwAcSgjRs3yuFw+F+pqamaN2+e9u3bF+6pAYgBhA8gRo0YMUI1NTWqqanRli1b9PHHH/tbgwPAUKKrLRCj4uLiNGvWLP/7mTNn6uabb9Zzzz2nZ555JmCsMUYdHR1KTEy0eppB+fTTTzVixIhwTwPADXDmA4AkKSsrS6mpqaqvr9f999+v3NxcvfHGG7rjjjuUmJioiooKSVJNTY3mzZunUaNGye1269577+3RQvypp57SxIkT5XQ6lZqaqvz8fNXX1/dr/969e+VwOHT48OGAYy5btkxz5871v9+4caOSkpJUW1srr9crp9OpzZs3S5LeeecdLV26VG63W6NGjdLixYt1+vTpofizARgAwgcASVJra6s+/vhjjR8/XpJ07tw5ffvb39b69etVWVmpKVOmqKamRnPnzpXb7dYrr7yif/mXf9GhQ4e0dOlS/3FeeuklPfHEE1qzZo0qKyv105/+VFOmTFFra2u/9gejo6ND9957r1atWqVdu3bp7rvv1v/+7/9q9uzZam5u1osvvqht27bpww8/1Pz589Xe3h6aPxaAQeGyCxDDrl69Kkn64IMP9Nhjj6mzs1P33HOP/v3f/12ffPKJdu3apby8PP/4NWvWaPr06fqv//ovORwOSdLtt9/uP0vy9a9/XbW1tZo8ebJKSkr8n/tsOLnR/mBcuXJF//iP/6gVK1b4t61evVrJycnavXu3nE6nJGn27Nn64he/qBdeeEEPPfTQgH4WgNDhzAcQoy5duqT4+HjFx8crOztbb731lp555hkVFBRIklJSUgKCx+XLl/XrX/9af/EXf6HOzk5dvXpVV69e1Ze//GVlZmbq0KFDkqSpU6fq7bffVnFxsfbv368rV64E/Nwb7Q/W4sWLA97/8pe/1J/92Z9p+PDh/jmOHTtWd955p3+OAMKL8AHEqBEjRujQoUM6fPiwfv/73+ujjz5SUVGRf396enrA+E8++USdnZ1av369P7R0v86cOaOzZ89Kku6//35t2rRJb775pubMmaPU1FQ98sgj+vTTT/u1PxgjR45UUlJSwLaPPvpITz/9dI857tu3zz9HAOHFZRcgRsXFxWn69Ol97u++rNJtzJgxcjgc+s53vqNly5b1GD9u3Dj/cR955BE98sgj+sMf/qDt27drw4YNGjdunJ544okb7u++VNLR0RFw/E8++aTHnD7/XpKSk5O1ePHiXi+vjB49us/fF4B1CB8A+mXUqFHyer1655139OSTT/brM1/4whf02GOPadu2bXrnnXf6tX/ChAmSrj2xMnv2bEnXzmYcPXpU06ZNu+HPzM/PV11dne68804NGzasv78eAAsRPgD02/e//33NmzdPK1as0De+8Q2NHTtWH3zwgXbv3q0HHnhAc+fO1Te/+U2NHTtWs2bN0tixY/XrX/9a//M//+M/E3Gj/RMmTFBeXp7Kysrkdrs1fPhw/dM//ZPcbne/5lhWVqYZM2aooKBADz74oNLT09XY2Kjq6mrNmTNHK1euHLK/D4D+IXwA6LfZs2dr//79Ki0t1QMPPKCOjg5NmDBB8+fP18SJE/1jnn/+eT3//PO6fPmyvvjFL2rTpk1as2ZNv/ZL0r/927/pb//2b3X//ffL4/HoySef1Pbt29XS0nLDOU6cOFG1tbV6/PHH9dBDD+nixYvKyMjQXXfdpcmTJw/J3wVAcBzGGBPuSQAAgNjB0y4AAMBShA8AAGApwgcAALAU4QMAAFiK8AEAACxF+AAAAJYifAAAAEsRPgAAgKUIHwAAwFKEDwAAYCnCBwAAsBThAwAAWOr/ANyb5fS36oseAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAG3CAYAAAAU+jfPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAKy9JREFUeJzt3X9Q1Pedx/HXosCquKsgsFghoTWNocQYf+HamvMUg9bx9CR31sQ7k3MurSE2kdzdSCcpMs0NuWunpp0Y00tzZjI5z8S7Mw1tJPUwUm1R/BGvUhMTPTqaCpiEsPgjgMLn/rDsZQMoC8t3d7/7fMzsTPf7/eyXD3xq99Xvj/fbYYwxAgAAsEhcuCcAAABiC+EDAABYivABAAAsRfgAAACWInwAAABLET4AAIClCB8AAMBShA8AAGApwgcAALAU4QMAAFgqqPCxceNGORyOgNekSZP8+9va2lRUVKSUlBQlJSWpsLBQTU1NIZ80AACIXkGf+fjKV76ihoYG/2v//v3+fevXr1dFRYV27Nih6upqnTt3TsuXLw/phAEAQHQbHvQHhg+Xx+Ppsd3n8+mFF17Qtm3bNG/ePEnS1q1bddttt+nAgQOaNWvW4GcLAACiXtDh4/3339f48ePldDrl9XpVXl6urKwsHTlyRFeuXFF+fr5/7KRJk5SVlaWampo+w0d7e7va29v977u6utTc3KyUlBQ5HI4B/EoAAMBqxhhduHBB48ePV1zc9S+sBBU+8vLy9OKLL+rWW29VQ0ODysrKNGfOHNXV1amxsVEJCQkaM2ZMwGfS09PV2NjY5zHLy8tVVlYWzDQAAECEOnv2rCZMmHDdMUGFj0WLFvn/8+TJk5WXl6ebbrpJr776qkaMGDGgSZaUlKi4uNj/3ufzKSsrS2fPnpXL5RrQMQEAgLVaW1uVmZmp0aNH33Bs0JddPmvMmDH68pe/rFOnTmnBggXq6OhQS0tLwNmPpqamXu8R6ZaYmKjExMQe210uF+EDAIAo059bJgZV5+PixYs6ffq0MjIyNG3aNMXHx6uqqsq//+TJkzpz5oy8Xu9gfgwAALCRoM58/N3f/Z2WLFmim266SefOnVNpaamGDRumlStXyu12a82aNSouLlZycrJcLpfWrVsnr9fLky4AAMAvqPDxwQcfaOXKlfr444+Vmpqqr33tazpw4IBSU1MlSZs2bVJcXJwKCwvV3t6ugoICPfvss0MycQAAEJ0cxhgT7kl8Vmtrq9xut3w+H/d8AAAQJYL5/qa3CwAAsBThAwAAWIrwAQAALEX4AAAAliJ8AAAASxE+AACApQgfAADAUoQPAABgKcIHAACwFOEDAABYivABAAAsFVRjOQCIZZ1dRrX1zTp/oU1po52amZ2sYXGOcE8LiDqEDwDoh8q6BpVVnFCDr82/LcPtVOmSHC3MzQjjzIDow2UXALiByroGrX35aEDwkKRGX5vWvnxUlXUNYZoZEJ0IHwBwHZ1dRmUVJ2R62de9razihDq7ehsBoDeEDwC4jtr65h5nPD7LSGrwtam2vtm6SQFRjvABANdx/kLfwWMg4wAQPgDgutJGO0M6DgDhAwCua2Z2sjLcTvX1QK1D1556mZmdbOW0gKhG+ACA6xgW51DpkhxJ6hFAut+XLsmh3gcQBMIHANzAwtwMbVk1VR534KUVj9upLaumUucDCBJFxgCgHxbmZmhBjocKp0AIED4AoJ+GxTnk/VJKuKeBGGHncv6EDwAAIozdy/lzzwcAABEkFsr5Ez4AAIgQsVLOn/ABAECEiJVy/oQPAAAiRKyU8yd8AAAQIWKlnD/hAwCACBEr5fwJHwAARIhYKedP+AAAIILEQjl/iowBABBh7F7On/CBqGbn8sMAYpudy/kTPhC17F5+GADsins+EJViofwwANgV4QNRJ1bKDwOAXRE+EHVipfwwANgV4QNRJ1bKDwOAXRE+EHVipfwwANgV4QNRJ1bKDwOAXRE+EHVipfwwANgV4QNRKRbKDwOAXVFkDFHL7uWHAcCuCB+IanYuPwwAdsVlFwAAYCnCBwAAsBThAwAAWIrwAQAALEX4AAAAliJ8AAAASxE+AACApQgfAADAUoQPAABgKcIHAACwFOEDAABYit4uQAzq7DI05AMQNoQPIMZU1jWorOKEGnxt/m0ZbqdKl+RoYW5GGGcGIFZw2QWIIZV1DVr78tGA4CFJjb42rX35qCrrGsI0MwCxhPABxIjOLqOyihMyvezr3lZWcUKdXb2NAIDQIXwAMaK2vrnHGY/PMpIafG2qrW+2blIAYhLhA4gR5y/0HTwGMg4ABorwAcSItNHOkI4DgIEaVPh46qmn5HA49Oijj/q3tbW1qaioSCkpKUpKSlJhYaGampoGO08AgzQzO1kZbqf6eqDWoWtPvczMTrZyWgBi0IDDx6FDh/STn/xEkydPDti+fv16VVRUaMeOHaqurta5c+e0fPnyQU8UwOAMi3OodEmOJPUIIN3vS5fkUO8DwJAbUPi4ePGi7rvvPj3//PMaO3asf7vP59MLL7ygH/7wh5o3b56mTZumrVu36je/+Y0OHDgQskkDGJiFuRnasmqqPO7ASyset1NbVk2lzgcASwyoyFhRUZEWL16s/Px8Pfnkk/7tR44c0ZUrV5Sfn+/fNmnSJGVlZammpkazZs3qcaz29na1t7f737e2tg5kSgD6aWFuhhbkeKhwCiBsgg4f27dv19GjR3Xo0KEe+xobG5WQkKAxY8YEbE9PT1djY2OvxysvL1dZWVmw0wAwCMPiHPJ+KSXc00CMoJw/Pi+o8HH27Fk98sgj2r17t5zO0NwRX1JSouLiYv/71tZWZWZmhuTYAIDwopw/ehPUPR9HjhzR+fPnNXXqVA0fPlzDhw9XdXW1fvzjH2v48OFKT09XR0eHWlpaAj7X1NQkj8fT6zETExPlcrkCXgCA6Ec5f/QlqPAxf/58HT9+XMeOHfO/pk+frvvuu8//n+Pj41VVVeX/zMmTJ3XmzBl5vd6QTx4AEJko54/rCeqyy+jRo5WbmxuwbdSoUUpJSfFvX7NmjYqLi5WcnCyXy6V169bJ6/X2erMpAMCeginnz/1HsWdAT7tcz6ZNmxQXF6fCwkK1t7eroKBAzz77bKh/DAAgglHOH9cz6PCxd+/egPdOp1ObN2/W5s2bB3toAECUopw/rofeLgCAkKOcP66H8AEACDnK+eN6CB8AgCFBOX/0JeQ3nAIA0I1y/ugN4QMAMKQo54/PI3xEEPofAABiAeEjQtD/AAAQK7jhNALQ/wAAEEsIH2FG/wMAQKwhfIRZMP0PAACwA8JHmNH/AAAQawgfYUb/AwBArCF8hBn9DwAAsYbwEWb0PwAAxBrCRwSg/wEAIJZQZCxC0P8AABArCB8RhP4HAIBYwGUXAABgKcIHAACwFOEDAABYivABAAAsRfgAAACWInwAAABLET4AAIClCB8AAMBShA8AAGApwgcAALAU5dUBRJTOLkOPI8DmCB8AIkZlXYPKKk6owdfm35bhdqp0SQ7dnQEb4bILgIhQWdegtS8fDQgektToa9Pal4+qsq4hTDMDEGqEDwBh19llVFZxQqaXfd3byipOqLOrtxEAog3hA0DY1dY39zjj8VlGUoOvTbX1zdZNCsCQIXwACLvzF/oOHgMZByCyET4AhF3aaGdIxwGIbIQPAGE3MztZGW6n+nqg1qFrT73MzE62cloAhgjhA0DYDYtzqHRJjiT1CCDd70uX5FDvA7AJwgeAiLAwN0NbVk2Vxx14acXjdmrLqqnU+QBshCJjACLGwtwMLcjxUOEUsDnCB4CIMizOIe+XUsI9DQBDiPABAIhZ9BIKD8IHACAm0UsofLjhFAAQc+glFF6EDwBATKGXUPgRPgAAMYVeQuFH+AAAxBR6CYUf4QMAEFPoJRR+hA8AQEyhl1D4ET4AADGFXkLhR/gAAMQcegmFF0XGAAAxiV5C4UP4wA1RfhiAXdFLKDwIH7guyg8DAEKNez7QJ8oPAwCGAuEDvaL8MABgqBA+0CvKDwMAhgrhA72i/DAAYKgQPtAryg8DAIYK4QO9ovwwAGCoED7QK8oPAwCGCuEDfaL8MABgKFBkDNdF+WEAQKgRPnBDlB8GAIQSl10AAIClggofW7Zs0eTJk+VyueRyueT1erVr1y7//ra2NhUVFSklJUVJSUkqLCxUU1NTyCcNAACiV1DhY8KECXrqqad05MgRHT58WPPmzdPSpUv1u9/9TpK0fv16VVRUaMeOHaqurta5c+e0fPnyIZk4AACITg5jzKCacyQnJ+v73/++7rnnHqWmpmrbtm265557JEnvvvuubrvtNtXU1GjWrFn9Ol5ra6vcbrd8Pp9cLtdgpgYAACwSzPf3gO/56Ozs1Pbt23Xp0iV5vV4dOXJEV65cUX5+vn/MpEmTlJWVpZqamj6P097ertbW1oAXAACwr6DDx/Hjx5WUlKTExER961vf0s6dO5WTk6PGxkYlJCRozJgxAePT09PV2NjY5/HKy8vldrv9r8zMzKB/CQAAED2CDh+33nqrjh07poMHD2rt2rVavXq1Tpw4MeAJlJSUyOfz+V9nz54d8LEAAEDkC7rOR0JCgiZOnChJmjZtmg4dOqQf/ehHWrFihTo6OtTS0hJw9qOpqUkej6fP4yUmJioxMTH4mQMAgKg06DofXV1dam9v17Rp0xQfH6+qqir/vpMnT+rMmTPyer2D/TEAAMAmgjrzUVJSokWLFikrK0sXLlzQtm3btHfvXr355ptyu91as2aNiouLlZycLJfLpXXr1snr9fb7SRcAAGB/QYWP8+fP66//+q/V0NAgt9utyZMn680339SCBQskSZs2bVJcXJwKCwvV3t6ugoICPfvss0MycQAAEJ0GXecj1KjzAbvo7DI05AMQM4L5/qaxHDAEKusaVFZxQg2+Nv+2DLdTpUtytDA3I4wzA4Dwo7EcEGKVdQ1a+/LRgOAhSY2+Nq19+agq6xrCNDMAiAyEDyCEOruMyipOqLdrmd3byipOqLMroq52AoClCB9ACNXWN/c44/FZRlKDr0219c3WTQoAIgzhAwih8xf6Dh4DGQcAdkT4AEIobbQzpOMAwI4IH0AIzcxOVobbqb4eqHXo2lMvM7OTrZwWAEQUwgcQQsPiHCpdkiNJPQJI9/vSJTnU+wAQ0wgfQIgtzM3QllVT5XEHXlrxuJ3asmoqdT4AxDyKjAFDYGFuhhbkeKhwCgC9IHwAQ2RYnEPeL6WEexqIEZTzRzQhfABAlKOcP6IN93wAQBSjnD+iEeEDAKIU5fwRrQgfABClKOePaEX4AIAoRTl/RCvCBwBEKcr5I1oRPgAgSlHOH9GK8AEAUYpy/ohWhA8AiGKU80c0osgYAEQ5yvkj2sRc+KAEMQA7opw/oklMhQ9KEAMAEH4xc88HJYgBAIgMMRE+KEEMAEDkiInwQQliAAAiR0yED0oQAwAQOWIifFCCGACAyBET4YMSxAAARI6YCB+UIAYAIHLERPiQKEEMAECkiKkiY5QgBgAg/GIqfEiUIAYAINxi5rILAACIDIQPAABgKcIHAACwFOEDAABYivABAAAsRfgAAACWInwAAABLET4AAIClCB8AAMBShA8AAGApwgcAALBUzPV2ARBbOrsMzSSBCEP4AGBblXUNKqs4oQZfm39bhtup0iU5WpibEcaZAbGNyy4AbKmyrkFrXz4aEDwkqdHXprUvH1VlXUOYZgaA8AHAdjq7jMoqTsj0sq97W1nFCXV29TYCwFAjfACwndr65h5nPD7LSGrwtam2vtm6SQHwI3wAsJ3zF/oOHgMZByC0CB8AbCdttDOk4wCEFuEDgO3MzE5Whtupvh6odejaUy8zs5OtnBaAPyJ8ALCdYXEOlS7JkaQeAaT7femSHOp9AGFC+ABgSwtzM7Rl1VR53IGXVjxup7asmkqdDyCMKDIGwLYW5mZoQY6HCqdAhCF8ALC1YXEOeb+UEu5pIAZQyr//CB8AAAwSpfyDwz0fAAAMAqX8g0f4AABggCjlPzCEDwAABohS/gND+AAAYIAo5T8whA8AAAaIUv4DQ/gAAGCAKOU/MEGFj/Lycs2YMUOjR49WWlqali1bppMnTwaMaWtrU1FRkVJSUpSUlKTCwkI1NTWFdNIAAEQCSvkPTFDho7q6WkVFRTpw4IB2796tK1eu6O6779alS5f8Y9avX6+Kigrt2LFD1dXVOnfunJYvXx7yiQMAEAko5R88hzFmwM//fPjhh0pLS1N1dbXuuusu+Xw+paamatu2bbrnnnskSe+++65uu+021dTUaNasWTc8Zmtrq9xut3w+n1wu10CnBgCApWK9wmkw39+DqnDq8/kkScnJ165lHTlyRFeuXFF+fr5/zKRJk5SVldVn+Ghvb1d7e3vA5AEAiDaU8u+/Ad9w2tXVpUcffVRf/epXlZubK0lqbGxUQkKCxowZEzA2PT1djY2NvR6nvLxcbrfb/8rMzBzolBAlOruMak5/rJ8d+4NqTn9M8R0AiDEDPvNRVFSkuro67d+/f1ATKCkpUXFxsf99a2srAcTG6H8AABjQmY+HH35YP//5z/XWW29pwoQJ/u0ej0cdHR1qaWkJGN/U1CSPx9PrsRITE+VyuQJesCf6HwAApCDDhzFGDz/8sHbu3Kk9e/YoOzs7YP+0adMUHx+vqqoq/7aTJ0/qzJkz8nq9oZkxohL9DwAA3YK67FJUVKRt27bpZz/7mUaPHu2/j8PtdmvEiBFyu91as2aNiouLlZycLJfLpXXr1snr9fbrSRfYVzD9D7hhCwDsLajwsWXLFknS3LlzA7Zv3bpV999/vyRp06ZNiouLU2Fhodrb21VQUKBnn302JJNF9KL/AQCgW1Dhoz8lQZxOpzZv3qzNmzcPeFKwH/ofAAC60dsFlqD/AQCgG+EDlqD/AQCgG+EDlqH/AQBAGmR5dSBYC3MztCDHE9P9DwAg1hE+YDn6HwBAbOOyCwAAsBThAwAAWIrwAQAALEX4AAAAliJ8AAAASxE+AACApQgfAADAUoQPAABgKcIHAACwFOEDAABYivLqQJTo7DL0xAFgC4QPIApU1jWorOKEGnxt/m0ZbqdKl+TQDRhA1OGyCxDhKusatPblowHBQ5IafW1a+/JRVdY1hGlmADAwhA8ggnV2GZVVnJDpZV/3trKKE+rs6m0EAEQmwgcQwWrrm3uc8fgsI6nB16ba+mbrJgUAg0T4ACLY+Qt9B4+BjAOASED4ACJY2mhnSMcBQCQgfAARbGZ2sjLcTvX1QK1D1556mZmdbOW0AGBQCB9ABBsW51DpkhxJ6hFAut+XLsmh3geAqEL4ACLcwtwMbVk1VR534KUVj9upLaumUucDQNShyBgQBRbmZmhBjocKpwBsgfABRIlhcQ55v5QS7mkgBlDKH0ON8AEA8KOUP6zAPR8AAEmU8od1CB8AAEr5w1KEDwAApfxhKcIHAIBS/rAU4QMAQCl/WIrwAQCglD8sRfgAAFDKH5YifAAAJFHKH9ahyBgAwI9S/rAC4QMAEIBS/hhqhI9BoP8BAADBI3wMEP0PAAAYGG44HQD6HwAAMHCEjyDR/wAAgMEhfASJ/gcAAAwO4SNI9D8AAGBwCB9Bov8BAACDQ/gIEv0PAAAYHMJHkOh/AADA4BA+BoD+BwAADBxFxgaI/gcAAAwM4WMQ6H8AAEDwuOwCAAAsRfgAAACWInwAAABLET4AAIClCB8AAMBShA8AAGApwgcAALAU4QMAAFiK8AEAACxF+AAAAJaivDqAQevsMvQ5AtBvhA8Ag1JZ16CyihNq8LX5t2W4nSpdkkOHZwC94rILgAGrrGvQ2pePBgQPSWr0tWnty0dVWdcQppkBiGRBh49f/epXWrJkicaPHy+Hw6HXXnstYL8xRt/97neVkZGhESNGKD8/X++//36o5gsgQnR2GZVVnJDpZV/3trKKE+rs6m0EgFgWdPi4dOmS7rjjDm3evLnX/f/8z/+sH//4x3ruued08OBBjRo1SgUFBWpra+t1PIDoVFvf3OOMx2cZSQ2+NtXWN1s3KQBRIeh7PhYtWqRFixb1us8Yo6efflqPP/64li5dKkl66aWXlJ6ertdee03f+MY3BjdbABHj/IX+/R+K/o4DEDtCes9HfX29GhsblZ+f79/mdruVl5enmpqaXj/T3t6u1tbWgBeAyJc22hnScQBiR0jDR2NjoyQpPT09YHt6erp/3+eVl5fL7Xb7X5mZmaGcEoAhMjM7WRlup/p6oNaha0+9zMxOtnJaAKJA2J92KSkpkc/n87/Onj0b7ikB6IdhcQ6VLsmRpB4BpPt96ZIc6n0A6CGk4cPj8UiSmpqaArY3NTX5931eYmKiXC5XwAtAdFiYm6Etq6bK4w68tOJxO7Vl1VTqfADoVUiLjGVnZ8vj8aiqqkpTpkyRJLW2turgwYNau3ZtKH8UgAixMDdDC3I8VDgF0G9Bh4+LFy/q1KlT/vf19fU6duyYkpOTlZWVpUcffVRPPvmkbrnlFmVnZ+uJJ57Q+PHjtWzZslDOG0AEGRbnkPdLKeGeBoAoEXT4OHz4sP70T//U/764uFiStHr1ar344ov6h3/4B126dEkPPvigWlpa9LWvfU2VlZVyOrnjHQAwOPQRsgeHMSaiyg+2trbK7XbL5/Nx/wcAwI8+QpEtmO/vsD/tAgDAjdBHyF4IHwCAiEYfIfshfAAAIhp9hOyH8AEAiGj0EbIfwgcAIKLRR8h+CB8AgIhGHyH7IXwAACIafYTsh/ABAIh49BGyl5D2dgEAYKjQR8g+CB82RQliAHZEHyF7IHzYECWIAQCRjHs+bIYSxACASEf4sBFKEAMAogHhw0YoQQwAiAaEDxuhBDEAIBoQPmyEEsQAgGhA+LARShADAKIB4cNGKEEMAIgGhA+boQQxACDSUWTMhihBDACIZIQPm6IEMQCgW6S13CB8AABgY5HYcoN7PgAAsKlIbblB+AAAwIYiueUG4QMAABuK5JYbhA8AAGwokltuED4AALChSG65QfgAAMCGIrnlBuEDAAAbiuSWG4QPAABsKlJbblBkDAAAG4vElhuEDwAAbC7SWm4QPoDPiLT+BwBgR4QP4I8isf8BANgRN5wCitz+BwBgR4QPxLxI7n8AAHZE+EDMi+T+BwBgR4QPxLxI7n8AAHZE+EDMi+T+BwBgR4QPxLxI7n8AAHZE+EDMi+T+BwBgR4QPQJHb/wAA7IgiY8AfRWL/AwCwI8IH8BmR1v8A9kUpf8QywgcAWIxS/oh13PMBABailD9A+AAAy1DKH7iG8AEAFqGUP3AN4QMALEIpf+AawgcAWIRS/sA1hA8AsAil/IFrCB8AYBFK+QPXED4AwEKU8gcoMgYAlqOUP2JdxIcPShADsCNK+SOWRXT4oAQxAAD2E7H3fOw+0UgJYgAAbChiw8dTu96lBDEAADYUseGjqbW9z32UIAYAIHpFbPjoD0oQAwAQfaI6fFCCGACA6BOx4SPdlUgJYgAAbChiw8eGRZMkUYIYAAC7GbLwsXnzZt18881yOp3Ky8tTbW1tUJ9fkOOhBDEAADY0JEXGXnnlFRUXF+u5555TXl6enn76aRUUFOjkyZNKS0vr93EoQQwAgP04jDEhL5aRl5enGTNm6JlnnpEkdXV1KTMzU+vWrdOGDRuu+9nW1la53W75fD65XK5QTw0AAAyBYL6/Q37mo6OjQ0eOHFFJSYl/W1xcnPLz81VTU9NjfHt7u9rb/7+mh8/nk3TtlwAAANGh+3u7P+c0Qh4+PvroI3V2dio9PT1ge3p6ut59990e48vLy1VWVtZje2ZmZqinBgAAhtiFCxfkdruvOybsjeVKSkpUXFzsf9/V1aXm5malpKTI4YiseztaW1uVmZmps2fPckkojFiH8GMNwo81CD/WIJAxRhcuXND48eNvODbk4WPcuHEaNmyYmpqaArY3NTXJ4/H0GJ+YmKjExMSAbWPGjAn1tELK5XLxX7QIwDqEH2sQfqxB+LEG/+9GZzy6hfxR24SEBE2bNk1VVVX+bV1dXaqqqpLX6w31jwMAAFFmSC67FBcXa/Xq1Zo+fbpmzpypp59+WpcuXdIDDzwwFD8OAABEkSEJHytWrNCHH36o7373u2psbNSUKVNUWVnZ4ybUaJOYmKjS0tIel4lgLdYh/FiD8GMNwo81GLghqfMBAADQl4jt7QIAAOyJ8AEAACxF+AAAAJYifAAAAEvFfPgoLy/XjBkzNHr0aKWlpWnZsmU6efJkwJjGxkb91V/9lTwej0aNGqWpU6fqP//zPwPGNDc367777pPL5dKYMWO0Zs0aXbx40cpfJWpt2bJFkydP9hfq8Xq92rVrl39/W1ubioqKlJKSoqSkJBUWFvYoYnfmzBktXrxYI0eOVFpamv7+7/9eV69etfpXiWrXW4fm5matW7dOt956q0aMGKGsrCx9+9vf9vdi6sY6DM6N/i10M8Zo0aJFcjgceu211wL2sQaD0581qKmp0bx58zRq1Ci5XC7ddddd+vTTT/37+T7oBxPjCgoKzNatW01dXZ05duyY+frXv26ysrLMxYsX/WMWLFhgZsyYYQ4ePGhOnz5tvve975m4uDhz9OhR/5iFCxeaO+64wxw4cMDs27fPTJw40axcuTIcv1LUef31180vfvEL895775mTJ0+a73znOyY+Pt7U1dUZY4z51re+ZTIzM01VVZU5fPiwmTVrlpk9e7b/81evXjW5ubkmPz/fvP322+aNN94w48aNMyUlJeH6laLS9dbh+PHjZvny5eb11183p06dMlVVVeaWW24xhYWF/s+zDoN3o38L3X74wx+aRYsWGUlm586d/u2sweDdaA1+85vfGJfLZcrLy01dXZ159913zSuvvGLa2tr8x+D74MZiPnx83vnz540kU11d7d82atQo89JLLwWMS05ONs8//7wxxpgTJ04YSebQoUP+/bt27TIOh8P84Q9/sGbiNjN27Fjz05/+1LS0tJj4+HizY8cO/7533nnHSDI1NTXGGGPeeOMNExcXZxobG/1jtmzZYlwul2lvb7d87nbSvQ69efXVV01CQoK5cuWKMYZ1GCqfX4O3337bfOELXzANDQ09wgdrMDQ+uwZ5eXnm8ccf73Ms3wf9E/OXXT6v+zRycnKyf9vs2bP1yiuvqLm5WV1dXdq+fbva2to0d+5cSddOwY0ZM0bTp0/3fyY/P19xcXE6ePCgpfOPdp2dndq+fbsuXbokr9erI0eO6MqVK8rPz/ePmTRpkrKyslRTUyPp2t//9ttvDyhiV1BQoNbWVv3ud7+z/Hewg8+vQ298Pp9cLpeGD79Wq5B1CK3e1uDy5cu69957tXnz5l57ZbEGofX5NTh//rwOHjyotLQ0zZ49W+np6fqTP/kT7d+/3/8Zvg/6J+xdbSNJV1eXHn30UX31q19Vbm6uf/urr76qFStWKCUlRcOHD9fIkSO1c+dOTZw4UdK1e0LS0tICjjV8+HAlJyersbHR0t8hWh0/flxer1dtbW1KSkrSzp07lZOTo2PHjikhIaFHs8H09HT/37axsbFH9dzu9/z9g9PXOnzeRx99pO9973t68MEH/dtYh9C43hqsX79es2fP1tKlS3v9LGsQGn2twYEDByRJGzdu1A9+8ANNmTJFL730kubPn6+6ujrdcsstfB/0E+HjM4qKilRXVxeQYiXpiSeeUEtLi/77v/9b48aN02uvvaa//Mu/1L59+3T77beHabb2cuutt+rYsWPy+Xz6j//4D61evVrV1dXhnlbM6WsdPhtAWltbtXjxYuXk5Gjjxo3hm6xN9bUGp06d0p49e/T222+He4q219cadHV1SZK++c1v+nuV3XnnnaqqqtK//uu/qry8PJzTjiqEjz96+OGH9fOf/1y/+tWvNGHCBP/206dP65lnnlFdXZ2+8pWvSJLuuOMO7du3T5s3b9Zzzz0nj8ej8+fPBxzv6tWram5u7vXUKHpKSEjwn0maNm2aDh06pB/96EdasWKFOjo61NLSEnD2o6mpyf+39Xg8qq2tDThe99Mw/P2D09c6/OQnP5EkXbhwQQsXLtTo0aO1c+dOxcfH+z/LOoRGX2swYsQInT59usdZwMLCQs2ZM0d79+5lDUKkrzXYsGGDJPU4G3jbbbfpzJkzksT3QT/F/D0fxhg9/PDD2rlzp/bs2aPs7OyA/ZcvX5YkxcUF/qmGDRvmT8Fer1ctLS06cuSIf/+ePXvU1dWlvLy8If4N7Kmrq0vt7e2aNm2a4uPjVVVV5d938uRJnTlzxn8d3Ov16vjx4wH/4Hfv3i2Xy9XrJQP0X/c6SNfOeNx9991KSEjQ66+/LqfTGTCWdRga3WuwYcMG/fa3v9WxY8f8L0natGmTtm7dKok1GCrda3DzzTdr/PjxPcoxvPfee7rpppsk8X3Qb+G+4zXc1q5da9xut9m7d69paGjwvy5fvmyMMaajo8NMnDjRzJkzxxw8eNCcOnXK/OAHPzAOh8P84he/8B9n4cKF5s477zQHDx40+/fvN7fccguPVvXThg0bTHV1tamvrze//e1vzYYNG4zD4TC//OUvjTHXHrXNysoye/bsMYcPHzZer9d4vV7/57sfL7z77rvNsWPHTGVlpUlNTeXxwiBdbx18Pp/Jy8szt99+uzl16lTAv5WrV68aY1iHULjRv4XPUx+P2rIGA3ejNdi0aZNxuVxmx44d5v333zePP/64cTqd5tSpU/5j8H1wYzEfPiT1+tq6dat/zHvvvWeWL19u0tLSzMiRI83kyZN7PHr78ccfm5UrV5qkpCTjcrnMAw88YC5cuGDxbxOd/uZv/sbcdNNNJiEhwaSmppr58+cH/I/tp59+ah566CEzduxYM3LkSPPnf/7npqGhIeAYv//9782iRYvMiBEjzLhx48xjjz3mfwQU/XO9dXjrrbf6/LdSX1/vPwbrMDg3+rfweZ8PH8awBoPVnzUoLy83EyZMMCNHjjRer9fs27cvYD/fBzfmMMaYcJxxAQAAsSnm7/kAAADWInwAAABLET4AAIClCB8AAMBShA8AAGApwgcAALAU4QMAAFiK8AHEoI0bN8rhcPhfqampmjdvnvbt2xfuqQGIAYQPIEaNGDFCNTU1qqmp0ZYtW/Txxx/7W4MDwFCiqy0Qo+Li4jRr1iz/+5kzZ+rmm2/Wc889p2eeeSZgrDFGHR0dSkxMtHqaQfn00081YsSIcE8DwA1w5gOAJCkrK0upqamqr6/X/fffr9zcXL3xxhu64447lJiYqIqKCklSTU2N5s2bp1GjRsntduvee+/t0UL8qaee0sSJE+V0OpWamqr8/HzV19f3a//evXvlcDh0+PDhgGMuW7ZMc+fO9b/fuHGjkpKSVFtbK6/XK6fTqc2bN0uS3nnnHS1dulRut1ujRo3S4sWLdfr06aH4swEYAMIHAElSa2urPv74Y40fP16SdO7cOX3729/W+vXrVVlZqSlTpqimpkZz586V2+3WK6+8on/5l3/RoUOHtHTpUv9xXnrpJT3xxBNas2aNKisr9dOf/lRTpkxRa2trv/YHo6OjQ/fee69WrVqlXbt26e6779b//u//avbs2WpubtaLL76obdu26cMPP9T8+fPV3t4emj8WgEHhsgsQw65evSpJ+uCDD/TYY4+ps7NT99xzj/793/9dn3zyiXbt2qW8vDz/+DVr1mj69On6r//6LzkcDknS7bff7j9L8vWvf121tbWaPHmySkpK/J/7bDi50f5gXLlyRf/4j/+oFStW+LetXr1aycnJ2r17t5xOpyRp9uzZ+uIXv6gXXnhBDz300IB+FoDQ4cwHEKMuXbqk+Ph4xcfHKzs7W2+99ZaeeeYZFRQUSJJSUlICgsfly5f161//Wn/xF3+hzs5OXb16VVevXtWXv/xlZWZm6tChQ5KkqVOn6u2331ZxcbH279+vK1euBPzcG+0P1uLFiwPe//KXv9Sf/dmfafjw4f45jh07Vnfeead/jgDCi/ABxKgRI0bo0KFDOnz4sH7/+9/ro48+UlFRkX9/enp6wPhPPvlEnZ2dWr9+vT+0dL/OnDmjs2fPSpLuv/9+bdq0SW+++abmzJmj1NRUPfLII/r000/7tT8YI0eOVFJSUsC2jz76SE8//XSPOe7bt88/RwDhxWUXIEbFxcVp+vTpfe7vvqzSbcyYMXI4HPrOd76jZcuW9Rg/btw4/3EfeeQRPfLII/rDH/6g7du3a8OGDRo3bpyeeOKJG+7vvlTS0dERcPxPPvmkx5w+/16SkpOTtXjx4l4vr4wePbrP3xeAdQgfAPpl1KhR8nq9euedd/Tkk0/26zNf+MIX9Nhjj2nbtm165513+rV/woQJkq49sTJ79mxJ185mHD16VNOmTbvhz8zPz1ddXZ3uvPNODRs2rL+/HgALET4A9Nv3v/99zZs3TytWrNA3vvENjR07Vh988IF2796tBx54QHPnztU3v/lNjR07VrNmzdLYsWP161//Wv/zP//jPxNxo/0TJkxQXl6eysrK5Ha7NXz4cP3TP/2T3G53v+ZYVlamGTNmqKCgQA8++KDS09PV2Nio6upqzZkzRytXrhyyvw+A/iF8AOi32bNna//+/SotLdUDDzygjo4OTZgwQfPnz9fEiRP9Y55//nk9//zzunz5sr74xS9q06ZNWrNmTb/2S9K//du/6W//9m91//33y+Px6Mknn9T27dvV0tJywzlOnDhRtbW1evzxx/XQQw/p4sWLysjI0F133aXJkycPyd8FQHAcxhgT7kkAAIDYwdMuAADAUoQPAABgKcIHAACwFOEDAABYivABAAAsRfgAAACWInwAAABLET4AAIClCB8AAMBShA8AAGApwgcAALAU4QMAAFjq/wDcm+X0t+qLHgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_basics_doc_14_0.png" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -340,7 +337,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "C:\\Users\\dkgun\\AppData\\Local\\Temp\\ipykernel_31700\\142152307.py:6: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored\n", + "/tmp/ipykernel_360653/142152307.py:6: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored\n", " ax.scatter3D(\n" ] }, @@ -356,16 +353,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGGCAYAAABRxQd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADgiklEQVR4nOy9d3wc930m/Gyv2AUWlSB6IQCCJAiADaSsU29uspXkZDuO4/jss0/SvbZ8cTtfHNtx/HHJxeVk695cYjs5683Ficu5SVaxmkVKIoBF770ttmOxvcy8f8C/0exiy+zMNpLzfD762CR3dmZ3Z37P79ueR0LTNA0RIkSIECGCJ6TFvgARIkSIEHFtQyQSESJEiBAhCCKRiBAhQoQIQRCJRIQIESJECIJIJCJEiBAhQhBEIhEhQoQIEYIgEokIESJEiBAEkUhEiBAhQoQgiEQiQoQIESIEQSQSESJEiBAhCCKRiBAhQoQIQRCJRIQIESJECIJIJCJEiBAhQhBEIhEhQoQIEYIgEokIESJEiBAEkUhEiBAhQoQgiEQiQoQIESIEQSQSESJEiBAhCCKRiBAhQoQIQRCJRIQIESJECIJIJCJEiBAhQhBEIhEhQoQIEYIgEokIESJEiBAEkUhEiBAhQoQgiEQiQoQIESIEQSQSESJEiBAhCCKRiBAhQoQIQRCJRIQIESJECIJIJCJEiBAhQhBEIhEhQoQIEYIgEokIESJEiBAEkUhEiBAhQoQgiEQiQoQIESIEQSQSESJEiBAhCCKRiBAhQoQIQZAX+wJEXP+gKAqRSARSqRRyuRwSiaTYlyRChIgcQiQSEXkDTdOIxWKIRqPw+XyQSqWQSqWQyWRQKBSQyWSQyWQisYgQcY1DQtM0XeyLEHH9gaZpRCIRxGIx5v9LJBJQFAWapkHTNCQSiUgsIkRcBxCJRETOEYvFEIlEQFEUpFIpaJpGOByGVPpGSY7cdonEQkhErVZDLpeLxCJCxDUAMbUlImegaRrRaBTRaBQ0TUMqlUIikSDZXoWQg0wmY44FgEgkgpdffhkXLlyAUqlk6iqEVERiESGi9CASiYicgKIoRKNRxGIxAGBIBADC4TCsViuMRiM0Gk3S4xOJhZAGRVEIh8MIh8PM+4rEIkJEaUEkEhGCQNM005WVmJ4CAKfTibGxMUilUgSDQahUKlRUVKC8vBwVFRVQq9Vx70eOJe/DjljIf6FQKI5YSH1FLpfHEZgIESIKA5FIRPAGu6AOII5EaJrG4uIiVldX0dnZidraWlAUBY/HA5fLhc3NTczMzECj0aCiooL5Ty6XM8ezwX5vmUwWRyzBYJB5DSEWErGIxCJCRP4hFttF8AKJQmKx2KHFOhgMYmxsDOFwGH19fdDr9QiHw4eilWg0CrfbDZfLBZfLBa/XC61WC7/fj66uLtTU1EChUHC6HjaxUBQFQCQWESIKBZFIRGQFkloKBAJQqVSHFmar1YqJiQnU1NSgp6cHcrmcqXMkEkkiIpEIXC4XJicnGULR6/VMKqy8vFwwsZAUmEgsIkTkDmJqSwRnkFTWzs4O1tbWcOHCBWYRpigKc3Nz2NzcRG9vL+rr67N+f4VCgZqaGgBAX18fZDIZXC4X3G43lpaW4Pf7UVZWxqTBjEYjkwpLRKpUGEVRTCqMDEiKxCJChDCIRCKCE0hUwZ4NIQuuz+fD2NgYAODixYvQ6XSCzkXeV6lUora2FrW1tQCAUCjEpMHm5uYQCoUOEQspzid7z2TEEovFsLm5iWAwiLa2NpFYRIjgAZFIRKQFWWxJVxbZxZOM6NbWFqanp9HY2Ihjx47FDR0S8FmIk2VcVSoV6urqUFdXBwAIBAJMjWVmZgbhcBgGgyGOWJJdD7kmUkOJxWJM6i0WiyEWiyEUCsWlwsj/ZkrPiRBxI0IkEhEpkWo2hEidjI+Pw2az4fTp06iurk77Xtksvlxfq9FooNFocOTIEdA0jUAgwKTCtre3EY1GYTQaUV5eDpPJhLKyspTEQj4f+XcSsUSjUUbeJVmNRSQWESJEIhGRBJlmQwKBAPx+P1QqFS5dunRoFiRX15ANJBIJtFottFotjh49Cpqm4ff7mVTY5uYmKIqC0WhkIha9Xs8pYiHXk4pY2Dph6YhKhIjrFSKRiIgDW+YEODwbsra2hvn5ecjlcpw9ezYvu/FcvKdEIoFOp4NOp0NDQwNomobP52OIZW1tDTRNo7y8nCEtdt0n2fuJxCJCRHKIRCKCAXs2hL1oAgcyJxMTE9jf30dXVxdWV1fzmtLJdVe6RCKBXq+HXq9HY2MjaJqG1+uFy+XC9vY2AoEAXnrppbipe51Ox5tYgORyLiKxiLgeIRKJiDjfENKVlUzmxGg04uLFi/D5fDlf6NkoRM1BIpGgrKwMZWVloCgKXq8XjY2NcLlccDgcWFpagkwmY9Jg5eXl0Gq1WRNLJBKJm6ERiUXE9QiRSG5wJMqcsEmEpmksLS1hZWUFx44dQ1NTEyQSCfx+f16JhJy7kJBIJDAajTAajQAQJ+eyu7uLhYUFyOXyODkXtVqdFbGQiC8SiWBvbw+xWAy1tbWHusJEiLjWIBLJDYzE2ZBUMifnz5+HwWBg/o10beULqaTnCwmpVMpM07e2tiIWizHEsrOzg7m5OSiVykPEkgpsAUoA2NvbQyAQgMlkShqxiF4sIq4liERyA4KkslZWVhhdq1QyJ4ODg4emx/OdjinFxZOd5gIOzLvcbjfcbje2trYwOzsLtVodV2NRqVRp35PUUID4iIUQi+geKeJagUgkNxjYqaxIJIJgMJi1zEm+IxJynaUMmUyGyspKVFZWAogXoNzY2MD09DS0Wm1cjUWpVMa9B5sUEiOWVMQierGIKEWIRHIDIdECl0iFANnJnOQ79XQtLo5yuRxVVVWoqqoCcCBASYhlZWUFPp8POp2OIRbSXp0KiV4swBupSDJ1LxKLiFKBSCQ3ABJnQ9gT6jRNY3t7G1NTU2hoaEBXV1fG1FUhahilHpFkgkKhQHV1NTPxHw6HGWIhApQkZUUilnQClMBhW2KRWESUCkQiuc5B0iNsKXV2V9be3h5cLhf6+voY5d1M4EMk2RxzPS5+SqUSNTU1zHc8NzcHv9+PaDSKhYUFBINBRoCSFPnTCVAC8cSSyj1SJBYRhYBIJNcp2Dn2ZF1ZHo8Hy8vLoCgKN910U1YyJ2wiytfCdK1HJJkgk8mg0+lw7NgxAAddcmTqfnZ29pAApcFgyFrZmBALiVhIVxgx+hKVjUXkCiKRXIfINBuyvr6O+fl5VFZWIhwOZ62VlW8iuREWt0SiVKvVOHLkCCNAySYWIkCZSCyZdMKAeGIJh8N44YUXcPHiRYZIRPdIEbmASCTXGdJZ4IbDYUxOTsLj8WBwcBChUAhra2tZn4NNJPnC9R6RAKkJUyKRMMrG9fX1jAAlqbFsbm4iFosxKbCKioq0ysaJw5GERBL97kX3SBF8IRLJdQIuMifj4+MwGAy4ePEilEolLBYLrwU730RSCgOJ+UY20RxbgJIoGxMBSrfbjfX1dUaAkq1snPj+5Dtly+WL7pEicgGRSK4D8JE5AfjPgxSCSG4E8P2c6QQoSbuxRCKJIxadTsf8XonnTZUKoygKoVAIwWBQJBYRaSESyTWOWCwGi8UCvV4PlUp1SOZkfHwcwWDwkMwJgDinw2wgpraEI5efjy1A2dTUxIhQEgHK5eVlSKVSlJWVAQD8fj8nAUr2tZKIl+0eSWosonukCJFIrlGwZ0PGx8cxMDAQVzQnMifV1dUYGBhIOqPAN4XEnoTPB26UxShfn1MqlcJgMMBgMKC5uRkURWF/fx+7u7twOp14/fXXGQFKErVoNJqslY1JKpXtxSK6R96YEInkGkQyC1z2kBoXmRNAeGorG5ABPIVCwen1N0JEUqhFViqVwmg0Qi6XY2dnBzfddBMjQGmxWDA/Px8nQFleXg6NRpPy/USTLxGJEInkGkIqC1xCCNnInADCUltcSYgQGykIGwwGmEwmVFRUwGg0Jl1cboRdbDGIkqIoZoFPFKAkg6lEgFKlUsUpG6cToMxELJFIBA6HA42NjSKxXKcQieQaQWJBnZ02kEqlsNvtWF9f5yxzQt6D74LG5dhAIACz2QyKonD+/HkAYFpYyWyE0WhkiKWsrKwg9ZdSQaEJM1UUJJPJYDKZYDKZABwIUBJiSRSgJKmwRAFKNhKJxe/3Y3V1FUeOHBHdI69TiERyDSDdbEg0GkUoFML6+npWMifAwcPMt86RiUhIjaaurg5dXV2gKAoURaG+vj5uNsLpdDIe6gBQUVGBSCSCUChU0PRPoVEMouT6fcrl8jhlYyJA6Xa7sba2hqmpqTgByvLy8rQpS5qmD0nmi+6R1xdEIilhZJoN8Xg8GBsbA03T6OrqyopEgPxEJBRFYWFhAevr60yNhqTkEo8nsxGNjY1Mp5HT6YTT6cTi4iLW19eZxcpkMmX097jWUCoRSSakE6BcXl6Gz+eDXq+PIxZ2cwe5dwmSpcLY7pHkNWxiEd0jSxsikZQouMqctLa2wmazcS5isyHEVyQZkQSDQZjNZkSjUQwNDUGv13N+P3ankcPhwJEjR6BWq+Py9hqNJi5vz+czlwpKOSLJhEQBylAoxBALEaBkEwuJpFOBixcLm1hE98jSg0gkJYh0FriJMicmkwlOp5MXIfAttgOHicRms2F8fBy1tbXo6elJKTCYzbUl5u3ZA3eTk5OMWi7ZBQs9Z6FxrUQkmaBSqVBbW4va2loAbwhQut1uzM3NMQONS0tLTJNFut+KC7GI7pGlBZFISggklUW6shJJxOVyYWxsLE7mBBDWxkvy1dk+hORYiqKwuLiItbU1HD9+HEePHs36OlK9NxtyuTwuvRIKhRhimZubQygUgtFoZNJg6bSnSgHFikgK8Z2wBSgBYHNzE+vr6wgGg5iZmUE4HGZ+q/Ly8pTdewRciUWUzC8eRCIpESSbDeEic0JeK3RCnQ+RhEIhvP7664hEIlmnsoRCpVKhrq4OdXV1oGkagUCAIZbNzU1QFMV0GJlMJuh0upJbWK6XiCQT5HI51Go1ent7k/5WsViMIZZMApSA6B5ZihCJpMggu6v19XWoVCqYTKasZE4A/t1X7GJntqAoChMTE6ipqcHg4GBKdz/gsORGJmTbBCCRSKDVaqHVahlRw0TtKalUGle4TzdwVwhcyzWSbEHmV4Dkv5Xf72d+K7YAJVvZON3UPZDaPdJsNqOpqQkGg0EkljxCJJIigi1zYrVaYTAYmJZLgJvMCVBY8UWaprG4uIhwOIyWlhZ0d3dnfd58I5n2VOIkN3vgLpN/ej6vs5AoFpGkS6mxu/caGhqYTQAp3pO2cEIq5eXlSZWN2e8HvEEsHo9HdI8sAEQiKRLYsyEkFCdkQFEU5ufnsbGxwanuwDe1RR5uriQUCoUwNjaGUCgEjUYTR3q5hJC25GSQSqXMDre1tRWxWIxZqNbX1+H1eiGXyzE/Pw+TyZTWPz1XKMaizo4MCn1errUZ9iaAKBvv7+/D5XLB6XQyApRsZeN0ApQURcWRRSr3yEQBSlHZODuIRFJgpJoNIUSSrcwJwD+1lU1E4nA4MD4+DpPJhIGBAVy5ciXr82V7XfmCTCaLG7hbWlqC2+0GTdNx/umZpFyuNZRCaitbSCSSpAKULpcLNpsNi4uLkMvlccTCFqBMNcMCHLYlZpt8ie6R2UEkkgIi3WyIVCqFx+PB2tpaVjIngPDUVrpjaZrG8vIylpeX0d3djYaGBuZBu15k5GUyGdRqNbq6ugC80b7qdDozSrnwRTEW9WISSa6ImAhQGo1GtLS0gKIo7O3twe12Y3d3lxGgJMRCUVTGVmMuxCK6R6aHSCQFQrrZkGg0CqfTCb/fj9OnT2c9oS4kIkmXRgqHwxgbG0MgEDhU6M+WvLItthcTif7ppBjsdDrjpFy4pFZS4UYqtuez7ZjdREHSlkQnbHt7GwAwPDzMpCwrKiri7BYSkYpY2O6RIrEchkgkeUam2RAicxKLxeKmhbOBVCplopxskYpInE4nxsbGUFFRgf7+/kM1g2zrGNkunKUi2pisGLy/vw+n0xmXWiHRSqaFKvG9C4lrMbWVLdgClJFIBC+99BI6Ozvh8XiwubmJmZmZQwoJXAQoyXuL7pHJIRJJHpGNzAnpr+cDoVIn7GNpmsbKygqWlpbQ1dWFxsbGpA9Ergviie9dqmDn7FtaWhCLxeDxeOB0OrOSchEjkvyD3NdVVVXMBi0ajcZ1hBEBSnaNJZ30TmIrO9vkK9E98kYiFpFI8gQShaSTOdnb22NkTlZWVniTgZB6BfvYcDiMiYkJeL1enDt3DkajMeVx+SQSoHQikkxI9PYgC5XT6cwo5XIjRST57oJLBnZHJIFcLkdVVRWqqqoAvKFszJbeITphpNOPC7EkerEEg0G89tprGBoaYjrGrmf3SJFIcgz2bAiAQyRCZE7Kyspw6dIlwTIn5BxCxRfJdRmNRly8eDGjIOKNGpFkQuJClUrKJRgMwu/357QQnQk3Qmor8byZvttkysZEJ2xpaQl+vz9uI0CcJlOBTRCxWIx5bTL3SLlczvwmxR6QFQqRSHIIMhtCFnX2TcXufurs7ERzc/MhmZNcpaeyPXZrawtbW1tJryvdcWJEkhmppFyWl5exubmJzc3NuLRKumE7oShmiulaOa9SqYwToEy2EUgklmRdYaRbjJw/lXvkz372M3znO9/B66+/LvDTFhcikeQApPi2srICvV6P8vLylDInqVJGQoiEb2orHA4jEonAYrHg7NmzKC8v53xsviOS64VI2GDLg1gsFtTX10Ov1xdMyuVGrJEIPS97IwAcuH6SVBgRoDQYDHHEQppfkhFMYiqMeLlc6xCJRCDYBXWLxYK6ujomXw68Ia+eSeZEKJFke6zb7YbZbIZEIsHx48ezIhFATG3lAlKpNKWUC5mJYEu5mEymtB1GmXCjpbZSLeZCoNFooNFomNZwEmG63e64mSPSuZeJzHw+H6eh41KHSCQCkGiBK5PJBMmcFCK1RdM01tbWsLCwgI6ODmxubvJ62PgIK2aD6zEiYSPZ50sn5UK804nFLR8pl2It6NdyRJIO6QQod3d3EQ6H8dJLL8UpG+v1+rhr8vv9YkRyo4KrzAlN03mXOSHHcll4I5EI0y125swZVFRUYHt7m7cEvRiRCEOmz5ko5RKJRJg02OLiIgKBAJOvN5lMMBgMaTcF18Nkeymflz1zpFAoQFEUenp6mN9sbW2NUTZWqVRwuVzY39/nHZF8+ctfxo9//GOm5fzixYv4yle+wig0AMAtt9yCF154Ie64//gf/yMef/xx5s/r6+v4yEc+gt/+9rfQ6/V43/vehy9/+ctZbVJEIskSmWROSLfH0aNHs5I5yXdqa29vD2azGXq9PqemWPnCjRCRZLuoKxSKuKFVIuXicrkwNTXFpFXY5l6JMw83UmqrWAQGvNGxpdfrodfrGQFKYm/w8ssv42Mf+xii0SgaGxvx7W9/G7fddhuOHz/O+bt64YUX8NBDD+Hs2bOIRqP4zGc+g7vuuouJXAk++MEP4gtf+ALzZ61WG3edb37zm1FXV4dXXnkFOzs7+JM/+RMoFAr89V//NefPKxJJFkg3GxKNRrG3t4dAIFBQmZNMx7IHH9vb29Ha2nqoW6wQEcm1JJFyrSCVlAtRNQYO5NfJ1H2x5jmKmdoqlv1ysnOzlY3f/e534w/+4A/wrne9C5FIBL/4xS/wqU99Ck1NTZienub0DDz55JNxf/7+97+PmpoaDA8P4+abb2b+XqvVMs0CifjNb36D6elpPPPMM6itrcXp06fxxS9+EZ/85Cfxl3/5l5xrcte+pGkBQKKQVFpZHo8Hly9fRjQaRX19PW+ZE7678FSLeiQSwdjYGJaXl3HmzBm0tbUdukH5RhZCiI8LxIgkO5C0SkNDA06ePIk3velNOH36NIxGI2w2G15//XVYLBY4HA7s7OwwulGFQLEiA1K7LAa4FPqVSiXKyspwxx134KmnnoLL5cKPf/xj3vfF3t4eAMBkMsX9/Q9/+ENUVVXhxIkT+PSnPw2/38/82+XLl3Hy5Emm3RkA7r77bng8HkxNTXE+txiRZEAmC9yNjQ3Mzc0xchnFGCpMdqzH44HZbIZWq40bfMzlebNZ7O12OwKBACorK6FSqdK+9kaISPJNlMnk18fHxxGLxRgpF7VaHacRlmkIlS9u1NQWl3P7fD6UlZUBOCCWnp4eXuejKAof/ehHcenSJZw4cYL5+3e/+91obm5GfX09xsfH8clPfhJzc3P48Y9/DACwWCxxJAKA+bPFYuF8fpFIUoDMhhCxxURJg3A4jKmpKbjdbgwMDKCyspIpgPJBroiETW5tbW1JoxA2hEQkXI4j3Wubm5vQaDSYnZ2FTqdjFrBknUfX6xxJIgq5uEqlUiiVSmg0GrS2tiaVctHr9XG/S67SQjdKsZ0Nrq3HuWr/feihhzA5OYmXX3457u8/9KEPMf//5MmTOHLkCG6//XYsLS2hvb1d8HkJRCJJgsSCeiKJpJI5KfQsCAFZeKPRKKampuB0Ohly43JsvortwWAQY2NjiEajOHfuHNPJQiTZ5+fnGckQducRcGOktopxTnIfJ0q5hMNhOJ3OuAlug8HAEIvBYOC9KN+INZJYLMYpwiMSLELw8MMP4xe/+AVefPFFNDQ0pH3t+fPnAQCLi4tob29HXV0dXnvttbjX7O7uAkDKukoyiESSgMTZkMSul+XlZSwtLeHYsWM5lTkhO3w+uXMySfvKK68wbYCZ0keJ580WmYjE6XTCbDajqqoKvb29DDkndh4FAgE4nU44nU5sbGwAOOhOUqvV8Pv9cW531xuKIdqYakFXKpWHJrgJsWxuboKiKN5SLtfTQGI25+ZiJ+D1euO6qLIBTdN45JFH8JOf/ATPP/88WltbMx5jNpsBAEeOHAEADA0N4Utf+hKsVivzTD799NMwGAw4fvw452sRieT3oGka4XAYNpsNJpPpEImwZU7Onz+fVOZEJpPx9gVh+6dnc/PTNA2r1YpoNIqWlha0t7dn3SHFl0iSkSZN01hdXcXi4mKcDD0RsUyERqPB0aNHmYGu/f19LCwswO/349VXX4VKpWJ2xSaTKW95/EKj2BFJJiT+Lj6fjyGWRCmXRHvbZOctVkRSrPuFy3NMvle+EclDDz2EJ554Aj/72c9QVlbG1DSMRiM0Gg2WlpbwxBNP4L777kNlZSXGx8fxsY99DDfffDNOnToFALjrrrtw/PhxvPe978VXv/pVWCwWfPazn8VDDz3EeTMKiEQC4I1UltfrxcjICO688864h6JQMidAdkQSjUYxPT0Nm80GAOjo6Mj6vLlMbbEHHjPJ0Kd6T4PBAKPRiLKyMrS3tzN5/NXVVUxNTR3yUi/WjjMXuFZk5CUSCTMPQaRciLlXMimXioqKuEVIrJGkhpAayXe/+10AB0OHbHzve9/Dn/7pn0KpVOKZZ57BN77xDfh8PjQ2NuKBBx7AZz/7Wea1MpkMv/jFL/CRj3wEQ0ND0Ol0eN/73hc3d8IFNzyRsC1wiawz+98KJXNCbniuudX9/X2YzWaoVCoMDg7iypUrvNNiuUht7e/vY3R0FFqtNm7gkS9omj402U2UWJ1OJ6anpxGNRuPmJPKpnJtrlHpEkg5s3/RMUi5kfqVYXVvFTG1xITEhEimZ7qHGxsZDU+3J0NzcjF/96le8roHghiWSZBa4JNKIxWIIBoMwm82gaRpDQ0OcfmwhqS3yoHEhoq2tLUxPTzOprHA4zHymbB9YIaktctz29jampqbQ0tKCjo4OwYtGquMTJdn9fj9TXyHpFnYajKvlbbFQ6MU1Xwt6OimXpaUlAMDExAQqKysLGkmW+hxJOBxGOBwWXGwvBdyQRJJqNoTcdDs7O5ifn0d9fT26uro43/RCO68yHR+LxTA9PQ2r1Yr+/n6m44btdZAt+F4zSYlNT09jZ2cHp0+fZsyBUr0+G2T6LGxdo8bGRkY51+l0Ynt7G3Nzc9BoNHFzEsWY6k6FYsiVFOqc7IaKWCyGF154AfX19fB4PEwkmU7KJVco9dSWz+cDAFG08VpDptkQsqDOz88fmvbkAqHT3unSTF6vF2azGQqFApcuXYrbbfMt1AP8I5JoNAq73Q6NRoOhoSHenSeprilbsJVz29raGAtVp9OJxcVFBINBpp2VLF7FWmSKhWKQF3ke6urq0NDQkFbKhRCLVqvNyXVeK0QiyshfQ0i0wE0kEVJzAIDTp08zu/1swJaR54NURERSR01NTejs7Dz0cLCJJFvwKbbb7Xasr69DqVTi/PnzeUlTCK0hJFqoEt8Ip9PJtLOShSscDhe8ZnE9RySJ5wTeuEfZkSQhlv39fbhcLtjtdiwtLUEul8d5sPBNUZaa1lYifD4ftFrtdbGhuSGIhD0bwk5hAYdlTtbX13m3DJJ5Dr5IJJJYLIaZmRns7u6mTR2xJVuyRTYRCdsuuLq6mimIcz1PPq6JK4ghUX19PaPC6nQ6YbPZ4Ha7IZFIMDMzkxMDqVJFMSOSVOdNJuWyt7cHl8vFpCjVanWcBwvX36bUIxKv1wudTnfNNIikw3VNJKl8QwhIuypb5mR7e1vQLEiuIhKfzwez2QyZTIaLFy+mtVwl0RWfc3Pt2gqHw5iYmIDP58P58+eZHeS1CLYKa3NzM5aXl+F2u6FQKLC+vo7p6em8yYUQFCs6KPTCSgr8XD8rez6lra2NkXIh8yvEmpYQi9FoTFn7KlaxnaIoTpus68UdEbiOiSSdbwiQXuZEKJHwXSTI8Ts7O5icnERjYyOOHTvG6WEQWjRPB+JlUlZWhqGhISgUCrjd7qyjBq7fSaG1tqRSKVQqFTOHEw6HmTTY7OwsIpEIjEYjQyy5KA5fy+2/2Z5TyGKeTMqF/DZsKRe2xA471Vss1WEAGc9NUltiRFKiYM+GZCtzIqTOQXYgfHOzEokEa2tr2NvbQ19fX1Zy9PkSX9zc3MTMzMwhLxMhsvelDqVSidraWtTW1sYVh8lgJNk1E2JJFy2mw41QI8n1Ys7+bYD42tfW1laclEuxIhJCJFwikuuhYwu4zogk2WzItSBzAhwMJvn9fsRiMV5dUEIikmSEQFqNbTZbUgHIfEYNpaT+m1gcZk917+zsMDl80g1WXl7OqcZWjM9XjMHAfJ8zsfbl8/kYYqEoCiMjI3Et4IXQbkum05cMpEZyPeC6IRKSyrp69So6OjpgMBgOyZyQoahCyJxkA4vFgsnJScjlcrS2tvJqpc1lasvv92N0dJSpzyTrmsk3kZQqEqe62XLsS0tLjI86W8Yl1a74RohIClmXYUu5HD16FM8//zx6enrg9XoZKRelUhlHLNnoSXEF142kkKn2UsN1QSRsC1yfz4dIJBI3KU5kTnp6enD06NG0D5PQiEQikXA+nqIozM7OYnt7GydPnmTUb/kgV8V2q9WK8fHxjJ7z+Y4aSiUiyYTEHD7xUU9MtZDFi3Tp3Cg1kmLqbAEH8ynV1dWMlMve3h6jNJ0o5cI1msyEQnuRlAKuaSJJnA2RSqVxNQ6/34+xsTFQFMVZ5iTXLbypQK6NpmlcvHgRWq2WWXj4nleIii9N01hYWMDa2hpOnDjByEynO+5GjEgyIdFH3ev1wuVyweFwMDMSJpOJiaALiWIRSbF0toD4OoVMJmNSkADihlbZ0SQhFr5SLtm4I4oRSZFBZkPYfeoSiQQymQzRaBQ7OzuYmprKWuYkX0OFbOzu7mJiYgL19fXo7u5mbrpiGGORCOrq1asIBoOcCVeMSDKD3Wbc1NTE7IhdLhdomsbIyAjjFknqK/kcoLveU1tssE3pUiFxaDUUCjFS+TMzM0y3HiEWrmoIXCMSr9crEkmxwJY5SdaVJZVKsbGxAa/Xy0vmREhqK9PxFEVhbm4OW1tbOHHixCEHMqFaXXyODQQC2NvbQ21tLfr7+znrUYkRSfZg74jX19cxODiIYDAY18pK2ozzoUF1o6W2uBS82VCpVHHRZKKUC03TcVL5qYYJuRKJ3+9Pq093LeGaIpJMsyH7+/vY29uDUqnMOMSXCvlKbQUCAZjNZibNliw3mguHRa6gaRrr6+tYWVmBSqVCX19f0afPE6/vegZN01AoFDAYDKipqQFN03GtrESDit1mLFTP7EZLbQkhsHRSLuw0ZaK5F5BdjUSMSAqMTBa4ROZEo9Ggrq6Od28/SY3xRTIysFqtmJiYQF1dHbq7u1PeZIVKbbG93dvb27G7u1sw+Xmu730jgP05JRIJtFottFot40ro8XjgcrnizKNItFJRUZF1YfhGSm3lOhJKJ+XCbgMn8ytcvmch7oilhpInkmxlTnZ2dgQtcEJTW+yIhqIoLCwsYH19Hb29vaivr894bL5TW0RFmERte3t7jEVntucTIxJ+IJ8t3WIjkUiYNuOWlpZDUiGTk5NMmzGRCkm3cNI0fUOltvLt186WcgEQ9/vY7XaEw2G89tprcR1hiWljv99/3XRtlbTsJEllpRowdLlc+N3vfgeKonDp0iVUVlbmJaLIBqRYHwwG8dprr8Fms2FoaCgjiQg9N5fUlsViwZUrV1BdXY0zZ85ApVLxrq3wPY7re1/PRMIHpM24s7MT58+fx6VLl9DQ0IBQKISpqSm8+OKLMJvNWF9fh9frTfn9FUtrq9AoNIGxfx9ivtbc3IxYLIb5+Xm89NJLGB4exvLyMtbW1hAMBgUV27/85S/j7NmzKCsrQ01NDe6//37Mzc3FvSYYDOKhhx5CZWUl9Ho9HnjgAezu7sa9Zn19HW9+85uh1WpRU1ODP//zP+e1fpZsRMKeDclG5kQmkwlqq8xFRLK3t4eZmRnU1taip6enIMZY6Y4lszSbm5uHGhByZbWbSxR64SmWtLqQ8yYWhtkT3SsrK5DJZEx9xWQyMWkwMbWVf8RisZRSLi6XC9/85jfxk5/8BBKJBE8++STa29tx+vTprK73hRdewEMPPYSzZ88iGo3iM5/5DO666y5mNgYAPvaxj+GXv/wlfvSjH8FoNOLhhx/GO9/5Tvzud79jrvPNb34z6urq8Morr2BnZwd/8id/AoVCgb/+67/O6jOXHJGwZ0OSRSGhUAjj4+MIBAJJZU5kMhmCwSDv8wshEoqimBumt7c3o8d7IvKR2goGgxgbG0MkEkla5M+3ajABiS65ThJfzxFJrj8be6KbuEWS/P3W1hZmZmaYQr3T6URVVVXB3CJvlIiEDUIkbLClXB5//HF88IMfxP3334/Z2VnccsstUCgU+OxnP4uPfexjnM7x5JNPxv35+9//PmpqajA8PIybb74Ze3t7+Pu//3s88cQTuO222wAA3/ve99DT04MrV67gwoUL+M1vfoPp6Wk888wzqK2txenTp/HFL34Rn/zkJ/GXf/mXWVkplBSRUBSFUCjE5HITSYQtc5KqVZULEYSjFP7xyjp+bN6ByxfGyaMG/IebWnCupYL3Yk4W7HA4jKampqxJBMh9asvpdMJsNqOqqgpnzpxJGhnxjSyyOS4cDsNsNsPpdHKam7gRi+25RKIUeyQSgd1ux8zMDJaXlzEzM1Mwt8jrtUYi5NxSqRRnzpyBVCrFt771LfT19eHq1auCPHD29vYAgBm2HB4eRiQSwR133MG8pru7G01NTbh8+TIuXLiAy5cvH8pQ3H333fjIRz6Cqakp9Pf3cz5/SRAJezbk6aefxqVLl+Jyh+yidSaZk0xEQtM0Pv3TKTwzawNNAzIJcGXFhZH1PXzjj06iy5h9RGK32zE+Po6qqiqoVCpBxli5SG3RNI3V1VUsLi6iq6sLjY2NKb+vfKe29vb2MDo6CoPBgAsXLjCGUmx59srKSphMpri+fDEiyR0UCgUjunn+/HmEw2Fm8I7I8hAZF5PJlFNhwxsxtcVFa4ukI8vKyiCXy3HhwgVB5/voRz+KS5cu4cSJEwAO6qFKpRLl5eVxr62trWWaaywWy6E5O/LnbBtwik4kibMhcrk8bjHNVuYkE5FMbHvw7KwdMokESoWUuYZAhMK3f7uEx97RxplIaJrG4uIiVldX0dPTg4aGBkxOThZ8Oh14I0UVjUYxMTGBvb09nD179tCNlOo4PufLtCBubW1henoa7e3taG5uRiQSYYp6ZODL6XTC6XRieXmZkQ8Rqi5wraCQkRe7LqPRaHD06FGmzZioGdtsNiwsLDDChqTNWMhOudgDicUAF4mUcDiMaDSak/bfhx56CJOTk3j55ZcFvxdfFJVIks2GsImAj8xJJiIZWXODBg2F7I0fWiKRQC6VYMHqgy/KTb03FAphbGwMoVAIFy5cYG4IoaKPQkgoFArhlVdegUajwcWLFzktAPmISMgE//b2NmMRnPi52ANf7Ly+w+GA1WpFMBjE66+/zrm99VpCsQQbgcPkxZ6PaGlpQSwWY9pY19bWMDU1xbhFkt8hm5RRsXzTi00kXGx2AQgeSHz44Yfxi1/8Ai+++CIaGhqYv6+rq0M4HIbb7Y7bTO7u7jKKGnV1dXjttdfi3o90dSWqbmRCUYgk3WyIXC5HOBzG5OQkdnd3s5Y5ybSQa5QyJHuOaQByqQRapTwjETgcDoyNjSWVpM+FwyIf+P1+2O12tLW1oaOjI+9uhKmOC4VCMJvNiEajWfmqsPP6BoMBq6uraGxshNPpxNTUFGKxGMrLy5k0WCF8JfKNYkUk6SCTyVBZWcmkwkgazOl0xulPEWLR6/Vp37OYqa1SrZEAB8OIZAiVD2iaxiOPPIKf/OQneP7559Ha2hr374ODg1AoFHj22WfxwAMPAADm5uawvr6OoaEhAMDQ0BC+9KUvwWq1MiZ6Tz/9NAwGA44fP57V9RSFSEhrL3BY5gQAZmZmoFarecmcZCKS27qq8TfPLCIQoaBR/F72naJBUTRu66mGVqVIeTxN01haWsLKygq6u7vR0NBw6NqlUinv9mM+REKk6B0OB0wmEzo7O7M6PpepLbfbjdHRUZhMJvT29grqDJJIJEw/PlHRZadf2FPeJpOpYF1IuUCxIhI+C7pSqYz7HUg60uVyHXKLNJlMh7xritW1VSx3RHJurn7tfL+bhx56CE888QR+9rOfoaysjKlpGI1GaDQaGI1GfOADH8Cjjz7KWBA/8sgjGBoaYuoxd911F44fP473vve9+OpXvwqLxYLPfvazeOihh7L2aSnK00eUepPJnHi9XlRXV6O/v5/XjZCJSKrLVPhv93Xj87+cRTBKitNAa5UWj97RCZmMTjoFnNh2bDAYkr5/ISMSot9F0zQaGxt5DRKR7zjbqWd2UVwikWBjYwOzs7Po7Ow8ZF+cLZKlX4iKLhnycrvdcDgcWF5extTUVFwXUqKpWami0BGJ0PMlS0d6PJ44t0iNRhOnD1bMGkkuvEX4gGtqSwiRfPe73wUA3HLLLXF//73vfQ9/+qd/CgD427/9W0ilUjzwwAMIhUK4++678Z3vfId5rUwmwy9+8Qt85CMfYUYD3ve+9+ELX/hC1tdTFCJJJ3NiNBpRVVXF++bjUqN466k6nDpqwK8md+Hyh3G83oC7e2qgUb4xzBiLxZhdrtPpxNjYGCoqKjIq5AopFGdDJHa7HWNjY8zQ49raGsLhcNbnTCSEbI+LxWKYnZ3F7u5uUkveZMdwee90u/bE9AtR0CWGRcCB2CFJgyVzeCwmrhdTK6lUivLyciYHH41GmaE74u9BnkdShykUqZR615ZQeRQu95BarcZjjz2Gxx57LOVrmpub8atf/Yr3dRAUPR/gcrkwNjYGvV6PS5cuYWZmRrCMOzFqSvfgNFdq8ZF/13ro79l2uWSCfnl5OWMbLfv4fBIJ+5pIpxggLEUFZP/gkeNef/11xpwrUxoym4nubBZbtVqN+vp6xrc72S6Z3YVUrNx5Iq61iCQT5HJ5nL8Hexh2YmIizi3SZDJBq9Xm7ZqKVSMhowxcIpJ8fv5Co2hEQtM0VlZWsLi4iM7OTrS0tBzq2uID8gOyI4psQBbTYDCI8fFx+Hw+nDt37tAEfbrj80UkkUgE4+Pj8Hq9h9JrfLuv2KmtbEAGoLRaLU6cOJHTh1ZoWoztqU5c8BwOB+bn5xEKheIWs2LIeF8vEUkmqNVqKBQKHDlyBHV1dUydy263Y2lpCQqFIq6+IqTNOBHFqpGwLS7S4XqSkAeKRCTRaBRXr16F3+8/JHMiVHRRKJGQifqrV6+ioqICFy9ezCrXmq/23729PZjNZuj1+qTXJMQhEeDW8gy84WNCBOLSyeILQa4WW7YLHvH8IGmw1dVVyGQyKJVKSKVShMPhnC5mmXC9RSSpzktS2Yl1rkT/dL1ezxCLULfIYk7UA+BcI7leUBQiIYNnyeoNcrkcoVCI93uTm5bPYk4mwimKwtGjR3Hs2LGsH758RCSbm5uYmZlBW1sb2trakl6TEM0sgNvCHYvFMDU1BYfDgcHBQbz++utZn48L8rXgsT0/GhoamNmVlZUVeL1evPzyy3EzE+Xl5XlZjESDqcP+6eFwmBGdzIVbZDGJhGxG0+F6kpAHiti11dHRkXTxEpra4vse4XAYExMT2N/fh1KpRE1NDa8HLxd6WWShicVimJ6ehs1my1jIFjJYCGQmkkAggNHRUUilUgwNDTHtgflK0xQi/UNaVz0eD1QqFTo7O5loZXp6GtFoNC71kquc9o2S2gK4ExhbLZcdORKbWwBxv0WmelyxaiQ3ojsiUALF9kQITW2R98iGSNxuN8xmMwwGAy5duoTLly/zJjOhqS3gDfFKs9kMqVSKixcvZuw8yqcplsPhgNlsRl1dHXp6euJIi+uiyKcjrNBInJnw+XyHcvqkE4yPQyEbxZBzL2ZqKxskixyJjIvFYsH8/DzjRpjqtyhWjYQrgQnxIilFlByRyOWZJ8szgetiTtM01tbWsLCwgI6OjriCfzH0ssiNb7VaGWmY7u5uTg9EPkyx2OKP7A4x4I1ZoGx219ksZMUWbWRLszc1NTGzK8TvY2pqinEorKyszEpBV4xIsoNUKo1roCBuhOS3mJychMFgYIjFaDSWvOqw3+9POYt2LaJoRJJqESpUaou0JHo8Hpw5c4axzBR6DUIjAwCYnJzkZM2beCzfBSrZsdFolJntSSX+mC9zq1JsiUw3u7K5uQkgu9TLjRKR5GNBJ26EVVVVAA6GhclvMTU1xXgZ2Ww2KBQKQYN/2YJrJOTz+XDkyJECXFFhUHIRSS6IJNN0eWIHVGKnjtDpdD7HhsNhjI2NAQD6+/uZhySb8+YqteX3+zEyMgKFQhFXD0l2XL6IpNgRSSYkzq7s7+/D4XAwqRf27EqiX/eNFJEUQmsrmVvk1atXsb+/j6tXr0Iul8eRfLbyH9kgmxqJWGzPI+RyueAaSar0GGldnZ+fR3t7O1pbW5M+XEJSW1wHItkgNRqj0cjIfGeLXKW2bDYbxsfHGcXldItAPhf8UicSNtgKuiT1QjqQFhYWEAwGmQ4kEtGIEUl+QFKSANDT0wO1Ws20GZPuR2KuVlFRcYjkhUIsthcYfI2puCDZe7BlWBJTWbm8hmy0q9jERjSqnn322bz5g6Q7NhaLYWlpCcvLy5zTajdSaisbJE54s31X1tbWmO97Z2cn7ztkgmKp8BaDwMh0uVQqjVOVbm9vRyQSYUieDKgajUYmYhHqFplNjUSMSPKIXHRtJaaXPB4PzGYztFotLl26lHHoTMjuntxEmXZi0WgUU1NTcDqdccTG99xCU1sLCwsIhUJpBSmTHSdGJJmR2IFE0l9khyzE74Mrir2gFxLkOUh2XoVCgZqaGkY2nT2gytZpI8SSrV2BGJGUCORyueAbkKS2iKLw3Nxc2mG+RGTT9eUJRiGTSqBXHXyV5JrTTdb7fD6Mjo5CoVDg4sWLcTvSQhOJ1+tFMBhk6iHZTHaLEUn2kEql0Ov1kMlkOHv2bNwgHvH7YPuu5Gp2pRgDieTeKBaRcFnQU7lFWq1Wxq6AXV/J1PKdjc2uSCQ5QLrUFiCsD5x4goyNjcHlcmFwcJCZoOV6fCYiGd/cwz+8soYZixcSCXCh1YQP3tSMeuPBvEeqRd1isWBychKNjY3o7Ow89BmFSJ1ku6jv7u5iYmICcrkc7e3tWcuDXE8RSaHPR+5/MohnMFXBv7MPi3UPFq8fFT4bVL+fXWH7rvCdXSnWND1Q+I1BuogkHdi1LrZbJJHTYbd8V1RUJI0es+nayoXNbqmg5CISNpHwfWhisRh2d3dhNBoP7fi5XkM6c6oFqxef+dk0XP4IylRyUBSNp2esWLR68di7+pISEUVRTDojneuj0IiEa22GeM2fPHkSy8vLWZ8P4C/LwuV9r2ckkpYnGMW/DG9jzuoFIAFF0zCo9LizuxndFZK4hSzRdyWb2ZUbJSIhMiVCP29iy3coFGKiR6J8QARAKyoqoNfrEYvFOK03YtdWnkEGAvnUSWiaxubmJra3t6HX63HmzBleN5NMJkMwGEz57z8e3YbLH8ERg4p5f51ShjWnH8/O2mBM6Ppiy2kTA5lUECq+mGnBIArCPp+P8ZpfWVnJuW+7UFxPNZJkYP9GV1ZcmLZ40VaphVJ+sOhaPEE8N+/EsTc1o6PDhI6Ojrh5CSLLzo5W0nX73WgRST7IS6VSJXWLJIORpLhvMBgQDAZTqlGIqa0cIt3NxadrKhqNYnp6Gna7HUePHkUkEuF9A2dKbU1t70MlizfnksukoGhg0ebDWcUbZEBMsSorKzE4OJix1TCf4ov7+/sYHR2FTqfD0NAQE/EJOadYI8ke7O+MpmlMbHtgVMsZEgGA2jIVFm1+rDj8qNIfpBwT5yVIPn93d5eRDWH7riTOrlwrKaZcnDffOlup3CJnZmawv7+Py5cvM7NEpHhPfo9AIACKoq6r1FZxLMQyINuIhPxwwWAQFy9ehMFgyIk5VipU6pWIUPELKE3TkAAo1ygglUoRjUaxsrKC4eFhtLe34+TJk5z61YWktoDUtZmdnR1cuXIFR44cwcDAQFzaUIjgYzbHBYPBrOTqr2cwESQAigKkyRZ5CUCl+B5IPr+lpQUDAwN405vehM7OTkgkEiwuLuKll17CyMgIVldX4fF4ilZsL5ZMSaHPS9wiVSoVWltbcdNNN6G9vZ1JI7/00ksYHh7G9773PTz55JMAwDu19eKLL+Ktb30r6uvrIZFI8NOf/jTu3//0T/+USe2R/+6555641zidTrznPe+BwWBAeXk5PvCBD8Dr9fK6HqAEU1tAdnpbpIWypaUFHR0dOTPHSnf8Pb01GN1wYy8QgUEtB00DDl8YOpUct3ZVwTK3gcXFRQSDwZTyIqmQayKhKAoLCwvY2NhAX18f0/bIhhB3RS4LPkVRmJubw9raGmQyWZwNbrJ0zI0UkUglEvQc0eO5OQeq9ErIpAef3emPQK+UodnEbTg1UTaE3da6trYGmqahVCoLOrtSTL/2Ytvssn1wgIPfw+Vy4fHHH8cvf/lLAMB73vMe3HXXXbjzzjuZTQAX+Hw+9PX14c/+7M/wzne+M+lr7rnnHnzve99j/pz4e7/nPe/Bzs4Onn76aUQiEbz//e/Hhz70ITzxxBN8Pva1m9oiEutWq/WQpIhQIsmU2rqzuwZLVh9+OrYDiycEiQQwqBV46JZW1GlorAQCjGpvtp1QuaiREBDZlWAwiAsXLqTMyeYzIkm8hmg0GpeO0Wg0DKmwzYyu54gkMc10oaUCy3Y/Fm0+qBUyRGMUZDIJbj1WiToDP795dlsrRVGYnZ2F1+vF1tZW3HR3LkykUuFGmaZnI1U0pNFooNFo8Hd/93cYGxvD3XffjaGhIfz0pz/Fxz/+cfzf//t/cdddd3E6x7333ot777037WtIPScZZmZm8OSTT+L111/HmTNnAADf/va3cd999+HrX/96Vhp/BCUZkWQiAq/XC7PZDIVCgUuXLh0qagmROOFyvFQqwX+6pQ1vOVWH0Y09KGRSnG+pQMhjx5UrV6BQKNDa2srLbU8IkbAjC4/Hg5GRERiNRgwNDaVNq/Etmmc6jtRk9Ho9Lly4wHitkJQMIRWn04nZ2VlEIhFUVFSgrKwszpflegT7c1XplfiTcw0Y3/JgxeGHVilD75EydNflphgrlUqhUqkgk8nQ1dXFTHc7HA7me2fbD+dK5LCYEUkxvEgAbgOJRDLnk5/8JD71qU8hEAjk/Hqff/551NTUoKKiArfddhv+6q/+iuk+u3z5MsrLyxkSAYA77rgDUqkUr776Kt7xjndkfb6SJJJ0elvb29uYmppCU1NT0jkMIDd2vVwimiaTFk0mLbPj29nZwenTpxmXRT7IhcPi1tYWpqenOQ9h5iO1tbu7i/HxcSblCOBQS7VcLmemjNn+HzabDcDBDU/aLysqKoq2OOQayb6zcq0CN3dW4ubO1OZlQs9J7gP2dHdi99Hy8nLc7EpFRQVv++FiuTIWy4uEnDvTferz+aDVapk/89HWS4d77rkH73znO9Ha2oqlpSV85jOfwb333ovLly9DJpPBYrEcSnET11qLxcLrnCVJJMkW8lgshpmZGezu7uL06dNM7jHV8UIikmwW80AgALPZDJqmMTQ0BK1Wi/X19aIQCQAsLS3Bbrdn/I4Sz5mriISmaSwvL2N5eRknT55kwutM78/2/6ipqcErr7zCOBYSTST2xHchpcHzgVIRbZRIJFBptNilI5gLSyHVVaFJT0MmD2BtbS1uCI9IuHBdpG/EGglXIsnn/fvggw8y///kyZM4deoU2tvb8fzzz+P222/PyzmviRqJz+eD2WyGTCbDxYsXMzJ4vovtBHa7HWNjY6itrUVPTw9zA+XDtz0TQqEQ40FOCI0rcpXaikajjMcLmVHhA3JvVFVVxQkfOhyOuF0zIRWTyZRTBdd8o1gy8skW13CUwt/9bh2XV1yIUjRoGlArpLi9qwp/fK4DkXCYiVYmJydBUdQh++Fsz5lvFItIiLRTJiIptDtiW1sbqqqqsLi4iNtvvx11dXWwWq1xryFp5lR1lUwo6tOXztyKpKZ2dnYYSZFjx45xukEIEfDNsWcqtrN33YnOgVyOz3TubInE7XZjdHQUEokEx48fz4pEgNyktvx+P6Mflq1mVyqwfz8ifNjY2IhYLIa9vT04HA4sLy8zE98kDabX60s+WimViOTyigu/W3ahRq+A7vd6ce5ABM/M2nHqqAGnGwxxsyter/eQFhXbfphN6MVKbRUzEgIya3wVeqp9c3MTDoeDMdIaGhqC2+3G8PAwBgcHAQDPPfccKIrC+fPneZ2jJLdxcrkcfr8fU1NTsFgsKdtWU4GtwMsnr57OU4RMhnu93pRKuUKterOp72xsbGB2dhadnZ1YXV3lTZxCIhLi6X7kyBHO1sCZ3jcdZDIZsyPu7OxkWl0dDgfTYky8P4ToU+ULxYhIUi3qw+t7kEjAkAhwMAtl90Ywue3B6YY37m+JRIKysjKUlZWhubkZsViMkQxZWlpCIBBgJFwqKyuLVqvgqsCbj/MCmQcwhRKJ1+vF4uIi8+eVlRWYzWbmmfj85z+PBx54AHV1dVhaWsInPvEJdHR04O677wZw4NNyzz334IMf/CAef/xxRCIRPPzww3jwwQd5dWwBJUoksVgMVquVmcDOdofN1uviSyTAYSLyeDxMF9LFixdTLlCFSG1RFIXp6Wns7u5iYGAAlZWV2NjY4E0IfK/X4XBgbm4O3d3daGxszPj6bKJErp8lsdWVRCskx89e3AwGQ0lEK6USkURidNKpZInk4N/SQSaTpZxdIfeiVCrF9vY2TCZTSsmQXKOYfu0ANyIRktq6evUqbr31VubPjz76KADgfe97H7773e9ifHwcP/jBD+B2u1FfX4+77roLX/ziF+NmSX74wx/i4Ycfxu233w6pVIoHHngA3/rWt3hfU8mltiwWC9bW1qBUKnH+/HleNwRbyp0P2McTIiGDj1w6ofKd2goGgxgdHQVN03E1o0IqB1MUBa/Xi3A4nNEojM/18AXbyAh4w8/b4XAw3ursaKUQg3mJKCWr3ZNHyzC6uYdwjIJSdnDfByIxyKQSdNVmt9glEvry8jJsNhu2t7cxNzcHrVab99kVoHjtv2S9yHT/CiWSW265Je099NRTT2V8D5PJxHv4MBlKJiIhLbTb29tobGyEx+PhvasQOt3OjkjY3WJcvdSFtB9nIgOXy4XR0VFUV1fj+PHjcQ+MEM2sbL6rUCiE0dFRRCIRNDc355RE2MjFgsvWp6IoivFWZ5tKkbx+IXeypRKR3NRuwutrbkxbvFDJJKBpIEoBZ5qNGGwy8j6fVCqFWq2GTqfDqVOn4pwJ5+bmEA6HYTQa89KFR1FUUdKZ2Zha5euZKRZKgkj8fj/MZjMA4OLFi9jf34fL5RL0nkKIRCKRQCqVwufzYW5uDhKJJOngYyrkI7XFtuXt6upCY2PjoQdPSK2D6/Xu7e1hdHQUFRUV0Gg0edn55WuRlUqlMBqNMBqNaGtrQ/j3HUnr6+vw+Xx46aWXmB1zZWVl3lIxpRSRGNRyfOy2Nryw4IB50wO5VILBJiPe1GGCSi6MVNnEnDi7EggEmC68lZWVuLqXyWQS1KxR7IgkE/x+P6c08LWEohMJMVeqr69nCrV+v1+w3W4uvN9HR0fjrosrck0ksVgMU1NTcDgcadNIQnS6uCxuZBi0o6MDLS0tmJiYyKv6b74XXKVSibq6OoRCIXg8HjQ3N8PpdDJWuCQVU1lZifLy8pxGK6UkoGhQy/HWk7V468nkHjl8karAL5FI4rrwSF2LkPr09DTv2RWgeAOJXAnM6/VeV14kQJGJZGFhASsrKzhx4kRc/3I2oo2pwJdIiFonRVFoa2tjprILcW7gMBkEAgGMjo5CKpViaGgo7S45X1InNE1jfn4eGxsbcYOO+ZKRLwYS3fHYMiLExIiITVZWVgqaRi6WyVSp+oKw61rt7e1MpOh0OjE1NYVYLBY3jJrJR72YxXYu5/X7/dcNkQQCgQOX1WJeRGVlJerq6g59qbmIJvi8BxEYDAQCUKvVvPOYuYpISFttXV0denp6Mt6kQortqY4jlsWBQOCQKVe+PduLSVKJqRifzweHw8HMT6jV6rj5iWxSKaWU2sr3Ofks6CRSJAZS5Lu32WzM7Ao7DZY4jFpMIuFaI7leTK2ef/55vPnNby4+kSRb7EmxWsjNny2RuN1umM1mxp73ypUrRdXLWllZweLiYtKBx1yfN1Vk4fV6MTo6Cq1WiwsXLhwqYObTIREoHQVgtnxLc3MzotEoUzien59HOBxmRA8rKyuh1Wo56ZsVEsUYDszFORO/e7aPOnsYlW0/XOo1kuuJSO69915QFFX89t9kYHfR8L0huBIJTdPY2NjA3NwcOjs70dzcLLjrS0j7LylErq2tZe1lIiS1lUhANpsNY2NjjDhmqlw31/MRdWKury1lyOVyxmuCLXpIJu2VSiVDKonT3oAYkQgB20e9s7MTwWAwbnaFnNflcsFgMBRsdgXgRiQkwrqe3BGBEii2J4PQgULyHpkW82g0iqmpKTidTgwODsJkMjH/JoQM+E62+/1+zM3NgaIoDA0NZT3jkIs5EpqmsbKygqWlJZw4cYKRVch0XD5QKhFJOiRarpIds8PhYKa92W2uZCd6o9RI8q2BplarUV9fj/r6esZ+2Gw2w+12Y3t7m7G75ZOCzBbZdG1dLzUSgpIkErKLiUajvNsAMxGJz+djtKEuXrx4aNEWKnOS7bE2mw3j4+OorKyEy+XiNSgnNLUVi8UwOTkJl8uFc+fOwWhMP0cgZCI+0/teq2DvmMNRCq+v2HFlzYbAhhUVklW0lUuh12oQi8UQiUQKNu9QLCIp5DlJw4RMJkN3dzd0Ol1cCpIoSBNiybUmG9cMyvWU2iIoydSWRCIR3LmVjkgsFgsjBJnO06QQqS22AGRvby90Oh2cTiev8woRX4xGo3j11Vchk8k4R0NiRJIa4SiFfxnZxuiG5/f3uQ7btBYxSonTkn0Egz68/PLLcfItZWVleVt4r5fUFheQYntiCpIt4bK6unrI9lmo0GgsFsu4MSCpLZFICoR8SMFTFIX5+Xlsbm4eajlORCFSW2zZdSIAub+/LygS4rP4+v1+eDweHD16FMePH+f88OeTSK7lqAQAJnf2MbrhwVGjGhrlwS7VH45hzhlEi8GAmvIDt0JSW9nY2IBEIomTb8mFgjJBKbf/5hrJ2nDZsysNDQ1xsysbGxuYnp6GXq+Pk3DJ9tpjsVjGmozf7wdN02KNpFDIBZGEw2Hmz6FQCGazGZFI5FAba6rj85naIh1RarU6TnZdaMdXtt/ZxsYGVlZWoFKpcOLEiayOzTYCymYhy3e0w0YkRmPFHcXqxC5iNI3mCg06anTQq/g/HgtWHwAwJAIAWqUMFA2sucOorZLE5fcpioLH42FIhQzlEVIxGAyCFuUbIbUFvOEJwqVVPtXsCntuiO27kumzcDW1AiDWSHKJdD9MOrtdLmATkdPpxNjYGEwmEwYHBzkVAHM5VJgIq9WK8fFxxmOF/T2QY/k8+Nks7Gx74La2Nuzu7mZ1LnK+bFCKqaooRWNkJ4AZSxjN8jCkEglecbuw4Q7itmOVcfLq2UAiAZDF1yOVSlFeXo7y8nJmYSMSIkRBgC3fkm0N7UaJSMg9lm1RPdnsCokWl5aWGPth0omXLIXFlUjkcnlRxELzies6IolGo8w8Rip9qlQQmtpKtjMiU/Orq6txNrSJ5yWvzfbB55raCofDGB0dRTQaxcWLF+H1enl5Neer2E7euxDEs+0OYtUVQbVWhiPGg7REFaXEqiOAFUcAJ+r5pSCO1ejw6qobvlCUISNvKAqpFGguV0AiSX9vKZXKOEMpIjZJlHR1Oh2zsHGRELlRaiTkfhRyXvbsSlNTU9zsysrKSpz9MKltkfWCizuiTqcrmhVwvlDSRCJUb2tvbw9erzfreQxyfnZqLBuQm4RNJMQQy+fzpbWhTXZsNufNtLB7PB6MjIygvLycic58Pl/B5OezQSGIxOkPg6JpKGVvLLIyqQQapRSbbv5E0nukDOeay/H6mhuUJwSapiGXSXG+uRwdpgi8+0HO78WWb2ltbUUkEmF2y0RChF00TibfUqxFvdDkxdUTJBuwO/GAeGuCra0t0DSNiooKhEKhjJvPQrsjFgolndriGxHs7+9jaWmJ8evgU7QUmtoC3tgd7e/vY3R0lDHqStfZkXhsNsgUIVgsFkxMTBzyVMmXRhcbZFqfoihUVVVl7FAq1AIkk0iQ7BNEY7Qg9VuFTIp3nq7D8To9Fu1+SAB0VOvQXafH9uaGoM+nUChQW1uL2tpaxv7W4XBgd3cX8/Pz0Gg0DKkQ348bLSLJ52dlWxOQaJEQy+zsLNbX1+OK9uxUukgkBQbfhZwo1NbU1MDj8fDufBFa9AYOdkdk8W5paUFHR0fGG1wIkaRKbZGU2traWlLbYr7dXlyPi0QiMJvNCAaD0Gq12NzchEQiYXZ5qexwCxGRHDGqoVVI4QpG0PD7xXY/GAVAo9mUnTNnIhQyKU4eNeDk0Xg75lwu6mz725aWFka+hSxqkUgE5eXliEajCIVCBSWUYtRIyCxHoT4jO1rc3NzE8ePHEYvF4HQ6sbCwgGAwCKPRCJPJBJfLBY/Hw9t75cUXX8TXvvY1DA8PY2dnBz/5yU9w//33M/9O0zQ+97nP4e/+7u/gdrtx6dIlfPe730VnZyfzGqfTiUceeQQ///nPGWfEb37zm4LbkYtOJKl2tdkSCdsYq6+vDzKZDJOTk7yvS6ifiUQiwdLSUtae8+RYvkSSeFw0GmU85i9cuJD0hslnROLz+TA8PAydToczZ84wDxCxw11dXcX09DQMBgMqKytRVVWVU5OjTKjSK3GqVo2r6yGsOAKQAFDJDwig2cRf4Tcd8kmQyeRbSNF+cnISKpWKIfDE3XKuUSx9Ly7k5fCFcXV9D/vBKBrK1RhoNEIp0H8lFotBqVRCr9czCtlkdmV7extve9vbQFEUdDod/vEf/xF33XVX2hGERPh8PvT19eHP/uzP8M53vvPQv3/1q1/Ft771LfzgBz9Aa2sr/tt/+2+4++67MT09zbQlv+c978HOzg6efvppRCIRvP/978eHPvQhwW6JRSeSVMimRhIIBGA2m5lUllarxd7enqBivZBiO6mtOByOlIt3pnPnIrVFpvdVKlXalFq+LHrtdjvMZjPTnRaNRpkef9J62dHRgWAwCIfDwfisk449p9MJjUaTd5mNNpMSKkoJ09FKxGgaVTolasqUeV0EC7HAsuVblpeXMTAwwLS5kt0yW5491wRerIgk0zlHN/bw+EtrsPsiAGhIJRL01Onx0VtbYdLxy2AQZYjEYjvbfnh1dRWf/vSn8dxzz+Gxxx7D+9//fpw8eRJXrlzhpAl277334t577015/m984xv47Gc/i7e//e0AgH/8x39EbW0tfvrTn+LBBx/EzMwMnnzySbz++us4c+YMAODb3/427rvvPnz9619HfX09r88OlDCRyOVyhEKhjK8jUuu1tbXo6elhfshcdH3xWVw9Hg9GR0chkUhw4sQJXiFjLlR87XY7xsbGcPToURw7diztw5WPiGR9fR1zc3Nx6sWpFim1Wh3n9e12uzE+Po6trS0sLy8zix1XZV0+MKik6K4rzLRxsUQb5XI5DAYDYxedKDbJpcU123MWmkgyeYL4QlH8r1c24PRH0FShhlQqQShCYXx7H/9mtuCDl5p4nZc8r+m6tlQqFRobG3H69Gn827/9GxwOB1599dWcCEuurKzAYrHgjjvuYP7OaDTi/PnzuHz5Mh588EFcvnwZ5eXlDIkAwB133AGpVIpXX30V73jHO3ifv+hEwje1xZYWSSa1TiIKvjlhPkRE6jNtbW3MpDIfCCGSWCyG1dVVLCws4Pjx4zh69GjG44RIqyT+diTFaLFY0ro5poJUKmU8Jnp7e6FQKA4p6xJSyZUI334ohnVPFDqHH0eNasEpDi4oBdFG9qR3LBZj0o2kxZWkGysrK3npUpViamtiex+7+yEcNaoglR5cm0ohRblajldX3XjP2aPQKrO/p7gQCRCvs1VZWYn77rsv63MlA2nfr62Nd7msra1l/s1isRxKscvlcphMJl7t/3HvI+joPCJdaou00nq9XkZaJBFCpeizSW1RFIW5uTlsb28zDoLb29tF8TPx+/1YWVnJquVZiNc7+zhSVA+FQrhw4QK02sPFaq7pDrIAJS52RFmX7QPCjlayAUXTuLLiwjMzHri8IYx6tlFvVOGO7io0VuSnPgIUPiIh50u3qLM90wEw6Uan04m1tTVIpVImBcZVvqVYXVvpnvdghAJNH7R4syGXSRCN0QhHKV5EwrXt+HpU/gVKmEhStf+S1JFer8fFixfT5v0B/lL0XFNbRHolGo1iaGiIWcwKrR4cDAYxPz8PiqJw0003ZRUuE0LINnpjEwm7qH7hwoWkHhyxWAwURSEcDkMqlTL/pULigpvoRUEKyXa7HYuLi0zbK1eP9VmLFy8sOiGBBEf1UtRUqLHhCuBXU1a85+xRQRIpmVDInTr5HrNZ1BPTjYme6myxSYPBkPTzFKNGkim11V6thU4pgzsQRYX2YO2gaRoufxQn68tg1PD7zcl5M/2uXq+XSS3mEqRov7u7G2f9sLu7i9OnTzOvsVqtcceRWmQ2Rf9kKDqRpPrik6WWNjc3MTMzc2gOItXxAHjXSbikttxuN0ZHR1FRUXFIekVIsT5bIiHXUVZWBpqms865sq1t+RBJYlE98T0IiURiFDwhClLQ0CnpuClk0q1GFoFMdRt2IbmpqSmu7XVmZuaQx3qy72RyZx+gAZNGhlBQAoVMimaTFisOP1bs/kNtu7lCKUYk6ZCoS8UeyNvc3ASAOLFJlUrFbExKrdjeWKHBrV2V+NWkFb5QDCqFFN5gFEaNAvf31fH+jrJxR2xtbeV1jnRobW1FXV0dnn32WYY4PB4PXn31VXzkIx8BAAwNDcHtdmN4eBiDg4MAgOeeew4UReH8+fOCzl90IkkFdmorFothZmYGu7u76O/v58ToZFESupinWlwJqXV0dKClpeXQa3Ll254J5Do6OzthMBgwPj7O63xA9gucRCJBKBTC6Oho0noMWUwoisKK3YcZixfuQBRyqQR1BiVOHNFDr5QyryHvyWfxSWx7JT7fZEhPq9UypEIkRfYCUWgUMoCVQSUpj0AkP9IvBMWISHJ1zsSBPCI2ubW1hZmZGUZFl33uQoFLFPTecw04alTj+QUHnL4I+o4acM/xavQe4a/Iy5VIAoEA79SW1+vF4uIi8+eVlRWYzWaYTCY0NTXhox/9KP7qr/4KnZ2dTPtvfX09M2vS09ODe+65Bx/84Afx+OOPIxKJ4OGHH8aDDz4oqGMLKGEiIaktv98Ps9kMiUSCixcvJpV/SAUhnVtkGjiRSCiKwszMDCwWCwYGBhjZhETkOyJh12XIdbjdbt61DvKeXNOAFEVhY2MD4XAY586dO1RUJ+RAURR29oJ4ddUNmgZMWgWiFI0lewChKI1buqqgkMSnvoLBIKLRKPNfphRYss/D9vmORCJwuVyw2+2MpIjJZIKWVmLLT6Gale4PRSlIJWDSHvnAtRaRpINEIoHRaITRaERbWxvTXmy32wEAr776apzYZL6tb7ncw3KpBHf1VOOunuqcnZcrkRCtLT64evUqbr31VubPjz76KADgfe97H77//e/jE5/4BHw+Hz70oQ/B7XbjpptuwpNPPhn3nf/whz/Eww8/jNtvv50ZSPzWt77F63rYKFkiIRHJ5cuXceTIEXR3d2e9UxVKJEB8zjUYDMJsNoOiqIykls8aSTgcxtjYGEKhUFxdRki3F8B9gSNFdb/fD5VKlZRESMccAKw6AwjHKDRVvFEMV8ml2NoLwrIXQtPvB/9kMhm8Xi/Gx8dRUVEBo9EImqaZyJREK9lGLQqFAjU1NaipqYkTQDS5bNi3+2GnpChXS0E5PPBGpeip06OlMn/FduDajkjSgajomkwmWK1W9PX1we12w2KxMJEhW2wy19a3mWok+UIh3BFvueWWjOneL3zhC/jCF76Q8jUmk0nw8GEyFJ1Ikt3cNE1jfX0dFEWht7eXUwtrMuRSL8vlcsFsNqOqqgrHjx/PeNPkK7W1v7+PkZERGAwG9Pf3H6rL8G3jBbgRCSmq6/V69PT0YGZmJu7f2ZEFWfRd/gi0ivhbTSGTQkIDgcgbv4/D4WDk9dvb25m2ZPZ/7N+TS8E+2WdlCyB2HNvDL19fwJY7AKvVigYd0CargMMmzbm5FEGhda8KSSSJ5zQajSgvL0dLSwsTGZI6ViQSiRObzLbrLhlKyUwrGa5Hd0SgBIgkEWS3HQgEABzui84GQomEWNDu7u5ibm4uKyn6fBDJ7u4uxsfHU+p2CRksBDLreyUW1RNTaclIBADKNQo4ff6494rGKNASQK04ePg2NzeZAUZ2vpZNFKRmRUglF9FKZ50R95+sgtXlwYne44gEfHHmUuxZinxa4eYThRAyTHZO0kBBkBgZEs8Pm82GhYUFqNVqhlT4zggVk0gyXS+RrBGJJM9wu90wm80wGo24cOECnnvuOcRiMd4SGULSS8DBgzc3N4e9vb2sh+tyaYxF0zSWlpawsrKS0seEHOcMUBjbcEOvVqC1UssMXaUDeeDTkdDa2hrm5+fjiursY9hRQ2IbZGuVDuuuACyeIExaJaIUjd39EOrLVagrU2Fubg47OzsYGBhI+x2TBYI8sCRCIeTCN1qRSCTQKqTQKuWA8o18P7s7aX19nZmlSCc0yQWF7mYqRXfERM+PaDR6aEbIaDRmrWhAUVReoshMyKZrSySSPIAsRhsbG5ibm4vrgiIRAV83MSGeJoFAgNlBDA0NZV0kzFVEwvZ1T+djEo5S+NdRC361JsWznmWoFDJ0VOvx7nMNqCnL/P2lmm5PN6lOfjsShZBrT3zgj5arcaG1AlM7+7B5w5DJgLYqLU4e0WF6chx+vx/nzp3LOrWRLFphE0tiJ1i20Qq7O4nMUpSC0GS2uBYk5OVyOaqqqlBVVQWaphEIBJiBSCLfwlY0SLW5LFaNRCSSIoMslA6HA4ODg0zbICDMkwTgH5EQ/S6pVIru7m5enSZSqRSRSCTr48ixFEXB7/djZGQESqUyztc9GZ6ZseK3C07IpQeLdDBKY3J7D//7VRr/z23thyZ5E5EsImFPqg8NDSVtLqAoilNnVVuVDg0VGnh+3/6rkkRhNpuhVCpx7tw5wbpOXKMV9rxKNgsOF6FJLgsdUJwaSalJlaSDRCJhFA0aGxvjHAqXlpYQCAQYafZE+ZZSTm2RZ1okkjzA4/EgGAwm3fXnQngxm+Npmsbq6ioWFxfR09ODlZUV3q2aMpkMwSB3Fzw2pFIpfD4fLl++jPr6enR1daV9OEKRGF5ZdsKgliMUPPAL16nkaKzQYsnmw5LNh2O16W/eRJkUr9eLkZER6PX6lJPqCoUCcrkcL774IkwmE7OjTEW8SpkUVXol9vb28JrZjOrqal7deFyQKlphp+DYnzvb3zmZ0CTx9w4EAgURmuSKUkxtZYNERQMizU5InMi7VFZWMpuaQoOiqIwpeJ/PBwAikeQDlZWVOHv2bNKbTqjdbjbHR6NRTE1Nwel0MjpVpHOMD/imtojjndPpRG9v7yExymTwR2Lwh2PQqeQIASBrolohRThKwRPM/B2wU1tcJ9XlcjkuXboEn88Hu92O7e1tzM7OQq/Xo6qqCtXV1YfkM3Z3dxlhy+bm5oIscKmiFUIo5AGPRCK8UmBEaNJkMjHSLemEJm+EiCSfdSC2NDs75bi2tgav14tgMIhIJFLQBgniRZIO5D4TtbbyhFQ/dKFSW36/H6Ojo5DL5bh48SJTk8llwZwLKIrC9PQ03G43qqqqOJEIAJSp5KjUKbGz9/sI6PdMsh+MQquUoaYsc/GR7MyTFdUTrzGxqE4c+lpbWxEOh+FwOGCz2TAyMgKJRMJEKl6vF+vr6zhx4gRno698gEQr7O/75MmTACC4vRg4LDRJWl5JEVmhUECn0yEQCGQ1YMsXpShVkiuwU44A8Prrr6OsrAw+n49R4GYPROarEM8lteXz+aBUKnnXfEsZJUEkqZCL1FYmTxObzYbx8fGkKSShBfNsrp1IjVAUhcbGRsYciwvkMilu6arCD1/dgCMIVAQjCNMxuHxhXGqv5Kxku7KyArfbnbRDjaR/2CqnyTYASqXyUIHaZrMx+ldlZWXw+/3w+XxFTflEo1GMjY0xk/lqtZr5rUm0kov2YplMFldE9vv9mJ6eht/vx5UrV7IWmuSDaz21lQ1omkZlZSWqq6tBURQ8Hg+cTicjJVRWVhYnNpmr75srkRQ7zZkvFJ1IMgkvCk1tpVrM2X4mvb29SbVmhE7GcyWhvb09jIyMoLKyEr29vVhfX8+6vnKxzQSKBn7wjA2eYBR6jQr3nqjFfScyC9FFIhGEw2Hs7+8nLaonTqonzgekglQqhU6nY5R5u7u7sb+/D5vNhqWlJahUKiYFVlFRUbBdczAYZJwjz549y+S2yfnZtZVcD0MSoUmNRoPGxsashSb54HpLbaUDOxKSSqUoLy9HeXl5nHyLw+HAxMQEaJqOG4gU8n1zIRIh8iiljqITSTrkq9hOOsX29vZS+pkAhVHwJWZY7LZnPpGQRCLBmzoq4VuWoOtkM6pNRk4y6KSoLpFI0NXVlZREUs2HZAKx+i0rK8OJEycgk8lQXl7OdOIQTaapqSlEo1FOBXuh2N/fx+joKKqqqjIW+vM5DCmRSHgJTfJBMaKDYnVPpTsvkW+pq6uLk8rZ2dnB3Nwc832bTKaso0OuEQkfg7BrASVBJKmG4XJRI0k83uv1YnR0FGq1GhcvXkybM82nXhZN05ifn8fGxgZjhsX12HRQyqUwaeWcSIRdVLfZbIcenFST6lzgdDoxNjaGhoaGpFP4MpmMWUS7u7vh9Xo5F+z5wm63Y2JiAi0tLUkVm9Mhl8OQye51rkKThFiyybPfSKktrppXiVI5kUgETqcTTqcT09PTiMViqKioYL7zTLUsLuf1+XxiRFIM5Dq1ZbVaGS2nZN1ImY4Xcm42IpEIIwMzNDR06ObKl04XG4lFdYfDEXdcukn1TNja2sLs7Cy6u7s5W/0mK9jb7fZDBfvKykpeMyfkmo4fPx5n/MMX2bQXJ3qtkM+cDqmEJgnRlpWVMaSSiWhvpNQW34FEhUKB2tpa1NbWxkWHVqsVCwsL0Gg0DKmUl5cfIg2uEYlIJEWAXC7PWCxPB7KY0zSNxcVFrK6u4sSJE5wXknyktkgqSafTYWhoKGnvuRAiSTWhTkBk8Hd3d+OK6ux5Ci5F9WQg3/Pm5ib6+/vjhkuzQbKCvd1ux8rKCiYnJ1FeXs4QS6aJciIvs7GxIeia0iFde3EyrxU+BmLs3TM71z82NgYAcdItiVH2tTaQWOzzJkaHbNO02dlZRCIRZk6IiE1yITCRSPKMVKmtXNRIotEoRkZG4PP50kqMpDueD5KRAYmImpqa0NnZmfLhFhqRpBquI4KY4XD4UFGdEBCfojpwsCObnJzE/v4+zp07l7MHht3eSYbR7HY77HZ7XMG+qqrqkNAfRVGYmpqC2+3G2bNnCzYIli5aiUajCAaD0Ol0ccNz2Sx+ibl+Yiy1sbHBdCaxhSYJkYSjFOatPsRoGp3VOl7e5FxRjNQW2QTlWpo+sZZFLJ7JAKpSqUQ0GsXe3h40Gk3KwcTrVR4FKBEiSQWhRBIKhRAMBqHX6zE0NJR1SkRIRMK+dpqmsbKygqWlJU4RUT5SW+xJ9fPnzx+62YmuGVkAslnYiE+LXC7HuXPn8iqaR7qdEgv2RJacFOzLy8sxOzuLWCyGc+fOFa13nx2txGIxTExMIBqNMikroe3FicZSoVCIWeTW19chk8mg0WgwZQvjf/3LJKzeMCgaqNIr8Z6zR3HrseTGbEJRrNkVIDtSzhbszrumpibmHpyYmMD6+joWFhbixCbZEbNIJEWCkIjAYrFgcnISADAwMMBrd5SLYjtZPNxud9oOsWTH8kGy6I7LpLpUKsX6+jrC4TCqq6s5d5d4PB6YzWZUVlaip6enoIsHu2BPFAHsdjtj+SqTydDY2IhAIAClUlnUbhmiW0bTNKMtluv2YuBAaLK+vh719fVMWvD1mRX820IE/qgLlRoZFAoFbJ4gHn9pDTV6JXrr+VvMpkIxUlvsdGyhQDoRAeDcuXNxaceVlRXI5XKoVCpMT0/DbrfnxHMFAP7yL/8Sn//85+P+rqurC7OzswAONncf//jH8c///M8IhUK4++678Z3vfEeQLUc6lASR5HKynd0N1d3djZmZGd4LiNDJdpqmceXKFcjlcgwNDXHeFecyIuE6qd7d3c0UuFdWVqBUKlFdXZ00ZURgtVoxOTmJ1tbWrLugcg1SsKcoCuvr66ivr0dFRQUcDgdGR0dzUrDni2AwiJGREWi1Wpw8eZL5LvPZXkzev6KiAkv+HQRiPnTUlSESiSIcDkNNRWDfk+BfLs/h4ZubMwpNZotitRwDhSUS9nllMlmcqgHRYLty5Qr+5m/+BmtrawzJ33PPPejv7xd0rb29vXjmmWeYP7N/v4997GP45S9/iR/96EcwGo14+OGH8c53vhO/+93v+H/QNCgJIkmFbBdyUgMIBoO4cOECFAoFpqenee+OhBCJx+MBABgMBvT29ma9AAglklRFdYLEorparUZDQ0OcrAeZSCcpI0IsSqUSa2trzDBnvnY52cJms2FiYiJOx4u9M+dbsBcCklLMNLeSrGCfq2jF5otCIpFAJpNDJpNDrVaDpmkEXX44AlRehCaLKctSaAIjhfbE8xINtvvuuw/33Xcf/uiP/ghKpRIjIyP46le/iqGhITz55JO8zyuXy5N6E+3t7eHv//7v8cQTT+C2224DAHzve99DT08Prly5ggsXLvA+Z8pryfk75hByuZxzasvj8WB0dBQGg4HphiLH8m0J5Lugr6+vMyFmJuXeXJ4XONi9RiIRDA8PJy2qA/FDhuQY9kOQKOuRmDKSy+VMFFNMzSw2NjY2sLCwkJTYhBTshYDYMzc3N6O1tTXruZVkBXuyAcgmWqnVy0EDoGgaUtY1xCDFieYaXLjQnFFoMtvvhIsabq5RTAl5LueVSqX4d//u3+HRRx9FJBKBxWIRdN6FhQXU19dDrVZjaGgIX/7yl9HU1ITh4WFEIhHccccdzGu7u7vR1NSEy5cvX79EkuoB4xoRkOnwtrY2tLW1Me9Hbv5YLMYrlZFtRJIYBbz22mu8CCFTC2+ma1heXkZ5eXnSojq7g4hLqoQ949HQ0ACz2cz4QczOzmJxcZEZHDSZTDnvmMkEmqaxsLCA7e1tDAwMMPnqdEhXsA+Hw4xZlZAJ+93dXUxOTqKrq4uz+GYqCB2GPHtUg2cXpNh0BVGpU0AikcDhC8OokeP2rioAmYUm2dItXIQmi5HaKnVTK6/XyxTbFQoFGhsbeZ/z/Pnz+P73v4+uri7s7Ozg85//PN70pjdhcnISFosFSqXy0LNQW1srmLxSoSSIJBUyLeQURWFubg7b29uHpsOBN3ZrQuocXI8Nh8MYHR1FNBplogC+hMA3IrHb7XC73aioqEB/f39K+Xc+KQCikKzVanHx4kUmKiHT13NzcwiFQkzXVHV1dd5kTghisRimpqbg8Xhw9uxZXi3HqQr2Ozs7cRP2VVVVMBqNnL4zEh2dOnXq0D2ZC2Q7DGlSS/DeE1q8aFNh1eEHDaC1Uos/PncUnTWHv7NkQpNE0ZkM52USmryeFYcTkY07YjbjB+lw7733Mv//1KlTOH/+PJqbm/Ev//IvBVGUTkTJEwl7upqNUCgEs9mMSCSCoaGhlN0QhRBe9Hg8GBkZQXl5Oc6cOcPcVHzPzV4kuD4YpKhuMBhQXV2dUxJxuVwYGxvDkSNH4rq+pNI3PMyPHTsGv98Pm80Gi8WCubm5vMicEITDYZjNZgDIWctxugl7LgV7Mvy4ubnJOToSCi7DkJFIBC1GGe650IlNdwg0JGgyaSDP4JoJHG53ZQ/npROaLMaizlUeJdfgSiR+vz9vA4nl5eU4duwYFhcXceeddyIcDsPtdsfdg7u7u0lrKrlASRBJuq4t4HDIure3h9HRUZSXl2NwcDBtLjZfMicEOzs7mJycPJRWA/hHFtkQCUVRME9MY3ZjF4N9pxB0WuLOSXLqfOVOtre3MTMzkzFFw15wWlpaEIlEmDrEyMgIpFJp3CIsJH9OoiO9Xs+IQeYD2UzYazQazM7OMsZoxZpgToxWrFYrtra20NXVBZqicNTwe/KjYqCQ/TBkMqFJu90Oi8USJzQpRJGCL0o5IiHfVb7mSLxeL5aWlvDe974Xg4ODUCgUePbZZ/HAAw8AAObm5rC+vo6hoaG8nL8kiCQVktU4iK8AWy0303vkI7VFcvPr6+vo6+tLWnTmSyTs3WU6hEIh/MNvhvHKRhBQG/Dc89uoUQTx9h4l2nG4qJ6t3AmRFjl9+jQqK7MbXFMoFHGLsNvtZorbExMTcSmwbEJxt9sNs9mM+vr6tOoAuUamgj1w8Lt1dXXlPaXHFSQ9d/LkSdTU1ByKVnIxDEmkRMjmgRTsPR4P9vf34fF4GCmRfA+FFqtGwjUSyiWR/Jf/8l/w1re+Fc3Nzdje3sbnPvc5yGQyvOtd74LRaMQHPvABPProozCZTDAYDHjkkUcwNDSUl0I7UOJEQm5sMnE9MzMDi8WCgYEBzgub0IiE7OjZCxYxRSKyK6lujlyktlLB6/Xifz99Fb/ZBAxlRlTplQhHKUzshhGIunH6eAwyyRte5Nk8YGy5k1xIi5A2SJPJFJcCs9lszC6WtBaXl5enJAdi09vR0YGmpiZB1yQUpGBfW1uLkZER0DQNg8GAxcVFTE9P56RgLwSrq6tYWVmJ0xdLjFZyPQzJFj4MBoPMb0kEM/V6PWehST4o9a6tXBLJ5uYm3vWud8HhcKC6uho33XQTrly5wtTk/vZv/xZSqRQPPPBA3EBivlDSRAIchNKBQACTk5OgKAoXL17MagcrNCIBwPiTAwc3w8jICDQaTUbZFb4RCWnHTXXsQc7ejDmfDjqdgnFA1ChkOFImx6o7gvFNN/qOlmWdyiK1J6lUmje5E61Wi+bmZkYu3el0wmazMQKEiXUImqaxvr7OSMyUSstxIBDAyMgI47dChlC5Fuxd/jD2AlFU65XQcZD95wIinLm1tYXBwcG0Xjv5HIakaRparRZ1dXVJhSYlEgmjpptMaJIPSrlGEovFGI21XOCf//mf0/67Wq3GY489hsceeywn58uEkiCSTAvd+Pg4qqur0dvbm/WNIlQvC3gjMiCLHVcZ+lxrZpEFdX5+Hh1d3QjZHChL2Owq5VJEYxFYPUFIG7l1GRHs7+/DbDajoqICx48fL8juLlG+m1jzsusQJL88ODgIo9GY92viAjK3VFtbi66uLuZ75lKw1xpNeHlXiklrBOEYjTK1HHd2V+FtfXWQC/jOaZrGzMwMHA5HVnUaoe3Fqa6F/ZpshSb5RCulXCPxer0AkLOurVJDSRBJMtA0jY2NDYTDYTQ2NuL48eO8bi4h5ljkpoxGo9ja2sLi4mJKW95Ux+dKhj5xRqW8vByV+n2sOfyo1B3s5miaBqQyxKJRbCzOYJK2MTvhTHM0ZCq8paUl6+G5XEEikTDWqJ2dnfB6vZiYmIDf7wdN05icnGTqKqnaTm37Iay7AlDKpOis0UGtyP0O1eFwYHx8HK2trcwEfSokFuzdbje+9dtlXFn3QiONQa9WwBmW44evBSAB8I5+bvdWIiiKwsTEBHw+H86ePSsonZaLYch0izoXoUlSQ6uoqOA8A1bKcyQ+nw8ARNHGQiIWi2F6eho2mw16vR4mk6koelnkAZmZmYHH48G5c+ey2hHnymGRtLqSVmeS2ru9uwb/6+VVWDxBmLQKBCMx7PqB/vY6vP1iHTwuB1ZXVzE1NYXy8nKm24bdKk0Ie3FxEcePH89be2C2CIVCmJqaglwux8033wyJRMKkwCYmJkBRFCorK1FdXY3KykrI5Ar8emoXz887sBeMQiYBjhjV+PeDR9Fdl7uHd2dnB9PT0+jp6eG8oSCQSqXYhxorXhmaayugV0gRCgURCoVg2Q/iXy7Po02xh6N11VlNk5OaXTQaxZkzZ3KajuQarbDNu8i9y/WZTSY0SUQPp6amUqrpJqKYEUmm79zv90OtVhd82r9QKIlPxb4xAoEAkwK4ePEiJiYmBEnJC4kKgsHggSZRMIiLFy9m3XUiVOqEoqg4+feBgYG4G/Hmjkrs+cN4atqKLXcQCpkEpxsMeO/5RtSUq1FTWYGOjg4EAgHYbDbY7XYsLCwwxe3KykpYLBbYbDZOaaMtdxCLVi9CMQq1ZSp01+mhkud+x0+83o1GY5xOGdsx0OPxwG63Y21tDVNTU9iK6vDclgSmMg3aqzSIUcCGK4Afvr6Jj9/ejnKtcJHGtbU1LC0toa+vD1VVVbzew+oJwR+OoqbsQMtKK9dBq9NBqYvCsR+AOxiFJ4sJezIIK5fLM7bC5wJchyHZ/8tHaLKi4uDeDQaDTLSysrIChUIRJ93C/rzFIhIutRmv1ytYv6yUURJEQuBwOGA2m1FXV8dIkufabpcriE6SVCpFd3c3r9ZFoTUSl8uFlZWVlDUZiQR4y8laXGorx85eCFqVHM0mzaHXaTQaNDU1MQNlDocDu7u7TLdRTU0NUwhMtRBdXXPjV1O72AtEIQEglUrQU6fHHw7Uc/KH5wryvTc2NqK9vT3pg8dOjbS3tyMYDOJrT80iGt1HxOPHju/Ag6NOp8bmXhCT2x7c1MHfd4MoSu/s7Aiu01TolFDJZfCFY3Hfmz8cg1GnxuDJHuiUMk4Fe6IqrNPpcPLkyYIvoqmiFYvFgnA4zOjd8S3YAwdF46NHj+Lo0aNMapAYSiUKTfKVQhIKLik1r9d73bojAiVCJDRNY3V1FQsLC+ju7o7ToBFS4wAObvJwOJzVMWRW5dixY1hdXU3pOMjl3HyuneShl5aW0Nvbm1T+nb0TLNcqUaHjRnRyuRwGgwFLS0uoqKhAc3MznE5n3HwHacUlKTSH7yDqoSigq/YgTRSKUpjY8qCpQoPbu3MjA0LSRtnqU6nVakRlatRVKlBTpkQwGEAgEIDT4YTLS2FqPoJWTRDV1dVZp30o6sBlcW9vD+fOnRPsJ9FepcWJ+jK8tuZGbRmgVcrgCUSwH4riHd1HGHLJVLAvLy+H2+1GVVUVent7S2KnK5VKsbOzw8jDGI1G5h7NRXsxu428s7PzkNCkRCKBVquF0WjMqfhmJnCtkXD1+LkWURJEQlEUMxGcKCuRC7tdrseztbvIrMrm5mZOO6+4XAORbu/o6EjrIcJnUp0M9NXV1eHYsWPMxPmxY8eYKeXd3V3Mzc1Bp9Ohuroam2E1XP4wOmveqDWo5FIYNAqMbXlwW1eVYMlxMvfAN23UWqnFy0tO1JQpodFoodFooTPE4Lf70FCpZpSLDQYDU7DP9GCT2kMkEsHZs2dzMlAnkUjwwZuaIZVIMLntgcMXhk4pw93Ha/BAf3LnzMSCPYlSZDIZLBYLgsFgQSTxM4G0aPf39zO2BamkW4S2FwOHhSaJcRhfoUm+4EIkfr8/Z6ZWpYiSIBKZTIbBwcGUvu2FSG2RgjaRXic/eqFEH9nXEIlEUFZWllT+ne0hki2JkB3/sWPHkiqPEokTMt9ht9ths9kwt7QBqxUolwSg+/3DK5FKIZNIEI1RoAHwXbooisLs7CzsdjvOnj3Luz3ypo5KTO3sY8nuR5VeiWiMgsMXwYmjRtw52AqlXIpQKMRMo6+urjJyH1VVVYeUi0OhEEZHR6FUKnHmzJmc1h4qdUr8+Z3tWHMG4PZHUGdUoc7ArcvK7XZjfn4e7e3taGlpKZgkfiasrKxgbW0NAwMDSVN/+R6GlMkOnB8rKirQ0NDAS2iSL7i2/16vHVtAiRAJkNwiFji4QSKRCO/35UIk+/v7GBkZgcFgOFTQFjrQyJUEE4vqIyMjhzSzSLcMeW+uoGkay8vLjJwLlx0/W+LE1ODHym8XsB8OIeC3IxqLQqXWwBZW4M7eujiPi2wQjUYxPj6OUCiEc+fOCWpZ7ajW4f1DTXh6xoZ1VwByqQR3dFfh3t5aKOUH35VKpYrLtxPzrtnZWYTDYSatp9PpmE63fM3TSCQStFRqgSxKN8SRsquri4lUCyGJnw5kAHJ7exuDg4OcNgL5GoYkRW++QpN8wTW1JdZIiohc1EjSHb+7u8vMBCQr7gpp4eVanyGe6k1NTYx+FDstJkR0kUit7+3t8ZY7aTBp8e+66/DighNRWgcpTWF33w+jLAjaModXX91GVVUVampqOOeBg8EgzGYzFAoFzpw5k5Mi6fEjZeiu08MTjEIhk0CnTH17s5WLu7q64PP5YLPZsLGxAa/XC6VSCbVajf39/bzIeWQLIp5JdLOSIR+S+OlA0zTm5uZgtVpx5swZXgtlLochUxW9uQpNVlZWwmg0Zr1x4NK15ff7xYikmMhFjSQZERBRwpWVFZw6dSqlXWw+U1vsSfVET3VCJELk30OhECM7cv78eUHzBXcfr8HRcg0mtz3whWK443gd+huN0CvApMDW1tagUChgNFVCazChobYK6iSLudfrxejoKEwmE9OdlytIJRKUa7IjJSI+GAgcFOnb29uh0Whgs9nilIuZmZUCy3CQtmO2blYmpJuwJ/L7QjzsaZrG9PQ0XC4Xzp49m7MaBNf2YvIssKMVLu2/6YQmJycnQdN0nHQLl7qY2LVVQkSSTkpeaI0k8fhoNIqJiQl4PB5cuHAhbTieq6HCRCROqid6qhMS4ksiZLEm6Rmhi59UIsGpowacOnpYu4kMk0WiMTw9vo5fTFhh91ihlFAYbNDjzhNHcaT2oGOKTIU3NTUdkt0vJsiOv7e3lxnKZE+jk1z7xMQEKioqDnW25QNsfxOhbceZJPGNRiPzmTIV7CmKwuTkJLxeL86cOZM3UcpU0Qo7HQYgLoIXIjRJ0zT29/fhcDiY5gy2dEuyyJRch5jaKnHkOiLx+/0YGRmBSqXC0NBQxl16PoyxUk2qExC14b29PQQCAcZtkSvsdjsmJiYKvli/suzCb5Z8UCn1aG2sgNsbxGWLH97gCk6UzUCtViMYDKKtra1oMiyJIB1jq6urSXf87JZTkgJL7Gwj0Uou0kXs65qZmWGaEHK5CGWSxFcqlQypJBbsY7EYU9fK9RQ9l+tOFa2EQiGEw2GmxkJel60svsFggMFgyCg0SaI4sjZwIZJkHZjXC64JIslV1xYZeKyvr0dXVxenmyyXellAfFH9dH8/Jnd8MG9YoZBJcLG9Em1VWsRiMdTW1mJ1dRWvvPIK9Ho9ampqOLWsbmxsMKmyI0eSt5PmA4FIDC8vOaFRSFFvPNihGtV66NRK2GkaxhoaHtsODAYDVlZWsL29HbdYFWMimeT4SVTIpVCc2NmWLF1EUmB8O73Ijp/I+OfbOjVTwZ40IVRUVGB2dhaxWIwxTyoW2NFKOBzG1NQUDAYDjEZjztqLkwlN2u12rK+vM9EKGVfI9N75dEcsBZQMkaRaHHMRkUQiEcaKtqenJ6thNyFdY4nXzi6qN7e248tPLeC3czZEqINOrB9c2cCfnG/Ag4NHmAUpHA4zNYjV1VUoFAqmcMhegCmKwvz8PCwWCwYHBwti88qGyx/BXiCKSl384mLUyDGxtoslRQxvedN56PV6ZrGy2WyMPQDRzeIiMJkLEM8Vr9eLc+fO8VqsFQoFs9Cw00VkuLOiooL5HbnOEJBOtnA4jLNnzxZ0xw8cLtiTJgSS+pPJZGhoaIDP58tpBMYX4XAYw8PD0Gq1zHR/PtqLE9UUiNCk1WoFAFy+fDmt0GQu/dpLESVDJKkgtGuL3OhLS0tJBx4zQSaTIRgM8jo3u2BOiupEPfjHo9t4ZtYKrVKGCqUMoAF3IILvX15HX4MBJ+oPahFKpZKpQcRiMbhcLmxbdvGTlyfgDNJoqDJgqLMGDusuwuEwzp8/n3JRjMQovLLswutrLgQjFHqPlOHmzkpGPVgIdEoZVAopApEYtMrfO1tSFNa2LJBSMZwbOM10rSQuVh6PhyFKtsAkydfnGpFIhBley9VinZgu8vv9TLqI6JuxU2DJFrJIJILR0VFIpdKcz67wASlMK5VK7O7uwmQyoa6uDk6nMycFe6EgJKLT6Rg/GOBwCgxAzochidCkwWDA8PAwent7kwpNkiipEMX2xx57DF/72tdgsVjQ19eHb3/72zh37lxez0lQ8kRCdvWJLoVcEAwGma6lc+fO8Wq/y0XX1vT09KGi+tMzVtA0DgyNaAASGka1HFZvGC8tOhkiYUMmk4FWleGf5ncxt6tFJBoFtePDz2cW8LbmGDqPVMBmsyW1r6VoGj+4soEXFhyQSCSQS4Gp7X1cXXfjo7e1oVovbGrbqFGgr8GA5+fsUMikUMtorG1Z4AxJcUtvE1prkhsssXd6RGCSRGBkkIyQDp/WzEQEg0GMjo5CrVbj1KlTeevA0mq1h/TN7HY7xsfHQVEUswCTCIzoZpGddTEMmpIhFApheHgYer2eWazJHA7ZAPAp2OfjupIhsVaS62iFzJCkEpp87LHH8K//+q+IxWKYm5vL22Di//k//wePPvooHn/8cZw/fx7f+MY3cPfdd2Nubq4gRnASmq+QVI5BUVTSFFI4HMZzzz2HO++8M6uHa29vDyMjIzCZTNjZ2cGtt97KS+JifX2dUcfNFlarFWazGTqdDgMDA3GL+x//w1VsuAKo1ClB4+AnkACweEK4v+8IPn5He9L3/NKT83h50YkjBhVkEgoOlwd7URn6G8vxyDkj7HY7XC4XI29SU1ODsrIyTO948fVnFlGhVaBMfbB/iFI0lm1+vON0Hf5oUHgh0BeK4t/MOzCvObFjc6JMq8JgRz3+aLAeFdrsd/1kASbKxYCwGgSpT1VVVaG7u7todRmyANvtdni9XpSVlcHv96OioqKkSCQQCGB4eJjTYCa7YO90OtMW7IUiGAxieHgYRqNR0MBoMq8VshxyjVacTifm5uYwNDSU9N99Ph+eeeYZPPzww9Dr9bBarbj55pvx0Y9+FG95y1t4XXcynD9/HmfPnsX/+B//g/lsjY2NeOSRR/CpT30qZ+dJhWsiIgG4TY8SbG9vY2pqCp2dnWhubobFYimYzAmB1+vF9PQ0aJrG+fPnDy16/Y1GLNt9iFEUpFIJJADCsYOoqyeFf8bOXhBjm56DOgQVxd7+Pox6HfQyBZadIYQ1lRgcjJc3GR4ehkwmw5RPD18wwtjyAoBcKoFeLYN505MTItGp5Li3TQ21w4Gylnp0tzWiuVLLe/JdLpcndU9k1yBItJKpxuF2uzE6Olr0tuPECIxEKaQ1+vLly0VvQgDesJQmpJvp++JasBc6YU9IhJCbkN8xF8OQmdYlnU6Ht73tbfj0pz+Nf/qnf0JDQwN+/etf50S3jYCk+D796U/HXe8dd9yBy5cv5+w86VDyREJ+OC6LOenC2draQn9/PyMFIrSFN9tjSVG9rq4OOzs7h0iEpmm8o68OLy7YYfWGoVHIQNE0wtGDusUtx5JLmHhDUURiFKSxKMLhIMoMBqiUB7pSrlgE3tDBdbLlTYgUyOzVdQT8fmxt+aDRqKFWq6HRqEFRNBSy3Cyqm5ubmJubw80DvTk3yEp0T/T7/bDZbLDZbJifn2cisGRT20Ra5NixY1k1WuQbLpcLExMTaG1tRWtra1wTwtTUFKLRaFwTQqEK716vF8PDw6ivr0dHR0fWi3Wqgj2ZsE/3W6UDiZDIIGuuNwN8hiG5bnDJHElHRwceeeSRnF633W5nOj3ZqK2txezsbE7PlQolQySpbgqJRMKpBZgUUIPBIC5cuBBX2MrHLEgyJBbVjUYjtra2Dr0mFouhoVyFr73zOP6/q9t4dcUFpVyK27qq8J6zDUyxOhFHDCrIqTCcgQhaqssZgnIHoihTy9FkOrwrJ1Igd53R4Kp9AXQsCrksCq/XC6vDhb2oHDc3KgWpkxK9pc3NTQwMDBwarswHtFotmpub49pwbTYbU6wmKbBAIIClpSWcOHGiILliriBOj2xyS1yA9/f3GdmW6elpGAwGZgHOlyS5x+PByMgImpqaMs76xCgav5mx4dlZGxy+MI4fKcPbTtUxVgNA/CR5a2srEy1nO2EfCARw9epVzhGSUHAdhgyHw5yGIUWJlBJAps4tkvvW6XQYGho6FAEIFV7kcmyySXXisEgaBRLlTtqr9fjsvcc4NRKEw2HMTIzhQq0EL1i02PVGoVfR8IdjiNI0/vBUfdruq2aTBm89WYufj1tgDQGQyCFR0+ivkKFTG8Qrr7zCOCdmM1xHZh6IFXExeuUT23DJJDrZ1RuNRoRCIQSDwbxNYWcD0kp74sSJlNI87OE40m5K0pXLy8t5qUEQU7G2tjY0NzdnfP3/+/IafjZmAQ0aSpkUT03b8NqqG//tvmNJFRCA+GiZna5MV7D3+/0YHh5GdXU1urq6ipKWTBathEIhWCwWlJWVMRtd9uvI/0YiEYRCoby1/1ZVVUEmk2F3dzfu73d3dwtmnX1NEEk6IrBarRgfH0dzc3PKMDzfEUmqSXV2Wo5NSIlyJ5keDK/XC7PZjLKyMvw/b+vHiXknfjGxC7s3jDqjGvf21uC+E+l32xKJBG85WYvuujKMb3kQiVFordSiv9EIpfxApZgsVGRXT0glUWKdgESBFEXlzK9DKKRSKcrLy7GzswOZTIYTJ07A5/PBYrFgbm4Oer2e+VxlZWUFX5TW19exuLiI06dPo7KSu/QvW7mYtIEnqvySBZjP70Cmt7mm/1bsfjw5ZYVGKWW0zWiaxpY7hCde38TJ+sypp8R0ZbIJ+/Lyctjtdhw5cqRoJJIIouo9OTkJtVqN7u5uJkpJ1l7s9XoBIG8RiVKpxODgIJ599lncf//9AA7I7tlnn8XDDz+cl3Mm4pohksTUFpFGX15exsmTJ9Mybz5rJOk81QmRRKNRZiEmuVWuINpUbOvZu4/X4M6eagTCMagVMsik3N5PIpGgs0aHzprDUYNcLk+6q5+bm0MoFGIWKuIy6Pf7MTo6yti8lkqnEZHwCAaDjDR9dXU1Wlpa4oY719bW0vqR5Bq51M2SyWRMOqirq4tR+WXrQ5HUHheyJGm2np4ezmoIM5Z9+CMxHDW+QVoSiQQGtQzzuz7sh6IwqLObK0ks2O/s7GBubg4SiQRbW1sIBAI5KdgLRTQaxcjICORy+aEW8mTtxZubmwCQ1zmbRx99FO973/tw5swZnDt3Dt/4xjfg8/nw/ve/P2/nZKNkiCTdzZ6Y2iK7AbfbjfPnz8NgSB5GE+QrtZVM/p0N8meXy8VLNZYUr3t6elBfXx9/XRLJwQxKHsDWlyLOiVarlbEg1ul0zEN94sSJktglAm9EhhKJJKk0PXu4M5kfidBdfSrQNI3Z2VnYbDacOXMmpzvTZCq/ZFdPyJKQSjKytFgsmJ6ezrqGpJRLIQFA0QC7VyNGA3IZoJAJ6zYjta2mpia0t7czzRVCC/ZCEYvFMDo6CplMhr6+vkPfZ2IKzO1246GHHkJLS0teB0z//b//97DZbPiLv/gLWCwWnD59Gk8++WTK1GmuUTJzJAAY0bVEXL16FbW1tWhsbEQgEGB2A/39/Zw6WUZGRlBZWckp75uIQCCAF154AXfffTdzsyabVE8EqYfMzs4yuUsy15Fp90vsQnd2dtDX11eQ4jVXkF2vVqtFIBBgdvzV1dUoLy8vGqmQ+4IMqGVD2sS7g3SBEQ+SXBS22bpZibNE+QYhSxKFhUIhRsajuroaDocDc3NzOHXqVNb2xi5/GB9+Yhx7gQjqDCpIJBJEYhQsnhDu663FoynmoLiAdI0dPXo0qUcQu2DvcDgAFGbCnpCIRCLB6dOnM95j+/v7uP/++6HX6/Hzn/+8JOpz+cI1QSREDt1oNDJttdkMlI2NjaGsrAxtbW28rok9EMkuqg8MDCSVXEksqpOiotVqZR5o8jAntnUSiXu/34/+/v6S8nkm+f3e3l7U1tYiGo3C6XTCarUyA4OEVArp20EcLmtra3OSR2cXth0OB1PYTtQ3y4RYLIaxsTGEw2EMDAwUXDeLDZqmmV09GVoFgLq6OjQ1NfEy73p+3o5vP78CT/D3hWYAHTU6/OWbu1Bdxi+i29/fx/DwMJPKzQR2wd5utzMaYLmesGd7wvf393NS+33ggQcglUrxy1/+8roWbASuESKZmJhgJJ27u7uT+o2nw+TkJFQqFTo7O7O+pmg0imeeeQa33XYbADBF9WS7S9Khlc7NkL37tVqt8Hq9jLaU0WjEzMwMlEolTp06VVR1VTbYEdLp06dTkiepq9hsNgSDQWYIrbq6Om+FeKfTibGxMbS0tKClpSXnERF7toP065MUWGVlZUpyILpZZPdaKr8lcOCvvrKygpaWFkYWn7RMk1091zTMhiuAlxed8AQjaKvS4WJ7RVpnynQgrcfNzc1obW3l9R75mLAnG4JYLIb+/v6M300gEMAf/uEfIhwO49e//vV1LdZIUFJEEolEDnVIURSFV155BX6/H2fPnuWV5pmZmYFEIkF3d3fWx9I0jaeeegpnz57F1NQU9Ho9Tp06lXTIkD20xLWoHgwGGXVVj8cDuVyOxsZGRtqk2PUHtkpuNhESGUKzWq3weDxMqoh4oufic1ksFkxNTSWtIeUD7NkOm80Gr9fL7H7J5wIOIpqRkRFoNJqSakQgBf+trS0MDAwwCxxRLiZkSeRauKoG5AJE0qi1tRUtLS05eU/2hL3dbuc1YU9RFMxmM6LR6KFmmmQIBoN417vehb29PTz11FOCmiquJZQ0kYRCIZjNZvh8PlRWVqKvr4/X+87PzyMSiaC3t5fX8U8++SRkMhmam5uTFtXZej1AdmY6wEG/99TUFJqbm6HVapkHOpVkfKHALl739fXxTs2Ew2Fm8XU4HFCpVHF1FT6fi6TZ+OT3cwWyCbDZbHC5XFCr1Uy7qslkQm9vb9EkThLB9lcfHBxMm2ohysXkc5H5IlLYzvVnIiTCdX6FD9gT9na7HXt7exkL9hRFYWxsjMlAZCKRcDiMP/7jP4bFYsHTTz9dUrXNfKNkiYSEueXl5UyX0KlTp3i979LSEnw+X9bH0zSNtbU1zM7OorOzM2nOVoinOnHnW1lZOdQ1Q1EUU3+w2WyMYmxNTY0g0ySu8Pl8GB0dhcFgQG9vb8521exUEflc7LpKps9FpuiJDE6p7Pii0Si2trawuLgIAId83ouZ2mL7qw8ODmYVYaQSzsxVYZtooLW3t6OpqUnQe2WDTAV7mUzGOEEODAxk/JyRSATve9/7sLKygueeey6rGaHrASVJJDs7O5icnER7eztaW1uxtrYGl8uF/v5+Xu+7urqa9fEURWF6ehpWqxU0TSc1ixJCIqRo73A4cPr06bQtzEQxlpCK3++HyWRiXBNzXX9wu92Mk2SyCCxbxCgaEgkOiTeyC6Xsz0WIJTH1QH4Tt9uN/v7+kipgkgWxpaUFzc3NjMIv+Vxsn/dCNlCw/dUHBgYEdQ6R34tEKz6fT5B3jMvlwujoKDo7O7Oue+YSyQr2crmcicQztRdHo1F84AMfwMzMDJ577rmSkuIpFEqOSGZnZ7G+vo6+vj5UV1cDOLCPtVgsOHv2LK/33djYYKRLuIA9qT4wMIDXXnsNJ06ciNtlsIeOsiWRcDiM8fFxRKNRnD59OuuHO1X9oaamRvDiuru7ywgcCn24N10B/GzcgpH1PcikElxqr8BbT9bBlELKhXQVWa1W7O3tMVPoNTU1UKvVTNNFf39/SUzREyTTzWIjVaoo1z7viYjFYpiYmEAwGMxL1xjbO4ak9kgUlillScyxSk1Ik6Sz9vf3odPp4Ha7M3rYf/jDH8bIyAh++9vfFkySpNRQUkQyNjYGq9WKgYGBuKGtnZ0drK2t4cKFC7zed3t7GxsbGzh//nzG17In1UlR/eWXX0ZXVxcjpsenqE7g8/kYj5JcFGJDoRCz83U6nVCr1Uykks0iRdJ4RCmAkDhfWDxBfPFX89hwBWHQyA8K1cEYeo+U4bP3dmYcpmRPodvtdtA0DaVSie7ublRVVZVM7WFnZwfT09Po7eWmeMwWmLTb7ZBIJHFSNLlKWZJ2VdJplO/UGmkFJ78Z2z45sbuNyLF0dXXh6FHh9gW5Ak3TTPQ2ODgIpVLJyNGQ3yscDsNoNOLFF1/EW97yFnzzm9/Eyy+/jOeff76kPkuhUTKT7QDQ2tqK9vb2Qzd9LnzbuRxvs9kwNjZ2aFKd7dIopKhOWlUbGhp4yXMng0qlQkNDAxoaGuLy2Vz1soCDXRgpxJ45cyajUgAXPDtrx6Y7iNZKDaS/l3Ap11CY3d3H5RUX7uhOT1RkCr28vBwejwcajQZarRazs7NxLbiF8nhPBlLw7+vr41zwT+bzTtwgg8FgXLcU3zQU0UCTSCScisS5gFwuR01NDWpqaphULJmuJ9az5LdKpdZQTNA0jampKezv7+PMmTMM8bHlaEjBfmZmBj/60Y/wF3/xF5DL5fjgBz+I1dVV1NXVlUyHXqFRUkSi0+mSysULJZJMCr5kN76wsJB0Up0czzeVBRxMhM/OzqK7uztvOxe2ERSRZ7BarZidnUUkEkFlZSVqamriFl+iTRUIBHDu3LmctXpO7+xDJZcyJAIcyGpQNLBs9wHIHPHs7e1hdHQ0rlaTzOO90K2qROdtfX095VAqF7B93okUjc1mOyQwWVVVxXlgMBwOY2RkBCqVKq9WwunANu9qb29HMBiE3W7H9vY29vb2oFAo4PF4oFKpimreRUCaETweDxOJJAORxB8cHMSb3vQm2O12fOITn8DVq1fx9re/HQ0NDYw0/o2GkiKSVJDL5Rn9SDIdn4pI2EX1s2fPJl0UZDIZIpEIo+KbbWcW8ero7++HyWTi+zGyAlsviwj7Wa1WZodIFjCLxQKlUomzZ8/mdGdv0MgRjcVnTWmaBmhAy2FgjTgHtre3x7WEJvN4T2ZwVV1dzWtaOxNIG+3u7i7Onj2bU90snU4HnU7HCEyS6HJtbS3OqyRVdEnmV4jve7EXaAK1Wg2VSoX9/X309vZCoVDAbrfHmXeRXX+ha1+ERNxuN86cOZPx/BRF4S/+4i/wk5/8BL/97W9x7NgxAAcbsvX19UJccknimiCSfKW2Usm/s0FRFHQ6Hebn52G325niL5fCJRnm29/fL5pXBxAv7Nfe3o5AIIDNzU2srKwwEdb6+jpqampyZpg01GrC62tuuPwRlGsObjPrfhh6tQznmsvTHkv8Oo4fP55RjVaj0aCpqQlNTU1xFsMjIyOHFl+hCytFUZiamsLe3l5Oo7dkUCqVh1wuEwUmSWFbpVJl5a9eaFitVkxMTMT5r1RXV6O7u5tReWArF5PfLF/mXQQ0TWNmZgYul4sTidA0jS996Ut44okn8NxzzzEkAhysMXyn8a8HlFSxnaIoRCKRQ3+fTDgxG3i9Xrzyyiu466674v5uZGQEZWVlOHnyZNJJdVITAd7ovCGdUkajkckJJ1tQgsEgzGYzIzVdTJ2lRJBaTWNjI5qamuJ0pRQKBVOs5zssCBy0/P7gygaembXBHz74Dg1qOf5o8CjefKIm6e9I5mpWV1dx6tQpQb347MXXZrMxqT2+trVsefqBgYGidY2xB+tsNhs8Hg90Oh0jSVNKkQjwRhfgyZMnM7bFhkIhJgpzOBx5lfkniswOhwNnzpzJWI+iaRpf/epX8Z3vfAfPPfccTp48mbNruR5wTRAJEU684447eBUOg8Egnn/+eYaIUhXVCRKL6omdWeyJZqfTCZ1Ox5CKXq/H/v4+zGYzKisr0dPTU1IPNukySlarSRwWpGk6Tlwy2weZpmks2/2YtuxDLpXg1FEjjpYnf2DZKaP+/v6cFPzZ701Se0TahMw/VFdXZ5zrIMVrACWnm0XaaJVKJUKhEG+ByXyASNicOnUq6y5A9kbAbrczysW58CMh9xqR9c8UWdI0jW984xv4m7/5Gzz77LO859muZ1wTREJRFH7zm9/g1ltv5bUTJER0++23Y2trK2VRHXhDM4trPYSkU6xWKxwOB1NPqa+vz0qhON+gaRorKytYW1vjtNtPVCwmO14SreQyworFYkzHTCGk1hM3AunmOkjdQa1WF614nQpE/aGxsRFtbW2MGgKJMEn9gW8UJgQ7OzuYmZnJiYQNicLI52LPGGXTiEDea35+nulQ5EIijz32GL785S/jqaeewrlz5wR9lusVJUUkNE0jHA4n/bennnoKb3rTm3hNBRMiqq+vh91u5yz/nm1RnaiqGo1GeL3eQzMCxVqE2FP0/f39WauRJkunJBMr5INIJBKnrFroFCC7Zdpms8W1TGs0GpjN5pKsO5BJ+lQih+kEJnMpr54M29vbmJ2dRV9fX16kQtiNCA6HI06OJt0sDk3TWFhYgMViwZkzZzKuJTRN4+/+7u/wuc99Dr/+9a9x8eLFnH+W6wXXDJE8++yzOHv2LK+URygUwm9/+1vodLqUuxAhk+oURTEOeKdPn4bRaIyzq7VarYhEInFaWYVKj0SjUUYzqL+/PyfmOqSd02q1Mjt6EqlkszsMBoMYHR0tmd0++zfb3d1FKBSCRqNBS0sL5waLQiBbf3Xgjd+MRGG5EM5Mhq2tLczNzeWNRBJBfjPy2dizOFVVVcyzTront7e3cebMmYybH5qm8YMf/ACf+tSn8Itf/AI333xz3j/LtYxrhkief/55Xm6BpKju9/tx4cKFpHpZ7KJ6tpPqkUgE4+PjjHRHsoWa7A5Jmsjn8+VVK4uALNRkpiAfg2nRaDRuAp1rp5TX68Xo6ChMJlPJ1ZHcbjdGRkZQX18PpVIJu93OSNGQ36xYHXh8/NUTEYvF4qbriSCoUIHJzc1NzM/P4/Tp0wVrc08ESYER8y6dToeqqipGgfrs2bOcSOSJJ57Ao48+ip/97GeMF5GI1CgpIgEOoodkeOmll9Dd3Z1V0Y5dVN/c3DyU0spUVM8Ev9+P0dFRpm+f60Lt9/thtVrjtLJIsT5Xgn77+/sYHR0taMGfXSC1Wq2IRqNJozAiCtnQ0JDUSrWYIPMriUKCyaRoCm0xTIrX7DZaoWAPeCYKMXJpRCDY2NjAwsIC+vv7S0Y+ncjRrKyswOv1Ml1gZJOTjDBpmsaPfvQjPPzww/jXf/1X3HPPPUW48msP1wyRvPLKK2hra+OkZ5RsUv2FF16IE15k10MkEknWC63L5cLY2BiOHDmCY8eO8V5IyAJF0kRkoE6IsZXD4cD4+DjjNFeMhTpVFKZWq7Gzs5MTUchcgyzUmeZX2Dt6m80GAAxh5lIviw2SMsq3/wp7wJOrwOT6+jqWlpbQ39/Pe8o/XyANJoODg4jFYocUmckgJIlSfvrTn+KDH/wg/vmf/xlvfetbi3z11w5KjkhS2e2+9tprOHr0aEZ5EfakOjsCefnll3Hs2DFGC4hvUR14Y2Cuq6srp8qlJE1EPND5zHQQKRYuw3yFhN/vx8LCAqxWKwAcUiwudlRCdtTZLtSFsBgmml6FThml8iJhe8cQoc+BgYGS8YYhIDNJg4ODhxpMCGHa7XY888wz+Id/+Ad0dHTglVdewT/90z/hD//wD4t01dcmrhkiGR4eRnV1dVrzm0T5d3ZR/fLly2htbUVNTQ3vojqxKt3Y2BA8MJcJ7JkOsviShTdZBxj72vr6+oqWo04GtjbV6dOnodPp4lqmSeG3pqamYGki9rWRXWsudtTs7ra9vT1mUpsvYa6srGB1dbXoC3UyO16NRoNgMMhp2LDQWFtbw8rKSlISSYTb7caXv/xlfPe732Wm6e+99168613vEqMSjrhmiMRsNsNgMKCtrS3pcZkm1V977TUcOXKESY1lWw9hy52cPn06pxpLmUB2vSRNRCQyiACjTCZjHPD6+/sLem2ZQDraSNt14rUlSxOxHRPz2clFZgosFkuch3muIMRimGwMNjc3OS2Ghcbc3Bw2Nzeh0+ng9XrzrnGWDUiqbXBwkFOX53PPPYcHH3wQ3/3ud/Hud78bw8PD+PnPf46ysjJ84hOfKMAVX/soOSJJ9G0nmJychEqlQmdn56F/4zKpPjw8DLlcjra2Nmi12qxudOIdL5VKBXmX5wLsKW2r1QqfzweZTAaZTJbRabHQIMZKfr+fkzsf2fUSwgyFQnGEmcvvne22ODAwkHfXwmQWw2zVAPbGhxDc7u5uRn/1YoBEvoTg2BpnZK6jWPNTGxsbWFxc5BzBvfTSS/iDP/gDfPOb38T73//+oqdYr1VcM0QyMzMDiUSC7u5u5u8yyb+T15CHmFju6vV6pksqU7qByJ1UVFSU3FAaEeqTSqWQy+U5d0sUgkgkgtHRUUgkEl6yImQIkpDK/v4+r26iZCi2blYq62RCKisrK3A6nVn7q+cbJEra2trC4OBg0siXPYtDNgO5rhmlwubmJtM5xiVFefnyZbzjHe/AV77yFXz4wx8WSUQArhkimZ+fRzgcxokTJwCkLqqzkayozpY0sdvtjKNgTU3NoZCc9Oy3tLQUrfspFTweD0ZHR1FTU4Ouri5IpVImlUJqD3wHBYUiEAhgdHQUOp0OJ06cyMmOlMiaWK1WZj6AT3dbKepmsS2G3W43pFIpGhoaUF9fn3cFXK5gD/SlIpFkxyQqIuRL3Zd0tXH1h3n99dfx9re/HV/4whfwyCOPlMR3fC2j5IgkGo0mlXxfXl7G/v4++vr60hbVCbh0ZsVisThSkclkzMLr9XqxtLSE48ePl5wPMyG4trY2NDc3J/1spOMm8bORgna+Iisyv0JkwvPxgLJTKaS7jYtQYSgUwujoKJRKJfr6+oo+Sc8GOw3Y2NgIp9PJqDFXV1cjojLiylYI23sh1BvVuPt4DZpMhYlW2NIiQlJtbPtk8tnY0iZ870kiycJ1hmV0dBRvectb8F//63/Fxz/+cZFEcoBrhkjW1tbgcDhw7NgxTvLv2XZmEcG73d1dWCwWUBSF6upqHD16FJWVlSWT0trY2MD8/Dxnj3Dgjc9GUilE1ZcMCuZqQSXy9IWcXyGfjezoSe2BfDZyf5A0oNFoRG9vb8n8nkBqf3Xy2V6Y3sL/eNUJbwSQSCWQSaQwahX44lu7cbYlv8N/7HoNF30qrkj0Qucr80/EIbm2Rk9MTOC+++7Dxz/+cXz6058WSSRHuGaIZHNzE6urqwgGg2mL6oRAAH5yJxMTEwgGg2hra2MKv5FIhEmjsBenQoLsCre3t3H69GnebapsVV+r1RpX0K6uruad6iG+E/m0Es6EVLUHo9GIzc1N1NbWoqurq6QWj2g0GldLSry3ohSFP/n+KNYcflRoD5w+o5EI3CEadXo5vvm2ZhypTe6JIxRsufXBwcG8NSSQBhKSAtvf32dqfUSOJtlvRkiEq67X9PQ07rvvPvyn//Sf8LnPfa5g98GLL76Ir33taxgeHsbOzg5+8pOf4P7770/62g9/+MP4n//zf+Jv//Zv8dGPfrQg15cLXBMOiTRNw+Vywev14tSpU2mL6oQXs91xkry+Wq3GuXPnIJfLUVdXh2PHjjET2ktLS5icnMzJwpsNiMy6x+PhpBWUDhKJBOXl5SgvL0dnZydT0F5fX8f09DQjeFdTU8NZ4JEMzPHxncgl2Da85LNtbGxgZWWFIdDV1dWiNyIQhMNhjI6OQqFQpEy1zVl82HIHYdAoIJdJIZfJoFIqIVPE4ApFcHVpF6bFhZy33xLjJ7vdzkluXQjYDp5tbW1xApPLy8tJ26YtFktWJDI/P4+3vvWt+MAHPlBQEgEOZov6+vrwZ3/2Z3jnO9+Z8nU/+clPcOXKlaTrW6mj5Igk8QcmRfXd3V1oNJq0JMJ3Up1oPxHiYJOQRCKBwWCAwWBAR0cHs3NiL7yk9pCPjpRwOIyxsTHQNI1z587ltAVWIpFAr9dDr9ejra2Nmfa1Wq2Yn59HWVkZQ5jJiqukALu1tcW5yJkvUDSNiS0P5q0+aBQynG8thzQUxPb2No4dO4ba2lqmHra8vMw0WaST/sgnuPqrRykKNIDEq5PJJJDKZOg81oUTdVqmHkYshkl6r6Kigpch2czMDJxOZ95JJBnUajUaGhrQ0NAQ1zY9MTHBWF97PJ44yaN0WFpawlve8ha8613vwpe+9KWC/9b33nsv7r333rSv2drawiOPPIKnnnoKb37zmwt0ZblDyREJG+yiem9vL+bm5g69hh2J8CER4hjIVfuJLLytra0IBAKwWq2wWCyYm5vLufgiEYXU6/U5635KB7b/OXuYjr3wku42mqaZIUihUZJQBCMxfP2ZJVxediESO0hral8Cbq32449uekMqhkjssKU/RkdHCz73EAgEMDIyAqPRmLGlvKtWj0qdArb9MCp1CkgkkoMUXjCKKr0S3XV6KBQy1NXVoa6uLk44c2ZmJuvaA/ld3W43JwvafIOtJs1u91er1ZicnMTm5macx0oiVldX8Za3vAX3338/vv71r5dUbYyAoii8973vxZ//+Z+jt7e32JfDCyVLJOxJ9YGBAfj9/rjaCd+iOvt4ItvR19fHSwhPo9GgubkZzc3NceKLi4uLjP1ubW0tL2kMEiUJFYXkC6VSmXThHRkZYb5riURSlB1rIn46ZsGLCw6Ua+TQKhUIhkLYcQfwW2jxoO5wAVYul6O2tha1tbVxcw+zs7PMwkuGIHOduvT7/RgeHkZVVRWnrja1QoYPv6kFX/3NIuzeMOQyKaIUDZVcig/d1AyNIp70pFIpKisrUVlZia6urkMRNDG3SrbZoWkaU1NT2Nvbw+DgYNFJJBF2ux1LS0vo6+tDTU0NAoEAkwJbWFiAVqtFVVUVIpEIjh07BqvVije/+c2455578K1vfaskSQQAvvKVr0Aul+M//+f/XOxL4Y2SIxK2p3pzczM6OjogkUggk8kYIkksqmdLIrFYjNl1nT17NieSIiqVignH2bMqq6uraWdVksFqtWJychIdHR1ptcUKBfbCGwwGMTw8zKQSr1y5wuwY+fi65wJPz9ogl0mgU8kRDAYRDATRUKmH1RfD5RUn7u9LLV4plUphMplgMplw7NgxRjVgbW0NU1NTTM2IOCbyQYyiYfeGQUeCmJs82BwkaxZJhbuP16Bar8TPxixYdQbQZNLg/r46DDaVpz0uWe2BRJmLi4txyr5lZWWYnp7G/v4+zpw5U/AhzUyw2WwYHx/HiRMnGF0vjUaDxsZGNDY2xm12/sN/+A9YWVkBAJw5cwZf+cpXSpZEhoeH8c1vfhMjIyMl1QSSLUqua8tiseDq1auHJtWDwSCef/553HnnnUw0AmRfVA+FQhgbGwMA9PX15f2BIVpSpJMo0zzH2toalpaW4h6YUoHf78fIyAgMBgNOnDgBiUTCdElZrVYEg8G8SZqkAk3T+Pf/axihGAU1IgiHwygrK4NMJsOWO4j3XWjEe87xU2hOlFQnPuE1NTWch+l+PWXF9y6vY8cdABWLYqhJj8+87RRMuuIu1IkWwySq7+rqQm1tbUnN2BCPmN7eXk4+LNvb27j11luh1+shlUqxsLCAW2+9Ff/9v//3oqeOJBJJXNfWN77xDTz66KNx60AsFoNUKkVjYyNWV1eLc6FZouSIJBKJwO12H9KMikajeOaZZ3DLLbdAKpXyqocQVz4yS1DohyXZPAdb0XdhYQG7u7uMXW8pgUzSk4aEZN89SaNYrVZG0oQUtPOZ/vr8L2fx3PQuKpQUjEYDpFIpApEY9gJRfP4tXTiXg1kLdpRJhukySfw/PWPDF341h3CUgoyOQSKTIUZLcKK+DI+/+xTkSY7Z9YQwueOBViHDYFM5lPL87qQpisL4+Di8Xi9MJhOcTifTEk6izGJGJ8RWmOtgsN1ux3333Yfjx4/jiSeegFwux9LSEn7+85/jwQcfLPpwcSKROBwO7OzsxL3m7rvvxnvf+168//3vR1dXVxGuMnuUXGpLLpcnFR4kxLG8vIwjR45krYZqt9sxMTGBpqYmtLW1FSWMlEqljJEOW9F3dnYWoVAIUqkUHR0dJdGaygZ5mNNN0gPxjQjBYJAhzPn5+az0zbJBLBbDKZ0Xl+U09mkVJMEYIlQUwQiFcy3lGGjKDSErFAocOXIER44cOdRJRAY82ek9mqbxT69uIByloJFGoVQoIVfIEY5SmN7x4sqyCzd1vNFxFKNoPP7SKv51ZAeBSAxSCVBnUOOz93ZiIEMKiy8IiQSDQaYjkC1rsrW1hZmZGU4zHfkAGXDt6enhRAAulwtvf/vb0dHRgf/9v/83M5PT3t5e1JkMr9eLxcVF5s8rKyswm80wmUxoamo61HmmUChQV1d3zZAIUIIRSTLfdlIPsdls2NnZgd1uh0qlQm1tLae6A5kGLzWzJ+CgM21kZAQ0TcNkMsHhcCAQCMBkMqG2trZgKaJUIF1tQr67SCQSpwGmUqkYUhHSehuNRmE2m0FRFBS1Hfj/2zvvqKjO9fvvGYYuoCgOUgREFFCRJqImCpbYQDD2mNhyjd9EvbEksVw1icaeazTJTdTkBpKfMRZAbNhRTKxIR0RF6cIw9Dr1nN8f3HMyAwwMME04n7WyVjzMwHuUOfstz7N3VGoJnhTVwEhfD+MH98ZcH1v0MFTvXInqT6Hujwq26tGzN5ZF5kIiEcPM2ECu0bCiXoz/e9MRi/3/rhKMSi7Cv6+9gB6bBVNDPUiJxsqsXib6OLbUG71NVfs7QBlXikQieHt7KywqaC1i2MLCQm1nDxUVFUhKSoKrq6tSfRVVVVUIDg4Gl8tFVFSUTp3x3Lp1C4GBgc2uL168GOHh4c2uOzo6Ys2aNa9VQ6JOCwl1FkIdslOVQtS5A4/HA5/Pp7cZmgYjEQRB5010phtcXdTV1SEpKQnm5uZyW21UkyC1RUT1qlhZWWmskoYqtXz58qXSTV/K0PTMiCq9pbb3lH0wUQLc1DdLJCXAYbPA1tLBJfVvl19QgM/vi1EnYcHCWB96enpgs1mQEiSqGiTYPMUFMzz+nmW/F56ILH4dLE3+FgyCJFFRL8a6Cc6Y66O6JjWpVIqUlBRIJBI5SxZl3tdSxLBsYqIqqKysRGJiIgYPHqyUS0JNTQ1CQkJgbm6Oc+fO6Vy1WXdA54QEaJwFKdupThCE3IOJxWLRVib5+fkQCoXw8vLSeolqUyoqKpCcnAw7Ozu6Mq0lqANfHo+HqqoqlfeqtIRs4JOXl5faMk6o0ltKNKVSaYs+WU2h+jDMzMwwdOhQnavIoUwEEwVWOJ1aDg6LBAcESDYLDRIWLE0NcGq5LyyM/xaNSYfuQSQlmq2gKupFWDDCDqsDnFQyNllfL29v7w4//BWtxKjtvY4+zCsrK5GUlAQXFxelYqzr6urw9ttvg8Ph4MKFCzq3Ldxd0EkhEQgEIAiCrl5QduuDasZ69eoVeDweAIDL5aJfv36dchdVNcXFxXj8+HG7M99le1XKy8vpXpX2VBG1BUEQSE9PR3V1tUYCnygonyzq/qjtPWolRm3vUf1F6nQX7gxU9runpydMzCzw1aVniHteBpGUAAgS5oYszHWSYlAvNn1vlpaW+OhEGpILquW2sCQEieoGMTZPdUHwsM4fEkulUiQlJYEkSXh5eanUM05RxHB77OKrqqqQmJiIgQMHKtUc3NDQgNmzZ0MikeDSpUsaSwZtzTtLLBZjy5YtiImJwcuXL2FhYYGJEydiz549r6X1ibLonJA8efIESUlJGD9+fLtyJiiqqqqQnJwMKysr2haDx+NBKpXKGS9qo7yRJEnk5OQgOzsbHh4eHWqCpGiaq9KeMyNFSCQSuS0PbZ7NyIZaVVdXw8LCAubm5nj16hXs7e3h7OyscyJC5avLBiuRJImnvDo8Ka6BuTEHo5wsYcRh0d3nJSUlkEgkyJWY4+eUehBkYz8MQZCoF0th18sYvy7yhGknz3pkzSG9vLzU+vsvaxdP/W62FTFcXV2NhIQEODs7K9U7JRAIMH/+fFRXV+PKlSsarXK8dOkS7ty5Ax8fH7z99ttyQlJVVYXZs2dj+fLlGD58OCoqKvDxxx9DKpXi0aNHGhujptE5Ibl48SI+/vhjFBUV4a233kJISAimTp2qVJVWcXExMjIy6BkN9aChZrs8Hg8lJSUQiUT0FkrTmFN1QWWX8/l8lW8XtbdXpSUo7ydDQ0N4eHhoxeFYEQKBADk5OcjPzwcAuQowXQh+6ky+OkmStCno+dRiXHwpQq2EDY4eG8PtzPHZ5EFwsOzcqpASETabDU9PT41OopSJGKZEhKoKbAuhUIh3330XPB4P165dUyqDRF00Ledtifj4ePj5+SE3N1cnGozVgc4JCdD40E1JSUFERASioqKQk5ODiRMnYsaMGZg+fXqzSh+SJOnZ4LBhw1p1oKUsqylRaWhoULubr0QiQVpaGhoaGtR+XkNt71GFCE17VVp6iNTV1SExMVEn44SBvy3q3dzcYGVl1WwlRt2fbKGFplB1vnpldS1Ss4tQX10BjvDvRMGOlk1TkcccDkfrYV5Nty/r6+thbm6OmpoaOhqiLcRiMRYtWoTc3FzcuHFDZUUgHUUZIbl+/TreeuutFvvjugo6KSSyUP4/EREROHPmDDIzMxEQEIDQ0FAEBQXB2NgYn376KYKDgzFmzJh295dQlhglJSV0UxY121XF1o5AIEBycjL09fXh4eGh0WhX6kCUEk2xWNxsJVZVVYWkpCTY2tq2euivLQoKCvDs2bMWJwjUbFe20ILaQtFEGBnlkltWVqaWvA5qi0i2bLo9oikWi+nKNg8PD53qVgcae7tSUlJgaGgIgUBAOwdQli1N708ikWDZsmXIzMxEbGysTjg/tCUkAoEAY8aMgaurK37//XfNDk6D6LyQyELN/iIjIxEVFYXk5GSYmJjAxMQEERER8PLy6tSDsL6+HiUlJeDxeHRnNpfL7XDZLdVJrwszfdktFGol1qNHD9TU1MDZ2RlOTqqpClIl1HmSp6dnm9sXsuaLikRTlRAEQWfEaMLgsKXSW1nRbCoSYrEYCQkJMDQ0xPDhw3VulVlbW4uEhATY29tjwIABCuOTDQwMYGNjA319faxYsQJJSUm4efOm1jvUKVoTErFYjFmzZqGgoAC3bt3qsqsR4DUTElkyMjIwdepUWFhYwMjICElJSRg1ahRCQkIwY8YM2NjYdEpUqM5s2bJb6jBbma2psrIypKamarWTvjVevnxJ28MLBAKt9KoogkqDLCoq6tB5kqxo8vl81NXVyVWAdbZZjeoIb2hogI+Pj8aLEihXBEo0ZVMuqQKOhIQEGBsbw8PDQ+dEpK6uDo8ePYKdnR2cnZ2bfV02PvngwYOIjIyEpaUlJBIJbty4oXW/LFkUCYlYLMbcuXPx8uVLxMbGan0LTt28lkJSWlqKQYMG4aOPPsL27dvBYrGQn5+PqKgoREVF4e7duxgxYgRCQkIQEhKC/v37d+pBLhQK6Zl8RUUFHfikKGnv1atXePLkCdzc3HSu5I86T8rNzcXw4cNhaWkpF2hF7eOqu1dFEQRB0KFK3t7eKukLoFaaJSUldAWYIiv1tqCa+cRicasd4ZqCsjSRrXBjs9kwMTGBh4eHzvVVUCJia2urVOWdRCLBwoULcfv2bdjZ2eHZs2d488038c9//rPVcwlN0ZKQUCLy/Plz3Lx5U6upoZritRQSAEhLS8OwYcOaXSdJkq7tjoyMxJ9//onhw4fTotLZslEq8Inat5bNHTExMUF2djby8vLg4eGhc7MQKj6Vqhxr6TxJJBLRD1119aooQiqVIj09HXV1dfD29lbLyqilXhxKVNoqN6eqnwC0qw+jWiBGrVCKvmYGLRo1qgqhUIj4+HhwOBzo6+ujoqKiXfenburr6/Ho0SP069dPqfM4giCwYcMGnD9/Hrdu3cKAAQOQm5uL8+fPo3///pgxY4aGRi6PrHeWl5cXDhw4gMDAQFhaWqJfv36YPXs2EhMTceHCBTm3YktLS62W1KuT11ZIlIEkSZSWltKicvPmTbi5uSEkJAShoaEYPHhwpz5YTXs5qO/l7u4OLperU9tZsg9pZSvHWupVUYVHVktQPSxSqRSenp4a+cC1tC9PbX/16tVL7v6og+vW8tWbUlYnwr+vv0DcszJISBJ9zQywfIyDnDWKqhAKhUhISICZmRmGDBkCNpsNsVhMl4WXlpaCw+HI3Z8mt7woEbG2tlYqi4UgCGzduhWnTp3CrVu3lKro0hSteWd98cUXCs8bb968iYCAADWPTjt0aSGRhSRJVFRU4OzZs4iKisK1a9cwYMAAhISEYObMmZ06DBeLxUhJSUFDQwPMzMxQXl4OfX19+kxFG5ngTceXnJwMkiQ7/JBWRa+KIkQikVyJqjZ6WJpWgAGQyx6hCjtay1eXRUIQWPJrMp4U14Cjx4IeiwWhhIAem4Uvg1wxdYjqKo6osDEqHqGl3zXZcwc+n0/b0cj2c6iLhoYGPHr0CH379lUq7ZMkSezYsQPh4eH05I9Bt+k2QtKUqqoqnD9/HlFRUbhy5QpsbGxoUWlPlYtAIEBSUpJcIx/1UKJ6OWQfuk1nuupGIBAgMTGRfgiqogSU6lWhtsCU6VVpbXzUTFpXfLNkLf55PB6EQiGMjIzg7OysdK9R3LNSrI/KgBGHBY7e3/dUI5DA2coUJ9/3UcnvQUNDAxISEujKQGW+Z0v9HKosRmhpfH369FFqB4AkSezduxc//vgjYmNjW9y+ZtA9uq2QyFJbW4uYmBhERkYiJiYGffr0wYwZMxAaGooRI0YofLjV1NQgKSmJzt9u6XWyYVYlJSUAQJ+pqHt7gfKlam18nYXqVaEeuu0pu6UaIXv37g03Nzed2goE/t6OsbCwgKmpqVwFGFV6q+gc56e/cnH0r1yYGsqLqkBMgMUCbnw8GiYGnRN1aqbf2b+/pj5ZqsofEQgE9PiU8UUjSRLffPMNDhw4gBs3bsDLy6tDP5dB8zBC0oT6+npcuXIFkZGRuHDhAszMzDBjxgyEhIRg1KhR9Gw7NTUVpaWlcHJygqOjo9IzQdmZPOX/xeVy2z2TbwvKXViT5cdNXQPq6+vlXANkt9SoRkiqBFTXRITqc2iaCFlfX0/P5GXdmKmHLkVUchF2XnoGU0M9OUv7OqEUFsb6uLLaH3rszvU8JSQkwMrKqtNnfbLIFpPI5o+0d4uWWmn26tVLKZEjSRLff/899uzZgytXrsDPz08Vt6MUrZkwUmP7/PPP8dNPP6GyshJjxozBjz/+qFPnNtqGEZJWEAgEuH79OiIjI3Hu3DkYGBggKCgIUqkUJ06cwPXr1+Hp6dmh761oJk+FWXVGVHg8Hh4/foxBgwa1y11Y1TTNVaGidw0MDPDkyROlvZU0TXV1NRITE+lmOUUPQarCjc/no6ysDCYmJrSoEPrGmHX0EaoaxDAx0AObBYikJMQSAktG9ceqTtjCUyslLper1JlDR5E9F6OKSaiVSmsTH6FQiEePHqFnz55KbbeRJImjR4/iiy++wKVLlzB69Gh13I5CWjNhBIC9e/di9+7d+PXXX+Hk5IStW7ciLS0NGRkZWu+50hUYIVESsViM2NhYbNy4ESkpKTAzM8PMmTMxc+ZMjBs3rlNVRlQDHTWTFwgEcttD7elVoGzMhw4dqhMWEhRUg2dBQQHq6upgbGwMOzu7ZjN5bUPlYVArTWWRSCRyFW76+vrgkeb4IaEGVYLGYDYOm4WxLr2xI9gVRvrtmyiQJInkgmo8eMEHv6gAE9y4GDVcczb6LTkHULnusudGIpEIjx49osPalBGR8PBwbNq0CRcuXMDYsWM1cTsKadoXQpIkbGxssH79enzyyScAGlfTXC4X4eHhmD9/vhZHqzswQqIkQqEQy5Ytw927d3H+/Hnw+XxEREQgOjoa9fX1mD59OkJCQjBhwoROzVKoBjNKVOrq6hRuDzV9H+VAq4tpkABQWFiIp0+fwtXVFSRJNuvF0babb3l5OZKTk+Hi4qJUHoYiZM/F8otL8LiMBNuoB0Y494X/YLt2rzZFEgL/OvcEcc/LIJFIwWKxYGzAwaeTBiJkuOatQqgtTGo1Vltbi549e8LS0hJFRUUwNzfH0KFDlRKR33//HevXr8e5c+daLKnVNE2F5OXLl3B2dkZSUpLc7sO4cePg6emJQ4cOaWegOobueIXrOHV1dSBJEvfv36ebjAIDA/Htt9/i7t27iIyMxCeffILKykpMmTIFoaGhmDRpUrs7p1ksFnr06IEePXrA2dmZ3h4qKCjAkydPaCuTvn370tU1st3gvr6+Ggv4aQ+yvlmWlpYAAFtbW7lejvj4eBgYGKitV6U1+Hw+0tLSlM4Ibw02m40+ffqgT58+cHNzw8j/bWGWlOTj1q0suuxW2Qqw4/EFuPm0FGwQMDVgg8PhoFYoxb5rWfCwNYdTH826D7BYLJiZmcHMzAzOzs5oaGhAcXExsrOz6TC6ly9ftjoxIEkSp0+fxrp16xAZGakTItISxcXFACDXWEj9mfoaA7MiUSkEQSA+Pp52Ki4uLqYzVaZMmdJuZ+KmNDQ00GcqslYfpaWlEIvF8PLy0rk9W5IkkZWVhcLCQnh7e8Pc3Bx1IgkupZcgMb8Kxvp6mDC4D0YN6NUsNpnNZsuVTaurwo2yqR86dGizB4YqoWby1PZQbW2tUh5nIT/eR15ZA8yM9OgqOJIkUSuU4v0x/fF/bzqqbczKQBlEGhsbw9XVlV6NlZWV0eaLTfuNzpw5gw8++AAnT55EUFCQVscvS9MVyd27dzFmzBi8evUK/fr1o183d+5csFgsnDx5Uksj1S0YIVETBEEgOTmZzlTJzc3FxIkTERISgmnTpnV6ti0QCFBUVETPAs3MzGBtba0VfyxFyNqsU75ZlfVifHQiFc9KGld4AAt6bGCOtw0+mfh39VZLvSqyee6qqnCj8tXbyrFRB009zigPNyqeFmgsMZ/ywyOICBbMjOW3NWsEEszxtsFnbw3U6LhlkRWRps2aTUOtYmJi8OLFCzg4OODXX3/F77//jpkzZ2pt7C3BbG11DEZINABJkkhPT6dXKk+fPkVgYCBCQ0Mxffp0WFpatltUGhoakJiYCDMzM7i4uNAz+fLy8mYJgtqAIAikpaU188369uZL/PagAMb6euD8r/y1QSwFSQI/LhgG7/49m30v2Qo3VSZcyuarU9tt2qKlslsLCwuUlJTgRJ4pEosFMDPk0L8nEoJEvUiKL4MGY/pQ9a2iWkM276StJl5qW3jv3r24fv06OBwOvVqfMWOGWleC7UHRYfsnn3yC9evXA2is6uvbty9z2C4DIyQahiRJPH36lM5USUtLw5tvvonQ0FAEBwfDysqqTVGprq5GUlISuFxusx4CsVgsZyppbGxMN0Bq6iC7tez36f95gJIaIXrIZJCTJIk6kRTvjLDF2gnNbcVlkT3obU8xQlOoMxvZfHVdQSKRID8/Hy9evACLxUJBAweHHwNCKQlDjh5INAqJi5UpwhZ5trsCTFVjlPUeU2bbMTY2FvPnz8fhw4fh6+uLc+fOITo6Gv7+/jhw4IAGRt0yrZkw9u/fH3v37sWePXvkyn9TU1OZ8l8ZGCHRIiRJ4uXLl7SoJCQkYNSoUQgNDcWMGTPQr1+/Zg9+KufE0dGxzUbIpiWpBgYGtP+Xubm5WkSlLd+syd/dQ0W9GKYG8tdrhBLM87HBp5Pat02jqFelb9++LX7IZavbqDMbXYMqQXZ2doadnR0qKipw63EB/kgpR24NoK/Hwjjnnlj71mD0NVdfbLMiKBdkPT09pQ0sb9++jTlz5uDbb7/FkiVL5H73CILQqjVOayaM4eHhdEPi0aNHUVlZiTfeeAM//PADBg0apIXR6iaMkOgIJEkiLy+PzlS5d+8e/Pz8aPt7e3t7/PzzzxCJRJg5c2a7K4uami5STrCqzDqnfL1MTU0VmhvuiHmKs6k8mBr83fEtkhAQSQl8PWsIxrl03Hqf6lVpeuZA5cZQCZvFxcXw8fFRuO2XU1aPnLJ62PY0gktfzW4NUo4EAwcObFaCTJIkikvLUVlehvJSPgQCgVyglSYck6VSKRITE8Fms+Hp6amUiNy9exdvv/029u3bhxUrVuiciwFD52GERAchSRKvXr2i7e//+usvcLlclJSUYPfu3fi///u/Tn0YqT4HylSSxWJ1ujpKWd+s/IoGfPB7Cvi1IrD+d69gsTDG2RL/nuWusryOprkxJiYmYLPZEAqF8PX1bbEJskYgwcboDNx+XgbqQ+Hd3wL/njUEVj1UZ2SoCKqPRRlHAqrfiLpH2dWYlZWVUjEB7UUqlcrlsSgjIvHx8QgJCcGOHTuwatUqRkS6KIyQ6DhSqRSrVq3CsWPH4ObmhuTkZLi7u9OZKp21yKA6lqkGSFkn3969eyslKpSliK2trVKBRa+qBPgjvhD3XpbD1JCDKe59McurHww46tneEIlESE5ORm1tLUiSVJirsi4iHdczS0GQZKPIAWCzWBhma4ZjS7zV+hCkRGTw4MGwtbVt9/up1Rifz0dFRYVcwUVnjBcppFIpkpOTQRAEvL29lRKRpKQkBAUFYcuWLVi3bh0jIl0YRkh0nNWrVyMmJgZXrlyBs7MzysvL6UyV69evw9nZmba/d3Nz69Res6x9eklJCSQSCe3/pajktry8HCkpKe22FNEUVPVYfX09vL29weFw5NyYqV4VlkkvzPl/mSBJUs5kkfjfx+PUP3zh3q9zfUCKKCsrQ0pKikqaIYFG4aTOxsrKyjpsvEhBxQtLpVKlkyHT0tIwbdo0fPLJJ9i4cSMjIl0cRkh0nKSkJNjY2LRYHllZWSmXqWJnZ0eLioeHR6dFpbq6Wi6TQ9ZUksPhoKSkBOnp6R2eRaubtvLVZXtV7j3n4d/JjSsRtowrL0mSIAAcmDUEk91V711WWlqK1NRUuLm5yTW8qYqmZ2NsNlsuO6at3xGqH0oikdBC3BYZGRmYOnUqVq5cic8//1yrIiKVSvHFF1/g2LFjKC4uho2NDZYsWYItW7Yw4qZCGCHpItTU1NCZKpcuXUKfPn3o7S9fX99OiwpVcsvj8dDQ0ABTU1PU1tbC3d1dJbNoVdPefPWSagEmfnsPBAk0Pl4amyWpD0fE8hFwtVbtwTufz0dqaiqGDBkCa2v1e2ZRwkmdq1ApidQ2ZtO/I4IgkJKSApFI1KIQt8TTp08xdepULFu2DDt37tT6w3rXrl04cOAAfv31VwwZMgSPHj3C0qVLsXPnTvzzn//U6ti6EjojJI6OjsjNzZW7tnv3bmzcuFHhewQCAdavX48TJ05AKBRi8uTJ+OGHH3SmuUlb1NfX4/Lly4iMjMTFixdhbm5OZ6r4+/t3uiv8+fPnyM3NhZGREQQCAZ2uR1nEa5uO5KsDwGdnMnDpceM5EXVGwgLgZEbiy3G92t2r0holJSVIS0tTuy2LImRXnHw+Hw0NDXIpiRwOB6mpqRAKhUqLSFZWFqZOnYr58+dj//79OpF2GRQUBC6Xi//+97/0tVmzZsHY2BjHjh3T4si6FjolJO+//z6WL19OXzMzM2vVYvzDDz/ExYsXER4eDgsLC6xatQpsNht37tzRxJBfCwQCAa5du0ZnqhgaGiI4OBgzZ87EmDFj2tUVLtuD4eXlBQsLC9TX19PnDdXV1W32cagboVCIxMREGBsbt3t7r04kwbbzT3H1CZ8Wk1EDLLHtLQdI6ipVdo+Ut9ewYcN0xuq/aT8Oh8OhS3yV6bXJycnBlClTEBISgkOHDumEiACNK5KjR4/i6tWrGDRoEFJSUvDWW2/hwIEDWLhwobaH12XQKSFZs2YN1qxZo9Trq6qqYGVlhePHj2P27NkAgMzMTLi5ueHevXvw9/dX42hfT0QiEW7evImIiAicPXsWADB9+nTMnDkTY8eObXWmTZIkMjMzwefz4ePj06LAN+3joNIDuVyuWspRW/r5CQkJdBZGRx9mRVUCZP+vj8TBUt63TCAQ0FtDFRUVzXpV2qK4uBiPHz+Gh4eHxr29lIHazqqpqYGxsTGqqqrQo0cP+lylJXeEgoICTJ48md4R0BURARrvZ/Pmzdi3bx/09PQglUqxc+dObNq0SdtD61LolJAIBAKIxWL0798f77zzDtauXatwxhwbG4sJEyagoqJCzuLCwcEBa9aswdq1azU08tcTiUSC27dv05kqAoEA06dPR2hoKAIDA+Vm2lKpFI8fP0ZNTQ28vb2VEgWhUAg+nw8ej0eXo1Jd9eoIsqKiZzWZ/95SrwolKmZmZs3GUFRUhIyMDJ0VEcoTrra2Fj4+PjAwMKBt/il3BENDQ1hZWUEsFsPV1RV8Ph+TJ0/G2LFj8dNPP6k0LloVnDhxAp9++in279+PIUOGIDk5GWvWrMGBAwewePFibQ+vy6AzQnLgwAF4e3vD0tISd+/exaZNm7B06VKFHjzHjx/H0qVLIRQK5a77+fkhMDAQe/fu1cSwuwRSqRR37txBZGQkzpw5g6qqKkydOhWhoaHw8/PDe++9h9mzZ2Pp0qUdOh+g/L94PJ5agqxqa2uRmJio9ujZ1mgpIZFajVlYWKCoqAiZmZnw8PBAnz59ND6+tiBJEo8fP0Z1dTV8fX1b/HemKsD4fD7effdd8Hg8EAQBHx8fXLx4UWdcp2Wxt7fHxo0bsXLlSvraV199hWPHjiEzM1OLI+taqDXYauPGjW0+0J88eQJXV1esW7eOvubh4QEDAwOsWLECu3fvpgOcGNSDnp4exo4di7Fjx+Kbb77Bw4cPERERgY0bNyI/Px/m5uYwNDSESCTqkJDo6+vDxsYGNjY2kEgk9Cw+JycHRkZGtKh0xP+rpqYGCQkJsLOzg7Ozs9aqhDgcDqytrWFtbU3bp5eUlCA5ORkkSUIqlcLZ2VnrLsMtQZIkMjIyUF1dTa9EWkJPT4/+t7p48SLGjx8PAwMDvHjxAtbW1pg2bRo2b94MDw8PDd+BYurr65tttenp6YEgCC2NqGuiViFZv349lixZ0uprBgwY0OL1kSNHQiKRICcnB4MHD272dWtra4hEIlRWVsptbfF4PI2UUnZV2Gw2/P390b9/f1y5cgVjx46Fr68vDh06hE8++UQuU6UjD34Oh4N+/fqhX79+kEql9Cw+ISGh2Sy+re/d0Xx1daOnp0cnIObn5+PZs2fo06cP8vPzkZOTI+ccoO2tICozprKyEr6+vkpN2srLyzF79mz4+Pjg5MmT0NfXR2JiIqKjo7V+P00JDg7Gzp070b9/fwwZMgRJSUk4cOAAli1bpu2hdSl0ZmurKb///jsWLVqE0tJS9OrVq9nXqcP2P/74A7NmzQIAOg+cOWzvPAEBAXB2dsaRI0fA4XDo/fPTp0/jzJkzePbsGcaPH4+QkBAEBQWhV69enbZqoRrnSkpK5Ga/ssl6FKrKV1cnVN6Jl5cXevXqReeqUNt8VJMnZbqoTImtKqFEhIpoVqYCrbKyEsHBwbC2tkZUVJTO7xbU1NRg69atOHPmDEpKSmBjY4MFCxZg27ZtOlGq3lXQCSG5d+8eHjx4gMDAQJiZmeHevXtYu3Ytpk6dil9//RUAUFhYiAkTJuC3336Dn58fgMby35iYGISHh8Pc3ByrV68G0Og2ytA5eDxeo3WIgrztzMxMOqgrPT0dY8eORWhoKIKCgpTKVGkNqnGOMpUkSZIWFUtLS5SVlaksX11d5OXl4cWLFwrzTlrKVdFkPw6Vi1NaWqq0iFRXVyM0NBTm5uY4d+4ck8XBQKMTQpKYmIiPPvoImZmZEAqFcHJywnvvvYd169bRM56cnBw4OTnh5s2bCAgIAPB3Q+Iff/wh15DIbG1pDqq3hMpUSUxMxOjRo+lMFWtr606JCuX/RZlKSiQSSKVSODg4wNnZWee2UgAgNzcXL1++hLe3NywsLJR6T9N+HAsLC3C5XDkn3xf8OhyMfYm452XgsFl4y90Ka8YPgLV5+x7olJ1+SUkJfH19larCq62txdtvvw0DAwNcuHBBJw/WGbSHTgiJNsjJycGOHTsQGxtLe/C8++67+Ne//tXqbDAgIABxcXFy11asWIHDhw+re8g6D5WpQonKgwcP5DJV7OzsOiUqhYWFyMzMRO/evVFbW0tH7lKmkh2N3FUlVPJie0SkKS31qkiNe+HjmGIIxFJI//eJ1WOz0MdUH2dW+KGniXLbYh0Rkfr6esyePRsEQSAmJkZr8c0Muku3FZLLly/j5MmTWLBgAQYOHIj09HQsX74c7733Hr7++muF7wsICMCgQYOwfft2+pqJiYlOJu1pEypTJSoqCpGRkbhz5w68vLxoUXFycmqXqDTNVydJEjU1NfQsvqGhAb1796ZNJTV93gAA2dnZyM3NVWnyIuXku/taNm7mCkFA/u+MzQJWBzhhxZuObX4vkiSRlZWFoqIi+Pr6KrWqEAgEmDdvHmpra3HlyhWd+D0vLCzEhg0bcOnSJdTX12PgwIEICwuDr6+vtofWbem2QtIS+/fvx48//oiXL18qfE1AQAA8PT1x8OBBzQ3sNYckSfB4PERHRyMyMhJxcXEYMmQILSpt9X4ok68uayrZ0Rz3zvDixQvk5+fDx8cHZmaqt5uf8t195FU0tPi1EfY9EL7Et9W/Q2oLsrCwUGGwV1OEQiEWLlwIPp+Pq1evtlj0omkqKirg5eWFwMBAfPjhh7CyssLz58/h7OwMZ2dnbQ+v28IIiQxbtmzB5cuX8ejRI4WvCQgIwOPHj0GSJKytrREcHIytW7cye8ZKQpIkysvLER0dTWequLi4yGWqUA9EgiDw/PlzFBUVtWuWT5038Hg81NTUoFevXvQhtqqrjGT9x9QlIgAw56dHyCiqQdMPK5sFDO8NfDCk0R6ey+W2mHJJjVFZERGJRFi0aBHy8vJw48YN9O7d8QhkVbJx40bcuXMHf/75p7aH0ujHxljRA2CEhCYrKws+Pj74+uuv5Ywjm3L06FE4ODjAxsYGqamp2LBhA/z8/BAVFaXB0XYNqHLYc+fOISoqClevXoW9vT1CQkIwY8YMHD58GBUVFQgLC+vwvnxDQwO9/VVVVQULCwtaVDrr/yU7y28tA14V/P6wADsvP2/xa9/OGQJvLoe+T6lUKterkpubS6+WlBmjRCLBsmXLkJmZiZs3b+qUnYu7uzsmT56MgoICxMXFwdbWFh999FGrn1lVIZVKWyzuYASlCwpJe7rpKQoLCzFu3DgEBATg559/btfPozy/srKymKV1J6mpqcHFixdpU0mSJPHOO+/g/fffh4+PT6fNAIVCIf2wpQ6xKf+v9q4oSZKkV0vKzvI7g1hKYM3pdNx8Vga9/wVvSQkS83xssG3a31uDTQPJBAIBAMDZ2Rl2dnZtnh1JJBKsWLECKSkpiI2N1bkKSKrkeN26dZgzZw7i4+Px8ccf4/Dhw2r1zpJIJHQxx44dO6Cvrw8ul4t58+YxuxHogkLC5/NRVlbW6msGDBhA75u/evUKAQEB8Pf3R3h4eLsfVnV1dejRowcuX76MyZMnd3jcDI1IJBIsXboUDx48wPr16xEXF4eLFy+iZ8+edKbKyJEjO13229Rw0dTUlBaVtmbtVOUTj8dT6ISsDgiSxL2XFYh73igmb7lZwdNOsbtAdnY2cnJyYG1tjcrKyjZ7VaRSKVatWoW7d+/i1q1bOpl6aWBgAF9fX7lesX/+85+Ij4/HvXv3VPqz6uvrkZSUhDFjxtDX5s6dC0NDQzg6OqKoqAjjx4/HO++80+1XJdqvl1QxlDWFMhQWFiIwMBA+Pj4ICwvr0Iw3OTkZANQSk9od+e2335CcnIw///wTXC4XK1asQENDA52pMnfuXBgZGdGZKqNHj+5Q2a+BgQFsbW1ha2tLO9zyeDxkZ2fD2NhYoYsv1cjH5/OVrnxSFWwWC2OcLTHGuW2/rtzcXOTm5sLX15c+t6HOjl69eoXMzExYWFiAw+HA1NQUAwcOxNq1a/Hnn3/i5s2bOikiQOPnzN3dXe6am5sbIiMjVfpzSJJEUFAQvL29aSHZvn07BAIBTp06BQD48ssvcfnyZbzzzjvdWkSALrgiUZbCwkIEBATAwcEBv/76q9wMl1rON+2mf/HiBY4fP45p06ahd+/eSE1Nxdq1a2FnZ9est4ShYxAEgdraWoUH6yKRCLGxsfT2F4vFQlBQEGbOnIk333yz0xVaEokEZWVl4PF4KC0thYGBAe3/ZWZmJtcNromMlY5AddX7+Pgo/HukelWOHTuG3bt3w9zcHARB4NSpU3jrrbc0PGLleeedd5Cfny932L527Vo8ePBA5Y4WkyZNgru7Ow4dOgQAePDgAYBGH0Cg0ZJp3bp1iIiI0NnfBU3R5VYkynLt2jVkZWUhKysLdnZ2cl+jtFUsFuPp06eor68H0DiLvX79Og4ePIi6ujrY29tj1qxZ2LJli8bH31Vhs9mtVmcZGBhgypQpmDJlCg4fPoy4uDhERETggw8+gFAoRFBQEEJCQjB+/PgOVWhxOBxwuVxwuVzaNr2kpASJiYn074W7u7vO2oPk5+fjxYsXbVa5GRkZwd7eHhs2bEBxcTFOnz4NX19fhISEwNHREUuXLsVnn32mwZErx9q1azF69Gjs2rULc+fOxcOHD3H06FEcPXpUZT+D2qYyMjJCRUUFfd3X1xey824Wi4WysjIYGxujoaEBv/zyC5YuXdotz0x0J8pMwyxZsgQkSbb4H4WjoyNIkqQtWezt7REXF4eysjIIBAI8f/4c+/bta/UD+5///AeOjo4wMjLCyJEj8fDhw1bHdfr0abi6usLIyAjDhg1DTEyMSu63K8LhcDBhwgT8+OOPKCgoQHR0NHr27Ik1a9bAyckJ77//Ps6fP4+Ghpb7L9qCMo4cMmQIrKysaFffzMxM3L59GxkZGSgrK9MZS/KCggJkZWXRMchtQZIktm/fjvPnz+P+/fu4fv06+Hw+duzY0eGufHUzYsQInDlzBn/88QeGDh2KHTt24ODBgyqLzf3zzz+RnZ0NoPHzL5VK6a/p6enR26gEQUBPTw92dnaQSCSYO3cuysvLu6WIAN14a0sTnDx5EosWLcLhw4cxcuRIHDx4EKdPn8bTp09bzOq+e/cuxo4di927dyMoKAjHjx/H3r17kZiYiKFDh2rhDl5PCILAgwcPaFNJKsUvJCQEkydPbleZLhX4VFVVBR8fHxgZGYEgCFRWVtKVUSRJypXbaiNqtrCwEE+fPoW3t7fCpk1ZSJLEnj17cPjwYdy8eZP5/QKwYcMG7N+/H1wuFwsXLkR8fDyqqqpw7do1uXNXqgy4pqYGwcHBqK+vx5gxY/DNN98A6J7lwIyQqJGRI0dixIgR+P777wE0PuDs7e2xevVqbNy4sdnr582bh7q6Oly4cIG+5u/vD09PT8bLq4MQBIHExEREREQgKioKBQUFmDRpEkJCQjB16tRWM1UIgqAjhn18fFrcKqN6YWRNJWWt4TVhKkkdnlN29W1BkiQOHDiAgwcP4saNG/D09FT7GF8Hamtrce/ePaSlpeHYsWMoLCyERCLB6NGjMX36dPj6+tLbWywWC1VVVXB0dMT8+fPx448/Amj8ndGlzHpNwQiJmhCJRDAxMUFERARCQ0Pp64sXL0ZlZSXOnj3b7D39+/fHunXrsGbNGvra559/jujoaKSkpGhg1F0bgiDkMlWysrLoTJXp06fLZapIJBJkZGTQ+eXKnLdQ/l+UqAgEAlpUrKys1GIqWVRUhCdPntAeZMqM8bvvvsO+fftw5coVjBgxQuVj6grU1tbi6NGj2Lx5M4KDg3Hx4kWYmZnB0NAQhw4dQmhoKFgsFhISEuDj4wOg+4oI0I0P29VNaWkppFIpuFyu3HUul6swK7q4uLjF1xcXF6ttnN0JNpsNDw8PeHh4YPv27Xjy5AkiIiJw+PBhrF69GuPGjUNoaCgmTZqEFStWwM/PD5s2bVK6EozFYsHc3Bzm5uYYOHAg7f+Vk5ODjIwMWFpa0tbwqjCVpERk+PDhSovIkSNHsGfPHly6dIkREQUQBIEePXpgyJAh4HK5CAsLQ15eHtLS0nDt2jVMnTqVnnBQIqKo67270D3lk6Hbw2Kx4O7ujm3btiExMRGPHz/GhAkTEBYWBldXVzx48AAmJiYoKytDRxbtLBYLZmZmcHZ2xqhRo+Dv74+ePXsiLy8PcXFxSExMREFBAUQiUYfGX1xcTIuIMj5YJEkiLCwMX3zxBc6dO4dRo0Z16Oeqiz179oDFYsmtxrUFtargcDjg8/koLS2Fu7s75s2bh59//hlGRkaQSCRy7+nOIgIwQqI2qP1xHo8nd721THlra+t2vZ5BNbBYLLi4uGDt2rXo168fhg4dik2bNuHq1atwdXXF5MmT8f333yM/P79DogIApqamcHJygr+/P8aMGYPevXvj1atXuH37Nh49eoS8vDzazqQteDweMjIy4OHhobSIHDt2DJs2bcLZs2cxduzYDt2DuoiPj8eRI0fg4eGh7aHI4eTkBHNz8xar/nQh+0aXYIRETRgYGMDHxwc3btygrxEEgRs3biicDY4aNUru9UBjv4uuzR67Ktu2bQOfz8ft27exdetW/PXXX8jOzsbcuXMRExODoUOHYvz48Th48CCys7M7LCrGxsZwcHCAn58f3njjDfTt2xclJSX466+/8PDhQ+Tk5CgsWS4pKUF6ejqGDRuGPn36tPmzSJLEqVOnsH79ekRERCAwMLBDY1YXtbW1WLhwIX766SedsKmXhcvlor6+Hvn5+doeis7DHLarkZMnT2Lx4sU4cuQI/Pz8cPDgQZw6dQqZmZngcrlYtGgRbG1tsXv3bgCN5b/jxo3Dnj17MH36dJw4cQK7du1iyn81RFVVFX3O0RQqU+XMmTOIiopCXFwchg4dSmequLi4dLrkUyQS0aaS5eXl6NGjB+3/ZWpqCj6fj9TUVAwbNqzF8vGWiIqKwooVK3Dy5EkEBQV1anzqYPHixbC0tMQ333yjc1k/z549w/z583H16lWlRLs7wwiJmvn++++xf/9+FBcXw9PTE99++y1tsRAQEABHR0eEh4fTrz99+jS2bNmCnJwcuLi4YN++fZg2bZqWRs/QEiRJoqysDGfPnkVkZCRu3LiBQYMGISQkBKGhoXKZKh1FLBbLmUoaGBhAKBRi4MCBcHBwUOr7nz9/HsuWLcOxY8cwc+bMTo1HHZw4cQI7d+5EfHw8jIyMdE5IgMYYAmNj425/mN4WjJB0MXbv3o2oqChkZmbC2NgYo0ePxt69ezF48GCF7wkPD8fSpUvlrhkaGiq9Z9+dIUkSlZWVOH/+PCIjI3H16lU4ODjQojJs2LBOl4SWlJQgNTUV5ubmqKmpgaGhIb1SUdQHc+nSJSxatAhhYWGYO3dup36+OsjPz4evry+uXbtGn43oopAwKAcjJF2MKVOmYP78+RgxYgQkEgk2b96M9PR0ZGRkKLQ7Dw8Px8cff4ynT5/S11gsVrNSZIa2qa6uxsWLFxEZGYnLly+Dy+XSouLt7d1uUSkrK0NKSgrc3NzQr18/2v+LMpXkcDh082PPnj2hp6eHGzduYMGCBThy5IjOOtNGR0dj5syZcrN8qVQKFosFNpsNoVDIrABeIxgh6eLw+Xz07dsXcXFxCqt1wsPDsWbNGlRWVmp2cF2curo6XLp0CZGRkYiJiaEzVUJDQ+Hn59fmg7K8vBzJycm0iDSFIAjaVPLChQv47rvvMGzYMDx8+BDfffcd3n//fZ0UEaAxxCw3N1fu2tKlS+Hq6ooNGzYwZ4KvGUwNWxenqqoKANpsWKutrYWDgwMIgoC3tzd27dqFIUOGaGKIXRZTU1PMnj0bs2fPRkNDA65evYrIyEjMmTMHxsbGCA4ORmhoaIuZKhUVFUhOToarq6vCrBs2m03n77i4uAAAdu3aBRMTE2zcuBH379/HrFmzMGXKFJ0TFDMzs2ZiYWpqit69ezMi8hrClP92YQiCwJo1azBmzJhWP5yDBw/GL7/8grNnz+LYsWMgCAKjR49GQUGBBkfbtTE2NkZISAh+++03FBcX46effoJYLMZ7770HFxcXrF69GrGxsRCLxbh27Ro+/fRTDB48GDY2Nkp9/+TkZBw8eBDffPMNysrKEB0dDTMzM/z73/9W850xMDBbW12aDz/8EJcuXcJff/3VLHOlNcRiMdzc3LBgwQLs2LFDjSNkEIvFdKZKdHQ06uvr0dDQgHnz5uG7775TyuMrMTERwcHB2Lp1K9auXatzqw+Grg8jJF2UVatW4ezZs7h9+zacnJza/f45c+aAw+Hgjz/+UMPoGFri3r17mDRpEry9vZGdnY2amhpMmzYNISEhmDhxYospfKmpqZg2bRo+++wzbNiwgRERBq3AbG11MUiSxKpVq3DmzBnExsZ2SESkUinS0tKYHHoN8vjxY0ybNg27du3C7du3kZubi5iYGFhbW2PTpk1wdHTE4sWLERUVhbq6OgBARkYGgoOD8fHHHzMiwqBVmBVJF+Ojjz7C8ePHcfbsWbneEQsLC3pG27Sjfvv27fD398fAgQNRWVmJ/fv3Izo6GgkJCXB3d9fKfXQ3GhoaEBMTg1mzZjX7GkEQSEhIoIO6CgsL4e/vj8TERHz44YfYuXMnIyIMWoURki6GogdKWFgYlixZAqB5R/3atWsRFRWF4uJi9OrVCz4+Pvjqq6/g5eWloVEzKAtBEEhNTcXevXtRVFSE2NhYrWdgdKQJlqFrwQgJg8r44osv8OWXX8pdGzx4sML8FaDREmbr1q20JczevXsZS5jXjI40wTJ0LZg+EgaVMmTIEFy/fp3+c2t223fv3sWCBQvkMupDQ0MZk8rXjMuXL8v9OTw8HH379kVCQoLOWdYzqAfmsJ1BpXA4HFhbW9P/teaaeujQIUyZMgWffvop3NzcsGPHDnh7e9MZ9wyvJ8o2wTJ0HRghYVApz58/h42NDQYMGICFCxciLy9P4Wvv3buHiRMnyl2bPHky7t27p+5hMqgJZZtgGboWzNYWg8oYOXIkwsPDMXjwYBQVFeHLL7/Em2++ifT0dJiZmTV7PZNR3/VYuXIl0tPT8ddff2l7KAwahBESBpUxdepU+v89PDwwcuRIODg44NSpU3j//fe1ODIGTbBq1SpcuHABt2/fbpeTAsPrDyMkDGqjZ8+eGDRoELKyslr8OpNR3zUgSRKrV6/GmTNncOvWrQ41wTK83jBnJK8ZEokEDx8+hFQq1fZQ2qS2thYvXrxQ2CHPZNR3DVauXIljx47h+PHjMDMzQ3FxMYqLixXmzjN0QUiG1waCIEiSJMm+ffuSK1euJCUSCSmVSrU8qr9Zv349eevWLTI7O5u8c+cOOXHiRLJPnz5kSUkJSZIk+d5775EbN26kX3/nzh2Sw+GQX3/9NfnkyRPy888/J/X19cm0tDRt3QJDBwDQ4n9hYWHaHhqDhmC2tl4jqK71GTNmID4+ng5Gkkql2L59O9zd3TF37lyt2WUUFBRgwYIFKCsrg5WVFd544w3cv38fVlZWAIC8vDy5LuzRo0fj+PHj2LJlCzZv3gwXFxdER0cz1T6vGSTT08ygbSVjUB5q9fHVV1+Rrq6uZG1tLRkZGUm6u7uTvXv3Jjdv3qzlEWoPBweHFmfFH330UYuvDwsLa/ZaQ0NDDY+agaFrwKxIXiPI/838rKysIBKJMGrUKFRXV2PatGnYsmULbGxsQJIkpFIp2Gy21j2YNEl8fLzcuVF6ejomTZqEOXPmKHyPubl5s5x6BgaG9sMIyWuEnp4eXr16hfT0dGRnZ8Pf3x+//fYbPD096dewWKxWbUm6KtT2GcWePXvg7OyMcePGKXwPi8ViKsQYGFRA95myvuaIRCIcOXIEM2bMQFhYGOzt7bFgwQJ4enrK7VFv2rQJq1atwt27d7U4Wu0iEolw7NgxLFu2rNVVBpVTb29vj5CQEDx+/FiDo2Rg6DowQqLjEASBuLg4jB8/Hjt27MDUqVORlZUFW1tb2lWXIAgAQFlZGcaNG4cXL15gypQp2hy2VomOjkZlZSVtm98STE69Yv7zn//A0dERRkZGGDlyJB4+fKjtITHoOIyNvI6Tl5eH4OBg2NraYt++fXRF06RJk2BmZobff/+dDqwiCAJsNhurVq2CQCDAzz//DIlE0u22uiZPngwDAwOcP39e6fcwOfWNnDx5EosWLcLhw4cxcuRIHDx4EKdPn8bTp0/Rt29fbQ+PQUdhhOQ1QSAQwMjICGKxGPr6+vj8889x6NAhVFZW0q8hSRIsFgs9e/bE1atX4efnR4tLdyE3NxcDBgxAVFQUQkJC2vVeJqe+0S9txIgRtAMzQRCwt7fH6tWrsXHjRi2PjkFX6T5PmNcUgiBAkiSMjIxAkiT09fUBNKYcjh49GhkZGQAae0lYLBYSEhJAEAT8/PwAoFuJCNCYBNm3b19Mnz69Xe9jcuobz5YSEhLkHJnZbDYmTpzIODIztEr32vN4DZEVAtmD48DAQAQGBtIH7VRz4g8//IDg4GAA6HbbWgRBICwsDIsXL25238rk1Ofm5uIf//iHNoauE5SWlkIqlbboyNxayiUDQ/d5ynQxKJGgxCUvLw/9+/fHpUuXEBMTA6D79UVcv34deXl5WLZsWbOvNe2qr6iowPLly+Vy6u/evQt3d3dNDpmBoUvAnJF0Afh8Pv7xj38gMTERhYWFyMzMxKBBg7Q9LIbXDJFIBBMTE0RERCA0NJS+vnjxYlRWVuLs2bPaGxyDTtO9NtC7KFZWVjh79iwuXLiATz/9FAsXLsR///tfbQ+ry3L79m0EBwfDxsYGLBYL0dHRcl8nSRLbtm1Dv379YGxsjIkTJ+L58+dtfl9tl90aGBjAx8dHzpGZIAjcuHGDcWRmaB1t+LIwqJaWHIAbGhq0MJLuQUxMDPmvf/2LjIqKIgGQZ86ckfv6nj17SAsLCzI6OppMSUkhZ8yYQTo5ObX6b3LixAnSwMCA/OWXX8jHjx+Ty5cvJ3v27EnyeDw1303zcRgaGpLh4eFkRkYG+cEHH5A9e/Yki4uLNToOhtcLRki6EFKplJRIJNoeRreiqZAQBEFaW1uT+/fvp69VVlaShoaG5B9//KHw+/j5+ZErV66k/yyVSkkbGxty9+7dahl3a3z33Xdk//79SQMDA9LPz4+8f/++xsfA8HrBbG11IdhsNl29xaAdsrOzUVxcLFdCa2FhgZEjRyosodW1sttVq1YhNzcXQqEQDx48wMiRIzU+BobXC0ZIGBhUSHFxMQC0WEJLfa0prZXdKnoPA4MuwQgJAwMDA0OnYISEgUGFULb0PB5P7jqPx1NoWd+nTx/o6em16z0MDLoEIyQMDCrEyckJ1tbWciW01dXVePDggcISWqbsluF1h+lsZ2BoJ7W1tcjKyqL/nJ2djeTkZFhaWqJ///5Ys2YNvvrqK7i4uMDJyQlbt26FjY2NXJPfhAkTMHPmTKxatQoAsG7dOixevBi+vr7w8/PDwYMHUVdXh6VLl2r69hgY2g0jJAwM7eTRo0cIDAyk/7xu3ToAjR3g4eHh+Oyzz1BXV4cPPvgAlZWVeOONN3D58mUYGRnR73nx4gVKS0vpP8+bNw98Ph/btm1DcXExPD09cfny5WYH8AwMughjkcLAwMDA0CmYMxIGBgYGhk7BCAkDAwMDQ6dghISBgYGBoVMwQsLAwMDA0CkYIWFgYGBg6BSMkDAwMDAwdApGSBgYGBgYOgUjJAwMDAwMnYIREgYGBgaGTsEICQMDAwNDp2CEhIGBgYGhU/x/KwKeLLVWj4UAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGGCAYAAABRxQd3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA4IpJREFUeJzsvXd8HPd9Jvxsr9gFFpUgeiEAgiQIgA2krFNvbrKV5GQ7juP47LNP0r22fHE7XxzbcfxxycXlZOveXGI7OevNxYnLuUlWsZpFSiKARe+9LbZjsb3MvH/Av9HsYsvszDaS83w++tgkd3Zmd2d+z+/bnkdC0zQNESJEiBAhgiekxb4AESJEiBBxbUMkEhEiRIgQIQgikYgQIUKECEEQiUSECBEiRAiCSCQiRIgQIUIQRCIRIUKECBGCIBKJCBEiRIgQBJFIRIgQIUKEIIhEIkKECBEiBEEkEhEiRIgQIQgikYgQIUKECEEQiUSECBEiRAiCSCQiRIgQIUIQRCIRIUKECBGCIBKJCBEiRIgQBJFIRIgQIUKEIIhEIkKECBEiBEEkEhEiRIgQIQgikYgQIUKECEEQiUSECBEiRAiCSCQiRIgQIUIQRCIRIUKECBGCIBKJCBEiRIgQBJFIRIgQIUKEIIhEIkKECBEiBEEkEhEiRIgQIQgikYgQIUKECEEQiUSECBEiRAiCSCQiRIgQIUIQRCIRIUKECBGCIBKJCBEiRIgQBJFIRIgQIUKEIIhEIkKECBEiBEEkEhEiRIgQIQgikYgQIUKECEGQF/sCRFz/oCgKkUgEUqkUcrkcEomk2JckQoSIHEIkEhF5A03TiMViiEaj8Pl8kEqlkEqlkMlkUCgUkMlkkMlkIrGIEHGNQ0LTNF3sixBx/YGmaUQiEcRiMeb/SyQSUBQFmqZB0zQkEolILCJEXAcQiUREzhGLxRCJREBRFKRSKWiaRjgchlT6RkmO3HaJxEJIRK1WQy6Xi8QiQsQ1ADG1JSJnoGka0WgU0WgUNE1DKpVCIpEg2V6FkINMJmOOBYBIJIKXX34ZFy5cgFKpZOoqhFREYhEhovQgEomInICiKESjUcRiMQBgSAQAwuEwrFYrjEYjNBpN0uMTiYWQBkVRCIfDCIfDzPuKxCJCRGlBJBIRgkDTNNOVlZieAgCn04mxsTFIpVIEg0GoVCpUVFSgvLwcFRUVUKvVce9HjiXvw45YyH+hUCiOWEh9RS6XxxGYCBEiCgORSETwBrugDiCORGiaxuLiIlZXV9HZ2Yna2lpQFAWPxwOXy4XNzU3MzMxAo9GgoqKC+U8ulzPHs8F+b5lMFkcswWCQeQ0hFhKxiMQiQkT+IRbbRfACiUJisdihxToYDGJsbAzhcBh9fX3Q6/UIh8OHopVoNAq32w2XywWXywWv1wutVgu/34+uri7U1NRAoVBwuh42sVAUBUAkFhEiCgWRSERkBZJaCgQCUKlUhxZmq9WKiYkJ1NTUoKenB3K5nKlzJBJJIiKRCFwuFyYnJxlC0ev1TCqsvLxcMLGQFJhILCJE5A5iaksEZ5BU1s7ODtbW1nDhwgVmEaYoCnNzc9jc3ERvby/q6+uzfn+FQoGamhoAQF9fH2QyGVwuF9xuN5aWluD3+1FWVsakwYxGI5MKS0SqVBhFUUwqjAxIisQiQoQwiEQighNIVMGeDSELrs/nw9jYGADg4sWL0Ol0gs5F3lepVKK2tha1tbUAgFAoxKTB5ubmEAqFDhELKc4ne89kxBKLxbC5uYlgMIi2tjaRWESI4AGRSESkBVlsSVcW2cWTjOjW1hamp6fR2NiIY8eOxQ0dEvBZiJNlXFUqFerq6lBXVwcACAQCTI1lZmYG4XAYBoMhjliSXQ+5JlJDicViTOotFoshFoshFArFpcLI/2ZKz4kQcSNCJBIRKZFqNoRInYyPj8Nms+H06dOorq5O+17ZLL5cX6vRaKDRaHDkyBHQNI1AIMCkwra3txGNRmE0GlFeXg6TyYSysrKUxEI+H/l3ErFEo1FG3iVZjUUkFhEiRCIRkQSZZkMCgQD8fj9UKhUuXbp0aBYkV9eQDSQSCbRaLbRaLY4ePQqapuH3+5lU2ObmJiiKgtFoZCIWvV7PKWIh15OKWNg6YemISoSI6xUikYiIA1vmBDg8G7K2tob5+XnI5XKcPXs2L7vxXLynRCKBTqeDTqdDQ0MDaJqGz+djiGVtbQ00TaO8vJwhLXbdJ9n7icQiQkRyiEQiggF7NoS9aAIHMicTExPY399HV1cXVldX85rSyXVXukQigV6vh16vR2NjI2iahtfrhcvlwvb2NgKBAF566aW4qXudTsebWIDkci4isYi4HiESiYg43xDSlZVM5sRoNOLixYvw+Xw5X+jZKETNQSKRoKysDGVlZaAoCl6vF42NjXC5XHA4HFhaWoJMJmPSYOXl5dBqtVkTSyQSiZuhEYlFxPUIkUhucCTKnLBJhKZpLC0tYWVlBceOHUNTUxMkEgn8fn9eiYScu5CQSCQwGo0wGo0AECfnsru7i4WFBcjl8jg5F7VanRWxkIgvEolgb28PsVgMtbW1h7rCRIi41iASyQ2MxNmQVDIn58+fh8FgYP6NdG3lC6mk5wsJqVTKTNO3trYiFosxxLKzs4O5uTkolcpDxJIKbAFKANjb20MgEIDJZEoasYheLCKuJYhEcgOCpLJWVlYYXatUMieDg4OHpsfznY4pxcWTneYCDsy73G433G43tra2MDs7C7VaHVdjUalUad+T1FCA+IiFEIvoHiniWoFIJDcY2KmsSCSCYDCYtcxJviMScp2lDJlMhsrKSlRWVgKIF6Dc2NjA9PQ0tFptXI1FqVTGvQebFBIjllTEInqxiChFiERyAyHRApdIhQDZyZzkO/V0LS6OcrkcVVVVqKqqAnAgQEmIZWVlBT6fDzqdjiEW0l6dColeLMAbqUgydS8Si4hSgUgkNwASZ0PYE+o0TWN7extTU1NoaGhAV1dXxtRVIWoYpR6RZIJCoUB1dTUz8R8OhxliIQKUJGVFIpZ0ApTAYVtikVhElApEIrnOQdIjbCl1dlfW3t4eXC4X+vr6GOXdTOBDJNkccz0ufkqlEjU1Ncx3PDc3B7/fj2g0ioWFBQSDQUaAkhT50wlQAvHEkso9UiQWEYWASCTXKdg59mRdWR6PB8vLy6AoCjfddFNWMidsIsrXwnStRySZIJPJoNPpcOzYMQAHXXJk6n52dvaQAKXBYMha2ZgQC4lYSFcYMfoSlY1F5AoikVyHyDQbsr6+jvn5eVRWViIcDmetlZVvIrkRFrdEolSr1Thy5AgjQMkmFiJAmUgsmXTCgHhiCYfDeOGFF3Dx4kWGSET3SBG5gEgk1xnSWeCGw2FMTk7C4/FgcHAQoVAIa2trWZ+DTST5wvUekQCpCVMikTDKxvX19YwAJamxbG5uIhaLMSmwioqKtMrGicORhEQS/e5F90gRfCESyXUCLjIn4+PjMBgMuHjxIpRKJSwWC68FO99EUgoDiflGNtEcW4CSKBsTAUq324319XVGgJKtbJz4/uQ7Zcvli+6RInIBkUiuA/CROQH4z4MUgkhuBPD9nOkEKEm7sUQiiSMWnU7H/F6J502VCqMoCqFQCMFgUCQWEWkhEsk1jlgsBovFAr1eD5VKdUjmZHx8HMFg8JDMCYA4p8NsIKa2hCOXn48tQNnU1MSIUBIByuXlZUilUpSVlQEA/H4/JwFK9rWSiJftHklqLKJ7pAiRSK5RsGdDxsfHMTAwEFc0JzIn1dXVGBgYSDqjwDeFxJ6EzwdulMUoX59TKpXCYDDAYDCgubkZFEVhf38fu7u7cDqdeP311xkBShK1aDSarJWNSSqV7cUiukfemBCJ5BpEMgtc9pAaF5kTQHhqKxuQATyFQsHp9TdCRFKoRVYqlcJoNEIul2NnZwc33XQTI0BpsVgwPz8fJ0BZXl4OjUaT8v1Eky8RiRCJ5BpCKgtcQgjZyJwAwlJbXEmIEBspCBsMBphMJlRUVMBoNCZdXG6EXWwxiJKiKGaBTxSgJIOpRIBSpVLFKRunE6DMRCyRSAQOhwONjY0isVynEInkGkFiQZ2dNpBKpbDb7VhfX+csc0Leg++CxuXYQCAAs9kMiqJw/vx5AGBaWMlshNFoZIilrKysIPWXUkGhCTNVFCSTyWAymWAymQAcCFASYkkUoCSpsEQBSjYSicXv92N1dRVHjhwR3SOvU4hEcg0g3WxINBpFKBTC+vp6VjInwMHDzLfOkYlISI2mrq4OXV1doCgKFEWhvr4+bjbC6XQyHuoAUFFRgUgkglAoVND0T6FRDKLk+n3K5fI4ZWMiQOl2u7G2toapqak4Acry8vK0KUuapg9J5ovukdcXRCIpYWSaDfF4PBgbGwNN0+jq6sqKRID8RCQURWFhYQHr6+tMjYak5BKPJ7MRjY2NTKeR0+mE0+nE4uIi1tfXmcXKZDJl9Pe41lAqEUkmpBOgXF5ehs/ng16vjyMWdnMHuXcJkqXC2O6R5DVsYhHdI0sbIpGUKLjKnLS2tsJms3EuYrMhxFckGZEEg0GYzWZEo1EMDQ1Br9dzfj92p5HD4cCRI0egVqvj8vYajSYub8/nM5cKSjkiyYREAcpQKMQQCxGgZBMLiaRTgYsXC5tYRPfI0oNIJCWIdBa4iTInJpMJTqeTFyHwLbYDh4nEZrNhfHwctbW16OnpSSkwmM21Jebt2QN3k5OTjFou2QULPWehca1EJJmgUqlQW1uL2tpaAG8IULrdbszNzTEDjUtLS0yTRbrfiguxiO6RpQWRSEoIJJVFurISScTlcmFsbCxO5gQQ1sZL8tXZPoTkWIqisLi4iLW1NRw/fhxHjx7N+jpSvTcbcrk8Lr0SCoUYYpmbm0MoFILRaGTSYOm0p0oBxYpICvGdsAUoAWBzcxPr6+sIBoOYmZlBOBxmfqvy8vKU3XsEXIlFlMwvHkQiKREkmw3hInNCXit0Qp0PkYRCIbz++uuIRCJZp7KEQqVSoa6uDnV1daBpGoFAgCGWzc1NUBTFdBiZTCbodLqSW1iul4gkE+RyOdRqNXp7e5P+VrFYjCGWTAKUgOgeWYoQiaTIILur9fV1qFQqmEymrGROAP7dV+xiZ7agKAoTExOoqanB4OBgSnc/4LDkRiZk2wQgkUig1Wqh1WoZUcNE7SmpVBpXuE83cFcIXMs1kmxB5leA5L+V3+9nfiu2ACVb2Tjd1D2Q2j3SbDajqakJBoNBJJY8QiSSIoItc2K1WmEwGJiWS4CbzAlQWPFFmqaxuLiIcDiMlpYWdHd3Z33efCOZ9lTiJDd74C6Tf3o+r7OQKBaRpEupsbv3GhoamE0AKd6TtnBCKuXl5UmVjdnvB7xBLB6PR3SPLABEIikS2LMhJBQnZEBRFObn57GxscGp7sA3tUUebq4kFAqFMDY2hlAoBI1GE0d6uYSQtuRkkEqlzA63tbUVsViMWajW19fh9Xohl8sxPz8Pk8mU1j89VyjGos6ODAp9Xq61GfYmgCgb7+/vw+Vywel0MgKUbGXjdAKUFEXFkUUq98hEAUpR2Tg7iERSYKSaDSFEkq3MCcA/tZVNROJwODA+Pg6TyYSBgQFcuXIl6/Nle135gkwmixu4W1pagtvtBk3Tcf7pmaRcrjWUQmorW0gkkqQClC6XCzabDYuLi5DL5XHEwhagTDXDAhy2JWabfInukdlBJJICIt1siFQqhcfjwdraWlYyJ4Dw1Fa6Y2maxvLyMpaXl9Hd3Y2GhgbmQbteZORlMhnUajW6uroAvNG+6nQ6M0q58EUxFvViEkmuiJgIUBqNRrS0tICiKOzt7cHtdmN3d5cRoCTEQlFUxlZjLsQiukemh0gkBUK62ZBoNAqn0wm/34/Tp09nPaEuJCJJl0YKh8MYGxtDIBA4VOjPlryyLbYXE4n+6aQY7HQ646RcuKRWUuFGKrbns+2Y3URB0pZEJ2x7exsAMDw8zKQsKyoq4uwWEpGKWNjukSKxHIZIJHlGptkQInMSi8XipoWzgVQqZaKcbJGKSJxOJ8bGxlBRUYH+/v5DNYNs6xjZLpylItqYrBi8v78Pp9MZl1oh0UqmhSrxvQuJazG1lS3YApSRSAQvvfQSOjs74fF4sLm5iZmZmUMKCVwEKMl7i+6RySESSR6RjcwJ6a/nA6FSJ+xjaZrGysoKlpaW0NXVhcbGxqQPRK4L4onvXapg5+xbWloQi8Xg8XjgdDqzknIRI5L8g9zXVVVVzAYtGo3GdYQRAUp2jSWd9E5iKzvb5CvRPfJGIhaRSPIEEoWkkznZ29tjZE5WVlZ4k4GQegX72HA4jImJCXi9Xpw7dw5GozHlcfkkEqB0IpJMSPT2IAuV0+nMKOVyI0Uk+e6CSwZ2RySBXC5HVVUVqqqqALyhbMyW3iE6YaTTjwuxJHqxBINBvPbaaxgaGmI6xq5n90iRSHIM9mwIgEMkQmROysrKcOnSJcEyJ+QcQsUXyXUZjUZcvHgxoyDijRqRZELiQpVKyiUYDMLv9+e0EJ0JN0JqK/G8mb7bZMrGRCdsaWkJfr8/biNAnCZTgU0QsViMeW0y90i5XM78JsUekBUKkUhyCDIbQhZ19k3F7n7q7OxEc3PzIZmTXKWnsj12a2sLW1tbSa8r3XFiRJIZqaRclpeXsbm5ic3Nzbi0SrphO6EoZorpWjmvUqmME6BMthFIJJZkXWGkW4ycP5V75M9+9jN85zvfweuvvy7w0xYXIpHkAKT4trKyAr1ej/Ly8pQyJ6lSRkKIhG9qKxwOIxKJwGKx4OzZsygvL+d8bL4jkuuFSNhgy4NYLBbU19dDr9cXTMrlRqyRCD0veyMAHLh+klQYEaA0GAxxxEKaX5IRTGIqjHi5XOsQiUQg2AV1i8WCuro6Jl8OvCGvnknmRCiRZHus2+2G2WyGRCLB8ePHsyIRQExt5QJSqTSllAuZiWBLuZhMprQdRplwo6W2Ui3mQqDRaKDRaJjWcBJhut3uuJkj0rmXicx8Ph+noeNSh0gkApBogSuTyQTJnBQitUXTNNbW1rCwsICOjg5sbm7yetj4CCtmg+sxImEj2edLJ+VCvNOJxS0fKZdiLejXckSSDukEKHd3dxEOh/HSSy/FKRvr9fq4a/L7/WJEcqOCq8wJTdN5lzkhx3JZeCORCNMtdubMGVRUVGB7e5u3BL0YkQhDps+ZKOUSiUSYNNji4iICgQCTrzeZTDAYDGk3BdfDZHspn5c9c6RQKEBRFHp6epjfbG1tjVE2VqlUcLlc2N/f5x2RfPnLX8aPf/xjpuX84sWL+MpXvsIoNADALbfcghdeeCHuuP/4H/8jHn/8cebP6+vr+MhHPoLf/va30Ov1eN/73ocvf/nLWW1SRCLJEplkTki3x9GjR7OSOcl3amtvbw9msxl6vT6nplj5wo0QkWS7qCsUirihVSLl4nK5MDU1xaRV2OZeiTMPN1Jqq1gEBrzRsaXX66HX6xkBSmJv8PLLL+NjH/sYotEoGhsb8e1vfxu33XYbjh8/zvm7euGFF/DQQw/h7NmziEaj+MxnPoO77rqLiVwJPvjBD+ILX/gC82etVht3nW9+85tRV1eHV155BTs7O/iTP/kTKBQK/PVf/zXnzysSSRZINxsSjUaxt7eHQCBQUJmTTMeyBx/b29vR2tp6qFusEBHJtSSRcq0glZQLUTUGDuTXydR9seY5ipnaKpb9crJzs5WN3/3ud+MP/uAP8K53vQuRSAS/+MUv8KlPfQpNTU2Ynp7m9Aw8+eSTcX/+/ve/j5qaGgwPD+Pmm29m/l6r1TLNAon4zW9+g+npaTzzzDOora3F6dOn8cUvfhGf/OQn8Zd/+Zeca3LXvqRpAUCikFRaWR6PB5cvX0Y0GkV9fT1vmRO+u/BUi3okEsHY2BiWl5dx5swZtLW1HbpB+UYWQoiPC8SIJDuQtEpDQwNOnjyJN73pTTh9+jSMRiNsNhtef/11WCwWOBwO7OzsMLpRhUCxIgNSuywGuBT6lUolysrKcMcdd+Cpp56Cy+XCj3/8Y973xd7eHgDAZDLF/f0Pf/hDVFVV4cSJE/j0pz8Nv9/P/Nvly5dx8uRJpt0ZAO6++254PB5MTU1xPrcYkWRAJgvcjY0NzM3NMXIZxRgqTHasx+OB2WyGVquNG3zM5XmzWeztdjsCgQAqKyuhUqnSvvZGiEjyTZTJ5NfHx8cRi8UYKRe1Wh2nEZZpCJUvbtTUFpdz+3w+lJWVATgglp6eHl7noygKH/3oR3Hp0iWcOHGC+ft3v/vdaG5uRn19PcbHx/HJT34Sc3Nz+PGPfwwAsFgscSQCgPmzxWLhfH6RSFKAzIYQscVESYNwOIypqSm43W4MDAygsrKSKYDyQa6IhE1ubW1tSaMQNoREJFyOI91rm5ub0Gg0mJ2dhU6nYxawZJ1H1+scSSIKubhKpVIolUpoNBq0trYmlXLR6/Vxv0uu0kI3SrGdDa6tx7lq/33ooYcwOTmJl19+Oe7vP/ShDzH//+TJkzhy5Ahuv/12LC0tob29XfB5CUQiSYLEgnoiiaSSOSn0LAgBWXij0SimpqbgdDoZcuNybL6K7cFgEGNjY4hGozh37hzTyUIk2efn5xnJEHbnEXBjpLaKcU5yHydKuYTDYTidzrgJboPBwBCLwWDgvSjfiDWSWCzGKcIjEixC8PDDD+MXv/gFXnzxRTQ0NKR97fnz5wEAi4uLaG9vR11dHV577bW41+zu7gJAyrpKMohEkoDE2ZDErpfl5WUsLS3h2LFjOZU5ITt8PrlzMkn7yiuvMG2AmdJHiefNFpmIxOl0wmw2o6qqCr29vQw5J3YeBQIBOJ1OOJ1ObGxsADjoTlKr1fD7/XFud9cbiiHamGpBVyqVhya4CbFsbm6CoijeUi7X00BiNufmYifg9XrjuqiyAU3TeOSRR/CTn/wEzz//PFpbWzMeYzabAQBHjhwBAAwNDeFLX/oSrFYr80w+/fTTMBgMOH78OOdrEYnk96BpGuFwGDabDSaT6RCJsGVOzp8/n1TmRCaT8fYFYfunZ3Pz0zQNq9WKaDSKlpYWtLe3Z90hxZdIkpEmTdNYXV3F4uJinAw9EbFMhEajwdGjR5mBrv39fSwsLMDv9+PVV1+FSqVidsUmkylvefxCo9gRSSYk/i4+n48hlkQpl0R722TnLVZEUqz7hctzTL5XvhHJQw89hCeeeAI/+9nPUFZWxtQ0jEYjNBoNlpaW8MQTT+C+++5DZWUlxsfH8bGPfQw333wzTp06BQC46667cPz4cbz3ve/FV7/6VVgsFnz2s5/FQw89xHkzCohEAuCNVJbX68XIyAjuvPPOuIeiUDInQHZEEo1GMT09DZvNBgDo6OjI+ry5TG2xBx4zydCnek+DwQCj0YiysjK0t7czefzV1VVMTU0d8lIv1o4zF7hWZOQlEgkzD0GkXIi5VzIpl4qKirhFSKyRpIaQGsl3v/tdAAdDh2x873vfw5/+6Z9CqVTimWeewTe+8Q34fD40NjbigQcewGc/+1nmtTKZDL/4xS/wkY98BENDQ9DpdHjf+94XN3fCBTc8kbAtcImsM/vfCiVzQm54rrnV/f19mM1mqFQqDA4O4sqVK7zTYrlIbe3v72N0dBRarTZu4JEvaJo+NNlNlFidTiemp6cRjUbj5iTyqZyba5R6RJIObN/0TFIuZH6lWF1bxUxtcSExIRIpme6hxsbGQ1PtydDc3Ixf/epXvK6B4IYlkmQWuCTSiMViCAaDMJvNoGkaQ0NDnH5sIakt8qBxIaKtrS1MT08zqaxwOMx8pmwfWCGpLXLc9vY2pqam0NLSgo6ODsGLRqrjEyXZ/X4/U18h6RZ2Goyr5W2xUOjFNV8Lejopl6WlJQDAxMQEKisrCxpJlvocSTgcRjgcFlxsLwXckESSajaE3HQ7OzuYn59HfX09urq6ON/0QjuvMh0fi8UwPT0Nq9WK/v5+puOG7XWQLfheM0mJTU9PY2dnB6dPn2bMgVK9Phtk+ixsXaPGxkZGOdfpdGJ7extzc3PQaDRxcxLFmOpOhWLIlRTqnOyGilgshhdeeAH19fXweDxMJJlOyiVXKPXUls/nAwBRtPFaQ6bZELKgzs/PH5r25AKh097p0kxerxdmsxkKhQKXLl2K223zLdQD/COSaDQKu90OjUaDoaEh3p0nqa4pW7CVc9va2hgLVafTicXFRQSDQaadlSxexVpkioVikBd5Hurq6tDQ0JBWyoUQi1arzcl1XitEIsrIX0NItMBNJBFScwCA06dPM7v9bMCWkeeDVEREUkdNTU3o7Ow89HCwiSRb8Cm22+12rK+vQ6lU4vz583lJUwitISRaqBLfCKfTybSzkoUrHA4XvGZxPUckiecE3rhH2ZEkIZb9/X24XC7Y7XYsLS1BLpfHebDwTVGWmtZWInw+H7Ra7XWxobkhiIQ9G8JOYQGHZU7W19d5twySeQ6+SCSSWCyGmZkZ7O7upk0dsSVbskU2EQnbLri6upopiHM9Tz6uiSuIIVF9fT2jwup0OmGz2eB2uyGRSDAzM5MTA6lSRTEjklTnTSblsre3B5fLxaQo1Wp1nAcL19+m1CMSr9cLnU53zTSIpMN1TSSpfEMISLsqW+Zke3tb0CxIriISn88Hs9kMmUyGixcvprVcJdEVn3Nz7doKh8OYmJiAz+fD+fPnmR3ktQi2CmtzczOWl5fhdruhUCiwvr6O6enpvMmFEBQrOij0wkoK/Fw/K3s+pa2tjZFyIfMrxJqWEIvRaExZ+ypWsZ2iKE6brOvFHRG4jokknW8IkF7mRCiR8F0kyPE7OzuYnJxEY2Mjjh07xulhEFo0TwfiZVJWVoahoSEoFAq43e6sowau30mhtbakUilUKhUzhxMOh5k02OzsLCKRCIxGI0MsuSgOX8vtv9meU8hinkzKhfw2bCkXtsQOO9VbLNVhABnPTVJbYkRSomDPhmQrcyKkzkF2IHxzsxKJBGtra9jb20NfX19WcvT5El/c3NzEzMzMIS8TIbL3pQ6lUona2lrU1tbGFYfJYCTZNRNiSRctpsONUCPJ9WLO/m2A+NrX1tZWnJRLsSISQiRcIpLroWMLuM6IJNlsyLUgcwIcDCb5/X7EYjFeXVBCIpJkhEBajW02W1IByHxGDaWk/ptYHGZPde/s7DA5fNINVl5ezqnGVozPV4zBwHyfM7H25fP5GGKhKAojIyNxLeCF0G5LptOXDKRGcj3guiESksq6evUqOjo6YDAYDsmckKGoQsicZAOLxYLJyUnI5XK0trbyaqXNZWrL7/djdHSUqc8k65rJN5GUKhKnutly7EtLS4yPOlvGJdWu+EaISApZl2FLuRw9ehTPP/88enp64PV6GSkXpVIZRyzZ6ElxBdeNpJCp9lLDdUEkbAtcn8+HSCQSNylOZE56enpw9OjRtA+T0IhEIpFwPp6iKMzOzmJ7exsnT55k1G/5IFfFdqvVivHx8Yye8/mOGkolIsmExBw+8VFPTLWQxYt06dwoNZJi6mwBB/Mp1dXVjJTL3t4eozSdKOXCNZrMhEJ7kZQCrmkiSZwNkUqlcTUOv9+PsbExUBTFWeYk1y28qUCujaZpXLx4EVqtlll4+J5XiIovTdNYWFjA2toaTpw4wchMpzvuRoxIMiHRR93r9cLlcsHhcDAzEiaTiYmgC4liEUmxdLaA+DqFTCZjUpAA4oZW2dEkIRa+Ui7ZuCOKEUmRQWZD2H3qEokEMpkM0WgUOzs7mJqaylrmJF9DhWzs7u5iYmIC9fX16O7uZm66YhhjkQjq6tWrCAaDnAlXjEgyg91m3NTUxOyIXS4XaJrGyMgI4xZJ6iv5HKC73lNbbLBN6VIhcWg1FAoxUvkzMzNMtx4hFq5qCFwjEq/XKxJJscCWOUnWlSWVSrGxsQGv18tL5kRIaivT8RRFYW5uDltbWzhx4sQhBzKhWl18jg0EAtjb20NtbS36+/s561GJEUn2YO+I19fXMTg4iGAwGNfKStqM86FBdaOltrgUvNlQqVRx0WSilAtN03FS+amGCbkSid/vT6tPdy3hmiKSTLMh+/v72Nvbg1KpzDjElwr5Sm0FAgGYzWYmzZYsN5oLh0WuoGka6+vrWFlZgUqlQl9fX9GnzxOv73oGTdNQKBQwGAyoqakBTdNxraxEg4rdZixUz+xGS20JIbB0Ui7sNGWiuReQXY1EjEgKjEwWuETmRKPRoK6ujndvP0mN8UUyMrBarZiYmEBdXR26u7tT3mSFSm2xvd3b29uxu7tbMPl5ru99I4D9OSUSCbRaLbRaLeNK6PF44HK54syjSLRSUVGRdWH4Rkpt5ToSSiflwm4DJ/MrXL5nIe6IpYaSJ5JsZU52dnYELXBCU1vsiIaiKCwsLGB9fR29vb2or6/PeGy+U1tERZhEbXt7e4xFZ7bnEyMSfiCfLd1iI5FImDbjlpaWQ1Ihk5OTTJsxkQpJt3DSNH1Dpbby7dfOlnIBEPf72O12hMNhvPbaa3EdYYlpY7/ff910bZW07CRJZaUaMHS5XPjd734HiqJw6dIlVFZW5iWiyAakWB8MBvHaa6/BZrNhaGgoI4kIPTeX1JbFYsGVK1dQXV2NM2fOQKVS8a6t8D2O63tfz0TCB6TNuLOzE+fPn8elS5fQ0NCAUCiEqakpvPjiizCbzVhfX4fX6035/RVLa6vQKDSBsX8fYr7W3NyMWCyG+fl5vPTSSxgeHsby8jLW1tYQDAYFFdu//OUv4+zZsygrK0NNTQ3uv/9+zM3Nxb0mGAzioYceQmVlJfR6PR544AHs7u7GvWZ9fR1vfvObodVqUVNTgz//8z/ntX6WbETCng3JRuZEJpMJaqvMRUSyt7eHmZkZ1NbWoqenpyDGWOmOJbM0m5ubhxoQcmW1m0sUeuEplrS6kPMmFobZE90rKyuQyWRMfcVkMjFpMDG1lX/EYrGUUi4ulwvf/OY38ZOf/AQSiQRPPvkk2tvbcfr06ayu94UXXsBDDz2Es2fPIhqN4jOf+QzuuusuZjYGAD72sY/hl7/8JX70ox/BaDTi4Ycfxjvf+U787ne/Y67zzW9+M+rq6vDKK69gZ2cHf/InfwKFQoG//uu/zuozlxyRsGdDkkUhoVAI4+PjCAQCSWVOZDIZgsEg7/MLIRKKopgbpre3N6PHeyLykdoKBoMYGxtDJBJJWuTPt2owAYkuuU4SX88RSa4/G3uim7hFkvz91tYWZmZmmEK90+lEVVVVwdwib5SIhA1CJGywpVwef/xxfPCDH8T999+P2dlZ3HLLLVAoFPjsZz+Lj33sY5zO8eSTT8b9+fvf/z5qamowPDyMm2++GXt7e/j7v/97PPHEE7jtttsAAN/73vfQ09ODK1eu4MKFC/jNb36D6elpPPPMM6itrcXp06fxxS9+EZ/85Cfxl3/5l1lZKZQUkVAUhVAoxORyE0mELXOSqlWVCxGEoxT+8co6fmzegcsXxsmjBvyHm1pwrqWC92JOFuxwOIympqasSQTIfWrL6XTCbDajqqoKZ86cSRoZ8Y0ssjkuHA7DbDbD6XRympu4EYvtuUSiFHskEoHdbsfMzAyWl5cxMzNTMLfI67VGIuTcUqkUZ86cgVQqxbe+9S309fXh6tWrgjxw9vb2AIAZthweHkYkEsEdd9zBvKa7uxtNTU24fPkyLly4gMuXLx/KUNx99934yEc+gqmpKfT393M+f0kQCXs25Omnn8alS5ficofsonUmmZNMRELTND790yk8M2sDTQMyCXBlxYWR9T18449OosuYfURit9sxPj6OqqoqqFQqQcZYuUht0TSN1dVVLC4uoqurC42NjSm/r3yntvb29jA6OgqDwYALFy4whlJsefbKykqYTKa4vnwxIskdFAoFI7p5/vx5hMNhZvCOyPIQGReTyZRTYcMbMbXFRWuLpCPLysogl8tx4cIFQef76Ec/ikuXLuHEiRMADuqhSqUS5eXlca+tra1lmmssFsuhOTvy52wbcIpOJImzIXK5PG4xzVbmJBORTGx78OysHTKJBEqFlLmGQITCt3+7hMfe0caZSGiaxuLiIlZXV9HT04OGhgZMTk4WfDodeCNFFY1GMTExgb29PZw9e/bQjZTqOD7ny7Qgbm1tYXp6Gu3t7WhubkYkEmGKemTgy+l0wul0Ynl5mZEPEaoucK2gkJEXuy6j0Whw9OhRps2YqBnbbDYsLCwwwoakzVjITrnYA4nFABeJlHA4jGg0mpP234ceegiTk5N4+eWXBb8XXxSVSJLNhrCJgI/MSSYiGVlzgwYNheyNH1oikUAulWDB6oMvyk29NxQKYWxsDKFQCBcuXGBuCKGij0JIKBQK4ZVXXoFGo8HFixc5LQD5iEjIBP/29jZjEZz4udgDX+y8vsPhgNVqRTAYxOuvv865vfVaQrEEG4HD5MWej2hpaUEsFmPaWNfW1jA1NcW4RZLfIZuUUbF804tNJFxsdgEIHkh8+OGH8Ytf/AIvvvgiGhoamL+vq6tDOByG2+2O20zu7u4yihp1dXV47bXX4t6PdHUlqm5kQlGIJN1siFwuRzgcxuTkJHZ3d7OWOcm0kGuUMiR7jmkAcqkEWqU8IxE4HA6MjY0llaTPhcMiH/j9ftjtdrS1taGjoyPvboSpjguFQjCbzYhGo1n5qrDz+gaDAaurq2hsbITT6cTU1BRisRjKy8uZNFghfCXyjWJFJOkgk8lQWVnJpMJIGszpdMbpTxFi0ev1ad+zmKmtUq2RAAfDiGQIlQ9omsYjjzyCn/zkJ3j++efR2toa9++Dg4NQKBR49tln8cADDwAA5ubmsL6+jqGhIQDA0NAQvvSlL8FqtTImek8//TQMBgOOHz+e1fUUhUhIay9wWOYEAGZmZqBWq3nJnGQiktu6qvE3zywiEKGgUfxe9p2iQVE0buuphlalSHk8TdNYWlrCysoKuru70dDQcOjapVIp7/ZjPkRCpOgdDgdMJhM6OzuzOj6XqS23243R0VGYTCb09vYK6gySSCRMPz5R0WWnX9hT3iaTqWBdSLlAsSISPgu6UqmM+x1IOtLlch1yizSZTIe8a4rVtVUsd0Rybq5+7Xy/m4ceeghPPPEEfvazn6GsrIypaRiNRmg0GhiNRnzgAx/Ao48+ylgQP/LIIxgaGmLqMXfddReOHz+O9773vfjqV78Ki8WCz372s3jooYey9mkpytNHlHqTyZx4vV5UV1ejv7+f142QiUiqy1T4b/d14/O/nEUwSorTQGuVFo/e0QmZjE46BZzYdmwwGJK+fyEjEqLfRdM0GhsbeQ0Ske8426lndlFcIpFgY2MDs7Oz6OzsPGRfnC2SpV+Iii4Z8nK73XA4HFheXsbU1FRcF1KiqVmpotARidDzJUtHejyeOLdIjUYTpw9WzBpJLrxF+IBraksIkXz3u98FANxyyy1xf/+9730Pf/qnfwoA+Nu//VtIpVI88MADCIVCuPvuu/Gd73yHea1MJsMvfvELfOQjH2FGA973vvfhC1/4QtbXUxQiSSdzYjQaUVVVxfvm41KjeOupOpw6asCvJnfh8odxvN6Au3tqoFG+McwYi8WYXa7T6cTY2BgqKioyKuQKKRRnQyR2ux1jY2PM0OPa2hrC4XDW50wkhGyPi8VimJ2dxe7ublJL3mTHcHnvdLv2xPQLUdAlhkXAgdghSYMlc3gsJq4XUyupVIry8nImBx+NRpmhO+LvQZ5HUocpFKmUeteWUHkULveQWq3GY489hsceeyzla5qbm/GrX/2K93UQFD0f4HK5MDY2Br1ej0uXLmFmZkawjDsxakr34DRXavGRf9d66O/Zdrlkgn55eTljGy37+HwSCfuaSKcYICxFBWT/4JHjXn/9dcacK1MaMpuJ7mwWW7Vajfr6esa3O9kumd2FVKzceSKutYgkE+RyeZy/B3sYdmJiIs4t0mQyQavV5u2ailUjIaMMXCKSfH7+QqNoRELTNFZWVrC4uIjOzk60tLQc6triA/IDsiOKbEAW02AwiPHxcfh8Ppw7d+7QBH264/NFJJFIBOPj4/B6vYfSa3y7r9iprWxABqC0Wi1OnDiR04dWaFqM7alOXPAcDgfm5+cRCoXiFrNiyHhfLxFJJqjVaigUChw5cgR1dXVMnctut2NpaQkKhSKuviKkzTgRxaqRsC0u0uF6kpAHikQk0WgUV69ehd/vPyRzIlR0USiRkIn6q1evoqKiAhcvXswq15qv9t+9vT2YzWbo9fqk1yTEIRHg1vIMvOFjQgTi0sniC0GuFlu2Cx7x/CBpsNXVVchkMiiVSkilUoTD4ZwuZplwvUUkqc5LUtmJda5E/3S9Xs8Qi1C3yGJO1APgXCO5XlAUIiGDZ8nqDXK5HKFQiPd7k5uWz2JOJsIpisLRo0dx7NixrB++fEQkm5ubmJmZQVtbG9ra2pJekxDNLIDbwh2LxTA1NQWHw4HBwUG8/vrrWZ+PC/K14LE9PxoaGpjZlZWVFXi9Xrz88stxMxPl5eV5WYxEg6nD/unhcJgRncyFW2QxiYRsRtPhepKQB4rYtdXR0ZF08RKa2uL7HuFwGBMTE9jf34dSqURNTQ2vBy8XellkoYnFYpienobNZstYyBYyWAhkJpJAIIDR0VFIpVIMDQ0x7YH5StMUIv1DWlc9Hg9UKhU6OzuZaGV6ehrRaDQu9ZKrnPaNktoCuBMYWy2XHTkSm1sAcb9FpnpcsWokN6I7IlACxfZECE1tkffIhkjcbjfMZjMMBgMuXbqEy5cv8yYzoakt4A3xSrPZDKlUiosXL2bsPMqnKZbD4YDZbEZdXR16enriSIvrosinI6zQSJyZ8Pl8h3L6pBOMj0MhG8WQcy9maisbJIsciYyLxWLB/Pw840aY6rcoVo2EK4EJ8SIpRZQckcjlmSfLM4HrYk7TNNbW1rCwsICOjo64gn8x9LLIjW+1WhlpmO7ubk4PRD5Msdjij+wOMeCNWaBsdtfZLGTFFm1kS7M3NTUxsyvE72NqaopxKKysrMxKQVeMSLKDVCqNa6AgboTkt5icnITBYGCIxWg0lrzqsN/vTzmLdi2iaESSahEqVGqLtCR6PB6cOXOGscwUeg1CIwMAmJyc5GTNm3gs3wUq2bHRaJSZ7Ukl/pgvc6tSbIlMN7uyubkJILvUy40SkeRjQSduhFVVVQAOhoXJbzE1NcV4GdlsNigUCkGDf9mCayTk8/lw5MiRAlxRYVByEUkuiCTTdHliB1Rip47Q6XQ+x4bDYYyNjQEA+vv7mYckm/PmKrXl9/sxMjIChUIRVw9Jdly+iKTYEUkmJM6u7O/vw+FwMKkX9uxKol/3jRSRFEJrK5lb5NWrV7G/v4+rV69CLpfHkXy28h/ZIJsaiVhszyPkcrngGkmq9BhpXZ2fn0d7eztaW1uTPlxCUltcByLZIDUao9HIyHxni1yltmw2G8bHxxnF5XSLQD4X/FInEjbYCrok9UI6kBYWFhAMBpkOJBLRiBFJfkBSkgDQ09MDtVrNtBmT7kdirlZRUXGI5IVCLLYXGHyNqbgg2XuwZVgSU1m5vIZstKvYxEY0qp599tm8+YOkOzYWi2FpaQnLy8uc02o3UmorGyROeLN9V9bW1pjve2dnJ+87ZIJiqfAWg8DIdLlUKo1TlW5vb0ckEmFIngyoGo1GJmIR6haZTY1EjEjyiFx0bSWmlzweD8xmM7RaLS5dupRx6EzI7p7cRJl2YtFoFFNTU3A6nXHExvfcQlNbCwsLCIVCaQUpkx0nRiSZkdiBRNJfZIcsxO+DK4q9oBcS5DlIdl6FQoGamhpGNp09oMrWaSPEkq1dgRiRlAjkcrngG5Cktoii8NzcXNphvkRk0/XlCUYhk0qgVx18leSa003W+3w+jI6OQqFQ4OLFi3E70kITidfrRTAYZOoh2Ux2ixFJ9pBKpdDr9ZDJZDh79mzcIB7x+2D7ruRqdqUYA4nk3igWkXBZ0FO5RVqtVsaugF1fydTynY3NrkgkOUC61BYgrA+ceIKMjY3B5XJhcHCQmaDlenwmIhnf3MM/vLKGGYsXEglwodWED97UjHrjwbxHqkXdYrFgcnISjY2N6OzsPPQZhUidZLuo7+7uYmJiAnK5HO3t7VnLg1xPEUmhz0fufzKIZzBVwb+zD4t1DxavHxU+G1S/n11h+67wnV0p1jQ9UPiNQbqIJB3YtS62WySR02G3fFdUVCSNHrPp2sqFzW6poOQiEjaR8H1oYrEYdnd3YTQaD+34uV5DOnOqBasXn/nZNFz+CMpUclAUjadnrFi0evHYu/qSEhFFUUw6I53ro9CIhGtthnjNnzx5EsvLy1mfD+Avy8Llfa9nJJKWJxjFvwxvY87qBSABRdMwqPS4s7sZ3RWSuIUs0Xclm9mVGyUiITIlQj9vYst3KBRiokeifEAEQCsqKqDX6xGLxTitN2LXVp5BBgL51Elomsbm5ia2t7eh1+tx5swZXjeTTCZDMBhM+e8/Ht2Gyx/BEYOKeX+dUoY1px/PztpgTOj6YstpEwOZVBAqvphpwSAKwj6fj/GaX1lZyblvu1BcTzWSZGD/RldWXJi2eNFWqYVSfrDoWjxBPDfvxLE3NaOjw4SOjo64eQkiy86OVtJ1+91oEUk+yEulUiV1iySDkaS4bzAYEAwGU6pRiKmtHCLdzcWnayoajWJ6ehp2ux1Hjx5FJBLhfQNnSm1Nbe9DJYs355LLpKBoYNHmw1nFG2RATLEqKysxODiYsdUwn+KL+/v7GB0dhU6nw9DQEBPxCTmnWCPJHuzvjKZpTGx7YFTLGRIBgNoyFRZtfqw4/KjSH6QcE+clSD5/d3eXkQ1h+64kzq5cKymmXJw33zpbqdwiZ2ZmsL+/j8uXLzOzRKR4T36PQCAAiqKuq9RWcSzEMiDbiIT8cMFgEBcvXoTBYMiJOVYqVOqViFDxCyhN05AAKNcoIJVKEY1GsbKyguHhYbS3t+PkyZOc+tWFpLaA1LWZnZ0dXLlyBUeOHMHAwEBc2lCI4GM2xwWDwazk6q9nMBEkAIoCpMkWeQlApfgeSD6/paUFAwMDeNOb3oTOzk5IJBIsLi7ipZdewsjICFZXV+HxeIpWbC+WTEmhz0vcIlUqFVpbW3HTTTehvb2dSSO/9NJLGB4exve+9z08+eSTAMA7tfXiiy/irW99K+rr6yGRSPDTn/407t//9E//lEntkf/uueeeuNc4nU685z3vgcFgQHl5OT7wgQ/A6/Xyuh6gBFNbQHZ6W6SFsqWlBR0dHTkzx0p3/D29NRjdcGMvEIFBLQdNAw5fGDqVHLd2VcEyt4HFxUUEg8GU8iKpkGsioSgKCwsL2NjYQF9fH9P2yIYQd0UuCz5FUZibm8Pa2hpkMlmcDW6ydMyNFJFIJRL0HNHjuTkHqvRKyKQHn93pj0CvlKHZxG04NVE2hN3Wura2BpqmoVQqCzq7Uky/9mLb7LJ9cICD38PlcuHxxx/HL3/5SwDAe97zHtx111248847mU0AF/h8PvT19eHP/uzP8M53vjPpa+655x5873vfY/6c+Hu/5z3vwc7ODp5++mlEIhG8//3vx4c+9CE88cQTfD72tZvaIhLrVqv1kKSIUCLJlNq6s7sGS1Yffjq2A4snBIkEMKgVeOiWVtRpaKwEAoxqb7adULmokRAQ2ZVgMIgLFy6kzMnmMyJJvIZoNBqXjtFoNAypsM2MrueIJDHNdKGlAst2PxZtPqgVMkRjFGQyCW49Vok6Az+/eXZbK0VRmJ2dhdfrxdbWVtx0dy5MpFLhRpmmZyNVNKTRaKDRaPB3f/d3GBsbw913342hoSH89Kc/xcc//nH83//7f3HXXXdxOse9996Le++9N+1rSD0nGWZmZvDkk0/i9ddfx5kzZwAA3/72t3Hffffh61//elYafwQlGZFkIgKv1wuz2QyFQoFLly4dKmoJkTjhcrxUKsF/uqUNbzlVh9GNPShkUpxvqUDIY8eVK1egUCjQ2trKy21PCJGwIwuPx4ORkREYjUYMDQ2lTavxLZpnOo7UZPR6PS5cuMB4rZCUDCEVp9OJ2dlZRCIRVFRUoKysLM6X5XoE+3NV6ZX4k3MNGN/yYMXhh1YpQ++RMnTX5aYYK5VKoVKpIJPJ0NXVxUx3OxwO5ntn2w/nSuSwmBFJMbxIAG4DiUQy55Of/CQ+9alPIRAI5Px6n3/+edTU1KCiogK33XYb/uqv/orpPrt8+TLKy8sZEgGAO+64A1KpFK+++ire8Y53ZH2+kiSSdHpb29vbmJqaQlNTU9I5DCA3dr1cIpomkxZNJi2z49vZ2cHp06cZl0U+yIXD4tbWFqanpzkPYeYjtbW7u4vx8XEm5QjgUEu1XC5npozZ/h82mw3AwQ1P2i8rKiqKtjjkGsm+s3KtAjd3VuLmztTmZULPSe4D9nR3YvfR8vJy3OxKRUUFb/vhYrkyFsuLhJw7033q8/mg1WqZP/PR1kuHe+65B+985zvR2tqKpaUlfOYzn8G9996Ly5cvQyaTwWKxHEpxE9dai8XC65wlSSTJFvJYLIaZmRns7u7i9OnTTO4x1fFCIpJsFvNAIACz2QyapjE0NAStVov19fWiEAkALC0twW63Z/yOEs+Zq4iEpmksLy9jeXkZJ0+eZMLrTO/P9v+oqanBK6+8wjgWEk0k9sR3IaXB84FSEW2USCRQabTYpSOYC0sh1VWhSU9DJg9gbW0tbgiPSLhwXaRvxBoJVyLJ5/374IMPMv//5MmTOHXqFNrb2/H888/j9ttvz8s5r4kaic/ng9lshkwmw8WLFzMyeL6L7QR2ux1jY2Oora1FT08PcwPlw7c9E0KhEONBTgiNK3KV2opGo4zHC5lR4QNyb1RVVcUJHzocjrhdMyEVk8mUUwXXfKNYMvLJFtdwlMLf/W4dl1dciFI0aBpQK6S4vasKf3yuA5FwmIlWJicnQVHUIfvhbM+ZbxSLSIi0UyYiKbQ7YltbG6qqqrC4uIjbb78ddXV1sFqtca8haeZUdZVMKOrTl87ciqSmdnZ2GEmRY8eOcbpBCBHwzbFnKrazd92JzoFcjs907myJxO12Y3R0FBKJBMePH8+KRIDcpLb8fj+jH5atZlcqsH8/InzY2NiIWCyGvb09OBwOLC8vMxPfJA2m1+tLPloplYjk8ooLv1t2oUavgO73enHuQATPzNpx6qgBpxsMcbMrXq/3kBYV236YTejFSm0VMxICMmt8FXqqfXNzEw6HgzHSGhoagtvtxvDwMAYHBwEAzz33HCiKwvnz53mdoyS3cXK5HH6/H1NTU7BYLCnbVlOBrcDLJ6+ezlOETIZ7vd6USrlCrXqzqe9sbGxgdnYWnZ2dWF1d5U2cQiIS4ul+5MgRztbAmd43HWQyGbMj7uzsZFpdHQ4H02JMvD+E6FPlC8WISFIt6sPre5BIwJAIcDALZfdGMLntwemGN+5viUSCsrIylJWVobm5GbFYjJEMWVpaQiAQYCRcKisri1ar4KrAm4/zApkHMIUSidfrxeLiIvPnlZUVmM1m5pn4/Oc/jwceeAB1dXVYWlrCJz7xCXR0dODuu+8GcODTcs899+CDH/wgHn/8cUQiETz88MN48MEHeXVsASVKJLFYDFarlZnAznaHzdbr4kskwGEi8ng8TBfSxYsXUy5QhUhtURSF6elp7O7uYmBgAJWVldjY2OBNCHyv1+FwYG5uDt3d3WhsbMz4+myiRK6fJbHVlUQrJMfPXtwMBkNJRCulEpFEYnTSqWSJ5ODf0kEmk6WcXSH3olQqxfb2NkwmU0rJkFyjmH7tADciEZLaunr1Km699Vbmz48++igA4H3vex+++93vYnx8HD/4wQ/gdrtRX1+Pu+66C1/84hfjZkl++MMf4uGHH8btt98OqVSKBx54AN/61rd4X1PJpbYsFgvW1tagVCpx/vx5XjcEW8qdD9jHEyIhg49cOqHyndoKBoMYHR0FTdNxNaNCKgdTFAWv14twOJzRKIzP9fAF28gIeMPP2+FwMN7q7GilEIN5iSglq92TR8swurmHcIyCUnZw3wciMcikEnTVZrfYJRL68vIybDYbtre3MTc3B61Wm/fZFaB47b9kvch0/wolkltuuSXtPfTUU09lfA+TycR7+DAZSiYiIS2029vbaGxshMfj4b2rEDrdzo5I2N1iXL3UhbQfZyIDl8uF0dFRVFdX4/jx43EPjBDNrGy+q1AohNHRUUQiETQ3N+eURNjIxYLL1qeiKIrxVmebSpG8fiF3sqUSkdzUbsLra25MW7xQySSgaSBKAWeajRhsMvI+n1QqhVqthk6nw6lTp+KcCefm5hAOh2E0GvPShUdRVFHSmdmYWuXrmSkWSoJI/H4/zGYzAODixYvY39+Hy+US9J5CiEQikUAqlcLn82Fubg4SiSTp4GMq5CO1xbbl7erqQmNj46EHT0itg+v17u3tYXR0FBUVFdBoNHnZ+eVrkZVKpTAajTAajWhra0P49x1J6+vr8Pl8eOmll5gdc2VlZd5SMaUUkRjUcnzstja8sOCAedMDuVSCwSYj3tRhgkoujFTZxJw4uxIIBJguvJWVlbi6l8lkEtSsUeyIJBP8fj+nNPC1hKITCTFXqq+vZwq1fr9fsN1uLrzfR0dH466LK3JNJLFYDFNTU3A4HGnTSEJ0urgsbmQYtKOjAy0tLZiYmMir+m++F1ylUom6ujqEQiF4PB40NzfD6XQyVrgkFVNZWYny8vKcRiulJKBoUMvx1pO1eOvJ5B45fJGqwC+RSOK68Ehdi5D69PQ079kVoHgDiVwJzOv1XldeJECRiWRhYQErKys4ceJEXP9yNqKNqcCXSIhaJ0VRaGtrY6ayC3Fu4DAZBAIBjI6OQiqVYmhoKO0uOV9SJzRNY35+HhsbG3GDjvmSkS8GEt3x2DIixMSIiE1WVlYKmkYulslUqfqCsOta7e3tTKTodDoxNTWFWCwWN4yayUe9mMV2Luf1+/3XDZEEAoEDl9ViXkRlZSXq6uoOfam5iCb4vAcRGAwEAlCr1bzzmLmKSEhbbV1dHXp6ejLepEKK7amOI5bFgUDgkClXvj3bi0lSiakYn88Hh8PBzE+o1eq4+YlsUimllNrK9zn5LOgkUiQGUuS7t9lszOwKOw2WOIxaTCLhWiO5Xkytnn/+ebz5zW8uPpEkW+xJsVrIzZ8tkbjdbpjNZsae98qVK0XVy1pZWcHi4mLSgcdcnzdVZOH1ejE6OgqtVosLFy4cKmDm0yERKB0FYLZ8S3NzM6LRKFM4np+fRzgcZkQPKysrodVqOembFRLFGA7MxTkTv3u2jzp7GJVtP1zqNZLriUjuvfdeUBRV/PbfZGB30fC9IbgSCU3T2NjYwNzcHDo7O9Hc3Cy460tI+y8pRK6trWXtZSIktZVIQDabDWNjY4w4ZqpcN9fzEXVirq8tZcjlcsZrgi16SCbtlUolQyqJ096AGJEIAdtHvbOzE8FgMG52hZzX5XLBYDAUbHYF4EYkJMK6ntwRgRIotieD0IFC8h6ZFvNoNIqpqSk4nU4MDg7CZDIx/yaEDPhOtvv9fszNzYGiKAwNDWU945CLORKaprGysoKlpSWcOHGCkVXIdFw+UCoRSTokWq6SHbPD4WCmvdltrmQneqPUSPKtgaZWq1FfX4/6+nrGfthsNsPtdmN7e5uxu+WTgswW2XRtXS81EoKSJBKyi4lGo7zbADMRic/nY7ShLl68eGjRFipzku2xNpsN4+PjqKyshMvl4jUoJzS1FYvFMDk5CZfLhXPnzsFoTD9HIGQiPtP7Xqtg75jDUQqvr9hxZc2GwIYVFZJVtJVLoddqEIvFEIlECjbvUCwiKeQ5ScOETCZDd3c3dDpdXAqSKEgTYsm1JhvXDMr1lNoiKMnUlkQiEdy5lY5ILBYLIwSZztOkEKkttgBkb28vdDodnE4nr/MKEV+MRqN49dVXIZPJOEdDYkSSGuEohX8Z2cbohuf397kO27QWMUqJ05J9BIM+vPzyy3HyLWVlZXlbeK+X1BYXkGJ7YgqSLeGyurp6yPZZqNBoLBbLuDEgqS2RSAqEfEjBUxSF+fl5bG5uHmo5TkQhUlts2XUiALm/vy8oEuKz+Pr9fng8Hhw9ehTHjx/n/PDnk0iu5agEACZ39jG64cFRoxoa5cEu1R+OYc4ZRIvBgJryA7dCUlvZ2NiARCKJk2/JhYIyQSm3/+Yaydpw2bMrDQ0NcbMrGxsbmJ6ehl6vj5NwyfbaY7FYxpqM3+8HTdNijaRQyAWRhMNh5s+hUAhmsxmRSORQG2uq4/OZ2iIdUWq1Ok52XWjHV7bf2cbGBlZWVqBSqXDixImsjs02AspmIct3tMNGJEZjxR3F6sQuYjSN5goNOmp00Kv4Px4LVh8AMCQCAFqlDBQNrLnDqK2SxOX3KYqCx+NhSIUM5RFSMRgMghblGyG1BbzhCcKlVT7V7Ap7bojtu5Lps3A1tQIg1khyiXQ/TDq7XS5gE5HT6cTY2BhMJhMGBwc5FQBzOVSYCKvVivHxccZjhf09kGP5PPjZLOxse+C2tjbs7u5mdS5yvmxQiqmqKEVjZCeAGUsYzfIwpBIJXnG7sOEO4rZjlXHy6tlAIgGQxdcjlUpRXl6O8vJyZmEjEiJEQYAt35JtDe1GiUjIPZZtUT3Z7AqJFpeWlhj7YdKJlyyFxZVI5HJ5UcRC84nrOiKJRqPMPEYqfapUEJraSrYzIlPzq6urcTa0ieclr832weea2gqHwxgdHUU0GsXFixfh9Xp5eTXnq9hO3rsQxLPtDmLVFUG1VoYjxoO0RBWlxKojgBVHACfq+aUgjtXo8OqqG75QlCEjbygKqRRoLldAIkl/bymVyjhDKSI2SZR0dTods7BxkRC5UWok5H4Ucl727EpTU1Pc7MrKykqc/TCpbZH1gos7ok6nK5oVcL5Q0kQiVG9rb28PXq8363kMcn52aiwbkJuETSTEEMvn86W1oU12bDbnzbSwezwejIyMoLy8nInOfD5fweTns0EhiMTpD4OiaShlbyyyMqkEGqUUm27+RNJ7pAznmsvx+poblCcEmqYhl0lxvrkcHaYIvPtBzu/Flm9pbW1FJBJhdstEQoRdNE4m31KsRb3Q5MXVEyQbsDvxgHhrgq2tLdA0jYqKCoRCoYybz0K7IxYKJZ3a4hsR7O/vY2lpifHr4FO0FJraAt7YHe3v72N0dJQx6krX2ZF4bDbIFCFYLBZMTEwc8lTJl0YXG2Ran6IoVFVVZexQKtQCJJNIkOwTRGO0IPVbhUyKd56uw/E6PRbtfkgAdFTr0F2nx/bmhqDPp1AoUFtbi9raWsb+1uFwYHd3F/Pz89BoNAypEN+PGy0iyednZVsTkGiREMvs7CzW19fjivbsVLpIJAUG34WcKNTW1NTA4/Hw7nwRWvQGDnZHZPFuaWlBR0dHxhtcCJGkSm2RlNra2lpS22K+3V5cj4tEIjCbzQgGg9Bqtdjc3IREImF2eanscAsRkRwxqqFVSOEKRtDw+8V2PxgFQKPZlJ0zZyIUMilOHjXg5NF4O+ZcLups+9uWlhZGvoUsapFIBOXl5YhGowiFQgUllGLUSMgsR6E+Izta3NzcxPHjxxGLxeB0OrGwsIBgMAij0QiTyQSXywWPx8Pbe+XFF1/E1772NQwPD2NnZwc/+clPcP/99zP/TtM0Pve5z+Hv/u7v4Ha7cenSJXz3u99FZ2cn8xqn04lHHnkEP//5zxlnxG9+85uC25GLTiSpdrXZEgnbGKuvrw8ymQyTk5O8r0uon4lEIsHS0lLWnvPkWL5EknhcNBplPOYvXLiQ9IbJZ0Ti8/kwPDwMnU6HM2fOMA8QscNdXV3F9PQ0DAYDKisrUVVVlVOTo0yo0itxqlaNq+shrDgCkABQyQ8IoNnEX+E3HfJJkMnkW0jRfnJyEiqViiHwxN1yrlEsfS8u5OXwhXF1fQ/7wSgaytUYaDRCKdB/JRaLQalUQq/XMwrZZHZle3sbb3vb20BRFHQ6Hf7xH/8Rd911V9oRhET4fD709fXhz/7sz/DOd77z0L9/9atfxbe+9S384Ac/QGtrK/7bf/tvuPvuuzE9Pc20Jb/nPe/Bzs4Onn76aUQiEbz//e/Hhz70IcFuiUUnklTIpkYSCARgNpuZVJZWq8Xe3p6gYr2QYjuprTgcjpSLd6Zz5yK1Rab3VSpV2pRavix67XY7zGYz050WjUaZHn/SetnR0YFgMAiHw8H4rJOOPafTCY1Gk3eZjTaTEipKCdPRSsRoGlU6JWrKlHldBAuxwLLlW5aXlzEwMMC0uZLdMluePdcEXqyIJNM5Rzf28PhLa7D7IgBoSCUS9NTp8dFbW2HS8ctgEGWIxGI72354dXUVn/70p/Hcc8/hsccew/vf/36cPHkSV65c4aQJdu+99+Lee+9Nef5vfOMb+OxnP4u3v/3tAIB//Md/RG1tLX7605/iwQcfxMzMDJ588km8/vrrOHPmDADg29/+Nu677z58/etfR319Pa/PDpQwkcjlcoRCoYyvI1LrtbW16OnpYX7IXHR98VlcPR4PRkdHIZFIcOLECV4hYy5UfO12O8bGxnD06FEcO3Ys7cOVj4hkfX0dc3NzcerFqRYptVod5/XtdrsxPj6Ora0tLC8vM4sdV2VdPjCopOiuK8y0cbFEG+VyOQwGA2MXnSg2yaXFNdtzFppIMnmC+EJR/K9XNuD0R9BUoYZUKkEoQmF8ex//Zrbgg5eaeJ2XPK/purZUKhUaGxtx+vRp/Nu//RscDgdeffXVnAhLrqyswGKx4I477mD+zmg04vz587h8+TIefPBBXL58GeXl5QyJAMAdd9wBqVSKV199Fe94xzt4n7/oRMI3tcWWFkkmtU4iCr45YT5EROozbW1tzKQyHwghklgshtXVVSwsLOD48eM4evRoxuOESKsk/nYkxWixWNK6OaaCVCplPCZ6e3uhUCgOKesSUsmVCN9+KIZ1TxQ6hx9HjWrBKQ4uKAXRRvakdywWY9KNpMWVpBsrKyt56VKVYmprYnsfu/shHDWqIJUeXJtKIUW5Wo5XV914z9mj0Cqzv6e4EAkQr7NVWVmJ++67L+tzJQNp36+tjXe5rK2tZf7NYrEcSrHL5XKYTCZe7f9x7yPo6DwiXWqLtNJ6vV5GWiQRQqXos0ltURSFubk5bG9vMw6C29vbRfEz8fv9WFlZyarlWYjXO/s4UlQPhUK4cOECtNrDxWqu6Q6yACUudkRZl+0Dwo5WsgFF07iy4sIzMx64vCGMerZRb1Thju4qNFbkpz4CFD4iIedLt6izPdMBMOlGp9OJtbU1SKVSJgXGVb6lWF1b6Z73YIQCTR+0eLMhl0kQjdEIRyleRMK17fh6VP4FSphIUrX/ktSRXq/HxYsX0+b9Af5S9FxTW0R6JRqNYmhoiFnMCq0eHAwGMT8/D4qicNNNN2UVLhNCyDZ6YxMJu6h+4cKFpB4csVgMFEUhHA5DKpUy/6VC4oKb6EVBCsl2ux2Li4tM2ytXj/VZixcvLDohgQRH9VLUVKix4QrgV1NWvOfsUUESKZlQyJ06+R6zWdQT042JnupssUmDwZD08xSjRpIptdVerYVOKYM7EEWF9mDtoGkaLn8UJ+vLYNTw+83JeTP9rl6vl0kt5hKkaL+7uxtn/bC7u4vTp08zr7FarXHHkVpkNkX/ZCg6kaT64pOlljY3NzEzM3NoDiLV8QB410m4pLbcbjdGR0dRUVFxSHpFSLE+WyIh11FWVgaaprPOubKtbfkQSWJRPfE9CIlEYhQ8IQpS0NAp6bgpZNKtRhaBTHUbdiG5qakpru11ZmbmkMd6su9kcmcfoAGTRoZQUAKFTIpmkxYrDj9W7P5Dbbu5QilGJOmQqEvFHsjb3NwEgDixSZVKxWxMSq3Y3lihwa1dlfjVpBW+UAwqhRTeYBRGjQL399Xx/o6ycUdsbW3ldY50aG1tRV1dHZ599lmGODweD1599VV85CMfAQAMDQ3B7XZjeHgYg4ODAIDnnnsOFEXh/Pnzgs5fdCJJBXZqKxaLYWZmBru7u+jv7+fE6GRRErqYp1pcCal1dHSgpaXl0Gty5dueCeQ6Ojs7YTAYMD4+zut8QPYLnEQiQSgUwujoaNJ6DFlMKIrCit2HGYsX7kAUcqkEdQYlThzRQ6+UMq8h78ln8UlseyU+32RIT6vVMqRCJEX2AlFoFDKAlUElKY9AJD/SLwTFiEhydc7EgTwiNrm1tYWZmRlGRZd97kKBSxT03nMNOGpU4/kFB5y+CPqOGnDP8Wr0HuGvyMuVSAKBAO/UltfrxeLiIvPnlZUVmM1mmEwmNDU14aMf/Sj+6q/+Cp2dnUz7b319PTNr0tPTg3vuuQcf/OAH8fjjjyMSieDhhx/Ggw8+KKhjCyhhIiGpLb/fD7PZDIlEgosXLyaVf0gFIZ1bZBo4kUgoisLMzAwsFgsGBgYY2YRE5DsiYddlyHW43W7etQ7ynlzTgBRFYWNjA+FwGOfOnTtUVCfkQFEUdvaCeHXVDZoGTFoFohSNJXsAoSiNW7qqoJDEp76CwSCi0SjzX6YUWLLPw/b5jkQicLlcsNvtjKSIyWSCllZiy0+hmpXuD0UpSCVg0h75wLUWkaSDRCKB0WiE0WhEW1sb015st9sBAK+++mqc2GS+rW+53MNyqQR39VTjrp7qnJ2XK5EQrS0+uHr1Km699Vbmz48++igA4H3vex++//3v4xOf+AR8Ph8+9KEPwe1246abbsKTTz4Z953/8Ic/xMMPP4zbb7+dGUj81re+xet62ChZIiERyeXLl3HkyBF0d3dnvVMVSiRAfM41GAzCbDaDoqiMpJbPGkk4HMbY2BhCoVBcXUZItxfAfYEjRXW/3w+VSpWUREjHHACsOgMIxyg0VbxRDFfJpdjaC8KyF0LT7wf/ZDIZvF4vxsfHUVFRAaPRCJqmmciURCvZRi0KhQI1NTWoqamJE0A0uWzYt/thp6QoV0tBOTzwRqXoqdOjpTJ/xXbg2o5I0oGo6JpMJlitVvT19cHtdsNisTCRIVtsMtfWt5lqJPlCIdwRb7nllozp3i984Qv4whe+kPI1JpNJ8PBhMhSdSJLd3DRNY319HRRFobe3l1MLazLkUi/L5XLBbDajqqoKx48fz3jT5Cu1tb+/j5GRERgMBvT39x+qy/Bt4wW4EQkpquv1evT09GBmZibu39mRBVn0Xf4ItIr4W00hk0JCA4HIG7+Pw+Fg5PXb29uZtmT2f+zfk0vBPtlnZQsgdhzbwy9fX8CWOwCr1YoGHdAmq4DDJs25uRRBoXWvCkkkiec0Go0oLy9HS0sLExmSOlYkEokTm8y26y4ZSslMKxmuR3dEoASIJBFktx0IBAAc7ovOBkKJhFjQ7u7uYm5uLisp+nwQye7uLsbHx1PqdgkZLAQy63slFtUTU2nJSAQAyjUKOH3+uPeKxijQEkCtOHj4Njc3mQFGdr6WTRSkZkVIJRfRSmedEfefrILV5cGJ3uOIBHxx5lLsWYp8WuHmE4UQMkx2TtJAQZAYGRLPD5vNhoWFBajVaoZU+M4IFZNIMl0vkawRiSTPcLvdMJvNMBqNuHDhAp577jnEYjHeEhlC0kvAwYM3NzeHvb29rIfrcmmMRdM0lpaWsLKyktLHhBznDFAY23BDr1agtVLLDF2lA3ng05HQ2toa5ufn44rq7GPYUUNiG2RrlQ7rrgAsniBMWiWiFI3d/RDqy1WoK1Nhbm4OOzs7GBgYSPsdkwWCPLAkQiHkwjdakUgk0Cqk0CrlgPKNfD+7O2l9fZ2ZpUgnNMkFhe5mKkV3xETPj2g0emhGyGg0Zq1oQFFUXqLITMima0skkjyALEYbGxuYm5uL64IiEQFfNzEhniaBQIDZQQwNDWVdJMxVRML2dU/nYxKOUvjXUQt+tSbFs55lqBQydFTr8e5zDagpy/z9pZpuTzepTn47EoWQa0984I+Wq3GhtQJTO/uwecOQyYC2Ki1OHtFhenIcfr8f586dyzq1kSxaYRNLYidYttEKuzuJzFKUgtBktrgWJOTlcjmqqqpQVVUFmqYRCASYgUgi38JWNEi1uSxWjUQkkiKDLJQOhwODg4NM2yAgzJME4B+REP0uqVSK7u5uXp0mUqkUkUgk6+PIsRRFwe/3Y2RkBEqlMs7XPRmembHitwtOyKUHi3QwSmNyew//+1Ua/89t7YcmeRORLCJhT6oPDQ0lbS6gKIpTZ1VblQ4NFRp4ft/+q5JEYTaboVQqce7cOcG6TlyjFfa8SjYLDhehSS4LHVCcGkmpSZWkg0QiYRQNGhsb4xwKl5aWEAgEGGn2RPmWUk5tkWdaJJI8wOPxIBgMJt3150J4MZvjaZrG6uoqFhcX0dPTg5WVFd6tmjKZDMEgdxc8NqRSKXw+Hy5fvoz6+np0dXWlfThCkRheWXbCoJYjFDzwC9ep5Gis0GLJ5sOSzYdjtelv3kSZFK/Xi5GREej1+pST6gqFAnK5HC+++CJMJhOzo0xFvEqZFFV6Jfb29vCa2Yzq6mpe3XhckCpaYafg2J872985mdAk8fcOBAIFEZrkilJMbWWDREUDIs1OSJzIu1RWVjKbmkKDoqiMKXifzwcAIpHkA5WVlTh79mzSm06o3W42x0ejUUxNTcHpdDI6VaRzjA/4praI453T6URvb+8hMcpk8Edi8Idj0KnkCAEga6JaIUU4SsETzPwdsFNbXCfV5XI5Ll26BJ/PB7vdju3tbczOzkKv16OqqgrV1dWH5DN2d3cZYcvm5uaCLHCpohVCKOQBj0QivFJgRGjSZDIx0i3phCZvhIgkn3UgtjQ7O+W4trYGr9eLYDCISCRS0AYJ4kWSDuQ+E7W28oRUP3ShUlt+vx+jo6OQy+W4ePEiU5PJZcGcCyiKwvT0NNxuN6qqqjiRCACUqeSo1Cmxs/f7COj3TLIfjEKrlKGmLHPxkezMkxXVE68xsahOHPpaW1sRDofhcDhgs9kwMjICiUTCRCperxfr6+s4ceIEZ6OvfIBEK+zv++TJkwAguL0YOCw0SVpeSRFZoVBAp9MhEAhkNWDLF6UoVZIrsFOOAPD666+jrKwMPp+PUeBmD0TmqxDPJbXl8/mgVCp513xLGSVBJKmQi9RWJk8Tm82G8fHxpCkkoQXzbK6dSI1QFIXGxkbGHIsL5DIpbumqwg9f3YAjCFQEIwjTMbh8YVxqr+SsZLuysgK32520Q42kf9gqp8k2AEql8lCB2mazMfpXZWVl8Pv98Pl8RU35RKNRjI2NMZP5arWa+a1JtJKL9mKZTBZXRPb7/Zienobf78eVK1eyFprkg2s9tZUNaJpGZWUlqqurQVEUPB4PnE4nIyVUVlYWJzaZq++bK5EUO82ZLxSdSDIJLwpNbaVazNl+Jr29vUm1ZoROxnMlob29PYyMjKCyshK9vb1YX1/Pur5ysc0EigZ+8IwNnmAUeo0K956oxX0nMgvRRSIRhMNh7O/vJy2qJ06qJ84HpIJUKoVOp2OUebu7u7G/vw+bzYalpSWoVComBVZRUVGwXXMwGGScI8+ePcvktsn52bWVXA9DEqFJjUaDxsbGrIUm+eB6S22lAzsSkkqlKC8vR3l5eZx8i8PhwMTEBGiajhuIFPJ9cyESIfIopY6iE0k65KvYTjrF9vb2UvqZAIVR8CVmWOy2Zz6RkEQiwZs6KuFblqDrZDOqTUZOMuikqC6RSNDV1ZWURFLNh2QCsfotKyvDiRMnIJPJUF5eznTiEE2mqakpRKNRTgV7odjf38fo6CiqqqoyFvrzOQwpkUh4CU3yQTGig2J1T6U7L5Fvqauri5PK2dnZwdzcHPN9m0ymrKNDrhEJH4OwawElQSSphuFyUSNJPN7r9WJ0dBRqtRoXL15MmzPNp14WTdOYn5/HxsYGY4bF9dh0UMqlMGnlnEiEXVS32WyHHpxUk+pc4HQ6MTY2hoaGhqRT+DKZjFlEu7u74fV6ORfs+cJut2NiYgItLS1JFZvTIZfDkMnuda5Ck4RYssmz30ipLa6aV4lSOZFIBE6nE06nE9PT04jFYqioqGC+80y1LC7n9fl8YkRSDOQ6tWW1Whktp2TdSJmOF3JuNiKRCCMDMzQ0dOjmypdOFxuJRXWHwxF3XLpJ9UzY2trC7Owsuru7OVv9JivY2+32QwX7yspKXjMn5JqOHz8eZ/zDF9m0Fyd6rZDPnA6phCYJ0ZaVlTGkkolob6TUFt+BRIVCgdraWtTW1sZFh1arFQsLC9BoNAyplJeXHyINrhGJSCRFgFwuz1gsTweymNM0jcXFRayuruLEiROcF5J8pLZIKkmn02FoaChp77kQIkk1oU5AZPB3d3fjiurseQouRfVkIN/z5uYm+vv744ZLs0Gygr3dbsfKygomJydRXl7OEEumiXIiL7OxsSHomtIhXXtxMq8VPgZi7N0zO9c/NjYGAHHSLYlR9rU2kFjs8yZGh2zTtNnZWUQiEWZOiIhNciEwkUjyjFSprVzUSKLRKEZGRuDz+dJKjKQ7ng+SkQGJiJqamtDZ2Zny4RYakaQariOCmOFw+FBRnRAQn6I6cLAjm5ycxP7+Ps6dO5ezB4bd3kmG0ex2O+x2e1zBvqqq6pDQH0VRmJqagtvtxtmzZws2CJYuWolGowgGg9DpdHHDc9ksfom5fmIstbGxwXQmsYUmCZGEoxTmrT7EaBqd1Tpe3uRcUYzUFtkE5VqaPrGWRSyeyQCqUqlENBrF3t4eNBpNysHE61UeBSgRIkkFoUQSCoUQDAah1+sxNDSUdUpESETCvnaaprGysoKlpSVOEVE+UlvsSfXz588futmJrhlZALJZ2IhPi1wux7lz5/Iqmke6nRIL9kSWnBTsy8vLMTs7i1gshnPnzhWtd58drcRiMUxMTCAajTIpK6HtxYnGUqFQiFnk1tfXIZPJoNFoMGUL43/9yySs3jAoGqjSK/Ges0dx67HkxmxCUazZFSA7Us4W7M67pqYm5h6cmJjA+vo6FhYW4sQm2RGzSCRFgpCIwGKxYHJyEgAwMDDAa3eUi2I7WTzcbnfaDrFkx/JBsuiOy6S6VCrF+vo6wuEwqqurOXeXeDwemM1mVFZWoqenp6CLB7tgTxQB7HY7Y/kqk8nQ2NiIQCAApVJZ1G4ZoltG0zSjLZbr9mLgQGiyvr4e9fX1TFrw9ZkV/NtCBP6oC5UaGRQKBWyeIB5/aQ01eiV66/lbzKZCMVJb7HRsoUA6EQHg3LlzcWnHlZUVyOVyqFQqTE9Pw26358RzBQD+8i//Ep///Ofj/q6rqwuzs7MADjZ3H//4x/HP//zPCIVCuPvuu/Gd73xHkC1HOpQEkeRysp3dDdXd3Y2ZmRneC4jQyXaapnHlyhXI5XIMDQ1x3hXnMiLhOqne3d3NFLhXVlagVCpRXV2dNGVEYLVaMTk5idbW1qy7oHINUrCnKArr6+uor69HRUUFHA4HRkdHc1Kw54tgMIiRkRFotVqcPHmS+S7z2V5M3r+iogJL/h0EYj501JUhEokiHA5DTUVg35PgXy7P4eGbmzMKTWaLYrUcA4UlEvZ5ZTJZnKoB0WC7cuUK/uZv/gZra2sMyd9zzz3o7+8XdK29vb145plnmD+zf7+Pfexj+OUvf4kf/ehHMBqNePjhh/HOd74Tv/vd7/h/0DQoCSJJhWwXclIDCAaDuHDhAhQKBaanp3nvjoQQicfjAQAYDAb09vZmvQAIJZJURXWCxKK6Wq1GQ0NDnKwHmUgnKSNCLEqlEmtra8wwZ752OdnCZrNhYmIiTseLvTPnW7AXApJSzDS3kqxgn6toxeaLQiKRQCaTQyaTQ61Wg6ZpBF1+OAJUXoQmiynLUmgCI4X2xPMSDbb77rsP9913H/7oj/4ISqUSIyMj+OpXv4qhoSE8+eSTvM8rl8uTehPt7e3h7//+7/HEE0/gtttuAwB873vfQ09PD65cuYILFy7wPmfKa8n5O+YQcrmcc2rL4/FgdHQUBoOB6YYix/JtCeS7oK+vrzMhZibl3lyeFzjYvUYiEQwPDyctqgPxQ4bkGPZDkCjrkZgyksvlTBRTTM0sNjY2NrCwsJCU2IQU7IWA2DM3NzejtbU167mVZAV7sgHIJlqp1ctBA6BoGlLWNcQgxYnmGly40JxRaDLb74SLGm6uUUwJeS7nlUql+Hf/7t/h0UcfRSQSgcViEXTehYUF1NfXQ61WY2hoCF/+8pfR1NSE4eFhRCIR3HHHHcxru7u70dTUhMuXL1+/RJLqAeMaEZDp8La2NrS1tTHvR27+WCzGK5WRbUSSGAW89tprvAghUwtvpmtYXl5GeXl50qI6u4OIS6qEPePR0NAAs9nM+EHMzs5icXGRGRw0mUw575jJBJqmsbCwgO3tbQwMDDD56nRIV7APh8OMWZWQCfvd3V1MTk6iq6uLs/hmKggdhjx7VINnF6TYdAVRqVNAIpHA4QvDqJHj9q4qAJmFJtnSLVyEJouR2ip1Uyuv18sU2xUKBRobG3mf8/z58/j+97+Prq4u7Ozs4POf/zze9KY3YXJyEhaLBUql8tCzUFtbK5i8UqEkiCQVMi3kFEVhbm4O29vbh6bDgTd2a0LqHFyPDYfDGB0dRTQaZaIAvoTANyKx2+1wu92oqKhAf39/Svl3PikAopCs1Wpx8eJFJioh09dzc3MIhUJM11R1dXXeZE4IYrEYpqam4PF4cPbsWV4tx6kK9js7O3ET9lVVVTAajZy+MxIdnTp16tA9mQtkOwxpUkvw3hNavGhTYdXhBw2gtVKLPz53FJ01h7+zZEKTRNGZDOdlEpq8nhWHE5GNO2I24wfpcO+99zL//9SpUzh//jyam5vxL//yLwVRlE5EyRMJe7qajVAoBLPZjEgkgqGhoZTdEIUQXvR4PBgZGUF5eTnOnDnD3FR8z81eJLg+GKSobjAYUF1dnVMScblcGBsbw5EjR+K6vqTSNzzMjx07Br/fD5vNBovFgrm5ubzInBCEw2GYzWYAyFnLcboJey4FezL8uLm5yTk6Egouw5CRSAQtRhnuudCJTXcINCRoMmkgz+CaCRxud2UP56UTmizGos5VHiXX4Eokfr8/bwOJ5eXlOHbsGBYXF3HnnXciHA7D7XbH3YO7u7tJayq5QEkQSbquLeBwyLq3t4fR0VGUl5djcHAwbS42XzInBDs7O5icnDyUVgP4RxbZEAlFUTBPTGN2YxeDfacQdFrizkly6nzlTra3tzEzM5MxRcNecFpaWhCJRJg6xMjICKRSadwiLCR/TqIjvV7PiEHmA9lM2Gs0GszOzjLGaMWaYE6MVqxWK7a2ttDV1QWaonDU8Hvyo2KgkP0wZDKhSbvdDovFEic0KUSRgi9KOSIh31W+5ki8Xi+Wlpbw3ve+F4ODg1AoFHj22WfxwAMPAADm5uawvr6OoaGhvJy/JIgkFZLVOIivAFstN9N75CO1RXLz6+vr6OvrS1p05ksk7N1lOoRCIfzDb4bxykYQUBvw3PPbqFEE8fYeJdpxuKierdwJkRY5ffo0KiuzG1xTKBRxi7Db7WaK2xMTE3EpsGxCcbfbDbPZjPr6+rTqALlGpoI9cPC7dXV15T2lxxUkPXfy5EnU1NQcilZyMQxJpETI5oEU7D0eD/b39+HxeBgpkXwPhRarRsI1EsolkfyX//Jf8Na3vhXNzc3Y3t7G5z73OchkMrzrXe+C0WjEBz7wATz66KMwmUwwGAx45JFHMDQ0lJdCO1DiREJubDJxPTMzA4vFgoGBAc4Lm9CIhOzo2QsWMUUisiupbo5cpLZSwev14n8/fRW/2QQMZUZU6ZUIRylM7IYRiLpx+ngMMskbXuTZPGBsuZNcSIuQNkiTyRSXArPZbMwulrQWl5eXpyQHYtPb0dGBpqYmQdckFKRgX1tbi5GREdA0DYPBgMXFRUxPT+ekYC8Eq6urWFlZidMXS4xWcj0MyRY+DAaDzG9JBDP1ej1noUk+KPWurVwSyebmJt71rnfB4XCguroaN910E65cucLU5P72b/8WUqkUDzzwQNxAYr5Q0kQCHITSgUAAk5OToCgKFy9ezGoHKzQiAcD4kwMHN8PIyAg0Gk1G2RW+EQlpx0117EHO3ow5nw46nYJxQNQoZDhSJseqO4LxTTf6jpZlncoitSepVJo3uROtVovm5mZGLt3pdMJmszEChIl1CJqmsb6+zkjMlErLcSAQwMjICOO3QoZQuRbsXf4w9gJRVOuV0HGQ/ecCIpy5tbWFwcHBtF47+RyGpGkaWq0WdXV1SYUmJRIJo6abTGiSD0q5RhKLxRiNtVzgn//5n9P+u1qtxmOPPYbHHnssJ+fLhJIgkkwL3fj4OKqrq9Hb25v1jSJULwt4IzIgix1XGfpca2aRBXV+fh4dXd0I2RwoS9jsKuVSRGMRWD1BSBu5dRkR7O/vw2w2o6KiAsePHy/I7i5RvptY87LrECS/PDg4CKPRmPdr4gIyt1RbW4uuri7me+ZSsNcaTXh5V4pJawThGI0ytRx3dlfhbX11kAv4zmmaxszMDBwOR1Z1GqHtxamuhf2abIUm+UQrpVwj8Xq9AJCzrq1SQ0kQSTLQNI2NjQ2Ew2E0Njbi+PHjvG4uIeZY5KaMRqPY2trC4uJiSlveVMfnSoY+cUalvLwclfp9rDn8qNQd7OZomgakMsSiUWwszmCStjE74UxzNGQqvKWlJevhuVxBIpEw1qidnZ3wer2YmJiA3+8HTdOYnJxk6iqp2k5t+yGsuwJQyqTorNFBrcj9DtXhcGB8fBytra3MBH0qJBbs3W43vvXbZVxZ90IjjUGvVsAZluOHrwUgAfCOfm73ViIoisLExAR8Ph/Onj0rKJ2Wi2HIdIs6F6FJUkOrqKjgPANWynMkPp8PAETRxkIiFothenoaNpsNer0eJpOpKHpZ5AGZmZmBx+PBuXPnstoR58phkbS6klZnktq7vbsG/+vlVVg8QZi0CgQjMez6gf72Orz9Yh08LgdWV1cxNTWF8vJyptuG3SpNCHtxcRHHjx/PW3tgtgiFQpiamoJcLsfNN98MiUTCpMAmJiZAURQqKytRXV2NyspKyOQK/HpqF8/PO7AXjEImAY4Y1fj3g0fRXZe7h3dnZwfT09Po6enhvKEgkEql2IcaK14ZmmsroFdIEQoFEQqFYNkP4l8uz6NNsYejddVZTZOTml00GsWZM2dymo7kGq2wzbvIvcv1mU0mNElED6emplKq6SaimBFJpu/c7/dDrVYXfNq/UCiJT8W+MQKBAJMCuHjxIiYmJgRJyQuJCoLB4IEmUTCIixcvZt11IlTqhKKoOPn3gYGBuBvx5o5K7PnDeGraii13EAqZBKcbDHjv+UbUlKtRU1mBjo4OBAIB2Gw22O12LCwsMMXtyspKWCwW2Gw2TmmjLXcQi1YvQjEKtWUqdNfpoZLnfsdPvN6NRmOcThnbMdDj8cBut2NtbQ1TU1PYiurw3JYEpjIN2qs0iFHAhiuAH76+iY/f3o5yrXCRxrW1NSwtLaGvrw9VVVW83sPqCcEfjqKm7EDLSivXQavTQamLwrEfgDsYhSeLCXsyCCuXyzO2wucCXIch2f/LR2iyouLg3g0Gg0y0srKyAoVCESfdwv68xSISLrUZr9crWL+slFESRELgcDhgNptRV1fHSJLn2m6XK4hOklQqRXd3N6/WRaE1EpfLhZWVlZQ1GYkEeMvJWlxqK8fOXghalRzNJs2h12k0GjQ1NTEDZQ6HA7u7u0y3UU1NDVMITLUQXV1z41dTu9gLRCEBIJVK0FOnxx8O1HPyh+cK8r03Njaivb096YPHTo20t7cjGAzia0/NIhrdR8Tjx47vwIOjTqfG5l4Qk9se3NTB33eDKErv7OwIrtNU6JRQyWXwhWNx35s/HINRp8bgyR7olDJOBXuiKqzT6XDy5MmCL6KpohWLxYJwOMzo3fEt2AMHReOjR4/i6NGjTGqQGEolCk3ylUISCi4pNa/Xe926IwIlQiQ0TWN1dRULCwvo7u6O06ARUuMADm7ycDic1TFkVuXYsWNYXV1N6TjI5dx8rp3koZeWltDb25tU/p29EyzXKlGh40Z0crkcBoMBS0tLqKioQHNzM5xOZ9x8B2nFJSk0h+8g6qEooKv2IE0UilKY2PKgqUKD27tzIwNC0kbZ6lOp1WpEZWrUVSpQU6ZEMBhAIBCA0+GEy0thaj6CVk0Q1dXVWad9KOrAZXFvbw/nzp0T7CfRXqXFifoyvLbmRm0ZoFXK4AlEsB+K4h3dRxhyyVSwLy8vh9vtRlVVFXp7e0tipyuVSrGzs8PIwxiNRuYezUV7MbuNvLOz85DQpEQigVarhdFozKn4ZiZwrZFw9fi5FlESREJRFDMRnCgrkQu7Xa7Hs7W7yKzK5uZmTjuvuFwDkW7v6OhI6yHCZ1KdDPTV1dXh2LFjzMT5sWPHmCnl3d1dzM3NQafTobq6GpthNVz+MDpr3qg1qORSGDQKjG15cFtXlWDJcTL3wDdt1FqpxctLTtSUKaHRaKHRaKEzxOC3+9BQqWaUiw0GA1Owz/Rgk9pDJBLB2bNnczJQJ5FI8MGbmiGVSDC57YHDF4ZOKcPdx2vwQH9y58zEgj2JUmQyGSwWC4LBYEEk8TOBtGj39/cztgWppFuEthcDh4UmiXEYX6FJvuBCJH6/P2emVqWIkiASmUyGwcHBlL7thUhtkYI2kV4nP3qhRB/Z1xCJRFBWVpZU/p3tIZItiZAd/7Fjx5IqjxKJEzLfYbfbYbPZMLe0AasVKJcEoPv9wyuRSiGTSBCNUaAB8F26KIrC7Ows7HY7zp49y7s98qaOSkzt7GPJ7keVXolojILDF8GJo0bcOdgKpVyKUCjETKOvrq4ych9VVVWHlItDoRBGR0ehVCpx5syZnNYeKnVK/Pmd7VhzBuD2R1BnVKHOwK3Lyu12Y35+Hu3t7WhpaSmYJH4mrKysYG1tDQMDA0lTf/kehpTJDpwfKyoq0NDQwEtoki+4tv9erx1bQIkQCZDcIhY4uEEikQjv9+VCJPv7+xgZGYHBYDhU0BY60MiVBBOL6iMjI4c0s0i3DHlvrqBpGsvLy4ycC5cdP1vixNTgx8pvF7AfDiHgtyMai0Kl1sAWVuDO3ro4j4tsEI1GMT4+jlAohHPnzglqWe2o1uH9Q014esaGdVcAcqkEd3RX4d7eWijlB9+VSqWKy7cT867Z2VmEw2EmrafT6ZhOt3zN00gkErRUaoEsSjfEkbKrq4uJVAshiZ8OZABye3sbg4ODnDYC+RqGJEVvvkKTfME1tSXWSIqIXNRI0h2/u7vLzAQkK+4KaeHlWp8hnupNTU2MfhQ7LSZEdJFIre/t7fGWO2kwafHvuuvw4oITUVoHKU1hd98PoywI2jKHV1/dRlVVFWpqajjngYPBIMxmMxQKBc6cOZOTIunxI2XortPDE4xCIZNAp0x9e7OVi7u6uuDz+WCz2bCxsQGv1wulUgm1Wo39/f28yHlkCyKeSXSzkiEfkvjpQNM05ubmYLVacebMGV4LZS6HIVMVvbkKTVZWVsJoNGa9ceDSteX3+8WIpJjIRY0kGREQUcKVlRWcOnUqpV1sPlNb7En1RE91QiRC5N9DoRAjO3L+/HlB8wV3H6/B0XINJrc98IViuON4HfobjdArwKTA1tbWoFAoYDRVQmswoaG2Cuoki7nX68Xo6ChMJhPTnZcrSCUSlGuyIyUiPhgIHBTp29vbodFoYLPZ4pSLmZmVAstwkLZjtm5WJqSbsCfy+0I87GmaxvT0NFwuF86ePZuzGgTX9mLyLLCjFS7tv+mEJicnJ0HTdJx0C5e6mNi1VUJEkk5KXmiNJPH4aDSKiYkJeDweXLhwIW04nquhwkQkTqoneqoTEuJLImSxJukZoYufVCLBqaMGnDp6WLuJDJNFojE8Pb6OX0xYYfdYoZRQGGzQ484TR3Gk9qBjikyFNzU1HZLdLybIjr+3t5cZymRPo5Nc+8TEBCoqKg51tuUDbH8ToW3HmSTxjUYj85kyFewpisLk5CS8Xi/OnDmTN1HKVNEKOx0GIC6CFyI0SdM09vf34XA4mOYMtnRLssiUXIeY2ipx5Doi8fv9GBkZgUqlwtDQUMZdej6MsVJNqhMQteG9vT0EAgHGbZEr7HY7JiYmCr5Yv7Lswm+WfFAp9WhtrIDbG8Rlix/e4ApOlM1ArVYjGAyira2taDIsiSAdY6urq0l3/OyWU5ICS+xsI9FKLtJF7OuamZlhmhByuQhlksRXKpUMqSQW7GOxGFPXyvUUPZfrThWthEIhhMNhpsZCXpetLL7BYIDBYMgoNEmiOLI2cCGSZB2Y1wuuCSLJVdcWGXisr69HV1cXp5ssl3pZQHxR/XR/PyZ3fDBvWKGQSXCxvRJtVVrEYjHU1tZidXUVr7zyCvR6PWpqaji1rG5sbDCpsiNHkreT5gOBSAwvLzmhUUhRbzzYoRrVeujUSthpGsYaGh7bDgwGA1ZWVrC9vR23WBVjIpnk+ElUyKVQnNjZlixdRFJgfDu9yI6fyPjn2zo1U8GeNCFUVFRgdnYWsViMMU8qFtjRSjgcxtTUFAwGA4xGY87ai5MJTdrtdqyvrzPRChlXyPTe+XRHLAWUDJGkWhxzEZFEIhHGiranpyerYTchXWOJ184uqje3tuPLTy3gt3M2RKiDTqwfXNnAn5xvwIODR5gFKRwOMzWI1dVVKBQKpnDIXoApisL8/DwsFgsGBwcLYvPKhssfwV4gikpd/OJi1MgxsbaLJUUMb3nTeej1emaxstlsjD0A0c3iIjCZCxDPFa/Xi3PnzvFarBUKBbPQsNNFZLizoqKC+R25zhCQTrZwOIyzZ88WdMcPHC7YkyYEkvqTyWRoaGiAz+fLaQTGF+FwGMPDw9Bqtcx0fz7aixPVFIjQpNVqBQBcvnw5rdBkLv3aSxElQySpILRri9zoS0tLSQceM0EmkyEYDPI6N7tgTorqRD34x6PbeGbWCq1ShgqlDKABdyCC719eR1+DASfqD2oRSqWSqUHEYjG4XC5sW3bxk5cn4AzSaKgyYKizBg7rLsLhMM6fP59yUYzEKLyy7MLray4EIxR6j5Th5s5KRj1YCHRKGVQKKQKRGLTK3ztbUhTWtiyQUjGcGzjNdK0kLlYej4chSrbAJMnX5xqRSIQZXsvVYp2YLvL7/Uy6iOibsVNgyRaySCSC0dFRSKXSnM+u8AEpTCuVSuzu7sJkMqGurg5OpzMnBXuhICSi0+kYPxjgcAoMQM6HIYnQpMFgwPDwMHp7e5MKTZIoqRDF9sceewxf+9rXYLFY0NfXh29/+9s4d+5cXs9JUPJEQnb1iS6FXBAMBpmupXPnzvFqv8tF19b09PShovrTM1bQNA4MjWgAEhpGtRxWbxgvLToZImFDJpOBVpXhn+Z3MberRSQaBbXjw89nFvC25hg6j1TAZrMlta+laBo/uLKBFxYckEgkkEuBqe19XF1346O3taFaL2xq26hRoK/BgOfn7FDIpFDLaKxtWeAMSXFLbxNaa5IbLLF3ekRgkkRgZJCMkA6f1sxEBINBjI6OQq1W49SpU3nrwNJqtYf0zex2O8bHx0FRFLMAkwiM6GaRnXUxDJqSIRQKYXh4GHq9nlmsyRwO2QDwKdjn47qSIbFWkutohcyQpBKafOyxx/Cv//qviMVimJuby9tg4v/5P/8Hjz76KB5//HGcP38e3/jGN3D33Xdjbm6uIEZwEpqvkFSOQVFU0hRSOBzGc889hzvvvDOrh2tvbw8jIyMwmUzY2dnBrbfeykviYn19nVHHzRZWqxVmsxk6nQ4DAwNxi/sf/8NVbLgCqNQpQePgJ5AAsHhCuL/vCD5+R3vS9/zSk/N4edGJIwYVZBIKDpcHe1EZ+hvL8cg5I+x2O1wuFyNvUlNTg7KyMkzvePH1ZxZRoVWgTH2wf4hSNJZtfrzjdB3+aFB4IdAXiuLfzDswrzmxY3OiTKvCYEc9/miwHhXa7Hf9ZAEmysWAsBoEqU9VVVWhu7u7aHUZsgDb7XZ4vV6UlZXB7/ejoqKipEgkEAhgeHiY02Amu2DvdDrTFuyFIhgMYnh4GEajUdDAaDKvFbIcco1WnE4n5ubmMDQ0lPTffT4fnnnmGTz88MPQ6/WwWq24+eab8dGPfhRvectbeF13Mpw/fx5nz57F//gf/4P5bI2NjXjkkUfwqU99KmfnSYVrIiIBuE2PEmxvb2NqagqdnZ1obm6GxWIpmMwJgdfrxfT0NGiaxvnz5w8tev2NRizbfYhRFKRSCSQAwrGDqKsnhX/Gzl4QY5uegzoEFcXe/j6Meh30MgWWnSGENZUYHIyXNxkeHoZMJsOUTw9fMMLY8gKAXCqBXi2DedOTEyLRqeS4t00NtcOBspZ6dLc1orlSy3vyXS6XJ3VPZNcgSLSSqcbhdrsxOjpa9LbjxAiMRCmkNfry5ctFb0IA3rCUJqSb6fviWrAXOmFPSISQm5DfMRfDkJnWJZ1Oh7e97W349Kc/jX/6p39CQ0MDfv3rX+dEt42ApPg+/elPx13vHXfcgcuXL+fsPOlQ8kRCfjguiznpwtna2kJ/fz8jBSK0hTfbY0lRva6uDjs7O4dIhKZpvKOvDi8u2GH1hqFRyEDRNMLRg7rFLceSS5h4Q1FEYhSksSjC4SDKDAaolAe6Uq5YBN7QwXWy5U2IFMjs1XUE/H5sbfmg0aihVquh0ahBUTQUstwsqpubm5ibm8PNA705N8hKdE/0+/2w2Wyw2WyYn59nIrBkU9tEWuTYsWNZNVrkGy6XCxMTE2htbUVra2tcE8LU1BSi0WhcE0KhCu9erxfDw8Oor69HR0dH1ot1qoI9mbBP91ulA4mQyCBrrjcDfIYhuW5wyRxJR0cHHnnkkZxet91uZzo92aitrcXs7GxOz5UKJUMkqW4KiUTCqQWYFFCDwSAuXLgQV9jKxyxIMiQW1Y1GI7a2tg69JhaLoaFcha+98zj+v6vbeHXFBaVcitu6qvCesw1MsToRRwwqyKkwnIEIWqrLGYJyB6IoU8vRZDq8KydSIHed0eCqfQF0LAq5LAqv1wurw4W9qBw3NyoFqZMSvaXNzU0MDAwcGq7MB7RaLZqbm+PacG02G1OsJimwQCCApaUlnDhxoiC5Yq4gTo9scktcgPf39xnZlunpaRgMBmYBzpckucfjwcjICJqamjLO+sQoGr+ZseHZWRscvjCOHynD207VMVYDQPwkeWtrKxMtZzthHwgEcPXqVc4RklBwHYYMh8OchiFFiZQSQKbOLZL71ul0GBoaOhQBCBVe5HJsskl14rBIGgUS5U7aq/X47L3HODUShMNhzEyM4UKtBC9YtNj1RqFX0fCHY4jSNP7wVH3a7qtmkwZvPVmLn49bYA0BkMghUdPor5ChUxvEK6+8wjgnZjNcR2YeiBVxMXrlE9twySQ62dUbjUaEQiEEg8G8TWFnA9JKe+LEiZTSPOzhONJuStKVy8vLealBEFOxtrY2NDc3Z3z9//vyGn42ZgENGkqZFE9N2/Daqhv/7b5jSRUQgPhomZ2uTFew9/v9GB4eRnV1Nbq6uoqSlkwWrYRCIVgsFpSVlTEbXfbryP9GIhGEQqG8tf9WVVVBJpNhd3c37u93d3cLZp19TRBJOiKwWq0YHx9Hc3NzyjA83xFJqkl1dlqOTUiJcieZHgyv1wuz2YyysjL8P2/rx4l5J34xsQu7N4w6oxr39tbgvhPpd9sSiQRvOVmL7royjG95EIlRaK3Uor/RCKX8QKWYLFRkV09IJVFinYBEgRRF5cyvQyikUinKy8uxs7MDmUyGEydOwOfzwWKxYG5uDnq9nvlcZWVlBV+U1tfXsbi4iNOnT6Oykrv0L1u5mLSBJ6r8kgWYz+9Apre5pv9W7H48OWWFRilltM1omsaWO4QnXt/EyfrMqafEdGWyCfvy8nLY7XYcOXKkaCSSCKLqPTk5CbVaje7ubiZKSdZe7PV6ASBvEYlSqcTg4CCeffZZ3H///QAOyO7ZZ5/Fww8/nJdzJuKaIZLE1BaRRl9eXsbJkyfTMm8+ayTpPNUJkUSjUWYhJrlVriDaVGzr2buP1+DOnmoEwjGoFTLIpNzeTyKRoLNGh86aw1GDXC5Puqufm5tDKBRiFiriMuj3+zE6OsrYvJZKpxGR8AgGg4w0fXV1NVpaWuKGO9fW1tL6keQaudTNkslkTDqoq6uLUfll60OR1B4XsiRptp6eHs5qCDOWffgjMRw1vkFaEokEBrUM87s+7IeiMKizmytJLNjv7Oxgbm4OEokEW1tbCAQCOSnYC0U0GsXIyAjkcvmhFvJk7cWbm5sAkNc5m0cffRTve9/7cObMGZw7dw7f+MY34PP58P73vz9v52SjZIgk3c2emNoiuwG3243z58/DYEgeRhPkK7WVTP6dDfJnl8vFSzWWFK97enpQX18ff10SycEMSh7A1pcizolWq5WxINbpdMxDfeLEiZLYJQJvRIYSiSSpND17uDOZH4nQXX0q0DSN2dlZ2Gw2nDlzJqc702Qqv2RXT8iSkEoysrRYLJiens66hqSUSyEBQNEAu1cjRgNyGaCQCes2I7WtpqYmtLe3M80VQgv2QhGLxTA6OgqZTIa+vr5D32diCsztduOhhx5CS0tLXgdM//2///ew2Wz4i7/4C1gsFpw+fRpPPvlkytRprlEycyQAGNG1RFy9ehW1tbVobGxEIBBgdgP9/f2cOllGRkZQWVnJKe+biEAggBdeeAF33303c7Mmm1RPBKmHzM7OMrlLMteRafdL7EJ3dnbQ19dXkOI1V5Bdr1arRSAQYHb81dXVKC8vLxqpkPuCDKhlQ9rEu4N0gREPklwUttm6WYmzRPkGIUsShYVCIUbGo7q6Gg6HA3Nzczh16lTW9sYufxgffmIce4EI6gwqSCQSRGIULJ4Q7uutxaMp5qC4gHSNHT16NKlHELtg73A4ABRmwp6QiEQiwenTpzPeY/v7+7j//vuh1+vx85//vCTqc/nCNUEkRA7daDQybbXZDJSNjY2hrKwMbW1tvK6JPRDJLqoPDAwklVxJLKqToqLVamUeaPIwJ7Z1Eol7v9+P/v7+kvJ5Jvn93t5e1NbWIhqNwul0wmq1MgODhFQK6dtBHC5ra2tzkkdnF7YdDgdT2E7UN8uEWCyGsbExhMNhDAwMFFw3iw2appldPRlaBYC6ujo0NTXxMu96ft6Obz+/Ak/w94VmAB01Ovzlm7tQXcYvotvf38fw8DCTys0EdsHebrczGmC5nrBne8L39/dzUvt94IEHIJVK8ctf/vK6FmwErhEimZiYYCSdu7u7k/qNp8Pk5CRUKhU6OzuzvqZoNIpnnnkGt912GwAwRfVku0vSoZXOzZC9+7VarfB6vYy2lNFoxMzMDJRKJU6dOlVUdVU22BHS6dOnU5InqavYbDYEg0FmCK26ujpvhXin04mxsTG0tLSgpaUl5xERe7aD9OuTFFhlZWVKciC6WWT3Wiq/JXDgr76ysoKWlhZGFp+0TJNdPdc0zIYrgJcXnfAEI2ir0uFie0VaZ8p0IK3Hzc3NaG1t5fUe+ZiwJxuCWCyG/v7+jN9NIBDAH/7hHyIcDuPXv/71dS3WSFBSRBKJRA51SFEUhVdeeQV+vx9nz57lleaZmZmBRCJBd3d31sfSNI2nnnoKZ8+exdTUFPR6PU6dOpV0yJA9tMS1qB4MBhl1VY/HA7lcjsbGRkbapNj1B7ZKbjYREhlCs1qt8Hg8TKqIeKLn4nNZLBZMTU0lrSHlA+zZDpvNBq/Xy+x+yecCDiKakZERaDSakmpEIAX/ra0tDAwMMAscUS4mZEnkWriqBuQCRNKotbUVLS0tOXlP9oS93W7nNWFPURTMZjOi0eihZppkCAaDeNe73oW9vT089dRTgpoqriWUNJGEQiGYzWb4fD5UVlair6+P1/vOz88jEomgt7eX1/FPPvkkZDIZmpubkxbV2Xo9QHZmOsBBv/fU1BSam5uh1WqZBzqVZHyhwC5e9/X18U7NhMNhZvF1OBxQqVRxdRU+n4uk2fjk93MFsgmw2WxwuVxQq9VMu6rJZEJvb2/RJE4SwfZXHxwcTJtqIcrF5HOR+SJS2M71ZyIkwnV+hQ/YE/Z2ux17e3sZC/YURWFsbIzJQGQikXA4jD/+4z+GxWLB008/XVK1zXyjZImEhLnl5eVMl9CpU6d4ve/S0hJ8Pl/Wx9M0jbW1NczOzqKzszNpzlaIpzpx51tZWTnUNUNRFFN/sNlsjGJsTU2NINMkrvD5fBgdHYXBYEBvb2/OdtXsVBH5XOy6SqbPRaboiQxOqez4otEotra2sLi4CACHfN6Lmdpi+6sPDg5mFWGkEs7MVWGbaKC1t7ejqalJ0Htlg0wFe5lMxjhBDgwMZPyckUgE73vf+7CysoLnnnsuqxmh6wElSSQ7OzuYnJxEe3s7Wltbsba2BpfLhf7+fl7vu7q6mvXxFEVhenoaVqsVNE0nNYsSQiKkaO9wOHD69Om0LcxEMZaQit/vh8lkYlwTc11/cLvdjJNksggsW8QoGhIJDok3sgul7M9FiCUx9UB+E7fbjf7+/pIqYJIFsaWlBc3NzYzCL/lcbJ/3QjZQsP3VBwYGBHUOkd+LRCs+n0+Qd4zL5cLo6Cg6OzuzrnvmEskK9nK5nInEM7UXR6NRfOADH8DMzAyee+65kpLiKRRKjkhmZ2exvr6Ovr4+VFdXAziwj7VYLDh79iyv993Y2GCkS7iAPak+MDCA1157DSdOnIjbZbCHjrIlkXA4jPHxcUSjUZw+fTrrhztV/aGmpkbw4rq7u8sIHAp9uDddAfxs3IKR9T3IpBJcaq/AW0/WwZRCyoV0FVmtVuzt7TFT6DU1NVCr1UzTRX9/f0lM0RMk081iI1WqKNc+74mIxWKYmJhAMBjMS9cY2zuGpPZIFJYpZUnMsUpNSJOks/b396HT6eB2uzN62H/4wx/GyMgIfvvb3xZMkqTUUFJEMjY2BqvVioGBgbihrZ2dHaytreHChQu83nd7exsbGxs4f/58xteyJ9VJUf3ll19GV1cXI6bHp6hO4PP5GI+SXBRiQ6EQs/N1Op1Qq9VMpJLNIkXSeEQpgJA4X1g8QXzxV/PYcAVh0MgPCtXBGHqPlOGz93ZmHKZkT6Hb7XbQNA2lUonu7m5UVVWVTO1hZ2cH09PT6O3lpnjMFpi02+2QSCRxUjS5SlmSdlXSaZTv1BppBSe/Gds+ObG7jcixdHV14ehR4fYFuQJN00z0Njg4CKVSycjRkN8rHA7DaDTixRdfxFve8hZ885vfxMsvv4znn3++pD5LoVEyk+0A0Nraivb29kM3fS5827kcb7PZMDY2dmhSne3SKKSoTlpVGxoaeMlzJ4NKpUJDQwMaGhri8tlc9bKAg10YKcSeOXMmo1IAFzw7a8emO4jWSg2kv5dwKddQmN3dx+UVF+7oTk9UZAq9vLwcHo8HGo0GWq0Ws7OzcS24hfJ4TwZS8O/r6+Nc8E/m807cIIPBYFy3FN80FNFAk0gknIrEuYBcLkdNTQ1qamqYVCyZrifWs+S3SqXWUEzQNI2pqSns7+/jzJkzDPGx5WhIwX5mZgY/+tGP8Bd/8ReQy+X44Ac/iNXVVdTV1ZVMh16hUVJEotPpksrFCyWSTAq+ZDe+sLCQdFKdHM83lQUcTITPzs6iu7s7bzsXthEUkWewWq2YnZ1FJBJBZWUlampq4hZfok0VCARw7ty5nLV6Tu/sQyWXMiQCHMhqUDSwbPcByBzx7O3tYXR0NK5Wk8zjvdCtqkTnbX19PeVQKhewfd6JFI3NZjskMFlVVcV5YDAcDmNkZAQqlSqvVsLpwDbvam9vRzAYhN1ux/b2Nvb29qBQKODxeKBSqYpq3kVAmhE8Hg8TiSQDkcQfHBzEm970JtjtdnziE5/A1atX8fa3vx0NDQ2MNP6NhpIiklSQy+UZ/UgyHZ+KSNhF9bNnzyZdFGQyGSKRCKPim21nFvHq6O/vh8lk4vsxsgJbL4sI+1mtVmaHSBYwi8UCpVKJs2fP5nRnb9DIEY3FZ01pmgZoQMthYI04B7a3t8e1hCbzeE9mcFVdXc1rWjsTSBvt7u4uzp49m1PdLJ1OB51OxwhMkuhybW0tzqskVXRJ5leI73uxF2gCtVoNlUqF/f199Pb2QqFQwG63x5l3kV1/oWtfhETcbjfOnDmT8fwUReEv/uIv8JOf/AS//e1vcezYMQAHG7L19fVCXHJJ4pogknyltlLJv7NBURR0Oh3m5+dht9uZ4i+XwiUZ5tvf3y+aVwcQL+zX3t6OQCCAzc1NrKysMBHW+vo6ampqcmaYNNRqwutrbrj8EZRrDm4z634YerUM55rL0x5L/DqOHz+eUY1Wo9GgqakJTU1NcRbDIyMjhxZfoQsrRVGYmprC3t5eTqO3ZFAqlYdcLhMFJklhW6VSZeWvXmhYrVZMTEzE+a9UV1eju7ubUXlgKxeT3yxf5l0ENE1jZmYGLpeLE4nQNI0vfelLeOKJJ/Dcc88xJAIcrDF8p/GvB5RUsZ2iKEQikUN/n0w4MRt4vV688soruOuuu+L+bmRkBGVlZTh58mTSSXVSEwHe6LwhnVJGo5HJCSdbUILBIMxmMyM1XUydpUSQWk1jYyOampridKUUCgVTrOc7LAgctPz+4MoGnpm1wR8++A4Najn+aPAo3nyiJunvSOZqVldXcerUKUG9+OzF12azMak9vra1bHn6gYGBonWNsQfrbDYbPB4PdDodI0lTSpEI8EYX4MmTJzO2xYZCISYKczgceZX5J4rMDocDZ86cyViPomkaX/3qV/Gd73wHzz33HE6ePJmza7kecE0QCRFOvOOOO3gVDoPBIJ5//nmGiFIV1QkSi+qJnVnsiWan0wmdTseQil6vx/7+PsxmMyorK9HT01NSDzbpMkpWq0kcFqRpOk5cMtsHmaZpLNv9mLbsQy6V4NRRI46WJ39g2Smj/v7+nBT82e9NUntE2oTMP1RXV2ec6yDFawAlp5tF2miVSiVCoRBvgcl8gEjYnDp1KusuQPZGwG63M8rFufAjIfcakfXPFFnSNI1vfOMb+Ju/+Rs8++yzvOfZrmdcE0RCURR+85vf4NZbb+W1EyREdPvtt2NraytlUR14QzOLaz2EpFOsViscDgdTT6mvr89KoTjfoGkaKysrWFtb47TbT1QsJjteEq3kMsKKxWJMx0whpNYTNwLp5jpI3UGtVheteJ0KRP2hsbERbW1tjBoCiTBJ/YFvFCYEOzs7mJmZyYmEDYnCyOdizxhl04hA3mt+fp7pUORCIo899hi+/OUv46mnnsK5c+cEfZbrFSVFJDRNIxwOJ/23p556Cm9605t4TQUTIqqvr4fdbucs/55tUZ2oqhqNRni93kMzAsVahNhT9P39/VmrkSZLpyQTK+SDSCQSp6xa6BQgu2XaZrPFtUxrNBqYzeaSrDuQSfpUIofpBCZzKa+eDNvb25idnUVfX19epELYjQgOhyNOjibdLA5N01hYWIDFYsGZM2cyriU0TePv/u7v8LnPfQ6//vWvcfHixZx/lusF1wyRPPvsszh79iyvlEcoFMJvf/tb6HS6lLsQIZPqFEUxDninT5+G0WiMs6u1Wq2IRCJxWlmFSo9Eo1FGM6i/vz8n5jqkndNqtTI7ehKpZLM7DAaDGB0dLZndPvs3293dRSgUgkajQUtLC+cGi0IgW3914I3fjERhuRDOTIatrS3Mzc3ljUQSQX4z8tnYszhVVVXMs066J7e3t3HmzJmMmx+apvGDH/wAn/rUp/CLX/wCN998c94/y7WMa4ZInn/+eV5ugaSo7vf7ceHChaR6WeyieraT6pFIBOPj44x0R7KFmuwOSZrI5/PlVSuLgCzUZKYgH4Np0Wg0bgKda6eU1+vF6OgoTCZTydWR3G43RkZGUF9fD6VSCbvdzkjRkN+sWB14fPzVExGLxeKm64kgqFCByc3NTczPz+P06dMFa3NPBEmBEfMunU6HqqoqRoH67NmznEjkiSeewKOPPoqf/exnjBeRiNQoKSIBDqKHZHjppZfQ3d2dVdGOXVTf3Nw8lNLKVFTPBL/fj9HRUaZvn+tC7ff7YbVa47SySLE+V4J++/v7GB0dLWjBn10gtVqtiEajSaMwIgrZ0NCQ1Eq1mCDzK4lCgsmkaAptMUyK1+w2WqFgD3gmCjFyaUQg2NjYwMLCAvr7+0tGPp3I0aysrMDr9TJdYGSTk4wwaZrGj370Izz88MP413/9V9xzzz1FuPJrD9cMkbzyyitoa2vjpGeUbFL9hRdeiBNeZNdDJBJJ1guty+XC2NgYjhw5gmPHjvFeSMgCRdJEZKBOiLGVw+HA+Pg44zRXjIU6VRSmVquxs7OTE1HIXIMs1JnmV9g7epvNBgAMYeZSL4sNkjLKt/8Ke8CTq8Dk+vo6lpaW0N/fz3vKP18gDSaDg4OIxWKHFJnJICSJUn7605/igx/8IP75n/8Zb33rW4t89dcOSo5IUtntvvbaazh69GhGeRH2pDo7Ann55Zdx7NgxRguIb1EdeGNgrqurK6fKpSRNRDzQ+cx0ECkWLsN8hYTf78fCwgKsVisAHFIsLnZUQnbU2S7UhbAYJppehU4ZpfIiYXvHEKHPgYGBkvGGISAzSYODg4caTAhh2u12PPPMM/iHf/gHdHR04JVXXsE//dM/4Q//8A+LdNXXJq4ZIhkeHkZ1dXVa85tE+Xd2Uf3y5ctobW1FTU0N76I6sSrd2NgQPDCXCeyZDrL4koU3WQcY+9r6+vqKlqNOBrY21enTp6HT6eJapknht6ampmBpIva1kV1rLnbU7O62vb09ZlKbL2GurKxgdXW16At1MjtejUaDYDDIadiw0FhbW8PKykpSEkmE2+3Gl7/8ZXz3u99lpunvvfdevOtd7xKjEo64ZojEbDbDYDCgra0t6XGZJtVfe+01HDlyhEmNZVsPYcudnD59OqcaS5lAdr0kTUQkMogAo0wmYxzw+vv7C3ptmUA62kjbdeK1JUsTsR0T89nJRWYKLBZLnId5riDEYphsDDY3NzkthoXG3NwcNjc3odPp4PV6865xlg1Iqm1wcJBTl+dzzz2HBx98EN/97nfx7ne/G8PDw/j5z3+OsrIyfOITnyjAFV/7KDkiSfRtJ5icnIRKpUJnZ+ehf+MyqT48PAy5XI62tjZotdqsbnTiHS+VSgV5l+cC7Cltq9UKn88HmUwGmUyW0Wmx0CDGSn6/n5M7H9n1EsIMhUJxhJnL753ttjgwMJB318JkFsNs1QD2xocQ3O7ubkZ/9WKARL6E4NgaZ2Suo1jzUxsbG1hcXOQcwb300kv4gz/4A3zzm9/E+9///qKnWK9VXDNEMjMzA4lEgu7ububvMsm/k9eQh5hY7ur1eqZLKlO6gcidVFRUlNxQGhHqk0qlkMvlOXdLFIJIJILR0VFIJBJesiJkCJKQyv7+Pq9uomQotm5WKutkQiorKytwOp1Z+6vnGyRK2trawuDgYNLIlz2LQzYDua4ZpcLm5ibTOcYlRXn58mW84x3vwFe+8hV8+MMfFklEAK4ZIpmfn0c4HMaJEycApC6qs5GsqM6WNLHb7YyjYE1NzaGQnPTst7S0FK37KRU8Hg9GR0dRU1ODrq4uSKVSJpVCag98BwWFIhAIYHR0FDqdDidOnMjJjpTImlitVmY+gE93WynqZrEtht1uN6RSKRoaGlBfX593BVyuYA/0pSKRZMckKiLkS92XdLVx9Yd5/fXX8fa3vx1f+MIX8Mgjj5TEd3wto+SIJBqNJpV8X15exv7+Pvr6+tIW1Qm4dGbFYrE4UpHJZMzC6/V6sbS0hOPHj5ecDzMhuLa2NjQ3Nyf9bKTjJvGzkYJ2viIrMr9CZMLz8YCyUymku42LUGEoFMLo6CiUSiX6+vqKPknPBjsN2NjYCKfTyagxV1dXI6Iy4spWCNt7IdQb1bj7eA2aTIWJVtjSIkJSbWz7ZPLZ2NImfO9JIsnCdYZldHQUb3nLW/Bf/+t/xcc//nGRRHKAa4ZI1tbW4HA4cOzYMU7y79l2ZhHBu93dXVgsFlAUherqahw9ehSVlZUlk9La2NjA/Pw8Z49w4I3PRlIpRNWXDArmakEl8vSFnF8hn43s6EntgXw2cn+QNKDRaERvb2/J/J5Aan918tlemN7C/3jVCW8EkEglkEmkMGoV+OJbu3G2Jb/Df+x6DRd9Kq5I9ELnK/NPxCG5tkZPTEzgvvvuw8c//nF8+tOfFkkkR7hmiGRzcxOrq6sIBoNpi+qEQAB+cicTExMIBoNoa2tjCr+RSIRJo7AXp0KC7Aq3t7dx+vRp3m2qbFVfq9UaV9Curq7mneohvhP5tBLOhFS1B6PRiM3NTdTW1qKrq6ukFo9oNBpXS0q8t6IUhT/5/ijWHH5UaA+cPqORCNwhGnV6Ob75tmYcqU3uiSMUbLn1wcHBvDUkkAYSkgLb399nan1EjibZb0ZIhKuu1/T0NO677z78p//0n/C5z32uYPfBiy++iK997WsYHh7Gzs4OfvKTn+D+++9P+toPf/jD+J//83/ib//2b/HRj360INeXC1wTDok0TcPlcsHr9eLUqVNpi+qEF7PdcZK8vlqtxrlz5yCXy1FXV4djx44xE9pLS0uYnJzMycKbDYjMusfj4aQVlA4SiQTl5eUoLy9HZ2cnU9BeX1/H9PQ0I3hXU1PDWeCRDMzx8Z3IJdg2vOSzbWxsYGVlhSHQ1dXVojciEITDYYyOjkKhUKRMtc1ZfNhyB2HQKCCXSSGXyaBSKiFTxOAKRXB1aRemxYWct98S4ye73c5Jbl0I2A6ebW1tcQKTy8vLSdumLRZLViQyPz+Pt771rfjABz5QUBIBDmaL+vr68Gd/9md45zvfmfJ1P/nJT3DlypWk61upo+SIJPEHJkX13d1daDSatCTCd1KdaD8R4mCTkEQigcFggMFgQEdHB7NzYi+8pPaQj46UcDiMsbEx0DSNc+fO5bQFViKRQK/XQ6/Xo62tjZn2tVqtmJ+fR1lZGUOYyYqrpAC7tbXFuciZL1A0jYktD+atPmgUMpxvLYc0FMT29jaOHTuG2tpaph62vLzMNFmkk/7IJ7j6q0cpCjSAxKuTySSQymToPNaFE3Vaph5GLIZJeq+iooKXIdnMzAycTmfeSSQZ1Go1Ghoa0NDQENc2PTExwVhfezyeOMmjdFhaWsJb3vIWvOtd78KXvvSlgv/W9957L+699960r9na2sIjjzyCp556Cm9+85sLdGW5Q8kRCRvsonpvby/m5uYOvYYdifAhEeIYyFX7iSy8ra2tCAQCsFqtsFgsmJuby7n4IhGF1Ov1Oet+Sge2/zl7mI698JLuNpqmmSFIoVGSUAQjMXz9mSVcXnYhEjtIa2pfAm6t9uOPbnpDKoZI7LClP0ZHRws+9xAIBDAyMgKj0ZixpbyrVo9KnQK2/TAqdQpIJJKDFF4wiiq9Et11eigUMtTV1aGuri5OOHNmZibr2gP5Xd1uNycL2nyDrSbNbvdXq9WYnJzE5uZmnMdKIlZXV/GWt7wF999/P77+9a+XVG2MgKIovPe978Wf//mfo7e3t9iXwwslSyTsSfWBgQH4/f642gnfojr7eCLb0dfXx0sIT6PRoLm5Gc3NzXHii4uLi4z9bm1tLS9pDBIlCRWF5AulUpl04R0ZGWG+a4lEUpQdayJ+OmbBiwsOlGvk0CoVCIZC2HEH8Fto8aDucAFWLpejtrYWtbW1cXMPs7OzzMJLhiBznbr0+/0YHh5GVVUVp642tUKGD7+pBV/9zSLs3jDkMimiFA2VXIoP3dQMjSKe9KRSKSorK1FZWYmurq5DETQxt0q22aFpGlNTU9jb28Pg4GDRSSQRdrsdS0tL6OvrQ01NDQKBAJMCW1hYgFarRVVVFSKRCI4dOwar1Yo3v/nNuOeee/Ctb32rJEkEAL7yla9ALpfjP//n/1zsS+GNkiMStqd6c3MzOjo6IJFIIJPJGCJJLKpnSyKxWIzZdZ09ezYnkiIqlYoJx9mzKqurq2lnVZLBarVicnISHR0dabXFCgX2whsMBjE8PMykEq9cucLsGPn4uucCT8/aIJdJoFPJEQwGEQwE0VCph9UXw+UVJ+7vSy1eKZVKYTKZYDKZcOzYMUY1YG1tDVNTU0zNiDgm8kGMomH3hkFHgpibPNgcJGsWSYW7j9egWq/Ez8YsWHUG0GTS4P6+Ogw2lac9LlntgUSZi4uLccq+ZWVlmJ6exv7+Ps6cOVPwIc1MsNlsGB8fx4kTJxhdL41Gg8bGRjQ2NsZtdv7Df/gPWFlZAQCcOXMGX/nKV0qWRIaHh/HNb34TIyMjJdUEki1KrmvLYrHg6tWrhybVg8Egnn/+edx5551MNAJkX1QPhUIYGxsDAPT19eX9gSFaUqSTKNM8x9raGpaWluIemFKB3+/HyMgIDAYDTpw4AYlEwnRJWa1WBIPBvEmapAJN0/j3/2sYoRgFNSIIh8MoKyuDTCbDljuI911oxHvO8VNoTpRUJz7hNTU1nIfpfj1lxfcur2PHHQAVi2KoSY/PvO0UTLriLtSJFsMkqu/q6kJtbW1JzdgQj5je3l5OPizb29u49dZbodfrIZVKsbCwgFtvvRX//b//96KnjiQSSVzX1je+8Q08+uijcetALBaDVCpFY2MjVldXi3OhWaLkiCQSicDtdh/SjIpGo3jmmWdwyy23QCqV8qqHEFc+MktQ6Icl2TwHW9F3YWEBu7u7jF1vKYFM0pOGhGTfPUmjWK1WRtKEFLTzmf76/C9n8dz0LiqUFIxGA6RSKQKRGPYCUXz+LV04l4NZC3aUSYbpMkn8Pz1jwxd+NYdwlIKMjkEikyFGS3CivgyPv/sU5EmO2fWEMLnjgVYhw2BTOZTy/O6kKYrC+Pg4vF4vTCYTnE4n0xJOosxiRifEVpjrYLDdbsd9992H48eP44knnoBcLsfS0hJ+/vOf48EHHyz6cHEikTgcDuzs7MS95u6778Z73/tevP/970dXV1cRrjJ7lFxqSy6XJxUeJMSxvLyMI0eOZK2GarfbMTExgaamJrS1tRUljJRKpYyRDlvRd3Z2FqFQCFKpFB0dHSXRmsoGeZjTTdID8Y0IwWCQIcz5+fms9M2yQSwWwymdF5flNPZpFSTBGCJUFMEIhXMt5Rhoyg0hKxQKHDlyBEeOHDnUSUQGPNnpPZqm8U+vbiAcpaCRRqFUKCFXyBGOUpje8eLKsgs3dbzRcRSjaDz+0ir+dWQHgUgMUglQZ1Djs/d2YiBDCosvCIkEg0GmI5Ata7K1tYWZmRlOMx35ABlw7enp4UQALpcLb3/729HR0YH//b//NzOT097eXtSZDK/Xi8XFRebPKysrMJvNMJlMaGpqOtR5plAoUFdXd82QCFCCEUky33ZSD7HZbNjZ2YHdbodKpUJtbS2nugOZBi81syfgoDNtZGQENE3DZDLB4XAgEAjAZDKhtra2YCmiVCBdbUK+u0gkEqcBplKpGFIR0nobjUZhNptBURQUtR34/9s776iozvX77xmGLqAoDlIERBRQkSaiJgqW2EAw9pjYco3fRL2xJLFcNYnGnms0yU3U5AaSnzEWQGzYUUysSEdERenCMPQ69ZzfH9xzMgMMDDBNOJ+1slY8zMB7lDn7Lc+zd1RqCZ4U1cBIXw/jB/fGXB9b9DBU71yJ6k+h7o8KturRszeWReZCIhHDzNhArtGwol6M/3vTEYv9/64SjEouwr+vvYAemwVTQz1IicbKrF4m+ji21Bu9TVX7O0AZV4pEInh7eyssKmgtYtjCwkJtZw8VFRVISkqCq6urUn0VVVVVCA4OBpfLRVRUlE6d8dy6dQuBgYHNri9evBjh4eHNrjs6OmLNmjWvVUOiTgsJdRZCHbJTlULUuQOPxwOfz6e3GZoGIxEEQedNdKYbXF3U1dUhKSkJ5ubmclttVJMgtUVE9apYWVlprJKGKrV8+fKl0k1fytD0zIgqvaW295R9MFEC3NQ3SyQlwGGzwNbSwSX1b5dfUIDP74tRJ2HBwlgfenp6YLNZkBIkqhok2DzFBTM8/p5lvxeeiCx+HSxN/hYMgiRRUS/GugnOmOujuiY1qVSKlJQUSCQSOUsWZd7XUsSwbGKiKqisrERiYiIGDx6slEtCTU0NQkJCYG5ujnPnzulctVl3QOeEBGicBSnbqU4QhNyDicVi0VYm+fn5EAqF8PLy0nqJalMqKiqQnJwMOzs7ujKtJagDXx6Ph6qqKpX3qrSEbOCTl5eX2jJOqNJbSjSlUmmLPllNofowzMzMMHToUJ2ryKFMBBMFVjidWg4OiwQHBEg2Cw0SFixNDXBquS8sjP8WjUmH7kEkJZqtoCrqRVgwwg6rA5xUMjZZXy9vb+8OP/wVrcSo7b2OPswrKyuRlJQEFxcXpWKs6+rq8Pbbb4PD4eDChQs6ty3cXdBJIREIBCAIgq5eUHbrg2rGevXqFXg8HgCAy+WiX79+nXIXVTXFxcV4/PhxuzPfZXtVysvL6V6V9lQRtQVBEEhPT0d1dbVGAp8oKJ8s6v6o7T1qJUZt71H9Rep0F+4MVPa7p6cnTMws8NWlZ4h7XgaRlAAIEuaGLMx1kmJQLzZ9b5aWlvjoRBqSC6rltrAkBInqBjE2T3VB8LDOHxJLpVIkJSWBJEl4eXmp1DNOUcRwe+ziq6qqkJiYiIEDByrVHNzQ0IDZs2dDIpHg0qVLGksGbc07SywWY8uWLYiJicHLly9hYWGBiRMnYs+ePa+l9Ymy6JyQPHnyBElJSRg/fny7ciYoqqqqkJycDCsrK9oWg8fjQSqVyhkvaqO8kSRJ5OTkIDs7Gx4eHh1qgqRomqvSnjMjRUgkErktD22ezciGWlVXV8PCwgLm5uZ49eoV7O3t4ezsrHMiQuWrywYrkSSJp7w6PCmugbkxB6OcLGHEYdHd5yUlJZBIJMiVmOPnlHoQZGM/DEGQqBdLYdfLGL8u8oRpJ896ZM0hvby81Pr7L2sXT/1uthUxXF1djYSEBDg7OyvVOyUQCDB//nxUV1fjypUrGq1yvHTpEu7cuQMfHx+8/fbbckJSVVWF2bNnY/ny5Rg+fDgqKirw8ccfQyqV4tGjRxobo6bROSG5ePEiPv74YxQVFeGtt95CSEgIpk6dqlSVVnFxMTIyMugZDfWgoWa7PB4PJSUlEIlE9BZK05hTdUFll/P5fJVvF7W3V6UlKO8nQ0NDeHh4aMXhWBECgQA5OTnIz88HALkKMF0IfupMvjpJkrQp6PnUYlx8KUKthA2OHhvD7czx2eRBcLDs3KqQEhE2mw1PT0+NTqKUiRimRISqCmwLoVCId999FzweD9euXVMqg0RdNC3nbYn4+Hj4+fkhNzdXJxqM1YHOCQnQ+NBNSUlBREQEoqKikJOTg4kTJ2LGjBmYPn16s0ofkiTp2eCwYcNadaClLKspUWloaFC7m69EIkFaWhoaGhrUfl5Dbe9RhQhNe1VaeojU1dUhMTFRJ+OEgb8t6t3c3GBlZdVsJUbdn2yhhaZQdb56ZXUtUrOLUF9dAY7w70TBjpZNU5HHHA5H62FeTbcv6+vrYW5ujpqaGjoaoi3EYjEWLVqE3Nxc3LhxQ2VFIB1FGSG5fv063nrrrRb747oKOikkslD+PxEREThz5gwyMzMREBCA0NBQBAUFwdjYGJ9++imCg4MxZsyYdveXUJYYJSUldFMWNdtVxdaOQCBAcnIy9PX14eHhodFoV+pAlBJNsVjcbCVWVVWFpKQk2Nratnrory0KCgrw7NmzFicI1GxXttCC2kLRRBgZ5ZJbVlamlrwOaotItmy6PaIpFovpyjYPDw+d6lYHGnu7UlJSYGhoCIFAQDsHUJYtTe9PIpFg2bJlyMzMRGxsrE44P7QlJAKBAGPGjIGrqyt+//13zQ5Og+i8kMhCzf4iIyMRFRWF5ORkmJiYwMTEBBEREfDy8urUg7C+vh4lJSXg8Xh0ZzaXy+1w2S3VSa8LM33ZLRRqJdajRw/U1NTA2dkZTk6qqQpSJdR5kqenZ5vbF7Lmi4pEU5UQBEFnxGjC4LCl0ltZ0WwqEmKxGAkJCTA0NMTw4cN1bpVZW1uLhIQE2NvbY8CAAQrjkw0MDGBjYwN9fX2sWLECSUlJuHnzptY71ClaExKxWIxZs2ahoKAAt27d6rKrEeA1ExJZMjIyMHXqVFhYWMDIyAhJSUkYNWoUQkJCMGPGDNjY2HRKVKjObNmyW+owW5mtqbKyMqSmpmq1k741Xr58SdvDCwQCrfSqKIJKgywqKurQeZKsaPL5fNTV1clVgHW2WY3qCG9oaICPj4/GixIoVwRKNGVTLqkCjoSEBBgbG8PDw0PnRKSurg6PHj2CnZ0dnJ2dm31dNj754MGDiIyMhKWlJSQSCW7cuKF1vyxZFAmJWCzG3Llz8fLlS8TGxmp9C07dvJZCUlpaikGDBuGjjz7C9u3bwWKxkJ+fj6ioKERFReHu3bsYMWIEQkJCEBISgv79+3fqQS4UCumZfEVFBR34pChp79WrV3jy5Anc3Nx0ruSPOk/Kzc3F8OHDYWlpKRdoRe3jqrtXRREEQdChSt7e3irpC6BWmiUlJXQFmCIr9bagmvnEYnGrHeGagrI0ka1wY7PZMDExgYeHh871VVAiYmtrq1TlnUQiwcKFC3H79m3Y2dnh2bNnePPNN/HPf/6z1XMJTdGSkFAi8vz5c9y8eVOrqaGa4rUUEgBIS0vDsGHDml0nSZKu7Y6MjMSff/6J4cOH06LS2bJRKvCJ2reWzR0xMTFBdnY28vLy4OHhoXOzECo+laoca+k8SSQS0Q9ddfWqKEIqlSI9PR11dXXw9vZWy8qopV4cSlTaKjenqp8AtKsPo1ogRq1Qir5mBi0aNaoKoVCI+Ph4cDgc6Ovro6Kiol33p27q6+vx6NEj9OvXT6nzOIIgsGHDBpw/fx63bt3CgAEDkJubi/Pnz6N///6YMWOGhkYuj6x3lpeXFw4cOIDAwEBYWlqiX79+mD17NhITE3HhwgU5t2JLS0utltSrk9dWSJSBJEmUlpbSonLz5k24ubkhJCQEoaGhGDx4cKc+WE17Oajv5e7uDi6Xq1PbWbIPaWUrx1rqVVGFR1ZLUD0sUqkUnp6eGvnAtbQvT21/9erVS+7+qIPr1vLVm1JWJ8K/r79A3LMySEgSfc0MsHyMg5w1iqoQCoVISEiAmZkZhgwZAjabDbFYTJeFl5aWgsPhyN2fJre8KBGxtrZWKouFIAhs3boVp06dwq1bt5Sq6NIUrXlnffHFFwrPG2/evImAgAA1j047dGkhkYUkSVRUVODs2bOIiorCtWvXMGDAAISEhGDmzJmdOgwXi8VISUlBQ0MDzMzMUF5eDn19ffpMRRuZ4E3Hl5ycDJIkO/yQVkWviiJEIpFciao2eliaVoABkMseoQo7WstXl0VCEFjyazKeFNeAo8eCHosFoYSAHpuFL4NcMXWI6iqOqLAxKh6hpd812XMHPp9P29HI9nOoi4aGBjx69Ah9+/ZVKu2TJEns2LED4eHh9OSPQbfpNkLSlKqqKpw/fx5RUVG4cuUKbGxsaFFpT5WLQCBAUlKSXCMf9VCiejlkH7pNZ7rqRiAQIDExkX4IqqIElOpVobbAlOlVaW181ExaV3yzZC3+eTwehEIhjIyM4OzsrHSvUdyzUqyPyoARhwWO3t/3VCOQwNnKFCff91HJ70FDQwMSEhLoykBlvmdL/RyqLEZoaXx9+vRRageAJEns3bsXP/74I2JjY1vcvmbQPbqtkMhSW1uLmJgYREZGIiYmBn369MGMGTMQGhqKESNGKHy41dTUICkpic7fbul1smFWJSUlAECfqah7e4HypWptfJ2F6lWhHrrtKbulGiF79+4NNzc3ndoKBP7ejrGwsICpqalcBRhVeqvoHOenv3Jx9K9cmBrKi6pATIDFAm58PBomBp0TdWqm39m/v6Y+WarKHxEIBPT4lPFFI0kS33zzDQ4cOIAbN27Ay8urQz+XQfMwQtKE+vp6XLlyBZGRkbhw4QLMzMwwY8YMhISEYNSoUfRsOzU1FaWlpXBycoKjo6PSM0HZmTzl/8Xlcts9k28Lyl1Yk+XHTV0D6uvr5VwDZLfUqEZIqgRU10SE6nNomghZX19Pz+Rl3Ziphy5FVHIRdl56BlNDPTlL+zqhFBbG+riy2h967M71PCUkJMDKyqrTZ32yyBaTyOaPtHeLllpp9urVSymRI0kS33//Pfbs2YMrV67Az89PFbejFK2ZMFJj+/zzz/HTTz+hsrISY8aMwY8//qhT5zbahhGSVhAIBLh+/ToiIyNx7tw5GBgYICgoCFKpFCdOnMD169fh6enZoe+taCZPhVl1RlR4PB4eP36MQYMGtctdWNU0zVWhoncNDAzw5MkTpb2VNE11dTUSExPpZjlFD0Gqwo3P56OsrAwmJia0qBD6xph19BGqGsQwMdADmwWIpCTEEgJLRvXHqk7YwlMrJS6Xq9SZQ0eRPRejikmolUprEx+hUIhHjx6hZ8+eSm23kSSJo0eP4osvvsClS5cwevRoddyOQlozYQSAvXv3Yvfu3fj111/h5OSErVu3Ii0tDRkZGVrvudIVGCFRErFYjNjYWGzcuBEpKSkwMzPDzJkzMXPmTIwbN65TVUZUAx01kxcIBHLbQ+3pVaBszIcOHaoTFhIUVINnQUEB6urqYGxsDDs7u2YzeW1D5WFQK01lkUgkchVu+vr64JHm+CGhBlWCxmA2DpuFsS69sSPYFUb67ZsokCSJ5IJqPHjBB7+oABPcuBg1XHM2+i05B1C57rLnRiKRCI8ePaLD2pQRkfDwcGzatAkXLlzA2LFjNXE7CmnaF0KSJGxsbLB+/Xp88sknABpX01wuF+Hh4Zg/f74WR6s7MEKiJEKhEMuWLcPdu3dx/vx58Pl8REREIDo6GvX19Zg+fTpCQkIwYcKETs1SqAYzSlTq6uoUbg81fR/lQKuLaZAAUFhYiKdPn8LV1RUkSTbrxdG2m295eTmSk5Ph4uKiVB6GImTPxfKLS/C4jATbqAdGOPeF/2C7dq82RRIC/zr3BHHPyyCRSMFisWBswMGnkwYiZLjmrUKoLUxqNVZbW4uePXvC0tISRUVFMDc3x9ChQ5USkd9//x3r16/HuXPnWiyp1TRNheTly5dwdnZGUlKS3O7DuHHj4OnpiUOHDmlnoDqG7niF6zh1dXUgSRL379+nm4wCAwPx7bff4u7du4iMjMQnn3yCyspKTJkyBaGhoZg0aVK7O6dZLBZ69OiBHj16wNnZmd4eKigowJMnT2grk759+9LVNbLd4L6+vhoL+GkPsr5ZlpaWAABbW1u5Xo74+HgYGBiorVelNfh8PtLS0pTOCG8NNpuNPn36oE+fPnBzc8PI/21hlpTk49atLLrsVtkKsOPxBbj5tBRsEDA1YIPD4aBWKMW+a1nwsDWHUx/Nug+wWCyYmZnBzMwMzs7OaGhoQHFxMbKzs+kwupcvX7Y6MSBJEqdPn8a6desQGRmpEyLSEsXFxQAg11hI/Zn6GgOzIlEpBEEgPj6ediouLi6mM1WmTJnSbmfipjQ0NNBnKrJWH6WlpRCLxfDy8tK5PVuSJJGVlYXCwkJ4e3vD3NwcdSIJLqWXIDG/Csb6epgwuA9GDejVLDaZzWbLlU2rq8KNsqkfOnRosweGKqFm8tT2UG1trVIeZyE/3kdeWQPMjPToKjiSJFErlOL9Mf3xf286qm3MykAZRBobG8PV1ZVejZWVldHmi037jc6cOYMPPvgAJ0+eRFBQkFbHL0vTFcndu3cxZswYvHr1Cv369aNfN3fuXLBYLJw8eVJLI9UtGCFREwRBIDk5mc5Uyc3NxcSJExESEoJp06Z1erYtEAhQVFREzwLNzMxgbW2tFX8sRcjarFO+WZX1Ynx0IhXPShpXeAALemxgjrcNPpn4d/VWS70qsnnuqqpwo/LV28qxUQdNPc4oDzcqnhZoLDGf8sMjiAgWzIzltzVrBBLM8bbBZ28N1Oi4ZZEVkabNmk1DrWJiYvDixQs4ODjg119/xe+//46ZM2dqbewtwWxtdQxGSDQASZJIT0+nVypPnz5FYGAgQkNDMX36dFhaWrZbVBoaGpCYmAgzMzO4uLjQM/ny8vJmCYLagCAIpKWlNfPN+vbmS/z2oADG+nrg/K/8tUEsBUkCPy4YBu/+PZt9L9kKN1UmXMrmq1PbbdqipbJbCwsLlJSU4ESeKRKLBTAz5NC/JxKCRL1Iii+DBmP6UPWtolpDNu+krSZealt47969uH79OjgcDr1anzFjhlpXgu1B0WH7J598gvXr1wNorOrr27cvc9guAyMkGoYkSTx9+pTOVElLS8Obb76J0NBQBAcHw8rKqk1Rqa6uRlJSErhcbrMeArFYLGcqaWxsTDdAauogu7Xs9+n/eYCSGiF6yGSQkySJOpEU74ywxdoJzW3FZZE96G1PMUJTqDMb2Xx1XUEikSA/Px8vXrwAi8VCQQMHhx8DQikJQ44eSDQKiYuVKcIWeba7AkxVY5T1HlNm2zE2Nhbz58/H4cOH4evri3PnziE6Ohr+/v44cOCABkbdMq2ZMPbv3x979+7Fnj175Mp/U1NTmfJfGRgh0SIkSeLly5e0qCQkJGDUqFEIDQ3FjBkz0K9fv2YPfirnxNHRsc1GyKYlqQYGBrT/l7m5uVpEpS3frMnf3UNFvRimBvLXa4QSzPOxwaeT2rdNo6hXpW/fvi1+yGWr26gzG12DKkF2dnaGnZ0dKioqcOtxAf5IKUduDaCvx8I4555Y+9Zg9DVXX2yzIigXZD09PaUNLG/fvo05c+bg22+/xZIlS+R+9wiC0Ko1TmsmjOHh4XRD4tGjR1FZWYk33ngDP/zwAwYNGqSF0eomjJDoCCRJIi8vj85UuXfvHvz8/Gj7e3t7e/z8888QiUSYOXNmuyuLmpouUk6wqsw6p3y9TE1NFZob7oh5irOpPJga/N3xLZIQEEkJfD1rCMa5dNx6n+pVaXrmQOXGUAmbxcXF8PHxUbjtl1NWj5yyetj2NIJLX81uDVKOBAMHDmxWgkySJIpLy1FZXobyUj4EAoFcoJUmHJOlUikSExPBZrPh6emplIjcvXsXb7/9Nvbt24cVK1bonIsBQ+dhhEQHIUkSr169ou3v//rrL3C5XJSUlGD37t34v//7v059GKk+B8pUksVidbo6SlnfrPyKBnzwewr4tSKw/nevYLEwxtkS/57lrrK8jqa5MSYmJmCz2RAKhfD19W2xCbJGIMHG6Azcfl4G6kPh3d8C/541BFY9VGdkqAiqj0UZRwKq34i6R9nVmJWVlVIxAe1FKpXK5bEoIyLx8fEICQnBjh07sGrVKkZEuiiMkOg4UqkUq1atwrFjx+Dm5obk5GS4u7vTmSqdtcigOpapBkhZJ9/evXsrJSqUpYitra1SgUWvqgT4I74Q916Ww9SQgynufTHLqx8MOOrZ3hCJREhOTkZtbS1IklSYq7IuIh3XM0tBkGSjyAFgs1gYZmuGY0u81foQpERk8ODBsLW1bff7qdUYn89HRUWFXMFFZ4wXKaRSKZKTk0EQBLy9vZUSkaSkJAQFBWHLli1Yt24dIyJdGEZIdJzVq1cjJiYGV65cgbOzM8rLy+lMlevXr8PZ2Zm2v3dzc+vUXrOsfXpJSQkkEgnt/6Wo5La8vBwpKSntthTRFFT1WH19Pby9vcHhcOTcmKleFZZJL8z5f5kgSVLOZJH438fj1D984d6vc31AiigrK0NKSopKmiGBRuGkzsbKyso6bLxIQcULS6VSpZMh09LSMG3aNHzyySfYuHEjIyJdHEZIdJykpCTY2Ni0WB5ZWVkpl6liZ2dHi4qHh0enRaW6ulouk0PWVJLD4aCkpATp6ekdnkWrm7by1WV7Ve495+HfyY0rEbaMKy9JkiAAHJg1BJPdVe9dVlpaitTUVLi5uck1vKmKpmdjbDZbLjumrd8Rqh9KIpHQQtwWGRkZmDp1KlauXInPP/9cqyIilUrxxRdf4NixYyguLoaNjQ2WLFmCLVu2MOKmQhgh6SLU1NTQmSqXLl1Cnz596O0vX1/fTosKVXLL4/HQ0NAAU1NT1NbWwt3dXSWzaFXT3nz1kmoBJn57DwQJND5eGpslqQ9HxPIRcLVW7cE7n89HamoqhgwZAmtr9XtmUcJJnatQKYnUNmbTvyOCIJCSkgKRSNSiELfE06dPMXXqVCxbtgw7d+7U+sN6165dOHDgAH799VcMGTIEjx49wtKlS7Fz507885//1OrYuhI6IySOjo7Izc2Vu7Z7925s3LhR4XsEAgHWr1+PEydOQCgUYvLkyfjhhx90prlJW9TX1+Py5cuIjIzExYsXYW5uTmeq+Pv7d7or/Pnz58jNzYWRkREEAgGdrkdZxGubjuSrA8BnZzJw6XHjORF1RsIC4GRG4stxvdrdq9IaJSUlSEtLU7stiyJkV5x8Ph8NDQ1yKYkcDgepqakQCoVKi0hWVhamTp2K+fPnY//+/TqRdhkUFAQul4v//ve/9LVZs2bB2NgYx44d0+LIuhY6JSTvv/8+li9fTl8zMzNr1WL8ww8/xMWLFxEeHg4LCwusWrUKbDYbd+7c0cSQXwsEAgGuXbtGZ6oYGhoiODgYM2fOxJgxY9rVFS7bg+Hl5QULCwvU19fT5w3V1dVt9nGoG6FQiMTERBgbG7d7e69OJMG2809x9QmfFpNRAyyx7S0HSOoqVXaPlLfXsGHDdMbqv2k/DofDoUt8lem1ycnJwZQpUxASEoJDhw7phIgAjSuSo0eP4urVqxg0aBBSUlLw1ltv4cCBA1i4cKG2h9dl0CkhWbNmDdasWaPU66uqqmBlZYXjx49j9uzZAIDMzEy4ubnh3r178Pf3V+NoX09EIhFu3ryJiIgInD17FgAwffp0zJw5E2PHjm11pk2SJDIzM8Hn8+Hj49OiwDft46DSA7lcrlrKUVv6+QkJCXQWRkcfZkVVAmT/r4/EwVLet0wgENBbQxUVFc16VdqiuLgYjx8/hoeHh8a9vZSB2s6qqamBsbExqqqq0KNHD/pcpSV3hIKCAkyePJneEdAVEQEa72fz5s3Yt28f9PT0IJVKsXPnTmzatEnbQ+tS6JSQCAQCiMVi9O/fH++88w7Wrl2rcMYcGxuLCRMmoKKiQs7iwsHBAWvWrMHatWs1NPLXE4lEgtu3b9OZKgKBANOnT0doaCgCAwPlZtpSqRSPHz9GTU0NvL29lRIFoVAIPp8PHo9Hl6NSXfXqCLKiomc1mf/eUq8KJSpmZmbNxlBUVISMjAydFRHKE662thY+Pj4wMDCgbf4pdwRDQ0NYWVlBLBbD1dUVfD4fkydPxtixY/HTTz+pNC5aFZw4cQKffvop9u/fjyFDhiA5ORlr1qzBgQMHsHjxYm0Pr8ugM0Jy4MABeHt7w9LSEnfv3sWmTZuwdOlShR48x48fx9KlSyEUCuWu+/n5ITAwEHv37tXEsLsEUqkUd+7cQWRkJM6cOYOqqipMnToVoaGh8PPzw3vvvYfZs2dj6dKlHTofoPy/eDyeWoKsamtrkZiYqPbo2dZoKSGRWo1ZWFigqKgImZmZ8PDwQJ8+fTQ+vrYgSRKPHz9GdXU1fH19W/x3pirA+Hw+3n33XfB4PBAEAR8fH1y8eFFnXKdlsbe3x8aNG7Fy5Ur62ldffYVjx44hMzNTiyPrWqg12Grjxo1tPtCfPHkCV1dXrFu3jr7m4eEBAwMDrFixArt376YDnBjUg56eHsaOHYuxY8fim2++wcOHDxEREYGNGzciPz8f5ubmMDQ0hEgk6pCQ6Ovrw8bGBjY2NpBIJPQsPicnB0ZGRrSodMT/q6amBgkJCbCzs4Ozs7PWqoQ4HA6sra1hbW1N26eXlJQgOTkZJElCKpXC2dlZ6y7DLUGSJDIyMlBdXU2vRFpCT0+P/re6ePEixo8fDwMDA7x48QLW1taYNm0aNm/eDA8PDw3fgWLq6+ubbbXp6emBIAgtjahrolYhWb9+PZYsWdLqawYMGNDi9ZEjR0IikSAnJweDBw9u9nVra2uIRCJUVlbKbW3xeDyNlFJ2VdhsNvz9/dG/f39cuXIFY8eOha+vLw4dOoRPPvlELlOlIw9+DoeDfv36oV+/fpBKpfQsPiEhodksvq3v3dF8dXWjp6dHJyDm5+fj2bNn6NOnD/Lz85GTkyPnHKDtrSAqM6ayshK+vr5KTdrKy8sxe/Zs+Pj44OTJk9DX10diYiKio6O1fj9NCQ4Oxs6dO9G/f38MGTIESUlJOHDgAJYtW6btoXUpdGZrqym///47Fi1ahNLSUvTq1avZ16nD9j/++AOzZs0CADoPnDls7zwBAQFwdnbGkSNHwOFw6P3z06dP48yZM3j27BnGjx+PkJAQBAUFoVevXp22aqEa50pKSuRmv7LJehSqyldXJ1TeiZeXF3r16kXnqlDbfFSTJ2W6qEyJrSqhRISKaFamAq2yshLBwcGwtrZGVFSUzu8W1NTUYOvWrThz5gxKSkpgY2ODBQsWYNu2bTpRqt5V0AkhuXfvHh48eIDAwECYmZnh3r17WLt2LaZOnYpff/0VAFBYWIgJEybgt99+g5+fH4DG8t+YmBiEh4fD3Nwcq1evBtDoNsrQOXg8XqN1iIK87czMTDqoKz09HWPHjkVoaCiCgoKUylRpDapxjjKVJEmSFhVLS0uUlZWpLF9dXeTl5eHFixcK805aylXRZD8OlYtTWlqqtIhUV1cjNDQU5ubmOHfuHJPFwUCjE0KSmJiIjz76CJmZmRAKhXBycsJ7772HdevW0TOenJwcODk54ebNmwgICADwd0PiH3/8IdeQyGxtaQ6qt4TKVElMTMTo0aPpTBVra+tOiQrl/0WZSkokEkilUjg4OMDZ2VnntlIAIDc3Fy9fvoS3tzcsLCyUek/TfhwLCwtwuVw5J98X/DocjH2JuOdl4LBZeMvdCmvGD4C1efse6JSdfklJCXx9fZWqwqutrcXbb78NAwMDXLhwQScP1hm0h04IiTbIycnBjh07EBsbS3vwvPvuu/jXv/7V6mwwICAAcXFxctdWrFiBw4cPq3vIOg+VqUKJyoMHD+QyVezs7DolKoWFhcjMzETv3r1RW1tLR+5SppIdjdxVJVTyYntEpCkt9apIjXvh45hiCMRSSP/3idVjs9DHVB9nVvihp4ly22IdEZH6+nrMnj0bBEEgJiZGa/HNDLpLtxWSy5cv4+TJk1iwYAEGDhyI9PR0LF++HO+99x6+/vprhe8LCAjAoEGDsH37dvqaiYmJTibtaRMqUyUqKgqRkZG4c+cOvLy8aFFxcnJql6g0zVcnSRI1NTX0LL6hoQG9e/emTSU1fd4AANnZ2cjNzVVp8iLl5Lv7WjZu5gpBQP7vjM0CVgc4YcWbjm1+L5IkkZWVhaKiIvj6+iq1qhAIBJg3bx5qa2tx5coVnfg9LywsxIYNG3Dp0iXU19dj4MCBCAsLg6+vr7aH1m3ptkLSEvv378ePP/6Ily9fKnxNQEAAPD09cfDgQc0N7DWHJEnweDxER0cjMjIScXFxGDJkCC0qbfV+KJOvLmsq2dEc987w4sUL5Ofnw8fHB2Zmqrebn/LdfeRVNLT4tRH2PRC+xLfVv0NqC7KwsFBhsFdThEIhFi5cCD6fj6tXr7ZY9KJpKioq4OXlhcDAQHz44YewsrLC8+fP4ezsDGdnZ20Pr9vCCIkMW7ZsweXLl/Ho0SOFrwkICMDjx49BkiSsra0RHByMrVu3MnvGSkKSJMrLyxEdHU1nqri4uMhlqlAPRIIg8Pz5cxQVFbVrlk+dN/B4PNTU1KBXr170Ibaqq4xk/cfUJSIAMOenR8goqkHTDyubBQzvDXwwpNEensvltphySY1RWRERiURYtGgR8vLycOPGDfTu3fEIZFWyceNG3LlzB3/++ae2h9Lox8ZY0QNghIQmKysLPj4++Prrr+WMI5ty9OhRODg4wMbGBqmpqdiwYQP8/PwQFRWlwdF2Dahy2HPnziEqKgpXr16Fvb09QkJCMGPGDBw+fBgVFRUICwvr8L58Q0MDvf1VVVUFCwsLWlQ66/8lO8tvLQNeFfz+sAA7Lz9v8WvfzhkCby6Hvk+pVCrXq5Kbm0uvlpQZo0QiwbJly5CZmYmbN2/qlJ2Lu7s7Jk+ejIKCAsTFxcHW1hYfffRRq59ZVSGVSlss7mAEpQsKSXu66SkKCwsxbtw4BAQE4Oeff27Xz6M8v7KyspildSepqanBxYsXaVNJkiTxzjvv4P3334ePj0+nzQCFQiH9sKUOsSn/r/auKEmSpFdLys7yO4NYSmDN6XTcfFYGvf8Fb0kJEvN8bLBt2t9bg00DyQQCAQDA2dkZdnZ2bZ4dSSQSrFixAikpKYiNjdW5Ckiq5HjdunWYM2cO4uPj8fHHH+Pw4cNq9c6SSCR0MceOHTugr68PLpeLefPmMbsR6IJCwufzUVZW1uprBgwYQO+bv3r1CgEBAfD390d4eHi7H1Z1dXXo0aMHLl++jMmTJ3d43AyNSCQSLF26FA8ePMD69esRFxeHixcvomfPnnSmysiRIztd9tvUcNHU1JQWlbZm7VTlE4/HU+iErA4IksS9lxWIe94oJm+5WcHTTrG7QHZ2NnJycmBtbY3Kyso2e1WkUilWrVqFu3fv4tatWzqZemlgYABfX1+5XrF//vOfiI+Px71791T6s+rr65GUlIQxY8bQ1+bOnQtDQ0M4OjqiqKgI48ePxzvvvNPtVyXar5dUMZQ1hTIUFhYiMDAQPj4+CAsL69CMNzk5GQDUEpPaHfntt9+QnJyMP//8E1wuFytWrEBDQwOdqTJ37lwYGRnRmSqjR4/uUNmvgYEBbG1tYWtrSzvc8ng8ZGdnw9jYWKGLL9XIx+fzla58UhVsFgtjnC0xxrltv67c3Fzk5ubC19eXPrehzo5evXqFzMxMWFhYgMPhwNTUFAMHDsTatWvx559/4ubNmzopIkDj58zd3V3umpubGyIjI1X6c0iSRFBQELy9vWkh2b59OwQCAU6dOgUA+PLLL3H58mW888473VpEgC64IlGWwsJCBAQEwMHBAb/++qvcDJdazjftpn/x4gWOHz+OadOmoXfv3khNTcXatWthZ2fXrLeEoWMQBIHa2lqFB+sikQixsbH09heLxUJQUBBmzpyJN998s9MVWhKJBGVlZeDxeCgtLYWBgQHt/2VmZibXDa6JjJWOQHXV+/j4KPx7pHpVjh07ht27d8Pc3BwEQeDUqVN46623NDxi5XnnnXeQn58vd9i+du1aPHjwQOWOFpMmTYK7uzsOHToEAHjw4AGARh9AoNGSad26dYiIiNDZ3wVN0eVWJMpy7do1ZGVlISsrC3Z2dnJfo7RVLBbj6dOnqK+vB9A4i71+/ToOHjyIuro62NvbY9asWdiyZYvGx99VYbPZrVZnGRgYYMqUKZgyZQoOHz6MuLg4RERE4IMPPoBQKERQUBBCQkIwfvz4DlVocTgccLlccLlc2ja9pKQEiYmJ9O+Fu7u7ztqD5Ofn48WLF21WuRkZGcHe3h4bNmxAcXExTp8+DV9fX4SEhMDR0RFLly7FZ599psGRK8fatWsxevRo7Nq1C3PnzsXDhw9x9OhRHD16VGU/g9qmMjIyQkVFBX3d19cXsvNuFouFsrIyGBsbo6GhAb/88guWLl3aLc9MdCfKTMMsWbIEJEm2+B+Fo6MjSJKkLVns7e0RFxeHsrIyCAQCPH/+HPv27Wv1A/uf//wHjo6OMDIywsiRI/Hw4cNWx3X69Gm4urrCyMgIw4YNQ0xMjErutyvC4XAwYcIE/PjjjygoKEB0dDR69uyJNWvWwMnJCe+//z7Onz+PhoaW+y/agjKOHDJkCKysrGhX38zMTNy+fRsZGRkoKyvTGUvygoICZGVl0THIbUGSJLZv347z58/j/v37uH79Ovh8Pnbs2NHhrnx1M2LECJw5cwZ//PEHhg4dih07duDgwYMqi839888/kZ2dDaDx8y+VSumv6enp0duoBEFAT08PdnZ2kEgkmDt3LsrLy7uliADdeGtLE5w8eRKLFi3C4cOHMXLkSBw8eBCnT5/G06dPW8zqvnv3LsaOHYvdu3cjKCgIx48fx969e5GYmIihQ4dq4Q5eTwiCwIMHD2hTSSrFLyQkBJMnT25XmS4V+FRVVQUfHx8YGRmBIAhUVlbSlVEkScqV22ojarawsBBPnz6Ft7e3wqZNWUiSxJ49e3D48GHcvHmT+f0CsGHDBuzfvx9cLhcLFy5EfHw8qqqqcO3aNblzV6oMuKamBsHBwaivr8eYMWPwzTffAOie5cCMkKiRkSNHYsSIEfj+++8BND7g7O3tsXr1amzcuLHZ6+fNm4e6ujpcuHCBvubv7w9PT0/Gy6uDEASBxMREREREICoqCgUFBZg0aRJCQkIwderUVjNVCIKgI4Z9fHxa3CqjemFkTSVlreE1YSpJHZ5TdvVtQZIkDhw4gIMHD+LGjRvw9PRU+xhfB2pra3Hv3j2kpaXh2LFjKCwshEQiwejRozF9+nT4+vrS21ssFgtVVVVwdHTE/Pnz8eOPPwJo/J3Rpcx6TcEIiZoQiUQwMTFBREQEQkND6euLFy9GZWUlzp492+w9/fv3x7p167BmzRr62ueff47o6GikpKRoYNRdG4Ig5DJVsrKy6EyV6dOny2WqSCQSZGRk0Pnlypy3UP5flKgIBAJaVKysrNRiKllUVIQnT57QHmTKjPG7777Dvn37cOXKFYwYMULlY+oK1NbW4ujRo9i8eTOCg4Nx8eJFmJmZwdDQEIcOHUJoaChYLBYSEhLg4+MDoPuKCNCND9vVTWlpKaRSKbhcrtx1LperMCu6uLi4xdcXFxerbZzdCTabDQ8PD3h4eGD79u148uQJIiIicPjwYaxevRrjxo1DaGgoJk2ahBUrVsDPzw+bNm1SuhKMxWLB3Nwc5ubmGDhwIO3/lZOTg4yMDFhaWtLW8KowlaREZPjw4UqLyJEjR7Bnzx5cunSJEREFEASBHj16YMiQIeByuQgLC0NeXh7S0tJw7do1TJ06lZ5wUCKiqOu9u9A95ZOh28NiseDu7o5t27YhMTERjx8/xoQJExAWFgZXV1c8ePAAJiYmKCsrQ0cW7SwWC2ZmZnB2dsaoUaPg7++Pnj17Ii8vD3FxcUhMTERBQQFEIlGHxl9cXEyLiDI+WCRJIiwsDF988QXOnTuHUaNGdejnqos9e/aAxWLJrca1BbWq4HA44PP5KC0thbu7O+bNm4eff/4ZRkZGkEgkcu/pziICMEKiNqj9cR6PJ3e9tUx5a2vrdr2eQTWwWCy4uLhg7dq16NevH4YOHYpNmzbh6tWrcHV1xeTJk/H9998jPz+/Q6ICAKampnBycoK/vz/GjBmD3r1749WrV7h9+zYePXqEvLw82s6kLXg8HjIyMuDh4aG0iBw7dgybNm3C2bNnMXbs2A7dg7qIj4/HkSNH4OHhoe2hyOHk5ARzc/MWq/50IftGl2CERE0YGBjAx8cHN27coK8RBIEbN24onA2OGjVK7vVAY7+Lrs0euyrbtm0Dn8/H7du3sXXrVvz111/Izs7G3LlzERMTg6FDh2L8+PE4ePAgsrOzOywqxsbGcHBwgJ+fH9544w307dsXJSUl+Ouvv/Dw4UPk5OQoLFkuKSlBeno6hg0bhj59+rT5s0iSxKlTp7B+/XpEREQgMDCwQ2NWF7W1tVi4cCF++uknnbCpl4XL5aK+vh75+fnaHorOwxy2q5GTJ09i8eLFOHLkCPz8/HDw4EGcOnUKmZmZ4HK5WLRoEWxtbbF7924AjeW/48aNw549ezB9+nScOHECu3btYsp/NURVVRV9ztEUKlPlzJkziIqKQlxcHIYOHUpnqri4uHS65FMkEtGmkuXl5ejRowft/2Vqago+n4/U1FQMGzasxfLxloiKisKKFStw8uRJBAUFdWp86mDx4sWwtLTEN998o3NZP8+ePcP8+fNx9epVpUS7O8MIiZr5/vvvsX//fhQXF8PT0xPffvstbbEQEBAAR0dHhIeH068/ffo0tmzZgpycHLi4uGDfvn2YNm2alkbP0BIkSaKsrAxnz55FZGQkbty4gUGDBiEkJAShoaFymSodRSwWy5lKGhgYQCgUYuDAgXBwcFDq+58/fx7Lli3DsWPHMHPmzE6NRx2cOHECO3fuRHx8PIyMjHROSIDGGAJjY+Nuf5jeFoyQdDF2796NqKgoZGZmwtjYGKNHj8bevXsxePBghe8JDw/H0qVL5a4ZGhoqvWffnSFJEpWVlTh//jwiIyNx9epVODg40KIybNiwTpeElpSUIDU1Febm5qipqYGhoSG9UlHUB3Pp0iUsWrQIYWFhmDt3bqd+vjrIz8+Hr68vrl27Rp+N6KKQMCgHIyRdjClTpmD+/PkYMWIEJBIJNm/ejPT0dGRkZCi0Ow8PD8fHH3+Mp0+f0tdYLFazUmSGtqmursbFixcRGRmJy5cvg8vl0qLi7e3dblEpKytDSkoK3Nzc0K9fP9r/izKV5HA4dPNjz549oaenhxs3bmDBggU4cuSIzjrTRkdHY+bMmXKzfKlUChaLBTabDaFQyKwAXiMYIeni8Pl89O3bF3FxcQqrdcLDw7FmzRpUVlZqdnBdnLq6Oly6dAmRkZGIiYmhM1VCQ0Ph5+fX5oOyvLwcycnJtIg0hSAI2lTywoUL+O677zBs2DA8fPgQ3333Hd5//32dFBGgMcQsNzdX7trSpUvh6uqKDRs2MGeCrxlMDVsXp6qqCgDabFirra2Fg4MDCIKAt7c3du3ahSFDhmhiiF0WU1NTzJ49G7Nnz0ZDQwOuXr2KyMhIzJkzB8bGxggODkZoaGiLmSoVFRVITk6Gq6urwqwbNptN5++4uLgAAHbt2gUTExNs3LgR9+/fx6xZszBlyhSdExQzM7NmYmFqaorevXszIvIawpT/dmEIgsCaNWswZsyYVj+cgwcPxi+//IKzZ8/i2LFjIAgCo0ePRkFBgQZH27UxNjZGSEgIfvvtNxQXF+Onn36CWCzGe++9BxcXF6xevRqxsbEQi8W4du0aPv30UwwePBg2NjZKff/k5GQcPHgQ33zzDcrKyhAdHQ0zMzP8+9//VvOdMTAwW1tdmg8//BCXLl3CX3/91SxzpTXEYjHc3NywYMEC7NixQ40jZBCLxXSmSnR0NOrr69HQ0IB58+bhu+++U8rjKzExEcHBwdi6dSvWrl2rc6sPhq4PIyRdlFWrVuHs2bO4ffs2nJyc2v3+OXPmgMPh4I8//lDD6Bha4t69e5g0aRK8vb2RnZ2NmpoaTJs2DSEhIZg4cWKLKXypqamYNm0aPvvsM2zYsIEREQatwGxtdTFIksSqVatw5swZxMbGdkhEpFIp0tLSmBx6DfL48WNMmzYNu3btwu3bt5Gbm4uYmBhYW1tj06ZNcHR0xOLFixEVFYW6ujoAQEZGBoKDg/Hxxx8zIsKgVZgVSRfjo48+wvHjx3H27Fm53hELCwt6Rtu0o3779u3w9/fHwIEDUVlZif379yM6OhoJCQlwd3fXyn10NxoaGhATE4NZs2Y1+xpBEEhISKCDugoLC+Hv74/ExER8+OGH2LlzJyMiDFqFEZIuhqIHSlhYGJYsWQKgeUf92rVrERUVheLiYvTq1Qs+Pj746quv4OXlpaFRMygLQRBITU3F3r17UVRUhNjYWK1nYHSkCZaha8EICYPK+OKLL/Dll1/KXRs8eLDC/BWg0RJm69attCXM3r17GUuY14yONMEydC2YPhIGlTJkyBBcv36d/nNrdtt3797FggUL5DLqQ0NDGZPK14zLly/L/Tk8PBx9+/ZFQkKCzlnWM6gH5rCdQaVwOBxYW1vT/7Xmmnro0CFMmTIFn376Kdzc3LBjxw54e3vTGfcMryfKNsEydB0YIWFQKc+fP4eNjQ0GDBiAhQsXIi8vT+Fr7927h4kTJ8pdmzx5Mu7du6fuYTKoCWWbYBm6FszWFoPKGDlyJMLDwzF48GAUFRXhyy+/xJtvvon09HSYmZk1ez2TUd/1WLlyJdLT0/HXX39peygMGoQREgaVMXXqVPr/PTw8MHLkSDg4OODUqVN4//33tTgyBk2watUqXLhwAbdv326XkwLD6w8jJAxqo2fPnhg0aBCysrJa/DqTUd81IEkSq1evxpkzZ3Dr1q0ONcEyvN4wZySvGRKJBA8fPoRUKtX2UNqktrYWL168UNghz2TUdw1WrlyJY8eO4fjx4zAzM0NxcTGKi4sV5s4zdEFIhtcGgiBIkiTJvn37kitXriQlEgkplUq1PKq/Wb9+PXnr1i0yOzubvHPnDjlx4kSyT58+ZElJCUmSJPnee++RGzdupF9/584dksPhkF9//TX55MkT8vPPPyf19fXJtLQ0bd0CQwcA0OJ/YWFh2h4ag4ZgtrZeI6iu9RkzZiA+Pp4ORpJKpdi+fTvc3d0xd+5crdllFBQUYMGCBSgrK4OVlRXeeOMN3L9/H1ZWVgCAvLw8uS7s0aNH4/jx49iyZQs2b94MFxcXREdHM9U+rxkk09PMoG0lY1AeavXx1Vdfka6urmRtbS0ZGRlJuru7k7179yY3b96s5RFqDwcHhxZnxR999FGLrw8LC2v2WkNDQw2PmoGha8CsSF4jyP/N/KysrCASiTBq1ChUV1dj2rRp2LJlC2xsbECSJKRSKdhsttY9mDRJfHy83LlReno6Jk2ahDlz5ih8j7m5ebOcegYGhvbDCMlrhJ6eHl69eoX09HRkZ2fD398fv/32Gzw9PenXsFisVm1JuirU9hnFnj174OzsjHHjxil8D4vFYirEGBhUQPeZsr7miEQiHDlyBDNmzEBYWBjs7e2xYMECeHp6yu1Rb9q0CatWrcLdu3e1OFrtIhKJcOzYMSxbtqzVVQaVU29vb4+QkBA8fvxYg6NkYOg6MEKi4xAEgbi4OIwfPx47duzA1KlTkZWVBVtbW9pVlyAIAEBZWRnGjRuHFy9eYMqUKdoctlaJjo5GZWUlbZvfEkxOvWL+85//wNHREUZGRhg5ciQePnyo7SEx6DiMjbyOk5eXh+DgYNja2mLfvn10RdOkSZNgZmaG33//nQ6sIggCbDYbq1atgkAgwM8//wyJRNLttromT54MAwMDnD9/Xun3MDn1jZw8eRKLFi3C4cOHMXLkSBw8eBCnT5/G06dP0bdvX20Pj0FHYYTkNUEgEMDIyAhisRj6+vr4/PPPcejQIVRWVtKvIUkSLBYLPXv2xNWrV+Hn50eLS3chNzcXAwYMQFRUFEJCQtr1XianvtEvbcSIEbQDM0EQsLe3x+rVq7Fx40Ytj45BV+k+T5jXFIIgQJIkjIyMQJIk9PX1ATSmHI4ePRoZGRkAGntJWCwWEhISQBAE/Pz8AKBbiQjQmATZt29fTJ8+vV3vY3LqG8+WEhIS5ByZ2Ww2Jk6cyDgyM7RK99rzeA2RFQLZg+PAwEAEBgbSB+1Uc+IPP/yA4OBgAOh221oEQSAsLAyLFy9udt/K5NTn5ubiH//4hzaGrhOUlpZCKpW26MjcWsolA0P3ecp0MSiRoMQlLy8P/fv3x6VLlxATEwOg+/VFXL9+HXl5eVi2bFmzrzXtqq+oqMDy5cvlcurv3r0Ld3d3TQ6ZgaFLwJyRdAH4fD7+8Y9/IDExEYWFhcjMzMSgQYO0PSyG1wyRSAQTExNEREQgNDSUvr548WJUVlbi7Nmz2hscg07TvTbQuyhWVlY4e/YsLly4gE8//RQLFy7Ef//7X20Pq8ty+/ZtBAcHw8bGBiwWC9HR0XJfJ0kS27ZtQ79+/WBsbIyJEyfi+fPnbX5fbZfdGhgYwMfHR86RmSAI3Lhxg3FkZmgdbfiyMKiWlhyAGxoatDCS7kFMTAz5r3/9i4yKiiIBkGfOnJH7+p49e0gLCwsyOjqaTElJIWfMmEE6OTm1+m9y4sQJ0sDAgPzll1/Ix48fk8uXLyd79uxJ8ng8Nd9N83EYGhqS4eHhZEZGBvnBBx+QPXv2JIuLizU6DobXC0ZIuhBSqZSUSCTaHka3oqmQEARBWltbk/v376evVVZWkoaGhuQff/yh8Pv4+fmRK1eupP8slUpJGxsbcvfu3WoZd2t89913ZP/+/UkDAwPSz8+PvH//vsbHwPB6wWxtdSHYbDZdvcWgHbKzs1FcXCxXQmthYYGRI0cqLKHVtbLbVatWITc3F0KhEA8ePMDIkSM1PgaG1wtGSBgYVEhxcTEAtFhCS32tKa2V3Sp6DwODLsEICQMDAwNDp2CEhIFBhVC29DweT+46j8dTaFnfp08f6Onptes9DAy6BCMkDAwqxMnJCdbW1nIltNXV1Xjw4IHCElqm7JbhdYfpbGdgaCe1tbXIysqi/5ydnY3k5GRYWlqif//+WLNmDb766iu4uLjAyckJW7duhY2NjVyT34QJEzBz5kysWrUKALBu3TosXrwYvr6+8PPzw8GDB1FXV4elS5dq+vYYGNoNIyQMDO3k0aNHCAwMpP+8bt06AI0d4OHh4fjss89QV1eHDz74AJWVlXjjjTdw+fJlGBkZ0e958eIFSktL6T/PmzcPfD4f27ZtQ3FxMTw9PXH58uVmB/AMDLoIY5HCwMDAwNApmDMSBgYGBoZOwQgJAwMDA0OnYISEgYGBgaFTMELCwMDAwNApGCFhYGBgYOgUjJAwMDAwMHQKRkgYGBgYGDoFIyQMDAwMDJ2CERIGBgYGhk7BCAkDAwMDQ6dghISBgYGBoVP8fysCniy1Vo+FAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_basics_doc_20_2.png" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -443,8 +436,6 @@ "\n", "===========================Polynomial Regression===============================================\n", "\n", - "Warning: solution.pickle already exists; previous file will be overwritten.\n", - "\n", "No iterations will be run.\n", "Default parameter estimation method is used.\n", "Parameter estimation method: pyomo \n", @@ -644,16 +635,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABjMAAAN5CAYAAABNP8n+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7PElEQVR4nOzdeVxUhd7H8e8MIiMKGKKgJoo7rpmKmfuSoqQttppL3TQrl8xbueRuZrZZVmq3pzQzb7Zrau5bpeVSqSmammsqiiakBAJznj+4nhoBhXHgDPB5v1687vzOOXPmOzyvJ+fwnXOOzTAMQwAAAAAAAAAAAF7KbnUAAAAAAAAAAACAK6HMAAAAAAAAAAAAXo0yAwAAAAAAAAAAeDXKDAAAAAAAAAAA4NUoMwAAAAAAAAAAgFejzAAAAAAAAAAAAF6NMgMAAAAAAAAAAHg1ygwAAAAAAAAAAODVKDMAAAAAAAAAAIBXo8wAAOQ5m82m8ePHWx3DtG7dOtlsNq1bt87qKAAAAACyMX78eNlsthxtmx/HHG3btlXbtm09tr85c+bIZrPp0KFDHtsnABRmlBkAUERd+uB86cfhcKhmzZoaNGiQ4uLi8vS1N27cqPHjx+vcuXN5+jp5YenSpV5VzAAAAAB57fJjh2LFiqlixYp68MEH9fvvv1sdr0iaP3++XnvtNatjAEC+oswAgCJu4sSJ+uCDD/Tmm2/q5ptv1syZM9W8eXMlJSV57DX++usvjR492pw3btyoCRMmFNgyY8KECVbHAAAAAPLdpWOHWbNmqUuXLpo3b57atGmj5OTkPHm90aNH66+//sqTfRd0lBkAiqJiVgcAAFirS5cuatKkiSSpX79+KlOmjF599VUtXLhQ999/v9v7dTqdunjxohwOhxwOh6fiAgAAALDI5ccOISEhmjp1qhYtWqR77rnH469XrFgxFSvGn64AABk4MwMA4KJ9+/aSpIMHD0qSXn75Zd18880qU6aMSpQoocaNG+vTTz/N9DybzaZBgwbpww8/VN26deXn56dly5aZ6y5dmmn8+PF6+umnJUkRERHmqeqHDh1SmzZt1LBhwyxz1apVS507d75i9ipVqujWW2/VihUrdMMNN8jhcKhOnTr6/PPPc/TeP/nkEzVu3FglSpRQSEiIevXq5XLa/IMPPqi33nrLfE+XfgAAAICiqFWrVpKkAwcOuCzfs2eP7rrrLgUHB8vhcKhJkyZatGiRyzapqamaMGGCatSoIYfDoTJlyqhly5ZauXKluU1W98xISUnRk08+qbJlyyogIEDdu3fXsWPHMmV78MEHVaVKlUzLs9rn7Nmz1b59e5UrV05+fn6qU6eOZs6cmavfxT/989ioVq1acjgcaty4sTZs2JCj58+YMcM8pqpQoYIGDhzoclZ727ZttWTJEh0+fNg8JsnqvQJAYUO9DQBwcelApEyZMpKk119/Xd27d9cDDzygixcv6qOPPtLdd9+txYsXKyYmxuW5a9as0ccff6xBgwYpJCQkyw/Ud955p3799Vf997//1bRp0xQSEiJJKlu2rHr37q3+/fvrl19+Ub169cznbNmyRb/++qvLpaqys2/fPt1777169NFH1bdvX82ePVt33323li1bpltuuSXb582ZM0cPPfSQmjZtqilTpiguLk6vv/66vvvuO/30008qXbq0BgwYoOPHj2vlypX64IMPrpoFAAAAKMwu3bj6uuuuM5ft2rVLLVq0UMWKFTVixAiVLFlSH3/8sW6//XZ99tlnuuOOOyRllApTpkxRv379FBUVpcTERG3dulU//vjjFT+39+vXT/PmzVPPnj118803a82aNZmOS3Jr5syZqlu3rrp3765ixYrpq6++0uOPPy6n06mBAwe6tc/169drwYIFGjJkiPz8/DRjxgxFR0dr8+bNLsc6lxs/frwmTJigjh076rHHHtPevXs1c+ZMbdmyRd999518fX317LPPKiEhQceOHdO0adMkSaVKlXIrJwAUKAYAoEiaPXu2IclYtWqVcfr0aePo0aPGRx99ZJQpU8YoUaKEcezYMcMwDCMpKcnleRcvXjTq1atntG/f3mW5JMNutxu7du3K9FqSjHHjxpnzSy+9ZEgyDh486LLduXPnDIfDYQwfPtxl+ZAhQ4ySJUsa58+fv+J7qly5siHJ+Oyzz8xlCQkJRvny5Y1GjRqZy9auXWtIMtauXWu+p3Llyhn16tUz/vrrL3O7xYsXG5KMsWPHmssGDhxo8M8nAAAAipKsjh0+/fRTo2zZsoafn59x9OhRc9sOHToY9evXN5KTk81lTqfTuPnmm40aNWqYyxo2bGjExMRc8XXHjRvn8tn7559/NiQZjz/+uMt2PXv2zHTM0bdvX6Ny5cpX3adhZD7mMQzD6Ny5s1G1alWXZW3atDHatGlzxcyGkXH8I8nYunWruezw4cOGw+Ew7rjjDnPZpd/rpeOiU6dOGcWLFzc6depkpKenm9u9+eabhiTjvffeM5fFxMRk+f4AoDDjMlMAUMR17NhRZcuWVaVKlXTfffepVKlS+uKLL1SxYkVJUokSJcxt//jjDyUkJKhVq1b68ccfM+2rTZs2qlOnjttZgoKCdNttt+m///2vDMOQJKWnp2vBggW6/fbbVbJkyavuo0KFCua3vSQpMDBQffr00U8//aSTJ09m+ZytW7fq1KlTevzxx13u7xETE6PatWtryZIlbr8nAAAAoLD457HDXXfdpZIlS2rRokW6/vrrJUlnz57VmjVrdM899+jPP/9UfHy84uPjdebMGXXu3Fn79u0zL+NaunRp7dq1S/v27cvx6y9dulSSNGTIEJflQ4cOvab39c9jnoSEBMXHx6tNmzb67bfflJCQ4NY+mzdvrsaNG5tzeHi4brvtNi1fvlzp6elZPmfVqlW6ePGihg4dKrv97z/Z9e/fX4GBgRyXACjyuMwUABRxb731lmrWrKlixYopNDRUtWrVcvngvHjxYj333HP6+eeflZKSYi7P6l4RERER15ynT58+WrBggb755hu1bt1aq1atUlxcnHr37p2j51evXj1Ttpo1a0rKOA0+LCws03MOHz4sKeO+HJerXbu2vv3229y+DQAAAKDQuXTskJCQoPfee08bNmyQn5+fuX7//v0yDENjxozRmDFjstzHqVOnVLFiRU2cOFG33XabatasqXr16ik6Olq9e/dWgwYNsn39w4cPy263q1q1ai7Ls/ocnxvfffedxo0bp02bNikpKcllXUJCgoKCgnK9zxo1amRaVrNmTSUlJen06dO5Oi4pXry4qlataq4HgKKKMgMAirioqCg1adIky3XffPONunfvrtatW2vGjBkqX768fH19NXv2bM2fPz/T9v/8RpO7OnfurNDQUM2bN0+tW7fWvHnzFBYWpo4dO17zvgEAAAC475/HDrfffrtatmypnj17au/evSpVqpScTqck6amnnlLnzp2z3Ef16tUlSa1bt9aBAwe0cOFCrVixQv/3f/+nadOmadasWerXr981Z83qy1eSMp0VceDAAXXo0EG1a9fWq6++qkqVKql48eJaunSppk2bZr4nAID1KDMAANn67LPP5HA4tHz5cpdvXM2ePfua9pvdgYUk+fj4qGfPnpozZ46mTp2qL7/8Uv3795ePj0+O9n3p22D/fI1ff/1VkrK8IbkkVa5cWZK0d+9etW/f3mXd3r17zfVXyw4AAAAUFT4+PpoyZYratWunN998UyNGjFDVqlUlSb6+vjn6MlJwcLAeeughPfTQQzp//rxat26t8ePHZ1tmVK5cWU6nUwcOHHA5e2Hv3r2Ztr3uuut07ty5TMsvP7vhq6++UkpKihYtWqTw8HBz+dq1a6+a/0qyunzWr7/+Kn9/f5UtWzbL5/zzuOTS71KSLl68qIMHD7r8TjkuAVAUcc8MAEC2fHx8ZLPZXL69dOjQIX355ZfXtN9L977I6uBCknr37q0//vhDAwYM0Pnz59WrV68c7/v48eP64osvzDkxMVFz587VDTfckOWp3JLUpEkTlStXTrNmzXK5lNbXX3+t2NhYxcTE5Dg7AAAAUFS0bdtWUVFReu2115ScnKxy5cqpbdu2evvtt3XixIlM258+fdp8fObMGZd1pUqVUvXq1V0+j1+uS5cukqTp06e7LH/ttdcybVutWjUlJCRox44d5rITJ064HCtIMr80demefVLGpaWu9QtcmzZtcrnP4NGjR7Vw4UJ16tQp2y9qdezYUcWLF9f06dNd8rz77rtKSEjIdFzi7v08AKCg4swMAEC2YmJi9Oqrryo6Olo9e/bUqVOn9NZbb6l69eouBwW5delGeM8++6zuu+8++fr6qlu3bmZR0KhRI9WrV0+ffPKJIiMjdeONN+Z43zVr1tTDDz+sLVu2KDQ0VO+9957i4uKueDDi6+urqVOn6qGHHlKbNm10//33Ky4uTq+//rqqVKmiJ598MlP2IUOGqHPnzvLx8dF9993nzq8BAAAAKPCefvpp3X333ZozZ44effRRvfXWW2rZsqXq16+v/v37q2rVqoqLi9OmTZt07Ngxbd++XZJUp04dtW3bVo0bN1ZwcLC2bt2qTz/9VIMGDcr2tW644Qbdf//9mjFjhhISEnTzzTdr9erV2r9/f6Zt77vvPg0fPlx33HGHhgwZoqSkJM2cOVM1a9Z0KRk6deqk4sWLq1u3buaXqd555x2VK1cuy0Imp+rVq6fOnTtryJAh8vPz04wZMyRJEyZMyPY5ZcuW1ciRIzVhwgRFR0ere/fu2rt3r2bMmKGmTZu6fMmrcePGWrBggYYNG6amTZuqVKlS6tatm9t5AaBAMAAARdLs2bMNScaWLVuuuN27775r1KhRw/Dz8zNq165tzJ492xg3bpxx+T8hkoyBAwdmuQ9Jxrhx41yWTZo0yahYsaJht9sNScbBgwdd1r/44ouGJOP555/P8XuqXLmyERMTYyxfvtxo0KCBmfmTTz5x2W7t2rWGJGPt2rUuyxcsWGA0atTI8PPzM4KDg40HHnjAOHbsmMs2aWlpxuDBg42yZcsaNpst0+8BAAAAKGyudOyQnp5uVKtWzahWrZqRlpZmGIZhHDhwwOjTp48RFhZm+Pr6GhUrVjRuvfVW49NPPzWf99xzzxlRUVFG6dKljRIlShi1a9c2Jk+ebFy8eNHcJqvjjr/++ssYMmSIUaZMGaNkyZJGt27djKNHj2Z5zLFixQqjXr16RvHixY1atWoZ8+bNy3KfixYtMho0aGA4HA6jSpUqxtSpU4333nsv03FKmzZtjDZt2lz193Xp2GjevHnmsVSjRo0yHX9c+r1efiz05ptvGrVr1zZ8fX2N0NBQ47HHHjP++OMPl23Onz9v9OzZ0yhdurQhyahcufJVcwFAQWczjH+ctwYAgJd4/fXX9eSTT+rQoUMu1669kipVqqhevXpavHhxHqcDAAAAgKzZbDYNHDhQb775ptVRAKBQ4Z4ZAACvYxiG3n33XbVp0ybHRQYAAAAAAAAKL+6ZAQDwGhcuXNCiRYu0du1a7dy5UwsXLrQ6EgAAAAAAALwAZQYAwGucPn1aPXv2VOnSpTVq1Ch1797d6kgAAAAAAADwAtwzAwAAAAAAAAAAeDXumQEAAAAAAAAAALwal5nKgtPp1PHjxxUQECCbzWZ1HAAAAMAyhmHozz//VIUKFWS3812oa8FxBgAAAJDBneMMyowsHD9+XJUqVbI6BgAAAOA1jh49quuvv97qGAUaxxkAAACAq9wcZ1BmZCEgIEBSxi8yMDDQ4jQAAACAdRITE1WpUiXzMzLcx3EGAAAAkMGd4wzKjCxcOuU7MDCQgwwAAABA4rJIHsBxBgAAAOAqN8cZXPQWAAAAAAAAAAB4NcoMAAAAAAAAAADg1SgzAAAAAAAAAACAV6PMAAAAAAAAAAAAXo0yAwAAAAAAAAAAeDXKDAAAAAAAAAAA4NW8qsyYMmWKmjZtqoCAAJUrV06333679u7d67JN27ZtZbPZXH4effRRl22OHDmimJgY+fv7q1y5cnr66aeVlpaWn28FAAAAAAAAAAB4SDGrA/zT+vXrNXDgQDVt2lRpaWkaNWqUOnXqpN27d6tkyZLmdv3799fEiRPN2d/f33ycnp6umJgYhYWFaePGjTpx4oT69OkjX19fPf/88/n6fgAAAAAAAAAAwLXzqjJj2bJlLvOcOXNUrlw5bdu2Ta1btzaX+/v7KywsLMt9rFixQrt379aqVasUGhqqG264QZMmTdLw4cM1fvx4FS9ePNNzUlJSlJKSYs6JiYkeekcAAAAAAAAAAOBaedVlpi6XkJAgSQoODnZZ/uGHHyokJET16tXTyJEjlZSUZK7btGmT6tevr9DQUHNZ586dlZiYqF27dmX5OlOmTFFQUJD5U6lSpTx4NwAAAAAAAAAAwB1edWbGPzmdTg0dOlQtWrRQvXr1zOU9e/ZU5cqVVaFCBe3YsUPDhw/X3r179fnnn0uSTp486VJkSDLnkydPZvlaI0eO1LBhw8w5MTGRQgMAAAAAAAAAAC/htWXGwIED9csvv+jbb791Wf7II4+Yj+vXr6/y5curQ4cOOnDggKpVq+bWa/n5+cnPz++a8gIAAAAAAAAAgLzhlZeZGjRokBYvXqy1a9fq+uuvv+K2zZo1kyTt379fkhQWFqa4uDiXbS7N2d1nAwAAAAAAAAAAeC+vKjMMw9CgQYP0xRdfaM2aNYqIiLjqc37++WdJUvny5SVJzZs3186dO3Xq1Clzm5UrVyowMFB16tTJk9wAAAAAAAAAACDveNVlpgYOHKj58+dr4cKFCggIMO9xERQUpBIlSujAgQOaP3++unbtqjJlymjHjh168skn1bp1azVo0ECS1KlTJ9WpU0e9e/fWiy++qJMnT2r06NEaOHAgl5ICAAAAAAAAAKAA8qozM2bOnKmEhAS1bdtW5cuXN38WLFggSSpevLhWrVqlTp06qXbt2vr3v/+tHj166KuvvjL34ePjo8WLF8vHx0fNmzdXr1691KdPH02cONGqtwUAAAAAAAAAAK6BV52ZYRjGFddXqlRJ69evv+p+KleurKVLl3oqFgAAAAAAAAAAsJBXnZkBAAAAAAAAAABwOcoMAAAAAAAAAADg1SgzAAAAAAAAAACAV6PMAAAAAAAAAAAAXo0yAwAAAAAAAAAAeDXKDAAAAAAAAAAA4NUoMwAAAAAAAAAAgFejzAAAAAAAAAAAAF6NMgMAAAAAAAAAAHg1ygwAAAAAAAAAAODVKDMAAAAAAAAAAIBXo8wAAAAAAAAAAABerZjVAQAAAAAARU/ykWSlxqdmu943xFeOcEeRzQMAAABXlBkAAAAAgHyVfCRZmyM3y5nkzHYbu79dUbFR+VIgeFseAAAAZEaZAQAAAADIV6nxqXImORU5L1L+kf6Z1ifFJim2V6xS41PzpTzwtjwAAADIjDIDAAAA8GI7jyUovIy/gkr4Wh0F8Dj/SH8F3BhgdQyTt+UBAADA3ygzAAAAAC9Vf/xy/Zmcppj65fXWAzdaHQcAAAAALGO3OgAAAACAzO59e5P+TE6zOgYAAAAAeAXOzAAAAAC8zJgvf9EPB8+aM2dloDBLPpKs1PhUl2VJsUnm//qG+HKfCgAAAFBmAAAAAN5k9ncH9cH3h835wPNdLUwD5K2LJy7qp1Y/yZnkzHJ9bK9Y2f3tioqNotAAAAAo4igzAAAAAC+xcnecJny125xjJ0bLx26zMBGQt/786U85k5yKnBcp/0j/TOuTYpMU2ytWqfGp+VJmXDojJKfLAQAAkH8oMwAAAAAvsOPYOfWfu9WctzzbUSWK+1iYCMg7viG+svvbdWjMIUmSf6S/Am4MsDxPbK/YbLex+9vlG+Kbj6kAAADwT5QZAAAAgMV+P/eXur/5nTmvfLK1ygb4WZgIyFuOcIeiYqOU8E3CFQuE/M5z+b07/ol7dwAAAFiLMgMAAACwUGJyqlq8sMacP+zXTDVCrfuGOpBfHOEOpUZmXx7kN0e4g7ICAADAi9mtDgAAAAAUVanpTjUYv8KcX7yrgVpUD7EwEQAAAAB4J8oMAAAAwAKGYajGs1+b86B21XVPk0oWJgIAAAAA78VlpgAAAAAL1B233HwcXTdMT3WuZWEawFpJsUm5Wg4AAICihzIDAAAAyGd3z9qopIvpkqTKZfw1q3djixMB1vAN8ZXd337Fm4Db/e3yDfHNx1QAAADwRpQZAAAAQD4a9cVObTn0hzmvf7qdhWkAaznCHYqKjVJqfPY3AvcN8eXG3AAAAKDMAAAAAPLL/33zm+b/cMScf3u+q4VpAO/gCHdQVgAAAOCquAE4AAAAkA+W7zqp55b8fSmdPZOiZbfbLEwEAAAAAAUHZQYAAACQx7YfPacBH2wz562jO8rh62NhIgAAAAAoWCgzAAAAgDx09GySbnvrO3NeNay1Qkr5WZgIAAAAAAoeygwAAAAgjyT8lapWL6415/n9m6l6uQALEwEAAABAwUSZAQAAAOSBi2lONZywwpxfubuhbq4WYmEiAAAAACi4KDMAAAAADzMMQzVHf23OQ9pXV4/G11uYCAAAAAAKNsoMAAAAwMNqj1lmPu5aP0zDOtWyMA0AAAAAFHyUGQAAAIAH3THjO6WkOSVJVUNKasYDjS1OBAAAAAAFH2UGAAAA4CEjP9+hn46cM+c1T7W1LAsAAAAAFCaUGQAAAIAHvLPhN/1381Fz/u35rhamAQAAAIDChTIDAAAAuEbLfjmhyUtjzXnPpGjZ7TYLEwEAAABA4UKZAQAAAFyDn478oUfn/WjO20Z3lMPXx8JEAAAAAFD4UGYAAAAAbjp6Nkl3zNhozqv/3UZlSvlZmAgAAAAACqdiVgcAAAAACqKEpFS1enGtOX/0yE2qVraUZ1/EmS4d3iidj5NKhUqVb5bsnPUBAAAAoOihzAAAAABy6WKaUw0nrjDnafc21E1Vy3j2RXYvkpYNlxKP/70ssIIUPVWq092zrwUAAAAAXo7LTAEAAAC5YBiGao7+2pyHdqyhOxpd79kX2b1I+riPa5EhSYknMpbvXuTZ1wMAAAAAL0eZAQAAAORCjWf/LjJubVBeQzvW9OwLONMzzsiQkcXK/y1bNiJjOwAAAAAoIigzAAAAgBy67c1vlebMKBSqlyulN3ve6PkXObwx8xkZLgwp8feM7QAAAACgiKDMAAAAAHLgmU+3a/uxBHNeNaxN3rzQ+TjPbgcAAAAAhQBlBgAAAHAVs9Yf0Mdbj5nzb893zbsXKxXq2e0AAAAAoBCgzAAAAACuYMmOE3rh6z3mvGdStOx2W969YOWbpcAKkrJ7DZsUWDFjOwAAAAAoIigzAAAAgGz8eOQPDZz/49/zmFvk8PXJ2xe1+0jRU/83XF5o/G+OfiFjOwAAAAAoIigzAAAAgCwcOZOkO2f8fZPtNf9uo+CSxfPnxet0l+6ZKwWWd10eWCFjeZ3u+ZMDAAAAALxEMasDAAAAAN7mXNJFtX5prTl/PKC5qpYtlb8h6nSXasdIhzdm3Oy7VGjGpaU4IwMAAABAEUSZAQAAAPxDSlq6bpi40pxfv+8GRUUEWxPG7iNFtLLmtQEAAADAi3CZKQAAAOB/DMNQrdHLzHnYLTV12w0VLUwEAAAAAJAoMwAAAABT1VFLzce33VBBQzrUsDANAAAAAOASygwAAABA0q1vfCPDyHhcOyxAr9/XyNpAAAAAAAATZQYAAACKvKc+2a5ffk8052VDW1uYBgAAAABwOcoMAAAAFGkz1u3Xp9uOmfPBKV0tTAMAAAAAyAplBgAAAIqsxTuO68Vle815z6Ro2Ww2CxMBAAAAALJCmQEAAIAiadvhsxo0/ydz/mnMLXL4+liYCAAAAACQHcoMAAAAFDmHz1xQj5mbzHntU211XcniFiYCAAAAAFwJZQYAAACKlHNJF9XmpXXm/OmjzRURUtK6QAAAAACAq6LMAAAAQJGRkpauGyauNOfp9zdSkyrBFiYCAAAAAOQEZQYAAACKBMMwVGv0MnN+qlNNdW9YwcJEAAAAAICcoswAAABAkRAxcqn5+M5GFTWofQ0L0wAAAAAAcoMyAwAAAIVe19e/MR9Hlg/Uq/feYF0YAAAAAECuUWYAAACgUBu24GftPpFozl8/0crCNAAAAAAAd1BmAAAAoNB6c80+ff7T7+Z8cEpXC9MAAAAAANxFmQEAAIBCadH243p5xa/mvPe5aNlsNgsTwZtt2LBB3bp1U4UKFWSz2fTll1+6rH/wwQdls9lcfqKjo60JCwAAABRBlBkAAAAodLYcOqsh//3JnH8ee4v8ivlYmAje7sKFC2rYsKHeeuutbLeJjo7WiRMnzJ///ve/+ZgQAAAAKNqKWR0AAAAA8KSD8Rd096xN5rz+6bYq7V/cwkQoCLp06aIuXbpccRs/Pz+FhYXleJ8pKSlKSUkx58TExCtsDQAAAOBKODMDAAAAhcbZCxfV7uV15vzZY81VuUxJ6wKhUFm3bp3KlSunWrVq6bHHHtOZM2euuP2UKVMUFBRk/lSqVCmfkgIAAACFD2UGAAAACoXk1HTdOGmlOb/Zs5EaVw62MBEKk+joaM2dO1erV6/W1KlTtX79enXp0kXp6enZPmfkyJFKSEgwf44ePZqPiQEAAIDChctMAQAAoMAzDEO1xywz52eia+nWBhUsTITC5r777jMf169fXw0aNFC1atW0bt06dejQIcvn+Pn5yc/PL78iAgAAAIUaZ2YAAACgwIsYudR8fFfj6/V42+oWpkFRULVqVYWEhGj//v1WRwEAAACKBMoMAAAAFGidp20wH9evGKSX725oYRoUFceOHdOZM2dUvnx5q6MAAAAARQKXmQIAAECB9cRHP2lv3J+SJJtN+mpwS4sToaA6f/68y1kWBw8e1M8//6zg4GAFBwdrwoQJ6tGjh8LCwnTgwAE988wzql69ujp37mxhagAAAKDooMwAAABAgTR99T4t/Pm4Of/2fFcL06Cg27p1q9q1a2fOw4YNkyT17dtXM2fO1I4dO/T+++/r3LlzqlChgjp16qRJkyZxTwwAAAAgn1BmAAAAoMBZ+PPvenXlr+b863NdZLPZLEyEgq5t27YyDCPb9cuXL8/HNAAAAAAuxz0zAAAAUKBsPnhWT3z0szlvH9tJxYvxsRYAAAAACjOO+gAAAFBg/Hb6vO55e5M5b3i6nYL8fS1MBAAAAADID5QZAAAAKBDOXrio9q+sN+fPHrtZ4WX8LUwEAAAAAMgvlBkAAADwesmp6bpx0kpznvHAjWpc+ToLEwEAAAAA8hNlBgAAALya02mo9phl5jyyS211rV/ewkQAAAAAgPxGmQEAAACvVnXUUvPxvU0qaUCbahamAQAAAABYgTIDAAAAXqvDK+vMxw0rldbUuxpYFwYAAAAAYBnKDAAAAHilQfN/1IHTFyRJxew2LRzYwuJEAAAAAACrUGYAAADA67y26lct3nHCnPdN7mJhGgAAAACA1SgzAAAA4FU+//GYXlu1z5x/fa6LbDabhYkAAAAAAFajzAAAAIDX+P63Mxr28XZz3j6uk4oX4yMrAAAAABR1HBkCAADAKxw4fV73/ed7c/7mmXYKKuFrYSIAAAAAgLegzAAAAIDlzpxPUYdX1pvzF4/frErB/hYmAgAAAAB4E8oMAAAAWCo5NV2Nn1tlzrN63ahG4ddZmAgAAAAA4G0oMwAAAGAZp9NQ7THLzPnZrpGKrlfewkQAAAAAAG9EmQEAAADLVB211Hx8f1Ql9W9d1cI0AAAAAABvRZkBAAAAS7R7eZ35uFF4aU25s4F1YQAAAAAAXo0yAwAAAPnu8Q+36WD8BUlS8WJ2ffF4C4sTAQAAAAC8GWUGAAAA8tWrK/Zq6c6T5rx3UrSFaQAAAAAABQFlBgAAAPLNZ9uOafqa/ea8b3IX2Ww2CxMBAAAAAAoCygwAAADki40H4vXvT7ab847xneTrw8dRAAAAAMDVcfQIAACAPLf/1J/q+c4P5vzNM+0U6PC1MBEAAAAAoCChzAAAAECeij+foo6vbjDnhQNbqFKwv4WJAAAAAAAFDWUGAAAA8sxfF9PV5LlV5vx278ZqWKm0dYEAAAAAAAUSZQYAAADyhNNpKHLsMnMeHROpznXDLEwEAAAAACioKDMAAACQJ6qOWmo+fqBZuPq1qmphGgAAAABAQUaZAQAAAI9r/eJa83FUlWBNvqO+hWkAAAAAAAUdZQYAAAA8asAHW3XkbJIkyb+4jz5+tLnFiQAAAAAABR1lBgAAADzm5eV7tXxXnDnvmtDZwjQAAAAAgMKCMgMAAAAe8fHWo3pz7X5z3je5i2w2m4WJAAAAAACFBWUGAAAArtnG/fF65tMd5rxjfCf5+vBREwAAAADgGRxhAgAA4Jrsi/tTPf/vB3P+bkR7BTp8LUwEAAAAAChsKDMAAADgttN/puiWaRvM+atBLVWxdAkLEwEAAAAACiPKDAAAALjlr4vpajp5lTm/06eJ6l8fZGEiAAAAAEBhRZkBAACAXEt3Goocu8ycx3Wro1vqhFqYCAAAAABQmFFmAAAAINeqjVpqPu59U2U91CLCwjQAAAAAgMKOMgMAAAC50nLqGvNxs4hgTbq9noVpAAAAAABFAWUGAAAAcqz/3K069sdfkqQAv2JaMKC5xYkAAAAAAEUBZQYAAAByZOqyPVq5O86cd4zvZGEaAAAAAEBRQpkBAACAq1qw5Yhmrjtgzvsnd5HNZrMwEQAAAACgKKHMAAAAwBV9s++0hn+205x3ju+kYj58jAQAAAAA5B+OQgEAAJCtvSf/VO93N5vzxhHtFeDwtTARAAAAAKAooswAAABAlk79mazOr20w58WDW6pC6RIWJgIAAAAAFFWUGQAAAMgk6WKaoiavNud3+zZRvYpBFiYCAAAAABRllBkAAABwke40VGfscnMe362OOkSGWpgIAAAAAFDUUWYAAADARbVRS83HD95cRQ+2iLAwDQAAAAAAlBkAAAD4h+ZT/r601M3Vymh897oWpgEAAAAAIANlBgAAACRJD8/ZohMJyZKk0v6+mt//JosTAQAAAACQgTIDAAAAmrI0Vqv3nDLnn8bcYmEaAAAAAABcUWYAAAAUcf/dfERvb/jNnPdP7iKbzWZhIgAAAAAAXFFmAAAAFGEbfj2tkZ/vNOdfJnRWMR8+IgIAAAAAvAtHqgAAAEXUnpOJ6vPeZnPeNLK9SvkVszARAAAAAABZo8wAAAAoguISkxX92jfmvGRIS5UPKmFhIgAAAAAAskeZAQAAUMRcSElTs+dXm/N7DzZR3QpBFiYCAAAAAODKKDMAAACKkHSnobrjlpvzpNvqqn3tUAsTAQAAAABwdZQZAAAARUi1UUvNx/9qEaHezatYFwYAAAAAgByizAAAACgioiavMh+3qhGisd3qWJgGAAAAAICco8wAAAAoAvq+t1mn/kyRJJUpWVwfPNzM4kQAAAAAAOQcZQYAAEAhN3nJbq3/9bQ5bx3d0cI0AAAAAADknleVGVOmTFHTpk0VEBCgcuXK6fbbb9fevXtdtklOTtbAgQNVpkwZlSpVSj169FBcXJzLNkeOHFFMTIz8/f1Vrlw5Pf3000pLS8vPtwIAAOAVPvzhsN755qA575/cRTabzcJEAAAAAADknleVGevXr9fAgQP1/fffa+XKlUpNTVWnTp104cIFc5snn3xSX331lT755BOtX79ex48f15133mmuT09PV0xMjC5evKiNGzfq/fff15w5czR27Fgr3hIAAIBl1u09pWe/+MWcf5nQWcV8vOrjHwAAAAAAOWIzDMOwOkR2Tp8+rXLlymn9+vVq3bq1EhISVLZsWc2fP1933XWXJGnPnj2KjIzUpk2bdNNNN+nrr7/WrbfequPHjys0NFSSNGvWLA0fPlynT59W8eLFM71OSkqKUlJSzDkxMVGVKlVSQkKCAgMD8+fNAgAAeNDu44nqOv0bc/5+ZAeFBTksTISCKjExUUFBQXw29gB+lwAAAEAGdz4be/VX8xISEiRJwcHBkqRt27YpNTVVHTv+fZ3n2rVrKzw8XJs2bZIkbdq0SfXr1zeLDEnq3LmzEhMTtWvXrixfZ8qUKQoKCjJ/KlWqlFdvCQAAIM+dTEh2KTKWDmlFkQEAAAAAKNC8tsxwOp0aOnSoWrRooXr16kmSTp48qeLFi6t06dIu24aGhurkyZPmNv8sMi6tv7QuKyNHjlRCQoL5c/ToUQ+/GwAAgPxxISVNN01Zbc5zHmqqOhX4BjgAAAAAoGArZnWA7AwcOFC//PKLvv322zx/LT8/P/n5+eX56wAAAOSltHSn6o5bbs6T76intrXKWZgIAAAAAADP8MozMwYNGqTFixdr7dq1uv76683lYWFhunjxos6dO+eyfVxcnMLCwsxt4uLiMq2/tA4AAKAwMgxD1Z/92pz7t4rQA80qW5gIAAAAAADP8aoywzAMDRo0SF988YXWrFmjiIgIl/WNGzeWr6+vVq/++9IJe/fu1ZEjR9S8eXNJUvPmzbVz506dOnXK3GblypUKDAxUnTp18ueNAAAA5LOmk1eZj9vULKtnY/jcAwAAAAAoPLzqMlMDBw7U/PnztXDhQgUEBJj3uAgKClKJEiUUFBSkhx9+WMOGDVNwcLACAwM1ePBgNW/eXDfddJMkqVOnTqpTp4569+6tF198USdPntTo0aM1cOBALiUFAAAKpd7v/qD48xclSWUD/PT+v6IsTgQAAAAAgGd5VZkxc+ZMSVLbtm1dls+ePVsPPvigJGnatGmy2+3q0aOHUlJS1LlzZ82YMcPc1sfHR4sXL9Zjjz2m5s2bq2TJkurbt68mTpyYX28DAAAg30z8are+2Rdvzlue7WhhGgAAAAAA8obNMAzD6hDeJjExUUFBQUpISFBgYKDVcQAAALL0waZDGrNwlzkfeL6rfOw2CxOhMOKzsefwuwQAAAAyuPPZ2KvumQEAAICcWbvnlEuRsWtCZ4oMAAAAAEChRZkBAABQwOw6nqCH5mwx582jOqikn1ddPRQAAAAAAI+izAAAAChATiT8pZjp35rz10+0UrlAh4WJAAAAAADIe5QZAAAABcT5lDQ1n7LGnOf+K0qR5bnuPgAAAACg8KPMAAAAKADS0p2qN265OT9/R321rlnWwkQAAAAAAOQfygwAAAAvZxiGqj/7tTkPaF1VPZuFW5gIAAAAAID8RZkBAADg5RpNWmk+bl+7nEZ2jbQwDQAAAAAA+Y8yAwAAwIv1fOd7nUtKlSSVD3LovQebWpwIAAAAAID8R5kBAADgpcYv2qWNB86Y86aRHSxMAwAAAACAdSgzAAAAvND7Gw9pzsZD5nzg+a7WhQEAAAAAwGKUGQAAAF5mdWycxi3aZc67J3aWj91mYSIAAAAAAKxFmQEAAOBFfvk9QQ+/v9WcN4/qIP/ixSxMBAAAAACA9SgzAAAAvMTxc3/p1je+NeflQ1urXKDDwkQAAAAAAHgHygwAAAAv8Gdyqm5+YY05f/BwlGqFBViYCAAAAAAA70GZAQAAYLG0dKfqj19hzlN71FerGmUtTAQAAAAAgHehzAAAALCQYRiq/uzX5vxY22q6t2m4hYkAAAAAAPA+lBkAAAAWajDh7zMybqkTquHRtS1MAwAAAACAd6LMAAAAsMh9/9mkP5PTJEkVS5fQO32aWJwIAAAAAADvRJkBAABggXELf9H3v5015+9GtLcwDQAAAAAA3q2Y1QEAAACKmtnfHdT7mw6b84Hnu1qYBgAAAABQFCQfSVZqfGq2631DfOUId+RjotyhzAAAAMhHK3fHacJXu805dmK0fOw2CxMBAAAAAAq75CPJ2hy5Wc4kZ7bb2P3tioqN8tpCgzIDAAAgn+w8lqD+c7ea85ZnO6pEcR8LEwEAAAAAioLU+FQ5k5yKnBcp/0j/TOuTYpMU2ytWqfGplBkAAABF2e/n/lK3N78155VPtlbZAD8LEwEAAAAAihr/SH8F3BhgdQy3cANwAACAPJaYnKoWL6wx5w/7NVON0IL54REAAAAAACtQZgAAAOSh1HSnGoxfYc4v3tVALaqHWJgIAAAAAICChzIDAAAgjxiGoRrPfm3Og9pV1z1NKlmYCAAAAACAgokyAwAAII/UG7fcfNy5bqie6lzLwjQArmTDhg3q1q2bKlSoIJvNpi+//NJlvWEYGjt2rMqXL68SJUqoY8eO2rdvnzVhAQAAgCKIMgMAACAP3DNrky5cTJckhQf76+3eTSxOBOBKLly4oIYNG+qtt97Kcv2LL76o6dOna9asWfrhhx9UsmRJde7cWcnJyfmcFAAAAHBfUmyS/vzxz0w/SbFJVke7qmJWBwAAAChsRn+5U5sPnTXnDc+0szANgJzo0qWLunTpkuU6wzD02muvafTo0brtttskSXPnzlVoaKi+/PJL3XfffVk+LyUlRSkpKeacmJjo+eAAAABADviG+Mrub1dsr9hst7H72+Ub4puPqXKHMgMAAMCD3v32oOZ9f8Scf3u+q4VpAHjCwYMHdfLkSXXs2NFcFhQUpGbNmmnTpk3ZlhlTpkzRhAkT8ismAAAAkC1HuENRsVFKjU/NdhvfEF85wh35mCp3KDMAAAA8ZPmuk5q0eLc575kULbvdZmEiAJ5w8uRJSVJoaKjL8tDQUHNdVkaOHKlhw4aZc2JioipVqpQ3IQEAAICrcIQ7vLqsuBrKDAAAAA/YfvScBnywzZy3ju4oh6+PhYkAWM3Pz09+fn5WxwAAAAAKBW4ADgAAcI2O/ZGk2976zpxXDWutkFL8ARMoLMLCwiRJcXFxLsvj4uLMdQAAAADyFmUGAADANUhMTlXLqWvNeX7/ZqpeLsDCRAA8LSIiQmFhYVq9erW5LDExUT/88IOaN29uYTIAAACg6OAyUwAAAG5KTXeqwfgV5vzy3Q11c7UQCxMBcNf58+e1f/9+cz548KB+/vlnBQcHKzw8XEOHDtVzzz2nGjVqKCIiQmPGjFGFChV0++23WxcaAAAAKEIoMwAAANxgGIZqPPu1OQ9pX113Nb7ewkQArsXWrVvVrl07c7504+6+fftqzpw5euaZZ3ThwgU98sgjOnfunFq2bKlly5bJ4Si4N1AEAAAAChKbYRiG1SG8TWJiooKCgpSQkKDAwECr4wAAAC9UZcQS83HX+mGa8UBjC9MAeYfPxp7D7xIAAADI4M5nY+6ZAQAAkEv/LDIqli5BkQEAAAAAQB6jzAAAAMiFfxYZkvTdiPYWJQEAAAAAoOigzAAAAMih5lNWu8wHnu9qURIAAAAAAIoWygwAAIAcGPbxzzqRkGzO28d2ko/dZmEiAAAAAACKjmJWBwAAAPB2czcd0uc//m7OK59srSB/XwsTAQAAACgsko8kKzU+Ndv1viG+coQ78jER4J0oMwAAAK5g04EzGrtwlzm/06eJaoQGWJgIAAAAQGGRfCRZmyM3y5nkzHYbu79dUbFRFBoo8igzAAAAsnH0bJLuf+d7c36yY03dUifUwkQAAAAACpPU+FQ5k5yKnBcp/0j/TOuTYpMU2ytWqfGplBko8igzAAAAspB0MU2tXlxrzq1rltUTHWtYmAgAAABAYeUf6a+AGzkDHLgSbgAOAABwGcMwVGfscnO22aS5/4qyMBEAAAAAAEUbZQYAAMBlIkYudZkPTomxKAkAAAAAAJAoMwAAAFxUGbHEZT70AkUGAAAAAABWo8wAAAD4H4oMAAAAAAC8EzcABwAAkNTkuVUu84Hnu1qUBAAAAEBRkxSblKvlQFFEmQEAAIq8If/9SfHnU8x5+7hO8rHbLEwEAAAAoCjwDfGV3d+u2F6x2W5j97fLN8Q3H1MB3okyAwAAFGmzvzuoRduPm/OqYW0UVIIDBQAAAAB5zxHuUFRslFLjU7PdxjfEV45wRz6mArwTZQYAACiyNu6P14Svdpvzew82UfVypSxMBAAAAKCocYQ7KCuAHOAG4AAAoEg6ciZJPf/vB3N+unMtta8damEiAAAAAACQHcoMAABQ5FxISVPrl9aac/va5TSwXXULEwEAAAAAgCuhzAAAAEWK02mo7rjl5lzcx673HmxqYSIAAAAAAHA1lBkAAKBIqTpqqcv86+QuFiUBAAAAAAA5RZkBAACKjCojlrjMh16IsSgJAAAAAADIDcoMAABQJFBkAAAAAABQcFFmAACAQq/RxBUu82/Pd7UoCQAAAAAAcEcxqwMAAADkpYEf/qg/klLNecf4TrLbbde2U2e6dHijdD5OKhUqVb5ZsvtcY1IAAAAAAJAdygwAAFBo/d83v2nJzhPmvObfbRTo8L22ne5eJC0bLiUe/3tZYAUpeqpUp/u17RsAAAAAAGSJy0wBAIBC6Zt9p/Xcklhznv1QU1UtW+radrp7kfRxH9ciQ5IST2Qs373o2vYPAAAAAACyRJkBAAAKncNnLqj3u5vNeXh0bbWrVe7adupMzzgjQ0YWK/+3bNmIjO0AAAAAAIBHUWYAAIBC5XxKmtq8tM6cb6kTqsfaVrv2HR/emPmMDBeGlPh7xnYAAAAAAMCjKDMAAECh4XQaqjduuTmX8PXRO32aeGbn5+M8ux0AAAAAAMgxygwAAFBoVB211GWOnRTtuZ2XCvXsdgAAAAAAIMcoMwAAQKFQZcQSl/nQCzGefYHKN0uBFSTZstnAJgVWzNgOAAAAAAB4FGUGAAAo8PK8yJAku48UPfV/w+WFxv/m6BcytgMAAAAAAB5FmQEAAAq0+v+4R4Yk/fZ817x7sTrdpXvmSoHlXZcHVshYXqd73r02AAAAAABFWDGrAwAAALhrwAdb9WdKmjnvHN9Jdnt2l4HykDrdpdox0uGNGTf7LhWacWkpzsgAAAAAACDPUGYAAIAC6e31B7R8V5w5r3uqrQIcvvnz4nYfKaJV/rwWAAAAAADgMlMAAKDgWbf3lKZ8vcec5/4rSlVCSlqYCAAAAAAA5CXKDAAAUKAcjL+gB2dvMedRXWurdc2yFiYCAAAAAAB5jTIDAAAUGH8mp6rdy+vMuUu9MD3Supp1gQAAAAAAQL6gzAAAAAWC02mo/vgV5hxUwlczezW2MBEAAAAAAMgvlBkAAKBAqDpqqcu8fVwni5IAAAAAAID8RpkBAAC8XpURS1zmQy/EWJQEAAAAAABYgTIDAAB4NYoMAAAAAABAmQEAALxWrdFfu8y/Pd/VoiQAAAAAAMBKlBkAAMAr9Xt/i1LSnOb8y4TOstttFiYCAAAAAABWocwAAABeZ8a6/VoVe8qcNzzdTqX8ilmYCAAAAAAAWIkyAwAAeJW1e07pxWV7zfnDfs0UXsbfwkQAAAAAAMBqlBkAAMBrHDh9Xg/N2WLOY26toxbVQyxMBAAAAAAAvAFlBgAA8AqJyanq8Mp6c761QXk93DLCwkQAAAAAAMBbUGYAAADLpTsNNRi/wpzLlCyuN3veaGEiAAAAAADgTSgzAACA5aqNWuoybxtzi0VJAAAAAACAN6LMAAAAlqoyYonLfOiFGIuSAAAAAAAAb0WZAQAALEORAQAAAAAAcoIyAwAAWKL6ZZeWOjilq0VJAAAAAACAt6PMAAAA+e7B2ZuV5jTMeffEzrLZbBYmAgAAAAAA3owyAwAA5Ks3Vu/Tur2nzfmbZ9rJv3gxCxMBAAAAAABvR5kBAADyzardcXpl5a/mPL9/M1UK9rcwEQAAAAAAKAgoMwAAQL7Yf+pP9Zu71ZzHd6ujm6uFWJgIAAAAAAAUFJQZAAAgzyX8laqOr24w5zsaVdSDLSIsTAQAAAAAAAoSygwAAJCn0p2GGk5YYc7lAvw07d4brAsEAAAAAAAKHMoMAACQp6qNWuoyb362o0VJAAAAAABAQUWZAQAA8kyVEUtc5kMvxFiUBAAAAAAAFGSUGQAAIE9QZAAAAAAAAE+hzAAAAB53eZFxcEpXi5IAAAAAAIDCgDIDAAB4VO93f3CZYydGy2azWZQGAAAAAAAUBpQZAADAY6at/FXf7Is352+Ht1OJ4j4WJgIAAAAAAIUBZQYAAPCI5btO6vXV+8z5o0du0vXX+VuYCAAAAAAAFBaUGQAA4Jr9GvenBnywzZwn3VZXN1UtY2EiAAAAAABQmFBmAACAa3Iu6aI6Tdtgzj1uvF69m1exLhAAAAAAACh0KDMAAIDb0tKdumHiSnOuWLqEXrmnoYWJAAAAAABAYUSZAQAA3Fb92a9d5u9GtLcoCQAAAAAAKMwoMwAAgFuqjFjiMh96IcaiJAAAAAAAoLCjzAAAALlGkQEAAAAAAPITZQYAAMiVy4uMg1O6WpQEAAAAAAAUFZQZAAAgx+77zyaXec+kaNlsNovSAAAAAACAooIyAwAA5MgrK/bq+9/OmvPGEe3l8PWxMBEAAAAAACgqKDMAAMBVLfvlhN5Ys9+cP3m0uSqULmFhIgAAAAAAUJRQZgAAgCvaczJRj8770Zyfv6O+mlYJtjARAAAAAAAoaigzAABAtv64cFHRr31jzvc2qaSezcItTAQAAAAAAIqiYlYHAAAA3ikt3alGk1aac+Uy/pp6VwMLEwEACoPkI8lKjU/Ndr1viK8c4Y58TAQAAICCgDIDAABkqfqzX7vM659uZ1ESAEBhkXwkWZsjN8uZ5Mx2G7u/XVGxURQaAAAAcEGZAQAAMqkyYonLfOiFGIuSAAAKk9T4VDmTnIqcFyn/SP9M65NikxTbK1ap8amUGQAAAHBBmQEAAFxQZAAA8pp/pL8CbgywOgYAAAAKEG4ADgAATJcXGQendLUoCQAAAAAAwN8oMwAAgCTpnlmbXOY9k6Jls9ksSgMAAAAAAPA3LjMFAAA0ddkebT501pw3jWwvh6+PhYkAAABQ2CUfSVZqfGq2631DfLl/DgDARJkBAEARt3jHcc1cd8CcP3usucoHlbAwEQAAAAq75CPJ2hy5Wc4kZ7bb2P3tioqNotAAAEiizAAAoEjbfTxRg+b/ZM5Te9RX48rBFiYCABQFSbFJuVoOoPBJjU+VM8mpyHmR8o/0z7Q+KTZJsb1ilRqfSpkBAJBEmQEAQJF15nyKuk7/xpx7NgvXvU3DLUwEACjsfEN8Zfe3K7ZXbLbb2P3t8g3xzcdUAKzkH+mvgBsDrI4BACgAKDMAACiCUtOdavzcKnOuGlJSz99R38JEAICiwBHuUFRsFNfIBwAAQK5RZgAAUATVePZrl3nNU22tCQIAKHIc4Q7KCgAAAOSa3eoAAAAgf1UZscRlPvRCjEVJAAAAAAAAcoYzMwAAKEIoMgAAALxD8pFkLrkGAEAuUGYAAFBEXF5kHJzS1aIkAAAARVvykWRtjtwsZ5Iz223s/nZFxUYV+kIjKTYpV8sBAEUXZQYAAEXA7W995zLvmRQtm81mURoAAICiLTU+Vc4kpyLnRco/0j/T+qTYJMX2ilVqfGqhLTN8Q3xl97crtldsttvY/e3yDfHNx1QAAG9GmQEAQCE3ZWmsfj56zpx/GNVBDl8f6wIBAABAkuQf6a+AGwOsjmEJR7hDUbFRXGoLAJBjlBkAABRii7Yf19sbfjPnLx6/WaGBHBACQG6NHz9eEyZMcFlWq1Yt7dmzx6JEAFDwOcIdlBUAgByjzAAAoJD65fcEDfnvT+b80l0N1Cj8OgsTAUDBVrduXa1atcqcixXjcAoAAADIL3z6BgCgEIo/n6Jb3/jWnPs0r6y7m1SyMBEAFHzFihVTWFiY1TEAAACAIsludQAAAOBZF9OcavLc398crhUaoIm31bMwEQAUDvv27VOFChVUtWpVPfDAAzpy5MgVt09JSVFiYqLLDwAAAAD3cGYGAACFTM3RX7vMy59sbVESACg8mjVrpjlz5qhWrVo6ceKEJkyYoFatWumXX35RQEDWN++dMmVKpvtsAMA/JcUm5Wo5AABFmc0wDMPqEN4mMTFRQUFBSkhIUGBgoNVxAADIsSojlrjMh16IsSgJgMKCz8ZZO3funCpXrqxXX31VDz/8cJbbpKSkKCUlxZwTExNVqVIlfpcAlHwkWZsjN8uZ5Mx2G7u/XVGxUdwgGwBQKLlznMGZGQAAFBIUGQCQf0qXLq2aNWtq//792W7j5+cnPz+/fEwFoKBwhDsUFRul1PjUbLfxDfGlyAAA4B8oMwAAKAQuLzIOTulqURIAKBrOnz+vAwcOqHfv3lZHAVBAOcIdlBUAAOSCV90AfMOGDerWrZsqVKggm82mL7/80mX9gw8+KJvN5vITHR3tss3Zs2f1wAMPKDAwUKVLl9bDDz+s8+fP5+O7AAAgf3V741uXee9z0bLZbBalAYDC6amnntL69et16NAhbdy4UXfccYd8fHx0//33Wx0NAAAAKBK8qsy4cOGCGjZsqLfeeivbbaKjo3XixAnz57///a/L+gceeEC7du3SypUrtXjxYm3YsEGPPPJIXkcHAMASkxbv1s7fE8x587Md5FfMx8JEAFA4HTt2TPfff79q1aqle+65R2XKlNH333+vsmXLWh0NAAAAKBK86jJTXbp0UZcuXa64jZ+fn8LCwrJcFxsbq2XLlmnLli1q0qSJJOmNN95Q165d9fLLL6tChQpZPi+rG/MBAODtvvjpmN799qA5LxzYQuUCuFQBAOSFjz76yOoIAAAAQJHmVWdm5MS6detUrlw51apVS4899pjOnDljrtu0aZNKly5tFhmS1LFjR9ntdv3www/Z7nPKlCkKCgoyfypVqpSn7wEAgGu149g5Pblguzm/ek9DNaxU2rpAAAAAAAAAeahAlRnR0dGaO3euVq9eralTp2r9+vXq0qWL0tPTJUknT55UuXLlXJ5TrFgxBQcH6+TJk9nud+TIkUpISDB/jh49mqfvAwCAa3H6zxR1f/M7c36oRRXdeeP1FiYCAAAAAADIW151mamrue+++8zH9evXV4MGDVStWjWtW7dOHTp0cHu/fn5+8vPz80REAADy1MU0p5pOXmXOdcoHaly3uhYmAgAAAAAAyHsF6syMy1WtWlUhISHav3+/JCksLEynTp1y2SYtLU1nz57N9j4bAAAUFIZhqObor12WLX2ilUVpAAAAAAAA8k+BLjOOHTumM2fOqHz58pKk5s2b69y5c9q2bZu5zZo1a+R0OtWsWTOrYgIA4BERI5e6zIdeiLEoCQAAAAAAQP7yqstMnT9/3jzLQpIOHjyon3/+WcHBwQoODtaECRPUo0cPhYWF6cCBA3rmmWdUvXp1de7cWZIUGRmp6Oho9e/fX7NmzVJqaqoGDRqk++67TxUqVLDqbQEAcM2qjFjiMlNkAAAAAACAosSryoytW7eqXbt25jxs2DBJUt++fTVz5kzt2LFD77//vs6dO6cKFSqoU6dOmjRpksv9Lj788EMNGjRIHTp0kN1uV48ePTR9+vR8fy8AAHgKRQYAID8lH0lWanxqtut9Q3zlCHfkYyIAAADAy8qMtm3byjCMbNcvX778qvsIDg7W/PnzPRkLAADLdHn9G5f51+e6WJQEAFAUJB9J1ubIzXImObPdxu5vV1RsFIUGAAAA8pVXlRkAAOBv4xftUuyJRHPe8mxHFS9WoG93BQDwcqnxqXImORU5L1L+kf6Z1ifFJim2V6xS41O9sszgrBIAAIDCizIDAAAv9Nm2Y5qz8ZA5fzWopcoG+GX/BAAAPMg/0l8BNwZYHSNXOKsEAACgcKPMAADAy/x89Jz+/cl2c37t3htU//ogCxMBAOD9CvpZJQAAALgyygwAALzIqcRk3f7Wd+bcr2WEbm9U0cJEAAAULAXxrBIAAABcHRfeBgDAS6SkpSvq+dXm3OD6II2+tY6FiQAAAAAAALwDZQYAAF7AMAzVGr3MZdmiQS0tSgMAAAAAAOBduMwUAABeIGLkUpf50AsxFiUBACDj/hK5WQ4AAADkNcoMAAAsVmXEEpeZIgMAYBXfEF/Z/e2K7RWb7TZ2f7t8Q3zzMRUAAABAmQEAgKUoMgAA3sQR7lBUbJRS41Oz3cY3xFeOcEc+psodzioBAAAonCgzAACwSKdp613mfZO7WJQEAIC/OcIdXl1WZIezSgAAAAo3j5YZFy9eVGpqqkqWLOnJ3QIAUOiM/nKnfo07b87bRneUr4/dwkQAABRsheGsEgAAAGTPrb+afPTRR3ryySddlk2YMEGlSpVS6dKldccdd+j8+fPZPBsAgKLt461HNe/7I+a8eHBLlSnlZ2EiAAAKB0e4QwE3BmT7Q5EBAABQcLlVZrzyyiu6cOGCOW/cuFETJkxQ586d9eSTT2rZsmWaPHmyx0ICAFBY/HjkDz3z6Q5zfuP+RqpXMcjCRAAAAAAAAN7PrctMHThwQH379jXn+fPnKywsTF988YWKFSsmp9Opzz77TFOmTPFYUAAACrqTCcm6c8ZGcx7Qpqq6NaxgYSIAAAAAAICCwa0zM1JSUuRw/H167ooVK9SlSxcVK5bRjdSpU0fHjh3zTEIAAAqB5NR03TRltTnfGF5aI7tEWpgIAAAAAACg4HCrzIiIiNCqVaskSVu3btX+/fsVHR1tro+Li1OpUqU8kxAAgALOMAzVHrPMZdnnj7ewKA0AAAAAAEDB49ZlpgYMGKAnnnhCu3fv1rFjx3T99dfr1ltvNdd/9913qlu3rsdCAgBQkEWMXOoyH3ohxqIkAAAAAAAABZNbZcbgwYPlcDi0dOlSNW7cWMOHD1eJEiUkSWfPntXJkyf16KOPejQoAAAFUZURS1xmigwAAAAAAIDcsxmGYVgdwtskJiYqKChICQkJCgwMtDoOAKCAosgAUBjw2dhz+F0CAAAAGdz5bOzWmRmXpKSk6Mcff9SpU6fUokULhYSEXMvuAAAoNNq9vM5l3je5izVBAAAAAAAACgG3bgAuSdOnT1f58uXVokUL3XnnndqxY4ckKT4+XiEhIXrvvfc8FhIAgIJk5Oc7dTD+gjn/OOYW+fq4/U8uAAAAAABAkefWX1Zmz56toUOHKjo6Wu+9957+eaWqkJAQtW/fXh999JHHQgIAUFB8tPmI/rv5iDl//UQrBZcsbmEiAAAAAACAgs+tMuOVV17Rbbfdpvnz56tbt26Z1jdu3Fi7du265nAAABQkWw+d1YjPd5rzjAduVGR5rokOAAAAAABwrdwqM/bv368uXbK/9ndwcLDOnDnjdigAAAqaEwl/6a5Zm8x5YLtq6lq/vIWJAAAAAAAACg+3yozSpUsrPj4+2/W7d+9WWFiY26EAAChIklPT1XzKGnOOigjW051rW5gIAAAAAACgcHGrzOjatav+85//6Ny5c5nW7dq1S++88466d+9+rdkAAPB6hmGo9phlLss+HtDcojQAAAAAAACFUzF3nvTcc8+pWbNmqlevnrp16yabzab3339f7733nj777DOVL19eY8eO9XRWAACs50yXDm+UzsdJpUJV7e1z+ud3Aw69EGNZNAAAAAAAgMLKrTKjQoUK2rZtm0aNGqUFCxbIMAx98MEHCggI0P33368XXnhBISEhns4KAIC1di+Slg2XEo+bi771C9aE1D5a7oyiyAAAAAAAAMgjNsMwjGvdyenTp+V0OlW2bFnZ7W5ducqrJCYmKigoSAkJCQoMDLQ6DgDAG+xeJH3cR5LrP5vO/432ez+Q6nCJRQCFD5+NPYffJQAAAJDBnc/GHmkeypYtq9DQ0EJRZAAAkIkzPeOMDGXu/+02yWazSctGZGwHAAAAAAAAj3PrMlMTJ0686jY2m01jxoxxZ/cAAHiXwxtdLi11OZsMKfH3jO0iWuVjMAAAAAAAgKLBrTJj/Pjx2a6z2WwyDIMyAwBQeJyP8+x2AAAAAAAAyBW3rgvldDoz/aSlpenAgQN68skn1aRJE506dcrTWQEAsEapUM9uBwAAAAAAgFzx2E0u7Ha7IiIi9PLLL6tGjRoaPHiwp3YNAIClfg9qpONGsHmz78xsUmBFqfLN+RkLAAAAAACgyMiTO3a3bt1aS5cuzYtdAwCQr/66mK4WL67XhNQ+kiRnpi1sGf8T/YJk98nPaAAAAAAAAEVGnpQZW7duld2eJ7sGACDfGIahyLHLJEnLnVF6LHWo7IEVXDcKrCDdM1eq092ChAAAAAAAAEWDWzcAnzt3bpbLz507pw0bNujzzz9Xv379rikYAABWixjpepbh289PkJxjpcMbM272XSo049JSnJEBAAAAAACQp9wqMx588MFs14WEhGjEiBEaO3asu5kAALBclRFLXOZDL8RkPLD7SBGtLEgEAAAAAABQdLlVZhw8eDDTMpvNpuuuu04BAQHXHAoAACtlW2QAAAAAAADAEm6VGZUrV/Z0DgAAvELzKatd5v2Tu1iUBAAAAAAAAJdwl24AAP5n2Mc/60RCsjlvH9tJxXz4pxIAAAAAAMBqOTozw263y2az5WrHNptNaWlpboUCACC/zd10SJ//+Ls5r3iytYL8fS1MBAAAAAAAgEtyVGaMHTs212UGAAAFxaYDZzR24S5zfqdPE9UM5R5QAAAAAAAA3iJHZcb48ePzOAYAANY49keS7n/ne3Me2rGGbqkTamEiAMA/Xbx4UampqSpZsqTVUQAAAABYiAuBAwCKrKSLaWo5da05t65ZVkM71rQwEQAUXR999JGefPJJl2UTJkxQqVKlVLp0ad1xxx06f/68RekAAAAAWC1HZ2Zk59ixY/rpp5+UkJAgp9OZaX2fPn2uZfcAAOQZwzBUZ+xyl2Vz/xVlURoAwCuvvKJGjRqZ88aNGzVhwgTFxMQoMjJSb7zxhiZPnqwpU6ZYmBIAAACAVdwqM5KTk9W3b1999tlncjqdstlsMgxDklzurUGZAQDwVhEjl7rMh16IsSgJAECSDhw4oL59+5rz/PnzFRYWpi+++ELFihWT0+nUZ599RpkBAAAAFFFuXWZq1KhR+vzzzzV58mStW7dOhmHo/fff14oVK9SlSxc1bNhQ27dv93RWAAA8osqIJS4zRQYAWC8lJUUOh8OcLx1bFCuW8f2rOnXq6NixY1bFAwAAAGAxt8qMTz/9VA899JCGDx+uunXrSpIqVqyojh07avHixSpdurTeeustjwYFAMATKDIAwDtFRERo1apVkqStW7dq//79io6ONtfHxcWpVKlSVsUDAAAAYDG3yoxTp04pKirjuuIlSpSQJF24cMFc36NHD33++eceiAcAgOc0eW6Vy3zg+a4WJQEAXG7AgAH6+OOP1aBBA3Xq1EnXX3+9br31VnP9d999Z36RCgAAAEDR41aZERoaqjNnzkiS/P39dd1112nv3r3m+sTERCUnJ3smIQAAHvDERz8p/nyKOW8f10k+dtsVngEAyE+DBw/W22+/rWrVqum2227TihUrzC9OnT17VidPntQDDzxgcUoAAAAAVnHrBuDNmjXTt99+q+HDh0uSunXrppdeeknly5eX0+nUtGnTdNNNN3k0KAAA7pr93UEt/Pm4Oa8a1kZBJXwtTAQAyEr//v3Vv3//TMuDg4O1detWCxIBAAAA8BZunZkxZMgQVa1aVSkpGd9wnTRpkkqXLq3evXurb9++CgoK0vTp0z0aFAAAd2zcH68JX+0253f7NlH1clxzHQAAAAAAoCBx68yMli1bqmXLluZcqVIlxcbGaufOnfLx8VHt2rVVrJhbuwYAwGOOnk1Sz//7wZyf6lRTHSJDLUwEALikffv2uX6OzWbT6tWr8yANAAAAAG/nVuOQkJCgoKAgl2V2u10NGzb0SCgAAK7VhZQ0tXpxrTm3q1VWg9rXsDARAOCfnE6nbLbc3bvIMIw8SgMAAADA27lVZpQrV07R0dG699571b17d5UqxeU6AADewzAM1R233Jx9fWya/VCUhYkAAJdbt26d1REAAAAAFCBu3TNj2LBh2rVrl3r16qVy5crprrvu0ieffKK//vrL0/kAAMi1iJFLXeZ9k7talAQAAAAAAACeYDOu4VztLVu2aMGCBfr000915MgRlSxZUrfeeqvuvfdede3aVcWLF/dk1nyTmJiooKAgJSQkKDAw0Oo4AIBcqDJiict86IUYi5IAQOFgxWfjP//8UwkJCXI6nZnWhYeH50uGvMBxBgAAAJDBnc/G11Rm/NOmTZvMYuPEiRMKDAzUH3/84Yld5zsOMgCgYKLIAADPy8/PxjNnztSrr76q3377Ldtt0tPT8zRDXuI4AwAAAMjgzmdjty4zlZXmzZtr4MCB6t+/v0qVKqXExERP7RoAgKtqNHGFy/zb81xaCgAKklmzZmngwIGqXr26nnvuORmGoaFDh2rEiBEKCwtTw4YN9e6771odEwAAAIBF3LoB+D8dPHhQCxYs0Mcff6zt27fLbrerXbt2uvfeez2RDwCAqxo4/0f9kZRqzjvGd5LdbrMwEQAgt9544w117txZX3/9tc6cOaNnn31WMTExat++vZ555hk1adJEZ86csTomAAAAAIu4VWYcPXpUH3/8sRYsWKBt27bJZrOpVatWeuutt9SjRw+VLVvW0zkBAMjS/33zm5bsOGHOa/7dRoEOXwsTAQDcceDAAQ0cOFCS5Oub8d/xixcvSpKCgoLUr18/zZgxQ//+978tywgAAADAOm6VGZUrV5bNZtNNN92kadOm6e6771b58uU9nQ0AgCv6dl+8nlsSa86zH2qqqmVLWZgIAOCuoKAgpaWlSZICAwPl7++vo0ePmusDAgJ08uRJq+IBAAAAsJhbZcZLL72ke+65R5UqVfJ0HgAAcuTwmQvq9e4P5jw8urba1SpnYSIAwLWoV6+etm/fbs433XSTZs6cqa5du8rpdOrtt99WzZo1LUwIAAAAwEpulRmc2g0AsNL5lDS1eWmdOXeMDNVjbatZFwgAcM169eqlWbNmKSUlRX5+fpowYYI6duyo8PBwSRmXnvrss88sTgkAAADAKjbDMAyrQ3ibxMREBQUFKSEhQYGBgVbHAQD8g9NpqOqopeZcwtdHsZOiLUwEAIWblZ+Nf/vtN3311Vfy8fFRp06dCvyZGRxnAJklH0lWanxqtut9Q3zlCHfkYyIAAJAf3Pls7NaZGQAAWOWfRYYkigwAKMSqVq2qJ554wuoYAPJI8pFkbY7cLGeSM9tt7P52RcVGUWgAAADKDABAwVFlxBKX+dALMRYlAQAAwLVKjU+VM8mpyHmR8o/0z7Q+KTZJsb1ilRqfSpkBAAAoMwAABQNFBgAUbna7XTab7arbpaen50MaAPnJP9JfATcGWB0DAAB4OcoMAIDXqz9uucv82/NdLUoCAMgrY8eOzVRmpKen69ChQ/ryyy9Vq1Yt3XrrrRalAwAAAGA1t8uM9PR0ffLJJ1q7dq1OnTqliRMnqn79+kpISNDq1avVokULhYaGejIrAKAIGvDBVv2ZkmbOO8d3kt1+9W/uAgAKlvHjx2e77sSJE7rpppsK/A3AAQAAALjPrTLj3Llzio6O1ubNm1WqVClduHBBgwcPliSVKlVKQ4YMUZ8+ffT88897NCwAoGj5z4YDWr4rzpzXPtVWAQ5fCxMBAKxQvnx5Pfroo5o0aZLuv/9+q+MAXiX5SLJS41OzXe8b4sv9JgAAQKHgVpkxYsQI7dq1S8uXL1ejRo1Urlw5c52Pj4/uuusuLV26lDIDAOC29b+e1vNL95jz3H9FKSKkpIWJAABWKlmypA4ePGh1DMCrJB9J1ubIzXImObPdxu5vV1RsFIUGAAAo8NwqM7788ksNHjxYt9xyi86cOZNpfc2aNTVnzpxrzQYAKKIOxl9Q3/c2m/OorrXVumZZCxMBAKz0yy+/aPr06VxmCpI4E+GfUuNT5UxyKnJepPwj/TOtT4pNUmyvWKXGp3r17yQpNilXywEAQNHkVpmRkJCgiIiIbNenpqYqLS0t2/UAAGTnz+RUtXt5nTl3qRemR1pXsy4QACBfREREZLoBuJRxiduEhAT5+/vryy+/zP9g8CqciZA1/0h/BdwYYHWMXPMN8ZXd367YXrHZbmP3t8s3hMuMAgAAN8uMatWq6ccff8x2/YoVK1SnTh23QwEAiian01D98SvMOcBRTDN7NbYwEQAgv7Rp0yZTmWGz2XTdddepWrVquu+++xQcHGxROniLwnImAjI4wh2Kio3iTBsAAJAjbpUZ/fr10/Dhw9W2bVt16NBBUsaBRkpKiiZOnKhly5bpP//5j0eDAgAKv6qjlrrMO8d3tigJACC/cZla5EZBPRMBmTnCHZQVAAAgR9wqM5544gnt2rVL999/v0qXLi1J6tmzp86cOaO0tDQNGDBADz/8sCdzAgAKuSojlrjMh16IsSgJAAAAAAAAvI1bZYbNZtM777yjvn376tNPP9W+ffvkdDpVrVo13XPPPWrdurWncwIACjGKDAAoeiZOnJjr59hsNo0ZMyYP0gAAAADwdm6VGZe0bNlSLVu29FQWAEARVGv01y7zb893tSgJACA/jR8/PtOyS/fMMAwj03LDMCgzgGwkxSblajkAAEBB5FaZ4ePjow8++EA9e/bMcv2CBQvUs2dPpaenX1M4AEDh1u/9LUpJc5rzLxM6y263XeEZAIDCwul0usy///67YmJiVK9ePQ0dOlS1atWSJO3Zs0evvfaadu/erSVLlmS1K6DI8g3xld3frthesdluY/e3yzfENx9TAQAA5A23yozLvyl1ufT0dPNbVQAAZGXGuv1aFXvKnNc/3Val/K7phEEAQAE2cOBA1ahRQ/PmzXNZ3rRpU3344Ye66667NHDgQH3xxRcWJYQ34UyEDI5wh6Jio5Qan5rtNr4hvtxgGwAAFApu/9Uou7IiMTFRy5cvV0hIiNuhAACF29o9p/Tisr3mPO/hZqpcpqSFiQAAVluzZo2mTp2a7foOHTpo+PDh+ZgI3ogzETJzhDsoKwAAQJGQ4zJjwoQJ5k36bDabevXqpV69emW5rWEYGjJkiGcSAgAKlQOnz+uhOVvMeXRMpFrWoAAHgKLO4XBo06ZNeuyxx7Jcv3HjRjkc/MG2qONMBAAAgKIrx2VGVFSUHn/8cRmGoRkzZuiWW25RzZo1Xbax2WwqWbKkGjdurDvvvNPjYQEABVticqo6vLLenG9tUF79WlW1MBEAwFs88MADmj59ukqXLq3BgwerWrVqkqQDBw5o+vTpmj9/Pl+YgiTORABQuCQfSaagBYAcshlXuwFGFh566CE9+uijatasWV5kslxiYqKCgoKUkJCgwMBAq+MAQKGQ7jRUbdRScw4uWVw/jrnFwkQAgJzIr8/GFy9e1MMPP6wPP/xQNptNdrtdUsaNwg3D0P3336/Zs2erePHieZYhr3GcAQD4p+QjydocuVnOJGe229j97YqKjaLQAFDouPPZ2K17ZsyePdudpwEAirB/FhmSKDIAAC6KFy+uDz74QE8//bSWLl2qw4cPS5IqV66sLl26qGHDhhYnBADAs1LjU+VMcipyXqT8I/0zrU+KTVJsr1ilxqdSZgCAruEG4JJ07Ngx/fTTT0pISJDTmblF7tOnz7XsHgDgzZzp0uGN0vk4qVSoVPlmye6T5aZVRixxmQ+9EJMfCQEABVCDBg3UoEEDq2MAAJBv/CP9FXBjgNUxAMDruVVmJCcnq2/fvvrss8/kdDpls9l06WpVNpvN3I4yAwAKqd2LpGXDpcTjfy8LrCBFT5XqdHfZlCIDAFCYvPXWW3rppZd08uRJNWzYUG+88YaioqKsjgUAAAAUem6VGaNGjdLnn3+uyZMnq3nz5mrbtq3ef/99lS9fXq+99pqOHz+uuXPnejorAMAb7F4kfdxH0mW3XEo8kbH8nrlmoXH5paUOTumaTyEBAN7ObrfLbrcrKSlJxYsXl91ud/liVFZsNpvS0tLyKWFmCxYs0LBhwzRr1iw1a9ZMr732mjp37qy9e/eqXLlyOd5P0sU0Fbto3ftA/ks+mqLUM1e4wW8ZXzkq+eVjIgDeICktXSm+hpLS0uWTxb8LV1sPAAVZkhv/XXPrBuDh4eGKjo7Wf/7zH505c0Zly5bVqlWr1L59e0lS+/btVatWLc2cOTPXgbwBN+YDgGw406XX6rmekeHClnGGxtCdevD9bVq397S5ZvfEzvIvfk1XNwQAWCCvPhuPHz9eNptNY8aMkd1uN+erGTdunMcy5FazZs3UtGlTvfnmm5Iybk5eqVIlDR48WCNGjMi0fUpKilJSUsw5MTFRlSpVUqWhH8vul/na6AAAAEBR4UxJ0tHX7sn7G4CfOnXKPJW6RIkSkqQLFy6Y63v06KGJEycW2DIDAJCNwxuvUGRIkiEl/q7Pv/hY6/b+/Q/RN8+0o8gAALgYP378FWdvc/HiRW3btk0jR440l9ntdnXs2FGbNm3K8jlTpkzRhAkT8isiAAAAUKi59Zel0NBQnTlzRpLk7++v6667Tnv37lW3bt0kZXzjKDk52XMpAQDe4XxcjjZbt+0XSTdLkub3a6ZKwXz7FABQsMXHxys9PV2hoaEuy0NDQ7Vnz54snzNy5EgNGzbMnC+dmbH52Q6cAV6E/Pnzef3c8ifd8G0jBdxQKtfrARRel/7/v9a7tVSiVuZjpr/2Jmnvw3v57wOAQikxMVHlX8vdc9wqM5o1a6Zvv/1Ww4cPlyR169ZNL730ksqXLy+n06lp06bppptucmfXAABvVir06ttIOqXSkqTx3ero5uoheRgIAFBYrF69Wj/++KOefvppc9l7772n8ePHKyUlRT179tTLL78sHx8fC1Pmjp+fn/z8Mt8Hwb94Mc5YLELSi/nIL9Um/2I+Wf7f/WrrARRe9jCHSvj66FCfX7PdpoS/j4LCHHLw3wcAhUyaG/9dc+u/hEOGDNEnn3yilJQU+fn5adKkSdq0aZN69+4tSapWrZqmT5/uzq4BAN6s8s0Z98RIPKFMNwCX5DSkkyqjzc7auv2GCnqwRUT+ZwQAFEjjx49X5cqVzXnnzp0aMGCAGjRooOrVq2v69OkKCwszv1CV30JCQuTj46O4ONezFOPi4hQWFmZJJgBAweYIdygqNkqp8anZbuMb4itHuCMfUwGA93KrzGjZsqVatmxpzpUqVVJsbKx27twpHx8f1a5dW8WK0RgDQKFj95Gip0of95Fk0z8LDef/Hk5I7a2QgBJ67b5GlkQEABRMsbGx6tGjhzl/8MEHCgwM1DfffCN/f389+uijmjt3rmVlRvHixdW4cWOtXr1at99+u6SMG4CvXr1agwYNsiQTAKDgc4Q7KCsAIIfsHtuR3a6GDRuqXr16FBkAUJjV6S7dM1cKLO+y+KTK6LHUoVrujNLmZztaFA4AUFBduHDB5T4Sy5YtU3R0tPz9M64h3rRpUx0+fNiqeJKkYcOG6Z133tH777+v2NhYPfbYY7pw4YIeeughS3MBAAAARYFbrcOGDRuuuN5ms8nhcOj6669X+fLlr7gtAKAAqtNdqh0jHd6oIe8s0ymV1mZnbTll16EXYqxOBwAogCpVqqQtW7boX//6l/bv369ffvlF//73v831Z8+ezfL+E/np3nvv1enTpzV27FidPHlSN9xwg5YtW5bppuBAVpJik3K1HAAAAK7cKjPatm0rm82Wo21r1KihCRMm6N5773XnpQAA3sruoypvJ0q62VxEkQEAcNcDDzygiRMn6vfff9euXbt03XXX6bbbbjPXb9u2TTVr1rQwYYZBgwZxWSnkim+Ir+z+dsX2is12G7u/Xb4hvvmYCgAAoOBxq8xYtmyZhg8frpSUFPXv31/Vq1eXJO3bt0//93//pxIlSmj06NE6fPiw3n77bfXs2VM+Pj666667PBoeAGCdKiOWuMwHp3S1KAkAoDB49tlndfHiRS1dulTh4eGaM2eOSpcuLSnjrIx169bpiSeesDYk4AZu8AsAAOAZNsMwjKtv5mrYsGHatGmT1q9fr+LFi7usS05OVtu2bdWmTRtNnTpVycnJatKkiUqUKKEtW7Z4LHheSkxMVFBQkBISElyu2wsAyHB5kRE7MVolivtYlAYAkJf4bOw5/C4BAACADO58NnbrBuAffvihevbsmanIkCSHw6EHHnhA77//vjn36tVLu3fvduelAABepslzq1zmpUNaUWQAADzqxIkT2r59uy5cuGB1FAAAAABewq0y48KFC4qLi8t2/YkTJ3T+/HlzLl26tHx8+EMXABR0T32yXfHnU8z5lbsbqk4FvlkKAPCMhQsXqnbt2rr++ut144036ocffpAkxcfHq1GjRvriiy8sTggAAADAKm6VGe3bt9drr72mxYsXZ1r31Vdf6fXXX1f79u3NZT///LOqVKnidkgAgPUW7ziuT7cdM+d6FQPVo/H1FiYCABQmX331le68806FhIRo3Lhx+ufVcENCQlSxYkXNmTPHuoAAAAAALOVWmfHmm28qNDRUt912m8LDw9WuXTu1a9dO4eHhuv322xUaGqo33nhDUsY9NI4cOaJ+/fp5NDgAIP8cPnNBg+b/5LJs8eBWFqUBABRGEydOVOvWrfXtt99q4MCBmdY3b95cP/30UxbPBAAAAFAUFHPnSeHh4dq5c6dmzZql5cuX6/Dhw5KkyMhIDR06VAMGDFDJkiUlZdwzY+nSpZ5LDADIVylp6Wrz0jqXZYdeiLEmDACg0Prll1/06quvZrs+NDRUp06dysdEAAAAALyJW2WGJPn7+2vYsGEaNmyYJ/MAALxMrdHLXGaKDABAXvD397/iDb9/++03lSlTJh8TAQAAAPAmbl1m6p92796tr7/+Wl9//bV2797tiUwAAC9RZcQSl5kiAwCQV9q1a6f3339faWlpmdadPHlS77zzjjp16mRBMgAAAADewO0zMxYuXKhhw4bp0KFDkiTDMGSz2RQREaFXX31V3bt391RGAIAFKDIAAPlp8uTJuummm9S0aVPdfffdstlsWr58udasWaO3335bTqdT48aNszomAAAAAIvYDMMwcvukpUuXqnv37qpcubIeeeQRRUZGSpJiY2P1n//8R4cPH9bixYsVHR3t8cD5ITExUUFBQUpISFBgYKDVcQAg311eZByc0lU2m82iNAAAK+XnZ+Ndu3bpiSee0Nq1a/XPw5S2bdtqxowZqlWrVoH+94jjDAAAACCDO5+N3SozmjdvrpSUFH3zzTfmjb4vuXDhglq2bCmHw6FNmzbldtdegYMMAEXZ5UXGT2Nu0XUli1uUBgBgNSs+G//xxx/av3+/nE6nqlatqqCgIM2ZM0cvv/yyfv3113zJkBc4zgAAAAAyuPPZ2K3LTO3YsUPPP/98piJDkkqWLKkHH3xQo0aNcmfXAAALXV5kfPZYc4oMAECeunjxohYtWqQDBw7ouuuu06233qoKFSqoadOmSkpK0ptvvqnXXntNJ0+eVLVq1ayOCwAAAMAibpUZDodDZ8+ezXb92bNn5XA43A4FAMh/T3z0k8v8THQtNa4cbFEaAEBRcPz4cbVt21YHDhwwLyvlcDj01VdfqXjx4urZs6d+//13RUVF6Y033tCdd95pcWIAAAAAVnGrzGjfvr1ef/11RUdHq3nz5i7rfvjhB02fPl2dOnXySEAAQN5b+PPvWvjzcXOuVzFQj7etbmEiAEBR8Oyzz+rgwYN65pln1KpVKx08eFATJ07UI488ovj4eNWtW1fz5s1TmzZtrI6KQib5SLJS41OzXe8b4itHOF/QAwAA8CZulRkvvviimjdvrpYtWyoqKkq1atWSJO3du1ebN29WuXLlNHXqVI8GBQDkjd9On9cTH/3ssmzx4FbZP8GZLh3eKJ2Pk0qFSpVvluw+eRsSAFAorVy5Ug899JCmTJliLgsLC9Pdd9+tmJgYLVy4UHa73cKEKIySjyRrc+RmOZOc2W5j97crKjaKQgMAAMCLuFVmREREaMeOHZoyZYq+/vprLViwQJJUuXJlPfHEExoxYoTKlSvn0aAAAM9LTk1X+1fWuyw79EJM9k/YvUhaNlxK/PssDgVWkKKnSnW651FKAEBhFRcXp5tuusll2aX5X//6F0UG8kRqfKqcSU5FzouUf6R/pvVJsUmK7RWr1PhUygwAAAAvkusyIzk5Wf/5z390ww03aNq0aZo2bVpe5AIA5IPaY5a5zFctMj7uI8lwXZ54ImP5PXMpNAAAuZKenp7pXnuX5qCgICsioRDJ7lJSSbFJkqRipYsp4MaA/I4FAAAAN+W6zHA4HBo+fLimT5+u1q1b50UmAEA+qDJiict8xSLDmZ5xRsblRYb0v2U2adkIqXYMl5wCAOTKoUOH9OOPP5pzQkKCJGnfvn0qXbp0pu1vvPHG/IqGAiwnl5LadfcuRe3hUlIAAAAFhVuXmapXr54OHTrk4SgAgPySqyJDyrhHxj8vLZWJISX+nrFdxBXutwEAwGXGjBmjMWPGZFr++OOPu8yGYchmsyk9PT2/oqEA41JSAAAAhY9bZcbkyZPVs2dPtWvXTh07dvR0JgBAHrq8yDg4pevVn3Q+Lmc7z+l2AABImj17ttURUMj5R/pzKSkAAIBCwq0y480331RwcLA6d+6siIgIRUREqESJEi7b2Gw2LVy40CMhAQCecXmRsX1sJ9lstqs/sVRozl4gp9sBACCpb9++VkcAAAAAUEC4VWbs2LFDNptN4eHhSk9P1/79+zNtk6M/jgEA8s3lRcYXj9+sIH/fnD258s1SYIWMm31ned8MW8b6yjdfc04AAID8culm4FdbBgAAAOu5VWZwvwwAKFge/3Cbyzyqa201Cr8u5zuw+0jRU6WP+0iyybXQ+F95Hf0CN/8GAAAFSmyv2CyX2/3t8g3J4Zc+AAAAkC9yXWYkJSWpVatW6t+/vx599NG8yAQA8KDPth3T0p0nzblReGk90rpa7ndUp7t0z1xp2XDXm4EHVsgoMup090BaAACA/JPdDcJ9Q3y5MTgAAICXyXWZ4e/vr4MHD3IZKQAoAPafOq9/f7LdZdkXj7dwf4d1uku1Y6TDGzNu9l0qNOPSUpyRAQAAvFB2l4y6tJwbhAMAABQcbl1mKjo6WsuXL9eAAQM8nQcA4CHJqenq+Op6l2WHXoi59h3bfaSIVte+HwAAgDziG+Iru78928tISVxKCgAAoKBxq8wYM2aM7r77bvXu3VsDBgxQRESESpQokWm74ODgaw4IAHBP7THLXGaPFBkAAAAFgCPcoajYKKXGp2a7DZeSAgAAKFjcKjPq1q0rSdq9e7fmz5+f7Xbp6enupQIAXJMqI5a4zBQZAACgqHGEOygrAAAAChG3yoyxY8dyzwwA8FIUGQAAAAAAAChs3Cozxo8f7+EYAABPuLzIODilq0VJAAAAAAAAAM+xWx0AAOAZlxcZO8Z34iw6AAAAAAAAFApunZkxceLEq25js9k0ZswYd3YPAMily4uMRYNaKNDha1EaAAAAAAAAwLM8fpkpm80mwzAoMwAgn/Sfu9VlHntrHTW4vrQ1YQAAAAAAAIA84NZlppxOZ6aftLQ0HThwQE8++aSaNGmiU6dOeTorAOAyC7Yc0crdceYcFRGsf7WMsDARAAAAAAAA4Hkeu2eG3W5XRESEXn75ZdWoUUODBw/21K4BAFn4Ne5PDf9sp8uyjwc0tygNAAAAAAAAkHfy5AbgrVu31tKlS/Ni1wAASUkX09Rp2gaXZYdeiLEoDQAAAAAAAJC33LpnxtVs3bpVdnue9CQAAEl1xi53mSkyAABAVpKPJCs1PjXb9b4hvnKEO/IxEQAAAOAet8qMuXPnZrn83Llz2rBhgz7//HP169fvmoIBALJWZcQSl5kiAwAAZCX5SLI2R26WM8mZ7TZ2f7uiYqMoNAAAAOD13CozHnzwwWzXhYSEaMSIERo7dqy7mQAA2aDIAAAAOZUanypnklOR8yLlH+mfaX1SbJJie8UqNT6VMgMAAABez60y4+DBg5mW2Ww2XXfddQoICLjmUACAzC4vMg5O6WpREgAAUJD4R/or4EaO0wB4Ny6LBwC4GrfKjMqVK3s6hyRpw4YNeumll7Rt2zadOHFCX3zxhW6//XZzvWEYGjdunN555x2dO3dOLVq00MyZM1WjRg1zm7Nnz2rw4MH66quvZLfb1aNHD73++usqVapUnmQGgPxweZGxc3wn2Ww2i9IAAAAAuBL+MJ87XBYPAJATHrkB+J49e/TJJ5/oxIkTqlWrlh566CEFBgbmej8XLlxQw4YN9a9//Ut33nlnpvUvvviipk+frvfff18REREaM2aMOnfurN27d8vhyPjH7IEHHtCJEye0cuVKpaam6qGHHtIjjzyi+fPnX/P7BAArXF5kLB7cUgEOX4vSAAAAALgS/jCfe1wWDwCQEzkuM958801Nnz5dGzduVEhIiLn8q6++0t13362LFy+ay9544w19//33LtvlRJcuXdSlS5cs1xmGoddee02jR4/WbbfdJinjRuShoaH68ssvdd999yk2NlbLli3Tli1b1KRJEzNL165d9fLLL6tChQpZ7jslJUUpKSnmnJiYmKvcAJBX+r632WWedHs91asYZFEaAAAAAFfDH+bdx2XxAABXYs/phosWLVK1atVcCoq0tDT169dPPj4+mj17tnbu3KkXXnhBhw8f1uTJkz0a9ODBgzp58qQ6duxoLgsKClKzZs20adMmSdKmTZtUunRps8iQpI4dO8put+uHH37Idt9TpkxRUFCQ+VOpUiWPZgcAd3z4w2Gt//W0ObesHqLeN+XNZf4AAAAAeNalP8xf/pNVwQEAAK4ux2dm7N69W/3793dZtnbtWp0+fVqjRo1S3759JUl169bV9u3btXTpUk2bNs1jQU+ePClJCg0NdVkeGhpqrjt58qTKlSvnsr5YsWIKDg42t8nKyJEjNWzYMHNOTEyk0ABgqdgTiXr2i19cls3r18yiNAAAoCBLik3K1XIAAADAG+W4zDhz5kymP/CvXr1aNptNd9xxh8vyFi1a6PPPP/dMwnzg5+cnPz8/q2MAgCTpQkqaurz+jcuyQy/EWJQGAAAUVL4hvrL72xXbKzbbbez+dvmGcC8uAAAAeL8clxn/PAPikm+++Ub+/v5q2LChy/LixYurePHinkn4P2FhYZKkuLg4lS9f3lweFxenG264wdzm1KlTLs9LS0vT2bNnzecDgDczDEN1xy13WUaRAQAA3OEIdygqNkqp8anZbuMb4ss1+wEAAFAg5LjMaNKkid5//30NHjxYAQEB2rVrlzZv3qzbbrtNxYq57mbPnj26/vrrPRo0IiJCYWFhWr16tVleJCYm6ocfftBjjz0mSWrevLnOnTunbdu2qXHjxpKkNWvWyOl0qlkzLs8CwPtFjFzqMlNkAACAa+EId1BWACgwuCweAOBKclxmjBs3Tk2bNlWNGjVUt25dbdu2TTabTSNHjsy07RdffKH27dvnOsz58+e1f/9+cz548KB+/vlnBQcHKzw8XEOHDtVzzz2nGjVqKCIiQmPGjFGFChV0++23S5IiIyMVHR2t/v37a9asWUpNTdWgQYN03333qUKFCrnOAwD5qcqIJS4zRQYAAABQcPGH+ZzjsngAgJzIcZlRv359rVmzRpMnT9Zvv/2mm266SU899ZR5BsQl69atk7+/v+6+++5ch9m6davatWtnzpduyt23b1/NmTNHzzzzjC5cuKBHHnlE586dU8uWLbVs2TI5HH9/0+jDDz/UoEGD1KFDB9ntdvXo0UPTp0/PdRYAyE8UGQAAAEDhwB/mc4/L4gEAcsJmGIZhdQhvk5iYqKCgICUkJCgwMNDqOAAKucuLjF0TOqukX467ZgAA8hSfjT2H3yX+v707D6+yvPPH/8mJITFCQATBKKsbUHfbILRUW1FRWtppR1qnFnU62jra1nUEpy5oK6DfcdrpZZf5/myVdr612pnpoFgUrUtbsExdWitxLYtls2ghYARizvP740DkZOMAyTknyet1XedKnvu5z3M+Bx+T3Hnnvm96ji0rt/jFPAC0Y09+NvbbMoACah5kLLhsgiADAAC6OPvVAEDHSxW6AICe6nP/31NZx7f8zdExarC/0gQAAACA5oQZAAVw96Ll8ZtX32w6/siRA+Pvxg4tYEUAAAAAULyEGQB59sdVG+OGeS9ktf3wgpoCVQMAAAAAxU+YAZBHm7Y0xMe+/eustuWzJxeoGgAAAADoGoQZAHmSJEkcfePDWW2CDAAAAADYNWEGQJ6MmPFg1rEgAwAAAAByI8wAyIPh0+dnHQsyAAAAACB3wgyATibIAAAAAIC9I8wA6ETNg4zamyYVqBIAAAAA6LqEGQCdpHmQ8fDlH459e5UWqBoAAAAA6LqEGQCdYOr3Fmcd3/rpY+KIQX0KVA0AAAAAdG3CDIAOduevl8WS5W81HZ/xvkEx9QNDClgRAAAAAHRtwgyADvT71zfEzQ8szWr7/uffX6BqAAAAAKB7EGYAdJCN7zTEJ+74TVbb8tmTC1QNAAAAAHQf+xS6AIDuIEmSOHbmw1ltggwAoLvbsnJLNKxvaPN82YCyqBhakceKAADoroQZAB1gxIwHs44FGQBAd7dl5ZZYMnpJpOvTbfZJVaaiprZGoAEAwF4TZgDspeHT52cdCzIAgJ6gYX1DpOvTMfrHo6NydGWL8/W19VF7bm00rG8QZgAAsNeEGQB7QZABAPR0laMro88JfQpdBgAA3ZwNwAH2UPMg48WbJxWoEgAAAADo3oQZAHugeZDxyBUnR0VZaYGqAQAAAIDuTZgBsJs+ccdvso5vn3psHHZg7wJVAwAAAADdnz0zACIi0o0RKxZFbF4X0XtQxLDxEamWMy2+/8Rr8fvXNzQdTz7moPjUCYfksVAAAAAA6HmEGQBL50UsuCaibvV7bVXVEZPmRIyZ0tT05Mt/iVm/eDHrqXf83Qn5qhIAoCjV19bvVjsAAOwJYQbQsy2dF3HvtIhIstvr1mTap86NGDMl3ty8Nab9YElWl+WzJ+evTgCAIlM2oCxSlamoPbe2zT6pylSUDSjLY1UAAHRXwgyg50o3ZmZkNA8yIra3lUQsmB7JkWfFiV9/JOusIAMA6OkqhlZETW1NNKxvaLNP2YCyqBhakceqAADoroQZQM+1YlH20lItJBF1q+Kc6/41IsY0tQoyAAAyKoZWCCsAAMgLYQbQNeS4Qfdu2bwup24HxoamzwUZAAAAAJB/wgyg+OW4Qfdu6z0op25vRL+IEGQAAAAAQKGkCl0AQLt2bNDdfDmoHRt0L52359ceNj4TikRJq6fTScTq5IBYkh4VtTdN2vPXAQAAAAD2ipkZQPHKcYPuGDV5z5acSpVmZnfcOy1zrZ1eJ73905kNn4/5Xz059u21l0taAQAUqS0rt9jEGwCAoifMAIpXjht0x4pFESMm7NlrjJkSMXVui2Ws1sYBMbPh8zH2rPNj9EFVe3ZtAIAit2Xlllgyekmk69Nt9klVpqKmtkagAQBAQQkzgOKV4wbdOfdry5gpEaMmx//3Hz+OP9S+HG9Ev1iSHhVHH7J//P2HRuzdtQEAiljD+oZI16dj9I9HR+Xoyhbn62vro/bc2mhY3yDMAACgoIQZQPHKcYPunPu147GX34yvvzAgIgY0tf3PpR/a6+sCAHQFlaMro88JfQpdBgAAtMkG4EDx2sUG3RElEVUHZ/rthTc2bYkL7vrfrLblsyfv1TUBAAAAgI4jzACK144NuiOiZaCx/XjS7D3b/Hu7dDqJmm88mtXWZpCRboxY9quI53+W+Zhu3OPXBQAAAAByZ5kpoLi1sUF3VFVngowxU/bq8iOvfTDruM0gY+m8NmqYs9c1AABAR9mycks0rG9o83zZgDL7nwAAXZIwAyh+2zfojhWLMpt99x6UWVpqL2ZkREQMnz4/67jdIOPeaRGRZLfXrcm0T50r0AAAoOC2rNwSS0YviXR9us0+qcpU1NTWCDQAgC5HmAF0DanSiBETOuxyOQcZ6cbMjIzmQUbE9raSiAXTM2HLXoYrAACFUl9bv1vtFKeG9Q2Rrk/H6B+PjsrRlS3O19fWR+25tdGwvkGYAQB0OcIMoMdpHmS8ePOktjuvWJS9tFQLSUTdqky/DgxbAADyoWxAWaQqU1F7bm2bfVKVqSgbUJbHqthblaMro88JfQpdBgBAhxJmAD1K8yBj4eUfjoqydmZUbF6X24Vz7QcAUEQqhlZETW2NPRYAACh6wgygx2geZNz8yaPi8EG7+Iu13oNyu3iu/QAAikzF0AphBQAARU+YAfQIV933+6zj9w/bPz5/0rBdP3HY+Iiq6sxm363um1GSOT9sfIfUCQAAna29vVDMxAEAipUwA+j2Fi5dFz97+s9ZbT+7OMfwIVUaMWlOxL3TIqIksgONksyHSbNt/g0AQJexqz1SamprBBoAQNERZgDd2rq6LXHh3N9ltS2fPXn3LjJmSsTUuRELrsneDLyqOhNkjJnSAZUCAMVs+PDhsWLFiqy2WbNmxfTp0wtUEbStrZkXO9qH3zw8DjjrgFbP155bGw3rG4QZAEDREWYA3VY6ncTYWx7NatvtIGOHMVMiRk2OWLEos9l370GZpaXMyACAHuOmm26KCy+8sOm4T59d7L0FeVY2oCxSlal2Z15EKqLP8X2izwnuXwCgaxFmAN3WyGsfzDre4yBjh1RpxIgJe3cNAKDL6tOnTwwePDjn/lu3bo2tW7c2HdfV1XVGWdCkYmhF1NTWRMP6hlbP75h50eugXnmuDABg76UKXQBAZxg+fX7W8V4HGQBAjzd79uw44IAD4vjjj4/bbrst3n333Xb7z5o1K/r27dv0GDJkSJ4qpSerGFoRfU7o0+qjcnRlocsDANhjZmYA3Y4gAwDoaF/5ylfihBNOiP79+8eiRYtixowZsWbNmrj99tvbfM6MGTPiiiuuaDquq6sTaAAAwB4SZgDdSvMg46WvTypQJQBAsZs+fXrMmTOn3T61tbUxatSorFDimGOOiV69esUXv/jFmDVrVpSXl7f63PLy8jbPAQAAu0eYAXQbzYOMR644Ocr3sUE3ANC6K6+8Ms4///x2+4wcObLV9rFjx8a7774by5cvjyOPPLITqoPOU19bv1vtAADFQJgBdAvNg4zZnzo6Djuwd4GqAQC6goEDB8bAgQP36LnPPfdcpFKpOPDAAzu4Kug8ZQPKIlWZitpza9vsk6pMRdmAsjxWBQCQG2EG0OVdds+zWcfjRh4Qn60ZWqBqAIDuZvHixfHb3/42PvKRj0SfPn1i8eLFcfnll8e5554b+++/f6HLg5xVDK2ImtqaaFjf0GafsgFlUTG0Io9VAQDkRpgBdGkL/rgmfv7c6qy2n1x0UoGqAQC6o/Ly8rjnnnvixhtvjK1bt8aIESPi8ssvz9pHo7vbsnKLX4B3ExVDK/y3AgC6JGEG0GWt3vBOfOnHz2S1LZ89uUDVAADd1QknnBBPPfVUocsomC0rt8SS0UsiXZ9us0+qMhU1tTV+Sd4NCbIAgGIhzAC6pMZ0EuNn/zKrTZABANDxGtY3RLo+HaN/PDoqR1e2OF9fWx+159ZGw/oGv9TuZgRZAEAxEWYAXdKh1z6YdSzIAADoXJWjK6PPCX0KXQZ5JMgCAIqJMAPocoZPn591LMgAAIDOI8gCAIpBqtAFAOwOQQYAAAAA9DzCDKDLaB5kvPz1MwtUCQAAAACQT8IMoEtoHmQ8dtUp0WsfX8IAAAAAoCewZwZQ9JoHGbf97TExYsB+BaoGAKBnqq+t3612AADoSMIMoKh9/Nu/zjoeMWC/OPv9QwpUDQBAz1M2oCxSlamoPbe2zT6pylSUDSjLY1XkkyALACgGwgygaP34qRXx/KqNWW2PXXVKYYoBAOihKoZWRE1tTTSsb2izT9mAsqgYWpHHqsgHQRYAUEyEGUBRWrb+7fjaz/+Y1bZ89uQCVQMA0LNVDK0QVvRAgiwAoJgIM4Ci825jOj7yfx7PahNkAABA/gmyAIBikSp0AQDNHfbPv8g6FmQAAAAAQM8mzACKyvDp87OOBRkAAAAAgDADKBqCDAAAAACgNcIMoCg0DzJe+caZBaoEAAAAACg2wgyg4JoHGY9ccXKUlfryBAAAAABk+G0hUFDNg4wbPz4mDjuwd4GqAQAAAACKkTADKJjT//WJrONRg/vE+R8cUaBqAAAAAIBiJcwACuKHv1kWL6/bnNW24LIPF6gaAAAAAKCYCTOAvHv1jU0x8/6lWW3LZ08uUDUAAAAAQLETZgB5te3ddEy8/cmsNkEGAAAAANAeYQaQV0d87RdZx4IMAAAAAGBXhBlA3gyfPj/rWJABAAAAAORCmAHkhSADAAAAANhTwgyg0zUPMl79xpkFqgQAAAAA6IqEGUCnah5kPHbVKbFPqS89AAAAAEDu/EYR6DTNg4xv/M1RMWLAfgWqBgAAAADoqoQZQKc4+bbHso6POaRvfG7ssAJVAwAAAAB0ZcIMoMP9+5OvxYo367Pa5l36oQJVAwAAAAB0dcIMoEO9uLYubnnwxay25bMnF6gaAAAAAKA7EGYAHWbru40x6Zu/ymoTZAAAAAAAe0uYAXSYI7+2IOtYkAEAAAAAdARhBtAhhk+fn3UsyAAAAAAAOoowA9hrggwAAAAAoDMJM4C90jzIeO2WswpUCQAAAADQXQkzgD3WPMj41T99JEpTJQWqBgAAAADoroQZwB5pHmTc+rfHxJD+lQWqBgAAAADozvYpdAFADtKNESsWRWxeF9F7UMSw8RGp0oKVM/aWR7KOPzB8/5j6/iEFqgYAAAAA6O6EGVDsls6LWHBNRN3q99qqqiMmzYkYMyXv5fzLgqUxYvOzMTa1Id6IfrEkPSru+9L4vNcBAAAAAPQcwgwoZkvnRdw7LSKS7Pa6NZn2qXPzGmgs/9VP4pzF18aVvd56r7GqOmJpUpBgBQAAAADoGeyZAcUq3ZiZkdE8yIh4r23B9Ey/PNj2/M9j6CNfisHxVvaJHcHK0nl5qQMAAAAA6HmEGVCsVizKXlqqhSSiblWmX2dLN8b6n10eERGpklbqiMhrsAIAAAAA9CzCDChWm9d1bL+98Nmv3R7VJW+1EmTskMdgBQAAAADoceyZAcWq96A975duzAQLm9dlzg8bH5Eq3aMyhk+fH1NSG3LrnIdgBQAAAADoeYQZUKyGjc9srl23JlrfN6Mkc37Y+OzmpfMye23svERVVXXEpDm7vUn38OnzIyLijeiX2xNyDWAAAAAAAHaDZaagWKVKMwFEREQ0X99p+/Gk2dkzLpbOy2zG3XyvjT3YpHtHkBERsSQ9Kt7tfVArdexUT9XBLYMVAAAAAIAOIMyAYjZmSsTUuRFVB2W3V1Vn2neeaZFuzMzIaHUWx+5t0r1zkBERccunjo19zrp1+1GOwQoAAAAAQAexzBQUuzFTIkZN3vUeGCsWtZyRkWWnTbpHTGizV/Mg45hD+sZna4ZGxNBMgNLqElazd3sJKwAAAACAXAkzoCtIlbYbQERE7ptvt9Nv1oO1LdrmXfqh9w5yDVYAAAAAADqQMAO6i1w3326j3zMr/xrff/JPWW3LZ09u2TGXYAUAAAAAoAPZMwO6i2HjM0s+7cEm3fXb3o1PfWdRVlurQQYAAAAAQAEIM6C7SJVGTJqz/WD3Nukec/1DWceCDAAAAACgmAgzoDsZMyWzSXfVQdntVdWZ9lY26W6+4bcgAwAAAAAoNvbMgO5mNzbpFmQAAAAAAF2BMAO6oxw26W4eZPzplrM6syIAAAAAgD1mmSnogZoHGb+Z/tFIpdraOBwAAAAAoLCEGdDDNA8y/uXsY+PgfvsWqBoAAAAAgF0TZkAP0jzIeP+w/ePTJx5SoGoAAAAAAHIjzIAe4sZ5L7Ro+9nF4wtQCQAAAADA7rEBOBS7dGPEikURm9dF9B4UMWx8ZoPv3fC/y9+KuxYtz2pbPntyBxYJAAAAANB5hBlQzJbOi1hwTUTd6vfaqqojJs2JGDMlp0ts3vpunP29xVltggwAAAAAoCuxzBQUq6XzIu6dlh1kRETUrcm0L52X02WOuuGhrGNBBgAAAADQ1QgzoBilGzMzMiJp5eT2tgXTM/3a0XzDb0EGAAAAANAVCTOgGK1Y1HJGRpYkom5Vpl8bBBkAAAAAQHchzIBitHndXvVrHmQsm3XW3lYEAAAAAFAwwgwoRr0H7XG/5kHGUzNOjZKSko6oCgAAAACgIPYpdAFAK4aNj6iqzmz23eq+GSWZ88PGZ7U2DzJu+ZujY3Dfis6rEwCAorZl5ZZoWN/Q5vmyAWVRMdTPiwAAFD9hBhSjVGnEpDkR906LiJLIDjS2z7KYNDvTb7vmQcbIgfvF340d2umlAgBQnLas3BJLRi+JdH26zT6pylTU1NYINAAAKHrCDCgG6cbMZt6b12WWjho2PmLMlIipcyMWXJO9GXhVdSbIGDOlqemiub9rcclfXnlKHgoHAKBYNaxviHR9Okb/eHRUjq5scb6+tj5qz62NhvUNwgwAAIqeMAMKbem8NgKLOZnAYtTklkHHTjMyfvniunh4afZG4MtnT85X9QAAFLnK0ZXR54Q+hS4DAAD2ijADCmnpvO1LSTXbF6NuTaZ96txMoDFiQqtP31jfEH9/V/asDEEGAAAAANDdpApdAPRY6cbMjIxWN/je3rZgeqZfG4696eGsY0EGAAAAANAdCTOgUFYsyl5aqoUkom5Vpl8rmm/4LcgAAAAAALorYQYUyuZ1u+7TRj9BBgAAAADQk9gzAwql96A96tc8yFg266yOqggAgG6ovrZ+t9oBAKAYCTOgUIaNj6iqzmz23eq+GSWZ88PGN7U0DzIWz/holJSUdG6dAAB0SWUDyiJVmYrac2vb7JOqTEXZgLI8VgUAAHtGmAGFkiqNmDQn4t5pEVES2YHG9oBi0uxMv2gZZNz2t8fEQX33zUupAAB0PRVDK6KmtiYa1je02adsQFlUDK3IY1UAALBnhBlQSGOmREydG7HgmuzNwKuqM0HGmCkR0TLIGHNQVZz9/iH5rBQAgC6oYmiFsAIAgG5BmAGFNmZKxKjJESsWZTb77j0os7TU9hkZ036wpMVTHvzqhHxXCQAAAABQMMIMKAap0ogRLQOKh15YG0++/JestuWzJ+erKgAAAACAopAqdAFA6/769rb44o+ezmoTZAAAAAAAPZEwA4rU8TcvzDoWZAAAAAAAPZUwA4pQ8w2/BRkAAAAAQE8mzIAiI8gAAAAAAMgmzIAi0jzIWDbrrAJVAgAAAABQPLpUmHHjjTdGSUlJ1mPUqFFN57ds2RKXXHJJHHDAAdG7d+/49Kc/HevWrStgxZC75kHGkmtPjZKSkgJVAwAA0H1tWbklNj2zqc3HlpVbCl0iANDMPoUuYHe9733vi0ceeaTpeJ993nsLl19+ecyfPz/uu+++6Nu3b1x66aXxqU99Kn7zm98UolTIWfMg41ufPS4OrKooUDUAAADd15aVW2LJ6CWRrk+32SdVmYqa2pqoGGpcBgDFosuFGfvss08MHjy4RfvGjRvjzjvvjP/3//5ffPSjH42IiB/+8IcxevToeOqpp+Kkk05q85pbt26NrVu3Nh3X1dV1fOHQhuZBxvFD+8Unjju4QNUAAAB0bw3rGyJdn47RPx4dlaMrW5yvr62P2nNro2F9gzADAIpIl1pmKiLilVdeierq6hg5cmR87nOfi5UrV0ZExNNPPx0NDQ0xceLEpr6jRo2KoUOHxuLFi9u95qxZs6Jv375NjyFDhnTqe4AdPvvvLe/N//7HDxagEgAAgJ6lcnRl9DmhT4tHawEHAFB4XSrMGDt2bNx1112xYMGC+O53vxvLli2LCRMmxKZNm2Lt2rXRq1ev6NevX9ZzBg0aFGvXrm33ujNmzIiNGzc2PV5//fVOfBeQ8cAfVsdTf3orq2357MkFqgYAAAAAoHh1qWWmzjzzzKbPjznmmBg7dmwMGzYs7r333th33333+Lrl5eVRXl7eESXCrqUbY+OLT8TD9zwaJ6X6xZL0qEhHSpABAAAAANCGLhVmNNevX7844ogj4tVXX43TTjsttm3bFhs2bMianbFu3bpW99iAglg6L5IF10TfutXxb70yTauT/lH9mW8Vti4AAAAAgCLWpZaZam7z5s3x2muvxUEHHRQnnnhilJWVxaOPPtp0/qWXXoqVK1fGuHHjClglbLd0XsS90yLZuDqrubrkrxH3TsucBwAAAACghS41M+Oqq66Kj3/84zFs2LBYvXp13HDDDVFaWhrnnHNO9O3bN77whS/EFVdcEf3794+qqqr48pe/HOPGjYuTTjqp0KXT06UbIxZcE+kkiVRJ85NJRJRELJgeMWpyRKq0AAUCAAD0LPW19bvVDgAUVpcKM/785z/HOeecE2+++WYMHDgwPvShD8VTTz0VAwcOjIiIf/3Xf41UKhWf/vSnY+vWrXHGGWfEd77znQJXDRGxYlFE3epWgowdkoi6VZl+IybkszIAAIAepWxAWaQqU1F7bm2bfVKVqSgbUJbHqgCAXelSYcY999zT7vmKioq444474o477shTRZCbr/zfBU17ZLRr87pOrwUAgGzf+MY3Yv78+fHcc89Fr169YsOGDS36rFy5Mi6++OJ47LHHonfv3nHeeefFrFmzYp99utSQCoiIiqEVUVNbEw3rG9rsUzagLCqGVuSxKgBgV/zkDZ1s+PT5cVKqX26dew/q1FoAAGhp27ZtcfbZZ8e4cePizjvvbHG+sbExJk+eHIMHD45FixbFmjVrYtq0aVFWVha33HJLASoG9lbF0AphBQB0MV16A3AodsOnz4+IiCXpUbE66R/pNnuWRFQdHDFsfL5KAwBgu5kzZ8bll18eRx99dKvnH3744Vi6dGn8+Mc/juOOOy7OPPPMuPnmm+OOO+6Ibdu25blaAADomYQZ0Ek+ecdvmj5PRypmNkyLVJRERPONM7YfT5pt828AgCK0ePHiOProo2PQoPdm0Z5xxhlRV1cXL7zwQpvP27p1a9TV1WU9AACAPSPMgE7w82dXxXOvb8hq+/4tMyOmzo2oOii7c1V1pn3MlPwVCABAztauXZsVZERE0/HatWvbfN6sWbOib9++TY8hQ4Z0ap0AANCdCTOgg71RtyUu++lzWW3LZ0/OfDJmSsRlf4w474GIT9+Z+XjZ84IMAIAONn369CgpKWn38eKLL3ZqDTNmzIiNGzc2PV5//fVOfT0AAOjObAAOHShJkqi55dGstqYgY4dUacSICXmsCgCg57nyyivj/PPPb7fPyJEjc7rW4MGDY8mSJVlt69atazrXlvLy8igvL8/pNQAAgPYJM6ADjZjxYNZxiyADAIC8GDhwYAwcOLBDrjVu3Lj4xje+EW+88UYceOCBERGxcOHCqKqqijFjxnTIawAAAO0TZkAHGT59ftaxIAMAoGtYuXJlvPXWW7Fy5cpobGyM5557LiIiDjvssOjdu3ecfvrpMWbMmPj85z8ft956a6xduza+9rWvxSWXXGLmBQAA5IkwAzqAIAMAoOu6/vrr4+677246Pv744yMi4rHHHotTTjklSktL44EHHoiLL744xo0bF/vtt1+cd955cdNNNxWqZAAA6HFKkiRJCl1Esamrq4u+ffvGxo0bo6qqqtDlUOSaBxnPXnda7L9frwJVAwDQsfxs3HH8WwIAQMae/Gyc6uSaoFtrHmR8//MnCjIAAAAAADqYMAP2UPMg4+QjBsYZ7xtcoGoAAAAAALovYQbsgUnffLJF291/X1OASgAAAAAAuj9hBuyme3/3ery4dlNWmw2/AQAAAAA6jzADdsPqDe/EP/3sD1ltggwAAAAAgM4lzIAcJUkS42f/MqtNkAEAAAAA0PmEGZCjETMezDoWZAAAAAAA5Mc+hS4AilK6MWLFoojN6yJ6D4qR398QO2d/ggwAAAAAgPwRZkBzS+dFLLgmom51U9Ovy/vHzIZp8VC6RpABAAAAAJBnlpmCnS2dF3HvtKwgIyJicLwV3y37Zrzw2W0FKgwAAAAAoOcSZsAO6cbMjIxIWpxKlUSUlJTEfr/850w/AAAAAADyRpgBO6xY1GJGxs5KIomoW5XpBwAAAABA3ggzYIfN6zq2HwAAAAAAHUKYATv0HtSx/QAAAAAA6BDCDNju9T7Hxeqkf6RbbpmxXUlE1cERw8bnsywAAAAAgB5PmAERkSRJTPg/T8bMhmkREa0EGiWZD5NmR6RK81obAAAAAEBPJ8yAiBgx48GIiHgoXRMXN1wWqb7V2R2qqiOmzo0YM6UA1QEAAAAA9Gz7FLoAKLTh0+dnHX//lpkR6esjVizKbPbde1BmaSkzMgAAAAAACkKYQY/WPMhYPnty5pNUacSICQWoCAAAAACA5iwzRY/VPMh4/sbTC1QJAAAAAADtEWbQIzUPMn70hZroU1FWoGoAAAAAAGiPMIMep3mQ8fFjq2PC4QMLVA0AAAAAALsizKBHGTfr0RZt3z7n+AJUAgAAAABAroQZ9Bg//M2yWLNxS1Zb04bfAAAAAAAULWEGPcKKN9+OmfcvzWoTZAAAAAAAdA3CDLq9dDqJk297PKtNkAEAAAAA0HUIM+j2Rl77YNaxIAMAAAAAoGvZp9AFQGcaPn1+1rEgAwAA6Om2rNwSDesb2jxfNqAsKoZW5LEiAIBdE2bQbQkyAAAAsm1ZuSWWjF4S6fp0m31Slamoqa0RaAAARUWYQbfUPMh4YeYZBaoEAACgeDSsb4h0fTpG/3h0VI6ubHG+vrY+as+tjYb1DcIMAKCoCDPodpoHGT+58KTYr9ytDgAAsEPl6Mroc0KfQpcBAJAzG4DTrTQPMs4+8ZAYd+gBBaoGAAAAAICOIMyg2zjupodbtN129rEFqAQAAAAAgI4kzKBb+PcnX4sN9Q1ZbTb8BgAAAADoHoQZdHmv/WVz3PLgi1ltggwAAAAAgO7Drsh0DenGiBWLIjavi+g9KGLY+IhUaTSmkzj1X57I6irIAAAAaF99bf1utQMAFJowg+K3dF7Egmsi6la/11ZVHTFpThw6tzSrqyADAACgbWUDyiJVmYrac2vb7JOqTEXZgLI8VgUAsGvCDIrb0nkR906LiCS7vW5NpH/6+TgjdVk8lK6JCEEGAADArlQMrYia2ppoWN/QZp+yAWVRMbQij1UBAOyaMIPilW7MzMhoHmRENLXdUPajWLj1/fGn2R/Pa2kAAABdVcXQCmEFANDlCDMoXisWZS8t1UyqJKI63ozaL1TlsSgAAAAAAPItVegCoE2b1+XUrXzLXzq5EAAAAAAACkmYQfHqPahj+wEAAAAA0CVZZorikW7MLC21eV0moBgyNqKqOqJuTbS+b0ZJ5vyw8fmuFAAAAACAPBJmUByWzsts9r3zHhlV1RFH/W0ki/4tkiSzR8Z7th9Mmh2RKs1npQAAAAAA5Jllpii8pfMi7p3WcrPvujWRLPp2fL/hY7E2+mefq6qOmDo3YsyU/NUJAAAAAEBBmJlBYaUbMzMyWl1GKokkiZiyz+L48NZvxvtTL8c954zILEE1bLwZGQAAAAAAPYQwg8JasajljIydpEoiquPNTJBxy9V5LAwAAAAAgGJhmSkKa/O6nLrdc86ITi4EAAAAAIBiJcygsHoP6th+AAAAAAB0O8IMCmvY+Mxm3lHS6ukkSiKqDs70AwAAAACgRxJmUFip0ohJcyIiIt1sD/AkSjIRx6TZNvsGAAAAAOjBhBkU3pgp8cVtX4210T+ruaSqOmLq3IgxUwpUGAAAAAAAxWCfQhcAJ9/2WKxI18TCre+PmtSLMazXpphz3mmZpaXMyAAAAAAA6PGEGRTUnb9eFiverI+IiHSk4qn0mLjnxskFrgoAAAAAgGJimSkK5tU3NsXNDyzNals+W5ABAAAAAEA2YQYF0dCYjom3P5nVJsgAAAAAAKA1wgwK4vB//kXWsSADAAAAAIC2CDPIu+HT52cdCzIAAAAAAGiPDcDpfOnGiBWLIjavi8/+ZFmkYlSkt+doggwAAAAAAHZFmEHnWjovYsE1EXWrIyLinl4Rq5P+MbNhWnz7phsKXBwAAAAAAF2BZaboPEvnRdw7rSnI2GFwvBXf6/Wt6PXyAwUqDAAAAACArkSYQedIN2ZmZETS4lSqJKIkImLB9Ih3t0Us+1XE8z/LfEw35rtSAAAAAACKnGWm6BwrFrWYkZEtiahbFXH76Ij69e81V1VHTJoTMWZKp5cIAAAAAEDXYGYGnWPzutz67RxkRETUrcksTbV0XsfXBAAAAABAlyTMoFOs3NZnD5+5fVmqBdMtOQUAAAAAQEQIM4pTurFL7yOx7d10nHLftlid9I90yy0zcrB9CaoVizq6NAAAAAAAuiB7ZhSbpfMyG2fvvN9EF9tH4oiv/SIiUjGzYVp8t+ybkdnuew9SjVyXqgIAAAAAoFszM6OYLJ2X2S+i+cbZXWgfieHT5zd9/lC6JlKf+VFE1UHZnSoH5Hax3oM6sDIAAAAAALoqMzOKRboxMyOj1RkMSUSUZPaRGDU5IlWa5+Jys3OQERGxfPbkzCejJmeWjNq8LhNQDBkb8W/HZkKaVt9vSWY2yrDxnV4zAAAAAADFz8yMYrFiUcsZGVmKex+J5kHGK984872DVGnEiAkRR/9t5uM+vTLLZkVEZgmqnW0/njS7aEMbAAAAAADyS5hRLHLdH6II95FoHmQ8csWHo6x0F7fWmCkRU+e2XIKqqjrT3kX2BwEAAAAAoPNZZqpY5Lo/RJHtI9E8yPja5NFx2IF9cnvymCktl6AaNt6MDAAAAAAAsggzisWw8ZlZCV1oH4ljZz6cdTy0f2X8w4SRu3eRHUtQAQAAAABAGywzVSxSpV1qH4l/e/SV2PhOQ1bbk//0kQJVAwAAAABAdybMKCZdZB+JV9/YFLcvfDmrbfnsyQWqBgAAAACA7s4yU8WmyPeR2PZuOibe/mRWmyADAAAAAIDOJMwoRkW8j8QRX/tF1rEgAwAAAACAzmaZKXI2fPr8rGNBBgAAAAAA+WBmRk+TbtyjJawEGQAAAAAAFIowo7tqLbR4cX7Egmsi6la/16+qOmLSnHY3F28eZLx2y1mdVTUAAAAAALQgzOiOls5rGVrsu3/EO39t2bduTcS90yKmzm010GgeZDxz3WlRmirp6IoBAAAAAKBN9szobpbOy4QTOwcZEa0HGRERkWQ+LJiemc2xk1P/5fGs4/+8eHz0369Xx9QJAAAAAAA5EmZ0J+nGzIyMHQFFzpKIulWZZam2u3XBi/HaX95uOv7a5NFx4rD9O6ZOAAAAAADYDcKM7mTFopYzMnbH5nUREfHEy3+J7zz+WlPzSSP7xz9MGLm31QEAAAAAwB4RZnQn28OIPdZ7UKzZ+E6c94MlWc33XDRu764LAAAAAAB7wQbg3UnvQXv4xJKIqupoOOSkGHfdw1lnls+evPd1dZZ0Y2Y2yuZ1mfc+bHxEqrTQVQEAAAAA0MGEGd3JsPERVdURdWsi930zSjIfJs2Ow7tSkLF0XmZ/kJ2X1aqqjpg0J2LMlMLVBQAAAABAh7PMVHeSKs38Mj8imkKKJtuP9+2f3VxVHTF1bgyfmz2joeiDjHuntdwfpG5Npn3pvMLUBQAAAABApzAzo7sZMyVi6tw2Zi3Mjhg1ucXSTMOvXZB1iaIOMtKNmffW6syTJCJKIhZMz7xPS04BAAAAAHQLwozuaMyUVkOLpl/uj5jQ1HX49PlZT/3TLWfls9Ldt2JRyxkZWZKIulWZfju9TwAAAAAAui5hRrHpqE2tU6W7/GV+8yDjuetPi1Sq+fJURWbzuo7tBwAAAABA0RNmFJM8bmo94dZfZh3//JIPRr/KXm0/oaNClr3Ve1DH9gMAAAAAoOgJM4rFjk2tm+8FsWNT66lzOyzQuOXB2nj9rXeajm/4+Jg4bki/9mvLU8iyS8PGZ167bk20vm9GSeb8sPH5rQsAAAAAgE6TKnQBRA6bWkdmU+t043v9l/0q4vmfZT7uaM/BYy++Ef/+5J+ajiccPiAu+OCItp+wI2Rpvk/FjpBl6bycX7tDpEozIUpERDRfEmv78aTZNv8GAAAAAOhGzMwoBruzqfU7f93jWRKrNrwTF9z1v1ltP/rC2LafsMuQpSQTsoyanN/wYMyUzEyVVv8dZud/tggAAAAAAJ1KmFEMct2s+qUHI576buzJUlTb3k3HB2dn75OxfPbk9l9vd0KWXWw23uHGTMmEKMWwjwcAAAAAAJ3KMlPFINfNqv9wb+S8FFUzR3ztF1nHuwwyInIPWXLt19FSpZkQ5ei/zXwUZAAAsAe+8Y1vxPjx46OysjL69evXap+SkpIWj3vuuSe/hQIAQA8mzCgGOza1brEHxA4lEZUDIurXt3ORnWZJNDN8+vys45yCjIjcQ5Zc+wEAQBHatm1bnH322XHxxRe32++HP/xhrFmzpunxyU9+Mj8FAgAAlpkqCjs2tb53WmQCjZ1nX2wPOI6ZGvHUd3Z9rWazJPY4yIh4L2SpWxOtzwgpyZwfNj73awIAQJGZOXNmRETcdddd7fbr169fDB48OOfrbt26NbZu3dp0XFdXt0f1AQAAZmYUjx2bWlcdlN1eVZ1pP/Ks3K6z0yyJ5kHGslk5XmOHHSFLRLScNbL9eNJsyzsBANAjXHLJJTFgwICoqamJH/zgB5Ekrf3Bz3tmzZoVffv2bXoMGTIkT5UCAED3Y2ZGMWlvU+t0427NkmgeZPz+htOjpKStZax2UdPUuRELrsneDLyqOhNktLHhOAAAdCc33XRTfPSjH43Kysp4+OGH4x//8R9j8+bN8ZWvfKXN58yYMSOuuOKKpuO6ujqBBgAA7CFhRrHZsal1a+27Wopq+yyJk255NOup91/6oei7b9me19ReyAIAAEVo+vTpMWfOnHb71NbWxqhRo3K63nXXXdf0+fHHHx9vv/123Hbbbe2GGeXl5VFeXp5bwQAAQLuEGV1JDrMkbrp/aayt29J06uZPvC+OPqTv3r92WyELAAAUoSuvvDLOP//8dvuMHDlyj68/duzYuPnmm2Pr1q0CCwAAyANhRlfTziyJh19YGz/4zbKmrqeOOjA+P2544WoFAIACGThwYAwcOLDTrv/cc8/F/vvvL8gAAIA8EWZ0Ra3Mknj9rfq46EdPZ7Xdef4H8lkVAAB0SStXroy33norVq5cGY2NjfHcc89FRMRhhx0WvXv3jvvvvz/WrVsXJ510UlRUVMTChQvjlltuiauuuqqwhQMAQA8izOgGtr7bGBNufSyrbfnsyQWqBgAAupbrr78+7r777qbj448/PiIiHnvssTjllFOirKws7rjjjrj88ssjSZI47LDD4vbbb48LL7ywUCUDAECPU5IkSbLrbj1LXV1d9O3bNzZu3BhVVVWFLmeXhk+fn3UsyAAAoKN0tZ+Ni5l/SwAAyNiTn41TnVwTnUyQAQAAAABAd2eZqWKTbmx1c+/WCDIAAAAAAOgJhBnFZOm8iAXXRNStfq+tqjpi0pyIMVOyujYPMpbNOisfFQIAAAAAQN5ZZqpYLJ0Xce+07CAjIqJuTaZ96bympuZBxh9uPD1KSkryUSUAAAAAAOSdMKMYpBszMzKitb3Yt7ctmB6Rbowv/+TZrLMPfPlDUVVR1uklAgAAAABAoVhmqhisWNRyRkaWJKJuVTz8i/+K+39f2dT6wws+EEcd3Lfz6wMAAAAAgAIyM6MYbF6XU7cHfvNc0+dXnHZEfOTIAzupIAAAAAAAKB5mZhSD3oNy6vZG9IuIiJNG9o+vnHr4eyfSjZnZHZvXZa41bHxEqrQTCgUAAAAAgPwTZhSDYeMjqqozm323sm9GOolYGwfEkvSoiIi456Jx751cOi+z38bOy1RVVUdMmhMxZkonFw4AAAAAAJ3PMlPFIFWaCR8iIqIk61R6e7Yxs+HzkY5ULJ89+b2TS+dF3Dut5X4bdWsy7UvndV7NAAAAAACQJ8KMYjFmSsTUuRFVB2U1r40D4uKGy+KhdE12kJFuzMzIaGUmR1PbgumZfgAAAAAA0IVZZqqYjJkSMWpyxIpF8ZX/uyDeiH6xJD2q5YyMiMweGc1nZGRJIupWZfqNmNCpZQMAAAAAQGcSZhSbVGmc+2iv+HV6fFPTsllntey3eV1u18u1HwAAAAAAFCnLTBWZ2jV18etX1793fNOkKCkpadmx96DcLphrPwAAAAAAKFLCjCJz8P77xuCqioiIePa602LfXqWtdxw2PqKqOppvGP6ekoiqgzP9AAAAAACgC7PMVJGpqiiLJ/7plGhoTKJ3eTv/eVKlEZPmRNw7LTKBxs4bgW8POCbNzvTraOnGzF4cm9dlZn4MG985rwMAAAAAACHMKErl+5RGezlGkzFTIqbOjVhwTfZm4FXVmSBjzJSOL27pvDZeb07nvB4AAAAAAD2eMKOrGzMlYtTk/MyUWDpv+0yQJLu9bk2mfepcgQYAAAAAAB1OmNEdpEojRkzo3NdIN2ZmZDQPMiK2t5VELJieCVYsOQUAAEVjy8ot0bC+oc3zZQPKomJoRR4rAgCA3SfMIDdP/p/spaVaSCLqVmVmiHR2sAIAAORky8otsWT0kkjXp9vsk6pMRU1tjUADAICiJsxg15bOi3j8ltz6bl7XubUAAAA5a1jfEOn6dIz+8eioHF3Z4nx9bX3UnlsbDesbhBkAABQ1YQbta1peKke9B3VeLQAAwB6pHF0ZfU7oU+gyAABgj6UKXUBnueOOO2L48OFRUVERY8eOjSVLlhS6pK5pxaJdLC+1k6qDM5uPAwAAAABAB+qWYcZPf/rTuOKKK+KGG26IZ555Jo499tg444wz4o033ih0aV3P7iwbNWm2zb8BAAAAAOhw3TLMuP322+PCCy+MCy64IMaMGRPf+973orKyMn7wgx8UurSuJ9dlo065NmLMlM6tBQAAAACAHqnbhRnbtm2Lp59+OiZOnNjUlkqlYuLEibF48eJWn7N169aoq6vLerDdsPERVdURUdJ2nz7VER++Km8lAQAAAADQs3S7MGP9+vXR2NgYgwZlzygYNGhQrF27ttXnzJo1K/r27dv0GDJkSD5K7RpSpRGT5mw/aB5olGQeZ86xvBQAABSx+tr62PTMphaP+tr6QpcGAAA52afQBRSDGTNmxBVXXNF0XFdXJ9DY2ZgpEVPnRiy4Jnsz8KrqzD4ZlpcCAICiVDagLFKVqag9t7bNPqnKVJQNKMtjVQAAsPu6XZgxYMCAKC0tjXXrsjeuXrduXQwePLjV55SXl0d5eXk+yuu6xkyJGDU5YsWizKbgvQdllqAyIwMAAIpWxdCKqKmtiYb1DW32KRtQFhVDK/JYFQAA7L5uF2b06tUrTjzxxHj00Ufjk5/8ZEREpNPpePTRR+PSSy8tbHFdXao0YsSEQlcBAADshoqhFcIKAAC6vG4XZkREXHHFFXHeeefF+9///qipqYlvfvOb8fbbb8cFF1xQ6NIAAAAAAIDd1C3DjM985jPxl7/8Ja6//vpYu3ZtHHfccbFgwYIWm4IDAAAAAADFr1uGGRERl156qWWlAAAAAACgG0gVugAAAAAAAID2CDMAAAAAAICiJswAAAAAAACKmjADAAAAAAAoasIMAAAAAACgqAkzAAAAAACAoibMAAAAAAAAipowAwAAAAAAKGrCDAAAAAAAoKgJMwAAAAAAgKImzAAAAAAAAIqaMAMAAAAAAChqwgwAAAAAAKCoCTMAAAAAAICiJswAAAAAAACKmjADAAAAAAAoasIMAAAAAACgqAkzAAAAAACAoibMAAAAAAAAipowAwAAAAAAKGrCDAAAAAAAoKgJMwAAAAAAgKImzAAAAAAAAIqaMAMAAAAAAChqwgwAAAAAAKCoCTMAAAAAAICitk+hCyhGSZJERERdXV2BKwEAgMLa8TPxjp+R2XPGGQAAkLEn4wxhRis2bdoUERFDhgwpcCUAAFAcNm3aFH379i10GV2acQYAAGTbnXFGSeJPrFpIp9OxevXq6NOnT5SUlHTINevq6mLIkCHx+uuvR1VVVYdck+7D/UF73B+0x/1Be9wftCfX+yNJkti0aVNUV1dHKmWV2r1hnEG+uT9oj/uD9rg/aI/7g/Z05jjDzIxWpFKpOOSQQzrl2lVVVf4np03uD9rj/qA97g/a4/6gPbncH2ZkdAzjDArF/UF73B+0x/1Be9wftKczxhn+tAoAAAAAAChqwgwAAAAAAKCoCTPypLy8PG644YYoLy8vdCkUIfcH7XF/0B73B+1xf9Ae90f34L8j7XF/0B73B+1xf9Ae9wft6cz7wwbgAAAAAABAUTMzAwAAAAAAKGrCDAAAAAAAoKgJMwAAAAAAgKImzAAAAAAAAIqaMCNP7rjjjhg+fHhUVFTE2LFjY8mSJYUuiTy78cYbo6SkJOsxatSopvNbtmyJSy65JA444IDo3bt3fPrTn45169YVsGI605NPPhkf//jHo7q6OkpKSuLnP/951vkkSeL666+Pgw46KPbdd9+YOHFivPLKK1l93nrrrfjc5z4XVVVV0a9fv/jCF74QmzdvzuO7oLPs6v44//zzW3w9mTRpUlYf90f3NWvWrPjABz4Qffr0iQMPPDA++clPxksvvZTVJ5fvKStXrozJkydHZWVlHHjggXH11VfHu+++m8+3QifI5f445ZRTWnwN+dKXvpTVx/3RNRhjEGGcQTbjDNpjnEF7jDNoT7GMM4QZefDTn/40rrjiirjhhhvimWeeiWOPPTbOOOOMeOONNwpdGnn2vve9L9asWdP0+PWvf9107vLLL4/7778/7rvvvnjiiSdi9erV8alPfaqA1dKZ3n777Tj22GPjjjvuaPX8rbfeGv/2b/8W3/ve9+K3v/1t7LfffnHGGWfEli1bmvp87nOfixdeeCEWLlwYDzzwQDz55JNx0UUX5est0Il2dX9EREyaNCnr68lPfvKTrPPuj+7riSeeiEsuuSSeeuqpWLhwYTQ0NMTpp58eb7/9dlOfXX1PaWxsjMmTJ8e2bdti0aJFcffdd8ddd90V119/fSHeEh0ol/sjIuLCCy/M+hpy6623Np1zf3QNxhjszDiDHYwzaI9xBu0xzqA9RTPOSOh0NTU1ySWXXNJ03NjYmFRXVyezZs0qYFXk2w033JAce+yxrZ7bsGFDUlZWltx3331NbbW1tUlEJIsXL85ThRRKRCT//d//3XScTqeTwYMHJ7fddltT24YNG5Ly8vLkJz/5SZIkSbJ06dIkIpL//d//berzi1/8IikpKUlWrVqVt9rpfM3vjyRJkvPOOy/5xCc+0eZz3B89yxtvvJFERPLEE08kSZLb95QHH3wwSaVSydq1a5v6fPe7302qqqqSrVu35vcN0Kma3x9JkiQnn3xy8tWvfrXN57g/ugZjDHYwzqAtxhm0xziDXTHOoD2FGmeYmdHJtm3bFk8//XRMnDixqS2VSsXEiRNj8eLFBayMQnjllVeiuro6Ro4cGZ/73Odi5cqVERHx9NNPR0NDQ9Z9MmrUqBg6dKj7pAdatmxZrF27Nut+6Nu3b4wdO7bpfli8eHH069cv3v/+9zf1mThxYqRSqfjtb3+b95rJv8cffzwOPPDAOPLII+Piiy+ON998s+mc+6Nn2bhxY0RE9O/fPyJy+56yePHiOProo2PQoEFNfc4444yoq6uLF154IY/V09ma3x87/Md//EcMGDAgjjrqqJgxY0bU19c3nXN/FD9jDJozziAXxhnkwjiDHYwzaE+hxhn7dEDttGP9+vXR2NiY9R8pImLQoEHx4osvFqgqCmHs2LFx1113xZFHHhlr1qyJmTNnxoQJE+KPf/xjrF27Nnr16hX9+vXLes6gQYNi7dq1hSmYgtnx37y1rxs7zq1duzYOPPDArPP77LNP9O/f3z3TA0yaNCk+9alPxYgRI+K1116La6+9Ns4888xYvHhxlJaWuj96kHQ6HZdddll88IMfjKOOOioiIqfvKWvXrm31a8yOc3QPrd0fERF/93d/F8OGDYvq6ur4wx/+ENdcc0289NJL8V//9V8R4f7oCowx2JlxBrkyzmBXjDPYwTiD9hRynCHMgDw588wzmz4/5phjYuzYsTFs2LC49957Y9999y1gZUBX89nPfrbp86OPPjqOOeaYOPTQQ+Pxxx+PU089tYCVkW+XXHJJ/PGPf8xaGx12aOv+2Hld66OPPjoOOuigOPXUU+O1116LQw89NN9lAnvJOAPoKMYZ7GCcQXsKOc6wzFQnGzBgQJSWlsa6deuy2tetWxeDBw8uUFUUg379+sURRxwRr776agwePDi2bdsWGzZsyOrjPumZdvw3b+/rxuDBg1ts8Pnuu+/GW2+95Z7pgUaOHBkDBgyIV199NSLcHz3FpZdeGg888EA89thjccghhzS15/I9ZfDgwa1+jdlxjq6vrfujNWPHjo2IyPoa4v4obsYYtMc4g7YYZ7C7jDN6JuMM2lPocYYwo5P16tUrTjzxxHj00Ueb2tLpdDz66KMxbty4AlZGoW3evDlee+21OOigg+LEE0+MsrKyrPvkpZdeipUrV7pPeqARI0bE4MGDs+6Hurq6+O1vf9t0P4wbNy42bNgQTz/9dFOfX/7yl5FOp5u+WdBz/PnPf44333wzDjrooIhwf3R3SZLEpZdeGv/93/8dv/zlL2PEiBFZ53P5njJu3Lh4/vnnswajCxcujKqqqhgzZkx+3gidYlf3R2uee+65iIisryHuj+JmjEF7jDNoi3EGu8s4o2cxzqA9RTPO2KPtytkt99xzT1JeXp7cddddydKlS5OLLroo6devX9bO7XR/V155ZfL4448ny5YtS37zm98kEydOTAYMGJC88cYbSZIkyZe+9KVk6NChyS9/+cvkd7/7XTJu3Lhk3LhxBa6azrJp06bk2WefTZ599tkkIpLbb789efbZZ5MVK1YkSZIks2fPTvr165f8z//8T/KHP/wh+cQnPpGMGDEieeedd5quMWnSpOT4449Pfvvb3ya//vWvk8MPPzw555xzCvWW6EDt3R+bNm1KrrrqqmTx4sXJsmXLkkceeSQ54YQTksMPPzzZsmVL0zXcH93XxRdfnPTt2zd5/PHHkzVr1jQ96uvrm/rs6nvKu+++mxx11FHJ6aefnjz33HPJggULkoEDByYzZswoxFuiA+3q/nj11VeTm266Kfnd736XLFu2LPmf//mfZOTIkcmHP/zhpmu4P7oGYwx2MM5gZ8YZtMc4g/YYZ9CeYhlnCDPy5Nvf/nYydOjQpFevXklNTU3y1FNPFbok8uwzn/lMctBBByW9evVKDj744OQzn/lM8uqrrzadf+edd5J//Md/TPbff/+ksrIy+Zu/+ZtkzZo1BayYzvTYY48lEdHicd555yVJkiTpdDq57rrrkkGDBiXl5eXJqaeemrz00ktZ13jzzTeTc845J+ndu3dSVVWVXHDBBcmmTZsK8G7oaO3dH/X19cnpp5+eDBw4MCkrK0uGDRuWXHjhhS1+eeX+6L5auzciIvnhD3/Y1CeX7ynLly9PzjzzzGTfffdNBgwYkFx55ZVJQ0NDnt8NHW1X98fKlSuTD3/4w0n//v2T8vLy5LDDDkuuvvrqZOPGjVnXcX90DcYYJIlxBtmMM2iPcQbtMc6gPcUyzijZXgwAAAAAAEBRsmcGAAAAAABQ1IQZAAAAAABAURNmAAAAAAAARU2YAQAAAAAAFDVhBgAAAAAAUNSEGQAAAAAAQFETZgAAAAAAAEVNmAEAAAAAABQ1YQYAXdrw4cPj/PPPL3QZAABAN2KcAVB8hBkAPVxJSUlOj8cff7zQpXao1atXx4033hjPPfdcoUsBAIBuxzjjuUKXAtDt7FPoAgAorB/96EdZx3Pnzo2FCxe2aB89enQ+y+p0q1evjpkzZ8bw4cPjuOOOK3Q5AADQrRhnGGcAdDRhBkAPd+6552YdP/XUU7Fw4cIW7c3V19dHZWVlZ5YGAAB0UcYZAHQ0y0wBsEunnHJKHHXUUfH000/Hhz/84aisrIxrr702IjLTx2+88cYWz2ltjdkNGzbEZZddFkOGDIny8vI47LDDYs6cOZFOp3dZQ5Ik8fWvfz0OOeSQqKysjI985CPxwgsvtOj31ltvxVVXXRVHH3109O7dO6qqquLMM8+M3//+9019Hn/88fjABz4QEREXXHBB0xT3u+66KyIifvWrX8XZZ58dQ4cOjfLy8hgyZEhcfvnl8c477+T4LwYAAOyKcYZxBsDuMDMDgJy8+eabceaZZ8ZnP/vZOPfcc2PQoEG79fz6+vo4+eSTY9WqVfHFL34xhg4dGosWLYoZM2bEmjVr4pvf/Ga7z7/++uvj61//epx11llx1llnxTPPPBOnn356bNu2Lavfn/70p/j5z38eZ599dowYMSLWrVsX3//+9+Pkk0+OpUuXRnV1dYwePTpuuummuP766+Oiiy6KCRMmRETE+PHjIyLivvvui/r6+rj44ovjgAMOiCVLlsS3v/3t+POf/xz33Xffbr1vAACgbcYZxhkAuRJmAJCTtWvXxve+97344he/uEfPv/322+O1116LZ599Ng4//PCIiPjiF78Y1dXVcdttt8WVV14ZQ4YMafW5f/nLX+LWW2+NyZMnx/333x8lJSUREfHP//zPccstt2T1Pfroo+Pll1+OVOq9yYef//znY9SoUXHnnXfGddddF4MGDYozzzwzrr/++hg3blyLqe5z5syJfffdt+n4oosuisMOOyyuvfbaWLlyZQwdOnSP/g0AAIBsxhnGGQC5sswUADkpLy+PCy64YI+ff99998WECRNi//33j/Xr1zc9Jk6cGI2NjfHkk0+2+dxHHnkktm3bFl/+8pebBhgREZdddlmrde4YYDQ2Nsabb74ZvXv3jiOPPDKeeeaZnGrdeYDx9ttvx/r162P8+PGRJEk8++yzOb5jAABgV4wzjDMAcmVmBgA5Ofjgg6NXr157/PxXXnkl/vCHP8TAgQNbPf/GG2+0+dwVK1ZERDT9pdUOAwcOjP333z+rLZ1Ox7e+9a34zne+E8uWLYvGxsamcwcccEBOta5cuTKuv/76mDdvXvz1r3/NOrdx48acrgEAAOyacUaGcQbArgkzAMjJzn9FlIudf7iPyPzwf9ppp8U//dM/tdr/iCOO2OPadnbLLbfEddddF3//938fN998c/Tv3z9SqVRcdtllOW0A2NjYGKeddlq89dZbcc0118SoUaNiv/32i1WrVsX555+f0zUAAIDcGGcYZwDkSpgBwF7Zf//9Y8OGDVlt27ZtizVr1mS1HXroobF58+aYOHHibr/GsGHDIiLzV1cjR45sav/LX/7S4i+afvazn8VHPvKRuPPOO7PaN2zYEAMGDGg63nka+c6ef/75ePnll+Puu++OadOmNbUvXLhwt+sGAAD2jHEGAM3ZMwOAvXLooYe2WIf23//931v8xdTUqVNj8eLF8dBDD7W4xoYNG+Ldd99t8zUmTpwYZWVl8e1vfzuSJGlq/+Y3v9mib2lpaVafiMw6uqtWrcpq22+//Zpeu/nzIyLrGkmSxLe+9a026wMAADqWcQYAzZmZAcBe+Yd/+If40pe+FJ/+9KfjtNNOi9///vfx0EMPZf11UkTE1VdfHfPmzYuPfexjcf7558eJJ54Yb7/9djz//PPxs5/9LJYvX97iOTsMHDgwrrrqqpg1a1Z87GMfi7POOiueffbZ+MUvftHiOR/72MfipptuigsuuCDGjx8fzz//fPzHf/xH1l9aRWQGR/369Yvvfe970adPn9hvv/1i7NixMWrUqDj00EPjqquuilWrVkVVVVX853/+Z4u/zAIAADqPcQYAzZmZAcBeufDCC+Oaa66JJ598Mq688spYtmxZLFy4sOkvknaorKyMJ554Iq6++up4/PHH46tf/WrMnj07XnnllZg5c2b07du33df5+te/HjNnzoxnn302rr766njttdfi4YcfbvE61157bVx55ZXx0EMPxVe/+tV45plnYv78+TFkyJCsfmVlZXH33XdHaWlpfOlLX4pzzjknnnjiiSgrK4v7778/jjvuuJg1a1bMnDkzDj/88Jg7d27H/IMBAAC7ZJwBQHMlSfM5cgAAAAAAAEXEzAwAAAAAAKCoCTMAAAAAAICiJswAAAAAAACKmjADAAAAAAAoasIMAAAAAACgqAkzAAAAAACAoibMAAAAAAAAipowAwAAAAAAKGrCDAAAAAAAoKgJMwAAAAAAgKImzAAAAAAAAIqaMAMAAAAAAChq/z9rNjQJpZNyWwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjMAAAN5CAYAAABNP8n+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAuzxJREFUeJzs3XlcVIXex/HvDCIjChiioCaKO66Zipn7kqKkLbaaS900K5fMW7nkbma2WVZqt6c0M2+2a2ruW6XlUqkpmpprKoompAQCc54/uJ4aAYVx4Azweb9evO78zjlz5js8ryfn8J1zjs0wDEMAAAAAAAAAAABeym51AAAAAAAAAAAAgCuhzAAAAAAAAAAAAF6NMgMAAAAAAAAAAHg1ygwAAAAAAAAAAODVKDMAAAAAAAAAAIBXo8wAAAAAAAAAAABejTIDAAAAAAAAAAB4NcoMAAAAAAAAAADg1SgzAAAAAAAAAACAV6PMAADkOZvNpvHjx1sdw7Ru3TrZbDatW7fO6igAAAAAsjF+/HjZbLYcbZsfxxxt27ZV27ZtPba/OXPmyGaz6dChQx7bJwAUZpQZAFBEXfrgfOnH4XCoZs2aGjRokOLi4vL0tTdu3Kjx48fr3Llzefo6eWHp0qVeVcwAAAAAee3yY4dixYqpYsWKevDBB/X7779bHa9Imj9/vl577TWrYwBAvqLMAIAibuLEifrggw/05ptv6uabb9bMmTPVvHlzJSUleew1/vrrL40ePdqcN27cqAkTJhTYMmPChAlWxwAAAADy3aVjh1mzZqlLly6aN2+e2rRpo+Tk5Dx5vdGjR+uvv/7Kk30XdJQZAIqiYlYHAABYq0uXLmrSpIkkqV+/fipTpoxeffVVLVy4UPfff7/b+3U6nbp48aIcDoccDoen4gIAAACwyOXHDiEhIZo6daoWLVqke+65x+OvV6xYMRUrxp+uAAAZODMDAOCiffv2kqSDBw9Kkl5++WXdfPPNKlOmjEqUKKHGjRvr008/zfQ8m82mQYMG6cMPP1TdunXl5+enZcuWmesuXZpp/PjxevrppyVJERER5qnqhw4dUps2bdSwYcMsc9WqVUudO3e+YvYqVaro1ltv1YoVK3TDDTfI4XCoTp06+vzzz3P03j/55BM1btxYJUqUUEhIiHr16uVy2vyDDz6ot956y3xPl34AAACAoqhVq1aSpAMHDrgs37Nnj+666y4FBwfL4XCoSZMmWrRokcs2qampmjBhgmrUqCGHw6EyZcqoZcuWWrlypblNVvfMSElJ0ZNPPqmyZcsqICBA3bt317FjxzJle/DBB1WlSpVMy7Pa5+zZs9W+fXuVK1dOfn5+qlOnjmbOnJmr38U//fPYqFatWnI4HGrcuLE2bNiQo+fPmDHDPKaqUKGCBg4c6HJWe9u2bbVkyRIdPnzYPCbJ6r0CQGFDvQ0AcHHpQKRMmTKSpNdff13du3fXAw88oIsXL+qjjz7S3XffrcWLFysmJsbluWvWrNHHH3+sQYMGKSQkJMsP1Hfeead+/fVX/fe//9W0adMUEhIiSSpbtqx69+6t/v3765dfflG9evXM52zZskW//vqry6WqsrNv3z7de++9evTRR9W3b1/Nnj1bd999t5YtW6Zbbrkl2+fNmTNHDz30kJo2baopU6YoLi5Or7/+ur777jv99NNPKl26tAYMGKDjx49r5cqV+uCDD66aBQAAACjMLt24+rrrrjOX7dq1Sy1atFDFihU1YsQIlSxZUh9//LFuv/12ffbZZ7rjjjskZZQKU6ZMUb9+/RQVFaXExERt3bpVP/744xU/t/fr10/z5s1Tz549dfPNN2vNmjWZjktya+bMmapbt666d++uYsWK6auvvtLjjz8up9OpgQMHurXP9evXa8GCBRoyZIj8/Pw0Y8YMRUdHa/PmzS7HOpcbP368JkyYoI4dO+qxxx7T3r17NXPmTG3ZskXfffedfH199eyzzyohIUHHjh3TtGnTJEmlSpVyKycAFCgGAKBImj17tiHJWLVqlXH69Gnj6NGjxkcffWSUKVPGKFGihHHs2DHDMAwjKSnJ5XkXL1406tWrZ7Rv395luSTDbrcbu3btyvRakoxx48aZ80svvWRIMg4ePOiy3blz5wyHw2EMHz7cZfmQIUOMkiVLGufPn7/ie6pcubIhyfjss8/MZQkJCUb58uWNRo0amcvWrl1rSDLWrl1rvqdy5coZ9erVM/766y9zu8WLFxuSjLFjx5rLBg4caPDPJwAAAIqSrI4dPv30U6Ns2bKGn5+fcfToUXPbDh06GPXr1zeSk5PNZU6n07j55puNGjVqmMsaNmxoxMTEXPF1x40b5/LZ++effzYkGY8//rjLdj179sx0zNG3b1+jcuXKV92nYWQ+5jEMw+jcubNRtWpVl2Vt2rQx2rRpc8XMhpFx/CPJ2Lp1q7ns8OHDhsPhMO644w5z2aXf66XjolOnThnFixc3OnXqZKSnp5vbvfnmm4Yk47333jOXxcTEZPn+AKAw4zJTAFDEdezYUWXLllWlSpV03333qVSpUvriiy9UsWJFSVKJEiXMbf/44w8lJCSoVatW+vHHHzPtq02bNqpTp47bWYKCgnTbbbfpv//9rwzDkCSlp6drwYIFuv3221WyZMmr7qNChQrmt70kKTAwUH369NFPP/2kkydPZvmcrVu36tSpU3r88cdd7u8RExOj2rVra8mSJW6/JwAAAKCw+Oexw1133aWSJUtq0aJFuv766yVJZ8+e1Zo1a3TPPffozz//VHx8vOLj43XmzBl17txZ+/btMy/jWrp0ae3atUv79u3L8esvXbpUkjRkyBCX5UOHDr2m9/XPY56EhATFx8erTZs2+u2335SQkODWPps3b67GjRubc3h4uG677TYtX75c6enpWT5n1apVunjxooYOHSq7/e8/2fXv31+BgYEclwAo8rjMFAAUcW+99ZZq1qypYsWKKTQ0VLVq1XL54Lx48WI999xz+vnnn5WSkmIuz+peEREREdecp0+fPlqwYIG++eYbtW7dWqtWrVJcXJx69+6do+dXr149U7aaNWtKyjgNPiwsLNNzDh8+LCnjvhyXq127tr799tvcvg0AAACg0Ll07JCQkKD33ntPGzZskJ+fn7l+//79MgxDY8aM0ZgxY7Lcx6lTp1SxYkVNnDhRt912m2rWrKl69eopOjpavXv3VoMGDbJ9/cOHD8tut6tatWouy7P6HJ8b3333ncaNG6dNmzYpKSnJZV1CQoKCgoJyvc8aNWpkWlazZk0lJSXp9OnTuTouKV68uKpWrWquB4CiijIDAIq4qKgoNWnSJMt133zzjbp3767WrVtrxowZKl++vHx9fTV79mzNnz8/0/b//EaTuzp37qzQ0FDNmzdPrVu31rx58xQWFqaOHTte874BAAAAuO+fxw633367WrZsqZ49e2rv3r0qVaqUnE6nJOmpp55S586ds9xH9erVJUmtW7fWgQMHtHDhQq1YsUL/93//p2nTpmnWrFnq16/fNWfN6stXkjKdFXHgwAF16NBBtWvX1quvvqpKlSqpePHiWrp0qaZNm2a+JwCA9SgzAADZ+uyzz+RwOLR8+XKXb1zNnj37mvab3YGFJPn4+Khnz56aM2eOpk6dqi+//FL9+/eXj49PjvZ96dtg/3yNX3/9VZKyvCG5JFWuXFmStHfvXrVv395l3d69e831V8sOAAAAFBU+Pj6aMmWK2rVrpzfffFMjRoxQ1apVJUm+vr45+jJScHCwHnroIT300EM6f/68WrdurfHjx2dbZlSuXFlOp1MHDhxwOXth7969mba97rrrdO7cuUzLLz+74auvvlJKSooWLVqk8PBwc/natWuvmv9Ksrp81q+//ip/f3+VLVs2y+f887jk0u9Ski5evKiDBw+6/E45LgFQFHHPDABAtnx8fGSz2Vy+vXTo0CF9+eWX17TfS/e+yOrgQpJ69+6tP/74QwMGDND58+fVq1evHO/7+PHj+uKLL8w5MTFRc+fO1Q033JDlqdyS1KRJE5UrV06zZs1yuZTW119/rdjYWMXExOQ4OwAAAFBUtG3bVlFRUXrttdeUnJyscuXKqW3btnr77bd14sSJTNufPn3afHzmzBmXdaVKlVL16tVdPo9frkuXLpKk6dOnuyx/7bXXMm1brVo1JSQkaMeOHeayEydOuBwrSDK/NHXpnn1SxqWlrvULXJs2bXK5z+DRo0e1cOFCderUKdsvanXs2FHFixfX9OnTXfK8++67SkhIyHRc4u79PACgoOLMDABAtmJiYvTqq68qOjpaPXv21KlTp/TWW2+pevXqLgcFuXXpRnjPPvus7rvvPvn6+qpbt25mUdCoUSPVq1dPn3zyiSIjI3XjjTfmeN81a9bUww8/rC1btig0NFTvvfee4uLirngw4uvrq6lTp+qhhx5SmzZtdP/99ysuLk6vv/66qlSpoieffDJT9iFDhqhz587y8fHRfffd586vAQAAACjwnn76ad19992aM2eOHn30Ub311ltq2bKl6tevr/79+6tq1aqKi4vTpk2bdOzYMW3fvl2SVKdOHbVt21aNGzdWcHCwtm7dqk8//VSDBg3K9rVuuOEG3X///ZoxY4YSEhJ08803a/Xq1dq/f3+mbe+77z4NHz5cd9xxh4YMGaKkpCTNnDlTNWvWdCkZOnXqpOLFi6tbt27ml6neeecdlStXLstCJqfq1aunzp07a8iQIfLz89OMGTMkSRMmTMj2OWXLltXIkSM1YcIERUdHq3v37tq7d69mzJihpk2bunzJq3HjxlqwYIGGDRumpk2bqlSpUurWrZvbeQGgQDAAAEXS7NmzDUnGli1brrjdu+++a9SoUcPw8/MzateubcyePdsYN26ccfk/IZKMgQMHZrkPSca4ceNclk2aNMmoWLGiYbfbDUnGwYMHXda/+OKLhiTj+eefz/F7qly5shETE2MsX77caNCggZn5k08+cdlu7dq1hiRj7dq1LssXLFhgNGrUyPDz8zOCg4ONBx54wDh27JjLNmlpacbgwYONsmXLGjabLdPvAQAAAChsrnTskJ6eblSrVs2oVq2akZaWZhiGYRw4cMDo06ePERYWZvj6+hoVK1Y0br31VuPTTz81n/fcc88ZUVFRRunSpY0SJUoYtWvXNiZPnmxcvHjR3Car446//vrLGDJkiFGmTBmjZMmSRrdu3YyjR49mecyxYsUKo169ekbx4sWNWrVqGfPmzctyn4sWLTIaNGhgOBwOo0qVKsbUqVON9957L9NxSps2bYw2bdpc9fd16dho3rx55rFUo0aNMh1/XPq9Xn4s9Oabbxq1a9c2fH19jdDQUOOxxx4z/vjjD5dtzp8/b/Ts2dMoXbq0IcmoXLnyVXMBQEFnM4x/nLcGAICXeP311/Xkk0/q0KFDLteuvZIqVaqoXr16Wrx4cR6nAwAAAICs2Ww2DRw4UG+++abVUQCgUOGeGQAAr2MYht599121adMmx0UGAAAAAAAACi/umQEA8BoXLlzQokWLtHbtWu3cuVMLFy60OhIAAAAAAAC8AGUGAMBrnD59Wj179lTp0qU1atQode/e3epIAAAAAAAA8ALcMwMAAAAAAAAAAHg17pkBAAAAAAAAAAC8GpeZyoLT6dTx48cVEBAgm81mdRwAAADAMoZh6M8//1SFChVkt/NdqGvBcQYAAACQwZ3jDMqMLBw/flyVKlWyOgYAAADgNY4eParrr7/e6hgFGscZAAAAgKvcHGdQZmQhICBAUsYvMjAw0OI0AAAAgHUSExNVqVIl8zMy3MdxBgAAAJDBneMMyowsXDrlOzAwkIMMAAAAQOKySB7AcQYAAADgKjfHGVz0FgAAAAAAAAAAeDXKDAAAAAAAAAAA4NUoMwAAAAAAAAAAgFejzAAAAAAAAAAAAF6NMgMAAAAAAAAAAHg1ygwAAAAAAAAAAODVvKrMmDJlipo2baqAgACVK1dOt99+u/bu3euyTdu2bWWz2Vx+Hn30UZdtjhw5opiYGPn7+6tcuXJ6+umnlZaWlp9vBQAAAAAAAAAAeEgxqwP80/r16zVw4EA1bdpUaWlpGjVqlDp16qTdu3erZMmS5nb9+/fXxIkTzdnf3998nJ6erpiYGIWFhWnjxo06ceKE+vTpI19fXz3//PP5+n4AAAAAAAAAAMC186oyY9myZS7znDlzVK5cOW3btk2tW7c2l/v7+yssLCzLfaxYsUK7d+/WqlWrFBoaqhtuuEGTJk3S8OHDNX78eBUvXjzTc1JSUpSSkmLOiYmJHnpHAAAAAAAAAADgWnnVZaYul5CQIEkKDg52Wf7hhx8qJCRE9erV08iRI5WUlGSu27Rpk+rXr6/Q0FBzWefOnZWYmKhdu3Zl+TpTpkxRUFCQ+VOpUqU8eDcAAAAAAAAAAMAdXnVmxj85nU4NHTpULVq0UL169czlPXv2VOXKlVWhQgXt2LFDw4cP1969e/X5559Lkk6ePOlSZEgy55MnT2b5WiNHjtSwYcPMOTExkUIDAAAAAAAAAAAv4bVlxsCBA/XLL7/o22+/dVn+yCOPmI/r16+v8uXLq0OHDjpw4ICqVavm1mv5+fnJz8/vmvICAAAAAAAAAIC84ZWXmRo0aJAWL16stWvX6vrrr7/its2aNZMk7d+/X5IUFhamuLg4l20uzdndZwMAAAAAAAAAAHgvryozDMPQoEGD9MUXX2jNmjWKiIi46nN+/vlnSVL58uUlSc2bN9fOnTt16tQpc5uVK1cqMDBQderUyZPcAAAAAAAAAAAg73jVZaYGDhyo+fPna+HChQoICDDvcREUFKQSJUrowIEDmj9/vrp27aoyZcpox44devLJJ9W6dWs1aNBAktSpUyfVqVNHvXv31osvvqiTJ09q9OjRGjhwIJeSAgAAAAAAAACgAPKqMzNmzpyphIQEtW3bVuXLlzd/FixYIEkqXry4Vq1apU6dOql27dr697//rR49euirr74y9+Hj46PFixfLx8dHzZs3V69evdSnTx9NnDjRqrcFAAAAAAAAAACugVedmWEYxhXXV6pUSevXr7/qfipXrqylS5d6KhYAAAAAAAAAALCQV52ZAQAAAAAAAAAAcDnKDAAAAAAAAAAA4NUoMwAAAAAAAAAAgFejzAAAAAAAAAAAAF6NMgMAAAAAAAAAAHg1ygwAAAAAAAAAAODVKDMAAAAAAAAAAIBXo8wAAAAAAAAAAABejTIDAAAAAAAAAAB4NcoMAAAAAAAAAADg1SgzAAAAAAAAAACAV6PMAAAAAAAAAAAAXq2Y1QEAAAAAAEVP8pFkpcanZrveN8RXjnBHkc0DAAAAV5QZAAAAAIB8lXwkWZsjN8uZ5Mx2G7u/XVGxUflSIHhbHgAAAGRGmQEAAAAAyFep8alyJjkVOS9S/pH+mdYnxSYptlesUuNT86U88LY8AAAAyIwyAwAAAPBiO48lKLyMv4JK+FodBfA4/0h/BdwYYHUMk7flAQAAwN8oMwAAAAAvVX/8cv2ZnKaY+uX11gM3Wh0HAAAAACxjtzoAAAAAgMzufXuT/kxOszoGAAAAAHgFzswAAAAAvMyYL3/RDwfPmjNnZaAwSz6SrNT4VJdlSbFJ5v/6hvhynwoAAABQZgAAAADeZPZ3B/XB94fN+cDzXS1MA+Stiycu6qdWP8mZ5MxyfWyvWNn97YqKjaLQAAAAKOIoMwAAAAAvsXJ3nCZ8tducYydGy8duszARkLf+/OlPOZOcipwXKf9I/0zrk2KTFNsrVqnxqflSZlw6IySnywEAAJB/KDMAAAAAL7Dj2Dn1n7vVnLc821ElivtYmAjIO74hvrL723VozCFJkn+kvwJuDLA8T2yv2Gy3sfvb5Rvim4+pAAAA8E+UGQAAAIDFfj/3l7q/+Z05r3yytcoG+FmYCMhbjnCHomKjlPBNwhULhPzOc/m9O/6Je3cAAABYizIDAAAAsFBicqpavLDGnD/s10w1Qq37hjqQXxzhDqVGZl8e5DdHuIOyAgAAwIvZrQ4AAAAAFFWp6U41GL/CnF+8q4FaVA+xMBEAAAAAeCfKDAAAAMAChmGoxrNfm/OgdtV1T5NKFiYCAAAAAO/FZaYAAAAAC9Qdt9x8HF03TE91rmVhGsBaSbFJuVoOAACAoocyAwAAAMhnd8/aqKSL6ZKkymX8Nat3Y4sTAdbwDfGV3d9+xZuA2/3t8g3xzcdUAAAA8EaUGQAAAEA+GvXFTm059Ic5r3+6nYVpAGs5wh2Kio1Sanz2NwL3DfHlxtwAAACgzAAAAADyy/9985vm/3DEnH97vquFaQDv4Ah3UFYAAADgqrgBOAAAAJAPlu86qeeW/H0pnT2TomW32yxMBAAAAAAFB2UGAAAAkMe2Hz2nAR9sM+etozvK4etjYSIAAAAAKFgoMwAAAIA8dPRskm576ztzXjWstUJK+VmYCAAAAAAKHsoMAAAAII8k/JWqVi+uNef5/ZuperkACxMBAAAAQMFEmQEAAADkgYtpTjWcsMKcX7m7oW6uFmJhIgAAAAAouCgzAAAAAA8zDEM1R39tzkPaV1ePxtdbmAgAAAAACjbKDAAAAMDDao9ZZj7uWj9MwzrVsjANAAAAABR8lBkAAACAB90x4zulpDklSVVDSmrGA40tTgQAAAAABR9lBgAAAOAhIz/foZ+OnDPnNU+1tSwLAAAAABQmlBkAAACAB7yz4Tf9d/NRc/7t+a4WpgEAAACAwoUyAwAAALhGy345oclLY815z6Ro2e02CxMBAAAAQOFCmQEAAABcg5+O/KFH5/1ozttGd5TD18fCRAAAAABQ+FBmAAAAAG46ejZJd8zYaM6r/91GZUr5WZgIAAAAAAqnYlYHAAAAAAqihKRUtXpxrTl/9MhNqla2lGdfxJkuHd4onY+TSoVKlW+W7Jz1AQAAAKDoocwAAAAAculimlMNJ64w52n3NtRNVct49kV2L5KWDZcSj/+9LLCCFD1VqtPds68FAAAAAF6Oy0wBAAAAuWAYhmqO/tqch3asoTsaXe/ZF9m9SPq4j2uRIUmJJzKW717k2dcDAAAAAC9HmQEAAADkQo1n/y4ybm1QXkM71vTsCzjTM87IkJHFyv8tWzYiYzsAAAAAKCIoMwAAAIAcuu3Nb5XmzCgUqpcrpTd73uj5Fzm8MfMZGS4MKfH3jO0AAAAAoIigzAAAAABy4JlPt2v7sQRzXjWsTd680Pk4z24HAAAAAIUAZQYAAABwFbPWH9DHW4+Z82/Pd827FysV6tntAAAAAKAQoMwAAAAArmDJjhN64es95rxnUrTsdlvevWDlm6XACpKyew2bFFgxYzsAAAAAKCIoMwAAAIBs/HjkDw2c/+Pf85hb5PD1ydsXtftI0VP/N1xeaPxvjn4hYzsAAAAAKCIoMwAAAIAsHDmTpDtn/H2T7TX/bqPgksXz58XrdJfumSsFlnddHlghY3md7vmTAwAAAAC8RDGrAwAAAADe5lzSRbV+aa05fzyguaqWLZW/Iep0l2rHSIc3Ztzsu1RoxqWlOCMDAAAAQBFEmQEAAAD8Q0paum6YuNKcX7/vBkVFBFsTxu4jRbSy5rUBAAAAwItwmSkAAADgfwzDUK3Ry8x52C01ddsNFS1MBAAAAACQKDMAAAAAU9VRS83Ht91QQUM61LAwDQAAAADgEsoMAAAAQNKtb3wjw8h4XDssQK/f18jaQAAAAAAAE2UGAAAAirynPtmuX35PNOdlQ1tbmAYAAAAAcDnKDAAAABRpM9bt16fbjpnzwSldLUwDAAAAAMgKZQYAAACKrMU7juvFZXvNec+kaNlsNgsTAQAAAACyQpkBAACAImnb4bMaNP8nc/5pzC1y+PpYmAgAAAAAkB3KDAAAABQ5h89cUI+Zm8x57VNtdV3J4hYmAgAAAABcCWUGAAAAipRzSRfV5qV15vzpo80VEVLSukAAAAAAgKuizAAAAECRkZKWrhsmrjTn6fc3UpMqwRYmAgAAAADkBGUGAAAAigTDMFRr9DJzfqpTTXVvWMHCRAAAAACAnKLMAAAAQJEQMXKp+fjORhU1qH0NC9MAAAAAAHKDMgMAAACFXtfXvzEfR5YP1Kv33mBdGAAAAABArlFmAAAAoFAbtuBn7T6RaM5fP9HKwjQAAAAAAHdQZgAAAKDQenPNPn3+0+/mfHBKVwvTAAAAAADcRZkBAACAQmnR9uN6ecWv5rz3uWjZbDYLE8GbbdiwQd26dVOFChVks9n05Zdfuqx/8MEHZbPZXH6io6OtCQsAAAAUQZQZAAAAKHS2HDqrIf/9yZx/HnuL/Ir5WJgI3u7ChQtq2LCh3nrrrWy3iY6O1okTJ8yf//73v/mYEAAAACjailkdAAAAAPCkg/EXdPesTea8/um2Ku1f3MJEKAi6dOmiLl26XHEbPz8/hYWF5XifKSkpSklJMefExMQrbA0AAADgSjgzAwAAAIXG2QsX1e7ldeb82WPNVblMSesCoVBZt26dypUrp1q1aumxxx7TmTNnrrj9lClTFBQUZP5UqlQpn5ICAAAAhQ9lBgAAAAqF5NR03ThppTm/2bORGlcOtjARCpPo6GjNnTtXq1ev1tSpU7V+/Xp16dJF6enp2T5n5MiRSkhIMH+OHj2aj4kBAACAwoXLTAEAAKDAMwxDtccsM+dnomvp1gYVLEyEwua+++4zH9evX18NGjRQtWrVtG7dOnXo0CHL5/j5+cnPzy+/IgIAAACFGmdmAAAAoMCLGLnUfHxX4+v1eNvqFqZBUVC1alWFhIRo//79VkcBAAAAigTKDAAAABRonadtMB/Xrxikl+9uaGEaFBXHjh3TmTNnVL58eaujAAAAAEUCl5kCAABAgfXERz9pb9yfkiSbTfpqcEuLE6GgOn/+vMtZFgcPHtTPP/+s4OBgBQcHa8KECerRo4fCwsJ04MABPfPMM6pevbo6d+5sYWoAAACg6KDMAAAAQIE0ffU+Lfz5uDn/9nxXC9OgoNu6davatWtnzsOGDZMk9e3bVzNnztSOHTv0/vvv69y5c6pQoYI6deqkSZMmcU8MAAAAIJ9QZgAAAKDAWfjz73p15a/m/OtzXWSz2SxMhIKubdu2Mgwj2/XLly/PxzQAAAAALsc9MwAAAFCgbD54Vk989LM5bx/bScWL8bEWAAAAAAozjvoAAABQYPx2+rzueXuTOW94up2C/H0tTAQAAAAAyA+UGQAAACgQzl64qPavrDfnzx67WeFl/C1MBAAAAADIL5QZAAAA8HrJqem6cdJKc57xwI1qXPk6CxMBAAAAAPITZQYAAAC8mtNpqPaYZeY8skttda1f3sJEAAAAAID8RpkBAAAAr1Z11FLz8b1NKmlAm2oWpgEAAAAAWIEyAwAAAF6rwyvrzMcNK5XW1LsaWBcGAAAAAGAZygwAAAB4pUHzf9SB0xckScXsNi0c2MLiRAAAAAAAq1BmAAAAwOu8tupXLd5xwpz3Te5iYRoAAAAAgNUoMwAAAOBVPv/xmF5btc+cf32ui2w2m4WJAAAAAABWo8wAAACA1/j+tzMa9vF2c94+rpOKF+MjKwAAAAAUdRwZAgAAwCscOH1e9/3ne3P+5pl2Cirha2EiAAAAAIC3oMwAAACA5c6cT1GHV9ab8xeP36xKwf4WJgIAAAAAeBPKDAAAAFgqOTVdjZ9bZc6zet2oRuHXWZgIAAAAAOBtKDMAAABgGafTUO0xy8z52a6Riq5X3sJEAAAAAABvRJkBAAAAy1QdtdR8fH9UJfVvXdXCNAAAAAAAb0WZAQAAAEu0e3md+bhReGlNubOBdWEAAAAAAF6NMgMAAAD57vEPt+lg/AVJUvFidn3xeAuLEwEAAAAAvBllBgAAAPLVqyv2aunOk+a8d1K0hWkAAAAAAAUBZQYAAADyzWfbjmn6mv3mvG9yF9lsNgsTAQAAAAAKAsoMAAAA5IuNB+L170+2m/OO8Z3k68PHUQAAAADA1XH0CAAAgDy3/9Sf6vnOD+b8zTPtFOjwtTARAAAAAKAgocwAAABAnoo/n6KOr24w54UDW6hSsL+FiQAAAAAABQ1lBgAAAPLMXxfT1eS5Veb8du/GaliptHWBAAAAAAAFEmUGAAAA8oTTaShy7DJzHh0Tqc51wyxMBAAAAAAoqCgzAAAAkCeqjlpqPn6gWbj6tapqYRoAAAAAQEFGmQEAAACPa/3iWvNxVJVgTb6jvoVpAAAAAAAFHWUGAAAAPGrAB1t15GySJMm/uI8+frS5xYkAAAAAAAUdZQYAAAA85uXle7V8V5w575rQ2cI0AAAAAIDCgjIDAAAAHvHx1qN6c+1+c943uYtsNpuFiQAAAAAAhQVlBgAAAK7Zxv3xeubTHea8Y3wn+frwURMAAAAA4BkcYQIAAOCa7Iv7Uz3/7wdz/m5EewU6fC1MBAAAAAAobCgzAAAA4LbTf6bolmkbzPmrQS1VsXQJCxMBAAAAAAojygwAAAC45a+L6Wo6eZU5v9OniepfH2RhIgAAAABAYUWZAQAAgFxLdxqKHLvMnMd1q6Nb6oRamAgAAAAAUJhRZgAAACDXqo1aaj7ufVNlPdQiwsI0AAAAAIDCjjIDAAAAudJy6hrzcbOIYE26vZ6FaQAAAAAARQFlBgAAAHKs/9ytOvbHX5KkAL9iWjCgucWJAAAAAABFAWUGAAAAcmTqsj1auTvOnHeM72RhGgAAAABAUUKZAQAAgKtasOWIZq47YM77J3eRzWazMBEAAAAAoCihzAAAAMAVfbPvtIZ/ttOcd47vpGI+fIwEAAAAAOQfjkIBAACQrb0n/1Tvdzeb88YR7RXg8LUwEQAAAACgKKLMAAAAQJZO/Zmszq9tMOfFg1uqQukSFiYCAAAAABRVlBkAAADIJOlimqImrzbnd/s2Ub2KQRYmAgAAAAAUZZQZAAAAcJHuNFRn7HJzHt+tjjpEhlqYCAAAAABQ1FFmAAAAwEW1UUvNxw/eXEUPtoiwMA0AAAAAAJQZAAAA+IfmU/6+tNTN1cpofPe6FqYBAAAAACADZQYAAAAkSQ/P2aITCcmSpNL+vprf/yaLEwEAAAAAkIEyAwAAAJqyNFar95wy55/G3GJhGgAAAAAAXFFmAAAAFHH/3XxEb2/4zZz3T+4im81mYSIAAAAAAFxRZgAAABRhG349rZGf7zTnXyZ0VjEfPiICAAAAALwLR6oAAABF1J6Tierz3mZz3jSyvUr5FbMwEQAAAAAAWaPMAAAAKILiEpMV/do35rxkSEuVDyphYSIAAAAAALJHmQEAAFDEXEhJU7PnV5vzew82Ud0KQRYmAgAAAADgyigzAAAAipB0p6G645ab86Tb6qp97VALEwEAAAAAcHWUGQAAAEVItVFLzcf/ahGh3s2rWBcGAAAAAIAcoswAAAAoIqImrzIft6oRorHd6liYBgAAAACAnKPMAAAAKAL6vrdZp/5MkSSVKVlcHzzczOJEAAAAAADkHGUGAABAITd5yW6t//W0OW8d3dHCNAAAAAAA5J5XlRlTpkxR06ZNFRAQoHLlyun222/X3r17XbZJTk7WwIEDVaZMGZUqVUo9evRQXFycyzZHjhxRTEyM/P39Va5cOT399NNKS0vLz7cCAADgFT784bDe+eagOe+f3EU2m83CRAAAAAAA5J5XlRnr16/XwIED9f3332vlypVKTU1Vp06ddOHCBXObJ598Ul999ZU++eQTrV+/XsePH9edd95prk9PT1dMTIwuXryojRs36v3339ecOXM0duxYK94SAACAZdbtPaVnv/jFnH+Z0FnFfLzq4x8AAAAAADliMwzDsDpEdk6fPq1y5cpp/fr1at26tRISElS2bFnNnz9fd911lyRpz549ioyM1KZNm3TTTTfp66+/1q233qrjx48rNDRUkjRr1iwNHz5cp0+fVvHixTO9TkpKilJSUsw5MTFRlSpVUkJCggIDA/PnzQIAAHjQ7uOJ6jr9G3P+fmQHhQU5LEyEgioxMVFBQUF8NvYAfpcAAABABnc+G3v1V/MSEhIkScHBwZKkbdu2KTU1VR07/n2d59q1ays8PFybNm2SJG3atEn169c3iwxJ6ty5sxITE7Vr164sX2fKlCkKCgoyfypVqpRXbwkAACDPnUxIdikylg5pRZEBAAAAACjQvLbMcDqdGjp0qFq0aKF69epJkk6ePKnixYurdOnSLtuGhobq5MmT5jb/LDIurb+0LisjR45UQkKC+XP06FEPvxsAAID8cSElTTdNWW3Ocx5qqjoV+AY4AAAAAKBgK2Z1gOwMHDhQv/zyi7799ts8fy0/Pz/5+fnl+esAAADkpbR0p+qOW27Ok++op7a1ylmYCAAAAAAAz/DKMzMGDRqkxYsXa+3atbr++uvN5WFhYbp48aLOnTvnsn1cXJzCwsLMbeLi4jKtv7QOAACgMDIMQ9Wf/dqc+7eK0APNKluYCAAAAAAAz/GqMsMwDA0aNEhffPGF1qxZo4iICJf1jRs3lq+vr1av/vvSCXv37tWRI0fUvHlzSVLz5s21c+dOnTp1ytxm5cqVCgwMVJ06dfLnjQAAAOSzppNXmY/b1CyrZ2P43AMAAAAAKDy86jJTAwcO1Pz587Vw4UIFBASY97gICgpSiRIlFBQUpIcffljDhg1TcHCwAgMDNXjwYDVv3lw33XSTJKlTp06qU6eOevfurRdffFEnT57U6NGjNXDgQC4lBQAACqXe7/6g+PMXJUllA/z0/r+iLE4EAAAAAIBneVWZMXPmTElS27ZtXZbPnj1bDz74oCRp2rRpstvt6tGjh1JSUtS5c2fNmDHD3NbHx0eLFy/WY489pubNm6tkyZLq27evJk6cmF9vAwAAIN9M/Gq3vtkXb85bnu1oYRoAAAAAAPKGzTAMw+oQ3iYxMVFBQUFKSEhQYGCg1XEAAACy9MGmQxqzcJc5H3i+q3zsNgsToTDis7Hn8LsEAAAAMrjz2dir7pkBAACAnFm755RLkbFrQmeKDAAAAABAoUWZAQAAUMDsOp6gh+ZsMefNozqopJ9XXT0UAAAAAACPoswAAAAoQE4k/KWY6d+a89dPtFK5QIeFiQAAAAAAyHuUGQAAAAXE+ZQ0NZ+yxpzn/itKkeW57j4AAAAAoPCjzAAAACgA0tKdqjduuTk/f0d9ta5Z1sJEAAAAAADkH8oMAAAAL2cYhqo/+7U5D2hdVT2bhVuYCAAAAACA/EWZAQAA4OUaTVppPm5fu5xGdo20MA0AAAAAAPmPMgMAAMCL9Xzne51LSpUklQ9y6L0Hm1qcCAAAAACA/EeZAQAA4KXGL9qljQfOmPOmkR0sTAMAAAAAgHUoMwAAALzQ+xsPac7GQ+Z84Pmu1oUBAAAAAMBilBkAAABeZnVsnMYt2mXOuyd2lo/dZmEiAAAAAACsRZkBAADgRX75PUEPv7/VnDeP6iD/4sUsTAQAAAAAgPUoMwAAALzE8XN/6dY3vjXn5UNbq1ygw8JEAAAAAAB4B8oMAAAAL/BncqpufmGNOX/wcJRqhQVYmAgAAAAAAO9BmQEAAGCxtHSn6o9fYc5Te9RXqxplLUwEAAAAAIB3ocwAAACwkGEYqv7s1+b8WNtqurdpuIWJAAAAAADwPpQZAAAAFmow4e8zMm6pE6rh0bUtTAMAAAAAgHeizAAAALDIff/ZpD+T0yRJFUuX0Dt9mlicCAAAAAAA70SZAQAAYIFxC3/R97+dNefvRrS3MA0AAAAAAN6tmNUBAAAAiprZ3x3U+5sOm/OB57tamAYAAAAAUBQkH0lWanxqtut9Q3zlCHfkY6LcocwAAADIRyt3x2nCV7vNOXZitHzsNgsTAQAAAAAKu+QjydocuVnOJGe229j97YqKjfLaQoMyAwAAIJ/sPJag/nO3mvOWZzuqRHEfCxMBAAAAAIqC1PhUOZOcipwXKf9I/0zrk2KTFNsrVqnxqZQZAAAARdnv5/5Stze/NeeVT7ZW2QA/CxMBAAAAAIoa/0h/BdwYYHUMt3ADcAAAgDyWmJyqFi+sMecP+zVTjdCC+eERAAAAAAArUGYAAADkodR0pxqMX2HOL97VQC2qh1iYCAAAAACAgocyAwAAII8YhqEaz35tzoPaVdc9TSpZmAgAAAAAgIKJMgMAACCP1Bu33HzcuW6onupcy8I0AK5kw4YN6tatmypUqCCbzaYvv/zSZb1hGBo7dqzKly+vEiVKqGPHjtq3b581YQEAAIAiiDIDAAAgD9wza5MuXEyXJIUH++vt3k0sTgTgSi5cuKCGDRvqrbfeynL9iy++qOnTp2vWrFn64YcfVLJkSXXu3FnJycn5nBQAAABwX1Jskv788c9MP0mxSVZHu6piVgcAAAAobEZ/uVObD5015w3PtLMwDYCc6NKli7p06ZLlOsMw9Nprr2n06NG67bbbJElz585VaGiovvzyS913331ZPi8lJUUpKSnmnJiY6PngAAAAQA74hvjK7m9XbK/YbLex+9vlG+Kbj6lyhzIDAADAg9799qDmfX/EnH97vquFaQB4wsGDB3Xy5El17NjRXBYUFKRmzZpp06ZN2ZYZU6ZM0YQJE/IrJgAAAJAtR7hDUbFRSo1PzXYb3xBfOcId+ZgqdygzAAAAPGT5rpOatHi3Oe+ZFC273WZhIgCecPLkSUlSaGioy/LQ0FBzXVZGjhypYcOGmXNiYqIqVaqUNyEBAACAq3CEO7y6rLgaygwAAAAP2H70nAZ8sM2ct47uKIevj4WJAFjNz89Pfn5+VscAAAAACgVuAA4AAHCNjv2RpNve+s6cVw1rrZBS/AETKCzCwsIkSXFxcS7L4+LizHUAAAAA8hZlBgAAwDVITE5Vy6lrzXl+/2aqXi7AwkQAPC0iIkJhYWFavXq1uSwxMVE//PCDmjdvbmEyAAAAoOjgMlMAAABuSk13qsH4Feb88t0NdXO1EAsTAXDX+fPntX//fnM+ePCgfv75ZwUHBys8PFxDhw7Vc889pxo1aigiIkJjxoxRhQoVdPvtt1sXGgAAAChCKDMAAADcYBiGajz7tTkPaV9ddzW+3sJEAK7F1q1b1a5dO3O+dOPuvn37as6cOXrmmWd04cIFPfLIIzp37pxatmypZcuWyeEouDdQBAAAAAoSm2EYhtUhvE1iYqKCgoKUkJCgwMBAq+MAAAAvVGXEEvNx1/phmvFAYwvTAHmHz8aew+8SAAAAyODOZ2PumQEAAJBL/ywyKpYuQZEBAAAAAEAeo8wAAADIhX8WGZL03Yj2FiUBAAAAAKDooMwAAADIoeZTVrvMB57valESAAAAAACKFsoMAACAHBj28c86kZBsztvHdpKP3WZhIgAAAAAAio5iVgcAAADwdnM3HdLnP/5uziufbK0gf18LEwEAAAAoLJKPJCs1PjXb9b4hvnKEO/IxEeCdKDMAAACuYNOBMxq7cJc5v9OniWqEBliYCAAAAEBhkXwkWZsjN8uZ5Mx2G7u/XVGxURQaKPIoMwAAALJx9GyS7n/ne3N+smNN3VIn1MJEAAAAAAqT1PhUOZOcipwXKf9I/0zrk2KTFNsrVqnxqZQZKPIoMwAAALKQdDFNrV5ca86ta5bVEx1rWJgIAAAAQGHlH+mvgBs5Axy4Em4ADgAAcBnDMFRn7HJzttmkuf+KsjARAAAAAABFG2UGAADAZSJGLnWZD06JsSgJAAAAAACQKDMAAABcVBmxxGU+9AJFBgAAAAAAVqPMAAAA+B+KDAAAAAAAvBM3AAcAAJDU5LlVLvOB57talAQAAABAUZMUm5Sr5UBRRJkBAACKvCH//Unx51PMefu4TvKx2yxMBAAAAKAo8A3xld3frthesdluY/e3yzfENx9TAd6JMgMAABRps787qEXbj5vzqmFtFFSCAwUAAAAAec8R7lBUbJRS41Oz3cY3xFeOcEc+pgK8E2UGAAAosjbuj9eEr3ab83sPNlH1cqUsTAQAAACgqHGEOygrgBzgBuAAAKBIOnImST3/7wdzfrpzLbWvHWphIgAAAAAAkB3KDAAAUORcSElT65fWmnP72uU0sF11CxMBAAAAAIArocwAAABFitNpqO645eZc3Meu9x5samEiAAAAAABwNZQZAACgSKk6aqnL/OvkLhYlAQAAAAAAOUWZAQAAiowqI5a4zIdeiLEoCQAAAAAAyA3KDAAAUCRQZAAAAAAAUHBRZgAAgEKv0cQVLvNvz3e1KAkAAAAAAHBHMasDAAAA5KWBH/6oP5JSzXnH+E6y223XtlNnunR4o3Q+TioVKlW+WbL7XGNSAAAAAACQHcoMAABQaP3fN79pyc4T5rzm320U6PC9tp3uXiQtGy4lHv97WWAFKXqqVKf7te0bAAAAAABkictMAQCAQumbfaf13JJYc579UFNVLVvq2na6e5H0cR/XIkOSEk9kLN+96Nr2DwAAAAAAskSZAQAACp3DZy6o97ubzXl4dG21q1Xu2nbqTM84I0NGFiv/t2zZiIztAAAAAACAR1FmAACAQuV8SpravLTOnG+pE6rH2la79h0f3pj5jAwXhpT4e8Z2AAAAAADAoygzAABAoeF0Gqo3brk5l/D10Tt9mnhm5+fjPLsdAAAAAADIMcoMAABQaFQdtdRljp0U7bmdlwr17HYAAAAAACDHKDMAAEChUGXEEpf50Asxnn2ByjdLgRUk2bLZwCYFVszYDgAAAAAAeBRlBgAAKPDyvMiQJLuPFD31f8Plhcb/5ugXMrYDAAAAAAAeRZkBAAAKtPr/uEeGJP32fNe8e7E63aV75kqB5V2XB1bIWF6ne969NgAAAAAARVgxqwMAAAC4a8AHW/VnSpo57xzfSXZ7dpeB8pA63aXaMdLhjRk3+y4VmnFpKc7IAAAAAAAgz1BmAACAAunt9Qe0fFecOa97qq0CHL758+J2HymiVf68FgAAAAAA4DJTAACg4Fm395SmfL3HnOf+K0pVQkpamAgAAAAAAOQlygwAAFCgHIy/oAdnbzHnUV1rq3XNshYmAgAAAAAAeY0yAwAAFBh/Jqeq3cvrzLlLvTA90rqadYEAAAAAAEC+oMwAAAAFgtNpqP74FeYcVMJXM3s1tjARAAAAAADIL5QZAACgQKg6aqnLvH1cJ4uSAAAAAACA/EaZAQAAvF6VEUtc5kMvxFiUBAAAAAAAWIEyAwAAeDWKDAAAAAAAQJkBAAC8Vq3RX7vMvz3f1aIkAAAAAADASpQZAADAK/V7f4tS0pzm/MuEzrLbbRYmAgAAAAAAVqHMAAAAXmfGuv1aFXvKnDc83U6l/IpZmAgAAAAAAFiJMgMAAHiVtXtO6cVle835w37NFF7G38JEAAAAAADAapQZAADAaxw4fV4PzdlizmNuraMW1UMsTAQAAAAAALwBZQYAAPAKicmp6vDKenO+tUF5PdwywsJEAAAAAADAW1BmAAAAy6U7DTUYv8Kcy5Qsrjd73mhhIgAAAAAA4E0oMwAAgOWqjVrqMm8bc4tFSQAAAAAAgDeizAAAAJaqMmKJy3zohRiLkgAAAAAAAG9FmQEAACxDkQEAAAAAAHKCMgMAAFii+mWXljo4patFSQAAAAAAgLejzAAAAPnuwdmbleY0zHn3xM6y2WwWJgIAAAAAAN6MMgMAAOSrN1bv07q9p835m2fayb94MQsTAQAAAAAAb0eZAQAA8s2q3XF6ZeWv5jy/fzNVCva3MBEAAAAAACgIKDMAAEC+2H/qT/Wbu9Wcx3ero5urhViYCAAAAAAAFBSUGQAAIM8l/JWqjq9uMOc7GlXUgy0iLEwEAAAAAAAKEsoMAACQp9KdhhpOWGHO5QL8NO3eG6wLBAAAAAAAChzKDAAAkKeqjVrqMm9+tqNFSQAAAAAAQEFFmQEAAPJMlRFLXOZDL8RYlAQAAAAAABRklBkAACBPUGQAAAAAAABPocwAAAAed3mRcXBKV4uSAAAAAACAwoAyAwAAeFTvd39wmWMnRstms1mUBgAAAAAAFAaUGQAAwGOmrfxV3+yLN+dvh7dTieI+FiYCAAAAAACFAWUGAADwiOW7Tur11fvM+aNHbtL11/lbmAgAAAAAABQWlBkAAOCa/Rr3pwZ8sM2cJ91WVzdVLWNhIgAAAAAAUJhQZgAAgGtyLumiOk3bYM49brxevZtXsS4QAAAAAAAodCgzAACA29LSnbph4kpzrli6hF65p6GFiQAAAAAAQGFEmQEAANxW/dmvXebvRrS3KAkAAAAAACjMKDMAAIBbqoxY4jIfeiHGoiQAAAAAAKCwo8wAAAC5RpEBAAAAAADyE2UGAADIlcuLjINTulqUBAAAAAAAFBWUGQAAIMfu+88ml3nPpGjZbDaL0gAAAAAAgKKCMgMAAOTIKyv26vvfzprzxhHt5fD1sTARAAAAAAAoKigzAADAVS375YTeWLPfnD95tLkqlC5hYSIAAAAAAFCUUGYAAIAr2nMyUY/O+9Gcn7+jvppWCbYwEQAAAAAAKGooMwAAQLb+uHBR0a99Y873Nqmkns3CLUwEAAAAAACKomJWBwAAAN4pLd2pRpNWmnPlMv6aelcDCxMBAAqD5CPJSo1PzXa9b4ivHOGOfEwEAACAgoAyAwAAZKn6s1+7zOufbmdREgBAYZF8JFmbIzfLmeTMdhu7v11RsVEUGgAAAHBBmQEAADKpMmKJy3zohRiLkgAACpPU+FQ5k5yKnBcp/0j/TOuTYpMU2ytWqfGplBkAAABwQZkBAABcUGQAAPKaf6S/Am4MsDoGAAAAChBuAA4AAEyXFxkHp3S1KAkAAAAAAMDfKDMAAIAk6Z5Zm1zmPZOiZbPZLEoDAAAAAADwNy4zBQAANHXZHm0+dNacN41sL4evj4WJAAAAUNglH0lWanxqtut9Q3y5fw4AwESZAQBAEbd4x3HNXHfAnD97rLnKB5WwMBEAAAAKu+QjydocuVnOJGe229j97YqKjaLQAABIoswAAKBI2308UYPm/2TOU3vUV+PKwRYmAgAUBUmxSblaDqDwSY1PlTPJqch5kfKP9M+0Pik2SbG9YpUan0qZAQCQRJkBAECRdeZ8irpO/8acezYL171Nwy1MBAAo7HxDfGX3tyu2V2y229j97fIN8c3HVACs5B/pr4AbA6yOAQAoACgzAAAoglLTnWr83CpzrhpSUs/fUd/CRACAosAR7lBUbBTXyAcAAECuUWYAAFAE1Xj2a5d5zVNtrQkCAChyHOEOygoAAADkmt3qAAAAIH9VGbHEZT70QoxFSQAAAAAAAHKGMzMAAChCKDIAAAC8Q/KRZC65BgBALlBmAABQRFxeZByc0tWiJAAAAEVb8pFkbY7cLGeSM9tt7P52RcVGFfpCIyk2KVfLAQBFF2UGAABFwO1vfecy75kULZvNZlEaAACAoi01PlXOJKci50XKP9I/0/qk2CTF9opVanxqoS0zfEN8Zfe3K7ZXbLbb2P3t8g3xzcdUAABvRpkBAEAhN2VprH4+es6cfxjVQQ5fH+sCAQAAQJLkH+mvgBsDrI5hCUe4Q1GxUVxqCwCQY5QZAAAUYou2H9fbG34z5y8ev1mhgRwQAkBujR8/XhMmTHBZVqtWLe3Zs8eiRABQ8DnCHZQVAIAco8wAAKCQ+uX3BA3570/m/NJdDdQo/DoLEwFAwVa3bl2tWrXKnIsV43AKAAAAyC98+gYAoBCKP5+iW9/41pz7NK+su5tUsjARABR8xYoVU1hYmNUxAAAAgCLJbnUAAADgWRfTnGry3N/fHK4VGqCJt9WzMBEAFA779u1ThQoVVLVqVT3wwAM6cuTIFbdPSUlRYmKiyw8AAAAA93BmBgAAhUzN0V+7zMufbG1REgAoPJo1a6Y5c+aoVq1aOnHihCZMmKBWrVrpl19+UUBA1jfvnTJlSqb7bADAPyXFJuVqOQAARZnNMAzD6hDeJjExUUFBQUpISFBgYKDVcQAAyLEqI5a4zIdeiLEoCYDCgs/GWTt37pwqV66sV199VQ8//HCW26SkpCglJcWcExMTValSJX6XAJR8JFmbIzfLmeTMdhu7v11RsVHcIBsAUCi5c5zBmRkAABQSFBkAkH9Kly6tmjVrav/+/dlu4+fnJz8/v3xMBaCgcIQ7FBUbpdT41Gy38Q3xpcgAAOAfKDMAACgELi8yDk7palESACgazp8/rwMHDqh3795WRwFQQDnCHZQVAADkglfdAHzDhg3q1q2bKlSoIJvNpi+//NJl/YMPPiibzebyEx0d7bLN2bNn9cADDygwMFClS5fWww8/rPPnz+fjuwAAIH91e+Nbl3nvc9Gy2WwWpQGAwumpp57S+vXrdejQIW3cuFF33HGHfHx8dP/991sdDQAAACgSvKrMuHDhgho2bKi33nor222io6N14sQJ8+e///2vy/oHHnhAu3bt0sqVK7V48WJt2LBBjzzySF5HBwDAEpMW79bO3xPMefOzHeRXzMfCRABQOB07dkz333+/atWqpXvuuUdlypTR999/r7Jly1odDQAAACgSvOoyU126dFGXLl2uuI2fn5/CwsKyXBcbG6tly5Zpy5YtatKkiSTpjTfeUNeuXfXyyy+rQoUKWT4vqxvzAQDg7b746Zje/fagOS8c2ELlArhUAQDkhY8++sjqCAAAAECR5lVnZuTEunXrVK5cOdWqVUuPPfaYzpw5Y67btGmTSpcubRYZktSxY0fZ7Xb98MMP2e5zypQpCgoKMn8qVaqUp+8BAIBrtePYOT25YLs5v3pPQzWsVNq6QAAAAAAAAHmoQJUZ0dHRmjt3rlavXq2pU6dq/fr16tKli9LT0yVJJ0+eVLly5VyeU6xYMQUHB+vkyZPZ7nfkyJFKSEgwf44ePZqn7wMAgGtx+s8UdX/zO3N+qEUV3Xnj9RYmAgAAAAAAyFtedZmpq7nvvvvMx/Xr11eDBg1UrVo1rVu3Th06dHB7v35+fvLz8/NERAAA8tTFNKeaTl5lznXKB2pct7oWJgIAAAAAAMh7BerMjMtVrVpVISEh2r9/vyQpLCxMp06dctkmLS1NZ8+ezfY+GwAAFBSGYajm6K9dli19opVFaQAAAAAAAPJPgS4zjh07pjNnzqh8+fKSpObNm+vcuXPatm2buc2aNWvkdDrVrFkzq2ICAOARESOXusyHXoixKAkAAAAAAED+8qrLTJ0/f948y0KSDh48qJ9//lnBwcEKDg7WhAkT1KNHD4WFhenAgQN65plnVL16dXXu3FmSFBkZqejoaPXv31+zZs1SamqqBg0apPvuu08VKlSw6m0BAHDNqoxY4jJTZAAAAAAAgKLEq8qMrVu3ql27duY8bNgwSVLfvn01c+ZM7dixQ++//77OnTunChUqqFOnTpo0aZLL/S4+/PBDDRo0SB06dJDdblePHj00ffr0fH8vAAB4CkUGACA/JR9JVmp8arbrfUN85Qh35GMiAAAAwMvKjLZt28owjGzXL1++/Kr7CA4O1vz58z0ZCwAAy3R5/RuX+dfnuliUBABQFCQfSdbmyM1yJjmz3cbub1dUbBSFBgAAAPKVV5UZAADgb+MX7VLsiURz3vJsRxUvVqBvdwUA8HKp8alyJjkVOS9S/pH+mdYnxSYptlesUuNTvbLM4KwSAACAwosyAwAAL/TZtmOas/GQOX81qKXKBvhl/wQAADzIP9JfATcGWB0jVzirBAAAoHCjzAAAwMv8fPSc/v3JdnN+7d4bVP/6IAsTAQDg/Qr6WSUAAAC4MsoMAAC8yKnEZN3+1nfm3K9lhG5vVNHCRAAAFCwF8awSAAAAXB0X3gYAwEukpKUr6vnV5tzg+iCNvrWOhYkAAAAAAAC8A2UGAABewDAM1Rq9zGXZokEtLUoDAAAAAADgXbjMFAAAXiBi5FKX+dALMRYlAQAg4/4SuVkOAAAA5DXKDAAALFZlxBKXmSIDAGAV3xBf2f3tiu0Vm+02dn+7fEN88zEVAAAAQJkBAIClKDIAAN7EEe5QVGyUUuNTs93GN8RXjnBHPqbKHc4qAQAAKJwoMwAAsEinaetd5n2Tu1iUBACAvznCHV5dVmSHs0oAAAAKN4+WGRcvXlRqaqpKlizpyd0CAFDojP5yp36NO2/O20Z3lK+P3cJEAAAUbIXhrBIAAABkz62/mnz00Ud68sknXZZNmDBBpUqVUunSpXXHHXfo/Pnz2TwbAICi7eOtRzXv+yPmvHhwS5Up5WdhIgAACgdHuEMBNwZk+0ORAQAAUHC5VWa88sorunDhgjlv3LhREyZMUOfOnfXkk09q2bJlmjx5ssdCAgBQWPx45A898+kOc37j/kaqVzHIwkQAAAAAAADez63LTB04cEB9+/Y15/nz5yssLExffPGFihUrJqfTqc8++0xTpkzxWFAAAAq6kwnJunPGRnMe0KaqujWsYGEiAAAAAACAgsGtMzNSUlLkcPx9eu6KFSvUpUsXFSuW0Y3UqVNHx44d80xCAAAKgeTUdN00ZbU53xheWiO7RFqYCAAAAAAAoOBwq8yIiIjQqlWrJElbt27V/v37FR0dba6Pi4tTqVKlPJMQAIACzjAM1R6zzGXZ54+3sCgNAAAAAABAwePWZaYGDBigJ554Qrt379axY8d0/fXX69ZbbzXXf/fdd6pbt67HQgIAUJBFjFzqMh96IcaiJAAAAAAAAAWTW2XG4MGD5XA4tHTpUjVu3FjDhw9XiRIlJElnz57VyZMn9eijj3o0KAAABVGVEUtcZooMAAAAAACA3LMZhmFYHcLbJCYmKigoSAkJCQoMDLQ6DgCggKLIAFAY8NnYc/hdAgAAABnc+Wzs1pkZl6SkpOjHH3/UqVOn1KJFC4WEhFzL7gAAKDTavbzOZd43uYs1QQAAAAAAAAoBt24ALknTp09X+fLl1aJFC915553asWOHJCk+Pl4hISF67733PBYSAICCZOTnO3Uw/oI5/zjmFvn6uP1PLgAAAAAAQJHn1l9WZs+eraFDhyo6Olrvvfee/nmlqpCQELVv314fffSRx0ICAFBQfLT5iP67+Yg5f/1EKwWXLG5hIgAAAAAAgILPrTLjlVde0W233ab58+erW7dumdY3btxYu3btuuZwAAAUJFsPndWIz3ea84wHblRkea6JDgAAAAAAcK3cKjP279+vLl2yv/Z3cHCwzpw543YoAAAKmhMJf+muWZvMeWC7aupav7yFiQAAAAAAAAoPt8qM0qVLKz4+Ptv1u3fvVlhYmNuhAAAoSJJT09V8yhpzjooI1tOda1uYCAAAAAAAoHBxq8zo2rWr/vOf/+jcuXOZ1u3atUvvvPOOunfvfq3ZAADweoZhqPaYZS7LPh7Q3KI0AAAAAAAAhVMxd5703HPPqVmzZqpXr566desmm82m999/X++9954+++wzlS9fXmPHjvV0VgAArOdMlw5vlM7HSaVCVe3tc/rndwMOvRBjWTQAAAAAAIDCyq0yo0KFCtq2bZtGjRqlBQsWyDAMffDBBwoICND999+vF154QSEhIZ7OCgCAtXYvkpYNlxKPm4u+9QvWhNQ+Wu6MosgAAAAAAADIIzbDMIxr3cnp06fldDpVtmxZ2e1uXbnKqyQmJiooKEgJCQkKDAy0Og4AwBvsXiR93EeS6z+bzv+N9ns/kOpwiUUAhQ+fjT2H3yUAAACQwZ3Pxh5pHsqWLavQ0NBCUWQAAJCJMz3jjAxl7v/tNslms0nLRmRsBwAAAAAAAI9z6zJTEydOvOo2NptNY8aMcWf3AAB4l8MbXS4tdTmbDCnx94ztIlrlYzAAAAAAAICiwa0yY/z48dmus9lsMgyDMgMAUHicj/PsdgAAAAAAAMgVt64L5XQ6M/2kpaXpwIEDevLJJ9WkSROdOnXK01kBALBGqVDPbgcAAAAAAIBc8dhNLux2uyIiIvTyyy+rRo0aGjx4sKd2DQCApX4PaqTjRrB5s+/MbFJgRanyzfkZCwAAAAAAoMjIkzt2t27dWkuXLs2LXQMAkK/+upiuFi+u14TUPpIkZ6YtbBn/E/2CZPfJz2gAAAAAAABFRp6UGVu3bpXdnie7BgAg3xiGocixyyRJy51Reix1qOyBFVw3Cqwg3TNXqtPdgoQAAAAAAABFg1s3AJ87d26Wy8+dO6cNGzbo888/V79+/a4pGAAAVosY6XqW4dvPT5CcY6XDGzNu9l0qNOPSUpyRAQAAAAAAkKfcKjMefPDBbNeFhIRoxIgRGjt2rLuZAACwXJURS1zmQy/EZDyw+0gRrSxIBAAAAAAAUHS5VWYcPHgw0zKbzabrrrtOAQEB1xwKAAArZVtkAAAAAAAAwBJulRmVK1f2dA4AALxC8ymrXeb9k7tYlAQAAAAAAACXcJduAAD+Z9jHP+tEQrI5bx/bScV8+KcSAAAAAADAajk6M8Nut8tms+VqxzabTWlpaW6FAgAgv83ddEif//i7Oa94srWC/H0tTAQAAAAAAIBLclRmjB07NtdlBgAABcWmA2c0duEuc36nTxPVDOUeUAAAAAAAAN4iR2XG+PHj8zgGAADWOPZHku5/53tzHtqxhm6pE2phIgDAP128eFGpqakqWbKk1VEAAAAAWIgLgQMAiqyki2lqOXWtObeuWVZDO9a0MBEAFF0fffSRnnzySZdlEyZMUKlSpVS6dGndcccdOn/+vEXpAAAAAFgtR2dmZOfYsWP66aeflJCQIKfTmWl9nz59rmX3AADkGcMwVGfscpdlc/8VZVEaAMArr7yiRo0amfPGjRs1YcIExcTEKDIyUm+88YYmT56sKVOmWJgSAAAAgFXcKjOSk5PVt29fffbZZ3I6nbLZbDIMQ5Jc7q1BmQEA8FYRI5e6zIdeiLEoCQBAkg4cOKC+ffua8/z58xUWFqYvvvhCxYoVk9Pp1GeffUaZAQAAABRRbl1matSoUfr88881efJkrVu3ToZh6P3339eKFSvUpUsXNWzYUNu3b/d0VgAAPKLKiCUuM0UGAFgvJSVFDofDnC8dWxQrlvH9qzp16ujYsWNWxQMAAABgMbfKjE8//VQPPfSQhg8frrp160qSKlasqI4dO2rx4sUqXbq03nrrLY8GBQDAEygyAMA7RUREaNWqVZKkrVu3av/+/YqOjjbXx8XFqVSpUlbFAwAAAGAxt8qMU6dOKSoq47riJUqUkCRduHDBXN+jRw99/vnnHogHAIDnNHlulct84PmuFiUBAFxuwIAB+vjjj9WgQQN16tRJ119/vW699VZz/XfffWd+kQoAAABA0eNWmREaGqozZ85Ikvz9/XXddddp79695vrExEQlJyd7JiEAAB7wxEc/Kf58ijlvH9dJPnbbFZ4BAMhPgwcP1ttvv61q1arptttu04oVK8wvTp09e1YnT57UAw88YHFKAAAAAFZx6wbgzZo107fffqvhw4dLkrp166aXXnpJ5cuXl9Pp1LRp03TTTTd5NCgAAO6a/d1BLfz5uDmvGtZGQSV8LUwEAMhK//791b9//0zLg4ODtXXrVgsSAQAAAPAWbp2ZMWTIEFWtWlUpKRnfcJ00aZJKly6t3r17q2/fvgoKCtL06dM9GhQAAHds3B+vCV/tNud3+zZR9XJccx0AAAAAAKAgcevMjJYtW6ply5bmXKlSJcXGxmrnzp3y8fFR7dq1VayYW7sGAMBjjp5NUs//+8Gcn+pUUx0iQy1MBAC4pH379rl+js1m0+rVq/MgDQAAAABv51bjkJCQoKCgIJdldrtdDRs29EgoAACu1YWUNLV6ca05t6tVVoPa17AwEQDgn5xOp2y23N27yDCMPEoDAAAAwNu5VWaUK1dO0dHRuvfee9W9e3eVKsXlOgAA3sMwDNUdt9ycfX1smv1QlIWJAACXW7dundURAAAAABQgbt0zY9iwYdq1a5d69eqlcuXK6a677tInn3yiv/76y9P5AADItYiRS13mfZO7WpQEAAAAAAAAnmAzruFc7S1btmjBggX69NNPdeTIEZUsWVK33nqr7r33XnXt2lXFixf3ZNZ8k5iYqKCgICUkJCgwMNDqOACAXKgyYonLfOiFGIuSAEDhYMVn4z///FMJCQlyOp2Z1oWHh+dLhrzAcQYAAACQwZ3PxtdUZvzTpk2bzGLjxIkTCgwM1B9//OGJXec7DjIAoGCiyAAAz8vPz8YzZ87Uq6++qt9++y3bbdLT0/M0Q17iOAMAAADI4M5nY7cuM5WV5s2ba+DAgerfv79KlSqlxMRET+0aAICrajRxhcv82/NcWgoACpJZs2Zp4MCBql69up577jkZhqGhQ4dqxIgRCgsLU8OGDfXuu+9aHRMAAACARdy6Afg/HTx4UAsWLNDHH3+s7du3y263q127drr33ns9kQ8AgKsaOP9H/ZGUas47xneS3W6zMBEAILfeeOMNde7cWV9//bXOnDmjZ599VjExMWrfvr2eeeYZNWnSRGfOnLE6JgAAAACLuFVmHD16VB9//LEWLFigbdu2yWazqVWrVnrrrbfUo0cPlS1b1tM5AQDI0v9985uW7Dhhzmv+3UaBDl8LEwEA3HHgwAENHDhQkuTrm/Hf8YsXL0qSgoKC1K9fP82YMUP//ve/LcsIAAAAwDpulRmVK1eWzWbTTTfdpGnTpunuu+9W+fLlPZ0NAIAr+nZfvJ5bEmvOsx9qqqplS1mYCADgrqCgIKWlpUmSAgMD5e/vr6NHj5rrAwICdPLkSaviAQAAALCYW2XGSy+9pHvuuUeVKlXydB4AAHLk8JkL6vXuD+Y8PLq22tUqZ2EiAMC1qFevnrZv327ON910k2bOnKmuXbvK6XTq7bffVs2aNS1MCAAAAMBKbpUZnNoNALDS+ZQ0tXlpnTl3jAzVY22rWRcIAHDNevXqpVmzZiklJUV+fn6aMGGCOnbsqPDwcEkZl5767LPPLE4JAAAAwCo2wzAMq0N4m8TERAUFBSkhIUGBgYFWxwEA/IPTaajqqKXmXMLXR7GToi1MBACFm5WfjX/77Td99dVX8vHxUadOnQr8mRkcZwCZJR9JVmp8arbrfUN85Qh35GMiAACQH9z5bOzWmRkAAFjln0WGJIoMACjEqlatqieeeMLqGADySPKRZG2O3CxnkjPbbez+dkXFRlFoAAAAygwAQMFRZcQSl/nQCzEWJQEAAMC1So1PlTPJqch5kfKP9M+0Pik2SbG9YpUan0qZAQAAKDMAAAUDRQYAFG52u102m+2q26Wnp+dDGgD5yT/SXwE3BlgdAwAAeDnKDACA16s/brnL/NvzXS1KAgDIK2PHjs1UZqSnp+vQoUP68ssvVatWLd16660WpQMAAABgNbfLjPT0dH3yySdau3atTp06pYkTJ6p+/fpKSEjQ6tWr1aJFC4WGhnoyKwCgCBrwwVb9mZJmzjvHd5LdfvVv7gIACpbx48dnu+7EiRO66aabCvwNwAEAAAC4z60y49y5c4qOjtbmzZtVqlQpXbhwQYMHD5YklSpVSkOGDFGfPn30/PPPezQsAKBo+c+GA1q+K86c1z7VVgEOXwsTAQCsUL58eT366KOaNGmS7r//fqvjAF4l+UiyUuNTs13vG+LL/SYAAECh4FaZMWLECO3atUvLly9Xo0aNVK5cOXOdj4+P7rrrLi1dupQyAwDgtvW/ntbzS/eY89x/RSkipKSFiQAAVipZsqQOHjxodQzAqyQfSdbmyM1yJjmz3cbub1dUbBSFBgAAKPDcKjO+/PJLDR48WLfccovOnDmTaX3NmjU1Z86ca80GACiiDsZfUN/3NpvzqK611bpmWQsTAQCs9Msvv2j69OlcZgqSOBPhn1LjU+VMcipyXqT8I/0zrU+KTVJsr1ilxqd69e8kKTYpV8sBAEDR5FaZkZCQoIiIiGzXp6amKi0tLdv1AABk58/kVLV7eZ05d6kXpkdaV7MuEAAgX0RERGS6AbiUcYnbhIQE+fv768svv8z/YPAqnImQNf9IfwXcGGB1jFzzDfGV3d+u2F6x2W5j97fLN4TLjAIAADfLjGrVqunHH3/Mdv2KFStUp04dt0MBAIomp9NQ/fErzDnAUUwzezW2MBEAIL+0adMmU5lhs9l03XXXqVq1arrvvvsUHBxsUTp4i8JyJgIyOMIdioqN4kwbAACQI26VGf369dPw4cPVtm1bdejQQVLGgUZKSoomTpyoZcuW6T//+Y9HgwIACr+qo5a6zDvHd7YoCQAgv3GZWuRGQT0TAZk5wh2UFQAAIEfcKjOeeOIJ7dq1S/fff79Kly4tSerZs6fOnDmjtLQ0DRgwQA8//LAncwIACrkqI5a4zIdeiLEoCQAAAAAAALyNW2WGzWbTO++8o759++rTTz/Vvn375HQ6Va1aNd1zzz1q3bq1p3MCAAoxigwAKHomTpyY6+fYbDaNGTMmD9IAAAAA8HZulRmXtGzZUi1btvRUFgBAEVRr9Ncu82/Pd7UoCQAgP40fPz7Tskv3zDAMI9NywzAoM4BsJMUm5Wo5AABAQeRWmeHj46MPPvhAPXv2zHL9ggUL1LNnT6Wnp19TOABA4dbv/S1KSXOa8y8TOstut13hGQCAwsLpdLrMv//+u2JiYlSvXj0NHTpUtWrVkiTt2bNHr732mnbv3q0lS5ZktSugyPIN8ZXd367YXrHZbmP3t8s3xDcfUwEAAOQNt8qMy78pdbn09HTzW1UAAGRlxrr9WhV7ypzXP91Wpfyu6YRBAEABNnDgQNWoUUPz5s1zWd60aVN9+OGHuuuuuzRw4EB98cUXFiWEN+FMhAyOcIeiYqOUGp+a7Ta+Ib7cYBsAABQKbv/VKLuyIjExUcuXL1dISIjboQAAhdvaPaf04rK95jzv4WaqXKakhYkAAFZbs2aNpk6dmu36Dh06aPjw4fmYCN6IMxEyc4Q7KCsAAECRkOMyY8KECeZN+mw2m3r16qVevXplua1hGBoyZIhnEgIACpUDp8/roTlbzHl0TKRa1qAAB4CizuFwaNOmTXrssceyXL9x40Y5HPzBtqjjTAQAAICiK8dlRlRUlB5//HEZhqEZM2bolltuUc2aNV22sdlsKlmypBo3bqw777zT42EBAAVbYnKqOryy3pxvbVBe/VpVtTARAMBbPPDAA5o+fbpKly6twYMHq1q1apKkAwcOaPr06Zo/fz5fmIIkzkQAULgkH0mmoAWAHLIZV7sBRhYeeughPfroo2rWrFleZLJcYmKigoKClJCQoMDAQKvjAEChkO40VG3UUnMOLllcP465xcJEAICcyK/PxhcvXtTDDz+sDz/8UDabTXa7XVLGjcINw9D999+v2bNnq3jx4nmWIa9xnAEA+KfkI8naHLlZziRnttvY/e2Kio2i0ABQ6Ljz2dite2bMnj3bnacBAIqwfxYZkigyAAAuihcvrg8++EBPP/20li5dqsOHD0uSKleurC5duqhhw4YWJwQAwLNS41PlTHIqcl6k/CP9M61Pik1SbK9YpcanUmYAgK7hBuCSdOzYMf30009KSEiQ05m5Re7Tp8+17B4A4M2c6dLhjdL5OKlUqFT5Zsnuk+WmVUYscZkPvRCTHwkBAAVQgwYN1KBBA6tjAACQb/wj/RVwY4DVMQDA67lVZiQnJ6tv37767LPP5HQ6ZbPZdOlqVTabzdyOMgMACqndi6Rlw6XE438vC6wgRU+V6nR32ZQiAwBQmLz11lt66aWXdPLkSTVs2FBvvPGGoqKirI4FAAAAFHpulRmjRo3S559/rsmTJ6t58+Zq27at3n//fZUvX16vvfaajh8/rrlz53o6KwDAG+xeJH3cR9Jlt1xKPJGx/J65ZqFx+aWlDk7pmk8hAQDezm63y263KykpScWLF5fdbnf5YlRWbDab0tLS8ilhZgsWLNCwYcM0a9YsNWvWTK+99po6d+6svXv3qly5cjneT9LFNBW7aN37QP5LPpqi1DNXuMFvGV85KvnlYyIA3iApLV0pvoaS0tLlk8W/C1dbDwAFWZIb/11z6wbg4eHhio6O1n/+8x+dOXNGZcuW1apVq9S+fXtJUvv27VWrVi3NnDkz14G8ATfmA4BsONOl1+q5npHhwpZxhsbQnXrw/W1at/e0uWb3xM7yL35NVzcEAFggrz4bjx8/XjabTWPGjJHdbjfnqxk3bpzHMuRWs2bN1LRpU7355puSMm5OXqlSJQ0ePFgjRozItH1KSopSUlLMOTExUZUqVVKloR/L7pf52ugAAABAUeFMSdLR1+7J+xuAnzp1yjyVukSJEpKkCxcumOt79OihiRMnFtgyAwCQjcMbr1BkSJIhJf6uz7/4WOv2/v0P0TfPtKPIAAC4GD9+/BVnb3Px4kVt27ZNI0eONJfZ7XZ17NhRmzZtyvI5U6ZM0YQJE/IrIgAAAFCoufWXpdDQUJ05c0aS5O/vr+uuu0579+5Vt27dJGV84yg5OdlzKQEA3uF8XI42W7ftF0k3S5Lm92umSsF8+xQAULDFx8crPT1doaGhLstDQ0O1Z8+eLJ8zcuRIDRs2zJwvnZmx+dkOnAFehPz583n93PIn3fBtIwXcUCrX6wEUXpf+/7/Wu7VUolbmY6a/9iZp78N7+e8DgEIpMTFR5V/L3XPcKjOaNWumb7/9VsOHD5ckdevWTS+99JLKly8vp9OpadOm6aabbnJn1wAAb1Yq9OrbSDql0pKk8d3q6ObqIXkYCABQWKxevVo//vijnn76aXPZe++9p/HjxyslJUU9e/bUyy+/LB8fHwtT5o6fn5/8/DLfB8G/eDHOWCxC0ov5yC/VJv9iPln+3/1q6wEUXvYwh0r4+uhQn1+z3aaEv4+Cwhxy8N8HAIVMmhv/XXPrv4RDhgzRJ598opSUFPn5+WnSpEnatGmTevfuLUmqVq2apk+f7s6uAQDerPLNGffESDyhTDcAl+Q0pJMqo83O2rr9hgp6sEVE/mcEABRI48ePV+XKlc15586dGjBggBo0aKDq1atr+vTpCgsLM79Qld9CQkLk4+OjuDjXsxTj4uIUFhZmSSYAQMHmCHcoKjZKqfGp2W7jG+IrR7gjH1MBgPdyq8xo2bKlWrZsac6VKlVSbGysdu7cKR8fH9WuXVvFitEYA0ChY/eRoqdKH/eRZNM/Cw3n/x5OSO2tkIASeu2+RpZEBAAUTLGxserRo4c5f/DBBwoMDNQ333wjf39/Pfroo5o7d65lZUbx4sXVuHFjrV69WrfffrukjBuAr169WoMGDbIkEwCg4HOEOygrACCH7B7bkd2uhg0bql69ehQZAFCY1eku3TNXCizvsvikyuix1KFa7ozS5mc7WhQOAFBQXbhwweU+EsuWLVN0dLT8/TOuId60aVMdPnzYqniSpGHDhumdd97R+++/r9jYWD322GO6cOGCHnroIUtzAQAAAEWBW63Dhg0brrjeZrPJ4XDo+uuvV/ny5a+4LQCgAKrTXaodIx3eqCHvLNMpldZmZ205ZdehF2KsTgcAKIAqVaqkLVu26F//+pf279+vX375Rf/+97/N9WfPns3y/hP56d5779Xp06c1duxYnTx5UjfccIOWLVuW6abgQFaSYpNytRwAAACu3Coz2rZtK5vNlqNta9SooQkTJujee+9156UAAN7K7qMqbydKutlcRJEBAHDXAw88oIkTJ+r333/Xrl27dN111+m2224z12/btk01a9a0MGGGQYMGcVkp5IpviK/s/nbF9orNdhu7v12+Ib75mAoAAKDgcavMWLZsmYYPH66UlBT1799f1atXlyTt27dP//d//6cSJUpo9OjROnz4sN5++2317NlTPj4+uuuuuzwaHgBgnSojlrjMB6d0tSgJAKAwePbZZ3Xx4kUtXbpU4eHhmjNnjkqXLi0p46yMdevW6YknnrA2JOAGbvALAADgGTbDMIyrb+Zq2LBh2rRpk9avX6/ixYu7rEtOTlbbtm3Vpk0bTZ06VcnJyWrSpIlKlCihLVu2eCx4XkpMTFRQUJASEhJcrtsLAMhweZEROzFaJYr7WJQGAJCX+GzsOfwuAQAAgAzufDZ26wbgH374oXr27JmpyJAkh8OhBx54QO+//7459+rVS7t373bnpQAAXqbJc6tc5qVDWlFkAAA86sSJE9q+fbsuXLhgdRQAAAAAXsKtMuPChQuKi4vLdv2JEyd0/vx5cy5durR8fPhDFwAUdE99sl3x51PM+ZW7G6pOBb5ZCgDwjIULF6p27dq6/vrrdeONN+qHH36QJMXHx6tRo0b64osvLE4IAAAAwCpulRnt27fXa6+9psWLF2da99VXX+n1119X+/btzWU///yzqlSp4nZIAID1Fu84rk+3HTPnehUD1aPx9RYmAgAUJl999ZXuvPNOhYSEaNy4cfrn1XBDQkJUsWJFzZkzx7qAAAAAACzlVpnx5ptvKjQ0VLfddpvCw8PVrl07tWvXTuHh4br99tsVGhqqN954Q1LGPTSOHDmifv36eTQ4ACD/HD5zQYPm/+SybPHgVhalAQAURhMnTlTr1q317bffauDAgZnWN2/eXD/99FMWzwQAAABQFBRz50nh4eHauXOnZs2apeXLl+vw4cOSpMjISA0dOlQDBgxQyZIlJWXcM2Pp0qWeSwwAyFcpaelq89I6l2WHXoixJgwAoND65Zdf9Oqrr2a7PjQ0VKdOncrHRAAAAAC8iVtlhiT5+/tr2LBhGjZsmCfzAAC8TK3Ry1xmigwAQF7w9/e/4g2/f/vtN5UpUyYfEwEAAADwJm5dZuqfdu/era+//lpff/21du/e7YlMAAAvUWXEEpeZIgMAkFfatWun999/X2lpaZnWnTx5Uu+88446depkQTIAAAAA3sDtMzMWLlyoYcOG6dChQ5IkwzBks9kUERGhV199Vd27d/dURgCABSgyAAD5afLkybrpppvUtGlT3X333bLZbFq+fLnWrFmjt99+W06nU+PGjbM6JgAAAACL2AzDMHL7pKVLl6p79+6qXLmyHnnkEUVGRkqSYmNj9Z///EeHDx/W4sWLFR0d7fHA+SExMVFBQUFKSEhQYGCg1XEAIN9dXmQcnNJVNpvNojQAACvl52fjXbt26YknntDatWv1z8OUtm3basaMGapVq1aB/veI4wwAAAAggzufjd0qM5o3b66UlBR988035o2+L7lw4YJatmwph8OhTZs25XbXXoGDDABF2eVFxk9jbtF1JYtblAYAYDUrPhv/8ccf2r9/v5xOp6pWraqgoCDNmTNHL7/8sn799dd8yZAXOM4AAAAAMrjz2dity0zt2LFDzz//fKYiQ5JKliypBx98UKNGjXJn1wAAC11eZHz2WHOKDABAnrp48aIWLVqkAwcO6LrrrtOtt96qChUqqGnTpkpKStKbb76p1157TSdPnlS1atWsjgsAAADAIm6VGQ6HQ2fPns12/dmzZ+VwONwOBQDIf0989JPL/Ex0LTWuHGxRGgBAUXD8+HG1bdtWBw4cMC8r5XA49NVXX6l48eLq2bOnfv/9d0VFRemNN97QnXfeaXFiAAAAAFZxq8xo3769Xn/9dUVHR6t58+Yu63744QdNnz5dnTp18khAAEDeW/jz71r483FzrlcxUI+3rW5hIgBAUfDss8/q4MGDeuaZZ9SqVSsdPHhQEydO1COPPKL4+HjVrVtX8+bNU5s2bayOikIm+UiyUuNTs13vG+IrRzhf0AMAAPAmbpUZL774opo3b66WLVsqKipKtWrVkiTt3btXmzdvVrly5TR16lSPBgUA5I3fTp/XEx/97LJs8eBW2T/BmS4d3iidj5NKhUqVb5bsPnkbEgBQKK1cuVIPPfSQpkyZYi4LCwvT3XffrZiYGC1cuFB2u93ChCiMko8ka3PkZjmTnNluY/e3Kyo2ikIDAADAi7hVZkRERGjHjh2aMmWKvv76ay1YsECSVLlyZT3xxBMaMWKEypUr59GgAADPS05NV/tX1rssO/RCTPZP2L1IWjZcSvz7LA4FVpCip0p1uudRSgBAYRUXF6ebbrrJZdml+V//+hdFBvJEanyqnElORc6LlH+kf6b1SbFJiu0Vq9T4VMoMAAAAL5LrMiM5OVn/+c9/dMMNN2jatGmaNm1aXuQCAOSD2mOWucxXLTI+7iPJcF2eeCJj+T1zKTQAALmSnp6e6V57l+agoCArIqEQye5SUkmxSZKkYqWLKeDGgPyOBQAAADflusxwOBwaPny4pk+frtatW+dFJgBAPqgyYonLfMUiw5mecUbG5UWG9L9lNmnZCKl2DJecAgDkyqFDh/Tjjz+ac0JCgiRp3759Kl26dKbtb7zxxvyKhgIsJ5eS2nX3LkXt4VJSAAAABYVbl5mqV6+eDh065OEoAID8kqsiQ8q4R8Y/Ly2ViSEl/p6xXcQV7rcBAMBlxowZozFjxmRa/vjjj7vMhmHIZrMpPT09v6KhAONSUgAAAIWPW2XG5MmT1bNnT7Vr104dO3b0dCYAQB66vMg4OKXr1Z90Pi5nO8/pdgAASJo9e7bVEVDI+Uf6cykpAACAQsKtMuPNN99UcHCwOnfurIiICEVERKhEiRIu29hsNi1cuNAjIQEAnnF5kbF9bCfZbLarP7FUaM5eIKfbAQAgqW/fvlZHAAAAAFBAuFVm7NixQzabTeHh4UpPT9f+/fszbZOjP44BAPLN5UXGF4/frCB/35w9ufLNUmCFjJt9Z3nfDFvG+so3X3NOAACA/HLpZuBXWwYAAADruVVmcL8MAChYHv9wm8s8qmttNQq/Luc7sPtI0VOlj/tIssm10PhfeR39Ajf/BgAABUpsr9gsl9v97fINyeGXPgAAAJAvcl1mJCUlqVWrVurfv78effTRvMgEAPCgz7Yd09KdJ825UXhpPdK6Wu53VKe7dM9cadlw15uBB1bIKDLqdPdAWgAAgPyT3Q3CfUN8uTE4AACAl8l1meHv76+DBw9yGSkAKAD2nzqvf3+y3WXZF4+3cH+HdbpLtWOkwxszbvZdKjTj0lKckQEAALxQdpeMurScG4QDAAAUHG5dZio6OlrLly/XgAEDPJ0HAOAhyanp6vjqepdlh16IufYd232kiFbXvh8AAIA84hviK7u/PdvLSElcSgoAAKCgcavMGDNmjO6++2717t1bAwYMUEREhEqUKJFpu+Dg4GsOCABwT+0xy1xmjxQZAAAABYAj3KGo2Cilxqdmuw2XkgIAAChY3Coz6tatK0navXu35s+fn+126enp7qUCAFyTKiOWuMwUGQAAoKhxhDsoKwAAAAoRt8qMsWPHcs8MAPBSFBkAAAAAAAAobNwqM8aPH+/hGAAAT7i8yDg4patFSQAAAAAAAADPsVsdAADgGZcXGTvGd+IsOgAAAAAAABQKbp2ZMXHixKtuY7PZNGbMGHd2DwDIpcuLjEWDWijQ4WtRGgAAAAAAAMCzPH6ZKZvNJsMwKDMAIJ/0n7vVZR57ax01uL60NWEAAAAAAACAPODWZaacTmemn7S0NB04cEBPPvmkmjRpolOnTnk6KwDgMgu2HNHK3XHmHBURrH+1jLAwEQAAAAAAAOB5Hrtnht1uV0REhF5++WXVqFFDgwcP9tSuAQBZ+DXuTw3/bKfLso8HNLcoDQAAAAAAAJB38uQG4K1bt9bSpUvzYtcAAElJF9PUadoGl2WHXoixKA0AAAAAAACQt9y6Z8bVbN26VXZ7nvQkAABJdcYud5kpMgAAQFaSjyQrNT412/W+Ib5yhDvyMREAAADgHrfKjLlz52a5/Ny5c9qwYYM+//xz9evX75qCAQCyVmXEEpeZIgMAAGQl+UiyNkduljPJme02dn+7omKjKDQAAADg9dwqMx588MFs14WEhGjEiBEaO3asu5kAANmgyAAAADmVGp8qZ5JTkfMi5R/pn2l9UmySYnvFKjU+lTIDAAAAXs+tMuPgwYOZltlsNl133XUKCAi45lAAgMwuLzIOTulqURIAAFCQ+Ef6K+BGjtMAeDcuiwcAuBq3yozKlSt7OockacOGDXrppZe0bds2nThxQl988YVuv/12c71hGBo3bpzeeecdnTt3Ti1atNDMmTNVo0YNc5uzZ89q8ODB+uqrr2S329WjRw+9/vrrKlWqVJ5kBoD8cHmRsXN8J9lsNovSAAAAALgS/jCfO1wWDwCQEx65AfiePXv0ySef6MSJE6pVq5YeeughBQYG5no/Fy5cUMOGDfWvf/1Ld955Z6b1L774oqZPn673339fERERGjNmjDp37qzdu3fL4cj4x+yBBx7QiRMntHLlSqWmpuqhhx7SI488ovnz51/z+wQAK1xeZCwe3FIBDl+L0gAAAAC4Ev4wn3tcFg8AkBM5LjPefPNNTZ8+XRs3blRISIi5/KuvvtLdd9+tixcvmsveeOMNff/99y7b5USXLl3UpUuXLNcZhqHXXntNo0eP1m233SYp40bkoaGh+vLLL3XfffcpNjZWy5Yt05YtW9SkSRMzS9euXfXyyy+rQoUKWe47JSVFKSkp5pyYmJir3ACQV/q+t9llnnR7PdWrGGRRGgAAAABXwx/m3cdl8QAAV2LP6YaLFi1StWrVXAqKtLQ09evXTz4+Ppo9e7Z27typF154QYcPH9bkyZM9GvTgwYM6efKkOnbsaC4LCgpSs2bNtGnTJknSpk2bVLp0abPIkKSOHTvKbrfrhx9+yHbfU6ZMUVBQkPlTqVIlj2YHAHd8+MNhrf/1tDm3rB6i3jflzWX+AAAAAHjWpT/MX/6TVcEBAACuLsdnZuzevVv9+/d3WbZ27VqdPn1ao0aNUt++fSVJdevW1fbt27V06VJNmzbNY0FPnjwpSQoNDXVZHhoaaq47efKkypUr57K+WLFiCg4ONrfJysiRIzVs2DBzTkxMpNAAYKnYE4l69otfXJbN69fMojQAAKAgS4pNytVyAAAAwBvluMw4c+ZMpj/wr169WjabTXfccYfL8hYtWujzzz/3TMJ84OfnJz8/P6tjAIAk6UJKmrq8/o3LskMvxFiUBgAAFFS+Ib6y+9sV2ys2223s/nb5hnAvLgAAAHi/HJcZ/zwD4pJvvvlG/v7+atiwocvy4sWLq3jx4p5J+D9hYWGSpLi4OJUvX95cHhcXpxtuuMHc5tSpUy7PS0tL09mzZ83nA4A3MwxDdcctd1lGkQEAANzhCHcoKjZKqfGp2W7jG+LLNfsBAABQIOS4zGjSpInef/99DR48WAEBAdq1a5c2b96s2267TcWKue5mz549uv766z0aNCIiQmFhYVq9erVZXiQmJuqHH37QY489Jklq3ry5zp07p23btqlx48aSpDVr1sjpdKpZMy7PAsD7RYxc6jJTZAAAgGvhCHdQVgAoMLgsHgDgSnJcZowbN05NmzZVjRo1VLduXW3btk02m00jR47MtO0XX3yh9u3b5zrM+fPntX//fnM+ePCgfv75ZwUHBys8PFxDhw7Vc889pxo1aigiIkJjxoxRhQoVdPvtt0uSIiMjFR0drf79+2vWrFlKTU3VoEGDdN9996lChQq5zgMA+anKiCUuM0UGAAAAUHDxh/mc47J4AICcyHGZUb9+fa1Zs0aTJ0/Wb7/9pptuuklPPfWUeQbEJevWrZO/v7/uvvvuXIfZunWr2rVrZ86Xbsrdt29fzZkzR88884wuXLigRx55ROfOnVPLli21bNkyORx/f9Poww8/1KBBg9ShQwfZ7Xb16NFD06dPz3UWAMhPFBkAAABA4cAf5nOPy+IBAHLCZhiGYXUIb5OYmKigoCAlJCQoMDDQ6jgACrnLi4xdEzqrpF+Ou2YAAPIUn409h98l/r+9Ow+vsrzzx//JiSExQkAEwSirG1B32yC0VFtRUVraaUdapxZ1Oto62tZ1BKcuaCug33Ha6WWX+f5slXa+tdqZ6aBYFK1LW7BMXVorcS2LZbNoIWAEYs7z++NA5GTjAMk5J8nrdV3nSp77uc9zPgcfk9x5575veo4tK7f4xTwAtGNPfjb22zKAAmoeZCy4bIIgAwAAujj71QBAx0sVugCAnupz/99TWce3/M3RMWqwv9IEAAAAgOaEGQAFcPei5fGbV99sOv7IkQPj78YOLWBFAAAAAFC8hBkAefbHVRvjhnkvZLX98IKaAlUDAAAAAMVPmAGQR5u2NMTHvv3rrLblsycXqBoAAAAA6BqEGQB5kiRJHH3jw1ltggwAAAAA2DVhBkCejJjxYNaxIAMAAAAAciPMAMiD4dPnZx0LMgAAAAAgd8IMgE4myAAAAACAvSPMAOhEzYOM2psmFagSAAAAAOi6hBkAnaR5kPHw5R+OfXuVFqgaAAAAAOi6hBkAnWDq9xZnHd/66WPiiEF9ClQNAAAAAHRtwgyADnbnr5fFkuVvNR2f8b5BMfUDQwpYEQAAAAB0bcIMgA70+9c3xM0PLM1q+/7n31+gagAAAACgexBmAHSQje80xCfu+E1W2/LZkwtUDQAAAAB0H/sUugCA7iBJkjh25sNZbYIMAKC727JySzSsb2jzfNmAsqgYWpHHigAA6K6EGQAdYMSMB7OOBRkAQHe3ZeWWWDJ6SaTr0232SVWmoqa2RqABAMBeE2YA7KXh0+dnHQsyAICeoGF9Q6Tr0zH6x6OjcnRli/P1tfVRe25tNKxvEGYAALDXhBkAe0GQAQD0dJWjK6PPCX0KXQYAAN2cDcAB9lDzIOPFmycVqBIAAAAA6N6EGQB7oHmQ8cgVJ0dFWWmBqgEAAACA7k2YAbCbPnHHb7KOb596bBx2YO8CVQMAAAAA3Z89MwAiItKNESsWRWxeF9F7UMSw8RGpljMtvv/Ea/H71zc0HU8+5qD41AmH5LFQAAAAAOh5hBkAS+dFLLgmom71e21V1RGT5kSMmdLU9OTLf4lZv3gx66l3/N0J+aoSAKAo1dfW71Y7AADsCWEG0LMtnRdx77SISLLb69Zk2qfOjRgzJd7cvDWm/WBJVpflsyfnr04AgCJTNqAsUpWpqD23ts0+qcpUlA0oy2NVAAB0V8IMoOdKN2ZmZDQPMiK2t5VELJgeyZFnxYlffyTrrCADAOjpKoZWRE1tTTSsb2izT9mAsqgYWpHHqgAA6K6EGUDPtWJR9tJSLSQRdavinOv+NSLGNLUKMgAAMiqGVggrAADIC2EG0DXkuEH3btm8LqduB8aGps8FGQAAAACQf8IMoPjluEH3bus9KKdub0S/iBBkAAAAAEChpApdAEC7dmzQ3Xw5qB0bdC+dt+fXHjY+E4pESaun00nE6uSAWJIeFbU3Tdrz1wEAAAAA9oqZGUDxynGD7hg1ec+WnEqVZmZ33Dstc62dXie9/dOZDZ+P+V89OfbttZdLWgEAFKktK7fYxBsAgKInzACKV44bdMeKRREjJuzZa4yZEjF1botlrNbGATGz4fMx9qzzY/RBVXt2bQCAIrdl5ZZYMnpJpOvTbfZJVaaiprZGoAEAQEEJM4DileMG3Tn3a8uYKRGjJsf/9x8/jj/UvhxvRL9Ykh4VRx+yf/z9h0bs3bUBAIpYw/qGSNenY/SPR0fl6MoW5+tr66P23NpoWN8gzAAAoKCEGUDxynGD7pz7teOxl9+Mr78wICIGNLX9z6Uf2uvrAgB0BZWjK6PPCX0KXQYAALTJBuBA8drFBt0RJRFVB2f67YU3Nm2JC+7636y25bMn79U1AQAAAICOI8wAiteODbojomWgsf140uw92/x7u3Q6iZpvPJrV1maQkW6MWPariOd/lvmYbtzj1wUAAAAAcmeZKaC4tbFBd1RVZ4KMMVP26vIjr30w67jNIGPpvDZqmLPXNQAAQEfZsnJLNKxvaPN82YAy+58AAF2SMAMofts36I4VizKbffcelFlaai9mZEREDJ8+P+u43SDj3mkRkWS3163JtE+dK9AAAKDgtqzcEktGL4l0fbrNPqnKVNTU1gg0AIAuR5gBdA2p0ogREzrscjkHGenGzIyM5kFGxPa2kogF0zNhy16GKwAAhVJfW79b7RSnhvUNka5Px+gfj47K0ZUtztfX1kftubXRsL5BmAEAdDnCDKDHaR5kvHjzpLY7r1iUvbRUC0lE3apMvw4MWwAA8qFsQFmkKlNRe25tm31SlakoG1CWx6rYW5WjK6PPCX0KXQYAQIcSZgA9SvMgY+HlH46KsnZmVGxel9uFc+0HAFBEKoZWRE1tjT0WAAAoesIMoMdoHmTc/Mmj4vBBu/iLtd6Dcrt4rv0AAIpMxdAKYQUAAEVPmAH0CFfd9/us4/cP2z8+f9KwXT9x2PiIqurMZt+t7ptRkjk/bHyH1AkAAJ2tvb1QzMQBAIqVMAPo9hYuXRc/e/rPWW0/uzjH8CFVGjFpTsS90yKiJLIDjZLMh0mzbf4NAECXsas9UmpqawQaAEDREWYA3dq6ui1x4dzfZbUtnz159y4yZkrE1LkRC67J3gy8qjoTZIyZ0gGVAgDFbPjw4bFixYqstlmzZsX06dMLVBG0ra2ZFzvah988PA4464BWz9eeWxsN6xuEGQBA0RFmAN1WOp3E2FsezWrb7SBjhzFTIkZNjlixKLPZd+9BmaWlzMgAgB7jpptuigsvvLDpuE+fXey9BXlWNqAsUpWpdmdeRCqiz/F9os8J7l8AoGsRZgDd1shrH8w63uMgY4dUacSICXt3DQCgy+rTp08MHjw45/5bt26NrVu3Nh3X1dV1RlnQpGJoRdTU1kTD+oZWz++YedHroF55rgwAYO+lCl0AQGcYPn1+1vFeBxkAQI83e/bsOOCAA+L444+P2267Ld599912+8+aNSv69u3b9BgyZEieKqUnqxhaEX1O6NPqo3J0ZaHLAwDYY2ZmAN2OIAMA6Ghf+cpX4oQTToj+/fvHokWLYsaMGbFmzZq4/fbb23zOjBkz4oorrmg6rqurE2gAAMAeEmYA3UrzIOOlr08qUCUAQLGbPn16zJkzp90+tbW1MWrUqKxQ4phjjolevXrFF7/4xZg1a1aUl5e3+tzy8vI2zwEAALtHmAF0G82DjEeuODnK97FBNwDQuiuvvDLOP//8dvuMHDmy1faxY8fGu+++G8uXL48jjzyyE6qDzlNfW79b7QAAxUCYAXQLzYOM2Z86Og47sHeBqgEAuoKBAwfGwIED9+i5zz33XKRSqTjwwAM7uCroPGUDyiJVmYrac2vb7JOqTEXZgLI8VgUAkBthBtDlXXbPs1nH40YeEJ+tGVqgagCA7mbx4sXx29/+Nj7ykY9Enz59YvHixXH55ZfHueeeG/vvv3+hy4OcVQytiJrammhY39Bmn7IBZVExtCKPVQEA5EaYAXRpC/64Jn7+3Oqstp9cdFKBqgEAuqPy8vK455574sYbb4ytW7fGiBEj4vLLL8/aR6O727Jyi1+AdxMVQyv8twIAuiRhBtBlrd7wTnzpx89ktS2fPblA1QAA3dUJJ5wQTz31VKHLKJgtK7fEktFLIl2fbrNPqjIVNbU1fkneDQmyAIBiIcwAuqTGdBLjZ/8yq02QAQDQ8RrWN0S6Ph2jfzw6KkdXtjhfX1sftefWRsP6Br/U7mYEWQBAMRFmAF3Sodc+mHUsyAAA6FyVoyujzwl9Cl0GeSTIAgCKiTAD6HKGT5+fdSzIAACAziPIAgCKQarQBQDsDkEGAAAAAPQ8wgygy2geZLz89TMLVAkAAAAAkE/CDKBLaB5kPHbVKdFrH1/CAAAAAKAnsGcGUPSaBxm3/e0xMWLAfgWqBgCgZ6qvrd+tdgAA6EjCDKCoffzbv846HjFgvzj7/UMKVA0AQM9TNqAsUpWpqD23ts0+qcpUlA0oy2NV5JMgCwAoBsIMoGj9+KkV8fyqjVltj111SmGKAQDooSqGVkRNbU00rG9os0/ZgLKoGFqRx6rIB0EWAFBMhBlAUVq2/u342s//mNW2fPbkAlUDANCzVQytEFb0QIIsAKCYCDOAovNuYzo+8n8ez2oTZAAAQP4JsgCAYpEqdAEAzR32z7/IOhZkAAAAAEDPJswAisrw6fOzjgUZAAAAAIAwAygaggwAAAAAoDXCDKAoNA8yXvnGmQWqBAAAAAAoNsIMoOCaBxmPXHFylJX68gQAAAAAZPhtIVBQzYOMGz8+Jg47sHeBqgEAAAAAipEwAyiY0//1iazjUYP7xPkfHFGgagAAAACAYiXMAArih79ZFi+v25zVtuCyDxeoGgAAAACgmAkzgLx79Y1NMfP+pVlty2dPLlA1AAAAAECxE2YAebXt3XRMvP3JrDZBBgAAAADQHmEGkFdHfO0XWceCDAAAAABgV4QZQN4Mnz4/61iQAQAAAADkQpgB5IUgAwAAAADYU8IMoNM1DzJe/caZBaoEAAAAAOiKhBlAp2oeZDx21SmxT6kvPQAAAABA7vxGEeg0zYOMb/zNUTFiwH4FqgYAAAAA6KqEGUCnOPm2x7KOjzmkb3xu7LACVQMAAAAAdGXCDKDD/fuTr8WKN+uz2uZd+qECVQMAAAAAdHXCDKBDvbi2Lm558MWstuWzJxeoGgAAAACgOxBmAB1m67uNMembv8pqE2QAAAAAAHtLmAF0mCO/tiDrWJABAAAAAHQEYQbQIYZPn591LMgAAAAAADqKMAPYa4IMAAAAAKAzCTOAvdI8yHjtlrMKVAkAAAAA0F0JM4A91jzI+NU/fSRKUyUFqgYAAAAA6K6EGcAeaR5k3Pq3x8SQ/pUFqgYAAAAA6M72KXQBQA7SjRErFkVsXhfRe1DEsPERqdKClTP2lkeyjj8wfP+Y+v4hBaoGAAAAAOjuhBlQ7JbOi1hwTUTd6vfaqqojJs2JGDMl7+X8y4KlMWLzszE2tSHeiH6xJD0q7vvS+LzXAQAAAAD0HMIMKGZL50XcOy0ikuz2ujWZ9qlz8xpoLP/VT+KcxdfGlb3eeq+xqjpiaVKQYAUAAAAA6BnsmQHFKt2YmZHRPMiIeK9twfRMvzzY9vzPY+gjX4rB8Vb2iR3BytJ5eakDAAAAAOh5hBlQrFYsyl5aqoUkom5Vpl9nSzfG+p9dHhERqZJW6ojIa7ACAAAAAPQswgwoVpvXdWy/vfDZr90e1SVvtRJk7JDHYAUAAAAA6HHsmQHFqvegPe+XbswEC5vXZc4PGx+RKt2jMoZPnx9TUhty65yHYAUAAAAA6HmEGVCsho3PbK5dtyZa3zejJHN+2Pjs5qXzMntt7LxEVVV1xKQ5u71J9/Dp8yMi4o3ol9sTcg1gAAAAAAB2g2WmoFilSjMBRERENF/fafvxpNnZMy6Wzstsxt18r4092KR7R5AREbEkPSre7X1QK3XsVE/VwS2DFQAAAACADiDMgGI2ZkrE1LkRVQdlt1dVZ9p3nmmRbszMyGh1FsfubdK9c5AREXHLp46Nfc66dftRjsEKAAAAAEAHscwUFLsxUyJGTd71HhgrFrWckZFlp026R0xos1fzIOOYQ/rGZ2uGRsTQTIDS6hJWs3d7CSsAAAAAgFwJM6ArSJW2G0BERO6bb7fTb9aDtS3a5l36ofcOcg1WAAAAAAA6kDADuotcN99uo98zK/8a33/yT1lty2dPbtkxl2AFAAAAAKAD2TMDuoth4zNLPu3BJt31296NT31nUVZbq0EGAAAAAEABCDOgu0iVRkyas/1g9zbpHnP9Q1nHggwAAAAAoJgIM6A7GTMls0l31UHZ7VXVmfZWNuluvuG3IAMAAAAAKDb2zIDuZjc26RZkAAAAAABdgTADuqMcNuluHmT86ZazOrMiAAAAAIA9Zpkp6IGaBxm/mf7RSKXa2jgcAAAAAKCwhBnQwzQPMv7l7GPj4H77FqgaAAAAAIBdE2ZAD9I8yHj/sP3j0yceUqBqAAAAAAByI8yAHuLGeS+0aPvZxeMLUAkAAAAAwO6xATgUu3RjxIpFEZvXRfQeFDFsfGaD793wv8vfirsWLc9qWz57cgcWCQAAAADQeYQZUMyWzotYcE1E3er32qqqIybNiRgzJadLbN76bpz9vcVZbYIMAAAAAKArscwUFKul8yLunZYdZERE1K3JtC+dl9NljrrhoaxjQQYAAAAA0NUIM6AYpRszMzIiaeXk9rYF0zP92tF8w29BBgAAAADQFQkzoBitWNRyRkaWJKJuVaZfGwQZAAAAAEB3IcyAYrR53V71ax5kLJt11t5WBAAAAABQMMIMKEa9B+1xv+ZBxlMzTo2SkpKOqAoAAAAAoCD2KXQBQCuGjY+oqs5s9t3qvhklmfPDxme1Ng8ybvmbo2Nw34rOqxMAgKK2ZeWWaFjf0Ob5sgFlUTHUz4sAABQ/YQYUo1RpxKQ5EfdOi4iSyA40ts+ymDQ702+75kHGyIH7xd+NHdrppQIAUJy2rNwSS0YviXR9us0+qcpU1NTWCDQAACh6wgwoBunGzGbem9dllo4aNj5izJSIqXMjFlyTvRl4VXUmyBgzpanporm/a3HJX155Sh4KBwCgWDWsb4h0fTpG/3h0VI6ubHG+vrY+as+tjYb1DcIMAACKnjADCm3pvDYCizmZwGLU5JZBx04zMn754rp4eGn2RuDLZ0/OV/UAABS5ytGV0eeEPoUuAwAA9oowAwpp6bztS0k12xejbk2mfercTKAxYkKrT99Y3xB/f1f2rAxBBgAAAADQ3aQKXQD0WOnGzIyMVjf43t62YHqmXxuOvenhrGNBBgAAAADQHQkzoFBWLMpeWqqFJKJuVaZfK5pv+C3IAAAAAAC6K2EGFMrmdbvu00Y/QQYAAAAA0JPYMwMKpfegPerXPMhYNuusjqoIAIBuqL62frfaAQCgGAkzoFCGjY+oqs5s9t3qvhklmfPDxje1NA8yFs/4aJSUlHRunQAAdEllA8oiVZmK2nNr2+yTqkxF2YCyPFYFAAB7RpgBhZIqjZg0J+LeaRFREtmBxvaAYtLsTL9oGWTc9rfHxEF9981LqQAAdD0VQyuiprYmGtY3tNmnbEBZVAytyGNVAACwZ4QZUEhjpkRMnRux4JrszcCrqjNBxpgpEdEyyBhzUFWc/f4h+awUAIAuqGJohbACAIBuQZgBhTZmSsSoyRErFmU2++49KLO01PYZGdN+sKTFUx786oR8VwkAAAAAUDDCDCgGqdKIES0DiodeWBtPvvyXrLblsyfnqyoAAAAAgKKQKnQBQOv++va2+OKPns5qE2QAAAAAAD2RMAOK1PE3L8w6FmQAAAAAAD2VMAOKUPMNvwUZAAAAAEBPJsyAIiPIAAAAAADIJsyAItI8yFg266wCVQIAAAAAUDy6VJhx4403RklJSdZj1KhRTee3bNkSl1xySRxwwAHRu3fv+PSnPx3r1q0rYMWQu+ZBxpJrT42SkpICVQMAANB9bVm5JTY9s6nNx5aVWwpdIgDQzD6FLmB3ve9974tHHnmk6Xiffd57C5dffnnMnz8/7rvvvujbt29ceuml8alPfSp+85vfFKJUyFnzIONbnz0uDqyqKFA1AAAA3deWlVtiyeglka5Pt9knVZmKmtqaqBhqXAYAxaLLhRn77LNPDB48uEX7xo0b484774z/9//+X3z0ox+NiIgf/vCHMXr06HjqqafipJNOavOaW7duja1btzYd19XVdXzh0IbmQcbxQ/vFJ447uEDVAAAAdG8N6xsiXZ+O0T8eHZWjK1ucr6+tj9pza6NhfYMwAwCKSJdaZioi4pVXXonq6uoYOXJkfO5zn4uVK1dGRMTTTz8dDQ0NMXHixKa+o0aNiqFDh8bixYvbveasWbOib9++TY8hQ4Z06nuAHT777y3vzf/+xw8WoBIAAICepXJ0ZfQ5oU+LR2sBBwBQeF0qzBg7dmzcddddsWDBgvjud78by5YtiwkTJsSmTZti7dq10atXr+jXr1/WcwYNGhRr165t97ozZsyIjRs3Nj1ef/31TnwXkPHAH1bHU396K6tt+ezJBaoGAAAAAKB4dallps4888ymz4855pgYO3ZsDBs2LO69997Yd9999/i65eXlUV5e3hElwq6lG2Pji0/Ew/c8Giel+sWS9KhIR0qQAQAAAADQhi4VZjTXr1+/OOKII+LVV1+N0047LbZt2xYbNmzImp2xbt26VvfYgIJYOi+SBddE37rV8W+9Mk2rk/5R/ZlvFbYuAAAAAIAi1qWWmWpu8+bN8dprr8VBBx0UJ554YpSVlcWjjz7adP6ll16KlStXxrhx4wpYJWy3dF7EvdMi2bg6q7m65K8R907LnAcAAAAAoIUuNTPjqquuio9//OMxbNiwWL16ddxwww1RWloa55xzTvTt2ze+8IUvxBVXXBH9+/ePqqqq+PKXvxzjxo2Lk046qdCl09OlGyMWXBPpJIlUSfOTSUSURCyYHjFqckSqtAAFAgAA9Cz1tfW71Q4AFFaXCjP+/Oc/xznnnBNvvvlmDBw4MD70oQ/FU089FQMHDoyIiH/913+NVCoVn/70p2Pr1q1xxhlnxHe+850CVw0RsWJRRN3qVoKMHZKIulWZfiMm5LMyAACAHqVsQFmkKlNRe25tm31SlakoG1CWx6oAgF3pUmHGPffc0+75ioqKuOOOO+KOO+7IU0WQm6/83wVNe2S0a/O6Tq8FAIBs3/jGN2L+/Pnx3HPPRa9evWLDhg0t+qxcuTIuvvjieOyxx6J3795x3nnnxaxZs2KffbrUkAqIiIqhFVFTWxMN6xva7FM2oCwqhlbksSoAYFf85A2dbPj0+XFSql9unXsP6tRaAABoadu2bXH22WfHuHHj4s4772xxvrGxMSZPnhyDBw+ORYsWxZo1a2LatGlRVlYWt9xySwEqBvZWxdAKYQUAdDFdegNwKHbDp8+PiIgl6VGxOukf6TZ7lkRUHRwxbHy+SgMAYLuZM2fG5ZdfHkcffXSr5x9++OFYunRp/PjHP47jjjsuzjzzzLj55pvjjjvuiG3btuW5WgAA6JmEGdBJPnnHb5o+T0cqZjZMi1SURETzjTO2H0+abfNvAIAitHjx4jj66KNj0KD3ZtGeccYZUVdXFy+88EKbz9u6dWvU1dVlPQAAgD0jzIBO8PNnV8Vzr2/Iavv+LTMjps6NqDoou3NVdaZ9zJT8FQgAQM7Wrl2bFWRERNPx2rVr23zerFmzom/fvk2PIUOGdGqdAADQnQkzoIO9UbclLvvpc1lty2dPznwyZkrEZX+MOO+BiE/fmfl42fOCDACADjZ9+vQoKSlp9/Hiiy92ag0zZsyIjRs3Nj1ef/31Tn09AADozmwADh0oSZKoueXRrLamIGOHVGnEiAl5rAoAoOe58sor4/zzz2+3z8iRI3O61uDBg2PJkiVZbevWrWs615by8vIoLy/P6TUAAID2CTOgA42Y8WDWcYsgAwCAvBg4cGAMHDiwQ641bty4+MY3vhFvvPFGHHjggRERsXDhwqiqqooxY8Z0yGsAAADtE2ZABxk+fX7WsSADAKBrWLlyZbz11luxcuXKaGxsjOeeey4iIg477LDo3bt3nH766TFmzJj4/Oc/H7feemusXbs2vva1r8Ull1xi5gUAAOSJMAM6gCADAKDruv766+Puu+9uOj7++OMjIuKxxx6LU045JUpLS+OBBx6Iiy++OMaNGxf77bdfnHfeeXHTTTcVqmQAAOhxSpIkSQpdRLGpq6uLvn37xsaNG6OqqqrQ5VDkmgcZz153Wuy/X68CVQMA0LH8bNxx/FsCAEDGnvxsnOrkmqBbax5kfP/zJwoyAAAAAAA6mDAD9lDzIOPkIwbGGe8bXKBqAAAAAAC6L2EG7IFJ33yyRdvdf19TgEoAAAAAALo/YQbspnt/93q8uHZTVpsNvwEAAAAAOo8wA3bD6g3vxD/97A9ZbYIMAAAAAIDOJcyAHCVJEuNn/zKrTZABAAAAAND5hBmQoxEzHsw6FmQAAAAAAOTHPoUuAIpSujFixaKIzesieg+Kkd/fEDtnf4IMAAAAAID8EWZAc0vnRSy4JqJudVPTr8v7x8yGafFQukaQAQAAAACQZ5aZgp0tnRdx77SsICMiYnC8Fd8t+2a88NltBSoMAAAAAKDnEmbADunGzIyMSFqcSpVElJSUxH6//OdMPwAAAAAA8kaYATusWNRiRsbOSiKJqFuV6QcAAAAAQN4IM2CHzes6th8AAAAAAB1CmAE79B7Usf0AAAAAAOgQwgzY7vU+x8XqpH+kW26ZsV1JRNXBEcPG57MsAAAAAIAeT5gBEZEkSUz4P0/GzIZpERGtBBolmQ+TZkekSvNaGwAAAABATyfMgIgYMePBiIh4KF0TFzdcFqm+1dkdqqojps6NGDOlANUBAAAAAPRs+xS6ACi04dPnZx1//5aZEenrI1Ysymz23XtQZmkpMzIAAAAAAApCmEGP1jzIWD57cuaTVGnEiAkFqAgAAAAAgOYsM0WP1TzIeP7G0wtUCQAAAAAA7RFm0CM1DzJ+9IWa6FNRVqBqAAAAAABojzCDHqd5kPHxY6tjwuEDC1QNAAAAAAC7IsygRxk369EWbd8+5/gCVAIAAAAAQK6EGfQYP/zNslizcUtWW9OG3wAAAAAAFC1hBj3Cijffjpn3L81qE2QAAAAAAHQNwgy6vXQ6iZNvezyrTZABAAAAANB1CDPo9kZe+2DWsSADAAAAAKBr2afQBUBnGj59ftaxIAMAAOjptqzcEg3rG9o8XzagLCqGVuSxIgCAXRNm0G0JMgAAALJtWbklloxeEun6dJt9UpWpqKmtEWgAAEVFmEG31DzIeGHmGQWqBAAAoHg0rG+IdH06Rv94dFSOrmxxvr62PmrPrY2G9Q3CDACgqAgz6HaaBxk/ufCk2K/crQ4AALBD5ejK6HNCn0KXAQCQMxuA0600DzLOPvGQGHfoAQWqBgAAAACAjiDMoNs47qaHW7TddvaxBagEAAAAAICOJMygW/j3J1+LDfUNWW02/AYAAAAA6B6EGXR5r/1lc9zy4ItZbYIMAAAAAIDuw67IdA3pxogViyI2r4voPShi2PiIVGk0ppM49V+eyOoqyAAAAGhffW39brUDABSaMIPit3RexIJrIupWv9dWVR0xaU4cOrc0q6sgAwAAoG1lA8oiVZmK2nNr2+yTqkxF2YCyPFYFALBrwgyK29J5EfdOi4gku71uTaR/+vk4I3VZPJSuiQhBBgAAwK5UDK2ImtqaaFjf0GafsgFlUTG0Io9VAQDsmjCD4pVuzMzIaB5kRDS13VD2o1i49f3xp9kfz2tpAAAAXVXF0AphBQDQ5QgzKF4rFmUvLdVMqiSiOt6M2i9U5bEoAAAAAADyLVXoAqBNm9fl1K18y186uRAAAAAAAApJmEHx6j2oY/sBAAAAANAlWWaK4pFuzCwttXldJqAYMjaiqjqibk20vm9GSeb8sPH5rhQAAAAAgDwSZlAcls7LbPa98x4ZVdURR/1tJIv+LZIks0fGe7YfTJodkSrNZ6UAAAAAAOSZZaYovKXzIu6d1nKz77o1kSz6dny/4WOxNvpnn6uqjpg6N2LMlPzVCQAAAABAQZiZQWGlGzMzMlpdRiqJJImYss/i+PDWb8b7Uy/HPeeMyCxBNWy8GRkAAAAAAD2EMIPCWrGo5YyMnaRKIqrjzUyQccvVeSwMAAAAAIBiYZkpCmvzupy63XPOiE4uBAAAAACAYiXMoLB6D+rYfgAAAAAAdDvCDApr2PjMZt5R0urpJEoiqg7O9AMAAAAAoEcSZlBYqdKISXMiIiLdbA/wJEoyEcek2Tb7BgAAAADowYQZFN6YKfHFbV+NtdE/q7mkqjpi6tyIMVMKVBgAAAAAAMVgn0IXACff9lisSNfEwq3vj5rUizGs16aYc95pmaWlzMgAAAAAAOjxhBkU1J2/XhYr3qyPiIh0pOKp9Ji458bJBa4KAAAAAIBiYpkpCubVNzbFzQ8szWpbPluQAQAAAABANmEGBdHQmI6Jtz+Z1SbIAAAAAACgNcIMCuLwf/5F1rEgAwAAAACAtggzyLvh0+dnHQsyAAAAAABojw3A6XzpxogViyI2r4vP/mRZpGJUpLfnaIIMAAAAAAB2RZhB51o6L2LBNRF1qyMi4p5eEauT/jGzYVp8+6YbClwcAAAAAABdgWWm6DxL50XcO60pyNhhcLwV3+v1rej18gMFKgwAAAAAgK5EmEHnSDdmZmRE0uJUqiSiJCJiwfSId7dFLPtVxPM/y3xMN+a7UgAAAAAAipxlpugcKxa1mJGRLYmoWxVx++iI+vXvNVdVR0yaEzFmSqeXCAAAAABA12BmBp1j87rc+u0cZERE1K3JLE21dF7H1wQAAAAAQJckzKBTrNzWZw+fuX1ZqgXTLTkFAAAAAEBECDOKU7qxS+8jse3ddJxy37ZYnfSPdMstM3KwfQmqFYs6ujQAAAAAALoge2YUm6XzMhtn77zfRBfbR+KIr/0iIlIxs2FafLfsm5HZ7nsPUo1cl6oCAAAAAKBbMzOjmCydl9kvovnG2V1oH4nh0+c3ff5QuiZSn/lRRNVB2Z0qB+R2sd6DOrAyAAAAAAC6KjMzikW6MTMjo9UZDElElGT2kRg1OSJVmuficrNzkBERsXz25MwnoyZnlozavC4TUAwZG/Fvx2ZCmlbfb0lmNsqw8Z1eMwAAAAAAxc/MjGKxYlHLGRlZinsfieZBxivfOPO9g1RpxIgJEUf/bebjPr0yy2ZFRGYJqp1tP540u2hDGwAAAAAA8kuYUSxy3R+iCPeRaB5kPHLFh6OsdBe31pgpEVPntlyCqqo6095F9gcBAAAAAKDzWWaqWOS6P0SR7SPRPMj42uTRcdiBfXJ78pgpLZegGjbejAwAAAAAALIIM4rFsPGZWQldaB+JY2c+nHU8tH9l/MOEkbt3kR1LUAEAAAAAQBssM1UsUqVdah+Jf3v0ldj4TkNW25P/9JECVQMAAAAAQHcmzCgmXWQfiVff2BS3L3w5q2357MkFqgYAAAAAgO7OMlPFpsj3kdj2bjom3v5kVpsgAwAAAACAziTMKEZFvI/EEV/7RdaxIAMAAAAAgM5mmSlyNnz6/KxjQQYAAAAAAPlgZkZPk27coyWsBBkAAAAAABSKMKO7ai20eHF+xIJrIupWv9evqjpi0px2NxdvHmS8dstZnVU1AAAAAAC0IMzojpbOaxla7Lt/xDt/bdm3bk3EvdMips5tNdBoHmQ8c91pUZoq6eiKAQAAAACgTfbM6G6WzsuEEzsHGRGtBxkREZFkPiyYnpnNsZNT/+XxrOP/vHh89N+vV8fUCQAAAAAAORJmdCfpxsyMjB0BRc6SiLpVmWWptrt1wYvx2l/ebjr+2uTRceKw/TumTgAAAAAA2A3CjO5kxaKWMzJ2x+Z1ERHxxMt/ie88/lpT80kj+8c/TBi5t9UBAAAAAMAeEWZ0J9vDiD3We1Cs2fhOnPeDJVnN91w0bu+uCwAAAAAAe8EG4N1J70F7+MSSiKrqaDjkpBh33cNZZ5bPnrz3dXWWdGNmNsrmdZn3Pmx8RKq00FUBAAAAANDBhBndybDxEVXVEXVrIvd9M0oyHybNjsO7UpCxdF5mf5Cdl9Wqqo6YNCdizJTC1QUAAAAAQIezzFR3kirN/DI/IppCiibbj/ftn91cVR0xdW4Mn5s9o6Hog4x7p7XcH6RuTaZ96bzC1AUAAAAAQKcwM6O7GTMlYurcNmYtzI4YNbnF0kzDr12QdYmiDjLSjZn31urMkyQiSiIWTM+8T0tOAQAAAAB0C8KM7mjMlFZDi6Zf7o+Y0NR1+PT5WU/90y1n5bPS3bdiUcsZGVmSiLpVmX47vU8AAAAAALouYUax6ahNrVOlu/xlfvMg47nrT4tUqvnyVEVm87qO7QcAAAAAQNETZhSTPG5qPeHWX2Yd//ySD0a/yl5tP6GjQpa91XtQx/YDAAAAAKDoCTOKxY5NrZvvBbFjU+upczss0Ljlwdp4/a13mo5v+PiYOG5Iv/Zry1PIskvDxmdeu25NtL5vRknm/LDx+a0LAAAAAIBOkyp0AUQOm1pHZlPrdON7/Zf9KuL5n2U+7mjPwWMvvhH//uSfmo4nHD4gLvjgiLafsCNkab5PxY6QZem8nF+7Q6RKMyFKREQ0XxJr+/Gk2Tb/BgAAAADoRszMKAa7s6n1O3/d41kSqza8Exfc9b9ZbT/6wti2n7DLkKUkE7KMmpzf8GDMlMxMlVb/HWbnf7YIAAAAAACdSphRDHLdrPqlByOe+m7syVJU295NxwdnZ++TsXz25PZfb3dCll1sNt7hxkzJhCjFsI8HAAAAAACdyjJTxSDXzar/cG/kvBRVM0d87RdZx7sMMiJyD1ly7dfRUqWZEOXov818FGQAALAHvvGNb8T48eOjsrIy+vXr12qfkpKSFo977rknv4UCAEAPJswoBjs2tW6xB8QOJRGVAyLq17dzkZ1mSTQzfPr8rOOcgoyI3EOWXPsBAEAR2rZtW5x99tlx8cUXt9vvhz/8YaxZs6bp8clPfjI/BQIAAJaZKgo7NrW+d1pkAo2dZ19sDziOmRrx1Hd2fa1msyT2OMiIeC9kqVsTrc8IKcmcHzY+92sCAECRmTlzZkRE3HXXXe3269evXwwePDjn627dujW2bt3adFxXV7dH9QEAAGZmFI8dm1pXHZTdXlWdaT/yrNyus9MsieZBxrJZOV5jhx0hS0S0nDWy/XjSbMs7AQDQI1xyySUxYMCAqKmpiR/84AeRJK39wc97Zs2aFX379m16DBkyJE+VAgBA92NmRjFpb1PrdONuzZJoHmT8/obTo6SkrWWsdlHT1LkRC67J3gy8qjoTZLSx4TgAAHQnN910U3z0ox+NysrKePjhh+Mf//EfY/PmzfGVr3ylzefMmDEjrrjiiqbjuro6gQYAAOwhYUax2bGpdWvtu1qKavssiZNueTTrqfdf+qHou2/ZntfUXsgCAABFaPr06TFnzpx2+9TW1saoUaNyut51113X9Pnxxx8fb7/9dtx2223thhnl5eVRXl6eW8EAAEC7hBldSQ6zJG66f2msrdvSdOrmT7wvjj6k796/dlshCwAAFKErr7wyzj///Hb7jBw5co+vP3bs2Lj55ptj69atAgsAAMgDYUZX084siYdfWBs/+M2ypq6njjowPj9ueOFqBQCAAhk4cGAMHDiw067/3HPPxf777y/IAACAPBFmdEWtzJJ4/a36uOhHT2e13Xn+B/JZFQAAdEkrV66Mt956K1auXBmNjY3x3HPPRUTEYYcdFr179477778/1q1bFyeddFJUVFTEwoUL45ZbbomrrrqqsIUDAEAPIszoBra+2xgTbn0sq2357MkFqgYAALqW66+/Pu6+++6m4+OPPz4iIh577LE45ZRToqysLO644464/PLLI0mSOOyww+L222+PCy+8sFAlAwBAj1OSJEmy6249S11dXfTt2zc2btwYVVVVhS5nl4ZPn591LMgAAKCjdLWfjYuZf0sAAMjYk5+NU51cE51MkAEAAAAAQHdnmalik25sdXPv1ggyAAAAAADoCYQZxWTpvIgF10TUrX6vrao6YtKciDFTsro2DzKWzTorHxUCAAAAAEDeWWaqWCydF3HvtOwgIyKibk2mfem8pqbmQcYfbjw9SkpK8lElAAAAAADknTCjGKQbMzMyorW92Le3LZgekW6ML//k2ayzD3z5Q1FVUdbpJQIAAAAAQKFYZqoYrFjUckZGliSiblU8/Iv/ivt/X9nU+sMLPhBHHdy38+sDAAAAAIACMjOjGGxel1O3B37zXNPnV5x2RHzkyAM7qSAAAAAAACgeZmYUg96Dcur2RvSLiIiTRvaPr5x6+Hsn0o2Z2R2b12WuNWx8RKq0EwoFAAAAAID8E2YUg2HjI6qqM5t9t7JvRjqJWBsHxJL0qIiIuOeice+dXDovs9/GzstUVVVHTJoTMWZKJxcOAAAAAACdzzJTxSBVmgkfIiKiJOtUenu2MbPh85GOVCyfPfm9k0vnRdw7reV+G3VrMu1L53VezQAAAAAAkCfCjGIxZkrE1LkRVQdlNa+NA+LihsvioXRNdpCRbszMyGhlJkdT24LpmX4AAAAAANCFWWaqmIyZEjFqcsSKRfGV/7sg3oh+sSQ9quWMjIjMHhnNZ2RkSSLqVmX6jZjQqWUDAAAAAEBnEmYUm1RpnPtor/h1enxT07JZZ7Xst3ldbtfLtR8AAAAAABQpy0wVmdo1dfHrV9e/d3zTpCgpKWnZsfeg3C6Yaz8AAAAAAChSwowic/D++8bgqoqIiHj2utNi316lrXccNj6iqjqabxj+npKIqoMz/QAAAAAAoAuzzFSRqaooiyf+6ZRoaEyid3k7/3lSpRGT5kTcOy0ygcbOG4FvDzgmzc7062jpxsxeHJvXZWZ+DBvfOa8DAAAAAAAhzChK5fuURns5RpMxUyKmzo1YcE32ZuBV1ZkgY8yUji9u6bw2Xm9O57weAAAAAAA9njCjqxszJWLU5PzMlFg6b/tMkCS7vW5Npn3qXIEGAAAAAAAdTpjRHaRKI0ZM6NzXSDdmZmQ0DzIitreVRCyYnglWLDkFAABFY8vKLdGwvqHN82UDyqJiaEUeKwIAgN0nzCA3T/6f7KWlWkgi6lZlZoh0drACAADkZMvKLbFk9JJI16fb7JOqTEVNbY1AAwCAoibMYNeWzot4/Jbc+m5e17m1AAAAOWtY3xDp+nSM/vHoqBxd2eJ8fW191J5bGw3rG4QZAAAUNWEG7WtaXipHvQd1Xi0AAMAeqRxdGX1O6FPoMgAAYI+lCl1AZ7njjjti+PDhUVFREWPHjo0lS5YUuqSuacWiXSwvtZOqgzObjwMAAAAAQAfqlmHGT3/607jiiivihhtuiGeeeSaOPfbYOOOMM+KNN94odGldz+4sGzVpts2/AQAAAADocN0yzLj99tvjwgsvjAsuuCDGjBkT3/ve96KysjJ+8IMfFLq0rifXZaNOuTZizJTOrQUAAAAAgB6p24UZ27Zti6effjomTpzY1JZKpWLixImxePHiVp+zdevWqKury3qw3bDxEVXVEVHSdp8+1REfvipvJQEAAAAA0LN0uzBj/fr10djYGIMGZc8oGDRoUKxdu7bV58yaNSv69u3b9BgyZEg+Su0aUqURk+ZsP2geaJRkHmfOsbwUAAAUsfra+tj0zKYWj/ra+kKXBgAAOdmn0AUUgxkzZsQVV1zRdFxXVyfQ2NmYKRFT50YsuCZ7M/Cq6sw+GZaXAgCAolQ2oCxSlamoPbe2zT6pylSUDSjLY1UAALD7ul2YMWDAgCgtLY1167I3rl63bl0MHjy41eeUl5dHeXl5PsrrusZMiRg1OWLFosym4L0HZZagMiMDAACKVsXQiqiprYmG9Q1t9ikbUBYVQyvyWBUAAOy+bhdm9OrVK0488cR49NFH45Of/GRERKTT6Xj00Ufj0ksvLWxxXV2qNGLEhEJXAQAA7IaKoRXCCgAAurxuF2ZERFxxxRVx3nnnxfvf//6oqamJb37zm/H222/HBRdcUOjSAAAAAACA3dQtw4zPfOYz8Ze//CWuv/76WLt2bRx33HGxYMGCFpuCAwAAAAAAxa9bhhkREZdeeqllpQAAAAAAoBtIFboAAAAAAACA9ggzAAAAAACAoibMAAAAAAAAipowAwAAAAAAKGrCDAAAAAAAoKgJMwAAAAAAgKImzAAAAAAAAIqaMAMAAAAAAChqwgwAAAAAAKCoCTMAAAAAAICiJswAAAAAAACKmjADAAAAAAAoasIMAAAAAACgqAkzAAAAAACAoibMAAAAAAAAipowAwAAAAAAKGrCDAAAAAAAoKgJMwAAAAAAgKImzAAAAAAAAIqaMAMAAAAAAChqwgwAAAAAAKCoCTMAAAAAAICiJswAAAAAAACKmjADAAAAAAAoasIMAAAAAACgqAkzAAAAAACAorZPoQsoRkmSREREXV1dgSsBAIDC2vEz8Y6fkdlzxhkAAJCxJ+MMYUYrNm3aFBERQ4YMKXAlAABQHDZt2hR9+/YtdBldmnEGAABk251xRkniT6xaSKfTsXr16ujTp0+UlJR0yDXr6upiyJAh8frrr0dVVVWHXJPuw/1Be9wftMf9QXvcH7Qn1/sjSZLYtGlTVFdXRyplldq9YZxBvrk/aI/7g/a4P2iP+4P2dOY4w8yMVqRSqTjkkEM65dpVVVX+J6dN7g/a4/6gPe4P2uP+oD253B9mZHQM4wwKxf1Be9wftMf9QXvcH7SnM8YZ/rQKAAAAAAAoasIMAAAAAACgqAkz8qS8vDxuuOGGKC8vL3QpFCH3B+1xf9Ae9wftcX/QHvdH9+C/I+1xf9Ae9wftcX/QHvcH7enM+8MG4AAAAAAAQFEzMwMAAAAAAChqwgwAAAAAAKCoCTMAAAAAAICiJswAAAAAAACKmjAjT+64444YPnx4VFRUxNixY2PJkiWFLok8u/HGG6OkpCTrMWrUqKbzW7ZsiUsuuSQOOOCA6N27d3z605+OdevWFbBiOtOTTz4ZH//4x6O6ujpKSkri5z//edb5JEni+uuvj4MOOij23XffmDhxYrzyyitZfd5666343Oc+F1VVVdGvX7/4whe+EJs3b87ju6Cz7Or+OP/881t8PZk0aVJWH/dH9zVr1qz4wAc+EH369IkDDzwwPvnJT8ZLL72U1SeX7ykrV66MyZMnR2VlZRx44IFx9dVXx7vvvpvPt0InyOX+OOWUU1p8DfnSl76U1cf90TUYYxBhnEE24wzaY5xBe4wzaE+xjDOEGXnw05/+NK644oq44YYb4plnnoljjz02zjjjjHjjjTcKXRp59r73vS/WrFnT9Pj1r3/ddO7yyy+P+++/P+6777544oknYvXq1fGpT32qgNXSmd5+++049thj44477mj1/K233hr/9m//Ft/73vfit7/9bey3335xxhlnxJYtW5r6fO5zn4sXXnghFi5cGA888EA8+eSTcdFFF+XrLdCJdnV/RERMmjQp6+vJT37yk6zz7o/u64knnohLLrkknnrqqVi4cGE0NDTE6aefHm+//XZTn119T2lsbIzJkyfHtm3bYtGiRXH33XfHXXfdFddff30h3hIdKJf7IyLiwgsvzPoacuuttzadc390DcYY7Mw4gx2MM2iPcQbtMc6gPUUzzkjodDU1Nckll1zSdNzY2JhUV1cns2bNKmBV5NsNN9yQHHvssa2e27BhQ1JWVpbcd999TW21tbVJRCSLFy/OU4UUSkQk//3f/910nE6nk8GDBye33XZbU9uGDRuS8vLy5Cc/+UmSJEmydOnSJCKS//3f/23q84tf/CIpKSlJVq1albfa6XzN748kSZLzzjsv+cQnPtHmc9wfPcsbb7yRRETyxBNPJEmS2/eUBx98MEmlUsnatWub+nz3u99Nqqqqkq1bt+b3DdCpmt8fSZIkJ598cvLVr361zee4P7oGYwx2MM6gLcYZtMc4g10xzqA9hRpnmJnRybZt2xZPP/10TJw4saktlUrFxIkTY/HixQWsjEJ45ZVXorq6OkaOHBmf+9znYuXKlRER8fTTT0dDQ0PWfTJq1KgYOnSo+6QHWrZsWaxduzbrfujbt2+MHTu26X5YvHhx9OvXL97//vc39Zk4cWKkUqn47W9/m/eayb/HH388DjzwwDjyyCPj4osvjjfffLPpnPujZ9m4cWNERPTv3z8icvuesnjx4jj66KNj0KBBTX3OOOOMqKurixdeeCGP1dPZmt8fO/zHf/xHDBgwII466qiYMWNG1NfXN51zfxQ/YwyaM84gF8YZ5MI4gx2MM2hPocYZ+3RA7bRj/fr10djYmPUfKSJi0KBB8eKLLxaoKgph7Nixcdddd8WRRx4Za9asiZkzZ8aECRPij3/8Y6xduzZ69eoV/fr1y3rOoEGDYu3atYUpmILZ8d+8ta8bO86tXbs2DjzwwKzz++yzT/Tv39890wNMmjQpPvWpT8WIESPitddei2uvvTbOPPPMWLx4cZSWlro/epB0Oh2XXXZZfPCDH4yjjjoqIiKn7ylr165t9WvMjnN0D63dHxERf/d3fxfDhg2L6urq+MMf/hDXXHNNvPTSS/Ff//VfEeH+6AqMMdiZcQa5Ms5gV4wz2ME4g/YUcpwhzIA8OfPMM5s+P+aYY2Ls2LExbNiwuPfee2PfffctYGVAV/PZz3626fOjjz46jjnmmDj00EPj8ccfj1NPPbWAlZFvl1xySfzxj3/MWhsddmjr/th5Xeujjz46DjrooDj11FPjtddei0MPPTTfZQJ7yTgD6CjGGexgnEF7CjnOsMxUJxswYECUlpbGunXrstrXrVsXgwcPLlBVFIN+/frFEUccEa+++moMHjw4tm3bFhs2bMjq4z7pmXb8N2/v68bgwYNbbPD57rvvxltvveWe6YFGjhwZAwYMiFdffTUi3B89xaWXXhoPPPBAPPbYY3HIIYc0tefyPWXw4MGtfo3ZcY6ur637ozVjx46NiMj6GuL+KG7GGLTHOIO2GGewu4wzeibjDNpT6HGGMKOT9erVK0488cR49NFHm9rS6XQ8+uijMW7cuAJWRqFt3rw5XnvttTjooIPixBNPjLKysqz75KWXXoqVK1e6T3qgESNGxODBg7Puh7q6uvjtb3/bdD+MGzcuNmzYEE8//XRTn1/+8peRTqebvlnQc/z5z3+ON998Mw466KCIcH90d0mSxKWXXhr//d//Hb/85S9jxIgRWedz+Z4ybty4eP7557MGowsXLoyqqqoYM2ZMft4InWJX90drnnvuuYiIrK8h7o/iZoxBe4wzaItxBrvLOKNnMc6gPUUzztij7crZLffcc09SXl6e3HXXXcnSpUuTiy66KOnXr1/Wzu10f1deeWXy+OOPJ8uWLUt+85vfJBMnTkwGDBiQvPHGG0mSJMmXvvSlZOjQockvf/nL5He/+10ybty4ZNy4cQWums6yadOm5Nlnn02effbZJCKS22+/PXn22WeTFStWJEmSJLNnz0769euX/M///E/yhz/8IfnEJz6RjBgxInnnnXearjFp0qTk+OOPT377298mv/71r5PDDz88Oeeccwr1luhA7d0fmzZtSq666qpk8eLFybJly5JHHnkkOeGEE5LDDz882bJlS9M13B/d18UXX5z07ds3efzxx5M1a9Y0Perr65v67Op7yrvvvpscddRRyemnn54899xzyYIFC5KBAwcmM2bMKMRbogPt6v549dVXk5tuuin53e9+lyxbtiz5n//5n2TkyJHJhz/84aZruD+6BmMMdjDOYGfGGbTHOIP2GGfQnmIZZwgz8uTb3/52MnTo0KRXr15JTU1N8tRTTxW6JPLsM5/5THLQQQclvXr1Sg4++ODkM5/5TPLqq682nX/nnXeSf/zHf0z233//pLKyMvmbv/mbZM2aNQWsmM702GOPJRHR4nHeeeclSZIk6XQ6ue6665JBgwYl5eXlyamnnpq89NJLWdd48803k3POOSfp3bt3UlVVlVxwwQXJpk2bCvBu6Gjt3R/19fXJ6aefngwcODApKytLhg0bllx44YUtfnnl/ui+Wrs3IiL54Q9/2NQnl+8py5cvT84888xk3333TQYMGJBceeWVSUNDQ57fDR1tV/fHypUrkw9/+MNJ//79k/Ly8uSwww5Lrr766mTjxo1Z13F/dA3GGCSJcQbZjDNoj3EG7THOoD3FMs4o2V4MAAAAAABAUbJnBgAAAAAAUNSEGQAAAAAAQFETZgAAAAAAAEVNmAEAAAAAABQ1YQYAAAAAAFDUhBkAAAAAAEBRE2YAAAAAAABFTZgBAAAAAAAUNWEGAF3a8OHD4/zzzy90GQAAQDdinAFQfIQZAD1cSUlJTo/HH3+80KV2qNWrV8eNN94Yzz33XKFLAQCAbsc447lClwLQ7exT6AIAKKwf/ehHWcdz586NhQsXtmgfPXp0PsvqdKtXr46ZM2fG8OHD47jjjit0OQAA0K0YZxhnAHQ0YQZAD3fuuedmHT/11FOxcOHCFu3N1dfXR2VlZWeWBgAAdFHGGQB0NMtMAbBLp5xyShx11FHx9NNPx4c//OGorKyMa6+9NiIy08dvvPHGFs9pbY3ZDRs2xGWXXRZDhgyJ8vLyOOyww2LOnDmRTqd3WUOSJPH1r389DjnkkKisrIyPfOQj8cILL7To99Zbb8VVV10VRx99dPTu3TuqqqrizDPPjN///vdNfR5//PH4wAc+EBERF1xwQdMU97vuuisiIn71q1/F2WefHUOHDo3y8vIYMmRIXH755fHOO+/k+C8GAADsinGGcQbA7jAzA4CcvPnmm3HmmWfGZz/72Tj33HNj0KBBu/X8+vr6OPnkk2PVqlXxxS9+MYYOHRqLFi2KGTNmxJo1a+Kb3/xmu8+//vrr4+tf/3qcddZZcdZZZ8UzzzwTp59+emzbti2r35/+9Kf4+c9/HmeffXaMGDEi1q1bF9///vfj5JNPjqVLl0Z1dXWMHj06brrpprj++uvjoosuigkTJkRExPjx4yMi4r777ov6+vq4+OKL44ADDoglS5bEt7/97fjzn/8c99133269bwAAoG3GGcYZALkSZgCQk7Vr18b3vve9+OIXv7hHz7/99tvjtddei2effTYOP/zwiIj44he/GNXV1XHbbbfFlVdeGUOGDGn1uX/5y1/i1ltvjcmTJ8f9998fJSUlERHxz//8z3HLLbdk9T366KPj5ZdfjlTqvcmHn//852PUqFFx5513xnXXXReDBg2KM888M66//voYN25ci6nuc+bMiX333bfp+KKLLorDDjssrr322li5cmUMHTp0j/4NAACAbMYZxhkAubLMFAA5KS8vjwsuuGCPn3/ffffFhAkTYv/994/169c3PSZOnBiNjY3x5JNPtvncRx55JLZt2xZf/vKXmwYYERGXXXZZq3XuGGA0NjbGm2++Gb17944jjzwynnnmmZxq3XmA8fbbb8f69etj/PjxkSRJPPvsszm+YwAAYFeMM4wzAHJlZgYAOTn44IOjV69ee/z8V155Jf7whz/EwIEDWz3/xhtvtPncFStWREQ0/aXVDgMHDoz9998/qy2dTse3vvWt+M53vhPLli2LxsbGpnMHHHBATrWuXLkyrr/++pg3b1789a9/zTq3cePGnK4BAADsmnFGhnEGwK4JMwDIyc5/RZSLnX+4j8j88H/aaafFP/3TP7Xa/4gjjtjj2nZ2yy23xHXXXRd///d/HzfffHP0798/UqlUXHbZZTltANjY2BinnXZavPXWW3HNNdfEqFGjYr/99otVq1bF+eefn9M1AACA3BhnGGcA5EqYAcBe2X///WPDhg1Zbdu2bYs1a9ZktR166KGxefPmmDhx4m6/xrBhwyIi81dXI0eObGr/y1/+0uIvmn72s5/FRz7ykbjzzjuz2jds2BADBgxoOt55GvnOnn/++Xj55Zfj7rvvjmnTpjW1L1y4cLfrBgAA9oxxBgDN2TMDgL1y6KGHtliH9t///d9b/MXU1KlTY/HixfHQQw+1uMaGDRvi3XffbfM1Jk6cGGVlZfHtb387kiRpav/mN7/Zom9paWlWn4jMOrqrVq3Kattvv/2aXrv58yMi6xpJksS3vvWtNusDAAA6lnEGAM2ZmQHAXvmHf/iH+NKXvhSf/vSn47TTTovf//738dBDD2X9dVJExNVXXx3z5s2Lj33sY3H++efHiSeeGG+//XY8//zz8bOf/SyWL1/e4jk7DBw4MK666qqYNWtWfOxjH4uzzjornn322fjFL37R4jkf+9jH4qabbooLLrggxo8fH88//3z8x3/8R9ZfWkVkBkf9+vWL733ve9GnT5/Yb7/9YuzYsTFq1Kg49NBD46qrropVq1ZFVVVV/Od//meLv8wCAAA6j3EGAM2ZmQHAXrnwwgvjmmuuiSeffDKuvPLKWLZsWSxcuLDpL5J2qKysjCeeeCKuvvrqePzxx+OrX/1qzJ49O1555ZWYOXNm9O3bt93X+frXvx4zZ86MZ599Nq6++up47bXX4uGHH27xOtdee21ceeWV8dBDD8VXv/rVeOaZZ2L+/PkxZMiQrH5lZWVx9913R2lpaXzpS1+Kc845J5544okoKyuL+++/P4477riYNWtWzJw5Mw4//PCYO3dux/yDAQAAu2ScAUBzJUnzOXIAAAAAAABFxMwMAAAAAACgqAkzAAAAAACAoibMAAAAAAAAipowAwAAAAAAKGrCDAAAAAAAoKgJMwAAAAAAgKImzAAAAAAAAIqaMAMAAAAAAChqwgwAAAAAAKCoCTMAAAAAAICiJswAAAAAAACKmjADAAAAAAAoav8/azY0CaWTclsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_basics_doc_36_0.png" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -862,480 +849,492 @@ "output_type": "stream", "text": [ "===========================================================================================================\n", - "0.001 | 1e-05 | 1.330188999805357 | 7.936658808585865e+18 | 1762.2922695772181 | 2999999.7996930624 | 6.661337702980191e-10\n", - "0.001 | 2e-05 | 1.3231321486358596 | 7.936658808585865e+18 | 1762.2922695772181 | 1500000.3998815753 | 3.3306699617909336e-10\n", - "0.001 | 5e-05 | 1.3204882439270513 | 7.936658808585865e+18 | 1762.2922695772181 | 600000.7598810853 | 1.3322693168251415e-10\n", - "0.001 | 7.5e-05 | 1.3203184940690464 | 7.936658808585865e+18 | 1762.2922695772181 | 400000.83992750663 | 8.88180284713839e-11\n", - "0.001 | 0.0001 | 1.3203209127587061 | 7.936658808585865e+18 | 1762.2922695772181 | 300000.87994025816 | 6.661357686349637e-11\n", - "0.001 | 0.0002 | 1.320453829126744 | 7.936658808585865e+18 | 1762.2922695772181 | 150000.93996799184 | 3.330689945357609e-11\n", - "0.001 | 0.0005 | 1.3206180157500875 | 7.936658808585865e+18 | 1762.2922695772181 | 60000.975986938625 | 1.3322893008136078e-11\n", - "0.001 | 0.00075 | 1.3206637488446602 | 7.936658808585865e+18 | 1762.2922695772181 | 40000.98399132156 | 8.882002686965498e-12\n", - "0.001 | 0.001 | 1.3206877851838068 | 7.936658808585865e+18 | 1762.2922695772181 | 30000.987993464787 | 6.661557526369496e-12\n", - "0.001 | 0.002 | 1.3207246211571246 | 7.936658808585865e+18 | 1762.2922695772181 | 15000.993996724195 | 3.3308897854853903e-12\n", - "0.001 | 0.005 | 1.3207441010685603 | 7.936658808585865e+18 | 1762.2922695772181 | 6000.997598686373 | 1.3324891409563772e-12\n", - "0.001 | 0.0075 | 1.3207457685491724 | 7.936658808585865e+18 | 1762.2922695772181 | 4000.9983991229724 | 8.884001088389431e-13\n", - "0.001 | 0.01 | 1.3207447379585568 | 7.936658808585865e+18 | 1762.2922695772181 | 3000.998799341891 | 6.663555927803635e-13\n", - "0.001 | 0.02 | 1.320733880721723 | 7.936658808585865e+18 | 1762.2922695772181 | 1500.9993996709732 | 3.332888186926504e-13\n", - "0.001 | 0.05 | 1.320692242454931 | 7.936658808585865e+18 | 1762.2922695772181 | 600.999759868342 | 1.334487542400047e-13\n", - "0.001 | 0.075 | 1.3206569542287017 | 7.936658808585865e+18 | 1762.2922695772181 | 400.9998399122189 | 8.903985102830944e-14\n", - "0.001 | 0.1 | 1.320622227525564 | 7.936658808585865e+18 | 1762.2922695772181 | 300.99987993416397 | 6.68353994224633e-14\n", - "0.001 | 0.2 | 1.3204909253945512 | 7.936658808585865e+18 | 1762.2922695772181 | 150.9999399670793 | 3.352872201369357e-14\n", - "0.001 | 0.5 | 1.3201734897566477 | 7.936658808585865e+18 | 1762.2922695772181 | 60.99997598683129 | 1.354471556843235e-14\n", - "0.001 | 0.75 | 1.3199938819612356 | 7.936658808585865e+18 | 1762.2922695772181 | 40.999983991220795 | 9.10382524726323e-15\n", - "0.001 | 1 | 1.3198876280547236 | 7.936658808585865e+18 | 1762.2922695772181 | 30.999987993415566 | 6.883380086678673e-15\n", - "0.002 | 1e-05 | 1.362387822278568 | 5.782309804024167e+18 | 1283.9306959886815 | 2999996.19772378 | 6.661329705001728e-10\n", - "0.002 | 2e-05 | 1.343994630873922 | 5.782309804024167e+18 | 1283.9306959886815 | 1499998.5987316754 | 3.3306659624347544e-10\n", - "0.002 | 5e-05 | 1.3272246485698753 | 5.782309804024167e+18 | 1283.9306959886815 | 600000.0394937922 | 1.3322677172440228e-10\n", - "0.002 | 7.5e-05 | 1.3235440099208564 | 5.782309804024167e+18 | 1283.9306959886815 | 400000.3596555643 | 8.881792182959021e-11\n", - "0.002 | 0.0001 | 1.3220037168855518 | 5.782309804024167e+18 | 1283.9306959886815 | 300000.51974200836 | 6.66134968834183e-11\n", - "0.002 | 0.0002 | 1.3204880868279008 | 5.782309804024167e+18 | 1283.9306959886815 | 150000.75986912134 | 3.330685946359354e-11\n", - "0.002 | 0.0005 | 1.3203538501482557 | 5.782309804024167e+18 | 1283.9306959886815 | 60000.903947554114 | 1.3322877012179405e-11\n", - "0.002 | 0.00075 | 1.3204389361297426 | 5.782309804024167e+18 | 1283.9306959886815 | 40000.935965030716 | 8.881992022986721e-12\n", - "0.002 | 0.001 | 1.320500039765387 | 5.782309804024167e+18 | 1283.9306959886815 | 30000.95197376373 | 6.661549528389206e-12\n", - "0.002 | 0.002 | 1.320615846455827 | 5.782309804024167e+18 | 1283.9306959886815 | 15000.975986864492 | 3.330885786493208e-12\n", - "0.002 | 0.005 | 1.3206969267656394 | 5.782309804024167e+18 | 1283.9306959886815 | 6000.990394744541 | 1.3324875413599593e-12\n", - "0.002 | 0.0075 | 1.3207137929011277 | 5.782309804024167e+18 | 1283.9306959886815 | 4000.9935964959222 | 8.883990424415172e-13\n", - "0.002 | 0.01 | 1.3207205715037762 | 5.782309804024167e+18 | 1283.9306959886815 | 3000.9951973718266 | 6.663547929823436e-13\n", - "0.002 | 0.02 | 1.3207216922930982 | 5.782309804024167e+18 | 1283.9306959886815 | 1500.997598685877 | 3.3328841879362624e-13\n", - "0.002 | 0.05 | 1.320687393868504 | 5.782309804024167e+18 | 1283.9306959886815 | 600.9990394743187 | 1.334485942803984e-13\n", - "0.002 | 0.075 | 1.320653752364362 | 5.782309804024167e+18 | 1283.9306959886815 | 400.9993596495438 | 8.90397443885735e-14\n", - "0.002 | 0.1 | 1.3206198511578064 | 5.782309804024167e+18 | 1283.9306959886815 | 300.9995197371585 | 6.683531944266152e-14\n", - "0.002 | 0.2 | 1.320489789943987 | 5.782309804024167e+18 | 1283.9306959886815 | 150.9997598685783 | 3.352868202379307e-14\n", - "0.002 | 0.5 | 1.3201731005146329 | 5.782309804024167e+18 | 1283.9306959886815 | 60.99990394743119 | 1.3544699572472217e-14\n", - "0.002 | 0.75 | 1.3199936589276795 | 5.782309804024167e+18 | 1283.9306959886815 | 40.99993596495411 | 9.103814583289818e-15\n", - "0.002 | 1 | 1.319887488406783 | 5.782309804024167e+18 | 1283.9306959886815 | 30.99995197371558 | 6.88337208869862e-15\n", - "0.005 | 1e-05 | 1.398281393989088 | 4.7315568285138035e+19 | 10506.166666676816 | 2999970.9840130205 | 6.661273719317286e-10\n", - "0.005 | 2e-05 | 1.388722431615681 | 4.7315568285138035e+19 | 10506.166666676816 | 1499985.9920165162 | 3.330637969903885e-10\n", - "0.005 | 5e-05 | 1.3683630926262451 | 4.7315568285138035e+19 | 10506.166666676816 | 599994.9967708938 | 1.3322565201498855e-10\n", - "0.005 | 7.5e-05 | 1.3574022549722211 | 4.7315568285138035e+19 | 10506.166666676816 | 399996.9978457239 | 8.881717535785236e-11\n", - "0.005 | 0.0001 | 1.349656526521845 | 4.7315568285138035e+19 | 10506.166666676816 | 299997.99838577345 | 6.661293702986925e-11\n", - "0.005 | 0.0002 | 1.3338899892280682 | 4.7315568285138035e+19 | 10506.166666676816 | 149999.49919096037 | 3.330657953680935e-11\n", - "0.005 | 0.0005 | 1.3231314606154727 | 4.7315568285138035e+19 | 10506.166666676816 | 60000.399676413464 | 1.3322765041493204e-11\n", - "0.005 | 0.00075 | 1.3213658709059117 | 4.7315568285138035e+19 | 10506.166666676816 | 40000.599784124155 | 8.88191737583014e-12\n", - "0.005 | 0.001 | 1.3207434325086935 | 4.7315568285138035e+19 | 10506.166666676816 | 30000.699838091627 | 6.661493543023506e-12\n", - "0.005 | 0.002 | 1.3203109441737189 | 4.7315568285138035e+19 | 10506.166666676816 | 15000.84991903379 | 3.3308577938115457e-12\n", - "0.005 | 0.005 | 1.3204473592564139 | 4.7315568285138035e+19 | 10506.166666676816 | 6000.939967612918 | 1.3324763442874405e-12\n", - "0.005 | 0.0075 | 1.3205266147948784 | 4.7315568285138035e+19 | 10506.166666676816 | 4000.95997840818 | 8.883915777265062e-13\n", - "0.005 | 0.01 | 1.3205722511348426 | 4.7315568285138035e+19 | 10506.166666676816 | 3000.9699838059914 | 6.66349194446079e-13\n", - "0.005 | 0.02 | 1.3206416674457822 | 4.7315568285138035e+19 | 10506.166666676816 | 1500.9849919029054 | 3.3328561952548196e-13\n", - "0.005 | 0.05 | 1.3206543062552778 | 4.7315568285138035e+19 | 10506.166666676816 | 600.9939967611574 | 1.3344747457314674e-13\n", - "0.005 | 0.075 | 1.3206317178276619 | 4.7315568285138035e+19 | 10506.166666676816 | 400.9959978407689 | 8.903899791707224e-14\n", - "0.005 | 0.1 | 1.3206034290426678 | 4.7315568285138035e+19 | 10506.166666676816 | 300.9969983805781 | 6.683475958903575e-14\n", - "0.005 | 0.2 | 1.3204818942961338 | 4.7315568285138035e+19 | 10506.166666676816 | 150.99849919028685 | 3.3528402096979903e-14\n", - "0.005 | 0.5 | 1.3201703838941503 | 4.7315568285138035e+19 | 10506.166666676816 | 60.99939967611459 | 1.3544587601746947e-14\n", - "0.005 | 0.75 | 1.3199921011576614 | 4.7315568285138035e+19 | 10506.166666676816 | 40.999599784076366 | 9.103739936139636e-15\n", - "0.005 | 1 | 1.3198865127506896 | 4.7315568285138035e+19 | 10506.166666676816 | 30.999699838057264 | 6.883316103335982e-15\n", - "0.0075 | 1e-05 | 1.404300593878447 | 1.7372731761309637e+18 | 385.75213604085417 | 2999933.4645628342 | 6.661190409402349e-10\n", - "0.0075 | 2e-05 | 1.3994032633183124 | 1.7372731761309637e+18 | 385.75213604085417 | 1499967.232282145 | 3.3305963149258154e-10\n", - "0.0075 | 5e-05 | 1.386805647947958 | 1.7372731761309637e+18 | 385.75213604085417 | 599987.4928880802 | 1.332239858182938e-10\n", - "0.0075 | 7.5e-05 | 1.3783815287748937 | 1.7372731761309637e+18 | 385.75213604085417 | 399991.9952527292 | 8.881606455906726e-11\n", - "0.0075 | 0.0001 | 1.3714017808048378 | 1.7372731761309637e+18 | 385.75213604085417 | 299994.24643613514 | 6.661210392969411e-11\n", - "0.0075 | 0.0002 | 1.352783451657262 | 1.7372731761309637e+18 | 385.75213604085417 | 149997.6232191162 | 3.330616298738236e-11\n", - "0.0075 | 0.0005 | 1.3320471009302473 | 1.7372731761309637e+18 | 385.75213604085417 | 59999.64928707162 | 1.3322598421588254e-11\n", - "0.0075 | 0.00075 | 1.3264972569267337 | 1.7372731761309637e+18 | 385.75213604085417 | 40000.09952468137 | 8.881806295919807e-12\n", - "0.0075 | 0.001 | 1.3239147582316242 | 1.7372731761309637e+18 | 385.75213604085417 | 30000.32464348631 | 6.6614102330855985e-12\n", - "0.0075 | 0.002 | 1.3209497744222265 | 1.7372731761309637e+18 | 385.75213604085417 | 15000.66232173369 | 3.33081613884316e-12\n", - "0.0075 | 0.005 | 1.32030667526022 | 1.7372731761309637e+18 | 385.75213604085417 | 6000.864928690638 | 1.332459682299589e-12\n", - "0.0075 | 0.0075 | 1.3203572891448485 | 1.7372731761309637e+18 | 385.75213604085417 | 4000.9099524600265 | 8.883804697346124e-13\n", - "0.0075 | 0.01 | 1.3204149453606089 | 1.7372731761309637e+18 | 385.75213604085417 | 3000.932464345096 | 6.663408634522074e-13\n", - "0.0075 | 0.02 | 1.3205391985944162 | 1.7372731761309637e+18 | 385.75213604085417 | 1500.9662321724334 | 3.332814540285408e-13\n", - "0.0075 | 0.05 | 1.3206077953595612 | 1.7372731761309637e+18 | 385.75213604085417 | 600.9864928689655 | 1.3344580837436958e-13\n", - "0.0075 | 0.075 | 1.320600144100872 | 1.7372731761309637e+18 | 385.75213604085417 | 400.9909952459681 | 8.90378871178861e-14\n", - "0.0075 | 0.1 | 1.320579675219363 | 1.7372731761309637e+18 | 385.75213604085417 | 300.99324643447636 | 6.683392648964589e-14\n", - "0.0075 | 0.2 | 1.3204703143593972 | 1.7372731761309637e+18 | 385.75213604085417 | 150.99662321723713 | 3.352798554728523e-14\n", - "0.0075 | 0.5 | 1.320166367422988 | 1.7372731761309637e+18 | 385.75213604085417 | 60.998649286894484 | 1.3544420981869028e-14\n", - "0.0075 | 0.75 | 1.3199897942613739 | 1.7372731761309637e+18 | 385.75213604085417 | 40.99909952459634 | 9.103628856221033e-15\n", - "0.0075 | 1 | 1.3198850669656137 | 1.7372731761309637e+18 | 385.75213604085417 | 30.9993246434473 | 6.8832327933970424e-15\n", - "0.01 | 1e-05 | 1.4061992061470945 | 9.15881260810045e+18 | 2033.66492714806 | 2999880.9389639026 | 6.661073779143717e-10\n", - "0.01 | 2e-05 | 1.4035355143448425 | 9.15881260810045e+18 | 2033.66492714806 | 1499940.969350007 | 3.330537999501908e-10\n", - "0.01 | 5e-05 | 1.395627182515116 | 9.15881260810045e+18 | 2033.66492714806 | 599976.9877232183 | 1.3322165320311236e-10\n", - "0.01 | 7.5e-05 | 1.389760075244399 | 9.15881260810045e+18 | 2033.66492714806 | 399984.9918138873 | 8.881450948325649e-11\n", - "0.01 | 0.0001 | 1.3845164268287486 | 9.15881260810045e+18 | 2033.66492714806 | 299988.99385887664 | 6.66109376232519e-11\n", - "0.01 | 0.0002 | 1.368340200656151 | 9.15881260810045e+18 | 2033.66492714806 | 149994.9969292092 | 3.3305579833877544e-11\n", - "0.01 | 0.0005 | 1.3439837129673218 | 9.15881260810045e+18 | 2033.66492714806 | 59998.598771298515 | 1.3322365160228448e-11\n", - "0.01 | 0.00075 | 1.335093711991605 | 9.15881260810045e+18 | 2033.66492714806 | 39999.399180849905 | 8.881650788350438e-12\n", - "0.01 | 0.001 | 1.3301839804871138 | 9.15881260810045e+18 | 2033.66492714806 | 29999.799385624003 | 6.661293602411079e-12\n", - "0.01 | 0.002 | 1.3231293127499864 | 9.15881260810045e+18 | 2033.66492714806 | 15000.399692799341 | 3.3307578235051907e-12\n", - "0.01 | 0.005 | 1.3204830758443515 | 9.15881260810045e+18 | 2033.66492714806 | 6000.7598771195135 | 1.3324363561649818e-12\n", - "0.01 | 0.0075 | 1.3203100371670242 | 9.15881260810045e+18 | 2033.66492714806 | 4000.839918079025 | 8.883649189781518e-13\n", - "0.01 | 0.01 | 1.320308943205694 | 9.15881260810045e+18 | 2033.66492714806 | 3000.879938558849 | 6.663292003847519e-13\n", - "0.01 | 0.02 | 1.3204273423452193 | 9.15881260810045e+18 | 2033.66492714806 | 1500.9399692794002 | 3.3327562249483305e-13\n", - "0.01 | 0.05 | 1.3205480387004698 | 9.15881260810045e+18 | 2033.66492714806 | 600.9759877117588 | 1.3344347576088794e-13\n", - "0.01 | 0.075 | 1.3205583477737104 | 9.15881260810045e+18 | 2033.66492714806 | 400.9839918078323 | 8.903633204223211e-14\n", - "0.01 | 0.1 | 1.320547778680883 | 9.15881260810045e+18 | 2033.66492714806 | 300.98799385587427 | 6.683276018290535e-14\n", - "0.01 | 0.2 | 1.3204544411843475 | 9.15881260810045e+18 | 2033.66492714806 | 150.99399692793642 | 3.3527402393915034e-14\n", - "0.01 | 0.5 | 1.3201607967208802 | 9.15881260810045e+18 | 2033.66492714806 | 60.99759877117422 | 1.3544187720520954e-14\n", - "0.01 | 0.75 | 1.3199865871021215 | 9.15881260810045e+18 | 2033.66492714806 | 40.99839918078277 | 9.103473348655637e-15\n", - "0.01 | 1 | 1.3198830550759415 | 9.15881260810045e+18 | 2033.66492714806 | 30.998799385587116 | 6.8831161627229944e-15\n", - "0.02 | 1e-05 | 1.3991967821771687 | 4.596172752109427e+18 | 1020.5553629093316 | 2999520.8077985244 | 6.660274127320341e-10\n", - "0.02 | 2e-05 | 1.4033527820009084 | 4.596172752109427e+18 | 1020.5553629093316 | 1499760.9038967583 | 3.3301381738776355e-10\n", - "0.02 | 5e-05 | 1.4040547659095226 | 4.596172752109427e+18 | 1020.5553629093316 | 599904.9615311394 | 1.3320566017574796e-10\n", - "0.02 | 7.5e-05 | 1.4028711082098146 | 4.596172752109427e+18 | 1020.5553629093316 | 399936.9743506041 | 8.880384746459227e-11\n", - "0.02 | 0.0001 | 1.4014091897441256 | 4.596172752109427e+18 | 1020.5553629093316 | 299952.98076160415 | 6.660294110929591e-11\n", - "0.02 | 0.0002 | 1.3952513762994323 | 4.596172752109427e+18 | 1020.5553629093316 | 149976.99038130237 | 3.3301581577061505e-11\n", - "0.02 | 0.0005 | 1.3796701173934471 | 4.596172752109427e+18 | 1020.5553629093316 | 59991.39615212075 | 1.3320765857498696e-11\n", - "0.02 | 0.00075 | 1.3699232085655064 | 4.596172752109427e+18 | 1020.5553629093316 | 39994.5974347125 | 8.880584586526408e-12\n", - "0.02 | 0.001 | 1.362292110296485 | 4.596172752109427e+18 | 1020.5553629093316 | 29996.198076027966 | 6.660493951044614e-12\n", - "0.02 | 0.002 | 1.3439496124690997 | 4.596172752109427e+18 | 1020.5553629093316 | 14998.599038011473 | 3.330357997824212e-12\n", - "0.02 | 0.005 | 1.3272089427378684 | 4.596172752109427e+18 | 1020.5553629093316 | 6000.039615202919 | 1.332276425892269e-12\n", - "0.02 | 0.0075 | 1.323532461862641 | 4.596172752109427e+18 | 1020.5553629093316 | 4000.3597434684293 | 8.88258298796447e-13\n", - "0.02 | 0.01 | 1.3219923714906017 | 4.596172752109427e+18 | 1020.5553629093316 | 3000.5198076010715 | 6.662492352485109e-13\n", - "0.02 | 0.02 | 1.3204676186157385 | 4.596172752109427e+18 | 1020.5553629093316 | 1500.7599038004946 | 3.332356399267088e-13\n", - "0.02 | 0.05 | 1.3202928659769584 | 4.596172752109427e+18 | 1020.5553629093316 | 600.9039615201905 | 1.334274827336369e-13\n", - "0.02 | 0.075 | 1.3203431410941724 | 4.596172752109427e+18 | 1020.5553629093316 | 400.9359743467912 | 8.902567002406575e-14\n", - "0.02 | 0.1 | 1.320369937260628 | 4.596172752109427e+18 | 1020.5553629093316 | 300.95198076008995 | 6.68247636692798e-14\n", - "0.02 | 0.2 | 1.320356005679441 | 4.596172752109427e+18 | 1020.5553629093316 | 150.97599038004486 | 3.352340413710239e-14\n", - "0.02 | 0.5 | 1.3201242272878075 | 4.596172752109427e+18 | 1020.5553629093316 | 60.990396152017844 | 1.3542588417795952e-14\n", - "0.02 | 0.75 | 1.3199652973344642 | 4.596172752109427e+18 | 1020.5553629093316 | 40.99359743467856 | 9.102407146838978e-15\n", - "0.02 | 1 | 1.3198696409051938 | 4.596172752109427e+18 | 1020.5553629093316 | 30.99519807600895 | 6.882316511360498e-15\n", - "0.05 | 1e-05 | 1.1802626763387565 | 2.292482447793158e+19 | 5090.333594178005 | 2997002.1306760353 | 6.654681540654373e-10\n", - "0.05 | 2e-05 | 1.2638668839634342 | 2.292482447793158e+19 | 5090.333594178005 | 1498501.5652584448 | 3.327341880373524e-10\n", - "0.05 | 5e-05 | 1.3399914336674565 | 2.292482447793158e+19 | 5090.333594178005 | 599401.2260877036 | 1.3309380843822352e-10\n", - "0.05 | 7.5e-05 | 1.3607917455523473 | 2.292482447793158e+19 | 5090.333594178005 | 399601.150725315 | 8.872927964039045e-11\n", - "0.05 | 0.0001 | 1.3717399149142016 | 2.292482447793158e+19 | 5090.333594178005 | 299701.11304101965 | 6.654701524078536e-11\n", - "0.05 | 0.0002 | 1.388357196418246 | 2.292482447793158e+19 | 5090.333594178005 | 149851.0565198782 | 3.3273618642554895e-11\n", - "0.05 | 0.0005 | 1.3960809195486679 | 2.292482447793158e+19 | 5090.333594178005 | 59941.02260797523 | 1.330958068379023e-11\n", - "0.05 | 0.00075 | 1.395825918790288 | 2.292482447793158e+19 | 5090.333594178005 | 39961.015071850336 | 8.87312780403223e-12\n", - "0.05 | 0.001 | 1.3944270862078088 | 2.292482447793158e+19 | 5090.333594178005 | 29971.011303897183 | 6.6549013641774975e-12\n", - "0.05 | 0.002 | 1.3868038656182429 | 2.292482447793158e+19 | 5090.333594178005 | 14986.005651941321 | 3.327561704389597e-12\n", - "0.05 | 0.005 | 1.3676102367336447 | 2.292482447793158e+19 | 5090.333594178005 | 5995.002260777155 | 1.331157908518933e-12\n", - "0.05 | 0.0075 | 1.3569104532323966 | 2.292482447793158e+19 | 5090.333594178005 | 3997.0015071830744 | 8.875126205472204e-13\n", - "0.05 | 0.01 | 1.3492964425395066 | 2.292482447793158e+19 | 5090.333594178005 | 2998.001130387283 | 6.656899765616415e-13\n", - "0.05 | 0.02 | 1.3337278030826976 | 2.292482447793158e+19 | 5090.333594178005 | 1499.500565193526 | 3.3295601058325763e-13\n", - "0.05 | 0.05 | 1.3230623528240189 | 2.292482447793158e+19 | 5090.333594178005 | 600.4002260774155 | 1.333156309962592e-13\n", - "0.05 | 0.075 | 1.3212917568278908 | 2.292482447793158e+19 | 5090.333594178005 | 400.6001507182743 | 8.895110219914721e-14\n", - "0.05 | 0.1 | 1.3206495137172813 | 2.292482447793158e+19 | 5090.333594178005 | 300.70011303870496 | 6.67688378005915e-14\n", - "0.05 | 0.2 | 1.3201079927565518 | 2.292482447793158e+19 | 5090.333594178005 | 150.85005651935137 | 3.349544120275802e-14\n", - "0.05 | 0.5 | 1.3199430633401974 | 2.292482447793158e+19 | 5090.333594178005 | 60.940022607740424 | 1.3531403244058199e-14\n", - "0.05 | 0.75 | 1.3198490982380757 | 2.292482447793158e+19 | 5090.333594178005 | 40.96001507182699 | 9.094950364347151e-15\n", - "0.05 | 1 | 1.3197937467706273 | 2.292482447793158e+19 | 5090.333594178005 | 30.970011303870223 | 6.876723924491617e-15\n", - "0.075 | 1e-05 | 1.0289125856997683 | 2.5655434447895905e+18 | 569.6650806163085 | 2993261.340844146 | 6.646375318651079e-10\n", - "0.075 | 2e-05 | 1.06833574230173 | 2.5655434447895905e+18 | 569.6650806163085 | 1496631.170356869 | 3.323188769403782e-10\n", - "0.075 | 5e-05 | 1.1788194485853987 | 2.5655434447895905e+18 | 569.6650806163085 | 598653.0681396328 | 1.3292768400222262e-10\n", - "0.075 | 7.5e-05 | 1.229861581346619 | 2.5655434447895905e+18 | 569.6650806163085 | 399102.3787592882 | 8.861853001624636e-11\n", - "0.075 | 0.0001 | 1.2625315302908773 | 2.5655434447895905e+18 | 569.6650806163085 | 299327.0340661838 | 6.646395302260717e-11\n", - "0.075 | 0.0002 | 1.3241269630070216 | 2.5655434447895905e+18 | 569.6650806163085 | 149664.01703276392 | 3.323208753353322e-11\n", - "0.075 | 0.0005 | 1.3699287056814906 | 2.5655434447895905e+18 | 569.6650806163085 | 59866.20681304865 | 1.3292968240163605e-11\n", - "0.075 | 0.00075 | 1.3804567145238036 | 2.5655434447895905e+18 | 569.6650806163085 | 39911.137875334636 | 8.862052841637133e-12\n", - "0.075 | 0.001 | 1.3852806670848645 | 2.5655434447895905e+18 | 569.6650806163085 | 29933.60340651576 | 6.646595142382363e-12\n", - "0.075 | 0.002 | 1.389766784950012 | 2.5655434447895905e+18 | 569.6650806163085 | 14967.301703250861 | 3.3234085934920857e-12\n" + "0.001 | 1e-05 | 1.3301889998089138 | 5.157729967665246e+18 | 1145.246112980224 | 2999999.7995568505 | 6.66133770267774e-10\n", + "0.001 | 2e-05 | 1.3231321486415055 | 5.157729967665246e+18 | 1145.246112980224 | 1500000.3997263806 | 3.330669961446332e-10\n", + "0.001 | 5e-05 | 1.320488243926721 | 5.157729967665246e+18 | 1145.246112980224 | 600000.759879188 | 1.3322693168209288e-10\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "0.075 | 0.005 | 1.3829509021399737 | 2.5655434447895905e+18 | 569.6650806163085 | 5987.520681298484 | 1.3294966641593762e-12\n", - "0.075 | 0.0075 | 1.3758254841268682 | 2.5655434447895905e+18 | 569.6650806163085 | 3992.013787532067 | 8.864051243078357e-13\n", - "0.075 | 0.01 | 1.3694975238618983 | 2.5655434447895905e+18 | 569.6650806163085 | 2994.2603406490575 | 6.648593543821096e-13\n", - "0.075 | 0.02 | 1.3518655278680678 | 2.5655434447895905e+18 | 569.6650806163085 | 1497.630170324489 | 3.325406994935085e-13\n", - "0.075 | 0.05 | 1.3317271553627905 | 2.5655434447895905e+18 | 569.6650806163085 | 599.6520681297745 | 1.3314950656035374e-13\n", - "0.075 | 0.075 | 1.3262949589526654 | 2.5655434447895905e+18 | 569.6650806163085 | 400.1013787531858 | 8.884035257521146e-14\n", - "0.075 | 0.1 | 1.3237555826770928 | 2.5655434447895905e+18 | 569.6650806163085 | 300.3260340648898 | 6.668577558263996e-14\n", - "0.075 | 0.2 | 1.3207755491672837 | 2.5655434447895905e+18 | 569.6650806163085 | 150.6630170324437 | 3.345391009378222e-14\n", - "0.075 | 0.5 | 1.3198839335916897 | 2.5655434447895905e+18 | 569.6650806163085 | 60.86520681297757 | 1.3514790800467928e-14\n", - "0.075 | 0.75 | 1.3197723726186081 | 2.5655434447895905e+18 | 569.6650806163085 | 40.91013787531835 | 9.083875401953622e-15\n", - "0.075 | 1 | 1.3197346497546036 | 2.5655434447895905e+18 | 569.6650806163085 | 30.932603406488766 | 6.868417702696476e-15\n", - "0.1 | 1e-05 | 1.0798981068160698 | 1.4534741232350866e+18 | 322.73608746249107 | 2988038.7413779353 | 6.634778818299514e-10\n", - "0.1 | 2e-05 | 1.034411147287902 | 1.4534741232350866e+18 | 322.73608746249107 | 1494019.8706289497 | 3.3173905192395153e-10\n", - "0.1 | 5e-05 | 1.0485665416883234 | 1.4534741232350866e+18 | 322.73608746249107 | 597608.5482298866 | 1.3269575399152668e-10\n", - "0.1 | 7.5e-05 | 1.0859812540943814 | 1.4534741232350866e+18 | 322.73608746249107 | 398406.0321496727 | 8.846391000842339e-11\n", - "0.1 | 0.0001 | 1.1199271289309896 | 1.4534741232350866e+18 | 322.73608746249107 | 298804.7741134506 | 6.634798801773436e-11\n", - "0.1 | 0.0002 | 1.2092033599799092 | 1.4534741232350866e+18 | 322.73608746249107 | 149402.88705538897 | 3.317410503087292e-11\n", - "0.1 | 0.0005 | 1.305803183492356 | 1.4534741232350866e+18 | 322.73608746249107 | 59761.75482211882 | 1.3269775239103958e-11\n", - "0.1 | 0.00075 | 1.3347573633949794 | 1.4534741232350866e+18 | 322.73608746249107 | 39841.5032147429 | 8.846590840936952e-12\n", - "0.1 | 0.001 | 1.3503821090957047 | 1.4534741232350866e+18 | 322.73608746249107 | 29881.37741105147 | 6.634998641852679e-12\n", - "0.1 | 0.002 | 1.374194887133274 | 1.4534741232350866e+18 | 322.73608746249107 | 14941.188705527122 | 3.3176103432291097e-12\n", - "0.1 | 0.005 | 1.3835828525725824 | 1.4534741232350866e+18 | 322.73608746249107 | 5977.075482208381 | 1.327177364054051e-12\n", - "0.1 | 0.0075 | 1.381710463377333 | 1.4534741232350866e+18 | 322.73608746249107 | 3985.050321472298 | 8.848589242376854e-13\n", - "0.1 | 0.01 | 1.378484030173927 | 1.4534741232350866e+18 | 322.73608746249107 | 2989.0377411040554 | 6.63699704329458e-13\n", - "0.1 | 0.02 | 1.365360961026239 | 1.4534741232350866e+18 | 322.73608746249107 | 1495.018870551993 | 3.319608744671838e-13\n", - "0.1 | 0.05 | 1.3428726584962276 | 1.4534741232350866e+18 | 322.73608746249107 | 598.607548220793 | 1.329175765498276e-13\n", - "0.1 | 0.075 | 1.3344025162997288 | 1.4534741232350866e+18 | 322.73608746249107 | 399.4050321471928 | 8.868573256819285e-14\n", - "0.1 | 0.1 | 1.3296947739898706 | 1.4534741232350866e+18 | 322.73608746249107 | 299.80377411039274 | 6.656981057737548e-14\n", - "0.1 | 0.2 | 1.3228751118106652 | 1.4534741232350866e+18 | 322.73608746249107 | 150.40188705519589 | 3.339592759115015e-14\n", - "0.1 | 0.5 | 1.320130553011318 | 1.4534741232350866e+18 | 322.73608746249107 | 60.76075482207832 | 1.3491597799415071e-14\n", - "0.1 | 0.75 | 1.319826836642748 | 1.4534741232350866e+18 | 322.73608746249107 | 40.84050321471888 | 9.068413401251725e-15\n", - "0.1 | 1 | 1.3197458467857655 | 1.4534741232350866e+18 | 322.73608746249107 | 30.880377411039163 | 6.856821202170052e-15\n", - "0.2 | 1e-05 | 1.034878071426437 | 8.562996015832429e+17 | 190.13670673101288 | 2952676.851384146 | 6.556259649368781e-10\n", - "0.2 | 2e-05 | 1.099054270537908 | 8.562996015832429e+17 | 190.13670673101288 | 1476338.9256587334 | 3.278130934833386e-10\n", - "0.2 | 5e-05 | 1.118668157567818 | 8.562996015832429e+17 | 190.13670673101288 | 590536.170254422 | 1.3112537061808416e-10\n", - "0.2 | 7.5e-05 | 1.106463291346616 | 8.562996015832429e+17 | 190.13670673101288 | 393691.1135038531 | 8.741698776045872e-11\n", - "0.2 | 0.0001 | 1.091806769704812 | 8.562996015832429e+17 | 190.13670673101288 | 295268.58512797963 | 6.556279633151521e-11\n", - "0.2 | 0.0002 | 1.0475901909841485 | 8.562996015832429e+17 | 190.13670673101288 | 147634.79256333216 | 3.278150918791404e-11\n", - "0.2 | 0.0005 | 1.0237060377513256 | 8.562996015832429e+17 | 190.13670673101288 | 59054.517025191155 | 1.3112736901897105e-11\n", - "0.2 | 0.00075 | 1.04286126411308 | 8.562996015832429e+17 | 190.13670673101288 | 39370.011350120825 | 8.741898616131577e-12\n", - "0.2 | 0.001 | 1.0675482361224131 | 8.562996015832429e+17 | 190.13670673101288 | 29527.758512602293 | 6.556479473252506e-12\n", - "0.2 | 0.002 | 1.150251960798731 | 8.562996015832429e+17 | 190.13670673101288 | 14764.379256294229 | 3.2783507589271796e-12\n", - "0.2 | 0.005 | 1.2613461172689404 | 8.562996015832429e+17 | 190.13670673101288 | 5906.351702517787 | 1.311473530333848e-12\n", - "0.2 | 0.0075 | 1.2986164432111689 | 8.562996015832429e+17 | 190.13670673101288 | 3937.9011350116157 | 8.743897017574866e-13\n", - "0.2 | 0.01 | 1.3193653278045645 | 8.562996015832429e+17 | 190.13670673101288 | 2953.6758512586707 | 6.558477874693371e-13\n", - "0.2 | 0.02 | 1.3511101649720016 | 8.562996015832429e+17 | 190.13670673101288 | 1477.3379256293263 | 3.2803491603712903e-13\n", - "0.2 | 0.05 | 1.361365740618009 | 8.562996015832429e+17 | 190.13670673101288 | 591.5351702517382 | 1.3134719317780835e-13\n", - "0.2 | 0.075 | 1.3577244256580792 | 8.562996015832429e+17 | 190.13670673101288 | 394.69011350115363 | 8.763881032017942e-14\n", - "0.2 | 0.1 | 1.35321206907301 | 8.562996015832429e+17 | 190.13670673101288 | 296.26758512586605 | 6.578461889136601e-14\n", - "0.2 | 0.2 | 1.3396807959929746 | 8.562996015832429e+17 | 190.13670673101288 | 148.6337925629331 | 3.300333174814554e-14\n", - "0.2 | 0.5 | 1.3258785979549303 | 8.562996015832429e+17 | 190.13670673101288 | 60.05351702517299 | 1.3334559462213177e-14\n", - "0.2 | 0.75 | 1.3227927985529944 | 8.562996015832429e+17 | 190.13670673101288 | 40.369011350115315 | 8.96372117645046e-15\n", - "0.2 | 1 | 1.321535717952325 | 8.562996015832429e+17 | 190.13670673101288 | 30.5267585125865 | 6.778302033569106e-15\n", - "0.5 | 1e-05 | 0.24096794492402857 | 980258980477233.9 | 0.21766121804428137 | 2725466.7390964394 | 6.051751853189823e-10\n", - "0.5 | 2e-05 | 0.24490838803503873 | 980258980477233.9 | 0.21766121804428137 | 1362733.8714523853 | 3.025877041046033e-10\n", - "0.5 | 5e-05 | 0.26603719418936833 | 980258980477233.9 | 0.21766121804428137 | 545094.1490353851 | 1.2103521496950822e-10\n", - "0.5 | 7.5e-05 | 0.3041435170925932 | 980258980477233.9 | 0.21766121804428137 | 363396.432758199 | 8.069021734296e-11\n", - "0.5 | 0.0001 | 0.3466455959864901 | 980258980477233.9 | 0.21766121804428137 | 272547.57459426456 | 6.051771852405897e-11\n", - "0.5 | 0.0002 | 0.48965105730966685 | 980258980477233.9 | 0.21766121804428137 | 136274.2873159813 | 3.025897028851727e-11\n", - "0.5 | 0.0005 | 0.7000258094502446 | 980258980477233.9 | 0.21766121804428137 | 54510.31493093633 | 1.2103721343178792e-11\n", - "0.5 | 0.00075 | 0.7803152404537564 | 980258980477233.9 | 0.21766121804428137 | 36340.54328796332 | 8.069221577136814e-12\n", - "0.5 | 0.001 | 0.8291864833507758 | 980258980477233.9 | 0.21766121804428137 | 27255.657466223165 | 6.0519716940595025e-12\n", - "0.5 | 0.002 | 0.9148557625310408 | 980258980477233.9 | 0.21766121804428137 | 13628.32873330063 | 3.0260968693741908e-12\n", - "0.5 | 0.005 | 0.9605054768523522 | 980258980477233.9 | 0.21766121804428137 | 5451.931493366453 | 1.21057197452289e-12\n", - "0.5 | 0.0075 | 0.9664986040888508 | 980258980477233.9 | 0.21766121804428137 | 3634.9543289176663 | 8.071219978850555e-13\n", - "0.5 | 0.01 | 0.9715770597539694 | 980258980477233.9 | 0.21766121804428137 | 2726.465746690786 | 6.053970095655861e-13\n", - "0.5 | 0.02 | 1.0046221692212978 | 980258980477233.9 | 0.21766121804428137 | 1363.7328733473048 | 3.0280952708568005e-13\n", - "0.5 | 0.05 | 1.1047795554227993 | 980258980477233.9 | 0.21766121804428137 | 546.0931493393778 | 1.2125703759732826e-13\n", - "0.5 | 0.075 | 1.158142451657815 | 980258980477233.9 | 0.21766121804428137 | 364.395432892986 | 8.091203993320883e-14\n", - "0.5 | 0.1 | 1.1943040342674953 | 980258980477233.9 | 0.21766121804428137 | 273.5465746697651 | 6.073954110114357e-14\n", - "0.5 | 0.2 | 1.2650403625958067 | 980258980477233.9 | 0.21766121804428137 | 137.27328733490157 | 3.048079285303852e-14\n", - "0.5 | 0.5 | 1.3129959855689677 | 980258980477233.9 | 0.21766121804428137 | 55.50931493396519 | 1.2325543904171442e-14\n", - "0.5 | 0.75 | 1.320563153538016 | 980258980477233.9 | 0.21766121804428137 | 37.3395432893108 | 8.29104413775612e-15\n", - "0.5 | 1 | 1.322880946564286 | 980258980477233.9 | 0.21766121804428137 | 28.254657466983357 | 6.273794254548405e-15\n", - "0.75 | 1e-05 | 0.2224499701913163 | 3532627464900.7993 | 0.0007844008697912129 | 2442727.9074404994 | 5.423945531469741e-10\n", - "0.75 | 2e-05 | 0.20530606055267492 | 3532627464900.7993 | 0.0007844008697912129 | 1221364.876011224 | 2.711974813632221e-10\n", - "0.75 | 5e-05 | 0.2085533760821295 | 3532627464900.7993 | 0.0007844008697912129 | 488546.6517436233 | 1.084791482738597e-10\n", - "0.75 | 7.5e-05 | 0.21981047089552586 | 3532627464900.7993 | 0.0007844008697912129 | 325698.1161762267 | 7.23195095311772e-11\n", - "0.75 | 0.0001 | 0.22929183435173858 | 3532627464900.7993 | 0.0007844008697912129 | 244273.84276196134 | 5.4239688909598923e-11\n", - "0.75 | 0.0002 | 0.25206556710849465 | 3532627464900.7993 | 0.0007844008697912129 | 122137.4256038074 | 2.7119956414757816e-11\n", - "0.75 | 0.0005 | 0.29114658168992563 | 3532627464900.7993 | 0.0007844008697912129 | 48855.571254952665 | 1.084811601769268e-11\n", - "0.75 | 0.00075 | 0.32523987895143874 | 3532627464900.7993 | 0.0007844008697912129 | 32570.714320096464 | 7.232151393331879e-12\n", - "0.75 | 0.001 | 0.35990828966432387 | 3532627464900.7993 | 0.0007844008697912129 | 24428.285796379587 | 5.424169068652859e-12\n", - "0.75 | 0.002 | 0.4758051392903338 | 3532627464900.7993 | 0.0007844008697912129 | 12214.642940416235 | 2.7121955660050457e-12\n", - "0.75 | 0.005 | 0.6515260879776209 | 3532627464900.7993 | 0.0007844008697912129 | 4886.457186300838 | 1.0850114554152496e-12\n", - "0.75 | 0.0075 | 0.7197356993725796 | 3532627464900.7993 | 0.0007844008697912129 | 3257.9714590352405 | 7.234149854785078e-13\n", - "0.75 | 0.01 | 0.7617582568840171 | 3532627464900.7993 | 0.0007844008697912129 | 2443.7285948394756 | 5.426167503851333e-13\n", - "0.75 | 0.02 | 0.8408992984214783 | 3532627464900.7993 | 0.0007844008697912129 | 1222.3642978419875 | 2.714193975887874e-13\n", - "0.75 | 0.05 | 0.9210906761308861 | 3532627464900.7993 | 0.0007844008697912129 | 489.5457192381444 | 1.0870098582097407e-13\n", - "0.75 | 0.075 | 0.9624492708631208 | 3532627464900.7993 | 0.0007844008697912129 | 326.69714617377673 | 7.254133875229146e-14\n", - "0.75 | 0.1 | 0.9968207350967749 | 3532627464900.7993 | 0.0007844008697912129 | 245.2728596359627 | 5.4461515216699997e-14\n", - "0.75 | 0.2 | 1.0921914353907192 | 3532627464900.7993 | 0.0007844008697912129 | 123.13642982220418 | 2.734177991175017e-14\n", - "0.75 | 0.5 | 1.2113887072395224 | 3532627464900.7993 | 0.0007844008697912129 | 49.85457192989512 | 1.1069938727880118e-14\n", - "0.75 | 0.75 | 1.2502765485666594 | 3532627464900.7993 | 0.0007844008697912129 | 33.56971462008021 | 7.453974020261758e-15\n", - "0.75 | 1 | 1.2715113409155712 | 3532627464900.7993 | 0.0007844008697912129 | 25.427285965116454 | 5.645991666440076e-15\n", - "1.0 | 1e-05 | 0.3201790446663786 | 63914578843.30032 | 1.4191887408210385e-05 | 2130369.1131565426 | 4.730369680753338e-10\n", - "1.0 | 2e-05 | 0.30074023142892836 | 63914578843.30032 | 1.4191887408210385e-05 | 1065202.8089900897 | 2.3652253688723805e-10\n", - "1.0 | 5e-05 | 0.26987296047072223 | 63914578843.30032 | 1.4191887408210385e-05 | 426085.98427822563 | 9.461009404315171e-11\n", - "1.0 | 7.5e-05 | 0.255971387187336 | 63914578843.30032 | 1.4191887408210385e-05 | 284058.28740671236 | 6.307361020290444e-11\n", - "1.0 | 0.0001 | 0.24652041427480517 | 63914578843.30032 | 1.4191887408210385e-05 | 213044.20226336323 | 4.730531572313695e-11\n", - "1.0 | 0.0002 | 0.2298542106226902 | 63914578843.30032 | 1.4191887408210385e-05 | 106522.77866349413 | 2.365280830385211e-11\n", - "1.0 | 0.0005 | 0.23919407237621151 | 63914578843.30032 | 1.4191887408210385e-05 | 42609.754073134274 | 9.461266009121844e-12\n", - "1.0 | 0.00075 | 0.25539979901780313 | 63914578843.30032 | 1.4191887408210385e-05 | 28406.842361022733 | 6.307586089220936e-12\n", - "1.0 | 0.001 | 0.2695794334088568 | 63914578843.30032 | 1.4191887408210385e-05 | 21305.384137872177 | 4.730745603669856e-12\n", - "1.0 | 0.002 | 0.31063876807450386 | 63914578843.30032 | 1.4191887408210385e-05 | 10653.193844259556 | 2.3654842183383887e-12\n", - "1.0 | 0.005 | 0.3936609595496504 | 63914578843.30032 | 1.4191887408210385e-05 | 4261.877963782238 | 9.46327008706724e-13\n", - "1.0 | 0.0075 | 0.4469915900961469 | 63914578843.30032 | 1.4191887408210385e-05 | 2841.5853723107916 | 6.309587013554977e-13\n", - "1.0 | 0.01 | 0.49016736300399305 | 63914578843.30032 | 1.4191887408210385e-05 | 2131.4390529041125 | 4.732745424238766e-13\n", - "1.0 | 0.02 | 0.6017532446914196 | 63914578843.30032 | 1.4191887408210385e-05 | 1066.21954420533 | 2.3674829745641947e-13\n", - "1.0 | 0.05 | 0.7405769938099301 | 63914578843.30032 | 1.4191887408210385e-05 | 427.0878219429178 | 9.48325466916073e-14\n", - "1.0 | 0.075 | 0.7971634633262175 | 63914578843.30032 | 1.4191887408210385e-05 | 285.05854859317236 | 6.32957128028738e-14\n", - "1.0 | 0.1 | 0.8372760302121777 | 63914578843.30032 | 1.4191887408210385e-05 | 214.04391168158926 | 4.752729580594678e-14\n", - "1.0 | 0.2 | 0.9403435142235629 | 63914578843.30032 | 1.4191887408210385e-05 | 107.52195601832736 | 2.387467024485609e-14\n", - "1.0 | 0.5 | 1.0888716539372494 | 63914578843.30032 | 1.4191887408210385e-05 | 43.60878244993884 | 9.68309487035831e-15\n", - "1.0 | 0.75 | 1.1499813978771314 | 63914578843.30032 | 1.4191887408210385e-05 | 29.40585497293815 | 6.529411449948819e-15\n", - "1.0 | 1 | 1.1884279444711843 | 63914578843.30032 | 1.4191887408210385e-05 | 22.304391232070714 | 4.952569739218474e-15\n", - "2.0 | 1e-05 | 0.3771752708028818 | 4995157.201079173 | 1.1091477072520501e-09 | 931785.0004902228 | 2.0689783230892163e-10\n", - "2.0 | 2e-05 | 0.3655473904437711 | 4995157.201079173 | 1.1091477072520501e-09 | 513815.8738667831 | 1.1409004271695957e-10\n", - "2.0 | 5e-05 | 0.3556659370171325 | 4995157.201079173 | 1.1091477072520501e-09 | 219045.86744179655 | 4.8637953096574494e-11\n", - "2.0 | 7.5e-05 | 0.3535036870211835 | 4995157.201079173 | 1.1091477072520501e-09 | 148197.11674353815 | 3.290637023834767e-11\n", - "2.0 | 0.0001 | 0.3528173534980046 | 4995157.201079173 | 1.1091477072520501e-09 | 111978.62460515015 | 2.4864249460498955e-11\n", - "2.0 | 0.0002 | 0.35343475255308104 | 4995157.201079173 | 1.1091477072520501e-09 | 56624.48346399592 | 1.2573161059846943e-11\n", - "2.0 | 0.0005 | 0.3550242415453222 | 4995157.201079173 | 1.1091477072520501e-09 | 22805.49604335586 | 5.063837359066316e-12\n", - "2.0 | 0.00075 | 0.35371635738709434 | 4995157.201079173 | 1.1091477072520501e-09 | 15227.168148581388 | 3.3811105356787747e-12\n", - "2.0 | 0.001 | 0.35159094176904937 | 4995157.201079173 | 1.1091477072520501e-09 | 11429.335035838723 | 2.537822182588628e-12\n", - "2.0 | 0.002 | 0.3437425980245058 | 4995157.201079173 | 1.1091477072520501e-09 | 5721.711678609065 | 1.2704752091716875e-12\n", - "2.0 | 0.005 | 0.3384378232843943 | 4995157.201079173 | 1.1091477072520501e-09 | 2290.858149957779 | 5.086726928466632e-13\n", - "2.0 | 0.0075 | 0.34349118443995413 | 4995157.201079173 | 1.1091477072520501e-09 | 1527.8054038403636 | 3.3924094729806145e-13\n", - "2.0 | 0.01 | 0.35145093865438215 | 4995157.201079173 | 1.1091477072520501e-09 | 1146.1915618887438 | 2.545056525279907e-13\n", - "2.0 | 0.02 | 0.3879545312712362 | 4995157.201079173 | 1.1091477072520501e-09 | 573.6614252411312 | 1.2737842452839735e-13\n", - "2.0 | 0.05 | 0.47107485080566824 | 4995157.201079173 | 1.1091477072520501e-09 | 230.08032761773362 | 5.108809544690143e-14\n", - "2.0 | 0.075 | 0.5172647100633155 | 4995157.201079173 | 1.1091477072520501e-09 | 153.72255305569738 | 3.413326356131949e-14\n", - "2.0 | 0.1 | 0.5526131904880445 | 4995157.201079173 | 1.1091477072520501e-09 | 115.54279030330187 | 2.5655653224832402e-14\n", - "2.0 | 0.2 | 0.6463104722195465 | 4995157.201079173 | 1.1091477072520501e-09 | 58.27205179784529 | 1.2938994719623518e-14\n", - "2.0 | 0.5 | 0.7972439807925051 | 4995157.201079173 | 1.1091477072520501e-09 | 23.908978317115814 | 5.308859644585121e-15\n", - "2.0 | 0.75 | 0.8774340306364916 | 4995157.201079173 | 1.1091477072520501e-09 | 16.272675559455422 | 3.613259815672492e-15\n", - "2.0 | 1 | 0.9386486865700188 | 4995157.201079173 | 1.1091477072520501e-09 | 12.454515425128454 | 2.765457957105356e-15\n", - "5.0 | 1e-05 | 0.7290963744458004 | 555.636804006467 | 1.23376154627423e-13 | 554.9108780960391 | 1.2321496669543722e-13\n", - "5.0 | 2e-05 | 0.729116226423653 | 555.636804006467 | 1.23376154627423e-13 | 554.1868499306469 | 1.230542001474981e-13\n", - "5.0 | 5e-05 | 0.7291757523892822 | 555.636804006467 | 1.23376154627423e-13 | 552.0260777777667 | 1.225744123484788e-13\n", - "5.0 | 7.5e-05 | 0.729225323038207 | 555.636804006467 | 1.23376154627423e-13 | 550.2382870339197 | 1.2217744305907268e-13\n", - "5.0 | 0.0001 | 0.7292748625029514 | 555.636804006467 | 1.23376154627423e-13 | 548.462059660397 | 1.217830413536618e-13\n", - "5.0 | 0.0002 | 0.7294727088701933 | 555.636804006467 | 1.23376154627423e-13 | 541.470568779268 | 1.2023061852312455e-13\n", - "5.0 | 0.0005 | 0.7300632679255015 | 555.636804006467 | 1.23376154627423e-13 | 521.5279990898952 | 1.1580247851525786e-13\n", - "5.0 | 0.00075 | 0.7305520056062911 | 555.636804006467 | 1.23376154627423e-13 | 505.99987151524925 | 1.1235454156272012e-13\n", - "5.0 | 0.001 | 0.731037681432382 | 555.636804006467 | 1.23376154627423e-13 | 491.37136147682907 | 1.0910635983059726e-13\n", - "5.0 | 0.002 | 0.7329502858896307 | 555.636804006467 | 1.23376154627423e-13 | 440.4522822110097 | 9.780005299187204e-14\n", - "5.0 | 0.005 | 0.7384152522426066 | 555.636804006467 | 1.23376154627423e-13 | 336.0726653659447 | 7.462312220728345e-14\n", - "5.0 | 0.0075 | 0.742685910400422 | 555.636804006467 | 1.23376154627423e-13 | 280.7085388287958 | 6.232981660332277e-14\n", - "5.0 | 0.01 | 0.7467295294070299 | 555.636804006467 | 1.23376154627423e-13 | 241.04573230445237 | 5.3522904398406983e-14\n", - "5.0 | 0.02 | 0.7610911745523715 | 555.636804006467 | 1.23376154627423e-13 | 154.16834802636305 | 3.4232249929458513e-14\n", - "5.0 | 0.05 | 0.7938460924485602 | 555.636804006467 | 1.23376154627423e-13 | 74.4352551993876 | 1.6527946833241902e-14\n", - "5.0 | 0.075 | 0.815067856911206 | 555.636804006467 | 1.23376154627423e-13 | 52.21726682813808 | 1.1594562383118863e-14\n", - "5.0 | 0.1 | 0.8333792535955515 | 555.636804006467 | 1.23376154627423e-13 | 40.32070591377204 | 8.952995214921886e-15\n", - "5.0 | 0.2 | 0.8919888448352009 | 555.636804006467 | 1.23376154627423e-13 | 21.382869766048398 | 4.747950869365613e-15\n", - "5.0 | 0.5 | 1.0120030229593937 | 555.636804006467 | 1.23376154627423e-13 | 9.336977975122132 | 2.0732255856797125e-15\n", - "5.0 | 0.75 | 1.0827038377848375 | 555.636804006467 | 1.23376154627423e-13 | 6.585973686347976 | 1.4623799252317884e-15\n", - "5.0 | 1 | 1.1385693673981578 | 555.636804006467 | 1.23376154627423e-13 | 5.2000553828745195 | 1.1546442430786551e-15\n", - "7.5 | 1e-05 | 1.1579727162941067 | 65.42062274366073 | 1.4526296331065664e-14 | 65.40750197167736 | 1.4523382934434306e-14\n", - "7.5 | 2e-05 | 1.157977684282372 | 65.42062274366073 | 1.4526296331065664e-14 | 65.39438654331288 | 1.452047072432469e-14\n", - "7.5 | 5e-05 | 1.1579925874856083 | 65.42062274366073 | 1.4526296331065664e-14 | 65.35507228730188 | 1.4511741205880808e-14\n", - "7.5 | 7.5e-05 | 1.1580050059490283 | 65.42062274366073 | 1.4526296331065664e-14 | 65.32234705876328 | 1.4504474745438874e-14\n", - "7.5 | 0.0001 | 1.1580174236191763 | 65.42062274366073 | 1.4526296331065664e-14 | 65.28965509555218 | 1.449721567138344e-14\n", - "7.5 | 0.0002 | 1.1580670863672333 | 65.42062274366073 | 1.4526296331065664e-14 | 65.1592188836095 | 1.446825301423471e-14\n", - "7.5 | 0.0005 | 1.158215998465057 | 65.42062274366073 | 1.4526296331065664e-14 | 64.77106671380919 | 1.4382065919040608e-14\n", - "7.5 | 0.00075 | 1.1583400046414278 | 65.42062274366073 | 1.4526296331065664e-14 | 64.45117618545733 | 1.431103595305346e-14\n", - "7.5 | 0.001 | 1.1584639315271195 | 65.42062274366073 | 1.4526296331065664e-14 | 64.13447892974611 | 1.424071503602822e-14\n", - "7.5 | 0.002 | 1.1589588465897578 | 65.42062274366073 | 1.4526296331065664e-14 | 62.89868505684161 | 1.3966313673750365e-14\n", - "7.5 | 0.005 | 1.1604360020625992 | 65.42062274366073 | 1.4526296331065664e-14 | 59.46547650580346 | 1.320398823740986e-14\n", - "7.5 | 0.0075 | 1.161658314493383 | 65.42062274366073 | 1.4526296331065664e-14 | 56.88254043457721 | 1.2630461217927815e-14\n", - "7.5 | 0.01 | 1.162872831495904 | 65.42062274366073 | 1.4526296331065664e-14 | 54.518170529658384 | 1.2105465636493481e-14\n", - "7.5 | 0.02 | 1.1676546346371224 | 65.42062274366073 | 1.4526296331065664e-14 | 46.77181528449087 | 1.0385429246471316e-14\n", - "7.5 | 0.05 | 1.1813220595206992 | 65.42062274366073 | 1.4526296331065664e-14 | 32.913913723848474 | 7.3083569693485e-15\n", - "7.5 | 0.075 | 1.192025682675384 | 65.42062274366073 | 1.4526296331065664e-14 | 26.48423006114886 | 5.8806804006714365e-15\n", - "7.5 | 0.1 | 1.2021902002798601 | 65.42062274366073 | 1.4526296331065664e-14 | 22.210881996573836 | 4.931806517965728e-15\n", - "7.5 | 0.2 | 1.2385142386896435 | 65.42062274366073 | 1.4526296331065664e-14 | 13.695471638717006 | 3.0410055892808887e-15\n", - "7.5 | 0.5 | 1.3202321940460664 | 65.42062274366073 | 1.4526296331065664e-14 | 6.759169742060505 | 1.5008371749970505e-15\n", - "7.5 | 0.75 | 1.3692070811077144 | 65.42062274366073 | 1.4526296331065664e-14 | 4.957375592564133 | 1.1007585049158958e-15\n", - "7.5 | 1 | 1.4074503211973 | 65.42062274366073 | 1.4526296331065664e-14 | 4.014324376831694 | 8.91359070294516e-16\n" + "0.001 | 7.5e-05 | 1.3203184940698338 | 5.157729967665246e+18 | 1145.246112980224 | 400000.8399173096 | 8.88180284691197e-11\n", + "0.001 | 0.0001 | 1.3203209127586129 | 5.157729967665246e+18 | 1145.246112980224 | 300000.8799380822 | 6.661357686301321e-11\n", + "0.001 | 0.0002 | 1.3204538291266175 | 5.157729967665246e+18 | 1145.246112980224 | 150000.93996807796 | 3.330689945359521e-11\n", + "0.001 | 0.0005 | 1.3206180157499612 | 5.157729967665246e+18 | 1145.246112980224 | 60000.97598693792 | 1.3322893008135921e-11\n", + "0.001 | 0.00075 | 1.3206637488446704 | 5.157729967665246e+18 | 1145.246112980224 | 40000.983991246234 | 8.882002686948772e-12\n", + "0.001 | 0.001 | 1.3206877851838226 | 5.157729967665246e+18 | 1145.246112980224 | 30000.98799345863 | 6.66155752636813e-12\n", + "0.001 | 0.002 | 1.320724621157106 | 5.157729967665246e+18 | 1145.246112980224 | 15000.993996717698 | 3.3308897854839476e-12\n", + "0.001 | 0.005 | 1.3207441010685657 | 5.157729967665246e+18 | 1145.246112980224 | 6000.997598684582 | 1.3324891409559796e-12\n", + "0.001 | 0.0075 | 1.3207457685491917 | 5.157729967665246e+18 | 1145.246112980224 | 4000.99839912232 | 8.884001088387982e-13\n", + "0.001 | 0.01 | 1.320744737958569 | 5.157729967665246e+18 | 1145.246112980224 | 3000.998799341891 | 6.663555927803635e-13\n", + "0.001 | 0.02 | 1.3207338807217237 | 5.157729967665246e+18 | 1145.246112980224 | 1500.9993996709493 | 3.332888186926451e-13\n", + "0.001 | 0.05 | 1.3206922424549334 | 5.157729967665246e+18 | 1145.246112980224 | 600.9997598683192 | 1.3344875423999962e-13\n", + "0.001 | 0.075 | 1.3206569542287017 | 5.157729967665246e+18 | 1145.246112980224 | 400.99983991221217 | 8.903985102830795e-14\n", + "0.001 | 0.1 | 1.320622227525565 | 5.157729967665246e+18 | 1145.246112980224 | 300.99987993415647 | 6.683539942246163e-14\n", + "0.001 | 0.2 | 1.320490925394551 | 5.157729967665246e+18 | 1145.246112980224 | 150.9999399670778 | 3.3528722013693237e-14\n", + "0.001 | 0.5 | 1.3201734897566475 | 5.157729967665246e+18 | 1145.246112980224 | 60.99997598683111 | 1.354471556843231e-14\n", + "0.001 | 0.75 | 1.3199938819612358 | 5.157729967665246e+18 | 1145.246112980224 | 40.99998399122079 | 9.103825247263228e-15\n", + "0.001 | 1 | 1.3198876280547236 | 5.157729967665246e+18 | 1145.246112980224 | 30.99998799341556 | 6.883380086678672e-15\n", + "0.002 | 1e-05 | 1.3623878222762442 | 5.267415428535686e+18 | 1169.601177805221 | 2999996.197724369 | 6.661329705003036e-10\n", + "0.002 | 2e-05 | 1.3439946308776922 | 5.267415428535686e+18 | 1169.601177805221 | 1499998.5987321674 | 3.330665962435847e-10\n", + "0.002 | 5e-05 | 1.3272246485702754 | 5.267415428535686e+18 | 1169.601177805221 | 600000.0394937723 | 1.3322677172439786e-10\n", + "0.002 | 7.5e-05 | 1.3235440099210103 | 5.267415428535686e+18 | 1169.601177805221 | 400000.3596555092 | 8.881792182957797e-11\n", + "0.002 | 0.0001 | 1.3220037168858698 | 5.267415428535686e+18 | 1169.601177805221 | 300000.5197420093 | 6.661349688341851e-11\n", + "0.002 | 0.0002 | 1.320488086827574 | 5.267415428535686e+18 | 1169.601177805221 | 150000.75986911857 | 3.3306859463592924e-11\n", + "0.002 | 0.0005 | 1.3203538501482435 | 5.267415428535686e+18 | 1169.601177805221 | 60000.90394755304 | 1.3322877012179166e-11\n", + "0.002 | 0.00075 | 1.3204389361297004 | 5.267415428535686e+18 | 1169.601177805221 | 40000.935965030905 | 8.881992022986763e-12\n", + "0.002 | 0.001 | 1.3205000397653752 | 5.267415428535686e+18 | 1169.601177805221 | 30000.951973763542 | 6.661549528389164e-12\n", + "0.002 | 0.002 | 1.3206158464557667 | 5.267415428535686e+18 | 1169.601177805221 | 15000.975986864521 | 3.3308857864932143e-12\n", + "0.002 | 0.005 | 1.3206969267656237 | 5.267415428535686e+18 | 1169.601177805221 | 6000.990394744528 | 1.3324875413599564e-12\n", + "0.002 | 0.0075 | 1.320713792901136 | 5.267415428535686e+18 | 1169.601177805221 | 4000.9935964959072 | 8.883990424415139e-13\n", + "0.002 | 0.01 | 1.320720571503768 | 5.267415428535686e+18 | 1169.601177805221 | 3000.9951973718244 | 6.663547929823431e-13\n", + "0.002 | 0.02 | 1.3207216922930962 | 5.267415428535686e+18 | 1169.601177805221 | 1500.9975986858778 | 3.3328841879362644e-13\n", + "0.002 | 0.05 | 1.3206873938685024 | 5.267415428535686e+18 | 1169.601177805221 | 600.9990394743188 | 1.3344859428039842e-13\n", + "0.002 | 0.075 | 1.3206537523643624 | 5.267415428535686e+18 | 1169.601177805221 | 400.99935964954386 | 8.903974438857351e-14\n", + "0.002 | 0.1 | 1.3206198511578058 | 5.267415428535686e+18 | 1169.601177805221 | 300.9995197371585 | 6.683531944266152e-14\n", + "0.002 | 0.2 | 1.3204897899439867 | 5.267415428535686e+18 | 1169.601177805221 | 150.99975986857828 | 3.352868202379306e-14\n", + "0.002 | 0.5 | 1.3201731005146327 | 5.267415428535686e+18 | 1169.601177805221 | 60.99990394743119 | 1.3544699572472217e-14\n", + "0.002 | 0.75 | 1.3199936589276795 | 5.267415428535686e+18 | 1169.601177805221 | 40.99993596495411 | 9.103814583289818e-15\n", + "0.002 | 1 | 1.3198874884067833 | 5.267415428535686e+18 | 1169.601177805221 | 30.99995197371557 | 6.883372088698619e-15\n", + "0.005 | 1e-05 | 1.398281393975959 | 4.737718716102057e+19 | 10519.848805628078 | 2999970.984013021 | 6.661273719317287e-10\n", + "0.005 | 2e-05 | 1.3887224316240243 | 4.737718716102057e+19 | 10519.848805628078 | 1499985.9920165162 | 3.330637969903885e-10\n", + "0.005 | 5e-05 | 1.3683630926273394 | 4.737718716102057e+19 | 10519.848805628078 | 599994.9967708938 | 1.3322565201498855e-10\n", + "0.005 | 7.5e-05 | 1.3574022549715115 | 4.737718716102057e+19 | 10519.848805628078 | 399996.9978457238 | 8.881717535785234e-11\n", + "0.005 | 0.0001 | 1.349656526521127 | 4.737718716102057e+19 | 10519.848805628078 | 299997.9983857735 | 6.661293702986926e-11\n", + "0.005 | 0.0002 | 1.3338899892282914 | 4.737718716102057e+19 | 10519.848805628078 | 149999.49919096043 | 3.330657953680936e-11\n", + "0.005 | 0.0005 | 1.32313146061549 | 4.737718716102057e+19 | 10519.848805628078 | 60000.399676413464 | 1.3322765041493204e-11\n", + "0.005 | 0.00075 | 1.3213658709059986 | 4.737718716102057e+19 | 10519.848805628078 | 40000.59978412415 | 8.881917375830139e-12\n", + "0.005 | 0.001 | 1.3207434325086527 | 4.737718716102057e+19 | 10519.848805628078 | 30000.69983809163 | 6.661493543023507e-12\n", + "0.005 | 0.002 | 1.3203109441737066 | 4.737718716102057e+19 | 10519.848805628078 | 15000.849919033793 | 3.3308577938115465e-12\n", + "0.005 | 0.005 | 1.3204473592563999 | 4.737718716102057e+19 | 10519.848805628078 | 6000.939967612918 | 1.3324763442874405e-12\n", + "0.005 | 0.0075 | 1.3205266147948884 | 4.737718716102057e+19 | 10519.848805628078 | 4000.95997840818 | 8.883915777265062e-13\n", + "0.005 | 0.01 | 1.320572251134835 | 4.737718716102057e+19 | 10519.848805628078 | 3000.9699838059914 | 6.66349194446079e-13\n", + "0.005 | 0.02 | 1.3206416674457788 | 4.737718716102057e+19 | 10519.848805628078 | 1500.984991902906 | 3.3328561952548206e-13\n", + "0.005 | 0.05 | 1.320654306255278 | 4.737718716102057e+19 | 10519.848805628078 | 600.9939967611572 | 1.334474745731467e-13\n", + "0.005 | 0.075 | 1.3206317178276614 | 4.737718716102057e+19 | 10519.848805628078 | 400.9959978407689 | 8.903899791707224e-14\n", + "0.005 | 0.1 | 1.3206034290426676 | 4.737718716102057e+19 | 10519.848805628078 | 300.9969983805781 | 6.683475958903575e-14\n", + "0.005 | 0.2 | 1.3204818942961338 | 4.737718716102057e+19 | 10519.848805628078 | 150.99849919028682 | 3.35284020969799e-14\n", + "0.005 | 0.5 | 1.3201703838941494 | 4.737718716102057e+19 | 10519.848805628078 | 60.99939967611469 | 1.354458760174697e-14\n", + "0.005 | 0.75 | 1.3199921011576619 | 4.737718716102057e+19 | 10519.848805628078 | 40.99959978407637 | 9.103739936139637e-15\n", + "0.005 | 1 | 1.3198865127506894 | 4.737718716102057e+19 | 10519.848805628078 | 30.999699838057264 | 6.883316103335982e-15\n", + "0.0075 | 1e-05 | 1.4043005938705444 | 1.7372731761309476e+18 | 385.7521360408506 | 2999933.4645628347 | 6.66119040940235e-10\n", + "0.0075 | 2e-05 | 1.3994032633189917 | 1.7372731761309476e+18 | 385.7521360408506 | 1499967.232282145 | 3.3305963149258154e-10\n", + "0.0075 | 5e-05 | 1.3868056479481081 | 1.7372731761309476e+18 | 385.7521360408506 | 599987.4928880802 | 1.332239858182938e-10\n", + "0.0075 | 7.5e-05 | 1.3783815287733572 | 1.7372731761309476e+18 | 385.7521360408506 | 399991.9952527292 | 8.881606455906726e-11\n", + "0.0075 | 0.0001 | 1.3714017808043564 | 1.7372731761309476e+18 | 385.7521360408506 | 299994.24643613514 | 6.661210392969411e-11\n", + "0.0075 | 0.0002 | 1.3527834516570942 | 1.7372731761309476e+18 | 385.7521360408506 | 149997.62321911624 | 3.330616298738237e-11\n", + "0.0075 | 0.0005 | 1.3320471009304675 | 1.7372731761309476e+18 | 385.7521360408506 | 59999.64928707162 | 1.3322598421588254e-11\n", + "0.0075 | 0.00075 | 1.3264972569268536 | 1.7372731761309476e+18 | 385.7521360408506 | 40000.09952468137 | 8.881806295919807e-12\n", + "0.0075 | 0.001 | 1.3239147582316049 | 1.7372731761309476e+18 | 385.7521360408506 | 30000.324643486318 | 6.6614102330856e-12\n", + "0.0075 | 0.002 | 1.3209497744222536 | 1.7372731761309476e+18 | 385.7521360408506 | 15000.66232173369 | 3.33081613884316e-12\n", + "0.0075 | 0.005 | 1.3203066752602197 | 1.7372731761309476e+18 | 385.7521360408506 | 6000.864928690636 | 1.3324596822995884e-12\n", + "0.0075 | 0.0075 | 1.3203572891448458 | 1.7372731761309476e+18 | 385.7521360408506 | 4000.9099524600265 | 8.883804697346124e-13\n", + "0.0075 | 0.01 | 1.3204149453606102 | 1.7372731761309476e+18 | 385.7521360408506 | 3000.9324643450964 | 6.663408634522075e-13\n", + "0.0075 | 0.02 | 1.3205391985944166 | 1.7372731761309476e+18 | 385.7521360408506 | 1500.9662321724334 | 3.332814540285408e-13\n", + "0.0075 | 0.05 | 1.3206077953595614 | 1.7372731761309476e+18 | 385.7521360408506 | 600.9864928689656 | 1.334458083743696e-13\n", + "0.0075 | 0.075 | 1.3206001441008735 | 1.7372731761309476e+18 | 385.7521360408506 | 400.9909952459681 | 8.90378871178861e-14\n", + "0.0075 | 0.1 | 1.3205796752193628 | 1.7372731761309476e+18 | 385.7521360408506 | 300.9932464344763 | 6.683392648964588e-14\n", + "0.0075 | 0.2 | 1.3204703143593972 | 1.7372731761309476e+18 | 385.7521360408506 | 150.99662321723713 | 3.352798554728523e-14\n", + "0.0075 | 0.5 | 1.320166367422988 | 1.7372731761309476e+18 | 385.7521360408506 | 60.9986492868945 | 1.3544420981869032e-14\n", + "0.0075 | 0.75 | 1.3199897942613736 | 1.7372731761309476e+18 | 385.7521360408506 | 40.99909952459634 | 9.103628856221033e-15\n", + "0.0075 | 1 | 1.3198850669656137 | 1.7372731761309476e+18 | 385.7521360408506 | 30.9993246434473 | 6.8832327933970424e-15\n", + "0.01 | 1e-05 | 1.406199206150202 | 9.15881273337224e+18 | 2033.664954963985 | 2999880.9389639026 | 6.661073779143717e-10\n", + "0.01 | 2e-05 | 1.4035355143548909 | 9.15881273337224e+18 | 2033.664954963985 | 1499940.969350007 | 3.330537999501908e-10\n", + "0.01 | 5e-05 | 1.395627182514651 | 9.15881273337224e+18 | 2033.664954963985 | 599976.9877232183 | 1.3322165320311236e-10\n", + "0.01 | 7.5e-05 | 1.3897600752448445 | 9.15881273337224e+18 | 2033.664954963985 | 399984.99181388726 | 8.881450948325648e-11\n", + "0.01 | 0.0001 | 1.384516426828877 | 9.15881273337224e+18 | 2033.664954963985 | 299988.99385887675 | 6.661093762325193e-11\n", + "0.01 | 0.0002 | 1.3683402006562813 | 9.15881273337224e+18 | 2033.664954963985 | 149994.99692920924 | 3.330557983387755e-11\n", + "0.01 | 0.0005 | 1.3439837129674972 | 9.15881273337224e+18 | 2033.664954963985 | 59998.59877129853 | 1.3322365160228451e-11\n", + "0.01 | 0.00075 | 1.3350937119914852 | 9.15881273337224e+18 | 2033.664954963985 | 39999.399180849905 | 8.881650788350438e-12\n", + "0.01 | 0.001 | 1.3301839804871247 | 9.15881273337224e+18 | 2033.664954963985 | 29999.799385623995 | 6.661293602411077e-12\n", + "0.01 | 0.002 | 1.3231293127499324 | 9.15881273337224e+18 | 2033.664954963985 | 15000.399692799341 | 3.3307578235051907e-12\n", + "0.01 | 0.005 | 1.3204830758443646 | 9.15881273337224e+18 | 2033.664954963985 | 6000.759877119514 | 1.332436356164982e-12\n", + "0.01 | 0.0075 | 1.32031003716702 | 9.15881273337224e+18 | 2033.664954963985 | 4000.839918079025 | 8.883649189781518e-13\n", + "0.01 | 0.01 | 1.3203089432056967 | 9.15881273337224e+18 | 2033.664954963985 | 3000.8799385588486 | 6.663292003847518e-13\n", + "0.01 | 0.02 | 1.3204273423452233 | 9.15881273337224e+18 | 2033.664954963985 | 1500.9399692794002 | 3.3327562249483305e-13\n", + "0.01 | 0.05 | 1.3205480387004707 | 9.15881273337224e+18 | 2033.664954963985 | 600.9759877117588 | 1.3344347576088794e-13\n", + "0.01 | 0.075 | 1.3205583477737106 | 9.15881273337224e+18 | 2033.664954963985 | 400.98399180783207 | 8.903633204223206e-14\n", + "0.01 | 0.1 | 1.320547778680883 | 9.15881273337224e+18 | 2033.664954963985 | 300.98799385587427 | 6.683276018290535e-14\n", + "0.01 | 0.2 | 1.320454441184348 | 9.15881273337224e+18 | 2033.664954963985 | 150.9939969279356 | 3.352740239391485e-14\n", + "0.01 | 0.5 | 1.3201607967208797 | 9.15881273337224e+18 | 2033.664954963985 | 60.99759877117423 | 1.3544187720520958e-14\n", + "0.01 | 0.75 | 1.3199865871021212 | 9.15881273337224e+18 | 2033.664954963985 | 40.99839918078277 | 9.103473348655637e-15\n", + "0.01 | 1 | 1.3198830550759415 | 9.15881273337224e+18 | 2033.664954963985 | 30.998799385587105 | 6.883116162722992e-15\n", + "0.02 | 1e-05 | 1.3991967821727724 | 4.596172751931884e+18 | 1020.5553628699091 | 2999520.8077985262 | 6.660274127320345e-10\n", + "0.02 | 2e-05 | 1.4033527820031186 | 4.596172751931884e+18 | 1020.5553628699091 | 1499760.9038967583 | 3.3301381738776355e-10\n", + "0.02 | 5e-05 | 1.404054765908641 | 4.596172751931884e+18 | 1020.5553628699091 | 599904.9615311394 | 1.3320566017574796e-10\n", + "0.02 | 7.5e-05 | 1.4028711082085463 | 4.596172751931884e+18 | 1020.5553628699091 | 399936.9743506041 | 8.880384746459227e-11\n", + "0.02 | 0.0001 | 1.40140918974444 | 4.596172751931884e+18 | 1020.5553628699091 | 299952.98076160415 | 6.660294110929591e-11\n", + "0.02 | 0.0002 | 1.3952513762990684 | 4.596172751931884e+18 | 1020.5553628699091 | 149976.99038130237 | 3.3301581577061505e-11\n", + "0.02 | 0.0005 | 1.3796701173933874 | 4.596172751931884e+18 | 1020.5553628699091 | 59991.39615212076 | 1.3320765857498698e-11\n", + "0.02 | 0.00075 | 1.3699232085654953 | 4.596172751931884e+18 | 1020.5553628699091 | 39994.5974347125 | 8.880584586526408e-12\n", + "0.02 | 0.001 | 1.362292110296499 | 4.596172751931884e+18 | 1020.5553628699091 | 29996.198076027962 | 6.660493951044613e-12\n", + "0.02 | 0.002 | 1.3439496124691088 | 4.596172751931884e+18 | 1020.5553628699091 | 14998.599038011469 | 3.3303579978242113e-12\n", + "0.02 | 0.005 | 1.3272089427378742 | 4.596172751931884e+18 | 1020.5553628699091 | 6000.039615202918 | 1.3322764258922688e-12\n", + "0.02 | 0.0075 | 1.3235324618626423 | 4.596172751931884e+18 | 1020.5553628699091 | 4000.3597434684316 | 8.882582987964475e-13\n", + "0.02 | 0.01 | 1.3219923714906012 | 4.596172751931884e+18 | 1020.5553628699091 | 3000.519807601072 | 6.66249235248511e-13\n", + "0.02 | 0.02 | 1.3204676186157391 | 4.596172751931884e+18 | 1020.5553628699091 | 1500.7599038004946 | 3.332356399267088e-13\n", + "0.02 | 0.05 | 1.3202928659769575 | 4.596172751931884e+18 | 1020.5553628699091 | 600.9039615201903 | 1.3342748273363686e-13\n", + "0.02 | 0.075 | 1.3203431410941726 | 4.596172751931884e+18 | 1020.5553628699091 | 400.9359743467913 | 8.902567002406576e-14\n", + "0.02 | 0.1 | 1.3203699372606292 | 4.596172751931884e+18 | 1020.5553628699091 | 300.95198076008984 | 6.682476366927977e-14\n", + "0.02 | 0.2 | 1.320356005679441 | 4.596172751931884e+18 | 1020.5553628699091 | 150.97599038004486 | 3.352340413710239e-14\n", + "0.02 | 0.5 | 1.3201242272878078 | 4.596172751931884e+18 | 1020.5553628699091 | 60.990396152017844 | 1.3542588417795952e-14\n", + "0.02 | 0.75 | 1.319965297334464 | 4.596172751931884e+18 | 1020.5553628699091 | 40.99359743467855 | 9.102407146838975e-15\n", + "0.02 | 1 | 1.3198696409051942 | 4.596172751931884e+18 | 1020.5553628699091 | 30.99519807600895 | 6.882316511360498e-15\n", + "0.05 | 1e-05 | 1.1802626763433055 | 1.7515416781593348e+19 | 3889.2037993661584 | 2997002.130677457 | 6.65468154065753e-10\n", + "0.05 | 2e-05 | 1.2638668839596363 | 1.7515416781593348e+19 | 3889.2037993661584 | 1498501.5652596476 | 3.3273418803761946e-10\n", + "0.05 | 5e-05 | 1.3399914336691139 | 1.7515416781593348e+19 | 3889.2037993661584 | 599401.2260877149 | 1.3309380843822602e-10\n", + "0.05 | 7.5e-05 | 1.3607917455534582 | 1.7515416781593348e+19 | 3889.2037993661584 | 399601.1507253162 | 8.872927964039072e-11\n", + "0.05 | 0.0001 | 1.371739914914181 | 1.7515416781593348e+19 | 3889.2037993661584 | 299701.11304101977 | 6.654701524078538e-11\n", + "0.05 | 0.0002 | 1.3883571964181647 | 1.7515416781593348e+19 | 3889.2037993661584 | 149851.05651988334 | 3.327361864255603e-11\n", + "0.05 | 0.0005 | 1.3960809195486918 | 1.7515416781593348e+19 | 3889.2037993661584 | 59941.022607974846 | 1.3309580683790145e-11\n", + "0.05 | 0.00075 | 1.3958259187903233 | 1.7515416781593348e+19 | 3889.2037993661584 | 39961.015071849826 | 8.873127804032116e-12\n", + "0.05 | 0.001 | 1.3944270862078145 | 1.7515416781593348e+19 | 3889.2037993661584 | 29971.011303897136 | 6.654901364177487e-12\n", + "0.05 | 0.002 | 1.3868038656181922 | 1.7515416781593348e+19 | 3889.2037993661584 | 14986.00565194129 | 3.32756170438959e-12\n", + "0.05 | 0.005 | 1.3676102367336342 | 1.7515416781593348e+19 | 3889.2037993661584 | 5995.002260777159 | 1.3311579085189338e-12\n", + "0.05 | 0.0075 | 1.356910453232406 | 1.7515416781593348e+19 | 3889.2037993661584 | 3997.001507183075 | 8.875126205472205e-13\n", + "0.05 | 0.01 | 1.3492964425395064 | 1.7515416781593348e+19 | 3889.2037993661584 | 2998.001130387282 | 6.656899765616413e-13\n", + "0.05 | 0.02 | 1.3337278030826965 | 1.7515416781593348e+19 | 3889.2037993661584 | 1499.5005651935264 | 3.3295601058325773e-13\n", + "0.05 | 0.05 | 1.3230623528240175 | 1.7515416781593348e+19 | 3889.2037993661584 | 600.4002260774154 | 1.3331563099625918e-13\n", + "0.05 | 0.075 | 1.3212917568278915 | 1.7515416781593348e+19 | 3889.2037993661584 | 400.6001507182744 | 8.895110219914723e-14\n", + "0.05 | 0.1 | 1.320649513717282 | 1.7515416781593348e+19 | 3889.2037993661584 | 300.7001130387049 | 6.676883780059148e-14\n", + "0.05 | 0.2 | 1.320107992756552 | 1.7515416781593348e+19 | 3889.2037993661584 | 150.85005651935137 | 3.349544120275802e-14\n", + "0.05 | 0.5 | 1.3199430633401976 | 1.7515416781593348e+19 | 3889.2037993661584 | 60.940022607740424 | 1.3531403244058199e-14\n", + "0.05 | 0.75 | 1.3198490982380753 | 1.7515416781593348e+19 | 3889.2037993661584 | 40.96001507182699 | 9.094950364347151e-15\n", + "0.05 | 1 | 1.3197937467706276 | 1.7515416781593348e+19 | 3889.2037993661584 | 30.970011303870226 | 6.876723924491618e-15\n", + "0.075 | 1e-05 | 1.0289125856927244 | 2.5655434459999447e+18 | 569.6650808850611 | 2993261.3408441492 | 6.646375318651086e-10\n", + "0.075 | 2e-05 | 1.0683357423022957 | 2.5655434459999447e+18 | 569.6650808850611 | 1496631.170356881 | 3.323188769403809e-10\n", + "0.075 | 5e-05 | 1.1788194485860952 | 2.5655434459999447e+18 | 569.6650808850611 | 598653.068139632 | 1.3292768400222243e-10\n", + "0.075 | 7.5e-05 | 1.2298615813471019 | 2.5655434459999447e+18 | 569.6650808850611 | 399102.3787592882 | 8.861853001624636e-11\n", + "0.075 | 0.0001 | 1.2625315302909002 | 2.5655434459999447e+18 | 569.6650808850611 | 299327.0340661838 | 6.646395302260717e-11\n", + "0.075 | 0.0002 | 1.3241269630073698 | 2.5655434459999447e+18 | 569.6650808850611 | 149664.01703276392 | 3.323208753353322e-11\n", + "0.075 | 0.0005 | 1.369928705681422 | 2.5655434459999447e+18 | 569.6650808850611 | 59866.20681304865 | 1.3292968240163605e-11\n", + "0.075 | 0.00075 | 1.380456714523796 | 2.5655434459999447e+18 | 569.6650808850611 | 39911.13787533464 | 8.862052841637134e-12\n", + "0.075 | 0.001 | 1.3852806670847033 | 2.5655434459999447e+18 | 569.6650808850611 | 29933.60340651576 | 6.646595142382363e-12\n", + "0.075 | 0.002 | 1.389766784950075 | 2.5655434459999447e+18 | 569.6650808850611 | 14967.301703250858 | 3.323408593492085e-12\n", + "0.075 | 0.005 | 1.382950902139967 | 2.5655434459999447e+18 | 569.6650808850611 | 5987.5206812984825 | 1.3294966641593758e-12\n", + "0.075 | 0.0075 | 1.3758254841268711 | 2.5655434459999447e+18 | 569.6650808850611 | 3992.0137875320675 | 8.864051243078358e-13\n", + "0.075 | 0.01 | 1.3694975238618996 | 2.5655434459999447e+18 | 569.6650808850611 | 2994.260340649059 | 6.648593543821099e-13\n", + "0.075 | 0.02 | 1.3518655278680658 | 2.5655434459999447e+18 | 569.6650808850611 | 1497.630170324489 | 3.325406994935085e-13\n", + "0.075 | 0.05 | 1.3317271553627898 | 2.5655434459999447e+18 | 569.6650808850611 | 599.6520681297744 | 1.3314950656035372e-13\n", + "0.075 | 0.075 | 1.3262949589526674 | 2.5655434459999447e+18 | 569.6650808850611 | 400.10137875318566 | 8.884035257521142e-14\n", + "0.075 | 0.1 | 1.3237555826770926 | 2.5655434459999447e+18 | 569.6650808850611 | 300.3260340648898 | 6.668577558263996e-14\n", + "0.075 | 0.2 | 1.3207755491672832 | 2.5655434459999447e+18 | 569.6650808850611 | 150.66301703244358 | 3.34539100937822e-14\n", + "0.075 | 0.5 | 1.3198839335916897 | 2.5655434459999447e+18 | 569.6650808850611 | 60.865206812977554 | 1.3514790800467925e-14\n", + "0.075 | 0.75 | 1.3197723726186084 | 2.5655434459999447e+18 | 569.6650808850611 | 40.910137875318284 | 9.083875401953608e-15\n", + "0.075 | 1 | 1.3197346497546039 | 2.5655434459999447e+18 | 569.6650808850611 | 30.93260340648876 | 6.868417702696474e-15\n", + "0.1 | 1e-05 | 1.0798981068166194 | 2.667779301865279e+21 | 592366.0011098518 | 2988038.7413794813 | 6.634778818302947e-10\n", + "0.1 | 2e-05 | 1.03441114728845 | 2.667779301865279e+21 | 592366.0011098518 | 1494019.8706298168 | 3.3173905192414405e-10\n", + "0.1 | 5e-05 | 1.0485665416885148 | 2.667779301865279e+21 | 592366.0011098518 | 597608.548229899 | 1.3269575399152945e-10\n", + "0.1 | 7.5e-05 | 1.08598125409383 | 2.667779301865279e+21 | 592366.0011098518 | 398406.0321496369 | 8.846391000841544e-11\n", + "0.1 | 0.0001 | 1.1199271289317363 | 2.667779301865279e+21 | 592366.0011098518 | 298804.7741134555 | 6.634798801773545e-11\n", + "0.1 | 0.0002 | 1.2092033599798173 | 2.667779301865279e+21 | 592366.0011098518 | 149402.8870553795 | 3.317410503087082e-11\n", + "0.1 | 0.0005 | 1.3058031834924426 | 2.667779301865279e+21 | 592366.0011098518 | 59761.754822120776 | 1.3269775239104392e-11\n", + "0.1 | 0.00075 | 1.334757363394958 | 2.667779301865279e+21 | 592366.0011098518 | 39841.50321474247 | 8.846590840936857e-12\n", + "0.1 | 0.001 | 1.3503821090956738 | 2.667779301865279e+21 | 592366.0011098518 | 29881.377411051322 | 6.634998641852646e-12\n", + "0.1 | 0.002 | 1.3741948871332732 | 2.667779301865279e+21 | 592366.0011098518 | 14941.188705527115 | 3.317610343229108e-12\n", + "0.1 | 0.005 | 1.3835828525726024 | 2.667779301865279e+21 | 592366.0011098518 | 5977.075482208369 | 1.3271773640540483e-12\n", + "0.1 | 0.0075 | 1.3817104633773307 | 2.667779301865279e+21 | 592366.0011098518 | 3985.050321472293 | 8.848589242376843e-13\n", + "0.1 | 0.01 | 1.378484030173926 | 2.667779301865279e+21 | 592366.0011098518 | 2989.0377411040545 | 6.636997043294578e-13\n", + "0.1 | 0.02 | 1.365360961026242 | 2.667779301865279e+21 | 592366.0011098518 | 1495.0188705519927 | 3.3196087446718374e-13\n", + "0.1 | 0.05 | 1.342872658496226 | 2.667779301865279e+21 | 592366.0011098518 | 598.6075482207931 | 1.3291757654982763e-13\n", + "0.1 | 0.075 | 1.3344025162997275 | 2.667779301865279e+21 | 592366.0011098518 | 399.4050321471928 | 8.868573256819285e-14\n", + "0.1 | 0.1 | 1.3296947739898701 | 2.667779301865279e+21 | 592366.0011098518 | 299.8037741103928 | 6.65698105773755e-14\n", + "0.1 | 0.2 | 1.3228751118106665 | 2.667779301865279e+21 | 592366.0011098518 | 150.40188705519586 | 3.3395927591150145e-14\n", + "0.1 | 0.5 | 1.3201305530113177 | 2.667779301865279e+21 | 592366.0011098518 | 60.76075482207833 | 1.3491597799415074e-14\n", + "0.1 | 0.75 | 1.3198268366427475 | 2.667779301865279e+21 | 592366.0011098518 | 40.840503214718886 | 9.068413401251726e-15\n", + "0.1 | 1 | 1.3197458467857652 | 2.667779301865279e+21 | 592366.0011098518 | 30.88037741103915 | 6.856821202170049e-15\n", + "0.2 | 1e-05 | 1.0348780714189445 | 6.679884723262186e+17 | 148.32323643215042 | 2952676.8513839184 | 6.556259649368276e-10\n", + "0.2 | 2e-05 | 1.0990542705423856 | 6.679884723262186e+17 | 148.32323643215042 | 1476338.9256587664 | 3.2781309348334595e-10\n", + "0.2 | 5e-05 | 1.118668157565593 | 6.679884723262186e+17 | 148.32323643215042 | 590536.1702544192 | 1.3112537061808354e-10\n", + "0.2 | 7.5e-05 | 1.1064632913469394 | 6.679884723262186e+17 | 148.32323643215042 | 393691.1135038526 | 8.741698776045861e-11\n", + "0.2 | 0.0001 | 1.0918067697059484 | 6.679884723262186e+17 | 148.32323643215042 | 295268.5851280461 | 6.556279633152997e-11\n", + "0.2 | 0.0002 | 1.0475901909840273 | 6.679884723262186e+17 | 148.32323643215042 | 147634.79256327386 | 3.2781509187901095e-11\n", + "0.2 | 0.0005 | 1.023706037751357 | 6.679884723262186e+17 | 148.32323643215042 | 59054.517025191824 | 1.3112736901897254e-11\n", + "0.2 | 0.00075 | 1.0428612641129864 | 6.679884723262186e+17 | 148.32323643215042 | 39370.01135012085 | 8.741898616131582e-12\n", + "0.2 | 0.001 | 1.0675482361223787 | 6.679884723262186e+17 | 148.32323643215042 | 29527.75851260228 | 6.556479473252503e-12\n", + "0.2 | 0.002 | 1.1502519607987045 | 6.679884723262186e+17 | 148.32323643215042 | 14764.379256294176 | 3.278350758927168e-12\n", + "0.2 | 0.005 | 1.26134611726893 | 6.679884723262186e+17 | 148.32323643215042 | 5906.351702517757 | 1.3114735303338414e-12\n", + "0.2 | 0.0075 | 1.2986164432111627 | 6.679884723262186e+17 | 148.32323643215042 | 3937.9011350116025 | 8.743897017574836e-13\n", + "0.2 | 0.01 | 1.319365327804564 | 6.679884723262186e+17 | 148.32323643215042 | 2953.6758512586593 | 6.558477874693346e-13\n", + "0.2 | 0.02 | 1.3511101649720025 | 6.679884723262186e+17 | 148.32323643215042 | 1477.3379256293263 | 3.2803491603712903e-13\n", + "0.2 | 0.05 | 1.361365740618009 | 6.679884723262186e+17 | 148.32323643215042 | 591.5351702517387 | 1.3134719317780845e-13\n", + "0.2 | 0.075 | 1.3577244256580787 | 6.679884723262186e+17 | 148.32323643215042 | 394.69011350115375 | 8.763881032017945e-14\n", + "0.2 | 0.1 | 1.3532120690730098 | 6.679884723262186e+17 | 148.32323643215042 | 296.26758512586605 | 6.578461889136601e-14\n", + "0.2 | 0.2 | 1.3396807959929744 | 6.679884723262186e+17 | 148.32323643215042 | 148.63379256293302 | 3.300333174814552e-14\n", + "0.2 | 0.5 | 1.3258785979549308 | 6.679884723262186e+17 | 148.32323643215042 | 60.05351702517303 | 1.3334559462213187e-14\n", + "0.2 | 0.75 | 1.3227927985529941 | 6.679884723262186e+17 | 148.32323643215042 | 40.36901135011532 | 8.963721176450461e-15\n", + "0.2 | 1 | 1.321535717952325 | 6.679884723262186e+17 | 148.32323643215042 | 30.526758512586515 | 6.778302033569109e-15\n", + "0.5 | 1e-05 | 0.24096794492337217 | 980292850693723.0 | 0.21766873874312043 | 2725466.739096163 | 6.051751853189209e-10\n", + "0.5 | 2e-05 | 0.2449083880337301 | 980292850693723.0 | 0.21766873874312043 | 1362733.8714525797 | 3.0258770410464647e-10\n", + "0.5 | 5e-05 | 0.26603719418924143 | 980292850693723.0 | 0.21766873874312043 | 545094.1490353391 | 1.21035214969498e-10\n", + "0.5 | 7.5e-05 | 0.3041435170921793 | 980292850693723.0 | 0.21766873874312043 | 363396.43275823985 | 8.069021734296907e-11\n", + "0.5 | 0.0001 | 0.34664559598668254 | 980292850693723.0 | 0.21766873874312043 | 272547.574594265 | 6.051771852405908e-11\n", + "0.5 | 0.0002 | 0.48965105730970193 | 980292850693723.0 | 0.21766873874312043 | 136274.28731598076 | 3.0258970288517154e-11\n", + "0.5 | 0.0005 | 0.7000258094502043 | 980292850693723.0 | 0.21766873874312043 | 54510.31493093597 | 1.2103721343178713e-11\n", + "0.5 | 0.00075 | 0.7803152404537448 | 980292850693723.0 | 0.21766873874312043 | 36340.54328796344 | 8.06922157713684e-12\n", + "0.5 | 0.001 | 0.8291864833507464 | 980292850693723.0 | 0.21766873874312043 | 27255.65746622313 | 6.0519716940594945e-12\n", + "0.5 | 0.002 | 0.9148557625310191 | 980292850693723.0 | 0.21766873874312043 | 13628.328733300632 | 3.026096869374191e-12\n", + "0.5 | 0.005 | 0.9605054768523503 | 980292850693723.0 | 0.21766873874312043 | 5451.931493366455 | 1.2105719745228904e-12\n", + "0.5 | 0.0075 | 0.9664986040888477 | 980292850693723.0 | 0.21766873874312043 | 3634.9543289176677 | 8.071219978850558e-13\n", + "0.5 | 0.01 | 0.971577059753968 | 980292850693723.0 | 0.21766873874312043 | 2726.4657466907856 | 6.05397009565586e-13\n", + "0.5 | 0.02 | 1.0046221692212927 | 980292850693723.0 | 0.21766873874312043 | 1363.7328733473057 | 3.0280952708568026e-13\n", + "0.5 | 0.05 | 1.1047795554227975 | 980292850693723.0 | 0.21766873874312043 | 546.0931493393776 | 1.2125703759732823e-13\n", + "0.5 | 0.075 | 1.1581424516578147 | 980292850693723.0 | 0.21766873874312043 | 364.39543289298604 | 8.091203993320884e-14\n", + "0.5 | 0.1 | 1.1943040342674953 | 980292850693723.0 | 0.21766873874312043 | 273.5465746697651 | 6.073954110114357e-14\n", + "0.5 | 0.2 | 1.2650403625958075 | 980292850693723.0 | 0.21766873874312043 | 137.2732873349015 | 3.048079285303851e-14\n", + "0.5 | 0.5 | 1.3129959855689668 | 980292850693723.0 | 0.21766873874312043 | 55.50931493396521 | 1.2325543904171445e-14\n", + "0.5 | 0.75 | 1.3205631535380165 | 980292850693723.0 | 0.21766873874312043 | 37.33954328931077 | 8.291044137756114e-15\n", + "0.5 | 1 | 1.3228809465642857 | 980292850693723.0 | 0.21766873874312043 | 28.254657466983346 | 6.273794254548403e-15\n", + "0.75 | 1e-05 | 0.2224499701965531 | 3532632123678.7227 | 0.0007844019042477163 | 2442727.9074419998 | 5.423945531473073e-10\n", + "0.75 | 2e-05 | 0.2053060605543837 | 3532632123678.7227 | 0.0007844019042477163 | 1221364.876010962 | 2.711974813631639e-10\n", + "0.75 | 5e-05 | 0.20855337608222344 | 3532632123678.7227 | 0.0007844019042477163 | 488546.6517437474 | 1.0847914827388725e-10\n", + "0.75 | 7.5e-05 | 0.21981047089574937 | 3532632123678.7227 | 0.0007844019042477163 | 325698.11617629393 | 7.231950953119213e-11\n", + "0.75 | 0.0001 | 0.22929183435175596 | 3532632123678.7227 | 0.0007844019042477163 | 244273.84276198 | 5.4239688909603066e-11\n", + "0.75 | 0.0002 | 0.25206556710851546 | 3532632123678.7227 | 0.0007844019042477163 | 122137.42560380595 | 2.7119956414757496e-11\n", + "0.75 | 0.0005 | 0.29114658168989516 | 3532632123678.7227 | 0.0007844019042477163 | 48855.57125495263 | 1.0848116017692672e-11\n", + "0.75 | 0.00075 | 0.3252398789514181 | 3532632123678.7227 | 0.0007844019042477163 | 32570.71432009598 | 7.2321513933317716e-12\n", + "0.75 | 0.001 | 0.35990828966428157 | 3532632123678.7227 | 0.0007844019042477163 | 24428.28579637967 | 5.424169068652878e-12\n", + "0.75 | 0.002 | 0.47580513929031976 | 3532632123678.7227 | 0.0007844019042477163 | 12214.642940416195 | 2.712195566005037e-12\n", + "0.75 | 0.005 | 0.6515260879776209 | 3532632123678.7227 | 0.0007844019042477163 | 4886.457186300838 | 1.0850114554152496e-12\n", + "0.75 | 0.0075 | 0.7197356993725887 | 3532632123678.7227 | 0.0007844019042477163 | 3257.971459035242 | 7.234149854785081e-13\n", + "0.75 | 0.01 | 0.7617582568840177 | 3532632123678.7227 | 0.0007844019042477163 | 2443.7285948394738 | 5.426167503851329e-13\n", + "0.75 | 0.02 | 0.8408992984214797 | 3532632123678.7227 | 0.0007844019042477163 | 1222.3642978419878 | 2.7141939758878747e-13\n", + "0.75 | 0.05 | 0.9210906761308845 | 3532632123678.7227 | 0.0007844019042477163 | 489.54571923814456 | 1.0870098582097411e-13\n", + "0.75 | 0.075 | 0.96244927086312 | 3532632123678.7227 | 0.0007844019042477163 | 326.697146173777 | 7.254133875229152e-14\n", + "0.75 | 0.1 | 0.9968207350967746 | 3532632123678.7227 | 0.0007844019042477163 | 245.2728596359628 | 5.4461515216700016e-14\n", + "0.75 | 0.2 | 1.0921914353907194 | 3532632123678.7227 | 0.0007844019042477163 | 123.1364298222042 | 2.7341779911750176e-14\n", + "0.75 | 0.5 | 1.2113887072395224 | 3532632123678.7227 | 0.0007844019042477163 | 49.85457192989512 | 1.1069938727880118e-14\n", + "0.75 | 0.75 | 1.2502765485666594 | 3532632123678.7227 | 0.0007844019042477163 | 33.56971462008021 | 7.453974020261758e-15\n", + "0.75 | 1 | 1.2715113409155705 | 3532632123678.7227 | 0.0007844019042477163 | 25.42728596511644 | 5.645991666440073e-15\n", + "1.0 | 1e-05 | 0.32017904466762515 | 63914577491.36427 | 1.4191887108020279e-05 | 2130369.1131594917 | 4.730369680759886e-10\n", + "1.0 | 2e-05 | 0.3007402314260465 | 63914577491.36427 | 1.4191887108020279e-05 | 1065202.808990499 | 2.3652253688732894e-10\n", + "1.0 | 5e-05 | 0.26987296047005466 | 63914577491.36427 | 1.4191887108020279e-05 | 426085.98427838425 | 9.461009404318693e-11\n", + "1.0 | 7.5e-05 | 0.2559713871873844 | 63914577491.36427 | 1.4191887108020279e-05 | 284058.2874067469 | 6.307361020291211e-11\n", + "1.0 | 0.0001 | 0.2465204142745105 | 63914577491.36427 | 1.4191887108020279e-05 | 213044.20226335054 | 4.730531572313413e-11\n", + "1.0 | 0.0002 | 0.22985421062259584 | 63914577491.36427 | 1.4191887108020279e-05 | 106522.77866349614 | 2.3652808303852554e-11\n", + "1.0 | 0.0005 | 0.2391940723762629 | 63914577491.36427 | 1.4191887108020279e-05 | 42609.75407313465 | 9.461266009121928e-12\n", + "1.0 | 0.00075 | 0.2553997990178182 | 63914577491.36427 | 1.4191887108020279e-05 | 28406.842361022937 | 6.3075860892209815e-12\n", + "1.0 | 0.001 | 0.2695794334088796 | 63914577491.36427 | 1.4191887108020279e-05 | 21305.38413787239 | 4.730745603669903e-12\n", + "1.0 | 0.002 | 0.31063876807450047 | 63914577491.36427 | 1.4191887108020279e-05 | 10653.193844259604 | 2.3654842183383992e-12\n", + "1.0 | 0.005 | 0.3936609595496581 | 63914577491.36427 | 1.4191887108020279e-05 | 4261.877963782244 | 9.463270087067252e-13\n", + "1.0 | 0.0075 | 0.4469915900961414 | 63914577491.36427 | 1.4191887108020279e-05 | 2841.585372310787 | 6.309587013554967e-13\n", + "1.0 | 0.01 | 0.4901673630039956 | 63914577491.36427 | 1.4191887108020279e-05 | 2131.439052904112 | 4.732745424238765e-13\n", + "1.0 | 0.02 | 0.60175324469142 | 63914577491.36427 | 1.4191887108020279e-05 | 1066.2195442053296 | 2.3674829745641937e-13\n", + "1.0 | 0.05 | 0.7405769938099307 | 63914577491.36427 | 1.4191887108020279e-05 | 427.08782194291774 | 9.483254669160729e-14\n", + "1.0 | 0.075 | 0.797163463326217 | 63914577491.36427 | 1.4191887108020279e-05 | 285.05854859317225 | 6.329571280287377e-14\n", + "1.0 | 0.1 | 0.8372760302121772 | 63914577491.36427 | 1.4191887108020279e-05 | 214.04391168158918 | 4.752729580594676e-14\n", + "1.0 | 0.2 | 0.9403435142235637 | 63914577491.36427 | 1.4191887108020279e-05 | 107.52195601832739 | 2.3874670244856097e-14\n", + "1.0 | 0.5 | 1.0888716539372494 | 63914577491.36427 | 1.4191887108020279e-05 | 43.60878244993882 | 9.683094870358305e-15\n", + "1.0 | 0.75 | 1.1499813978771312 | 63914577491.36427 | 1.4191887108020279e-05 | 29.40585497293814 | 6.5294114499488166e-15\n", + "1.0 | 1 | 1.1884279444711843 | 63914577491.36427 | 1.4191887108020279e-05 | 22.30439123207071 | 4.952569739218473e-15\n", + "2.0 | 1e-05 | 0.37717527080114094 | 4995157.201110629 | 1.1091477072590349e-09 | 931785.0004887689 | 2.068978323085988e-10\n", + "2.0 | 2e-05 | 0.36554739044363094 | 4995157.201110629 | 1.1091477072590349e-09 | 513815.87386685994 | 1.1409004271697663e-10\n", + "2.0 | 5e-05 | 0.3556659370173608 | 4995157.201110629 | 1.1091477072590349e-09 | 219045.86744165132 | 4.8637953096542247e-11\n", + "2.0 | 7.5e-05 | 0.3535036870210737 | 4995157.201110629 | 1.1091477072590349e-09 | 148197.11674354723 | 3.290637023834969e-11\n", + "2.0 | 0.0001 | 0.35281735349796495 | 4995157.201110629 | 1.1091477072590349e-09 | 111978.62460516892 | 2.4864249460503123e-11\n", + "2.0 | 0.0002 | 0.3534347525529885 | 4995157.201110629 | 1.1091477072590349e-09 | 56624.48346399062 | 1.2573161059845765e-11\n", + "2.0 | 0.0005 | 0.35502424154537043 | 4995157.201110629 | 1.1091477072590349e-09 | 22805.49604335498 | 5.063837359066121e-12\n", + "2.0 | 0.00075 | 0.3537163573870454 | 4995157.201110629 | 1.1091477072590349e-09 | 15227.1681485824 | 3.3811105356789993e-12\n", + "2.0 | 0.001 | 0.35159094176904615 | 4995157.201110629 | 1.1091477072590349e-09 | 11429.335035838845 | 2.537822182588655e-12\n", + "2.0 | 0.002 | 0.3437425980245005 | 4995157.201110629 | 1.1091477072590349e-09 | 5721.711678609094 | 1.270475209171694e-12\n", + "2.0 | 0.005 | 0.3384378232843908 | 4995157.201110629 | 1.1091477072590349e-09 | 2290.8581499577735 | 5.08672692846662e-13\n", + "2.0 | 0.0075 | 0.3434911844399528 | 4995157.201110629 | 1.1091477072590349e-09 | 1527.8054038403657 | 3.392409472980619e-13\n", + "2.0 | 0.01 | 0.3514509386543829 | 4995157.201110629 | 1.1091477072590349e-09 | 1146.1915618887404 | 2.545056525279899e-13\n", + "2.0 | 0.02 | 0.38795453127123614 | 4995157.201110629 | 1.1091477072590349e-09 | 573.6614252411312 | 1.2737842452839735e-13\n", + "2.0 | 0.05 | 0.47107485080566847 | 4995157.201110629 | 1.1091477072590349e-09 | 230.08032761773353 | 5.108809544690141e-14\n", + "2.0 | 0.075 | 0.5172647100633151 | 4995157.201110629 | 1.1091477072590349e-09 | 153.7225530556975 | 3.4133263561319513e-14\n", + "2.0 | 0.1 | 0.5526131904880447 | 4995157.201110629 | 1.1091477072590349e-09 | 115.54279030330179 | 2.5655653224832383e-14\n", + "2.0 | 0.2 | 0.646310472219547 | 4995157.201110629 | 1.1091477072590349e-09 | 58.27205179784526 | 1.293899471962351e-14\n", + "2.0 | 0.5 | 0.797243980792505 | 4995157.201110629 | 1.1091477072590349e-09 | 23.908978317115814 | 5.308859644585121e-15\n", + "2.0 | 0.75 | 0.8774340306364914 | 4995157.201110629 | 1.1091477072590349e-09 | 16.272675559455415 | 3.6132598156724904e-15\n", + "2.0 | 1 | 0.9386486865700185 | 4995157.201110629 | 1.1091477072590349e-09 | 12.454515425128456 | 2.7654579571053563e-15\n", + "5.0 | 1e-05 | 0.729096374445801 | 555.6368040064594 | 1.2337615462742134e-13 | 554.9108780960305 | 1.232149666954353e-13\n", + "5.0 | 2e-05 | 0.7291162264236533 | 555.6368040064594 | 1.2337615462742134e-13 | 554.186849930652 | 1.2305420014749923e-13\n", + "5.0 | 5e-05 | 0.7291757523892828 | 555.6368040064594 | 1.2337615462742134e-13 | 552.0260777777625 | 1.2257441234847787e-13\n", + "5.0 | 7.5e-05 | 0.729225323038207 | 555.6368040064594 | 1.2337615462742134e-13 | 550.23828703392 | 1.2217744305907273e-13\n", + "5.0 | 0.0001 | 0.7292748625029511 | 555.6368040064594 | 1.2337615462742134e-13 | 548.4620596604069 | 1.21783041353664e-13\n", + "5.0 | 0.0002 | 0.7294727088701931 | 555.6368040064594 | 1.2337615462742134e-13 | 541.4705687792607 | 1.2023061852312293e-13\n", + "5.0 | 0.0005 | 0.7300632679255016 | 555.6368040064594 | 1.2337615462742134e-13 | 521.5279990898956 | 1.1580247851525796e-13\n", + "5.0 | 0.00075 | 0.7305520056062914 | 555.6368040064594 | 1.2337615462742134e-13 | 505.99987151524476 | 1.1235454156271913e-13\n", + "5.0 | 0.001 | 0.7310376814323817 | 555.6368040064594 | 1.2337615462742134e-13 | 491.37136147683685 | 1.0910635983059899e-13\n", + "5.0 | 0.002 | 0.7329502858896297 | 555.6368040064594 | 1.2337615462742134e-13 | 440.4522822110072 | 9.780005299187148e-14\n", + "5.0 | 0.005 | 0.7384152522426068 | 555.6368040064594 | 1.2337615462742134e-13 | 336.0726653659441 | 7.462312220728331e-14\n", + "5.0 | 0.0075 | 0.7426859104004216 | 555.6368040064594 | 1.2337615462742134e-13 | 280.7085388287946 | 6.23298166033225e-14\n", + "5.0 | 0.01 | 0.7467295294070295 | 555.6368040064594 | 1.2337615462742134e-13 | 241.04573230445232 | 5.352290439840697e-14\n", + "5.0 | 0.02 | 0.7610911745523715 | 555.6368040064594 | 1.2337615462742134e-13 | 154.16834802636362 | 3.423224992945864e-14\n", + "5.0 | 0.05 | 0.7938460924485602 | 555.6368040064594 | 1.2337615462742134e-13 | 74.43525519938748 | 1.6527946833241876e-14\n", + "5.0 | 0.075 | 0.8150678569112061 | 555.6368040064594 | 1.2337615462742134e-13 | 52.21726682813804 | 1.1594562383118853e-14\n", + "5.0 | 0.1 | 0.8333792535955517 | 555.6368040064594 | 1.2337615462742134e-13 | 40.320705913772024 | 8.952995214921882e-15\n", + "5.0 | 0.2 | 0.8919888448352014 | 555.6368040064594 | 1.2337615462742134e-13 | 21.382869766048398 | 4.747950869365613e-15\n", + "5.0 | 0.5 | 1.012003022959394 | 555.6368040064594 | 1.2337615462742134e-13 | 9.33697797512213 | 2.073225585679712e-15\n", + "5.0 | 0.75 | 1.0827038377848375 | 555.6368040064594 | 1.2337615462742134e-13 | 6.585973686347976 | 1.4623799252317884e-15\n", + "5.0 | 1 | 1.138569367398157 | 555.6368040064594 | 1.2337615462742134e-13 | 5.200055382874517 | 1.1546442430786545e-15\n", + "7.5 | 1e-05 | 1.1579727162941067 | 65.42062274366074 | 1.4526296331065668e-14 | 65.40750197167768 | 1.4523382934434376e-14\n", + "7.5 | 2e-05 | 1.1579776842823726 | 65.42062274366074 | 1.4526296331065668e-14 | 65.39438654331282 | 1.452047072432468e-14\n", + "7.5 | 5e-05 | 1.1579925874856085 | 65.42062274366074 | 1.4526296331065668e-14 | 65.35507228730187 | 1.4511741205880805e-14\n", + "7.5 | 7.5e-05 | 1.1580050059490286 | 65.42062274366074 | 1.4526296331065668e-14 | 65.32234705876313 | 1.450447474543884e-14\n", + "7.5 | 0.0001 | 1.1580174236191758 | 65.42062274366074 | 1.4526296331065668e-14 | 65.28965509555222 | 1.449721567138345e-14\n", + "7.5 | 0.0002 | 1.1580670863672333 | 65.42062274366074 | 1.4526296331065668e-14 | 65.15921888360964 | 1.4468253014234742e-14\n", + "7.5 | 0.0005 | 1.1582159984650569 | 65.42062274366074 | 1.4526296331065668e-14 | 64.77106671380928 | 1.4382065919040627e-14\n", + "7.5 | 0.00075 | 1.1583400046414276 | 65.42062274366074 | 1.4526296331065668e-14 | 64.45117618545744 | 1.4311035953053484e-14\n", + "7.5 | 0.001 | 1.1584639315271186 | 65.42062274366074 | 1.4526296331065668e-14 | 64.1344789297461 | 1.4240715036028216e-14\n", + "7.5 | 0.002 | 1.158958846589758 | 65.42062274366074 | 1.4526296331065668e-14 | 62.89868505684164 | 1.3966313673750373e-14\n", + "7.5 | 0.005 | 1.1604360020625986 | 65.42062274366074 | 1.4526296331065668e-14 | 59.46547650580331 | 1.3203988237409827e-14\n", + "7.5 | 0.0075 | 1.1616583144933827 | 65.42062274366074 | 1.4526296331065668e-14 | 56.88254043457733 | 1.2630461217927842e-14\n", + "7.5 | 0.01 | 1.162872831495904 | 65.42062274366074 | 1.4526296331065668e-14 | 54.518170529658406 | 1.2105465636493486e-14\n", + "7.5 | 0.02 | 1.1676546346371226 | 65.42062274366074 | 1.4526296331065668e-14 | 46.77181528449076 | 1.0385429246471292e-14\n", + "7.5 | 0.05 | 1.181322059520699 | 65.42062274366074 | 1.4526296331065668e-14 | 32.91391372384855 | 7.308356969348518e-15\n", + "7.5 | 0.075 | 1.192025682675384 | 65.42062274366074 | 1.4526296331065668e-14 | 26.4842300611489 | 5.880680400671445e-15\n", + "7.5 | 0.1 | 1.20219020027986 | 65.42062274366074 | 1.4526296331065668e-14 | 22.21088199657384 | 4.931806517965729e-15\n", + "7.5 | 0.2 | 1.238514238689643 | 65.42062274366074 | 1.4526296331065668e-14 | 13.695471638717029 | 3.041005589280894e-15\n", + "7.5 | 0.5 | 1.3202321940460673 | 65.42062274366074 | 1.4526296331065668e-14 | 6.759169742060504 | 1.5008371749970503e-15\n", + "7.5 | 0.75 | 1.369207081107715 | 65.42062274366074 | 1.4526296331065668e-14 | 4.957375592564134 | 1.100758504915896e-15\n", + "7.5 | 1 | 1.4074503211973002 | 65.42062274366074 | 1.4526296331065668e-14 | 4.014324376831696 | 8.913590702945164e-16\n", + "10.0 | 1e-05 | 1.4570968886841436 | 19.175864900543594 | 4.257897345936977e-15 | 19.174489304841277 | 4.2575919023327196e-15\n", + "10.0 | 2e-05 | 1.4570993187331152 | 19.175864900543594 | 4.257897345936977e-15 | 19.1731139173404 | 4.257286504958469e-15\n", + "10.0 | 5e-05 | 1.4571066086154156 | 19.175864900543594 | 4.257897345936977e-15 | 19.16898900357348 | 4.256370590110743e-15\n", + "10.0 | 7.5e-05 | 1.4571126832141401 | 19.175864900543594 | 4.257897345936977e-15 | 19.1655530055741 | 4.2556076452924475e-15\n", + "10.0 | 0.0001 | 1.4571187575372517 | 19.175864900543594 | 4.257897345936977e-15 | 19.162118306915016 | 4.2548449889856545e-15\n", + "10.0 | 0.0002 | 1.4571430520739155 | 19.175864900543594 | 4.257897345936977e-15 | 19.1483924909525 | 4.251797245602984e-15\n", + "10.0 | 0.0005 | 1.4572159092372137 | 19.175864900543594 | 4.257897345936977e-15 | 19.10733923905199 | 4.242681592503847e-15\n", + "10.0 | 0.00075 | 1.4572765932520457 | 19.175864900543594 | 4.257897345936977e-15 | 19.07326980753783 | 4.2351166590432654e-15\n", + "10.0 | 0.001 | 1.4573372497498749 | 19.175864900543594 | 4.257897345936977e-15 | 19.03932834030532 | 4.227580139361047e-15\n", + "10.0 | 0.002 | 1.457579600899744 | 19.175864900543594 | 4.257897345936977e-15 | 18.904827802739533 | 4.197715020635047e-15\n", + "10.0 | 0.005 | 1.4583040248763588 | 19.175864900543594 | 4.257897345936977e-15 | 18.513096874683363 | 4.110733281477899e-15\n", + "10.0 | 0.0075 | 1.4589047145245595 | 19.175864900543594 | 4.257897345936977e-15 | 18.19951378363078 | 4.0411038479139585e-15\n", + "10.0 | 0.01 | 1.4595026976623577 | 19.175864900543594 | 4.257897345936977e-15 | 17.89696296052528 | 3.973924069927754e-15\n", + "10.0 | 0.02 | 1.4618679084524944 | 19.175864900543594 | 4.257897345936977e-15 | 16.78620389115526 | 3.727286011202593e-15\n", + "10.0 | 0.05 | 1.468716436218725 | 19.175864900543594 | 4.257897345936977e-15 | 14.185809264834273 | 3.149882413751975e-15\n", + "10.0 | 0.075 | 1.4741565641494006 | 19.175864900543594 | 4.257897345936977e-15 | 12.59424951147126 | 2.7964851571019044e-15\n", + "10.0 | 0.1 | 1.4793710196810035 | 19.175864900543594 | 4.257897345936977e-15 | 11.34551972268524 | 2.5192114444927947e-15\n", + "10.0 | 0.2 | 1.4982457886579086 | 19.175864900543594 | 4.257897345936977e-15 | 8.230533331790692 | 1.827545521979766e-15\n", + "10.0 | 0.5 | 1.5410098659533926 | 19.175864900543594 | 4.257897345936977e-15 | 4.798974397071007 | 1.065586374042972e-15\n", + "10.0 | 0.75 | 1.5663574352182952 | 19.175864900543594 | 4.257897345936977e-15 | 3.7223151344244276 | 8.265199934297368e-16\n", + "10.0 | 1 | 1.585871685281188 | 19.175864900543594 | 4.257897345936977e-15 | 3.121161313222283 | 6.930370307017337e-16\n", + "20.0 | 1e-05 | 1.7286486756519488 | 2.142916234875077 | 4.758229887602721e-16 | 2.1428984173511356 | 4.758190324752078e-16\n", + "20.0 | 2e-05 | 1.728648764407431 | 2.142916234875077 | 4.758229887602721e-16 | 2.142880600382718 | 4.758150763134945e-16\n", + "20.0 | 5e-05 | 1.728649030664948 | 2.142916234875077 | 4.758229887602721e-16 | 2.1428271528103546 | 4.758032085684049e-16\n", + "20.0 | 7.5e-05 | 1.7286492525359831 | 2.142916234875077 | 4.758229887602721e-16 | 2.1427826169852677 | 4.757933196287185e-16\n", + "20.0 | 0.0001 | 1.7286494743977214 | 2.142916234875077 | 4.758229887602721e-16 | 2.1427380846311563 | 4.757834314597434e-16\n", + "20.0 | 0.0002 | 1.7286503617517073 | 2.142916234875077 | 4.758229887602721e-16 | 2.142559989916349 | 4.757438864891548e-16\n", + "20.0 | 0.0005 | 1.7286530229215007 | 2.142916234875077 | 4.758229887602721e-16 | 2.1420260386871077 | 4.756253254994087e-16\n", + "20.0 | 0.00075 | 1.7286552395412749 | 2.142916234875077 | 4.758229887602721e-16 | 2.1415814604086196 | 4.755266092912035e-16\n", + "20.0 | 0.001 | 1.7286574552328235 | 2.142916234875077 | 4.758229887602721e-16 | 2.141137228134383 | 4.754279699113757e-16\n", + "20.0 | 0.002 | 1.728666308728265 | 2.142916234875077 | 4.758229887602721e-16 | 2.13936375101392 | 4.750341788848189e-16\n", + "20.0 | 0.005 | 1.7286927805265957 | 2.142916234875077 | 4.758229887602721e-16 | 2.1340762407576848 | 4.738601157589361e-16\n", + "20.0 | 0.0075 | 1.728714739279412 | 2.142916234875077 | 4.758229887602721e-16 | 2.129707326476959 | 4.72890021913521e-16\n", + "20.0 | 0.01 | 1.7287366067447665 | 2.142916234875077 | 4.758229887602721e-16 | 2.1253719446187826 | 4.719273737616231e-16\n", + "20.0 | 0.02 | 1.7288231748695113 | 2.142916234875077 | 4.758229887602721e-16 | 2.1083581370698807 | 4.681495495861567e-16\n", + "20.0 | 0.05 | 1.7290745149199331 | 2.142916234875077 | 4.758229887602721e-16 | 2.0602694484403052 | 4.574717157180397e-16\n", + "20.0 | 0.075 | 1.7292748667352156 | 2.142916234875077 | 4.758229887602721e-16 | 2.023271926743741 | 4.492566156297209e-16\n", + "20.0 | 0.1 | 1.7294674543189976 | 2.142916234875077 | 4.758229887602721e-16 | 1.988769361423232 | 4.4159550714422835e-16\n", + "20.0 | 0.2 | 1.730168466353089 | 2.142916234875077 | 4.758229887602721e-16 | 1.8712610423214961 | 4.155034188538789e-16\n", + "20.0 | 0.5 | 1.73177251697718 | 2.142916234875077 | 4.758229887602721e-16 | 1.64227232787048 | 3.6465771022131223e-16\n", + "20.0 | 0.75 | 1.732728835501288 | 2.142916234875077 | 4.758229887602721e-16 | 1.526875789694727 | 3.3903453149236083e-16\n", + "20.0 | 1 | 1.7334658393718354 | 2.142916234875077 | 4.758229887602721e-16 | 1.446630124465455 | 3.212164144595808e-16\n", + "50.0 | 1e-05 | 1.739141140397846 | 1.001361075024962 | 2.223468242912223e-16 | 1.0013610614050856 | 2.2234682126700225e-16\n", + "50.0 | 2e-05 | 1.739141140461825 | 1.001361075024962 | 2.223468242912223e-16 | 1.0013610477854813 | 2.223468182428426e-16\n", + "50.0 | 5e-05 | 1.7391411406537571 | 1.001361075024962 | 2.223468242912223e-16 | 1.0013610069283048 | 2.2234680917072697e-16\n", + "50.0 | 7.5e-05 | 1.7391411408136916 | 1.001361075024962 | 2.223468242912223e-16 | 1.0013609728825315 | 2.223468016110467e-16\n", + "50.0 | 0.0001 | 1.7391411409736184 | 1.001361075024962 | 2.223468242912223e-16 | 1.0013609388384612 | 2.2234679405174456e-16\n", + "50.0 | 0.0002 | 1.739141141613244 | 1.001361075024962 | 2.223468242912223e-16 | 1.0013608026792107 | 2.2234676381831757e-16\n", + "50.0 | 0.0005 | 1.7391411435313564 | 1.001361075024962 | 2.223468242912223e-16 | 1.00136039436488 | 2.223466731543233e-16\n", + "50.0 | 0.00075 | 1.739141145128904 | 1.001361075024962 | 2.223468242912223e-16 | 1.0013600542900682 | 2.223465976425461e-16\n", + "50.0 | 0.001 | 1.739141146725655 | 1.001361075024962 | 2.223468242912223e-16 | 1.00135971438524 | 2.223465221685128e-16\n", + "50.0 | 0.002 | 1.7391411531046919 | 1.001361075024962 | 2.223468242912223e-16 | 1.0013583564632107 | 2.223462206492523e-16\n", + "50.0 | 0.005 | 1.7391411721656662 | 1.001361075024962 | 2.223468242912223e-16 | 1.0013542989220954 | 2.2234531969413837e-16\n", + "50.0 | 0.0075 | 1.7391411879631302 | 1.001361075024962 | 2.223468242912223e-16 | 1.0013509361089248 | 2.2234457299961647e-16\n", + "50.0 | 0.01 | 1.7391412036824194 | 1.001361075024962 | 2.223468242912223e-16 | 1.0013475899545612 | 2.223438300040928e-16\n", + "50.0 | 0.02 | 1.7391412657893077 | 1.001361075024962 | 2.223468242912223e-16 | 1.001334369473718 | 2.2234089446764705e-16\n", + "50.0 | 0.05 | 1.7391414450146112 | 1.001361075024962 | 2.223468242912223e-16 | 1.001296219922522 | 2.2233242356562365e-16\n", + "50.0 | 0.075 | 1.7391415867303397 | 1.001361075024962 | 2.223468242912223e-16 | 1.001266056190751 | 2.223257258717195e-16\n", + "50.0 | 0.1 | 1.739141722006669 | 1.001361075024962 | 2.223468242912223e-16 | 1.0012372643858902 | 2.223193328067841e-16\n", + "50.0 | 0.2 | 1.739142206764682 | 1.001361075024962 | 2.223468242912223e-16 | 1.0011341005544732 | 2.2229642583459456e-16\n", + "50.0 | 0.5 | 1.7391432733304772 | 1.001361075024962 | 2.223468242912223e-16 | 1.0009071775605214 | 2.2224603880805413e-16\n", + "50.0 | 0.75 | 1.7391438828572479 | 1.001361075024962 | 2.223468242912223e-16 | 1.0007775303834385 | 2.222172513518391e-16\n", + "50.0 | 1 | 1.7391443400312512 | 1.001361075024962 | 2.223468242912223e-16 | 1.000680306025596 | 2.221956632077129e-16\n", + "75.0 | 1e-05 | 1.7391475402804037 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000001490198573 | 2.2204463801408666e-16\n", + "75.0 | 2e-05 | 1.7391475402804104 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000001490183668 | 2.220446380137557e-16\n", + "75.0 | 5e-05 | 1.7391475402804306 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000001490138963 | 2.2204463801276305e-16\n", + "75.0 | 7.5e-05 | 1.7391475402804475 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000001490101718 | 2.2204463801193603e-16\n", + "75.0 | 0.0001 | 1.7391475402804637 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000001490064465 | 2.2204463801110886e-16\n", + "75.0 | 0.0002 | 1.73914754028053 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000001489915489 | 2.220446380078009e-16\n", + "75.0 | 0.0005 | 1.7391475402807286 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000001489468737 | 2.2204463799788104e-16\n", + "75.0 | 0.00075 | 1.7391475402808942 | 1.0000001490213473 | 2.220446380144175e-16 | 1.000000148909665 | 2.2204463798961905e-16\n", + "75.0 | 0.001 | 1.73914754028106 | 1.0000001490213473 | 2.220446380144175e-16 | 1.000000148872475 | 2.220446379813612e-16\n", + "75.0 | 0.002 | 1.739147540281721 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000001487238992 | 2.2204463794837075e-16\n", + "75.0 | 0.005 | 1.739147540283696 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000001482799472 | 2.220446378497936e-16\n", + "75.0 | 0.0075 | 1.7391475402853334 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000001479120069 | 2.2204463776809444e-16\n", + "75.0 | 0.01 | 1.7391475402869627 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000001475458882 | 2.2204463768679976e-16\n", + "75.0 | 0.02 | 1.7391475402933994 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000001460993597 | 2.220446373656059e-16\n", + "75.0 | 0.05 | 1.7391475403119734 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000001419250921 | 2.220446364387323e-16\n", + "75.0 | 0.075 | 1.7391475403266607 | 1.0000001490213473 | 2.220446380144175e-16 | 1.000000138624508 | 2.2204463570585544e-16\n", + "75.0 | 0.1 | 1.7391475403406798 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000001354739514 | 2.220446350062913e-16\n", + "75.0 | 0.2 | 1.739147540390914 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000001241844543 | 2.220446324995194e-16\n", + "75.0 | 0.5 | 1.7391475405014305 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000000993475624 | 2.2204462698462155e-16\n", + "75.0 | 0.75 | 1.739147540564583 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000000851550528 | 2.2204462383325136e-16\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "10.0 | 1e-05 | 1.4570968886841438 | 19.17586490054359 | 4.257897345936976e-15 | 19.174489304841284 | 4.257591902332721e-15\n", - "10.0 | 2e-05 | 1.4570993187331154 | 19.17586490054359 | 4.257897345936976e-15 | 19.173113917340388 | 4.257286504958466e-15\n", - "10.0 | 5e-05 | 1.4571066086154152 | 19.17586490054359 | 4.257897345936976e-15 | 19.168989003573486 | 4.256370590110744e-15\n", - "10.0 | 7.5e-05 | 1.4571126832141397 | 19.17586490054359 | 4.257897345936976e-15 | 19.16555300557406 | 4.255607645292439e-15\n", - "10.0 | 0.0001 | 1.457118757537252 | 19.17586490054359 | 4.257897345936976e-15 | 19.162118306915016 | 4.2548449889856545e-15\n", - "10.0 | 0.0002 | 1.4571430520739157 | 19.17586490054359 | 4.257897345936976e-15 | 19.148392490952492 | 4.251797245602982e-15\n", - "10.0 | 0.0005 | 1.4572159092372132 | 19.17586490054359 | 4.257897345936976e-15 | 19.10733923905199 | 4.242681592503847e-15\n", - "10.0 | 0.00075 | 1.4572765932520457 | 19.17586490054359 | 4.257897345936976e-15 | 19.0732698075378 | 4.235116659043259e-15\n", - "10.0 | 0.001 | 1.4573372497498753 | 19.17586490054359 | 4.257897345936976e-15 | 19.039328340305325 | 4.227580139361048e-15\n", - "10.0 | 0.002 | 1.4575796008997444 | 19.17586490054359 | 4.257897345936976e-15 | 18.904827802739522 | 4.197715020635045e-15\n", - "10.0 | 0.005 | 1.4583040248763595 | 19.17586490054359 | 4.257897345936976e-15 | 18.513096874683345 | 4.110733281477895e-15\n", - "10.0 | 0.0075 | 1.4589047145245593 | 19.17586490054359 | 4.257897345936976e-15 | 18.199513783630795 | 4.041103847913962e-15\n", - "10.0 | 0.01 | 1.459502697662358 | 19.17586490054359 | 4.257897345936976e-15 | 17.89696296052529 | 3.973924069927757e-15\n", - "10.0 | 0.02 | 1.461867908452495 | 19.17586490054359 | 4.257897345936976e-15 | 16.786203891155246 | 3.72728601120259e-15\n", - "10.0 | 0.05 | 1.468716436218725 | 19.17586490054359 | 4.257897345936976e-15 | 14.185809264834264 | 3.149882413751973e-15\n", - "10.0 | 0.075 | 1.4741565641494008 | 19.17586490054359 | 4.257897345936976e-15 | 12.594249511471265 | 2.7964851571019056e-15\n", - "10.0 | 0.1 | 1.479371019681003 | 19.17586490054359 | 4.257897345936976e-15 | 11.345519722685252 | 2.5192114444927974e-15\n", - "10.0 | 0.2 | 1.4982457886579081 | 19.17586490054359 | 4.257897345936976e-15 | 8.230533331790685 | 1.8275455219797643e-15\n", - "10.0 | 0.5 | 1.541009865953393 | 19.17586490054359 | 4.257897345936976e-15 | 4.798974397071008 | 1.0655863740429724e-15\n", - "10.0 | 0.75 | 1.5663574352182952 | 19.17586490054359 | 4.257897345936976e-15 | 3.7223151344244276 | 8.265199934297368e-16\n", - "10.0 | 1 | 1.5858716852811883 | 19.17586490054359 | 4.257897345936976e-15 | 3.1211613132222835 | 6.930370307017338e-16\n", - "20.0 | 1e-05 | 1.728648675651949 | 2.1429162348750768 | 4.75822988760272e-16 | 2.142898417351135 | 4.758190324752077e-16\n", - "20.0 | 2e-05 | 1.728648764407431 | 2.1429162348750768 | 4.75822988760272e-16 | 2.142880600382717 | 4.758150763134943e-16\n", - "20.0 | 5e-05 | 1.7286490306649482 | 2.1429162348750768 | 4.75822988760272e-16 | 2.1428271528103546 | 4.758032085684049e-16\n", - "20.0 | 7.5e-05 | 1.7286492525359833 | 2.1429162348750768 | 4.75822988760272e-16 | 2.1427826169852673 | 4.757933196287184e-16\n", - "20.0 | 0.0001 | 1.7286494743977217 | 2.1429162348750768 | 4.75822988760272e-16 | 2.142738084631156 | 4.757834314597433e-16\n", - "20.0 | 0.0002 | 1.728650361751707 | 2.1429162348750768 | 4.75822988760272e-16 | 2.1425599899163488 | 4.757438864891547e-16\n", - "20.0 | 0.0005 | 1.728653022921501 | 2.1429162348750768 | 4.75822988760272e-16 | 2.142026038687107 | 4.756253254994085e-16\n", - "20.0 | 0.00075 | 1.7286552395412744 | 2.1429162348750768 | 4.75822988760272e-16 | 2.1415814604086187 | 4.755266092912033e-16\n", - "20.0 | 0.001 | 1.728657455232824 | 2.1429162348750768 | 4.75822988760272e-16 | 2.1411372281343835 | 4.754279699113758e-16\n", - "20.0 | 0.002 | 1.7286663087282654 | 2.1429162348750768 | 4.75822988760272e-16 | 2.13936375101392 | 4.750341788848189e-16\n", - "20.0 | 0.005 | 1.7286927805265953 | 2.1429162348750768 | 4.75822988760272e-16 | 2.1340762407576848 | 4.738601157589361e-16\n", - "20.0 | 0.0075 | 1.7287147392794118 | 2.1429162348750768 | 4.75822988760272e-16 | 2.1297073264769604 | 4.728900219135213e-16\n", - "20.0 | 0.01 | 1.7287366067447667 | 2.1429162348750768 | 4.75822988760272e-16 | 2.1253719446187813 | 4.719273737616228e-16\n", - "20.0 | 0.02 | 1.7288231748695113 | 2.1429162348750768 | 4.75822988760272e-16 | 2.1083581370698803 | 4.681495495861566e-16\n", - "20.0 | 0.05 | 1.7290745149199334 | 2.1429162348750768 | 4.75822988760272e-16 | 2.060269448440304 | 4.574717157180394e-16\n", - "20.0 | 0.075 | 1.7292748667352158 | 2.1429162348750768 | 4.75822988760272e-16 | 2.023271926743742 | 4.492566156297211e-16\n", - "20.0 | 0.1 | 1.7294674543189974 | 2.1429162348750768 | 4.75822988760272e-16 | 1.9887693614232311 | 4.4159550714422816e-16\n", - "20.0 | 0.2 | 1.7301684663530894 | 2.1429162348750768 | 4.75822988760272e-16 | 1.871261042321496 | 4.1550341885387885e-16\n", - "20.0 | 0.5 | 1.7317725169771812 | 2.1429162348750768 | 4.75822988760272e-16 | 1.64227232787048 | 3.6465771022131223e-16\n", - "20.0 | 0.75 | 1.7327288355012886 | 2.1429162348750768 | 4.75822988760272e-16 | 1.5268757896947271 | 3.390345314923609e-16\n", - "20.0 | 1 | 1.7334658393718347 | 2.1429162348750768 | 4.75822988760272e-16 | 1.446630124465455 | 3.212164144595808e-16\n", - "50.0 | 1e-05 | 1.7391411403978456 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0013610614050856 | 2.2234682126700225e-16\n", - "50.0 | 2e-05 | 1.739141140461826 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0013610477854815 | 2.2234681824284264e-16\n", - "50.0 | 5e-05 | 1.7391411406537574 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0013610069283048 | 2.2234680917072697e-16\n", - "50.0 | 7.5e-05 | 1.739141140813692 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0013609728825315 | 2.223468016110467e-16\n", - "50.0 | 0.0001 | 1.7391411409736177 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0013609388384612 | 2.2234679405174456e-16\n", - "50.0 | 0.0002 | 1.7391411416132447 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0013608026792107 | 2.2234676381831757e-16\n", - "50.0 | 0.0005 | 1.7391411435313564 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.00136039436488 | 2.223466731543233e-16\n", - "50.0 | 0.00075 | 1.7391411451289047 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0013600542900682 | 2.223465976425461e-16\n", - "50.0 | 0.001 | 1.7391411467256548 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0013597143852402 | 2.2234652216851285e-16\n", - "50.0 | 0.002 | 1.739141153104692 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0013583564632105 | 2.2234622064925224e-16\n", - "50.0 | 0.005 | 1.739141172165665 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0013542989220954 | 2.2234531969413837e-16\n", - "50.0 | 0.0075 | 1.7391411879631304 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0013509361089248 | 2.2234457299961647e-16\n", - "50.0 | 0.01 | 1.7391412036824188 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0013475899545612 | 2.223438300040928e-16\n", - "50.0 | 0.02 | 1.7391412657893084 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0013343694737178 | 2.22340894467647e-16\n", - "50.0 | 0.05 | 1.7391414450146112 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.001296219922522 | 2.2233242356562365e-16\n", - "50.0 | 0.075 | 1.7391415867303393 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.001266056190751 | 2.223257258717195e-16\n", - "50.0 | 0.1 | 1.7391417220066685 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0012372643858902 | 2.223193328067841e-16\n", - "50.0 | 0.2 | 1.739142206764682 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0011341005544732 | 2.2229642583459456e-16\n", - "50.0 | 0.5 | 1.7391432733304768 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0009071775605214 | 2.2224603880805413e-16\n", - "50.0 | 0.75 | 1.7391438828572479 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0007775303834385 | 2.222172513518391e-16\n", - "50.0 | 1 | 1.739144340031251 | 1.0013610750249617 | 2.2234682429122227e-16 | 1.0006803060255958 | 2.2219566320771284e-16\n", - "75.0 | 1e-05 | 1.7391475402804037 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000001490198573 | 2.2204463801408666e-16\n", - "75.0 | 2e-05 | 1.7391475402804104 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000001490183668 | 2.220446380137557e-16\n", - "75.0 | 5e-05 | 1.7391475402804306 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000001490138963 | 2.2204463801276305e-16\n", - "75.0 | 7.5e-05 | 1.7391475402804475 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000001490101718 | 2.2204463801193603e-16\n", - "75.0 | 0.0001 | 1.739147540280464 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000001490064463 | 2.220446380111088e-16\n", - "75.0 | 0.0002 | 1.73914754028053 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000001489915489 | 2.220446380078009e-16\n", - "75.0 | 0.0005 | 1.7391475402807293 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000001489468737 | 2.2204463799788104e-16\n", - "75.0 | 0.00075 | 1.7391475402808945 | 1.000000149021347 | 2.2204463801441744e-16 | 1.000000148909665 | 2.2204463798961905e-16\n", - "75.0 | 0.001 | 1.7391475402810592 | 1.000000149021347 | 2.2204463801441744e-16 | 1.000000148872475 | 2.220446379813612e-16\n", - "75.0 | 0.002 | 1.7391475402817205 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000001487238994 | 2.220446379483708e-16\n", - "75.0 | 0.005 | 1.739147540283696 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000001482799472 | 2.220446378497936e-16\n", - "75.0 | 0.0075 | 1.7391475402853336 | 1.000000149021347 | 2.2204463801441744e-16 | 1.000000147912007 | 2.220446377680945e-16\n", - "75.0 | 0.01 | 1.7391475402869625 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000001475458882 | 2.2204463768679976e-16\n", - "75.0 | 0.02 | 1.7391475402933994 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000001460993597 | 2.220446373656059e-16\n", - "75.0 | 0.05 | 1.7391475403119734 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000001419250921 | 2.220446364387323e-16\n", - "75.0 | 0.075 | 1.7391475403266607 | 1.000000149021347 | 2.2204463801441744e-16 | 1.000000138624508 | 2.2204463570585544e-16\n", - "75.0 | 0.1 | 1.7391475403406793 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000001354739512 | 2.2204463500629127e-16\n", - "75.0 | 0.2 | 1.7391475403909142 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000001241844543 | 2.220446324995194e-16\n", - "75.0 | 0.5 | 1.7391475405014305 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000000993475624 | 2.2204462698462155e-16\n", - "75.0 | 0.75 | 1.7391475405645829 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000000851550528 | 2.2204462383325136e-16\n", - "75.0 | 1 | 1.7391475406119472 | 1.000000149021347 | 2.2204463801441744e-16 | 1.0000000745106707 | 2.2204462146972376e-16\n", - "100.0 | 1e-05 | 1.7391475409434956 | 1.000000000000426 | 2.220446049251259e-16 | 1.000000000000426 | 2.220446049251259e-16\n", - "100.0 | 2e-05 | 1.7391475409434953 | 1.000000000000426 | 2.220446049251259e-16 | 1.000000000000426 | 2.220446049251259e-16\n", - "100.0 | 5e-05 | 1.7391475409434949 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004259 | 2.2204460492512587e-16\n", + "75.0 | 1 | 1.7391475406119472 | 1.0000001490213473 | 2.220446380144175e-16 | 1.0000000745106707 | 2.2204462146972376e-16\n", + "100.0 | 1e-05 | 1.7391475409434953 | 1.000000000000426 | 2.220446049251259e-16 | 1.000000000000426 | 2.220446049251259e-16\n", + "100.0 | 2e-05 | 1.7391475409434949 | 1.000000000000426 | 2.220446049251259e-16 | 1.000000000000426 | 2.220446049251259e-16\n", + "100.0 | 5e-05 | 1.739147540943495 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004259 | 2.2204460492512587e-16\n", "100.0 | 7.5e-05 | 1.7391475409434953 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004259 | 2.2204460492512587e-16\n", - "100.0 | 0.0001 | 1.7391475409434953 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004259 | 2.2204460492512587e-16\n", - "100.0 | 0.0002 | 1.739147540943495 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004259 | 2.2204460492512587e-16\n", + "100.0 | 0.0001 | 1.7391475409434953 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004259 | 2.2204460492512587e-16\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100.0 | 0.0002 | 1.7391475409434953 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004259 | 2.2204460492512587e-16\n", "100.0 | 0.0005 | 1.7391475409434953 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004257 | 2.220446049251258e-16\n", "100.0 | 0.00075 | 1.739147540943495 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004259 | 2.2204460492512587e-16\n", - "100.0 | 0.001 | 1.7391475409434949 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004254 | 2.2204460492512577e-16\n", + "100.0 | 0.001 | 1.739147540943495 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004254 | 2.2204460492512577e-16\n", "100.0 | 0.002 | 1.7391475409434953 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004252 | 2.2204460492512572e-16\n", - "100.0 | 0.005 | 1.7391475409434949 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004237 | 2.220446049251254e-16\n", + "100.0 | 0.005 | 1.739147540943495 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004237 | 2.220446049251254e-16\n", "100.0 | 0.0075 | 1.739147540943495 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004228 | 2.220446049251252e-16\n", "100.0 | 0.01 | 1.7391475409434949 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004219 | 2.22044604925125e-16\n", - "100.0 | 0.02 | 1.7391475409434953 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004174 | 2.22044604925124e-16\n", - "100.0 | 0.05 | 1.7391475409434953 | 1.000000000000426 | 2.220446049251259e-16 | 1.000000000000406 | 2.2204460492512144e-16\n", + "100.0 | 0.02 | 1.739147540943495 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004174 | 2.22044604925124e-16\n", + "100.0 | 0.05 | 1.7391475409434949 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000004057 | 2.220446049251214e-16\n", "100.0 | 0.075 | 1.7391475409434953 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000003963 | 2.220446049251193e-16\n", - "100.0 | 0.1 | 1.7391475409434949 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000003872 | 2.220446049251173e-16\n", - "100.0 | 0.2 | 1.739147540943496 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000003548 | 2.220446049251101e-16\n", - "100.0 | 0.5 | 1.739147540943496 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000002842 | 2.220446049250944e-16\n", - "100.0 | 0.75 | 1.7391475409434956 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000002436 | 2.220446049250854e-16\n", - "100.0 | 1 | 1.7391475409434956 | 1.000000000000426 | 2.220446049251259e-16 | 1.000000000000213 | 2.220446049250786e-16\n", + "100.0 | 0.1 | 1.739147540943495 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000003872 | 2.220446049251173e-16\n", + "100.0 | 0.2 | 1.7391475409434958 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000003548 | 2.220446049251101e-16\n", + "100.0 | 0.5 | 1.7391475409434956 | 1.000000000000426 | 2.220446049251259e-16 | 1.000000000000284 | 2.2204460492509437e-16\n", + "100.0 | 0.75 | 1.7391475409434958 | 1.000000000000426 | 2.220446049251259e-16 | 1.0000000000002436 | 2.220446049250854e-16\n", + "100.0 | 1 | 1.739147540943496 | 1.000000000000426 | 2.220446049251259e-16 | 1.000000000000213 | 2.220446049250786e-16\n", "200.0 | 1e-05 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000002 | 2.2204460492503136e-16\n", "200.0 | 2e-05 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000002 | 2.2204460492503136e-16\n", - "200.0 | 5e-05 | 1.7391475409434967 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", + "200.0 | 5e-05 | 1.7391475409434973 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "200.0 | 7.5e-05 | 1.7391475409434973 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", - "200.0 | 0.0001 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", - "200.0 | 0.0002 | 1.7391475409434969 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", + "200.0 | 0.0001 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000002 | 2.2204460492503136e-16\n", + "200.0 | 0.0002 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000002 | 2.2204460492503136e-16\n", "200.0 | 0.0005 | 1.7391475409434973 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", - "200.0 | 0.00075 | 1.7391475409434967 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", - "200.0 | 0.001 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", - "200.0 | 0.002 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", - "200.0 | 0.005 | 1.7391475409434969 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", + "200.0 | 0.00075 | 1.7391475409434969 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", + "200.0 | 0.001 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000007 | 2.2204460492503146e-16\n", + "200.0 | 0.002 | 1.7391475409434973 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", + "200.0 | 0.005 | 1.7391475409434969 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000007 | 2.2204460492503146e-16\n", "200.0 | 0.0075 | 1.7391475409434973 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", - "200.0 | 0.01 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", + "200.0 | 0.01 | 1.7391475409434967 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", "200.0 | 0.02 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", "200.0 | 0.05 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", "200.0 | 0.075 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0 | 2.220446049250313e-16\n", - "200.0 | 0.1 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000007 | 2.2204460492503146e-16\n", - "200.0 | 0.2 | 1.7391475409434973 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", + "200.0 | 0.1 | 1.7391475409434973 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000007 | 2.2204460492503146e-16\n", + "200.0 | 0.2 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", "200.0 | 0.5 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0 | 2.220446049250313e-16\n", - "200.0 | 0.75 | 1.739147540943497 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000002 | 2.2204460492503136e-16\n", - "200.0 | 1 | 1.7391475409434967 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", + "200.0 | 0.75 | 1.7391475409434967 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", + "200.0 | 1 | 1.7391475409434969 | 1.0000000000000004 | 2.220446049250314e-16 | 1.0000000000000004 | 2.220446049250314e-16\n", "500.0 | 1e-05 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", "500.0 | 2e-05 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", "500.0 | 5e-05 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", @@ -1343,7 +1342,13 @@ "500.0 | 0.0001 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", "500.0 | 0.0002 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", "500.0 | 0.0005 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", - "500.0 | 0.00075 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", + "500.0 | 0.00075 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "500.0 | 0.001 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", "500.0 | 0.002 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", "500.0 | 0.005 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", @@ -1368,7 +1373,13 @@ "1000.0 | 0.001 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", "1000.0 | 0.002 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", "1000.0 | 0.005 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", - "1000.0 | 0.0075 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", + "1000.0 | 0.0075 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "1000.0 | 0.01 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", "1000.0 | 0.02 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", "1000.0 | 0.05 | 1.739147540943497 | 1.0 | 2.220446049250313e-16 | 1.0 | 2.220446049250313e-16\n", @@ -1397,14 +1408,14 @@ "RBF Expression:\n", "--------------------------\n", "\n", - "4.038157591240296 + 237.8499310618983*(-1551.5244569618876*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.5518182560031254)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.2731190901874679)**2)**0.5)**2) - 334.71891273048857*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.4300326512391472)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.8610629174234938)**2)**0.5)**2) + 235.58220304204985*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.11035664436222248)**2)**0.5)**2) + 27.886153309561678*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.6822668136056202)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.8414199967160326)**2)**0.5)**2) - 1415.9829578091171*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.13520535030959882)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5811256814195772)**2)**0.5)**2) - 990.5466782519585*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.908216841775921)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.20132180755786522)**2)**0.5)**2) - 343.10909375147367*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.18501228557936236)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.09666279198240106)**2)**0.5)**2) - 723.9922784849874*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.22021941796179972)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 1.0)**2)**0.5)**2) - 8.525226879211669*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.8266365897830592)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.16264387978612238)**2)**0.5)**2) + 255.07386589590683*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.831288905218487)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.26866011456766936)**2)**0.5)**2) + 528.0399010886766*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.43739443999592303)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.9599385359524552)**2)**0.5)**2) + 432.74002291691215*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.8327482651149929)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.3330572615505772)**2)**0.5)**2) - 761.4482839044426*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.17485274298531528)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.3711736045917253)**2)**0.5)**2) + 854.4206928222548*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.0009932894634358945)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.2461895993357224)**2)**0.5)**2) + 158.4825871693355*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.8102253955808789)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546)**2)**0.5)**2) - 2542.5018400558793*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.6086081776493459)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.6109286075828757)**2)**0.5)**2) - 1366.554383948263*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.1028770983224648)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.38063145554753214)**2)**0.5)**2) + 342.1406582093882*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.0325313822086792)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.9084335925839453)**2)**0.5)**2) + 107.6091733488148*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 1.0)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.046386199083146756)**2)**0.5)**2) + 49.67120676760413*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.9074219145138307)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5830026053427076)**2)**0.5)**2) + 897.3018668528205*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.7557460774371298)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.6383110566137417)**2)**0.5)**2) - 8.627269390497531*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.5911925356865033)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.005381283583344741)**2)**0.5)**2) - 136.91234827602625*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.21031274399063923)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5495609776179707)**2)**0.5)**2) + 735.7407100245284*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.7830308832306688)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.24439265066740792)**2)**0.5)**2) + 541.730933783887*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.28803140536417743)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.8689715765112118)**2)**0.5)**2) - 45.921399758259014*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.993941455353761)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.9026639746834018)**2)**0.5)**2) + 1712.6788445573948*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.36343808704287006)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.6057949629205177)**2)**0.5)**2) + 3266.9168170263265*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.3586109792561233)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.3372905989731323)**2)**0.5)**2) - 827.2715689260567*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.17758838147122427)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.23089727866378493)**2)**0.5)**2) + 919.0325530603195*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.04112204875223326)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5088149538788017)**2)**0.5)**2))\n", + "4.038157591240296 + 237.8499310618983*(-1551.5244569790484*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.5518182560031254)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.2731190901874679)**2)**0.5)**2) - 334.71891270994945*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.4300326512391472)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.8610629174234938)**2)**0.5)**2) + 235.58220304447389*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.11035664436222248)**2)**0.5)**2) + 27.886153320078392*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.6822668136056202)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.8414199967160326)**2)**0.5)**2) - 1415.9829577991513*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.13520535030959882)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5811256814195772)**2)**0.5)**2) - 990.5466783129937*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.908216841775921)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.20132180755786522)**2)**0.5)**2) - 343.1090937504871*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.18501228557936236)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.09666279198240106)**2)**0.5)**2) - 723.9922784938293*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.22021941796179972)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 1.0)**2)**0.5)**2) - 8.525226892380312*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.8266365897830592)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.16264387978612238)**2)**0.5)**2) + 255.07386589846564*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.831288905218487)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.26866011456766936)**2)**0.5)**2) + 528.0399010835685*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.43739443999592303)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.9599385359524552)**2)**0.5)**2) + 432.74002294811885*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.8327482651149929)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.3330572615505772)**2)**0.5)**2) - 761.4482839023253*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.17485274298531528)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.3711736045917253)**2)**0.5)**2) + 854.4206928285184*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.0009932894634358945)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.2461895993357224)**2)**0.5)**2) + 158.48258716555927*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.8102253955808789)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546)**2)**0.5)**2) - 2542.501840064855*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.6086081776493459)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.6109286075828757)**2)**0.5)**2) - 1366.5543839471993*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.1028770983224648)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.38063145554753214)**2)**0.5)**2) + 342.14065821289296*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.0325313822086792)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.9084335925839453)**2)**0.5)**2) + 107.60917336635657*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 1.0)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.046386199083146756)**2)**0.5)**2) + 49.67120678278616*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.9074219145138307)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5830026053427076)**2)**0.5)**2) + 897.3018668200407*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.7557460774371298)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.6383110566137417)**2)**0.5)**2) - 8.627269388010859*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.5911925356865033)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.005381283583344741)**2)**0.5)**2) - 136.91234826302025*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.21031274399063923)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5495609776179707)**2)**0.5)**2) + 735.7407100718409*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.7830308832306688)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.24439265066740792)**2)**0.5)**2) + 541.7309337858117*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.28803140536417743)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.8689715765112118)**2)**0.5)**2) - 45.92139975993581*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.993941455353761)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.9026639746834018)**2)**0.5)**2) + 1712.6788445330471*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.36343808704287006)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.6057949629205177)**2)**0.5)**2) + 3266.9168170510325*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.3586109792561233)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.3372905989731323)**2)**0.5)**2) - 827.2715689473107*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.17758838147122427)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.23089727866378493)**2)**0.5)**2) + 919.0325530451682*exp(- (0.75*(((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.04112204875223326)**2 + ((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5088149538788017)**2)**0.5)**2))\n", "--------------------------\n", "\n", "Model training errors:\n", "-----------------------\n", - "Mean Squared Error (MSE) : 0.0004443809827437673\n", - "Root Mean Squared Error (RMSE) : 0.021080345887669095\n", - "Goodness of fit (R2) : 0.9918215668806757\n", + "Mean Squared Error (MSE) : 0.00044438098273198273\n", + "Root Mean Squared Error (RMSE) : 0.02108034588738958\n", + "Goodness of fit (R2) : 0.9918215668808925\n", "\n", "========================================================================================================================" ] @@ -1436,8 +1447,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "R2: 0.9918215668806757 \n", - "RMSE: 0.021080345887669095\n" + "R2: 0.9918215668808925 \n", + "RMSE: 0.02108034588738958\n" ] } ], @@ -1472,7 +1483,7 @@ "text": [ "[[61.06401281]\n", " [12.7142377 ]\n", - " [50.97501439]]\n" + " [50.9750144 ]]\n" ] } ], @@ -1616,8 +1627,8 @@ "\n", "Final results\n", "================\n", - "Theta: [6.01576437 0.22794622] \n", - "Mean: [[386.67466251]] \n", + "Theta: [6.01392028 0.22771839] \n", + "Mean: [[386.90347574]] \n", "Regularization parameter: 1.000000000001e-06\n", "\n", "Results saved in solution.pickle\n" @@ -1630,23 +1641,23 @@ "========================================================================================================================\n", "Results of Kriging run:\n", "\n", - "Kriging mean : [[386.67466251]]\n", - "Kriging variance : [[70460.78166121]]\n", - "Kriging weights : [6.01576437 0.22794622]\n", + "Kriging mean : [[386.90347574]]\n", + "Kriging variance : [[70556.80108849]]\n", + "Kriging weights : [6.01392028 0.22771839]\n", "Regularization parameter : 1.000000000001e-06\n", "Number of terms in Kriging model : 31\n", "\n", "Kriging Expression:\n", "--------------------\n", "\n", - "386.6746625106164 + (3469.0208871846553*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.5518182560031254)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.2731190901874679)**2)) - 141877.18052533641*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.4300326512391472)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.8610629174234938)**2)) + 89858.53563122451*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.11035664436222248)**2)) - 17331.16845172411*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.6822668136056202)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.8414199967160326)**2)) + 70866.88925537094*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.13520535030959882)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5811256814195772)**2)) + 84227.85506583657*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.908216841775921)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.20132180755786522)**2)) + 12240.144907206297*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.18501228557936236)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.09666279198240106)**2)) + 10862.880267933011*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.22021941796179972)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 1.0)**2)) - 88626.71938276757*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.8266365897830592)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.16264387978612238)**2)) - 59560.382920601405*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.831288905218487)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.26866011456766936)**2)) + 108091.18288033456*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.43739443999592303)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.9599385359524552)**2)) - 49286.85214255564*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.8327482651149929)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.3330572615505772)**2)) + 142911.70424503088*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.17485274298531528)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.3711736045917253)**2)) - 121075.87439893931*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.0009932894634358945)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.2461895993357224)**2)) + 18631.616961394437*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.8102253955808789)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546)**2)) - 20558.20656931633*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.6086081776493459)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.6109286075828757)**2)) - 147105.12800574303*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.1028770983224648)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.38063145554753214)**2)) - 20770.266188384965*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.0325313822086792)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.9084335925839453)**2)) - 12552.899758738116*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 1.0)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.046386199083146756)**2)) - 15680.859052546322*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.9074219145138307)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5830026053427076)**2)) + 51439.576363677625*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.7557460774371298)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.6383110566137417)**2)) - 7759.502903997432*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.5911925356865033)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.005381283583344741)**2)) - 105321.72080910672*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.21031274399063923)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5495609776179707)**2)) + 103559.18517672084*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.7830308832306688)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.24439265066740792)**2)) - 32907.053552615456*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.28803140536417743)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.8689715765112118)**2)) + 2458.404474788578*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.993941455353761)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.9026639746834018)**2)) + 99575.24403728923*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.36343808704287006)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.6057949629205177)**2)) - 18709.6442205254*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.3586109792561233)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.3372905989731323)**2)) - 47558.269057542086*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.17758838147122427)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.23089727866378493)**2)) + 108489.48778639734*exp(- (6.01576436749808*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.04112204875223326)**2 + 0.22794621767031822*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5088149538788017)**2)))\n", + "386.9034757421604 + (3473.6188375169877*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.5518182560031254)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.2731190901874679)**2)) - 142048.1264255196*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.4300326512391472)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.8610629174234938)**2)) + 89948.51272980124*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.11035664436222248)**2)) - 17389.307680525817*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.6822668136056202)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.8414199967160326)**2)) + 70994.41540519707*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.13520535030959882)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5811256814195772)**2)) + 84412.48334978987*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.908216841775921)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.20132180755786522)**2)) + 12250.97852602601*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.18501228557936236)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.09666279198240106)**2)) + 10829.06845778972*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.22021941796179972)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 1.0)**2)) - 88695.55215699691*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.8266365897830592)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.16264387978612238)**2)) - 59748.16254133731*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.831288905218487)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.26866011456766936)**2)) + 108252.31525952369*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.43739443999592303)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.9599385359524552)**2)) - 49527.87472515367*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.8327482651149929)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.3330572615505772)**2)) + 142762.61227712035*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.17485274298531528)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.3711736045917253)**2)) - 121186.88497902453*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.0009932894634358945)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.2461895993357224)**2)) + 18640.5190643901*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.8102253955808789)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546)**2)) - 20598.770821066108*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.6086081776493459)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.6109286075828757)**2)) - 147128.4743987471*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.1028770983224648)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.38063145554753214)**2)) - 20774.44542255439*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.0325313822086792)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.9084335925839453)**2)) - 12580.149634421337*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 1.0)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.046386199083146756)**2)) - 15671.779116195627*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.9074219145138307)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5830026053427076)**2)) + 51583.75760432938*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.7557460774371298)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.6383110566137417)**2)) - 7788.303423967678*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.5911925356865033)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.005381283583344741)**2)) - 105298.9361291409*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.21031274399063923)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5495609776179707)**2)) + 103837.49478091672*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.7830308832306688)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.24439265066740792)**2)) - 32915.049158302136*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.28803140536417743)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.8689715765112118)**2)) + 2455.866163903731*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.993941455353761)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.9026639746834018)**2)) + 99592.50938708556*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.36343808704287006)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.6057949629205177)**2)) - 18654.447378620505*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.3586109792561233)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.3372905989731323)**2)) - 47543.8977778852*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.17758838147122427)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.23089727866378493)**2)) + 108516.00992591679*exp(- (6.013920280600496*((IndexedParam[0] + 4.929217157135412)/14.643030012320084 - 0.04112204875223326)**2 + 0.22771839133441968*((IndexedParam[1] - 0.22882456869508516)/14.45053220191546 - 0.5088149538788017)**2)))\n", "--------------------------\n", "\n", "Model training errors:\n", "-----------------------\n", - "Mean Squared Error (MSE) : 0.005821749035738542\n", - "Root Mean Squared Error (RMSE) : 0.07630038686493366\n", - "Goodness of fit (R2) : 0.999998106078119\n", + "Mean Squared Error (MSE) : 0.005830984939233206\n", + "Root Mean Squared Error (RMSE) : 0.07636088618679858\n", + "Goodness of fit (R2) : 0.99999810307351\n", "\n", "========================================================================================================================" ] @@ -1687,8 +1698,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "R2: 0.999998106078119 \n", - "RMSE: 0.07630038686493366\n" + "R2: 0.99999810307351 \n", + "RMSE: 0.07636088618679858\n" ] } ], @@ -1721,9 +1732,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "[[57.63225481]\n", - " [ 4.44461901]\n", - " [50.8024123 ]]\n" + "[[57.63168118]\n", + " [ 4.44415424]\n", + " [50.80252545]]\n" ] } ], @@ -1751,7 +1762,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "3469.0208871846553*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.5518182560031254)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.2731190901874679)**2)) - 141877.18052533641*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.4300326512391472)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.8610629174234938)**2)) + 89858.53563122451*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.11035664436222248)**2)) - 17331.16845172411*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.6822668136056202)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.8414199967160326)**2)) + 70866.88925537094*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.13520535030959882)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.5811256814195772)**2)) + 84227.85506583657*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.908216841775921)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.20132180755786522)**2)) + 12240.144907206297*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.18501228557936236)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.09666279198240106)**2)) + 10862.880267933011*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.22021941796179972)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 1.0)**2)) - 88626.71938276757*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.8266365897830592)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.16264387978612238)**2)) - 59560.382920601405*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.831288905218487)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.26866011456766936)**2)) + 108091.18288033456*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.43739443999592303)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.9599385359524552)**2)) - 49286.85214255564*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.8327482651149929)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.3330572615505772)**2)) + 142911.70424503088*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.17485274298531528)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.3711736045917253)**2)) - 121075.87439893931*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.0009932894634358945)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.2461895993357224)**2)) + 18631.616961394437*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.8102253955808789)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546)**2)) - 20558.20656931633*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.6086081776493459)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.6109286075828757)**2)) - 147105.12800574303*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.1028770983224648)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.38063145554753214)**2)) - 20770.266188384965*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.0325313822086792)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.9084335925839453)**2)) - 12552.899758738116*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 1.0)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.046386199083146756)**2)) - 15680.859052546322*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.9074219145138307)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.5830026053427076)**2)) + 51439.576363677625*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.7557460774371298)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.6383110566137417)**2)) - 7759.502903997432*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.5911925356865033)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.005381283583344741)**2)) - 105321.72080910672*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.21031274399063923)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.5495609776179707)**2)) + 103559.18517672084*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.7830308832306688)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.24439265066740792)**2)) - 32907.053552615456*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.28803140536417743)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.8689715765112118)**2)) + 2458.404474788578*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.993941455353761)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.9026639746834018)**2)) + 99575.24403728923*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.36343808704287006)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.6057949629205177)**2)) - 18709.6442205254*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.3586109792561233)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.3372905989731323)**2)) - 47558.269057542086*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.17758838147122427)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.23089727866378493)**2)) + 108489.48778639734*exp(- (6.01576436749808*((x[1] + 4.929217157135412)/14.643030012320084 - 0.04112204875223326)**2 + 0.22794621767031822*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.5088149538788017)**2)) + 386.6746625106164\n" + "3473.6188375169877*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.5518182560031254)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.2731190901874679)**2)) - 142048.1264255196*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.4300326512391472)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.8610629174234938)**2)) + 89948.51272980124*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.11035664436222248)**2)) - 17389.307680525817*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.6822668136056202)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.8414199967160326)**2)) + 70994.41540519707*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.13520535030959882)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.5811256814195772)**2)) + 84412.48334978987*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.908216841775921)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.20132180755786522)**2)) + 12250.97852602601*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.18501228557936236)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.09666279198240106)**2)) + 10829.06845778972*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.22021941796179972)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 1.0)**2)) - 88695.55215699691*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.8266365897830592)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.16264387978612238)**2)) - 59748.16254133731*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.831288905218487)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.26866011456766936)**2)) + 108252.31525952369*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.43739443999592303)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.9599385359524552)**2)) - 49527.87472515367*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.8327482651149929)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.3330572615505772)**2)) + 142762.61227712035*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.17485274298531528)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.3711736045917253)**2)) - 121186.88497902453*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.0009932894634358945)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.2461895993357224)**2)) + 18640.5190643901*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.8102253955808789)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546)**2)) - 20598.770821066108*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.6086081776493459)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.6109286075828757)**2)) - 147128.4743987471*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.1028770983224648)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.38063145554753214)**2)) - 20774.44542255439*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.0325313822086792)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.9084335925839453)**2)) - 12580.149634421337*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 1.0)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.046386199083146756)**2)) - 15671.779116195627*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.9074219145138307)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.5830026053427076)**2)) + 51583.75760432938*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.7557460774371298)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.6383110566137417)**2)) - 7788.303423967678*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.5911925356865033)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.005381283583344741)**2)) - 105298.9361291409*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.21031274399063923)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.5495609776179707)**2)) + 103837.49478091672*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.7830308832306688)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.24439265066740792)**2)) - 32915.049158302136*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.28803140536417743)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.8689715765112118)**2)) + 2455.866163903731*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.993941455353761)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.9026639746834018)**2)) + 99592.50938708556*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.36343808704287006)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.6057949629205177)**2)) - 18654.447378620505*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.3586109792561233)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.3372905989731323)**2)) - 47543.8977778852*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.17758838147122427)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.23089727866378493)**2)) + 108516.00992591679*exp(- (6.013920280600496*((x[1] + 4.929217157135412)/14.643030012320084 - 0.04112204875223326)**2 + 0.22771839133441968*((x[2] - 0.22882456869508516)/14.45053220191546 - 0.5088149538788017)**2)) + 386.9034757421604\n" ] } ], @@ -1796,9 +1807,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics_test.ipynb b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics_test.ipynb index 16ec6887..0b7a066f 100644 --- a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics_test.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics_test.ipynb @@ -1,867 +1,868 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# PySMO Tutorial\n", - "Author: Mayo Amusat \n", - "Maintainer: Mayo Amusat \n", - "Updated: 2023-06-01 \n", - "\n", - "**Python-based Surrogate Modelling Objects** (PySMO) provides tools for generating different types of reduced order models. PySMO currently provides tools for sampling and surrogate model generation.\n", - "\n", - "## Installation\n", - "\n", - "**PySMO** is installed by default as part of IDAES. For instructions on installing IDAES, see the [online documentation](https://idaes-pse.readthedocs.io/en/stable/)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## One-Shot Sampling with PySMO\n", - "\n", - "The PySMO package offers five common sampling methods for one-shot design:\n", - "\n", - "* Latin Hypercube Sampling (LHS)\n", - "* Full-Factorial Sampling\n", - "* Halton Sampling\n", - "* Hammersley Sampling\n", - "* Centroidal voronoi tessellation (CVT) sampling" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "PySMO provides two modes for data sampling: creation and selection.\n", - "- In creation mode, PySMO creates a specified number of sample points from the bounds provided by the user.\n", - "- In selection mode, PySMO selects a specified number of data points from a user-supplied dataset or file." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Generating samples: \n", - "For demonstration purposes, let us consider a problem for which we need twenty-five (25) samples of temperature and pressure from within the ranges T = 273K - 373K, P = 1 MPa - 50 MPa. Let us generate these samples in PySMO." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 1: Import PySMO's sampling tool\n", - "For this demonstration, we will attempt to generate the samples using the Hammersley sampling method." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.surrogate.pysmo.sampling import HammersleySampling" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 2: Specify sampling information and initialize class\n", - "\n", - "All the sampling tools (except full-factorial sampling) require the same keyword arguments:\n", - "\n", - " - data_input : must be a list of lists containing the problem bounds (when creating points), \n", - " or an input dataset (when selecting points from a dataset)\n", - " - number_of_samples : number of samples to be created or selected.\n", - " - sampling_type : \"creation\" or \"selection\".\n", - "\n", - "For full factorial sampling, the user needs to enter a list of points in each dimension in place of the number of samples. Full-factorial sampling requires other inputs - details may be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/sampling/pysmo_uniform.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For our example, we will create the bounds and then initialize the class with the number of samples." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "bounds_info = [[273, 1], [373, 50]]\n", - "init_data = HammersleySampling(\n", - " data_input=bounds_info, number_of_samples=25, sampling_type=\"creation\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 3: Create the samples\n", - "The samples are created by calling the ``sample_points`` method on the initialized class." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "samples = init_data.sample_points()\n", - "print(samples)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Simple as that, the samples have been created!\n", - "\n", - "Now, let us visualize the samples in a 2-D plot." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 4: Visualize samples with matplotlib" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from matplotlib import pyplot as plt\n", - "\n", - "plt.plot(samples[:, 0], samples[:, 1], \"o\")\n", - "plt.xlabel(r\"Temperature\", fontsize=11)\n", - "plt.xlabel(r\"Pressure\", fontsize=11)\n", - "plt.xlim(272, 374)\n", - "plt.ylim(0, 50)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Generating surrogates with PySMO\n", - "\n", - "PySMO currently provides tools for generating three types of surrogates:\n", - "\n", - "- Polynomial surrogates\n", - "- Radial basis function (RBF) surrogates, and\n", - "- Kriging surrogates\n", - "\n", - "Details about thee various methods may be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Generating polynomial models\n", - "\n", - "The ``PolynomialRegression`` class trains polynomial models from data.\n", - "\n", - "As an example, let us generate a surrogate for the Brainin function. \n", - "\n", - "The true Brainin function is given by the expression:\n", - " \n", - " \\begin{gather}\n", - "\\hat{y}(x_{1},x_{2})=\\left(x_{2}-\\frac{5.1x_{1}^{2}}{4\\pi^{2}}+\\frac{5x_{1}}{\\pi}-6\\right)^{2}+10\\left[\\left(1-\\frac{1}{8\\pi}\\right)\\cos\\left(x_{1}\\right)+1\\right]+5x_{1}\\nonumber \\\\\n", - "x_{1}\\in\\left[-5,10\\right];x_{2}\\in\\left[0,15\\right]\n", - "\\end{gather}\n", - "\n", - "We have generated 30 points from the function and saved the information in a text file called \"brainin_30.txt\". We will use this data to train a simple polynomial model. The data is in XY format, with the outputs $y$ in the third column." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 1: Import and visualize the data" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "brainin_data = np.loadtxt(\"brainin_30.txt\")\n", - "print(brainin_data, \"\\n\\nDataset shape:\", brainin_data.shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us visualize the data:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from mpl_toolkits.mplot3d import Axes3D\n", - "from matplotlib import pyplot as plt\n", - "\n", - "fig1 = plt.figure(figsize=(6, 4), tight_layout=True)\n", - "ax = fig1.add_subplot(111, projection=\"3d\")\n", - "ax.scatter3D(\n", - " brainin_data[:, 0], brainin_data[:, 1], brainin_data[:, 2], cmap=brainin_data[:, 2]\n", - ")\n", - "ax.set_xlabel(r\"$x_{1}$\", fontsize=11)\n", - "ax.set_ylabel(r\"$x_{2}$\", fontsize=11)\n", - "ax.set_zlabel(r\"$y$\", fontsize=11)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 2: Import the polynomial model tool" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.surrogate.pysmo.polynomial_regression import PolynomialRegression" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 3: Specify the regression settings and initialize the PolynomialRegression class\n", - " \n", - "The PolynomialRegression class takes a keyword arguments:\n", - "\n", - " - original_data_input : The dataset for regression training. training_data is expected to contain xy_data, \n", - " with the output values (y) in the last column.\n", - " - regression_data_input : same as above\n", - " - maximum_polynomial_order : maximum order of the polynomial to be generated \n", - "\n", - "It also takes a number of optional arguments:\n", - "\n", - " - multinomials : True/False option for specifying second-order bi-variate terms. default is False\n", - " - training_split : The training/cross-validation split of training data. Must be between 0 and 1. \n", - " Default is 0.75\n", - " - fname : Filename for saving results (.pickle extension). \n", - " - overwrite : Option determining whether any existing file with the same name supplied in 'fname' \n", - " should be overwritten." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this example, let us consider a 4th order polynomial with interaction terms. We will split the data 80/20 between training and cross-validation." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "poly_class = PolynomialRegression(\n", - " original_data_input=brainin_data,\n", - " regression_data_input=brainin_data,\n", - " maximum_polynomial_order=4,\n", - " multinomials=1,\n", - " training_split=0.8,\n", - " number_of_crossvalidations=10,\n", - " overwrite=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 4: Extract variable names\n", - "Next, we extract Pyomo variable names from the dataset. This should be done always." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "vars = poly_class.get_feature_vector()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can view the variables using Pyomo's pprint function:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "vars.pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 5: Specify additional regression terms, if required.\n", - "\n", - "This is one of the unique features of PySMO - it allows the user to specify additional regression features if they want.\n", - "The additional features must be specified in terms of the Pyomo variables created when calling the ``get_feature_vector()`` \n", - "\n", - "For this example, let us create three additional features: $x_{1}^{2}x_{2}^{2}$, $exp(x_1)$ and $exp(x_2)$. We do this by calling the ``set_additional_terms`` function:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import exp\n", - "\n", - "poly_class.set_additional_terms(\n", - " [vars[0] * vars[0] * vars[1] * vars[1], exp(vars[0]), exp(vars[1])]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "That's it - those features will now exist in the model. \n", - "\n", - "Note that ``set_additional_terms`` an optional call - the regression process works just fine without it." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 6: Train the surrogate and view results\n", - "Next, we train the polynomial surrogate by calling ``training``:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "poly_class.training()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The polynomial model seems to fit well based on the $R^2$. It should be noted that the metrics are only an indication of how well of how well the model fit the training data - the user needs to verify the model's performance on a test data set if possible.\n", - "\n", - "We can view the parity and residual plots for the fit:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "poly_class.parity_residual_plots()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "PySMO is also able to compute the confidence intervals on the regression coefficients obtained by calling ``confint_regression()``. This is left as an exercise for the user.\n", - "\n", - "#### Step 8 (Optional): Generate Pyomo expression \n", - "\n", - "If the user wishes, they can generate the Pyomo expression for the polynomial fit using PySMO's ``generate_expression``. To do this, the user must pass in a list of Pyomo variables corresponding to each variable in the input dataset. \n", - "\n", - "As a demonstration, let us create the variables $x_1$ and $x_2$ and generate the pyomo expression based on them:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import Var, ConcreteModel\n", - "\n", - "m = ConcreteModel()\n", - "m.x = Var([1, 2])\n", - "print(poly_class.generate_expression([m.x[1], m.x[2]]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 9 (Optional): Predict output at any unsampled point\n", - "\n", - "Based on the model we trained, we can predict the surrogate value at any previously unsampled point. \n", - "\n", - "Let us evaluate the surrogate at three points:\n", - "\n", - "- $x_{1}=5$, $x_{2}=8$ (true function value: 57.9908)\n", - "- $x_{1}=-3$, $x_{2}=10$ (true function value: 4.2461)\n", - "- $x_{1}=-2$, $x_{2}=3$. (true function value: 50.8899)\n", - "\n", - "We will pass the points in as an array." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "unsampled_points = np.array([[5, 8], [-3, 10], [-2, 3]])\n", - "ys = poly_class.predict_output(unsampled_points)\n", - "print(ys)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The model performs fairly well in predicting the value at two of our sampled points but is off on the value at [-3, 2]. For better model performance, additional training data is needed in this region. We will leave this to the user to try.\n", - "\n", - "Further information about using PySMO's polynomial regression tool can be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/pysmo_polyregression.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Generating RBF models\n", - "\n", - "The ``RadialBasisFunction`` class trains RBF models from data. For details about RBF models, the user should consult the documentation.\n", - "\n", - "As an example, we will again consider the Brainin function. The same dataset loaded previously will be used." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 1: Import the data and the RBF tool" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "brainin_data = np.loadtxt(\"brainin_30.txt\")\n", - "from idaes.core.surrogate.pysmo.radial_basis_function import RadialBasisFunctions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 2: Specify the RBF settings and initialize the RadialBasisFunctions class\n", - " \n", - "The RadialBasisFunctions class takes a number of keyword arguments:\n", - "\n", - " - XY_data : The dataset forRBF training. training_data is expected to contain xy_data, \n", - " with the output values (y) in the last column.\n", - "\n", - "\n", - "It also takes a number of optional arguments:\n", - "\n", - " - regularization : Boolean variable determining whether regularization is done. Default is True.\n", - " - basis_function : Basis function transformation to be applied to the training data. PySMO offers \n", - " six basis function types including the Gaussian and Spline transformations. User \n", - " should consult documentation for full list of options. \n", - " - fname : Filename for saving (.pickle extension)\n", - " - overwrite : Option determining whether any existing file with the same name supplied in 'fname' \n", - " should be overwritten." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this demonstration, we will train an RBF model with a Gaussian basis function:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "rbf_class = RadialBasisFunctions(\n", - " XY_data=brainin_data, basis_function=\"gaussian\", overwrite=True\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 3: Extract variable names\n", - "Next, we extract Pyomo variable names from the dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "vars = rbf_class.get_feature_vector()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 4: Train the RBF surrogate\n", - "Next, we train the RBF surrogate by calling ``training``:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "rbf_class.training()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 5: View model metrics\n", - " \n", - "We can view the Root Mean Square Error (RMSE) and $R^2$ values of the RBF fit based on the training data:" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"R2: \", rbf_class.R2, \"\\nRMSE: \", rbf_class.rmse)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 6 (Optional): Generate Pyomo expression output at any unsampled point\n", - "\n", - "\n", - "Based on the model we trained, we can predict the surrogate value at any previously unsampled point. We do this by calling the function ``predict_output``.\n", - "\n", - "Let us again evaluate the RBF surrogate at the same set of points we considered for the polynomial model:\n", - "\n", - "- $x_{1}=5$, $x_{2}=8$ (true function value: 57.9908)\n", - "- $x_{1}=-3$, $x_{2}=10$ (true function value: 4.2461)\n", - "- $x_{1}=-2$, $x_{2}=3$ (true function value: 50.8899)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "unsampled_points = np.array([[5, 8], [-3, 10], [-2, 3]])\n", - "ys = rbf_class.predict_output(unsampled_points)\n", - "print(ys)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The results from the RBF surrogate are similar to those obtained from the polynomial.\n", - "\n", - "\n", - "For RBF models, the Pyomo expression is generated by calling ``generate_expression`` on the results object, while parity plots may be viewed with the ``parity_residual_plots`` method.\n", - "\n", - "Further information about using PySMO's RBF tool and features can be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/pysmo_radialbasisfunctions.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Training Kriging models\n", - "\n", - "The ``KrigingModel`` class trains Kriging from data. For details about Kriging models, users should consult the documentation.\n", - "\n", - "As an example, we will again consider the Brainin function. The same dataset loaded previously will be used." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 1: Load the data and import the Kriging tool" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "brainin_data = np.loadtxt(\"brainin_30.txt\")\n", - "from idaes.core.surrogate.pysmo.kriging import KrigingModel" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 2: Specify the Kriging settings and initialize the KrigingModel class\n", - " \n", - "The KrigingModel class takes a number of keyword arguments:\n", - "\n", - " - XY_data : The dataset for Kriging training. training_data is expected to contain xy_data, \n", - " with the output values (y) in the last column.\n", - "\n", - "\n", - "It also takes a number of optional arguments:\n", - "\n", - " - regularization : Boolean variable determining whether regularization is done. Default is True.\n", - " - numerical_gradients : Boolean variable which determines whether numerical gradients are used when\n", - " solving the max. likelihood optimization problem. Default is True.\n", - " - fname : Filename for saving (.pickle extension)\n", - " - overwrite : Option determining whether any existing file with the same name supplied in 'fname' \n", - " should be overwritten." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "For this demonstration, we will train a Kriging model with regularization:" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "krg_class = KrigingModel(XY_data=brainin_data, overwrite=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 3: Extract variable names (optional)\n", - "Next, we extract Pyomo variable names from the dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "vars = krg_class.get_feature_vector()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 4: Train the Kriging surrogate\n", - "Next, we train the RBF surrogate by calling ``training``:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "krg_class.training()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The returned information correspond to the Kriging model parameters.\n", - "\n", - "As we can see, the optimization problem was solved using SciPy's L-BFGS algorithm which makes use of gradients. A different algorithm (Basinhopping) is used when no numerical gradients are computed (when numerical_gradients is set to False). The user should try this." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 5: View model metrics\n", - " \n", - "We can view the RMSE and $R^2$ values of the Kriging fit based on the training data:" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"R2: \", krg_class.training_R2, \"\\nRMSE: \", krg_class.training_rmse)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 6 (Optional): Generate Pyomo expression output at any unsampled point\n", - "\n", - "\n", - "Again, based on the model we trained, we evaluate the surrogate at a set of off-design points:\n", - "\n", - "- $x_{1}=5$, $x_{2}=8$ (true function value: 57.9908)\n", - "- $x_{1}=-3$, $x_{2}=10$ (true function value: 4.2461)\n", - "- $x_{1}=-2$, $x_{2}=3$ (true function value: 50.8899)\n", - "\n", - "We do this by calling the function ``predict_output``:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "unsampled_points = np.array([[5, 8], [-3, 10], [-2, 3]])\n", - "ys = krg_class.predict_output(unsampled_points)\n", - "print(ys)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Kriging model performs very well, predicting all three points fairly accurately. \n", - "\n", - "For Kriging models, the Pyomo expression is generated by calling ``generate_expression`` on the results object: " - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "print(krg_class.generate_expression([m.x[1], m.x[2]]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we can see, expressing a Kriging model algebraically is pretty complicated!\n", - "\n", - "Parity plots for the Kriging model may be viewed with the ``parity_residual_plots`` method.\n", - "\n", - "Further information about using PySMO's Kriging tool and features can be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/pysmo_kriging.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Summary\n", - "\n", - "PySMO allows IDAES users to sample design spaces and generate different types of surrogate models. Further information about PySMO's capabilities may be found in the documentation." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# PySMO Tutorial\n", + "Author: Mayo Amusat \n", + "Maintainer: Mayo Amusat \n", + "Updated: 2023-06-01 \n", + "\n", + "**Python-based Surrogate Modelling Objects** (PySMO) provides tools for generating different types of reduced order models. PySMO currently provides tools for sampling and surrogate model generation.\n", + "\n", + "## Installation\n", + "\n", + "**PySMO** is installed by default as part of IDAES. For instructions on installing IDAES, see the [online documentation](https://idaes-pse.readthedocs.io/en/stable/)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## One-Shot Sampling with PySMO\n", + "\n", + "The PySMO package offers five common sampling methods for one-shot design:\n", + "\n", + "* Latin Hypercube Sampling (LHS)\n", + "* Full-Factorial Sampling\n", + "* Halton Sampling\n", + "* Hammersley Sampling\n", + "* Centroidal voronoi tessellation (CVT) sampling" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "PySMO provides two modes for data sampling: creation and selection.\n", + "- In creation mode, PySMO creates a specified number of sample points from the bounds provided by the user.\n", + "- In selection mode, PySMO selects a specified number of data points from a user-supplied dataset or file." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generating samples: \n", + "For demonstration purposes, let us consider a problem for which we need twenty-five (25) samples of temperature and pressure from within the ranges T = 273K - 373K, P = 1 MPa - 50 MPa. Let us generate these samples in PySMO." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 1: Import PySMO's sampling tool\n", + "For this demonstration, we will attempt to generate the samples using the Hammersley sampling method." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.surrogate.pysmo.sampling import HammersleySampling" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 2: Specify sampling information and initialize class\n", + "\n", + "All the sampling tools (except full-factorial sampling) require the same keyword arguments:\n", + "\n", + " - data_input : must be a list of lists containing the problem bounds (when creating points), \n", + " or an input dataset (when selecting points from a dataset)\n", + " - number_of_samples : number of samples to be created or selected.\n", + " - sampling_type : \"creation\" or \"selection\".\n", + "\n", + "For full factorial sampling, the user needs to enter a list of points in each dimension in place of the number of samples. Full-factorial sampling requires other inputs - details may be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/sampling/pysmo_uniform.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For our example, we will create the bounds and then initialize the class with the number of samples." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "bounds_info = [[273, 1], [373, 50]]\n", + "init_data = HammersleySampling(\n", + " data_input=bounds_info, number_of_samples=25, sampling_type=\"creation\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 3: Create the samples\n", + "The samples are created by calling the ``sample_points`` method on the initialized class." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "samples = init_data.sample_points()\n", + "print(samples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simple as that, the samples have been created!\n", + "\n", + "Now, let us visualize the samples in a 2-D plot." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 4: Visualize samples with matplotlib" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib import pyplot as plt\n", + "\n", + "plt.plot(samples[:, 0], samples[:, 1], \"o\")\n", + "plt.xlabel(r\"Temperature\", fontsize=11)\n", + "plt.xlabel(r\"Pressure\", fontsize=11)\n", + "plt.xlim(272, 374)\n", + "plt.ylim(0, 50)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Generating surrogates with PySMO\n", + "\n", + "PySMO currently provides tools for generating three types of surrogates:\n", + "\n", + "- Polynomial surrogates\n", + "- Radial basis function (RBF) surrogates, and\n", + "- Kriging surrogates\n", + "\n", + "Details about thee various methods may be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generating polynomial models\n", + "\n", + "The ``PolynomialRegression`` class trains polynomial models from data.\n", + "\n", + "As an example, let us generate a surrogate for the Brainin function. \n", + "\n", + "The true Brainin function is given by the expression:\n", + " \n", + " \\begin{gather}\n", + "\\hat{y}(x_{1},x_{2})=\\left(x_{2}-\\frac{5.1x_{1}^{2}}{4\\pi^{2}}+\\frac{5x_{1}}{\\pi}-6\\right)^{2}+10\\left[\\left(1-\\frac{1}{8\\pi}\\right)\\cos\\left(x_{1}\\right)+1\\right]+5x_{1}\\nonumber \\\\\n", + "x_{1}\\in\\left[-5,10\\right];x_{2}\\in\\left[0,15\\right]\n", + "\\end{gather}\n", + "\n", + "We have generated 30 points from the function and saved the information in a text file called \"brainin_30.txt\". We will use this data to train a simple polynomial model. The data is in XY format, with the outputs $y$ in the third column." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 1: Import and visualize the data" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "brainin_data = np.loadtxt(\"brainin_30.txt\")\n", + "print(brainin_data, \"\\n\\nDataset shape:\", brainin_data.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us visualize the data:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "from mpl_toolkits.mplot3d import Axes3D\n", + "from matplotlib import pyplot as plt\n", + "\n", + "fig1 = plt.figure(figsize=(6, 4), tight_layout=True)\n", + "ax = fig1.add_subplot(111, projection=\"3d\")\n", + "ax.scatter3D(\n", + " brainin_data[:, 0], brainin_data[:, 1], brainin_data[:, 2], cmap=brainin_data[:, 2]\n", + ")\n", + "ax.set_xlabel(r\"$x_{1}$\", fontsize=11)\n", + "ax.set_ylabel(r\"$x_{2}$\", fontsize=11)\n", + "ax.set_zlabel(r\"$y$\", fontsize=11)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 2: Import the polynomial model tool" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.surrogate.pysmo.polynomial_regression import PolynomialRegression" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 3: Specify the regression settings and initialize the PolynomialRegression class\n", + " \n", + "The PolynomialRegression class takes a keyword arguments:\n", + "\n", + " - original_data_input : The dataset for regression training. training_data is expected to contain xy_data, \n", + " with the output values (y) in the last column.\n", + " - regression_data_input : same as above\n", + " - maximum_polynomial_order : maximum order of the polynomial to be generated \n", + "\n", + "It also takes a number of optional arguments:\n", + "\n", + " - multinomials : True/False option for specifying second-order bi-variate terms. default is False\n", + " - training_split : The training/cross-validation split of training data. Must be between 0 and 1. \n", + " Default is 0.75\n", + " - fname : Filename for saving results (.pickle extension). \n", + " - overwrite : Option determining whether any existing file with the same name supplied in 'fname' \n", + " should be overwritten." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this example, let us consider a 4th order polynomial with interaction terms. We will split the data 80/20 between training and cross-validation." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "poly_class = PolynomialRegression(\n", + " original_data_input=brainin_data,\n", + " regression_data_input=brainin_data,\n", + " maximum_polynomial_order=4,\n", + " multinomials=1,\n", + " training_split=0.8,\n", + " number_of_crossvalidations=10,\n", + " overwrite=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 4: Extract variable names\n", + "Next, we extract Pyomo variable names from the dataset. This should be done always." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "vars = poly_class.get_feature_vector()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can view the variables using Pyomo's pprint function:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "vars.pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 5: Specify additional regression terms, if required.\n", + "\n", + "This is one of the unique features of PySMO - it allows the user to specify additional regression features if they want.\n", + "The additional features must be specified in terms of the Pyomo variables created when calling the ``get_feature_vector()`` \n", + "\n", + "For this example, let us create three additional features: $x_{1}^{2}x_{2}^{2}$, $exp(x_1)$ and $exp(x_2)$. We do this by calling the ``set_additional_terms`` function:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import exp\n", + "\n", + "poly_class.set_additional_terms(\n", + " [vars[0] * vars[0] * vars[1] * vars[1], exp(vars[0]), exp(vars[1])]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "That's it - those features will now exist in the model. \n", + "\n", + "Note that ``set_additional_terms`` an optional call - the regression process works just fine without it." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 6: Train the surrogate and view results\n", + "Next, we train the polynomial surrogate by calling ``training``:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "poly_class.training()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The polynomial model seems to fit well based on the $R^2$. It should be noted that the metrics are only an indication of how well of how well the model fit the training data - the user needs to verify the model's performance on a test data set if possible.\n", + "\n", + "We can view the parity and residual plots for the fit:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "poly_class.parity_residual_plots()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "PySMO is also able to compute the confidence intervals on the regression coefficients obtained by calling ``confint_regression()``. This is left as an exercise for the user.\n", + "\n", + "#### Step 8 (Optional): Generate Pyomo expression \n", + "\n", + "If the user wishes, they can generate the Pyomo expression for the polynomial fit using PySMO's ``generate_expression``. To do this, the user must pass in a list of Pyomo variables corresponding to each variable in the input dataset. \n", + "\n", + "As a demonstration, let us create the variables $x_1$ and $x_2$ and generate the pyomo expression based on them:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import Var, ConcreteModel\n", + "\n", + "m = ConcreteModel()\n", + "m.x = Var([1, 2])\n", + "print(poly_class.generate_expression([m.x[1], m.x[2]]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 9 (Optional): Predict output at any unsampled point\n", + "\n", + "Based on the model we trained, we can predict the surrogate value at any previously unsampled point. \n", + "\n", + "Let us evaluate the surrogate at three points:\n", + "\n", + "- $x_{1}=5$, $x_{2}=8$ (true function value: 57.9908)\n", + "- $x_{1}=-3$, $x_{2}=10$ (true function value: 4.2461)\n", + "- $x_{1}=-2$, $x_{2}=3$. (true function value: 50.8899)\n", + "\n", + "We will pass the points in as an array." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "unsampled_points = np.array([[5, 8], [-3, 10], [-2, 3]])\n", + "ys = poly_class.predict_output(unsampled_points)\n", + "print(ys)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The model performs fairly well in predicting the value at two of our sampled points but is off on the value at [-3, 2]. For better model performance, additional training data is needed in this region. We will leave this to the user to try.\n", + "\n", + "Further information about using PySMO's polynomial regression tool can be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/pysmo_polyregression.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generating RBF models\n", + "\n", + "The ``RadialBasisFunction`` class trains RBF models from data. For details about RBF models, the user should consult the documentation.\n", + "\n", + "As an example, we will again consider the Brainin function. The same dataset loaded previously will be used." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 1: Import the data and the RBF tool" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "brainin_data = np.loadtxt(\"brainin_30.txt\")\n", + "from idaes.core.surrogate.pysmo.radial_basis_function import RadialBasisFunctions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 2: Specify the RBF settings and initialize the RadialBasisFunctions class\n", + " \n", + "The RadialBasisFunctions class takes a number of keyword arguments:\n", + "\n", + " - XY_data : The dataset forRBF training. training_data is expected to contain xy_data, \n", + " with the output values (y) in the last column.\n", + "\n", + "\n", + "It also takes a number of optional arguments:\n", + "\n", + " - regularization : Boolean variable determining whether regularization is done. Default is True.\n", + " - basis_function : Basis function transformation to be applied to the training data. PySMO offers \n", + " six basis function types including the Gaussian and Spline transformations. User \n", + " should consult documentation for full list of options. \n", + " - fname : Filename for saving (.pickle extension)\n", + " - overwrite : Option determining whether any existing file with the same name supplied in 'fname' \n", + " should be overwritten." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this demonstration, we will train an RBF model with a Gaussian basis function:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "rbf_class = RadialBasisFunctions(\n", + " XY_data=brainin_data, basis_function=\"gaussian\", overwrite=True\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 3: Extract variable names\n", + "Next, we extract Pyomo variable names from the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "vars = rbf_class.get_feature_vector()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 4: Train the RBF surrogate\n", + "Next, we train the RBF surrogate by calling ``training``:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "rbf_class.training()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 5: View model metrics\n", + " \n", + "We can view the Root Mean Square Error (RMSE) and $R^2$ values of the RBF fit based on the training data:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"R2: \", rbf_class.R2, \"\\nRMSE: \", rbf_class.rmse)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 6 (Optional): Generate Pyomo expression output at any unsampled point\n", + "\n", + "\n", + "Based on the model we trained, we can predict the surrogate value at any previously unsampled point. We do this by calling the function ``predict_output``.\n", + "\n", + "Let us again evaluate the RBF surrogate at the same set of points we considered for the polynomial model:\n", + "\n", + "- $x_{1}=5$, $x_{2}=8$ (true function value: 57.9908)\n", + "- $x_{1}=-3$, $x_{2}=10$ (true function value: 4.2461)\n", + "- $x_{1}=-2$, $x_{2}=3$ (true function value: 50.8899)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "unsampled_points = np.array([[5, 8], [-3, 10], [-2, 3]])\n", + "ys = rbf_class.predict_output(unsampled_points)\n", + "print(ys)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The results from the RBF surrogate are similar to those obtained from the polynomial.\n", + "\n", + "\n", + "For RBF models, the Pyomo expression is generated by calling ``generate_expression`` on the results object, while parity plots may be viewed with the ``parity_residual_plots`` method.\n", + "\n", + "Further information about using PySMO's RBF tool and features can be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/pysmo_radialbasisfunctions.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Training Kriging models\n", + "\n", + "The ``KrigingModel`` class trains Kriging from data. For details about Kriging models, users should consult the documentation.\n", + "\n", + "As an example, we will again consider the Brainin function. The same dataset loaded previously will be used." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 1: Load the data and import the Kriging tool" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "brainin_data = np.loadtxt(\"brainin_30.txt\")\n", + "from idaes.core.surrogate.pysmo.kriging import KrigingModel" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 2: Specify the Kriging settings and initialize the KrigingModel class\n", + " \n", + "The KrigingModel class takes a number of keyword arguments:\n", + "\n", + " - XY_data : The dataset for Kriging training. training_data is expected to contain xy_data, \n", + " with the output values (y) in the last column.\n", + "\n", + "\n", + "It also takes a number of optional arguments:\n", + "\n", + " - regularization : Boolean variable determining whether regularization is done. Default is True.\n", + " - numerical_gradients : Boolean variable which determines whether numerical gradients are used when\n", + " solving the max. likelihood optimization problem. Default is True.\n", + " - fname : Filename for saving (.pickle extension)\n", + " - overwrite : Option determining whether any existing file with the same name supplied in 'fname' \n", + " should be overwritten." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "For this demonstration, we will train a Kriging model with regularization:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "krg_class = KrigingModel(XY_data=brainin_data, overwrite=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 3: Extract variable names (optional)\n", + "Next, we extract Pyomo variable names from the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "vars = krg_class.get_feature_vector()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 4: Train the Kriging surrogate\n", + "Next, we train the RBF surrogate by calling ``training``:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "krg_class.training()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The returned information correspond to the Kriging model parameters.\n", + "\n", + "As we can see, the optimization problem was solved using SciPy's L-BFGS algorithm which makes use of gradients. A different algorithm (Basinhopping) is used when no numerical gradients are computed (when numerical_gradients is set to False). The user should try this." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 5: View model metrics\n", + " \n", + "We can view the RMSE and $R^2$ values of the Kriging fit based on the training data:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"R2: \", krg_class.training_R2, \"\\nRMSE: \", krg_class.training_rmse)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 6 (Optional): Generate Pyomo expression output at any unsampled point\n", + "\n", + "\n", + "Again, based on the model we trained, we evaluate the surrogate at a set of off-design points:\n", + "\n", + "- $x_{1}=5$, $x_{2}=8$ (true function value: 57.9908)\n", + "- $x_{1}=-3$, $x_{2}=10$ (true function value: 4.2461)\n", + "- $x_{1}=-2$, $x_{2}=3$ (true function value: 50.8899)\n", + "\n", + "We do this by calling the function ``predict_output``:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "unsampled_points = np.array([[5, 8], [-3, 10], [-2, 3]])\n", + "ys = krg_class.predict_output(unsampled_points)\n", + "print(ys)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Kriging model performs very well, predicting all three points fairly accurately. \n", + "\n", + "For Kriging models, the Pyomo expression is generated by calling ``generate_expression`` on the results object: " + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "print(krg_class.generate_expression([m.x[1], m.x[2]]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see, expressing a Kriging model algebraically is pretty complicated!\n", + "\n", + "Parity plots for the Kriging model may be viewed with the ``parity_residual_plots`` method.\n", + "\n", + "Further information about using PySMO's Kriging tool and features can be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/pysmo_kriging.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Summary\n", + "\n", + "PySMO allows IDAES users to sample design spaces and generate different types of surrogate models. Further information about PySMO's capabilities may be found in the documentation." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } diff --git a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics_usr.ipynb b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics_usr.ipynb index 16ec6887..0b7a066f 100644 --- a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics_usr.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_basics_usr.ipynb @@ -1,867 +1,868 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# PySMO Tutorial\n", - "Author: Mayo Amusat \n", - "Maintainer: Mayo Amusat \n", - "Updated: 2023-06-01 \n", - "\n", - "**Python-based Surrogate Modelling Objects** (PySMO) provides tools for generating different types of reduced order models. PySMO currently provides tools for sampling and surrogate model generation.\n", - "\n", - "## Installation\n", - "\n", - "**PySMO** is installed by default as part of IDAES. For instructions on installing IDAES, see the [online documentation](https://idaes-pse.readthedocs.io/en/stable/)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## One-Shot Sampling with PySMO\n", - "\n", - "The PySMO package offers five common sampling methods for one-shot design:\n", - "\n", - "* Latin Hypercube Sampling (LHS)\n", - "* Full-Factorial Sampling\n", - "* Halton Sampling\n", - "* Hammersley Sampling\n", - "* Centroidal voronoi tessellation (CVT) sampling" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "PySMO provides two modes for data sampling: creation and selection.\n", - "- In creation mode, PySMO creates a specified number of sample points from the bounds provided by the user.\n", - "- In selection mode, PySMO selects a specified number of data points from a user-supplied dataset or file." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Generating samples: \n", - "For demonstration purposes, let us consider a problem for which we need twenty-five (25) samples of temperature and pressure from within the ranges T = 273K - 373K, P = 1 MPa - 50 MPa. Let us generate these samples in PySMO." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 1: Import PySMO's sampling tool\n", - "For this demonstration, we will attempt to generate the samples using the Hammersley sampling method." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.surrogate.pysmo.sampling import HammersleySampling" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 2: Specify sampling information and initialize class\n", - "\n", - "All the sampling tools (except full-factorial sampling) require the same keyword arguments:\n", - "\n", - " - data_input : must be a list of lists containing the problem bounds (when creating points), \n", - " or an input dataset (when selecting points from a dataset)\n", - " - number_of_samples : number of samples to be created or selected.\n", - " - sampling_type : \"creation\" or \"selection\".\n", - "\n", - "For full factorial sampling, the user needs to enter a list of points in each dimension in place of the number of samples. Full-factorial sampling requires other inputs - details may be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/sampling/pysmo_uniform.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For our example, we will create the bounds and then initialize the class with the number of samples." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "bounds_info = [[273, 1], [373, 50]]\n", - "init_data = HammersleySampling(\n", - " data_input=bounds_info, number_of_samples=25, sampling_type=\"creation\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 3: Create the samples\n", - "The samples are created by calling the ``sample_points`` method on the initialized class." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "samples = init_data.sample_points()\n", - "print(samples)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Simple as that, the samples have been created!\n", - "\n", - "Now, let us visualize the samples in a 2-D plot." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 4: Visualize samples with matplotlib" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from matplotlib import pyplot as plt\n", - "\n", - "plt.plot(samples[:, 0], samples[:, 1], \"o\")\n", - "plt.xlabel(r\"Temperature\", fontsize=11)\n", - "plt.xlabel(r\"Pressure\", fontsize=11)\n", - "plt.xlim(272, 374)\n", - "plt.ylim(0, 50)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Generating surrogates with PySMO\n", - "\n", - "PySMO currently provides tools for generating three types of surrogates:\n", - "\n", - "- Polynomial surrogates\n", - "- Radial basis function (RBF) surrogates, and\n", - "- Kriging surrogates\n", - "\n", - "Details about thee various methods may be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Generating polynomial models\n", - "\n", - "The ``PolynomialRegression`` class trains polynomial models from data.\n", - "\n", - "As an example, let us generate a surrogate for the Brainin function. \n", - "\n", - "The true Brainin function is given by the expression:\n", - " \n", - " \\begin{gather}\n", - "\\hat{y}(x_{1},x_{2})=\\left(x_{2}-\\frac{5.1x_{1}^{2}}{4\\pi^{2}}+\\frac{5x_{1}}{\\pi}-6\\right)^{2}+10\\left[\\left(1-\\frac{1}{8\\pi}\\right)\\cos\\left(x_{1}\\right)+1\\right]+5x_{1}\\nonumber \\\\\n", - "x_{1}\\in\\left[-5,10\\right];x_{2}\\in\\left[0,15\\right]\n", - "\\end{gather}\n", - "\n", - "We have generated 30 points from the function and saved the information in a text file called \"brainin_30.txt\". We will use this data to train a simple polynomial model. The data is in XY format, with the outputs $y$ in the third column." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 1: Import and visualize the data" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "brainin_data = np.loadtxt(\"brainin_30.txt\")\n", - "print(brainin_data, \"\\n\\nDataset shape:\", brainin_data.shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us visualize the data:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from mpl_toolkits.mplot3d import Axes3D\n", - "from matplotlib import pyplot as plt\n", - "\n", - "fig1 = plt.figure(figsize=(6, 4), tight_layout=True)\n", - "ax = fig1.add_subplot(111, projection=\"3d\")\n", - "ax.scatter3D(\n", - " brainin_data[:, 0], brainin_data[:, 1], brainin_data[:, 2], cmap=brainin_data[:, 2]\n", - ")\n", - "ax.set_xlabel(r\"$x_{1}$\", fontsize=11)\n", - "ax.set_ylabel(r\"$x_{2}$\", fontsize=11)\n", - "ax.set_zlabel(r\"$y$\", fontsize=11)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 2: Import the polynomial model tool" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.surrogate.pysmo.polynomial_regression import PolynomialRegression" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 3: Specify the regression settings and initialize the PolynomialRegression class\n", - " \n", - "The PolynomialRegression class takes a keyword arguments:\n", - "\n", - " - original_data_input : The dataset for regression training. training_data is expected to contain xy_data, \n", - " with the output values (y) in the last column.\n", - " - regression_data_input : same as above\n", - " - maximum_polynomial_order : maximum order of the polynomial to be generated \n", - "\n", - "It also takes a number of optional arguments:\n", - "\n", - " - multinomials : True/False option for specifying second-order bi-variate terms. default is False\n", - " - training_split : The training/cross-validation split of training data. Must be between 0 and 1. \n", - " Default is 0.75\n", - " - fname : Filename for saving results (.pickle extension). \n", - " - overwrite : Option determining whether any existing file with the same name supplied in 'fname' \n", - " should be overwritten." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this example, let us consider a 4th order polynomial with interaction terms. We will split the data 80/20 between training and cross-validation." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "poly_class = PolynomialRegression(\n", - " original_data_input=brainin_data,\n", - " regression_data_input=brainin_data,\n", - " maximum_polynomial_order=4,\n", - " multinomials=1,\n", - " training_split=0.8,\n", - " number_of_crossvalidations=10,\n", - " overwrite=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 4: Extract variable names\n", - "Next, we extract Pyomo variable names from the dataset. This should be done always." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "vars = poly_class.get_feature_vector()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can view the variables using Pyomo's pprint function:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "vars.pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 5: Specify additional regression terms, if required.\n", - "\n", - "This is one of the unique features of PySMO - it allows the user to specify additional regression features if they want.\n", - "The additional features must be specified in terms of the Pyomo variables created when calling the ``get_feature_vector()`` \n", - "\n", - "For this example, let us create three additional features: $x_{1}^{2}x_{2}^{2}$, $exp(x_1)$ and $exp(x_2)$. We do this by calling the ``set_additional_terms`` function:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import exp\n", - "\n", - "poly_class.set_additional_terms(\n", - " [vars[0] * vars[0] * vars[1] * vars[1], exp(vars[0]), exp(vars[1])]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "That's it - those features will now exist in the model. \n", - "\n", - "Note that ``set_additional_terms`` an optional call - the regression process works just fine without it." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 6: Train the surrogate and view results\n", - "Next, we train the polynomial surrogate by calling ``training``:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "poly_class.training()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The polynomial model seems to fit well based on the $R^2$. It should be noted that the metrics are only an indication of how well of how well the model fit the training data - the user needs to verify the model's performance on a test data set if possible.\n", - "\n", - "We can view the parity and residual plots for the fit:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "poly_class.parity_residual_plots()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "PySMO is also able to compute the confidence intervals on the regression coefficients obtained by calling ``confint_regression()``. This is left as an exercise for the user.\n", - "\n", - "#### Step 8 (Optional): Generate Pyomo expression \n", - "\n", - "If the user wishes, they can generate the Pyomo expression for the polynomial fit using PySMO's ``generate_expression``. To do this, the user must pass in a list of Pyomo variables corresponding to each variable in the input dataset. \n", - "\n", - "As a demonstration, let us create the variables $x_1$ and $x_2$ and generate the pyomo expression based on them:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import Var, ConcreteModel\n", - "\n", - "m = ConcreteModel()\n", - "m.x = Var([1, 2])\n", - "print(poly_class.generate_expression([m.x[1], m.x[2]]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 9 (Optional): Predict output at any unsampled point\n", - "\n", - "Based on the model we trained, we can predict the surrogate value at any previously unsampled point. \n", - "\n", - "Let us evaluate the surrogate at three points:\n", - "\n", - "- $x_{1}=5$, $x_{2}=8$ (true function value: 57.9908)\n", - "- $x_{1}=-3$, $x_{2}=10$ (true function value: 4.2461)\n", - "- $x_{1}=-2$, $x_{2}=3$. (true function value: 50.8899)\n", - "\n", - "We will pass the points in as an array." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "unsampled_points = np.array([[5, 8], [-3, 10], [-2, 3]])\n", - "ys = poly_class.predict_output(unsampled_points)\n", - "print(ys)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The model performs fairly well in predicting the value at two of our sampled points but is off on the value at [-3, 2]. For better model performance, additional training data is needed in this region. We will leave this to the user to try.\n", - "\n", - "Further information about using PySMO's polynomial regression tool can be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/pysmo_polyregression.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Generating RBF models\n", - "\n", - "The ``RadialBasisFunction`` class trains RBF models from data. For details about RBF models, the user should consult the documentation.\n", - "\n", - "As an example, we will again consider the Brainin function. The same dataset loaded previously will be used." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 1: Import the data and the RBF tool" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "brainin_data = np.loadtxt(\"brainin_30.txt\")\n", - "from idaes.core.surrogate.pysmo.radial_basis_function import RadialBasisFunctions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 2: Specify the RBF settings and initialize the RadialBasisFunctions class\n", - " \n", - "The RadialBasisFunctions class takes a number of keyword arguments:\n", - "\n", - " - XY_data : The dataset forRBF training. training_data is expected to contain xy_data, \n", - " with the output values (y) in the last column.\n", - "\n", - "\n", - "It also takes a number of optional arguments:\n", - "\n", - " - regularization : Boolean variable determining whether regularization is done. Default is True.\n", - " - basis_function : Basis function transformation to be applied to the training data. PySMO offers \n", - " six basis function types including the Gaussian and Spline transformations. User \n", - " should consult documentation for full list of options. \n", - " - fname : Filename for saving (.pickle extension)\n", - " - overwrite : Option determining whether any existing file with the same name supplied in 'fname' \n", - " should be overwritten." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this demonstration, we will train an RBF model with a Gaussian basis function:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "rbf_class = RadialBasisFunctions(\n", - " XY_data=brainin_data, basis_function=\"gaussian\", overwrite=True\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 3: Extract variable names\n", - "Next, we extract Pyomo variable names from the dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "vars = rbf_class.get_feature_vector()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 4: Train the RBF surrogate\n", - "Next, we train the RBF surrogate by calling ``training``:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "rbf_class.training()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 5: View model metrics\n", - " \n", - "We can view the Root Mean Square Error (RMSE) and $R^2$ values of the RBF fit based on the training data:" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"R2: \", rbf_class.R2, \"\\nRMSE: \", rbf_class.rmse)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 6 (Optional): Generate Pyomo expression output at any unsampled point\n", - "\n", - "\n", - "Based on the model we trained, we can predict the surrogate value at any previously unsampled point. We do this by calling the function ``predict_output``.\n", - "\n", - "Let us again evaluate the RBF surrogate at the same set of points we considered for the polynomial model:\n", - "\n", - "- $x_{1}=5$, $x_{2}=8$ (true function value: 57.9908)\n", - "- $x_{1}=-3$, $x_{2}=10$ (true function value: 4.2461)\n", - "- $x_{1}=-2$, $x_{2}=3$ (true function value: 50.8899)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "unsampled_points = np.array([[5, 8], [-3, 10], [-2, 3]])\n", - "ys = rbf_class.predict_output(unsampled_points)\n", - "print(ys)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The results from the RBF surrogate are similar to those obtained from the polynomial.\n", - "\n", - "\n", - "For RBF models, the Pyomo expression is generated by calling ``generate_expression`` on the results object, while parity plots may be viewed with the ``parity_residual_plots`` method.\n", - "\n", - "Further information about using PySMO's RBF tool and features can be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/pysmo_radialbasisfunctions.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Training Kriging models\n", - "\n", - "The ``KrigingModel`` class trains Kriging from data. For details about Kriging models, users should consult the documentation.\n", - "\n", - "As an example, we will again consider the Brainin function. The same dataset loaded previously will be used." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 1: Load the data and import the Kriging tool" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "brainin_data = np.loadtxt(\"brainin_30.txt\")\n", - "from idaes.core.surrogate.pysmo.kriging import KrigingModel" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 2: Specify the Kriging settings and initialize the KrigingModel class\n", - " \n", - "The KrigingModel class takes a number of keyword arguments:\n", - "\n", - " - XY_data : The dataset for Kriging training. training_data is expected to contain xy_data, \n", - " with the output values (y) in the last column.\n", - "\n", - "\n", - "It also takes a number of optional arguments:\n", - "\n", - " - regularization : Boolean variable determining whether regularization is done. Default is True.\n", - " - numerical_gradients : Boolean variable which determines whether numerical gradients are used when\n", - " solving the max. likelihood optimization problem. Default is True.\n", - " - fname : Filename for saving (.pickle extension)\n", - " - overwrite : Option determining whether any existing file with the same name supplied in 'fname' \n", - " should be overwritten." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "For this demonstration, we will train a Kriging model with regularization:" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "krg_class = KrigingModel(XY_data=brainin_data, overwrite=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 3: Extract variable names (optional)\n", - "Next, we extract Pyomo variable names from the dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "vars = krg_class.get_feature_vector()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 4: Train the Kriging surrogate\n", - "Next, we train the RBF surrogate by calling ``training``:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "krg_class.training()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The returned information correspond to the Kriging model parameters.\n", - "\n", - "As we can see, the optimization problem was solved using SciPy's L-BFGS algorithm which makes use of gradients. A different algorithm (Basinhopping) is used when no numerical gradients are computed (when numerical_gradients is set to False). The user should try this." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 5: View model metrics\n", - " \n", - "We can view the RMSE and $R^2$ values of the Kriging fit based on the training data:" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"R2: \", krg_class.training_R2, \"\\nRMSE: \", krg_class.training_rmse)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Step 6 (Optional): Generate Pyomo expression output at any unsampled point\n", - "\n", - "\n", - "Again, based on the model we trained, we evaluate the surrogate at a set of off-design points:\n", - "\n", - "- $x_{1}=5$, $x_{2}=8$ (true function value: 57.9908)\n", - "- $x_{1}=-3$, $x_{2}=10$ (true function value: 4.2461)\n", - "- $x_{1}=-2$, $x_{2}=3$ (true function value: 50.8899)\n", - "\n", - "We do this by calling the function ``predict_output``:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "unsampled_points = np.array([[5, 8], [-3, 10], [-2, 3]])\n", - "ys = krg_class.predict_output(unsampled_points)\n", - "print(ys)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Kriging model performs very well, predicting all three points fairly accurately. \n", - "\n", - "For Kriging models, the Pyomo expression is generated by calling ``generate_expression`` on the results object: " - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "print(krg_class.generate_expression([m.x[1], m.x[2]]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we can see, expressing a Kriging model algebraically is pretty complicated!\n", - "\n", - "Parity plots for the Kriging model may be viewed with the ``parity_residual_plots`` method.\n", - "\n", - "Further information about using PySMO's Kriging tool and features can be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/pysmo_kriging.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Summary\n", - "\n", - "PySMO allows IDAES users to sample design spaces and generate different types of surrogate models. Further information about PySMO's capabilities may be found in the documentation." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# PySMO Tutorial\n", + "Author: Mayo Amusat \n", + "Maintainer: Mayo Amusat \n", + "Updated: 2023-06-01 \n", + "\n", + "**Python-based Surrogate Modelling Objects** (PySMO) provides tools for generating different types of reduced order models. PySMO currently provides tools for sampling and surrogate model generation.\n", + "\n", + "## Installation\n", + "\n", + "**PySMO** is installed by default as part of IDAES. For instructions on installing IDAES, see the [online documentation](https://idaes-pse.readthedocs.io/en/stable/)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## One-Shot Sampling with PySMO\n", + "\n", + "The PySMO package offers five common sampling methods for one-shot design:\n", + "\n", + "* Latin Hypercube Sampling (LHS)\n", + "* Full-Factorial Sampling\n", + "* Halton Sampling\n", + "* Hammersley Sampling\n", + "* Centroidal voronoi tessellation (CVT) sampling" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "PySMO provides two modes for data sampling: creation and selection.\n", + "- In creation mode, PySMO creates a specified number of sample points from the bounds provided by the user.\n", + "- In selection mode, PySMO selects a specified number of data points from a user-supplied dataset or file." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generating samples: \n", + "For demonstration purposes, let us consider a problem for which we need twenty-five (25) samples of temperature and pressure from within the ranges T = 273K - 373K, P = 1 MPa - 50 MPa. Let us generate these samples in PySMO." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 1: Import PySMO's sampling tool\n", + "For this demonstration, we will attempt to generate the samples using the Hammersley sampling method." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.surrogate.pysmo.sampling import HammersleySampling" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 2: Specify sampling information and initialize class\n", + "\n", + "All the sampling tools (except full-factorial sampling) require the same keyword arguments:\n", + "\n", + " - data_input : must be a list of lists containing the problem bounds (when creating points), \n", + " or an input dataset (when selecting points from a dataset)\n", + " - number_of_samples : number of samples to be created or selected.\n", + " - sampling_type : \"creation\" or \"selection\".\n", + "\n", + "For full factorial sampling, the user needs to enter a list of points in each dimension in place of the number of samples. Full-factorial sampling requires other inputs - details may be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/sampling/pysmo_uniform.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For our example, we will create the bounds and then initialize the class with the number of samples." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "bounds_info = [[273, 1], [373, 50]]\n", + "init_data = HammersleySampling(\n", + " data_input=bounds_info, number_of_samples=25, sampling_type=\"creation\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 3: Create the samples\n", + "The samples are created by calling the ``sample_points`` method on the initialized class." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "samples = init_data.sample_points()\n", + "print(samples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simple as that, the samples have been created!\n", + "\n", + "Now, let us visualize the samples in a 2-D plot." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 4: Visualize samples with matplotlib" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib import pyplot as plt\n", + "\n", + "plt.plot(samples[:, 0], samples[:, 1], \"o\")\n", + "plt.xlabel(r\"Temperature\", fontsize=11)\n", + "plt.xlabel(r\"Pressure\", fontsize=11)\n", + "plt.xlim(272, 374)\n", + "plt.ylim(0, 50)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Generating surrogates with PySMO\n", + "\n", + "PySMO currently provides tools for generating three types of surrogates:\n", + "\n", + "- Polynomial surrogates\n", + "- Radial basis function (RBF) surrogates, and\n", + "- Kriging surrogates\n", + "\n", + "Details about thee various methods may be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generating polynomial models\n", + "\n", + "The ``PolynomialRegression`` class trains polynomial models from data.\n", + "\n", + "As an example, let us generate a surrogate for the Brainin function. \n", + "\n", + "The true Brainin function is given by the expression:\n", + " \n", + " \\begin{gather}\n", + "\\hat{y}(x_{1},x_{2})=\\left(x_{2}-\\frac{5.1x_{1}^{2}}{4\\pi^{2}}+\\frac{5x_{1}}{\\pi}-6\\right)^{2}+10\\left[\\left(1-\\frac{1}{8\\pi}\\right)\\cos\\left(x_{1}\\right)+1\\right]+5x_{1}\\nonumber \\\\\n", + "x_{1}\\in\\left[-5,10\\right];x_{2}\\in\\left[0,15\\right]\n", + "\\end{gather}\n", + "\n", + "We have generated 30 points from the function and saved the information in a text file called \"brainin_30.txt\". We will use this data to train a simple polynomial model. The data is in XY format, with the outputs $y$ in the third column." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 1: Import and visualize the data" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "brainin_data = np.loadtxt(\"brainin_30.txt\")\n", + "print(brainin_data, \"\\n\\nDataset shape:\", brainin_data.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us visualize the data:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "from mpl_toolkits.mplot3d import Axes3D\n", + "from matplotlib import pyplot as plt\n", + "\n", + "fig1 = plt.figure(figsize=(6, 4), tight_layout=True)\n", + "ax = fig1.add_subplot(111, projection=\"3d\")\n", + "ax.scatter3D(\n", + " brainin_data[:, 0], brainin_data[:, 1], brainin_data[:, 2], cmap=brainin_data[:, 2]\n", + ")\n", + "ax.set_xlabel(r\"$x_{1}$\", fontsize=11)\n", + "ax.set_ylabel(r\"$x_{2}$\", fontsize=11)\n", + "ax.set_zlabel(r\"$y$\", fontsize=11)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 2: Import the polynomial model tool" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.surrogate.pysmo.polynomial_regression import PolynomialRegression" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 3: Specify the regression settings and initialize the PolynomialRegression class\n", + " \n", + "The PolynomialRegression class takes a keyword arguments:\n", + "\n", + " - original_data_input : The dataset for regression training. training_data is expected to contain xy_data, \n", + " with the output values (y) in the last column.\n", + " - regression_data_input : same as above\n", + " - maximum_polynomial_order : maximum order of the polynomial to be generated \n", + "\n", + "It also takes a number of optional arguments:\n", + "\n", + " - multinomials : True/False option for specifying second-order bi-variate terms. default is False\n", + " - training_split : The training/cross-validation split of training data. Must be between 0 and 1. \n", + " Default is 0.75\n", + " - fname : Filename for saving results (.pickle extension). \n", + " - overwrite : Option determining whether any existing file with the same name supplied in 'fname' \n", + " should be overwritten." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this example, let us consider a 4th order polynomial with interaction terms. We will split the data 80/20 between training and cross-validation." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "poly_class = PolynomialRegression(\n", + " original_data_input=brainin_data,\n", + " regression_data_input=brainin_data,\n", + " maximum_polynomial_order=4,\n", + " multinomials=1,\n", + " training_split=0.8,\n", + " number_of_crossvalidations=10,\n", + " overwrite=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 4: Extract variable names\n", + "Next, we extract Pyomo variable names from the dataset. This should be done always." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "vars = poly_class.get_feature_vector()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can view the variables using Pyomo's pprint function:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "vars.pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 5: Specify additional regression terms, if required.\n", + "\n", + "This is one of the unique features of PySMO - it allows the user to specify additional regression features if they want.\n", + "The additional features must be specified in terms of the Pyomo variables created when calling the ``get_feature_vector()`` \n", + "\n", + "For this example, let us create three additional features: $x_{1}^{2}x_{2}^{2}$, $exp(x_1)$ and $exp(x_2)$. We do this by calling the ``set_additional_terms`` function:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import exp\n", + "\n", + "poly_class.set_additional_terms(\n", + " [vars[0] * vars[0] * vars[1] * vars[1], exp(vars[0]), exp(vars[1])]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "That's it - those features will now exist in the model. \n", + "\n", + "Note that ``set_additional_terms`` an optional call - the regression process works just fine without it." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 6: Train the surrogate and view results\n", + "Next, we train the polynomial surrogate by calling ``training``:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "poly_class.training()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The polynomial model seems to fit well based on the $R^2$. It should be noted that the metrics are only an indication of how well of how well the model fit the training data - the user needs to verify the model's performance on a test data set if possible.\n", + "\n", + "We can view the parity and residual plots for the fit:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "poly_class.parity_residual_plots()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "PySMO is also able to compute the confidence intervals on the regression coefficients obtained by calling ``confint_regression()``. This is left as an exercise for the user.\n", + "\n", + "#### Step 8 (Optional): Generate Pyomo expression \n", + "\n", + "If the user wishes, they can generate the Pyomo expression for the polynomial fit using PySMO's ``generate_expression``. To do this, the user must pass in a list of Pyomo variables corresponding to each variable in the input dataset. \n", + "\n", + "As a demonstration, let us create the variables $x_1$ and $x_2$ and generate the pyomo expression based on them:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import Var, ConcreteModel\n", + "\n", + "m = ConcreteModel()\n", + "m.x = Var([1, 2])\n", + "print(poly_class.generate_expression([m.x[1], m.x[2]]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 9 (Optional): Predict output at any unsampled point\n", + "\n", + "Based on the model we trained, we can predict the surrogate value at any previously unsampled point. \n", + "\n", + "Let us evaluate the surrogate at three points:\n", + "\n", + "- $x_{1}=5$, $x_{2}=8$ (true function value: 57.9908)\n", + "- $x_{1}=-3$, $x_{2}=10$ (true function value: 4.2461)\n", + "- $x_{1}=-2$, $x_{2}=3$. (true function value: 50.8899)\n", + "\n", + "We will pass the points in as an array." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "unsampled_points = np.array([[5, 8], [-3, 10], [-2, 3]])\n", + "ys = poly_class.predict_output(unsampled_points)\n", + "print(ys)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The model performs fairly well in predicting the value at two of our sampled points but is off on the value at [-3, 2]. For better model performance, additional training data is needed in this region. We will leave this to the user to try.\n", + "\n", + "Further information about using PySMO's polynomial regression tool can be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/pysmo_polyregression.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generating RBF models\n", + "\n", + "The ``RadialBasisFunction`` class trains RBF models from data. For details about RBF models, the user should consult the documentation.\n", + "\n", + "As an example, we will again consider the Brainin function. The same dataset loaded previously will be used." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 1: Import the data and the RBF tool" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "brainin_data = np.loadtxt(\"brainin_30.txt\")\n", + "from idaes.core.surrogate.pysmo.radial_basis_function import RadialBasisFunctions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 2: Specify the RBF settings and initialize the RadialBasisFunctions class\n", + " \n", + "The RadialBasisFunctions class takes a number of keyword arguments:\n", + "\n", + " - XY_data : The dataset forRBF training. training_data is expected to contain xy_data, \n", + " with the output values (y) in the last column.\n", + "\n", + "\n", + "It also takes a number of optional arguments:\n", + "\n", + " - regularization : Boolean variable determining whether regularization is done. Default is True.\n", + " - basis_function : Basis function transformation to be applied to the training data. PySMO offers \n", + " six basis function types including the Gaussian and Spline transformations. User \n", + " should consult documentation for full list of options. \n", + " - fname : Filename for saving (.pickle extension)\n", + " - overwrite : Option determining whether any existing file with the same name supplied in 'fname' \n", + " should be overwritten." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this demonstration, we will train an RBF model with a Gaussian basis function:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "rbf_class = RadialBasisFunctions(\n", + " XY_data=brainin_data, basis_function=\"gaussian\", overwrite=True\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 3: Extract variable names\n", + "Next, we extract Pyomo variable names from the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "vars = rbf_class.get_feature_vector()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 4: Train the RBF surrogate\n", + "Next, we train the RBF surrogate by calling ``training``:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "rbf_class.training()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 5: View model metrics\n", + " \n", + "We can view the Root Mean Square Error (RMSE) and $R^2$ values of the RBF fit based on the training data:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"R2: \", rbf_class.R2, \"\\nRMSE: \", rbf_class.rmse)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 6 (Optional): Generate Pyomo expression output at any unsampled point\n", + "\n", + "\n", + "Based on the model we trained, we can predict the surrogate value at any previously unsampled point. We do this by calling the function ``predict_output``.\n", + "\n", + "Let us again evaluate the RBF surrogate at the same set of points we considered for the polynomial model:\n", + "\n", + "- $x_{1}=5$, $x_{2}=8$ (true function value: 57.9908)\n", + "- $x_{1}=-3$, $x_{2}=10$ (true function value: 4.2461)\n", + "- $x_{1}=-2$, $x_{2}=3$ (true function value: 50.8899)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "unsampled_points = np.array([[5, 8], [-3, 10], [-2, 3]])\n", + "ys = rbf_class.predict_output(unsampled_points)\n", + "print(ys)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The results from the RBF surrogate are similar to those obtained from the polynomial.\n", + "\n", + "\n", + "For RBF models, the Pyomo expression is generated by calling ``generate_expression`` on the results object, while parity plots may be viewed with the ``parity_residual_plots`` method.\n", + "\n", + "Further information about using PySMO's RBF tool and features can be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/pysmo_radialbasisfunctions.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Training Kriging models\n", + "\n", + "The ``KrigingModel`` class trains Kriging from data. For details about Kriging models, users should consult the documentation.\n", + "\n", + "As an example, we will again consider the Brainin function. The same dataset loaded previously will be used." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 1: Load the data and import the Kriging tool" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "brainin_data = np.loadtxt(\"brainin_30.txt\")\n", + "from idaes.core.surrogate.pysmo.kriging import KrigingModel" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 2: Specify the Kriging settings and initialize the KrigingModel class\n", + " \n", + "The KrigingModel class takes a number of keyword arguments:\n", + "\n", + " - XY_data : The dataset for Kriging training. training_data is expected to contain xy_data, \n", + " with the output values (y) in the last column.\n", + "\n", + "\n", + "It also takes a number of optional arguments:\n", + "\n", + " - regularization : Boolean variable determining whether regularization is done. Default is True.\n", + " - numerical_gradients : Boolean variable which determines whether numerical gradients are used when\n", + " solving the max. likelihood optimization problem. Default is True.\n", + " - fname : Filename for saving (.pickle extension)\n", + " - overwrite : Option determining whether any existing file with the same name supplied in 'fname' \n", + " should be overwritten." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "For this demonstration, we will train a Kriging model with regularization:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "krg_class = KrigingModel(XY_data=brainin_data, overwrite=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 3: Extract variable names (optional)\n", + "Next, we extract Pyomo variable names from the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "vars = krg_class.get_feature_vector()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 4: Train the Kriging surrogate\n", + "Next, we train the RBF surrogate by calling ``training``:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "krg_class.training()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The returned information correspond to the Kriging model parameters.\n", + "\n", + "As we can see, the optimization problem was solved using SciPy's L-BFGS algorithm which makes use of gradients. A different algorithm (Basinhopping) is used when no numerical gradients are computed (when numerical_gradients is set to False). The user should try this." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 5: View model metrics\n", + " \n", + "We can view the RMSE and $R^2$ values of the Kriging fit based on the training data:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"R2: \", krg_class.training_R2, \"\\nRMSE: \", krg_class.training_rmse)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Step 6 (Optional): Generate Pyomo expression output at any unsampled point\n", + "\n", + "\n", + "Again, based on the model we trained, we evaluate the surrogate at a set of off-design points:\n", + "\n", + "- $x_{1}=5$, $x_{2}=8$ (true function value: 57.9908)\n", + "- $x_{1}=-3$, $x_{2}=10$ (true function value: 4.2461)\n", + "- $x_{1}=-2$, $x_{2}=3$ (true function value: 50.8899)\n", + "\n", + "We do this by calling the function ``predict_output``:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "unsampled_points = np.array([[5, 8], [-3, 10], [-2, 3]])\n", + "ys = krg_class.predict_output(unsampled_points)\n", + "print(ys)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Kriging model performs very well, predicting all three points fairly accurately. \n", + "\n", + "For Kriging models, the Pyomo expression is generated by calling ``generate_expression`` on the results object: " + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "print(krg_class.generate_expression([m.x[1], m.x[2]]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see, expressing a Kriging model algebraically is pretty complicated!\n", + "\n", + "Parity plots for the Kriging model may be viewed with the ``parity_residual_plots`` method.\n", + "\n", + "Further information about using PySMO's Kriging tool and features can be found in the [documentation](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/api/pysmo/pysmo_kriging.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Summary\n", + "\n", + "PySMO allows IDAES users to sample design spaces and generate different types of surrogate models. Further information about PySMO's capabilities may be found in the documentation." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } diff --git a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization.ipynb b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization.ipynb index 513f47d8..929cf81f 100644 --- a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization.ipynb @@ -1,478 +1,479 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Autothermal Reformer Flowsheet Optimization with PySMO Surrogate Object\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "## 1. Introduction\n", - "\n", - "This example demonstrates autothermal reformer optimization leveraging the PySMO Polynomial surrogate trainer. Other than the specific training method syntax, this workflow is identical for PySMO RBF and PySMO Kriging surrogate models. In this notebook, sampled simulation data will be used to train and validate a surrogate model. IDAES surrogate plotting tools will be utilized to visualize the surrogates on training and validation data. Once validated, integration of the surrogate into an IDAES flowsheet will be demonstrated." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Problem Statement \n", - "\n", - "Within the context of a larger NGFC system, the autothermal reformer generates syngas from air, steam and natural gas for use in a solid-oxide fuel cell (SOFC).\n", - "\n", - "## 2.1. Main Inputs: \n", - "- Bypass fraction (dimensionless) - split fraction of natural gas to bypass AR unit and feed directly to the power island\n", - "- NG-Steam Ratio (dimensionless) - proportion of natural relative to steam fed into AR unit operation\n", - "\n", - "## 2.2. Main Outputs:\n", - "- Steam flowrate (kg/s) - inlet steam fed to AR unit\n", - "- Reformer duty (kW) - required energy input to AR unit\n", - "- Composition (dimensionless) - outlet mole fractions of components (Ar, C2H6, C3H8, C4H10, CH4, CO, CO2, H2, H2O, N2, O2)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"AR_PFD.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Training and Validating Surrogates" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First, let's import the required Python, Pyomo and IDAES modules:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Import statements\n", - "import os\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "# Import Pyomo libraries\n", - "from pyomo.environ import (\n", - " ConcreteModel,\n", - " SolverFactory,\n", - " value,\n", - " Var,\n", - " Constraint,\n", - " Set,\n", - " Objective,\n", - " maximize,\n", - ")\n", - "from pyomo.common.timing import TicTocTimer\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", - "from idaes.core.surrogate.pysmo_surrogate import PysmoPolyTrainer, PysmoSurrogate\n", - "from idaes.core.surrogate.plotting.sm_plotter import (\n", - " surrogate_scatter2D,\n", - " surrogate_parity,\n", - " surrogate_residual,\n", - ")\n", - "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", - "from idaes.core import FlowsheetBlock" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.1 Importing Training and Validation Datasets" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this section, we read the dataset from the CSV file located in this directory. 2800 data points were simulated from a rigorous IDAES NGFC flowsheet using a grid sampling method. For simplicity and to reduce training runtime, this example randomly selects 100 data points to use for training/validation. The data is separated using an 80/20 split into training and validation data using the IDAES `split_training_validation()` method." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Auto-reformer training data\n", - "np.set_printoptions(precision=6, suppress=True)\n", - "\n", - "csv_data = pd.read_csv(datafile_path(\"reformer-data.csv\")) # 2800 data points\n", - "data = csv_data.sample(n=100) # randomly sample points for training/validation\n", - "input_data = data.iloc[:, :2]\n", - "output_data = data.iloc[:, 2:]\n", - "\n", - "# Define labels, and split training and validation data\n", - "# note that PySMO requires that labels are passed as string lists\n", - "input_labels = list(input_data.columns)\n", - "output_labels = list(output_data.columns)\n", - "\n", - "n_data = data[input_labels[0]].size\n", - "data_training, data_validation = split_training_validation(\n", - " data, 0.8, seed=n_data\n", - ") # seed=100" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.2 Training Surrogates with PySMO" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "IDAES builds a model class for each type of PySMO surrogate model. In this case, we will call and build the Polynomial Regression class. Regression settings can be directly passed as class arguments, as shown below. In this example, allowed basis terms span a 6th order polynomial as well as a variable product, and data is internally cross-validated using 10 iterations of 80/20 splits to ensure a robust surrogate fit. Note that PySMO uses cross-validation of training data to adjust model coefficients and ensure a more accurate fit, while we separate the validation dataset pre-training in order to visualize the surrogate fits.\n", - "\n", - "Finally, after training the model we save the results and model expressions to a folder which contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "# capture long output (not required to use surrogate API)\n", - "from io import StringIO\n", - "import sys\n", - "\n", - "stream = StringIO()\n", - "oldstdout = sys.stdout\n", - "sys.stdout = stream\n", - "\n", - "# Create PySMO trainer object\n", - "trainer = PysmoPolyTrainer(\n", - " input_labels=input_labels,\n", - " output_labels=output_labels,\n", - " training_dataframe=data_training,\n", - ")\n", - "\n", - "# Set PySMO options\n", - "trainer.config.maximum_polynomial_order = 6\n", - "trainer.config.multinomials = True\n", - "trainer.config.training_split = 0.8\n", - "trainer.config.number_of_crossvalidations = 10\n", - "\n", - "# Train surrogate (calls PySMO through IDAES Python wrapper)\n", - "poly_train = trainer.train_surrogate()\n", - "\n", - "# create callable surrogate object\n", - "xmin, xmax = [0.1, 0.8], [0.8, 1.2]\n", - "input_bounds = {input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))}\n", - "poly_surr = PysmoSurrogate(poly_train, input_labels, output_labels, input_bounds)\n", - "\n", - "# save model to JSON\n", - "model = poly_surr.save_to_file(\"pysmo_poly_surrogate.json\", overwrite=True)\n", - "\n", - "# revert back to normal output capture\n", - "sys.stdout = oldstdout\n", - "\n", - "# display first 50 lines and last 50 lines of output\n", - "celloutput = stream.getvalue().split(\"\\n\")\n", - "for line in celloutput[:50]:\n", - " print(line)\n", - "print(\".\")\n", - "print(\".\")\n", - "print(\".\")\n", - "for line in celloutput[-50:]:\n", - " print(line)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.3 Visualizing surrogates" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(poly_surr, data_training, filename=\"pysmo_poly_train_scatter2D.pdf\")\n", - "surrogate_parity(poly_surr, data_training, filename=\"pysmo_poly_train_parity.pdf\")\n", - "surrogate_residual(poly_surr, data_training, filename=\"pysmo_poly_train_residual.pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.4 Model Validation" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(poly_surr, data_validation, filename=\"pysmo_poly_val_scatter2D.pdf\")\n", - "surrogate_parity(poly_surr, data_validation, filename=\"pysmo_poly_val_parity.pdf\")\n", - "surrogate_residual(poly_surr, data_validation, filename=\"pysmo_poly_val_residual.pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4. IDAES Flowsheet Integration" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4.1 Build and Run IDAES Flowsheet" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we will build an IDAES flowsheet and import the surrogate model object. Each output variable has a unique PySMO model expression, and the surrogate expressions may be added to the model via an indexed Constraint() component." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "# create the IDAES model and flowsheet\n", - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - "# create flowsheet input variables\n", - "m.fs.bypass_frac = Var(\n", - " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", - ")\n", - "m.fs.ng_steam_ratio = Var(\n", - " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", - ")\n", - "\n", - "# create flowsheet output variables\n", - "m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", - "m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", - "m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", - "m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", - "m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", - "m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", - "m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", - "m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", - "m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", - "m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", - "m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", - "m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", - "m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", - "\n", - "# create input and output variable object lists for flowsheet\n", - "inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", - "outputs = [\n", - " m.fs.steam_flowrate,\n", - " m.fs.reformer_duty,\n", - " m.fs.AR,\n", - " m.fs.C2H6,\n", - " m.fs.C4H10,\n", - " m.fs.C3H8,\n", - " m.fs.CH4,\n", - " m.fs.CO,\n", - " m.fs.CO2,\n", - " m.fs.H2,\n", - " m.fs.H2O,\n", - " m.fs.N2,\n", - " m.fs.O2,\n", - "]\n", - "\n", - "# create the Pyomo/IDAES block that corresponds to the surrogate\n", - "# PySMO\n", - "\n", - "# capture long output (not required to use surrogate API)\n", - "stream = StringIO()\n", - "oldstdout = sys.stdout\n", - "sys.stdout = stream\n", - "\n", - "surrogate = PysmoSurrogate.load_from_file(\"pysmo_poly_surrogate.json\")\n", - "m.fs.surrogate = SurrogateBlock(concrete=True)\n", - "m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", - "\n", - "# revert back to normal output capture - don't need to print PySMO load output\n", - "sys.stdout = oldstdout\n", - "\n", - "# fix input values and solve flowsheet\n", - "m.fs.bypass_frac.fix(0.5)\n", - "m.fs.ng_steam_ratio.fix(1)\n", - "\n", - "solver = SolverFactory(\"ipopt\")\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's print some model results:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Steam flowrate = \", value(m.fs.steam_flowrate))\n", - "print(\"Reformer duty = \", value(m.fs.reformer_duty))\n", - "print(\"Mole Fraction Ar = \", value(m.fs.AR))\n", - "print(\"Mole Fraction C2H6 = \", value(m.fs.C2H6))\n", - "print(\"Mole Fraction C3H8 = \", value(m.fs.C3H8))\n", - "print(\"Mole Fraction C4H10 = \", value(m.fs.C4H10))\n", - "print(\"Mole Fraction CH4 = \", value(m.fs.CH4))\n", - "print(\"Mole Fraction CO = \", value(m.fs.CO))\n", - "print(\"Mole Fraction CO2 = \", value(m.fs.CO2))\n", - "print(\"Mole Fraction H2 = \", value(m.fs.H2))\n", - "print(\"Mole Fraction H2O = \", value(m.fs.H2O))\n", - "print(\"Mole Fraction N2 = \", value(m.fs.N2))\n", - "print(\"Mole Fraction O2 = \", value(m.fs.O2))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4.2 Optimizing the Autothermal Reformer\n", - "Extending this example, we will unfix the input variables and optimize hydrogen production. We will restrict nitrogen below 34 mol% of the product stream and leave all other variables unfixed.\n", - "\n", - "Above, variable values are called in reference to actual objects names; however, as shown below this may be done much more compactly by calling the list objects we created earlier." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "# unfix input values and add the objective/constraint to the model\n", - "m.fs.bypass_frac.unfix()\n", - "m.fs.ng_steam_ratio.unfix()\n", - "m.fs.obj = Objective(expr=m.fs.H2, sense=maximize)\n", - "m.fs.con = Constraint(expr=m.fs.N2 <= 0.34)\n", - "\n", - "# solve the model\n", - "tmr = TicTocTimer()\n", - "status = solver.solve(m, tee=True)\n", - "solve_time = tmr.toc(\"solve\")\n", - "\n", - "# print and check results\n", - "assert abs(value(m.fs.H2) - 0.33) <= 0.01\n", - "assert value(m.fs.N2 <= 0.4 + 1e-8)\n", - "print(\"Model status: \", status)\n", - "print(\"Solve time: \", solve_time)\n", - "for var in inputs:\n", - " print(var.name, \": \", value(var))\n", - "for var in outputs:\n", - " print(var.name, \": \", value(var))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.16" - } + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Autothermal Reformer Flowsheet Optimization with PySMO Surrogate Object\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "## 1. Introduction\n", + "\n", + "This example demonstrates autothermal reformer optimization leveraging the PySMO Polynomial surrogate trainer. Other than the specific training method syntax, this workflow is identical for PySMO RBF and PySMO Kriging surrogate models. In this notebook, sampled simulation data will be used to train and validate a surrogate model. IDAES surrogate plotting tools will be utilized to visualize the surrogates on training and validation data. Once validated, integration of the surrogate into an IDAES flowsheet will be demonstrated." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Problem Statement \n", + "\n", + "Within the context of a larger NGFC system, the autothermal reformer generates syngas from air, steam and natural gas for use in a solid-oxide fuel cell (SOFC).\n", + "\n", + "## 2.1. Main Inputs: \n", + "- Bypass fraction (dimensionless) - split fraction of natural gas to bypass AR unit and feed directly to the power island\n", + "- NG-Steam Ratio (dimensionless) - proportion of natural relative to steam fed into AR unit operation\n", + "\n", + "## 2.2. Main Outputs:\n", + "- Steam flowrate (kg/s) - inlet steam fed to AR unit\n", + "- Reformer duty (kW) - required energy input to AR unit\n", + "- Composition (dimensionless) - outlet mole fractions of components (Ar, C2H6, C3H8, C4H10, CH4, CO, CO2, H2, H2O, N2, O2)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"AR_PFD.png\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Training and Validating Surrogates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, let's import the required Python, Pyomo and IDAES modules:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Import statements\n", + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "# Import Pyomo libraries\n", + "from pyomo.environ import (\n", + " ConcreteModel,\n", + " SolverFactory,\n", + " value,\n", + " Var,\n", + " Constraint,\n", + " Set,\n", + " Objective,\n", + " maximize,\n", + ")\n", + "from pyomo.common.timing import TicTocTimer\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", + "from idaes.core.surrogate.pysmo_surrogate import PysmoPolyTrainer, PysmoSurrogate\n", + "from idaes.core.surrogate.plotting.sm_plotter import (\n", + " surrogate_scatter2D,\n", + " surrogate_parity,\n", + " surrogate_residual,\n", + ")\n", + "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", + "from idaes.core import FlowsheetBlock" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.1 Importing Training and Validation Datasets" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this section, we read the dataset from the CSV file located in this directory. 2800 data points were simulated from a rigorous IDAES NGFC flowsheet using a grid sampling method. For simplicity and to reduce training runtime, this example randomly selects 100 data points to use for training/validation. The data is separated using an 80/20 split into training and validation data using the IDAES `split_training_validation()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Auto-reformer training data\n", + "np.set_printoptions(precision=6, suppress=True)\n", + "\n", + "csv_data = pd.read_csv(datafile_path(\"reformer-data.csv\")) # 2800 data points\n", + "data = csv_data.sample(n=100) # randomly sample points for training/validation\n", + "input_data = data.iloc[:, :2]\n", + "output_data = data.iloc[:, 2:]\n", + "\n", + "# Define labels, and split training and validation data\n", + "# note that PySMO requires that labels are passed as string lists\n", + "input_labels = list(input_data.columns)\n", + "output_labels = list(output_data.columns)\n", + "\n", + "n_data = data[input_labels[0]].size\n", + "data_training, data_validation = split_training_validation(\n", + " data, 0.8, seed=n_data\n", + ") # seed=100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.2 Training Surrogates with PySMO" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "IDAES builds a model class for each type of PySMO surrogate model. In this case, we will call and build the Polynomial Regression class. Regression settings can be directly passed as class arguments, as shown below. In this example, allowed basis terms span a 6th order polynomial as well as a variable product, and data is internally cross-validated using 10 iterations of 80/20 splits to ensure a robust surrogate fit. Note that PySMO uses cross-validation of training data to adjust model coefficients and ensure a more accurate fit, while we separate the validation dataset pre-training in order to visualize the surrogate fits.\n", + "\n", + "Finally, after training the model we save the results and model expressions to a folder which contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# capture long output (not required to use surrogate API)\n", + "from io import StringIO\n", + "import sys\n", + "\n", + "stream = StringIO()\n", + "oldstdout = sys.stdout\n", + "sys.stdout = stream\n", + "\n", + "# Create PySMO trainer object\n", + "trainer = PysmoPolyTrainer(\n", + " input_labels=input_labels,\n", + " output_labels=output_labels,\n", + " training_dataframe=data_training,\n", + ")\n", + "\n", + "# Set PySMO options\n", + "trainer.config.maximum_polynomial_order = 6\n", + "trainer.config.multinomials = True\n", + "trainer.config.training_split = 0.8\n", + "trainer.config.number_of_crossvalidations = 10\n", + "\n", + "# Train surrogate (calls PySMO through IDAES Python wrapper)\n", + "poly_train = trainer.train_surrogate()\n", + "\n", + "# create callable surrogate object\n", + "xmin, xmax = [0.1, 0.8], [0.8, 1.2]\n", + "input_bounds = {input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))}\n", + "poly_surr = PysmoSurrogate(poly_train, input_labels, output_labels, input_bounds)\n", + "\n", + "# save model to JSON\n", + "model = poly_surr.save_to_file(\"pysmo_poly_surrogate.json\", overwrite=True)\n", + "\n", + "# revert back to normal output capture\n", + "sys.stdout = oldstdout\n", + "\n", + "# display first 50 lines and last 50 lines of output\n", + "celloutput = stream.getvalue().split(\"\\n\")\n", + "for line in celloutput[:50]:\n", + " print(line)\n", + "print(\".\")\n", + "print(\".\")\n", + "print(\".\")\n", + "for line in celloutput[-50:]:\n", + " print(line)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.3 Visualizing surrogates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(poly_surr, data_training, filename=\"pysmo_poly_train_scatter2D.pdf\")\n", + "surrogate_parity(poly_surr, data_training, filename=\"pysmo_poly_train_parity.pdf\")\n", + "surrogate_residual(poly_surr, data_training, filename=\"pysmo_poly_train_residual.pdf\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.4 Model Validation" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(poly_surr, data_validation, filename=\"pysmo_poly_val_scatter2D.pdf\")\n", + "surrogate_parity(poly_surr, data_validation, filename=\"pysmo_poly_val_parity.pdf\")\n", + "surrogate_residual(poly_surr, data_validation, filename=\"pysmo_poly_val_residual.pdf\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4. IDAES Flowsheet Integration" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.1 Build and Run IDAES Flowsheet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we will build an IDAES flowsheet and import the surrogate model object. Each output variable has a unique PySMO model expression, and the surrogate expressions may be added to the model via an indexed Constraint() component." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# create the IDAES model and flowsheet\n", + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + "# create flowsheet input variables\n", + "m.fs.bypass_frac = Var(\n", + " initialize=0.80, bounds=[0.1, 0.8], doc=\"natural gas bypass fraction\"\n", + ")\n", + "m.fs.ng_steam_ratio = Var(\n", + " initialize=0.80, bounds=[0.8, 1.2], doc=\"natural gas to steam ratio\"\n", + ")\n", + "\n", + "# create flowsheet output variables\n", + "m.fs.steam_flowrate = Var(initialize=0.2, doc=\"steam flowrate\")\n", + "m.fs.reformer_duty = Var(initialize=10000, doc=\"reformer heat duty\")\n", + "m.fs.AR = Var(initialize=0, doc=\"AR fraction\")\n", + "m.fs.C2H6 = Var(initialize=0, doc=\"C2H6 fraction\")\n", + "m.fs.C3H8 = Var(initialize=0, doc=\"C3H8 fraction\")\n", + "m.fs.C4H10 = Var(initialize=0, doc=\"C4H10 fraction\")\n", + "m.fs.CH4 = Var(initialize=0, doc=\"CH4 fraction\")\n", + "m.fs.CO = Var(initialize=0, doc=\"CO fraction\")\n", + "m.fs.CO2 = Var(initialize=0, doc=\"CO2 fraction\")\n", + "m.fs.H2 = Var(initialize=0, doc=\"H2 fraction\")\n", + "m.fs.H2O = Var(initialize=0, doc=\"H2O fraction\")\n", + "m.fs.N2 = Var(initialize=0, doc=\"N2 fraction\")\n", + "m.fs.O2 = Var(initialize=0, doc=\"O2 fraction\")\n", + "\n", + "# create input and output variable object lists for flowsheet\n", + "inputs = [m.fs.bypass_frac, m.fs.ng_steam_ratio]\n", + "outputs = [\n", + " m.fs.steam_flowrate,\n", + " m.fs.reformer_duty,\n", + " m.fs.AR,\n", + " m.fs.C2H6,\n", + " m.fs.C4H10,\n", + " m.fs.C3H8,\n", + " m.fs.CH4,\n", + " m.fs.CO,\n", + " m.fs.CO2,\n", + " m.fs.H2,\n", + " m.fs.H2O,\n", + " m.fs.N2,\n", + " m.fs.O2,\n", + "]\n", + "\n", + "# create the Pyomo/IDAES block that corresponds to the surrogate\n", + "# PySMO\n", + "\n", + "# capture long output (not required to use surrogate API)\n", + "stream = StringIO()\n", + "oldstdout = sys.stdout\n", + "sys.stdout = stream\n", + "\n", + "surrogate = PysmoSurrogate.load_from_file(\"pysmo_poly_surrogate.json\")\n", + "m.fs.surrogate = SurrogateBlock(concrete=True)\n", + "m.fs.surrogate.build_model(surrogate, input_vars=inputs, output_vars=outputs)\n", + "\n", + "# revert back to normal output capture - don't need to print PySMO load output\n", + "sys.stdout = oldstdout\n", + "\n", + "# fix input values and solve flowsheet\n", + "m.fs.bypass_frac.fix(0.5)\n", + "m.fs.ng_steam_ratio.fix(1)\n", + "\n", + "solver = SolverFactory(\"ipopt\")\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's print some model results:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Steam flowrate = \", value(m.fs.steam_flowrate))\n", + "print(\"Reformer duty = \", value(m.fs.reformer_duty))\n", + "print(\"Mole Fraction Ar = \", value(m.fs.AR))\n", + "print(\"Mole Fraction C2H6 = \", value(m.fs.C2H6))\n", + "print(\"Mole Fraction C3H8 = \", value(m.fs.C3H8))\n", + "print(\"Mole Fraction C4H10 = \", value(m.fs.C4H10))\n", + "print(\"Mole Fraction CH4 = \", value(m.fs.CH4))\n", + "print(\"Mole Fraction CO = \", value(m.fs.CO))\n", + "print(\"Mole Fraction CO2 = \", value(m.fs.CO2))\n", + "print(\"Mole Fraction H2 = \", value(m.fs.H2))\n", + "print(\"Mole Fraction H2O = \", value(m.fs.H2O))\n", + "print(\"Mole Fraction N2 = \", value(m.fs.N2))\n", + "print(\"Mole Fraction O2 = \", value(m.fs.O2))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.2 Optimizing the Autothermal Reformer\n", + "Extending this example, we will unfix the input variables and optimize hydrogen production. We will restrict nitrogen below 34 mol% of the product stream and leave all other variables unfixed.\n", + "\n", + "Above, variable values are called in reference to actual objects names; however, as shown below this may be done much more compactly by calling the list objects we created earlier." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# unfix input values and add the objective/constraint to the model\n", + "m.fs.bypass_frac.unfix()\n", + "m.fs.ng_steam_ratio.unfix()\n", + "m.fs.obj = Objective(expr=m.fs.H2, sense=maximize)\n", + "m.fs.con = Constraint(expr=m.fs.N2 <= 0.34)\n", + "\n", + "# solve the model\n", + "tmr = TicTocTimer()\n", + "status = solver.solve(m, tee=True)\n", + "solve_time = tmr.toc(\"solve\")\n", + "\n", + "# print and check results\n", + "assert abs(value(m.fs.H2) - 0.33) <= 0.01\n", + "assert value(m.fs.N2 <= 0.4 + 1e-8)\n", + "print(\"Model status: \", status)\n", + "print(\"Solve time: \", solve_time)\n", + "for var in inputs:\n", + " print(var.name, \": \", value(var))\n", + "for var in outputs:\n", + " print(var.name, \": \", value(var))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization_doc.ipynb b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization_doc.ipynb index b5eec52c..05f2722b 100644 --- a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization_doc.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -69,11 +70,7 @@ ] }, "execution_count": 2, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_3_0.png" - } - }, + "metadata": {}, "output_type": "execute_result" } ], @@ -162,7 +159,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "C:\\Users\\dkgun\\miniconda3\\envs\\idaes-examples-py311\\Lib\\site-packages\\numpy\\core\\fromnumeric.py:59: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be removed in a future version. Please use 'DataFrame.transpose' instead.\n", + "/home/dang/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be removed in a future version. Please use 'DataFrame.transpose' instead.\n", " return bound(*args, **kwds)\n" ] } @@ -214,91 +211,98 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:19 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output Steam_Flow trained successfully\n" + "2025-03-17 17:37:56 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output Steam_Flow trained successfully\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:22 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output Reformer_Duty trained successfully\n" + "2025-03-17 17:37:57 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output Reformer_Duty trained successfully\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:25 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output AR trained successfully\n" + "2025-03-17 17:37:58 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output AR trained successfully\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output C2H6 trained successfully\n" + "2025-03-17 17:37:59 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output C2H6 trained successfully\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:30 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output C3H8 trained successfully\n" + "2025-03-17 17:38:00 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output C3H8 trained successfully\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:33 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output C4H10 trained successfully\n" + "2025-03-17 17:38:01 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output C4H10 trained successfully\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:35 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output CH4 trained successfully\n" + "2025-03-17 17:38:01 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output CH4 trained successfully\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:38 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output CO trained successfully\n" + "2025-03-17 17:38:02 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output CO trained successfully\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:41 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output CO2 trained successfully\n" + "2025-03-17 17:38:03 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output CO2 trained successfully\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:43 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output H2 trained successfully\n" + "2025-03-17 17:38:04 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output H2 trained successfully\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:47 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output H2O trained successfully\n" + "2025-03-17 17:38:05 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output H2O trained successfully\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:49 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output N2 trained successfully\n" + "2025-03-17 17:38:06 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output N2 trained successfully\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:22:52 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output O2 trained successfully\n" + "2025-03-17 17:38:07 [WARNING] idaes.core.surrogate.pysmo.polynomial_regression: Polynomial regression generates poor fit for the dataset\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:07 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output O2 trained successfully\n" ] }, { @@ -318,29 +322,27 @@ "Number of adaptive samples (no_adaptive_samples) set at 4\n", "Maximum number of iterations (Max_iter) set at: 0\n", "\n", - "Initial surrogate model is of order 4 with a cross-val error of 0.000000\n", + "Initial surrogate model is of order 3 with a cross-val error of 0.000000\n", "Initial Regression Model Performance:\n", - "Order: 4 / MAE: 0.000000 / MSE: 0.000000 / R^2: 1.000000 / Adjusted R^2: 1.000000\n", + "Order: 3 / MAE: 0.000000 / MSE: 0.000000 / R^2: 1.000000 / Adjusted R^2: 1.000000\n", "\n", "Polynomial regression generates a good surrogate model for the input data.\n", "\n", "-------------------------------------------------\n", "-------------------------------------------------\n", "Best solution found: \n", - "Order: 4 / MAE: 0.000000 / MSE: 0.000000 / R_sq: 1.000000 / Adjusted R^2: 1.000000\n", + "Order: 3 / MAE: 0.000000 / MSE: 0.000000 / R_sq: 1.000000 / Adjusted R^2: 1.000000\n", "\n", "------------------------------------------------------------\n", "The final coefficients of the regression terms are: \n", "\n", - "k | 0.0\n", + "k | -0.0\n", "(x_ 1 )^ 1 | 0.0\n", - "(x_ 2 )^ 1 | 1.21186\n", - "(x_ 1 )^ 2 | -0.0\n", - "(x_ 2 )^ 2 | 3e-06\n", - "(x_ 1 )^ 3 | 0.0\n", - "(x_ 2 )^ 3 | -2e-06\n", - "(x_ 1 )^ 4 | -0.0\n", - "(x_ 2 )^ 4 | 0.0\n", + "(x_ 2 )^ 1 | 1.211862\n", + "(x_ 1 )^ 2 | 0.0\n", + "(x_ 2 )^ 2 | -0.0\n", + "(x_ 1 )^ 3 | -0.0\n", + "(x_ 2 )^ 3 | 0.0\n", "x_ 1 .x_ 2 | -1.211862\n", "\n", "Results saved in solution.pickle\n", @@ -355,23 +357,25 @@ "\n", "max_fraction_training_samples set at 0.5\n", "Number of adaptive samples (no_adaptive_samples) set at 4\n", + "Maximum number of iterations (Max_iter) set at: 0\n", + "\n", ".\n", ".\n", ".\n", - "k | 23.343737\n", - "(x_ 1 )^ 1 | -0.03395\n", - "(x_ 2 )^ 1 | -139.706887\n", - "(x_ 1 )^ 2 | -0.458656\n", - "(x_ 2 )^ 2 | 353.282249\n", - "(x_ 1 )^ 3 | 1.34249\n", - "(x_ 2 )^ 3 | -475.264806\n", - "(x_ 1 )^ 4 | -2.542639\n", - "(x_ 2 )^ 4 | 358.569677\n", - "(x_ 1 )^ 5 | 2.410967\n", - "(x_ 2 )^ 5 | -143.84727\n", - "(x_ 1 )^ 6 | -1.054685\n", - "(x_ 2 )^ 6 | 23.972175\n", - "x_ 1 .x_ 2 | 0.042895\n", + "k | -11.119438\n", + "(x_ 1 )^ 1 | -0.13808\n", + "(x_ 2 )^ 1 | 66.536719\n", + "(x_ 1 )^ 2 | 0.178502\n", + "(x_ 2 )^ 2 | -159.241311\n", + "(x_ 1 )^ 3 | -0.603785\n", + "(x_ 2 )^ 3 | 201.872038\n", + "(x_ 1 )^ 4 | 0.548697\n", + "(x_ 2 )^ 4 | -143.104903\n", + "(x_ 1 )^ 5 | -0.024305\n", + "(x_ 2 )^ 5 | 53.783788\n", + "(x_ 1 )^ 6 | -0.308294\n", + "(x_ 2 )^ 6 | -8.371776\n", + "x_ 1 .x_ 2 | 0.044791\n", "\n", "Results saved in solution.pickle\n", "\n", @@ -389,34 +393,26 @@ "\n", "Initial surrogate model is of order 1 with a cross-val error of 0.000000\n", "Initial Regression Model Performance:\n", - "Order: 1 / MAE: 0.000000 / MSE: 0.000000 / R^2: -5233897914.466867 / Adjusted R^2: 0.000000\n", + "Order: 1 / MAE: 0.000000 / MSE: 0.000000 / R^2: -1234394494.826904 / Adjusted R^2: 0.000000\n", "\n", "Polynomial regression performs poorly for this dataset.\n", "\n", "-------------------------------------------------\n", "-------------------------------------------------\n", "Best solution found: \n", - "Order: 1 / MAE: 0.000000 / MSE: 0.000000 / R_sq: -5233897914.466867 / Adjusted R^2: 0.000000\n", + "Order: 1 / MAE: 0.000000 / MSE: 0.000000 / R_sq: -1234394494.826904 / Adjusted R^2: 0.000000\n", "\n", "------------------------------------------------------------\n", "The final coefficients of the regression terms are: \n", "\n", - "k | -0.0\n", - "(x_ 1 )^ 1 | 0.0\n", - "(x_ 2 )^ 1 | 0.0\n", - "x_ 1 .x_ 2 | -0.0\n", + "k | 0.0\n", + "(x_ 1 )^ 1 | -0.0\n", + "(x_ 2 )^ 1 | -0.0\n", + "x_ 1 .x_ 2 | 0.0\n", "\n", "Results saved in solution.pickle\n", "\n" ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\dkgun\\miniconda3\\envs\\idaes-examples-py311\\Lib\\site-packages\\idaes\\core\\surrogate\\pysmo\\polynomial_regression.py:1415: UserWarning: Polynomial regression generates poor fit for the dataset\n", - " warnings.warn(\n" - ] } ], "source": [ @@ -489,913 +485,688 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVJUlEQVR4nO3deVxU9f4/8NewL8LogCAgiIKl5RJomrsphqaU1+4vMzU1zatJalQm19yuuaSJZGqmuZaGpdQj06spyS3N0lBLTTEUlwxUQAeEBGTO7w+/nByYGWaGWc6ZeT0fDx7XmTnnzOcM6bzuZ3l/FIIgCCAiIiJyEC72bgARERGRJTHcEBERkUNhuCEiIiKHwnBDREREDoXhhoiIiBwKww0RERE5FIYbIiIicigMN0RERORQGG6IiIjIoTDcEBHZycaNG6FQKHDx4kV7N4XIoTDcEDmwo0ePIjExEQ8//DB8fX0RERGBZ599FufOnat1bO/evaFQKKBQKODi4gJ/f388+OCDGDlyJPbt22fS++7cuRO9evVCUFAQfHx80KJFCzz77LPYs2ePpW6tlgULFuDLL7+s9fwPP/yAOXPm4NatW1Z775rmzJkjfpYKhQI+Pj546KGH8NZbb6G4uNgi77F161akpqZa5FpEjobhhsiBvfPOO9ixYwf69u2L9957D+PHj8d3332H2NhYnDp1qtbxTZs2xccff4zNmzdjyZIleOqpp/DDDz/giSeewNChQ1FZWVnne7777rt46qmnoFAokJycjGXLluGZZ57B77//jrS0NGvcJgDD4Wbu3Lk2DTfVPvjgA3z88cdISUlBq1atMH/+fPTv3x+W2NKP4YZIPzd7N4CIrCcpKQlbt26Fh4eH+NzQoUPRtm1bLFq0CJ988onW8UqlEiNGjNB6btGiRZg8eTJWrVqFyMhIvPPOO3rf7+7du5g3bx769euHb775ptbr169fr+cdSUdZWRl8fHwMHvPPf/4TgYGBAIAJEybgmWeeQXp6On788Ud06dLFFs0kckrsuSFyYF27dtUKNgDQsmVLPPzwwzhz5oxR13B1dcXy5cvx0EMPYcWKFVCr1XqPLSgoQHFxMbp166bz9aCgIK3Hd+7cwZw5c/DAAw/Ay8sLISEhGDJkCM6fPy8e8+6776Jr164ICAiAt7c3OnTogO3bt2tdR6FQoLS0FJs2bRKHgkaPHo05c+bgjTfeAAA0b95cfO3+OS6ffPIJOnToAG9vb6hUKjz33HO4cuWK1vV79+6NNm3aICsrCz179oSPjw/+/e9/G/X53a9Pnz4AgNzcXIPHrVq1Cg8//DA8PT0RGhqKSZMmafU89e7dG7t27cKlS5fEe4qMjDS5PUSOij03RE5GEARcu3YNDz/8sNHnuLq6YtiwYZg5cyYOHjyIgQMH6jwuKCgI3t7e2LlzJ1555RWoVCq916yqqsKgQYOQkZGB5557DlOmTEFJSQn27duHU6dOISoqCgDw3nvv4amnnsLw4cNRUVGBtLQ0/L//9//w9ddfi+34+OOPMW7cOHTq1Anjx48HAERFRcHX1xfnzp3Dp59+imXLlom9KI0bNwYAzJ8/HzNnzsSzzz6LcePG4caNG3j//ffRs2dPHD9+HA0bNhTbW1hYiAEDBuC5557DiBEjEBwcbPTnV606tAUEBOg9Zs6cOZg7dy7i4uIwceJEZGdn44MPPsDRo0dx6NAhuLu7Y8aMGVCr1fjjjz+wbNkyAECDBg1Mbg+RwxKIyKl8/PHHAgBh3bp1Ws/36tVLePjhh/We98UXXwgAhPfee8/g9WfNmiUAEHx9fYUBAwYI8+fPF7Kysmodt379egGAkJKSUus1jUYj/rmsrEzrtYqKCqFNmzZCnz59tJ739fUVRo0aVetaS5YsEQAIubm5Ws9fvHhRcHV1FebPn6/1/MmTJwU3Nzet53v16iUAEFavXq33vu83e/ZsAYCQnZ0t3LhxQ8jNzRU+/PBDwdPTUwgODhZKS0sFQRCEDRs2aLXt+vXrgoeHh/DEE08IVVVV4vVWrFghABDWr18vPjdw4EChWbNmRrWHyNlwWIrIiZw9exaTJk1Cly5dMGrUKJPOre4ZKCkpMXjc3LlzsXXrVsTExGDv3r2YMWMGOnTogNjYWK2hsB07diAwMBCvvPJKrWsoFArxz97e3uKfb968CbVajR49euDYsWMmtb+m9PR0aDQaPPvssygoKBB/mjRpgpYtW+LAgQNax3t6emLMmDEmvceDDz6Ixo0bo3nz5vjXv/6F6Oho7Nq1S+9cnf3796OiogJTp06Fi8vf/zy/9NJL8Pf3x65du0y/USInxGEpIieRn5+PgQMHQqlUYvv27XB1dTXp/Nu3bwMA/Pz86jx22LBhGDZsGIqLi/HTTz9h48aN2Lp1KxISEnDq1Cl4eXnh/PnzePDBB+HmZvifoa+//hpvv/02Tpw4gfLycvH5+wOQOX7//XcIgoCWLVvqfN3d3V3rcVhYWK35S3XZsWMH/P394e7ujqZNm4pDbfpcunQJwL1QdD8PDw+0aNFCfJ2IDGO4IXICarUaAwYMwK1bt/D9998jNDTU5GtULx2Pjo42+hx/f3/069cP/fr1g7u7OzZt2oSffvoJvXr1Mur877//Hk899RR69uyJVatWISQkBO7u7tiwYQO2bt1q8j3cT6PRQKFQ4L///a/OoFdzDsv9PUjG6tmzpzjPh4hsh+GGyMHduXMHCQkJOHfuHPbv34+HHnrI5GtUVVVh69at8PHxQffu3c1qR8eOHbFp0ybk5eUBuDfh96effkJlZWWtXpJqO3bsgJeXF/bu3QtPT0/x+Q0bNtQ6Vl9Pjr7no6KiIAgCmjdvjgceeMDU27GKZs2aAQCys7PRokUL8fmKigrk5uYiLi5OfK6+PVdEjoxzbogcWFVVFYYOHYrDhw/j888/N6u2SlVVFSZPnowzZ85g8uTJ8Pf313tsWVkZDh8+rPO1//73vwD+HnJ55plnUFBQgBUrVtQ6Vvi/Ineurq5QKBSoqqoSX7t48aLOYn2+vr46C/X5+voCQK3XhgwZAldXV8ydO7dWUT1BEFBYWKj7Jq0oLi4OHh4eWL58uVab1q1bB7VarbVKzdfX1+CyfCJnxp4bIgf22muv4auvvkJCQgKKiopqFe2rWbBPrVaLx5SVlSEnJwfp6ek4f/48nnvuOcybN8/g+5WVlaFr16547LHH0L9/f4SHh+PWrVv48ssv8f3332Pw4MGIiYkBALzwwgvYvHkzkpKScOTIEfTo0QOlpaXYv38/Xn75ZTz99NMYOHAgUlJS0L9/fzz//PO4fv06Vq5ciejoaPz6669a792hQwfs378fKSkpCA0NRfPmzdG5c2d06NABADBjxgw899xzcHd3R0JCAqKiovD2228jOTkZFy9exODBg+Hn54fc3Fx88cUXGD9+PF5//fV6ff6maty4MZKTkzF37lz0798fTz31FLKzs7Fq1So8+uijWr+vDh06YNu2bUhKSsKjjz6KBg0aICEhwabtJZIsey7VIiLrql7CrO/H0LENGjQQWrZsKYwYMUL45ptvjHq/yspKYe3atcLgwYOFZs2aCZ6enoKPj48QExMjLFmyRCgvL9c6vqysTJgxY4bQvHlzwd3dXWjSpInwz3/+Uzh//rx4zLp164SWLVsKnp6eQqtWrYQNGzaIS63vd/bsWaFnz56Ct7e3AEBrWfi8efOEsLAwwcXFpday8B07dgjdu3cXfH19BV9fX6FVq1bCpEmThOzsbK3PxtAy+Zqq23fjxg2Dx9VcCl5txYoVQqtWrQR3d3chODhYmDhxonDz5k2tY27fvi08//zzQsOGDQUAXBZOdB+FIFhgkxMiIiIiieCcGyIiInIoDDdERETkUBhuiIiIyKEw3BAREZFDYbghIiIih8JwQ0RERA7F6Yr4aTQa/Pnnn/Dz82P5ciIiIpkQBAElJSUIDQ2Fi4vhvhmnCzd//vknwsPD7d0MIiIiMsOVK1fQtGlTg8c4Xbjx8/MDcO/DMbRHDhEREUlHcXExwsPDxe9xQ5wu3FQPRfn7+zPcEBERyYwxU0o4oZiIiIgcCsMNERERORS7hpvvvvsOCQkJCA0NhUKhwJdffmnw+PT0dPTr1w+NGzeGv78/unTpgr1799qmsURERCQLdp1zU1paivbt2+PFF1/EkCFD6jz+u+++Q79+/bBgwQI0bNgQGzZsQEJCAn766SfExMTYoMVEROTMqqqqUFlZae9mOCwPD486l3kbQyEIgmCB9tSbQqHAF198gcGDB5t03sMPP4yhQ4di1qxZRh1fXFwMpVIJtVrNCcVERGQUQRCQn5+PW7du2bspDs3FxQXNmzeHh4dHrddM+f6W9WopjUaDkpISqFQqvceUl5ejvLxcfFxcXGyLphERkQOpDjZBQUHw8fFhEVgrqC6ym5eXh4iIiHp9xrION++++y5u376NZ599Vu8xCxcuxNy5c23YKiIiciRVVVVisAkICLB3cxxa48aN8eeff+Lu3btwd3c3+zqyXS21detWzJ07F5999hmCgoL0HpecnAy1Wi3+XLlyxYatJCIiuaueY+Pj42Pnlji+6uGoqqqqel1Hlj03aWlpGDduHD7//HPExcUZPNbT0xOenp42ahkRETkqDkVZn6U+Y9mFm08//RQvvvgi0tLSMHDgQHs3xyyFhYWoqKjQ+7qHhwe7PomIiMxk13Bz+/Zt5OTkiI9zc3Nx4sQJqFQqREREIDk5GVevXsXmzZsB3BuKGjVqFN577z107twZ+fn5AABvb28olUq73IOpCgsLsWLFijqPS0xMZMAhIiIyg13n3Pz888+IiYkRa9QkJSUhJiZGXNadl5eHy5cvi8evWbMGd+/exaRJkxASEiL+TJkyxS7tN0fNHhu12g+5uZFQq/0MHkdERGSq0aNHQ6FQQKFQwN3dHcHBwejXrx/Wr18PjUZj9HU2btyIhg0bWq+hFmbXnpvevXvDUJmdjRs3aj3OzMy0boNs7NixGOzcOQiC4AKFQoOEhK8RG3vc3s0iIiILsvdUhP79+2PDhg2oqqrCtWvXsGfPHkyZMgXbt2/HV199BTc32c1QqZPj3ZFMqNV+YrABAEFwwc6dgxAVlQOlssTOrSMiIkuQwlQET09PNGnSBAAQFhaG2NhYPPbYY+jbty82btyIcePGISUlBRs2bMCFCxegUqmQkJCAxYsXo0GDBsjMzMSYMWMA/D3hd/bs2ZgzZw4+/vhjvPfee8jOzoavry/69OmD1NRUg6uYbUG2S8HlrqgoQAw21QTBBUVF+gsSEhGRvBg7xcDWUxH69OmD9u3bIz09HcC9ysDLly/H6dOnsWnTJnz77beYNm0aAKBr165ITU2Fv78/8vLykJeXh9dffx3AvWXy8+bNwy+//IIvv/wSFy9exOjRo216L7qw58ZOVKpCKBQarYCjUGigUhXZsVVEROQsWrVqhV9//RUAMHXqVPH5yMhIvP3225gwYQJWrVoFDw8PKJVKKBQKsQeo2osvvij+uUWLFli+fDkeffRR3L59Gw0aNLDJfejCnhs7USpLkJDwNRSKexO6qufccEiKiIhsQRAEcZhp//796Nu3L8LCwuDn54eRI0eisLAQZWVlBq+RlZWFhIQEREREwM/PD7169QIArcVA9sCeGzuKjT2OqKgcFBWpoFIVST7Y2HtSHBERWc6ZM2fQvHlzXLx4EYMGDcLEiRMxf/58qFQqHDx4EGPHjkVFRYXeysylpaWIj49HfHw8tmzZgsaNG+Py5cuIj4+3+4pfhhsbq7nTqVJZojPU6NoR1Z6kMCmOiIgs49tvv8XJkyfx6quvIisrCxqNBkuXLoWLy70Bnc8++0zreA8Pj1pbIpw9exaFhYVYtGgRwsPDAdwr8SIFDDc2FhAQgMTERNn1gOiqz1NUFACVqlArnNk7rRMRkbby8nLk5+drLQVfuHAhBg0ahBdeeAGnTp1CZWUl3n//fSQkJODQoUNYvXq11jUiIyNx+/ZtZGRkoH379vDx8UFERAQ8PDzw/vvvY8KECTh16hTmzZtnp7vUxnBjB1ILLqZifR4iIvnYs2cPQkJC4ObmhkaNGqF9+/ZYvnw5Ro0aBRcXF7Rv3x4pKSl45513kJycjJ49e2LhwoV44YUXxGt07doVEyZMwNChQ1FYWCguBd+4cSP+/e9/Y/ny5YiNjcW7776Lp556yo53e49CMFRFzwEVFxdDqVRCrVbD39/f3s2Rjby8PKxZswZqtR9SU6fWWuU1dWoqlMoSjB8/HiEhIXZsKRGRZd25cwe5ublo3rw5vLy8TDqXQ/qmMfRZm/L9zZ4bMomh+jxSnxBNRGRrcp2KIHcMN2QS1uchIjINg4vtsc4NmYT1eYiISOrYc0Mmk1t9HiIici4MN2QUudbnISIi58NwQ0bhpDgiIpILhhsyGoMLERHJAScUExERkUNhuCEiIiKHwnBDREREZsnMzIRCocCtW7eMPicyMhKpqalWaxPAcEMmKCwsRF5ent6fwsJCezeRiIjuM3r0aCgUCkyYMKHWa5MmTYJCocDo0aNt3zAr44RiMgr3RyEikqfw8HCkpaVh2bJl8Pb2BnBvD6etW7ciIiLCzq2zDvbckBZ9vTN//vmn1nFqtR9ycyOhVvtpPW9oqTgREdlebGwswsPDkZ6eLj6Xnp6OiIgIxMTEiM+Vl5dj8uTJCAoKgpeXF7p3746jR49qXWv37t144IEH4O3tjccffxwXL16s9X4HDx5Ejx494O3tjfDwcEyePBmlpaVWuz9d2HNDImN7Z44di8HOnYMgCC7i9guxscdt0EIiInn74w/g99+Bli2Bpk1t974vvvgiNmzYgOHDhwMA1q9fjzFjxiAzM1M8Ztq0adixYwc2bdqEZs2aYfHixYiPj0dOTg5UKhWuXLmCIUOGYNKkSRg/fjx+/vlnvPbaa1rvc/78efTv3x9vv/021q9fjxs3biAxMRGJiYnYsGGDze6XPTckqtnroqt3Rq32E4MNcG9H8J07B9XqwSEiIm3r1gHNmgF9+tz733XrbPfeI0aMwMGDB3Hp0iVcunQJhw4dwogRI8TXS0tL8cEHH2DJkiUYMGAAHnroIaxduxbe3t5Y938N/eCDDxAVFYWlS5fiwQcfxPDhw2vN11m4cCGGDx+OqVOnomXLlujatSuWL1+OzZs3486dOza7X/bckE76emeKigK0dgQH7gWcoiIV95giItLjjz+A8eMBzb09h6HRAP/6FxAfb5senMaNG2PgwIHYuHEjBEHAwIEDERgYKL5+/vx5VFZWolu3buJz7u7u6NSpE86cOQMAOHPmDDp37qx13S5dumg9/uWXX/Drr79iy5Yt4nOCIECj0SA3NxetW7e2xu3VwnBDtejrnYmKyoFKVQiFQqMVcBQKDVSqIns1l4hI8n7//e9gU62qCsjJsd3w1IsvvojExEQAwMqVK63yHrdv38a//vUvTJ48udZrtpy8zGEpqqWu3pmEhK+hUNz7W1rdq8NeGyIi/Vq2BFxqfOO6ugLR0bZrQ//+/VFRUYHKykrEx8drvRYVFQUPDw8cOnRIfK6yshJHjx7FQw89BABo3bo1jhw5onXejz/+qPU4NjYWv/32G6Kjo2v92HJjZfbcUC119c7Exh5HVFQOiopUUKmKGGyIiOrQtCmwZs29oaiqqnvB5sMPbTup2NXVVRxicnV11XrN19cXEydOxBtvvAGVSoWIiAgsXrwYZWVlGDt2LABgwoQJWLp0Kd544w2MGzcOWVlZ2Lhxo9Z13nzzTTz22GNITEzEuHHj4Ovri99++w379u0zasGKpbDnhmoxpndGqSxB8+aXagUbWyZzIiI5GTsWuHgROHDg3v/+X2awKX9/f/j7++t8bdGiRXjmmWcwcuRIxMbGIicnB3v37kWjRo0A3BtW2rFjB7788ku0b98eq1evxoIFC7Su0a5dO/zvf//DuXPn0KNHD8TExGDWrFkIDQ21+r3dTyEIgmDTd7Sz4uJiKJVKqNVqvb9gZ5WXl4c1a9aIj9VqP529M0OGDNGaiFbNw8ODBfyIyOHcuXMHubm5aN68Oby8vOzdHIdm6LM25fubw1IkqtnrolSW6BxyCg0NZYghIiLJYrghUUBAABITEw1WGWbvDBERSR3DjR0UFhZKNkAwuBARkdwx3NgYN6AkIiKyLq6WsjFjtjjQdRwREdmXk62/sQtLfcbsubEjR9mAUsrDbERE9eXu7g4AKCsrg7e3t51b49iqv0tq1uExFcONnRja4kCpLEFBQYHO86QWFDjMRkSOztXVFQ0bNsT169cBAD4+PlAoFHZulePRaDS4ceMGfHx84OZWv3jCcGMndW1xkJ6ervdcKQUFXcNsRUUBUKkKtZaRc5iNiOSsSZMmACAGHLIOFxcXRERE1Ds8MtzYiTEbUMotKDjKMBsRUU0KhQIhISEICgpCZWWlvZvjsDw8POBScxMuMzDc2En1Fgc1w0B1iJFbUKhrmI2IyBG4urrWez4IWR/DjR3p24BSjkGhrmE2IiIiW2G4sTFjtjiQY1AwZpiNiIjIFhhubMzQFgcFBQVIT0+XZVCoa5iNiIjIVhhu7KCulU5yDQr6htmIiIhsieHGDvQVvbu/to1cgoKxO4nXPI6IiMhaGG5szNiid4A8ggJ3EiciIqlhuLExY4veDRkyBIGBgbXOl2JQkFp7iIjIuTHc2JGhWjaBgYEICQmxcwuJiIjkh7uC24m+WjY1dwcnIiIi0zDc2ImhWjZERERkPoYbO6muZXM/qdeyISIikgOGGzuprmVTHXDkUsuGiIhI6jih2I7kUsuGiIhIThhubIxF7+RNXwHGalJcqk9E5GwYbmyMRe/ky9gCjImJifz9ERHZEcONHfCLT56MLcBoKLgSEZH1MdyQ0Tgk8zdDBRiJiMi+GG7IKByS+Zu+AoxRUTmcFE5EJAFcCk5G0TUkk5sbWauisjMMybAAIxGRtLHnhkzm7EMy1QUY7w84LMBIRCQddu25+e6775CQkIDQ0FAoFAp8+eWXdZ6TmZmJ2NhYeHp6Ijo6Ghs3brR6O+lvzrInVmFhIfLy8rR+CgoKALAAIxGR1Nm156a0tBTt27fHiy++iCFDhtR5fG5uLgYOHIgJEyZgy5YtyMjIwLhx4xASEoL4+HgbtJgMDck4ype7MfOLWICRiEi67BpuBgwYgAEDBhh9/OrVq9G8eXMsXboUANC6dWscPHgQy5YtY7ixEH0roqp7LZxhSMbYJd8swEhEJE2ymnNz+PBhxMXFaT0XHx+PqVOn2qdBDsaYHovqIZmac24ctefC0PyiIUOGIDAwUOt4Z1oOT0QkVbIKN/n5+QgODtZ6Ljg4GMXFxfjrr7/g7e1d65zy8nKUl5eLj4uLiy3aJn09Hbdu3cLdu3fh7u4OpVJZ63V9X4L2rCVjbI+FswzJ1LXkOzAwECEhIXZuJRER1SSrcGOOhQsXYu7cuVa5trG1X/SpWRNGSrVk6loR5QxDMs4wv4iIyBHJKtw0adIE165d03ru2rVr8Pf319lrAwDJyclISkoSHxcXFyM8PNwi7TG2p8PYMv1SKe9fV4+FruEYwPGGZJxhfhERkSOSVbjp0qULdu/erfXcvn370KVLF73neHp6wtPT09pN09vTYW5NGHvWkqmrx8JZhmOcbX4REZGjsGu4uX37NnJycsTHubm5OHHiBFQqFSIiIpCcnIyrV69i8+bNAIAJEyZgxYoVmDZtGl588UV8++23+Oyzz7Br1y573QIA/T0dQUH5ZpXpt3d5f/ZY/M1Z5hcRETkSuxbx+/nnnxETE4OYmBgAQFJSEmJiYjBr1iwAQF5eHi5fviwe37x5c+zatQv79u1D+/btsXTpUnz00Ud2Xwaur6fjypUIs8r027u8v7MXqas5b0ipLEHz5pdq3b8jzS8iInIkdu256d27NwRB0Pu6rurDvXv3xvHj0ir1r6+nIzz8slk9IFLoOXHmHouAgAAkJibadQd07sBORGQ+Wc25kSp9czOaNs0za86GveZ6lJWV1WqHrveseZwjsmdwkNKqOSIiOWK4sRB9PR3m9oDYo+fEx8dH67G+1Vo1jyPLksqqOSIiuWK4qQddczN0hRBja8IYez1bzPVw9p2/pYK/ByIi0zHc1IOhuRnmVCiWwlwPwP6rtSxNrvNXHO33QERkKww39aTvS9HcOjBS+JJ1pMq8cp6/4ki/ByIiW7LrUnCSpurVWveTa50bXfNXcnMjoVb7GTxOChzp90BEZEvsuaFaHLUyr9zmrzjq74GIyNoYbkgnR6tzI9f5K472eyAisgWGGxJJabWWpclp/ooj/x6IiGyB4YZEUlmtZQ1SqPpsLEf+PRAR2QLDDWlx1C9Muc1fcdTfAxGRLTDckNMwNH+loKCg1vHsHSEikieGG3Joxs5fSU9P13m+FOvfEBGRYQw35ND0zV8pKCjQCjTcv4mIyHEw3JDDq6vnRW71b4iIyDBWKCanpq/+Tc0KxkREJB8MN+TUDNW/ISIieWK4IafG/ZuIiBwPww05ter6N9UBR+r1b4iIqG6cUExOj/s3ERE5FoYbckrcv4mIyHEx3JBsFBYWWmy/Je7fRETkuBhuSBYKCwuxYsWKOo8zpaIwgwsRkWPihGKShZo9LGq1H3JzI2vVo2FFYSIiYs8NyQ4rChMRkSEMNzJhyfkmcqavonBUVA5XOREREQCGG1mwxnwTuTJUUZjhhoiIAM65kQXON/kbKwoTEVFd2HMjM84+36S6onDNz4C9NkREVI3hRkY43+QeVhQmIiJDGG5kxJnnm7CiMBERGYvhRkaq55vcH3CcZb4JKwoTEZGxGG5kxNnnmzC4EBGRMRhuZIbzTUzHGkFERM6F4cZKLPmFyvkm5mONICIi58NwYwWW/kLlfBPz6aoRVFQUAJWqUCsg1jyOvT1ERPLFcGMF5n6hGsIv0voztkaQFHp7GK6IiMzHcGNlzl50TypMqRFkjXBqCimEKyIiOWO4sSIW3ZMOc2sE2SOc2jtcERHJHcONFTlz0T2pMadGkBTCKXv+iIhMx40zrYibPEpHdY2g6t+HMTWCDIVTW9AXrmpumEpERNrYc2NFzl50T2pMrRFk74rQ7PkjIjIPw42VseiefdWnRpC9w6m9wxURkVwx3FgBi+5JR31rBNkznNo7XBERyRXDjRU4atE9S9ZesWUdF1OvI6VwKreeP9bnISIpYLixEkf7B9yStVekXsfF3uFUSuHKFFL/vRKR82C4IaNYsvaKHOq42PPL197hylxy+L0SkXNguCGTWbL2Cuu46Ca14GIq/l6JyJ4YbsgklixsJ4UiebbgbPNQnOX3SkTSxXBDJrFk7RVnqOPijPNQnOH3SkTSxgrFZBJLVl12hgrOuuah5OZG1qoy7EjzUJzh90pE0sZwQyYxZxsDW1xLDo4di0Fq6lRs2jQKqalTcexYjL2bZBXO9nslIunhsBSZzJK1V+RWx8VczjYPxVl+r0QkTQw3ZBRL1l6Rax2X+nCGeSjO+HslImliuCGjWLL2ilzruNSHM+wT5Yy/VyKSJoYbMpolv5Sc7QvOWfaJcrbfKxFJE8MNOQQ51JLhPBQiIttguCHZk3ItGc5DISKyPYYbkj0p72nEeShERLZnVriJiIhA79690atXL/Tu3RtRUVGWbhdRLfqGngoKCsQ/S3FPIwYXIiLbMivcLFiwAN999x3eeecdvPTSSwgLC0OvXr3EsNOyZUtLt5OcnDFDT85WS4aIiHQzq0LxiBEjsGbNGpw7dw5Xr17FkiVLAAAvv/wyWrVqZfL1Vq5cicjISHh5eaFz5844cuSIweNTU1Px4IMPwtvbG+Hh4Xj11Vdx584dc26FZMKYbQwM1ZIhIiLnYfacm7KyMhw8eBCZmZk4cOAAjh8/jjZt2qB3794mXWfbtm1ISkrC6tWr0blzZ6SmpiI+Ph7Z2dkICgqqdfzWrVsxffp0rF+/Hl27dsW5c+cwevRoKBQKpKSkmHs7JCP6hp6coZYMII+VYZai717VajUqKyvh5uaGhg0b1nrdkT4DIjKdWeGma9euOH78OFq3bo3evXtj+vTp6NmzJxo1amTytVJSUvDSSy9hzJgxAIDVq1dj165dWL9+PaZPn17r+B9++AHdunXD888/DwCIjIzEsGHD8NNPP5lzKyQzdQ09OXotGSmvDLM0Y+9VH0f4DIjIPGaFm7Nnz8LX1xetWrVCq1at0Lp1a7OCTUVFBbKyspCcnCw+5+Ligri4OBw+fFjnOV27dsUnn3yCI0eOoFOnTrhw4QJ2796NkSNH6jy+vLwc5eXl4uPi4mKT20nSUdc2Bo5eS0bKK8Mszdh7deTPgIjMY1a4KSwsxMmTJ5GZmYm9e/dixowZ8PDwQK9evfD444/jpZdeMuo6BQUFqKqqQnBwsNbzwcHBOHv2rM5znn/+eRQUFKB79+4QBAF3797FhAkT8O9//1vn8QsXLsTcuXNNu0GSLGOGnpylloy1V4ZJafhL371KcXUcEdmfWeFGoVCgXbt2aNeuHV555RVkZWVhxYoV2LJlC7Zt22Z0uDFHZmYmFixYgFWrVqFz587IycnBlClTMG/ePMycObPW8cnJyUhKShIfFxcXIzw83GrtI+uqa+hpyJAhCAwMrHWeo83BsPbKMCkNf+m716CgfK6OIyKdzAo3x44dQ2ZmJjIzM3Hw4EGUlJSgbdu2eOWVV9CrVy+jrxMYGAhXV1dcu3ZN6/lr166hSZMmOs+ZOXMmRo4ciXHjxgEA2rZti9LSUowfPx4zZsyAi4v2kIWnpyc8PT1NvEOSMkNDT4GBgQgJCbFj62zD2ruMS2n4S9+9Xr4c4fA7rRORecwKN506dUJMTAx69eqFl156CT179oRSqTT5Oh4eHujQoQMyMjIwePBgAIBGo0FGRgYSExN1nlNWVlYrwLi6ugIABEEwuQ0kD9zGQJstV4bZe+hH371GRFx2itVxRGQ6s8JNUVER/P39LdKApKQkjBo1Ch07dkSnTp2QmpqK0tJScfXUCy+8gLCwMCxcuBAAkJCQgJSUFMTExIjDUjNnzkRCQoIYcsjxcBsDbbZaGSaFwoj67rVp0zyDn4FarXaKXjwiqs2scFMdbLKysnDmzBkAwEMPPYTY2FiTrzV06FDcuHEDs2bNQn5+Ph555BHs2bNHnGR8+fJlrZ6at956CwqFAm+99RauXr2Kxo0bIyEhAfPnzzfnVkhGnCW4GMsWK8OsPfxlLH33Ght7HEFB+bh8OQIREZfRtGmeeE5lZaXN2kdE0mJWuLl+/TqGDh2K//3vf2IBrVu3buHxxx9HWloaGjdubNL1EhMT9Q5DZWZmajfYzQ2zZ8/G7NmzzWk6kazZenjOnoURjblXQ0Nmbm7cF5jIWZn1t/+VV17B7du3cfr0abRu3RoA8Ntvv2HUqFGYPHkyPv30U4s2kojusfXwnKnDX5ZcPq7vXgsKCpCenl7nkJmuysVE5BzMCjd79uzB/v37xWAD3BuWWrlyJZ544gmLNY6IarP18Jyxw1/WWD5u6DipDJkRkfSYFW40Gg3c3d1rPe/u7g6NRlPvRhHZm5QK2NmDOcNftl4+7ix7iRGR6cwKN3369MGUKVPw6aefIjQ0FABw9epVvPrqq+jbt69FG0hka1IqYGcv9R3+ssXycWfYS4yIzGNWuFmxYgWeeuopREZGitV+r1y5gjZt2uCTTz6xaAOJbE1KBezsydzgZsvl446+lxgRmcescBMeHo5jx45h//794h5QrVu3RlxcnEUbR2Rv9i5gJ0fWngvDgo5EVBez10oqFAr069cP/fr1s2R7iCRDCgXs5Mjac2FY0JGI6mJ0uFm+fLnRF508ebJZjSGSEmdfjWPupGpbzIVhcCEiQ4wON8uWLTPqOIVCwXBDDsGZV+PUd1I158IQkT0ZHW5yc3Ot2Q4iyXHm1TjmTKrmXBgikgqT5txoNJpaO3ITOTL2QBg/qZpzYYhIKkwKN+7u7sjLy0NQUBAA4I033kBycjJUKpVVGkdkD+yB+Jupk6oZXIhICkwKN4IgaD3+8MMPMXHiRIYbcijsgfibs0+qJiJ5qte2uTXDDpGjcIbgYgxnnlRNRPLFCTREVItarQbw96RqheLennE1J1VXH0dEJCUm99zMmjULPj4+AO6tlJg/fz6USqXWMSkpKZZpHRHZRWVlpfjn2NjjCArKx+XLEYiIuIymTfN0HkdEJBUmhZuePXsiOztbfNy1a1dcuHBB6xiFQmGZlhGR3bi5/f1Pg6HVUvcfR0QkFSb9y5SZmWmlZhCRlDRs2BBA3aulqo8jIpISq8658ff3r9WzQ0TyYWi1FBGRVFk13HA1FZG8Va+Wuh9XSxGR1HG1FBHpVddqKSIiKeJsQCIyiFtQEJHcMNwQUS3cgoKI5Myq4YbLwonkiVtQEJGcWTXccEIxkXwxuBCRXFl1QvF///tfhIWFWfMtiIiIiLSY1XMjCAK2b9+OAwcO4Pr169BotJeKpqenAwC6d+9e/xYSERERmcCscDN16lR8+OGHePzxxxEcHMy5NURERCQZZoWbjz/+GOnp6XjyySct3R4iIskoLCzkpGoiGTIr3CiVSrRo0cLSbSEikozCwkKsWLGizuMSExMZcIgkxqwJxXPmzMHcuXPx119/Wbo9RESSULPHRq32Q25uJNRqP4PHEZH9mdVz8+yzz+LTTz9FUFAQIiMj4e7urvX6sWPHLNI4IiIpOHYsRtwdvXoLitjY4/ZuFhHpYVa4GTVqFLKysjBixAhOKCZyUJxvco9a7ScGG+Derug7dw5CVFQOt6Igkiizws2uXbuwd+9eLvUmclCcb/K3oqIAMdhUEwQXFBWpGG6IJMqsOTfh4eHw9/e3dFuISCI43+RvKlWhuCt6NYVCA5WqyE4tIqK6mBVuli5dimnTpuHixYsWbg4RSc2xYzFITZ2KTZtGITV1Ko4di7F3k2xKqSxBQsLXYsCpnnPDXhsi6TJrWGrEiBEoKytDVFQUfHx8ak0oLiri/6MhkhJz589wvsk9sbHHERWVg6IiFVSqIqe6dyI5MivcpKamWrgZRGQt9Zk/48zzTTw8PLQeK5UlOu+55nFEZH9mr5YiInnQNX+mqCgAKlWh1pe1rp6d6vkm9wccZ5lvEhAQgMTERK4YI5Ihs8LN/e7cuVPrLz8nGxNJk6n1Wqrnm9Q8x9F7baoxuBDJk1nhprS0FG+++SY+++wzFBYW1nq9qqqq3g0jIssyd/4M55sQkdyYtVpq2rRp+Pbbb/HBBx/A09MTH330EebOnYvQ0FBs3rzZ0m0kIgswNH+mJl3zTZo3v1Qr2HC+CRFJkVk9Nzt37sTmzZvRu3dvjBkzBj169EB0dDSaNWuGLVu2YPjw4ZZuJxHVkynzZxxxvgkrLhM5D7PCTVFRkbgruL+/v7j0u3v37pg4caLlWkdEFmPq/BlH+qJnxWUi52JWuGnRogVyc3MRERGBVq1a4bPPPkOnTp2wc+dONGzY0MJNJCJLcdb5M+auGGNvD5E8mRVuxowZg19++QW9evXC9OnTkZCQgBUrVqCyshIpKSmWbiMR1QPrtWgzdsUYe3uI5MuscPPqq6+Kf46Li8PZs2eRlZWF6OhotGvXzmKNI6L6c8T5M+YyZcVYfeoDWRJ7j4hMZ5E6N82aNUOzZs0s0R4isgJ++d1jbsVlU+sDWQp7j4jMY9ZS8KqqKsybNw9hYWFo0KABLly4AACYOXMm1q1bZ9EGEhFZijk7fOvr7am5Q7o1cHd2IvOYFW7mz5+PjRs3YvHixVrj9G3atMFHH31kscYREVmSOTt8m1IfyJqcfXd2IlOYNSy1efNmrFmzBn379sWECRPE59u3b4+zZ89arHFERJZm6ooxKeyvxd3ZiUxjVs/N1atXER0dXet5jUaDysrKejeKiMiS6lNx2ZzeHkuTSu8RkVyY1XPz0EMP4fvvv681iXj79u2IiWFXKRFJS31XjNm7PpAUeo+I5MSscDNr1iyMGjUKV69ehUajQXp6OrKzs7F582Z8/fXXlm4jEVG9mbqaSEr1gZx9d3YiU5kVbp5++mns3LkT//nPf+Dr64tZs2YhNjYWO3fuRL9+/SzdRiIiq9JXS2bo0KGorKyEm5ubzurrtqwxY+/eIyI5MbvOTY8ePbBv3z5LtoWIyOakXEtGSr1HRHJi9t5SR48erfUX/datW4iNjRXr3hARSZ1UKhHrwurSROYxK9xcvHgRVVVVtZ4vLy/H1atX690oIiJ7sFclYkMYXIhMZ1K4+eqrr8Q/7927F0qlUnxcVVWFjIwMREZGWqxxRES2wloyRI7DpHAzePBgAIBCocCoUaO0XnN3d0dkZCSWLl1qscYREdmKuftOEZH0mFTET6PRQKPRICIiAtevXxcfazQalJeXIzs7G4MGDTK5EStXrkRkZCS8vLzQuXNnHDlyxODxt27dwqRJkxASEgJPT0888MAD2L17t8nvS0RUzZx9p4hImkzquTl8+DAKCwuRm5srPrd582bMnj0bpaWlGDx4MN5//314enoafc1t27YhKSkJq1evRufOnZGamor4+HhkZ2cjKCio1vEVFRXo168fgoKCsH37doSFheHSpUs6l2kSkfTpW4ZdzVYTZllLhshxmBRu5s6di8cff1zsnTl58iTGjh2L0aNHo3Xr1liyZAlCQ0MxZ84co6+ZkpKCl156CWPGjAEArF69Grt27cL69esxffr0WsevX78eRUVF+OGHH+Du7g4AnOdDJFNSW4bNWjJEjsGkYalffvkFffv2FR+npaWhc+fOWLt2LZKSkrB8+XJ89tlnRl+voqICWVlZiIuL+7tBLi6Ii4vD4cOHdZ7z1VdfoUuXLpg0aRKCg4PRpk0bLFiwQOfqLeDeCq7i4mKtHyKSBl3LsHNzI6FW+xk8zpLqs+8UEUmTST03N2/eRHBwsPj4f//7HwYMGCA+fvTRR3HlyhWjr1dQUICqqiqtawJAcHCw3t3FL1y4gG+//RbDhw/H7t27kZOTg5dffhmVlZWYPXt2reMXLlyIuXPnGt0mIrIPey3DZi0ZIsdjUrgJDg5Gbm4uwsPDUVFRgWPHjmkFh5KSEnGoyFo0Gg2CgoKwZs0auLq6okOHDrh69SqWLFmiM9wkJycjKSlJfFxcXIzw8HCrtpGITGPvZdgMLkSOxaRw8+STT2L69Ol455138OWXX8LHxwc9evQQX//1118RFRVl9PUCAwPh6uqKa9euaT1/7do1NGnSROc5ISEhcHd3h6urq/hc69atkZ+fj4qKilpdx56eniZNcCYi2+MybCKyJJPm3MybNw9ubm7o1asX1q5di7Vr12qFifXr1+OJJ54w+noeHh7o0KEDMjIyxOc0Gg0yMjLQpUsXned069YNOTk50Gj+XrJ57tw5hISEcEycSKa4DJuILMmkcBMYGIjvvvsON2/exM2bN/GPf/xD6/XPP/9c59CQIUlJSVi7di02bdqEM2fOYOLEiSgtLRVXT73wwgtITk4Wj584cSKKioowZcoUnDt3Drt27cKCBQswadIkk96XiKSjehl2dcDhMmwiqg+z9pa6f9uF+6lUKpOvNXToUNy4cQOzZs1Cfn4+HnnkEezZs0ecZHz58mW4uPydwcLDw7F37168+uqraNeuHcLCwjBlyhS8+eab5twKEUkEl2ETkaUoBEEQ7N0IWyouLoZSqYRarYa/v7+9m0Pk1KRW54aIpMuU72+zem6IiCyBy7CJyBoYbojIrhhciMjSTJpQTERERCR1DDdERETkUBhuiIiIyKEw3BAREZFDYbghIiIih8JwQ0RERA6FS8GJSHYKCwttUhvHVu9DRJbFcENEsmKrqsasnkwkXxyWIiJZqdmTolb7ITc3Emq1n8HjpPo+RGR57LkhItk6diwGO3cOgiC4iDuJx8Yel+37EJFlMNwQkSyp1X5i4AAAQXDBzp2DEBWVA6WyBAUFBTrPM3WeTF3vQ0TSw3BDRLJUVBQgBo5qguCCoiIVlMoSpKen6z3XlHkydb0PEUkPww0RyZJKVQiFQqMVPBQKDVSqIvGxWu2HoqIAqFSFWkHElHkyxryPI+DKMHIkDDdEJEtKZQkSEr6uNRemOsRYap5MXe/jCLgyjBwNww0RyVZs7HFEReWgqEgFlapIDByWniej730cha6VYfXt8SKyJ4YbIpIVDw8PrcdKZUmtsGGJeTLGvI+u4+SOK8PIETDcEJGsBAQEIDExUWcvQkFBAdLT0y0yT8bQ+1RztHkoXBlGjoLhhohkp65AYal5Mo4UXIzBlWHkKBhuiMghOfo8GWuQ48owrvIiXRhuiMhhOOs8GUuR28owrvIifRhuiMhhOOM8GUuTU48XV3mRPgw3RORQHC242GLYxRF6vLjKi+7HcENEJFG2GnaRe48XV3lRTQw3REQSZcthF6kGF2NwlRfVxHBDRCQDHHbRT46rvMi6GG6IiCTO1GEXZ1seLbdVXmR9DDdERBJnyrCLLZdHSylEyWmVF1kfww0RkcSZMuxiq3k6Uqgx4wirvMg6GG6IiCTO3GEXS83T0dVDU1BQoPXYHjVm5L7Ki6yH4YaISAZMHXax1PJoY3po7DnZmcGFdHGp+xAiIrIHXcMuzZtfqhVOdA27GJqnYwpdw1y5uZFQq/3Ex7pCVPXrRPbAnhsiIomqz7BLXfN0ag4r1XU9QHcPTaNGN1ljhiSH4YaISMLMHXapa55Oenq63nN1TQLW10MzduxHrDFDksNwQ0TkoOqap2PKJGB9w1yVlR6sMUOSw3BDRORAjF0ebeokYEPDXM2bX2KNGZIUhhsiIgcSEBCAESNGoKysrNZrN2/exIEDB8xaSVXXMBdrzJCUMNwQETmQwsJCfPLJJwaPMXejSUPDXEOGDEFgYKDW8awxQ/bCcENE5ECMqVBsSsVjY4e5QkNDGWRIMhhuiIgclL55NXUNMd26dQshISEAWAWY5InhhojIAdU1ryY29jiCgvJx5UoEwsMvo2nTPPHcu3fval2LwYXkhuGGiMgB1TWvxtBqKXd3d3s0mchiGG6IiByQoXk1dfXqKJVKezVbJ10bd96Pw2JUE8MNEZEDMjSvJjc3UjZbJhizcSegu6oyOS+GGyIiB6Vv6bYpq6XszZjVX7qOI+fGcENE5ECMWbpd12opqTK1qjI5L4YbIiIHYmjpdkFBgbhhZl37TkmNOVWVyXkx3BARORh9c0+MLcgnxS0TzK2qTM6J4YaIyEnIuSBfXfOECgoKdJ4n1fsh62K4ISJyInL9oq9rnlD1cJsuXEnlfBhuiIhIFuqaJ8SVVFSN4YaIiCTL2HlCXElF92O4ISJyInKr9mvM6i+upKKaGG6IiJyEXKv91tUWrqSimlzqPoSIiByBrmq/ubmRUKv9DB4nddUrqe4n1YrLZBvsuSEickKONEdFrhWXyXoYboiInIwjzlGRW8Vlsi6GGyIiJ+Moc1TkXHGZrIvhhojIyUh1V3BTV3LJueIyWRfDDRGRkzF1jootlo+bu5KLwYV0kUS4WblyJZYsWYL8/Hy0b98e77//Pjp16lTneWlpaRg2bBiefvppfPnll9ZvKBGRgzB2joqtlo/rWsnFasNkLruHm23btiEpKQmrV69G586dkZqaivj4eGRnZyMoKEjveRcvXsTrr7+OHj162LC1RETyZc4cFXuEDkdayUX2Yfdwk5KSgpdeegljxowBAKxevRq7du3C+vXrMX36dJ3nVFVVYfjw4Zg7dy6+//573Lp1y4YtJiKSp/rOUbFF6DB1JZfcKi6Tbdg13FRUVCArKwvJycnicy4uLoiLi8Phw4f1nvef//wHQUFBGDt2LL7//nuD71FeXo7y8nLxcXFxcf0bTkQkU+Z+0dtq+bgpK7nkWnGZrM+uFYoLCgpQVVWF4OBgreeDg4ORn5+v85yDBw9i3bp1WLt2rVHvsXDhQiiVSvEnPDy83u0mInI2hkKHJZlSbdhRKy5T/dl9WMoUJSUlGDlyJNauXYvAwECjzklOTkZSUpL4uLi4mAGHiMhEtlo+bm61Yc7TofvZNdwEBgbC1dUV165d03r+2rVraNKkSa3jz58/j4sXLyIhIUF8TqO5l/Dd3NyQnZ2NqKgorXM8PT3h6elphdYTETkPW25xYOxKLrVa/X//a3jITK1WIyQkxOLtJOmya7jx8PBAhw4dkJGRgcGDBwO4F1YyMjKQmJhY6/hWrVrh5MmTWs+99dZbKCkpwXvvvcceGSIiK7LmFgfmrOSqrKwEUPc8nerjyHnYfVgqKSkJo0aNQseOHdGpUyekpqaitLRUXD31wgsvICwsDAsXLoSXlxfatGmjdX7Dhg0BoNbzRERUf7ba4sDQSq5bt27h7t27cHd3R0VFBfLy8gAAN2/eBHBvyAzQQHsaqf0rLpP92D3cDB06FDdu3MCsWbOQn5+PRx55BHv27BEnGV++fBkuLnad90xE5LRsucWBrmsUFhbis88+M+JshfYjhZ7DyCnYPdwA95bp6RqGAoDMzEyD527cuNHyDSIiIpE9l1EbU0SwqCgANcONHDcCJcuRRLghIiKqi74VUXWt5HJz41eds+F4DxERSZ6+FVFqtZ+4kqu6Pk7NlVzVczPJeTDOEhGR5NW1IsqaK7lIfhhuiIhI8owpImitlVwkPww3REQkeXUVERwyZIjOyvXcONM5MdwQEZEsGBp6CgwMZBViEjHcEBGRZBlbRLB6KwZd57PnxvkoBEEQ7N0IWyouLoZSqYRarYa/v7+9m0NERHUoLCzUW7nYmAJ/iYmJDDgOwJTvb/bcEBGRpBkbTHQV+AOAP//8s1Y4Yo+OY2O4ISIi2dNX4A8A0tPTdZ5jzx4dfb1R1Ri+6ofhhoiIZE1fgb+oqBwolSV6e3QMhQtrKiwsxIoVK+o8jsNp5mO4ISIiWTNU4O/8+Wi9PTr2Ysx+WQCH0+qD4YaIiGRNX4E/d/cKgz06UiC34TS54N5SREQka/r2lqqs9NTboyMFhvbLqn49NzdSfFzNXsNpcsKeGyIikj1dBf7Uar86t2ywJ7kNp8kJe26IiEiWdBX4a978kjjkVNdu4fZWPZx2P0PDaTV7cEg/9twQEZEsBQQEIDExsdYwTUFBgThfRcq7hevbL8vQcJqU2i9lDDdERCRbuibWGrtlgxR2C7f2cJo59XQcoQYPww0RETkUfT0697PnF3Rd4auuHdALCgr0Xvf+ezKnno6j1OBhuCEiIocj5S/e+g6n6VsiDmiHDmPr6dx/nDnnSBHDDRERkY3VZzgNMD10GKqno48550gFww0REZEEGBpOu79Xx9TQUdf2FJY6R0oYboiIiKzAnIm5dQ2nmRM6DNXTseQ5UsJwQ0REZGHWmphrTujQtz2FodVX5pwjJSziR0REZGG6JuZaYisFfYX/DIUOc4oZSr0AYl3Yc0NERGRFlpyYW9cycX3MKWYo5QKIdWG4ISIishJrTMw1NnSYU8xQTgUQDWG4ISIishJLTcw1J3SYU8xQ6gUQjcVwQ0REZCWWmphrbugwJ4RIPbgYg+GGiIjISsydI6OLI4QOW2G4ISIisiI5T8yVK4YbIiIiC3OUiblyxXBDRERkYY4yMVeuGG6IiIisgMHFflihmIiIiBwKww0RERE5FIYbIiIicigMN0RERORQGG6IiIjIoXC1FBERkZMpLCx06GXqDDdEREROpLCwECtWrKjzuMTERNkGHA5LEREROZGaPTZqtR9ycyOhVvsZPE5O2HNDRETkpI4di6m1qWds7HF7N6veGG6IiIickFrtJwYbABAEF+zcOQhRUTk698GS0zwdhhsiIiInVFQUIAabaoLggqIiVa1wY+w8nWeffRYNGzas9bytgw/DDRERkRNSqQqhUGi0Ao5CoYFKVVTrWF3zdIqKAqBSFWoFoc8++0zv+9lygjLDDRERkRNSKkuQkPB1rTk3uoak7lfXPB19wceWE5QZboiIiJzIrVu3xD/Hxh5HVFQOiopUUKmKtMLIrVu3EBISonVuXfN0pDJBmUvBiYiInIhCodD1rFHHGZqnoy/41FxibgvsuSEiInIiSqVS/LOhnpb7j6tmaJ6OKROUrY09N0RERE7InJ6W6nk6CoUGALTm6VQHn/vpm6Bsbey5ISIickLm9rTom6dj7gRla2C4ISIickKmLAX38PDQeqxUlugMLYYmKNsSww0REZETMqWnJSAgAImJiTqXc6vVamzbtk3rurquUTMgWRPDDRERkZMypadFXwG+kJAQvcGnGisUExERkdUYO8RkSk+LVPaUqsZwQ0RE5EQMDTFVk9ImmOZguCEiInIycg4uxmCdGyIiInIoDDdERETkUCQRblauXInIyEh4eXmhc+fOOHLkiN5j165dix49eqBRo0Zo1KgR4uLiDB5PREREzsXu4Wbbtm1ISkrC7NmzcezYMbRv3x7x8fG4fv26zuMzMzMxbNgwHDhwAIcPH0Z4eDieeOIJXL161cYtJyIiIilSCIIg2LMBnTt3xqOPPooVK1YAADQaDcLDw/HKK69g+vTpdZ5fVVWFRo0aYcWKFXjhhRfqPL64uBhKpRJqtRr+/v71bj8RERFZnynf33btuamoqEBWVhbi4uLE51xcXBAXF4fDhw8bdY2ysjJUVlZCpVLpfL28vBzFxcVaP0REROS47BpuCgoKUFVVheDgYK3ng4ODkZ+fb9Q13nzzTYSGhmoFpPstXLgQSqVS/AkPD693u4mIiEi67D7npj4WLVqEtLQ0fPHFF/Dy8tJ5THJyMtRqtfhz5coVG7eSiIiIbMmuRfwCAwPh6uqKa9euaT1/7do1NGnSxOC57777LhYtWoT9+/ejXbt2eo/z9PSEp6enRdpLRERE0mfXcOPh4YEOHTogIyMDgwcPBnBvQnFGRgYSExP1nrd48WLMnz8fe/fuRceOHU16z+r505x7Q0REJB/V39tGrYMS7CwtLU3w9PQUNm7cKPz222/C+PHjhYYNGwr5+fmCIAjCyJEjhenTp4vHL1q0SPDw8BC2b98u5OXliT8lJSVGvd+VK1cEAPzhD3/4wx/+8EeGP1euXKnzu97ue0sNHToUN27cwKxZs5Cfn49HHnkEe/bsEScZX758GS4uf08N+uCDD1BRUYF//vOfWteZPXs25syZU+f7hYaG4sqVK/Dz84NCobDovRQXFyM8PBxXrlxxymXmzn7/AD8DZ79/gJ8B79+57x+w3mcgCAJKSkoQGhpa57F2r3PjSJy9ho6z3z/Az8DZ7x/gZ8D7d+77B6TxGch6tRQRERFRTQw3RERE5FAYbizI09MTs2fPdtql585+/wA/A2e/f4CfAe/fue8fkMZnwDk3RERE5FDYc0NEREQOheGGiIiIHArDDRERETkUhhsiIiJyKAw3Jlq5ciUiIyPh5eWFzp0748iRI3qPPX36NJ555hlERkZCoVAgNTXVdg21ElPuf+3atejRowcaNWqERo0aIS4uzuDxcmHKZ5Ceno6OHTuiYcOG8PX1xSOPPIKPP/7Yhq21PFPu/35paWlQKBTiPnJyZspnsHHjRigUCq0fLy8vG7bW8kz9b+DWrVuYNGkSQkJC4OnpiQceeAC7d++2UWstz5T77927d63fv0KhwMCBA23YYssz9b+B1NRUPPjgg/D29kZ4eDheffVV3Llzx3oNNHkzKCeWlpYmeHh4COvXrxdOnz4tvPTSS0LDhg2Fa9eu6Tz+yJEjwuuvvy58+umnQpMmTYRly5bZtsEWZur9P//888LKlSuF48ePC2fOnBFGjx4tKJVK4Y8//rBxyy3H1M/gwIEDQnp6uvDbb78JOTk5QmpqquDq6irs2bPHxi23DFPvv1pubq4QFhYm9OjRQ3j66adt01grMfUz2LBhg+Dv76+1F1713nlyZOr9l5eXCx07dhSefPJJ4eDBg0Jubq6QmZkpnDhxwsYttwxT77+wsFDrd3/q1CnB1dVV2LBhg20bbkGmfgZbtmwRPD09hS1btgi5ubnC3r17hZCQEOHVV1+1WhsZbkzQqVMnYdKkSeLjqqoqITQ0VFi4cGGd5zZr1kz24aY+9y8IgnD37l3Bz89P2LRpk7WaaHX1/QwEQRBiYmKEt956yxrNszpz7v/u3btC165dhY8++kgYNWqU7MONqZ/Bhg0bBKVSaaPWWZ+p9//BBx8ILVq0ECoqKmzVRKuq778By5YtE/z8/ITbt29bq4lWZ+pnMGnSJKFPnz5azyUlJQndunWzWhs5LGWkiooKZGVlIS4uTnzOxcUFcXFxOHz4sB1bZhuWuP+ysjJUVlZCpVJZq5lWVd/PQBAEZGRkIDs7Gz179rRmU63C3Pv/z3/+g6CgIIwdO9YWzbQqcz+D27dvo1mzZggPD8fTTz+N06dP26K5FmfO/X/11Vfo0qULJk2ahODgYLRp0wYLFixAVVWVrZptMZb4d3DdunV47rnn4Ovra61mWpU5n0HXrl2RlZUlDl1duHABu3fvxpNPPmm1dtp9V3C5KCgoQFVVlbhbebXg4GCcPXvWTq2yHUvc/5tvvonQ0FCtvxRyYu5noFarERYWhvLycri6umLVqlXo16+ftZtrcebc/8GDB7Fu3TqcOHHCBi20PnM+gwcffBDr169Hu3btoFar8e6776Jr1644ffo0mjZtaotmW4w593/hwgV8++23GD58OHbv3o2cnBy8/PLLqKysxOzZs23RbIup77+DR44cwalTp7Bu3TprNdHqzPkMnn/+eRQUFKB79+4QBAF3797FhAkT8O9//9tq7WS4IZtYtGgR0tLSkJmZKfvJlKby8/PDiRMncPv2bWRkZCApKQktWrRA79697d00qyopKcHIkSOxdu1aBAYG2rs5dtOlSxd06dJFfNy1a1e0bt0aH374IebNm2fHltmGRqNBUFAQ1qxZA1dXV3To0AFXr17FkiVLZBdu6mvdunVo27YtOnXqZO+m2FRmZiYWLFiAVatWoXPnzsjJycGUKVMwb948zJw50yrvyXBjpMDAQLi6uuLatWtaz1+7dg1NmjSxU6tspz73/+6772LRokXYv38/2rVrZ81mWpW5n4GLiwuio6MBAI888gjOnDmDhQsXyi7cmHr/58+fx8WLF5GQkCA+p9FoAABubm7Izs5GVFSUdRttYZb4d8Dd3R0xMTHIycmxRhOtypz7DwkJgbu7O1xdXcXnWrdujfz8fFRUVMDDw8Oqbbak+vz+S0tLkZaWhv/85z/WbKLVmfMZzJw5EyNHjsS4ceMAAG3btkVpaSnGjx+PGTNmwMXF8jNkOOfGSB4eHujQoQMyMjLE5zQaDTIyMrT+X5mjMvf+Fy9ejHnz5mHPnj3o2LGjLZpqNZb6b0Cj0aC8vNwaTbQqU++/VatWOHnyJE6cOCH+PPXUU3j88cdx4sQJhIeH27L5FmGJ/waqqqpw8uRJhISEWKuZVmPO/Xfr1g05OTlisAWAc+fOISQkRFbBBqjf7//zzz9HeXk5RowYYe1mWpU5n0FZWVmtAFMddgVrbW9ptanKDigtLU3w9PQUNm7cKPz222/C+PHjhYYNG4rLOkeOHClMnz5dPL68vFw4fvy4cPz4cSEkJER4/fXXhePHjwu///67vW6hXky9/0WLFgkeHh7C9u3btZZClpSU2OsW6s3Uz2DBggXCN998I5w/f1747bffhHfffVdwc3MT1q5da69bqBdT778mR1gtZepnMHfuXGHv3r3C+fPnhaysLOG5554TvLy8hNOnT9vrFurF1Pu/fPmy4OfnJyQmJgrZ2dnC119/LQQFBQlvv/22vW6hXsz9O9C9e3dh6NChtm6uVZj6GcyePVvw8/MTPv30U+HChQvCN998I0RFRQnPPvus1drIcGOi999/X4iIiBA8PDyETp06CT/++KP4Wq9evYRRo0aJj3NzcwUAtX569epl+4ZbiCn336xZM533P3v2bNs33IJM+QxmzJghREdHC15eXkKjRo2ELl26CGlpaXZoteWYcv81OUK4EQTTPoOpU6eKxwYHBwtPPvmkcOzYMTu02nJM/W/ghx9+EDp37ix4enoKLVq0EObPny/cvXvXxq22HFPv/+zZswIA4ZtvvrFxS63HlM+gsrJSmDNnjhAVFSV4eXkJ4eHhwssvvyzcvHnTau1TCIK1+oSIiIiIbI9zboiIiMihMNwQERGRQ2G4ISIiIofCcENEREQOheGGiIiIHArDDRERETkUhhsiIiJyKAw3RERWNHr0aAwePNjezSByKgw3RE5q9OjRUCgU4k9AQAD69++PX3/91d5Ns4j77636p3v37lZ7v4sXL0KhUODEiRNaz7/33nvYuHGj1d6XiGpjuCFyYv3790deXh7y8vKQkZEBNzc3DBo0yN7NspgNGzaI95eXl4evvvpK53GVlZVWa4NSqUTDhg2tdn0iqo3hhsiJeXp6okmTJmjSpAkeeeQRTJ8+HVeuXMGNGzfQp08fJCYmah1/48YNeHh4iDsCR0ZGYt68eRg2bBh8fX0RFhaGlStXap2TkpKCtm3bwtfXF+Hh4Xj55Zdx+/Zt8fVLly4hISEBjRo1gq+vLx5++GHs3r0bAHDz5k0MHz4cjRs3hre3N1q2bIkNGzYYfX8NGzYU769JkyZQqVRiD8u2bdvQq1cveHl5YcuWLSgsLMSwYcMQFhYGHx8ftG3bFp9++qnW9TQaDRYvXozo6Gh4enoiIiIC8+fPBwA0b94cABATEwOFQoHevXsDqD0sVV5ejsmTJyMoKAheXl7o3r07jh49Kr6emZkJhUKBjIwMdOzYET4+PujatSuys7ONvm8iZ8dwQ0QAgNu3b+OTTz5BdHQ0AgICMG7cOGzduhXl5eXiMZ988gnCwsLQp08f8bklS5agffv2OH78OKZPn44pU6Zg37594usuLi5Yvnw5Tp8+jU2bNuHbb7/FtGnTxNcnTZqE8vJyfPfddzh58iTeeecdNGjQAAAwc+ZM/Pbbb/jvf/+LM2fO4IMPPkBgYKBF7re6rWfOnEF8fDzu3LmDDh06YNeuXTh16hTGjx+PkSNH4siRI+I5ycnJWLRokdiurVu3Ijg4GADE4/bv34+8vDykp6frfN9p06Zhx44d2LRpE44dO4bo6GjEx8ejqKhI67gZM2Zg6dKl+Pnnn+Hm5oYXX3zRIvdN5BSstiUnEUnaqFGjBFdXV8HX11fw9fUVAAghISFCVlaWIAiC8NdffwmNGjUStm3bJp7Trl07Yc6cOeLjZs2aCf3799e67tChQ4UBAwbofd/PP/9cCAgIEB+3bdtW65r3S0hIEMaMGWPW/QEQvLy8xPvz9fUVvvjiCyE3N1cAIKSmptZ5jYEDBwqvvfaaIAiCUFxcLHh6egpr167VeWz1dY8fP671/P07od++fVtwd3cXtmzZIr5eUVEhhIaGCosXLxYEQRAOHDggABD2798vHrNr1y4BgPDXX3+Z8hEQOS323BA5sccffxwnTpzAiRMncOTIEcTHx2PAgAG4dOkSvLy8MHLkSKxfvx4AcOzYMZw6dQqjR4/WukaXLl1qPT5z5oz4eP/+/ejbty/CwsLg5+eHkSNHorCwEGVlZQCAyZMn4+2330a3bt0we/ZsrQnNEydORFpaGh555BFMmzYNP/zwg0n3t2zZMvH+Tpw4gX79+omvdezYUevYqqoqzJs3D23btoVKpUKDBg2wd+9eXL58GQBw5swZlJeXo2/fvia14X7nz59HZWUlunXrJj7n7u6OTp06aX1mANCuXTvxzyEhIQCA69evm/3eRM6E4YbIifn6+iI6OhrR0dF49NFH8dFHH6G0tBRr164FAIwbNw779u3DH3/8gQ0bNqBPnz5o1qyZ0de/ePEiBg0ahHbt2mHHjh3IysoS5+RUVFSI73HhwgWMHDkSJ0+eRMeOHfH+++8DgBi0Xn31Vfz555/o27cvXn/9daPfv0mTJuL9RUdHw9fXV+ve77dkyRK89957ePPNN3HgwAGcOHEC8fHxYju9vb2Nfl9LcHd3F/+sUCgA3JvzQ0R1Y7ghIpFCoYCLiwv++usvAEDbtm3RsWNHrF27Flu3btU57+PHH3+s9bh169YAgKysLGg0GixduhSPPfYYHnjgAfz555+1rhEeHo4JEyYgPT0dr732mhiuAKBx48YYNWoUPvnkE6SmpmLNmjWWvGXRoUOH8PTTT2PEiBFo3749WrRogXPnzomvt2zZEt7e3uJk6po8PDwA3OsB0icqKgoeHh44dOiQ+FxlZSWOHj2Khx56yEJ3QkRu9m4AEdlPeXk58vPzAdxbmbRixQrcvn0bCQkJ4jHjxo1DYmIifH198Y9//KPWNQ4dOoTFixdj8ODB2LdvHz7//HPs2rULABAdHY3Kykq8//77SEhIwKFDh7B69Wqt86dOnYoBAwbggQcewM2bN3HgwAExHM2aNQsdOnTAww8/jPLycnz99dfia5bWsmVLbN++HT/88AMaNWqElJQUXLt2TQwdXl5eePPNNzFt2jR4eHigW7duuHHjBk6fPo2xY8ciKCgI3t7e2LNnD5o2bQovLy8olUqt9/D19cXEiRPxxhtvQKVSISIiAosXL0ZZWRnGjh1rlfsickbsuSFyYnv27EFISAhCQkLQuXNnHD16FJ9//rm4jBkAhg0bBjc3NwwbNgxeXl61rvHaa6/h559/RkxMDN5++22kpKQgPj4eANC+fXukpKTgnXfeQZs2bbBlyxYsXLhQ6/yqqipMmjQJrVu3Rv/+/fHAAw9g1apVAO71hiQnJ6Ndu3bo2bMnXF1dkZaWZpXP4q233kJsbCzi4+PRu3dvNGnSpFZl4ZkzZ+K1117DrFmz0Lp1awwdOlScB+Pm5obly5fjww8/RGhoKJ5++mmd77No0SI888wzGDlyJGJjY5GTk4O9e/eiUaNGVrkvImekEARBsHcjiEi6Ll68iKioKBw9ehSxsbFar0VGRmLq1KmYOnWqfRpHRKQDh6WISKfKykoUFhbirbfewmOPPVYr2BARSRWHpYhIp0OHDiEkJARHjx6tNU/G3hYsWIAGDRro/BkwYIC9m0dEdsZhKSKSnaKioloVfat5e3sjLCzMxi0iIilhuCEiIiKHwmEpIiIicigMN0RERORQGG6IiIjIoTDcEBERkUNhuCEiIiKHwnBDREREDoXhhoiIiBwKww0RERE5lP8PXNQPIjpHwq8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVElJREFUeJzt3XlcVPX+P/DXgCyCMAgIIoIgWJpbomnuSxqaUV7rl1kamsu1NFMqk2tumeJSSO7pdas0rKTF5WpJckvzXg3l5kqhmGZAAjmgJCBzfn/45eTIMMwM55yZOfN6Ph48Ys6cmfmckzmvPp/35/PRCIIggIiIiEglXGzdACIiIiIpMdwQERGRqjDcEBERkaow3BAREZGqMNwQERGRqjDcEBERkaow3BAREZGqMNwQERGRqjDcEBERkaow3BAR2ciWLVug0Whw8eJFWzeFSFUYbohU7NixY5gyZQratm0Lb29vhIeH46mnnsJPP/1U49x+/fpBo9FAo9HAxcUFvr6+uPfeezF69Gh8/fXXFn3url270LdvXwQFBcHLywstW7bEU089hX379kl1aTUsWrQIn3/+eY3j33//PebNm4dr167J9tl3mzdvnngvNRoNvLy8cN999+GNN95ASUmJJJ+xfft2pKSkSPJeRGrDcEOkYkuWLMHOnTvx0EMP4d1338XEiRPx7bffIiYmBqdOnapxfvPmzfHBBx/g/fffx7Jly/DYY4/h+++/x8MPP4wRI0agsrKyzs98++238dhjj0Gj0SAxMRHLly/HE088gZ9//hmpqalyXCYA0+Fm/vz5ioabamvXrsUHH3yA5ORktG7dGgsXLsTgwYMhxZZ+DDdEtWtg6wYQkXwSEhKwfft2uLu7i8dGjBiB9u3bY/Hixfjwww8NztdqtRg1apTBscWLF2Pq1KlYs2YNIiIisGTJklo/79atW1iwYAEGDRqEr776qsbzv//+ez2vyH6UlZXBy8vL5DlPPvkkAgMDAQCTJk3CE088gbS0NPznP/9B9+7dlWgmkVNizw2RivXo0cMg2ABAq1at0LZtW5w9e9as93B1dcWKFStw3333YdWqVdDpdLWeW1hYiJKSEvTs2dPo80FBQQaPb968iXnz5uGee+6Bp6cnQkJCMHz4cJw/f1485+2330aPHj0QEBCAhg0bonPnzvj0008N3kej0eDGjRvYunWrOBQ0ZswYzJs3D6+99hoAIDIyUnzuzhqXDz/8EJ07d0bDhg3h7++Pp59+GpcvXzZ4/379+qFdu3bIzMxEnz594OXlhX/84x9m3b87DRgwAACQm5tr8rw1a9agbdu28PDwQLNmzTB58mSDnqd+/fphz549+OWXX8RrioiIsLg9RGrFnhsiJyMIAgoKCtC2bVuzX+Pq6oqRI0di9uzZOHToEIYOHWr0vKCgIDRs2BC7du3CSy+9BH9//1rfs6qqCo8++ijS09Px9NNP4+WXX0ZpaSm+/vprnDp1ClFRUQCAd999F4899hieffZZVFRUIDU1Ff/v//0/7N69W2zHBx98gPHjx6Nr166YOHEiACAqKgre3t746aef8NFHH2H58uViL0qTJk0AAAsXLsTs2bPx1FNPYfz48bh69SpWrlyJPn364MSJE/Dz8xPbW1RUhCFDhuDpp5/GqFGjEBwcbPb9q1Yd2gICAmo9Z968eZg/fz4GDhyIF154AdnZ2Vi7di2OHTuGw4cPw83NDbNmzYJOp8Ovv/6K5cuXAwAaNWpkcXuIVEsgIqfywQcfCACEjRs3Ghzv27ev0LZt21pf99lnnwkAhHfffdfk+8+ZM0cAIHh7ewtDhgwRFi5cKGRmZtY4b9OmTQIAITk5ucZzer1e/L2srMzguYqKCqFdu3bCgAEDDI57e3sL8fHxNd5r2bJlAgAhNzfX4PjFixcFV1dXYeHChQbHT548KTRo0MDgeN++fQUAwrp162q97jvNnTtXACBkZ2cLV69eFXJzc4X33ntP8PDwEIKDg4UbN24IgiAImzdvNmjb77//Lri7uwsPP/ywUFVVJb7fqlWrBADCpk2bxGNDhw4VWrRoYVZ7iJwNh6WInMi5c+cwefJkdO/eHfHx8Ra9trpnoLS01OR58+fPx/bt29GpUyfs378fs2bNQufOnRETE2MwFLZz504EBgbipZdeqvEeGo1G/L1hw4bi73/88Qd0Oh169+6N48ePW9T+u6WlpUGv1+Opp55CYWGh+NO0aVO0atUKBw8eNDjfw8MDY8eOtegz7r33XjRp0gSRkZH4+9//jujoaOzZs6fWWp0DBw6goqIC06ZNg4vLX389T5gwAb6+vtizZ4/lF0rkhDgsReQk8vPzMXToUGi1Wnz66adwdXW16PXXr18HAPj4+NR57siRIzFy5EiUlJTgv//9L7Zs2YLt27cjLi4Op06dgqenJ86fP497770XDRqY/mto9+7deOutt5CVlYXy8nLx+J0ByBo///wzBEFAq1atjD7v5uZm8Dg0NLRG/VJddu7cCV9fX7i5uaF58+biUFttfvnlFwC3Q9Gd3N3d0bJlS/F5IjKN4YbICeh0OgwZMgTXrl3Dd999h2bNmln8HtVTx6Ojo81+ja+vLwYNGoRBgwbBzc0NW7duxX//+1/07dvXrNd/9913eOyxx9CnTx+sWbMGISEhcHNzw+bNm7F9+3aLr+FOer0eGo0G//rXv4wGvbtrWO7sQTJXnz59xDofIlIOww2Ryt28eRNxcXH46aefcODAAdx3330Wv0dVVRW2b98OLy8v9OrVy6p2dOnSBVu3bkVeXh6A2wW///3vf1FZWVmjl6Tazp074enpif3798PDw0M8vnnz5hrn1taTU9vxqKgoCIKAyMhI3HPPPZZejixatGgBAMjOzkbLli3F4xUVFcjNzcXAgQPFY/XtuSJSM9bcEKlYVVUVRowYgSNHjuCTTz6xam2VqqoqTJ06FWfPnsXUqVPh6+tb67llZWU4cuSI0ef+9a9/AfhryOWJJ55AYWEhVq1aVeNc4f8WuXN1dYVGo0FVVZX43MWLF40u1uft7W10oT5vb28AqPHc8OHD4erqivnz59dYVE8QBBQVFRm/SBkNHDgQ7u7uWLFihUGbNm7cCJ1OZzBLzdvb2+S0fCJnxp4bIhV75ZVX8OWXXyIuLg7FxcU1Fu27e8E+nU4nnlNWVoacnBykpaXh/PnzePrpp7FgwQKTn1dWVoYePXrgwQcfxODBgxEWFoZr167h888/x3fffYdhw4ahU6dOAIDnnnsO77//PhISEnD06FH07t0bN27cwIEDB/Diiy/i8ccfx9ChQ5GcnIzBgwfjmWeewe+//47Vq1cjOjoaP/74o8Fnd+7cGQcOHEBycjKaNWuGyMhIdOvWDZ07dwYAzJo1C08//TTc3NwQFxeHqKgovPXWW0hMTMTFixcxbNgw+Pj4IDc3F5999hkmTpyIV199tV7331JNmjRBYmIi5s+fj8GDB+Oxxx5DdnY21qxZgwceeMDg31fnzp2xY8cOJCQk4IEHHkCjRo0QFxenaHuJ7JYtp2oRkbyqpzDX9mPq3EaNGgmtWrUSRo0aJXz11VdmfV5lZaWwYcMGYdiwYUKLFi0EDw8PwcvLS+jUqZOwbNkyoby83OD8srIyYdasWUJkZKTg5uYmNG3aVHjyySeF8+fPi+ds3LhRaNWqleDh4SG0bt1a2Lx5szjV+k7nzp0T+vTpIzRs2FAAYDAtfMGCBUJoaKjg4uJSY1r4zp07hV69egne3t6Ct7e30Lp1a2Hy5MlCdna2wb0xNU3+btXtu3r1qsnz7p4KXm3VqlVC69atBTc3NyE4OFh44YUXhD/++MPgnOvXrwvPPPOM4OfnJwDgtHCiO2gEQYJNToiIiIjsBGtuiIiISFUYboiIiEhVGG6IiIhIVRhuiIiISFUYboiIiEhVGG6IiIhIVZxuET+9Xo/ffvsNPj4+XL6ciIjIQQiCgNLSUjRr1gwuLqb7Zpwu3Pz2228ICwuzdTOIiIjICpcvX0bz5s1NnuN04cbHxwfA7Ztjao8cIiIish8lJSUICwsTv8dNcbpwUz0U5evry3BDRETkYMwpKWFBMREREakKww0RERGpCsMNERERqYrT1dwQERFZq6qqCpWVlbZuhmq5u7vXOc3bHAw3REREdRAEAfn5+bh27Zqtm6JqLi4uiIyMhLu7e73eh+GGiIioDtXBJigoCF5eXlwEVgbVi+zm5eUhPDy8XveY4YaIiMiEqqoqMdgEBATYujmq1qRJE/z222+4desW3NzcrH4fFhQTERGZUF1j4+XlZeOWqF/1cFRVVVW93ofhhoiIyAwcipKfVPeYw1L1VFRUhIqKilqfd3d3ZzcmERGRghhu6qGoqAirVq2q87wpU6Yw4BARESmEw1L1cHePjU7ng9zcCOh0PibPIyIiUsKYMWOg0Wig0Wjg5uaG4OBgDBo0CJs2bYJerzf7fbZs2QI/Pz/5Giox9txI5PjxTti161EIggs0Gj3i4nYjJuaErZtFREQ2ZuvyhcGDB2Pz5s2oqqpCQUEB9u3bh5dffhmffvopvvzySzRooL4ooL4rsgGdzkcMNgAgCC7YtetRREXlQKsttXHriIjIVuyhfMHDwwNNmzYFAISGhiImJgYPPvggHnroIWzZsgXjx49HcnIyNm/ejAsXLsDf3x9xcXFYunQpGjVqhIyMDIwdOxbAXwW/c+fOxbx58/DBBx/g3XffRXZ2Nry9vTFgwACkpKQgKChIlmsxF4elJFBcHCAGm2qC4ILiYn8btYiIiOyBuWUJSpcvDBgwAB07dkRaWhqA2ysDr1ixAqdPn8bWrVvxzTffYMaMGQCAHj16ICUlBb6+vsjLy0NeXh5effVVALenyS9YsAD/+9//8Pnnn+PixYsYM2aMotdiDHtuJODvXwSNRm8QcDQaPfz9i23YKiIiotq1bt0aP/74IwBg2rRp4vGIiAi89dZbmDRpEtasWQN3d3dotVpoNBqxB6ja888/L/7esmVLrFixAg888ACuX7+ORo0aKXIdxrDnRgJabSni4nZDo7ldnFVdc8MhKSIisleCIIjDTAcOHMBDDz2E0NBQ+Pj4YPTo0SgqKkJZWZnJ98jMzERcXBzCw8Ph4+ODvn37AgAuXboke/tNYc+NRGJiTiAqKgfFxf7w9y9msCEiIrt29uxZREZG4uLFi3j00UfxwgsvYOHChfD398ehQ4cwbtw4VFRU1Loy840bNxAbG4vY2Fhs27YNTZo0waVLlxAbG2vzWcIMN/Vw966lWm2p0VBT391NiYiIpPTNN9/g5MmTmD59OjIzM6HX6/HOO+/AxeX2gM7HH39scL67u3uNLRHOnTuHoqIiLF68GGFhYQCAH374QZkLqAPDTT0EBARgypQpXKGYiIjsVnl5OfLz8w2mgiclJeHRRx/Fc889h1OnTqGyshIrV65EXFwcDh8+jHXr1hm8R0REBK5fv4709HR07NgRXl5eCA8Ph7u7O1auXIlJkybh1KlTWLBggY2u0hBrbuopICAAISEhtf4w2BARkS3t27cPISEhiIiIwODBg3Hw4EGsWLECX3zxBVxdXdGxY0ckJydjyZIlaNeuHbZt24akpCSD9+jRowcmTZqEESNGoEmTJli6dCmaNGmCLVu24JNPPsF9992HxYsX4+2337bRVRrSCIIg2LoRSiopKYFWq4VOp4Ovr6+tm0NERHbu5s2byM3NRWRkJDw9PS16rT2sc+NITN1rS76/OSxFREQkE5Yv2AbDDRERkYwYXJTHmhsiIiJSFYYbIiIiUhWGGyIiIlIVhhsiIiJSFRYU20BRUREr54mIiGRi03Dz7bffYtmyZcjMzEReXh4+++wzDBs2rNbz09LSsHbtWmRlZaG8vBxt27bFvHnzEBsbq1yj64lrHhAREcnLpsNSN27cQMeOHbF69Wqzzv/2228xaNAg7N27F5mZmejfvz/i4uJw4sQJmVsqnbt7bHQ6H+TmRkCn8zF5HhEREZnHpj03Q4YMwZAhQ8w+PyUlxeDxokWL8MUXX2DXrl3o1KmTxK2T3/HjnbBr16MQBBdoNHrExe1GTIzjBDUiInJuGRkZ6N+/P/744w/4+fmZ9ZqIiAhMmzYN06ZNk61dDl1QrNfrUVpaCn9//1rPKS8vR0lJicGPPdDpfMRgAwCC4IJdux6t0YNDRERkrTFjxkCj0WDSpEk1nps8eTI0Gg3GjBmjfMNk5tDh5u2338b169fx1FNP1XpOUlIStFqt+FO9LbutFRcHiMGmmiC4oLi49qBmjaKiIuTl5dX6U1RUJOnnERGRfQkLC0Nqair+/PNP8djNmzexfft2hIeH27Bl8nHY2VLbt2/H/Pnz8cUXXyAoKKjW8xITE5GQkCA+LikpsYuA4+9fBI1GbxBwNBo9/P2LJfsMFi8TEVFMTAzOnz+PtLQ0PPvsswBuT9AJDw9HZGSkeF55eTlee+01pKamoqSkBF26dMHy5cvxwAMPiOfs3bsX06ZNw+XLl/Hggw8iPj6+xucdOnQIiYmJ+OGHHxAYGIi//e1vSEpKgre3t/wX+38csucmNTUV48ePx8cff4yBAweaPNfDwwO+vr4GP/ZAqy1FXNxuaDR6ABBrbrTaUsk+g8XLRET25ddfgYMHb/9TSc8//zw2b94sPt60aRPGjh1rcM6MGTOwc+dObN26FcePH0d0dDRiY2NRXHz7f7ovX76M4cOHIy4uDllZWRg/fjxmzpxp8B7nz5/H4MGD8cQTT+DHH3/Ejh07cOjQIUyZMkX+i7yDw/XcfPTRR3j++eeRmpqKoUOH2ro59RITcwJRUTkoLvaHv3+xpMHmbixeJiKyrY0bgYkTAb0ecHEB1q8Hxo1T5rNHjRqFxMRE/PLLLwCAw4cPIzU1FRkZGQBuz15eu3YttmzZIk702bBhA77++mts3LgRr732GtauXYuoqCi88847AIB7770XJ0+exJIlS8TPSUpKwrPPPisWC7dq1QorVqxA3759sXbtWnh6eipyvTYNN9evX0dOTo74ODc3F1lZWfD390d4eDgSExNx5coVvP/++wBuD0XFx8fj3XffRbdu3ZCfnw8AaNiwIbRarU2uwVLu7u4Gj7XaUqOh5u7z6qO24uWoqBxZAxUREd32669/BRvg9j///ncgNhZo3lz+z2/SpAmGDh2KLVu2QBAEDB06FIGBgeLz58+fR2VlJXr27Ckec3NzQ9euXXH27FkAwNmzZ9GtWzeD9+3evbvB4//973/48ccfsW3bNvGYIAjQ6/XIzc1FmzZt5Li8Gmwabn744Qf0799ffFxdGxMfH48tW7YgLy8Ply5dEp9fv349bt26hcmTJ2Py5Mni8erzHUFAQACmTJki6QrFta14XFhYCMB08TLDDRGR/H7++a9gU62qCsjJUSbcALeHpqqHh8xdX85S169fx9///ndMnTq1xnNKFi/bNNz069cPgiDU+vzdgaW6+8zRSVm8a07RsBLFy0REVLtWrW4PRd0ZcFxdgeho5dowePBgVFRUQKPR1FjZPyoqCu7u7jh8+DBatGgBAKisrMSxY8fEIaY2bdrgyy+/NHjdf/7zH4PHMTExOHPmDKKVvDAjHLKgmP5iTtGwEsXLRERUu+bNb9fYuLrefuzqCrz3nnK9Nrc/0xVnz57FmTNn4FrdkP/j7e2NF154Aa+99hr27duHM2fOYMKECSgrK8O4/ysMmjRpEn7++We89tpryM7Oxvbt22t0Qrz++uv4/vvvMWXKFGRlZeHnn3/GF198wYJisp6pomEli5eJiKimceNu19jk5NzusVEy2FQzNWN48eLF0Ov1GD16NEpLS9GlSxfs378fjRs3BnB7WGnnzp2YPn06Vq5cia5du2LRokV4/vnnxffo0KED/v3vf2PWrFno3bs3BEFAVFQURowYIfu13UkjmBoXUqGSkhJotVrodDq7mRZeH3l5eVi/fj10Oh+kpEyrMfQ0bVpKnUGG69wQEdXu5s2byM3NRWRkpGKzfZyVqXttyfc3e25Uoq6i4eHDhxtUxleztHiZiIjI3jHcqERdRcOBgYEICQmxVfOIiIgUw4JilWDRMBER0W3suVERFg0TEREx3Dg8W6x4TETkjJxs/o1NSHWPGW4cnBwrHhMR0V/c3NwAAGVlZWjYsKGNW6Nu1d9ld6/DYymGGxVgcCEiko+rqyv8/Pzw+++/AwC8vLyg0Whs3Cr10ev1uHr1Kry8vNCgQf3iCcMNERFRHZo2bQoAYsAhebi4uCA8PLze4ZHhhoiIqA4ajQYhISEICgpCZWWlrZujWu7u7nBxqf9EboYbIiIiM7m6uta7HoTkx3VuiIiISFUYboiIiEhVGG6IiIhIVRhuiIiISFUYboiIiEhVGG6IiIhIVRhuiIiISFUYboiIiEhVGG6IiIhIVRhuiIiISFUYboiIiEhVGG6IiIhIVbhxJtVQVFSEioqKWp93d3dHQECAgi0iIiIyH8MNGSgqKsKqVavqPG/KlCkMOEREZJc4LEUG7u6x0el8kJsbAZ3Ox+R5RERE9oI9N1Sr48c7YdeuRyEILtBo9IiL242YmBO2bhYREZFJ7Lkho3Q6HzHYAIAguGDXrkdr9OAQERHZG/bcyMiRC3OLiwPEYFNNEFxQXOwPrbbURq0iIiKqG8ONTBy9MNffvwgajd4g4Gg0evj7F9uwVURERHXjsJRMHL0wV6stRVzcbmg0egAQa27Ya0NERPaOPTcKcNTC3JiYE4iKykFxsT/8/YsZbIiIyCGw50ZmjlaY6+7ubvBYqy1FZOQvNYLN3ecRERHZC/bcyMzRCnMDAgIwZcoUhy2EJiIiYriRmSMW5jK4EBGRI2O4kVl1Ye7dNTe27rVx5GnqREREpjDcKMDeCnMdfZo6ERGRKQw3MjFWmGss1NiiMNfYNPXi4gD4+xcZtNFYzw57fIiIyN4x3MjEUQpzLZmmzh4fIiJyBAw3MrL3L/japqlHReUY7WWqT48PERGRUhhunFh9pqk76sKERESkflzEz4lVT1O/kznT1B1tYUIiInIuDDdOzNr9o0z1+BAREdkah6WcnDXT1B1xYUIiInIe7LlxQvXdP4o7hhMRkT1jz40TkmKaur0tTEhERFSN4cZJWTNN3Z4XJiQiIqrGcENmc5SFCYmIyLkx3JBFGFyIiMjeMdzIiPswERERKc+m4ebbb7/FsmXLkJmZiby8PHz22WcYNmyYyddkZGQgISEBp0+fRlhYGN544w2MGTNGkfZagvswERER2YZNp4LfuHEDHTt2xOrVq806Pzc3F0OHDkX//v2RlZWFadOmYfz48di/f7/MLbWcsX2YcnMjaqziy32YiIiIpGXTnpshQ4ZgyJAhZp+/bt06REZG4p133gEAtGnTBocOHcLy5csRGxsrVzPrjfswERERKcehFvE7cuQIBg4caHAsNjYWR44cqfU15eXlKCkpMfhREvdhIiIiUpZDhZv8/HwEBwcbHAsODkZJSQn+/PNPo69JSkqCVqsVf8LCwpRoqoj7MBERESnLocKNNRITE6HT6cSfy5cvK/r51u68TURERNZxqHDTtGlTFBQUGBwrKCiAr68vGjZsaPQ1Hh4e8PX1NfhREvdhIiIiUpZDrXPTvXt37N271+DY119/je7du9uoRebhPkxERETKsWm4uX79OnJycsTHubm5yMrKgr+/P8LDw5GYmIgrV67g/fffBwBMmjQJq1atwowZM/D888/jm2++wccff4w9e/bY6hJqxX2YzMOFDomISGoaQRAEW314RkYG+vfvX+N4fHw8tmzZgjFjxuDixYvIyMgweM306dNx5swZNG/eHLNnz7ZoEb+SkhJotVrodDrZh6j4xW0aFzokIiJzWfL9bdOem379+sFUttqyZYvR15w44RhrxDjTF7I1Qc7YQofFxQHw9y8y6OXiQodERGQJh6q5IelI2askRQ8MFzokIiKpMNw4IamHg6ztgbl27Zp4vrGFDqOicqDVluLatWsICQmpsx1EREQAw41TknM4yJIemFu3bgEwvdChVlsqnqc01kwRETkmhhs7o/QXqpTDQXX1wNTG378IgABAIx6z9UKHLHYmInJcDDd2ROkvVGvDSG3q6oExzTDc2G4O320sdiYiclwMN3ZE6S/U+oWRmqq3mrjzPc3pgSkuDkDNxbKtb4fUWOxMRORYGG7slBJfqNaGkdpUbzVxd7trCyhubm5mtaP6PFuQunerNqzvISKSDsONHVLqC9XSMGIOS7aa0Gq1ZrWj+jxbkLp3yxjW9xARSYvhxg4p8YVaTYp9r6TYasJe99+SunfLGNb3EBFJi+HGDsn9hSr1vlcBAQGYMmWKxcMqjrD/lhy9W6awvoeIqP4YbuyITqcDUPcXqk6nq9eidtaGkbre0x7aIQelepWUGo4kIlI7hhs7UllZKf4eE3MCQUH5uHQpHOHhl9C8eZ7R86xl68BQTal2WFqwa4teJSWHI4mI1Izhxo40aPDXvw5TwxN3nkd1s6Zg1xa9SkrU9xAROQN+S9oRPz8/AHUPT1SfR+axtmBX6d4tpet7iIjUiuHGDnF4Qj72XrBrr7PGiIgcyd3LwpIdqB6euBOHJ+qvth4xnc7Hpu0yVt8TGflLjWBjy1ljRESOhD03dojDE/Kw1x4xR5k1RkTkKBhu7BSHJ6RnzwW7DC5ERNLhsJQd4fCEvKp7xKqH/NgjRkSkTuy5sSMcnpAfe8SIiNSP4cbOMLhIzxG2eSAiIukw3JBqmFqFeMSIERAEodY1guy1R8zSlZWJiIjhhlTCmlWI7Z0ar4mISAkMN6QK1q5CDNhv70h9romIyJkx3JDqWLIKsaP0jtj7yspERPaEU8FJVSxdhdhY70hubkSN823ZO2KvKysTEdkr9tyQqtRnFWJ77R2x15WViYjsFXtuSFWs3ZfLnntHuNcYEZFlGG5IVaxdhdhU74itcWVlIiLLcFiK7FJ9ZjBZswqxPe87BXBlZSIiSzDckN2xZgaTtasQ63Q68XxTO7HrdDqEhISY3X4pppZzZWUiIusw3JDdsWZ9F2v35aqsrBR/j4k5gaCgfFy6FI7w8Eto3jzP6HmmmBvMnnrqqRqrJd/dPu41RkRkHYYbsmuWzGCy5ku+QYO//hMw9Vl3nmeKucHs448/Nvr6u9fTYXAhIrIcww3ZrdpmMEVF5UhWc1Lde1LXZ9W2J5UppsISVxsmIpIPww3ZLSXXd5H6s0yFpfPno+1yPR0iIrXgVHCyW0qu7yL1Z9UWli5fbm636+kQEakFww3ZLSXXd5H6s2oLS4DGbtfTISJSCw5LqZy97nhtLiXXd7Hks2q7r4WFhQBqn1oeFnbZrtfTISJSA4YbFXOUHa/vpuT6LtZ8lrn3tbawZGo9HSIiqj+GGxWzZr0Ye6Dk+i7WfJa59xUwHpa42jARkbysCjfh4eHo168f+vbti379+iEqKkrqdpHEbLnjtTVDY0r2JNXns0zd1+HDhyMwMBDA7RWOd+zYIb6Oqw0TEcnHqnCzaNEifPvtt1iyZAkmTJiA0NBQ9O3bVww7rVq1krqdVA9KrBdTG0cdGjNHXfc1MDBQ3LIhJCSEqw0TESnEqnAzatQojBo1CgCQl5eHf//739i9ezdefPFF6PV6VFVVSdpIqh8l14u5m6MOjZnD0vvK4EJEpAyra27Kyspw6NAhZGRk4ODBgzhx4gTatWuHfv36Sdg8koK97Hhty6ExOdjLfSUiIkNWrXPTo0cPBAQEYObMmbh58yZmzpyJvLw8nDhxAsuXL5e6jVRPSq4XU5vahnAcefE6e7ivRERUk1U9N+fOnYO3tzdat26N1q1bo02bNmjcuLHUbSMJ2XqGji2HxuRk6/tKREQ1WRVuioqKcPLkSWRkZGD//v2YNWsW3N3d0bdvX/Tv3x8TJkyQup1kBSXXi6mLmoZw7Om+qo2jLzpJRPZBIwiCUJ83EAQBmZmZWLVqFbZt22b3BcUlJSXQarXQ6XTw9fW1dXNkZ+svi7y8PKxfvx6A6ZqbiRMnijOLHIGt76saqXlmHRHVnyXf31b13Bw/fhwZGRnIyMjAoUOHUFpaivbt2+Oll15C3759rWo0ycOevgTUNIRjT/dVLdQ8s46IlGVVuOnatSs6deqEvn37YsKECejTpw+0Wq3UbSMV4BAOWUNtM+uISFlWhZvi4mKnGNKh+lNyKwVSB1suOklE6mBVuKkONpmZmTh79iwA4L777kNMTIx0LSPVYHCRh1rrftQ6s46IlGNVuPn9998xYsQI/Pvf/4afnx8A4Nq1a+jfvz9SU1PRpEkTi95v9erVWLZsGfLz89GxY0esXLkSXbt2rfX8lJQUrF27FpcuXUJgYCCefPJJJCUlwdPT05rLIScndUhQInSoufhWTTPriMg2rAo3L730Eq5fv47Tp0+jTZs2AIAzZ84gPj4eU6dOxUcffWT2e+3YsQMJCQlYt24dunXrhpSUFMTGxiI7OxtBQUE1zt++fTtmzpyJTZs2oUePHvjpp58wZswYaDQaJCcnW3M55MSkDglKhQ41F99WL454d80Ne22IyFxWhZt9+/bhwIEDYrABbg9LrV69Gg8//LBF75WcnIwJEyZg7NixAIB169Zhz5492LRpE2bOnFnj/O+//x49e/bEM888AwCIiIjAyJEj8d///teaSyEHJGXPiNQhwRahw5LiW0cZylLTzDoiUp5V4Uav18PNza3GcTc3N+j1erPfp6KiApmZmUhMTBSPubi4YODAgThy5IjR1/To0QMffvghjh49iq5du+LChQvYu3cvRo8ebfT88vJylJeXi49LSkrMbh/ZHzl7RqSeoaPEjB9Lim/tfSiLM+uISCpWhZsBAwbg5ZdfxkcffYRmzZoBAK5cuYLp06fjoYceMvt9CgsLUVVVheDgYIPjwcHBOHfunNHXPPPMMygsLESvXr0gCAJu3bqFSZMm4R//+IfR85OSkjB//nyz20T2Ta6eEaln6Cg148eS4lt7H8rizDoikopV4WbVqlV47LHHEBERgbCwMADA5cuX0a5dO3z44YeSNvBuGRkZWLRoEdasWYNu3bohJycHL7/8MhYsWIDZs2fXOD8xMREJCQni45KSErHN5Nik7BmReoaOUjN+rC2+tdd1ZBhciEgKVoWbsLAwHD9+HAcOHBB7WNq0aYOBAwda9D6BgYFwdXVFQUGBwfGCggI0bdrU6Gtmz56N0aNHY/z48QCA9u3b48aNG5g4cSJmzZoFFxfDLxQPDw94eHhY1C6yf1L3jEg9Q0epGT/WFN9yHRkiUjurwg0AaDQaDBo0CIMGDbL6w93d3dG5c2ekp6dj2LBhAG7X86Snp2PKlClGX1NWVlYjwLi6ugK4vc8VOQepe0aknqGj5IwfS4tvuY4MEamd2eFmxYoVZr/p1KlTzT43ISEB8fHx6NKlC7p27YqUlBTcuHFDnD313HPPITQ0FElJSQCAuLg4JCcno1OnTuKw1OzZsxEXFyeGHFI/OXpGpJ6hI+eMn/oU33IdGSJSO7PDzfLly806T6PRWBRuRowYgatXr2LOnDnIz8/H/fffj3379olFxpcuXTLoqXnjjTeg0Wjwxhtv4MqVK2jSpAni4uKwcOFCsz+THJ9UPSNSz9BRasZPfYpvuY4MEamdRnCysRxLtkwn+5OXl4f169eLj2/P+KnZMzJx4kSEhISY9Z6OuEKxNeS4d0RESrHk+9uimhu9Xl+j3oVISXL0jEgdNOx1xg/XkSEiZ2FRz42rqyvy8vLEbRFee+01JCYmwt/fX7YGSo09N47PXntGHAHvHRE5Kku+vy0KNy4uLsjPzxfDja+vL7KystCyZcv6tVhBDDfK4xcqERHVl2zDUndzsnIdsoK9L/lPRETqwwIakpWxJf9zcyOg0/mYPI+IiMhaFvfczJkzB15eXgBufyEtXLgQWq3W4Jzk5GRpWkeqYq9L/hMRkbpYFG769OmD7Oxs8XGPHj1w4cIFg3M0Go00LSNV4ZL/RESkFIvCTUZGhkzNILXjkv9ERKSUehUU18URZ1ORPLjkvzpxJhwR2SNZww1nU1E1LvmvPpwJR0T2StZwQ3QnOTeSJOUZmwlXXBwAf/8ig3+3nAlHREpjuCFZccl/+yLXMBJnwhGRPWG4IVnVZ/dqkpZcw0icCUdE9kbWcMNp4QTY70aSzkauYSRnmgnHAmoix8CCYiInJOUwkrPMhGMBNZHjkHX7hX/9618IDQ2V8yOIyEK1DSPdvSWGuapnwmk0egBQ7Uw4biVC5Dis6rkRBAGffvopDh48iN9//x16vd7g+bS0NABAr1696t9CIpKUHMNIzjYTjgXURPbNqnAzbdo0vPfee+jfvz+Cg4NZW0PkQKQaRnLWmXAsoCayf1aFmw8++ABpaWl45JFHpG4PEclMqgUVnW0m3LVr1wDU3fN17do1hISE2KCFRFTNqnCj1Wq5pQKRA5NqGEktwcUct27dAlB3z1f1eURkO1YVFM+bNw/z58/Hn3/+KXV7iEgmxoaRIiN/qRFs1DaMJDWtthQdOvwIoHo2qIAOHX7kkBSRHbGq5+app57CRx99hKCgIERERMDNzc3g+ePHj0vSOCKSjrMNI8lFp/PBjz92AFBda6jBjz92wIAB3zDgENkJq8JNfHw8MjMzMWrUKBYUk1Ny1MXc7LFNjqL6f+Lqqrm5+3/2iEh5VoWbPXv2YP/+/ZzqTU6Ji7k5J61WC6Dumpvq84jIdqyquQkLC4Ovr6/UbSFyCFzMzbk5y6KFRI7Mqp6bd955BzNmzMC6desQEREhcZOIHAcXc3NOzrZoIZGjsSrcjBo1CmVlZYiKioKXl1eNMebiYnXtKUNkDBdzcy7OumghkSOyKtykpKRI3Awix+NMu2ETZ5sRORKrZ0sROTtn2Q3b3ik5c43BhcgxWBVu7nTz5s0af7Gw2JicgVTbGJD1OHONiIyxKtzcuHEDr7/+Oj7++GMUFRXVeL6qqqreDSNyBCwstS1jM9eKiwPg719k8O+CM9eInItV4WbGjBk4ePAg1q5di9GjR2P16tW4cuUK3nvvPSxevFjqNhLZFRaW2ifOXCOialaFm127duH9999Hv379MHbsWPTu3RvR0dFo0aIFtm3bhmeffVbqdhLZDRaW2h/OXCOiO1kVboqLi8VdwX19fcWp37169cILL7wgXeuI7BSDi33hzDUiupNV4aZly5bIzc1FeHg4WrdujY8//hhdu3bFrl274OfnJ3ETiYhMs2bmmqPuD0ZEdbMq3IwdOxb/+9//0LdvX8ycORNxcXFYtWoVKisrkZycLHUbiYiMhpHCwkIAls9c4ywrInWzKtxMnz5d/H3gwIE4d+4cMjMzER0djQ4dOkjWOCIiwLwwYsnMNc6yIlI3Sda5adGiBVq0aCFFe4iIajA3jFgzc42zrIjUx6pwU1VVhUWLFmHdunUoKCjATz/9hJYtW2L27NmIiIjAuHHjpG4nEREA02Fk+PDhCAwMNDjfVO0MZ1kRqZNL3afUtHDhQmzZsgVLly41+D+idu3a4Z///KdkjSMiulNtYUSn8wEABAYGIiQkxODHVM2MqVlWROS4rOq5ef/997F+/Xo89NBDmDRpkni8Y8eOOHfunGSNIyK6k9RTvi2dZcUZVkSOwapwc+XKFURHR9c4rtfrUVlZWe9GEREZI/VmpZbMsuIMKyLHYVW4ue+++/Ddd9/VKCL+9NNP0alTJ0kaRkR0Nzk2KzV3lhVnWBE5DqvCzZw5cxAfH48rV65Ar9cjLS0N2dnZeP/997F7926p20hEJLJkyndtw0g6nc7gsaWzrDjDisi+WRVuHn/8cezatQtvvvkmvL29MWfOHMTExGDXrl0YNGiQ1G0kIidnzWal5g4jDRo0CD4+PjWOe3l5GR1esnSGFet0iJRn9To3vXv3xtdffy1lW4jIhuz5S9iazUrNHUYy9feYsfoZS4qaWadDZBtW7y117NixGv8xXrt2DTExMbhw4YIkjSMiZTjCl3B9PreuYSRL6mcsKWq2tk7HnoMmkSOwKtxcvHgRVVVVNY6Xl5fjypUr9W4UESlLzcWydQ0jWVo/Y21Rs7mf4whBk8jeWRRuvvzyS/H3/fv3Q6vVio+rqqqQnp6OiIgIyRpHRMpTW7FsXQv1WbNCsSVFzYBldTpqDppESrEo3AwbNgwAoNFoEB8fb/Ccm5sbIiIi8M4770jWOCJSlhq3IzA1jGRJ/Yw1Rc3VrF18UG1Bk0gpFoUbvV4PAIiMjMSxY8dq7OFCRI5N6hWA7UFdw0jm1s9YU9RczZrFB9UYNImUYlG4OXLkCIqKipCbmysee//99zF37lzcuHEDw4YNw8qVK+Hh4SF5Q4lIflKvAGwvahtGsrR+xtoaF2vqdNQYNImUYlG4mT9/Pvr3749HH30UAHDy5EmMGzcOY8aMQZs2bbBs2TI0a9YM8+bNs6gRq1evxrJly5Cfn4+OHTti5cqV6Nq1a63nX7t2DbNmzUJaWhqKi4vRokULpKSk4JFHHrHoc4nIkBwrANuKucNIltbP1MbYDKfCwkKrP0etQZNICRaFm//973946623xMepqano1q0bNmzYAAAICwvD3LlzLQo3O3bsQEJCAtatW4du3bohJSUFsbGxyM7ORlBQUI3zKyoqMGjQIAQFBeHTTz9FaGgofvnlF/j5+VlyKURUC6m+7G3N1DCSTqfDjh07xMeWrlB8N3NnOFnyOUoFTU47JzWyKNz88ccfCA4OFh//+9//xpAhQ8THDzzwAC5fvmxRA5KTkzFhwgSMHTsWALBu3Trs2bMHmzZtwsyZM2ucv2nTJhQXF+P777+Hm5sbAHCGFlE91adY1p7V9qUcEhJidf2MMebOcBo+fHiNWkVTnyN30OS0c1Iri8JNcHAwcnNzERYWhoqKChw/fhzz588Xny8tLRUDhzkqKiqQmZmJxMRE8ZiLiwsGDhyII0eOGH3Nl19+ie7du2Py5Mn44osv0KRJEzzzzDN4/fXX4erqWuP88vJylJeXi49LSkrMbh+Rs6hPsayjkutaTM1wCgwMREhIiMnXKxk0Oe2c1MqicPPII49g5syZWLJkCT7//HN4eXmhd+/e4vM//vgjoqKizH6/wsJCVFVVGfQGAbdD1Llz54y+5sKFC/jmm2/w7LPPYu/evcjJycGLL76IyspKzJ07t8b5SUlJBgGMiIxTU3CxFSlmONkqaHLaOamJReFmwYIFGD58OPr27YtGjRph69atBv/3sGnTJjz88MOSN/JOer0eQUFBWL9+PVxdXdG5c2dcuXIFy5YtMxpuEhMTkZCQID4uKSlBWFiYrG0kIuck1QwnpYMmp52T2lgUbgIDA/Htt99Cp9OhUaNGNYaBPvnkEzRq1Mii93N1dUVBQYHB8YKCAjRt2tToa0JCQuDm5mbw2W3atEF+fj4qKipqdNV6eHhwajoRKcJRZzhx2jmpjUvdp9Sk1WqN1rf4+/tbNA7s7u6Ozp07Iz09XTym1+uRnp6O7t27G31Nz549kZOTIy4oCAA//fQTQkJCHK7YkYjUpXqGk0Zz++8nR5lKXx3K7uQIoYyoNlZtnCmlhIQExMfHo0uXLujatStSUlJw48YNcfbUc889h9DQUCQlJQEAXnjhBaxatQovv/wyXnrpJfz8889YtGgRpk6dasvLICICYNup9NZO61bT+kZEgB2EmxEjRuDq1auYM2cO8vPzcf/992Pfvn1ikfGlS5fg4vJXB1NYWBj279+P6dOno0OHDggNDcXLL7+M119/3VaXQEROzh6m0lszrfvatWvicVOh7M5V6e+kthl0pB4aQRAEWzdCSSUlJdBqtdDpdPD19bV1c4jITPa+2Jyt25eXl4f169eLj2ub1j1x4kRxOvq5c+cMFjOs7TWmcA0cUool398277khIqqLIyw2Z09f8OZO69ZqtWa/hmvgkCNhuCEiu8fF5sxnzbTuul7DNXDI0TDcEJFD4RetadZM6zb1GgBcA4ccjlVTwYmIbKG2HgadzsfGLbMf1kzrNvWauoIPkT1iuCEih8Ev2rpZs9aOqdfUFZYKCwuRl5dn8FNUVCTT1RGZh8NSROQwHHUFYKVZs9ZOba+paw2ctLQ0o+/HWVRkSww3ROQwuNhc7axZa8fc15gKSyzuJnvEcENEDsWWKwCrjakdyK9du4aPP/5YfGws+LC4m+wVww0R2T17WAHY3lk7Xb62oaOQkBCjwaewsBBpaWncSZzsGsMNEdk9Uz0M1Wy9QrE9kapHxdT95E7iZM8YbojIITC4mEepHhUWd5M941RwIiIVUWq6vDVTzomUwp4bIiIVUbJHhcXdZK/Yc0NEpCJy96gYK+6OjPylxvs7c3E32R57boiIVEbOHhUWd5MjYLghIlIBJafLM7iQvWO4ISJSAfaoEP2F4YaIyEaKiookDSMMLkS3MdwQEdlAUVERVq1aVed53ICSyHKcLUVEZAPGtkvIzY2ATudj8jwiqht7boiIbIwbUBJJiz03REQ2VNt2CXf34BCR+dhzQ0RkQ860AaXUBdREtWG4ISKyIWfZgJIF1KQkhhsiIhnV1ltRWFgI4K/tEu6uuVFbr42xAuri4gD4+xcZXCsLqEkKDDdERDIxt7fC2TagZAE1yY0FxUREMjF3ujfgPBtQsoCalMCeGyIiBZjqrRg+fDgCAwNrvEaNBbbOVEBNtsNwQ0Qks9p6K6KicqDVliIwMBAhISE2bqUynKWAmmyL4YaISGa27q2wpynYzlJATbbFcENEJDNb9lbY4xRsZyugJuWxoJiISGbVvRUajR4AFO2tsJc9rO4ujHaWAmqyDfbcEBEpwB56K2w5BTsgIABTpkyxm+ExUjeGGyIimRjrrTAWapTorairqFkJDC6kFIYbIiKZ2FNvha2LmomUxHBDRCQje+mt4BRsciYsKCYicgK2LGomUhp7boiIVMLYejbVG3QC9lHUTKQEhhsiIhUwdz0bKYqa7WlRQCJjGG6IiFTA2Ho2xcUB8PcvMggzxvaxsiSM2OOigER3Y7ghIlIZU+vZ1HcfK3NDlNyLAkqNvVHqwnBDRKQiSq5nY8tFAaXE3ij14WwpIiIVMbWejZRqC1F3b+vgCOxliwqSDntuiIhURKn1bNS6KKBaeqOcHcMNEZGKVK9nc/cXtNSBQ42LAlozpMdaHfvEcENEpDJKrGejVIhSkqW9UazVsV8MN0REKmCLTTrVtiigpb1Rap05pgYMN0REKqDUJp32tNO51OrTG8VaHfvCcENEpBJKDH3Y007ncrCmN0rJ6fdkHoYbIiKyiKMGl9rUtzdKrTPHHBnDDRERWURtM4Tq2xulxpljjo7hhoiIzKbWGUL1aasaZ445OrtYoXj16tWIiIiAp6cnunXrhqNHj5r1utTUVGg0GgwbNkzeBhIREQCu5lubmJgTmDYtBfHxWzBtWgqLiW3M5j03O3bsQEJCAtatW4du3bohJSUFsbGxyM7ORlBQUK2vu3jxIl599VX07t1bwdYSEVE1Z58hpOaZY47O5uEmOTkZEyZMwNixYwEA69atw549e7Bp0ybMnDnT6Guqqqrw7LPPYv78+fjuu+9w7do1BVtMREScIaT+mWOOzKbhpqKiApmZmUhMTBSPubi4YODAgThy5Eitr3vzzTcRFBSEcePG4bvvvjP5GeXl5SgvLxcfl5SU1L/hREROjjOEbmNwsU82rbkpLCxEVVUVgoODDY4HBwcjPz/f6GsOHTqEjRs3YsOGDWZ9RlJSErRarfgTFhZW73YTETm76hlCd+IMIbIXdlFQbK7S0lKMHj0aGzZsQGBgoFmvSUxMhE6nE38uX74scyuJiNSveoZQdcDhDCGyJzYdlgoMDISrqysKCgoMjhcUFKBp06Y1zj9//jwuXryIuLg48Zhef/s/rAYNGiA7OxtRUVEGr/Hw8ICHh4cMrScicm5q21uK1MOm4cbd3R2dO3dGenq6OJ1br9cjPT0dU6ZMqXF+69atcfLkSYNjb7zxBkpLS/Huu+9yyImISGacIWQbals4UW42ny2VkJCA+Ph4dOnSBV27dkVKSgpu3Lghzp567rnnEBoaiqSkJHh6eqJdu3YGr/fz8wOAGseJiEh6nCGkPLUunCgnm4ebESNG4OrVq5gzZw7y8/Nx//33Y9++fWKR8aVLl+Di4lClQUREqsYvUGUZWzixuDgA/v5FBr1mzrZwoikaQRAEWzdCSSUlJdBqtdDpdPD19bV1c4iIiEzKy8vD+vXrAZheOHHixIkICQmxZVNlZcn3N7tEiIiIHEBtCyfevfUFMdwQERE5BFMLJ5IhhhsiIiIHwIUTzcdwQ0RE5AC4cKL5bD5bioiIiMzDhRPNw3BDRERkx7hwouUYboiIiOwYF060HMMNERGRxKTeLoHBxTIMN0RERFYyFmJ0Oh127NhR52u5XYJ8GG6IiIisYO6eT9wuQXkMN0RERFYwZ88nU9slkHwYboiIiKxw7do18XdjISYqKsfodglRUTmcwi0zLuJHRERkhVu3bgGofc+ny5fDuF2CjbDnhoiIqB5q2/MJEKDR6A2es3a7BKlnX6kdww0REVE9uLmVAxAAaO44KsDP7xri4nbXGK6ydEjK3MJlzr76C8MNERFRPVRWesAw2ACABpWV7pJsl2BO4bKx85wZww0REVE9VO/WXdvwk5TbJXD2lXkYboiIiKxw8+ZNAH/t1l3b8FPPnj3Rtm1bg9daUyNTW+EyZ1/VxHBDRERkBU9PT/H3mJgTCArKx6VL4QgPv4TmzfPE54KDgxESElLvz6utcLm42J/h5i4MN0RERFZo0OCvr1BTw0V3nlcfdQ1/0V8YboiIiKzg5+cHoO7hourz6lLbdO/CwkIAdQ9/0V8YboiIiOpBiuEic6d7SzH7yhkw3BAREdWDFMNF5k73BqSdfaVWDDdERET1IPVwkan6neHDhyMwMLDGa7hCsSGGGyIionoyNVxUXTNzp9rCSF31O4GBgZLMvFI7hhsiIiIr3D0MVNtwUVpamtHXG9sugdO9pcFwQ0REZIWAgABMmTKlRr1MYWGhQaCxZLsETveWBsMNERGRleqqc7F0uwRO95YGww0REZEMrN0ugdO964/hhoiISAaW1M+YW7/D6d7mYbghIiKSgSX1M7XV79zJnqd717a6cjWl285wQ0REJANL62fsNbjUxdzVlY3NDpMLww0REZFM7LV+RsqeFnNXVzb1eVJjuCEiIpKQHPUzUoYROXtaLJ0dJheGGyIiIglJXT8jdRiRq6fF2tlhcmC4ISIikpiUtSVyDvtI2dNiT6srM9wQERE5CCnDiNQ9Lfa0urJL3acQERGRrdUWRnQ6H6vez1RPizWqZ4dpNHoAsOnqyuy5ISIicgBSD/vI0dNiL7PD2HNDRETkAKrDyJ3qE0ak6mkxNjssMvKXOldhlhN7boiIiByAHJtqStHTYo+rKzPcEBEROQgpwogc6/DY2+rKDDdERER2TOowYo89LVLTCIIg2LoRSiopKYFWq4VOp4Ovr6+tm0NERFQne9uY0hYs+f5mzw0REZGdU3twkRrDDREREYnU0EvEcENEREQA5N1UU0kMN0RERATA+n2s7K23h+GGiIiIajB3Hyt77O3hCsVERERkwJJ9rIz19uTmRtQ415pdy63FnhsiIiIyYO0+VlLuWl4f7LkhIiIiA9bsYyX1ruX1wXBDREREBqzZVNNUb4/S7CLcrF69GhEREfD09ES3bt1w9OjRWs/dsGEDevfujcaNG6Nx48YYOHCgyfOJiIjIcjExJzBtWgri47dg2rSUOoeXpN61vD5sHm527NiBhIQEzJ07F8ePH0fHjh0RGxuL33//3ej5GRkZGDlyJA4ePIgjR44gLCwMDz/8MK5cuaJwy4mIiNTF2D5WkZG/1OixufM8nU4nnmuqt6f6PCXYfG+pbt264YEHHhCnken1eoSFheGll17CzJkz63x9VVUVGjdujFWrVuG5556r83zuLUVERFQ7S9esOXnyJNLS0sTHv/4agkuXwhEefgnNm+eJx4cPH4727dtb3S6H2VuqoqICmZmZSExMFI+5uLhg4MCBOHLkiFnvUVZWhsrKSvj7Gx/TKy8vR3l5ufi4pKSkfo0mIiJSMUvXomnQ4K8oYWq21J3nyc2mw1KFhYWoqqpCcHCwwfHg4GDk5+eb9R6vv/46mjVrhoEDBxp9PikpCVqtVvwJCwurd7uJiIjoNj8/PwB1z5aqPk8JNq+5qY/FixcjNTUVn332GTw9PY2ek5iYCJ1OJ/5cvnxZ4VYSERGpnz3NlrLpsFRgYCBcXV1RUFBgcLygoABNmzY1+dq3334bixcvxoEDB9ChQ4daz/Pw8ICHh4ck7SUiIiLjqmdL3RlwnHK2lLu7Ozp37oz09HTxmF6vR3p6Orp3717r65YuXYoFCxZg37596NKlixJNJSIiIhOsWRtHLjbffiEhIQHx8fHo0qULunbtipSUFNy4cQNjx44FADz33HMIDQ1FUlISAGDJkiWYM2cOtm/fjoiICLE2p1GjRmjUqJHNroOIiMjZxcScQFRUDoqL/eHvX2yTYAPYQbgZMWIErl69ijlz5iA/Px/3338/9u3bJxYZX7p0CS4uf3UwrV27FhUVFXjyyScN3mfu3LmYN2+ekk0nIiJyesbWxjEWau4+T042X+dGaVznhoiISFqWro1jDYdZ54aIiIgcX32Di9Qceio4ERER0d0YboiIiEhVGG6IiIhIVRhuiIiISFUYboiIiEhVGG6IiIhIVRhuiIiISFUYboiIiEhVGG6IiIhIVZxuheLq3SZKSkps3BIiIiIyV/X3tjm7RjlduCktvb2ZV1hYmI1bQkRERJYqLS2FVqs1eY7TbZyp1+vx22+/wcfHBxqNxuLXl5SUICwsDJcvX3bqjTd5H3gPAN6DarwPvAfVeB/kuweCIKC0tBTNmjWDi4vpqhqn67lxcXFB8+bN6/0+vr6+TvsH9068D7wHAO9BNd4H3oNqvA/y3IO6emyqsaCYiIiIVIXhhoiIiFSF4cZCHh4emDt3Ljw8PGzdFJvifeA9AHgPqvE+8B5U432wj3vgdAXFREREpG7suSEiIiJVYbghIiIiVWG4ISIiIlVhuCEiIiJVYbgxYvXq1YiIiICnpye6deuGo0eP1nru6dOn8cQTTyAiIgIajQYpKSnKNVRmltyHDRs2oHfv3mjcuDEaN26MgQMHmjzfUVhyD9LS0tClSxf4+fnB29sb999/Pz744AMFWysPS+7BnVJTU6HRaDBs2DB5G6gQS+7Dli1boNFoDH48PT0VbK08LP2zcO3aNUyePBkhISHw8PDAPffcg7179yrUWnlYcg/69etX48+BRqPB0KFDFWyxPCz9s5CSkoJ7770XDRs2RFhYGKZPn46bN2/K10CBDKSmpgru7u7Cpk2bhNOnTwsTJkwQ/Pz8hIKCAqPnHz16VHj11VeFjz76SGjatKmwfPlyZRssE0vvwzPPPCOsXr1aOHHihHD27FlhzJgxglarFX799VeFWy4dS+/BwYMHhbS0NOHMmTNCTk6OkJKSIri6ugr79u1TuOXSsfQeVMvNzRVCQ0OF3r17C48//rgyjZWRpfdh8+bNgq+vr5CXlyf+5OfnK9xqaVl6D8rLy4UuXboIjzzyiHDo0CEhNzdXyMjIELKyshRuuXQsvQdFRUUGfwZOnToluLq6Cps3b1a24RKz9D5s27ZN8PDwELZt2ybk5uYK+/fvF0JCQoTp06fL1kaGm7t07dpVmDx5svi4qqpKaNasmZCUlFTna1u0aKGacFOf+yAIgnDr1i3Bx8dH2Lp1q1xNlF1974EgCEKnTp2EN954Q47mKcKae3Dr1i2hR48ewj//+U8hPj5eFeHG0vuwefNmQavVKtQ6ZVh6D9auXSu0bNlSqKioUKqJsqvv3wnLly8XfHx8hOvXr8vVREVYeh8mT54sDBgwwOBYQkKC0LNnT9nayGGpO1RUVCAzMxMDBw4Uj7m4uGDgwIE4cuSIDVumLCnuQ1lZGSorK+Hv7y9XM2VV33sgCALS09ORnZ2NPn36yNlU2Vh7D958800EBQVh3LhxSjRTdtbeh+vXr6NFixYICwvD448/jtOnTyvRXFlYcw++/PJLdO/eHZMnT0ZwcDDatWuHRYsWoaqqSqlmS0qKvxc3btyIp59+Gt7e3nI1U3bW3IcePXogMzNTHLq6cOEC9u7di0ceeUS2djrdxpmmFBYWoqqqCsHBwQbHg4ODce7cORu1SnlS3IfXX38dzZo1M/gPwJFYew90Oh1CQ0NRXl4OV1dXrFmzBoMGDZK7ubKw5h4cOnQIGzduRFZWlgItVIY19+Hee+/Fpk2b0KFDB+h0Orz99tvo0aMHTp8+LcnGvUqz5h5cuHAB33zzDZ599lns3bsXOTk5ePHFF1FZWYm5c+cq0WxJ1ffvxaNHj+LUqVPYuHGjXE1UhDX34ZlnnkFhYSF69eoFQRBw69YtTJo0Cf/4xz9kayfDDUlu8eLFSE1NRUZGhiqKKC3h4+ODrKwsXL9+Henp6UhISEDLli3Rr18/WzdNdqWlpRg9ejQ2bNiAwMBAWzfHprp3747u3buLj3v06IE2bdrgvffew4IFC2zYMuXo9XoEBQVh/fr1cHV1RefOnXHlyhUsW7bMIcNNfW3cuBHt27dH165dbd0UxWVkZGDRokVYs2YNunXrhpycHLz88stYsGABZs+eLctnMtzcITAwEK6urigoKDA4XlBQgKZNm9qoVcqrz314++23sXjxYhw4cAAdOnSQs5mysvYeuLi4IDo6GgBw//334+zZs0hKSnLIcGPpPTh//jwuXryIuLg48ZherwcANGjQANnZ2YiKipK30TKQ4u8FNzc3dOrUCTk5OXI0UXbW3IOQkBC4ubnB1dVVPNamTRvk5+ejoqIC7u7usrZZavX5c3Djxg2kpqbizTfflLOJirDmPsyePRujR4/G+PHjAQDt27fHjRs3MHHiRMyaNQsuLtJXyLDm5g7u7u7o3Lkz0tPTxWN6vR7p6ekG/xemdtbeh6VLl2LBggXYt28funTpokRTZSPVnwW9Xo/y8nI5mig7S+9B69atcfLkSWRlZYk/jz32GPr374+srCyEhYUp2XzJSPFnoaqqCidPnkRISIhczZSVNfegZ8+eyMnJEQMuAPz0008ICQlxuGAD1O/PwSeffILy8nKMGjVK7mbKzpr7UFZWViPAVIdeQa7tLWUrVXZQqampgoeHh7BlyxbhzJkzwsSJEwU/Pz9xGufo0aOFmTNniueXl5cLJ06cEE6cOCGEhIQIr776qnDixAnh559/ttUlSMLS+7B48WLB3d1d+PTTTw2mPpaWltrqEurN0nuwaNEi4auvvhLOnz8vnDlzRnj77beFBg0aCBs2bLDVJdSbpffgbmqZLWXpfZg/f76wf/9+4fz580JmZqbw9NNPC56ensLp06dtdQn1Zuk9uHTpkuDj4yNMmTJFyM7OFnbv3i0EBQUJb731lq0uod6s/e+hV69ewogRI5RurmwsvQ9z584VfHx8hI8++ki4cOGC8NVXXwlRUVHCU089JVsbGW6MWLlypRAeHi64u7sLXbt2Ff7zn/+Iz/Xt21eIj48XH+fm5goAavz07dtX+YZLzJL70KJFC6P3Ye7cuco3XEKW3INZs2YJ0dHRgqenp9C4cWOhe/fuQmpqqg1aLS1L7sHd1BJuBMGy+zBt2jTx3ODgYOGRRx4Rjh8/boNWS8vSPwvff/+90K1bN8HDw0No2bKlsHDhQuHWrVsKt1palt6Dc+fOCQCEr776SuGWysuS+1BZWSnMmzdPiIqKEjw9PYWwsDDhxRdfFP744w/Z2qcRBLn6hIiIiIiUx5obIiIiUhWGGyIiIlIVhhsiIiJSFYYbIiIiUhWGGyIiIlIVhhsiIiJSFYYbIiIiUhWGGyIiGY0ZMwbDhg2zdTOInArDDZGTGjNmDDQajfgTEBCAwYMH48cff7R10yRx57VV//Tq1Uu2z7t48SI0Gg2ysrIMjr/77rvYsmWLbJ9LRDUx3BA5scGDByMvLw95eXlIT09HgwYN8Oijj9q6WZLZvHmzeH15eXn48ssvjZ5XWVkpWxu0Wi38/Pxke38iqonhhsiJeXh4oGnTpmjatCnuv/9+zJw5E5cvX8bVq1cxYMAATJkyxeD8q1evwt3dXdwROCIiAgsWLMDIkSPh7e2N0NBQrF692uA1ycnJaN++Pby9vREWFoYXX3wR169fF5//5ZdfEBcXh8aNG8Pb2xtt27bF3r17AQB//PEHnn32WTRp0gQNGzZEq1atsHnzZrOvz8/PT7y+pk2bwt/fX+xh2bFjB/r27QtPT09s27YNRUVFGDlyJEJDQ+Hl5YX27dvjo48+Mng/vV6PpUuXIjo6Gh4eHggPD8fChQsBAJGRkQCATp06QaPRoF+/fgBqDkuVl5dj6tSpCAoKgqenJ3r16oVjx46Jz2dkZECj0SA9PR1dunSBl5cXevTogezsbLOvm8jZMdwQEQDg+vXr+PDDDxEdHY2AgACMHz8e27dvR3l5uXjOhx9+iNDQUAwYMEA8tmzZMnTs2BEnTpzAzJkz8fLLL+Prr78Wn3dxccGKFStw+vRpbN26Fd988w1mzJghPj958mSUl5fj22+/xcmTJ7FkyRI0atQIADB79mycOXMG//rXv3D27FmsXbsWgYGBklxvdVvPnj2L2NhY3Lx5E507d8aePXtw6tQpTJw4EaNHj8bRo0fF1yQmJmLx4sViu7Zv347g4GAAEM87cOAA8vLykJaWZvRzZ8yYgZ07d2Lr1q04fvw4oqOjERsbi+LiYoPzZs2ahXfeeQc//PADGjRogOeff16S6yZyCrJtyUlEdi0+Pl5wdXUVvL29BW9vbwGAEBISImRmZgqCIAh//vmn0LhxY2HHjh3iazp06CDMmzdPfNyiRQth8ODBBu87YsQIYciQIbV+7ieffCIEBASIj9u3b2/wnneKi4sTxo4da9X1ARA8PT3F6/P29hY+++wzITc3VwAgpKSk1PkeQ4cOFV555RVBEAShpKRE8PDwEDZs2GD03Or3PXHihMHxO3dGv379uuDm5iZs27ZNfL6iokJo1qyZsHTpUkEQBOHgwYMCAOHAgQPiOXv27BEACH/++aclt4DIabHnhsiJ9e/fH1lZWcjKysLRo0cRGxuLIUOG4JdffoGnpydGjx6NTZs2AQCOHz+OU6dOYcyYMQbv0b179xqPz549Kz4+cOAAHnroIYSGhsLHxwejR49GUVERysrKAABTp07FW2+9hZ49e2Lu3LkGBc0vvPACUlNTcf/992PGjBn4/vvvLbq+5cuXi9eXlZWFQYMGic916dLF4NyqqiosWLAA7du3h7+/Pxo1aoT9+/fj0qVLAICzZ8+ivLwcDz30kEVtuNP58+dRWVmJnj17isfc3NzQtWtXg3sGAB06dBB/DwkJAQD8/vvvVn82kTNhuCFyYt7e3oiOjkZ0dDQeeOAB/POf/8SNGzewYcMGAMD48ePx9ddf49dff8XmzZsxYMAAtGjRwuz3v3jxIh599FF06NABO3fuRGZmpliTU1FRIX7GhQsXMHr0aJw8eRJdunTBypUrAUAMWtOnT8dvv/2Ghx56CK+++qrZn9+0aVPx+qKjo+Ht7W1w7XdatmwZ3n33Xbz++us4ePAgsrKyEBsbK7azYcOGZn+uFNzc3MTfNRoNgNs1P0RUN4YbIhJpNBq4uLjgzz//BAC0b98eXbp0wYYNG7B9+3ajdR//+c9/ajxu06YNACAzMxN6vR7vvPMOHnzwQdxzzz347bffarxHWFgYJk2ahLS0NLzyyitiuAKAJk2aID4+Hh9++CFSUlKwfv16KS9ZdPjwYTz++OMYNWoUOnbsiJYtW+Knn34Sn2/VqhUaNmwoFlPfzd3dHcDtHqDaREVFwd3dHYcPHxaPVVZW4tixY7jvvvskuhIiamDrBhCR7ZSXlyM/Px/A7ZlJq1atwvXr1xEXFyeeM378eEyZMgXe3t7429/+VuM9Dh8+jKVLl2LYsGH4+uuv8cknn2DPnj0AgOjoaFRWVmLlypWIi4vD4cOHsW7dOoPXT5s2DUOGDME999yDP/74AwcPHhTD0Zw5c9C5c2e0bdsW5eXl2L17t/ic1Fq1aoVPP/0U33//PRo3bozk5GQUFBSIocPT0xOvv/46ZsyYAXd3d/Ts2RNXr17F6dOnMW7cOAQFBaFhw4bYt28fmjdvDk9PT2i1WoPP8Pb2xgsvvIDXXnsN/v7+CA8Px9KlS1FWVoZx48bJcl1Ezog9N0RObN++fQgJCUFISAi6deuGY8eO4ZNPPhGnMQPAyJEj0aBBA4wcORKenp413uOVV17BDz/8gE6dOuGtt95CcnIyYmNjAQAdO3ZEcnIylixZgnbt2mHbtm1ISkoyeH1VVRUmT56MNm3aYPDgwbjnnnuwZs0aALd7QxITE9GhQwf06dMHrq6uSE1NleVevPHGG4iJiUFsbCz69euHpk2b1lhZePbs2XjllVcwZ84ctGnTBiNGjBDrYBo0aIAVK1bgvffeQ7NmzfD4448b/ZzFixfjiSeewOjRoxETE4OcnBzs378fjRs3luW6iJyRRhAEwdaNICL7dfHiRURFReHYsWOIiYkxeC4iIgLTpk3DtGnTbNM4IiIjOCxFREZVVlaiqKgIb7zxBh588MEawYaIyF5xWIqIjDp8+DBCQkJw7NixGnUytrZo0SI0atTI6M+QIUNs3TwisjEOSxGRwykuLq6xom+1hg0bIjQ0VOEWEZE9YbghIiIiVeGwFBEREakKww0RERGpCsMNERERqQrDDREREakKww0RERGpCsMNERERqQrDDREREakKww0RERGpyv8HmPVM1GPgm8UAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_0.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTRElEQVR4nO3deVhUZeM+8HtABhBZQgXBUBR3TQVL01LMMDTD/FWvu6GmZolLtEmWiuZSmeGa5aui5ZqSZfpqapFLloVruSuk+UVUSEB4FWKe3x++TI4MMDPMmTnL/bmuuXTOnDnzPDPMzD3PdnRCCAEiIiIilXBxdgGIiIiI7InhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiIiIVIXhhoiIiFSF4YaIiIhUheGGiMhJkpOTodPpkJGR4eyiEKkKww2Riv3yyy+Ii4tDy5Yt4eXlhXr16qFv3744c+ZMmX27du0KnU4HnU4HFxcX+Pj4oGnTphgyZAh27txp1eNu2bIFkZGRCAgIQPXq1dGwYUP07dsX27dvt1fVypg5cyY2b95cZvuPP/6IqVOn4saNG5I99r2mTp1qfC51Oh2qV6+OFi1a4O2330ZeXp5dHmPNmjVISkqyy7GI1IbhhkjF3nvvPWzatAmPP/445s2bh1GjRmHPnj2IiIjAb7/9Vmb/+++/H5999hlWrVqFDz74AL1798aPP/6IJ554Av369UNxcXGljzlnzhz07t0bOp0OCQkJ+Oijj/Dss8/i7NmzWLdunRTVBFBxuElMTHRouCn18ccf47PPPsPcuXPRrFkzzJgxAz169IA9TunHcENUvmrOLgARSSc+Ph5r1qyBXq83buvXrx8eeOABzJ49G59//rnJ/r6+vhg8eLDJttmzZ2PcuHFYvHgxQkND8d5775X7eH///TemT5+O7t2749tvvy1z+9WrV6tYI/koLCxE9erVK9znueeeQ61atQAAo0ePxrPPPouUlBT89NNP6NixoyOKSaRJbLkhUrFOnTqZBBsAaNy4MVq2bImTJ09adAxXV1fMnz8fLVq0wMKFC5Gbm1vuvtevX0deXh4eeeQRs7cHBASYXL916xamTp2KJk2awMPDA0FBQXjmmWdw/vx54z5z5sxBp06dULNmTXh6eqJdu3bYuHGjyXF0Oh0KCgqwcuVKY1fQ0KFDMXXqVLz++usAgAYNGhhvu3uMy+eff4527drB09MT/v7+6N+/Py5dumRy/K5du6JVq1ZIS0tDly5dUL16dbz11lsWPX9369atGwAgPT29wv0WL16Mli1bwt3dHcHBwRgzZoxJy1PXrl2xdetW/PHHH8Y6hYaGWl0eIrViyw2RxgghkJWVhZYtW1p8H1dXVwwYMADvvPMO9u3bh169epndLyAgAJ6entiyZQvGjh0Lf3//co9ZUlKCp556Crt370b//v0xfvx45OfnY+fOnfjtt98QFhYGAJg3bx569+6NQYMGoaioCOvWrcO//vUvfPPNN8ZyfPbZZxgxYgTat2+PUaNGAQDCwsLg5eWFM2fOYO3atfjoo4+MrSi1a9cGAMyYMQPvvPMO+vbtixEjRuDatWtYsGABunTpgsOHD8PPz89Y3uzsbPTs2RP9+/fH4MGDERgYaPHzV6o0tNWsWbPcfaZOnYrExERERUXhpZdewunTp/Hxxx/jl19+wf79++Hm5oZJkyYhNzcXf/75Jz766CMAQI0aNawuD5FqCSLSlM8++0wAEMuWLTPZHhkZKVq2bFnu/b788ksBQMybN6/C40+ePFkAEF5eXqJnz55ixowZIi0trcx+y5cvFwDE3Llzy9xmMBiM/y8sLDS5raioSLRq1Up069bNZLuXl5eIjY0tc6wPPvhAABDp6ekm2zMyMoSrq6uYMWOGyfbjx4+LatWqmWyPjIwUAMSSJUvKrffdpkyZIgCI06dPi2vXron09HTxySefCHd3dxEYGCgKCgqEEEKsWLHCpGxXr14Ver1ePPHEE6KkpMR4vIULFwoAYvny5cZtvXr1EvXr17eoPERaw24pIg05deoUxowZg44dOyI2Ntaq+5a2DOTn51e4X2JiItasWYPw8HDs2LEDkyZNQrt27RAREWHSFbZp0ybUqlULY8eOLXMMnU5n/L+np6fx/3/99Rdyc3PRuXNnHDp0yKry3yslJQUGgwF9+/bF9evXjZc6deqgcePG+P777032d3d3x7Bhw6x6jKZNm6J27dpo0KABXnzxRTRq1Ahbt24td6zOrl27UFRUhAkTJsDF5Z+P55EjR8LHxwdbt261vqJEGsRuKSKNuHLlCnr16gVfX19s3LgRrq6uVt3/5s2bAABvb+9K9x0wYAAGDBiAvLw8/Pzzz0hOTsaaNWsQExOD3377DR4eHjh//jyaNm2KatUq/hj65ptv8O677+LIkSO4ffu2cfvdAcgWZ8+ehRACjRs3Nnu7m5ubyfW6deuWGb9UmU2bNsHHxwdubm64//77jV1t5fnjjz8A3AlFd9Pr9WjYsKHxdiKqGMMNkQbk5uaiZ8+euHHjBvbu3Yvg4GCrj1E6dbxRo0YW38fHxwfdu3dH9+7d4ebmhpUrV+Lnn39GZGSkRfffu3cvevfujS5dumDx4sUICgqCm5sbVqxYgTVr1lhdh7sZDAbodDr85z//MRv07h3DcncLkqW6dOliHOdDRI7DcEOkcrdu3UJMTAzOnDmDXbt2oUWLFlYfo6SkBGvWrEH16tXx6KOP2lSOBx98ECtXrkRmZiaAOwN+f/75ZxQXF5dpJSm1adMmeHh4YMeOHXB3dzduX7FiRZl9y2vJKW97WFgYhBBo0KABmjRpYm11JFG/fn0AwOnTp9GwYUPj9qKiIqSnpyMqKsq4raotV0RqxjE3RCpWUlKCfv364cCBA/jiiy9sWlulpKQE48aNw8mTJzFu3Dj4+PiUu29hYSEOHDhg9rb//Oc/AP7pcnn22Wdx/fp1LFy4sMy+4n+L3Lm6ukKn06GkpMR4W0ZGhtnF+ry8vMwu1Ofl5QUAZW575pln4OrqisTExDKL6gkhkJ2dbb6SEoqKioJer8f8+fNNyrRs2TLk5uaazFLz8vKqcFo+kZax5YZIxV599VV8/fXXiImJQU5OTplF++5dsC83N9e4T2FhIc6dO4eUlBScP38e/fv3x/Tp0yt8vMLCQnTq1AkPP/wwevTogZCQENy4cQObN2/G3r170adPH4SHhwMAnn/+eaxatQrx8fE4ePAgOnfujIKCAuzatQsvv/wynn76afTq1Qtz585Fjx49MHDgQFy9ehWLFi1Co0aNcOzYMZPHbteuHXbt2oW5c+ciODgYDRo0QIcOHdCuXTsAwKRJk9C/f3+4ubkhJiYGYWFhePfdd5GQkICMjAz06dMH3t7eSE9Px5dffolRo0bhtddeq9Lzb63atWsjISEBiYmJ6NGjB3r37o3Tp09j8eLFeOihh0xer3bt2mH9+vWIj4/HQw89hBo1aiAmJsah5SWSLWdO1SIiaZVOYS7vUtG+NWrUEI0bNxaDBw8W3377rUWPV1xcLJYuXSr69Okj6tevL9zd3UX16tVFeHi4+OCDD8Tt27dN9i8sLBSTJk0SDRo0EG5ubqJOnTriueeeE+fPnzfus2zZMtG4cWPh7u4umjVrJlasWGGcan23U6dOiS5dughPT08BwGRa+PTp00XdunWFi4tLmWnhmzZtEo8++qjw8vISXl5eolmzZmLMmDHi9OnTJs9NRdPk71VavmvXrlW4371TwUstXLhQNGvWTLi5uYnAwEDx0ksvib/++stkn5s3b4qBAwcKPz8/AYDTwonuohPCDic5ISIiIpIJjrkhIiIiVWG4ISIiIlVhuCEiIiJVYbghIiIiVWG4ISIiIlVhuCEiIiJV0dwifgaDAf/3f/8Hb29vLl9ORESkEEII5OfnIzg4GC4uFbfNaC7c/N///R9CQkKcXQwiIiKywaVLl3D//fdXuI/mwo23tzeAO09ORefIISIiIvnIy8tDSEiI8Xu8IpoLN6VdUT4+Pgw3RERECmPJkBIOKCYiIiJVYbghIiIiVXFquNmzZw9iYmIQHBwMnU6HzZs3V7h/SkoKunfvjtq1a8PHxwcdO3bEjh07HFNYIiIiUgSnjrkpKChAmzZtMHz4cDzzzDOV7r9nzx50794dM2fOhJ+fH1asWIGYmBj8/PPPCA8Pt2vZSkpKUFxcbNdj0j/c3Nzg6urq7GIQEZEK6YQQwtmFAO4MEPryyy/Rp08fq+7XsmVL9OvXD5MnT7Zo/7y8PPj6+iI3N9fsgGIhBK5cuYIbN25YVQ6ynp+fH+rUqcP1hoiIqFKVfX/fTdGzpQwGA/Lz8+Hv71/uPrdv38bt27eN1/Py8io8ZmmwCQgIQPXq1fnFKwEhBAoLC3H16lUAQFBQkJNLREREaqLocDNnzhzcvHkTffv2LXefWbNmITEx0aLjlZSUGINNzZo17VVMMsPT0xMAcPXqVQQEBLCLioiI7Eaxs6XWrFmDxMREbNiwAQEBAeXul5CQgNzcXOPl0qVL5e5bOsamevXqdi8vlVX6PHNsExER2ZMiW27WrVuHESNG4IsvvkBUVFSF+7q7u8Pd3d2q47MryjH4PBMRkRQUF27Wrl2L4cOHY926dejVq5ezi0NERBLJzs5GUVFRubfr9XoOISCznBpubt68iXPnzhmvp6en48iRI/D390e9evWQkJCAy5cvY9WqVQDudEXFxsZi3rx56NChA65cuQLgzvgNX19fp9SBiIjsLzs7GwsXLqx0v7i4OAYcKsOpY25+/fVXhIeHG9eoiY+PR3h4uHFad2ZmJi5evGjc/9NPP8Xff/+NMWPGICgoyHgZP368U8ovJ0OHDoVOp4NOp4ObmxsCAwPRvXt3LF++HAaDweLjJCcnw8/PT7qCEhFZ4N4Wm9xcb6SnhyI317vC/YgAJ7fcdO3aFRUts5OcnGxyPTU1VdoC2YEzm1F79OiBFStWoKSkBFlZWdi+fTvGjx+PjRs34uuvv0a1aorrhSQiwqFD4diy5SkI4QKdzoCYmG8QEXHY2cUiGeO3nR05uxnV3d0dderUAQDUrVsXERERePjhh/H4448jOTkZI0aMwNy5c7FixQpcuHAB/v7+iImJwfvvv48aNWogNTUVw4YNA/DPYN8pU6Zg6tSp+OyzzzBv3jycPn0aXl5e6NatG5KSkiqcqUZEVFW5ud7GYAMAQrhgy5anEBZ2Dr6++U4uHcmVYqeCy5GlzaOObEbt1q0b2rRpg5SUFACAi4sL5s+fj99//x0rV67Ed999hzfeeAMA0KlTJyQlJcHHxweZmZnIzMzEa6+9BuDOdO3p06fj6NGj2Lx5MzIyMjB06FCH1YOItCknp6Yx2JQSwgU5OeUv3krElhsNaNasGY4dOwYAmDBhgnF7aGgo3n33XYwePRqLFy+GXq+Hr68vdDqdsQWo1PDhw43/b9iwIebPn4+HHnoIN2/eRI0aNRxSDyLSHn//bOh0BpOAo9MZ4O+f48RSkdyx5UYDhBDGbqZdu3bh8ccfR926deHt7Y0hQ4YgOzsbhYWFFR4jLS0NMTExqFevHry9vREZGQkAJgO+iYjszdc3HzEx30CnuzMxonTMDbukqCJsudGAkydPokGDBsjIyMBTTz2Fl156CTNmzIC/vz/27duHF154AUVFReWuzFxQUIDo6GhER0dj9erVqF27Ni5evIjo6GjOVCAiyUVEHEZY2Dnk5PjD3z+HwcYGWlsziOFG5b777jscP34cr7zyCtLS0mAwGPDhhx/CxeVOo92GDRtM9tfr9SgpKTHZdurUKWRnZ2P27NkICQkBcGcaPxGRVPR6vcl1X998s6Hm3v2oLGdPdnEGhhsVuX37Nq5cuWIyFXzWrFl46qmn8Pzzz+O3335DcXExFixYgJiYGOzfvx9LliwxOUZoaChu3ryJ3bt3o02bNqhevTrq1asHvV6PBQsWYPTo0fjtt98wffp0J9WSiLSgZs2aiIuL01Rrg1TMrRmUk1MT/v7ZJoFRTS3xDDcqsn37dgQFBaFatWq477770KZNG8yfPx+xsbFwcXFBmzZtMHfuXLz33ntISEhAly5dMGvWLDz//PPGY3Tq1AmjR49Gv379kJ2dbZwKnpycjLfeegvz589HREQE5syZg969ezuxtkSkdgwu9qeVNYN0oqJV9FQoLy8Pvr6+yM3NhY+Pj8ltt27dQnp6Oho0aAAPDw+rj63Fpr+qqOrzTURElcvMzMSnn36K3FxvJCVNKDPzbMKEJPj65mPUqFEICgpyYkkrVtH3973YcmNHbEYlIiK5qmjNILUN0ma4sTMGFyIikiMtrRnEdW6IiIg0QEtrBrHlhoiISCO0smYQww0REZGKaXHNIIYbIiIiFdPiZBeGGyIiIpVTU3CxBAcUExERkaow3BAREZGqMNyQRVJTU6HT6XDjxg2L7xMaGoqkpCTJykRERGQOw41KDB06FDqdDqNHjy5z25gxY6DT6TB06FDHF4yISCWys7ORmZlZ7iU7O9vZRaT/4YBiFQkJCcG6devw0UcfwdPTE8Cd8zetWbMG9erVc3LpiIiUi+cOVBa23KhIREQEQkJCkJKSYtyWkpKCevXqITw83Ljt9u3bGDduHAICAuDh4YFHH30Uv/zyi8mxtm3bhiZNmsDT0xOPPfYYMjIyyjzevn370LlzZ3h6eiIkJATjxo1DQUGBZPUjIqqIlC0r906jzs31Rnp6KHJzvSvcj5yDLTcS+vNP4OxZoHFj4P77HfOYw4cPx4oVKzBo0CAAwPLlyzFs2DCkpqYa93njjTewadMmrFy5EvXr18f777+P6OhonDt3Dv7+/rh06RKeeeYZjBkzBqNGjcKvv/6KV1991eRxzp8/jx49euDdd9/F8uXLce3aNcTFxSEuLg4rVqxwTGWJiP7HkS0rhw6FY8uWpyCEi/EUBhERh6t0TLIvttxIZNkyoH59oFu3O/8uW+aYxx08eDD27duHP/74A3/88Qf279+PwYMHG28vKCjAxx9/jA8++AA9e/ZEixYtsHTpUnh6emLZ/wr58ccfIywsDB9++CGaNm2KQYMGlRmvM2vWLAwaNAgTJkxA48aN0alTJ8yfPx+rVq3CrVu3HFNZIqL/cVTLSm6utzHYAHfOqr1ly1NlHoeciy03EvjzT2DUKMBw59xkMBiAF18EoqOlb8GpXbs2evXqheTkZAgh0KtXL9SqVct4+/nz51FcXIxHHnnEuM3NzQ3t27fHyZMnAQAnT55Ehw4dTI7bsWNHk+tHjx7FsWPHsHr1auM2IQQMBgPS09PRvHlzKapHRFQpKVtWcnJqmpxVG7gTcHJy/FV7niYlYriRwNmz/wSbUiUlwLlzjumeGj58OOLi4gAAixYtkuQxbt68iRdffBHjxo0rcxsHLxORs5TXshIWds4u4cPfPxs6ncEk4Oh0Bvj751T52GQ/7JaSQOPGgMs9z6yrK9CokWMev0ePHigqKkJxcTGio6NNbgsLC4Ner8f+/fuN24qLi/HLL7+gRYsWAIDmzZvj4MGDJvf76aefTK5HRETgxIkTaNSoUZmLmk6+RkTKUlHLij34+uYjJuYb6HR3fsGWtgyx1UZe2HIjgfvvBz799E5XVEnJnWDzySeOG1Ts6upq7GJydXU1uc3LywsvvfQSXn/9dfj7+6NevXp4//33UVhYiBdeeAEAMHr0aHz44Yd4/fXXMWLECKSlpSE5OdnkOG+++SYefvhhxMXFYcSIEfDy8sKJEyewc+dOiwb1ERFJwREtKxERhxEWdg45Of7w989hsJEhttxI5IUXgIwM4Pvv7/z7v9zgMD4+PvDx8TF72+zZs/Hss89iyJAhiIiIwLlz57Bjxw7cd999AO50K23atAmbN29GmzZtsGTJEsycOdPkGK1bt8YPP/yAM2fOoHPnzggPD8fkyZMRHBwsed2IiMojVcvKvS3Svr75aNDgjzLHZcu1POiEEMLZhXCkvLw8+Pr6Ijc3t8yX/61bt5Ceno4GDRrAw8PDSSXUDj7fRGQvmZmZ+PTTT43Xc3O9zbasjBo1CkFBQTY9RnZ2doWzrfR6PRfwk1BF39/3YrcUEREpnrmWFXOtNVVpWWFwUQ6GGyIiUryaNWsiLi6OLSsEgOGGiDSGXQvqxdeNSjHcEJFm8OSHRNrA2VJmaGyMtdPweSZH48kPibSBLTd3cXNzAwAUFhbC09PTyaVRv8LCQgD/PO9EjsSTH8ofuxDJVgw3d3F1dYWfnx+uXr0KAKhevTp0Op2TS6U+QggUFhbi6tWr8PPzK7PQIJHUpF6in6qOXYhUFQw396hTpw4AGAMOScfPz8/4fBM5wo0bNwBUfvLDGzdu2LwWCtmHuS7EnJya8PfPNgmg7EIkcxhu7qHT6RAUFISAgAAUFxc7uziq5ebmxhYbcri///4bQOVL9JfuR/LALkSyFsNNOVxdXfnlS6RSvr75aN36GI4ebQNAB0Cgdetj7JKSIXYhki04W4qINCc31xvHjrXGnWADADocO9a6zKwpcj6pz/JN6sRwQ0SaUTozr7IvTM7gk4/SLsS72fss36Q+DDdEpBm+vr4AKv/CLN2PnE+qs3yTunHMDRFpTukX5r2DVPmFKU8REYcRFnbO7Fm+icxhuCEiyclxMTZ+YcqbI87yTerFcENEkpLTYmz8wlQOnuWbqoLhhogkJafF2PiFqSx8HchWDDdE5DByWIyNX5hE6sfZUkTkEOUtxsa1ZYjI3hhuiMghuBgbETkKww0ROQQXYyMiR2G4ISKH4GJsROQoHFBMRA7DtWWIyBEYbohIUlxbhkh55LjwpjUYbohIUlxbhkhZ5LTwpq0YbohIcnL9ACSisuS08KatGG6IiOxI6c35RHeTw8KbtmC4ISKyEzU05xOVKm/hzbCwc7KfDMCp4EREdmKuOT89PbTMKsxybs4nKqXkhTfZckNEJAGlNucTlSpdePPugKOUhTed2nKzZ88exMTEIDg4GDqdDps3b670PqmpqYiIiIC7uzsaNWqE5ORkyctJRGQNnkeLgDvdlJmZmeVesrOznV3ECil54U2nttwUFBSgTZs2GD58OJ555plK909PT0evXr0wevRorF69Grt378aIESMQFBSE6OhoB5SYiKhyFTXnK+GLgapOLeOvlLrwplPDTc+ePdGzZ0+L91+yZAkaNGiADz/8EADQvHlz7Nu3Dx999BHDDZFGyXF2kpKb88k+lDydWg0LbypqzM2BAwcQFRVlsi06OhoTJkxwToGIyKnk+uu4tDn/3jE3SvnVS/altPFXalh4U1Hh5sqVKwgMDDTZFhgYiLy8PPz3v/+Fp6dnmfvcvn0bt2/fNl7Py8uTvJykDta0CEjdeiDH1gk5kPOvY6U255N9KXU6tdI/TxQVbmwxa9YsJCYmOrsYpDDWtAgAkLT1QK6tE3Ijh1/HamjOJ/vi+CvnUFS4qVOnDrKysky2ZWVlwcfHx2yrDQAkJCQgPj7eeD0vLw8hISGSlpOUryotAvZuPZBz64RcyOXXsRqa88m+OP7KORQVbjp27Iht27aZbNu5cyc6duxY7n3c3d3h7u4uddFIxaxpEZC69UAOrRNyJKdfxwwudDeOv3IOp4abmzdv4ty5c8br6enpOHLkCPz9/VGvXj0kJCTg8uXLWLVqFQBg9OjRWLhwId544w0MHz4c3333HTZs2ICtW7c6qwqkcta0CEjdeiCX1gk54q9jkjOOv3I8py7i9+uvvyI8PBzh4eEAgPj4eISHh2Py5MkAgMzMTFy8eNG4f4MGDbB161bs3LkTbdq0wYcffoh///vfnAZOkrFm+XGplypX8lLoUlPyYmOkTubGXzVo8EeZv0mOv5KGU1tuunbtCiFEubebW324a9euOHyYzfDkGNa0CEjdeqDk1glHzPbir2OSE62Nv5LbjE5FjbkhcjRr+sul7ltXat+9lLO9ODuJ5EwtwaUycpzRyXBDVAlrWgSkbj1QYuuElLO9tPbrmEiO5Dijk+GGyIyqtAjYu/VATa0TUsz2YnAhkg+5zOhkuCEyw9oWASlbD9TSOsHZXvInt3ETpCxyeo8z3BCVw5oPcak/8NXwhSKntWioLDmOmyBlkdN73KlTwYlIO0pne91NKbO9tMDcuIn09FDk5npXuB9RKTm9x9lyQ0QOodTZXlokl3ETpCxyeo8z3BCRwyhxtpfWyGncBCmPXN7jDDdEJCk1zfbSAjmNmyBlkON7nOGGiCSlltleWqHklbDJOeT4Hme4ISLJMbgoh5zGTZByyO09znBDRKRitqxdI5dxE0S2YrghIlIpa9aukeO4CSJbMdwQEamUNef8CQoKkt24CSJbMdwQEWmAJWvXMLiQWnCFYiIilStv7Zp7Vx8mUguGGyIilato7RoiNWK4ISJSOTmd84fIERhuiIhUrnTtmtKAw7VrSO04oJiISAO4dg1pCcMNEZFKce0a0iqGGyKSHVtW1aWy5HjOHyJHYLghIlmxZlVdfilXjs8RaREHFBORrJhbVTc9PbTMmiwVtUYQkbax5YaIZMuSVXWJiO7FcEOS4bgJqoryVtUNCzvHmT5EVCGGG5IEx01QVVW0qi7DDRFVhGNuSBIcN0FVxVV1ichWbLkhyXHcBNmidFXde/922GpDRJVhuCFJcdwEVQVX1SUiWzDckKQ4boKsxVV1iaiqGG5IUqXjJu4OOBw3QRXhqrpEVFUMNyQpjpsgWzC4EFFVMNyQ5DhugrjmERE5EsONg2nlQ57jJqgU1zwiIkdjuHEgLX3Ic9wElTK35lFOTk34+2ebBF5b1zzSyg8GIrIcw40DSf0hLzf8QqF72XvNIy39YHAEBkVSC4YbJ+HCdqQ1Uqx5pLUfDFJiUCQ1YbhxAi5sR1ok9ZpH/MFQNQyKpCYMN07Ahe1Ii6Rc84g/GOyLQZGUjifOdAKeEJC0qHTNo9K/fXuueVTRDwayTnlB8d6T3hLJGVtunIAL25FWSbXmEVfCth+2LJMaMNw4CRe2I61wxJpH/MFgPwyKpAYMNw7Ehe1Iixy15hF/MNgHgyKpAcONA2ltYTu5rZkht/JoiVTPK38wSINBUf74eVYxhhsH08ofm9zWzJBbecg+tPaDQUoMisrBz7PKMdyQJOS2ZobcykP2o9UPb3tjUFQOfp5VjuGGJCe3NTPkVh4iuWBwUR5+npnHcEOSktvianIrD1Udxx6QVvHzrHwMNyQpua2ZIbfyUNVw7AFpGT/PyscViklScluNWW7loaoxN/YgPT20zGq6Wh57QOrFz7PyMdyQpKRccl8N5SH7OXQoHElJE7ByZSySkibg0KFwZxeJSFL8PCsfu6VIcnJbM0Nu5aGq49gD0ip+npnHcEOSkNuaGXIrD9kXxx6QlvDzrHIMNyQJua2ZIbfykH3xfEikJfw8qxzDDUlGbm8suZWH7IfnQyKt4edZxRhuSDO4Hoq6cewBEZViuCFN4Hoo6sSxB0RkDsMNaQLPxaJOHHtARObYFG7q1auHrl27IjIyEl27dkVYWJi9y0Ua5KhuI56LRV0YXIjoXjaFm5kzZ2LPnj147733MHLkSNStWxeRkZHGsNO4cWN7l5NUzlHdRlwPhYhI/WxaoXjw4MH49NNPcebMGVy+fBkffPABAODll19Gs2bNrD7eokWLEBoaCg8PD3To0AEHDx6scP+kpCQ0bdoUnp6eCAkJwSuvvIJbt27ZUhWSCUcto1/ReihERKQONo+5KSwsxL59+5Camorvv/8ehw8fRqtWrdC1a1erjrN+/XrEx8djyZIl6NChA5KSkhAdHY3Tp08jICCgzP5r1qzBxIkTsXz5cnTq1AlnzpzB0KFDodPpMHfuXFurQzIiZbcR10NRH86CIzWQ+u9Ya+8Tm8JNp06dcPjwYTRv3hxdu3bFxIkT0aVLF9x3331WH2vu3LkYOXIkhg0bBgBYsmQJtm7diuXLl2PixIll9v/xxx/xyCOPYODAgQCA0NBQDBgwAD///LMtVSGZkbrbiOuhqAtnwZEaSP13rMX3iU3h5tSpU/Dy8kKzZs3QrFkzNG/e3KZgU1RUhLS0NCQkJBi3ubi4ICoqCgcOHDB7n06dOuHzzz/HwYMH0b59e1y4cAHbtm3DkCFDzO5/+/Zt3L5923g9Ly/P6nKS4zhiGX2uh6IenAVHaiD137EW3yc2hZvs7GwcP34cqamp2LFjByZNmgS9Xo/IyEg89thjGDlypEXHuX79OkpKShAYGGiyPTAwEKdOnTJ7n4EDB+L69et49NFHIYTA33//jdGjR+Ott94yu/+sWbOQmJhoXQXJaaTqNuJ6KOqnlVlwWute0Bqp/4618j6xKdzodDq0bt0arVu3xtixY5GWloaFCxdi9erVWL9+vcXhxhapqamYOXMmFi9ejA4dOuDcuXMYP348pk+fjnfeeafM/gkJCYiPjzdez8vLQ0hIiGTlo6qRqtuI66Gom1ZmwWmxe0FLpP471sr7BLAx3Bw6dAipqalITU3Fvn37kJ+fjwceeABjx45FZGSkxcepVasWXF1dkZWVZbI9KysLderUMXufd955B0OGDMGIESMAAA888AAKCgowatQoTJo0CS4upl0a7u7ucHd3t7KG5ExSdRvxw169tHJWcC12L2iJ1H/HWnmfADaGm/bt2yM8PByRkZEYOXIkunTpAl9fX6uPo9fr0a5dO+zevRt9+vQBABgMBuzevRtxcXFm71NYWFgmwLi6ugIAhBBWl4Hkgd1GVBVanAWnle4FLZH671hL7xObwk1OTg58fHzsUoD4+HjExsbiwQcfRPv27ZGUlISCggLj7Knnn38edevWxaxZswAAMTExmDt3LsLDw43dUu+88w5iYmKMIYeUh91GVBVamwWnpe4FLcjNzQVQ+d9xbm4ugoKCbH4cLb1PbAo3pcEmLS0NJ0+eBAC0aNECERERVh+rX79+uHbtGiZPnowrV66gbdu22L59u3GQ8cWLF01aat5++23odDq8/fbbuHz5MmrXro2YmBjMmDHDlqqQjDC4UFVoaRaclroXtKC4uNj4/4iIwwgIuIKLF+uhXr2LuP/+TLP72Uor7xObws3Vq1fRr18//PDDD/Dz8wMA3LhxA4899hjWrVuH2rVrW3W8uLi4cruhUlNTTQtcrRqmTJmCKVOm2FJ0IlIRrXZnaql7QQuqVfvnq7ii7sa797OGFt8nNj1TY8eOxc2bN/H777+jefPmAIATJ04gNjYW48aNw9q1a+1aSCIic7TanWlN9wKnjstfaSNBZd2NpftZS4vvE5vCzfbt27Fr1y5jsAHudEstWrQITzzxhN0KR0RUGTV9IFvDku4FTh1XFim7G7X2+toUbgwGA9zc3Mpsd3Nzg8FgqHKhSJv4C5OoYtZ2L3DquLKwu9F+bAo33bp1w/jx47F27VoEBwcDAC5fvoxXXnkFjz/+uF0LSNrAX5hElatK9wKnjsuflmYzSc2mcLNw4UL07t0boaGhxtV+L126hFatWuHzzz+3awFJG/gLk8gytoR7Th1XDq3MZpKaTeEmJCQEhw4dwq5du4zngGrevDmioqLsWjjSJv7CJLIvTh2XNy3OZpKabfPKcOf8Ut27d0f37t3tWR7SOP7CJLI/juWQNy3OZpKaxeFm/vz5Fh903LhxNhWGiL8wyVociF45juWQP63/jdqbxeHmo48+smg/nU7HcEM24y9MsgYHoluOYzlISywON+np6VKWgwgAf2GSdTgQvWIcy0FaZdWYG4PBUOaM3ET2xl+YZAsORC+LYzlIq6wKN25ubsjMzERAQAAA4PXXX0dCQgL8/f0lKRxpB39hUlVwIHr5GFxIi6wKN0IIk+uffPIJXnrpJYYbqjL+wqSq4EB0IrqbzVPBgbJhh6gqGFzUS+oZTRyITkR3q1K4ISKqjCNmNHEgOhHdzepwM3nyZFSvXh3AnRkIM2bMgK+vr8k+c+fOtU/piEjxHDWjiQPRiaiUVeGmS5cuOH36tPF6p06dcOHCBZN9dDqdfUpGRKpj7xlNHIhOROZYFW5SU1MlKgYRqZ0UM5o4EJ2IzJF0zI2Pjw+OHDmChg0bSvkwRKQAUs1oYnAhontJuiIfZ1MRUanSGU1344wmIpIClxsmIocondFUGnA4o4mIpMKp4ETkMJzRRESOwHBDRJLijCYicjRJww2nhRMRZzQRkaNJGm44oJiIAM5oIiLHknRA8X/+8x/UrVtXyocgIiIiMmFTy40QAhs3bsT333+Pq1evwmAwnd6ZkpICAHj00UerXkIiIiIiK9gUbiZMmIBPPvkEjz32GAIDAzm2hoiIiGTDpnDz2WefISUlBU8++aS9y0NERATgzhnlORCdbGFTuPH19eUpFYiISDLZ2dlYuHBhpfvFxcUx4FAZNg0onjp1KhITE/Hf//7X3uUhIiIq02KTm+uN9PRQ5OZ6V7gfEWBjy03fvn2xdu1aBAQEIDQ0FG5ubia3Hzp0yC6FIyIiOnQo3HhG+dLTdkREHHZ2sUjGbAo3sbGxSEtLw+DBgzmgmFSL/f1Ezpeb620MNsCdM8lv2fIUwsLO8fQdVC6bws3WrVuxY8cOTvUm1WJ/P5E85OTUNAabUkK4ICfHn+GGymXTmJuQkBD4+PjYuyxEssH+fiJ58PfPNp5JvpROZ4C/f46TSkRKYFO4+fDDD/HGG28gIyPDzsUhkp9Dh8KRlDQBK1fGIilpAg4dCnd2kYg0w9c3HzEx3xgDTumYG7baUEVs6pYaPHgwCgsLERYWhurVq5cZUJyTw0RN6hizwv5+IueLiDiMsLBzyMnxh79/Dt97VCmbwk1SUpKdi0Fqo5YxK+zvJ3IOvV5vct3XN9/se+7e/YiAKsyWIqqIuTErOTk14e+fbfIBJfcxK6X9/XcHHPb3E0mvZs2aiIuLU3zrLzmHTeHmbrdu3Srzx8fBxnQ3Ja9RUdrff2/52WpDJD0GF7KVTeGmoKAAb775JjZs2IDs7Owyt5eUlFS5YKQOahizwv5+IiJlsWm21BtvvIHvvvsOH3/8Mdzd3fHvf/8biYmJCA4OxqpVq+xdRlKwisasyJm5/v4GDf4oE2zY309EJD82tdxs2bIFq1atQteuXTFs2DB07twZjRo1Qv369bF69WoMGjTI3uUkhVLqmBX29yuHGmblEZF92RRucnJyjGcF9/HxMU79fvTRR/HSSy/Zr3SkeEoes8IvRPlTy6w8IrIvm8JNw4YNkZ6ejnr16qFZs2bYsGED2rdvjy1btsDPz8/ORSSl45gVkoocZ+WxJYnI+WwKN8OGDcPRo0cRGRmJiRMnIiYmBgsXLkRxcTHmzp1r7zKSAnGNCnI0OczKY0sSkTzYFG5eeeUV4/+joqJw6tQppKWloVGjRmjdurXdCkfKxTEr5EhymZUnx5Yksh+2yimHXda5qV+/PurXr2+P8pCK8E1OjiLHlaTl0JJE9sNWOWWxaSp4SUkJpk+fjrp166JGjRq4cOECAOCdd97BsmXL7FpAIqLKyO3M0eW1JN17VnlSDnOtcunpoWVeU7bKyYNN4WbGjBlITk7G+++/bzJmolWrVvj3v/9tt8IREVlCbmeOVur6TmSZQ4fCkZQ0AStXxiIpaQIOHQp3dpHoHjZ1S61atQqffvopHn/8cYwePdq4vU2bNjh16pTdCkdEZCk5zcpT6vpOVDm5jO+iitnUcnP58mU0atSozHaDwYDi4uIqF4qIyBJyXUlabi1JZD9slVMGm1puWrRogb1795YZRLxx40aEh7N5jogcQ86z8uTUkkT2w1Y5ZbAp3EyePBmxsbG4fPkyDAYDUlJScPr0aaxatQrffPONvctIRFQuOc1M4fpO6qfkVde1xKZw8/TTT2PLli2YNm0avLy8MHnyZERERGDLli3o3r27vctIRDLD9T7Mk3NLEtkPW+Xkz+Z1bjp37oydO3fasyxEpABc76NiWqyzFrBVTllsPrfUL7/8UuZNfOPGDURERBjXvSEi9eEqvKRFbJVTFpvCTUZGBkpKSspsv337Ni5fvlzlQhGRMnAVXtISBhflsCrcfP3118b/79ixA76+vsbrJSUl2L17N0JDQ+1WOCKSL673QURyZVW46dOnDwBAp9MhNjbW5DY3NzeEhobiww8/tFvhiEi+5Hg+JyIiwMpF/AwGAwwGA+rVq4erV68arxsMBty+fRunT5/GU089ZXUhFi1ahNDQUHh4eKBDhw44ePBghfvfuHEDY8aMQVBQENzd3dGkSRNs27bN6sclItvJ7XxORESlrGq5OXDgALKzs5Genm7ctmrVKkyZMgUFBQXo06cPFixYAHd3d4uPuX79esTHx2PJkiXo0KEDkpKSEB0djdOnTyMgIKDM/kVFRejevTsCAgKwceNG1K1bF3/88Qf8/PysqQrZgNN/6W5c74OI5MqqcJOYmIjHHnvM2Dpz/PhxvPDCCxg6dCiaN2+ODz74AMHBwZg6darFx5w7dy5GjhyJYcOGAQCWLFmCrVu3Yvny5Zg4cWKZ/ZcvX46cnBz8+OOPcHNzAwCO83EATv8lc7jeBxHJkVXdUkePHsXjjz9uvL5u3Tp06NABS5cuRXx8PObPn48NGzZYfLyioiKkpaUhKirqnwK5uCAqKgoHDhwwe5+vv/4aHTt2xJgxYxAYGIhWrVph5syZZmdvAXdmcOXl5ZlcyHrmpv+mp4ciN9e7wv1IfeR6PiciolJWtdz89ddfCAwMNF7/4Ycf0LNnT+P1hx56CJcuXbL4eNevX0dJSYnJMQEgMDCw3LOLX7hwAd999x0GDRqEbdu24dy5c3j55ZdRXFyMKVOmlNl/1qxZSExMtLhMVDlO/9U2rvdBRHJnVbgJDAxEeno6QkJCUFRUhEOHDpkEh/z8fGNXkVQMBgMCAgLw6aefwtXVFe3atcPly5fxwQcfmA03CQkJiI+PN17Py8tDSEiIpGVUM07/JYDrfRCRvFkVbp588klMnDgR7733HjZv3ozq1aujc+fOxtuPHTuGsLAwi49Xq1YtuLq6Iisry2R7VlYW6tSpY/Y+QUFBcHNzg6urq3Fb8+bNceXKFRQVFZVpCnd3d7dqgDNVjNN/iYhI7qwaczN9+nRUq1YNkZGRWLp0KZYuXWoSJpYvX44nnnjC4uPp9Xq0a9cOu3fvNm4zGAzYvXs3OnbsaPY+jzzyCM6dOweD4Z8pqGfOnEFQUBD7+B2A03+JiEjurAo3tWrVwp49e/DXX3/hr7/+wv/7f//P5PYvvvjCbNdQReLj47F06VKsXLkSJ0+exEsvvYSCggLj7Knnn38eCQkJxv1feukl5OTkYPz48Thz5gy2bt2KmTNnYsyYMVY9LtmmdPpvacDh9F8iIpIbm84tdfdpF+7m7+9v9bH69euHa9euYfLkybhy5Qratm2L7du3GwcZX7x4ES4u/2SwkJAQ7NixA6+88gpat26NunXrYvz48XjzzTdtqQrZgNN/iYhIznRCCOHsQjhSXl4efH19kZubCx8fH2cXRzG4zg0RETmTNd/fNrXckPZw+i8RESkFww1ZjMGFiIiUwKoBxURERERyx3BDREREqsJwQ0RERKrCcENERESqwnBDREREqsJwQ0RERKrCqeAOlp2dzbViysHnhoiI7IHhxoG4ym/5+NwQEZG9sFvKge5tlcjN9UZ6eihyc70r3E8L+NwQEZG9sOXGSQ4dCseWLU9BCBfjmbUjIg47u1iywOeGiIiqgi03TpCb62388gYAIVywZctTZVoptIjPDRERVRXDjQPl5uYCAHJyahq/vEsJ4YKcHH+T/bSosueGiIioMuyWcqDi4mIAgL9/NnQ6g8mXuE5ngL9/jsl+WlTZc0Mkd5z1R+R8DDdO4Oubj9atj+Ho0TYAdAAEWrc+Bl/ffGcXzel8ffMRE/NNmTE3fG5ICTjrj0geGG6cIDfXG8eOtcadYAMAOhw71hrdun3HL3EAERGHERZ2Djk5/vD3z+FzQophbtZfTk5N+Ptnm/wdc9YfkbQYbhyoWrU7T3dF40p8ffON+2mJXq83ue7rm2821Ny7H5FccdYfkfNo71vUifz8/ABUPq6kdD8tqVmzJuLi4jhWgVShvFl/YWHn2BJJ5AAMN07AcSXmMbiQWlTWOktE0mK4cRKOKyFSL876I62R2yxBhhsH4rgSIm1g6yxpiRxnCTLcOBDHlRBpB1tnSSvkOEuQ4cbBGFycR27NpqQ+bJ0lrZPLLEGGG9IEOTabkvqwdZa0TE6zBBluSBPk2GxK6sTgQlolp1mCDDekOXJpNiUiUhM5zRJkuCFNkarZlON5iEjr5DRLkOGGNEWKZlOO53EuBksi+ZDLLEGGG9IUKZpNOZ7HeRgsiZxPjrMEGW5IU6RuNtXKeB65tJYwWBI5nxxnCTLckOZI1Wwqp2mQUpJra4lWgiWRHMmtZdSl8l2IlM9cs2mDBn+UCR1VaTataDyPmphrLUlPD0VurneF+0mpvGB5b5mISBvYckOaYEuzqbVdL3KaBukocmktkdP6GkTkfAw3pBnWNJta0/VSSk7TIB1BTt1wWgyWRFQ+hhsiM2wdqCqXaZCOIKfWEq0FSyKqGMMNUSUq63qR4zRIR5Bba4mWgiURVYzhhiQjl+nCVWFJ14scp0E6ghxaS7QaLImoYgw3JAm5The2lqVdL3Kug5Sc3Vqi1WBJRBVjuCFJ2DJmRY4tPXLrepEDubWWMLgQ0b0YbkhylkwXlmtLjxy6XuSGrSVEJHcMNyQpS6cLy3kZfWd3vcgRgwsRyRnDDUnKlunCclgYTm5dL0REZDmGG5KUtWNW5LIwHLteqJQcx4IRUcUYbkhS1o5ZkdPCcPzCIrmOBSOiijHckOSsGbPC2UkkJ3IeC0ZE5WO4IUnYOmaFs5NIruQwFoyILMNwQ5KoypgVzk4iuZHLWDAisgzDDUnGmjEInJ1EciansWBEVDmGG5IFzk4iR7Fl9hPHghEpC8MNyQaDC0nN1tlPHAtGpCwMN0SkGVWZ/cSxYETKwXBDRJpkyewnjgUjUiaGmyri6qVEymPp7CeOBSNSJoabKuDqpUTKZM3sJ753iZTHpfJdqDzm+u/T00ORm+td4X5E5Fyls5/uxtlPROrBlhs74eqlRMrB2U9E6sZwYwdcvZRIeTj7iUi9GG7sgKuXEikDZz8RaQPDjR1w9VJl4Mw24uwnIm1guLED9t/LH2e2USm+vkTqJ4vZUosWLUJoaCg8PDzQoUMHHDx40KL7rVu3DjqdDn369JG2gOW4ceOG8f8REYcxYUISYmOTMWFCkslg4rv3I+fgzDYiIu1wesvN+vXrER8fjyVLlqBDhw5ISkpCdHQ0Tp8+jYCAgHLvl5GRgddeew2dO3d2YGlN6XQ6c1st3I+chTPbiIjUzenhZu7cuRg5ciSGDRsGAFiyZAm2bt2K5cuXY+LEiWbvU1JSgkGDBiExMRF79+51WsuIr6+v8f8VfWHevR85l1Qz2zieh4hIPpwaboqKipCWloaEhATjNhcXF0RFReHAgQPl3m/atGkICAjACy+8gL1791b4GLdv38bt27eN1/Py8qpe8HtwKrhySDGzjeN5iIjkxaljbq5fv46SkhIEBgaabA8MDMSVK1fM3mffvn1YtmwZli5datFjzJo1C76+vsZLSEhIlct9r4q+MElepFiZluN5iIjkxendUtbIz8/HkCFDsHTpUtSqVcui+yQkJCA+Pt54PS8vz+4Bh1PBlUPqmW0cz0NE5HxODTe1atWCq6srsrKyTLZnZWWhTp06ZfY/f/48MjIyEBMTY9xmMNz5FV6tWjWcPn0aYWFhJvdxd3eHu7u7BKX/B6eCy9+9M9vKW5n2xo0bCAoKsukx2D1JRCQPTg03er0e7dq1w+7du43TuQ0GA3bv3o24uLgy+zdr1gzHjx832fb2228jPz8f8+bNk6TLyVJcyl3eHDGzjStVExHJg9O7peLj4xEbG4sHH3wQ7du3R1JSEgoKCoyzp55//nnUrVsXs2bNgoeHB1q1amVyfz8/PwAos90RtLaUu5JnBDliZhu7J4mI5MHp4aZfv364du0aJk+ejCtXrqBt27bYvn27cZDxxYsX4eIii7UGy9DSUu5qmREkZdcRuyeJiOTB6eEGuPOFaK4bCgBSU1MrvG9ycrL9C2QFOX+R25O5GUE5OTXh759t8uUt9xlBUncdsXuSiMj5ZBFuSFmUPCNIiq4jrXVPEhHJHcMNWUXpM4Kk6DrSUvckEZESMNyQVdQwI0iKriMGFyIi+WC4IasodUYQu46IiLSD4YasotQZQew6IiLSDoYbsppSZwQxuBARaQPDjczJZeE8dusQEZFSMNzImJwWzmO3DhERKQXDjYzZsnCelC09DC5ERKQEDDcKYcnCeXJq6SFyFLl03RKRfDDcKIClC+ep5RQJRJZioCcicxhuFMCWhfOUfIoEIks5ItCzZYhIeRhuFMDahfOUfooEIltIEejZMkSkTC6V70LOVrpwnk5nAIBKF86rqKWHSI3KC/S5ud5VOq65lqH09NAyx2VXL5G8sOVGIaxZOE+pp0ggspUjznnGrl4i5WDLjYyZWzivQYM/ynxYm9vPmpYeIqUrDfR3s2egl6pliIikwZYbGavKwnlKPUUCkS2kPueZI1qGiMh+GG5kzppBijxFAmmZlIGeXb32wZlnyqH014rhRkV4igTSGkcFeqlbhrSAM8+UQw2vFcONysj1D41I6djVWzVcZFQ51PBaMdwQkWJJ/SHMrl5pcOaZcij1tWK4ISJVkOJDmF299sdFRpVDya8Vww1JRukD0kg5pPwQ5t+ofXHmmXIo+bViuCFJqGFAGimHkj+EtYYzz5RDya8VF/EjSXDZenIkqRfxI/vhIqPKoeTXii03JDmlDkgj5eBUbWXhzDPlUOprxXBDklLygDRSFqV+CGsFZ54phxpeK4YbkhTHQpCU1PAhrBWceaYcanitGG5IUkoekEbyp4YPYS3h66AcSn+tGG5IUhwLQVJT+ocwEdkfww1JjmMhiIjIkRhuSBIcC0FERM7CcEOS4FgIIiJyFoYbkgyDCxEROQNXKCYiIiJVYbghIiIiVWG4ISIiIlVhuCEiIiJVYbghIiIiVeFsKSI7yM7O5rR3IiKZYLghqqLs7GwsXLiw0v3i4uIYcIiIHIDdUkRVdG+LTW6uN9LTQ5Gb613hfkREJA223BDZ0aFD4WVOEhoRcdjZxSIi0hSGGyI7yc31NgYbABDCBVu2PIWwsHOqO1koxxgRkZwx3BDZSU5OTWOwKSWEC3Jy/FUVbuQ2xohBi4juxXBDZCf+/tnQ6QwmAUenM8DfP8eJpbI/c2OMcnJqwt8/2yTEOWKMkdyCFhHJA8MNWYy/kCvm65uPmJhvyoy5UVOrzb2cPcZITkGLiOSD4YYswl/IlomIOIywsHPIyfGHv3+OqoON3MYYOTtoEZF8cCo4WYTTncun1+tNrvv65qNBgz/KfMHfu5/SVTTGyNHKC1r3/n0SkTaw5Yasxl/IpmrWrIm4uDjNddnJaYyRVgZzE5FlGG7IKnLripALtQUXS8hpjJGcghYROR/DDVmFv5DpbnIZYySnoEVEzsdwQ1bhL2QyN8bIXIhw9BgjuQQtInI+hhuyCn8hk5zGGMk1aBGRczHckNX4C5nkMsZITkGLiOSD4YYswl/IJFcMLkR0L4Ybsgh/IRMRkVIw3JDFGFyIiEgJuEIxERERqQrDDREREamKLMLNokWLEBoaCg8PD3To0AEHDx4sd9+lS5eic+fOuO+++3DfffchKiqqwv2JiIhIW5webtavX4/4+HhMmTIFhw4dQps2bRAdHY2rV6+a3T81NRUDBgzA999/jwMHDiAkJARPPPEELl++7OCSExERkRzphBDCmQXo0KEDHnroISxcuBAAYDAYEBISgrFjx2LixImV3r+kpAT33XcfFi5ciOeff77S/fPy8uDr64vc3Fz4+PhUufxEREQkPWu+v53aclNUVIS0tDRERUUZt7m4uCAqKgoHDhyw6BiFhYUoLi6Gv7+/2dtv376NvLw8kwsRERGpl1PDzfXr11FSUoLAwECT7YGBgbhy5YpFx3jzzTcRHBxsEpDuNmvWLPj6+hovISEhVS43ERERyZfTx9xUxezZs7Fu3Tp8+eWX8PDwMLtPQkICcnNzjZdLly45uJRERETkSE5dxK9WrVpwdXVFVlaWyfasrCzUqVOnwvvOmTMHs2fPxq5du9C6dety93N3d4e7u7tdyktERETy59Rwo9fr0a5dO+zevRt9+vQBcGdA8e7duxEXF1fu/d5//33MmDEDO3bswIMPPmjVY5aOn+bYGyIiIuUo/d62aB6UcLJ169YJd3d3kZycLE6cOCFGjRol/Pz8xJUrV4QQQgwZMkRMnDjRuP/s2bOFXq8XGzduFJmZmcZLfn6+RY936dIlAYAXXnjhhRdeeFHg5dKlS5V+1zv93FL9+vXDtWvXMHnyZFy5cgVt27bF9u3bjYOML168CBeXf4YGffzxxygqKsJzzz1ncpwpU6Zg6tSplT5ecHAwLl26BG9vb+h0OrvWJS8vDyEhIbh06ZIqp5mrvX6A+uvI+imf2uuo9voB6q+jVPUTQiA/Px/BwcGV7uv0dW7URO1r6Ki9foD668j6KZ/a66j2+gHqr6Mc6qfo2VJERERE92K4ISIiIlVhuLEjd3d3TJkyRbVTz9VeP0D9dWT9lE/tdVR7/QD111EO9eOYGyIiIlIVttwQERGRqjDcEBERkaow3BAREZGqMNwQERGRqjDcVGDRokUIDQ2Fh4cHOnTogIMHD1a4f1JSEpo2bQpPT0+EhITglVdewa1bt6p0TKnZu45Tp06FTqczuTRr1kzqapTLmvoVFxdj2rRpCAsLg4eHB9q0aYPt27dX6ZiOYO86yuk13LNnD2JiYhAcHAydTofNmzdXep/U1FRERETA3d0djRo1QnJycpl95PIaSlE/Jb9+mZmZGDhwIJo0aQIXFxdMmDDB7H5ffPEFmjVrBg8PDzzwwAPYtm2b/QtvISnqmJycXOY19PDwkKYClbC2fikpKejevTtq164NHx8fdOzYETt27Cizn+TvQatPBqUR69atE3q9Xixfvlz8/vvvYuTIkcLPz09kZWWZ3X/16tXC3d1drF69WqSnp4sdO3aIoKAg8corr9h8TKlJUccpU6aIli1bmpz369q1a46qkglr6/fGG2+I4OBgsXXrVnH+/HmxePFi4eHhIQ4dOmTzMaUmRR3l9Bpu27ZNTJo0SaSkpAgA4ssvv6xw/wsXLojq1auL+Ph4ceLECbFgwQLh6uoqtm/fbtxHTq+hFPVT8uuXnp4uxo0bJ1auXCnatm0rxo8fX2af/fv3C1dXV/H++++LEydOiLffflu4ubmJ48ePS1OJSkhRxxUrVggfHx+T17D0fIuOZm39xo8fL9577z1x8OBBcebMGZGQkCDc3Nwc/jnKcFOO9u3bizFjxhivl5SUiODgYDFr1iyz+48ZM0Z069bNZFt8fLx45JFHbD6m1KSo45QpU0SbNm0kKa+1rK1fUFCQWLhwocm2Z555RgwaNMjmY0pNijrK6TW8myUfrG+88YZo2bKlybZ+/fqJ6Oho43W5vYal7FU/Jb9+d4uMjDT7xd+3b1/Rq1cvk20dOnQQL774YhVLWHX2quOKFSuEr6+v3cplL9bWr1SLFi1EYmKi8boj3oPsljKjqKgIaWlpiIqKMm5zcXFBVFQUDhw4YPY+nTp1QlpamrFp7cKFC9i2bRuefPJJm48pJSnqWOrs2bMIDg5Gw4YNMWjQIFy8eFG6ipTDlvrdvn27TNOvp6cn9u3bZ/MxpSRFHUvJ4TW0xYEDB0yeDwCIjo42Ph9yew2tVVn9Sin19bOEpc+B0t28eRP169dHSEgInn76afz+++/OLpJNDAYD8vPz4e/vD8Bx70GGGzOuX7+OkpIS45nJSwUGBuLKlStm7zNw4EBMmzYNjz76KNzc3BAWFoauXbvirbfesvmYUpKijgDQoUMHJCcnY/v27fj444+Rnp6Ozp07Iz8/X9L63MuW+kVHR2Pu3Lk4e/YsDAYDdu7ciZSUFGRmZtp8TClJUUdAPq+hLa5cuWL2+cjLy8N///tf2b2G1qqsfoCyXz9LlPccKOH1s1TTpk2xfPlyfPXVV/j8889hMBjQqVMn/Pnnn84umtXmzJmDmzdvom/fvgAc9znKcGMnqampmDlzJhYvXoxDhw4hJSUFW7duxfTp051dNLuxpI49e/bEv/71L7Ru3RrR0dHYtm0bbty4gQ0bNjix5JaZN28eGjdujGbNmkGv1yMuLg7Dhg2Di4t63iaW1FHJryHx9VODjh074vnnn0fbtm0RGRmJlJQU1K5dG5988omzi2aVNWvWIDExERs2bEBAQIBDH7uaQx9NIWrVqgVXV1dkZWWZbM/KykKdOnXM3uedd97BkCFDMGLECADAAw88gIKCAowaNQqTJk2y6ZhSkqKO5kKAn58fmjRpgnPnztm/EhWwpX61a9fG5s2bcevWLWRnZyM4OBgTJ05Ew4YNbT6mlKSooznOeg1tUadOHbPPh4+PDzw9PeHq6iqr19BaldXPHCW9fpYo7zlQwutnKzc3N4SHhyvqNVy3bh1GjBiBL774wqQLylGfo+r5SWpHer0e7dq1w+7du43bDAYDdu/ejY4dO5q9T2FhYZkvd1dXVwCAEMKmY0pJijqac/PmTZw/fx5BQUF2KrllqvJ8e3h4oG7duvj777+xadMmPP3001U+phSkqKM5znoNbdGxY0eT5wMAdu7caXw+5PYaWquy+pmjpNfPErY8B0pXUlKC48ePK+Y1XLt2LYYNG4a1a9eiV69eJrc57D1ot6HJKrNu3Trh7u4ukpOTxYkTJ8SoUaOEn5+fcTrekCFDxMSJE437T5kyRXh7e4u1a9eKCxcuiG+//VaEhYWJvn37WnxMR5Oijq+++qpITU0V6enpYv/+/SIqKkrUqlVLXL16Vfb1++mnn8SmTZvE+fPnxZ49e0S3bt1EgwYNxF9//WXxMR1NijrK6TXMz88Xhw8fFocPHxYAxNy5c8Xhw4fFH3/8IYQQYuLEiWLIkCHG/UunSr/++uvi5MmTYtGiRWangsvlNZSifkp+/YQQxv3btWsnBg4cKA4fPix+//134+379+8X1apVE3PmzBEnT54UU6ZMcepUcCnqmJiYKHbs2CHOnz8v0tLSRP/+/YWHh4fJPo5ibf1Wr14tqlWrJhYtWmQylf3GjRvGfRzxHmS4qcCCBQtEvXr1hF6vF+3btxc//fST8bbIyEgRGxtrvF5cXCymTp0qwsLChIeHhwgJCREvv/yyyZdGZcd0BnvXsV+/fiIoKEjo9XpRt25d0a9fP3Hu3DkH1siUNfVLTU0VzZs3F+7u7qJmzZpiyJAh4vLly1Yd0xnsXUc5vYbff/+9AFDmUlqn2NhYERkZWeY+bdu2FXq9XjRs2FCsWLGizHHl8hpKUT+lv37m9q9fv77JPhs2bBBNmjQRer1etGzZUmzdutUxFTJDijpOmDDB+PcZGBgonnzySZN1YhzJ2vpFRkZWuH8pqd+DOiHK6U8gIiIiUiCOuSEiIiJVYbghIiIiVWG4ISIiIlVhuCEiIiJVYbghIiIiVWG4ISIiIlVhuCEiIiJVYbghIpKB1NRU6HQ63Lhxw9lFIVI8hhsijRk6dCh0Oh1mz55tsn3z5s3Q6XTG60IILF26FB07doSPjw9q1KiBli1bYvz48RafwK+wsBAJCQkICwuDh4cHateujcjISHz11VfGfUJDQ5GUlGSXukmt9LnT6XRwc3NDgwYN8MYbb+DWrVtWHadr166YMGGCybZOnTohMzMTvr6+diwxkTYx3BBpkIeHB9577z389ddfZm8XQmDgwIEYN24cnnzySXz77bc4ceIEli1bBg8PD7z77rsWPc7o0aORkpKCBQsW4NSpU9i+fTuee+45ZGdn27M6DtWjRw9kZmbiwoUL+Oijj/DJJ59gypQpVT6uXq9HnTp1TAImEdnIridzICLZi42NFU899ZRo1qyZeP31143bv/zyS1H6kbB27VoBQHz11Vdmj2EwGCx6LF9fX5GcnFzu7ebOQ1Nq79694tFHHxUeHh7i/vvvF2PHjhU3b9403r5q1SrRrl07UaNGDREYGCgGDBggsrKyjLeXnhNn+/btom3btsLDw0M89thjIisrS2zbtk00a9ZMeHt7iwEDBoiCggKL6hMbGyuefvppk23PPPOMCA8PN16/fv266N+/vwgODhaenp6iVatWYs2aNSbHuLfO6enpxvLefa62jRs3ihYtWgi9Xi/q168v5syZY1E5ibSOLTdEGuTq6oqZM2diwYIF+PPPP8vcvnbtWjRt2hS9e/c2e39LWxfq1KmDbdu2IT8/3+ztKSkpuP/++zFt2jRkZmYiMzMTAHD+/Hn06NEDzz77LI4dO4b169dj3759iIuLM963uLgY06dPx9GjR7F582ZkZGRg6NChZR5j6tSpWLhwIX788UdcunQJffv2RVJSEtasWYOtW7fi22+/xYIFCyyqz71+++03/Pjjj9Dr9cZtt27dQrt27bB161b89ttvGDVqFIYMGYKDBw8CAObNm4eOHTti5MiRxjqHhISUOXZaWhr69u2L/v374/jx45g6dSreeecdJCcn21RWIk1xdroiIse6u/Xh4YcfFsOHDxdCmLbcNGvWTPTu3dvkfuPHjxdeXl7Cy8tL1K1b16LH+uGHH8T9998v3NzcxIMPPigmTJgg9u3bZ7JP/fr1xUcffWSy7YUXXhCjRo0y2bZ3717h4uIi/vvf/5p9rF9++UUAEPn5+UKIf1pudu3aZdxn1qxZAoA4f/68cduLL74ooqOjLapPbGyscHV1FV5eXsLd3V0AEC4uLmLjxo0V3q9Xr17i1VdfNV6PjIwU48ePN9nn3pabgQMHiu7du5vs8/rrr4sWLVpYVFYiLWPLDZGGvffee1i5ciVOnjxZ6b6TJk3CkSNHMHnyZNy8edOi43fp0gUXLlzA7t278dxzz+H3339H586dMX369Arvd/ToUSQnJ6NGjRrGS3R0NAwGA9LT0wHcadmIiYlBvXr14O3tjcjISADAxYsXTY7VunVr4/8DAwNRvXp1NGzY0GTb1atXLaoPADz22GM4cuQIfv75Z8TGxmLYsGF49tlnjbeXlJRg+vTpeOCBB+Dv748aNWpgx44dZcpVmZMnT+KRRx4x2fbII4/g7NmzKCkpsepYRFrDcEOkYV26dEF0dDQSEhJMtjdu3BinT5822Va7dm00atQIAQEBVj2Gm5sbOnfujDfffBPffvstpk2bhunTp6OoqKjc+9y8eRMvvvgijhw5YrwcPXoUZ8+eRVhYGAoKChAdHQ0fHx+sXr0av/zyC7788ksAKHNcNzc34/9LZzndTafTwWAwWFwfLy8vNGrUCG3atMHy5cvx888/Y9myZcbbP/jgA8ybNw9vvvkmvv/+exw5cgTR0dEV1peI7KuaswtARM41e/ZstG3bFk2bNjVuGzBgAAYOHIivvvoKTz/9tF0fr0WLFvj7779x69Yt6PV66PX6Mi0REREROHHiBBo1amT2GMePH0d2djZmz55tHK/y66+/2rWclnBxccFbb72F+Ph4DBw4EJ6enti/fz+efvppDB48GABgMBhw5swZtGjRwng/c3W+V/PmzbF//36Tbfv370eTJk3g6upq/8oQqQhbbog07oEHHsCgQYMwf/5847b+/fvjueeeQ//+/TFt2jT8/PPPyMjIwA8//ID169db/OXatWtXfPLJJ0hLS0NGRga2bduGt956C4899hh8fHwA3FnnZs+ePbh8+TKuX78OAHjzzTfx448/Ii4uDkeOHMHZs2fx1VdfGQcU16tXD3q9HgsWLMCFCxfw9ddfV9rVJZV//etfcHV1xaJFiwDcafXauXMnfvzxR5w8eRIvvvgisrKyTO4TGhpqfE6vX79utuXo1Vdfxe7duzF9+nScOXMGK1euxMKFC/Haa685pF5ESsZwQ0SYNm2ayResTqfD+vXrkZSUhG3btuHxxx9H06ZNMXz4cISEhGDfvn0WHTc6OhorV67EE088gebNm2Ps2LGIjo7Ghg0bTB47IyMDYWFhqF27NoA742R++OEHnDlzBp07d0Z4eDgmT56M4OBgAHe6yJKTk/HFF1+gRYsWmD17NubMmWPHZ8Ry1apVQ1xcHN5//30UFBTg7bffRkREBKKjo9G1a1fUqVMHffr0MbnPa6+9BldXV7Ro0QK1a9c2Ox4nIiICGzZswLp169CqVStMnjwZ06ZNMzsjjIhM6YQQwtmFICIiIrIXttwQERGRqjDcEJHN7p6qfe9l7969zi6eVS5evFhhfaydyk1EzsNuKSKyWUUn0Kxbty48PT0dWJqq+fvvv5GRkVHu7aGhoahWjRNMiZSA4YaIiIhUhd1SREREpCoMN0RERKQqDDdERESkKgw3REREpCoMN0RERKQqDDdERESkKgw3REREpCoMN0RERKQq/x/IveB0UW0DZgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHHCAYAAAC7soLdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUkJJREFUeJzt3XlclFUbN/DfgOwKPiAgIgqiuZYKpmkpWhqaYb7V465oqVniRrmQuadomuJu9qZouaakmT6aWuTahlruK6b5ACokIDyCMef9w5fJgQFmhlnP/ft+Pn5q7rnnnnNmmJnrvs51zq0SQggQERERSczB2g0gIiIiMjcGPERERCQ9BjxEREQkPQY8REREJD0GPERERCQ9BjxEREQkPQY8REREJD0GPERERCQ9BjxEREQkPQY8RERWkpiYCJVKhevXr1u7KUTSY8BDJLFffvkFMTExaNq0KTw8PFCnTh306tULly5dKrVvx44doVKpoFKp4ODgAE9PTzRs2BADBw7E/v37DXreXbt2ISIiAn5+fnB3d0e9evXQq1cv7N2711RdK2XOnDnYsWNHqe3Hjh3D9OnTce/ePbM9d0nTp0/XvJYqlQru7u5o0qQJPvjgA+Tk5JjkOTZu3IiEhASTHItICRjwEEls3rx52L59O1544QUsXrwYw4cPx6FDhxAWFoYzZ86U2r927dr4/PPPsX79esyfPx89evTAsWPH8OKLL6J37954+PBhhc+5YMEC9OjRAyqVCnFxcVi0aBFee+01XL58GZs3bzZHNwGUH/DMmDHDogFPsZUrV+Lzzz/HwoUL0ahRI8yePRtdu3aFKS5hyICHyDBVrN0AIjKf2NhYbNy4Ec7OzpptvXv3xpNPPom5c+fiiy++0Nrfy8sLAwYM0No2d+5cjB49GitWrEBwcDDmzZtX5vP9/fffmDVrFrp06YJvv/221P23b9+uZI9sR35+Ptzd3cvd5/XXX0eNGjUAACNGjMBrr72GpKQk/Pjjj2jbtq0lmklE/x8zPEQSa9eunVawAwANGjRA06ZNcf78eb2O4ejoiCVLlqBJkyZYtmwZsrOzy9z37t27yMnJwbPPPqvzfj8/P63bDx48wPTp0/HEE0/A1dUVAQEBePXVV3H16lXNPgsWLEC7du3g4+MDNzc3hIeHY9u2bVrHUalUyMvLw7p16zTDSIMHD8b06dMxfvx4AEBISIjmvsdrZr744guEh4fDzc0N3t7e6NOnD27evKl1/I4dO6JZs2ZISUlBhw4d4O7ujvfff1+v1+9xzz//PAAgNTW13P1WrFiBpk2bwsXFBbVq1cLIkSO1MlQdO3bE7t278ccff2j6FBwcbHB7iJSEGR4ihRFCICMjA02bNtX7MY6Ojujbty+mTJmCI0eOoHv37jr38/Pzg5ubG3bt2oVRo0bB29u7zGMWFRXh5ZdfxsGDB9GnTx+MGTMGubm52L9/P86cOYPQ0FAAwOLFi9GjRw/0798fhYWF2Lx5M/7973/jm2++0bTj888/x9ChQ9G6dWsMHz4cABAaGgoPDw9cunQJmzZtwqJFizTZFl9fXwDA7NmzMWXKFPTq1QtDhw7FnTt3sHTpUnTo0AEnT55E9erVNe3NzMxEt27d0KdPHwwYMAD+/v56v37FigM5Hx+fMveZPn06ZsyYgc6dO+Ptt9/GxYsXsXLlSvzyyy84evQonJycMHnyZGRnZ+PPP//EokWLAABVq1Y1uD1EiiKISFE+//xzAUB89tlnWtsjIiJE06ZNy3zcV199JQCIxYsXl3v8qVOnCgDCw8NDdOvWTcyePVukpKSU2m/NmjUCgFi4cGGp+9Rqteb/8/Pzte4rLCwUzZo1E88//7zWdg8PDxEdHV3qWPPnzxcARGpqqtb269evC0dHRzF79myt7adPnxZVqlTR2h4RESEAiFWrVpXZ78dNmzZNABAXL14Ud+7cEampqeKTTz4RLi4uwt/fX+Tl5QkhhFi7dq1W227fvi2cnZ3Fiy++KIqKijTHW7ZsmQAg1qxZo9nWvXt3UbduXb3aQ0RCcEiLSEEuXLiAkSNHom3btoiOjjboscUZhNzc3HL3mzFjBjZu3IiWLVti3759mDx5MsLDwxEWFqY1jLZ9+3bUqFEDo0aNKnUMlUql+X83NzfN///111/Izs5G+/btceLECYPaX1JSUhLUajV69eqFu3fvav7VrFkTDRo0wPfff6+1v4uLC4YMGWLQczRs2BC+vr4ICQnBW2+9hfr162P37t1l1v4cOHAAhYWFGDt2LBwc/vl6HjZsGDw9PbF7927DO0pEADikRaQY6enp6N69O7y8vLBt2zY4Ojoa9Pj79+8DAKpVq1bhvn379kXfvn2Rk5ODn376CYmJidi4cSOioqJw5swZuLq64urVq2jYsCGqVCn/a+ibb77Bhx9+iFOnTqGgoECz/fGgyBiXL1+GEAINGjTQeb+Tk5PW7cDAwFL1UBXZvn07PD094eTkhNq1a2uG6cryxx9/AHgUKD3O2dkZ9erV09xPRIZjwEOkANnZ2ejWrRvu3buHw4cPo1atWgYfo3gae/369fV+jKenJ7p06YIuXbrAyckJ69atw08//YSIiAi9Hn/48GH06NEDHTp0wIoVKxAQEAAnJyesXbsWGzduNLgPj1Or1VCpVPjPf/6jM/grWRPzeKZJXx06dNDUDRGRdTHgIZLcgwcPEBUVhUuXLuHAgQNo0qSJwccoKirCxo0b4e7ujueee86odrRq1Qrr1q1DWloagEdFxT/99BMePnxYKptSbPv27XB1dcW+ffvg4uKi2b527dpS+5aV8Slre2hoKIQQCAkJwRNPPGFod8yibt26AICLFy+iXr16mu2FhYVITU1F586dNdsqm+EiUhrW8BBJrKioCL1798bx48fx5ZdfGrX2S1FREUaPHo3z589j9OjR8PT0LHPf/Px8HD9+XOd9//nPfwD8M1zz2muv4e7du1i2bFmpfcX/X5jP0dERKpUKRUVFmvuuX7+uc4FBDw8PnYsLenh4AECp+1599VU4OjpixowZpRYCFEIgMzNTdyfNqHPnznB2dsaSJUu02vTZZ58hOztba3ach4dHuUsEEJE2ZniIJPbuu+/i66+/RlRUFLKyskotNFhykcHs7GzNPvn5+bhy5QqSkpJw9epV9OnTB7NmzSr3+fLz89GuXTs888wz6Nq1K4KCgnDv3j3s2LEDhw8fRs+ePdGyZUsAwKBBg7B+/XrExsbi559/Rvv27ZGXl4cDBw7gnXfewSuvvILu3btj4cKF6Nq1K/r164fbt29j+fLlqF+/Pn7//Xet5w4PD8eBAwewcOFC1KpVCyEhIWjTpg3Cw8MBAJMnT0afPn3g5OSEqKgohIaG4sMPP0RcXByuX7+Onj17olq1akhNTcVXX32F4cOH47333qvU628oX19fxMXFYcaMGejatSt69OiBixcvYsWKFXj66ae13q/w8HBs2bIFsbGxePrpp1G1alVERUVZtL1EdsWaU8SIyLyKp1OX9a+8fatWrSoaNGggBgwYIL799lu9nu/hw4fi008/FT179hR169YVLi4uwt3dXbRs2VLMnz9fFBQUaO2fn58vJk+eLEJCQoSTk5OoWbOmeP3118XVq1c1+3z22WeiQYMGwsXFRTRq1EisXbtWM+37cRcuXBAdOnQQbm5uAoDWFPVZs2aJwMBA4eDgUGqK+vbt28Vzzz0nPDw8hIeHh2jUqJEYOXKkuHjxotZrU96U/ZKK23fnzp1y9ys5Lb3YsmXLRKNGjYSTk5Pw9/cXb7/9tvjrr7+09rl//77o16+fqF69ugDAKepEFVAJYYKLuhARERHZMNbwEBERkfQY8BAREZH0GPAQERGR9BjwEBERkfQY8BAREZH0GPAQERGR9BS38KBarcZ///tfVKtWjUuzExER2QkhBHJzc1GrVi04OBier1FcwPPf//4XQUFB1m4GERERGeHmzZuoXbu2wY9TXMBTrVo1AI9esPKuCURERES2IycnB0FBQZrfcUMpLuApHsby9PRkwENERGRnjC1HYdEyERERSY8BDxEREUmPAQ8RERFJT3E1PPoqKirCw4cPrd0MaTk5OcHR0dHazSAiIoVgwFOCEALp6em4d++etZsiverVq6NmzZpcD4mIiMyOAU8JxcGOn58f3N3d+WNsBkII5Ofn4/bt2wCAgIAAK7eIiIhkx4DnMUVFRZpgx8fHx9rNkZqbmxsA4Pbt2/Dz8+PwFhERmRWLlh9TXLPj7u5u5ZYoQ/HrzFopIiIyNwY8OnAYyzL4OhMRkaVwSIuIiEhimZmZKCwsLPN+Z2dnRZRxMOAhIiKSVGZmJpYtW1bhfjExMdIHPRzSksTgwYOhUqmgUqng5OQEf39/dOnSBWvWrIFardb7OImJiahevbr5GkpERBZTMrOTnV0NqanByM6uVu5+MmKGx8SsmTrs2rUr1q5di6KiImRkZGDv3r0YM2YMtm3bhq+//hpVqvDtJiJSqhMnWmLXrpchhANUKjWior5BWNhJazfLYvgLaELWTh26uLigZs2aAIDAwECEhYXhmWeewQsvvIDExEQMHToUCxcuxNq1a3Ht2jV4e3sjKioKH330EapWrYrk5GQMGTIEwD8FxdOmTcP06dPx+eefY/Hixbh48SI8PDzw/PPPIyEhAX5+fibvBxERmVZ2djVNsAMAQjhg166XERp6BV5euVZunWVwSMuE9E0JWjJ1+Pzzz6N58+ZISkoCADg4OGDJkiU4e/Ys1q1bh++++w4TJkwAALRr1w4JCQnw9PREWloa0tLS8N577wF4NHV81qxZ+O2337Bjxw5cv34dgwcPtlg/iIjIeFlZPppgp5gQDsjK8rZSiyyPGR4FaNSoEX7//XcAwNixYzXbg4OD8eGHH2LEiBFYsWIFnJ2d4eXlBZVKpckUFXvjjTc0/1+vXj0sWbIETz/9NO7fv4+qVatapB9ERGQcb+9MqFRqraBHpVLD2zvLiq2yLGZ4FEAIoRmiOnDgAF544QUEBgaiWrVqGDhwIDIzM5Gfn1/uMVJSUhAVFYU6deqgWrVqiIiIAADcuHHD7O0nIqLK8fLKRVTUN1CpHk1iKa7hUcpwFsAMjyKcP38eISEhuH79Ol5++WW8/fbbmD17Nry9vXHkyBG8+eabKCwsLHOF6by8PERGRiIyMhIbNmyAr68vbty4gcjISEVU9hMRySAs7CRCQ68gK8sb3t5Zigp2AAY80vvuu+9w+vRpjBs3DikpKVCr1fj444/h4PAoubd161at/Z2dnVFUVKS17cKFC8jMzMTcuXMRFBQEAPj1118t0wEiIjKas7Oz1m0vr1ydgU7J/WTEgEciBQUFSE9P15qWHh8fj5dffhmDBg3CmTNn8PDhQyxduhRRUVE4evQoVq1apXWM4OBg3L9/HwcPHkTz5s3h7u6OOnXqwNnZGUuXLsWIESNw5swZzJo1y0q9JCIiffn4+CAmJoYrLYM1PFLZu3cvAgICEBwcjK5du+L777/HkiVLsHPnTjg6OqJ58+ZYuHAh5s2bh2bNmmHDhg2Ij4/XOka7du0wYsQI9O7dG76+vvjoo4/g6+uLxMREfPnll2jSpAnmzp2LBQsWWKmXRERkCB8fHwQEBJT5TwnBDgCohBDC2o2wpJycHHh5eSE7Oxuenp5a9z148ACpqakICQmBq6urwce29jo89qayrzcRESlHeb/f+uCQlgkxdUhERGSbGPCYGIMZIiIi28MaHiIiIpIeAx4iIiKSHgMeIiIikh4DHiIiIpIei5aJiIhMKDMzk7N1bZBVA55Dhw5h/vz5SElJQVpaGr766iv07NmzzP2TkpKwcuVKnDp1CgUFBWjatCmmT5+OyMhIyzWaiIioDFyPzXZZdUgrLy8PzZs3x/Lly/Xa/9ChQ+jSpQv27NmDlJQUdOrUCVFRUTh58qSZW0pERFSxkpmd7OxqSE0NRnZ2tXL3I/OzaoanW7du6Natm977JyQkaN2eM2cOdu7ciV27dqFly5Ymbh09Ljk5GZ06dcJff/2F6tWr6/WY4OBgjB07FmPHjjVr24iIbNGJEy2xa9fLEMIBKpUaUVHfICyMJ+jWYtdFy2q1Grm5ufD29i5zn4KCAuTk5Gj9k9HgwYOhUqkwYsSIUveNHDkSKpUKgwcPtnzDiIgUKDu7mibYAQAhHLBr18ulMj1kOXYd8CxYsAD3799Hr169ytwnPj4eXl5emn9BQUEWbKFlBQUFYfPmzfjf//6n2fbgwQNs3LgRderUsWLLiIiUJSvLRxPsFBPCAVlZZZ+g25LMzEykpaWV+S8zM9PaTTSY3c7S2rhxI2bMmIGdO3fCz8+vzP3i4uIQGxuruZ2TkyNt0BMWFoarV68iKSkJ/fv3B/Co0LtOnToICQnR7FdQUIDx48dj8+bNyMnJQatWrbBo0SI8/fTTmn327NmDsWPH4ubNm3jmmWcQHR1d6vmOHDmCuLg4/Prrr6hRowb+z//5P4iPj4eHh4f5O0tEZMO8vTOhUqm1gh6VSg1v7ywrtko/shZe22WGZ/PmzRg6dCi2bt2Kzp07l7uvi4sLPD09tf5Zyp9/At9//+i/lvLGG29g7dq1mttr1qzBkCFDtPaZMGECtm/fjnXr1uHEiROoX78+IiMjkZX16IN48+ZNvPrqq4iKisKpU6cwdOhQTJo0SesYV69eRdeuXfHaa6/h999/x5YtW3DkyBHExMSYv5NERDbOyysXUVHfQKVSA4CmhsfLK9fKLauYrIXXdpfh2bRpE9544w1s3rwZ3bt3t3ZzyvTZZ8Dw4YBaDTg4AKtXA2++af7nHTBgAOLi4vDHH38AAI4ePYrNmzcjOTkZwKOZcStXrkRiYqKmYPzTTz/F/v378dlnn2H8+PFYuXIlQkND8fHHHwMAGjZsiNOnT2PevHma54mPj0f//v01BckNGjTAkiVLEBERgZUrV8LV1dX8nSUismFhYScRGnoFWVne8PbOsotgpySZCq+tGvDcv38fV65c0dxOTU3FqVOn4O3tjTp16iAuLg63bt3C+vXrATwaxoqOjsbixYvRpk0bpKenAwDc3Nzg5eVllT7o8uef/wQ7wKP/vvUWEBkJ1K5t3uf29fVF9+7dkZiYCCEEunfvjho1amjuv3r1Kh4+fIhnn31Ws83JyQmtW7fG+fPnAQDnz59HmzZttI7btm1brdu//fYbfv/9d2zYsEGzTQgBtVqN1NRUNG7c2BzdIyKyac7Ozlq3vbxydQY6JfezRWUVXoeGXrHL4M2qAc+vv/6KTp06aW4X19pER0cjMTERaWlpuHHjhub+1atX4++//8bIkSMxcuRIzfbi/W3F5cv/BDvFioqAK1fMH/AAj4a1ioeW9F3jyFD379/HW2+9hdGjR5e6jwXSRKRUPj4+iImJMWilZVtdmbm8wmsGPAbq2LEjhBBl3l8yiCkelrF1DRo8GsZ6POhxdATq17fM83ft2hWFhYVQqVSlVqEODQ2Fs7Mzjh49irp16wIAHj58iF9++UUzPNW4cWN8/fXXWo/78ccftW6HhYXh3LlzqG+pThER2QlDghNbLhC258JrXeyyaNnW1a79qGbH0fHRbUdH4JNPLJPdefR8jjh//jzOnTsHx+JG/H8eHh54++23MX78eOzduxfnzp3DsGHDkJ+fjzf/f5HRiBEjcPnyZYwfPx4XL17Exo0bSwWfEydOxLFjxxATE4NTp07h8uXL2LlzJ4uWiYgMYMsFwvZceK2L3RUt24s333xUs3PlyqPMjqWCnWLlzUabO3cu1Go1Bg4ciNzcXLRq1Qr79u3Dv/71LwCPhqS2b9+OcePGYenSpWjdujXmzJmDN954Q3OMp556Cj/88AMmT56M9u3bQwiB0NBQ9O7d2+x9IyKSkS0WCMtQeF1MJcobU5JQTk4OvLy8kJ2dXSooePDgAVJTUxESEsJZRhbA15uIlC4tLQ2rV69GdnY1JCSMLTV8NHZsAry8cjF8+HAEBARYpE22OsxW3u+3PpjhISIisjJbKhA2pvDaHjDgISIisjJbKxC2t2BGHyxaJiIisjLZCoRtETM8RERENkCmAmFbxIBHB4XVcVsNX2ciUjqZVma2dQx4HuPk5AQAyM/Ph5ubm5VbI7/8/HwA/7zuRERKI2uBsC1iwPMYR0dHVK9eHbdv3wYAuLu7Q6VSWblV8hFCID8/H7dv30b16tVLLY5IRKQkDGYsgwFPCTVr1gQATdBD5lO9enXN601ERGRODHhKUKlUCAgIgJ+fHx4+fGjt5kjLycmJmR0iIrIYBjxlcHR05A8yERGRJLgODxEREUmPAQ8RERFJjwEPERERSY8BDxEREUmPAQ8RERFJjwEPERERSY8BDxEREUmPAQ8RERFJjwEPERERSY8BDxEREUmPAQ8RERFJjwEPERERSY8XDyUiIruVmZmJwsLCMu93dnaGj4+PBVtEtooBDxER2aXMzEwsW7aswv1iYmIY9BCHtIiIyD6VzOxkZ1dDamowsrOrlbsfKRMzPEREZPdOnGiJXbtehhAOUKnUiIr6BmFhJ63dLLIhzPAQEZFdy86upgl2AEAIB+za9XKpTA8pGzM8RCQtFrQqQ1aWjybYKSaEA7KyvOHllWulVpGtYcBDRFJiQatyeHtnQqVSawU9KpUa3t5ZVmwV2RoOaRGRlFjQqhxeXrmIivoGKpUaADQ1PMzu0OOY4SEi6bGgVX5hYScRGnoFWVne8PbOYrBDpTDDQ0RSY0GrvJydnbVue3nlIiTkj1LBTsn9SJmY4SEiqbGgVV4+Pj6IiYlhYTrphQEPEUmNBa1yYzBD+mLAQ0RSKy5oLVnDI2N2h9PwicrGgIeIpKeEglZOwycqHwMeIpKSroJWXYGOLAWtuqbhZ2X5wNs7U6vflZ2GzywS2SsGPEQkJSUXtJprGj6zSGTPGPAQkbSU+KNb1jT80NArlR7Ks1QWicgcGPAQEUnEUtPwuZgj2RsuPEhEJJHiafiPM/U0fC7mSPaIAQ8RkUQscV2p8rJIRLaKQ1pERJIx9zR8LuZI9ogZHiIiCVjyulK8OjnZI2Z4iIgkYOlp+EpYzJHkwoCHiEgS5p6Gr7TFHEkuDHiIiEgvSl7MkewfAx4iItIbgxmyVwx4iOwQr2dERGQYqwY8hw4dwvz585GSkoK0tDR89dVX6NmzZ7mPSU5ORmxsLM6ePYugoCB88MEHGDx4sEXaS2QLeD0jIiLDWXVael5eHpo3b47ly5frtX9qaiq6d++OTp064dSpUxg7diyGDh2Kffv2mbmlRLZD1/WMUlODS61yy+sZERH9w6oZnm7duqFbt256779q1SqEhITg448/BgA0btwYR44cwaJFixAZGWmuZhLZLF7PiIhIP3a18ODx48fRuXNnrW2RkZE4fvx4mY8pKChATk6O1j8iGfB6RkRE+rOrgCc9PR3+/v5a2/z9/ZGTk4P//e9/Oh8THx8PLy8vzb+goCBLNJXI7Hg9IyIi/dlVwGOMuLg4ZGdna/7dvHnT2k0iMglLXBWbiEgWdhXw1KxZExkZGVrbMjIy4OnpCTc3N52PcXFxgaenp9Y/IhnwekZERPqzq3V42rZtiz179mht279/P9q2bWulFhFZF69nRESkH6sGPPfv38eVK1c0t1NTU3Hq1Cl4e3ujTp06iIuLw61bt7B+/XoAwIgRI7Bs2TJMmDABb7zxBr777jts3boVu3fvtlYXiCyO1zNSDi4wSWQ6KiGEsNaTJycno1OnTqW2R0dHIzExEYMHD8b169eRnJys9Zhx48bh3LlzqF27NqZMmWLQwoM5OTnw8vJCdnY2h7fIbvGHUH5cYJJIW2V/v62a4enYsSPKi7cSExN1PubkSa4zQsrGHzjzsKVAUtcCk1lZPvD2ztTK6HGBSSL92FUNDxHZLlsKFoxhiYyKsa8RF5gkqjwGPERUaTIMv5g7o2Lsa1TWApOhoVdYpE5kAAY8RFRpsg2/mCOjYuxrVN4Ckwx4jGPv2UgyDgMeIjNQ8heqvQ+/WCKjYshrVLzA5ONBDxeYNJ4M2UgyDgMeIhNT8heqDMMv5s6oGPoaFS8wWTJAspfX09bIlo0k/THgITIxJX+hyjD8Yu6MijGvEReYNA97z0aSYRjwEJmR0r5QZRh+MXdGRd/XiAtMmpcM2Uh9KXmI/XEMeIjMRElfqMVkGX4xZ0ZF39fIx8cHMTEx/KEyExmykfpQ8hB7SQx4iMxEKV+oJdnr8IslMyr6vkay/wBZkwzZSH0oeYi9JAY8pEiWSPEq5QsVkGP4xdwZFRleI5nIko00hNKG2EtiwEOKY6kUr5K+UGUZfjFn+2R5jWRir9lIYyhxiL0kBjykOJZM8SrpC5U/1BUz92vE4tSKKTXTptQh9scx4CFFM0eKV6lfqGRdLE7Vj1IzbUoaYi8LAx5SLHOleJX6hUrWxeJU/Snxs6ekIfayMOAhxTJnileJX6hkO5RenEq6KWmIXReHinchklNxivdxSkvxknzKylxmZ1ezcsvIGnQNsYeE/FEq2FHCEDszPKRYTPGSjFicSo/jEPs/GPCQoik9xUvyYXEqlaSEYEYfHNIixWGKl2RWnLksHq5l5pLoEWZ4SHGY4iXZMXNJVBoDHlIkBjMkG67/RFQ+BjxEJC0lrTzMzKX5KOnvSGYMeIhISkpceViWftgSJf4dyYoBDxFJyRIrD/PMX35cwVoeDHiISHrmWHmYZ/7KwxWs7RunpROR1My18rCuM//U1OBSx+WZvxy4grX9Y4aHiKRmiZWHeeYvP65gbf+Y4SEiqZn7mmk881cGXnvP/jHgISKpmXvl4fLO/EkeXMHa/nFIi0ghlDyjyJwrD/PaVcrBFaztGwMeIgVQ4oyi/Px8rdtlrTxccj9DFZ/5l6zhMcWPoZKDVFvBFazlwYCHSAGUuJaIu7u71u2y+lxyP2OY48zfmCCVAZLpcQVreTDgIVIYJc4oMkefzX3mb2iQqsQsnqXw9ZIDAx4iBSlrRlFo6BVp6xHM1WdLnvnrE7ApMYtHZAgGPEQKosS1RMzZZ0uc+RsTsCkxi0dUEU5LJ1IQJa4lYu99NnTaO9cFItKNAQ+RgihxLRF777OhARvXBSLSjUNaxJkdCqPEtUTsuc+GTnvnukBEujHgUTjO7FAGJa4lYql1eCzBkIDNnOsCEdkzBjwKx5kdyqDEtUQsuQ6POVQmSLXnjBaRuRgV8NSpUwcdO3ZEREQEOnbsiNDQUFO3i6zAXmd2cEhOP0p+Dezxb9vQIFWJWTwiQxgV8MyZMweHDh3CvHnzMGzYMAQGBiIiIkITADVo0MDU7SQzs9f1WTgkRxWx179twLAgVYlZPCJDGBXwDBgwAAMGDAAApKWl4YcffsA333yDd955B2q1GkVFRSZtJJmfva7PwiE5qoi9/m0bg8EMUdmMruHJz8/HkSNHkJycjO+//x4nT55Es2bN0LFjRxM2jyxFhpkd9jhsQeYnw982EVWeUevwtGvXDj4+Ppg0aRIePHiASZMmIS0tDSdPnsSiRYtM3UayAHtfq4SLrVFZ7P1vm4hMw6gMz4ULF+Dh4YFGjRqhUaNGaNy4Mf71r3+Zum1kYfY8s0NJwxZkOHv+2yYi0zAq4MnMzMTp06eRnJyMffv2YfLkyXB2dkZERAQ6deqEYcOGmbqdZCayzOzgsAWVJMvfNpE9sIfZsiohhKjMAYQQSElJwbJly7BhwwabL1rOycmBl5cXsrOz4enpae3m2AR7+EMtS1paGlavXg2g/Bqe4cOHIyAgwJpNJSuw579tInthqdmylf39NirDc+LECSQnJyM5ORlHjhxBbm4unnzySYwaNQoRERHGHJKsSJYvfA5bUEmy/G0T2TJ7mS1rVMDTunVrtGzZEhERERg2bBg6dOgALy8vU7eNqEIctiAish22PFvWqIAnKyuLw0FkE7jYGhGRbbD1RT6NCniKg52UlBScP38eANCkSROEhYWZrmVEemIwQ9bCGiGif9j6bFmjAp7bt2+jd+/e+OGHH1C9enUAwL1799CpUyds3rwZvr6+Bh1v+fLlmD9/PtLT09G8eXMsXboUrVu3LnP/hIQErFy5Ejdu3ECNGjXw+uuvIz4+Hq6ursZ0h8jkZPghlKEP5sTLmhBps/XZskYFPKNGjcL9+/dx9uxZNG7cGABw7tw5REdHY/To0di0aZPex9qyZQtiY2OxatUqtGnTBgkJCYiMjMTFixfh5+dXav+NGzdi0qRJWLNmDdq1a4dLly5h8ODBUKlUWLhwoTHdITIpGX4IZeiDudlLoSaRpRQv8lmyhscWsjuAkQHP3r17ceDAAU2wAzwa0lq+fDlefPFFg461cOFCDBs2DEOGDAEArFq1Crt378aaNWswadKkUvsfO3YMzz77LPr16wcACA4ORt++ffHTTz8Z0xWyQfaeWZDhh1CGPliSuQo17f2zQMpjy7NljQp41Go1nJycSm13cnKCWq3W+ziFhYVISUlBXFycZpuDgwM6d+6M48eP63xMu3bt8MUXX+Dnn39G69atce3aNezZswcDBw7UuX9BQQEKCgo0t3NycvRuH1mebJkFW56xoC8Z+mBO5irUlO2zQPKyl9myRgU8zz//PMaMGYNNmzahVq1aAIBbt25h3LhxeOGFF/Q+zt27d1FUVAR/f3+t7f7+/rhw4YLOx/Tr1w93797Fc889ByEE/v77b4wYMQLvv/++zv3j4+MxY8YMvdtE1iVTZsHWZyzoQ4Y+mJu5CjVl+iyQ3OxltqxRAc+yZcvQo0cPBAcHIygoCABw8+ZNNGvWDF988YVJG1hScnIy5syZgxUrVqBNmza4cuUKxowZg1mzZmHKlCml9o+Li0NsbKzmdk5OjqbNZNvsPbNg6zMW9CFDH8zNEoWa9v5ZIPlZO5jRh1EBT1BQEE6cOIEDBw5oMjGNGzdG586dDTpOjRo14OjoiIyMDK3tGRkZqFmzps7HTJkyBQMHDsTQoUMBAE8++STy8vIwfPhwTJ48GQ4O2l/OLi4ucHFxMahdZH0yZBZsfcaCPmTog7mZu1BThs8CkS0wKuABAJVKhS5duqBLly5GP7mzszPCw8Nx8OBB9OzZE8Cj+qCDBw8iJiZG52Py8/NLBTWOjo4AHl3Xi+QgQ2bB1mcs6EOGPliCOQs1ZfgsENkCvQOeJUuW6H3Q0aNH671vbGwsoqOj0apVK7Ru3RoJCQnIy8vTzNoaNGgQAgMDER8fDwCIiorCwoUL0bJlS82Q1pQpUxAVFaUJfMj+yZJZsOUZC/qSoQ/mYKlCTVk+C0TWpnfAs2jRIr32U6lUBgU8vXv3xp07dzB16lSkp6ejRYsW2Lt3r6aQ+caNG1oZnQ8++AAqlQoffPABbt26BV9fX0RFRWH27Nl6PyfZPnvOLNjLjIXyyNAHc7NUoaY9fxaIbIlKKGwcqLKXlyfzSktLw+rVqzW3H81MKZ1ZGD58OAICAqzRRL3IsH6KDH2wZ7J8FohMpbK/3wbV8KjV6lL1M0SmJEtmQYZAQIY+2DNZPgtEtsKgDI+joyPS0tI0l3wYP3484uLi4O3tbbYGmhozPLaPmQWiR/hZIPpHZX+/DQp4HBwckJ6ergl4PD09cerUKdSrV8/gJ7YWUwc8/EIiIiIyP4sOaZWksPKfUrj0OxERkX1gQU4l6Fr6PTU1GNnZ1crdj4iIiCzL4AzP1KlT4e7uDuDRD/ns2bPh5eWltc/ChQtN0zo7wqXfiYiIbJdBAU+HDh1w8eJFze127drh2rVrWvuoVCrTtMyOcOl3IiIi22ZQwJOcnGymZtg3Lv1ORERk2ypVtFwRe5zFZQwu/U6kTJylSWQ/zBrwKGUWF5d+J1IeztIksi9mDXiUhBdYJFIWXbM0s7J84O2dqfX55yxNItvAgKcSuPQ7yYzDNfrjLE0i28eApxIsdbVkIkvjcI3+OEuTyD6YNeBRwhR1pX/Zk5w4XKM/ztIkGcmY4WXRMhGVi8M15eMsTZKNrBles15a4j//+Q8CAwPN+RREZEZlDdeUvHyKkhXP0lSp1ADAWZpk92S9bJJRGR4hBLZt24bvv/8et2/fhlqt1ro/KSkJAPDcc89VvoVEZDUcrtEPZ2mSrGTK8BoV8IwdOxaffPIJOnXqBH9/f0XU6hApEYdrysZZmmQtlqqvka0g36iA5/PPP0dSUhJeeuklU7eHiGwIF9UsG2dpkjVYsr5GtgyvUQGPl5eX9JeLIKJHOFxTNgYzZGmWnEEpW4bXqIBn+vTpmDFjBtasWQM3NzdTt4mIrIzDNUS2z9z1NbJleI0KeHr16oVNmzbBz88PwcHBcHJy0rr/xIkTJmkcEVkHh2uIbJul6mtkyvAaFfBER0cjJSUFAwYMYNGymcm4+BPZB/5dEdkuc9bXyJrhNSrg2b17N/bt28dp52Ym6+JPRERUOeasr5E1w2tUwBMUFARPT09Tt4VK4PL+RESki7nra+wtmNGHUQHPxx9/jAkTJmDVqlUIDg42cZNIF5kWfyIiosqTqb7GEowKeAYMGID8/HyEhobC3d29VNFyVpZ9TlmzVbIt/kRERMaRtb7GEowKeBISEkzcDCqPbIs/ERGRcWStr7EEo2dpkeXItvgTkSw4i5KsgX9TxjEq4HncgwcPSn3gWdBsWrIt/kQkA86iJLIvRgU8eXl5mDhxIrZu3YrMzMxS9xcVFVW6YaSNxWlEtoWzKInsi1EBz4QJE/D9999j5cqVGDhwIJYvX45bt27hk08+wdy5c03dRsVicRqRfeAsSiLbZ1TAs2vXLqxfvx4dO3bEkCFD0L59e9SvXx9169bFhg0b0L9/f1O3U5FYnEZk+ziLksg+GBXwZGVlaa6W7unpqZmG/txzz+Htt982XeuIwQyRjeMsSiL7YFTAU69ePaSmpqJOnTpo1KgRtm7ditatW2PXrl2oXr26iZtIRGS7DJlFyVldRNZjVMAzZMgQ/Pbbb4iIiMCkSZMQFRWFZcuW4eHDh1i4cKGp20hEdkCpP+b6zqLkrC4i6zIq4Bk3bpzm/zt37owLFy4gJSUF9evXx1NPPWWyxhGRfVD6j7k+syg5q4vIukyyDk/dunVRt25dU7SHiOyQEn/MKzOLkrO6iCzPqICnqKgIc+bMwapVq5CRkYFLly6hXr16mDJlCoKDg/Hmm2+aup1EZCeU8mNu7CxKzuoisg6Hincpbfbs2UhMTMRHH32kdfbSrFkz/N//+39N1jgisi9l/ZhnZ1ezcsvMw8fHBwEBAWX+0zV8V96sLiIyH6MyPOvXr8fq1avxwgsvYMSIEZrtzZs3x4ULF0zWOCKyL5yiXTHO6iKyDqMCnlu3bqF+/fqltqvVajx8+LDSjSIi+8QL3VaMs7qIrMOogKdJkyY4fPhwqULlbdu2oWXLliZpGBHZH17oVj+c1UVkeUYFPFOnTkV0dDRu3boFtVqNpKQkXLx4EevXr8c333xj6jYSkR3hhW5146wuIusyKuB55ZVXsGvXLsycORMeHh6YOnUqwsLCsGvXLnTp0sXUbSQiG5efn691u6wf88f3U1p9iq3O6lLa+0DKZfQ6PO3bt8f+/ftN2RYyEX6BkaW5u7tr3S5r+KV4P6XWpxjTF3MWgiv1fSBlMvpaWr/88kupD8C9e/cQFhaGa9eumaRxZDh+gZG16TP8wvoU/ZmzENwW3weesJG5GBXwXL9+HUVFRaW2FxQU4NatW5VuFBnPFr/ASDmMGX5hfUr5LFUIbgvvA0/YyJwMCni+/vprzf/v27cPXl5emttFRUU4ePAggoODTdY4qhxb+AIjZTF0+IWrDuvH3IXgtvI+8ISNzMmggKdnz54AAJVKhejoaK37nJycEBwcjI8//thkjSPj2coXGCmLocMvXKiwbJWZ1WUoW3wfeMJGpmZQwKNWqwEAISEh+OWXX1CjRg2zNIoqzxa/wEh+hg6/cKHCshk7q8sYtvY+8ISNzMGggOf48ePIzMxEamqqZtv69esxbdo05OXloWfPnli6dClcXFxM3lAyjK19gZFyGDL8woUKy2epOhVbex94wkbmYFDAM2PGDHTq1Akvv/wyAOD06dN48803MXjwYDRu3Bjz589HrVq1MH36dIMasXz5csyfPx/p6elo3rw5li5ditatW5e5/7179zB58mQkJSUhKysLdevWRUJCAl566SWDnldmtvYFRnKrzPCLOetTOONHf7a0YCRP2MgcDAp4fvvtN3z44Yea25s3b0abNm3w6aefAgCCgoIwbdo0gwKeLVu2IDY2FqtWrUKbNm2QkJCAyMhIXLx4EX5+fqX2LywsRJcuXeDn54dt27YhMDAQf/zxB6pXr25IVxTBlr7ASG6GDr9Yoj6FM34qZsk6IUPwhK18DOSNY1DA89dff8Hf319z+4cffkC3bt00t59++mncvHnToAYsXLgQw4YNw5AhQwAAq1atwu7du7FmzRpMmjSp1P5r1qxBVlYWjh07BicnJwDgzLDH2OoXGMnPkC9YS9SncMZPxSxZJ2QonrDpxkDeeAYFPP7+/khNTUVQUBAKCwtx4sQJzJgxQ3N/bm6uJgjRR2FhIVJSUhAXF6fZ5uDggM6dO+P48eM6H/P111+jbdu2GDlyJHbu3AlfX1/069cPEydOhKOjY6n9CwoKUFBQoLmdk5Ojd/vskS1/gRE9zpJ/g5zxUzZb+i7gCVvFGMgbz6CA56WXXsKkSZMwb9487NixA+7u7mjfvr3m/t9//x2hoaF6H+/u3bsoKirSyhoBjwKrCxcu6HzMtWvX8N1336F///7Ys2cPrly5gnfeeQcPHz7EtGnTSu0fHx+vFZQpgS19gRFZG2f82A+esBmGgbxhDAp4Zs2ahVdffRURERGoWrUq1q1bpxVpr1mzBi+++KLJG/k4tVoNPz8/rF69Go6OjggPD8etW7cwf/58nQFPXFwcYmNjNbdzcnIQFBRk1jYSke3gjB/7wmBGPwzkDWdQwFOjRg0cOnQI2dnZqFq1aqkhpC+//BJVq1Y16HiOjo7IyMjQ2p6RkYGaNWvqfExAQACcnJy0nrtx48ZIT09HYWFhqVSni4sLp8kTKRhn/JCMGMgbzqHiXUrz8vLSWS/j7e1t0Niqs7MzwsPDcfDgQc02tVqNgwcPom3btjof8+yzz+LKlSuaRRAB4NKlSwgICFD0uC4R6VY840elevSdwRk/JIPiQP5xDOTLZ9TFQ00pNjYW0dHRaNWqFVq3bo2EhATk5eVpZm0NGjQIgYGBiI+PBwC8/fbbWLZsGcaMGYNRo0bh8uXLmDNnDkaPHm3NbhCRDeOMn7IpcYqzDH3m1H3DWT3g6d27N+7cuYOpU6ciPT0dLVq0wN69ezWFzDdu3ICDwz+JqKCgIOzbtw/jxo3DU089hcDAQIwZMwYTJ060VheIyAZxxk/FlDjF2RJ9tlRAxUDeMFYPeIBHf1gxMTE670tOTi61rW3btvjxxx/N3CrlkOFsh6gkzvipmBKnOJu7z+YOqBjIG88mAh6yHiWe4ZFy8G9Wf0qc4myOPps7oGIgbzwGPAqnxDM8ItKmxCnOluizuYJIBjPGYcBDGko8wyMiZU5xNneflRhE2jqjpqWTfMr6cGZnV7Nyy4jI3JQ4xdncfS4voCLrYMBDAPjhJFIyJa5VZEifMzMzkZaWVua/zMzMUo9RYhBp6zikRQC4Gi2R0ilxirM+fTZ2YgfXybE9DHgIAD+cRIDylmhQ4hRnQ/tcmYkdSgwibRkDHtLgh5OUTIlLNChxinNl+qzPxA4lBpH2ggGPwvHDSfSIUpdokCmY0ZcxfdZ31pUSg0h7wYBH4fjhJCqNSzRQSYZMY+f3pW1iwEP8cBI9huunkC6c2GH/OC2diOgxXKKBdFHi1H3ZMMNDRPQYnslTWTixw74xw0NE9BieydPjdE3sCAn5o9TfAyd22D5meIiISuCZPBXjxA55MOAhIgKXaKCyMZiRAwMeIiLwTJ5Idgx4yO4p7XIAZD78OyGSFwMesmtKvBwAEREZjrO0yK7puhxAamowsrOrlbsfEREpCzM8JA1eDoCIiMrCDA9JoazLAZTM9BARkTIxw0NSMOTCfkT0Dxb9k1Iw4CEp8HIARIZj0T8pCQMeCSnxjK34cgAla3iY3SEqm66i/6wsH3h7Z2p9dlj0TzJgwCMZJZ+x8XIARMZj0T/JjkXLklHaNG1e2I+o8lj0T0rADI/ElHDGxssBEFUei/5JCRjwSKqsM7bQ0CvSfYExmCGqHBb9kxIw4JEUz9jKp8TCbqKysOiflIABj6R4xlY2JRd2E5WFRf8kOxYtS6r4jE2lUgMAz9geo7TCbqKysOiflIQZHonxjK1iSijsJioLi/5JSRjwSEbXGZuuQIdnbMoq7CYqC4MZUgoGPJLhGZv+WNhNRKQcDHgkxGBGPyzsJiJSDhYtk2KxsJuISDmY4ZEQ15jRHwu7iYiUgQGPZLjGTMWMKexmEElEZN8Y8EhG1xozWVk+8PbO1PpRV/IaM4YWdjOIJCKyfwx4JMY1ZspmSGDCIJJILszYKhMDHklxjRnzYBBJZN+YsVUuztKSVHlrzJBxygoiS16SgohsFy8to1zM8EiKa8yYHhcqJJILM7bKwoBHUsVrzJT8MPOH2XgMIonkYc/D/qxBMg4DHolxjRnTYhBJJA97zdiyBsl4DHgkw4uHmheDSCI52GvGlrNGjceARzK8eKjpMYgkko8MGVvWIBmGAY+EGMyYFoNIIjnZc8bWnmuQrIUBD5EeGMwQyUGWjK291iBZEwMeCbGCn4hIN1kytvZag2RNDHgkwwp+IqLyyfDdJ0MNkqXZxErLy5cvR3BwMFxdXdGmTRv8/PPPej1u8+bNUKlU6Nmzp3kbaEe4iigRkTKEhZ3E2LEJiI5OxNixCSxYroDVMzxbtmxBbGwsVq1ahTZt2iAhIQGRkZG4ePEi/Pz8ynzc9evX8d5776F9+/YWbK19YQU/EZFcZKlBsgarBzwLFy7EsGHDMGTIEADAqlWrsHv3bqxZswaTJk3S+ZiioiL0798fM2bMwOHDh3Hv3j0Lttg+sIKfiEg+stQgWYNVA57CwkKkpKQgLi5Os83BwQGdO3fG8ePHy3zczJkz4efnhzfffBOHDx8u9zkKCgpQUFCguZ2Tk1P5htsBVvATEcmJwYxxrFrDc/fuXRQVFcHf319ru7+/P9LT03U+5siRI/jss8/w6aef6vUc8fHx8PLy0vwLCgqqdLvtQXEF/+NYwU9EREplE0XL+srNzcXAgQPx6aefokaNGno9Ji4uDtnZ2Zp/N2/eNHMrbUNxBX9x0MMKfiIiUjKrDmnVqFEDjo6OyMjI0NqekZGBmjVrltr/6tWruH79OqKiojTb1OpHP+hVqlTBxYsXERoaqvUYFxcXuLi4mKH1ts+eVxElIiIyJasGPM7OzggPD8fBgwc1U8vVajUOHjyImJiYUvs3atQIp0+f1tr2wQcfIDc3F4sXL1bMcFV5WMFPRESWZg8L3lp9llZsbCyio6PRqlUrtG7dGgkJCcjLy9PM2ho0aBACAwMRHx8PV1dXNGvWTOvx1atXB4BS25WKFfxERGRJ9rLgrdUDnt69e+POnTuYOnUq0tPT0aJFC+zdu1dTyHzjxg04ONhVqZHVMZghIiJL0bXgbVaWD7y9M7VGGKy94K1KCCGs2gILy8nJgZeXF7Kzs+Hp6Wnt5hAREdm1tLQ0rF69GkD5C94OHz4cAQEBRj9PZX+/mTohIiKiSitrwduSlzayFgY8REREVGnlLXhrCxjwEBERUaXZ+oK3DHiIiIio0mx9wVurz9IiIiIiOdjygrcMeIiIiMho9rLgLQMeIiIiMpq9LHjLgIeITMIelpYnIvOwh882Ax4iG2DvwYK9LC1PRMrFgIfIymQIFuxlaXkiUi4GPER6MGcGRrZgobyl5YmIrIUBD1EFLJmBsfdgoayl5UNDr9jU9FQiUh4uPEhUAV0ZmNTU4FLXh6lsBsbWr0OjD1tfWp6IlIsZHiIDmDMDU16wYC/ZkeKl5R/vhy0tLW9q9l5sTqQkDHiI9GTu4RoZgoXipeVLBoX2ErAZQoZicyIlYcBDpCdzZ2BkCRZseWl5U5Kt2JxIdgx4yGBKTeNbIgNjr8GCvSwtby72XmxOpAQMeMggSk7jmysDI0OwYC9Ly5sDZ6YR2QcGPGQQpafxzZGBkSVYsPX2mYsMxeZESsCAh4ymlDS+JTIwSg0WZCBDsTmREjDgIaMoKY1vTAZGqXVOSiRLsTmR7BjwkFGUlsY3JDhRcp2TUtlrsTmRkjDgIaMwjV82pdc5KYUMxeZESsKAh4zCNL5+lFLnpESyFJsTKQUDHguTqbaDafzyKanOSans5bNKRAx4LEqG2g6m8fWntDonIiJbxoDHgmSo7WAaX3+scyIish0MeKzEnms7GMzoh3VORES2gwGPFbC2QzlY50REZBsY8FgBazvkxjonIiLbw4DHCljbITfWORFZjkwzX8m8GPBYAWs75McvWCLzk2HmK1kOAx4rYW0HVQbPaonkmPlKlsOAx4KMqe3gDxuVxLNaotLseeYrWQYDHgsytLaDP2ykC89qibRx5ivpgwGPhRkSmPCHjSrCs1oiznwl/TDgsRP8YaOSeFZL9AhnvpI+HCrehaytrB+27OxqVm4ZWVN5Z7VESlI881WlUgMAZ76STszw2AGma0kXntUS/YMzX6kizPDYgeIftsfxh414VktKp2vma0jIH6U+A1zVnABmeOwCFyqksvCslpSMq5qTIRjw2An+sFExXquL6B8MZkhfDHhsGH/YSBee1RIRGU4lhBDWboQl5eTkwMvLC9nZ2fD09LR2cyrElZaJiIgq//vNDI+NYzBDRERUeQx4JMSsEBERkTYGPJLh9beIiIhKY8AjGSVef4sZLSIiqggDHokp4fpbzGgREZE+uNKypJRy/S1dGa3U1OBS/ZQpo0VERIZjhkdSSrz+lhIyWkREZBxmeCSltOtvKSWjRURExmHAIymlXViyvIwWERGRTQxpLV++HPPnz0d6ejqaN2+OpUuXonXr1jr3/fTTT7F+/XqcOXMGABAeHo45c+aUub+tseSMIiVdf6s4o/V40CNzRouIiAxj9YBny5YtiI2NxapVq9CmTRskJCQgMjISFy9ehJ+fX6n9k5OT0bdvX7Rr1w6urq6YN28eXnzxRZw9exaBgYFW6IH+LDGjSKnX3+IV5YmIqDxWv5ZWmzZt8PTTT2sCAbVajaCgIIwaNQqTJk2q8PFFRUX417/+hWXLlmHQoEEV7m/Na2mlpaVh9erVmttlrZEzfPhwBAQEGP08SlqXRvdrWjqjVdnXlIiIrMuur6VVWFiIlJQUxMXFabY5ODigc+fOOH78uF7HyM/Px8OHD+HtrbtWo6CgAAUFBZrbOTk5lWu0iZhzRpEswYw+lJrRIiIiw1g14Ll79y6Kiorg7++vtd3f3x8XLlzQ6xgTJ05ErVq10LlzZ533x8fHY8aMGZVuqymVNaMoNPQKh2AM5OPjg5iYGMVktIiIyDhWr+GpjLlz52Lz5s1ITk6Gq6urzn3i4uIQGxuruZ2Tk4OgoCBLNVEnJa6RY04MZoiIqCJWDXhq1KgBR0dHZGRkaG3PyMhAzZo1y33sggULMHfuXBw4cABPPfVUmfu5uLjAxcXFJO01Fc4oIiIisiyrrsPj7OyM8PBwHDx4ULNNrVbj4MGDaNu2bZmP++ijjzBr1izs3bsXrVq1skRTTUppa+QQERFZm9WHtGJjYxEdHY1WrVqhdevWSEhIQF5eHoYMGQIAGDRoEAIDAxEfHw8AmDdvHqZOnYqNGzciODgY6enpAICqVauiatWqVuuHoZS0Rg4REZG1WT3g6d27N+7cuYOpU6ciPT0dLVq0wN69ezWFzDdu3ICDwz+JqJUrV6KwsBCvv/661nGmTZuG6dOnW7LpBuOMIiIiIuuw+jo8lmbNdXgAZa2RQ0REZCp2vQ6PEjGYISIisjxePJSIiIikx4CHiIiIpMeAh4iIiKTHgIeIiIikx4CHiIiIpMeAh4iIiKTHgIeIiIikx4CHiIiIpMeAh4iIiKSnuJWWi6+kkZOTY+WWEBERkb6Kf7eNvSKW4gKe3NxHF+sMCgqyckuIiIjIULm5ufDy8jL4cYq7eKharcZ///tfVKtWDSqVyqTHzsnJQVBQEG7evGmVC5NaCvspF/ZTHkroI8B+ykbffgohkJubi1q1asHBwfCKHMVleBwcHFC7dm2zPoenp6fUf5zF2E+5sJ/yUEIfAfZTNvr005jMTjEWLRMREZH0GPAQERGR9BjwmJCLiwumTZsGFxcXazfFrNhPubCf8lBCHwH2UzaW6qfiipaJiIhIeZjhISIiIukx4CEiIiLpMeAhIiIi6THgISIiIukx4CnH8uXLERwcDFdXV7Rp0wY///xzufsnJCSgYcOGcHNzQ1BQEMaNG4cHDx5U6piWYOp+Tp8+HSqVSutfo0aNzN2NChnSz4cPH2LmzJkIDQ2Fq6srmjdvjr1791bqmJZi6n7a4vt56NAhREVFoVatWlCpVNixY0eFj0lOTkZYWBhcXFxQv359JCYmltrH1t5Pc/TT1t5PQ/uYlpaGfv364YknnoCDgwPGjh2rc78vv/wSjRo1gqurK5588kns2bPH9I03gDn6mZiYWOq9dHV1NU8H9GRoP5OSktClSxf4+vrC09MTbdu2xb59+0rtZ5LPpiCdNm/eLJydncWaNWvE2bNnxbBhw0T16tVFRkaGzv03bNggXFxcxIYNG0RqaqrYt2+fCAgIEOPGjTP6mJZgjn5OmzZNNG3aVKSlpWn+3blzx1Jd0snQfk6YMEHUqlVL7N69W1y9elWsWLFCuLq6ihMnThh9TEswRz9t8f3cs2ePmDx5skhKShIAxFdffVXu/teuXRPu7u4iNjZWnDt3TixdulQ4OjqKvXv3avaxxffTHP20tffT0D6mpqaK0aNHi3Xr1okWLVqIMWPGlNrn6NGjwtHRUXz00Ufi3Llz4oMPPhBOTk7i9OnT5umEHszRz7Vr1wpPT0+t9zI9Pd08HdCTof0cM2aMmDdvnvj555/FpUuXRFxcnHBycjLLdy0DnjK0bt1ajBw5UnO7qKhI1KpVS8THx+vcf+TIkeL555/X2hYbGyueffZZo49pCebo57Rp00Tz5s3N0l5jGdrPgIAAsWzZMq1tr776qujfv7/Rx7QEc/TTFt/Px+nzpTphwgTRtGlTrW29e/cWkZGRmtu2+H4+zlT9tOX3U58+Pi4iIkJnINCrVy/RvXt3rW1t2rQRb731ViVbaBqm6ufatWuFl5eXydplaob2s1iTJk3EjBkzNLdN9dnkkJYOhYWFSElJQefOnTXbHBwc0LlzZxw/flznY9q1a4eUlBRNmu3atWvYs2cPXnrpJaOPaW7m6Gexy5cvo1atWqhXrx769++PGzdumK8jFTCmnwUFBaVSw25ubjhy5IjRxzQ3c/SzmC29n8Y4fvy41usCAJGRkZrXxRbfT2NU1M9i9v5+VkTf10EG9+/fR926dREUFIRXXnkFZ8+etXaTKkWtViM3Nxfe3t4ATPvZZMCjw927d1FUVAR/f3+t7f7+/khPT9f5mH79+mHmzJl47rnn4OTkhNDQUHTs2BHvv/++0cc0N3P0EwDatGmDxMRE7N27FytXrkRqairat2+P3Nxcs/anLMb0MzIyEgsXLsTly5ehVquxf/9+JCUlIS0tzehjmps5+gnY3vtpjPT0dJ2vS05ODv73v//Z5PtpjIr6CcjxflakrNfBnt5LfTRs2BBr1qzBzp078cUXX0CtVqNdu3b4888/rd00oy1YsAD3799Hr169AJj2u5YBj4kkJydjzpw5WLFiBU6cOIGkpCTs3r0bs2bNsnbTTEqffnbr1g3//ve/8dRTTyEyMhJ79uzBvXv3sHXrViu23DCLFy9GgwYN0KhRIzg7OyMmJgZDhgyBg4NcHxl9+inD+0n/4Pspj7Zt22LQoEFo0aIFIiIikJSUBF9fX3zyySfWbppRNm7ciBkzZmDr1q3w8/Mz+fGrmPyIEqhRowYcHR2RkZGhtT0jIwM1a9bU+ZgpU6Zg4MCBGDp0KADgySefRF5eHoYPH47JkycbdUxzM0c/dQUE1atXxxNPPIErV66YvhN6MKafvr6+2LFjBx48eIDMzEzUqlULkyZNQr169Yw+prmZo5+6WPv9NEbNmjV1vi6enp5wc3ODo6Ojzb2fxqion7rY4/tZkbJeB3t6L43h5OSEli1b2uV7uXnzZgwdOhRffvml1vCVKb9r5TpdNRFnZ2eEh4fj4MGDmm1qtRoHDx5E27ZtdT4mPz+/1I+9o6MjAEAIYdQxzc0c/dTl/v37uHr1KgICAkzUcsNU5rV3dXVFYGAg/v77b2zfvh2vvPJKpY9pLubopy7Wfj+N0bZtW63XBQD279+veV1s8f00RkX91MUe38+KGPM6yKCoqAinT5+2u/dy06ZNGDJkCDZt2oTu3btr3WfSz6bB5dMKsXnzZuHi4iISExPFuXPnxPDhw0X16tU1U/4GDhwoJk2apNl/2rRpolq1amLTpk3i2rVr4ttvvxWhoaGiV69eeh/TGszRz3fffVckJyeL1NRUcfToUdG5c2dRo0YNcfv2bYv3r5ih/fzxxx/F9u3bxdWrV8WhQ4fE888/L0JCQsRff/2l9zGtwRz9tMX3Mzc3V5w8eVKcPHlSABALFy4UJ0+eFH/88YcQQohJkyaJgQMHavYvnq49fvx4cf78ebF8+XKd09Jt7f00Rz9t7f00tI9CCM3+4eHhol+/fuLkyZPi7NmzmvuPHj0qqlSpIhYsWCDOnz8vpk2bZvVp6ebo54wZM8S+ffvE1atXRUpKiujTp49wdXXV2sfSDO3nhg0bRJUqVcTy5cu1ptffu3dPs4+pPpsMeMqxdOlSUadOHeHs7Cxat24tfvzxR819ERERIjo6WnP74cOHYvr06SI0NFS4urqKoKAg8c4772j9cFR0TGsxdT979+4tAgIChLOzswgMDBS9e/cWV65csWCPdDOkn8nJyaJx48bCxcVF+Pj4iIEDB4pbt24ZdExrMXU/bfH9/P777wWAUv+K+xYdHS0iIiJKPaZFixbC2dlZ1KtXT6xdu7bUcW3t/TRHP23t/TSmj7r2r1u3rtY+W7duFU888YRwdnYWTZs2Fbt377ZMh8pgjn6OHTtW8/fq7+8vXnrpJa31a6zB0H5GRESUu38xU3w2VUKUMQ5BREREJAnW8BAREZH0GPAQERGR9BjwEBERkfQY8BAREZH0GPAQERGR9BjwEBERkfQY8BAREZH0GPAQEdmA5ORkqFQq3Lt3z9pNIZISAx4ihRk8eDBUKhXmzp2rtX3Hjh1QqVSa20IIfPrpp2jbti08PT1RtWpVNG3aFGPGjNH74oT5+fmIi4tDaGgoXF1d4evri4iICOzcuVOzT3BwMBISEkzSN3Mrfu1UKhWcnJwQEhKCCRMm4MGDBwYdp2PHjhg7dqzWtnbt2iEtLQ1eXl4mbDERFWPAQ6RArq6umDdvHv766y+d9wsh0K9fP4wePRovvfQSvv32W5w7dw6fffYZXF1d8eGHH+r1PCNGjEBSUhKWLl2KCxcuYO/evXj99deRmZlpyu5YVNeuXZGWloZr165h0aJF+OSTTzBt2rRKH9fZ2Rk1a9bUCjqJyISMvFwGEdmp6Oho8fLLL4tGjRqJ8ePHa7Z/9dVXovgrYdOmTQKA2Llzp85jqNVqvZ7Ly8tLJCYmlnm/ruvoFDt8+LB47rnnhKurq6hdu7YYNWqUuH//vub+9evXi/DwcFG1alXh7+8v+vbtKzIyMjT3F1/TZ+/evaJFixbC1dVVdOrUSWRkZIg9e/aIRo0aiWrVqom+ffuKvLw8vfoTHR0tXnnlFa1tr776qmjZsqXm9t27d0WfPn1ErVq1hJubm2jWrJnYuHGj1jFK9jk1NVXT3sevS7dt2zbRpEkT4ezsLOrWrSsWLFigVzuJqDRmeIgUyNHREXPmzMHSpUvx559/lrp/06ZNaNiwIXr06KHz8fpmIWrWrIk9e/YgNzdX5/1JSUmoXbs2Zs6cibS0NKSlpQEArl69iq5du+K1117D77//ji1btuDIkSOIiYnRPPbhw4eYNWsWfvvtN+zYsQPXr1/H4MGDSz3H9OnTsWzZMhw7dgw3b95Er169kJCQgI0bN2L37t349ttvsXTpUr36U9KZM2dw7NgxODs7a7Y9ePAA4eHh2L17N86cOYPhw4dj4MCB+PnnnwEAixcvRtu2bTFs2DBNn4OCgkodOyUlBb169UKfPn1w+vRpTJ8+HVOmTEFiYqJRbSVSPGtHXERkWY9nKZ555hnxxhtvCCG0MzyNGjUSPXr00HrcmDFjhIeHh/Dw8BCBgYF6PdcPP/wgateuLZycnESrVq3E2LFjxZEjR7T2qVu3rli0aJHWtjfffFMMHz5ca9vhw4eFg4OD+N///qfzuX755RcBQOTm5goh/snwHDhwQLNPfHy8ACCuXr2q2fbWW2+JyMhIvfoTHR0tHB0dhYeHh3BxcREAhIODg9i2bVu5j+vevbt49913NbcjIiLEmDFjtPYpmeHp16+f6NKli9Y+48ePF02aNNGrrUSkjRkeIgWbN28e1q1bh/Pnz1e47+TJk3Hq1ClMnToV9+/f1+v4HTp0wLVr13Dw4EG8/vrrOHv2LNq3b49Zs2aV+7jffvsNiYmJqFq1quZfZGQk1Go1UlNTATzKgERFRaFOnTqoVq0aIiIiAAA3btzQOtZTTz2l+X9/f3+4u7ujXr16Wttu376tV38AoFOnTjh16hR++uknREdHY8iQIXjttdc09xcVFWHWrFl48skn4e3tjapVq2Lfvn2l2lWR8+fP49lnn9Xa9uyzz+Ly5csoKioy6FhExKJlIkXr0KEDIiMjERcXp7W9QYMGuHjxotY2X19f1K9fH35+fgY9h5OTE9q3b4+JEyfi22+/xcyZMzFr1iwUFhaW+Zj79+/jrbfewqlTpzT/fvvtN1y+fBmhoaHIy8tDZGQkPD09sWHDBvzyyy/46quvAKDUcZ2cnDT/Xzy76nEqlQpqtVrv/nh4eKB+/fpo3rw51qxZg59++gmfffaZ5v758+dj8eLFmDhxIr7//nucOnUKkZGR5faXiMyvirUbQETWNXfuXLRo0QINGzbUbOvbty/69euHnTt34pVXXjHp8zVp0gR///03Hjx4AGdnZzg7O5fKWISFheHcuXOoX7++zmOcPn0amZmZmDt3rqb+5ddffzVpO/Xh4OCA999/H7GxsejXrx/c3Nxw9OhRvPLKKxgwYAAAQK1W49KlS2jSpInmcbr6XFLjxo1x9OhRrW1Hjx7FE088AUdHR9N3hkhyzPAQKdyTTz6J/v37Y8mSJZptffr0weuvv44+ffpg5syZ+Omnn3D9+nX88MMP2LJli94/uB07dsQnn3yClJQUXL9+HXv27MH777+PTp06wdPTE8CjdXgOHTqEW7du4e7duwCAiRMn4tixY4iJicGpU6dw+fJl7Ny5U1O0XKdOHTg7O2Pp0qW4du0avv766wqHyczl3//+NxwdHbF8+XIAj7Jj+/fvx7Fjx3D+/Hm89dZbyMjI0HpMcHCw5jW9e/euzgzTu+++i4MHD2LWrFm4dOkS1q1bh2XLluG9996zSL+IZMOAh4gwc+ZMrR9dlUqFLVu2ICEhAXv27MELL7yAhg0b4o033kBQUBCOHDmi13EjIyOxbt06vPjii2jcuDFGjRqFyMhIbN26Veu5r1+/jtDQUPj6+gJ4VHfzww8/4NKlS2jfvj1atmyJqVOnolatWgAeDa8lJibiyy+/RJMmTTB37lwsWLDAhK+I/qpUqYKYmBh89NFHyMvLwwcffICwsDBERkaiY8eOqFmzJnr27Kn1mPfeew+Ojo5o0qQJfH19ddb3hIWFYevWrdi8eTOaNWuGqVOnYubMmTpnohFRxVRCCGHtRhARERGZEzM8REREJD0GPERktMenjZf8d/jwYWs3zyA3btwotz+GTisnItvCIS0iMlp5FxENDAyEm5ubBVtTOX///TeuX79e5v3BwcGoUoUTW4nsFQMeIiIikh6HtIiIiEh6DHiIiIhIegx4iIiISHoMeIiIiEh6DHiIiIhIegx4iIiISHoMeIiIiEh6DHiIiIhIev8Pto6Uf2iyND4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_1.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABk+UlEQVR4nO3de1hU1f4/8PeADDdhFJCLioJo3m/gDS0rtdCQ8mjf1FIxNY8mFWKmHM00r1kqmiZdFK0kzcR+JaYhaR2V0lCOd0pDrSOoQAxeEhHW7w/P7BiYGWaGufN+Pc88x5m92LP2riPv1lr7s2RCCAEiIiIi0snJ2h0gIiIisgcMTURERER6YGgiIiIi0gNDExEREZEeGJqIiIiI9MDQRERERKQHhiYiIiIiPTA0EREREemBoYmIiIhIDwxNREQOZtOmTZDJZLh48aK1u0LkUBiaiMhgR48eRVxcHDp27AhPT0+0aNECzzzzDH755ZcabR955BHIZDLIZDI4OTnB29sbbdu2xdixY5GRkWHQ93799dd4+OGH4e/vDw8PD7Rq1QrPPPMM9uzZY6pLq2HJkiX48ssva3x++PBhzJ8/HyUlJWb77urmz58v3UuZTAYPDw906NABc+fORWlpqUm+IzU1FUlJSSY5F5GjYWgiIoO99dZb2LFjBwYOHIjVq1dj8uTJ+OGHHxAeHo5Tp07VaN+8eXN88skn+Pjjj/H222/jySefxOHDh/H4449j5MiRKC8vr/U733nnHTz55JOQyWRITEzEqlWrMGLECPz666/YunWrOS4TgO7QtGDBAouGJpX169fjk08+wcqVK9GuXTssXrwYgwcPhim2EmVoItKugbU7QET2JyEhAampqZDL5dJnI0eOROfOnbFs2TJ8+umnau0VCgXGjBmj9tmyZcvw8ssv47333kNISAjeeustrd937949LFy4EI899hi+/fbbGsevXbtWxyuyHbdv34aHh4fONk8//TT8/PwAAFOmTMGIESOQlpaGH3/8EZGRkZboJlG9xJEmIjJY37591QITALRp0wYdO3bE2bNn9TqHs7Mz1qxZgw4dOmDt2rVQKpVa2xYWFqK0tBT9+vXTeNzf31/t/Z07dzB//nw88MADcHNzQ1BQEIYPH44LFy5Ibd555x307dsXvr6+cHd3R0REBL744gu188hkMty6dQubN2+WpsTGjx+P+fPnY+bMmQCA0NBQ6VjVNUSffvopIiIi4O7uDh8fH4waNQq///672vkfeeQRdOrUCdnZ2ejfvz88PDzwr3/9S6/7V9WAAQMAAHl5eTrbvffee+jYsSNcXV3RtGlTTJs2TW2k7JFHHkF6ejouXbokXVNISIjB/SFyVBxpIiKTEELg6tWr6Nixo94/4+zsjNGjR+P111/HwYMHER0drbGdv78/3N3d8fXXX+Oll16Cj4+P1nNWVFRg6NChyMzMxKhRo/DKK6/gxo0byMjIwKlTpxAWFgYAWL16NZ588kk899xzuHv3LrZu3Yr/+7//w65du6R+fPLJJ5g0aRJ69eqFyZMnAwDCwsLg6emJX375BZ999hlWrVoljfo0adIEALB48WK8/vrreOaZZzBp0iRcv34d7777Lvr374/jx4+jUaNGUn+LioowZMgQjBo1CmPGjEFAQIDe909FFQZ9fX21tpk/fz4WLFiAQYMGYerUqcjNzcX69etx9OhRHDp0CC4uLpgzZw6USiX++OMPrFq1CgDQsGFDg/tD5LAEEZEJfPLJJwKA2LBhg9rnDz/8sOjYsaPWn9u5c6cAIFavXq3z/PPmzRMAhKenpxgyZIhYvHixyM7OrtFu48aNAoBYuXJljWOVlZXSn2/fvq127O7du6JTp05iwIABap97enqK2NjYGud6++23BQCRl5en9vnFixeFs7OzWLx4sdrnJ0+eFA0aNFD7/OGHHxYARHJystbrruqNN94QAERubq64fv26yMvLE++//75wdXUVAQEB4tatW0IIIVJSUtT6du3aNSGXy8Xjjz8uKioqpPOtXbtWABAbN26UPouOjhYtW7bUqz9E9Q2n54iozs6dO4dp06YhMjISsbGxBv2saiTjxo0bOtstWLAAqamp6N69O/bu3Ys5c+YgIiIC4eHhalOCO3bsgJ+fH1566aUa55DJZNKf3d3dpT//+eefUCqVeOihh3Ds2DGD+l9dWloaKisr8cwzz6CwsFB6BQYGok2bNti/f79ae1dXVzz//PMGfUfbtm3RpEkThIaG4p///Cdat26N9PR0rWuh9u3bh7t37yI+Ph5OTn//tf/CCy/A29sb6enphl8oUT3E6TkiqpOCggJER0dDoVDgiy++gLOzs0E/f/PmTQCAl5dXrW1Hjx6N0aNHo7S0FD/99BM2bdqE1NRUxMTE4NSpU3Bzc8OFCxfQtm1bNGig+6+3Xbt2YdGiRcjJyUFZWZn0edVgZYxff/0VQgi0adNG43EXFxe1982aNauxPqw2O3bsgLe3N1xcXNC8eXNpylGbS5cuAbgftqqSy+Vo1aqVdJyIdGNoIiKjKZVKDBkyBCUlJfj3v/+Npk2bGnwOVYmC1q1b6/0z3t7eeOyxx/DYY4/BxcUFmzdvxk8//YSHH35Yr5//97//jSeffBL9+/fHe++9h6CgILi4uCAlJQWpqakGX0NVlZWVkMlk+OabbzQGyOprhKqOeOmrf//+0joqIrIchiYiMsqdO3cQExODX375Bfv27UOHDh0MPkdFRQVSU1Ph4eGBBx980Kh+9OjRA5s3b0Z+fj6A+wu1f/rpJ5SXl9cY1VHZsWMH3NzcsHfvXri6ukqfp6Sk1GirbeRJ2+dhYWEQQiA0NBQPPPCAoZdjFi1btgQA5ObmolWrVtLnd+/eRV5eHgYNGiR9VteRNiJHxjVNRGSwiooKjBw5EllZWdi+fbtRtYEqKirw8ssv4+zZs3j55Zfh7e2tte3t27eRlZWl8dg333wD4O+ppxEjRqCwsBBr166t0Vb8r/ijs7MzZDIZKioqpGMXL17UWMTS09NTYwFLT09PAKhxbPjw4XB2dsaCBQtqFJsUQqCoqEjzRZrRoEGDIJfLsWbNGrU+bdiwAUqlUu2pRU9PT53lH4jqM440EZHBZsyYga+++goxMTEoLi6uUcyyeiFLpVIptbl9+zbOnz+PtLQ0XLhwAaNGjcLChQt1ft/t27fRt29f9OnTB4MHD0ZwcDBKSkrw5Zdf4t///jeGDRuG7t27AwDGjRuHjz/+GAkJCThy5Ageeugh3Lp1C/v27cOLL76Ip556CtHR0Vi5ciUGDx6MZ599FteuXcO6devQunVrnDhxQu27IyIisG/fPqxcuRJNmzZFaGgoevfujYiICADAnDlzMGrUKLi4uCAmJgZhYWFYtGgREhMTcfHiRQwbNgxeXl7Iy8vDzp07MXnyZLz66qt1uv+GatKkCRITE7FgwQIMHjwYTz75JHJzc/Hee++hZ8+eav+8IiIisG3bNiQkJKBnz55o2LAhYmJiLNpfIptlzUf3iMg+qR6V1/bS1bZhw4aiTZs2YsyYMeLbb7/V6/vKy8vFhx9+KIYNGyZatmwpXF1dhYeHh+jevbt4++23RVlZmVr727dvizlz5ojQ0FDh4uIiAgMDxdNPPy0uXLggtdmwYYNo06aNcHV1Fe3atRMpKSnSI/1VnTt3TvTv31+4u7sLAGrlBxYuXCiaNWsmnJycapQf2LFjh3jwwQeFp6en8PT0FO3atRPTpk0Tubm5avdGVzmG6lT9u379us521UsOqKxdu1a0a9dOuLi4iICAADF16lTx559/qrW5efOmePbZZ0WjRo0EAJYfIKpCJoQJNisiIiIicnBc00RERESkB4YmIiIiIj0wNBERERHpgaGJiIiISA8MTURERER6YGgiIiIi0gOLW5pIZWUlrly5Ai8vL25DQEREZCeEELhx4waaNm0KJyfdY0kMTSZy5coVBAcHW7sbREREZITff/8dzZs319mGoclEvLy8ANy/6br20CIiIiLbUVpaiuDgYOn3uC4MTSaimpLz9vZmaCIiIrIz+iyt4UJwIiIiIj0wNBERERHpgaGJiIiISA9c00RERGRFlZWVuHv3rrW74dDkcnmt5QT0wdBERERkJXfv3kVeXh4qKyut3RWH5uTkhNDQUMjl8jqdh6GJiIjICoQQyM/Ph7OzM4KDg00yEkI1qYpP5+fno0WLFnUqQM3QREREZAX37t3D7du30bRpU3h4eFi7Ow6tSZMmuHLlCu7duwcXFxejz8NYS0REZAUVFRUAUOcpI6qd6h6r7rmxGJqIiIisiPuVmp+p7jGn5xxIUVGRzicw5HI5fH19LdgjIiIix8HQ5CCKioqwdu3aWtvFxcUxOBERERmB03MOovoIk1Lphby8ECiVXjrbERERGWL8+PGQyWSQyWRwcXFBQEAAHnvsMWzcuNGg0gmbNm1Co0aNzNdRM+BIkwM6dqw7vv56KIRwgkxWiZiYXQgPP27tbhERkQlZc0nG4MGDkZKSgoqKCly9ehV79uzBK6+8gi+++AJfffUVGjRwzHjhmFdVjymVXlJgAgAhnPD110MRFnYeCsUNK/eOiIhMwdpLMlxdXREYGAgAaNasGcLDw9GnTx8MHDgQmzZtwqRJk7By5UqkpKTgt99+g4+PD2JiYrB8+XI0bNgQBw4cwPPPPw/g70Xab7zxBubPn49PPvkEq1evRm5uLjw9PTFgwAAkJSXB39/f5NdhKE7POZjiYl8pMKkI4YTiYh8r9YiIiExN36UWllySMWDAAHTt2hVpaWkA7lfhXrNmDU6fPo3Nmzfju+++w2uvvQYA6Nu3L5KSkuDt7Y38/Hzk5+fj1VdfBQCUl5dj4cKF+M9//oMvv/wSFy9exPjx4y12HbpwpMnB+PgUQSarVAtOMlklfHyKrdgrIiKqD9q1a4cTJ04AAOLj46XPQ0JCsGjRIkyZMgXvvfce5HI5FAoFZDKZNGKlMmHCBOnPrVq1wpo1a9CzZ0/cvHkTDRs2tMh1aMORJgejUNxATMwuyGT3F+Op1jRxao6IiMxNCCFNt+3btw8DBw5Es2bN4OXlhbFjx6KoqAi3b9/WeY7s7GzExMSgRYsW8PLywsMPPwwAuHz5stn7XxuONDmg8PDjCAs7j+JiH/j4FDMwERGRRZw9exahoaG4ePEihg4diqlTp2Lx4sXw8fHBwYMHMXHiRNy9e1frtjG3bt1CVFQUoqKisGXLFjRp0gSXL19GVFSUTTz9zdDkIKqX4VcobmgMSyzXT0RE5vDdd9/h5MmTmD59OrKzs1FZWYkVK1ZIGxF//vnnau3lcnmNbU3OnTuHoqIiLFu2DMHBwQCAn3/+2TIXoAeGJgfh6+uLuLg4VgQnIiKzKysrQ0FBgVrJgaVLl2Lo0KEYN24cTp06hfLycrz77ruIiYnBoUOHkJycrHaOkJAQ3Lx5E5mZmejatSs8PDzQokULyOVyvPvuu5gyZQpOnTqFhQsXWukqa+KaJgfi6+uLoKAgrS8GJiIiMoU9e/YgKCgIISEhGDx4MPbv3481a9bg//2//wdnZ2d07doVK1euxFtvvYVOnTphy5YtWLp0qdo5+vbtiylTpmDkyJFo0qQJli9fjiZNmmDTpk3Yvn07OnTogGXLluGdd96x0lXWJBNCCGt3whGUlpZCoVBAqVTC29vb2t0hIiIbd+fOHeTl5SE0NBRubm4G/ay16zTZG1332pDf35yeIyIisjNckmEdDE1ERER2iIHI8rimiYiIiEgPDE1EREREemBoIiIiItIDQxMRERGRHrgQnKyuqKiIT4AQEZHNY2giq2KtESIishecniOrqj7CpFR6IS8vBEqll852RERElsbQRDbj2LHuSEqKx+bNsUhKisexY92t3SUiIrKwAwcOQCaToaSkRO+fCQkJQVJSktn6pMLQ5ECKioqQn5+v9VVUVGTtLmqlVHrh66+HQoj7/0oK4YSvvx5aY8SJiIisa/z48ZDJZJgyZUqNY9OmTYNMJsP48eMt3zEL4JomB2Hva4OKi32lwKQihBOKi32gUNywUq+IiEiT4OBgbN26FatWrYK7uzuA+/u7paamokWLFlbunflwpMlB2PvaIB+fIshklWqfyWSV8PEptlKPiIhIm/DwcAQHByMtLU36LC0tDS1atED37n8vrSgrK8PLL78Mf39/uLm54cEHH8TRo0fVzrV792488MADcHd3x6OPPoqLFy/W+L6DBw/ioYcegru7O4KDg/Hyyy/j1q1bZrs+bRiaHJA9rg1SKG4gJmaXFJxkskrExOziKBMRkR7++APYv//+/1rKhAkTkJKSIr3fuHEjnn/+ebU2r732Gnbs2IHNmzfj2LFjaN26NaKiolBcfP8/iH///XcMHz4cMTExyMnJwaRJkzB79my1c1y4cAGDBw/GiBEjcOLECWzbtg0HDx5EXFyc+S+yGoYmB2PPa4PCw48jPj4JsbGbEB+fhPDw49buEhGRzduwAWjZEhgw4P7/bthgme8dM2YMDh48iEuXLuHSpUs4dOgQxowZIx2/desW1q9fj7fffhtDhgxBhw4d8OGHH8Ld3R0b/tfJ9evXIywsDCtWrEDbtm3x3HPP1VgPtXTpUjz33HOIj49HmzZt0LdvX6xZswYff/wx7ty5Y5mL/R+uaXIwta0NKiwsrPEz1iweKZfL1d4rFDc0ji5Vb0dERPdHliZPBir/t7qhshL45z+BqCigeXPzfneTJk0QHR2NTZs2QQiB6Oho+Pn5SccvXLiA8vJy9OvXT/rMxcUFvXr1wtmzZwEAZ8+eRe/evdXOGxkZqfb+P//5D06cOIEtW7ZInwkhUFlZiby8PLRv394cl6cRQ5ODUa0Nqhqcqq4Nqjr/XJW5F4jrqvo9ZMgQVFRUoGHDhhqPe3h42OTidSIia/v1178Dk0pFBXD+vPlDE3B/ik41TbZu3TqzfMfNmzfxz3/+Ey+//HKNY5ZedM7Q5GBUa4NUU3TV1wYplV4oLvaFj0+R2oiOOReI6/tkny62+tQfEZE1tWkDODmpBydnZ6B1a8t8/+DBg3H37l3IZDJERUWpHQsLC4NcLsehQ4fQsmVLAEB5eTmOHj2K+Ph4AED79u3x1Vdfqf3cjz/+qPY+PDwcZ86cQWtLXZQODE0OKDz8OMLCzqO42Ac+PsVSODp2rHuNMGWJdUOanuzTFNx0HbPVp/6IiKypeXPggw/uT8lVVNwPTO+/b5lRJgBwdnaWptqcnZ3Vjnl6emLq1KmYOXMmfHx80KJFCyxfvhy3b9/GxIkTAQBTpkzBihUrMHPmTEyaNAnZ2dnYtGmT2nlmzZqFPn36IC4uDpMmTYKnpyfOnDmDjIyMOv8HuaEYmhzE7du31d5XXxukbYF4WNh5iz6hpiu4WSvUERHZs4kT769hOn/+/giTpQKTire3t9Zjy5YtQ2VlJcaOHYsbN26gR48e2Lt3Lxo3bgzg/vTajh07MH36dLz77rvo1asXlixZggkTJkjn6NKlC77//nvMmTMHDz30EIQQCAsLw8iRI81+bdUxNDkIDw8PtffVR2xsoXikruAGwCZCHRGRPWre3HJhqfpIUHVffvml9Gc3NzesWbMGa9as0dp+6NChGDp0qNpn1UsX9OzZE99++63Wc2iq7WQODE0OSNOITVjYeZ0LxC1BV3ADZFYPdURERLqwTpOD0TaaA8DqxSN1Vf1mRXAiIrJ1Vg1N69evR5cuXeDt7Q1vb29ERkbim2++kY4/8sgjkMlkaq/qGwRevnwZ0dHR8PDwgL+/P2bOnIl79+6ptTlw4ADCw8Ph6uqK1q1baxxaXLduHUJCQuDm5obevXvjyJEjZrlmc9M1mmPt4pG6qn6zIjgREdk6q07PNW/eHMuWLUObNm0ghMDmzZvx1FNP4fjx4+jYsSMA4IUXXsCbb74p/UzVtTsVFRWIjo5GYGAgDh8+jPz8fIwbNw4uLi5YsmQJACAvLw/R0dGYMmUKtmzZgszMTEyaNAlBQUHS45Hbtm1DQkICkpOT0bt3byQlJSEqKgq5ubnw9/e34B2pu9rqNFm7eKS2J/tqO0ZERGRtVg1NMTExau8XL16M9evX48cff5RCk4eHBwIDAzX+/LfffoszZ85g3759CAgIQLdu3bBw4ULMmjUL8+fPh1wuR3JyMkJDQ7FixQoA92tCHDx4EKtWrZJC08qVK/HCCy9IC8+Sk5ORnp6OjRs31tgDx9bVVqdp+PDhahVbAfNXBNe36reuY6wITkSOSghh7S44PFPdY5tZCF5RUYHt27fj1q1baiXUt2zZgk8//RSBgYGIiYnB66+/Lo02ZWVloXPnzggICJDaR0VFYerUqTh9+jS6d++OrKwsDBo0SO27oqKipMJad+/eRXZ2NhITE6XjTk5OGDRoELKysrT2t6ysDGVlZdL70tLSOl2/KekasfHz80NQUJBF++Pr64u4uDittZZKSkogk8mgUCg0HrfmNi9EROaiqmt09+5duLu7W7k3jk31+6d6LSlDWT00nTx5EpGRkbhz5w4aNmyInTt3okOHDgCAZ599Fi1btkTTpk1x4sQJzJo1C7m5udJWIAUFBWqBCYD0vqCgQGeb0tJS/PXXX/jzzz9RUVGhsc25c+e09nvp0qVYsGBB3S5eB13bjgA1g4St7+GmK/RYOsQREdmCBg0awMPDA9evX4eLiwucnPhsljlUVlbi+vXr8PDwQIMGdYs9Vg9Nbdu2RU5ODpRKJb744gvExsbi+++/R4cOHTB58mSpXefOnREUFISBAwfiwoULCAsLs2KvgcTERCQkJEjvS0tLERwcbJJz67vtSNWtRWobzQHsb8TG0OBIRGRPZDIZgoKCkJeXh0uXLlm7Ow7NyckJLVq0gEwmq9N5rB6a5HK5tJ9MREQEjh49itWrV+P999+v0Va1E/L58+cRFhaGwMDAGk+5Xb16FQCkdVCBgYHSZ1XbeHt7w93dHc7OznB2dtbYRttaKgBwdXWFq6urgVerH323Hbly5UqNto4SJIwJjkRE9kYul6NNmzbcKsrM5HK5SUbyrB6aqqusrFRbK1RVTk4OgL+ncyIjI7F48WJcu3ZNesotIyMD3t7e0hRfZGQkdu/erXaejIwMad2UXC5HREQEMjMzMWzYMKkPmZmZ0s7N1qRraxHVNGV1jhAk9A2O/IuGiOydk5MT3NzcrN0N0oNVQ1NiYiKGDBmCFi1a4MaNG0hNTcWBAwewd+9eXLhwAampqXjiiSfg6+uLEydOYPr06ejfvz+6dOkCAHj88cfRoUMHjB07FsuXL0dBQQHmzp2LadOmSaNAU6ZMwdq1a/Haa69hwoQJ+O677/D5558jPT1d6kdCQgJiY2PRo0cP9OrVC0lJSbh161aNMu6WVtt+cfUlSHBPOiIisgVWDU3Xrl3DuHHjkJ+fD4VCgS5dumDv3r147LHH8Pvvv2Pfvn1SgAkODsaIESMwd+5c6eednZ2xa9cuTJ06FZGRkfD09ERsbKxaXafQ0FCkp6dj+vTpWL16NZo3b46PPvpIKjcAACNHjsT169cxb948FBQUoFu3btizZ0+NxeGWpqtQ5YULretFkLCVjYaJiIisGpo2bNig9VhwcDC+//77Ws/RsmXLGtNv1T3yyCM4flx3oIiLi7OJ6biqtBWqdHG5a1CQsOcF1baw0TARERFgg2ua6G/aClWWl7vqHSTsfUF1bRXOiYiILIWhycZpKlSpVHrpHSTsfUF1bRXOiYiILIWhyQbVVqjS2CBhrwuquScdERHZAoYmG6StUGVhYaFUZsDQIGFvC6ptvcI5ERHVPwxNNkrT+qK6BAl7W1DtiBXOiYjIvjE02ZG6BAl7XFDNQERERLaEocnOGBskbHlBtT2XRCAiovqDoakescUF1fZeEoGIiOoPhiYHZysLqrWNJhUWFqq9t7eSCEREVH8wNDk4W1hQre9okr2WRCAiovqBoakesPa0lj4FNu2tJAIREdU/DE1kUdpGk+ytJAIREdU/TrU3ITINbaNJSqWXVBKhKlsviUBERPULQxNZTG2jSTExu6TgZEslEYiIiABOz5EFKJVKALUX2LTFkghEREQqHGkisysvLwfwd4FNQDUNV3M0SaG4gdDQSzUCE/eYIyIia+NIE1mcTAYIcf9/q3r00UfRpk2bGu1ZEZyIiGwBQxOZXYMG9/81q62sQJMmTRAUFGTNrhIREWnF6Tkyu0aNGgHQvRC8ajsiIiJbxNBEFsOyAkREZM84PWdntO3hpmLL639UC8GrF7fkU3JERGQPGJrsiL57uMXFxekdnCwdwlhWgIiI7BVDkx3RFW6MaWeOEKZJ9XIBCsUNjWGJZQWIiMiWMTTZMU0b3xpCn410NbUzlK+vL+Li4ux2WpGIiAhgaLJb2ja+tZXzVcdApJs9r1UjIqovGJrsUG31jqx9PjKMpaZJiYioblhywA7VVu/I2ucjw2iaJs3LC4FS6aWzHRERWRZHmuxQbRvfWvt8pJm2KbjCwkLpz+aeJiUiIuMxNNkhU9c7Yv0k89NnCo7TpEREto2hyY5UfSRfV70jYx7dZ/0k89LnSUVd06T850FEZH0MTXbE1I/us36SdWibguM0KRGRbWNosjOmfHqK9ZMsr7YpOE6TEhHZLoameo6ByDjG1lWqbQqO06RERLaLoYnIQHWpq6TPFBynSYmIbBNDE5GB6rL9TG1TcMOHD4efn1+Nn+M0KRGR9TE0EdWBMXWVdE3B+fn5ISgoyNzdJiIiI7AiOJGRtC3qrl7JG9D8pGJo6KUa03CcgiMisl0caSIykiF1lfikIhGR/WNoIjKSoXWVGIiIiOwbQxORkWpb1F11T7mqOKJERGSfGJqo3jO25hKge1F3Wlqa1nNqKkdARES2jaGJ6jVjai7pu/0MYFg5AiIism0MTVSvGVNzSdei7sLCQmmEyZhyBEREZLsYmsjq6jI9ZkqGhJza+lPbHnNERGR/GJrIquqyJYkpmTrkGFKOwJJsJaASEdkjhiayKn3X9ph7DZCpQ46h5QgswVYCKhGRvWJFcLIpSqUX8vJCNFbVNidVyKmqLiFHVY5Adc7q5QisQdP6LU33movUiYg040gT2QxrLpyureaSMXSVI7A2LlInIjIcQxPZBFtYOG2KkKNvOQJr7jFnC/eaiMgeMTSRTbDWwmlThxx72GPOVhepExHZOquGpvXr12P9+vW4ePEiAKBjx46YN28ehgwZAgC4c+cOZsyYga1bt6KsrAxRUVF47733EBAQIJ3j8uXLmDp1Kvbv34+GDRsiNjYWS5cuRYMGf1/agQMHkJCQgNOnTyM4OBhz587F+PHj1fqybt06vP322ygoKEDXrl3x7rvvolevXma/B3SfqRZOG/p0mDlCjq0vorbFRepERPbAqqGpefPmWLZsGdq0aQMhBDZv3oynnnoKx48fR8eOHTF9+nSkp6dj+/btUCgUiIuLw/Dhw3Ho0CEAQEVFBaKjoxEYGIjDhw8jPz8f48aNg4uLC5YsWQIAyMvLQ3R0NKZMmYItW7YgMzMTkyZNQlBQEKKiogAA27ZtQ0JCApKTk9G7d28kJSUhKioKubm58Pf3t9r9qU9MsabI2KfDjAk59vzovjnWbxER1QcyIYSwdieq8vHxwdtvv42nn34aTZo0QWpqKp5++mkAwLlz59C+fXtkZWWhT58++OabbzB06FBcuXJFGn1KTk7GrFmzcP36dcjlcsyaNQvp6ek4deqU9B2jRo1CSUkJ9uzZAwDo3bs3evbsKf3CraysRHBwMF566SXMnj1br36XlpZCoVBAqVTC29vblLfEoVUPOvcrctdcU6TPY/D5+fn44IMPqp2rZnXvyZMnIygoyGR91sbWHt3XfH9q3uu63h8iIntiyO9vm1nTVFFRge3bt+PWrVuIjIxEdnY2ysvLMWjQIKlNu3bt0KJFCyk0ZWVloXPnzmrTdVFRUZg6dSpOnz6N7t27IysrS+0cqjbx8fEA7j9enZ2djcTEROm4k5MTBg0ahKysLK39LSsrQ1lZmfS+tLS0rregXjLXGiBzPh1mzNYrtsAeFqkTEdkyq4emkydPIjIyEnfu3EHDhg2xc+dOdOjQATk5OZDL5WjUqJFa+4CAABQUFAAACgoK1AKT6rjqmK42paWl+Ouvv/Dnn3+ioqJCY5tz585p7ffSpUuxYMECo66Z1Jl6NMaST4fZ06P79rBInYjIllk9NLVt2xY5OTlQKpX44osvEBsbi++//97a3apVYmIiEhISpPelpaUIDg62Yo9IxVJPh9njo/sMRERExrN6aJLL5WjdujUAICIiAkePHsXq1asxcuRI3L17FyUlJWqjTVevXkVgYCAAIDAwEEeOHFE739WrV6Vjqv9VfVa1jbe3N9zd3eHs7AxnZ2eNbVTn0MTV1RWurq7GXTSZlaWeDuOj+0RE9YvNbaNSWVmJsrIyREREwMXFBZmZmdKx3NxcXL58GZGRkQCAyMhInDx5EteuXZPaZGRkwNvbGx06dJDaVD2Hqo3qHHK5HBEREWptKisrkZmZKbUh+2KpLUwM3XqlqKgI+fn5Wl9FRUUm7R8REZmWVUeaEhMTMWTIELRo0QI3btxAamoqDhw4gL1790KhUGDixIlISEiAj48PvL298dJLLyEyMhJ9+vQBADz++OPo0KEDxo4di+XLl6OgoABz587FtGnTpFGgKVOmYO3atXjttdcwYcIEfPfdd/j888+Rnp4u9SMhIQGxsbHo0aMHevXqhaSkJNy6dQvPP/+8Ve4L1Z0ltjAx5NF9e33ijoiI/mbV0HTt2jWMGzcO+fn5UCgU6NKlC/bu3YvHHnsMALBq1So4OTlhxIgRasUtVZydnbFr1y5MnToVkZGR8PT0RGxsLN58802pTWhoKNLT0zF9+nSsXr0azZs3x0cffSTVaAKAkSNH4vr165g3bx4KCgrQrVs37Nmzp8bicLJt1ng6TN9wZq9P3BER0d9srk6TvWKdJttgiaKTxowaVa2RpOuJO9ZIIiKyLLus00RkCpaY2qrLo/v2+MQdERHdx9BEZARjwxmfuCMisl829/QckSMz9Ik7IiKyHRxponpP1zqokpISyGQyKBQKjccNXSPFzXKJiOwXQxPVa/ou6tbF0DIBliiHQEREpsfQRPWavqUAdB3Tp0wAN8slIrJ/DE1E/6OrFEBdN+a1lc1yLVGSgYjIUTE0EUF3KQAAJikTYO0wwqrkRER1w6fniKC7FICuY/ZE01RkXl4IlEovne2IiOg+jjQR4e9SAFXDUdVSALqO2aO6TjcSEdVHHGkiwt+lAFQ1lKqWAtB1zJqKioqQn5+v9VVUVKTx57RNRVYfcSIiInUcaSL6H12lAGytTEBd1iexKjkRkXEYmqhe07cUgK5j1igToG+pBE3rk2qbiiQiIs0Ymqheq60UgKkrgpuDoeuTWJWciMg4DE1U7+kKPUFBQRbsieF0lUrQFYJsbbqRiMgeMDQR2TFD1iexKjkRUd0YHZpCQkIwYcIEjB8/Hi1atDBln4hIT4asT7KVquRERPbK6JID8fHxSEtLQ6tWrfDYY49h69atKCsrM2XfiKgWhpZD8PX1RVBQkNYXAxMRkXYyIYSoywmOHTuGTZs24bPPPkNFRQWeffZZTJgwAeHh4abqo10oLS2FQqGAUqmEt7e3tbtDDi4/Px8ffPCB9P7+03M11ydNnjzZ5tdlERFZkyG/v+tc3DI8PBxr1qzBlStX8MYbb+Cjjz5Cz5490a1bN2zcuBF1zGREpIGm9UmhoZdqXcdERETGq/NIU3l5OXbu3ImUlBRkZGSgT58+mDhxIv744w+sW7cOAwYMQGpqqqn6a7M40kSWVlRUxPVJRER1ZMjvb6MXgh87dgwpKSn47LPP4OTkhHHjxmHVqlVo166d1OYf//gHevbsaexXEDkUU4ccBiIiIssyOjT17NkTjz32GNavX49hw4bBxcWlRpvQ0FCMGjWqTh0kcgR12faEiIhsg9Gh6bfffkPLli11tvH09ERKSoqxX0HkMOqy7QkREdkGo0PTo48+iqNHj9b4r+KSkhKEh4fjt99+q3PniByRodueEBGRbTA6NF28eBEVFRU1Pi8rK8N///vfOnWKyFEZu+2JJXBhORGRbgaHpq+++kr68969e9U2Mq2oqEBmZiZCQkJM0jkiR2PItieWZOtrrhjoiMgWGByahg0bBgCQyWSIjY1VO+bi4oKQkBCsWLHCJJ0jcjSGbHtiSba85srWAx0R1R8Gh6bKyvvbNYSGhuLo0aPw8/MzeaeIHJVq25Pqa5qsPTVXla2tubLlQEdE9YvRa5ry8vJM2Q+ieiM8/DjCws5r3PbE2mx5zRVge4GOiOoXo0PTm2++qfP4vHnzjD01kcPRtO2JphBi7W1PbHXNFWD7gY6IHJ/RoWnnzp1q78vLy5GXl4cGDRogLCyMoYmoCl9fX8TFxdn8YmZbXXMF2HagI6L6wejQdPx4zSHx0tJSjB8/Hv/4xz/q1CkiR2TtQKQPW15zZcuBjojqB6NDkybe3t5YsGABYmJiMHbsWFOemogsxFbXXNlyoCOi+sGkoQkAlEollEqlqU9LRGZkL2uubDXQEVH9YHRoWrNmjdp7IQTy8/PxySefYMiQIXXuGBFZjiXXXBlaqNJeAh0ROT6ZEEIY84OhoaFq752cnNCkSRMMGDAAiYmJ8PLyMkkH7UVpaSkUCgWUSiW8vb2t3R0im2RsoUpWBCciczHk9zfrNBGRxRhbqJKBiIhsQZ3WNAkhUFRUBJlMxr/UiMggLFRJRPbGqfYmNRUUFGDcuHFo3LgxAgIC4O/vj8aNG2PChAm4evWqqftIRA5GW6FKpbJ+TesTkX0xeKSptLQUffv2xc2bN/H888+jXbt2EELgzJkz+Oyzz3Dw4EEcO3YMDRs2NEd/icgBsFAlEdkjg0PT6tWr4ezsjNOnT6NJkyZqx+bOnYt+/fphzZo1+Ne//mWyThKRY2GhSiKyRwZPz6Wnp+Nf//pXjcAEAP7+/khMTMTXX39tks4RkWNSFaqUySoBgIUqicguGDzS9Msvv6Bv375aj/ft2xevvvpqnTpFRI7PkEKVpiw5wPIFRGQso9Y0NWrUSOvxRo0aobS0tC59IiIHZUyhSmNrO2liynMRUf1jcGgSQsDJSfusnkwmg5H1MomIajC2tlNdznXlyhWN5+MoFFH9ZlRoeuCBByCTybQeJyLSpK4ByJS1nXSdKy0tTevPcRSKqP4yODSlpKSYox9EVM8YGoC01XYKCztv8AJyfc5VlxEtInJMBoem2NhYg9p/9tlnePLJJ+Hp6WnoVxGRgzImAJmytlNt52K1ciLSxKiK4Ib45z//ySrhRAQAUCqVAHSHlqrtqlLVdqrK2NpOus7FauVEpI3ZQxPXOBGRSnl5OYDaA5CqXVWmrO2k61zGBDoiqh/MHpp0Wbp0KXr27AkvLy/4+/tj2LBhyM3NVWvzyCOPQCaTqb2mTJmi1uby5cuIjo6Gh4cH/P39MXPmTNy7d0+tzYEDBxAeHg5XV1e0bt0amzZtqtGfdevWISQkBG5ubujduzeOHDli8msmovuhpUuXEwBU/1El0KXLiVoDUHj4ccTHJyE2dhPi45PqNGWm7VzGBDoiqh+sGpq+//57TJs2DT/++CMyMjJQXl6Oxx9/HLdu3VJr98ILLyA/P196LV++XDpWUVGB6Oho3L17F4cPH8bmzZuxadMmzJs3T2qTl5eH6OhoPProo8jJyUF8fDwmTZqEvXv3Sm22bduGhIQEvPHGGzh27Bi6du2KqKgoXLt2zfw3gqieUSq9cOJEFwCqp3BlOHGii8YpME21nUJDL9UIWNXbaaLPuYwNdETk+AxeCG5Ke/bsUXu/adMm+Pv7Izs7G/3795c+9/DwQGBgoMZzfPvttzhz5gz27duHgIAAdOvWDQsXLsSsWbMwf/58yOVyJCcnIzQ0FCtWrAAAtG/fHgcPHsSqVasQFRUFAFi5ciVeeOEFPP/88wCA5ORkpKenY+PGjZg9e7Y5Lp+o3mnQ4P5fObUtxFa1AwBfX1/ExcWZpIq3rnP9+uuv2L9/v9ZAN2DAdwxORPWcVUeaqlOtFfDx8VH7fMuWLfDz80OnTp2QmJiI27dvS8eysrLQuXNnBAQESJ9FRUWhtLQUp0+fltoMGjRI7ZxRUVHIysoCcP8R4uzsbLU2Tk5OGDRokNSmurKyMpSWlqq9iEg31W4CtU2BVd91wNfXF0FBQVpfhtRN0nYu1X6ata1pqhroiKh+MSo0VVRU4IcffkBJSUmtbVu2bAkXF5da21VWViI+Ph79+vVDp06dpM+fffZZfPrpp9i/fz8SExPxySefYMyYMdLxgoICtcAEQHpfUFCgs01paSn++usvFBYWoqKiQmMb1TmqW7p0KRQKhfQKDg6u9RqJ6D5b3LDX2EBHRPWHUf/J5OzsjMcffxxnz56t9S+QU6dO6XXOadOm4dSpUzh48KDa55MnT5b+3LlzZwQFBWHgwIG4cOECwsLCDO67qSQmJiIhIUF6X1payuBEZABDNuy1JFWgq16nyVb6R0TWY/Q4c6dOnfDbb78hNDS0zp2Ii4vDrl278MMPP6B58+Y62/bu3RsAcP78eYSFhSEwMLDGU26qulCqdVCBgYE1akVdvXoV3t7ecHd3h7OzM5ydnTW20baWytXVFa6urvpfJBEZtWGvNdhqoCMi6zI6NC1atAivvvoqFi5ciIiIiBoVv729vWs9hxACL730Enbu3IkDBw7oFcBycnIAAEFBQQCAyMhILF68GNeuXYO/vz8AICMjA97e3ujQoYPUZvfu3WrnycjIQGRkJID7f0FHREQgMzMTw4YNA3B/ujAzMxNxcXG19omovioqKjJogbYpF3Wbmr0EOiKyHpkwsvqkk9Pfy6Gqbt4rhIBMJkNFRUWt53jxxReRmpqK//f//h/atm0rfa5QKODu7o4LFy4gNTUVTzzxBHx9fXHixAlMnz4dzZs3x/fffw/g/vqqbt26oWnTpli+fDkKCgowduxYTJo0CUuWLAFwv+RAp06dMG3aNEyYMAHfffcdXn75ZaSnp0tPz23btg2xsbF4//330atXLyQlJeHzzz/HuXPnaqx10qS0tBQKhQJKpVKvwEhk74qKirB27dpa29nTBreGhkAisn+G/P42eqRp//79xv6oZP369QDuF7CsKiUlBePHj4dcLse+ffuQlJSEW7duITg4GCNGjMDcuXOlts7Ozti1axemTp2KyMhIeHp6IjY2Fm+++abUJjQ0FOnp6Zg+fTpWr16N5s2b46OPPpICEwCMHDkS169fx7x581BQUIBu3bphz549egUmovqoerjQd4NbWw4mDEREpIvRI02kjiNNVN/k5+fjgw8+AACdG9xOnjxZmk53xNEpIrJvhvz+rlOdpn//+98YM2YM+vbti//+978AgE8++aTGE3BE5LgM2eBW0+hUXl5Ijba6RqKIiKzF6NC0Y8cOREVFwd3dHceOHUNZWRmA+wUqVWuJiMjx1VYMUptjx7ojKSkemzfHIikpHseOdTdnN4mI6szo0LRo0SIkJyfjww8/VCte2a9fPxw7dswknSMi21dbMUhNDBmdIiKyFUaHptzcXLX94VQUCoVelcKJyDEYU93b2NEpIiJrMvrpucDAQJw/fx4hISFqnx88eBCtWrWqa7+IyI4YWgxSNTpVNTjVNjpFRGRtRo80vfDCC3jllVfw008/QSaT4cqVK9iyZQteffVVTJ061ZR9JCIbpKkYZGjopRqBSVMxSFvce46IqDZGjzTNnj0blZWVGDhwIG7fvo3+/fvD1dUVr776Kl566SVT9pGIbFBdq3tzqxIisjdGhyaZTIY5c+Zg5syZOH/+PG7evIkOHTqgYcOGpuwfEdkwQ2spcasSIrJnLG5pIixuSaQfW64ITkT1j0W2Ublz5w7effdd7N+/H9euXUNlpfojxyw7QESaMBARkb0yOjRNnDgR3377LZ5++mn06tVLbdNeIiIiIkdjdGjatWsXdu/ejX79+pmyP0REREQ2yeiSA82aNYOXF6v3EhERUf1gdGhasWIFZs2ahUuXLpmyP0REREQ2yejpuR49euDOnTto1aoVPDw81PafA4DiYlb2JSIiIsdhdGgaPXo0/vvf/2LJkiUICAjgQnAiIj2x7AKRfTI6NB0+fBhZWVno2rWrKftDROTQioqKsHbt2lrbxcXFMTgR2Rij1zS1a9cOf/31lyn7QkTk8KqPMCmVXsjLC4FS6aWzHRFZn9EjTcuWLcOMGTOwePFidO7cucaaJlbFJiLS7dix7vj666EQwknatDg8/Li1u0VEWhgdmgYPHgwAGDhwoNrnQgjIZDJUVFTUrWdERA5MqfSSAhMACOGEr78eirCw89y8mMhGGR2a9u/fb8p+EBHZJWMXdRcX+0qBSUUIJxQX+zA0Edkoo0JTeXk53nzzTSQnJ6NNmzam7hMRkV2oy6JuH58iyGSVasFJJquEjw/LtRDZKqMWgru4uODEiROm7gsRkV2py6JuheIGYmJ2QSa7v9m5ak0TR5mIbJfR03NjxozBhg0bsGzZMlP2h4jILhmzqDs8/DjCws6juNgHPj7FDExENs7o0HTv3j1s3LgR+/btQ0REBDw9PdWOr1y5ss6dIyIyliULSBqyqFsul6u9VyhuaAxL1dsRkfUZHZpOnTqF8PBwAMAvv/yidozVwYnImixdQNKQRd2+vr4YM2YMbt++rfV8Hh4eLGxJZIP49BwRORxNa42Ki33h41OkFmJMVUDSkEXdRUVF+PTTT2s9JyuCE9keo0NTVX/88QcAoHnz5qY4HRGRyViigKRqUXf179E07WbpQEdEpmN0aKqsrMSiRYuwYsUK3Lx5EwDg5eWFGTNmYM6cOXByMnqHFiIik7BkAUljFnWzIjiRfTE6NM2ZM0d6eq5fv34AgIMHD2L+/Pm4c+cOFi9ebLJOEhEZw9wFJPVd1F1SUiL9ubCwEAArghPZI6ND0+bNm/HRRx/hySeflD7r0qULmjVrhhdffJGhiYisztwFJH19fREXF6dxKk2pVGLbtm0AgM8//7zGcVYEJ7I/Roem4uJitGvXrsbn7dq1Q3ExK9oSkfUZstbIWPou1q6+dokVwYnsj9GhqWvXrli7di3WrFmj9vnatWvRtWvXOneMiMgUbKGApLa1S+YOdERkWkaHpuXLlyM6Ohr79u1DZGQkACArKwu///47du/ebbIOEhEZypYKSOpau2QLgY6I9Gd0aHr44Yfxyy+/YN26dTh37hwAYPjw4XjxxRfRtGlTk3WQiMhQutYaqZiyIrguta1dYkVwIvthUGgaPnw4Nm3aBG9vb3z88ccYOXIkF3wTkU2ylcKQta1dGj58OPz8/NR+xlKBjogMY1Bo2rVrF27dugVvb288//zzGDx4MPz9/c3VNyIiu1fbYnQ/Pz8EBQVZvF+W3JuPyFEYFJratWuHxMREPProoxBC4PPPP4e3t7fGtuPGjTNJB4mI7J2trV2y9N58RI7CoNCUnJyMhIQEpKenQyaTYe7cuRo355XJZAxNRFSv2dJi9Oq4lQuRcQwKTX379sWPP/4IAHBycsIvv/zC6TkichimnLKypcXounArFyL9Gf30XF5eHpo0aWLKvhARWY05pqysHYhqw61ciAxj9K66LVu2xMGDBzFmzBhERkbiv//9LwDgk08+wcGDB03WQSIiS9A0ZZWXFwKl0ktnO3umqxwCEdVkdGjasWMHoqKi4O7ujuPHj6OsrAzA/f2WlixZYrIOEhFZ2rFj3ZGUFI/Nm2ORlBSPY8e6W7tLZqEqh1AVt3Ih0s7o0LRo0SIkJyfjww8/hIuLi/R5v379cOzYMZN0jojI0rRNWalGnAoLC5Gfn1/jVVRUZM1uG0VVDkEVnLiVC5FuRq9pys3NRf/+/Wt8rlAoUFJSUpc+ERFZTW0VvNPS0rT+rD0+om9r5RCIbJnRI02BgYE4f/58jc8PHjyIVq1a1alTRETWos+Ulb2vd9JUDiE09FKNwMStXIjUGT3S9MILL+CVV17Bxo0bIZPJcOXKFWRlZWHGjBmYN2+eKftIRGQxtVXwdoRH9O2lHAKRrTE6NM2ePRuVlZUYOHAgbt++jf79+8PV1RUzZ87EpEmTTNlHIiKL0jZlZapH9G1hCxMGIiLDGR2aZDIZ5syZg5kzZ+L8+fO4efMmOnTogPfffx+hoaEoKCgwZT+JiMxKnwreta130ge3MCGyXwaHprKyMsyfPx8ZGRnSyNKwYcOQkpKCf/zjH3B2dsb06dPN0VciIrPRNWVVWFiItLQ0ab1T1eBk6CP63MKEyH4ZvBB83rx5WL9+PUJCQpCXl4f/+7//w+TJk7Fq1SqsWLECeXl5mDVrll7nWrp0KXr27AkvLy/4+/tj2LBhyM3NVWtz584dTJs2Db6+vmjYsCFGjBiBq1evqrW5fPkyoqOj4eHhAX9/f8ycORP37t1Ta3PgwAGEh4fD1dUVrVu3xqZNm2r0Z926dQgJCYGbmxt69+6NI0eOGHZziMiu+fr6IigoqMbLz88PgOkf0a8v9aCIHIXBI03bt2/Hxx9/jCeffBKnTp1Cly5dcO/ePfznP//RuHmvLt9//z2mTZuGnj174t69e/jXv/6Fxx9/HGfOnIGnpycAYPr06UhPT8f27duhUCgQFxeH4cOH49ChQwCAiooKREdHIzAwEIcPH0Z+fj7GjRsHFxcXqchmXl4eoqOjMWXKFGzZsgWZmZmYNGkSgoKCEBUVBQDYtm0bEhISkJycjN69eyMpKQlRUVHIzc3l/npEJDHVI/rcwoTI/siEEMKQH5DL5cjLy0OzZs0AAO7u7jhy5Ag6d+5c585cv34d/v7++P7779G/f38olUo0adIEqampePrppwEA586dQ/v27ZGVlYU+ffrgm2++wdChQ3HlyhUEBAQAAJKTkzFr1ixcv34dcrkcs2bNQnp6Ok6dOiV916hRo1BSUoI9e/YAAHr37o2ePXtKaw0qKysRHByMl156CbNnz66176WlpVAoFFAqlfD29q7zvSAi22HKdUj5+fn44IMPkJcXgs2bY2scj43dhNDQS5g8eTKCgoKM7jMR6ceQ398GjzRVVFSoLZhs0KABGjZsaHgvNVAqlQAAH5/7+x5lZ2ejvLwcgwYNktq0a9cOLVq0kEJTVlYWOnfuLAUmAIiKisLUqVNx+vRpdO/eHVlZWWrnULWJj48HcH/tQHZ2NhITE6XjTk5OGDRoELKyskxybURkv8zxiL4p1kcRkWUZHJqEEBg/fjxcXV0B3F9zNGXKFGk6TUVX1VxNKisrER8fj379+qFTp04AgIKCAsjlcjRq1EitbUBAgPR0XkFBgVpgUh1XHdPVprS0FH/99Rf+/PNPVFRUaGxz7tw5jf0tKyuT9tsD7idVInJcpn6SrbZ6UERkewwOTbGx6sPJY8aMMUlHpk2bhlOnTuHgwYMmOZ+5LV26FAsWLLB2N4jIjnELEyL7YnBoSklJMXkn4uLisGvXLvzwww9o3ry59HlgYCDu3r2LkpIStdGmq1evIjAwUGpT/Sk31dN1VdtUf+Lu6tWr8Pb2hru7O5ydneHs7Kyxjeoc1SUmJiIhIUF6X1paiuDgYAOvnIjqG33qQWlqR0TWZ3RxS1MQQuCll17Czp07ceDAAYSGhqodj4iIgIuLCzIzMzFixAgA9zcKvnz5MiIjIwEAkZGRWLx4Ma5duyY95ZaRkQFvb2906NBBarN79261c2dkZEjnkMvliIiIQGZmJoYNGwbg/nRhZmYm4uLiNPbd1dVVmqIkItIXtzAhsmPCiqZOnSoUCoU4cOCAyM/Pl163b9+W2kyZMkW0aNFCfPfdd+Lnn38WkZGRIjIyUjp+79490alTJ/H444+LnJwcsWfPHtGkSRORmJgotfntt9+Eh4eHmDlzpjh79qxYt26dcHZ2Fnv27JHabN26Vbi6uopNmzaJM2fOiMmTJ4tGjRqJgoICva5FqVQKAEKpVJrgzhAREZElGPL726qhCYDGV0pKitTmr7/+Ei+++KJo3Lix8PDwEP/4xz9Efn6+2nkuXrwohgwZItzd3YWfn5+YMWOGKC8vV2uzf/9+0a1bNyGXy0WrVq3UvkPl3XffFS1atBByuVz06tVL/Pjjj3pfC0MTERGR/THk97fBdZpIM9ZpIiIisj+G/P42eBsVIiIiovqIoYmIiIhIDwxNRERERHpgaCIiIiLSA0MTERERkR6sWtySiIiso6ioiAU2iQzE0EREVM8UFRVh7dq1tbaLi4tjcCKqgqGJiKieqT7CpFR6objYFz4+RWr74OkaidIXR7TIkTA0ERHVY8eOdcfXXw+FEE6QySoRE7ML4eHHTXJujmiRo+FCcCKiekqp9JICEwAI4YSvvx4KpdLLJOfXNKKVlxdS4/ymGNEisgSONBER1VPFxb5SYFIRwgnFxT5q03SmYM4RLSJLYWgiIqqnfHyKIJNVqgUnmawSPj7FGtsbuz5J24hWWNh5k4czInNiaCIiqqcUihuIidlVYwRIU5Cpy/okS45oEZkTQxMRUT0WHn4cYWHnUVzsAx+fYq0hpi5P3Bk6okVkqxiaiIjqGblcrvZeobihMSxVb6di6PokQ0a0iGwZQxMRUT3j6+uLuLg4i65P0ndEi8iWMTQREdVDxtZFMmR9Ul1HtIhsDUMTERHprbb1SYWFhWrtn3nmGchkMigUCo3nY0VwsicMTUREVCulUgmg9vVJaWlpGn+eVb/JETA0ERFRrcrLy6U/h4cfh79/AS5fboEWLS6jefN86ZghT9VxXzqyNwxNRERUqwYN/v51oe3pOUOeqtO37tPIkSNrTO0xTJG1MDQREVGtGjVqBED703P+/gU6n6orKSlBUFCQdD596z5t27ZNY3843UfWwNBERER60/b03OXLLXQ+VXfv3j2t59Q1QmXIdB+RuTE0ERGR3rQ9PdeixWUAAoBM7fPaqn7rqvt04UJrq23yy/VWpAlDExER6U3b03NeXjdRPTQJUfv5tI1c/f57c6tt8luXffbIsTE0ERGRQTRV987LCwHgVK1l7Zvyahu5AmRW2+S3LvvskWNjaCIiolrVVt27tqKXLi4uGs+rbeQqOPh3m9jk19B99sixMTQREVGttO1XV1hYiLS0tFqLXmqrCA5o35fO2pv8GrvPHjkuhiYiItJLbet3DNmUV5996ay9ya8h++xR/cDQRERERjN2U15tI1clJSX4/PPPDT6fOdQ25Uj1D0MTERFZhaaRq6CgII1hqipLPe5f25Qj1T8MTUREZDRzPGlmS4/xW3uKkGwLQxMREZmEozxpZuyUIzk+hiYiIqozR3rSTNt6q6pYEbx+YmgiIqI6c7QnzRiISBOGJiIiqjN7fNKM+8uRoRiaiIiozuztSTPuL0fGYGgiIiKTMPRJM2uO9HB/OTIGQxMRERnN2CfNbGmkx1Ge+iPzY2giIiKjGfukma2M9DjSU39kfgxNRERUJ3UdCbLmSI+jPfVH5sXQREREVmPtkZ7anvorLCzU+HN8sq5+YmgiIiKrsfZIT21P/aWlpWn9WT5ZV/8wNBERkdVYor6Tpqf0qo4g1fbUH5+sIxWGJiIishpz13fS9yk9bU/98ck6qoqhiYiIrMrQ+k6G0PcpveHDh8PPzw/A/VGotLQ0q6+3ItvD0ERERBZnbH2nutA1auTn54egoCC19tZeb0W2h6GJiIgsztj6TsYyZtTIHvfTI/NiaCIiIquw5JNnxowa2dt+emR+DE1EROTwjB01Mud6K7I/TrU3ISIism+qUSOZrBIAdI4a3b59u8bPhoZeqtG2ejtyfFYNTT/88ANiYmLQtGlTyGQyfPnll2rHx48fD5lMpvYaPHiwWpvi4mI899xz8Pb2RqNGjTBx4kTcvHlTrc2JEyfw0EMPwc3NDcHBwVi+fHmNvmzfvh3t2rWDm5sbOnfujN27d5v8eomIyHrCw48jPj4JsbGbEB+fpFY6oLCwEPn5+cjPz68RhpRKL+TlhUCp9FL73MPDwyL9Jtth1em5W7duoWvXrpgwYQKGDx+usc3gwYORkpIivXd1dVU7/txzzyE/Px8ZGRkoLy/H888/j8mTJyM1NRUAUFpaiscffxyDBg1CcnIyTp48iQkTJqBRo0aYPHkyAODw4cMYPXo0li5diqFDhyI1NRXDhg3DsWPH0KlTJzNdPRERmZu+T+lpq/yt64k7pVJZ44k7cmwyIYSwdicAQCaTYefOnRg2bJj02fjx41FSUlJjBErl7Nmz6NChA44ePYoePXoAAPbs2YMnnngCf/zxB5o2bYr169djzpw5KCgokP7PM3v2bHz55Zc4d+4cAGDkyJG4desWdu3aJZ27T58+6NatG5KTk/Xqf2lpKRQKBZRKJby9vY24A0REZA7aKoJXDUqa6jcplV5ISoqvsQ4qPj4JCsUNDB8+HJ07d7bMRZDZGPL72+bXNB04cAD+/v5o27Ytpk6diqKiIulYVlYWGjVqJAUmABg0aBCcnJzw008/SW369++v9l8bUVFRyM3NxZ9//im1GTRokNr3RkVFISsrS2u/ysrKUFpaqvYiIiLb4+vri6CgILWXqpAlcH80KSkpHps3xyIpKR7HjnUHoPuJO6qfbDo0DR48GB9//DEyMzPx1ltv4fvvv8eQIUNQUVEBACgoKIC/v7/azzRo0AA+Pj4oKCiQ2gQEBKi1Ub2vrY3quCZLly6FQqGQXsHBwXW7WCIisjht9ZuUSi+4uJQBqD4ZI+Diwj3n6iubLjkwatQo6c+dO3dGly5dEBYWhgMHDmDgwIFW7BmQmJiIhIQE6X1paSmDExGRndE9miT736sqGcrLTVelnOyLTY80VdeqVSv4+fnh/PnzAIDAwEBcu3ZNrc29e/dQXFyMwMBAqc3Vq1fV2qje19ZGdVwTV1dXeHt7q72IiMi+qOo3VaWq36TrGNVPdhWa/vjjDxQVFUlPK0RGRqKkpATZ2dlSm++++w6VlZXo3bu31OaHH35AeXm51CYjIwNt27ZF48aNpTaZmZlq35WRkYHIyEhzXxIREVmRrvpNtdV2atDApidryAys+k/85s2b0qgRAOTl5SEnJwc+Pj7w8fHBggULMGLECAQGBuLChQt47bXX0Lp1a0RFRQEA2rdvj8GDB+OFF15AcnIyysvLERcXh1GjRqFp06YAgGeffRYLFizAxIkTMWvWLJw6dQqrV6/GqlWrpO995ZVX8PDDD2PFihWIjo7G1q1b8fPPP+ODDz6w7A0hIiKL01X1mxXBqSqrjjT9/PPP6N69O7p3v/+kQkJCArp374558+bB2dkZJ06cwJNPPokHHngAEydOREREBP7973+r1WrasmUL2rVrh4EDB+KJJ57Agw8+qBZ2FAoFvv32W+Tl5SEiIgIzZszAvHnzpBpNANC3b1+kpqbigw8+QNeuXfHFF1/gyy+/ZI0mIiIHpal+k6aq33+rvrbpfqkcql9spk6TvWOdJiIi+6KpfhOgXsNJV3HL4cOHq5UuAO6HMUtuREx1Z8jvb07IEhFRvVRbuNFWjiAs7DwUihtaq4jHxcUxODkou1oITkREZCm1FbfUtiedptErcgwcaSIiItJAVXKg+jYqPj7FOqftyHFxpImIiEgDbSUHAGitIk6OjSNNREREWmgqOZCXF6J12o4lCRwbQxMREVEVmsoRVA1DuqbtyLExNBEREVXh6+uLuLi4Ggu6VaUIVNN21dc0cZTJ8TE0ERERVVNbyQBWCq+fGJqIiIj0UNu0nbZ25DgYmoiIiPSgbdquKlYEd2wMTURERHqy5UCkbVsYFQa6umNoIiIisnNFRUVYu3Ztre24xUvdMDQRERHZueojTEqlF4qLfeHjU6S27urKlSsaR6M4CqUfhiYiIiIHomuLF22bDAMchdIHt1EhIiJyEEqlV61bvHCjYeNxpImIiMiOaFrwXVhYCAAoLvbVucULNxquG4YmIiIiO1Hbgm9dW7xoG4UKCzvP4px64vQcERGRndC04LvqVJtqixeZrBIA1LZ40TUKRfrhSBMREZEd0jbVpm2Ll9o2GlZN8VXHJ+v+xtBERERkZ2qbatO0xUttGw3zybraMTQRERHZmdoWfA8fPhx+fn4A7o8gqQJRbRsNa6vvxCfr7mNoIiIisjO1TbX5+fkhKCgIgP4bDRvyZF193bKFoYmIiMjO1DbVVpWujYZVo1CGPFlXn7dsYWgiIiKyQ7VNtVVVW3ipbbqvKn23bHHEKT2GJiIiIjuh71Rb9Xa1qW26T5v6NqXH0ERERGQndE21qRgTPgyZ7lOpj1N6DE1ERER2xFyhwpDpPqB+TukxNBEREdVTdZnus8SUnq1haCIiIqqn6jLdZ+4pPVvE0ERERFSP1WW6z5xTeraIoYmIiIj0Zo0pPVvB0ERERER6s/SUni1haCIiIiKDWHJKz5YwNBEREZFZmasop6UxNBEREZFZmasop6UxNBEREZFJOMJWKbowNBEREVGdOcpWKbo41d6EiIiISDdNW6Xk5YVAqfTS2c6ecKSJiIiITMqet0rRhSNNREREVGclJSUAtG+VohpxUrWzRxxpIiIiojq7d+8egNq3SlG1U7GnxeMMTURERGQyPj5FAAQAmfSZtq1S7G3xOKfniIiIyMSE+juhuZW9LR7nSBMRERGZTHGxL2qOyfw9PaeNrsXjhYWFGn/G0lN3DE1ERERUZy4uLgDuT8/JZJVq65qqTs+p2lWlbfF4WNh5KBQ3kJaWpvV7LTl1x+k5IiIiqjOFQvG//72BmJhdkMkqAUAaNVKNMqnaVaVr8biKLUzdcaSJiIiITCo8/DjCws6juNgHPj7FOqflgNpHp2yl7hNHmoiIiKjO5HK52nuF4gZCQy/VCEzV26naahudqq3ukyVxpImIiIjqzNfXF3FxcUbXXNI2OlVb3SdLYmgiIiIikzB0Qbam0anqQai2qTtLYmgiIiIiq9A1OlVYWIi0tDRp6q76miZLjzIBVl7T9MMPPyAmJgZNmzaFTCbDl19+qXZcCIF58+YhKCgI7u7uGDRoEH799Ve1NsXFxXjuuefg7e2NRo0aYeLEibh586ZamxMnTuChhx6Cm5sbgoODsXz58hp92b59O9q1awc3Nzd07twZu3fvNvn1EhERkTpfX18EBQXVePn5+UltwsOPIz4+CbGxmxAfn2S1zX+tGppu3bqFrl27Yt26dRqPL1++HGvWrEFycjJ++ukneHp6IioqCnfu3JHaPPfcczh9+jQyMjKwa9cu/PDDD5g8ebJ0vLS0FI8//jhatmyJ7OxsvP3225g/fz4++OADqc3hw4cxevRoTJw4EcePH8ewYcMwbNgwnDp1ynwXT0RERFrVZWG5uciE0Fbc3LJkMhl27tyJYcOGAbg/ytS0aVPMmDEDr776KgBAqVQiICAAmzZtwqhRo3D27Fl06NABR48eRY8ePQAAe/bswRNPPIE//vgDTZs2xfr16zFnzhwUFBRIN3b27Nn48ssvce7cOQDAyJEjcevWLezatUvqT58+fdCtWzckJyfr1f/S0lIoFAoolUp4e3ub6rYQERHVW5bYzNeQ3982W3IgLy8PBQUFGDRokPSZQqFA7969kZWVBQDIyspCo0aNpMAEAIMGDYKTkxN++uknqU3//v3VkmhUVBRyc3Px559/Sm2qfo+qjep7NCkrK0Npaanai4iIiExH29Sd6mXpTXxtNjQVFBQAAAICAtQ+DwgIkI4VFBTA399f7XiDBg3g4+Oj1kbTOap+h7Y2quOaLF26FAqFQnoFBwcbeolERERkR2w2NNm6xMREKJVK6fX7779bu0tERERkRjYbmgIDAwEAV69eVfv86tWr0rHAwEBcu3ZN7fi9e/dQXFys1kbTOap+h7Y2quOauLq6wtvbW+1FREREjstmQ1NoaCgCAwORmZkpfVZaWoqffvoJkZGRAIDIyEiUlJQgOztbavPdd9+hsrISvXv3ltr88MMPKC8vl9pkZGSgbdu2aNy4sdSm6veo2qi+h4iIiMiqoenmzZvIyclBTk4OgPuLv3NycnD58mXIZDLEx8dj0aJF+Oqrr3Dy5EmMGzcOTZs2lZ6wa9++PQYPHowXXngBR44cwaFDhxAXF4dRo0ahadOmAIBnn30WcrkcEydOxOnTp7Ft2zasXr0aCQkJUj9eeeUV7NmzBytWrMC5c+cwf/58/Pzzz4iLi7P0LSEiIiJbJaxo//79AkCNV2xsrBBCiMrKSvH666+LgIAA4erqKgYOHChyc3PVzlFUVCRGjx4tGjZsKLy9vcXzzz8vbty4odbmP//5j3jwwQeFq6uraNasmVi2bFmNvnz++efigQceEHK5XHTs2FGkp6cbdC1KpVIAEEql0rCbQERERFZjyO9vm6nTZO9Yp4mIiMj+OESdJiIiIiJbwtBEREREpIcG1u6Ao1DNcrIyOBERkf1Q/d7WZ7USQ5OJ3LhxfwNBVgYnIiKyPzdu3IBCodDZhgvBTaSyshJXrlyBl5cXZDKZSc9dWlqK4OBg/P777/VykXl9v36A96C+Xz/Ae8Drr9/XD5jvHgghcOPGDTRt2hROTrpXLXGkyUScnJzQvHlzs35Hfa88Xt+vH+A9qO/XD/Ae8Prr9/UD5rkHtY0wqXAhOBEREZEeGJqIiIiI9MDQZAdcXV3xxhtvwNXV1dpdsYr6fv0A70F9v36A94DXX7+vH7CNe8CF4ERERER64EgTERERkR4YmoiIiIj0wNBEREREpAeGJiIiIiI9MDTZiHXr1iEkJARubm7o3bs3jhw5orXt6dOnMWLECISEhEAmkyEpKclyHTUTQ67/ww8/xEMPPYTGjRujcePGGDRokM729sKQe5CWloYePXqgUaNG8PT0RLdu3fDJJ59YsLemZ8j1V7V161bIZDIMGzbMvB00M0Ouf9OmTZDJZGovNzc3C/bWPAz9d6CkpATTpk1DUFAQXF1d8cADD2D37t0W6q3pGXL9jzzySI1/B2QyGaKjoy3YY9Mz9N+BpKQktG3bFu7u7ggODsb06dNx584d83VQkNVt3bpVyOVysXHjRnH69GnxwgsviEaNGomrV69qbH/kyBHx6quvis8++0wEBgaKVatWWbbDJmbo9T/77LNi3bp14vjx4+Ls2bNi/PjxQqFQiD/++MPCPTcdQ+/B/v37RVpamjhz5ow4f/68SEpKEs7OzmLPnj0W7rlpGHr9Knl5eaJZs2bioYceEk899ZRlOmsGhl5/SkqK8Pb2Fvn5+dKroKDAwr02LUPvQVlZmejRo4d44oknxMGDB0VeXp44cOCAyMnJsXDPTcPQ6y8qKlL753/q1Cnh7OwsUlJSLNtxEzL0HmzZskW4urqKLVu2iLy8PLF3714RFBQkpk+fbrY+MjTZgF69eolp06ZJ7ysqKkTTpk3F0qVLa/3Zli1b2n1oqsv1CyHEvXv3hJeXl9i8ebO5umh2db0HQgjRvXt3MXfuXHN0z+yMuf579+6Jvn37io8++kjExsbadWgy9PpTUlKEQqGwUO8sw9B7sH79etGqVStx9+5dS3XRrOr6d8CqVauEl5eXuHnzprm6aHaG3oNp06aJAQMGqH2WkJAg+vXrZ7Y+cnrOyu7evYvs7GwMGjRI+szJyQmDBg1CVlaWFXtmGaa4/tu3b6O8vBw+Pj7m6qZZ1fUeCCGQmZmJ3Nxc9O/f35xdNQtjr//NN9+Ev78/Jk6caIlumo2x13/z5k20bNkSwcHBeOqpp3D69GlLdNcsjLkHX331FSIjIzFt2jQEBASgU6dOWLJkCSoqKizVbZMxxd+DGzZswKhRo+Dp6WmubpqVMfegb9++yM7OlqbwfvvtN+zevRtPPPGE2frJDXutrLCwEBUVFQgICFD7PCAgAOfOnbNSryzHFNc/a9YsNG3aVO3/bPbE2HugVCrRrFkzlJWVwdnZGe+99x4ee+wxc3fX5Iy5/oMHD2LDhg3IycmxQA/Ny5jrb9u2LTZu3IguXbpAqVTinXfeQd++fXH69GmzbxxuDsbcg99++w3fffcdnnvuOezevRvnz5/Hiy++iPLycrzxxhuW6LbJ1PXvwSNHjuDUqVPYsGGDubpodsbcg2effRaFhYV48MEHIYTAvXv3MGXKFPzrX/8yWz8ZmsiuLVu2DFu3bsWBAwccYiGsIby8vJCTk4ObN28iMzMTCQkJaNWqFR555BFrd82sbty4gbFjx+LDDz+En5+ftbtjFZGRkYiMjJTe9+3bF+3bt8f777+PhQsXWrFnllNZWQl/f3988MEHcHZ2RkREBP773//i7bfftrvQVFcbNmxA586d0atXL2t3xaIOHDiAJUuW4L333kPv3r1x/vx5vPLKK1i4cCFef/11s3wnQ5OV+fn5wdnZGVevXlX7/OrVqwgMDLRSryynLtf/zjvvYNmyZdi3bx+6dOlizm6albH3wMnJCa1btwYAdOvWDWfPnsXSpUvtLjQZev0XLlzAxYsXERMTI31WWVkJAGjQoAFyc3MRFhZm3k6bkCn+DnBxcUH37t1x/vx5c3TR7Iy5B0FBQXBxcYGzs7P0Wfv27VFQUIC7d+9CLpebtc+mVJd/B27duoWtW7fizTffNGcXzc6Ye/D6669j7NixmDRpEgCgc+fOuHXrFiZPnow5c+bAycn0K5C4psnK5HI5IiIikJmZKX1WWVmJzMxMtf+SdFTGXv/y5cuxcOFC7NmzBz169LBEV83GVP8OVFZWoqyszBxdNCtDr79du3Y4efIkcnJypNeTTz6JRx99FDk5OQgODrZk9+vMFP/8KyoqcPLkSQQFBZmrm2ZlzD3o168fzp8/LwVmAPjll18QFBRkV4EJqNu/A9u3b0dZWRnGjBlj7m6alTH34Pbt2zWCkSpEC3Ntq2u2Jeakt61btwpXV1exadMmcebMGTF58mTRqFEj6RHisWPHitmzZ0vty8rKxPHjx8Xx48dFUFCQePXVV8Xx48fFr7/+aq1LqBNDr3/ZsmVCLpeLL774Qu2R2xs3bljrEurM0HuwZMkS8e2334oLFy6IM2fOiHfeeUc0aNBAfPjhh9a6hDox9Pqrs/en5wy9/gULFoi9e/eKCxcuiOzsbDFq1Cjh5uYmTp8+ba1LqDND78Hly5eFl5eXiIuLE7m5uWLXrl3C399fLFq0yFqXUCfG/n/gwQcfFCNHjrR0d83C0HvwxhtvCC8vL/HZZ5+J3377TXz77bciLCxMPPPMM2brI0OTjXj33XdFixYthFwuF7169RI//vijdOzhhx8WsbGx0vu8vDwBoMbr4YcftnzHTcSQ62/ZsqXG63/jjTcs33ETMuQezJkzR7Ru3Vq4ubmJxo0bi8jISLF161Yr9Np0DLn+6uw9NAlh2PXHx8dLbQMCAsQTTzwhjh07ZoVem5ah/w4cPnxY9O7dW7i6uopWrVqJxYsXi3v37lm416Zj6PWfO3dOABDffvuthXtqPobcg/LycjF//nwRFhYm3NzcRHBwsHjxxRfFn3/+abb+yYQw1xgWERERkePgmiYiIiIiPTA0EREREemBoYmIiIhIDwxNRERERHpgaCIiIiLSA0MTERERkR4YmoiIiIj0wNBERGSHxo8fj2HDhlm7G0T1CkMTEZnU+PHjIZPJpJevry8GDx6MEydOWLtrJlH12lSvBx980Gzfd/HiRchkMuTk5Kh9vnr1amzatMls30tENTE0EZHJDR48GPn5+cjPz0dmZiYaNGiAoUOHWrtbJpOSkiJdX35+Pr766iuN7crLy83WB4VCgUaNGpnt/ERUE0MTEZmcq6srAgMDERgYiG7dumH27Nn4/fffcf36dQwYMABxcXFq7a9fvw65XC7tcB4SEoKFCxdi9OjR8PT0RLNmzbBu3Tq1n1m5ciU6d+4MT09PBAcH48UXX8TNmzel45cuXUJMTAwaN24MT09PdOzYEbt37wYA/Pnnn3juuefQpEkTuLu7o02bNkhJSdH7+ho1aiRdX2BgIHx8fKQRoW3btuHhhx+Gm5sbtmzZgqKiIowePRrNmjWDh4cHOnfujM8++0ztfJWVlVi+fDlat24NV1dXtGjRAosXLwYAhIaGAgC6d+8OmUyGRx55BEDN6bmysjK8/PLL8Pf3h5ubGx588EEcPXpUOn7gwAHIZDJkZmaiR48e8PDwQN++fZGbm6v3dRPVdwxNRGRWN2/exKefforWrVvD19cXkyZNQmpqKsrKyqQ2n376KZo1a4YBAwZIn7399tvo2rUrjh8/jtmzZ+OVV15BRkaGdNzJyQlr1qzB6dOnsXnzZnz33Xd47bXXpOPTpk1DWVkZfvjhB5w8eRJvvfUWGjZsCAB4/fXXcebMGXzzzTc4e/Ys1q9fDz8/P5Ncr6qvZ8+eRVRUFO7cuYOIiAikp6fj1KlTmDx5MsaOHYsjR45IP5OYmIhly5ZJ/UpNTUVAQAAASO327duH/Px8pKWlafze1157DTt27MDmzZtx7NgxtG7dGlFRUSguLlZrN2fOHKxYsQI///wzGjRogAkTJpjkuonqBbNtBUxE9VJsbKxwdnYWnp6ewtPTUwAQQUFBIjs7WwghxF9//SUaN24stm3bJv1Mly5dxPz586X3LVu2FIMHD1Y778iRI8WQIUO0fu/27duFr6+v9L5z585q56wqJiZGPP/880ZdHwDh5uYmXZ+np6fYuXOnyMvLEwBEUlJSreeIjo4WM2bMEEIIUVpaKlxdXcWHH36osa3qvMePH1f7PDY2Vjz11FNCCCFu3rwpXFxcxJYtW6Tjd+/eFU2bNhXLly8XQgixf/9+AUDs27dPapOeni4AiL/++suQW0BUb3GkiYhM7tFHH0VOTg5ycnJw5MgRREVFYciQIbh06RLc3NwwduxYbNy4EQBw7NgxnDp1CuPHj1c7R2RkZI33Z8+eld7v27cPAwcORLNmzeDl5YWxY8eiqKgIt2/fBgC8/PLLWLRoEfr164c33nhDbSH61KlTsXXrVnTr1g2vvfYaDh8+bND1rVq1Srq+nJwcPPbYY9KxHj16qLWtqKjAwoUL0blzZ/j4+KBhw4bYu3cvLl++DAA4e/YsysrKMHDgQIP6UNWFCxdQXl6Ofv36SZ+5uLigV69eavcMALp06SL9OSgoCABw7do1o7+bqD5haCIik/P09ETr1q3RunVr9OzZEx999BFu3bqFDz/8EAAwadIkZGRk4I8//kBKSgoGDBiAli1b6n3+ixcvYujQoejSpQt27NiB7Oxsac3T3bt3pe/47bffMHbsWJw8eRI9evTAu+++CwBSgJs+fTquXLmCgQMH4tVXX9X7+wMDA6Xra926NTw9PdWuvaq3334bq1evxqxZs7B//37k5OQgKipK6qe7u7ve32sKLi4u0p9lMhmA+2uqiKh2DE1EZHYymQxOTk7466+/AACdO3dGjx498OGHHyI1NVXjupoff/yxxvv27dsDALKzs1FZWYkVK1agT58+eOCBB3DlypUa5wgODsaUKVOQlpaGGTNmSKENAJo0aYLY2Fh8+umnSEpKwgcffGDKS5YcOnQITz31FMaMGYOuXbuiVatW+OWXX6Tjbdq0gbu7u7QIvjq5XA7g/oiVNmFhYZDL5Th06JD0WXl5OY4ePYoOHTqY6EqIqIG1O0BEjqesrAwFBQUA7j+ptnbtWty8eRMxMTFSm0mTJiEuLg6enp74xz/+UeMchw4dwvLlyzFs2DBkZGRg+/btSE9PBwC0bt0a5eXlePfddxETE4NDhw4hOTlZ7efj4+MxZMgQPPDAA/jzzz+xf/9+KXTNmzcPERER6NixI8rKyrBr1y7pmKm1adMGX3zxBQ4fPozGjRtj5cqVuHr1qhRm3NzcMGvWLLz22muQy+Xo168frl+/jtOnT2PixInw9/eHu7s79uzZg+bNm8PNzQ0KhULtOzw9PTF16lTMnDkTPj4+aNGiBZYvX47bt29j4sSJZrkuovqII01EZHJ79uxBUFAQgoKC0Lt3bxw9ehTbt2+XHpcHgNGjR6NBgwYYPXo03NzcapxjxowZ+Pnnn9G9e3csWrQIK1euRFRUFACga9euWLlyJd566y106tQJW7ZswdKlS9V+vqKiAtOmTUP79u0xePBgPPDAA3jvvfcA3B+9SUxMRJcuXdC/f384Oztj69atZrkXc+fORXh4OKKiovDII48gMDCwRiXv119/HTNmzMC8efPQvn17jBw5Ulpn1KBBA6xZswbvv/8+mjZtiqeeekrj9yxbtgwjRozA2LFjER4ejvPnz2Pv3r1o3LixWa6LqD6SCSGEtTtBRPXPxYsXERYWhqNHjyI8PFztWEhICOLj4xEfH2+dzhERacDpOSKyqPLychQVFWHu3Lno06dPjcBERGSrOD1HRBZ16NAhBAUF4ejRozXWIVnbkiVL0LBhQ42vIUOGWLt7RGRlnJ4jIvqf4uLiGhW0Vdzd3dGsWTML94iIbAlDExEREZEeOD1HREREpAeGJiIiIiI9MDQRERER6YGhiYiIiEgPDE1EREREemBoIiIiItIDQxMRERGRHhiaiIiIiPTw/wF4W90+guvl/gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaj5JREFUeJzt3XlcVOX+B/DPsAwgwiAgm6IimvsGKqKmpiQaYqb3ppWKW14NKsRSSTPNBbNU3GlR9JbkktpNMQ1RK5XSQHKnMFz6CS4gM4iKCOf3h3fOZVhnhlnh8369eMmc88yZ55xrzvc+z/f5PhJBEAQQERERUbUsjN0BIiIiInPAoImIiIhIDQyaiIiIiNTAoImIiIhIDQyaiIiIiNTAoImIiIhIDQyaiIiIiNTAoImIiIhIDQyaiIiIiNTAoImIqI7ZsmULJBIJrl69auyuENUpDJqISGOnT59GREQEOnToAHt7ezRr1gwvv/wy/vjjjwptBwwYAIlEAolEAgsLCzg6OqJNmzYYN24ckpKSNPrcffv2oX///nBzc0ODBg3QsmVLvPzyyzh48KCubq2CpUuX4ttvv61w/OTJk1iwYAHy8/P19tnlLViwQHyWEokEDRo0QPv27TFv3jwoFAqdfEZCQgJiY2N1ci2iuoZBExFp7KOPPsLu3bsxaNAgrF69GlOnTsVPP/0EPz8/nD9/vkL7pk2b4ssvv8S///1vfPzxxxg+fDhOnjyJwYMHY/To0SguLq7xMz/55BMMHz4cEokE0dHRWLVqFUaNGoU///wT27dv18dtAqg+aFq4cKFBgyaljRs34ssvv8TKlSvRtm1bLFmyBEOGDIEuthJl0ERUNStjd4CIzE9UVBQSEhIglUrFY6NHj0anTp2wbNkyfPXVVyrtZTIZxo4dq3Js2bJleOutt7Bhwwa0aNECH330UZWf9+TJEyxatAjPP/88fvjhhwrnb9++Xcs7Mh0PHjxAgwYNqm3zj3/8A66urgCAadOmYdSoUdizZw9++eUXBAYGGqKbRPUSR5qISGO9e/dWCZgAoHXr1ujQoQMuXbqk1jUsLS2xZs0atG/fHuvWrYNcLq+y7d27d6FQKNCnT59Kz7u5uam8fvToERYsWIBnnnkGtra28PT0xMiRI3HlyhWxzSeffILevXvDxcUFdnZ28Pf3xzfffKNyHYlEgsLCQmzdulWcEpswYQIWLFiAd999FwDg4+MjniubQ/TVV1/B398fdnZ2cHZ2xpgxY3Djxg2V6w8YMAAdO3ZEamoq+vXrhwYNGuC9995T6/mVNXDgQABAVlZWte02bNiADh06wMbGBl5eXggPD1cZKRswYAASExNx7do18Z5atGihcX+I6iqONBGRTgiCgFu3bqFDhw5qv8fS0hKvvPIK3n//fRw/fhwhISGVtnNzc4OdnR327duHN998E87OzlVes6SkBMOGDUNycjLGjBmDt99+GwUFBUhKSsL58+fh6+sLAFi9ejWGDx+O1157DY8fP8b27dvxz3/+E/v37xf78eWXX2LKlCno2bMnpk6dCgDw9fWFvb09/vjjD3z99ddYtWqVOOrTuHFjAMCSJUvw/vvv4+WXX8aUKVNw584drF27Fv369cOZM2fg5OQk9jc3NxdDhw7FmDFjMHbsWLi7u6v9/JSUwaCLi0uVbRYsWICFCxciKCgI06dPR0ZGBjZu3IjTp0/jxIkTsLa2xty5cyGXy/H3339j1apVAICGDRtq3B+iOksgItKBL7/8UgAgbNq0SeV4//79hQ4dOlT5vr179woAhNWrV1d7/fnz5wsABHt7e2Ho0KHCkiVLhNTU1ArtNm/eLAAQVq5cWeFcaWmp+PuDBw9Uzj1+/Fjo2LGjMHDgQJXj9vb2QlhYWIVrffzxxwIAISsrS+X41atXBUtLS2HJkiUqx8+dOydYWVmpHO/fv78AQIiLi6vyvsv64IMPBABCRkaGcOfOHSErK0v49NNPBRsbG8Hd3V0oLCwUBEEQ4uPjVfp2+/ZtQSqVCoMHDxZKSkrE661bt04AIGzevFk8FhISIjRv3lyt/hDVN5yeI6Jau3z5MsLDwxEYGIiwsDCN3qscySgoKKi23cKFC5GQkIBu3brh0KFDmDt3Lvz9/eHn56cyJbh79264urrizTffrHANiUQi/m5nZyf+fu/ePcjlcjz77LNIS0vTqP/l7dmzB6WlpXj55Zdx9+5d8cfDwwOtW7fG0aNHVdrb2Nhg4sSJGn1GmzZt0LhxY/j4+OBf//oXWrVqhcTExCpzoQ4fPozHjx8jMjISFhb/+2f/9ddfh6OjIxITEzW/UaJ6iNNzRFQrOTk5CAkJgUwmwzfffANLS0uN3n///n0AgIODQ41tX3nlFbzyyitQKBT49ddfsWXLFiQkJCA0NBTnz5+Hra0trly5gjZt2sDKqvp/3vbv34/FixcjPT0dRUVF4vGygZU2/vzzTwiCgNatW1d63traWuV1kyZNKuSH1WT37t1wdHSEtbU1mjZtKk45VuXatWsAngZbZUmlUrRs2VI8T0TVY9BERFqTy+UYOnQo8vPz8fPPP8PLy0vjayhLFLRq1Urt9zg6OuL555/H888/D2tra2zduhW//vor+vfvr9b7f/75ZwwfPhz9+vXDhg0b4OnpCWtra8THxyMhIUHjeyirtLQUEokE33//faUBZPkcobIjXurq16+fmEdFRIbDoImItPLo0SOEhobijz/+wOHDh9G+fXuNr1FSUoKEhAQ0aNAAffv21aof3bt3x9atW5GdnQ3gaaL2r7/+iuLi4gqjOkq7d++Gra0tDh06BBsbG/F4fHx8hbZVjTxVddzX1xeCIMDHxwfPPPOMprejF82bNwcAZGRkoGXLluLxx48fIysrC0FBQeKx2o60EdVlzGkiIo2VlJRg9OjRSElJwa5du7SqDVRSUoK33noLly5dwltvvQVHR8cq2z548AApKSmVnvv+++8B/G/qadSoUbh79y7WrVtXoa3w3+KPlpaWkEgkKCkpEc9dvXq10iKW9vb2lRawtLe3B4AK50aOHAlLS0ssXLiwQrFJQRCQm5tb+U3qUVBQEKRSKdasWaPSp02bNkEul6usWrS3t6+2/ANRfcaRJiLS2MyZM/Hdd98hNDQUeXl5FYpZli9kKZfLxTYPHjxAZmYm9uzZgytXrmDMmDFYtGhRtZ/34MED9O7dG7169cKQIUPg7e2N/Px8fPvtt/j5558xYsQIdOvWDQAwfvx4/Pvf/0ZUVBROnTqFZ599FoWFhTh8+DDeeOMNvPjiiwgJCcHKlSsxZMgQvPrqq7h9+zbWr1+PVq1a4ezZsyqf7e/vj8OHD2PlypXw8vKCj48PAgIC4O/vDwCYO3cuxowZA2tra4SGhsLX1xeLFy9GdHQ0rl69ihEjRsDBwQFZWVnYu3cvpk6dinfeeadWz19TjRs3RnR0NBYuXIghQ4Zg+PDhyMjIwIYNG9CjRw+V/738/f2xY8cOREVFoUePHmjYsCFCQ0MN2l8ik2XMpXtEZJ6US+Wr+qmubcOGDYXWrVsLY8eOFX744Qe1Pq+4uFj4/PPPhREjRgjNmzcXbGxshAYNGgjdunUTPv74Y6GoqEil/YMHD4S5c+cKPj4+grW1teDh4SH84x//EK5cuSK22bRpk9C6dWvBxsZGaNu2rRAfHy8u6S/r8uXLQr9+/QQ7OzsBgEr5gUWLFglNmjQRLCwsKpQf2L17t9C3b1/B3t5esLe3F9q2bSuEh4cLGRkZKs+munIM5Sn7d+fOnWrblS85oLRu3Tqhbdu2grW1teDu7i5Mnz5duHfvnkqb+/fvC6+++qrg5OQkAGD5AaIyJIKgg82KiIiIiOo45jQRERERqYFBExEREZEaGDQRERERqYFBExEREZEaGDQRERERqYFBExEREZEaWNxSR0pLS3Hz5k04ODhwGwIiIiIzIQgCCgoK4OXlBQuL6seSGDTpyM2bN+Ht7W3sbhAREZEWbty4gaZNm1bbhkGTjjg4OAB4+tCr20OLiIiITIdCoYC3t7f4PV4dBk06opySc3R0ZNBERERkZtRJrWEiOBEREZEaGDQRERERqYFBExEREZEamNNERERkRKWlpXj8+LGxu1GnSaXSGssJqINBExERkZE8fvwYWVlZKC0tNXZX6jQLCwv4+PhAKpXW6jomFTQtW7YM0dHRePvttxEbGwsAePToEWbOnInt27ejqKgIwcHB2LBhA9zd3cX3Xb9+HdOnT8fRo0fRsGFDhIWFISYmBlZW/7u9Y8eOISoqChcuXIC3tzfmzZuHCRMmqHz++vXr8fHHHyMnJwddunTB2rVr0bNnT0PcOhER1TOCICA7OxuWlpbw9vbWyUgIVaQsPp2dnY1mzZrVqgC1yQRNp0+fxqefforOnTurHJ8xYwYSExOxa9cuyGQyREREYOTIkThx4gQAoKSkBCEhIfDw8MDJkyeRnZ2N8ePHw9raGkuXLgUAZGVlISQkBNOmTcO2bduQnJyMKVOmwNPTE8HBwQCAHTt2ICoqCnFxcQgICEBsbCyCg4ORkZEBNzc3wz4MIiKq8548eYIHDx7Ay8sLDRo0MHZ36rTGjRvj5s2bePLkCaytrbW/kGACCgoKhNatWwtJSUlC//79hbffflsQBEHIz88XrK2thV27doltL126JAAQUlJSBEEQhAMHDggWFhZCTk6O2Gbjxo2Co6OjUFRUJAiCIMyaNUvo0KGDymeOHj1aCA4OFl/37NlTCA8PF1+XlJQIXl5eQkxMjFr3IJfLBQCCXC7X7OaJiKheevjwoXDx4kXhwYMHxu5KnffgwQPh4sWLwsOHDyuc0+T72yTGAsPDwxESEoKgoCCV46mpqSguLlY53rZtWzRr1gwpKSkAgJSUFHTq1Ellui44OBgKhQIXLlwQ25S/dnBwsHiNx48fIzU1VaWNhYUFgoKCxDblFRUVQaFQqPwQERFpivuV6p+unrHRp+e2b9+OtLQ0nD59usK5nJwcSKVSODk5qRx3d3dHTk6O2KZswKQ8rzxXXRuFQoGHDx/i3r17KCkpqbTN5cuXK+13TEwMFi5cqP6Naig3N7fa1RRSqRQuLi56+3wiIiJSZdSg6caNG3j77beRlJQEW1tbY3ZFY9HR0YiKihJfK/eu0YXc3FysW7euxnYREREMnIiIiAzEqNNzqampuH37Nvz8/GBlZQUrKyv8+OOPWLNmDaysrODu7o7Hjx8jPz9f5X23bt2Ch4cHAMDDwwO3bt2qcF55rro2jo6OsLOzg6urKywtLStto7xGeTY2NuI+c7reb678CJNc7oCsrBaQyx2qbUdERKRvEyZMgEQigUQigbW1Ndzd3fH8889j8+bNGpVO2LJlS4WZJFNn1JGmQYMG4dy5cyrHJk6ciLZt22L27Nnw9vaGtbU1kpOTMWrUKABARkYGrl+/jsDAQABAYGAglixZgtu3b4ur3JKSkuDo6Ij27duLbQ4cOKDyOUlJSeI1pFIp/P39kZycjBEjRgB4ukQxOTkZERERert/daSldcO+fcMgCBaQSEoRGroffn5njNonIiIyPmOmcQwZMgTx8fEoKSnBrVu3cPDgQbz99tv45ptv8N1336mU/KlLjHpXDg4O6Nixo8oxe3t7uLi4iMcnT56MqKgoODs7w9HREW+++SYCAwPRq1cvAMDgwYPRvn17jBs3DsuXL0dOTg7mzZuH8PBw2NjYAACmTZuGdevWYdasWZg0aRKOHDmCnTt3IjExUfzcqKgohIWFoXv37ujZsydiY2NRWFiIiRMnGuhpVCSXO4gBEwAIggX27RsGX99MyGQFRusXEREZl7HTOGxsbMSZmCZNmsDPzw+9evXCoEGDsGXLFkyZMgUrV65EfHw8/vrrLzg7OyM0NBTLly9Hw4YNcezYMfH7VZmk/cEHH2DBggX48ssvsXr1amRkZMDe3h4DBw5EbGysSZT/MYnVc9VZtWoVhg0bhlGjRqFfv37w8PDAnj17xPOWlpbYv38/LC0tERgYiLFjx2L8+PH48MMPxTY+Pj5ITExEUlISunTpghUrVuCLL74QazQBwOjRo/HJJ59g/vz56Nq1K9LT03Hw4MEKyeGGlJfngvILHAXBAnl5zkbqERERmQJ10zMMmcYxcOBAdOnSRfyOtrCwwJo1a3DhwgVs3boVR44cwaxZswAAvXv3RmxsLBwdHZGdnY3s7Gy88847AIDi4mIsWrQIv//+O7799ltcvXq1QjFqYzG58bNjx46pvLa1tcX69euxfv36Kt/TvHnzCtNv5Q0YMABnzlQ/rRUREWH06biynJ1zIZGUqgROEkkpnJ3zjNgrIiKiyrVt2xZnz54FAERGRorHW7RogcWLF2PatGnYsGEDpFIpZDIZJBJJhdzhSZMmib+3bNkSa9asQY8ePXD//n00bNjQIPdRFZMfaarPZLIChIbuh0TyNLFOmdPEqTkiIjJFgiCI022HDx/GoEGD0KRJEzg4OGDcuHHIzc3FgwcPqr1GamoqQkND0axZMzg4OKB///4Anm6ZZmwmN9JEqvz8zsDXNxN5ec5wds5jwERERCbr0qVL8PHxwdWrVzFs2DBMnz4dS5YsgbOzM44fP47Jkyfj8ePHVW4bU1hYiODgYAQHB2Pbtm1o3Lgxrl+/juDgYJNYMc6gyQSV34VZJiuoNFiq7W7NREREunLkyBGcO3cOM2bMQGpqKkpLS7FixQpxI+KdO3eqtJdKpSgpKVE5dvnyZeTm5mLZsmVi7cPffvvNMDegBgZNJsjFxQURERGsCE5ERCapqKgIOTk5KiUHYmJiMGzYMIwfPx7nz59HcXEx1q5di9DQUJw4cQJxcXEq12jRogXu37+P5ORkdOnSBQ0aNECzZs0glUqxdu1aTJs2DefPn8eiRYuMdJcVMafJRLm4uMDT07PKHwZMRERkLAcPHoSnpydatGiBIUOG4OjRo1izZg3+85//wNLSEl26dMHKlSvx0UcfoWPHjti2bRtiYmJUrtG7d29MmzYNo0ePRuPGjbF8+XI0btwYW7Zswa5du9C+fXssW7YMn3zyiZHusiKJIAiCsTtRFygUCshkMsjlcp1WByciorrp0aNHyMrKgo+Pj8ZbiRm7TpO5qe5Za/L9zek5IiIiM8M0DuNg0ERERGSGGBAZHnOaiIiIiNTAoImIiIhIDZyeq0OMueM1ERFRXcegqY7gSgoiIiL94vRcHVF+hEkud0BWVgvI5Q7VtiMiIiL1cKSpDkpL64Z9+4ZBECzETX79/M4Yu1tERERmjSNNdYxc7iAGTAAgCBbYt29YhREnIiIi0gyDpjomL89FDJiUBMECeXnORuoRERGR+o4dOwaJRIL8/Hy139OiRQvExsbqrU9KDJrqGGfnXEgkpSrHJJJSODvnGalHRERUl0yYMAESiQTTpk2rcC48PBwSiQQTJkwwfMcMgEFTHSOTFSA0dL8YOClzmmSyAiP3jIiI6gpvb29s374dDx8+FI89evQICQkJaNasmRF7pl8MmuogP78ziIyMRVjYFkRGxjIJnIiIdMrPzw/e3t7Ys2ePeGzPnj1o1qwZunXrJh4rKirCW2+9BTc3N9ja2qJv3744ffq0yrUOHDiAZ555BnZ2dnjuuedw9erVCp93/PhxPPvss7Czs4O3tzfeeustFBYW6u3+qsKgqY6QSqUqr2WyAvj4XKswwlS+HRERmb+//waOHn36p6FMmjQJ8fHx4uvNmzdj4sSJKm1mzZqF3bt3Y+vWrUhLS0OrVq0QHByMvLynKSM3btzAyJEjERoaivT0dEyZMgVz5sxRucaVK1cwZMgQjBo1CmfPnsWOHTtw/PhxRERE6P8my2HJgTrC0Dtes/o4EZFp2LQJmDoVKC0FLCyAzz4DJk/W/+eOHTsW0dHRuHbtGgDgxIkT2L59O44dOwYAKCwsxMaNG7FlyxYMHToUAPD5558jKSkJmzZtwrvvvouNGzfC19cXK1asAAC0adMG586dw0cffSR+TkxMDF577TVERkYCAFq3bo01a9agf//+2LhxI2xtbfV/s//FoKkOMVSQwurjRESm4e+//xcwAU///Ne/gOBgoGlT/X5248aNERISgi1btkAQBISEhMDV1VU8f+XKFRQXF6NPnz7iMWtra/Ts2ROXLl0CAFy6dAkBAQEq1w0MDFR5/fvvv+Ps2bPYtm2beEwQBJSWliIrKwvt2rXTx+1VikETVamq0aS7d++qvJbLHZCX5wJn51yV6UBWHyci0q8///xfwKRUUgJkZuo/aAKeTtEpp8nWr1+vl8+4f/8+/vWvf+Gtt96qcM7QSecMmqhS6o4msfo4EZHxtG79dEqubOBkaQm0amWYzx8yZAgeP34MiUSC4OBglXO+vr6QSqU4ceIEmjdvDgAoLi7G6dOnxam2du3a4bvvvlN53y+//KLy2s/PDxcvXkQrQ91UNZgITpVSZy87Vh8nIjKupk2f5jBZWj59bWkJfPqpYUaZnn6eJS5duoSLFy/CUtmJ/7K3t8f06dPx7rvv4uDBg7h48SJef/11PHjwAJP/m3Q1bdo0/Pnnn3j33XeRkZGBhIQEbNmyReU6s2fPxsmTJxEREYH09HT8+eef+M9//sNEcDJNVY0mVVd9nHWhiIgMY/LkpzlMmZlPR5gMFTApOTo6Vnlu2bJlKC0txbhx41BQUIDu3bvj0KFDaNSoEYCn02u7d+/GjBkzsHbtWvTs2RNLly7FpEmTxGt07twZP/74I+bOnYtnn30WgiDA19cXo0eP1vu9lScRBEEw+KfWQQqFAjKZDHK5vNq/QOYiOzsbn332GeRyB8TGRqoERxJJKSIjYwGgynMyWQGmTp0KT09PQ3ediMgsPHr0CFlZWfDx8THoCrD6qLpnrcn3N6fnqFo1jSax+jgREdUXnJ6jain3sis/mqTcy87P7wx8fTORl+cMZ+c8BkxERFRncaSJqqXOaBKrjxMRUX3AkSaqUXWjSSNHjlQpZqbEiuBERFTXMGiiSlW2l11lU29eXl4MjoiIaoHrsfRPV8+YQRNVytB72RER1TfKukaPHz+GnZ2dkXtTtym/y8rXktIUgyaqEgMiIiL9sbKyQoMGDXDnzh1YW1vDwoJpxvpQWlqKO3fuoEGDBrCyql3Yw6CJiIjICCQSCTw9PZGVlYVr164Zuzt1moWFBZo1awaJRFKr6zBoIiIiMhKpVIrWrVtzg3M9k0qlOhnJY9BkZnJzc5lnRERUh1hYWLAiuJlg0GRGcnNzsW7duhrbRUREMHAiIiLSMWadmZHyI0xyuQOyslpALneoth0RERHVHkeazFRaWjfs2zcMgmAhVun28ztj7G4RERHVWRxpMkNyuYMYMAFPN9Ddt29YhREnIiIi0h0GTWYoL89FZQNd4GnglJfnbKQeERER1X0MmsyQs3OuuIGukkRSCmfnPCP1iIiIqO5j0GSGZLIChIbuFwMnZU5TZXvDERERkW4wEdxM+fmdga9vJvLynOHsnMeAiYiISM+MOtK0ceNGdO7cGY6OjnB0dERgYCC+//578fyAAQMgkUhUfqZNm6ZyjevXryMkJAQNGjSAm5sb3n33XTx58kSlzbFjx+Dn5wcbGxu0atUKW7ZsqdCX9evXo0WLFrC1tUVAQABOnTqll3uuDalUqvJaJiuAj8+1CgFT+XZERERUe0YdaWratCmWLVuG1q1bQxAEbN26FS+++CLOnDmDDh06AABef/11fPjhh+J7GjRoIP5eUlKCkJAQeHh44OTJk8jOzsb48eNhbW2NpUuXAgCysrIQEhKCadOmYdu2bUhOTsaUKVPg6emJ4OBgAMCOHTsQFRWFuLg4BAQEIDY2FsHBwcjIyICbm5sBn0j1XFxcEBERYbYVwVnNnIiIzJlEEATB2J0oy9nZGR9//DEmT56MAQMGoGvXroiNja207ffff49hw4bh5s2bcHd3BwDExcVh9uzZuHPnDqRSKWbPno3ExEScP39efN+YMWOQn5+PgwcPAgACAgLQo0cPsdp2aWkpvL298eabb2LOnDlq9VuhUEAmk0Eul8PR0bEWT6BuKl/NXC53QF6eC5ydc1VGyljNnIiIDEmT72+TSQQvKSnB9u3bUVhYiMDAQPH4tm3b4Orqio4dOyI6OhoPHjwQz6WkpKBTp05iwAQAwcHBUCgUuHDhgtgmKChI5bOCg4ORkpIC4Gn17NTUVJU2FhYWCAoKEttUpqioCAqFQuWHqlZ2hCktrRtiYyOxdWsYYmMjkZbWrdJ2REREpsToieDnzp1DYGAgHj16hIYNG2Lv3r1o3749AODVV19F8+bN4eXlhbNnz2L27NnIyMjAnj17AAA5OTkqARMA8XVOTk61bRQKBR4+fIh79+6hpKSk0jaXL1+ust8xMTFYuHBh7W6+HqqqMKevbyaT2YmIyKQZPWhq06YN0tPTIZfL8c033yAsLAw//vgj2rdvj6lTp4rtOnXqBE9PTwwaNAhXrlyBr6+vEXsNREdHIyoqSnytUCjg7e2t988197yg6gpzMmgiIiJTZvSgSSqVolWrVgAAf39/nD59GqtXr8ann35aoW1AQAAAIDMzE76+vvDw8Kiwyu3WrVsAAA8PD/FP5bGybRwdHWFnZwdLS0tYWlpW2kZ5jcrY2NjAxsZGw7utnfJ5QVUx5bwgZWHOsoETC3MSEZE5MJmcJqXS0lIUFRVVei49PR0A4OnpCQAIDAzEuXPncPv2bbFNUlISHB0dxSm+wMBAJCcnq1wnKSlJzJuSSqXw9/dXaVNaWork5GSV3CpTUH6ESS53QFZWiwp7zhkzLyg3NxfZ2dkVfu7evQuAhTmJiMh8GXWkKTo6GkOHDkWzZs1QUFCAhIQEHDt2DIcOHcKVK1eQkJCAF154AS4uLjh79ixmzJiBfv36oXPnzgCAwYMHo3379hg3bhyWL1+OnJwczJs3D+Hh4eIo0LRp07Bu3TrMmjULkyZNwpEjR7Bz504kJiaK/YiKikJYWBi6d++Onj17IjY2FoWFhZg4caJRnos60tK6iblBysDDz++MUfuk7kgYC3MSEZE5MmrQdPv2bYwfPx7Z2dmQyWTo3LkzDh06hOeffx43btzA4cOHxQDG29sbo0aNwrx588T3W1paYv/+/Zg+fToCAwNhb2+PsLAwlbpOPj4+SExMxIwZM7B69Wo0bdoUX3zxhVijCQBGjx6NO3fuYP78+cjJyUHXrl1x8ODBCsnhpsJUk6krGwmrrKwA8HTEicESERGZE6MGTZs2barynLe3N3788ccar9G8eXMcOHCg2jYDBgzAmTPVj8JEREQgIiKixs8zBeaQTK3tSBirmRMRkakyeiI4ac7Uk6lrGgkbOXIkXF1dK7zP1Ff+ERFR/cagyQwpk6nLj+SYyihTTSNhrq6uYjK/krKUQnZ2dqXXZEBFRETGxqDJTJlyMrWmI2F1oZQCERHVfSZXcoCqVj7fRyYrgI/PtQoBk7HzgjQtK2AOpRSIiIg40mRGXFxcEBERYRYVwbUdCTPFUgpEREQAgyazYwoBUVUqGwmrLFiqaiTMVEspEBERAQyaSIdqOxJmDqUUiIio/mLQVE8YaqPf2lzD1EspEBFR/cagqR4wl9Vppl5KgYiI6jcGTfWAutubmMLqNFMupUBERPUbg6Z6xhRXp9U2gZyIiMgQGDTVI6a6Os2cSikQEVH9xaCpHjHl1WkMiIiIyNQxaKoH5HI5gJpXp8nl8gp7wmnKUKv0iIiIDI1BUz1QXFwM4H+r0777bhie7qCjujpN2U5b5rJKj4iISBvce64ekkhU/9QV7iFHRER1GUea6gErq6f/M9eUCK5spwumuEqPiIioNjjSVA84OTkBqD4RvGy72qoqOCs/4kRERGROONJUjxhqmxJdrtJjYjkREZkKBk31iKG2KdFVcMbEciIiMiUMmuoZQ2xToqvgzJy2fyEiorqPQVM9YIxtSnQdnGmSWM4pPSIi0gcGTfWAobYp0Vdwpsn2L5zSIyIifWHQVE8YIkDQV3CmSWI5p/SIiEhfGDSRTukjONMksTw/P1/8vbopvfz8/FpvGUNERPUL6zSRyVMmlkskpQBQbWL5kydPANRcK0rZjoiISF0caSKzoGliuS5rRREREQEMmsiE1Sax3Nq6CIAAoOwGewKsrZnLRERE2mHQRCarNonlxcU2UA2YAECC4mLdlVUgIqL6hUETmTRtE8sNtWUMERHVH0wEpzrF2toaQM3J48p2RERE6uJIE9UpMplM/L265PGy7YiIiNTBoInqFGNsGUNERPUDgyaqUwy1ZQwREdU/DJqozmFARERE+sCgibSSm5vL0Rwt8dkREZknBk2ksdzcXKxbt67GdhEREfzyL4fPjojIfDFoIo1VN0qiTTtzpumoUfm2crkD8vJc4Oycq5KwXh+eHRGRuWHQRLVW1Rd/XVfbUaO0tG7ipsLKOlJ+fmf00VUiItIBBk1UK/X5i782o0ZyuYP43ICnmwnv2zcMvr6Z9SrwJCIyJwyaSGv84v8fTYPHvDwXlS1egKfPLy/Pud49OyIic8FtVEhr1X3x1ydVBY9yuUOV71HujVcW98YjIjJtDJpIa/zif0qb4LGmvfGIiMj0cHqOtKb84i8/LVXXvvirWiF39+5dAP8LHssGTuoEj9XtjUdERKaHQRNprOy+bdV98Zvi/m6alghQZ4WcJsEj98YjIjJfDJpIY+a6v5s2JQLUXSGn7qiRoZ8dq48TEemOUYOmjRs3YuPGjbh69SoAoEOHDpg/fz6GDh0KAHj06BFmzpyJ7du3o6ioCMHBwdiwYQPc3d3Fa1y/fh3Tp0/H0aNH0bBhQ4SFhSEmJgZWVv+7tWPHjiEqKgoXLlyAt7c35s2bhwkTJqj0Zf369fj444+Rk5ODLl26YO3atejZs6fen4G5Mscv2toWlqxphZy6o0aGenasPk5EpFtGDZqaNm2KZcuWoXXr1hAEAVu3bsWLL76IM2fOoEOHDpgxYwYSExOxa9cuyGQyREREYOTIkThx4gQAoKSkBCEhIfDw8MDJkyeRnZ2N8ePHw9raGkuXLgUAZGVlISQkBNOmTcO2bduQnJyMKVOmwNPTE8HBwQCAHTt2ICoqCnFxcQgICEBsbCyCg4ORkZEBNzc3oz0f0h9NSwTUVF5h5MiRcHV1rfA+Y47ksPo4EZFuGTVoCg0NVXm9ZMkSbNy4Eb/88guaNm2KTZs2ISEhAQMHDgQAxMfHo127dvjll1/Qq1cv/PDDD7h48SIOHz4Md3d3dO3aFYsWLcLs2bOxYMECSKVSxMXFwcfHBytWrAAAtGvXDsePH8eqVavEoGnlypV4/fXXMXHiRABAXFwcEhMTsXnzZsyZM8eAT4Q0oe3Ukzb1pWqqq+Tq6gpPT89K+5edna1R//ShPhchJSLSFZPJaSopKcGuXbtQWFiIwMBApKamori4GEFBQWKbtm3bolmzZkhJSUGvXr2QkpKCTp06qUzXBQcHY/r06bhw4QK6deuGlJQUlWso20RGRgJ4+v+yU1NTER0dLZ63sLBAUFAQUlJSquxvUVERioqKxNcKhaK2j4A0UJupJ20KS2q6Qs6UpsZYhJSISDeMXqfp3LlzaNiwIWxsbDBt2jTs3bsX7du3R05ODqRSKZycnFTau7u7IycnBwCQk5OjEjApzyvPVddGoVDg4cOHuHv3LkpKSipto7xGZWJiYiCTycQfb29vre6ftFPZ1FNWVosKBSUrG4nSpr6UpnWVatM/XWMRUiIi3TD6SFObNm2Qnp4OuVyOb775BmFhYfjxxx+N3a0aRUdHIyoqSnytUCgYOBmJplNP2taX0raukrGnxrStI0VERKqMHjRJpVK0atUKAODv74/Tp09j9erVGD16NB4/foz8/HyV0aZbt27Bw8MDAODh4YFTp06pXO/WrVviOeWfymNl2zg6OsLOzg6WlpawtLSstI3yGpWxsbGBjY2NdjdNOqPt1JO6AVBt6yqZwtRYfSlCSkSkb0YPmsorLS1FUVER/P39YW1tjeTkZIwaNQoAkJGRgevXryMwMBAAEBgYiCVLluD27dviKrekpCQ4Ojqiffv2YpsDBw6ofEZSUpJ4DalUCn9/fyQnJ2PEiBFiH5KTkxEREWGIW6Za0CQ/SZsASNu6SnK5XK3+yeXyCgnk+sDq40REtWfUoCk6OhpDhw5Fs2bNUFBQgISEBBw7dgyHDh2CTCbD5MmTERUVBWdnZzg6OuLNN99EYGAgevXqBQAYPHgw2rdvj3HjxmH58uXIycnBvHnzEB4eLo4CTZs2DevWrcOsWbMwadIkHDlyBDt37kRiYqLYj6ioKISFhaF79+7o2bMnYmNjUVhYKK6mI9OlydSTtgGQNonaxcXFavVP2U4fWH2ciEi3jBo03b59G+PHj0d2djZkMhk6d+6MQ4cO4fnnnwcArFq1ChYWFhg1apRKcUslS0tL7N+/H9OnT0dgYCDs7e0RFhaGDz/8UGzj4+ODxMREzJgxA6tXr0bTpk3xxRdfiOUGAGD06NG4c+cO5s+fj5ycHHTt2hUHDx6skBxOpkfTqSdD10ySyQrQufNZ/P57FwASAAI6dz5rkJEec63cTkRkqiSCIAjG7kRdoFAoIJPJIJfL4ejoaOzu1HnZ2dn47LPPxNdPCzdWnHqaOnWqQaa/yjt37hz27NkDudwBsbGRFUaaIiNjxaKYnTp1Mnj/iIjoKU2+v00up4lIHaY+9aTcxqemnKay2/0YEvekIyLSHIMmMkumPvWkXPFZU05T+TpkVdFlkGNKhTeJiMwJgyYyW+bwha6L5f66DnK4Jx0RkXYYNBHpmSbL/SsbUbp7967K66qCnJs3b1Ya6FQ3CmXswptEROZE66CpRYsWmDRpEiZMmIBmzZrpsk9EZk+bnCt1RpSqC3L27NlT5fsqG4UyhcKbRETmROugKTIyElu2bMGHH36I5557DpMnT8ZLL73EKtlktnSZN6RNzlVN02bqBDmaTLVps3ExEVF9VqugKTIyEmlpadiyZQvefPNNvPHGG3j11VcxadIk+Pn56bKfRHqlj+To2uRcVTai1KjRvWqDHE2n2rgnHRGRZixqblI9Pz8/rFmzBjdv3sQHH3yAL774Aj169EDXrl2xefNmsAwU6Utubi6ys7Or/MnNzVX7WpWN8mRltYBc7lBtO32oakTJ2roIEkmpSltlkFPVe8r3vyxlkrrymtyTjoioerVOBC8uLsbevXsRHx+PpKQk9OrVC5MnT8bff/+N9957D4cPH0ZCQoIu+kok0ueyeWMnR1c1bVZcLK1yJV5WVgutptq4Jx0Rkfq0DprS0tIQHx+Pr7/+GhYWFhg/fjxWrVqFtm3bim1eeukl9OjRQycdJSpLX8vmTSE5urppMx+fa5UGOZpMtZl6YVAiIlOlddDUo0cPPP/889i4cSNGjBgBa2vrCm18fHwwZsyYWnWQqCa6HBnSZXK0tonlNdV2qizI0aQelKkXBiUiMlVaB01//fUXmjdvXm0be3t7xMfHa/sRRDXS9ciQrpKjazt9WN202ciRI+Hq6grgaQ0nZakBTabaGBAREWlO60Tw5557rtJE2/z8fLRs2bJWnSJSV3UjQ9rQVXK0NonllU2b+fhcq/DZXl5e8PT0hKenJ7y8vNR6D6faiIhqT+uRpqtXr6KkpKTC8aKiIvzf//1frTpFpC59LJvXdXK0utOH2kybcaqNiMhwNA6avvvuO/H3Q4cOQSaTia9LSkqQnJyMFi1a6KRzRDXRxd5ugP6SozWdPtQmuGFARERkGBoHTSNGjAAASCQShIWFqZyztrZGixYtsGLFCp10jkgduhgZ0teIja4Sy3VZrZyIiLSjcdBUWvo018PHxwenT58WE1KJDEkfI0P6CDp0MX2oz5pURESkPq1zmrKysnTZDyKNmEsujy6mD/VVk4qIiDSjddD04YcfVnt+/vz52l6aSC3GDojUpcvEcmNXKyciqs+0Dpr27t2r8rq4uBhZWVmwsrKCr68vgyaq1/QxfWgK1cqJiOozrYOmM2cq/r9bhUKBCRMm4KWXXqpVp4jMnT6mD3VZrZyIiDRX6w17y3J0dMTChQsRGhqKcePG6fLSRGZH19OH+qhJRURE6tNp0AQAcrkccrlc15clqvd0VZOqJixvQERUOa2DpjVr1qi8FgQB2dnZ+PLLLzF06NBad4yIKtJ1tfLyWN6AiKhqWgdNq1atUnltYWGBxo0bIywsDNHR0bXuGBE9pa9q5ZVheQMioqqxThORiTNWTSqWNyAiUlWrnCZBEJCbmwuJRMKheiI9MvR/XyxvQERUkUXNTSrKycnB+PHj0ahRI7i7u8PNzQ2NGjXCpEmTcOvWLV33kYgMrLryBkRE9ZXGI00KhQK9e/fG/fv3MXHiRLRt2xaCIODixYv4+uuvcfz4caSlpaFhw4b66C8RGYCm5Q244o6I6gONg6bVq1fD0tISFy5cQOPGjVXOzZs3D3369MGaNWvw3nvv6ayTRGRYmpQ34Io7IqovNA6aEhMT8d5771UImADAzc0N0dHR+Pzzzxk0EZk5dcsbcMUdEdUXGgdNf/zxB3r37l3l+d69e+Odd96pVaeIyDhqW96AK+6IqC7TKqfJycmpyvNOTk5QKBS16RMRGUltyhtwxR0R1XUaB02CIMDCoupFdxKJBIIg1KpTRGQ82uYdcUNhIqrrtAqannnmGUgkkirPE1H9Y8obCnN1HxHpgsZBU3x8vD76QUQw7y93Q20orCmu7iMiXdE4aAoLC9Oo/ddff43hw4fD3t5e048iqlfqwpe7vjcU1gZX9xGRrtRqGxV1/Otf/0JAQABatmyp748iMmvm+uVuyA2Fa4ur+4ioNvQeNDHHiUhz5vTlbqwNhTXF1X1EVFt6D5qISDPm+OVu7IBIHVzdR0S1pdWGvUSkP9wsVz+Uq/vKMpXVfURkHjjSRGRiTHnpflXMYdWfqa7uIyLzwaCJyMSY25e7Oa36M8XVfURkPrQKmkpKSnDixAl07ty52i1VAKB58+awtrbW5mOI6i1z+nI39VV/5rS6j4hMm1ZBk6WlJQYPHoxLly7VGDSdP39em48gqnfqwpe7Ka76M5fVfURk+rSenuvYsSP++usv+Pj4aP3hMTEx2LNnDy5fvgw7Ozv07t0bH330Edq0aSO2GTBgAH788UeV9/3rX/9CXFyc+Pr69euYPn06jh49ioYNGyIsLAwxMTGwsvrf7R07dgxRUVG4cOECvL29MW/ePEyYMEHluuvXr8fHH3+MnJwcdOnSBWvXrkXPnj21vj8iTZj7l7suV/3pOkfKVJ8ZEZkXrYOmxYsX45133sGiRYvg7+9foeK3o6Njjdf48ccfER4ejh49euDJkyd47733MHjwYFy8eFHleq+//jo+/PBD8XWDBg3E30tKShASEgIPDw+cPHkS2dnZGD9+PKytrbF06VIAQFZWFkJCQjBt2jRs27YNycnJmDJlCjw9PREcHAwA2LFjB6KiohAXF4eAgADExsYiODgYGRkZcHNz0/YxEWnEnL/cdbWkv3yOVFXTfaaQI0VE9YvWQdMLL7wAABg+fLjK5r2CIEAikaCkpKTGaxw8eFDl9ZYtW+Dm5obU1FT069dPPN6gQQN4eHhUeo0ffvgBFy9exOHDh+Hu7o6uXbti0aJFmD17NhYsWACpVIq4uDj4+PhgxYoVAIB27drh+PHjWLVqlRg0rVy5Eq+//jomTpwIAIiLi0NiYiI2b96MOXPmaPBkiOonXa36KzvCVN10n6lVRieiuk/roOno0aO67AcAQC6XAwCcnVXr0Wzbtg1fffUVPDw8EBoaivfff18cbUpJSUGnTp3g7u4utg8ODsb06dNx4cIFdOvWDSkpKQgKClK5ZnBwMCIjIwE8/cc3NTUV0dHR4nkLCwsEBQUhJSWl0r4WFRWhqKhIfK1QKLS/caI6QNer/syxyCcR1W1aB039+/fXZT9QWlqKyMhI9OnTBx07dhSPv/rqq2jevDm8vLxw9uxZzJ49GxkZGdizZw8AICcnRyVgAiC+zsnJqbaNQqHAw4cPce/ePZSUlFTa5vLly5X2NyYmBgsXLqzdTRPVMbpc9ccK3kRkampVp+nnn3/Gp59+ir/++gu7du1CkyZN8OWXX8LHxwd9+/bV6Frh4eE4f/48jh8/rnJ86tSp4u+dOnWCp6cnBg0ahCtXrsDX17c23a+V6OhoREVFia8VCgW8vb2N1h8iY9HXqj9zLPJJRHWb1kHT7t27MW7cOLz22mtIS0sTp6rkcjmWLl2KAwcOqH2tiIgI7N+/Hz/99BOaNm1abduAgAAAQGZmJnx9feHh4YFTp06ptLl16xYAiHlQHh4e4rGybRwdHWFnZwdLS0tYWlpW2qaqXCobGxvY2NiofY9EdZW+Vv2ZW5FPIqr7arV6Li4uDuPHj8f27dvF43369MHixYvVuoYgCHjzzTexd+9eHDt2TK3yBenp6QAAT09PAEBgYCCWLFmC27dvi6vckpKS4OjoiPbt24ttygdxSUlJCAwMBPD0H3R/f38kJydjxIgRAJ5OFyYnJyMiIkKteyGqz/S1is2cinwSUd2nddCUkZGhssJNSSaTIT8/X61rhIeHIyEhAf/5z3/g4OAg5iDJZDLY2dnhypUrSEhIwAsvvAAXFxecPXsWM2bMQL9+/dC5c2cAwODBg9G+fXuMGzcOy5cvR05ODubNm4fw8HBxJGjatGlYt24dZs2ahUmTJuHIkSPYuXMnEhMTxb5ERUUhLCwM3bt3R8+ePREbG4vCwkJxNR0RGUdV031ERIamddDk4eGBzMxMtGjRQuX48ePH0bJlS7WusXHjRgBPC1iWFR8fjwkTJkAqleLw4cNiAOPt7Y1Ro0Zh3rx5YltLS0vs378f06dPR2BgIOzt7REWFqZS18nHxweJiYmYMWMGVq9ejaZNm+KLL74Qyw0AwOjRo3Hnzh3Mnz8fOTk56Nq1Kw4ePFghOZyI9Evd3CdTroxORHWTRBAEQZs3xsTE4KuvvsLmzZvx/PPP48CBA7h27RpmzJiB999/H2+++aau+2rSFAoFZDIZ5HK5WoU9iahquq4ITkRUFU2+v7UeaZozZw5KS0sxaNAgPHjwAP369YONjQ3eeeedehcwEZFuMSAiIlOk9UiT0uPHj5GZmYn79++jffv2aNiwoa76ZlY40kRERGR+DDLSpCSVSsVVakRERER1ldZB06NHj7B27VocPXoUt2/fRmlpqcr5tLS0WneOiIiIyFRoHTRNnjwZP/zwA/7xj3+gZ8+eKpv2EhEREdU1WgdN+/fvx4EDB9CnTx9d9oeIiIjIJFnU3KRyTZo0gYODgy77QkRERGSytA6aVqxYgdmzZ+PatWu67A8RERGRSdJ6eq579+549OgRWrZsiQYNGsDa2lrlfF4edyInIlIHi3kSmQetg6ZXXnkF//d//4elS5fC3d2dieBEVCkGBNXLzc3FunXramwXERFRr58TkSnQOmg6efIkUlJS0KVLF132h4jqEAYENSsfUMrlDsjLc4Gzc67KRsXVBZ5EZBhaB01t27bFw4cPddkXIqpjzDkgMMYIWVpaN+zbNwyCYAGJpBShofvh53dGp59BRNrTOmhatmwZZs6ciSVLlqBTp04Vcpq4lQgRlWVOAYEhR8jy8/MBPA0olc8HAATBAvv2DYOvbyZksgLk5+fD09OzVp9FRLWjddA0ZMgQAMCgQYNUjguCAIlEgpKSktr1jIjqjJoCAlNjyBGyJ0+eAADy8lzE56MkCBbIy3OGTFYgtiMi49E6aDp69Kgu+0FEdVhNAYExVTYNd/fuXfF3Q42QOTvnAhAA/G9RjURSCmdnrkQmMhVaBU3FxcX48MMPERcXh9atW+u6T0RUxzg750IiKVUJnEwhIKhpGs7wI2SqQZMg6OEjiEhrWhW3tLa2xtmzZ3XdFyKqo2SyAoSG7odE8nRjb+WIjbFHmSqbhsvKagG5/OluB9WNkOlaXp4LKv6TrJ/PIiLtaD09N3bsWGzatAnLli3TZX+IqI7y8zsDX99M5OU5w9k5z+gBU3mVTcP5+mbqfYRMuYimptG48ottiMjwtA6anjx5gs2bN+Pw4cPw9/eHvb29yvmVK1fWunNEZN6kUqnKa5msoNJgqXw7Q6tqGi4yMhahofsrBFPVBXyaliqQyWT//bOg2s9StiMi49E6aDp//jz8/PwAAH/88YfKOVYHJyIAcHFxQUREhMlXBK9uGk6TEbLaliow9dE4ovqOq+eISK+MHRCpo6apMXVHyLQpVWAuo3FEVIugqay///4bANC0aVNdXI6IyKBqmhobOXIkXF1dVd5T0wiZuqUKzGU0johqETSVlpZi8eLFWLFiBe7fvw8AcHBwwMyZMzF37lxYWGi1MI+IyCiqmxpzdXVVqcatzFvKzs5WuYayvpOmpQoYEBGZB62Dprlz54qr5/r06QMAOH78OBYsWIBHjx5hyZIlOuskEZE+aDM1pk7ekikX8yQi7WkdNG3duhVffPEFhg8fLh7r3LkzmjRpgjfeeINBExGZPG2mxtTJWzLVYp5EVDtaB015eXlo27ZtheNt27ZFXh7/YSAi81CbqbGq8pZqypEiIvOkddDUpUsXrFu3DmvWrFE5vm7dOnTp0qXWHSMiMmU15S1VlyOVn59faY5UVZgITmQatA6ali9fjpCQEBw+fBiBgYEAgJSUFNy4cQMHDhzQWQeJiEyR+nlLFevWla1lV9vaTkRkOFoHTf3798cff/yB9evX4/LlywCeLst944034OXlpbMOEhGZoprylqorOVC2urc2tZ2IyDg0CppGjhyJLVu2wNHREf/+978xevRoJnwTUb1UXd6SpiUHlNSt7URExqFR0LR//34UFhbC0dEREydOxJAhQ+Dm5qavvhERmbSq8pa0KTmgbaBFRIajUdDUtm1bREdH47nnnoMgCNi5cyccHR0rbTt+/HiddJCISJ80TcJWp7aTNiUHWNuJyPRpFDTFxcUhKioKiYmJkEgkmDdvXqWb80okEgZNRGTytEnCrq620927d7Fnzx6tSg5oGmhxxR2R4WkUNPXu3Ru//PILAMDCwgJ//PEHp+eIyGxpm4StTjBSXcmBymgSaHHFHZFxaL16LisrC40bN9ZlX4iIjEYXSdjabMtSlrqBFlfcERmH1kFT8+bN8fPPP+PTTz/FlStX8M0336BJkyb48ssv4ePjg759++qyn0REeqOrJGxttmVRN9DKz88Xf1duDAxwxR2RIWkdNO3evRvjxo3Da6+9hjNnzqCoqAgAIJfLsXTpUha4JCKzocskbE2nw6oKtORyOXbs2CG+3rlzZ4X3csUdkWFpHTQtXrwYcXFxGD9+PLZv3y4e79OnDxYvXqyTzhERGYKxN9hVJ9CqbApO02CPyeNEtaN10JSRkYF+/fpVOC6TyVSGkYmITJ2pb7Bb1RScJsEek8eJak/roMnDwwOZmZlo0aKFyvHjx4+jZcuWte0XEZFBabrazVBqmoJTN9hj8jhR7WkdNL3++ut4++23sXnzZkgkEty8eRMpKSmYOXMm5s+fr8s+EhHpRW1XuxlCTVNw2gR7TB4n0o7WQdOcOXNQWlqKQYMG4cGDB+jXrx9sbGzw7rvvYsqUKbrsIxGRXmiz2s3Q1JmC0yTYY/I4kfa0DpokEgnmzp2Ld999F5mZmbh//z7at2+PTz/9FD4+PsjJydFlP4mI9MLU83dqmoIbOXIkXF1dK7yvqmCP27UQaU/joKmoqAgLFixAUlKSOLI0YsQIxMfH46WXXoKlpSVmzJihj74SEdVL1U3Bubq6wtPTU+1rGXulIJE50zhomj9/Pj799FMEBQXh5MmT+Oc//4mJEyfil19+wYoVK/DPf/4TlpaW+ugrEVG9oa98K1NfKUhkyjQOmnbt2oV///vfGD58OM6fP4/OnTvjyZMn+P333yvdvJeIiDSnz3wrU10pSGTqLGpuourvv/+Gv78/AKBjx46wsbHBjBkztAqYYmJi0KNHDzg4OMDNzQ0jRoxARkaGSptHjx4hPDwcLi4uaNiwIUaNGoVbt26ptLl+/TpCQkLQoEEDuLm54d1338WTJ09U2hw7dgx+fn6wsbFBq1atsGXLlgr9Wb9+PVq0aAFbW1sEBATg1KlTGt8TEZGuuLi4wNPTs8ofTQKmykaufHyuVQiYjLlSkMjUaTzSVFJSovIflZWVFRo2bKjVh//4448IDw9Hjx498OTJE7z33nsYPHgwLl68CHt7ewDAjBkzkJiYiF27dkEmkyEiIgIjR47EiRMnxP6EhITAw8MDJ0+eRHZ2NsaPHw9ra2ssXboUwNPNhUNCQjBt2jRs27YNycnJmDJlCjw9PREcHAwA2LFjB6KiohAXF4eAgADExsYiODgYGRkZcHNz0+r+iIhMhTmsFCQydRJBEARN3mBhYYGhQ4fCxsYGALBv3z4MHDhQDHKU9uzZo3Fn7ty5Azc3N/z444/o168f5HI5GjdujISEBPzjH/8AAFy+fBnt2rVDSkoKevXqhe+//x7Dhg3DzZs34e7uDgCIi4vD7NmzcefOHUilUsyePRuJiYk4f/68+FljxoxBfn4+Dh48CAAICAhAjx49xIq5paWl8Pb2xptvvok5c+bU2HeFQgGZTAa5XA5HR0eN752IiIgMT5Pvb41HmsLCwlRejx07VtNLVEkulwMAnJ2dAQCpqakoLi5GUFCQ2KZt27Zo1qyZGDSlpKSgU6dOYsAEAMHBwZg+fTouXLiAbt26ISUlReUayjaRkZEAnlbATU1NRXR0tHjewsICQUFBSElJqbSvRUVF4ibFwNOHTkRET3GfO6qLNA6a4uPj9dEPlJaWIjIyEn369EHHjh0BADk5OZBKpXByclJp6+7uLtaBysnJUQmYlOeV56pro1Ao8PDhQ9y7dw8lJSWVtrl8+XKl/Y2JicHChQu1u1kiIjOiaQDEfe6ortK6uKWuhYeH4/z58zh+/Lixu6KW6OhoREVFia8VCgW8vb2N2CMiIt3TJgDiPndUV5lE0BQREYH9+/fjp59+QtOmTcXjHh4eePz4MfLz81VGm27dugUPDw+xTflVbsrVdWXblF9xd+vWLTg6OsLOzg6WlpawtLSstI3yGuXZ2NiIeV1ERHVVbQMg7nNHdYnGJQd0SRAEREREYO/evThy5Ah8fHxUzvv7+8Pa2hrJycnisYyMDFy/fh2BgYEAgMDAQJw7dw63b98W2yQlJcHR0RHt27cX25S9hrKN8hpSqRT+/v4qbUpLS5GcnCy2ISKq79LSuiE2NhJbt4YhNjYSaWndqm1f1T53crmDIbpLpHNGDZrCw8Px1VdfISEhAQ4ODsjJyUFOTg4ePnwIAJDJZJg8eTKioqJw9OhRpKamYuLEiQgMDESvXr0AAIMHD0b79u0xbtw4/P777zh06BDmzZuH8PBwcSRo2rRp+OuvvzBr1ixcvnwZGzZswM6dO1W2e4mKisLnn3+OrVu34tKlS5g+fToKCwsxceJEwz8YIiITo0kAlJ+fD6D6fe7KtiMyF0adntu4cSMAYMCAASrH4+PjMWHCBADAqlWrYGFhgVGjRqGoqAjBwcHYsGGD2NbS0hL79+/H9OnTERgYCHt7e4SFheHDDz8U2/j4+CAxMREzZszA6tWr0bRpU3zxxRdijSYAGD16NO7cuYP58+cjJycHXbt2xcGDByskhxMR1UeabPSrLC5c0z53d+7cqbDQh6vqyJRpXKeJKsc6TURUF126dAk7d+6EXO6A2NjICgFQZGQsZLICvPzyy2jXrh0A4Ny5c2Ktvr17X8Tvv3cBIAEgoEuX3/HSS/+p9jO5qo4MSa91moiIyLTpskaSctSopo1+y29dBTyd0jt7tjOeBkwAIMHZs50xcOARyGQFXFVHZodBExFRHaLPGkl+fmfg5paDGzeawdv7Opo2za60nbW1NYDqp/SuXGnFVXVkdhg0ERHVIbqukaQMgIDqyweUbSeTyQBUndNkbf240qRyX9/MCvlRRKaEQRMRkRmqagru7t274u+6qJGkDICqWj2nDHSU7VTfW/mUXnGxjdpJ5USmhEETEZGZKT8FV9loUk1BjqY0WT1Xlp/fGfj6ZiIvzxnOznliLlN1q+rKBn5lcWUdGRuDJiIiM1N2hKmq0SRtg5yq1FQ+oCypVKry+ulIVIHK6+qSypUr7yrDlXVkTAyaiIjMVHWjSZoEOeqoKdApy8XFBRERERWmD+/evSsGRJWNQJW/N66sI1PDoImIyExVN5rk43NN7SCnOmVHjaoLdMqPLlU2GlTTCJQS96sjU8WgiYjITNU0mlTTaI46qho1KkvdXKPqrqUchdJ1LhaRLjFoIiIyU+pMmVU1mlN+1Kc6uswhqulaus7FItIlBk1ERGasutGkkSNHwtXVtcJ7THkVmq5zsYh0iUETEZGZq2o0ydXVFZ6enkbokfY0STgnMjQGTUREZkbdqTVNpuBMiS5ysYj0gUETEZGZ0WVytqlQd2WduQaCVDdIBEEQjN2JukChUEAmk0Eul8PR0dHY3SEiMjtVbQ2jZG6BIJkHTb6/OdJERERa0XWQw4CITB2DJiIi0lj5/e+qwm1PqC6xqLkJERGRqvIjTHK5A7KyWkAud6i2HZE540gTERFVq7JpuLt374q/c9sTqi8YNBERUZVqmoYz9rYnTB4nQ2LQREREVapsGi4vzwXOzrmQyQqMuu0J86rI0Bg0ERGRWiqbhvP1zTTatic1BXRVtSPSFhPBiYioRlVNwwFAaOh+SCSlAGC0bU/S0rohNjYSW7eGITY2Emlp3Qz6+VQ/cKSJiIhqVN00nLG3PTF2XhXVHwyaiIioRs7OudVOwxlz2xNj5lVR/cKgiYiIaiSTFSA0dH+FnCZlUDJy5Ei4urqqvMdQK9dqCuiIdIVBExERqaW6aThXV1d4enrW6vralg+oKaAj0hUGTUREVKXy02v6moarbfkAY+dVUf3AoImIiKrk4uKCiIgIvReQ1KZ8gKECOiIlBk1ERFQtQxeGVHdbFkMFdERKDJqIiMhkaFo+gAERGRKLWxIRkcmornwAkbExaCIiIpOhLB9QFssHkKlg0ERERCZDWT7A2NuyEFWGOU1ERGR0+fn54u/VlQ/Iz8+vdT0oIm1xpImIiIxOIpFUdlTNdkSGwZEmIiIyOplMJv5eXcmBsu2IDI0jTUREZDKqKjkglzsYuWdEDJqIiMiEsOQAmTIGTUREZDJYcoBMGXOaiIjIZChLDpTPaTLXkgO5ubnc5qUOYdBEREQmpbqSA+YkNzcX69atq7FdREQEAyczwaCJiIiMTiqVqryWyQoqDZbKtzNl5UeY5HIH5OW5wNk5V+XeqhuJItPCoImIiIzOxcUFERERdXYqq7oyCmQ+GDQREZFJMNeAqCZVlVHw9c0026nH+sqoq+d++uknhIaGwsvLCxKJBN9++63K+QkTJkAikaj8DBkyRKVNXl4eXnvtNTg6OsLJyQmTJ0/G/fv3VdqcPXsWzz77LGxtbeHt7Y3ly5dX6MuuXbvQtm1b2NraolOnTjhw4IDO75eIiOofTcso5ObmIjs7u8qf3NxcQ3SbKmHUkabCwkJ06dIFkyZNwsiRIyttM2TIEMTHx4uvbWxsVM6/9tpryM7ORlJSEoqLizFx4kRMnToVCQkJAACFQoHBgwcjKCgIcXFxOHfuHCZNmgQnJydMnToVAHDy5Em88soriImJwbBhw5CQkIARI0YgLS0NHTt21NPdExFRfaAso1A2cKqqjAKTx02bUYOmoUOHYujQodW2sbGxgYeHR6XnLl26hIMHD+L06dPo3r07AGDt2rV44YUX8Mknn8DLywvbtm3D48ePsXnzZkilUnTo0AHp6elYuXKlGDStXr0aQ4YMwbvvvgsAWLRoEZKSkrBu3TrExcXp8I6JiKi+0aSMApPHTZvJ5zQdO3YMbm5uaNSoEQYOHIjFixeL0XVKSgqcnJzEgAkAgoKCYGFhgV9//RUvvfQSUlJS0K9fP5UVF8HBwfjoo49w7949NGrUCCkpKYiKilL53ODg4ArThWUVFRWhqKhIfK1QKHR0x0REVNdoU0aByeOmx6Qrgg8ZMgT//ve/kZycjI8++gg//vgjhg4dipKSEgBATk4O3NzcVN5jZWUFZ2dn5OTkiG3c3d1V2ihf19RGeb4yMTExkMlk4o+3t3ftbpaIiOqUysoo+PhcqxAwVVZGgXvwmSaTHmkaM2aM+HunTp3QuXNn+Pr64tixYxg0aJARewZER0erjE4pFAoGTkREJKpNGYXqkse54s54TDpoKq9ly5ZwdXVFZmYmBg0aBA8PD9y+fVulzZMnT5CXlyfmQXl4eODWrVsqbZSva2pTVS4V8DTXqnxSOhERUVnaJmtrkjxOhmPS03Pl/f3338jNzYWnpycAIDAwEPn5+UhNTRXbHDlyBKWlpQgICBDb/PTTTyguLhbbJCUloU2bNmjUqJHYJjk5WeWzkpKSEBgYqO9bIiIiqkCZPK7cvNjc9+CrK4w60nT//n1kZmaKr7OyspCeng5nZ2c4Oztj4cKFGDVqFDw8PHDlyhXMmjULrVq1QnBwMACgXbt2GDJkCF5//XXExcWhuLgYERERGDNmDLy8vAAAr776KhYuXIjJkydj9uzZOH/+PFavXo1Vq1aJn/v222+jf//+WLFiBUJCQrB9+3b89ttv+Oyzzwz7QIiIiP6rruzBV5cYdaTpt99+Q7du3dCtWzcAQFRUFLp164b58+fD0tISZ8+exfDhw/HMM89g8uTJ8Pf3x88//6wyLbZt2za0bdsWgwYNwgsvvIC+ffuqBDsymQw//PADsrKy4O/vj5kzZ2L+/PliuQEA6N27NxISEvDZZ5+hS5cu+Oabb/Dtt9+yRhMRERlUbZLHSf8kgiAIxu5EXaBQKCCTySCXy+Ho6Gjs7hARkZnKzc2ts3vwmSJNvr/NKhGciIiormNAZLrMKhGciIiIyFgYNBERERGpgUETERERkRoYNBERERGpgYngRERE9RRX6mmGQRMREZEJMVQgk5ubi3Xr1omv5XIH5OW5wNk5V6UuVEREBAOn/2LQREREZCLKBzJVefnll+Hk5FThuCYBVdnALC2tG/btGwZBsBC3bPHzO1OhXX3HoImIiMhElN+EvqrRn507d1Z5DU1HhuRyBzFgAgBBsMC+fcPg65vJrVvKYdBERERkIp48eSL+Xt3oD1B1QKXpyFBenosYMCkJggXy8pwZNJXDoImIiMjEyOUO+O67UAASABVHf2oKqDTh7JwLiaRUJXCSSErh7Jyni1upU1hygIiIyMTcuOENZcCkJAgWuHGjaZXTaXK5g1afJZMVIDR0PySSUgAQgzCOMlXEkSYiIiITUVBQc6Cij+k0P78z8PXNRF6eM5yd8xgwVYFBExERkYlQ5jR5e98AUArVCaFSeHv/DQB6mU6TyQoYLNWA03NEREQmRiYrQJcuZwEI/z0ioEuXs2Jgo4vpNKlUqtN29QFHmoiIiEyEtbU1gKeJ4GfPdsb/8pokOHu2MwYOPAKZrEAn02kuLi4YO3YsHjx4UGWbBg0asLBlGQyaiIiITISyYKU6eUtVTaepOzKUm5uLr776qsZ2rAj+PwyaiIiITIQyaKqpDMBzzz2HRo0aVXh/ZSNDVW3LcvfuXZXXuqr7VJcxaCIiIjIxyryl8rWYlMHM0aNHq3xv2ZEhdbdl0WXdp7qMQRMREZEJqilvSZ2RofKjRJW9h9uoqI9BExERkYkon49UVd6SNiNDVb2H26ioj0ETERGRiXBxcUFERESVOUh79uzRamSouvdwGxX1MWgiIiIyITWtVNNmZKi69/j4XKs2f4r+h0ETERGRGdFmZKim93AbFfWwIjgREZEZ0aYiuDrvkckK4ONzrcJ1WBH8fzjSREREZGa0GRmq7j0jR46Eq6trhfdIpVIWtiyDQRMREZEZUHdlXdl26r7HyorhgDokgiAINTejmigUCshkMsjlcjg6Ohq7O0REVAdVVd1bqbKRoareI5fLsWPHjho/s65vo6LJ9zdDSyIiIjOhTfCi7nu4jUrNGDQRERHVc9xGRT0MmoiIiOoxXW6jos30oTlh0ERERFSP6WobFXU3BzbnHCnWaSIiIqrHlIUvy9JmGxV1c5/MOUeKQRMREVE9pk2xTHXI5Q7IymoBudxBF900CZyeIyIiqud0vY2KrhLLTS1HikETERFRPaRNsUx16Cqx3BRzpBg0ERER1UMuLi6IiIjQ+UiOrhLLy/fLFOpIMWgiIiKqp/QxQqNMLC8bOGmTWF6WqdSRYiI4ERER6YyuE8urmu4zRoI5R5qIiIio1srmPlWXWJ6fn1/pe6sa9dLVdJ8uMGgiIiKiWqsqR6r8xsA7d+6s9P1VJXTrY7pPWwyaiIiISCfUyZHSNKFbOd1XPqfJ0KNMAIMmIiIiMhBtE7p1XUdKW0wEJyIiIr3TNKG7sjpSPj7XKgRMmtaRqg2ONBEREZHeaZrQ7eLigrFjx+LBgwdVXrNBgwasCE5ERER1i6YJ3bm5ufjqq69qvK4hK4IbdXrup59+QmhoKLy8vCCRSPDtt9+qnBcEAfPnz4enpyfs7OwQFBSEP//8U6VNXl4eXnvtNTg6OsLJyQmTJ0/G/fv3VdqcPXsWzz77LGxtbeHt7Y3ly5dX6MuuXbvQtm1b2NraolOnTjhw4IDO75eIiKi+0rR+U2UVwSvbALjeVAQvLCxEly5dMGnSJIwcObLC+eXLl2PNmjXYunUrfHx88P777yM4OBgXL16Era0tAOC1115DdnY2kpKSUFxcjIkTJ2Lq1KlISEgAACgUCgwePBhBQUGIi4vDuXPnMGnSJDg5OWHq1KkAgJMnT+KVV15BTEwMhg0bhoSEBIwYMQJpaWno2LGj4R4IERFRHaZtQrepVASXCIIgGPxTKyGRSLB3716MGDECwNNRJi8vL8ycORPvvPMOgKe1Htzd3bFlyxaMGTMGly5dQvv27XH69Gl0794dAHDw4EG88MIL+Pvvv+Hl5YWNGzdi7ty5yMnJEZPF5syZg2+//RaXL18GAIwePRqFhYXYv3+/2J9evXqha9euiIuLU6v/CoUCMpkMcrkcjo6OunosREREZk3bjXcvX76MHTt2QC53QGxsZIVpvcjIWMhkBRg9ejTatm2rdf80+f422ZymrKws5OTkICgoSDwmk8kQEBCAlJQUjBkzBikpKXBychIDJgAICgqChYUFfv31V7z00ktISUlBv379VLLrg4OD8dFHH+HevXto1KgRUlJSEBUVpfL5wcHBFaYLyyoqKkJRUZH4WqFQ6OCuiYiI6hZtNwYuLi4GUHMCubKdIZhs0JSTkwMAcHd3Vznu7u4unsvJyYGbm5vKeSsrKzg7O6u08fHxqXAN5blGjRohJyen2s+pTExMDBYuXKjFnREREdUvtUnUdnbOBVAK1TRs41QEZ50mLUVHR0Mul4s/N27cMHaXiIiI6iiJ6itJFc30zGSDJg8PDwDArVu3VI7funVLPOfh4YHbt2+rnH/y5Any8vJU2lR2jbKfUVUb5fnK2NjYwNHRUeWHiIiIdCsvzwXlgybl9JyhmWzQ5OPjAw8PDyQnJ4vHFAoFfv31VwQGBgIAAgMDkZ+fj9TUVLHNkSNHUFpaioCAALHNTz/9pDLnmZSUhDZt2qBRo0Zim7Kfo2yj/BwiIiIyLCurpxlEyvpOZZWt76RsZwhGDZru37+P9PR0pKenA3ia/J2eno7r169DIpEgMjISixcvxnfffYdz585h/Pjx8PLyElfYtWvXDkOGDMHrr7+OU6dO4cSJE4iIiMCYMWPg5eUFAHj11VchlUoxefJkXLhwATt27MDq1atVEr/ffvttHDx4ECtWrMDly5exYMEC/Pbbb4iIiDD0IyEiIiIATk5OAGqu76RsZwhGTQT/7bff8Nxzz4mvlYFMWFgYtmzZglmzZqGwsBBTp05Ffn4++vbti4MHD4o1mgBg27ZtiIiIwKBBg2BhYYFRo0ZhzZo14nmZTIYffvgB4eHh8Pf3h6urK+bPny/WaAKA3r17IyEhAfPmzcN7772H1q1b49tvv2WNJiIiIhNgKhv2mkydJnPHOk1ERES6o219J03ViTpNREREVH9pW99Jnxg0ERERkUkyZECkDpNdPUdERERkShg0EREREamBQRMRERGRGhg0EREREamBQRMRERGRGhg0EREREamBQRMRERGRGhg0EREREamBQRMRERGRGlgRXEeUW/gpFAoj94SIiIjUpfzeVmcrXgZNOlJQ8HTHZW9vbyP3hIiIiDRVUFAAmUxWbRuJoE5oRTUqLS3FzZs34eDgAIlEovH7FQoFvL29cePGjRp3Wa7L+Bz4DAA+AyU+Bz4DgM9ASV/PQRAEFBQUwMvLCxYW1WctcaRJRywsLNC0adNaX8fR0bFe/0ehxOfAZwDwGSjxOfAZAHwGSvp4DjWNMCkxEZyIiIhIDQyaiIiIiNTAoMlE2NjY4IMPPoCNjY2xu2JUfA58BgCfgRKfA58BwGegZArPgYngRERERGrgSBMRERGRGhg0EREREamBQRMRERGRGhg0EREREamBQZMBrV+/Hi1atICtrS0CAgJw6tSpKtteuHABo0aNQosWLSCRSBAbG2u4juqZJs/h888/x7PPPotGjRqhUaNGCAoKqra9udDkGezZswfdu3eHk5MT7O3t0bVrV3z55ZcG7K1+aPIMytq+fTskEglGjBih3w4aiCbPYcuWLZBIJCo/tra2Buytfmj6dyE/Px/h4eHw9PSEjY0NnnnmGRw4cMBAvdUPTZ7BgAEDKvw9kEgkCAkJMWCP9UPTvwuxsbFo06YN7Ozs4O3tjRkzZuDRo0f666BABrF9+3ZBKpUKmzdvFi5cuCC8/vrrgpOTk3Dr1q1K2586dUp45513hK+//lrw8PAQVq1aZdgO64mmz+HVV18V1q9fL5w5c0a4dOmSMGHCBEEmkwl///23gXuuO5o+g6NHjwp79uwRLl68KGRmZgqxsbGCpaWlcPDgQQP3XHc0fQZKWVlZQpMmTYRnn31WePHFFw3TWT3S9DnEx8cLjo6OQnZ2tviTk5Nj4F7rlqbPoKioSOjevbvwwgsvCMePHxeysrKEY8eOCenp6Qbuue5o+gxyc3NV/g6cP39esLS0FOLj4w3bcR3T9Dls27ZNsLGxEbZt2yZkZWUJhw4dEjw9PYUZM2borY8MmgykZ8+eQnh4uPi6pKRE8PLyEmJiYmp8b/PmzetM0FSb5yAIgvDkyRPBwcFB2Lp1q766qHe1fQaCIAjdunUT5s2bp4/uGYQ2z+DJkydC7969hS+++EIICwurE0GTps8hPj5ekMlkBuqdYWj6DDZu3Ci0bNlSePz4saG6qHe1/Tdh1apVgoODg3D//n19ddEgNH0O4eHhwsCBA1WORUVFCX369NFbHzk9ZwCPHz9GamoqgoKCxGMWFhYICgpCSkqKEXtmWLp4Dg8ePEBxcTGcnZ311U29qu0zEAQBycnJyMjIQL9+/fTZVb3R9hl8+OGHcHNzw+TJkw3RTb3T9jncv38fzZs3h7e3N1588UVcuHDBEN3VC22ewXfffYfAwECEh4fD3d0dHTt2xNKlS1FSUmKobuuULv5d3LRpE8aMGQN7e3t9dVPvtHkOvXv3RmpqqjiF99dff+HAgQN44YUX9NZPbthrAHfv3kVJSQnc3d1Vjru7u+Py5ctG6pXh6eI5zJ49G15eXir/YZkTbZ+BXC5HkyZNUFRUBEtLS2zYsAHPP/+8vrurF9o8g+PHj2PTpk1IT083QA8NQ5vn0KZNG2zevBmdO3eGXC7HJ598gt69e+PChQs62TDc0LR5Bn/99ReOHDmC1157DQcOHEBmZibeeOMNFBcX44MPPjBEt3Wqtv8unjp1CufPn8emTZv01UWD0OY5vPrqq7h79y769u0LQRDw5MkTTJs2De+9957e+smgiczGsmXLsH37dhw7dqxOJL9qwsHBAenp6bh//z6Sk5MRFRWFli1bYsCAAcbumt4VFBRg3Lhx+Pzzz+Hq6mrs7hhVYGAgAgMDxde9e/dGu3bt8Omnn2LRokVG7JnhlJaWws3NDZ999hksLS3h7++P//u//8PHH39slkFTbW3atAmdOnVCz549jd0Vgzt27BiWLl2KDRs2ICAgAJmZmXj77bexaNEivP/++3r5TAZNBuDq6gpLS0vcunVL5fitW7fg4eFhpF4ZXm2ewyeffIJly5bh8OHD6Ny5sz67qVfaPgMLCwu0atUKANC1a1dcunQJMTExZhk0afoMrly5gqtXryI0NFQ8VlpaCgCwsrJCRkYGfH199dtpPdDFvwvW1tbo1q0bMjMz9dFFvdPmGXh6esLa2hqWlpbisXbt2iEnJwePHz+GVCrVa591rTZ/DwoLC7F9+3Z8+OGH+uyiQWjzHN5//32MGzcOU6ZMAQB06tQJhYWFmDp1KubOnQsLC91nIDGnyQCkUin8/f2RnJwsHistLUVycrLK/2us67R9DsuXL8eiRYtw8OBBdO/e3RBd1Rtd/V0oLS1FUVGRPrqod5o+g7Zt2+LcuXNIT08Xf4YPH47nnnsO6enp8Pb2NmT3dUYXfxdKSkpw7tw5eHp66qubeqXNM+jTpw8yMzPFwBkA/vjjD3h6eppdwATU7u/Brl27UFRUhLFjx+q7m3qnzXN48OBBhcBIGUwL+tpWV28p5qRi+/btgo2NjbBlyxbh4sWLwtSpUwUnJydxufC4ceOEOXPmiO2LioqEM2fOCGfOnBE8PT2Fd955Rzhz5ozw559/GusWdELT57Bs2TJBKpUK33zzjcoS24KCAmPdQq1p+gyWLl0q/PDDD8KVK1eEixcvCp988olgZWUlfP7558a6hVrT9BmUV1dWz2n6HBYuXCgcOnRIuHLlipCamiqMGTNGsLW1FS5cuGCsW6g1TZ/B9evXBQcHByEiIkLIyMgQ9u/fL7i5uQmLFy821i3Umrb/PfTt21cYPXq0oburN5o+hw8++EBwcHAQvv76a+Gvv/4SfvjhB8HX11d4+eWX9dZHBk0GtHbtWqFZs2aCVCoVevbsKfzyyy/iuf79+wthYWHi66ysLAFAhZ/+/fsbvuM6pslzaN68eaXP4YMPPjB8x3VIk2cwd+5coVWrVoKtra3QqFEjITAwUNi+fbsReq1bmjyD8upK0CQImj2HyMhIsa27u7vwwgsvCGlpaUbotW5p+nfh5MmTQkBAgGBjYyO0bNlSWLJkifDkyRMD91q3NH0Gly9fFgAIP/zwg4F7ql+aPIfi4mJhwYIFgq+vr2Brayt4e3sLb7zxhnDv3j299U8iCPoawyIiIiKqO5jTRERERKQGBk1EREREamDQRERERKQGBk1EREREamDQRERERKQGBk1EREREamDQRERERKQGBk1ERGZowoQJGDFihLG7QVSvMGgiIp2aMGECJBKJ+OPi4oIhQ4bg7Nmzxu6aTpS9N+VP37599fZ5V69ehUQiQXp6usrx1atXY8uWLXr7XCKqiEETEenckCFDkJ2djezsbCQnJ8PKygrDhg0zdrd0Jj4+Xry/7OxsfPfdd5W2Ky4u1lsfZDIZnJyc9HZ9IqqIQRMR6ZyNjQ08PDzg4eGBrl27Ys6cObhx4wbu3LmDgQMHIiIiQqX9nTt3IJVKxR3OW7RogUWLFuGVV16Bvb09mjRpgvXr16u8Z+XKlejUqRPs7e3h7e2NN954A/fv3xfPX7t2DaGhoWjUqBHs7e3RoUMHHDhwAABw7949vPbaa2jcuDHs7OzQunVrxMfHq31/Tk5O4v15eHjA2dlZHBHasWMH+vfvD1tbW2zbtg25ubl45ZVX0KRJEzRo0ACdOnXC119/rXK90tJSLF++HK1atYKNjQ2aNWuGJUuWAAB8fHwAAN26dYNEIsGAAQMAVJyeKyoqwltvvQU3NzfY2tqib9++OH36tHj+2LFjkEgkSE5ORvfu3dGgQQP07t0bGRkZat83UX3HoImI9Or+/fv46quv0KpVK7i4uGDKlClISEhAUVGR2Oarr75CkyZNMHDgQPHYxx9/jC5duuDMmTOYM2cO3n77bSQlJYnnLSwssGbNGly4cAFbt27FkSNHMGvWLPF8eHg4ioqK8NNPP+HcuXP46KOP0LBhQwDA+++/j4sXL+L777/HpUuXsHHjRri6uurkfpV9vXTpEoKDg/Ho0SP4+/sjMTER58+fx9SpUzFu3DicOnVKfE90dDSWLVsm9ishIQHu7u4AILY7fPgwsrOzsWfPnko/d9asWdi9eze2bt2KtLQ0tGrVCsHBwcjLy1NpN3fuXKxYsQK//fYbrKysMGnSJJ3cN1G9oLetgImoXgoLCxMsLS0Fe3t7wd7eXgAgeHp6CqmpqYIgCMLDhw+FRo0aCTt27BDf07lzZ2HBggXi6+bNmwtDhgxRue7o0aOFoUOHVvm5u3btElxcXMTXnTp1UrlmWaGhocLEiRO1uj8Agq2trXh/9vb2wt69e4WsrCwBgBAbG1vjNUJCQoSZM2cKgiAICoVCsLGxET7//PNK2yqve+bMGZXjYWFhwosvvigIgiDcv39fsLa2FrZt2yaef/z4seDl5SUsX75cEARBOHr0qABAOHz4sNgmMTFRACA8fPhQk0dAVG9xpImIdO65555Deno60tPTcerUKQQHB2Po0KG4du0abG1tMW7cOGzevBkAkJaWhvPnz2PChAkq1wgMDKzw+tKlS+Lrw4cPY9CgQWjSpAkcHBwwbtw45Obm4sGDBwCAt956C4sXL0afPn3wwQcfqCSiT58+Hdu3b0fXrl0xa9YsnDx5UqP7W7VqlXh/6enpeP7558Vz3bt3V2lbUlKCRYsWoVOnTnB2dkbDhg1x6NAhXL9+HQBw6dIlFBUVYdCgQRr1oawrV66guLgYffr0EY9ZW1ujZ8+eKs8MADp37iz+7unpCQC4ffu21p9NVJ8waCIinbO3t0erVq3QqlUr9OjRA1988QUKCwvx+eefAwCmTJmCpKQk/P3334iPj8fAgQPRvHlzta9/9epVDBs2DJ07d8bu3buRmpoq5jw9fvxY/Iy//voL48aNw7lz59C9e3esXbsWAMQAbsaMGbh58yYGDRqEd955R+3P9/DwEO+vVatWsLe3V7n3sj7++GOsXr0as2fPxtGjR5Geno7g4GCxn3Z2dmp/ri5YW1uLv0skEgBPc6qIqGYMmohI7yQSCSwsLPDw4UMAQKdOndC9e3d8/vnnSEhIqDSv5pdffqnwul27dgCA1NRUlJaWYsWKFejVqxeeeeYZ3Lx5s8I1vL29MW3aNOzZswczZ84UgzYAaNy4McLCwvDVV18hNjYWn332mS5vWXTixAm8+OKLGDt2LLp06YKWLVvijz/+EM+3bt0adnZ2YhJ8eVKpFMDTEauq+Pr6QiqV4sSJE+Kx4uJinD59Gu3bt9fRnRCRlbE7QER1T1FREXJycgA8Xam2bt063L9/H6GhoWKbKVOmICIiAvb29njppZcqXOPEiRNYvnw5RowYgaSkJOzatQuJiYkAgFatWqG4uBhr165FaGgoTpw4gbi4OJX3R0ZGYujQoXjmmWdw7949HD16VAy65s+fD39/f3To0AFFRUXYv3+/eE7XWrdujW+++QYnT55Eo0aNsHLlSty6dUsMZmxtbTF79mzMmjULUqkUffr0wZ07d3DhwgVMnjwZbm5usLOzw8GDB9G0aVPY2tpCJpOpfIa9vT2mT5+Od999F87OzmjWrBmWL1+OBw8eYPLkyXq5L6L6iCNNRKRzBw8ehKenJzw9PREQEIDTp09j165d4nJ5AHjllVdgZWWFV155Bba2thWuMXPmTPz222/o1q0bFi9ejJUrVyI4OBgA0KVLF6xcuRIfffQROnbsiG3btiEmJkbl/SUlJQgPD0e7du0wZMgQPPPMM9iwYQOAp6M30dHR6Ny5M/r16wdLS0ts375dL89i3rx58PPzQ3BwMAYMGAAPD48Klbzff/99zJw5E/Pnz0e7du0wevRoMc/IysoKa9aswaeffgovLy+8+OKLlX7OsmXLMGrUKIwbNw5+fn7IzMzEoUOH0KhRI73cF1F9JBEEQTB2J4io/rl69Sp8fX1x+vRp+Pn5qZxr0aIFIiMjERkZaZzOERFVgtNzRGRQxcXFyM3Nxbx589CrV68KARMRkani9BwRGdSJEyfg6emJ06dPV8hDMralS5eiYcOGlf4MHTrU2N0jIiPj9BwR0X/l5eVVqKCtZGdnhyZNmhi4R0RkShg0EREREamB03NEREREamDQRERERKQGBk1EREREamDQRERERKQGBk1EREREamDQRERERKQGBk1EREREamDQRERERKSG/wdKELRxxyBqkAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_2.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABi6ElEQVR4nO3deVxUVf8H8M+ADJuAYayKgmga7pAaWlpuoyHmkz25lOKWaWIhZUqauWTaouKWtCnWI6XmUomPG7mkkhlq7paK2QJakINLIsL5/eFv7uPAADPDLPfOfN6vF6+aew93zpnBme8953vOUQkhBIiIiIioSi72rgARERGREjBoIiIiIjICgyYiIiIiIzBoIiIiIjICgyYiIiIiIzBoIiIiIjICgyYiIiIiIzBoIiIiIjICgyYiIiIiIzBoIiJyMOnp6VCpVLhw4YK9q0LkUBg0EZHJDh48iMTERDRv3hze3t5o0KABnnrqKfz0008Vyj7yyCNQqVRQqVRwcXGBr68vmjZtiiFDhmD79u0mPe/XX3+NLl26IDAwEF5eXmjUqBGeeuopbNmyxVJNq+DNN9/Exo0bKxzfv38/pk+fjitXrljtucubPn269FqqVCp4eXkhKioKU6dORVFRkUWeIyMjA6mpqRa5FpGjYdBERCZ76623sG7dOnTr1g0LFy7E6NGjsWfPHkRHR+P48eMVytevXx+ffvopPvnkE7zzzjvo27cv9u/fj549e2LAgAEoKSmp9jnfffdd9O3bFyqVCikpKViwYAH69++Pn3/+GZ9//rk1mgmg6qBpxowZNg2adJYtW4ZPP/0U8+fPR7NmzTB79mz06tULlthKlEETUeVq2bsCRKQ8ycnJyMjIgFqtlo4NGDAALVu2xNy5c/Gf//xHr7yfnx+eeeYZvWNz587FCy+8gPfeew/h4eF46623Kn2+27dvY9asWejRowe2bdtW4fzly5dr2CL5uHHjBry8vKos8+STT+Lee+8FAIwZMwb9+/fH+vXr8d133yE2NtYW1SRySuxpIiKTdezYUS9gAoAmTZqgefPmOHXqlFHXcHV1xaJFixAVFYUlS5ZAq9VWWvavv/5CUVEROnXqZPB8YGCg3uObN29i+vTpuO++++Dh4YGQkBA88cQTOHfunFTm3XffRceOHVG3bl14enoiJiYGX3zxhd51VCoVrl+/jpUrV0pDYsOGDcP06dMxceJEAEBERIR07u4cov/85z+IiYmBp6cn/P39MXDgQPz6669613/kkUfQokUL5OTkoHPnzvDy8sKrr75q1Ot3t65duwIAcnNzqyz33nvvoXnz5nB3d0doaCjGjRun11P2yCOPIDMzE7/88ovUpvDwcJPrQ+So2NNERBYhhMClS5fQvHlzo3/H1dUVgwYNwmuvvYa9e/ciLi7OYLnAwEB4enri66+/xvjx4+Hv71/pNUtLS9GnTx9kZWVh4MCBePHFF3H16lVs374dx48fR2RkJABg4cKF6Nu3L55++mncunULn3/+Of79739j06ZNUj0+/fRTjBo1Cu3bt8fo0aMBAJGRkfD29sZPP/2Ezz77DAsWLJB6fQICAgAAs2fPxmuvvYannnoKo0aNwp9//onFixejc+fOOHz4MOrUqSPVt6CgAL1798bAgQPxzDPPICgoyOjXT0cXDNatW7fSMtOnT8eMGTPQvXt3jB07FmfOnMGyZctw8OBB7Nu3D25ubpgyZQq0Wi1+++03LFiwAABQu3Ztk+tD5LAEEZEFfPrppwKA+Pjjj/WOd+nSRTRv3rzS39uwYYMAIBYuXFjl9adNmyYACG9vb9G7d28xe/ZskZOTU6Hc8uXLBQAxf/78CufKysqk/79x44beuVu3bokWLVqIrl276h339vYWCQkJFa71zjvvCAAiNzdX7/iFCxeEq6urmD17tt7xY8eOiVq1aukd79KliwAg0tLSKm333V5//XUBQJw5c0b8+eefIjc3V7z//vvC3d1dBAUFievXrwshhFixYoVe3S5fvizUarXo2bOnKC0tla63ZMkSAUAsX75cOhYXFycaNmxoVH2InA2H54ioxk6fPo1x48YhNjYWCQkJJv2urifj6tWrVZabMWMGMjIy0LZtW2zduhVTpkxBTEwMoqOj9YYE161bh3vvvRfjx4+vcA2VSiX9v6enp/T/f//9N7RaLR5++GEcOnTIpPqXt379epSVleGpp57CX3/9Jf0EBwejSZMm2Llzp155d3d3DB8+3KTnaNq0KQICAhAREYHnnnsOjRs3RmZmZqW5UDt27MCtW7eQlJQEF5f/few/++yz8PX1RWZmpukNJXJCHJ4johrJz89HXFwc/Pz88MUXX8DV1dWk37927RoAwMfHp9qygwYNwqBBg1BUVIQDBw4gPT0dGRkZiI+Px/Hjx+Hh4YFz586hadOmqFWr6o+3TZs24Y033sCRI0dQXFwsHb87sDLHzz//DCEEmjRpYvC8m5ub3uN69epVyA+rzrp16+Dr6ws3NzfUr19fGnKszC+//ALgTrB1N7VajUaNGknniahqDJqIyGxarRa9e/fGlStX8O233yI0NNTka+iWKGjcuLHRv+Pr64sePXqgR48ecHNzw8qVK3HgwAF06dLFqN//9ttv0bdvX3Tu3BnvvfceQkJC4ObmhhUrViAjI8PkNtytrKwMKpUK//3vfw0GkOVzhO7u8TJW586dpTwqIrIdBk1EZJabN28iPj4eP/30E3bs2IGoqCiTr1FaWoqMjAx4eXnhoYceMqseDzzwAFauXIm8vDwAdxK1Dxw4gJKSkgq9Ojrr1q2Dh4cHtm7dCnd3d+n4ihUrKpStrOepsuORkZEQQiAiIgL33Xefqc2xioYNGwIAzpw5g0aNGknHb926hdzcXHTv3l06VtOeNiJHxpwmIjJZaWkpBgwYgOzsbKxdu9astYFKS0vxwgsv4NSpU3jhhRfg6+tbadkbN24gOzvb4Ln//ve/AP439NS/f3/89ddfWLJkSYWy4v8Xf3R1dYVKpUJpaal07sKFCwYXsfT29ja4gKW3tzcAVDj3xBNPwNXVFTNmzKiw2KQQAgUFBYYbaUXdu3eHWq3GokWL9Or08ccfQ6vV6s1a9Pb2rnL5ByJnxp4mIjLZSy+9hK+++grx8fEoLCyssJhl+YUstVqtVObGjRs4e/Ys1q9fj3PnzmHgwIGYNWtWlc9348YNdOzYEQ8++CB69eqFsLAwXLlyBRs3bsS3336Lfv36oW3btgCAoUOH4pNPPkFycjK+//57PPzww7h+/Tp27NiB559/Ho8//jji4uIwf/589OrVC4MHD8bly5exdOlSNG7cGEePHtV77piYGOzYsQPz589HaGgoIiIi0KFDB8TExAAApkyZgoEDB8LNzQ3x8fGIjIzEG2+8gZSUFFy4cAH9+vWDj48PcnNzsWHDBowePRovv/xyjV5/UwUEBCAlJQUzZsxAr1690LdvX5w5cwbvvfce2rVrp/d+xcTEYPXq1UhOTka7du1Qu3ZtxMfH27S+RLJlz6l7RKRMuqnylf1UVbZ27dqiSZMm4plnnhHbtm0z6vlKSkrEhx9+KPr16ycaNmwo3N3dhZeXl2jbtq145513RHFxsV75GzduiClTpoiIiAjh5uYmgoODxZNPPinOnTsnlfn4449FkyZNhLu7u2jWrJlYsWKFNKX/bqdPnxadO3cWnp6eAoDe8gOzZs0S9erVEy4uLhWWH1i3bp146KGHhLe3t/D29hbNmjUT48aNE2fOnNF7bapajqE8Xf3+/PPPKsuVX3JAZ8mSJaJZs2bCzc1NBAUFibFjx4q///5br8y1a9fE4MGDRZ06dQQALj9AdBeVEBbYrIiIiIjIwTGniYiIiMgIDJqIiIiIjMCgiYiIiMgIDJqIiIiIjMCgiYiIiMgIDJqIiIiIjMDFLS2krKwMf/zxB3x8fLgNARERkUIIIXD16lWEhobCxaXqviQGTRbyxx9/ICwszN7VICIiIjP8+uuvqF+/fpVlGDRZiI+PD4A7L3pVe2gRERGRfBQVFSEsLEz6Hq8KgyYL0Q3J+fr6MmgiIiJSGGNSa5gITkRERGQEBk1ERERERmDQRERERGQE5jTZWGlpKUpKSuxdDYfl5uYGV1dXe1eDiIgcEIMmGxFCID8/H1euXLF3VRxenTp1EBwczPWyiIjIohg02YguYAoMDISXlxe/0K1ACIEbN27g8uXLAICQkBA714iIiBwJgyYbKC0tlQKmunXr2rs6Ds3T0xMAcPnyZQQGBnKojoiILIaJ4Dagy2Hy8vKyc02cg+51Zu4YERFZEoMmG+KQnG3wdSYiImvg8BwRETmVgoIC3Lp1q9LzarWaqRRkEIMmIiJyGgUFBViyZEm15RITExk4UQUcnqMqDRs2DCqVCiqVCm5ubggKCkKPHj2wfPlylJWVGX2d9PR01KlTx3oVJSIyQvkeJq3WB7m54dBqfaosRwSwp0kx7Nmd3KtXL6xYsQKlpaW4dOkStmzZghdffBFffPEFvvrqK9SqxT8jIlKeQ4fa4uuv+0AIF6hUZYiP34To6MP2rhbJGL/tFMDe3cnu7u4IDg4GANSrVw/R0dF48MEH0a1bN6Snp2PUqFGYP38+VqxYgfPnz8Pf3x/x8fF4++23Ubt2bezatQvDhw8H8L8k7ddffx3Tp0/Hp59+ioULF+LMmTPw9vZG165dkZqaisDAQIu3g4hIR6v1kQImABDCBV9/3QeRkWfh53fVzrUjueLwnAIY201sy+7krl27onXr1li/fj0AwMXFBYsWLcKJEyewcuVKfPPNN3jllVcAAB07dkRqaip8fX2Rl5eHvLw8vPzyywDuLAswa9Ys/Pjjj9i4cSMuXLiAYcOG2awdROScCgvrSgGTjhAuKCz0t1ONSAnY00Rma9asGY4ePQoASEpKko6Hh4fjjTfewJgxY/Dee+9BrVbDz88PKpVK6rHSGTFihPT/jRo1wqJFi9CuXTtcu3YNtWvXtkk7iMj5+PsXQKUq0wucVKoy+PsX2rFWJHfsaSKzCSGk4bYdO3agW7duqFevHnx8fDBkyBAUFBTgxo0bVV4jJycH8fHxaNCgAXx8fNClSxcAwMWLF61efyJyXn5+VxEfvwkq1Z0JLbqcJg7NUVXY00RmO3XqFCIiInDhwgX06dMHY8eOxezZs+Hv74+9e/di5MiRuHXrVqUroV+/fh0ajQYajQarVq1CQEAALl68CI1Gw5krRGR10dGHERl5FoWF/vD3L2TARNVi0ERm+eabb3Ds2DFMmDABOTk5KCsrw7x58+Dicqfzcs2aNXrl1Wo1SktL9Y6dPn0aBQUFmDt3LsLCwgAAP/zwg20aQEROSa1W6z3287tqMFgqX44IYNBERiguLkZ+fr7ekgNz5sxBnz59MHToUBw/fhwlJSVYvHgx4uPjsW/fPqSlpeldIzw8HNeuXUNWVhZat24NLy8vNGjQAGq1GosXL8aYMWNw/PhxzJo1y06tJCJnULduXSQmJnJFcDILc5qoWlu2bEFISAjCw8PRq1cv7Ny5E4sWLcKXX34JV1dXtG7dGvPnz8dbb72FFi1aYNWqVZgzZ47eNTp27IgxY8ZgwIABCAgIwNtvv42AgACkp6dj7dq1iIqKwty5c/Huu+/aqZVE5Czq1q2LkJCQSn8YMFFlVEIIYe9KOIKioiL4+flBq9XC19dX79zNmzeRm5uLiIgIeHh4mHxte6/TpDQ1fb2JiMh5VPX9XR6H5xSA3clERET2x6BJIRgQERER2RdzmoiIiIiMwKCJiIiIyAgMmoiIiIiMwKCJiIiIyAhMBCciIiKzFBQUONXMbgZNREREZDJnXEOQw3NERERksvI9TFqtD3Jzw6HV+lRZTskYNJFd7dq1CyqVCleuXDH6d8LDw5Gammq1OhERkWkOHWqL1NQkrFyZgNTUJBw61NbeVbIKBk1UpWHDhkGlUmHMmDEVzo0bNw4qlQrDhg2zfcWIZKagoAB5eXmV/hQUFNi7ikRWodX64Ouv+0CIOyGFEC74+us+FXqcHAFzmqhaYWFh+Pzzz7FgwQJ4enoCuLO/W0ZGBho0aGDn2hHZnzPmdhDpFBbWlQImHSFcUFjoDz+/q3aqlXWwp4mqFR0djbCwMKxfv146tn79ejRo0ABt2/6vC7a4uBgvvPACAgMD4eHhgYceeggHDx7Uu9bmzZtx3333wdPTE48++iguXLhQ4fn27t2Lhx9+GJ6enggLC8MLL7yA69evW619RDXljLkdRDr+/gVQqcr0jqlUZfD3L7RTjayHQZMC/fYbsHPnnf/ayogRI7BixQrp8fLlyzF8+HC9Mq+88grWrVuHlStX4tChQ2jcuDE0Gg0KC+/8w/n111/xxBNPID4+HkeOHMGoUaMwefJkvWucO3cOvXr1Qv/+/XH06FGsXr0ae/fuRWJiovUbSWQBzpLbQaTj53cV8fGbpMBJpSpDfPwmh+tlAhg0Kc7HHwMNGwJdu97578cf2+Z5n3nmGezduxe//PILfvnlF+zbtw/PPPOMdP769etYtmwZ3nnnHfTu3RtRUVH48MMP4enpiY//v5LLli1DZGQk5s2bh6ZNm+Lpp5+ukA81Z84cPP3000hKSkKTJk3QsWNHLFq0CJ988glu3rxpm8YSmcmZcjuI7hYdfRhJSalISEhHUlIqoqMP27tKVsGcJgX57Tdg9Gig7P97QcvKgOeeAzQaoH596z53QEAA4uLikJ6eDiEE4uLicO+990rnz507h5KSEnTq1Ek65ubmhvbt2+PUqVMAgFOnTqFDhw56142NjdV7/OOPP+Lo0aNYtWqVdEwIgbKyMuTm5uL++++3RvOILMKZcjuI1Gq13mM/v6sG/87Ll1MyBk0K8vPP/wuYdEpLgbNnrR80AXeG6HTDZEuXLrXKc1y7dg3PPfccXnjhhQrnmHROcqVbMkOX23F34HR3bseVK1cQEhJijypSDVh71Wulrqpdt25dJCYmKrLu5mLQpCBNmgAuLvqBk6sr0LixbZ6/V69euHXrFlQqFTQajd65yMhIqNVq7Nu3Dw0bNgQAlJSU4ODBg0hKSgIA3H///fjqq6/0fu+7777TexwdHY2TJ0+isa0aRWQBt2/fBvC/3A7dEF353A5dOVIOa8+MVPrMSznWyZoYNClI/frABx/cGZIrLb0TML3/vm16mQDA1dVVGmpzdXXVO+ft7Y2xY8di4sSJ8Pf3R4MGDfD222/jxo0bGDlyJABgzJgxmDdvHiZOnIhRo0YhJycH6enpeteZNGkSHnzwQSQmJmLUqFHw9vbGyZMnsX37dqM+WMi5yPUOXQj9/5JyGZoZWVhYF/7+BXpDUebOjLT29cmyGDQpzMiRd3KYzp6908Nkq4BJx9fXt9Jzc+fORVlZGYYMGYKrV6/igQcewNatW3HPPfcAuDO8tm7dOkyYMAGLFy9G+/bt8eabb2LEiBHSNVq1aoXdu3djypQpePjhhyGEQGRkJAYMGGD1tpGyyOkO3c3NDcD/EsH/N8fmTiJ4ZORZ+PldlcqRMh061LZCL6IlE56tfX2qOQZNClS/vu2CpfI9QeVt3LhR+n8PDw8sWrQIixYtqrR8nz590KdPH71j5ZcuaNeuHbZt21bpNQyt7UTOR0536H5+fgCqTwTXlSPlqWxmpC4glvv1yTIYNBGR4snlDr26RHBSLmvPjOTMS2XgOk1EpGhyWhvJmRb5czbWXvXamVbVVjK7Bk3Lli1Dq1at4OvrC19fX8TGxuK///2vdP6RRx6BSqXS+ym/cezFixcRFxcHLy8vBAYGYuLEiRVmqOzatQvR0dFwd3dH48aNDQ45LV26FOHh4fDw8ECHDh3w/fffW6XNRGRZVd2h24OzLPLnbKwdEDPgVga7Ds/Vr18fc+fORZMmTSCEwMqVK/H444/j8OHDaN68OQDg2WefxcyZM6Xf8fLykv6/tLQUcXFxCA4Oxv79+5GXl4ehQ4fCzc0Nb775JgAgNzcXcXFxGDNmDFatWoWsrCyMGjUKISEh0rT51atXIzk5GWlpaejQoQNSU1Oh0Whw5swZBAYG2vAVISJTyWFIzBkX+XNG0dGHERl5FoWF/vD3L7R4QGPt61PN2TVoio+P13s8e/ZsLFu2DN99950UNHl5eSE4ONjg72/btg0nT57Ejh07EBQUhDZt2mDWrFmYNGkSpk+fDrVajbS0NERERGDevHkA7qwVtHfvXixYsEAKmubPn49nn31WSkhOS0tDZmYmli9fXmFvtJoQnH9sE3ydnUt1ayPZgjMu8ucsrB0QM+BWFtkkgpeWlmLt2rW4fv263tYaq1atwn/+8x8EBwcjPj4er732mtTblJ2djZYtWyIoKEgqr9FoMHbsWJw4cQJt27ZFdnY2unfvrvdcGo1GWnDx1q1byMnJQUpKinTexcUF3bt3R3Z2dqX1LS4uRnFxsfS4qKio0rK6acY3btyAp6enEa8G1cSNGzcAgNO7nYgc7tAZEDkmawfEDLiVxe5B07FjxxAbG4ubN2+idu3a2LBhA6KiogAAgwcPRsOGDREaGoqjR49i0qRJOHPmDNavXw8AyM/P1wuYAEiP8/PzqyxTVFSEf/75B3///TdKS0sNljl9+nSl9Z4zZw5mzJhhVBtdXV1Rp04dXL58GcCd3jOVSmXU75LxhBC4ceMGLl++jDp16lRYgFMO5LoYoxLxDp1sxdr/JvlvXjnsHjQ1bdoUR44cgVarxRdffIGEhATs3r0bUVFRGD16tFSuZcuWCAkJQbdu3XDu3DlERkbasdZASkoKkpOTpcdFRUUICwurtLxuiFEXOJH11KlTp9IhXXuS02KMjoB36GQu3ryQueweNKnVammfsZiYGBw8eBALFy7E+++/X6Fshw4dAABnz55FZGQkgoODK8xyu3TpEoD/BSnBwcHSsbvL+Pr6wtPTE66urnB1dTVYpqovXnd3d7i7uxvdTpVKhZCQEAQGBqKkpMTo3yPTuLm5ybKHCTBvMUZ+uFfNmdtO5uHNC9WE3YOm8srKyvRyhe525MgRAJB2CY+NjcXs2bNx+fJlaZbb9u3b4evrKw3xxcbGYvPmzXrX2b59u5Q3pVarERMTg6ysLPTr10+qQ1ZWFhITEy3dPClII+dmzGKM/HAnsjw5rSRPymPXoCklJQW9e/dGgwYNcPXqVWRkZGDXrl3YunUrzp07h4yMDDz22GOoW7cujh49igkTJqBz585o1aoVAKBnz56IiorCkCFD8PbbbyM/Px9Tp07FuHHjpF6gMWPGYMmSJXjllVcwYsQIfPPNN1izZg0yMzOleiQnJyMhIQEPPPAA2rdvj9TUVFy/fr3C9h5ElmDsdgn8cCeyLrmsJE/KYdeg6fLlyxg6dCjy8vLg5+eHVq1aYevWrejRowd+/fVX7NixQwpgwsLC0L9/f0ydOlX6fVdXV2zatAljx45FbGwsvL29kZCQoLeuU0REBDIzMzFhwgQsXLgQ9evXx0cffSQtNwAAAwYMwJ9//olp06YhPz8fbdq0wZYtWyokhxNZgjnbJfDDnciyuNcbmcOuQdPHH39c6bmwsDDs3r272ms0bNiwwvBbeY888ggOH676CyYxMdEqw3FE5Zm6GKM1P9yZM0XOinu9kTlkl9NE5OhMXYzRWh/uzJkiZyaHleRJeRg0EdmBKYsxWuvDnTlT5MzksJI8KQ+DJiIbMXcxRlt8uDNnipyRHFaSJ2Vh0ERkIzVZjNGaH+5MiCVnwpXkqSYYNBHZkCm5Qbb6cGdCLDkTriRPNcGgiUimbPXhzoRYcjYMiMhcDJqIZMwWH+5MiFUGLg9BZH8MmoiICbEyx+UhiOSBQRORk2JCbNXk1LPD5SGI5IFBE5GTYkJs5eTcs8PlIYjsh0ETkRNzxoDIGHLt2eHyEET2xaCJiKgKcurZ4fIQRPblUn0RIiLnVFnPjlbrY5f66JaHuBuXhyCyHfY0EZFiWTtZW249O1wegsi+GDQRkSLZIllbjgt/cnkIIvvh8BwRKZKhZO3c3PAKQ2c1SdbW9ezohsTs1bNjaHmIiIhfKtTDWZeHILIV9jQRkeJZM1lbDj07XB6CSB4YNBGRolljGr4cF/5kQERkfwyaiEjRrJGszZ4dIjKEQRMRKZq1krUZEBFReQyaHISc9skisiVOwyciW2HQ5ADkvE+WNTBApPLkkKxNRI6PQZMDMHZKtSPsgO5sASJVTo7J2kTk2Bg0OaDKNhd1BHLdSJVsj8naRGRrDJocjJw2F7U2Z2orGcaAiEhZlJ5ewaDJgVhjvRq5cqa2EhE5AkdIr+A2Kg6kqvVqHI0ztZWIyBHYYusja2NPkwOR4+ai1uJMbSUi0lH68JaOUtMrGDQ5EGdar8aZ2kpEBDjG8Bag7PQKBk0O4O4p1VWtV+NoU6+5Ng8RORNHmT1sja2PbIVBkwNwpqnXXJuHiEi5w1uAstMrGDQ5CEcIiIzhTAEiEZEhSh7eApSdXsGgiRSHARGRsjhK8rJcKHl4S0ep6RUMmoiIyGocJXlZTpQ6vOUI6RUMmoiIyGocJXlZTpQ6vOUI6RUMmoiIyCaUnLwsN0od3pJzQGQMrghORERWV1nycvnVoKlyhoa3IiJ+qRAwyXl4S+nY00RERFbnCMnL9uYIw1tKx6CJiIisTqnJy3LDgMi+GDQREZFJzFlCQKnJy0R3Y9BERE6BawVZRk2WEFBq8jKRDoMmInJ4XCvIckxdQsAR1uYh0mHQREQOj2sFWYcxSwgweZkcCYMmUhwOs1BNcK0gyzBl/zP+eyRHwaCJFIXDLFQTSt/oVE64hADZgtxukhk0kaIYO3zCYRYyhF/0lsMlBMja5HiTzBXBSdG0Wh/k5oZzVWEyiu6L/m78ojePbgkB3evJJQTI0gzlIhr6vLflTTJ7mkixmJtCpuJaQZbFJQTIVuTyec+giRSJuSlkLn7R1wyXECBbk9PnPYMmUiTmppAp+EVvOVxCgGxNTp/3dg2ali1bhmXLluHChQsAgObNm2PatGno3bs3AODmzZt46aWX8Pnnn6O4uBgajQbvvfcegoKCpGtcvHgRY8eOxc6dO1G7dm0kJCRgzpw5qFXrf03btWsXkpOTceLECYSFhWHq1KkYNmyYXl2WLl2Kd955B/n5+WjdujUWL16M9u3bW/01IPPIKQlVbrM7qCJ+0VsWXyeyJTl93ts1aKpfvz7mzp2LJk2aQAiBlStX4vHHH8fhw4fRvHlzTJgwAZmZmVi7di38/PyQmJiIJ554Avv27QMAlJaWIi4uDsHBwdi/fz/y8vIwdOhQuLm54c033wQA5ObmIi4uDmPGjMGqVauQlZWFUaNGISQkBBqNBgCwevVqJCcnIy0tDR06dEBqaio0Gg3OnDmDwMBAu70+VDm55KbIcXaHMzElYOXrT6RMcvm8BwCVEELY/Fmr4O/vj3feeQdPPvkkAgICkJGRgSeffBIAcPr0adx///3Izs7Ggw8+iP/+97/o06cP/vjjD6n3KS0tDZMmTcKff/4JtVqNSZMmITMzE8ePH5eeY+DAgbhy5Qq2bNkCAOjQoQPatWsnffmVlZUhLCwM48ePx+TJk42qd1FREfz8/KDVauHr62vJl4TuUj5IubOyc8XcFFsFKXl5efjggw/K1afiStOjR49GSEiI1evjTBiwEjk2w5+vFT/va/r5asr3t2xymkpLS7F27Vpcv34dsbGxyMnJQUlJCbp37y6VadasGRo0aCAFTdnZ2WjZsqXecJ1Go8HYsWNx4sQJtG3bFtnZ2XrX0JVJSkoCcGeqYk5ODlJSUqTzLi4u6N69O7Kzsyutb3FxMYqLi6XHRUVFNX0JyAhyHmaRy+wOZ8GtUYgcmxxzEe0eNB07dgyxsbG4efMmateujQ0bNiAqKgpHjhyBWq1GnTp19MoHBQUhPz8fAJCfn68XMOnO685VVaaoqAj//PMP/v77b5SWlhosc/r06UrrPWfOHMyYMcOsNlPNyLHXQE6zO5wRA1YixyPHm2S7B01NmzbFkSNHoNVq8cUXXyAhIQG7d++2d7WqlZKSguTkZOlxUVERwsLC7Fgjsic5ze5wNgxYiRyX3G6S7R40qdVqNG7cGAAQExODgwcPYuHChRgwYABu3bqFK1eu6PU2Xbp0CcHBwQCA4OBgfP/993rXu3TpknRO91/dsbvL+Pr6wtPTE66urnB1dTVYRncNQ9zd3eHu7m5eo8nhyGl2h7NhwEpEtiK7bVTKyspQXFyMmJgYuLm5ISsrSzp35swZXLx4EbGxsQCA2NhYHDt2DJcvX5bKbN++Hb6+voiKipLK3H0NXRndNdRqNWJiYvTKlJWVISsrSypDVB1uKWE/1toapaCgAHl5eZX+FBQU1Oj6RKQ8du1pSklJQe/evdGgQQNcvXoVGRkZ2LVrF7Zu3Qo/Pz+MHDkSycnJ8Pf3h6+vL8aPH4/Y2Fg8+OCDAICePXsiKioKQ4YMwdtvv438/HxMnToV48aNk3qBxowZgyVLluCVV17BiBEj8M0332DNmjXIzMyU6pGcnIyEhAQ88MADaN++PVJTU3H9+nUMHz7cLq8LKRNXmrYPa0xH5sw8IjLErkHT5cuXMXToUOTl5cHPzw+tWrXC1q1b0aNHDwDAggUL4OLigv79++stbqnj6uqKTZs2YezYsYiNjYW3tzcSEhIwc+ZMqUxERAQyMzMxYcIELFy4EPXr18dHH30krdEEAAMGDMCff/6JadOmIT8/H23atMGWLVsqJIcTlSfH2R3OyNIBK2fmEZEhslunSam4TpPz4org9mHN3qC714epamYe198iUj5FrtNEpFQMiOzDFtOROTOPiO7GoImIFMvaAStn5hHR3WQ3e46ISC6sNTOPiJSJPU3k8Kydc8ScJsclp41Cicj+GDSRQ7P21HFOTXd8XEqCiHQYNJFDs/bUcU5Nd0xcSoKIDGHQRE7D2pu6ctNYxyHHjUKVjEPY5CgYNJFTsPbUcU5Ndzz8ErcMDmGTI+HsOXIKVU0dV8L1iZTK0BB2bm44tFqfKssRyRF7msgp6KaO3x3YWHLquLWvT+QIOIRNSseeJnIKuqnjujV3LD113NrXJ9srKChAXl5epT8FBQX2rqKiVDaEXb7HiUjO2NNETsPaU8c5Nd1xMA/H8ri6OjkCBk3k0Kw9dZxT0x0Tl5KwPA5hkyNg0EQOzdpTxzk13fExD8cyuLo6OQIGTeTwrB2wMCByXFxKwrI4hE1Kx6CJiKgSzMOpOQ5hkyMxO2gKDw/HiBEjMGzYMDRo0MCSdSIikgXm4dQch7DJkZi95EBSUhLWr1+PRo0aoUePHvj8889RXFxsyboREdkVl5KwjLp16yIkJKTSHwZMpBQqIYSoyQUOHTqE9PR0fPbZZygtLcXgwYMxYsQIREdHW6qOilBUVAQ/Pz9otVr4+vrauzpEVAN5eXn44IMPpMd3Zs9VzMMZPXo0QkJC7FFFIrIQU76/a7y4ZXR0NBYtWoQ//vgDr7/+Oj766CO0a9cObdq0wfLly1HDmIyIyOYM5eFERPxSoYeJeThEzqXGPU0lJSXYsGEDVqxYge3bt+PBBx/EyJEj8dtvv2Hp0qXo2rUrMjIyLFVf2WJPE5FjKSgoYB4OkRMw5fvb7ETwQ4cOYcWKFfjss8/g4uKCoUOHYsGCBWjWrJlU5l//+hfatWtn7lMQWQS//Mgc/JsgovLMDpratWuHHj16YNmyZejXrx/c3NwqlImIiMDAgQNrVEGimuB2GEREZClmB03nz59Hw4YNqyzj7e2NFStWmPsURDXG7TCIiMhSzA6aHn30URw8eLDC3fmVK1cQHR2N8+fP17hyRJbE7TCIiKgmzA6aLly4gNLS0grHi4uL8fvvv9eoUkSWxu0wyFTMhSOi8kwOmr766ivp/7du3Qo/Pz/pcWlpKbKyshAeHm6RyhFZCrfDIFMwF46cFW8WqmZy0NSvXz8AgEqlQkJCgt45Nzc3hIeHY968eRapHJGlcDsMMgVz4cgZ8WaheiYHTWVld7YTiIiIwMGDB3HvvfdavFJElqbbDqN8ThN7mag6zIUjZ8GbheqZndOUm5tryXoQWV109GFERp41uB0GkSHMhSNnxZsFw8wOmmbOnFnl+WnTppl7aSKLMbQdhqEvO26HQYYwF46cEW8WKmd20LRhwwa9xyUlJcjNzUWtWrUQGRnJoIlkoW7dukhMTGRiI5mFuXDkjHizUDmzg6bDhyt20xUVFWHYsGH417/+VaNKEVkSAyIyF3PhyBnxZqFyZgdNhvj6+mLGjBmIj4/HkCFDLHlpIiK7YC4cORveLFTOokETAGi1Wmi1WktflojIZpgLR86ONwuGmR00LVq0SO+xEAJ5eXn49NNP0bt37xpXjIjIXpwxF46LGhJvFqqnEkIIc34xIiJC77GLiwsCAgLQtWtXpKSkwMfHxyIVVIqioiL4+flBq9XC19fX3tUhIjIaFzUkHWcMnk35/uY6TURETo6LGpKOowVEllajnCYhBAoKCqBSqfhCExE5AC5qSFQ5l+qLVJSfn4+hQ4finnvuQVBQEAIDA3HPPfdgxIgRuHTpkqXrSERENlDZooZarXOlWxBVxuSepqKiInTs2BHXrl3D8OHD0axZMwghcPLkSXz22WfYu3cvDh06hNq1a1ujvkREZCVc1JCoaiYHTQsXLoSrqytOnDiBgIAAvXNTp05Fp06dsGjRIrz66qsWqyQREVkfFzUkqprJw3OZmZl49dVXKwRMABAYGIiUlBR8/fXXFqkcERHZjm5RQ5WqDAC4qCFROSb3NP3000/o2LFjpec7duyIl19+uUaVIiIi+zBmUUNnnJauVHyvLMusnKY6depUer5OnTooKiqqSZ2IiOzOmb5sTFnUkGs6KQffK8szOWgSQsDFpfJRPZVKBTPXyyQikgVn+7IxZQX0vLw8veNc00m+bLH+ljPdXABmBk333XcfVCpVpeeJiJTMGRd7NOeLjWs6KYc13itnu7kAzAiaVqxYYY16EBHJEgMDwypb0yky8iwTx2XGWu+VM95cmBw0JSQkmFT+s88+Q9++feHt7W3qUxERVcnaQwMMDCrHNZ2UwxbvlbPcXNRoGxVjPPfcc+jQoQMaNWpk7aciIidii6EBBgaV45pOymHt98qZbi7M2kbFFMxxIiJrMDQ0kJsbXmHLj5oMDei+bO7GwOAOrukkf1qtFkD175WunLmqurlwNFYPmqoyZ84ctGvXDj4+PggMDES/fv1w5swZvTKPPPIIVCqV3s+YMWP0yly8eBFxcXHw8vJCYGAgJk6ciNu3b+uV2bVrF6Kjo+Hu7o7GjRsjPT29Qn2WLl2K8PBweHh4oEOHDvj+++8t3mYisrxDh9oiNTUJK1cmIDU1CYcOtbXIdRkYVC06+jCSklKRkJCOpKRUhxyOUbKSkhLp/6OjD2PkyI/Qs+cWjBz5kd57dXc5czjTzYXVh+eqsnv3bowbNw7t2rXD7du38eqrr6Jnz544efKkXg7Us88+i5kzZ0qPvby8pP8vLS1FXFwcgoODsX//fuTl5WHo0KFwc3PDm2++CQDIzc1FXFwcxowZg1WrViErKwujRo1CSEgINBoNAGD16tVITk5GWloaOnTogNTUVGg0Gpw5cwaBgYE2ekWIyFTWHhowZrFHZ2LKmk5kX7Vq/e8rvqqco7vLmUN3c1H++o74b8WuQdOWLVv0HqenpyMwMBA5OTno3LmzdNzLywvBwcEGr7Ft2zacPHkSO3bsQFBQENq0aYNZs2Zh0qRJmD59OtRqNdLS0hAREYF58+YBAO6//37s3bsXCxYskIKm+fPn49lnn8Xw4cMBAGlpacjMzMTy5csxefJkazSfiCzAGnlHDAwqZ8qaTmRfuoWoq7uxqGrBamM5y82FXYOm8nTjqv7++uOgq1atwn/+8x8EBwcjPj4er732mtTblJ2djZYtWyIoKEgqr9FoMHbsWJw4cQJt27ZFdnY2unfvrndNjUaDpKQkAHdyHnJycpCSkiKdd3FxQffu3ZGdnW2wrsXFxSguLpYecxV0IvuwRpIrA4OqOWu7lcpaExqc8ebCrKCptLQU+/btQ6tWraqNUBs2bAg3N7dqr1lWVoakpCR06tQJLVq0kI4PHjwYDRs2RGhoKI4ePYpJkybhzJkzWL9+PQAgPz9fL2ACID3Oz8+vskxRURH++ecf/P333ygtLTVY5vTp0wbrO2fOHMyYMaPadhGRdVlraICBATkKa82ec8abC7OCJldXV/Ts2ROnTp2qNmg6fvy4UdccN24cjh8/jr179+odHz16tPT/LVu2REhICLp164Zz584hMjLS5LpbSkpKCpKTk6XHRUVFCAsLs1t9iJyZswwNEJnDmjlHjhQQGcPs4bkWLVrg/PnziIiIqHElEhMTsWnTJuzZswf169evsmyHDh0AAGfPnkVkZCSCg4MrzHK7dOkSAEh5UMHBwdKxu8v4+vrC09MTrq6ucHV1NVimslwqd3d3uLu7G99IIrIoZxwaIDIXbywsw+yg6Y033sDLL7+MWbNmISYmpsKK376+vtVeQwiB8ePHY8OGDdi1a5dRAdiRI0cAACEhIQCA2NhYzJ49G5cvX5ZmuW3fvh2+vr6IioqSymzevFnvOtu3b0dsbCyAOx+qMTExyMrKQr9+/QDcGS7MyspCYmJitXUi23K2DSLJMGccGiAyBW8sLE8lzFx90sXl7rHR/23eK4SASqVCaWlptdd4/vnnkZGRgS+//BJNmzaVjvv5+cHT0xPnzp1DRkYGHnvsMdStWxdHjx7FhAkTUL9+fezevRvAnfyqNm3aIDQ0FG+//Tby8/MxZMgQjBo1Sm/JgRYtWmDcuHEYMWIEvvnmG7zwwgvIzMzUW3IgISEB77//Ptq3b4/U1FSsWbMGp0+frpDrZEhRURH8/Pyg1WqNChjJPM64QSQRkbl4k1k9U76/ze5p2rlzp7m/Klm2bBmAOwtY3m3FihUYNmwY1Go1duzYgdTUVFy/fh1hYWHo378/pk6dKpV1dXXFpk2bMHbsWMTGxsLb2xsJCQl66zpFREQgMzMTEyZMwMKFC1G/fn189NFHUsAEAAMGDMCff/6JadOmIT8/H23atMGWLVuMCpjIdpS+QSQ/wIjIlvh5Yllm9zSRPvY02UZeXh4++OADAFUv1jZ69GhpCFcu2EtGRCQ/pnx/12gblW+//RbPPPMMOnbsiN9//x0A8Omnn1aYAUdkaZUt1lZ+3zE5scVeaUREZD1mB03r1q2DRqOBp6cnDh06JC30qNVqpVwiImtR+gaR1torjYiIrMfsoOmNN95AWloaPvzwQ73FKzt16oRDhw5ZpHJElVHyBpFK7CUjIqIaBE1nzpzR2x9Ox8/PD1euXKlJnYiqpeTd55XeS0ZE5KzMnj0XHByMs2fPIjw8XO/43r170ahRo5rWi6haSl2szVpbGhARkXWZ3dP07LPP4sUXX8SBAwegUqnwxx9/YNWqVXj55ZcxduxYS9aRSGJosbaIiF8qBExyXqxNyb1kRETOzOyepsmTJ6OsrAzdunXDjRs30LlzZ7i7u+Pll1/G+PHjLVlHIomjrAKt1F4yIiJnZnbQpFKpMGXKFEycOBFnz57FtWvXEBUVhdq1a1uyfkQVyD0gqgy3NCAiUjYubmkhXNySjMEVwYmI5MUm26jcvHkTixcvxs6dO3H58mWUlelP/+ayA0QVMSAiIlIus4OmkSNHYtu2bXjyySfRvn17vU17iYiIiByN2UHTpk2bsHnzZnTq1MmS9SEiIiKSJbOXHKhXrx58fLiCMRERETkHs4OmefPmYdKkSfjll18sWR8iIiIiWTJ7eO6BBx7AzZs30ahRI3h5eentPwcAhYVc3ZiIiIgch9lB06BBg/D777/jzTffRFBQEBPBiYhIEbj0B5nL7KBp//79yM7ORuvWrS1ZHyIiIqspKCjAkiVLqi2XmJjIwIkqMDunqVmzZvjnn38sWRciIiKrKt/DpNX6IDc3HFqtT5XliIAa9DTNnTsXL730EmbPno2WLVtWyGniqthERCRnhw61xddf94EQLtLG2dHRh+1dLZIxs4OmXr16AQC6deumd1wIAZVKhdLS0prVjIiIyEq0Wh8pYAIAIVzw9dd9EBl5lhtoU6XMDpp27txpyXoQEckKk4UdW2FhXSlg0hHCBYWF/gyaqFJmBU0lJSWYOXMm0tLS0KRJE0vXiYjIrpgs7Pj8/QugUpXpBU4qVRn8/blcDlXOrERwNzc3HD161NJ1ISKSBSYLOz4/v6uIj98ElerOZvO6nCb2MlFVzB6ee+aZZ/Dxxx9j7ty5lqwPEZGsMFnYcUVHH0Zk5FkUFvrD37+QARNVy+yg6fbt21i+fDl27NiBmJgYeHt7652fP39+jStHzoG5IyRXTBZ2PGq1Wu+xn99Vg+9l+XJEQA2CpuPHjyM6OhoA8NNPP+md4+rgZCzmjpCcySlZmDcXllG3bl0kJibytSSzcPYc2ZWh3JHCwrrw9y/Q+1Ji7gjZg1yShXlzYVl8jchcZgdNd/vtt98AAPXr17fE5chJMXeE5EaXLFz+79LWvUy8uSCSB7ODprKyMrzxxhuYN28erl27BgDw8fHBSy+9hClTpsDFxewdWsgJMXeE5EpuycK8uSCyH7ODpilTpkiz5zp16gQA2Lt3L6ZPn46bN29i9uzZFqskOT455Y6Q/cglb0euycK8uSCyL7ODppUrV+Kjjz5C3759pWOtWrVCvXr18PzzzzNoIpPIJXeE7EdOeTtyTRbmzQWRfZkdNBUWFqJZs2YVjjdr1gyFhfyiI9PIJXeE7EdueTtyTBbmzQWRfZkdNLVu3RpLlizBokWL9I4vWbIErVu3rnHFyPnILXeE7Id5O4bx5oLIvswOmt5++23ExcVhx44diI2NBQBkZ2fj119/xebNmy1WQXJscs0dIfth3k7VeHNBZD9mB01dunTBTz/9hKVLl+L06dMAgCeeeALPP/88QkNDLVZBcmxyzR0h+2HeTkW8uSCSB5OCpieeeALp6enw9fXFJ598ggEDBjDhm2qMARHdjXk7FfHmgkgeTAqaNm3ahOvXr8PX1xfDhw9Hr169EBgYaK26EZETYt6OYQyIHJdcltqg6pkUNDVr1gwpKSl49NFHIYTAmjVr4Ovra7Ds0KFDLVJBInI+zNshZyGnpTaoeiYFTWlpaUhOTkZmZiZUKhWmTp1qcHNelUrFoImITMK8HXJGcltqg6pmUtDUsWNHfPfddwAAFxcX/PTTTxyekwl275LSMW+HnB2X2pA/s2fP5ebmIiAgwJJ1ITOxe5ccBf8+yVlxqQ1lMHtX3YYNG2Lv3r145plnEBsbi99//x0A8Omnn2Lv3r0WqyBVz1D3bm5uOLRanyrLERGRPFS11AbJh9lB07p166DRaODp6YnDhw+juLgYAKDVavHmm29arIJkmkOH2iI1NQkrVyYgNTUJhw61tXeViIioGrqlNu7m7EttyJHZQdMbb7yBtLQ0fPjhh3Bzc5OOd+rUCYcOHbJI5cg0lXXvlu9xIiIiedEttaELnLjUhjyZndN05swZdO7cucJxPz8/XLlypSZ1IhNptVoA1a+krNVqERISYo8qEhFRNbjUhvyZ3dMUHByMs2fPVji+d+9eNGrUqEaVItOUlJQAqL57V1eOiIjkwdBSGxERv1QImLjUhjyY3dP07LPP4sUXX8Ty5cuhUqnwxx9/IDs7Gy+99BKmTZtmyTqSkfz8rqJVq6P48cfWAFQABFq1Osq7FSIimeJSG8pidtA0efJklJWVoVu3brhx4wY6d+4Md3d3TJw4EaNGjbJkHclIWq0Pjh5thTsBEwCocPRoK3Tt+o1TB05cw4qI5IyfP8phdtCkUqkwZcoUTJw4EWfPnsW1a9cQFRWF999/HxEREcjPz7dkPakKtWrdeRury2nSlXMmXMOKiIgsxeScpuLiYqSkpOCBBx5Ap06dsHnzZkRFReHEiRNo2rQpFi5ciAkTJlijrlSJOnXqAKg+p0lXzplwDSsiIrIUk4OmadOmYdmyZQgPD0dubi7+/e9/Y/To0ViwYAHmzZuH3NxcTJo0yahrzZkzB+3atYOPjw8CAwPRr18/nDlzRq/MzZs3MW7cONStWxe1a9dG//79cenSJb0yFy9eRFxcHLy8vBAYGIiJEyfi9u3bemV27dqF6OhouLu7o3HjxkhPT69Qn6VLlyI8PBweHh7o0KEDvv/+e9NeHDvjlNWqcQ0rIiKqCZPHa9auXYtPPvkEffv2xfHjx9GqVSvcvn0bP/74o8HNe6uye/dujBs3Du3atcPt27fx6quvomfPnjh58iS8vb0BABMmTEBmZibWrl0LPz8/JCYm4oknnsC+ffsAAKWlpYiLi0NwcDD279+PvLw8DB06FG5ubtIim7m5uYiLi8OYMWOwatUqZGVlYdSoUQgJCYFGowEArF69GsnJyUhLS0OHDh2QmpoKjUaDM2fOKGp/PU5ZNYxbFBARUU2phBDClF9Qq9XIzc1FvXr1AACenp74/vvv0bJlyxpX5s8//0RgYCB2796Nzp07Q6vVIiAgABkZGXjyyScBAKdPn8b999+P7OxsPPjgg/jvf/+LPn364I8//kBQUBAAIC0tDZMmTcKff/4JtVqNSZMmITMzE8ePH5eea+DAgbhy5Qq2bNkCAOjQoQPatWsn5b+UlZUhLCwM48ePx+TJk6ute1FREfz8/KDVauHr61vj18IUzNupXF5eHj744APk5oZj5cqECucTEtIREfELRo8ezTWsiIickCnf3yb3NJWWluqtF1GrVi3Url3b9FoaoFuk0d//zl47OTk5KCkpQffu3aUyzZo1Q4MGDaSgKTs7Gy1btpQCJgDQaDQYO3YsTpw4gbZt2yI7O1vvGroySUlJAO7ks+Tk5CAlJUU67+Ligu7duyM7O9sibbMmTlmtni7f6+5EeW5RQEREpjA5aBJCYNiwYXB3dwdwJ+dozJgx0nCazvr16026bllZGZKSktCpUye0aNECAJCfnw+1Wl0hgTkoKEianZefn68XMOnO685VVaaoqAj//PMP/v77b5SWlhosc/r0aYP1LS4ulvbbA+5EqvbkzAGRMXT5XrohOuZ7ERGRqUwOmhIS9Ic4nnnmGYtUZNy4cTh+/Dj27t1rketZ25w5czBjxgx7V4NMwHwvIiKqCZODphUrVli8EomJidi0aRP27NmD+vXrS8eDg4Nx69YtXLlyRa+36dKlSwgODpbKlJ/lpptdd3eZ8jPuLl26BF9fX3h6esLV1RWurq4Gy+iuUV5KSgqSk5Olx0VFRQgLCzOx5WRthrYoMBQscYsCIiKqjl1XOxRCYPz48diwYQN27dqFiIgIvfMxMTFwc3NDVlYW+vfvD+DORsEXL15EbGwsACA2NhazZ8/G5cuXpVlu27dvh6+vL6KioqQymzdv1rv29u3bpWuo1WrExMQgKysL/fr1A3BnuDArKwuJiYkG6+7u7i4NUZJ8Md+LiIgsRtjR2LFjhZ+fn9i1a5fIy8uTfm7cuCGVGTNmjGjQoIH45ptvxA8//CBiY2NFbGysdP727duiRYsWomfPnuLIkSNiy5YtIiAgQKSkpEhlzp8/L7y8vMTEiRPFqVOnxNKlS4Wrq6vYsmWLVObzzz8X7u7uIj09XZw8eVKMHj1a1KlTR+Tn5xvVFq1WKwAIrVZrgVeGiIiIbMGU72+7Bk0ADP6sWLFCKvPPP/+I559/Xtxzzz3Cy8tL/Otf/xJ5eXl617lw4YLo3bu38PT0FPfee6946aWXRElJiV6ZnTt3ijZt2gi1Wi0aNWqk9xw6ixcvFg0aNBBqtVq0b99efPfdd0a3hUETERGR8pjy/W3yOk1kmD3XaSIiIiLzmPL9bfI2KkRERETOiEETERERkREYNBEREREZgUETERERkREYNBEREREZwa6LWxI5goKCAi6eSUTkBBg0EdVAQUEBlixZUm25xMREBk5ERArHoImoBsr3MGm1PigsrAt//wK9Pe6q6okiMgZ7NInsj0ETkYUcOtQWX3/dB0K4QKUqQ3z8JkRHH7Z3tcgBsEeTSB6YCE5kAVqtjxQwAYAQLvj66z7Qan3sXDNyBIZ6NHNzwyv8fbFHk8i62NNEZAGFhXWlgElHCBcUFvrrDdMR1RR7NInsh0ETkQX4+xdApSrTC5xUqjL4+xfW6LrMY6G7VdajGRl5lsE5kQ0waCKyAD+/q4iP31ShB6AmX2TMY6Hy2KNJZF8MmogsJDr6MCIjz6Kw0B/+/oU1/hLjzDwqz1o9mkRkHAZNRDWgVqv1Hvv5XTUYLJUvZyrmsRBgnR5NIjIegyaiGqhbty4SExOtmnfEPBa6m6V7NInIeAyaiGrI2vlEzGMhW/VoElHVGDSR4ih5Rpk5dWceC9miR5OIqsegiRRFyTPKzK0781gIsH6PJhFVj0ETKYqSZ5TVpO7Oksei5F5EInJ8DJpIsYydUSbHL2Jj6u5seSxy60WU498NEdkXgyZSJGNnlMntixgwvu7Olscip15EOf7dEJH9MWgiRTJ2Rpmcvoh1TJkN56xfyPZel0qOfzdEZH8MmkiRzJlRZu8vYh3Ohqua3NalksvfDZEzktswOYMmUiRTZ5TJ6YuYs+GqJqd1qeT0d0PkbOQ4TM6giRTLlBllcvoiBpxnNpw55NQTJ7e/GyJnIsdhcgZNpCjmziiTwxexs82GM5eceuLk8HdDRPIZJmfQRIpi7owyOXwRO9tsuJqQS0+cHP5uiJydnIbJGTSR4pgbVMjhi5gBUeXk2hMnh78bImcmp2FyBk0yJbcZA0ol1y9iqkhOPXH8uyGSDzkNkzNokiE5zhhQKjl9EVP15PI+8O+GSD7kNEzOoEmG5DhjQMn4xUbm4N8NkXzIZZicQZPMyWXGABERkS3JcZicQZOMyWnGABERkS3JcZicQZOMyWnGABERka3JbZicQZOMyWnGABFZFmfIEikPgyYZk9OMASKyHM6QJVImBk0yJ5cZA0RkOZwhS6RMDJpk6MaNG3qPK5sxUL4cESkPZ8gSKYdL9UXI1ry8vPQea7U+yM0Nh1brU2U5IlKWymbIlv+3TkTywJ4mmeNdKJHj4gxZImVh0CRjXKeJSDnMmQ3HGbJEysKgScZ4F0qkDObOhuMMWSJlYdAkY7wLVQaut0M1mQ3HGbJEysGgScZ4Fyp/XG+HyjMmD1GOe2oRUfUYNMkc70Lljevt0N2MzUOU455aRFQ9Bk0yxLtQZeJMRzIlD5EBEZHyMGiSId6FKg9nOhLAPEQiR8egSaYYECkLZzoSwDxEIkfHoInIAqzVw8CZecrDPEQix8WgicgCrNHDwJl5ysE8RCLnYNegac+ePXjnnXeQk5ODvLw8bNiwAf369ZPODxs2DCtXrtT7HY1Ggy1btkiPCwsLMX78eHz99ddwcXFB//79sXDhQtSuXVsqc/ToUYwbNw4HDx5EQEAAxo8fj1deeUXvumvXrsVrr72GCxcuoEmTJnjrrbfw2GOPWafhpMdRelMs3cPAmXnKwTxEIudg16Dp+vXraN26NUaMGIEnnnjCYJlevXphxYoV0mN3d3e9808//TTy8vKwfft2lJSUYPjw4Rg9ejQyMjIAAEVFRejZsye6d++OtLQ0HDt2DCNGjECdOnUwevRoAMD+/fsxaNAgzJkzB3369EFGRgb69euHQ4cOoUWLFlZqPQHK7025ceOG3uPKehjKlzMVZ+bJnxz/PonIsuwaNPXu3Ru9e/eusoy7uzuCg4MNnjt16hS2bNmCgwcP4oEHHgAALF68GI899hjeffddhIaGYtWqVbh16xaWL18OtVqN5s2b48iRI5g/f74UNC1cuBC9evXCxIkTAQCzZs3C9u3bsWTJEqSlpVmwxVSe0ntTvLy89B5XVv/y5UzBmXlERPIg+5ymXbt2ITAwEPfccw+6du2KN954Q7qjy87ORp06daSACQC6d+8OFxcXHDhwAP/617+QnZ2Nzp076+USaDQavPXWW/j7779xzz33IDs7G8nJyXrPq9FosHHjxkrrVVxcjOLiYulxUVGRhVrsvJTem2Kt+nNmHhGRPLhUX8R+evXqhU8++QRZWVl46623sHv3bvTu3RulpaUAgPz8fAQGBur9Tq1ateDv74/8/HypTFBQkF4Z3ePqyujOGzJnzhz4+flJP2FhYTVrrJOrrDdFq/Wxc82MY83662bm3Y1r/xAR2Z6sg6aBAweib9++aNmyJfr164dNmzbh4MGD2LVrl72rhpSUFGi1Wunn119/tXeVFK2q3hQlsGb9dTPzdIET1/4hIrIP2Q/P3a1Ro0a49957cfbsWXTr1g3BwcG4fPmyXpnbt2+jsLBQyoMKDg7GpUuX9MroHldXprJcKuBOrlX5pHQyn9JXUrZ2/bn2DxGR/cm6p6m83377DQUFBQgJCQEAxMbG4sqVK8jJyZHKfPPNNygrK0OHDh2kMnv27EFJSYlUZvv27WjatCnuueceqUxWVpbec23fvh2xsbHWbpLdFBQUIC8vr9KfgoICm9ZH6b0p1qi/obV/IiJ+qXBNrv1DRGQbdu1punbtGs6ePSs9zs3NxZEjR+Dv7w9/f3/MmDED/fv3R3BwMM6dO4dXXnkFjRs3hkajAQDcf//96NWrF5599lmkpaWhpKQEiYmJGDhwIEJDQwEAgwcPxowZMzBy5EhMmjQJx48fx8KFC7FgwQLpeV988UV06dIF8+bNQ1xcHD7//HP88MMP+OCDD2z7gtiIXKf5K703xdL159o/RETyYteg6YcffsCjjz4qPdbNYEtISMCyZctw9OhRrFy5EleuXEFoaCh69uyJWbNm6Q2LrVq1ComJiejWrZu0uOWiRYuk835+fti2bRvGjRuHmJgY3HvvvZg2bZq03AAAdOzYERkZGZg6dSpeffVVNGnSBBs3bnTYNZrkNM1f6SspW7v+DIiIiORDJYQQ9q6EIygqKoKfnx+0Wi18fX3tXZ0q5eXlSb1oVU2THz16NEJCQqy+YrfSVwRXev2JiJyZKd/fikoEJ8syZtFEWwzlKT2gUHr9iYjIOIpKBCfLMmaavKGhvNzc8ArrD8l1xW4iIiJLYU+TEzN1mrzSV+wmIiKqCfY0OTFTpskrfcVuIiKimmJPk5Mzdpo89z8jIiJnx6DJCZkyTV6Xq6T0FbuJiIhqikGTEzJl0cS8vDwA/xvKK5/TxF4mIiJyFgyanJQ50+SVvmI3ERFRTTBooiopfcVuIiIiS2HQRFXi/mdERER3MGiiajEgImfE7XGIqDwGTURE5dhi+yAiUh4GTURE5RjaPqiwsC78/Qv0cvpqsn0Qe7KIlIdBExFRFayxfRB7soiUiduoEBFVwlrbB3EjbCJlYk8TKQ6HNchWbLF9EDfCJlIOBk2kKBzWIFuy9vZBlfVkRUae5eKxRDLE4TlSFA5rkC3ptg9SqcoAwOLbB1XVk0VE8sOeJlIsDmuQLVhz+yBuhE2kLOxpIkWyVoIuEQDcuHFD77Gf31VERPxSIWAqX85U1u7JIiLLYk8TKZItEnTJeXl5eek9rmydpvLlzMGNsImUg0ETKRKHNchWrDEMzI2wLYszaslWGDSRIumGNcp/mfEunSzJWrPbuBG25XBGLdkSgyZSLA5rkLVZcxiYX+CWYYstb4h0GDSRonBYg2yJw8DKwhm18qf0oVQGTaQoHNYgW+IwsHJwoVD5c4ShVAZNpDhy/cdEjonDwMrAGbXy5whDqQyaiIjK4TCw8nAoVVmUOpTKoImIqBwOAysPh1KVQ8lDqQyaiIgMYECkPBxKVQYlD6UyaCIiIsXiUKryKHkolUETEREpFodSlUfJQ6kMmoiISNEYECmPUodSGTQRERGR1TnCUCqDJiIiIrI6RxhKZdBEJGNK33KAiOhuSv+8YtBEJFOOsOUAEZEjcam+CBHZg6EtB3Jzw6HV+lRZjoiIrIM9TWR3HIKqnlK3HCAiciQMmsiuOARVPSVvOUBE5EgYNJFdOcKu19am5C0HTMVeRyKSMwZNJBscgjJMyVsOmIK9jkQkd0wEJ1mobAiqfNKzM9JtOaBSlQGAorYcMAUT34lI7tjTRLLgTENQ5lDqlgPmkkOvI4cKiag8Bk0kC84yBGUKR9hywBxySHznUCERGcKgiWRBybteW4sjbDlgDjn0OnKCAhEZwqCJZMPZhqCM4WgBkTHk1usoh6FCIpIHJoKTXRkagoqI+KVCwORoQ1BUOTklvnOCAhHdjT1NZFfOOgRFVZNLr6MchgqJSD4YNJHdMSAiQJ6J73IbKiQi+2LQRESyIMdeR05QIKK72TWnac+ePYiPj0doaChUKhU2btyod14IgWnTpiEkJASenp7o3r07fv75Z70yhYWFePrpp+Hr64s6depg5MiRuHbtml6Zo0eP4uGHH4aHhwfCwsLw9ttvV6jL2rVr0axZM3h4eKBly5bYvHmzxdtLRFWrW7cuQkJCKv2xR69kdPRhJCWlIiEhHUlJqUwCJ3Jidg2arl+/jtatW2Pp0qUGz7/99ttYtGgR0tLScODAAXh7e0Oj0eDmzZtSmaeffhonTpzA9u3bsWnTJuzZswejR4+WzhcVFaFnz55o2LAhcnJy8M4772D69On44IMPpDL79+/HoEGDMHLkSBw+fBj9+vVDv379cPz4ces1nohkixMUiMgQlRBC2LsSAKBSqbBhwwb069cPwJ1eptDQULz00kt4+eWXAQBarRZBQUFIT0/HwIEDcerUKURFReHgwYN44IEHAABbtmzBY489ht9++w2hoaFYtmwZpkyZgvz8fOkDbvLkydi4cSNOnz4NABgwYACuX7+OTZs2SfV58MEH0aZNG6SlpRlV/6KiIvj5+UGr1cLX19dSLwsR2QlXBCdyDqZ8f8t2yYHc3Fzk5+eje/fu0jE/Pz906NAB2dnZAIDs7GzUqVNHCpgAoHv37nBxccGBAwekMp07d9a7I9RoNDhz5gz+/vtvqczdz6Mro3seQ4qLi1FUVKT3Q0SOQ45DhURkX7INmvLz8wEAQUFBeseDgoKkc/n5+QgMDNQ7X6tWLfj7++uVMXSNu5+jsjK684bMmTMHfn5+0k9YWJipTSQiIiIFkW3QJHcpKSnQarXSz6+//mrvKhEREZEVyTZoCg4OBgBcunRJ7/ilS5ekc8HBwbh8+bLe+du3b6OwsFCvjKFr3P0clZXRnTfE3d0dvr6+ej9ERETkuGQbNEVERCA4OBhZWVnSsaKiIhw4cACxsbEAgNjYWFy5cgU5OTlSmW+++QZlZWXo0KGDVGbPnj0oKSmRymzfvh1NmzbFPffcI5W5+3l0ZXTPQ0RERGTXoOnatWs4cuQIjhw5AuBO8veRI0dw8eJFqFQqJCUl4Y033sBXX32FY8eOYejQoQgNDZVm2N1///3o1asXnn32WXz//ffYt28fEhMTMXDgQISGhgIABg8eDLVajZEjR+LEiRNYvXo1Fi5ciOTkZKkeL774IrZs2YJ58+bh9OnTmD59On744QckJiba+iUhIiIiuRJ2tHPnTgGgwk9CQoIQQoiysjLx2muviaCgIOHu7i66desmzpw5o3eNgoICMWjQIFG7dm3h6+srhg8fLq5evapX5scffxQPPfSQcHd3F/Xq1RNz586tUJc1a9aI++67T6jVatG8eXORmZlpUlu0Wq0AILRarWkvAhEREdmNKd/fslmnSem4ThMREZHyOMQ6TURERERywqCJiIiIyAi17F0BR6Eb5eTK4ERERMqh+942JluJQZOFXL16ZyNPrgxORESkPFevXoWfn1+VZZgIbiFlZWX4448/4OPjA5VKZdFrFxUVISwsDL/++qtDJpk7evsAx28j26d8jt5Gtk/5rNVGIQSuXr2K0NBQuLhUnbXEniYLcXFxQf369a36HI6+8rijtw9w/Dayfcrn6G1k+5TPGm2srodJh4ngREREREZg0ERERERkBAZNCuDu7o7XX38d7u7u9q6KVTh6+wDHbyPbp3yO3ka2T/nk0EYmghMREREZgT1NREREREZg0ERERERkBAZNREREREZg0ERERERkBAZNdrB06VKEh4fDw8MDHTp0wPfff19l+dTUVDRt2hSenp4ICwvDhAkTcPPmzRpd09os3cbp06dDpVLp/TRr1szazaiUKe0rKSnBzJkzERkZCQ8PD7Ru3Rpbtmyp0TWtzdLtk9P7t2fPHsTHxyM0NBQqlQobN26s9nd27dqF6OhouLu7o3HjxkhPT69QRk7vnzXaqOT3MC8vD4MHD8Z9990HFxcXJCUlGSy3du1aNGvWDB4eHmjZsiU2b95s+cobyRptTE9Pr/Aeenh4WKcB1TC1fevXr0ePHj0QEBAAX19fxMbGYuvWrRXKWfvfIYMmG1u9ejWSk5Px+uuv49ChQ2jdujU0Gg0uX75ssHxGRgYmT56M119/HadOncLHH3+M1atX49VXXzX7mtZmjTYCQPPmzZGXlyf97N271xbNqcDU9k2dOhXvv/8+Fi9ejJMnT2LMmDH417/+hcOHD5t9TWuyRvsA+bx/169fR+vWrbF06VKjyufm5iIuLg6PPvoojhw5gqSkJIwaNUrvA1tO7x9gnTYCyn0Pi4uLERAQgKlTp6J169YGy+zfvx+DBg3CyJEjcfjwYfTr1w/9+vXD8ePHLVl1o1mjjcCd1bTvfg9/+eUXS1XZJKa2b8+ePejRowc2b96MnJwcPProo4iPj7f956ggm2rfvr0YN26c9Li0tFSEhoaKOXPmGCw/btw40bVrV71jycnJolOnTmZf09qs0cbXX39dtG7d2ir1NZWp7QsJCRFLlizRO/bEE0+Ip59+2uxrWpM12ien9+9uAMSGDRuqLPPKK6+I5s2b6x0bMGCA0Gg00mM5vX/lWaqNSn4P79alSxfx4osvVjj+1FNPibi4OL1jHTp0EM8991wNa1hzlmrjihUrhJ+fn8XqZSmmtk8nKipKzJgxQ3psi3+H7GmyoVu3biEnJwfdu3eXjrm4uKB79+7Izs42+DsdO3ZETk6O1MV4/vx5bN68GY899pjZ17Qma7RR5+eff0ZoaCgaNWqEp59+GhcvXrReQyphTvuKi4srdIF7enpKd+lyeg+t0T4dObx/5sjOztZ7PQBAo9FIr4ec3j9zVddGHaW+h8Yw9jVQumvXrqFhw4YICwvD448/jhMnTti7SmYpKyvD1atX4e/vD8B2/w4ZNNnQX3/9hdLSUgQFBekdDwoKQn5+vsHfGTx4MGbOnImHHnoIbm5uiIyMxCOPPCINXZlzTWuyRhsBoEOHDkhPT8eWLVuwbNky5Obm4uGHH8bVq1et2p7yzGmfRqPB/Pnz8fPPP6OsrAzbt2/H+vXrkZeXZ/Y1rcUa7QPk8/6ZIz8/3+DrUVRUhH/++UdW75+5qmsjoOz30BiVvQZKeQ+N0bRpUyxfvhxffvkl/vOf/6CsrAwdO3bEb7/9Zu+qmezdd9/FtWvX8NRTTwGw3ecogyaZ27VrF95880289957OHToENavX4/MzEzMmjXL3lWzGGPa2Lt3b/z73/9Gq1atoNFosHnzZly5cgVr1qyxY82Ns3DhQjRp0gTNmjWDWq1GYmIihg8fDhcXx/jnZ0z7lPz+0R18D5UvNjYWQ4cORZs2bdClSxesX78eAQEBeP/99+1dNZNkZGRgxowZWLNmDQIDA2363LVs+mxO7t5774WrqysuXbqkd/zSpUsIDg42+DuvvfYahgwZglGjRgEAWrZsievXr2P06NGYMmWKWde0Jmu00VBwUadOHdx33304e/as5RtRBXPaFxAQgI0bN+LmzZsoKChAaGgoJk+ejEaNGpl9TWuxRvsMsdf7Z47g4GCDr4evry88PT3h6uoqm/fPXNW10RAlvYfGqOw1UMp7aA43Nze0bdtWUe/h559/jlGjRmHt2rV6Q3G2+hx1jFtdhVCr1YiJiUFWVpZ0rKysDFlZWYiNjTX4Ozdu3KgQNLi6ugIAhBBmXdOarNFGQ65du4Zz584hJCTEQjU3Tk1ebw8PD9SrVw+3b9/GunXr8Pjjj9f4mpZmjfYZYq/3zxyxsbF6rwcAbN++XXo95PT+mau6NhqipPfQGOa8BkpXWlqKY8eOKeY9/OyzzzB8+HB89tlniIuL0ztns3+HFkspJ6N8/vnnwt3dXaSnp4uTJ0+K0aNHizp16oj8/HwhhBBDhgwRkydPlsq//vrrwsfHR3z22Wfi/PnzYtu2bSIyMlI89dRTRl/T1qzRxpdeekns2rVL5Obmin379onu3buLe++9V1y+fFn27fvuu+/EunXrxLlz58SePXtE165dRUREhPj777+NvqYtWaN9cnr/rl69Kg4fPiwOHz4sAIj58+eLw4cPi19++UUIIcTkyZPFkCFDpPLnz58XXl5eYuLEieLUqVNi6dKlwtXVVWzZskUqI6f3TwjrtFHJ76EQQiofExMjBg8eLA4fPixOnDghnd+3b5+oVauWePfdd8WpU6fE66+/Ltzc3MSxY8ds2jYda7RxxowZYuvWreLcuXMiJydHDBw4UHh4eOiVsRVT27dq1SpRq1YtsXTpUpGXlyf9XLlyRSpji3+HDJrsYPHixaJBgwZCrVaL9u3bi++++04616VLF5GQkCA9LikpEdOnTxeRkZHCw8NDhIWFieeff17vC6m6a9qDpds4YMAAERISItRqtahXr54YMGCAOHv2rA1bpM+U9u3atUvcf//9wt3dXdStW1cMGTJE/P777yZd09Ys3T45vX87d+4UACr86NqUkJAgunTpUuF32rRpI9RqtWjUqJFYsWJFhevK6f2zRhuV/h4aKt+wYUO9MmvWrBH33XefUKvVonnz5iIzM9M2DTLAGm1MSkqS/kaDgoLEY489Jg4dOmS7Rt3F1PZ16dKlyvI61v53qBKikvEPIiIiIpIwp4mIiIjICAyaiIiIiIzAoImIiIjICAyaiIiIiIzAoImIiIjICAyaiIiIiIzAoImIiIjICAyaiIgc2K5du6BSqXDlyhV7V4VI8Rg0EZFFDBs2DCqVCnPnztU7vnHjRqhUKumxEAIffvghYmNj4evri9q1a6N58+Z48cUXjd449MaNG0hJSUFkZCQ8PDwQEBCALl264Msvv5TKhIeHIzU11SJtszbda6dSqeDm5oaIiAi88soruHnzpknXeeSRR5CUlKR3rGPHjsjLy4Ofn58Fa0zknBg0EZHFeHh44K233sLff/9t8LwQAoMHD8YLL7yAxx57DNu2bcPJkyfx8ccfw8PDA2+88YZRzzNmzBisX78eixcvxunTp7FlyxY8+eSTKCgosGRzbKpXr17Iy8vD+fPnsWDBArz//vt4/fXXa3xdtVqN4OBgvcCViMxk0U1ZiMhpJSQkiD59+ohmzZqJiRMnSsc3bNggdB81n332mQAgvvzyS4PXKCsrM+q5/Pz8RHp6eqXnDe1TpfPtt9+Khx56SHh4eIj69euL8ePHi2vXrknnP/nkExETEyNq164tgoKCxKBBg8SlS5ek87o9s7Zs2SLatGkjPDw8xKOPPiouXbokNm/eLJo1ayZ8fHzEoEGDxPXr141qT0JCgnj88cf1jj3xxBOibdu20uO//vpLDBw4UISGhgpPT0/RokULkZGRoXeN8m3Ozc2V6nv3Xo5ffPGFiIqKEmq1WjRs2FC8++67RtWTyNmxp4mILMbV1RVvvvkmFi9ejN9++63C+c8++wxNmzZF3759Df6+sb0hwcHB2Lx5M65evWrw/Pr161G/fn3MnDkTeXl5yMvLAwCcO3cOvXr1Qv/+/XH06FGsXr0ae/fuRWJiovS7JSUlmDVrFn788Uds3LgRFy5cwLBhwyo8x/Tp07FkyRLs378fv/76K5566imkpqYiIyMDmZmZ2LZtGxYvXmxUe8o7fvw49u/fD7VaLR27efMmYmJikJmZiePHj2P06NEYMmQIvv/+ewDAwoULERsbi2effVZqc1hYWIVr5+Tk4KmnnsLAgQNx7NgxTJ8+Ha+99hrS09PNqiuRU7F31EZEjuHu3pIHH3xQjBgxQgih39PUrFkz0bdvX73fe/HFF4W3t7fw9vYW9erVM+q5du/eLerXry/c3NzEAw88IJKSksTevXv1yjRs2FAsWLBA79jIkSPF6NGj9Y59++23wsXFRfzzzz8Gn+vgwYMCgLh69aoQ4n89TTt27JDKzJkzRwAQ586dk44999xzQqPRGNWehIQE4erqKry9vYW7u7sAIFxcXMQXX3xR5e/FxcWJl156SXrcpUsX8eKLL+qVKd/TNHjwYNGjRw+9MhMnThRRUVFG1ZXImbGniYgs7q233sLKlStx6tSpastOmTIFR44cwbRp03Dt2jWjrt+5c2ecP38eWVlZePLJJ3HixAk8/PDDmDVrVpW/9+OPPyI9PR21a9eWfjQaDcrKypCbmwvgTk9MfHw8GjRoAB8fH3Tp0gUAcPHiRb1rtWrVSvr/oKAgeHl5oVGjRnrHLl++bFR7AODRRx/FkSNHcODAASQkJGD48OHo37+/dL60tBSzZs1Cy5Yt4e/vj9q1a2Pr1q0V6lWdU6dOoVOnTnrHOnXqhJ9//hmlpaUmXYvI2TBoIiKL69y5MzQaDVJSUvSON2nSBGfOnNE7FhAQgMaNGyMwMNCk53Bzc8PDDz+MSZMmYdu2bZg5cyZmzZqFW7duVfo7165dw3PPPYcjR45IPz/++CN+/vlnREZG4vr169BoNPD19cWqVatw8OBBbNiwAQAqXNfNzU36f92st7upVCqUlZUZ3R5vb280btwYrVu3xvLly3HgwAF8/PHH0vl33nkHCxcuxKRJk7Bz504cOXIEGo2myvYSkWXVsncFiMgxzZ07F23atEHTpk2lY4MGDcLgwYPx5Zdf4vHHH7fo80VFReH27du4efMm1Go11Gp1hZ6T6OhonDx5Eo0bNzZ4jWPHjqGgoABz586V8oF++OEHi9bTGC4uLnj11VeRnJyMwYMHw9PTE/v27cPjjz+OZ555BgBQVlaGn376CVFRUdLvGWpzeffffz/27dund2zfvn2477774OrqavnGEDkQ9jQRkVW0bNkSTz/9NBYtWiQdGzhwIJ588kkMHDgQM2fOxIEDB3DhwgXs3r0bq1evNvpL+5FHHsH777+PnJwcXLhwAZs3b8arr76KRx99FL6+vgDurNO0Z88e/P777/jrr78AAJMmTcL+/fuRmJiII0eO4Oeff8aXX34pJYI3aNAAarUaixcvxvnz5/HVV19VO+RnLf/+97/h6uqKpUuXArjTS7d9+3bs378fp06dwnPPPYdLly7p/U54eLj0mv71118Ge7peeuklZGVlYdasWfjpp5+wcuVKLFmyBC+//LJN2kWkZAyaiMhqZs6cqffFrVKpsHr1aqSmpmLz5s3o1q0bmjZtihEjRiAsLAx79+416roajQYrV65Ez549cf/992P8+PHQaDRYs2aN3nNfuHABkZGRCAgIAHAnD2n37t346aef8PDDD6Nt27aYNm0aQkNDAdwZKkxPT8fatWsRFRWFuXPn4t1337XgK2K8WrVqITExEW+//TauX7+OqVOnIjo6GhqNBo888giCg4PRr18/vd95+eWX4erqiqioKAQEBBjMd4qOjsaaNWvw+eefo0WLFpg2bRpmzpxpcIYgEelTCSGEvStBREREJHfsaSIiIiIyAoMmIpKdu5cEKP/z7bff2rt6Jrl48WKV7TF1yQAish8OzxGR7FS1cW+9evXg6elpw9rUzO3bt3HhwoVKz4eHh6NWLU5kJlICBk1ERERERuDwHBEREZERGDQRERERGYFBExEREZERGDQRERERGYFBExEREZERGDQRERERGYFBExEREZERGDQRERERGeH/ADlOJ8TvJ2BmAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHHCAYAAAB0nLYeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZ1ZJREFUeJzt3XlcVFX/B/DPMDKAyIxhsikqoom4g0toqSU6GmKmlaYpbpk+YCLlQpm5JWapuCU+TypWkksulfioSC6pVIaaO7lg1hNgQQ4Kigj394c/bo5sM8Ps9/N+vXjV3Hvmzjkz49zvPed7zpUJgiCAiIiIiPTmYOkKEBEREdkqBlJEREREBmIgRURERGQgBlJEREREBmIgRURERGQgBlJEREREBmIgRURERGQgBlJEREREBmIgRURERGQgBlJERHYmMTERMpkM165ds3RViOweAyki0tvx48cRFRWFVq1awdXVFY0aNcLLL7+MX375pVzZnj17QiaTQSaTwcHBAUqlEi1atMCIESOQkpKi1+t+88036NGjBzw8PFC7dm00bdoUL7/8Mvbs2WOsppWzYMEC7Ny5s9z2Y8eOYfbs2bh586bJXvtRs2fPFt9LmUyG2rVrIzAwEDNnzkR+fr5RXiMpKQnx8fFGORaRFDCQIiK9ffDBB9i2bRt69eqFZcuWYfz48Th8+DCCgoJw9uzZcuUbNmyIzz77DJ9++ik+/PBDDBgwAMeOHUOfPn0wZMgQFBcXV/uaH330EQYMGACZTIbY2FgsXboUgwcPxqVLl7Bp0yZTNBNA1YHUnDlzzBpIlVm9ejU+++wzLFmyBAEBAXj//ffRt29fGOPWqQykiPRTy9IVICLbExMTg6SkJCgUCnHbkCFD0KZNGyxcuBCff/65VnmVSoVXX31Va9vChQvxxhtv4OOPP0aTJk3wwQcfVPp69+/fx7x589C7d2/s27ev3P4bN27UsEXWo7CwELVr166yzIsvvojHH38cADBhwgQMHjwY27dvx/fff4+QkBBzVJOI/h97pIhIb127dtUKogCgefPmaNWqFS5cuKDTMeRyOZYvX47AwECsXLkSGo2m0rJ//fUX8vPz0a1btwr3e3h4aD2+e/cuZs+ejSeeeALOzs7w9vbGoEGDcOXKFbHMRx99hK5du6JevXpwcXFBcHAwvvzyS63jyGQyFBQUYMOGDeJw2qhRozB79mxMnToVAODn5yfuezgn6fPPP0dwcDBcXFzg7u6OoUOH4rffftM6fs+ePdG6dWukp6eje/fuqF27Nt5++22d3r+HPfvsswCAzMzMKst9/PHHaNWqFZycnODj44PIyEitHrWePXsiOTkZv/76q9imJk2a6F0fIilhjxQRGYUgCMjJyUGrVq10fo5cLscrr7yCd999F0eOHEFYWFiF5Tw8PODi4oJvvvkGkyZNgru7e6XHLCkpQf/+/ZGamoqhQ4di8uTJuHXrFlJSUnD27Fn4+/sDAJYtW4YBAwZg+PDhuHfvHjZt2oSXXnoJu3btEuvx2WefYdy4cejcuTPGjx8PAPD394erqyt++eUXfPHFF1i6dKnYO1S/fn0AwPvvv493330XL7/8MsaNG4c///wTK1asQPfu3XHy5EnUrVtXrG9ubi769euHoUOH4tVXX4Wnp6fO71+ZsgCxXr16lZaZPXs25syZg9DQUEycOBEZGRlYvXo1jh8/jqNHj8LR0RHvvPMONBoNfv/9dyxduhQAUKdOHb3rQyQpAhGREXz22WcCAGHt2rVa23v06CG0atWq0uft2LFDACAsW7asyuPPmjVLACC4uroK/fr1E95//30hPT29XLl169YJAIQlS5aU21daWir+f2Fhoda+e/fuCa1btxaeffZZre2urq5CREREuWN9+OGHAgAhMzNTa/u1a9cEuVwuvP/++1rbz5w5I9SqVUtre48ePQQAQkJCQqXtfth7770nABAyMjKEP//8U8jMzBTWrFkjODk5CZ6enkJBQYEgCIKwfv16rbrduHFDUCgUQp8+fYSSkhLxeCtXrhQACOvWrRO3hYWFCY0bN9apPkQkCBzaI6Iau3jxIiIjIxESEoKIiAi9nlvW43Hr1q0qy82ZMwdJSUno0KED9u7di3feeQfBwcEICgrSGk7ctm0bHn/8cUyaNKncMWQymfj/Li4u4v///fff0Gg0ePrpp3HixAm96v+o7du3o7S0FC+//DL++usv8c/LywvNmzfHgQMHtMo7OTlh9OjRer1GixYtUL9+ffj5+eH1119Hs2bNkJycXGlu1f79+3Hv3j1ER0fDweGfn/3XXnsNSqUSycnJ+jeUiABwaI+Iaig7OxthYWFQqVT48ssvIZfL9Xr+7du3AQBubm7Vln3llVfwyiuvID8/Hz/88AMSExORlJSE8PBwnD17Fs7Ozrhy5QpatGiBWrWq/nnbtWsX5s+fj1OnTqGoqEjc/nCwZYhLly5BEAQ0b968wv2Ojo5ajxs0aFAu36w627Ztg1KphKOjIxo2bCgOV1bm119/BfAgAHuYQqFA06ZNxf1EpD8GUkRkMI1Gg379+uHmzZv47rvv4OPjo/cxypZLaNasmc7PUSqV6N27N3r37g1HR0ds2LABP/zwA3r06KHT87/77jsMGDAA3bt3x8cffwxvb284Ojpi/fr1SEpK0rsNDystLYVMJsN///vfCoPKR3OOHu4Z01X37t3FvCwisiwGUkRkkLt37yI8PBy//PIL9u/fj8DAQL2PUVJSgqSkJNSuXRtPPfWUQfXo2LEjNmzYgKysLAAPksF/+OEHFBcXl+v9KbNt2zY4Oztj7969cHJyErevX7++XNnKeqgq2+7v7w9BEODn54cnnnhC3+aYROPGjQEAGRkZaNq0qbj93r17yMzMRGhoqLitpj1yRFLDHCki0ltJSQmGDBmCtLQ0bN261aC1i0pKSvDGG2/gwoULeOONN6BUKistW1hYiLS0tAr3/fe//wXwz7DV4MGD8ddff2HlypXlygr/v2ClXC6HTCZDSUmJuO/atWsVLrzp6upa4aKbrq6uAFBu36BBgyCXyzFnzpxyC2QKgoDc3NyKG2lCoaGhUCgUWL58uVad1q5dC41GozVb0tXVtcqlKIhIG3ukiEhvb775Jr7++muEh4cjLy+v3AKcjy6+qdFoxDKFhYW4fPkytm/fjitXrmDo0KGYN29ela9XWFiIrl274sknn0Tfvn3h6+uLmzdvYufOnfjuu+8wcOBAdOjQAQAwcuRIfPrpp4iJicGPP/6Ip59+GgUFBdi/fz/+9a9/4fnnn0dYWBiWLFmCvn37YtiwYbhx4wZWrVqFZs2a4fTp01qvHRwcjP3792PJkiXw8fGBn58funTpguDgYADAO++8g6FDh8LR0RHh4eHw9/fH/PnzERsbi2vXrmHgwIFwc3NDZmYmduzYgfHjx+Ott96q0fuvr/r16yM2NhZz5sxB3759MWDAAGRkZODjjz9Gp06dtD6v4OBgbN68GTExMejUqRPq1KmD8PBws9aXyKZYcsogEdmmsmn7lf1VVbZOnTpC8+bNhVdffVXYt2+fTq9XXFws/Oc//xEGDhwoNG7cWHBychJq164tdOjQQfjwww+FoqIirfKFhYXCO++8I/j5+QmOjo6Cl5eX8OKLLwpXrlwRy6xdu1Zo3ry54OTkJAQEBAjr168Xlxd42MWLF4Xu3bsLLi4uAgCtpRDmzZsnNGjQQHBwcCi3FMK2bduEp556SnB1dRVcXV2FgIAAITIyUsjIyNB6b6paGuJRZfX7888/qyz36PIHZVauXCkEBAQIjo6OgqenpzBx4kTh77//1ipz+/ZtYdiwYULdunUFAFwKgagaMkEwws2ZiIiIiCSIOVJEREREBmIgRURERGQgBlJEREREBmIgRURERGQgBlJEREREBmIgRURERGQgLshpJKWlpfjjjz/g5ubGWywQERHZCEEQcOvWLfj4+MDBQf/+JQZSRvLHH3/A19fX0tUgIiIiA/z2229o2LCh3s9jIGUkbm5uAB58EFXdM4yIiIisR35+Pnx9fcXzuL4YSBlJ2XCeUqlkIEVERGRjDE3LYbI5ERERkYEYSBEREREZiIEUERERkYGYI2VmJSUlKC4utnQ17JajoyPkcrmlq0FERBLBQMpMBEFAdnY2bt68aemq2L26devCy8uL63kREZHJWVUgtXDhQsTGxmLy5MmIj48HANy9exdvvvkmNm3ahKKiIqjVanz88cfw9PQUn3f9+nVMnDgRBw4cQJ06dRAREYG4uDjUqvVP8w4ePIiYmBicO3cOvr6+mDlzJkaNGqX1+qtWrcKHH36I7OxstGvXDitWrEDnzp2N0rayIMrDwwO1a9fmSd4EBEFAYWEhbty4AQDw9va2cI2IiMjeWU0gdfz4caxZswZt27bV2j5lyhQkJydj69atUKlUiIqKwqBBg3D06FEAD4bKwsLC4OXlhWPHjiErKwsjR46Eo6MjFixYAADIzMxEWFgYJkyYgI0bNyI1NRXjxo2Dt7c31Go1AGDz5s2IiYlBQkICunTpgvj4eKjVamRkZMDDw6NGbSspKRGDqHr16tXoWFQ1FxcXAMCNGzfg4eHBYT4iIjItwQrcunVLaN68uZCSkiL06NFDmDx5siAIgnDz5k3B0dFR2Lp1q1j2woULAgAhLS1NEARB2L17t+Dg4CBkZ2eLZVavXi0olUqhqKhIEARBmDZtmtCqVSut1xwyZIigVqvFx507dxYiIyPFxyUlJYKPj48QFxenUxs0Go0AQNBoNOX23blzRzh//rxQWFio07GoZgoLC4Xz588Ld+7csXRViIjIylV1/taFVczai4yMRFhYGEJDQ7W2p6eno7i4WGt7QEAAGjVqhLS0NABAWloa2rRpozXUp1arkZ+fj3PnzollHj22Wq0Wj3Hv3j2kp6drlXFwcEBoaKhY5lFFRUXIz8/X+qsOh/PMg+8zERGZi8WH9jZt2oQTJ07g+PHj5fZlZ2dDoVCgbt26Wts9PT2RnZ0tlnk4iCrbX7avqjL5+fm4c+cO/v77b5SUlFRY5uLFixXWOy4uDnPmzNG9oURERHYkNzcX9+7dq3S/QqGQRDqLRQOp3377DZMnT0ZKSgqcnZ0tWRW9xcbGIiYmRnxcdq8eIiIie5ebm4uVK1dWWy4qKsrugymLDu2lp6fjxo0bCAoKQq1atVCrVi0cOnQIy5cvR61ateDp6Yl79+6VWzIgJycHXl5eAAAvLy/k5OSU21+2r6oySqUSLi4uePzxxyGXyyssU3aMRzk5OYn31bPn++uNGjUKMpkMMpkMjo6O8PT0RO/evbFu3TqUlpbqfJzExMRyPYtERGSbHu2J0mjckJnZBBqNW5Xl7JFFe6R69eqFM2fOaG0bPXo0AgICMH36dPj6+sLR0RGpqakYPHgwACAjIwPXr19HSEgIACAkJATvv/++OEsLAFJSUqBUKhEYGCiW2b17t9brpKSkiMdQKBQIDg5GamoqBg4cCAAoLS1FamoqoqKiTNZ+fViyC7Vv375Yv349SkpKkJOTgz179mDy5Mn48ssv8fXXX2stM0FERNJy4kQHfPNNfwiCA2SyUoSH70JQ0ElLV8tsLHoGdHNzQ+vWrbW2ubq6ol69euL2sWPHIiYmBu7u7lAqlZg0aRJCQkLw5JNPAgD69OmDwMBAjBgxAosWLUJ2djZmzpyJyMhIODk5AQAmTJiAlStXYtq0aRgzZgy+/fZbbNmyBcnJyeLrxsTEICIiAh07dkTnzp0RHx+PgoICjB492kzvRuUs3YXq5OQk9sw1aNAAQUFBePLJJ9GrVy8kJiZi3LhxWLJkCdavX4+rV6/C3d0d4eHhWLRoEerUqYODBw+K72NZIvh7772H2bNn47PPPsOyZcuQkZEBV1dXPPvss4iPj6/xkhNERGR6Go2bGEQBgCA44Jtv+sPf/zJUqlsWrp15WMWsvaosXboU/fv3x+DBg9G9e3d4eXlh+/bt4n65XI5du3ZBLpcjJCQEr776KkaOHIm5c+eKZfz8/JCcnIyUlBS0a9cOixcvxieffCKuIQUAQ4YMwUcffYRZs2ahffv2OHXqFPbs2VMuAd0SdO0aNWcX6rPPPot27dqJn4WDgwOWL1+Oc+fOYcOGDfj2228xbdo0AEDXrl0RHx8PpVKJrKwsZGVl4a233gIAFBcXY968efj555+xc+dOXLt2rdxCqUREZJ3y8urh0QUABMEBeXnuFqqR+VndmMzBgwe1Hjs7O2PVqlVYtWpVpc9p3LhxuaG7R/Xs2RMnT1bd1RgVFWU1Q3m2ICAgAKdPnwYAREdHi9ubNGmC+fPnY8KECfj444+hUCigUqkgk8nK5ZyNGTNG/P+mTZti+fLl6NSpE27fvo06deqYpR1ERGQYd/dcyGSlWsGUTFYKd/c8C9bKvKy+R4qslyAI4lDd/v370atXLzRo0ABubm4YMWIEcnNzUVhYWOUx0tPTER4ejkaNGsHNzQ09evQA8OC2P0REZN1UqlsID98FmezB5KOyHCmpDOsBVtgjRbbjwoUL8PPzw7Vr19C/f39MnDgR77//Ptzd3XHkyBGMHTsW9+7dQ+3atSt8fkFBAdRqNdRqNTZu3Ij69evj+vXrUKvVkpjpQURkD4KCTsLf/zLy8tzh7p4nqSAKYCBFBvr2229x5swZTJkyBenp6SgtLcXixYvh4PCgk3PLli1a5RUKBUpKSrS2Xbx4Ebm5uVi4cKG4BtdPP/1kngYQEZHBFAqF1mOV6laFAdSj5ewRAymqVlFREbKzs7WWP4iLi0P//v0xcuRInD17FsXFxVixYgXCw8Nx9OhRJCQkaB2jSZMmuH37NlJTU9GuXTvUrl0bjRo1gkKhwIoVKzBhwgScPXsW8+bNs1AriYhIV/Xq1UNUVBRXNgdzpEgHe/bsgbe3N5o0aYK+ffviwIEDWL58Ob766ivI5XK0a9cOS5YswQcffIDWrVtj48aNiIuL0zpG165dMWHCBAwZMgT169fHokWLUL9+fSQmJmLr1q0IDAzEwoUL8dFHH1molUREpI969erB29u70j8pBFEAIBMEQbB0JexBfn4+VCoVNBpNuVXO7969i8zMTPj5+Rl0KxxLryNla2r6fhMRkXRUdf7WBYf2bAC7UImIiKwTAykbwSCJiIjI+jBHioiIiMhADKSIiIiIDMShPSIiIhuQm5vLXFkrxECKiIjIynH2tvXi0B4REZGVe7QnSqNxQ2ZmE2g0blWWI9NjjxQREZENOXGiA775pj8EwUG8SXBQ0ElLV0uy2CNFRERkIzQaNzGIAgBBcMA33/Qv1zNF5sNAiizq4MGDkMlkuHnzps7PadKkCeLj401WJyIia5WXV08MosoIggPy8twtVCNiIEVVGjVqFGQyGSZMmFBuX2RkJGQyGUaNGmX+ihERSZC7ey5kslKtbTJZKdzd8yxUI2IgRdXy9fXFpk2bcOfOHXHb3bt3kZSUhEaNGlmwZkRE0qJS3UJ4+C4xmCrLkVKpblm4ZtLFQIqqFRQUBF9fX2zfvl3ctn37djRq1AgdOnQQtxUVFeGNN96Ah4cHnJ2d8dRTT+H48eNax9q9ezeeeOIJuLi44JlnnsG1a9fKvd6RI0fw9NNPw8XFBb6+vnjjjTdQUFBgsvYREdmSoKCTiI6OR0REIqKj45lobmEMpGzQ778DBw48+K+5jBkzBuvXrxcfr1u3DqNHj9YqM23aNGzbtg0bNmzAiRMn0KxZM6jVauTlPehy/u233zBo0CCEh4fj1KlTGDduHGbMmKF1jCtXrqBv374YPHgwTp8+jc2bN+PIkSOIiooyfSOJiKyUQqHQeqxS3YKf36/leqIeLUemx+UPbMzatcD48UBpKeDgAPz738DYsaZ/3VdffRWxsbH49ddfAQBHjx7Fpk2bcPDgQQBAQUEBVq9ejcTERPTr1w8A8J///AcpKSlYu3Ytpk6ditWrV8Pf3x+LFy8GALRo0QJnzpzBBx98IL5OXFwchg8fjujoaABA8+bNsXz5cvTo0QOrV6+Gs7Oz6RtLRGRl6tWrh6ioKJtf2dweV2dnIGVDfv/9nyAKePDf118H1GqgYUPTvnb9+vURFhaGxMRECIKAsLAwPP744+L+K1euoLi4GN26dRO3OTo6onPnzrhw4QIA4MKFC+jSpYvWcUNCQrQe//zzzzh9+jQ2btwobhMEAaWlpcjMzETLli1N0TwiIqtnawHGo+x1dXYGUjbk0qV/gqgyJSXA5cumD6SAB8N7ZUNsq1atMslr3L59G6+//jreeOONcvuY2E5EpDtr6/2paHX2vLx6cHfP1RqitLXV2RlI2ZDmzR8M5z0cTMnlQLNm5nn9vn374t69e5DJZFCr1Vr7/P39oVAocPToUTRu3BgAUFxcjOPHj4vDdC1btsTXX3+t9bzvv/9e63FQUBDOnz+PZuZqFBGRHbL23h97Wp2dyeY2pGHDBzlRcvmDx3I5sGaNeXqjHryeHBcuXMD58+chL6vE/3N1dcXEiRMxdepU7NmzB+fPn8drr72GwsJCjP3/JK4JEybg0qVLmDp1KjIyMpCUlITExESt40yfPh3Hjh1DVFQUTp06hUuXLuGrr75isjkRkR6s+d589rY6O3ukbMzYsQ9yoi5fftATZa4gqoxSqax038KFC1FaWooRI0bg1q1b6NixI/bu3YvHHnsMwIOhuW3btmHKlClYsWIFOnfujAULFmDMmDHiMdq2bYtDhw7hnXfewdNPPw1BEODv748hQ4aYvG1ERPbI2np/qlqd3RbXw2IgZYMaNjRfAPVoj9Gjdu7cKf6/s7Mzli9fjuXLl1davn///ujfv7/WtkeXUejUqRP27dtX6TEqWnuKiIjKq6z3x9//ssWClrLV2R8Opmx5dXYO7REREdkpa7w3n72tzs4eKSIiIjtlrb0/QUEn4e9/GXl57nB3z7PZIApgjxQREZHdsqbeH3tdnZ09UkRERHbMWnp/7GV19kcxkDIjQRAsXQVJ4PtMRFJXUe9PRQGUuXt/bC1I0gUDKTNwdHQEABQWFsLFxcXCtbF/hYWFAP5534mIpMZee3+sEQMpM5DL5ahbty5u3LgBAKhduzZkMpmFa2V/BEFAYWEhbty4gbp165ZbNJSISEoYJJkHAykz8fLyAgAxmCLTqVu3rvh+ExERmRIDKTORyWTw9vaGh4cHiouLLV0du+Xo6MieKCIiMhsGUmYml8t5oieyYbm5ucw7ISIRAykiIh3l5uZi5cqV1ZaLiopiMEUkEVyQk4hIR4/2RGk0bsjMbFLurvVV9VgRkX1hjxQRkQFOnOgg3gy2bLXooKCTlq4WEZkZe6SIiPSk0biJQRTw4Caw33zTv1zPFBHZPwZSRER6ysurp3UTWOBBMJWX526hGhGRpTCQIiLSk7t7rngT2DIyWSnc3fMsVCMishQGUkREelKpbiE8fJcYTJXlSFnqZrBEZDlMNiciMkBQ0En4+19GXp473N3zGEQRSZRFe6RWr16Ntm3bQqlUQqlUIiQkBP/973/F/T179oRMJtP6mzBhgtYxrl+/jrCwMNSuXRseHh6YOnUq7t+/r1Xm4MGDCAoKgpOTE5o1a4bExMRydVm1ahWaNGkCZ2dndOnSBT/++KNJ2kxEtkuhUGg9Vqluwc/v13JB1KPliMh+WbRHqmHDhli4cCGaN28OQRCwYcMGPP/88zh58iRatWoFAHjttdcwd+5c8Tm1a9cW/7+kpARhYWHw8vLCsWPHkJWVhZEjR8LR0RELFiwAAGRmZiIsLAwTJkzAxo0bkZqainHjxsHb2xtqtRoAsHnzZsTExCAhIQFdunRBfHw81Go1MjIy4OHhYcZ3hIisWb169RAVFcWVzSWAK9iTrmSCIAiWrsTD3N3d8eGHH2Ls2LHo2bMn2rdvj/j4+ArL/ve//0X//v3xxx9/wNPTEwCQkJCA6dOn488//4RCocD06dORnJyMs2fPis8bOnQobt68iT179gAAunTpgk6dOokrFpeWlsLX1xeTJk3CjBkzdKp3fn4+VCoVNBoNlEplDd4BIiKypEdXsNdo3JCXVw/u7rlavY9cwd4+1PT8bTXJ5iUlJdi0aRMKCgoQEhIibt+4cSMef/xxtG7dGrGxsSgsLBT3paWloU2bNmIQBQBqtRr5+fk4d+6cWCY0NFTrtdRqNdLS0gA8WIE4PT1dq4yDgwNCQ0PFMhUpKipCfn6+1h8REdm+h3uiTpzogPj4aGzYEIH4+GicONGhwnIkXRZPNj9z5gxCQkJw9+5d1KlTBzt27EBgYCAAYNiwYWjcuDF8fHxw+vRpTJ8+HRkZGdi+fTsAIDs7WyuIAiA+zs7OrrJMfn4+7ty5g7///hslJSUVlrl48WKl9Y6Li8OcOXNq1ngiIrJalS286u9/mZMLSGTxQKpFixY4deoUNBoNvvzyS0RERODQoUMIDAzE+PHjxXJt2rSBt7c3evXqhStXrsDf39+CtQZiY2MRExMjPs7Pz4evr68Fa0RUc8wLIfpHVQuvMpCiMhYPpBQKBZo1awYACA4OxvHjx7Fs2TKsWbOmXNkuXboAAC5fvgx/f394eXmVm12Xk5MDAPDy8hL/W7bt4TJKpRIuLi6Qy+WQy+UVlik7RkWcnJzg5OSkZ2uJrNejeSGVYV4ISUXZwqsPB1NceJUeZTU5UmVKS0tRVFRU4b5Tp04BALy9vQEAISEhOHPmDG7cuCGWSUlJgVKpFIcHQ0JCkJqaqnWclJQUMQ9LoVAgODhYq0xpaSlSU1O1crWI7N2jPVEajRsyM5uUu38c80KkJzc3F1lZWZX+5ebmWrqKJsGFV0kXFu2Rio2NRb9+/dCoUSPcunULSUlJOHjwIPbu3YsrV64gKSkJzz33HOrVq4fTp09jypQp6N69O9q2bQsA6NOnDwIDAzFixAgsWrQI2dnZmDlzJiIjI8XeogkTJmDlypWYNm0axowZg2+//RZbtmxBcnKyWI+YmBhERESgY8eO6Ny5M+Lj41FQUIDRo0db5H0hsrQTJzqIuSFlJ4+goJOWrhZZgNR7KrnwKlXHooHUjRs3MHLkSGRlZUGlUqFt27bYu3cvevfujd9++w379+8XgxpfX18MHjwYM2fOFJ8vl8uxa9cuTJw4ESEhIXB1dUVERITWulN+fn5ITk7GlClTsGzZMjRs2BCffPKJuIYUAAwZMgR//vknZs2ahezsbLRv3x579uwpl4BOJAVMsKWHVdRTWdFSAPbcU6lS3eJ3nypl0UBq7dq1le7z9fXFoUOHqj1G48aNsXv37irL9OzZEydPVn01HRUVhaioqGpfj8jeMcGWKiOVnkpdV6bnCvYEWEGyORFZFybYUkWk1FPJFexJHwykiEhLWYLtoz0P9nayJP2YuqfS2pbeYJBEumIgRUTlMMGWHmXKnkqpJ7STbbO65Q+IyDIezfdQqW7Bz+/XckEU80KkyZRLAXDpDbJl7JEiIgDMC6HqmaOnUioJ7WQ/GEgRkYhBEj2qop7KigIoY/RUSimhnewHAykiIqqUOXsqufQG2SIGUkQ2xNpmNpE0mOs7xaU3yBYxkCKyEZzZRPaOS2+QLWIgRWQjeKsOkgIuvUG2hoEUkQ3izCayJ+ZMaCcyNgZSRDaGM5vI3nDpDbJlDKSIjMgcyeCc2UT2iEES2SoGUkRGYq5kcKnNbOJMRSKyZgykiIzEXMngUprZxJmKRGTtGEgRmYCpk8GlMrOJMxWJyNoxkCIyMlMlg0t9ZhNnKhKRNWIgRWRkpkoGl/LMJs5UJCJrxUCKyMhMmQxuj0GSLmx9piIT5onsFwMpIiOTUjK4udjyTEUmzBPZNwZSRCYglWRwc7Hl4JQJ80T2jYEUkZFIPRnc1OwhOLWWhHkONRIZDwMpIiORcjK4qdhTcGotCfMcaiQyLgZSREbEE49x2VNwasqEeX16mDjUSGRcDKSIyKrZQpCkC1MlzNekh8lahhqJbJlD9UWIiKimyhLmZbJSADBawnxFPUyZmU2g0bhVW66iocZHn0dEVWOPFBGRmZg6YV6fHiZbX5uLyFqwR4qIyIQqSpj38/u1XLBS04R5fXuYyoYaH2Yra3MRWRP2SBERmZC5Eub17WGy5bW5iKwJAykiIhMzR8K8Icns9rA2F5GlcWiPiMgO6JrMbq6hRiKpYI8UEZGd0KWHyZ7W5iKyBgykiIhsmCGrvzNIIjIeBlJERDaMPUxElsVAiojIxjFIIrIcBlJkMrzDPBFJBX/vpIuBFJkE7zBPRFLB3ztpYyBFJqHrneN5h3ki68felqpVdB/DvLx6cHfP1Ur85++dfWIgRWZR2Q8LEVk39rboR5/7HZJ9YCBFJscfFiLbxd4W3VV2v0N//8u8gLRjDKTIpPjDQmQ/eFFUNX3vd0j2gbeIIZOq6oeFiGxHZRdFGo2bhWtmPcrud/iw6u53SLaPgRSZFH9YiOwDL4qqp+v9Dsm+cGiPTKrsh+XR4QD+sJCtkuoMtrKLooeDKV4UlafL/Q7JvjCQIpN4+L5eVf2w8A7ztk1qQYWUZ7DxoqhyhtzvkOwHAykyCd7/y/5JMaiQ+gw29rZUTKq/d1K7kKqMRQOp1atXY/Xq1bh27RoAoFWrVpg1axb69esHALh79y7efPNNbNq0CUVFRVCr1fj444/h6ekpHuP69euYOHEiDhw4gDp16iAiIgJxcXGoVeufph08eBAxMTE4d+4cfH19MXPmTIwaNUqrLqtWrcKHH36I7OxstGvXDitWrEDnzp1N/h7YMyn8A5IyqQcVUpnBxt4W3Ujt906KF1KVsWgg1bBhQyxcuBDNmzeHIAjYsGEDnn/+eZw8eRKtWrXClClTkJycjK1bt0KlUiEqKgqDBg3C0aNHAQAlJSUICwuDl5cXjh07hqysLIwcORKOjo5YsGABACAzMxNhYWGYMGECNm7ciNTUVIwbNw7e3t5Qq9UAgM2bNyMmJgYJCQno0qUL4uPjoVarkZGRAQ8PD4u9P0S2QipBRRkpLesh1d4WqprUL6QeZtFAKjw8XOvx+++/j9WrV+P7779Hw4YNsXbtWiQlJeHZZ58FAKxfvx4tW7bE999/jyeffBL79u3D+fPnsX//fnh6eqJ9+/aYN28epk+fjtmzZ0OhUCAhIQF+fn5YvHgxAKBly5Y4cuQIli5dKgZSS5YswWuvvYbRo0cDABISEpCcnIx169ZhxowZZnxHyJqw21o3Ugoqyph6vSBr++7xe05VkdqF1KOsJkeqpKQEW7duRUFBAUJCQpCeno7i4mKEhoaKZQICAtCoUSOkpaXhySefRFpaGtq0aaM11KdWqzFx4kScO3cOHTp0QFpamtYxyspER0cDeBAtp6enIzY2Vtzv4OCA0NBQpKWlVVrfoqIiFBUViY/z8/Nr+haQFWG3te6kuAihKWew8btHtkSKF1KPsvg6UmfOnEGdOnXg5OSECRMmYMeOHQgMDER2djYUCgXq1q2rVd7T0xPZ2dkAgOzsbK0gqmx/2b6qyuTn5+POnTv466+/UFJSUmGZsmNUJC4uDiqVSvzz9fU1qP1knSrqts7MbFJu8UEpdFtXR4prhZlyvSB+98iWcH0xK+iRatGiBU6dOgWNRoMvv/wSEREROHTokKWrVa3Y2FjExMSIj/Pz8xlM2Smpd1tXR6rT4s0xg43fPbJ2XF/MCgIphUKBZs2aAQCCg4Nx/PhxLFu2DEOGDMG9e/dw8+ZNrV6pnJwceHl5AQC8vLzw448/ah0vJydH3Ff237JtD5dRKpVwcXGBXC6HXC6vsEzZMSri5OQEJycnwxpNNoPd1rqRyrR4c85g43ePbIFUL6QeZvGhvUeVlpaiqKgIwcHBcHR0RGpqqrgvIyMD169fR0hICAAgJCQEZ86cwY0bN8QyKSkpUCqVCAwMFMs8fIyyMmXHUCgUCA4O1ipTWlqK1NRUsQxJF7utK1dRUOHn92u5H1CpT4s3FL97ZCuCgk4iOjoeERGJiI6Ol1yvqUV7pGJjY9GvXz80atQIt27dQlJSEg4ePIi9e/dCpVJh7NixiImJgbu7O5RKJSZNmoSQkBA8+eSTAIA+ffogMDAQI0aMwKJFi5CdnY2ZM2ciMjJS7C2aMGECVq5ciWnTpmHMmDH49ttvsWXLFiQnJ4v1iImJQUREBDp27IjOnTsjPj4eBQUF4iw+ki52W1dOitPizTnlm989smZcX+wfFg2kbty4gZEjRyIrKwsqlQpt27bF3r170bt3bwDA0qVL4eDggMGDB2styFlGLpdj165dmDhxIkJCQuDq6oqIiAjMnTtXLOPn54fk5GRMmTIFy5YtQ8OGDfHJJ5+ISx8AwJAhQ/Dnn39i1qxZyM7ORvv27bFnz55yCegkPey2rpo9BUn6MnX+Er97ZM2keCFVGZkgCIKlK2EP8vPzoVKpoNFooFQqLV0dqqGsrCz8+9//Fh8/6Hkon/8zfvx4eHt7W6KKZAFl3wuNxg3x8dHleouio+OhUt2q0feC3z0i86rp+dviyeZE1ojd1lQVU66dxe+edFjbwqtkGAZSRBVgtzVVxZT5S+b47vEEbnlceNV+MJAiqgR/vKgyps5fMuV3jydw68B71dkPBlJERAaw1bWzDDmBswfLtLjwqm0zOJBq0qQJxowZg1GjRqFRo0bGrBMRkVUqLCzUelxZ/tKj5ayVLidw9mCZFhdetX0GL8gZHR2N7du3o2nTpujduzc2bdqkdRNfImuTm5uLrKysSv9yc3MtXUWycrVr19Z6XNl98B4tZ40qO4FXd08/3vvPuLjwqu0zuEcqOjoa0dHROHHiBBITEzFp0iT861//wrBhwzBmzBgEBQUZs55ENcKrajI2Wx+OMWTmoa232Rpx4VXbV+NbxAQFBWH58uX4448/8N577+GTTz5Bp06d0L59e6xbtw5cpsow7D0xLl5VkzHp2ptjzcpO4A+r6gRuD222RmUTF8o+Cy68antqnGxeXFyMHTt2YP369UhJScGTTz6JsWPH4vfff8fbb7+N/fv3IykpyRh1lQz2npgWr6qppky5jpS56Dvz0B7abK1sdeICPWBwIHXixAmsX78eX3zxBRwcHDBy5EgsXboUAQEBYpkXXngBnTp1MkpFpYTTYk2HiZ1kDPYyHKPPCdxe2mwtuPCq/TA4kOrUqRN69+6N1atXY+DAgXB0dCxXxs/PD0OHDq1RBaWOvSfGZetX1ZyGbh1s+T54hp7AbbnN1oiL/toPgwOpq1evonHjxlWWcXV1xfr16w19Cclj74nx2fJVNYd8rYutDsfU5ARuq222Vvx3ah8MDqSeeeYZHD9+vNwX4ebNmwgKCsLVq1drXDmps/XeE2tky1fVHPK1PHsZjtHnBG4vbSYyFYMDqWvXrqGkpKTc9qKiIvzvf/+rUaXoAVvuPbFm9nBVzSFfy5DicIwU20ykD70Dqa+//lr8/71790KlUomPS0pKkJqaiiZNmhilclJny70n1saerqo55GtZUgwYpNhmIl3pHUgNHDgQACCTyRAREaG1z9HREU2aNMHixYuNUjmyj94Ta2BPV9W2PuTLhHkisid6B1KlpQ8WDfPz88Px48fx+OOPG71SUmdPvSfWxF5OzrY85MuEeSKyNwbnSGVmZhqzHvQQe+o9IeOz5SFfJswTkb0xOJCaO3dulftnzZpl6KEJ9tN7QqZhD0O+TJgnIntgcCC1Y8cOrcfFxcXIzMxErVq14O/vz0CKyMjsaciXCfNEZC8MDqROnix/5Zifn49Ro0bhhRdeqFGliKg8exrytfWEeSKiMjW+afHDlEol5syZg/DwcIwYMcKYhyYi2M+Qry0nzBMRPcyogRQAaDQaaDQaYx+WiOyILSfMmwOXiCCyHQYHUsuXL9d6LAgCsrKy8Nlnn6Ffv341rhgR2Td7SJg3BS4RQWRbDA6kli5dqvXYwcEB9evXR0REBGJjY2tcMSKyP/aUMG8qXCKCyLZwHSkiMht7Spg3By4RQWT9apQjJQgCcnNzIZPJ+MNHRDrhb4VuuEQEkW1wqL5IednZ2Rg5ciQee+wxeHp6wsPDA4899hjGjBmDnJwcY9eRiEhyqloigoish949Uvn5+ejatStu376N0aNHIyAgAIIg4Pz58/jiiy9w5MgRnDhxAnXq1DFFfYmIJMGUS0RwViCR8egdSC1btgxyuRznzp1D/fr1tfbNnDkT3bp1w/Lly/H2228brZJERFJjqiUiOCuQyLj0DqSSk5Px9ttvlwuiAMDDwwOxsbH4z3/+w0CKiKiGTLFEBGcFEhmX3oHUL7/8gq5du1a6v2vXrnjrrbdqVCkiIqky5xIRnBVIVHMG5UjVrVu30v1169ZFfn5+TepERCRZ5loigrMCiYxD70BKEAQ4OFQ+2U8mk0EQhBpViohIysyRm8QbRxMZh0GB1BNPPAGZTFbpfiIism68cTTZAluYYap3ILV+/XpT1IPMzBa+nERkOrxxNFk7W5lhqncgFRERoVf5L774AgMGDICrq6u+L0UmYitfTiIyLd44mqyZrcwwrdEtYnTx+uuvo0uXLmjatKmpX4p0ZCtfTiIyPt44mmyRNc8wNXkgxZwp62bNX04iMj7eOJpsjbXPMDV5IEXWy9q/nERkGgySyJZY+wxTg25aTPaBN0UlIiJrVzbD9GHWNMOUPVISxunPZAmcMUpE+rD2GaYMpCTM2r+cZH84Y5SIDGHNM0wNCqRKSkpw9OhRtG3btsrbxQBA48aN4ejoaMjLkBlY85eT7A9njBKRrmxlhqlBgZRcLkefPn1w4cKFagOps2fPGvISZEK28uUk+8YZo0RUFVuZYWrw0F7r1q1x9epV+Pn5GfzicXFx2L59Oy5evAgXFxd07doVH3zwAVq0aCGW6dmzJw4dOqT1vNdffx0JCQni4+vXr2PixIk4cOAA6tSpg4iICMTFxaFWrX+ad/DgQcTExODcuXPw9fXFzJkzMWrUKK3jrlq1Ch9++CGys7PRrl07rFixAp07dza4fdbKVr6cZL84Y7RqzCMjesAWvucGB1Lz58/HW2+9hXnz5iE4OLjcyuVKpbLaYxw6dAiRkZHo1KkT7t+/j7fffht9+vTB+fPntY732muvYe7cueLj2rVri/9fUlKCsLAweHl54dixY8jKysLIkSPh6OiIBQsWAAAyMzMRFhaGCRMmYOPGjUhNTcW4cePg7e0NtVoNANi8eTNiYmKQkJCALl26ID4+Hmq1GhkZGfDw8DD0bbJatvDlJPtl7dOZLenRPLLKhj+ZR0ZkHQwOpJ577jkAwIABA7RuYCwIAmQyGUpKSqo9xp49e7QeJyYmwsPDA+np6ejevbu4vXbt2vDy8qrwGPv27cP58+exf/9+eHp6on379pg3bx6mT5+O2bNnQ6FQICEhAX5+fli8eDEAoGXLljhy5AiWLl0qBlJLlizBa6+9htGjRwMAEhISkJycjHXr1mHGjBl6vDNEVB3OGK3cwz1RVQ1/Mo+MyDoYHEgdOHDAmPUAAGg0GgCAu7v2OkYbN27E559/Di8vL4SHh+Pdd98Ve6XS0tLQpk0beHp6iuXVajUmTpyIc+fOoUOHDkhLS0NoaKjWMdVqNaKjowE8+EFKT09HbGysuN/BwQGhoaFIS0ursK5FRUUoKioSH+fn5xvecCKJ4YzR6nH4k8g2GBxI9ejRw5j1QGlpKaKjo9GtWze0bt1a3D5s2DA0btwYPj4+OH36NKZPn46MjAxs374dAJCdna0VRAEQH2dnZ1dZJj8/H3fu3MHff/+NkpKSCstcvHixwvrGxcVhzpw5NWs0kYRxxmjVOPxJZBtqtI7Ud999hzVr1uDq1avYunUrGjRogM8++wx+fn546qmn9DpWZGQkzp49iyNHjmhtHz9+vPj/bdq0gbe3N3r16oUrV67A39+/JtWvkdjYWMTExIiP8/Pz4evra7H6ENkCzhjVHYc/iWyDwYHUtm3bMGLECAwfPhwnTpwQh7k0Gg0WLFiA3bt363ysqKgo7Nq1C4cPH0bDhg2rLNulSxcAwOXLl+Hv7w8vLy/8+OOPWmVycnIAQMyr8vLyErc9XEapVMLFxQVyuRxyubzCMpXlZjk5OcHJyUnnNhIRZ4zqg8OfRLahRrP2EhISMHLkSGzatEnc3q1bN8yfP1+nYwiCgEmTJmHHjh04ePCgTkspnDp1CgDg7e0NAAgJCcH777+PGzduiLPrUlJSoFQqERgYKJZ5NLBLSUlBSEgIgAc/3MHBwUhNTcXAgQMBPBhqTE1NRVRUlE5tISLdMEjSHYc/iayfwYFURkaG1sy6MiqVCjdv3tTpGJGRkUhKSsJXX30FNzc3MadJpVLBxcUFV65cQVJSEp577jnUq1cPp0+fxpQpU9C9e3e0bdsWANCnTx8EBgZixIgRWLRoEbKzszFz5kxERkaKPUYTJkzAypUrMW3aNIwZMwbffvsttmzZguTkZLEuMTExiIiIQMeOHdG5c2fEx8ejoKBAnMVHRGQJlQ1/EpF1MDiQ8vLywuXLl9GkSROt7UeOHEHTpk11Osbq1asBPFh082Hr16/HqFGjoFAosH//fjGo8fX1xeDBgzFz5kyxrFwux65duzBx4kSEhITA1dUVERERWutO+fn5ITk5GVOmTMGyZcvQsGFDfPLJJ+LSBwAwZMgQ/Pnnn5g1axays7PRvn177Nmzp1wCOhGRKemaH8Y8MiLrIBMEQTDkiXFxcfj888+xbt069O7dG7t378avv/6KKVOm4N1338WkSZOMXVerlp+fD5VKBY1Go9NipEREleHK5kTmU9Pzt8E9UjNmzEBpaSl69eqFwsJCdO/eHU5OTnjrrbckF0QRERkTgyQi22Fwj1SZe/fu4fLly7h9+zYCAwNRp04dY9XNprBHioiIyPZYrEeqjEKhEGfHEREREUmJwYHU3bt3sWLFChw4cAA3btxAaWmp1v4TJ07UuHJERERE1szgQGrs2LHYt28fXnzxRXTu3FnrxsVEREREUmBwILVr1y7s3r0b3bp1M2Z9iIiIiGyGQ/VFKtagQQO4ubkZsy5ERERENsXgQGrx4sWYPn06fv31V2PWh4iIiMhmGDy017FjR9y9exdNmzZF7dq14ejoqLU/L493KCciIqJ/2ONiswYHUq+88gr+97//YcGCBfD09GSyuZ2zxy8/ERGZT25uLlauXFltuaioKJs6nxgcSB07dgxpaWlo166dMetDVshev/xERGQ+j16MazRuyMurB3f3XK0bc1d10W6NDA6kAgICcOfOHWPWhayUvX75iawVe4DJEsz5vTtxogO++aY/BMEBMlkpwsN3ISjopFGObW4GB1ILFy7Em2++iffffx9t2rQplyPF26TYJ3v68hNZI/YAkyWY83un0biJ5xEAEAQHfPNNf/j7X9a6OLcVBgdSffv2BQD06tVLa7sgCJDJZCgpKalZzcjq2NuXn8gasQeYLMGc37u8vHrieaSMIDggL8/dJs8lBgdSBw4cMGY9yAbY25efbIOUh7nYA0yWYOrvnbt7LmSyUq3ziUxWCnd325ztb1AgVVxcjLlz5yIhIQHNmzc3dp3IStnbl5+sn5SHudgDTJZgju+dSnUL4eG7ygVrtvq9NiiQcnR0xOnTp41dF7Jy9vblJ+sn5WEu9gCTJZjrexcUdBL+/peRl+cOd/c8m/5OGzy09+qrr2Lt2rVYuHChMetDVs6evvxkW6Q2zMUeYLIEU37vFAqF1mOV6laF55BHy1k7gwOp+/fvY926ddi/fz+Cg4Ph6uqqtX/JkiU1rhxZB3v98pPtkOIwlz49wFLOIyPjMuXIQ7169RAVFWV331WDA6mzZ88iKCgIAPDLL79o7eMq5/bFXr/8ZDukOsylSw+wlPPIyDRMOfJgj99Bztojndjjl59sh5SGufTtAZZyHhkZD0ceDGdwIPWw33//HQDQsGFDYxyOiEiLlCY61KQHWGp5ZGQ8HHkwnMGBVGlpKebPn4/Fixfj9u3bAAA3Nze8+eabeOedd+Dg4FDNEYiIdCeliQ6GnKykmEdGxsUgyTAGB1LvvPOOOGuvW7duAIAjR45g9uzZuHv3Lt5//32jVZKIpKmwsFDrcWXDDY+WkyKp5pERWZrBgdSGDRvwySefYMCAAeK2tm3bokGDBvjXv/7FQIqIaqx27dpajyvL/3m0nBRJKY+MyJoYHEjl5eUhICCg3PaAgADk5fEfLhEZl675P1JdCkBKeWRE1sTgQKpdu3ZYuXIlli9frrV95cqVaNeuXY0rRkRURtf8H6kvBaBrHplUg00iUzA4kFq0aBHCwsKwf/9+hISEAADS0tLw22+/Yffu3UarIBGRrvk/UlwKQN9p61IPNomMzeBAqkePHvjll1+watUqXLx4EQAwaNAg/Otf/4KPj4/RKkhEZEj+j1SWAtB32roUg00iU9IrkBo0aBASExOhVCrx6aefYsiQIUwqJyKT0zf/R2pLARjacySVYJPIlPQKpHbt2oWCggIolUqMHj0affv2hYeHh6nqRkQk0mcdKS4FUD2pBZtEpqJXIBUQEIDY2Fg888wzEAQBW7ZsgVKprLDsyJEjjVJBsl1MaKWaMvS2FVwKoHoMNomMQ69AKiEhATExMUhOToZMJsPMmTMrvEGxTCZjICVxTGglYzD0thVcCqB6pg42eSFFUqFXINW1a1d8//33AAAHBwf88ssvHNqjCjGhlYzF0JOtlG4pYwhTBpu8kCIpMXjWXmZmJurXr2/MupCdYkIrmQvvYK8fUwWbvJAiKTE4kGrcuDG+++47rFmzBleuXMGXX36JBg0a4LPPPoOfnx+eeuopY9aTbBQTWsmczHEHe1sfsjJ3sMkLKbJ3BgdS27Ztw4gRIzB8+HCcPHkSRUVFAACNRoMFCxZwUU4CwIRWMj9TBjH2MGRljmCzDC+kSAoMDqTmz5+PhIQEjBw5Eps2bRK3d+vWDfPnzzdK5cj2cfYU2RN7GbIyV5BnTRdStt6TSNbL4EAqIyMD3bt3L7ddpVLh5s2bNakT2RHOniJ7xSGr6lnLhZQ99CSS9TI4kPLy8sLly5fRpEkTre1HjhxB06ZNa1ovsiOcPUX2hkNWurGWCyl76Ukk62RwIPXaa69h8uTJWLduHWQyGf744w+kpaXhzTffxKxZs4xZR7JBnD1F9syahqysnbVdSLEnkYzN4EBqxowZKC0tRa9evVBYWIju3bvDyckJU6dOxbhx44xZR7JB5kxoJTI3axmyslbWeiHFnkQyBYMDKZlMhnfeeQdTp07F5cuXcfv2bQQGBmLNmjXw8/NDdna2MetJNohBEtkraxmyslbWeiHFnkQyBb0DqaKiIsyePRspKSliD9TAgQOxfv16vPDCC5DL5ZgyZYop6kpEZDWsbcjK2ljjhRR7EskU9A6kZs2ahTVr1iA0NBTHjh3DSy+9hNGjR+P777/H4sWL8dJLL0Eul5uirkREFmWtQ1akG/YkkinoHUht3boVn376KQYMGICzZ8+ibdu2uH//Pn7++ecKb2BMRGQvrHXIinTHnkQyNofqi2j7/fffERwcDABo3bo1nJycMGXKFIOCqLi4OHTq1Alubm7w8PDAwIEDkZGRoVXm7t27iIyMRL169VCnTh0MHjwYOTk5WmWuX7+OsLAw1K5dGx4eHpg6dSru37+vVebgwYMICgqCk5MTmjVrhsTExHL1WbVqFZo0aQJnZ2d06dIFP/74o95tIiL7Vq9ePXh7e1f6xyDK+lTUk+jn92u5IIo9iWQIvXukSkpKtL5stWrVQp06dQx68UOHDiEyMhKdOnXC/fv38fbbb6NPnz44f/48XF1dAQBTpkxBcnIytm7dCpVKhaioKAwaNAhHjx4V6xMWFgYvLy8cO3YMWVlZGDlyJBwdHbFgwQIAD26wHBYWhgkTJmDjxo1ITU3FuHHj4O3tDbVaDQDYvHkzYmJikJCQgC5duiA+Ph5qtRoZGRnw8PAwqH1ERGR57EkkU5IJgiDo8wQHBwf069cPTk5OAIBvvvkGzz77rBj4lNm+fbvelfnzzz/h4eGBQ4cOoXv37tBoNKhfvz6SkpLw4osvAgAuXryIli1bIi0tDU8++ST++9//on///vjjjz/g6ekJAEhISMD06dPx559/QqFQYPr06UhOTsbZs2fF1xo6dChu3ryJPXv2AAC6dOmCTp06iavflpaWwtfXF5MmTcKMGTOqrXt+fj5UKhU0Gg2USqXebSciIiLzq+n5W+8eqYiICK3Hr776qt4vWhmNRgMAcHd3BwCkp6ejuLgYoaGhYpmAgAA0atRIDKTS0tLQpk0bMYgCALVajYkTJ+LcuXPo0KED0tLStI5RViY6OhrAg9Vs09PTERsbK+53cHBAaGgo0tLSKqxrUVGReKNm4MEHQUREZKt4P0LD6B1IrV+/3hT1QGlpKaKjo9GtWze0bt0aAJCdnQ2FQoG6detqlfX09BTXqcrOztYKosr2l+2rqkx+fj7u3LmDv//+GyUlJRWWuXjxYoX1jYuLw5w5cwxrLBGRneNJ2bbwfoSGM3hBTmOLjIzE2bNnceTIEUtXRSexsbGIiYkRH+fn58PX19eCNSIisg48Kdse3o/QcFYRSEVFRWHXrl04fPgwGjZsKG738vLCvXv3cPPmTa1eqZycHHh5eYllHp1dVzar7+Eyj870y8nJgVKphIuLC+RyOeRyeYVlyo7xKCcnJzFPjIiI/sGTsm3j/Qj1o/fyB8YkCAKioqKwY8cOfPvtt/Dz89PaHxwcDEdHR6SmporbMjIycP36dYSEhAAAQkJCcObMGdy4cUMsk5KSAqVSicDAQLHMw8coK1N2DIVCgeDgYK0ypaWlSE1NFcsQEZH+TpzogPj4aGzYEIH4+GicONHB0lUyidzcXGRlZVX6l5uba+kq6qSy+xFqNG4Wrpn1smiPVGRkJJKSkvDVV1/Bzc1NzGlSqVRwcXGBSqXC2LFjERMTA3d3dyiVSkyaNAkhISF48sknAQB9+vRBYGAgRowYgUWLFiE7OxszZ85EZGSk2GM0YcIErFy5EtOmTcOYMWPw7bffYsuWLUhOThbrEhMTg4iICHTs2BGdO3dGfHw8CgoKMHr0aPO/MUREdkAqNwm2p6FM3o9QfxYNpFavXg0A6Nmzp9b29evXY9SoUQCApUuXwsHBAYMHD0ZRURHUajU+/vhjsaxcLseuXbswceJEhISEwNXVFREREZg7d65Yxs/PD8nJyZgyZQqWLVuGhg0b4pNPPhHXkAKAIUOG4M8//8SsWbOQnZ2N9u3bY8+ePeUS0ImI9CXVxGupnJTNNZRpju8R70eoP4sGUrosYeXs7IxVq1Zh1apVlZZp3Lgxdu/eXeVxevbsiZMnqx7jjYqKQlRUVLV1IiLSlT31VuhLiidlU+UXmet7xPsR6s8qks2JrJFUexHIuHTthbDHxGupnZRNOZRpzgR+3o9QPwykiCog5V4EMq3KToD2SkonZXMNZZqi16ui+xFWVGfej7A8BlJEFeD0bTIFqUwrl+pJ2RxDmabq9eL9CA3HQIp0IuVhLqmc/Mi0pDKDDZDuSdkcQ5mm7PWyt8/DXBhIUbUeHeaqrHfGHoe5pHTyI9OSygy2Mvb2W6ArfYYyDblAlWICv7VjIEXVevgfelW9M/Y4zCW1kx+ZDk+A9suQoUxD8zCllsBvCxhIkc6k2DvDkx8ZC0+A9suQocya5GFKKYHfFjCQIp1JsXeGJz+qqYd7Iao6Adpb4rXU1GQoU5c8TKkm8NsCBlKkM6n2zvDqj2pCqonXpBtde/r5PbJeDKRIZ1LqneHVHxkTT25UGX16+vk9sk4MpEgvUumd4dUfEZmDVHv67QkDKdJbZb0z9oZBEhGZmpR6+u0VAymqlq7DVxzmIiLSn1R6+u0VAymqFoe5iIiMi3mY9kMmCIJg6UrYg/z8fKhUKmg0GiiVSktXh4iIrJyUb71lTWp6/maPFJER8YeRiHTF3wL7wECKyEgMveUDERHZLofqixCRLiq65UNmZhNoNG5VliMiItvFHinSCYes9KPLLR+IiMj2MZCianHISj9SvLkz0aN48UVSwUCKqlWTu5RLkRRv7kz0MF58kZQwkCK9cMiqerzlA0kdL75IShhIkc44ZKUb3vKB6B+8+CJ7x0CKdMYhK93xlg9EvPgiaWAgRTrjkFXVeMsHIm28+CIpYCBFOuOQVdV4T0Iibbz4IilgIEV64ZBV1fQNkjhFnOwZL75IChhIUbU4ZGUanCJOUsCLL7J3DKSoWhyyMg1OESd7xYsvkhIGUqQTBkmmxSniZE948UVSwkCKyMI4RZzsEYMkkgqH6osQkSlVNUWciIisGwMpIgsrmyL+ME4RJyKyDRzaI51wmr7pcIo4EZHtYiBF1eI0fdPjFHEiItvEQIqqxWn6psEp4kREto+BFOmF0/SNh1PEiYhsHwMp0hmn6RsfgyQiItvGWXukM07TJyIi0sZAinTGafpERETaOLRHOuM0fSKiinGJGOliIEV64TR9IiJtXCJG2hhIUbU4TZ+IqHJcIkbaGEhRtThNn4hIN1wiRnoYSJFOGCQREVWNS8RIk0Vn7R0+fBjh4eHw8fGBTCbDzp07tfaPGjUKMplM669v375aZfLy8jB8+HAolUrUrVsXY8eOxe3bt7XKnD59Gk8//TScnZ3h6+uLRYsWlavL1q1bERAQAGdnZ7Rp0wa7d+82enuJiMh+2foSMbm5ucjKyqr0Lzc319JVtEoW7ZEqKChAu3btMGbMGAwaNKjCMn379sX69evFx05OTlr7hw8fjqysLKSkpKC4uBijR4/G+PHjkZSUBADIz89Hnz59EBoaioSEBJw5cwZjxoxB3bp1MX78eADAsWPH8MorryAuLg79+/dHUlISBg4ciBMnTqB169Ymaj0REdmTsiViHg6mbGWJGCbMG86igVS/fv3Qr1+/Kss4OTnBy8urwn0XLlzAnj17cPz4cXTs2BEAsGLFCjz33HP46KOP4OPjg40bN+LevXtYt24dFAoFWrVqhVOnTmHJkiViILVs2TL07dsXU6dOBQDMmzcPKSkpWLlyJRISEozYYiIisle2vEQME+YNZ/U5UgcPHoSHhwcee+wxPPvss5g/f74YDaelpaFu3bpiEAUAoaGhcHBwwA8//IAXXngBaWlp6N69u9aMMrVajQ8++AB///03HnvsMaSlpSEmJkbrddVqdbmhxocVFRWhqKhIfJyfn2+kFhMRka2yhyVimDCvH6te2bxv37749NNPkZqaig8++ACHDh1Cv379UFJSAgDIzs6Gh4eH1nNq1aoFd3d3ZGdni2U8PT21ypQ9rq5M2f6KxMXFQaVSiX++vr41aywREdmkipaI8fP7tVwQZQtLxFSWMK/RuFm4ZtbLqnukhg4dKv5/mzZt0LZtW/j7++PgwYPo1auXBWsGxMbGavVi5efnM5giIpIge1oipqqEeVvsXTMHqw6kHtW0aVM8/vjjuHz5Mnr16gUvLy/cuHFDq8z9+/eRl5cn5lV5eXkhJydHq0zZ4+rKVJabBTzI3Xo08Z2IiKTJFoIkXdhywrylWPXQ3qN+//135ObmwtvbGwAQEhKCmzdvIj09XSzz7bfforS0FF26dBHLHD58GMXFxWKZlJQUtGjRAo899phYJjU1Veu1UlJSEBISYuomERERWY2yhPmyG9TbUsK8pVi0R+r27du4fPmy+DgzMxOnTp2Cu7s73N3dMWfOHAwePBheXl64cuUKpk2bhmbNmkGtVgMAWrZsib59++K1115DQkICiouLERUVhaFDh8LHxwcAMGzYMMyZMwdjx47F9OnTcfbsWSxbtgxLly4VX3fy5Mno0aMHFi9ejLCwMGzatAk//fQT/v3vf5v3DSEiIrIwe0iYNyeL9kj99NNP6NChAzp06AAAiImJQYcOHTBr1izI5XKcPn0aAwYMwBNPPIGxY8ciODgY3333ndaQ2saNGxEQEIBevXrhueeew1NPPaUVAKlUKuzbtw+ZmZkIDg7Gm2++iVmzZolLHwBA165dkZSUhH//+99o164dvvzyS+zcuZNrSBERkSTYU8K8uckEQRAsXQl7kJ+fD5VKBY1GA6VSaenqEBER6SU3N9cuEub1VdPzt00lmxMREZFp2GOQZA42lWxOREREZE0YSBEREREZiIEUERERkYEYSBEREREZiMnmREREZJVsYSYhAykiO2YLP0JERBXJzc3FypUrxccajRvy8urB3T1Xa32rqKgoi/6OMZAisiBTBjqP/ghVxtI/QtVhMEgkTQ//uz9xogO++aY/BMFBvG1NUNDJcuUsgYEUkYWYOtB59Melsqs5S/8IVcVegkEiMpxG4yYGUQAgCA745pv+8Pe/bBW3r2EgRWQh5gx0qrqas2b2EAwSUc3k5dUTg6gyguCAvDx3BlJE9IApAx1rv5rTla0Gg0RUM+7uuZDJSrWCKZmsFO7ueRas1T8YSJHVkGoujKkDHWu/mtOFvQSDRKQ/leoWwsN3lbuQspZ/+wykyCpIORfG1IGOtV/N6cIegkEiMlxQ0En4+19GXp473N3zrOrfPRfkJKtQUS5MZmYTaDRuVZazB2WBzsOMGeiUXc2VvYa1Xc3pwtTvERFZP5XqFvz8frW63y72SJHVkVoujDm6ra35ak4X1t61T0TGp1AojFrOVBhIkVWRai6MKQKdR39cVKpbFR7X0j9CurL1YFAfUs0XJHpYvXr1EBUVZfX/FhhIkVWRUi6MqQMdW/kRqoq9BYO6kHK+INGjbOE7zkDKTtjLFaw9JEbrypBAR9/P2RY+86rYQzCoL66dRWRbGEjZAXu6gpVaLow+n4c9fc76sKe26Etq+YJEtoiBlB2wtytYKeXC6MPePmeqmlTzBYlsDQMpO2OrV7BSzIWpCVv9nEl3UsoXJLJlDKTsiC1fwUoxF8ZQtvw5k+6klC9IZMsYSNkRW7+CZZCkG1v/nEk3UssXJLJVDKTsCK9gpYGfs3QwX5DI+vEWMXbEHm4FQtXj52zfKsoXrOi2GMwXJLIO7JGyM7yClQZ+zvaL+YJEtoWBlB0wZMabvSzgKSWc2Sgd/LdHZDtkgiAIlq6EPcjPz4dKpYJGo4FSqTT76+sTGEl1YUd7wACYiMi4anr+Zo+UndDn5MmFHW0XgyQiIuvCQEriuLAjERGR4RhISRgXdqRHceiQiEg/DKQkjAs70sOYO0dEpD+uIyVhZQs7PowLO0qXrjlxzJ0jIvoHAykJ48KOVBWNxg2ZmU2g0bhZuipERFaLQ3sSx4UdqSKchEBSx3xB0hUDKQniwo5UFU5CIKljviDpg4GUBPEWFFQVTkIgqeNae6QPBlISxSCJKlM2CeHhYIqTEEiqOMxN1WGyORFp4SQEogcqG+bmBAx6GHukSCdMvLR/D+fEVTUJgblzJBUc5iZdMJCiajHxUhqYO0ekjcPcpAsGUlQtJl5KB4Mkon+UDXM/miPF3ih6GAMp0gsTL4lISrjWHlWHyeakMyZeEpEUVLTWnp/fr+WCKOYLEsAeKdKD1BIvmWBPJE3MFyR9MJAinUkp8ZIJ9kTSxn/XpCuLDu0dPnwY4eHh8PHxgUwmw86dO7X2C4KAWbNmwdvbGy4uLggNDcWlS5e0yuTl5WH48OFQKpWoW7cuxo4di9u3b2uVOX36NJ5++mk4OzvD19cXixYtKleXrVu3IiAgAM7OzmjTpg12795t9PbaOimtL1RRgn1FN/Blgj0RkbRZtEeqoKAA7dq1w5gxYzBo0KBy+xctWoTly5djw4YN8PPzw7vvvgu1Wo3z58/D2dkZADB8+HBkZWUhJSUFxcXFGD16NMaPH4+kpCQAQH5+Pvr06YPQ0FAkJCTgzJkzGDNmDOrWrYvx48cDAI4dO4ZXXnkFcXFx6N+/P5KSkjBw4ECcOHECrVu3Nt8bUgPmGoaSYuIlE+yJiKgyFg2k+vXrh379+lW4TxAExMfHY+bMmXj++ecBAJ9++ik8PT2xc+dODB06FBcuXMCePXtw/PhxdOzYEQCwYsUKPPfcc/joo4/g4+ODjRs34t69e1i3bh0UCgVatWqFU6dOYcmSJWIgtWzZMvTt2xdTp04FAMybNw8pKSlYuXIlEhISzPBO1Iyph6GkfJNj3sCXiIiqYrU5UpmZmcjOzkZoaKi4TaVSoUuXLkhLS8PQoUORlpaGunXrikEUAISGhsLBwQE//PADXnjhBaSlpaF79+5aJ3m1Wo0PPvgAf//9Nx577DGkpaUhJiZG6/XVanW5ocaHFRUVoaioSHycn59vhFYbxtTrPEk58VJqCfZERKQfqw2ksrOzAQCenp5a2z09PcV92dnZ8PDw0Npfq1YtuLu7a5Xx8/Mrd4yyfY899hiys7OrfJ2KxMXFYc6cOQa0zLRMNQxlj0GSLqSUYE9ERPrjOlIGio2NhUajEf9+++03S1eJ6zyZgJQS7ImISH9W2yPl5eUFAMjJyYG3t7e4PScnB+3btxfL3LhxQ+t59+/fR15envh8Ly8v5OTkaJUpe1xdmbL9FXFycoKTk5MBLTMdDkOZhhQT7ImISDdW2yPl5+cHLy8vpKamitvy8/Pxww8/ICQkBAAQEhKCmzdvIj09XSzz7bfforS0FF26dBHLHD58GMXFxWKZlJQUtGjRAo899phY5uHXKStT9jq2omwY6mEchjIMVzYmIiJdWLRH6vbt27h8+bL4ODMzE6dOnYK7uzsaNWqE6OhozJ8/H82bNxeXP/Dx8cHAgQMBAC1btkTfvn3x2muvISEhAcXFxYiKisLQoUPh4+MDABg2bBjmzJmDsWPHYvr06Th79iyWLVuGpUuXiq87efJk9OjRA4sXL0ZYWBg2bdqEn376Cf/+97/N+n7UFG+waTxSTrAnIiLdWTSQ+umnn/DMM8+Ij8tmzkVERCAxMRHTpk1DQUEBxo8fj5s3b+Kpp57Cnj17xDWkAGDjxo2IiopCr1694ODggMGDB2P58uXifpVKhX379iEyMhLBwcF4/PHHMWvWLHHpAwDo2rUrkpKSMHPmTLz99tto3rw5du7caTNrSD2Mw1DGwyCJiIiqIxMEQbB0JexBfn4+VCoVNBoNlEqlWV+btzMhIiIyTE3P31abbE664zAUERGRZTCQshMMkoiIiMzPamftEREREVk7BlJEREREBmIgRURERGQgBlJEREREBmIgRURERGQgBlJEREREBmIgRURERGQgBlJEREREBmIgRURERGQgrmxuJGW3LMzPz7dwTYiIiEhXZedtQ289zEDKSG7dugUA8PX1tXBNiIiISF+3bt2CSqXS+3kywdAQjLSUlpbijz/+gJubG2QymVGPnZ+fD19fX/z2228G3ZnaVrCd9kMKbQTYTnvDdtoXXdspCAJu3boFHx8fODjon/HEHikjcXBwQMOGDU36Gkql0q6/9GXYTvshhTYCbKe9YTvtiy7tNKQnqgyTzYmIiIgMxECKiIiIyEAMpGyAk5MT3nvvPTg5OVm6KibFdtoPKbQRYDvtDdtpX8zVTiabExERERmIPVJEREREBmIgRURERGQgBlJEREREBmIgRURERGQgBlIWsGrVKjRp0gTOzs7o0qULfvzxxyrLx8fHo0WLFnBxcYGvry+mTJmCu3fv1uiY5mDsds6ePRsymUzrLyAgwNTNqJY+7SwuLsbcuXPh7+8PZ2dntGvXDnv27KnRMc3F2O20xs/z8OHDCA8Ph4+PD2QyGXbu3Fntcw4ePIigoCA4OTmhWbNmSExMLFfGmj5PU7TRHj7LrKwsDBs2DE888QQcHBwQHR1dYbmtW7ciICAAzs7OaNOmDXbv3m38yuvBFO1MTEws93k6OzubpgE60red27dvR+/evVG/fn0olUqEhIRg79695coZ498mAykz27x5M2JiYvDee+/hxIkTaNeuHdRqNW7cuFFh+aSkJMyYMQPvvfceLly4gLVr12Lz5s14++23DT6mOZiinQDQqlUrZGVliX9HjhwxR3MqpW87Z86ciTVr1mDFihU4f/48JkyYgBdeeAEnT540+JjmYIp2Atb3eRYUFKBdu3ZYtWqVTuUzMzMRFhaGZ555BqdOnUJ0dDTGjRun9YNtbZ+nKdoI2P5nWVRUhPr162PmzJlo165dhWWOHTuGV155BWPHjsXJkycxcOBADBw4EGfPnjVm1fViinYCD1YDf/jz/PXXX41VZYPo287Dhw+jd+/e2L17N9LT0/HMM88gPDzcNL+1AplV586dhcjISPFxSUmJ4OPjI8TFxVVYPjIyUnj22We1tsXExAjdunUz+JjmYIp2vvfee0K7du1MUl9D6dtOb29vYeXKlVrbBg0aJAwfPtzgY5qDKdppjZ/nwwAIO3bsqLLMtGnThFatWmltGzJkiKBWq8XH1vh5ljFWG+3hs3xYjx49hMmTJ5fb/vLLLwthYWFa27p06SK8/vrrNayhcRirnevXrxdUKpXR6mVs+razTGBgoDBnzhzxsbH+bbJHyozu3buH9PR0hIaGitscHBwQGhqKtLS0Cp/TtWtXpKeni92NV69exe7du/Hcc88ZfExTM0U7y1y6dAk+Pj5o2rQphg8fjuvXr5uuIdUwpJ1FRUXlushdXFzEq3d7+Tyra2cZa/o8DZGWlqb1vgCAWq0W3xdr/Dz1VV0by9j6Z6kLXd8Le3D79m00btwYvr6+eP7553Hu3DlLV6lGSktLcevWLbi7uwMw7r9NBlJm9Ndff6GkpASenp5a2z09PZGdnV3hc4YNG4a5c+fiqaeegqOjI/z9/dGzZ09xyMuQY5qaKdoJAF26dEFiYiL27NmD1atXIzMzE08//TRu3bpl0vZUxpB2qtVqLFmyBJcuXUJpaSlSUlKwfft2ZGVlGXxMUzNFOwHr+zwNkZ2dXeH7kp+fjzt37ljl56mv6toI2MdnqYvK3gtb+Sx11aJFC6xbtw5fffUVPv/8c5SWlqJr1674/fffLV01g3300Ue4ffs2Xn75ZQDG/a1lIGXlDh48iAULFuDjjz/GiRMnsH37diQnJ2PevHmWrppR6dLOfv364aWXXkLbtm2hVquxe/du3Lx5E1u2bLFgzfWzbNkyNG/eHAEBAVAoFIiKisLo0aPh4GBf/xR1aac9fJ70AD9L+xISEoKRI0eiffv26NGjB7Zv34769etjzZo1lq6aQZKSkjBnzhxs2bIFHh4eRj9+LaMfkSr1+OOPQy6XIycnR2t7Tk4OvLy8KnzOu+++ixEjRmDcuHEAgDZt2qCgoADjx4/HO++8Y9AxTc0U7awo0Khbty6eeOIJXL582fiN0IEh7axfvz527tyJu3fvIjc3Fz4+PpgxYwaaNm1q8DFNzRTtrIilP09DeHl5Vfi+KJVKuLi4QC6XW93nqa/q2lgRW/wsdVHZe2Ern6WhHB0d0aFDB5v8PDdt2oRx48Zh69atWsN4xvytta/LYCunUCgQHByM1NRUcVtpaSlSU1MREhJS4XMKCwvLBRFyuRwAIAiCQcc0NVO0syK3b9/GlStX4O3tbaSa66cm772zszMaNGiA+/fvY9u2bXj++edrfExTMUU7K2Lpz9MQISEhWu8LAKSkpIjvizV+nvqqro0VscXPUheGvBf2oKSkBGfOnLG5z/OLL77A6NGj8cUXXyAsLExrn1H/beqd9k41smnTJsHJyUlITEwUzp8/L4wfP16oW7eukJ2dLQiCIIwYMUKYMWOGWP69994T3NzchC+++EK4evWqsG/fPsHf3194+eWXdT6mJZiinW+++aZw8OBBITMzUzh69KgQGhoqPP7448KNGzfM3r4y+rbz+++/F7Zt2yZcuXJFOHz4sPDss88Kfn5+wt9//63zMS3BFO20xs/z1q1bwsmTJ4WTJ08KAIQlS5YIJ0+eFH799VdBEARhxowZwogRI8TyV69eFWrXri1MnTpVuHDhgrBq1SpBLpcLe/bsEctY2+dpijbaw2cpCIJYPjg4WBg2bJhw8uRJ4dy5c+L+o0ePCrVq1RI++ugj4cKFC8J7770nODo6CmfOnDFr2x5minbOmTNH2Lt3r3DlyhUhPT1dGDp0qODs7KxVxtz0befGjRuFWrVqCatWrRKysrLEv5s3b4pljPVvk4GUBaxYsUJo1KiRoFAohM6dOwvff/+9uK9Hjx5CRESE+Li4uFiYPXu24O/vLzg7Owu+vr7Cv/71L60TUnXHtBRjt3PIkCGCt7e3oFAohAYNGghDhgwRLl++bMYWVUyfdh48eFBo2bKl4OTkJNSrV08YMWKE8L///U+vY1qKsdtpjZ/ngQMHBADl/sraFhERIfTo0aPcc9q3by8oFAqhadOmwvr168sd15o+T1O00V4+y4rKN27cWKvMli1bhCeeeEJQKBRCq1athOTkZPM0qBKmaGd0dLT4ffX09BSee+454cSJE+ZrVAX0bWePHj2qLF/GGP82ZYJQybgJEREREVWJOVJEREREBmIgRURERGQgBlJEREREBmIgRURERGQgBlJEREREBmIgRURERGQgBlJEREREBmIgRURkxw4ePAiZTIabN29auipEdomBFBEZxahRoyCTybBw4UKt7Tt37oRMJhMfC4KA//znPwgJCYFSqUSdOnXQqlUrTJ48WeebohYWFiI2Nhb+/v5wdnZG/fr10aNHD3z11VdimSZNmiA+Pt4obTO1svdOJpPB0dERfn5+mDZtGu7evavXcXr27Ino6GitbV27dkVWVhZUKpURa0xEZRhIEZHRODs744MPPsDff/9d4X5BEDBs2DC88cYbeO6557Bv3z6cP38ea9euhbOzM+bPn6/T60yYMAHbt2/HihUrcPHiRezZswcvvvgicnNzjdkcs+rbty+ysrJw9epVLF26FGvWrMF7771X4+MqFAp4eXlpBbNEZEQG3vaGiEhLRESE0L9/fyEgIECYOnWquH3Hjh1C2U/NF198IQAQvvrqqwqPUVpaqtNrqVQqITExsdL9Fd1nq8x3330nPPXUU4Kzs7PQsGFDYdKkScLt27fF/Z9++qkQHBws1KlTR/D09BReeeUVIScnR9xfds+vPXv2CO3btxecnZ2FZ555RsjJyRF2794tBAQECG5ubsIrr7wiFBQU6NSeiIgI4fnnn9faNmjQIKFDhw7i47/++ksYOnSo4OPjI7i4uAitW7cWkpKStI7xaJszMzPF+j5838ovv/xSCAwMFBQKhdC4cWPho48+0qmeRFQee6SIyGjkcjkWLFiAFStW4Pfffy+3/4svvkCLFi0wYMCACp+va6+Jl5cXdu/ejVu3blW4f/v27WjYsCHmzp2LrKwsZGVlAQCuXLmCvn37YvDgwTh9+jQ2b96MI0eOICoqSnxucXEx5s2bh59//hk7d+7EtWvXMGrUqHKvMXv2bKxcuRLHjh3Db7/9hpdffhnx8fFISkpCcnIy9u3bhxUrVujUnkedPXsWx44dg0KhELfdvXsXwcHBSE5OxtmzZzF+/HiMGDECP/74IwBg2bJlCAkJwWuvvSa22dfXt9yx09PT8fLLL2Po0KE4c+YMZs+ejXfffReJiYkG1ZVI8iwdyRGRfXi4V+XJJ58UxowZIwiCdo9UQECAMGDAAK3nTZ48WXB1dRVcXV2FBg0a6PRahw4dEho2bCg4OjoKHTt2FKKjo4UjR45olWncuLGwdOlSrW1jx44Vxo8fr7Xtu+++ExwcHIQ7d+5U+FrHjx8XAAi3bt0SBOGfHqn9+/eLZeLi4gQAwpUrV8Rtr7/+uqBWq3VqT0REhCCXywVXV1fByclJACA4ODgIX375ZZXPCwsLE958803xcY8ePYTJkydrlXm0R2rYsGFC7969tcpMnTpVCAwM1KmuRKSNPVJEZHQffPABNmzYgAsXLlRb9p133sGpU6cwa9Ys3L59W6fjd+/eHVevXkVqaipefPFFnDt3Dk8//TTmzZtX5fN+/vlnJCYmok6dOuKfWq1GaWkpMjMzATzosQkPD0ejRo3g5uaGHj16AACuX7+uday2bduK/+/p6YnatWujadOmWttu3LihU3sA4JlnnsGpU6fwww8/ICIiAqNHj8bgwYPF/SUlJZg3bx7atGkDd3d31KlTB3v37i1Xr+pcuHAB3bp109rWrVs3XLp0CSUlJXodi4iYbE5EJtC9e3eo1WrExsZqbW/evDkyMjK0ttWvXx/NmjWDh4eHXq/h6OiIp59+GtOnT8e+ffswd+5czJs3D/fu3av0Obdv38brr7+OU6dOiX8///wzLl26BH9/fxQUFECtVkOpVGLjxo04fvw4duzYAQDljuvo6Cj+f9lsu4fJZDKUlpbq3B5XV1c0a9YM7dq1w7p16/DDDz9g7dq14v4PP/wQy5Ytw/Tp03HgwAGcOnUKarW6yvYSkenVsnQFiMg+LVy4EO3bt0eLFi3Eba+88gqGDRuGr776Cs8//7xRXy8wMBD379/H3bt3oVAooFAoyvWwBAUF4fz582jWrFmFxzhz5gxyc3OxcOFCMb/op59+Mmo9deHg4IC3334bMTExGDZsGFxcXHD06FE8//zzePXVVwEApaWl+OWXXxAYGCg+r6I2P6ply5Y4evSo1rajR4/iiSeegFwuN35jiOwce6SIyCTatGmD4cOHY/ny5eK2oUOH4sUXX8TQoUMxd+5c/PDDD7h27RoOHTqEzZs363wi79mzJ9asWYP09HRcu3YNu3fvxttvv41nnnkGSqUSwIN1pA4fPoz//e9/+OuvvwAA06dPx7FjxxAVFYVTp07h0qVL+Oqrr8Rk80aNGkGhUGDFihW4evUqvv7662qHC03lpZdeglwux6pVqwA86M1LSUnBsWPHcOHCBbz++uvIycnRek6TJk3E9/Svv/6qsEfszTffRGpqKubNm4dffvkFGzZswMqVK/HWW2+ZpV1E9oaBFBGZzNy5c7VO5jKZDJs3b0Z8fDx2796NXr16oUWLFhgzZgx8fX1x5MgRnY6rVquxYcMG9OnTBy1btsSkSZOgVquxZcsWrde+du0a/P39Ub9+fQAP8poOHTqEX375BU8//TQ6dOiAWbNmwcfHB8CDYcbExERs3boVgYGBWLhwIT766CMjviO6q1WrFqKiorBo0SIUFBRg5syZCAoKglqtRs+ePeHl5YWBAwdqPeett96CXC5HYGAg6tevX2H+VFBQELZs2YJNmzahdevWmDVrFubOnVvhzEQiqp5MEATB0pUgIiIiskXskSIiIiIyEAMpIrI6Dy9P8Ojfd999Z+nq6eX69etVtkff5QuIyLpwaI+IrE5VNy9u0KABXFxczFibmrl//z6uXbtW6f4mTZqgVi1OoCayVQykiIiIiAzEoT0iIiIiAzGQIiIiIjIQAykiIiIiAzGQIiIiIjIQAykiIiIiAzGQIiIiIjIQAykiIiIiAzGQIiIiIjLQ/wFibgvLmed7ywAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_3.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnu0lEQVR4nO3deVxU5f4H8M+AbCKMLAqDohDiviCQCFm20EVTlFtdl0rRq1JdKYnU3LW0cEnFrUhT8ZameeWamZlG+uuW5Iq55hXDpWRQQAaEBGTO7w8vJwZmhhmYMzPA5/16zUvnzDNnnjOZfHye53wfmSAIAoiIiIjI5Gws3QEiIiKipopBi4iIiEgiDFpEREREEmHQIiIiIpIIgxYRERGRRBi0iIiIiCTCoEVEREQkEQYtIiIiIokwaBERERFJhEGLiIiQmpoKmUyGq1evWrorRE0KgxYRmcXx48cRHx+PHj16wNnZGR06dMCIESPw3//+t1bbxx9/HDKZDDKZDDY2NnB1dUWXLl0wZswYHDx40KjP/fLLLzFw4EC0bdsWLVu2xEMPPYQRI0Zg//79prq0Wt577z3s3r271vEjR45gwYIFKCwslOyza1qwYIH4XcpkMrRs2RLdu3fHnDlzUFRUZJLP2LZtG5KTk01yLqKmhkGLiMxiyZIl2LVrF5566imsWrUKcXFx+P777xEcHIxz587Vat++fXt88skn+Oc//4lly5Zh2LBhOHLkCP7yl79g5MiRqKioqPMz33//fQwbNgwymQwzZ87EypUr8dxzz+Hy5cvYvn27FJcJQH/Qevvtt80atKp8+OGH+OSTT7BixQp07doV7777LgYNGgRTbHfLoEWkWwtLd4CImofExERs27YN9vb24rGRI0eiV69eWLx4MT799FON9nK5HC+99JLGscWLF+P111/HBx98AD8/PyxZskTn592/fx8LFy7E008/jQMHDtR6/datWw28IutRWlqKli1b6m3z/PPPw9PTEwDwyiuv4LnnnkNaWhp++uknhIeHm6ObRM0SR7SIyCwiIiI0QhYABAYGokePHrh48aJB57C1tcXq1avRvXt3rF27FiqVSmfbvLw8FBUV4ZFHHtH6etu2bTWe37t3DwsWLEDnzp3h6OgIhUKBZ599FleuXBHbvP/++4iIiICHhwecnJwQEhKCf/3rXxrnkclkKCkpwZYtW8TpunHjxmHBggWYNm0aAMDf3198rfqaqE8//RQhISFwcnKCu7s7Ro0ahRs3bmic//HHH0fPnj1x8uRJPPbYY2jZsiVmzZpl0PdX3ZNPPgkAyM7O1tvugw8+QI8ePeDg4AAfHx9MnjxZY0Tu8ccfx1dffYVr166J1+Tn52d0f4iaKo5oEZHFCIKA3Nxc9OjRw+D32NraYvTo0Zg7dy5++OEHDBkyRGu7tm3bwsnJCV9++SVee+01uLu76zxnZWUlhg4divT0dIwaNQpTpkxBcXExDh48iHPnziEgIAAAsGrVKgwbNgwvvvgiysvLsX37dvztb3/D3r17xX588sknmDhxIvr164e4uDgAQEBAAJydnfHf//4Xn332GVauXCmOLrVp0wYA8O6772Lu3LkYMWIEJk6ciNu3b2PNmjV47LHHkJmZidatW4v9zc/Px+DBgzFq1Ci89NJL8PLyMvj7q1IVID08PHS2WbBgAd5++21ERkbi1VdfxaVLl/Dhhx/i+PHj+PHHH2FnZ4fZs2dDpVLht99+w8qVKwEArVq1Mro/RE2WQERkIZ988okAQNi4caPG8YEDBwo9evTQ+b5///vfAgBh1apVes8/b948AYDg7OwsDB48WHj33XeFkydP1mq3adMmAYCwYsWKWq+p1Wrx96WlpRqvlZeXCz179hSefPJJjePOzs5CbGxsrXMtW7ZMACBkZ2drHL969apga2srvPvuuxrHz549K7Ro0ULj+MCBAwUAQkpKis7rrm7+/PkCAOHSpUvC7du3hezsbOGjjz4SHBwcBC8vL6GkpEQQBEHYvHmzRt9u3bol2NvbC3/5y1+EyspK8Xxr164VAAibNm0Sjw0ZMkTo2LGjQf0ham44dUhEFvHLL79g8uTJCA8PR2xsrFHvrRoxKS4u1tvu7bffxrZt29C3b1988803mD17NkJCQhAcHKwxXblr1y54enritddeq3UOmUwm/t7JyUn8/Z07d6BSqfDoo4/i1KlTRvW/prS0NKjVaowYMQJ5eXniw9vbG4GBgTh06JBGewcHB4wfP96oz+jSpQvatGkDf39/vPzyy+jUqRO++uornWu7vv32W5SXlyMhIQE2Nn/+qJg0aRJcXV3x1VdfGX+hRM0Qpw6JyOyUSiWGDBkCuVyOf/3rX7C1tTXq/Xfv3gUAuLi41Nl29OjRGD16NIqKinD06FGkpqZi27ZtiI6Oxrlz5+Do6IgrV66gS5cuaNFC/1+Je/fuxaJFi3D69GmUlZWJx6uHsfq4fPkyBEFAYGCg1tft7Ow0nrdr167Were67Nq1C66urrCzs0P79u3F6VBdrl27BuBBQKvO3t4eDz30kPg6EenHoEVEZqVSqTB48GAUFhbiP//5D3x8fIw+R1U5iE6dOhn8HldXVzz99NN4+umnYWdnhy1btuDo0aMYOHCgQe//z3/+g2HDhuGxxx7DBx98AIVCATs7O2zevBnbtm0z+hqqU6vVkMlk+Prrr7WGzpprnqqPrBnqscceE9eFEZH5MGgRkdncu3cP0dHR+O9//4tvv/0W3bt3N/oclZWV2LZtG1q2bIkBAwbUqx+hoaHYsmULcnJyADxYrH706FFUVFTUGj2qsmvXLjg6OuKbb76Bg4ODeHzz5s212uoa4dJ1PCAgAIIgwN/fH507dzb2ciTRsWNHAMClS5fw0EMPicfLy8uRnZ2NyMhI8VhDR/SImjKu0SIis6isrMTIkSORkZGBnTt31qt2U2VlJV5//XVcvHgRr7/+OlxdXXW2LS0tRUZGhtbXvv76awB/Tos999xzyMvLw9q1a2u1Ff5X0NPW1hYymQyVlZXia1evXtVamNTZ2VlrUVJnZ2cAqPXas88+C1tbW7z99tu1CogKgoD8/HztFymhyMhI2NvbY/Xq1Rp92rhxI1Qqlcbdns7OznpLbRA1ZxzRIiKzePPNN7Fnzx5ER0ejoKCgVoHSmsVJVSqV2Ka0tBRZWVlIS0vDlStXMGrUKCxcuFDv55WWliIiIgL9+/fHoEGD4Ovri8LCQuzevRv/+c9/EBMTg759+wIAxo4di3/+859ITEzEsWPH8Oijj6KkpATffvst/vGPf2D48OEYMmQIVqxYgUGDBuGFF17ArVu3sG7dOnTq1AlnzpzR+OyQkBB8++23WLFiBXx8fODv74+wsDCEhIQAAGbPno1Ro0bBzs4O0dHRCAgIwKJFizBz5kxcvXoVMTExcHFxQXZ2Nv79738jLi4OU6dObdD3b6w2bdpg5syZePvttzFo0CAMGzYMly5dwgcffICHH35Y479XSEgIduzYgcTERDz88MNo1aoVoqOjzdpfIqtlyVseiaj5qCpLoOuhr22rVq2EwMBA4aWXXhIOHDhg0OdVVFQIGzZsEGJiYoSOHTsKDg4OQsuWLYW+ffsKy5YtE8rKyjTal5aWCrNnzxb8/f0FOzs7wdvbW3j++eeFK1euiG02btwoBAYGCg4ODkLXrl2FzZs3i+UTqvvll1+Exx57THBychIAaJR6WLhwodCuXTvBxsamVqmHXbt2CQMGDBCcnZ0FZ2dnoWvXrsLkyZOFS5cuaXw3+kpf1FTVv9u3b+ttV7O8Q5W1a9cKXbt2Fezs7AQvLy/h1VdfFe7cuaPR5u7du8ILL7wgtG7dWgDAUg9E1cgEwQQbXRERERFRLVyjRURERCQRBi0iIiIiiTBoEREREUmEQYuIiIhIIgxaRERERBJh0CIiIiKSCAuWWpBarcbNmzfh4uLCLSyIiIgaCUEQUFxcDB8fH9jY6B+zYtCyoJs3b8LX19fS3SAiIqJ6uHHjBtq3b6+3DYOWBbm4uAB48B9K355tREREZD2Kiorg6+sr/hzXh0HLgqqmC11dXRm0iIiIGhlDlv1wMTwRERGRRBi0iIiIiCTCoEVEREQkEa7RIiIiamQqKytRUVFh6W40WXZ2drC1tTXJuRi0iIiIGglBEKBUKlFYWGjprjR5rVu3hre3d4PrXDJoERERNRJVIatt27Zo2bIli11LQBAElJaW4tatWwAAhULRoPMxaBERETUClZWVYsjy8PCwdHeaNCcnJwDArVu30LZt2wZNI3IxPBERUSNQtSarZcuWFu5J81D1PTd0LRyDFhERUSPC6ULzMNX3zKBFREREJBGu0WoG8vPzUV5ervN1e3t7zvcTERFJgEGricvPz8fatWvF5yqVCwoKPODung+5vFg8Hh8fz7BFRESSGDduHLZs2QIAaNGiBdzd3dG7d2+MHj0a48aNg42NYRNsqampSEhIaFTlLRi0mrjqI1mnTvXFl18OhSDYQCZTIzp6L4KDM2u1IyKipsmSMxyDBg3C5s2bUVlZidzcXOzfvx9TpkzBv/71L+zZswctWjTNSNI0r4pqUalcxJAFAIJggy+/HIqAgCyNkS0iImqaas5w6CLVDIeDgwO8vb0BAO3atUNwcDD69++Pp556CqmpqZg4cSJWrFiBzZs349dff4W7uzuio6OxdOlStGrVCocPH8b48eMB/LlQff78+ViwYAE++eQTrFq1CpcuXYKzszOefPJJJCcno23btia/DmNxMXwzUVDgIYasKoJgg4ICdwv1iIiIzMnQmQtzznA8+eST6NOnD9LS0gAANjY2WL16Nc6fP48tW7bgu+++w/Tp0wEAERERSE5OhqurK3JycpCTk4OpU6cCeFCCYeHChfj555+xe/duXL16FePGjTPbdejDEa1mwt09HzKZWiNsyWRquLsXWLBXRETU3HXt2hVnzpwBACQkJIjH/fz8sGjRIrzyyiv44IMPYG9vD7lcDplMJo6MVfn73/8u/v6hhx7C6tWr8fDDD+Pu3bto1aqVWa5DF45oNRNyeTGio/dCJlMDgLhGi9OGRERkSYIgiFOB3377LZ566im0a9cOLi4uGDNmDPLz81FaWqr3HCdPnkR0dDQ6dOgAFxcXDBw4EABw/fp1yftfF45oNSPBwZkICMhCQYE73N0LGLKIiMjiLl68CH9/f1y9ehVDhw7Fq6++infffRfu7u744YcfMGHCBJSXl+usiF9SUoKoqChERUVh69ataNOmDa5fv46oqCiruNGLQauZkcuLGbCIiMgqfPfddzh79izeeOMNnDx5Emq1GsuXLxfLPXz++eca7e3t7VFZWalx7JdffkF+fj4WL14MX19fAMCJEyfMcwEG4NRhE2dvb2/SdkRERPVRVlYGpVKJ33//HadOncJ7772H4cOHY+jQoRg7diw6deqEiooKrFmzBr/++is++eQTpKSkaJzDz88Pd+/eRXp6OvLy8lBaWooOHTrA3t5efN+ePXuwcOFCC11lbRzRauI8PDwQHx/PyvBERGRR+/fvh0KhQIsWLeDm5oY+ffpg9erViI2NhY2NDfr06YMVK1ZgyZIlmDlzJh577DEkJSVh7Nix4jkiIiLwyiuvYOTIkcjPzxfLO6SmpmLWrFlYvXo1goOD8f7772PYsGEWvNo/yQRBECzdieaqqKgIcrkcKpUKrq6uDT4ft9ohImq67t27h+zsbPj7+8PR0dHo91u6jlZjo+/7Nubnt8VHtNatW4dly5ZBqVSiT58+WLNmDfr166ez/c6dOzF37lxcvXoVgYGBWLJkCZ555hnxdUEQMH/+fGzYsAGFhYV45JFH8OGHHyIwMLDWucrKyhAWFoaff/4ZmZmZCAoKAgAcPnwYK1euxLFjx1BUVITAwEBMmzYNL774ovje1NRUsXBaFQcHB9y7d6+B30j9mPN/IAY6IqLGhzMclmHRoLVjxw4kJiYiJSUFYWFhSE5ORlRUFC5duqS1muuRI0cwevRoJCUlYejQodi2bRtiYmJw6tQp9OzZEwCwdOlSrF69Glu2bIG/vz/mzp2LqKgoXLhwoVYinT59Onx8fPDzzz/X+pzevXvjrbfegpeXF/bu3YuxY8dCLpdj6NChYjtXV1dcunRJfF51e6ol1PwfR9eehg29A4P/IiIiarz497L5WTRorVixApMmTRJHhlJSUvDVV19h06ZNmDFjRq32q1atwqBBgzBt2jQAwMKFC3Hw4EGsXbsWKSkpEAQBycnJmDNnDoYPHw4A+Oc//wkvLy/s3r0bo0aNEs/19ddf48CBA9i1axe+/vprjc+ZNWuWxvMpU6bgwIEDSEtL0wha2oqmWQN9exrm5eXVam/Mv2DMFeiIiIiaAosFrfLycpw8eRIzZ84Uj9nY2CAyMhIZGRla35ORkYHExESNY1FRUdi9ezcAIDs7G0qlEpGRkeLrcrkcYWFhyMjIEINWbm4uJk2ahN27d+usy1GTSqVCt27dNI7dvXsXHTt2hFqtRnBwMN577z306NFD5znKyspQVlYmPi8qKjLos41R156GVdsc1FSfESh9gY6IiIgsWN4hLy8PlZWV8PLy0jju5eUFpVKp9T1KpVJv+6pf9bURBAHjxo3DK6+8gtDQUIP6+vnnn+P48eMaa7K6dOmCTZs24YsvvsCnn34KtVqNiIgI/PbbbzrPk5SUBLlcLj6q6n2YUl17GqpULsjO9oNK5aLRxtgRKF2BruZ5iYiImjOLL4Y3tzVr1qC4uFhjJE2fQ4cOYfz48diwYYPGaFV4eDjCw8PF5xEREejWrRs++ugjnfU7Zs6cqTEiV1RUZPKwpW9PQ1OOQOkLdCyISkRE9IDFRrQ8PT1ha2uL3NxcjeO5ubk61z15e3vrbV/1q7423333HTIyMuDg4IAWLVqgU6dOAIDQ0FDExsZqvO///u//EB0djZUrV2rU8dDGzs4Offv2RVZWls42Dg4OcHV11XiYmq49DQGYdASqKtBVx02qiYiINFksaNnb2yMkJATp6eniMbVajfT0dI2RourCw8M12gPAwYMHxfb+/v7w9vbWaFNUVISjR4+KbVavXo2ff/4Zp0+fxunTp7Fv3z4AD+6AfPfdd8X3HT58GEOGDMGSJUsQFxdX5/VUVlbi7NmzUCgUBn4D0gkOzkRCQjJiY1ORkJCM4ODMOqcUjcVNqomIiOpm0anDxMRExMbGIjQ0FP369UNycjJKSkrEtVBjx45Fu3btkJSUBODB3X8DBw7E8uXLMWTIEGzfvh0nTpzA+vXrATy4CzAhIQGLFi1CYGCgWN7Bx8cHMTExAIAOHTpo9KFVq1YAgICAALRv3x7Ag+nCoUOHYsqUKXjuuefE9V329vZwd38QTN555x30798fnTp1QmFhIZYtW4Zr165h4sSJ0n5pOtTcQqfmnob6phS10VUrq/pdi9ykmoiISD+LBq2RI0fi9u3bmDdvHpRKJYKCgrB//35xMfv169fFjSWBB+ugtm3bhjlz5mDWrFkIDAzE7t27xRpawIPaWCUlJYiLi0NhYSEGDBiA/fv3G1VFd8uWLSgtLUVSUpIY8gBg4MCBOHz4MADgzp07mDRpEpRKJdzc3BASEoIjR46ge/fuDfxW6kdXIbq8vDykpaWJI1A112hpC0eG1soCdG9Szb0TiYjIXA4fPownnngCd+7cQevWrQ16j5+fHxISEpCQkCBp37gFjwWZegsebXJycsQRP6Cq7lXtEai4uDhx2lP7e2rXynr22Wfh6elZ6zPNUVmY1emJqLlp6BY8ljRu3Dhs2bIFL7/8cq2NoidPnowPPvgAsbGxSE1Nrdf5pQhaTWYLHpJWXVOKutpV0Xenoqenp0XWpNUccdMVBFmdnojIevj6+mL79u1YuXIlnJycADwIM9u2bau1rKcpYdBq4ura20qlUkEQBJSXlyMnJwfAn+uw6ip+ainVr0VfEGR1eiIi6xEcHIwrV64gLS1N3Ds4LS0NHTp0gL+/v9iurKwM06ZNw/bt21FUVITQ0FCsXLkSDz/8sNhm3759SEhIwI0bN9C/f/9aVQMA4IcffsDMmTNx4sQJeHp64q9//SuSkpLg7Ows/cVWw6DVDOga1cnPz8eOHTt0vs/aa2VZaxAkImoMfvsNuHwZCAwE/ncvmOT+/ve/Y/PmzWLQ2rRpE8aPHy+ufwYerLXetWsXtmzZgo4dO2Lp0qWIiopCVlYW3N3dcePGDTz77LOYPHky4uLicOLECbz55psan3PlyhUMGjQIixYtwqZNm3D79m3Ex8cjPj4emzdvNs/F/o/FyjuQ5Wnbt7B61Xhrr5Vl6pIVRETNxcaNQMeOwJNPPvh140bzfO5LL72EH374AdeuXcO1a9fw448/4qWXXhJfLykpwYcffohly5Zh8ODB6N69OzZs2AAnJyds/F8nP/zwQwQEBGD58uXo0qULXnzxRYwbN07jc5KSkvDiiy8iISEBgYGBiIiIwOrVq/HPf/4T9+7dM8/F/g9HtAiA7ik4Q+9UtARjS1YQEdGDkay4OED9v39Hq9XAyy8DUVHSj2y1adMGQ4YMQWpqKgRBwJAhQzRuqrpy5QoqKirwyCOPiMfs7OzQr18/XLx4EQBw8eJFhIWFaZy3Zv3Nn3/+GWfOnMHWrVvFY4IgQK1WIzs7u9bexVJi0CK9U3DWXCvLmJIVRET0wOXLf4asKpWVQFaWeaYQ//73vyM+Ph4AsG7dOkk+4+7du3j55Zfx+uuv13rN3AvvGbSascLCQgB1r8Wy5lpZ1hwEiYisUWAgYGOjGbZsbYH/7UgnuUGDBqG8vBwymQxRUVEarwUEBMDe3h4//vgjOnbsCACoqKjA8ePHxTIM3bp1w549ezTe99NPP2k8Dw4OxoULF8Rt9iyJQasZu3//PoC6p+BCQ0Nr/QugZcuWVlM6QVcQJCKi2tq3B9avfzBdWFn5IGR99JH5FsTb2tqK04C2trYarzk7O+PVV1/FtGnT4O7ujg4dOmDp0qUoLS3FhAkTAACvvPIKli9fjmnTpmHixIk4efJkrfpbb731Fvr374/4+HhMnDgRzs7OuHDhAg4ePGhwQW5TYdAiyOXF6N37DH7+uQ8AGQABvXufEcPLiRMncOLEiVrvs1SdKkNH0qxhxI2IyBpNmPBgTVZW1oORLHOFrCr6inwuXrwYarUaY8aMQXFxMUJDQ/HNN9/Azc0NwIOpv127duGNN97AmjVr0K9fP7z33nv4+9//Lp6jd+/e+L//+z/Mnj0bjz76KARBQEBAAEaOHCn5tdXEyvAWZI7K8PqcPXsWaWlpUKlckJycUGtEKyEhGXJ5sc6CoNWryZubKSvDs8o8ETUGjbkyfGPEyvDUYHZ2dgD0r9G6cqWTzoKglmSq4GPovo6sMk9ERPXBoNWMyeVyALrXaNnZlTf5gqDaaolpG72r2Y6jYEREZAgGLdJZJqGiwsGileHNHWb0bedTs1/ca5GIiAzBoEUAtJdJUKlcLFYQ1NxhxpjtfLjXIhERGYpBqxmreVdezTIJliwIau4wU599HbnXIhFZAu9hMw9Tfc8MWs2Yh4cH4uPja4WVvLw8pKWlAbBcQdCqYqp1hZnCwkKT3PlYn+186gpneXl5Wt/H9VtEVB9VNzCVlpbCycnJwr1p+kpLSwH8+b3XF4NWM6ftB35dI1262plSVTHVusJMVbuGqs/oXV3hrCqsasP1W0RkLFtbW7Ru3Rq3bt0C8KBwtEwms3Cvmh5BEFBaWopbt26hdevWtYqqGotBq5nTteB8xIgRuH//Puzs7MS7E6sz16iMu3s+AAEPCqk+INU6MWNH7wwJZ4bexUhEZAhvb28AEMMWSad169bi990QDFrNWOOpIaUZtEy5PKGho3f6wpmhdzESERlKJpNBoVCgbdu2qKiosHR3miw7O7sGj2RVYdBqxgwdVbHk6EtBgQcAmxpHTVdiQtc6terqGr3TFs64UJ6IpGRra2uyIEDSYtAika5pLkuqax3UnTt3kJOTU+t9xkxtGjtaZ8jatPrcxagNC6MSETVuDFoEwPqmuaru8qhrHdShQ4dw6NAhreeQaspT3yhY1R2b9bmLsabGM7VLRES6MGiRVU5zVV+AX9cidUssOK8r2JiiBll9twciIiLrwaBFJpvmMiVDF6lb20hcdaasQWbN10lERLoxaJFJprlMzZDpOWsciZOiBpk1XicRERmGQYssutWOPnVNz1lyJE7fIvWRI0dCEAS0bt1a6+vGLmC3xhFHIiIyDINWM1Z9VEXfNJeUFeAbwlIjceZepG6NI45ERGQYBq1mzBQ1pCzJUiNx5l6kbq0jjkREVDcGrWbOWkMUoHt6rvpmzZba9LqKMYvUG1ITy9LXSURE9cOgRVbJ0Ok5wDKbXgPGLVKvz3SjNWzuTUREDcOgRVbJ0Gm3Z599Fp6enrWOm2PK05hF6vWZbmzsU7tERMSgRY2ErmDi6ekJhUIhPq+anisvL2/w1jx1qe8idWOmGxmiiIgaNwYtsnqGBhNz3w1Yn0XqrIlFRNS8MGiRVasrmFRfGF/991XvlXrLGmMXqbMmFhFR88KgRVatrmCSlpam9X1SblnTkEXqrIlFRNS8MGiRVTMkmNQcuZJ6eq4hi9SNnW5sSEkIIiKyPAYtsmp1BRNtI1dubnckn55rSLgxdLrR3GvOiIjI9Bi0yCoZsj2QrpGrCRM+trrpufpMN5q7Aj0REZmexYPWunXrsGzZMiiVSvTp0wdr1qxBv379dLbfuXMn5s6di6tXryIwMBBLlizBM888I74uCALmz5+PDRs2oLCwEI888gg+/PBDBAYG1jpXWVkZwsLC8PPPPyMzMxNBQUHia2fOnMHkyZNx/PhxtGnTBq+99hqmT59uVF+o/vRNz+Xl5SEtLU3n+q2KCnur27KmoTWxpFxzRkRE0rGpu4l0duzYgcTERMyfPx+nTp1Cnz59EBUVhVu3bmltf+TIEYwePRoTJkxAZmYmYmJiEBMTg3Pnzoltli5ditWrVyMlJQVHjx6Fs7MzoqKicO/evVrnmz59Onx8fGodLyoqwl/+8hd07NgRJ0+exLJly7BgwQKsX7/eqL5Qw3h4eEChUNR62NnZAfhz/VZ1VSNXwcGZSEhIRmxsKhISkht1KNE1cqdSuVi4Z0REVBeZIAiCpT48LCwMDz/8sLgORa1Ww9fXF6+99hpmzJhRq/3IkSNRUlKCvXv3isf69++PoKAgpKSkQBAE+Pj44M0338TUqVMBACqVCl5eXkhNTcWoUaPE93399ddITEzErl270KNHD40RrQ8//BCzZ8+GUqkUp3JmzJiB3bt345dffjGoL4YoKiqCXC6HSqWCq6urEd9c83b27FnxbsNTp/piz56hePBvBjWGDat7pMcSa5oMXW81YsQItG7dGsCfI3fZ2X7YsiW2VtvY2FT4+19DXFycRtFWa8cF/kTU2Bnz89tiU4fl5eU4efIkZs6cKR6zsbFBZGQkMjIytL4nIyMDiYmJGseioqKwe/duAEB2djaUSiUiIyPF1+VyOcLCwpCRkSEGrdzcXEyaNAm7d+9Gy5YttX7OY489prFeJioqCkuWLMGdO3fg5uZWZ1+0KSsrQ1lZmfi8qKhIZ1synEwGCMKDX6t74oknak0ZW+qHuKHrrT7//PNa721KJSG4wJ+ImhuLBa28vDxUVlbCy8tL47iXl5c4alSTUqnU2l6pVIqvVx3T1UYQBIwbNw6vvPIKQkNDcfXqVa2f4+/vX+scVa+5ubnV2RdtkpKS8Pbbb+t8nQzTosWDP7Z1lXFo06aNVY701LXeqmYIq08Fel0sPZrEBf5E1NxYfDG8ua1ZswbFxcUaI2nmMnPmTI1RsKKiIvj6+pq9H41d1dRaXcVMq9pZk7rCoa4QZmwFem2sbTSJC/yJqDmw2GJ4T09P2NraIjc3V+N4bm4uvL29tb7H29tbb/uqX/W1+e6775CRkQEHBwe0aNECnTp1AgCEhoYiNjZW7+dU/4y6+qKNg4MDXF1dNR5Uf/oWw1srfeGwrkXvcnkx/P2v1QpZ2irQa6NtNCk726/WonpzjCZxgT8RNRcWG9Gyt7dHSEgI0tPTERMTA+DBYvj09HTEx8drfU94eDjS09ORkJAgHjt48CDCw8MBAP7+/vD29kZ6erq4sL2oqAhHjx7Fq6++CgBYvXo1Fi1aJL7/5s2biIqKwo4dOxAWFiZ+zuzZs1FRUSHe4Xbw4EF06dIFbm5uBvWFpGfKKTVz0bfeqq4RumeffRaenp4ar9d3qs/So0nc85GImguLTh0mJiYiNjYWoaGh6NevH5KTk1FSUoLx48cDAMaOHYt27dohKSkJADBlyhQMHDgQy5cvx5AhQ7B9+3acOHFCLLsgk8mQkJCARYsWITAwEP7+/pg7dy58fHzEMNehQweNPrRq1QoAEBAQgPbt2wMAXnjhBbz99tuYMGEC3nrrLZw7dw6rVq3CypUrxffV1RcyD1NMqZlTXeFQ36J3T09Pk6w5k3qLIkM0pQX+RET6WDRojRw5Erdv38a8efOgVCoRFBSE/fv3i4vMr1+/DhubP/8ijoiIwLZt2zBnzhzMmjULgYGB2L17N3r27Cm2mT59OkpKShAXF4fCwkIMGDAA+/fvh6Ojo8H9ksvlOHDgACZPnoyQkBB4enpi3rx5iIuLM6ovJI2GbOpsDXSFQ3ON0FnDaFJjHI0kIqoPi9bRau5YR6v+LH33nLEMXYgOVN2JV3uErqH1snJycrB+/XqoVC5ITk6oNZqUkJAMubxY0rpcVX2oItW1EhFJqVHU0SJqCGsKUYbQtwWPSqXCjh07xOdSj9BZcjSpsY9GEhEZi0GLyEx0hUOFQtGgfRDrw1Rr24wdWWzono9ERI0NgxaRFTBHsDD1aFJ963LV51ob21QxEVEVBi0iK2bKgGHq0SRzVXm3tkKrRETGYNAislJSBAypgoiUdbm4bQ8RNWYMWkRWqrEEDHPW5bJ0oVUiImMxaBE1AtYcMMxVl8saCq0SERmLQYvIylk6YOhaJ5aXlwfAfFXeraHQKhGRsRi0iKycJQOGIevEzFWXyxyBjnc3EpGpMWgRWTlL7gto6Doxc+w5KXWg492NRCQFBi0iK1dXwKiawqvJ1KMvda0TM0eVdykDnaE3FVj65gMialwYtIgaAX0BIy0tTef7TDX6Utc6sWeffRaenp613meKsFdaWqrxXFegq9muoXSN3tXE6UYi0odBi8hKGVrJHZC+9ENd68Q8PT0l2wS6ZcuWGs91XWvNdg1h6F2enG4korowaBFZKX2V3PPy8sSRLHOUfrDkOrHCwkLx9/qutbCw0CRhz5i7PBtLrTMishwGLSIrVtcoiLlKP5jrzkJt7t+/D6Dua61q11D1vctTXwjUto6OU4pEzQODFlEjZs7SD+a4s1Afc11rfUbv6gqButbRcUqRqOmzqbsJEVmrqlBQnSmn9LStE/P3v1Yr2JjyzkJd7OzKAAg1jgqwszPttFzV6F3V92rI6J2+EKgPpxSJmj6OaBE1YlJP6elbJ1bFXFNgFRUOAGQ1jspQUWGakFc9LOobvdMWKusaBTP0DkYianoYtIgaOamn9KxlakvqBfkNCZX6Aq8171NJRNJj0CJqhAwt/WCOKT2p/fHHHwDqHr2ratcQDQmV2gKvpfepJCLLY9AiaoSsaUpPak5OTuLvg4Mz0batEjdudICv73W0b5+jtZ251BV4uRE2ETFoETVS5gpRlq58bmdnJ/5e3zRc9XbmoivwVtU5s2T9MSKyDgxaRKRTzcrnuhZ1S1mmQC6Xi5+tbxquqp256btuS9YfIyLrwKBFRDpVH6nRN5pkjjIFjWkariF3MBJR08KgRUR1soZF3Y1pGq45raEjIv0YtIioTtYwmmTsNJyl15YxRBERwKBFRAawltEkQ2uG1Vxbpgu3wCEiqXELHiKqU322pTGV+mwDVHMkS6VyQXa2H1QqF43j3AKHiKTGES0iMoilNpVu6HonVmYnIkti0CIig+mqQC+1+k7vWcMifiJq3jh1SEQ6GVp+wFrLFOhbxE9EZA4c0SIinRp7mQJrWcRPRM0XgxYR6WWtIcoQrMxORJbGoEVETZqlFvGbmqXrghFR/TBoEVGTo60khLaAZa1ry2piXTCixotBi4ianMa+tqwmQ+t9sS4YkfXhXYdERI2MrgKsRGR9OKJFRE1OU55qYwFWosbF4iNa69atg5+fHxwdHREWFoZjx47pbb9z50507doVjo6O6NWrF/bt26fxuiAImDdvHhQKBZycnBAZGYnLly9rtBk2bBg6dOgAR0dHKBQKjBkzBjdv3hRfX7BgAWQyWa2Hs7Oz2CY1NbXW646Ojib4Roiooax9C578/Hzk5OTofOTn52t9n64CrBzZIrJeFh3R2rFjBxITE5GSkoKwsDAkJycjKioKly5dQtu2bWu1P3LkCEaPHo2kpCQMHToU27ZtQ0xMDE6dOoWePXsCAJYuXYrVq1djy5Yt8Pf3x9y5cxEVFYULFy6IQeiJJ57ArFmzoFAo8Pvvv2Pq1Kl4/vnnceTIEQDA1KlT8corr2h89lNPPYWHH35Y45irqysuXbokPpfJZCb9foio4axtBMjQ0bYRI0agdevWAIC8vDwA+guwNta7KYmaOosGrRUrVmDSpEkYP348ACAlJQVfffUVNm3ahBkzZtRqv2rVKgwaNAjTpk0DACxcuBAHDx7E2rVrkZKSAkEQkJycjDlz5mD48OEAgH/+85/w8vLC7t27MWrUKADAG2+8IZ6zY8eOmDFjBmJiYlBRUQE7Ozu0atUKrVq1Etv8/PPPuHDhAlJSUjT6I5PJ4O3tbdovhYhMxhq34NE22lZQ4AF393yNPn3++ee13ssCrESNj8WmDsvLy3Hy5ElERkb+2RkbG0RGRiIjI0PrezIyMjTaA0BUVJTYPjs7G0qlUqONXC5HWFiYznMWFBRg69atiIiIgJ2dndY2H3/8MTp37oxHH31U4/jdu3fRsWNH+Pr6Yvjw4Th//nzdF05EZmPtW/CcOtUXyckJ2LIlFsnJCTh1qq/4mrbpzqoCrDKZGgBYgJWoEbDYiFZeXh4qKyvh5eWlcdzLywu//PKL1vcolUqt7ZVKpfh61TFdbaq89dZbWLt2LUpLS9G/f3/s3btX62feu3cPW7durTXC1qVLF2zatAm9e/eGSqXC+++/j4iICJw/fx7t27fXeq6ysjKUlZWJz4uKirS2IyLTsOYRIH2jbVeudNI53amvAGtjqQtG1Jw027sOp02bhgkTJuDatWt4++23MXbsWOzdu7fWOqt///vfKC4uRmxsrMbx8PBwhIeHi88jIiLQrVs3fPTRR1i4cKHWz0xKSsLbb79t+oshIq2seQseXaNtN2601zvd+eyzz8LT07PW+RpTXTCi5sRiQcvT0xO2trbIzc3VOJ6bm6tz3ZO3t7fe9lW/5ubmQqFQaLQJCgqq9fmenp7o3LkzunXrBl9fX/z0008a4Ql4MG04dOjQWqNkNdnZ2aFv377IysrS2WbmzJlITEwUnxcVFcHX11fveYmoYUyxBY8U29/oGm0DZHoXvHt6emr8/UZE1s1iQcve3h4hISFIT09HTEwMAECtViM9PR3x8fFa3xMeHo709HQkJCSIxw4ePCiGI39/f3h7eyM9PV0MVkVFRTh69CheffVVnX1Rqx+sd6g+rQc8WPN16NAh7Nmzp87rqaysxNmzZ/HMM8/obOPg4AAHB4c6z0VEDWPKLXikqsmla7TN1/eG1U53EpHxLDp1mJiYiNjYWISGhqJfv35ITk5GSUmJeBfi2LFj0a5dOyQlJQEApkyZgoEDB2L58uUYMmQItm/fjhMnTmD9+vUAHtwFmJCQgEWLFiEwMFAs7+Dj4yOGuaNHj+L48eMYMGAA3NzccOXKFcydOxcBAQG1RrM2bdoEhUKBwYMH1+r7O++8g/79+6NTp04oLCzEsmXLcO3aNUycOFHCb4yIDGHKLXgMvUuwPjW5dI22Wet0JxEZz6JBa+TIkbh9+zbmzZsHpVKJoKAg7N+/X5ymu379Omxs/vxXXUREBLZt24Y5c+Zg1qxZCAwMxO7du8UaWgAwffp0lJSUIC4uDoWFhRgwYAD2798v1tBq2bIl0tLSMH/+fJSUlEChUGDQoEGYM2eOxmiTWq1Gamoqxo0bB1tb21p9v3PnDiZNmgSlUgk3NzeEhITgyJEj6N69u1RfFxEZQYr1SqaoyWXIaJsppjuJyDrIBEEQLN2J5qqoqAhyuRwqlQqurq6W7g4RaZGTk4P169dDpXJBcnJCrSm9hIRkoxepa1vzpVKpsGPHjjr70xi3DSJqaoz5+d1s7zokIjJGXVXZ09LSdE4r1gxH2oKSQqHQO92pUqkgCALKy8uRk5NT63XedUhknRi0iIgMUFdNLn3Tioau39IVlPLz8znaRdRIWXxTaSKixkBfVfa6NnsuLCxs0Gdb+ybZRKQbR7SIiAyka5F6XdOK9+/fN1kfrG2TbCLSjyNaRER6aLtL0N//msYaLDu7MgA17ysSYGdn2hGmukbOiMj6cESLiEgPfTW5Ll++jEOHDqGiwgGArMarMlRUmHbvwbpGzojI+jBoERHVQdcC87y8PADm27zamjfJJiLtOHVIRNRA+hbKN8bPISLT4YgWEVE92dnZib/XV829erv6qH7Xor7PKSwslHTDaSk21yZq6hi0iIjqSS6X13iuffPqmu2MJZPVXP8F1F4TpqudaUi1uTZRU8egRURUTzXvSGxoO12qBzV95R0aGuj0kXJzbaKmjEGLiKie9N2RWMWU02m6yjsEBGSZdZ0Wa3kRGY5Bi4ioAcw5TWYN5R2sJewRNRYMWkREjYQ1lHcwVdjjwnpqLhi0iIgaiaryDjWn7cw5kmRs2NMWqFQqFTfJpmaDQYuIqBHRV97BHIwJe4beqciF9dSUMWgREVk5bfstags2Db270VCGhj1DghIX1lNTx6BFRGTlzH13o67zV1efsFdz5IoL66k5YNAiImoELL1WqaFhT9vIlZvbHYvfRUkkNQYtIiIySH3Dnq6RqwkTPrb4XZREUuOm0kREJImqPRp1lYSoqLDnJtnU5HFEi4iIJHH//n0A+ktC+Ptfs9gm2UTmwBEtIiKSlFxejN69zwAQ/ndEQO/eZ2qMXJl3k2wic+GIFhERScLOzg7AgzVaZ870xp9hSoYzZ3rjySe/w5UrnSyySTaRuTBoERGRJKqCkq41WjdutNdb3kGlUmlMHXLbHmqMGLSIiEhSutZoATK95R0qKirE44ZWmee2PWRtuEaLiIgkVbVtT827C319bwBQ12itvbxD7f0SXZCd7QeVykVvOyJL44gWERFJTtu2PQ9CkuaCd0PWv3PbHmpMOKJFRESS0LZtj7//NfFuw4ICD9QMWlVTh7roKn5ac2SLyFpwRIuIiCSha9ue7OxsHDx4UG99LQBo0aL2jyhdC+u5bQ9ZKwYtIiKSjL6F6VVrt2pOA1YFptatW9d6T13hjMjaMGgREZFBpCivoG3tlj51hTMia8OgRUREdapZXkGlckFBgQfc3fM1Qo4h5RW0rd3SFpRqtqtibDgjsiQGLSIiqlP1kSx9d/0ZUl5B19qt6mqOjjU0nBFZCoMWEREZTNddf1XV3A1l7BRjfcIZkTVg0CIiIoNZ8q4/hihqjFhHi4iIDFZ11191vOuPSDcGLSIiMpiu7XS4IJ1IO04dEhGRUXjXH5HhLD6itW7dOvj5+cHR0RFhYWE4duyY3vY7d+5E165d4ejoiF69emHfvn0arwuCgHnz5kGhUMDJyQmRkZG4fPmyRpthw4ahQ4cOcHR0hEKhwJgxY3Dz5k3x9atXr0Imk9V6/PTTT0b1hYioqaq5nY455OfnIycnR+cjPz/fbH0hMpRFR7R27NiBxMREpKSkICwsDMnJyYiKisKlS5fQtm3bWu2PHDmC0aNHIykpCUOHDsW2bdsQExODU6dOoWfPngCApUuXYvXq1diyZQv8/f0xd+5cREVF4cKFC3B0dAQAPPHEE5g1axYUCgV+//13TJ06Fc8//zyOHDmi8XnffvstevToIT6vvhDTkL4QETUVhpZNMEV5BW2FUVUqFXbs2FHnew2p40VkTjJBEARLfXhYWBgefvhhsQieWq2Gr68vXnvtNcyYMaNW+5EjR6KkpAR79+4Vj/Xv3x9BQUFISUmBIAjw8fHBm2++ialTpwJ48D+nl5cXUlNTMWrUKK392LNnD2JiYlBWVgY7OztcvXoV/v7+yMzMRFBQkNb31NUXQxQVFUEul0OlUsHV1dWg9xARWYoUleG1fUb1wqi66CqYGhcXB4VC0aA+ENXFmJ/fFhvRKi8vx8mTJzFz5kzxmI2NDSIjI5GRkaH1PRkZGUhMTNQ4FhUVhd27dwN4sFGpUqlEZGSk+LpcLkdYWBgyMjK0Bq2CggJs3boVERERsLOz03ht2LBhuHfvHjp37ozp06dj2LBhBvdFm7KyMpSVlYnPi4qKdLYlIrI25hgpqj2SVTtQ6SuYSmRtLLZGKy8vD5WVlfDy8tI47uXlBaVSqfU9SqVSb/uqXw0551tvvQVnZ2d4eHjg+vXr+OKLL8TXWrVqheXLl2Pnzp346quvMGDAAMTExGDPnj0G90WbpKQkyOVy8eHr66uzLRFRc3fqVF8kJydgy5ZYJCcn4NSpvjoLpqpULhbuLZF2Jgta9+7dw/vvv2+q00lu2rRpyMzMxIEDB2Bra4uxY8eiahbV09MTiYmJ4tTm4sWL8dJLL2HZsmUN+syZM2dCpVKJjxs3bpjiUoiImhxdgerGDV+dBVOJrJFRQev27dvYu3cvDhw4gMrKSgBARUUFVq1aBT8/PyxevNjgc3l6esLW1ha5ubkax3Nzc+Ht7a31Pd7e3nrbV/1qyDk9PT3RuXNnPP3009i+fTv27dtX667C6sLCwpCVlWVwX7RxcHCAq6urxoOIiGrTVYEeEFgwlRoVg4PWDz/8gMDAQAwbNgyDBw9GREQELly4gB49euCjjz7CggULjBqhsbe3R0hICNLT08VjarUa6enpCA8P1/qe8PBwjfYAcPDgQbG9v78/vL29NdoUFRXh6NGjOs9Z9bkANNZP1XT69GmNBZZ19YWIiOpPVwV6X9/fWDCVGhWDF8PPmTMHzzzzDGbNmoUtW7Zg+fLl+Otf/4r33nsPzz//fL0+PDExEbGxsQgNDUW/fv2QnJyMkpISjB8/HgAwduxYtGvXDklJSQCAKVOmYODAgVi+fDmGDBmC7du348SJE1i/fj0AQCaTISEhAYsWLUJgYKBY3sHHxwcxMTEAgKNHj+L48eMYMGAA3NzccOXKFcydOxcBAQFiSNqyZQvs7e3Rt29fAEBaWho2bdqEjz/+WOx7XX0hIqL6q6pAX3PRu1xerLdgal5entbzccNpshSDyzt4eHjgP//5D7p3744//vgDrVq1QlpaGoYPH96gDqxduxbLli2DUqlEUFAQVq9ejbCwMADA448/Dj8/P6Smportd+7ciTlz5uDq1asIDAzE0qVL8cwzz4ivC4KA+fPnY/369SgsLMSAAQPwwQcfoHPnzgCAs2fPYsqUKfj5559RUlIChUKBQYMGYc6cOWjXrh2AB0FryZIluHbtGlq0aIGuXbti2rRptQJlXX2pC8s7EBFpysnJ0fgH64O7Dk1TgZ41tshUjPn5bXDQsrGxgVKpFAuJuri44PTp0wgICGh4j5spBi0iIk2G1tEaMWIEWrduDeDBKFZaWpr4GmtskdQkq6N14cIFsXyBIAi4dOkSSkpKNNr07t3byO4SERE94OHhgfj4+HoXRmWNLbI2RgWtp556CtUHwIYOHarxukwmE+9GJCIiqo/6Tu/pKgkREJDFxfJkMQYHrezs7DrbFBfzDzIREVmGrpIQBQXuDFpkMQYHrY4dO2o9XlxcjM8++wwbN27EiRMnOKJFREQWUVUSonrYYo0tsrR6V4b//vvvERsbC4VCgffffx9PPPGE3oKfREREUqoqCcEaW2RNjFqjpVQqkZqaio0bN6KoqAgjRoxAWVkZdu/eje7du0vVRyIiIoPoq7FFZAkGB63o6Gh8//33GDJkCJKTkzFo0CDY2toiJSVFyv4RERHpZW9vr/FcLi/WGrBqttMnPz+/3nc+ElVncND6+uuv8frrr+PVV19FYGCglH0iIiIyWENLQtRkaC0vFkAlQxgctH744Qds3LgRISEh6NatG8aMGYNRo0ZJ2TciIiKDmDLw1Axsugqg6gt2RFUMDlr9+/dH//79kZycjB07dmDTpk1ITEyEWq3GwYMH4evrCxcXFyn7SkREZFb6CqBq21eRU4pUk8Fb8Ghz6dIlbNy4EZ988gkKCwvx9NNPY8+ePabsX5PGLXiIiKxP1X6LKpULkpMTapWLSEhI1rvInlOKTZ8xP7/rXd4BALp06YKlS5fit99+w2effdaQUxEREVkVfQVQgQdTitnZflCpNGdzOKVI1RlV3kEXW1tbxMTEICYmxhSnIyIisjh9BVC5pyIZyiRBi4iIqKmpKoBaM1AB0Lunora1WwDXbzVXDFpEREQ6aCuAmp3tp3dPxbS0NJ3n4/qt5odBi4iIqJq6CqAasqciS0JQFQYtIiKianQVQM3Ly0NaWprOKcWqQMX1W1QdgxYREVENdU3v6dpTUaVy0bt+i5ofBi0iIiIDGLKnor6SEAxazRODFhERkQH07alYNa1oyPotal4YtIiIiAyka0pRpVIB0F0Somo0Kzs7u9Z7WfahaWPQIiIiaqCCgj9HrIKDM9G2rRLXr3dAhw7X0b59jvjawYMHtb6fZR+aLgYtIiIiE9J31yHLPjQ/DFpEREQGys/P1xqK7t+/D0D/XYdXrnRi2YdmiEGLiIjIAPn5+Vi7dq3eNrruOrxxoz3LPjRTNnU3ISIiopojWSqVC7Kz/aBSuYjH7OzKAAg13imgtNRJZ9kHato4okVERGQkXeuwKiocAMhqtJahZcs/WPahmeKIFhERkRF0rcNSqVzEOlrVyWRq+Pr+hujoveJrNcs+UNPFES0iIiIj6Kv+7u9/TWcdLV3b9lDTxqBFRERkhLqqv+sLVNq27QFqb+9DTQeDFhERkRHqqv7+p5prtYBnn30Wnp6eGsdYGb5pY9AiIiIykr5RK30FSz09PaFQKCzVbbIALoYnIiIyQM3pPbm8GP7+1zRClr6F8tQ8cUSLiIjIAB4eHoiPj9daGT4vLw9paWl6F8pz8XvzxKBFRERkoLrWUtW1UJ6aH04dEhERmUjVQnnWy6IqHNEiIiIyIdbLouoYtIiIiBpI20J51ssiwAqmDtetWwc/Pz84OjoiLCwMx44d09t+586d6Nq1KxwdHdGrVy/s27dP43VBEDBv3jwoFAo4OTkhMjISly9f1mgzbNgwdOjQAY6OjlAoFBgzZgxu3rwpvn748GEMHz4cCoUCzs7OCAoKwtatWzXOkZqaCplMpvFwdHRs4LdBRESNUdVC+bi4OJ2P+Ph41stqhiwatHbs2IHExETMnz8fp06dQp8+fRAVFYVbt25pbX/kyBGMHj0aEyZMQGZmJmJiYhATE4Nz586JbZYuXYrVq1cjJSUFR48ehbOzM6KionDv3j2xzRNPPIHPP/8cly5dwq5du3DlyhU8//zzGp/Tu3dv7Nq1C2fOnMH48eMxduxY7N27V6M/rq6uyMnJER/Xrl0z8TdERESNhYeHBxQKhc4HQ1bzJBMEQbDUh4eFheHhhx/G2rVrAQBqtRq+vr547bXXMGPGjFrtR44ciZKSEo3A079/fwQFBSElJQWCIMDHxwdvvvkmpk6dCgBQqVTw8vJCamoqRo0apbUfe/bsQUxMDMrKymBnZ6e1zZAhQ+Dl5YVNmzYBeDCilZCQgMLCwnpff1FREeRyOVQqFVxdXet9HiIiIjIfY35+W2xEq7y8HCdPnkRkZOSfnbGxQWRkJDIyMrS+JyMjQ6M9AERFRYnts7OzoVQqNdrI5XKEhYXpPGdBQQG2bt2KiIgInSELeBDY3N3dNY7dvXsXHTt2hK+vL4YPH47z58/rveaysjIUFRVpPIiIiKjpsljQysvLQ2VlJby8vDSOe3l5QalUan2PUqnU277qV0PO+dZbb8HZ2RkeHh64fv06vvjiC519/fzzz3H8+HGMHz9ePNalSxds2rQJX3zxBT799FOo1WpERETgt99+03mepKQkyOVy8eHr66uzLRERETV+Fl8MbynTpk1DZmYmDhw4AFtbW4wdOxbaZlEPHTqE8ePHY8OGDejRo4d4PDw8HGPHjkVQUBAGDhyItLQ0tGnTBh999JHOz5w5cyZUKpX4uHHjhiTXRkRE5pefn6+xbrfmIz8/39JdJAuwWHkHT09P2NraIjc3V+N4bm4uvL29tb7H29tbb/uqX3NzczU27czNzUVQUFCtz/f09ETnzp3RrVs3+Pr64qeffkJ4eLjY5v/+7/8QHR2NlStXYuzYsXqvx87ODn379kVWVpbONg4ODnBwcNB7HiIianzy8/PF9cb68M7D5sdiI1r29vYICQlBenq6eEytViM9PV0j7FQXHh6u0R4ADh48KLb39/eHt7e3RpuioiIcPXpU5zmrPhd4sIaqyuHDhzFkyBAsWbIEcXFxdV5PZWUlzp49y13ZiYiaoZr7H6pULsjO9qu1mbS2fRKpabNowdLExETExsYiNDQU/fr1Q3JyMkpKSsS1UGPHjkW7du2QlJQEAJgyZQoGDhyI5cuXY8iQIdi+fTtOnDiB9evXAwBkMhkSEhKwaNEiBAYGwt/fH3PnzoWPjw9iYmIAAEePHsXx48cxYMAAuLm54cqVK5g7dy4CAgLEMHbo0CEMHToUU6ZMwXPPPSeu77K3txcXxL/zzjvo378/OnXqhMLCQixbtgzXrl3DxIkTzfkVEhGRlTl1qi++/HIoBMFG3IInODjT0t0iC7Fo0Bo5ciRu376NefPmQalUIigoCPv37xcXs1+/fh02Nn8OukVERGDbtm2YM2cOZs2ahcDAQOzevRs9e/YU20yfPh0lJSWIi4tDYWEhBgwYgP3794vFRFu2bIm0tDTMnz8fJSUlUCgUGDRoEObMmSNO623ZsgWlpaVISkoSQx4ADBw4EIcPHwYA3LlzB5MmTYJSqYSbmxtCQkJw5MgRdO/eXeqvjYiIrJRK5SKGLAAQBBt8+eVQBARkcSueZsqidbSaO9bRIiJqGnJycrB+/XpkZ/thy5bYWq/HxqbC3/8a4uLiuMSkCWgUdbSIiIiaGnf3fMhkao1jMpka7u4FFuoRWRqDFhERkYnI5cWIjt4rhq2qNVqcNmy+LLpGi4iIqKkJDs5EQEAWCgrc4e5ewJDVzDFoERERNZC9vb3Gc7m8WGvAqtmOmj4GLSIiogby8PBAfHy83jpZ9vb2LFbaDDFoERERmQBDFGnDxfBEREREEmHQIiIiIpIIgxYRERGRRBi0iIiIiCTCoEVEREQkEQYtIiIiIokwaBERERFJhHW0iIiImrj8/HwWU7UQBi0iIqImLD8/H2vXrq2zXXx8PMOWBDh1SERE1ITVHMlSqVyQne0HlcpFbzsyDY5oERERNROnTvXFl18OhSDYQCZTIzp6L4KDMy3drSaNI1pERETNgErlIoYsABAEG3z55dBaI1tkWgxaREREzUBBgYcYsqoIgg0KCtwt1KPmgUGLiIioGXB3z4dMptY4JpOp4e5eYKEeNQ8MWkRERM2AXF6M6Oi9YtiqWqMllxdbuGdNGxfDExERNRPBwZkICMhCQYE73N0LGLLMgEGLiIioCbO3t9d4LpcXaw1YNduRaTBoERERNWEeHh6Ij49nZXgLYdAiIiJq4hiiLIeL4YmIiIgkwqBFREREJBEGLSIiIiKJMGgRERERSYRBi4iIiEgiDFpEREREEmF5ByIiomYqPz+f9bUkxqBFRETUDOXn52Pt2rV1touPj2fYagBOHRIRETVDNUeyVCoXZGf7QaVy0duOjMMRLSIiombu1Km++PLLoRAEG8hkakRH70VwcKalu9UkcESLiIioGVOpXMSQBQCCYIMvvxxaa2SL6odBi4iIqBkrKPAQQ1YVQbBBQYG7hXrUtDBoERERNWPu7vmQydQax2QyNdzdCyzUo6aFQYuIiKgZk8uLER29VwxbVWu05PJiC/esabB40Fq3bh38/Pzg6OiIsLAwHDt2TG/7nTt3omvXrnB0dESvXr2wb98+jdcFQcC8efOgUCjg5OSEyMhIXL58WaPNsGHD0KFDBzg6OkKhUGDMmDG4efOmRpszZ87g0UcfhaOjI3x9fbF06VKj+0JERNQYBAdnIiEhGbGxqUhISOZCeBOyaNDasWMHEhMTMX/+fJw6dQp9+vRBVFQUbt26pbX9kSNHMHr0aEyYMAGZmZmIiYlBTEwMzp07J7ZZunQpVq9ejZSUFBw9ehTOzs6IiorCvXv3xDZPPPEEPv/8c1y6dAm7du3ClStX8Pzzz4uvFxUV4S9/+Qs6duyIkydPYtmyZViwYAHWr19vVF+IiIislb29vcZzubwY/v7Xao1k1WxHxpEJgiBY6sPDwsLw8MMPiwXT1Go1fH198dprr2HGjBm12o8cORIlJSXYu3eveKx///4ICgpCSkoKBEGAj48P3nzzTUydOhUAoFKp4OXlhdTUVIwaNUprP/bs2YOYmBiUlZXBzs4OH374IWbPng2lUin+AZsxYwZ2796NX375xaC+GKKoqAhyuRwqlQqurq4GvYeIiMhU9FWGLywshEwmg1wu1/p6c64ab8zPb4vV0SovL8fJkycxc+ZM8ZiNjQ0iIyORkZGh9T0ZGRlITEzUOBYVFYXdu3cDALKzs6FUKhEZGSm+LpfLERYWhoyMDK1Bq6CgAFu3bkVERATs7OzEz3nsscc0UnxUVBSWLFmCO3fuwM3Nrc6+aFNWVoaysjLxeVFRkc62REREUtMVlPLz8/H555/X+X5Wja+bxaYO8/LyUFlZCS8vL43jXl5eUCqVWt+jVCr1tq/61ZBzvvXWW3B2doaHhweuX7+OL774os7Pqf4ZdfVFm6SkJMjlcvHh6+ursy0REZGlGFoNnlXj62bxxfCWMm3aNGRmZuLAgQOwtbXF2LFjIfUs6syZM6FSqcTHjRs3JP08IiIiU9C1PQ/VzWJTh56enrC1tUVubq7G8dzcXHh7e2t9j7e3t972Vb/m5uZCoVBotAkKCqr1+Z6enujcuTO6desGX19f/PTTTwgPD9f5OdU/o66+aOPg4AAHBwedrxMREVkbbs/TMBYb0bK3t0dISAjS09PFY2q1Gunp6QgPD9f6nvDwcI32AHDw4EGxvb+/P7y9vTXaFBUV4ejRozrPWfW5AMT1U+Hh4fj+++9RUVGh8TldunSBm5ubQX0hIiJq7Lg9T8NZdOowMTERGzZswJYtW3Dx4kW8+uqrKCkpwfjx4wEAY8eO1VgsP2XKFOzfvx/Lly/HL7/8ggULFuDEiROIj48HAMhkMiQkJGDRokXYs2cPzp49i7Fjx8LHxwcxMTEAgKNHj2Lt2rU4ffo0rl27hu+++w6jR49GQECAGJJeeOEF2NvbY8KECTh//jx27NiBVatWaSx+r6svREREjR2352k4i00dAg9KJNy+fRvz5s2DUqlEUFAQ9u/fLy4yv379Omxs/vwPHBERgW3btmHOnDmYNWsWAgMDsXv3bvTs2VNsM336dJSUlCAuLg6FhYUYMGAA9u/fD0dHRwBAy5YtkZaWhvnz56OkpAQKhQKDBg3CnDlzxGk9uVyOAwcOYPLkyQgJCYGnpyfmzZuHuLg4o/pCRETUmFVtz1M9bHF7HuNYtI5Wc8c6WkREZI1ycnLEIt361mg9++yz8PT01Hhvc6iv1SjqaBEREZF1ql5HMjg4EwEBWSgocIe7e4FG5fi0tDSt72d9rT8xaBEREZEGDw8PxMfH16qTlZeXpxGuVCoXFBR4wN09XyOAsb7Wnxi0iIiIqJa6RqRY9sEwzbZgKREREdUPyz4YjkGLiIiIjMKyD4Zj0CIiIiKjVJV9qI5lH7Rj0CIiIiKjyOXFiI7eK4atqjVa1RfE0wNcDE9ERERG01f2gf7EoEVEREQGqV5fC3gwsqUtYNVs15wxaBEREZFBdNXXqq45VIY3BoMWERERGYwhyjhcDE9EREQkEQYtIiIiIokwaBERERFJhEGLiIiISCIMWkREREQSYdAiIiIikgiDFhEREZFEGLSIiIiIJMKgRURERCQRBi0iIiIiiXALHiIiIrKY/Pz8Jr13IoMWERERWUR+fj7Wrl0rPlepXFBQ4AF393zI5cXi8fj4+EYbthi0iIiIyCKqj2SdOtUXX345FIJgA5lMjejovQgOzqzVrrHhGi0iIiKyKJXKRQxZACAINvjyy6FQqVws3LOG44gWERERSUrXOqy8vDwAQEGBhxiyqgiCDQoK3DWmEBsjBi0iIiKSTM11WNq4u+dDJlNrhC2ZTA139wIAgEqlgkKhkLSfUuHUIREREUnGkPVVcnkxevc+A0D43xEBvXufEUezKioqpOugxBi0iIiIyGxUKhdkZ/tprL9SqVxw5kxvALL/HZHhzJneXKNFREREZChddxY25TVaHNEiIiIiyem7s7BqjVZ11ddotWjReMeFGLSIiIhIcnWNWkVH7xXDVtVoV9VoVuvWrc3dXZNpvBGRiIiIGo267iwMDs5EQEAWCgrc4e5e0OinDKtwRIuIiIgkV9eoVVUbf/9rTSZkARzRIiIiIgnZ29uLv6/vqFX1czQ2DFpEREQkGQ8PD8THx+usp6VSqSAIgs51WPb29o12Q2mAQYuIiIgkpi8oNdaK74biGi0iIiIiiVg8aK1btw5+fn5wdHREWFgYjh07prf9zp070bVrVzg6OqJXr17Yt2+fxuuCIGDevHlQKBRwcnJCZGQkLl++LL5+9epVTJgwAf7+/nByckJAQADmz5+vMaS5YMECyGSyWg9nZ2exTWpqaq3XHR0dTfStEBERUVNg0aC1Y8cOJCYmYv78+Th16hT69OmDqKgo3Lp1S2v7I0eOYPTo0ZgwYQIyMzMRExODmJgYnDt3TmyzdOlSrF69GikpKTh69CicnZ0RFRWFe/fuAQB++eUXqNVqfPTRRzh//jxWrlyJlJQUzJo1SzzH1KlTkZOTo/Ho3r07/va3v2n0x9XVVaPNtWvXJPiWiIiIqNESLKhfv37C5MmTxeeVlZWCj4+PkJSUpLX9iBEjhCFDhmgcCwsLE15++WVBEARBrVYL3t7ewrJly8TXCwsLBQcHB+Gzzz7T2Y+lS5cK/v7+Ol8/ffq0AED4/vvvxWObN28W5HK53uuri0qlEgAIKpWqQechIiIi8zHm57fFRrTKy8tx8uRJREZGisdsbGwQGRmJjIwMre/JyMjQaA8AUVFRYvvs7GwolUqNNnK5HGFhYTrPCTy448Hd3V3n6x9//DE6d+6MRx99VOP43bt30bFjR/j6+mL48OE4f/687gsGUFZWhqKiIo0HERERNV0WC1p5eXmorKyEl5eXxnEvLy8olUqt71EqlXrbV/1qzDmzsrKwZs0avPzyy1pfv3fvHrZu3YoJEyZoHO/SpQs2bdqEL774Ap9++inUajUiIiLw22+/6bhiICkpCXK5XHz4+vrqbEtERESNn8UXw1vS77//jkGDBuFvf/sbJk2apLXNv//9bxQXFyM2NlbjeHh4OMaOHYugoCAMHDgQaWlpaNOmDT766COdnzdz5kyoVCrxcePGDZNeDxEREVkXiwUtT09P2NraIjc3V+N4bm4uvL29tb7H29tbb/uqXw05582bN/HEE08gIiIC69ev19nPjz/+GEOHDq01SlaTnZ0d+vbti6ysLJ1tHBwc4OrqqvEgIiKipstiQcve3h4hISFIT08Xj6nVaqSnpyM8PFzre8LDwzXaA8DBgwfF9v7+/vD29tZoU1RUhKNHj2qc8/fff8fjjz+OkJAQbN68GTY22r+G7OxsHDp0qNa0oTaVlZU4e/Zsky+8RkRERIazaGX4xMRExMbGIjQ0FP369UNycjJKSkowfvx4AMDYsWPRrl07JCUlAQCmTJmCgQMHYvny5RgyZAi2b9+OEydOiCNSMpkMCQkJWLRoEQIDA+Hv74+5c+fCx8cHMTExAP4MWR07dsT777+P27dvi/2pOeq1adMmKBQKDB48uFbf33nnHfTv3x+dOnVCYWEhli1bhmvXrmHixIlSfFVERETUCFk0aI0cORK3b9/GvHnzoFQqERQUhP3794vTdNevX9cYbYqIiMC2bdswZ84czJo1C4GBgdi9ezd69uwptpk+fTpKSkoQFxeHwsJCDBgwAPv37xeLiR48eBBZWVnIyspC+/btNfojCIL4e7VajdTUVIwbNw62tra1+n7nzh1MmjQJSqUSbm5uCAkJwZEjR9C9e3eTfkdERETUeMmE6umCzKqoqAhyuRwqlYrrtYiIiBoJY35+N+u7DomIiIikxKBFREREJBGLrtEiIiIi0iU/Px/l5eW1jhcWFuL+/fuws7ODXC6v9bq9vT08PDzM0cU6MWgRERGR1cnPz8fatWvrbKdSuaCgwAPu7vmQy4vF4/Hx8VYRthi0iIiIyOpoG8mq6dSpvvjyy6EQBBvIZGpER+9FcHCmwe83B67RIiIiokZHpXIRQxYACIINvvxyKFQqFwv3TBODFhEREVk9lcoF2dl+YpAqKPAQQ1YVQbBBQYG7JbqnE6cOiYiIyKppmyIMCMiCTKbWCFsymRru7gUW7GltHNEiIiIiq6VrihAAoqP3QiZTA4AYwKoviLcGHNEiIiIiq6VvijA4OBMBAVkoKHCHu3uB1YUsgEGLiIiIrJi7e77eKUK5vNgqA1YVTh0SERGR1bG3twfwIEjVZ4qw6v2Wxk2lLYibShMREelWvTL8zZs2uHq1Bfz87qNlywKLVoY35uc3pw6JiIjIKlUPSwoFEBJS9czLIv2pD04dEhEREUmEQYuIiIhIIpw6JCIioiaj+roubaRev1UTgxYRERE1Cfn5+Vi7dm2d7eLj480Wtjh1SERERE1CzZGsmvsj6monJY5oERERUZOjbX/E4OBMs/eDI1pERETUpOjaH7HmyJY5MGgRERFRk6Jvf0RzY9AiIiKiJqVqf8Tqqu+PaE4MWkRERNSk1Hd/RClwMTwRERE1OcHBmQgIyEJBgTvc3QssErIABi0iIiJqIuzt7TWey+XFWgNWzXZSYtAiIiKiJsHDwwPx8fGsDE9EREQkBXOGKENwMTwRERGRRBi0iIiIiCTCoEVEREQkEQYtIiIiIokwaBERERFJhEGLiIiISCIMWkREREQSYdAiIiIikgiDFhEREZFEWBneggRBAAAUFRVZuCdERERkqKqf21U/x/Vh0LKg4uIHG136+vpauCdERERkrOLiYsjlcr1tZIIhcYwkoVarcfPmTbi4uEAmk5n03EVFRfD19cWNGzfg6upq0nM3Bs39+gF+B7z+5n39AL+D5n79gHTfgSAIKC4uho+PD2xs9K/C4oiWBdnY2KB9+/aSfoarq2uz/R8M4PUD/A54/c37+gF+B839+gFpvoO6RrKqcDE8ERERkUQYtIiIiIgkwqDVRDk4OGD+/PlwcHCwdFcsorlfP8DvgNffvK8f4HfQ3K8fsI7vgIvhiYiIiCTCES0iIiIiiTBoEREREUmEQYuIiIhIIgxaRERERBJh0GrE1q1bBz8/Pzg6OiIsLAzHjh3T2fb8+fN47rnn4OfnB5lMhuTkZPN1VCLGXP+GDRvw6KOPws3NDW5uboiMjNTbvjEw5vrT0tIQGhqK1q1bw9nZGUFBQfjkk0/M2FtpGPMdVLd9+3bIZDLExMRI20GJGXP9qampkMlkGg9HR0cz9lYaxv4ZKCwsxOTJk6FQKODg4IDOnTtj3759Zuqt6Rlz/Y8//nitPwMymQxDhgwxY49Ny9j//snJyejSpQucnJzg6+uLN954A/fu3ZO2kwI1Stu3bxfs7e2FTZs2CefPnxcmTZoktG7dWsjNzdXa/tixY8LUqVOFzz77TPD29hZWrlxp3g6bmLHX/8ILLwjr1q0TMjMzhYsXLwrjxo0T5HK58Ntvv5m556Zh7PUfOnRISEtLEy5cuCBkZWUJycnJgq2trbB//34z99x0jP0OqmRnZwvt2rUTHn30UWH48OHm6awEjL3+zZs3C66urkJOTo74UCqVZu61aRn7HZSVlQmhoaHCM888I/zwww9Cdna2cPjwYeH06dNm7rlpGHv9+fn5Gv/9z507J9ja2gqbN282b8dNxNjr37p1q+Dg4CBs3bpVyM7OFr755htBoVAIb7zxhqT9ZNBqpPr16ydMnjxZfF5ZWSn4+PgISUlJdb63Y8eOjT5oNeT6BUEQ7t+/L7i4uAhbtmyRqouSauj1C4Ig9O3bV5gzZ44U3TOL+nwH9+/fFyIiIoSPP/5YiI2NbdRBy9jr37x5syCXy83UO/Mw9jv48MMPhYceekgoLy83Vxcl1dC/B1auXCm4uLgId+/elaqLkjL2+idPniw8+eSTGscSExOFRx55RNJ+cuqwESovL8fJkycRGRkpHrOxsUFkZCQyMjIs2DPzMMX1l5aWoqKiAu7u7lJ1UzINvX5BEJCeno5Lly7hsccek7Krkqnvd/DOO++gbdu2mDBhgjm6KZn6Xv/du3fRsWNH+Pr6Yvjw4Th//rw5uiuJ+nwHe/bsQXh4OCZPngwvLy/07NkT7733HiorK83VbZMxxd+DGzduxKhRo+Ds7CxVNyVTn+uPiIjAyZMnxenFX3/9Ffv27cMzzzwjaV+5qXQjlJeXh8rKSnh5eWkc9/Lywi+//GKhXpmPKa7/rbfego+Pj8b/pI1Ffa9fpVKhXbt2KCsrg62tLT744AM8/fTTUndXEvX5Dn744Qds3LgRp0+fNkMPpVWf6+/SpQs2bdqE3r17Q6VS4f3330dERATOnz8v+eb2UqjPd/Drr7/iu+++w4svvoh9+/YhKysL//jHP1BRUYH58+ebo9sm09C/B48dO4Zz585h48aNUnVRUvW5/hdeeAF5eXkYMGAABEHA/fv38corr2DWrFmS9pVBi5qdxYsXY/v27Th8+HCTWAxsKBcXF5w+fRp3795Feno6EhMT8dBDD+Hxxx+3dNckV1xcjDFjxmDDhg3w9PS0dHcsIjw8HOHh4eLziIgIdOvWDR999BEWLlxowZ6Zj1qtRtu2bbF+/XrY2toiJCQEv//+O5YtW9boglZDbdy4Eb169UK/fv0s3RWzOXz4MN577z188MEHCAsLQ1ZWFqZMmYKFCxdi7ty5kn0ug1Yj5OnpCVtbW+Tm5mocz83Nhbe3t4V6ZT4Nuf73338fixcvxrfffovevXtL2U3J1Pf6bWxs0KlTJwBAUFAQLl68iKSkpEYZtIz9Dq5cuYKrV68iOjpaPKZWqwEALVq0wKVLlxAQECBtp03IFH8H2NnZoW/fvsjKypKii5Krz3egUChgZ2cHW1tb8Vi3bt2gVCpRXl4Oe3t7SftsSg35M1BSUoLt27fjnXfekbKLkqrP9c+dOxdjxozBxIkTAQC9evVCSUkJ4uLiMHv2bNjYSLOaimu0GiF7e3uEhIQgPT1dPKZWq5Genq7xL9amqr7Xv3TpUixcuBD79+9HaGioOboqCVP991er1SgrK5Oii5Iz9jvo2rUrzp49i9OnT4uPYcOG4YknnsDp06fh6+trzu43mCn+DFRWVuLs2bNQKBRSdVNS9fkOHnnkEWRlZYkhGwD++9//QqFQNKqQBTTsz8DOnTtRVlaGl156SepuSqY+119aWlorTFWFbkHKbZ8lXWpPktm+fbvg4OAgpKamChcuXBDi4uKE1q1bi7drjxkzRpgxY4bYvqysTMjMzBQyMzMFhUIhTJ06VcjMzBQuX75sqUtoEGOvf/HixYK9vb3wr3/9S+P25uLiYktdQoMYe/3vvfeecODAAeHKlSvChQsXhPfff19o0aKFsGHDBktdQoMZ+x3U1NjvOjT2+t9++23hm2++Ea5cuSKcPHlSGDVqlODo6CicP3/eUpfQYMZ+B9evXxdcXFyE+Ph44dKlS8LevXuFtm3bCosWLbLUJTRIff8fGDBggDBy5Ehzd9fkjL3++fPnCy4uLsJnn30m/Prrr8KBAweEgIAAYcSIEZL2k0GrEVuzZo3QoUMHwd7eXujXr5/w008/ia8NHDhQiI2NFZ9nZ2cLAGo9Bg4caP6Om4gx19+xY0et1z9//nzzd9xEjLn+2bNnC506dRIcHR0FNzc3ITw8XNi+fbsFem1axnwHNTX2oCUIxl1/QkKC2NbLy0t45plnhFOnTlmg16Zl7J+BI0eOCGFhYYKDg4Pw0EMPCe+++65w//59M/fadIy9/l9++UUAIBw4cMDMPZWGMddfUVEhLFiwQAgICBAcHR0FX19f4R//+Idw584dSfsoEwQpx8uIiIiImi+u0SIiIiKSCIMWERERkUQYtIiIiIgkwqBFREREJBEGLSIiIiKJMGgRERERSYRBi4iIiEgiDFpERM3AuHHjEBMTY+luEDU7DFpEZFHjxo2DTCYTHx4eHhg0aBDOnDlj6a6ZRPVrq3oMGDBAss+7evUqZDIZTp8+rXF81apVSE1NlexziUg7Bi0isrhBgwYhJycHOTk5SE9PR4sWLTB06FBLd8tkNm/eLF5fTk4O9uzZo7VdRUWFZH2Qy+Vo3bq1ZOcnIu0YtIjI4hwcHODt7Q1vb28EBQVhxowZuHHjBm7fvo0nn3wS8fHxGu1v374Ne3t7pKenAwD8/PywcOFCjB49Gs7OzmjXrh3WrVun8Z4VK1agV69ecHZ2hq+vL/7xj3/g7t274uvXrl1DdHQ03Nzc4OzsjB49emDfvn0AgDt37uDFF19EmzZt4OTkhMDAQGzevNng62vdurV4fd7e3nB3dxdHnnbs2IGBAwfC0dERW7duRX5+PkaPHo127dqhZcuW6NWrFz777DON86nVaixduhSdOnWCg4MDOnTogHfffRcA4O/vDwDo27cvZDIZHn/8cQC1pw7Lysrw+uuvo23btnB0dMSAAQNw/Phx8fXDhw9DJpMhPT0doaGhaNmyJSIiInDp0iWDr5uIGLSIyMrcvXsXn376KTp16gQPDw9MnDgR27ZtQ1lZmdjm008/Rbt27fDkk0+Kx5YtW4Y+ffogMzMTM2bMwJQpU3Dw4EHxdRsbG6xevRrnz5/Hli1b8N1332H69Oni65MnT0ZZWRm+//57nD17FkuWLEGrVq0AAHPnzsWFCxfw9ddf4+LFi/jwww/h6elpkuut6uvFixcRFRWFe/fuISQkBF999RXOnTuHuLg4jBkzBseOHRPfM3PmTCxevFjs17Zt2+Dl5QUAYrtvv/0WOTk5SEtL0/q506dPx65du7BlyxacOnUKnTp1QlRUFAoKCjTazZ49G8uXL8eJEyfQokUL/P3vfzfJdRM1G5JuWU1EVIfY2FjB1tZWcHZ2FpydnQUAgkKhEE6ePCkIgiD88ccfgpubm7Bjxw7xPb179xYWLFggPu/YsaMwaNAgjfOOHDlSGDx4sM7P3blzp+Dh4SE+79Wrl8Y5q4uOjhbGjx9fr+sDIDg6OorX5+zsLPz73/8WsrOzBQBCcnJynecYMmSI8OabbwqCIAhFRUWCg4ODsGHDBq1tq86bmZmpcTw2NlYYPny4IAiCcPfuXcHOzk7YunWr+Hp5ebng4+MjLF26VBAEQTh06JAAQPj222/FNl999ZUAQPjjjz+M+QqImjWOaBGRxT3xxBM4ffo0Tp8+jWPHjiEqKgqDBw/GtWvX4OjoiDFjxmDTpk0AgFOnTuHcuXMYN26cxjnCw8NrPb948aL4/Ntvv8VTTz2Fdu3awcXFBWPGjEF+fj5KS0sBAK+//joWLVqERx55BPPnz9dYjP/qq69i+/btCAoKwvTp03HkyBGjrm/lypXi9Z0+fRpPP/20+FpoaKhG28rKSixcuBC9evWCu7s7WrVqhW+++QbXr18HAFy8eBFlZWV46qmnjOpDdVeuXEFFRQUeeeQR8ZidnR369eun8Z0BQO/evcXfKxQKAMCtW7fq/dlEzQ2DFhFZnLOzMzp16oROnTrh4Ycfxscff4ySkhJs2LABADBx4kQcPHgQv/32GzZv3ownn3wSHTt2NPj8V69exdChQ9G7d2/s2rULJ0+eFNdwlZeXi5/x66+/YsyYMTh79ixCQ0OxZs0aABBD3xtvvIGbN2/iqaeewtSpUw3+fG9vb/H6OnXqBGdnZ41rr27ZsmVYtWoV3nrrLRw6dAinT59GVFSU2E8nJyeDP9cU7OzsxN/LZDIAD9aIEZFhGLSIyOrIZDLY2Njgjz/+AAD06tULoaGh2LBhA7Zt26Z1ndBPP/1U63m3bt0AACdPnoRarcby5cvRv39/dO7cGTdv3qx1Dl9fX7zyyitIS0vDm2++KQY9AGjTpg1iY2Px6aefIjk5GevXrzflJYt+/PFHDB8+HC+99BL69OmDhx56CP/973/F1wMDA+Hk5CTeCFCTvb09gAcjY7oEBATA3t4eP/74o3isoqICx48fR/fu3U10JUQEAC0s3QEiorKyMiiVSgAP7vBbu3Yt7t69i+joaLHNxIkTER8fD2dnZ/z1r3+tdY4ff/wRS5cuRUxMDA4ePIidO3fiq6++AgB06tQJFRUVWLNmDaKjo/Hjjz8iJSVF4/0JCQkYPHgwOnfujDt37uDQoUNiUJs3bx5CQkLQo0cPlJWVYe/eveJrphYYGIh//etfOHLkCNzc3LBixQrk5uaKAcjR0RFvvfUWpk+fDnt7ezzyyCO4ffs2zp8/jwkTJqBt27ZwcnLC/v370b59ezg6OkIul2t8hrOzM1599VVMmzYN7u7u6NChA5YuXYrS0lJMmDBBkusiaq44okVEFrd//34oFAooFAqEhYXh+PHj2Llzp1iaAABGjx6NFi1aYPTo0XB0dKx1jjfffBMnTpxA3759sWjRIqxYsQJRUVEAgD59+mDFihVYsmQJevbsia1btyIpKUnj/ZWVlZg8eTK6deuGQYMGoXPnzvjggw8APBglmjlzJnr37o3HHnsMtra22L59uyTfxZw5cxAcHIyoqCg8/vjj8Pb2rlXRfe7cuXjzzTcxb948dOvWDSNHjhTXTbVo0QKrV6/GRx99BB8fHwwfPlzr5yxevBjPPfccxowZg+DgYGRlZeGbb76Bm5ubJNdF1FzJBEEQLN0JIqK6XL16FQEBATh+/DiCg4M1XvPz80NCQgISEhIs0zkiIh04dUhEVq2iogL5+fmYM2cO+vfvXytkERFZM04dEpFV+/HHH6FQKHD8+PFa66os7b333kOrVq20PgYPHmzp7hGRFeDUIRFRPRUUFNSqpF7FyckJ7dq1M3OPiMjaMGgRERERSYRTh0REREQSYdAiIiIikgiDFhEREZFEGLSIiIiIJMKgRURERCQRBi0iIiIiiTBoEREREUmEQYuIiIhIIv8PE8jYag2fUuAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAat1JREFUeJzt3XlcVOX+B/DPgAwgyiiQLIZCiGsqioqQZRb3ornxswWtFE2zvFISmqm5poW5kvuSir/SXK5er5nXUtLbLREXMHdvGC6lgwIyICQQ8/z+4DdHBmaGGZiF5fN+vealc84z5zxzMvn4PM/5HpkQQoCIiIiIzM7O1h0gIiIiqq8YtIiIiIgshEGLiIiIyEIYtIiIiIgshEGLiIiIyEIYtIiIiIgshEGLiIiIyEIYtIiIiIgshEGLiIiIyEIYtIiICImJiZDJZLh+/bqtu0JUrzBoEZFVnDp1CjExMejUqRNcXFzQqlUrvPLKK/jvf/9bqe2zzz4LmUwGmUwGOzs7uLq6ol27dhg5ciQOHz5s0nm//vpr9O3bFy1atEDjxo3xxBNP4JVXXsGhQ4fM9dUq+eSTT7Bv375K248fP465c+ciNzfXYueuaO7cudK1lMlkaNy4MTp27IiZM2ciLy/PLOfYvn07EhISzHIsovqGQYuIrOLTTz/Fnj178Pzzz+Ozzz7D+PHj8cMPP6B79+64cOFCpfaPP/44vvjiC/zv//4vFi9ejCFDhuD48eP461//iqioKJSUlFR5ziVLlmDIkCGQyWSYPn06li9fjhdffBG//PILduzYYYmvCcBw0Jo3b55Vg5bG2rVr8cUXX2DZsmVo3749Pv74Y/Tv3x/meNwtgxaRfo1s3QEiahji4uKwfft2yOVyaVtUVBQ6d+6MhQsX4ssvv9Rqr1Ao8Prrr2ttW7hwId59912sWbMGfn5++PTTT/We788//8T8+fPxl7/8Bd99912l/Xfv3q3hN6o9CgsL0bhxY4NtXnrpJXh4eAAA3n77bbz44ovYu3cvTpw4gdDQUGt0k6hB4ogWEVlFWFiYVsgCgMDAQHTq1AmXL1826hj29vZYsWIFOnbsiFWrVkGlUultm5WVhby8PDz11FM697do0ULr/cOHDzF37ly0bdsWTk5O8Pb2xrBhw3Dt2jWpzZIlSxAWFgZ3d3c4OzsjODgYf//737WOI5PJUFBQgK1bt0rTdaNHj8bcuXPx/vvvAwD8/f2lfeXXRH355ZcIDg6Gs7Mz3NzcMHz4cNy6dUvr+M8++yyefPJJnDlzBs888wwaN26MGTNmGHX9ynvuuecAABkZGQbbrVmzBp06dYKjoyN8fHwwceJErRG5Z599Ft988w1u3LghfSc/Pz+T+0NUX3FEi4hsRgiBzMxMdOrUyejP2NvbY8SIEZg1axZ+/PFHDBw4UGe7Fi1awNnZGV9//TXeeecduLm56T1maWkpBg0ahKSkJAwfPhyTJk1Cfn4+Dh8+jAsXLiAgIAAA8Nlnn2HIkCF47bXXUFxcjB07duDll1/GgQMHpH588cUXGDduHHr16oXx48cDAAICAuDi4oL//ve/+Oqrr7B8+XJpdOmxxx4DAHz88ceYNWsWXnnlFYwbNw737t3DypUr8cwzzyAtLQ3NmjWT+pudnY0BAwZg+PDheP311+Hp6Wn09dPQBEh3d3e9bebOnYt58+YhPDwcEyZMwNWrV7F27VqcOnUKP/30ExwcHPDhhx9CpVLht99+w/LlywEATZo0Mbk/RPWWICKykS+++EIAEJs2bdLa3rdvX9GpUye9n/vHP/4hAIjPPvvM4PFnz54tAAgXFxcxYMAA8fHHH4szZ85Uard582YBQCxbtqzSPrVaLf2+sLBQa19xcbF48sknxXPPPae13cXFRURHR1c61uLFiwUAkZGRobX9+vXrwt7eXnz88cda28+fPy8aNWqktb1v374CgFi3bp3e713enDlzBABx9epVce/ePZGRkSHWr18vHB0dhaenpygoKBBCCLFlyxatvt29e1fI5XLx17/+VZSWlkrHW7VqlQAgNm/eLG0bOHCgaN26tVH9IWpoOHVIRDZx5coVTJw4EaGhoYiOjjbps5oRk/z8fIPt5s2bh+3bt6Nbt2749ttv8eGHHyI4OBjdu3fXmq7cs2cPPDw88M4771Q6hkwmk37v7Ows/f7+/ftQqVR4+umnkZqaalL/K9q7dy/UajVeeeUVZGVlSS8vLy8EBgbi6NGjWu0dHR0xZswYk87Rrl07PPbYY/D398dbb72FNm3a4JtvvtG7tuvIkSMoLi5GbGws7Owe/ah488034erqim+++cb0L0rUAHHqkIisTqlUYuDAgVAoFPj73/8Oe3t7kz7/4MEDAEDTpk2rbDtixAiMGDECeXl5SElJQWJiIrZv347BgwfjwoULcHJywrVr19CuXTs0amT4r8QDBw5gwYIFOHv2LIqKiqTt5cNYdfzyyy8QQiAwMFDnfgcHB633LVu2rLTerSp79uyBq6srHBwc8Pjjj0vTofrcuHEDQFlAK08ul+OJJ56Q9hORYQxaRGRVKpUKAwYMQG5uLv7zn//Ax8fH5GNoykG0adPG6M+4urriL3/5C/7yl7/AwcEBW7duRUpKCvr27WvU5//zn/9gyJAheOaZZ7BmzRp4e3vDwcEBW7Zswfbt203+DuWp1WrIZDL861//0hk6K655Kj+yZqxnnnlGWhdGRNbDoEVEVvPw4UMMHjwY//3vf3HkyBF07NjR5GOUlpZi+/btaNy4Mfr06VOtfvTo0QNbt27FnTt3AJQtVk9JSUFJSUml0SONPXv2wMnJCd9++y0cHR2l7Vu2bKnUVt8Il77tAQEBEELA398fbdu2NfXrWETr1q0BAFevXsUTTzwhbS8uLkZGRgbCw8OlbTUd0SOqz7hGi4isorS0FFFRUUhOTsbu3burVbuptLQU7777Li5fvox3330Xrq6uetsWFhYiOTlZ575//etfAB5Ni7344ovIysrCqlWrKrUV/1/Q097eHjKZDKWlpdK+69ev6yxM6uLiorMoqYuLCwBU2jds2DDY29tj3rx5lQqICiGQnZ2t+0taUHh4OORyOVasWKHVp02bNkGlUmnd7eni4mKw1AZRQ8YRLSKyismTJ2P//v0YPHgwcnJyKhUorVicVKVSSW0KCwuRnp6OvXv34tq1axg+fDjmz59v8HyFhYUICwtD79690b9/f/j6+iI3Nxf79u3Df/7zH0RGRqJbt24AgFGjRuF///d/ERcXh5MnT+Lpp59GQUEBjhw5gr/97W8YOnQoBg4ciGXLlqF///549dVXcffuXaxevRpt2rTBuXPntM4dHByMI0eOYNmyZfDx8YG/vz9CQkIQHBwMAPjwww8xfPhwODg4YPDgwQgICMCCBQswffp0XL9+HZGRkWjatCkyMjLwj3/8A+PHj8eUKVNqdP1N9dhjj2H69OmYN28e+vfvjyFDhuDq1atYs2YNevbsqfXfKzg4GDt37kRcXBx69uyJJk2aYPDgwVbtL1GtZctbHomo4dCUJdD3MtS2SZMmIjAwULz++uviu+++M+p8JSUlYuPGjSIyMlK0bt1aODo6isaNG4tu3bqJxYsXi6KiIq32hYWF4sMPPxT+/v7CwcFBeHl5iZdeeklcu3ZNarNp0yYRGBgoHB0dRfv27cWWLVuk8gnlXblyRTzzzDPC2dlZANAq9TB//nzRsmVLYWdnV6nUw549e0SfPn2Ei4uLcHFxEe3btxcTJ04UV69e1bo2hkpfVKTp37179wy2q1jeQWPVqlWiffv2wsHBQXh6eooJEyaI+/fva7V58OCBePXVV0WzZs0EAJZ6ICpHJoQZHnRFRERERJVwjRYRERGRhTBoEREREVkIgxYRERGRhTBoEREREVkIgxYRERGRhTBoEREREVkIC5bakFqtxu3bt9G0aVM+woKIiKiOEEIgPz8fPj4+sLMzPGbFoGVDt2/fhq+vr627QURERNVw69YtPP744wbbMGjZUNOmTQGU/Ycy9Mw2IiIiqj3y8vLg6+sr/Rw3hEHLhjTTha6urgxaREREdYwxy364GJ6IiIjIQhi0iIiIiCyEQYuIiIjIQrhGi4iIqI4pLS1FSUmJrbtRbzk4OMDe3t4sx2LQIiIiqiOEEFAqlcjNzbV1V+q9Zs2awcvLq8Z1Lhm0iIiI6ghNyGrRogUaN27MYtcWIIRAYWEh7t69CwDw9vau0fFsvkZr9erV8PPzg5OTE0JCQnDy5EmD7Xfv3o327dvDyckJnTt3xsGDB7X2CyEwe/ZseHt7w9nZGeHh4fjll190HquoqAhBQUGQyWQ4e/astP3YsWMYOnQovL294eLigqCgIGzbtk3rs4mJiZDJZFovJyen6l0EIiKiKpSWlkohy93dHc7OznBycuLLzC9nZ2e4u7ujRYsWyM3NRWlpaY3+u9k0aO3cuRNxcXGYM2cOUlNT0bVrV0REREgpsqLjx49jxIgRGDt2LNLS0hAZGYnIyEhcuHBBarNo0SKsWLEC69atQ0pKClxcXBAREYGHDx9WOt7UqVPh4+Oj8zxdunTBnj17cO7cOYwZMwajRo3CgQMHtNq5urrizp070uvGjRs1vCJERES6adZkNW7c2MY9aRg017nGa+GEDfXq1UtMnDhRel9aWip8fHxEfHy8zvavvPKKGDhwoNa2kJAQ8dZbbwkhhFCr1cLLy0ssXrxY2p+bmyscHR3FV199pfW5gwcPivbt24uLFy8KACItLc1gX1944QUxZswY6f2WLVuEQqEw5mvqpVKpBAChUqlqdBwiIqr//vjjD3Hp0iXxxx9/2LorDYKh623Kz2+bjWgVFxfjzJkzCA8Pl7bZ2dkhPDwcycnJOj+TnJys1R4AIiIipPYZGRlQKpVabRQKBUJCQrSOmZmZiTfffBNffPGF0f8yUKlUcHNz09r24MEDtG7dGr6+vhg6dCguXrxo8BhFRUXIy8vTehEREVH9ZbPF8FlZWSgtLYWnp6fWdk9PT1y5ckXnZ5RKpc72SqVS2q/Zpq+NEAKjR4/G22+/jR49euD69etV9nXXrl04deoU1q9fL21r164dNm/ejC5dukClUmHJkiUICwvDxYsX9T5gMj4+HvPmzavyfPVRdnY2iouL9e6Xy+Vwd3e3Yo+IiIgsr8Hddbhy5Urk5+dj+vTpRrU/evQoxowZg40bN6JTp07S9tDQUISGhkrvw8LC0KFDB6xfvx7z58/Xeazp06cjLi5Oeq95KGVtZa5wlJ2djVWrVknvVaqmyMlxh5tbNhSKfGl7TEwMwxYRUT00evRobN26FQDQqFEjuLm5oUuXLhgxYgRGjx4NOzvjJtgSExMRGxtbp8pb2CxoeXh4wN7eHpmZmVrbMzMz4eXlpfMzXl5eBttrfs3MzNS6HTMzMxNBQUEAgO+//x7JyclwdHTUOk6PHj3w2muvSX8QAODf//43Bg8ejOXLl2PUqFEGv4+DgwO6deuG9PR0vW0cHR0rnbe2Mmc4Kh/WUlO74euvB0EIO8hkagwefADdu6dVakdEROZny9mF/v37Y8uWLSgtLUVmZiYOHTqESZMm4e9//zv279+PRo3q59iPzb6VXC5HcHAwkpKSEBkZCQBQq9VISkpCTEyMzs+EhoYiKSkJsbGx0rbDhw9LI0v+/v7w8vJCUlKSFKzy8vKQkpKCCRMmAABWrFiBBQsWSJ+/ffs2IiIisHPnToSEhEjbjx07hkGDBuHTTz/F+PHjq/w+paWlOH/+PF544QVTLoNVVOd/LEuEI5WqqXQcABDCDl9/PQgBAela4Y2IiMyv4j+g9bHU7IKjo6M0INKyZUt0794dvXv3xvPPP4/ExESMGzcOy5Ytw5YtW/Drr7/Czc0NgwcPxqJFi9CkSRMcO3YMY8aMAQCpfticOXMwd+5cfPHFF/jss89w9epVuLi44LnnnkNCQgJatGhh9u9hKpvGx7i4OERHR6NHjx7o1asXEhISUFBQIF3IUaNGoWXLloiPjwcATJo0CX379sXSpUsxcOBA7NixA6dPn8aGDRsAlF342NhYLFiwAIGBgfD398esWbPg4+MjhblWrVpp9aFJkyYAgICAAGlt1dGjRzFo0CBMmjQJL774orS+Sy6XSwviP/roI/Tu3Rtt2rRBbm4uFi9ejBs3bmDcuHGWvWgmqunIlDnDUU6OOyrefyGEHXJy3KwWtLhWjIgaKmP/YWzN2YXnnnsOXbt2xd69ezFu3DjY2dlhxYoV8Pf3x6+//oq//e1vmDp1KtasWYOwsDAkJCRg9uzZuHr1KoBHP8NLSkowf/58tGvXDnfv3kVcXBxGjx5dqdamLdg0aEVFReHevXuYPXs2lEolgoKCcOjQIWkx+82bN7XmbcPCwrB9+3bMnDkTM2bMQGBgIPbt24cnn3xSajN16lQUFBRg/PjxyM3NRZ8+fXDo0CGTiolu3boVhYWFiI+Pl0IeAPTt2xfHjh0DANy/fx9vvvkmlEolmjdvjuDgYBw/fhwdO3as4VUxr+qOTGnmv6sKR7m5uUZXzXVzy4ZMptY6nkymhptbTnW+msls/a85IiKqrH379jh37hwAaM1Y+fn5YcGCBXj77bexZs0ayOVyKBQKyGSySkuM3njjDen3TzzxBFasWIGePXviwYMHUhizFZtPiMbExOidKtSEmvJefvllvPzyy3qPJ5PJ8NFHH+Gjjz4y6vx+fn4QQmhtS0xMRGJiosHPLV++HMuXLzfqHLWBqSNTf/75J4CycAQIAI8e81A+HGnaGUOhyMfgwQcqhT1rjWbVxn/NERE1dEIIaSrwyJEjiI+Px5UrV5CXl4c///wTDx8+RGFhocFyTGfOnMHcuXPx888/4/79+1Cr1QDKBmxsPQBi86BF1lGzaTvtoFUhl5qke/c0BASkIyfHDW5uOTZdm6VvGpWIiKzn8uXL8Pf3x/Xr1zFo0CBMmDABH3/8Mdzc3PDjjz9i7NixKC4u1hu0CgoKEBERgYiICGzbtg2PPfYYbt68iYiIiFrxD2cGrQaiutN2OTnuqPykppqtq1Io8m0ebAxNoxIRkXV8//33OH/+PN577z2cOXMGarUaS5culZYN7dq1S6u9XC6v9OzBK1euIDs7GwsXLpRKJp0+fdo6X8AINn+oNFmHZtpOJisbTjV22k4T0MozdV2VXC43a7ua0jeNqlI1tcr5iYgaoqKiIiiVSvz+++9ITU3FJ598gqFDh2LQoEEYNWoU2rRpg5KSEqxcuRK//vorvvjiC6xbt07rGH5+fnjw4AGSkpKQlZWFwsJCtGrVCnK5XPrc/v379daztAWOaDUgpkzbOTg4AKh6XZWmnSHu7u6IiYmpNXf71Ya7H4mIGppDhw7B29sbjRo1QvPmzdG1a1esWLEC0dHRsLOzQ9euXbFs2TJ8+umnmD59Op555hnEx8dr1bEMCwvD22+/jaioKGRnZ0vlHRITEzFjxgysWLEC3bt3x5IlSzBkyBAbfttHGLQaGGOn7RQKhfR7QwGtfDtDatNdfLa++5GIyBZsObtgzE1mAPDee+/hvffe09o2cuRIrfdr167F2rVrtbaNGDECI0aM0NpW8UY3W2HQqufM9T9WbVhXZS62vvuRiMgWatvsQkPBoNXAGHunXW1bV2UO5ftqaJSuLn0nIiJTMERZH4NWPVfdgqX18V8+9fE7ERFR7cag1UBU51E69TFw1MfvREREtReDVgPBO+3K8FmHRERkTQxaDQTvtKv5A7aJiIhMxaDVQNTmO+2sNcpU3fVqRERE1cWg1YDUpucMalQcZdLHnKNM1VmvRkREVB0MWg1MbauHVXH0SN90njlHmbhejYiIrIVBq56rS/WwrPWgZ3OuV+PieiIi2zt27Bj69euH+/fvo1mzZkZ9xs/PD7GxsYiNjbVo3xi06rm6UjvKmtN55lqvZotpTyKiumj06NHYunUr3nrrrUoPip44cSLWrFmD6Ohoox7TU9cwaDUAdeGHvLWn88yxXs0W055ERHWVr68vduzYgeXLl8PZ2RkA8PDhQ2zfvh2tWrWyce8sx67qJkSWp5nOK8/S5ScUinz4+98wS5BLTe2GhIRYbN0ajYSEWKSmdjNDD4mI6o/u3bvD19cXe/fulbbt3bsXrVq1Qrduj/7OLCoqwrvvvosWLVrAyckJffr0walTp7SOdfDgQbRt2xbOzs7o168frl+/Xul8P/74I55++mk4OzvD19cX7777LgoKCiz2/fRh0KJaQTOdpwlblig/Yan1avqmPVWqpib3kYjIWn77DTh6tOxXa3njjTewZcsW6f3mzZsxZswYrTZTp07Fnj17sHXrVqSmpqJNmzaIiIhATk7ZP7xv3bqFYcOGYfDgwTh79izGjRuHadOmaR3j2rVr6N+/P1588UWcO3cOO3fuxI8//oiYmBjLf8kKOHVItYaly09Yar0a72Ikorpm0yZg/HhArQbs7IANG4CxYy1/3tdffx3Tp0/HjRs3AAA//fQTduzYgWPHjgEACgoKsHbtWiQmJmLAgAEAgI0bN+Lw4cPYtGkT3n//faxduxYBAQFYunQpAKBdu3Y4f/48Pv30U+k88fHxeO2116SF7oGBgVixYgX69u2LtWvXwsnJyfJf9v8xaJFNVRw90ld+wlx3RVpivZqtq+7zzkciMsVvvz0KWUDZr2+9BUREAI8/btlzP/bYYxg4cCASExMhhMDAgQPh4eEh7b927RpKSkrw1FNPSdscHBzQq1cvXL58GQBw+fJlhISEaB03NDRU6/3PP/+Mc+fOYdu2bdI2IQTUajUyMjLQoUMHS3w9nRi0yKbqwl2R+oJMVlYWANtW3eedj0Rkql9+eRSyNEpLgfR0ywctoGz6UDOFt3r1aouc48GDB3jrrbfw7rvvVtpn7YX3DFpEBhgbZGxVdZ93PhKRqQIDy6YLy4cte3ugTRvrnL9///4oLi6GTCZDRESE1r6AgADI5XL89NNPaN26NQCgpKQEp06dkqYBO3TogP3792t97sSJE1rvu3fvjkuXLqGNtb6UAQxaZFOWGJEx51SasUEGsPy0Z1WsVfCViOq2xx8vW5P11ltlI1n29sD69dYZzQIAe3t7aRrQ3t5ea5+LiwsmTJiA999/H25ubmjVqhUWLVqEwsJCjP3/RWRvv/02li5divfffx/jxo3DmTNnKtXf+uCDD9C7d2/ExMRg3LhxcHFxwaVLl3D48GGjfuaYE4NWA2fr9T3mHpGx5FSaoSAzbNgwrXUGGtaa9uTzG4nIFGPHlq3JSk8vG8myVsjScHV11btv4cKFUKvVGDlyJPLz89GjRw98++23aN68OYCyqb89e/bgvffew8qVK9GrVy988skneOONN6RjdOnSBf/+97/x4Ycf4umnn4YQAgEBAYiKirL4d6uIQaseMTU01bb1PeYYkbHUVFpVQcbDwwPe3t4mHdOceOcjEZnq8cetF7Cqqvi+b98+6fdOTk5YsWIFVqxYobf9oEGDMGjQIK1tFctE9OzZE999953eY+iqvWUJDFr1RHVCU21a32OJERlzTqVZI8jUZHTR1nc+EhGRbgxa9URNQ5Ot1/eYO8iYO7hZOsjUdHTRlnc+EhGRfgxa9ZCpoak2rO8xd5Axd3CzdJAxdtTQUDtb3flIRET6MWjVM9UJTbVhfY+pQaaq2laWGIGyZpAxdHdjedYu+EpERKZh0KpnqhOazBlKarLOyNggY8w0m7mCW25ubqXjWjrImDIiWRcKvhKReQkhbN2FBsFc15lBq56pTmgy17RYddYZGTsiUz7waEatNPSN/lQ3uOk7XlRUFBQKRaXPmzPIVGdEkiGKqGFwcHAAABQWFsLZ2dnGvan/CgsLATy67tXFoFXPVDc0mWNarDrrjAyNyKhUKuzcuRMAsGvXLp3Hqmr0x5gRqHv37hl9PGNLOFR3ZK82TOMSUe1kb2+PZs2a4e7duwCAxo0bQyaT2bhX9Y8QAoWFhbh79y6aNWtWqaiqqRi06iFjQ5Ol1/cYu87I2BGZiseravTH2CKiJSUl0vENHU/Trio1uYOQZRqIyBAvLy8AkMIWWU6zZs2k610TDFr1RHVCkyXX95i7XISu4zVvft/g6I+pRUTNNZpUk1IbLNNARIbIZDJ4e3ujRYsWRv/jj0zn4OBQ45EsDQateqK6ockS63vMXS5C3/HGjv3crKM/Dg5FAASA8kPxAg4O1S/YamzgLB+ADY1I8u5BIgLKphHNFQTIshi06pHasii6qpGhiovZAcMjZ/qOV1IiN+voT0mJI7RDFgDIUFJS/alTYwMn7x4kIqqfGLTI7KpaZ7R3716dn9NX9dzQ8fz9b5ittlVtL5pKRER1D4MWmV111xnpG82p6njmWsRv7vVRpgS32vaAbyIiMg8GLTIbY9cZGXs3YnmGjqfr7kJTptkaNXr0v4Gh85RvZwxTgpslHvBdk+KxRERkHjYPWqtXr8bixYuhVCrRtWtXrFy5Er169dLbfvfu3Zg1axauX7+OwMBAfPrpp3jhhRek/UIIzJkzBxs3bkRubi6eeuoprF27FoGBgZWOVVRUhJCQEPz8889IS0tDUFCQtO/cuXOYOHEiTp06hcceewzvvPMOpk6dalJfGhp964yysrKk6UJT7kY09k5KHx+fGgWGFi1aGHWeiu2MYWypjfIFWQ1do9zcXKPupOQIGRFR7WDToLVz507ExcVh3bp1CAkJQUJCAiIiInD16lWdP9SOHz+OESNGID4+HoMGDcL27dsRGRmJ1NRUPPnkkwCARYsWYcWKFdi6dSv8/f0xa9YsRERE4NKlS3ByctI63tSpU+Hj44Off/5Za3teXh7++te/Ijw8HOvWrcP58+fxxhtvoFmzZhg/frzRfWmIDP3QNvVuRGstEDf3eapT7V5TNLWqa/Tnn38a1QdLjJAREZHpZMKGD00KCQlBz549pX95q9Vq+Pr64p133sG0adMqtY+KikJBQQEOHDggbevduzeCgoKwbt06CCHg4+ODyZMnY8qUKQDKqot7enoiMTERw4cPlz73r3/9C3FxcdizZw86deqkNaK1du1afPjhh1AqldIPzWnTpmHfvn24cuWKUX0xRl5eHhQKBVQqFVxdXU24cnXLnTt3sGHDBmRk+GHr1uhK+6OjE+HvfwPjx483qe5VbaZv2q58tXtdqrpGw4YNQ+fOnas8l7GjiPXpmhMRWYspP79tNqJVXFyMM2fOYPr06dI2Ozs7hIeHIzk5WednkpOTERcXp7UtIiIC+/btAwBkZGRAqVQiPDxc2q9QKBASEoLk5GQpaGVmZuLNN9/Evn370LhxY53neeaZZ7RGJiIiIvDpp5/i/v37aN68eZV90aWoqAhFRUXS+7y8PL1t66OGVPW8utXuTa3lVdUUoblrmhERkWlsFrSysrJQWloKT09Pre2enp7SqFFFSqVSZ3ulUint12zT10YIgdGjR+Ptt99Gjx49cP36dZ3n8ff3r3QMzb7mzZtX2Rdd4uPjMW/ePL376ztWPdemr9q9KbW8qpoirKslJriQn4jqC5svhre2lStXIj8/X2skzVqmT5+uNQqWl5cHX19fq/fD2lj1vDJLVLvXFdwCAtLr3CgiF/ITUX1is6Dl4eEBe3t7ZGZmam3PzMzU+xBHLy8vg+01v2ZmZmqtO8nMzJTWX33//fdITk6Go6Oj1nF69OiB1157DVu3btV7nvLnqKovujg6OlY6b0PAqueVVbfavYODg87j6QtusbEJdW4U0dgF+lzIT0R1gc2CllwuR3BwMJKSkhAZGQmgbDF8UlISYmJidH4mNDQUSUlJiI2NlbYdPnwYoaGhAAB/f394eXkhKSlJClZ5eXlISUnBhAkTAAArVqzAggULpM/fvn0bERER2LlzJ0JCQqTzfPjhhygpKZF+sB0+fBjt2rVD8+bNjeoLaWtIIcoY1a12r1AodB7P0BShsSUmaqvq1F0jIqotbDp1GBcXh+joaPTo0QO9evVCQkICCgoKMGbMGADAqFGj0LJlS8THxwMAJk2ahL59+2Lp0qUYOHAgduzYgdOnT2PDhg0Ayp5qHhsbiwULFiAwMFAq7+Dj4yOFuVatWmn1oUmTJgCAgIAAPP744wCAV199FfPmzcPYsWPxwQcf4MKFC/jss8+wfPly6XNV9YXIEHNXu6/qRgNzVc+3NlPqrhER1UY2DVpRUVG4d+8eZs+eDaVSiaCgIBw6dEhaZH7z5k3Y2T36wREWFobt27dj5syZmDFjBgIDA7Fv3z6tulVTp05FQUEBxo8fj9zcXPTp0weHDh2qVEPLEIVCge+++w4TJ05EcHAwPDw8MHv2bKmGlrF9ITLEnNXuqwpu/fr1k0ZjNRo3blyrRxp5xyQR1Qc2raPV0DWUOlr0iLkXemtqlGmUTbMZP0VYGxeUN8S6a0RUt9SJOlpEDZGtqtDXxcrwDanuGhHVXwxaRFZmzhEkcz9fsjZh3TUiqg8YtIjqgOoW8KxqnVNWVpZJx7MG1l0jovqEQYuolqvJuq6qKsNrRr2MPZ41sO4aEdUnDFpEtVxVj9nR1w4wbp1TbVy/xRBFRPUFgxZRHWLqequq1jnZcv0Wn2dIRA0BgxZRHVHdulL61jmZs06VqaGJzzMkooaCQYuojqhqvVV5xpR9MOV4hlQnNNVkOpSIqC5h0CKqI0ypK2VoQbmm9IO56lTVNDTV1fITRETGYNAiqiNMrStV1ZSbJepUmRqa+JgdIqrvGLSI6hBDdaVsfbzqhCZzTV8SEdVWDFpEtZyxj9kxtoCnuY+nUZ3QxMfsEFF9x6BFVMuZu4CnpQqCVic08TE7RFTfMWgR1QHmLnFgiZIJ1Q1N5p4OJSKqTRi0iMhsjA1Nlpq+JCKqbRi0iKhGqhOa3N3d8frrr6OwsFDvcRs3blxri5Wyqj0RGYtBi4iMYihcREVFQQiBZs2a6dyvqzL8l19+Kb3XV3urNlaGZ1V7IjIFgxYRValiuKhpMCof2AzV3qqNleGN7VNt7DsRWR+DFhFp0TVylZWVJf3enMGoPhQs1Rc6iYgABi0iKqeqaTFzB6O6XrCUjw8ioqrYVd2EiBoKXc8tzMjwg0rVFIDhYFQdmtpb5dWVgqX6QqfmWhERARzRIiI9dI3WBASkm7WSuzkLllr7TsC6PhpHRNbBoEVElegbrYmNTTB7JXdzFCy1xZ2AfHwQERmDQYuIKjE0WmOJSu76am8ZS9eUp64F6ua8E5CPDyIiYzBoEVElVY3W1DQYVfcB2Maw9AL18n0yFDpZ1Z6IAAYtItKhuqM1xoYLSz3Y2hrlIizVdyKqnxi0iEgnQ6M1w4YNg4eHh1Z7U8OFJYKItRaoM0QRkbEYtIhIYuxzC318fGpl2OACdSKqbRi0iEhS16fFuECdiGobBi0i0lJbQ5SxLHFXZEXWrtlFRHUXgxYR1XnGTnma405AW9TsIqK6i0GLiOo8a0552qJmFxHVXQxaRFQv2GL0iA+VJqKq8KHSRETVwIdKE5ExGLSIiKrBUM0uIiINBi0iomrQ1OwqjzW7iKgirtEiIqoGU2t2sSQEUcPEoEVEVE3G1uxiSQiihotBi4jIBMbW7MrNzZV+n5WVZdSxWRKCqP5h0CIiMoG+ml0qlQo7d+6U3u/atUvvMfTV3iKi+sfmi+FXr14NPz8/ODk5ISQkBCdPnjTYfvfu3Wjfvj2cnJzQuXNnHDx4UGu/EAKzZ8+Gt7c3nJ2dER4ejl9++UWrzZAhQ9CqVSs4OTnB29sbI0eOxO3bt6X9c+fOhUwmq/RycXGR2iQmJlba7+TkZIYrQkS1nbu7O7y9vbVeCoVCq41K1RQZGX6Vyj2kpnZDQkIstm6NRkJCLFJTu1mz60RkZTYNWjt37kRcXBzmzJmD1NRUdO3aFREREbh7967O9sePH8eIESMwduxYpKWlITIyEpGRkbhw4YLUZtGiRVixYgXWrVuHlJQUuLi4ICIiAg8fPpTa9OvXD7t27cLVq1exZ88eXLt2DS+99JK0f8qUKbhz547Wq2PHjnj55Ze1+uPq6qrV5saNG2a+QkRUF+kLU1XV3srKyqr0d092drbNvgcR1ZxMCCFsdfKQkBD07NlTWiSqVqvh6+uLd955B9OmTavUPioqCgUFBThw4IC0rXfv3ggKCsK6desghICPjw8mT56MKVOmACgbzvf09ERiYiKGDx+usx/79+9HZGQkioqK4ODgUGn/zz//jKCgIPzwww94+umnAZSNaMXGxmqtwzBVXl4eFAoFVCoVXF1dq30cIrK9O3fuYMOGDVCpmiIhIVarxpZMpkZsbAJyctyxdWt0pc9GRyfC31//P9TMtUiedz4SmYcpP79ttkaruLgYZ86cwfTp06VtdnZ2CA8PR3Jyss7PJCcnIy4uTmtbREQE9u3bBwDIyMiAUqlEeHi4tF+hUCAkJATJyck6g1ZOTg62bduGsLAwnSELAD7//HO0bdtWClkaDx48QOvWraFWq9G9e3d88skn6NSpk97vXFRUhKKiIul9Xl6e3rZEVDcZKmSqqb1VMYRVVXvLHIvkeecjkW3YbOowKysLpaWl8PT01Nru6ekJpVKp8zNKpdJge82vxhzzgw8+gIuLC9zd3XHz5k3885//1HnOhw8fYtu2bRg7dqzW9nbt2mHz5s345z//iS+//BJqtRphYWH47bff9H7n+Ph4KBQK6eXr66u3LRHVTYYKmWpqb2n2V6y9pW9dlzkYG9Z45yOReTXYuw7ff/99jB07Fjdu3MC8efMwatQoHDhwADKZTKvdP/7xD+Tn5yM6Wnu4PzQ0FKGhodL7sLAwdOjQAevXr8f8+fN1nnP69OlaI3J5eXkMW0T1TFWFTPXV3rL2A6p55yORddgsaHl4eMDe3h6ZmZla2zMzM+Hl5aXzM15eXgbba37NzMyEt7e3VpugoKBK5/fw8EDbtm3RoUMH+Pr64sSJE1rhCSibNhw0aFClUbKKHBwc0K1bN6Snp+tt4+joCEdHR4PHIaK6z1Ah02HDhsHDwwNA2cj+3r179S6SDwhIt0gIsnaoI2rIbDZ1KJfLERwcjKSkJGmbWq1GUlJSpbCjERoaqtUeAA4fPiy19/f3h5eXl1abvLw8pKSk6D2m5rwAtNZPAWVrvo4ePVpp2lCX0tJSnD9/XivgEVHDoauQqb//jUpBycfHRyoJoQlc1nxAdVV3PhKRedl06jAuLg7R0dHo0aMHevXqhYSEBBQUFGDMmDEAgFGjRqFly5aIj48HAEyaNAl9+/bF0qVLMXDgQOzYsQOnT5/Ghg0bAAAymQyxsbFYsGABAgMD4e/vj1mzZsHHxweRkZEAgJSUFJw6dQp9+vRB8+bNce3aNcyaNQsBAQGVwtjmzZvh7e2NAQMGVOr7Rx99hN69e6NNmzbIzc3F4sWLcePGDYwbN86CV4yIait9hUzLq3hXn0qlAoAqF8mrVCqz/SPOUKjjFCKR+dk0aEVFReHevXuYPXs2lEolgoKCcOjQIWma7ubNm7Cze/QXQlhYGLZv346ZM2dixowZCAwMxL59+/Dkk09KbaZOnYqCggKMHz8eubm56NOnDw4dOiQVE23cuDH27t2LOXPmoKCgAN7e3ujfvz9mzpypNa2nVquRmJiI0aNHw97evlLf79+/jzfffBNKpRLNmzdHcHAwjh8/jo4dO1rqchGRFVWnFIKpd+uVlJQAeLSua//+QSibaNBe16VpZw7VvfORiKrHpnW0GjrW0SKqnSqWQtC3cLympRAuX74sParH0LqpV155BR06dKj2eYBHdb6qOtf48eO5BIKoCnWijhYRUW1VfiTLUCipaSmEZs2aAdC/bkqzGF7TribKryEztFi/4lozIqoZBi0iIj2sdTegNdZNVbWGLDc3FzKZDMXFxbhz506l/awaT1Q9DFpERHpYa+G4tdZN6QtK2dnZ0hSmIawaT2Q6mz5UmoioNjNU5d2cqqoYb2msGk9kORzRIiLSo6oq7+ZkaN2UKczx4GhWjScyHwYtIiIDzBWAdNFV5FTX8XUtUNcVqFQqFXbu3FnleQ1NAbJqPJF5MWgREVVBXwCqqeoUOQWqKj9R9Xn1nc/ajwIiaggYtIiIKjC2xIE5SiFUZ3G5seUnTJ0CZNV4IvNj0CIiqqC6I03WZmgE6tq1NiZPAbJqPJH5MWgREelg6xBlDH0jULduPV6tKUBrLv4naigYtIiI6ih9I1CAzKQpQFaNJ7IcBi0iojpK3wiUr+8tk6YAzT1Vao4SE0T1BYMWEVEdpm8EytQpQHMFn4p3ROrDKvPUUDBoERHVcbrKT9hqCrBybS/ddz6yyjw1FAxaRER1jLFB6c03B6BZs2aVPmutkSQWPyVi0CIiqnNqUui0uLgYd+7cMfoz1cXip0RlGLSIiBoAa6+dYvFTojIMWkREdUx1QpO1106x+ClRGQYtIqI6pqahyRprp1j8lKgMgxYRUR2jUqmk36emdsP+/YMA2AFQY8iQ8s86VMHb27vCZ623dsrQnY9EDYVd1U2IiKg2KSkpAVAWmh6FLACww/79g6BSNdVqV56htVPmUPGOSIUiH/7+NyqFLFaZp4aCI1pERHXUrVu+qPzv5bJnHSoUl3V+xtJrp+rKA7mJrIVBi4ioAbHG2ilDIcqaJSaIagMGLSKiOsrX9xYAAUAmbZPJ1PD1/c3g52y1doqP56GGiGu0iIjqKIUiH0OGfA2ZTA0ABkenasPaKWNLR/DxPFSfcESLiKiOadTo0V/dhkanyrerjWun9JWlIKpPGLSIiOqYis8v1PVQaV3tatN0HJ+DSA0FgxYRUR1j7PSeOaYBNYvXDZ3D1ADH5yBSQ8KgRURUx1hrGrDi4nV9U30VF6/rC2dZWVkA+BxEalgYtIiI6iBrTAOWD0uGpvrKtzPmzkI+B5EaEt51SEREBumb6tNUoC9P13MYMzL8tNpqankZc7ckUV3HES0iIjKoulN9hkbBDN0tycfzUH3CoEVERAZVZ6qvqgXvw4YNg4eHR6XPsTI81TcMWkREZFB1HttT1SiYh4cHvL29a9w3S9wVSWRODFpERFQlYx/bo1KpAFQ9CqZSqWoctPhIH6oLuBieiIiMou+xPeWVlJRIbQcPPgBA/f97tEfBNO1qwpiF97raEVkTR7SIiEgncxRGlckAIcp+tSRWmqfaikGLiIh0qk5hVM3zFataDF/+OYw1xUrzVJsxaBERkV6mrm3SPF+xqsXwFZ/DWBOsNE+1mc3XaK1evRp+fn5wcnJCSEgITp48abD97t270b59ezg5OaFz5844ePCg1n4hBGbPng1vb284OzsjPDwcv/zyi1abIUOGoFWrVnBycoK3tzdGjhyJ27dvS/uvX78OmUxW6XXixAmT+kJE1FBpFsOXZ6nq79Y8F5GpbBq0du7cibi4OMyZMwepqano2rUrIiIicPfuXZ3tjx8/jhEjRmDs2LFIS0tDZGQkIiMjceHCBanNokWLsGLFCqxbtw4pKSlwcXFBREQEHj58KLXp168fdu3ahatXr2LPnj24du0aXnrppUrnO3LkCO7cuSO9goODTeoLEVFDZY3q75o7HKs6l6YdkS3IhBDCVicPCQlBz549pdtz1Wo1fH198c4772DatGmV2kdFRaGgoAAHDhyQtvXu3RtBQUFYt24dhBDw8fHB5MmTMWXKFABl/4N5enoiMTERw4cP19mP/fv3IzIyEkVFRXBwcMD169fh7++PtLQ0BAUF6fxMVX0xRl5eHhQKBVQqFVxdXY36DBFRbXbnzh1s2LBBel/2IOrKJSHGjx9f4/IO58+fx969e6s817Bhw9C5c+canYuoPFN+fttsRKu4uBhnzpxBeHj4o87Y2SE8PBzJyck6P5OcnKzVHgAiIiKk9hkZGVAqlVptFAoFQkJC9B4zJycH27ZtQ1hYGBwcHLT2DRkyBC1atECfPn2wf/9+k/qiS1FREfLy8rReRET1ScU7EPWVhDDHY3Z0L6ivfHujORfeE5nKZn/6srKyUFpaCk9PT63tnp6euHLlis7PKJVKne2VSqW0X7NNXxuNDz74AKtWrUJhYSF69+6tNTLVpEkTLF26FE899RTs7OywZ88eREZGYt++fRgyZIhRfdElPj4e8+bN07ufiKiuq86ditVVfkG9ofIO5lx4T2SqBhvz33//fYwdOxY3btzAvHnzMGrUKBw4cAAymQweHh6Ii4uT2vbs2RO3b9/G4sWLpaBVHdOnT9c6bl5eHnx9fWv0PYiIahtrV2FneQeqzWwWtDw8PGBvb4/MzEyt7ZmZmfDy8tL5GS8vL4PtNb9mZmZqzf1nZmZWWmvl4eEBDw8PtG3bFh06dICvry9OnDiB0NBQnecOCQnB4cOHje6LLo6OjnB0dNS7n4iITMfyDlSb2WyNllwuR3BwMJKSkqRtarUaSUlJesNOaGioVnsAOHz4sNTe398fXl5eWm3y8vKQkpKi95ia8wJla6j0OXv2rFZ4q6ovRERkHSzvQLWZTacO4+LiEB0djR49eqBXr15ISEhAQUEBxowZAwAYNWoUWrZsifj4eADApEmT0LdvXyxduhQDBw7Ejh07cPr0aekOF5lMhtjYWCxYsACBgYHw9/fHrFmz4OPjg8jISABASkoKTp06hT59+qB58+a4du0aZs2ahYCAACkkbd26FXK5HN26dQMA7N27F5s3b8bnn38u9b2qvhARkXVoyjtUXKPF0SyqDWwatKKionDv3j3Mnj0bSqUSQUFBOHTokLTI/ObNm7CzezToFhYWhu3bt2PmzJmYMWMGAgMDsW/fPjz55JNSm6lTp6KgoADjx49Hbm4u+vTpg0OHDsHJyQkA0LhxY+zduxdz5sxBQUEBvL290b9/f8ycOVNrWm/+/Pm4ceMGGjVqhPbt22Pnzp1atbaM6QsRERkvOzvbpEX05e9c7N49DQEB6TrLO5jjDkei6rJpHa2GjnW0iIjKZGdnSzUVAU1NLHe4uWVrhaaYmBitsGVqOCMyB1N+fjfYuw6JiKj2KB+WDJVqqBiqGKKotrP5sw6JiIg09JVqUKma2rhnRNXDoEVERLWGoVINRHURgxYREdmc5sHPVZVq4AOiqa5h0CIiIpsrKSkBUFaqoUuXcwA092kJdOlyTloQr2lHVFdwMTwREdUaKlVTnDvXBY8eDi3DuXNd8Nxz30OhyMf9+/dx584drc/wzkKqzcwWtB4+fIhVq1ZhypQp5jokERE1MFU9TmffvtPIycmosuwDUW1hUtC6d+8eUlJSIJfL8fzzz8Pe3h4lJSVYs2YN4uPj8eeffzJoERGRyRo1KvtxpFmjVT5sadZomVL2gai2MHqN1o8//ojAwEAMGTIEAwYMQFhYGC5duoROnTph/fr1mDt3Lm7dumXJvhIRUT3VrFkzAI8ep6NZEK8JVABY9oHqJKNHtGbOnIkXXngBM2bMwNatW7F06VL8z//8Dz755BOtR9MQERHVhK7H6WRk+BmcUszKytJ5LK7fIlszOmidP38ea9asQceOHfHRRx9h2bJlWLRoEYYOHWrJ/hERUQOkUORrrcEyNKUIAHv37tV7LK7fIlsyeurw/v378PDwAAA4OzujcePGfIAyERGZRVUPftY3pVg+jKlUTZGR4VdpOpHrt8iWTFoMf+nSJSiVSgCAEAJXr15FQUGBVpsuXbqYr3dERNQguLu7IyYmplIoysrKkkardE0pahhaKE9kSyYFreeffx5CCOn9oEGDtPbLZDKUlpaap2dERNSgGDO9V3FKEdD/fMSAgPRKbYmszeiglZGRUWWb/Hz+gSYiIvOpakoRqLr2FpEtGR20WrdurXN7fn4+vvrqK2zatAmnT5/miBYREZmNvilF4NG0YlUL5SvKzs42uG6LdyqSOVW7MvwPP/yATZs2Yc+ePfDx8cGwYcOwatUqc/aNiIioytCjWShfcY2WrtGs7Oxso35W8U5FMheTgpZSqURiYiI2bdqEvLw8vPLKKygqKsK+ffvQsWNHS/WRiIjIIEML5curOJKlUjVFTo57pUf68E5FMhejg9bgwYPxww8/YODAgUhISED//v1hb2+PdevWWbJ/REREOlVcv6Vrobyudhq8U5Gsweig9a9//QvvvvsuJkyYgMDAQEv2iYiIqEqG1m9p6FtvxTsVyVqMDlo//vgjNm3ahODgYHTo0AEjR47E8OHDLdk3IiIig6q7jop3KpK1GF0Zvnfv3ti4cSPu3LmDt956Czt27ICPjw/UajUOHz7M0g5ERFRnaO5ULM/QnYpE1WV00NJwcXHBG2+8gR9//BHnz5/H5MmTsXDhQrRo0QJDhgyxRB+JiIjMyphH+hCZQ7XLOwBAu3btsGjRIsTHx+Prr7/G5s2bzdUvIiIiizL2TkWimqhR0NKwt7dHZGQkIiMjzXE4IiIii6jpnYpEpjJL0CIiIqoLanKnIlF1MGgREVGDwhBF1mTyYngiIiIiMg6DFhEREZGFMGgRERERWQiDFhEREZGFMGgRERERWQiDFhEREZGFMGgRERERWQiDFhEREZGFMGgRERERWQiDFhEREZGFMGgRERERWQiDFhEREZGFMGgRERERWYjNg9bq1avh5+cHJycnhISE4OTJkwbb7969G+3bt4eTkxM6d+6MgwcPau0XQmD27Nnw9vaGs7MzwsPD8csvv2i1GTJkCFq1agUnJyd4e3tj5MiRuH37trT/2LFjGDp0KLy9veHi4oKgoCBs27ZN6xiJiYmQyWRaLycnpxpeDSIiIqpPbBq0du7cibi4OMyZMwepqano2rUrIiIicPfuXZ3tjx8/jhEjRmDs2LFIS0tDZGQkIiMjceHCBanNokWLsGLFCqxbtw4pKSlwcXFBREQEHj58KLXp168fdu3ahatXr2LPnj24du0aXnrpJa3zdOnSBXv27MG5c+cwZswYjBo1CgcOHNDqj6urK+7cuSO9bty4YeYrRERERHWZTAghbHXykJAQ9OzZE6tWrQIAqNVq+Pr64p133sG0adMqtY+KikJBQYFW4OnduzeCgoKwbt06CCHg4+ODyZMnY8qUKQAAlUoFT09PJCYmYvjw4Tr7sX//fkRGRqKoqAgODg462wwcOBCenp7YvHkzgLIRrdjYWOTm5lb7++fl5UGhUEClUsHV1bXaxyEiIiLrMeXnt81GtIqLi3HmzBmEh4c/6oydHcLDw5GcnKzzM8nJyVrtASAiIkJqn5GRAaVSqdVGoVAgJCRE7zFzcnKwbds2hIWF6Q1ZQFlgc3Nz09r24MEDtG7dGr6+vhg6dCguXrxo8DsXFRUhLy9P60VERET1l82CVlZWFkpLS+Hp6am13dPTE0qlUudnlEqlwfaaX4055gcffAAXFxe4u7vj5s2b+Oc//6m3r7t27cKpU6cwZswYaVu7du2wefNm/POf/8SXX34JtVqNsLAw/Pbbb3qPEx8fD4VCIb18fX31tiUiIqK6z+aL4W3l/fffR1paGr777jvY29tj1KhR0DWLevToUYwZMwYbN25Ep06dpO2hoaEYNWoUgoKC0LdvX+zduxePPfYY1q9fr/ec06dPh0qlkl63bt2yyHcjIiKi2qGRrU7s4eEBe3t7ZGZmam3PzMyEl5eXzs94eXkZbK/5NTMzE97e3lptgoKCKp3fw8MDbdu2RYcOHeDr64sTJ04gNDRUavPvf/8bgwcPxvLlyzFq1CiD38fBwQHdunVDenq63jaOjo5wdHQ0eBwiIiKqP2w2oiWXyxEcHIykpCRpm1qtRlJSklbYKS80NFSrPQAcPnxYau/v7w8vLy+tNnl5eUhJSdF7TM15gbI1VBrHjh3DwIED8emnn2L8+PFVfp/S0lKcP39eK+ARERFRw2azES0AiIuLQ3R0NHr06IFevXohISEBBQUF0lqoUaNGoWXLloiPjwcATJo0CX379sXSpUsxcOBA7NixA6dPn8aGDRsAADKZDLGxsViwYAECAwPh7++PWbNmwcfHB5GRkQCAlJQUnDp1Cn369EHz5s1x7do1zJo1CwEBAVIYO3r0KAYNGoRJkybhxRdflNZ3yeVyaUH8Rx99hN69e6NNmzbIzc3F4sWLcePGDYwbN86al5CIiIhqM2FjK1euFK1atRJyuVz06tVLnDhxQtrXt29fER0drdV+165dom3btkIul4tOnTqJb775Rmu/Wq0Ws2bNEp6ensLR0VE8//zz4urVq9L+c+fOiX79+gk3Nzfh6Ogo/Pz8xNtvvy1+++03qU10dLQAUOnVt29fqU1sbKzUb09PT/HCCy+I1NRUk767SqUSAIRKpTLpc0RERGQ7pvz8tmkdrYaOdbSIiIjqnjpRR4uIiIiovmPQIiIiIrIQBi0iIiIiC2HQIiIiIrIQm5Z3ICIioprLzs5GcXGx3v1yuRzu7u5W7BFpMGgRERHVYdnZ2Vi1apX0XqVqipwcd7i5ZUOhyJe2x8TEMGzZAIMWERFRHVZ+JCs1tRu+/noQhLCDTKbG4MEH0L17WqV2ZD1co0VERFQPqFRNpZAFAELY4euvB0GlamrjnjVsHNEiIiKqRaq73ionx10KWRpC2CEnx01rCpGsi0GLiIiolqi43kqf8uutcnNzAQBubtmQydRaYUsmU8PNLQcAkJGRofNYXChvWQxaREREtUTFkSx9C9vLt9MELYUiH126nMPPP3cFIAMg0KXLOelzhw8f1nteLpS3HAYtIiKiWsjQwvbySkpKAJSFsnPnuqAsZAGADOfOdcFzz30vhS1jghuZF4MWERFRLaNvYXtAQLre9VZVrdEyNriRefGuQyIiolrGUGiqqFGjsjETB4ciAKLCXgEHh2LekWhDDFpERES1jGZhe3nlF7aX17RpWVgqKXHEo2lD6VMoKZGbFNzIvBi0iIiIahmFIh+DBx+QwpZmqs9QmQZD4cyU4EbmxTVaREREtVD37mkICEhHTo4b3NxyqqyFpQlnFddhaT5naB9ZDoMWERFRLSGXy7XeKxT5OsNQ+XaaNVqA4XBmanAj82DQIiIiqiXc3d0RExNjUmX4Fi1aaO3XF84M7asY8Mh8ZEKIircokJXk5eVBoVBApVLB1dXV1t0hIqI6ytBje1QqFYQQaNasmc79rAxvOlN+fnNEi4iIqI4zFJS8vb2t2BOqiEGLiIioHqvuQ6rJPBi0iIiI6qnqPKSazIt1tIiIiOopXQ+pzsjwq1QRns86tByOaBERETUAfNahbXBEi4iIqJ7jsw5thyNaREREdZy+Be9ZWVkADD+kmoVLLYtBi4iIqA4zZsG75lmH5cMWn3VoHZw6JCIiqsOMWfBenYdUk3lwRIuIiKieMLTgnc86tA2OaBEREdUDxix4Vyjy4e9/o1LI4rMOLYcjWkRERPVAVQvehw0bBg8Pj0qfY2V4y2LQIiIiqgeqWvDu4eHB5x7aAKcOiYiI6gEueK+dOKJFRERUT3DBe+3DoEVERFSHVVzIrlDk6wxYpix411cAtfyxuK7LOAxaREREdZi7uztiYmLMFoyMKYAKADExMQxbRmDQIiIiquPMGXh0FUDNyXGHm1u21kiZoWBHjzBoERERkU6GCqBqnqNYEacVtdn8rsPVq1fDz88PTk5OCAkJwcmTJw223717N9q3bw8nJyd07twZBw8e1NovhMDs2bPh7e0NZ2dnhIeH45dfftFqM2TIELRq1QpOTk7w9vbGyJEjcfv2ba02586dw9NPPw0nJyf4+vpi0aJFJveFiIiorqqqAOrevXuxYcOGSq9Vq1YhOzvbll2vVWwatHbu3Im4uDjMmTMHqamp6Nq1KyIiInD37l2d7Y8fP44RI0Zg7NixSEtLQ2RkJCIjI3HhwgWpzaJFi7BixQqsW7cOKSkpcHFxQUREBB4+fCi16devH3bt2oWrV69iz549uHbtGl566SVpf15eHv7617+idevWOHPmDBYvXoy5c+diw4YNJvWFiIiorjJUAFVD13MVAU4rlicTQghbnTwkJAQ9e/aUFt2p1Wr4+vrinXfewbRp0yq1j4qKQkFBAQ4cOCBt6927N4KCgrBu3ToIIeDj44PJkydjypQpAACVSgVPT08kJiZi+PDhOvuxf/9+REZGoqioCA4ODli7di0+/PBDKJVK6S6NadOmYd++fbhy5YpRfTFGXl4eFAoFVCoVXF1djfoMERGRJd25cwcbNmyAStUUCQmxlQqgxsYmQKHINzitOH78+HpdHNWUn982G9EqLi7GmTNnEB4e/qgzdnYIDw9HcnKyzs8kJydrtQeAiIgIqX1GRgaUSqVWG4VCgZCQEL3HzMnJwbZt2xAWFgYHBwfpPM8884zWrbARERG4evUq7t+/b1RfiIiI6jJDBVCNea4ilbHZYvisrCyUlpbC09NTa7unp6c0alSRUqnU2V6pVEr7Ndv0tdH44IMPsGrVKhQWFqJ3795aI1NKpRL+/v6VjqHZ17x58yr7oktRURGKioqk93l5eXrbEhER2Zq+AqhVPVeRHrH5Ynhbef/995GWlobvvvsO9vb2GDVqFCw9ixofHw+FQiG9fH19LXo+IiIiU+kqgOrvf0MrQGmeq1he+ecq0iM2G9Hy8PCAvb09MjMztbZnZmbCy8tL52e8vLwMttf8mpmZqTU3nJmZiaCgoErn9/DwQNu2bdGhQwf4+vrixIkTCA0N1Xue8ueoqi+6TJ8+HXFxcdL7vLw8hi0iIqpVDBVAzcrKwt69e6VpxYprtDiaVZnNRrTkcjmCg4ORlJQkbVOr1UhKSkJoaKjOz4SGhmq1B4DDhw9L7f39/eHl5aXVJi8vDykpKXqPqTkvAGlaLzQ0FD/88ANKSkq0ztOuXTs0b97cqL7o4ujoCFdXV60XERFRbePu7g5vb+9KLw8PD6lN9+5piI1NQHR0ImJjE6SF8KTNplOHcXFx2LhxI7Zu3YrLly9jwoQJKCgowJgxYwAAo0aNwvTp06X2kyZNwqFDh7B06VJcuXIFc+fOxenTpxETEwMAkMlkiI2NxYIFC7B//36cP38eo0aNgo+PDyIjIwEAKSkpWLVqFc6ePYsbN27g+++/x4gRIxAQECCFpFdffRVyuRxjx47FxYsXsXPnTnz22Wdao1FV9YWIiKi+MWZaUVe7Bk3Y2MqVK0WrVq2EXC4XvXr1EidOnJD29e3bV0RHR2u137Vrl2jbtq2Qy+WiU6dO4ptvvtHar1arxaxZs4Snp6dwdHQUzz//vLh69aq0/9y5c6Jfv37Czc1NODo6Cj8/P/H222+L3377Tes4P//8s+jTp49wdHQULVu2FAsXLqzU96r6UhWVSiUACJVKZdLniIiIbCUrK0vcvn1b7ysrK8vWXbQ4U35+27SOVkPHOlpERER1T52oo0VERERU3zFoEREREVmIzco7EBERUd2TnZ1t8FmGcrkc7u7uVuxR7cagRUREREbJzs6Wnk9sSExMDMPW/+PUIRERERml4kiWStUUGRl+lZ5xaGjEq6HhiBYRERGZLDW1W6XK8CxaWhlHtIiIiMgkKlVTKWQBZQ+U/vrrQZVGtohBi4iIiEyUk+MuhSwNIeyQk+Nmox7VXgxaREREZBI3t2zIZGqtbTKZGm5uOTbqUe3FoEVEREQmUSjyMXjwASlsadZoVXzmIXExPBEREVVD9+5pCAhIR06OG9zcchiy9GDQIiIiIqPI5XKt9wpFvs6AVbFdQ8agRUREREZxd3fH66+/jsLCQr1tGjduzGKl5TBoERERkVGys7Px5ZdfVtmOleEf4WJ4IiIiMoqxFd9ZGf4RBi0iIiKqFn2P4KFHOHVIREREJuMjeIzDES0iIiIyCR/BYzwGLSIiIjIJH8FjPAYtIiIiMgkfwWM8Bi0iIiIyCR/BYzwuhiciIiKjlK/4bugRPKwM/wiDFhERERnF3d0dMTExButkyeVyFisth0GLiIiIjMYQZRqu0SIiIiKyEAYtIiIiIgth0CIiIiKyEAYtIiIiIgvhYngiIiKymezs7Hp9FyODFhEREdlEdnY2Vq1aVWW7mJiYOhu2OHVIRERENlFxJEulaoqMDL9KD6c2NOJV23FEi4iIiGwuNbUbvv56EISwkx7p0717mq27VWMc0SIiIiKbUqmaSiELAISww9dfD6o0slUXcUSLiIiIbConx10KWRpC2CEnxw0KRT6ysrIqfaauLJJn0CIiIiKbcnPLhkym1gpbMpkabm45AIAtWw4jJ8cdbm7ZWg+vrguL5Bm0iIiIyKYUinwMHnyg0hothSLf4NqturBInkGLiIiIbK579zQEBKQjJ8cNbm45UCjy9a7dCghI1xrZqs0YtIiIiMgm5HK51nuFIl8rQFW1dqsuYNAiIiIim3B3d0dMTEylKcCsrCzs3bu3yrVbdQGDFhEREdmMocXshtZu1RU2r6O1evVq+Pn5wcnJCSEhITh58qTB9rt370b79u3h5OSEzp074+DBg1r7hRCYPXs2vL294ezsjPDwcPzyyy/S/uvXr2Ps2LHw9/eHs7MzAgICMGfOHK00PXfuXMhkskovFxcXqU1iYmKl/U5OTma6KkRERASUrd2KjU1AdHQiYmMT6lwRU5sGrZ07dyIuLg5z5sxBamoqunbtioiICNy9e1dn++PHj2PEiBEYO3Ys0tLSEBkZicjISFy4cEFqs2jRIqxYsQLr1q1DSkoKXFxcEBERgYcPHwIArly5ArVajfXr1+PixYtYvnw51q1bhxkzZkjHmDJlCu7cuaP16tixI15++WWt/ri6umq1uXHjhgWuEhERUcOmUOTD3/9GnRrJ0pAJIYStTh4SEoKePXtKD5RUq9Xw9fXFO++8g2nTplVqHxUVhYKCAhw4cEDa1rt3bwQFBWHdunUQQsDHxweTJ0/GlClTAAAqlQqenp5ITEzE8OHDdfZj8eLFWLt2LX799Ved+3/++WcEBQXhhx9+wNNPPw2gbEQrNjYWubm51f7+eXl5UCgUUKlUcHV1rfZxiIiI6pPa/rBpU35+22yNVnFxMc6cOYPp06dL2+zs7BAeHo7k5GSdn0lOTkZcXJzWtoiICOzbtw8AkJGRAaVSifDwcGm/QqFASEgIkpOT9QYtlUoFNzc3vX39/PPP0bZtWylkaTx48ACtW7eGWq1G9+7d8cknn6BTp056j1NUVISioiLpfV5ent62REREDZW+RfLlsTJ8FbKyslBaWgpPT0+t7Z6enrhy5YrOzyiVSp3tlUqltF+zTV+bitLT07Fy5UosWbJE5/6HDx9i27ZtlUbY2rVrh82bN6NLly5QqVRYsmQJwsLCcPHiRTz++OM6jxUfH4958+bp3EdERESP1IUQZQybL4a3pd9//x39+/fHyy+/jDfffFNnm3/84x/Iz89HdHS01vbQ0FCMGjUKQUFB6Nu3L/bu3YvHHnsM69ev13u+6dOnQ6VSSa9bt26Z9fsQERFR7WKzoOXh4QF7e3tkZmZqbc/MzISXl5fOz3h5eRlsr/nVmGPevn0b/fr1Q1hYGDZs2KC3n59//jkGDRpUaZSsIgcHB3Tr1g3p6el62zg6OsLV1VXrRURERPWXzYKWXC5HcHAwkpKSpG1qtRpJSUkIDQ3V+ZnQ0FCt9gBw+PBhqb2/vz+8vLy02uTl5SElJUXrmL///jueffZZBAcHY8uWLbCz030ZMjIycPToUYwdO7bK71NaWorz58/D29u7yrZERETUMNi0YGlcXByio6PRo0cP9OrVCwkJCSgoKMCYMWMAAKNGjULLli0RHx8PAJg0aRL69u2LpUuXYuDAgdixYwdOnz4tjUjJZDLExsZiwYIFCAwMhL+/P2bNmgUfHx9ERkYCeBSyWrdujSVLluDevXtSfyqOem3evBne3t4YMGBApb5/9NFH6N27N9q0aYPc3FwsXrwYN27cwLhx4yxxqYiIiKgOsmnQioqKwr179zB79mwolUoEBQXh0KFD0jTdzZs3tUabwsLCsH37dsycORMzZsxAYGAg9u3bhyeffFJqM3XqVBQUFGD8+PHIzc1Fnz59cOjQIamY6OHDh5Geno709PRKi9bLV7pQq9VITEzE6NGjYW9vX6nv9+/fx5tvvgmlUonmzZsjODgYx48fR8eOHc16jYiIiKjusmkdrYaOdbSIiIjqHlN+fjfouw6JiIiILIlBi4iIiMhCGLSIiIiILIRBi4iIiMhCGLSIiIiILIRBi4iIiMhCGLSIiIiILMSmBUuJiIiIzCk7OxvFxcUAgNu37ZCR0Qj+/n/Cx0cNoOwRgO7u7lbrD4MWERER1QvZ2dlYtWoVACA1tRu+/noQhLCDTKbG4MEH0L17GgAgJibGamGLU4dERERUL2hGslSqplLIAgAh7PD114OgUjXVamcNDFpERERUr+TkuEshS0MIO+TkuFm9LwxaREREVK+4uWVDJlNrbZPJ1HBzy7F6Xxi0iIiIqF7Izc0FACgU+Rg8+IAUtjRrtBSKfK121sCgRURERPXCn3/+qfVeCO1f9bWzJAYtIiIiqlc0i+EfxRztxfDWxKBFRERE9QoXwxMRERGZmYODA4CqF8Nr2lkDgxYRERHVCwqF4v9/NbwYXtPOGlgZnoiIiOqd7t3TEBCQjpwcN7i55Ughy9oYtIiIiKheUijybRawNDh1SERERPWCXC43aztz4IgWERER1Qvu7u6IiYkx+CxDuVxutQdKAxzRIiIiIrIYjmgRERFRvZCdnY1Vq1ZV2S4mJsZqo1oc0SIiIqJ6wdCUYXXamQODFhEREZGFMGgRERFRvaRSNUVGhp9NnnGowTVaREREVO+kpnbD118PghB2UmX47t3TrN4PjmgRERFRvaJSNZVCFlD2QOmvvx5kk5EtBi0iIiKqV3Jy3KWQpSGEHXJy3KzeFwYtIiIiqlfc3LKlB0pryGRquLnlWL0vDFpERERUL2geraNQ5GPw4ANS2NKs0dI899Caj+CRCSGE1c5GWvLy8qBQKKBSqeDq6mrr7hAREdV52dnZUp2s27ftcP16I/j5/Qkfn7LQZY5H8Jjy85t3HRIREVG9UT5EeXsDwcE27Aw4dUhERERkMQxaRERERBbCoEVERERkIQxaRERERBbCoEVERERkIQxaRERERBZi86C1evVq+Pn5wcnJCSEhITh58qTB9rt370b79u3h5OSEzp074+DBg1r7hRCYPXs2vL294ezsjPDwcPzyyy/S/uvXr2Ps2LHw9/eHs7MzAgICMGfOHKnmhqaNTCar9Dpx4oRJfSEiIqKGzaZBa+fOnYiLi8OcOXOQmpqKrl27IiIiAnfv3tXZ/vjx4xgxYgTGjh2LtLQ0REZGIjIyEhcuXJDaLFq0CCtWrMC6deuQkpICFxcXRERE4OHDhwCAK1euQK1WY/369bh48SKWL1+OdevWYcaMGZXOd+TIEdy5c0d6BZcrxmFMX4iIiKhhs2ll+JCQEPTs2ROrVq0CAKjVavj6+uKdd97BtGnTKrWPiopCQUEBDhw4IG3r3bs3goKCsG7dOggh4OPjg8mTJ2PKlCkAAJVKBU9PTyQmJmL48OE6+7F48WKsXbsWv/76K4CyES1/f3+kpaUhKChI52eq6osxWBmeiIio7jHl57fNRrSKi4tx5swZhIeHP+qMnR3Cw8ORnJys8zPJycla7QEgIiJCap+RkQGlUqnVRqFQICQkRO8xgbIw5uZW+YneQ4YMQYsWLdCnTx/s37/fpL7oUlRUhLy8PK0XERER1V82C1pZWVkoLS2Fp6en1nZPT08olUqdn1EqlQbba3415Zjp6elYuXIl3nrrLWlbkyZNsHTpUuzevRvffPMN+vTpg8jISK2wVVVfdImPj4dCoZBevr6+etsSERFR3degn3X4+++/o3///nj55Zfx5ptvSts9PDwQFxcnve/Zsydu376NxYsXY8iQIdU+3/Tp07WOq1Kp0KpVK45sERER1SGan9vGrL6yWdDy8PCAvb09MjMztbZnZmbCy8tL52e8vLwMttf8mpmZCW9vb602Fdda3b59G/369UNYWBg2bNhQZX9DQkJw+PBho/uii6OjIxwdHaX3mv9QHNkiIiKqe/Lz86FQKAy2sVnQksvlCA4ORlJSEiIjIwGULYZPSkpCTEyMzs+EhoYiKSkJsbGx0rbDhw8jNDQUAODv7w8vLy8kJSVJwSovLw8pKSmYMGGC9Jnff/8d/fr1Q3BwMLZs2QI7u6pnUM+ePasV3qrqizF8fHxw69YtNG3aFDKZzOjPaeTl5cHX1xe3bt1qsIvpeQ3K8DrwGmjwOvAaALwGGpa6DkII5Ofnw8fHx6jGNrNjxw7h6OgoEhMTxaVLl8T48eNFs2bNhFKpFEIIMXLkSDFt2jSp/U8//SQaNWoklixZIi5fvizmzJkjHBwcxPnz56U2CxcuFM2aNRP//Oc/xblz58TQoUOFv7+/+OOPP4QQQvz222+iTZs24vnnnxe//fabuHPnjvTSSExMFNu3bxeXL18Wly9fFh9//LGws7MTmzdvNqkvlqZSqQQAoVKprHbO2obXoAyvA6+BBq8Dr4EQvAYateE62HSNVlRUFO7du4fZs2dDqVQiKCgIhw4dkhaZ37x5U2u0KSwsDNu3b8fMmTMxY8YMBAYGYt++fXjyySelNlOnTkVBQQHGjx+P3Nxc9OnTB4cOHYKTkxOAslGn9PR0pKen4/HHH9fqjyg31zp//nzcuHEDjRo1Qvv27bFz50689NJLJvWFiIiIGjab1tGimmEdLl4DDV4HXgMNXgdeA4DXQKM2XAebP4KHqs/R0RFz5szRWmDf0PAalOF14DXQ4HXgNQB4DTRqw3XgiBYRERGRhXBEi4iIiMhCGLSIiIiILIRBi4iIiMhCGLSIiIiILIRBq5ZbvXo1/Pz84OTkhJCQEJw8eVJv24sXL+LFF1+En58fZDIZEhISrNdRCzLlGmzcuBFPP/00mjdvjubNmyM8PNxg+7rElOuwd+9e9OjRA82aNYOLiwuCgoLwxRdfWLG3lmHKNShvx44dkMlk0lMo6jJTrkFiYiJkMpnWS1NTsK4z9c9Cbm4uJk6cCG9vbzg6OqJt27Y4ePCglXprGaZcg2effbbSnwWZTIaBAwdascfmZ+qfg4SEBLRr1w7Ozs7w9fXFe++9h4cPH1q2kzYrlUpV2rFjh5DL5WLz5s3i4sWL4s033xTNmjUTmZmZOtufPHlSTJkyRXz11VfCy8tLLF++3LodtgBTr8Grr74qVq9eLdLS0sTly5fF6NGjhUKhEL/99puVe25epl6Ho0ePir1794pLly6J9PR0kZCQIOzt7cWhQ4es3HPzMfUaaGRkZIiWLVuKp59+WgwdOtQ6nbUQU6/Bli1bhKurq9YTMDRP3qjLTL0ORUVFokePHuKFF14QP/74o8jIyBDHjh0TZ8+etXLPzcfUa5Cdna315+DChQvC3t5ebNmyxbodNyNTr8G2bduEo6Oj2LZtm8jIyBDffvut8Pb2Fu+9955F+8mgVYv16tVLTJw4UXpfWloqfHx8RHx8fJWfbd26db0IWjW5BkII8eeff4qmTZuKrVu3WqqLVlHT6yCEEN26dRMzZ860RPesojrX4M8//xRhYWHi888/F9HR0XU+aJl6DbZs2SIUCoWVemc9pl6HtWvXiieeeEIUFxdbq4sWV9O/E5YvXy6aNm0qHjx4YKkuWpyp12DixIniueee09oWFxcnnnrqKYv2k1OHtVRxcTHOnDmD8PBwaZudnR3Cw8ORnJxsw55ZjzmuQWFhIUpKSuDm5mapblpcTa+DEAJJSUm4evUqnnnmGUt21WKqew0++ugjtGjRAmPHjrVGNy2qutfgwYMHaN26NXx9fTF06FBcvHjRGt21mOpch/379yM0NBQTJ06Ep6cnnnzySXzyyScoLS21VrfNyhx/N27atAnDhw+Hi4uLpbppUdW5BmFhYThz5ow0vfjrr7/i4MGDeOGFFyzaV5s+65D0y8rKQmlpqfTcRw1PT09cuXLFRr2yLnNcgw8++AA+Pj5a/zPWNdW9DiqVCi1btkRRURHs7e2xZs0a/OUvf7F0dy2iOtfgxx9/xKZNm3D27Fkr9NDyqnMN2rVrh82bN6NLly5QqVRYsmQJwsLCcPHixUrPeq0rqnMdfv31V3z//fd47bXXcPDgQaSnp+Nvf/sbSkpKMGfOHGt026xq+nfjyZMnceHCBWzatMlSXbS46lyDV199FVlZWejTpw+EEPjzzz/x9ttvY8aMGRbtK4MW1VsLFy7Ejh07cOzYsXqzANgUTZs2xdmzZ/HgwQMkJSUhLi4OTzzxBJ599llbd83i8vPzMXLkSGzcuBEeHh627o7NhIaGIjQ0VHofFhaGDh06YP369Zg/f74Ne2ZdarUaLVq0wIYNG2Bvb4/g4GD8/vvvWLx4cZ0MWjW1adMmdO7cGb169bJ1V6zq2LFj+OSTT7BmzRqEhIQgPT0dkyZNwvz58zFr1iyLnZdBq5by8PCAvb09MjMztbZnZmbCy8vLRr2yrppcgyVLlmDhwoU4cuQIunTpYsluWlx1r4OdnR3atGkDAAgKCsLly5cRHx9fJ4OWqdfg2rVruH79OgYPHixtU6vVAIBGjRrh6tWrCAgIsGynzcwcfyc4ODigW7duSE9Pt0QXraI618Hb2xsODg6wt7eXtnXo0AFKpRLFxcWQy+UW7bO51eTPQkFBAXbs2IGPPvrIkl20uOpcg1mzZmHkyJEYN24cAKBz584oKCjA+PHj8eGHH8LOzjKrqbhGq5aSy+UIDg5GUlKStE2tViMpKUnrX6j1WXWvwaJFizB//nwcOnQIPXr0sEZXLcpcfxbUajWKioos0UWLM/UatG/fHufPn8fZs2el15AhQ9CvXz+cPXsWvr6+1uy+WZjjz0FpaSnOnz8Pb29vS3XT4qpzHZ566imkp6dLYRsA/vvf/8Lb27vOhSygZn8Wdu/ejaKiIrz++uuW7qZFVecaFBYWVgpTmvAtLPnYZ4sutaca2bFjh3B0dBSJiYni0qVLYvz48aJZs2bS7dkjR44U06ZNk9oXFRWJtLQ0kZaWJry9vcWUKVNEWlqa+OWXX2z1FWrM1GuwcOFCIZfLxd///netW5nz8/Nt9RXMwtTr8Mknn4jvvvtOXLt2TVy6dEksWbJENGrUSGzcuNFWX6HGTL0GFdWHuw5NvQbz5s0T3377rbh27Zo4c+aMGD58uHBychIXL1601VcwC1Ovw82bN0XTpk1FTEyMuHr1qjhw4IBo0aKFWLBgga2+Qo1V9/+HPn36iKioKGt31yJMvQZz5swRTZs2FV999ZX49ddfxXfffScCAgLEK6+8YtF+MmjVcitXrhStWrUScrlc9OrVS5w4cULa17dvXxEdHS29z8jIEAAqvfr27Wv9jpuRKdegdevWOq/BnDlzrN9xMzPlOnz44YeiTZs2wsnJSTRv3lyEhoaKHTt22KDX5mXKNaioPgQtIUy7BrGxsVJbT09P8cILL4jU1FQb9Nr8TP2zcPz4cRESEiIcHR3FE088IT7++GPx559/WrnX5mXqNbhy5YoAIL777jsr99RyTLkGJSUlYu7cuSIgIEA4OTkJX19f8be//U3cv3/fon2UCWHJ8TIiIiKihotrtIiIiIgshEGLiIiIyEIYtIiIiIgshEGLiIiIyEIYtIiIiIgshEGLiIiIyEIYtIiIiIgshEGLiKgBGD16NCIjI23dDaIGh0GLiGxq9OjRkMlk0svd3R39+/fHuXPnbN01syj/3TSvPn36WOx8169fh0wmw9mzZ7W2f/bZZ0hMTLTYeYlINwYtIrK5/v37486dO7hz5w6SkpLQqFEjDBo0yNbdMpstW7ZI3+/OnTvYv3+/znYlJSUW64NCoUCzZs0sdnwi0o1Bi4hsztHREV5eXvDy8kJQUBCmTZuGW7du4d69e3juuecQExOj1f7evXuQy+VISkoCAPj5+WH+/PkYMWIEXFxc0LJlS6xevVrrM8uWLUPnzp3h4uICX19f/O1vf8ODBw+k/Tdu3MDgwYPRvHlzuLi4oFOnTjh48CAA4P79+3jttdfw2GOPwdnZGYGBgdiyZYvR369Zs2bS9/Py8oKbm5s08rRz50707dsXTk5O2LZtG7KzszFixAi0bNkSjRs3RufOnfHVV19pHU+tVmPRokVo06YNHB0d0apVK3z88ccAAH9/fwBAt27dIJPJ8OyzzwKoPHVYVFSEd999Fy1atICTkxP69OmDU6dOSfuPHTsGmUyGpKQk9OjRA40bN0ZYWBiuXr1q9PcmIgYtIqplHjx4gC+//BJt2rSBu7s7xo0bh+3bt6OoqEhq8+WXX6Jly5Z47rnnpG2LFy9G165dkZaWhmnTpmHSpEk4fPiwtN/Ozg4rVqzAxYsXsXXrVnz//feYOnWqtH/ixIkoKirCDz/8gPPnz+PTTz9FkyZNAACzZs3CpUuX8K9//QuXL1/G2rVr4eHhYZbvq+nr5cuXERERgYcPHyI4OBjffPMNLly4gPHjx2PkyJE4efKk9Jnp06dj4cKFUr+2b98OT09PAJDaHTlyBHfu3MHevXt1nnfq1KnYs2cPtm7ditTUVLRp0wYRERHIycnRavfhhx9i6dKlOH36NBo1aoQ33njDLN+bqMGw6COriYiqEB0dLezt7YWLi4twcXERAIS3t7c4c+aMEEKIP/74QzRv3lzs3LlT+kyXLl3E3LlzpfetW7cW/fv31zpuVFSUGDBggN7z7t69W7i7u0vvO3furHXM8gYPHizGjBlTre8HQDg5OUnfz8XFRfzjH/8QGRkZAoBISEio8hgDBw4UkydPFkIIkZeXJxwdHcXGjRt1ttUcNy0tTWt7dHS0GDp0qBBCiAcPHggHBwexbds2aX9xcbHw8fERixYtEkIIcfToUQFAHDlyRGrzzTffCADijz/+MOUSEDVoHNEiIpvr168fzp49i7Nnz+LkyZOIiIjAgAEDcOPGDTg5OWHkyJHYvHkzACA1NRUXLlzA6NGjtY4RGhpa6f3ly5el90eOHMHzzz+Pli1bomnTphg5ciSys7NRWFgIAHj33XexYMECPPXUU5gzZ47WYvwJEyZgx44dCAoKwtSpU3H8+HGTvt/y5cul73f27Fn85S9/kfb16NFDq21paSnmz5+Pzp07w83NDU2aNMG3336LmzdvAgAuX76MoqIiPP/88yb1obxr166hpKQETz31lLTNwcEBvXr10rpmANClSxfp997e3gCAu3fvVvvcRA0NgxYR2ZyLiwvatGmDNm3aoGfPnvj8889RUFCAjRs3AgDGjRuHw4cP47fffsOWLVvw3HPPoXXr1kYf//r16xg0aBC6dOmCPXv24MyZM9IaruLiYukcv/76K0aOHInz58+jR48eWLlyJQBIoe+9997D7du38fzzz2PKlClGn9/Ly0v6fm3atIGLi4vWdy9v8eLF+Oyzz/DBBx/g6NGjOHv2LCIiIqR+Ojs7G31ec3BwcJB+L5PJAJStESMi4zBoEVGtI5PJYGdnhz/++AMA0LlzZ/To0QMbN27E9u3bda4TOnHiRKX3HTp0AACcOXMGarUaS5cuRe/evdG2bVvcvn270jF8fX3x9ttvY+/evZg8ebIU9ADgscceQ3R0NL788kskJCRgw4YN5vzKkp9++glDhw7F66+/jq5du+KJJ57Af//7X2l/YGAgnJ2dpRsBKpLL5QDKRsb0CQgIgFwux08//SRtKykpwalTp9CxY0czfRMiAoBGtu4AEVFRURGUSiWAsjv8Vq1ahQcPHmDw4MFSm3HjxiEmJgYuLi74n//5n0rH+Omnn7Bo0SJERkbi8OHD2L17N7755hsAQJs2bVBSUoKVK1di8ODB+Omnn7Bu3Tqtz8fGxmLAgAFo27Yt7t+/j6NHj0pBbfbs2QgODkanTp1QVFSEAwcOSPvMLTAwEH//+99x/PhxNG/eHMuWLUNmZqYUgJycnPDBBx9g6tSpkMvleOqpp3Dv3j1cvHgRY8eORYsWLeDs7IxDhw7h8ccfh5OTExQKhdY5XFxcMGHCBLz//vtwc3NDq1atsGjRIhQWFmLs2LEW+V5EDRVHtIjI5g4dOgRvb294e3sjJCQEp06dwu7du6XSBAAwYsQINGrUCCNGjICTk1OlY0yePBmnT59Gt27dsGDBAixbtgwREREAgK5du2LZsmX49NNP8eSTT2Lbtm2Ij4/X+nxpaSkmTpyIDh06oH///mjbti3WrFkDoGyUaPr06ejSpQueeeYZ2NvbY8eOHRa5FjNnzkT37t0RERGBZ599Fl5eXpUqus+aNQuTJ0/G7Nmz0aFDB0RFRUnrpho1aoQVK1Zg/fr18PHxwdChQ3WeZ+HChXjxxRcxcuRIdO/eHenp6fj222/RvHlzi3wvooZKJoQQtu4EEVFVrl+/joCAAJw6dQrdu3fX2ufn54fY2FjExsbapnNERHpw6pCIarWSkhJkZ2dj5syZ6N27d6WQRURUm3HqkIhqtZ9++gne3t44depUpXVVtvbJJ5+gSZMmOl8DBgywdfeIqBbg1CERUTXl5ORUqqSu4ezsjJYtW1q5R0RU2zBoEREREVkIpw6JiIiILIRBi4iIiMhCGLSIiIiILIRBi4iIiMhCGLSIiIiILIRBi4iIiMhCGLSIiIiILIRBi4iIiMhC/g/v6X+ROA+cigAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_4.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlYklEQVR4nO3de1wU1f8/8NeCLCDKKl64KCoh3i8IJkIWWRQWony6eCtBU6m+UvIhNTXvWngXb4X1UaGSND8SmhpplN0k84JmaaaGl8pFBVkQf6Kx8/vDDxMLu7Dgzu7s7uv5eOxDd+bMzDm77O57zjnzHoUgCAKIiIiIyOQcLF0BIiIiIlvFQIuIiIhIIgy0iIiIiCTCQIuIiIhIIgy0iIiIiCTCQIuIiIhIIgy0iIiIiCTCQIuIiIhIIgy0iIiIiCTCQIuIiJCWlgaFQoHz589buipENoWBFhGZxaFDh5CQkIDu3bvDzc0N7dq1w7Bhw/Dbb7/VKPvwww9DoVBAoVDAwcEB7u7u6Ny5M0aPHo19+/bV67iffvopwsPD0bp1azRu3Bj33Xcfhg0bhuzsbFM1rYa33noLWVlZNZYfOHAAc+fORXFxsWTHrm7u3Lnia6lQKNC4cWN069YNM2fORElJiUmOkZGRgZSUFJPsi8jWMNAiIrNYvHgxtm/fjkcffRSrVq1CfHw8vvnmGwQFBeHnn3+uUb5t27b44IMP8P7772Pp0qUYMmQIDhw4gMcffxzDhw/HnTt36jzmsmXLMGTIECgUCkyfPh0rV67E008/jTNnzmDLli1SNBNA7YHWvHnzzBpoVXrnnXfwwQcfYMWKFejSpQvefPNNDBo0CKa43S0DLSLDGlm6AkRkH5KSkpCRkQGlUikuGz58OHr27IlFixbhww8/1CmvUqnw/PPP6yxbtGgRXn31Vbz99tvo0KEDFi9ebPB4f//9NxYsWIDHHnsMe/furbH+ypUr99gi+bh58yYaN25ca5lnnnkGLVu2BAC89NJLePrpp5GZmYkffvgBoaGh5qgmkV1ijxYRmUVYWJhOkAUAAQEB6N69O06dOmXUPhwdHbF69Wp069YNa9euhUajMVj22rVrKCkpwQMPPKB3fevWrXWe37p1C3PnzkWnTp3g4uICb29vPPXUUzh37pxYZtmyZQgLC0OLFi3g6uqK4OBg/Pe//9XZj0KhQFlZGdLT08XhujFjxmDu3LmYMmUKAMDPz09cV3VO1Icffojg4GC4urrCw8MDI0aMwKVLl3T2//DDD6NHjx44cuQIHnroITRu3BgzZsww6vWr6pFHHgEA5Ofn11ru7bffRvfu3eHs7AwfHx9MnDhRp0fu4Ycfxu7du3HhwgWxTR06dKh3fYhsFXu0iMhiBEFAQUEBunfvbvQ2jo6OGDlyJGbNmoXvvvsOUVFResu1bt0arq6u+PTTT/HKK6/Aw8PD4D4rKiowePBg5OTkYMSIEZg0aRJKS0uxb98+/Pzzz/D39wcArFq1CkOGDMFzzz2H27dvY8uWLXj22Wexa9cusR4ffPABxo8fj379+iE+Ph4A4O/vDzc3N/z222/46KOPsHLlSrF3qVWrVgCAN998E7NmzcKwYcMwfvx4XL16FWvWrMFDDz2EvLw8NGvWTKxvYWEhnnjiCYwYMQLPP/88PD09jX79KlUGkC1atDBYZu7cuZg3bx4iIiLw8ssv4/Tp03jnnXdw6NAhfP/993BycsIbb7wBjUaDP/74AytXrgQANGnSpN71IbJZAhGRhXzwwQcCAGHDhg06y8PDw4Xu3bsb3O6TTz4RAAirVq2qdf+zZ88WAAhubm7CE088Ibz55pvCkSNHapTbuHGjAEBYsWJFjXVarVb8/82bN3XW3b59W+jRo4fwyCOP6Cx3c3MT4uLiauxr6dKlAgAhPz9fZ/n58+cFR0dH4c0339RZfuLECaFRo0Y6y8PDwwUAQmpqqsF2VzVnzhwBgHD69Gnh6tWrQn5+vrB+/XrB2dlZ8PT0FMrKygRBEIRNmzbp1O3KlSuCUqkUHn/8caGiokLc39q1awUAwsaNG8VlUVFRQvv27Y2qD5G94dAhEVnEr7/+iokTJyI0NBRxcXH12rayx6S0tLTWcvPmzUNGRgb69OmDzz//HG+88QaCg4MRFBSkM1y5fft2tGzZEq+88kqNfSgUCvH/rq6u4v+vX78OjUaDBx98EEePHq1X/avLzMyEVqvFsGHDcO3aNfHh5eWFgIAAfPXVVzrlnZ2dMXbs2Hodo3PnzmjVqhX8/Pzw4osvomPHjti9e7fBuV1ffPEFbt++jcTERDg4/PNTMWHCBLi7u2P37t31byiRHeLQIRGZnVqtRlRUFFQqFf773//C0dGxXtvfuHEDANC0adM6y44cORIjR45ESUkJDh48iLS0NGRkZCA6Oho///wzXFxccO7cOXTu3BmNGtX+lbhr1y4sXLgQx44dQ3l5ubi8ajDWEGfOnIEgCAgICNC73snJSed5mzZtasx3q8v27dvh7u4OJycntG3bVhwONeTChQsA7gZoVSmVStx3333ieiKqHQMtIjIrjUaDJ554AsXFxfj222/h4+NT731UpoPo2LGj0du4u7vjsccew2OPPQYnJyekp6fj4MGDCA8PN2r7b7/9FkOGDMFDDz2Et99+G97e3nBycsKmTZuQkZFR7zZUpdVqoVAo8Nlnn+kNOqvPearas2ashx56SJwXRkTmw0CLiMzm1q1biI6Oxm+//YYvvvgC3bp1q/c+KioqkJGRgcaNG2PAgAENqkffvn2Rnp6Oy5cvA7g7Wf3gwYO4c+dOjd6jStu3b4eLiws+//xzODs7i8s3bdpUo6yhHi5Dy/39/SEIAvz8/NCpU6f6NkcS7du3BwCcPn0a9913n7j89u3byM/PR0REhLjsXnv0iGwZ52gRkVlUVFRg+PDhyM3NxbZt2xqUu6miogKvvvoqTp06hVdffRXu7u4Gy968eRO5ubl613322WcA/hkWe/rpp3Ht2jWsXbu2Rlnhfwk9HR0doVAoUFFRIa47f/683sSkbm5uepOSurm5AUCNdU899RQcHR0xb968GglEBUFAYWGh/kZKKCIiAkqlEqtXr9ap04YNG6DRaHSu9nRzc6s11QaRPWOPFhGZxWuvvYadO3ciOjoaRUVFNRKUVk9OqtFoxDI3b97E2bNnkZmZiXPnzmHEiBFYsGBBrce7efMmwsLC0L9/fwwaNAi+vr4oLi5GVlYWvv32W8TExKBPnz4AgNjYWLz//vtISkrCjz/+iAcffBBlZWX44osv8H//938YOnQooqKisGLFCgwaNAijRo3ClStXsG7dOnTs2BE//fSTzrGDg4PxxRdfYMWKFfDx8YGfnx9CQkIQHBwMAHjjjTcwYsQIODk5ITo6Gv7+/li4cCGmT5+O8+fPIyYmBk2bNkV+fj4++eQTxMfHY/Lkyff0+tdXq1atMH36dMybNw+DBg3CkCFDcPr0abz99tu4//77dd6v4OBgbN26FUlJSbj//vvRpEkTREdHm7W+RLJlyUseich+VKYlMPSorWyTJk2EgIAA4fnnnxf27t1r1PHu3LkjvPfee0JMTIzQvn17wdnZWWjcuLHQp08fYenSpUJ5eblO+Zs3bwpvvPGG4OfnJzg5OQleXl7CM888I5w7d04ss2HDBiEgIEBwdnYWunTpImzatElMn1DVr7/+Kjz00EOCq6urAEAn1cOCBQuENm3aCA4ODjVSPWzfvl0YMGCA4ObmJri5uQldunQRJk6cKJw+fVrntakt9UV1lfW7evVqreWqp3eotHbtWqFLly6Ck5OT4OnpKbz88svC9evXdcrcuHFDGDVqlNCsWTMBAFM9EFWhEAQT3OiKiIiIiGrgHC0iIiIiiTDQIiIiIpIIAy0iIiIiiTDQIiIiIpIIAy0iIiIiiTDQIiIiIpIIE5ZakFarxV9//YWmTZvyFhZERERWQhAElJaWwsfHBw4OtfdZMdCyoL/++gu+vr6WrgYRERE1wKVLl9C2bdtayzDQsqCmTZsCuPtG1XbPNiIiIpKPkpIS+Pr6ir/jtWGgZUGVw4Xu7u4MtIiIiKyMMdN+OBmeiIiISCIMtIiIiIgkwkCLiIiISCKco0VERGRlKioqcOfOHUtXw2Y5OTnB0dHRJPtioEVERGQlBEGAWq1GcXGxpati85o1awYvL697znPJQIuIiMhKVAZZrVu3RuPGjZnsWgKCIODmzZu4cuUKAMDb2/ue9sdAi4iIyApUVFSIQVaLFi0sXR2b5urqCgC4cuUKWrdufU/DiJwMT0REZAUq52Q1btzYwjWxD5Wv873OhWOgRUREZEU4XGgepnqdGWgRERERSYRztOxYYWEhbt++bXC9UqnkPAAiIqJ7wEDLThUWFmLt2rXic42mKYqKWsDDoxAqVam4PCEhgcEWERHdkzFjxiA9PR0A0KhRI3h4eKBXr14YOXIkxowZAwcH4wbY0tLSkJiYaFXpLRho2amqPVlHj/bBp58OhiA4QKHQIjp6F4KC8mqUIyIi62bJkYxBgwZh06ZNqKioQEFBAbKzszFp0iT897//xc6dO9GokW2GJLbZKjKaRtNUDLIAQBAc8Omng+Hvf1anZ4uIiKxb9ZEMQ6QayXB2doaXlxcAoE2bNggKCkL//v3x6KOPIi0tDePHj8eKFSuwadMm/P777/Dw8EB0dDSWLFmCJk2aYP/+/Rg7diyAfyaqz5kzB3PnzsUHH3yAVatW4fTp03Bzc8MjjzyClJQUtG7d2uTtqC9OhrdzRUUtxCCrkiA4oKjIw0I1IiIiKRg7QmHOkYxHHnkEvXv3RmZmJgDAwcEBq1evxi+//IL09HR8+eWXmDp1KgAgLCwMKSkpcHd3x+XLl3H58mVMnjwZwN0UDAsWLMDx48eRlZWF8+fPY8yYMWZrR23Yo2XnPDwKoVBodYIthUILD48iC9aKiIjsRZcuXfDTTz8BABITE8XlHTp0wMKFC/HSSy/h7bffhlKphEqlgkKhEHvGKr3wwgvi/++77z6sXr0a999/P27cuIEmTZqYpR2GsEfLzqlUpYiO3gWFQgsA4hwtDhsSEZE5CIIgDgV+8cUXePTRR9GmTRs0bdoUo0ePRmFhIW7evFnrPo4cOYLo6Gi0a9cOTZs2RXh4OADg4sWLkte/LuzRIgQF5cHf/yyKijzg4VHEIIuIiMzm1KlT8PPzw/nz5zF48GC8/PLLePPNN+Hh4YHvvvsO48aNw+3btw1mxC8rK0NkZCQiIyOxefNmtGrVChcvXkRkZKQsLuhioEUA7vZsMcAiIiJz+vLLL3HixAn8+9//xpEjR6DVarF8+XIx3cPHH3+sU16pVKKiokJn2a+//orCwkIsWrQIvr6+AIDDhw+bpwFG4NChnVIqlSYtR0REVJvy8nKo1Wr8+eefOHr0KN566y0MHToUgwcPRmxsLDp27Ig7d+5gzZo1+P333/HBBx8gNTVVZx8dOnTAjRs3kJOTg2vXruHmzZto164dlEqluN3OnTuxYMECC7WyJvZo2akWLVogISGBmeGJiMgssrOz4e3tjUaNGqF58+bo3bs3Vq9ejbi4ODg4OKB3795YsWIFFi9ejOnTp+Ohhx5CcnIyYmNjxX2EhYXhpZdewvDhw1FYWCimd0hLS8OMGTOwevVqBAUFYdmyZRgyZIgFW/sPhSAIgqUrYa9KSkqgUqmg0Wjg7u5u6eqQTPFWSUQEALdu3UJ+fj78/Pzg4uJS7+0tnUfL2tT2etfn99viPVrr1q3D0qVLoVar0bt3b6xZswb9+vUzWH7btm2YNWsWzp8/j4CAACxevBhPPvmkuF4QBMyZMwfvvfceiouL8cADD+Cdd95BQEBAjX2Vl5cjJCQEx48fR15eHgIDAwEA+/fvx8qVK/Hjjz+ipKQEAQEBmDJlCp577jlx27S0NDFxWiVnZ2fcunXrHl8RkoK1Biv8YiQiU+FIhmVYNNDaunUrkpKSkJqaipCQEKSkpCAyMhKnT5/Wm831wIEDGDlyJJKTkzF48GBkZGQgJiYGR48eRY8ePQAAS5YswerVq5Geng4/Pz/MmjULkZGROHnyZI2IdOrUqfDx8cHx48drHKdXr154/fXX4enpiV27diE2NhYqlQqDBw8Wy7m7u+P06dPi88rLU0lerDlYqf6FaOielHK4soaI5E9u33H2wKKB1ooVKzBhwgSxZyg1NRW7d+/Gxo0bMW3atBrlV61ahUGDBmHKlCkAgAULFmDfvn1Yu3YtUlNTIQgCUlJSMHPmTAwdOhQA8P7778PT0xNZWVkYMWKEuK/PPvsMe/fuxfbt2/HZZ5/pHGfGjBk6zydNmoS9e/ciMzNTJ9DSlzSN5MdWgpXa7klZlbX23hER2SKLBVq3b9/GkSNHMH36dHGZg4MDIiIikJubq3eb3NxcJCUl6SyLjIxEVlYWACA/Px9qtRoRERHiepVKhZCQEOTm5oqBVkFBASZMmICsrCyDeTmq02g06Nq1q86yGzduoH379tBqtQgKCsJbb72F7t27G9xHeXk5ysvLxeclJSVGHZtMx9hgRW6MvSelNffeERHZIould7h27RoqKirg6emps9zT0xNqtVrvNmq1utbylf/WVkYQBIwZMwYvvfQS+vbta1RdP/74Yxw6dEhnTlbnzp2xceNG7NixAx9++CG0Wi3CwsLwxx9/GNxPcnIyVCqV+KjM90HmYShY0WiaWrhmdTP2npT6eu/y8zvUaKPce++IiGyFxSfDm9uaNWtQWlqq05NWm6+++gpjx47Fe++9p9NbFRoaitDQUPF5WFgYunbtivXr1xvM3zF9+nSdHrmSkhIGW2ZUW7Ai92StDbknpbX23hER2RKL9Wi1bNkSjo6OKCgo0FleUFBgcN6Tl5dXreUr/62tzJdffonc3Fw4OzujUaNG6NixIwCgb9++iIuL09nu66+/RnR0NFauXKmTx0MfJycn9OnTB2fPnjVYxtnZGe7u7joPMp/KYKUqa7mBdn3vSWnNvXdERLbEYoGWUqlEcHAwcnJyxGVarRY5OTk6PUVVhYaG6pQHgH379onl/fz84OXlpVOmpKQEBw8eFMusXr0ax48fx7Fjx3Ds2DHs2bMHwN0rIN98801xu/379yMqKgqLFy9GfHx8ne2pqKjAiRMn4O3tbeQrQOZm7TfQDgrKQ2JiCuLi0pCYmFJr75SxQ41ERCQtiw4dJiUlIS4uDn379kW/fv2QkpKCsrIycS5UbGws2rRpg+TkZAB3r/4LDw/H8uXLERUVhS1btuDw4cN49913Ady9CjAxMRELFy5EQECAmN7Bx8cHMTExAIB27drp1KFJkyYAAH9/f7Rt2xbA3eHCwYMHY9KkSXj66afF+V1KpRIeHnd/qObPn4/+/fujY8eOKC4uxtKlS3HhwgWMHz9e2heN7om13UC7+i2QDN2Tsnq5hgw1GotXNRIRGc+igdbw4cNx9epVzJ49G2q1GoGBgcjOzhYns1+8eFG8sSRwdx5URkYGZs6ciRkzZiAgIABZWVliDi3gbm6ssrIyxMfHo7i4GAMGDEB2dna9suimp6fj5s2bSE5OFoM8AAgPD8f+/fsBANevX8eECROgVqvRvHlzBAcH48CBA+jWrds9vipkag0NVuSgoQkGK3vvqs/RutfAklc1EpEc7d+/HwMHDsT169fRrFkzo7bp0KEDEhMTkZiYKGndeAseC+IteMzn3LlzuHnzpsH1jRs3hr+/vxlrJI3Lly+LPbxAZc6wmr138fHxDRrm1r//mjnJGrp/IjLsXm/BY0ljxoxBeno6XnzxxRo3ip44cSLefvttxMXFIS0trUH7lyLQsplb8BBJrbCwEB9++KH43FBwYAu9MObsveNVjURUH76+vtiyZQtWrlwJV1dXAHeDmYyMjBrTemwJAy2yeVWH3WoLDmwht5S57mVmbAJVueH8MiLLCQoKwrlz55CZmSneOzgzMxPt2rWDn5+fWK68vBxTpkzBli1bUFJSgr59+2LlypW4//77xTJ79uxBYmIiLl26hP79+9fIGgAA3333HaZPn47Dhw+jZcuW+Ne//oXk5GS4ublJ39gqGGiR3bDW4KC+zBEoWGNOMs4vI9L1xx/AmTNAQADwv2vBJPfCCy9g06ZNYqC1ceNGjB07Vpz/DNyda719+3akp6ejffv2WLJkCSIjI3H27Fl4eHjg0qVLeOqppzBx4kTEx8fj8OHDeO2113SOc+7cOQwaNAgLFy7Exo0bcfXqVSQkJCAhIQGbNm0yT2P/x2LpHYjMjSkPTMcac5Ixaz7RPzZsANq3Bx555O6/GzaY57jPP/88vvvuO1y4cAEXLlzA999/j+eff15cX1ZWhnfeeQdLly7FE088gW7duuG9996Dq6srNvyvku+88w78/f2xfPlydO7cGc899xzGjBmjc5zk5GQ899xzSExMREBAAMLCwrB69Wq8//77uHXrlnka+z/s0SK7IWXKA3sj1VWN5sL5ZWTP/vgDiI8HtP87V9JqgRdfBCIjpe/ZatWqFaKiopCWlgZBEBAVFYWWLVuK68+dO4c7d+7ggQceEJc5OTmhX79+OHXqFADg1KlTCAkJ0dlv9fybx48fx08//YTNmzeLywRBgFarRX5+fo17F0uJgRbZDWsPDuTG2nKSVZLTEDLnjJElnDnzT5BVqaICOHvWPEOIL7zwAhISEgAA69atk+QYN27cwIsvvohXX321xjpzT7xnoEV2xVqDA7mw5pxkleQyv4xzxshSAgIABwfdYMvREfjfHekkN2jQINy+fRsKhQKRkZE66/z9/aFUKvH999+jffv2AIA7d+7g0KFDYhqGrl27YufOnTrb/fDDDzrPg4KCcPLkSfE2e5bEQIvsjqHggOpmrqsapSSXIWR9c8b0pR3hnDEytbZtgXffvTtcWFFxN8hav958E+IdHR3FYUBHR0eddW5ubnj55ZcxZcoUeHh4oF27dliyZAlu3ryJcePGAQBeeuklLF++HFOmTMH48eNx5MiRGvm3Xn/9dfTv3x8JCQkYP3483NzccPLkSezbt8+oExxTYqBFNs/Y3hU598LIiZyDKGPIZQi5uLhY/H9tc8aKi4uZ/JVMbty4u3Oyzp6925NlriCrUm1JPhctWgStVovRo0ejtLQUffv2xeeff47mzZsDuDv0t337dvz73//GmjVr0K9fP7z11lt44YUXxH306tULX3/9Nd544w08+OCDEAQB/v7+GD58uORtq46Z4S2ImeHNR05zYeRUF3siddb8+jpx4gQyMzOh0TRFSkpijR62xMQUqFSleOqpp9CzZ0/J60PyZ82Z4a0RM8MT1YNcAhfOy7Ecuc4vk8ucMSKSBgMtIj2k6nXivBzLkev8MiencgACAEWVpQKcnPg3QGQLGGgRVVO910mqeyMylxMBwJ07ztANsgBAgTt3OGeQyBYw0CKqxhz3RpRTLid7Ya4Aur7kchUkEUmDgRaRAVIGQ5yXY37mCKDrM+Ts5OQEoO6rICvLEVXiNWzmYarXmYEWkQFSBkPsxbAcqQLo+l7ooFKpxGW1JdKtWo7sW2XQffPmTbi6ulq4Nrbv5s2bAO79ZIeBFpEBUgRDlbmT6urFYO4k6UgVQNf3Qge5XgVJ8uXo6IhmzZrhypUrAIDGjRtDoag+v4/ulSAIuHnzJq5cuYJmzZrVSKpaXwy0iAyQIrHl33//Lf4/KCgPrVurcelSO/j6XkTbtpf1liPTMkdvojEXOsj1KkjSTy7577y8vABADLZIOs2aNRNf73vBQIuoFqa+N2LVLujafow5L0c6UmeGr8/QJIMo6yCn/HcKhQLe3t5o3bo17ty5I+mx7JmTk9M992RVYqBFVAdT3huxcr5NXT/GnJcjLSlvLs4LHWyPsRdImDP/naOjo8kCAZIWAy2iasxxb0T+GFueVDcXl9OFDnIZ7rI1hubfEenDQIvIAuT0Y2wvzHVzcbnctFpOw122hImGqb4YaBFVY47b5Mjlx9iemHPyuZRDk8bi7Z5Mj4mGqSEYaBHVQsqzVzn8GNsbKXtu5Jyugb0wpsEhf2oIBlpEBkhx9irnH2O6N3JN18BeGNPhkD81BAMtIgOkOHuV648x6VffyeRyfN/YC2M6HPKnhmCgRWSAVGevcvwxpppsZTI5e2HuXdUe5tqG/NkTTfow0CIygGev9s1WJpPz7/jesSea7gUDLaJacMK6bWloXilrn0zOv+N7V98gijnMqBIDLaJqOGHdNjV0KNBaJ5Pz79hybGXYmUyDgRZRNRwmsE0NHQq01snk/Du2HDnesocsh4EWkR788bFt9RkKtObJ5Pw7Np17GQrkLXvsGwMtIrIr9R0K5GRyupehQGuf30f3joEWEdmVhgwFcjK5fWvosLNU8/s40d66MNAiIrti7FAgJ5OTPvXpoZJifh8n2lsfBlpEZFeMHQpsyGRy9jTYtvr2UEkxv89W8rvZEwZaRGR3jB0KrE9QxJ4G21ffHiqp5/dx/pd1YKBFRHZB6qFA9jTYvoYMO0t1yx5rze9mjyweaK1btw5Lly6FWq1G7969sWbNGvTr189g+W3btmHWrFk4f/48AgICsHjxYjz55JPiekEQMGfOHLz33nsoLi7GAw88gHfeeQcBAQE19lVeXo6QkBAcP34ceXl5CAwMFNf99NNPmDhxIg4dOoRWrVrhlVdewdSpU+tVFyKSD3PmlWJPg22Scti5vqw1vxtgf0PsFg20tm7diqSkJKSmpiIkJAQpKSmIjIzE6dOn0bp16xrlDxw4gJEjRyI5ORmDBw9GRkYGYmJicPToUfTo0QMAsGTJEqxevRrp6enw8/PDrFmzEBkZiZMnT8LFxUVnf1OnToWPjw+OHz+us7ykpASPP/44IiIikJqaihMnTuCFF15As2bNEB8fb3RdiEhezPHlzZ4G05Drj7EUw84NYa353exxiN2igdaKFSswYcIEjB07FgCQmpqK3bt3Y+PGjZg2bVqN8qtWrcKgQYMwZcoUAMCCBQuwb98+rF27FqmpqRAEASkpKZg5cyaGDh0KAHj//ffh6emJrKwsjBgxQtzXZ599hr1792L79u347LPPdI6zefNm3L59Gxs3boRSqUT37t1x7NgxrFixQgy06qoLyYtcv7TJ9lhzT4OU6vMZlNuPsRyvQLXW/G72OMRusUDr9u3bOHLkCKZPny4uc3BwQEREBHJzc/Vuk5ubi6SkJJ1lkZGRyMrKAgDk5+dDrVYjIiJCXK9SqRASEoLc3Fwx0CooKMCECROQlZWFxo0b6z3OQw89pPOhiYyMxOLFi3H9+nU0b968zrroU15ejvLycvF5SUmJwbJkOnL70ibbZq09DVKq72dQbj/Gcr2dkbXnd7OXIXaLBVrXrl1DRUUFPD09dZZ7enri119/1buNWq3WW16tVovrK5cZKiMIAsaMGYOXXnoJffv2xfnz5/Uex8/Pr8Y+Ktc1b968zrrok5ycjHnz5hlcT9KQ25c22TZr7WmQ0r18BuXyYyyXkzA59q41hD0NsVt8Mry5rVmzBqWlpTo9aeYyffp0nV6wkpIS+Pr6mr0e9kwuX9pkezQajfj/2noaNBoNvL29LVFFWajPZ9CefoyNJdfetfqypyF2iwVaLVu2hKOjIwoKCnSWFxQUwMvLS+82Xl5etZav/LegoEDni6ygoEC8ovDLL79Ebm4unJ2ddfbTt29fPPfcc0hPTzd4nKrHqKsu+jg7O9c4LpkPv7RJSoIg6FmqMLKcfajvZ9CefozrQ+5BlDHsaYjdoe4i0lAqlQgODkZOTo64TKvVIicnB6GhoXq3CQ0N1SkPAPv27RPL+/n5wcvLS6dMSUkJDh48KJZZvXo1jh8/jmPHjuHYsWPYs2cPgLtXQL755pvicb755hvcuXNH5zidO3dG8+bNjaoLyU9tX9pE96pZs2bi/48e7YOUlESkp8chJSURR4/20VvO3tT3M1j5Y1yVrf4Y25vKIfbK99eWh9gtOnSYlJSEuLg49O3bF/369UNKSgrKysrEqxBjY2PRpk0bJCcnAwAmTZqE8PBwLF++HFFRUdiyZQsOHz6Md999FwCgUCiQmJiIhQsXIiAgQEzv4OPjg5iYGABAu3btdOrQpEkTAIC/vz/atm0LABg1ahTmzZuHcePG4fXXX8fPP/+MVatWYeXKleJ2ddWF5MeezqDIcthzalh9P4Oc72bbrH0yv7EsGmgNHz4cV69exezZs6FWqxEYGIjs7GxxkvnFixfh4PDPBzIsLAwZGRmYOXMmZsyYgYCAAGRlZenkrZo6dSrKysoQHx+P4uJiDBgwANnZ2TVyaNVGpVJh7969mDhxIoKDg9GyZUvMnj1bTO1gbF1IXvilTebA4S7DGvIZtJcfY3thK5P568Pik+ETEhKQkJCgd93+/ftrLHv22Wfx7LPPGtyfQqHA/PnzMX/+fKOO36FDB71zJnr16oVvv/221m3rqgvJD7+0SWrsOa2dMZ9Be/wxthe2Mpm/PiweaBFJjV/aZE7sOa2pvp9Be/wxtif29r4x0CKbxy9tMjf2nOpqyGeQn0eyFQy0yC5Y85c2bx9kHW7evKnz3FCvTfVy9oJ/o2SvGGgRyRhvH2Q9qt/Oy1D2c323/SKSEk/WLIuBFpGM8fZB1ol3ICC54Mma5THQIrIS/PG2DsyjRXLCkzXLY6BFZAX44209mEeL5Iona5bBQIvICvDH23owj5ZpcF6RafFkzXIYaJFVsrcvYf54Ww/m0bp3nFdkejxZsxwGWmR17PFLmD/e1oV5tO4N5xWZHk/WLIeBFlkdY79cbe1LmD/e907KnlDegUAanFdkGtZ8smbtIxgMtOyYtf/xVjJ0tmsL+ONtOlL3hPIOBKbHeUWmZY0na7YwgsFAy07Zwh8vYPtnu/zxNh0OR1kfziu6d9Z+smYLn1sGWnbKFv547eVsl0GU6UkRoNvKyYuccF7RvbOlkzVrPbFmoEVW+8fLs11qCKkCdFs4eZEba55XJCfWEETVxZpPrBlo2SmNRvO/f2v/49VoNPD29rZkVQ3i2S41hDkCdGs9eZEja5xXRKZnzSfWDnUXIVt0584dALX/8VYtJ0eVZ7sKhRYAeLZLRqkM0KsyZYBu6ORFo2lqkv3bA33zivz8LtT4bMt1XhGZntSfWymxR8vOWWOvUNUv19rOdvklTPpIPRxlzWfecmFL84rINKx5GJmBlp1TqUrRq9dPOH68NwAFAAG9ev0k6z9efgnTvZJyOMoaT14aQur0MPz8UnXWOozMQMvOaTRN8dNPvXA3yAIABX76qRceeeRLWf8R80uY6stcl7lb85m3sXiFJZmLtaenABho2a1Gje6+9XUNc1SWI7J25uwJtdYzb2PxCksyF1sYweCvqJ1q1qwZgLqHOSrLEdkCKb+MbeHMuyF4hSVJrb6fW7nd9YSBlp2zh2EOInOwhTPv+rLm3EZkm6oPaxvqbTXnsDYDLTvFK/eITM+Wgihj8ApLkpuqJzq19baac1ibgZadssezbyIyLXu5wpKsj5x6Wxlo2TEGUUR0L+oz9UBu82bItsmpt5WBFhERNZgxV1gyHQSZm5x6W3kLHiIiqpf63iJHXzqI/PwONW5LxHQQZCpyukUbe7SIiKhe7mWOJ9NBkLnIJZ8dAy0iIqq3hgzxyWmCMtkHQ/nszIlDh0REZBa1TVAmMgVjUxKZM3URe7SIiMgs5DRBmWyTHFMXMdAiIiKz4J0oyBzkduUqAy0iPZjzh0gacpmgTGQuDLSIqmHOHyLTstcbbhMBDLSIajA2lw9z/hAZR47zZojMhYEWUR0M3f2diIzHIMp2capF7RhoEdWCyRWJiAzjVIu6WTyP1rp169ChQwe4uLggJCQEP/74Y63lt23bhi5dusDFxQU9e/bEnj17dNYLgoDZs2fD29sbrq6uiIiIwJkzZ3TKDBkyBO3atYOLiwu8vb0xevRo/PXXX+L6uXPnQqFQ1Hi4ubmJZdLS0mqsd3FxMcErQnJhKLli9duGEFUqLCzE5cuXDT4KCwstXUUik+Ltlepm0R6trVu3IikpCampqQgJCUFKSgoiIyNx+vRptG7dukb5AwcOYOTIkUhOTsbgwYORkZGBmJgYHD16FD169AAALFmyBKtXr0Z6ejr8/Pwwa9YsREZG4uTJk2IgNHDgQMyYMQPe3t74888/MXnyZDzzzDM4cOAAAGDy5Ml46aWXdI796KOP4v7779dZ5u7ujtOnT4vPFQqFSV8fsiw53f2dDJPLsAXP7MnecQRAP4sGWitWrMCECRMwduxYAEBqaip2796NjRs3Ytq0aTXKr1q1CoMGDcKUKVMAAAsWLMC+ffuwdu1apKamQhAEpKSkYObMmRg6dCgA4P3334enpyeysrIwYsQIAMC///1vcZ/t27fHtGnTEBMTgzt37sDJyQlNmjRBkyZNxDLHjx/HyZMnkZqaqlMfhUIBLy8v074oJBtMrih/cgpu9J3Z65vbZ89n9mS7eHslwyw2dHj79m0cOXIEERER/1TGwQERERHIzc3Vu01ubq5OeQCIjIwUy+fn50OtVuuUUalUCAkJMbjPoqIibN68GWFhYXByctJb5j//+Q86deqEBx98UGf5jRs30L59e/j6+mLo0KH45Zdf6m44WQ053f2d9JPrsMXRo32QkpKI9PQ4pKQk4ujRPmY9PpG58fZKhlmsR+vatWuoqKiAp6enznJPT0/8+uuverdRq9V6y6vVanF95TJDZSq9/vrrWLt2LW7evIn+/ftj165deo9569YtbN68uUYPW+fOnbFx40b06tULGo0Gy5YtQ1hYGH755Re0bdtW777Ky8tRXl4uPi8pKdFbjiyrai6f2pIrMuePvMhl2IJn9mSPOAJgmN1edThlyhSMGzcOFy5cwLx58xAbG4tdu3bVmGf1ySefoLS0FHFxcTrLQ0NDERoaKj4PCwtD165dsX79eixYsEDvMZOTkzFv3jzTN4ZMijl/rI+cghvO7SN7xNsrGWaxQKtly5ZwdHREQUGBzvKCggKD8568vLxqLV/5b0FBAby9vXXKBAYG1jh+y5Yt0alTJ3Tt2hW+vr744YcfdIIn4O6w4eDBg2v0klXn5OSEPn364OzZswbLTJ8+HUlJSeLzkpIS+Pr61rpfsgwGUdZFTsENz+zJ2jX0AhPeXkk/iwVaSqUSwcHByMnJQUxMDABAq9UiJycHCQkJercJDQ1FTk4OEhMTxWX79u0TgyM/Pz94eXkhJydHDKxKSkpw8OBBvPzyywbrotXenYNTdVgPuDvn66uvvsLOnTvrbE9FRQVOnDiBJ5980mAZZ2dnODs717kvIqofOQU3PLMna1bfC0x4e6W6WXToMCkpCXFxcejbty/69euHlJQUlJWViVchxsbGok2bNkhOTgYATJo0CeHh4Vi+fDmioqKwZcsWHD58GO+++y6Au1cBJiYmYuHChQgICBDTO/j4+IjB3MGDB3Ho0CEMGDAAzZs3x7lz5zBr1iz4+/vX6M3auHEjvL298cQTT9So+/z589G/f3907NgRxcXFWLp0KS5cuIDx48dL+IoRkT5yC254Zk/Wqr5Xz3KqRd0sGmgNHz4cV69exezZs6FWqxEYGIjs7GxxmO7ixYtwcPjnDDUsLAwZGRmYOXMmZsyYgYCAAGRlZYk5tABg6tSpKCsrQ3x8PIqLizFgwABkZ2eLObQaN26MzMxMzJkzB2VlZfD29sagQYMwc+ZMnd4mrVaLtLQ0jBkzBo6OjjXqfv36dUyYMAFqtRrNmzdHcHAwDhw4gG7dukn1chFRLSwd3PDMnmyNsReY2HMQZQyFIAiCpSthr0pKSqBSqaDRaODu7m7p6hBZHTnl0aqsD8/syZpdvnwZ7777LjSapkhJSawxHJ+YmAKVqhTx8fE6c6HtTX1+v+32qkMisn5yG7aQWxDFwI/qS6PRAKj7AhONRmPXgVZ9MNAiIqvGQEE/ufX2kXW4c+cOgLsXmABa6OY1/+cCk8pyDWFvJwAMtIiIbBBvCUT3TjevpClu51v9BMDQ36UtnQAw0CIisnFyyZpP1qOoqAWqB1qmyE1XNbCv7e/Slk4ALHavQyIikp6hrPnV7wdJBACNGt3tf6nMTVdV1dx0leUayp7+LhloERHZMN7sl+qjWbNmAP7JTVcZbFXPTVdZrqHs6e+SQ4dERDZMTlnzybpImZvOnv4uGWgREdkwuWXNt1b2dqVcJUOJd02xX3v5u2SgRWRm9vqFTZZj6az51s6eUmUYe+cCU9zhwF7+LhloEZmRPX1hk2XxlkCmY0+pMsydBFiqHjM5YaBFZEb29IVNliW3rPm2wh5SZUj5N2HOHjO5YKBFZCH28IVNlsUgyrQMpSTw9z9r870ypmKPJwAMtIgsgF/YRNanrvv/kXFsKYgyBgMtG8JJ1taDX9hE1seeUhKQ6TDQshGcZF07uQWh/MImsj72lJKATIeBlo3gJGvD5BiE8gubyDrZS0oCMh0GWjaIk6x1GRtcmjsI5Rc2kXVgqgy6Fwy0bAwnWdfNUG+fOfALm8j62OOVcmQ6DLRsDCdZ187SvX38wiayTvxMUkMx0LIxnGRtmFx6+6T+wpbbxH8iInvGQMvGcJK1YfXp7bPWYEWOE/+JiOwZAy0bxEnW+hnb22fNwQqvPiUikhcGWjaCk6zrZmxvn60EK5aej0ZERAy0bAYnWRtWNbisrbdPXxAqh2ClIcOYcpmPRkRk7xhokc1raBAqh2ClocOYvPqUiEgeGGjZCGueV2QODWmzHIKVhg5j8upTIiJ5YKBlI2xlXpGcyC1Yqc8wJq8+JSKSBwZaNkgO84psgZyClYYMY/LqUyIiy2OgZWPkMK/IlsglWDF2GJNXnxIRyQsDLRsjh3lF1k6OwYqxw5i8+pSISF4YaNkYuc0rskZyDFbqM4zJIIqISD4YaNkYOc0rsmZyDFbkMoxJRJZlrbcIs1cMtGwQf5BthxyHMYnIcqqn8jF0hbm9pvKRIwZaNoI/yLZJjsOYRGQ5Vb8LarvCnKl85IOBlo3gD7Lt4ntGRNXxCnPrwUDLhvAHmYjIPvAKc+vhUHcRIiIikpPKK8yr4hXm8sRAi4iIyMpUXmFeGWzxCnP54tAhERGRFeIV5tbB4j1a69atQ4cOHeDi4oKQkBD8+OOPtZbftm0bunTpAhcXF/Ts2RN79uzRWS8IAmbPng1vb2+4uroiIiICZ86c0SkzZMgQtGvXDi4uLvD29sbo0aPx119/ievPnz8PhUJR4/HDDz/Uqy5EJL3CwkJcvnzZ4KOwsNDSVSSSjEpVCj+/CwyyZMyiPVpbt25FUlISUlNTERISgpSUFERGRuL06dNo3bp1jfIHDhzAyJEjkZycjMGDByMjIwMxMTE4evQoevToAQBYsmQJVq9ejfT0dPj5+WHWrFmIjIzEyZMn4eLiAgAYOHAgZsyYAW9vb/z555+YPHkynnnmGRw4cEDneF988QW6d+8uPq862dyYuhCRtKrnFDLEXnMKMbGl7TE2RQ9T+ciHQhAEwVIHDwkJwf333y9+UWq1Wvj6+uKVV17BtGnTapQfPnw4ysrKsGvXLnFZ//79ERgYiNTUVAiCAB8fH7z22muYPHkyAECj0cDT0xNpaWkYMWKE3nrs3LkTMTExKC8vh5OTE86fPw8/Pz/k5eUhMDBQ7zZ11cUYJSUlUKlU0Gg0cHd3N2obIvrH5cuX8e6774rPDSVvjI+Ph7e3tyWqaDEMQm0XA2jLq8/vt8V6tG7fvo0jR45g+vTp4jIHBwdEREQgNzdX7za5ublISkrSWRYZGYmsrCwAQH5+PtRqNSIiIsT1KpUKISEhyM3N1RtoFRUVYfPmzQgLC4OTk5POuiFDhuDWrVvo1KkTpk6diiFDhhhdF33Ky8tRXl4uPi8pKTFYlojqp7bkjfao+g+xoSCUiS2tD4Mo62KxOVrXrl1DRUUFPD09dZZ7enpCrVbr3UatVtdavvJfY/b5+uuvw83NDS1atMDFixexY8cOcV2TJk2wfPlybNu2Dbt378aAAQMQExODnTt3Gl0XfZKTk6FSqcSHr6+vwbJEZDxDyRs1mqYWrpk8HD3aBykpiUhPj0NKSiKOHu1j6SoR2Q2TBVq3bt3CsmXLTLU7yU2ZMgV5eXnYu3cvHB0dERsbi8pR1JYtWyIpKUkc2ly0aBGef/55LF269J6OOX36dGg0GvFx6dIlUzSFyO7VlrzR3jEIJbKsegVaV69exa5du7B3715UVFQAAO7cuYNVq1ahQ4cOWLRokdH7atmyJRwdHVFQUKCzvKCgAF5eXnq38fLyqrV85b/G7LNly5bo1KkTHnvsMWzZsgV79uypcVVhVSEhITh79qzRddHH2dkZ7u7uOg8iundM3mgYg1AiyzI60Pruu+8QEBCAIUOG4IknnkBYWBhOnjyJ7t27Y/369Zg7d269emiUSiWCg4ORk5MjLtNqtcjJyUFoaKjebUJDQ3XKA8C+ffvE8n5+fvDy8tIpU1JSgoMHDxrcZ+VxAejMn6ru2LFjOpNp66oLEZkPkzcaxiCUyLKMngw/c+ZMPPnkk5gxYwbS09OxfPly/Otf/8Jbb72FZ555pkEHT0pKQlxcHPr27Yt+/fohJSUFZWVlGDt2LAAgNjYWbdq0QXJyMgBg0qRJCA8Px/LlyxEVFYUtW7bg8OHD4lVHCoUCiYmJWLhwIQICAsT0Dj4+PoiJiQEAHDx4EIcOHcKAAQPQvHlznDt3DrNmzYK/v78YJKWnp0OpVKJPn7vzGDIzM7Fx40b85z//EeteV12IyLzkkLxRjleDVQah1S8UYBBKZB5GB1onTpzA22+/jW7dumH+/PlYsWIFlixZgqFDhzb44MOHD8fVq1cxe/ZsqNVqBAYGIjs7W5xkfvHiRTg4/NPpFhYWhoyMDMycORMzZsxAQEAAsrKydPJWTZ06FWVlZYiPj0dxcTEGDBiA7OxsMYdW48aNkZmZiTlz5qCsrAze3t4YNGgQZs6cCWdnZ3E/CxYswIULF9CoUSN06dIFW7du1QkojakLEUmreq4glapUbwBhjpxCck6nIIcglMheGZ1Hy8HBAWq1Wkwk2rRpUxw7dgz+/v6SVtCWMY8W0b2TSy+S3HJ6yTnwI7J2kuXROnnypJi+QBAEnD59GmVlZTplevXqVc/qEhE1nByDBDnk9GrRogUSEhJkEYQS2bN6BVqPPvooqnaADR48WGe9QqEQr0YkIrJHhtIp+PufNfuQHYMoIsszOtDKz8+vs0xpKcf9ici+1ZZOgXOjiOyP0YFW+/bt9S4vLS3FRx99hA0bNuDw4cPs0SIiu1aZTqFqsMV0CkT2q8GZ4b/55hvExcXB29sby5Ytw8CBA2tN+ElEZA+Y04uIqqrXHC21Wo20tDRs2LABJSUlGDZsGMrLy5GVlYVu3bpJVUciIqvCdApEVMnoQCs6OhrffPMNoqKikJKSgkGDBsHR0RGpqalS1o/I5sglHQGZlpxyehGRfBgdaH322Wd49dVX8fLLLyMgIEDKOhHZLOY2sl1Mp0BE+hgdaH333XfYsGEDgoOD0bVrV4wePRojRoyQsm5ENqf6j7ChpJa1/ViTfDGIIqLqjA60+vfvj/79+yMlJQVbt27Fxo0bkZSUBK1Wi3379sHX1xdNmzaVsq5EIlsYfpNDUksiIpJWvSbDA4CbmxteeOEFvPDCCzh9+jQ2bNiARYsWYdq0aXjsscewc+dOKepJJLKF4Tc5JbUkIiLpNDi9AwB07twZS5YswR9//IGPPvrIVHUiqpW+4bf8/A7QaJrWWk5OaktqSUREtqPePVr6ODo6IiYmBjExMabYHZHRrHX4jUktiYjsg0kCLbJ9cpwTZc3Db5VJLasHiXKvNxER1Q8DLaqTXOdEWfs95ZjUkojI9jHQojrJNSWBNQ6/MaklEZF9YaBF9SKnOVHWOPzGpJZERPaFgRYZTY5zoqxx+I1BFBGR/WCgRUaTy5woDr8REZG1YKBFRpPLnChrH36T4xWcREQkDQZaZLT6zImSOpiw1kDEHFdwMpAjIpIPBlpUL8bMiZJrOgg5kPoKTr72RETywkCL6lTfOVFyTQchN1JcwWnsa2rvrz0Rkbkw0KI63cucKDmlg5ATc13BaSjIJevEYWEi68NAi4zSkC9vOaaDkAtzXMHJINe2cFiYyDo51F2EqGFqCybsXeUVnFWZ8gpOQ0GuRtPUJPsn89M3JJ+f36HGe8phYSJ5YY8WSUYu6SDkSOqs9nLJeUbSYG8lkfVgoEWSscZb5JiTlFntGeTaLg7JE1kXBlokKWu8RY6UzJXVnkGudWjI5Hb2VhJZFwZaZHK8RY5hUme1r/qa1hbk2uNrLzcNndzO3koi68JAi0zO2m+RIzUp283X3no0NN8ceyuJrAsDLZIEf8gth6+99anv5HYOyRNZD6Z3ICKyIGNTcegbkvfzu1AjyOKwMJG8sEeLiMiCjJ3czmFhIuvEQIuIyILqM7mdQRSR9eHQIRGRBVVObq+8UwAntxPZFvZoERFZGCe3E9kuBlpERBbAfHNE9sHiQ4fr1q1Dhw4d4OLigpCQEPz444+1lt+2bRu6dOkCFxcX9OzZE3v27NFZLwgCZs+eDW9vb7i6uiIiIgJnzpzRKTNkyBC0a9cOLi4u8Pb2xujRo/HXX3+J6/fv34+hQ4fC29sbbm5uCAwMxObNm3X2kZaWBoVCofNwcXG5x1eDiOxF5eT2+Ph4g4/qyUqJyPpYNNDaunUrkpKSMGfOHBw9ehS9e/dGZGQkrly5orf8gQMHMHLkSIwbNw55eXmIiYlBTEwMfv75Z7HMkiVLsHr1aqSmpuLgwYNwc3NDZGQkbt26JZYZOHAgPv74Y5w+fRrbt2/HuXPn8Mwzz+gcp1evXti+fTt++uknjB07FrGxsdi1a5dOfdzd3XH58mXxceHCBRO/QkRky1q0aAFvb2+DDwZZRNZPIQiCYKmDh4SE4P777xdvQ6HVauHr64tXXnkF06ZNq1F++PDhKCsr0wl4+vfvj8DAQKSmpkIQBPj4+OC1117D5MmTAQAajQaenp5IS0vDiBEj9NZj586diImJQXl5OZycnPSWiYqKgqenJzZu3Ajgbo9WYmIiiouLG9z+kpISqFQqaDQauLu7N3g/REREZD71+f22WI/W7du3ceTIEURERPxTGQcHREREIDc3V+82ubm5OuUBIDIyUiyfn58PtVqtU0alUiEkJMTgPouKirB582aEhYUZDLKAuwGbh4eHzrIbN26gffv28PX1xdChQ/HLL7/U2uby8nKUlJToPIiIiMh2WSzQunbtGioqKuDp6amz3NPTE2q1Wu82arW61vKV/xqzz9dffx1ubm5o0aIFLl68iB07dhis68cff4xDhw5h7Nix4rLOnTtj48aN2LFjBz788ENotVqEhYXhjz/+MLif5ORkqFQq8eHr62uwLBEREVk/i0+Gt5QpU6YgLy8Pe/fuhaOjI2JjY6FvFPWrr77C2LFj8d5776F79+7i8tDQUMTGxiIwMBDh4eHIzMxEq1atsH79eoPHnD59OjQajfi4dOmSJG0jIiKyV4WFhTrzp6s/CgsLzVofi6V3aNmyJRwdHVFQUKCzvKCgAF5eXnq38fLyqrV85b8FBQXw9vbWKRMYGFjj+C1btkSnTp3QtWtX+Pr64ocffkBoaKhY5uuvv0Z0dDRWrlyJ2NjYWtvj5OSEPn364OzZswbLODs7w9nZudb9EBERUcMUFhaK875rY84rei3Wo6VUKhEcHIycnBxxmVarRU5Ojk6wU1VoaKhOeQDYt2+fWN7Pzw9eXl46ZUpKSnDw4EGD+6w8LnB3DlWl/fv3IyoqCosXL0Z8fHyd7amoqMCJEyd0AjwiIiIyn+r3AtVomiI/v0ONm7TXds9QU7NowtKkpCTExcWhb9++6NevH1JSUlBWVibOhYqNjUWbNm2QnJwMAJg0aRLCw8OxfPlyREVFYcuWLTh8+DDeffddAIBCoUBiYiIWLlyIgIAA+Pn5YdasWfDx8UFMTAwA4ODBgzh06BAGDBiA5s2b49y5c5g1axb8/f3FYOyrr77C4MGDMWnSJDz99NPi/C6lUilOiJ8/fz769++Pjh07ori4GEuXLsWFCxcwfvx4c76EREREpMfRo33w6aeDIQgO4q2tgoLyzF4PiwZaw4cPx9WrVzF79myo1WoEBgYiOztbnMx+8eJFODj80+kWFhaGjIwMzJw5EzNmzEBAQACysrLQo0cPsczUqVNRVlaG+Ph4FBcXY8CAAcjOzhaTiTZu3BiZmZmYM2cOysrK4O3tjUGDBmHmzJnisF56ejpu3ryJ5ORkMcgDgPDwcOzfvx8AcP36dUyYMAFqtRrNmzdHcHAwDhw4gG7dukn9shEREVEtNJqmYpAFAILggE8/HQx//7Nmv8WVRfNo2Tvm0SIiIjKdy5cv491330V+fgekp8fVWB8XlwY/vwuIj4+/p6k+VpFHi4iIiEgKHh6FUCi0OssUCi08PIrMXhcGWkRERGRTVKpSREfvEoOtyjla5h42BCw8R4uIiIhICkFBefD3P4uiIg94eBRZJMgCGGgRERGRjVAqlTrPVapSvQFW9XJSYqBFRERENqFFixZISEioNU+WUqk0W7JSgIEWERER2RBzBlHG4GR4IiIiIokw0CIiIiKSCAMtIiIiIokw0CIiIiKSCAMtIiIiIokw0CIiIiKSCAMtIiIiIokwjxbZhcLCQlklsCMiIvvAQItsXmFhIdauXVtnuYSEBAZbRERkUhw6JJtXvSdLo2mK/PwO0Gia1lqOiIjoXrFHi+zK0aN98OmngyEIDlAotIiO3oWgoDxLV4uIiGwUe7TIbmg0TcUgCwAEwQGffjq4Rs8WERGRqTDQIrtRVNRCDLIqCYIDioo8LFQjIiKydQy0yG54eBRCodDqLFMotPDwKLJQjYiIyNYx0CK7oVKVIjp6lxhsVc7RUqlKLVwzIiKyVZwMT3YlKCgP/v5nUVTkAQ+PIgZZREQkKQZaZPOUSqXOc5WqVG+AVb0cERHRvWKgRTavRYsWSEhIYGZ4IiIyOwZaZBcYRBERkSVwMjwRERGRRBhoEREREUmEgRYRERGRRBhoEREREUmEgRYRERGRRBhoEREREUmE6R2IiEyksLCQ+dqISAcDLSIiEygsLMTatWvrLJeQkMBgi8iOcOiQiMgEqvdkaTRNkZ/fARpN01rLEZFtY48WEZGJHT3aB59+OhiC4ACFQovo6F0ICsqzdLWIyALYo0VEZEIaTVMxyAIAQXDAp58OrtGzRUT2gYEWEZEJFRW1EIOsSoLggKIiDwvViIgsiYEWEZEJeXgUQqHQ6ixTKLTw8CiyUI2IyJIYaBERmZBKVYro6F1isFU5R0ulKrVwzYjIEiweaK1btw4dOnSAi4sLQkJC8OOPP9Zaftu2bejSpQtcXFzQs2dP7NmzR2e9IAiYPXs2vL294erqioiICJw5c0anzJAhQ9CuXTu4uLjA29sbo0ePxl9//aVT5qeffsKDDz4IFxcX+Pr6YsmSJfWuCxHZp6CgPCQmpiAuLg2JiSmcCE9kxywaaG3duhVJSUmYM2cOjh49it69eyMyMhJXrlzRW/7AgQMYOXIkxo0bh7y8PMTExCAmJgY///yzWGbJkiVYvXo1UlNTcfDgQbi5uSEyMhK3bt0SywwcOBAff/wxTp8+je3bt+PcuXN45plnxPUlJSV4/PHH0b59exw5cgRLly7F3Llz8e6779arLkRkP5RKpc5zlaoUfn4XavRkVS9HRLZNIQiCYKmDh4SE4P777xeT/Gm1Wvj6+uKVV17BtGnTapQfPnw4ysrKsGvXLnFZ//79ERgYiNTUVAiCAB8fH7z22muYPHkyAECj0cDT0xNpaWkYMWKE3nrs3LkTMTExKC8vh5OTE9555x288cYbUKvV4pfitGnTkJWVhV9//dWouhijpKQEKpUKGo0G7u7uRm1DRPIldWZ4Zp4nkof6/H5bLI/W7du3ceTIEUyfPl1c5uDggIiICOTm5urdJjc3F0lJSTrLIiMjkZWVBQDIz8+HWq1GRESEuF6lUiEkJAS5ubl6A62ioiJs3rwZYWFhcHJyEo/z0EMP6Zx5RkZGYvHixbh+/TqaN29eZ130KS8vR3l5ufi8pKTEYFkisj5SBjnMPE9knSw2dHjt2jVUVFTA09NTZ7mnpyfUarXebdRqda3lK/81Zp+vv/463Nzc0KJFC1y8eBE7duyo8zhVj1FXXfRJTk6GSqUSH76+vgbLEhFVZWxGeWaeJ5IXi0+Gt5QpU6YgLy8Pe/fuhaOjI2JjYyH1KOr06dOh0WjEx6VLlyQ9HhHZLkO3+CEiebHY0GHLli3h6OiIgoICneUFBQXw8vLSu42Xl1et5Sv/LSgogLe3t06ZwMDAGsdv2bIlOnXqhK5du8LX1xc//PADQkNDDR6n6jHqqos+zs7OcHZ2NrieiMgYvMUPkfWwWI+WUqlEcHAwcnJyxGVarRY5OTkIDQ3Vu01oaKhOeQDYt2+fWN7Pzw9eXl46ZUpKSnDw4EGD+6w8LgBx/lRoaCi++eYb3LlzR+c4nTt3RvPmzY2qCxGRFHiLHyLrYtGhw6SkJLz33ntIT0/HqVOn8PLLL6OsrAxjx44FAMTGxupMlp80aRKys7OxfPly/Prrr5g7dy4OHz6MhIQEAIBCoUBiYiIWLlyInTt34sSJE4iNjYWPjw9iYmIAAAcPHsTatWtx7NgxXLhwAV9++SVGjhwJf39/MUgaNWoUlEolxo0bh19++QVbt27FqlWrdCa/11UXIiIp8BY/RNbFYkOHwN0UCVevXsXs2bOhVqsRGBiI7OxscZL5xYsX4eDwzxdKWFgYMjIyMHPmTMyYMQMBAQHIyspCjx49xDJTp05FWVkZ4uPjUVxcjAEDBiA7OxsuLi4AgMaNGyMzMxNz5sxBWVkZvL29MWjQIMycOVMc1lOpVNi7dy8mTpyI4OBgtGzZErNnz0Z8fHy96kJEZGqVt/ipGmzxFj9E8mXRPFr2jnm0iGyLlHmuLl++LCZNrm2OVnx8vM4cVSIyPavIo0VEZEukznNVNa9fUFAe/P3PoqjIAx4eRTrZ55l5nkheGGgREZlA9Z4sjaYpiopawMOjUCcQamieqxYtWiAhIYGZ4YmsDAMtIiITkyr9AoMoIutjtwlLiYikwPQLRFQVAy0iIhNi+gUiqoqBFhGRCVWmX6iK6ReI7BcDLSIiE1KpShEdvUsMtirnaFWdEE9E9oOT4YmITKy29AtEZF8YaBERmUD1/FUqVaneAIt5rojsCwMtIiITYJ4rItKHgRYRkYkwiCKi6jgZnoiIiEgiDLSIiIiIJMJAi4iIiEgiDLSIiIiIJMJAi4iIiEgiDLSIiIiIJMJAi4iIiEgiDLSIiIiIJMJAi4iIiEgiDLSIiIiIJMJb8JBVKiws5D3liIhI9hhokdUpLCzE2rVrxecaTVMUFbWAh0chVKpScXlCQgKDLSIisigGWmR1qvZkHT3aB59+OhiC4ACFQovo6F0ICsqrUY6IiMgSOEeLrJZG01QMsgBAEBzw6aeDodE0tXDNiIiI7mKPFlmtoqIWYpBVSRAcUFTkoTOEaG84f42obvyckLkw0CKr5eFRCIVCqxNsKRRaeHgUWbBWlsX5a0R1q/45MYSfEzIFBlpktVSqUkRH76oxR8uee7M4f42obsb+/fNzQqbAQIusWlBQHvz9z6KoyAMeHkV2HWRVZWj+mr//Wb5GRNUY6vklMgUGWmT1VKpSfjlWw/lrRMapreeXyBR41SFZHaVSadJytqhy/lpV9j5/jag6XrlM5sAeLbI6LVq0QEJCAq8YqgXnrxHVjT2/ZA4MtMgq2XMQZSzOXyOqHa9cJnPg0CGRDVOpSuHnd4FBFpEelT2/lcPs7PklKbBHi8iGcP4aUd2q/v3X1vPLzwmZgkIQBMHSlbBXJSUlUKlU0Gg0cHd3t3R1yEYw4zVR3fg5oXtRn99v9mgR2Rj+OBDVjZ8TMhfO0SIiIiKSiMUDrXXr1qFDhw5wcXFBSEgIfvzxx1rLb9u2DV26dIGLiwt69uyJPXv26KwXBAGzZ8+Gt7c3XF1dERERgTNnzojrz58/j3HjxsHPzw+urq7w9/fHnDlzdLqQ586dC4VCUePh5uYmlklLS6ux3sXFxUSvChEREdkCiwZaW7duRVJSEubMmYOjR4+id+/eiIyMxJUrV/SWP3DgAEaOHIlx48YhLy8PMTExiImJwc8//yyWWbJkCVavXo3U1FQcPHgQbm5uiIyMxK1btwAAv/76K7RaLdavX49ffvkFK1euRGpqKmbMmCHuY/Lkybh8+bLOo1u3bnj22Wd16uPu7q5T5sKFCxK8SkRERGS1BAvq16+fMHHiRPF5RUWF4OPjIyQnJ+stP2zYMCEqKkpnWUhIiPDiiy8KgiAIWq1W8PLyEpYuXSquLy4uFpydnYWPPvrIYD2WLFki+Pn5GVx/7NgxAYDwzTffiMs2bdokqFSqWttXF41GIwAQNBrNPe2HiIiIzKc+v98W69G6ffs2jhw5goiICHGZg4MDIiIikJubq3eb3NxcnfIAEBkZKZbPz8+HWq3WKaNSqRASEmJwnwCg0Wjg4eFhcP1//vMfdOrUCQ8++KDO8hs3bqB9+/bw9fXF0KFD8csvvxhuMIDy8nKUlJToPIiIiMh2WSzQunbtGioqKuDp6amz3NPTE2q1Wu82arW61vKV/9Znn2fPnsWaNWvw4osv6l1/69YtbN68GePGjdNZ3rlzZ2zcuBE7duzAhx9+CK1Wi7CwMPzxxx8GWgwkJydDpVKJD19fX4NliYiIyPpZfDK8Jf35558YNGgQnn32WUyYMEFvmU8++QSlpaWIi4vTWR4aGorY2FgEBgYiPDwcmZmZaNWqFdavX2/weNOnT4dGoxEfly5dMml7iIiISF4sFmi1bNkSjo6OKCgo0FleUFAALy8vvdt4eXnVWr7yX2P2+ddff2HgwIEICwvDu+++a7Ce//nPfzB48OAavWTVOTk5oU+fPjh79qzBMs7OznB3d9d5EBERke2yWKClVCoRHByMnJwccZlWq0VOTg5CQ0P1bhMaGqpTHgD27dsnlvfz84OXl5dOmZKSEhw8eFBnn3/++ScefvhhBAcHY9OmTXBw0P8y5Ofn46uvvqoxbKhPRUUFTpw4AW9v7zrLEhERkX2waGb4pKQkxMXFoW/fvujXrx9SUlJQVlaGsWPHAgBiY2PRpk0bJCcnAwAmTZqE8PBwLF++HFFRUdiyZQsOHz4s9kgpFAokJiZi4cKFCAgIgJ+fH2bNmgUfHx/ExMQA+CfIat++PZYtW4arV6+K9ane67Vx40Z4e3vjiSeeqFH3+fPno3///ujYsSOKi4uxdOlSXLhwAePHj5fipSIiIiIrZNFAa/jw4bh69Spmz54NtVqNwMBAZGdni8N0Fy9e1OltCgsLQ0ZGBmbOnIkZM2YgICAAWVlZ6NGjh1hm6tSpKCsrQ3x8PIqLizFgwABkZ2eLyUT37duHs2fP4uzZs2jbtq1OfYQqt33UarVIS0vDmDFj4OjoWKPu169fx4QJE6BWq9G8eXMEBwfjwIED6Natm0lfIyIiIrJevKm0BfGm0kRERNanPr/fdn3VIREREZGUGGgRERERScSic7SIiO5VYWGhzk3hq1MqlWjRooUZa0REpmTtn3EGWkRktQoLC7F27VrxuUbTFEVFLeDhUQiVqlRcnpCQIOsvYiLSr/pn3BA5f8YZaBGR1ap6lnv0aB98+ulgCIIDFAotoqN3ISgor0Y5IrIexn525fwZ5xwtIrJ6Gk1TMcgCAEFwwKefDoZG09TCNSMie8dAi4isXlFRCzHIqiQIDigq8rBQjYhIChpNU+Tnd7CqkygOHRKR1fPwKIRCodUJthQKLTw8iixYKyIypdqmB8gZe7SIyOqpVKWIjt4FhUILAOKXcNUJ8URkvax5egB7tIjIJgQF5cHf/yyKijzg4VHEIIvIhtQ2PUDun3UGWkRkM1SqUtl/6RJR/Vnz9AAOHRKR1VIqlSYtR0TyUvnZrWt6gJw/47yptAXxptJE987as0YTUe2qfsb/+ssB5883QocOf8PH527QZYnPeH1+vzl0SERWjUEUkW2r+hn39gaCgy1YmQbg0CERERGRRBhoEREREUmEQ4dERCbC+WJEVB0DLSIiEygsLMTatWvrLJeQkMBgi8iOcOiQiMgEqvdkGbonW209XkRke9ijRURkYtZ6TzYiMj32aBERmZA135ONiEyPgRYRkQnVdk82IrI/DLSIiEyo8p5sVVnLPdmIyPQYaBERmVBd92QjIvvCyfBERCYWFJQHf/+zKCrygIdHEYMsIjvGQIuIyASUSqXOc5WqVG+AVb0cEdk2BlpERCbQokULJCQkMDM8EelgoEVEZCIMooioOk6GJyIiIpIIAy0iIiIiiTDQIiIiIpIIAy0iIiIiiTDQIiIiIpIIAy0iIiIiiTDQIiIiIpIIAy0iIiIiiTDQIiIiIpIIM8NbkCAIAICSkhIL14SIiIiMVfm7Xfk7XhsGWhZUWnr3hrO+vr4WrgkRERHVV2lpKVQqVa1lFIIx4RhJQqvV4q+//kLTpk2hUChMuu+SkhL4+vri0qVLcHd3N+m+5YDts3623kZbbx9g+21k+6yfVG0UBAGlpaXw8fGBg0Pts7DYo2VBDg4OaNu2raTHcHd3t9kPEMD22QJbb6Ottw+w/TayfdZPijbW1ZNViZPhiYiIiCTCQIuIiIhIIgy0bJSzszPmzJkDZ2dnS1dFEmyf9bP1Ntp6+wDbbyPbZ/3k0EZOhiciIiKSCHu0iIiIiCTCQIuIiIhIIgy0iIiIiCTCQIuIiIhIIgy0rMS6devQoUMHuLi4ICQkBD/++GOt5VNSUtC5c2e4urrC19cX//73v3Hr1q172qfUTN3GuXPnQqFQ6Dy6dOkidTMMqk/77ty5g/nz58Pf3x8uLi7o3bs3srOz72mfUjN1++T0/n3zzTeIjo6Gj48PFAoFsrKy6txm//79CAoKgrOzMzp27Ii0tLQaZeT0/knRRmt+Dy9fvoxRo0ahU6dOcHBwQGJiot5y27ZtQ5cuXeDi4oKePXtiz549pq+8EaRoX1paWo33z8XFRZoGGKG+bczMzMRjjz2GVq1awd3dHaGhofj8889rlJP6c8hAywps3boVSUlJmDNnDo4ePYrevXsjMjISV65c0Vs+IyMD06ZNw5w5c3Dq1Cls2LABW7duxYwZMxq8T6lJ0UYA6N69Oy5fviw+vvvuO3M0p4b6tm/mzJlYv3491qxZg5MnT+Kll17Cv/71L+Tl5TV4n1KSon2AfN6/srIy9O7dG+vWrTOqfH5+PqKiojBw4EAcO3YMiYmJGD9+vM6XvJzeP0CaNgLW+x6Wl5ejVatWmDlzJnr37q23zIEDBzBy5EiMGzcOeXl5iImJQUxMDH7++WdTVt0oUrQPuJtRver7d+HCBVNVud7q28ZvvvkGjz32GPbs2YMjR45g4MCBiI6ONv/3qECy169fP2HixIni84qKCsHHx0dITk7WW37ixInCI488orMsKSlJeOCBBxq8T6lJ0cY5c+YIvXv3lqS+9VXf9nl7ewtr167VWfbUU08Jzz33XIP3KSUp2ien968qAMInn3xSa5mpU6cK3bt311k2fPhwITIyUnwup/evOlO10Zrfw6rCw8OFSZMm1Vg+bNgwISoqSmdZSEiI8OKLL95jDe+Nqdq3adMmQaVSmaxeplTfNlbq1q2bMG/ePPG5OT6H7NGSudu3b+PIkSOIiIgQlzk4OCAiIgK5ubl6twkLC8ORI0fE7s/ff/8de/bswZNPPtngfUpJijZWOnPmDHx8fHDffffhueeew8WLF6VriAENaV95eXmNLnpXV1exN0BO76EU7askh/evIXJzc3VeDwCIjIwUXw85vX8NVVcbK1nre2gMY18Da3bjxg20b98evr6+GDp0KH755RdLV6nBtFotSktL4eHhAcB8n0MGWjJ37do1VFRUwNPTU2e5p6cn1Gq13m1GjRqF+fPnY8CAAXBycoK/vz8efvhhcVitIfuUkhRtBICQkBCkpaUhOzsb77zzDvLz8/Hggw+itLRU0vZU15D2RUZGYsWKFThz5gy0Wi327duHzMxMXL58ucH7lIoU7QPk8/41hFqt1vt6lJSU4P/9v/8nq/evoepqI2Dd76ExDL0G1vIe1qVz587YuHEjduzYgQ8//BBarRZhYWH4448/LF21Blm2bBlu3LiBYcOGATDf9ygDLRu0f/9+vPXWW3j77bdx9OhRZGZmYvfu3ViwYIGlq2YyxrTxiSeewLPPPotevXohMjISe/bsQXFxMT7++GML1tw4q1atQkBAALp06QKlUomEhASMHTsWDg628ZE1pn3W/P7RXXwPrVtoaChiY2MRGBiI8PBwZGZmolWrVli/fr2lq1ZvGRkZmDdvHj7++GO0bt3arMduZNajUb21bNkSjo6OKCgo0FleUFAALy8vvdvMmjULo0ePxvjx4wEAPXv2RFlZGeLj4/HGG280aJ9SkqKN+gKSZs2aoVOnTjh79qzpG1GLhrSvVatWyMrKwq1bt1BYWAgfHx9MmzYN9913X4P3KRUp2qePpd6/hvDy8tL7eri7u8PV1RWOjo6yef8aqq426mNN76ExDL0G1vIe1peTkxP69Oljde/fli1bMH78eGzbtk1nmNBc36O2cXpsw5RKJYKDg5GTkyMu02q1yMnJQWhoqN5tbt68WSPQcHR0BAAIgtCgfUpJijbqc+PGDZw7dw7e3t4mqrlx7uX1dnFxQZs2bfD3339j+/btGDp06D3v09SkaJ8+lnr/GiI0NFTn9QCAffv2ia+HnN6/hqqrjfpY03tojIa8BtasoqICJ06csKr376OPPsLYsWPx0UcfISoqSmed2T6HJptWT5LZsmWL4OzsLKSlpQknT54U4uPjhWbNmglqtVoQBEEYPXq0MG3aNLH8nDlzhKZNmwofffSR8Pvvvwt79+4V/P39hWHDhhm9T3OToo2vvfaasH//fiE/P1/4/vvvhYiICKFly5bClStXZN++H374Qdi+fbtw7tw54ZtvvhEeeeQRwc/PT7h+/brR+zQnKdonp/evtLRUyMvLE/Ly8gQAwooVK4S8vDzhwoULgiAIwrRp04TRo0eL5X///XehcePGwpQpU4RTp04J69atExwdHYXs7GyxjJzeP0GQpo3W/B4KgiCWDw4OFkaNGiXk5eUJv/zyi7j++++/Fxo1aiQsW7ZMOHXqlDBnzhzByclJOHHihFnbJgjStG/evHnC559/Lpw7d044cuSIMGLECMHFxUWnjDnVt42bN28WGjVqJKxbt064fPmy+CguLhbLmONzyEDLSqxZs0Zo166doFQqhX79+gk//PCDuC48PFyIi4sTn9+5c0eYO3eu4O/vL7i4uAi+vr7C//3f/+n8iNW1T0swdRuHDx8ueHt7C0qlUmjTpo0wfPhw4ezZs2Zska76tG///v1C165dBWdnZ6FFixbC6NGjhT///LNe+zQ3U7dPTu/fV199JQCo8ahsU1xcnBAeHl5jm8DAQEGpVAr33XefsGnTphr7ldP7J0Ubrf091Fe+ffv2OmU+/vhjoVOnToJSqRS6d+8u7N692zwNqkaK9iUmJop/n56ensKTTz4pHD161HyNqqa+bQwPD6+1fCWpP4cKQTAwzkJERERE94RztIiIiIgkwkCLiIiISCIMtIiIiIgkwkCLiIiISCIMtIiIiIgkwkCLiIiISCIMtIiIiIgkwkCLiIh07N+/HwqFAsXFxZauCpHVY6BFRBYzZswYKBQKLFq0SGd5VlYWFAqF+FwQBLz33nsIDQ2Fu7s7mjRpgu7du2PSpElG3+D25s2bmD59Ovz9/eHi4oJWrVohPDwcO3bsEMt06NABKSkpJmmb1CpfO4VCAScnJ/j5+WHq1Km4detWvfbz8MMPIzExUWdZWFgYLl++DJVKZcIaE9knBlpEZFEuLi5YvHgxrl+/rne9IAgYNWoUXn31VTz55JPYu3cvTp48iQ0bNsDFxQULFy406jgvvfQSMjMzsWbNGvz666/Izs7GM888g8LCQlM2x6wGDRqEy5cv4/fff8fKlSuxfv16zJkz5573q1Qq4eXlpRPsElEDmfSGPkRE9RAXFycMHjxY6NKlizBlyhRx+SeffCJUfj199NFHAgBhx44deveh1WqNOpZKpRLS0tIMrtd3X7RK3377rTBgwADBxcVFaNu2rfDKK68IN27cENe///77QnBwsNCkSRPB09NTGDlypFBQUCCur7xHW3Z2thAYGCi4uLgIAwcOFAoKCoQ9e/YIXbp0EZo2bSqMHDlSKCsrM6o9cXFxwtChQ3WWPfXUU0KfPn3E59euXRNGjBgh+Pj4CK6urkKPHj2EjIwMnX1Ub3N+fr5Y36r3Dv3vf/8rdOvWTVAqlUL79u2FZcuWGVVPInvHHi0isihHR0e89dZbWLNmDf74448a6z/66CN07twZQ4YM0bu9sb0uXl5e2LNnD0pLS/Wuz8zMRNu2bTF//nxcvnwZly9fBgCcO3cOgwYNwtNPP42ffvoJW7duxXfffYeEhARx2zt37mDBggU4fvw4srKycP78eYwZM6bGMebOnYu1a9fiwIEDuHTpEoYNG4aUlBRkZGRg9+7d2Lt3L9asWWNUe6r7+eefceDAASiVSnHZrVu3EBwcjN27d+Pnn39GfHw8Ro8ejR9//BEAsGrVKoSGhmLChAlim319fWvs+8iRIxg2bBhGjBiBEydOYO7cuZg1axbS0tIaVFciu2LpSI+I7FfVXpn+/fsLL7zwgiAIuj1aXbp0EYYMGaKz3aRJkwQ3NzfBzc1NaNOmjVHH+vrrr4W2bdsKTk5OQt++fYXExEThu+++0ynTvn17YeXKlTrLxo0bJ8THx+ss+/bbbwUHBwfh//2//6f3WIcOHRIACKWlpYIg/NOj9cUXX4hlkpOTBQDCuXPnxGUvvviiEBkZaVR74uLiBEdHR8HNzU1wdnYWAAgODg7Cf//731q3i4qKEl577TXxeXh4uDBp0iSdMtV7tEaNGiU89thjOmWmTJkidOvWzai6Etkz9mgRkSwsXrwY6enpOHXqVJ1l33jjDRw7dgyzZ8/GjRs3jNr/Qw89hN9//x05OTl45pln8Msvv+DBBx/EggULat3u+PHjSEtLQ5MmTcRHZGQktFot8vPzAdzt8YmOjka7du3QtGlThIeHAwAuXryos69evXqJ//f09ETjxo1x33336Sy7cuWKUe0BgIEDB+LYsWM4ePAg4uLiMHbsWDz99NPi+oqKCixYsAA9e/aEh4cHmjRpgs8//7xGvepy6tQpPPDAAzrLHnjgAZw5cwYVFRX12heRvWGgRUSy8NBDDyEyMhLTp0/XWR4QEIDTp0/rLGvVqhU6duyI1q1b1+sYTk5OePDBB/H6669j7969mD9/PhYsWIDbt28b3ObGjRt48cUXcezYMfFx/PhxnDlzBv7+/igrK0NkZCTc3d2xefNmHDp0CJ988gkA1Nivk5OT+P/KqwWrUigU0Gq1RrfHzc0NHTt2RO/evbFx40YcPHgQGzZsENcvXboUq1atwuuvv46vvvoKx44dQ2RkZK3tJSLTamTpChARVVq0aBECAwPRuXNncdnIkSMxatQo7NixA0OHDjXp8bp164a///4bt27dglKphFKprNFDExQUhJMnT6Jjx45693HixAkUFhZi0aJF4vymw4cPm7SexnBwcMCMGTOQlJSEUaNGwdXVFd9//z2GDh2K559/HgCg1Wrx22+/oVu3buJ2+tpcXdeuXfH999/rLPv+++/RqVMnODo6mr4xRDaEPVpEJBs9e/bEc889h9WrV4vLRowYgWeeeQYjRozA/PnzcfDgQZw/fx5ff/01tm7davQP/cMPP4z169fjyJEjOH/+PPbs2YMZM2Zg4MCBcHd3B3A3j9Y333yDP//8E9euXQMAvP766zhw4AASEhJw7NgxnDlzBjt27BAnw7dr1w5KpRJr1qzB77//jp07d9Y5HCmVZ599Fo6Ojli3bh2Au72B+/btw4EDB3Dq1Cm8+OKLKCgo0NmmQ4cO4mt67do1vT1qr732GnJycrBgwQL89ttvSE9Px9q1azF58mSztIvImjHQIiJZmT9/vs6PvUKhwNatW5GSkoI9e/bg0UcfRefOnfHCCy/A19cX3333nVH7jYyMRHp6Oh5//HF07doVr7zyCiIjI/Hxxx/rHPv8+fPw9/dHq1atANydV/X111/jt99+w4MPPog+ffpg9uzZ8PHxAXB3GDMtLQ3btm1Dt27dsGjRIixbtsyEr4jxGjVqhISEBCxZsgRlZWWYOXMmgoKCEBkZiYcffhheXl6IiYnR2Wby5MlwdHREt27d0KpVK73zt4KCgvDxxx9jy5Yt6NGjB2bPno358+frvbKSiHQpBEEQLF0JIiIiIlvEHi0iIiIiiTDQIiKbUDX9QvXHt99+a+nq1cvFixdrbU990zMQkeVw6JCIbEJtN5du06YNXF1dzVibe/P333/j/PnzBtd36NABjRrxonEia8BAi4iIiEgiHDokIiIikggDLSIiIiKJMNAiIiIikggDLSIiIiKJMNAiIiIikggDLSIiIiKJMNAiIiIikggDLSIiIiKJ/H/QhoXrafEnJQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAHHCAYAAACBYj2uAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaXlJREFUeJzt3XlcVGXfP/DPgAwgyiguLIZCiLuJoiKkkUU3lhtPmVspmkn2i5Ibl9TctTBX3ArtVrFuzeXWtNTbMso2kdx3TQ2wkkGFGBAf0Zjr94cPJ0YGmIFZzsx83q/XvHTOuc4513WGmfnOtSqEEAJEREREZBFO1s4AERERkSNh8EVERERkQQy+iIiIiCyIwRcRERGRBTH4IiIiIrIgBl9EREREFsTgi4iIiMiCGHwRERERWRCDLyIiIiILYvBFRERITU2FQqFAVlaWtbNCZPcYfBGRRRw5cgTx8fFo3749PDw80Lx5cwwePBi//PJLhbRPPvkkFAoFFAoFnJyc4OnpidatW2PEiBE4cOCAUdf94osvEBkZiaZNm6Ju3bp49NFHMXjwYOzfv99URavgvffew65duypsP3ToEGbPno2CggKzXfths2fPlu6lQqFA3bp10a5dO0yfPh2FhYUmucbmzZuRnJxsknMROQIGX0RkEe+//z527NiBp59+GsuXL0dcXBy+//57dOnSBWfPnq2Q/pFHHsEnn3yCjz/+GIsWLcKAAQNw6NAh/OMf/8CQIUNw//79aq+5ePFiDBgwAAqFAlOnTsWyZcvwwgsv4PLly9iyZYs5igmg6uBrzpw5Fg2+ynz44Yf45JNPsHTpUrRp0wbvvvsu+vTpA1Ms78vgi8g4daydASJyDImJidi8eTOUSqW0bciQIejYsSMWLFiAf//73zrpVSoVXn75ZZ1tCxYswFtvvYUPPvgAAQEBeP/99yu93l9//YV58+bhmWeewVdffVVh/40bN2pZIvm4c+cO6tatW2WaQYMGoXHjxgCAcePG4YUXXsDOnTtx+PBhhIeHWyKbRPR/WPNFRBYRERGhE3gBQHBwMNq3b48LFy4YdA5nZ2esWLEC7dq1w6pVq6DRaCpNe+vWLRQWFuLxxx/Xu79p06Y6z+/evYvZs2ejVatWcHNzg6+vL55//nlcvXpVSrN48WJERESgUaNGcHd3R2hoKP7zn//onEehUKC4uBgbN26UmvpGjRqF2bNnY9KkSQCAwMBAaV/5Plb//ve/ERoaCnd3d3h5eWHo0KH47bffdM7/5JNPokOHDjh27BieeOIJ1K1bF9OmTTPo/pX31FNPAQAyMzOrTPfBBx+gffv2cHV1hZ+fH9544w2dmrsnn3wSe/fuRXZ2tlSmgIAAo/ND5EhY80VEViOEQG5uLtq3b2/wMc7Ozhg2bBhmzJiBH3/8EX379tWbrmnTpnB3d8cXX3yBN998E15eXpWes7S0FP369UNaWhqGDh2K8ePHo6ioCAcOHMDZs2cRFBQEAFi+fDkGDBiAl156Cffu3cOWLVvw4osvYs+ePVI+PvnkE7z66qvo3r074uLiAABBQUHw8PDAL7/8gk8//RTLli2TaqGaNGkCAHj33XcxY8YMDB48GK+++ipu3ryJlStX4oknnsCJEyfQoEEDKb95eXl49tlnMXToULz88svw9vY2+P6VKQsqGzVqVGma2bNnY86cOYiKisLrr7+OS5cu4cMPP8SRI0fw008/wcXFBe+88w40Gg1+//13LFu2DABQr149o/ND5FAEEZGVfPLJJwKAWLdunc72yMhI0b59+0qP++yzzwQAsXz58irPP3PmTAFAeHh4iGeffVa8++674tixYxXSrV+/XgAQS5curbBPq9VK/79z547Ovnv37okOHTqIp556Sme7h4eHiI2NrXCuRYsWCQAiMzNTZ3tWVpZwdnYW7777rs72M2fOiDp16uhsj4yMFABESkpKpeUub9asWQKAuHTpkrh586bIzMwUa9asEa6ursLb21sUFxcLIYTYsGGDTt5u3LghlEql+Mc//iFKS0ul861atUoAEOvXr5e29e3bV7Ro0cKg/BCREGx2JCKruHjxIt544w2Eh4cjNjbWqGPLalaKioqqTDdnzhxs3rwZnTt3xpdffol33nkHoaGh6NKli05T544dO9C4cWO8+eabFc6hUCik/7u7u0v///PPP6HRaNCrVy8cP37cqPw/bOfOndBqtRg8eDBu3bolPXx8fBAcHIxvv/1WJ72rqytGjx5t1DVat26NJk2aIDAwEK+99hpatmyJvXv3VtpX7Ouvv8a9e/eQkJAAJ6e/vyrGjh0LT09P7N271/iCEhEANjsSkRWo1Wr07dsXKpUK//nPf+Ds7GzU8bdv3wYA1K9fv9q0w4YNw7Bhw1BYWIiMjAykpqZi8+bN6N+/P86ePQs3NzdcvXoVrVu3Rp06VX8k7tmzB/Pnz8fJkydRUlIibS8foNXE5cuXIYRAcHCw3v0uLi46z5s1a1ah/1x1duzYAU9PT7i4uOCRRx6RmlIrk52dDeBB0FaeUqnEo48+Ku0nIuMx+CIii9JoNHj22WdRUFCAH374AX5+fkafo2xqipYtWxp8jKenJ5555hk888wzcHFxwcaNG5GRkYHIyEiDjv/hhx8wYMAAPPHEE/jggw/g6+sLFxcXbNiwAZs3bza6DOVptVooFAr897//1RuIPtyHqnwNnKGeeOIJqZ8ZEVkXgy8ispi7d++if//++OWXX/D111+jXbt2Rp+jtLQUmzdvRt26ddGzZ88a5aNr167YuHEjcnJyADzoEJ+RkYH79+9XqGUqs2PHDri5ueHLL7+Eq6urtH3Dhg0V0lZWE1bZ9qCgIAghEBgYiFatWhlbHLNo0aIFAODSpUt49NFHpe337t1DZmYmoqKipG21rfkjcjTs80VEFlFaWoohQ4YgPT0d27dvr9HcUqWlpXjrrbdw4cIFvPXWW/D09Kw07Z07d5Cenq5333//+18AfzepvfDCC7h16xZWrVpVIa34v0lInZ2doVAoUFpaKu3LysrSO5mqh4eH3olUPTw8AKDCvueffx7Ozs6YM2dOhUlPhRDIy8vTX0gzioqKglKpxIoVK3TytG7dOmg0Gp1Rph4eHlVO+0FEuljzRUQWMWHCBHz++efo378/8vPzK0yq+vCEqhqNRkpz584dXLlyBTt37sTVq1cxdOhQzJs3r8rr3blzBxEREejRowf69OkDf39/FBQUYNeuXfjhhx8QExODzp07AwBGjhyJjz/+GImJifj555/Rq1cvFBcX4+uvv8b/+3//DwMHDkTfvn2xdOlS9OnTB8OHD8eNGzewevVqtGzZEqdPn9a5dmhoKL7++mssXboUfn5+CAwMRFhYGEJDQwEA77zzDoYOHQoXFxf0798fQUFBmD9/PqZOnYqsrCzExMSgfv36yMzMxGeffYa4uDhMnDixVvffWE2aNMHUqVMxZ84c9OnTBwMGDMClS5fwwQcfoFu3bjqvV2hoKLZu3YrExER069YN9erVQ//+/S2aXyKbYs2hlkTkOMqmSKjsUVXaevXqieDgYPHyyy+Lr776yqDr3b9/X3z00UciJiZGtGjRQri6uoq6deuKzp07i0WLFomSkhKd9Hfu3BHvvPOOCAwMFC4uLsLHx0cMGjRIXL16VUqzbt06ERwcLFxdXUWbNm3Ehg0bpKkcyrt48aJ44oknhLu7uwCgM+3EvHnzRLNmzYSTk1OFaSd27NghevbsKTw8PISHh4do06aNeOONN8SlS5d07k1V03A8rCx/N2/erDLdw1NNlFm1apVo06aNcHFxEd7e3uL1118Xf/75p06a27dvi+HDh4sGDRoIAJx2gqgaCiFMsLAXERERERmEfb6IiIiILIjBFxEREZEFMfgiIiIisiAGX0REREQWxOCLiIiIyIIYfBERERFZECdZtSKtVovr16+jfv36XJ6DiIjIRgghUFRUBD8/Pzg5GV+PxeDLiq5fvw5/f39rZ4OIiIhq4LfffsMjjzxi9HEMvqyofv36AB68eFWtUUdERETyUVhYCH9/f+l73FgMvqyorKnR09OTwRcREZGNqWmXIXa4JyIiIrIgBl9EREREFsTgi4iIiMiCGHwRERERWRCDLyIiIiILYvBFREREZEFWD75Wr16NgIAAuLm5ISwsDD///HOV6bdv3442bdrAzc0NHTt2xL59+3T2CyEwc+ZM+Pr6wt3dHVFRUbh8+bLec5WUlCAkJAQKhQInT56Uth88eBADBw6Er68vPDw8EBISgk2bNukcm5qaCoVCofNwc3Or2U0gIiIih2HV4Gvr1q1ITEzErFmzcPz4cXTq1AnR0dG4ceOG3vSHDh3CsGHDMGbMGJw4cQIxMTGIiYnB2bNnpTQLFy7EihUrkJKSgoyMDHh4eCA6Ohp3796tcL7JkyfDz89P73Uee+wx7NixA6dPn8bo0aMxcuRI7NmzRyedp6cncnJypEd2dnYt7wgRERHZPWFF3bt3F2+88Yb0vLS0VPj5+YmkpCS96QcPHiz69u2rsy0sLEy89tprQgghtFqt8PHxEYsWLZL2FxQUCFdXV/Hpp5/qHLdv3z7Rpk0bce7cOQFAnDhxosq8Pvfcc2L06NHS8w0bNgiVSmVIMSul0WgEAKHRaGp1HiIiIrKc2n5/W63m6969ezh27BiioqKkbU5OToiKikJ6erreY9LT03XSA0B0dLSUPjMzE2q1WieNSqVCWFiYzjlzc3MxduxYfPLJJ6hbt65B+dVoNPDy8tLZdvv2bbRo0QL+/v4YOHAgzp07V+U5SkpKUFhYqPMgIiIix2K15YVu3bqF0tJSeHt762z39vbGxYsX9R6jVqv1pler1dL+sm2VpRFCYNSoURg3bhy6du2KrKysavO6bds2HDlyBGvWrJG2tW7dGuvXr8djjz0GjUaDxYsXIyIiAufOnat0kc2kpCTMmTOn2us5qry8PNy7d6/S/UqlEo0aNbJgjoiIiEzP4dZ2XLlyJYqKijB16lSD0n/77bcYPXo0PvroI7Rv317aHh4ejvDwcOl5REQE2rZtizVr1mDevHl6zzV16lQkJiZKz8sW5qQHgdeqVauk5xpNfeTnN4KXVx5UqiJpe3x8vF0FYAw4iYgcj9WCr8aNG8PZ2Rm5ubk623Nzc+Hj46P3GB8fnyrTl/2bm5sLX19fnTQhISEAgG+++Qbp6elwdXXVOU/Xrl3x0ksvYePGjdK27777Dv3798eyZcswcuTIKsvj4uKCzp0748qVK5WmcXV1rXBdeqB8AHL8eGd88UU/COEEhUKL/v33oEuXExXS2TpHDTiJiByd1fp8KZVKhIaGIi0tTdqm1WqRlpamU6NUXnh4uE56ADhw4ICUPjAwED4+PjppCgsLkZGRIaVZsWIFTp06hZMnT+LkyZPSVBVbt27Fu+++Kx138OBB9O3bF++//z7i4uKqLU9paSnOnDmjE/SR8TSa+lLgBQBCOOGLL/pBo6lv5ZyZ3sMBZ3JyAjZujEVycgKOH++sN50c5eXl6Yz6ffiRl5dn7SwSEcmKVZsdExMTERsbi65du6J79+5ITk5GcXExRo8eDQAYOXIkmjVrhqSkJADA+PHjERkZiSVLlqBv377YsmULjh49irVr1wIAFAoFEhISMH/+fAQHByMwMBAzZsyAn58fYmJiAADNmzfXyUO9evUAAEFBQVJfrW+//Rb9+vXD+PHj8cILL0j9xZRKpdTpfu7cuejRowdatmyJgoICLFq0CNnZ2Xj11VfNe9OqYA9NWPn5jfDwOBAhnJCf76VTG2RPKgs4g4KumKTM5vy7YO0dEZHxrBp8DRkyBDdv3sTMmTOhVqsREhKC/fv3Sx3mr127Bienv7+IIyIisHnzZkyfPh3Tpk1DcHAwdu3ahQ4dOkhpJk+ejOLiYsTFxaGgoAA9e/bE/v37jZoAdePGjbhz5w6SkpKkwA8AIiMjcfDgQQDAn3/+ibFjx0KtVqNhw4YIDQ3FoUOH0K5du1relZp5+EuwMnL/EvTyyoNCodUJwBQKLby88q2YK/MyZ8Bp7uDIEZuLiYhqy+od7uPj4xEfH693X1mgU96LL76IF198sdLzKRQKzJ07F3PnzjXo+gEBARBC6GxLTU1FampqlcctW7YMy5YtM+galmDol5vcvwRVqiL077+nwpe4vdZ6AeYNOC0VHJm79o6IyJ5YPfgi86ishsMWdOlyAkFBV5Cf7wUvr3yby7+xLBFwmjs4csTmYiKimmLwZYeqquGwFSpVkUN9aZs74DR3cOSIzcVERDVl9YW1ybRsdbSgUqk0aTpbpFIVITAw2yxBZ1lwVJ4pg6Oy2ruyazhCczERUU2x5svO2GrzT6NGjRAfH2/zozWNYcmA0xJNm47WXExEVFMMvuyMLTf/2FNgZQhLB5yWCI4crbmYiKgmGHzZGUccLWjLLB1wmjo4YnOxYexhDj4iMh0GX3ai/JdbVTUcjv4l6GjMHRw5YnOxsTgRLRE9jMGXneCXIOljib8L/k1VjRPREtHDGHzZEX4Jkj78u5AHTkRLRGUYfBGZEPv2UGVsdSQyEZkegy8iE2HfHqqKLY9EJiLTYvBFZCLs2yMfcqyB5EhkIirD4IvIxNi3x7oeroGsjDVqIDkRLREBDL6ITI59e6zr4Rqvypp/rVUDyYloiYjBF1EVatJ8xb498iGHReY5ES0RPYzBF1Elatp8xb498iCX5l/OwUdED2PwRVSJ2jRfsW+P9cmp+ZeBFRGVx+CLyAA1ab5i3x7rYvMvEcmVU/VJiBxbZc1XGk19nXTs2yMvZc2/CoUWANj8S0SywZovomoY2nzFvj3yw+ZfIpIjBl9kMDlOXGkJxjRf2WP5bc3DNYuVNf+yBpKIrIXBFxlEzhNXmhtHL5qWuYN41kASkdwx+CKDyH3iSnNj85VpWCqIZ2BlfY5aU05kCAZfZDQ5TFxpCWy+Mj1HD+INZeuBiyPXlBMZgsEXGUUuE1daApuvzMtRgnhj2UPgwiBbPmw9kLdXDL7IKHKauNIS+KFkHo4UxBvL3gIXBtnWI8dAnsHgAwy+yCicuNL2yPHDztGC+Jqy9cCFQbZ1yS2Ql2MwaC0MvsgoHPlnW+T6Yccgvnr2ELgwyJYPOQTycgsGrYnBFxmNI/9sh6EfYpb+sGMQXz17CFwYZMuDHAN5OQSD1sTgiwzCkX/2obJfmtbAIL5q9hC4mDvIlmOTuhzJLZCXYzBoaQy+yCAc+Wf75PBLk0G84ewlcDFXkC3XJnU5MiaQt8TfhdyCQWtg8EUGc/QPMFsml1+aDOKNY6nApbIa0fKBizFfypYIsuXYf0iuNXGGBvKWCmjtoVa3thh8ETkAOf3SdMTASs6BS1U1omXpjP1StnSQLYdaXbnXxBkSyFuqjyj7fDL4InII/KVpPXIOXAytEa1JLZOlAgy51OrKsSautoG8OfuIOnqfTwZfRA6AvzStR86BS01qROVQy1SenGp1y8jlHtUmkDdHGdjn828MvojsWPkPsap+aTrCh50cyOVLuYyxNaJyqWUqT261unK7RzUJ5M1VBvb5/BuDLyI7xg87+ZDblzJgfI2oHGuZ5FarK8d7ZCxzlsHYzxq5DmKoLQZfRHbOFj+Y7JFcv5SN6Xsjt1qmMnLqPyTXe2QMuZRB7oMYasOp+iRERFRTGo0GwN9faOWV/0IrS2cNKlURAgOzqw1aymqZysphzVomff2H9JXB0k3qcrpHNSWXMsh1hQ5TYM0XEcmarTc73L9/H8DfX2iff94PD3736n6hlaWrqdpMZ1HVMQ+TSy2TnJvU5XKPjCX3PqJyWqGjtqwefK1evRqLFi2CWq1Gp06dsHLlSnTv3r3S9Nu3b8eMGTOQlZWF4OBgvP/++3juueek/UIIzJo1Cx999BEKCgrw+OOP48MPP0RwcHCFc5WUlCAsLAynTp3CiRMnEBISIu07ffo03njjDRw5cgRNmjTBm2++icmTJxuVFyKqHXtsdlAoACEe/Gsq5p7OQq6j1OT0msv1HhlDzgGt3Aar1JZVg6+tW7ciMTERKSkpCAsLQ3JyMqKjo3Hp0iU0bdq0QvpDhw5h2LBhSEpKQr9+/bB582bExMTg+PHj6NChAwBg4cKFWLFiBTZu3IjAwEDMmDED0dHROH/+PNzc3HTON3nyZPj5+eHUqVM62wsLC/GPf/wDUVFRSElJwZkzZ/DKK6+gQYMGiIuLMzgvRFQ7cpw7yVh16jz4mK2uw31Zupow93QWNflStvUaS2PJOXAxhhzzJ8fBKrVl1eBr6dKlGDt2LEaPHg0ASElJwd69e7F+/XpMmTKlQvrly5ejT58+mDRpEgBg3rx5OHDgAFatWoWUlBQIIZCcnIzp06dj4MCBAICPP/4Y3t7e2LVrF4YOHSqd67///S+++uor7NixA//97391rrNp0ybcu3cP69evh1KpRPv27XHy5EksXbpUCr6qywsRmZat/vJt0KABgOo73Jelqy1z3SdjvpTtscbSEPZUFjmR62CV2rBah/t79+7h2LFjiIqK+jszTk6IiopCenq63mPS09N10gNAdHS0lD4zMxNqtVonjUqlQlhYmM45c3NzMXbsWHzyySeoW7eu3us88cQTOtXDZTVyf/75p0F50aekpASFhYU6DyKqXmW/fDWa+lbOWfUKCgoAVN/hvixdbcjlPumricvMDKiQDznXWJJ8VPfesUVWq/m6desWSktL4e3trbPd29sbFy9e1HuMWq3Wm16tVkv7y7ZVlkYIgVGjRmHcuHHo2rUrsrKy9F4nMDCwwjnK9jVs2LDavOiTlJSEOXPmVLrf3jhaswOZjy3/8v3rr78AVD8fVVm62pDjfbLVGkuSD7nN5WYKVu9wb2krV65EUVERpk6davFrT506FYmJidLzwsJC+Pv7WzwfluCozQ5kHnKZd8gUhND915Tkdp/ssa8OWY7cR1/WhtWCr8aNG8PZ2Rm5ubk623Nzc+Hj46P3GB8fnyrTl/2bm5sLX19fnTRlIxm/+eYbpKenw9XVVec8Xbt2xUsvvYSNGzdWep3y16guL/q4urpWuK69suf5WcjybPmXr4uLC4C/A5G/e3voBiJl6WpDbvdJjjVxZDvsZRCDPlYLvpRKJUJDQ5GWloaYmBgAgFarRVpaGuLj4/UeEx4ejrS0NCQkJEjbDhw4gPDwcABAYGAgfHx8kJaWJgVbhYWFyMjIwOuvvw4AWLFiBebPny8df/36dURHR2Pr1q0ICwuTrvPOO+/g/v370gfigQMH0Lp1azRs2NCgvJAue5qfhazDVudOUqlUAKoPRMrS1Zac7pPcauLI9thiYGUIqzY7JiYmIjY2Fl27dkX37t2RnJyM4uJiafTjyJEj0axZMyQlJQEAxo8fj8jISCxZsgR9+/bFli1bcPToUaxduxYAoFAokJCQgPnz5yM4OFiaasLPz08K8Jo3b66Th3r16gEAgoKC8MgjjwAAhg8fjjlz5mDMmDF4++23cfbsWSxfvhzLli2TjqsuL/Q39vmgmrKHuZPKmDMQket9kltNHJFcWDX4GjJkCG7evImZM2dCrVYjJCQE+/fvlzqyX7t2DU5Of39QRUREYPPmzZg+fTqmTZuG4OBg7Nq1S2dercmTJ6O4uBhxcXEoKChAz549sX///gpzfFVFpVLhq6++whtvvIHQ0FA0btwYM2fOlKaZMDQvxD4fVDv21OxgzkDEEveppgNo5FQTRyQXCiHM0e2TDFFYWAiVSgWNRgNPT09rZ8ekcnJysHbtWmRmBmDjxtgK+2NjUxEYmI24uDid/nlE9qbsvVDmQRN8xUBEzu8FYwfQcMAN2bvafn873GhHsiz2+SBHJ9cmQWMYO4O+PdVYEpkDgy8yK/b5IEdnb4GIoX04baU8RNbA4IvMwp7nZyEylr0EIsb04eQky9XjPXJcDL7ILOzt1z4RGT5vF/t8VY/3yLEx+CKz4QcGkX0xtA+nsX3EHBHvkWNj8EVEssamGfmoSR9OzvNXPd4jx8Pgi4hki00zhrNUkGrMvF2c5696vEeOicEXEckWm2YMY+4gtabTZXBtx+rxHjkmBl9EZBPYNFM5cwepNR1Aw3n+qsd75JgYfBGR7LFpxnDmClJrUmPGef6qx3vkmBh8EZHssWnGMHIMUrm2Y/V4jxwPgy8ikj02zRhGLkGqPSypZG68R46NwRcRyR6bZgwjlyCVkyxXj/fIsTH4IiKbwKaZ6skpSGXQUD3eI8fF4IuIZItNM8ZjkEokfwy+SDY4kzk9jE0zhrFEkMr3J5HpKIQQwtqZcFSFhYVQqVTQaDTw9PS0dnasijOZE9WOOYOjh9+flc0jxveneTEAlo/afn+z5otkwdDJHx19JnOiypjzS7f8+66qecT4/jQfBsD2hcEXyVJlHyxEZD1ynEfMUdhLAMzauwcYfJHscBkZInmSyzxijsyWA2B2L/mbU/VJiCynsg8Wjaa+lXNGRGXziJXHyW4tq6oAWO70rUGamRlQ4fNd7rV3psCaL5IV/rImqhlLNOfIaR4xRyWXiXRry9FbOBh8kazYywcLkSVZsjmH84hZlz0EwLbcdGoqDL5IVuzhg4XI0vQ15+gbsGKq5pzK5hEjy7D1AJgtHAy+SCbKT/5Y1QcLZzInqpo5mnMMfd/x/Wk5thwAs4WDwRfJBGcyJ6o9czXn8P1pffYUALOFg8EXyQg/uIlqx5zNOXx/Wpe9BcC23nRaWwy+iIjsBJtz7JutBFaVscQapLaCwRcRkZ1gcw7Jmb3V3tUGgy8isjuOvISJozfnkLzZ6/vOWAy+iMiuOOISJmzOIbItDL6IyK5Yes4rOWBzDpFtYfBFRHbLkZYwYWBFZDu4sDYR2SUu0k5EcsXgi4jsUlVzXhERWRODLyKyS2VzXpXHOa+ISA4YfBGRXSqb86osAOOcV0QkF+xwT0R2paCgQPp/VXNeFRQUwNfX1wo5JCJHx+CLiOyKQqHQeV7ZnFcPp7N1jjyxLJGtYfBFRHZFpVLpPK9snq+H09kyR5xYlsiWWb3P1+rVqxEQEAA3NzeEhYXh559/rjL99u3b0aZNG7i5uaFjx47Yt2+fzn4hBGbOnAlfX1+4u7sjKioKly9f1kkzYMAANG/eHG5ubvD19cWIESNw/fp1af/s2bOhUCgqPDw8PKQ0qampFfa7ubmZ4I4QkakcP94ZyckJ2LgxFsnJCTh+vLO1s2QW+iaWzcwMqDCthj1NLEtky6wafG3duhWJiYmYNWsWjh8/jk6dOiE6Oho3btzQm/7QoUMYNmwYxowZgxMnTiAmJgYxMTE4e/aslGbhwoVYsWIFUlJSkJGRAQ8PD0RHR+Pu3btSmt69e2Pbtm24dOkSduzYgatXr2LQoEHS/okTJyInJ0fn0a5dO7z44os6+fH09NRJk52dbeI7REQ1Zcw8X3l5eRXe8+UfeXl5ls5+jTlKwElky6za7Lh06VKMHTsWo0ePBgCkpKRg7969WL9+PaZMmVIh/fLly9GnTx9MmjQJADBv3jwcOHAAq1atQkpKCoQQSE5OxvTp0zFw4EAAwMcffwxvb2/s2rULQ4cOBQD885//lM7ZokULTJkyBTExMbh//z5cXFxQr1491KtXT0pz6tQpnD9/HikpKTr5USgU8PHxMe1NsSPsg0LWVNU8X+WbH+2pya6ygDMo6ApHeRLJiNWCr3v37uHYsWOYOnWqtM3JyQlRUVFIT0/Xe0x6ejoSExN1tkVHR2PXrl0AgMzMTKjVakRFRUn7VSoVwsLCkJ6eLgVf5eXn52PTpk2IiIiAi4uL3uv+61//QqtWrdCrVy+d7bdv30aLFi2g1WrRpUsXvPfee2jfvn2lZS4pKUFJSYn0vLCwsNK0ts6evtDINpXN81U+ANM3z5ehTXG20GRnaMBJRNZltWbHW7duobS0FN7e3jrbvb29oVar9R6jVqurTF/2ryHnfPvtt+Hh4YFGjRrh2rVr2L17t95r3r17F5s2bcKYMWN0trdu3Rrr16/H7t278e9//xtarRYRERH4/fffKy1zUlISVCqV9PD39680ra2zpy80sk01neersv5StoATyxLZBocd7Thp0iSMGTMG2dnZmDNnDkaOHIk9e/ZUGH7+2WefoaioCLGxsTrbw8PDER4eLj2PiIhA27ZtsWbNGsybN0/vNadOnapTc1dYWGjXAVh5lY04IzI1pVIp/b+qeb7Kpytj6wtxlwWcD5eB7zkiebFa8NW4cWM4OzsjNzdXZ3tubm6l/ah8fHyqTF/2b25urs7kibm5uQgJCalw/caNG6NVq1Zo27Yt/P39cfjwYZ2ACnjQ5NivX78KtWkPc3FxQefOnXHlypVK07i6usLV1bXK89gjW/9CI9vSqFEjxMfHG93f0F76S1UVcBKRPFit2VGpVCI0NBRpaWnSNq1Wi7S0tAoBUJnw8HCd9ABw4MABKX1gYCB8fHx00hQWFiIjI6PSc5ZdF4BOfyzgQR+yb7/9tkKToz6lpaU4c+YMZ8x+iDEjzohMpVGjRvD19a30oa+foS0vxP1wLZ5KVYTAwOwKgVf5dPY0wpPI1li12TExMRGxsbHo2rUrunfvjuTkZBQXF0ujH0eOHIlmzZohKSkJADB+/HhERkZiyZIl6Nu3L7Zs2YKjR49i7dq1AB6MPkxISMD8+fMRHByMwMBAzJgxA35+foiJiQEAZGRk4MiRI+jZsycaNmyIq1evYsaMGQgKCqoQoK1fvx6+vr549tlnK+R97ty56NGjB1q2bImCggIsWrQI2dnZePXVV814x2wPOwCTrTC0g74cGVvbxwExRNZl1eBryJAhuHnzJmbOnAm1Wo2QkBDs379fauK7du0anJz+/iCMiIjA5s2bMX36dEybNg3BwcHYtWsXOnToIKWZPHkyiouLERcXh4KCAvTs2RP79++XJkCtW7cudu7ciVmzZqG4uBi+vr7o06cPpk+frtMkqNVqkZqailGjRsHZ2blC3v/880+MHTsWarUaDRs2RGhoKA4dOoR27dqZ63bZJFv+QiPHYuv9pYwJkvRNyqqvTyYHxJAtsoVpjhRCCGHVHDiwwsJCqFQqaDQaeHp6Wjs7JpWTkyPVSFbV5ysuLo5NtWRVD9cCPQhEKvaXsqdaIL4/yV7pfz9X/GFR2/dzbb+/HXa0I5lXbUacEVlSTTvo2wN7GWRAVKb8+7iqHxbWrtVl8EVm4ahfaLZQ3U0VOeprwj6ZZK/k/sOCwReZjaN9obETM9ka9skkeyX3HxZWXVibyJ5wVn+yNTVdBYBI7uS+2gNrvojMhLP6Uxk5N0dzUlayR3Ifvczgi8gMOKs/lZFjc7S+SVn1fSk9PCmrXANIIn3k/MOCwReRicm9oydZlhybo2s7Kau5hu8TmVplPyysjcEXkYnJvaMnWZdcmqNrOimrnIfvExk6fZG1pzli8EVkYhxBRpWx9eZo1uqS3NnKNEcMvohMTO4dPck67CFwYa0u2QJrB1aGYPBFZCKc1Z+qYg+BC2t1iUyDwReZjaONjrKV6m6yDnsIXFirS2QaDL7ILOQ4vN4S7KksZFr2ErjIefg+ka1g8EVm8XDtT2UjvDg6iuydPTZHy3X4PpGtYPBFZmfrI7yIasMemqNtZfg+ka1g8EVmZQ8jvIhqS86BlSEsEUA6Wh9RcmwMvsis7GGEFxGZN4B01D6i9oBBc80w+CKzsocRXkRkXuwjapsYNNccgy8yK3sZ4UVElsE+orbDEkGzvdasMfgis+PQdCIyBPuI2i5zBM32vKA7gy8yi4dHPVU2NJ2jo4ioDPuI2iZzBc32vKA7gy8yC3sYXk9ElsU+orbJ3EGzPdaIMvgis2FgVT177c9AVBPsI2qbzB0022ONKIMvIivhSCGiithH1PaYO2i2xxpRBl9EVmJoPwVb7M9AZAz2EbV95gya7bFGlMEXkUxUNpKHyN6xj6htsmTQbG81ogy+iGSAcxuRo2NgZXssHTTb04LuDL6IrMweR/IQ2QMOiKmeOctvzwu6M/gisjJ7HMlDtcMvfeuz5wk+bYU9N0cz+CKyMnscyUM1x1Gw8mDPE3zaEnv9G3eqPgkRmVPZSB6FQgsAdjGSh2pO33p5mZkB0GjqV5mOzKOybgEPvx5ExmDNF5GVlO+nUNVIHlvsz0CmwYEY1sduAWQODL6IrMSe+zNQ7XEghjywWwCZA4MvMht2Gq6eo5efKudoNS5y/bywxwk+yfoYfJFZsNMwUe04Uo2L3D8v7G2CT7I+drgns2CnYaLacaSBGLbweaFSFSEwMNsu7z9ZHmu+yOzYaZioZhyxxkUunxf2PMEnWR+DLzIrdhomMo4jLzItp88LDoghc2LwRWblaJ2GiWrLkb/05fZ5YY/3mOTB6n2+Vq9ejYCAALi5uSEsLAw///xzlem3b9+ONm3awM3NDR07dsS+fft09gshMHPmTPj6+sLd3R1RUVG4fPmyTpoBAwagefPmcHNzg6+vL0aMGIHr169L+7OysqBQKCo8Dh8+bFRe6O9Ow+XZa6dhS8nLy0NOTk6lj7y8PGtnkWqpUaNG8PX1rfRhr0EBPy/IUVi15mvr1q1ITExESkoKwsLCkJycjOjoaFy6dAlNmzatkP7QoUMYNmwYkpKS0K9fP2zevBkxMTE4fvw4OnToAABYuHAhVqxYgY0bNyIwMBAzZsxAdHQ0zp8/Dzc3NwBA7969MW3aNPj6+uKPP/7AxIkTMWjQIBw6dEjnel9//TXat28vPS//gWdIXojDtE1N7qPCiGqDnxfkKBRCCGGti4eFhaFbt27Sl4lWq4W/vz/efPNNTJkypUL6IUOGoLi4GHv27JG29ejRAyEhIUhJSYEQAn5+fpgwYQImTpwIANBoNPD29kZqaiqGDh2qNx+ff/45YmJiUFJSAhcXF2RlZSEwMBAnTpxASEiI3mOqy4shCgsLoVKpoNFo4OnpadAxtiInJwdr166Vnj9YlLZip+G4uDj4+vpaI4s26eH7WhneV7Il/LwgW1Pb72+rNTveu3cPx44dQ1RU1N+ZcXJCVFQU0tPT9R6Tnp6ukx4AoqOjpfSZmZlQq9U6aVQqFcLCwio9Z35+PjZt2oSIiAi4uLjo7BswYACaNm2Knj174vPPPzcqL/qUlJSgsLBQ52Gv9HUa1jdM2x47DVtSZUPyiWwJPy/I0Vit2fHWrVsoLS2Ft7e3znZvb29cvHhR7zFqtVpverVaLe0v21ZZmjJvv/02Vq1ahTt37qBHjx46NVj16tXDkiVL8Pjjj8PJyQk7duxATEwMdu3ahQEDBhiUF32SkpIwZ86cSvfbE0fuNGwpchmST1Rb/LwgR+Owox0nTZqEMWPGIDs7G3PmzMHIkSOxZ88eKBQKNG7cGImJiVLabt264fr161i0aJEUfNXE1KlTdc5bWFgIf3//WpVDzvhBaT5yGpJPZAr8vCBHYrXgq3HjxnB2dkZubq7O9tzcXPj4+Og9xsfHp8r0Zf/m5ubq9AvIzc2t0HercePGaNy4MVq1aoW2bdvC398fhw8fRnh4uN5rh4WF4cCBAwbnRR9XV1e4urpWup/IUHIbkk9ERIazWp8vpVKJ0NBQpKWlSdu0Wi3S0tIqDYDCw8N10gPAgQMHpPSBgYHw8fHRSVNYWIiMjIxKz1l2XeBBn6zKnDx5Uiegqy4vRObEIflERLbLqs2OiYmJiI2NRdeuXdG9e3ckJyejuLgYo0ePBgCMHDkSzZo1Q1JSEgBg/PjxiIyMxJIlS9C3b19s2bIFR48elUbJKBQKJCQkYP78+QgODpammvDz80NMTAwAICMjA0eOHEHPnj3RsGFDXL16FTNmzEBQUJAUOG3cuBFKpRKdO3cGAOzcuRPr16/Hv/71Lynv1eWFyJw4JJ+IyHZZNfgaMmQIbt68iZkzZ0KtViMkJAT79++XOrJfu3YNTk5/V85FRERg8+bNmD59OqZNm4bg4GDs2rVLZ16tyZMno7i4GHFxcSgoKEDPnj2xf/9+aY6vunXrYufOnZg1axaKi4vh6+uLPn36YPr06TpNgvPmzUN2djbq1KmDNm3aYOvWrRg0aJBReSEytfKjvapa94+jwojkLy8vj4MMHJRV5/lydPY8zxeZDz+wiWzfwxMmP5jbrBG8vPJ0fkhxwmR5qu33t8OOdiSyVfwgJrJ95X9AVTVtTFU/tMh2WX1tRyIiIkdV2bQxnDjZvrHmi4iIyEpsfdoYdoOoGQZfREREVlI2bUz5AMxWpo1hv7WaY/BFRERkJbY8bQz7rdUcgy8iIiIrqmramNqyRLMglzsznsmCr7t372LVqlWYOHGiqU5JRETkEFSqIpMHKpZqFrT1fmvWYFTwdfPmTWRkZECpVOLpp5+Gs7Mz7t+/jw8++ABJSUn466+/GHwRERFVw9CJkGszYbKlmgVtud+atRgcfP3444/o168fCgsLoVAo0LVrV2zYsAExMTGoU6cOZs+ejdjYWHPmlYiIyC40atQI8fHxFhkpaO5mQVvut2YtBgdf06dPx3PPPYdp06Zh48aNWLJkCf7nf/4H7733ns6yO0RERFQ9YwOrmvbfskSzoDn7rdkjg4OvM2fO4IMPPkC7du0wd+5cLF26FAsXLsTAgQPNmT8iIiKH93D/rcro679lqWZBc/Rbs1cGz3D/559/onHjxgAAd3d31K1bl4tIExERWcDDNV4aTX1kZgZUmAlfX81YWbOgQqEFAJM1C1qi35q9MqrD/fnz56FWqwEAQghcunQJxcXFOmkee+wx0+WOiIiIdFTVeb4y5mgWtGS/NXtjVPD19NNPQwghPe/Xr5/OfoVCgdLSUtPkjIiIiHTUpvO8OZoFGVjVjMHBV2ZmZrVpiorY1ktERGQuxnSeZ7OgfBkcfLVo0ULv9qKiInz66adYt24djh49ypovIiIyGhdoNowxnefZLChfNZ7h/vvvv8e6deuwY8cO+Pn54fnnnzdoJAYREVF5tRnJ52iMnVPL0e+XXBkVfKnVaqSmpmLdunUoLCzE4MGDUVJSgl27dqFdu3bmyiMREdkxfSP59C2DwwWaH+CcWrbP4OCrf//++P7779G3b18kJyejT58+cHZ2RkpKijnzR0REDqQmI/kcwcP9sirrPM/+W7bB4ODrv//9L9566y28/vrrCA4ONmeeiIjIAZl7GRxbxv5b9sWotR3XrVuH0NBQtG3bFiNGjMDQoUPNmTciInIgllgGx5YxsLIfBs9w36NHD3z00UfIycnBa6+9hi1btsDPzw9arRYHDhzgNBNERFQrZSP5yjPHMjhE1mZw8FXGw8MDr7zyCn788UecOXMGEyZMwIIFC9C0aVMMGDDAHHkkIiIHYK5lcIjkpsZTTQBA69atsXDhQiQlJeGLL77A+vXrTZUvIiJyQBzJR46gVsFXGWdnZ8TExCAmJsYUpyMiIgfCkXzkaEwSfBEREdUUR/KRo2HwRUREVsfAihyJ0R3uiYiIiKjmGHwRERERWRCDLyIiIiILYvBFREREZEEMvoiIiIgsiMEXERERkQUx+CIiIiKyIAZfRERERBbE4IuIiIjIghh8EREREVkQgy8iIiIiC2LwRURERGRBDL6IiIiILMjqwdfq1asREBAANzc3hIWF4eeff64y/fbt29GmTRu4ubmhY8eO2Ldvn85+IQRmzpwJX19fuLu7IyoqCpcvX9ZJM2DAADRv3hxubm7w9fXFiBEjcP36dWn/wYMHMXDgQPj6+sLDwwMhISHYtGmTzjlSU1OhUCh0Hm5ubrW8G0RERGTvrBp8bd26FYmJiZg1axaOHz+OTp06ITo6Gjdu3NCb/tChQxg2bBjGjBmDEydOICYmBjExMTh79qyUZuHChVixYgVSUlKQkZEBDw8PREdH4+7du1Ka3r17Y9u2bbh06RJ27NiBq1evYtCgQTrXeeyxx7Bjxw6cPn0ao0ePxsiRI7Fnzx6d/Hh6eiInJ0d6ZGdnm/gOERERkb1RCCGEtS4eFhaGbt26YdWqVQAArVYLf39/vPnmm5gyZUqF9EOGDEFxcbFOENSjRw+EhIQgJSUFQgj4+flhwoQJmDhxIgBAo9HA29sbqampGDp0qN58fP7554iJiUFJSQlcXFz0punbty+8vb2xfv16AA9qvhISElBQUFDj8hcWFkKlUkGj0cDT07PG5yEiIiLLqe33t9Vqvu7du4djx44hKirq78w4OSEqKgrp6el6j0lPT9dJDwDR0dFS+szMTKjVap00KpUKYWFhlZ4zPz8fmzZtQkRERKWBF/AgiPPy8tLZdvv2bbRo0QL+/v4YOHAgzp07V2WZS0pKUFhYqPMgIiIix2K14OvWrVsoLS2Ft7e3znZvb2+o1Wq9x6jV6irTl/1ryDnffvtteHh4oFGjRrh27Rp2795daV63bduGI0eOYPTo0dK21q1bY/369di9ezf+/e9/Q6vVIiIiAr///nul50lKSoJKpZIe/v7+laYlIiIi+2T1DvfWMmnSJJw4cQJfffUVnJ2dMXLkSOhrgf32228xevRofPTRR2jfvr20PTw8HCNHjkRISAgiIyOxc+dONGnSBGvWrKn0mlOnToVGo5Eev/32m1nKRkRERPJVx1oXbty4MZydnZGbm6uzPTc3Fz4+PnqP8fHxqTJ92b+5ubnw9fXVSRMSElLh+o0bN0arVq3Qtm1b+Pv74/DhwwgPD5fSfPfdd+jfvz+WLVuGkSNHVlkeFxcXdO7cGVeuXKk0jaurK1xdXas8DxEREdk3q9V8KZVKhIaGIi0tTdqm1WqRlpamEwCVFx4erpMeAA4cOCClDwwMhI+Pj06awsJCZGRkVHrOsusCD/pklTl48CD69u2L999/H3FxcdWWp7S0FGfOnNEJ+oiIiIgeZrWaLwBITExEbGwsunbtiu7duyM5ORnFxcVS36qRI0eiWbNmSEpKAgCMHz8ekZGRWLJkCfr27YstW7bg6NGjWLt2LQBAoVAgISEB8+fPR3BwMAIDAzFjxgz4+fkhJiYGAJCRkYEjR46gZ8+eaNiwIa5evYoZM2YgKChICtC+/fZb9OvXD+PHj8cLL7wg9RdTKpVSp/u5c+eiR48eaNmyJQoKCrBo0SJkZ2fj1VdfteQtJCIiIlsjrGzlypWiefPmQqlUiu7du4vDhw9L+yIjI0VsbKxO+m3btolWrVoJpVIp2rdvL/bu3auzX6vVihkzZghvb2/h6uoqnn76aXHp0iVp/+nTp0Xv3r2Fl5eXcHV1FQEBAWLcuHHi999/l9LExsYKABUekZGRUpqEhAQp397e3uK5554Tx48fN6rsGo1GABAajcao44iIiMh6avv9bdV5vhwd5/kiIiKyPTY7zxcRERGRI2LwRURERGRBDL6IiIiILIjBFxEREZEFWXWqCaLaysvLw7179yrdr1Qq0ahRIwvmiIiIqGoMvshm5eXlYdWqVdJzjaY+8vMbwcsrDypVkbQ9Pj6eARgREckGgy+yWeVrvI4f74wvvugHIZygUGjRv/8edOlyokI6IiIia2OfL7J5Gk19KfACACGc8MUX/aDR1LdyzoiIiCpizRfZvPz8RlLgVUYIJ+Tne+k0P9oL9nMjsg98LzsuBl8OzF7e+F5eeVAotDoBmEKhhZdXvhVzZR6W6OdmL38XRHL28Hu5Muyzap8YfDkoe3rjq1RF6N9/T4U+X/ZY62Xufm729HdBJGcPv0cr+yHFPqv2icGXg7K3N36XLicQFHQF+fle8PLKt8vAq7zK+rkFBV2pVdnt7e+CyBZU9UOK7BODL7KbN75KVWT3QVcZS/Rzs5e/CyI5M9cPKZI3jnZ0cLY8UlCpVJo0nS0p6+dWnin7udny3wWRLanqhxTZL9Z8OThbHinYqFEjxMfHO2TncHP3c7PlvwsiW+JIA4bobwy+HJytv/HtMbAylDn7udn63wWRrXCkAUP0NwZfDo5vfNtmrn5u/LsgshxHGzBEDL4IfOPbEkv2c+PfBZH5PPwereyHlD32WSUGXw6Lb3zbZO5+bvy7ILIMR+6zSoBCCCGsnQlHVVhYCJVKBY1GA09PT4tfnzOZkz78uyAiqlptv79Z8+XA+AVK+vDvgojIvBh8EZHdYe0dEckZgy8isitcn5KI5I4z3BORXdG3PmVmZkCF2fm5PiURWQtrvojIbnF9SiKSI9Z8EZFd4vqURCRXrPkiIrvE9SmJzI+DW2qGwRcR2SWuT0lkXhzcUnNsdiQiu1S2PqVCoQUArk9JZGIc3FJzrPkiIrvF9SmJLIODW4zDmi8isiv61qcMDMyuEHhxfUoi0+DgFuOx5ouI7AoXLCayLA5uMR6DLyKyOwysiCyHg1uMx2ZHIiIiqjEObjEea76IiIioVji4xTgMvojsHCdBJCJz0De4RV/QxcEtFTH4IrJjnASRiMyFg1tqjsEXkR3TNwlifn4jeHnl6fxC5SSIRFQTDKxqhsEXGYzNV7aNkyASEcmD1Uc7rl69GgEBAXBzc0NYWBh+/vnnKtNv374dbdq0gZubGzp27Ih9+/bp7BdCYObMmfD19YW7uzuioqJw+fJlnTQDBgxA8+bN4ebmBl9fX4wYMQLXr1/XSXP69Gn06tULbm5u8Pf3x8KFC43Oiz0pa75au3ZtpY9Vq1YhLy/P2lklPTgJIhGRfFg1+Nq6dSsSExMxa9YsHD9+HJ06dUJ0dDRu3LihN/2hQ4cwbNgwjBkzBidOnEBMTAxiYmJw9uxZKc3ChQuxYsUKpKSkICMjAx4eHoiOjsbdu3elNL1798a2bdtw6dIl7NixA1evXsWgQYOk/YWFhfjHP/6BFi1a4NixY1i0aBFmz56NtWvXGpUXe8I1vGxbVZMgEhGRZSmEEMJaFw8LC0O3bt2kDsFarRb+/v548803MWXKlArphwwZguLiYuzZs0fa1qNHD4SEhCAlJQVCCPj5+WHChAmYOHEiAECj0cDb2xupqakYOnSo3nx8/vnniImJQUlJCVxcXPDhhx/inXfegVqtlkZpTJkyBbt27cLFixcNyoshCgsLoVKpoNFo4OnpadAx1pKTkyMFn1U1X8XFxcHX19eaWaVyyl43jaY+kpMTKkyCmJCQDJWqiK8bEZERavv9bbWar3v37uHYsWOIior6OzNOToiKikJ6erreY9LT03XSA0B0dLSUPjMzE2q1WieNSqVCWFhYpefMz8/Hpk2bEBERARcXF+k6TzzxhM7w2OjoaFy6dAl//vmnQXmxV2y+sk2cBJGISD6s1uH+1q1bKC0thbe3t852b29vqXbpYWq1Wm96tVot7S/bVlmaMm+//TZWrVqFO3fuoEePHjo1WGq1GoGBgRXOUbavYcOG1eZFn5KSEpSUlEjPCwsLK00rV1zDy3ZxEkQiInmweod7a5k0aRJOnDiBr776Cs7Ozhg5ciTM3QKblJQElUolPfz9/c16PXMoW8OrPK7hJV/6JkEMDMyuEHhxEkQiIsuxWs1X48aN4ezsjNzcXJ3tubm58PHx0XuMj49PlenL/s3NzdXpv5Kbm4uQkJAK12/cuDFatWqFtm3bwt/fH4cPH0Z4eHil1yl/jeryos/UqVORmJgoPS8sLLS5AKys+erhPl+sRZEnToJIRCQ/Vgu+lEolQkNDkZaWhpiYGAAPOtynpaUhPj5e7zHh4eFIS0tDQkKCtO3AgQMIDw8HAAQGBsLHxwdpaWlSsFVYWIiMjAy8/vrrleZFq31Qk1PWJBgeHo533nkH9+/fl/qBHThwAK1bt0bDhg0Nyos+rq6ucHV1rfym2Ag2X9kWBlZERPJi1WbHxMREfPTRR9i4cSMuXLiA119/HcXFxRg9ejQAYOTIkZg6daqUfvz48di/fz+WLFmCixcvYvbs2Th69KgUrCkUCiQkJGD+/Pn4/PPPcebMGYwcORJ+fn5SgJeRkYFVq1bh5MmTyM7OxjfffINhw4YhKChICpyGDx8OpVKJMWPG4Ny5c9i6dSuWL1+uU2tVXV7sDZuviIiITERY2cqVK0Xz5s2FUqkU3bt3F4cPH5b2RUZGitjYWJ3027ZtE61atRJKpVK0b99e7N27V2e/VqsVM2bMEN7e3sLV1VU8/fTT4tKlS9L+06dPi969ewsvLy/h6uoqAgICxLhx48Tvv/+uc55Tp06Jnj17CldXV9GsWTOxYMGCCnmvLi/V0Wg0AoDQaDRGHWctt27dEtevX6/0cevWLWtnkYiIyOxq+/1t1Xm+HJ0tzfNFRERED9jsPF9EREREjojBFxEREZEFWW20IxERmU5eXh6nFCGyEQy+iIhsXF5enrRGblXi4+MZgBHJAJsdiYhs3MM1XhpNfWRmBlRYc7WqmjEishzWfBER2ZHjxztXWIGiS5cT1s4WEZXDmi8iIjuh0dSXAi/gwaL3X3zRr0INGBFZF4MvIiI7kZ/fSAq8ygjhhPx8LyvliIj0YfBFRGQnvLzyoFBodbYpFFp4eeVbKUdEpA+DLyIiO6FSFaF//z1SAFbW5+vhNViJyLrY4Z6IyI506XICQUFXkJ/vBS+vfAZeRDLE4IuIyMYplUqd5ypVkd6g6+F0RGQdDL6IiGxco0aNEB8fzxnuiWAbqz0w+CIisgPW/jIhkgNbWe2BHe6JiIjILhi6ioO1V3tg8EVERER2qbKltqyNzY5ERERkd+S81BZrvoiIiMiuyH2pLQZfREREZFfkvtQWgy8iIiKyK3JfaovBFxEREdkVuS+1xQ73REREZBfKr+JQ1VJb1l7tgcEXERER2QVbWe2BwRcRERHZDWsHVoZgny8iIiIiC2LwRURERGRBDL6IiIiILIjBFxEREZEFscM9EdVKXl6e7EcWERHJCYMvIqqxvLw8rFq1qtp08fHxDMCIiP4Pmx2JqMYervHSaOojMzOgwuK1VdWMERE5GtZ8EZFJHD/eGV980Q9COElLeXTpcsLa2SIikh3WfBFRrWk09aXACwCEcMIXX/SrUANGRESs+SIzYkdsx5Gf30gKvMoI4YT8fC/ZLGRLRCQXDL7ILB7uiK3R1Ed+fiN4eeXpfBmzI7Z98PLKg0Kh1QnAFAotvLzyrZgrIiJ5YvBFZlG+xquqvkDsiG0fVKoi9O+/p8LrzFovIqKKGHyRWVXWFygo6Aq/mO1Mly4nEBR0Bfn5XvDyyufrS0RUCQZfZFbsC2TflEqlznOVqkjv6/pwOiIiR8bgi8yKfYHsW6NGjRAfH8+BFURERmDwRWbFvkD2j4EVEZFxrD7P1+rVqxEQEAA3NzeEhYXh559/rjL99u3b0aZNG7i5uaFjx47Yt2+fzn4hBGbOnAlfX1+4u7sjKioKly9flvZnZWVhzJgxCAwMhLu7O4KCgjBr1iydX+6zZ8+GQqGo8PDw8JDSpKamVtjv5uZmortiX7p0OYGEhGTExqYiISGZE28SEZFDs2rwtXXrViQmJmLWrFk4fvw4OnXqhOjoaNy4cUNv+kOHDmHYsGEYM2YMTpw4gZiYGMTExODs2bNSmoULF2LFihVISUlBRkYGPDw8EB0djbt37wIALl68CK1WizVr1uDcuXNYtmwZUlJSMG3aNOkcEydORE5Ojs6jXbt2ePHFF3Xy4+npqZMmOzvbDHfJPqhURQgMzGaNFxEROTyFEEJY6+JhYWHo1q2bNB+UVquFv78/3nzzTUyZMqVC+iFDhqC4uBh79uyRtvXo0QMhISFISUmBEAJ+fn6YMGECJk6cCADQaDTw9vZGamoqhg4dqjcfixYtwocffohff/1V7/5Tp04hJCQE33//PXr16gXgQc1XQkICCgoKalz+wsJCqFQqaDQaeHp61vg8csQFl4mIyF7V9vvban2+7t27h2PHjmHq1KnSNicnJ0RFRSE9PV3vMenp6UhMTNTZFh0djV27dgEAMjMzoVarERUVJe1XqVQICwtDenp6pcGXRqOBl5dXpXn917/+hVatWkmBV5nbt2+jRYsW0Gq16NKlC9577z20b9++0vOUlJSgpKREel5YWFhpWlvHjthEROYhhMBff/2F0tJSa2fFbjk7O6NOnTpQKBRmOb/Vgq9bt26htLQU3t7eOtu9vb1x8eJFvceo1Wq96dVqtbS/bFtlaR525coVrFy5EosXL9a7/+7du9i0aVOFmrjWrVtj/fr1eOyxx6DRaLB48WJERETg3LlzeOSRR/SeKykpCXPmzNG7zx4xsCIiMq179+4hJycHd+7csXZW7F7dunXh6+trlqlyHHq04x9//IE+ffrgxRdfxNixY/Wm+eyzz1BUVITY2Fid7eHh4QgPD5eeR0REoG3btlizZg3mzZun91xTp07VqbkrLCyEv7+/CUpCRET2TqvVIjMzE87OzvDz84NSqTRbzYwjE0Lg3r17uHnzJjIzMxEcHAwnJ9N2kbda8NW4cWM4OzsjNzdXZ3tubi58fHz0HuPj41Nl+rJ/c3Nz4evrq5MmJCRE57jr16+jd+/eiIiIwNq1ayvN57/+9S/069evQm3aw1xcXNC5c2dcuXKl0jSurq5wdXWt8jxERET63Lt3T+obXbduXWtnx665u7vDxcUF2dnZuHfvnslnM7DaaEelUonQ0FCkpaVJ27RaLdLS0nRqlMoLDw/XSQ8ABw4ckNIHBgbCx8dHJ01hYSEyMjJ0zvnHH3/gySefRGhoKDZs2FBpRJuZmYlvv/0WY8aMqbY8paWlOHPmjE7QR0REZGqmroUh/cx5n63a7JiYmIjY2Fh07doV3bt3R3JyMoqLizF69GgAwMiRI9GsWTMkJSUBAMaPH4/IyEgsWbIEffv2xZYtW3D06FGp5kqhUCAhIQHz589HcHAwAgMDMWPGDPj5+SEmJgbA34FXixYtsHjxYty8eVPKz8M1buvXr4evry+effbZCnmfO3cuevTogZYtW6KgoACLFi1CdnY2Xn31VXPcKiIiIrITVg2+hgwZgps3b2LmzJlQq9UICQnB/v37pSa+a9eu6USeERER2Lx5M6ZPn45p06YhODgYu3btQocOHaQ0kydPRnFxMeLi4lBQUICePXti//79UpXhgQMHcOXKFVy5cqVCx/jys25otVqkpqZi1KhRcHZ2rpD3P//8E2PHjoVarUbDhg0RGhqKQ4cOoV27dia9R0RERGRfrDrPl6Oz53m+iIjItO7evYvMzEwEBgba3Ioqo0aNwsaNGwEAderUgZeXFx577DEMGzYMo0aNMriJzxRzbBqqqvtts/N8ERERkWXl5eVZbf7FPn36YMOGDSgtLUVubi7279+P8ePH4z//+Q8+//xz1KnjOCGJ45SUiIjIgVl75RFXV1epb3WzZs3QpUsX9OjRA08//TRSU1Px6quvYunSpdiwYQN+/fVXeHl5oX///li4cCHq1auHgwcPSn3Cy6bYmDVrFmbPno1PPvkEy5cvx6VLl+Dh4YGnnnoKycnJaNq0qcnLYQocMkFEROQAqqrxqkk6U3jqqafQqVMn7Ny5E8CDEYYrVqzAuXPnsHHjRnzzzTeYPHkygAf9vpOTk3XWVS5bSvD+/fuYN28eTp06hV27diErKwujRo2yWDmMxZovIiIispo2bdrg9OnTAICEhARpe0BAAObPn49x48bhgw8+gFKphEqlgkKhqDA7wSuvvCL9/9FHH8WKFSvQrVs33L59G/Xq1bNIOYzBmi8iIiKyGiGE1Iz49ddf4+mnn0azZs1Qv359jBgxAnl5edUup3Ts2DH0798fzZs3R/369REZGQngwawJcsTgi4iIiKzmwoULCAwMRFZWFvr164fHHnsMO3bswLFjx7B69WoAVTeFFhcXIzo6Gp6enti0aROOHDmCzz77rNrjrInNjkRERGQV33zzDc6cOYN//vOfOHbsGLRaLZYsWSJNPbFt2zad9EqlEqWlpTrbLl68iLy8PCxYsEBaL/no0aOWKUANMfhyYOWHHF+/7oTMzDoIDPwLfn5aAOYdckxERI6lpKQEarVaZ6qJpKQk9OvXDyNHjsTZs2dx//59rFy5Ev3798dPP/2ElJQUnXMEBATg9u3bSEtLQ6dOnVC3bl00b94cSqUSK1euxLhx43D27FnMmzfPSqU0DJsdHVTZkOO1a9di3Lgj6NatCV58sRG6dWuCceOOYO3atVi1ahXy8vKsnVUiIrID+/fvh6+vLwICAtCnTx98++23WLFiBXbv3g1nZ2d06tQJS5cuxfvvv48OHTpg06ZN0vKCZSIiIjBu3DgMGTIETZo0wcKFC9GkSROkpqZi+/btaNeuHRYsWIDFixdbqZSG4Qz3VmTNGe5zcnKwdu1aaDT1kZycACH+jsMVCi0SEpKhUhUhLi6Oi4UTEclAbWe4t/Y8X7aGM9yT2eTnN9IJvABACCfk53tBpSqyUq6IiMjUGjVqhPj4eKvNcE9/Y/Dl4Ly88qBQaCvUfHl55VsxV7bLmkt3EBFVh58/8sDgy8GpVEXo338PvviiH4RwgkKhRf/+e1jrVQMPV+lrNPWRn98IXl55OveTVfpERI6NwRehS5cTCAq6gvx8L3h55TPwqqHyNV7Hj3euENB26XKiQjoiInI8HO1IAB7UgAUGZjPwMgGNpr4UeAEP+tB98UU/aDT1rZwzIiKSAwZfRCZW1SAGIiIiBl8OSqlUmjQd/a1sEEN5HMRARERl2OfLQXHIsflwEAMREVWFwZcDY2BlPhzEQERElWGzI5GZcBADEZFlHDx4EAqFAgUFBQYfExAQgOTkZLPlqSoMvohMhP3oiIj0GzVqFBQKBcaNG1dh3xtvvAGFQoFRo0ZZPmNWwmZHIhNhPzoiosr5+/tjy5YtWLZsGdzd3QE8WD9x8+bNaN68uZVzZ1ms+SIyoUaNGsHX17fSBwMvIvuVl5eHnJycSh95eXnWzqJVdenSBf7+/ti5c6e0befOnWjevDk6d+4sbSspKcFbb72Fpk2bws3NDT179sSRI0d0zrVv3z60atUK7u7u6N27N7Kysipc78cff0SvXr3g7u4Of39/vPXWWyguLjZb+YzBmi8iIqJaenh5scrIaXmx338HLl8GgoOBRx6xzDVfeeUVbNiwAS+99BIAYP369Rg9ejQOHjwopZk8eTJ27NiBjRs3okWLFli4cCGio6Nx5coVeHl54bfffsPzzz+PN954A3FxcTh69CgmTJigc52rV6+iT58+mD9/PtavX4+bN28iPj4e8fHx2LBhg2UKWwXWfBEREdWSocuGyWV5sXXrgBYtgKeeevDvunWWue7LL7+MH3/8EdnZ2cjOzsZPP/2El19+WdpfXFyMDz/8EIsWLcKzzz6Ldu3a4aOPPoK7uzvW/V8mP/zwQwQFBWHJkiVo3bo1XnrppQr9xZKSkvDSSy8hISEBwcHBiIiIwIoVK/Dxxx/j7t27lilsFVjzRURE5EB+/x2IiwO0/zcXtFYLvPYaEB1t/hqwJk2aoG/fvkhNTYUQAn379kXjxo2l/VevXsX9+/fx+OOPS9tcXFzQvXt3XLhwAQBw4cIFhIWF6Zw3PDxc5/mpU6dw+vRpbNq0SdomhIBWq0VmZibatm1rjuIZjMEXERGRiWk09ZGf3wheXnmym27m8uW/A68ypaXAlSuWaX585ZVXEB8fDwBYvXq1Wa5x+/ZtvPbaa3jrrbcq7JND534GX0RERCZ0/HjnCitcdOlywtrZkgQHA05OugGYszPQsqVlrt+nTx/cu3cPCoUC0dHROvuCgoKgVCrx008/oUWLFgCA+/fv48iRI0hISAAAtG3bFp9//rnOcYcPH9Z53qVLF5w/fx4tLVUoI7HPFxERkYloNPWlwAsAhHDCF1/0g0ZT38o5+9sjjwBr1z4IuIAH/65ZY7lO987Ozrhw4QLOnz8P57JM/B8PDw+8/vrrmDRpEvbv34/z589j7NixuHPnDsaMGQMAGDduHC5fvoxJkybh0qVL2Lx5M1JTU3XO8/bbb+PQoUOIj4/HyZMncfnyZezevVuqcbM2Bl9EREQmkp/fSAq8ygjhhPx8LyvlSL8xY4CsLODbbx/8+39xjcV4enrC09NT774FCxbghRdewIgRI9ClSxdcuXIFX375JRo2bAjgQbPhjh07sGvXLnTq1AkpKSl47733dM7x2GOP4bvvvsMvv/yCXr16oXPnzpg5cyb8/PzMXjZDKIQQwtqZcFSFhYVQqVTQaDSV/hESEZH85eTkYO3atdBo6iM5OUEnAFMotEhISIZKVYS4uDj4+vrW6Bp3795FZmYmAgMD4ebmZqqsUyWqut+1/f5mzRcREVEtlS0bplIVoX//PVAoHnSoKuvzVdbpnsuLEcAO90RERLX28PJiM2feRFZWHQQE/AU/v24AunF5MZIw+CIiIjKB8oGVry8QGmrFzJCssdmRiIiIyIIYfBERERFZEIMvIiIiG8JJCizDnPeZwRcREZENcHFxAQDcuXPHyjlxDGX3uey+mxI73BMREdkAZ2dnNGjQADdu3AAA1K1bFwqFwsq5sj9CCNy5cwc3btxAgwYNKszCbwoMvoiIiGyEj48PAEgBGJlPgwYNpPttalYPvlavXo1FixZBrVajU6dOWLlyJbp3715p+u3bt2PGjBnIyspCcHAw3n//fTz33HPSfiEEZs2ahY8++ggFBQV4/PHH8eGHHyI4OBgAkJWVhXnz5uGbb76BWq2Gn58fXn75ZbzzzjvS5HdZWVkIDAyscO309HT06NHD4LwQERGZkkKhgK+vL5o2bYr79+9bOzt2y8XFxSw1XmWsGnxt3boViYmJSElJQVhYGJKTkxEdHY1Lly6hadOmFdIfOnQIw4YNQ1JSEvr164fNmzcjJiYGx48fR4cOHQAACxcuxIoVK7Bx40YEBgZixowZiI6Oxvnz5+Hm5oaLFy9Cq9VizZo1aNmyJc6ePYuxY8eiuLgYixcv1rne119/jfbt20vPy8/hYkheiIiIzMHZ2dmswQGZl1XXdgwLC0O3bt2watUqAIBWq4W/vz/efPNNTJkypUL6IUOGoLi4GHv27JG29ejRAyEhIUhJSYEQAn5+fpgwYQImTpwIANBoNPD29kZqaiqGDh2qNx+LFi3Chx9+iF9//RXA3zVfJ06cQEhIiN5jqsuLIbi2IxERke2x2bUd7927h2PHjiEqKurvzDg5ISoqCunp6XqPSU9P10kPANHR0VL6zMxMqNVqnTQqlQphYWGVnhN4EKB5eVVccX7AgAFo2rQpevbsic8//9yovOhTUlKCwsJCnQcRERE5FqsFX7du3UJpaSm8vb11tnt7e0OtVus9Rq1WV5m+7F9jznnlyhWsXLkSr732mrStXr16WLJkCbZv3469e/eiZ8+eiImJ0QnAqsuLPklJSVCpVNLD39+/0rRERERkn6ze4d6a/vjjD/Tp0wcvvvgixo4dK21v3LgxEhMTpefdunXD9evXsWjRIgwYMKDG15s6darOeTUaDZo3b84aMCIiIhtS9r1d055bVgu+GjduDGdnZ+Tm5upsz83NrXRop4+PT5Xpy/7Nzc2Fr6+vTpqH+25dv34dvXv3RkREBNauXVttfsPCwnDgwAGD86KPq6srXF1dpedlLx5rwIiIiGxPUVERVCqV0cdZLfhSKpUIDQ1FWloaYmJiADzocJ+Wlob4+Hi9x4SHhyMtLQ0JCQnStgMHDiA8PBwAEBgYCB8fH6SlpUnBVmFhITIyMvD6669Lx/zxxx/o3bs3QkNDsWHDBjg5Vd/6evLkSZ2Arrq8GMLPzw+//fYb6tevb/KJ8goLC+Hv74/ffvvNrjvzO0I5HaGMAMtpb1hO+8Jy6hJCoKioCH5+fjW7kLCiLVu2CFdXV5GamirOnz8v4uLiRIMGDYRarRZCCDFixAgxZcoUKf1PP/0k6tSpIxYvXiwuXLggZs2aJVxcXMSZM2ekNAsWLBANGjQQu3fvFqdPnxYDBw4UgYGB4n//93+FEEL8/vvvomXLluLpp58Wv//+u8jJyZEeZVJTU8XmzZvFhQsXxIULF8S7774rnJycxPr1643KizVpNBoBQGg0GmtnxawcoZyOUEYhWE57w3LaF5bTtKza52vIkCG4efMmZs6cCbVajZCQEOzfv1/qyH7t2jWdWqmIiAhs3rwZ06dPx7Rp0xAcHIxdu3bpzKs1efJkFBcXIy4uDgUFBejZsyf2798PNzc3AA9qp65cuYIrV67gkUce0cmPKNd2O2/ePGRnZ6NOnTpo06YNtm7dikGDBhmVFyIiIqKHWXWeLzIfR5lDzBHK6QhlBFhOe8Ny2heW07SsNtUEmZerqytmzZql08HfHjlCOR2hjADLaW9YTvvCcpoWa76IiIiILIg1X0REREQWxOCLiIiIyIIYfBERERFZEIMvIiIiIgti8GUjVq9ejYCAALi5uSEsLAw///xzlemTk5PRunVruLu7w9/fH//85z9x9+7dWp3TEkxdztmzZ0OhUOg82rRpY+5iVMuYct6/fx9z585FUFAQ3Nzc0KlTJ+zfv79W57QUU5dTbq/n999/j/79+8PPzw8KhQK7du2q9piDBw+iS5cucHV1RcuWLZGamlohjdxeS3OUU26vJWB8OXNycjB8+HC0atUKTk5OOiuelLd9+3a0adMGbm5u6NixI/bt22f6zBvBHOVMTU2t8HqWza9pLcaWc+fOnXjmmWfQpEkTeHp6Ijw8HF9++WWFdKZ4fzL4sgFbt25FYmIiZs2ahePHj6NTp06Ijo7GjRs39KbfvHkzpkyZglmzZuHChQtYt24dtm7dimnTptX4nJZgjnICQPv27ZGTkyM9fvzxR0sUp1LGlnP69OlYs2YNVq5cifPnz2PcuHH4n//5H5w4caLG57QEc5QTkNfrWVxcjE6dOmH16tUGpc/MzETfvn3Ru3dvnDx5EgkJCXj11Vd1PuDl+Fqao5yAvF5LwPhylpSUoEmTJpg+fTo6deqkN82hQ4cwbNgwjBkzBidOnEBMTAxiYmJw9uxZU2bdKOYoJwB4enrqvJ7Z2dmmynKNGFvO77//Hs888wz27duHY8eOoXfv3ujfv795PmvNOn8+mUT37t3FG2+8IT0vLS0Vfn5+IikpSW/6N954Qzz11FM62xITE8Xjjz9e43NagjnKOWvWLNGpUyez5LemjC2nr6+vWLVqlc62559/Xrz00ks1PqclmKOccnw9ywAQn332WZVpJk+eLNq3b6+zbciQISI6Olp6LsfXsjxTlVPOr6UQhpWzvMjISDF+/PgK2wcPHiz69u2rsy0sLEy89tprtcyhaZiqnBs2bBAqlcpk+TI1Y8tZpl27dmLOnDnSc1O9P1nzJXP37t3DsWPHEBUVJW1zcnJCVFQU0tPT9R4TERGBY8eOSVWhv/76K/bt24fnnnuuxuc0N3OUs8zly5fh5+eHRx99FC+99BKuXbtmvoJUoyblLCkpqVB97+7uLtUS2MvrWV05y8jp9TRWenq6zj0BgOjoaOmeyPG1rInqylnGll9LQxl6L+zB7du30aJFC/j7+2PgwIE4d+6ctbNUK1qtFkVFRfDy8gJg2vcngy+Zu3XrFkpLS6X1Lst4e3tDrVbrPWb48OGYO3cuevbsCRcXFwQFBeHJJ5+UmuNqck5zM0c5ASAsLAypqanYv38/PvzwQ2RmZqJXr14oKioya3kqU5NyRkdHY+nSpbh8+TK0Wi0OHDiAnTt3Iicnp8bnNDdzlBOQ3+tpLLVarfeeFBYW4n//939l+VrWRHXlBGz/tTRUZffCll5PQ7Ru3Rrr16/H7t278e9//xtarRYRERH4/fffrZ21Glu8eDFu376NwYMHAzDtZy2DLzt08OBBvPfee/jggw9w/Phx7Ny5E3v37sW8efOsnTWTMqSczz77LF588UU89thjiI6Oxr59+1BQUIBt27ZZMefGWb58OYKDg9GmTRsolUrEx8dj9OjROovO2wNDymkPryc9wNfSvoSHh2PkyJEICQlBZGQkdu7ciSZNmmDNmjXWzlqNbN68GXPmzMG2bdvQtGlTk5+/jsnPSCbVuHFjODs7Izc3V2d7bm4ufHx89B4zY8YMjBgxAq+++ioAoGPHjiguLkZcXBzeeeedGp3T3MxRTn3BSYMGDdCqVStcuXLF9IUwQE3K2aRJE+zatQt3795FXl4e/Pz8MGXKFDz66KM1Pqe5maOc+lj79TSWj4+P3nvi6ekJd3d3ODs7y+61rInqyqmPrb2WhqrsXtjS61kTLi4u6Ny5s02+nlu2bMGrr76K7du36zQxmvKz1r5+OtshpVKJ0NBQpKWlSdu0Wi3S0tIQHh6u95g7d+5UCDycnZ0BAEKIGp3T3MxRTn1u376Nq1evwtfX10Q5N05t7r2bmxuaNWuGv/76Czt27MDAgQNrfU5zMUc59bH262ms8PBwnXsCAAcOHJDuiRxfy5qorpz62Npraaia3At7UFpaijNnztjc6/npp59i9OjR+PTTT9G3b1+dfSZ9fxrd9Z8sbsuWLcLV1VWkpqaK8+fPi7i4ONGgQQOhVquFEEKMGDFCTJkyRUo/a9YsUb9+ffHpp5+KX3/9VXz11VciKChIDB482OBzWoM5yjlhwgRx8OBBkZmZKX766ScRFRUlGjduLG7cuGHx8pUxtpyHDx8WO3bsEFevXhXff/+9eOqpp0RgYKD4888/DT6nNZijnHJ7PYuKisSJEyfEiRMnBACxdOlSceLECZGdnS2EEGLKlClixIgRUvpff/1V1K1bV0yaNElcuHBBrF69Wjg7O4v9+/dLaeT4WpqjnHJ7LYUwvpxCCCl9aGioGD58uDhx4oQ4d+6ctP+nn34SderUEYsXLxYXLlwQs2bNEi4uLuLMmTMWLVt55ijnnDlzxJdffimuXr0qjh07JoYOHSrc3Nx00liaseXctGmTqFOnjli9erXIycmRHgUFBVIaU70/GXzZiJUrV4rmzZsLpVIpunfvLg4fPizti4yMFLGxsdLz+/fvi9mzZ4ugoCDh5uYm/P39xf/7f/9P50usunNai6nLOWTIEOHr6yuUSqVo1qyZGDJkiLhy5YoFS6SfMeU8ePCgaNu2rXB1dRWNGjUSI0aMEH/88YdR57QWU5dTbq/nt99+KwBUeJSVKzY2VkRGRlY4JiQkRCiVSvHoo4+KDRs2VDiv3F5Lc5RTbq+lEDUrp770LVq00Emzbds20apVK6FUKkX79u3F3r17LVOgSpijnAkJCdLfrLe3t3juuefE8ePHLVcoPYwtZ2RkZJXpy5ji/akQopL2GSIiIiIyOfb5IiIiIrIgBl9EREREFsTgi4iIiMiCGHwRERERWRCDLyIiIiILYvBFREREZEEMvoiIiIgsiMEXERHpOHjwIBQKBQoKCqydFSK7xOCLiKxm1KhRUCgUWLBggc72Xbt2QaFQSM+FEPjoo48QHh4OT09P1KtXD+3bt8f48eMNXrj3zp07mDp1KoKCguDm5oYmTZogMjISu3fvltIEBAQgOTnZJGUzt7J7p1Ao4OLigsDAQEyePBl379416jxPPvkkEhISdLZFREQgJycHKpXKhDkmojIMvojIqtzc3PD+++/jzz//1LtfCIHhw4fjrbfewnPPPYevvvoK58+fx7p16+Dm5ob58+cbdJ1x48Zh586dWLlyJS5evIj9+/dj0KBByMvLM2VxLKpPnz7IycnBr7/+imXLlmHNmjWYNWtWrc+rVCrh4+OjEwATkQnVcMkkIqJai42NFf369RNt2rQRkyZNkrZ/9tlnouzj6dNPPxUAxO7du/WeQ6vVGnQtlUolUlNTK92vb123Mj/88IPo2bOncHNzE4888oh48803xe3bt6X9H3/8sQgNDRX16tUT3t7eYtiwYSI3N1faX7bG3P79+0VISIhwc3MTvXv3Frm5uWLfvn2iTZs2on79+mLYsGGiuLjYoPLExsaKgQMH6mx7/vnnRefOnaXnt27dEkOHDhV+fn7C3d1ddOjQQWzevFnnHA+XOTMzU8pv+XVS//Of/4h27doJpVIpWrRoIRYvXmxQPomoItZ8EZFVOTs747333sPKlSvx+++/V9j/6aefonXr1hgwYIDe4w2tnfHx8cG+fftQVFSkd//OnTvxyCOPYO7cucjJyUFOTg4A4OrVq+jTpw9eeOEFnD59Glu3bsWPP/6I+Ph46dj79+9j3rx5OHXqFHbt2oWsrCyMGjWqwjVmz56NVatW4dChQ/jtt98wePBgJCcnY/Pmzdi7dy+++uorrFy50qDyPOzs2bM4dOgQlEqltO3u3bsIDQ3F3r17cfbsWcTFxWHEiBH4+eefAQDLly9HeHg4xo4dK5XZ39+/wrmPHTuGwYMHY+jQoThz5gxmz56NGTNmIDU1tUZ5JXJ41o7+iMhxla+96dGjh3jllVeEELo1X23atBEDBgzQOW78+PHCw8NDeHh4iGbNmhl0re+++0488sgjwsXFRXTt2lUkJCSIH3/8USdNixYtxLJly3S2jRkzRsTFxels++GHH4STk5P43//9X73XOnLkiAAgioqKhBB/13x9/fXXUpqkpCQBQFy9elXa9tprr4no6GiDyhMbGyucnZ2Fh4eHcHV1FQCEk5OT+M9//lPlcX379hUTJkyQnkdGRorx48frpHm45mv48OHimWee0UkzadIk0a5dO4PySkS6WPNFRLLw/vvvY+PGjbhw4UK1ad955x2cPHkSM2fOxO3btw06/xNPPIFff/0VaWlpGDRoEM6dO4devXph3rx5VR536tQppKamol69etIjOjoaWq0WmZmZAB7UDPXv3x/NmzdH/fr1ERkZCQC4du2azrkee+wx6f/e3t6oW7cuHn30UZ1tN27cMKg8ANC7d2+cPHkSGRkZiI2NxejRo/HCCy9I+0tLSzFv3jx07NgRXl5eqFevHr788ssK+arOhQsX8Pjjj+tse/zxx3H58mWUlpYadS4iYod7IpKJJ554AtHR0Zg6darO9uDgYFy6dElnW5MmTdCyZUs0bdrUqGu4uLigV69eePvtt/HVV19h7ty5mDdvHu7du1fpMbdv38Zrr72GkydPSo9Tp07h8uXLCAoKQnFxMaKjo+Hp6YlNmzbhyJEj+OyzzwCgwnldXFyk/5eNUixPoVBAq9UaXB4PDw+0bNkSnTp1wvr165GRkYF169ZJ+xctWoTly5fj7bffxrfffouTJ08iOjq6yvISkfnVsXYGiIjKLFiwACEhIWjdurW0bdiwYRg+fDh2796NgQMHmvR67dq1w19//YW7d+9CqVRCqVRWqMnp0qULzp8/j5YtW+o9x5kzZ5CXl4cFCxZI/aWOHj1q0nwawsnJCdOmTUNiYiKGDx8Od3d3/PTTTxg4cCBefvllAIBWq8Uvv/yCdu3aScfpK/PD2rZti59++kln208//YRWrVrB2dnZ9IUhsnOs+SIi2ejYsSNeeuklrFixQto2dOhQDBo0CEOHDsXcuXORkZGBrKwsfPfdd9i6davBX/5PPvkk1qxZg2PHjiErKwv79u3DtGnT0Lt3b3h6egJ4MM/X999/jz/++AO3bt0CALz99ts4dOgQ4uPjcfLkSVy+fBm7d++WOtw3b94cSqUSK1euxK+//orPP/+82qZMc3nxxRfh7OyM1atXA3hQa3jgwAEcOnQIFy5cwGuvvYbc3FydYwICAqR7euvWLb01bxMmTEBaWhrmzZuHX375BRs3bsSqVaswceJEi5SLyN4w+CIiWZk7d65OAKBQKLB161YkJydj3759ePrpp9G6dWu88sor8Pf3x48//mjQeaOjo7Fx40b84x//QNu2bfHmm28iOjoa27Zt07l2VlYWgoKC0KRJEwAP+ml99913+OWXX9CrVy907twZM2fOhJ+fH4AHTaCpqanYvn072rVrhwULFmDx4sUmvCOGq1OnDuLj47Fw4UIUFxdj+vTp6NKlC6Kjo/Hkk0/Cx8cHMTExOsdMnDgRzs7OaNeuHZo0aaK3P1iXLl2wbds2bNmyBR06dMDMmTMxd+5cvSM6iah6CiGEsHYmiIiIiBwFa76IiIiILIjBFxHZhfJTQTz8+OGHH6ydPaNcu3atyvIYO1UEEckLmx2JyC5UtcB2s2bN4O7ubsHc1M5ff/2FrKysSvcHBASgTh0OVieyVQy+iIiIiCyIzY5EREREFsTgi4iIiMiCGHwRERERWRCDLyIiIiILYvBFREREZEEMvoiIiIgsiMEXERERkQUx+CIiIiKyoP8PbJXfQArAencAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_5.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfO0lEQVR4nO3de1hU1cIG8HdAhgGEgQG5KQoi3lJBUBHUvIShKcbJU2hl6rE8eqQkKsu7HS1M08i0zC5qpWmWmZqHUqrvVJIXQEtTE8NbCgrIgJiAzPr+4LBzhpmBQeYCvL/nmUdm77X3rDVZvK29LjIhhAARERERSeysXQEiIiIiW8OARERERKSDAYmIiIhIBwMSERERkQ4GJCIiIiIdDEhEREREOhiQiIiIiHQwIBERERHpYEAiIiIi0sGARETUhG3YsAEymQxnz561dlWImhUGJCIy6tChQ0hMTMRdd90FFxcXtG/fHg899BB+++23WmWHDBkCmUwGmUwGOzs7uLm5oUuXLpgwYQL27t1r0ufu2rULgwcPhre3N5ydndGxY0c89NBDSEtLa6ym1fLyyy9jx44dtY7v378fixYtQnFxsdk+W9eiRYuk71Imk8HZ2Rndu3fHvHnzUFJS0iifsXnzZqSmpjbKvYiaGwYkIjLqlVdewWeffYZ77rkHr7/+OqZOnYr//ve/CA8Px7Fjx2qVb9euHT788EN88MEHWL58OcaMGYP9+/fj3nvvRUJCAiorK+v8zFdffRVjxoyBTCbD7Nmz8dprr2Hs2LE4ffo0tmzZYo5mAjAekF588UWLBqQab731Fj788EOsXLkSXbt2xUsvvYQRI0agMbbRZEAiMqyVtStARLYtOTkZmzdvhlwul44lJCSgZ8+eWLp0KT766COt8kqlEo8++qjWsaVLl+Kpp57Cm2++icDAQLzyyisGP+/WrVtYvHgxhg8fjq+//rrW+StXrtxhi2zHjRs34OzsbLTM3//+d3h5eQEApk2bhrFjx2L79u346aefEBUVZYlqErVI7EEiIqOio6O1whEAhISE4K677sKJEyfqdQ97e3usWrUK3bt3x+rVq6FWqw2WLSgoQElJCQYMGKD3vLe3t9b7mzdvYtGiRejcuTMUCgX8/PzwwAMP4MyZM1KZV199FdHR0fD09ISTkxMiIiLw6aefat1HJpOhrKwMGzdulB5rTZo0CYsWLcJzzz0HAAgKCpLO3T7m56OPPkJERAScnJygUqkwbtw4XLhwQev+Q4YMQY8ePZCZmYm7774bzs7OmDNnTr2+v9sNGzYMAJCbm2u03Jtvvom77roLjo6O8Pf3x4wZM7R6wIYMGYIvv/wS586dk9oUGBhocn2Imiv2IBGRyYQQyM/Px1133VXva+zt7TF+/HjMnz8fP/zwA0aNGqW3nLe3N5ycnLBr1y48+eSTUKlUBu9ZVVWF0aNHIz09HePGjcPMmTNRWlqKvXv34tixYwgODgYAvP766xgzZgweeeQRVFRUYMuWLXjwwQexe/duqR4ffvghHn/8cfTr1w9Tp04FAAQHB8PFxQW//fYbPv74Y7z22mtSb06bNm0AAC+99BLmz5+Phx56CI8//jiuXr2KN954A3fffTeys7Ph7u4u1bewsBAjR47EuHHj8Oijj8LHx6fe31+NmuDn6elpsMyiRYvw4osvIiYmBtOnT8epU6fw1ltv4dChQ/jxxx/h4OCAuXPnQq1W4+LFi3jttdcAAK1btza5PkTNliAiMtGHH34oAIj33ntP6/jgwYPFXXfdZfC6zz//XAAQr7/+utH7L1iwQAAQLi4uYuTIkeKll14SmZmZtcq9//77AoBYuXJlrXMajUb6+caNG1rnKioqRI8ePcSwYcO0jru4uIiJEyfWutfy5csFAJGbm6t1/OzZs8Le3l689NJLWsd/+eUX0apVK63jgwcPFgDE2rVrDbb7dgsXLhQAxKlTp8TVq1dFbm6uePvtt4Wjo6Pw8fERZWVlQggh1q9fr1W3K1euCLlcLu69915RVVUl3W/16tUCgHj//felY6NGjRIdOnSoV32IWho+YiMik5w8eRIzZsxAVFQUJk6caNK1NT0UpaWlRsu9+OKL2Lx5M3r37o2vvvoKc+fORUREBMLDw7Ue63322Wfw8vLCk08+WeseMplM+tnJyUn6+dq1a1Cr1Rg0aBCysrJMqr+u7du3Q6PR4KGHHkJBQYH08vX1RUhICL799lut8o6Ojpg8ebJJn9GlSxe0adMGQUFB+Oc//4lOnTrhyy+/NDh2ad++faioqEBSUhLs7P76T/wTTzwBNzc3fPnll6Y3lKgF4iM2Iqq3vLw8jBo1CkqlEp9++ins7e1Nuv769esAAFdX1zrLjh8/HuPHj0dJSQkOHDiADRs2YPPmzYiLi8OxY8egUChw5swZdOnSBa1aGf9P2e7du7FkyRIcOXIE5eXl0vHbQ1RDnD59GkIIhISE6D3v4OCg9b5t27a1xnPV5bPPPoObmxscHBzQrl076bGhIefOnQNQHaxuJ5fL0bFjR+k8ERnHgERE9aJWqzFy5EgUFxfj+++/h7+/v8n3qFkWoFOnTvW+xs3NDcOHD8fw4cPh4OCAjRs34sCBAxg8eHC9rv/+++8xZswY3H333XjzzTfh5+cHBwcHrF+/Hps3bza5DbfTaDSQyWT4z3/+ozcs6o7pub0nq77uvvtuadwTEVkOAxIR1enmzZuIi4vDb7/9hn379qF79+4m36OqqgqbN2+Gs7MzBg4c2KB69OnTBxs3bsTly5cBVA+iPnDgACorK2v11tT47LPPoFAo8NVXX8HR0VE6vn79+lplDfUoGToeHBwMIQSCgoLQuXNnU5tjFh06dAAAnDp1Ch07dpSOV1RUIDc3FzExMdKxO+1BI2rOOAaJiIyqqqpCQkICMjIysG3btgatvVNVVYWnnnoKJ06cwFNPPQU3NzeDZW/cuIGMjAy95/7zn/8A+Ovx0dixY1FQUIDVq1fXKiv+t5Civb09ZDIZqqqqpHNnz57VuyCki4uL3sUgXVxcAKDWuQceeAD29vZ48cUXay3cKIRAYWGh/kaaUUxMDORyOVatWqVVp/feew9qtVpr9qCLi4vRJReIWjL2IBGRUc888wx27tyJuLg4FBUV1VoYUndRSLVaLZW5ceMGcnJysH37dpw5cwbjxo3D4sWLjX7ejRs3EB0djf79+2PEiBEICAhAcXExduzYge+//x7x8fHo3bs3AOCxxx7DBx98gOTkZBw8eBCDBg1CWVkZ9u3bh3/961+4//77MWrUKKxcuRIjRozAww8/jCtXrmDNmjXo1KkTfv75Z63PjoiIwL59+7By5Ur4+/sjKCgIkZGRiIiIAADMnTsX48aNg4ODA+Li4hAcHIwlS5Zg9uzZOHv2LOLj4+Hq6orc3Fx8/vnnmDp1Kp599tk7+v5N1aZNG8yePRsvvvgiRowYgTFjxuDUqVN488030bdvX61/XhEREdi6dSuSk5PRt29ftG7dGnFxcRatL5HNsuYUOiKyfTXT0w29jJVt3bq1CAkJEY8++qj4+uuv6/V5lZWV4p133hHx8fGiQ4cOwtHRUTg7O4vevXuL5cuXi/Lycq3yN27cEHPnzhVBQUHCwcFB+Pr6ir///e/izJkzUpn33ntPhISECEdHR9G1a1exfv16aRr97U6ePCnuvvtu4eTkJABoTflfvHixaNu2rbCzs6s15f+zzz4TAwcOFC4uLsLFxUV07dpVzJgxQ5w6dUrruzG2BIKumvpdvXrVaDndaf41Vq9eLbp27SocHByEj4+PmD59urh27ZpWmevXr4uHH35YuLu7CwCc8k90G5kQjbChDxEREVEzwjFIRERERDoYkIiIiIh0MCARERER6WBAIiIiItLBgERERESkgwGJiIiISAcXimwgjUaDS5cuwdXVlcv1ExERNRFCCJSWlsLf3x92dob7iRiQGujSpUsICAiwdjWIiIioAS5cuIB27doZPM+A1ECurq4Aqr9gY/tKERERke0oKSlBQECA9HvcEAakBqp5rObm5saARERE1MTUNTyGg7SJiIiIdDAgEREREelgQCIiIiLSwTFIZlZVVYXKykprV6PZksvlRqdpEhERNQQDkpkIIZCXl4fi4mJrV6VZs7OzQ1BQEORyubWrQkREzQgDkpnUhCNvb284OztzMUkzqFms8/Lly2jfvj2/YyIiajRWfzaxZs0aBAYGQqFQIDIyEgcPHjRaftu2bejatSsUCgV69uyJPXv2aJ3fvn077r33Xnh6ekImk+HIkSNa54uKivDkk0+iS5cucHJyQvv27fHUU09BrVY3WpuqqqqkcOTp6QknJycoFAq+Gvnl7OyMNm3a4MaNG7h161aj/fMjIiKyakDaunUrkpOTsXDhQmRlZSE0NBSxsbG4cuWK3vL79+/H+PHjMWXKFGRnZyM+Ph7x8fE4duyYVKasrAwDBw7EK6+8ovcely5dwqVLl/Dqq6/i2LFj2LBhA9LS0jBlypRGa1fNmCNnZ+dGuyfpV/Noraqqyso1ISKi5kQmhBDW+vDIyEj07dsXq1evBlD9yCQgIABPPvkkXnjhhVrlExISUFZWht27d0vH+vfvj7CwMKxdu1ar7NmzZxEUFITs7GyEhYUZrce2bdvw6KOPoqysDK1a1e+pY0lJCZRKJdRqda2FIm/evInc3FwEBQVBoVDU637UMPyuiYjIFMZ+f9/OamOQKioqkJmZidmzZ0vH7OzsEBMTg4yMDL3XZGRkIDk5WetYbGwsduzYcUd1qfmSjIWj8vJylJeXS+9LSkru6DOJiIjoL4WFhaioqDB4Xi6Xw9PT02L1sVpAKigoQFVVFXx8fLSO+/j44OTJk3qvycvL01s+Ly/vjuqxePFiTJ061Wi5lJQUvPjiiw3+HCIiItKvsLBQeppkTGJiosVCktUHaVtTSUkJRo0ahe7du2PRokVGy86ePRtqtVp6XbhwwTKVtLBJkyZBJpNBJpPBwcEBPj4+GD58ON5//31oNJp632fDhg1wd3c3X0WJiKjZ0O05UqtdkZsbCLXa1Wg5c7JaD5KXlxfs7e2Rn5+vdTw/Px++vr56r/H19TWpvDGlpaUYMWIEXF1d8fnnn8PBwcFoeUdHRzg6Opr8OQ1h7W7GESNGYP369aiqqkJ+fj7S0tIwc+ZMfPrpp9i5c2e9x2kRERGZKiurN3btGg0h7CCTaRAXtxvh4dkWr4fVftPJ5XJEREQgPT0d8fHxAKoHaaenpyMxMVHvNVFRUUhPT0dSUpJ0bO/evYiKijLps0tKShAbGwtHR0fs3LnTpgb32kI3o6OjoxQ627Zti/DwcPTv3x/33HMPNmzYgMcffxwrV67E+vXr8fvvv0OlUiEuLg7Lli1D69at8d1332Hy5MkA/toteeHChVi0aBE+/PBDvP766zh16hRcXFwwbNgwpKamwtvb2yxtISKipkOtdpXCEQAIYYddu0YjODgHSmWpReti1UdsycnJeOedd7Bx40acOHEC06dPR1lZmfTL9bHHHtMaxD1z5kykpaVhxYoVOHnyJBYtWoTDhw9rBaqioiIcOXIEv/76KwDg1KlTOHLkiDROqaSkBPfeey/Kysrw3nvvoaSkBHl5ecjLy7OJqeL17T60ZDcjAAwbNgyhoaHYvn07gOoB9atWrcLx48exceNGfPPNN5g1axYAIDo6GqmpqXBzc8Ply5dx+fJlPPvsswCql0BYvHgxjh49ih07duDs2bOYNGmSRdtCRES2qajIUwpHNYSwQ1GRyuJ1seqzkoSEBFy9ehULFixAXl4ewsLCkJaWJg3EPn/+vNY+W9HR0di8eTPmzZuHOXPmICQkBDt27ECPHj2kMjt37pQCFgCMGzcOwF89GFlZWThw4AAAoFOnTlr1yc3NRWBgoLma2+R17doVP//8MwBo9eIFBgZiyZIlmDZtGt58803I5XIolUrIZLJajz//8Y9/SD937NgRq1atQt++fXH9+nW0bt3aIu0gIiLbpFIVQibTaIUkmUwDlarI4nWx+mCSxMREg4/Uvvvuu1rHHnzwQTz44IMG7zdp0iSjPRJDhgyBFZd+atKEENIjs3379iElJQUnT55ESUkJbt26hZs3b+LGjRtGF8jMzMzEokWLcPToUVy7dk0a+H3+/Hl0797dIu0gIiLbpFSWIi5ud60xSJZ+vAbYQECipuPEiRMICgrC2bNnMXr0aEyfPh0vvfQSVCoVfvjhB0yZMgUVFRUGA1JZWRliY2MRGxuLTZs2oU2bNjh//jxiY2Mt/siQiIhsU3h4NoKDc1BUpIJKVWSVcAQwIFE9ffPNN/jll1/w9NNPIzMzExqNBitWrJAegX7yySda5eVyea0xXSdPnkRhYSGWLl2KgIAAAMDhw4ct0wAiIrJZNdtG1VAqS/UGI91y5sSARLWUl5dLg9ZrpvmnpKRg9OjReOyxx3Ds2DFUVlbijTfeQFxcHH788cdaW70EBgbi+vXrSE9PR2hoKJydndG+fXvI5XK88cYbmDZtGo4dO4bFixdbqZVERGQrPD09kZiYaFMrabfohSJJv7S0NPj5+SEwMBAjRozAt99+i1WrVuGLL76Avb09QkNDsXLlSrzyyivo0aMHNm3ahJSUFK17REdHY9q0aUhISECbNm2wbNkytGnTBhs2bMC2bdvQvXt3LF26FK+++qqVWklERLbE09MTfn5+Bl+WDEeAlTerbcrMtVmtLayD1JRws1oioqbF2osh2/xmtaSfLXYzEhERNYam1AnAgGSDrP2XgoiIyBz07blWVOQJlapQa1C2LcxsZkAiIiIii7OVPdcM4SBtIiIisihDe66p1a5WrtlfGJCIiIjIomxpzzVDGJCIiIjIomr2XLudtfZcM4QBiYiIiCyqZs+1mpBkzT3XDOEgbSIiIrI4W9lzzRAGJCIiIrIIW9xzzRAGJLKo7777DkOHDsW1a9fg7u5er2sCAwORlJSEpKQks9aNiIjMqykthswxSKRl0qRJkMlkmDZtWq1zM2bMgEwmw6RJkyxfMSIiahZsbc81QxiQqJaAgABs2bIFf/75p3Ts5s2b2Lx5M9q3b2/FmhEREVkGAxLVEh4ejoCAAGzfvl06tn37drRv3x69e/eWjpWXl+Opp56Ct7c3FAoFBg4ciEOHDmnda8+ePejcuTOcnJwwdOhQnD17ttbn/fDDDxg0aBCcnJwQEBCAp556CmVlZWZrHxERUV0YkGzcxYvAt99W/2lJ//jHP7B+/Xrp/fvvv4/JkydrlZk1axY+++wzbNy4EVlZWejUqRNiY2NRVFS9jsWFCxfwwAMPIC4uDkeOHMHjjz+OF154QeseZ86cwYgRIzB27Fj8/PPP2Lp1K3744QckJiaav5FEREQGMCDZsPfeAzp0AIYNq/7zvfcs99mPPvoofvjhB5w7dw7nzp3Djz/+iEcffVQ6X1ZWhrfeegvLly/HyJEj0b17d7zzzjtwcnLCe/+r6FtvvYXg4GCsWLECXbp0wSOPPFJr/FJKSgoeeeQRJCUlISQkBNHR0Vi1ahU++OAD3Lx503INJiIiug1nsdmoixeBqVMBzf8WGtVogH/+E4iNBdq1M//nt2nTBqNGjcKGDRsghMCoUaPg5eUlnT9z5gwqKysxYMAA6ZiDgwP69euHEydOAABOnDiByMhIrftGRUVpvT969Ch+/vlnbNq0STomhIBGo0Fubi66detmjuYREREZxYBko06f/isc1aiqAnJyLBOQgOrHbDWPutasWWOWz7h+/Tr++c9/4qmnnqp1jgPCiYjIWhiQbFRICGBnpx2S7O2BTp0sV4cRI0agoqICMpkMsbGxWueCg4Mhl8vx448/okOHDgCAyspKHDp0SFqvqFu3bti5c6fWdT/99JPW+/DwcPz666/oZMmGERER1YFjkGxUu3bAunXVoQio/vPtty3Xe1T9mfY4ceIEfv31V9jXVOR/XFxcMH36dDz33HNIS0vDr7/+iieeeAI3btzAlClTAADTpk3D6dOn8dxzz+HUqVPYvHkzNmzYoHWf559/Hvv370diYiKOHDmC06dP44svvuAgbSIisir2INmwKVOqxxzl5FT3HFkyHNVwc3MzeG7p0qXQaDSYMGECSktL0adPH3z11Vfw8PAAUP2I7LPPPsPTTz+NN954A/369cPLL7+Mf/zjH9I9evXqhf/7v//D3LlzMWjQIAghEBwcjISEBLO3jYiIzKOwsLBJrJZtjEwIIaxdiaaopKQESqUSarW6Voi4efMmcnNzERQUBIVCYaUatgz8romIrEdfEFKr1di6dett711RVOQJlapQa9+1xMREq4QkY7+/b8ceJCIiIjJZYWEhVq9ebbRMVlZv7No1GkLYQSbTIC5uN8LDswHAaA+TLeAYJCIiIjJZ7Z4jV+TmBkKtdpXe14QjABDCDrt2jZbO2zr2IBEREZHJ1Gq19LO+niIPj2tSOKohhB2KilRaj9psFXuQiIiIyGSVlZUADPcUOTiUQybTXtBPJtNApSqyeF0bggHJjDj+3fz4HRMRWVdRkafenqLKSjni4nZLIammZ6kp9B4BfMRmFg4ODgCAGzduwMnJycq1ad5qnoHrrtNERESW4eBQDkAAkN12VMDBoQLh4dkIDs5BUZEKKlVRkwlHAAOSWdjb28Pd3R1XrlwBADg7O0Mmk9VxFZlKo9Hg6tWrcHZ2RqtW/KtMRGQNlZWO0A5HACBDZaUcAKBUljapYFSDv1XMxNfXFwCkkETmYWdnh/bt2zOAEhFZiUpVCJlMo/WYrT5jjeRyubmrdkcYkMxEJpPBz88P3t7e0kA2anxyuRx2dhxKR0RkaTU990plKeLidteaxVbTazR8+HAEBQVpXdsUVtJmQDIze3t7jo8hIqJmx93dXfrZ2FijoKAg+Pn5WaGGd4YBiYiIiEym+4jM0FgjW3+UZggDEhEREZnM09MTiYmJTX5TWkMYkIiIiKhBmmr4qQ+ObiUiIiLSwYBEREREpIMBiYiIiEgHAxIRERGRDgYkIiIiIh2cxUZEREQGFRYWNtup/MYwIBEREZFehYWFWL16dZ3lEhMTm11I4iM2IiIi0ku350itdkVubiDUalej5ZoD9iARERFRnbKyetfakDY8PNva1TIbq/cgrVmzBoGBgVAoFIiMjMTBgweNlt+2bRu6du0KhUKBnj17Ys+ePVrnt2/fjnvvvReenp6QyWQ4cuRIrXvcvHkTM2bMgKenJ1q3bo2xY8ciPz+/MZtFRETUbKjVrlI4AgAh7LBr1+haPUnNiVUD0tatW5GcnIyFCxciKysLoaGhiI2NxZUrV/SW379/P8aPH48pU6YgOzsb8fHxiI+Px7Fjx6QyZWVlGDhwIF555RWDn/v0009j165d2LZtG/7v//4Ply5dwgMPPNDo7SMiImoOioo8pXBUQwg7FBWprFQj85MJIYS1PjwyMhJ9+/aVBoBpNBoEBATgySefxAsvvFCrfEJCAsrKyrB7927pWP/+/REWFoa1a9dqlT179iyCgoKQnZ2NsLAw6bharUabNm2wefNm/P3vfwcAnDx5Et26dUNGRgb69+9fr7qXlJRAqVRCrVbDzc3N1KYTERHZvMuXL2PdunVQq12RmpqkFZJkMg2SklKhVJZi6tSp8PPzs2JN66++v7+t1oNUUVGBzMxMxMTE/FUZOzvExMQgIyND7zUZGRla5QEgNjbWYHl9MjMzUVlZqXWfrl27on379ibdh4iIqKVQKksRF7cbMpkGAKQxSEplqZVrZj5WG6RdUFCAqqoq+Pj4aB338fHByZMn9V6Tl5ent3xeXl69PzcvLw9yuRzu7u4m3ae8vBzl5eXS+5KSknp/JhERUVMXHp6N4OAcFBWpoFIVNetwBNjAIO2mIiUlBUqlUnoFBARYu0pERERmJZfLtd4rlaUICjpXKxzplmsOrNaD5OXlBXt7+1qzx/Lz8+Hr66v3Gl9fX5PKG7pHRUUFiouLtXqR6rrP7NmzkZycLL0vKSlhSCIiombN09MTiYmJLXIlbav1IMnlckRERCA9PV06ptFokJ6ejqioKL3XREVFaZUHgL179xosr09ERAQcHBy07nPq1CmcP3/e6H0cHR3h5uam9SIiImruPD094efnZ/DVHMMRYOWFIpOTkzFx4kT06dMH/fr1Q2pqKsrKyjB58mQAwGOPPYa2bdsiJSUFADBz5kwMHjwYK1aswKhRo7BlyxYcPnwY69atk+5ZVFSE8+fP49KlSwCqww9Q3XPk6+sLpVKJKVOmIDk5GSqVCm5ubnjyyScRFRVV7xlsRERE1LxZNSAlJCTg6tWrWLBgAfLy8hAWFoa0tDRpIPb58+dhZ/dXJ1d0dDQ2b96MefPmYc6cOQgJCcGOHTvQo0cPqczOnTulgAUA48aNAwAsXLgQixYtAgC89tprsLOzw9ixY1FeXo7Y2Fi8+eabFmgxERERNQVWXQepKeM6SERERE2Pza+DRERERGSrGJCIiIiIdDAgEREREelgQCIiIiLSYdVZbERERGQ5hYWFLXLRx4ZgQCIiImoBCgsLsXr16jrLJSYmMiSBj9iIiIhaBN2eI7XaFbm5gVCrXY2Wa6nYg0RERNTCZGX1xq5doyGEHWQyDeLidiM8PNva1bIp7EEiIiJqQdRqVykcAYAQdti1a3StnqSWjgGJiIioBSkq8pTCUQ0h7FBUpLJSjWwTAxIREVELolIVQibTaB2TyTRQqYqsVCPbxIBERETUgiiVpYiL2y2FpJoxSEplqZVrZls4SJuIiKiFCQ/PRnBwDoqKVFCpihiO9GBAIiIiagHkcrnWe6WyVG8w0i3XUjEgERERNSPGVstOSEiAEALu7u56z3Ml7b8wIBERETUTXC278XCQNhERUTPB1bIbD3uQiIiImiGuln1n2INERETUzHC17DvHgERERNTMcLXsO8eARERE1Mxwtew7x4BERETUzHC17DvHQdpERETNEFfLvjMMSERERE2QvgUhi4uLtd5zteyGY0AiIiJqYuq7IGRCQgKUSqXWMa6WXT8MSERERE2MvgUhi4o8oVIVavUYKZVK+Pn5Wbp6zQIDEhERURPGBSHNg7PYiIiImiguCGk+7EEiIiKyUfoGYgNAQUEBAOMLQnLW2p1hQCIiIrJB9RmIXbMg5O0hiQtCNg4+YiMiIrJB+gZi5+YGaj0+44KQ5sMeJCIiIhtnbCA2F4Q0D/YgERER2bD6DMRWKksRFHSuVjjigpANxx4kIiIiG1bXQOwHHngAXl5eta7jgpB3hgGJiIjIhtU1ENvLy4uLQZoBH7ERERHZMA7Etg72IBEREdk4DsS2PAYkIiIiG6Q7wFqpLNUbjDgQ2zwYkIiIiGyQp6cnEhMT9a6kXYMDsc2HAYmIiMhGMfxYDwdpExEREelgQCIiIiLSwYBEREREpIMBiYiIiEgHAxIRERGRDgYkIiIiIh0MSEREREQ6GJCIiIiIdDAgEREREemwekBas2YNAgMDoVAoEBkZiYMHDxotv23bNnTt2hUKhQI9e/bEnj17tM4LIbBgwQL4+fnByckJMTExOH36tFaZ3377Dffffz+8vLzg5uaGgQMH4ttvv230thEREVHTZNWAtHXrViQnJ2PhwoXIyspCaGgoYmNjceXKFb3l9+/fj/Hjx2PKlCnIzs5GfHw84uPjcezYManMsmXLsGrVKqxduxYHDhyAi4sLYmNjcfPmTanM6NGjcevWLXzzzTfIzMxEaGgoRo8ejby8PLO3mYiIiGyfTAghrPXhkZGR6Nu3L1avXg0A0Gg0CAgIwJNPPokXXnihVvmEhASUlZVh9+7d0rH+/fsjLCwMa9euhRAC/v7+eOaZZ/Dss88CANRqNXx8fLBhwwaMGzcOBQUFaNOmDf773/9i0KBBAIDS0lK4ublh7969iImJqVfdS0pKoFQqoVar4ebmdqdfBREREVlAfX9/W60HqaKiApmZmVqBxM7ODjExMcjIyNB7TUZGRq0AExsbK5XPzc1FXl6eVhmlUonIyEipjKenJ7p06YIPPvgAZWVluHXrFt5++214e3sjIiLCYH3Ly8tRUlKi9SIiIqLmyWoBqaCgAFVVVfDx8dE67uPjY/BRV15entHyNX8aKyOTybBv3z5kZ2fD1dUVCoUCK1euRFpaGjw8PAzWNyUlBUqlUnoFBASY1mAiIiJqMqw+SNvShBCYMWMGvL298f333+PgwYOIj49HXFwcLl++bPC62bNnQ61WS68LFy5YsNZERERkSVYLSF5eXrC3t0d+fr7W8fz8fPj6+uq9xtfX12j5mj+Nlfnmm2+we/dubNmyBQMGDEB4eDjefPNNODk5YePGjQbr6+joCDc3N60XERERNU9WC0hyuRwRERFIT0+Xjmk0GqSnpyMqKkrvNVFRUVrlAWDv3r1S+aCgIPj6+mqVKSkpwYEDB6QyN27cAFA93ul2dnZ20Gg0d94wIiIiavJaWfPDk5OTMXHiRPTp0wf9+vVDamoqysrKMHnyZADAY489hrZt2yIlJQUAMHPmTAwePBgrVqzAqFGjsGXLFhw+fBjr1q0DUD2+KCkpCUuWLEFISAiCgoIwf/58+Pv7Iz4+HkB1yPLw8MDEiROxYMECODk54Z133kFubi5GjRplle+BiIiIbItVA1JCQgKuXr2KBQsWIC8vD2FhYUhLS5MGWZ8/f16rpyc6OhqbN2/GvHnzMGfOHISEhGDHjh3o0aOHVGbWrFkoKyvD1KlTUVxcjIEDByItLQ0KhQJA9aO9tLQ0zJ07F8OGDUNlZSXuuusufPHFFwgNDbXsF0BEREQ2yarrIDVlXAeJiIio6bH5dZCIiIiIbBUDEhEREZEOBiQiIiIiHQxIRERERDoYkIiIiIh0MCARERER6WBAIiIiItLBgERERESkw6oraRMREdmywsJCVFRUGDwvl8vh6elpwRqRpTAgERER6VFYWIjVq1fXWS4xMZEhqRniIzYiIiI9dHuO1GpX5OYGQq12NVqOmgf2IBEREdUhK6s3du0aDSHsIJNpEBe3G+Hh2dauFpkRe5CIiIiMUKtdpXAEAELYYdeu0bV6kqh5YUAiIiIyoqjIUwpHNYSwQ1GRyko1IktgQCIiIjJCpSqETKbROiaTaaBSFVmpRmQJHINEREQtmqGp/AUFBQAApbIUcXG7a41BUipLLV1VsiAGJCIiarHqO5U/PDwbwcE5KCpSQaUqYjhqARiQiIioxdI3lb+oyBMqVWGtEKRUluoNRnK53Kx1JOtgQCIiohZLrVZLPxubyj98+HAEBQXVup4raTdfDEhERNRiFRVVD7Q2NJU/ODhH6jXy8/OzWj3J8jiLjYiIWqxbt24BqHsqf005ajkYkIiIqMW6ceMGAMDBoRyA0Dkr4OBQoVWOWg4GJCIiarGqqqoAAMXFHgBkOmdlKC521ypHLQfHIBERUYugb72jsrIyK9WGbB0DEhERNXt1rXfk7n4N1Y/Ybu9FEnB3LwYA2Nvbm7N6ZIP4iI2IiJo9fesd5eYGShvOVlY6Qt8jtsrK6jWOnJ2dLVBLsiXsQSIiohZF33pHwcE5kMk0WjPZbt9vTd9WJNS8sQeJiIhaDEPrHQFAXNxuADWb0mrvt8YepJaHAYmIiJq9mhWz61rvSPa/p2wynadtrq6uZq8j2RYGJCIiavYqKysBACpVIWQyjdY5mUwDB4cKvT1LNWOUWrXiiJSWxqSAdPHiRRQUFEjvv//+ezzyyCMYNGgQHn30UWRkZDR6BYmIiBqLUlmKXr1+xl+LQgr06vUzKisdjfYsubu7W7SeZH0mBaSxY8fip59+AgB88cUXGDJkCK5fv44BAwbgxo0bGDx4MHbv3m2WihIREdWlsLAQly9frvW6du0agOoxSD//3At/zViT4eefe8HBoVxvz1LNIG1qeUzqMzx+/DjuuusuAEBKSgpefvllPP/889L51atXY8GCBRg9enTj1pKIiKgOda11BBgeg1RZKUdc3O5as9tqBmlTy2NSQGrVqhVKS6v/suTm5mLkyJFa50eOHKkVmIiIiCxF31pHRUWeUKkKpaBTMwZJ33T+oKBzCA7OQVGRCipVEcNRC2dSQBo8eDA+/vhj9OrVC71798Z3332HXr16See//fZbtG3bttErSUREZAp9ax2Fh2dDqSw12lOkVJbqDUZyudzSTSArMykgLV26FIMGDcKlS5cwcOBAzJ07F4cOHUK3bt1w6tQpbN26FWvXrjVXXYmIiOpkaK2j4OAcKJWlCA/PNthT9MADD8DLy0vrfnK5HJ6enhZtA1mfSQGpW7duOHDgAObNm4dly5ahrKwMmzZtQqtWrdC3b19s2bIF8fHxZqoqERFR3YytdVRXT5G/vz/DEAFowFYjwcHB+PjjjyGEwJUrV6DRaODl5QUHBwdz1I+IiMgkxsYZAfp7iQD2FJG2Bq98JZPJ4OPj05h1ISIiumN1jTPy8vKCn5+flWtJts6kgJScnFyvcitXrmxQZYiIiBqDsXFGRPVhUkDKzs7Wev/DDz8gIiICTk5O0jGZ7gY2REREFqA704wz0uhOyIQQou5i+rm6uuLo0aPo2LFjY9apSSgpKYFSqYRarYabm5u1q0NERKheLFJ3PaTbcZwR1ff3N3ffIyKiZoPhhxqLSXuxEREREbUEDEhEREREOkx6xPbzzz9rvRdC4OTJk7h+/brW8du3HyEiIiJqakwapG1nZweZTAZ9l9Qcl8lkqKqqatRK2iIO0iYiImp6zDJIOzc3944rRkRERGTrTBqD1KFDh3q9TLFmzRoEBgZCoVAgMjISBw8eNFp+27Zt6Nq1KxQKBXr27Ik9e/ZonRdCYMGCBfDz84OTkxNiYmJw+vTpWvf58ssvERkZCScnJ3h4eHAPOSIiIpI0aJC2RqMxePz8+fP1vs/WrVuRnJyMhQsXIisrC6GhoYiNjcWVK1f0lt+/fz/Gjx+PKVOmIDs7G/Hx8YiPj8exY8ekMsuWLcOqVauwdu1aHDhwAC4uLoiNjcXNmzelMp999hkmTJiAyZMn4+jRo/jxxx/x8MMP17veRERE1MwJE6jVavHggw8KhUIhvL29xfz588WtW7ek83l5ecLOzq7e9+vXr5+YMWOG9L6qqkr4+/uLlJQUveUfeughMWrUKK1jkZGR4p///KcQQgiNRiN8fX3F8uXLpfPFxcXC0dFRfPzxx0IIISorK0Xbtm3Fu+++W+966qNWqwUAoVar7+g+REREZDn1/f1tUg/S/PnzcfToUXz44Yd46aWX8MEHH+D+++/XWrVU1HPMd0VFBTIzMxETEyMds7OzQ0xMDDIyMvRek5GRoVUeAGJjY6Xyubm5yMvL0yqjVCoRGRkplcnKysIff/wBOzs79O7dG35+fhg5cqRWL5Q+5eXlKCkp0XoRERFR82RSQNqxYwfefvtt/P3vf8fjjz+Ow4cP4+rVq4iLi0N5eTmA+u/FVlBQgKqqKvj4+Ggd9/HxQV5ent5r8vLyjJav+dNYmd9//x0AsGjRIsybNw+7d++Gh4cHhgwZgqKiIoP1TUlJgVKplF4BAQH1aicRERlXWFiIy5cvG3wVFhZau4rUApk0i+3q1atag7C9vLywb98+xMbG4r777sO7777b6BVsbDXjp+bOnYuxY8cCANavX4927dph27Zt+Oc//6n3utmzZyM5OVl6X1JSwpBERHSHCgsLsXr16jrLJSYmchsRsiiTAlL79u1x4sQJBAUFScdcXV3x9ddf495778Xf/va3et/Ly8sL9vb2yM/P1zqen58PX19fvdf4+voaLV/zZ35+Pvz8/LTKhIWFAYB0vHv37tJ5R0dHdOzY0egAc0dHRzg6OtazdUREdDtDm8gWFBRovVerXVFU5AmVqhBKZal03NgGtETmYFJAGj58ONavX4/77rtP63jr1q3x1VdfYfjw4fW+l1wuR0REBNLT06Up9hqNBunp6UhMTNR7TVRUFNLT05GUlCQd27t3L6KiogAAQUFB8PX1RXp6uhSISkpKcODAAUyfPh0AEBERAUdHR5w6dQoDBw4EAFRWVuLs2bMmL1FARER1q28vUVZWb+zaNRpC2EEm0yAubjfCw7MtUEOi2kwKSP/+979x+fJlvedcXV2xd+9eZGVl1ft+ycnJmDhxIvr06YN+/fohNTUVZWVlmDx5MgDgscceQ9u2bZGSkgIAmDlzJgYPHowVK1Zg1KhR2LJlCw4fPox169YBqB7/lJSUhCVLliAkJARBQUGYP38+/P39pRDm5uaGadOmYeHChQgICECHDh2wfPlyAMCDDz5oytdBRET1oNv7o6+XSK12lcIRAAhhh127RiM4OEerJ4nIUkwKSNnZ2UhMTMRPP/1Ua3lutVqN6OhovPXWW/W+X0JCAq5evYoFCxYgLy8PYWFhSEtLkwZZnz9/HnZ2f40jj46OxubNmzFv3jzMmTMHISEh2LFjB3r06CGVmTVrFsrKyjB16lQUFxdj4MCBSEtLg0KhkMosX74crVq1woQJE/Dnn38iMjIS33zzDTw8PEz5OoiIyESGeomKijyhO7FaCDsUFakYkMgqTNqLbcyYMRg6dCiefvppvedXrVqFb7/9Fp9//nmjVdBWcS82IqL6OXnyJLZu3Qq12hWpqUlaQUgm0yApKRUADJ5TKksxdepUrbGlRA1V39/fJk3zP3r0KEaMGGHw/L333ovMzExTbklERM1cZWUlANTZSxQXtxsyWfVM45reJfYekbWY9IgtPz8fDg4Ohm/WqhWuXr16x5UiIqLmR6UqBKCB9v+ba6BSVa9BFx6ejeDgHBQVqaBSFTEckVWZ1IPUtm1boytO//zzz+wCJSIiI7QXE9ZdW1ipLEVQ0Lla4Ugul5u7YkRaTOpBuu+++zB//nyMGDFCa9AzAPz5559YuHAhRo8e3agVJCKi5qGoyBO6Aen2R2xDhw5FSEhIrevkcjkXiSSLMykgzZs3D9u3b0fnzp2RmJiILl26AKgegLdmzRpUVVVh7ty5ZqkoERE1Ta1aVf+qUakKIZNpag3ErnnE1qZNGz6FIJthUkDy8fHB/v37MX36dMyePVvamFYmkyE2NhZr1qyptQ8aERG1DIZWy7516xYASAOxdaf51zxOc3d3t2R1iYwyKSABQIcOHbBnzx5cu3YNOTk5EEIgJCSEawgREbUQ+oJQcXExPvnkkzqv5UBsaipMDkg1PDw80Ldv38asCxER2bj6bhtiaE81oLonSV8w4kBssiUNDkhERNTyXLlyReu9viBkbE+1Bx54AF5eXrXuy4HYZGsYkIiIqN6Ki4uln/UFoeDgHKN7qnl5eXEgNjUJJq2DRERELVvNqthqtSt27oyrFYQuXAgwuFo2UVPCgERERCa7cCEA+tY0unFDIW0XUuP2qfxETQUDEhERmezGDSeD57inGjUHHINERES1GFrTqLS0Oug4O/+p9zpn5z/Ro8cJTuWnJo8BiYiItOhO5dc3Uy0g4AIAgdsfs8lkGgQEXATAqfzU9DEgERGRltun8huasq9UlmLMmF0GV8Xu378/evXqpXVfTuWnpoQBiYiItNRsDaJWuxqdsm9sVez27dtzOj81aQxIRESkV1GRp8Ep+zVhyNCjNG9vb4vUkchcGJCIiEgvB4dy6I4zAgQcHKoHbw8dOhQhISG1ruOjNGoOGJCIiEivykpH6K51BMhQWVk90NrDw4OP0ajZ4jpIRESkl0pVyEUfqcViQCIiIr2UylIu+kgtFh+xERGRFgcHB+lnYzPVbi9H1NwwIBERNXOGVsWuoTuouk2bNlrnDc1U0y1H1JwwIBERNWO6q2IbkpiYKIUkT09PJCYmmhSqiJobBiQiomZMN+To2zZEXzmGH2rpGJCIiFoIQ9uGEFFtnMVGRNQCGNo2RK12tXLNiGwTAxIRUQtgbNsQIqqNAYmIqBkrLi4GUPeijzXliKgaAxIRUTN269YtAHUv+lhTjoiqMSAREbUgQmj/SUT6MSARETVjNatd1wzS/us/+9qDtLkqNpE2BiQiomZMqVQCqHuQdk05IqrGgERE1ALUNUibiLQxIBERtQB1DdImIm1cSZuIqIUID89GcHAOiopUUKmKGI6IjGBAIiJqxuRyudZ7pbJUbzDSLUfU0jEgERE1Y56enkhMTKy1Ge3t5HI5N6cl0sGARETUzDH8EJmOg7SJiIiIdDAgEREREelgQCIiIiLSwYBEREREpIMBiYiIiEgHAxIRERGRDk7zJyIys8LCQq5DRNTEMCAREZlRYWEhVq9eXWe5xMREhiQiG2ITj9jWrFmDwMBAKBQKREZG4uDBg0bLb9u2DV27doVCoUDPnj2xZ88erfNCCCxYsAB+fn5wcnJCTEwMTp8+rfde5eXlCAsLg0wmw5EjRxqrSUREAFCr50itdkVubiDUalej5YjIuqwekLZu3Yrk5GQsXLgQWVlZCA0NRWxsLK5cuaK3/P79+zF+/HhMmTIF2dnZiI+PR3x8PI4dOyaVWbZsGVatWoW1a9fiwIEDcHFxQWxsLG7evFnrfrNmzYK/v7/Z2kdELZtarZZ+zsrqjdTUJGzcOBGpqUnIyuqttxwRWZ/VA9LKlSvxxBNPYPLkyejevTvWrl0LZ2dnvP/++3rLv/766xgxYgSee+45dOvWDYsXL0Z4eLjUhS2EQGpqKubNm4f7778fvXr1wgcffIBLly5hx44dWvf6z3/+g6+//hqvvvqquZtJRC1UUVERgOqeo127RkOI6v/sCmGHXbtGSz1JNeWIyDZYNSBVVFQgMzMTMTEx0jE7OzvExMQgIyND7zUZGRla5QEgNjZWKp+bm4u8vDytMkqlEpGRkVr3zM/PxxNPPIEPP/wQzs7Odda1vLwcJSUlWi8iohqFhYW4fPlyrde1a9cAAEVFnlI4qiGEHYqKVACAW7duWbzORGSYVQdpFxQUoKqqCj4+PlrHfXx8cPLkSb3X5OXl6S2fl5cnna85ZqiMEAKTJk3CtGnT0KdPH5w9e7bOuqakpODFF1+sV7uIqGWpz0BsB4dyAAKA7LajAg4OHHtEZIus/ojNGt544w2UlpZi9uzZ9b5m9uzZUKvV0uvChQtmrCERNSX1GYhdWekI7XAEADJUVsrNX0EiMplVe5C8vLxgb2+P/Px8reP5+fnw9fXVe42vr6/R8jV/5ufnw8/PT6tMWFgYAOCbb75BRkYGHB0dte7Tp08fPPLII9i4cWOtz3V0dKxVnohIV1ZWb2mskUymQVzcboSHZ7MHiaiJsWoPklwuR0REBNLT06VjGo0G6enpiIqK0ntNVFSUVnkA2Lt3r1Q+KCgIvr6+WmVKSkpw4MABqcyqVatw9OhRHDlyBEeOHJGWCdi6dSteeumlRm0jEbUcxgZi19WD1KoVl6UjsiVW/zcyOTkZEydORJ8+fdCvXz+kpqairKwMkydPBgA89thjaNu2LVJSUgAAM2fOxODBg7FixQqMGjUKW7ZsweHDh7Fu3ToAgEwmQ1JSEpYsWYKQkBAEBQVh/vz58Pf3R3x8PACgffv2WnVo3bo1ACA4OBjt2rWzUMuJqCnStyp2QUEBAOMDsVWqQshkGq3zMpkGKlX17DVXV+11kYjIuqwekBISEnD16lUsWLAAeXl5CAsLQ1pamjTI+vz587Cz++s/KNHR0di8eTPmzZuHOXPmICQkBDt27ECPHj2kMrNmzUJZWRmmTp2K4uJiDBw4EGlpaVAoFBZvHxE1PYa2BikuLsYnn3xi8DpjIUipLEVc3O5aj9+UylIAgIODQ+M3hIgaTCaEENauRFNUUlICpVIJtVoNNzc3a1eHiBpJfbcGAaofqRUVeUKlKpSCjqExSNrXqKTQVINbjRBZRn1/f1u9B4mIyJbom5GmG4IAw0EoPDwbwcE5ekPQAw88AC8vr1qfyc1qiWwPAxIRkQGGQpChwdjBwTlQKkully5/f38GIaImggGJiFosYwOujYUgY4OxlcpSvT1F7CUialoYkIioRaprrNGdzEjz8vLSWoeNiJqeFrmSNhFRXatf14Sg2+nOSKs5rzsjjYiaPvYgEVGLZ2iskbFp+cYGYxNR08eAREQtmrGxRnWFIEODseVy7q9G1NQxIBFRi1bXgGtDISghIQFKpbLWcQ7GJmoeGJCIqEW6cOECAOOrXwPVq/ffvlI/wBBE1BIwIBFRi3Tz5k0AqHMLEEdHR85II2qBGJCIqMkztHcaAKjVaggh4O7urnW8tPSvx2bnzrWHEDIAgBAynDvXXmt7ECJqeRiQiKhJM2XvNH0uXvTD0aOhAGT/OyLD0aOh6Nv3INq1u8xNZIlaKK6DRERNWl3rGdXl/PkO+Csc1ZDhwoX2AIDWrVs3Qi2JqKlhDxIRNRuG1jOqoW/j2fbtzwEQ0A5JAgEB5y1adyKyLQxIRNQs1LWBrKHw1K7dZYSGHr3tMZtAaOhRtGt32artISLrYkAiombB2HpGAIyGp7/97Qv07XsQFy60R0DAeYYjImJAIqLmwdh6RnUtBgkA7dpd1huMnJ2dzVtxIrJJDEhE1CzUtZ6RscUghw4dCg8Pj1r3dHZ2RnBwsGUaQEQ2hQGJiJoNQ3un1RWeQkJCuBgkEWlhQCIim2Js0Ueg9jYfuhvDGto7zdjGs9xcloh0MSARkc2o76KPiYmJUkjy9PREYmKiyStp1+C+akSkDwMSEdkMYz1HxsoZCzh8dEZEDcGVtInIZhQXF2u9N7Qqtm45IqLGxh4kIrIZt27dkn42tir27eWIiMyBAYmIzMbUAdc11GpX7NwZh5rtP3QXdiQiMjcGJCIyi4YMuK5x4UIAdDeQFcIOFy60g1J5ojGrSUSkF8cgEZFZ/P7771rvDY0n0i1HRGQL2INERGZRWFgo/ZyV1Rs7d45G9f+TaTBmzF/jiW4vVyMg4AIADbT/H06DgICL5qwyEZGEPUhEZBZVVVUAasYT1YQjALDDzp2jpZ6kmnIA4ODgAKB6sccxY3ajOiQBNaGqZvxRTTkiInNhDxIRmdWpU51R+//F7HDqVAj69cvSOqpUKqWfja18fXs5IiJzYEAionpp6Iy0wkKVgfvVLlvfbUO4NQgRmRsDEhHV6U5mpHl6Fukt6+lZe+xRXduGANwahIgsgwGJiOqkG1jUalcUFXlCpSrU6uHRF2y6dPkNe/bUHnDdpctpvZ/F8ENEtoABiYhMYmyF69vZ29sD+GvAte4stppgVVOOiMiWMCARUb2p1a5SOAKMr3B9e0+QsQHX7DEiIlvEgERE9VZU5CmFoxpC2KGoSFUrIHXs2FHrvaEB17rliIhsAQMSEdWbSlUImUyjFZJkMg1UqtoDsTngmoiaMgYkohaooVP2lcpSxMXtrjUGydAGsgw/RNRUMSARtTB3MmUfMD6eiIiouWBAImphGjJlnws4ElFLw4BE1ILVd8o+xxMRUUvDgETUjOkba1RQUADAtCn7AMcTEVHLwoBE1EzVNdbIlCn7REQtje4W20TUTFy9elXrvVrtitzcQKjVrgD+mrJ/O0NT9omIWhr2IBE1U5WVldLPWVm9a231ER6ebdKUfSKiloQBiaiZU6tdbwtHAGCHnTurxxpxyj4RkX4MSERNREMXd7xwIQC1n6bb4cKFdlAqT3DKPhGRHgxIRE3AnS7uaMzQoUMREhKidYxT9omopbOJQdpr1qxBYGAgFAoFIiMjcfDgQaPlt23bhq5du0KhUKBnz57Ys2eP1nkhBBYsWAA/Pz84OTkhJiYGp0+fls6fPXsWU6ZMQVBQEJycnBAcHIyFCxca/b9zImvSt7jj7QOuDZUDgICACwCE1jGZTIOAgIsAAA8PD/j5+Wm9GI6IqKWzekDaunUrkpOTsXDhQmRlZSE0NBSxsbG4cuWK3vL79+/H+PHjMWXKFGRnZyM+Ph7x8fE4duyYVGbZsmVYtWoV1q5diwMHDsDFxQWxsbG4efMmAODkyZPQaDR4++23cfz4cbz22mtYu3Yt5syZY5E2E92JrKzeSE1NwsaNE5GamoSsrN5GyyuVpRgzZpc0Y42DsYmI6iYTQoi6i5lPZGQk+vbtKz0+0Gg0CAgIwJNPPokXXnihVvmEhASUlZVh9+7d0rH+/fsjLCwMa9euhRAC/v7+eOaZZ/Dss88CANRqNXx8fLBhwwaMGzdObz2WL1+Ot956C7///nu96l1SUgKlUgm1Wg03NzdTm01kksuXL2PdunVQq12RmpqktX6RTKZBUlIqlMpSTJ06FX5+fgCAEydO4JNPPpHKVW8pUnsw9kMPPYRu3bpZrjFERFZU39/fVu1BqqioQGZmJmJiYqRjdnZ2iImJQUZGht5rMjIytMoDQGxsrFQ+NzcXeXl5WmWUSiUiIyMN3hOoDlEqlcrg+fLycpSUlGi9iCzN2OKOury9vbXeK5WlCAo6V6vnSLccERFZeZB2QUEBqqqq4OPjo3Xcx8cHJ0+e1HtNXl6e3vJ5eXnS+ZpjhsroysnJwRtvvIFXX33VYF1TUlLw4osvGm8Q0W0MzTorLi7GrVu34ODgAKVSWeu8sQHSNYs76vYg6VvckfunERE1XIufxfbHH39gxIgRePDBB/HEE08YLDd79mwkJydL70tKShAQEGCJKlITVN9ZZ4YYmo2mVJaatLgjww8RUcNYNSB5eXnB3t4e+fn5Wsfz8/Ph6+ur9xpfX1+j5Wv+zM/Pl8Zi1LwPCwvTuu7SpUsYOnQooqOjsW7dOqN1dXR0hKOjY73aRaQ7yaB6/I8nVKpCrTBj6LixXh8u7khEZH5WDUhyuRwRERFIT09HfHw8gOpB2unp6UhMTNR7TVRUFNLT05GUlCQd27t3L6KiogAAQUFB8PX1RXp6uhSISkpKcODAAUyfPl265o8//sDQoUMRERGB9evXw87O6hP6qBm5deuW9HNWVu9aPT7h4dkGj+uju2gjF3ckIjIvqz9iS05OxsSJE9GnTx/069cPqampKCsrw+TJkwEAjz32GNq2bYuUlBQAwMyZMzF48GCsWLECo0aNwpYtW3D48GGpB0gmkyEpKQlLlixBSEgIgoKCMH/+fPj7+0sh7I8//sCQIUPQoUMHvPrqq1qbehrquSLSx9A4oz/++ANAzTYfcQBkAKoHVO/aNRre3nlSOLr9eHBwjt7gw/FERESWZfWAlJCQgKtXr2LBggXIy8tDWFgY0tLSpEHW58+f1+rdiY6OxubNmzFv3jzMmTMHISEh2LFjB3r06CGVmTVrFsrKyjB16lQUFxdj4MCBSEtLg0KhAFDd45STk4OcnBy0a9dOqz5WXvWAmpD6jDOq3uZDpnVMCDv89ltng7PROJ6IiMj6rL4OUlPFdZBaFn09RQUFBdi+fbv0Xt94omPHuuPTTx+sdb/77tuF//xnVL3WMyIiosZT39/fVu9BIrJ19ekpMjSeyN39Gqq3+bi9F0nA3/+ySbPRiIjIshiQiP7H0Hii3Nxcrfe6PUVqtavB8USVlY7QfcQGyFBZKedsNCIiG8aARIT6r1ukr6fIw+OawfFEdS3syNloRES2iQGJWhxD44lup288kaEZaVOmvGswBNW1sOPw4cMRFBSk9dmcjUZEZH0MSNSi3Ml4IkMz0oqL3Y2GIGOP0oKCgjgYm4jIBjEgUYtS1wrXxsYTGVPXeCI+SiMialoYkKhFqWuFa2PjiQICLgDQALj9vAYBARcBGA5BCQkJJm9KS0RE1sWARC1SQ8cTjRmzGzt3jkZ1SNJgzJi/HqUNHToUISEhWp/DEERE1DQxIFGTZmhqfg1DAcUc44m8vb05noiIqJlgQKImq75T8xMTE03qxWnoeKI2bdrU+zOIiMi2MSBRk6Xbc6Rvar6+cgA4noiIiIxiQKJmwdDUfEM4noiIiIxhQKImz9jUfN1eIAcHB+lnjiciIiJDGJDIZjR0wHVRkafBqfm6AUl3nBDHExERkT4MSGRRhkJQcXExPvnkkzqv1zfguq79zm7n6emJxMTEBgUxIiJqORiQyGLqO+sMMG3AdV37neli+CEiorowIJHF1LXNRw1TB1wDdU/NJyIiMgUDEpnFmTNncOPGDa1jP//8s/SzoRBkyoBr3X3MuN8ZERE1FgYkanRnzpzBRx99ZPC8oW0+qnuA6j/gmuOJiIjIXBiQqNHl5+drvT91qhNOn+6MkJDf0KVLjsFtPi5caIeAgIv1HnANcDwRERGZBwMSNbpbt25JP7/77mRcvFgdiA4f7oN27S4gJOQ3vdcVFnqgR48TJg24JiIiMgcGJDKbU6c6SeGomgwXLwbAza1Yb/mqquq/jhxwTURE1saARGZz+nRn6D5KA2T/e3wmdM4JdO58WnrHAddERGRNDEhkNiEhv+Hw4T7QDUJhYUchl9/C0aOh/zsnEBp6FO3aXQYA9OjRA9HR0bXuxwHXRERkKQxILUhDt/JoqC5dctCu3YXbHrMJtGt3AV265KBLlxz07XsQFy60R0DAeSkcAYCfnx/3QSMiIqtiQGoh6ruKtb6tPO7E44+vx6lTnZCTE4JOnU6jS5cc6Vy7dpe1glENHx+fRvt8IiKihmBAaob09RQVFBRovTdlKw9TKRQKrfc1PUa6QkNDERwcrHXM2dm51jEiIiJLY0BqZurTU9SQrTxMUd+AM2jQII4pIiIim8SA1EQZGk+Um5tr9DpTtvJoKK5wTURETR0DUhNU3/FEAHDxoh/On++A9u3PoV27yyZt5XEnGH6IiKgpY0Cycfo2fT1z5ozWe90QVOPzz++vNZV+2LBvTNrKg4iIqCViQLJhdW36CugPQX/72xe4eNHvtuMAIMPRo6Ho2/cgt/IgIiKqAwOSDTA0nuiPP/7Qeq/bU2QsBJ0/3wH6VrG+cKE9oqIOcCsPIiIiIxiQrKy+44n09RQplcXQF4JOnw5BSMhp6NvOIyDgPABu5UFERGQMA5KV6fYc6VufyFBPUXT093rv6eJyHe3aXUZo6FGD23kMHToUISEhWtdxZhkREVE1BiQbYmh9IkOPyxwcqqCvl6hLl+pNX//2ty8Mbufh7e3N7TyIiIgMYECyEcbWJ2rf/hz0BaGQkNNQKkuNDrg2tJ1HmzZtzNsgIiKiJowByUYYW58oKOicwcdl7dpdNjjgun///ujVq1etz+KjNCIiIuMYkGyESlVodH0iY4/LDA247tSpEx+jERERNQADko1QKkvrXJ/I0OOyAQMGwMfHR+sYN30lIiJqOAYkGxIenm3wcdnQoUPh4eFR6xoGISIiosbHgGRluusOGXpcdtddd3HcEBERkYUwIFmZpyd3viciIrI1DEg2gOGHiIjIttjVXYSIiIioZWFAIiIiItLBgERERESkgwGJiIiISAcDEhEREZEOmwhIa9asQWBgIBQKBSIjI3Hw4EGj5bdt24auXbtCoVCgZ8+e2LNnj9Z5IQQWLFgAPz8/ODk5ISYmBqdPn9YqU1RUhEceeQRubm5wd3fHlClTcP369UZvGxERETU9Vg9IW7duRXJyMhYuXIisrCyEhoYiNjYWV65c0Vt+//79GD9+PKZMmYLs7GzEx8cjPj4ex44dk8osW7YMq1atwtq1a3HgwAG4uLggNjYWN2/elMo88sgjOH78OPbu3Yvdu3fjv//9L6ZOnWr29hIREZHtkwkhhDUrEBkZib59+2L16tUAAI1Gg4CAADz55JN44YUXapVPSEhAWVkZdu/eLR3r378/wsLCsHbtWggh4O/vj2eeeQbPPvssAECtVsPHxwcbNmzAuHHjcOLECXTv3h2HDh1Cnz59AABpaWm47777cPHiRfj7+9dZ75KSEiiVSqjVari5uTXGV0FERERmVt/f31btQaqoqEBmZiZiYmKkY3Z2doiJiUFGRobeazIyMrTKA0BsbKxUPjc3F3l5eVpllEolIiMjpTIZGRlwd3eXwhEAxMTEwM7ODgcOHND7ueXl5SgpKdF6ERERUfNk1ZW0CwoKUFVVVWsneh8fH5w8eVLvNXl5eXrL5+XlSedrjhkr4+3trXW+VatWUKlUUhldKSkpePHFF2sdZ1AiIiJqOmp+b9f1AI1bjdTT7NmzkZycLL3/448/0L17dwQEBFixVkRERNQQpaWlUCqVBs9bNSB5eXnB3t4e+fn5Wsfz8/Ph6+ur9xpfX1+j5Wv+zM/Ph5+fn1aZsLAwqYzuIPBbt26hqKjI4Oc6OjrC0dFRet+6dWtcuHABrq6ukMlk9Wht/ZSUlCAgIAAXLlxosWObWvp30NLbD/A7YPtbdvsBfgfmbL8QAqWlpXWON7ZqQJLL5YiIiEB6ejri4+MBVA/STk9PR2Jiot5roqKikJ6ejqSkJOnY3r17ERUVBQAICgqCr68v0tPTpUBUUlKCAwcOYPr06dI9iouLkZmZiYiICADAN998A41Gg8jIyHrV3c7ODu3atWtAq+vHzc2tRf5LcbuW/h209PYD/A7Y/pbdfoDfgbnab6znqIbVH7ElJydj4sSJ6NOnD/r164fU1FSUlZVh8uTJAIDHHnsMbdu2RUpKCgBg5syZGDx4MFasWIFRo0Zhy5YtOHz4MNatWwcAkMlkSEpKwpIlSxASEoKgoCDMnz8f/v7+Ugjr1q0bRowYgSeeeAJr165FZWUlEhMTMW7cuHrNYCMiIqLmzeoBKSEhAVevXsWCBQuQl5eHsLAwpKWlSYOsz58/Dzu7vybbRUdHY/PmzZg3bx7mzJmDkJAQ7NixAz169JDKzJo1C2VlZZg6dSqKi4sxcOBApKWlQaFQSGU2bdqExMRE3HPPPbCzs8PYsWOxatUqyzWciIiIbJcgm3Lz5k2xcOFCcfPmTWtXxWpa+nfQ0tsvBL8Dtr9lt18Ifge20H6rLxRJREREZGusvtUIERERka1hQCIiIiLSwYBEREREpIMBiYiIiEgHA5IVrFmzBoGBgVAoFIiMjMTBgwcNlj1+/DjGjh2LwMBAyGQypKamWq6iZmTKd/DOO+9g0KBB8PDwgIeHB2JiYoyWbwpMaf/27dvRp08fuLu7w8XFBWFhYfjwww8tWFvzMOU7uN2WLVsgk8mkdc2aKlPav2HDBshkMq3X7cuWNEWm/vMvLi7GjBkz4OfnB0dHR3Tu3Bl79uyxUG3Nw5TvYMiQIbX+DshkMowaNcqCNW5cpv4dSE1NRZcuXeDk5ISAgAA8/fTTuHnzpvkqaLX5cy3Uli1bhFwuF++//744fvy4eOKJJ4S7u7vIz8/XW/7gwYPi2WefFR9//LHw9fUVr732mmUrbAamfgcPP/ywWLNmjcjOzhYnTpwQkyZNEkqlUly8eNHCNW8cprb/22+/Fdu3bxe//vqryMnJEampqcLe3l6kpaVZuOaNx9TvoEZubq5o27atGDRokLj//vstU1kzMLX969evF25ubuLy5cvSKy8vz8K1bjymtr+8vFz06dNH3HfffeKHH34Qubm54rvvvhNHjhyxcM0bj6nfQWFhodY//2PHjgl7e3uxfv16y1a8kZja/k2bNglHR0exadMmkZubK7766ivh5+cnnn76abPVkQHJwvr16ydmzJghva+qqhL+/v4iJSWlzms7dOjQLALSnXwHQghx69Yt4erqKjZu3GiuKprVnbZfCCF69+4t5s2bZ47qWURDvoNbt26J6Oho8e6774qJEyc26YBkavvXr18vlEqlhWpnfqa2/6233hIdO3YUFRUVlqqi2d3pfwdee+014erqKq5fv26uKpqVqe2fMWOGGDZsmNax5ORkMWDAALPVkY/YLKiiogKZmZmIiYmRjtnZ2SEmJgYZGRlWrJnlNMZ3cOPGDVRWVkKlUpmrmmZzp+0XQiA9PR2nTp3C3Xffbc6qmk1Dv4N///vf8Pb2xpQpUyxRTbNpaPuvX7+ODh06ICAgAPfffz+OHz9uieo2uoa0f+fOnYiKisKMGTPg4+ODHj164OWXX0ZVVZWlqt2oGuO/g++99x7GjRsHFxcXc1XTbBrS/ujoaGRmZkqP4X7//Xfs2bMH9913n9nqafWtRlqSgoICVFVVSduo1PDx8cHJkyetVCvLaozv4Pnnn4e/v7/Wv1xNRUPbr1ar0bZtW5SXl8Pe3h5vvvkmhg8fbu7qmkVDvoMffvgB7733Ho4cOWKBGppXQ9rfpUsXvP/+++jVqxfUajVeffVVREdH4/jx42bdNNscGtL+33//Hd988w0eeeQR7NmzBzk5OfjXv/6FyspKLFy40BLVblR3+t/BgwcP4tixY3jvvffMVUWzakj7H374YRQUFGDgwIEQQuDWrVuYNm0a5syZY7Z6MiBRk7J06VJs2bIF3333XZMfpGoKV1dXHDlyBNevX0d6ejqSk5PRsWNHDBkyxNpVM7vS0lJMmDAB77zzDry8vKxdHauIiopCVFSU9D46OhrdunXD22+/jcWLF1uxZpah0Wjg7e2NdevWwd7eHhEREfjjjz+wfPnyJhmQ7tR7772Hnj17ol+/ftauisV89913ePnll/Hmm28iMjISOTk5mDlzJhYvXoz58+eb5TMZkCzIy8sL9vb2yM/P1zqen58PX19fK9XKsu7kO3j11VexdOlS7Nu3D7169TJnNc2moe23s7NDp06dAABhYWE4ceIEUlJSmmRAMvU7OHPmDM6ePYu4uDjpmEajAQC0atUKp06dQnBwsHkr3Yga478DDg4O6N27N3JycsxRRbNqSPv9/Pzg4OAAe3t76Vi3bt2Ql5eHiooKyOVys9a5sd3J34GysjJs2bIF//73v81ZRbNqSPvnz5+PCRMm4PHHHwcA9OzZU9qUfu7cuVqb2jcWjkGyILlcjoiICKSnp0vHNBoN0tPTtf7vsDlr6HewbNkyLF68GGlpaejTp48lqmoWjfV3QKPRoLy83BxVNDtTv4OuXbvil19+wZEjR6TXmDFjMHToUBw5cgQBAQGWrP4da4y/A1VVVfjll1/g5+dnrmqaTUPaP2DAAOTk5EjBGAB+++03+Pn5NblwBNzZ34Ft27ahvLwcjz76qLmraTYNaf+NGzdqhaCawCzMtaWs2YZ/k15btmwRjo6OYsOGDeLXX38VU6dOFe7u7tKU3QkTJogXXnhBKl9eXi6ys7NFdna28PPzE88++6zIzs4Wp0+ftlYT7pip38HSpUuFXC4Xn376qdY019LSUms14Y6Y2v6XX35ZfP311+LMmTPi119/Fa+++qpo1aqVeOedd6zVhDtm6negq6nPYjO1/S+++KL46quvxJkzZ0RmZqYYN26cUCgU4vjx49Zqwh0xtf3nz58Xrq6uIjExUZw6dUrs3r1beHt7iyVLllirCXesof8ODBw4UCQkJFi6uo3O1PYvXLhQuLq6io8//lj8/vvv4uuvvxbBwcHioYceMlsdGZCs4I033hDt27cXcrlc9OvXT/z000/SucGDB4uJEydK73NzcwWAWq/BgwdbvuKNyJTvoEOHDnq/g4ULF1q+4o3ElPbPnTtXdOrUSSgUCuHh4SGioqLEli1brFDrxmXKd6CrqQckIUxrf1JSklTWx8dH3HfffSIrK8sKtW48pv7z379/v4iMjBSOjo6iY8eO4qWXXhK3bt2ycK0bl6nfwcmTJwUA8fXXX1u4puZhSvsrKyvFokWLRHBwsFAoFCIgIED861//EteuXTNb/WRCmKtvioiIiKhp4hgkIiIiIh0MSEREREQ6GJCIiIiIdDAgEREREelgQCIiIiLSwYBEREREpIMBiYiIiEgHAxIRkY2bNGkS4uPjrV0NohaFAYmIGmzSpEmQyWTSy9PTEyNGjMDPP/9s7ao1itvbVvMaOHCg2T7v7NmzkMlkOHLkiNbx119/HRs2bDDb5xJRbQxIRHRHRowYgcuXL+Py5ctIT09Hq1atMHr0aGtXq9GsX79eat/ly5exc+dOveUqKyvNVgelUgl3d3ez3Z+IamNAIqI74ujoCF9fX/j6+iIsLAwvvPACLly4gKtXr2LYsGFITEzUKn/16lXI5XJpJ+/AwEAsXrwY48ePh4uLC9q2bYs1a9ZoXbNy5Ur07NkTLi4uCAgIwL/+9S9cv35dOn/u3DnExcXBw8MDLi4uuOuuu7Bnzx4AwLVr1/DII4+gTZs2cHJyQkhICNavX1/v9rm7u0vt8/X1hUqlknp6tm7disGDB0OhUGDTpk0oLCzE+PHj0bZtWzg7O6Nnz574+OOPte6n0WiwbNkydOrUCY6Ojmjfvj1eeuklAEBQUBAAoHfv3pDJZBgyZAiA2o/YysvL8dRTT8Hb2xsKhQIDBw7EoUOHpPPfffcdZDIZ0tPT0adPHzg7OyM6OhqnTp2qd7uJWjoGJCJqNNevX8dHH32ETp06wdPTE48//jg2b96M8vJyqcxHH32Etm3bYtiwYdKx5cuXIzQ0FNnZ2XjhhRcwc+ZM7N27VzpvZ2eHVatW4fjx49i4cSO++eYbzJo1Szo/Y8YMlJeX47///S9++eUXvPLKK2jdujUAYP78+fj111/xn//8BydOnMBbb70FLy+vRmlvTV1PnDiB2NhY3Lx5ExEREfjyyy9x7NgxTJ06FRMmTMDBgwela2bPno2lS5dK9dq8eTN8fHwAQCq3b98+XL58Gdu3b9f7ubNmzcJnn32GjRs3IisrC506dUJsbCyKioq0ys2dOxcrVqzA4cOH0apVK/zjH/9olHYTtQhm2waXiJq9iRMnCnt7e+Hi4iJcXFwEAOHn5ycyMzOFEEL8+eefwsPDQ2zdulW6plevXmLRokXS+w4dOogRI0Zo3TchIUGMHDnS4Odu27ZNeHp6Su979uypdc/bxcXFicmTJzeofQCEQqGQ2ufi4iI+//xzkZubKwCI1NTUOu8xatQo8cwzzwghhCgpKRGOjo7inXfe0Vu25r7Z2dlaxydOnCjuv/9+IYQQ169fFw4ODmLTpk3S+YqKCuHv7y+WLVsmhBDi22+/FQDEvn37pDJffvmlACD+/PNPU74CohaLPUhEdEeGDh2KI0eO4MiRIzh48CBiY2MxcuRInDt3DgqFAhMmTMD7778PAMjKysKxY8cwadIkrXtERUXVen/ixAnp/b59+3DPPfegbdu2cHV1xYQJE1BYWIgbN24AAJ566iksWbIEAwYMwMKFC7UGiU+fPh1btmxBWFgYZs2ahf3795vUvtdee01q35EjRzB8+HDpXJ8+fbTKVlVVYfHixejZsydUKhVat26Nr776CufPnwcAnDhxAuXl5bjnnntMqsPtzpw5g8rKSgwYMEA65uDggH79+ml9ZwDQq1cv6Wc/Pz8AwJUrVxr82UQtCQMSEd0RFxcXdOrUCZ06dULfvn3x7rvvoqysDO+88w4A4PHHH8fevXtx8eJFrF+/HsOGDUOHDh3qff+zZ89i9OjR6NWrFz777DNkZmZKY5QqKiqkz/j9998xYcIE/PLLL+jTpw/eeOMNAJDC2tNPP41Lly7hnnvuwbPPPlvvz/f19ZXa16lTJ7i4uGi1/XbLly/H66+/jueffx7ffvstjhw5gtjYWKmeTk5O9f7cxuDg4CD9LJPJAFSPgSKiujEgEVGjkslksLOzw59//gkA6NmzJ/r06YN33nkHmzdv1jsO5qeffqr1vlu3bgCAzMxMaDQarFixAv3790fnzp1x6dKlWvcICAjAtGnTsH37djzzzDNSQAOANm3aYOLEifjoo4+QmpqKdevWNWaTJT/++CPuv/9+PProowgNDUXHjh3x22+/SedDQkLg5OQkDVDXJZfLAVT3RBkSHBwMuVyOH3/8UTpWWVmJQ4cOoXv37o3UEiJqZe0KEFHTVl5ejry8PADVM8ZWr16N69evIy4uTirz+OOPIzExES4uLvjb3/5W6x4//vgjli1bhvj4eOzduxfbtm3Dl19+CQDo1KkTKisr8cYbbyAuLg4//vgj1q5dq3V9UlISRo4cic6dO+PatWv49ttvpYC1YMECRERE4K677kJ5eTl2794tnWtsISEh+PTTT7F//354eHhg5cqVyM/Pl4KLQqHA888/j1mzZkEul2PAgAG4evUqjh8/jilTpsDb2xtOTk5IS0tDu3btoFAooFQqtT7DxcUF06dPx3PPPQeVSoX27dtj2bJluHHjBqZMmWKWdhG1ROxBIqI7kpaWBj8/P/j5+SEyMhKHDh3Ctm3bpCnqADB+/Hi0atUK48ePh0KhqHWPZ555BocPH0bv3r2xZMkSrFy5ErGxsQCA0NBQrFy5Eq+88gp69OiBTZs2ISUlRev6qqoqzJgxA926dcOIESPQuXNnvPnmmwCqe2Vmz56NXr164e6774a9vT22bNlilu9i3rx5CA8PR2xsLIYMGQJfX99aK2DPnz8fzzzzDBYsWIBu3bohISFBGhfUqlUrrFq1Cm+//Tb8/f1x//336/2cpUuXYuzYsZgwYQLCw8ORk5ODr776Ch4eHmZpF1FLJBNCCGtXgoiat7NnzyI4OBiHDh1CeHi41rnAwEAkJSUhKSnJOpUjItKDj9iIyGwqKytRWFiIefPmoX///rXCERGRreIjNiIymx9//BF+fn44dOhQrXFD1vbyyy+jdevWel8jR460dvWIyMr4iI2IWqSioqJaK0/XcHJyQtu2bS1cIyKyJQxIRERERDr4iI2IiIhIBwMSERERkQ4GJCIiIiIdDEhEREREOhiQiIiIiHQwIBERERHpYEAiIiIi0sGARERERKTj/wH+MYrOr3HqFwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYTNJREFUeJzt3XlcVOXiP/DPDDJswsgiiwqCiFsqCihilloYmKKk3dTS1Gt6LSmN0nLXq4W5krml162F9GuaqRmlaL9bSS6Aa2pqKJiACDogJCBzfn9wOTIrDDIL8Hm/XvPSOfOcM885qXx6VokgCAKIiIiISCQ1dwWIiIiILA0DEhEREZEaBiQiIiIiNQxIRERERGoYkIiIiIjUMCARERERqWFAIiIiIlLDgERERESkhgGJiIiISA0DEhFRPbZt2zZIJBJcv37d3FUhalAYkIhIr5MnTyImJgZPPPEEHBwc4OPjg5deegl//PGHRtl+/fpBIpFAIpFAKpXCyckJ7du3x5gxY3Do0CGDvnf//v3o27cv3N3dYW9vjzZt2uCll15CYmJiXd2ahg8//BB79+7VOH7s2DEsWLAA9+7dM9p3q1uwYIH4LCUSCezt7dGpUyfMmTMHBQUFdfIdCQkJiI+Pr5NrETU0DEhEpNdHH32E3bt349lnn8XHH3+MSZMm4b///S+CgoJw/vx5jfKtWrXC559/js8++wzLli3DkCFDcOzYMTz33HMYMWIEysrKqv3O5cuXY8iQIZBIJJg5cyZWrVqF4cOH48qVK9ixY4cxbhOA/oC0cOFCkwakSuvXr8fnn3+OlStXokOHDvjggw8QGRmJuthGkwGJSLcm5q4AEVm22NhYJCQkQCaTicdGjBiBLl26YMmSJfjiiy9UysvlcowePVrl2JIlS/DWW29h3bp18PX1xUcffaTz+x4+fIhFixZhwIAB+PHHHzU+v3379mPekeUoLi6Gvb293jIvvvgi3NzcAACTJ0/G8OHDsWfPHvz2228ICwszRTWJGiW2IBGRXr1791YJRwAQEBCAJ554AhcvXqzRNaysrLB69Wp06tQJa9asgUKh0Fn2zp07KCgowJNPPqn1c3d3d5X3Dx48wIIFC9CuXTvY2trCy8sLw4YNw7Vr18Qyy5cvR+/eveHq6go7OzsEBwfj66+/VrmORCJBUVERtm/fLnZrjRs3DgsWLMD06dMBAH5+fuJnVcf8fPHFFwgODoadnR1cXFwwcuRIZGZmqly/X79+6Ny5M1JSUvD000/D3t4es2bNqtHzq+qZZ54BAKSnp+stt27dOjzxxBOwsbFBixYtMGXKFJUWsH79+uG7777DjRs3xHvy9fU1uD5EDRVbkIjIYIIgICcnB0888USNz7GyssKoUaMwd+5c/PLLLxg0aJDWcu7u7rCzs8P+/fvx5ptvwsXFRec1y8vLMXjwYCQlJWHkyJGYOnUqCgsLcejQIZw/fx7+/v4AgI8//hhDhgzBK6+8gtLSUuzYsQP/+Mc/cODAAbEen3/+OV577TX07NkTkyZNAgD4+/vDwcEBf/zxB7766iusWrVKbM1p3rw5AOCDDz7A3Llz8dJLL+G1115Dbm4uPvnkEzz99NNIS0tDs2bNxPrm5eVh4MCBGDlyJEaPHg0PD48aP79KlcHP1dVVZ5kFCxZg4cKFCA8Px+uvv47Lly9j/fr1OHnyJH799VdYW1tj9uzZUCgUuHnzJlatWgUAaNq0qcH1IWqwBCIiA33++ecCAGHz5s0qx/v27Ss88cQTOs/75ptvBADCxx9/rPf68+bNEwAIDg4OwsCBA4UPPvhASElJ0Si3ZcsWAYCwcuVKjc+USqX4++LiYpXPSktLhc6dOwvPPPOMynEHBwdh7NixGtdatmyZAEBIT09XOX79+nXByspK+OCDD1SOnzt3TmjSpInK8b59+woAhA0bNui876rmz58vABAuX74s5ObmCunp6cKnn34q2NjYCB4eHkJRUZEgCIKwdetWlbrdvn1bkMlkwnPPPSeUl5eL11uzZo0AQNiyZYt4bNCgQULr1q1rVB+ixoZdbERkkEuXLmHKlCkICwvD2LFjDTq3soWisLBQb7mFCxciISEB3bt3xw8//IDZs2cjODgYQUFBKt16u3fvhpubG958802Na0gkEvH3dnZ24u/v3r0LhUKBp556CqmpqQbVX92ePXugVCrx0ksv4c6dO+LL09MTAQEBOHr0qEp5GxsbjB8/3qDvaN++PZo3bw4/Pz/861//Qtu2bfHdd9/pHLt0+PBhlJaWYtq0aZBKH/0TP3HiRDg5OeG7774z/EaJGiF2sRFRjWVnZ2PQoEGQy+X4+uuvYWVlZdD59+/fBwA4OjpWW3bUqFEYNWoUCgoKcPz4cWzbtg0JCQmIiorC+fPnYWtri2vXrqF9+/Zo0kT/P2UHDhzA4sWLcfr0aZSUlIjHq4ao2rhy5QoEQUBAQIDWz62trVXet2zZUmM8V3V2794NJycnWFtbo1WrVmK3oS43btwAUBGsqpLJZGjTpo34ORHpx4BERDWiUCgwcOBA3Lt3Dz///DNatGhh8DUqlwVo27Ztjc9xcnLCgAEDMGDAAFhbW2P79u04fvw4+vbtW6Pzf/75ZwwZMgRPP/001q1bBy8vL1hbW2Pr1q1ISEgw+B6qUiqVkEgk+P7777WGRfUxPVVbsmrq6aefFsc9EZHpMCARUbUePHiAqKgo/PHHHzh8+DA6depk8DXKy8uRkJAAe3t79OnTp1b1CAkJwfbt25GVlQWgYhD18ePHUVZWptFaU2n37t2wtbXFDz/8ABsbG/H41q1bNcrqalHSddzf3x+CIMDPzw/t2rUz9HaMonXr1gCAy5cvo02bNuLx0tJSpKenIzw8XDz2uC1oRA0ZxyARkV7l5eUYMWIEkpOTsWvXrlqtvVNeXo633noLFy9exFtvvQUnJyedZYuLi5GcnKz1s++//x7Ao+6j4cOH486dO1izZo1GWeF/CylaWVlBIpGgvLxc/Oz69etaF4R0cHDQuhikg4MDAGh8NmzYMFhZWWHhwoUaCzcKgoC8vDztN2lE4eHhkMlkWL16tUqdNm/eDIVCoTJ70MHBQe+SC0SNGVuQiEivd955B/v27UNUVBTy8/M1FoZUXxRSoVCIZYqLi3H16lXs2bMH165dw8iRI7Fo0SK931dcXIzevXujV69eiIyMhLe3N+7du4e9e/fi559/RnR0NLp37w4AePXVV/HZZ58hNjYWJ06cwFNPPYWioiIcPnwYb7zxBoYOHYpBgwZh5cqViIyMxMsvv4zbt29j7dq1aNu2Lc6ePavy3cHBwTh8+DBWrlyJFi1awM/PD6GhoQgODgYAzJ49GyNHjoS1tTWioqLg7++PxYsXY+bMmbh+/Tqio6Ph6OiI9PR0fPPNN5g0aRLefffdx3r+hmrevDlmzpyJhQsXIjIyEkOGDMHly5exbt069OjRQ+W/V3BwMHbu3InY2Fj06NEDTZs2RVRUlEnrS2SxzDmFjogsX+X0dF0vfWWbNm0qBAQECKNHjxZ+/PHHGn1fWVmZsGnTJiE6Olpo3bq1YGNjI9jb2wvdu3cXli1bJpSUlKiULy4uFmbPni34+fkJ1tbWgqenp/Diiy8K165dE8ts3rxZCAgIEGxsbIQOHToIW7duFafRV3Xp0iXh6aefFuzs7AQAKlP+Fy1aJLRs2VKQSqUaU/53794t9OnTR3BwcBAcHByEDh06CFOmTBEuX76s8mz0LYGgrrJ+ubm5esupT/OvtGbNGqFDhw6CtbW14OHhIbz++uvC3bt3Vcrcv39fePnll4VmzZoJADjln6gKiSDUwYY+RERERA0IxyARERERqWFAIiIiIlLDgERERESkhgGJiIiISA0DEhEREZEaBiQiIiIiNVwospaUSiVu3boFR0dHLtdPRERUTwiCgMLCQrRo0QJSqe52IgakWrp16xa8vb3NXQ0iIiKqhczMTLRq1Urn5wxIteTo6Aig4gHr21eKiIiILEdBQQG8vb3Fn+O6MCDVUmW3mpOTEwMSERFRPVPd8BgO0iYiIiJSw4BEREREpIYBiYiIiEgNxyAZWXl5OcrKysxdjQZLJpPpnaZJRERUGwxIRiIIArKzs3Hv3j1zV6VBk0ql8PPzg0wmM3dViIioAWFAMpLKcOTu7g57e3suJmkElYt1ZmVlwcfHh8+YiIjqDAOSEZSXl4vhyNXV1dzVadCaN2+OW7du4eHDh7C2tjZ3dYiIqIHg4A0jqBxzZG9vb+aaNHyVXWvl5eVmrgkRETUkDEhGxC4f4+MzJiIiY2AXGxEREZldXl4eSktLdX4uk8lMOmyFAYmIiIjMKi8vD2vWrKm2XExMjMlCErvYSMW4ceMgkUggkUhgbW0NDw8PDBgwAFu2bIFSqazxdbZt24ZmzZoZr6JERNRgqLccKRSOSE/3hULhqLecMbEFyQKZu5kxMjISW7duRXl5OXJycpCYmIipU6fi66+/xr59+9CkCf/YEBFR3am6ZmBqanfs3z8YgiCFRKJEVNQBBAWlieW8vLxMUieztyCtXbsWvr6+sLW1RWhoKE6cOKG3/K5du9ChQwfY2tqiS5cuOHjwoMrne/bswXPPPQdXV1dIJBKcPn1a5fP8/Hy8+eabaN++Pezs7ODj44O33noLCoWirm+tViqbGTdu3KjztWbNGuTl5RmtDjY2NvD09ETLli0RFBSEWbNm4dtvv8X333+Pbdu2AQBWrlyJLl26wMHBAd7e3njjjTdw//59AMBPP/2E8ePHQ6FQiK1RCxYsAAB8/vnnCAkJgaOjIzw9PfHyyy/j9u3bRrsXIiKyfA8fPgRQ0XJUGY4AQBCk2L9/sNiSVFnOFMwakHbu3InY2FjMnz8fqampCAwMREREhM4fmMeOHcOoUaMwYcIEpKWlITo6GtHR0Th//rxYpqioCH369MFHH32k9Rq3bt3CrVu3sHz5cpw/fx7btm1DYmIiJkyYYJR7NFRNmw9N2cwIAM888wwCAwOxZ88eABUrWK9evRoXLlzA9u3bceTIEcyYMQMA0Lt3b8THx8PJyQlZWVnIysrCu+++C6BiCYRFixbhzJkz2Lt3L65fv45x48aZ9F6IiMgy5ee7iuGokiBIkZ/vYvK6mLWvZOXKlZg4cSLGjx8PANiwYQO+++47bNmyBe+//75G+Y8//hiRkZGYPn06AGDRokU4dOgQ1qxZgw0bNgAAxowZAwC4fv261u/s3Lkzdu/eLb739/fHBx98gNGjR+Phw4fsPtKjQ4cOOHv2LABg2rRp4nFfX18sXrwYkydPxrp16yCTySCXyyGRSODp6alyjX/+85/i79u0aYPVq1ejR48euH//Ppo2bWqS+yAiIsvk4pIHQADwaAkXiUQJF5d8k9fFbC1IpaWlSElJQXh4+KPKSKUIDw9HcnKy1nOSk5NVygNARESEzvI1pVAo4OTkpDcclZSUoKCgQOXV2AiCIK47dPjwYTz77LNo2bIlHB0dMWbMGOTl5aG4uFjvNVJSUhAVFQUfHx84Ojqib9++AICMjAyj15+IiOoDQfWdoKOYkZktIN25cwfl5eXw8PBQOe7h4YHs7Gyt52RnZxtUvqb1WLRoESZNmqS3XFxcHORyufjy9vau9XfWVxcvXoSfnx+uX7+OwYMHo2vXrti9ezdSUlKwdu1aAPq7/oqKihAREQEnJyd8+eWXOHnyJL755ptqzyMiosYhP98VmtHEPF1sZh+kbU4FBQUYNGgQOnXqJA4i1mXmzJlQKBTiKzMz0zSVtBBHjhzBuXPnMHz4cKSkpECpVGLFihXo1asX2rVrh1u3bqmUl8lkGtt/XLp0CXl5eViyZAmeeuopdOjQgQO0iYhI3EvTxSUPEonqkjJVu9hMueem2QKSm5sbrKyskJOTo3I8JydHY9xKJU9PT4PK61NYWIjIyEg4Ojrim2++qfah29jYwMnJSeXVUJWUlCA7Oxt//fUXUlNT8eGHH2Lo0KEYPHgwXn31VbRt2xZlZWX45JNP8Oeff+Lzzz8Xx4BV8vX1xf3795GUlIQ7d+6guLgYPj4+kMlk4nn79u3DokWLzHSXRERkKeRy+f9+LURU1AExJFVO85fLC1XKmYLZApJMJkNwcDCSkpLEY0qlEklJSQgLC9N6TlhYmEp5ADh06JDO8roUFBTgueeeg0wmw759+2Bra2v4DTRgiYmJ8PLygq+vLyIjI3H06FGsXr0a3377LaysrBAYGIiVK1fio48+QufOnfHll18iLi5O5Rq9e/fG5MmTMWLECDRv3hxLly5F8+bNsW3bNuzatQudOnXCkiVLsHz5cjPdJRERWYqq41eDgtIwbVo8xo7dhmnT4sU1kNTLGZtZp2zFxsZi7NixCAkJQc+ePREfH4+ioiJxVturr76Kli1bij98p06dir59+2LFihUYNGgQduzYgVOnTmHjxo3iNfPz85GRkSF2+Vy+fBlAReuTp6enGI6Ki4vxxRdfqAy4bt68OaysrEz5CDRU7k5fV+UMtW3bNnGtI33efvttvP322yrHKmcQVlq/fj3Wr1+vcmzUqFEYNWqUyjHBXCPwiIjIItjb22s5qrkZufZyxmHWgDRixAjk5uZi3rx5yM7ORrdu3ZCYmCgOxM7IyIBU+qiRq3fv3khISMCcOXMwa9YsBAQEYO/evejcubNYZt++fWLAAoCRI0cCAObPn48FCxYgNTUVx48fBwC0bdtWpT7p6enw9fU11u3WiKurK2JiYixqwz4iIiJT0beStilJBP7ve60UFBRALpeLSwRU9eDBA6Snp8PPz4/dd0bGZ01EVP9lZWVh48aNUCgcER8/TWWxSIlEiWnT4iGXF2LSpEmPvdWIvp/fVTXqWWxERERkOSxpJW0GJCIiIrII1U3zNyUGJCIiIrII1U3zNyVuPEZEREQWIygoDf7+V5Gf7wIXl3yzhCOAAYmIiIjMTH3pGrm8UGswMtYSN9owIBEREZFZWeISNwxIREREZHaWtr4fB2mTSf3000+QSCS4d+9ejc/x9fVFfHy80epERESkjgGJVIwbNw4SiQSTJ0/W+GzKlCmQSCQYN26c6StGRERkQgxIpMHb2xs7duzA33//LR578OABEhIS4OPjY8aaERERmQYDEmkICgqCt7c39uzZIx7bs2cPfHx80L17d/FYSUkJ3nrrLbi7u8PW1hZ9+vTByZMnVa518OBBtGvXDnZ2dujfvz+uX7+u8X2//PILnnrqKdjZ2cHb2xtvvfUWioqKjHZ/RERE1WFAsnA3bwJHj1b8akr//Oc/sXXrVvH9li1bVDYBBoAZM2Zg9+7d2L59O1JTU9G2bVtEREQgP79ixdPMzEwMGzYMUVFROH36NF577TW8//77Kte4du0aIiMjMXz4cJw9exY7d+7EL7/8gpiYGOPfJBERGUVeXh6ysrJ0vvLy8sxdxWpxFpsF27wZmDQJUCoBqRTYuBGYMME03z169GjMnDkTN27cAAD8+uuv2LFjB3766ScAQFFREdavX49t27Zh4MCBAIBNmzbh0KFD2Lx5M6ZPn47169fD398fK1asAAC0b98e586dw0cffSR+T1xcHF555RVMmzYNABAQEIDVq1ejb9++WL9+PTegJSKqZ/Ly8rBmzZpqy8XExFjczLWqGJAs1M2bj8IRUPHrv/4FREQArVoZ//ubN2+OQYMGYdu2bRAEAYMGDYKbm5v4+bVr11BWVoYnn3xSPGZtbY2ePXvi4sWLAICLFy8iNDRU5bphYWEq78+cOYOzZ8/iyy+/FI8JggClUon09HR07NjRGLdHRERGor6WkULhiPx8V7i45Kks/qhvzSNLwIBkoa5ceRSOKpWXA1evmiYgARXdbJVdXWvXrjXKd9y/fx//+te/8NZbb2l8xgHhRET1W2pqd+zfPxiCIBX3VQsKSjN3tWqEY5AsVEBARbdaVVZWQNu2pqtDZGQkSktLUVZWhoiICJXP/P39IZPJ8Ouvv4rHysrKcPLkSXTq1AkA0LFjR5w4cULlvN9++03lfVBQEH7//Xe0bdtW42XKJeWJiKhuKRSOYjgCAEGQYv/+wVAoHM1cs5phQLJQrVpVjDmysqp4b2UFfPqp6VqPKr7TChcvXsTvv/8Oq8qK/I+DgwNef/11TJ8+HYmJifj9998xceJEFBcXY8L/BkpNnjwZV65cwfTp03H58mUkJCRg27ZtKtd57733cOzYMcTExOD06dO4cuUKvv32Ww7SJiKq5/LzXcVwVEkQpMjPdzFTjQzDLjYLNmFCxZijq1crWo5MGY4qOTk56fxsyZIlUCqVGDNmDAoLCxESEoIffvgBzs7OACq6yHbv3o23334bn3zyCXr27IkPP/wQ//znP8VrdO3aFf/v//0/zJ49G0899RQEQYC/vz9GjBhh9HsjIiLjcXHJg0SiVAlJEokSLi75ZqxVzUkEQRDMXYn6qKCgAHK5HAqFQiNEPHjwAOnp6fDz8+MsLCPjsyYisixZWVnYuHEjAP1jkCZNmgQvLy+T10/fz++q2IJERERERhEUlAZ//6vIz3eBi0u+yiw2S8eARERERHVGfYKNXF6oNRhZ+kQcBiQiIiKqM66uroiJidG7zpFMJrPoRSIBBiQiIiKqY5YefmqC0/yNiOPfjY/PmIiIjIEByQisra0BAMXFxWauScNX2YSrvk4TERHR42AXmxFYWVmhWbNmuH37NgDA3t4eEonEzLVqeJRKJXJzc2Fvb48mTfhHmYiI6g5/qhiJp6cnAIghiYxDKpXCx8eHAZSIiOoUA5KRSCQSeHl5wd3dHWVlZeauToMlk8kgVd+0joiIjC4vL6/ez1TThwHJyKysrDg+hoiIGpS8vDysWbOm2nIxMTH1NiTxf72JiIjIIOotRwqFI9LTfaFQOOotV5+wBYmIiIhqTd9+a/UZW5CIiIioVhQKRzEcAYAgSLF//2CNlqT6iAGJiIiIaiU/31UMR5UEQYr8fBcz1ajuMCARERFRrbi45EEiUaock0iUcHHJN1ON6g4DEhEREdWKXF6IqKgDYkiqHIMklxeauWaPj4O0iYiIqNaCgtLg738V+fkucHHJbxDhCGBAIiIiIgPJZDKV93J5odZgpF6uPmFAIiIiIoO4uroiJiaGK2kTERERVVWfw09NcJA2ERERkRoGJCIiIiI1DEhEREREahiQiIiIiNQwIBERERGpYUAiIiIiUsOARERERKSGAYmIiIhIjdkD0tq1a+Hr6wtbW1uEhobixIkTesvv2rULHTp0gK2tLbp06YKDBw+qfL5nzx4899xzcHV1hUQiwenTpzWu8eDBA0yZMgWurq5o2rQphg8fjpycnLq8LSIiIqrHzBqQdu7cidjYWMyfPx+pqakIDAxEREQEbt++rbX8sWPHMGrUKEyYMAFpaWmIjo5GdHQ0zp8/L5YpKipCnz598NFHH+n83rfffhv79+/Hrl278P/+3//DrVu3MGzYsDq/PyIiIqqfJIIgCOb68tDQUPTo0QNr1qwBACiVSnh7e+PNN9/E+++/r1F+xIgRKCoqwoEDB8RjvXr1Qrdu3bBhwwaVstevX4efnx/S0tLQrVs38bhCoUDz5s2RkJCAF198EQBw6dIldOzYEcnJyejVq1eN6l5QUAC5XA6FQgEnJydDb52IiIjMoKY/v83WglRaWoqUlBSEh4c/qoxUivDwcCQnJ2s9Jzk5WaU8AEREROgsr01KSgrKyspUrtOhQwf4+PjovU5JSQkKCgpUXkRERNQwmS0g3blzB+Xl5fDw8FA57uHhgezsbK3nZGdnG1Re1zVkMhmaNWtm0HXi4uIgl8vFl7e3d42/k4iIiOoXsw/Sri9mzpwJhUIhvjIzM81dJSIiIjKSJub6Yjc3N1hZWWnMHsvJyYGnp6fWczw9PQ0qr+sapaWluHfvnkorUnXXsbGxgY2NTY2/h4iIiOovs7UgyWQyBAcHIykpSTymVCqRlJSEsLAwreeEhYWplAeAQ4cO6SyvTXBwMKytrVWuc/nyZWRkZBh0HSIiImq4zNaCBACxsbEYO3YsQkJC0LNnT8THx6OoqAjjx48HALz66qto2bIl4uLiAABTp05F3759sWLFCgwaNAg7duzAqVOnsHHjRvGa+fn5yMjIwK1btwBUhB+gouXI09MTcrkcEyZMQGxsLFxcXODk5IQ333wTYWFhNZ7BRkREVN/k5eWhtLRU5+cymQyurq4mrJFlM2tAGjFiBHJzczFv3jxkZ2ejW7duSExMFAdiZ2RkQCp91MjVu3dvJCQkYM6cOZg1axYCAgKwd+9edO7cWSyzb98+MWABwMiRIwEA8+fPx4IFCwAAq1atglQqxfDhw1FSUoKIiAisW7fOBHdMRERkenl5eeKSOvrExMQwJP2PWddBqs+4DhIREdUXWVlZKr0tukyaNAleXl4mqJH5WPw6SERERGQeCoUj0tN9oVA4mrsqFsusXWxERERkWqmp3bF//2AIghQSiRJRUQcQFJRm7mpZHLYgERERNRIKhaMYjgBAEKTYv38wW5K0YEAiIiJqJPLzXcVwVEkQpMjPdzFTjSwXAxIREVEj4eKSB4lEqXJMIlHCxSXfTDWyXAxIREREDZxCoQAAyOWFiIo6IIakyjFIcnmhSjniIG0iIqIGr+qKPkFBaXB3z0ZGhg98fDLQqlWW1nKNHQMSERFRA1d171F9s9iqlmvs2MVGRETUSHAWW80xIBERETUSnMVWc+xiIyIiakC0bUqbnp4O4NEstqohqeostnv37jX4rUZqigGJiIiogahuU1q5vBBdu57FmTOBACQABHTtelacxfbw4UPTVLQeYBcbERFRA6HecqS+55pC4YizZ7uiIhwBgARnz3blGCQt2IJERETUAGmbrebsfFfnGCS5vBDW1tZmqq3lYQsSERFRA6Nrtpq1dYnelbTlcrnJ62qpGJCIiIgaGF2z1crKZHpX0qZH2MVGRETUwOibrebndwP+/leRn+8CF5d8hiMd2IJERETUwFS355pcXgg/vxsMR3qwBYmIiKgBCgpKM7ilSCaTmaBm9QMDEhERUQOhHnDk8kKtwWjEiBEaA7JlMhlcXV2NWr/6hAGJiIiogXB1dUVMTIzGekhVMQjVDAMSERFRA8LwUzc4SJuIiIhIDQMSERERkRoGJCIiIiI1DEhEREREajhIm4iIyELl5eVxRpqZMCARERFZoLy8PKxZs6bacjExMQxJRsAuNiIiIguk3nKkUDgiPd0XCoWj3nJUN9iCREREZOFSU7tj//7BEASpuK9aUFCauavVoLEFiYiIyIIpFI5iOAIAQZBi//7BGi1JVLcYkIiIiCzQvXv3AAD5+a5iOKokCFLk57uolKO6xYBERERkgR4+fAgAcHHJg0SiVPlMIlHCxSVfpRzVLQYkIiIiCyaXF6Jr17MAhP8dEdC161nI5YXmrFaDx4BERERkwRQKR5w92xWA5H9HJDh7tivHIBkZAxIREZEFsra2BlD9GKTKclS3OM2fiIjIjHStll1WVgbg0RikqiGp6hgkuVxumoo2MgxIREREZlKT1bLl8kJERR3QWAeJY5CMiwGJiIjITG7fvq3yXqFwRH6+K1xc8lQCUFBQGvz9ryI/3wUuLvkMRybAgERERGQmVdcwqm61bLm8UGswkslkpqhqo8OAREREZCaV44wUCkfs2xeFyplqlatl+/tfhVxeiJCQEAQFBWmcL5PJuFGtkTAgERERmVlmpjceTeOvIAhSZGa2glx+EY6OjvDy8jJP5RopTvMnIiIys+JiO4OOk/ExIBEREZmZvf3fBh0n42NAIiIiMjNv70w82kqkgkSihLf3TfNUiBiQiIiIzKWkpARAxQy1IUP2i5vSqq91VFmOTIeDtImIiMzEwcFB/H1QUBrc3bORkeEDH58MtGqVpbUcmYbZW5DWrl0LX19f2NraIjQ0FCdOnNBbfteuXejQoQNsbW3RpUsXHDx4UOVzQRAwb948eHl5wc7ODuHh4bhy5YpKmT/++ANDhw6Fm5sbnJyc0KdPHxw9erTO742IiEgfZ2dn8fepqd2xefNr+PHHSGze/BpSU7trLUemYdaAtHPnTsTGxmL+/PlITU1FYGAgIiIiNFYWrXTs2DGMGjUKEyZMQFpaGqKjoxEdHY3z58+LZZYuXYrVq1djw4YNOH78OBwcHBAREYEHDx6IZQYPHoyHDx/iyJEjSElJQWBgIAYPHozs7Gyj3zMREVGlZs2aAahYB6lykUjg0TpICoWjSjkyHbMGpJUrV2LixIkYP348OnXqhA0bNsDe3h5btmzRWv7jjz9GZGQkpk+fjo4dO2LRokUICgoS97ERBAHx8fGYM2cOhg4diq5du+Kzzz7DrVu3sHfvXgDAnTt3cOXKFbz//vvo2rUrAgICsGTJEhQXF6sELSIiIlPJz3dV2YwWqAhJ+fkuZqoRmS0glZaWIiUlBeHh4Y8qI5UiPDwcycnJWs9JTk5WKQ8AERERYvn09HRkZ2erlJHL5QgNDRXLuLq6on379vjss89QVFSEhw8f4tNPP4W7uzuCg4N11rekpAQFBQUqLyIiorrg4pInDtCuJJEo4eKSb6YakdkC0p07d1BeXg4PDw+V4x4eHjq7urKzs/WWr/xVXxmJRILDhw8jLS0Njo6OsLW1xcqVK5GYmKi3jzcuLg5yuVx8eXt7G3bDREREOsjlhYiKOqBzFhuZXqObxSYIAqZMmQJ3d3f8/PPPsLOzw3/+8x9ERUXh5MmTOpdynzlzJmJjY8X3BQUFDElERFRngoLS4O9/Ffn5LnBxyWc4MjOzBSQ3NzdYWVkhJydH5XhOTg48PT21nuPp6am3fOWvOTk5KkEnJycH3bp1AwAcOXIEBw4cwN27d+Hk5AQAWLduHQ4dOoTt27fj/fff1/rdNjY2sLGxMfxGiYiIdJDJZCrv5fJCrcFIvRwZn9kCkkwmQ3BwMJKSkhAdHQ0AUCqVSEpKQkxMjNZzwsLCkJSUhGnTponHDh06hLCwMACAn58fPD09kZSUJAaigoICHD9+HK+//joAoLi4GEDFeKeqpFIplErV/l8iIiJjcnV1RUxMDEpLS3WWkclkcHV1NWGtCDBzF1tsbCzGjh2LkJAQ9OzZE/Hx8SgqKsL48eMBAK+++ipatmyJuLg4AMDUqVPRt29frFixAoMGDcKOHTtw6tQpbNy4EUDF+KJp06Zh8eLFCAgIgJ+fH+bOnYsWLVqIISwsLAzOzs4YO3Ys5s2bBzs7O2zatAnp6ekYNGiQWZ4DERE1Xgw/lsmsAWnEiBHIzc3FvHnzkJ2djW7duiExMVEcZJ2RkaHS0tO7d28kJCRgzpw5mDVrFgICArB371507txZLDNjxgwUFRVh0qRJuHfvHvr06YPExETY2toCqOjaS0xMxOzZs/HMM8+grKwMTzzxBL799lsEBgaa9gEQERGRRZIIgiBUX4zUFRQUQC6XQ6FQiGOZiIiIyLLV9Oe32bcaISIiIrI0jW6aPxERkbHk5eVxwHUDwYBERERUB/Ly8sStr/SJiYlhSKoH2MVGRERUB9RbjhQKR6Sn+4obzuoqR5aJLUhERER1LDW1O/bvHwxBkIrbhgQFpZm7WmQAtiARERHVIYXCUQxHACAIUuzfP1ijJYksGwMSERFRHcrPdxXDUSVBkCI/38VMNaLaYEAiIiKqQy4ueZBIVLeukkiUcHHJN1ONqDYYkIiIiOqQXF6IqKgDYkiqHIOkbRNaslwcpE1ERFTHgoLS4O9/Ffn5LnBxyWc4qocYkIiIiOqATCZTeS+XF2oNRurlyDIxIBEREdUBV1dXxMTEcCXtBoIBiYiIqI4w/DQcHKRNREREpIYBiYiIiEgNAxIRERGRGgYkIiIiIjUMSERERERqGJCIiIiI1DAgEREREalhQCIiIiJSw4BEREREpIYBiYiIiEgNAxIRERGRGgYkIiIiIjUMSERERERqDApIN2/exJ07d8T3P//8M1555RU89dRTGD16NJKTk+u8gkRERESmZlBAGj58OH777TcAwLfffot+/frh/v37ePLJJ1FcXIy+ffviwIEDRqkoERERkalIBEEQalq4adOmOHfuHPz8/NCrVy+88MILeO+998TP16xZgy1btiA1NdUolbUkBQUFkMvlUCgUcHJyMnd1iIiIqAZq+vPboBakJk2aoLCwEACQnp6OgQMHqnw+cOBAXL58uRbVJSIiIrIcBgWkvn374quvvgIAdO/eHT/99JPK50ePHkXLli3rrHJERERE5tDEkMJLlizBU089hVu3bqFPnz6YPXs2Tp48iY4dO+Ly5cvYuXMnNmzYYKy6EhEREZmEQWOQAODatWuYM2cOvvvuO9y/fx9ARddbjx49MH36dERHRxujnhaHY5CIiIjqn5r+/DY4IFUSBAG3b9+GUqmEm5sbrK2ta13Z+ogBiYiIqP6p6c9vg7rYqpJIJPDw8Kjt6UREREQWy6CAFBsbW6NyK1eurFVliIiIiCyBQQEpLS1N5f0vv/yC4OBg2NnZicckEknd1IyIiIjITAwKSEePHlV57+joiISEBLRp06ZOK0VERERkTtysloiIiEgNAxIRERGRGgYkIiIiIjUGjUE6e/asyntBEHDp0iVxwchKXbt2ffyaERERqcnLy0NpaanOz2UyGVxdXU1YI2qoDFooUiqVQiKRQNsplcclEgnKy8vrtJKWiAtFEhGZVl5eHtasWVNtuZiYGIYk0skoC0Wmp6c/dsWIiIhqQ73lSKFwRH6+K1xc8iCXF+osR1QbBgWk1q1bG6seRERENZaa2h379w+GIEghkSgRFXUAQUFp1Z9IVEO1GqStVCp1Hs/IyHisChEREemjUDiK4QgABEGK/fsHQ6FwNHPNqCExKCAVFBTgpZdegoODAzw8PDBv3jyV8Ua5ubnw8/Or80oSERFVys93FcNRJUGQIj/fxUw1oobIoC62uXPn4syZM/j8889x7949LF68GKmpqdizZw9kMhkAaB3ATUREVFdcXPIgkShVQpJEooSLS74Za0UNjUEtSHv37sWnn36KF198Ea+99hpOnTqF3NxcREVFoaSkBIDhe7GtXbsWvr6+sLW1RWhoKE6cOKG3/K5du9ChQwfY2tqiS5cuOHjwoMrngiBg3rx58PLygp2dHcLDw3HlyhWN63z33XcIDQ2FnZ0dnJ2dER0dbVC9iYjo8eTl5SErK0vnKy8vT+t5cnkhoqIOQCKpGO5ROQap6kBtosdlUAtSbm6uykBtNzc3HD58GBEREXj++efxn//8x6Av37lzJ2JjY7FhwwaEhoYiPj4eERERuHz5Mtzd3TXKHzt2DKNGjUJcXBwGDx6MhIQEREdHIzU1FZ07dwYALF26FKtXr8b27dvh5+eHuXPnIiIiAr///jtsbW0BALt378bEiRPx4Ycf4plnnsHDhw9x/vx5g+pORES197hT9oOC0uDvfxX5+S5wcclnOKI6Z1ALko+PDy5evKhyzNHRET/++CP+/vtvvPDCCwZ9+cqVKzFx4kSMHz8enTp1woYNG2Bvb48tW7ZoLf/xxx8jMjIS06dPR8eOHbFo0SIEBQWJf8kEQUB8fDzmzJmDoUOHomvXrvjss89w69Yt7N27FwDw8OFDTJ06FcuWLcPkyZPRrl07dOrUCS+99JJBdSciotrTNmU/Pd1XY6B11XKVQzkqyeWF8PO7oRGO1MsR1YZBLUgDBgzA1q1b8fzzz6scb9q0KX744QcMGDCgxtcqLS1FSkoKZs6cKR6TSqUIDw9HcnKy1nOSk5MRGxurciwiIkIMP+np6cjOzkZ4eLj4uVwuR2hoKJKTkzFy5Eikpqbir7/+glQqRffu3ZGdnY1u3bph2bJlYiuUNiUlJWI3IlAxYJ2IiGpHoVCIv9c3ZV+hUMDLywsA4OrqipiYGK6kTSZhUED697//jaysLK2fOTo64tChQ0hNTa3Rte7cuYPy8nJ4eHioHPfw8MClS5e0npOdna21fHZ2tvh55TFdZf78808AwIIFC7By5Ur4+vpixYoV6NevH/744w+4uGifBREXF4eFCxfW6N6IiEi/srIyALqn7Pv7X4VcXiiWq8TwQ6ZiUBdbWloaXnzxRa2tJwqFAr169TJ4kLapVa7hNHv2bAwfPhzBwcHYunUrJBIJdu3apfO8mTNnQqFQiK/MzExTVZmIqMHilH2yVAYFpPj4eEycOFHr3iVyuRz/+te/sGrVqhpdy83NDVZWVsjJyVE5npOTA09PT63neHp66i1f+au+MpVNtZ06dRI/t7GxQZs2bfQucmljYwMnJyeVFxERPR5r6xIA6svDCLC25nYhZF4GBaQzZ84gMjJS5+fPPfccUlJSanQtmUyG4OBgJCUliceUSiWSkpIQFham9ZywsDCV8gBw6NAhsbyfnx88PT1VyhQUFOD48eNimeDgYNjY2ODy5ctimbKyMly/fp1bqRARmVhZmQ0A9Z4HCcrKONCazMugMUg5OTmwtrbWfbEmTZCbm1vj68XGxmLs2LEICQlBz549ER8fj6KiIowfPx4A8Oqrr6Jly5aIi4sDAEydOhV9+/bFihUrMGjQIOzYsQOnTp3Cxo0bAVSswTRt2jQsXrwYAQEB4jT/Fi1aiOscOTk5YfLkyZg/fz68vb3RunVrLFu2DADwj3/8w5DHQUREtVRYWDHzrLpFHyvLEZmaQQGpZcuWOH/+PNq2bav187Nnz4pdWDUxYsQI5ObmYt68eeJsssTERHGQdUZGBqTSR39pevfujYSEBMyZMwezZs1CQEAA9u7dqzL7bMaMGSgqKsKkSZNw79499OnTB4mJieIaSACwbNkyNGnSBGPGjMHff/+N0NBQHDlyBM7OzoY8DiIiekyViz6qz2LjukZkbhLBgL1B3nzzTfz00084efKkSuAAgL///hs9e/ZE//79sXr16jqvqKUpKCiAXC6HQqHgeCQiIgOdO3cOe/bsAVAxzX/fvsGoGPWhxJAhj6b5Dxs2DF26dDFfRanBqenPb4NakObMmYM9e/agXbt2iImJQfv27QEAly5dwtq1a1FeXo7Zs2c/Xs2JiKjBqxyuUTnN/9GQWNVp/vqGdRAZk0EBycPDA8eOHcPrr7+OmTNnihvTSiQSREREYO3atRprEBERUeOVl5endWHHyvWN9E3zl8sLIZfLTVJPInUGBSQAaN26NQ4ePIi7d+/i6tWrEAQBAQEBHL9DREQqarLfWnWDtInMxaBp/lU5OzujR48e6NmzJ8MRERFp0LclSKXKQdoSScUivhykTZbC4BYkIiKi2lAoHJGf7woXlzyVABQUlAZ//6vIz3eBi0s+wxFZBAYkIiIyOn0b0gL433gjzWAkk3HBSDIPBiQiInosugZi37lzB0D1G9IOGzYMbm5uGufLZDJuTktmw4BEREQ1oi0IKRQK7Ny5U+951c1Uc3NzM2iRYSJTYEAiIqJq1WRGmi6cqUb1Ua1nsRERUeOh2XLkiPR0XygUjirHb970wrFjvXDz5qMWIc5Uo/qILUhERGQQXQOuv/lmKM6cCQQgASAgMPAMXnjhWwD6Z6pxIDZZIgYkIiIS1XbAtYNDYZVwBAASnDkTiB49TqBVqyz0798fAQEBGtflQGyyVAxIREQEoGbjjHQNuL5yJQCPwlElCTIzfdCqVRacnZ05EJvqFY5BIiIiADUbZ1Q54LoqiUSJgIArAAS1Kwrw9s4wUm2JjIstSEREpEHXOKPKAdfqn7VvfxWBgWc0xiC1apVl7lshqhUGJCIiUlHdwo66Bly/8MK36NHjBDIzfeDtnaESjpo04Y8bql/4J5aIiABULPoIVL+wI6B7a5BWrbK0thq5u7sbocZExsOAREREAIC7d+8CqH5hx9DQUAQGBoqfKRQKlJWVoUmTJmjWrJnGdTlTjeojBiQiIgIAlJWVAahoHera9azKeKKuXc+KLUb29vYqM9I4O40aIs5iIyIiFQqFI86c6QrVNY26aqyaTdSQMSARERGARwOpMzO9ofnjQYrMzFYq5YgaMgYkIiICADg61qyFqKbliOozBiQiIlLh7Z0J9UUfJRIlvL1vmqdCRGbAgERERCrk8kIMGbJfXDG7cjFIbdP6iRoqdiQTEREA1bFFuhaDVC9H1FDxTzkREQHQXMxR12KQXPSRGgMGJCKiBiovL09jA9qq1BdwdHV1RUxMjEHnEDVUDEhERPWYrhCkUCiwc+fOas+PiYnRCElExIBERFRv5eXlYc2aNTUqq1A4Ij/fFS4ueSrdZvpai4gaMwYkIqJ6Sj3c6ApBqandsX//YAiCVJyRFhSUZurqEtUrDEhERA2ArhCkUDiKxwFAEKTYv38w/P2vcto+kR4MSERE9YC2sUZ37twBAL0hKD/fVTxeSRCkyM93YUAi0oMBiYjIwqmPNVLtSoPeEOTikgeJRKnyuUSihItLvsnqT1QfMSAREVm4qi1H2rrS/P2v6gxBcnkhoqIOaJzD1iMi/RiQiIjqCV1dadOmxesNQfpWxSYi7RiQiIjqCX1dadWFIF2rYstkMqPWmai+YkAiIrJwCoUCAKodT6QrBL300kto1qyZxnGuik2kGwMSEZGFKysrAwBxPNG+fYMBSAGodqX1798fAQEBKucyBBHVDgMSEZGF0LVtyN27d1XeSySAIFT8WpWzszO8vLyMWUWiRoMBiYjIAtRk2xAu+khkOtLqixARkbFp2zYkPd0XCoWjeEzfIG0AaNKE/89LVFf4t4mIyMLo2jakukHa2gZiE1HtsAWJiMiC6OpGUygcxUHaEokSALjoI5ERsQWJiMiEdA3ErtxXrbq907joI5FpMCAREZlITQZi12TvNC76SGR8DEhERCaibSD2o01nKwJPdXunDRs2DG5ubhrX5npHRHWLAYmIyEQyMzPF3+saiA3o3zvNzc2Nax0RmYBFDNJeu3YtfH19YWtri9DQUJw4cUJv+V27dqFDhw6wtbVFly5dcPDgQZXPBUHAvHnz4OXlBTs7O4SHh+PKlStar1VSUoJu3bpBIpHg9OnTdXVLREQaHjx4AED/QOxKcnkh/PxuaHSlsRuNyDTM3oK0c+dOxMbGYsOGDQgNDUV8fDwiIiJw+fJluLu7a5Q/duwYRo0ahbi4OAwePBgJCQmIjo5GamoqOnfuDABYunQpVq9eje3bt8PPzw9z585FREQEfv/9d9ja2qpcb8aMGWjRogXOnDljkvslIqpuIHZISAiCgoI0zmM3GpHpmL0FaeXKlZg4cSLGjx+PTp06YcOGDbC3t8eWLVu0lv/4448RGRmJ6dOno2PHjli0aBGCgoLEgY+CICA+Ph5z5szB0KFD0bVrV3z22We4desW9u7dq3Kt77//Hj/++COWL19u7NskIhKVljYBIKgdFVBaag0AcHR0hJeXl8aL4YjIdMwakEpLS5GSkoLw8HDxmFQqRXh4OJKTk7Wek5ycrFIeACIiIsTy6enpyM7OVikjl8sRGhqqcs2cnBxMnDgRn3/+Oezt7auta0lJCQoKClReRNS45eXlISsrS+crLy9Px3luANQ2UoME+fkMQESWwqxdbHfu3EF5eTk8PDxUjnt4eODSpUtaz8nOztZaPjs7W/y88piuMoIgYNy4cZg8eTJCQkJw/fr1ausaFxeHhQsX1ui+iKjhq8mUfQCIiYnRaPnx8bmBihakqiFJgLd3Rp3WkYhqz+xdbObwySefoLCwEDNnzqzxOTNnzoRCoRBfVWejEFHjk5ubq/Je295p6uUq90pr1SoLgYFn8KibTUBg4Bm0apWlUo6IzMesfwvd3NxgZWWFnJwcleM5OTnw9PTUeo6np6fe8pW/5uTkqEyFzcnJQbdu3QAAR44cQXJyMmxsbFSuExISgldeeQXbt2/X+F4bGxuN8kTUeJWVlYm/T03tjn37BqPi/zmVGDLk0ZT9quUcHR+Fpxde+BY9epxAZqYPvL0zxHCkXo6IzMOsLUgymQzBwcFISkoSjymVSiQlJSEsLEzrOWFhYSrlAeDQoUNieT8/P3h6eqqUKSgowPHjx8Uyq1evxpkzZ3D69GmcPn1aXCZg586d+OCDD+r0HomoftM1zuju3bsAKlqOHoUjAJBi377BGi1JADTGO7ZqlYWwsOMq4UhbOSIyPbO348bGxmLs2LEICQlBz549ER8fj6KiIowfPx4A8Oqrr6Jly5aIi4sDAEydOhV9+/bFihUrMGjQIOzYsQOnTp3Cxo0bAQASiQTTpk3D4sWLERAQIE7zb9GiBaKjowEAPj4+KnVo2rQpAMDf3x+tWrUy0Z0TkaWryTijzExvaP6/phSZma0gl19UOerv74/Ro0ejuLhY5/Xs7e3h7+9fyxoTUV0xe0AaMWIEcnNzMW/ePGRnZ6Nbt25ITEwUB1lnZGRAKn30j0/v3r2RkJCAOXPmYNasWQgICMDevXvFNZCAirWNioqKMGnSJNy7dw99+vRBYmKixhpIRET61GRrEEMx/BDVDxJBENQX46AaKCgogFwuh0KhgJOTk7mrQ0RGkJWVJbZO69oaRKFwxKpVb6PqjDSJRIlp0+Ihlxdi2LBh6NKli5nugIjU1fTnd6OcxUZEZAh9W4PI5YUYMmQ/JBIlAGhsLktE9ZPZu9iIiCxBXl6eRpfanTt3AFS/NYi+zWU5ZZ+ofuLfXCJqNLSFIABQKBTYuXOnzvNcXPIgkShVQpJEooSLS774Xi4v1NpqpG1PSSKyfAxIRNQoqM9I0zfgWv0zubwQUVEHNMYgVZ43bNgwuLm5aXwnN5clqr8YkIioUajacqRrwLW+z/R1o7m5uaksTEtE9R8HaRNRo3Dv3j0A+gdc6/sMqOhG8/O7odHiJJPJTHcjRGQSbEEiokbh4cOHAPQPuAYkegdja+tKYzcaUcPEgEREjYq1dQkqNomVVDkqwNq6FI6O9/UOxmZXGlHjwS42ImpUyspsoBqOAECCsjKZOBibaxoREVuQiKhRqW7Kvr7B2ETUeDAgEVGDo229o7t37wJAtVP2K8toC0YcjE3UeDAgEVGDor7ekTb6WokGDBgAPz8/jXM4GJuocWFAIqIGRb3lSNeCkLpaifz8/DgQm4gYkIio4dK3IKQu7EYjIoABiYgaKF2LPvr7X+WaRkRULQYkImqQ9C0IKZcXck0jItKL6yARUYNUOZ2/qqrT+YmI9GFAIqIGiYs+EtHjYBcbEZmdtnWLqqrt2CAu+khEtcWARERmVZN1iwAgJiamRiFJfRYaF30kotpgQCIis6rpukX6WpiqcnV1RUxMjFFapIio8WBAIiKLUZt1i7Rh+CGix8WARER15nHGElW3bhERkSkxIBFRnXjcsUTVrVtERGRKnOZPRHVC21ii9HRfKBSOestV4rpFRGRJ2IJERHWuNmOJKtctUj+PrUdEZA4MSERUpx5nLBHXLSIiS8GAREQG0zYY+86dOwAMH0vEdYuIyBIxIBGRQaobjF05lqhqSNI3lojrFhGRJWJAIiKD5ObmqrxXX9ixNmOJGH6IyNIwIBGRQcrKysTfp6Z2x759g1ExIVaJIUMqBmNzLBER1Xec5k9EtaJQOFYJRwAgxb59g8Vp/XJ5Ifz8bmiEI44lIqL6gC1IRFQrmZne0Px/LCkyM1tBLr+I/v37IyAgQOVTjiUiovqCAYmIjMLZ2RleXl7mrgYRUa0wIBE1Yo+zd5q3dyYAAYBEPCaRKOHtfbOOa0lEZHoMSESN1OPunSaXF2LIkP1c+ZqIGiQGJKJGStveaVWn6+sq16TJo3829M1Wq1qOiKi+4b9gRI2AvpWvAcP2TnN3d1d5r2vla/VyRET1CQMSUQNXXVeaoXunceVrImoMGJCIGjh9QQYwfO80gCtfE1HDx4UiiRoZhcIR6em+4oKOlXunVaVv7zQiosaALUhEDYSuKfs1GWtk6N5pREQNHQMSUT2jLQgpFArs3LlT73n6xhpx7zQiIlUMSET1SE3XLtI2Zb+6sUa6ZqNx7zQiaowYkIgsUE26ywDtQUhXN1rlWKOqIanqWKNhw4bBzc1N5fqcjUZEjRUDEpGZ6ApBNekuA7QHIX//q3qn7Osba+Tm5sa904iI/ocBicgMatpVBmhvJdI1nmj48N16u9H0jTViVxoR0SMWEZDWrl2LZcuWITs7G4GBgfjkk0/Qs2dPneV37dqFuXPn4vr16wgICMBHH32E559/XvxcEATMnz8fmzZtwr179/Dkk09i/fr1CAgIAABcv34dixYtwpEjR5CdnY0WLVpg9OjRmD17Nn9IkEnUdJsPXd1lusYTAYLB3WgAu9KIiNSZfR2knTt3IjY2FvPnz0dqaioCAwMRERGB27dvay1/7NgxjBo1ChMmTEBaWhqio6MRHR2N8+fPi2WWLl2K1atXY8OGDTh+/DgcHBwQERGBBw8eAAAuXboEpVKJTz/9FBcuXMCqVauwYcMGzJo1yyT3TKRQKMTfp6Z2R3z8NGzfPhbx8dOQmtr9f2UcsW9flEYrkULhqHPtIm/vm4iKOiB+pqsbTf3FcEREpEoiCIJgzgqEhoaiR48eYneDUqmEt7c33nzzTbz//vsa5UeMGIGioiIcOHBAPNarVy9069YNGzZsgCAIaNGiBd555x28++67ACp+GHl4eGDbtm0YOXKk1nosW7YM69evx59//lmjehcUFEAul0OhUMDJycnQ26ZG7ty5c9izZw8UCkfEx0/TaPGZNi0emZne+Prrf2ic++KL/4fOnS/q3T+tokVKsxtt0qRJHGdERI1aTX9+m7WLrbS0FCkpKZg5c6Z4TCqVIjw8HMnJyVrPSU5ORmxsrMqxiIgI7N27FwCQnp6O7OxshIeHi5/L5XKEhoYiOTlZZ0BSKBRwcXHRWdeSkhKUlJSI7wsKCqq9P6Lq6Jt6Xx1944k4ZZ+I6PGYNSDduXMH5eXl8PDwUDnu4eGBS5cuaT0nOztba/ns7Gzx88pjusqou3r1Kj755BMsX75cZ13j4uKwcOFC/TdEjZauGWlARfgWBAHNmjUTj929excAYG1dAkAAIKlyhgBr61J4e+cDUEK1J7yiG62SriD00ksvqXwfwHFGRESGsIhB2ub0119/ITIyEv/4xz8wceJEneVmzpyp0nJVUFAAb29vU1SRLJwhM9LUlZXZQDUcAYAEZWUyyOWFGDLkAPbtG4yKkKTEkCGPxhP1799fnHhQFYMQEdHjM2tAcnNzg5WVFXJyclSO5+TkwNPTU+s5np6eestX/pqTk6My1iInJwfdunVTOe/WrVvo378/evfujY0bN+qtq42NDWxsbGp0X9S4XLt2TeW9rhlp2j6rbvFGfd1o7u7uHE9ERGQkZp3FJpPJEBwcjKSkJPGYUqlEUlISwsLCtJ4TFhamUh4ADh06JJb38/ODp6enSpmCggIcP35c5Zp//fUX+vXrh+DgYGzduhVSqdkn9FE9VTk7EqiYkbZqVcWMtFWrHs1Iq/xMfbZa5eKNumadARXdaH5+NzTCVvPmzY18Z0REjZfZu9hiY2MxduxYhISEoGfPnoiPj0dRURHGjx8PAHj11VfRsmVLxMXFAQCmTp2Kvn37YsWKFRg0aBB27NiBU6dOiS1AEokE06ZNw+LFixEQEAA/Pz/MnTsXLVq0QHR0NIBH4ah169ZYvnw5cnNzxfroarki0jXOqLDw0eKN+/ZF4VGXmRT79lWsYg2gVhvFct0iIiLzMHtAGjFiBHJzczFv3jxkZ2ejW7duSExMFAdZZ2RkqLTu9O7dGwkJCZgzZw5mzZqFgIAA7N27F507dxbLzJgxA0VFRZg0aRLu3buHPn36IDExEba2tgAqWpyuXr2Kq1evolWrVir1MfOqB2ShajLO6PLldtAcTyTF5csBaN48v1YbxbZo0YJBiIjIDMy+DlJ9xXWQGi5tLUV37tzBnj17xPfaxhkdOdIX//1vP43rPf30UQQHp+lc70guL+RGsUREJlIv1kEiMhdd3WX37t3D//3f/+k9V9cCje3a/YH//rcv1Kfst2t3hRvFEhHVMwxI1Og8zkaxujaJ9fe/ilatshAYeAZnzgSiIiQJCAw8g1atsgDon5FGRESWhQGJGp3H2SjW2fmu3rFEL7zwLXr0OIHMTB94e2eI4agSV7gmIqofGJCoQdM1nqiSru4yXS1FEyb8R++6RQDQqlWWRjACgIEDB2pdXJRjjYiILA8DEjVY1XWl6esu07VHWlmZTO9Yov79+8PZ2Vnju+zt7eHv71+Hd0dERMbEgEQNVnVdafo2itW3wrWf3w2dY4kCAgI42JqIqAFgQKJ679q1ayguLtY4XrkhLKC9K83f/6rOEFTdrDOOJSIiati4DlItcR0k09IVgrKzs3Hs2DG95yoUjjrXILp2ra3WMUhVz63pCtccS0REZPm4DhI1GNeuXcMXX3xRo7I3b3ohI6M1fHxuiAOl9XWlVTf1nitcExE1TgxIZPHUW460hSAA+OaboRprEL3wwrd6xxMBukPQiBEjIJfLNY6zpYiIqOFjQCKLom1aftWxRLpC0M2bXlWOA4AEZ84EokePE2jVKkvveCJ2lxERkToGJLIY1U3L1xeCMjJaQ3OjWAkyM33QqlWW3q40bvNBRETqGJDIYlQ3LV9fCPLxuQFAgPo+aN7eGeI7zjwjIqKaYkAik9O1UWx1K1zrC0HV7YPWv39/BAQEaHwnu9KIiEgbBiQyqZpsFKtrhetp0+L1hiB9+6A5OzuzG42IiGqMAYmMoiatRID2jWL1TcuvbjNYXfug2dvbP+4tERFRI8KARI9FWxBSKBTYuXNntefq2ii2umn5ukJQ79694enpqXGc+6AREZGhGJCo1mrSXQZobyXSt1Fsddt8aNsQliGIiIjqEgMSVUtXd1l6errKe21BSFcrkb5uNLm8UO+0fG4IS0RExsaARHrVtJUoNbU79u0bDEAKQIkhQyo2g9XVSlRdNxrAaflERGQ+DEik1+3bt1Xe6+ouexSOAECKffsG48UXd+tsJfLzu2Hw6tYAp+UTEZFpMCARAN3daLm5ueLvdXWXZWZ641E4qiRFcbGt3lYirm5NRESWigGJarw20b59UahcpLFqd5ku9vZ/620lAtiNRkRElokBiard4gPA/1qJVLf5EAQpMjNbwds7E+orXEskSnh734RcXqizlYjdaEREZKkYkBqga9euobi4WOfn+qbE6+pG00cuL8SQIft1thTpaiVq0aIFgxAREVkkBqQG5tq1a/jiiy+qLTd69GiNkKRvbaKKViIlVMcaVbQSAfrHEw0YMAB+fn4q38VWIiIismQMSPWYtoHVf/31l8r7mze9kJHRGj4+N1RWn9bWwqRvbSI/vxsYMuSAxlT+mownat++PcMQERHVKwxIFk7X7LJ79+7h//7v//Se+803QzU2dn3hhW91lq9ubSJ9rUTPPfccfH19Na7JliIiIqqPGJAsWE0XaQQ0B1bfvOlVJRwBgARnzgSiR48TWvcxA1DtFh+VZbS1ErVr145BiIiIGgwGJAumvkijLtoGVj94YAP1WWeABJmZPjoDEqC/lYizzoiIqLFgQLIANVmkEdA+nkjXwOqRI7+C+tR7QIC3d4bG96ivOcRZZ0RE1NgxIJlZTbvRdI0n0jWwWiYrQ2DgGY1ztLUeubq6IiYmRmtIq8RWIiIiakwYkMysJos06htPpG9g9QsvfIsePU4gM9MH3t4ZervWGH6IiIgeYUCyILoWaczIaA1d44nCwo7rHVjdqlWW1mBkb29v/BsiIiKqpxiQLIS+RRp9fG5A33gifQOr+/fvD2dnZ5Xv0reSNhERETEgWYzqFmmsbjyRroHVTzzxBLvPiIiIDMSAZCGqW6RR33giLtJIRERUtxiQLERNFmnUNZ6IizQSERHVLQYkC8JFGomIiCwDA5KZcZFGIiIiy8OAZGZcpJGIiMjyMCBZAIYfIiIiyyKtvggRERFR48KARERERKSGAYmIiIhIDQMSERERkRoGJCIiIiI1FhGQ1q5dC19fX9ja2iI0NBQnTpzQW37Xrl3o0KEDbG1t0aVLFxw8eFDlc0EQMG/ePHh5ecHOzg7h4eG4cuWKSpn8/Hy88sorcHJyQrNmzTBhwgTcv3+/zu+NiIiI6h+zB6SdO3ciNjYW8+fPR2pqKgIDAxEREYHbt29rLX/s2DGMGjUKEyZMQFpaGqKjoxEdHY3z58+LZZYuXYrVq1djw4YNOH78OBwcHBAREYEHDx6IZV555RVcuHABhw4dwoEDB/Df//4XkyZNMvr9EhERkeWTCIIgmLMCoaGh6NGjB9asWQMAUCqV8Pb2xptvvon3339fo/yIESNQVFSEAwcOiMd69eqFbt26YcOGDRAEAS1atMA777yDd999FwCgUCjg4eGBbdu2YeTIkbh48SI6deqEkydPIiQkBACQmJiI559/Hjdv3kSLFi2qrXdBQQHkcjkUCgWcnJzq4lEQERGRkdX057dZW5BKS0uRkpKC8PBw8ZhUKkV4eDiSk5O1npOcnKxSHgAiIiLE8unp6cjOzlYpI5fLERoaKpZJTk5Gs2bNxHAEAOHh4ZBKpTh+/LjW7y0pKUFBQYHKi4iIiBoms66kfefOHZSXl8PDw0PluIeHBy5duqT1nOzsbK3ls7Ozxc8rj+kr4+7urvJ5kyZN4OLiIpZRFxcXh4ULF2ocZ1AiIiKqPyp/blfXgcatRmpo5syZiI2NFd//9ddf6NSpE7y9vc1YKyIiIqqNwsJCyOVynZ+bNSC5ubnBysoKOTk5KsdzcnLg6emp9RxPT0+95St/zcnJgZeXl0qZbt26iWXUB4E/fPgQ+fn5Or/XxsYGNjY24vumTZsiMzMTjo6OkEgkNbhbVQUFBfD29kZmZmajHcPEZ8BnUInPgc+gEp8DnwFg3GcgCAIKCwurHW9s1oAkk8kQHByMpKQkREdHA6gYpJ2UlISYmBit54SFhSEpKQnTpk0Tjx06dAhhYWEAAD8/P3h6eiIpKUkMRAUFBTh+/Dhef/118Rr37t1DSkoKgoODAQBHjhyBUqlEaGhojeoulUrRqlWrWty1Kicnp0b7F6ASnwGfQSU+Bz6DSnwOfAaA8Z6BvpajSmbvYouNjcXYsWMREhKCnj17Ij4+HkVFRRg/fjwA4NVXX0XLli0RFxcHAJg6dSr69u2LFStWYNCgQdixYwdOnTqFjRs3AgAkEgmmTZuGxYsXIyAgAH5+fpg7dy5atGghhrCOHTsiMjISEydOxIYNG1BWVoaYmBiMHDmyRjPYiIiIqGEze0AaMWIEcnNzMW/ePGRnZ6Nbt25ITEwUB1lnZGRAKn002a53795ISEjAnDlzMGvWLAQEBGDv3r3o3LmzWGbGjBkoKirCpEmTcO/ePfTp0weJiYmwtbUVy3z55ZeIiYnBs88+C6lUiuHDh2P16tWmu3EiIiKyXAKZxYMHD4T58+cLDx48MHdVzIbPgM+gEp8Dn0ElPgc+A0GwjGdg9oUiiYiIiCyN2bcaISIiIrI0DEhEREREahiQiIiIiNQwIBERERGpYUAyorVr18LX1xe2trYIDQ3FiRMndJa9cOEChg8fDl9fX0gkEsTHx5uuokZkyDPYtGkTnnrqKTg7O8PZ2Rnh4eF6y9cXhjyDPXv2ICQkBM2aNYODgwO6deuGzz//3IS1NR5DnkNVO3bsgEQiEdcxq88MeQbbtm2DRCJReVVdqqS+MvTPwb179zBlyhR4eXnBxsYG7dq1w8GDB01UW+Mx5Dn069dP48+CRCLBoEGDTFjjumfon4X4+Hi0b98ednZ28Pb2xttvv40HDx4Yr4Jmmz/XwO3YsUOQyWTCli1bhAsXLggTJ04UmjVrJuTk5Ggtf+LECeHdd98VvvrqK8HT01NYtWqVaStsBIY+g5dffllYu3atkJaWJly8eFEYN26cIJfLhZs3b5q45nXH0Gdw9OhRYc+ePcLvv/8uXL16VYiPjxesrKyExMREE9e8bhn6HCqlp6cLLVu2FJ566ilh6NChpqmskRj6DLZu3So4OTkJWVlZ4is7O9vEta5bhj6DkpISISQkRHj++eeFX375RUhPTxd++ukn4fTp0yaued0y9Dnk5eWp/Dk4f/68YGVlJWzdutW0Fa9Dhj6DL7/8UrCxsRG+/PJLIT09Xfjhhx8ELy8v4e233zZaHRmQjKRnz57ClClTxPfl5eVCixYthLi4uGrPbd26dYMISI/zDARBEB4+fCg4OjoK27dvN1YVje5xn4EgCEL37t2FOXPmGKN6JlOb5/Dw4UOhd+/ewn/+8x9h7Nix9T4gGfoMtm7dKsjlchPVzjQMfQbr168X2rRpI5SWlpqqiibxuP8urFq1SnB0dBTu379vrCoanaHPYMqUKcIzzzyjciw2NlZ48sknjVZHdrEZQWlpKVJSUhAeHi4ek0qlCA8PR3JyshlrZjp18QyKi4tRVlYGFxcXY1XTqB73GQiCgKSkJFy+fBlPP/20MatqVLV9Dv/+97/h7u6OCRMmmKKaRlXbZ3D//n20bt0a3t7eGDp0KC5cuGCK6hpFbZ7Bvn37EBYWhilTpsDDwwOdO3fGhx9+iPLyclNVu87Vxb+NmzdvxsiRI+Hg4GCsahpVbZ5B7969kZKSInbD/fnnnzh48CCef/55o9XT7FuNNER37txBeXm5uF1KJQ8PD1y6dMlMtTKtungG7733Hlq0aKHyl6g+qe0zUCgUaNmyJUpKSmBlZYV169ZhwIABxq6u0dTmOfzyyy/YvHkzTp8+bYIaGl9tnkH79u2xZcsWdO3aFQqFAsuXL0fv3r1x4cKFOtko29Rq8wz+/PNPHDlyBK+88goOHjyIq1ev4o033kBZWRnmz59vimrXucf9t/HEiRM4f/48Nm/ebKwqGl1tnsHLL7+MO3fuoE+fPhAEAQ8fPsTkyZMxa9Yso9WTAYks0pIlS7Bjxw789NNPDWJgqiEcHR1x+vRp3L9/H0lJSYiNjUWbNm3Qr18/c1fNJAoLCzFmzBhs2rQJbm5u5q6O2YSFhSEsLEx837t3b3Ts2BGffvopFi1aZMaamY5SqYS7uzs2btwIKysrBAcH46+//sKyZcvqbUB6XJs3b0aXLl3Qs2dPc1fFpH766Sd8+OGHWLduHUJDQ3H16lVMnToVixYtwty5c43ynQxIRuDm5gYrKyvk5OSoHM/JyYGnp6eZamVaj/MMli9fjiVLluDw4cPo2rWrMatpVLV9BlKpFG3btgUAdOvWDRcvXkRcXFy9DUiGPodr167h+vXriIqKEo8plUoAQJMmTXD58mX4+/sbt9J1rC7+TbC2tkb37t1x9epVY1TR6GrzDLy8vGBtbQ0rKyvxWMeOHZGdnY3S0lLIZDKj1tkYHufPQlFREXbs2IF///vfxqyi0dXmGcydOxdjxozBa6+9BgDo0qWLuCn97NmzVTa1ryscg2QEMpkMwcHBSEpKEo8plUokJSWp/B9hQ1bbZ7B06VIsWrQIiYmJCAkJMUVVjaau/hwolUqUlJQYo4omYehz6NChA86dO4fTp0+LryFDhqB///44ffo0vL29TVn9OlEXfxbKy8tx7tw5eHl5GauaRlWbZ/Dkk0/i6tWrYkAGgD/++ANeXl71MhwBj/dnYdeuXSgpKcHo0aONXU2jqs0zKC4u1ghBlcFZMNaWskYb/t3I7dixQ7CxsRG2bdsm/P7778KkSZOEZs2aidN0x4wZI7z//vti+ZKSEiEtLU1IS0sTvLy8hHfffVdIS0sTrly5Yq5beGyGPoMlS5YIMplM+Prrr1WmtBYWFprrFh6boc/gww8/FH788Ufh2rVrwu+//y4sX75caNKkibBp0yZz3UKdMPQ5qGsIs9gMfQYLFy4UfvjhB+HatWtCSkqKMHLkSMHW1la4cOGCuW7hsRn6DDIyMgRHR0chJiZGuHz5snDgwAHB3d1dWLx4sbluoU7U9u9Dnz59hBEjRpi6ukZh6DOYP3++4OjoKHz11VfCn3/+Kfz444+Cv7+/8NJLLxmtjgxIRvTJJ58IPj4+gkwmE3r27Cn89ttv4md9+/YVxo4dK75PT08XAGi8+vbta/qK1yFDnkHr1q21PoP58+ebvuJ1yJBnMHv2bKFt27aCra2t4OzsLISFhQk7duwwQ63rniHPQV1DCEiCYNgzmDZtmljWw8NDeP7554XU1FQz1LpuGfrn4NixY0JoaKhgY2MjtGnTRvjggw+Ehw8fmrjWdc/Q53Dp0iUBgPDjjz+auKbGY8gzKCsrExYsWCD4+/sLtra2gre3t/DGG28Id+/eNVr9JIJgrLYpIiIiovqJY5CIiIiI1DAgEREREalhQCIiIiJSw4BEREREpIYBiYiIiEgNAxIRERGRGgYkIiIiIjUMSEREFm7cuHGIjo42dzWIGhUGJCKqtXHjxkEikYgvV1dXREZG4uzZs+auWp2oem+Vrz59+hjt+65fvw6JRILTp0+rHP/444+xbds2o30vEWliQCKixxIZGYmsrCxkZWUhKSkJTZo0weDBg81drTqzdetW8f6ysrKwb98+reXKysqMVge5XI5mzZoZ7fpEpIkBiYgei42NDTw9PeHp6Ylu3brh/fffR2ZmJnJzc/HMM88gJiZGpXxubi5kMpm4k7evry8WLVqEUaNGwcHBAS1btsTatWtVzlm5ciW6dOkCBwcHeHt744033sD9+/fFz2/cuIGoqCg4OzvDwcEBTzzxBA4ePAgAuHv3Ll555RU0b94cdnZ2CAgIwNatW2t8f82aNRPvz9PTEy4uLmJLz86dO9G3b1/Y2triyy+/RF5eHkaNGoWWLVvC3t4eXbp0wVdffaVyPaVSiaVLl6Jt27awsbGBj48PPvjgAwCAn58fAKB79+6QSCTo168fAM0utpKSErz11ltwd3eHra0t+vTpg5MnT4qf//TTT5BIJEhKSkJISAjs7e3Ru3dvXL58ucb3TdTYMSARUZ25f/8+vvjiC7Rt2xaurq547bXXkJCQgJKSErHMF198gZYtW+KZZ54Rjy1btgyBgYFIS0vD+++/j6lTp+LQoUPi51KpFKtXr8aFCxewfft2HDlyBDNmzBA/nzJlCkpKSvDf//4X586dw0cffYSmTZsCAObOnYvff/8d33//PS5evIj169fDzc2tTu63sq4XL15EREQEHjx4gODgYHz33Xc4f/48Jk2ahDFjxuDEiRPiOTNnzsSSJUvEeiUkJMDDwwMAxHKHDx9GVlYW9uzZo/V7Z8yYgd27d2P79u1ITU1F27ZtERERgfz8fJVys2fPxooVK3Dq1Ck0adIE//znP+vkvokaBaNtg0tEDd7YsWMFKysrwcHBQXBwcBAACF5eXkJKSoogCILw999/C87OzsLOnTvFc7p27SosWLBAfN+6dWshMjJS5bojRowQBg4cqPN7d+3aJbi6uorvu3TponLNqqKiooTx48fX6v4ACLa2tuL9OTg4CN98842Qnp4uABDi4+OrvcagQYOEd955RxAEQSgoKBBsbGyETZs2aS1bed20tDSV42PHjhWGDh0qCIIg3L9/X7C2tha+/PJL8fPS0lKhRYsWwtKlSwVBEISjR48KAITDhw+LZb777jsBgPD3338b8giIGi22IBHRY+nfvz9Onz6N06dP48SJE4iIiMDAgQNx48YN2NraYsyYMdiyZQsAIDU1FefPn8e4ceNUrhEWFqbx/uLFi+L7w4cP49lnn0XLli3h6OiIMWPGIC8vD8XFxQCAt956C4sXL8aTTz6J+fPnqwwSf/3117Fjxw5069YNM2bMwLFjxwy6v1WrVon3d/r0aQwYMED8LCQkRKVseXk5Fi1ahC5dusDFxQVNmzbFDz/8gIyMDADAxYsXUVJSgmeffdagOlR17do1lJWV4cknnxSPWVtbo2fPnirPDAC6du0q/t7LywsAcPv27Vp/N1FjwoBERI/FwcEBbdu2Rdu2bdGjRw/85z//QVFRETZt2gQAeO2113Do0CHcvHkTW7duxTPPPIPWrVvX+PrXr1/H4MGD0bVrV+zevRspKSniGKXS0lLxO/7880+MGTMG586dQ0hICD755BMAEMPa22+/jVu3buHZZ5/Fu+++W+Pv9/T0FO+vbdu2cHBwULn3qpYtW4aPP/4Y7733Ho4ePYrTp08jIiJCrKednV2Nv7cuWFtbi7+XSCQAKsZAEVH1GJCIqE5JJBJIpVL8/fffAIAuXbogJCQEmzZtQkJCgtZxML/99pvG+44dOwIAUlJSoFQqsWLFCvTq1Qvt2rXDrVu3NK7h7e2NyZMnY8+ePXjnnXfEgAYAzZs3x9ixY/HFF18gPj4eGzdurMtbFv36668YOnQoRo8ejcDAQLRp0wZ//PGH+HlAQADs7OzEAerqZDIZgIqWKF38/f0hk8nw66+/isfKyspw8uRJdOrUqY7uhIiamLsCRFS/lZSUIDs7G0DFjLE1a9bg/v37iIqKEsu89tpriImJgYODA1544QWNa/z6669YunQpoqOjcejQIezatQvfffcdAKBt27YoKyvDJ598gqioKPz666/YsGGDyvnTpk3DwIED0a5dO9y9exdHjx4VA9a8efMQHByMJ554AiUlJThw4ID4WV0LCAjA119/jWPHjsHZ2RkrV65ETk6OGFxsbW3x3nvvYcaMGZDJZHjyySeRm5uLCxcuYMKECXB3d4ednR0SExPRqlUr2NraQi6Xq3yHg4MDXn/9dUyfPh0uLi7w8fHB0qVLUVxcjAkTJhjlvogaI7YgEdFjSUxMhJeXF7y8vBAaGoqTJ09i165d4hR1ABg1ahSaNGmCUaNGwdbWVuMa77zzDk6dOoXu3btj8eLFWLlyJSIiIgAAgYGBWLlyJT766CN07twZX375JeLi4lTOLy8vx5QpU9CxY0dERkaiXbt2WLduHYCKVpmZM2eia9euePrpp2FlZYUdO3YY5VnMmTMHQUFBiIiIQL9+/eDp6amxAvbcuXPxzjvvYN68eejYsSNGjBghjgtq0qQJVq9ejU8//RQtWrTA0KFDtX7PkiVLMHz4cIwZMwZBQUG4evUqfvjhBzg7OxvlvogaI4kgCIK5K0FEDdv169fh7++PkydPIigoSOUzX19fTJs2DdOmTTNP5YiItGAXGxEZTVlZGfLy8jBnzhz06tVLIxwREVkqdrERkdH8+uuv8PLywsmTJzXGDZnbhx9+iKZNm2p9DRw40NzVIyIzYxcbETVK+fn5GitPV7Kzs0PLli1NXCMisiQMSERERERq2MVGREREpIYBiYiIiEgNAxIRERGRGgYkIiIiIjUMSERERERqGJCIiIiI1DAgEREREalhQCIiIiJS8/8BEGR90HeHOHMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_6.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeXElEQVR4nO3deVxUVeM/8M+AwKDCGKgsioJImksiqIRpWA81llL8MkWtXLKsvmISlbmvFWZm5FJWT4ktpJlGuTyUUVYqaQJa5pIappWgQgyIIcqc3x/GzRkGnIFZ7p35vF8vXsqdM3fOmWHufObcc85VCSEEiIiIiEji5ugKEBEREckNAxIRERGREQYkIiIiIiMMSERERERGGJCIiIiIjDAgERERERlhQCIiIiIywoBEREREZIQBiYiIiMgIAxIRkYJlZGRApVLhxIkTjq4KkVNhQCKiBv3www9ITk5G9+7d0aJFC3To0AEjRozAL7/8UqfsoEGDoFKpoFKp4ObmBl9fX3Tp0gUPPvggtm3bZtHjbtq0CXFxcWjbti2aN2+OTp06YcSIEcjOzrZW0+p44YUXkJWVVWf7rl27MG/ePJSVldnssY3NmzdPei5VKhWaN2+Obt26YdasWSgvL7fKY2RmZiI9Pd0q+yJyNgxIRNSgF198ERs2bMB//vMfvPrqq5g4cSK+/fZbREVF4cCBA3XKt2/fHu+99x7effddvPTSS7j77ruxa9cu3HHHHUhKSsKlS5eu+ZhLlizB3XffDZVKhenTp+OVV17BsGHDcPToUaxdu9YWzQTQcECaP3++XQNSrddffx3vvfceli5diq5du+L555/H4MGDYY3LaDIgEdWvmaMrQETylpqaiszMTHh6ekrbkpKS0LNnTyxatAjvv/++QXmNRoMHHnjAYNuiRYvwxBNP4LXXXkNoaChefPHFeh/v8uXLWLhwIW6//XZ88cUXdW4/c+ZME1skHxcuXEDz5s0bLHPfffehdevWAIDHHnsMw4YNw8aNG/H9998jNjbWHtUkcknsQSKiBvXv398gHAFAREQEunfvjkOHDpm1D3d3dyxbtgzdunXDihUroNPp6i177tw5lJeX4+abbzZ5e9u2bQ1+r6qqwrx583D99ddDrVYjKCgI9957L44fPy6VWbJkCfr37w9/f394e3sjOjoaH3/8scF+VCoVKisrsWbNGum01rhx4zBv3jw888wzAICwsDDptqvH/Lz//vuIjo6Gt7c3/Pz8MHLkSJw6dcpg/4MGDUKPHj2Ql5eHW265Bc2bN8eMGTPMev6udttttwEACgsLGyz32muvoXv37vDy8kJwcDAmTZpk0AM2aNAgbNmyBb/99pvUptDQUIvrQ+Ss2INERBYTQqC4uBjdu3c3+z7u7u4YNWoUZs+ejR07dmDIkCEmy7Vt2xbe3t7YtGkTJk+eDD8/v3r3WVNTg6FDhyInJwcjR47ElClTUFFRgW3btuHAgQMIDw8HALz66qu4++67cf/996O6uhpr167F8OHDsXnzZqke7733Hh5++GH069cPEydOBACEh4ejRYsW+OWXX/Dhhx/ilVdekXpz2rRpAwB4/vnnMXv2bIwYMQIPP/wwzp49i+XLl+OWW25BQUEBWrVqJdW3pKQEd955J0aOHIkHHngAAQEBZj9/tWqDn7+/f71l5s2bh/nz5yM+Ph6PP/44jhw5gtdffx0//PADdu7cCQ8PD8ycORM6nQ6///47XnnlFQBAy5YtLa4PkdMSREQWeu+99wQA8fbbbxtsj4uLE927d6/3fp988okAIF599dUG9z9nzhwBQLRo0ULceeed4vnnnxd5eXl1yr3zzjsCgFi6dGmd2/R6vfT/CxcuGNxWXV0tevToIW677TaD7S1atBBjx46ts6+XXnpJABCFhYUG20+cOCHc3d3F888/b7D9p59+Es2aNTPYHhcXJwCIVatW1dvuq82dO1cAEEeOHBFnz54VhYWF4o033hBeXl4iICBAVFZWCiGEWL16tUHdzpw5Izw9PcUdd9whampqpP2tWLFCABDvvPOOtG3IkCGiY8eOZtWHyNXwFBsRWeTw4cOYNGkSYmNjMXbsWIvuW9tDUVFR0WC5+fPnIzMzE71798bnn3+OmTNnIjo6GlFRUQan9TZs2IDWrVtj8uTJdfahUqmk/3t7e0v//+uvv6DT6TBw4EDk5+dbVH9jGzduhF6vx4gRI3Du3DnpJzAwEBEREfj6668Nynt5eWH8+PEWPUaXLl3Qpk0bhIWF4dFHH0Xnzp2xZcuWescuffnll6iurkZKSgrc3P49xD/yyCPw9fXFli1bLG8okQviKTYiMltRURGGDBkCjUaDjz/+GO7u7hbd//z58wAAHx+fa5YdNWoURo0ahfLycuzevRsZGRnIzMxEQkICDhw4ALVajePHj6NLly5o1qzhQ9nmzZvx3HPPYd++fbh48aK0/eoQ1RhHjx6FEAIREREmb/fw8DD4vV27dnXGc13Lhg0b4OvrCw8PD7Rv3146bVif3377DcCVYHU1T09PdOrUSbqdiBrGgEREZtHpdLjzzjtRVlaG7777DsHBwRbvo3ZZgM6dO5t9H19fX9x+++24/fbb4eHhgTVr1mD37t2Ii4sz6/7fffcd7r77btxyyy147bXXEBQUBA8PD6xevRqZmZkWt+Fqer0eKpUK//vf/0yGReMxPVf3ZJnrlltukcY9EZH9MCAR0TVVVVUhISEBv/zyC7788kt069bN4n3U1NQgMzMTzZs3x4ABAxpVjz59+mDNmjU4ffo0gCuDqHfv3o1Lly7V6a2ptWHDBqjVanz++efw8vKStq9evbpO2fp6lOrbHh4eDiEEwsLCcP3111vaHJvo2LEjAODIkSPo1KmTtL26uhqFhYWIj4+XtjW1B43ImXEMEhE1qKamBklJScjNzcX69esbtfZOTU0NnnjiCRw6dAhPPPEEfH196y174cIF5Obmmrztf//7H4B/Tx8NGzYM586dw4oVK+qUFf8spOju7g6VSoWamhrpthMnTphcELJFixYmF4Ns0aIFANS57d5774W7uzvmz59fZ+FGIQRKSkpMN9KG4uPj4enpiWXLlhnU6e2334ZOpzOYPdiiRYsGl1wgcmXsQSKiBj311FP47LPPkJCQgNLS0joLQxovCqnT6aQyFy5cwLFjx7Bx40YcP34cI0eOxMKFCxt8vAsXLqB///646aabMHjwYISEhKCsrAxZWVn47rvvkJiYiN69ewMAxowZg3fffRepqanYs2cPBg4ciMrKSnz55Zf4v//7P9xzzz0YMmQIli5disGDB2P06NE4c+YMVq5cic6dO+PHH380eOzo6Gh8+eWXWLp0KYKDgxEWFoaYmBhER0cDAGbOnImRI0fCw8MDCQkJCA8Px3PPPYfp06fjxIkTSExMhI+PDwoLC/HJJ59g4sSJePrpp5v0/FuqTZs2mD59OubPn4/Bgwfj7rvvxpEjR/Daa6+hb9++Bq9XdHQ01q1bh9TUVPTt2xctW7ZEQkKCXetLJFuOnEJHRPJXOz29vp+GyrZs2VJERESIBx54QHzxxRdmPd6lS5fEW2+9JRITE0XHjh2Fl5eXaN68uejdu7d46aWXxMWLFw3KX7hwQcycOVOEhYUJDw8PERgYKO677z5x/Phxqczbb78tIiIihJeXl+jatatYvXq1NI3+aocPHxa33HKL8Pb2FgAMpvwvXLhQtGvXTri5udWZ8r9hwwYxYMAA0aJFC9GiRQvRtWtXMWnSJHHkyBGD56ahJRCM1dbv7NmzDZYznuZfa8WKFaJr167Cw8NDBAQEiMcff1z89ddfBmXOnz8vRo8eLVq1aiUAcMo/0VVUQljhgj5EREREToRjkIiIiIiMMCARERERGWFAIiIiIjLCgERERERkhAGJiIiIyAgDEhEREZERLhTZSHq9Hn/++Sd8fHy4XD8REZFCCCFQUVGB4OBguLnV30/EgNRIf/75J0JCQhxdDSIiImqEU6dOoX379vXezoDUSD4+PgCuPMENXVeKiIiI5KO8vBwhISHS53h9GJAaqfa0mq+vLwMSERGRwlxreAwHaRMREREZYUAiIiIiMsKARERERGSEY5CIiIjsqKamBpcuXXJ0NZyWh4cH3N3dm7wfBiQiIiI7EEKgqKgIZWVljq6K02vVqhUCAwObtE4hAxIREZEd1Iajtm3bonnz5lxk2AaEELhw4QLOnDkDAAgKCmr0vhw+BmnlypUIDQ2FWq1GTEwM9uzZ02D59evXo2vXrlCr1ejZsye2bt1qcPvGjRtxxx13wN/fHyqVCvv27TO4vbS0FJMnT0aXLl3g7e2NDh064IknnoBOp7N204iIiABcOa1WG478/f3h7e0NtVrNHyv/eHt7w9/fH23btkVZWRlqamoa/Zo5NCCtW7cOqampmDt3LvLz89GrVy9otVop+RnbtWsXRo0ahQkTJqCgoACJiYlITEzEgQMHpDKVlZUYMGAAXnzxRZP7+PPPP/Hnn39iyZIlOHDgADIyMpCdnY0JEybYpI1ERES1Y46aN2/u4Jq4htrnuSljvVRCCGGtClkqJiYGffv2xYoVKwBcub5ZSEgIJk+ejGnTptUpn5SUhMrKSmzevFnadtNNNyEyMhKrVq0yKHvixAmEhYWhoKAAkZGRDdZj/fr1eOCBB1BZWYlmzcw761heXg6NRgOdTseFIomIqEFVVVUoLCxEWFgY1Gq1o6vj9Bp6vs39/HbYGKTq6mrk5eVh+vTp0jY3NzfEx8cjNzfX5H1yc3ORmppqsE2r1SIrK6tJdal9khoKRxcvXsTFixel38vLy5v0mEQkLyUlJaiurq73dk9PT/j7+9uxRkTkSA4LSOfOnUNNTQ0CAgIMtgcEBODw4cMm71NUVGSyfFFRUZPqsXDhQkycOLHBcmlpaZg/f36jH4eI5KukpETqyW5IcnIyQxKRi3D4IG1HKi8vx5AhQ9CtWzfMmzevwbLTp0+HTqeTfk6dOmWfShKRzRn3HOl0PigsDIVO59NgOSJXMG7cOKhUKqhUKnh4eCAgIAC333473nnnHej1erP3k5GRgVatWtmuolbmsB6k1q1bw93dHcXFxQbbi4uLERgYaPI+gYGBFpVvSEVFBQYPHgwfHx988skn8PDwaLC8l5cXvLy8LH4cIlKW/Pze2LRpKIRwg0qlR0LCZkRFFTi6WkQOPQ08ePBgrF69GjU1NSguLkZ2djamTJmCjz/+GJ999pnZ43eVxGEt8vT0RHR0NHJycpCYmAjgyiDtnJwcJCcnm7xPbGwscnJykJKSIm3btm0bYmNjLXrs8vJyaLVaeHl54bPPPuOAOSICcKXnqDYcAYAQbti0aSjCw49Bo6lwcO3IlTn6NLCXl5fUGdGuXTtERUXhpptuwn/+8x9kZGTg4YcfxtKlS7F69Wr8+uuv8PPzQ0JCAhYvXoyWLVti+/btGD9+PABI6z/NnTsX8+bNw3vvvYdXX30VR44cQYsWLXDbbbchPT0dbdu2tXo7LOHQU2ypqal46623sGbNGhw6dAiPP/44KisrpSdxzJgxBoO4p0yZguzsbLz88ss4fPgw5s2bh7179xoEqtLSUuzbtw8HDx4EABw5cgT79u2TximVl5fjjjvuQGVlJd5++22Ul5ejqKgIRUVFTVovgYiUr7TUXwpHtYRwQ2mpn4NqRHSFuad37Xka+LbbbkOvXr2wceNGAFcmWi1btgw///wz1qxZg6+++gpTp04FAPTv3x/p6enw9fXF6dOncfr0aTz99NMArkzFX7hwIfbv34+srCycOHEC48aNs1s76uPQPrGkpCScPXsWc+bMQVFRESIjI5GdnS0NxD558iTc3P49WPXv3x+ZmZmYNWsWZsyYgYiICGRlZaFHjx5Smc8++0wKWAAwcuRIAP8m1fz8fOzevRsA0LlzZ4P6FBYWIjQ01FbNJSKZ8/MrgUqlNwhJKpUefn6lDqwVkXx17doVP/74IwAYnN0JDQ3Fc889h8ceewyvvfYaPD09odFooFKp6gyLeeihh6T/d+rUCcuWLUPfvn1x/vx5tGzZ0i7tMMXhJw2Tk5PrPaW2ffv2OtuGDx+O4cOH17u/cePGNZg8Bw0aBAcu/UREMqbRVCAhYXOdMUg8vUZkmhBCOmX25ZdfIi0tDYcPH0Z5eTkuX76MqqoqXLhwocEFMvPy8jBv3jzs378ff/31lzTw++TJk+jWrZtd2mGKwwMSEZGcREUVIDz8GEpL/eDnV8pwRNSAQ4cOISwsDCdOnMDQoUPx+OOP4/nnn4efnx927NiBCRMmoLq6ut6AVFlZCa1WC61Wiw8++ABt2rTByZMnodVqHT5rlAGJiFyep6enwe8aTYXJYGRcjsiVffXVV/jpp5/w5JNPIi8vD3q9Hi+//LI0NOajjz4yKO/p6VlnrO/hw4dRUlKCRYsWISQkBACwd+9e+zTgGhiQiMjl+fv7Izk5mStpE9Xj4sWL0mSm2mn+aWlpGDp0KMaMGYMDBw7g0qVLWL58ORISErBz5846lwALDQ3F+fPnkZOTg169eqF58+bo0KEDPD09sXz5cjz22GM4cOAAFi5c6KBWGnLphSKJiGr5+/sjKCio3h+GI3Jl2dnZCAoKQmhoKAYPHoyvv/4ay5Ytw6effgp3d3f06tULS5cuxYsvvogePXrggw8+QFpamsE++vfvj8ceewxJSUlo06YNFi9ejDZt2iAjIwPr169Ht27dsGjRIixZssRBrTTk0IvVKhkvVkvUNLz2GbmSpl6s1tHrICmNoi9WS0Suiwd7IsvwNLD9MSARkd2ZuvZZaak//PxKDAZHO3oWC5GcMPzYFwMSETkUr31GRHLEQdpE5DD1XftMp/NxcM2IyNUxIBGRw/DaZ0QkVwxIROQwtdc+uxqvfUZEcsCAREQOU3vts9qQxGufEZFccJA2ETkUr31GRHLEgEREdsdrnxGR3DEgEZHdcdE7Iqq1fft23Hrrrfjrr7/QqlUrs+4TGhqKlJQUpKSk2KxeHINERA7Ba58RKcO4ceOgUqnw2GOP1blt0qRJUKlUGDdunP0rZmMMSERERNSgkJAQrF27Fn///be0raqqCpmZmejQoYMDa2Y7DEhERETUoKioKISEhGDjxo3Sto0bN6JDhw7o3bu3tO3ixYt44okn0LZtW6jVagwYMAA//PCDwb62bt2K66+/Ht7e3rj11ltx4sSJOo+3Y8cODBw4EN7e3ggJCcETTzyByspKm7XPFAYkIiIihfn9d+Drr6/8ay8PPfQQVq9eLf3+zjvvYPz48QZlpk6dig0bNmDNmjXIz89H586dodVqUVp6ZW2zU6dO4d5770VCQgL27duHhx9+GNOmTTPYx/HjxzF48GAMGzYMP/74I9atW4cdO3YgOTnZ9o28CgMSERGRgrz9NtCxI3DbbVf+fftt+zzuAw88gB07duC3337Db7/9hp07d+KBBx6Qbq+srMTrr7+Ol156CXfeeSe6deuGt956C97e3nj7n0q+/vrrCA8Px8svv4wuXbrg/vvvrzN+KS0tDffffz9SUlIQERGB/v37Y9myZXj33XdRVVVln8aCs9iIiIgU4/ffgYkTAf0/C9Dr9cCjjwJaLdC+vW0fu02bNhgyZAgyMjIghMCQIUPQunVr6fbjx4/j0qVLuPnmm6VtHh4e6NevHw4dOgQAOHToEGJiYgz2Gxsba/D7/v378eOPP+KDDz6QtgkhoNfrUVhYiBtuuMEWzauDAYmIiEghjh79NxzVqqkBjh2zfUACrpxmqz3VtXLlSps8xvnz5/Hoo4/iiSeeqHObPQeEMyAREREpREQE4OZmGJLc3YHOne3z+IMHD0Z1dTVUKhW0Wq3BbeHh4fD09MTOnTvRsWNHAMClS5fwww8/SOsV3XDDDfjss88M7vf9998b/B4VFYWDBw+is70aVQ+OQSIiIlKI9u2BN9+8EoqAK/++8YZ9eo+uPJ47Dh06hIMHD8K9thL/aNGiBR5//HE888wzyM7OxsGDB/HII4/gwoULmDBhAgDgsccew9GjR/HMM8/gyJEjyMzMREZGhsF+nn32WezatQvJycnYt28fjh49ik8//dTug7TZg0RERKQgEyZcGXN07NiVniN7haNavr6+9d62aNEi6PV6PPjgg6ioqEB0dDQ2b96MFi1aoLq6GoGBgVi7di2eeeYZLF++HP369cMLL7yAhx56SNrHjTfeiG+++QYzZ87EwIEDIYRAeHg4kpKS7NE8iUoIIez6iE6ivLwcGo0GOp2uwT8WqqukpISXmCAil1JVVYXCwkKEhYVBrVY7ujo2d/nyZZw5c0b6vabGDZcvN0OzZpfh7v7v+cG2bduiWTPr99U09Hyb+/nNHiSyq5KSEqxYseKa5ZKTkxmSiIgUSn/VIKkLF5qjrEwDQAVAoFUrHZo3v1CnnNwwIJFdGfcc6XQ+KC31h59ficHV3BvqYXJm7F0jImdSU+N2VTgCABXKyjTw8qoy6EmSIwYkcpj8/N7YtGkohHCDSqVHQsJmREUVOLpaDsPeNSJyNpcvN8O/4aiWCpcvN4O7u7y/CHMWGzmETucjhSMAEMINmzYNhU7n4+CaOY6p3rXCwtA6z4mr9q4RkfI0a3YZgPFQZ/HPdnljDxI5RGmpvxSOagnhhtJSP4NTba6KvWtEzsnV5kW5u+vRqpWuzhgkW59es8bzzIBEDuHnVwKVSm8QklQqPfz8Sh1YK3mor3ctPPwYwyORQnl4eAAALly4AG9vbwfXxr6aN78AL68qk7PYbOXChSuDwGuf98ZgQCKH0GgqkJCwuU4vCQMAe9eInJG7uztatWolTX1v3rw5VCrjsTnOo7q6GpcvG55Gc3evhhDA1ZurqqqsOpNNCIELFy7gzJkzaNWqVZ3FLC3BgEQOExVVgPDwYygt9YOfXyk//P/B3jUi5xQYGAgABusDOauamhpUVFz7mF5eXt6kEFOfVq1aSc93YzEgkV15enoa/K7RVJgMRsblXAl714ick0qlQlBQENq2bYtLly45ujo299dffzXYTg8PD1x33XVWf1wPDw+rhC4GJLIrf39/JCcnc62fa2DvGpHzcnd3t0mvidwEBQU5ugpNwoBEdufq4ac+7F0jIpIPBiQimWDvGhGRfDAgEckIww8RkTxwJW0iIiIiIwxIREREREYYkIiIiIiMMCARERERGWFAIiIiIjLCWWxERKQoJSUlXA6DbI4BiYiIFKOkpAQrVqy4Zrnk5GSGJGoSnmIjIiLFMO450ul8UFgYCp3Op8FyRJZiDxIRESlSfn7vOhd1jooqcHS1yEk4vAdp5cqVCA0NhVqtRkxMDPbs2dNg+fXr16Nr165Qq9Xo2bMntm7danD7xo0bcccdd8Df3x8qlQr79u2rs4+qqipMmjQJ/v7+aNmyJYYNG4bi4mJrNouIiGxIp/ORwhEACOGGTZuG1ulJImoshwakdevWITU1FXPnzkV+fj569eoFrVaLM2fOmCy/a9cujBo1ChMmTEBBQQESExORmJiIAwcOSGUqKysxYMAAvPjii/U+7pNPPolNmzZh/fr1+Oabb/Dnn3/i3nvvtXr7iIjINkpL/aVwVEsIN5SW+jmoRuRsVEII4agHj4mJQd++faUBd3q9HiEhIZg8eTKmTZtWp3xSUhIqKyuxefNmadtNN92EyMhIrFq1yqDsiRMnEBYWhoKCAkRGRkrbdTod2rRpg8zMTNx3330AgMOHD+OGG25Abm4ubrrpJrPqXl5eDo1GA51OB19fX0ubTkREjXD69Gm8+eab0Ol8kJ6eYhCSVCo9UlLSodFUYOLEiQgKCnJgTUmuzP38dlgPUnV1NfLy8hAfH/9vZdzcEB8fj9zcXJP3yc3NNSgPAFqttt7ypuTl5eHSpUsG++natSs6dOhg0X6IiMhxNJoKJCRshkqlBwBpDJJGU+HgmpGzcNgg7XPnzqGmpgYBAQEG2wMCAnD48GGT9ykqKjJZvqioyOzHLSoqgqenJ1q1amXRfi5evIiLFy9Kv5eXl5v9mEREZH1RUQUIDz+G0lI/+PmVMhyRVTl8kLZSpKWlQaPRSD8hISGOrhIRkcvx9PQ0+F2jqUBY2G91wpFxOSJLOawHqXXr1nB3d68ze6y4uBiBgYEm7xMYGGhR+fr2UV1djbKyMoNepGvtZ/r06UhNTZV+Ly8vZ0giIrIzf39/JCcncyVtsjmH9SB5enoiOjoaOTk50ja9Xo+cnBzExsaavE9sbKxBeQDYtm1bveVNiY6OhoeHh8F+jhw5gpMnTza4Hy8vL/j6+hr8EBGR/fn7+yMoKKjeH4YjsgaHLhSZmpqKsWPHok+fPujXrx/S09NRWVmJ8ePHAwDGjBmDdu3aIS0tDQAwZcoUxMXF4eWXX8aQIUOwdu1a7N27F2+++aa0z9LSUpw8eRJ//vkngCvhB7jScxQYGAiNRoMJEyYgNTUVfn5+8PX1xeTJkxEbG2v2DDYiIiJybg4NSElJSTh79izmzJmDoqIiREZGIjs7WxqIffLkSbi5/dvJ1b9/f2RmZmLWrFmYMWMGIiIikJWVhR49ekhlPvvsMylgAcDIkSMBAHPnzsW8efMAAK+88grc3NwwbNgwXLx4EVqtFq+99podWkxERERK4NB1kJSM6yAREREpj+zXQSIiIiKSKwYkIiIiIiMMSERERERGGJCIiIiIjDh0FhsRkVyUlJRw8UEikjAgEZHLKykpwYoVK65ZLjk5mSGJyEXwFBsRuTzjniOdzgeFhaHQ6XwaLEdEzos9SEREV8nP741Nm4ZCCDeoVHokJGxGVFSBo6tFRHbGHiQion/odD5SOAIAIdywadPQOj1JROT8GJCIiP5RWuovhaNaQrihtNTPQTUiIkdhQCIi+oefXwlUKr3BNpVKDz+/UgfViIgchQGJiOgfGk0FEhI2SyGpdgySRlPh4JoRkb1xkDYR0VWiogoQHn4MpaV+8PMrZTgiclEMSETk8jw9PQ1+12gqTAYj43JE5LwYkIjI5fn7+yM5OdmmK2lzpW4iZWFAIiICbBpOuFI3kfJwkDYRkY1xpW4i5WEPEhGRHXGlbiJlYA8SEZGdcKVuIuVgQCIishOu1E2kHAxIRER2wpW6iZSDAYmIyE64UjeRcnCQNhGRHXGlbiJlYEAiIoJtF3LkSt1EysOAREQuz9YLOdpjpW4isi4GJCJyeaYWciwt9YefX4lBT09TFnJk+CFSFgYkIqKrcCFHIgI4i42ISMKFHImoFnuQSPZ4FXSyl4YWcuRsMyLXwoBEssaroJM91S7keHVI4kKORK6Jp9hI1ngVdLInLuRIRLXYg0SKwcGzZA9cyJGIAPYgkUJw8CzZkqmFHMPCfqsTjriQI5HrYA8SKQIHz5ItcSFHIjLGgESKwMGzZGsMP0R0NZ5iI0Xg4FkiIrIn9iCRYnDwLBER2QsDEskar4JORESOwIBEssbBs0RE5AgMSCR7DD9ERGRvHKRNREREZIQBiYiIiMgIAxIRERGREQYkIiIiIiMMSERERERGGJCIiIiIjDAgERERERlhQCIiIiIywoBEREREZMThAWnlypUIDQ2FWq1GTEwM9uzZ02D59evXo2vXrlCr1ejZsye2bt1qcLsQAnPmzEFQUBC8vb0RHx+Po0ePGpT55ZdfcM8996B169bw9fXFgAED8PXXX1u9bURERKRMDg1I69atQ2pqKubOnYv8/Hz06tULWq0WZ86cMVl+165dGDVqFCZMmICCggIkJiYiMTERBw4ckMosXrwYy5Ytw6pVq7B79260aNECWq0WVVVVUpmhQ4fi8uXL+Oqrr5CXl4devXph6NChKCoqsnmbiYiISP5UQgjhqAePiYlB3759sWLFCgCAXq9HSEgIJk+ejGnTptUpn5SUhMrKSmzevFnadtNNNyEyMhKrVq2CEALBwcF46qmn8PTTTwMAdDodAgICkJGRgZEjR+LcuXNo06YNvv32WwwcOBAAUFFRAV9fX2zbtg3x8fFm1b28vBwajQY6nQ6+vr5NfSqIiIjIDsz9/HZYD1J1dTXy8vIMAombmxvi4+ORm5tr8j65ubl1AoxWq5XKFxYWoqioyKCMRqNBTEyMVMbf3x9dunTBu+++i8rKSly+fBlvvPEG2rZti+jo6Hrre/HiRZSXlxv8EBERkXNyWEA6d+4campqEBAQYLA9ICCg3lNdRUVFDZav/behMiqVCl9++SUKCgrg4+MDtVqNpUuXIjs7G9ddd1299U1LS4NGo5F+QkJCLGswERERKYbDB2nbmxACkyZNQtu2bfHdd99hz549SExMREJCAk6fPl3v/aZPnw6dTif9nDp1yo61JiIiIntyWEBq3bo13N3dUVxcbLC9uLgYgYGBJu8TGBjYYPnafxsq89VXX2Hz5s1Yu3Ytbr75ZkRFReG1116Dt7c31qxZU299vby84Ovra/BDREREzslhAcnT0xPR0dHIycmRtun1euTk5CA2NtbkfWJjYw3KA8C2bduk8mFhYQgMDDQoU15ejt27d0tlLly4AODKeKerubm5Qa/XN71hREREpHjNHPngqampGDt2LPr06YN+/fohPT0dlZWVGD9+PABgzJgxaNeuHdLS0gAAU6ZMQVxcHF5++WUMGTIEa9euxd69e/Hmm28CuDK+KCUlBc899xwiIiIQFhaG2bNnIzg4GImJiQCuhKzrrrsOY8eOxZw5c+Dt7Y233noLhYWFGDJkiEOeByIiIpIXhwakpKQknD17FnPmzEFRUREiIyORnZ0tDbI+efKkQU9P//79kZmZiVmzZmHGjBmIiIhAVlYWevToIZWZOnUqKisrMXHiRJSVlWHAgAHIzs6GWq0GcOXUXnZ2NmbOnInbbrsNly5dQvfu3fHpp5+iV69e9n0CiIiISJYcug6SknEdJCIiIuWR/TpIRERERHLFgERERERkhAGJiIiIyAgDEhEREZERBiQiIiIiIwxIREREREYYkIiIiIiMMCARERERGXHoStokTyUlJaiurq73dk9PT/j7+9uxRkRERPbFgEQGSkpKsGLFimuWS05OZkgiIiKnxVNsZMC450in80FhYSh0Op8GyxERETkT9iBRvfLze2PTpqEQwg0qlR4JCZsRFVXg6GoRERHZHHuQyCSdzkcKRwAghBs2bRpapyeJiIjIGTEgkUmlpf5SOKolhBtKS/0cVCMiIiL7YUAik/z8SqBS6Q22qVR6+PmVOqhGRERE9sMxSC6gMdP2NZoKJCRsrjMGSaOpsHV1iYiIHI4Byck1Zdp+VFQBwsOPobTUD35+pQxHRETkMhiQnJypafulpf7w8ysxCDy15Tw9PQ3KazQVJoORcTlXwUU0iYhcAwOSCzFn2r6/vz+Sk5MZAkywxyKaDGBERPLAgOQi6pu2Hx5+rE4PET+ATbO0N85SXMWciEg+GJBcREPT9jm2yHK2WETT1gGMrIu9fUTOjQHJRdRO2786JHHafuNY0hvXWFzFXN7Y20fk/LgOkouonbZfu7YRp+03nq0X0eQq5vLHaxYSOT/2ILkQuUzbV/qpCVv3xvF0qLKwt4/IOTEgOTm5Tdt3hlMTtl5Ek6dDlcMep1uJyDEYkJyc3KbtO8tAZFv2xnEVc+Vgbx+R9cjt7AIDkguQa0+M0k5N2LM3Ti6nQ6lh7O0jsg45nl1gQCKHUOKpCVv3xsntdChdmyW9fXL7dkwkJ3I8u8CARA6h1FMTtvwAk9vpUDKPOb19cvx2TCRXcjm7wIBEDsFTE6bxw1EZLO3tk+O3YyI5ktPZBYsC0u+//w61Wo3WrVsDAL777jusWrUKJ0+eRMeOHTFp0iTExsbapKLkXDgQmZSsKb19cvl2TCRHcjq7YFFAGjZsGGbPno2hQ4fi008/xb333ouhQ4fi5ptvxi+//IK4uDhs3LgRQ4cOtVV9yYkocSAyx5FQrca8znL6dkwkR3I6u2BRQPr555/RvXt3AEBaWhpeeOEFPPvss9LtK1aswJw5cxiQqF5KHojMcSTUVHL6dkwkR3I6u2BRQGrWrBkqKq5UsrCwEHfeeafB7XfeeadBYCIypuSByBxHQk0lp2/HRHIll7MLFgWkuLg4fPjhh7jxxhvRu3dvbN++HTfeeKN0+9dff4127dpZvZLkXOQYfizFcSTUGHL6dkwkJ3I8u2BRQFq0aBEGDhyIP//8EwMGDMDMmTPxww8/4IYbbsCRI0ewbt06rFq1ylZ1JZIFjiOhppDLt2MiOZHj2QWLAtINN9yA3bt3Y9asWVi8eDEqKyvxwQcfoFmzZujbty/Wrl2LxMREG1WVSB44joQsJcdvx0RyI7ezCxavgxQeHo4PP/wQQgicOXMGer0erVu3hoeHhy3qRyQ7HEdClpLjt2MialijF4pUqVQICAiwZl2IFIHjSKgxGH6IlMWigJSammpWuaVLlzaqMkRKwXEkRETOzaKAVFBgOEtnx44diI6Ohre3t7RNpVJZp2ZEMsNxJERErkMlhBCNvbOPjw/279+PTp06WbNOilBeXg6NRgOdTgdfX19HV4fshCtpExEpm7mf37xYLZEFGH6IiFyD27WLEBEREbkWBiQiIiIiIxadYvvxxx8NfhdC4PDhwzh//rzB9qsvP0JERESkNBYN0nZzc4NKpYKpu9RuV6lUqKmpsWol5YiDtImIiJTHJoO0CwsLm1wxIiIiIrmzaAxSx44dzfqxxMqVKxEaGgq1Wo2YmBjs2bOnwfLr169H165doVar0bNnT2zdutXgdiEE5syZg6CgIHh7eyM+Ph5Hjx6ts58tW7YgJiYG3t7euO6663gNOSIiIpI0apC2Xq+vd/vJkyfN3s+6deuQmpqKuXPnIj8/H7169YJWq8WZM2dMlt+1axdGjRqFCRMmoKCgAImJiUhMTMSBAwekMosXL8ayZcuwatUq7N69Gy1atIBWq0VVVZVUZsOGDXjwwQcxfvx47N+/Hzt37sTo0aPNrjcRERE5OWEBnU4nhg8fLtRqtWjbtq2YPXu2uHz5snR7UVGRcHNzM3t//fr1E5MmTZJ+r6mpEcHBwSItLc1k+REjRoghQ4YYbIuJiRGPPvqoEEIIvV4vAgMDxUsvvSTdXlZWJry8vMSHH34ohBDi0qVLol27duK///2v2fU0RafTCQBCp9M1aT9ERERkP+Z+flvUgzR79mzs378f7733Hp5//nm8++67uOeeewxWFhZmjvmurq5GXl4e4uPjpW1ubm6Ij49Hbm6uyfvk5uYalAcArVYrlS8sLERRUZFBGY1Gg5iYGKlMfn4+/vjjD7i5uaF3794ICgrCnXfeadALZcrFixdRXl5u8ENERETOyaKAlJWVhTfeeAP33XcfHn74Yezduxdnz55FQkICLl68CMD8a7GdO3cONTU1CAgIMNgeEBCAoqIik/cpKipqsHztvw2V+fXXXwEA8+bNw6xZs7B582Zcd911GDRoEEpLS+utb1paGjQajfQTEhJiVjuJSBlKSkpw+vTpen9KSkocXUUisiOLZrGdPXvWYBB269at8eWXX0Kr1eKuu+7Cf//7X6tX0Npqx0/NnDkTw4YNAwCsXr0a7du3x/r16/Hoo4+avN/06dORmpoq/V5eXs6QROQkSkpKsGLFimuWS05O5uVmiFyERQGpQ4cOOHToEMLCwqRtPj4++OKLL3DHHXfg//2//2f2vlq3bg13d3cUFxcbbC8uLkZgYKDJ+wQGBjZYvvbf4uJiBAUFGZSJjIwEAGl7t27dpNu9vLzQqVOnBgeYe3l5wcvLy8zWWYYXQCVyLOP3n07ng9JSf/j5lUCjqai3HBE5L4sC0u23347Vq1fjrrvuMtjesmVLfP7557j99tvN3penpyeio6ORk5MjTbHX6/XIyclBcnKyyfvExsYiJycHKSkp0rZt27YhNjYWABAWFobAwEDk5ORIgai8vBy7d+/G448/DgCIjo6Gl5cXjhw5ggEDBgAALl26hBMnTli8RIE18Jsrkbzk5/fGpk1DIYQbVCo9EhI2IyqqwNHVIiI7syggLViwAKdPnzZ5m4+PD7Zt24b8/Hyz95eamoqxY8eiT58+6NevH9LT01FZWYnx48cDAMaMGYN27dohLS0NADBlyhTExcXh5ZdfxpAhQ7B27Vrs3bsXb775JoAr459SUlLw3HPPISIiAmFhYZg9ezaCg4OlEObr64vHHnsMc+fORUhICDp27IiXXnoJADB8+HBLng6r4DdXIvnQ6XykcAQAQrhh06ahCA8/ZvB+JCLnZ1FAKigoQHJyMr7//vs6y3PrdDr0798fr7/+utn7S0pKwtmzZzFnzhwUFRUhMjIS2dnZ0iDrkydPws3t33Hk/fv3R2ZmJmbNmoUZM2YgIiICWVlZ6NGjh1Rm6tSpqKysxMSJE1FWVoYBAwYgOzsbarVaKvPSSy+hWbNmePDBB/H3338jJiYGX331Fa677jpLng6r4zdXciVyPLVcWuoP48m9QrihtNSPAYnIxVh0Lba7774bt956K5588kmTty9btgxff/01PvnkE6tVUK6sdS2206dP480334RO54P09BSDg7NKpUdKSjo0mgpMnDjRYFwVkZLJ7dQy34dErsPcz2+Lpvnv378fgwcPrvf2O+64A3l5eZbskv7R0DdXImdj6tRyYWEodDqfBsvZmkZTgYSEzVCprsx2re3JZe8Rkeux6BRbcXExPDw86t9Zs2Y4e/Zskyvlivz8SqBS6et8c/Xzq39tJiJnILdTy1FRBQgPP4bSUj/4+ZUyHBG5KIt6kNq1a9fgitM//vgju58bid9cyRXVNyjauCfJ1jw9PQ1+12gqEBb2W533n3E5InJeFvUg3XXXXZg9ezYGDx5sMOgZAP7++2/MnTsXQ4cOtWoFXQm/uZKrkcugaH9/fyQnJ8tu0DgROY5FAWnWrFnYuHEjrr/+eiQnJ6NLly4AgMOHD2PlypWoqanBzJkzbVJRZ2Xqm6upDwZ+cyVnJKdTyww/RHQ1iwJSQEAAdu3ahccffxzTp0+XLkyrUqmg1WqxcuXKOtdBo4bxmyu5stpTy8ZjkFy991SOSyAQuRqLAhIAdOzYEVu3bsVff/2FY8eOQQiBiIgIh68hRETKxFPLhuS2BAKRq7I4INW67rrr0LdvX2vWxSXxYGhd/OatDDy1XD+urk8kD40OSGQdPBhajxzDJgObaTy1bB65LYFA5EoYkGSEB8OmkVvYlGNgkxNXbLMleF04IsdiQJIJHgytSw5hU26BjZRFLksgELkqBiSZ4MHQeuQYNuUQ2EhZ5LQEApErsmglbbKd2oPh1XgwbBy5XddOLqtFk7JwdX0ix2IPkkxwPZj6WTrQWW7fvNk7SI3FJRCIHIcBSUZ4MKzLeKBzfeN4kpOTpf/LLWxaEtg46424BAKRPDAgORgPhg27Oiw0NI7HOFTIKWyaG9g4640ALoFAJBcMSA7Gg6F5zBl4LeewaU5g46w3quXq73ciOWBAkgEeDK/NnHE8cgubTQlsnPVGRORYDEikCOaO45FT2GxsYJPjMgVERK6GAYkUQW4Dr83VmMDGWW9ERI7HgESKIaeB17Ykt2UKiIhcEReKJEXRaCoQFvab04YjgAsEEhHJAXuQSNbMnXHmbMsguEpvGRGRXDEgkazJbWaaLRdylPMyBURErkYlhBCOroQSlZeXQ6PRQKfTwdfX19HVITuwx0KOXEmbiMi2zP38Zg8SkZnssZAjww8RkTwwIBE1AhdyJCJybpzFRmSh+hZy1Ol8HFwzIiKyFvYgEVmICzkSUWNxnKFyMCARWYgLORJRY9hjogdZD0+xEVmICzkSUWOYmuhRWBha5/R8UyZ6kPWwB4moEbiQIxE1BSd6yB97kIjMZGohR1OXPeFCjkTUEE70UAb2IBGZSW6rehORMnGihzIwIBFZgOGHiJqKEz2UgafYiIiI7IgTPZSBPUhERER2xoke8seAREREZAemJnqYCkac6CEPDEhERER2wIkeysKAREREZCcMP8rBQdpERERERhiQiIiIiIwwIBEREREZYUAiIiIiMsKARERERGSEAYmIiIjICKf5k1MpKSnhGiNERNRkDEjkNEpKSrBixYprlktOTmZIIiKiBsniFNvKlSsRGhoKtVqNmJgY7Nmzp8Hy69evR9euXaFWq9GzZ09s3brV4HYhBObMmYOgoCB4e3sjPj4eR48eNbmvixcvIjIyEiqVCvv27bNWk8gBjHuOdDofFBaGQqfzabAckdyUlJTg9OnT9f6UlJQ4uopETs/hPUjr1q1DamoqVq1ahZiYGKSnp0Or1eLIkSNo27ZtnfK7du3CqFGjkJaWhqFDhyIzMxOJiYnIz89Hjx49AACLFy/GsmXLsGbNGoSFhWH27NnQarU4ePAg1Gq1wf6mTp2K4OBg7N+/3y7tJfvIz++NTZuGQgg36UrZUVEFjq4W0TWxJ9S6eNqdGsvhAWnp0qV45JFHMH78eADAqlWrsGXLFrzzzjuYNm1anfKvvvoqBg8ejGeeeQYAsHDhQmzbtg0rVqzAqlWrIIRAeno6Zs2ahXvuuQcA8O677yIgIABZWVkYOXKktK///e9/+OKLL7Bhwwb873//s0NryR50Oh8pHAGAEG7YtGkowsOP8YrZJHumekJLS/3h51di8PfLntBrY9ikpnBoQKqurkZeXh6mT58ubXNzc0N8fDxyc3NN3ic3NxepqakG27RaLbKysgAAhYWFKCoqQnx8vHS7RqNBTEwMcnNzpYBUXFyMRx55BFlZWWjevPk163rx4kVcvHhR+r28vNzsdpJ9lZb6S+GolhBuKC31Y0CSEX6zvzb2hDaNuSGSYZNMcWhAOnfuHGpqahAQEGCwPSAgAIcPHzZ5n6KiIpPli4qKpNtrt9VXRgiBcePG4bHHHkOfPn1w4sSJa9Y1LS0N8+fPN6td5Fh+fiVQqfQGIUml0sPPr9SBtaKr8Zv9tbEn1Prq640jMkUWg7Ttbfny5aioqDDoubqW6dOnQ6fTST+nTp2yYQ2pKTSaCiQkbIZKpQcA6Zs3D4jywQH119ZQTyhZLj+/N9LTU7BmzVikp6cgP7+3o6tEMufQHqTWrVvD3d0dxcXFBtuLi4sRGBho8j6BgYENlq/9t7i4GEFBQQZlIiMjAQBfffUVcnNz4eXlZbCfPn364P7778eaNWvqPK6Xl1ed8iRfUVEFCA8/htJSP/j5lTIcyRhPI5nGnlDrYW8cNYZDe5A8PT0RHR2NnJwcaZter0dOTg5iY2NN3ic2NtagPABs27ZNKh8WFobAwECDMuXl5di9e7dUZtmyZdi/fz/27duHffv2ScsErFu3Ds8//7xV20j24+npafC7RlOBsLDf6hwAjcuR49T3wWXck+SK2BNqPeyNo8Zw+Cy21NRUjB07Fn369EG/fv2Qnp6OyspKaVbbmDFj0K5dO6SlpQEApkyZgri4OLz88ssYMmQI1q5di7179+LNN98EAKhUKqSkpOC5555DRESENM0/ODgYiYmJAIAOHToY1KFly5YAgPDwcLRv395OLSdr8/f3R3JyMgf+KoicBtTLcdA4e0Ktg71x1BgOD0hJSUk4e/Ys5syZg6KiIkRGRiI7O1saZH3y5Em4uf37R92/f39kZmZi1qxZmDFjBiIiIpCVlSWtgQRcWduosrISEydORFlZGQYMGIDs7Ow6ayAplRwP5HLhqu1WKrl8cMlp0LipnlBTwYg9oear7Y0zPpXLwEkNUQkhhKMroUTl5eXQaDTQ6XTw9fW12+PK6UBO1FinT5+Wen0bGoM0ceJEg7GE9qgPUP9sJ3vVh1+CrMP4eHnlda3bG8fjpWsx9/Pb4T1IZBkuIkfORm6nkeQwaJwf1tbB0+7UFAxICiaHAzlRY8j1NBJnOzkfhh9qLAYkheKBnJRMrt/s5TRonIgciwFJYcrKygBc+0BeVlZml7ESRI0lx2/2chk0TkSO55IraSvZ5cuXAfx7IL/a1Qfy2nJEZD6uPUREtdiDpFAaTQVuvPFH7N/fC4AKgMCNN/7IAzlRE8lt0DgROQZ7kBRKp/PBjz/eiCvhCABU+PHHG7kCMVEjcBV2IjLGHiSF8fDwAHDtMUi15Yjo2uQ6aJzIUrZeQ8uV1uhiQFIYjUYD4NqDSWvLEZF5nOWgTq7L1gsJu9pCxTzFplAcTEpERFcztZBwYWFonaEXjV1I2Nb7lxv2ICmYUgeTulIXLRGRI9h6IWFXWKiYAUlh5LoCsblcrYuWiMheatfJu9ZCwk1dJ89VFipmQFIYpQ8m5bXkiIhso3b9u2tN4mnqOnmusuI8A5ICyTX8WMoVumiJiOzN1ivCu8qK8xykTQ5RXxct13EiImqa2oWEAfHPFusuJOwqk4TYg0QO4SpdtERE9lbfQsK33faV1Y6vSp0kZAkGJHIIV+miJSKyF1svJKz0SUKWYkAih6jtojUeg+SM30KIiOzB1gsJK32SkKUYkMhhXKGLlojI3mz5BdRZwo85GJDIrlyti5bIGXBxV2W4+rjZ0BdQHl/NoxJCiGsXI2Pl5eXQaDTQ6XTw9fV1dHUUhQdbIuXg4q7KwuPrtZn7+c0eJLI7V39zEimJuYu2cnFXebD0+MpAVT8GJCIiMlt9q9+T8rB3sGEMSEREZBaufu9ceOmnhjEgEdkQu6/JWbjKBUpdFcNvXQxIRDbC7mvrsnXYZJhtGFe/d14Mv6YxIBHZCLuvrcfWYdPVwmxjwiBXv3deDL+mMSAR2QG7r5vG1mHTlcJsY8MgV793Xgy/pjEgEdkYu6+ty9Zh09nDrKVhkIsPOj+GX9MYkIhsjN3X1mPrsOlqYdacMOhq199yVbz0U10MSCR7Sh88y+5r67F12HSlMGtJGJTz+4saj5d+ahgDEsmaMwyeZfe19dg6bLpSmHWlMEimsXewYQxIJGvOMniW3dfWYeuw6Uph1pXCINXPVcOPORiQSDGUNniW3de2Yeuw6Sph1pXCIFFjMCCRIihx8Cy7r63H1mHTVcOsq4RBosZgQCJFUOp4CYYf67B12HSlMOuqYZDIUgxIpAgcL0G2DifOEH7M4UphkKgpGJBIEThegmxN6ctJWMJZ2kFkSwxIpBgcL0G24gzLSRCRdTEgkaxxvATZg7MsJ0FE1sOARLLG8RJkb0pbToKIbIMBiWSP4YfsRYnLSciRK43nIufFgERE9A+lLichJxzPRY0lt2DNgERE9A8uJ9F0HM9FjSHHYM2ARET0Dy4nYV0cz0XmkmOwZkAiIroKl5OwDo7nosaSS7B2u3YRIiLnZmo5ibCw3+p8kHM5CfM1NJ6LqD71BWudzsfudWFAIiIiq6sdz3U1jueia5FTsJZFQFq5ciVCQ0OhVqsRExODPXv2NFh+/fr16Nq1K9RqNXr27ImtW7ca3C6EwJw5cxAUFARvb2/Ex8fj6NGj0u0nTpzAhAkTEBYWBm9vb4SHh2Pu3LkcNEjkokyNfygsDK3zrZXHCPPVjueqDUkcz0XmkFOwdvgYpHXr1iE1NRWrVq1CTEwM0tPTodVqceTIEbRt27ZO+V27dmHUqFFIS0vD0KFDkZmZicTEROTn56NHjx4AgMWLF2PZsmVYs2YNwsLCMHv2bGi1Whw8eBBqtRqHDx+GXq/HG2+8gc6dO+PAgQN45JFHUFlZiSVLltj7KSAiGZHL+AdnwPFcZCk5TZRQCSGE3R/1KjExMejbt680vU+v1yMkJASTJ0/GtGnT6pRPSkpCZWUlNm/eLG276aabEBkZiVWrVkEIgeDgYDz11FN4+umnAQA6nQ4BAQHIyMjAyJEjTdbjpZdewuuvv45ff/3VrHqXl5dDo9FAp9PB19fX0mYTkYycPn0ab775JnQ6H6Snp9SZ5p+Skg6NpgITJ05EUFCQA2sqf3Kcrk3yV/serHVlFlvdYG2N96C5n98O7UGqrq5GXl4epk+fLm1zc3NDfHw8cnNzTd4nNzcXqampBtu0Wi2ysrIAAIWFhSgqKkJ8fLx0u0ajQUxMDHJzc+sNSDqdDn5+9Z/jvHjxIi5evCj9Xl5efs32EZGycKHIpuPlgagx5HjdTYcGpHPnzqGmpgYBAQEG2wMCAnD48GGT9ykqKjJZvqioSLq9dlt9ZYwdO3YMy5cvb/D0WlpaGubPn99wg8jh5LYSKykLF4q0Dr7HCLDseCzHYO3wMUiO9scff2Dw4MEYPnw4HnnkkXrLTZ8+3aDnqry8HCEhIfaoIpmJXfvUVHIa/0CkZI05HsvtuOzQgNS6dWu4u7ujuLjYYHtxcTECAwNN3icwMLDB8rX/FhcXG5ynLC4uRmRkpMH9/vzzT9x6663o37+/wblPU7y8vODl5WVWu8gx5LgSKylDWVmZ9P+GBhaXlZVxDBKRGZzheOzQgOTp6Yno6Gjk5OQgMTERwJVB2jk5OUhOTjZ5n9jYWOTk5CAlJUXatm3bNsTGxgIAwsLCEBgYiJycHCkQlZeXY/fu3Xj88cel+/zxxx+49dZbER0djdWrV8PNTRYrHpCVcCYSWUKlUpnaamY5IttxhmEDSj0eO/wUW2pqKsaOHYs+ffqgX79+SE9PR2VlJcaPHw8AGDNmDNq1a4e0tDQAwJQpUxAXF4eXX34ZQ4YMwdq1a7F3716pB0ilUiElJQXPPfccIiIipGn+wcHBUgj7448/MGjQIHTs2BFLlizB2bNnpfrU13NFysFLHJClNBqN9P+GDuZXl3MlzvAhrUTOMGxAycdjhwekpKQknD17FnPmzEFRUREiIyORnZ0tDbI+efKkQe9O//79kZmZiVmzZmHGjBmIiIhAVlaWtAYSAEydOhWVlZWYOHEiysrKMGDAAGRnZ0OtVgO40uN07NgxHDt2DO3btzeoj4NXPSAr4EwkaiwlH8xtxRk+pJXKGU5TKfl47PCABFx5Y9V3Sm379u11tg0fPhzDhw+vd38qlQoLFizAggULTN4+btw4jBs3rjFVJQXgTCTnZI9eDCUfzG3FGT6knYFST1Mp+Xgsi4BEZE2cieR87NWLoeSDuT2Y+yHNU3LWpeSeTSUfjxmQyCnZ6hIHPPA7hr16MZR8MLc1cz+keUrO+pTes6nUS84wIJHTsPVKrDzwy4OtTzUo9WBua+Z+SPOUnPUpsWdTjitjW4oBiZyGv78/HnjgAVy4cKHeMs2bN290eOGB3/FsdarBGQ7mttaYD2mljpuRGyX2bMpxZWxLMSCR0ygpKcH7779/zXLW6OHhgd8xLDnVoPTLHMiNpR/SSh43I0dK7NlU+vuFAYmchr16eHjgdxxzezGc4TIHcmTJh7TSx83IAXs2HYsBiZySLXt4eOB3HHN7MXg61Hoa+yGtxHEzcsOeTcdiQCKnY+seHh74HcvSUw08Hdo0jf2QVuK4GTli+HEcBiRyOrbu4eGB3/4a24vB06HW0dgPaSWOmyGqxYBETsdWPTw6nU76f0MHfp1Oxyu+W1ljezF4OtT+OG6GnAUDEjkdW/XwmL5OX92ru/N6frbRmF4Mng61P46bIWfBgEROyRZd+61atZL+39C4lqvLkWPxdKhjMPyQM2BAIqdhr659jmtRFo6DIaLGYEAip2Gvrn2Oa5E/joOhWrx+IjUWAxLJnqUrItsax7XIH8fBEMDrJ1LTMCCRrMnxAMdxLcqg5A889npYBxcMpaZgQCJZk+sBjuNayFbk+KXAGchlwVClh1+l198SDEikGI4+wHFci2PZ+sAslwO/XL8UKJlcJlYoPfwqvf6WYkAiRZDDAY7jWhzH1gdmuR74Hf2lwFlYMrHClkFZ6eFX6fW3FAMSKYJcZo4x/DiGrQ/Mcjzwy+FLgbMwd2KFcVCu7+/AGkFZ6eFX6fU3BwMSKQJnjlEtWx+Y5XLgl8uXAmdg7sSKqwNwQ38HTQ3KSg+/Sq+/uRiQSBE4c4wA2x+Y5XTg55cC67JkYoWt/w6UHn6VXn9zMSCRYnDmGNn6wCynAz+/FDRdYydW2PrvQOnhV+n1NxcDEskaZ47R1Wx9YJbbgZ9fCpqmsRMrbP13oPTwq/T6m4sBiWTN398fDzzwAC5cuFBvmebNm3PwtIuw9YFZDgd+fimwrsYcG+zxd6D08Kv0+puDAYlkraSkBO+///41yznLuht0bbY+MDv6wM/lJOTBFn8HSg+/Sq+/pRiQSNbkOP1ayeSyGKKlbH1gltuBX46vgSuq7++gsZQefpVef0sxIJFiyGX6tVLJdTFEc9j6wNyY/Ss1bFL9zA3ATQnKSv+bUHr9LcGARIogp+nXSmVuL5ur9sZZcuBXctik+rlaDwk1jAGJFEFO06+dRX2nK+VIboGEp36Vw9KePoYfqsWApECu2LUvt+nXtmKv11ZppyvlFkh0Op30//z83vjss6EA3ADocffd/z6XOp0OQUFBdqkT1SW3YE3KwoCkMK76hpfD9Gtbs9drq/TTlXIId5cuXQJw5bn8NxwBgBs+++zf57K2HDmG3II1KQsDksK48hve0dOvG8OSHiF7vbZKPl0pt3B36lQI/g1Htdxw6lR7aDSH7F4fqp8cgjUpCwOSgrnCG15u068t0ZQeIVu+tko+XankcEeOI7dgTcrAgKRQrvKGV/Ksksb2CNn6tVXy6Uq5hbuQkFMABACVQX1CQn53SH3INAZragwGJIVypTe8HMOPpSzpEbLVa3t1L1tDpyvl2BtXS27hTqOpwN13b5JNfcg0uQVrUgYGJIXiG145LO0RstVrq+TeuKvJYSxas2b/Hjobqs/V5chx5BasSRn47lUovuGVw9IeIVu+tnIPP/WR21i0Vq1amVUf43LkOHII1qQsDEgKxje8MjSmR4ivrSG59X7Z45IU1HRyC9akLAxICsM3vPKY2yPE17Zhcur9kltgI9P4OlFTMCApDN/wymROjxBfW2Xh66AMfJ2osRiQFIhveGVoTI8QX1siInlgQCKyEfYIEREpFwMSkQ0x/BARKZPxRYSIiIiIXB4DEhEREZERBiQiIiIiIwxIREREREYYkIiIiIiMyCIgrVy5EqGhoVCr1YiJicGePXsaLL9+/Xp07doVarUaPXv2xNatWw1uF0Jgzpw5CAoKgre3N+Lj43H06FGDMqWlpbj//vvh6+uLVq1aYcKECTh//rzV20ZERETK4/CAtG7dOqSmpmLu3LnIz89Hr169oNVqcebMGZPld+3ahVGjRmHChAkoKChAYmIiEhMTceDAAanM4sWLsWzZMqxatQq7d+9GixYtoNVqUVVVJZW5//778fPPP2Pbtm3YvHkzvv32W0ycONHm7SUiIiL5UwkhhCMrEBMTg759+2LFihUAAL1ej5CQEEyePBnTpk2rUz4pKQmVlZXYvHmztO2mm25CZGQkVq1aBSEEgoOD8dRTT+Hpp58GAOh0OgQEBCAjIwMjR47EoUOH0K1bN/zwww/o06cPACA7Oxt33XUXfv/9dwQHB1+z3uXl5dBoNNDpdPD19bXGU0FEREQ2Zu7nt0N7kKqrq5GXl4f4+Hhpm5ubG+Lj45Gbm2vyPrm5uQblAUCr1UrlCwsLUVRUZFBGo9EgJiZGKpObm4tWrVpJ4QgA4uPj4ebmht27d5t83IsXL6K8vNzgh4iIiJyTQ1fSPnfuHGpqahAQEGCwPSAgAIcPHzZ5n6KiIpPli4qKpNtrtzVUpm3btga3N2vWDH5+flIZY2lpaZg/f36d7QxKREREylH7uX2tE2i81IiZpk+fjtTUVOn3P/74A926dUNISIgDa0VERESNUVFRAY1GU+/tDg1IrVu3hru7O4qLiw22FxcXIzAw0OR9AgMDGyxf+29xcTGCgoIMykRGRkpljAeBX758GaWlpfU+rpeXF7y8vKTfW7ZsiVOnTsHHxwcqlcqM1pqnvLwcISEhOHXqlNOObXL2NrJ9yufsbXT29gHO30a2r/GEEKioqLjmeGOHBiRPT09ER0cjJycHiYmJAK4M0s7JyUFycrLJ+8TGxiInJwcpKSnStm3btiE2NhYAEBYWhsDAQOTk5EiBqLy8HLt378bjjz8u7aOsrAx5eXmIjo4GAHz11VfQ6/WIiYkxq+5ubm5o3759I1ptHl9fX6f8o7+as7eR7VM+Z2+js7cPcP42sn2N01DPUS2Hn2JLTU3F2LFj0adPH/Tr1w/p6emorKzE+PHjAQBjxoxBu3btkJaWBgCYMmUK4uLi8PLLL2PIkCFYu3Yt9u7dizfffBMAoFKpkJKSgueeew4REREICwvD7NmzERwcLIWwG264AYMHD8YjjzyCVatW4dKlS0hOTsbIkSPNmsFGREREzs3hASkpKQlnz57FnDlzUFRUhMjISGRnZ0uDrE+ePAk3t38n2/Xv3x+ZmZmYNWsWZsyYgYiICGRlZaFHjx5SmalTp6KyshITJ05EWVkZBgwYgOzsbKjVaqnMBx98gOTkZPznP/+Bm5sbhg0bhmXLltmv4URERCRfgmSlqqpKzJ07V1RVVTm6Kjbj7G1k+5TP2dvo7O0TwvnbyPbZnsMXiiQiIiKSG4dfaoSIiIhIbhiQiIiIiIwwIBEREREZYUAiIiIiMsKAZAcrV65EaGgo1Go1YmJisGfPngbLp6eno0uXLvD29kZISAiefPJJVFVVNWmftmTt9s2bNw8qlcrgp2vXrrZuRoMsaeOlS5ewYMEChIeHQ61Wo1evXsjOzm7SPm3N2u2T02v47bffIiEhAcHBwVCpVMjKyrrmfbZv346oqCh4eXmhc+fOyMjIqFNGLq+fLdonp9cPsLyNp0+fxujRo3H99dfDzc3NYGHhq61fvx5du3aFWq1Gz549sXXrVutX3gy2aF9GRkad1/DqpW7sydL2bdy4EbfffjvatGkDX19fxMbG4vPPP69TzubvQYfNn3MRa9euFZ6enuKdd94RP//8s3jkkUdEq1atRHFxscnyH3zwgfDy8hIffPCBKCwsFJ9//rkICgoSTz75ZKP3aUu2aN/cuXNF9+7dxenTp6Wfs2fP2qtJdVjaxqlTp4rg4GCxZcsWcfz4cfHaa68JtVot8vPzG71PW7JF++T0Gm7dulXMnDlTbNy4UQAQn3zySYPlf/31V9G8eXORmpoqDh48KJYvXy7c3d1Fdna2VEZOr58t2ien108Iy9tYWFgonnjiCbFmzRoRGRkppkyZUqfMzp07hbu7u1i8eLE4ePCgmDVrlvDw8BA//fSTbRrRAFu0b/Xq1cLX19fgNSwqKrJNA67B0vZNmTJFvPjii2LPnj3il19+EdOnTxceHh52P4YyINlYv379xKRJk6Tfa2pqRHBwsEhLSzNZftKkSeK2224z2JaamipuvvnmRu/TlmzRvrlz54pevXrZpL6NYWkbg4KCxIoVKwy23XvvveL+++9v9D5tyRbtk9trWMucg/PUqVNF9+7dDbYlJSUJrVYr/S6n1+9q1mqfXF8/Icxr49Xi4uJMBogRI0aIIUOGGGyLiYkRjz76aBNr2DTWat/q1auFRqOxWr2sxdL21erWrZuYP3++9Ls93oM8xWZD1dXVyMvLQ3x8vLTNzc0N8fHxyM3NNXmf/v37Iy8vT+oq/PXXX7F161bcddddjd6nrdiifbWOHj2K4OBgdOrUCffffz9Onjxpu4Y0oDFtvHjxYp2ubG9vb+zYsaPR+7QVW7SvllxeQ0vl5uYaPB8AoNVqpedDTq9fY1yrfbWU+vqZy9znQcnOnz+Pjh07IiQkBPfccw9+/vlnR1epUfR6PSoqKuDn5wfAfu9BBiQbOnfuHGpqaqTLptQKCAhAUVGRyfuMHj0aCxYswIABA+Dh4YHw8HAMGjQIM2bMaPQ+bcUW7QOAmJgYZGRkIDs7G6+//joKCwsxcOBAVFRU2LQ9pjSmjVqtFkuXLsXRo0eh1+uxbds2bNy4EadPn270Pm3FFu0D5PUaWqqoqMjk81FeXo6///5bVq9fY1yrfYCyXz9z1fc8KOE1NEeXLl3wzjvv4NNPP8X7778PvV6P/v374/fff3d01Sy2ZMkSnD9/HiNGjABgv2MoA5LMbN++HS+88AJee+015OfnY+PGjdiyZQsWLlzo6KpZhTntu/POOzF8+HDceOON0Gq12Lp1K8rKyvDRRx85sObme/XVVxEREYGuXbvC09MTycnJGD9+vME1BZXMnPYp/TV0dXz9lC82NhZjxoxBZGQk4uLisHHjRrRp0wZvvPGGo6tmkczMTMyfPx8fffQR2rZta9fHdvjFap1Z69at4e7ujuLiYoPtxcXFCAwMNHmf2bNn48EHH8TDDz8MAOjZs6d04d2ZM2c2ap+2Yov2mQoRrVq1wvXXX49jx45ZvxHX0Jg2tmnTBllZWaiqqkJJSQmCg4Mxbdo0dOrUqdH7tBVbtM8UR76GlgoMDDT5fPj6+sLb2xvu7u6yef0a41rtM0VJr5+56nselPAaNoaHhwd69+6tqNdw7dq1ePjhh7F+/XqD02n2OoY6x1damfL09ER0dDRycnKkbXq9Hjk5OYiNjTV5nwsXLtQJCe7u7gAAIUSj9mkrtmifKefPn8fx48cRFBRkpZqbrynPt1qtRrt27XD58mVs2LAB99xzT5P3aW22aJ8pjnwNLRUbG2vwfADAtm3bpOdDTq9fY1yrfaYo6fUzV2OeByWrqanBTz/9pJjX8MMPP8T48ePx4YcfYsiQIQa32e09aLXh3mTS2rVrhZeXl8jIyBAHDx4UEydOFK1atZKmWz744INi2rRpUvm5c+cKHx8f8eGHH4pff/1VfPHFFyI8PFyMGDHC7H0qvX1PPfWU2L59uygsLBQ7d+4U8fHxonXr1uLMmTN2b58Qlrfx+++/Fxs2bBDHjx8X3377rbjttttEWFiY+Ouvv8zepz3Zon1yeg0rKipEQUGBKCgoEADE0qVLRUFBgfjtt9+EEEJMmzZNPPjgg1L52mnwzzzzjDh06JBYuXKlyWn+cnn9bNE+Ob1+QljeRiGEVD46OlqMHj1aFBQUiJ9//lm6fefOnaJZs2ZiyZIl4tChQ2Lu3LkOm+Zvi/bNnz9ffP755+L48eMiLy9PjBw5UqjVaoMy9mJp+z744APRrFkzsXLlSoNlCsrKyqQy9ngPMiDZwfLly0WHDh2Ep6en6Nevn/j++++l2+Li4sTYsWOl3y9duiTmzZsnwsPDhVqtFiEhIeL//u//DD58rrVPe7N2+5KSkkRQUJDw9PQU7dq1E0lJSeLYsWN2bFFdlrRx+/bt4oYbbhBeXl7C399fPPjgg+KPP/6waJ/2Zu32yek1/PrrrwWAOj+1bRo7dqyIi4urc5/IyEjh6ekpOnXqJFavXl1nv3J5/WzRPjm9fkI0ro2mynfs2NGgzEcffSSuv/564enpKbp37y62bNlinwYZsUX7UlJSpL/PgIAAcddddxmsI2RPlrYvLi6uwfK1bP0eVAlRz3kNIiIiIhfFMUhERERERhiQiIiIiIwwIBEREREZYUAiIiIiMsKARERERGSEAYmIiIjICAMSERERkREGJCIiJ7F9+3aoVCqUlZU5uipEiseAREQWGzduHFQqFRYtWmSwPSsrCyqVSvpdCIG33noLsbGx8PX1RcuWLdG9e3dMmTLF7ItmXrhwAdOnT0d4eDjUajXatGmDuLg4fPrpp1KZ0NBQpKenW6Vttlb73KlUKnh4eCAsLAxTp05FVVWVRfsZNGgQUlJSDLb1798fp0+fhkajsWKNiVwTAxIRNYparcaLL76Iv/76y+TtQgiMHj0aTzzxBO666y588cUXOHjwIN5++22o1Wo899xzZj3OY489ho0bN2L58uU4fPgwsrOzcd9996GkpMSazbGrwYMH4/Tp0/j111/xyiuv4I033sDcuXObvF9PT08EBgYahFQiaiSrXriEiFzC2LFjxdChQ0XXrl3FM888I23/5JNPRO1h5cMPPxQAxKeffmpyH3q93qzH0mg0IiMjo97bTV23qdZ3330nBgwYINRqtWjfvr2YPHmyOH/+vHT7u+++K6Kjo0XLli1FQECAGDVqlCguLpZur72GVHZ2toiMjBRqtVrceuutori4WGzdulV07dpV+Pj4iFGjRonKykqz2jN27Fhxzz33GGy79957Re/evaXfz507J0aOHCmCg4OFt7e36NGjh8jMzDTYh3GbCwsLpfpefW3Djz/+WHTr1k14enqKjh07iiVLlphVTyJXxx4kImoUd3d3vPDCC1i+fDl+//33Ord/+OGH6NKlC+6++26T9ze3lyMwMBBbt25FRUWFyds3btyI9u3bY8GCBTh9+jROnz4NADh+/DgGDx6MYcOG4ccff8S6deuwY8cOJCcnS/e9dOkSFi5ciP379yMrKwsnTpzAuHHj6jzGvHnzsGLFCuzatQunTp3CiBEjkJ6ejszMTGzZsgVffPEFli9fblZ7jB04cAC7du2Cp6entK2qqgrR0dHYsmULDhw4gIkTJ+LBBx/Enj17AACvvvoqYmNj8cgjj0htDgkJqbPvvLw8jBgxAiNHjsRPP/2EefPmYfbs2cjIyGhUXYlciqMTGhEpz9W9IDfddJN46KGHhBCGPUhdu3YVd999t8H9pkyZIlq0aCFatGgh2rVrZ9ZjffPNN6J9+/bCw8ND9OnTR6SkpIgdO3YYlOnYsaN45ZVXDLZNmDBBTJw40WDbd999J9zc3MTff/9t8rF++OEHAUBUVFQIIf7tQfryyy+lMmlpaQKAOH78uLTt0UcfFVqt1qz2jB07Vri7u4sWLVoILy8vAUC4ubmJjz/+uMH7DRkyRDz11FPS73FxcWLKlCkGZYx7kEaPHi1uv/12gzLPPPOM6Natm1l1JXJl7EEioiZ58cUXsWbNGhw6dOiaZWfOnIl9+/Zhzpw5OH/+vFn7v+WWW/Drr78iJycH9913H37++WcMHDgQCxcubPB++/fvR0ZGBlq2bCn9aLVa6PV6FBYWArjSw5KQkIAOHTrAx8cHcXFxAICTJ08a7OvGG2+U/h8QEIDmzZujU6dOBtvOnDljVnsA4NZbb8W+ffuwe/dujB07FuPHj8ewYcOk22tqarBw4UL07NkTfn5+aNmyJT7//PM69bqWQ4cO4eabbzbYdvPNN+Po0aOoqamxaF9EroYBiYia5JZbboFWq8X06dMNtkdERODIkSMG29q0aYPOnTujbdu2Fj2Gh4cHBg4ciGeffRZffPEFFixYgIULF6K6urre+5w/fx6PPvoo9u3bJ/3s378fR48eRXh4OCorK6HVauHr64sPPvgAP/zwAz755BMAqLNfDw8P6f+1s8+uplKpoNfrzW5PixYt0LlzZ/Tq1QvvvPMOdu/ejbffflu6/aWXXsKrr76KZ599Fl9//TX27dsHrVbbYHuJyLqaOboCRKR8ixYtQmRkJLp06SJtGzVqFEaPHo1PP/0U99xzj1Ufr1u3brh8+TKqqqrg6ekJT0/POj0iUVFROHjwIDp37mxyHz/99BNKSkqwaNEiafzO3r17rVpPc7i5uWHGjBlITU3F6NGj4e3tjZ07d+Kee+7BAw88AADQ6/X45Zdf0K1bN+l+ptps7IYbbsDOnTsNtu3cuRPXX3893N3drd8YIifCHiQiarKePXvi/vvvx7Jly6RtI0eOxH333YeRI0diwYIF2L17N06cOIFvvvkG69atM/sDetCgQXjjjTeQl5eHEydOYOvWrZgxYwZuvfVW+Pr6AriyDtK3336LP/74A+fOnQMAPPvss9i1axeSk5Oxb98+HD16FJ9++qk0SLtDhw7w9PTE8uXL8euvv+Kzzz675mk7Wxk+fDjc3d2xcuVKAFd637Zt24Zdu3bh0KFDePTRR1FcXGxwn9DQUOk5PXfunMkerKeeego5OTlYuHAhfvnlF6xZswYrVqzA008/bZd2ESkZAxIRWcWCBQsMPqRVKhXWrVuH9PR0bN26Ff/5z3/QpUsXPPTQQwgJCcGOHTvM2q9Wq8WaNWtwxx134IYbbsDkyZOh1Wrx0UcfGTz2iRMnEB4ejjZt2gC4Mm7om2++wS+//IKBAweid+/emDNnDoKDgwFcOd2XkZGB9evXo1u3bli0aBGWLFlixWfEfM2aNUNycjIWL16MyspKzJo1C1FRUdBqtRg0aBACAwORmJhocJ+nn34a7u7u6NatG9q0aWNyfFJUVBQ++ugjrF27Fj169MCcOXOwYMECkzP1iMiQSgghHF0JIiIiIjlhDxIRERGREQYkInKoq6fhG/989913jq6eRU6ePNlgeyydpk9EjsNTbETkUA1dtLZdu3bw9va2Y22a5vLlyzhx4kS9t4eGhqJZM04eJlICBiQiIiIiIzzFRkRERGSEAYmIiIjICAMSERERkREGJCIiIiIjDEhERERERhiQiIiIiIwwIBEREREZYUAiIiIiMvL/AdI7M17eNKOsAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXhVJREFUeJzt3XtYVNXeB/DvgAygwhioXBQFkcRbIpiIaWiHGgsp3ixRS9FMshMmh7K83wstM/JSam+KdSLNNMvLoYyyi5IZaGVeUoOsBFSIAfEoCuv9w5edI8MwM8xlz8z38zw8NXvW3rPWjLP3b37rshVCCAEiIiIi0svF1hUgIiIisgcMmoiIiIgMwKCJiIiIyAAMmoiIiIgMwKCJiIiIyAAMmoiIiIgMwKCJiIiIyAAMmoiIiIgMwKCJiIiIyAAMmoiI7FhWVhYUCgWKiopsXRUih8egiYj0OnjwIFJTU9GzZ0+0atUKnTp1wsiRI/HLL780KDtkyBAoFAooFAq4uLjA29sb3bp1w9ixY7Fnzx6jXnfHjh2IjY1F+/bt0bJlS3Tp0gUjR45ETk6OuZrWwIsvvojt27c32L5//37Mnz8fFRUVFnvtm82fP196LxUKBVq2bIkePXpg9uzZqKysNMtrZGdnIzMz0yzHInIGDJqISK+lS5di69at+Mc//oHXXnsNKSkp+OqrrxAZGYkjR440KN+xY0e88847ePvtt/Hyyy/j/vvvx/79+3HPPfcgKSkJV69ebfI1ly1bhvvvvx8KhQIzZszAq6++ihEjRuDkyZPYtGmTJZoJQH/QtGDBAqsGTfXeeOMNvPPOO1i+fDnCw8PxwgsvYNiwYTDHbUMZNBEZp4WtK0BE8paeno7s7GwolUppW1JSEnr37o0lS5bg3//+t1Z5lUqFRx99VGvbkiVL8PTTT+P1119HcHAwli5d2ujrXbt2DYsWLcLdd9+NTz/9tMHz586da2aL5OPSpUto2bKl3jIPPfQQ2rZtCwCYPHkyRowYgW3btuHbb79FTEyMNapJRP+PmSYi0mvgwIFaARMAhIWFoWfPnjh27JhBx3B1dcWKFSvQo0cPrFq1ChqNptGyFy5cQGVlJe644w6dz7dv317r8eXLlzF//nzceuut8PDwQEBAAB588EGcPn1aKrNs2TIMHDgQvr6+8PT0RFRUFD744AOt4ygUClRXV2Pjxo1Sl9j48eMxf/58TJs2DQAQEhIiPXfjGKJ///vfiIqKgqenJ3x8fDBq1Cj8/vvvWscfMmQIevXqhfz8fNx5551o2bIlZs6cadD7d6O77roLAFBYWKi33Ouvv46ePXvC3d0dgYGBeOqpp7QyZUOGDMGuXbvw22+/SW0KDg42uj5EzoSZJiIymhACpaWl6Nmzp8H7uLq6YvTo0ZgzZw6++eYbxMfH6yzXvn17eHp6YseOHZgyZQp8fHwaPWZtbS2GDx+O3NxcjBo1ClOnTkVVVRX27NmDI0eOIDQ0FADw2muv4f7778cjjzyCmpoabNq0CQ8//DB27twp1eOdd97B448/jv79+yMlJQUAEBoailatWuGXX37Be++9h1dffVXK+rRr1w4A8MILL2DOnDkYOXIkHn/8cZw/fx4rV67EnXfeiUOHDqFNmzZSfcvKynDvvfdi1KhRePTRR+Hn52fw+1evPhj09fVttMz8+fOxYMECxMXF4cknn8SJEyfwxhtv4ODBg9i3bx/c3Nwwa9YsaDQa/PHHH3j11VcBAK1btza6PkRORRARGemdd94RAMRbb72ltT02Nlb07Nmz0f0+/PBDAUC89tpreo8/d+5cAUC0atVK3HvvveKFF14Q+fn5DcqtX79eABDLly9v8FxdXZ30/5cuXdJ6rqamRvTq1UvcddddWttbtWolkpOTGxzr5ZdfFgBEYWGh1vaioiLh6uoqXnjhBa3tP/30k2jRooXW9tjYWAFArFmzptF232jevHkCgDhx4oQ4f/68KCwsFGvXrhXu7u7Cz89PVFdXCyGE2LBhg1bdzp07J5RKpbjnnntEbW2tdLxVq1YJAGL9+vXStvj4eNG5c2eD6kNEQrB7joiMcvz4cTz11FOIiYlBcnKyUfvWZzKqqqr0lluwYAGys7PRt29ffPLJJ5g1axaioqIQGRmp1SW4detWtG3bFlOmTGlwDIVCIf2/p6en9P9//fUXNBoNBg8ejIKCAqPqf7Nt27ahrq4OI0eOxIULF6Q/f39/hIWF4YsvvtAq7+7ujgkTJhj1Gt26dUO7du0QEhKCJ554Al27dsWuXbsaHQv12WefoaamBmlpaXBx+fsUP2nSJHh7e2PXrl3GN5SIALB7joiMUFJSgvj4eKhUKnzwwQdwdXU1av+LFy8CALy8vJosO3r0aIwePRqVlZU4cOAAsrKykJ2djYSEBBw5cgQeHh44ffo0unXrhhYt9J/Kdu7cicWLF+Pw4cO4cuWKtP3GwMoUJ0+ehBACYWFhOp93c3PTetyhQ4cG48OasnXrVnh7e8PNzQ0dO3aUuhwb89tvvwG4HmzdSKlUokuXLtLzRGQ8Bk1EZBCNRoN7770XFRUV+PrrrxEYGGj0MeqXKOjatavB+3h7e+Puu+/G3XffDTc3N2zcuBEHDhxAbGysQft//fXXuP/++3HnnXfi9ddfR0BAANzc3LBhwwZkZ2cb3YYb1dXVQaFQ4D//+Y/OAPLmMUI3ZrwMdeedd0rjqIjIthg0EVGTLl++jISEBPzyyy/47LPP0KNHD6OPUVtbi+zsbLRs2RKDBg0yqR79+vXDxo0bUVxcDOD6QO0DBw7g6tWrDbI69bZu3QoPDw988skncHd3l7Zv2LChQdnGMk+NbQ8NDYUQAiEhIbj11luNbY5FdO7cGQBw4sQJdOnSRdpeU1ODwsJCxMXFSduam2kjcjYc00REetXW1iIpKQl5eXnYsmWLSWsD1dbW4umnn8axY8fw9NNPw9vbu9Gyly5dQl5ens7n/vOf/wD4u+tpxIgRuHDhAlatWtWgrPj/xR9dXV2hUChQW1srPVdUVKRzEctWrVrpXMCyVatWANDguQcffBCurq5YsGBBg8UmhRAoKyvT3UgLiouLg1KpxIoVK7Tq9NZbb0Gj0WjNWmzVqpXe5R+ISBszTUSk1zPPPIOPP/4YCQkJKC8vb7CY5c0LWWo0GqnMpUuXcOrUKWzbtg2nT5/GqFGjsGjRIr2vd+nSJQwcOBADBgzAsGHDEBQUhIqKCmzfvh1ff/01EhMT0bdvXwDAuHHj8PbbbyM9PR3fffcdBg8ejOrqanz22Wf45z//iQceeADx8fFYvnw5hg0bhjFjxuDcuXNYvXo1unbtih9//FHrtaOiovDZZ59h+fLlCAwMREhICKKjoxEVFQUAmDVrFkaNGgU3NzckJCQgNDQUixcvxowZM1BUVITExER4eXmhsLAQH374IVJSUvDss8826/03Vrt27TBjxgwsWLAAw4YNw/33348TJ07g9ddfx+233671eUVFRWHz5s1IT0/H7bffjtatWyMhIcGq9SWyK7acukdE8lc/Vb6xP31lW7duLcLCwsSjjz4qPv30U4Ne7+rVq+LNN98UiYmJonPnzsLd3V20bNlS9O3bV7z88sviypUrWuUvXbokZs2aJUJCQoSbm5vw9/cXDz30kDh9+rRU5q233hJhYWHC3d1dhIeHiw0bNkhT+m90/PhxceeddwpPT08BQGv5gUWLFokOHToIFxeXBssPbN26VQwaNEi0atVKtGrVSoSHh4unnnpKnDhxQuu90bccw83q63f+/Hm95W5ecqDeqlWrRHh4uHBzcxN+fn7iySefFH/99ZdWmYsXL4oxY8aINm3aCABcfoCoCQohzHADIyIiIiIHxzFNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAC5uaaK6ujqcPXsWXl5evBUBERGRnRBCoKqqCoGBgXBxMS53xKDJRGfPnkVQUJCtq0FEREQm+P3339GxY0ej9mHQZCIvLy8A1990fffRIiIiIvmorKxEUFCQdB03BoMmE9V3yXl7ezNoIiIisjOmDK3hQHAiIiIiAzBoIiIiIjIAgyYiIiIiA3BMExERkRXV1tbi6tWrtq6Gw3Jzc4Orq6tFjs2giYiIyAqEECgpKUFFRYWtq+Lw2rRpA39/f7Ovo8igiYiIyArqA6b27dujZcuWXBjZAoQQuHTpEs6dOwcACAgIMOvxGTQRERFZWG1trRQw+fr62ro6Ds3T0xMAcO7cObRv396sXXUcCE5ERGRh9WOYWrZsaeOaOIf699ncY8cYNBEREVkJu+Ssw1LvM7vn7FRZWRlqamoafV6pVDIFTEREZEYMmuxQWVkZVq1a1WS51NRUBk5ERERmwu45O3Rzhkmj8UJhYTA0Gi+95Ui/srIyFBcXN/pXVlZm6yoSEVnd+PHjoVAooFAo4ObmBj8/P9x9991Yv3496urqDD5OVlYW2rRpY7mKWgEzTXauoKAvduwYDiFcoFDUISFhJyIjD9m6WnaH2TsikjtbDssYNmwYNmzYgNraWpSWliInJwdTp07FBx98gI8//hgtWjhHOGHzTNPq1asRHBwMDw8PREdH47vvvtNbfsuWLQgPD4eHhwd69+6N3bt3az2/bds23HPPPfD19YVCocDhw4e1ni8vL8eUKVPQrVs3eHp6olOnTnj66aeh0WjM3TSL02i8pIAJAIRwwY4dwxtknKhphmblmL0jIluo/2G3bt26Rv9WrVplsYy4u7s7/P390aFDB0RGRmLmzJn46KOP8J///AdZWVkAgOXLl6N3795o1aoVgoKC8M9//hMXL14EAOzduxcTJkyARqORslbz588HALzzzjvo168fvLy84O/vjzFjxkjrLMmNTYOmzZs3Iz09HfPmzUNBQQH69OkDtVrd6Ju1f/9+jB49GhMnTsShQ4eQmJiIxMREHDlyRCpTXV2NQYMGYenSpTqPcfbsWZw9exbLli3DkSNHkJWVhZycHEycONEibbSk8nJfKWCqJ4QLyst9bFQjx9FYlycRkS3I8YfdXXfdhT59+mDbtm0AABcXF6xYsQI///wzNm7ciM8//xzPPfccAGDgwIHIzMyEt7e3NOTh2WefBXB9WYBFixbhhx9+wPbt21FUVITx48dbrR3GsGk+bfny5Zg0aRImTJgAAFizZg127dqF9evXY/r06Q3Kv/baaxg2bBimTZsGAFi0aBH27NmDVatWYc2aNQCAsWPHAgCKiop0vmavXr2wdetW6XFoaCheeOEFPProo7h27ZpdpRh9fMqgUNRpBU4KRR18fMptWCv7xy5PIiLDhIeH48cffwQApKWlSduDg4OxePFiTJ48Ga+//jqUSiVUKhUUCgX8/f21jvHYY49J/9+lSxesWLECt99+Oy5evIjWrVtbpR2GslmmqaamBvn5+YiLi/u7Mi4uiIuLQ15ens598vLytMoDgFqtbrS8oTQaDby9vfUGTFeuXEFlZaXWn62pVFVISNgJheL6QLz6C7xKVWXjmtkvdnkSERlOCCGtifTZZ5/hH//4Bzp06AAvLy+MHTsWZWVluHTpkt5j5OfnIyEhAZ06dYKXlxdiY2MBAGfOnLF4/Y1ls7TKhQsXUFtbCz8/P63tfn5+OH78uM59SkpKdJYvKSlpVj0WLVqElJQUveUyMjKwYMECk1/HUiIjDyE09BTKy33g41POgKmZ9HV58r0lItJ27NgxhISEoKioCMOHD8eTTz6JF154AT4+Pvjmm28wceJE1NTUNLoSenV1NdRqNdRqNd599120a9cOZ86cgVqtluUYUpsPBLelyspKxMfHo0ePHtKAtMbMmDEDGo1G+vv999+tU0kdlEql1mOVqgohIb81uKjfXI6aVt/leSN2eRIRNfT555/jp59+wogRI5Cfn4+6ujq88sorGDBgAG699VacPXtWq7xSqURtba3WtuPHj6OsrAxLlizB4MGDER4eLttB4IANM01t27aFq6srSktLtbaXlpY26O+s5+/vb1R5faqqqjBs2DB4eXnhww8/hJubm97y7u7ucHd3N/p1LMHX1xepqalcEdwC6rs8bx7TxCwTkWPjXRb0u3LlCkpKSrSWHMjIyMDw4cMxbtw4HDlyBFevXsXKlSuRkJCAffv2SWON6wUHB+PixYvIzc1Fnz590LJlS3Tq1AlKpRIrV67E5MmTceTIESxatMhGrWyazYImpVKJqKgo5ObmIjExEQBQV1eH3NxcpKam6twnJiYGubm5WoPN9uzZg5iYGKNeu7KyEmq1Gu7u7vj444/h4eFhajNsxpm/vJZwY1ZOX5cns3dEjofrtDUtJycHAQEBaNGiBW655Rb06dMHK1asQHJyMlxcXNCnTx8sX74cS5cuxYwZM3DnnXciIyMD48aNk44xcOBATJ48GUlJSSgrK8O8efMwf/58ZGVlYebMmVixYgUiIyOxbNky3H///TZsbeMUQghhqxffvHkzkpOTsXbtWvTv3x+ZmZl4//33cfz4cfj5+WHcuHHo0KEDMjIyAFxfciA2NhZLlixBfHw8Nm3ahBdffBEFBQXo1asXgOvrMJ05cwZnz56VynTr1g3+/v7w9/dHZWUl7rnnHly6dAkffvghWrVqJdWnXbt2cHV1NajulZWVUKlU0iBysn/8pUnknIqLi7Fu3TrpsUbjhfJyX/j4lGn9aEpJSUFAQIBJr3H58mUUFhYiJCTEpB/qDOyMo+/9bs7126bz65OSknD+/HnMnTsXJSUliIiIQE5OjjTY+8yZM3Bx+XvY1cCBA5GdnY3Zs2dj5syZCAsLw/bt26WACQA+/vhjaQkDABg1ahQASBFtQUEBDhw4AADo2rWrVn0KCwsRHBxsqeaSzPFEQ0RyXXKEwzLkwaaZJnvGTBMRkWOozzRpNF7IzExrsPZdWlomVKoqm2aayDiWyjQ59ew5IiKierzLAjWFQRMRERG45Ag1jUETEREReJcFapr93GiNiIjIwniXBdKHQRMRETk1XXdZ0BUscZ02YtBEREROjdP5yVAMmoiIyOkxICJDcCA4ERER2czevXuhUChQUVFh8D7BwcHIzMy0WJ0aw6CJiIiIGjV+/HgoFApMnjy5wXNPPfUUFAoFxo8fb/2K2QCDJiIiItIrKCgImzZtwn//+19p2+XLl5GdnY1OnTrZsGbWxaCJiIiI9IqMjERQUBC2bdsmbdu2bRs6deqEvn37StuuXLmCp59+Gu3bt4eHhwcGDRqEgwcPah1r9+7duPXWW+Hp6YmhQ4eiqKiowet98803GDx4MDw9PREUFISnn34a1dXVFmufoRg0kU5lZWUoLi5u9K+srMzWVSQiclp//AF88cX1/1rLY489hg0bNkiP169fjwkTJmiVee6557B161Zs3LgRBQUF6Nq1K9RqNcrLr6+q/vvvv+PBBx9EQkICDh8+jMcffxzTp0/XOsbp06cxbNgwjBgxAj/++CM2b96Mb775BqmpqZZvZBM4e44aKCsrw6pVq5osl5qayhknRERW9tZbQEoKUFcHuLgA69YBEyda/nUfffRRzJgxA7/99hsAYN++fdi0aRP27t0LAKiursYbb7yBrKws3HvvvQCAN998E3v27MFbb72FadOm4Y033kBoaCheeeUVAEC3bt3w008/YenSpdLrZGRk4JFHHkFaWhoAICwsDCtWrEBsbCzeeOMNm97wmEETNXDzWiUajRfKy33h41OmteCbvjVNiIjI/P744++ACbj+3yeeANRqoGNHy752u3btEB8fj6ysLAghEB8fj7Zt20rPnz59GlevXsUdd9whbXNzc0P//v1x7NgxAMCxY8cQHR2tddyYmBitxz/88AN+/PFHvPvuu9I2IQTq6upQWFiI7t27W6J5BmHQRHoVFPTFjh3DIYSLdB+myMhDtq4WEZFTOnny74CpXm0tcOqU5YMm4HoXXX032erVqy3yGhcvXsQTTzyBp59+usFzth50zjFN1CiNxksKmABACBfs2DEcGo2XjWtGROScwsKud8ndyNUV6NrVOq8/bNgw1NTU4OrVq1Cr1VrPhYaGQqlUYt++fdK2q1ev4uDBg+jRowcAoHv37vjuu++09vv222+1HkdGRuLo0aPo2rVrgz9b38qGQRM1qrzcVwqY6gnhgvJyHxvViIjIuXXseH0Mk6vr9ceursDatdbJMl1/PVccO3YMR48ehWt9Jf5fq1at8OSTT2LatGnIycnB0aNHMWnSJFy6dAkT/3/Q1eTJk3Hy5ElMmzYNJ06cQHZ2NrKysrSO8/zzz2P//v1ITU3F4cOHcfLkSXz00UccCE7y5uNTBoWiTitwUijq4ONTbsNaERE5t4kTr49hOnXqeobJWgFTPW9v70afW7JkCerq6jB27FhUVVWhX79++OSTT3DLLbcAuN69tnXrVvzrX//CypUr0b9/f7z44ot47LHHpGPcdttt+PLLLzFr1iwMHjwYQgiEhoYiKSnJ4m1rikIIIWxdCXtUWVkJlUoFjUaj9x+QPSouLsa6desA6B/TlJKSgoCAAFtWlYjILly+fBmFhYUICQmx6ewvZ6Hv/W7O9ZuZJtIrMvIQQkNPobzcBz4+5Vqz54iIiJwJgyZq4OaBdipVlc5gydYD8oiIiKyJQRM14Ovri9TUVL3rMCmVSi5sSUREToVBE+nEgIiIiEgblxwgIiKyEs69sg5Lvc8MmoiIiCzMzc0NAHDp0iUb18Q51L/P9e+7ubB7joiIyMJcXV3Rpk0bnDt3DgDQsmVLKBQKG9fK8QghcOnSJZw7dw5t2rRpsABnczFoIiIisgJ/f38AkAInspw2bdpI77c5MWgicmJlZWWcJUlkJQqFAgEBAWjfvj2uXr1q6+o4LDc3N7NnmOoxaCJyUmVlZVi1alWT5VJTUxk4EZmRq6urxS7qZFkcCE7kpG7OMGk0XigsDIZG46W3HBGRs2KmiYj03mOQiIiuY6aJyMlpNF5SwAQAQrhgx47hDTJORETOjkETkZMrL/eVAqZ6QrigvNzHRjUiIpInBk1ETs7HpwwKRZ3WNoWiDj4+5TaqERGRPDFoInJyKlUVEhJ2SoFT/ZgmlarKxjUjIpIXDgQnIkRGHkJo6CmUl/vAx6ecARMRkQ4MmoiclFKp1HqsUlXpDJZuLkdE5KwYNBE5KV9fX6SmpnJFcCIiAzFoInJiDIiIiAzHgeBEREREBmDQRERERGQABk1EREREBmDQRERERGQABk1EREREBmDQRERERGQABk1EREREBmDQRERERGQAmwdNq1evRnBwMDw8PBAdHY3vvvtOb/ktW7YgPDwcHh4e6N27N3bv3q31/LZt23DPPffA19cXCoUChw8fbnCMy5cv46mnnoKvry9at26NESNGoLS01JzNIiIiIgdj06Bp8+bNSE9Px7x581BQUIA+ffpArVbj3LlzOsvv378fo0ePxsSJE3Ho0CEkJiYiMTERR44ckcpUV1dj0KBBWLp0aaOv+69//Qs7duzAli1b8OWXX+Ls2bN48MEHzd4+IiIichwKIYSw1YtHR0fj9ttvx6pVqwAAdXV1CAoKwpQpUzB9+vQG5ZOSklBdXY2dO3dK2wYMGICIiAisWbNGq2xRURFCQkJw6NAhRERESNs1Gg3atWuH7OxsPPTQQwCA48ePo3v37sjLy8OAAQMMqntlZSVUKhU0Gg28vb2NbToRERHZQHOu3zbLNNXU1CA/Px9xcXF/V8bFBXFxccjLy9O5T15enlZ5AFCr1Y2W1yU/Px9Xr17VOk54eDg6deqk9zhXrlxBZWWl1h8RERE5D5sFTRcuXEBtbS38/Py0tvv5+aGkpETnPiUlJUaVb+wYSqUSbdq0Meo4GRkZUKlU0l9QUJDBr0lERET2z+YDwe3FjBkzoNFopL/ff//d1lUiIiIiK2phqxdu27YtXF1dG8xaKy0thb+/v859/P39jSrf2DFqampQUVGhlW1q6jju7u5wd3c3+HWIiIjIsdgs06RUKhEVFYXc3FxpW11dHXJzcxETE6Nzn5iYGK3yALBnz55Gy+sSFRUFNzc3reOcOHECZ86cMeo4RERE5FxslmkCgPT0dCQnJ6Nfv37o378/MjMzUV1djQkTJgAAxo0bhw4dOiAjIwMAMHXqVMTGxuKVV15BfHw8Nm3ahO+//x7r1q2TjlleXo4zZ87g7NmzAK4HRMD1DJO/vz9UKhUmTpyI9PR0+Pj4wNvbG1OmTEFMTIzBM+fsUVlZGWpqahp9XqlUwtfX14o1IiIisi82DZqSkpJw/vx5zJ07FyUlJYiIiEBOTo402PvMmTNwcfk7GTZw4EBkZ2dj9uzZmDlzJsLCwrB9+3b06tVLKvPxxx9LQRcAjBo1CgAwb948zJ8/HwDw6quvwsXFBSNGjMCVK1egVqvx+uuvW6HFtlFWViYt66BPamoqAyciIqJG2HSdJntmT+s0FRcXa2XjGpOSkoKAgAAr1IiIiMg27HKdJrIdjcYLhYXB0Gi8bF0VIiIiu2HT7jmyvoKCvtixYziEcIFCUYeEhJ2IjDxk62oRERHJHjNNTkSj8ZICJgAQwgU7dgxnxomIiMgADJqcSHm5rxQw1RPCBeXlPjaqERERkf1g95wT8fEpg0JRpxU4KRR18PEpt2GtiJwblwMhsh8MmpyISlWFhISdDcY0qVRVtq4akVPiciBE9oVBkxNQKpXS/0dGHkJo6CmUl/vAx6dcK2C6sRwRWd7NGSaNxgvl5b7w8SnT+m7qy0QRkfUwaHICvr6+SE1NZRcAkYxxZiuR/DFochIMiIjkq7GZraGhp9h9TiQjDJqIiGxM38xWBk3kLOxhUgSDJiKZsocTCJkHZ7aSs7t5UkRj4/tsPSmCQRORDHFWlXPhzFZydjf+QNQ3vs/WkyIYNBHJEGdVOR99M1uJnIXcx/cxaCKSOc6qclw3L/OhUlXpvDBwORByFnIf38egiUjG5P6ri5qHy4EQaZP7+D4GTUQyJvdfXdR8DIiI/ib38X0MmohkTO6/uoiIzE3O4/tcmi5CRLZS/6tLoagDANn96iIisgSVqgohIb/J7lzHTBORzMn5VxcRkTkYOtnB1pMiGDQRyRBnVRGRM7GXSREKIYSwaQ3sVGVlJVQqFTQaDby9vW1dHXJAXBGciMj8mnP9ZqaJSKYYEBERyQsHghMREREZgEETERERkQEYNBEREREZgEETERERkQE4ENxOcWYVERGRdTFoskNlZWVYtWpVk+VSU1MZOBEREZkJu+fs0M0ZJo3GC4WFwdBovPSWIyIiItMx02TnCgr6NrgbdGTkIVtXi4iIyOEwaLJjGo2XFDABgBAu2LFjOEJDT/H+ZGSXOFaPiOSMQZMdKy/3lQKmekK4oLzch0ET2R2O1SMiueOYJjvm41MGhaJOa5tCUQcfn3Ib1YjIdByrR0Ryx0yTHVOpqpCQsLPBmCZmmcjecaweEckRgyY7Fxl5CKGhp1Be7gMfn3IGTGT3OFaPiOSKQZMdUiqVWo9VqiqdF5ObyxHZA47VIyK5YtBkh3x9fZGammrXs4w4S4oaUz9W78bAiWP1iEgOGDTZKXsOKJx1lhQDRcNwrB4RyRWDJrI6XbOkyst94eNTpnVhdKRZUtYKFB0lMONYPSKSIwZNZFPOMkvKGoGivWfwOFaPiOSOQRPZjLPOkrJUoGjvGTxHGKtHRI6NQRPZjDPOkrJWoGivGTwGREQkZ1wRnGzGGVc01xcomktjgdnNK2sTEZFxGDSRzdTPkqoPnJxhlpQ1AkVrBGZERM6I3XNkU842S8oa0+m5zhERGcJRZttaE4MmsjpnnyVl6UCR6xwRUVPsfbatrTBoIqtzxllS1g4UnS2DR0TGsffZtrZi86Bp9erVePnll1FSUoI+ffpg5cqV6N+/f6Plt2zZgjlz5qCoqAhhYWFYunQp7rvvPul5IQTmzZuHN998ExUVFbjjjjvwxhtvICwsTCrzyy+/YNq0adi3bx9qampw2223YdGiRRg6dKhF20p/c6SAyBDWCBSdPYNHRKax19m2tmDToGnz5s1IT0/HmjVrEB0djczMTKjVapw4cQLt27dvUH7//v0YPXo0MjIyMHz4cGRnZyMxMREFBQXo1asXAOCll17CihUrsHHjRoSEhGDOnDlQq9U4evQoPDw8AADDhw9HWFgYPv/8c3h6eiIzMxPDhw/H6dOn4e/vb9X3gJyHpQNFZ8zgEVHzOOt6eaZSCCGErV48Ojoat99+u9SvWldXh6CgIEyZMgXTp09vUD4pKQnV1dXYuXOntG3AgAGIiIjAmjVrIIRAYGAgnnnmGTz77LMAAI1GAz8/P2RlZWHUqFG4cOEC2rVrh6+++gqDBw8GAFRVVcHb2xt79uxBXFycQXWvrKyESqWCRqOBt7d3c98KIiIiqykuLsa6detQWBiMjRuTGzyfnJyFkJDfkJKSgoCAABvU0HKac/222ZIDNTU1yM/P1wpSXFxcEBcXh7y8PJ375OXlNQhq1Gq1VL6wsBAlJSVaZVQqFaKjo6Uyvr6+6NatG95++21UV1fj2rVrWLt2Ldq3b4+oqKhG63vlyhVUVlZq/REREdkzZ1wvrzlsFjRduHABtbW18PPz09ru5+eHkpISnfuUlJToLV//X31lFAoFPvvsMxw6dAheXl7w8PDA8uXLkZOTg1tuuaXR+mZkZEClUkl/QUFBxjWYiIhIZpxxvbzmsPlAcGsTQuCpp55C+/bt8fXXX8PT0xP/+7//i4SEBBw8eLDRNOSMGTOQnp4uPa6srGTgREREdo+zbQ1ns6Cpbdu2cHV1RWlpqdb20tLSRgdj+/v76y1f/9/S0lKt4Ke0tBQREREAgM8//xw7d+7EX3/9JfVlvv7669izZw82btyocywVALi7u8Pd3d34hhIREckMZ9uaxmZBk1KpRFRUFHJzc5GYmAjg+kDw3NxcpKam6twnJiYGubm5SEtLk7bt2bMHMTExAICQkBD4+/sjNzdXCpIqKytx4MABPPnkkwCAS5cuAbg+fupGLi4uqKvT7tclIiJyRJxtaxqbds+lp6cjOTkZ/fr1Q//+/ZGZmYnq6mpMmDABADBu3Dh06NABGRkZAICpU6ciNjYWr7zyCuLj47Fp0yZ8//33WLduHYDr45XS0tKwePFihIWFSUsOBAYGSoFZTEwMbrnlFiQnJ2Pu3Lnw9PTEm2++icLCQsTHx9vkfSAiIrI2BkTGs2nQlJSUhPPnz2Pu3LkoKSlBREQEcnJypIHcZ86c0coIDRw4ENnZ2Zg9ezZmzpyJsLAwbN++XVqjCQCee+45VFdXIyUlBRUVFRg0aBBycnKkNZratm2LnJwczJo1C3fddReuXr2Knj174qOPPkKfPn2s+wYQERGR3bDpOk32jOs0ERER2R+7XKeJiIiIyJ443ZIDREREzVVWVsZB1E6IQRMREZERysrKpNt/6ZOamsrAycGwe46IiMgIN2eYNBovFBYGQ6Px0luO7B8zTURERCYqKOiLHTuGQwgX6RYkkZGHbF0tshBmmoiIiEyg0XhJARMACOGCHTuGN8g4keNg0ERERGSC8nJfKWCqJ4QLyst9bFQjsjQGTURERCbw8SmDQqF9+y2Fog4+PuU2qhFZGoMmIiIiE6hUVUhI2CkFTvVjmnTd+JYcAweCExERmSgy8hBCQ0+hvNwHPj7lDJgcHIMmIiIiIyiVSq3HKlWVzmDp5nJk/xg0ERERGcHX1xepqalcEdwJMWgiIiIyEgMi58SB4EREREQGYNBEREREZAAGTUREREQGYNBEREREZAAGTUREREQGYNBEREREZAAGTUREREQGYNBEREREZAAGTUREREQGYNBEREREZAAGTUREREQGYNBEREREZAAGTUREREQGMCpo+uOPP3DhwgXp8ddff41HHnkEgwcPxqOPPoq8vDyzV5CIiIhIDowKmkaMGIFvv/0WAPDRRx9hyJAhuHjxIu644w5cunQJsbGx2Llzp0UqSkRERGRLCiGEMLRw69at8dNPPyEkJAQDBgzA//zP/+D555+Xnl+1ahXWr1+PgoICi1RWTiorK6FSqaDRaODt7W3r6hAREZEBmnP9NirT1KJFC1RVVQEACgsLce+992o9f++99+LEiRNGVYCIiIjIHhgVNMXGxuK9994DAPTt2xd79+7Vev6LL75Ahw4dzFY5IiIiIrloYUzhJUuWYPDgwTh79iwGDRqEWbNm4eDBg+jevTtOnDiBzZs3Y82aNZaqKxEREZHNGDWmCQBOnz6N2bNnY9euXbh48SKA6912t99+O6ZNm4bExERL1FN2OKaJiIjI/jTn+m100FRPCIFz586hrq4Obdu2hZubmymHsVsMmoiIiOxPc67fRnXP3UihUMDPz8/U3YmIiIjsilFBU3p6ukHlli9fblJliIiIiOTKqKDp0KFDWo+/+eYbREVFwdPTU9qmUCjMUzMiIiIiGTEqaPriiy+0Hnt5eSE7OxtdunQxa6WIiIiI5IY37CUiIiIyAIMmIiIiIgMwaCIiIiIygFFjmn788Uetx0IIHD9+XFrkst5tt93W/JoREZFdKCsrQ01NTaPPK5VK+Pr6WrFGRJZh1OKWLi4uUCgU0LVL/XaFQoHa2lqzVlKOuLglEdH1gGnVqlVNlktNTWXgRLJgtcUtCwsLjTo4ERE5tpszTBqNF8rLfeHjUwaVqqrRckT2yKigqXPnzpaqBxER2bmCgr7YsWM4hHCBQlGHhISdiIw81PSORHbCpIHgdXV1jW4/c+ZMsypERET2R6PxkgImABDCBTt2DIdG42XjmhGZj1FBU2VlJUaOHIlWrVrBz88Pc+fO1Rq/dP78eYSEhJi9kkREJG/l5b5SwFRPCBeUl/vYqEZE5mdU99ycOXPwww8/4J133kFFRQUWL16MgoICbNu2DUqlEgB0DhInIiLH5uNTBoWiTitwUijq4ONTbsNaEZmXUZmm7du3Y+3atXjooYfw+OOP4/vvv8f58+eRkJCAK1euADD+3nOrV69GcHAwPDw8EB0dje+++05v+S1btiA8PBweHh7o3bs3du/erfW8EAJz585FQEAAPD09ERcXh5MnTzY4zq5duxAdHQ1PT0/ccsstSExMNKrejq6srAzFxcWN/pWVldm6ikQkIypVFRISdkKhuD58o35M042DwYnsnVGZpvPnz2sNBm/bti0+++wzqNVq3Hffffjf//1fo1588+bNSE9Px5o1axAdHY3MzEyo1WqcOHEC7du3b1B+//79GD16NDIyMjB8+HBkZ2cjMTERBQUF6NWrFwDgpZdewooVK7Bx40aEhIRgzpw5UKvVOHr0KDw8PAAAW7duxaRJk/Diiy/irrvuwrVr13DkyBGj6u7IOIWYiEwRGXkIoaGnUF7uAx+fcgZM5HCMWqcpPDwcy5cvx3333ae1/eLFi7jnnntw6dIl/PTTTwav0xQdHY3bb79dukDX1dUhKCgIU6ZMwfTp0xuUT0pKQnV1NXbu3CltGzBgACIiIrBmzRoIIRAYGIhnnnkGzz77LABAo9HAz88PWVlZGDVqFK5du4bg4GAsWLAAEydONLTpDTjyOk3FxcVYt26d9LixKcQpKSkICAiwRRXtEhcAJEfEH1lkb6y2TtPdd9+NDRs2NAiaWrdujU8++QR33323wceqqalBfn4+ZsyYIW1zcXFBXFwc8vLydO6Tl5eH9PR0rW1qtRrbt28HcH0dqZKSEsTFxUnPq1QqREdHIy8vD6NGjUJBQQH+/PNPuLi4oG/fvigpKUFERARefvllKVuly5UrV6QuSOD6m+4MOIXYPHhhIUfl6+uL1NRU/iAgp2BU0LRw4UIUFxfrfM7Lywt79uxBQUGBQce6cOECamtr4efnp7Xdz88Px48f17lPSUmJzvIlJSXS8/XbGivz66+/AgDmz5+P5cuXIzg4GK+88gqGDBmCX375BT4+umd6ZGRkYMGCBQa1zVE0NoU4NPQU0+5G4gKA5MgYEJGzMGog+KFDh/DQQw/pzLJoNBoMGDDA6IHg1la/xtSsWbMwYsQIREVFYcOGDVAoFNiyZUuj+82YMQMajUb6+/33361VZZvhFGLLKCjoi8zMNGzcmIzMzDQUFPS1dZWIiMgARgVNmZmZmDRpks4+QJVKhSeeeAKvvvqqQcdq27YtXF1dUVpaqrW9tLQU/v7+Ovfx9/fXW77+v/rK1I/B6dGjh/S8u7s7unTpondhTnd3d3h7e2v9Obr6KcQ34hTi5uECgERE9suooOmHH37AsGHDGn3+nnvuQX5+vkHHUiqViIqKQm5urrStrq4Oubm5iImJ0blPTEyMVnkA2LNnj1Q+JCQE/v7+WmUqKytx4MABqUxUVBTc3d1x4sQJqczVq1dRVFTE28TchFOIzY/ZOyLnxGVcHINRY5pKS0vh5ubW+MFatMD58+cNPl56ejqSk5PRr18/9O/fH5mZmaiursaECRMAAOPGjUOHDh2QkZEBAJg6dSpiY2PxyiuvID4+Hps2bcL3338vzfRSKBRIS0vD4sWLERYWJi05EBgYKK3D5O3tjcmTJ2PevHkICgpC586d8fLLLwMAHn74YWPeDqfAKcTmxQUAiZwPJ4I4DqOCpg4dOuDIkSPo2rWrzud//PFHo6agJyUl4fz585g7d640iy0nJ0cayH3mzBm4uPx9cRk4cCCys7Mxe/ZszJw5E2FhYdi+fbvWrLfnnnsO1dXVSElJQUVFBQYNGoScnBxpjSYAePnll9GiRQuMHTsW//3vfxEdHY3PP/8ct9xyizFvh8OqX929nkpVpTNYurkcNa0+e3fzjEQGo0SOixNBHIdR6zRNmTIFe/fuxcGDB7WCEAD473//i/79+2Po0KFYsWKF2SsqN468ThPANYXMTffaVw2zd1z7isjx3Pj917eMC7//1mG1dZpmz56Nbdu24dZbb0Vqaiq6desGADh+/DhWr16N2tpazJo1y6gKkDwxIDIvZu+IiMu42D+jgiY/Pz/s378fTz75JGbMmCHdnFehUECtVmP16tUN1kgiIi4ASET6J4LcHDQx2y9PRgVNANC5c2fs3r0bf/31F06dOgUhBMLCwjgeiKgJPMEROTdDJ4Jw4Lh8GbXkwI1uueUW3H777ejfvz8DJiIioiYYuoyLoQPCOXDc+ozONBEREZFpTFnGpbHZdmR9DJqIiIgsqDkTQXjTdHlh0ERERGQkYwZqmzoRhLPt5IdBE5GJOLuFyDmZMlDblHOBMbPtTMFzmPEYNBGZgLNbiJyXtQZqW/K2SzyHmcbk2XNEzkzXbREKC4Oh0XjpLUdEjqex739zWfKm6TyHmYaZJqJm4kBNIudlie//jQPC9c22M9cdBHgOMxyDJtKJfd2G4UBNIudlqe+/Ne8gwHOYcRg0UQPs6zacpQdqEpF8WfL7b61zK89hxuGYJmqAfd2Gqx+oeSNzDdQkInlzhO+/I7TBmhg0kV4FBX2RmZmGjRuTkZmZhoKCvraukqxYcqAmEcmbI3z/HaEN1sTuOWoU+7oNY8ptEchxcTyg47P2QG1L4znMcAyaqFHs625cc26LQI7LWccDOlugaM2B2pbCc5hpGDRRoyy5sJq9c4STJpmfrvGAum606kjjAZ01ULT3tvAcZhoGTdSo+r7um9fvcPYsUz2eTEgfZ1n7xhkDRUfBc5jxGDSRXuzrJjKes44HdJZAkZwXZ89RA7r6ukNCfmtwsmdfN5Fu+sYDOqrGAkVz31qEyJaYaaIG2NdN1DzOOB6QE0fIGTBoIp0YEBGZzhnHAzpjoEjOh0ETEZEFONt4QGcMFMn5MGgiIjITZ1/7xtkCRXI+DJqIiMzEGccDOnugSM5FIYQQtq6EPaqsrIRKpYJGo4G3t7etq0NEZDNyXBFcjnUieWjO9ZuZJqL/x5MskWnk9r1w1lXKyfIYNBGBJ1kiR8JVyslSGDQRgSdZIkfFVcrJnBg0Ed2EJ1kix+Cst7Mhy2HQRDo56/genmSJHAdXKSdzY9BEDdw8vqexripHHN/DkyyR4+Aq5WRuDJqogRszTPq6qhxxfA9PskSOg6uUk7kxaKJGOWNXFU+yRI6Fq5STOTFookY5a1cVT7JExpHbGEiuUk6WwqCJGuVMXVU8yRKZRo5rnDnj7WzIOhg0UaOcqauKJ1ki08h1jTN+V8kSGDSRXs7UVcWTLOkit64nOeMaZ+ToGDRRkxrrqiJydHLsepIrZ5w4Qs7Hpeki5GwMHbfD8T3k6HR1PRUWBkOj8dJbzhnpmzhC5CiYaaIGOL6HqCF2PennTBNHyHkxaCKdGBAR/Y1dT01zpokj5LwYNBERNcHe1yyz1mB2Z5o4Qs6JQRMRURPsuevJ0oPZucYZORMGTURETbDnridLr6PEMZD2y9IZSEdcroNBExGRARyh68lSg9nt7cJHls9AOupyHbJYcmD16tUIDg6Gh4cHoqOj8d133+ktv2XLFoSHh8PDwwO9e/fG7t27tZ4XQmDu3LkICAiAp6cn4uLicPLkSZ3HunLlCiIiIqBQKHD48GFzNYmIHICurqeQkN8aBEz20PXU2GD2m5dPIOdg6eU0HHW5DptnmjZv3oz09HSsWbMG0dHRyMzMhFqtxokTJ9C+ffsG5ffv34/Ro0cjIyMDw4cPR3Z2NhITE1FQUIBevXoBAF566SWsWLECGzduREhICObMmQO1Wo2jR4/Cw8ND63jPPfccAgMD8cMPP1ilvURkPxyp68neB7OT5Vh6OQ1HWq7D5pmm5cuXY9KkSZgwYQJ69OiBNWvWoGXLlli/fr3O8q+99hqGDRuGadOmoXv37li0aBEiIyOlNKAQApmZmZg9ezYeeOAB3HbbbXj77bdx9uxZbN++XetY//nPf/Dpp59i2bJllm4mEdkpX19fBAQENPpnDwET8Pdg9hvZy2B2shxLZyAdLcNp06CppqYG+fn5iIuLk7a5uLggLi4OeXl5OvfJy8vTKg8AarVaKl9YWIiSkhKtMiqVCtHR0VrHLC0txaRJk/DOO++gZcuWTdb1ypUrqKys1PojItsqKytDcXFxo39lZWW2rqJs1A9mrw+c7GkwO1mOpVdyd7SV4m3aPXfhwgXU1tbCz89Pa7ufnx+OHz+uc5+SkhKd5UtKSqTn67c1VkYIgfHjx2Py5Mno168fioqKmqxrRkYGFixYYFC7iMjyHHWgaVOaMyPJEQazk3lZejkNe16uQxebj2myhZUrV6KqqgozZswweJ8ZM2YgPT1delxZWYmgoCBLVI+IDGDpqfRyZEqgyHWUSB9LL6dhz8t16GLToKlt27ZwdXVFaWmp1vbS0lL4+/vr3Mff319v+fr/lpaWIiAgQKtMREQEAODzzz9HXl4e3N3dtY7Tr18/PPLII9i4cWOD13V3d29QnojkwZEGmupjSqDoSIPZyTIsnYF0pAynTYMmpVKJqKgo5ObmIjExEQBQV1eH3NxcpKam6twnJiYGubm5SEtLk7bt2bMHMTExAICQkBD4+/sjNzdXCpIqKytx4MABPPnkkwCAFStWYPHixdL+Z8+ehVqtxubNmxEdHW3+hhKRQUzpenLW+8IZEygyIKKbWToD6agZTpt3z6WnpyM5ORn9+vVD//79kZmZierqakyYMAEAMG7cOHTo0AEZGRkAgKlTpyI2NhavvPIK4uPjsWnTJnz//fdYt24dAEChUCAtLQ2LFy9GWFiYtORAYGCgFJh16tRJqw6tW7cGAISGhqJjx45WajkR3cjUMUrOOJXeWQNFMh9LZyAdNcNp86ApKSkJ58+fx9y5c1FSUoKIiAjk5ORIA7nPnDkDF5e/T4gDBw5EdnY2Zs+ejZkzZyIsLAzbt2+X1mgCrq+9VF1djZSUFFRUVGDQoEHIyclpsEYTEcmHqWOUHG2gqSGcMVAk87N0wGJvAZEhbB40Add/OTbWHbd3794G2x5++GE8/PDDjR5PoVBg4cKFWLhwoUGvHxwcDCGEQWWJyPKM6XpytIGmhnDGQJFIDmQRNBER1TOl68mRBpoawhkDRSI5YNBERLJiaNeToww0NXXdJWcLFInkgEETmUVzFtwjupGhXU+OMNDU2MHvjhIoEtkrBk3UbDef+BsbwOtoKzOTZRjT9WTv/56MHfzuCIEikT1j0ETNduMJXN8AXkdamZksyxm7ngwd/M6AiMh2bHrDXnIsjnY3a7KuS5cu6diqMLCcfeN3h8g+MNNEZsO1Y6g5WrZsKf2/vqzLjeUcBb87RPaBmSYym/oBvDfi2jFkLGfMuvC7Q2QfGDSR2dQP4K0/+XPtGDKFvqyLo+J3h8g+sHuOzMoZB/CSeTnratf87hDJH4MmMrvG1o4hMoQzrXbNdZeI/mYP6/0xaKJmM/SEzhM/GcpZsi5cd4noOmMXerUVBk3UbDzxkyU4S8aS3wsi4xd6tRUGTWQWPPFTczFjSUSA4Qu92gKDJiKSBWYsiaixJUdCQ0/JIvPMoImIZIMBEZFzk/tCr1yniYiIiGRB7gu9MmgiIiIiWZD7Qq/sniMisiF7WJuGyJrkvOQIgyYiIhuxl7VpiCzNXhZ6ZdBERGQj9rI2DZGl2cvsWQZNREQyIOe1aYiswdYBkSEYNJFOHGdBZD1yX5uGiK5j0EQNcJwFkXXJfW0aIrqOSw5QA7rGWRQWBkOj8dJbjohMI/e1aYjoOmaaSC+OsyCyvPq1aW7+rjHLRCQvDJqoURxnQWQ9cl6bhoiuY9BEjeI4C2ouTijQz17WpiGi6xg0UaPqx1ncGDhxnAUZihMKmmattWkYvBKZB4MmahTHWVBzcOFGw1g6WGHwSmQ+DJpIL46zIHPghALbYfBKZD4MmqgBjrMgc+KEAvlg8ErUPAyaqAF7uQcQ2QdOKJAHBq9EzcegiXRiQETmwgkF8sDglaj5GDQRkUVxQoF+1prZxuCVqPkYNBGRxXFCgW7WnNnG4JWo+Rg0EZFFcEJB06w9s43BK1HzMGgiIovghALjWGpmG4NXeeACo46BQRMRWQwvAoax5Mw2Bq+2xwVGHQeDJiIiG7P0zDZeiG3L0O5VLjAqfy5NFyEiIkuqn9l2I85sc1wajRcKC4Oh0XjZuipkJGaaiIhsjDPbnIc9r8rOcVkMmoiIZEFOM9t4cbQMe16VneOyrmPQRERkI3Kc2caLo+XY86rsvPHzdQyaiMhimLHQT44z23hxtBxHWZXdnrsYm4tBk5PgxYusjRkLw1ij7aZ+/5354mgJjjB2zZ67GM2BQZMT4MWLbIEZC3kw9fvv7BdHc7qxe1Xf2DV7WGDUnrsYzUEWQdPq1avx8ssvo6SkBH369MHKlSvRv3//Rstv2bIFc+bMQVFREcLCwrB06VLcd9990vNCCMybNw9vvvkmKioqcMcdd+CNN95AWFgYAKCoqAiLFi3C559/jpKSEgQGBuLRRx/FrFmz7OIfrbF48SJbs+eMhb1naU39/jv7xdGc5NgNaypH6WI0lc2Dps2bNyM9PR1r1qxBdHQ0MjMzoVarceLECbRv375B+f3792P06NHIyMjA8OHDkZ2djcTERBQUFKBXr14AgJdeegkrVqzAxo0bERISgjlz5kCtVuPo0aPw8PDA8ePHUVdXh7Vr16Jr1644cuQIJk2ahOrqaixbtszab4FV2fPFi+yTPWcsHC1La8z339kvjuZmD/8+DOEIXYzNYfPFLZcvX45JkyZhwoQJ6NGjB9asWYOWLVti/fr1Osu/9tprGDZsGKZNm4bu3btj0aJFiIyMlE5sQghkZmZi9uzZeOCBB3Dbbbfh7bffxtmzZ7F9+3YAwLBhw7Bhwwbcc8896NKlC+6//348++yz2LZtm7WabRONXby4wBpZkr6MhdzpytLoWpTQHrK0xn7/6y+O9YtuOtvFkRoXGXkIaWmZSE7OQlpaplP98LZppqmmpgb5+fmYMWOGtM3FxQVxcXHIy8vTuU9eXh7S09O1tqnVaikgKiwsRElJCeLi4qTnVSoVoqOjkZeXh1GjRuk8rkajgY9P4yfxK1eu4MqVK9LjysrKJtsnN0y3ky04SsbC3rO0pnz/5bR2FNmWHJfHsAWbBk0XLlxAbW0t/Pz8tLb7+fnh+PHjOvcpKSnRWb6kpER6vn5bY2VudurUKaxcuVJv11xGRgYWLFigv0Ey5ygXL2dh72Np6jlCOt+euxjrGfr958XRMI7y/TSUI43Lag6bj2mytT///BPDhg3Dww8/jEmTJjVabsaMGVoZrsrKSgQFBVmjimbjCBcvZ+FoY2nsPWNhySyttS6+hn7/eXFsmqN9Pw3lSG0xlU2DprZt28LV1RWlpaVa20tLS+Hv769zH39/f73l6/9bWlqKgIAArTIRERFa+509exZDhw7FwIEDsW7dOr11dXd3h7u7u0HtkjN7v3g5C0eY8egIGQuNRgOg6SyNRqPROt8YytoXX0O//7w46ucI308yjU2DJqVSiaioKOTm5iIxMREAUFdXh9zcXKSmpurcJyYmBrm5uUhLS5O27dmzBzExMQCAkJAQ+Pv7Izc3VwqSKisrceDAATz55JPSPn/++SeGDh2KqKgobNiwAS4uNh8TbzGOcPFyZvY6lsYRMhZXr14F8HeW5uOPh+P6/BntLE19OWNZ4+LL779l2ev3k0xj8+659PR0JCcno1+/fujfvz8yMzNRXV2NCRMmAADGjRuHDh06ICMjAwAwdepUxMbG4pVXXkF8fDw2bdqE77//XsoUKRQKpKWlYfHixQgLC5OWHAgMDJQCsz///BNDhgxB586dsWzZMpw/f16qT2MZLnvmCBcvZ2XvY2kc7d+UQgEIcf2/5mapi68p339nG69jKnv/fpLxbB40JSUl4fz585g7dy5KSkoQERGBnJwcaSD3mTNntLJAAwcORHZ2NmbPno2ZM2ciLCwM27dvl9ZoAoDnnnsO1dXVSElJQUVFBQYNGoScnBx4eHgAuJ6ZOnXqFE6dOoWOHTtq1UcIYYVWWx9PcPaJMx5tq0WL66fIpi6O9eVMZemLrzHff2cdr2MKfj+dj82DJuD6l6+x7ri9e/c22Pbwww/j4YcfbvR4CoUCCxcuxMKFC3U+P378eIwfP96UqhJZFWc82labNm0ANH1xrC9nKjldfDlex3D8fjofWQRNRJbgCF0MnPFoWxUVFQCavjhWVFSYNBC8nlwvvhyvox+/n86HQRM5JEfqYuCMR9u5du0agKYvjvXlTCXHiy/H6xiG30/nwqCJHJK9dzFwxpM81Q95tMTQR7ldfOXUZSg3/H46LwZN5PDssYtBrjMeHaHL0xhubm4A/s66/H27Tu2sS305Y8n54ivXLkM5kOv3kyyPQRM5NHvuYpDbCdeRujwNpVKpADSddakvZyw5X3zl2GUoJ47yb5yMw6CJHBq7GMzH3rs8m8OSWRc5X3zl1mVIZGsMmsihsYvBMuyxy7M55JR1MaWL1Jh95NxlSGRrDJpkwNnGiViTMRc7fg6Gsecuz+aQQ9bFlC5SY/eRc5chka0xaLIxZxwnYm2GXOz4ORjOmbo85ZZ1MaWL1JR9nP3fOFFjGDTZmDOPE7EkYy92/BwM50xdnnLOupjSReps3apE5sagSUZ4QjOf5lzs+DnoJ6fxPdZgbEBkjW5eU7pInbVblcicGDTJBE9o5mfKhYmfg2HkML5HjqzVzWtKF6kzdasSWYpL00XIGvSd0Mh6+Dk0TleXZ0jIbw0uuM48q0pXN29hYTA0Gi+95YxV30V6o6a6SE3Zh4i0MdMkE840TkTO+Dk0Ts7je+TIkt28pnSRyqlblTNVyV4xaJIJOZ3QnBk/B/14ITOMNbp5TekilUO3Kmeqkj1j0CQjcjihET8Haj5LjR8yZQkER1g2wRqY/SJDMGiyMbmd0JwVPwd5cJQLl6W6eU3pIpVzt6pcZqoy+0WGYtBkY3I+oTkTfg6250gXLkt285rSdkdZNsFS5Jr9Ivlh0CQDcr8AGMIRMgRyr5+jc7QLl71288p52QRrkEv2i+SJQRM1myNlCEge7PXC5QjdvNYKXuU4U1VO2S9H4Ag/pm/GoImazdEyBGRb9nzhcrRuXrktm2Bpcs1+2SNH/THNoInMyl4zBCQf9n7hsqcLgD5yXTbBkuSY/TKU3LI6jvpjmkETmY09ZwhIPuz5wuVI5LRsgrXIMftlCLlndRzpxzSDJjIbe88QkDzY64XL0chp2QRrklv2yxByzuo42o9pBk1kNs6WIbB0Olxu6XZrsscLl6OR27IJliTn7Jex5JbVcbQf0wyayGycKUNg6XS43NPtluBIFy5H4SzBq9yzX4aSY1bH0X5MM2gis3KWk6yl0+FyTrdbiqNcuOydswavcvt3ZUqmWY5ZHUf7Mc2giZrNWU+y9SydDrfk8eXWBSi3C5czYvBqe6ZmmuWa1XGkH9MMmqjZnPkka+l0uCWP74xdgKaQW2BpDY7WHntjaqZZTlkdR/0xzaCJzMJZT7KWTodb8viGdu05UhegsRhYkq0Zm2mWS1bHUX9MM2giagZLp8OtmW5v7NesM3PGsWUkH4Zmmq2V1TE262pvAZEhGDQRNYOl0+HWSrfLbZqyHPE9ImszNNNsjawOs67XMWgiaiZLp8MtfXw5TlOWG75HZAvGZJotHagw63odgyYiE1g6HW7NQZRynKYsN3yPyBbkNLD7Rs6cdWXQRGQCS6fDrTmIUq7TlOWE7xHZilwGdtdz9qwrgyYiE1k6HW6tcQFy/TUrJ3yPyJrkPF3f2bOuDJqInNSNJ1x9v2btbR0VS5HbL35yXHKeru/sWVcGTUROSs4nZrmQ8y9+cmxy/d45e9aVQRORE5PriVkuGFgSNeTMWVcGTUREejAgImLWtR6DJiIiItKLWdfrGDQRERFRkxw9IDKES9NFiIiIiIhBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGUAWQdPq1asRHBwMDw8PREdH47vvvtNbfsuWLQgPD4eHhwd69+6N3bt3az0vhMDcuXMREBAAT09PxMXF4eTJk1plysvL8cgjj8Db2xtt2rTBxIkTcfHiRbO3jYiIiByDzYOmzZs3Iz09HfPmzUNBQQH69OkDtVqNc+fO6Sy/f/9+jB49GhMnTsShQ4eQmJiIxMREHDlyRCrz0ksvYcWKFVizZg0OHDiAVq1aQa1W4/Lly1KZRx55BD///DP27NmDnTt34quvvkJKSorF20tERET2SSGEELasQHR0NG6//XasWrUKAFBXV4egoCBMmTIF06dPb1A+KSkJ1dXV2Llzp7RtwIABiIiIwJo1ayCEQGBgIJ555hk8++yzAACNRgM/Pz9kZWVh1KhROHbsGHr06IGDBw+iX79+AICcnBzcd999+OOPPxAYGNhkvSsrK6FSqaDRaODt7W2Ot4KIiIgsrDnXb5tmmmpqapCfn4+4uDhpm4uLC+Li4pCXl6dzn7y8PK3yAKBWq6XyhYWFKCkp0SqjUqkQHR0tlcnLy0ObNm2kgAkA4uLi4OLiggMHDuh83StXrqCyslLrj4iIiJyHTVcEv3DhAmpra+Hn56e13c/PD8ePH9e5T0lJic7yJSUl0vP12/SVad++vdbzLVq0gI+Pj1TmZhkZGViwYEGD7QyeiIiI7Ef9dduUjjbeRsVAM2bMQHp6uvT4zz//RI8ePRAUFGTDWhEREZEpqqqqoFKpjNrHpkFT27Zt4erqitLSUq3tpaWl8Pf317mPv7+/3vL1/y0tLUVAQIBWmYiICKnMzQPNr127hvLy8kZf193dHe7u7tLj1q1b4/fff4eXlxcUCoUBrTVMZWUlgoKC8Pvvvzv0WCm207GwnY6F7XQsztBOY9oohEBVVZVB45dvZtOgSalUIioqCrm5uUhMTARwfSB4bm4uUlNTde4TExOD3NxcpKWlSdv27NmDmJgYAEBISAj8/f2Rm5srBUmVlZU4cOAAnnzySekYFRUVyM/PR1RUFADg888/R11dHaKjow2qu4uLCzp27GhCqw3j7e3tsP+4b8R2Oha207GwnY7FGdppaBuNzTDVs3n3XHp6OpKTk9GvXz/0798fmZmZqK6uxoQJEwAA48aNQ4cOHZCRkQEAmDp1KmJjY/HKK68gPj4emzZtwvfff49169YBABQKBdLS0rB48WKEhYUhJCQEc+bMQWBgoBSYde/eHcOGDcOkSZOwZs0aXL16FampqRg1apRJkScRERE5PpsHTUlJSTh//jzmzp2LkpISREREICcnRxrIfebMGbi4/D3Jb+DAgcjOzsbs2bMxc+ZMhIWFYfv27ejVq5dU5rnnnkN1dTVSUlJQUVGBQYMGIScnBx4eHlKZd999F6mpqfjHP/4BFxcXjBgxAitWrLBew4mIiMi+CJKVy5cvi3nz5onLly/buioWxXY6FrbTsbCdjsUZ2mmtNtp8cUsiIiIie2Dz26gQERER2QMGTUREREQGYNBEREREZAAGTUREREQGYNBkBatXr0ZwcDA8PDwQHR2N7777Tm/5zMxMdOvWDZ6enggKCsK//vUvXL58uVnHtAZzt3P+/PlQKBRaf+Hh4ZZuRpOMaefVq1excOFChIaGwsPDA3369EFOTk6zjmkN5m6jHD/Lr776CgkJCQgMDIRCocD27dub3Gfv3r2IjIyEu7s7unbtiqysrAZl5PZZWqKdjvB5FhcXY8yYMbj11lvh4uKitWDyjbZs2YLw8HB4eHigd+/e2L17t/krbwRLtDMrK6vB53njEj22YGw7t23bhrvvvhvt2rWDt7c3YmJi8MknnzQo19zvJ4MmC9u8eTPS09Mxb948FBQUoE+fPlCr1Q1u41IvOzsb06dPx7x583Ds2DG89dZb2Lx5M2bOnGnyMa3BEu0EgJ49e6K4uFj6++abb6zRnEYZ287Zs2dj7dq1WLlyJY4ePYrJkyfjf/7nf3Do0CGTj2lplmgjIL/Psrq6Gn369MHq1asNKl9YWIj4+HgMHToUhw8fRlpaGh5//HGtE7PcPkvAMu0E7P/zvHLlCtq1a4fZs2ejT58+Osvs378fo0ePxsSJE3Ho0CEkJiYiMTERR44cMWfVjWKJdgLXV9K+8fP87bffzFVlkxjbzq+++gp33303du/ejfz8fAwdOhQJCQnmP9dadEEDEv379xdPPfWU9Li2tlYEBgaKjIwMneWfeuopcdddd2ltS09PF3fccYfJx7QGS7Rz3rx5ok+fPhapr6mMbWdAQIBYtWqV1rYHH3xQPPLIIyYf09Is0UY5fpY3AiA+/PBDvWWee+450bNnT61tSUlJQq1WS4/l9lnezFztdITP80axsbFi6tSpDbaPHDlSxMfHa22Ljo4WTzzxRDNraB7maueGDRuESqUyW73Mzdh21uvRo4dYsGCB9Ngc309mmiyopqYG+fn5iIuLk7a5uLggLi4OeXl5OvcZOHAg8vPzpZThr7/+it27d+O+++4z+ZiWZol21jt58iQCAwPRpUsXPPLIIzhz5ozlGtIEU9p55cqVBmluT09P6Ve53D5PS7Sxnpw+S1Pk5eVpvS8AoFarpfdFbp+lqZpqZz17/zwNYeh74QguXryIzp07IygoCA888AB+/vlnW1epWerq6lBVVQUfHx8A5vt+MmiyoAsXLqC2tla6JUw9Pz8/lJSU6NxnzJgxWLhwIQYNGgQ3NzeEhoZiyJAhUreVKce0NEu0EwCio6ORlZWFnJwcvPHGGygsLMTgwYNRVVVl0fY0xpR2qtVqLF++HCdPnkRdXR327NmDbdu2obi42ORjWpIl2gjI77M0RUlJic73pbKyEv/9739l91maqql2Ao7xeRqisffCnj5PQ3Tr1g3r16/HRx99hH//+9+oq6vDwIED8ccff9i6aiZbtmwZLl68iJEjRwIw37mWQZPM7N27Fy+++CJef/11FBQUYNu2bdi1axcWLVpk66qZlSHtvPfee/Hwww/jtttug1qtxu7du1FRUYH333/fhjU3zmuvvYawsDCEh4dDqVQiNTUVEyZM0Lqfor0zpI2O8FnS3/h5OpaYmBiMGzcOERERiI2NxbZt29CuXTusXbvW1lUzSXZ2NhYsWID3338f7du3N+uxbX7DXkfWtm1buLq6orS0VGt7aWkp/P39de4zZ84cjB07Fo8//jgAoHfv3tLNh2fNmmXSMS3NEu3UFVS0adMGt956K06dOmX+RhjAlHa2a9cO27dvx+XLl1FWVobAwEBMnz4dXbp0MfmYlmSJNupi68/SFP7+/jrfF29vb3h6esLV1VVWn6WpmmqnLvb4eRqisffCnj5PU7i5uaFv3752+Xlu2rQJjz/+OLZs2aLVFWeuc63j/NyVIaVSiaioKOTm5krb6urqkJubi5iYGJ37XLp0qUHA4OrqCgAQQph0TEuzRDt1uXjxIk6fPo2AgAAz1dw4zXnvPTw80KFDB1y7dg1bt27FAw880OxjWoIl2qiLrT9LU8TExGi9LwCwZ88e6X2R22dpqqbaqYs9fp6GMOW9cAS1tbX46aef7O7zfO+99zBhwgS89957iI+P13rObN9Po4ejk1E2bdok3N3dRVZWljh69KhISUkRbdq0ESUlJUIIIcaOHSumT58ulZ83b57w8vIS7733nvj111/Fp59+KkJDQ8XIkSMNPqYtWKKdzzzzjNi7d68oLCwU+/btE3FxcaJt27bi3LlzVm9fPWPb+e2334qtW7eK06dPi6+++krcddddIiQkRPz1118GH9PaLNFGOX6WVVVV4tChQ+LQoUMCgFi+fLk4dOiQ+O2334QQQkyfPl2MHTtWKv/rr7+Kli1bimnTpoljx46J1atXC1dXV5GTkyOVkdtnKYRl2ukIn6cQQiofFRUlxowZIw4dOiR+/vln6fl9+/aJFi1aiGXLloljx46JefPmCTc3N/HTTz9ZtW03skQ7FyxYID755BNx+vRpkZ+fL0aNGiU8PDy0ylibse189913RYsWLcTq1atFcXGx9FdRUSGVMcf3k0GTFaxcuVJ06tRJKJVK0b9/f/Htt99Kz8XGxork5GTp8dWrV8X8+fNFaGio8PDwEEFBQeKf//yn1gWoqWPairnbmZSUJAICAoRSqRQdOnQQSUlJ4tSpU1ZskW7GtHPv3r2ie/fuwt3dXfj6+oqxY8eKP//806hj2oK52yjHz/KLL74QABr81bctOTlZxMbGNtgnIiJCKJVK0aVLF7Fhw4YGx5XbZ2mJdjrK56mrfOfOnbXKvP/+++LWW28VSqVS9OzZU+zatcs6DWqEJdqZlpYm/Zv18/MT9913nygoKLBeo3Qwtp2xsbF6y9dr7vdTIUQjfSFEREREJOGYJiIiIiIDMGgiIiIiMgCDJiIiIiIDMGgiIiIiMgCDJiIiIiIDMGgiIiIiMgCDJiIiIiIDMGgiInIQe/fuhUKhQEVFha2rQuSQGDQRkdHGjx8PhUKBJUuWaG3fvn07FAqF9FgIgTfffBMxMTHw9vZG69at0bNnT0ydOtXgm4FeunQJM2bMQGhoKDw8PNCuXTvExsbio48+ksoEBwcjMzPTLG2ztPr3TqFQwM3NDSEhIXjuuedw+fJlo44zZMgQpKWlaW0bOHAgiouLoVKpzFhjIqrHoImITOLh4YGlS5fir7/+0vm8EAJjxozB008/jfvuuw+ffvopjh49irfeegseHh5YvHixQa8zefJkbNu2DStXrsTx48eRk5ODhx56CGVlZeZsjlUNGzYMxcXF+PXXX/Hqq69i7dq1mDdvXrOPq1Qq4e/vrxW4EpEZNePWMETkpJKTk8Xw4cNFeHi4mDZtmrT9ww8/FPWnlffee08AEB999JHOY9TV1Rn0WiqVSmRlZTX6vK57TtX7+uuvxaBBg4SHh4fo2LGjmDJlirh48aL0/Ntvvy2ioqJE69athZ+fnxg9erQoLS2Vnq+//1VOTo6IiIgQHh4eYujQoaK0tFTs3r1bhIeHCy8vLzF69GhRXV1tUHuSk5PFAw88oLXtwQcfFH379pUeX7hwQYwaNUoEBgYKT09P0atXL5Gdna11jJvbXFhYKNX3xns4fvDBB6JHjx5CqVSKzp07i2XLlhlUTyJqiJkmIjKJq6srXnzxRaxcuRJ//PFHg+ffe+89dOvWDffff7/O/Q3Nhvj7+2P37t2oqqrS+fy2bdvQsWNHLFy4EMXFxSguLgYAnD59GsOGDcOIESPw448/YvPmzfjmm2+Qmpoq7Xv16lUsWrQIP/zwA7Zv346ioiKMHz++wWvMnz8fq1atwv79+/H7779j5MiRyMzMRHZ2Nnbt2oVPP/0UK1euNKg9Nzty5Aj2798PpVIpbbt8+TKioqKwa9cuHDlyBCkpKRg7diy+++47AMBrr72GmJgYTJo0SWpzUFBQg2Pn5+dj5MiRGDVqFH766SfMnz8fc+bMQVZWlkl1JXJ6to7aiMj+3JgtGTBggHjssceEENqZpvDwcHH//fdr7Td16lTRqlUr0apVK9GhQweDXuvLL78UHTt2FG5ubqJfv34iLS1NfPPNN1plOnfuLF599VWtbRMnThQpKSla277++mvh4uIi/vvf/+p8rYMHDwoAoqqqSgjxd6bps88+k8pkZGQIAOL06dPStieeeEKo1WqD2pOcnCxcXV1Fq1athLu7uwAgXFxcxAcffKB3v/j4ePHMM89Ij2NjY8XUqVO1ytycaRozZoy4++67tcpMmzZN9OjRw6C6EpE2ZpqIqFmWLl2KjRs34tixY02WnTVrFg4fPoy5c+fi4sWLBh3/zjvvxK+//orc3Fw89NBD+PnnnzF48GAsWrRI734//PADsrKy0Lp1a+lPrVajrq4OhYWFAK5nYhISEtCpUyd4eXkhNjYWAHDmzBmtY912223S//v5+aFly5bo0qWL1rZz584Z1B4AGDp0KA4fPowDBw4gOTkZEyZMwIgRI6Tna2trsWjRIvTu3Rs+Pj5o3bo1Pvnkkwb1asqxY8dwxx13aG274447cPLkSdTW1hp1LCLiQHAiaqY777wTarUaM2bM0NoeFhaGEydOaG1r164dunbtivbt2xv1Gm5ubhg8eDCef/55fPrpp1i4cCEWLVqEmpqaRve5ePEinnjiCRw+fFj6++GHH3Dy5EmEhoaiuroaarUa3t7eePfdd3Hw4EF8+OGHANDguG5ubtL/1896u5FCoUBdXZ3B7WnVqhW6du2KPn36YP369Thw4ADeeust6fmXX34Zr732Gp5//nl88cUXOHz4MNRqtd72EpHltbB1BYjI/i1ZsgQRERHo1q2btG306NEYM2YMPvroIzzwwANmfb0ePXrg2rVruHz5MpRKJZRKZYPMSWRkJI4ePYquXbvqPMZPP/2EsrIyLFmyRBoP9P3335u1noZwcXHBzJkzkZ6ejjFjxsDT0xP79u3DAw88gEcffRQAUFdXh19++QU9evSQ9tPV5pt1794d+/bt09q2b98+3HrrrXB1dTV/Y4gcHDNNRNRsvXv3xiOPPIIVK1ZI20aNGoWHHnoIo0aNwsKFC3HgwAEUFRXhyy+/xObNmw2+aA8ZMgRr165Ffn4+ioqKsHv3bsycORNDhw6Ft7c3gOvrNH311Vf4888/ceHCBQDA888/j/379yM1NRWHDx/GyZMn8dFHH0kDwTt16gSlUomVK1fi119/xccff9xkl5+lPPzww3B1dcXq1asBXM/S7dmzB/v378exY8fwxBNPoLS0VGuf4OBg6T29cOGCzkzXM888g9zcXCxatAi//PILNm7ciFWrVuHZZ5+1SruIHA2DJiIyi4ULF2pduBUKBTZv3ozMzEzs3r0b//jHP9CtWzc89thjCAoKwjfffGPQcdVqNTZu3Ih77rkH3bt3x5QpU6BWq/H+++9rvXZRURFCQ0PRrl07ANfHIX355Zf45ZdfMHjwYPTt2xdz585FYGAggOtdhVlZWdiyZQt69OiBJUuWYNmyZWZ8RwzXokULpKam4qWXXkJ1dTVmz56NyMhIqNVqDBkyBP7+/khMTNTa59lnn4Wrqyt69OiBdu3a6RzvFBkZiffffx+bNm1Cr169MHfuXCxcuFDnDEEiappCCCFsXQkiIiIiuWOmiYiIiMgADJqIyKZuXBLg5r+vv/7a1tUzypkzZ/S2x9glA4hIXtg9R0Q2pe/GvR06dICnp6cVa9M8165dQ1FRUaPPBwcHo0ULTlomslcMmoiIiIgMwO45IiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIywP8BMWywrxBVUsQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_7.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf8UlEQVR4nO3de1hU1f4/8PeADDdhcEBuioqAd0VBRdC8RWEpxqlTaKXo8VImJWFZ5v2oaZrmXdPyckrTTI9HzUMq1a+TmhfATFMTw1sKKiMDQgIy6/cH39k5MDMwA8Nweb+eZx6Zvdfes/Zk8W7ttT9LJoQQICIiIiKT2Fi7A0RERER1EUMUERERkRkYooiIiIjMwBBFREREZAaGKCIiIiIzMEQRERERmYEhioiIiMgMDFFEREREZmCIIiIiIjIDQxQRUT23efNmyGQyXLlyxdpdIapXGKKIqMpOnjyJ+Ph4dOzYEc7OzmjRogVeeOEF/Pbbb+Xa9u/fHzKZDDKZDDY2NnB1dUXbtm0xYsQIHDp0yKTP3bdvH/r16wdPT084OTmhdevWeOGFF5CUlFRdl1bO+++/jz179pTbfvToUcyePRs5OTkW++yyZs+eLX2XMpkMTk5O6NChA6ZPn47c3Nxq+Yxt27Zh2bJl1XIuovqGIYqIquyDDz7Arl278Pjjj2P58uUYP348fvjhB4SEhODs2bPl2jdv3hyfffYZ/vWvf2Hx4sUYOnQojh49iieffBKxsbEoLi6u8DM//PBDDB06FDKZDFOnTsVHH32E5557DpcuXcL27dstcZkAjIeoOXPm1GiI0lq7di0+++wzLF26FO3atcP8+fMxaNAgVMfSqAxRRIY1snYHiKjuS0xMxLZt2yCXy6VtsbGx6Ny5MxYuXIjPP/9cp71CocDLL7+ss23hwoV44403sGbNGrRq1QoffPCBwc97+PAh5s6diyeeeAIHDx4st//27dtVvKLao6CgAE5OTkbb/P3vf4eHhwcA4NVXX8Vzzz2H3bt346effkJ4eHhNdJOoQeJIFBFVWUREhE6AAoCgoCB07NgR58+fr9Q5bG1tsWLFCnTo0AGrVq2CWq022Pbu3bvIzc1F79699e739PTUef/gwQPMnj0bbdq0gYODA3x8fPDss8/i8uXLUpsPP/wQERERcHd3h6OjI0JDQ/HVV1/pnEcmkyE/Px9btmyRbqGNGjUKs2fPxttvvw0A8Pf3l/Y9Ogfp888/R2hoKBwdHaFUKjFs2DBcv35d5/z9+/dHp06dkJKSgr59+8LJyQnvvfdepb6/Rw0cOBAAkJGRYbTdmjVr0LFjR9jb28PX1xcTJ07UGUnr378/vv76a1y9elW6platWpncH6L6iiNRRGQRQghkZWWhY8eOlT7G1tYWw4cPx4wZM/Djjz9i8ODBett5enrC0dER+/btw+uvvw6lUmnwnCUlJRgyZAiSk5MxbNgwTJo0CXl5eTh06BDOnj2LgIAAAMDy5csxdOhQvPTSSygqKsL27dvx/PPPY//+/VI/PvvsM4wdOxY9e/bE+PHjAQABAQFwdnbGb7/9hi+++AIfffSRNCrUtGlTAMD8+fMxY8YMvPDCCxg7dizu3LmDlStXom/fvkhLS4Obm5vU3+zsbDz11FMYNmwYXn75ZXh5eVX6+9PShkN3d3eDbWbPno05c+YgMjISEyZMwMWLF7F27VqcPHkSR44cgZ2dHaZNmwa1Wo0bN27go48+AgA0btzY5P4Q1VuCiMgCPvvsMwFAfPrppzrb+/XrJzp27GjwuH//+98CgFi+fLnR88+cOVMAEM7OzuKpp54S8+fPFykpKeXabdy4UQAQS5cuLbdPo9FIPxcUFOjsKyoqEp06dRIDBw7U2e7s7Czi4uLKnWvx4sUCgMjIyNDZfuXKFWFrayvmz5+vs/2XX34RjRo10tner18/AUCsW7fO4HU/atasWQKAuHjxorhz547IyMgQH3/8sbC3txdeXl4iPz9fCCHEpk2bdPp2+/ZtIZfLxZNPPilKSkqk861atUoAEBs3bpS2DR48WLRs2bJS/SFqaHg7j4iq3YULFzBx4kSEh4cjLi7OpGO1Ix15eXlG282ZMwfbtm1Dt27d8M0332DatGkIDQ1FSEiIzi3EXbt2wcPDA6+//nq5c8hkMulnR0dH6ed79+5BrVbjscceQ2pqqkn9L2v37t3QaDR44YUXcPfuXenl7e2NoKAgfPfddzrt7e3tMXr0aJM+o23btmjatCn8/f3xyiuvIDAwEF9//bXBuVSHDx9GUVEREhISYGPz16+BcePGwdXVFV9//bXpF0rUAPF2HhFVq8zMTAwePBgKhQJfffUVbG1tTTr+/v37AAAXF5cK2w4fPhzDhw9Hbm4ujh8/js2bN2Pbtm2Ijo7G2bNn4eDggMuXL6Nt27Zo1Mj4f+7279+PefPm4fTp0ygsLJS2Pxq0zHHp0iUIIRAUFKR3v52dnc77Zs2alZtfVpFdu3bB1dUVdnZ2aN68uXSL0pCrV68CKA1fj5LL5WjdurW0n4iMY4giomqjVqvx1FNPIScnB//73//g6+tr8jm0JRECAwMrfYyrqyueeOIJPPHEE7Czs8OWLVtw/Phx9OvXr1LH/+9//8PQoUPRt29frFmzBj4+PrCzs8OmTZuwbds2k6/hURqNBjKZDP/973/1Bsqyc4weHRGrrL59+0rzsIio5jBEEVG1ePDgAaKjo/Hbb7/h8OHD6NChg8nnKCkpwbZt2+Dk5IQ+ffqY1Y/u3btjy5YtuHXrFoDSid/Hjx9HcXFxuVEfrV27dsHBwQHffPMN7O3tpe2bNm0q19bQyJSh7QEBARBCwN/fH23atDH1ciyiZcuWAICLFy+idevW0vaioiJkZGQgMjJS2lbVkTii+oxzooioykpKShAbG4tjx45h586dZtUmKikpwRtvvIHz58/jjTfegKurq8G2BQUFOHbsmN59//3vfwH8davqueeew927d7Fq1apybcX/FaO0tbWFTCZDSUmJtO/KlSt6i2o6OzvrLajp7OwMAOX2Pfvss7C1tcWcOXPKFb8UQiA7O1v/RVpQZGQk5HI5VqxYodOnTz/9FGq1WuepSGdnZ6PlJogaMo5EEVGVTZ48GXv37kV0dDRUKlW54pplC2uq1WqpTUFBAdLT07F7925cvnwZw4YNw9y5c41+XkFBASIiItCrVy8MGjQIfn5+yMnJwZ49e/C///0PMTEx6NatGwBg5MiR+Ne//oXExEScOHECjz32GPLz83H48GG89tpreOaZZzB48GAsXboUgwYNwosvvojbt29j9erVCAwMxJkzZ3Q+OzQ0FIcPH8bSpUvh6+sLf39/hIWFITQ0FAAwbdo0DBs2DHZ2doiOjkZAQADmzZuHqVOn4sqVK4iJiYGLiwsyMjLw73//G+PHj8dbb71Vpe/fVE2bNsXUqVMxZ84cDBo0CEOHDsXFixexZs0a9OjRQ+efV2hoKHbs2IHExET06NEDjRs3RnR0dI32l6jWsuajgURUP2gfzTf0Mta2cePGIigoSLz88svi4MGDlfq84uJisWHDBhETEyNatmwp7O3thZOTk+jWrZtYvHixKCws1GlfUFAgpk2bJvz9/YWdnZ3w9vYWf//738Xly5elNp9++qkICgoS9vb2ol27dmLTpk1SCYFHXbhwQfTt21c4OjoKADrlDubOnSuaNWsmbGxsypU72LVrl+jTp49wdnYWzs7Ool27dmLixIni4sWLOt+NsfIPZWn7d+fOHaPtypY40Fq1apVo166dsLOzE15eXmLChAni3r17Om3u378vXnzxReHm5iYAsNwB0SNkQlTD4kpEREREDQznRBERERGZgSGKiIiIyAwMUURERERmYIgiIiIiMgNDFBEREZEZGKKIiIiIzMBimxak0Whw8+ZNuLi4cOkEIiKiOkIIgby8PPj6+sLGxvB4E0OUBd28eRN+fn7W7gYRERGZ4fr162jevLnB/QxRFuTi4gKg9B+CsXXAiIiIqPbIzc2Fn5+f9HvcEIYoC9LewnN1dWWIIiIiqmMqmorDieVEREREZmCIIiIiIjIDQxQRERGRGTgnyspKSkpQXFxs7W7UW3Z2drC1tbV2N4iIqB5iiLISIQQyMzORk5Nj7a7Ue25ubvD29matLiIiqlYMUVaiDVCenp5wcnLiL3gLEEKgoKAAt2/fBgD4+PhYuUdERFSfMERZQUlJiRSg3N3drd2des3R0REAcPv2bXh6evLWHhERVRtOLLcC7RwoJycnK/ekYdB+z5x7RkRE1Ykhyop4C69m8HsmIiJL4O08IiIiqhOys7NRVFRkcL9cLq/RaTIMUURERFTrZWdnY9WqVRW2i4+Pr7Egxdt5ZJJRo0ZBJpNBJpPBzs4OXl5eeOKJJ7Bx40ZoNJpKn2fz5s1wc3OzXEeJiKheKTsCpVa7ICOjFdRqF6PtLIkjUXWUNYc0Bw0ahE2bNqGkpARZWVlISkrCpEmT8NVXX2Hv3r1o1Ih/rYiIyHJSU7th374hEMIGMpkG0dH7ERKSVuP94G+7OsjaQ5r29vbw9vYGADRr1gwhISHo1asXHn/8cWzevBljx47F0qVLsWnTJvz+++9QKpWIjo7GokWL0LhxY3z//fcYPXo0gL8mfc+aNQuzZ8/GZ599huXLl+PixYtwdnbGwIEDsWzZMnh6elb7dRARUd2jVrtIAQoAhLDBvn1DEBCQDoUir0b7wtt5dVBlhyprckhz4MCBCA4Oxu7duwEANjY2WLFiBc6dO4ctW7bg22+/xZQpUwAAERERWLZsGVxdXXHr1i3cunULb731FoDSMgRz587Fzz//jD179uDKlSsYNWpUjV0HERHVbiqVuxSgtISwgUqlrPG+cCSKqk27du1w5swZAEBCQoK0vVWrVpg3bx5effVVrFmzBnK5HAqFAjKZTBrR0vrHP/4h/dy6dWusWLECPXr0wP3799G4ceMauQ4iIqq9lMpsyGQanSAlk2mgVKpqvC8ciaJqI4SQbs8dPnwYjz/+OJo1awYXFxeMGDEC2dnZKCgoMHqOlJQUREdHo0WLFnBxcUG/fv0AANeuXbN4/4mIqPZTKPIQHb0fMlnpw0zaOVE1fSsP4EgUVaPz58/D398fV65cwZAhQzBhwgTMnz8fSqUSP/74I8aMGYOioiKDldrz8/MRFRWFqKgobN26FU2bNsW1a9cQFRVVo7cmiYiodgsJSUNAQDpUKiWUSpVVAhTAEEXV5Ntvv8Uvv/yCN998EykpKdBoNFiyZAlsbEoHO7/88kud9nK5HCUlJTrbLly4gOzsbCxcuBB+fn4AgFOnTtXMBRARUa0ml8t13isUeXrDU9l2lsQQRSYrLCxEZmamTomDBQsWYMiQIRg5ciTOnj2L4uJirFy5EtHR0Thy5AjWrVunc45WrVrh/v37SE5ORnBwMJycnNCiRQvI5XKsXLkSr776Ks6ePYu5c+da6SqJiKg2cXd3R3x8fK2qWM45UWSypKQk+Pj4oFWrVhg0aBC+++47rFixAv/5z39ga2uL4OBgLF26FB988AE6deqErVu3YsGCBTrniIiIwKuvvorY2Fg0bdoUixYtQtOmTbF582bs3LkTHTp0wMKFC/Hhhx9a6SqJiKi2cXd3h4+Pj8FXTQYoAJAJIUSNfmIDkpubC4VCAbVaDVdXV2n7gwcPkJGRAX9/fzg4OJh8XmvXiaprqvp9ExFRzakN6+MZ+v1dFm/n1UG1cUiTiIioquraIEGtuJ23evVqtGrVCg4ODggLC8OJEyeMtt+5cyfatWsHBwcHdO7cGQcOHNDZL4TAzJkz4ePjA0dHR0RGRuLSpUvS/itXrmDMmDHw9/eHo6MjAgICMGvWLJ1QcuXKFWmNuEdfP/30U/VevJlq25AmERFRVdXG9fGMsXqI2rFjBxITEzFr1iykpqYiODgYUVFRuH37tt72R48exfDhwzFmzBikpaUhJiYGMTExOHv2rNRm0aJFWLFiBdatW4fjx4/D2dkZUVFRePDgAYDSp8A0Gg0+/vhjnDt3Dh999BHWrVuH9957r9znHT58WKqqfevWLYSGhlrmiyAiIiJJamo3LFuWgC1b4rBsWQJSU7tZu0vlWH1OVFhYGHr06CEN32k0Gvj5+eH111/Hu+++W659bGws8vPzsX//fmlbr1690LVrV6xbtw5CCPj6+mLy5MnSUiJqtRpeXl7YvHkzhg0bprcfixcvxtq1a/H7778DKB2J8vf3R1paGrp27WrWtVlqThSZht83EVHdcOvWLaxfvx5qtQuWLUsoV5U8IWEZFIo8jB8/Hj4+PhbrR2XnRFl1JKqoqAgpKSmIjIyUttnY2CAyMhLHjh3Te8yxY8d02gNAVFSU1D4jIwOZmZk6bRQKBcLCwgyeEygNWkpl+XV3hg4dCk9PT/Tp0wd79+41ej2FhYXIzc3VeREREZFpatP6eMZYNUTdvXsXJSUl8PLy0tnu5eWFzMxMvcdkZmYaba/905RzpqenY+XKlXjllVekbY0bN8aSJUuwc+dOfP311+jTpw9iYmKMBqkFCxZAoVBIL23BSCIiIqo87fp4j7LW+njGNPin8/744w8MGjQIzz//PMaNGydt9/DwQGJiovS+R48euHnzJhYvXoyhQ4fqPdfUqVN1jsnNzWWQIiIiMpF2fbx9+4ZACBurro9njFVDlIeHB2xtbZGVlaWzPSsrC97e3nqP8fb2Ntpe+2dWVpbO/dKsrKxyc5tu3ryJAQMGICIiAuvXr6+wv2FhYTh06JDB/fb29rC3t6/wPERERGRcbVkfzxir3s6Ty+UIDQ1FcnKytE2j0SA5ORnh4eF6jwkPD9dpDwCHDh2S2vv7+8Pb21unTW5uLo4fP65zzj/++AP9+/dHaGgoNm3aJK3xZszp06ctOpGNiIioIdO3Pp6//9VyAaom18czxuq38xITExEXF4fu3bujZ8+eWLZsGfLz8zF69GgAwMiRI9GsWTNp2ZBJkyahX79+WLJkCQYPHozt27fj1KlT0kiSTCZDQkIC5s2bh6CgIPj7+2PGjBnw9fVFTEwMgL8CVMuWLfHhhx/izp07Un+0I1lbtmyBXC5Ht26lj1Tu3r0bGzduxCeffFJTX02D9P3332PAgAG4d+8e3NzcKnVMq1atkJCQgISEBIv2jYiILKuuFZO2eoiKjY3FnTt3MHPmTGRmZqJr165ISkqSJoZfu3ZNZ5QoIiIC27Ztw/Tp0/Hee+8hKCgIe/bsQadOnaQ2U6ZMQX5+PsaPH4+cnBz06dMHSUlJ0uPthw4dQnp6OtLT09G8eXOd/jxa8WHu3Lm4evUqGjVqhHbt2mHHjh34+9//bsmvo9YbNWoUtmzZgldeeaXcosITJ07EmjVrEBcXh82bN1ung0REVKfVloBUGVavE1Wf1cc6UaNGjcK3336L3Nxc3Lp1C46OjgBKr8nHxweurq4YMGCA2SHKEiNRdfn7JiKimlcn6kRR3RQSEgI/Pz/s3r1b2rZ79260aNFCuv0JlNbNeuONN+Dp6QkHBwf06dMHJ0+e1DnXgQMH0KZNGzg6OmLAgAG4cuVKuc/78ccf8dhjj8HR0RF+fn544403kJ+fb7HrIyIiqgyGqHrgxg3gu+9K/6wp//jHP7Bp0ybp/caNG6V5bFpTpkzBrl27sGXLFqSmpiIwMBBRUVFQqUrrfFy/fh3PPvssoqOjcfr0aYwdO7ZclfrLly9j0KBBeO6553DmzBns2LEDP/74I+Lj4y1/kUREREYwRNVxn34KtGwJDBxY+uenn9bM57788sv48ccfcfXqVVy9ehVHjhzByy+/LO3Pz8/H2rVrsXjxYjz11FPo0KEDNmzYAEdHR3z6f51cu3YtAgICsGTJErRt2xYvvfQSRo0apfM5CxYswEsvvYSEhAQEBQUhIiICK1aswL/+9S9pLUQiIiJrsPrEcjLfjRvA+PGA5v+Kumo0wCuvAFFRQJn58tWuadOmGDx4MDZv3gwhBAYPHgwPDw9p/+XLl1FcXIzevXtL2+zs7NCzZ0+cP38eAHD+/HmEhYXpnLdsaYuff/4ZZ86cwdatW6VtQghoNBpkZGSgffv2lrg8IiKiCjFE1WGXLv0VoLRKSoD0dMuHKKD0lp72ttrq1ast8hn379/HK6+8gjfeeKPcvhYtWljkM4mIiCqDIaoOCwoCbGx0g5StLRAYWDOfP2jQIBQVFUEmkyEqKkpnX0BAAORyOY4cOYKWLVsCAIqLi3Hy5EnpKbr27duXW4vwp59+0nkfEhKCX3/9FYE1dVFERESVxDlRdVjz5sD69aXBCSj98+OPa2YUqvTzbHH+/Hn8+uuvsNV24v84OztjwoQJePvtt5GUlIRff/0V48aNQ0FBAcaMGQMAePXVV3Hp0iW8/fbbuHjxIrZt21auNMI777yDo0ePIj4+HqdPn8alS5fwn//8hxPLiYjI6jgSVceNGVM6Byo9vXQEqqYClJax+hkLFy6ERqPBiBEjkJeXh+7du+Obb75BkyZNAJTejtu1axfefPNNrFy5Ej179sT777+Pf/zjH9I5unTpgv/3//4fpk2bhsceewxCCAQEBCA2Ntbi10ZERJaTnZ1dZyqTG8JimxZUH4tt1kX8vomIrMNQUFKr1dixY8cj712gUrlDqczWWScvPj7eKkGqssU2ORJFRERE1S47OxurVq2qsF1qajfs2zcEQthAJtMgOno/QkLSAMDoSFVtwDlRREREVO3KBiC12gUZGa2gVrvobNMGKAAQwgb79g3RaVObcSSKiIiIqp1arZZ+NjTapFK5SwFKSwgbqFRKndt6tRVHooiIiKjaFRcXAzA+2qRUZkMm0y14KJNpoFSqary/5mCIsiLO6a8Z/J6JiKynotGm6Oj9UpDSjlLVhVEogLfzrMLOzg4AUFBQAEdHRyv3pv4rKCgA8Nf3TkRENcfOrhCAACB7ZKuAnV3pnKmQkDQEBKRDpVJCqVTVmQAFMERZha2tLdzc3HD79m0AgJOTE2QyWQVHkamEECgoKMDt27fh5uZWriAoERFZXnGxPXQDFADIUFwsl94pFHl1KjxpMURZibe3NwBIQYosx83NTfq+iYioZmnnPT16S6+y857kcnmFbayJIcpKZDIZfHx84OnpKU2+o+pnZ2fHESgiIito1Kg0YmjnPZV9Ok878vTEE0/A39+/3PF1oWI5Q5SV2dra8pc8ERHVO25ubtLPxuY9+fv7w8fHxwo9rDqGKCIiIqp2ZW/FGZr3VNtv2RnDEEVERETVzt3dHfHx8XV+kWFjGKKIiIjIIupyQKoMFtskIiIiMgNDFBEREZEZGKKIiIiIzMAQRURERGQGhigiIiIiM/DpPCIiIqqS7Ozsel3KwBCGKCIiIjJbdnY2Vq1aVWG7+Pj4ehekeDuPiIiIzFZ2BEqtdkFGRiuo1S5G29UHHIkiIiKiapGa2q3cQsMhIWnW7pbFcCSKiIiIqkytdpECFAAIYYN9+4aUG5GqTxiiiIiIqMpUKncpQGkJYQOVSmmlHlkeQxQRERFVmVKZDZlMo7NNJtNAqVRZqUeWxxBFREREVaZQ5CE6er8UpLRzohSKPCv3zHI4sZyIiIiqRUhIGgIC0qFSKaFUqup1gAIYooiIiKgK5HK5znuFIk9veCrbrj5giCIiIiKzubu7Iz4+nhXLiYiIiExVHwNSZXBiOREREZEZGKKIiIiIzMAQRURERGQGhigiIiIiMzBEEREREZmBIYqIiIjIDAxRRERERGZgnSgiIiKSZGdnN8jCmeZgiCIiIiIApQFq1apVFbaLj49nkAJv5xEREdH/KTsCpVa7ICOjFdRqF6PtGiqORBEREVE5qandsG/fEAhhA5lMg+jo/QgJSbN2t2oVjkQRERGRDrXaRQpQACCEDfbtG1JuRKqhY4giIiIiHSqVuxSgtISwgUqltFKPaieGKCIiItKhVGZDJtPobJPJNFAqVVbqUe3EEEVEREQ6FIo8REfvl4KUdk6UQpFn5Z7VLpxYTkREROWEhKQhICAdKpUSSqWKAUoPhigiIiICUFpI81EKRZ7e8FS2XUPFEEVERNTAGKtKHhsbCyEE3Nzc9O5nxfK/1Io5UatXr0arVq3g4OCAsLAwnDhxwmj7nTt3ol27dnBwcEDnzp1x4MABnf1CCMycORM+Pj5wdHREZGQkLl26JO2/cuUKxowZA39/fzg6OiIgIACzZs0q9xfqzJkzeOyxx+Dg4AA/Pz8sWrSo+i6aiIjICrRVydevX6/3tWPHDnz55ZeQy+Xw8fEp92KA+ovVQ9SOHTuQmJiIWbNmITU1FcHBwYiKisLt27f1tj969CiGDx+OMWPGIC0tDTExMYiJicHZs2elNosWLcKKFSuwbt06HD9+HM7OzoiKisKDBw8AABcuXIBGo8HHH3+Mc+fO4aOPPsK6devw3nvvSefIzc3Fk08+iZYtWyIlJQWLFy/G7NmzsX79est+IURERBbEquTVRyaEENbsQFhYGHr06CGt1aPRaODn54fXX38d7777brn2sbGxyM/Px/79+6VtvXr1QteuXbFu3ToIIeDr64vJkyfjrbfeAgCo1Wp4eXlh8+bNGDZsmN5+LF68GGvXrsXvv/8OAFi7di2mTZuGzMxM6d7vu+++iz179uDChQuVurbc3FwoFAqo1Wq4urpW/kshIiKykFu3bkkDAsaqko8fPx4+Pj7W7KrVVPb3t1VHooqKipCSkoLIyEhpm42NDSIjI3Hs2DG9xxw7dkynPQBERUVJ7TMyMpCZmanTRqFQICwszOA5gdKgpVT+VUTs2LFj6Nu3r87kuaioKFy8eBH37t3Te47CwkLk5ubqvIiIiGojViWvOquGqLt376KkpAReXl462728vJCZman3mMzMTKPttX+acs709HSsXLkSr7zySoWf8+hnlLVgwQIoFArp5efnp7cdERGRtbEqedVZfU6Utf3xxx8YNGgQnn/+eYwbN65K55o6dSrUarX0un79ejX1koiIqHqxKnnVWTVEeXh4wNbWFllZWTrbs7Ky4O3trfcYb29vo+21f1bmnDdv3sSAAQMQERFRbsK4oc959DPKsre3h6urq86LiIioNmJV8qqzaoiSy+UIDQ1FcnKytE2j0SA5ORnh4eF6jwkPD9dpDwCHDh2S2vv7+8Pb21unTW5uLo4fP65zzj/++AP9+/dHaGgoNm3aBBsb3a8iPDwcP/zwA4qLi3U+p23btmjSpIn5F01ERFRLhISkISFhGeLiNiMhYZk0qZwqx+rFNhMTExEXF4fu3bujZ8+eWLZsGfLz8zF69GgAwMiRI9GsWTMsWLAAADBp0iT069cPS5YsweDBg7F9+3acOnVKGkmSyWRISEjAvHnzEBQUBH9/f8yYMQO+vr6IiYkB8FeAatmyJT788EPcuXNH6o92lOnFF1/EnDlzMGbMGLzzzjs4e/Ysli9fjo8++qgGvx0iIiLz6SuqmZOTo/OeVcnNZ/UQFRsbizt37mDmzJnIzMxE165dkZSUJE3ivnbtms4oUUREBLZt24bp06fjvffeQ1BQEPbs2YNOnTpJbaZMmYL8/HyMHz8eOTk56NOnD5KSkuDg4ACgdEQpPT0d6enpaN68uU5/tBUfFAoFDh48iIkTJyI0NBQeHh6YOXMmxo8fb+mvhIiIqMq0RTUrEhsbC4VCobONVckrx+p1ouoz1okiIiJrebQeFFBa0kClcodSma0z8tSQ60EZUtnf31YfiSIiIiLLMlZUk8zX4EscEBER1Wcsqmk5HIkiIiKqw/RNHgdKC1oDxotqspxB1TBEERER1VGVmTyuLar5aJBiUc3qwdt5REREdVTZESi12gUZGa10btWxqKblcCSKiIioHjA2eTwkJA0BAelQqZRQKlUMUNWEI1FERER1XGUmjysUefD3v1ouQLGopvk4EkVERFTHVTR5/Nlnn4WHh0e541hUs2oYooiIiOq4iiaPe3h4sKCmBfB2HhERUR3HyePWwZEoIiKieoCTx2seQxQREVEdVXZSuEKRpzc8cfK4ZTBEERER1VHu7u6Ij4/XW7Fci5PHLYchioiIqA5jQLIeTiwnIiIiMgNDFBEREZEZGKKIiIiIzMAQRURERGQGhigiIiIiMzBEEREREZmBIYqIiIjIDAxRRERERGZgiCIiIiIyA0MUERERkRkYooiIiIjMwBBFREREZAaGKCIiIiIzMEQRERERmYEhioiIiMgMDFFEREREZmCIIiIiIjIDQxQRERGRGRiiiIiIiMzAEEVERERkBoYoIiIiIjMwRBERERGZgSGKiIiIyAwMUURERERmYIgiIiIiMgNDFBEREZEZGKKIiIiIzMAQRURERGSGRtbuABERUV2VnZ2NoqIig/vlcjnc3d1rsEdUkxiiiIiIzJCdnY1Vq1ZV2C4+Pp5Bqp7i7TwiIiIzlB2BUqtdkJHRCmq1i9F2VH9wJIqIiKiKUlO7Yd++IRDCBjKZBtHR+xESkmbtbpGFcSSKiIioCtRqFylAAYAQNti3b0i5ESmqfxiiiIiIqkClcpcClJYQNlCplFbqEdUUhigiIqIqUCqzIZNpdLbJZBoolSor9YhqCudEERERVUBfKYO7d+8CABSKPERH7y83J0qhyLNGV6kGMUQREREZUZlSBiEhaQgISIdKpYRSqWKAaiAYooiIiIzQV8pApXKHUpmtE5YUijy94Ukul1u8j2QdDFFERERGqNVq6WdjpQyeeOIJ+Pv76xzLiuX1G0MUERGRESpV6QRxQ6UMAgLSpREoHx8fq/WTah6fziMiIjLi4cOHACouZaBtRw0HQxQREZERBQUFAAA7u0IAosxeATu7Ip121HBYPUStXr0arVq1goODA8LCwnDixAmj7Xfu3Il27drBwcEBnTt3xoEDB3T2CyEwc+ZM+Pj4wNHREZGRkbh06ZJOm/nz5yMiIgJOTk5wc3PT+zkymazca/v27VW6ViIiqntKSkoAADk5TQDIyuyVISfHTacdNRxWDVE7duxAYmIiZs2ahdTUVAQHByMqKgq3b9/W2/7o0aMYPnw4xowZg7S0NMTExCAmJgZnz56V2ixatAgrVqzAunXrcPz4cTg7OyMqKgoPHjyQ2hQVFeH555/HhAkTjPZv06ZNuHXrlvSKiYmplusmIqLaJzs7W+e/+dpXfn6+tbtGtZRMCFF2bLLGhIWFoUePHlL9DY1GAz8/P7z++ut49913y7WPjY1Ffn4+9u/fL23r1asXunbtinXr1kEIAV9fX0yePBlvvfUWgNKnKry8vLB582YMGzZM53ybN29GQkICcnJyyn2WTCbDv//97yoFp9zcXCgUCqjVari6upp9HiIisqzK1IK6ccMHn3wyDrqjUQJjx25A8+a3EBYWhkGDBlm0n1QzKvv722ojUUVFRUhJSUFkZORfnbGxQWRkJI4dO6b3mGPHjum0B4CoqCipfUZGBjIzM3XaKBQKhIWFGTynMRMnToSHhwd69uyJjRs3wop5k4iILEhfLaiMjFY6iwgXF9tD3+284uLSOlBOTk4W7iXVNlYrcXD37l2UlJTAy8tLZ7uXlxcuXLig95jMzEy97TMzM6X92m2G2lTWP//5TwwcOBBOTk44ePAgXnvtNdy/fx9vvPGGwWMKCwtRWFgovc/NzTXpM4mIyPoM1YLSrpH36BN6j66RVzaIUf3HOlEGzJgxQ/q5W7duyM/Px+LFi42GqAULFmDOnDk10T0iIrKAimpBRUfvx969Q1B6I0d3jTyORDU8Vrud5+HhAVtbW2RlZelsz8rKgre3t95jvL29jbbX/mnKOSsrLCwMN27c0BlpKmvq1KlQq9XS6/r161X6TCIiqhnaquQV1YICAJlM908tFxcXUMNitRAll8sRGhqK5ORkaZtGo0FycjLCw8P1HhMeHq7THgAOHToktff394e3t7dOm9zcXBw/ftzgOSvr9OnTaNKkCezt7Q22sbe3h6urq86LiIhqv+LiYgCQbtk9SnvLztAolXbeVKNGvLnT0Jj8T3z//v04ceIEoqKi0Lt3b3z77bf48MMPodFo8Oyzz2L8+PGVPldiYiLi4uLQvXt39OzZE8uWLUN+fj5Gjx4NABg5ciSaNWuGBQsWAAAmTZqEfv36YcmSJRg8eDC2b9+OU6dOYf369QBKn6hLSEjAvHnzEBQUBH9/f8yYMQO+vr46T9ldu3YNKpUK165dQ0lJCU6fPg0ACAwMROPGjbFv3z5kZWWhV69ecHBwwKFDh/D+++9LT/wREVH9pFDkoUuXM/j552CUTiIX6NLlDBSKPGRktDI4SqVQ5BmsO0j1l0kh6uOPP0Z8fDyCg4OxfPlyrF69Gq+99hpiY2Nha2uLhIQE/Pnnn5g0aVKlzhcbG4s7d+5g5syZyMzMRNeuXZGUlCRNDL927RpsbP76CxsREYFt27Zh+vTpeO+99xAUFIQ9e/agU6dOUpspU6YgPz8f48ePR05ODvr06YOkpCQ4ODhIbWbOnIktW7ZI77t16wYA+O6779C/f3/Y2dlh9erVePPNNyGEQGBgIJYuXYpx48aZ8nUREVEtlJ2dXW4S+L179wCUzok6c6YL/noKT4YzZ7pg4MBvK5xYTg2PSXWiOnbsiISEBIwbNw7fffcdnn76aSxZsgSvvfYagNK6S4sWLcKvv/5qsQ7XJawTRURUu1RUDyojoxW2bIkrtz0ubjP8/a8afHIPAMaPH88FiOuJyv7+NmkkKiMjA1FRUQCAAQMGoKSkBH379pX29+/fHxMnTjSzy0RERJalrx6USuUOpTIbCkVehaNNISFpCAhIh0qlhFKpkp7Mo4bJpBDl7u6Oq1evokWLFrh58yYePnyIa9euSbfTrl69CqVSWcFZiIiIrM/QqFJ09P5y2x8NSwpFnt7wJJfLa7L7VAuYFKKeeeYZjBkzBnFxcdi7dy9GjhyJyZMnw8bGBjKZDG+//TaefPJJS/WViIioWhirB2VstOnZZ5+Fh4dHufPJ5XK4u7vXWP+pdjApRH3wwQcoKirC9u3bERERgZUrV2LFihV45plnUFxcjH79+klP0hEREdVWxupBaUea9I02+fr6MiyRxKQQ5ezsLJUT0HrrrbcQHx+P4uJiFhojIqI6oaK5T/pGnDjaRGVVS2UwBwcHnRICREREtZl2CRdDc588PDz4pB1VyKQQlZiYWKl2S5cuNaszRERENYVP2lFVmRSi0tLSdN7/+OOPCA0NhaOjo7RNVnYxISIiolqi7BN0fNKOqsKkYptlubi44Oeff0br1q2rs0/1BottEhHVPvoqlj+Kc5/IIsU2iYiI6joGJKouNhU3ISIiIqKyGKKIiIiIzGDS7bwzZ87ovBdC4MKFC7h//77O9i5dulS9Z0RERES1mEkTy7XLu+g7RLtdJpOhpKSkWjtZV3FiORERUd1jkYnlGRkZVe4YERERUX1gUohq2bKlpfpBREREVKeYPLFcCIGMjAw8fPgQAFBUVIQdO3bgX//6F+7evVvtHSQiIiKqjUwaibp48SKioqJw/fp1tG7dGgcPHsTzzz+PCxcuQAgBJycnHD16FEFBQZbqLxEREVGtYNJI1DvvvIPg4GCcPn0aQ4YMweDBg9G8eXPcu3cPKpUK4eHh+Oc//2mpvhIRERHVGiY9nefp6YmDBw+ia9euyM/Ph4uLC3744Qf06dMHAHD06FEMHz4cV69etViH6xI+nUdEVHVcpoVqmkWezrt//z6USiUAwNnZGc7OzvDx8ZH2+/n5ISsry8wuExER6crOzsaqVasqbBcfH88gRTXOpBDl6+uLa9euoUWLFgCARYsWwdPTU9p/584dNGnSpHp7SEREDYK+EaeyDyyp1S5QqdyhVGZDociTthsbqSKyFJNCVGRkJC5cuCDdvpswYYLO/oMHDyIkJKT6ekdERA1CZUacUlO7Yd++IRDCBjKZBtHR+xESklZDPSQqz6QQtW7dOqP7hw0bhri4uCp1iIiIGp6yI0llR5zUahcpQAGAEDbYt28IAgLSdUakiGqSSU/nffvtt+jQoQNyc3PL7VOr1Rg8eDDS09OrrXNERNTwpKZ2w7JlCdiyJQ7LliUgNbUbVCp3KUBpCWEDlUpppV4SmRiili1bhnHjxumdqa5QKPDKK69g6dKl1dY5IiJqGNRq9f/9qX/Eyc6uEDKZRucYmUwDpVJV430l0jIpRP38888YNGiQwf1PPvkkUlJSqtwpIiJqWIqLiwHA4IhTcbEc0dH7pSClnRPFW3lkTSbNicrKyoKdnZ3hkzVqhDt37lS5U0RE1DApldkANND9f/zSESd//6sICEiHSqWEUqligCKrM2kkqlmzZjh79qzB/WfOnNGpG0VERGQ6me67R94qFHnw979aLkDJ5fKa6BiRDpNGop5++mnMmDEDgwYNgoODg86+P//8E7NmzcKQIUOqtYNERNRwqFTuKBuitBPIFYo8DBgwoNz6rKxYTtZiUoiaPn06du/ejTZt2iA+Ph5t27YFAFy4cAGrV69GSUkJpk2bZpGOEhFR/dWoUemvI6UyGzKZRmde1KMTyJs2bco7HlRrmBSivLy8cPToUUyYMAFTp06Fdtk9mUyGqKgorF69Gl5eXhbpKBER1X2G1sF7+PAhgNLbddHR+8sV1dTevnNzc6vJ7hIZZVKIAoCWLVviwIEDuHfvHtLT0yGEQFBQEJd7ISIiib6wlJOTgy+//LLCY0NC0jiBnOoEk0OUVpMmTdCjR4/q7AsREdUDlV002NA6eEDpiJS+8MQJ5FSbmB2iiIiI9Ll9+7bOe31hydg6eM8++yw8PDzKnZcTyKm2YYgiIqJqlZOTI/2sLywFBKQbXQfPw8ODk8epTjCpThQREVFFtNXH1WoX7N0bXS4sXb/ux3XwqF5giCIiIou4ft0P+mo+FRQ4cB08qhcYooiIyCIKChwN7uM6eFQfcE4UERGZxVDNp7y80jDk5PSn3uOcnP5Ep07nWcaA6jyGKCIiMlnZMgb6nsDz87sOQODRW3oymQZ+fjcAsIwB1X0MUUREZLJHyxgYKlegUORh6NB9BquP9+rVC126dNE5L8sYUF3CEEVERCbTLtOiVrsYLVdgrPp4ixYtWMqA6jSGKCIiMptK5W6wXIE2MBm6befp6VkjfSSyFIYoIiIym51dIcrOewIE7OxKJ5wPGDAAQUFB5Y7jbTuqDxiiiIjIbMXF9ihbCwqQobi4dHJ4kyZNeMuO6i3WiSIiIrMpldksnEkNFkMUERGZTaHIY+FMarB4O4+IiExmZ2cn/WzsCbxH2xHVNwxRRERksPq4VtmJ4E2bNtXZb+gJvLLtiOoThigiogaubPVxQ+Lj46Ug5e7ujvj4eJOCF1F9wxBFRNTAlQ1C+pZw0deOAYkaOoYoIiKSGFrChYjK49N5REQEwPASLmq1i5V7RlQ7MUQREREA40u4EFF5DFFERA1cTk4OgIoLZ2rbEVEphigiogbu4cOHACounKltR0SlrB6iVq9ejVatWsHBwQFhYWE4ceKE0fY7d+5Eu3bt4ODggM6dO+PAgQM6+4UQmDlzJnx8fODo6IjIyEhcunRJp838+fMREREBJycnuLm56f2ca9euYfDgwXBycoKnpyfefvtt/geEiBoEIXT/JCL9rBqiduzYgcTERMyaNQupqakIDg5GVFQUbt++rbf90aNHMXz4cIwZMwZpaWmIiYlBTEwMzp49K7VZtGgRVqxYgXXr1uH48eNwdnZGVFQUHjx4ILUpKirC888/jwkTJuj9nJKSEgwePBhFRUU4evQotmzZgs2bN2PmzJnV+wUQEdUC2qri2onlf/1q0J1YzurjRGUIK+rZs6eYOHGi9L6kpET4+vqKBQsW6G3/wgsviMGDB+tsCwsLE6+88ooQQgiNRiO8vb3F4sWLpf05OTnC3t5efPHFF+XOt2nTJqFQKMptP3DggLCxsRGZmZnStrVr1wpXV1dRWFhY6etTq9UCgFCr1ZU+hoiopt28eVPMnj1bxMVtFqXjT7qvuLhNYvbs2eLmzZvW7ipRjajs72+rjUQVFRUhJSUFkZGR0jYbGxtERkbi2LFjeo85duyYTnsAiIqKktpnZGQgMzNTp41CoUBYWJjBcxr6nM6dO8PLy0vnc3Jzc3Hu3DmDxxUWFiI3N1fnRURUV1Q0sZyIdFktRN29exclJSU6QQUAvLy8kJmZqfeYzMxMo+21f5pyTlM+59HP0GfBggVQKBTSy8/Pr9KfSURkbRVNLCciXaxYXo2mTp2KxMRE6X1ubi6DFBHVKSEhaQgISIdKpYRSqWKAIjLCaiHKw8MDtra2yMrK0tmelZUFb29vvcd4e3sbba/9MysrCz4+PjptunbtWum+eXt7l3tKUPu5hvoGAPb29rC3t6/05xAR1QZyuVznvUKRpzc8lW1H1NBZLUTJ5XKEhoYiOTkZMTExAACNRoPk5GTEx8frPSY8PBzJyclISEiQth06dAjh4eEAAH9/f3h7eyM5OVkKTbm5uTh+/LjBJ/EMfc78+fNx+/ZteHp6Sp/j6uqKDh06mH6xRES1mLu7O+Lj48stMPwouVzOBYeJyrDq7bzExETExcWhe/fu6NmzJ5YtW4b8/HyMHj0aADBy5Eg0a9YMCxYsAABMmjQJ/fr1w5IlSzB48GBs374dp06dwvr16wEAMpkMCQkJmDdvHoKCguDv748ZM2bA19dXCmpAaQ0olUqFa9euoaSkBKdPnwYABAYGonHjxnjyySfRoUMHjBgxAosWLUJmZiamT5+OiRMncqSJiOolBiQiM9TQ04IGrVy5UrRo0ULI5XLRs2dP8dNPP0n7+vXrJ+Li4nTaf/nll6JNmzZCLpeLjh07iq+//lpnv0ajETNmzBBeXl7C3t5ePP744+LixYs6beLi4gSAcq/vvvtOanPlyhXx1FNPCUdHR+Hh4SEmT54siouLTbo2ljggIiKqeyr7+1smBGvSWkpubi4UCgXUajVcXV2t3R0iIiKqhMr+/rb6si9EREREdRFDFBEREZEZGKKIiIiIzMAQRURERGQGViwnIrKy7Oxs1mgiqoMYooiIrCg7OxurVq2qsF18fDyDFFEtw9t5RERWVHYESq12QUZGK6jVLkbbEZH1cSSKiMiK1Gq19HNqajfs2zcEQthAJtMgOno/QkLSpHaPrglKRNbHkSgiIitSqVQASkegtAEKAISwwb59Q6QRKW07Iqo9OBJFRFRD9E0gv3fvHgBApXKXApSWEDZQqZRQKPLw8OHDGusnEVUOQxQRUQ2oaAK5nV0hSpfxlD2yVcDOjnOhiGor3s4jIqoBFU0gLy62h26AAgAZiovlNdNBIjIZR6KIiGqYvgnknp6Z4EgUUd3CkSgiohpkaAJ5Tk4TGBuJatSI/89LVNvw30oiompkqPr43bt3ARieQA4IyGQanX0ymQZKZelTeS4uunWjiMj6GKKIiMygLyzl5OTgyy+/NHqcUpmtNyz5+d1AdPT+crf5FIo8AICdnV31XwQRVQlDFBGRiSq7VIta7QKVyh1KZbYUhhSKPINhKSQkDQEB6VCplFAqVdIxANC0aVOLXQ8RmYchiojIRPqetCsbloxVHzcWlkaPfgIeHh465+cCxES1E0MUEVEV6AtLAQHpeiePBwSk64xIPRqetHx9fRmYiOoIhigiIgMqmiRu6Em7557bZbT6+LPPPltutAngiBNRXcMQRUSkR2XmPZn7pJ2HhwcXEyaqB1gniohIj4oqjAN/PWn3qEeftNPuK/ukHRHVDxyJIiKqgKFJ4uY+aUdE9QNDFBGREYbmPWkniRsLS4Ymj8vlXA+PqD5giCIiMsLQvCftJHHAcFiKjY2FQqHQ2cbJ40T1B0MUEZEe169fB2C4wrh2knhERAQ6depU7niGJaL6jyGKiEiPBw8eADBeYRwA7O3t+aQdUQPFEEVEDYKhmk8AoFarIYSAm5ubtC0v76/bc1evtoAQMgCAEDJcvdpCqj5ORA0XQxQR1XuVXetOnxs3fPDzz8EAZP+3RYaffw5Gjx4n0Lz5LS4MTNSAsU4UEdV7lan5ZMi1ay3xV4DSkuH69RYAgMaNG1dTL4moruFIFBE1KMYWBgbKLybcosVVAAK6QUrAz+9aTXediGoZhigiajAqqvlkKGAFB//8yC09geDgn9G8+S2rXgsRWR9DFBE1GMZqPgEwGLD+9rf/oEePE7h+vQX8/K4xQBERAIYoImpAjNV8qqioZvPmt/SGJycnJ4v3m4hqJ4YoImowKqr5ZKyo5oABA9CkSROd8zk5OSEgIKDmLoCIahWGKCJqUAytdVdRwAoKCmJRTSLSwRBFRHWOscKZQPklV8ou+GtorTtjiwlz0WAiKoshiojqlMoWzoyPj5eClLu7O+Lj402qWP4oroNHRPowRBFRnWJsBMpYO2MhiLfpiMgcrFhORHVKTk6OzntD1cfLtiMiqm4ciSKiOuXhw4fSz8aqjz/ajojIEhiiiMiqTJ0krqVWu2Dv3mhol2MpW32ciMjSGKKIyGrMmSSudf26H8ouDCyEDa5fbw6F4nx1dpOISC/OiSIiq/n999913hua31S2HRFRbcCRKCKymuzsbOnn1NRu2Lt3CEr/306DoUP/mt/0aDstP7/rADTQ/X9BDfz8bliyy0REEo5EEZHVlJSUANDOb9IGKACwwd69Q6QRKW07ALCzswNQWjBz6ND9KA1SgDZ4aedDadsREVkKR6KIyOouXmyD8v9PZ4OLF4PQs2eqzlaFQiH9bKzC+KPtiIgsgSGKiKqNuU/aZWcrDZyvfNvKLuHCZVqIyNIYooioWlTlSTt3d5Xetu7u5edCVbSEC8BlWoioZjBEEVG1KBtq1GoXqFTuUCqzdUaK9IWftm1/w4ED5SeJt217Se9nMSARUW3AEEVE1c5YJfFH2draAvhrknjZp/O04UvbjoioNmGIIqJqpVa7SAEKMF5J/NERJWOTxDnyRES1EUMUEVUrlcpdClBaQthApVKWC1GtW7fWeW9oknjZdkREtQFDFBFVK6UyGzKZRidIyWQaKJXlJ49zkjgR1WUMUUSkl7nlChSKPERH7y83J8rQosAMSERUVzFEEVE5VSlXABif30REVF8wRBFROeaUK2ARTCJqaGpFiFq9ejUWL16MzMxMBAcHY+XKlejZs6fB9jt37sSMGTNw5coVBAUF4YMPPsDTTz8t7RdCYNasWdiwYQNycnLQu3dvrF27FkFBQVIblUqF119/Hfv27YONjQ2ee+45LF++HI0bNwYAXLlyBf7+/uU++9ixY+jVq1c1Xj1R7VbZcgWc30REDY3VFyDesWMHEhMTMWvWLKSmpiI4OBhRUVG4ffu23vZHjx7F8OHDMWbMGKSlpSEmJgYxMTE4e/as1GbRokVYsWIF1q1bh+PHj8PZ2RlRUVF48OCB1Oall17CuXPncOjQIezfvx8//PADxo8fX+7zDh8+jFu3bkmv0NDQ6v8SiKwkOztb5++39nX37l0AhssVaBcGLsvd3R0+Pj4GXwxQRFSfyIQQwpodCAsLQ48ePaT5FxqNBn5+fnj99dfx7rvvlmsfGxuL/Px87N+/X9rWq1cvdO3aFevWrYMQAr6+vpg8eTLeeustAIBarYaXlxc2b96MYcOG4fz58+jQoQNOnjyJ7t27AwCSkpLw9NNP48aNG/D19ZVGotLS0tC1a1ezri03NxcKhQJqtRqurq5mnYPIUioz7ykjoxW2bIkrtz0ubjP8/a9i/Pjx8PHxsVQXiYisorK/v606ElVUVISUlBRERkZK22xsbBAZGYljx47pPebYsWM67QEgKipKap+RkYHMzEydNgqFAmFhYVKbY8eOwc3NTQpQABAZGQkbGxscP35c59xDhw6Fp6cn+vTpg7179xq9nsLCQuTm5uq8iGqrO3fu6LxXq12QkdFKZ5RJW67gUYbKFRARNTRWnRN19+5dlJSUwMvLS2e7l5cXLly4oPeYzMxMve0zMzOl/dptxtp4enrq7G/UqBGUSqXUpnHjxliyZAl69+4NGxsb7Nq1CzExMdizZw+GDh2qt28LFizAnDlzKnPpRFZXXFws/Zya2q3ckishIWkmlysgImpIasXE8trIw8MDiYmJ0vsePXrg5s2bWLx4scEQNXXqVJ1jcnNz4efnZ/G+ElWFWu3ySIACABvs3fvXMi0sV0BEpJ9VQ5SHhwdsbW2RlZWlsz0rKwve3t56j/H29jbaXvtnVlaWzlyNrKwsaW6Tt7d3uYnrDx8+hEqlMvi5QOn8rUOHDhncb29vD3t7e4P7iSzJ3OKY16/7ofydfRtcv94cCsV5ACxXQESkj1VDlFwuR2hoKJKTkxETEwOgdGJ5cnIy4uPj9R4THh6O5ORkJCQkSNsOHTqE8PBwAIC/vz+8vb2RnJwshabc3FwcP34cEyZMkM6Rk5ODlJQU6Wm7b7/9FhqNBmFhYQb7e/r0aU6ipVqpqsUxjRkwYIBOeRAtlisgoobO6rfzEhMTERcXh+7du6Nnz55YtmwZ8vPzMXr0aADAyJEj0axZMyxYsAAAMGnSJPTr1w9LlizB4MGDsX37dpw6dQrr168HAMhkMiQkJGDevHkICgqCv78/ZsyYAV9fXymotW/fHoMGDcK4ceOwbt06FBcXIz4+HsOGDYOvry8AYMuWLZDL5ejWrRsAYPfu3di4cSM++eSTGv6GiCpmTnFMLT+/6wAEAJm0TSbTwM/vBgCgSZMm/J8HIiI9rB6iYmNjcefOHcycOROZmZno2rUrkpKSpInh165dg43NX7caIiIisG3bNkyfPh3vvfcegoKCsGfPHnTq1ElqM2XKFOTn52P8+PHIyclBnz59kJSUBAcHB6nN1q1bER8fj8cff1wqtrlixQqdvs2dOxdXr15Fo0aN0K5dO+zYsQN///vfLfyNEFVNZYtjaikUeRg6dB8njxMRmcjqdaLqM9aJoppy69YtrF+/Hmq1C5YtS5CKYwKlo0oJCcugUOTp1HU6f/48vvzyS6ld6ehV+cnjL7zwAtq3b19zF0NEZGWV/f1t9ZEoIqo+KpW7ToACSquMq1TKciNLZct8GJo8XrYdERGVYogisiJDT9Tl5OTg4cOHsLOzg0KhKLff0KRubXHMsiNR+opjcq07IqKqYYgispLKPlFniL4n7UwtjsmARERkPoYoIispW6vM0BN1pjxpB4DFMYmIaghDFJGVPHz4UPrZ0BN1lX3SrmzRSxbHJCKyPIYoIgszNO/pjz/+AKBddiUa2jpNQthg374h8PTMlALUo9u1y7E8ivObiIhqHkMUkQVVZt5T6bIrMp1tQtjgt9/aVPpJO4Dzm4iIahpDFFE10TfidPfuXZ33huY36dO4cV6ln7QjIqKaxxBFVA0qM+JkaH6Tm9s9lF12BRDw9b1l0pN2RERUsxiiiExgaH5TRkaGzvuyI05qtYvB+U3FxfYoezsPkKG4WM4n7YiIajGGKKJKqmxdJ30jTk2a3DM4v6miApl80o6IqHZiiCLSw9z5TYaetBsz5hODQamiAplPPPEE/P39dT6bT9oREVkfQxRRGVWZ32ToSbucHDejQcnYbTt/f39p0WAiIqo9GKKIyqiokrix+U3GVDS/ibftiIjqFoYoojIqqiRubH6Tn991ABoAj+7XwM/vBgDDQSk2NtakhYaJiMj6GKKIDDB3ftPQofuxd+8QlAYpDYYO/eu23YABAxAUFKTzOQxKRER1E0MU1WuGShJoGQswlpjf5OnpyflNRET1BEMU1VuVLUkQHx9v8kiQufObmjZtatLnEBFR7cUQRfVW2REoQ0uuGBqp4vwmIiIyhiGKGgRDJQmM4fwmIiIyhiGK6j1jJQn0jSTZ2dlJP3N+ExERGcIQRXWGuZPEVSp3gyUJKjNvifObiIhIH4YoqnX0haWcnBx8+eWXFR6rb5J4RWvTleXu7o74+Hizn+ojIqKGgSGKapXKPlFnyiTxitam04cBiYiIKsIQRbVKRUuuAOZNEq+oJAEREZGpGKLIKi5fvoyCgoJy28+cOSP9rC8sBQSkV3qSeNk157g2HRERVSeGKKpxly9fxueff260jaElV557blelJ4lzbhMREVkSQxTVuKysLJ33Fy8G4tKlNggK+g1t26YDMLzkSkGBg8mTxImIiCyBIYpq3MOHD6WfP/lkNG7cKA1Mp051R/Pm1zF27CZkZzfRe+yffzqYPEmciIjIEhiiyGouXgyUAlQpGW7c8MPFi4EoKdH/V7OkpBEniRMRUa1gU3ETIsu4dKkNyt6yA2RITw9Cmza/ARBl9gm0aXMJQOkkcX//qxVOJiciIrIUjkSR1QQF/YZTp7pDN0gJBAZeQvPmtxAc/DN+/jn4//YLBAf/jObNbwEAOnXqhIiICJ3zcZI4ERHVJIYo0mHu0irmaNs2Hc2bX3/klp5A8+bXpcnlf/vbf9Cjxwlcv94Cfn7XpAAFAD4+Ply3joiIrIohiiSVrRaub2kVc40duwkXLwYiPT0IgYGXpACl1bz5LZ3wpOXl5VUtn09ERGQuhqgGSt+I0927d3Xem7K0iikcHBx03rdtm14uPAFAcHAwAgICym13cnLSu52IiKgmMUQ1QJUZcTJnaZXKqmwAeuyxxzjHiYiIai2GqHrM0PymjIwMo8ep1S6VXlrFHKwkTkRE9QFDVD1V2flNAHDjhg+uXWuJFi2uonnzW1Cp3Cu9tIq5GJCIiKiuY4iqB/Qt5nv58mWd92WDkta///1MuTICAwd+a9LSKkRERA0RQ1QdV5nFfPUFpb/97T+4ccPnke0AIMPPPwejR48TXFqFiIioAgxRdYSh+U1//PGHzvuyI07GgtK1ay2hr2L49estEB5+nEurEBERGcEQVQdUdn6TvhEnhSIH+oLSpUtBCAq6hNKlVXQrhvv5XQNQurSKvvDEpVWIiIgYouqEsiNQ+uo3GRpxioj4n95zOjvfr3BplQEDBiAoKEjnOD41R0REVIohqo4xVL/J0K05O7sS6Bttatu2dCFfY0ureHp6cmkVIiIiAxii6hBj9ZtatLgKfWEpKOgSFIo8o5PEDS2t0rRpU8teEBERUR3GEFWHGKvf5O9/1eCtuebNbxmcJN6rVy906dKl3Gfxth0REZFxDFF1iFKZbbR+k7Fbc4YmiQcGBvKWHRERkRkYouoQhSKvwvpNhm7N9e7dG15eXjrbuJAvERGR+Rii6piQkDSDt+YGDBiAJk2alDuGYYmIiKj6MUTVAWXrMhm6NdexY0fOYyIiIqohDFF1gLu7O+Lj4/VWLNfiRHAiIqKaxRBVRzAgERER1S42FTchIiIiorIYooiIiIjMwBBFREREZAaGKCIiIiIzMEQRERERmaFWhKjVq1ejVatWcHBwQFhYGE6cOGG0/c6dO9GuXTs4ODigc+fOOHDggM5+IQRmzpwJHx8fODo6IjIyEpcuXdJpo1Kp8NJLL8HV1RVubm4YM2YM7t+/r9PmzJkzeOyxx+Dg4AA/Pz8sWrSoei6YiIiI6jyrh6gdO3YgMTERs2bNQmpqKoKDgxEVFYXbt2/rbX/06FEMHz4cY8aMQVpaGmJiYhATE4OzZ89KbRYtWoQVK1Zg3bp1OH78OJydnREVFYUHDx5IbV566SWcO3cOhw4dwv79+/HDDz9g/Pjx0v7c3Fw8+eSTaNmyJVJSUrB48WLMnj0b69evt9yXQURERHWHsLKePXuKiRMnSu9LSkqEr6+vWLBggd72L7zwghg8eLDOtrCwMPHKK68IIYTQaDTC29tbLF68WNqfk5Mj7O3txRdffCGEEOLXX38VAMTJkyelNv/973+FTCYTf/zxhxBCiDVr1ogmTZqIwsJCqc0777wj2rZtW+lrU6vVAoBQq9WVPoaIiIisq7K/v606ElVUVISUlBRERkZK22xsbBAZGYljx47pPebYsWM67QEgKipKap+RkYHMzEydNgqFAmFhYVKbY8eOwc3NDd27d5faREZGwsbGBsePH5fa9O3bV2fJlaioKFy8eBH37t3T27fCwkLk5ubqvIiIiKh+smrF8rt376KkpAReXl462728vHDhwgW9x2RmZuptn5mZKe3XbjPWxtPTU2d/o0aNoFQqddr4+/uXO4d2n76FfhcsWIA5c+aU284wRUREVHdof28LIYy247Iv1Wjq1KlITEyU3v/xxx/o0KED/Pz8rNgrIiIiMkdeXh4UCoXB/VYNUR4eHrC1tUVWVpbO9qysLHh7e+s9xtvb22h77Z9ZWVnw8fHRadO1a1epTdmJ6w8fPoRKpdI5j77PefQzyrK3t4e9vb30vnHjxrh+/TpcXFwgk8n0HmOO3Nxc+Pn54fr163B1da2289YVDf36AX4HDf36AX4HDf36AX4Hlrx+IQTy8vLg6+trtJ1VQ5RcLkdoaCiSk5MRExMDANBoNEhOTkZ8fLzeY8LDw5GcnIyEhARp26FDhxAeHg4A8Pf3h7e3N5KTk6XQlJubi+PHj2PChAnSOXJycpCSkoLQ0FAAwLfffguNRoOwsDCpzbRp01BcXAw7Ozvpc9q2bav3Vp4+NjY2aN68uUnfiSlcXV0b5L84Wg39+gF+Bw39+gF+Bw39+gF+B5a6fmMjUFpWL3GQmJiIDRs2YMuWLTh//jwmTJiA/Px8jB49GgAwcuRITJ06VWo/adIkJCUlYcmSJbhw4QJmz56NU6dOSaFLJpMhISEB8+bNw969e/HLL79g5MiR8PX1lYJa+/btMWjQIIwbNw4nTpzAkSNHEB8fj2HDhkmp88UXX4RcLseYMWNw7tw57NixA8uXL9e5XUdEREQNl9XnRMXGxuLOnTuYOXMmMjMz0bVrVyQlJUmTuK9duwYbm7+yXkREBLZt24bp06fjvffeQ1BQEPbs2YNOnTpJbaZMmYL8/HyMHz8eOTk56NOnD5KSkuDg4CC12bp1K+Lj4/H444/DxsYGzz33HFasWCHtVygUOHjwICZOnIjQ0FB4eHhg5syZOrWkiIiIqAGrkYILVK0ePHggZs2aJR48eGDtrlhFQ79+IfgdNPTrF4LfQUO/fiH4HdSG65cJUcHze0RERERUjtXnRBERERHVRQxRRERERGZgiCIiIiIyA0MUERERkRkYomqp1atXo1WrVnBwcEBYWBhOnDhhsO25c+fw3HPPoVWrVpDJZFi2bFnNddRCTLn+DRs24LHHHkOTJk3QpEkTREZGGm1fV5jyHezevRvdu3eHm5sbnJ2d0bVrV3z22Wc12NvqZ8r1P2r79u2QyWRSXbi6zJTvYPPmzZDJZDqvR8u61EWm/h3IycnBxIkT4ePjA3t7e7Rp0wYHDhyood5ahinfQf/+/cv9HZDJZBg8eHAN9rh6mfp3YNmyZWjbti0cHR3h5+eHN998Ew8ePLBcB632XCAZtH37diGXy8XGjRvFuXPnxLhx44Sbm5vIysrS2/7EiRPirbfeEl988YXw9vYWH330Uc12uJqZev0vvviiWL16tUhLSxPnz58Xo0aNEgqFQty4caOGe159TP0OvvvuO7F7927x66+/ivT0dLFs2TJha2srkpKSarjn1cPU69fKyMgQzZo1E4899ph45plnaqazFmLqd7Bp0ybh6uoqbt26Jb0yMzNruNfVx9TrLywsFN27dxdPP/20+PHHH0VGRob4/vvvxenTp2u459XH1O8gOztb55//2bNnha2trdi0aVPNdryamHr9W7duFfb29mLr1q0iIyNDfPPNN8LHx0e8+eabFusjQ1Qt1LNnTzFx4kTpfUlJifD19RULFiyo8NiWLVvW+RBVlesXQoiHDx8KFxcXsWXLFkt10eKq+h0IIUS3bt3E9OnTLdE9izPn+h8+fCgiIiLEJ598IuLi4up8iDL1O9i0aZNQKBQ11DvLM/X6165dK1q3bi2KiopqqosWV9X/Dnz00UfCxcVF3L9/31JdtChTr3/ixIli4MCBOtsSExNF7969LdZH3s6rZYqKipCSkoLIyEhpm42NDSIjI3Hs2DEr9qxmVMf1FxQUoLi4GEql0lLdtKiqfgdCCCQnJ+PixYvo27evJbtqEeZe/z//+U94enpizJgxNdFNizL3O7h//z5atmwJPz8/PPPMMzh37lxNdLfamXP9e/fuRXh4OCZOnAgvLy906tQJ77//PkpKSmqq29WqOv5b+Omnn2LYsGFwdna2VDctxpzrj4iIQEpKinTL7/fff8eBAwfw9NNPW6yfVl/2hXTdvXsXJSUl0rI3Wl5eXrhw4YKVelVzquP633nnHfj6+ur8y1eXmPsdqNVqNGvWDIWFhbC1tcWaNWvwxBNPWLq71c6c6//xxx/x6aef4vTp0zXQQ8sz5zto27YtNm7ciC5dukCtVuPDDz9EREQEzp07Z9GF0C3BnOv//fff8e233+Kll17CgQMHkJ6ejtdeew3FxcWYNWtWTXS7WlX1v4UnTpzA2bNn8emnn1qqixZlzvW/+OKLuHv3Lvr06QMhBB4+fIhXX30V7733nsX6yRBF9crChQuxfft2fP/993V+Uq2pXFxccPr0ady/fx/JyclITExE69at0b9/f2t3zaLy8vIwYsQIbNiwAR4eHtbujtWEh4cjPDxceh8REYH27dvj448/xty5c63Ys5qh0Wjg6emJ9evXw9bWFqGhofjjjz+wePHiOhmiqurTTz9F586d0bNnT2t3pcZ8//33eP/997FmzRqEhYUhPT0dkyZNwty5czFjxgyLfCZDVC3j4eEBW1tbZGVl6WzPysqCt7e3lXpVc6py/R9++CEWLlyIw4cPo0uXLpbspkWZ+x3Y2NggMDAQANC1a1ecP38eCxYsqHMhytTrv3z5Mq5cuYLo6Ghpm0ajAQA0atQIFy9eREBAgGU7Xc2q478DdnZ26NatG9LT0y3RRYsy5/p9fHxgZ2cHW1tbaVv79u2RmZmJoqIiyOVyi/a5ulXl70B+fj62b9+Of/7zn5bsokWZc/0zZszAiBEjMHbsWABA586dkZ+fj/Hjx2PatGmwsan+GUycE1XLyOVyhIaGIjk5Wdqm0WiQnJys83+Z9ZW5179o0SLMnTsXSUlJ6N69e0101WKq6++ARqNBYWGhJbpoUaZef7t27fDLL7/g9OnT0mvo0KEYMGAATp8+DT8/v5rsfrWojr8DJSUl+OWXX+Dj42OpblqMOdffu3dvpKenSwEaAH777Tf4+PjUuQAFVO3vwM6dO1FYWIiXX37Z0t20GHOuv6CgoFxQ0oZqYallgi02ZZ3Mtn37dmFvby82b94sfv31VzF+/Hjh5uYmPa48YsQI8e6770rtCwsLRVpamkhLSxM+Pj7irbfeEmlpaeLSpUvWuoQqMfX6Fy5cKORyufjqq690Hu/Ny8uz1iVUmanfwfvvvy8OHjwoLl++LH799Vfx4YcfikaNGokNGzZY6xKqxNTrL6s+PJ1n6ncwZ84c8c0334jLly+LlJQUMWzYMOHg4CDOnTtnrUuoElOv/9q1a8LFxUXEx8eLixcviv379wtPT08xb948a11ClZn770GfPn1EbGxsTXe32pl6/bNmzRIuLi7iiy++EL///rs4ePCgCAgIEC+88ILF+sgQVUutXLlStGjRQsjlctGzZ0/x008/Sfv69esn4uLipPcZGRkCQLlXv379ar7j1cSU62/ZsqXe6581a1bNd7wamfIdTJs2TQQGBgoHBwfRpEkTER4eLrZv326FXlcfU66/rPoQooQw7TtISEiQ2np5eYmnn35apKamWqHX1cfUvwNHjx4VYWFhwt7eXrRu3VrMnz9fPHz4sIZ7Xb1M/Q4uXLggAIiDBw/WcE8tw5TrLy4uFrNnzxYBAQHCwcFB+Pn5iddee03cu3fPYv2TCWGpMS4iIiKi+otzooiIiIjMwBBFREREZAaGKCIiIiIzMEQRERERmYEhioiIiMgMDFFEREREZmCIIiIiIjIDQxQRUT0watQoxMTEWLsbRA0KQxQRWdSoUaMgk8mkl7u7OwYNGoQzZ85Yu2vV4tFr07769Oljsc+7cuUKZDIZTp8+rbN9+fLl2Lx5s8U+l4jKY4giIosbNGgQbt26hVu3biE5ORmNGjXCkCFDrN2tarNp0ybp+m7duoW9e/fqbVdcXGyxPigUCri5uVns/ERUHkMUEVmcvb09vL294e3tja5du+Ldd9/F9evXcefOHQwcOBDx8fE67e/cuQO5XC6t4N6qVSvMnTsXw4cPh7OzM5o1a4bVq1frHLN06VJ07twZzs7O8PPzw2uvvYb79+9L+69evYro6Gg0adIEzs7O6NixIw4cOAAAuHfvHl566SU0bdoUjo6OCAoKwqZNmyp9fW5ubtL1eXt7Q6lUSiNGO3bsQL9+/eDg4ICtW7ciOzsbw4cPR7NmzeDk5ITOnTvjiy++0DmfRqPBokWLEBgYCHt7e7Ro0QLz588HAPj7+wMAunXrBplMhv79+wMofzuvsLAQb7zxBjw9PeHg4IA+ffrg5MmT0v7vv/8eMpkMycnJ6N69O5ycnBAREYGLFy9W+rqJGjqGKCKqUffv38fnn3+OwMBAuLu7Y+zYsdi2bRsKCwulNp9//jmaNWuGgQMHStsWL16M4OBgpKWl4d1338WkSZNw6NAhab+NjQ1WrFiBc+fOYcuWLfj2228xZcoUaf/EiRNRWFiIH374Ab/88gs++OADNG7cGAAwY8YM/Prrr/jvf/+L8+fPY+3atfDw8KiW69X29fz584iKisKDBw8QGhqKr7/+GmfPnsX48eMxYsQInDhxQjpm6tSpWLhwodSvbdu2wcvLCwCkdocPH8atW7ewe/duvZ87ZcoU7Nq1C1u2bEFqaioCAwMRFRUFlUql027atGlYsmQJTp06hUaNGuEf//hHtVw3UYNgsaWNiYiEEHFxccLW1lY4OzsLZ2dnAUD4+PiIlJQUIYQQf/75p2jSpInYsWOHdEyXLl3E7NmzpfctW7YUgwYN0jlvbGyseOqppwx+7s6dO4W7u7v0vnPnzjrnfFR0dLQYPXq0WdcHQDg4OEjX5+zsLP7973+LjIwMAUAsW7aswnMMHjxYTJ48WQghRG5urrC3txcbNmzQ21Z73rS0NJ3tcXFx4plnnhFCCHH//n1hZ2cntm7dKu0vKioSvr6+YtGiRUIIIb777jsBQBw+fFhq8/XXXwsA4s8//zTlKyBqsDgSRUQWN2DAAJw+fRqnT5/GiRMnEBUVhaeeegpXr16Fg4MDRowYgY0bNwIAUlNTcfbsWYwaNUrnHOHh4eXenz9/Xnp/+PBhPP7442jWrBlcXFwwYsQIZGdno6CgAADwxhtvYN68eejduzdmzZqlM7F9woQJ2L59O7p27YopU6bg6NGjJl3fRx99JF3f6dOn8cQTT0j7unfvrtO2pKQEc+fORefOnaFUKtG4cWN88803uHbtGgDg/PnzKCwsxOOPP25SHx51+fJlFBcXo3fv3tI2Ozs79OzZU+c7A4AuXbpIP/v4+AAAbt++bfZnEzUkDFFEZHHOzs4IDAxEYGAgevTogU8++QT5+fnYsGEDAGDs2LE4dOgQbty4gU2bNmHgwIFo2bJlpc9/5coVDBkyBF26dMGuXbuQkpIizZkqKiqSPuP333/HiBEj8Msvv6B79+5YuXIlAEiB7s0338TNmzfx+OOP46233qr053t7e0vXFxgYCGdnZ51rf9TixYuxfPlyvPPOO/juu+9w+vRpREVFSf10dHSs9OdWBzs7O+lnmUwGoHROFhFVjCGKiGqcTCaDjY0N/vzzTwBA586d0b17d2zYsAHbtm3TOy/np59+Kve+ffv2AICUlBRoNBosWbIEvXr1Qps2bXDz5s1y5/Dz88Orr76K3bt3Y/LkyVKIA4CmTZsiLi4On3/+OZYtW4b169dX5yVLjhw5gmeeeQYvv/wygoOD0bp1a/z222/S/qCgIDg6OkqT6suSy+UASke0DAkICIBcLseRI0ekbcXFxTh58iQ6dOhQTVdCRI2s3QEiqv8KCwuRmZkJoPRJuFWrVuH+/fuIjo6W2owdOxbx8fFwdnbG3/72t3LnOHLkCBYtWoSYmBgcOnQIO3fuxNdffw0ACAwMRHFxMVauXIno6GgcOXIE69at0zk+ISEBTz31FNq0aYN79+7hu+++k0LYzJkzERoaio4dO6KwsBD79++X9lW3oKAgfPXVVzh69CiaNGmCpUuXIisrSwo3Dg4OeOeddzBlyhTI5XL07t0bd+7cwblz5zBmzBh4enrC0dERSUlJaN68ORwcHKBQKHQ+w9nZGRMmTMDbb78NpVKJFi1aYNGiRSgoKMCYMWMscl1EDRFHoojI4pKSkuDj4wMfHx+EhYXh5MmT2Llzp/R4PgAMHz4cjRo1wvDhw+Hg4FDuHJMnT8apU6fQrVs3zJs3D0uXLkVUVBQAIDg4GEuXLsUHH3yATp06YevWrViwYIHO8SUlJZg4cSLat2+PQYMGoU2bNlizZg2A0tGdqVOnokuXLujbty9sbW2xfft2i3wX06dPR0hICKKiotC/f394e3uXqzQ+Y8YMTJ48GTNnzkT79u0RGxsrzVNq1KgRVqxYgY8//hi+vr545pln9H7OwoUL8dxzz2HEiBEICQlBeno6vvnmGzRp0sQi10XUEMmEEMLanSAiunLlCgICAnDy5EmEhITo7GvVqhUSEhKQkJBgnc4REenB23lEZFXFxcXIzs7G9OnT0atXr3IBioiotuLtPCKyqiNHjsDHxwcnT54sN4/J2t5//300btxY7+upp56ydveIyMp4O4+IyACVSlWuwreWo6MjmjVrVsM9IqLahCGKiIiIyAy8nUdERERkBoYoIiIiIjMwRBERERGZgSGKiIiIyAwMUURERERmYIgiIiIiMgNDFBEREZEZGKKIiIiIzPD/AUjcr3rwSypiAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYW1JREFUeJzt3XtcFPX+P/DXgiw3YWEhbrIqIWp5QUElzLwUhaUY1clLZdgxKZOSQ2Wa97Q0TTPTMjulnso00zxqZinZr29qaoD3S2IoWIDKyoKYgOzn9wdnRxZ2F3bdC5fX8/HYh+zMZ2Y+M1m8+sxn3iMTQggQERERkVmcHN0BIiIioqaIIYqIiIjIAgxRRERERBZgiCIiIiKyAEMUERERkQUYooiIiIgswBBFREREZAGGKCIiIiILMEQRERERWYAhioiomVu9ejVkMhnOnTvn6K4QNSsMUUR0yw4ePIiUlBR06dIFnp6eaNu2LYYPH47ff/+9TtuBAwdCJpNBJpPByckJ3t7e6NSpE0aPHo2dO3eaddytW7diwIABCAgIgIeHB26//XYMHz4cO3bssNap1fHWW29h8+bNdZbv3bsXs2bNQnFxsc2OXdusWbOkaymTyeDh4YE777wT06ZNQ0lJiVWOsXbtWixZssQq+yJqbhiiiOiWvf3229i4cSPuu+8+vPfee0hOTsbPP/+MqKgoHDt2rE770NBQfPbZZ/jPf/6DhQsXYtiwYdi7dy8eeOABjBgxApWVlfUe85133sGwYcMgk8kwZcoUvPvuu3jsscdw5swZrFu3zhanCcB0iJo9e7ZdQ5TOhx9+iM8++wyLFy9G586d8eabb2Lw4MGwxqtRGaKIjGvl6A4QUdOXlpaGtWvXQi6XS8tGjBiBbt26Yf78+fj888/12isUCjz11FN6y+bPn4+XXnoJH3zwAdq3b4+3337b6PFu3LiBOXPm4P7778cPP/xQZ/3Fixdv8Ywaj2vXrsHDw8Nkm3/84x/w9/cHADz//PN47LHHsGnTJvz666+IjY21RzeJWiSORBHRLevbt69egAKAiIgIdOnSBSdPnmzQPpydnbF06VLceeedWLZsGTQajdG2ly9fRklJCe6++26D6wMCAvS+X79+HbNmzULHjh3h5uaG4OBgPProozh79qzU5p133kHfvn3h5+cHd3d3REdH4+uvv9bbj0wmQ1lZGdasWSPdQhszZgxmzZqFV199FQAQFhYmras5B+nzzz9HdHQ03N3doVQqMXLkSOTl5entf+DAgejatSsyMjLQv39/eHh44PXXX2/Q9avp3nvvBQDk5OSYbPfBBx+gS5cucHV1RUhICCZMmKA3kjZw4EB8++23OH/+vHRO7du3N7s/RM0VR6KIyCaEECgsLESXLl0avI2zszNGjRqF6dOn45dffsGQIUMMtgsICIC7uzu2bt2KF198EUql0ug+q6qqMHToUKSnp2PkyJGYOHEiSktLsXPnThw7dgzh4eEAgPfeew/Dhg3Dk08+iYqKCqxbtw6PP/44tm3bJvXjs88+w7PPPos+ffogOTkZABAeHg5PT0/8/vvv+PLLL/Huu+9Ko0K33XYbAODNN9/E9OnTMXz4cDz77LO4dOkS3n//ffTv3x9ZWVnw8fGR+ltUVIQHH3wQI0eOxFNPPYXAwMAGXz8dXTj08/Mz2mbWrFmYPXs24uLiMH78eJw+fRoffvghDh48iD179sDFxQVTp06FRqPBhQsX8O677wIAWrdubXZ/iJotQURkA5999pkAID755BO95QMGDBBdunQxut0333wjAIj33nvP5P5nzJghAAhPT0/x4IMPijfffFNkZGTUaffpp58KAGLx4sV11mm1Wunna9eu6a2rqKgQXbt2Fffee6/eck9PT5GUlFRnXwsXLhQARE5Ojt7yc+fOCWdnZ/Hmm2/qLT969Kho1aqV3vIBAwYIAGLFihVGz7ummTNnCgDi9OnT4tKlSyInJ0d89NFHwtXVVQQGBoqysjIhhBCrVq3S69vFixeFXC4XDzzwgKiqqpL2t2zZMgFAfPrpp9KyIUOGiHbt2jWoP0QtDW/nEZHVnTp1ChMmTEBsbCySkpLM2lY30lFaWmqy3ezZs7F27Vr07NkT33//PaZOnYro6GhERUXp3ULcuHEj/P398eKLL9bZh0wmk352d3eXfr5y5Qo0Gg3uueceZGZmmtX/2jZt2gStVovhw4fj8uXL0icoKAgRERHYvXu3XntXV1c888wzZh2jU6dOuO222xAWFobnnnsOHTp0wLfffmt0LtWuXbtQUVGB1NRUODnd/DUwbtw4eHt749tvvzX/RIlaIN7OIyKrKigowJAhQ6BQKPD111/D2dnZrO2vXr0KAPDy8qq37ahRozBq1CiUlJRg//79WL16NdauXYuEhAQcO3YMbm5uOHv2LDp16oRWrUz/527btm2YO3cuDh06hPLycml5zaBliTNnzkAIgYiICIPrXVxc9L63adOmzvyy+mzcuBHe3t5wcXFBaGiodIvSmPPnzwOoDl81yeVy3H777dJ6IjKNIYqIrEaj0eDBBx9EcXEx/u///g8hISFm70NXEqFDhw4N3sbb2xv3338/7r//fri4uGDNmjXYv38/BgwY0KDt/+///g/Dhg1D//798cEHHyA4OBguLi5YtWoV1q5da/Y51KTVaiGTyfDdd98ZDJS15xjVHBFrqP79+0vzsIjIfhiiiMgqrl+/joSEBPz+++/YtWsX7rzzTrP3UVVVhbVr18LDwwP9+vWzqB+9evXCmjVrkJ+fD6B64vf+/ftRWVlZZ9RHZ+PGjXBzc8P3338PV1dXafmqVavqtDU2MmVseXh4OIQQCAsLQ8eOHc09HZto164dAOD06dO4/fbbpeUVFRXIyclBXFyctOxWR+KImjPOiSKiW1ZVVYURI0Zg37592LBhg0W1iaqqqvDSSy/h5MmTeOmll+Dt7W207bVr17Bv3z6D67777jsAN29VPfbYY7h8+TKWLVtWp634XzFKZ2dnyGQyVFVVSevOnTtnsKimp6enwYKanp6eAFBn3aOPPgpnZ2fMnj27TvFLIQSKiooMn6QNxcXFQS6XY+nSpXp9+uSTT6DRaPSeivT09DRZboKoJeNIFBHdspdffhlbtmxBQkIC1Gp1neKatQtrajQaqc21a9eQnZ2NTZs24ezZsxg5ciTmzJlj8njXrl1D3759cdddd2Hw4MFQqVQoLi7G5s2b8X//939ITExEz549AQBPP/00/vOf/yAtLQ0HDhzAPffcg7KyMuzatQsvvPACHn74YQwZMgSLFy/G4MGD8cQTT+DixYtYvnw5OnTogCNHjugdOzo6Grt27cLixYsREhKCsLAwxMTEIDo6GgAwdepUjBw5Ei4uLkhISEB4eDjmzp2LKVOm4Ny5c0hMTISXlxdycnLwzTffIDk5Ga+88sotXX9z3XbbbZgyZQpmz56NwYMHY9iwYTh9+jQ++OAD9O7dW++fV3R0NNavX4+0tDT07t0brVu3RkJCgl37S9RoOfLRQCJqHnSP5hv7mGrbunVrERERIZ566inxww8/NOh4lZWV4uOPPxaJiYmiXbt2wtXVVXh4eIiePXuKhQsXivLycr32165dE1OnThVhYWHCxcVFBAUFiX/84x/i7NmzUptPPvlERERECFdXV9G5c2exatUqqYRATadOnRL9+/cX7u7uAoBeuYM5c+aINm3aCCcnpzrlDjZu3Cj69esnPD09haenp+jcubOYMGGCOH36tN61MVX+oTZd/y5dumSyXe0SBzrLli0TnTt3Fi4uLiIwMFCMHz9eXLlyRa/N1atXxRNPPCF8fHwEAJY7IKpBJoQVXq5ERERE1MJwThQRERGRBRiiiIiIiCzAEEVERERkAYYoIiIiIgswRBERERFZgCGKiIiIyAIstmlDWq0Wf/31F7y8vPjqBCIioiZCCIHS0lKEhITAycn4eBNDlA399ddfUKlUju4GERERWSAvLw+hoaFG1zNE2ZCXlxeA6n8Ipt4DRkRERI1HSUkJVCqV9HvcGIYoG9LdwvP29maIIiIiamLqm4rDieVEREREFmCIIiIiIrIAQxQRERGRBTgnysGqqqpQWVnp6G40Wy4uLnB2dnZ0N4iIqBliiHIQIQQKCgpQXFzs6K40ez4+PggKCmKtLiIisiqGKAfRBaiAgAB4eHjwF7wNCCFw7do1XLx4EQAQHBzs4B4REVFzwhDlAFVVVVKA8vPzc3R3mjV3d3cAwMWLFxEQEMBbe0REZDWcWO4AujlQHh4eDu5Jy6C7zpx7RkRE1sQQ5UC8hWcfvM5ERGQLvJ1HRERETUJRUREqKiqMrpfL5XadJsMQRURERI1eUVERli1bVm+7lJQUuwUp3s4js4wZMwYymQwymQwuLi4IDAzE/fffj08//RRarbbB+1m9ejV8fHxs11EiImpWao9AaTReyMlpD43Gy2Q7W+JIVBPlyCHNwYMHY9WqVaiqqkJhYSF27NiBiRMn4uuvv8aWLVvQqhX/WhERkXXVrKuYmdkTW7cOhRBOkMm0SEjYhqioLKmdvUra8LddE+ToIU1XV1cEBQUBANq0aYOoqCjcdddduO+++7B69Wo8++yzWLx4MVatWoU//vgDSqUSCQkJWLBgAVq3bo2ffvoJzzzzDICbk75nzpyJWbNm4bPPPsN7772H06dPw9PTE/feey+WLFmCgIAAq58HERE1HTdu3ABQPQKlC1AAIIQTtm4divDwbCgUpVI7e+DtvCaooUOV9hzSvPfeexEZGYlNmzYBAJycnLB06VIcP34ca9aswY8//ohJkyYBAPr27YslS5bA29sb+fn5yM/PxyuvvAKgugzBnDlzcPjwYWzevBnnzp3DmDFj7HYeRETUuKnVflKA0hHCCWq10u594UgUWU3nzp1x5MgRAEBqaqq0vH379pg7dy6ef/55fPDBB5DL5VAoFJDJZNKIls4///lP6efbb78dS5cuRe/evXH16lW0bt3aLudBRESNl1JZBEAAuFm+RibTQqlU270vHIkiqxFCSLfndu3ahfvuuw9t2rSBl5cXRo8ejaKiIly7ds3kPjIyMpCQkIC2bdvCy8sLAwYMAADk5ubavP9ERNRUCP1vwkgzG2OIIqs5efIkwsLCcO7cOQwdOhTdu3fHxo0bkZGRgeXLlwMwfYuxrKwM8fHx8Pb2xhdffIGDBw/im2++qXc7IiJqOdRqP9SNL7ydR03Yjz/+iKNHj+Jf//oXMjIyoNVqsWjRIjg5Vf9F/+qrr/Tay+VyVFVV6S07deoUioqKMH/+fKhUKgDAb7/9Zp8TICKiRs3FxQVA9e08mUyrNy+q5u08XTt74EgUma28vBwFBQX4888/kZmZibfeegsPP/wwhg4diqeffhodOnRAZWUl3n//ffzxxx/47LPPsGLFCr19tG/fHlevXkV6ejouX76Ma9euoW3btpDL5dJ2W7ZswZw5cxx0lkRE1JgoFIr//VmKhIRtkMmqaxPqShwoFKV67eyBI1Fkth07diA4OBitWrWCr68vIiMjsXTpUiQlJcHJyQmRkZFYvHgx3n77bUyZMgX9+/fHvHnz8PTTT0v76Nu3L55//nmMGDECRUVFUomD1atX4/XXX8fSpUsRFRWFd955B8OGDXPg2RIRUWNQc05tVFQWwsOzoVYroVSqpQBVu52tyYRw1HSs5q+kpAQKhQIajQbe3t7S8uvXryMnJwdhYWFwc3Mze7+OrhPV1Nzq9SYiIsfLz8/HypUrpe8ajRfUaj8olUV6ISo5OfmWi20a+/1dG0eimiA/Pz+kpKQ0qpcwEhER2YupiuX2xBDVRDEgERFRS1RfxXJ74sRyIiIiajIaU8VyhigiIiJqMnQlDmpixXIiIiKietRX4sCeOCeKiIiImhRTJQ7siSGKiIiIGj25XK73XaEoNRiearezpUZxO2/58uVo37493NzcEBMTgwMHDphsv2HDBnTu3Blubm7o1q0btm/frrdeCIEZM2YgODgY7u7uiIuLw5kzZ6T1586dw9ixYxEWFgZ3d3eEh4dj5syZeiUDzp07B5lMVufz66+/WvfkiYiIqF668j7JyclGP/auj+jwkaj169cjLS0NK1asQExMDJYsWYL4+HicPn0aAQEBddrv3bsXo0aNwrx58zB06FCsXbsWiYmJyMzMRNeuXQEACxYswNKlS7FmzRqEhYVh+vTpiI+Px4kTJ+Dm5oZTp05Bq9Xio48+QocOHXDs2DGMGzcOZWVleOedd/SOt2vXLnTp0kX6ztICREREjtHofgcLB+vTp4+YMGGC9L2qqkqEhISIefPmGWw/fPhwMWTIEL1lMTEx4rnnnhNCCKHVakVQUJBYuHChtL64uFi4urqKL7/80mg/FixYIMLCwqTvOTk5AoDIysqy5LSEEEJoNBoBQGg0Gr3lf//9tzhx4oT4+++/Ld53c7V7924BQFy5cqXB27Rr1068++67RtfzehMRkTmM/f6uzaG38yoqKpCRkYG4uDhpmZOTE+Li4rBv3z6D2+zbt0+vPQDEx8dL7XNyclBQUKDXRqFQICYmxug+AUCj0UCprFtjYtiwYQgICEC/fv2wZcsWs86vORozZgxkMhmef/75OusmTJgAmUyGMWPG2L9jREREdubQEHX58mVUVVUhMDBQb3lgYCAKCgoMblNQUGCyve5Pc/aZnZ2N999/H88995y0rHXr1li0aBE2bNiAb7/9Fv369UNiYqLJIFVeXo6SkhK9T3OkUqmwbt06/P3339Ky69evY+3atWjbtq0De0ZERGQ/jWJiuSP9+eefGDx4MB5//HGMGzdOWu7v74+0tDTExMSgd+/emD9/Pp566iksXLjQ6L7mzZsHhUIhfVQqlT1Owe6ioqKgUqmwadMmadmmTZvQtm1b9OzZU1pWXl6Ol156CQEBAXBzc0O/fv1w8OBBvX1t374dHTt2hLu7OwYNGoRz587VOd4vv/yCe+65B+7u7lCpVHjppZdQVlZms/MjIiJqCIeGKH9/fzg7O6OwsFBveWFhIYKCggxuExQUZLK97s+G7POvv/7CoEGD0LdvX703QxsTExOD7Oxso+unTJkCjUYjffLy8urdpzVcuADs3l39p73885//xKpVq6Tvn376KZ555hm9NpMmTcLGjRuxZs0aZGZmokOHDoiPj4daXV1VNi8vD48++igSEhJw6NAhPPvss5g8ebLePs6ePYvBgwfjsccew5EjR7B+/Xr88ssvSElJsf1JEhGRzRQVFSE/P9/op6ioyNFdrJdDn86Ty+WIjo5Geno6EhMTAQBarRbp6elGf0nGxsYiPT0dqamp0rKdO3ciNjYWABAWFoagoCCkp6ejR48eAICSkhLs378f48ePl7b5888/MWjQIERHR2PVqlVwcqo/Tx46dAjBwcFG17u6usLV1bXe/VjTJ58AycmAVgs4OQErVwJjx9r+uE899RSmTJmC8+fPAwD27NmDdevW4aeffgIAlJWV4cMPP8Tq1avx4IMPAgA+/vhj7Ny5E5988gleffVVfPjhhwgPD8eiRYsAAJ06dcLRo0fx9ttvS8eZN28ennzySemfd0REBJYuXYoBAwbgww8/hJubm+1PloiIrKqoqAjLli2rt529SxaYy+ElDtLS0pCUlIRevXqhT58+WLJkCcrKyqRRjaeffhpt2rTBvHnzAAATJ07EgAEDsGjRIgwZMgTr1q3Db7/9Jo0kyWQypKamYu7cuYiIiJBKHISEhEhB7c8//8TAgQPRrl07vPPOO7h06ZLUH91o1Zo1ayCXy6XbU5s2bcKnn36Kf//73/a6NPW6cOFmgAKq/3zuOSA+HggNte2xb7vtNgwZMgSrV6+GEAJDhgyBv7+/tP7s2bOorKzE3XffLS1zcXFBnz59cPLkSQDAyZMnERMTo7dfXRjWOXz4MI4cOYIvvvhCWiaEgFarRU5ODu644w5bnB4REdlQzbqMAKDReEGt9oNSWaRXQLN2u8bG4SFqxIgRuHTpEmbMmIGCggL06NEDO3bskCaG5+bm6o0S9e3bF2vXrsW0adPw+uuvIyIiAps3b5ZqRAHVt5HKysqQnJyM4uJi9OvXDzt27JBGLXbu3Ins7GxkZ2cjtFbaEEJIP8+ZMwfnz59Hq1at0LlzZ6xfvx7/+Mc/bHk5zHLmzM0ApVNVBWRn2z5EAdW39HQjhsuXL7fJMa5evYrnnnsOL730Up11nMRORNT0ZWb2xNatQyGEk/QevKioLEd3q0EcHqKA6uE6Y7fvdLeHanr88cfx+OOPG92fTCbDG2+8gTfeeMPg+jFjxtT7GH5SUhKSkpJMtnG0iIjqW3g1g5SzM9Chg32OP3jwYFRUVEAmkyE+Pl5vXXh4OORyOfbs2YN27doBACorK3Hw4EHp1twdd9xR52nH2hXho6KicOLECXSw10kREZHdaDReUoACACGcsHXrUISHZzvsfXjmaPFP5zVloaHVc6Ccnau/OzsDH31kn1Go6uM54+TJkzhx4gScdZ34H09PT4wfPx6vvvoqduzYgRMnTmDcuHG4du0axv5v0tbzzz+PM2fO4NVXX8Xp06exdu1arF69Wm8/r732Gvbu3YuUlBQcOnQIZ86cwX//+19OLCciagbUaj/ULlkphBPU6rp1GxujRjESRZYbO7Z6DlR2dvUIlL0ClI63t7fRdfPnz4dWq8Xo0aNRWlqKXr164fvvv4evry+A6ttxGzduxL/+9S+8//776NOnD9566y3885//lPbRvXt3/L//9/8wdepU3HPPPRBCIDw8HCNGjLD5uRERkW0plUWQybR6QUom00KpVDuwVw0nEzUnAZFVlZSUQKFQQKPR6IWN69evIycnB2FhYXy6zA54vYmIGpf8/HzpgTBTc6KSk5NNPhVvK8Z+f9fGkSgiIiJymKioLISHZ0OtVkKpVDeJuVA6DFFERERkV3K5XO+7QlFqMDzVbtfYMEQRERGRXfn5+SElJcVkHSi5XN6oC20CDFFERETkAI09IDUESxw4EOf02wevMxER2QJDlAO4uLgAAK5du+bgnrQMuuusu+5ERETWwNt5DuDs7AwfHx9cvHgRAODh4QGZTObgXjU/Qghcu3YNFy9ehI+PT52CoERERLeCIcpBdC861gUpsh0fHx/pehMREVkLQ5SDyGQyBAcHIyAgAJWVlY7uTrPl4uLCESgiIgcpKipq8k/gmcIQ5WDOzs78JU9ERM1OUVERli1bVm+7lJSUJhukOLGciIiIrK72CJRG44WcnPbQaLxMtmtKOBJFRERENmXq/XhNGUeiiIiIyGY0Gi8pQAGAEE7YunVonRGppoghioiIiGxGrfaTApSOEE5Qq5UO6pH1MEQRERGRzSiVRZDJtHrLZDItlEq1g3pkPQxRREREZDMKRSkSErZJQUo3J0qhKHVwz24dJ5YTERGRTUVFZSE8PBtqtRJKpbpZBCiAIYqIiIhsQC6X631XKEoNhqfa7ZoShigiIiKyOj8/P6SkpLBiOREREZG5mnJAaghOLCciIiKyAEMUERERkQUYooiIiIgswBBFREREZAGGKCIiIiILMEQRERERWYAhioiIiMgCDFFEREREFmCIIiIiIrIAQxQRERGRBRiiiIiIiCzAEEVERERkAYYoIiIiIgswRBERERFZgCGKiIiIyAIMUUREREQWaOXoDhAREVHjUFRUhIqKCqPr5XI5/Pz87Nijxo0hioiIiFBUVIRly5bV2y4lJYVB6n94O4+IiIhMjkBZ0q4lYIgiIiKiOjQaL+TktIdG4+XorjRavJ1HREREejIze2Lr1qEQwgkymRYJCdsQFZXl6G41OhyJIiIiIolG4yUFKAAQwglbtw7liJQBDFFEREQkUav9pAClI4QT1Gqlg3rUeDFEERERkUSpLIJMptVbJpNpoVSqHdSjxoshioiIiKDRaAAACkUpEhK2SUFKNydKoSjVa0ecWE5EREQAhBDSz1FRWQgIKEBublu0bZuL0NB8g+1aOoYoIiIigo+Pj/SzqafzarZr6Xg7j4iIiCR8Oq/hGKKIiIhIwqfzGo6384iIiFoYQy8azsnJAXDz6byaQarm03nFxcUIDg62X2cbMYYoIiKiFqS+Fw0rFKXo3v0IDh+OBCADINC9+xHp6bwbN27Yp6NNAG/nERERtSC1R6BqvyNPo/HCkSPdUR2gAECGI0e6c06UARyJIiIiaqEMPYXn63vF6JwohaIULi4uDupt49MoRqKWL1+O9u3bw83NDTExMThw4IDJ9hs2bEDnzp3h5uaGbt26Yfv27XrrhRCYMWMGgoOD4e7ujri4OJw5c0Zaf+7cOYwdOxZhYWFwd3dHeHg4Zs6cWSedHzlyBPfccw/c3NygUqmwYMEC6500ERGRAxl7Cs/FpdxkxXKFQmH3vjZWDg9R69evR1paGmbOnInMzExERkYiPj4eFy9eNNh+7969GDVqFMaOHYusrCwkJiYiMTERx44dk9osWLAAS5cuxYoVK7B//354enoiPj4e169fBwCcOnUKWq0WH330EY4fP453330XK1aswOuvvy7to6SkBA888ADatWuHjIwMLFy4ELNmzcLKlStte0GIiIjswNhTeJWVcpMVy+kmmXBw6dGYmBj07t1bmuSm1WqhUqnw4osvYvLkyXXajxgxAmVlZdi2bZu07K677kKPHj2wYsUKCCEQEhKCl19+Ga+88gqA6hL1gYGBWL16NUaOHGmwHwsXLsSHH36IP/74AwDw4YcfYurUqSgoKIBcLgcATJ48GZs3b8apU6cadG4lJSVQKBTQaDTw9vZu+EUhIiKykfz8fKxcuRIajReWLEmt8xReauoSKBSl0Gi8oFYroVSq9QJUcnJys386r6G/vx06ElVRUYGMjAzExcVJy5ycnBAXF4d9+/YZ3Gbfvn167QEgPj5eap+Tk4OCggK9NgqFAjExMUb3CVQHLaXyZg2Mffv2oX///lKA0h3n9OnTuHLlisF9lJeXo6SkRO9DRETUGNX3jjyFohRhYec5AmWCQyeWX758GVVVVQgMDNRbHhgYaHS0p6CgwGD7goICab1umbE2tWVnZ+P999/HO++8o3ecsLCwOvvQrfP19a2zn3nz5mH27NkGj0FERNTYREVlITw82+CIkzE1Bxdauhb/dN6ff/6JwYMH4/HHH8e4ceNuaV9TpkxBWlqa9L2kpAQqlepWu0hERGQ1tUOQQlFqMDyNGDGiziRyuVwOPz8/m/avKXFoiPL394ezszMKCwv1lhcWFiIoKMjgNkFBQSbb6/4sLCzUu2dbWFiIHj166G33119/YdCgQejbt2+dCePGjlPzGLW5urrC1dXV4DoiIqLGwM/PDykpKXWeSK+JYalhHDonSi6XIzo6Gunp6dIyrVaL9PR0xMbGGtwmNjZWrz0A7Ny5U2ofFhaGoKAgvTYlJSXYv3+/3j7//PNPDBw4ENHR0Vi1ahWcnPQvRWxsLH7++WdUVlbqHadTp04Gb+URERE1FX5+fggODjb6YYBqIOFg69atE66urmL16tXixIkTIjk5Wfj4+IiCggIhhBCjR48WkydPltrv2bNHtGrVSrzzzjvi5MmTYubMmcLFxUUcPXpUajN//nzh4+Mj/vvf/4ojR46Ihx9+WISFhYm///5bCCHEhQsXRIcOHcR9990nLly4IPLz86WPTnFxsQgMDBSjR48Wx44dE+vWrRMeHh7io48+avC5aTQaAUBoNJpbvUxERERkJw39/e3wOVEjRozApUuXMGPGDBQUFKBHjx7YsWOHNIk7NzdXb5Sob9++WLt2LaZNm4bXX38dERER2Lx5M7p27Sq1mTRpEsrKypCcnIzi4mL069cPO3bsgJubG4DqEaXs7GxkZ2cjNDRUrz/ifxUfFAoFfvjhB0yYMAHR0dHw9/fHjBkzkJycbOtLQkRERE2Aw+tENWesE0VERNT0NIk6UURERERNlcNv5xEREZFlioqK+JSdAzFEERERNUFFRUXSK9NMSUlJYZCyEd7OIyIiaoJqj0BpNF7IyWkPjcbLZDuyHo5EERERNXGZmT2xdetQCOEkvQMvKirL0d1q9jgSRURE1IRpNF5SgAIAIZywdevQOiNSZH0MUURERE1QcXExAECt9pMClI4QTlCrlXrtyPoYooiIiJqgGzduAACUyiLIZFq9dTKZFkqlWq8dWR9DFBERUROmUJSie/cjAHS1swW6dz8ChaLUkd1qERiiiIiImjCNxgtHjnQHIPvfEhmOHOnOOVF2wBBFRETUBLm4uACof06Urh1ZH0scEBERNXKGKpNXVlYCuDknqmaQqjknSqFQ2K+jLQxDFBERUSNWX2VyhaIUCQnb6tSJ4pwo22OIIiIiasQuXryo912j8YJa7QelskgKSlFRWQgPz4ZarYRSqWaAshOGKCIiokasZp0nU5XJFYpSg+FJLpfbq6stDkMUERFRI6ab+6TReGHLlgTonsLTVSYPD8+GQlGKXr16ISoqSm9buVzOlw/bEEMUERFRE5CXp8LNMgbVhHBCXl4oFIqT8PLyQnBwsGM610KxxAEREVETcO2au1nLyfYYooiIiJoAD4+/zVpOtscQRURE1ASoVHm4+WqXajKZFirVBcd0iBiiiIiIGrPy8nIA1U/fDRu2VXrZcO16ULp2ZD+cWE5ERNSIeXp6Sj9HRWUhIKAAublt0bZtLkJD8w22I/tgiCIiImrEfH19pZ9N1Ymq2Y7sg7fziIiIGjEfHx8A1XWidAEKuFknSqPx0mtH9sMQRURE1ASo1X56LxkGqoOUWq10UI+IIYqIiKgJUCqLpEnlOjKZFkql2kE9IoYoIiKiJkChKEVCwjajT+eR/XFiORERURMRFZWF8PBsqNVKKJVqBigHY4giIiJqxORyud53haLUYHiq3Y5sjyGKiIioEfPz80NKSgoqKiqMtpHL5fDz87NjrwhgiCIiImr0GJAaJ04sJyIiIrIAQxQRERGRBRiiiIiIiCzAOVFERER2UlRUxAnizQhDFBERkR0UFRVh2bJl9bZLSUlhkGoieDuPiIjIDmqPQGk0XsjJaS+9QNhYO2q8OBJFRERkZ5mZPbF161AI4SS9viUqKsvR3SIzcSSKiIjIjjQaLylAAYAQTti6dWidESlq/BiiiIiI7Eit9pMClI4QTlCrlQ7qEVmKIYqIiMiOlMoiyGRavWUymRZKpdpBPSJLMUQRERHZkUJRioSEbVKQ0s2JMvRSYWrcOLGciIjIzqKishAeng21WgmlUs0A1UQxRBEREdmBXC7X+65QlBoMT7XbUePFEEVERGQHfn5+SElJYcXyZoQhioiIyE4YkJoXTiwnIiIisgBDFBEREZEFGKKIiIiILMAQRURERGQBhigiIiIiCzBEEREREVmAIYqIiIjIAgxRRERERBZgiCIiIiKyAEMUERERkQUcHqKWL1+O9u3bw83NDTExMThw4IDJ9hs2bEDnzp3h5uaGbt26Yfv27XrrhRCYMWMGgoOD4e7ujri4OJw5c0avzZtvvom+ffvCw8MDPj4+Bo8jk8nqfNatW3dL50pERETNh0ND1Pr165GWloaZM2ciMzMTkZGRiI+Px8WLFw2237t3L0aNGoWxY8ciKysLiYmJSExMxLFjx6Q2CxYswNKlS7FixQrs378fnp6eiI+Px/Xr16U2FRUVePzxxzF+/HiT/Vu1ahXy8/OlT2JiolXOm4iIiJo+mRBCOOrgMTEx6N27N5YtWwYA0Gq1UKlUePHFFzF58uQ67UeMGIGysjJs27ZNWnbXXXehR48eWLFiBYQQCAkJwcsvv4xXXnkFAKDRaBAYGIjVq1dj5MiRevtbvXo1UlNTUVxcXOdYMpkM33zzzS0Fp5KSEigUCmg0Gnh7e1u8HyIiIrKfhv7+Nnskatu2bZgxYwb27NkDAPjxxx/x0EMPYfDgwVi5cmWD91NRUYGMjAzExcXd7IyTE+Li4rBv3z6D2+zbt0+vPQDEx8dL7XNyclBQUKDXRqFQICYmxug+TZkwYQL8/f3Rp08ffPrpp6gvb5aXl6OkpETvQ0RERM2TWSHqo48+wiOPPILt27fjoYcewueff47ExES0adMG7du3R2pqKt57770G7evy5cuoqqpCYGCg3vLAwEAUFBQY3KagoMBke92f5uzTmDfeeANfffUVdu7cicceewwvvPAC3n//fZPbzJs3DwqFQvqoVCqzjklERERNRytzGi9duhQffPABxo0bh927d+Ohhx7CokWL8MILLwCovrW2YMECTJw40Sadtafp06dLP/fs2RNlZWVYuHAhXnrpJaPbTJkyBWlpadL3kpISBikiIqJmyqyRqJycHMTHxwMABg0ahKqqKvTv319aP3DgQJw/f75B+/L394ezszMKCwv1lhcWFiIoKMjgNkFBQSbb6/40Z58NFRMTgwsXLqC8vNxoG1dXV3h7e+t9iIiIqHkyK0T5+flJIemvv/7CjRs3kJubK60/f/48lEplg/Yll8sRHR2N9PR0aZlWq0V6ejpiY2MNbhMbG6vXHgB27twptQ8LC0NQUJBem5KSEuzfv9/oPhvq0KFD8PX1haur6y3th4iIiJoHs27nPfzwwxg7diySkpKwZcsWPP3003j55Zfh5OQEmUyGV199FQ888ECD95eWloakpCT06tULffr0wZIlS1BWVoZnnnkGAPD000+jTZs2mDdvHgBg4sSJGDBgABYtWoQhQ4Zg3bp1+O2336QJ7TKZDKmpqZg7dy4iIiIQFhaG6dOnIyQkRO8pu9zcXKjVauTm5qKqqgqHDh0CAHTo0AGtW7fG1q1bUVhYiLvuugtubm7YuXMn3nrrLemJPyIiIiIIM1y9elWMGzdOdO3aVSQnJ4vy8nKxcOFCIZfLhUwmEwMHDhSFhYXm7FK8//77om3btkIul4s+ffqIX3/9VVo3YMAAkZSUpNf+q6++Eh07dhRyuVx06dJFfPvtt3rrtVqtmD59uggMDBSurq7ivvvuE6dPn9Zrk5SUJADU+ezevVsIIcR3330nevToIVq3bi08PT1FZGSkWLFihaiqqjLr3DQajQAgNBqNWdsRERGR4zT097dV6kRdv34dlZWV8PLyutVdNSusE0VERNT0NPT3t1m384xxc3ODm5ubNXZFRERE1CSYFaJqPr5vyuLFiy3qDBEREVFTYVaIysrK0vv+yy+/IDo6Gu7u7tIymUxmnZ4RERERNWJmhajdu3frfffy8sLatWtx++23W7VTRERERI2d2e/OIyIiIiKGKCIiIiKLMEQRERERWcCsOVFHjhzR+y6EwKlTp3D16lW95d27d7/1nhEREVmgqKgIFRUVRtfL5XL4+fnZsUfUXJlVbFP3ehdDm+iWy2QyVFVVWbWTTRWLbRIR2VdRURGWLVtWb7uUlBQGKTLKJsU2c3JybrljREREtlJ7BEqj8YJa7QelsggKRanRdkSWMCtEtWvXzlb9ICIisqrMzJ7YunUohHCCTKZFQsI2REVl1b8hUQOZPbFcCIGcnBzcuHEDQHWaX79+Pf7zn//g8uXLVu8gERGRuTQaLylAAYAQTti6dSg0Gr7jlazHrJGo06dPIz4+Hnl5ebj99tvxww8/4PHHH8epU6cghICHhwf27t2LiIgIW/WXiIioXmq1nxSgdIRwglqt1LutR3QrzBqJeu211xAZGYlDhw5h6NChGDJkCEJDQ3HlyhWo1WrExsbijTfesFVfiYiIGkSpLIJMptVbJpNpoVSqHdQjao7MGonau3cvfvjhB3Tr1g1z587Fe++9h5UrV8LFxQUAMHnyZIwaNcomHSUiopblVkoVKBSlSEjYVmdOFEehyJrMClFXr16FUqkEAHh6esLT0xPBwcHSepVKhcLCQuv2kIiIWhxrlCqIispCeHg21GollEo1AxRZnVm380JCQpCbmyt9X7BgAQICAqTvly5dgq+vr/V6R0RELZKhUgU5Oe3rTAyv3U4ul+t9VyhKERZ2vk6Aqt2OyBJmjUTFxcXh1KlT6NevHwBg/Pjxeut/+OEHREVFWa93RETUImk0GulnU6UKNBqN3h0RPz8/pKSksGI52YVZIWrFihUm148cORJJSUm31CEiIqLKykoAxksVhIdnQ6EoldrVxIBE9mLW7bwff/wRd955J0pKSuqs02g0GDJkCLKzs63WOSIiatlMlSogcjSzQtSSJUswbtw4g++RUSgUeO6557B48WKrdY6IiFo2F5dyALXf1yrg4sLXtpDjmRWiDh8+jMGDBxtd/8ADDyAjI+OWO0VERAQAlZWuAGS1lspQWcmJ4eR4ZoWowsJCqSaUIa1atcKlS5duuVNERNSylZZWP01XX9FMXTsiRzArRLVp0wbHjh0zuv7IkSN6T0kQERHdCl3RTF2QYtFMakzMClEPPfQQpk+fjuvXr9dZ9/fff2PmzJkYOnSo1TpHREQtk5eXfj0oIfT/NNaOyJ7MKnEwbdo0bNq0CR07dkRKSgo6deoEADh16hSWL1+OqqoqTJ061SYdJSKilkM3dURX4uDm//PrlzgwNcWEyNbMClGBgYHYu3cvxo8fjylTpkD8738JZDIZ4uPjsXz5cgQGBtqko0RE1DwZekeerv6TqRIHCkUpFAqF3fpJVJtZIQoA2rVrh+3bt+PKlSvIzs6GEAIRERF83QsREZmtvnfk6SaW1wxSNSeWEzmSWXOiavL19UXv3r3Rp08fBigiIrKIqdezAJxYTo2b2SNRREREtqLReEGt9oNSWSQFpaioLISHZ0OtVkKpVDNAUaPBEEVERI2CqRcNV89/qhue5HIW3STHYYgiIiKbMzR5HAAuX74MoP4XDT/66KPw9/fX21Yul/Nlw+RQDFFERGQVxoKSRqPB+vXrTW5b31N4/v7+LOZMjQ5DFBER3bL6nrKrD5/Co6bI4qfziIiIdGqPQGk0XsjJaQ+Npm5F8QsXgrF37124cOHmyBKfwqOmiCNRRERkVaYmiH/zzcM4fDgSgAyAQGTkYTzyyH8BmH4KjxPIqTFiiCIiIrMYmvvUkAnipaWtawQoAJDh8OFI9O59AKGh+Rg0aBAiIiLqHI8TyKmxYogiIqIGq2/uk6kJ4vn5wbgZoHRkyMtri9DQfPj6+nLyODUpDFFERNRghuY+1SyOaWqCuItLBQAB/SAloFLl2qXvRNbGEEVERBYxNvcpIWFbneW6YpmRkYfrzIkKDc139KkQWYQhioiIzGZq7pOpCeKPPPJf9O59AHl5baFS5eoFqFat+CuJmhb+jSUiogbTaDQA6i+Oaew1LQAQGppvcPQpICDA+h0msiGGKCIiarArV64AqL84ZkxMDCIjI6V1Go0GQgj4+PgY3C+fwKOmiCGKiIgarLKyEkB1cczu3Y/ozW/q3v2INPrk4eGh96Qdn7qj5ogVy4mIyGwajRcOH+4O/ZpP3Q1WKCdqrhiiiIiowXSTv/PyVKj7K8QJeXmheu2ImjOGKCIiajAvr4aNNDW0HVFTxhBFRERmU6nyUF048yaZTAuV6oJjOkTkAAxRRERkNoWiFMOGbYVMpgUAvaKaRC0Fb1oTEVGD1ZzrZKqoJudEUUvAv+VERNRgtQtiGiuqycKZ1BIwRBERtWBFRUV1XipcU+0imH5+fkhJSTFrG6LmiiGKiKiZMxaUNBoN1q9fX+/2KSkpdYIUETFEERE1a0VFRVi2bFmD2mo0XlCr/aBUFundojM16kTUkjFEERE1Y7UDkLGglJnZE1u3DoUQTtKTdlFRWfbuLlGT4vASB8uXL0f79u3h5uaGmJgYHDhwwGT7DRs2oHPnznBzc0O3bt2wfft2vfVCCMyYMQPBwcFwd3dHXFwczpw5o9fmzTffRN++feHh4WH0ZZi5ubkYMmQIPDw8EBAQgFdffRU3bty4pXMlInKkzMyeWLIkFWvWJGHJklRkZvYEUB2sdAEKAIRwwtatQ/kKF6J6ODRErV+/HmlpaZg5cyYyMzMRGRmJ+Ph4XLx40WD7vXv3YtSoURg7diyysrKQmJiIxMREHDt2TGqzYMECLF26FCtWrMD+/fvh6emJ+Ph4XL9+XWpTUVGBxx9/HOPHjzd4nKqqKgwZMgQVFRXYu3cv1qxZg9WrV2PGjBnWvQBERFZSVFSE/Pz8Op/Lly8DMB2U1Go/abmOEE5Qq5V2Pw+ipkQmhBD1N7ONmJgY9O7dW7pfr9VqoVKp8OKLL2Ly5Ml12o8YMQJlZWXYtm2btOyuu+5Cjx49sGLFCgghEBISgpdffhmvvPIKgOqJk4GBgVi9ejVGjhypt7/Vq1cjNTUVxcXFesu/++47DB06FH/99RcCAwMBACtWrMBrr72GS5cuQS6XN+j8SkpKoFAooNFo4O3t3eDrQkRkjtrzngzdssvJaY81a5LqbJuUtBpKpRpLlqTqBSmZTIvU1CVQKEqRnJyM4OBg258IUSPR0N/fDhuJqqioQEZGBuLi4m52xskJcXFx2Ldvn8Ft9u3bp9ceAOLj46X2OTk5KCgo0GujUCgQExNjdJ/GjtOtWzcpQOmOU1JSguPHjxvdrry8HCUlJXofIiJbqznvydgtO6WySKouriOTaaUimQkJ21h9nMhMDptYfvnyZVRVVekFFQAIDAzEqVOnDG5TUFBgsH1BQYG0XrfMWJuGMHacmscwZN68eZg9e3aDj0NEZE3GbtmFh2dLQan25HFdUDJVfZyIDOPTeVY0ZcoUpKWlSd9LSkqgUqkc2CMiaklMzW1SKErrDUrGqo83dAoDUUvjsBDl7+8PZ2dnFBYW6i0vLCxEUFCQwW2CgoJMttf9WVhYqHf/vrCwED169Ghw34KCguo8Jag7rrG+AYCrqytcXV0bfBwiImvQaDQAbt6yqz23SalUS9+NBaXhw4cbfFqZ1ceJjHNYiJLL5YiOjkZ6ejoSExMBVE8sT09PR0pKisFtYmNjkZ6ejtTUVGnZzp07ERsbCwAICwtDUFAQ0tPTpdBUUlKC/fv3G30Sz9hx3nzzTVy8eFF6/9POnTvh7e2NO++80/yTJSKyocrKSgCQbtlt2TIU1VNe9W/ZDRo0CBEREXW2Z1AisoxDb+elpaUhKSkJvXr1Qp8+fbBkyRKUlZXhmWeeAQA8/fTTaNOmDebNmwcAmDhxIgYMGIBFixZhyJAhWLduHX777TesXLkSACCTyZCamoq5c+ciIiICYWFhmD59OkJCQqSgBlTXgFKr1cjNzUVVVRUOHToEAOjQoQNat26NBx54AHfeeSdGjx6NBQsWoKCgANOmTcOECRM40kREDmXoFS5XrlzR+y6TAUJU/1mTr68vn7IjsiKHhqgRI0bg0qVLmDFjBgoKCtCjRw/s2LFDmsSdm5sLJ6ebw9J9+/bF2rVrMW3aNLz++uuIiIjA5s2b0bVrV6nNpEmTUFZWhuTkZBQXF6Nfv37YsWMH3NzcpDYzZszAmjVrpO89e1Y/vbJ7924MHDgQzs7O2LZtG8aPH4/Y2Fh4enoiKSkJb7zxhq0vCRGRUfW9wqW+ieVEZF0OrRPV3LFOFBFZU35+vjTyDtStB2WqFlRY2HkMHz4cd9xxhz27TNQkNfT3N5/OIyJqggy96y48PNvkxHJjr7kiIss4/N15RERkHmO37QCwaCaRHXEkioiokTE0eRyA9B48U/WgWDSTyH4YooiIGpH6Jo8D9deDYtFMIvtgiCIiakRqj0AZeplwfa9wefTRR+Hv76+3H9aCIrI+higiokYkLy9P+tnQ5PGoqCwApt915+/vz3pQRHbAieVERI3I9evXARifPK7ReEltFYpShIWdr3PrjrftiOyDI1FERI1QfS8T7tWrF6Kioupsx9t2RPbDEEVE1AhVVLQCIADUfHeLQEWFCwDAy8uLt+yIHIwhiojIhoyVK9AxNnJUVOQP/QAFADKo1X4Asq3aRyKyDEMUEZGNNKRcAQCkpKTUCVJt256HoZEolSrXqn0kIstxYjkRkY1cunRJ77tG44WcnPZ6k8Nrt2vVqvr/bUND8xEZeRjVQQoABCIjDyM0NF+vHRE5Dv8tJCKykcrKSunnzMye2LJlKKr/31WLYcNuliuo2c7L62bAeuSR/6J37wPIy2sLlSpXClC12xGRYzBEERHdImPznq5cuQKgegTqZoACACds2TIU4eHZdcoTeHh46H0PDc3XC0/G2hGR/TFEERHdgobMe8rLU6Hu7Akn5OWFQqE4qbc0PDwcTz31FK5du2Z0fx4eHggPD7ewx0RkLQxRRES3oCGvaTEXAxJR08AQRURkJcZe06JS5aH2k3YymRYq1QWH9ZWIbh2fziMisgJTr2lRKEoxbNhWyGRaAKjzwmAiapo4EkVE1ECGJpBfvnwZQP2vaTH1wmCWKyBqmvhvLhFRDcaetNNoNFi/fr3R7ZTKIshkWr0gJZNpoVSqpe8KRanB0aeAgIBb7DUROQJDFBHR/9R+0s7UJPHa6xSKUiQkbKszJ0q33aOPPgp/f/86x+QLg4maLoYoIqL/qTkCZWySuKl1pm7Z+fv784XBRM0MJ5YTEf1PcXExANOTxE2tA6pv2YWFna8zciWXy+13IkRkFxyJIiL6nxs3bgAwPUkckJmcQG7oth1v2RE1TwxRRES1uLiUo3ZdJ0DAxaUCXl5XTU4g5207opaDt/OIiGqprHSFfoACABkqK+XSBHLWfCIijkQREdVSX7kCUxPIiajlYIgiohbHWC2oK1euAEC95Qp0bQyFJ04gJ2o5GKKIqEWpXQvKGFOjTffffz/CwsLqbMMJ5EQtC0MUEbUotUegTBXUNDbaFBYWxsnjRMQQRUQtl6mCmqbwlh0RAQxRRNRCGSuaGR6ebbTeE8BbdkR0E0MUEbVIpgpqKhSlrPdERPVinSgiapF0ZQxqqlnGgIioPgxRRNQisWgmEd0q3s4jokbPWF0nHUvnKbFoJhHdCoYoImrUGlrXKSUlpUFBqvaTdSyaSUSWYogiokatoXWdTI1U1eTn54eUlBSbjGwRUcvCEEVETYaldZ1qY0AiImtgiCIiu7J0flN9dZ2IiOyNIYqI7OZW5jfVV9eJiMjeWOKAiOzG0PymnJz20Gi8TLYDWNeJiBofjkQRkUOYO79JV9ep9jYchSIiR2GIIiK7s3R+E+s6EVFjwhBFRFZnbPL45cuXAZg3v4l1nYiosWKIIiKrasjkcd38pppBytj8JtZ1IqLGiiGKiKzq0qVLet8NFcc0d34TAxIRNUYMUURkVZWVldLPmZk9sWXLUFQ/CKzFsGE3J49zfhMRNXUscUBENqHReNUIUADghC1bhuqVM1AoShEWdr7eeVBERI0RR6KIyCby8lSo+/9pTsjLC4VCcRKDBg1CREREne04v4mImgqGKCJyCF9fXwQHBzu6G0REFmOIIiKTLH3XnUqVB0AAkEnLZDItVKoLNuglEZH9MUQRkVG38q47haIUw4ZtZYVxImq2GKKIyChD77qrXa6gdrtWrW7+Z8XUE3g12xERNUX8rxgRATB8205XYRxo+LvuAgIC9L4bqzBeux0RUVPDEEVE9d62M+ddd6wwTkQtRaOoE7V8+XK0b98ebm5uiImJwYEDB0y237BhAzp37gw3Nzd069YN27dv11svhMCMGTMQHBwMd3d3xMXF4cyZM3pt1Go1nnzySXh7e8PHxwdjx47F1atXpfXnzp2DTCar8/n111+td+JEjYSpwAOYftedIX5+fggODjb6YYAioubA4SFq/fr1SEtLw8yZM5GZmYnIyEjEx8fj4sWLBtvv3bsXo0aNwtixY5GVlYXExEQkJibi2LFjUpsFCxZg6dKlWLFiBfbv3w9PT0/Ex8fj+vXrUpsnn3wSx48fx86dO7Ft2zb8/PPPSE5OrnO8Xbt2IT8/X/pER0db/yIQNTIajRdyctpLhTF177qrydi77oiIWgqZEEI4sgMxMTHo3bu3dCtBq9VCpVLhxRdfxOTJk+u0HzFiBMrKyrBt2zZp2V133YUePXpgxYoVEEIgJCQEL7/8Ml555RUAgEajQWBgIFavXo2RI0fi5MmTuPPOO3Hw4EH06tULALBjxw489NBDuHDhAkJCQnDu3DmEhYUhKysLPXr0sOjcSkpKoFAooNFo4O3tbdE+iKzJWLmCy5cvY9OmTQCMz30yNScqOTmZNZ+IqNlo6O9vh86JqqioQEZGBqZMmSItc3JyQlxcHPbt22dwm3379iEtLU1vWXx8PDZv3gwAyMnJQUFBAeLi4qT1CoUCMTEx2LdvH0aOHIl9+/bBx8dHClAAEBcXBycnJ+zfvx+PPPKItHzYsGG4fv06OnbsiEmTJmHYsGFGz6e8vBzl5eXS95KSkoZdCCIrMhaUNBoN1q9fb3JbU3Of+K47IiJ9Dg1Rly9fRlVVFQIDA/WWBwYG4tSpUwa3KSgoMNi+oKBAWq9bZqpN7SeDWrVqBaVSKbVp3bo1Fi1ahLvvvhtOTk7YuHEjEhMTsXnzZqNBat68eZg9e3ZDTp3IJhpa1wkwXK7A1Nwn3VN2hsIT33VHRC0Rn84zwt/fX2/Eq3fv3vjrr7+wcOFCoyFqypQpetuUlJRApVLZvK/UMtVXkgAwXtfJ2K053dynmkGq5tynRx99FP7+/nrH4JN2RNRSOTRE+fv7w9nZGYWFhXrLCwsLERQUZHCboKAgk+11fxYWFurN0SgsLJTmNgUFBdWZuH7jxg2o1WqjxwWq52/t3LnT6HpXV1e4uroaXU9krlu5NWcsKNVXriAhYZvRKuP+/v6c+0RE9D8ODVFyuRzR0dFIT09HYmIigOqJ5enp6UhJSTG4TWxsLNLT05Gamiot27lzJ2JjYwEAYWFhCAoKQnp6uhSaSkpKsH//fowfP17aR3FxMTIyMqSn7X788UdotVrExMQY7e+hQ4f4C4Ts5lZuzZkKSvXdsjM194m37YiIbnL47by0tDQkJSWhV69e6NOnD5YsWYKysjI888wzAICnn34abdq0wbx58wAAEydOxIABA7Bo0SIMGTIE69atw2+//YaVK1cCAGQyGVJTUzF37lxEREQgLCwM06dPR0hIiBTU7rjjDgwePBjjxo3DihUrUFlZiZSUFIwcORIhISEAgDVr1kAul6Nnz54AgE2bNuHTTz/Fv//9bztfIWqpGvrKFUMjTr6+V4wGJUtu2QG8bUdEVJvDQ9SIESNw6dIlzJgxAwUFBejRowd27NghTQzPzc2Fk9PN/9j37dsXa9euxbRp0/D6668jIiICmzdvRteuXaU2kyZNQllZGZKTk1FcXIx+/fphx44dcHNzk9p88cUXSElJwX333QcnJyc89thjWLp0qV7f5syZg/Pnz6NVq1bo3Lkz1q9fj3/84x82viJE1TQajfSzqVtzW7YkAJABuDniNHbsv40GJd6yIyKyDofXiWrOWCeKbsXRo0exadMmaDReWLIktU4gSk1dgrw8Fb7++vE62/7jH1+hosLN5Lvuqke26t6yY80nImrpmkSdKCKqn7mvXNGpr64TyxUQEd0ahigiOzH1pF1lZSVatWoFHx8fafmVK1cAAC4u5QAEdLfsqgm4uFRApVID0EL/DU5aqFQXABgPSsOHD9c7lg7nPRERNRxDFJEdmPOkXW2Vla7QD1AAIENlpRwKRSmGDduGLVuGojpIaTFs2M35TYMGDUJERITelgxKRETWwRBFZAdnz57V+27sSTtDy+t7ms7UbbuAgADObyIishGGKCI7uH79uvRzZmbPOiNHpl7wW9/TdIDx23a33XabHc6OiKhlYogisiJj855KS6sDTu2SBIATtmwZioCAApNVxE2NNrGuExGRYzBEEVlJQ+Y9nT7dEXXnNznh6NGuJquIA8ZHm0JCQhiWiIgcgCGKyAKWvvz36tXWRvfJKuJERE0LQxSREcZuzRUXF+Orr74yua2x+U0dO/6On38egNrlCrp1O4bAwMusIk5E1IQwRBEZYKuX/4aG5iMy8jAOH45EdZASiIw8jNDQfISG5pssjklERI0LQxSRAbZ6+a9CUYpHHvkvevc+gLy8tlCpchEami+1YxVxIqKmgyGKWjRjt+xqzm8y9fJfQyNOpl7+q6MbeartwQcfhEql0lvGeU9ERI0TQxS1WA25ZWfq1pyxd9pVVspN1nUaNGgQfH196xzLw8MD4eHhVjo7IiKyNYYoarEacsvO1Mt/TVUSDws7b3R+U0REBCeJExE1AwxR1CKcPXsW165d01ume8EvYPyWnamgVF8lcc5vIiJq3hiiqNkwFJQAoKCgAHv37jW6nalbdvUFJXMriXN+ExFR88EQRc3C2bNn8fnnnzeo7YULwcjNbYe2bc8jNDTf5C27+l65ArCSOBFRS8UQRc1C7RGo2kFJ55tvHq5To+nee3+s92k6Y0FpxIgRUCgUdZZzxImIqPljiKImxVhJgprzmwwFpUce+S8uXAiusRwAZDh8OBK9ex8wecuOr1whIiJDGKKoyWhISQJTQSk3tx3qvvxXhry8toiN3W/0lh1fuUJERIYwRFGT0ZCSBKaCUtu25wEI1H5vnUqVC4BP0xERkXkYoqhRMnTbriFVxE0FJVPvrQOqi2BGREToHZO37IiIyBiGKGp06rttZ+kLfgGYfG+dr68vb9sREVGDMUSRwzTkvXVA3dt29ZUkMBWUAOPvrfPw8LDCWRERUUvBEEU2ZSwoaTQarF+/vt7tDd22Cw/PtvgFv3379kVQUFCd5XxvHRERmYshimymIU/T6RiaJG7stl1q6hK+4JeIiByOIYqswtCIU05Ojt53Q0EJMD5J3NRtO1NVxPmCXyIisgeGKLplDRlxyszsiS1bhgJwAqDFsGHVQcnUJHFTL/8FWJKAiIgciyGKbtnFixf1vtcecdJovGoEKABwwpYtQ/83kmR8tCks7LzZlcRZkoCIiOyFIYoazNgk8UuXLkk/G7o1J5eX42aA0nFCXl4oVKoLJkebTN22YyVxIiJyJIYoapCG3LKrHnFKgK7Qpe7W3IMPbje6jUJRanK0SdeGt+2IiKixYYiiBmnIK1fy8lSo/cqV6hEmgdpVxGUyLVSqCwBMjzbx5b9ERNRYMUS1UGfPnsW1a9eMrjdVDsDY03TG9/U3hg3batFoU0hICMMSERE1SgxRLdDZs2fx+eef19vuqaeeqhOkTD1Np1LlAdBCf/5T9YiTQlFqdLTp/vvvR1hYWJ3jc7SJiIgaM4aoZszYRPA///xT7/uFC8HIzW2Htm3P61X5NjRSVd/TdMOGbatTykAXmIyNNnXq1IlhiYiImhyGqGbAUFgqLi7GV199Ve+233zzcJ2X9T7yyH+Ntq+vdpOp+U0PPPAA2rdvr7c/jjYREVFTxRDVxDX01SqGJoJfuBBcI0ABgAyHD0eid+8DBt87B9za03QdO3ZkYCIiomaDIaqJq13o0hBjE8Fzc9uh9tN0gAx5eW2NhiiAT9MREREBDFFNRkMKXQJ15zeZmgjetu151C49AAioVLl1jlO7JhOfpiMiopaOIaoJaOgtO0Pzm3r0OGxyInhk5OE62xgahfLz80NKSorBIKfD0SYiImpJGKKagIYUujQ2v+nOO4+bnAj+yCP/Re/eB5CX1xYqVa7J23gMSERERDcxRDUx5s5vUqv96p0IHhqabzA8eXh42PZkiIiImjCGqCbE0vlNoaH5RieCDxo0CL6+vnWOZapiORERETFENSn1Fbo0Nb/J2ETwLl268DYdERGRBRiimpD6Cl2amt/EQpdERETWxRDVhDSk0KWx+U0sdElERGRdDFFNDAtdEhERNQ4MUU0AC10SERE1PgxRTQALXRIRETU+DFFNBAMSERFR4+JUfxMiIiIiqo0hioiIiMgCDFFEREREFmCIIiIiIrIAQxQRERGRBRpFiFq+fDnat28PNzc3xMTE4MCBAybbb9iwAZ07d4abmxu6deuG7du3660XQmDGjBkIDg6Gu7s74uLicObMGb02arUaTz75JLy9veHj44OxY8fi6tWrem2OHDmCe+65B25ublCpVFiwYIF1TpiIiIiaPIeHqPXr1yMtLQ0zZ85EZmYmIiMjER8fj4sXLxpsv3fvXowaNQpjx45FVlYWEhMTkZiYiGPHjkltFixYgKVLl2LFihXYv38/PD09ER8fj+vXr0ttnnzySRw/fhw7d+7Etm3b8PPPPyM5OVlaX1JSggceeADt2rVDRkYGFi5ciFmzZmHlypW2uxhERETUdAgH69Onj5gwYYL0vaqqSoSEhIh58+YZbD98+HAxZMgQvWUxMTHiueeeE0IIodVqRVBQkFi4cKG0vri4WLi6uoovv/xSCCHEiRMnBABx8OBBqc13330nZDKZ+PPPP4UQQnzwwQfC19dXlJeXS21ee+010alTpwafm0ajEQCERqNp8DZERETkWA39/e3QkaiKigpkZGQgLi5OWubk5IS4uDjs27fP4Db79u3Taw8A8fHxUvucnBwUFBTotVEoFIiJiZHa7Nu3Dz4+PujVq5fUJi4uDk5OTti/f7/Upn///nqvXImPj8fp06dx5coVg30rLy9HSUmJ3oeIiIiaJ4dWLL98+TKqqqoQGBiotzwwMBCnTp0yuE1BQYHB9gUFBdJ63TJTbQICAvTWt2rVCkqlUq9NWFhYnX3o1vn6+tbp27x58zB79uw6yxmmiIiImg7d720hhMl2fO2LFU2ZMgVpaWnS9z///BN33nknVCqVA3tFREREligtLYVCoTC63qEhyt/fH87OzigsLNRbXlhYiKCgIIPbBAUFmWyv+7OwsBDBwcF6bXr06CG1qT1x/caNG1Cr1Xr7MXScmseozdXVFa6urtL31q1bIy8vD15eXpDJZAa3MaakpAQqlQp5eXnw9vY2a9vmhNeB10CH14HXAOA10OF1sO01EEKgtLQUISEhJts5NETJ5XJER0cjPT0diYmJAACtVov09HSkpKQY3CY2Nhbp6elITU2Vlu3cuROxsbEAgLCwMAQFBSE9PV0KTSUlJdi/fz/Gjx8v7aO4uBgZGRmIjo4GAPz444/QarWIiYmR2kydOhWVlZVwcXGRjtOpUyeDt/IMcXJyQmhoqFnXpDZvb+8W+y9ITbwOvAY6vA68BgCvgQ6vg+2ugakRKB2HlzhIS0vDxx9/jDVr1uDkyZMYP348ysrK8MwzzwAAnn76aUyZMkVqP3HiROzYsQOLFi3CqVOnMGvWLPz2229S6JLJZEhNTcXcuXOxZcsWHD16FE8//TRCQkKkoHbHHXdg8ODBGDduHA4cOIA9e/YgJSUFI0eOlFLnE088AblcjrFjx+L48eNYv3493nvvPb3bdURERNRyOXxO1IgRI3Dp0iXMmDEDBQUF6NGjB3bs2CFN4s7NzYWT082s17dvX6xduxbTpk3D66+/joiICGzevBldu3aV2kyaNAllZWVITk5GcXEx+vXrhx07dsDNzU1q88UXXyAlJQX33XcfnJyc8Nhjj2Hp0qXSeoVCgR9++AETJkxAdHQ0/P39MWPGDL1aUkRERNSC2aXgApnt+vXrYubMmeL69euO7opD8TrwGujwOvAaCMFroMPr0DiugUyIep7fIyIiIqI6HD4nioiIiKgpYogiIiIisgBDFBEREZEFGKKIiIiILMAQ5UDLly9H+/bt4ebmhpiYGBw4cMBo2+PHj+Oxxx5D+/btIZPJsGTJEvt11MbMuQ4ff/wx7rnnHvj6+sLX1xdxcXEm2zcV5lyDTZs2oVevXvDx8YGnpyd69OiBzz77zI69tQ1zrkFN69atg0wmk+rANXXmXIfVq1dDJpPpfWqWcmmqzP27UFxcjAkTJiA4OBiurq7o2LEjtm/fbqfe2o4512HgwIF1/i7IZDIMGTLEjj22PnP/LixZsgSdOnWCu7s7VCoV/vWvf+H69eu266DDngts4datWyfkcrn49NNPxfHjx8W4ceOEj4+PKCwsNNj+wIED4pVXXhFffvmlCAoKEu+++659O2wj5l6HJ554QixfvlxkZWWJkydPijFjxgiFQiEuXLhg555bj7nXYPfu3WLTpk3ixIkTIjs7WyxZskQ4OzuLHTt22Lnn1mPuNdDJyckRbdq0Effcc494+OGH7dNZGzL3OqxatUp4e3uL/Px86VNQUGDnXluXudegvLxc9OrVSzz00EPil19+ETk5OeKnn34Shw4dsnPPrcvc61BUVKT39+DYsWPC2dlZrFq1yr4dtyJzr8EXX3whXF1dxRdffCFycnLE999/L4KDg8W//vUvm/WRIcpB+vTpIyZMmCB9r6qqEiEhIWLevHn1btuuXbtmE6Ju5ToIIcSNGzeEl5eXWLNmja26aHO3eg2EEKJnz55i2rRptuieXVhyDW7cuCH69u0r/v3vf4ukpKRmEaLMvQ6rVq0SCoXCTr2zD3OvwYcffihuv/12UVFRYa8u2sWt/nfh3XffFV5eXuLq1au26qLNmXsNJkyYIO699169ZWlpaeLuu++2WR95O88BKioqkJGRgbi4OGmZk5MT4uLisG/fPgf2zL6scR2uXbuGyspKKJVKW3XTpm71GgghkJ6ejtOnT6N///627KrNWHoN3njjDQQEBGDs2LH26KbNWXodrl69inbt2kGlUuHhhx/G8ePH7dFdm7DkGmzZsgWxsbGYMGECAgMD0bVrV7z11luoqqqyV7etzhr/bfzkk08wcuRIeHp62qqbNmXJNejbty8yMjKkW35//PEHtm/fjoceeshm/XT4a19aosuXL6Oqqkp6tY1OYGAgTp065aBe2Z81rsNrr72GkJAQvX/RmhJLr4FGo0GbNm1QXl4OZ2dnfPDBB7j//vtt3V2bsOQa/PLLL/jkk09w6NAhO/TQPiy5Dp06dcKnn36K7t27Q6PR4J133kHfvn1x/PjxW375uSNYcg3++OMP/Pjjj3jyySexfft2ZGdn44UXXkBlZSVmzpxpj25b3a3+t/HAgQM4duwYPvnkE1t10eYsuQZPPPEELl++jH79+kEIgRs3buD555/H66+/brN+MkRRkzV//nysW7cOP/30U7OYTGsOLy8vHDp0CFevXkV6ejrS0tJw++23Y+DAgY7ums2VlpZi9OjR+Pjjj+Hv7+/o7jhUbGwsYmNjpe99+/bFHXfcgY8++ghz5sxxYM/sR6vVIiAgACtXroSzszOio6Px559/YuHChU02RN2qTz75BN26dUOfPn0c3RW7+umnn/DWW2/hgw8+QExMDLKzszFx4kTMmTMH06dPt8kxGaIcwN/fH87OzigsLNRbXlhYiKCgIAf1yv5u5Tq88847mD9/Pnbt2oXu3bvbsps2Zek1cHJyQocOHQAAPXr0wMmTJzFv3rwmGaLMvQZnz57FuXPnkJCQIC3TarUAgFatWuH06dMIDw+3badtwBr/XXBxcUHPnj2RnZ1tiy7anCXXIDg4GC4uLnB2dpaW3XHHHSgoKEBFRQXkcrlN+2wLt/J3oaysDOvWrcMbb7xhyy7anCXXYPr06Rg9ejSeffZZAEC3bt1QVlaG5ORkTJ06FU5O1p/BxDlRDiCXyxEdHY309HRpmVarRXp6ut7/VTZ3ll6HBQsWYM6cOdixYwd69eplj67ajLX+Lmi1WpSXl9uiizZn7jXo3Lkzjh49ikOHDkmfYcOGYdCgQTh06BBUKpU9u2811vi7UFVVhaNHjyI4ONhW3bQpS67B3XffjezsbClIA8Dvv/+O4ODgJhmggFv7u7BhwwaUl5fjqaeesnU3bcqSa3Dt2rU6QUkXroWtXhNssynrZNK6deuEq6urWL16tThx4oRITk4WPj4+0uPJo0ePFpMnT5bal5eXi6ysLJGVlSWCg4PFK6+8IrKyssSZM2ccdQpWYe51mD9/vpDL5eLrr7/We5y3tLTUUadwy8y9Bm+99Zb44YcfxNmzZ8WJEyfEO++8I1q1aiU+/vhjR53CLTP3GtTWXJ7OM/c6zJ49W3z//ffi7NmzIiMjQ4wcOVK4ubmJ48ePO+oUbpm51yA3N1d4eXmJlJQUcfr0abFt2zYREBAg5s6d66hTsApL/53o16+fGDFihL27axPmXoOZM2cKLy8v8eWXX4o//vhD/PDDDyI8PFwMHz7cZn1kiHKg999/X7Rt21bI5XLRp08f8euvv0rrBgwYIJKSkqTvOTk5AkCdz4ABA+zfcSsz5zq0a9fO4HWYOXOm/TtuReZcg6lTp4oOHToINzc34evrK2JjY8W6desc0GvrMuca1NZcQpQQ5l2H1NRUqW1gYKB46KGHRGZmpgN6bV3m/l3Yu3eviImJEa6uruL2228Xb775prhx44ade2195l6HU6dOCQDihx9+sHNPbceca1BZWSlmzZolwsPDhZubm1CpVOKFF14QV65csVn/ZELYaoyLiIiIqPninCgiIiIiCzBEEREREVmAIYqIiIjIAgxRRERERBZgiCIiIiKyAEMUERERkQUYooiIiIgswBBFRNQMjBkzBomJiY7uBlGLwhBFRDY1ZswYyGQy6ePn54fBgwfjyJEjju6aVdQ8N92nX79+NjveuXPnIJPJcOjQIb3l7733HlavXm2z4xJRXQxRRGRzgwcPRn5+PvLz85Geno5WrVph6NChju6W1axatUo6v/z8fGzZssVgu8rKSpv1QaFQwMfHx2b7J6K6GKKIyOZcXV0RFBSEoKAg9OjRA5MnT0ZeXh4uXbqEe++9FykpKXrtL126BLlcLr3BvX379pgzZw5GjRoFT09PtGnTBsuXL9fbZvHixejWrRs8PT2hUqnwwgsv4OrVq9L68+fPIyEhAb6+vvD09ESXLl2wfft2AMCVK1fw5JNP4rbbboO7uzsiIiKwatWqBp+fj4+PdH5BQUFQKpXSiNH69esxYMAAuLm54YsvvkBRURFGjRqFNm3awMPDA926dcOXX36ptz+tVosFCxagQ4cOcHV1Rdu2bfHmm28CAMLCwgAAPXv2hEwmw8CBAwHUvZ1XXl6Ol156CQEBAXBzc0O/fv1w8OBBaf1PP/0EmUyG9PR09OrVCx4eHujbty9Onz7d4PMmaukYoojIrq5evYrPP/8cHTp0gJ+fH5599lmsXbsW5eXlUpvPP/8cbdq0wb333istW7hwISIjI5GVlYXJkydj4sSJ2Llzp7TeyckJS5cuxfHjx7FmzRr8+OOPmDRpkrR+woQJKC8vx88//4yjR4/i7bffRuvWrQEA06dPx4kTJ/Ddd9/h5MmT+PDDD+Hv72+V89X19eTJk4iPj8f169cRHR2Nb7/9FseOHUNycjJGjx6NAwcOSNtMmTIF8+fPl/q1du1aBAYGAoDUbteuXcjPz8emTZsMHnfSpEnYuHEj1qxZg8zMTHTo0AHx8fFQq9V67aZOnYpFixbht99+Q6tWrfDPf/7TKudN1CLY7NXGRERCiKSkJOHs7Cw8PT2Fp6enACCCg4NFRkaGEEKIv//+W/j6+or169dL23Tv3l3MmjVL+t6uXTsxePBgvf2OGDFCPPjgg0aPu2HDBuHn5yd979atm94+a0pISBDPPPOMRecHQLi5uUnn5+npKb755huRk5MjAIglS5bUu48hQ4aIl19+WQghRElJiXB1dRUff/yxwba6/WZlZektT0pKEg8//LAQQoirV68KFxcX8cUXX0jrKyoqREhIiFiwYIEQQojdu3cLAGLXrl1Sm2+//VYAEH///bc5l4CoxeJIFBHZ3KBBg3Do0CEcOnQIBw4cQHx8PB588EGcP38ebm5uGD16ND799FMAQGZmJo4dO4YxY8bo7SM2NrbO95MnT0rfd+3ahfvuuw9t2rSBl5cXRo8ejaKiIly7dg0A8NJLL2Hu3Lm4++67MXPmTL2J7ePHj8e6devQo0cPTJo0CXv37jXr/N59913p/A4dOoT7779fWterVy+9tlVVVZgzZw66desGpVKJ1q1b4/vvv0dubi4A4OTJkygvL8d9991nVh9qOnv2LCorK3H33XdLy1xcXNCnTx+9awYA3bt3l34ODg4GAFy8eNHiYxO1JAxRRGRznp6e6NChAzp06IDevXvj3//+N8rKyvDxxx8DAJ599lns3LkTFy5cwKpVq3DvvfeiXbt2Dd7/uXPnMHToUHTv3h0bN25ERkaGNGeqoqJCOsYff/yB0aNH4+jRo+jVqxfef/99AJAC3b/+9S/89ddfuO+++/DKK680+PhBQUHS+XXo0AGenp56517TwoUL8d577+G1117D7t27cejQIcTHx0v9dHd3b/BxrcHFxUX6WSaTAaiek0VE9WOIIiK7k8lkcHJywt9//w0A6NatG3r16oWPP/4Ya9euNTgv59dff63z/Y477gAAZGRkQKvVYtGiRbjrrrvQsWNH/PXXX3X2oVKp8Pzzz2PTpk14+eWXpRAHALfddhuSkpLw+eefY8mSJVi5cqU1T1myZ88ePPzww3jqqacQGRmJ22+/Hb///ru0PiIiAu7u7tKk+trkcjmA6hEtY8LDwyGXy7Fnzx5pWWVlJQ4ePIg777zTSmdCRK0c3QEiav7Ky8tRUFAAoPpJuGXLluHq1atISEiQ2jz77LNISUmBp6cnHnnkkTr72LNnDxYsWIDExETs3LkTGzZswLfffgsA6NChAyorK/H+++8jISEBe/bswYoVK/S2T01NxYMPPoiOHTviypUr2L17txTCZsyYgejoaHTp0gXl5eXYtm2btM7aIiIi8PXXX2Pv3r3w9fXF4sWLUVhYKIUbNzc3vPbaa5g0aRLkcjnuvvtuXLp0CcePH8fYsWMREBAAd3d37NixA6GhoXBzc4NCodA7hqenJ8aPH49XX30VSqUSbdu2xYIFC3Dt2jWMHTvWJudF1BJxJIqIbG7Hjh0IDg5GcHAwYmJicPDgQWzYsEF6PB8ARo0ahVatWmHUqFFwc3Ors4+XX34Zv/32G3r27Im5c+di8eLFiI+PBwBERkZi8eLFePvtt9G1a1d88cUXmDdvnt72VVVVmDBhAu644w4MHjwYHTt2xAcffACgenRnypQp6N69O/r37w9nZ2esW7fOJtdi2rRpiIqKQnx8PAYOHIigoKA6lcanT5+Ol19+GTNmzMAdd9yBESNGSPOUWrVqhaVLl+Kjjz5CSEgIHn74YYPHmT9/Ph577DGMHj0aUVFRyM7Oxvfffw9fX1+bnBdRSyQTQghHd4KI6Ny5cwgPD8fBgwcRFRWlt659+/ZITU1FamqqYzpHRGQAb+cRkUNVVlaiqKgI06ZNw1133VUnQBERNVa8nUdEDrVnzx4EBwfj4MGDdeYxOdpbb72F1q1bG/w8+OCDju4eETkYb+cRERmhVqvrVPjWcXd3R5s2bezcIyJqTBiiiIiIiCzA23lEREREFmCIIiIiIrIAQxQRERGRBRiiiIiIiCzAEEVERERkAYYoIiIiIgswRBERERFZgCGKiIiIyAL/H3FGkOThN3GjAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_8.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfEUlEQVR4nO3deVxUVcMH8N+ADJswBCqLoiKi5pIKKWEqWtRYiPG2uFWSmVhJyYNp7ktallu4FdlbQotpllkuD2lUT6mkhZiZS2qoLYIKMiA+ijLn/cOXGyMDzgwzzL0zv+/nw0e598ydc2b0zm/OOfdclRBCgIiIiIjM4mLvChAREREpEUMUERERkQUYooiIiIgswBBFREREZAGGKCIiIiILMEQRERERWYAhioiIiMgCDFFEREREFmCIIiIiIrIAQxQRkYPLzMyESqXCyZMn7V0VIofCEEVEDfbjjz8iJSUFXbp0gbe3N1q3bo2hQ4fit99+q1V2wIABUKlUUKlUcHFxga+vLzp27IjHH38cO3bsMOt5N2/ejNjYWLRo0QJeXl5o164dhg4diuzsbGs1rZZXXnkFmzZtqrV99+7dmDNnDkpLS2323DeaM2eO9FqqVCp4eXmhc+fOmDFjBsrKyqzyHGvXrkV6erpVjkXkaBiiiKjBXnvtNXz66ae4++67sWzZMiQnJ+O7775DZGQkDh48WKt8q1at8P777+O9997DokWLMGTIEOzevRv33nsvhg0bhqtXr970ORcvXowhQ4ZApVJh6tSpeP311/HQQw/h2LFjWLdunS2aCaD+EDV37txGDVHV3nzzTbz//vtYunQpOnXqhJdffhmDBg2CNW6NyhBFVLcm9q4AESlfWloa1q5dC7VaLW0bNmwYunXrhldffRUffPCBQXmNRoPHHnvMYNurr76K559/Hm+88Qbatm2L1157rc7nu3btGubNm4d77rkH27dvr7X/7NmzDWyRfFy6dAleXl71lnn44YfRrFkzAMDTTz+Nhx56CBs3bsQPP/yAmJiYxqgmkVNiTxQRNVifPn0MAhQAREREoEuXLjh8+LBJx3B1dcXy5cvRuXNnrFy5Ejqdrs6y58+fR1lZGe68806j+1u0aGHw++XLlzFnzhx06NABHh4eCA4OxoMPPogTJ05IZRYvXow+ffogICAAnp6eiIqKwieffGJwHJVKhYqKCmRlZUlDaE888QTmzJmDSZMmAQDCwsKkfTXnIH3wwQeIioqCp6cn/P39MXz4cPzxxx8Gxx8wYAC6du2KvLw89O/fH15eXpg2bZpJr19Nd911FwCgoKCg3nJvvPEGunTpAnd3d4SEhGD8+PEGPWkDBgzA1q1bcerUKalNbdu2Nbs+RI6KPVFEZBNCCBQVFaFLly4mP8bV1RUjRozAzJkzsXPnTsTHxxst16JFC3h6emLz5s147rnn4O/vX+cxq6qqMHjwYOTk5GD48OGYMGECysvLsWPHDhw8eBDh4eEAgGXLlmHIkCF49NFHUVlZiXXr1uGRRx7Bli1bpHq8//77eOqpp9C7d28kJycDAMLDw+Ht7Y3ffvsNH330EV5//XWpV6h58+YAgJdffhkzZ87E0KFD8dRTT+HcuXNYsWIF+vfvj/z8fPj5+Un1LS4uxn333Yfhw4fjscceQ2BgoMmvX7XqcBgQEFBnmTlz5mDu3LmIi4vDM888g6NHj+LNN9/Ejz/+iF27dsHNzQ3Tp0+HTqfDn3/+iddffx0A0LRpU7PrQ+SwBBGRDbz//vsCgHjnnXcMtsfGxoouXbrU+bjPPvtMABDLli2r9/izZs0SAIS3t7e47777xMsvvyzy8vJqlXv33XcFALF06dJa+/R6vfT3S5cuGeyrrKwUXbt2FXfddZfBdm9vb5GUlFTrWIsWLRIAREFBgcH2kydPCldXV/Hyyy8bbP/ll19EkyZNDLbHxsYKACIjI6POdtc0e/ZsAUAcPXpUnDt3ThQUFIi33npLuLu7i8DAQFFRUSGEEGLNmjUGdTt79qxQq9Xi3nvvFVVVVdLxVq5cKQCId999V9oWHx8v2rRpY1J9iJwNh/OIyOqOHDmC8ePHIyYmBklJSWY9trqno7y8vN5yc+fOxdq1a9GzZ098+eWXmD59OqKiohAZGWkwhPjpp5+iWbNmeO6552odQ6VSSX/39PSU/n7hwgXodDr069cP+/btM6v+N9q4cSP0ej2GDh2K8+fPSz9BQUGIiIjAN998Y1De3d0do0ePNus5OnbsiObNmyMsLAzjxo1D+/btsXXr1jrnUn311VeorKxEamoqXFz++RgYO3YsfH19sXXrVvMbSuSEOJxHRFZVWFiI+Ph4aDQafPLJJ3B1dTXr8RcvXgQA+Pj43LTsiBEjMGLECJSVlWHPnj3IzMzE2rVrkZCQgIMHD8LDwwMnTpxAx44d0aRJ/ae7LVu2YP78+di/fz+uXLkiba8ZtCxx7NgxCCEQERFhdL+bm5vB7y1btqw1v+xmPv30U/j6+sLNzQ2tWrWShijrcurUKQDXw1dNarUa7dq1k/YTUf0YoojIanQ6He677z6Ulpbi+++/R0hIiNnHqF4SoX379iY/xtfXF/fccw/uueceuLm5ISsrC3v27EFsbKxJj//+++8xZMgQ9O/fH2+88QaCg4Ph5uaGNWvWYO3atWa3oSa9Xg+VSoV///vfRgPljXOMavaImap///7SPCwiajwMUURkFZcvX0ZCQgJ+++03fPXVV+jcubPZx6iqqsLatWvh5eWFvn37WlSP22+/HVlZWThz5gyA6xO/9+zZg6tXr9bq9an26aefwsPDA19++SXc3d2l7WvWrKlVtq6eqbq2h4eHQwiBsLAwdOjQwdzm2ESbNm0AAEePHkW7du2k7ZWVlSgoKEBcXJy0raE9cUSOjHOiiKjBqqqqMGzYMOTm5mLDhg0WrU1UVVWF559/HocPH8bzzz8PX1/fOsteunQJubm5Rvf9+9//BvDPUNVDDz2E8+fPY+XKlbXKiv9fjNLV1RUqlQpVVVXSvpMnTxpdVNPb29vogpre3t4AUGvfgw8+CFdXV8ydO7fW4pdCCBQXFxtvpA3FxcVBrVZj+fLlBnV65513oNPpDK6K9Pb2rne5CSJnxp4oImqwiRMn4osvvkBCQgJKSkpqLa5548KaOp1OKnPp0iUcP34cGzduxIkTJzB8+HDMmzev3ue7dOkS+vTpgzvuuAODBg1CaGgoSktLsWnTJnz//fdITExEz549AQCjRo3Ce++9h7S0NOzduxf9+vVDRUUFvvrqKzz77LN44IEHEB8fj6VLl2LQoEEYOXIkzp49i1WrVqF9+/Y4cOCAwXNHRUXhq6++wtKlSxESEoKwsDBER0cjKioKADB9+nQMHz4cbm5uSEhIQHh4OObPn4+pU6fi5MmTSExMhI+PDwoKCvDZZ58hOTkZL7zwQoNef3M1b94cU6dOxdy5czFo0CAMGTIER48exRtvvIFevXoZvF9RUVFYv3490tLS0KtXLzRt2hQJCQmNWl8i2bLnpYFE5BiqL82v66e+sk2bNhURERHiscceE9u3bzfp+a5evSrefvttkZiYKNq0aSPc3d2Fl5eX6Nmzp1i0aJG4cuWKQflLly6J6dOni7CwMOHm5iaCgoLEww8/LE6cOCGVeeedd0RERIRwd3cXnTp1EmvWrJGWEKjpyJEjon///sLT01MAMFjuYN68eaJly5bCxcWl1nIHn376qejbt6/w9vYW3t7eolOnTmL8+PHi6NGjBq9Nfcs/3Ki6fufOnau33I1LHFRbuXKl6NSpk3BzcxOBgYHimWeeERcuXDAoc/HiRTFy5Ejh5+cnAHC5A6IaVEJY4eZKRERERE6Gc6KIiIiILMAQRURERGQBhigiIiIiCzBEEREREVmAIYqIiIjIAgxRRERERBbgYps2pNfr8ffff8PHx4e3TiAiIlIIIQTKy8sREhICF5e6+5sYomzo77//RmhoqL2rQURERBb4448/0KpVqzr3M0TZkI+PD4Drb0J99wEjIiIi+SgrK0NoaKj0OV4Xhigbqh7C8/X1ZYgiIiJSmJtNxeHEciIiIiILMEQRERERWYAhioiIiMgCnBNFREQkM1VVVbh69aq9q+Gw3Nzc4Orq2uDjMEQRERHJhBAChYWFKC0ttXdVHJ6fnx+CgoIatI4jQxQREZFMVAeoFi1awMvLiws124AQApcuXcLZs2cBAMHBwRYfiyGKiIhIBqqqqqQAFRAQYO/qODRPT08AwNmzZ9GiRQuLh/Y4sZyIiEgGqudAeXl52bkmzqH6dW7I3DOGKCIiIhnhEF7jsMbrzOE8IiITFRcXo7Kyss79arWawzBEToQhiojIBMXFxVi5cuVNy6WkpDBIETkJDucREZngxh4onc4HBQVtodP51FuOyBk88cQTUKlUUKlUcHNzQ2BgIO655x68++670Ov1Jh8nMzMTfn5+tquolbEniojITPv29cTmzYMhhAtUKj0SErYgMjLf3tUiJ2fv4eZBgwZhzZo1qKqqQlFREbKzszFhwgR88skn+OKLL9CkieNFDsdrERGRDel0PlKAAgAhXLB582CEhx+HRlNu59qRs5LDcLO7uzuCgoIAAC1btkRkZCTuuOMO3H333cjMzMRTTz2FpUuXYs2aNfj999/h7++PhIQELFy4EE2bNsW3336L0aNHA/hn0vfs2bMxZ84cvP/++1i2bBmOHj0Kb29v3HXXXUhPT0eLFi1s0hZTcTiPiMgMJSUBUoCqJoQLSkr87VQjItOHkRt7uPmuu+5C9+7dsXHjRgCAi4sLli9fjl9//RVZWVn4+uuvMXnyZABAnz59kJ6eDl9fX5w5cwZnzpzBCy+8AOD6MgTz5s3Dzz//jE2bNuHkyZN44oknGrUtxrAniojIDP7+xVCp9AZBSqXSw9+/xI61IpKvTp064cCBAwCA1NRUaXvbtm0xf/58PP3003jjjTegVquh0WigUqmkHq1qTz75pPT3du3aYfny5ejVqxcuXryIpk2bNko7jGFPFBGRGTSaciQkbIFKdX2ybPWcKA7lERknhJCG57766ivcfffdaNmyJXx8fPD444+juLgYly5dqvcYeXl5SEhIQOvWreHj44PY2FgAwOnTp21e//qwJ4qIyEyRkfkIDz+OkhJ/+PuXMEAR1ePw4cMICwvDyZMnMXjwYDzzzDN4+eWX4e/vj507d2LMmDGorKysc6X2iooKaLVaaLVafPjhh2jevDlOnz4NrVZr96thGaKIiEygVqsNftdoyo2GpxvLETmzr7/+Gr/88gv+9a9/IS8vD3q9HkuWLIGLy/WBsI8//tigvFqtRlVVlcG2I0eOoLi4GK+++ipCQ0MBAD/99FPjNOAmGKKIiEwQEBCAlJQUrlhOVIcrV66gsLDQYImDBQsWYPDgwRg1ahQOHjyIq1evYsWKFUhISMCuXbuQkZFhcIy2bdvi4sWLyMnJQffu3eHl5YXWrVtDrVZjxYoVePrpp3Hw4EHMmzfPTq00xDlRREQmCggIQHBwcJ0/DFDkzLKzsxEcHIy2bdti0KBB+Oabb7B8+XJ8/vnncHV1Rffu3bF06VK89tpr6Nq1Kz788EMsWLDA4Bh9+vTB008/jWHDhqF58+ZYuHAhmjdvjszMTGzYsAGdO3fGq6++isWLF9uplYZUQghh70o4qrKyMmg0Guh0Ovj6+tq7OkSKY+/FA4ka0+XLl1FQUICwsDB4eHiY9Vg5rBOlNPW93qZ+fnM4j4hkiR8KRKbjcLN9yGI4b9WqVWjbti08PDwQHR2NvXv31lt+w4YN6NSpEzw8PNCtWzds27bNYL8QArNmzUJwcDA8PT0RFxeHY8eOSftPnjyJMWPGICwsDJ6enggPD8fs2bMN/vGdPHlSug9QzZ8ffvjBuo0nIqN4rzoi83C4ufHZPUStX78eaWlpmD17Nvbt24fu3btDq9Xi7NmzRsvv3r0bI0aMwJgxY5Cfn4/ExEQkJibi4MGDUpmFCxdi+fLlyMjIwJ49e+Dt7Q2tVovLly8DuD7TX6/X46233sKvv/6K119/HRkZGZg2bVqt5/vqq6+klVPPnDmDqKgo27wQRFSnfft6Ij09FVlZSUhPT8W+fT3tXSUiIvvPiYqOjkavXr2kbnu9Xo/Q0FA899xzmDJlSq3yw4YNQ0VFBbZs2SJtu+OOO9CjRw9kZGRACIGQkBBMnDhRWi5ep9MhMDAQmZmZGD58uNF6LFq0CG+++SZ+//13ANd7osLCwpCfn48ePXpY1DbOiSKy3JkzZ7B69WrodD5IT0+ttUJ4amo6NJpyJCcnIzg42I41JbKOhsyJIvNZY06UXXuiKisrkZeXh7i4OGmbi4sL4uLikJuba/Qxubm5BuUBQKvVSuULCgpQWFhoUEaj0SA6OrrOYwLXg5a/f+17Xw0ZMgQtWrRA37598cUXX9TbnitXrqCsrMzgh4gahveqIyK5smuIOn/+PKqqqhAYGGiwPTAwEIWFhUYfU1hYWG/56j/NOebx48exYsUKjBs3TtrWtGlTLFmyBBs2bMDWrVvRt29fJCYm1hukFixYAI1GI/1ULwpGRJarvlddTbxXHRHJgdNfnffXX39h0KBBeOSRRzB27Fhpe7NmzZCWlib93qtXL/z9999YtGgRhgwZYvRYU6dONXhMWVkZgxRRA1Xfq27z5sEQwoX3qiMi2bBriGrWrBlcXV1RVFRksL2oqKjWHZyrBQUF1Vu++s+ioiKDeRJFRUW15jb9/fffGDhwIPr06YPVq1fftL7R0dHYsWNHnfvd3d3h7u5+0+MQkXl4rzoikiO7Duep1WpERUUhJydH2qbX65GTk4OYmBijj4mJiTEoDwA7duyQyoeFhSEoKMigTFlZGfbs2WNwzL/++gsDBgxAVFQU1qxZI93Hpz779+/nBFaiRmLsXnVhYadqBSjeq46I7MXuw3lpaWlISkrC7bffjt69eyM9PR0VFRUYPXo0AGDUqFFo2bKltDT8hAkTEBsbiyVLliA+Ph7r1q3DTz/9JPUkqVQqpKamYv78+YiIiEBYWBhmzpyJkJAQJCYmAvgnQLVp0waLFy/GuXPnpPpU92RlZWVBrVajZ8/rl1Jv3LgR7777Lv73f/+3sV4aIqfGxQOJqNq3336LgQMH4sKFC/Dz8zPpMW3btkVqaipSU1NtVi+7h6hhw4bh3LlzmDVrFgoLC9GjRw9kZ2dLE8NPnz5t0EvUp08frF27FjNmzMC0adMQERGBTZs2oWvXrlKZyZMno6KiAsnJySgtLUXfvn2RnZ0tXcK4Y8cOHD9+HMePH0erVq0M6lNzxYd58+bh1KlTaNKkCTp16oT169fj4YcftuXLQUQ1MCARKcMTTzyBrKwsjBs3rtZNhcePH4833ngDSUlJyMzMtE8FbcTu60Q5Mq4TRUREplLyOlFPPPEEvv76a5SVleHMmTPw9PQEcL1NwcHB8PX1xcCBAy0OUbboiVL8OlFERETkGCIjIxEaGoqNGzdK2zZu3IjWrVtLU2OA62sqPv/882jRogU8PDzQt29f/PjjjwbH2rZtGzp06ABPT08MHDgQJ0+erPV8O3fuRL9+/eDp6YnQ0FA8//zzqKiosFn7jGGIIiIicjB//gl88831PxvTk08+iTVr1ki/v/vuu9Ic52qTJ0/Gp59+iqysLOzbtw/t27eHVqtFScn1td/++OMPPPjgg0hISMD+/fvx1FNP1bqDyYkTJzBo0CA89NBDOHDgANavX4+dO3ciJSXF9o2sgSGKiIjIgbzzDtCmDXDXXdf/fOedxnvuxx57DDt37sSpU6dw6tQp7Nq1C4899pi0v6KiAm+++SYWLVqE++67D507d8bbb78NT09PvPP/FX3zzTcRHh6OJUuWoGPHjnj00UfxxBNPGDzPggUL8OijjyI1NRURERHo06cPli9fjvfee0+6T25jsPvEciIiIrKOP/8EkpMB/f8v8q/XA+PGAVotcMN1VDbRvHlzxMfHIzMzE0IIxMfHo1mzZtL+EydO4OrVq7jzzjulbW5ubujduzcOHz4MADh8+DCio6MNjnvjskc///wzDhw4gA8//FDaJoSAXq9HQUEBbr31Vls0rxaGKCIiIgdx7Ng/AapaVRVw/HjjhCjg+pBe9bDaqlWrbPIcFy9exLhx4/D888/X2te6dWubPKcxDFFEREQOIiICcHExDFKurkD79o1Xh0GDBqGyshIqlQpardZgX3h4ONRqNXbt2oU2bdoAAK5evYoff/xRuoru1ltvrXWf2h9++MHg98jISBw6dAjtG7NhRnBOFBERkYNo1QpYvfp6cAKu//nWW43XC3X9OV1x+PBhHDp0CK7VFfl/3t7eeOaZZzBp0iRkZ2fj0KFDGDt2LC5duoQxY8YAAJ5++mkcO3YMkyZNwtGjR7F27dpaSyO8+OKL2L17N1JSUrB//34cO3YMn3/+eaNPLGdPFBERkQMZM+b6HKjjx6/3QDVmgKpW39pKr776KvR6PR5//HGUl5cjKioKW7Zsgbe3NyorKxEUFIR169Zh0qRJWLFiBXr37o1XXnkFTz75pHSM2267Df/5z38wffp09OvXD0IIhIeHY9iwYY3RPAkX27QhLrZpmeLiYt7qg4icjpIX27TEtWvXcPbsWen3qioXXLvWBE2aXIOr6z/jkS1atECTJtbv87HGYpvsiSJZKS4uxsqVK29aLiUlhUGKiEjB9DUmbl265IXSUg0AFQABPz8dvLwu1SonNwxRJCs39kDpdD4oKQmAv38xNJryOss5E/bUEZEjqapyqRGgAECF0lIN3N0vG/RIyRFDFMnWvn09sXnzYAjhApVKj4SELYiMzLd3teyKPXVE5GiuXWuCfwJUNRWuXWsCV1d5f2Hm1XkkSzqdjxSgAEAIF2zePBg6nY+da2ZfxnrqCgra1npdnLmnjoiUpUmTawBunJ4t/n+7vLEnimSppCRAClDVhHBBSYm/wbCeM2NPHZFjcrbrvVxd9fDz09WaE2XroTxrvM4MUSRL/v7FUKn0BkFKpdLD37/EjrWSj7p66sLDjzNkEimUm5sbAODSpUvw9PS0c20al5fXJbi7XzZ6dZ6tXLp0feJ69etuCYYokiWNphwJCVtq9bQwIFzHnjoix+Pq6go/Pz/psn8vLy+oVDfOFXIclZWVuHbNcMjO1bUSQgA1N1++fNmqV+gJIXDp0iWcPXsWfn5+tRYENQdDFMlWZGQ+wsOPo6TEH/7+JQwHNbCnjsgxBQUFAYDB+kmOqqqqCuXlNz+vl5WVNSjo1MXPz096vS3FEEWyolarDX7XaMqNhqcbyzkb9tQROSaVSoXg4GC0aNECV69etXd1bO7ChQv1ttPNzQ233HKL1Z/Xzc3NKsGMIYpkJSAgACkpKVwHyQTsqSNyXK6urjbpfZGb4OBge1ehQRiiSHYYkOrGnjoiIvlgiCJSEPbUERHJB0MUkcIwIBERyQNXLCciIiKyAEMUERERkQUYooiIiIgswBBFREREZAGGKCIiIiIL8Oo8IiJyKMXFxVwGhBoFQxQRETmM4uJirFy58qblUlJSGKSowTicR0REDuPGHiidzgcFBW2h0/nUW47IEuyJIiIih7RvX89aN+mOjMy3d7XIgbAnioiIHI5O5yMFKAAQwgWbNw+u1SNF1BAMUURE5HBKSgKkAFVNCBeUlPjbqUbkiBiiiIjI4fj7F0Ol0htsU6n08PcvsVONyBExRBERkcPRaMqRkLBFClLVc6I0mnI714wcCSeWExGRQ4qMzEd4+HGUlPjD37+EAYqsjiGKiIgchlqtNvhdoyk3Gp5uLEdkCYYoIiJyGAEBAUhJSeGK5dQoGKKIiMihMCBRY+HEciIiIiILMEQRERERWYAhioiIiMgCDFFEREREFmCIIiIiIrIAQxQRERGRBRiiiIiIiCzAdaKIiExUXFzMRRyJSMIQRURkguLiYqxcufKm5VJSUhikiJwEh/OIiExwYw+UTueDgoK20Ol86i1HRI6LPVFERGbat68nNm8eDCFcoFLpkZCwBZGR+fauFhE1MvZEERGZQafzkQIUAAjhgs2bB9fqkSIix8cQRURkhpKSAClAVRPCBSUl/naqERHZC0MUEZEZ/P2LoVLpDbapVHr4+5fYqUZEZC8MUUREZtBoypGQsEUKUtVzojSacjvXjIgaGyeWExGZKTIyH+Hhx1FS4g9//xIGKCInxRBFRGQCtVpt8LtGU240PN1YjogcF0MUEZEJAgICkJKSYrMVy7kaOpHyyGJO1KpVq9C2bVt4eHggOjoae/furbf8hg0b0KlTJ3h4eKBbt27Ytm2bwX4hBGbNmoXg4GB4enoiLi4Ox44dk/afPHkSY8aMQVhYGDw9PREeHo7Zs2fXOoEdOHAA/fr1g4eHB0JDQ7Fw4ULrNZqIFCcgIADBwcF1/jQkQK1cuRKrV6+u82flypUoLi62couIqCHsHqLWr1+PtLQ0zJ49G/v27UP37t2h1Wpx9uxZo+V3796NESNGYMyYMcjPz0diYiISExNx8OBBqczChQuxfPlyZGRkYM+ePfD29oZWq8Xly5cBAEeOHIFer8dbb72FX3/9Fa+//joyMjIwbdo06RhlZWW499570aZNG+Tl5WHRokWYM2cOVq9ebdsXhIicDldDJ1ImlRBC2LMC0dHR6NWrl3RPKr1ej9DQUDz33HOYMmVKrfLDhg1DRUUFtmzZIm2744470KNHD2RkZEAIgZCQEEycOBEvvPACAECn0yEwMBCZmZkYPny40XosWrQIb775Jn7//XcAwJtvvonp06ejsLBQmuMwZcoUbNq0CUeOHDGpbWVlZdBoNNDpdPD19TX9RSEip3LmzBnpC1p9q6EnJycjODjYnlUlcgqmfn7btSeqsrISeXl5iIuLk7a5uLggLi4Oubm5Rh+Tm5trUB4AtFqtVL6goACFhYUGZTQaDaKjo+s8JnA9aPn7/7NYXm5uLvr3728wSVSr1eLo0aO4cOGC0WNcuXIFZWVlBj9ERKbiauhEymLXEHX+/HlUVVUhMDDQYHtgYCAKCwuNPqawsLDe8tV/mnPM48ePY8WKFRg3btxNn6fmc9xowYIF0Gg00k9oaKjRckRExnA1dCJlsfucKHv766+/MGjQIDzyyCMYO3Zsg441depU6HQ66eePP/6wUi2JyBlwNXQiZbFriGrWrBlcXV1RVFRksL2oqAhBQUFGHxMUFFRv+eo/TTnm33//jYEDB6JPnz61JozX9Tw1n+NG7u7u8PX1NfghIjIVV0MnUha7hii1Wo2oqCjk5ORI2/R6PXJychATE2P0MTExMQblAWDHjh1S+bCwMAQFBRmUKSsrw549ewyO+ddff2HAgAGIiorCmjVr4OJi+FLExMTgu+++w9WrVw2ep2PHjrjlllssbzQRUT0iI/ORmpqOpKRMpKamS5PKiUh+7L7YZlpaGpKSknD77bejd+/eSE9PR0VFBUaPHg0AGDVqFFq2bIkFCxYAACZMmIDY2FgsWbIE8fHxWLduHX766SepJ0mlUiE1NRXz589HREQEwsLCMHPmTISEhCAxMRHAPwGqTZs2WLx4Mc6dOyfVp7qXaeTIkZg7dy7GjBmDF198EQcPHsSyZcvw+uuvN+KrQ0RyYqsFMbkaOpEy2T1EDRs2DOfOncOsWbNQWFiIHj16IDs7W5rEffr0aYNeoj59+mDt2rWYMWMGpk2bhoiICGzatAldu3aVykyePBkVFRVITk5GaWkp+vbti+zsbHh4eAC43qN0/PhxHD9+HK1atTKoT/WKDxqNBtu3b8f48eMRFRWFZs2aYdasWUhOTrb1S0JEMlS9IObNpKSkmB2kbL0aOhHZht3XiXJkXCeKyHHUXMsJuL4cQUlJAPz9iw16jbiWE5Hymfr5bfeeKCIipalvQUwich5Ov8QBEZE5uCAmEVVjTxQpnq0m+xIZU9+CmFyKgMi5MESRotlysi+RMdULYtYMUlwQk8g5cTiPFO3GHiidzgcFBW1rDa3U11NFZA4uiElE1dgTRQ6Dk32psURG5iM8/DhKSvzh71/CAEXkpNgTRQ6Bk33J1owtiBkWdqpWgOKCmETOgz1R5BA42ZdsjQtiEtGNGKLIIXCyLzUGBiQiqonDeeQQONmXiIgaG3uiyGFwsi8RETUmhihSNGOTfY2FJ072JSIia2OIIkXjZF8iIrIXhihSPAYkIiKyB04sJyIiIrIAQxQRERGRBRiiiIiIiCzAEEVERERkAYYoIiIiIgswRBERERFZgCGKiIiIyAIMUUREREQWYIgiIiIisgBDFBEREZEFGKKIiIiILMAQRURERGQBhigiIiIiCzBEEREREVmAIYqIiIjIAgxRRERERBZgiCIiIiKyAEMUERERkQUYooiIiIgswBBFREREZAGGKCIiIiILMEQRERERWYAhioiIiMgCDFFEREREFmCIIiIiIrIAQxQRERGRBRiiiIiIiCzAEEVERERkgSb2rgApU3FxMSorK+vcr1arERAQ0Ig1IiIialwMUWS24uJirFy58qblUlJSGKSIiMhhcTiPzHZjD5RO54OCgrbQ6XzqLUdERORI2BNFDbJvX09s3jwYQrhApdIjIWELIiPz7V0tIiIim2NPFFlMp/ORAhQACOGCzZsH1+qRIiIickQMUWSxkpIAKUBVE8IFJSX+dqoRERFR42GIIov5+xdDpdIbbFOp9PD3L7FTjYiIiBoP50QRAMuWLNBoypGQsKXWnCiNptzW1SUiIrI7hihq0JIFkZH5CA8/jpISf/j7lzBAERGR02CIIqNLFpSUBMDfv9ggFFWXU6vVBuU1mnKj4enGcs6CC5ESETkHhigyYMqSBQEBAUhJSWFQMKIxFiJlSCMikgeGKJLUtWRBePjxWj1N/JA2ztxePXNxtXgiIvlgiCJJfUsWcK6T+WyxEKmtQxpZD3sMiRwfQxRJqpcsqBmkuGSBZczp1bMUV4uXL/YYEjkHu68TtWrVKrRt2xYeHh6Ijo7G3r176y2/YcMGdOrUCR4eHujWrRu2bdtmsF8IgVmzZiE4OBienp6Ii4vDsWPHDMq8/PLL6NOnD7y8vODn52f0eVQqVa2fdevWNaitcle9ZEH12k9cssBytl6IlKvFyxvvL0nkHOzaE7V+/XqkpaUhIyMD0dHRSE9Ph1arxdGjR9GiRYta5Xfv3o0RI0ZgwYIFGDx4MNauXYvExETs27cPXbt2BQAsXLgQy5cvR1ZWFsLCwjBz5kxotVocOnQIHh4eAK6fuB555BHExMTgnXfeqbN+a9aswaBBg6Tf6wpcjkQOSxY4wjCIrXv1OPSqHOwxJHJcdg1RS5cuxdixYzF69GgAQEZGBrZu3Yp3330XU6ZMqVV+2bJlGDRoECZNmgQAmDdvHnbs2IGVK1ciIyMDQgikp6djxowZeOCBBwAA7733HgIDA7Fp0yYMHz4cADB37lwAQGZmZr318/PzQ1BQkLWaK1tyWrLAUYZBbL0QKYdelaExhnWJyH7sFqIqKyuRl5eHqVOnSttcXFwQFxeH3Nxco4/Jzc1FWlqawTatVotNmzYBAAoKClBYWIi4uDhpv0ajQXR0NHJzc6UQZarx48fjqaeeQrt27fD0009j9OjRUKlUZh1DCeS0ZIEjTZy2Za8eV4tXBvYYElmX3EYq7Baizp8/j6qqKgQGBhpsDwwMxJEjR4w+prCw0Gj5wsJCaX/1trrKmOqll17CXXfdBS8vL2zfvh3PPvssLl68iOeff77Ox1y5cgVXrlyRfi8rKzPrOe1Jjr06ShwGacxePTkMvVL92GNIZD1yHKng1Xl1mDlzpvT3nj17oqKiAosWLao3RC1YsEAaKqSGUeowiK179eQ09Eo3Z06Pody+YRPJjRxHKuwWopo1awZXV1cUFRUZbC8qKqpzHlJQUFC95av/LCoqQnBwsEGZHj16NKi+0dHRmDdvHq5cuQJ3d3ejZaZOnWow3FhWVobQ0NAGPa+zUvIwiC0/6OQ09EqmMaXHUI7fsInkTC4jFXZb4kCtViMqKgo5OTnSNr1ej5ycHMTExBh9TExMjEF5ANixY4dUPiwsDEFBQQZlysrKsGfPnjqPaar9+/fjlltuqTNAAYC7uzt8fX0Nfsgy1cMgNXEY5LqAgAAEBwfX+cMPWfsz1mMYFnaqVoCqLsclEYhMJ6clXszuidqyZQv27t0LrVaLO++8E19//TUWL14MvV6PBx98EMnJySYfKy0tDUlJSbj99tvRu3dvpKeno6KiQrpab9SoUWjZsiUWLFgAAJgwYQJiY2OxZMkSxMfHY926dfjpp5+wevVqANfXdkpNTcX8+fMREREhLXEQEhKCxMRE6XlPnz6NkpISnD59GlVVVdi/fz8AoH379mjatCk2b96MoqIi3HHHHfDw8MCOHTvwyiuv4IUXXjD35SILceI0KVlDegzl8g2bSK7kNFJhVoh66623kJKSgu7du2PZsmVYtWoVnn32WQwbNgyurq5ITU3Ff//7X0yYMMGk4w0bNgznzp3DrFmzUFhYiB49eiA7O1uaGH769Gm4uPzzQvXp0wdr167FjBkzMG3aNERERGDTpk3SGlEAMHnyZFRUVCA5ORmlpaXo27cvsrOzpTWiAGDWrFnIysqSfu/ZsycA4JtvvsGAAQPg5uaGVatW4V//+heEEGjfvr20HAM1HqVOnObcFgIsG9ZV6lxAosYkpws2VEIIYWrhLl26IDU1FWPHjsU333yD+++/H0uWLMGzzz4L4Pq6SwsXLsShQ4dsVmElKSsrg0ajgU6n49CeiZQ+N0Tp9Sf7OHPmDFavXo2CgrbIykqqtT8pKRNhYaeQnJxsMN+TyJlU/z8B6u+xtcb/E1M/v83qiSooKIBWqwUADBw4EFVVVejfv7+0f8CAARg/fryFVSZS/sRpOV49Qsohp2/YRHIml5EKs0JUQEAATp06hdatW+Pvv//GtWvXcPr0aWk47dSpU/D3t869wch5yTUgmYtzW8hcnAtIVDc5LvFiVoh64IEHMGbMGCQlJeGLL77AqFGjMHHiRLi4uEClUmHSpEm49957bVVXIsXg3BaylFy+YRPJjRxHKswKUa+99hoqKyuxbt069OnTBytWrMDy5cvxwAMP4OrVq4iNjZWupCNyZnK6eoTkT47fsInkSG4jFWaFKG9vb2lSV7UXXngBKSkpuHr1Knx8Gn+NBiI54twWMoccv2ET0c1ZZcVyDw8PgyUEiJwd57aQuRiQiJTHrBBV85Ym9Vm6dKlFlSFyJJzbQkTk2MwKUfn5hlcW7dy5E1FRUfD09JS2qVQq69SMSIE4t4WIyHmYtdjmjXx8fPDzzz+jXbt21qyTw+Bim86JK5YTESmbTRbbJKKbY0AiInIOLjcvQkREREQ3YogiIiIisoBZw3kHDhww+F0IgSNHjuDixYsG22+77baG14yIiIhIxsyaWF59exdjD6nerlKpUFVVZdVKKhUnlhMRESmPTSaWFxQUNLhiRERERI7ArBDVpk0bW9WDiIiISFHMnlguhEBBQQGuXbsGAKisrMT69evx3nvv4fz581avIBEREZEcmdUTdfToUWi1Wvzxxx9o164dtm/fjkceeQRHjhyBEAJeXl7YvXs3IiIibFVfIiIiIlkwqyfqxRdfRPfu3bF//34MHjwY8fHxaNWqFS5cuICSkhLExMTgpZdeslVdiYiIiGTDrKvzWrRoge3bt6NHjx6oqKiAj48PvvvuO/Tt2xcAsHv3bowYMQKnTp2yWYWVhFfnETkW3tKHyDnY5Oq8ixcvwt/fHwDg7e0Nb29vBAcHS/tDQ0NRVFRkYZWJiOSruLgYK1euvGm5lJQUBikiJ2FWiAoJCcHp06fRunVrAMDChQvRokULaf+5c+dwyy23WLeGBIDfgIns7cb/fzqdD0pKAuDvXwyNprzOckTkuMwKUXFxcThy5Ig0fPfMM88Y7N++fTsiIyOtVzsCwG/ARHKzb19PbN48GEK4QKXSIyFhCyIj8+1dLSJqZGaFqIyMjHr3Dx8+HElJSQ2qENXGb8BE8qHT+UgBCgCEcMHmzYMRHn7c4P8jETk+s0LU119/jZSUFPzwww+1JlrpdDrEx8cjIyPDYJ4UWRe/AZMzkeMwdklJgBSgqgnhgpISf4YoIidjVohKT0/H2LFjjc5U12g0GDduHJYuXYp+/fpZrYL0D34DJmci12Fsf/9iqFR6gyClUunh71/SaHUgInkwa52on3/+GYMGDapz/7333ou8vLwGV4qMq+8bMJGjMTaMXVDQFjqdT73lbE2jKUdCwhaoVHoAkHqE+UWGyPmY1RNVVFQENze3ug/WpAnOnTvX4EqRcfwGTM5KbsPYkZH5CA8/jpISf/j7lzBAETkps3qiWrZsiYMHD9a5/8CBA5wPZUP8BkzOqK5h7Bt7pGxNrVYb/K7RlCMs7FSt/383liMix2VWT9T999+PmTNnYtCgQfDw8DDY99///hezZ8/G4MGDrVpBMsRvwORs5DKROyAgACkpKbKb6E5E9mNWiJoxYwY2btyIDh06ICUlBR07dgQAHDlyBKtWrUJVVRWmT59uk4o6M2PfgI19ePAbMDkiOQ1jMyARUU1mhajAwEDs3r0bzzzzDKZOnYrq2+6pVCpotVqsWrUKgYGBNqmoM+M3YHJm1cPYN86JcvZeWDku/0DkbMwKUQDQpk0bbNu2DRcuXMDx48chhEBERARv90JENsNhbENyXf6ByNmYHaKq3XLLLejVq5c160J14AnTuvgNXhk4jF033sWASB4sDlHUeHjCtB45BlKGOuM4jG0auS3/QORMGKIUhifMhpFbIJVjqJMTZ2yzOXgXAyL7YohSEJ4wrUsOgVRuoY6URS7LPxA5K4YoBeEJ03rkGEjlEOpIWeS0/AORMzJrxXKyr+oTZk08YVpGbvchlMuq3KQsvIsBkX2xJ0pBuF6OcZZMzJbbN3j2MpKluPwDkf0wRCkMT5iGbpyYXdecohsnZsstkJoT6ng1H3H5ByJ5YIhSAJ4w61YzTNQ3p8hY6JBTIDU11PFqPgK4/AORXDBEKQBPmDdn6kRxOQdSU0Idr+ajas78/51ILhiiFIInzPqZOqdIboG0IaGOV/MREdkXQxQ5BHPmFMkpkFoa6uS4RAMRkbNhiCKHILeJ4uawJNTxaj4iIvtjiCKHIaeJ4rYmtyUaiIicERfbJIei0ZQjLOyUQwcogIssEhHJAXuiSNFMvYrOEZd/cKaeNyIiOWKIIkWT29V2gG0Xw5TzEg1ERM5GJYQQ9q6EoyorK4NGo4FOp4Ovr6+9q0ONoDEWw+SK5UREtmXq5zd7ooisqDEWw2RAIiKSB4YoIhvhYphERI6NV+cR2UBdi2HqdD52rhkREVkLe6KIbICLYRKRpTjvUTkYoohsgIthEpElGuPiFLIeDucR2QAXwyQiSxi7OKWgoG2tqQANuTiFrMfuIWrVqlVo27YtPDw8EB0djb1799ZbfsOGDejUqRM8PDzQrVs3bNu2zWC/EAKzZs1CcHAwPD09ERcXh2PHjhmUefnll9GnTx94eXnBz8/P6POcPn0a8fHx8PLyQosWLTBp0iRcu3atQW0l5xIZmY/U1HQkJWUiNTWdk8qJyCz79vVEenoqsrKSkJ6ein37etq7SnQDu4ao9evXIy0tDbNnz8a+ffvQvXt3aLVanD171mj53bt3Y8SIERgzZgzy8/ORmJiIxMREHDx4UCqzcOFCLF++HBkZGdizZw+8vb2h1Wpx+fJlqUxlZSUeeeQRPPPMM0afp6qqCvHx8aisrMTu3buRlZWFzMxMzJo1y7ovADkcY4thGrsNDRfDJKL68OIUZbDrYpvR0dHo1auXNP6r1+sRGhqK5557DlOmTKlVftiwYaioqMCWLVukbXfccQd69OiBjIwMCCEQEhKCiRMn4oUXXgAA6HQ6BAYGIjMzE8OHDzc4XmZmJlJTU1FaWmqw/d///jcGDx6Mv//+G4GBgQCAjIwMvPjiizh37pzJH4BcbNM5cVIoEVnqzJkzWL16NQoK2iIrK6nW/qSkTISFnUJycjKCg4PtUEPnYOrnt916oiorK5GXl4e4uLh/KuPigri4OOTm5hp9TG5urkF5ANBqtVL5goICFBYWGpTRaDSIjo6u85h1PU+3bt2kAFX9PGVlZfj111/rfNyVK1dQVlZm8EPOJyAgAMHBwXX+MEAR0c1UX5xSEy9OkR+7hajz58+jqqrKIKgAQGBgIAoLC40+prCwsN7y1X+ac0xznqfmcxizYMECaDQa6Sc0NNTk5yQiIqrGi1OUgUscWNHUqVORlpYm/V5WVsYgRUREFomMzEd4+HGUlPjD37+EAUqG7BaimjVrBldXVxQVFRlsLyoqQlBQkNHHBAUF1Vu++s+ioiKDseKioiL06NHD5LoFBQXVukqw+nnrqhsAuLu7w93d3eTnISIiqsnYxSnGwhMvTpEHu4UotVqNqKgo5OTkIDExEcD1ieU5OTlISUkx+piYmBjk5OQgNTVV2rZjxw7ExMQAAMLCwhAUFIScnBwpNJWVlWHPnj11XolX1/O8/PLLOHv2LFq0aCE9j6+vLzp37mx+Y4mIiEwQEBCAlJQUXpyiEHYdzktLS0NSUhJuv/129O7dG+np6aioqMDo0aMBAKNGjULLli2xYMECAMCECRMQGxuLJUuWID4+HuvWrcNPP/2E1atXAwBUKhVSU1Mxf/58REREICwsDDNnzkRISIgU1IDra0CVlJTg9OnTqKqqwv79+wEA7du3R9OmTXHvvfeic+fOePzxx7Fw4UIUFhZixowZGD9+PHuaiIjIphiQFETY2YoVK0Tr1q2FWq0WvXv3Fj/88IO0LzY2ViQlJRmU//jjj0WHDh2EWq0WXbp0EVu3bjXYr9frxcyZM0VgYKBwd3cXd999tzh69KhBmaSkJAGg1s8333wjlTl58qS47777hKenp2jWrJmYOHGiuHr1qllt0+l0AoDQ6XRmPY6IiIjsx9TPb7uuE+XouE4UERGR8sh+nSgiIiIiJWOIIiIiIrIAQxQRERGRBRiiiIiIiCzAFcvJ6fAGwUREZA0MUeRUiouLsXLlypuWS0lJYZAiIqJ6MUSRU7mxB0qn80FJSQD8/YsNbq1QX08VkRywR5XI/hiiyGnt29cTmzcPhhAu0h3SIyPz7V0toptij6p1MZCSpRiiyCnpdD5SgAIAIVywefNghIcf553SSfbYo2o9DKTUEAxR5JRKSgKkAFVNCBeUlPgzRMkIewhujj2qDWNq0GQgJWMYosgp+fsXQ6XSGwQplUoPf/8SO9aKamIPwc2xR9X66urVIzKGIYqckkZTjoSELbW+wfOkKR8csro59qhaF3v1yFwMUeS0IiPzER5+HCUl/vD3L+GHjozxw8049qhaD3v1yBJcsZycilqtNvhdoylHWNipWifJG8uR/dT14abT+di5ZvZX3aOqUukBgD2qDVBfrx5RXdgTRU4lICAAKSkpnKysIHIaspLjRHf2qFoHe/XIEgxRDkqOJ3u5cNZ2K5VcPtzkNNHdWI+qsfDEHlXTcZ4kWYIhygHJ6WRP1FBy+XCT00R39qhaT82gWV+vHgMpGcMQ5YDkdLInsga5DVnJYaI7A5J1MJBSQzBEOTg5nOyJLCHXIStexeV4GJDIUgxRDowne1IyufYQyGmiOxHZF0OUAyotLQVw85N9aWkpgoOD7VBDItPIsYdALhPdicj+uE6UA7p27RqAf072NdU82VeXIyLTcW0mIqrGnigHptGU47bbDuDnn7sDUAEQuO22AzzZEzWQ3Ca6E5F9sCfKgel0Pjhw4DZcD1AAoMKBA7dxpWciC3C1eyK6EXuiHJCbmxuAm8+Jqi5HRDcn14nuROay5WLMzrbQM0OUA9JoNABuPgG2uhwRmcaRTv7knGy5GLMzLvTM4TwHxgmwRERUk7HFmAsK2taa5mHJYsy2PLZcsSfKwSlxAqyzdQcTEdmDLRdjdpaFnhmiHJBcV3o2hTN2BxMRNZbqdQRvthhzQ9YRdKaFnhmiHJCSJ8Dyvn9ERLZTvT7gzS48asg6gs60qj9DlIOSY0Ayl7N0BxMRNTZbrrzvTKv6c2I5yVJd3cFc44qIqOGqF2MGxP9vsd5izM50URN7okiWnKk7mIiosdW1GPNdd31tlXOsEi9qsgRDFMmSM3UHExE1Flsuxqzki5osxRBFslTdHXzjnChH/TZDRNQYbLkYs5IvarIUQxTJlrN0BxMRNTZbfVF1pIBkCoYokhVn7A4mcgRcJFcZap476/uiynOsaVRCCHHzYmSJsrIyaDQa6HQ6+Pr62rs6isGTMZGycJFcZeE59uZM/fxmTxTJjrP/5yVSGlMXv+UiufJgzjmWgat+DFFERGRVdd1pgJSFPYw3xxBFRERWwzsNOA7ehuvmGKKI7Izd5eQonOnGs86G4dg4higiO2J3uXXZOpAy8NaPdxpwTAzHdWOIIrIjdpdbj60DqbMFXksCI+804JgYjuvGEEUkE+wubxhbB1JnCryWBkbeacAxMRzXjSGKSAbYXW5dtg6kjh54zQ2MXMDRsTEc140hikgG2F1uPbYOpM4WeE0JjM54zzRnw9twGccQRYrnCJN92V1uPbYOpM4UeM0JjHL/P0bm4224bo4hihTNUSb7srvcemwdSJ0p8DpTYKTa2MN4cwxRpGiONNmX3eXWYetA6kyB15kCIxnnzAHJFAxR5DCUONmX3eW2YetA6iyB15kCI5ElGKLIISh1si+7y63H1oHUWQOvswRGIkswRJFDUPLcDQYk67B1IHWmwOusgZHIXAxR5BA4d4MA2wdSRwhIpnCmwEjUEAxR5BA4d4MagyMsp2EqR2kHkS0xRJHD4NwNsiVHWU6DiKyHIYoUjXM3qLE40nIaRGQdsghRq1atwqJFi1BYWIju3btjxYoV6N27d53lN2zYgJkzZ+LkyZOIiIjAa6+9hvvvv1/aL4TA7Nmz8fbbb6O0tBR33nkn3nzzTUREREhlSkpK8Nxzz2Hz5s1wcXHBQw89hGXLlqFp06YAgJMnTyIsLKzWc+fm5uKOO+6wYuupITh3g+xBictpEJH12T1ErV+/HmlpacjIyEB0dDTS09Oh1Wpx9OhRtGjRolb53bt3Y8SIEViwYAEGDx6MtWvXIjExEfv27UPXrl0BAAsXLsTy5cuRlZWFsLAwzJw5E1qtFocOHYKHhwcA4NFHH8WZM2ewY8cOXL16FaNHj0ZycjLWrl1r8HxfffUVunTpIv3OD2P54XtCjUmpy2nIjTPNLyPHpRJCCHtWIDo6Gr169ZLmGuj1eoSGhuK5557DlClTapUfNmwYKioqsGXLFmnbHXfcgR49eiAjIwNCCISEhGDixIl44YUXAAA6nQ6BgYHIzMzE8OHDcfjwYXTu3Bk//vgjbr/9dgBAdnY27r//fvz5558ICQmReqLy8/PRo0cPi9pWVlYGjUYDnU4HX19fi45BRPJw5swZrF69GgUFbZGVlVRrf1JSJsLCTiE5ORnBwcF2qKFycH4ZWaqxwrepn9927YmqrKxEXl4epk6dKm1zcXFBXFwccnNzjT4mNzcXaWlpBtu0Wi02bdoEACgoKEBhYSHi4uKk/RqNBtHR0cjNzcXw4cORm5sLPz8/KUABQFxcHFxcXLBnzx78z//8j7R9yJAhuHz5Mjp06IDJkydjyJAhdbbnypUruHLlivR7WVmZaS8EESkGl9NoOM4vI0vIMXzbNUSdP38eVVVVCAwMNNgeGBiII0eOGH1MYWGh0fKFhYXS/upt9ZW5caiwSZMm8Pf3l8o0bdoUS5YswZ133gkXFxd8+umnSExMxKZNm+oMUgsWLMDcuXNNaToRKRSX07Auzi8jU8kxfNt9TpRcNWvWzKDHq1evXvj777+xaNGiOkPU1KlTDR5TVlaG0NBQm9eViBoXl9OwDs4vI0vJJXy73LyI7TRr1gyurq4oKioy2F5UVISgoCCjjwkKCqq3fPWfNytz9uxZg/3Xrl1DSUlJnc8LXJ+/dfz48Tr3u7u7w9fX1+CHiByDseU0wsJO1fqw53Iapqvvdk1EdakrfOt0Po1eF7uGKLVajaioKOTk5Ejb9Ho9cnJyEBMTY/QxMTExBuUBYMeOHVL5sLAwBAUFGZQpKyvDnj17pDIxMTEoLS1FXl6eVObrr7+GXq9HdHR0nfXdv38/J4wSEVlJ9fyymji/jG5GTuHb7sN5aWlpSEpKwu23347evXsjPT0dFRUVGD16NABg1KhRaNmyJRYsWAAAmDBhAmJjY7FkyRLEx8dj3bp1+Omnn7B69WoAgEqlQmpqKubPn4+IiAhpiYOQkBAkJiYCAG699VYMGjQIY8eORUZGBq5evYqUlBQMHz4cISEhAICsrCyo1Wr07NkTALBx40a8++67+N///d9GfoWISA7kOB9D6Ti/jCwhp4s77B6ihg0bhnPnzmHWrFkoLCxEjx49kJ2dLU0MP336NFxc/nmh+vTpg7Vr12LGjBmYNm0aIiIisGnTJmmNKACYPHkyKioqkJycjNLSUvTt2xfZ2dnSGlEA8OGHHyIlJQV33323tNjm8uXLDeo2b948nDp1Ck2aNEGnTp2wfv16PPzwwzZ+RYhI7uQyH8MRcH4ZmUtO4dvu60Q5Mq4TReQ4qteJ0ul8kJ6eWutbcGpqOjSacq4TZQI5XqpO8lf9f7Da9d7g2uHbGv8HFbFOFBGR0tQ3H4O9KKbh7ZrIEnK8VypDFDkd3m6CGkJO8zGUjP/HCDDvfCzH8M0QRU6FwwjUUHKaj0GkZJacj+V2XmaIIqfCK6zIUqWlpdLf65sMXVpayjlRRCZwhPMxQxQ5LV5hReZQqVTGtppYjsh2HGGKglLPxwxR5JR4uwkyl0ajkf5e3wm/Zjln4ggf5ErkCFMUlHw+Zogip8QrrMhSSj7h24ojfJArlSMMiSn5fMwQRU6JV1g5psboDVHyCd9WHOGD3BEodUhMyedjhihySrzCyvE0Vm+Ikk/4jcHUD3IO/1mXkntIlXw+Zogip2Wr203ww8E+Gqs3RMknfFsz9YOcw3/Wp/QeUqXe/ochipyKrVe85YeDPNh6WEOpJ3xbM/WDnMN/1qfEHlI5rkBuLoYocioBAQF47LHHcOnSpTrLeHl5WRxw+OFgf7Ya1nCEE76tWfJBrtR5PHKjxB5SOa5Abi6GKHIqxcXF+OCDD25azho9RfxwsA9zhjWUfssJuTH3g1zJ83jkSIk9pEr//8IQRU6lsXqK+OFgP6b2hjjCLSfkyJwPcqXP45ED9pDaF0MUOS1b9hTxw8F+TO0N4dCr9Vj6Qa7EeTxywx5S+2KIIqdk654ifjjYl7nDGhx6bRhLP8iVOI9HjhiQ7IchipySrXuK+OHQ+CztDeHQq3VY+kGuxHk8RNUYosgp2aqnSKfTSX+v78NBp9MhODi4Qc9FhiztDeHQa+PjPB5yFAxR5JRs1VMkhDCyVWViOWooS3pDOPTa+DiPhxwFQxQ5LVsMI/j5+Ul/r2+eTc1yZF8cerUPBiRyBAxR5FQaaxiB82yUhfNyiMgSDFHkVBprGIHzbOSP83KoGu93SZZiiCLFM/cE2BgnQ86zkT/OyyGA97ukhmGIIkWT6wmQ82yUQckfiuw9sQ4uukoNwRBFiibnEyDn2ZCtyPXLg9LJZdFVJQdkJdfdEgxR5DDkcALkPBv7svUJXC4fEHL+8qBUcrkYRMkBWcl1txRDFDkEuZwAOc/Gfmx9ApfrB4Qcvjw4AnMuBrFlmFZyQFZy3S3FEEUOQU5XwzEg2YetT+By/ICQy5cHR2DqxSA3hum6/h1YI0wrOSArue7mYIgih8Cr4agmW5/A5fIBIacvD0pn6sUgNUNyff8OGhqmlRyQlVx3czFEkUPg1XBUzdYncDl9QPDLg3WZczGIrf8dKDkgK7nu5mKIIofBq+EIsP0JXE4fEPzy0HCWXgxi638HSg7ISq67uRiiSNF4NRzdyNYncLl9QPDLQ8NYejGIrf8dKDkgK7nu5mKIIkULCAjAY489hkuXLtVZxsvLi5O9nYitT+By+IDglwfrsuT80Bj/DpQckJVcd3MwRJGiFRcX44MPPrhpOUdal4RuztYncHt/QHApDXmwxb8DJQdkJdfdUgxRpGhyvOxcyeSymKQlbH0Cl9sHhFzfB2dT178DSyk5ICu57pZiiCKHIZfLzpVKrotJmsrWJ3Bzj6/kQEp1MzUkNyRMK/nfhZLrbgmGKHIIcrrsXKlM7a1z5l49Uz8glB5IqW7O2NtCdWOIIocgp8vOHUVdQ6NyJafgwmFmZTG315ABiaoxRDkoZxtKkNtl57bUGO+tEodG5RRcdDqd9Pd9+3riiy8GA3ABoMeQIf+8ljqdDsHBwTavD9VNTuGblIchygE540lBDpedN4bGeG8dYWjU3iHw6tWrAK6/lv8EKABwwRdf/PNaVpcj+5FT+CblYYhyQM56UrD3ZeeWMqdnqTHeW6UPjcopBP7xRyj+CVDVXPDHH62g0Rxu1LrQzdk7fJPyMEQ5OEc/KcjtsnNzNaRnyVbvrdKHRpUeAsk+5BS+STkYohyYM5wUlH6ljKU9S7Z8b5U+NCqnEBga+gcAAUBlUJfQ0D8bvS5UP4ZvsgRDlANzlpOCXAOSuczpWbLFe1uzt66+oVG59upVk1MI1GjKMWTIZlnUheonp/BNysEQ5cB4UlAOc3uWbPHeKr1XryZ7z49r0uSfU2t9dalZjuxLTuGblIP/gx0YTwrKYW7Pkq3eWyUEpLrIaX6cn5+fSXW5sRzZl73DNykPQ5SD40lBGSzpWeJ7a0hOPWmNcWsQsg45hW9SHoYoB8STgvKY2rPE97Z+culJk1Ogo/rxvaKGYIhyQDwpKJMpPUt8b5WD74Fy8L0iSzFEOSieFJTBkp4lvrdERPLAEEVkR+xZIiJSLoYoIjtjQCIiUqYbb+pERERERCZgiCIiIiKyAEMUERERkQUYooiIiIgswBBFREREZAFZhKhVq1ahbdu28PDwQHR0NPbu3Vtv+Q0bNqBTp07w8PBAt27dsG3bNoP9QgjMmjULwcHB8PT0RFxcHI4dO2ZQpqSkBI8++ih8fX3h5+eHMWPG4OLFiwZlDhw4gH79+sHDwwOhoaFYuHChdRpMREREimf3ELV+/XqkpaVh9uzZ2LdvH7p37w6tVouzZ88aLb97926MGDECY8aMQX5+PhITE5GYmIiDBw9KZRYuXIjly5cjIyMDe/bsgbe3N7RaLS5fviyVefTRR/Hrr79ix44d2LJlC7777jskJydL+8vKynDvvfeiTZs2yMvLw6JFizBnzhysXr3adi8GERERKYews969e4vx48dLv1dVVYmQkBCxYMECo+WHDh0q4uPjDbZFR0eLcePGCSGE0Ov1IigoSCxatEjaX1paKtzd3cVHH30khBDi0KFDAoD48ccfpTL//ve/hUqlEn/99ZcQQog33nhD3HLLLeLKlStSmRdffFF07NjR5LbpdDoBQOh0OpMfQ0RERPZl6ue3XXuiKisrkZeXh7i4OGmbi4sL4uLikJuba/Qxubm5BuUBQKvVSuULCgpQWFhoUEaj0SA6Oloqk5ubCz8/P9x+++1Smbi4OLi4uGDPnj1Smf79+xvcbkOr1eLo0aO4cOGC0bpduXIFZWVlBj9ERETkmOy6Yvn58+dRVVWFwMBAg+2BgYE4cuSI0ccUFhYaLV9YWCjtr95WX5kWLVoY7G/SpAn8/f0NyoSFhdU6RvW+W265pVbdFixYgLlz59bazjBFRESkHNWf20KIesvxti9WNHXqVKSlpUm///XXX+jcuTNCQ0PtWCsiIiKyRHl5OTQaTZ377RqimjVrBldXVxQVFRlsLyoqQlBQkNHHBAUF1Vu++s+ioiIEBwcblOnRo4dU5saJ69euXUNJSYnBcYw9T83nuJG7uzvc3d2l35s2bYo//vgDPj4+UKlURh9jibKyMoSGhuKPP/6Ar6+v1Y4rF47ePsDx2+jo7QMcv41sn/I5ehtt2T4hBMrLyxESElJvObuGKLVajaioKOTk5CAxMREAoNfrkZOTg5SUFKOPiYmJQU5ODlJTU6VtO3bsQExMDAAgLCwMQUFByMnJkUJTWVkZ9uzZg2eeeUY6RmlpKfLy8hAVFQUA+Prrr6HX6xEdHS2VmT59Oq5evQo3NzfpeTp27Gh0KM8YFxcXtGrVyqzXxBy+vr4O+R+jmqO3D3D8Njp6+wDHbyPbp3yO3kZbta++Hqhqdl/iIC0tDW+//TaysrJw+PBhPPPMM6ioqMDo0aMBAKNGjcLUqVOl8hMmTEB2djaWLFmCI0eOYM6cOfjpp5+k0KVSqZCamor58+fjiy++wC+//IJRo0YhJCRECmq33norBg0ahLFjx2Lv3r3YtWsXUlJSMHz4cCl1jhw5Emq1GmPGjMGvv/6K9evXY9myZQbDdUREROS87D4natiwYTh37hxmzZqFwsJC9OjRA9nZ2dIk7tOnT8PF5Z+s16dPH6xduxYzZszAtGnTEBERgU2bNqFr165SmcmTJ6OiogLJyckoLS1F3759kZ2dDQ8PD6nMhx9+iJSUFNx9991wcXHBQw89hOXLl0v7NRoNtm/fjvHjxyMqKgrNmjXDrFmzDNaSIiIiIifWKAsukFVdvnxZzJ49W1y+fNneVbEJR2+fEI7fRkdvnxCO30a2T/kcvY1yaJ9KiJtcv0dEREREtdh9ThQRERGREjFEEREREVmAIYqIiIjIAgxRRERERBZgiJKJVatWoW3btvDw8EB0dDT27t1bb/n09HR07NgRnp6eCA0Nxb/+9S9cvny5Qce0JWu3b86cOVCpVAY/nTp1snUz6mRO+65evYqXXnoJ4eHh8PDwQPfu3ZGdnd2gYzYGa7dRTu/hd999h4SEBISEhEClUmHTpk03fcy3336LyMhIuLu7o3379sjMzKxVRi7voS3ap+T378yZMxg5ciQ6dOgAFxcXg8Wba9qwYQM6deoEDw8PdOvWDdu2bbN+5U1kizZmZmbWeg9rLgXUmMxt38aNG3HPPfegefPm8PX1RUxMDL788sta5Wz9f5AhSgbWr1+PtLQ0zJ49G/v27UP37t2h1Wpr3Zqm2tq1azFlyhTMnj0bhw8fxjvvvIP169dj2rRpFh/TlmzRPgDo0qULzpw5I/3s3LmzMZpTi7ntmzFjBt566y2sWLEChw4dwtNPP43/+Z//QX5+vsXHtDVbtBGQz3tYUVGB7t27Y9WqVSaVLygoQHx8PAYOHIj9+/cjNTUVTz31lMFJXE7voS3aByj3/bty5QqaN2+OGTNmoHv37kbL7N69GyNGjMCYMWOQn5+PxMREJCYm4uDBg9asusls0Ubg+mrfNd/DU6dOWavKZjG3fd999x3uuecebNu2DXl5eRg4cCASEhIa/zxqt8UVSNK7d28xfvx46feqqioREhIiFixYYLT8+PHjxV133WWwLS0tTdx5550WH9OWbNG+2bNni+7du9ukvuYyt33BwcFi5cqVBtsefPBB8eijj1p8TFuzRRvl9B7WBEB89tln9ZaZPHmy6NKli8G2YcOGCa1WK/0ut/ewmrXap+T3r6bY2FgxYcKEWtuHDh0q4uPjDbZFR0eLcePGNbCGDWetNq5Zs0ZoNBqr1ctazG1ftc6dO4u5c+dKvzfG/0H2RNlZZWUl8vLyEBcXJ21zcXFBXFwccnNzjT6mT58+yMvLk7olf//9d2zbtg3333+/xce0FVu0r9qxY8cQEhKCdu3a4dFHH8Xp06dt15A6WNK+K1eu1Ooy9/T0lL7Fy+n9s7Q+N2tjNTm8h5bIzc01eD0AQKvVSq+H3N5Dc92sfdWU+v6ZwtTXQOkuXryINm3aIDQ0FA888AB+/fVXe1fJInq9HuXl5fD39wfQeP8HGaLs7Pz586iqqpJuc1MtMDAQhYWFRh8zcuRIvPTSS+jbty/c3NwQHh6OAQMGSMNdlhzTVmzRPgCIjo5GZmYmsrOz8eabb6KgoAD9+vVDeXm5TdtzI0vap9VqsXTpUhw7dgx6vR47duzAxo0bcebMGYuPaUu2aCMgn/fQEoWFhUZfj7KyMvz3v/+V3Xtorpu1D1D2+2eKul4DJbx/purYsSPeffddfP755/jggw+g1+vRp08f/Pnnn/aumtkWL16MixcvYujQoQAa7zzKEKVA3377LV555RW88cYb2LdvHzZu3IitW7di3rx59q6aVZjSvvvuuw+PPPIIbrvtNmi1Wmzbtg2lpaX4+OOP7Vhz0yxbtgwRERHo1KkT1Go1UlJSMHr0aIN7RCqdKW1U8ntIfP8cQUxMDEaNGoUePXogNjYWGzduRPPmzfHWW2/Zu2pmWbt2LebOnYuPP/4YLVq0aNTntvsNiJ1ds2bN4OrqiqKiIoPtRUVFCAoKMvqYmTNn4vHHH8dTTz0FAOjWrZt0w+Xp06dbdExbsUX7jIUNPz8/dOjQAcePH7d+I+phSfuaN2+OTZs24fLlyyguLkZISAimTJmCdu3aWXxMW7JFG42x13toiaCgIKOvh6+vLzw9PeHq6iqr99BcN2ufMUp6/0xR12ughPfPUm5ubujZs6ei3sN169bhqaeewoYNGwyG7hrrPOo4X30VSq1WIyoqCjk5OdI2vV6PnJwcxMTEGH3MpUuXagUJV1dXAIAQwqJj2oot2mfMxYsXceLECQQHB1up5qZpyGvt4eGBli1b4tq1a/j000/xwAMPNPiYtmCLNhpjr/fQEjExMQavBwDs2LFDej3k9h6a62btM0ZJ758pLHkNlK6qqgq//PKLYt7Djz76CKNHj8ZHH32E+Ph4g32N9n/QalPUyWLr1q0T7u7uIjMzUxw6dEgkJycLPz8/UVhYKIQQ4vHHHxdTpkyRys+ePVv4+PiIjz76SPz+++9i+/btIjw8XAwdOtTkYyq9fRMnThTffvutKCgoELt27RJxcXGiWbNm4uzZs7Jv3w8//CA+/fRTceLECfHdd9+Ju+66S4SFhYkLFy6YfMzGZos2yuk9LC8vF/n5+SI/P18AEEuXLhX5+fni1KlTQgghpkyZIh5//HGp/O+//y68vLzEpEmTxOHDh8WqVauEq6uryM7OlsrI6T20RfuU/P4JIaTyUVFRYuTIkSI/P1/8+uuv0v5du3aJJk2aiMWLF4vDhw+L2bNnCzc3N/HLL780atuq2aKNc+fOFV9++aU4ceKEyMvLE8OHDxceHh4GZRqLue378MMPRZMmTcSqVavEmTNnpJ/S0lKpTGP8H2SIkokVK1aI1q1bC7VaLXr37i1++OEHaV9sbKxISkqSfr969aqYM2eOCA8PFx4eHiI0NFQ8++yzBh9QNztmY7N2+4YNGyaCg4OFWq0WLVu2FMOGDRPHjx9vxBYZMqd93377rbj11luFu7u7CAgIEI8//rj466+/zDqmPVi7jXJ6D7/55hsBoNZPdZuSkpJEbGxsrcf06NFDqNVq0a5dO7FmzZpax5XLe2iL9in9/TNWvk2bNgZlPv74Y9GhQwehVqtFly5dxNatWxunQUbYoo2pqanSv8/AwEBx//33i3379jVeo2owt32xsbH1lq9m6/+DKiHqGB8hIiIiojpxThQRERGRBRiiiIiIiCzAEEVERERkAYYoIiIiIgswRBERERFZgCGKiIiIyAIMUUREREQWYIgiInIi3377LVQqFUpLS+1dFSLFY4giIpt44oknoFKp8Oqrrxps37RpE1QqlfS7EAJvv/02YmJi4Ovri6ZNm6JLly6YMGGCyTdCvXTpEqZOnYrw8HB4eHigefPmiI2Nxeeffy6Vadu2LdLT063SNlurfu1UKhXc3NwQFhaGyZMn4/Lly2YdZ8CAAUhNTTXY1qdPH5w5cwYajcaKNSZyTgxRRGQzHh4eeO2113DhwgWj+4UQGDlyJJ5//nncf//92L59Ow4dOoR33nkHHh4emD9/vknP8/TTT2Pjxo1YsWIFjhw5guzsbDz88MMoLi62ZnMa1aBBg3DmzBn8/vvveP311/HWW29h9uzZDT6uWq1GUFCQQZAlIgtZ9SYyRET/LykpSQwePFh06tRJTJo0Sdr+2WefiepTz0cffSQAiM8//9zoMfR6vUnPpdFoRGZmZp37jd1nq9r3338v+vbtKzw8PESrVq3Ec889Jy5evCjtf++990RUVJRo2rSpCAwMFCNGjBBFRUXS/up7fmVnZ4sePXoIDw8PMXDgQFFUVCS2bdsmOnXqJHx8fMSIESNERUWFSe1JSkoSDzzwgMG2Bx98UPTs2VP6/fz582L48OEiJCREeHp6iq5du4q1a9caHOPGNhcUFEj1rXkvyk8++UR07txZqNVq0aZNG7F48WKT6knk7NgTRUQ24+rqildeeQUrVqzAn3/+WWv/Rx99hI4dO2LIkCFGH29qb0lQUBC2bduG8vJyo/s3btyIVq1a4aWXXsKZM2dw5swZAMCJEycwaNAgPPTQQzhw4ADWr1+PnTt3IiUlRXrs1atXMW/ePPz888/YtGkTTp48iSeeeKLWc8yZMwcrV67E7t278ccff2Do0KFIT0/H2rVrsXXrVmzfvh0rVqwwqT03OnjwIHbv3g21Wi1tu3z5MqKiorB161YcPHgQycnJePzxx7F3714AwLJlyxATE4OxY8dKbQ4NDa117Ly8PAwdOhTDhw/HL7/8gjlz5mDmzJnIzMy0qK5ETsXeKY6IHFPN3pQ77rhDPPnkk0IIw56oTp06iSFDhhg8bsKECcLb21t4e3uLli1bmvRc//nPf0SrVq2Em5ubuP3220VqaqrYuXOnQZk2bdqI119/3WDbmDFjRHJyssG277//Xri4uIj//ve/Rp/rxx9/FABEeXm5EOKfnqivvvpKKrNgwQIBQJw4cULaNm7cOKHVak1qT1JSknB1dRXe3t7C3d1dABAuLi7ik08+qfdx8fHxYuLEidLvsbGxYsKECQZlbuyJGjlypLjnnnsMykyaNEl07tzZpLoSOTP2RBGRzb322mvIysrC4cOHb1p2+vTp2L9/P2bNmoWLFy+adPz+/fvj999/R05ODh5++GH8+uuv6NevH+bNm1fv437++WdkZmaiadOm0o9Wq4Ver0dBQQGA6z01CQkJaN26NXx8fBAbGwsAOH36tMGxbrvtNunvgYGB8PLyQrt27Qy2nT171qT2AMDAgQOxf/9+7NmzB0lJSRg9ejQeeughaX9VVRXmzZuHbt26wd/fH02bNsWXX35Zq143c/jwYdx5550G2+68804cO3YMVVVVZh2LyNkwRBGRzfXv3x9arRZTp0412B4REYGjR48abGvevDnat2+PFi1amPUcbm5u6NevH1588UVs374dL730EubNm4fKyso6H3Px4kWMGzcO+/fvl35+/vlnHDt2DOHh4aioqIBWq4Wvry8+/PBD/Pjjj/jss88AoNZx3dzcpL9XX1VXk0qlgl6vN7k93t7eaN++Pbp37453330Xe/bswTvvvCPtX7RoEZYtW4YXX3wR33zzDfbv3w+tVltve4nIuprYuwJE5BxeffVV9OjRAx07dpS2jRgxAiNHjsTnn3+OBx54wKrP17lzZ1y7dg2XL1+GWq2GWq2u1bMSGRmJQ4cOoX379kaP8csvv6C4uBivvvqqNJ/op59+smo9TeHi4oJp06YhLS0NI0eOhKenJ3bt2oUHHngAjz32GABAr9fjt99+Q+fOnaXHGWvzjW699Vbs2rXLYNuuXbvQoUMHuLq6Wr8xRA6EPVFE1Ci6deuGRx99FMuXL5e2DR8+HA8//DCGDx+Ol156CXv27MHJkyfxn//8B+vXrzf5Q3zAgAF46623kJeXh5MnT2Lbtm2YNm0aBg4cCF9fXwDX14n67rvv8Ndff+H8+fMAgBdffBG7d+9GSkoK9u/fj2PHjuHzzz+XJpa3bt0aarUaK1aswO+//44vvvjipkOEtvLII4/A1dUVq1atAnC9F2/Hjh3YvXs3Dh8+jHHjxqGoqMjgMW3btpVe0/PnzxvtCZs4cSJycnIwb948/Pbbb8jKysLKlSvxwgsvNEq7iJSMIYqIGs1LL71k8EGuUqmwfv16pKenY9u2bbj77rvRsWNHPPnkkwgNDcXOnTtNOq5Wq0VWVhbuvfde3HrrrXjuueeg1Wrx8ccfGzz3yZMnER4ejubNmwO4Po/pP//5D3777Tf069cPPXv2xKxZsxASEgLg+tBiZmYmNmzYgM6dO+PVV1/F4sWLrfiKmK5JkyZISUnBwoULUVFRgRkzZiAyMhJarRYDBgxAUFAQEhMTDR7zwgsvwNXVFZ07d0bz5s2NzpeKjIzExx9/jHXr1qFr166YNWsWXnrpJaNXIBKRIZUQQti7EkRERERKw54oIiIiIgswRBGR7NVcguDGn++//97e1TPL6dOn622PuUsUEJH9cDiPiGSvvhsRt2zZEp6eno1Ym4a5du0aTp48Wef+tm3bokkTXjhNpAQMUUREREQW4HAeERERkQUYooiIiIgswBBFREREZAGGKCIiIiILMEQRERERWYAhioiIiMgCDFFEREREFmCIIiIiIrLA/wFi6EyQIbEN6gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHHCAYAAAB9dxZkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXpRJREFUeJzt3XlcVPX+P/DXgAyDCBioLIqKiJLLFaEkTEWLGgs1buVaSl4T80rJpSxXXEtzC7fS7jfFupFmmuVySaK6lRIWYmYuqaG2ACrEoBii8Pn94Y+TIzMwM8xyZub1fDzmgZzzmTOfz4xzzpv3ZzkKIYQAERERETWZi60rQEREROQoGFgRERERmQkDKyIiIiIzYWBFREREZCYMrIiIiIjMhIEVERERkZkwsCIiIiIyEwZWRERERGbCwIqIiIjITBhYERE5uIyMDCgUCpw9e9bWVSFyeAysiKjJvv32WyQnJ6N79+7w9PRE+/btMWLECPz000/1yg4cOBAKhQIKhQIuLi7w9vZG165dMXbsWGRnZxv1urt27UJsbCzatGmD5s2bo1OnThgxYgSysrLM1bR6XnnlFezcubPe9gMHDmDevHkoLy+32Gvfbt68edJ7qVAo0Lx5c3Tr1g2zZ89GRUWFWV4jMzMT6enpZjkWkTNgYEVETfbqq69i+/btuP/++7Fq1SokJSXhyy+/RGRkJI4ePVqvfLt27fDOO+/g7bffxrJlyzBs2DAcOHAADz74IEaOHInr1683+prLly/HsGHDoFAoMGPGDLz22mt47LHHcOrUKWzZssUSzQTQcGA1f/58qwZWdd544w288847WLlyJcLDw/Hyyy9j8ODBMMetYBlYERmnma0rQET2LzU1FZmZmVAqldK2kSNHomfPnliyZAn+85//aJX38fHBk08+qbVtyZIleO655/D666+jY8eOePXVV/W+3o0bN7Bw4UI88MAD2LdvX739Fy5caGKL5OPq1ato3rx5g2Uef/xxtGrVCgDwzDPP4LHHHsOOHTvwzTffICYmxhrVJKL/jxkrImqyvn37agVVABAWFobu3bvj+PHjBh3D1dUVq1evRrdu3bB27VpoNBq9ZS9duoSKigrce++9Ove3adNG6/eqqirMmzcPXbp0gUqlQmBgIB599FGcOXNGKrN8+XL07dsXfn5+8PDwQFRUFD744AOt4ygUClRWVmLz5s1S99tTTz2FefPmYdq0aQCAkJAQad+tY5r+85//ICoqCh4eHvD19cWoUaPwyy+/aB1/4MCB6NGjB/Lz8zFgwAA0b94cM2fONOj9u9V9990HACgsLGyw3Ouvv47u3bvD3d0dQUFBmDJlilbGbeDAgdizZw/OnTsntaljx45G14fImTBjRUQWIYRASUkJunfvbvBzXF1dMXr0aMyZMwdff/014uPjdZZr06YNPDw8sGvXLjz77LPw9fXVe8yamhoMGTIEOTk5GDVqFKZOnYrLly8jOzsbR48eRWhoKABg1apVGDZsGJ544glUV1djy5YtGD58OHbv3i3V45133sHTTz+NPn36ICkpCQAQGhoKT09P/PTTT3jvvffw2muvSdmj1q1bAwBefvllzJkzByNGjMDTTz+NixcvYs2aNRgwYAAKCgrQsmVLqb6lpaV46KGHMGrUKDz55JPw9/c3+P2rUxcw+vn56S0zb948zJ8/H3FxcZg8eTJOnjyJN954A99++y32798PNzc3zJo1CxqNBr/++itee+01AECLFi2Mrg+RUxFERBbwzjvvCADirbfe0toeGxsrunfvrvd5H374oQAgVq1a1eDx09LSBADh6ekpHnroIfHyyy+L/Pz8euU2btwoAIiVK1fW21dbWyv9++rVq1r7qqurRY8ePcR9992ntd3T01MkJibWO9ayZcsEAFFYWKi1/ezZs8LV1VW8/PLLWtt/+OEH0axZM63tsbGxAoBYv3693nbfau7cuQKAOHnypLh48aIoLCwUGzZsEO7u7sLf319UVlYKIYTYtGmTVt0uXLgglEqlePDBB0VNTY10vLVr1woAYuPGjdK2+Ph40aFDB4PqQ0RCsCuQiMzuxIkTmDJlCmJiYpCYmGjUc+syIpcvX26w3Pz585GZmYnevXvjk08+waxZsxAVFYXIyEit7sft27ejVatWePbZZ+sdQ6FQSP/28PCQ/v3HH39Ao9Ggf//+OHTokFH1v92OHTtQW1uLESNG4NKlS9IjICAAYWFh+Pzzz7XKu7u7Y/z48Ua9RteuXdG6dWuEhIRg0qRJ6Ny5M/bs2aN3bNann36K6upqpKSkwMXlr8vAxIkT4e3tjT179hjfUCICwK5AIjKz4uJixMfHw8fHBx988AFcXV2Nev6VK1cAAF5eXo2WHT16NEaPHo2Kigrk5eUhIyMDmZmZGDp0KI4ePQqVSoUzZ86ga9euaNas4dPd7t27sWjRIhw+fBjXrl2Ttt8afJni1KlTEEIgLCxM5343Nzet39u2bVtvvFpjtm/fDm9vb7i5uaFdu3ZS96Y+586dA3AzILuVUqlEp06dpP1EZDwGVkRkNhqNBg899BDKy8vx1VdfISgoyOhj1C3P0LlzZ4Of4+3tjQceeAAPPPAA3NzcsHnzZuTl5SE2Ntag53/11VcYNmwYBgwYgNdffx2BgYFwc3PDpk2bkJmZaXQbblVbWwuFQoH//ve/OoPM28cs3Zo5M9SAAQOkcV1EZFsMrIjILKqqqjB06FD89NNP+PTTT9GtWzejj1FTU4PMzEw0b94c/fr1M6ked911FzZv3oyioiIANweX5+Xl4fr16/WyQ3W2b98OlUqFTz75BO7u7tL2TZs21SurL4Olb3toaCiEEAgJCUGXLl2MbY5FdOjQAQBw8uRJdOrUSdpeXV2NwsJCxMXFSduamrEjcjYcY0VETVZTU4ORI0ciNzcX27ZtM2ntpJqaGjz33HM4fvw4nnvuOXh7e+ste/XqVeTm5urc99///hfAX91cjz32GC5duoS1a9fWKyv+/wKarq6uUCgUqKmpkfadPXtW50Kgnp6eOhcB9fT0BIB6+x599FG4urpi/vz59RbsFEKgtLRUdyMtKC4uDkqlEqtXr9aq01tvvQWNRqM1G9PT07PBpS+ISBszVkTUZM8//zw+/vhjDB06FGVlZfUWBL19MVCNRiOVuXr1Kk6fPo0dO3bgzJkzGDVqFBYuXNjg6129ehV9+/bFPffcg8GDByM4OBjl5eXYuXMnvvrqKyQkJKB3794AgHHjxuHtt99GamoqDh48iP79+6OyshKffvop/vnPf+KRRx5BfHw8Vq5cicGDB2PMmDG4cOEC1q1bh86dO+PIkSNarx0VFYVPP/0UK1euRFBQEEJCQhAdHY2oqCgAwKxZszBq1Ci4ublh6NChCA0NxaJFizBjxgycPXsWCQkJ8PLyQmFhIT788EMkJSXhhRdeaNL7b6zWrVtjxowZmD9/PgYPHoxhw4bh5MmTeP3113H33XdrfV5RUVHYunUrUlNTcffdd6NFixYYOnSoVetLZFdsOSWRiBxD3TIB+h4NlW3RooUICwsTTz75pNi3b59Br3f9+nXx73//WyQkJIgOHToId3d30bx5c9G7d2+xbNkyce3aNa3yV69eFbNmzRIhISHCzc1NBAQEiMcff1ycOXNGKvPWW2+JsLAw4e7uLsLDw8WmTZuk5QxudeLECTFgwADh4eEhAGgtvbBw4ULRtm1b4eLiUm/phe3bt4t+/foJT09P4enpKcLDw8WUKVPEyZMntd6bhpaiuF1d/S5evNhguduXW6izdu1aER4eLtzc3IS/v7+YPHmy+OOPP7TKXLlyRYwZM0a0bNlSAODSC0SNUAhhhptJERERERHHWBERERGZCwMrIiIiIjNhYEVERERkJgysiIiIiMyEgRURERGRmTCwIiIiIjITLhBqQbW1tfj999/h5eXF20IQERHZCSEELl++jKCgILi4GJeDYmBlQb///juCg4NtXQ0iIiIywS+//IJ27doZ9RwGVhbk5eUF4OYH09B9z4iIiEg+KioqEBwcLF3HjcHAyoLquv+8vb0ZWBEREdkZU4bxcPA6ERERkZkwsCIiIiIyEwZWRERERGbCMVZEREQyU1NTg+vXr9u6Gg7Lzc0Nrq6uFjk2AysiIiKZEEKguLgY5eXltq6Kw2vZsiUCAgLMvs4kAysiIiKZqAuq2rRpg+bNm3NxaQsQQuDq1au4cOECACAwMNCsx2dgRUREJAM1NTVSUOXn52fr6jg0Dw8PAMCFCxfQpk0bs3YLcvA6ERGRDNSNqWrevLmNa+Ic6t5nc49lY2BFREQkI+z+sw5Lvc/sCnRQpaWlqK6u1rtfqVQy1UxERGRmDKwcUGlpKdauXdtoueTkZAZXREREZsSuQAd0e6ZKo/FCYWFHaDReDZajxpWWlqKoqEjvo7S01NZVJCKyuqeeegoKhQIKhQJubm7w9/fHAw88gI0bN6K2ttbg42RkZKBly5aWq6gVMGPl4A4d6o1du4ZACBcoFLUYOnQ3IiMLbF0tu8RMIBHJma2HgAwePBibNm1CTU0NSkpKkJWVhalTp+KDDz7Axx9/jGbNnCPkcI5WOimNxksKqgBACBfs2jUEoaGn4eNz2ca1sz+GZviYCSQia5PDH37u7u4ICAgAALRt2xaRkZG45557cP/99yMjIwNPP/00Vq5ciU2bNuHnn3+Gr68vhg4diqVLl6JFixb44osvMH78eAB/DSyfO3cu5s2bh3feeQerVq3CyZMn4enpifvuuw/p6elo06aNRdrSFOwKdGBlZX5SUFVHCBeUlfnaqEaORV8XKxGRtcn1D7/77rsPvXr1wo4dOwAALi4uWL16NX788Uds3rwZn332GV588UUAQN++fZGeng5vb29peMULL7wA4OaSCAsXLsT333+PnTt34uzZs3jqqaes2hZDMWPlwHx9S6FQ1GoFVwpFLXx9y2xYK8fALlYiIsOEh4fjyJEjAICUlBRpe8eOHbFo0SI888wzeP3116FUKuHj4wOFQiFlvur84x//kP7dqVMnrF69GnfffTeuXLmCFi1aWKUdhmLGyoH5+FzG0KG7oVDcHDhYFwCwG7Bp9HWxMnNFRFSfEELq2vv0009x//33o23btvDy8sLYsWNRWlqKq1evNniM/Px8DB06FO3bt4eXlxdiY2MBAOfPn7d4/Y3FjJWDi4wsQGjoaZSV+cLXt4xBlRk01MXK95eISNvx48cREhKCs2fPYsiQIZg8eTJefvll+Pr64uuvv8aECRNQXV2td8X5yspKqNVqqNVqvPvuu2jdujXOnz8PtVotyzGtDKwckFKp1Prdx+eyzgv+7eXIMOxiJSIyzGeffYYffvgB//rXv5Cfn4/a2lqsWLECLi43z5/vv/++VnmlUomamhqtbSdOnEBpaSmWLFmC4OBgAMB3331nnQaYgIGVA/Lz80NycjJXXreQui7W28dYMVtF5LhsvZSBPbh27RqKi4u1lltYvHgxhgwZgnHjxuHo0aO4fv061qxZg6FDh2L//v1Yv3691jE6duyIK1euICcnB7169ULz5s3Rvn17KJVKrFmzBs888wyOHj2KhQsX2qiVjWNg5aCc/QtuCbdm+BrqYmUmkMixyGEpA3uQlZWFwMBANGvWDHfccQd69eqF1atXIzExES4uLujVqxdWrlyJV199FTNmzMCAAQOwePFijBs3TjpG37598cwzz2DkyJEoLS2VllvIyMjAzJkzsXr1akRGRmL58uUYNmyYDVurn0IIIWxdCUdVUVEBHx8faDQaeHt727o6ZAb8q5XI+RQVFeHNN9+UftdovFBW5gdf31KtP6qSkpIQGBho8utUVVWhsLAQISEhUKlURj2XwZ/xGnq/m3L9ZsaKyAg8IRE5N7kutcIhIPLBwIqIiMgAcr+bBYMmeeA6VkRERAbg3SzIEAysiIiIDFC31MqtuNQK3Y6BFRERkQF4NwsyBMdYERERGYh3s6DGMLAiIiJqAO9mQcaQRVfgunXr0LFjR6hUKkRHR+PgwYMNlt+2bRvCw8OhUqnQs2dP7N27V2u/EAJpaWkIDAyEh4cH4uLicOrUKWn/2bNnMWHCBISEhMDDwwOhoaGYO3eu1jTVs2fPQqFQ1Ht888035m08ERHJWt1SBklJSXofXB+K6tg8Y7V161akpqZi/fr1iI6ORnp6OtRqNU6ePIk2bdrUK3/gwAGMHj1aWiY/MzMTCQkJOHToEHr06AEAWLp0KVavXo3NmzcjJCQEc+bMgVqtxrFjx6BSqXDixAnU1tZiw4YN6Ny5M44ePYqJEyeisrISy5cv13q9Tz/9FN27d5d+5xeHiMj58NxPBhM21qdPHzFlyhTp95qaGhEUFCQWL16ss/yIESNEfHy81rbo6GgxadIkIYQQtbW1IiAgQCxbtkzaX15eLtzd3cV7772ntx5Lly4VISEh0u+FhYUCgCgoKDClWUIIITQajQAgNBqNyccgIiLn8Oeff4pjx46JP//809ZVkZ3PP/9cABB//PGHwc/p0KGDeO211/Tub+j9bsr126ZdgdXV1cjPz0dcXJy0zcXFBXFxccjNzdX5nNzcXK3yAKBWq6XyhYWFKC4u1irj4+OD6OhovccEAI1GA1/f+muRDBs2DG3atEG/fv3w8ccfG9U+IiIiZ/DUU09BoVDgmWeeqbdvypQpUCgUeOqpp6xfMRuwaWB16dIl1NTUwN/fX2u7v78/iouLdT6nuLi4wfJ1P4055unTp7FmzRpMmjRJ2taiRQusWLEC27Ztw549e9CvXz8kJCQ0GFxdu3YNFRUVWg8iIiJnEBwcjC1btuDPP/+UtlVVVSEzMxPt27e3Yc2sSxaD123pt99+w+DBgzF8+HBMnDhR2t6qVSukpqYiOjoad999N5YsWYInn3wSy5Yt03usxYsXw8fHR3oEBwdbowlEREQ2FxkZieDgYOzYsUPatmPHDrRv3x69e/eWtl27dg3PPfcc2rRpA5VKhX79+uHbb7/VOtbevXvRpUsXeHh4YNCgQTh79my91/v666/Rv39/eHh4IDg4GM899xwqKyst1j5D2TSwatWqFVxdXVFSUqK1vaSkBAEBATqfExAQ0GD5up+GHPP333/HoEGD0LdvX607l+sTHR2N06dP690/Y8YMaDQa6fHLL780ekx7VlpaiqKiIr2P0tJSW1eRiMgp/for8PnnN39a0z/+8Q9s2rRJ+n3jxo0YP368VpkXX3wR27dvx+bNm3Ho0CF07twZarUaZWU3V7D/5Zdf8Oijj2Lo0KE4fPgwnn76aUyfPl3rGGfOnMHgwYPx2GOP4ciRI9i6dSu+/vprJCcnW76RjbDprEClUomoqCjk5OQgISEBAFBbW4ucnBy9b05MTAxycnKQkpIibcvOzkZMTAwAICQkBAEBAcjJyUFERAQAoKKiAnl5eZg8ebL0nN9++w2DBg1CVFQUNm3aBBeXxmPMw4cPIzAwUO9+d3d3uLu7N3ocR1BaWoq1a9c2Wo5TkImIrOutt4CkJKC2FnBxAd58E5gwwTqv/eSTT2LGjBk4d+4cAGD//v3YsmULvvjiCwBAZWUl3njjDWRkZOChhx4CAPz73/9GdnY23nrrLUybNg1vvPEGQkNDsWLFCgBA165d8cMPP+DVV1+VXmfx4sV44oknpFggLCwMq1evRmxsLN544w2oVCrrNFgHmy+3kJqaisTERNx1113o06cP0tPTUVlZKUW448aNQ9u2bbF48WIAwNSpUxEbG4sVK1YgPj4eW7ZswXfffSdlnBQKBVJSUrBo0SKEhYVJyy0EBQVJwdtvv/2GgQMHokOHDli+fDkuXrwo1acuq7V582YolUopfbljxw5s3LgR//d//2ett0bWbl3zC7h51/eyMj/4+pZqLZx3ezkiIrKcX3/9K6gCbv6cNAlQq4F27Sz/+q1bt0Z8fDwyMjIghEB8fDxatWol7T9z5gyuX7+Oe++9V9rm5uaGPn364Pjx4wCA48ePIzo6Wuu4dcmTOt9//z2OHDmCd999V9omhEBtbS0KCwtx5513WqJ5BrF5YDVy5EhcvHgRaWlpKC4uRkREBLKysqTB5+fPn9fKJvXt2xeZmZmYPXs2Zs6cibCwMOzcuVNawwq4mWasrKxEUlISysvL0a9fP2RlZUkRbHZ2Nk6fPo3Tp0+j3W3/04QQ0r8XLlyIc+fOoVmzZggPD8fWrVvx+OOPW/LtsEuHDvXGrl1DIISLdO+syMgCW1eLiMjpnDr1V1BVp6YGOH3aOoEVcLM7sK7Xad26dRZ5jStXrmDSpEl47rnn6u2z9UB5mwdWwM3uIn1df3Xpw1sNHz4cw4cP13s8hUKBBQsWYMGCBTr3P/XUU41O+0xMTERiYmKDZehmpqouqAIAIVywa9cQhIae5j20iIisLCzsZvffrcGVqyvQubP16jB48GBUV1dDoVBArVZr7QsNDYVSqcT+/fvRoUMHAMD169fx7bffSt16d955Z70Z+Lff9SQyMhLHjh1DZ2s2zEBOPyuQmqaszA+3L4cmhAvKyuqvCUZERJbVrt3NMVWurjd/d3UFNmywXrbq5mu64vjx4zh27Bhc6yry/3l6emLy5MmYNm0asrKycOzYMUycOBFXr17FhP8/EOyZZ57BqVOnMG3aNJw8eRKZmZnIyMjQOs5LL72EAwcOIDk5GYcPH8apU6fw0UcfcfA62T9f31IoFLVawZVCUQtf3zIb1oqIyHlNmHBzTNXp0zczVdYMqup4e3vr3bdkyRLU1tZi7NixuHz5Mu666y588sknuOOOOwDc7Mrbvn07/vWvf2HNmjXo06cPXnnlFfzjH/+QjvG3v/0N//vf/zBr1iz0798fQgiEhoZi5MiRFm9bYxTi1kFFZFYVFRXw8fGBRqNp8D+ZPSoqKpImDDQ0xiopKanBmZRERHRTVVUVCgsLERISYtNZbc6iofe7KddvZqyoySIjCxAaehplZb7w9S3j2CoiInJaDKzIJEqlUut3H5/LOgOq28sRERE5MgZWZBI/Pz8kJyc3uE6VUqnk4qBERORUGFiRyRg0ERERaeNyC0RERDLCOWXWYan3mYEVERGRDLi5uQEArl69auOaOIe697nufTcXdgUSERHJgKurK1q2bIkLFy4AAJo3bw6FQmHjWjkeIQSuXr2KCxcuoGXLlvUWMW0qBlZEREQyERAQAABScEWW07JlS+n9NicGVkTUoNLSUs7+JLIShUKBwMBAtGnTBtevX7d1dRyWm5ub2TNVdRhYEZFepaWlWLt2baPlkpOTGVwRmZGrq6vFLvxkWRy8TkR63Z6p0mi8UFjYERqNV4PliIicFTNWRGSQhu4JSURENzFjRUSN0mi8pKAKAIRwwa5dQ+plroiInB0DKyJqVFmZnxRU1RHCBWVlvjaqERGRPDGwIqJG+fqWQqGo1dqmUNTC17fMRjUiIpInBlZE1Cgfn8sYOnS3FFzVjbHy8bls45oREckLB68TkUEiIwsQGnoaZWW+8PUtY1BFRKQDAysi0kupVGr97uNzWWdAdXs5IiJnxcCKiPTy8/NDcnIyV14nIjIQAysiahCDJiIiw3HwOhEREZGZMLAiIiIiMhMGVkRERERmwsCKiIiIyEwYWBERERGZCQMrIiIiIjNhYEVERERkJgysiIiIiMyEgRURERGRmTCwIiIiIjITBlZEREREZsLAioiIiMhMGFgRERERmQkDKyIiIiIzYWBFREREZCYMrIiIiIjMpJmtK0DyUFpaiurqar37lUol/Pz8rFgjIiIi+8PAilBaWoq1a9c2Wi45OZnBFRERUQPYFUgNZqpMKUdEROSsGFhRPRqNFwoLO0Kj8bJ1VYiIiOwKuwJJy6FDvbFr1xAI4QKFohZDh+5GZGSBratFRERkF5ixIolG4yUFVQAghAt27RrCzBUREZGBGFiRpKzMTwqq6gjhgrIyXxvViIiIyL6wK5Akvr6lUChqtYIrhaIWvr5lNqwVEXE5FCL7wcCKJD4+lzF06O56Y6x8fC7bumpETovLoRDZFwZWBKVSKf07MrIAoaGnUVbmC1/fMq2g6tZyRGQdt2eqNBovlJX5wde3VOv7yeVQiOSBgRXBz88PycnJ7GogkjnO2iWSPwZWBAAMmohkTt+s3dDQ0+yuJ5IRBlZERHagoVm7DKzIWdjDRA4GVkR2zB5OMmQenLVLzu72iRz6xhvaeiIHAysiO8XZYs6Fs3bJ2d36R2RD4w1tPZGDgRWRneJsMefT0KxdImch9/GGDKyIHABnizmu25c58fG5rPPiweVQyFnIfbyhLG5ps27dOnTs2BEqlQrR0dE4ePBgg+W3bduG8PBwqFQq9OzZE3v37tXaL4RAWloaAgMD4eHhgbi4OJw6dUraf/bsWUyYMAEhISHw8PBAaGgo5s6dW+8v+yNHjqB///5QqVQIDg7G0qVLzddoIjPhPR4dW91yKElJSXof7O4lZ1I33vBWchpvaPPAauvWrUhNTcXcuXNx6NAh9OrVC2q1GhcuXNBZ/sCBAxg9ejQmTJiAgoICJCQkICEhAUePHpXKLF26FKtXr8b69euRl5cHT09PqNVqVFVVAQBOnDiB2tpabNiwAT/++CNee+01rF+/HjNnzpSOUVFRgQcffBAdOnRAfn4+li1bhnnz5uHNN9+07BtCZCTe49Hx+fn5ITAwUO+DQRU5k7rxhnXBldzGGyqEEMKWFYiOjsbdd98tDcKtra1FcHAwnn32WUyfPr1e+ZEjR6KyshK7d++Wtt1zzz2IiIjA+vXrIYRAUFAQnn/+ebzwwgsAAI1GA39/f2RkZGDUqFE667Fs2TK88cYb+PnnnwEAb7zxBmbNmoXi4mIpxT59+nTs3LkTJ06cMKhtFRUV8PHxgUajgbe3t+FvCpEBioqK8Oabb0Kj8UJ6ekq92WIpKenw8bmMpKQkBAYG2rCmRERNV3fOq3NzXGn98YbmOOc15fpt04xVdXU18vPzERcXJ21zcXFBXFwccnNzdT4nNzdXqzwAqNVqqXxhYSGKi4u1yvj4+CA6OlrvMYGbwZev719/4efm5mLAgAFa4xbUajVOnjyJP/74Q+cxrl27hoqKCq0HkaXJ/a83IiJL8PG5jJCQc7I719l08PqlS5dQU1MDf39/re3+/v56s0LFxcU6yxcXF0v767bpK3O706dPY82aNVi+fLnW64SEhNQ7Rt2+O+64o95xFi9ejPnz5+t8DSJL4mwxInJ0hk7QsPVEDqefFfjbb79h8ODBGD58OCZOnNikY82YMQOpqanS7xUVFQgODm5qFYl04mwxInIm9nJfW5sGVq1atYKrqytKSkq0tpeUlCAgIEDncwICAhosX/ezpKREq4+1pKQEERERWs/7/fffMWjQIPTt27feoHR9r3Pra9zO3d0d7u7uOvcRmZu9nGSIiMzFHs5nNh1jpVQqERUVhZycHGlbbW0tcnJyEBMTo/M5MTExWuUBIDs7WyofEhKCgIAArTIVFRXIy8vTOuZvv/2GgQMHIioqCps2bYKLi/ZbERMTgy+//BLXr1/Xep2uXbvq7AYksgXOFiMikhlhY1u2bBHu7u4iIyNDHDt2TCQlJYmWLVuK4uJiIYQQY8eOFdOnT5fK79+/XzRr1kwsX75cHD9+XMydO1e4ubmJH374QSqzZMkS0bJlS/HRRx+JI0eOiEceeUSEhISIP//8UwghxK+//io6d+4s7r//fvHrr7+KoqIi6VGnvLxc+Pv7i7Fjx4qjR4+KLVu2iObNm4sNGzYY3DaNRiMACI1G09S3iYiIiKykKddvm4+xGjlyJC5evIi0tDQUFxcjIiICWVlZ0kDx8+fPa2WT+vbti8zMTMyePRszZ85EWFgYdu7ciR49ekhlXnzxRVRWViIpKQnl5eXo168fsrKyoFKpANzMPJ0+fRqnT59Gu3bttOoj/v/qEz4+Pti3bx+mTJmCqKgotGrVCmlpaUhKSrL0W0JERER2yubrWDkyrmNFRERkf+x2HSsiIiIiR2LzrkCyjNLSUs4WIyIisjIGVg6otLRUukVQQ3jjViIiIvNiV6ADuj1TpdF4obCwIzQarwbLERERUdMwY+XgDh3qjV27hkAIF+kecpGRBbauFhERkUNiYOXANBovKagCACFcsGvXEISGnua95MhucfwgEckZAysHVlbmJwVVdYRwQVmZLwMrskscP0hEcscxVg7M17cUCkWt1jaFoha+vmU2qhFR03D8IBHJHTNWDszH5zKGDt1db4wVs1XkCDh+kIjkiIGVg4uMLEBo6GmUlfnC17eMQRU5BI4fJCK5YmDlgJRKpdbvPj6XdV5sbi9HZC84fpCI5IqBlQPy8/NDcnKy3c+c4uwv0qdu/OCtwRXHDxKRHDCwclD2HnA46+wvBpOG4fhBIpIrBlYkS7pmf5WV+cHXt1Tr4ulIs7+sEUw6UuDG8YNEJEcMrEj2nGX2l6WDSUfIAnL8IBHJHQMrkjVnnf1liWDSEbKAjjJ+kIgcFwMrkjVnnP1ljWDSnrOADJqISM648jrJmjOuHt9QMGkO+gK321cvJyIi4zGwIlmrm/1VF1w5w+wvSweTlg7ciIicGbsCSfacbfaXpZcS4BpQRGQIR5pFbE0MrEiWnH32lyWDSa4BRUSNcYRZxLbCwIpkyRlnf1kzmHS2LCARGccRZhHbCgMrki1HCpoMYelg0tmzgERkGnueRWwLDKyIZMSSwaQzZgGJqGmcdS3BpmBgReREGDQRkTGccS3BpuJyC0RERKSTM64l2FQMrIiIiEgnZ1xLsKnYFUhERER6cRaxcRhYERERkRbOIjYdAysiIiLSwlnEpmNgRURERPUwaDINB68TERERmQkDKyIiIiIzYWBFREREZCYcY0VERGQBpaWlHPzthBhYERERmVlpaSnWrl3baLnk5GQGVw6GXYFERERmdnumSqPxQmFhR2g0Xg2WI/vHjBUREZEFHTrUG7t2DYEQLtItYSIjC2xdLbIQZqyIiIgsRKPxkoIqABDCBbt2DamXuSLHwcCKiIjIQsrK/KSgqo4QLigr87VRjcjSGFgRERFZiK9vKRSKWq1tCkUtfH3LbFQjsjQGVkRERBbi43MZQ4fuloKrujFWum5oTI6Bg9eJiIgsKDKyAKGhp1FW5gtf3zIGVQ6OgRUREZGZKZVKrd99fC7rDKhuL0f2j4EVERGRmfn5+SE5OZkrrzshBlZEREQWwKDJOXHwOhEREZGZMLAiIiIiMhMGVkRERERmwsCKiIiIyEwYWBERERGZCQMrIiIiIjNhYEVERERkJgysiIiIiMyEgRURERGRmTCwIiIiIjITmwdW69atQ8eOHaFSqRAdHY2DBw82WH7btm0IDw+HSqVCz549sXfvXq39QgikpaUhMDAQHh4eiIuLw6lTp7TKvPzyy+jbty+aN2+Oli1b6nwdhUJR77Fly5YmtZWIiIgcm00Dq61btyI1NRVz587FoUOH0KtXL6jValy4cEFn+QMHDmD06NGYMGECCgoKkJCQgISEBBw9elQqs3TpUqxevRrr169HXl4ePD09oVarUVVVJZWprq7G8OHDMXny5Abrt2nTJhQVFUmPhIQEs7SbiIiIHJNCCCFs9eLR0dG4++67sXbtWgBAbW0tgoOD8eyzz2L69On1yo8cORKVlZXYvXu3tO2ee+5BREQE1q9fDyEEgoKC8Pzzz+OFF14AAGg0Gvj7+yMjIwOjRo3SOl5GRgZSUlJQXl5e77UUCgU+/PDDJgVTFRUV8PHxgUajgbe3t8nHISIiIutpyvXb6IzV7t27kZaWhv379wMAPvvsMzz88MMYPHgw3nzzTYOPU11djfz8fMTFxf1VGRcXxMXFITc3V+dzcnNztcoDgFqtlsoXFhaiuLhYq4yPjw+io6P1HrMhU6ZMQatWrdCnTx9s3LgRjcWg165dQ0VFhdaDiIiInIdRgdWGDRvw97//HXv37sXDDz+M//znP0hISEDbtm3RsWNHpKSkYNWqVQYd69KlS6ipqYG/v7/Wdn9/fxQXF+t8TnFxcYPl634ac0x9FixYgPfffx/Z2dl47LHH8M9//hNr1qxp8DmLFy+Gj4+P9AgODjbqNYmIiMi+NTOm8OrVq/H6669j4sSJ+Pzzz/Hwww9jxYoV+Oc//wngZrfc0qVLMXXqVItU1prmzJkj/bt3796orKzEsmXL8Nxzz+l9zowZM5Camir9XlFRweCKiIjIiRiVsSosLIRarQYADBo0CDU1NRgwYIC0f+DAgTh37pxBx2rVqhVcXV1RUlKitb2kpAQBAQE6nxMQENBg+bqfxhzTUNHR0fj1119x7do1vWXc3d3h7e2t9SAiIiLnYVRg5efnJwVOv//+O27cuIHz589L+8+dOwdfX1+DjqVUKhEVFYWcnBxpW21tLXJychATE6PzOTExMVrlASA7O1sqHxISgoCAAK0yFRUVyMvL03tMQx0+fBh33HEH3N3dm3QcIiIiclxGdQU+8sgjmDBhAhITE/Hxxx9j3LhxeP755+Hi4gKFQoFp06bhwQcfNPh4qampSExMxF133YU+ffogPT0dlZWVGD9+PABg3LhxaNu2LRYvXgwAmDp1KmJjY7FixQrEx8djy5Yt+O6776RB8wqFAikpKVi0aBHCwsIQEhKCOXPmICgoSGt23/nz51FWVobz58+jpqYGhw8fBgB07twZLVq0wK5du1BSUoJ77rkHKpUK2dnZeOWVV6SZhkREREQ6CSNcuXJFTJw4UfTo0UMkJSWJa9euiWXLlgmlUikUCoUYOHCgKCkpMeaQYs2aNaJ9+/ZCqVSKPn36iG+++UbaFxsbKxITE7XKv//++6JLly5CqVSK7t27iz179mjtr62tFXPmzBH+/v7C3d1d3H///eLkyZNaZRITEwWAeo/PP/9cCCHEf//7XxERESFatGghPD09Ra9evcT69etFTU2NUW3TaDQCgNBoNEY9j4iIiGynKddvs6xjVVVVhevXr8PLy6uph3IoXMeKiIjI/jTl+m1UV6A+KpUKKpXKHIciIiIisltGBVa3LiXQkJUrV5pUGSIiIiJ7ZlRgVVBQoPX7119/jaioKHh4eEjbFAqFeWpGREREZGeMCqw+//xzrd+9vLyQmZmJTp06mbVSRERERPbI6HsFEhEREZFuDKyIiIiIzISBFREREZGZGDXG6siRI1q/CyFw4sQJXLlyRWv73/72t6bXjIiIHEZpaSmqq6v17lcqlfDz87NijYgsw6gFQutuXaPrKXXbFQoFampqzFpJe8UFQomIbgZVa9eubbRccnIygyuSBastEFpYWGjUwYmIiG7PVGk0Xigr84Ovbyl8fC7rLUdkj4wKrDp06GCpehARkRM4dKg3du0aAiFcoFDUYujQ3YiMLGj8iUR2wujB60IIFBYW4saNGwBu/oWxdetWvP3227h06ZLZK0hERI5Bo/GSgioAEMIFu3YNgUbD+8yS4zAqY3Xy5Emo1Wr88ssv6NSpE/bt24fhw4fjxIkTEEKgefPmOHDgAMLCwixVXyIislNlZX5SUFVHCBeUlflqdQkS2TOjMlYvvfQSevXqhcOHD2PIkCGIj49Hu3bt8Mcff6CsrAwxMTFYsGCBpepKRER2zNe3FApFrdY2haIWvr5lNqoRkfkZlbE6cOAA9u3bh549e2LRokVYtWoV3nzzTbi5uQEApk+fjtGjR1ukoiQ/nD5NRMbw8bmMoUN31xtjxWwVORKjAqsrV67A19cXAODp6QlPT08EBgZK+4ODg1FSUmLeGpIscfo0EZkiMrIAoaGnUVbmC1/fMgZV5HCMCqyCgoJw/vx5tG/fHgCwdOlStGnTRtp/8eJF3HHHHeatIckSp09bBrOA5IiUSqXW7z4+l3UGVLeXI7JHRgVWcXFxOHHiBPr16wcAmDx5stb+ffv2ITIy0ny1I7vA6dPmwSwgOSo/Pz8kJyfzjwZyCkYFVuvXr29w/6hRo5CYmNikCpF90Td9OjT0NFP8RmIWkBwZgyZyFkbNCvzss8/QrVs3VFRU1Nun0WgQHx+P06dPm61yJH8NTZ8m0x061Bvp6SnYvDkR6ekpOHSot62rREREBjAqsEpPT8fEiRN13jfHx8cHkyZNwsqVK81WOZI/Tp82Py6iSERkv4wKrL7//nsMHjxY7/4HH3wQ+fn5Ta4U2Y+66dN1wRWnTzcds4BEzqm0tBRFRUV6H6WlpbauIhnAqDFWJSUl0ppVOg/WrBkuXrzY5EqRfeH0afOqywLeGlwxC0jk2Dh5xXEYlbFq27Ytjh49qnf/kSNHtNa1Isela/p0SMi5ekEVp08bj1lAIueja/JKYWHHekMAOHlF/ozKWD388MOYM2cOBg8eDJVKpbXvzz//xNy5czFkyBCzVpDkidOnLYtZQCLnxSVs7JtRgdXs2bOxY8cOdOnSBcnJyejatSsA4MSJE1i3bh1qamowa9Ysi1SU5IdBk3lxEUUi4hI29s+owMrf3x8HDhzA5MmTMWPGDAghAAAKhQJqtRrr1q2Dv7+/RSpK5OiYBSSihiav3B5Y8U4N8mRUYAUAHTp0wN69e/HHH3/g9OnTEEIgLCyMt7IhMgOeBImcm6GTVzjYXb6MGrx+qzvuuAN33303+vTpw6CKiIjIDAydvGLoIHYOdrc+ozNWREREZDmmTF7Rdwsssj4GVkRERDbWlMkrnEUoLwysiIiILMCYweWmTl7hLEL5YWBFZEGctUPknEwZXG7KucCYWYTG4vnLNAysiCyEs3aInJe1Bpdb6hZYPH+ZzuRZgUTUMN6igojq6Pv+N5WlboHF85fpmLEisgIOLiVyXpb4/t86iL2hWYTmuFMDz1/GYWBFJmP/u2E4uJTIeVnq+2+tOzXw/GU8BlZkEva/G86Sg0uJSN4s+f23xrmV5y/jcYwVmYT974arG1x6K3MMLiUi+bP377+9198WGFhRkx061Bvp6SnYvDkR6ekpOHSot62rJCuWGlxKRPJn799/e6+/LbArkJqE/e+GMeUWFeS4OD7R8VlzcLml8fxlHAZW1CTsf9evKbeoIMflrOMTnS2YtNbgckvh+ct0DKyoSSy1OJ0jsPcTK1mGrvGJum6e60jjE501mLTntvD8ZToGVtQkdf3vt69x4uzZqjo86VBDnGV9IGcMJh0Bz1+mYWBFTcb+dyLjOev4RGcJJsl5cVYgmURX/3tIyLl6FwT2vxPp1tD4REelL5g0921eiGyJGSsyCfvfiZrGGccncrILOQMGVmQyBk1EpnPG8YnOGEyS82FgRURkI842PtEZg0lyPgysiIisyNnXB3K2YJKcDwMrIiIrcsbxic4eTJJzUQghhK0r4agqKirg4+MDjUYDb29vW1eHiMhm5LbyutzqQ/LSlOs3M1ZERuDJmMg0cvpeOOtK8GQdDKyIDMSTMZFj4ErwZEkMrIgMxJMxkePhSvBkbjZfeX3dunXo2LEjVCoVoqOjcfDgwQbLb9u2DeHh4VCpVOjZsyf27t2rtV8IgbS0NAQGBsLDwwNxcXE4deqUVpmXX34Zffv2RfPmzdGyZUudr3P+/HnEx8ejefPmaNOmDaZNm4YbN240qa3kOA4d6o309BRs3pyI9PQUHDrU29ZVIiIjcSV4sgSbBlZbt25Famoq5s6di0OHDqFXr15Qq9W4cOGCzvIHDhzA6NGjMWHCBBQUFCAhIQEJCQk4evSoVGbp0qVYvXo11q9fj7y8PHh6ekKtVqOqqkoqU11djeHDh2Py5Mk6X6empgbx8fGorq7GgQMHsHnzZmRkZCAtLc28b4CdKy0tRVFRkd5HaWmpratoETwZEzkGZ7ytEFmeTbsCV65ciYkTJ2L8+PEAgPXr12PPnj3YuHEjpk+fXq/8qlWrMHjwYEybNg0AsHDhQmRnZ2Pt2rVYv349hBBIT0/H7Nmz8cgjjwAA3n77bfj7+2Pnzp0YNWoUAGD+/PkAgIyMDJ312rdvH44dO4ZPP/0U/v7+iIiIwMKFC/HSSy9h3rx5nBKM+uON9HWLOeJ4I96Wg8gxcCV4sgSbZayqq6uRn5+PuLi4vyrj4oK4uDjk5ubqfE5ubq5WeQBQq9VS+cLCQhQXF2uV8fHxQXR0tN5j6nudnj17wt/fX+t1Kioq8OOPP+p93rVr11BRUaH1cFS3jiNqqFvMEccb1Z2Mb8WTMZH9qVsJvu77zJXgyRxslrG6dOkSampqtIIXAPD398eJEyd0Pqe4uFhn+eLiYml/3TZ9ZQyh73VufQ1dFi9eLGXDnIW+brHQ0NMOe3LibTmIHAdXgidz46xAM5oxYwZSU1Ol3ysqKhAcHGzDGlmes3aL8WRMZBw5rQHHleDJkmwWWLVq1Qqurq4oKSnR2l5SUoKAgACdzwkICGiwfN3PkpISBAYGapWJiIgwuG4BAQH1ZifWva6+ugGAu7s73N3dDX4dR+BMYxR4MiYyjdzWgHPG2wqR9dgssFIqlYiKikJOTg4SEhIAALW1tcjJyUFycrLO58TExCAnJwcpKSnStuzsbMTExAAAQkJCEBAQgJycHCmQqqioQF5ent4ZgPpe5+WXX8aFCxfQpk0b6XW8vb3RrVs34xvrwJypW4wnYyLTyHENOH5PyVJs2hWYmpqKxMRE3HXXXejTpw/S09NRWVkpzRIcN24c2rZti8WLFwMApk6ditjYWKxYsQLx8fHYsmULvvvuO7z55psAAIVCgZSUFCxatAhhYWEICQnBnDlzEBQUJAVvwM01qsrKynD+/HnU1NTg8OHDAIDOnTujRYsWePDBB9GtWzeMHTsWS5cuRXFxMWbPno0pU6Y4XUbKEM7ULcaTMekip24uueOCnOTobBpYjRw5EhcvXkRaWhqKi4sRERGBrKwsaaD4+fPn4eLyVxdT3759kZmZidmzZ2PmzJkICwvDzp070aNHD6nMiy++iMrKSiQlJaG8vBz9+vVDVlYWVCqVVCYtLQ2bN2+Wfu/d++Ysts8//xwDBw6Eq6srdu/ejcmTJyMmJgaenp5ITEzEggULLP2W2C193WJEjk5u3Vxy5oyTXcj52HzwenJyst6uvy+++KLetuHDh2P48OF6j6dQKLBgwYIGg6CMjAy9a1jV6dChQ71V3ekvho4j4ngjcnRy7OaSK2ed7ELOxeaBFdknjjciqo/dXA1zpsku5LwYWJHJGDQR/YXdXI1zpsku5LwYWBERmYE9d3NZc/C9M012IefEwIqIyAzstZvLGoPvuQYcORMGVkREZmCv3VzWGHzPMZn2yRqZTEdcqoSBFRGRmdh7N5clB9/b28XR2Vkjk+moS5W4NF6EiIj00dXNFRJyrl5QJfduLn2D7zUaLxvXjGxBVyazsLBjvf8PTclkWuM1bIEZKyKiJnCUbi57HnxPlmWNZUQcaakSBlZERE0k96DJEPY6+J4syxrLiDjaUiUMrIjIoTni4FhLsNfB92RZ1shkOlq2lIEVETksRx0c2xhTg0l7H3xP5meNTKajZUsZWBGRw3LG+/gZG0xyjSlqiDUymY6WLWVgRUROwZEGxzbE2GDSUQbfk+VYI5PpSNlSBlZEZFdM6eZytMGxhjI0mGTQRLezRibTUbOlDKyIyG6YOmbK0QbHGsJZg0kyD2tkMh01W8rAiojshqljphxtcKwhnDGYJPOyRkBjb0GTIRhYEZFdMmbMlKMNjjWEMwaTRHLAwIqI7I4p3VyONDjWEM4YTBLJAQMrIrI7hnZzOcrgWK5LRWQ/GFiR1XAFbDIXQ7u5HGFwLNelIrIvDKzIKm6/OOgbdOxoK2CTZRjTzWXv/5+4LhWRfWFgRVZx60m+oUHHjrQCNlmWM3ZzcV0qIvlzabwIkfnoG3Ss0XjZuGZkD65evapjq8LAcvaN3x0i+8CMFVkV19ahpmjevLn074ayN7eWcxT87hDZB2asyKrqBh3fimvrkLGcMXvD7w6RfWBgRVZVN+i47gLBtXXIFA1lbxwVvztE9oFdgWR1zjjomMzLWVcV53eHSP4YWJFN6Ftbh8gQzrSqONelIvqLPayHyMCKrMLQkz4vDmQoZ8necF0qopuMXSzXVhhYkVXw4kCW4CyZT34viIxfLNdWGFiR1fDiQE3FzCcRAYYvlmsLDKyIyG4w80lE+pZbCQ09LYsMNgMrIrIrDJqInJvcF8vlOlZERERkN+S+WC4DKyIiIrIbcl8sl12BREQyZw9r9xBZk5yXW2FgRUQkY/aydg+RpdnLYrkMrIiIZMxe1u4hsjR7mRXMwIqIyE7Iee0eImuwddBkCAZWZDKO+yCyHrmv3UNENzGwIpNw3AeRdcl97R4iuonLLZBJdI37KCzsCI3Gq8FyRGQaua/dQ0Q3MWNFTcZxH0SWV7d2z+3fNWariOSFgRU1Ccd9EFmPnNfuIaKbGFhRk3DcBzUVJ0E0zF7W7iGimxhYUZPUjfu4NbjiuA8yFCdBNM4aa/cwuCUyHwZW1CQc90FNwcUvDWPJoIbBLZF5MbCiJuO4DzIHToKwDQa3RObFwIpMwnEfZE6cBCEPDG6Jmo6BFZnEXu7ZRPaBkyBsj8EtkXkwsCKTMWgic+EkCNtjcEtkHgysiMjmOAmiYdaYtcfglsg8GFgRkSxwEoRu1pq1x+CWyDwYWBGRzXASROOsOWuPwS1R0zGwIiKb4SQI41hi1h6DW/ngQq2OgYEVEdkULxSGsdSsPQa38sCFWh2HS+NFLG/dunXo2LEjVCoVoqOjcfDgwQbLb9u2DeHh4VCpVOjZsyf27t2rtV8IgbS0NAQGBsLDwwNxcXE4deqUVpmysjI88cQT8Pb2RsuWLTFhwgRcuXJF2n/27FkoFIp6j2+++cZ8DSciMlBDs/aays/PD4GBgXofvJBbnqFduVyoVf5sHlht3boVqampmDt3Lg4dOoRevXpBrVbjwoULOssfOHAAo0ePxoQJE1BQUICEhAQkJCTg6NGjUpmlS5di9erVWL9+PfLy8uDp6Qm1Wo2qqiqpzBNPPIEff/wR2dnZ2L17N7788kskJSXVe71PP/0URUVF0iMqKsr8bwIRUSPqZu3dirP2HJdG44XCwo7QaLxsXRUykkIIIWxZgejoaNx9991SCrS2thbBwcF49tlnMX369HrlR44cicrKSuzevVvads899yAiIgLr16+HEAJBQUF4/vnn8cILLwAANBoN/P39kZGRgVGjRuH48ePo1q0bvv32W9x1110AgKysLDz88MP49ddfERQUhLNnzyIkJAQFBQWIiIgwqW0VFRXw8fGBRqOBt7e3SccgIudWVFSEN998E0DDY6ySkpIQGBhoy6pSEzjK5+wo48Sacv226Rir6upq5OfnY8aMGdI2FxcXxMXFITc3V+dzcnNzkZqaqrVNrVZj586dAIDCwkIUFxcjLi5O2u/j44Po6Gjk5uZi1KhRyM3NRcuWLaWgCgDi4uLg4uKCvLw8/P3vf5e2Dxs2DFVVVejSpQtefPFFDBs2TG97rl27hmvXrkm/V1RUGPZGEBEZQE6z9hzlAio39rwCPseJ3WTTwOrSpUuoqamBv7+/1nZ/f3+cOHFC53OKi4t1li8uLpb2121rqEybNm209jdr1gy+vr5SmRYtWmDFihW499574eLigu3btyMhIQE7d+7UG1wtXrwY8+fPN6TpREQGkeOsPV5ALceeV8DnDb1v4qxAPVq1aqWVGbv77rvx+++/Y9myZXoDqxkzZmg9p6KiAsHBwRavK5E9Y+ajYXKctccLqOU4ygr4znxDb5sGVq1atYKrqytKSkq0tpeUlCAgIEDncwICAhosX/ezpKREqx+6pKREGisVEBBQb3D8jRs3UFZWpvd1gZvjwbKzs/Xud3d3h7u7u979csaLG9kCMx+GsXTbm/L9d+YLqCU4wgr49tydaQ42DayUSiWioqKQk5ODhIQEADcHr+fk5CA5OVnnc2JiYpCTk4OUlBRpW3Z2NmJiYgAAISEhCAgIQE5OjhRIVVRUIC8vD5MnT5aOUV5ejvz8fGmW32effYba2lpER0frre/hw4dlPWjQVLy4ka0w82F7Tfn+O/sF1Jxu7cptaCydPSzUas/dmeZg867A1NRUJCYm4q677kKfPn2Qnp6OyspKjB8/HgAwbtw4tG3bFosXLwYATJ06FbGxsVixYgXi4+OxZcsWfPfdd9JsCoVCgZSUFCxatAhhYWEICQnBnDlzEBQUJAVvd955JwYPHoyJEydi/fr1uH79OpKTkzFq1CgEBQUBADZv3gylUonevXsDAHbs2IGNGzfi//7v/6z8DlkeL24kB/ac+bDnjG9Tvv/OfgE1Jzl2+ZrKUbozTWXzwGrkyJG4ePEi0tLSUFxcjIiICGRlZUmDz8+fPw8Xl78+nL59+yIzMxOzZ8/GzJkzERYWhp07d6JHjx5SmRdffBGVlZVISkpCeXk5+vXrh6ysLKhUKqnMu+++i+TkZNx///1wcXHBY489htWrV2vVbeHChTh37hyaNWuG8PBwbN26FY8//riF3xHbsueLG9kve858OFLG19jvv7NfQM1N7v8/DOUI3ZlNYfPACrh5wtHX9ffFF1/U2zZ8+HAMHz5c7/EUCgUWLFiABQsW6C3j6+uLzMxMvfsTExORmJiov9IOyJ4vbmTf7Dnz4SgZX1O+/85+ASX95LQ0iLXJIrAiebDnixvZN0fJfNhzxtfU778zX0BJmxyXBrEFBlYkcZSLmzOx57E9t3KEzIe9Z3yN+f7zAmoYR/l+GsqRxok1BQMrkjjCxc2ZONLYHsD+Mx+WzPha4wJtzPefF9DGOdr301CO1BZTMbAiLfZ+cXMmjjC2xxEyHxqNBkDjGR+NRmPSci3WvEAb8/3nBbRhjvD9JNMwsCKHuLg5O3sd2+MImY/r168D+Cvj8/HHQwC4ANDO+NSVM5alL9D8/luevX4/yTQMrMghLm7OzN7H9jja/yuFAhDi5k9zs8QF2tTvv7ONHzKVvX8/yXgMrAiA413cnAlnc9pWs2Y3T6ONXUDrypnKkhdoY7//zjp+yBT8fjofl8aLEJGc1Y3tuRVnc1pPy5YtATR8Ab21nKkaO7416eqeLCzsCI3Gq8FyzojfT+fDjBU5LUfpyuBsTtsqLy8H0Pjg9fLy8ibda1Suy6Fw/FDD+P10PgysyCk5WlcGZ3Pazo0bNwA0fgGtK2cqOV6gOX7IMPx+OhcGVuSUHGEqNGdzyZMQ2j/NSW4XaI4f0o/fT+fFwIqcnr12Zch1NqejdLEays3NDcBf2Zu/hq5qZ2/qyhlLzhdouXZPyoFcv59keQysyKnZe1eG3E7KjtbFaggfHx8AjWdv6soZS84XaDl2T8qJo/wfJ+MwsCKnxq4M83KELlZTWTJ7I+cLtNy6J4lsjYEVOTV2ZViOvXaxmkpO2Rtju2ONLS/n7kkiW2NgZSecbdyKtRh7MeTnYBh772I1lRyyN8Z2x5rSfSvn7kkiW2NgZQeccdyKNRl6MeTnYDhn6mKVW/bG2O5YU7tvnf3/OJE+DKzsgDOPW7EUUy6G/BwM50xdrHLO3hjbHets3bdElsDAys7wxGceTb0Y8nNomJzGG1mDKffas3QgZmx3rLN23xKZGwMrO8ITn3mZeuHi52AYOYw3kiNrdSkb2x3rTN23RJbEmzDbETndhNWZ8XPQT1cXa0jIuXoXZmeeLWatGxgbe/Nf3iyYyDyYsbIjzjRuRc74Oegn5/FGcmTJLmVju2Pl1n3LGbhkrxhY2RG5nficFT+HhvFiZxhrdCkb2x0rl+5bzsAle8bAys7I5cTn7Pg5UFNZakyTsTNe5bZcBCDPGbjMoJGhGFjZATme+JwRPwd5cJQLnKW6lI3tjpV7960cZuAyg0bGYGBlB+R+4nMW/Bxsz5EucJbsUja27aa8V3JcMsJS5JhBI/liYGUn5H6RMIQjZBrkXj9H52gXOHvtUpbrkhHWIIcMGskbAyuyCkfKNJA82OsFzhG6lK0V4MptBq5cMmiOxBH+4L4dAyuyCkfLNJBt2fMFztG6lOW0ZISlyTGDZs8c9Q9uBlZkdfaaaSD5sPcLnD1dJBoixyUjLEluGTRjyS075Kh/cDOwIquy50wDyYe9X+AchVyWjLAWuWXQjCH37JAj/cHNwIqsyt4zDSQP9nyBcyRyWTLCmuSUQTOGnLNDjvYHNwMrsipnyzRYOvUut9S+NdnrBc6RyGnJCEuSawbNVHLLDjnaH9wMrMiqnCnTYOnUu9xT+5bgaBc4R+AMAa6cM2jGkmN2yNH+4GZgRVbnDCdiwPKpdzmn9i3FkS5w9swZA1w5/p8yJWMtx+yQo/3BzcCKrMIZT8S3snTq3ZLHl1t3oxwvcM6GAa7tmZqxlmt2yJH+4GZgRVbhzCdiS6feLXl8Z+xuNIXcgk9rcLT22BtTM9Zyyg456h/cDKzIapz1RGzp1Lslj29oN6IjdTcai8En2ZqxGWu5ZIcc9Q9uBlZEFmbp1Ls1U/v6/ip2Zs441o3kw9CMtbWyQ8Zmb+0taDIEAysiC7N06t1aqX25TdGWI75HZG2GZqytkR1i9vYmBlZEVmDp1Luljy/HKdpyw/eIbMGYjLWlgxlmb29iYEVkIZZOvVtz4Kccp2jLDd8jsgU5DUa/lTNnbxlYEVmIpVPv1hz4Kdcp2nLC94hsRS6D0es4e/aWgRWRBVk69W6tcQpy/atYTvgekTXJeakCZ8/eMrAiIr1uPSk39Fexva0zYylyyxyQ45LzUgXOnr1lYEVEesn55C0Xcs4ckGOT6/fO2bO3DKyIqEFyPXnLBYNPovqcOXvLwIqIqIkYNBExe1uHgRURERE1GbO3NzGwIiIiIrNw9KDJEC6NFyEiIiIiQzCwIiIiIjITBlZEREREZsLAioiIiMhMGFgRERERmYksAqt169ahY8eOUKlUiI6OxsGDBxssv23bNoSHh0OlUqFnz57Yu3ev1n4hBNLS0hAYGAgPDw/ExcXh1KlTWmXKysrwxBNPwNvbGy1btsSECRNw5coVrTJHjhxB//79oVKpEBwcjKVLl5qnwUREROSQbB5Ybd26FampqZg7dy4OHTqEXr16Qa1W48KFCzrLHzhwAKNHj8aECRNQUFCAhIQEJCQk4OjRo1KZpUuXYvXq1Vi/fj3y8vLg6ekJtVqNqqoqqcwTTzyBH3/8EdnZ2di9eze+/PJLJCUlSfsrKirw4IMPokOHDsjPz8eyZcswb948vPnmm5Z7M4iIiMi+CRvr06ePmDJlivR7TU2NCAoKEosXL9ZZfsSIESI+Pl5rW3R0tJg0aZIQQoja2loREBAgli1bJu0vLy8X7u7u4r333hNCCHHs2DEBQHz77bdSmf/+979CoVCI3377TQghxOuvvy7uuOMOce3aNanMSy+9JLp27Wpw2zQajQAgNBqNwc8hIiIi22rK9dumGavq6mrk5+cjLi5O2ubi4oK4uDjk5ubqfE5ubq5WeQBQq9VS+cLCQhQXF2uV8fHxQXR0tFQmNzcXLVu2xF133SWViYuLg4uLC/Ly8qQyAwYM0Fp6X61W4+TJk/jjjz901u3atWuoqKjQehAREZHzsOnK65cuXUJNTQ38/f21tvv7++PEiRM6n1NcXKyzfHFxsbS/bltDZdq0aaO1v1mzZvD19dUqExISUu8YdfvuuOOOenVbvHgx5s+fX287AywiIiL7UXfdFkIY/Vze0saMZsyYgdTUVOn33377Dd26dUNwcLANa0VERESmuHz5Mnx8fIx6jk0Dq1atWsHV1RUlJSVa20tKShAQEKDzOQEBAQ2Wr/tZUlKCwMBArTIRERFSmdsHx9+4cQNlZWVax9H1Ore+xu3c3d3h7u4u/d6iRQv88ssv8PLygkKh0PkcU1RUVCA4OBi//PILvL29zXZcuWE7HQvb6VicoZ3O0EaA7dRFCIHLly8jKCjI6NexaWClVCoRFRWFnJwcJCQkAABqa2uRk5OD5ORknc+JiYlBTk4OUlJSpG3Z2dmIiYkBAISEhCAgIAA5OTlSIFVRUYG8vDxMnjxZOkZ5eTny8/MRFRUFAPjss89QW1uL6OhoqcysWbNw/fp1uLm5Sa/TtWtXnd2Auri4uKBdu3ZGvSfG8Pb2dugvQR2207GwnY7FGdrpDG0E2M7bGZupqmPz5RZSU1Px73//G5s3b8bx48cxefJkVFZWYvz48QCAcePGYcaMGVL5qVOnIisrCytWrMCJEycwb948fPfdd1IgplAokJKSgkWLFuHjjz/GDz/8gHHjxiEoKEgK3u68804MHjwYEydOxMGDB7F//34kJydj1KhRUnQ6ZswYKJVKTJgwAT/++CO2bt2KVatWaXX1EREREd3K5mOsRo4ciYsXLyItLQ3FxcWIiIhAVlaWNFD8/PnzcHH5K/7r27cvMjMzMXv2bMycORNhYWHYuXMnevToIZV58cUXUVlZiaSkJJSXl6Nfv37IysqCSqWSyrz77rtITk7G/fffDxcXFzz22GNYvXq1tN/Hxwf79u3DlClTEBUVhVatWiEtLU1rrSsiIiIiLWZf/IEsrqqqSsydO1dUVVXZuioWxXY6FrbTsThDO52hjUKwneamEMKEuYREREREVI/Nx1gREREROQoGVkRERERmwsCKiIiIyEwYWBERERGZCQMrmVi3bh06duwIlUqF6OhoHDx4sMHy6enp6Nq1Kzw8PBAcHIx//etfqKqqatIxLc3cbZw3bx4UCoXWIzw83NLNaJQx7bx+/ToWLFiA0NBQqFQq9OrVC1lZWU06prWYu51y/Dy//PJLDB06FEFBQVAoFNi5c2ejz/niiy8QGRkJd3d3dO7cGRkZGfXKyO3ztEQ7HeHzLCoqwpgxY9ClSxe4uLhoLUx9q23btiE8PBwqlQo9e/bE3r17zV95A1mijRkZGfU+y1uXL7IFY9u5Y8cOPPDAA2jdujW8vb0RExODTz75pF45c3w3GVjJwNatW5Gamoq5c+fi0KFD6NWrF9Rqdb3b7tTJzMzE9OnTMXfuXBw/fhxvvfUWtm7dipkzZ5p8TEuzRBsBoHv37igqKpIeX3/9tTWao5ex7Zw9ezY2bNiANWvW4NixY3jmmWfw97//HQUFBSYf0xos0U5Afp9nZWUlevXqhXXr1hlUvrCwEPHx8Rg0aBAOHz6MlJQUPP3001oncDl+npZoJ2D/n+e1a9fQunVrzJ49G7169dJZ5sCBAxg9ejQmTJiAgoICJCQkICEhAUePHjVn1Q1miTYCN1crv/WzPHfunLmqbBJj2/nll1/igQcewN69e5Gfn49BgwZh6NChljnXWnQxBzJInz59xJQpU6Tfa2pqRFBQkFi8eLHO8lOmTBH33Xef1rbU1FRx7733mnxMS7NEG+fOnSt69eplkfqayth2BgYGirVr12pte/TRR8UTTzxh8jGtwRLtlOPneSsA4sMPP2ywzIsvvii6d++utW3kyJFCrVZLv8vx87yVudrpCJ/nrWJjY8XUqVPrbR8xYoSIj4/X2hYdHS0mTZrUxBo2nbnauGnTJuHj42O2epmbse2s061bNzF//nzpd3N9N5mxsrHq6mrk5+cjLi5O2ubi4oK4uDjk5ubqfE7fvn2Rn58vpSh//vln7N27Fw8//LDJx7QkS7SxzqlTpxAUFIROnTrhiSeewPnz5y3XkEaY0s5r167VS6l7eHhIf9nL7bM0tU6NtbOOnD5PU+Tm5mq9LwCgVqul90WOn6cpGmtnHXv/PA1h6Hth765cuYIOHTogODgYjzzyCH788UdbV6lJamtrcfnyZfj6+gIw73eTgZWNXbp0CTU1NdItfOr4+/ujuLhY53PGjBmDBQsWoF+/fnBzc0NoaCgGDhwodZOZckxLskQbASA6OhoZGRnIysrCG2+8gcLCQvTv3x+XL1+2aHv0MaWdarUaK1euxKlTp1BbW4vs7Gzs2LEDRUVFJh/T0izRTkB+n6cpiouLdb4vFRUV+PPPP2X5eZqisXYCjvF5GkLfe2FPn2djunbtio0bN+Kjjz7Cf/7zH9TW1qJv37749ddfbV01ky1fvhxXrlzBiBEjAJj3XMvAyg598cUXeOWVV/D666/j0KFD2LFjB/bs2YOFCxfaumpmY0gbH3roIQwfPhx/+9vfoFarsXfvXpSXl+P999+3Yc2Ns2rVKoSFhSE8PBxKpRLJyckYP3681v0xHYEh7XSEz5P+ws/TccTExGDcuHGIiIhAbGwsduzYgdatW2PDhg22rppJMjMzMX/+fLz//vto06aN2Y9v85swO7tWrVrB1dUVJSUlWttLSkoQEBCg8zlz5szB2LFj8fTTTwMAevbsKd10etasWSYd05Is0UZdgUfLli3RpUsXnD592vyNMIAp7WzdujV27tyJqqoqlJaWIigoCNOnT0enTp1MPqalWaKdutj68zRFQECAzvfF29sbHh4ecHV1ld3naYrG2qmLPX6ehtD3XtjT52ksNzc39O7d2y4/yy1btuDpp5/Gtm3btLr9zHmudaw/i+2QUqlEVFQUcnJypG21tbXIyclBTEyMzudcvXq1XmDh6uoKABBCmHRMS7JEG3W5cuUKzpw5g8DAQDPV3DhNed9VKhXatm2LGzduYPv27XjkkUeafExLsUQ7dbH152mKmJgYrfcFALKzs6X3RY6fpykaa6cu9vh5GsKU98Le1dTU4IcffrC7z/K9997D+PHj8d577yE+Pl5rn1m/m0YPoyez27Jli3B3dxcZGRni2LFjIikpSbRs2VIUFxcLIYQYO3asmD59ulR+7ty5wsvLS7z33nvi559/Fvv27ROhoaFixIgRBh/T2izRxueff1588cUXorCwUOzfv1/ExcWJVq1aiQsXLli9fXWMbec333wjtm/fLs6cOSO+/PJLcd9994mQkBDxxx9/GHxMW7BEO+X4eV6+fFkUFBSIgoICAUCsXLlSFBQUiHPnzgkhhJg+fboYO3asVP7nn38WzZs3F9OmTRPHjx8X69atE66uriIrK0sqI8fP0xLtdITPUwghlY+KihJjxowRBQUF4scff5T279+/XzRr1kwsX75cHD9+XMydO1e4ubmJH374waptq2OJNs6fP1988skn4syZMyI/P1+MGjVKqFQqrTLWZmw73333XdGsWTOxbt06UVRUJD3Ky8ulMub6bjKwkok1a9aI9u3bC6VSKfr06SO++eYbaV9sbKxITEyUfr9+/bqYN2+eCA0NFSqVSgQHB4t//vOfWhepxo5pC+Zu48iRI0VgYKBQKpWibdu2YuTIkeL06dNWbJFuxrTziy++EHfeeadwd3cXfn5+YuzYseK3334z6pi2Yu52yvHz/PzzzwWAeo+6tiUmJorY2Nh6z4mIiBBKpVJ06tRJbNq0qd5x5fZ5WqKdjvJ56irfoUMHrTLvv/++6NKli1AqlaJ79+5iz5491mmQDpZoY0pKivT/1d/fXzz88MPi0KFD1muUDsa2MzY2tsHydczx3VQIoadfhYiIiIiMwjFWRERERGbCwIqIiIjITBhYEREREZkJAysiIiIiM2FgRURERGQmDKyIiIiIzISBFREREZGZMLAiInIiX3zxBRQKBcrLy21dFSKHxMCKiCziqaeegkKhwJIlS7S279y5EwqFQvpdCIF///vfiImJgbe3N1q0aIHu3btj6tSpBt/k9erVq5gxYwZCQ0OhUqnQunVrxMbG4qOPPpLKdOzYEenp6WZpm6XVvXcKhQJubm4ICQnBiy++iKqqKqOOM3DgQKSkpGht69u3L4qKiuDj42PGGhNRHQZWRGQxKpUKr776Kv744w+d+4UQGDNmDJ577jk8/PDD2LdvH44dO4a33noLKpUKixYtMuh1nnnmGezYsQNr1qzBiRMnkJWVhccffxylpaXmbI5VDR48GEVFRfj555/x2muvYcOGDZg7d26Tj6tUKhEQEKAV3BKRGZl4mx4iogYlJiaKIUOGiPDwcDFt2jRp+4cffijqTj3vvfeeACA++ugjnceora016LV8fHxERkaG3v267hNW56uvvhL9+vUTKpVKtGvXTjz77LPiypUr0v63335bREVFiRYtWgh/f38xevRoUVJSIu2vu2dZVlaWiIiIECqVSgwaNEiUlJSIvXv3ivDwcOHl5SVGjx4tKisrDWpPYmKieOSRR7S2Pfroo6J3797S75cuXRKjRo0SQUFBwsPDQ/To0UNkZmZqHeP2NhcWFkr1vfW+mx988IHo1q2bUCqVokOHDmL58uUG1ZOI6mPGiogsxtXVFa+88grWrFmDX3/9td7+9957D127dsWwYcN0Pt/QrEpAQAD27t2Ly5cv69y/Y8cOtGvXDgsWLEBRURGKiooAAGfOnMHgwYPx2GOP4ciRI9i6dSu+/vprJCcnS8+9fv06Fi5ciO+//x47d+7E2bNn8dRTT9V7jXnz5mHt2rU4cOAAfvnlF4wYMQLp6enIzMzEnj17sG/fPqxZs8ag9tzu6NGjOHDgAJRKpbStqqoKUVFR2LNnD44ePYqkpCSMHTsWBw8eBACsWrUKMTExmDhxotTm4ODgesfOz8/HiBEjMGrUKPzwww+YN28e5syZg4yMDJPqSuT0bB3ZEZFjujXrcs8994h//OMfQgjtjFV4eLgYNmyY1vOmTp0qPD09haenp2jbtq1Br/W///1PtGvXTri5uYm77rpLpKSkiK+//lqrTIcOHcRrr72mtW3ChAkiKSlJa9tXX30lXFxcxJ9//qnztb799lsBQFy+fFkI8VfG6tNPP5XKLF68WAAQZ86ckbZNmjRJqNVqg9qTmJgoXF1dhaenp3B3dxcAhIuLi/jggw8afF58fLx4/vnnpd9jY2PF1KlTtcrcnrEaM2aMeOCBB7TKTJs2TXTr1s2guhKRNmasiMjiXn31VWzevBnHjx9vtOysWbNw+PBhpKWl4cqVKwYdf8CAAfj555+Rk5ODxx9/HD/++CP69++PhQsXNvi877//HhkZGWjRooX0UKvVqK2tRWFhIYCbGZ2hQ4eiffv28PLyQmxsLADg/PnzWsf629/+Jv3b398fzZs3R6dOnbS2XbhwwaD2AMCgQYNw+PBh5OXlITExEePHj8djjz0m7a+pqcHChQvRs2dP+Pr6okWLFvjkk0/q1asxx48fx7333qu17d5778WpU6dQU1Nj1LGIiIPXicgKBgwYALVajRkzZmhtDwsLw8mTJ7W2tW7dGp07d0abNm2Meg03Nzf0798fL730Evbt24cFCxZg4cKFqK6u1vucK1euYNKkSTh8+LD0+P7773Hq1CmEhoaisrISarUa3t7eePfdd/Htt9/iww8/BIB6x3Vzc5P+XTeb71YKhQK1tbUGt8fT0xOdO3dGr169sHHjRuTl5eGtt96S9i9btgyrVq3CSy+9hM8//xyHDx+GWq1usL1EZHnNbF0BInIOS5YsQUREBLp27SptGz16NMaMGYOPPvoIjzzyiFlfr1u3brhx4waqqqqgVCqhVCrrZWAiIyNx7NgxdO7cWecxfvjhB5SWlmLJkiXS+KTvvvvOrPU0hIuLC2bOnInU1FSMGTMGHh4e2L9/Px555BE8+eSTAIDa2lr89NNP6Natm/Q8XW2+3Z133on9+/drbdu/fz+6dOkCV1dX8zeGyMExY0VEVtGzZ0888cQTWL16tbRt1KhRePzxxzFq1CgsWLAAeXl5OHv2LP73v/9h69atBl/YBw4ciA0bNiA/Px9nz57F3r17MXPmTAwaNAje3t4Abq5j9eWXX+K3337DpUuXAAAvvfQSDhw4gOTkZBw+fBinTp3CRx99JA1eb9++PZRKJdasWYOff/4ZH3/8caPdi5YyfPhwuLq6Yt26dQBuZvuys7Nx4MABHD9+HJMmTUJJSYnWczp27Ci9p5cuXdKZMXv++eeRk5ODhQsX4qeffsLmzZuxdu1avPDCC1ZpF5GjYWBFRFazYMECrYu7QqHA1q1bkZ6ejr179+L+++9H165d8Y9//APBwcH4+uuvDTquWq3G5s2b8eCDD+LOO+/Es88+C7Vajffff1/rtc+ePYvQ0FC0bt0awM1xUf/73//w008/oX///ujduzfS0tIQFBQE4Ga3ZEZGBrZt24Zu3bphyZIlWL58uRnfEcM1a9YMycnJWLp0KSorKzF79mxERkZCrVZj4MCBCAgIQEJCgtZzXnjhBbi6uqJbt25o3bq1zvFXkZGReP/997Flyxb06NEDaWlpWLBggc6Zj0TUOIUQQti6EkRERESOgBkrIiIiIjNhYEVEsnfrcgi3P7766itbV88o58+fb7A9xi6XQETywq5AIpK9hm7G3LZtW3h4eFixNk1z48YNnD17Vu/+jh07olkzTtgmslcMrIiIiIjMhF2BRERERGbCwIqIiIjITBhYEREREZkJAysiIiIiM2FgRURERGQmDKyIiIiIzISBFREREZGZMLAiIiIiMpP/B9ik7mFhrEj9AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_9.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpDUlEQVR4nO3de1xU1fo/8M8MMIAIgwNyUxQCvF9QVIQsUyk0RSnPCc2UzKJMSqJOZV47WZSmkql5tFIrTTPNo2aUof06KaGCWiqSGt5KUBkZEBOQWb8/+LJzYGZgRmaGy+f9es1LZu+1915rZ/G09rOfJRNCCBARERGRSeS27gARERFRU8QgioiIiMgMDKKIiIiIzMAgioiIiMgMDKKIiIiIzMAgioiIiMgMDKKIiIiIzMAgioiIiMgMDKKIiIiIzMAgioiomVu7di1kMhnOnj1r664QNSsMoojojh08eBCJiYno3r07XFxc0KFDBzzyyCP47bffarW97777IJPJIJPJIJfL4ebmhs6dO2PixInYvXu3SdfdsWMHBg8eDC8vL7Rq1Qp33XUXHnnkEaSlpTXU0Gp56623sG3btlrb9+/fj3nz5qGoqMhi165p3rx50r2UyWRo1aoVunXrhlmzZqG4uLhBrrFhwwakpqY2yLmImhsGUUR0x9555x1s2bIFw4YNw3vvvYeEhAT8+OOP6Nu3L44dO1arffv27fHpp5/ik08+wcKFCzF69Gjs378fDzzwAOLi4lBRUVHnNd99912MHj0aMpkMM2bMwJIlSzB27FicOnUKGzdutMQwARgPol5//XWrBlHVPvjgA3z66adYvHgxunTpgjfffBPDhw9HQyyNyiCKyDB7W3eAiJq+5ORkbNiwAQqFQtoWFxeHnj174u2338Znn32m016pVOKxxx7T2fb222/j+eefx4oVKxAQEIB33nnH4PVu3bqFN954A/fffz++++67WvsvX758hyNqPG7cuIFWrVoZbfOPf/wDnp6eAIBnnnkGY8eOxdatW/Hzzz8jIiLCGt0kapE4E0VEdywyMlIngAKAkJAQdO/eHTk5OfU6h52dHZYuXYpu3bph2bJl0Gg0BttevXoVxcXFuPvuu/Xu9/Ly0vl+8+ZNzJs3D506dYKTkxN8fX3x8MMP48yZM1Kbd999F5GRkfDw8ICzszPCwsLw5Zdf6pxHJpOhtLQU69atkx6hPf7445g3bx7+9a9/AQACAwOlfbfnIH322WcICwuDs7MzVCoVxo0bhwsXLuic/7777kOPHj2QlZWFe++9F61atcJrr71Wr/t3u6FDhwIA8vLyjLZbsWIFunfvDkdHR/j5+WHatGk6M2n33Xcfvv76a5w7d04aU0BAgMn9IWquOBNFRBYhhEBBQQG6d+9e72Ps7Owwfvx4zJ49Gz/99BNGjhypt52XlxecnZ2xY8cOPPfcc1CpVAbPWVlZiVGjRiE9PR3jxo3D9OnTUVJSgt27d+PYsWMICgoCALz33nsYPXo0JkyYgPLycmzcuBH//Oc/sXPnTqkfn376KZ588kkMGDAACQkJAICgoCC4uLjgt99+w+eff44lS5ZIs0Jt27YFALz55puYPXs2HnnkETz55JO4cuUK3n//fdx77704fPgw3N3dpf4WFhZixIgRGDduHB577DF4e3vX+/5Vqw4OPTw8DLaZN28eXn/9dURFRWHq1KnIzc3FBx98gIMHD2Lfvn1wcHDAzJkzodFocPHiRSxZsgQA0Lp1a5P7Q9RsCSIiC/j0008FAPHRRx/pbB88eLDo3r27weO++uorAUC89957Rs8/Z84cAUC4uLiIESNGiDfffFNkZWXVavfxxx8LAGLx4sW19mm1WunnGzdu6OwrLy8XPXr0EEOHDtXZ7uLiIuLj42uda+HChQKAyMvL09l+9uxZYWdnJ958802d7b/++quwt7fX2T548GABQKxcudLguG83d+5cAUDk5uaKK1euiLy8PPGf//xHODo6Cm9vb1FaWiqEEGLNmjU6fbt8+bJQKBTigQceEJWVldL5li1bJgCIjz/+WNo2cuRI0bFjx3r1h6il4eM8ImpwJ0+exLRp0xAREYH4+HiTjq2e6SgpKTHa7vXXX8eGDRvQp08ffPvtt5g5cybCwsLQt29fnUeIW7ZsgaenJ5577rla55DJZNLPzs7O0s/Xrl2DRqPBPffcg+zsbJP6X9PWrVuh1WrxyCOP4OrVq9LHx8cHISEh2Lt3r057R0dHTJ482aRrdO7cGW3btkVgYCCefvppBAcH4+uvvzaYS/X999+jvLwcSUlJkMv//jXw1FNPwc3NDV9//bXpAyVqgfg4j4gaVH5+PkaOHAmlUokvv/wSdnZ2Jh1//fp1AICrq2udbcePH4/x48ejuLgYmZmZWLt2LTZs2ICYmBgcO3YMTk5OOHPmDDp37gx7e+P/udu5cyfmz5+PI0eOoKysTNp+e6BljlOnTkEIgZCQEL37HRwcdL63a9euVn5ZXbZs2QI3Nzc4ODigffv20iNKQ86dOwegKvi6nUKhwF133SXtJyLjGEQRUYPRaDQYMWIEioqK8L///Q9+fn4mn6O6JEJwcHC9j3Fzc8P999+P+++/Hw4ODli3bh0yMzMxePDgeh3/v//9D6NHj8a9996LFStWwNfXFw4ODlizZg02bNhg8hhup9VqIZPJ8M033+gNKGvmGN0+I1Zf9957r5SHRUTWwyCKiBrEzZs3ERMTg99++w3ff/89unXrZvI5KisrsWHDBrRq1QqDBg0yqx/9+vXDunXrcOnSJQBVid+ZmZmoqKioNetTbcuWLXBycsK3334LR0dHafuaNWtqtTU0M2Voe1BQEIQQCAwMRKdOnUwdjkV07NgRAJCbm4u77rpL2l5eXo68vDxERUVJ2+50Jo6oOWNOFBHdscrKSsTFxSEjIwObN282qzZRZWUlnn/+eeTk5OD555+Hm5ubwbY3btxARkaG3n3ffPMNgL8fVY0dOxZXr17FsmXLarUV/1eM0s7ODjKZDJWVldK+s2fP6i2q6eLioregpouLCwDU2vfwww/Dzs4Or7/+eq3il0IIFBYW6h+kBUVFRUGhUGDp0qU6ffroo4+g0Wh03op0cXExWm6CqCXjTBQR3bEXX3wR27dvR0xMDNRqda3imjULa2o0GqnNjRs3cPr0aWzduhVnzpzBuHHj8MYbbxi93o0bNxAZGYmBAwdi+PDh8Pf3R1FREbZt24b//e9/iI2NRZ8+fQAAkyZNwieffILk5GQcOHAA99xzD0pLS/H999/j2WefxZgxYzBy5EgsXrwYw4cPx6OPPorLly9j+fLlCA4Oxi+//KJz7bCwMHz//fdYvHgx/Pz8EBgYiPDwcISFhQEAZs6ciXHjxsHBwQExMTEICgrC/PnzMWPGDJw9exaxsbFwdXVFXl4evvrqKyQkJOCll166o/tvqrZt22LGjBl4/fXXMXz4cIwePRq5ublYsWIF+vfvr/PPKywsDJs2bUJycjL69++P1q1bIyYmxqr9JWq0bPlqIBE1D9Wv5hv6GGvbunVrERISIh577DHx3Xff1et6FRUVYvXq1SI2NlZ07NhRODo6ilatWok+ffqIhQsXirKyMp32N27cEDNnzhSBgYHCwcFB+Pj4iH/84x/izJkzUpuPPvpIhISECEdHR9GlSxexZs0aqYTA7U6ePCnuvfde4ezsLADolDt44403RLt27YRcLq9V7mDLli1i0KBBwsXFRbi4uIguXbqIadOmidzcXJ17Y6z8Q03V/bty5YrRdjVLHFRbtmyZ6NKli3BwcBDe3t5i6tSp4tq1azptrl+/Lh599FHh7u4uALDcAdFtZEI0wOJKRERERC0Mc6KIiIiIzMAgioiIiMgMDKKIiIiIzMAgioiIiMgMDKKIiIiIzMAgioiIiMgMLLZpQVqtFn/++SdcXV25dAIREVETIYRASUkJ/Pz8IJcbnm9iEGVBf/75J/z9/W3dDSIiIjLDhQsX0L59e4P7GURZkKurK4CqfwjG1gEjIiKixqO4uBj+/v7S73FDGERZUPUjPDc3NwZRRERETUxdqThMLCciIiIyA4MoIiIiIjMwiCIiIiIyA3OibKyyshIVFRW27kaz5eDgADs7O1t3g4iImiEGUTYihEB+fj6Kiops3ZVmz93dHT4+PqzVRUREDYpBlI1UB1BeXl5o1aoVf8FbgBACN27cwOXLlwEAvr6+Nu4RERE1JwyibKCyslIKoDw8PGzdnWbN2dkZAHD58mV4eXnx0R4RETUYJpbbQHUOVKtWrWzck5ah+j4z94yIiBoSgygb4iM86+B9JiIiS+DjPCIiImoSCgsLUV5ebnC/QqGwapoMgygiIiJq9AoLC7Fs2bI62yUmJlotkOLjPDLJ448/DplMBplMBgcHB3h7e+P+++/Hxx9/DK1WW+/zrF27Fu7u7pbrKBERNSs1Z6A0Glfk5QVAo3E12s6SOBPVRNlySnP48OFYs2YNKisrUVBQgLS0NEyfPh1ffvkltm/fDnt7/rUiIiLLyc7ugx07RkEIOWQyLWJidqJv38NW7wd/2zVBtp7SdHR0hI+PDwCgXbt26Nu3LwYOHIhhw4Zh7dq1ePLJJ7F48WKsWbMGv//+O1QqFWJiYrBgwQK0bt0aP/zwAyZPngzg76TvuXPnYt68efj000/x3nvvITc3Fy4uLhg6dChSU1Ph5eXV4OMgIqKmR6NxlQIoABBCjh07RiEo6DSUyhKr9oWP85qg+k5VWnNKc+jQoejduze2bt0KAJDL5Vi6dCmOHz+OdevWYc+ePXj55ZcBAJGRkUhNTYWbmxsuXbqES5cu4aWXXgJQVYbgjTfewNGjR7Ft2zacPXsWjz/+uNXGQUREjZta7SEFUNWEkEOtVlm9L5yJogbTpUsX/PLLLwCApKQkaXtAQADmz5+PZ555BitWrIBCoYBSqYRMJpNmtKo98cQT0s933XUXli5div79++P69eto3bq1VcZBRESNl0pVCJlMqxNIyWRaqFRqq/eFM1HUYIQQ0uO577//HsOGDUO7du3g6uqKiRMnorCwEDdu3DB6jqysLMTExKBDhw5wdXXF4MGDAQDnz5+3eP+JiKjxUypLEBOzEzJZ1ctM1TlR1n6UB3AmihpQTk4OAgMDcfbsWYwaNQpTp07Fm2++CZVKhZ9++glTpkxBeXm5wUrtpaWliI6ORnR0NNavX4+2bdvi/PnziI6OtuqjSSIiatz69j2MoKDTUKtVUKnUNgmgAAZR1ED27NmDX3/9FS+88AKysrKg1WqxaNEiyOVVk51ffPGFTnuFQoHKykqdbSdPnkRhYSHefvtt+Pv7AwAOHTpknQEQEVGjplAodL4rlSV6g6ea7SyJQRSZrKysDPn5+TolDlJSUjBq1ChMmjQJx44dQ0VFBd5//33ExMRg3759WLlypc45AgICcP36daSnp6N3795o1aoVOnToAIVCgffffx/PPPMMjh07hjfeeMNGoyQiosbEw8MDiYmJjapiOXOiyGRpaWnw9fVFQEAAhg8fjr1792Lp0qX473//Czs7O/Tu3RuLFy/GO++8gx49emD9+vVISUnROUdkZCSeeeYZxMXFoW3btliwYAHatm2LtWvXYvPmzejWrRvefvttvPvuuzYaJRERNTYeHh7w9fU1+LFmAAUAMiGEsOoVW5Di4mIolUpoNBq4ublJ22/evIm8vDwEBgbCycnJ5PPauk5UU3On95uIiKynMayPZ+j3d018nNcENcYpTSIiojvV1CYJGEQ1UY3hLw8REVFD0rc+nlrtAZWqUCeJvLG8sc0gioiIiBqdxrI+njFMLCciIqJGxdD6eBqNq417potBFBERETUqjWl9PGMYRBEREVGjUr0+3u1stT6eMQyiiIiIqFFpTOvjGcPEciIiImp0Gsv6eMbYfCZq+fLlCAgIgJOTE8LDw3HgwAGj7Tdv3owuXbrAyckJPXv2xK5du3T2CyEwZ84c+Pr6wtnZGVFRUTh16pROmzfffBORkZFo1aoV3N3djV6vsLAQ7du3h0wmQ1FRkTlDJCIionrQtz5eYOC5WgGUNdfHM8amM1GbNm1CcnIyVq5cifDwcKSmpiI6Ohq5ubnw8vKq1X7//v0YP368tE7bhg0bEBsbi+zsbPTo0QMAsGDBAixduhTr1q1DYGAgZs+ejejoaJw4cUKqVl1eXo5//vOfiIiIwEcffWS0j1OmTEGvXr3wxx9/NPwNoFp++OEHDBkyBNeuXaszwK0WEBCApKQkJCUlWbRvRERkWU2umLSwoQEDBohp06ZJ3ysrK4Wfn59ISUnR2/6RRx4RI0eO1NkWHh4unn76aSGEEFqtVvj4+IiFCxdK+4uKioSjo6P4/PPPa51vzZo1QqlUGuzfihUrxODBg0V6eroAIK5du2bC6ITQaDQCgNBoNDrb//rrL3HixAnx119/mXS+xiA+Pl4AkO757Z599lkBQMTHx5t9/r1795p8rzt27CiWLFlicH9Tvt9ERGR9hn5/12Szx3nl5eXIyspCVFSUtE0ulyMqKgoZGRl6j8nIyNBpDwDR0dFS+7y8POTn5+u0USqVCA8PN3hOQ06cOIF///vf+OSTTyCX1+82lZWVobi4WOfTHPn7+2Pjxo3466+/pG03b97Ehg0b0KFDBxv2jIiIyHpsFkRdvXoVlZWV8Pb21tnu7e2N/Px8vcfk5+cbbV/9pynn1KesrAzjx4/HwoULTQoKUlJSoFQqpY+/v3+9j21K+vbtC39/f2zdulXatnXrVnTo0AF9+vSRtpWVleH555+Hl5cXnJycMGjQIBw8eFDnXLt27UKnTp3g7OyMIUOG4OzZs7Wu99NPP+Gee+6Bs7Mz/P398fzzz6O0tNRi4yMiIqoPmyeWN0YzZsxA165d8dhjj5l8nEajkT4XLlywUA91XbwI7N1b9ae1PPHEE1izZo30/eOPP8bkyZN12rz88svYsmUL1q1bh+zsbAQHByM6OhpqdVWdjwsXLuDhhx9GTEwMjhw5gieffBKvvvqqzjnOnDmD4cOHY+zYsfjll1+wadMm/PTTT0hMTLT8IImIiIywWRDl6ekJOzs7FBQU6GwvKCiAj4+P3mN8fHyMtq/+05Rz6rNnzx5s3rwZ9vb2sLe3x7Bhw6Q+z5071+Bxjo6OcHNz0/lY2kcfAR07AkOHVv1ZR558g3nsscfw008/4dy5czh37hz27dunE3SWlpbigw8+wMKFCzFixAh069YNq1evhrOzs5TM/8EHHyAoKAiLFi1C586dMWHCBDz++OM610lJScGECROQlJSEkJAQREZGYunSpfjkk09w8+ZN6wyWiIhID5sFUQqFAmFhYUhPT5e2abVapKenIyIiQu8xEREROu0BYPfu3VL7wMBA+Pj46LQpLi5GZmamwXPqs2XLFhw9ehRHjhzBkSNH8OGHHwIA/ve//2HatGn1Po+lXbwIJCQA2v8r6qrVAk8/bZ0ZqbZt22LkyJFYu3Yt1qxZg5EjR8LT01Paf+bMGVRUVODuu++Wtjk4OGDAgAHIyckBAOTk5CA8PFznvDX/OR09ehRr165F69atpU90dDS0Wi3y8vIsOEIiIiLjbFriIDk5GfHx8ejXrx8GDBiA1NRUlJaWSo+FJk2ahHbt2iElJQUAMH36dAwePBiLFi3CyJEjsXHjRhw6dAirVq0CAMhkMiQlJWH+/PkICQmRShz4+fkhNjZWuu758+ehVqtx/vx5VFZW4siRIwCA4OBgtG7dGkFBQTr9vHr1KgCga9eu9X7t3hpOnfo7gKpWWQmcPg20b2/56z/xxBPSY7Xly5db5BrXr1/H008/jeeff77WPiaxExGRLdk0iIqLi8OVK1cwZ84c5OfnIzQ0FGlpaVJi+Pnz53XejIuMjMSGDRswa9YsvPbaawgJCcG2bdukGlFAVR5OaWkpEhISUFRUhEGDBiEtLU2qEQUAc+bMwbp166Tv1cnQe/fuxX333WfhUTeckBBALtcNpOzsgOBg61x/+PDhKC8vh0wmQ3R0tM6+oKAgKBQK7Nu3Dx07dgQAVFRU4ODBg1I9p65du2L79u06x/3888863/v27YsTJ04g2FqDIiIiqi8rlVxokaxRJ+rDD4WwsxMCqPrzww/v+JRGxcfHizFjxkjfNRqNzvjGjBkj1YmaPn268PPzE9988404fvy4iI+PF23atBFqtVoIIcS5c+eEQqEQL730kjh58qRYv3698PHx0akTdfToUeHs7CymTZsmDh8+LH777Texbds2nfpirBNFREQNqb51orh2XhM3ZQoQHV31CC842DqP8W5nLHn+7bffhlarxcSJE1FSUoJ+/frh22+/RZs2bQBUPY7bsmULXnjhBbz//vsYMGAA3nrrLTzxxBPSOXr16oX/9//+H2bOnIl77rkHQggEBQUhLi7O4mMjIiLLKSwsbDqVyQ2QCSGErTvRXBUXF0OpVEKj0egEGzdv3kReXh4CAwN1HjOSZfB+ExHZhqFASaPRYNOmTbd9d4Va7QGVqlBnnbzExESbBFKGfn/XxJkoIiIianCFhYVYtmxZne2ys/tgx45REEIOmUyLmJid6Nv3MAAYnalqDFhsk4iIiBpczQBIo3FFXl4ANBpXnW3VARQACCHHjh2jdNo0ZpyJIiIiogan0Wiknw3NNqnVHqi5jK8QcqjVKp3Heo0VZ6KIiIiowVVUVAAwPtukUhVCJtMteCiTaaFSqa3eX3MwiLIh5vRbB+8zEZHt1DXbFBOzUwqkqmepmsIsFMDHeTbh4OAAALhx4wacnZ1t3Jvm78aNGwD+vu9ERGQ9Dg5lAAQA2W1bBRwcqnKm+vY9jKCg01CrVVCp1E0mgAIYRNmEnZ0d3N3dcfnyZQBAq1atIJPJ6jiKTCWEwI0bN3D58mW4u7vDzs7O1l0iImpxKiocoRtAAYAMFRUK6ZtSWdKkgqdqDKJsxMfHBwCkQIosx93dXbrfRERkXdV5T7c/0qtv3pNCoaizjS0xiLIRmUwGX19feHl5Scl31PAcHBw4A0VEZAP29lUhRnXeU82386pnnu6//34EBgbWOr4pVCxnEGVjdnZ2/CVPRETNjru7u/SzsbynwMBA+Pr62qCHd45BFBERETW4mo/iDOU9NfZHdsYwiCIiIqIG5+HhgcTExCa/yLAxDKKIiIjIIppygFQfLLZJREREZAYGUURERERmYBBFREREZAYGUURERERmYBBFREREZAa+nUdERER3pLCwsFmXMjCEQRQRERGZrbCwEMuWLauzXWJiYrMLpPg4j4iIiMxWcwZKo3FFXl4ANBpXo+2aA85EERERUYPIzu5Ta6Hhvn0P27pbFsOZKCIiIrpjGo2rFEABgBBy7NgxqtaMVHPCIIqIiIjumFrtIQVQ1YSQQ61W2ahHlscgioiIiO6YSlUImUyrs00m00KlUtuoR5bHIIqIiIjumFJZgpiYnVIgVZ0TpVSW2LhnlsPEciIiImoQffseRlDQaajVKqhU6mYdQAEMooiIiOgOKBQKne9KZYne4Klmu+aAQRQRERGZzcPDA4mJiaxYTkRERGSq5hgg1QcTy4mIiIjMwCCKiIiIyAwMooiIiIjMwCCKiIiIyAw2D6KWL1+OgIAAODk5ITw8HAcOHDDafvPmzejSpQucnJzQs2dP7Nq1S2e/EAJz5syBr68vnJ2dERUVhVOnTum0efPNNxEZGYlWrVrB3d291jWOHj2K8ePHw9/fH87OzujatSvee++9Ox4rERERNR82DaI2bdqE5ORkzJ07F9nZ2ejduzeio6Nx+fJlve3379+P8ePHY8qUKTh8+DBiY2MRGxuLY8eOSW0WLFiApUuXYuXKlcjMzISLiwuio6Nx8+ZNqU15eTn++c9/YurUqXqvk5WVBS8vL3z22Wc4fvw4Zs6ciRkzZmDZsmUNewOIiIioyZIJIYStLh4eHo7+/ftLwYlWq4W/vz+ee+45vPrqq7Xax8XFobS0FDt37pS2DRw4EKGhoVi5ciWEEPDz88OLL76Il156CQCg0Wjg7e2NtWvXYty4cTrnW7t2LZKSklBUVFRnX6dNm4acnBzs2bOn3uMrLi6GUqmERqOBm5tbvY8jIiIi26nv72+bzUSVl5cjKysLUVFRf3dGLkdUVBQyMjL0HpORkaHTHgCio6Ol9nl5ecjPz9dpo1QqER4ebvCc9aXRaKBSGV+JuqysDMXFxTofIiKipqSwsBCXLl0y+CksLLR1FxsNmxXbvHr1KiorK+Ht7a2z3dvbGydPntR7TH5+vt72+fn50v7qbYbamGP//v3YtGkTvv76a6PtUlJS8Prrr5t9HSIiIlsqLCysV+pKYmJiiy2weTubJ5Y3dseOHcOYMWMwd+5cPPDAA0bbzpgxAxqNRvpcuHDBSr0kIiK6czWXbtFoXJGXFwCNxtVou5bKZjNRnp6esLOzQ0FBgc72goIC+Pj46D3Gx8fHaPvqPwsKCuDr66vTJjQ01OQ+njhxAsOGDUNCQgJmzZpVZ3tHR0c4OjqafB0iIqLGJju7D3bsGAUh5JDJtIiJ2Ym+fQ/buluNis1mohQKBcLCwpCeni5t02q1SE9PR0REhN5jIiIidNoDwO7du6X2gYGB8PHx0WlTXFyMzMxMg+c05Pjx4xgyZAji4+Px5ptvmnQsERFRU6bRuEoBFAAIIceOHaNqzUi1dDZdgDg5ORnx8fHo168fBgwYgNTUVJSWlmLy5MkAgEmTJqFdu3ZISUkBAEyfPh2DBw/GokWLMHLkSGzcuBGHDh3CqlWrAAAymQxJSUmYP38+QkJCEBgYiNmzZ8PPzw+xsbHSdc+fPw+1Wo3z58+jsrISR44cAQAEBwejdevWOHbsGIYOHYro6GgkJydL+VR2dnZo27at9W4QERGRDajVHlIAVU0IOdRqFZTKEhv1qvGxaRAVFxeHK1euYM6cOcjPz0doaCjS0tKkxPDz589DLv/7H2JkZCQ2bNiAWbNm4bXXXkNISAi2bduGHj16SG1efvlllJaWIiEhAUVFRRg0aBDS0tLg5OQktZkzZw7WrVsnfe/Tpw8AYO/evbjvvvvw5Zdf4sqVK/jss8/w2WefSe06duyIs2fPWup2EBERNQoqVSFkMq1OICWTaaFSqW3Yq8bHpnWimjvWiSIioqbk0qVL0tMdYzlRCQkJOrnHzU19f3/bdCaKiIiIGqe+fQ8jKOg01GoVVCo1H+PpwSCKiIiIAFS99HU7pbJEb/BUs11LxSCKiIiohSksLDRY6ykuLg5CCLi7u+vdr1AoWGjz/zCIIiIiakFYlbzhsGI5ERFRC8Kq5A2HM1FEREQtFKuS3xnORBEREbVArEp+5xhEERERtUDGqpJT/TCIIiIiaoGqq5LfjlXJTcMgioiIqAVSKksQE7NTCqSqc6JYVLP+mFhORETUQrEq+Z1hEEVERNRM6SuqWVRUpPOdVcnNxyCKiIioGapvUc24uDgolUqdbaxKXj8MooiIiJohfUU11WoPqFSFOjNPSqUSvr6+1u5es8AgioiIqJljUU3L4Nt5REREzRiLaloOZ6KIiIiaMH3J4wBw9epVAMaLavJtvDvDIIqIiKiJqk/yeHVRzdsDKRbVbBh8nEdERNRE6Usez8sL0HlUx6KalsOZKCIiombAWPI4i2paBmeiiIiImrj6JI8rlSUIDDxXK4BiUU3zcSaKiIioiasrefzhhx+Gp6dnreNYVPPOMIgiIiJq4upKHvf09GRBTQvg4zwiIqImjsnjtsGZKCIiomaAyePWxyCKiIioiaqZFK5UlugNnpg8bhkMooiIiJooDw8PJCYm6q1YXo3J45bDIIqIiKgJY4BkO0wsJyIiIjIDgygiIiIiMzCIIiIiIjIDgygiIiIiMzCIIiIiIjIDgygiIiIiMzCIIiIiIjIDgygiIiIiMzCIIiIiIjKDzYOo5cuXIyAgAE5OTggPD8eBAweMtt+8eTO6dOkCJycn9OzZE7t27dLZL4TAnDlz4OvrC2dnZ0RFReHUqVM6bd58801ERkaiVatWcHd313ud8+fPY+TIkWjVqhW8vLzwr3/9C7du3bqjsRIREVHzYdMgatOmTUhOTsbcuXORnZ2N3r17Izo6GpcvX9bbfv/+/Rg/fjymTJmCw4cPIzY2FrGxsTh27JjUZsGCBVi6dClWrlyJzMxMuLi4IDo6Gjdv3pTalJeX45///CemTp2q9zqVlZUYOXIkysvLsX//fqxbtw5r167FnDlzGvYGEBERUdMlbGjAgAFi2rRp0vfKykrh5+cnUlJS9LZ/5JFHxMiRI3W2hYeHi6effloIIYRWqxU+Pj5i4cKF0v6ioiLh6OgoPv/881rnW7NmjVAqlbW279q1S8jlcpGfny9t++CDD4Sbm5soKyur9/g0Go0AIDQaTb2PISIiItuq7+9vm81ElZeXIysrC1FRUdI2uVyOqKgoZGRk6D0mIyNDpz0AREdHS+3z8vKQn5+v00apVCI8PNzgOQ1dp2fPnvD29ta5TnFxMY4fP27wuLKyMhQXF+t8iIiIqHmyWRB19epVVFZW6gQqAODt7Y38/Hy9x+Tn5xttX/2nKec05Tq3X0OflJQUKJVK6ePv71/vaxIREVHTYvPE8uZkxowZ0Gg00ufChQu27hIRERFZiM2CKE9PT9jZ2aGgoEBne0FBAXx8fPQe4+PjY7R99Z+mnNOU69x+DX0cHR3h5uam8yEiIqLmyWZBlEKhQFhYGNLT06VtWq0W6enpiIiI0HtMRESETnsA2L17t9Q+MDAQPj4+Om2Ki4uRmZlp8JyGrvPrr7/qvCW4e/duuLm5oVu3bvU+DxERETVf9ra8eHJyMuLj49GvXz8MGDAAqampKC0txeTJkwEAkyZNQrt27ZCSkgIAmD59OgYPHoxFixZh5MiR2LhxIw4dOoRVq1YBAGQyGZKSkjB//nyEhIQgMDAQs2fPhp+fH2JjY6Xrnj9/Hmq1GufPn0dlZSWOHDkCAAgODkbr1q3xwAMPoFu3bpg4cSIWLFiA/Px8zJo1C9OmTYOjo6NV7xERERE1UlZ6W9Cg999/X3To0EEoFAoxYMAA8fPPP0v7Bg8eLOLj43Xaf/HFF6JTp05CoVCI7t27i6+//lpnv1arFbNnzxbe3t7C0dFRDBs2TOTm5uq0iY+PFwBqffbu3Su1OXv2rBgxYoRwdnYWnp6e4sUXXxQVFRUmjY0lDoiIiJqe+v7+lgkhhA1juGatuLgYSqUSGo2G+VFERERNRH1/f/PtPCIiIiIzMIgiIiIiMgODKCIiIiIzMIgiIiIiMgODKCIiIiIzMIgiIiIiMgODKCIiIiIzMIgiIiIiMoNNl30hIiJqygoLC1FeXm5wv0KhgIeHhxV7RNbEIIqIiMgMhYWFWLZsWZ3tEhMTGUg1U3ycR0REZIaaM1AajSvy8gKg0bgabUfNB2eiiIiI7lB2dh/s2DEKQsghk2kRE7MTffsetnW3yMI4E0VERHQHNBpXKYACACHk2LFjVK0ZKWp+GEQRERHdAbXaQwqgqgkhh1qtslGPyFoYRBEREd0BlaoQMplWZ5tMpoVKpbZRj8hamBNFRERUB32lDK5evQoAUCpLEBOzs1ZOlFJZYouukhUxiCIiIjKiPqUM+vY9jKCg01CrVVCp1AygWggGUUREREboK2WgVntApSrUCZaUyhK9wZNCobB4H8k2GEQREREZodFopJ+NlTK4//77ERgYqHMsK5Y3bwyiiIiIjFCrqxLEDZUyCAo6Lc1A+fr62qyfZH18O4+IiMiIW7duAai7lEF1O2o5GEQREREZcePGDQCAg0MZAFFjr4CDQ7lOO2o5GEQREREZUVlZCQAoKmoDQFZjrwxFRe467ajlYE4UERER9NeCAoDS0lIb9IaaAgZRRETU4tWnFpS7+zVUPc67fTZKwN29CABgZ2dnqe5RI2VWEHXgwAFkZGQgPz8fAODj44OIiAgMGDCgQTtHRERkDfWpBVVR4Qh9j/MqKqrqQLVq1coKPaXGxKQg6vLlyxg7diz27duHDh06wNvbGwBQUFCAF154AXfffTe2bNkCLy8vi3SWiIjI0gzVgqpeI+/2N/RuXyNP36NAat5MSix/9tlnUVlZiZycHJw9exaZmZnIzMzE2bNnkZOTA61Wi2nTplmqr0RERBZlqBaURuMqrZEHVC82rLtGHmeiWh6TZqK+/fZb/Pjjj+jcuXOtfZ07d8bSpUtx3333NVTfiIiIrKK6KrmxWlDVwZJMBghR9eftXF1drdJXajxMmolydHREcXGxwf0lJSVwdHS8404RERFZU0VFBQBIj+xuV/3IztgsFQDY2/NdrZbGpCAqLi4O8fHx+Oqrr3SCqeLiYnz11VeYPHkyxo8f3+CdJCIisgalsgS9ev2Cv4tqCvTq9QuUypI6K5a7u7tbta9keyaFzYsXL4ZWq8W4ceNw69YtaWXq8vJy2NvbY8qUKXj33Xct0lEiIqKGoK8e1LVr1wBU5UT98ksv/P0Wngy//NILQ4fuqTOxnFoek4IoR0dHfPDBB3jnnXeQlZWlU+IgLCwMbm5uFukkERFRQ6irHpSx2abAwHOIidlZ68296lwpannMeoDr5uaGIUOGNHRfiIiILKquelB1zTb17XsYQUGnoVaroFKpGUC1cA2aBVdQUID//Oc/mDNnTkOeloiIqMEZqgdV12yTUlmiN3iqTnGhlqNBg6j8/Hy8/vrrDKKIiKhRM/SmXVDQaaOzTQ8//DA8PT1rnU+hUMDDw8Nq/afGwaS383755Rejn9zcXJM7sHz5cgQEBMDJyQnh4eE4cOCA0fabN29Gly5d4OTkhJ49e2LXrl06+4UQmDNnDnx9feHs7IyoqCicOnVKp41arcaECRPg5uYGd3d3TJkyBdevX9dp8+2332LgwIFwdXVF27ZtMXbsWJw9e9bk8RERUeNT15t2SmUJAgPP1Zpx8vPzg6+vb60PA6iWyaSZqNDQUMhkMgghau2r3i6rWX3MiE2bNiE5ORkrV65EeHg4UlNTER0djdzcXL1Lx+zfvx/jx49HSkoKRo0ahQ0bNiA2NhbZ2dno0aMHAGDBggVYunQp1q1bh8DAQMyePRvR0dE4ceIEnJycAAATJkzApUuXsHv3blRUVGDy5MlISEjAhg0bAAB5eXkYM2YMkpOTsX79emg0Grzwwgt4+OGHkZ2dbcotIyKiRqiu3Cd9M06cbaKaZEJfRGSAp6cnFixYgGHDhundf/z4ccTExKCysrJe5wsPD0f//v2lNyW0Wi38/f3x3HPP4dVXX63VPi4uDqWlpdi5c6e0beDAgQgNDcXKlSshhICfnx9efPFFvPTSSwCqqtB6e3tj7dq1GDduHHJyctCtWzccPHgQ/fr1AwCkpaXhwQcfxMWLF+Hn54cvv/wS48ePR1lZGeTyqn/BduzYgTFjxqCsrAwODg71Gl9xcTGUSiU0Gg3fXCQiagQuXbqEVatWATCcEwUACQkJ8PX1tWVXyYbq+/vbpJmosLAw/Pnnn+jYsaPe/UVFRXpnqfQpLy9HVlYWZsyYIW2Ty+WIiopCRkaG3mMyMjKQnJyssy06Ohrbtm0DUDWDlJ+fj6ioKGm/UqlEeHg4MjIyMG7cOGRkZMDd3V0KoAAgKioKcrkcmZmZeOihhxAWFga5XI41a9bg8ccfx/Xr1/Hpp58iKirKaABVVlaGsrIy6bux6u5ERGRbfNOO7pRJOVHPPPMMAgICDO7v0KED1qxZU69zXb16FZWVlfD29tbZ7u3tLdWfqik/P99o++o/62pT81Ghvb09VCqV1CYwMBDfffcdXnvtNTg6OsLd3R0XL17EF198YXRMKSkpUCqV0sff399oeyIisq6ab9AZyn3im3ZUHybNRD300ENG97dp0wbx8fF31KHGID8/H0899RTi4+Mxfvx4lJSUYM6cOfjHP/6B3bt3G8z7mjFjhs5MWXFxMQMpIqJGxMPDA4mJibXqRd2OuU9UXzZbLdHT0xN2dnYoKCjQ2V5QUAAfHx+9x/j4+BhtX/1nQUGBzrPsgoIChIaGSm0uX76sc45bt25BrVZLxy9fvhxKpRILFiyQ2nz22Wfw9/dHZmYmBg4cqLd/jo6OXICZiKiRY4BEDcWkIKpmPpIhixcvrrONQqFAWFgY0tPTERsbC6AqsTw9PR2JiYl6j4mIiEB6ejqSkpKkbbt370ZERASAqsdwPj4+SE9Pl4Km4uJiZGZmYurUqdI5ioqKkJWVhbCwMADAnj17oNVqER4eDgC4ceOGlFBezc7OTuojERERkUlB1OHDh3W+//TTTwgLC4Ozs7O0zZQSB8nJyYiPj0e/fv0wYMAApKamorS0FJMnTwYATJo0Ce3atUNKSgoAYPr06Rg8eDAWLVqEkSNHYuPGjTh06JD0poVMJkNSUhLmz5+PkJAQqcSBn5+fFKh17doVw4cPx1NPPYWVK1eioqICiYmJGDduHPz8/AAAI0eOxJIlS/Dvf/9bepz32muvoWPHjujTp48pt4yIiIiaK3EHWrduLc6cOXMnpxDvv/++6NChg1AoFGLAgAHi559/lvYNHjxYxMfH67T/4osvRKdOnYRCoRDdu3cXX3/9tc5+rVYrZs+eLby9vYWjo6MYNmyYyM3N1WlTWFgoxo8fL1q3bi3c3NzE5MmTRUlJiU6bzz//XPTp00e4uLiItm3bitGjR4ucnByTxqbRaAQAodFoTDqOiIiIbKe+v79NqhNVk6urK44ePYq77rqr4aK6ZoR1ooiIiJqe+v7+NqnEARERERFVYRBFREREZAaTEst/+eUXne9CCJw8ebLW4r29evW6854RERERNWIm5UTJ5fJ6LUBc37XzmjvmRBERETU9Flk7Ly8v7447RkRERNQcmBREGVp4mIiIyFIKCwu5TAs1Sg2y7MvQoUOxZs0aBllERNSgCgsLsWzZsjrbJSYmMpAiqzMpiNq+fbve7T/++CN27twpLbY7evToO+8ZERG1KPpmnK5evarzXaNxhVrtAZWqEEplibTd2EwVkaWYFETFxsYaTCx/7rnnAICJ5UREZLL6zDhlZ/fBjh2jIIQcMpkWMTE70bfvYaPHEFmSSXWioqOjMWLECOTn50Or1UofOzs7HDt2DFqtlgEUERGZrOZMkkbjiry8AGg0rtL36gAKAISQY8eOUdJ+IlswaSbqm2++wZIlS9CvXz+sWLECo0aNslS/iIiohdI349SmzTUpgKomhBxqtUrnsR6RNZlcsfyFF17A9u3b8corr+Dpp5/GjRs3LNEvIiJqQTQazf/9qX/GycGhDDKZVucYmUwLlUpt9b4SVTNr2ZfQ0FAcOnQIMpkMoaGhenOkiIiI6quiogIAoFZ76J1xqqhQICZmpxRIVc9QcRaKbMnsEgfOzs5YuXIltm/fjr1798LT07Mh+0VERC2QSlUIQAvd/8evmnEKDDyHoKDTUKtVUKnUDKDI5kyaidqzZw+6deuG4uJiadvo0aOxZMkSODo6onv37vjf//7X4J0kIqKWRKb77bavSmUJAgPP1QqgFAqFNTpGpMOkmajU1FQ89dRTeteRUSqVePrpp7F48WLcc889DdZBIiJqOdRqD9QMom5PIB8yZAhCQkJ09rNiOdmKSTNRR48exfDhww3uf+CBB5CVlXXHnSIiopbF3r7q/+lVqkKjCeRt27aFr6+vzocBFNmKSTNRBQUFcHBwMHwye3tcuXLljjtFRETNk6F18G7dugWg6nFdTMzOWiUOqh/fubu7W7O7REaZFES1a9cOx44dQ3BwsN79v/zyC3x9fRukY0RE1HTpC5aKiorwxRdf1Hls376HmUBOTYJJQdSDDz6I2bNnY/jw4XByctLZ99dff2Hu3LkswElE1MLVd9FgQ+vgAVUzUvqCJyaQU2NiUhA1a9YsbN26FZ06dUJiYiI6d+4MADh58iSWL1+OyspKzJw50yIdJSKipuHy5cs63/UFS8bWwXv44Yf1ls1hAjk1NiYFUd7e3ti/fz+mTp2KGTNmSEU2ZTIZoqOjsXz5cnh7e1uko0RE1DQUFRVJP+sLloKCTuutSh4UdBpKZQk8PT2ZGkJNgsnFNjt27Ihdu3bh2rVrOH36NIQQCAkJQZs2bSzRPyIiamKqq49rNK7Yvj0G1SULqoOlsWO3cB08ahbMrljepk0b9O/fvyH7QkREzciFC/7QV/Ppxg0nyGRanUCK6+BRU2TW2nlERER1uXHD2eA+roNHzYHZM1FERNSyGar5VFJSFQy1avWX3uNatfoLPXrksIwBNXkMooiIyGQ1yxjoewPP3/8CAIHbH+nJZFr4+18EwDIG1PQxiCIiIpPdXsbAULkCpbIEo0fvMFh9fODAgejVq5fOeVnGgJoSBlFERGSy6mVaNBpXo+UKjFUf79ChA0sZUJPGIIqIiMymVnvUWa7A0GM7Ly8vq/SRyFIYRBERkdkcHMpQM+8JEHBwqEo4HzJkCEJCQmodx8d21BwwiCIiIrNVVDiiZi0oQIaKiqrk8DZt2vCRHTVbrBNFRERmU6kKpXpP1Vg4k1oKBlFERGQ2pbKEhTOpxeLjPCIiMpmDg4P0s7E38G5vR9TcMIgiIiKD1cer1UwEb9u2rc5+Q2/g1WxH1JzYPIhavnw5Fi5ciPz8fPTu3Rvvv/8+BgwYYLD95s2bMXv2bJw9exYhISF455138OCDD0r7hRCYO3cuVq9ejaKiItx999344IMPdN4OUavVeO6557Bjxw7I5XKMHTsW7733Hlq3bq1znkWLFmHVqlU4d+4cPD098eyzz2LmzJmWuRFERDZSs/q4IYmJiVIg5eHhgcTERJMCL6LmxqY5UZs2bUJycjLmzp2L7Oxs9O7dG9HR0TqVcG+3f/9+jB8/HlOmTMHhw4cRGxuL2NhYHDt2TGqzYMECLF26FCtXrkRmZiZcXFwQHR2NmzdvSm0mTJiA48ePY/fu3di5cyd+/PFHJCQk6Fxr+vTp+PDDD/Huu+/i5MmT2L59u9HgjoioqaoZCGk0rsjLC4BG42q0nYeHB3x9fQ1+GEBRcycTQghbXTw8PBz9+/eX/g9Iq9XC398fzz33HF599dVa7ePi4lBaWoqdO3dK2wYOHIjQ0FCsXLkSQgj4+fnhxRdfxEsvvQQA0Gg08Pb2xtq1azFu3Djk5OSgW7duOHjwIPr16wcASEtLw4MPPoiLFy/Cz88POTk56NWrF44dO4bOnTubPb7i4mIolUpoNBq4ubmZfR4iIku6dOkSVq1aBcDwEi4AkJCQwHIF1CLU9/e3zWaiysvLkZWVhaioqL87I5cjKioKGRkZeo/JyMjQaQ8A0dHRUvu8vDzk5+frtFEqlQgPD5faZGRkwN3dXQqgACAqKgpyuRyZmZkAgB07duCuu+7Czp07ERgYiICAADz55JNQq/nKLhE1X4aWcKk5I0VEVWwWRF29ehWVlZXw9vbW2e7t7Y38/Hy9x+Tn5xttX/1nXW1qLjVgb28PlUoltfn9999x7tw5bN68GZ988gnWrl2LrKws/OMf/zA6prKyMhQXF+t8iIiaCmNLuBBRbawTpYdWq0VZWRk++eQT3HPPPbjvvvvw0UcfYe/evcjNzTV4XEpKCpRKpfTx9/e3Yq+JiMxTVFQEoO7CmdXtiKiKzYIoT09P2NnZoaCgQGd7QUEBfHx89B7j4+NjtH31n3W1qZm4fuvWLajVaqmNr68v7O3t0alTJ6lN165dAQDnz583OKYZM2ZAo9FInwsXLhhsS0TUWNy6dQtA3YUzq9sRURWbBVEKhQJhYWFIT0+Xtmm1WqSnpyMiIkLvMRERETrtAWD37t1S+8DAQPj4+Oi0KS4uRmZmptQmIiICRUVFyMrKktrs2bMHWq0W4eHhAIC7774bt27dwpkzZ6Q2v/32GwCgY8eOBsfk6OgINzc3nQ8RUVNT/bqR7V47ImoabPo4Lzk5GatXr8a6deuQk5ODqVOnorS0FJMnTwYATJo0CTNmzJDaT58+HWlpaVi0aBFOnjyJefPm4dChQ0hMTAQAyGQyJCUlYf78+di+fTt+/fVXTJo0CX5+foiNjQVQNaM0fPhwPPXUUzhw4AD27duHxMREjBs3Dn5+fgCqEs379u2LJ554AocPH0ZWVhaefvpp3H///TqzU0REzUF1VfHqxPK/fzXoJpaz+jiRLpsW24yLi8OVK1cwZ84c5OfnIzQ0FGlpaVJi+Pnz5yGX/x3nRUZGYsOGDZg1axZee+01hISEYNu2bejRo4fU5uWXX0ZpaSkSEhJQVFSEQYMGIS0tDU5OTlKb9evXIzExEcOGDZOKbS5dulTaL5fLsWPHDjz33HO499574eLighEjRmDRokVWuCtERNalVCoBGE8sr6pIrrRF94gaLZvWiWruWCeKiJqC6jpRGo0rUlOTdAIpmUyLpKRUKJUlrBNFLUajrxNFRESNS12J5USky+Zr5xERUePRt+9hBAWdhlqtgkqlZgBFZASDKCKiFk6hUOh8r8p/qh081WxH1NIxiCIiauE8PDyQmJhYa4Hh2ykUCi4oTFQDgygiImKARGQGJpYTERERmYFBFBEREZEZGEQRERERmYFBFBEREZEZGEQRERERmYFBFBEREZEZWOKAiMjGCgsLWaOJqAliEEVEZEOFhYVYtmxZne0SExMZSBE1MnycR0RkQzVnoDQaV+TlBUCjcTXajohsjzNRREQ2pNFopJ+zs/tgx45REEIOmUyLmJid6Nv3sNTO19fXVt0kIj04E0VEZENqtRpA1QxUdQAFAELIsWPHKGlGqrodETUenIkiIrISfQnk165dAwCo1R5SAFVNCDnUahWUyhLcunXLav0kovphEEVEZAV1JZA7OJQBEABkt20VcHBgLhRRY8XHeUREVlBXAnlFhSN0AygAkKGiQmGdDhKRyTgTRURkZfoSyL288sGZKKKmhTNRRERWZCiBvKioDYzNRNnb8/95iRob/ltJRNSADFUfv3r1KgDDCeSAgEym1dknk2mhUlW9lefqqls3iohsj0EUEZEZ9AVLRUVF+OKLL4wep1IV6g2W/P0vIiZmZ63HfEplCQDAwcGh4QdBRHeEQRQRkYnqu1SLRuMKtdoDKlWhFAwplSUGg6W+fQ8jKOg01GoVVCq1dAwAtG3b1mLjISLzMIgiIjKRvjftagZLxqqPGwuWJk++H56enjrn5wLERI0TgygiojugL1gKCjqtN3k8KOi0zozU7cFTNT8/PwZMRE0EgygiIgPqShI39Kbd2LFbjFYff/jhh2vNNgGccSJqahhEERHpUZ+8J3PftPP09ORiwkTNAOtEERHpUVeFceDvN+1ud/ubdtX7ar5pR0TNA2eiiIjqYChJ3Nw37YioeWAQRURkhKG8p+okcWPBkqHkcYWC6+ERNQcMooiIjDCU91SdJA4YDpbi4uKgVCp1tjF5nKj5YBBFRKTHhQsXABiuMF6dJB4ZGYkePXrUOp7BElHzxyCKiEiPmzdvAjBeYRwAHB0d+aYdUQvFIIqIWgRDNZ8AQKPRQAgBd3d3aVtJyd+P586d6wAhZAAAIWQ4d66DVH2ciFouBlFE1OzVd607fS5e9MXRo70ByP5viwxHj/ZG//4H0L79JS4MTNSCsU4UETV79an5ZMj58x3xdwBVTYYLFzoAAFq3bt1AvSSipqZRBFHLly9HQEAAnJycEB4ejgMHDhhtv3nzZnTp0gVOTk7o2bMndu3apbNfCIE5c+bA19cXzs7OiIqKwqlTp3TaqNVqTJgwAW5ubnB3d8eUKVNw/fp1vdc7ffo0XF1ddab6iahpys7ug9TUJKxbF4/U1CRkZ/fR2V8zwOrQ4RwAUeMsAv7+563TYSJqtGweRG3atAnJycmYO3cusrOz0bt3b0RHR+Py5ct62+/fvx/jx4/HlClTcPjwYcTGxiI2NhbHjh2T2ixYsABLly7FypUrkZmZCRcXF0RHR0uJogAwYcIEHD9+HLt378bOnTvx448/IiEhodb1KioqMH78eNxzzz0NP3gisipDNZ+qAyZ9AVb79pfQu/dR/B1ICfTufRTt21+yzSCIqNGQCSFq/i+WVYWHh6N///5SvoJWq4W/vz+ee+45vPrqq7Xax8XFobS0FDt37pS2DRw4EKGhoVi5ciWEEPDz88OLL76Il156CUBV0qi3tzfWrl2LcePGIScnB926dcPBgwfRr18/AEBaWhoefPBBXLx4EX5+ftK5X3nlFfz5558YNmwYkpKSUFRUVO+xFRcXQ6lUQqPRwM3NzZzbQ0QN4NKlS1i1ahXy8gKwbl18rf3x8WuhUqmRmppUq5RBUlIqlMoSXLzoiwsXOsDf/7xOAPXwww+jZ8+eVhkHEVlHfX9/23Qmqry8HFlZWYiKipK2yeVyREVFISMjQ+8xGRkZOu0BIDo6Wmqfl5eH/Px8nTZKpRLh4eFSm4yMDLi7u0sBFABERUVBLpcjMzNT2rZnzx5s3rwZy5cvr9d4ysrKUFxcrPMhosbD0Fp3KpXaaFFNAGjf/hIiIjJrzUC1atXKsp0mokbLpm/nXb16FZWVlfD29tbZ7u3tjZMnT+o9Jj8/X2/7/Px8aX/1NmNtvLy8dPbb29tDpVJJbQoLC/H444/js88+q/csUkpKCl5//fV6tSUi66ur5pOxoppDhgxBmzZtdM7XqlUrBAUFWW8ARNSosMSBAU899RQeffRR3HvvvfU+ZsaMGUhOTpa+FxcXw9/f3xLdIyIzGVrrrq4AKyQkhEU1iUiHTYMoT09P2NnZoaCgQGd7QUEBfHx89B7j4+NjtH31nwUFBTr/wSsoKEBoaKjUpmbi+q1bt6BWq6Xj9+zZg+3bt+Pdd98FUPXGn1arhb29PVatWoUnnniiVt8cHR3h6OhY3+ETkZmMFc4Eai+5UnPBX0Nr3RlbTJiLBhNRTTYNohQKBcLCwpCeno7Y2FgAVYnl6enpSExM1HtMREQE0tPTkZSUJG3bvXs3IiIiAACBgYHw8fFBenq6FDQVFxcjMzMTU6dOlc5RVFSErKwshIWFAagKmrRaLcLDwwFU5U1VVlZK1/jvf/+Ld955B/v370e7du0a8jYQkQnqWzgzMTFRCqQ8PDyQmJhoUsXy23EdPCLSx+aP85KTkxEfH49+/fphwIABSE1NRWlpKSZPngwAmDRpEtq1a4eUlBQAwPTp0zF48GAsWrQII0eOxMaNG3Ho0CGsWrUKACCTyZCUlIT58+cjJCQEgYGBmD17Nvz8/KRArWvXrhg+fDieeuoprFy5EhUVFUhMTMS4ceOkN/O6du2q089Dhw5BLpfrXWiUiKzH2AyUsXbGgiA+piMic9g8iIqLi8OVK1cwZ84c5OfnIzQ0FGlpaVJi+Pnz5yGX/53oGRkZiQ0bNmDWrFl47bXXEBISgm3btukENy+//DJKS0uRkJCAoqIiDBo0CGlpaXBycpLarF+/HomJiRg2bBjkcjnGjh2LpUuXWm/gRGSWmmVGNBpXqNUeUKkKdR6/FRUVMTgiIouyeZ2o5ox1ooga3q+//oqtW7cCqCqOWTMRvHphYNZvIiJz1ff3t81nooioZTM1SbyaRuOK7dtjUL2uXXX18aCg03qTxomIGhqDKCKyGXOSxKtduOCPmgsDCyHHhQvtoVTmNGQ3iYj0svnaeUTUcv3+++8632su/muoHRFRY8CZKCKymcLCQunn7Ow+2L59FKr+306L0aP/zm+6vV01f/8LALTQ/X9BLfz9L1qyy0REEs5EEZHNVNdiq8pvqg6gAECO7dtHSTNSt9dsc3BwAFBVMHP06J2oCqSA6sCrOh+quh0RkaVwJoqIbC43txNq/z+dHLm5IRgwIFtnq1KplH42VmH89nZERJbAIIqIGoy5b9oVFqoMnK922/ou4cJlWojI0hhEEVGDuJM37Tw81HrbenjUzoWqawkXgMu0EJF1MIgiogZRM6gxVElcX/DTufNv2LWrdpJ4586n9F6LARIRNQYMooiowRmrJH47Ozs7AH8nidd8O686+KpuR0TUmDCIIqIGpdG4SgEUYLyS+O0zSsaSxDnzRESNEYMoImpQarWHFEBVE0IOtVpVK4i66667dL4bShKv2Y6IqDFgEEVEDUqlKoRMptUJpGQyLVSq2snjTBInoqaMQRQR6WVuuQKlsgQxMTtr5UQZWhSYARIRNVUMooioljspVwAYz28iImouGEQRUS3mlCtgEUwiamkYRBGRUfUtV8D8JiJqaRhEEbVghvKerl69CsC0cgUA85uIqGVhEEXUQtUn78mUcgVERC1NzWXTiaiFuHLlis53jcYVeXkB0GhcpW3V5QpuZ6hcARFRS8OZKKIWqqKiQvo5O7tPrSVX+vY9bHK5AiKiloRBFFELp9G43hZAAYAc27f/nffEcgVERPoxiCJqJswtjnnhgj9qP9mX48KF9lAqcwCwXAERkT4MooiagTstjmnMkCFDEBISUms7yxUQUUvHIIqoGTCnOGY1f/8LAAQAmbRNJtPC3/8iAKBNmzbw9fW1SL+JiJoyBlFEzUx9i2NWUypLMHr0DiaPExGZiEEUUTNiSnFMe/u///U3ljx+ezsiIvob/+tI1IyYUhzTy8tL57uh5PGa7YiIqAqDKCIbMvRGXVFREW7dugUHBwcolcpa+w0ldVcXx7w9kDJUHJNr3RER3RkGUUQ2Ut836gzR96adqcUxGSAREZmPQRSRjVy+fFnnu6E36kx50w4wnt9EREQNh0EUkY3cunVL+tnQG3X1fdOuZtFLFsckIrI8BlFEFmYo7+mPP/4AUL3sSgyq6zRVv1Hn5ZVf7zftmN9ERGR9DKKILKg+eU9Vy67IdLYJIcdvv3Wq95t2APObiIisjUEUUQPRN+N09epVne+G8pv0ad26pN5v2hERkfUxiCJqAPWZcTKU3+Tufg01l10BBPz8Lpn0ph0REVlXzaXbbWL58uUICAiAk5MTwsPDceDAAaPtN2/ejC5dusDJyQk9e/bErl27dPYLITBnzhz4+vrC2dkZUVFROHXqlE4btVqNCRMmwM3NDe7u7pgyZQquX78u7f/hhx8wZswY+Pr6wsXFBaGhoVi/fn3DDZqapMLCQly6dKnWJzc3V6edRuOKvLwAaDSu0nd9+U0ajSsqKhxR83EeIENFhQJ9+x5GUlIq4uPXIikp1ejyLUREZF02n4natGkTkpOTsXLlSoSHhyM1NRXR0dHIzc3VWyl5//79GD9+PFJSUjBq1Chs2LABsbGxyM7ORo8ePQAACxYswNKlS7Fu3ToEBgZi9uzZiI6OxokTJ+Dk5AQAmDBhAi5duoTdu3ejoqICkydPRkJCAjZs2CBdp1evXnjllVfg7e2NnTt3YtKkSVAqlRg1apT1bhA1GvWt66RvxqlNm2sG85vqKpDJN+2IiBonmRBC2LID4eHh6N+/v/TLSavVwt/fH8899xxeffXVWu3j4uJQWlqKnTt3StsGDhyI0NBQrFy5EkII+Pn54cUXX8RLL70EANBoNPD29sbatWsxbtw45OTkoFu3bjh48CD69esHAEhLS8ODDz6Iixcvws/PT29fR44cCW9vb3z88cf1GltxcTGUSiU0Gg3c3NxMui9kW4bym7Zu3Sp915ffpNG4YsmSF3D7zJJMpsWUKR/io4+erBUoJSWlQqksMVrK4P7770dgYKBOX/imHRGR5dT397dNZ6LKy8uRlZWFGTNmSNvkcjmioqKQkZGh95iMjAwkJyfrbIuOjsa2bdsAAHl5ecjPz0dUVJS0X6lUIjw8HBkZGRg3bhwyMjLg7u4uBVAAEBUVBblcjszMTDz00EN6r63RaNC1a1eD4ykrK0NZWZn0vbi42PDgqdG6k/wmQ2/aFRW5G81vMlYgMzAwEL6+vg0+TiIiujM2DaKuXr2KyspKeHt762z39vbGyZMn9R6Tn5+vt31+fr60v3qbsTY1HxXa29tDpVJJbWr64osvcPDgQfznP/8xOJ6UlBS8/vrrBvdT01BXJXFD+U1BQaeNnreuSuJ8bEdE1LTYPCeqKdi7dy8mT56M1atXo3v37gbbzZgxQ2eWrLi4GP7+/tboIjWguiqJG8tv8ve/AEAL3Xc2tPD3vwjAcKAUFxdn0kLDRERkezYNojw9PWFnZ4eCggKd7QUFBfDx8dF7jI+Pj9H21X8WFBToPAIpKChAaGio1KbmbMOtW7egVqtrXff//b//h5iYGCxZsgSTJk0yOh5HR0c4OjoabUNNh6FK4lOmfGgwEVypLMHo0TuxffsoVAVSWowe/fdjuyFDhiAkJETnOgyUiIiaJpsGUQqFAmFhYUhPT0dsbCyAqsTy9PR0JCYm6j0mIiIC6enpSEpKkrbt3r0bERERAKryR3x8fJCeni4FTcXFxcjMzMTUqVOlcxQVFSErKwthYWEAgD179kCr1SI8PFw67w8//IBRo0bhnXfeQUJCQgOPnqzB0JIr1YwFMJbIb/Ly8mJ+ExFRM2Hzx3nJycmIj49Hv379MGDAAKSmpqK0tBSTJ08GAEyaNAnt2rVDSkoKAGD69OkYPHgwFi1ahJEjR2Ljxo04dOgQVq1aBQCQyWRISkrC/PnzERISIpU48PPzkwK1rl27Yvjw4XjqqaewcuVKVFRUIDExEePGjZPezNu7dy9GjRqF6dOnY+zYsVKulEKhgEqlsvJdInPUtyRBYmKiyTNB5uY3tW3b1qTrEBFR42XzICouLg5XrlzBnDlzkJ+fj9DQUKSlpUmJ4efPn4dc/vdjk8jISGzYsAGzZs3Ca6+9hpCQEGzbtk2qEQUAL7/8MkpLS5GQkICioiIMGjQIaWlpUo0oAFi/fj0SExMxbNgwyOVyjB07FkuXLpX2r1u3Djdu3EBKSooUwAHA4MGD8cMPP1jwjlBDqTkDZWjJFUMzVcxvIiIiY2xeJ6o5Y50o27p06ZI0Q2msDlNCQoLOI7Zff/1VqgeVnd2nVn5T9XHMbyIiap6aRJ0oImswVpJA30ySg4OD9DPzm4iIyBAGUdRkmJskrlZ7GCxJUJ+8JeY3ERGRPgyiqNHRFywVFRXhiy++qPNYfUnida1NV5OHhwcSExPNfquPiIhaBgZR1KjU9406U5LElcoSoyUJ9GGAREREdWEQRY1KXUuuAMaTxA2pqyQBERGRqRhEkU2cOXMGN27cqLX9l19+kX7WFywFBZ2ud5J4zTXnuDYdERE1JAZRZHVnzpzBZ599ZrSNoSVXxo7dUu8kceY2ERGRJTGIIqurufZhbm4wTp3qhJCQ39C582kAhpdcuXHDyeQkcSIiIktgEEVWd+vWLennDz+cjIsXqwKmQ4f6oX37C3jyyTUoLGyj99i//nIyOUmciIjIEhhEkc3k5gZLAVQVGS5e9EdubjAqK/X/1aystGeSOBERNQryupsQWcapU51Q85EdIMPp0yHo1Ok3ADVXJBLo1OkUgKok8cDAc3UmkxMREVkKZ6LIZkJCfsOhQ/2gG0gJBAefQvv2l9C791EcPdr7//YL9O59FO3bXwIA9OjRA5GRkTrnY5I4ERFZE4Mo0mHu0irm6Nz5NNq3v3DbIz2B9u0vSMnlDz30X/TvfwAXLnSAv/95KYACAF9fX65bR0RENsUgiiT1rRaub2kVcz355Brk5gbj9OkQBAefkgKoau3bX9IJnqp5e3s3yPWJiIjMxSCqhdI343T16tV6HWtspqo+nJycdL537ny6VvAEAL1790ZQUFCt7a1atdK7nYiIyJoYRLVAd7o+3Z2qbwB0zz33MMeJiIgaLQZRzZih/Ka8vLw6jzVnfbr6YiVxIiJqDhhENVP1nW0CgIsXfXH+fEd06HAO7dtfgkbjWu/16czFAImIiJo6BlHNgL7FfM+cOaPzvWagVO2rr8bUKiMQGnq03uvTERERtVQMopq4+izmqy9Qeuih/+LiRd/btgOADEeP9ka3bsdNWp+OiIioJWIQ1UQYym/6448/dL7XnHEyFCj1738A5893hL6K4Wq1B9enIyIiqgODqCagvvlN+maclMoi6AuUTp0KQUjIKVQtraJbMby6sKWh9em4tAoRERGDqCah5gyUvtIDhmacIiP/p/ecLi7X61xaJTa2H0JCQnSO41tzREREVRhENTGGSg8YejTn4FAJfbNNnTtXLeRrbGkVLy8vLq1CRERkAIOoJsRY6YEOHc5BX7AUEnIKSmWJ0fwmQ0urtG3b1rIDIiIiasIYRDUharWHwdIDgYHnDD6aM5bfNHDgQPTq1avWtfjYjoiIyDgGUU2ISlVotPSAsUdzSmWJ3rfrgoOD+ciOiIjIDAyimhClsqTO0gOGHs3dfffd8Pb21tnGhXyJiIjMxyCqienb97DBR3NDhgxBmzZtah3DYImIiKjhMYhqAmrWZTL0aK579+7MYyIiIrISBlFNgIeHBxITE/VWLK/GRHAiIiLrYhDVRDBAIiIialzkdTchIiIiopoYRBERERGZgUEUERERkRkYRBERERGZgUEUERERkRkaRRC1fPlyBAQEwMnJCeHh4Thw4IDR9ps3b0aXLl3g5OSEnj17YteuXTr7hRCYM2cOfH194ezsjKioKJw6dUqnjVqtxoQJE+Dm5gZ3d3dMmTIF169f12nzyy+/4J577oGTkxP8/f2xYMGChhkwERERNXk2D6I2bdqE5ORkzJ07F9nZ2ejduzeio6Nx+fJlve3379+P8ePHY8qUKTh8+DBiY2MRGxuLY8eOSW0WLFiApUuXYuXKlcjMzISLiwuio6Nx8+ZNqc2ECRNw/Phx7N69Gzt37sSPP/6IhIQEaX9xcTEeeOABdOzYEVlZWVi4cCHmzZuHVatWWe5mEBERUdMhbGzAgAFi2rRp0vfKykrh5+cnUlJS9LZ/5JFHxMiRI3W2hYeHi6effloIIYRWqxU+Pj5i4cKF0v6ioiLh6OgoPv/8cyGEECdOnBAAxMGDB6U233zzjZDJZOKPP/4QQgixYsUK0aZNG1FWVia1eeWVV0Tnzp3rPTaNRiMACI1GU+9jiIiIyLbq+/vbpjNR5eXlyMrKQlRUlLRNLpcjKioKGRkZeo/JyMjQaQ8A0dHRUvu8vDzk5+frtFEqlQgPD5faZGRkwN3dHf369ZPaREVFQS6XIzMzU2pz77336iy5Eh0djdzcXFy7dk1v38rKylBcXKzzISIioubJphXLr169isrKSnh7e+ts9/b2xsmTJ/Uek5+fr7d9fn6+tL96m7E2Xl5eOvvt7e2hUql02gQGBtY6R/U+fQv9pqSk4PXXX6+1ncEUERFR01H9e1sIYbQdl31pQDNmzEBycrL0/Y8//kC3bt3g7+9vw14RERGROUpKSqBUKg3ut2kQ5enpCTs7OxQUFOhsLygogI+Pj95jfHx8jLav/rOgoAC+vr46bUJDQ6U2NRPXb926BbVarXMefde5/Ro1OTo6wtHRUfreunVrXLhwAa6urpDJZHqPMUdxcTH8/f1x4cIFuLm5Ndh5m4qWPn6A96Cljx/gPWjp4wd4Dyw5fiEESkpK4OfnZ7SdTYMohUKBsLAwpKenIzY2FgCg1WqRnp6OxMREvcdEREQgPT0dSUlJ0rbdu3cjIiICABAYGAgfHx+kp6dLQVNxcTEyMzMxdepU6RxFRUXIyspCWFgYAGDPnj3QarUIDw+X2sycORMVFRVwcHCQrtO5c2e9j/L0kcvlaN++vUn3xBRubm4t8l+cai19/ADvQUsfP8B70NLHD/AeWGr8xmagqtm8xEFycjJWr16NdevWIScnB1OnTkVpaSkmT54MAJg0aRJmzJghtZ8+fTrS0tKwaNEinDx5EvPmzcOhQ4ekoEsmkyEpKQnz58/H9u3b8euvv2LSpEnw8/OTArWuXbti+PDheOqpp3DgwAHs27cPiYmJGDdunBR1Pvroo1AoFJgyZQqOHz+OTZs24b333tN5XEdEREQtl81zouLi4nDlyhXMmTMH+fn5CA0NRVpampTEff78ecjlf8d6kZGR2LBhA2bNmoXXXnsNISEh2LZtG3r06CG1efnll1FaWoqEhAQUFRVh0KBBSEtLg5OTk9Rm/fr1SExMxLBhwyCXyzF27FgsXbpU2q9UKvHdd99h2rRpCAsLg6enJ+bMmaNTS4qIiIhaMKsUXKAGdfPmTTF37lxx8+ZNW3fFJlr6+IXgPWjp4xeC96Clj18I3oPGMH6ZEHW8v0dEREREtdg8J4qIiIioKWIQRURERGQGBlFEREREZmAQRURERGQGBlGN1PLlyxEQEAAnJyeEh4fjwIEDBtseP34cY8eORUBAAGQyGVJTU63XUQsxZfyrV6/GPffcgzZt2qBNmzaIiooy2r6pMOUebN26Ff369YO7uztcXFwQGhqKTz/91Iq9bXimjP92GzduhEwmk+rCNWWm3IO1a9dCJpPpfG4v69IUmfp3oKioCNOmTYOvry8cHR3RqVMn7Nq1y0q9tQxT7sF9991X6++ATCbDyJEjrdjjhmXq34HU1FR07twZzs7O8Pf3xwsvvICbN29aroM2ey+QDNq4caNQKBTi448/FsePHxdPPfWUcHd3FwUFBXrbHzhwQLz00kvi888/Fz4+PmLJkiXW7XADM3X8jz76qFi+fLk4fPiwyMnJEY8//rhQKpXi4sWLVu55wzH1Huzdu1ds3bpVnDhxQpw+fVqkpqYKOzs7kZaWZuWeNwxTx18tLy9PtGvXTtxzzz1izJgx1umshZh6D9asWSPc3NzEpUuXpE9+fr6Ve91wTB1/WVmZ6Nevn3jwwQfFTz/9JPLy8sQPP/wgjhw5YuWeNxxT70FhYaHOP/9jx44JOzs7sWbNGut2vIGYOv7169cLR0dHsX79epGXlye+/fZb4evrK1544QWL9ZFBVCM0YMAAMW3aNOl7ZWWl8PPzEykpKXUe27FjxyYfRN3J+IUQ4tatW8LV1VWsW7fOUl20uDu9B0II0adPHzFr1ixLdM/izBn/rVu3RGRkpPjwww9FfHx8kw+iTL0Ha9asEUql0kq9szxTx//BBx+Iu+66S5SXl1urixZ3p/8dWLJkiXB1dRXXr1+3VBctytTxT5s2TQwdOlRnW3Jysrj77rst1kc+zmtkysvLkZWVhaioKGmbXC5HVFQUMjIybNgz62iI8d+4cQMVFRVQqVSW6qZF3ek9EEIgPT0dubm5uPfeey3ZVYswd/z//ve/4eXlhSlTplijmxZl7j24fv06OnbsCH9/f4wZMwbHjx+3RncbnDnj3759OyIiIjBt2jR4e3ujR48eeOutt1BZWWmtbjeohvhv4UcffYRx48bBxcXFUt20GHPGHxkZiaysLOmR3++//45du3bhwQcftFg/bb7sC+m6evUqKisrpWVvqnl7e+PkyZM26pX1NMT4X3nlFfj5+en8y9eUmHsPNBoN2rVrh7KyMtjZ2WHFihW4//77Ld3dBmfO+H/66Sd89NFHOHLkiBV6aHnm3IPOnTvj448/Rq9evaDRaPDuu+8iMjISx48ft+hC6JZgzvh///137NmzBxMmTMCuXbtw+vRpPPvss6ioqMDcuXOt0e0Gdaf/LTxw4ACOHTuGjz76yFJdtChzxv/oo4/i6tWrGDRoEIQQuHXrFp555hm89tprFusngyhqVt5++21s3LgRP/zwQ5NPqjWVq6srjhw5guvXryM9PR3Jycm46667cN9999m6axZVUlKCiRMnYvXq1fD09LR1d2wmIiICERER0vfIyEh07doV//nPf/DGG2/YsGfWodVq4eXlhVWrVsHOzg5hYWH4448/sHDhwiYZRN2pjz76CD179sSAAQNs3RWr+eGHH/DWW29hxYoVCA8Px+nTpzF9+nS88cYbmD17tkWuySCqkfH09ISdnR0KCgp0thcUFMDHx8dGvbKeOxn/u+++i7fffhvff/89evXqZcluWpS590AulyM4OBgAEBoaipycHKSkpDS5IMrU8Z85cwZnz55FTEyMtE2r1QIA7O3tkZubi6CgIMt2uoE1xH8HHBwc0KdPH5w+fdoSXbQoc8bv6+sLBwcH2NnZSdu6du2K/Px8lJeXQ6FQWLTPDe1O/g6UlpZi48aN+Pe//23JLlqUOeOfPXs2Jk6ciCeffBIA0LNnT5SWliIhIQEzZ86EXN7wGUzMiWpkFAoFwsLCkJ6eLm3TarVIT0/X+b/M5src8S9YsABvvPEG0tLS0K9fP2t01WIa6u+AVqtFWVmZJbpoUaaOv0uXLvj1119x5MgR6TN69GgMGTIER44cgb+/vzW73yAa4u9AZWUlfv31V/j6+lqqmxZjzvjvvvtunD59WgqgAeC3336Dr69vkwuggDv7O7B582aUlZXhscces3Q3Lcac8d+4caNWoFQdVAtLLRNssZR1MtvGjRuFo6OjWLt2rThx4oRISEgQ7u7u0uvKEydOFK+++qrUvqysTBw+fFgcPnxY+Pr6ipdeekkcPnxYnDp1ylZDuCOmjv/tt98WCoVCfPnllzqv95aUlNhqCHfM1Hvw1ltvie+++06cOXNGnDhxQrz77rvC3t5erF692lZDuCOmjr+m5vB2nqn34PXXXxfffvutOHPmjMjKyhLjxo0TTk5O4vjx47Yawh0xdfznz58Xrq6uIjExUeTm5oqdO3cKLy8vMX/+fFsN4Y6Z++/BoEGDRFxcnLW72+BMHf/cuXOFq6ur+Pzzz8Xvv/8uvvvuOxEUFCQeeeQRi/WRQVQj9f7774sOHToIhUIhBgwYIH7++Wdp3+DBg0V8fLz0PS8vTwCo9Rk8eLD1O95ATBl/x44d9Y5/7ty51u94AzLlHsycOVMEBwcLJycn0aZNGxERESE2btxog143HFPGX1NzCKKEMO0eJCUlSW29vb3Fgw8+KLKzs23Q64Zj6t+B/fv3i/DwcOHo6Cjuuusu8eabb4pbt25ZudcNy9R7cPLkSQFAfPfdd1buqWWYMv6Kigoxb948ERQUJJycnIS/v7949tlnxbVr1yzWP5kQlprjIiIiImq+mBNFREREZAYGUURERERmYBBFREREZAYGUURERERmYBBFREREZAYGUURERERmYBBFREREZAYGUUREzcDjjz+O2NhYW3eDqEVhEEVEFvX4449DJpNJHw8PDwwfPhy//PKLrbvWIG4fW/Vn0KBBFrve2bNnIZPJcOTIEZ3t7733HtauXWux6xJRbQyiiMjihg8fjkuXLuHSpUtIT0+Hvb09Ro0aZetuNZg1a9ZI47t06RK2b9+ut11FRYXF+qBUKuHu7m6x8xNRbQyiiMjiHB0d4ePjAx8fH4SGhuLVV1/FhQsXcOXKFQwdOhSJiYk67a9cuQKFQiGt4B4QEIA33ngD48ePh4uLC9q1a4fly5frHLN48WL07NkTLi4u8Pf3x7PPPovr169L+8+dO4eYmBi0adMGLi4u6N69O3bt2gUAuHbtGiZMmIC2bdvC2dkZISEhWLNmTb3H5+7uLo3Px8cHKpVKmjHatGkTBg8eDCcnJ6xfvx6FhYUYP3482rVrh1atWqFnz574/PPPdc6n1WqxYMECBAcHw9HRER06dMCbb74JAAgMDAQA9OnTBzKZDPfddx+A2o/zysrK8Pzzz8PLywtOTk4YNGgQDh48KO3/4YcfIJPJkJ6ejn79+qFVq1aIjIxEbm5uvcdN1NIxiCIiq7p+/To+++wzBAcHw8PDA08++SQ2bNiAsrIyqc1nn32Gdu3aYejQodK2hQsXonfv3jh8+DBeffVVTJ8+Hbt375b2y+VyLF26FMePH8e6deuwZ88evPzyy9L+adOmoaysDD/++CN+/fVXvPPOO2jdujUAYPbs2Thx4gS++eYb5OTk4IMPPoCnp2eDjLe6rzk5OYiOjsbNmzcRFhaGr7/+GseOHUNCQgImTpyIAwcOSMfMmDEDb7/9ttSvDRs2wNvbGwCkdt9//z0uXbqErVu36r3uyy+/jC1btmDdunXIzs5GcHAwoqOjoVarddrNnDkTixYtwqFDh2Bvb48nnniiQcZN1CJYbGljIiIhRHx8vLCzsxMuLi7CxcVFABC+vr4iKytLCCHEX3/9Jdq0aSM2bdokHdOrVy8xb9486XvHjh3F8OHDdc4bFxcnRowYYfC6mzdvFh4eHtL3nj176pzzdjExMWLy5MlmjQ+AcHJyksbn4uIivvrqK5GXlycAiNTU1DrPMXLkSPHiiy8KIYQoLi4Wjo6OYvXq1XrbVp/38OHDOtvj4+PFmDFjhBBCXL9+XTg4OIj169dL+8vLy4Wfn59YsGCBEEKIvXv3CgDi+++/l9p8/fXXAoD466+/TLkFRC0WZ6KIyOKGDBmCI0eO4MiRIzhw4ACio6MxYsQInDt3Dk5OTpg4cSI+/vhjAEB2djaOHTuGxx9/XOccERERtb7n5ORI37///nsMGzYM7dq1g6urKyZOnIjCwkLcuHEDAPD8889j/vz5uPvuuzF37lydxPapU6di48aNCA0Nxcsvv4z9+/ebNL4lS5ZI4zty5Ajuv/9+aV+/fv102lZWVuKNN95Az549oVKp0Lp1a3z77bc4f/48ACAnJwdlZWUYNmyYSX243ZkzZ1BRUYG7775b2ubg4IABAwbo3DMA6NWrl/Szr68vAODy5ctmX5uoJWEQRUQW5+LiguDgYAQHB6N///748MMPUVpaitWrVwMAnnzySezevRsXL17EmjVrMHToUHTs2LHe5z979ixGjRqFXr16YcuWLcjKypJypsrLy6Vr/P7775g4cSJ+/fVX9OvXD++//z4ASAHdCy+8gD///BPDhg3DSy+9VO/r+/j4SOMLDg6Gi4uLzthvt3DhQrz33nt45ZVXsHfvXhw5cgTR0dFSP52dnet93Ybg4OAg/SyTyQBU5WQRUd0YRBGR1clkMsjlcvz1118AgJ49e6Jfv35YvXo1NmzYoDcv5+eff671vWvXrgCArKwsaLVaLFq0CAMHDkSnTp3w559/1jqHv78/nnnmGWzduhUvvviiFMQBQNu2bREfH4/PPvsMqampWLVqVUMOWbJv3z6MGTMGjz32GHr37o277roLv/32m7Q/JCQEzs7OUlJ9TQqFAkDVjJYhQUFBUCgU2Ldvn7StoqICBw8eRLdu3RpoJERkb+sOEFHzV1ZWhvz8fABVb8ItW7YM169fR0xMjNTmySefRGJiIlxcXPDQQw/VOse+ffuwYMECxMbGYvfu3di8eTO+/vprAEBwcDAqKirw/vvvIyYmBvv27cPKlSt1jk9KSsKIESPQqVMnXLt2DXv37pWCsDlz5iAsLAzdu3dHWVkZdu7cKe1raCEhIfjyyy+xf/9+tGnTBosXL0ZBQYEU3Dg5OeGVV17Byy+/DIVCgbvvvhtXrlzB8ePHMWXKFHh5ecHZ2RlpaWlo3749nJycoFQqda7h4uKCqVOn4l//+hdUKhU6dOiABQsW4MaNG5gyZYpFxkXUEnEmiogsLi0tDb6+vvD19UV4eDgOHjyIzZs3S6/nA8D48eNhb2+P8ePHw8nJqdY5XnzxRRw6dAh9+vTB/PnzsXjxYkRHRwMAevfujcWLF+Odd95Bjx49sH79eqSkpOgcX1lZiWnTpqFr164YPnw4OnXqhBUrVgComt2ZMWMGevXqhXvvvRd2dnbYuHGjRe7FrFmz0LdvX0RHR+O+++6Dj49PrUrjs2fPxosvvog5c+aga9euiIuLk/KU7O3tsXTpUvznP/+Bn58fxowZo/c6b7/9NsaOHYuJEyeib9++OH36NL799lu0adPGIuMiaolkQghh604QEZ09exZBQUE4ePAg+vbtq7MvICAASUlJSEpKsk3niIj04OM8IrKpiooKFBYWYtasWRg4cGCtAIqIqLHi4zwisql9+/bB19cXBw8erJXHZGtvvfUWWrdurfczYsQIW3ePiGyMj/OIiAxQq9W1KnxXc3Z2Rrt27azcIyJqTBhEEREREZmBj/OIiIiIzMAgioiIiMgMDKKIiIiIzMAgioiIiMgMDKKIiIiIzMAgioiIiMgMDKKIiIiIzMAgioiIiMgM/x9IsnisniUeWQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAapVJREFUeJzt3X1cVFX+B/DPDDCACMNTPOkohJiaDwgoYZapFJqilLupmZKZlCslUVmWom4apWlEWqytqZWma5qrZpSh/dqSRQW0fEwNBUtQQAaEBGTO7w+WqwMzA4PMDA+f9+vFC+be77333JvKt3PO/R6ZEEKAiIiIiIwit3QDiIiIiNoiJlFEREREzcAkioiIiKgZmEQRERERNQOTKCIiIqJmYBJFRERE1AxMooiIiIiagUkUERERUTMwiSIiIiJqBiZRRETt3Pr16yGTyXD+/HlLN4WoXWESRUS37dChQ4iNjcXdd98NBwcHdOvWDY899hh+/fXXBrEPPPAAZDIZZDIZ5HI5nJyccNddd2Hq1KnYu3evUdfdtWsXhg0bBg8PD3Tq1Al33nknHnvsMaSmprbUrTXw5ptvYseOHQ22HzhwAIsWLUJJSYnJrl3fokWLpGcpk8nQqVMn9OnTB/Pnz0dpaWmLXGPTpk1ISkpqkXMRtTdMoojotr399tvYtm0bRo4ciffeew8xMTH44YcfEBQUhGPHjjWI79q1Kz799FN88sknWL58OcaNG4cDBw7goYcewsSJE1FdXd3oNd955x2MGzcOMpkM8+bNw7vvvosJEybgzJkz2Lx5syluE4DhJGrx4sVmTaLqfPjhh/j000+xcuVK9OrVC0uXLsWoUaPQEkujMoki0s/a0g0gorYvPj4emzZtgkKhkLZNnDgR/fr1w1tvvYXPPvtMK16pVOKJJ57Q2vbWW2/h+eefxwcffABfX1+8/fbbeq9348YNvPHGG3jwwQfx7bffNth/+fLl27yj1qOiogKdOnUyGPOXv/wF7u7uAIBnn30WEyZMwPbt2/Hf//4XYWFh5mgmUYfEnigium1DhgzRSqAAICAgAHfffTdOnjzZpHNYWVkhOTkZffr0wapVq6BWq/XGFhYWorS0FPfee6/O/R4eHlqfr1+/jkWLFqFnz56ws7ODt7c3Hn30UZw7d06KeeeddzBkyBC4ubnB3t4ewcHB+OKLL7TOI5PJUF5ejg0bNkhDaE8++SQWLVqEl19+GQDg5+cn7bt1DtJnn32G4OBg2Nvbw9XVFZMmTUJeXp7W+R944AH07dsXmZmZuP/++9GpUye89tprTXp+txoxYgQAICcnx2DcBx98gLvvvhu2trbw8fHB7NmztXrSHnjgAXz11Ve4cOGCdE++vr5Gt4eovWJPFBGZhBACBQUFuPvuu5t8jJWVFSZPnowFCxbgxx9/xJgxY3TGeXh4wN7eHrt27cJzzz0HV1dXveesqanB2LFjkZaWhkmTJmHOnDkoKyvD3r17cezYMfj7+wMA3nvvPYwbNw5TpkxBVVUVNm/ejL/+9a/YvXu31I5PP/0UTz/9NAYPHoyYmBgAgL+/PxwcHPDrr7/i888/x7vvviv1Ct1xxx0AgKVLl2LBggV47LHH8PTTT+PKlSt4//33cf/99yM7OxvOzs5Se4uKijB69GhMmjQJTzzxBDw9PZv8/OrUJYdubm56YxYtWoTFixcjPDwcs2bNwunTp/Hhhx/i0KFD+Omnn2BjY4PXX38darUaFy9exLvvvgsA6Ny5s9HtIWq3BBGRCXz66acCgFi7dq3W9mHDhom7775b73FffvmlACDee+89g+dPSEgQAISDg4MYPXq0WLp0qcjMzGwQ9/HHHwsAYuXKlQ32aTQa6eeKigqtfVVVVaJv375ixIgRWtsdHBxEdHR0g3MtX75cABA5OTla28+fPy+srKzE0qVLtbb/8ssvwtraWmv7sGHDBACRkpKi975vtXDhQgFAnD59Wly5ckXk5OSIf/zjH8LW1lZ4enqK8vJyIYQQ69at02rb5cuXhUKhEA899JCoqamRzrdq1SoBQHz88cfStjFjxoju3bs3qT1EHQ2H84ioxZ06dQqzZ89GWFgYoqOjjTq2rqejrKzMYNzixYuxadMmDBw4EN988w1ef/11BAcHIygoSGsIcdu2bXB3d8dzzz3X4BwymUz62d7eXvr56tWrUKvVuO+++5CVlWVU++vbvn07NBoNHnvsMRQWFkpfXl5eCAgIwP79+7XibW1tMX36dKOucdddd+GOO+6An58fnnnmGfTo0QNfffWV3rlU3333HaqqqhAXFwe5/OavgZkzZ8LJyQlfffWV8TdK1AFxOI+IWlR+fj7GjBkDpVKJL774AlZWVkYdf+3aNQCAo6Njo7GTJ0/G5MmTUVpaioyMDKxfvx6bNm1CZGQkjh07Bjs7O5w7dw533XUXrK0N/3O3e/duLFmyBEeOHEFlZaW0/dZEqznOnDkDIQQCAgJ07rexsdH63KVLlwbzyxqzbds2ODk5wcbGBl27dpWGKPW5cOECgNrk61YKhQJ33nmntJ+IDGMSRUQtRq1WY/To0SgpKcF//vMf+Pj4GH2OupIIPXr0aPIxTk5OePDBB/Hggw/CxsYGGzZsQEZGBoYNG9ak4//zn/9g3LhxuP/++/HBBx/A29sbNjY2WLduHTZt2mT0PdxKo9FAJpPh66+/1plQ1p9jdGuPWFPdf//90jwsIjIfJlFE1CKuX7+OyMhI/Prrr/juu+/Qp08fo89RU1ODTZs2oVOnThg6dGiz2hESEoINGzbg0qVLAGonfmdkZKC6urpBr0+dbdu2wc7ODt988w1sbW2l7evWrWsQq69nSt92f39/CCHg5+eHnj17Gns7JtG9e3cAwOnTp3HnnXdK26uqqpCTk4Pw8HBp2+32xBG1Z5wTRUS3raamBhMnTkR6ejq2bt3arNpENTU1eP7553Hy5Ek8//zzcHJy0htbUVGB9PR0nfu+/vprADeHqiZMmIDCwkKsWrWqQaz4XzFKKysryGQy1NTUSPvOnz+vs6img4ODzoKaDg4OANBg36OPPgorKyssXry4QfFLIQSKiop036QJhYeHQ6FQIDk5WatNa9euhVqt1nor0sHBwWC5CaKOjD1RRHTbXnzxRezcuRORkZEoLi5uUFyzfmFNtVotxVRUVODs2bPYvn07zp07h0mTJuGNN94weL2KigoMGTIE99xzD0aNGgWVSoWSkhLs2LED//nPfxAVFYWBAwcCAKZNm4ZPPvkE8fHxOHjwIO677z6Ul5fju+++w9/+9jeMHz8eY8aMwcqVKzFq1Cg8/vjjuHz5MlavXo0ePXrg559/1rp2cHAwvvvuO6xcuRI+Pj7w8/NDaGgogoODAQCvv/46Jk2aBBsbG0RGRsLf3x9LlizBvHnzcP78eURFRcHR0RE5OTn48ssvERMTg5deeum2nr+x7rjjDsybNw+LFy/GqFGjMG7cOJw+fRoffPABBg0apPXfKzg4GFu2bEF8fDwGDRqEzp07IzIy0qztJWq1LPlqIBG1D3Wv5uv7MhTbuXNnERAQIJ544gnx7bffNul61dXV4qOPPhJRUVGie/fuwtbWVnTq1EkMHDhQLF++XFRWVmrFV1RUiNdff134+fkJGxsb4eXlJf7yl7+Ic+fOSTFr164VAQEBwtbWVvTq1UusW7dOKiFwq1OnTon7779f2NvbCwBa5Q7eeOMN0aVLFyGXyxuUO9i2bZsYOnSocHBwEA4ODqJXr15i9uzZ4vTp01rPxlD5h/rq2nflyhWDcfVLHNRZtWqV6NWrl7CxsRGenp5i1qxZ4urVq1ox165dE48//rhwdnYWAFjugOgWMiFaYHElIiIiog6Gc6KIiIiImoFJFBEREVEzMIkiIiIiagYmUURERETNwCSKiIiIqBmYRBERERE1A4ttmpBGo8Eff/wBR0dHLp1ARETURgghUFZWBh8fH8jl+vubmESZ0B9//AGVSmXpZhAREVEz5OXloWvXrnr3M4kyIUdHRwC1/xEMrQNGRERErUdpaSlUKpX0e1wfJlEmVDeE5+TkxCSKiIiojWlsKg4nlhMRERE1A5MoIiIiomZgEkVERETUDJwTZWE1NTWorq62dDPaLRsbG1hZWVm6GURE1A4xibIQIQTy8/NRUlJi6aa0e87OzvDy8mKtLiIialFMoiykLoHy8PBAp06d+AveBIQQqKiowOXLlwEA3t7eFm4RERG1J0yiLKCmpkZKoNzc3CzdnHbN3t4eAHD58mV4eHhwaI+IiFoMJ5ZbQN0cqE6dOlm4JR1D3XPm3DMiImpJTKIsiEN45sHnTEREpsDhPCIiImoTioqKUFVVpXe/QqEw6zQZJlFERETU6hUVFWHVqlWNxsXGxpotkeJwHhnlySefhEwmg0wmg42NDTw9PfHggw/i448/hkajafJ51q9fD2dnZ9M1lIiI2pX6PVBqtSNycnyhVjsajDMl9kS1UZbs0hw1ahTWrVuHmpoaFBQUIDU1FXPmzMEXX3yBnTt3wtqaf6yIiKhl3VpXMStrIHbtGgsh5JDJNIiM3I2goGwpzlwlbfjbrg2ydJemra0tvLy8AABdunRBUFAQ7rnnHowcORLr16/H008/jZUrV2LdunX47bff4OrqisjISCxbtgydO3fG999/j+nTpwO4Oel74cKFWLRoET799FO89957OH36NBwcHDBixAgkJSXBw8Ojxe+DiIjajhs3bgCo7YGqS6AAQAg5du0aC3//s1Aqy6Q4c+BwXhvU1K5Kc3ZpjhgxAgMGDMD27dsBAHK5HMnJyTh+/Dg2bNiAffv2Ye7cuQCAIUOGICkpCU5OTrh06RIuXbqEl156CUBtGYI33ngDR48exY4dO3D+/Hk8+eSTZrsPIiJq3YqL3aQEqo4QchQXu5q9LeyJohbTq1cv/PzzzwCAuLg4abuvry+WLFmCZ599Fh988AEUCgWUSiVkMpnUo1Xnqaeekn6+8847kZycjEGDBuHatWvo3LmzWe6DiIhaL1fXIgACwM3yNTKZBq6uxWZvC3uiqMUIIaThue+++w4jR45Ely5d4OjoiKlTp6KoqAgVFRUGz5GZmYnIyEh069YNjo6OGDZsGAAgNzfX5O0nIqK2Qmh/EnrCTIxJFLWYkydPws/PD+fPn8fYsWPRv39/bNu2DZmZmVi9ejUAw0OM5eXliIiIgJOTEzZu3IhDhw7hyy+/bPQ4IiLqOIqL3dAwfeFwHrVh+/btwy+//IIXXngBmZmZ0Gg0WLFiBeTy2j/o//rXv7TiFQoFampqtLadOnUKRUVFeOutt6BSqQAAhw8fNs8NEBFRq2ZjYwOgdjhPJtNozYu6dTivLs4c2BNFRqusrER+fj5+//13ZGVl4c0338T48eMxduxYTJs2DT169EB1dTXef/99/Pbbb/j000+RkpKidQ5fX19cu3YNaWlpKCwsREVFBbp16waFQiEdt3PnTrzxxhsWuksiImpNlErl/76XITJyN2Sy2tqEdSUOlMoyrThzYE8UGS01NRXe3t6wtraGi4sLBgwYgOTkZERHR0Mul2PAgAFYuXIl3n77bcybNw/3338/EhMTMW3aNOkcQ4YMwbPPPouJEyeiqKhIKnGwfv16vPbaa0hOTkZQUBDeeecdjBs3zoJ3S0RErcGtc2qDgrLh738WxcWucHUtlhKo+nGmJhPCUtOx2r/S0lIolUqo1Wo4OTlJ269fv46cnBz4+fnBzs7O6PNauk5UW3O7z5uIiCzv0qVLWLNmjfRZrXZEcbEbXF2LtJKomJiY2y62qe/3d33siWqD3NzcEBsb26oWYSQiIjIXQxXLzYlJVBvFBImIiDqixiqWmxMnlhMREVGb0ZoqljOJIiIiojajrsTBrVixnIiIiKgRjZU4MCfOiSIiIqI2xVCJA3NiEkVEREStnkKh0PqsVJbpTJ7qx5kSkygiIiJq9VpjeR8mUURERNQmtLbyPpxYTq3K999/D5lMhpKSkiYf4+vri6SkJJO1iYiISBcmUWSUJ598EjKZDM8++2yDfbNnz4ZMJsOTTz5p/oYRERGZGZMoMppKpcLmzZvx559/StuuX7+OTZs2oVu3bhZsGRERkfkwiSKjBQUFQaVSYfv27dK27du3o1u3bhg4cKC0rbKyEs8//zw8PDxgZ2eHoUOH4tChQ1rn2rNnD3r27Al7e3sMHz4c58+fb3C9H3/8Effddx/s7e2hUqnw/PPPo7y83GT3R0RE1BRMotqBixeB/ftrv5vLU089hXXr1kmfP/74Y0yfPl0rZu7cudi2bRs2bNiArKws9OjRAxERESgurq0qm5eXh0cffRSRkZE4cuQInn76abz66qta5zh37hxGjRqFCRMm4Oeff8aWLVvw448/IjY21vQ3SUREJlNUVIRLly7p/SoqKrJ0Extl8SRq9erV8PX1hZ2dHUJDQ3Hw4EGD8Vu3bkWvXr1gZ2eHfv36Yc+ePVr7hRBISEiAt7c37O3tER4ejjNnzmjFLF26FEOGDEGnTp3g7Oxs8HpFRUXo2rWr0ZOdzWXtWqB7d2DEiNrva9ea57pPPPEEfvzxR1y4cAEXLlzATz/9hCeeeELaX15ejg8//BDLly/H6NGj0adPH3z00Uewt7fH2v818sMPP4S/vz9WrFiBu+66C1OmTGkwnyoxMRFTpkxBXFwcAgICMGTIECQnJ+OTTz7B9evXzXOzRETUooqKirBq1SqsWbNG79eqVatafSJl0SRqy5YtiI+Px8KFC5GVlYUBAwYgIiICly9f1hl/4MABTJ48GTNmzEB2djaioqIQFRWFY8eOSTHLli1DcnIyUlJSkJGRAQcHB0RERGj9wq2qqsJf//pXzJo1q9E2zpgxA/3797/9mzWBixeBmBhA878lhDQa4JlnzNMjdccdd2DMmDFYv3491q1bhzFjxsDd3V3af+7cOVRXV+Pee++VttnY2GDw4ME4efIkAODkyZMIDQ3VOm9YWJjW56NHj2L9+vXo3Lmz9BUREQGNRoOcnBwT3iEREZlK/VpParUjcnJ8oVY7GoxrbSxaJ2rlypWYOXOmNAyUkpKCr776Ch9//HGDYR0AeO+99zBq1Ci8/PLLAIA33ngDe/fuxapVq5CSkgIhBJKSkjB//nyMHz8eAPDJJ5/A09MTO3bswKRJkwAAixcvBgCsX7/eYPs+/PBDlJSUICEhAV9//XVL3XaLOXPmZgJVp6YGOHsW6NrV9Nd/6qmnpGG11atXm+Qa165dwzPPPIPnn3++wT5OYiciavuysgZi166xEEIurYMXFJRt6WY1icV6oqqqqpCZmYnw8PCbjZHLER4ejvT0dJ3HpKena8UDQEREhBSfk5OD/Px8rRilUonQ0FC959TnxIkT+Pvf/45PPvkEcnnTHlNlZSVKS0u1vkwpIACo3zQrK6BHD5NeVjJq1ChUVVWhuroaERERWvv8/f2hUCjw008/Sduqq6tx6NAh9OnTBwDQu3fvBsO3//3vf7U+BwUF4cSJE+jRo0eDL3OW9iciopanVjtKCRQACCHHrl1jG/RItVYWS6IKCwtRU1MDT09Pre2enp7Iz8/XeUx+fr7B+LrvxpxTl8rKSkyePBnLly83qrcjMTERSqVS+lKpVE0+tjm6dgXWrKlNnIDa7//4h3l6oWqvZ4WTJ0/ixIkTsKprxP84ODhg1qxZePnll5GamooTJ05g5syZqKiowIwZMwAAzz77LM6cOYOXX34Zp0+fxqZNmxr0Dr7yyis4cOAAYmNjceTIEZw5cwb//ve/ObGciKgdKC52kxKoOkLIUVzsaqEWGcfiE8tbo3nz5qF3795aE6WbepxarZa+8vLyTNTCm2bMAM6fr3077/z52s/m5OTkBCcnJ5373nrrLUyYMAFTp05FUFAQzp49i2+++QYuLi4Aaofjtm3bhh07dmDAgAFISUnBm2++qXWO/v374//+7//w66+/4r777sPAgQORkJAAHx8fk98bERGZlqtrEWQy7XkpMpkGrq7FFmqRcSw2J8rd3R1WVlYoKCjQ2l5QUAAvLy+dx3h5eRmMr/teUFAAb29vrZjAwMAmt23fvn345Zdf8MUXXwCofeOvrs2vv/66NKeqPltbW9ja2jb5Oi2la1fz9T41No9sx44d0s92dnZITk5GcnKy3vixY8di7NixWtvql0oYNGgQvv32W73n0FVbioiIWj+lsgyRkbsbzIlSKsss3bQmsVgSpVAoEBwcjLS0NERFRQEANBoN0tLS9A7VhIWFIS0tDXFxcdK2vXv3Sm90+fn5wcvLC2lpaVLSVFpaioyMjCa9iVdn27ZtWtW4Dx06hKeeegr/+c9/4O/vb9yNEhERkV5BQdnw9z+L4mJXuLoWt5kECrDw23nx8fGIjo5GSEgIBg8ejKSkJJSXl0s9EdOmTUOXLl2QmJgIAJgzZw6GDRuGFStWYMyYMdi8eTMOHz6MNWvWAABkMhni4uKwZMkSBAQEwM/PDwsWLICPj4+UqAFAbm4uiouLkZubi5qaGhw5cgQA0KNHD3Tu3LlBolRYWAigdiJ0Y3WliIiIyLD6LwYplWU6k6fW/gKRRZOoiRMn4sqVK0hISEB+fj4CAwORmpoqTQzPzc3VejNuyJAh2LRpE+bPn4/XXnsNAQEB2LFjB/r27SvFzJ07F+Xl5YiJiUFJSQmGDh2K1NRU2NnZSTEJCQnYsGGD9LluqZL9+/fjgQceMPFdExERdWxubm6IjY01WAdKoVDAzc3NjK0ynkzUTfihFldaWgqlUgm1Wq01+fr69evIycmBn5+fVnJHpsHnTURExtD3+7s+vp1nQcxfzYPPmYiITIFJlAXY2NgAACoqKizcko6h7jnXPXciIqKWYNE5UR2VlZUVnJ2dpTUCO3XqBJlMZuFWtT9CCFRUVODy5ctwdnZuUBCUiIjodjCJspC6mlb6FlumluPs7Ky39hgREVFzMYmyEJlMBm9vb3h4eKC6utrSzWm3bGxs2ANFRGQhRUVFbf4NPEOYRFmYlZUVf8kTEVG7U1RUhFWrVjUaFxsb22YTKU4sJyIiohZXvwdKrXZETo4v1GpHg3FtCXuiiIiIyKSysgY2WB8vKCjb0s26beyJIiIiIpNRqx2lBAoAhJBj166xDXqk2iImUURERGQyxcVuUgJVRwg5iotdLdSilsMkioiIiEzG1bUIMplGa5tMpoGra7GFWtRymEQRERGRySiVZYiM3C0lUnVzopTKMgu37PZxYjkRERGZVFBQNvz9z6K42BWursXtIoECmEQRERGRCSgUCq3PSmWZzuSpflxbwiSKiIiIWpybmxtiY2NZsZyIiIjIWG05QWoKTiwnIiIiagYmUURERETNwCSKiIiIqBmYRBERERE1A5MoIiIiomZgEkVERETUDEyiiIiIiJqBSRQRERFRMzCJIiIiImoGJlFEREREzcAkioiIiKgZmEQRERERNQOTKCIiIqJmYBJFRERE1AxMooiIiIiagUkUERERUTNYW7oBRERE1DoUFRWhqqpK736FQgE3Nzcztqh1YxJFREREKCoqwqpVqxqNi42NZSL1PxzOIyIiIoM9UM2J6wiYRBEREVEDarUjcnJ8oVY7WroprZbFk6jVq1fD19cXdnZ2CA0NxcGDBw3Gb926Fb169YKdnR369euHPXv2aO0XQiAhIQHe3t6wt7dHeHg4zpw5oxWzdOlSDBkyBJ06dYKzs3ODaxw9ehSTJ0+GSqWCvb09evfujffee++275WIiKgtyMoaiKSkOGzYEI2kpDhkZQ20dJNaJYsmUVu2bEF8fDwWLlyIrKwsDBgwABEREbh8+bLO+AMHDmDy5MmYMWMGsrOzERUVhaioKBw7dkyKWbZsGZKTk5GSkoKMjAw4ODggIiIC169fl2Kqqqrw17/+FbNmzdJ5nczMTHh4eOCzzz7D8ePH8frrr2PevHlNGismIiJqy9RqR+zaNRZC1KYIQsixa9dY9kjpIBNCCEtdPDQ0FIMGDZKSE41GA5VKheeeew6vvvpqg/iJEyeivLwcu3fvlrbdc889CAwMREpKCoQQ8PHxwYsvvoiXXnoJAKBWq+Hp6Yn169dj0qRJWudbv3494uLiUFJS0mhbZ8+ejZMnT2Lfvn1Nvr/S0lIolUqo1Wo4OTk1+TgiIiJzu3TpEtasWYOcHF9s2BDdYH909Hr4+V1ATEwMvL29LdBC82nq72+L9URVVVUhMzMT4eHhNxsjlyM8PBzp6ek6j0lPT9eKB4CIiAgpPicnB/n5+VoxSqUSoaGhes/ZVGq1Gq6urgZjKisrUVpaqvVFRETUlri6FkEm02htk8k0cHUttlCLWi+LJVGFhYWoqamBp6en1nZPT0/k5+frPCY/P99gfN13Y87ZFAcOHMCWLVsQExNjMC4xMRFKpVL6UqlUzb4mERGROanVagCAUlmGyMjdUiIlk2kQGbkbSmWZVhyxTlSjjh07hvHjx2PhwoV46KGHDMbOmzcP8fHx0ufS0lImUkRE1CbcOrsnKCgbHh75yM3thm7dctG16yWdcR2dxZIod3d3WFlZoaCgQGt7QUEBvLy8dB7j5eVlML7ue0FBgdZ4bUFBAQIDA41u44kTJzBy5EjExMRg/vz5jcbb2trC1tbW6OsQERFZ2q1vq2dlDZQml9f1RAUFZTeI6+gsNpynUCgQHByMtLQ0aZtGo0FaWhrCwsJ0HhMWFqYVDwB79+6V4v38/ODl5aUVU1paioyMDL3n1Of48eMYPnw4oqOjsXTpUqOOJSIiaqv4dl7TWXQ4Lz4+HtHR0QgJCcHgwYORlJSE8vJyTJ8+HQAwbdo0dOnSBYmJiQCAOXPmYNiwYVixYgXGjBmDzZs34/Dhw1izZg0AQCaTIS4uDkuWLEFAQAD8/PywYMEC+Pj4ICoqSrpubm4uiouLkZubi5qaGhw5cgQA0KNHD3Tu3BnHjh3DiBEjEBERgfj4eGk+lZWVFe644w7zPSAiIiIzKy52kxKoOkLIUVzsKs2LoloWTaImTpyIK1euICEhAfn5+QgMDERqaqo0MTw3Nxdy+c3/kEOGDMGmTZswf/58vPbaawgICMCOHTvQt29fKWbu3LkoLy9HTEwMSkpKMHToUKSmpsLOzk6KSUhIwIYNG6TPAwfWFhHbv38/HnjgAXzxxRe4cuUKPvvsM3z22WdSXPfu3XH+/HlTPQ4iIiKz0LXQcE5ODoCbb+fdmkjd+nZeSUlJuy9x0FQWrRPV3rFOFBERtTZNWWj4yy/H4+jRAQBkAAQGDDiKRx75NwDg0UcfRb9+/UzfUAtq9XWiiIiIyPzq90DVXyNPrXbEzz/3R20CBQAy/Pxzf86J0oElDoiIiDooXW/hubhcNTgnysbGxkKtbX3YE0VERNQB6XsLz8am0mDFcqVSafa2tlZMooiIiDogfW/hVVcrDFYsp5s4nEdERNQBGXoLz8/vAvz9z6K42BWursVMoPRgTxQREVEH1NgaeUplGfz8LjCBMoA9UURERB1UUFC20T1OCoXCDC1rG5hEERERdSD1kyClskxn8jRx4sQGk8gVCgXc3NxM2r62hEkUERFRB+Lm5obY2NgG9aJuxWSpaZhEERERdTBMkFoGJ5YTERERNQOTKCIiIqJmYBJFRERE1AxMooiIiIiagRPLiYiI2qiioiK+ZWdBTKKIiIjaoKKiIqxatarRuNjYWCZSJsLhPCIiojaofg+UWu2InBxfqNWOBuOo5bAnioiIqI3LyhqIXbvGQgi5tAZeUFC2pZvV7rEnioiIqA1Tqx2lBAoAhJBj166xDXqkqOUxiSIiImqDSkpKAADFxW5SAlVHCDmKi1214qjlMYkiIiJqg27cuAEAcHUtgkym0donk2ng6lqsFUctj0kUERFRG6ZUlqF//58BiP9tEejf/2colWWWbFaHwCSKiIioDVOrHfHzz/0ByP63RYaff+7POVFmwCSKiIioDbKxsQHQ+JyoujhqeSxxQERE1MrpqkxeXV0N4OacqFsTqVvnRCmVSvM1tINhEkVERNSKNVaZXKksQ2Tk7gZ1ojgnyvSYRBEREbVily9f1vqsVjuiuNgNrq5FUqIUFJQNf/+zKC52hatrMRMoM2ESRURE1IrdWufJUGVypbJMZ/KkUCjM1dQOh0kUERFRK1Y390mtdsTOnZGoewuvrjK5v/9ZKJVlCAkJQVBQkNaxCoWCiw+bEJMoIiKiNiAvT4WbZQxqCSFHXl5XKJUn4ejoCG9vb8s0roNiiQMiIqI2oKLC3qjtZHpMooiIiNqATp3+NGo7mR6TKCIiojZApcrDzaVdaslkGqhUFy3TIGISRURE1JpVVlYCqH37bty4XdJiw/XrQdXFkflwYjkREVEr5uDgIP0cFJQND4985OZ2Q7duueja9ZLOODIPi/dErV69Gr6+vrCzs0NoaCgOHjxoMH7r1q3o1asX7Ozs0K9fP+zZs0drvxACCQkJ8Pb2hr29PcLDw3HmzBmtmKVLl2LIkCHo1KkTnJ2ddV4nNzcXY8aMQadOneDh4YGXX34ZN27cuK17JSIiMpaLi4v0c1bWQKxd+zS+/XYU1q59GllZA3XGkXlYNInasmUL4uPjsXDhQmRlZWHAgAGIiIhoUJ21zoEDBzB58mTMmDED2dnZiIqKQlRUFI4dOybFLFu2DMnJyUhJSUFGRgYcHBwQERGB69evSzFVVVX461//ilmzZum8Tk1NDcaMGYOqqiocOHAAGzZswPr165GQkNCyD4CIiKgRdf+zr1Y7SoU2gZt1otRqR604MiNhQYMHDxazZ8+WPtfU1AgfHx+RmJioM/6xxx4TY8aM0doWGhoqnnnmGSGEEBqNRnh5eYnly5dL+0tKSoStra34/PPPG5xv3bp1QqlUNti+Z88eIZfLRX5+vrTtww8/FE5OTqKysrLJ96dWqwUAoVarm3wMERHRrf744w+xaNEiER29XgCiwVd09DqxaNEi8ccff1i6qe1GU39/W6wnqqqqCpmZmQgPD5e2yeVyhIeHIz09Xecx6enpWvEAEBERIcXn5OQgPz9fK0apVCI0NFTvOfVdp1+/fvD09NS6TmlpKY4fP673uMrKSpSWlmp9ERERtQRX1yJpUnkdmUwDV9diC7WILJZEFRYWoqamRitRAQBPT0/k5+frPCY/P99gfN13Y85pzHVuvYYuiYmJUCqV0pdKpWryNYmIiAxRKssQGblb79t5ZH58O68FzZs3D/Hx8dLn0tJSJlJERNRigoKy4e9/FsXFrnB1LWYCZWEWS6Lc3d1hZWWFgoICre0FBQXw8vLSeYyXl5fB+LrvBQUFWusHFRQUIDAwsMlt8/LyavCWYN119bUNAGxtbWFra9vk6xARETVGoVBofVYqy3QmT/XjyPQslkQpFAoEBwcjLS0NUVFRAACNRoO0tDTExsbqPCYsLAxpaWmIi4uTtu3duxdhYWEAAD8/P3h5eSEtLU1KmkpLS5GRkaH3TTx911m6dCkuX74MDw8P6TpOTk7o06eP8TdLRETUTG5uboiNjUVVVZXeGIVCATc3NzO2igALD+fFx8cjOjoaISEhGDx4MJKSklBeXo7p06cDAKZNm4YuXbogMTERADBnzhwMGzYMK1aswJgxY7B582YcPnwYa9asAQDIZDLExcVhyZIlCAgIgJ+fHxYsWAAfHx8pUQNqa0AVFxcjNzcXNTU1OHLkCACgR48e6Ny5Mx566CH06dMHU6dOxbJly5Cfn4/58+dj9uzZ7GkiIiKzY4LUSpnpbUG93n//fdGtWzehUCjE4MGDxX//+19p37Bhw0R0dLRW/L/+9S/Rs2dPoVAoxN133y2++uorrf0ajUYsWLBAeHp6CltbWzFy5Ehx+vRprZjo6GiB2gWItL72798vxZw/f16MHj1a2NvbC3d3d/Hiiy+K6upqo+6NJQ6IiIjanqb+/pYJIYSBHItuQ2lpKZRKJdRqNZycnCzdHCIiImqCpv7+tviyL0RERERtEUscEBERmUlRUREniLcjTKKIiIjMoKioCKtWrWo0LjY2lolUG8HhPCIiIjOo3wOlVjsiJ8dXWkBYXxy1XuyJIiIiMrOsrIHYtWsshJBLy7cEBWVbullkJPZEERERmZFa7SglUAAghBy7do1t0CNFrR+TKCIiIjMqLnaTEqg6QshRXOxqoRZRczGJIiIiMiNX1yLIZBqtbTKZBq6uxRZqETUXkygiIiIzUirLEBm5W0qk6uZE6VpUmFo3TiwnIiIys6CgbPj7n0VxsStcXYuZQLVRTKKIiIjMQKFQaH1WKst0Jk/146j1YhJFRERkBm5uboiNjWXF8naESRQREZGZMEFqXzixnIiIiKgZmEQRERERNQOTKCIiIqJmYBJFRERE1AxMooiIiIiagUkUERERUTMwiSIiIiJqBiZRRERERM3QrGKbBw8eRHp6OvLz8wEAXl5eCAsLw+DBg1u0cUREREStlVFJ1OXLlzFhwgT89NNP6NatGzw9PQEABQUFeOGFF3Dvvfdi27Zt8PDwMEljiYiIiFoLo4bz/va3v6GmpgYnT57E+fPnkZGRgYyMDJw/fx4nT56ERqPB7NmzTdVWIiIiolZDJoQQTQ12dHTEDz/8gIEDB+rcn5mZiQceeABlZQ1Xpe6ISktLoVQqoVar4eTkZOnmEBERURM09fe3UT1Rtra2KC0t1bu/rKwMtra2xpySiIiIqE0yKomaOHEioqOj8eWXX2olU6Wlpfjyyy8xffp0TJ48ucUbSURERNTaGDWxfOXKldBoNJg0aRJu3LgBhUIBAKiqqoK1tTVmzJiBd955xyQNJSIiImpNjJoTVae0tBSZmZlaJQ6Cg4M576cezokiIiJqe5r6+7tZdaKcnJwwfPjwZjeOiIiIqK1r0YrlBQUF+Pvf/96SpyQiIiJqlVo0icrPz8fixYtb8pRERERErZJRw3k///yzwf2nT5++rcYQERERtRVGJVGBgYGQyWTQNRe9brtMJmuxxhERERG1VkYlUa6urli2bBlGjhypc//x48cRGRnZIg0jIiIias2MSqKCg4Pxxx9/oHv37jr3l5SU6OylIiIiImpvjJpY/uyzz8LX11fv/m7dumHdunVGNWD16tXw9fWFnZ0dQkNDcfDgQYPxW7duRa9evWBnZ4d+/fphz549WvuFEEhISIC3tzfs7e0RHh6OM2fOaMUUFxdjypQpcHJygrOzM2bMmIFr165pxXzzzTe455574OjoiDvuuAMTJkzA+fPnjbo3IiIiar+MSqIeeeQRPPHEE3r3u7i4IDo6usnn27JlC+Lj47Fw4UJkZWVhwIABiIiIwOXLl3XGHzhwAJMnT8aMGTOQnZ2NqKgoREVF4dixY1LMsmXLkJycjJSUFGRkZMDBwQERERG4fv26FDNlyhQcP34ce/fuxe7du/HDDz8gJiZG2p+Tk4Px48djxIgROHLkCL755hsUFhbi0UcfbfK9ERERUTsnLGjw4MFi9uzZ0ueamhrh4+MjEhMTdcY/9thjYsyYMVrbQkNDxTPPPCOEEEKj0QgvLy+xfPlyaX9JSYmwtbUVn3/+uRBCiBMnTggA4tChQ1LM119/LWQymfj999+FEEJs3bpVWFtbi5qaGilm586dQiaTiaqqqibfn1qtFgCEWq1u8jFERERkWU39/W3UnKj4+Pgmxa1cubLRmKqqKmRmZmLevHnSNrlcjvDwcKSnp+s8Jj09vUEbIiIisGPHDgC1PUj5+fkIDw+X9iuVSoSGhiI9PR2TJk1Ceno6nJ2dERISIsWEh4dDLpcjIyMDjzzyCIKDgyGXy7Fu3To8+eSTuHbtGj799FOEh4fDxsZG7z1VVlaisrJS+nzrIs1ERETUvhiVRGVnZ2t9/vHHHxEcHAx7e3tpW1NLHBQWFqKmpgaenp5a2z09PXHq1Cmdx+Tn5+uMr1vDr+57YzEeHh5a+62treHq6irF+Pn54dtvv8Vjjz2GZ555BjU1NQgLC2sw/6q+xMREFhslIiLqIIxKovbv36/12dHREZs2bcKdd97Zoo2ytPz8fMycORPR0dGYPHkyysrKkJCQgL/85S/Yu3ev3kRx3rx5Wj1lpaWlUKlU5mo2EREBKCoqQlVVld79CoUCbm5uZmwRtVfNWoC4Jbi7u8PKygoFBQVa2wsKCuDl5aXzGC8vL4Pxdd8LCgrg7e2tFRMYGCjF1J+4fuPGDRQXF0vHr169GkqlEsuWLZNiPvvsM6hUKmRkZOCee+7R2T5bW1vY2to2dutERGQiRUVFWLVqVaNxsbGxTKTotrXo2nnGUCgUCA4ORlpamrRNo9EgLS0NYWFhOo8JCwvTigeAvXv3SvF+fn7w8vLSiiktLUVGRoYUExYWhpKSEmRmZkox+/btg0ajQWhoKACgoqICcrn2o7GyspLaSERErVP9Hii12hE5Ob5Qqx0NxhE1h8V6ooDaierR0dEICQnB4MGDkZSUhPLyckyfPh0AMG3aNHTp0gWJiYkAgDlz5mDYsGFYsWIFxowZg82bN+Pw4cNYs2YNgNr5WHFxcViyZAkCAgLg5+eHBQsWwMfHB1FRUQCA3r17Y9SoUZg5cyZSUlJQXV2N2NhYTJo0CT4+PgCAMWPG4N1338Xf//53aTjvtddeQ/fu3TFw4EDzPygiIjJaVtZA7No1FkLIIZNpEBm5G0FB2Y0fSNREt7UAsRACp06dalCosn///k0638SJE3HlyhUkJCQgPz8fgYGBSE1NlSaG5+bmavUIDRkyBJs2bcL8+fPx2muvISAgADt27EDfvn2lmLlz56K8vBwxMTEoKSnB0KFDkZqaCjs7Oylm48aNiI2NxciRIyGXyzFhwgQkJydL+0eMGIFNmzZh2bJlWLZsGTp16oSwsDCkpqZqTaInIqLWSa12lBIoABBCjl27xsLf/yyUyjILt47aC5kQTV+nRS6XN2kB4pqamhZtZFtVWloKpVIJtVoNJycnSzeHiKjdu3TpEtasWYOcHF9s2NCw+HN09Hr4+V1ATEyM1txZols19fe3UT1ROTk5t90wIiIiU3N1LYJMppF6ogBAJtPA1bXYgq2i9saoJErfwsNEREQt7XZKFSiVZYiM3N1gThSH8qgltcjE8hEjRmDdunVMsoiIqEW0RKmCoKBs+PufRXGxK1xdi5lAUYszKonauXOnzu0//PADdu/eLRWWHDdu3O23jIiIOixdpQqKi93g6lqklQzVj1MoFFqflcoynclT/Tii5jAqiYqKitI7sfy5554DAE4sJyKi26ZWq6WfDZUqUKvVWhPE3dzcEBsby4rlZBZGJVERERGwsrLCxx9/rLX+nI2NDY4ePYo+ffq0eAOJiKjjqa6uBtB4qYK6uFsxQSJzMapi+ddff42RI0ciJCQEu3fvNlWbiIiIAADFxW5ab9gBtYlUcbGrhVpEdJPRy7688MIL2LlzJ1555RU888wzqKioMEW7iIiIYGNTCaD+FBIBGxsu20KW16y18wIDA3H48GHIZDIEBgbqnCNFRER0u6qrbQHI6m2VobqaE8PJ8ppd4sDe3h4pKSnYuXMn9u/fD3d395ZsFxERdWBlZbVv1DVWNLMujsgSjOqJ2rdvH/r06YPS0lJp27hx4/Duu+/C1tYWd999N/7zn/+0eCOJiKhjqiuaKZNpAIBFM6lVMSqJSkpKwsyZM3WuI6NUKvHMM89g5cqVLdY4IiLqmBwdHbU+180aqT97pH4ckTkZlUQdPXoUo0aN0rv/oYceQmZm5m03ioiIOjYbGxsAN0sc3Px1VVviQK121IojsgSj5kQVFBQY/ANrbW2NK1eu3HajiIio49C1Rl5d/SdDJQ5qq5ErzdZOovqMSqK6dOmCY8eOoUePHjr3//zzz1qVY4mIiAxpbI28xiaWE1mSUcN5Dz/8MBYsWIDr16832Pfnn39i4cKFGDt2bIs1joiI2jdDy7MAnFhOrZtRPVHz58/H9u3b0bNnT8TGxuKuu+4CAJw6dQqrV69GTU0NXn/9dZM0lIiI2j9dCw0HBWXD3/8siotd4epazASKWg2jkihPT08cOHAAs2bNwrx586QimzKZDBEREVi9ejU8PT1N0lAiImrfDC00XDv/qWHypFCw6CZZjtHFNrt37449e/bg6tWrOHv2LIQQCAgIgIuLiynaR0RE7YCuyeMAUFhYCKDxhYYfffTRBkWdFQoFFxsmi2p2xXIXFxcMGjSoJdtCRERtmL5ESa1WY8uWLQaPbewtPHd3d764RK1Os5MoIiKiOo29ZdcYvoVHbVGzFiAmIiK6Vf0eKLXaETk5vlJRzFtdvOiNAwfuwcWLN3uW+BYetUXsiSIiohZlaIL4l1+Ox9GjAwDIAAgMGHAUjzzybwCG38LjBHJqjZhEERGRUXTNfWrKBPGyss63JFAAIMPRowMwaNBBdO16CcOHD0dAQECD63ECObVWTKKIiKjJGpv7ZGiC+KVL3riZQNWRIS+vG7p2vQQXFxdOHqc2hUkUERE1ma65T7cWxzQ0QdzGpgqAgHYiJaBS5Zql7UQtjUkUERE1i765T5GRuxtsryuWOWDA0QZzorp2vWTpWyFqFiZRRERkNENznwxNEH/kkX9j0KCDyMvrBpUqVyuBsrbmryRqW/gnloiImkytVgNovDimvmVaAKBr10s6e588PDxavsFEJsQkioiImuzq1asAGi+OGRoaigEDBkj71Go1hBBwdnbWeV6+gUdtEZMoIiJqsurqagC1xTH79/9Za35T//4/S71PnTp10nrTjm/dUXvEiuVERGQ0tdoRR4/2h3bNp/46K5QTtVdMooiIqMnqJn/n5anQ8FeIHHl5XbXiiNozJlFERNRkjo5N62lqahxRW8YkioiIjKZS5aG2cOZNMpkGKtVFyzSIyAKYRBERkdGUyjKMG7cLMpkGALSKahJ1FBZPolavXg1fX1/Y2dkhNDQUBw8eNBi/detW9OrVC3Z2dujXrx/27NmjtV8IgYSEBHh7e8Pe3h7h4eE4c+aMVkxxcTGmTJkCJycnODs7Y8aMGbh27VqD87zzzjvo2bMnbG1t0aVLFyxdurRlbpqIqI26da5TUFA24uKSEB29HnFxSQgKytYZR9ReWTSJ2rJlC+Lj47Fw4UJkZWVhwIABiIiIwOXLl3XGHzhwAJMnT8aMGTOQnZ2NqKgoREVF4dixY1LMsmXLkJycjJSUFGRkZMDBwQERERG4fv26FDNlyhQcP34ce/fuxe7du/HDDz8gJiZG61pz5szBP//5T7zzzjs4deoUdu7cicGDB5vmQRARtRH1C2IqlWXw87vQoAeKhTOpI5AJIUTjYaYRGhqKQYMGSSuCazQaqFQqPPfcc3j11VcbxE+cOBHl5eXYvXu3tO2ee+5BYGAgUlJSIISAj48PXnzxRbz00ksAagu8eXp6Yv369Zg0aRJOnjyJPn364NChQwgJCQEApKam4uGHH8bFixfh4+ODkydPon///jh27BjuuuuuZt9faWkplEol1Go1nJycmn0eIiJTKSoqarCo8K10FcFszjFEbUlTf39brL+1qqoKmZmZmDdvnrRNLpcjPDwc6enpOo9JT09HfHy81raIiAjs2LEDAJCTk4P8/HyEh4dL+5VKJUJDQ5Geno5JkyYhPT0dzs7OUgIFAOHh4ZDL5cjIyMAjjzyCXbt24c4778Tu3bsxatQoCCEQHh6OZcuWwdXVVe89VVZWorKyUvpcWlpq1DMhIjIFfUmPWq3Gli1bGj0+NjZWKyligkRUy2JJVGFhIWpqauDp6am13dPTE6dOndJ5TH5+vs74/Px8aX/dNkMx9buZra2t4erqKsX89ttvuHDhArZu3YpPPvkENTU1eOGFF/CXv/wF+/bt03tPiYmJWLx4cWO3TkRkNkVFRVJvf2PUakcUF7vB1bVIa3jOUK8TUUfGmX86aDQaVFZW4pNPPkHPnj0BAGvXrkVwcDBOnz6td4hv3rx5Wj1lpaWlUKlUZmkzEZEu9RMgfYlSVtZA7No1FkLIpTftbp0oTkQNWSyJcnd3h5WVFQoKCrS2FxQUwMvLS+cxXl5eBuPrvhcUFGit01RQUIDAwEAppv7E9Rs3bqC4uFg63tvbG9bW1lICBQC9e/cGAOTm5upNomxtbWFra2vwvomILEVfoqRWO0rbAUAIOXbtGgt//7MsWUBkgMXezlMoFAgODkZaWpq0TaPRIC0tDWFhYTqPCQsL04oHgL1790rxfn5+8PLy0oopLS1FRkaGFBMWFoaSkhJkZmZKMfv27YNGo0FoaCgA4N5778WNGzdw7tw5KebXX38FAHTv3v12bpuIyCSKiopw6dKlBl+FhYUAoDdRquuZqtteRwg5iov1zwElIgsP58XHxyM6OhohISEYPHgwkpKSUF5ejunTpwMApk2bhi5duiAxMRFAbdmBYcOGYcWKFRgzZgw2b96Mw4cPY82aNQAAmUyGuLg4LFmyBAEBAfDz88OCBQvg4+ODqKgoALU9SqNGjcLMmTORkpKC6upqxMbGYtKkSfDx8QFQO9E8KCgITz31FJKSkqDRaDB79mw8+OCDWr1TREStQf15T7qG7AwlSq6uRZDJNFr7ZTINXF2LzXMDRG2URZOoiRMn4sqVK0hISEB+fj4CAwORmpoqTQzPzc2FXH7zL/WQIUOwadMmzJ8/H6+99hoCAgKwY8cO9O3bV4qZO3cuysvLERMTg5KSEgwdOhSpqamws7OTYjZu3IjY2FiMHDkScrkcEyZMQHJysrRfLpdj165deO6553D//ffDwcEBo0ePxooVK8zwVIiIjHPrvCd9Q3aGEiWlsgyRkbsbHMehPCLDLFonqr1jnSgiModLly5hzZo1UKsdkZQU1yBRiotLglJZ1ujk8doeLFcpsaoTExOjNc+UqL1r9XWiiIioZRkaslMqyxAUlA1//7M6EyWgtvq4rt4nhUJh0nYTtVVMooiI2ji1Wg0ATZrbpC9Reuyxx+Ds7NxgO6uPE+nHJIqIqI2rrq4GAGlu086dY1H78rX23Kbhw4cjICCgwfFMlIiah0kUEVEbomsJl6tXr2p9lskAIWq/38rFxYVzm4haEJMoIqI2orElXFg0k8i8LFZsk4iIjKNrCZecHF+o1Y4ADE8sB2rXCSWilsO/UUREbZCucgX+/mcNTizXNXGciJqPPVFERG2MvmE7AIiM3A2ZTAMALJpJZGLsiSIiamV0TR4HIK2DZ2jYrrFaUETUcphEERG1Io1NHgcarwfFoplE5sEkioioFdE1ebz+YsKNrXX36KOPwt3dXes8rAVF1PKYRBERtSJ5eXnSz4bWujM0bOfu7s56UERmwInlREStyPXr1wHonzxeV84AqO2R8vO70GDojsN2RObBnigiolaoscWEQ0JCEBQU1OA4DtsRmQ+TKCKiVqiqyhqAAHDr2i0CVVU2AABHR0cO2RFZGJMoIiIT0leuoI6+nqOiIndoJ1AAIENxsRuAsy3aRiJqHiZRREQm0pRyBQAQGxvbIJHq1u0CdPVEqVS5LdpGImo+TiwnIjKRK1euaH2uv9adrri69e26dr2EAQOOojaRAgCBAQOOomvXS1pxRGQ5/FtIRGQi1dXV0s9ZWQOxc+dY1P6/qwbjxt0sV3BrnKPjzQTrkUf+jUGDDiIvrxtUqlwpgaofR0SWwSSKiOg26Zv3dPXqVQC1PVA3EygAkGPnzrHw9z/boDxBp06dtD537XpJK3nSF0dE5sckiojoNjRl3lNengoNZ0/IkZfXFUrlSa2t/v7+eOKJJ1BRUaH3fJ06dYK/v38zW0xELYVJFBHRbWjKMi3GYoJE1DYwiSIiaiH6lmlRqfJQ/007mUwDleqixdpKRLePb+cREbUAQ8u0KJVlGDduF2QyDQA0WDCYiNom9kQRETWRrgnkhYWFABpfpsXQgsEsV0DUNvFvLhHRLfS9aadWq7Flyxa9x7m6FkEm02glUjKZBq6uxdJnpbJMZ++Th4fHbbaaiCyBSRQR0f/Uf9PO0CTx+vuUyjJERu5uMCeq7rhHH30U7u7uDa7JBYOJ2i4mUURE/3NrD5S+SeKG9hkasnN3d+eCwUTtDCeWExH9T0lJCQDDk8QN7QNqh+z8/C406LlSKBTmuxEiMgv2RBER/c+NGzcAGJ4kDsgMTiDXNWzHITui9olJFBFRPTY2lahf1wkQsLGpgqPjNYMTyDlsR9RxcDiPiKie6mpbaCdQACBDdbVCmkDOmk9ExJ4oIqJ6GitXYGgCORF1HEyiiKjD0VcL6urVqwDQaLmCuhhdyRMnkBN1HEyiiKhDqV8LSh9DvU0PPvgg/Pz8GhzDCeREHUurmBO1evVq+Pr6ws7ODqGhoTh48KDB+K1bt6JXr16ws7NDv379sGfPHq39QggkJCTA29sb9vb2CA8Px5kzZ7RiiouLMWXKFDg5OcHZ2RkzZszAtWvXdF7v7NmzcHR0hLOz823dJxFZXv0eKLXaETk5vlKJglvpK1fg5+cHb2/vBl9MoIg6FosnUVu2bEF8fDwWLlyIrKwsDBgwABEREbh8+bLO+AMHDmDy5MmYMWMGsrOzERUVhaioKBw7dkyKWbZsGZKTk5GSkoKMjAw4ODggIiIC169fl2KmTJmC48ePY+/evdi9ezd++OEHxMTENLhedXU1Jk+ejPvuu6/lb56ILCorayCSkuKwYUM0kpLikJU1sEnHcciOiABAJoQQlmxAaGgoBg0aJHWvazQaqFQqPPfcc3j11VcbxE+cOBHl5eXYvXu3tO2ee+5BYGAgUlJSIISAj48PXnzxRbz00ksAate88vT0xPr16zFp0iScPHkSffr0waFDhxASEgIASE1NxcMPP4yLFy/Cx8dHOvcrr7yCP/74AyNHjkRcXJxUjK8pSktLoVQqoVar4eTk1JzHQ0Qt7NKlS1izZg3UakckJcU1mDweF5ekt94TwCE7oo6gqb+/LdoTVVVVhczMTISHh0vb5HI5wsPDkZ6ervOY9PR0rXgAiIiIkOJzcnKQn5+vFaNUKhEaGirFpKenw9nZWUqgACA8PBxyuRwZGRnStn379mHr1q1YvXp1k+6nsrISpaWlWl9E1DoZLqh5s94Th+yISB+LJlGFhYWoqamBp6en1nZPT0/k5+frPCY/P99gfN33xmLqr5pubW0NV1dXKaaoqAhPPvkk1q9f3+RepMTERCiVSulLpVI16TgiMr+6Mga3urWMARFRYyw+J6q1mjlzJh5//HHcf//9TT5m3rx5UKvV0ldeXp4JW0hEt4NFM4nodlm0xIG7uzusrKxQUFCgtb2goABeXl46j/Hy8jIYX/e9oKBAa+mFgoICBAYGSjH1J67fuHEDxcXF0vH79u3Dzp078c477wCofeNPo9HA2toaa9aswVNPPdWgbba2trC1tW3q7RNRE+mr61SnufOUWDSTiG6HRZMohUKB4OBgpKWlISoqCkDtxPK0tDTExsbqPCYsLAxpaWmIi4uTtu3duxdhYWEAal899vLyQlpampQ0lZaWIiMjA7NmzZLOUVJSgszMTAQHBwOoTZo0Gg1CQ0MB1M6bqqmpka7x73//G2+//TYOHDiALl26tORjICIDmlrXKTY2tkmJVP0361g0k4iay+LFNuPj4xEdHY2QkBAMHjwYSUlJKC8vx/Tp0wEA06ZNQ5cuXZCYmAgAmDNnDoYNG4YVK1ZgzJgx2Lx5Mw4fPow1a9YAAGQyGeLi4rBkyRIEBATAz88PCxYsgI+Pj5So9e7dG6NGjcLMmTORkpKC6upqxMbGYtKkSdKbeb1799Zq5+HDhyGXy9G3b18zPRkiAnTXdSoudoOra5FW8mOop+pWbm5uiI2NNUnPFhF1LBZPoiZOnIgrV64gISEB+fn5CAwMRGpqqjQxPDc3F3L5zalbQ4YMwaZNmzB//ny89tprCAgIwI4dO7SSm7lz56K8vBwxMTEoKSnB0KFDkZqaCjs7Oylm48aNiI2NxciRIyGXyzFhwgQkJyeb78aJyGhZWQMbLMUSFJRt9HmYIBFRS7B4naj2jHWiiBoydn5TU+s6xcTEaM2DJCJqrqb+/rZ4TxQRdRy3M7/JUF0nTggnIktgiQMiMpumrlunq6eKdZ2IqLVhTxQRWYSx85vq6jrVP4a9UERkKUyiiMjs1GpHKRkCaofldu0aC3//swaTItZ1IqLWhEkUEbU4fZPHCwsLARg3v4l1nYiotWISRUQtqimTx+vmN9V/007X/CbWdSKi1opJFBG1qCtXrmh91lUc09j5TUyQiKg1YhJFRC2qurpa+jkrayB27hyL2heBNRg37ubkcc5vIqK2jiUOiMgk1GrHWxIoAJBj586xWuUMlMoy+PldaHQeFBFRa8SeKCIyibw8FRr+f5oceXldoVSexPDhwxEQENDgOM5vIqK2gkkUEVmEi4sLl2khojaNSRQRGWTsWnd1VKo8AAKATNomk2mgUl00QSuJiMyPSRQR6XU7a90plWUYN24XK4wTUbvFJIqI9NK11l39cgX146ytb/6zYugNvFvjiIjaIv4rRkQAdA/b1VUYB5q+1p2Hh4fWZ30VxuvHERG1NUyiiKjRYTtj1rpjhXEi6iiYRBGRwYQHMG6tO4AVxomoY2CxTSJqQK12RE6Or1QYs26tu1vpW+uOiKijYE8UUQeir1xBU+Y+GbPWHRFRR8Akiqid0ZcoqdVqbNmyxeCxhuY+ca07IiJtTKKI2pGm1nUCdJcraGzuk7437bjWHRF1REyiiNqoxkoSAPrrOukbsqub+3RrInXr3KdHH30U7u7uWtfgm3ZE1FExiSJqxW5naE5fotRYuQJDc5/c3d253h0R0f8wiSJqpW5naM5QotTYkJ2huU8ctiMiuolJFFEr1dQlV3T1OLm4XNWbKDVnyA7gsB0RUX1MoohaKbVaLf1saGhu585IADIAN3ucZsz4p95EiUN2REQtg0kUUStVXV0NwHDZgbw8FeoSqDpCyFFS4mwwUWK5AiKi28ckiqiVMzSHyZDGEiWWKyAiuj1MoojMxNCbdtXV1bC2toazs7O0/erVqwAAG5tKAALaPU4CNjZVUKmKAWigvYKTBirVRQD6E6XHHntM61p1OO+JiKjpmEQRmYExb9rVV11ti/pDdoAM1dUKKJVlGDduN3buHIvaREqDceNuDtsNHz4cAQEBWkcyUSIiahlMoojM4Ny5c1qf9b1pp2t7Y2/TGRq28/Dw4CRxIiITYRJFZAbXr1+Xfs7KGtig5ygoKFvvG3iNvU0H6B+2u+OOO8xwd0REHROTKKIWpG/eU1lZbYJTvyQBIMfOnWPh4ZFvsIq4od4m1nUiIrIMJlFELaQp855On+6JhvOb5Pjll74Gq4gD+nubfHx8mCwREVkAkyiiZmju4r/XrnXWe05WEScialuYRBHpoW9orqSkBP/6178MHqtvflPPnr/ihx+GoX65gn79jsHTs5BVxImI2hB54yGmt3r1avj6+sLOzg6hoaE4ePCgwfitW7eiV69esLOzQ79+/bBnzx6t/UIIJCQkwNvbG/b29ggPD8eZM2e0YoqLizFlyhQ4OTnB2dkZM2bMwLVr16T933//PcaPHw9vb284ODggMDAQGzdubLmbplatbmhuzZo1Db7qJ1BqtSNycnyhVjtKn3XNb1KrHdG16yUMGHAUtXWfAEBgwICj6Nr1EoKCshEXl4To6PWIi0tCUFC2Ge+YiIiMZfGeqC1btiA+Ph4pKSkIDQ1FUlISIiIicPr0aXh4eDSIP3DgACZPnozExESMHTsWmzZtQlRUFLKystC3b18AwLJly5CcnIwNGzbAz88PCxYsQEREBE6cOAE7OzsAwJQpU3Dp0iXs3bsX1dXVmD59OmJiYrBp0ybpOv3798crr7wCT09P7N69G9OmTYNSqcTYsWPN94DIIky1+K9SWYZHHvk3Bg06iLy8blCpctG16yUpjlXEiYjaDpkQQjQeZjqhoaEYNGiQNCFXo9FApVLhueeew6uvvtogfuLEiSgvL8fu3bulbffccw8CAwORkpICIQR8fHzw4osv4qWXXgJQWxHa09MT69evx6RJk3Dy5En06dMHhw4dQkhICAAgNTUVDz/8MC5evAgfHx+dbR0zZgw8PT3x8ccfN+neSktLoVQqoVar4eTkZNRzIfPQN2RXWFiI7du3AzC8+G9SUlyDeUwzZvwTa9c+3WB7XFxSo2vUjR49GiqVSmsb5z0REZlXU39/W7QnqqqqCpmZmZg3b560TS6XIzw8HOnp6TqPSU9PR3x8vNa2iIgI7NixAwCQk5OD/Px8hIeHS/uVSiVCQ0ORnp6OSZMmIT09Hc7OzlICBQDh4eGQy+XIyMjAI488ovPaarUavXv31ns/lZWVqKyslD6Xlpbqv3myuKa8TWdo8V99a9pVVysM1nUaPnw4XFxcGlyrU6dO8Pf3b6G7IyIiU7NoElVYWIiamhp4enpqbff09MSpU6d0HpOfn68zPj8/X9pft81QTP2hQmtra7i6ukox9f3rX//CoUOH8I9//EPv/SQmJmLx4sV691Pr0pQhO0OL/xqqJO7nd0FvXaeAgABOEiciagcsPieqLdi/fz+mT5+Ojz76CHfffbfeuHnz5mn1kpWWljYYmiHLOHfuHCoqKrS21S3wC+gfsjOUKDVWSZzzm4iI2jeLJlHu7u6wsrJCQUGB1vaCggJ4eXnpPMbLy8tgfN33goICrf/bLygoQGBgoBRz+fJlrXPcuHEDxcXFDa77f//3f4iMjMS7776LadOmGbwfW1tb2NraGowh09GVKAG1PY8HDhzQe5yhIbvGEiVjK4lzfhMRUfth0SRKoVAgODgYaWlpiIqKAlA7sTwtLQ2xsbE6jwkLC0NaWhri4uKkbXv37kVYWBgAwM/PD15eXkhLS5OSptLSUmRkZGDWrFnSOUpKSpCZmYng4GAAwL59+6DRaBAaGiqd9/vvv8fYsWPx9ttvIyYmpoXvnlrSuXPn8NlnnzUp9uJFb+Tmdke3bhfQteslg0N2jS25ArCSOBFRR2Xx4bz4+HhER0cjJCQEgwcPRlJSEsrLyzF9+nQAwLRp09ClSxckJiYCAObMmYNhw4ZhxYoVGDNmDDZv3ozDhw9jzZo1AACZTIa4uDgsWbIEAQEBUokDHx8fKVHr3bs3Ro0ahZkzZyIlJQXV1dWIjY3FpEmTpDfz9u/fj7Fjx2LOnDmYMGGCNFdKoVDA1dXVzE+JGlO/B6p+olTnyy/H4+jRAagtdllbo2nEiH0Gq4UD+hOliRMnQqlUNtjOHiciovbP4knUxIkTceXKFSQkJCA/Px+BgYFITU2VJobn5uZCLr/5y23IkCHYtGkT5s+fj9deew0BAQHYsWOHVCMKAObOnYvy8nLExMSgpKQEQ4cORWpqqlQjCgA2btyI2NhYjBw5EnK5HBMmTEBycrK0f8OGDaioqEBiYqKUwAHAsGHD8P3335vwiZAh+koS3Dq/SVei9Mgj/8bFi963bAcAGY4eHYBBgw4aHLLjkitERKSLxetEtWesE9WymlKS4OJFb/zznzNRf1mVp5/+CLm53fHttxENjomISEVYWMb/3s5rOGQXExPDt+mIiDqQNlEnisgYTSlJkJvbHdoJFADIkJfXDd26XUDtcivaCZZKlQuAb9MREZFxmERRq6Rr2K6wsFD6WV9JAkOJUt26dfWH+urmTA0fPhwBAQFa1+SQHRER6cMkilqdxobtDJUkaCxRMrRunYuLC4ftiIioyZhEkcUYWrfuVvWH7RorSWAoUQKArl0vNdgG1C67QkRE1FRMosik9CVKarUaW7ZsafR4XcN2/v5nGy1JoC9RGjJkiM5Crly3joiIjMUkikymKW/T1dE1SVzfsF1cXBIX+CUiIotjEkUtQlePU05OjtZnXYkSoH+SuKFhO0NVxLnALxERmQOTKLptTelxysoaiJ07xwKQA9Bg3LjaRMnQJHFDi/8CLElARESWxSSKblv9xZzr9zip1Y63JFAAIMfOnWP/15Okv7fJz++C0ZXEWZKAiIjMhUkUNZm+SeJXrlyRftY1NKdQVOJmAlVHjry8rlCpLhrsbTI0bOfu7s5hOyIishgmUdQkTRmyq+1xikRdocu6obnRo/foPUapLDPY21QXw2E7IiJqbZhEUZM0ZcmVvDwV6i+5UtvDJFC/irhMpoFKdRGA4d4mLv5LREStFZOoDurcuXOoqKjQu99QOQB9b9PpP9efGDduV7N6m3x8fJgsERFRq8QkqgM6d+4cPvvss0bjnnjiiQaJlKG36VSqPAAaaM9/qu1xUirL9PY2Pfjgg/Dz82twffY2ERFRa8Ykqh3TNxH8999/1/p88aI3cnO7o1u3C1pVvnX1VDX2Nt24cbsblDKoS5j09TbdddddTJaIiKjNYRLVDuhKlkpKSvCvf/2r0WO//HJ8g8V6H3nk33rjG6vdZGh+00MPPQRfX1+t87G3iYiI2iomUW1cU5dW0TUR/OJF71sSKACQ4ejRARg06KDOdeeA23ubrmfPnkyYiIio3WAS1cbVL3Spi76J4Lm53VH/bTpAhry8bnqTKIBv0xEREQFMotqMphS6BBrObzI0EbxbtwuoX3oAEFCpchtcp35NJr5NR0REHR2TqDagqUN2uuY3BQYeNTgRfMCAow2O0dUL5ebmhtjYWJ2JXB32NhERUUfCJKoNaEqhS33zm/r0OW5wIvgjj/wbgwYdRF5eN6hUuQaH8ZggERER3cQkqo0xdn5TcbFboxPBu3a9pDN56tSpk2lvhoiIqA1jEtWGNHd+U9eul/ROBB8+fDhcXFwaXMtQxXIiIiJiEtWmNFbo0tD8Jn0Twe+++24O0xERETUDk6g2pLFCl4bmN7HQJRERUctiEtWGNKXQpb75TSx0SURE1LKYRLUxLHRJRETUOjCJagNY6JKIiKj1YRLVBrDQJRERUevDJKqNYIJERETUusgbDyEiIiKi+phEERERETUDkygiIiKiZmASRURERNQMTKKIiIiImqFVJFGrV6+Gr68v7OzsEBoaioMHDxqM37p1K3r16gU7Ozv069cPe/bs0dovhEBCQgK8vb1hb2+P8PBwnDlzRiumuLgYU6ZMgZOTE5ydnTFjxgxcu3ZNK+bnn3/GfffdBzs7O6hUKixbtqxlbpiIiIjaPIsnUVu2bEF8fDwWLlyIrKwsDBgwABEREbh8+bLO+AMHDmDy5MmYMWMGsrOzERUVhaioKBw7dkyKWbZsGZKTk5GSkoKMjAw4ODggIiIC169fl2KmTJmC48ePY+/evdi9ezd++OEHxMTESPtLS0vx0EMPoXv37sjMzMTy5cuxaNEirFmzxnQPg4iIiNoOYWGDBw8Ws2fPlj7X1NQIHx8fkZiYqDP+scceE2PGjNHaFhoaKp555hkhhBAajUZ4eXmJ5cuXS/tLSkqEra2t+Pzzz4UQQpw4cUIAEIcOHZJivv76ayGTycTvv/8uhBDigw8+EC4uLqKyslKKeeWVV8Rdd93V5HtTq9UCgFCr1U0+hoiIiCyrqb+/LdoTVVVVhczMTISHh0vb5HI5wsPDkZ6ervOY9PR0rXgAiIiIkOJzcnKQn5+vFaNUKhEaGirFpKenw9nZGSEhIVJMeHg45HI5MjIypJj7779fa8mViIgInD59GlevXtXZtsrKSpSWlmp9ERERUftk0YrlhYWFqKmpgaenp9Z2T09PnDp1Sucx+fn5OuPz8/Ol/XXbDMV4eHho7be2toarq6tWjJ+fX4Nz1O1zcXFp0LbExEQsXry4wXYmU0RERG1H3e9tIYTBOC770oLmzZuH+Ph46fPvv/+OPn36QKVSWbBVRERE1BxlZWVQKpV691s0iXJ3d4eVlRUKCgq0thcUFMDLy0vnMV5eXgbj674XFBTA29tbKyYwMFCKqT9x/caNGyguLtY6j67r3HqN+mxtbWFrayt97ty5M/Ly8uDo6AiZTKbzGH1KS0uhUqmQl5cHJycno45tT/gc+Azq8DnwGQB8BnX4HEz7DIQQKCsrg4+Pj8E4iyZRCoUCwcHBSEtLQ1RUFABAo9EgLS0NsbGxOo8JCwtDWloa4uLipG179+5FWFgYAMDPzw9eXl5IS0uTkqbS0lJkZGRg1qxZ0jlKSkqQmZmJ4OBgAMC+ffug0WgQGhoqxbz++uuorq6GjY2NdJ277rpL51CeLnK5HF27djXqmdTn5OTUYf+C3IrPgc+gDp8DnwHAZ1CHz8F0z8BQD1Qdi5c4iI+Px0cffYQNGzbg5MmTmDVrFsrLyzF9+nQAwLRp0zBv3jwpfs6cOUhNTcWKFStw6tQpLFq0CIcPH5aSLplMhri4OCxZsgQ7d+7EL7/8gmnTpsHHx0dK1Hr37o1Ro0Zh5syZOHjwIH766SfExsZi0qRJUtb5+OOPQ6FQYMaMGTh+/Di2bNmC9957T2u4joiIiDoui8+JmjhxIq5cuYKEhATk5+cjMDAQqamp0iTu3NxcyOU3c70hQ4Zg06ZNmD9/Pl577TUEBARgx44d6Nu3rxQzd+5clJeXIyYmBiUlJRg6dChSU1NhZ2cnxWzcuBGxsbEYOXIk5HI5JkyYgOTkZGm/UqnEt99+i9mzZyM4OBju7u5ISEjQqiVFREREHZhZCi6Q0a5fvy4WLlworl+/bummWBSfA59BHT4HPgMh+Azq8Dm0jmcgE6KR9/eIiIiIqAGLz4kiIiIiaouYRBERERE1A5MoIiIiomZgEkVERETUDEyiLGj16tXw9fWFnZ0dQkNDcfDgQb2xx48fx4QJE+Dr6wuZTIakpCTzNdTEjHkOH330Ee677z64uLjAxcUF4eHhBuPbCmOewfbt2xESEgJnZ2c4ODggMDAQn376qRlbaxrGPINbbd68GTKZTKoD19YZ8xzWr18PmUym9XVrKZe2ytg/CyUlJZg9eza8vb1ha2uLnj17Ys+ePWZqrekY8xweeOCBBn8WZDIZxowZY8YWtzxj/ywkJSXhrrvugr29PVQqFV544QVcv37ddA202HuBHdzmzZuFQqEQH3/8sTh+/LiYOXOmcHZ2FgUFBTrjDx48KF566SXx+eefCy8vL/Huu++at8EmYuxzePzxx8Xq1atFdna2OHnypHjyySeFUqkUFy9eNHPLW46xz2D//v1i+/bt4sSJE+Ls2bMiKSlJWFlZidTUVDO3vOUY+wzq5OTkiC5duoj77rtPjB8/3jyNNSFjn8O6deuEk5OTuHTpkvSVn59v5la3LGOfQWVlpQgJCREPP/yw+PHHH0VOTo74/vvvxZEjR8zc8pZl7HMoKirS+nNw7NgxYWVlJdatW2fehrcgY5/Bxo0bha2trdi4caPIyckR33zzjfD29hYvvPCCydrIJMpCBg8eLGbPni19rqmpET4+PiIxMbHRY7t3795ukqjbeQ5CCHHjxg3h6OgoNmzYYKommtztPgMhhBg4cKCYP3++KZpnFs15Bjdu3BBDhgwR//znP0V0dHS7SKKMfQ7r1q0TSqXSTK0zD2OfwYcffijuvPNOUVVVZa4mmsXt/rvw7rvvCkdHR3Ht2jVTNdHkjH0Gs2fPFiNGjNDaFh8fL+69916TtZHDeRZQVVWFzMxMhIeHS9vkcjnCw8ORnp5uwZaZV0s8h4qKClRXV8PV1dVUzTSp230GQgikpaXh9OnTuP/++03ZVJNp7jP4+9//Dg8PD8yYMcMczTS55j6Ha9euoXv37lCpVBg/fjyOHz9ujuaaRHOewc6dOxEWFobZs2fD09MTffv2xZtvvomamhpzNbvFtcS/jWvXrsWkSZPg4OBgqmaaVHOewZAhQ5CZmSkN+f3222/Ys2cPHn74YZO10+LLvnREhYWFqKmpkZa2qePp6YlTp05ZqFXm1xLP4ZVXXoGPj4/WX7S2pLnPQK1Wo0uXLqisrISVlRU++OADPPjgg6Zurkk05xn8+OOPWLt2LY4cOWKGFppHc57DXXfdhY8//hj9+/eHWq3GO++8gyFDhuD48eO3vfi5JTTnGfz222/Yt28fpkyZgj179uDs2bP429/+hurqaixcuNAczW5xt/tv48GDB3Hs2DGsXbvWVE00ueY8g8cffxyFhYUYOnQohBC4ceMGnn32Wbz22msmayeTKGqz3nrrLWzevBnff/99u5hMawxHR0ccOXIE165dQ1paGuLj43HnnXfigQcesHTTTK6srAxTp07FRx99BHd3d0s3x6LCwsIQFhYmfR4yZAh69+6Nf/zjH3jjjTcs2DLz0Wg08PDwwJo1a2BlZYXg4GD8/vvvWL58eZtNom7X2rVr0a9fPwwePNjSTTGr77//Hm+++SY++OADhIaG4uzZs5gzZw7eeOMNLFiwwCTXZBJlAe7u7rCyskJBQYHW9oKCAnh5eVmoVeZ3O8/hnXfewVtvvYXvvvsO/fv3N2UzTaq5z0Aul6NHjx4AgMDAQJw8eRKJiYltMoky9hmcO3cO58+fR2RkpLRNo9EAAKytrXH69Gn4+/ubttEm0BL/LtjY2GDgwIE4e/asKZpocs15Bt7e3rCxsYGVlZW0rXfv3sjPz0dVVRUUCoVJ22wKt/Nnoby8HJs3b8bf//53UzbR5JrzDBYsWICpU6fi6aefBgD069cP5eXliImJweuvvw65vOVnMHFOlAUoFAoEBwcjLS1N2qbRaJCWlqb1f5XtXXOfw7Jly/DGG28gNTUVISEh5miqybTUnwWNRoPKykpTNNHkjH0GvXr1wi+//IIjR45IX+PGjcPw4cNx5MgRqFQqcza/xbTEn4Wamhr88ssv8Pb2NlUzTao5z+Dee+/F2bNnpUQaAH799Vd4e3u3yQQKuL0/C1u3bkVlZSWeeOIJUzfTpJrzDCoqKhokSnXJtTDVMsEmm7JOBm3evFnY2tqK9evXixMnToiYmBjh7OwsvZ48depU8eqrr0rxlZWVIjs7W2RnZwtvb2/x0ksviezsbHHmzBlL3UKLMPY5vPXWW0KhUIgvvvhC63XesrIyS93CbTP2Gbz55pvi22+/FefOnRMnTpwQ77zzjrC2thYfffSRpW7hthn7DOprL2/nGfscFi9eLL755htx7tw5kZmZKSZNmiTs7OzE8ePHLXULt83YZ5CbmyscHR1FbGysOH36tNi9e7fw8PAQS5YssdQttIjm/p0YOnSomDhxormbaxLGPoOFCxcKR0dH8fnnn4vffvtNfPvtt8Lf31889thjJmsjkygLev/990W3bt2EQqEQgwcPFv/973+lfcOGDRPR0dHS55ycHAGgwdewYcPM3/AWZsxz6N69u87nsHDhQvM3vAUZ8wxef/110aNHD2FnZydcXFxEWFiY2Lx5swVa3bKMeQb1tZckSgjjnkNcXJwU6+npKR5++GGRlZVlgVa3LGP/LBw4cECEhoYKW1tbceedd4qlS5eKGzdumLnVLc/Y53Dq1CkBQHz77bdmbqnpGPMMqqurxaJFi4S/v7+ws7MTKpVK/O1vfxNXr141WftkQpiqj4uIiIio/eKcKCIiIqJmYBJFRERE1AxMooiIiIiagUkUERERUTMwiSIiIiJqBiZRRERERM3AJIqIiIioGZhEERG1A08++SSioqIs3QyiDoVJFBGZ1JNPPgmZTCZ9ubm5YdSoUfj5558t3bQWceu91X0NHTrUZNc7f/48ZDIZjhw5orX9vffew/r16012XSJqiEkUEZncqFGjcOnSJVy6dAlpaWmwtrbG2LFjLd2sFrNu3Trp/i5duoSdO3fqjKuurjZZG5RKJZydnU12fiJqiEkUEZmcra0tvLy84OXlhcDAQLz66qvIy8vDlStXMGLECMTGxmrFX7lyBQqFQlrB3dfXF2+88QYmT54MBwcHdOnSBatXr9Y6ZuXKlejXrx8cHBygUqnwt7/9DdeuXZP2X7hwAZGRkXBxcYGDgwPuvvtu7NmzBwBw9epVTJkyBXfccQfs7e0REBCAdevWNfn+nJ2dpfvz8vKCq6ur1GO0ZcsWDBs2DHZ2dti4cSOKioowefJkdOnSBZ06dUK/fv3w+eefa51Po9Fg2bJl6NGjB2xtbdGtWzcsXboUAODn5wcAGDhwIGQyGR544AEADYfzKisr8fzzz8PDwwN2dnYYOnQoDh06JO3//vvvIZPJkJaWhpCQEHTq1AlDhgzB6dOnm3zfRB0dkygiMqtr167hs88+Q48ePeDm5oann34amzZtQmVlpRTz2WefoUuXLhgxYoS0bfny5RgwYACys7Px6quvYs6cOdi7d6+0Xy6XIzk5GcePH8eGDRuwb98+zJ07V9o/e/ZsVFZW4ocffsAvv/yCt99+G507dwYALFiwACdOnMDXX3+NkydP4sMPP4S7u3uL3G9dW0+ePImIiAhcv34dwcHB+Oqrr3Ds2DHExMRg6tSpOHjwoHTMvHnz8NZbb0nt2rRpEzw9PQFAivvuu+9w6dIlbN++Xed1586di23btmHDhg3IyspCjx49EBERgeLiYq24119/HStWrMDhw4dhbW2Np556qkXum6hDMNnSxkREQojo6GhhZWUlHBwchIODgwAgvL29RWZmphBCiD///FO4uLiILVu2SMf0799fLFq0SPrcvXt3MWrUKK3zTpw4UYwePVrvdbdu3Src3Nykz/369dM6560iIyPF9OnTm3V/AISdnZ10fw4ODuLLL78UOTk5AoBISkpq9BxjxowRL774ohBCiNLSUmFrays++ugjnbF1583OztbaHh0dLcaPHy+EEOLatWvCxsZGbNy4UdpfVVUlfHx8xLJly4QQQuzfv18AEN99950U89VXXwkA4s8//zTmERB1WOyJIiKTGz58OI4cOYIjR47g4MGDiIiIwOjRo3HhwgXY2dlh6tSp+PjjjwEAWVlZOHbsGJ588kmtc4SFhTX4fPLkSenzd999h5EjR6JLly5wdHTE1KlTUVRUhIqKCgDA888/jyVLluDee+/FwoULtSa2z5o1C5s3b0ZgYCDmzp2LAwcOGHV/7777rnR/R44cwYMPPijtCwkJ0YqtqanBG2+8gX79+sHV1RWdO3fGN998g9zcXADAyZMnUVlZiZEjRxrVhludO3cO1dXVuPfee6VtNjY2GDx4sNYzA4D+/ftLP3t7ewMALl++3OxrE3UkTKKIyOQcHBzQo0cP9OjRA4MGDcI///lPlJeX46OPPgIAPP3009i7dy8uXryIdevWYcSIEejevXuTz3/+/HmMHTsW/fv3x7Zt25CZmSnNmaqqqpKu8dtvv2Hq1Kn45ZdfEBISgvfffx8ApITuhRdewB9//IGRI0fipZdeavL1vby8pPvr0aMHHBwctO79VsuXL8d7772HV155Bfv378eRI0cQEREhtdPe3r7J120JNjY20s8ymQxA7ZwsImockygiMjuZTAa5XI4///wTANCvXz+EhITgo48+wqZNm3TOy/nvf//b4HPv3r0BAJmZmdBoNFixYgXuuece9OzZE3/88UeDc6hUKjz77LPYvn07XnzxRSmJA4A77rgD0dHR+Oyzz5CUlIQ1a9a05C1LfvrpJ4wfPx5PPPEEBgwYgDvvvBO//vqrtD8gIAD29vbSpPr6FAoFgNoeLX38/f2hUCjw008/Sduqq6tx6NAh9OnTp4XuhIisLd0AImr/KisrkZ+fD6D2TbhVq1bh2rVriIyMlGKefvppxMbGwsHBAY888kiDc/z0009YtmwZoqKisHfvXmzduhVfffUVAKBHjx6orq7G+++/j8jISPz0009ISUnROj4uLg6jR49Gz549cfXqVezfv19KwhISEhAcHIy7774blZWV2L17t7SvpQUEBOCLL77AgQMH4OLigpUrV6KgoEBKbuzs7PDKK69g7ty5UCgUuPfee3HlyhUcP34cM2bMgIeHB+zt7ZGamoquXbvCzs4OSqVS6xoODg6YNWsWXn75Zbi6uqJbt25YtmwZKioqMGPGDJPcF1FHxJ4oIjK51NRUeHt7w9vbG6GhoTh06BC2bt0qvZ4PAJMnT4a1tTUmT54MOzu7Bud48cUXcfjwYQwcOBBLlizBypUrERERAQAYMGAAVq5cibfffht9+/bFxo0bkZiYqHV8TU0NZs+ejd69e2PUqFHo2bMnPvjgAwC1vTvz5s1D//79cf/998PKygqbN282ybOYP38+goKCEBERgQceeABeXl4NKo0vWLAAL774IhISEtC7d29MnDhRmqdkbW2N5ORk/OMf/4CPjw/Gjx+v8zpvvfUWJkyYgKlTpyIoKAhnz57FN998AxcXF5PcF1FHJBNCCEs3gojo/Pnz8Pf3x6FDhxAUFKS1z9fXF3FxcYiLi7NM44iIdOBwHhFZVHV1NYqKijB//nzcc889DRIoIqLWisN5RGRRP/30E7y9vXHo0KEG85gs7c0330Tnzp11fo0ePdrSzSMiC+NwHhGRHsXFxQ0qfNext7dHly5dzNwiImpNmEQRERERNQOH84iIiIiagUkUERERUTMwiSIiIiJqBiZRRERERM3AJIqIiIioGZhEERERETUDkygiIiKiZmASRURERNQM/w/KTi3owlVyFAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_10.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnfElEQVR4nO3deVxU5eIG8GcGGUCEIVBZDJUQdxPBJEyjkhoLUW6WgpZkJuYVk2i5uaGmXXLHraxuqS2kWWa5XMrQbqWEiku5ZoZL9zqoEANigjLv7w9/nBwZcGZgmDMzz/fz4aOc854z7zuj5zzznve8RyGEECAiIiIisyhtXQEiIiIie8QQRURERGQBhigiIiIiCzBEEREREVmAIYqIiIjIAgxRRERERBZgiCIiIiKyAEMUERERkQUYooiIiIgswBBFROTgVq9eDYVCgVOnTtm6KkQOhSGKiBpsz549SE1NRbdu3eDp6Ym2bdti2LBh+OWXX2qVve+++6BQKKBQKKBUKuHt7Y1OnTrhySefxLZt28x63U2bNiEmJgatW7dG8+bNcccdd2DYsGHIyclprKbV8s9//hMbN26stXzXrl2YOXMmSktLrfbaN5s5c6b0XioUCjRv3hxdu3bFtGnTUFZW1iivkZ2djaysrEbZF5GjYYgiogabO3cuPvvsMwwYMABLlixBSkoKvvvuO0RERODQoUO1yt9+++344IMP8P7772P+/PkYPHgwdu3ahYceegjDhw/H1atXb/maCxYswODBg6FQKDB58mQsXrwYQ4cOxYkTJ7B27VprNBNA/SFq1qxZTRqiarz55pv44IMPsGjRInTu3BmvvfYaBg4ciMZ4NCpDFFHdmtm6AkRk/9LT05GdnQ2VSiUtGz58OHr06IHXX38dH374oUF5tVqNJ554wmDZ66+/jueeew5vvPEG2rdvj7lz59b5eteuXcPs2bPx4IMP4uuvv661/vz58w1skXxcvnwZzZs3r7fMY489hpYtWwIAnn32WQwdOhQbNmzAjz/+iOjo6KaoJpFTYk8UETVY3759DQIUAISFhaFbt244evSoSftwcXHB0qVL0bVrVyxfvhw6na7OshcvXkRZWRnuueceo+tbt25t8PuVK1cwc+ZMdOzYEe7u7ggMDMSjjz6KkydPSmUWLFiAvn37ws/PDx4eHoiMjMSnn35qsB+FQoGKigqsWbNGuoT21FNPYebMmXjppZcAACEhIdK6G8cgffjhh4iMjISHhwd8fX2RmJiIs2fPGuz/vvvuQ/fu3VFQUIB7770XzZs3x5QpU0x6/270wAMPAAAKCwvrLffGG2+gW7ducHNzQ1BQECZMmGDQk3bfffdhy5YtOH36tNSm9u3bm10fIkfFnigisgohBIqKitCtWzeTt3FxcUFSUhKmT5+OH374AXFxcUbLtW7dGh4eHti0aRMmTpwIX1/fOvdZXV2NQYMGITc3F4mJiZg0aRLKy8uxbds2HDp0CKGhoQCAJUuWYPDgwRg5ciSqqqqwdu1aPP7449i8ebNUjw8++ADPPPMM+vTpg5SUFABAaGgoPD098csvv+Djjz/G4sWLpV6hVq1aAQBee+01TJ8+HcOGDcMzzzyDCxcuYNmyZbj33nuxf/9++Pj4SPUtLi7Gww8/jMTERDzxxBPw9/c3+f2rURMO/fz86iwzc+ZMzJo1C7GxsRg/fjyOHz+ON998E3v27MHOnTvh6uqKqVOnQqfT4ffff8fixYsBAC1atDC7PkQOSxARWcEHH3wgAIh3333XYHlMTIzo1q1bndt9/vnnAoBYsmRJvfvPyMgQAISnp6d4+OGHxWuvvSYKCgpqlXvvvfcEALFo0aJa6/R6vfT3y5cvG6yrqqoS3bt3Fw888IDBck9PT5GcnFxrX/PnzxcARGFhocHyU6dOCRcXF/Haa68ZLP/5559Fs2bNDJbHxMQIAGLlypV1tvtGM2bMEADE8ePHxYULF0RhYaF46623hJubm/D39xcVFRVCCCFWrVplULfz588LlUolHnroIVFdXS3tb/ny5QKAeO+996RlcXFxol27dibVh8jZ8HIeETW6Y8eOYcKECYiOjkZycrJZ29b0dJSXl9dbbtasWcjOzkavXr3w1VdfYerUqYiMjERERITBJcTPPvsMLVu2xMSJE2vtQ6FQSH/38PCQ/v7HH39Ap9Ohf//+2Ldvn1n1v9mGDRug1+sxbNgwXLx4UfoJCAhAWFgYduzYYVDezc0No0ePNus1OnXqhFatWiEkJATjxo1Dhw4dsGXLljrHUn3zzTeoqqpCWloalMq/TgNjx46Ft7c3tmzZYn5DiZwQL+cRUaPSarWIi4uDWq3Gp59+ChcXF7O2v3TpEgDAy8vrlmWTkpKQlJSEsrIy5OfnY/Xq1cjOzkZ8fDwOHToEd3d3nDx5Ep06dUKzZvUf7jZv3ow5c+bgwIEDqKyslJbfGLQsceLECQghEBYWZnS9q6urwe9t2rSpNb7sVj777DN4e3vD1dUVt99+u3SJsi6nT58GcD183UilUuGOO+6Q1hNR/RiiiKjR6HQ6PPzwwygtLcX333+PoKAgs/dRMyVChw4dTN7G29sbDz74IB588EG4urpizZo1yM/PR0xMjEnbf//99xg8eDDuvfdevPHGGwgMDISrqytWrVqF7Oxss9twI71eD4VCgX//+99GA+XNY4xu7BEz1b333iuNwyKipsMQRUSN4sqVK4iPj8cvv/yCb775Bl27djV7H9XV1cjOzkbz5s3Rr18/i+rRu3dvrFmzBufOnQNwfeB3fn4+rl69WqvXp8Znn30Gd3d3fPXVV3Bzc5OWr1q1qlbZunqm6loeGhoKIQRCQkLQsWNHc5tjFe3atQMAHD9+HHfccYe0vKqqCoWFhYiNjZWWNbQnjsiRcUwUETVYdXU1hg8fjry8PKxfv96iuYmqq6vx3HPP4ejRo3juuefg7e1dZ9nLly8jLy/P6Lp///vfAP66VDV06FBcvHgRy5cvr1VW/P9klC4uLlAoFKiurpbWnTp1yuikmp6enkYn1PT09ASAWuseffRRuLi4YNasWbUmvxRCoLi42HgjrSg2NhYqlQpLly41qNO7774LnU5ncFekp6dnvdNNEDkz9kQRUYO98MIL+PLLLxEfH4+SkpJak2vePLGmTqeTyly+fBm//vorNmzYgJMnTyIxMRGzZ8+u9/UuX76Mvn374u6778bAgQMRHByM0tJSbNy4Ed9//z0SEhLQq1cvAMCoUaPw/vvvIz09Hbt370b//v1RUVGBb775Bn//+98xZMgQxMXFYdGiRRg4cCBGjBiB8+fPY8WKFejQoQN++ukng9eOjIzEN998g0WLFiEoKAghISGIiopCZGQkAGDq1KlITEyEq6sr4uPjERoaijlz5mDy5Mk4deoUEhIS4OXlhcLCQnz++edISUnBiy++2KD331ytWrXC5MmTMWvWLAwcOBCDBw/G8ePH8cYbb+Cuu+4y+LwiIyOxbt06pKen46677kKLFi0QHx/fpPUlki1b3hpIRI6h5tb8un7qK9uiRQsRFhYmnnjiCfH111+b9HpXr14V77zzjkhISBDt2rUTbm5uonnz5qJXr15i/vz5orKy0qD85cuXxdSpU0VISIhwdXUVAQEB4rHHHhMnT56Uyrz77rsiLCxMuLm5ic6dO4tVq1ZJUwjc6NixY+Lee+8VHh4eAoDBdAezZ88Wbdq0EUqlstZ0B5999pno16+f8PT0FJ6enqJz585iwoQJ4vjx4wbvTX3TP9yspn4XLlyot9zNUxzUWL58uejcubNwdXUV/v7+Yvz48eKPP/4wKHPp0iUxYsQI4ePjIwBwugOiGyiEaISHKxERERE5GY6JIiIiIrIAQxQRERGRBRiiiIiIiCzAEEVERERkAYYoIiIiIgswRBERERFZgJNtWpFer8f//vc/eHl58dEJREREdkIIgfLycgQFBUGprLu/iSHKiv73v/8hODjY1tUgIiIiC5w9exa33357nesZoqzIy8sLwPUPob7ngBEREZF8lJWVITg4WDqP14UhyopqLuF5e3szRBEREdmZWw3F4cByIiIiIgswRBERERFZgCGKiIiIyAIcE0VERCQz1dXVuHr1qq2r4bBcXV3h4uLS4P0wRBEREcmEEAJarRalpaW2rorD8/HxQUBAQIPmcWSIIiIikomaANW6dWs0b96cEzVbgRACly9fxvnz5wEAgYGBFu+LIYqIiEgGqqurpQDl5+dn6+o4NA8PDwDA+fPn0bp1a4sv7XFgORERkQzUjIFq3ry5jWviHGre54aMPWOIIiIikhFewmsajfE+83IeEZGJiouLUVVVVed6lUrFyzBEToQhiojIBMXFxVi+fPkty6WmpjJIETkJXs4jIjLBzT1QOp0XCgvbQ6fzqrcckTN46qmnoFAooFAo4OrqCn9/fzz44IN47733oNfrTd7P6tWr4ePjY72KNjL2RBERmWnfvl7YtGkQhFBCodAjPn4zIiL227pa5ORsfbl54MCBWLVqFaqrq1FUVIScnBxMmjQJn376Kb788ks0a+Z4kcPxWkREZEU6nZcUoABACCU2bRqE0NBfoVaX27h25KzkcLnZzc0NAQEBAIA2bdogIiICd999NwYMGIDVq1fjmWeewaJFi7Bq1Sr89ttv8PX1RXx8PObNm4cWLVrg22+/xejRowH8Neh7xowZmDlzJj744AMsWbIEx48fh6enJx544AFkZWWhdevWVmmLqXg5j4jIDCUlflKAqiGEEiUlvjaqEZHpl5Gb+nLzAw88gJ49e2LDhg0AAKVSiaVLl+Lw4cNYs2YNtm/fjpdffhkA0LdvX2RlZcHb2xvnzp3DuXPn8OKLLwK4Pg3B7NmzcfDgQWzcuBGnTp3CU0891aRtMYY9UUREZvD1LYZCoTcIUgqFHr6+JTasFZF8de7cGT/99BMAIC0tTVrevn17zJkzB88++yzeeOMNqFQqqNVqKBQKqUerxtNPPy39/Y477sDSpUtx11134dKlS2jRokWTtMMY9kQREZlBrS5HfPxmKBTXB8vWjInipTwi44QQ0uW5b775BgMGDECbNm3g5eWFJ598EsXFxbh8+XK9+ygoKEB8fDzatm0LLy8vxMTEAADOnDlj9frXhz1RRERmiojYj9DQX1FS4gtf3xIGKKJ6HD16FCEhITh16hQGDRqE8ePH47XXXoOvry9++OEHjBkzBlVVVXXO1F5RUQGNRgONRoOPPvoIrVq1wpkzZ6DRaGx+NyxDFBGRCVQqlcHvanW50fB0czkiZ7Z9+3b8/PPPeP7551FQUAC9Xo+FCxdCqbx+IeyTTz4xKK9SqVBdXW2w7NixYyguLsbrr7+O4OBgAMDevXubpgG3wBBFRGQCPz8/pKamcsZyojpUVlZCq9UaTHGQmZmJQYMGYdSoUTh06BCuXr2KZcuWIT4+Hjt37sTKlSsN9tG+fXtcunQJubm56NmzJ5o3b462bdtCpVJh2bJlePbZZ3Ho0CHMnj3bRq00xDFRREQm8vPzQ2BgYJ0/DFDkzHJychAYGIj27dtj4MCB2LFjB5YuXYovvvgCLi4u6NmzJxYtWoS5c+eie/fu+Oijj5CZmWmwj759++LZZ5/F8OHD0apVK8ybNw+tWrXC6tWrsX79enTt2hWvv/46FixYYKNWGlIIIYStK+GoysrKoFarodPp4O3tbevqENkdW08eSNSUrly5gsLCQoSEhMDd3d2sbeUwT5S9qe/9NvX8zct5RCRLPCkQmY6Xm22DIYqIZMnYs+pKSvzg61tsMKDb1nfnEMkFA1LTY4giItnjs+qISI44sJyIZK2uZ9XpdF42rhkROTuGKCKSNT6rjojkiiGKiGSt5ll1N+Kz6ohIDhiiiEjW+Kw6IpIrDiwnItnjs+qISI5s3hO1YsUKtG/fHu7u7oiKisLu3bvrLb9+/Xp07twZ7u7u6NGjB7Zu3WqwXgiBjIwMBAYGwsPDA7GxsThx4oRBmddeew19+/ZF8+bN4ePjU+/rFRcX4/bbb4dCoUBpaaklTSQiCxh7Vl1IyOlaAYrPqiMiW7FpT9S6deuQnp6OlStXIioqCllZWdBoNDh+/Dhat25dq/yuXbuQlJQkPYsnOzsbCQkJ2LdvH7p37w4AmDdvHpYuXYo1a9YgJCQE06dPh0ajwZEjR6QZSauqqvD4448jOjoa7777br11HDNmDO68807897//bfw3gIjqxMkDiajGt99+i/vvvx9//PHHLTs/arRv3x5paWlIS0uzXsWEDfXp00dMmDBB+r26uloEBQWJzMxMo+WHDRsm4uLiDJZFRUWJcePGCSGE0Ov1IiAgQMyfP19aX1paKtzc3MTHH39ca3+rVq0SarW6zvq98cYbIiYmRuTm5goA4o8//jCjdULodDoBQOh0OrO2IyIi5/Pnn3+KI0eOiD///NPWVTFbcnKyACCdj2/097//XQAQycnJFu9/x44dZp+H27VrJxYvXlzn+vreb1PP3za7nFdVVYWCggLExsZKy5RKJWJjY5GXl2d0m7y8PIPyAKDRaKTyhYWF0Gq1BmXUajWioqLq3Gddjhw5gldffRXvv/8+lErT3qbKykqUlZUZ/BARETmD4OBgrF27Fn/++ae07MqVK8jOzkbbtm1tWDPrsVmIunjxIqqrq+Hv72+w3N/fH1qt1ug2Wq223vI1f5qzT2MqKyuRlJSE+fPnm/XBZ2ZmQq1WSz/BwcEmb0tERGTPIiIiEBwcjA0bNkjLNmzYgLZt26JXr17SssrKSjz33HNo3bo13N3d0a9fP+zZs8dgX1u3bkXHjh3h4eGB+++/H6dOnar1ej/88AP69+8PDw8PBAcH47nnnkNFRYXV2meMzQeWy9HkyZPRpUsXPPHEE2Zvp9PppJ+zZ89aqYZERER1+/13YMeO6382paeffhqrVq2Sfn/vvfcwevRogzIvv/wyPvvsM6xZswb79u1Dhw4doNFoUFJyfe63s2fP4tFHH0V8fDwOHDiAZ555Bq+88orBPk6ePImBAwdi6NCh+Omnn7Bu3Tr88MMPSE1NtX4jb2CzENWyZUu4uLigqKjIYHlRURECAgKMbhMQEFBv+Zo/zdmnMdu3b8f69evRrFkzNGvWDAMGDJDqPGPGjDq3c3Nzg7e3t8EPERFRU3r3XaBdO+CBB67/eYv7pxrVE088gR9++AGnT5/G6dOnsXPnToMOiYqKCrz55puYP38+Hn74YXTt2hXvvPMOPDw8pBu93nzzTYSGhmLhwoXo1KkTRo4ciaeeesrgdTIzMzFy5EikpaUhLCwMffv2xdKlS/H+++/jypUrTdZem4UolUqFyMhI5ObmSsv0ej1yc3MRHR1tdJvo6GiD8gCwbds2qXxISAgCAgIMypSVlSE/P7/OfRrz2Wef4eDBgzhw4AAOHDiAf/3rXwCA77//HhMmTDB5P0RERE3p99+BlBRA//+T/Ov1wLhxTdcj1apVK8TFxWH16tVYtWoV4uLi0LJlS2n9yZMncfXqVdxzzz3SMldXV/Tp0wdHjx4FABw9ehRRUVEG+735HH7w4EGsXr0aLVq0kH40Gg30ej0KCwut2EJDNp3iID09HcnJyejduzf69OmDrKwsVFRUSF1/o0aNQps2bZCZmQkAmDRpEmJiYrBw4ULExcVh7dq12Lt3L95++20AgEKhQFpaGubMmYOwsDBpioOgoCAkJCRIr3vmzBmUlJTgzJkzqK6uxoEDBwAAHTp0QIsWLRAaGmpQz4sXLwIAunTpYvKtlURERE3txIm/AlSN6mrg11+B229vmjo8/fTT0mW1FStWWOU1Ll26hHHjxuG5556rta4pB7HbNEQNHz4cFy5cQEZGBrRaLcLDw5GTkyMNDD9z5ozBnXF9+/ZFdnY2pk2bhilTpiAsLAwbN26U5ogCrl9rraioQEpKCkpLS9GvXz/k5ORIc0QBQEZGBtasWSP9XjPgbceOHbjvvvus3GoiIiLrCAsDlErDIOXiAnTo0HR1GDhwIKqqqqBQKKDRaAzWhYaGQqVSYefOnWjXrh0A4OrVq9izZ480n1OXLl3w5ZdfGmz3448/GvweERGBI0eOoENTNswYkydcILNxnigiIjJVY80T9a9/CeHiIgRw/c9//auRKliP5ORkMWTIEOl3nU5ncO4bMmSINE/UpEmTRFBQkPj3v/8tDh8+LJKTk8Vtt90mSkpKhBBCnD59WqhUKvHiiy+KY8eOiY8++kgEBAQYzBN18OBB4eHhISZMmCD2798vfvnlF7Fx40aDuSebYp4oPjuPiIjIgYwZA2g01y/hdejQdJfxblTfjVWvv/469Ho9nnzySZSXlyMyMhKbN2+Gp6cnqqqqEBAQgLVr1+Kll17CsmXL0KdPH/zzn//E008/Le3jzjvvxH/+8x9MnToV/fv3hxACoaGhGD58eFM0T6IQQogmfUUnUlZWBrVaDZ1Oxzv1zFBcXMxHfRCR07ly5QoKCwsREhJiMATFUV27dg3nz5+Xfq+uVuLatWZo1uwaXFz+uh7ZunVrNGvW+H0+9b3fpp6/2RNFslJcXIzly5ffslxqaiqDFBGRHdPfMHDr8uXmKC1VA1AAEPDx0aF588u1yskNQxTJys09UDqdF0pK/ODrWwy1urzOcs6EPXVE5Eiqq5U3BCgAUKC0VA03tysGPVJyxBBFsrVvXy9s2jQIQiihUOgRH78ZERH7bV0tm2JPHRE5mmvXmuGvAFVDgWvXmsHFRd5fmPnYF5Ilnc5LClAAIIQSmzYNgk7nZeOa2ZaxnrrCwva13hdn7qkjIvvSrNk1ADcPzxb/v1ze2BNFslRS4icFqBpCKFFS4mtwWc+ZsaeOyDE52/1eLi56+Pjoao2JsvalvMZ4nxmiSJZ8fYuhUOgNgpRCoYevb4kNayUfdfXUhYb+ypBJZKdcXV0BAJcvX4aHh4eNa9O0mje/DDe3K0bvzrOWy5evD1yved8twRBFsqRWlyM+fnOtnhYGhOvYU0fkeFxcXODj4yPd9t+8eXMoFDePFXIcVVVVuHbN8JKdi0sVhABuXHzlypVGvUNPCIHLly/j/Pnz8PHxgYuLi8X7Yogi2YqI2I/Q0F9RUuILX98ShoMbsKeOyDEFBAQAgMH8SY6quroa5eW3Pq6XlZU1KOjUxcfHR3q/LcUQRbKiUqkMflery42Gp5vLORv21BE5JoVCgcDAQLRu3RpXr161dXWs7o8//qi3na6urrjtttsa/XVdXV0bJZgxRJGs+Pn5ITU1lfMgmYA9dUSOy8XFxSq9L3ITGBho6yo0CEMUyQ4DUt3YU0dEJB8MUUR2hD11RETywRBFZGcYkIiI5IEzlhMRERFZgCGKiIiIyAIMUUREREQWYIgiIiIisgBDFBEREZEFeHceERE5lOLiYk4DQk2CIYqIiBxGcXExli9ffstyqampDFLUYLycR0REDuPmHiidzguFhe2h03nVW47IEuyJIiIih7RvX69aD+mOiNhv62qRA2FPFBERORydzksKUAAghBKbNg2q1SNF1BAMUURE5HBKSvykAFVDCCVKSnxtVCNyRAxRRETkcHx9i6FQ6A2WKRR6+PqW2KhG5IgYooiIyOGo1eWIj98sBamaMVFqdbmNa0aOhAPLiYjIIUVE7Edo6K8oKfGFr28JAxQ1OoYoIiJyGCqVyuB3tbrcaHi6uRyRJRiiiIjIYfj5+SE1NZUzllOTYIgiIiKHwoBETYUDy4mIiIgswBBFREREZAGGKCIiIiILMEQRERERWcDmIWrFihVo37493N3dERUVhd27d9dbfv369ejcuTPc3d3Ro0cPbN261WC9EAIZGRkIDAyEh4cHYmNjceLECYMyr732Gvr27YvmzZvDx8en1mscPHgQSUlJCA4OhoeHB7p06YIlS5Y0uK1ERETkOGwaotatW4f09HTMmDED+/btQ8+ePaHRaHD+/Hmj5Xft2oWkpCSMGTMG+/fvR0JCAhISEnDo0CGpzLx587B06VKsXLkS+fn58PT0hEajwZUrV6QyVVVVePzxxzF+/Hijr1NQUIDWrVvjww8/xOHDhzF16lRMnjwZy5cvb9w3gIiIiOyWQgghbPXiUVFRuOuuu6RwotfrERwcjIkTJ+KVV16pVX748OGoqKjA5s2bpWV33303wsPDsXLlSgghEBQUhBdeeAEvvvgiAECn08Hf3x+rV69GYmKiwf5Wr16NtLQ0lJaW3rKuEyZMwNGjR7F9+3aT21dWVga1Wg2dTgdvb2+TtyMiIiLbMfX8bbOeqKqqKhQUFCA2NvavyiiViI2NRV5entFt8vLyDMoDgEajkcoXFhZCq9UalFGr1YiKiqpzn6bS6XTw9a3/6d+VlZUoKysz+CEix1FcXIxz587V+VNcXGzrKhJRE7LZZJsXL15EdXU1/P39DZb7+/vj2LFjRrfRarVGy2u1Wml9zbK6ylhi165dWLduHbZs2VJvuczMTMyaNcvi1yEi+SouLjbpkn5qaioneyRyEjYfWC53hw4dwpAhQzBjxgw89NBD9ZadPHkydDqd9HP27NkmqiURWdvNjxHR6bxQWNgeOp1XveWIyHHZrCeqZcuWcHFxQVFRkcHyoqIiBAQEGN0mICCg3vI1fxYVFSEwMNCgTHh4uNl1PHLkCAYMGICUlBRMmzbtluXd3Nzg5uZm9usQkX3Zt68XNm0aBCGUUCj0iI/fjIiI/bauFhE1MZv1RKlUKkRGRiI3N1daptfrkZubi+joaKPbREdHG5QHgG3btknlQ0JCEBAQYFCmrKwM+fn5de6zLocPH8b999+P5ORkvPbaa2ZtS0SOS6fzkgIUAAihxKZNg2r1SBGR47PpA4jT09ORnJyM3r17o0+fPsjKykJFRQVGjx4NABg1ahTatGmDzMxMAMCkSZMQExODhQsXIi4uDmvXrsXevXvx9ttvAwAUCgXS0tIwZ84chIWFISQkBNOnT0dQUBASEhKk1z1z5gxKSkpw5swZVFdX48CBAwCADh06oEWLFjh06BAeeOABaDQapKenS+OpXFxc0KpVq6Z7g4hIdkpK/KQAVUMIJUpKfKFWl9uoVkRkCzYNUcOHD8eFCxeQkZEBrVaL8PBw5OTkSAPDz5w5A6Xyr4NV3759kZ2djWnTpmHKlCkICwvDxo0b0b17d6nMyy+/jIqKCqSkpKC0tBT9+vVDTk4O3N3dpTIZGRlYs2aN9HuvXr0AADt27MB9992HTz/9FBcuXMCHH36IDz/8UCrXrl07nDp1ylpvBxHZAV/fYigUeoMgpVDo4etbYsNaEZEt2HSeKEfHeaKIHMe5c+ekXu/6xkSlpKQYjMkkIvtj6vnbpj1RRET2KCJiP0JDf0VJiS98fUt4GY/ISTFEERGZQKVSGfyuVpcbDU83lyMix8UQRURkAj8/P6SmptY7D5RKpbJ4os3i4mKr7ZuIrIMhiojIRNYKMZwNncg+ccZyIiIb42zoRPaJPVFERDLC2dCJ7Ad7ooiIZIKzoRPZF4YoIiKZqG82dCKSH4YoIiKZqJkN/UacDZ1IvhiiiIhkQq0uR3z8ZilI1YyJ4mSeRPLEgeVERDLC2dCJ7AdDFBGRiaw1ISZnQyeyTwxRREQmsOaEmNaeDZ2IrIMhiojIBMYmxCwp8YOvb7FBr5GlE2IyIBHZH4YoIiIzcUJMIgJ4dx4RkVk4ISYR1WBPFNk9aw32JTKmvgkxeScdkXNhiCK7Zs3BvkTG1EyIeWOQ4oSYRM6Jl/PIrhkb7FtY2L7WpRVLB/sS3YwTYhJRDfZEkcPgYF9qKpwQk4gA9kSRg+BgX7I2YxNihoScrhWgOCEmkfNgTxQ5BA72JWvjhJhEdDOGKHIIHOxLTYEBiYhuxMt55BA42JeIiJoae6LIYXCwLxERNSWGKLJrxgb7GgtPHOxLRESNjSGK7BoH+xIRka0wRJHdY0AiIiJb4MByIiIiIgswRBERERFZgCGKiIiIyAIMUUREREQWYIgiIiIisgBDFBEREZEFGKKIiIiILMAQRURERGQBhigiIiIiC9g8RK1YsQLt27eHu7s7oqKisHv37nrLr1+/Hp07d4a7uzt69OiBrVu3GqwXQiAjIwOBgYHw8PBAbGwsTpw4YVDmtddeQ9++fdG8eXP4+PgYfZ0zZ84gLi4OzZs3R+vWrfHSSy/h2rVrDWorEREROQ6bhqh169YhPT0dM2bMwL59+9CzZ09oNBqcP3/eaPldu3YhKSkJY8aMwf79+5GQkICEhAQcOnRIKjNv3jwsXboUK1euRH5+Pjw9PaHRaHDlyhWpTFVVFR5//HGMHz/e6OtUV1cjLi4OVVVV2LVrF9asWYPVq1cjIyOjcd8AIiIisl/Chvr06SMmTJgg/V5dXS2CgoJEZmam0fLDhg0TcXFxBsuioqLEuHHjhBBC6PV6ERAQIObPny+tLy0tFW5ubuLjjz+utb9Vq1YJtVpda/nWrVuFUqkUWq1WWvbmm28Kb29vUVlZaXL7dDqdACB0Op3J2xAREZFtmXr+tllPVFVVFQoKChAbGystUyqViI2NRV5entFt8vLyDMoDgEajkcoXFhZCq9UalFGr1YiKiqpzn3W9To8ePeDv72/wOmVlZTh8+HCd21VWVqKsrMzgh4iIiByTzULUxYsXUV1dbRBUAMDf3x9ardboNlqttt7yNX+as09zXufG1zAmMzMTarVa+gkODjb5NYmIiMi+2HxguSOZPHkydDqd9HP27FlbV4mIiIisxGYhqmXLlnBxcUFRUZHB8qKiIgQEBBjdJiAgoN7yNX+as09zXufG1zDGzc0N3t7eBj9ERETkmGwWolQqFSIjI5Gbmyst0+v1yM3NRXR0tNFtoqOjDcoDwLZt26TyISEhCAgIMChTVlaG/Pz8OvdZ1+v8/PPPBncJbtu2Dd7e3ujatavJ+yEiIiLH1cyWL56eno7k5GT07t0bffr0QVZWFioqKjB69GgAwKhRo9CmTRtkZmYCACZNmoSYmBgsXLgQcXFxWLt2Lfbu3Yu3334bAKBQKJCWloY5c+YgLCwMISEhmD59OoKCgpCQkCC97pkzZ1BSUoIzZ86guroaBw4cAAB06NABLVq0wEMPPYSuXbviySefxLx586DVajFt2jRMmDABbm5uTfoeERERkUw10d2CdVq2bJlo27atUKlUok+fPuLHH3+U1sXExIjk5GSD8p988ono2LGjUKlUolu3bmLLli0G6/V6vZg+fbrw9/cXbm5uYsCAAeL48eMGZZKTkwWAWj87duyQypw6dUo8/PDDwsPDQ7Rs2VK88MIL4urVq2a1jVMcEBER2R9Tz98KIYSwYYZzaGVlZVCr1dDpdBwfRUREZCdMPX/z7jwiIiIiCzBEEREREVmAIYqIiIjIAgxRRERERBZgiCIiIiKyAEMUERERkQUYooiIiIgswBBFREREZAGbPvaF7FdxcTGqqqrqXK9SqeDn59eENSIiImpaDFFktuLiYixfvvyW5VJTUxmkiIjIYfFyHpnt5h4onc4LhYXtodN51VuOiIjIkbAnihpk375e2LRpEIRQQqHQIz5+MyIi9tu6WkRERFbHniiymE7nJQUoABBCiU2bBtXqkSIiInJEDFFksZISPylA1RBCiZISXxvViIiIqOkwRJHFfH2LoVDoDZYpFHr4+pbYqEZERERNh2OiCIBlUxao1eWIj99ca0yUWl1u7eoSERHZHEMUNWjKgoiI/QgN/RUlJb7w9S1hgCIiIqfBEEVGpywoKfGDr2+xQSiqKadSqQzKq9XlRsPTzeWcBSciJSJyDgxRZMCUKQv8/PyQmprKoGBEU0xEypBGRCQPDFEkqWvKgtDQX2v1NPEkbZy5vXrm4mzxRETywRBFkvqmLOBYJ/NZYyJSa4c0ajzsMSRyfAxRJKmZsuDGIMUpCyxjTq+epThbvHyxx5DIOXCeKJLUTFlQM/cTpyywnLUnIuVs8fLG50sSOQf2RJEBOUxZ4AiXQazdq8dLr/aDPYZEjoshimQ1ZYGjXAax9kSkvPRqH5risi4R2Y5FIWr37t3Iy8uDVqsFAAQEBCA6Ohp9+vRp1MpR05DTlAWONHDamr16nC3ePrDHkKhxye1KhVkh6vz58xg6dCh27tyJtm3bwt/fHwBQVFSE559/Hvfccw8+++wztG7d2iqVJeuRY6+OPV4GacpePTlceqX6sceQqPHI8UqFWSHq73//O6qrq3H06FF06tTJYN3x48fx9NNPY8KECVi/fn2jVpKcj71eBrF2r56cLr3SrZnTYyi3b9hEciPHKxVmhaivvvoK3333Xa0ABQCdOnXC0qVLcd999zVW3ciJ2fNlEGue6OR06ZVMY0qPoRy/YRPJmVyuVJgVotzc3FBWVlbn+vLycri5uTW4UkS8DFI3nkTlz9weQzl+wyaSKzldqTArRA0fPhzJyclYvHgxBgwYAG9vbwBAWVkZcnNzkZ6ejqSkJKtUlJwLB06TPWtIj6FcvmETyZWcrlSYFaIWLVoEvV6PxMREXLt2zeBbVLNmzTBmzBgsWLDAKhUl52OvA6c5toUAy3oM5fQNm0iu5HSlwuzLeW+++Sbmzp2LgoICgykOIiMjpZ4pIkvZ+8Bpjm2hhpDTN2wiuZLTlQqL5ony9vbG/fff39h1IbL7gdMc20INIadv2ERyJpcrFY06Y3lRURHeeustZGRkNOZuycnINSCZi2NbyFxy+oZNJDdyvFLRqCFKq9Vi1qxZDFHk9Di2hSwll2/YRHIjxysVylsX+ctPP/1U78/x48fNrsCKFSvQvn17uLu7IyoqCrt37663/Pr169G5c2e4u7ujR48e2Lp1q8F6IQQyMjIQGBgIDw8PxMbG4sSJEwZlSkpKMHLkSHh7e8PHxwdjxozBpUuXDMp89dVXuPvuu+Hl5YVWrVph6NChOHXqlNntI+dU39gWopsZ+4YdEnK6VoCS61hAoqbi5+eHwMDAOn+a+kqGWT1R4eHhUCgUEELUWlezXKFQmLy/devWIT09HStXrkRUVBSysrKg0Whw/Phxo4+O2bVrF5KSkpCZmYlBgwYhOzsbCQkJ2LdvH7p37w4AmDdvHpYuXYo1a9YgJCQE06dPh0ajwZEjR+Du7g4AGDlyJM6dO4dt27bh6tWrGD16NFJSUpCdnQ0AKCwsxJAhQ5Ceno6PPvoIOp0Ozz//PB599FHs27fPnLeMnBTHtpA55PgNm4huTSGMJaI6tGzZEvPmzcOAAQOMrj98+DDi4+NRXV1t0v6ioqJw1113SXcz6fV6BAcHY+LEiXjllVdqlR8+fDgqKiqwefNmadndd9+N8PBwrFy5EkIIBAUF4YUXXsCLL74IANDpdPD398fq1auRmJiIo0ePomvXrtizZw969+4NAMjJycEjjzyC33//HUFBQfj000+RlJSEyspKKJXXT4KbNm3CkCFDUFlZCVdXV5PaV1ZWBrVaDZ1OxzsXncS5c+fw9ttvA6h/TFRKSgoCAwNtWVUiIqqDqedvs3qiIiMj8b///Q/t2rUzur60tNRoL5UxVVVVKCgowOTJk6VlSqUSsbGxyMvLM7pNXl4e0tPTDZZpNBps3LgRwPUeJK1Wi9jYWGm9Wq1GVFQU8vLykJiYiLy8PPj4+EgBCgBiY2OhVCqRn5+Pv/3tb4iMjIRSqcSqVavw1FNP4dKlS/jggw8QGxtbb4CqrKxEZWWl9Ht9s7uT4+PYFiIix2bWmKhnn30W7du3r3N927ZtsWrVKpP2dfHiRVRXV8Pf399gub+/vzT/1M20Wm295Wv+vFWZmy8VNmvWDL6+vlKZkJAQfP3115gyZQrc3Nzg4+OD33//HZ988km9bcrMzIRarZZ+goOD6y1PjodjW4iInIdZPVF/+9vf6l1/2223ITk5uUEVkgOtVouxY8ciOTkZSUlJKC8vR0ZGBh577DFs27atznFfkydPNugpKysrY5ByMhzbQkTkPBp1igNztGzZEi4uLigqKjJYXlRUhICAAKPbBAQE1Fu+5s+ioiKD8SZFRUUIDw+Xypw/f95gH9euXUNJSYm0/YoVK6BWqzFv3jypzIcffojg4GDk5+fj7rvvNlo/Nzc3PoCZGJCIiJyEWSHq5vFIdVm0aNEty6hUKkRGRiI3NxcJCQkArg8sz83NRWpqqtFtoqOjkZubi7S0NGnZtm3bEB0dDeD6ZbiAgADk5uZKoamsrAz5+fkYP368tI/S0lIUFBQgMjISALB9+3bo9XpERUUBAC5fviwNKK/h4uIi1ZGIiIjIrBC1f7/hbMs//PADIiMj4eHhIS0zZ4qD9PR0JCcno3fv3ujTpw+ysrJQUVGB0aNHAwBGjRqFNm3aIDMzEwAwadIkxMTEYOHChYiLi8PatWuxd+9e6W4ohUKBtLQ0zJkzB2FhYdIUB0FBQVJQ69KlCwYOHIixY8di5cqVuHr1KlJTU5GYmIigoCAAQFxcHBYvXoxXX31Vupw3ZcoUtGvXDr169TLnLSMiIiJHJRqgRYsW4uTJkw3ZhVi2bJlo27atUKlUok+fPuLHH3+U1sXExIjk5GSD8p988ono2LGjUKlUolu3bmLLli0G6/V6vZg+fbrw9/cXbm5uYsCAAeL48eMGZYqLi0VSUpJo0aKF8Pb2FqNHjxbl5eUGZT7++GPRq1cv4enpKVq1aiUGDx4sjh49albbdDqdACB0Op1Z2xEREZHtmHr+NmueqJt5eXnh4MGDuOOOOxov1TkQzhNFRERkf0w9f5s1xQERERERXccQRURERGQBswaW//TTTwa/CyFw7NixWg/vvfPOOxteMyIiIiIZM2tMlFKpNOkBxKY+O8/RcUwUERGR/bHKs/MKCwsbXDEiIiIiR2BWiKrrwcNERM6guLiYj/QhIkmjPPblgQcewKpVqxiyiMhhFRcXY/ny5bcsl5qayiBF5CTMClFffvml0eXfffcdNm/eLD1sd/DgwQ2vGRngN2Ai27r5/59O54WSEj/4+hZDrS6vsxwROS6zQlRCQkKdA8snTpwIABxYbgX8BkwkL/v29cKmTYMghBIKhR7x8ZsREbH/1hsSkUMxa54ojUaDhx9+GFqtFnq9XvpxcXHBoUOHoNfrGaCswNg34MLC9tDpvOotR0SNT6fzkgIUAAihxKZNg2r9fyQix2dWT9S///1vLF68GL1798Ybb7yBQYMGWateVAd+AyZnIsfL2CUlflKAqiGEEiUlvgaX9YjI8Zk9sPz555/H/fffj5EjR2LTpk1YvHixNepFRtT1DTg09FcevMnhyPUytq9vMRQKvUGQUij08PUtabI6EJE8WPTYl/DwcOzduxcKhQLh4eFGx0hR46vvGzCRo5HrZWy1uhzx8ZuhUOgBQOoR5hcZIudj8RQHHh4eWLlyJb788kvs2LEDLVu2bMx6kRH8BkzOSm6XsSMi9iM09FeUlPjC17eEAYrISZnVE7V9+3Z07doVZWVl0rLBgwdj8eLFcHNzQ7du3fD99983eiXpOn4DJmckl4HcKpXK4He1uhwhIadr/f+7uRwROS6zeqKysrIwduxYo8+RUavVGDduHBYtWoT+/fs3WgXJEL8Bk7ORy0BuPz8/pKamym6gOxHZjlkh6uDBg5g7d26d6x966CEsWLCgwZUiQ8a+ARs7efAbMDkiOV3GZkAiohuZFaKKiorg6upa986aNcOFCxcaXCkyxG/A5MxqLmPfPCbK2Xth5Tj9A5GzMStEtWnTBocOHUKHDh2Mrv/pp58QGBjYKBUjIqrBy9iG5Dr9A5GzMStEPfLII5g+fToGDhwId3d3g3V//vknZsyYwQk4rYAHzMbFb/D2gZex68bn+BHJg1khatq0adiwYQM6duyI1NRUdOrUCQBw7NgxrFixAtXV1Zg6dapVKurMeMBsPHIMpAx1xvEytmnkNv0DkTMxK0T5+/tj165dGD9+PCZPnixNsqlQKKDRaLBixQr4+/tbpaJ0HQ+YDSO3QCrHUCcnzthmc/ApBkS2ZfZkm+3atcPWrVvxxx9/4Ndff4UQAmFhYbjtttusUT+6AQ+YjUsOgVRuoY7si1ymfyByVhbPWH7bbbfhrrvuasy60C3wgNl45BhI5RDqyL7IafoHImdk0bPzyDZqDpg34gHTMnJ7DqFcZuUm+8KnGBDZlsU9UdT0OF+OcZYMzJbbN3j2MpKlOP0Dke0wRNkZHjAN3Twwu64xRTcPzJZbIDUn1PFuPuL0D0TywBBlB3jArNuNYaK+MUXGQoecAqmpoY538xHA6R+I5IIhyg7wgHlrpg4Ul3MgNSXU8W4+quHM/9+J5IIhyk7wgFk/U8cUyS2QNiTU8W4+IiLbYogih2DOmCI5BVJLQ50cp2ggInI2DFHkEOQ2UNwcloQ63s1HRGR7DFHkMOQ0UNza5DZFAxGRM+Jkm+RQ1OpyhIScdugABXCSRSIiOWBPFNk1U++ic8TpH5yp542ISI4Yosiuye1uO8C6k2HKeYoGIiJnoxBCCFtWYMWKFZg/fz60Wi169uyJZcuWoU+fPnWWX79+PaZPn45Tp04hLCwMc+fOxSOPPCKtF0JgxowZeOedd1BaWop77rkHb775JsLCwqQyJSUlmDhxIjZt2gSlUomhQ4diyZIlaNGihcF+Fi5ciLfffhunT59Gy5Yt8fe//x1Tp041uW1lZWVQq9XQ6XTw9vY2850he9QUk2FyxnIiIusy9fxt0zFR69atQ3p6OmbMmIF9+/ahZ8+e0Gg0OH/+vNHyu3btQlJSEsaMGYP9+/cjISEBCQkJOHTokFRm3rx5WLp0KVauXIn8/Hx4enpCo9HgypUrUpmRI0fi8OHD2LZtGzZv3ozvvvsOKSkpBq81adIk/Otf/8KCBQtw7NgxfPnll/WGOyLA+GSYhYXtaz1IuCGTYfr5+SEwMLDOHwYoIqKmYdOeqKioKNx1113SN3e9Xo/g4GBMnDgRr7zySq3yw4cPR0VFBTZv3iwtu/vuuxEeHo6VK1dCCIGgoCC88MILePHFFwEAOp0O/v7+WL16NRITE3H06FF07doVe/bsQe/evQEAOTk5eOSRR/D7778jKCgIR48exZ133olDhw6hU6dOFrePPVHO59y5c3j77bcB1D8ZZkpKCgIDA21ZVSIiqoPse6KqqqpQUFCA2NjYvyqjVCI2NhZ5eXlGt8nLyzMoDwAajUYqX1hYCK1Wa1BGrVYjKipKKpOXlwcfHx8pQAFAbGwslEol8vPzAQCbNm3CHXfcgc2bNyMkJATt27fHM888g5IS3j5OpqlrMsybe6SIiMh+2Wxg+cWLF1FdXQ1/f3+D5f7+/jh27JjRbbRardHyWq1WWl+zrL4yrVu3NljfrFkz+Pr6SmV+++03nD59GuvXr8f777+P6upqPP/883jsscewffv2OttUWVmJyspK6feysrI6y5Jj42SYRGQpjnu0H7w7zwi9Xo/Kykq8//776NixIwDg3XffRWRkJI4fP17nJb7MzEzMmjWrKatKMsXJMInIEk1xcwo1HptdzmvZsiVcXFxQVFRksLyoqAgBAQFGtwkICKi3fM2ftypz88D1a9euoaSkRCoTGBiIZs2aSQEKALp06QIAOHPmTJ1tmjx5MnQ6nfRz9uzZOsuSY+NkmERkiaa4OYUaj816olQqFSIjI5Gbm4uEhAQA13uAcnNzkZqaanSb6Oho5ObmIi0tTVq2bds2REdHAwBCQkIQEBCA3NxchIeHA7h+SS0/Px/jx4+X9lFaWoqCggJERkYCALZv3w69Xo+oqCgAwD333INr167h5MmTCA0NBQD88ssvAIB27drV2SY3Nze4ublZ9oaQw+FkmETUEPXdnELyYNPLeenp6UhOTkbv3r3Rp08fZGVloaKiAqNHjwYAjBo1Cm3atEFmZiaA69MOxMTEYOHChYiLi8PatWuxd+9e6W4ohUKBtLQ0zJkzB2FhYQgJCcH06dMRFBQkBbUuXbpg4MCBGDt2LFauXImrV68iNTUViYmJCAoKAnB9oHlERASefvppZGVlQa/XY8KECXjwwQcNeqeIbsbJMImoMdR1c0po6K/8QiYjNg1Rw4cPx4ULF5CRkQGtVovw8HDk5ORIA8PPnDkDpfKvK459+/ZFdnY2pk2bhilTpiAsLAwbN25E9+7dpTIvv/wyKioqkJKSgtLSUvTr1w85OTlwd3eXynz00UdITU3FgAEDpMk2ly5dKq1XKpXYtGkTJk6ciHvvvReenp54+OGHsXDhwiZ4V8ieyXEGdSKyP7w5xT7YfMZyR8Z5ooiIyBw1c83pdF7IykqrdXNKWloW1OpyzjVnZbKfJ4qIiIiM480p9oFTHBAREckQb06RP4YoIiIimeDNKfaFIYqIiEgmeHOKfWGIIiIikhEGJPvBgeVEREREFmCIIiIiIrIAQxQRERGRBRiiiIiIiCzAEEVERERkAYYoIiIiIgtwigNyOsXFxZyDhYiIGowhipxKcXExli9ffstyqampDFJERFQvhihyKjf3QOl0Xigp8YOvb7HBoxXq66kikgP2qBLZHkMUOa19+3ph06ZBEEIpPSE9ImK/ratFdEvsUW1cDKRkKYYocko6nZcUoABACCU2bRqE0NBf+aR0kj32qDYeBlJqCIYockolJX5SgKohhBIlJb4MUTLCHoJbY49qw5gaNBlIyRiGKHJKvr7FUCj0BkFKodDD17fEhrWiG7GH4NbYo9r46urVIzKGIYqcklpdjvj4zbW+wfOgKR+8ZHVr7FFtXOzVI3MxRJHTiojYj9DQX1FS4gtf3xKedGSMJzfj2KPaeNirR5bgjOXkVFQqlcHvanU5QkJO1zpI3lyObKeuk5tO52XjmtleTY+qQqEHAPaoNkB9vXpEdWFPFDkVPz8/pKamcrCyHZHTJSs5DnRnj2rjYK8eWYIhykHJ8WAvF87abnsll5ObnAa6G+tRNRae2KNqOo6TJEswRDkgOR3siRpKLic3OQ10Z49q47kxaNbXq8dASsYwRDkgOR3siRqD3C5ZyWGgOwNS42AgpYZgiHJwcjjYE1lCrpeseBeX42FAIksxRDkwHuzJnsm1h0BOA92JyLYYohxQaWkpgFsf7EtLSxEYGGiDGhKZRo49BHIZ6E5Etsd5ohzQtWvXAPx1sL/RjQf7mnJEZDrOzURENdgT5cDU6nLceedPOHiwJwAFAIE77/yJB3uiBpLbQHcisg32RDkwnc4LP/10J64HKABQ4Kef7uRMz0QW4Gz3RHQz9kQ5IFdXVwC3HhNVU46Ibk2uA92JzGXNyZidbaJnhigHpFarAdx6AGxNOSIyjSMd/Mk5WXMyZmec6JmX8xwYB8ASEdGNjE3GXFjYvtYwD0smY7bmvuWKPVEOzh4HwDpbdzARkS1YczJmZ5nomSHKAcl1pmdTOGN3MBFRU6mZR/BWkzE3ZB5BZ5romSHKAdnzAFg+94+IyHpq5ge81Y1HDZlH0Jlm9ZfFmKgVK1agffv2cHd3R1RUFHbv3l1v+fXr16Nz585wd3dHjx49sHXrVoP1QghkZGQgMDAQHh4eiI2NxYkTJwzKlJSUYOTIkfD29oaPjw/GjBmDS5cuGX29X3/9FV5eXvDx8WlQO5uSn58fAgMD6/yRY4C62b59vZCVlYY1a5KRlZWGfft62bpKREQO4VaTMct133Jj8xC1bt06pKenY8aMGdi3bx969uwJjUaD8+fPGy2/a9cuJCUlYcyYMdi/fz8SEhKQkJCAQ4cOSWXmzZuHpUuXYuXKlcjPz4enpyc0Gg2uXLkilRk5ciQOHz6Mbdu2YfPmzfjuu++QkpJS6/WuXr2KpKQk9O/fv/EbT3WqqzuYc1wRETVczWTMgPj/JY03GbMz3dRk8xC1aNEijB07FqNHj0bXrl2xcuVKNG/eHO+9957R8kuWLMHAgQPx0ksvoUuXLpg9ezYiIiKkcTRCCGRlZWHatGkYMmQI7rzzTrz//vv43//+h40bNwIAjh49ipycHPzrX/9CVFQU+vXrh2XLlmHt2rX43//+Z/B606ZNQ+fOnTFs2DCrvg9kqL7uYCIiahhrT8YcEbEfaWlZSE5ejbS0LIccVA7YOERVVVWhoKAAsbGx0jKlUonY2Fjk5eUZ3SYvL8+gPABoNBqpfGFhIbRarUEZtVqNqKgoqUxeXh58fHzQu3dvqUxsbCyUSiXy8/OlZdu3b8f69euxYsUKk9pTWVmJsrIygx+yjDN1BxMRNRVTJmO+sZw5nHFWf5sOLL948SKqq6vh7+9vsNzf3x/Hjh0zuo1WqzVaXqvVSutrltVXpnXr1gbrmzVrBl9fX6lMcXExnnrqKXz44Yfw9vY2qT2ZmZmYNWuWSWWpfjXdwTffIuuI3cFERE3FmpMx2/NNTZbi3Xl1GDt2LEaMGIF7773X5G0mT56M9PR06feysjIEBwdbo3pOwR7nuCIisgfW+qLqSAHJFDYNUS1btoSLiwuKiooMlhcVFSEgIMDoNgEBAfWWr/mzqKjIYI6LoqIihIeHS2VuHrh+7do1lJSUSNtv374dX375JRYsWADg+lgrvV6PZs2a4e2338bTTz9dq25ubm5wc3MztflkhD3PcUXkzDhJrn248dhZ3xdVHmNNY9MQpVKpEBkZidzcXCQkJAAA9Ho9cnNzkZqaanSb6Oho5ObmIi0tTVq2bds2REdHAwBCQkIQEBCA3NxcKTSVlZUhPz8f48ePl/ZRWlqKgoICREZGArgemvR6PaKiogBcHzdVXV0tvcYXX3yBuXPnYteuXWjTpk1jvg10A2fsDiayd5wk137wGNu4bH45Lz09HcnJyejduzf69OmDrKwsVFRUYPTo0QCAUaNGoU2bNsjMzAQATJo0CTExMVi4cCHi4uKwdu1a7N27F2+//TYAQKFQIC0tDXPmzEFYWBhCQkIwffp0BAUFSUGtS5cuGDhwIMaOHYuVK1fi6tWrSE1NRWJiIoKCgqQyN9q7dy+USiW6d+/eRO+M8+J/XiL7Yurkt5wkVx7MOcayh7F+Ng9Rw4cPx4ULF5CRkQGtVovw8HDk5ORIA8PPnDkDpfKvgW99+/ZFdnY2pk2bhilTpiAsLAwbN240CDcvv/wyKioqkJKSgtLSUvTr1w85OTlwd3eXynz00UdITU3FgAEDoFQqMXToUCxdurTpGk5E5KDqetIA2Rf2MN6aQgghbl2MLFFWVga1Wg2dTmfyHX5ERPbm3Llz0tWA+h48m5KSYvHz2Kjp3fi5AnWHY0f8XE09f9u8J4rI2bG7nByFMz141tnUF46dGUMUkQ2xu7xxWTuQMvDWz5kePOtMGI7rxhBFZEM3n5Dr6i7ngNxbs3YgdbbAa0lgvNUEjmSfGI7rxhBFJBPsLm8YawdSZwq8lgZGPmnAMTEc140hikgG2F3euKwdSB098JobGDmBo2NjOK4bQxSRDLC7vPFYO5A6W+A1JTByAkfHx8dwGccQRXbPEQb7sru88Vg7kDpT4DUnMMr9/xiZj4/hujWGKLJrjjLYl93ljcfagdSZAq8zBUaqjT2Mt8YQRXbNkQb7sru8cVg7kDpT4HWmwEjGOXNAMgVDFDkMexzsy+5y67B2IHWWwOtMgZHIEgxR5BDsdbAvu8sbj7UDqbMGXmcJjESWYIgih2DPYzcYkBqHtQOpMwVeZw2MROZiiCKHwLEbBFg/kDpCQDKFMwVGooZgiCKHwLEb1BQcYToNUzlKO4isiSGKHAbHbpA1Ocp0GkTUeBiiyK5x7AY1FUeaToOIGgdDFNk1jt0gW7DH6TSIqPExRJHdY0CipmSv02nIjTONLyPHxRBFRGQGe55OQy44vowsJbfwzRBFRGQGTqfRcBxfRpaQY/hmiCIiMgOn02hcHF9GppJj+GaIIiIyE6fTaBwcX0aWkkv4Vt66CBERGZtOIyTkdK2TPafTMF1948uI6lJX+NbpvJq8LgxRRERkEzXjy27E8WV0K3IK3wxRREQmMDYeo7Cwfa1vvxwMbbqa8WU1QYrjy8gUcgrfHBNFRGQmuYzHcAQcX0bmktPNHQxRRERm4GDohuPjmqih5BK+GaKIiMzAyTYbjo9rIkvIMXwzRJHTkduMt2RfONlm4+D/MQLMOx7LMXwzRJFTkeOMt2Rf5DQeg8ieWXI8lttxmSGKnIocZ7wl+1BaWir9vb7xGKWlpQgMDLRBDYnsiyMcjxmiyGnxDisyh0KhMLbUxHJE1uMIQxTs9XjMEEVOiXdYkbnUarX09/oO+DeWcyaOcCK3R44wRMGej8cMUeSUeIcVWcqeD/jW4ggncnvlCJfE7Pl4zBBFTol3WDmmpugNsecDvrU4woncEdjrJTF7Ph4zRJFT4h1WjqepekPs+YDfFEw9kfPyX+Oy5x5Sez4eyyJErVixAvPnz4dWq0XPnj2xbNky9OnTp87y69evx/Tp03Hq1CmEhYVh7ty5eOSRR6T1QgjMmDED77zzDkpLS3HPPffgzTffRFhYmFSmpKQEEydOxKZNm6BUKjF06FAsWbIELVq0AAB8++23WLx4MXbv3o2ysjKEhYXhpZdewsiRI633RlCTstaMtzw52EZT9YbY8wHf2kw9kfPyX+Oz9x5SucxAbi6bh6h169YhPT0dK1euRFRUFLKysqDRaHD8+HG0bt26Vvldu3YhKSkJmZmZGDRoELKzs5GQkIB9+/ahe/fuAIB58+Zh6dKlWLNmDUJCQjB9+nRoNBocOXIE7u7uAICRI0fi3Llz2LZtG65evYrRo0cjJSUF2dnZ0uvceeed+Mc//gF/f39s3rwZo0aNglqtxqBBg5ruDaJGZe0Zb3lykAdrX9aw1wO+tZl6Iuflv8Znjz2kcpyB3Fw2D1GLFi3C2LFjMXr0aADAypUrsWXLFrz33nt45ZVXapVfsmQJBg4ciJdeegkAMHv2bGzbtg3Lly/HypUrIYRAVlYWpk2bhiFDhgAA3n//ffj7+2Pjxo1ITEzE0aNHkZOTgz179qB3794AgGXLluGRRx7BggULEBQUhClTphi87qRJk/D1119jw4YNDFF2zM/PD0888QQuX75cZ5nmzZtbHHB4crA9a13WcIQDvrVZciK313E8cmOPPaRynIHcXDYNUVVVVSgoKMDkyZOlZUqlErGxscjLyzO6TV5eHtLT0w2WaTQabNy4EQBQWFgIrVaL2NhYab1arUZUVBTy8vKQmJiIvLw8+Pj4SAEKAGJjY6FUKpGfn4+//e1vRl9bp9OhS5cudbansrISlZWV0u9lZWV1N55sori4GB9++OEtyzVGTxFPDrZhzmUNe3/khNyYeyK353E8cmSPPaT2/v/FpiHq4sWLqK6uhr+/v8Fyf39/HDt2zOg2Wq3WaHmtViutr1lWX5mbLxU2a9YMvr6+UpmbffLJJ9izZw/eeuutOtuTmZmJWbNm1bmebK+peop4crAdU3tDHOGRE3Jkzonc3sfxyAF7SG3L5pfz7MGOHTswevRovPPOO+jWrVud5SZPnmzQS1ZWVobg4OCmqCJZwJo9RTw52I6pvSG89Np4LD2R2+M4HrlhD6lt2TREtWzZEi4uLigqKjJYXlRUhICAAKPbBAQE1Fu+5s+ioiKD51cVFRUhPDxcKnP+/HmDfVy7dg0lJSW1Xvc///kP4uPjsXjxYowaNare9ri5ucHNza3eMiQP1u4p4snBtsy9rMFLrw1j6YncHsfxyBEDku0ob13EelQqFSIjI5Gbmyst0+v1yM3NRXR0tNFtoqOjDcoDwLZt26TyISEhCAgIMChTVlaG/Px8qUx0dDRKS0tRUFAgldm+fTv0ej2ioqKkZd9++y3i4uIwd+5cpKSkNLzBJBv19RQ1hpqTg0KhBwCeHJqAsd6QkJDTtd7zm8vVFah1Oi/rVtjB+Pn5ITAwsM6fuk70ERH7kZaWheTk1UhLy2J4Jbti88t56enpSE5ORu/evdGnTx9kZWWhoqJCultv1KhRaNOmDTIzMwFcv0suJiYGCxcuRFxcHNauXYu9e/fi7bffBnD94Z9paWmYM2cOwsLCpCkOgoKCkJCQAADo0qULBg4ciLFjx2LlypW4evUqUlNTkZiYiKCgIADXL+ENGjQIkyZNwtChQ6WxUiqVCr6+jXOiJduxVk+RTqeT/l5fb4hOpzPoKaWGs7Q3hJdemx7H8ZCjsHmIGj58OC5cuICMjAxotVqEh4cjJydHGhh+5swZKJV/HeD69u2L7OxsTJs2DVOmTEFYWBg2btwozREFAC+//DIqKiqQkpKC0tJS9OvXDzk5OdIcUQDw0UcfITU1FQMGDJAm21y6dKm0fs2aNbh8+TIyMzOlAAcAMTEx+Pbbb634jlBTsNZlBCGEkaUKE8tRQ1lyWYOXXpsex/GQo1AIHs2tpqysDGq1GjqdDt7e3rauDgE4d+6c1GsJ1Awmrt1TlJKSYlFP0Y37r2+cjaX7p8bDz4qI6mLq+dvmPVFETampLiNwigP7Yo/z6xCR7TFEkVNpqssIHGcjfxyXQzX4vEuyFEMU2T1zD4BNcTDkOBv547gcAvi8S2oYhiiya3I9AHL+G/tgzydF9p40Dk66Sg3BEEV2Tc4HQI6zIWuR65cHeyeXSVftOSDbc90twRBFDkMOB0COs7Etax/A5XKCkPOXB3sll5tB7Dkg23PdLcUQRQ5BLgdAjrOxHWsfwOV6gpDDlwdHYM7NINYM0/YckO257pZiiCKHIKe74RiQbMPaB3A5niDk8uXBEZh6M8jNYbqufweNEabtOSDbc93NwRBFDoF3w9GNrH0Al8sJQk5fHuydqTeD3BiS6/t30NAwbc8B2Z7rbi6GKHIIvBuOalj7AC6nEwS/PDQuc24Gsfa/A3sOyPZcd3MxRJHD4N1wBFj/AC6nEwS/PDScpTeDWPvfgT0HZHuuu7kYosiu8W44upm1D+ByO0Hwy0PDWHoziLX/HdhzQLbnupuLIYrsmp+fH5544glcvny5zjLNmzfnYG8nYu0DuBxOEPzy0LgsOT40xb8Dew7I9lx3czBEkV0rLi7Ghx9+eMtyjjQvCd2atQ/gtj5BcCoNebDGvwN7Dsj2XHdLMUSRXTP1DhhHmpfEmuQymaQlrH0Al9sJQq6fg7Op69+Bpew5INtz3S3FEEUOpa45W+jW5DqZpKmsfQA3d//2HEipbqaG5IaEaXv+d2HPdbcEQxQ5DLnM3WOv2Kt3a6aeIOw9kFLdnLG3herGEEUOQU5z9zgKe+vVk1NwkePs5lQ3c3sNGZCoBkOUg3K2SwlymrvH2pris7XHXj05BRedTif9fd++Xvjyy0EAlAD0GDz4r/dSp9MhMDDQ6vWhuskpfJP9YYhyQM54UJDb3D3W0hSfrSP06tk6BF69ehXA9ffyrwAFAEp8+eVf72VNObIdOYVvsj8MUQ7IGQ8Kcpi7x1Lm9Cw1xWdr7716cgqBZ88G468AVUOJs2dvh1p9tEnrQrdm6/BN9ochysE5+kHhxjtg6puzRa7zkjSkZ8lan6299+rZewgk25BT+Cb7wRDlwJzhoGDvd8pY2rNkzc/Wnnv1AHmFwODgswAEAIVBXYKDf2/yulD9GL7JEgxRDsxZDgpyDUjmMqdnyRqfrb336tWQUwhUq8sxePAmWdSF6ien8E32gyHKgfGgYD/M7Vmyxmdr7716N7L1Y1maNfvr0FpfXW4sR7Ylp/BN9oP/gx0YDwr2w9yeJWt9tvYQkOoip8ey+Pj4mFSXm8uRbdk6fJP9YYhycDwo2AdLepb42RqSU09aUzwahBqHnMI32R+GKAfEg4L9MbVniZ9t/eTSkyanQEf142dFDcEQ5YB4ULBPpvQs8bO1H/wM7Ac/K7IUQ5SD4kHBPljSs8TPlohIHhiiiGyIPUtERPaLIYrIxhiQiIjs080PdSIiIiIiEzBEEREREVmAIYqIiIjIAgxRRERERBZgiCIiIiKygCxC1IoVK9C+fXu4u7sjKioKu3fvrrf8+vXr0blzZ7i7u6NHjx7YunWrwXohBDIyMhAYGAgPDw/ExsbixIkTBmVKSkowcuRIeHt7w8fHB2PGjMGlS5cMyvz000/o378/3N3dERwcjHnz5jVOg4mIiMju2TxErVu3Dunp6ZgxYwb27duHnj17QqPR4Pz580bL79q1C0lJSRgzZgz279+PhIQEJCQk4NChQ1KZefPmYenSpVi5ciXy8/Ph6ekJjUaDK1euSGVGjhyJw4cPY9u2bdi8eTO+++47pKSkSOvLysrw0EMPoV27digoKMD8+fMxc+ZMvP3229Z7M4iIiMh+CBvr06ePmDBhgvR7dXW1CAoKEpmZmUbLDxs2TMTFxRksi4qKEuPGjRNCCKHX60VAQICYP3++tL60tFS4ubmJjz/+WAghxJEjRwQAsWfPHqnMv//9b6FQKMR///tfIYQQb7zxhrjttttEZWWlVOYf//iH6NSpk8lt0+l0AoDQ6XQmb0NERES2Zer526Y9UVVVVSgoKEBsbKy0TKlUIjY2Fnl5eUa3ycvLMygPABqNRipfWFgIrVZrUEatViMqKkoqk5eXBx8fH/Tu3VsqExsbC6VSifz8fKnMvffea/C4DY1Gg+PHj+OPP/4wWrfKykqUlZUZ/BAREZFjsumM5RcvXkR1dTX8/f0Nlvv7++PYsWNGt9FqtUbLa7VaaX3NsvrKtG7d2mB9s2bN4Ovra1AmJCSk1j5q1t1222216paZmYlZs2bVWs4wRUREZD9qzttCiHrL8bEvjWjy5MlIT0+Xfv/vf/+Lrl27Ijg42Ia1IiIiIkuUl5dDrVbXud6mIaply5ZwcXFBUVGRwfKioiIEBAQY3SYgIKDe8jV/FhUVITAw0KBMeHi4VObmgevXrl1DSUmJwX6Mvc6Nr3EzNzc3uLm5Sb+3aNECZ8+ehZeXFxQKhdFtLFFWVobg4GCcPXsW3t7ejbZfuXD09gGO30ZHbx/g+G1k++yfo7fRmu0TQqC8vBxBQUH1lrNpiFKpVIiMjERubi4SEhIAAHq9Hrm5uUhNTTW6TXR0NHJzc5GWliYt27ZtG6KjowEAISEhCAgIQG5urhSaysrKkJ+fj/Hjx0v7KC0tRUFBASIjIwEA27dvh16vR1RUlFRm6tSpuHr1KlxdXaXX6dSpk9FLecYolUrcfvvtZr0n5vD29nbI/xg1HL19gOO30dHbBzh+G9k+++fobbRW++rrgaph8ykO0tPT8c4772DNmjU4evQoxo8fj4qKCowePRoAMGrUKEyePFkqP2nSJOTk5GDhwoU4duwYZs6cib1790qhS6FQIC0tDXPmzMGXX36Jn3/+GaNGjUJQUJAU1Lp06YKBAwdi7Nix2L17N3bu3InU1FQkJiZKqXPEiBFQqVQYM2YMDh8+jHXr1mHJkiUGl+uIiIjIedl8TNTw4cNx4cIFZGRkQKvVIjw8HDk5OdIg7jNnzkCp/Cvr9e3bF9nZ2Zg2bRqmTJmCsLAwbNy4Ed27d5fKvPzyy6ioqEBKSgpKS0vRr18/5OTkwN3dXSrz0UcfITU1FQMGDIBSqcTQoUOxdOlSab1arcbXX3+NCRMmIDIyEi1btkRGRobBXFJERETkxJpkwgVqVFeuXBEzZswQV65csXVVrMLR2yeE47fR0dsnhOO3ke2zf47eRjm0TyHELe7fIyIiIqJabD4mioiIiMgeMUQRERERWYAhioiIiMgCDFFEREREFmCIkokVK1agffv2cHd3R1RUFHbv3l1v+aysLHTq1AkeHh4IDg7G888/jytXrjRon9bU2O2bOXMmFAqFwU/nzp2t3Yw6mdO+q1ev4tVXX0VoaCjc3d3Rs2dP5OTkNGifTaGx2yinz/C7775DfHw8goKCoFAosHHjxltu8+233yIiIgJubm7o0KEDVq9eXauMXD5Da7TPnj+/c+fOYcSIEejYsSOUSqXB5M03Wr9+PTp37gx3d3f06NEDW7dubfzKm8gabVy9enWtz/DGqYCakrnt27BhAx588EG0atUK3t7eiI6OxldffVWrnLX/DzJEycC6deuQnp6OGTNmYN++fejZsyc0Gk2tR9PUyM7OxiuvvIIZM2bg6NGjePfdd7Fu3TpMmTLF4n1akzXaBwDdunXDuXPnpJ8ffvihKZpTi7ntmzZtGt566y0sW7YMR44cwbPPPou//e1v2L9/v8X7tDZrtBGQz2dYUVGBnj17YsWKFSaVLywsRFxcHO6//34cOHAAaWlpeOaZZwwO4nL6DK3RPsB+P7/Kykq0atUK06ZNQ8+ePY2W2bVrF5KSkjBmzBjs378fCQkJSEhIwKFDhxqz6iazRhuB67N93/gZnj59urGqbBZz2/fdd9/hwQcfxNatW1FQUID7778f8fHxTX8ctdnkCiTp06ePmDBhgvR7dXW1CAoKEpmZmUbLT5gwQTzwwAMGy9LT08U999xj8T6tyRrtmzFjhujZs6dV6msuc9sXGBgoli9fbrDs0UcfFSNHjrR4n9ZmjTbK6TO8EQDx+eef11vm5ZdfFt26dTNYNnz4cKHRaKTf5fYZ1mis9tnz53ejmJgYMWnSpFrLhw0bJuLi4gyWRUVFiXHjxjWwhg3XWG1ctWqVUKvVjVavxmJu+2p07dpVzJo1S/q9Kf4PsifKxqqqqlBQUIDY2FhpmVKpRGxsLPLy8oxu07dvXxQUFEjdkr/99hu2bt2KRx55xOJ9Wos12lfjxIkTCAoKwh133IGRI0fizJkz1mtIHSxpX2VlZa0ucw8PD+lbvJw+P0vrc6s21pDDZ2iJvLw8g/cDADQajfR+yO0zNNet2lfDXj8/U5j6Hti7S5cuoV27dggODsaQIUNw+PBhW1fJInq9HuXl5fD19QXQdP8HGaJs7OLFi6iurpYec1PD398fWq3W6DYjRozAq6++in79+sHV1RWhoaG47777pMtdluzTWqzRPgCIiorC6tWrkZOTgzfffBOFhYXo378/ysvLrdqem1nSPo1Gg0WLFuHEiRPQ6/XYtm0bNmzYgHPnzlm8T2uyRhsB+XyGltBqtUbfj7KyMvz555+y+wzNdav2Afb9+ZmirvfAHj4/U3Xq1AnvvfcevvjiC3z44YfQ6/Xo27cvfv/9d1tXzWwLFizApUuXMGzYMABNdxxliLJD3377Lf75z3/ijTfewL59+7BhwwZs2bIFs2fPtnXVGoUp7Xv44Yfx+OOP484774RGo8HWrVtRWlqKTz75xIY1N82SJUsQFhaGzp07Q6VSITU1FaNHjzZ4RqS9M6WN9vwZEj8/RxAdHY1Ro0YhPDwcMTEx2LBhA1q1aoW33nrL1lUzS3Z2NmbNmoVPPvkErVu3btLXtvkDiJ1dy5Yt4eLigqKiIoPlRUVFCAgIMLrN9OnT8eSTT+KZZ54BAPTo0UN64PLUqVMt2qe1WKN9xsKGj48POnbsiF9//bXxG1EPS9rXqlUrbNy4EVeuXEFxcTGCgoLwyiuv4I477rB4n9ZkjTYaY6vP0BIBAQFG3w9vb294eHjAxcVFVp+huW7VPmPs6fMzRV3vgT18fpZydXVFr1697OozXLt2LZ555hmsX7/e4NJdUx1HHeerr51SqVSIjIxEbm6utEyv1yM3NxfR0dFGt7l8+XKtIOHi4gIAEEJYtE9rsUb7jLl06RJOnjyJwMDARqq5aRryXru7u6NNmza4du0aPvvsMwwZMqTB+7QGa7TRGFt9hpaIjo42eD8AYNu2bdL7IbfP0Fy3ap8x9vT5mcKS98DeVVdX4+eff7abz/Djjz/G6NGj8fHHHyMuLs5gXZP9H2y0IepksbVr1wo3NzexevVqceTIEZGSkiJ8fHyEVqsVQgjx5JNPildeeUUqP2PGDOHl5SU+/vhj8dtvv4mvv/5ahIaGimHDhpm8T3tv3wsvvCC+/fZbUVhYKHbu3CliY2NFy5Ytxfnz52Xfvh9//FF89tln4uTJk+K7774TDzzwgAgJCRF//PGHyftsatZoo5w+w/LycrF//36xf/9+AUAsWrRI7N+/X5w+fVoIIcQrr7winnzySan8b7/9Jpo3by5eeuklcfToUbFixQrh4uIicnJypDJy+gyt0T57/vyEEFL5yMhIMWLECLF//35x+PBhaf3OnTtFs2bNxIIFC8TRo0fFjBkzhKurq/j555+btG01rNHGWbNmia+++kqcPHlSFBQUiMTEROHu7m5QpqmY276PPvpINGvWTKxYsUKcO3dO+iktLZXKNMX/QYYomVi2bJlo27atUKlUok+fPuLHH3+U1sXExIjk5GTp96tXr4qZM2eK0NBQ4e7uLoKDg8Xf//53gxPUrfbZ1Bq7fcOHDxeBgYFCpVKJNm3aiOHDh4tff/21CVtkyJz2ffvtt6JLly7Czc1N+Pn5iSeffFL897//NWufttDYbZTTZ7hjxw4BoNZPTZuSk5NFTExMrW3Cw8OFSqUSd9xxh1i1alWt/crlM7RG++z98zNWvl27dgZlPvnkE9GxY0ehUqlEt27dxJYtW5qmQUZYo41paWnSv09/f3/xyCOPiH379jVdo25gbvtiYmLqLV/D2v8HFULUcX2EiIiIiOrEMVFEREREFmCIIiIiIrIAQxQRERGRBRiiiIiIiCzAEEVERERkAYYoIiIiIgswRBERERFZgCGKiMiJfPvtt1AoFCgtLbV1VYjsHkMUEVnFU089BYVCgddff91g+caNG6FQKKTfhRB45513EB0dDW9vb7Ro0QLdunXDpEmTTH4Q6uXLlzF58mSEhobC3d0drVq1QkxMDL744gupTPv27ZGVldUobbO2mvdOoVDA1dUVISEhePnll3HlyhWz9nPfffchLS3NYFnfvn1x7tw5qNXqRqwxkXNiiCIiq3F3d8fcuXPxxx9/GF0vhMCIESPw3HPP4ZFHHsHXX3+NI0eO4N1334W7uzvmzJlj0us8++yz2LBhA5YtW4Zjx44hJycHjz32GIqLixuzOU1q4MCBOHfuHH777TcsXrwYb731FmbMmNHg/apUKgQEBBgEWSKyUKM+RIaI6P8lJyeLQYMGic6dO4uXXnpJWv7555+LmkPPxx9/LACIL774wug+9Hq9Sa+lVqvF6tWr61xv7DlbNb7//nvRr18/4e7uLm6//XYxceJEcenSJWn9+++/LyIjI0WLFi2Ev7+/SEpKEkVFRdL6mmd+5eTkiPDwcOHu7i7uv/9+UVRUJLZu3So6d+4svLy8RFJSkqioqDCpPcnJyWLIkCEGyx599FHRq1cv6feLFy+KxMREERQUJDw8PET37t1Fdna2wT5ubnNhYaFU3xufRfnpp5+Krl27CpVKJdq1aycWLFhgUj2JnB17oojIalxcXPDPf/4Ty5Ytw++//15r/ccff4xOnTph8ODBRrc3tbckICAAW7duRXl5udH1GzZswO23345XX30V586dw7lz5wAAJ0+exMCBAzF06FD89NNPWLduHX744QekpqZK2169ehWzZ8/GwYMHsXHjRpw6dQpPPfVUrdeYOXMmli9fjl27duHs2bMYNmwYsrKykJ2djS1btuDrr7/GsmXLTGrPzQ4dOoRdu3ZBpVJJy65cuYLIyEhs2bIFhw4dQkpKCp588kns3r0bALBkyRJER0dj7NixUpuDg4Nr7bugoADDhg1DYmIifv75Z8ycORPTp0/H6tWrLaorkVOxdYojIsd0Y2/K3XffLZ5++mkhhGFPVOfOncXgwYMNtps0aZLw9PQUnp6eok2bNia91n/+8x9x++23C1dXV9G7d2+RlpYmfvjhB4My7dq1E4sXLzZYNmbMGJGSkmKw7PvvvxdKpVL8+eefRl9rz549AoAoLy8XQvzVE/XNN99IZTIzMwUAcfLkSWnZuHHjhEajMak9ycnJwsXFRXh6ego3NzcBQCiVSvHpp5/Wu11cXJx44YUXpN9jYmLEpEmTDMrc3BM1YsQI8eCDDxqUeemll0TXrl1NqiuRM2NPFBFZ3dy5c7FmzRocPXr0lmWnTp2KAwcOICMjA5cuXTJp//feey9+++035Obm4rHHHsPhw4fRv39/zJ49u97tDh48iNWrV6NFixbSj0ajgV6vR2FhIYDrPTXx8fFo27YtvLy8EBMTAwA4c+aMwb7uvPNO6e/+/v5o3rw57rjjDoNl58+fN6k9AHD//ffjwIEDyM/PR3JyMkaPHo2hQ4dK66urqzF79mz06NEDvr6+aNGiBb766qta9bqVo0eP4p577jFYds899+DEiROorq42a19EzoYhiois7t5774VGo8HkyZMNloeFheH48eMGy1q1aoUOHTqgdevWZr2Gq6sr+vfvj3/84x/4+uuv8eqrr2L27Nmoqqqqc5tLly5h3LhxOHDggPRz8OBBnDhxAqGhoaioqIBGo4G3tzc++ugj7NmzB59//jkA1Nqvq6ur9Peau+pupFAooNfrTW6Pp6cnOnTogJ49e+K9995Dfn4+3n33XWn9/PnzsWTJEvzjH//Ajh07cODAAWg0mnrbS0SNq5mtK0BEzuH1119HeHg4OnXqJC1LSkrCiBEj8MUXX2DIkCGN+npdu3bFtWvXcOXKFahUKqhUqlo9KxEREThy5Ag6dOhgdB8///wziouL8frrr0vjifbu3duo9TSFUqnElClTkJ6ejhEjRsDDwwM7d+7EkCFD8MQTTwAA9Ho9fvnlF3Tt2lXazlibb9alSxfs3LnTYNnOnTvRsWNHuLi4NH5jiBwIe6KIqEn06NEDI0eOxNKlS6VliYmJeOyxx5CYmIhXX30V+fn5OHXqFP7zn/9g3bp1Jp/E77vvPrz11lsoKCjAqVOnsHXrVkyZMgX3338/vL29AVyfJ+q7777Df//7X1y8eBEA8I9//AO7du1CamoqDhw4gBMnTuCLL76QBpa3bdsWKpUKy5Ytw2+//YYvv/zylpcIreXxxx+Hi4sLVqxYAeB6L962bduwa9cuHD16FOPGjUNRUZHBNu3bt5fe04sXLxrtCXvhhReQm5uL2bNn45dffsGaNWuwfPlyvPjii03SLiJ7xhBFRE3m1VdfNTiRKxQKrFu3DllZWdi6dSsGDBiATp064emnn0ZwcDB++OEHk/ar0WiwZs0aPPTQQ+jSpQsmTpwIjUaDTz75xOC1T506hdDQULRq1QrA9XFM//nPf/DLL7+gf//+6NWrFzIyMhAUFATg+qXF1atXY/369ejatStef/11LFiwoBHfEdM1a9YMqampmDdvHioqKjBt2jRERERAo9HgvvvuQ0BAABISEgy2efHFF+Hi4oKuXbuiVatWRsdLRURE4JNPPsHatWvRvXt3ZGRk4NVXXzV6ByIRGVIIIYStK0FERERkb9gTRURERGQBhigikr0bpyC4+ef777+3dfXMcubMmXrbY+4UBURkO7ycR0SyV9+DiNu0aQMPD48mrE3DXLt2DadOnapzffv27dGsGW+cJrIHDFFEREREFuDlPCIiIiILMEQRERERWYAhioiIiMgCDFFEREREFmCIIiIiIrIAQxQRERGRBRiiiIiIiCzAEEVERERkgf8DQZy2hqwh8WcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHHCAYAAAB9dxZkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZ8NJREFUeJzt3XlcVOX+B/DPDDKACGO4sBgqIe4mgkmYSik1FlrcLEUtyUzMKyaXytIU98g1RC2yV4ktpJlmuUQS2rWUiwpauWYGWTcHFWJQvIoyz+8Pf5wcGWAGZp/P+/XihXPOc848z4wz58v3WY5MCCFARERERE0mt3YFiIiIiBwFAysiIiIiE2FgRURERGQiDKyIiIiITISBFREREZGJMLAiIiIiMhEGVkREREQmwsCKiIiIyEQYWBERERGZCAMrIiIHl5mZCZlMhuLiYmtXhcjhMbAioiY7ePAgEhMT0aNHD3h6eqJ9+/YYOXIkfv7551pl77//fshkMshkMsjlcnh7e6NLly54+umnkZOTY9Tzbtu2DVFRUWjbti2aN2+Ou+66CyNHjkR2drapmlbL66+/jq1bt9bavn//fsydOxfl5eVme+7bzZ07V3otZTIZmjdvju7du2PWrFmoqKgwyXNkZWUhLS3NJOcicgYMrIioyRYvXozNmzdjyJAhWLlyJRISErB3716EhYXh6NGjtcrfeeed+PDDD/HBBx9g6dKlePTRR7F//3489NBDGDVqFK5fv97gcy5btgyPPvooZDIZZsyYgTfffBMjRozA6dOnsWHDBnM0E0D9gdW8efMsGljVePvtt/Hhhx9ixYoV6Nq1KxYtWoShQ4fCFLeCZWBFZJxm1q4AEdm/5ORkZGVlQaFQSNtGjRqFXr164Y033sBHH32kU16pVOKpp57S2fbGG2/ghRdewFtvvYWOHTti8eLFdT7fjRs3sGDBAjz44IPYtWtXrf3nz59vYotsx5UrV9C8efN6yzzxxBNo3bo1AOD555/HiBEjsGXLFvznP/9BZGSkJapJRP+PGSsiarL+/fvrBFUAEBISgh49euDEiRMGncPFxQXp6eno3r07Vq9eDY1GU2fZixcvoqKiAvfdd5/e/W3bttV5fPXqVcydOxedO3eGu7s7/P398fjjj+PMmTNSmWXLlqF///5o1aoVPDw8EB4ejs8++0znPDKZDJWVlVi/fr3U/fbMM89g7ty5ePnllwEAQUFB0r5bxzR99NFHCA8Ph4eHB3x8fBAXF4fff/9d5/z3338/evbsiYKCAgwaNAjNmzfHzJkzDXr9bjV48GAAQFFRUb3l3nrrLfTo0QNubm4ICAjAlClTdDJu999/P3bs2IHffvtNalPHjh2Nrg+RM2HGiojMQgiBkpIS9OjRw+BjXFxcMHr0aMyePRvff/89YmJi9JZr27YtPDw8sG3bNkydOhU+Pj51nrO6uhrDhg1Dbm4u4uLiMG3aNFy6dAk5OTk4evQogoODAQArV67Eo48+irFjx6KqqgobNmzAk08+ie3bt0v1+PDDD/Hcc8+hX79+SEhIAAAEBwfD09MTP//8Mz755BO8+eabUvaoTZs2AIBFixZh9uzZGDlyJJ577jlcuHABq1atwqBBg3D48GG0bNlSqm9paSkefvhhxMXF4amnnoKvr6/Br1+NmoCxVatWdZaZO3cu5s2bh+joaEyePBmnTp3C22+/jYMHD2Lfvn1wdXXFa6+9Bo1Ggz/++ANvvvkmAKBFixZG14fIqQgiIjP48MMPBQDx3nvv6WyPiooSPXr0qPO4zz//XAAQK1eurPf8KSkpAoDw9PQUDz/8sFi0aJEoKCioVe79998XAMSKFStq7dNqtdK/r1y5orOvqqpK9OzZUwwePFhnu6enp4iPj691rqVLlwoAoqioSGd7cXGxcHFxEYsWLdLZ/tNPP4lmzZrpbI+KihIAREZGRp3tvtWcOXMEAHHq1Clx4cIFUVRUJN555x3h5uYmfH19RWVlpRBCiHXr1unU7fz580KhUIiHHnpIVFdXS+dbvXq1ACDef/99aVtMTIzo0KGDQfUhIiHYFUhEJnfy5ElMmTIFkZGRiI+PN+rYmozIpUuX6i03b948ZGVloU+fPvj666/x2muvITw8HGFhYTrdj5s3b0br1q0xderUWueQyWTSvz08PKR///XXX9BoNBg4cCAKCwuNqv/ttmzZAq1Wi5EjR+LixYvSj5+fH0JCQrBnzx6d8m5ubhg/frxRz9GlSxe0adMGQUFBmDRpEjp16oQdO3bUOTbrm2++QVVVFZKSkiCX/30ZmDhxIry9vbFjxw7jG0pEANgVSEQmplarERMTA6VSic8++wwuLi5GHX/58mUAgJeXV4NlR48ejdGjR6OiogL5+fnIzMxEVlYWhg8fjqNHj8Ld3R1nzpxBly5d0KxZ/V9327dvx8KFC3HkyBFcu3ZN2n5r8NUYp0+fhhACISEheve7urrqPG7Xrl2t8WoN2bx5M7y9veHq6oo777xT6t6sy2+//QbgZkB2K4VCgbvuukvaT0TGY2BFRCaj0Wjw8MMPo7y8HN999x0CAgKMPkfN8gydOnUy+Bhvb288+OCDePDBB+Hq6or169cjPz8fUVFRBh3/3Xff4dFHH8WgQYPw1ltvwd/fH66urli3bh2ysrKMbsOttFotZDIZvvrqK71B5u1jlm7NnBlq0KBB0rguIrIuBlZEZBJXr17F8OHD8fPPP+Obb75B9+7djT5HdXU1srKy0Lx5cwwYMKBR9ejbty/Wr1+Pc+fOAbg5uDw/Px/Xr1+vlR2qsXnzZri7u+Prr7+Gm5ubtH3dunW1ytaVwapre3BwMIQQCAoKQufOnY1tjll06NABAHDq1Cncdddd0vaqqioUFRUhOjpa2tbUjB2Rs+EYKyJqsurqaowaNQp5eXnYtGlTo9ZOqq6uxgsvvIATJ07ghRdegLe3d51lr1y5gry8PL37vvrqKwB/d3ONGDECFy9exOrVq2uVFf+/gKaLiwtkMhmqq6ulfcXFxXoXAvX09NS7CKinpycA1Nr3+OOPw8XFBfPmzau1YKcQAqWlpfobaUbR0dFQKBRIT0/XqdN7770HjUajMxvT09Oz3qUviEgXM1ZE1GQvvvgivvzySwwfPhxlZWW1FgS9fTFQjUYjlbly5Qp++eUXbNmyBWfOnEFcXBwWLFhQ7/NduXIF/fv3x7333ouhQ4ciMDAQ5eXl2Lp1K7777jvExsaiT58+AIBx48bhgw8+QHJyMg4cOICBAweisrIS33zzDf75z3/iscceQ0xMDFasWIGhQ4dizJgxOH/+PNasWYNOnTrhxx9/1Hnu8PBwfPPNN1ixYgUCAgIQFBSEiIgIhIeHAwBee+01xMXFwdXVFcOHD0dwcDAWLlyIGTNmoLi4GLGxsfDy8kJRURE+//xzJCQk4KWXXmrS62+sNm3aYMaMGZg3bx6GDh2KRx99FKdOncJbb72Fe+65R+f9Cg8Px8aNG5GcnIx77rkHLVq0wPDhwy1aXyK7Ys0piUTkGGqWCajrp76yLVq0ECEhIeKpp54Su3btMuj5rl+/Lt59910RGxsrOnToINzc3ETz5s1Fnz59xNKlS8W1a9d0yl+5ckW89tprIigoSLi6ugo/Pz/xxBNPiDNnzkhl3nvvPRESEiLc3NxE165dxbp166TlDG518uRJMWjQIOHh4SEA6Cy9sGDBAtGuXTshl8trLb2wefNmMWDAAOHp6Sk8PT1F165dxZQpU8SpU6d0Xpv6lqK4XU39Lly4UG+525dbqLF69WrRtWtX4erqKnx9fcXkyZPFX3/9pVPm8uXLYsyYMaJly5YCAJdeIGqATAgT3EyKiIiIiDjGioiIiMhUGFgRERERmQgDKyIiIiITYWBFREREZCIMrIiIiIhMhIEVERERkYlwgVAz0mq1+PPPP+Hl5cXbQhAREdkJIQQuXbqEgIAAyOXG5aAYWJnRn3/+icDAQGtXg4iIiBrh999/x5133mnUMQyszMjLywvAzTemvvueERERke2oqKhAYGCgdB03BgMrM6rp/vP29mZgRUREZGcaM4yHg9eJiIiITISBFREREZGJMLAiIiIiMhGOsSIiIrIx1dXVuH79urWr4bBcXV3h4uJilnMzsCIiIrIRQgio1WqUl5dbuyoOr2XLlvDz8zP5OpMMrIiIiGxETVDVtm1bNG/enItLm4EQAleuXMH58+cBAP7+/iY9PwMrIiIiG1BdXS0FVa1atbJ2dRyah4cHAOD8+fNo27atSbsFOXidiIjIBtSMqWrevLmVa+Ical5nU49lY2BFRERkQ9j9Zxnmep3ZFeigSktLUVVVVed+hULBVDMREZGJMbByQKWlpVi9enWD5RITExlcERERmRC7Ah3Q7ZkqjcYLRUUdodF41VuOGlZaWopz587V+VNaWmrtKhIRWdwzzzwDmUwGmUwGV1dX+Pr64sEHH8T7778PrVZr8HkyMzPRsmVL81XUApixcnCFhX2wbdswCCGHTKbF8OHbERZ22NrVskvMBBKRLbP2EJChQ4di3bp1qK6uRklJCbKzszFt2jR89tln+PLLL9GsmXOEHM7RSiel0XhJQRUACCHHtm3DEBz8C5TKS1aunf0xNMPHTCARWZot/OHn5uYGPz8/AEC7du0QFhaGe++9F0OGDEFmZiaee+45rFixAuvWrcOvv/4KHx8fDB8+HEuWLEGLFi3w7bffYvz48QD+Hlg+Z84czJ07Fx9++CFWrlyJU6dOwdPTE4MHD0ZaWhratm1rlrY0BbsCHVhZWSspqKohhBxlZT5WqpFjqauLlYjI0mz1D7/Bgwejd+/e2LJlCwBALpcjPT0dx44dw/r167F7925Mnz4dANC/f3+kpaXB29tbGl7x0ksvAbi5JMKCBQvwww8/YOvWrSguLsYzzzxj0bYYihkrB+bjUwqZTKsTXMlkWvj4lFmxVo6BXaxERIbp2rUrfvzxRwBAUlKStL1jx45YuHAhnn/+ebz11ltQKBRQKpWQyWRS5qvGs88+K/37rrvuQnp6Ou655x5cvnwZLVq0sEg7DMWMlQNTKi9h+PDtkMluDhysCQDYDdg0dXWxMnNFRFSbEELq2vvmm28wZMgQtGvXDl5eXnj66adRWlqKK1eu1HuOgoICDB8+HO3bt4eXlxeioqIAAGfPnjV7/Y3FjJWDCws7jODgX1BW5gMfnzIGVSZQXxcrX18iIl0nTpxAUFAQiouLMWzYMEyePBmLFi2Cj48Pvv/+e0yYMAFVVVV1rjhfWVkJlUoFlUqFjz/+GG3atMHZs2ehUqlsckwrAysHpFAodB4rlZf0XvBvL0eGYRcrEZFhdu/ejZ9++gn/+te/UFBQAK1Wi+XLl0Muv/n9+emnn+qUVygUqK6u1tl28uRJlJaW4o033kBgYCAA4NChQ5ZpQCMwsHJArVq1QmJiIldeN5OaLtbbx1gxW0XkuKy9lIE9uHbtGtRqtc5yC6mpqRg2bBjGjRuHo0eP4vr161i1ahWGDx+Offv2ISMjQ+ccHTt2xOXLl5Gbm4vevXujefPmaN++PRQKBVatWoXnn38eR48exYIFC6zUyoYxsHJQzv4BN4dbM3z1dbEyE0jkWGxhKQN7kJ2dDX9/fzRr1gx33HEHevfujfT0dMTHx0Mul6N3795YsWIFFi9ejBkzZmDQoEFITU3FuHHjpHP0798fzz//PEaNGoXS0lJpuYXMzEzMnDkT6enpCAsLw7Jly/Doo49asbV1kwkhhLUr4agqKiqgVCqh0Wjg7e1t7eqQCfCvViLnc+7cOaxdu1Z6rNF4oaysFXx8SnX+qEpISIC/v3+jn+fq1asoKipCUFAQ3N3djTqWwZ/x6nu9m3L9ZsaKyAj8QiJybra61AqHgNgOBlZEREQGsPW7WTBosg1cx4qIiMgAvJsFGYKBFRERkQFqllq5FZdaodsxsCIiIjIA72ZBhuAYKyIiIgPxbhbUEAZWRERE9eDdLMgYDKyIiIjqwaUMyBgMrIiIiBrAoIkMxcHrREREZNO+/fZbyGQylJeXG3xMx44dkZaWZrY61YWBFRERETXJM888A5lMhueff77WvilTpkAmk+GZZ56xfMWsgIEVERERNVlgYCA2bNiA//3vf9K2q1evIisrC+3bt7dizSyLgRURERE1WVhYGAIDA7FlyxZp25YtW9C+fXv06dNH2nbt2jW88MILaNu2Ldzd3TFgwAAcPHhQ51w7d+5E586d4eHhgQceeADFxcW1nu/777/HwIED4eHhgcDAQLzwwguorKw0W/sMxcCKGq20tBTnzp2r86e0tNTaVSQickp//AHs2XPztyU9++yzWLdunfT4/fffx/jx43XKTJ8+HZs3b8b69etRWFiITp06QaVSoazs5gr2v//+Ox5//HEMHz4cR44cwXPPPYdXX31V5xxnzpzB0KFDMWLECPz444/YuHEjvv/+eyQmJpq/kQ2wemC1Zs0adOzYEe7u7oiIiMCBAwfqLb9p0yZ07doV7u7u6NWrF3bu3KmzXwiBlJQU+Pv7w8PDA9HR0Th9+rROmUWLFqF///5o3rw5WrZsWe/zlZaW4s477zR60JyjKy0txerVq7F27do6f1avXs3giojIwt57D+jQARg8+Obv996z3HM/9dRT+P777/Hbb7/ht99+w759+/DUU09J+ysrK/H2229j6dKlePjhh9G9e3e8++678PDwwHv/X9G3334bwcHBWL58Obp06YKxY8fWGp+VmpqKsWPHIikpCSEhIejfvz/S09PxwQcf4OrVq5ZrsB5WDaw2btyI5ORkzJkzB4WFhejduzdUKhXOnz+vt/z+/fsxevRoTJgwAYcPH0ZsbCxiY2Nx9OhRqcySJUuQnp6OjIwM5Ofnw9PTEyqVSueFrqqqwpNPPonJkyc3WMcJEybg7rvvbnpjHczt67loNF4oKuoIjcar3nJERGQ+f/wBJCQA2v+/paFWC0yaZLnMVZs2bRATE4PMzEysW7cOMTExaN26tbT/zJkzuH79Ou677z5pm6urK/r164cTJ04AAE6cOIGIiAid80ZGRuo8/uGHH5CZmYkWLVpIPyqVClqtFkVFRWZsYcOsuo7VihUrMHHiRClNmJGRgR07duD999+vlfYDgJUrV2Lo0KF4+eWXAQALFixATk4OVq9ejYyMDAghkJaWhlmzZuGxxx4DAHzwwQfw9fXF1q1bERcXBwCYN28eACAzM7Pe+r399tsoLy9HSkoKvvrqK1M12+EUFvbBtm3DIIRcundWWNhha1eLiMjpnD79d1BVo7oa+OUX4M47LVOHZ599VuqSW7NmjVme4/Lly5g0aRJeeOGFWvusPVDeahmrqqoqFBQUIDo6+u/KyOWIjo5GXl6e3mPy8vJ0ygOASqWSyhcVFUGtVuuUUSqViIiIqPOcdTl+/Djmz5+PDz74AHK5YS/TtWvXUFFRofPj6DQaLymoAgAh5Ni2bVitzBUREZlfSAhw+yXLxQXo1MlydRg6dCiqqqpw/fp1qFQqnX3BwcFQKBTYt2+ftO369es4ePAgunfvDgDo1q1brWFB//nPf3Qeh4WF4fjx4+jUqVOtH2vfWshqgdXFixdRXV0NX19fne2+vr5Qq9V6j1Gr1fWWr/ltzDn1uXbtGkaPHo2lS5caFfmmpqZCqVRKP4GBgQYfa6/KylpJQVUNIeQoK/OxUo2IiJzXnXcCa9feDKaAm7/fecdy2aqbz+mCEydO4Pjx43Cpqcj/8/T0xOTJk/Hyyy8jOzsbx48fx8SJE3HlyhVMmDABAPD888/j9OnTePnll3Hq1ClkZWXV6mF65ZVXsH//fiQmJuLIkSM4ffo0vvjiCw5et1UzZsxAt27ddAbcGXqcRqORfn7//Xcz1dB2+PiUQibTzTvLZFr4+JRZqUZERM5twgSguPjmrMDi4puPLc3b2xve3t56973xxhsYMWIEnn76aYSFheGXX37B119/jTvuuAPAza68zZs3Y+vWrejduzcyMjLw+uuv65zj7rvvxr///W/8/PPPGDhwIPr06YOUlBQEBASYvW0NsdoYq9atW8PFxQUlJSU620tKSuDn56f3GD8/v3rL1/wuKSmBv7+/TpnQ0FCD67Z792789NNP+OyzzwDcnGlYU+fXXntNGqN1Ozc3N7i5uRn8PI5AqbyE4cO31xpjpe/O70REZBl33mnZLFVDY5a3bt0q/dvd3R3p6elIT0+vs/ywYcMwbNgwnW23L9twzz33YNeuXXWeQ9/aV5ZgtcBKoVAgPDwcubm5iI2NBQBotVrk5ubWmcqLjIxEbm4ukpKSpG05OTnSbIGgoCD4+fkhNzdXCqQqKiqQn59v0AzAGps3b9ZZOfbgwYN49tln8d133yE4ONi4hjqBsLDDCA7+BWVlPvDxKWNQRURETsuqswKTk5MRHx+Pvn37ol+/fkhLS0NlZaUUlY4bNw7t2rVDamoqAGDatGmIiorC8uXLERMTgw0bNuDQoUNYu3YtAEAmkyEpKQkLFy5ESEgIgoKCMHv2bAQEBEjBGwCcPXsWZWVlOHv2LKqrq3HkyBEAQKdOndCiRYtawdPFixcB3BxQ19C6V87i9sGBSuUlvQGVtQcREhERWZJVA6tRo0bhwoULSElJgVqtRmhoKLKzs6XB52fPntWZkde/f39kZWVh1qxZmDlzJkJCQrB161b07NlTKjN9+nRUVlYiISEB5eXlGDBgALKzs+Hu7i6VSUlJwfr166XHNUvt79mzB/fff7+ZW+0YWrVqhcTExHrXqVIoFGjVqpUFa0VERGRdMlEzgIhMrqKiAkqlEhqNps5BfERERMDNGxYXFRUhKChIJxlA5lHf692U6zdnBRIREdkQ5jssw1yvMwMrIiIiG+Dq6goAuHLlipVr4hxqXuea191UrDrGioiIiG5ycXFBy5YtpfvlNm/eHDKZzMq1cjxCCFy5cgXnz59Hy5Ytay1i2lQMrIiIiGxEzXqMNcEVmU/Lli3rXDezKRhYEVG9SktLOfuTyEJkMhn8/f3Rtm1bXL9+3drVcViurq4mz1TVYGBFRHUqLS3F6tWrGyyXmJjI4IrIhFxcXMx24Sfz4uB1IqrT7ZkqjcYLRUUdodF41VuOiMhZMWNFRAYpLOxT656QYWGHrV0tIiKbwowVETVIo/GSgioAEEKObduG1cpcERE5OwZWRNSgsrJWUlBVQwg5ysp8rFQjIiLbxMCKiBrk41MKmUyrs00m08LHp8xKNSIisk0MrIioQUrlJQwfvl0KrmrGWCmVl6xcMyIi28LB60RkkLCwwwgO/gVlZT7w8SljUEVEpAcDKyKqk0Kh0HmsVF7SG1DdXo6IyFkxsCKiOrVq1QqJiYlceZ2IyEAMrIioXgyaiIgMx8HrRERERCbCwIqIiIjIRBhYEREREZkIAysiIiIiE2FgRURERGQiDKyIiIiITISBFREREZGJMLAiIiIiMhEGVkREREQmwsCKiIiIyEQYWBERERGZCAMrIiIiIhNhYEVERERkIgysiIiIiEyEgRURERGRiTCwIiIiIjKRZtauANmG0tJSVFVV1blfoVCgVatWFqwRERGR/WFgRSgtLcXq1asbLJeYmMjgioiIqB7sCqR6M1WNKUdEROSsGFhRLRqNF4qKOkKj8bJ2VYiIiOyK1QOrNWvWoGPHjnB3d0dERAQOHDhQb/lNmzaha9eucHd3R69evbBz506d/UIIpKSkwN/fHx4eHoiOjsbp06d1yixatAj9+/dH8+bN0bJly1rP8cMPP2D06NEIDAyEh4cHunXrhpUrVza5rfagsLAP0tKSsH59PNLSklBY2MfaVSIiIrIbVg2sNm7ciOTkZMyZMweFhYXo3bs3VCoVzp8/r7f8/v37MXr0aEyYMAGHDx9GbGwsYmNjcfToUanMkiVLkJ6ejoyMDOTn58PT0xMqlQpXr16VylRVVeHJJ5/E5MmT9T5PQUEB2rZti48++gjHjh3Da6+9hhkzZhg0DsmeaTRe2LZtGIS4+d9CCDm2bRvGzBUREZGBZEIIYa0nj4iIwD333CMFLFqtFoGBgZg6dSpeffXVWuVHjRqFyspKbN++Xdp27733IjQ0FBkZGRBCICAgAC+++CJeeuklAIBGo4Gvry8yMzMRFxenc77MzEwkJSWhvLy8wbpOmTIFJ06cwO7duw1uX0VFBZRKJTQaDby9vQ0+ztLOnTuHtWvXoqioI9avj6+1Pz4+E0FBvyEhIQH+/v5WqCEREZHlNOX6bbWMVVVVFQoKChAdHf13ZeRyREdHIy8vT+8xeXl5OuUBQKVSSeWLioqgVqt1yiiVSkRERNR5TkNpNBr4+PjUW+batWuoqKjQ+bEnPj6lkMm0OttkMi18fMqsVCMiAm7O3D137lydP6WlpdauIhH9P6stt3Dx4kVUV1fD19dXZ7uvry9Onjyp9xi1Wq23vFqtlvbXbKurTGPs378fGzduxI4dO+otl5qainnz5jX6eaxNqbyE4cO3S92BMpkWw4dvh1J5ydpVI3JaXA6FyL5wHasGHD16FI899hjmzJmDhx56qN6yM2bMQHJysvS4oqICgYGB5q5ikykUCunfYWGHERz8C8rKfODjU6YTVN1ajogs4/ZlTjQaL5SVtYKPT6nO55PLoRDZBqsFVq1bt4aLiwtKSkp0tpeUlMDPz0/vMX5+fvWWr/ldUlKiMxaopKQEoaGhRtfx+PHjGDJkCBISEjBr1qwGy7u5ucHNzc3o57G2Vq1aITExkSuvE9m4wsI+tTLKYWGHrV0tIrqF1cZYKRQKhIeHIzc3V9qm1WqRm5uLyMhIvcdERkbqlAeAnJwcqXxQUBD8/Px0ylRUVCA/P7/Oc9bl2LFjeOCBBxAfH49FixYZdaw9atWqFfz9/ev8YVBFZF2ctUtkH6zaFZicnIz4+Hj07dsX/fr1Q1paGiorKzF+/HgAwLhx49CuXTukpqYCAKZNm4aoqCgsX74cMTEx2LBhAw4dOoS1a9cCAGQyGZKSkrBw4UKEhIQgKCgIs2fPRkBAAGJjY6XnPXv2LMrKynD27FlUV1fjyJEjAIBOnTqhRYsWOHr0KAYPHgyVSoXk5GRpfJaLiwvatGljuReIiOj/lZW1koKqGkLIUVbmw3GQ5DTs4b62Vg2sRo0ahQsXLiAlJQVqtRqhoaHIzs6WBp+fPXsWcvnfXyT9+/dHVlYWZs2ahZkzZyIkJARbt25Fz549pTLTp09HZWUlEhISUF5ejgEDBiA7Oxvu7u5SmZSUFKxfv1563KfPzUUw9+zZg/vvvx+fffYZLly4gI8++ggfffSRVK5Dhw4oLi4218tBZDR7+JIh06iZtXtrcMVZu+RMbp/IUdd4Q2tP5LDqOlaOzl7WsSL7xNlizqFmnTmg/jFWXGeOHJ0lPwtNuX5zViCRneJsMedT36xdImdR13jD4OBfbOIzwcCKyAFwtpjjun2ZE6Xykt6LB5dDIWdh6+MNGVgR2Tlb/+uNmobLoRDpsvXxhgysiOycrf/1Rk3HoInob7Z+lxAGVkR2ztb/eiMiMjVbHm9otQVCicg0av56q7mBtq399UZEZA5K5SUEBf1mc991zFgROQBb/uuNiMgUDJ2gYe2JHAysiOwUZ4sRkTOxl4kcXCDUjLhAKJkbV14nIjI9LhBK5KQYNBER2RYOXiciIiIyEQZWRERERCbCwIqIiIjIRBhYEREREZkIB687KM4WIyIisjwGVg6otLQUq1evbrBcYmIigysiIiITYlegA7o9U6XReKGoqCM0Gq96yxEREVHTMGPl4AoL+9S6A3hY2GFrV4uIiMghMbByYBqNlxRUAYAQcmzbNgzBwb/wXnJktzh+kIhsGQMrB1ZW1koKqmoIIUdZmQ8DK7JLHD9IRLaOY6wcmI9PKWQyrc42mUwLH58yK9WIqGk4fpCIbB0zVg5MqbyE4cO31xpjxWwVOQKOHyQiW8TAysGFhR1GcPAvKCvzgY9PGYMqcggcP0hEtoqBlQNSKBQ6j5XKS3ovNreXI7IXHD9IRLaKgZUDatWqFRITE+1+5hRnf1FdasYP3hpccfwgEdkCBlYOyt4DDmed/cVg0jAcP0hEtoqBFdkkfbO/yspawcenVOfi6UizvywRTDpS4Mbxg0RkixhYkc1zltlf5g4mHSELyPGDRGTrGFiRTXPW2V/mCCYdIQvoKOMHichxMbAim+aMs78sEUzacxaQQRMR2TKuvE42zRlXj68vmDSFugK321cvJyIi4zGwIptWM/urJrhyhtlf5g4mzR24ERE5M3YFks1zttlf5l5KgGtAEZEhHGkWsSUxsCKb5Oyzv8wZTHINKCJqiCPMIrYWBlZkk5xx9pclg0lnywISkXEcYRaxtVg9sFqzZg2WLl0KtVqN3r17Y9WqVejXr1+d5Tdt2oTZs2ejuLgYISEhWLx4MR555BFpvxACc+bMwbvvvovy8nLcd999ePvttxESEiKVWbRoEXbs2IEjR45AoVCgvLy81vOcPXsWkydPxp49e9CiRQvEx8cjNTUVzZpZ/SVzGo4UNBnC3MGks2cBiahx7HkWsTVYNUrYuHEjkpOTkZGRgYiICKSlpUGlUuHUqVNo27ZtrfL79+/H6NGjkZqaimHDhiErKwuxsbEoLCxEz549AQBLlixBeno61q9fj6CgIMyePRsqlQrHjx+Hu7s7gJsR9pNPPonIyEi89957tZ6nuroaMTEx8PPzw/79+3Hu3DmMGzcOrq6ueP311837opBTM2cw6YxZQCJqGmddS7BJhBX169dPTJkyRXpcXV0tAgICRGpqqt7yI0eOFDExMTrbIiIixKRJk4QQQmi1WuHn5yeWLl0q7S8vLxdubm7ik08+qXW+devWCaVSWWv7zp07hVwuF2q1Wtr29ttvC29vb3Ht2jWD26fRaAQAodFoDD6GiIjI2v78808xd+5cER+fKQBR6yc+fp2YO3eu+PPPP61dVbNoyvXbasstVFVVoaCgANHR0dI2uVyO6Oho5OXl6T0mLy9PpzwAqFQqqXxRURHUarVOGaVSiYiIiDrPWdfz9OrVC76+vjrPU1FRgWPHjtV53LVr11BRUaHzQ0REZK+ccS3BprJaYHXx4kVUV1frBC8A4OvrC7VarfcYtVpdb/ma38ac05jnufU59ElNTYVSqZR+AgMDDX5OIiIiW+OMawk2FUdim9CMGTOQnJwsPa6oqGBwRUREdo2ziI1jtcCqdevWcHFxQUlJic72kpIS+Pn56T3Gz8+v3vI1v0tKSuDv769TJjQ01OC6+fn54cCBA7We59bn0MfNzQ1ubm4GPw8REZEt4izixrNaYKVQKBAeHo7c3FzExsYCALRaLXJzc5GYmKj3mMjISOTm5iIpKUnalpOTg8jISABAUFAQ/Pz8kJubKwVSFRUVyM/Px+TJkw2uW2RkJBYtWoTz589LsxNzcnLg7e2N7t27G99YIiIiO8JZxI1n1a7A5ORkxMfHo2/fvujXrx/S0tJQWVmJ8ePHAwDGjRuHdu3aITU1FQAwbdo0REVFYfny5YiJicGGDRtw6NAhrF27FgAgk8mQlJSEhQsXIiQkRFpuISAgQAregJtrVJWVleHs2bOorq7GkSNHAACdOnVCixYt8NBDD6F79+54+umnsWTJEqjVasyaNQtTpkxhRoqIiJwCg6ZGMsMsRaOsWrVKtG/fXigUCtGvXz/xn//8R9oXFRUl4uPjdcp/+umnonPnzkKhUIgePXqIHTt26OzXarVi9uzZwtfXV7i5uYkhQ4aIU6dO6ZSJj48XAGr97NmzRypTXFwsHn74YeHh4SFat24tXnzxRXH9+nWj2sblFoiIiOxPU67fMiGEsGJc59AqKiqgVCqh0Wjg7e1t7eoQERGRAZpy/bbacgtEREREjobLLRAREZlBaWkpB387IQZWREREJlZaWorVq1c3WC4xMZHBlYNhVyAREZGJ3Z6p0mi8UFTUERqNV73lyP4xY0VERGRGhYV9sG3bMAghl24JExZ22NrVIjNhxoqIiMhMNBovKagCACHk2LZtWK3MFTkOBlZERERmUlbWSgqqagghR1mZj5VqRObGwIqIiMhMfHxKIZNpdbbJZFr4+JRZqUZkbgysiIiIzESpvIThw7dLwVXNGCt9NzQmx8DB60RERGYUFnYYwcG/oKzMBz4+ZQyqHBwDKyIiIhNTKBQ6j5XKS3oDqtvLkf1jYEVERGRirVq1QmJiIlded0IMrIiIiMyAQZNz4uB1IiIiIhNhYEVERERkIgysiIiIiEyEgRURERGRiTCwIiIiIjIRBlZEREREJsLAioiIiMhEGFgRERERmUijFgg9cOAA8vLyoFarAQB+fn6IjIxEv379TFo5IiIiIntiVGB1/vx5jBgxAvv27UP79u3h6+sLACgpKcG//vUv3Hfffdi8eTPatm1rlsoSERER2TKjugL/+c9/orq6GidOnEBxcTHy8/ORn5+P4uJinDhxAlqtFlOmTDFXXYmIiIhsmkwIIQwt7OXlhb1796JPnz569xcUFOD+++/HpUu17+DtjCoqKqBUKqHRaODt7W3t6hAREZEBmnL9Nipj5ebmhoqKijr3X7p0CW5ubkZVgIiIiMhRGBVYjRo1CvHx8fj88891AqyKigp8/vnnGD9+PEaPHm3yShIRERHZA6MGr69YsQJarRZxcXG4ceMGFAoFAKCqqgrNmjXDhAkTsGzZMrNUlIiIiMjWGTXGqkZFRQUKCgp0llsIDw/nOKLbcIwVERGR/WnK9btR61h5e3vjgQceaMyhRERERA7LpCuvl5SUYP78+aY8JREREZHdMGlgpVarMW/ePFOekoiIiMhuGNUV+OOPP9a7/9SpU02qDBEREZE9MyqwCg0NhUwmg77x7jXbZTKZySpHREREZE+MCqx8fHywZMkSDBkyRO/+Y8eOYfjw4SapGBEREZG9MSqwCg8Px59//okOHTro3V9eXq43m0VERETkDIwavP7888+jY8eOde5v37491q1bZ1QF1qxZg44dO8Ld3R0RERE4cOBAveU3bdqErl27wt3dHb169cLOnTt19gshkJKSAn9/f3h4eCA6OhqnT5/WKVNWVoaxY8fC29sbLVu2xIQJE3D58mWdMl9//TXuvfdeeHl5oU2bNhgxYgSKi4uNahsRERE5F6MCq3/84x946qmn6tx/xx13ID4+3uDzbdy4EcnJyZgzZw4KCwvRu3dvqFQqnD9/Xm/5/fv3Y/To0ZgwYQIOHz6M2NhYxMbG4ujRo1KZJUuWID09HRkZGcjPz4enpydUKhWuXr0qlRk7diyOHTuGnJwcbN++HXv37kVCQoK0v6ioCI899hgGDx6MI0eO4Ouvv8bFixfx+OOPG9w2IiIickLCivr16yemTJkiPa6urhYBAQEiNTVVb/mRI0eKmJgYnW0RERFi0qRJQgghtFqt8PPzE0uXLpX2l5eXCzc3N/HJJ58IIYQ4fvy4ACAOHjwolfnqq6+ETCYT//3vf4UQQmzatEk0a9ZMVFdXS2W+/PJLIZPJRFVVlcHt02g0AoDQaDQGH0NERETW1ZTrt1FjrJKTkw0qt2LFigbLVFVVoaCgADNmzJC2yeVyREdHIy8vT+8xeXl5teqgUqmwdetWADczTWq1GtHR0dJ+pVKJiIgI5OXlIS4uDnl5eWjZsiX69u0rlYmOjoZcLkd+fj7+8Y9/IDw8HHK5HOvWrcMzzzyDy5cv48MPP0R0dDRcXV3rbNO1a9dw7do16fGtN6omIiIix2dUYHX48GGdx99//z3Cw8Ph4eEhbTN0uYWLFy+iuroavr6+Ott9fX1x8uRJvceo1Wq95WvuWVjzu6Eybdu21dnfrFkz+Pj4SGWCgoKwa9cujBw5EpMmTUJ1dTUiIyNrjee6XWpqKhdIJSIicmJGBVZ79uzReezl5YWsrCzcddddJq2UtanVakycOBHx8fEYPXo0Ll26hJSUFDzxxBPIycmpM3icMWOGTkatoqICgYGBlqo2EZHNKi0tRVVVVZ37FQoFWrVqZcEaEZlHo27CbAqtW7eGi4sLSkpKdLaXlJTAz89P7zF+fn71lq/5XVJSAn9/f50yoaGhUpnbB8ffuHEDZWVl0vFr1qyBUqnEkiVLpDIfffQRAgMDkZ+fj3vvvVdv/dzc3ODm5tZQ04mInEppaSlWr17dYLnExEQGV2T3THqvQGMoFAqEh4cjNzdX2qbVapGbm4vIyEi9x0RGRuqUB4CcnBypfFBQEPz8/HTKVFRUID8/XyoTGRmJ8vJyFBQUSGV2794NrVaLiIgIAMCVK1cgl+u+NC4uLlIdiYjIcLdnqjQaLxQVdYRG41VvOSJ7ZLWMFXBzMHx8fDz69u2Lfv36IS0tDZWVlRg/fjwAYNy4cWjXrh1SU1MBANOmTUNUVBSWL1+OmJgYbNiwAYcOHcLatWsB3BzflZSUhIULFyIkJARBQUGYPXs2AgICEBsbCwDo1q0bhg4diokTJyIjIwPXr19HYmIi4uLiEBAQAACIiYnBm2++ifnz50tdgTNnzkSHDh3Qp08fy79QREQOorCwD7ZtGwYh5JDJtBg+fDvCwg43fCCRnWjSTZiFEDh58mStxTXvvvtug843atQoXLhwASkpKVCr1QgNDUV2drY0+Pzs2bM6maP+/fsjKysLs2bNwsyZMxESEoKtW7eiZ8+eUpnp06ejsrISCQkJKC8vx4ABA5CdnQ13d3epzMcff4zExEQMGTIEcrkcI0aMQHp6urR/8ODByMrKwpIlS7BkyRI0b94ckZGRyM7O1hmoT0REhtNovKSgCgCEkGPbtmEIDv4FSuUlK9eOyDRkQhh+Dxq5XG7QTZirq6tNWkl7VVFRAaVSCY1GA29vb2tXh4jIKs6dO4e1a9eiqKgj1q+vvYh0fHwmgoJ+Q0JCgs74WCJracr126iMVVFRkVEnJyIiquHjUwqZTCtlrABAJtPCx6fMirUiMi2jAqu6br5MzonTp4nIGErlJQwfvr3WGCt2A5IjMcng9cGDB2PdunUMvJwIp08TUWOEhR1GcPAvKCvzgY9PGYMqcjhGBVZffvml3u179+7F9u3bpcUwH3300abXjGyavunTZWWt4ONTqvNFyenTxmEWkByRQqHQeaxUXtIbUN1ejsgeGRVYxcbG1jl4ferUqQDAwetOiNOnTYNZQHJUrVq1QmJiIv9oIKdgVGClUqng4uKC999/X+d+e66urvjhhx/QvXt3k1eQbBunT5sOs4DkyBg0kbMwauX1r776CkOGDEHfvn2xfft2c9WJ7EhZWSudGT7AzeCqrMzHSjVyDIWFfZCWloT16+ORlpaEwkIuTEtEZA+MvqXNv/71L3z55Zd45ZVXMGnSJFy5csUc9SI7UTN9+lacPt00dWUBb7/9BxER2Z5G3SswNDQUhw4dgkwmQ2hoqN4xV+QcaqZP1wRXnD7ddMwCEjmn0tJSnDt3rs6f0tJSa1eRDNDo5RY8PDyQkZGBL7/8Env27EHr1q1NWS+yI5w+bVpcRJHI+XDyiuMwKmO1e/dudO/eHRUVFdK2Rx99FG+++Sbc3NzQo0cPfPfddyavJNkefdOng4J+qxVUcfq08ZgFJHI++iavFBV1rDUEgJNXbJ9RGau0tDRMnDhR731zlEolJk2ahBUrVmDgwIEmqyDZJk6fNi9mAYmcF5ewsW9GBVY//PADFi9eXOf+hx56CMuWLWtypcg+MGgyLS6iSERcwsb+GRVYlZSUwNXVte6TNWuGCxcuNLlSRM6IWUAiqm/yyu2BFe/UYJuMCqzatWuHo0ePolOnTnr3//jjj/D39zdJxYicEb8EiZyboZNXONjddhk1eP2RRx7B7NmzcfXq1Vr7/ve//2HOnDkYNmyYySpHRETkTAydvGLoIHYOdrc8ozJWs2bNwpYtW9C5c2ckJiaiS5cuAICTJ09izZo1qK6uxmuvvWaWihIRETmDxkxeqesWWGR5RgVWvr6+2L9/PyZPnowZM2ZIC4PKZDKoVCqsWbMGvr6+ZqkoERGRo2rK5BXOIrQtRi8Q2qFDB+zcuRN//fUXfvnlFwghEBISgjvuuMMc9SMiIrJLxgwub+zkFc4itD2NXnn9jjvuwD333GPKuhA5HM7aIXJOjRlc3pjvAmNmERqL31+N0+jAiojqx1k7RM7LUoPLzXULLH5/NV6jbsJMRA3jLSqIqEZdn/+mMtctsPj91XjMWBFZAAeXEjkvc3z+bx3EXt8sQlPcqYHfX8ZhYEWNxv53w3BwKZHzMtfn31J3auD3l/EYWFGjsP/dcOYcXEpEts2cn39LfLfy+8t4HGNFjcL+d8PVDC69lSkGlxKR7bP3z7+9198aGFhRkxUW9kFaWhLWr49HWloSCgv7WLtKNsVcg0uJyPbZ++ff3utvDewKpCZh/7thGnOLCnJcHJ/o+Cw5uNzc+P1lHAZW1CTsf69bU25RQY7LWccnOlswaanB5ebC76/GY2BFTWKuxekcgb1/sZJ56BufqO/muY40PtFZg0l7bgu/vxqPgRU1SU3/++1rnDh7tqoGv3SoPs6yPpAzBpOOgN9fjcPAipqM/e9ExnPW8YnOEkyS8+KsQGoUff3vQUG/1bogsP+dSL/6xic6qrqCSVPf5oXImpixokZh/ztR0zjj+EROdiFnwMCKGo1BE1HjOeP4RGcMJsn5MLAiIrISZxuf6IzBJDkfq4+xWrNmDTp27Ah3d3dERETgwIED9ZbftGkTunbtCnd3d/Tq1Qs7d+7U2S+EQEpKCvz9/eHh4YHo6GicPn1ap0xZWRnGjh0Lb29vtGzZEhMmTMDly5drnWfZsmXo3Lkz3Nzc0K5dOyxatMg0jSYip+Xs4xPDwg4jKSkN8fGZSEpK48B1cjhWzVht3LgRycnJyMjIQEREBNLS0qBSqXDq1Cm0bdu2Vvn9+/dj9OjRSE1NxbBhw5CVlYXY2FgUFhaiZ8+eAIAlS5YgPT0d69evR1BQEGbPng2VSoXjx4/D3d0dADB27FicO3cOOTk5uH79OsaPH4+EhARkZWVJzzVt2jTs2rULy5YtQ69evVBWVoayMqariahpnHF8IhebJGciE0IIaz15REQE7rnnHmnhOK1Wi8DAQEydOhWvvvpqrfKjRo1CZWUltm/fLm279957ERoaioyMDAghEBAQgBdffBEvvfQSAECj0cDX1xeZmZmIi4vDiRMn0L17dxw8eBB9+/YFAGRnZ+ORRx7BH3/8gYCAAJw4cQJ33303jh49ii5dujS6fRUVFVAqldBoNPD29m70eYiI7J2trbxua/Uh29KU67fVMlZVVVUoKCjAjBkzpG1yuRzR0dHIy8vTe0xeXh6Sk5N1tqlUKmzduhUAUFRUBLVajejoaGm/UqlEREQE8vLyEBcXh7y8PLRs2VIKqgAgOjoacrkc+fn5+Mc//oFt27bhrrvuwvbt2zF06FAIIRAdHY0lS5bAx6fuqdDXrl3DtWvXpMcVFRVGvSZk+/hlTNQ4tvS5cNaV4MkyrBZYXbx4EdXV1fD19dXZ7uvri5MnT+o9Rq1W6y2vVqul/TXb6itzezdjs2bN4OPjI5X59ddf8dtvv2HTpk344IMPUF1djX/961944oknsHv37jrblJqainnz5jXUdLJT/DImcgxcCZ7MibMC9dBqtbh27Ro++OADdO7cGQDw3nvvITw8HKdOnaqze3DGjBk6GbWKigoEBgZapM5kfvwyJnI8XAmeTM1qgVXr1q3h4uKCkpISne0lJSXw8/PTe4yfn1+95Wt+l5SUwN/fX6dMaGioVOb8+fM657hx4wbKysqk4/39/dGsWTMpqAKAbt26AQDOnj1bZ2Dl5uYGNze3ettNjoFfxkT2z1lvK0TmZbXlFhQKBcLDw5Gbmytt02q1yM3NRWRkpN5jIiMjdcoDQE5OjlQ+KCgIfn5+OmUqKiqQn58vlYmMjER5eTkKCgqkMrt374ZWq0VERAQA4L777sONGzdw5swZqczPP/8MAOjQoUNTmu1QSktLce7cuTp/SktLrV1Fs+BtOYgcgzPeVojMz6pdgcnJyYiPj0ffvn3Rr18/pKWlobKyEuPHjwcAjBs3Du3atUNqaiqAm0sgREVFYfny5YiJicGGDRtw6NAhrF27FgAgk8mQlJSEhQsXIiQkRFpuISAgALGxsQBuZp6GDh2KiRMnIiMjA9evX0diYiLi4uIQEBAA4OZg9rCwMDz77LNIS0uDVqvFlClT8OCDD+pksZzZ7eON6uoWc8TxRrwtB5Fj4ErwZA5WDaxGjRqFCxcuICUlBWq1GqGhocjOzpYGn589exZy+d//4fv374+srCzMmjULM2fOREhICLZu3SqtYQUA06dPR2VlJRISElBeXo4BAwYgOztbWsMKAD7++GMkJiZiyJAhkMvlGDFiBNLT06X9crkc27Ztw9SpUzFo0CB4enri4YcfxvLlyy3wqtiHW8cR1dct5ojjjfhlTOQYuBI8mYNV17FydI68jtW5c+ewdu1aaDReSEtLqhVkJCWlQam8hISEBJ3xbvasps1A/cGkI7WZyBHd+lkGajLutW8rxM+y87LLdazIMThrt5iz3eONqKlsaQ04rgRP5sTAiprEmbrF+GVM1Di2tgacM95WiCyHgRU1iTONUeCXMVHj2OIacPyckrkwsKImc6ZuMX4Zkz621M1l67gGHDk6BlZkEnV1ixE5Olvr5rJlXJCTnIHVFggl+2boOCKONyJHp6+bq6ioY60FYx1x6RFjcUFOcgbMWFGjcLwRUW3s5qqfM012IefFwIoajUET0d/YzdUwZ5rsQs6LgRURkQnY85pulhx870yTXcg5MbAiIjIBe+3mssTge64BR86EgRURkQnYazeXJdaY4phM+2SJTKYjLlXCwIqIyETsvZvLnIPv7e3i6Owskcl01KVKuNwCEVET6OvmCgr6rVZQZevdXHUNvr992QhyDpZYRsRRlyphxoqIqAkcpZvLngffk3lZYhkRR1qqhIEVEVET2XrQZAh7HXxP5mWJZUQcbakSBlZE5NAccXCsOdjr4HsyL0tkMh0tW8rAiogclqMOjm1IY4NJex98T6ZniUymo2VLGVgRkcOyxFICtsbYYJJrTFF9LJHJdLRsKQMrInIKjjQ4tj7GBpOOMviezMcSmUxHypYysCIiu9KYbi5HGxxrKEODSQZNdDtLZDIdNVvKwIqI7EZjx0w52uBYQzhrMEmmYYlMpqNmSxlYEZHdaOyYKUcbHGsIZwwmybQsEdDYW9BkCAZWRGSXjBkz5WiDYw3hjMEkkS1gYEVEdqcx3VyONDjWEM4YTBLZAgZWRGR3DO3mcpTBsVyXish+MLAii+EK2GQqhnZzOcLgWK5LRWRfGFiRRdx+cahr0LGjrYBN5mFMN5e9/3/iulRE9oWBFVnErV/y9Q06dqQVsMm8nLGbi+tSEdk+ecNFiEynrkHHGo2XlWtG9uDKlSt6tsoMLGff+Nkhsg/MWJFFcW0daormzZtL/64ve3NrOUfBzw6RfWDGiiyqZtDxrbi2DhnLGbM3/OwQ2QcGVmRRNYOOay4QXFuHGqO+7I2j4meHyD6wK5AszhkHHZNpOeuq4vzsENk+BlZkFXWtrUNkCGdaVZzrUhH9zR7WQ2RgRRZh6Jc+Lw5kKGfJ3nBdKqKbjF0s11psIrBas2YNli5dCrVajd69e2PVqlXo169fneU3bdqE2bNno7i4GCEhIVi8eDEeeeQRab8QAnPmzMG7776L8vJy3HfffXj77bcREhIilSkrK8PUqVOxbds2yOVyjBgxAitXrkSLFi1qPd8vv/yCPn36wMXFBeXl5SZtu7PgxYHMwVkyn/xcEBm/WK61WH3w+saNG5GcnIw5c+agsLAQvXv3hkqlwvnz5/WW379/P0aPHo0JEybg8OHDiI2NRWxsLI4ePSqVWbJkCdLT05GRkYH8/Hx4enpCpVLh6tWrUpmxY8fi2LFjyMnJwfbt27F3714kJCTUer7r169j9OjRGDhwoOkb72RatWoFf3//On948aCGMPNJRMDN5VbS0pKwfn080tKSUFjYx9pVksiEEMKaFYiIiMA999wjpfe0Wi0CAwMxdepUvPrqq7XKjxo1CpWVldi+fbu07d5770VoaCgyMjIghEBAQABefPFFvPTSSwAAjUYDX19fZGZmIi4uDidOnED37t1x8OBB9O3bFwCQnZ2NRx55BH/88QcCAgKkc7/yyiv4888/MWTIECQlJRmVsaqoqIBSqYRGo4G3t3djXh4iuo09jLEgItM7d+4c1q5dC43GC2lpSbUmryQlpUGpvISEhAT4+/s36bmacv22asaqqqoKBQUFiI6OlrbJ5XJER0cjLy9P7zF5eXk65QFApVJJ5YuKiqBWq3XKKJVKRERESGXy8vLQsmVLKagCgOjoaMjlcuTn50vbdu/ejU2bNmHNmjUGtefatWuoqKjQ+SEi02Lmk8i52fpyK1YNrC5evIjq6mr4+vrqbPf19YVardZ7jFqtrrd8ze+GyrRt21Znf7NmzeDj4yOVKS0txTPPPIPMzEyDo9XU1FQolUrpJzAw0KDjiIiIyDC2vliu1cdY2aqJEydizJgxGDRokMHHzJgxAxqNRvr5/fffzVhDIiIi52Pri+VadVZg69at4eLigpKSEp3tJSUl8PPz03uMn59fveVrfpeUlOj0sZaUlCA0NFQqc/vg+Bs3bqCsrEw6fvfu3fjyyy+xbNkyADdnGmq1WjRr1gxr167Fs88+W6tubm5ucHNzM7T5REQG4bgyIl22vNyKVQMrhUKB8PBw5ObmIjY2FsDNweu5ublITEzUe0xkZCRyc3ORlJQkbcvJyUFkZCQAICgoCH5+fsjNzZUCqYqKCuTn52Py5MnSOcrLy1FQUIDw8HAANwMprVaLiIgIADfHYVVXV0vP8cUXX2Dx4sXYv38/2rVrZ8qXgYioTvaydg+RudnLYrlWX8cqOTkZ8fHx6Nu3L/r164e0tDRUVlZi/PjxAIBx48ahXbt2SE1NBQBMmzYNUVFRWL58OWJiYrBhwwYcOnQIa9euBQDIZDIkJSVh4cKFCAkJQVBQEGbPno2AgAApeOvWrRuGDh2KiRMnIiMjA9evX0diYiLi4uKkGYHdunXTqeehQ4cgl8vRs2dPC70yRET2s3YPkbnZy3qIVg+sRo0ahQsXLiAlJQVqtRqhoaHIzs6WBp+fPXsWcvnfQ8H69++PrKwszJo1CzNnzkRISAi2bt2qE/BMnz4dlZWVSEhIQHl5OQYMGIDs7Gy4u7tLZT7++GMkJiZiyJAh0gKh6enplms4EZGRCgv71LqNT1jYYWtXi8hirB00GcLq61g5Mkdfx4rjPojMz5Jr9xDRTU25fls9Y0X2ieM+iCyrvrV7bGngLpGz43IL1Cj6xn0UFXWERuNVbzkiahxbX7uHiG5ixoqajOM+iMyvZu2e2z9rzFYR2RYGVtQkGo2X9EUP3Oya2LZtGIKDf+EXPpGJ2fLaPUR0EwMrahKO+6Cm4iSI+tnL2j1EdBMDK2qSmnEft89U4rgPMgQnQTTMEmv3MLglMh0GVtQkHPdBTcHFLw1jzqCGwS2RaTGwoibjuA8yBU6CsA4Gt0SmxcCKGoXjPsiUOAnCNjC4JWo6BlbUKPZyzyayD5wEYX0MbolMg4EVNRqDJjIVToKwPga3RKbBwIqIrI6TIOpniVl7DG6JTIOBFRHZBE6C0M9Ss/YY3BKZBgMrIrIaToJomCVn7TG4JWo6BlZEZDWcBGEcc8zaY3BrO7hQq2NgYEVEVsULhWHMNWuPwa1t4EKtjoOBFRGRHTDnrD1eqK3P0K5cLtRq++QNFyEiImurmbV3K87ac1wajReKijpCo/GydlXISMxYERHZAc7acx72vAI+x4kxsCIishu2NGuPF1DzsOcV8DlO7CYGVkRENswWZ+3xAmo+9rwCPm/ofRMDKyKyKmY+6meLs/Z4ATUfR1kB3567M5uKgRUB4MWNrIOZD8OYu+1N+fw78wXUHBxhLJ09d2eaAgMr4sWNrIaZD+tryuff2S+gpnRrV259Y+nsYaFWe+7ONAUGVsSLG9kEe8582HPGtymff2e/gJqSLXb5NpajdGc2FgMr0mHPFzeyX/ac+XCkjK+xn39nv4Camq3//zCUI3RnNgUDK5LY88WN7Js9Zz4cJePbmM+/s19AqW62tDSIpTGwIok9X9zIvjlK5sOeM76N/fw78wWUdNni0iDWwMCKJI5ycXMm9jy251aOkPmw94yvMZ9/XkAN4yifT0M50jixpmBgRRJHuLg5E0ca2wPYf+bDnBlfS1ygjfn88wLaMEf7fBrKkdrSWAysSIe9X9yciSOM7XGEzIdGowHQcMZHo9HA39/f6PNb8gJtzOefF9D6OcLnkxqHgRU5xMXN2dnr2B5HyHxcv34dwN8Zny+/HAZADkA341NTzljmvkDz829+9vr5pMZhYEUOcXFzZvY+tsfR/l/JZIAQN3+bmjku0I39/Dvb+KHGsvfPJxmPgRUBcLyLmzPhbE7ratbs5tdoQxfQmnKNZc4LtLGff2cdP9QY/Hw6H3nDRYjIltWM7bkVZ3NaTsuWLQHUfwG9tVxjNXR+S9LXPVlU1BEajVe95ZwRP5/OhxkrclqO0pXB2ZzWVV5eDqDhwevl5eWNGrxew1aXQ+H4ofrx8+l8bCKwWrNmDZYuXQq1Wo3evXtj1apV6NevX53lN23ahNmzZ6O4uBghISFYvHgxHnnkEWm/EAJz5szBu+++i/Lyctx33314++23ERISIpUpKyvD1KlTsW3bNsjlcowYMQIrV65EixYtAADffvst3nzzTRw4cAAVFRUICQnByy+/jLFjx5rvhSCLcbSuDM7mtJ4bN24AaPgCWlOusWzxAs3xQ4bh59O5WL0rcOPGjUhOTsacOXNQWFiI3r17Q6VS4fz583rL79+/H6NHj8aECRNw+PBhxMbGIjY2FkePHpXKLFmyBOnp6cjIyEB+fj48PT2hUqlw9epVqczYsWNx7Ngx5OTkYPv27di7dy8SEhJ0nufuu+/G5s2b8eOPP2L8+PEYN24ctm/fbr4XgyzGEboy9M3mCgr6rdaXNmdzWZYQur9NKSzsMJKS0hAfn4mkpDSrZ4ZsqXvS1vDz6bysnrFasWIFJk6ciPHjxwMAMjIysGPHDrz//vt49dVXa5VfuXIlhg4dipdffhkAsGDBAuTk5GD16tXIyMiAEAJpaWmYNWsWHnvsMQDABx98AF9fX2zduhVxcXE4ceIEsrOzcfDgQfTt2xcAsGrVKjzyyCNYtmwZAgICMHPmTJ3nnTZtGnbt2oUtW7Zg2LBh5nxJyMLstSvDVmdzOkoXq6FcXV0B/J29+fvvVd3sTU05Y9nycgi22j1pC2z180nmZ9XAqqqqCgUFBZgxY4a0TS6XIzo6Gnl5eXqPycvLQ3Jyss42lUqFrVu3AgCKioqgVqsRHR0t7VcqlYiIiEBeXh7i4uKQl5eHli1bSkEVAERHR0MulyM/Px//+Mc/9D63RqNBt27d6mzPtWvXcO3aNelxRUVF3Y0nm2DvXRm29qXsaF2shlAqlQAanv1VU85YtnyBtsXuSVviKP/HyThWDawuXryI6upq+Pr66mz39fXFyZMn9R6jVqv1ller1dL+mm31lWnbtq3O/mbNmsHHx0cqc7tPP/0UBw8exDvvvFNne1JTUzFv3rw695Pt4VRo03Lm1abNmb2x5Qs0xw8R6bJ6V6A92LNnD8aPH493330XPXr0qLPcjBkzdLJpFRUVCAwMtEQVqZHYlWE+9trF2li2lL0xtjvW2PK23D1JZG1WDaxat24NFxcXlJSU6GwvKSmBn5+f3mP8/PzqLV/zu6SkRGdqc0lJCUJDQ6Uytw+Ov3HjBsrKymo977///W8MHz4cb775JsaNG1dve9zc3ODm5lZvmcZytnErlmLsxZDvg2HsvYu1sWwhe2Nsd2xjum9tuXuSyNqsGlgpFAqEh4cjNzcXsbGxAACtVovc3FwkJibqPSYyMhK5ublISkqStuXk5CAyMhIAEBQUBD8/P+Tm5kqBVEVFBfLz8zF58mTpHOXl5SgoKEB4eDgAYPfu3dBqtYiIiJDO++2332LYsGFYvHixzoxBS3PGcSuWZOjFkO+D4Zypi9XWsjfGdsc2tvvW2f+PE9XF6l2BycnJiI+PR9++fdGvXz+kpaWhsrJSmiU4btw4tGvXDqmpqQBuzs6LiorC8uXLERMTgw0bNuDQoUNYu3YtAEAmkyEpKQkLFy5ESEgIgoKCMHv2bAQEBEjBW7du3TB06FBMnDgRGRkZuH79OhITExEXF4eAgAAAN7v/hg0bhmnTpmHEiBHS2CuFQgEfH8tOJXbmcSvm0piLId8HwzlTF6stZ2+M7Y51tu5bInOwemA1atQoXLhwASkpKVCr1QgNDUV2drY0+Pzs2bOQy//+cu7fvz+ysrIwa9YszJw5EyEhIdi6dSt69uwplZk+fToqKyuRkJCA8vJyDBgwANnZ2XB3d5fKfPzxx0hMTMSQIUOkBULT09Ol/evXr8eVK1eQmpoqBXUAEBUVhW+//daMr0j9+MVnGk29GPJ9qJ8tjTeyhMbca8/cgZix3bHO2n1LZGpWD6yAm10ndXX96QtinnzySTz55JN1nk8mk2H+/PmYP39+nWV8fHyQlZVV5/7MzExkZmbWud8a+MVnWo29cPF9MIwtjDeyRZbqUja2O9aZum+JzMnqK6+T4bjKsW3g+1A3rjbdMEut+m/szX95s2Ai07CJjBUZxpnGrdgyvg91s+XxRrbInF3KxnbH2lr3LWfgkr1iYGVHbO2Lz1nxfagfL3aGsUSXsrHdsbbSfcsZuGTPGFjZGVv54nN2fB+oqcw1psnYGa+2tlwEYJszcJlBI0MxsLIDtvjF54z4PtgGR7nAmatL2djuWFvvvrWFGbjMoJExGFjZAVv/4nMWfB+sz5EucObsUja27Y15rWxxyQhzscUMGtkuBlZ2wtYvEoZwhEyDrdfP0TnaBc5eu5RtdckIS7CFDBrZNgZWZBGOlGkg22CvFzhH6FK2VIBrazNwbSWD5kgc4Q/u2zGwIotwtEwDWZc9X+AcrUvZlpaMMDdbzKDZM0f9g5uBFVmcvWYayHbY+wXOni4S9bHFJSPMydYyaMayteyQo/7BzcCKLMqeMw1kO+z9AucobGXJCEuxtQyaMWw9O+RIf3AzsCKLsvdMA9kGe77AORJbWTLCkmwpg2YMW84OOdof3AysyKKcLdNg7tS7raX2LcleL3COxJaWjDAnW82gNZatZYcc7Q9uBlZkUc6UaTB36t3WU/vm4GgXOEfgDAGuLWfQjGWL2SFH+4ObgRVZnDN8EQPmT73bcmrfXBzpAmfPnDHAtcX/U43JWNtidsjR/uBmYEUW4YxfxLcyd+rdnOe3te5GW7zAORsGuNbX2Iy1rWaHHOkPbgZWZBHO/EVs7tS7Oc/vjN2NjWFrwaclOFp77E1jM9a2lB1y1D+4GViRxTjrF7G5U+/mPL+h3YiO1N1oLAafZG3GZqxtJTvkqH9wM7AiMjNzp94tmdqv669iZ+aMY93IdhiasbZUdsjY7K29BU2GYGBFZGbmTr1bKrVva1O0bRFfI7I0QzPWlsgOMXt7EwMrIgswd+rd3Oe3xSnatoavEVmDMRlrcwczzN7exMCKyEzMnXq35MBPW5yibWv4GpE12NJg9Fs5c/aWgRWRmZg79W7JgZ+2OkXblvA1ImuxlcHoNZw9e8vAisiMzJ16t9Q4BVv9q9iW8DUiS7LlpQqcPXvLwIqI6nTrl3J9fxXb2zoz5mJrmQNyXLa8VIGzZ28ZWBFRnWz5y9tW2HLmgBybrX7unD17y8CKiOplq1/etoLBJ1Ftzpy9ZWBFRNREDJqImL2twcCKiIiImozZ25sYWBEREZFJOHrQZAh5w0WIiIiIyBAMrIiIiIhMhIEVERERkYkwsCIiIiIyEQZWRERERCZiE4HVmjVr0LFjR7i7uyMiIgIHDhyot/ymTZvQtWtXuLu7o1evXti5c6fOfiEEUlJS4O/vDw8PD0RHR+P06dM6ZcrKyjB27Fh4e3ujZcuWmDBhAi5fvqxT5scff8TAgQPh7u6OwMBALFmyxDQNJiIiIodk9cBq48aNSE5Oxpw5c1BYWIjevXtDpVLh/Pnzesvv378fo0ePxoQJE3D48GHExsYiNjYWR48elcosWbIE6enpyMjIQH5+Pjw9PaFSqXD16lWpzNixY3Hs2DHk5ORg+/bt2Lt3LxISEqT9FRUVeOihh9ChQwcUFBRg6dKlmDt3LtauXWu+F4OIiIjsm7Cyfv36iSlTpkiPq6urRUBAgEhNTdVbfuTIkSImJkZnW0REhJg0aZIQQgitViv8/PzE0qVLpf3l5eXCzc1NfPLJJ0IIIY4fPy4AiIMHD0plvvrqKyGTycR///tfIYQQb731lrjjjjvEtWvXpDKvvPKK6NKli8Ft02g0AoDQaDQGH0NERETW1ZTrt1UzVlVVVSgoKEB0dLS0TS6XIzo6Gnl5eXqPycvL0ykPACqVSipfVFQEtVqtU0apVCIiIkIqk5eXh5YtW6Jv375SmejoaMjlcuTn50tlBg0apLP0vkqlwqlTp/DXX3/prdu1a9dQUVGh80NERETOw6orr1+8eBHV1dXw9fXV2e7r64uTJ0/qPUatVustr1arpf012+or07ZtW539zZo1g4+Pj06ZoKCgWueo2XfHHXfUqltqairmzZtXazsDLCIiIvtRc90WQhh9LG9pY0IzZsxAcnKy9Pi///0vunfvjsDAQCvWioiIiBrj0qVLUCqVRh1j1cCqdevWcHFxQUlJic72kpIS+Pn56T3Gz8+v3vI1v0tKSuDv769TJjQ0VCpz++D4GzduoKysTOc8+p7n1ue4nZubG9zc3KTHLVq0wO+//w4vLy/IZDK9xzRGRUUFAgMD8fvvv8Pb29tk57U1bKdjYTsdizO00xnaCLCd+gghcOnSJQQEBBj9PFYNrBQKBcLDw5Gbm4vY2FgAgFarRW5uLhITE/UeExkZidzcXCQlJUnbcnJyEBkZCQAICgqCn58fcnNzpUCqoqIC+fn5mDx5snSO8vJyFBQUIDw8HACwe/duaLVaRERESGVee+01XL9+Ha6urtLzdOnSRW83oD5yuRx33nmnUa+JMby9vR36Q1CD7XQsbKdjcYZ2OkMbAbbzdsZmqmpYfbmF5ORkvPvuu1i/fj1OnDiByZMno7KyEuPHjwcAjBs3DjNmzJDKT5s2DdnZ2Vi+fDlOnjyJuXPn4tChQ1IgJpPJkJSUhIULF+LLL7/ETz/9hHHjxiEgIEAK3rp164ahQ4di4sSJOHDgAPbt24fExETExcVJ0emYMWOgUCgwYcIEHDt2DBs3bsTKlSt1uvqIiIiIbmX1MVajRo3ChQsXkJKSArVajdDQUGRnZ0sDxc+ePQu5/O/4r3///sjKysKsWbMwc+ZMhISEYOvWrejZs6dUZvr06aisrERCQgLKy8sxYMAAZGdnw93dXSrz8ccfIzExEUOGDIFcLseIESOQnp4u7Vcqldi1axemTJmC8PBwtG7dGikpKTprXRERERHpMPniD2R2V69eFXPmzBFXr161dlXMiu10LGynY3GGdjpDG4VgO01NJkQj5hISERERUS1WH2NFRERE5CgYWBERERGZCAMrIiIiIhNhYEVERERkIgysbMSaNWvQsWNHuLu7IyIiAgcOHKi3fFpaGrp06QIPDw8EBgbiX//6F65evdqkc5qbqds4d+5cyGQynZ+uXbuauxkNMqad169fx/z58xEcHAx3d3f07t0b2dnZTTqnpZi6nbb4fu7duxfDhw9HQEAAZDIZtm7d2uAx3377LcLCwuDm5oZOnTohMzOzVhlbez/N0U5HeD/PnTuHMWPGoHPnzpDL5ToLU99q06ZN6Nq1K9zd3dGrVy/s3LnT9JU3kDnamJmZWeu9vHX5Imswtp1btmzBgw8+iDZt2sDb2xuRkZH4+uuva5UzxWeTgZUN2LhxI5KTkzFnzhwUFhaid+/eUKlUtW67UyMrKwuvvvoq5syZgxMnTuC9997Dxo0bMXPmzEaf09zM0UYA6NGjB86dOyf9fP/995ZoTp2MbeesWbPwzjvvYNWqVTh+/Dief/55/OMf/8Dhw4cbfU5LMEc7Adt7PysrK9G7d2+sWbPGoPJFRUWIiYnBAw88gCNHjiApKQnPPfeczhe4Lb6f5mgnYP/v57Vr19CmTRvMmjULvXv31ltm//79GD16NCZMmIDDhw8jNjYWsbGxOHr0qCmrbjBztBG4uVr5re/lb7/9ZqoqN4qx7dy7dy8efPBB7Ny5EwUFBXjggQcwfPhw83zXmnUxBzJIv379xJQpU6TH1dXVIiAgQKSmpuotP2XKFDF48GCdbcnJyeK+++5r9DnNzRxtnDNnjujdu7dZ6ttYxrbT399frF69Wmfb448/LsaOHdvoc1qCOdppi+/nrQCIzz//vN4y06dPFz169NDZNmrUKKFSqaTHtvh+3spU7XSE9/NWUVFRYtq0abW2jxw5UsTExOhsi4iIEJMmTWpiDZvOVG1ct26dUCqVJquXqRnbzhrdu3cX8+bNkx6b6rPJjJWVVVVVoaCgANHR0dI2uVyO6Oho5OXl6T2mf//+KCgokFKUv/76K3bu3IlHHnmk0ec0J3O0scbp06cREBCAu+66C2PHjsXZs2fN15AGNKad165dq5VS9/DwkP6yt7X3srF1aqidNWzp/WyMvLw8ndcFAFQqlfS62OL72RgNtbOGvb+fhjD0tbB3ly9fRocOHRAYGIjHHnsMx44ds3aVmkSr1eLSpUvw8fEBYNrPJgMrK7t48SKqq6ulW/jU8PX1hVqt1nvMmDFjMH/+fAwYMACurq4IDg7G/fffL3WTNeac5mSONgJAREQEMjMzkZ2djbfffhtFRUUYOHAgLl26ZNb21KUx7VSpVFixYgVOnz4NrVaLnJwcbNmyBefOnWv0Oc3NHO0EbO/9bAy1Wq33damoqMD//vc/m3w/G6OhdgKO8X4aoq7Xwp7ez4Z06dIF77//Pr744gt89NFH0Gq16N+/P/744w9rV63Rli1bhsuXL2PkyJEATPtdy8DKDn377bd4/fXX8dZbb6GwsBBbtmzBjh07sGDBAmtXzWQMaePDDz+MJ598EnfffTdUKhV27tyJ8vJyfPrpp1asuXFWrlyJkJAQdO3aFQqFAomJiRg/frzO/TEdgSHtdIT3k/7G99NxREZGYty4cQgNDUVUVBS2bNmCNm3a4J133rF21RolKysL8+bNw6effoq2bdua/PxWvwmzs2vdujVcXFxQUlKis72kpAR+fn56j5k9ezaefvppPPfccwCAXr16STedfu211xp1TnMyRxv1BR4tW7ZE586d8csvv5i+EQZoTDvbtGmDrVu34urVqygtLUVAQABeffVV3HXXXY0+p7mZo536WPv9bAw/Pz+9r4u3tzc8PDzg4uJic+9nYzTUTn3s8f00RF2vhT29n8ZydXVFnz597PK93LBhA5577jls2rRJp9vPlN+1jvVnsR1SKBQIDw9Hbm6utE2r1SI3NxeRkZF6j7ly5UqtwMLFxQUAIIRo1DnNyRxt1Ofy5cs4c+YM/P39TVRz4zTldXd3d0e7du1w48YNbN68GY899liTz2ku5minPtZ+PxsjMjJS53UBgJycHOl1scX3szEaaqc+9vh+GqIxr4W9q66uxk8//WR37+Unn3yC8ePH45NPPkFMTIzOPpN+No0eRk8mt2HDBuHm5iYyMzPF8ePHRUJCgmjZsqVQq9VCCCGefvpp8eqrr0rl58yZI7y8vMQnn3wifv31V7Fr1y4RHBwsRo4cafA5Lc0cbXzxxRfFt99+K4qKisS+fftEdHS0aN26tTh//rzF21fD2Hb+5z//EZs3bxZnzpwRe/fuFYMHDxZBQUHir7/+Mvic1mCOdtri+3np0iVx+PBhcfjwYQFArFixQhw+fFj89ttvQgghXn31VfH0009L5X/99VfRvHlz8fLLL4sTJ06INWvWCBcXF5GdnS2VscX30xztdIT3UwghlQ8PDxdjxowRhw8fFseOHZP279u3TzRr1kwsW7ZMnDhxQsyZM0e4urqKn376yaJtq2GONs6bN098/fXX4syZM6KgoEDExcUJd3d3nTKWZmw7P/74Y9GsWTOxZs0ace7cOemnvLxcKmOqzyYDKxuxatUq0b59e6FQKES/fv3Ef/7zH2lfVFSUiI+Plx5fv35dzJ07VwQHBwt3d3cRGBgo/vnPf+pcpBo6pzWYuo2jRo0S/v7+QqFQiHbt2olRo0aJX375xYIt0s+Ydn777beiW7duws3NTbRq1Uo8/fTT4r///a9R57QWU7fTFt/PPXv2CAC1fmraFh8fL6KiomodExoaKhQKhbjrrrvEunXrap3X1t5Pc7TTUd5PfeU7dOigU+bTTz8VnTt3FgqFQvTo0UPs2LHDMg3SwxxtTEpKkv6/+vr6ikceeUQUFhZarlF6GNvOqKioesvXMMVnUyZEHf0qRERERGQUjrEiIiIiMhEGVkREREQmwsCKiIiIyEQYWBERERGZCAMrIiIiIhNhYEVERERkIgysiIiIiEyEgRURkRP59ttvIZPJUF5ebu2qEDkkBlZEZBbPPPMMZDIZ3njjDZ3tW7duhUwmkx4LIfDuu+8iMjIS3t7eaNGiBXr06IFp06YZfJPXK1euYMaMGQgODoa7uzvatGmDqKgofPHFF1KZjh07Ii0tzSRtM7ea104mk8HV1RVBQUGYPn06rl69atR57r//fiQlJels69+/P86dOwelUmnCGhNRDQZWRGQ27u7uWLx4Mf766y+9+4UQGDNmDF544QU88sgj2LVrF44fP4733nsP7u7uWLhwoUHP8/zzz2PLli1YtWoVTp48iezsbDzxxBMoLS01ZXMsaujQoTh37hx+/fVXvPnmm3jnnXcwZ86cJp9XoVDAz89PJ7glIhNq5G16iIjqFR8fL4YNGya6du0qXn75ZWn7559/Lmq+ej755BMBQHzxxRd6z6HVag16LqVSKTIzM+vcr+8+YTW+++47MWDAAOHu7i7uvPNOMXXqVHH58mVp/wcffCDCw8NFixYthK+vrxg9erQoKSmR9tfcsyw7O1uEhoYKd3d38cADD4iSkhKxc+dO0bVrV+Hl5SVGjx4tKisrDWpPfHy8eOyxx3S2Pf7446JPnz7S44sXL4q4uDgREBAgPDw8RM+ePUVWVpbOOW5vc1FRkVTfW++7+dlnn4nu3bsLhUIhOnToIJYtW2ZQPYmoNmasiMhsXFxc8Prrr2PVqlX4448/au3/5JNP0KVLFzz66KN6jzc0q+Ln54edO3fi0qVLevdv2bIFd955J+bPn49z587h3LlzAIAzZ85g6NChGDFiBH788Uds3LgR33//PRITE6Vjr1+/jgULFuCHH37A1q1bUVxcjGeeeabWc8ydOxerV6/G/v378fvvv2PkyJFIS0tDVlYWduzYgV27dmHVqlUGted2R48exf79+6FQKKRtV69eRXh4OHbs2IGjR48iISEBTz/9NA4cOAAAWLlyJSIjIzFx4kSpzYGBgbXOXVBQgJEjRyIuLg4//fQT5s6di9mzZyMzM7NRdSVyetaO7IjIMd2adbn33nvFs88+K4TQzVh17dpVPProozrHTZs2TXh6egpPT0/Rrl07g57r3//+t7jzzjuFq6ur6Nu3r0hKShLff/+9TpkOHTqIN998U2fbhAkTREJCgs627777TsjlcvG///1P73MdPHhQABCXLl0SQvydsfrmm2+kMqmpqQKAOHPmjLRt0qRJQqVSGdSe+Ph44eLiIjw9PYWbm5sAIORyufjss8/qPS4mJka8+OKL0uOoqCgxbdo0nTK3Z6zGjBkjHnzwQZ0yL7/8sujevbtBdSUiXcxYEZHZLV68GOvXr8eJEycaLPvaa6/hyJEjSElJweXLlw06/6BBg/Drr78iNzcXTzzxBI4dO4aBAwdiwYIF9R73ww8/IDMzEy1atJB+VCoVtFotioqKANzM6AwfPhzt27eHl5cXoqKiAABnz57VOdfdd98t/dvX1xfNmzfHXXfdpbPt/PnzBrUHAB544AEcOXIE+fn5iI+Px/jx4zFixAhpf3V1NRYsWIBevXrBx8cHLVq0wNdff12rXg05ceIE7rvvPp1t9913H06fPo3q6mqjzkVEHLxORBYwaNAgqFQqzJgxQ2d7SEgITp06pbOtTZs26NSpE9q2bWvUc7i6umLgwIF45ZVXsGvXLsyfPx8LFixAVVVVncdcvnwZkyZNwpEjR6SfH374AadPn0ZwcDAqKyuhUqng7e2Njz/+GAcPHsTnn38OALXO6+rqKv27ZjbfrWQyGbRarcHt8fT0RKdOndC7d2+8//77yM/Px3vvvSftX7p0KVauXIlXXnkFe/bswZEjR6BSqeptLxGZXzNrV4CInMMbb7yB0NBQdOnSRdo2evRojBkzBl988QUee+wxkz5f9+7dcePGDVy9ehUKhQIKhaJWBiYsLAzHjx9Hp06d9J7jp59+QmlpKd544w1pfNKhQ4dMWk9DyOVyzJw5E8nJyRgzZgw8PDywb98+PPbYY3jqqacAAFqtFj///DO6d+8uHaevzbfr1q0b9u3bp7Nt37596Ny5M1xcXEzfGCIHx4wVEVlEr169MHbsWKSnp0vb4uLi8MQTTyAuLg7z589Hfn4+iouL8e9//xsbN240+MJ+//3345133kFBQQGKi4uxc+dOzJw5Ew888AC8vb0B3FzHau/evfjvf/+LixcvAgBeeeUV7N+/H4mJiThy5AhOnz6NL774Qhq83r59eygUCqxatQq//vorvvzyywa7F83lySefhIuLC9asWQPgZrYvJycH+/fvx4kTJzBp0iSUlJToHNOxY0fpNb148aLejNmLL76I3NxcLFiwAD///DPWr1+P1atX46WXXrJIu4gcDQMrIrKY+fPn61zcZTIZNm7ciLS0NOzcuRNDhgxBly5d8OyzzyIwMBDff/+9QedVqVRYv349HnroIXTr1g1Tp06FSqXCp59+qvPcxcXFCA4ORps2bQDcHBf173//Gz///DMGDhyIPn36ICUlBQEBAQBudktmZmZi06ZN6N69O9544w0sW7bMhK+I4Zo1a4bExEQsWbIElZWVmDVrFsLCwqBSqXD//ffDz88PsbGxOse89NJLcHFxQffu3dGmTRu946/CwsLw6aefYsOGDejZsydSUlIwf/58vTMfiahhMiGEsHYliIiIiBwBM1ZEREREJsLAiohs3q3LIdz+891331m7ekY5e/Zsve0xdrkEIrIt7AokIptX382Y27VrBw8PDwvWpmlu3LiB4uLiOvd37NgRzZpxwjaRvWJgRURERGQi7AokIiIiMhEGVkREREQmwsCKiIiIyEQYWBERERGZCAMrIiIiIhNhYEVERERkIgysiIiIiEyEgRURERGRifwfuHfY3zeLTCQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_11.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABai0lEQVR4nO3de1yUVeIG8GdABhBxYECujoKAmqUgoqRppmFoilltoVvetnIzyYzKJPO2anjLyEu6uV7oYrqVW2oulRS7v9LSUDJvJIa3EhSQASEBmfP7g503h7nAAHOBeb6fz3xi3ve875wz68rjec9FJoQQICIiInIgTrauABEREZG1MQARERGRw2EAIiIiIofDAEREREQOhwGIiIiIHA4DEBERETkcBiAiIiJyOAxARERE5HAYgIiIiMjhMAAREdmpbdu2QSaT4dy5c7auClGbwwBE5MAOHz6MpKQk3H777fDw8ECXLl3w6KOP4ueff9Yre88990Amk0Emk8HJyQkdO3ZEjx49MHHiRHz55Zdmfe6ePXswdOhQ+Pn5oX379ujWrRseffRRZGRktFTT9Lz22mv45JNP9I4fOHAACxcuRGlpqcU+u76FCxdK36VMJkP79u3Rq1cvvPrqqygrK2uRz9i+fTvS0tJa5F5EbREDEJEDW758OT7++GPce++9ePPNNzFt2jT897//RXR0NI4fP65XvnPnznj33XfxzjvvYOXKlRg7diwOHDiA++67D4mJiaipqWnwM1etWoWxY8dCJpMhJSUFb7zxBh5++GGcOXMGO3bssEQzAZgOQIsWLbJqANLasGED3n33XaxevRo9e/bE0qVLMXLkSLTEFo0MQESmtbN1BYjIdpKTk7F9+3bI5XLpWGJiInr37o1ly5bhvffe0ymvUCjw+OOP6xxbtmwZZs6cibfeegshISFYvny50c+7efMmFi9ejBEjRuCLL77QO3/lypVmtsh+VFZWon379ibL/OlPf4Kvry8A4Omnn8bDDz+MXbt24bvvvsPAgQOtUU0ih8UeICIHNmjQIJ3wAwARERG4/fbbcerUqUbdw9nZGWvWrEGvXr2wbt06qNVqo2WLiopQVlaGu+66y+B5Pz8/nfc3btzAwoUL0b17d7i5uSEwMBAPPfQQzp49K5VZtWoVBg0aBB8fH7i7u6Nfv3746KOPdO4jk8lQUVGB9PR06bHTlClTsHDhQrz00ksAgNDQUOncrWNu3nvvPfTr1w/u7u5QKpUYP348Ll68qHP/e+65B3fccQeys7Nx9913o3379njllVca9f3davjw4QCA/Px8k+Xeeust3H777XB1dUVQUBBmzJih04N1zz334LPPPsP58+elNoWEhJhdH6K2jD1ARKRDCIHCwkLcfvvtjb7G2dkZEyZMwLx58/DNN99g9OjRBsv5+fnB3d0de/bswbPPPgulUmn0nrW1tRgzZgwyMzMxfvx4PPfccygvL8eXX36J48ePIywsDADw5ptvYuzYsXjsscdQXV2NHTt24JFHHsHevXulerz77rt48sknMWDAAEybNg0AEBYWBg8PD/z888/44IMP8MYbb0i9MZ06dQIALF26FPPmzcOjjz6KJ598ElevXsXatWtx99134+jRo/Dy8pLqW1xcjFGjRmH8+PF4/PHH4e/v3+jvT0sb7Hx8fIyWWbhwIRYtWoS4uDhMnz4dubm52LBhAw4fPoxvv/0WLi4umDt3LtRqNS5duoQ33ngDANChQwez60PUpgkiolu8++67AoDYvHmzzvGhQ4eK22+/3eh1//rXvwQA8eabb5q8//z58wUA4eHhIUaNGiWWLl0qsrOz9cpt2bJFABCrV6/WO6fRaKSfKysrdc5VV1eLO+64QwwfPlznuIeHh5g8ebLevVauXCkAiPz8fJ3j586dE87OzmLp0qU6x3/66SfRrl07neNDhw4VAMTGjRuNtvtWCxYsEABEbm6uuHr1qsjPzxd///vfhaurq/D39xcVFRVCCCG2bt2qU7crV64IuVwu7rvvPlFbWyvdb926dQKA2LJli3Rs9OjRomvXro2qD5Ej4iMwIpKcPn0aM2bMwMCBAzF58mSzrtX2MJSXl5sst2jRImzfvh19+/bF559/jrlz56Jfv36Ijo7Weez28ccfw9fXF88++6zePWQymfSzu7u79PO1a9egVqsxZMgQHDlyxKz617dr1y5oNBo8+uijKCoqkl4BAQGIiIjA119/rVPe1dUVU6dONeszevTogU6dOiE0NBR//etfER4ejs8++8zo2KH9+/ejuroas2bNgpPTH399P/XUU+jYsSM+++wz8xtK5KD4CIyIAAAFBQUYPXo0FAoFPvroIzg7O5t1/fXr1wEAnp6eDZadMGECJkyYgLKyMnz//ffYtm0btm/fjoSEBBw/fhxubm44e/YsevTogXbtTP81tXfvXixZsgQ5OTmoqqqSjt8akprizJkzEEIgIiLC4HkXFxed98HBwXrjqRry8ccfo2PHjnBxcUHnzp2lx3rGnD9/HkBdcLqVXC5Ht27dpPNE1DAGICKCWq3GqFGjUFpaiv/7v/9DUFCQ2ffQTpsPDw9v9DUdO3bEiBEjMGLECLi4uCA9PR3ff/89hg4d2qjr/+///g9jx47F3XffjbfeeguBgYFwcXHB1q1bsX37drPbcCuNRgOZTIZ///vfBsNg/TE1t/ZENdbdd98tjTsiIutiACJycDdu3EBCQgJ+/vln7N+/H7169TL7HrW1tdi+fTvat2+PwYMHN6keMTExSE9Px+XLlwHUDVL+/vvvUVNTo9fbovXxxx/Dzc0Nn3/+OVxdXaXjW7du1StrrEfI2PGwsDAIIRAaGoru3bub2xyL6Nq1KwAgNzcX3bp1k45XV1cjPz8fcXFx0rHm9oARtXUcA0TkwGpra5GYmIiDBw/iww8/bNLaM7W1tZg5cyZOnTqFmTNnomPHjkbLVlZW4uDBgwbP/fvf/wbwx+Odhx9+GEVFRVi3bp1eWfG/hQKdnZ0hk8lQW1srnTt37pzBBQ89PDwMLnbo4eEBAHrnHnroITg7O2PRokV6CxMKIVBcXGy4kRYUFxcHuVyONWvW6NRp8+bNUKvVOrPvPDw8TC5JQOTo2ANE5MBeeOEF7N69GwkJCSgpKdFb+LD+oodqtVoqU1lZiby8POzatQtnz57F+PHjsXjxYpOfV1lZiUGDBuHOO+/EyJEjoVKpUFpaik8++QT/93//h3HjxqFv374AgEmTJuGdd95BcnIyDh06hCFDhqCiogL79+/HM888gwceeACjR4/G6tWrMXLkSPz5z3/GlStXsH79eoSHh+PYsWM6n92vXz/s378fq1evRlBQEEJDQxEbG4t+/foBAObOnYvx48fDxcUFCQkJCAsLw5IlS5CSkoJz585h3Lhx8PT0RH5+Pv71r39h2rRpePHFF5v1/ZurU6dOSElJwaJFizBy5EiMHTsWubm5eOutt9C/f3+d/7369euHnTt3Ijk5Gf3790eHDh2QkJBg1foS2TVbTkEjItvSTt829jJVtkOHDiIiIkI8/vjj4osvvmjU59XU1IhNmzaJcePGia5duwpXV1fRvn170bdvX7Fy5UpRVVWlU76yslLMnTtXhIaGChcXFxEQECD+9Kc/ibNnz0plNm/eLCIiIoSrq6vo2bOn2Lp1qzTN/FanT58Wd999t3B3dxcAdKbEL168WAQHBwsnJye9KfEff/yxGDx4sPDw8BAeHh6iZ8+eYsaMGSI3N1fnuzG1REB92vpdvXrVZLn60+C11q1bJ3r27ClcXFyEv7+/mD59urh27ZpOmevXr4s///nPwsvLSwDglHiiemRCtMCmM0REREStCMcAERERkcNhACIiIiKHwwBEREREDocBiIiIiBwOAxARERE5HAYgIiIicjhcCNEAjUaD3377DZ6enlxOnoiIqJUQQqC8vBxBQUFwcjLdx8MAZMBvv/0GlUpl62oQERFRE1y8eBGdO3c2WYYByABPT08AdV+gqX2NiIiIyH6UlZVBpVJJv8dNYQAyQPvYq2PHjgxARERErUxjhq9wEDQRERE5HAYgIiIicjgMQERERORwOAaoGWpra1FTU2PrarRZLi4ucHZ2tnU1iIioDWIAagIhBAoKClBaWmrrqrR5Xl5eCAgI4HpMRETUohiAmkAbfvz8/NC+fXv+crYAIQQqKytx5coVAEBgYKCNa0RERG0JA5CZamtrpfDj4+Nj6+q0ae7u7gCAK1euwM/Pj4/DiIioxXAQtJm0Y37at29v45o4Bu33zLFWRETUkhiAmoiPvayD3zMREVkCH4ERERGRRRUXF6O6utroeblcbvVhJQxAREREZDHFxcVYt25dg+WSkpKsGoL4CMyBTJkyBTKZDDKZDC4uLvD398eIESOwZcsWaDSaRt9n27Zt8PLyslxFiYiozajf86NWeyI/PwRqtafJcpbGHiArs3U34MiRI7F161bU1taisLAQGRkZeO655/DRRx9h9+7daNeOfySIiMgyjhzpiz17xkAIJ8hkGiQk7EV09FGb1IW/7azIHroBXV1dERAQAAAIDg5GdHQ07rzzTtx7773Ytm0bnnzySaxevRpbt27FL7/8AqVSiYSEBKxYsQIdOnRAVlYWpk6dCuCPAcoLFizAwoUL8e677+LNN99Ebm4uPDw8MHz4cKSlpcHPz88ibSEiotZDrfaUwg8ACOGEPXvGICwsDwpFudXrw0dgVtTY7j1rdwMOHz4ckZGR2LVrFwDAyckJa9aswYkTJ5Ceno6vvvoKs2fPBgAMGjQIaWlp6NixIy5fvozLly/jxRdfBFA3VX3x4sX48ccf8cknn+DcuXOYMmWKVdtCRET2qaTERwo/WkI4oaREaZP6sAeIAAA9e/bEsWPHAACzZs2SjoeEhGDJkiV4+umn8dZbb0Eul0OhUEAmk0k9SVp/+ctfpJ+7deuGNWvWoH///rh+/To6dOhglXYQEZF9UiqLIZNpdEKQTKaBUllik/qwB4gA1G09oX2ktX//ftx7770IDg6Gp6cnJk6ciOLiYlRWVpq8R3Z2NhISEtClSxd4enpi6NChAIALFy5YvP5ERGTfFIpyJCTshUxWN+lGOwbIFo+/APYA0f+cOnUKoaGhOHfuHMaMGYPp06dj6dKlUCqV+Oabb/DEE0+gurra6ArYFRUViI+PR3x8PN5//3106tQJFy5cQHx8vNUf6RERkX2Kjj6KsLA8lJQooVSW2Cz8AAxABOCrr77CTz/9hOeffx7Z2dnQaDR4/fXX4eRU10H4z3/+U6e8XC5HbW2tzrHTp0+juLgYy5Ytg0qlAgD88MMP1mkAERHZLblcrvNeoSg3GHzql7M0BiAHU1VVhYKCAp1p8KmpqRgzZgwmTZqE48ePo6amBmvXrkVCQgK+/fZbbNy4UeceISEhuH79OjIzMxEZGYn27dujS5cukMvlWLt2LZ5++mkcP34cixcvtlEriYjIXvj4+CApKcnuVoLmGCAHk5GRgcDAQISEhGDkyJH4+uuvsWbNGnz66adwdnZGZGQkVq9ejeXLl+OOO+7A+++/j9TUVJ17DBo0CE8//TQSExPRqVMnrFixAp06dcK2bdvw4YcfolevXli2bBlWrVplo1YSEZE98fHxQWBgoNGXtcMPAMiEEMLqn1rP+vXrsXLlShQUFCAyMhJr167FgAEDDJbdtWsXXnvtNeTl5aGmpgYRERF44YUXMHHiRKnMlClTkJ6ernNdfHw8MjIyGlWfsrIyKBQKqNVqdOzYUefcjRs3kJ+fj9DQULi5uZnVTntYB6i1ac73TURE1mXrxX5N/f6uz+aPwHbu3Ink5GRs3LgRsbGxSEtLQ3x8PHJzcw0uoKdUKjF37lz07NkTcrkce/fuxdSpU+Hn54f4+HipnHbFYy1XV1ertMcUe+0GJCIiaq7W9o98mweg1atX46mnnpJWF964cSM+++wzbNmyBXPmzNErf8899+i8f+6555Ceno5vvvlGJwDduuKxPbGH/9GJiIhamqE9v0pKfKBUFusMeraXmcE2DUDV1dXIzs5GSkqKdMzJyQlxcXE4ePBgg9cLIfDVV18hNzcXy5cv1zmXlZUFPz8/eHt7Y/jw4ViyZInR8FFVVYWqqirpfVlZWRNbRERERPa055cxNh0EXVRUhNraWvj7++sc9/f3R0FBgdHr1Go1OnToALlcjtGjR2Pt2rUYMWKEdH7kyJF45513kJmZieXLl+M///kPRo0apTd1Wys1NRUKhUJ6aadxExERkXmM7flVf/d3W7P5I7Cm8PT0RE5OjjQVOzk5Gd26dZMej40fP14q27t3b/Tp0wdhYWHIysrCvffeq3e/lJQUJCcnS+/LysoYgoiIiJrA1J5ftlz4sD6bBiBfX184OzujsLBQ53hhYaHJ8TtOTk4IDw8HAERFReHUqVNITU3VGx+k1a1bN/j6+iIvL89gAHJ1dbWLQdJEREStnb3t+WWMTR+ByeVy9OvXD5mZmdIxjUaDzMxMDBw4sNH30Wg0OmN46rt06RKKi4sRGBjYrPoSERGRafa255cxNn8ElpycjMmTJyMmJgYDBgxAWloaKioqpFlhkyZNQnBwsLQYX2pqKmJiYhAWFoaqqirs27cP7777LjZs2AAAuH79OhYtWoSHH34YAQEBOHv2LGbPno3w8HCdWWJERERkGfa055cxNg9AiYmJuHr1KubPn4+CggJERUUhIyNDGhh94cIFaU8qoG7TzWeeeQaXLl2Cu7s7evbsiffeew+JiYkAAGdnZxw7dgzp6ekoLS1FUFAQ7rvvPixevJiPuYiIiCzEXvf8MsYuVoK2N5ZaCbqty8rKwrBhw3Dt2jV4eXk16pqQkBDMmjULs2bNMnie3zcRUevRmlaC5l5gDmTKlCmQyWR4+umn9c7NmDEDMpkMU6ZMsX7FiIioTbDHPb+MYQByMCqVCjt27MDvv/8uHbtx4wa2b9+OLl262LBmRERE1sMA5GCio6OhUqmwa9cu6diuXbvQpUsX9O3bVzpWVVWFmTNnws/PD25ubhg8eDAOHz6sc699+/ahe/fucHd3x7Bhw3Du3Dm9z/vmm28wZMgQuLu7Q6VSYebMmaioqLBY+4iIiBqDAciGLl0Cvv667r/W9Je//EVno9gtW7ZIs+60Zs+ejY8//hjp6ek4cuSINIuupKRuHYeLFy/ioYceQkJCAnJycvDkk0/q7d129uxZjBw5Eg8//DCOHTuGnTt34ptvvkFSUpLlG0lERGQCA5CNbN4MdO0KDB9e99/Nm6332Y8//ji++eYbnD9/HufPn8e3336Lxx9/XDpfUVGBDRs2YOXKlRg1ahR69eqFTZs2wd3dHZv/V9ENGzYgLCwMr7/+Onr06IHHHntMb/xQamoqHnvsMcyaNQsREREYNGgQ1qxZg3feeQc3btywXoOJiIjqsfk0eEd06RIwbRqgqVsjChoN8Ne/AvHxQOfOlv/8Tp06YfTo0di2bRuEEBg9ejR8fX2l82fPnkVNTQ3uuusu6ZiLiwsGDBiAU6dOAQBOnTqF2NhYnfvWX7zyxx9/xLFjx/D+++9Lx4QQ0Gg0yM/Px2233WaJ5hERETWIAcgGzpz5I/xo1dYCeXnWCUBA3WMw7aOo9evXW+Qzrl+/jr/+9a+YOXOm3jkOuCYiIltiALKBiAjAyUk3BDk7A//b3swqRo4cierqashkMr0VssPCwiCXy/Htt9+ia9euAICamhocPnxYWq/ntttuw+7du3Wu++6773TeR0dH4+TJk9K+bURERPaCY4BsoHNn4O2360IPUPffv//der0/dZ/pjFOnTuHkyZNw1lbkfzw8PDB9+nS89NJLyMjIwMmTJ/HUU0+hsrISTzzxBADg6aefxpkzZ/DSSy8hNzcX27dvx7Zt23Tu8/LLL+PAgQNISkpCTk4Ozpw5g08//ZSDoImIyObYA2QjTzxRN+YnL6+u58ea4UfL1CqZy5Ytg0ajwcSJE1FeXo6YmBh8/vnn8Pb2BlD3COvjjz/G888/j7Vr12LAgAF47bXX8Je//EW6R58+ffCf//wHc+fOxZAhQyCEQFhYmLRtCRERtT62Xu25pXArDAO4FYb94PdNRGQbhoKOWq3Gzp07G7w2KSnJJiHInK0w2ANEREREOoqLi7Fu3boGy6nVnigp8YFSWayz8ampHiJ7wQBEREREOvR7fvSDzpEjfbFnzxgI4QSZTIOEhL2Ijj5qi+o2CQMQERER6VCr1dLPhoJOWFiedAwAhHDCnj1jEBaWp9MTZM84C4yIiIh01NTUAKjr+TEUdC5eVEnHtIRwQkmJ0up1bSoGoCbi2HHr4PdMRGQ7JSU+BoMOICCT6a7oK5NpoFSWWLF2zcMAZCYXFxcAQGVlpY1r4hi037P2eyciIutxcakCUP8fogJeXqVISNgrhSDto7HW8vgL4Bggszk7O8PLywtXrlwBALRv3x4ymczGtWp7hBCorKzElStX4OXlpbdYIxERWV5NjSuA+r/jZKipkSM6+ijCwvJQUqKEUlnSqsIPwADUJAEBAQAghSCyHC8vL+n7JiIi61IqiyGTaXQeg936qEuhKDcYfORyudXq2FQMQE0gk8kQGBgIPz8/aaAYtTwXFxf2/BAR2UC7dnXxQKEoR0LCXr1ZYNrQM2LECISGhupc21pWgmYAagZnZ2f+giYiojbHy8tL+tnUo67Q0FAEBgbaoIbNxwBEREREOuo/wmrNj7qMYQAiIiIiHT4+PkhKSmoTm54awwBEREREelpzuGkMrgNEREREDocBiIiIiBwOAxARERE5HAYgIiIicjgMQERERORwOAuMiIjIQRUXF7fpqe6mMAARERE5oOLiYqxbt67BcklJSW0yBPERGBERkQOq3/OjVnsiPz8EarWnyXJtBXuAiIiIHNyRI331NjyNjj5q62pZFHuAiIiIHJha7SmFHwAQwgl79ozR6wlqaxiAiIiIHFhJiY8UfrSEcEJJidJGNbIOBiAiIiIHplQWQybT6ByTyTRQKktsVCPrYAAiIiJyYApFORIS9kohSDsGSKEot3HNLIuDoImIiBxcdPRRhIXloaRECaWypM2HH8BOeoDWr1+PkJAQuLm5ITY2FocOHTJadteuXYiJiYGXlxc8PDwQFRWFd999V6eMEALz589HYGAg3N3dERcXhzNnzli6GURERK2GXC7Xea9QlCM09Lxe+Klfrq2weQ/Qzp07kZycjI0bNyI2NhZpaWmIj49Hbm4u/Pz89MorlUrMnTsXPXv2hFwux969ezF16lT4+fkhPj4eALBixQqsWbMG6enpCA0Nxbx58xAfH4+TJ0/Czc3N2k0kIiKyOz4+PkhKSnLYlaBlQghhywrExsaif//+0mqUGo0GKpUKzz77LObMmdOoe0RHR2P06NFYvHgxhBAICgrCCy+8gBdffBEAoFar4e/vj23btmH8+PEN3q+srAwKhQJqtRodO3ZseuOIiIjIasz5/W3TR2DV1dXIzs5GXFycdMzJyQlxcXE4ePBgg9cLIZCZmYnc3FzcfffdAID8/HwUFBTo3FOhUCA2NtboPauqqlBWVqbzIiIiorbLpgGoqKgItbW18Pf31znu7++PgoICo9ep1Wp06NABcrkco0ePxtq1azFixAgAkK4z556pqalQKBTSS6VSNadZREREZOfsYhC0uTw9PZGTk4PDhw9j6dKlSE5ORlZWVpPvl5KSArVaLb0uXrzYcpUlIiIiu2PTQdC+vr5wdnZGYWGhzvHCwkIEBAQYvc7JyQnh4eEAgKioKJw6dQqpqam45557pOsKCwsRGBioc8+oqCiD93N1dYWrq2szW0NERESthU17gORyOfr164fMzEzpmEajQWZmJgYOHNjo+2g0GlRVVQEAQkNDERAQoHPPsrIyfP/992bdk4iIiNoum0+DT05OxuTJkxETE4MBAwYgLS0NFRUVmDp1KgBg0qRJCA4ORmpqKoC68ToxMTEICwtDVVUV9u3bh3fffRcbNmwAAMhkMsyaNQtLlixBRESENA0+KCgI48aNs1UziYiIyI7YPAAlJibi6tWrmD9/PgoKChAVFYWMjAxpEPOFCxfg5PRHR1VFRQWeeeYZXLp0Ce7u7ujZsyfee+89JCYmSmVmz56NiooKTJs2DaWlpRg8eDAyMjK4BhAREREBsIN1gOwR1wEiIqLWpri42GEXNdQy5/e3zXuAiIiIqHmKi4ulBYVNSUpKavMhqLFa5TR4IiIi+kP9nh+12hP5+SFQqz1NlnNk7AEiIiJqQ44c6Ys9e8ZACCfIZBokJOxFdPRRW1fL7rAHiIiIqI1Qqz2l8AMAQjhhz54xej1BxABERETUZpSU+EjhR0sIJ5SUKG1UI/vFAERERNRGKJXFkMk0OsdkMg2UyhIb1ch+MQARERG1EQpFORIS9kohSDsGSKEot3HN7A8HQRMREbUh0dFHERaWh5ISJZTKEoYfIxiAiIiIWjm5XK7zXqEoNxh86pdzZAxARERErYixFZ8TExNRU1ODdu3awcvLS++8I6wEbQ4GICIiolaCKz63HA6CJiIiaiW44nPLYQ8QERFRK8QVn5uHPUBEREStDFd8bj4GICIiolaGKz43HwMQERFRK8MVn5uPAYiIiKiV4YrPzcdB0ERERK0QV3xuHgYgIiIiO2NsscPS0lKd91zxuekYgIiIiOxIYxc7TExMhEKh0DvOFZ8bhwGIiIjIjhha7LCkxAdKZbFOb49CoUBgYKC1q9dmMAARERHZKS52aDmcBUZERGSHuNihZbEHiIiIyEYMDXYuKioCYHqxQ874aj4GICIiIhtoaLCzdrHDW0MQFztsOXwERkREZAMN7ezOxQ4tiz1ARERENmZssDMXO7Qc9gARERHZUEODnRWKcoSGntcLP1zssHnYA0RERGRDDQ12fuihh+Dr66tznosdNh8DEBERkQ01NNjZ19eXCx5aAB+BERER2RAHO9sGe4CIiIhsjIOdrY8BiIiIyAbqD2Lmzu7WxQBERERkAz4+PkhKStJbD+hWHOxsOQxARERENsJwYzscBE1EREQOhwGIiIiIHA4DEBERETkcuwhA69evR0hICNzc3BAbG4tDhw4ZLbtp0yYMGTIE3t7e8Pb2RlxcnF75KVOmQCaT6bxGjhxp6WYQERFRK2HzALRz504kJydjwYIFOHLkCCIjIxEfH48rV64YLJ+VlYUJEybg66+/xsGDB6FSqXDffffh119/1Sk3cuRIXL58WXp98MEH1mgOERERtQIyIYSwZQViY2PRv39/rFu3DgCg0WigUqnw7LPPYs6cOQ1eX1tbC29vb6xbtw6TJk0CUNcDVFpaik8++aRJdSorK4NCoYBarUbHjh2bdA8iIiKyLnN+f9u0B6i6uhrZ2dmIi4uTjjk5OSEuLg4HDx5s1D0qKytRU1MDpVKpczwrKwt+fn7o0aMHpk+fjuLiYqP3qKqqQllZmc6LiIiI2i6bBqCioiLU1tbC399f57i/vz8KCgoadY+XX34ZQUFBOiFq5MiReOedd5CZmYnly5fjP//5D0aNGoXa2lqD90hNTYVCoZBeKpWq6Y0iIiIiu9eqF0JctmwZduzYgaysLLi5uUnHx48fL/3cu3dv9OnTB2FhYcjKysK9996rd5+UlBQkJydL78vKyhiCiIiI2jCb9gD5+vrC2dkZhYWFOscLCwsREBBg8tpVq1Zh2bJl+OKLL9CnTx+TZbt16wZfX1/k5eUZPO/q6oqOHTvqvIiIiKjtsmkAksvl6NevHzIzM6VjGo0GmZmZGDhwoNHrVqxYgcWLFyMjIwMxMTENfs6lS5dQXFyMwMDAFqk3ERERtW42nwafnJyMTZs2IT09HadOncL06dNRUVGBqVOnAgAmTZqElJQUqfzy5csxb948bNmyBSEhISgoKEBBQQGuX78OALh+/TpeeuklfPfddzh37hwyMzPxwAMPIDw8HPHx8TZpIxEREdkXm48BSkxMxNWrVzF//nwUFBQgKioKGRkZ0sDoCxcuwMnpj5y2YcMGVFdX409/+pPOfRYsWICFCxfC2dkZx44dQ3p6OkpLSxEUFIT77rsPixcvhqurq1XbRkRERPbJ5usA2SOuA0RERNT6tJp1gIiIiIhsgQGIiIiIHA4DEBERETkcBiAiIiJyOAxARERE5HAYgIiIiMjhMAARERGRw2EAIiIiIofDAEREREQOhwGIiIiIHA4DEBERETkcBiAiIiJyOAxARERE5HAYgIiIiMjhtLN1BYiIiGyhuLgY1dXVRs/L5XL4+PhYsUZkTQxARETkcIqLi7Fu3boGyyUlJTEEtVF8BEZERA6nfs+PWu2J/PwQqNWeJstR28EeICIicmhHjvTFnj1jIIQTZDINEhL2Ijr6qK2rRRbGHiAiInJYarWnFH4AQAgn7NkzRq8niNoeBiAiInJYJSU+UvjREsIJJSVKG9WIrIUBiIiIHJZSWQyZTKNzTCbTQKkssVGNyFo4BoiIiNosY1Pdi4qKAAAKRTkSEvbqjQFSKMqtXVWyMgYgIiJqkxo71T06+ijCwvJQUqKEUlnC8OMgGICIiKhNMjTVvaTEB0plsV7IUSjKDQYfuVxu0TqS7TAAERFRm6RWq6WfTU11HzFiBEJDQ/Wu50rQbRsDEBERtUklJXUDmY1NdQ8Ly5N6fQIDA21WT7INzgIjIqI26ebNmwAanuquLUeOhQGIiIjapMrKSgCAi0sVAFHvrICLS7VOOXIsDEBERNQm1dbWAgBKS70ByOqdlaG01EunHDkWjgEiIqJWz9B6PxUVFTaqDbUGDEBERNSqNbTej5fXNdQ9Aru1F0jAy6sUAODs7GzJ6pGd4iMwIiJq1Qyt95OfHyJtaFpT4wpDj8BqaurW+Gnfvr0Vakn2hj1ARETUZhha7ycsLA8ymUZnJtit+30Z2iqD2j72ABERUZtgbL0fAEhI2AtAu+mp7n5f7AFyTAxARETUJjS03o/sf0/BZPWehnl6elqjemRnGICIiKhV0255oVQWQybT6JyTyTRwcak22DOkHSPUrh1HgzgiBiAiImrVampqANRtaGroUVdNjavJniEvLy/rVZbshl0EoPXr1yMkJARubm6IjY3FoUOHjJbdtGkThgwZAm9vb3h7eyMuLk6vvBAC8+fPR2BgINzd3REXF4czZ85YuhlERGRBxcXFuHz5st7r2rVrOuXqP+oy1jOkHQRNjsnm/X47d+5EcnIyNm7ciNjYWKSlpSE+Ph65ubnw8/PTK5+VlYUJEyZg0KBBcHNzw/Lly3HffffhxIkTCA4OBgCsWLECa9asQXp6OkJDQzFv3jzEx8fj5MmTcHNzs3YTiYiomRpa6wcwPgh61qw0JCTs1Zsdph0ETY5JJoSov0GKVcXGxqJ///7SH2yNRgOVSoVnn30Wc+bMafD62tpaeHt7Y926dZg0aRKEEAgKCsILL7yAF198EUDd82F/f39s27YN48ePb/CeZWVlUCgUUKvV6NixY/MaSEREzXb58mW8/fbb0nu12hMlJT5QKoulIJOfH4L09Ml6106evA2hoef/d40SSmWJTviZNm0ad4NvI8z5/d0iPUD5+flQqVRmDySrrq5GdnY2UlJSpGNOTk6Ii4vDwYMHG3WPyspK1NTUQKlUSnUpKChAXFycVEahUCA2NhYHDx40GICqqqpQVVUlvS8rKzOrHUREZD2G1vqJjj4qPeoytt6PQlFusNdHLpdbre5kP1okAPXo0QM//vgjbrvtNrOuKyoqQm1tLfz9/XWO+/v74/Tp0426x8svv4ygoCAp8BQUFEj3qH9P7bn6UlNTsWjRIrPqTkRE1mfsMVdYWJ40CNrYo66HHnoIvr6+OveTy+Xw8fGxejvI9swKQA899JDB47W1tZg5c6a0lsKuXbuaX7NGWLZsGXbs2IGsrKxmje1JSUlBcnKy9L6srAwqlaolqkhERC3I1Fo/CkU5oqOPIiwsz+CjLl9fXz7qIolZAeiTTz7B3XffjdDQUL1zHTp0gEKhMOvDfX194ezsjMLCQp3jhYWFCAgIMHntqlWrsGzZMuzfvx99+vSRjmuvKyws1PmDXlhYiKioKIP3cnV1haurq1l1JyIi62voMRfAR13UOGYFoO3bt+Oll17C5MmTMXXqVOn4e++9h6VLl6JXr15mfbhcLke/fv2QmZmJcePGAagbBJ2ZmYmkpCSj161YsQJLly7F559/jpiYGJ1zoaGhCAgIQGZmphR4ysrK8P3332P69Olm1Y+IiOxLUx5zAXzURfrMCkDjx4/HnXfeiccffxx79+7FP/7xD3h7ezerAsnJyZg8eTJiYmIwYMAApKWloaKiQgpYkyZNQnBwMFJTUwEAy5cvx/z587F9+3aEhIRI43o6dOiADh06QCaTYdasWViyZAkiIiKkafBBQUFSyCIiotaLj7moJZg9CDokJAT//e9/sWjRIkRGRmLTpk2Q1d9YxQyJiYm4evUq5s+fj4KCAkRFRSEjI0MaxHzhwgU4Of3R1blhwwZUV1fjT3/6k859FixYgIULFwIAZs+ejYqKCkybNg2lpaUYPHgwMjIyuAYQEVErVf/xFR9zUXM1ax2gb775BpMmTcL58+fx008/mf0IzF5xHSAiIvtTXFyM6upqo+f5mIustg7Q4MGDcezYMZw9exZhYWHNuRUREZFJDDfUkpq9DlCHDh0QGRnZEnUhIiIisgqzAlDfvn0bNd7nyJEjTa4QERERkaWZFYBunUUlhEBqaiqefvppaRsKIiIiotagWYOgPT098eOPP6Jbt24tWSeb4yBoIiKi1sec399OJs8SERERtUEMQERERORwGICIiIjI4Zg1CHrNmjU672/evIlt27bp7bsyc+bM5teMiIiIyELMGgRtaBd4vRvKZPjll1+aVSlb4yBoIiKi1sdiK0Hn5+c3q2JERORYuH0F2SuzAtBXX32FpKQkfPfdd3rJSq1WY9CgQdi4cSOGDBnSopUkIqLWp7i4GOvWrWuwXFJSEkMQWZ1ZASgtLQ1PPfWUwW4lhUKBv/71r1i9ejUDEBGRAzHWy1NUVKTzXq32REmJD5TKYp2d3E31EBFZilkB6Mcff8Ty5cuNnr/vvvuwatWqZleKiIhah8b28hw50hd79oyBEE6QyTRISNiL6OijVqghkWFmTYMvLCyEi4uL0fPt2rXD1atXm10pIiJqHer33qjVnsjPD4Fa7alzTBt+AEAIJ+zZM0anDJG1mdUDFBwcjOPHjyM8PNzg+WPHjiEwMLBFKkZERK2LsV6ekhIfKfxoCeGEkhKlzqMwImsyqwfo/vvvx7x583Djxg29c7///jsWLFiAMWPGtFjliIjIvqnV6v/913gvj1JZDJlMo3OdTKaBUlli9foSaZkVgF599VWUlJSge/fuWLFiBT799FN8+umnWL58OXr06IGSkhLMnTvXUnUlIiI7U1NTAwAN9vIkJOyVQpC2d4i9P2RLZj0C8/f3x4EDBzB9+nSkpKRAu4aiTCZDfHw81q9fD39/f4tUlIiI7JdSWQxAA91/V//RyxMdfRRhYXkoKVFCqSxh+CGbMysAAUDXrl2xb98+XLt2DXl5eRBCICIiAt7e3paoHxERtRoy3Xe6b6FQlBsMPnK53JKVIjLI7ACk5e3tjf79+7dkXYiIqJUqKfFB/QB06yOwYcOGISIiQu86rgRNttLkAERERNSuXd2vEe1A51vHAd060LlTp06cJUx2hQGIiIgaxdCKzzdv3gQAaaBz/Wnw2kdeXl5e1q4ukUkMQEREJDG2rUVpaSn++c9/mryWA52pNWEAIiIiAI3f1gIwvq8XBzpTa8EAREREAIArV67ovDcWckzt6/XQQw/B19dX5z4c6Ez2iAGIiIgA1D3m0jIWcoyt+BwWlgeFohy+vr4c7EytglkrQRMRUdulXdVZrfbE7t0JBre1MLXiM1FrwgBEREQ6Ll5UwdCaPhcvdua+XtRm8BEYEZEDMjTbq7y8bpxPZaW7wWsqK90bnO5O1FowABEROZiGZnu1b/+7yeOc7k5tAQMQEZGDqd/zU3+2l0p1EYDArY/BZDINVKpL0ntOd6fWjgGIiMjBNGa219ixe4w+5rrzzjvRp08fvftyuju1JgxAREQORrt9hakp7aYec3Xp0oVT3anVYwAiInJQpqa0ax9xGXrM5efnZ60qElkMAxARkYNycalC/bE+gICLS90YoWHDhiEiIkLnGj7moraCAYiIyEHV1Lii/no/gAw1NXUDmb29vfmoi9osLoRIROSguKghOTKbB6D169cjJCQEbm5uiI2NxaFDh4yWPXHiBB5++GGEhIRAJpMhLS1Nr8zChQshk8l0Xj179rRgC4iIWhcXFxcAkBY11Iag+rO9tOWI2iKbPgLbuXMnkpOTsXHjRsTGxiItLQ3x8fHIzc01OMiusrIS3bp1wyOPPILnn3/e6H1vv/127N+/X3rfrh2f9BERaSkUCulnU7O9bi1H1NbYNBmsXr0aTz31FKZOnQoA2LhxIz777DNs2bIFc+bM0Svfv39/9O/fHwAMntdq164dAgICLFNpIiI7Y2hbi1vVH7hcf7FCLmpIjshmAai6uhrZ2dlISUmRjjk5OSEuLg4HDx5s1r3PnDmDoKAguLm5YeDAgUhNTUWXLl2Mlq+qqkJVVZX0vqysrFmfT0RkLQ1ta6GVlJQkhSAfHx8kJSWZFZqI2hqbBaCioiLU1tbC399f57i/vz9Onz7d5PvGxsZi27Zt6NGjBy5fvoxFixZhyJAhOH78ODw9PQ1ek5qaikWLFjX5M4mIbKWhbS2MlWO4IUfX5gbHjBo1Svq5T58+iI2NRdeuXfHPf/4TTzzxhMFrUlJSkJycLL0vKyuDSqWyeF2JiFqSsW0tiEifzQKQr68vnJ2dUVhYqHO8sLCwRcfveHl5oXv37sjLyzNaxtXVFa6uri32mURE1mZqWwvu1k6kz2bT4OVyOfr164fMzEzpmEajQWZmJgYOHNhin3P9+nWcPXuWi3kRUZtmalsLItJn03WAkpOTsWnTJqSnp+PUqVOYPn06KioqpFlhkyZN0hkkXV1djZycHOTk5KC6uhq//vorcnJydHp3XnzxRfznP//BuXPncODAATz44INwdnbGhAkTrN4+IiJL0+7s3tCihrfuAE9ENh4DlJiYiKtXr2L+/PkoKChAVFQUMjIypIHRFy5cgJPTHxntt99+Q9++faX3q1atwqpVqzB06FBkZWUBAC5duoQJEyaguLgYnTp1wuDBg/Hdd9+hU6dOVm0bEZE1aHd21y5qWH8MkPbxl7YcEdWx+SDopKQkJCUlGTynDTVaISEhEEKYvN+OHTtaqmpERK2O9q/IBv6qJHJ4Nt8Kg4iImk67XYV2EPQff63XDYJWqz11yhFRHQYgIqJWTLtdRUODoLmtBZEuBiAiojaAO7sTmYcBiIioDWhoZ3ci0mXzQdBERNQyTO3sTkS6GICIiFox7uxO1DQMQERErRh3didqGgYgIqJWjuGGyHwcBE1EREQOhwGIiIiIHA4DEBERETkcBiAiIiJyOAxARERE5HAYgIiIiMjhcBo8EVEzFBcXcw0eolaIAYiIqImKi4uxbt066b1a7YmSEh8olcU6qzEnJSUxBBHZGQYgIqImurXn58iRvtizZwyEcJI2Io2OPqpXjojsA8cAERE1kVqt/t9/PaXwAwBCOGHPnjFQqz11yhGR/WAAIiJqopqaGgBASYmPFH60hHBCSYlSpxwR2Q8+AiMiaoCxgc6//vorAECpLAagge6/KTVQKksAAOXl+ruzE5FtMQAREZlQf6CzcTLdd7e8vXnzZstWioiajY/AiIhMqN/zo1Z7Ij8/RBrfA9Q9AqsfgG59BEZE9oc9QEREjWRsppeLSxUAAd0QJODiwtlfRPaKPUBERI1gaqZXTY0r6vcAATLU1MgBAO3a8d+aRPaG/68kIvofQ4Odi4qKAJie6aVUFkMm0+icl8n+GATt6ekJIrIvDEBE5FCMzegqLS3FP//5T6PXmQo5CkU5EhL26j0e064G7eLi0vINIaJmYQAiIofR+Bld+ttaNBRyoqOPIiws7389QiU6W2EoFAqLtIeImo4BiIgchqEZXYb27jI22NlUyAEgBaX65HK5ZRpERE3GAEREDslYyDE22DksLE8KOIZCTmJiosGeHu4GT2SfGICIqE0yNaDZVMgxNdhZoSjHQw89BF9fX53zDDlErQ8DEBG1OfXH+ug+6mrejC5fX18EBgZapyFEZDEMQETU5tza82PoUVdYWF6TZ3QRUdvAAEREbZaxR12zZqU1eUYXEbUNDEBE1GaZetTFGV1Ejo0BiIjarIbG83BGF5HjYgAiojbn4sWLANDgeJ5Bgwbhjjvu0LmWIYfIMTAAEVGbc+PGDenn6Oij8PAox5kzEYiIOIMePfKkc66urpzRReSgGICIyO4Z279LrVajpqYG7dq1g5eXl3S8vPyPx1r/+tcD+PHHSAAy/PBDf0RG/ogHH/zUCrUmIntm8wC0fv16rFy5EgUFBYiMjMTatWsxYMAAg2VPnDiB+fPnIzs7G+fPn8cbb7yBWbNmNeueRGTfTK/pY3p21qVLgVL4qSPDjz9Gon//Q+jc+TI3KSVyYE4NF7GcnTt3Ijk5GQsWLMCRI0cQGRmJ+Ph4XLlyxWD5yspKdOvWDcuWLUNAQECL3JOI7Fv9NX3S0mYhPX0y0tJm4ciRviavvXChK/4IP1oyXLzYBQDQoUOHFq4tEbUWNg1Aq1evxlNPPYWpU6eiV69e2LhxI9q3b48tW7YYLN+/f3+sXLkS48ePh6ura4vck4haB2Nr+qjVntL5/PwQ6T0AdOlyHoCodycBleqClWpNRPbKZo/AqqurkZ2djZSUFOmYk5MT4uLicPDgQaves6qqClVVVdL7srKyJn0+EVmOqTV9zp4NN7ixaefOlxEZ+eMtj8EEIiN/ROfOl23SBiKyHzYLQEVFRaitrYW/v7/OcX9/f5w+fdqq90xNTcWiRYua9JlEZB3G1vRxcak2uXv7gw9+iv79D+HixS5QqS4w/BARABs/ArMXKSkpUKvV0ku7hggR2Q/tmj4ymQYApJ6emhpXoz1DWp07X8bAgd/rhZ/27dtbvuJEZJds1gPk6+sLZ2dnFBYW6hwvLCw0OsDZUvd0dXU1OqaIiOyHoe0r1GpPk6s9Dxs2DN7e3nr3at++PcLCwqxWdyKyLzbrAZLL5ejXrx8yMzOlYxqNBpmZmRg4cKDd3JOI7ItCUY7Q0PPSFHhjPUPa8xEREejdu7fei+GHyLHZdB2g5ORkTJ48GTExMRgwYADS0tJQUVGBqVOnAgAmTZqE4OBgpKamAqgb5Hzy5Enp519//RU5OTno0KEDwsPDG3VPImpdGrP5qKmNTbl5KREZYtMAlJiYiKtXr2L+/PkoKChAVFQUMjIypEHMFy5cgJPTH51Uv/32G/r2/WPdj1WrVmHVqlUYOnQosrKyGnVPIrItY6s6a9Xfi8vHxwdJSUlmrQRt7F5ERFoyIUT9RTIcXllZGRQKBdRqNTp27Gjr6hC1GfVXdTYmKSmJwYWIzGbO72/OAiMiq6m/IruhxQsNlSMiamk23wuMiBzHzZs3pZ+PHOlrcPHC+uWIiCyBAYiImszc8TxaarUndu9OgHafrvqLFxIRWRoDEBE1SXPG81y8qEL9TUqFcMLFi52hUJxqyWoSERnEMUBE1CS//PKLzntj43nqlyMisgfsASKiJikuLpZ+PnKkL3bvHoO6f1NpMHbsH+N5bi2npVJdBKCB7r/BNFCpLlmyykREEvYAEVGT1NbWAtCO59GGHwBwwu7dY6SeIG25WykU5Rg7di/qQhCgDU0c/0NE1sIeICJqltzc7tD/t5QTcnMjMGDAEZ2jLi4u0s+mVm++tRwRkSUwABFRk2dz1V2rNHJcv3ynTp103isU5QZ7feqXIyJqaQxARA6uuasz+/iUGCzv46M/9sfUthZa3L6CiKyBAYjIwdUPI2q1J0pKfKBUFuv0zhgLLT16/Ix9+/QHNPfoccZgeYYbIrIHDEBEJDG1OnN9zs7OAP4Y0Fx/Fpg2PGnLERHZEwYgIgJQ1/OjDT9Aw6sz39qTY2pAM3t8iMgeMQAREQCgpMRHCj9aQjihpERpMAB169ZN572xAc31yxER2QMGICICACiVxZDJNDohSCbTQKk0NsiZA5qJqPViACJqY5o6pV2hKEdCwl69MUCmFidkuCGi1ooBiKgNae6UdlNjeYiI2hIGIKI2pClT2uVyuc41xsby1C9HRNSaMQARtVGNndLOsTxE5IgYgIhaKUNjfYqKigA0b0o7EZEjYAAiaoUaGutj7pR2IiJHU38LZyJqBa5evarzXq32RH5+CNRqTwB/TGm/lakp7UREjoY9QEStUE1NjfTzkSN99bahiI4+avaUdiIiR8IARNSKqdWet4QfAHDC7t11Y304pZ2IyDgGICI70NTFCy9eVEH/SbYTLl7sDIXiFKe0ExEZwQBEZGPNXbzQlGHDhiEiIkLnGKe0ExExABHZXFMWL9RSqS4CEABk0jGZTAOV6hIAwNvbG4GBgRapNxFRa8YARGRHGrt4oZZCUY6xY/dwsDMRkZkYgIjshDmLF7Zr98f/dU0Ndr61HBER/YF/OxLZCXMWL/Tz89N5b2ywc/1yRERUhwGIqAmaOmvLFO3ihbeGIGOLF3L/LiKi5mEAIjJTY2dtJSYmQqFQ6B03FkwUinKzFi9kuCEiajoGICIzNXbW1s6dO43ew9iUdi5eSERkHQxARGYqLS2Vfm5o1lZjprTXX5SQixcSEVkeAxCRCYbG+pw/fx6AdhuKBGjX4Kk/a6uxU9o5noeIyPoYgIiMaGisT902FDKdY0LUbUMBXGr0lHaA43mIiKyNAYgcnrEZXUVFRU2+pzlT2omIyPrsIgCtX78eK1euREFBASIjI7F27VoMGDDAaPkPP/wQ8+bNw7lz5xAREYHly5fj/vvvl85PmTIF6enpOtfEx8cjIyPDYm2g1qmxM7oA/fE8Xl7XUH8bCkDAy6sUnp7XGz2lnYiIrM/mAWjnzp1ITk7Gxo0bERsbi7S0NMTHxyM3N9fgIm4HDhzAhAkTkJqaijFjxmD79u0YN24cjhw5gjvuuEMqN3LkSGzdulV67+rqapX2kP0y1NOTn5+v897YoGVD43m8va+h/iMwQIaaGrnZU9qJiMi6ZEIIYcsKxMbGon///tK/wjUaDVQqFZ599lnMmTNHr3xiYiIqKiqwd+9e6didd96JqKgobNy4EUBdD1BpaSk++eSTJtWprKwMCoUCarUaHTt2bNI9yL40pqfH2KBltdoTaWmz9HpznnjiH9i8+Um947NmpUlBpy5Q6U9pnzZtGjcpJSJqYeb8/nYyedbCqqurkZ2djbi4OOmYk5MT4uLicPDgQYPXHDx4UKc8UPd4q375rKws+Pn5oUePHpg+fTqKi4tbvgFkd4qLi3H58mW912+//aZTTq32RH5+CNRqT+n97t0JeoOWtT1Chsbz1NTIkZCwFzKZBgAM9vIoFOUIDT2v1/PDKe1ERLZl00dgRUVFqK2thb+/v85xf39/nD592uA1BQUFBssXFBRI70eOHImHHnoIoaGhOHv2LF555RWMGjUKBw8ehLOzs949q6qqUFVVJb0vKytrTrPIRho7nsdQT49cXgVjM7pUqktGx/OEhp43unDhiBEjEBoaqvf5nNJORGR7Nh8DZAnjx4+Xfu7duzf69OmDsLAwZGVl4d5779Urn5qaikWLFlmzimQBV65c0XlvaDyPsR3XR43aZ/S+DY3nMbZwYY8ePRh0iIjslE0DkK+vL5ydnVFYWKhzvLCwEAEBAQavCQgIMKs8AHTr1g2+vr7Iy8szGIBSUlKQnJwsvS8rK4NKpTKnKWQHbt68Kf1sbDyPscdZ7dtXAtBA96mwBirVJQCmt6gwtOcXe3mIiOybTQOQXC5Hv379kJmZiXHjxgGoGwSdmZmJpKQkg9cMHDgQmZmZmDVrlnTsyy+/xMCBA41+zqVLl1BcXGx00KmrqytnibUhplZoNrbjukp1CWPH7sXu3WNQF4I0GDv2j16eYcOGISIiQu+zGHSIiFonmz8CS05OxuTJkxETE4MBAwYgLS0NFRUVmDp1KgBg0qRJCA4ORmpqKgDgueeew9ChQ/H6669j9OjR2LFjB3744Qe8/fbbAIDr169j0aJFePjhhxEQEICzZ89i9uzZCA8PR3x8vM3aSeYztkChlrHwYWqF5jvuOGX0cZapXh4/Pz/O2iIiakNsHoASExNx9epVzJ8/HwUFBYiKikJGRoY00PnChQtwcvrjX+uDBg3C9u3b8eqrr+KVV15BREQEPvnkE2kNIGdnZxw7dgzp6ekoLS1FUFAQ7rvvPixevJi9PK1IYwc0G9tV3RRTQcfYeJ5OnTqZ9RlERGTfbB6AgLpfYsYeeWVlZekde+SRR/DII48YLO/u7o7PP/+8JatHNlC/56cxu6prqVQXYWo8D2A86HA8DxGRY7CLAERkSmN3VddSKMo5noeIiExiACK7ZmzauqFd1V1cXKSfOZ6HiIhMYQAiu2bOrur1x+lwPA8RERnDAEQtxtSsrdLSUshkMr3xNVrGHj8Zm7ZuaFd1Hx8fJCUlNWnmGBERORYGIGoRjZ21ZYqhGV3m7qrOcENERI3BAEQtojHbUDR0zljPjanxPERERE3BAERmO3v2LCorK3WOHTt2TPrZ1Kytxs7oqr9burHxPNxVnYiImoIBiMxy9uxZvPfee0bPm9qGAkCjZ3RxPA8REVkSAxCZpf5GtJcuBeLCha7o0uU8One+bHIbCg+P3xs9owvgeB4iIrIcBiAyy607rv/rXw/gxx8jURd4BCIjf4RSWWTwuuJib6hUlxo9o4uIiMiSnBouQqTv0qXAW8IPAMjw44+RuHbN22D52tp20owumUxTd0UDM7qIiIgshT1A1CQ//9wd9R91aXuC6l63nhPo3v0MAM7oIiIi+8AARE3SocN1g8eDgi5DiB/1Ho117nxZKsMZXUREZGsMQG2IqZWYgZadNdWjx8/Yt69+T48GPXqcwYABR9C//yFcvNgFKtUFnfATGxuLyMhIi9aNiIioIQxAbURjV2I2tNpyU9TtuL7H6I7rnTtf1gk+WhEREdyIlIiIbI4BqJUx1stTVKQ7+8rc1ZYby83NTfrZ1HieyMhIhIWF6Vzbvn17vWNERES2wADUijS2l6exqy03Rf0AY2w8z5AhQ/hIi4iI7BYDkJ0y1NOTn5/f4HVqtWejV1tuCq7QTEREbQEDkB1qbE9P/VWYAaCkxMes1ZabguGGiIhaOwYgGzK0qaj2+K0MBR1DqzA/+OCnUCqLudoyERFRAxiAbKShTUW1DAWd/v0PGVyFuX//Q+jc+TISEvbqjQHigoNERER/YACyAkPjeX799Ved94Z6eYxtN+Hm9jsMrcJ88WIXdO58mastExERNYAByMIaM57H2OMsY9tNVFW5wNB2EyrVBekdV1smIiIyjgHIwur3/NRfn8dYL0///ofQoYPhnpuGtpsYNmwYIiIi9K7j7CwiIqI6DEBWZGh9nhs3XGHscVavXicNbDchGtxuws/Pj6stExERmeDUcBFqCcbW5/HxKULd46xb1T3O0m43IZNpANTN5ho7do/OdhMDB36vt+VEp06dLN0cIiKiVo09QFZibH0eubwGkZHGH2eZGtB85513ok+fPjr35GMuIiKihjEAWYmp9XkefPBTo4+zAOMDmsPDw/moi4iIqAkYgKxEoSg3uT6Psd3T77rrLvj7++sd58aiRERETccAZEWmHmcNGzYM3t7eOuUZcoiIiCyDAcjC6q+7Y+xx1u23386xO0RERFbCAGRh3D2diIjI/jAAWQHDDRERkX3hOkBERETkcBiAiIiIyOEwABEREZHDYQAiIiIih8MARERERA7HLgLQ+vXrERISAjc3N8TGxuLQoUMmy3/44Yfo2bMn3Nzc0Lt3b+zbt0/nvBAC8+fPR2BgINzd3REXF4czZ85YsglERETUitg8AO3cuRPJyclYsGABjhw5gsjISMTHx+PKlSsGyx84cAATJkzAE088gaNHj2LcuHEYN24cjh8/LpVZsWIF1qxZg40bN+L777+Hh4cH4uPjcePGDWs1i4iIiOyYTAghbFmB2NhY9O/fH+vWrQMAaDQaqFQqPPvss5gzZ45e+cTERFRUVGDv3r3SsTvvvBNRUVHYuHEjhBAICgrCCy+8gBdffBEAoFar4e/vj23btmH8+PEN1qmsrAwKhQJqtRodO3ZsoZYSERGRJZnz+9umPUDV1dXIzs5GXFycdMzJyQlxcXE4ePCgwWsOHjyoUx4A4uPjpfL5+fkoKCjQKaNQKBAbG2v0nlVVVSgrK9N5ERERUdtl05Wgi4qKUFtbq7fbub+/P06fPm3wmoKCAoPlCwoKpPPaY8bK1JeamopFixbpHWcQIiIiaj20v7cb83CLW2EASElJQXJysvT+119/Ra9evaBSqWxYKyIiImqK8vJyKBQKk2VsGoB8fX3h7OyMwsJCneOFhYUICAgweE1AQIDJ8tr/FhYWIjAwUKdMVFSUwXu6urrC1dVVet+hQwdcvHgRnp6ekMlkZrfLlLKyMqhUKly8eNEhxxex/Y7dfoDfgaO3H+B3wPZbrv1CCJSXlyMoKKjBsjYNQHK5HP369UNmZibGjRsHoG4QdGZmJpKSkgxeM3DgQGRmZmLWrFnSsS+//BIDBw4EAISGhiIgIACZmZlS4CkrK8P333+P6dOnN6peTk5O6Ny5c5Pb1RgdO3Z0yD/4Wmy/Y7cf4Hfg6O0H+B2w/ZZpf0M9P1o2fwSWnJyMyZMnIyYmBgMGDEBaWhoqKiowdepUAMCkSZMQHByM1NRUAMBzzz2HoUOH4vXXX8fo0aOxY8cO/PDDD3j77bcBADKZDLNmzcKSJUsQERGB0NBQzJs3D0FBQVLIIiIiIsdm8wCUmJiIq1evYv78+SgoKEBUVBQyMjKkQcwXLlyAk9Mfk9UGDRqE7du349VXX8Urr7yCiIgIfPLJJ7jjjjukMrNnz0ZFRQWmTZuG0tJSDB48GBkZGXBzc7N6+4iIiMj+2DwAAUBSUpLRR15ZWVl6xx555BE88sgjRu8nk8nwt7/9DX/7299aqootxtXVFQsWLNAZc+RI2H7Hbj/A78DR2w/wO2D77aP9Nl8IkYiIiMjabL4VBhEREZG1MQARERGRw2EAIiIiIofDAEREREQOhwGoha1fvx4hISFwc3NDbGwsDh06ZLTsiRMn8PDDDyMkJAQymQxpaWnWq6gFmfMdbNq0CUOGDIG3tze8vb0RFxdnsnxrYE77d+3ahZiYGHh5ecHDwwNRUVF49913rVhbyzDnO7jVjh07IJPJWv2aXea0f9u2bZDJZDqvtrBkh7l/BkpLSzFjxgwEBgbC1dUV3bt3x759+6xU25ZnTvvvuecevT8DMpkMo0ePtmKNW5a5//unpaWhR48ecHd3h0qlwvPPP48bN25YtpKCWsyOHTuEXC4XW7ZsESdOnBBPPfWU8PLyEoWFhQbLHzp0SLz44ovigw8+EAEBAeKNN96wboUtwNzv4M9//rNYv369OHr0qDh16pSYMmWKUCgU4tKlS1auecswt/1ff/212LVrlzh58qTIy8sTaWlpwtnZWWRkZFi55i3H3O9AKz8/XwQHB4shQ4aIBx54wDqVtQBz279161bRsWNHcfnyZelVUFBg5Vq3LHO/g6qqKhETEyPuv/9+8c0334j8/HyRlZUlcnJyrFzzlmFu+4uLi3X+9z9+/LhwdnYWW7dutW7FW4i57X///feFq6ureP/990V+fr74/PPPRWBgoHj++ectWk8GoBY0YMAAMWPGDOl9bW2tCAoKEqmpqQ1e27Vr1zYRgJrzHQghxM2bN4Wnp6dIT0+3VBUtqrntF0KIvn37ildffdUS1bOKpnwHN2/eFIMGDRL/+Mc/xOTJk1t1ADK3/Vu3bhUKhcJKtbMOc7+DDRs2iG7duonq6mprVdGimvv3wBtvvCE8PT3F9evXLVVFizK3/TNmzBDDhw/XOZacnCzuuusui9aTj8BaSHV1NbKzsxEXFycdc3JyQlxcHA4ePGjDmllPS3wHlZWVqKmpgVKptFQ1Laa57RdCIDMzE7m5ubj77rstWVWLaep38Le//Q1+fn544oknrFFNi2lq+69fv46uXbtCpVLhgQcewIkTJ6xRXYtoynewe/duDBw4EDNmzIC/vz/uuOMOvPbaa6itrbVWtVtMS/w9uHnzZowfPx4eHh6WqqbFNKX9gwYNQnZ2tvSY7JdffsG+fftw//33W7SudrESdFtQVFSE2tpaaQsPLX9/f5w+fdpGtbKulvgOXn75ZQQFBen8n6e1aGr71Wo1goODUVVVBWdnZ7z11lsYMWKEpatrEU35Dr755hts3rwZOTk5VqihZTWl/T169MCWLVvQp08fqNVqrFq1CoMGDcKJEycsvimzJTTlO/jll1/w1Vdf4bHHHsO+ffuQl5eHZ555BjU1NViwYIE1qt1imvv34KFDh3D8+HFs3rzZUlW0qKa0/89//jOKioowePBgCCFw8+ZNPP3003jllVcsWlcGILIby5Ytw44dO5CVldUmBoE2lqenJ3JycnD9+nVkZmYiOTkZ3bp1wz333GPrqllceXk5Jk6ciE2bNsHX19fW1bGJgQMHYuDAgdL7QYMG4bbbbsPf//53LF682IY1sx6NRgM/Pz+8/fbbcHZ2Rr9+/fDrr79i5cqVrS4ANdfmzZvRu3dvDBgwwNZVsZqsrCy89tpreOuttxAbG4u8vDw899xzWLx4MebNm2exz2UAaiG+vr5wdnZGYWGhzvHCwkIEBATYqFbW1ZzvYNWqVVi2bBn279+PPn36WLKaFtPU9js5OSE8PBwAEBUVhVOnTiE1NbVVBiBzv4OzZ8/i3LlzSEhIkI5pNBoAQLt27ZCbm4uwsDDLVroFtcTfAy4uLujbty/y8vIsUUWLa8p3EBgYCBcXFzg7O0vHbrvtNhQUFKC6uhpyudyidW5JzfkzUFFRgR07dtjlPpaN1ZT2z5s3DxMnTsSTTz4JAOjdu7e0ofncuXN1NkRvSRwD1ELkcjn69euHzMxM6ZhGo0FmZqbOv+7asqZ+BytWrMDixYuRkZGBmJgYa1TVIlrqz4BGo0FVVZUlqmhx5n4HPXv2xE8//YScnBzpNXbsWAwbNgw5OTlQqVTWrH6ztcSfgdraWvz0008IDAy0VDUtqinfwV133YW8vDwp/ALAzz//jMDAwFYVfoDm/Rn48MMPUVVVhccff9zS1bSYprS/srJSL+Row7Cw5HalFh1i7WB27NghXF1dxbZt28TJkyfFtGnThJeXlzSldeLEiWLOnDlS+aqqKnH06FFx9OhRERgYKF588UVx9OhRcebMGVs1odnM/Q6WLVsm5HK5+Oijj3SmgZaXl9uqCc1ibvtfe+018cUXX4izZ8+KkydPilWrVol27dqJTZs22aoJzWbud1Bfa58FZm77Fy1aJD7//HNx9uxZkZ2dLcaPHy/c3NzEiRMnbNWEZjP3O7hw4YLw9PQUSUlJIjc3V+zdu1f4+fmJJUuW2KoJzdLU/w8MHjxYJCYmWru6Lc7c9i9YsEB4enqKDz74QPzyyy/iiy++EGFhYeLRRx+1aD0ZgFrY2rVrRZcuXYRcLhcDBgwQ3333nXRu6NChYvLkydL7/Px8AUDvNXToUOtXvAWZ8x107drV4HewYMEC61e8hZjT/rlz54rw8HDh5uYmvL29xcCBA8WOHTtsUOuWZc53UF9rD0BCmNf+WbNmSWX9/f3F/fffL44cOWKDWrcsc/8MHDhwQMTGxgpXV1fRrVs3sXTpUnHz5k0r17rlmNv+06dPCwDiiy++sHJNLcOc9tfU1IiFCxeKsLAw4ebmJlQqlXjmmWfEtWvXLFpHmRCW7F8iIiIisj8cA0REREQOhwGIiIiIHA4DEBERETkcBiAiIiJyOAxARERE5HAYgIiIiMjhMAARERGRw2EAIiKyoSlTpmDcuHG2rgaRw2EAIiKDpkyZAplMJr18fHwwcuRIHDt2zNZVaxG3tk37Gjx4sMU+79y5c5DJZMjJydE5/uabb2Lbtm0W+1wiMowBiIiMGjlyJC5fvozLly8jMzMT7dq1w5gxY2xdrRazdetWqX2XL1/G7t27DZarqamxWB0UCgW8vLwsdn8iMowBiIiMcnV1RUBAAAICAhAVFYU5c+bg4sWLuHr1KoYPH46kpCSd8levXoVcLpd2gg4JCcHixYsxYcIEeHh4IDg4GOvXr9e5ZvXq1ejduzc8PDygUqnwzDPP4Pr169L58+fPIyEhAd7e3vDw8MDtt9+Offv2AQCuXbuGxx57DJ06dYK7uzsiIiKwdevWRrfPy8tLal9AQACUSqXUU7Nz504MHToUbm5ueP/991FcXIwJEyYgODgY7du3R+/evfHBBx/o3E+j0WDFihUIDw+Hq6srunTpgqVLlwIAQkNDAQB9+/aFTCbDPffcA0D/EVhVVRVmzpwJPz8/uLm5YfDgwTh8+LB0PisrCzKZDJmZmYiJiUH79u0xaNAg5ObmNrrdRMQARESNdP36dbz33nsIDw+Hj48PnnzySWzfvh1VVVVSmffeew/BwcEYPny4dGzlypWIjIzE0aNHMWfOHDz33HP48ssvpfNOTk5Ys2YNTpw4gfT0dHz11VeYPXu2dH7GjBmoqqrCf//7X/z0009Yvnw5OnToAACYN28eTp48iX//+984deoUNmzYAF9f3xZpr7aup06dQnx8PG7cuIF+/frhs88+w/HjxzFt2jRMnDgRhw4dkq5JSUnBsmXLpHpt374d/v7+ACCV279/Py5fvoxdu3YZ/NzZs2fj448/Rnp6Oo4cOYLw8HDEx8ejpKREp9zcuXPx+uuv44cffkC7du3wl7/8pUXaTeQwLLrVKhG1WpMnTxbOzs7Cw8NDeHh4CAAiMDBQZGdnCyGE+P3334W3t7fYuXOndE2fPn3EwoULpfddu3YVI0eO1LlvYmKiGDVqlNHP/fDDD4WPj4/0vnfv3jr3vFVCQoKYOnVqk9oHQLi5uUnt8/DwEP/6179Efn6+ACDS0tIavMfo0aPFCy+8IIQQoqysTLi6uopNmzYZLKu979GjR3WOT548WTzwwANCCCGuX78uXFxcxPvvvy+dr66uFkFBQWLFihVCCCG+/vprAUDs379fKvPZZ58JAOL333835ysgcmjsASIio4YNG4acnBzk5OTg0KFDiI+Px6hRo3D+/Hm4ublh4sSJ2LJlCwDgyJEjOH78OKZMmaJzj4EDB+q9P3XqlPR+//79uPfeexEcHAxPT09MnDgRxcXFqKysBADMnDkTS5YswV133YUFCxboDMKePn06duzYgaioKMyePRsHDhwwq31vvPGG1L6cnByMGDFCOhcTE6NTtra2FosXL0bv3r2hVCrRoUMHfP7557hw4QIA4NSpU6iqqsK9995rVh1udfbsWdTU1OCuu+6Sjrm4uGDAgAE63xkA9OnTR/o5MDAQAHDlypUmfzaRo2EAIiKjPDw8EB4ejvDwcPTv3x//+Mc/UFFRgU2bNgEAnnzySXz55Ze4dOkStm7diuHDh6Nr166Nvv+5c+cwZswY9OnTBx9//DGys7OlMULV1dXSZ/zyyy+YOHEifvrpJ8TExGDt2rUAIIWx559/Hr/99hvuvfdevPjii43+/ICAAKl94eHh8PDw0Gn7rVauXIk333wTL7/8Mr7++mvk5OQgPj5eqqe7u3ujP7cluLi4SD/LZDIAdWOQiKhxGICIqNFkMhmcnJzw+++/AwB69+6NmJgYbNq0Cdu3bzc4DuW7777Te3/bbbcBALKzs6HRaPD666/jzjvvRPfu3fHbb7/p3UOlUuHpp5/Grl278MILL0gBDAA6deqEyZMn47333kNaWhrefvvtlmyy5Ntvv8UDDzyAxx9/HJGRkejWrRt+/vln6XxERATc3d2lAeD1yeVyAHU9ScaEhYVBLpfj22+/lY7V1NTg8OHD6NWrVwu1hIgAoJ2tK0BE9quqqgoFBQUA6mZcrVu3DtevX0dCQoJU5sknn0RSUhI8PDzw4IMP6t3j22+/xYoVKzBu3Dh8+eWX+PDDD/HZZ58BAMLDw1FTU4O1a9ciISEB3377LTZu3Khz/axZszBq1Ch0794d165dw9dffy0FqPnz56Nfv364/fbbUVVVhb1790rnWlpERAQ++ugjHDhwAN7e3li9ejUKCwulYOLm5oaXX34Zs2fPhlwux1133YWrV6/ixIkTeOKJJ+Dn5wd3d3dkZGSgc+fOcHNzg0Kh0PkMDw8PTJ8+HS+99BKUSiW6dOmCFStWoLKyEk888YRF2kXkqNgDRERGZWRkIDAwEIGBgYiNjcXhw4fx4YcfSlO4AWDChAlo164dJkyYADc3N717vPDCC/jhhx/Qt29fLFmyBKtXr0Z8fDwAIDIyEqtXr8by5ctxxx134P3330dqaqrO9bW1tZgxYwZuu+02jBw5Et27d8dbb70FoK5XJSUlBX369MHdd98NZ2dn7NixwyLfxauvvoro6GjEx8fjnnvuQUBAgN4KzvPmzcMLL7yA+fPn47bbbkNiYqI0Lqddu3ZYs2YN/v73vyMoKAgPPPCAwc9ZtmwZHn74YUycOBHR0dHIy8vD559/Dm9vb4u0i8hRyYQQwtaVIKLW69y5cwgLC8Phw4cRHR2tcy4kJASzZs3CrFmzbFM5IiIj+AiMiJqkpqYGxcXFePXVV3HnnXfqhR8iInvGR2BE1CTffvstAgMDcfjwYb1xO7b22muvoUOHDgZfo0aNsnX1iMgO8BEYEbU5JSUleisna7m7uyM4ONjKNSIie8MARERERA6Hj8CIiIjI4TAAERERkcNhACIiIiKHwwBEREREDocBiIiIiBwOAxARERE5HAYgIiIicjgMQERERORw/h+mtgpEsPC5SQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWQJJREFUeJzt3XtcVGXiBvBnBhluwsCAXB0FAbWLgoiymrcKA1PMzX6pW942cyvJjMoi87ZaqJmRabq53tJMt7RWrcWSYndLS1e8lBqJYWIB6qDDbQVk3t8f7Bwd5gKDzAwwz/fzmU/Mmfecec9ZVx7fq0wIIUBERETkROSOrgARERGRvTEAERERkdNhACIiIiKnwwBERERETocBiIiIiJwOAxARERE5HQYgIiIicjoMQEREROR0GICIiIjI6TAAERG1Ups2bYJMJsO5c+ccXRWidocBiMiJHT58GKmpqbjjjjvg5eWFLl264OGHH8ZPP/1kVHbYsGGQyWSQyWSQy+Xw8fFBjx49MHHiRHzxxRdWfe+ePXswdOhQBAYGwtPTE926dcPDDz+MrKyslro1I6+99ho++eQTo+MHDhzAggULcPXqVZt9d0MLFiyQnqVMJoOnpyduv/12vPLKKygrK2uR79i2bRsyMzNb5FpE7REDEJETW7p0KXbu3Il7770Xb731FqZPn45//etfiIuLww8//GBUvnPnztiyZQvee+89vP766xg9ejQOHDiA++67D+PGjUNtbW2j37l8+XKMHj0aMpkM6enpePPNNzF27FicOXMG27dvt8VtArAcgBYuXGjXAKS3Zs0abNmyBStWrEDPnj3x6quvIjk5GS2xRSMDEJFlHRxdASJynLS0NGzbtg0KhUI6Nm7cOPTq1QtLlizB1q1bDcorlUo8+uijBseWLFmCmTNn4p133kF4eDiWLl1q9vuuX7+ORYsWYfjw4fj888+NPr948eIt3lHrUVVVBU9PT4tlHnroIQQEBAAAnnjiCYwdOxa7du3Ct99+iwEDBtijmkROiy1ARE5s4MCBBuEHAKKjo3HHHXfg9OnTTbqGi4sLVq5cidtvvx2rVq2CVqs1W/by5csoKyvDXXfdZfLzwMBAg/fXrl3DggUL0L17d7i7uyMkJAQPPvggzp49K5VZvnw5Bg4cCH9/f3h4eKBv37746KOPDK4jk8lQWVmJzZs3S91OU6ZMwYIFC/DCCy8AACIiIqTPbh5zs3XrVvTt2xceHh5QqVQYP348CgsLDa4/bNgw3HnnnThy5AiGDBkCT09PvPzyy016fje75557AAAFBQUWy73zzju444474ObmhtDQUMyYMcOgBWvYsGH49NNP8csvv0j3FB4ebnV9iNoztgARkQEhBEpKSnDHHXc0+RwXFxdMmDABc+fOxddff42RI0eaLBcYGAgPDw/s2bMHTz/9NFQqldlr1tXVYdSoUcjOzsb48ePxzDPPoLy8HF988QV++OEHREZGAgDeeustjB49Go888ghqamqwfft2/N///R/27t0r1WPLli2YNm0a+vfvj+nTpwMAIiMj4eXlhZ9++gkffPAB3nzzTak1plOnTgCAV199FXPnzsXDDz+MadOm4dKlS3j77bcxZMgQHD16FL6+vlJ9NRoNRowYgfHjx+PRRx9FUFBQk5+fnj7Y+fv7my2zYMECLFy4EImJiXjyySeRl5eHNWvW4PDhw/jmm2/g6uqKOXPmQKvV4sKFC3jzzTcBAB07drS6PkTtmiAiusmWLVsEALF+/XqD40OHDhV33HGH2fM+/vhjAUC89dZbFq8/b948AUB4eXmJESNGiFdffVUcOXLEqNyGDRsEALFixQqjz3Q6nfRzVVWVwWc1NTXizjvvFPfcc4/BcS8vLzF58mSja73++usCgCgoKDA4fu7cOeHi4iJeffVVg+Pff/+96NChg8HxoUOHCgBi7dq1Zu/7ZvPnzxcARF5enrh06ZIoKCgQf/nLX4Sbm5sICgoSlZWVQgghNm7caFC3ixcvCoVCIe677z5RV1cnXW/VqlUCgNiwYYN0bOTIkaJr165Nqg+RM2IXGBFJfvzxR8yYMQMDBgzA5MmTrTpX38JQXl5usdzChQuxbds29OnTB/v27cOcOXPQt29fxMXFGXS77dy5EwEBAXj66aeNriGTyaSfPTw8pJ+vXLkCrVaLwYMHIzc316r6N7Rr1y7odDo8/PDDuHz5svQKDg5GdHQ0vvrqK4Pybm5umDp1qlXf0aNHD3Tq1AkRERH405/+hKioKHz66admxw7t378fNTU1mDVrFuTyG399P/744/Dx8cGnn35q/Y0SOSl2gRERAKC4uBgjR46EUqnERx99BBcXF6vOr6ioAAB4e3s3WnbChAmYMGECysrK8N1332HTpk3Ytm0bUlJS8MMPP8Dd3R1nz55Fjx490KGD5b+m9u7di8WLF+PYsWOorq6Wjt8ckprjzJkzEEIgOjra5Oeurq4G78PCwozGUzVm586d8PHxgaurKzp37ix165nzyy+/AKgPTjdTKBTo1q2b9DkRNY4BiIig1WoxYsQIXL16Ff/+978RGhpq9TX00+ajoqKafI6Pjw+GDx+O4cOHw9XVFZs3b8Z3332HoUOHNun8f//73xg9ejSGDBmCd955ByEhIXB1dcXGjRuxbds2q+/hZjqdDjKZDP/4xz9MhsGGY2pubolqqiFDhkjjjojIvhiAiJzctWvXkJKSgp9++gn79+/H7bffbvU16urqsG3bNnh6emLQoEHNqkd8fDw2b96MoqIiAPWDlL/77jvU1tYatbbo7dy5E+7u7ti3bx/c3Nyk4xs3bjQqa65FyNzxyMhICCEQERGB7t27W3s7NtG1a1cAQF5eHrp16yYdr6mpQUFBARITE6Vjt9oCRtTecQwQkROrq6vDuHHjcPDgQXz44YfNWnumrq4OM2fOxOnTpzFz5kz4+PiYLVtVVYWDBw+a/Owf//gHgBvdO2PHjsXly5exatUqo7LifwsFuri4QCaToa6uTvrs3LlzJhc89PLyMrnYoZeXFwAYffbggw/CxcUFCxcuNFqYUAgBjUZj+iZtKDExEQqFAitXrjSo0/r166HVag1m33l5eVlckoDI2bEFiMiJPffcc9i9ezdSUlJQWlpqtPBhw0UPtVqtVKaqqgr5+fnYtWsXzp49i/Hjx2PRokUWv6+qqgoDBw7E7373OyQnJ0OtVuPq1av45JNP8O9//xtjxoxBnz59AACTJk3Ce++9h7S0NBw6dAiDBw9GZWUl9u/fj6eeegoPPPAARo4ciRUrViA5ORl/+MMfcPHiRaxevRpRUVE4ceKEwXf37dsX+/fvx4oVKxAaGoqIiAgkJCSgb9++AIA5c+Zg/PjxcHV1RUpKCiIjI7F48WKkp6fj3LlzGDNmDLy9vVFQUICPP/4Y06dPx/PPP39Lz99anTp1Qnp6OhYuXIjk5GSMHj0aeXl5eOedd9CvXz+D/7369u2LHTt2IC0tDf369UPHjh2RkpJi1/oStWqOnIJGRI6ln75t7mWpbMeOHUV0dLR49NFHxeeff96k76utrRXr1q0TY8aMEV27dhVubm7C09NT9OnTR7z++uuiurraoHxVVZWYM2eOiIiIEK6uriI4OFg89NBD4uzZs1KZ9evXi+joaOHm5iZ69uwpNm7cKE0zv9mPP/4ohgwZIjw8PAQAgynxixYtEmFhYUIulxtNid+5c6cYNGiQ8PLyEl5eXqJnz55ixowZIi8vz+DZWFoioCF9/S5dumSxXMNp8HqrVq0SPXv2FK6uriIoKEg8+eST4sqVKwZlKioqxB/+8Afh6+srAHBKPFEDMiFaYNMZIiIiojaEY4CIiIjI6TAAERERkdNhACIiIiKnwwBERERETocBiIiIiJwOAxARERE5HS6EaIJOp8Nvv/0Gb29vLidPRETURgghUF5ejtDQUMjlltt4GIBM+O2336BWqx1dDSIiImqGwsJCdO7c2WIZBiATvL29AdQ/QEv7GhEREVHrUVZWBrVaLf0et4QByAR9t5ePjw8DEBERURvTlOErHARNRERETocBiIiIiJwOAxARERE5HY4BugV1dXWora11dDXaLVdXV7i4uDi6GkRE1A4xADWDEALFxcW4evWqo6vS7vn6+iI4OJjrMRERUYtiAGoGffgJDAyEp6cnfznbgBACVVVVuHjxIgAgJCTEwTUiIqL2hAHISnV1dVL48ff3d3R12jUPDw8AwMWLFxEYGMjuMCIiajEcBG0l/ZgfT09PB9fEOeifM8daERFRS2IAaiZ2e9kHnzMREdkCu8CIiIjIpjQaDWpqasx+rlAo7D6shAGIiIiIbEaj0WDVqlWNlktNTbVrCGIXmBOZMmUKZDIZZDIZXF1dERQUhOHDh2PDhg3Q6XRNvs6mTZvg6+tru4oSEVG70bDlR6v1RkFBOLRab4vlbI0tQHbm6GbA5ORkbNy4EXV1dSgpKUFWVhaeeeYZfPTRR9i9ezc6dOAfCSIiajk3r5mXm9sHe/aMghByyGQ6pKTsRVzcUamcPZc84W87O2oNzYBubm4IDg4GAISFhSEuLg6/+93vcO+992LTpk2YNm0aVqxYgY0bN+Lnn3+GSqVCSkoKli1bho4dOyInJwdTp04FcGOA8vz587FgwQJs2bIFb731FvLy8uDl5YV77rkHmZmZCAwMtMm9EBFR63f9+nUA9S0/+vADAELIsWfPKERG5kOpLJfK2Qu7wOyoqc179m4GvOeeexATE4Ndu3YBAORyOVauXImTJ09i8+bN+PLLLzF79mwAwMCBA5GZmQkfHx8UFRWhqKgIzz//PID6qeqLFi3C8ePH8cknn+DcuXOYMmWKXe+FiIhap9JSfyn86AkhR2mpyiH1YQsQAQB69uyJEydOAABmzZolHQ8PD8fixYvxxBNP4J133oFCoYBSqYRMJpNakvT++Mc/Sj9369YNK1euRL9+/VBRUYGOHTva5T6IiKh1Uqk0AASAG8ubyGQ6qFSlDqkPW4AIQP3WE/ourf379+Pee+9FWFgYvL29MXHiRGg0GlRVVVm8xpEjR5CSkoIuXbrA29sbQ4cOBQCcP3/e5vUnIqK2QBi+E2aK2QEDEAEATp8+jYiICJw7dw6jRo1C7969sXPnThw5cgSrV68GYLlrrrKyEklJSfDx8cH777+Pw4cP4+OPP270PCIicg6lpf4wjh3sAiMH+vLLL/H999/j2WefxZEjR6DT6fDGG29ALq//g/q3v/3NoLxCoUBdXZ3BsR9//BEajQZLliyBWq0GAPznP/+xzw0QEVGr5erqCqC+C0wm0xmMA7q5C0xfzl7YAuRkqqurUVxcjF9//RW5ubl47bXX8MADD2DUqFGYNGkSoqKiUFtbi7fffhs///wztmzZgrVr1xpcIzw8HBUVFcjOzsbly5dRVVWFLl26QKFQSOft3r0bixYtctBdEhFRa6FUKv/333KkpOyFTFa/7px+GrxSWW5Qzl7YAuRksrKyEBISgg4dOsDPzw8xMTFYuXIlJk+eDLlcjpiYGKxYsQJLly5Feno6hgwZgoyMDEyaNEm6xsCBA/HEE09g3Lhx0Gg00jT4TZs24eWXX8bKlSsRFxeH5cuXY/To0Q68WyIicrSbx4/GxR1FZGQ+SktVUKlKpfDTsJw9yIRw5BCk1qmsrAxKpRJarRY+Pj4Gn127dg0FBQWIiIiAu7u7VddtDesAtTW38ryJiMjxioqK8O6770rvtVpvlJb6Q6XSGASg6dOn3/JCiJZ+fzfEFiA78vf3R2pqaqvbEI6IiMgeLK0EbW8MQHbGcENERM6osZWg7Y2DoImIiMjmWttK0AxAREREZHP6afA340rQRERE1K41Ng3e3jgGiIiIiOzC0jR4e2sVLUCrV69GeHg43N3dkZCQgEOHDpktu2vXLsTHx8PX1xdeXl6IjY3Fli1bDMpMmTIFMpnM4JWcnGzr2yAiIqIGFAqFwXulshwREb8YhZ+G5WzN4S1AO3bsQFpaGtauXYuEhARkZmYiKSkJeXl5CAwMNCqvUqkwZ84c9OzZEwqFAnv37sXUqVMRGBiIpKQkqVxycjI2btwovXdzc7PL/RAREdENrXUJGIcHoBUrVuDxxx/H1KlTAQBr167Fp59+ig0bNuCll14yKj9s2DCD98888ww2b96Mr7/+2iAAubm5ITg42KZ1JyIiosa1xiVgHNoFVlNTgyNHjiAxMVE6JpfLkZiYiIMHDzZ6vhAC2dnZyMvLw5AhQww+y8nJQWBgIHr06IEnn3wSGo3G7HWqq6tRVlZm8CLr5eTkQCaT4erVq00+Jzw8HJmZmTarExERkSkODUCXL19GXV0dgoKCDI4HBQWhuLjY7HlarRYdO3aEQqHAyJEj8fbbb2P48OHS58nJyXjvvfeQnZ2NpUuX4p///CdGjBhhtIO5XkZGBpRKpfTS72be3ujHRj3xxBNGn82YMQMymQxTpkyxf8WIiIjszOFdYM3h7e2NY8eOSTuSp6WloVu3blL32Pjx46WyvXr1Qu/evREZGYmcnBzce++9RtdLT09HWlqa9L6srKzdhiC1Wo3t27fjzTffhIeHB4D6/ba2bduGLl26OLh2RERE9uHQFqCAgAC4uLigpKTE4HhJSYnF8TtyuRxRUVGIjY3Fc889h4ceeggZGRlmy3fr1g0BAQHIz883+bmbmxt8fHwMXu1VXFwc1Go1du3aJR3btWsXunTpgj59+kjHqqurMXPmTAQGBsLd3R2DBg3C4cOHDa712WefoXv37vDw8MDdd9+Nc+fOGX3f119/jcGDB8PDwwNqtRozZ85EZWWlze6PiIioKRwagBQKBfr27Yvs7GzpmE6nQ3Z2NgYMGNDk6+h0OlRXV5v9/MKFC9BoNLe8y2xLu3AB+Oqr+v/a0x//+EeDGXIbNmyQBqHrzZ49Gzt37sTmzZuRm5uLqKgoJCUlobS0fsXOwsJCPPjgg0hJScGxY8cwbdo0o0HrZ8+eRXJyMsaOHYsTJ05gx44d+Prrr5Gammr7myQiIpvQaDQoKioy+7I05rY1cXgXWFpaGiZPnoz4+Hj0798fmZmZqKyslH4hT5o0CWFhYVILT0ZGBuLj4xEZGYnq6mp89tln2LJlC9asWQMAqKiowMKFCzF27FgEBwfj7NmzmD17tvQLvLVYvx6YPh3Q6QC5HHj3XeCxx+zz3Y8++ijS09Pxyy+/AAC++eYbbN++HTk5OQCAyspKrFmzBps2bcKIESMAAOvWrcMXX3yB9evX44UXXsCaNWsQGRmJN954AwDQo0cPfP/991i6dKn0PRkZGXjkkUcwa9YsAEB0dDRWrlyJoUOHYs2aNXB3d7fPDRMRUYvQaDRYtWpVo+VSU1Nb5cyvmzk8AI0bNw6XLl3CvHnzUFxcjNjYWGRlZUkDo8+fPw+5/EZDVWVlJZ566ilcuHABHh4e6NmzJ7Zu3Ypx48YBAFxcXHDixAls3rwZV69eRWhoKO677z4sWrSo1awFdOHCjfAD1P/3T38CkpKAzp1t//2dOnXCyJEjsWnTJgghMHLkSAQEBEifnz17FrW1tbjrrrukY66urujfvz9Onz4NADh9+jQSEhIMrtuw1e748eM4ceIE3n//femYEAI6nQ4FBQW47bbbbHF7RERkIw3X8tFqvVFa6g+VSmOwsKGlNX9aC4cHIKA+KZrrFtG3SugtXrwYixcvNnstDw8P7Nu3ryWr1+LOnLkRfvTq6oD8fPsEIKC+G0z/zFevXm2T76ioqMCf/vQnzJw50+gzDrgmImrbcnP7YM+eURBCLu3rFRd31NHVarJWsRWGs4mOru/2upmLCxAVZb86JCcno6amBrW1tUZdg5GRkVAoFPjmm2+kY7W1tTh8+DBuv/12AMBtt91mtGXJt99+a/A+Li4Op06dQlRUlNHL3kueExFRy9FqvaXwAwBCyLFnzyhotd4OrlnTMQA5QOfO9WN+XFzq37u4AH/5i/1af+q/0wWnT5/GqVOn4KKvyP94eXnhySefxAsvvICsrCycOnUKjz/+OKqqqvDY/wYqPfHEEzhz5gxeeOEF5OXlYdu2bdi0aZPBdV588UUcOHAAqampOHbsGM6cOYO///3vHARNRNTGlZb6S+FHTwg5SktVDqqR9VpFF5gzeuyx+jE/+fn1LT/2DD96lqb7L1myBDqdDhMnTkR5eTni4+Oxb98++Pn5Aajvwtq5cyeeffZZvP322+jfvz9ee+01/PGPf5Su0bt3b/zzn//EnDlzMHjwYAghEBkZKY3XIiKitkml0kAm0xmEIJlMB5Wq1IG1so5MCCEcXYnWpqysDEqlElqt1igkXLt2DQUFBYiIiOAsJjvg8yYiaj2Kiorw7rvvArA8Bmj69OkOWXrG0u/vhtgCRERERFaLizuKyMh8lJaqoFKVGswCawsYgIiIiKhJGk5gUSrLTQaftjDRhQGIiIiImsTf3x+pqakW1/lRKBStfhFEgAGIiIiIrNAWwk1TcBp8M3HsuH3wORMRkS0wAFnJ1dUVAFBVVeXgmjgH/XPWP3ciIqKWwC4wK7m4uMDX1xcXL14EAHh6ekImkzm4Vu2PEAJVVVW4ePEifH19jRZrJCIiuhUMQM0QHBwMAFIIItvx9fWVnjcREVFLYQBqBplMhpCQEAQGBqK2ttbR1Wm3XF1d2fJDROQgGo2mXcz2MocB6Ba4uLjwFzQREbU7Go0Gq1atarRcampqmw1BHARNREREBhq2/Gi13igoCDfa7d1SC1FrxxYgIiIiMsvSnl9tGVuAiIiIyCSt1lsKPwAghBx79owyaglqixiAiIiIyKTSUn8p/OgJIUdpqcpBNWo5DEBERERkkkqlgUymMzgmk+mgUpU6qEYthwGIiIiITFIqy5GSslcKQfoxQKZ2gG9rOAiaiIiIzIqLO4rIyHyUlqqgUpW2i/ADMAARERFRAwqFwuC9UlluMvg0LNeWMAARERGRAX9/f6SmpnIlaCIiInIubTncNAUHQRMREZHTYQAiIiIip8MARERERE6HAYiIiIicDgMQEREROR0GICIiInI6DEBERETkdBiAiIiIyOkwABEREZHTYQAiIiIip8MARERERE6HAYiIiIicDgMQEREROZ1WEYBWr16N8PBwuLu7IyEhAYcOHTJbdteuXYiPj4evry+8vLwQGxuLLVu2GJQRQmDevHkICQmBh4cHEhMTcebMGVvfBhEREbURDg9AO3bsQFpaGubPn4/c3FzExMQgKSkJFy9eNFlepVJhzpw5OHjwIE6cOIGpU6di6tSp2Ldvn1Rm2bJlWLlyJdauXYvvvvsOXl5eSEpKwrVr1+x1W0RERNSKyYQQwpEVSEhIQL9+/bBq1SoAgE6ng1qtxtNPP42XXnqpSdeIi4vDyJEjsWjRIgghEBoaiueeew7PP/88AECr1SIoKAibNm3C+PHjG71eWVkZlEoltFotfHx8mn9zREREZDfW/P7uYKc6mVRTU4MjR44gPT1dOiaXy5GYmIiDBw82er4QAl9++SXy8vKwdOlSAEBBQQGKi4uRmJgolVMqlUhISMDBgwdNBqDq6mpUV1dL78vKym7ltoiIiOxOo9GgpqbG7OcKhQL+/v52rFHr5tAAdPnyZdTV1SEoKMjgeFBQEH788Uez52m1WoSFhaG6uhouLi545513MHz4cABAcXGxdI2G19R/1lBGRgYWLlx4K7dCRETkMBqNRupJsSQ1NZUh6H8cPgaoOby9vXHs2DEcPnwYr776KtLS0pCTk9Ps66Wnp0Or1UqvwsLClqssERGRjVlq+WlOOWfg0BaggIAAuLi4oKSkxOB4SUkJgoODzZ4nl8sRFRUFAIiNjcXp06eRkZGBYcOGSeeVlJQgJCTE4JqxsbEmr+fm5gY3N7dbvBsiIqLWQav1RmmpP1QqDZTKckdXp1VyaAuQQqFA3759kZ2dLR3T6XTIzs7GgAEDmnwdnU4njeGJiIhAcHCwwTXLysrw3XffWXVNIiKitig3tw8yM2dh8+bJyMychdzcPo6uUqvk0BYgAEhLS8PkyZMRHx+P/v37IzMzE5WVlZg6dSoAYNKkSQgLC0NGRgaA+vE68fHxiIyMRHV1NT777DNs2bIFa9asAQDIZDLMmjULixcvRnR0NCIiIjB37lyEhoZizJgxjrpNIiIim9NqvbFnzygIUd++IYQce/aMQmRkPluCGnB4ABo3bhwuXbqEefPmobi4GLGxscjKypIGMZ8/fx5y+Y2GqsrKSjz11FO4cOECPDw80LNnT2zduhXjxo2TysyePRuVlZWYPn06rl69ikGDBiErKwvu7u52vz8iIiJ7KS31l8KPnhBylJaqGIAacPg6QK0R1wEiIqK2pKioCO+++y60Wm9kZs4yCEEymQ6zZmVCqSzH9OnTDcbHtjfW/P5uk7PAiIiI6AatVgsAUCrLkZKyFzKZDkB9+ElJ2Su1/ujLUSvoAiMiIqJbc3NnTlzcUQQGFuP8+S7o0uU8OncuMlnO2TEAERERtXG+vr7Sz7m5faSB0PoWoLi4o0blnB27wIiIiNoJc7PAtFpvB9es9WEAIiIiaicszQIjQ+wCIyIiaiPMbXhaUFAAAFCpNJDJdEazwFSqUgDA1atX2/UsMGswABEREbUBTdnwVD8LrOEYIP0ssOvXr9ujqm0Cu8CIiIjagIYtP1qtNwoKwk2O79FP9uKkL/PYAkRERNTGmJvppR8EfaN9w3ArDFdXV0dWu1VhCxAREVEbYmmmV2ODoJVKpd3r21oxABEREbUhlkKOfhD0zW4eBE03MAARERG1IZZCTmNbYdANHANERETUhjQ20ysu7igiI/P/1yJUyvBjBgMQERFRG9NYyFEqy00GH4VCYa8qtnoMQERERG1Aw/BiLuSMGzfO5GBnhUIBf39/m9WvrWEAIiIiagP8/f2RmppqciVoPYacpmMAIiIiaiMYbloOZ4ERERGR02EAIiIiIqfDAEREREROhwGIiIiInA4HQRMRETmARqPhjC4HYgAiIiKyM41Gg1WrVjVaLjU1lSHIRtgFRkREZGcNW360Wm8UFIRDq/W2WI5aDluAiIiIHCg3t4/Rvl5xcUcdXa12jy1AREREDqLVekvhBwCEkGPPnlFGLUHU8hiAiIiI7Ozq1asAgNJSfyn86AkhR2mpyqActTwGICIiIju7fv06AECl0kAm0xl8JpPpoFKVGpSjlscARERE5CBKZTl69z4BQPzviEDv3idM7vJOLYsBiIiIyEG0Wm+cONEbgOx/R2Q4caI3xwDZAQMQERGRnbm6ugJofAyQvhy1PE6DJyIishFzqz3X1tYCuDEG6OYQdPMYIKVSaZ+KOiEGICIiIhtoymrPSmU5UlL2Gq0DxDFAtscAREREZAMXL140eK/VeqO01B8qlcYg4MTFHUVkZD5KS1VQqUoZfuyEAYiIiMgGbl7Dp7HVnpXKcpPBR6FQ2KOqTokBiIiIyAb043y0Wm/s3p0C/Uwv/WrPkZH5UCrLER8fj7i4OKPzuRu8bbWKWWCrV69GeHg43N3dkZCQgEOHDpktu27dOgwePBh+fn7w8/NDYmKiUfkpU6ZAJpMZvJKTk219G0REREYKC9W4Mc29nhByFBZ2BgB4e3sjJCTE6MXwY1sOD0A7duxAWloa5s+fj9zcXMTExCApKcmo71QvJycHEyZMwFdffYWDBw9CrVbjvvvuw6+//mpQLjk5GUVFRdLrgw8+sMftEBERGaiq8rDqONmHwwPQihUr8Pjjj2Pq1Km4/fbbsXbtWnh6emLDhg0my7///vt46qmnEBsbi549e+Kvf/0rdDodsrOzDcq5ubkhODhYevn5+dnjdoiIiAx4ev7XquNkHw4NQDU1NThy5AgSExOlY3K5HImJiTh48GCTrlFVVYXa2lqoVCqD4zk5OQgMDESPHj3w5JNPQqPRtGjdiYiImkKtLsSNrS7qyWQ6qNUXHFMhAuDgAHT58mXU1dUhKCjI4HhQUBCKi4ubdI0XX3wRoaGhBiEqOTkZ7733HrKzs7F06VL885//xIgRI1BXV2fyGtXV1SgrKzN4ERER3Yrq6moA9TO8Ro/eI2162nCtH305sq82PQtsyZIl2L59O3JycuDu7i4dHz9+vPRzr1690Lt3b0RGRiInJwf33nuv0XUyMjKwcOFCu9SZiIicg5eXl/RzXNxRBAYW4/z5LujS5Tw6dy4yWY7sx6EtQAEBAXBxcUFJSYnB8ZKSEgQHB1s8d/ny5ViyZAk+//xz9O7d22LZbt26ISAgAPn5+SY/T09Ph1arlV6FhYXW3QgREVEDN489zc3tg/Xrp+Hzz5Oxfv005Ob2MVmO7MehAUihUKBv374GA5j1A5oHDBhg9rxly5Zh0aJFyMrKQnx8fKPfc+HCBWg0GoSEhJj83M3NDT4+PgYvIiKiW+Hr6wugfh0g/SKIwI11gPQ7vuvLkX05fBZYWloa1q1bh82bN+P06dN48sknUVlZialTpwIAJk2ahPT0dKn80qVLMXfuXGzYsAHh4eEoLi5GcXExKioqAAAVFRV44YUX8O233+LcuXPIzs7GAw88gKioKCQlJTnkHomIyHk1tuM7OYbDxwCNGzcOly5dwrx581BcXIzY2FhkZWVJA6PPnz8PufzGH5w1a9agpqYGDz30kMF15s+fjwULFsDFxQUnTpzA5s2bcfXqVYSGhuK+++7DokWL4ObmZtd7IyIiamzHd3IMmRBCNF7MuZSVlUGpVEKr1bI7jIiImqWoqAjvvvsuAMt7gU2fPt3sEA2yjjW/vx3eAkRERNTeccf31ocBiIiIyAYa7uTOHd9bFwYgIiIiG/D390dqaipqamrMluGO747DAERERGQjDDetl8OnwRMRERHZGwMQEREROR0GICIiInI6HANERETUBBqNhgOa2xEGICIiokZoNBqsWrWq0XKpqakMQW0Eu8CIiIga0bDlR6v1RkFBuLShqbly1HqxBYiIiMgKlra1oLaDLUBERERNpNV6S+EHqN/Vfc+eUUYtQdT6MQARERE1UWmpv8Gu7kB9CCotVTmoRtRcDEBERERNpFJpIJPpDI7JZDqoVKUOqhE1FwMQERFREymV5UhJ2SuFIP0YIO7u3vZwEDQREZEV4uKOIjIyH6WlKqhUpQw/bRQDEBERUSMUCoXBe6Wy3GTwaViOWi8GICIiokb4+/sjNTWVK0G3IwxARERETcBw075wEDQRERE5HQYgIiIicjoMQEREROR0GICIiIjI6TAAERERkdNhACIiIiKnwwBERERETocBiIiIiJwOAxARERE5HQYgIiIicjoMQEREROR0GICIiIjI6TAAERERkdNhACIiIiKnwwBERERETocBiIiIiJwOAxARERE5nRYJQAUFBbh+/XpLXIqIiIjI5lokAPXo0QNnzpxp9vmrV69GeHg43N3dkZCQgEOHDpktu27dOgwePBh+fn7w8/NDYmKiUXkhBObNm4eQkBB4eHggMTHxlupHRERE7UsHawo/+OCDJo/X1dVh5syZ8Pb2BgDs2rWrydfcsWMH0tLSsHbtWiQkJCAzMxNJSUnIy8tDYGCgUfmcnBxMmDABAwcOhLu7O5YuXYr77rsPJ0+eRFhYGABg2bJlWLlyJTZv3oyIiAjMnTsXSUlJOHXqFNzd3a25ZSIiImqHZEII0dTCcrkcQ4YMQUREhMHx9957D6NHj4avry8AYOPGjU2uQEJCAvr164dVq1YBAHQ6HdRqNZ5++mm89NJLjZ5fV1cHPz8/rFq1CpMmTYIQAqGhoXjuuefw/PPPAwC0Wi2CgoKwadMmjB8/vtFrlpWVQalUQqvVwsfHp8n3QkRERI5jze9vq1qAtm3bhhdeeAGTJ0/G1KlTpeNbt27Fq6++ittvv92qitbU1ODIkSNIT0+XjsnlciQmJuLgwYNNukZVVRVqa2uhUqkA1I9HKi4uRmJiolRGqVQiISEBBw8eNBmAqqurUV1dLb0vKyuz6j6IiIiobbFqDND48ePx73//G+vXr8fYsWNx5cqVW/ryy5cvo66uDkFBQQbHg4KCUFxc3KRrvPjiiwgNDZUCj/48a66ZkZEBpVIpvdRqtbW3QkRERG2I1YOgw8PD8a9//Qt33nknYmJisG/fPshkMlvUrVFLlizB9u3b8fHHH9/S2J709HRotVrpVVhY2IK1JCIiotbGqi4wPblcjoULF2L48OGYNGkS6urqmvXlAQEBcHFxQUlJicHxkpISBAcHWzx3+fLlWLJkCfbv34/evXtLx/XnlZSUICQkxOCasbGxJq/l5uYGNze3Zt0DERERtT23NA1+0KBBOHHiBHJzcxEZGWn1+QqFAn379kV2drZ0TKfTITs7GwMGDDB73rJly7Bo0SJkZWUhPj7e4LOIiAgEBwcbXLOsrAzfffedxWsSERGR82hWC9DNOnbsiJiYmGafn5aWhsmTJyM+Ph79+/dHZmYmKisrpUHWkyZNQlhYGDIyMgAAS5cuxbx587Bt2zaEh4dL43o6duyIjh07QiaTYdasWVi8eDGio6OlafChoaEYM2bMrd4uERERtQNWBaA+ffo0abxPbm5uk685btw4XLp0CfPmzUNxcTFiY2ORlZUlDWI+f/485PIbDVVr1qxBTU0NHnroIYPrzJ8/HwsWLAAAzJ49G5WVlZg+fTquXr2KQYMGISsri2sAEREREQAr1wFauHCh9LMQAhkZGXjiiSekKeh68+fPb7kaOgDXASIisj+NRoOamhqznysUCvj7+9uxRtTWWPP726oA1JC3tzeOHz+Obt26NfcSrRIDEBGRfWk0GmlBXEtSU1MZgsgsa35/czd4IiJyuIYtP1qtNwoKwqHVelssR9RctzwImoiIqCXl5vbBnj2jIIQcMpkOKSl7ERd31NHVonaGLUBERNRqaLXeUvgBACHk2LNnlFFLENGtsqoFaOXKlQbvr1+/jk2bNiEgIMDg+MyZM2+9ZkRE5HRKS/2l8KMnhBylpSooleUOqhW1R1YFoDfffNPgfXBwMLZs2WJwTCaTMQAREVGzqFQayGQ6gxAkk+mgUpU6sFbUHlkVgAoKCmxVDyIiakeaO6VdqSxHSspeozFAbP2hlmZVAPryyy+RmpqKb7/91mh6mVarxcCBA7F27VoMHjy4RStJRERtx61OaY+LO4rIyHyUlqqgUpUy/JBNWDUIOjMzE48//rjJufVKpRJ/+tOfsGLFiharHBERtT3NmdKuUCgMPlMqyxER8YtR+GlYjqi5rGoBOn78OJYuXWr28/vuuw/Lly+/5UoREVHbpdVqpZ8tTWnXarUICQkBAPj7+yM1NZUrQZPdWBWASkpK4Orqav5iHTrg0qVLt1wpIiJqu2prawGYn9IeGZkPpbJcKqfHcEP2ZFUXWFhYGH744Qezn584cUJK80RE5NwsTWkncjSrAtD999+PuXPn4tq1a0af/fe//8X8+fMxatSoFqscERG1Xa6u1QAabjcp4OrK7SzI8azqAnvllVewa9cudO/eHampqejRowcA4Mcff8Tq1atRV1eHOXPm2KSiRETUttTWugGQNTgqQ20tBzKT41kVgIKCgnDgwAE8+eSTSE9Ph34jeZlMhqSkJKxevRpBQUE2qSgREbUN5eX1M7caW9RQX47IEazeDLVr16747LPPcOXKFeTn50MIgejoaPj5+dmifkRE1EZxUUNqzZq9G7yfnx/69evXknUhIqJ2wNvbcL2f/3UWSP81V47InrgbPBERtSj9cin6afA3ftUY7uxuaVkVIltrdgsQERE5N3P7fenX92lsZ3elUmmXehKZwgBERERWa8p+X9zZnVozdoEREZHVLG1ZoacfBC2T6QCAg6CpVWELEBER3TKt1hulpf5QqTQGAYc7u1NrxQBERES3xNKGpwD+N97HOPhwZ3dyJAYgIiKyyNRg58uXLwNofMPTBx98EAEBAUbX5M7u5GgMQEREZHZGl1arxY4dO8ye19hMr4CAAG6STa0SAxARkZNryowuczjTi9oqzgIjInJyDVt+tFpvFBSESwsW3uzChRAcOPA7XLhQ36rDmV7UVrEFiIiIJJYGNH/88QM4fjwG9Tu8C8TEHMfvf/93izO9ONCZWisGICIiJ2FunE9TBjSXl3e8KfwAgAzHj8egX79D6Ny5CGPGxCM6OtrguhzoTK0ZAxARkRNoyjgfSwOai4pCcCP86MlQWNgFnTsXwc/Pj4OdqU1hACIicgKmxvk0XLjQ0oBmV9caAAKGIUhArT5v+8oT2QADEBGRkzE3zkc/oLnhZ/qFDGNijhuNAercucjRt0PULAxAREROpLGFCy0NaP797/+Ofv0OobCwC9Tq8wbhp0MH/jqhtoV/YomInIBWqwXQ+MKFgPmtKwCgc+cik60+gYGBLVxjIttiACIicgJXrlwB0PjChQkJCYiJiTE4V6vVQggBX19fk9fmbC9qixiAiIicQG1tLYD61p3evU8YjOXp3fuE1OLj6elpNJuLs7uoPeJK0ERETkSr9cbx471huJ5Pb5OrPhO1Zw4PQKtXr0Z4eDjc3d2RkJCAQ4cOmS178uRJjB07FuHh4ZDJZMjMzDQqs2DBAshkMoNXz549bXgHREStn36QcmGhGsZ/9ctRWNjZoBxRe+fQALRjxw6kpaVh/vz5yM3NRUxMDJKSknDx4kWT5auqqtCtWzcsWbIEwcHBZq97xx13oKioSHp9/fXXtroFIqI2wdu7aS08TS1H1NY5NACtWLECjz/+OKZOnYrbb78da9euhaenJzZs2GCyfL9+/fD6669j/PjxcHNzM3vdDh06IDg4WHoFBATY6haIiNoUtboQ9Qsa3iCT6aBWX3BMhYgcxGEBqKamBkeOHEFiYuKNysjlSExMxMGDB2/p2mfOnEFoaCi6deuGRx55BOfPW16ptLq6GmVlZQYvIqL2SKksx+jRe7h7Ozk9h3X2Xr58GXV1dQgKCjI4HhQUhB9//LHZ101ISMCmTZvQo0cPFBUVYeHChRg8eDB++OEHs027GRkZWLhwYbO/k4iotbt5bI+lxQ45BoicRbv7kz5ixAjp5969eyMhIQFdu3bF3/72Nzz22GMmz0lPT0daWpr0vqysDGq12uZ1JSKyl4YLFZpb7JALGpKzcFgACggIgIuLC0pKSgyOl5SUWBzgbC1fX190794d+fn5Zsu4ublZHFNERNTaaDQaow1Ob9ZwcUJ/f3+kpqZadQ5Re+awAKRQKNC3b19kZ2djzJgxAACdTofs7Gykpqa22PdUVFTg7NmzmDhxYotdk4jIHsyFHK1Wix07djR6fmpqqlEIIqJ6Du0CS0tLw+TJkxEfH4/+/fsjMzMTlZWVmDp1KgBg0qRJCAsLQ0ZGBoD6gdOnTp2Sfv71119x7NgxdOzYEVFRUQCA559/HikpKejatSt+++03zJ8/Hy4uLpgwYYJjbpKIqBk0Gg1WrVrVpLJarTdKS/2hUmkMurUstfYQOTuHBqBx48bh0qVLmDdvHoqLixEbG4usrCxpYPT58+chl9+YqPbbb7+hT58+0vvly5dj+fLlGDp0KHJycgAAFy5cwIQJE6DRaNCpUycMGjQI3377LTp16mTXeyMiuhUNw4u5kJOb20fa3V0/oysu7qi9q0vU5siEEKLxYs6lrKwMSqUSWq0WPj4+jq4OEbVzprq6Ll++jF27dgEwH3K0Wm9kZs4y2th01qxMKJXlmD59OvfxIqdize/vdjcLjIioLWmsq0ur9ZbCDwAIIceePaP+N43d3yD86D8vLVVxXR+iRjh8LzAiImdmqquroCBc2pzUUshRqTTSgoZ6MpkOKlWpbStN1A6wBYiIqJUw1dUVGZkPmUxn1M2lX8AwJWWv0Tls/SFqHAMQEVErYK6ra9asTIshx9KqzkRkHgMQEVErYKmrq7GQY25VZ4VCYdM6E7VlDEBERA6k1WoBQBrPY6qrCzAfch5++GH4+voaHeeqzkSWMQARETlQbW0tAEjjeXbvHoX6+SmGXV133303oqOjDc5lyCFqPgYgIiI7MLetxZUrVwzey2SAEPX/vZmfnx/X9CFqQQxAREQ21pRtLSyt96NUlqNDB/51TdSSuA4QEZGNNbbWD2B5EDQAk+N8iKj5+E8KIiI7MretRWODoImoZbEFiIjITsx1c2m13tIgaP3KzlzUkMi22AJERNSCzG1sClju5lIqy7moIZEdMQAREbWQxgY7N6Wbi4saEtkHAxARUQsxNdi5tNQfKpVGCjaWtrV48MEHERAQYHRdrvdD1PIYgIiIWkhhYaH0s7nBzpa6uQICArjWD5GdcBA0EVELuXbtGgDLg52B+m6uiIhfjLq62M1FZD9sASIiamGNDXaOj49HXFycwefs5iKyLwYgIqIWVlPTAYAAcPN+FgI1Na4AAG9vb3Z1ETkYAxARkQnm9u7Ss9Rio9EEwDD8AIAMpaX+APJbrI5E1HwMQEREDTRl7y4ASE1NNRmCunT5BaZagNTq8y1WRyK6NRwETUTUwKVLlwzem9q7y1Q5/YalnTsXISbmOOpDEAAIxMQcR+fORQbliMhx+P9CIqIGamtrpZ9zc/tg9+5RqP/3og6jR9dPZ29YDqgf26P3+9//Hf36HUJhYReo1eel8NOwHBE5BgMQETk1U2N9rly5AqC+5edG+AEAOXbvHoXIyHyTqzV7enoavO/cucgg+JgrR0T2xwBERE6rsbE+hYVqGI8UkKOwsDOUytNG5SMjI/Hoo4+iqqrK7DU9PT0RGRnZzBoTUUthACIip9XY1hXNwXBD1DYwABERwfTWFZGR+Wg4m0sm00GtvuCwehJRy+AsMCJyeua2rgCA0aP3QCbTAYDR5qVE1HaxBYiI2j1zixpevnwZgOWtKyxtXsrp7ERtF//fS0TtgrmQo9VqsWPHDovnqlQayGQ6gxAkk+mgUpUCqN+81FSrT2Bg4C3WmogchQGIiNq8hrO5LA1mNvWZUlmOlJS9RmOA9J8/+OCDCAgIMLgONy8latsYgIiozbt48aL0s6nBzPqFCy19ZqmrKyAggJuXErUzHARNRG3e9evXAZgfzKzVelv8TE+pLEdExC9GrUYKhcJOd0JE9sIWICJqNywNZgZkZj9TKstNdnMB7Ooiaq8YgIio3XB1rYapXdhdXWvg7V1hcaAzu7mInAu7wIio3aitdYNh+AEAGWprFdJAZ67pQ0QAW4CIqB1pbDq7pYHORORcHN4CtHr1aoSHh8Pd3R0JCQk4dOiQ2bInT57E2LFjER4eDplMhszMzFu+JhG1LRqNBkVFRQYv/e7tTWnl4UBnIgIc3AK0Y8cOpKWlYe3atUhISEBmZiaSkpKQl5dncoGxqqoqdOvWDf/3f/+HZ599tkWuSURtR2O7twOWW3mGDx+OiIgIo3M40JnI+ciEEMJRX56QkIB+/fpJf6HpdDqo1Wo8/fTTeOmllyyeGx4ejlmzZmHWrFktdk29srIyKJVKaLVa+Pj4WH9jRGQTRUVFePfdd6X31u7enpqayqBD1I5Z8/vbYS1ANTU1OHLkCNLT06VjcrkciYmJOHjwoF2vWV1djerqaul9WVlZs76fiOzH0qKGXLmZiBrjsDFAly9fRl1dHYKCggyOBwUFobi42K7XzMjIgFKplF5qtbpZ309E9tHYoob6Ke03vxh+iOhmDh8E3Rqkp6dDq9VKr8LCQkdXiYgssLzgIRFR4xzWBRYQEAAXFxeUlJQYHC8pKUFwcLBdr+nm5gY3N7dmfScR2V9j092JiBrjsBYghUKBvn37Ijs7Wzqm0+mQnZ2NAQMGtJprElHrw0UNiehWOXQafFpaGiZPnoz4+Hj0798fmZmZqKysxNSpUwEAkyZNQlhYGDIyMgDUD3I+deqU9POvv/6KY8eOoWPHjoiKimrSNYnIvjQaDWpqasx+3tzByVzUkIhuhUMD0Lhx43Dp0iXMmzcPxcXFiI2NRVZWljSI+fz585DLbzRS/fbbb+jTp4/0fvny5Vi+fDmGDh2KnJycJl2TiOynKev2AE2fnt5wsUKlstxk8OGihkTUGIeuA9RacR0gopbR1HV7pk+f3uSNSG3VokREbV+bWAeIiJyLpXV7rMFwQ0QtgQGIiJqsua0v5tbtiYzM59gdInIIBiAiapJbGc9jad0eBiAicgQuhEhETdKw5Uer9UZBQbi0+rK5csCNdXtuxnV7iMiR2AJERFazdjyPft2ehuew9YeIHIUBiIis0tzxPFy3h4haEwYgIjJgbqDz5cuXAVg3nofr9hBRa8UARESSpgx0tmYfLn9/f6SmpnLdHiJqdRiAiEhy6dIlg/emFi60djwPww0RtUYMQEQkqa2tlX7Oze2D3btHoX6yqA6jR98Y6MzxPETU1nEaPBEZ0Wq9bwo/ACDH7t2jDKa8K5XliIj4pdFxP0RErRFbgIjISGGhGsb/PpKjsLAzlMrTuPvuuxEdHW10HsfzEFFbwQBERFbz8/Nr8ualREStEQMQUTvW3L271OpCAAKATDomk+mgVl+wQS2JiOyPAYionbqVvbuUynKMHr2HKzcTUbvFAETUTpnau6vhlPaG5Tp0uPFXgqWZXjeXIyJqi/i3GFEb19jKzUDT9+4KDAw0eG9u5eaG5YiI2hoGIKI2rCndXNbs3cWVm4nIWTAAEbVhloKKnjV7dwFcuZmInAMXQiRqR7RabxQUhBssWKjfu+tm5vbuIiJyFmwBImoDbmWcj7V7dxEROQMGIKJWxFTQ0Wq12LFjh8XzGhvnw727iIgMMQARtRJNXbfH1HT2pozzMTeji3t3EZEzYgAisrOmdGcBpoOOuW4u/Tifm0PQzeN8HnzwQQQEBBh9J2d0EZGzYgAispHmdmcBpoNOZGS+xW4uS+N8AgICuHcXEdFNGICIbOBWurPMjecZO3anxW4uS+N82M1FRGSIAYjIBpqyDYW57ixz43kAwW4uIqIWwgBEZANarVb62Vx31u7dKdDvtn5zd5a58Txq9QV2cxERtRAGICIbqK2tBWC+O2vEiE+hDz96QshRWNgZd9552mzQ4XR2IqKWwQBEZEPmurMqKztaPM9S0OF0diKiW8cARNQIc9PWgfquLiEEfH19DY5fuXIFAODqWg1AwLC1RyA09DcAOhjuRlPfzaVnLug8/PDDRt/HcT5ERNZhACKyoKmzucyprXVDw64uQAaFohajR+/F7t2jUB+CdBg9+sZ4nrvvvhvR0dFG12PQISJqGQxARBacPXvW4L2p2VyWPrO0QGFExC9mu7kCAwM5oJmIyIYYgIgsuHbtmvRzbm4foxabuLij0mfN2YjUXDdXp06d7HF7REROiwGI6H9MjfUpL7+xOOHN09YBOXbvrp+2DqDZG5GaWruH3VxERLbHAESExsf65OV1h/FYHjny8qLRqVNpszciDQ0NZdghInIABiByKs3diLSiwvS09YqKjujR4wxXaCYiamNaRQBavXo1Xn/9dRQXFyMmJgZvv/02+vfvb7b8hx9+iLlz5+LcuXOIjo7G0qVLcf/990ufT5kyBZs3bzY4JykpCVlZWTa7B2o9zIWcq1ev4m9/+1uj55saz9O9+0/417+GouF09u7dz3AjUiKiNsjhAWjHjh1IS0vD2rVrkZCQgMzMTCQlJSEvLw+BgYFG5Q8cOIAJEyYgIyMDo0aNwrZt2zBmzBjk5ubizjvvlMolJydj48aN0ns3Nze73A85ljXT1q3ZiHTWrEzExBzH8eMxqA9BAjExx9G5cxEAywsXEhFR6+PwALRixQo8/vjjmDp1KgBg7dq1+PTTT7Fhwwa89NJLRuXfeustJCcn44UXXgAALFq0CF988QVWrVqFtWvXSuXc3NwQHBxsn5ugVqMpm5AC1m9EWlqqwu9//3f063cIhYVdoFafl8KPHldoJiJqOxwagGpqanDkyBGkp6dLx+RyORITE3Hw4EGT5xw8eBBpaWkGx5KSkvDJJ58YHMvJyUFgYCD8/Pxwzz33YPHixWbHW1RXV6O6ulp6X1ZW1sw7Insy1dV181gecyHHXCuPpY1I9eN5OncuMgo+ADBixAio1Wqj4xznQ0TUOjk0AF2+fBl1dXUICgoyOB4UFIQff/zR5DnFxcUmyxcXF0vvk5OT8eCDDyIiIgJnz57Fyy+/jBEjRuDgwYNwcXExumZGRgYWLlzYAndE9tJYV5elkGOplSci4heL43nuvvtu+Pn5GZzr6emJyMjIFr5DIiKyJYd3gdnC+PHjpZ979eqF3r17IzIyEjk5Obj33nuNyqenpxu0KpWVlZn81zy1Ho11dVkKOY218lgazxMdHc0BzURE7YBDA1BAQABcXFxQUlJicLykpMTs+J3g4GCrygNAt27dEBAQgPz8fJMByM3NjYOkW6mzZ8+iqqrK6Lh+s1HAdFdXZGS+2ZDT2KwtgON5iIjaO4cGIIVCgb59+yI7OxtjxowBAOh0OmRnZyM1NdXkOQMGDEB2djZmzZolHfviiy8wYMAAs99z4cIFaDQa/su9FTMVdIqLi3HgwAGL51matWUp5Fi7OjPA8TxERO2Jw7vA0tLSMHnyZMTHx6N///7IzMxEZWWlNCts0qRJCAsLQ0ZGBgDgmWeewdChQ/HGG29g5MiR2L59O/7zn//g3XffBQBUVFRg4cKFGDt2LIKDg3H27FnMnj0bUVFRSEpKcth9knlnz57F1q1bpfeG3Vk3yl24EILz57uiS5dfpIHIlrq6GpuaztWZiYicl8MD0Lhx43Dp0iXMmzcPxcXFiI2NRVZWljTQ+fz585DLb/yCGzhwILZt24ZXXnkFL7/8MqKjo/HJJ59IawC5uLjgxIkT2Lx5M65evYrQ0FDcd999WLRoEbu5WqmbW37Mzdz6+OMHjNbg+f3v/97oeB5zIWfcuHFQ3pyu/oetPEREzkEmhBCOrkRrU1ZWBqVSCa1WCx8fH0dXp90wt0LzmTNn8NVXX0Gr9cabbz6Lm1dblsl0GD/+A3zwwR/QcBXmadPWoXPnIrOhCeBmo0REzsSa398ObwEi59CUFZoLC9VouOGoEHKcPHmH0XFAhsLCLujcuchiVxe3oSAiIlMYgMgumrpCsyn+/pcACDRsAVKrz0vvOGuLiIiswQBELaopu62b67JSqwsB6ADcPKhZh9jY71Fa2snsPlx33303oqOjjb6TXV1ERGQOAxC1mKZ0c1laoVmpLMfo0Xuxe/co1IcgHUaPrp+6bmkfLj8/P3ZzERGRVRiAqFka24cLMN3NZWnaulJZbnE8j7l9uDw9PVvqtoiIyEkwAJFZ5lZhrqiowOeff27xXHPdXI1NWwfMj+cZOHCg0Yrf3IeLiIiagwHIyZkbs1NYWIh//OMfTbpGw5aexrq5rN1sFGDQISKilsUA5MSaMmZHz9QqzIDplh4/vyvN7ubiZqNERGQPDEBOzFTLjynmVmE219Lz2GN/bXY3F6etExGRPTAAObGrV68avDc1aPnChZCbwg8AyHD8eAz69TuE2lo3ky09tbUKi91c3GyUiIgcjQHISZga63Pp0iXpZ3ODls+f7wpzqzDffvspsy09ERG/cHVmIiJqtRiAnEBjY320Wm/s3p0CfdC5edByly6/wNwqzI0NaGY3FxERtVYMQG2MuVlbeqa6kRrbhsLcHlyFhZ1x552nERNz3OwqzJYGNHMjUiIiaq0YgNqQps7aSk1NNRsyTHV1KRTVFq9naRVmwHxLT2hoKMMOERG1SgxAbcjFixebXM5U8LA0a8vUHlxq9QXpnblVmEeMGAG1Wm10nC09RETUmjEAtVKNDVoGzK/Nc/36dZPXNLcNRW2twuweXACQkJCAsLAwo+txcUIiImqrGIAcyNxWE+Xl5fjiiy8snmtubR5LLG1DYWnWVkxMDGdtERFRu8IA5CBnz57F1q1bm1S24aBlS2vzmOqm0uOsLSIionoMQA5iquXHFFODlq9dc4O5tXksBSCAs7aIiIgABiC7MDWe58qVKwbvTY3nMTdoefz4D2BubR5TGrbgcNYWERE5OwYgG2vK1HVz43nMDVpWKGotrs3TkL+/P1JTU61eP4iIiKi9YgCyscYWIbQ0nsfSoGVLa/O4uroa1YPhhoiI6AYGIDuydjzPgAHfWRy0bG5tnk6dOtn+ZoiIiNowBiA7ae54Hg5aJiIiankMQHZyK+N5OGiZiIioZTEA2Ulzx/Pcf//96Ny5s9H12NJDRETUfAxAdtLYIoQTJ/aEn58fgBtbTnCrCSIiIttgALIjS+N5oqOjud0EERGRnTAA2VhTFyHkdhNERET2wwBkY1yEkIiIqPVhALIDhhsiIqLWRd54ESIiIqL2hQGIiIiInA4DEBERETkdBiAiIiJyOgxARERE5HQYgIiIiMjpMAARERGR02EAIiIiIqfDAEREREROhytBmyCEAACUlZU5uCZERETUVPrf2/rf45YwAJlQXl6/WalarXZwTYiIiMha5eXlUCqVFsvIRFNikpPR6XT47bff4O3tDZlMZvX5ZWVlUKvVKCwshI+Pjw1q2PrxGdTjc+AzAPgM9Pgc+AwA2z4DIQTKy8sRGhoKudzyKB+2AJkgl8vRuXPnW76Oj4+P0/4B1+MzqMfnwGcA8Bno8TnwGQC2ewaNtfzocRA0EREROR0GICIiInI6DEA24Obmhvnz58PNzc3RVXEYPoN6fA58BgCfgR6fA58B0HqeAQdBExERkdNhCxARERE5HQYgIiIicjoMQEREROR0GICIiIjI6TAANdPq1asRHh4Od3d3JCQk4NChQ2bLnjx5EmPHjkV4eDhkMhkyMzPtV1EbsuYZrFu3DoMHD4afnx/8/PyQmJhosXxbYs1z2LVrF+Lj4+Hr6wsvLy/ExsZiy5YtdqytbVjzDG62fft2yGQyjBkzxrYVtANrnsGmTZsgk8kMXu7u7nasre1Y+2fh6tWrmDFjBkJCQuDm5obu3bvjs88+s1NtbcOaZzBs2DCjPwsymQwjR460Y41bnrV/DjIzM9GjRw94eHhArVbj2WefxbVr12xbSUFW2759u1AoFGLDhg3i5MmT4vHHHxe+vr6ipKTEZPlDhw6J559/XnzwwQciODhYvPnmm/atsA1Y+wz+8Ic/iNWrV4ujR4+K06dPiylTpgilUikuXLhg55q3LGufw1dffSV27dolTp06JfLz80VmZqZwcXERWVlZdq55y7H2GegVFBSIsLAwMXjwYPHAAw/Yp7I2Yu0z2Lhxo/Dx8RFFRUXSq7i42M61bnnWPofq6moRHx8v7r//fvH111+LgoICkZOTI44dO2bnmrcca5+BRqMx+HPwww8/CBcXF7Fx40b7VrwFWfsM3n//feHm5ibef/99UVBQIPbt2ydCQkLEs88+a9N6MgA1Q//+/cWMGTOk93V1dSI0NFRkZGQ0em7Xrl3bRQC6lWcghBDXr18X3t7eYvPmzbaqol3c6nMQQog+ffqIV155xRbVs4vmPIPr16+LgQMHir/+9a9i8uTJbT4AWfsMNm7cKJRKpZ1qZz/WPoc1a9aIbt26iZqaGntV0eZu9e+EN998U3h7e4uKigpbVdHmrH0GM2bMEPfcc4/BsbS0NHHXXXfZtJ7sArNSTU0Njhw5gsTEROmYXC5HYmIiDh486MCa2U9LPIOqqirU1tZCpVLZqpo2d6vPQQiB7Oxs5OXlYciQIbasqs009xn8+c9/RmBgIB577DF7VNOmmvsMKioq0LVrV6jVajzwwAM4efKkPaprM815Drt378aAAQMwY8YMBAUF4c4778Rrr72Guro6e1W7RbXE343r16/H+PHj4eXlZatq2lRznsHAgQNx5MgRqZvs559/xmeffYb777/fpnXlZqhWunz5Murq6hAUFGRwPCgoCD/++KODamVfLfEMXnzxRYSGhhr8n6Stae5z0Gq1CAsLQ3V1NVxcXPDOO+9g+PDhtq6uTTTnGXz99ddYv349jh07Zoca2l5znkGPHj2wYcMG9O7dG1qtFsuXL8fAgQNx8uTJFtmI2RGa8xx+/vlnfPnll3jkkUfw2WefIT8/H0899RRqa2sxf/58e1S7Rd3q342HDh3CDz/8gPXr19uqijbXnGfwhz/8AZcvX8agQYMghMD169fxxBNP4OWXX7ZpXRmAyO6WLFmC7du3Iycnp90M/LSGt7c3jh07hoqKCmRnZyMtLQ3dunXDsGHDHF01mysvL8fEiROxbt06BAQEOLo6DjNgwAAMGDBAej9w4EDcdttt+Mtf/oJFixY5sGb2pdPpEBgYiHfffRcuLi7o27cvfv31V7z++uttMgDdqvXr16NXr17o37+/o6tiVzk5OXjttdfwzjvvICEhAfn5+XjmmWewaNEizJ0712bfywBkpYCAALi4uKCkpMTgeElJCYKDgx1UK/u6lWewfPlyLFmyBPv370fv3r1tWU2ba+5zkMvliIqKAgDExsbi9OnTyMjIaJMByNpncPbsWZw7dw4pKSnSMZ1OBwDo0KED8vLyEBkZadtKt7CW+DvB1dUVffr0QX5+vi2qaBfNeQ4hISFwdXWFi4uLdOy2225DcXExampqoFAobFrnlnYrfxYqKyuxfft2/PnPf7ZlFW2uOc9g7ty5mDhxIqZNmwYA6NWrFyorKzF9+nTMmTMHcrltRutwDJCVFAoF+vbti+zsbOmYTqdDdna2wb/o2rPmPoNly5Zh0aJFyMrKQnx8vD2qalMt9WdBp9OhurraFlW0OWufQc+ePfH999/j2LFj0mv06NG4++67cezYMajVantWv0W0xJ+Duro6fP/99wgJCbFVNW2uOc/hrrvuQn5+vhSCAeCnn35CSEhImws/wK39Wfjwww9RXV2NRx991NbVtKnmPIOqqiqjkKMPxcKW25XadIh1O7V9+3bh5uYmNm3aJE6dOiWmT58ufH19pWmsEydOFC+99JJUvrq6Whw9elQcPXpUhISEiOeff14cPXpUnDlzxlG3cMusfQZLliwRCoVCfPTRRwZTPsvLyx11Cy3C2ufw2muvic8//1ycPXtWnDp1Sixfvlx06NBBrFu3zlG3cMusfQYNtYdZYNY+g4ULF4p9+/aJs2fPiiNHjojx48cLd3d3cfLkSUfdQouw9jmcP39eeHt7i9TUVJGXlyf27t0rAgMDxeLFix11C7esuf9/GDRokBg3bpy9q2sT1j6D+fPnC29vb/HBBx+In3/+WXz++eciMjJSPPzwwzatJwNQM7399tuiS5cuQqFQiP79+4tvv/1W+mzo0KFi8uTJ0vuCggIBwOg1dOhQ+1e8BVnzDLp27WryGcyfP9/+FW9h1jyHOXPmiKioKOHu7i78/PzEgAEDxPbt2x1Q65ZlzTNoqD0EICGsewazZs2SygYFBYn7779f5ObmOqDWLc/aPwsHDhwQCQkJws3NTXTr1k28+uqr4vr163audcuy9hn8+OOPAoD4/PPP7VxT27HmGdTW1ooFCxaIyMhI4e7uLtRqtXjqqafElStXbFpHmRC2bF8iIiIian04BoiIiIicDgMQEREROR0GICIiInI6DEBERETkdBiAiIiIyOkwABEREZHTYQAiIiIip8MARETkQFOmTMGYMWMcXQ0ip8MAREQmTZkyBTKZTHr5+/sjOTkZJ06ccHTVWsTN96Z/DRo0yGbfd+7cOchkMhw7dszg+FtvvYVNmzbZ7HuJyDQGICIyKzk5GUVFRSgqKkJ2djY6dOiAUaNGObpaLWbjxo3S/RUVFWH37t0my9XW1tqsDkqlEr6+vja7PhGZxgBERGa5ubkhODgYwcHBiI2NxUsvvYTCwkJcunQJ99xzD1JTUw3KX7p0CQqFQtoJOjw8HIsWLcKECRPg5eWFsLAwrF692uCcFStWoFevXvDy8oJarcZTTz2FiooK6fNffvkFKSkp8PPzg5eXF+644w589tlnAIArV67gkUceQadOneDh4YHo6Ghs3Lixyffn6+sr3V9wcDBUKpXUUrNjxw4MHToU7u7ueP/996HRaDBhwgSEhYXB09MTvXr1wgcffGBwPZ1Oh2XLliEqKgpubm7o0qULXn31VQBAREQEAKBPnz6QyWQYNmwYAOMusOrqasycOROBgYFwd3fHoEGDcPjwYenznJwcyGQyZGdnIz4+Hp6enhg4cCDy8vKafN9ExABERE1UUVGBrVu3IioqCv7+/pg2bRq2bduG6upqqczWrVsRFhaGe+65Rzr2+uuvIyYmBkePHsVLL72EZ555Bl988YX0uVwux8qVK3Hy5Els3rwZX375JWbPni19PmPGDFRXV+Nf//oXvv/+eyxduhQdO3YEAMydOxenTp3CP/7xD5w+fRpr1qxBQEBAi9yvvq6nT59GUlISrl27hr59++LTTz/FDz/8gOnTp2PixIk4dOiQdE56ejqWLFki1Wvbtm0ICgoCAKnc/v37UVRUhF27dpn83tmzZ2Pnzp3YvHkzcnNzERUVhaSkJJSWlhqUmzNnDt544w385z//QYcOHfDHP/6xRe6byGnYdKtVImqzJk+eLFxcXISXl5fw8vISAERISIg4cuSIEEKI//73v8LPz0/s2LFDOqd3795iwYIF0vuuXbuK5ORkg+uOGzdOjBgxwuz3fvjhh8Lf319636tXL4Nr3iwlJUVMnTq1WfcHQLi7u0v35+XlJT7++GNRUFAgAIjMzMxGrzFy5Ejx3HPPCSGEKCsrE25ubmLdunUmy+qve/ToUYPjkydPFg888IAQQoiKigrh6uoq3n//fenzmpoaERoaKpYtWyaEEOKrr74SAMT+/fulMp9++qkAIP773/9a8wiInBpbgIjIrLvvvhvHjh3DsWPHcOjQISQlJWHEiBH45Zdf4O7ujokTJ2LDhg0AgNzcXPzwww+YMmWKwTUGDBhg9P706dPS+/379+Pee+9FWFgYvL29MXHiRGg0GlRVVQEAZs6cicWLF+Ouu+7C/PnzDQZhP/nkk9i+fTtiY2Mxe/ZsHDhwwKr7e/PNN6X7O3bsGIYPHy59Fh8fb1C2rq4OixYtQq9evaBSqdCxY0fs27cP58+fBwCcPn0a1dXVuPfee62qw83Onj2L2tpa3HXXXdIxV1dX9O/f3+CZAUDv3r2ln0NCQgAAFy9ebPZ3EzkbBiAiMsvLywtRUVGIiopCv3798Ne//hWVlZVYt24dAGDatGn44osvcOHCBWzcuBH33HMPunbt2uTrnzt3DqNGjULv3r2xc+dOHDlyRBojVFNTI33Hzz//jIkTJ+L7779HfHw83n77bQCQwtizzz6L3377Dffeey+ef/75Jn9/cHCwdH9RUVHw8vIyuPebvf7663jrrbfw4osv4quvvsKxY8eQlJQk1dPDw6PJ39sSXF1dpZ9lMhmA+jFIRNQ0DEBE1GQymQxyuRz//e9/AQC9evVCfHw81q1bh23btpkch/Ltt98avb/tttsAAEeOHIFOp8Mbb7yB3/3ud+jevTt+++03o2uo1Wo88cQT2LVrF5577jkpgAFAp06dMHnyZGzduhWZmZl49913W/KWJd988w0eeOABPProo4iJiUG3bt3w008/SZ9HR0fDw8NDGgDekEKhAFDfkmROZGQkFAoFvvnmG+lYbW0tDh8+jNtvv72F7oSIAKCDoytARK1XdXU1iouLAdTPuFq1ahUqKiqQkpIilZk2bRpSU1Ph5eWF3//+90bX+Oabb7Bs2TKMGTMGX3zxBT788EN8+umnAICoqCjU1tbi7bffRkpKCr755husXbvW4PxZs2ZhxIgR6N69O65cuYKvvvpKClDz5s1D3759cccdd6C6uhp79+6VPmtp0dHR+Oijj3DgwAH4+flhxYoVKCkpkYKJu7s7XnzxRcyePRsKhQJ33XUXLl26hJMnT+Kxxx5DYGAgPDw8kJWVhc6dO8Pd3R1KpdLgO7y8vPDkk0/ihRdegEqlQpcuXbBs2TJUVVXhscces8l9ETkrtgARkVlZWVkICQlBSEgIEhIScPjwYXz44YfSFG4AmDBhAjp06IAJEybA3d3d6BrPPfcc/vOf/6BPnz5YvHgxVqxYgaSkJABATEwMVqxYgaVLl+LOO+/E+++/j4yMDIPz6+rqMGPGDNx2221ITk5G9+7d8c477wCob1VJT09H7969MWTIELi4uGD79u02eRavvPIK4uLikJSUhGHDhiE4ONhoBee5c+fiueeew7x583Dbbbdh3Lhx0ricDh06YOXKlfjLX/6C0NBQPPDAAya/Z8mSJRg7diwmTpyIuLg45OfnY9++ffDz87PJfRE5K5kQQji6EkTUdp07dw6RkZE4fPgw4uLiDD4LDw/HrFmzMGvWLMdUjojIDHaBEVGz1NbWQqPR4JVXXsHvfvc7o/BDRNSasQuMiJrlm2++QUhICA4fPmw0bsfRXnvtNXTs2NHka8SIEY6uHhG1AuwCI6J2p7S01GjlZD0PDw+EhYXZuUZE1NowABEREZHTYRcYEREROR0GICIiInI6DEBERETkdBiAiIiIyOkwABEREZHTYQAiIiIip8MARERERE6HAYiIiIiczv8DFz2J6u+drjYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_12.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZP0lEQVR4nO3de1hU1eI+8HcYGUCEUVBuhoJ4S0sRVMI0zUgwpXyy8pJ5qbQ6kRqlSeYtK7wdI8W0+qbQxbTSNC8/unCi8pJ1vGTmJTVM7QgqxIBwBGXW7w8PkyMDzAwzs/ee/X6ehydnz5o9a800e95Za+21NUIIASIiIiIV8ZC6AkRERESuxgBEREREqsMARERERKrDAERERESqwwBEREREqsMARERERKrDAERERESqwwBEREREqsMARERERKrDAEREJFNZWVnQaDQ4deqU1FUhcjsMQEQq9tNPPyElJQVdu3aFr68v2rRpg4ceegi//fZbrbIDBgyARqOBRqOBh4cH/P390alTJzzyyCP46quvbHreLVu2oH///ggKCkLTpk3Rrl07PPTQQ8jJyXFU02p57bXXsGnTplrbd+3ahblz56KkpMRpz32juXPnml5LjUaDpk2bokuXLnjppZdQWlrqkOdYu3YtMjIyHLIvInfEAESkYgsXLsSGDRtw11134Y033sCkSZPw3XffISYmBocOHapV/qabbsL777+P9957D4sXL8a9996LXbt2YdCgQRgxYgSuXLnS4HMuWbIE9957LzQaDdLS0vD6669j+PDhOH78ONatW+eMZgKoPwDNmzfPpQGoxsqVK/H+++9j6dKl6Ny5M1599VUkJSXBEZdoZAAiql8TqStARNJJTU3F2rVrodPpTNtGjBiBW2+9FQsWLMAHH3xgVl6v12PMmDFm2xYsWIDJkyfjzTffREREBBYuXFjn8129ehXz58/H3XffjS+//LLW/efPn29ki+SjoqICTZs2rbfMAw88gJYtWwIAnnzySQwfPhwbN27EDz/8gPj4eFdUk0i12ANEpGJ9+vQxCz8A0KFDB3Tt2hVHjhyxah9arRbLli1Dly5dkJmZCYPBUGfZixcvorS0FLfffrvF+4OCgsxuX758GXPnzkXHjh3h7e2N0NBQ3H///Th58qSpzJIlS9CnTx8EBgbCx8cHsbGx+PTTT832o9FoUF5ejuzsbNOw0/jx4zF37lxMmzYNABAZGWm67/o5Nx988AFiY2Ph4+ODgIAAjBw5EmfOnDHb/4ABA3DLLbdg7969uOOOO9C0aVO8+OKLVr1+1xs4cCAAID8/v95yb775Jrp27QovLy+EhYXh6aefNuvBGjBgALZt24Y//vjD1KaIiAib60PkztgDRERmhBAoLCxE165drX6MVqvFqFGjMGvWLOzYsQNDhgyxWC4oKAg+Pj7YsmULnnnmGQQEBNS5z+rqagwdOhS5ubkYOXIkpkyZgrKyMnz11Vc4dOgQoqKiAABvvPEG7r33Xjz88MOoqqrCunXr8OCDD2Lr1q2merz//vt4/PHH0bt3b0yaNAkAEBUVBV9fX/z222/46KOP8Prrr5t6Y1q1agUAePXVVzFr1iw89NBDePzxx3HhwgUsX74cd9xxB/bv34/mzZub6ltUVITBgwdj5MiRGDNmDIKDg61+/WrUBLvAwMA6y8ydOxfz5s1DQkICnnrqKRw7dgwrV67ETz/9hJ07d8LT0xMzZ86EwWDA2bNn8frrrwMAmjVrZnN9iNyaICK6zvvvvy8AiHfffddse//+/UXXrl3rfNxnn30mAIg33nij3v3Pnj1bABC+vr5i8ODB4tVXXxV79+6tVW716tUCgFi6dGmt+4xGo+nfFRUVZvdVVVWJW265RQwcONBsu6+vrxg3blytfS1evFgAEPn5+WbbT506JbRarXj11VfNtv/yyy+iSZMmZtv79+8vAIhVq1bV2e7rzZkzRwAQx44dExcuXBD5+fnirbfeEl5eXiI4OFiUl5cLIYRYs2aNWd3Onz8vdDqdGDRokKiurjbtLzMzUwAQq1evNm0bMmSIaNu2rVX1IVIjDoERkcnRo0fx9NNPIz4+HuPGjbPpsTU9DGVlZfWWmzdvHtauXYsePXrgiy++wMyZMxEbG4uYmBizYbcNGzagZcuWeOaZZ2rtQ6PRmP7t4+Nj+vdff/0Fg8GAfv36Yd++fTbV/0YbN26E0WjEQw89hIsXL5r+QkJC0KFDB3zzzTdm5b28vDBhwgSbnqNTp05o1aoVIiMj8cQTT6B9+/bYtm1bnXOHvv76a1RVVWHq1Knw8Pj78D1x4kT4+/tj27ZttjeUSKU4BEZEAICCggIMGTIEer0en376KbRarU2Pv3TpEgDAz8+vwbKjRo3CqFGjUFpaij179iArKwtr165FcnIyDh06BG9vb5w8eRKdOnVCkyb1H6a2bt2KV155BQcOHEBlZaVp+/UhyR7Hjx+HEAIdOnSweL+np6fZ7datW9eaT9WQDRs2wN/fH56enrjppptMw3p1+eOPPwBcC07X0+l0aNeunel+ImoYAxARwWAwYPDgwSgpKcH333+PsLAwm/dRc9p8+/btrX6Mv78/7r77btx9993w9PREdnY29uzZg/79+1v1+O+//x733nsv7rjjDrz55psIDQ2Fp6cn1qxZg7Vr19rchusZjUZoNBr8v//3/yyGwRvn1FzfE2WtO+64wzTviIhciwGISOUuX76M5ORk/Pbbb/j666/RpUsXm/dRXV2NtWvXomnTpujbt69d9ejZsyeys7Nx7tw5ANcmKe/ZswdXrlyp1dtSY8OGDfD29sYXX3wBLy8v0/Y1a9bUKltXj1Bd26OioiCEQGRkJDp27Ghrc5yibdu2AIBjx46hXbt2pu1VVVXIz89HQkKCaVtje8CI3B3nABGpWHV1NUaMGIHdu3fjk08+sWvtmerqakyePBlHjhzB5MmT4e/vX2fZiooK7N692+J9/+///T8Afw/vDB8+HBcvXkRmZmatsuJ/CwVqtVpoNBpUV1eb7jt16pTFBQ99fX0tLnbo6+sLALXuu//++6HVajFv3rxaCxMKIVBUVGS5kU6UkJAAnU6HZcuWmdXp3XffhcFgMDv7ztfXt94lCYjUjj1ARCr23HPP4fPPP0dycjKKi4trLXx446KHBoPBVKaiogInTpzAxo0bcfLkSYwcORLz58+v9/kqKirQp08f3HbbbUhKSkJ4eDhKSkqwadMmfP/99xg2bBh69OgBABg7dizee+89pKam4scff0S/fv1QXl6Or7/+Gv/4xz9w3333YciQIVi6dCmSkpIwevRonD9/HitWrED79u1x8OBBs+eOjY3F119/jaVLlyIsLAyRkZGIi4tDbGwsAGDmzJkYOXIkPD09kZycjKioKLzyyitIS0vDqVOnMGzYMPj5+SE/Px+fffYZJk2ahOeff75Rr7+tWrVqhbS0NMybNw9JSUm49957cezYMbz55pvo1auX2fsVGxuL9evXIzU1Fb169UKzZs2QnJzs0voSyZqUp6ARkbRqTt+u66++ss2aNRMdOnQQY8aMEV9++aVVz3flyhXxzjvviGHDhom2bdsKLy8v0bRpU9GjRw+xePFiUVlZaVa+oqJCzJw5U0RGRgpPT08REhIiHnjgAXHy5ElTmXfffVd06NBBeHl5ic6dO4s1a9aYTjO/3tGjR8Udd9whfHx8BACzU+Lnz58vWrduLTw8PGqdEr9hwwbRt29f4evrK3x9fUXnzp3F008/LY4dO2b22tS3RMCNaup34cKFesvdeBp8jczMTNG5c2fh6ekpgoODxVNPPSX++usvszKXLl0So0ePFs2bNxcAeEo80Q00QjjgojNERERECsI5QERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREREpDpcCNECo9GI//znP/Dz8+Ny8kRERAohhEBZWRnCwsLg4VF/Hw8DkAX/+c9/EB4eLnU1iIiIyA5nzpzBTTfdVG8ZBiAL/Pz8AFx7Aeu7rhERERHJR2lpKcLDw03f4/VhALKgZtjL39+fAYiIiEhhrJm+wknQREREpDoMQERERKQ6DEBERESkOpwDRERE5CDV1dW4cuWK1NVwW56entBqtQ7ZFwMQERFRIwkhUFBQgJKSEqmr4vaaN2+OkJCQRq/TxwBERETUSDXhJygoCE2bNuUiuk4ghEBFRQXOnz8PAAgNDW3U/hiAiIiIGqG6utoUfgIDA6Wujlvz8fEBAJw/fx5BQUGNGg7jJGgiIqJGqJnz07RpU4lrog41r3Nj51oxABERETkAh71cw1GvM4fAiMjtFRUVoaqqqs77dTodhy6IVIYBiIjcWlFRETIzMxssl5KSwhBEpCIcAiMit3Zjz4/B4If8/AgYDH71liNSg/Hjx0Oj0UCj0cDT0xPBwcG4++67sXr1ahiNRqv3k5WVhebNmzuvok7AHiAiUo19+3pgy5ahEMIDGo0RyclbEROzX+pqEUk6TJuUlIQ1a9aguroahYWFyMnJwZQpU/Dpp5/i888/R5Mm7hkV3LNVREQ3MBj8TOEHAITwwJYtQxEVdQJ6fZnEtSM1k3qY1svLCyEhIQCA1q1bIyYmBrfddhvuuusuZGVl4fHHH8fSpUuxZs0a/P777wgICEBycjIWLVqEZs2aIS8vDxMmTADw9wTlOXPmYO7cuXj//ffxxhtv4NixY/D19cXAgQORkZGBoKAgh7fDVhwCIyJVKC4ONIWfGkJ4oLg4QKIaEV1j7fCrK4dpBw4ciO7du2Pjxo0AAA8PDyxbtgy//vorsrOz8a9//QvTp08HAPTp0wcZGRnw9/fHuXPncO7cOTz//PMArp2qPn/+fPz888/YtGkTTp06hfHjx7usHfVhDxARqUJAQBE0GqNZCNJojAgIKJawVkTy1blzZxw8eBAAMHXqVNP2iIgIvPLKK3jyySfx5ptvQqfTQa/XQ6PRmHqSajz66KOmf7dr1w7Lli1Dr169cOnSJTRr1swl7agLe4CISBX0+jIkJ2+FRnNtYmfNHCAOfxFZJoQwDWl9/fXXuOuuu9C6dWv4+fnhkUceQVFRESoqKurdx969e5GcnIw2bdrAz88P/fv3BwCcPn3a6fVvCHuAiEg1YmL2IyrqBIqLAxAQUMzwQ1SPI0eOIDIyEqdOncLQoUPx1FNP4dVXX0VAQAB27NiBxx57DFVVVXWugF1eXo7ExEQkJibiww8/RKtWrXD69GkkJibK4qxLBiAicms6nc7stl5fZjH43FiOSM3+9a9/4ZdffsGzzz6LvXv3wmg04p///Cc8PK4NHH388cdm5XU6Haqrq822HT16FEVFRViwYAHCw8MBAP/+979d0wArMAARkVsLDAxESkoKV4ImqkNlZSUKCgrMToNPT0/H0KFDMXbsWBw6dAhXrlzB8uXLkZycjJ07d2LVqlVm+4iIiMClS5eQm5uL7t27o2nTpmjTpg10Oh2WL1+OJ598EocOHcL8+fMlamVtnANERG4vMDAQoaGhdf4x/JCa5eTkIDQ0FBEREUhKSsI333yDZcuWYfPmzdBqtejevTuWLl2KhQsX4pZbbsGHH36I9PR0s3306dMHTz75JEaMGIFWrVph0aJFaNWqFbKysvDJJ5+gS5cuWLBgAZYsWSJRK2vTCCGE1JVYsWIFFi9ejIKCAnTv3h3Lly9H7969LZbduHEjXnvtNZw4cQJXrlxBhw4d8Nxzz+GRRx4xlRk/fjyys7PNHpeYmIicnByr6lNaWgq9Xg+DwQB/f3/7G0akUrz2FqnJ5cuXkZ+fj8jISHh7e9v8eKnXAVKa+l5vW76/JR8CW79+PVJTU7Fq1SrExcUhIyMDiYmJOHbsmMWFkgICAjBz5kx07twZOp0OW7duxYQJExAUFITExERTuZqVLWt4eXm5pD1EaseDOZFtOEwrDckD0NKlSzFx4kTTKpKrVq3Ctm3bsHr1asyYMaNW+QEDBpjdnjJlCrKzs7Fjxw6zAHT9ypZE5DqWrr1VXByIgIAis8nHcjgLhEguGG5cT9IAVFVVhb179yItLc20zcPDAwkJCdi9e3eDjxdC4F//+heOHTuGhQsXmt2Xl5eHoKAgtGjRAgMHDsQrr7xS5/9glZWVqKysNN0uLS21s0VEdD1ee4uI5ErSSdAXL15EdXU1goODzbYHBwejoKCgzscZDAY0a9YMOp0OQ4YMwfLly3H33Xeb7k9KSsJ7772H3NxcLFy4EN9++y0GDx5c6xS9Gunp6dDr9aa/mtP1iMh+dV1768arsBMRSUHyITB7+Pn54cCBA6ZT7lJTU9GuXTvT8NjIkSNNZW+99VZ069YNUVFRyMvLw1133VVrf2lpaUhNTTXdLi0tZQgiaqT6rr3FBQiJSGqSBqCWLVtCq9WisLDQbHthYWG983c8PDzQvn17AEB0dDSOHDmC9PT0WvODarRr1w4tW7bEiRMnLAYgLy8vTpImcjBee4uI5EzSITCdTofY2Fjk5uaathmNRuTm5iI+Pt7q/RiNRrM5PDc6e/YsioqKEBoa2qj6EpH1eO0tIpIzyYfAUlNTMW7cOPTs2RO9e/dGRkYGysvLTWeFjR07Fq1btzYtupSeno6ePXsiKioKlZWV2L59O95//32sXLkSAHDp0iXMmzcPw4cPR0hICE6ePInp06ejffv2ZmeJEZHz8dpbRCRXkgegESNG4MKFC5g9ezYKCgoQHR2NnJwc08To06dPm649Aly7uNo//vEPnD17Fj4+PujcuTM++OADjBgxAgCg1Wpx8OBBZGdno6SkBGFhYRg0aBDmz5/PYS4iF+C1t4hICWSxErTccCVoosbhStCkJo1dCdqd5eXl4c4778Rff/2F5s2bW/WYiIgITJ06FVOnTrV4v6NWgua1wIjI4XjtLSJlGD9+PDQaDZ588sla9z399NPQaDQYP3686yvmAgxAREREKhYeHo5169bhv//9r2nb5cuXsXbtWrRp00bCmjkXAxAREZGKxcTEIDw8HBs3bjRt27hxI9q0aYMePXqYtlVWVmLy5MkICgqCt7c3+vbti59++slsX9u3b0fHjh3h4+ODO++8E6dOnar1fDt27EC/fv3g4+OD8PBwTJ48GeXl5U5rX10YgIiIiGTk7Fngm2+u/ddVHn30UbMLiK9evdp0NnaN6dOnY8OGDcjOzsa+fftMZ1cXF19b2+vMmTO4//77kZycjAMHDuDxxx+vdU3PkydPIikpCcOHD8fBgwexfv167NixAykpKc5v5A0YgIiIiGTi3XeBtm2BgQOv/ffdd13zvGPGjMGOHTvwxx9/4I8//sDOnTsxZswY0/3l5eVYuXIlFi9ejMGDB6NLly5455134OPjg3f/V8mVK1ciKioK//znP9GpUyc8/PDDteYPpaen4+GHH8bUqVPRoUMH9OnTB8uWLcN7772Hy5cvu6ax/yP5afBERER0rcdn0iTAeG3tUBiNwBNPAImJwE03Ofe5W7VqhSFDhiArKwtCCAwZMgQtW7Y03X/y5ElcuXIFt99+u2mbp6cnevfujSNHjgAAjhw5gri4OLP93rio8c8//4yDBw/iww8/NG0TQsBoNCI/Px8333yzM5pnEQMQERGRDBw//nf4qVFdDZw44fwABFwbBqsZilqxYoVTnuPSpUt44oknMHny5Fr3uXrCNQMQERGRDHToAHh4mIcgrRb436UvnS4pKQlVVVXQaDS1rpwQFRUFnU6HnTt3om3btgCAK1eu4KeffjKt13PzzTfj888/N3vcDz/8YHY7JiYGhw8fNl3PU0qcA0RERCQDN90EvP32tdADXPvvW2+5pvfn2vNpceTIERw+fBjamkr8j6+vL5566ilMmzYNOTk5OHz4MCZOnIiKigo89thjAIAnn3wSx48fx7Rp03Ds2DGsXbsWWVlZZvt54YUXsGvXLqSkpODAgQM4fvw4Nm/eLMkkaPYAERERycRjj12b83PixLWeH1eFnxr1rZ68YMECGI1GPPLIIygrK0NsbCy2bt0KX19fVFVVISQkBOvWrcO0adOwfPly9OrVC6+99hoeffRR0z66deuGb7/9FjNnzkS/fv0ghEBUVJTpclauxEthWMBLYdiPl0AgIrVR46Uwrl69ivPnzzdYLigoCE2aOLavxVGXwmAPEDlMUVERMjMzGyyXkpLCEEREpGDGG2ZrV1d74OrVJmjS5Cq0WmOd5eSEAYgc5saeH4PBD8XFgQgIKDK7Gnh9PUTujL1jROSOKiqaoqRED0ADQKB5cwOaNq2QuloNYgAip9i3rwe2bBkKITyg0RiRnLwVMTH7pa6WZNg7RkTuqLra47rwAwAalJTo4eV12awnSI54Fhg5nMHgZwo/ACCEB7ZsGQqDwU/imknHUu9Yfn5ErddErb1jRKRMV682wd/hp4bmf9vlTf41JMUpLg40hZ8aQniguDjAbChMrdg7RuSe1HhOUZMmVwEImIcg8b/tzuGo15k9QORwAQFF0GjMuz41GiMCAoolqpF8sHeMyP14enoCACoq5D/vxdG0WiOaNzfgWggCauYAOXP4q+Z1rnnd7cUeIHI4vb4Myclba/VysPeHvWNE7kir1aJ58+am08KbNm0KjebGYSH3UlVVhatXr/Xy6HSlCAwsQ3V1E2i1V6HVCvzvLly+fNlhZ4IJIVBRUYHz58+jefPmtRZrtBUDEDlFTMx+REWdQHFxAAICivnl/j81vWPXhyD2jhEpX0hICABYtTaOO6iurkZZWcPH9dLS0kYHlRs1b97c9Ho3BgMQOYxOpzO7rdeXWQw+N5ZTE/aOEbknjUaD0NBQBAUF4cqVK1JXxyX++uuvetvq6emJFi1aOPQ5PT09HRaoGIDIYQIDA5GSksK1bhrA3jEi96XVah3e4yFXoaGhUlehURiAyKHUHm7qwt4xIiJ5YQAicgH2jhERyQsDEJGLMNwQEckH1wEiIiIi1WEAIiIiItVhACIiIiLVYQAiIiIi1WEAIiIiItXhWWBERCQbRUVFXC6CXIIBiIiIZKGoqAiZmZkNlktJSWEIokbjEBgREcnCjT0/BoMf8vMjYDD41VuOyB7sASIiItnZt69HrYsGx8Tsl7pa5EbYA0RERLJiMPiZwg8ACOGBLVuG1uoJImoMBiAiIpKV4uJAU/ipIYQHiosDJKoRuSMGICIikpWAgCJoNEazbRqNEQEBxRLViNwRAxAREcmKXl+G5OStphBUMwdIry+TuGbkTjgJmoiIZCcmZj+iok6guDgAAQHFDD/kcLLoAVqxYgUiIiLg7e2NuLg4/Pjjj3WW3bhxI3r27InmzZvD19cX0dHReP/9983KCCEwe/ZshIaGwsfHBwkJCTh+/Lizm0FERI2g0+nMbuv1ZYiM/KNW+LmxHJE9JO8BWr9+PVJTU7Fq1SrExcUhIyMDiYmJOHbsGIKCgmqVDwgIwMyZM9G5c2fodDps3boVEyZMQFBQEBITEwEAixYtwrJly5CdnY3IyEjMmjULiYmJOHz4MLy9vV3dRCIiskJgYCBSUlK4EjS5hEYIIaSsQFxcHHr16mVa/dNoNCI8PBzPPPMMZsyYYdU+YmJiMGTIEMyfPx9CCISFheG5557D888/DwAwGAwIDg5GVlYWRo4c2eD+SktLodfrYTAY4O/vb3/jiIiIyGVs+f6WdAisqqoKe/fuRUJCgmmbh4cHEhISsHv37gYfL4RAbm4ujh07hjvuuAMAkJ+fj4KCArN96vV6xMXF1bnPyspKlJaWmv0RERGR+5I0AF28eBHV1dUIDg422x4cHIyCgoI6H2cwGNCsWTPodDoMGTIEy5cvx9133w0ApsfZss/09HTo9XrTX3h4eGOaRURERDIni0nQtvLz88OBAwfw008/4dVXX0Vqairy8vLs3l9aWhoMBoPp78yZM46rLBEREcmOpJOgW7ZsCa1Wi8LCQrPthYWFCAkJqfNxHh4eaN++PQAgOjoaR44cQXp6OgYMGGB6XGFhIUJDQ832GR0dbXF/Xl5e8PLyamRriIiISCkk7QHS6XSIjY1Fbm6uaZvRaERubi7i4+Ot3o/RaERlZSUAIDIyEiEhIWb7LC0txZ49e2zaJxEREbkvyU+DT01Nxbhx49CzZ0/07t0bGRkZKC8vx4QJEwAAY8eORevWrZGeng7g2nydnj17IioqCpWVldi+fTvef/99rFy5EgCg0WgwdepUvPLKK+jQoYPpNPiwsDAMGzZMqmYSERGRjEgegEaMGIELFy5g9uzZKCgoQHR0NHJyckyTmE+fPg0Pj787qsrLy/GPf/wDZ8+ehY+PDzp37owPPvgAI0aMMJWZPn06ysvLMWnSJJSUlKBv377IycnhGkBEREQEQAbrAMkR1wEici9FRUVcXI9IBWz5/pa8B4iIyJmKiopMC63WJyUlhSGISEUUeRo8EZG1buz5MRj8kJ8fAYPBr95yROTe2ANERKqxb18PbNkyFEJ4QKMxIjl5K2Ji9ktdLSKSAHuAiEgVDAY/U/gBACE8sGXL0Fo9QUSkDgxARKQKxcWBpvBTQwgPFBcHSFQjIpISAxARqUJAQBE0GqPZNo3GiICAYolqRERSYgAiIlXQ68uQnLzVFIJq5gDp9WUS14yIpMBJ0ESkGjEx+xEVdQLFxQEICChm+CFSMQYgInJrOp3O7LZeX2Yx+NxYjojcGwMQEbm1wMBApKSkOHUlaK40TaQ8DEBE5PacGT640jSRMnESNBFRI3ClaSJlYg8QEZGDcKVpIuVgDxARkQNwpWkiZWEAIiJyAK40TaQsDEBERA7AlaaJlIUBiIjIAbjSNJGycBI0EZGDcKVpIuVgACIit+fMhQq50jSRMjEAEZFbc/ZCha5YaZqIHI8BiIjcmqWFCouLAxEQUGTWU9OYhQoZboiUhwGIiFSDCxUSUQ2eBUZEqsCFConoeuwBIknxKtrkKvUtVMiztYjUhwGIJMOraJMr1SxUeH0I4kKFROrFITCSDK+iTa7EhQqJ6HrsASJZ4ORUcgUuVEhENdgDRJLj5FRyJksLFUZG/lEr/HChQiJ1YQ8QSY6TU8mZuFAhEVnCAESS4+RUcjaGGyK6EYfASHKcnEpERK7GHiCSBU5OJSIiV2IAIsnwKtpERCQVBiCSDCenEhGRVBiASFIMN0REJAVOgiYiIiLVYQAiIiIi1WEAIiIiItWRRQBasWIFIiIi4O3tjbi4OPz44491ln3nnXfQr18/tGjRAi1atEBCQkKt8uPHj4dGozH7S0pKcnYziIiISCEkD0Dr169Hamoq5syZg3379qF79+5ITEzE+fPnLZbPy8vDqFGj8M0332D37t0IDw/HoEGD8Oeff5qVS0pKwrlz50x/H330kSuaQ0RERAqgEUIIKSsQFxeHXr16ITMzEwBgNBoRHh6OZ555BjNmzGjw8dXV1WjRogUyMzMxduxYANd6gEpKSrBp0ya76lRaWgq9Xg+DwQB/f3+79kFERESuZcv3t6Q9QFVVVdi7dy8SEhJM2zw8PJCQkIDdu3dbtY+KigpcuXIFAQEBZtvz8vIQFBSETp064amnnkJRUVGd+6isrERpaanZHxEREbkvSQPQxYsXUV1djeDgYLPtwcHBKCgosGofL7zwAsLCwsxCVFJSEt577z3k5uZi4cKF+PbbbzF48GBUV1db3Ed6ejr0er3pLzw83P5GERERkewpeiHEBQsWYN26dcjLy4O3t7dp+8iRI03/vvXWW9GtWzdERUUhLy8Pd911V639pKWlITU11XS7tLSUIYiIiMiNSdoD1LJlS2i1WhQWFpptLywsREhISL2PXbJkCRYsWIAvv/wS3bp1q7dsu3bt0LJlS5w4ccLi/V5eXvD39zf7IyIiIvclaQDS6XSIjY1Fbm6uaZvRaERubi7i4+PrfNyiRYswf/585OTkoGfPng0+z9mzZ1FUVITQ0FCH1JuIiIiUTfLT4FNTU/HOO+8gOzsbR44cwVNPPYXy8nJMmDABADB27FikpaWZyi9cuBCzZs3C6tWrERERgYKCAhQUFODSpUsAgEuXLmHatGn44YcfcOrUKeTm5uK+++5D+/btkZiYKEkbiYiISF4knwM0YsQIXLhwAbNnz0ZBQQGio6ORk5Njmhh9+vRpeHj8ndNWrlyJqqoqPPDAA2b7mTNnDubOnQutVouDBw8iOzsbJSUlCAsLw6BBgzB//nx4eXm5tG1EREQkT5KvAyRHXAeIiIhIeRSzDhARERGRFBiAiIiISHUYgIiIiEh1GICIiIhIdRiAiIiISHUYgIiIiEh1GICIiIhIdRiAiIiISHUYgIiIiEh1GICIiIhIdRiAiIiISHUYgIiIiEh1GICIiIhIdRiAiIiISHWaSF0Bcq2ioiJUVVXVeb9Op0NgYKALa0REROR6DEAqUlRUhMzMzAbLpaSkMAQREZFb4xCYitzY82Mw+CE/PwIGg1+95YiIiNwNe4BUat++HtiyZSiE8IBGY0Ry8lbExOyXulpEREQuwR4gFTIY/EzhBwCE8MCWLUNr9QQRERG5KwYgFSouDjSFnxpCeKC4OECiGhEREbkWA5AKBQQUQaMxmm3TaIwICCiWqEZERESuxTlACmfPae16fRmSk7fWmgOk15c5u7pERESywACkYI05rT0mZj+iok6guDgAAQHFDD9ERKQqDEAKZum09uLiQAQEFJkFmppyOp3OrLxeX2Yx+NxYTi24SCQRkXowALkJa05rDwwMREpKCr/kLXDFIpEMWERE8sEA5AbqOq09KupErR4efsFaZmtvmq24CjcRkbwwALmB+k5r59we2zljkUhnByxyLPbWEbk/BiA3UHNa+/UhiKe128eW3jR7cRVueWNvHZE6cB0gN1BzWnvN2j48rd1+zl4kkqtwyx+vmUekDuwBchNyOa1d6UMHzu5N43ClsrC3jsh9MQApmNxOa3eHoQNnLxLJ4UrlcMVwKBFJhwFIweR2Wru7TPR1Zm8aV+FWDvbWETmOHEcHGIAUTq49KUobOnBlb5pchiupfuytI3IMuY4OMACRwylx6MDZvWlyG66khrG3jsgx5Do6wABEDqfUoQNn/vKQ23AlWcfa3jo5du8TyZGcRgcYgMjhOHRgGb8AlcHW3jq5du8TyY3cRgcYgMjhOHRASmZrb51cu/eJ5EZuowOyCEArVqzA4sWLUVBQgO7du2P58uXo3bu3xbLvvPMO3nvvPRw6dAgAEBsbi9dee82svBACc+bMwTvvvIOSkhLcfvvtWLlyJTp06OCS9pAyJ/pyGINq2Ps+y6l7n0hu5DY6IHkAWr9+PVJTU7Fq1SrExcUhIyMDiYmJOHbsGIKCgmqVz8vLw6hRo9CnTx94e3tj4cKFGDRoEH799Ve0bt0aALBo0SIsW7YM2dnZiIyMxKxZs5CYmIjDhw/D29vb1U1UDSVP9OUwBjWW3Lr3ieRGbqMDkgegpUuXYuLEiZgwYQIAYNWqVdi2bRtWr16NGTNm1Cr/4Ycfmt3+v//7P2zYsAG5ubkYO3YshBDIyMjASy+9hPvuuw8A8N577yE4OBibNm3CyJEjnd8olVLyRF8OY1Bjya17n0iO5DQ64JAAlJ+fj/DwcDRpYtvuqqqqsHfvXqSlpZm2eXh4ICEhAbt377ZqHxUVFbhy5QoCAgJMdSkoKEBCQoKpjF6vR1xcHHbv3m0xAFVWVqKystJ0u7S01KZ20N/kGG5sxWEMsofcuveJ5EKuowMOCUCdOnXCzz//jJtvvtmmx128eBHV1dUIDg422x4cHIyjR49atY8XXngBYWFhpsBTUFBg2seN+6y570bp6emYN2+eTXUn98RhDLKX3Lr3ieRCrqMDNgWg+++/3+L26upqTJ48GX5+166WvHHjxsbXzAoLFizAunXrkJeX16i5PWlpaUhNTTXdLi0tRXh4uCOqSArDYQxqDDl17xPJiRxHB2wKQJs2bcIdd9yByMjIWvc1a9YMer3epidv2bIltFotCgsLzbYXFhYiJCSk3scuWbIECxYswNdff41u3bqZttc8rrCwEKGhoWb7jI6OtrgvLy8veHl52VR3ck8cxiBbybV7n4jqZ1MAWrt2LaZNm4Zx48aZJi0DwAcffIBXX30VXbp0senJdTodYmNjkZubi2HDhgEAjEYjcnNzkZKSUufjFi1ahFdffRVffPEFevbsaXZfZGQkQkJCkJubawo8paWl2LNnD5566imb6kfqw2EMspVcu/eJqH42BaCRI0fitttuw5gxY7B161b83//9H1q0aNGoCqSmpmLcuHHo2bMnevfujYyMDJSXl5sC1tixY9G6dWukp6cDABYuXIjZs2dj7dq1iIiIMM3radasGZo1awaNRoOpU6filVdeQYcOHUynwYeFhZlCFlF9OIxBtmK4IVIemydBR0RE4LvvvsO8efPQvXt3vPPOO9BoNHZXYMSIEbhw4QJmz56NgoICREdHIycnxzSJ+fTp0/Dw+Hs4YuXKlaiqqsIDDzxgtp85c+Zg7ty5AIDp06ejvLwckyZNQklJCfr27YucnByuAUR14jAGEZG6aIQQwt4H79ixA2PHjsUff/yBX375xeYhMLkqLS2FXq+HwWCAv7+/1NUhF+FK0EREymbL93ejToPv27cvDh48iJMnTyIqKqoxuyKSHMMNEZF6NHodoGbNmqF79+6OqAsRERGRS9gUgHr06GHVfJ99+/bZXSEiIiIiZ7MpAF1/FpUQAunp6XjyySdNl6EgIiIiUoJGTYL28/PDzz//jHbt2jmyTpLjJGgiIiLlseX726Pee4mIiIjcEAMQERERqQ4DEBEREamOTZOgly1bZnb76tWryMrKQsuWLc22T548ufE1IyIiInISmyZBW7oKfK0dajT4/fffG1UpqXESNBERkfI4bSXo/Pz8RlWMiEgKvMwJEd3IpgD0r3/9CykpKfjhhx9qJSuDwYA+ffpg1apV6Nevn0MrSURkr6KiImRmZjZYLiUlhSGISEVsCkAZGRmYOHGixW4lvV6PJ554AkuXLmUAugF/fRJJ58bPnsHgh+LiQAQEFEGvL6uzHBG5N5sC0M8//4yFCxfWef+gQYOwZMmSRlfKnfDXJ5F87NvXA1u2DIUQHtBojEhO3oqYmP1SV4uIJGDTafCFhYXw9PSs8/4mTZrgwoULja6UO7H06zM/PwIGg1+95YjIsQwGP1P4AQAhPLBly9Ban0UiUgebeoBat26NQ4cOoX379hbvP3jwIEJDQx1SMXfEX5+kFnIc9i0uDjSFnxpCeKC4OMBsKIyI1MGmAHTPPfdg1qxZSEpKgre3t9l9//3vfzFnzhwMHTrUoRV0F3X9+oyKOsGDL7kVuQ77BgQUQaMxmoUgjcaIgIBil9WBiOTDpiGwl156CcXFxejYsSMWLVqEzZs3Y/PmzVi4cCE6deqE4uJizJw501l1VbT6fn0SuRO5Dvvq9WVITt4KjcYIAKZeWP4AIVInm3qAgoODsWvXLjz11FNIS0tDzRqKGo0GiYmJWLFiBYKDg51SUaXjr09SI7kN+8bE7EdU1AkUFwcgIKCY4YdIxWwKQADQtm1bbN++HX/99RdOnDgBIQQ6dOiAFi1aOKN+bqPm1+eNXwY8AJO7ksuwr06nM7ut15dZfP4byxGRe7M5ANVo0aIFevXq5ci6uD3++iQ1kcuk48DAQKSkpMhuUjYRScvuAETW4a9PUis5Dfsy3BDRjRiAnIy/PkmtOOxbNzkuE0CkNgxAROQ0HPatTa7LBBCpDQOQk/Fg51j85Sx/HPatH69NRiQPDEBOxoOd48gtTDKMWcZhX+vJbZkAIjVhAHIhHuwaR05hUm5hTG7U2GZbyWWZACK1YgByER7sHEvqMCmnMEbKJJdlAojUigHIRXiwcxy5hUmpwxgpk5yWCSBSIwYgF+HBzjJ75tHIKUzKLYyRcnCZACJpMQC5CA92tdk7j0ZOYVJOYYyUh8sEEEmHAciFeLAzZ+88GjmFSVvCGM8aI4DLBBDJBQOQk/FgZx1b59HIJUxaG8Z41hjV4DIBRPLAAORkPNg1zNp5NHINk9aEMZ41RtdT8+edSC4YgFyAB7v6WTuPRk5hsjFhjGeNERFJjwGIJGfLPBq5hEl7wxjPGiMikgcGIJKcnCY128KeMMazxoiI5IEBiGRBLpOanU1Op/ATEamZR8NFnGvFihWIiIiAt7c34uLi8OOPP9ZZ9tdff8Xw4cMREREBjUaDjIyMWmXmzp0LjUZj9te5c2cntoDsZWkeTWTkH7XCjzudIVfT26XRGAFAMb1dRETuRtIeoPXr1yM1NRWrVq1CXFwcMjIykJiYiGPHjiEoKKhW+YqKCrRr1w4PPvggnn322Tr327VrV3z99dem202asKNLjuQ0qdmV1NLbRUQkZ5Img6VLl2LixImYMGECAGDVqlXYtm0bVq9ejRkzZtQq36tXL/Tq1QsALN5fo0mTJggJCXFOpcmh5BRunLlQoVxP4SciUivJAlBVVRX27t2LtLQ00zYPDw8kJCRg9+7djdr38ePHERYWBm9vb8THxyM9PR1t2rSps3xlZSUqKytNt0tLSxv1/KQ8zl6oUK29XUREciVZALp48SKqq6sRHBxstj04OBhHjx61e79xcXHIyspCp06dcO7cOcybNw/9+vXDoUOH4OfnZ/Ex6enpmDdvnt3PScrnioUKGW6IiOTD7SbHDB482PTvbt26IS4uDm3btsXHH3+Mxx57zOJj0tLSkJqaarpdWlqK8PBwp9eV5IkLFRIRuT/JAlDLli2h1WpRWFhotr2wsNCh83eaN2+Ojh074sSJE3WW8fLygpeXl8Oek5SLCxUSEamDZKfB63Q6xMbGIjc317TNaDQiNzcX8fHxDnueS5cu4eTJkwgNDXXYPsl91bdQIRFRfYqKinDu3Lk6/4qKiqSuIl1H0iGw1NRUjBs3Dj179kTv3r2RkZGB8vJy01lhY8eORevWrZGeng7g2vyLw4cPm/79559/4sCBA2jWrBnat28PAHj++eeRnJyMtm3b4j//+Q/mzJkDrVaLUaNGSdNIUhQuVEhE9nD2iRTkeJIGoBEjRuDChQuYPXs2CgoKEB0djZycHNPE6NOnT8PD4+8vov/85z/o0aOH6faSJUuwZMkS9O/fH3l5eQCAs2fPYtSoUSgqKkKrVq3Qt29f/PDDD2jVqpVL20bKpNTLchCRtFxxIgU5luSToFNSUpCSkmLxvppQUyMiIgJCiHr3t27dOkdVjVSKCxUSUWPwRAplkPxSGERyoMbLchCR49V1IoXBYHkZFpKO5D1ARHLAhQqJyBHqO5GCvcnywgBE9D8MN0TUWDyRQjk4BEZEROQgNSdSaDRGAOCJFDLGHiAiIiIH4okUysAARERE1EiWTqSwFHx4IoV8MAARERE1Ek+kUB4GICIiIgdguFEWToImIiIi1WEAIiIiItVhACIiIiLVYQAiIiIi1WEAIiIiItVhACIiIiLV4WnwpChFRUVcZ4OIiBqNAYgUo6ioCJmZmabbBoMfiosDERBQZLbiakpKCkMQERHViwGIFOP6np99+3pgy5ahEMLDdLHBmJj9tcoRyRF7MomkxwBEimMw+JnCDwAI4YEtW4YiKuoELzpIsndjT2Zd2JNJ5FwMQKQ4xcWBpvBTQwgPFBcHMACR7N3Y81PXUC57Mq3D3jSyFwMQKU5AQBE0GqNZCNJojAgIKJawVnQ9filZp76hXGoYe9OoMRiASHH0+jIkJ2+t9cXB3h954JeSdTiU23jsTaPGYAAiRYqJ2Y+oqBMoLg5AQEAxvzBkhF9K1uFQrmOxN41sxQBEiqXXl/GLQub4pVQ3DuU6DnvTyB5cCZoUQ6fTObQcOVddX0oGg5/ENZOHmqFcjcYIABzKbYT6etOI6sIeIFKMwMBApKSkcHKtQshpiEeuk7I5lOsY7E0jezAAyYxcD9Ryoea2K41cvpTkNin7xh7KuoZy2ZNpPZ4YQfZgAJIRuR2oiRpDLl9KcpuUzZ5M52BvGtmKAUhG5HagJmosuX0pyWVSNsONY7A3jRqDAUim5HKgJrKVXL+UeKaQ+2FvGjUGA5AM8UBNSibXLyU5Tcomx2G4IXsxAMlISUkJgIYP1CUlJQgNDZWghkTWkeOXklwmZRORPHAdIBm5evUqgGsHakCY3Xf9gbqmHBFZj+vuENH12AMkWwKA5u9bou6SRGQduU3KJiLpMADJUHFxIGp3znGuApE95Dopm4ikxQAkI56engAanqtQU46IGibXSdlEtnL2QrlqW4iXAUhG9Hr9//5b/wJyNeWIyDrudNAmdXL2QrlqXIiXAUimOFeBiIhqOHuhXDUuxMsAJGN1zVWQM7V1oRIRuZqzF8pVy0K8kp8Gv2LFCkRERMDb2xtxcXH48ccf6yz766+/Yvjw4YiIiIBGo0FGRkaj9ykn1k7ClOtkzZou1Lfffhtvv/02Fi/+CGlpX2Lx4o9M2zIzM1FUVCR1VYmIFKVmnbi6Fso1GPzMytmrof27E0l7gNavX4/U1FSsWrUKcXFxyMjIQGJiIo4dO4agoKBa5SsqKtCuXTs8+OCDePbZZx2yTzlR+mTN6+td3y8Id+pCJSJyhZr13xpaKLex68SpacV0SXuAli5diokTJ2LChAno0qULVq1ahaZNm2L16tUWy/fq1QuLFy/GyJEj4eXl5ZB9yk1gYCBCQ0Pr/JNr+Lmemn5BEBG5Us1Zwtdz5Irmzt6/nEgWgKqqqrB3714kJCT8XRkPDyQkJGD37t0u3WdlZSVKS0vN/sh+9f2CICIi++n1ZejW7SD+vlqAQLduBx3WO6OmFdMlGwK7ePEiqqurERwcbLY9ODgYR48edek+09PTMW/ePLuek2rjNZeIiJzDYPDDwYPd8PeVAjQ4eLAbBg78l8NCilrOQpZ8ErQcpKWlwWAwmP7OnDkjdZUUTU2/IIiIXKFmAdyGetjtXSjX0orpkZF/1Dpuy/UkHHtI1gPUsmVLaLVaFBYWmm0vLCxESEiIS/fp5eVV55wiso9afkEQEblCzQK4DfWw27tQrtJPwrGHZD1AOp0OsbGxyM3NNW0zGo3Izc1FfHy8bPZJ9qvrFwQREdnHmT3s7nASji0kPQ0+NTUV48aNQ8+ePdG7d29kZGSgvLwcEyZMAACMHTsWrVu3Rnp6OoBrk5wPHz5s+veff/6JAwcOoFmzZmjfvr1V+yTnUfo6RkREcnX9cbO+HnYeX62nEUKIhos5T2ZmJhYvXoyCggJER0dj2bJliIuLAwAMGDAAERERyMrKAgCcOnUKkZGRtfbRv39/5OXlWbVPa5SWlkKv18NgMMDf379R7VMbrgRNpCz8zCoH36uG2fL9LXkAkiMGICJSAzVeAFNN1BiYbPn+5rXAiIhUSo0XwFQLhtuGMQAREZFqLoCpFgy3DWMAIrKTGruXyT3VdfmaqKgTPIvTDTDcWsYARGQHdi87lrPDJMNq/dR0AUy1YbitGwMQkR3Yvew4zg6Tagur9oQ9Xr7GfTHc1o0BiKiR2L3cOM4Ok2oKq/aGvZrF9W78/1jtX5DugOG2bgxARI3A7mXHcnaYdPew2piwx8vXuCeG27oxABE1AruXHcfZYVJtYdWasGfpApiWXguuLqxsDLeWMQCRpJQ+OZXdy47j7DCpprBqbdhT4wUw1YLhtmEMQCQZd5icyu5lx3F2mFRTWLUl7Mn1s0WNw3DbMAYgkoy7TE5l97JjODtMqimsqinsUd3UHG6swQBEsqC0yansXnYOZ4dJtYRVNYU9InsxAJHklDg5ld3LjuPsMKnWsKqWsEdkLwYgkpxSJ6cy3DiGs8OkmsKqWsMekT0YgEhynK9Azg4f7hBurKGmsEfUWAxAJDnOVyBnU/pyC7Zwl3YQORsDEMkC5yuQs7jDcgtE5HgMQCQZzlcgV3CX5RaIyLEYgEgynK9Arqa05RaIyHkYgEhSDDfkKkpcbkGO1DSfitwbAxARqYJSl1uQE86nInvJMTgzABGRKnC5hcbjfCqyh1yDMwMQEakCl1twLM6nImvJNTgzABGRanC5BcfgfCqyl5yCs0fDRYiIlMvScguRkX/U+qLmcgvWq28+FVFd6grOBoOfJPVhACIiIpvUzKe6HudTUUPkFpwZgIjIrVmaf5CfH1HrVycn7lqvZj5VTQjifCqyhtyCM+cAEZFqyGn+gdJxPhXZSm4nIjAAEZEqcOJu4/HyNdRYcgrODEBEpApcCLHxePkasodcgzMDECmKHFcTJWXgQoiOwc8X2UquwZkBiBRDrquJkjLIbf4BkdLZ8oNUjsdkBiBSDLmuJkrKIaf5B0RK5g4/SBmASJF4Ng9Zq6KiwsJWjZXliJxHyUP67vCDlAGIFIdn85AtmjZtavp3fcH5+nJqouQvYSVzhx6UGkr9QcoARIrDs3nIHgzOtbnTl7DSuEMPCqDszxUDECkOz+ZxP67ohWBwrs3aL1e5fwkrnVJ7UABlf65kEYBWrFiBxYsXo6CgAN27d8fy5cvRu3fvOst/8sknmDVrFk6dOoUOHTpg4cKFuOeee0z3jx8/HtnZ2WaPSUxMRE5OjtPaQK7Ds3nci6t6IRicG1ZXL8T1OGTmWEruQQGU/bmSPACtX78eqampWLVqFeLi4pCRkYHExEQcO3YMQUFBtcrv2rULo0aNQnp6OoYOHYq1a9di2LBh2LdvH2655RZTuaSkJKxZs8Z028vLyyXtIddwxtk8PLBLw1VDAQzO9bOmF4JDZo6n5B4UQNmfK8kD0NKlSzFx4kRMmDABALBq1Sps27YNq1evxowZM2qVf+ONN5CUlIRp06YBAObPn4+vvvoKmZmZWLVqlamcl5cXQkJCXNMIcglnribKA7s8OHsogKfBW2ZtL4S7zFuREyX3oNRQ6udK0gBUVVWFvXv3Ii0tzbTNw8MDCQkJ2L17t8XH7N69G6mpqWbbEhMTsWnTJrNteXl5CAoKQosWLTBw4EC88sor/OJSuMDAQIwZM6be05WbNm1q1/vMA7v0XDUUUFdwVjN7eiGUPG9FTpTagyLXy1vYQtIAdPHiRVRXVyM4ONhse3BwMI4ePWrxMQUFBRbLFxQUmG4nJSXh/vvvR2RkJE6ePIkXX3wRgwcPxu7du6HVamvts7KyEpWVlabbpaWljWkWOUlRURE++OCDBss1tpeGB3Zp2PIlbMtwpbUHYDkfqJ3N1l4Ipc9bkRsl9qDI9fIWtpB8CMwZRo4cafr3rbfeim7duiEqKgp5eXm46667apVPT0/HvHnzXFlFsoMreml4YJeOtV/Ctg5XusOB2tls7YVQ+rwVOXCHHhSlf2YkDUAtW7aEVqtFYWGh2fbCwsI65++EhITYVB4A2rVrh5YtW+LEiRMWA1BaWprZsFppaSnCw8NtaQq5mLN6aXhgl461X8L2BGGlH6id5fov1/p6IW78EnaHeStSYzCXnqQBSKfTITY2Frm5uRg2bBgAwGg0Ijc3FykpKRYfEx8fj9zcXEydOtW07auvvkJ8fHydz3P27FkUFRUhNDTU4v1eXl48S0xBnNlLwwO7tGwdCuBwZePY+yWs1HkrcsNwIy3Jh8BSU1Mxbtw49OzZE71790ZGRgbKy8tNZ4WNHTsWrVu3Rnp6OgBgypQp6N+/P/75z39iyJAhWLduHf7973/j7bffBgBcunQJ8+bNw/DhwxESEoKTJ09i+vTpaN++PRITEyVrJzmOM3tpeGB3PXuHAjhc6Rj2fgkrcd4K0fUkD0AjRozAhQsXMHv2bBQUFCA6Oho5OTmmic6nT5+Gh8ffX3Z9+vTB2rVr8dJLL+HFF19Ehw4dsGnTJtMaQFqtFgcPHkR2djZKSkoQFhaGQYMGYf78+ezlcRPO6KUxGAymf9d3YDcYDHX2JJJ97O2F4HCl67nDvBWiGpIHIODaZMW6hrzy8vJqbXvwwQfx4IMPWizv4+ODL774wpHVI5lxRi+NEMLC1tpXDLdcjhrLnl4IDle6HuetkDuRRQAispWju9+bN29u+nd980quL0fS4nClNBhuyF0wAJFiuKL7nfNKlIXzUIjIXgxApBiu6H7nvBL54zwUInIEBiCSlK0XIHV29zvnlcgf56HQ9XgRY7IXAxBJRo4XIOW8EmVQ+hcav7QdQ47HEFIOBiCSjFwvQMp5JeRM/NJ2HLkdQ5QebJVef1sxAJEsSL2iL+eVSMvZB145Hdjl9qXtLqQ+hig92Cq9/vZgACLJyeHMK84rkY6zD7xyPrBL/aXtLmw5hjgrDCs92Cq9/vZgACLJyeXMK4YbaTj7wCvXA7scgr+7sPYY4qowrPRgq/T6W4sBiCTHM6+ohrMPvHI6sMsl+LsDa48hrgjDSg+2Sq+/LTwaLkLkXDVnXmk0RgDgmVcqVdeB12DwU8T+bVXzpX09Bn/72HMM2bevBzIypiI7exwyMqZi374eDqlLfcFWCZRef1uwB4hkgWdekbN7ROTW48IlFxzLlmOIM3s5lN6jrfT624IBiCTDM6/oes4+8MrxwM7g3zj2HkOcGYaVHmyVXn9bMACRZAIDAzFmzBhUVFTUWaZp06acnKwSzj7wyuXAzuDvOPaevensMKz0YKv0+luLAYgkU1RUhA8++KDBcu607gTVz9kHXjkc2LnkgmPZ8zo5IwwrPdgqvf72YAAiycj19GSlktNif7Zw9oFXjgd2Ob4PauPoMKz0YKv0+tuDAYhkQU6nJyuRnBf7a4izD7z27F+pYZLq5+wwrPT/J5Ref1sxAJHk1LTuhLNY20um1t40Ww7sSg6TVD819nJQ3RiASHJyOz3ZHdQ1nChHcgscHJpVFlt76xhuqAYDkMyosetdjqcnO4Or3lulDSfKLXAYDAbTv/ft64HPPx+Ka2vGGnHvvX+/lgaDAaGhoS6pE1kmt/BMysIAJCNq/TDL5fRkZ3LVe6v04UQ5hLcrV64AuPZa/h1+AMADn3/+92tZU46kI7fwTMrCACQjav4wy+H0ZFvZ0qPjqvdWycOJcgtvZ86Eo/bVgjxw5sxN0OuPuLw+VD85hGdSFgYgmVLDh1mOpydbqzE9Os58b5U8nKjk8EbSklt4JmVgAJIhtXyYlXxGhr09Os5+b5U8nCi38BYefgaAAKAxq094+FlJ6kN1Y3gmezAAyZCaPsxyDDe2sqVHx1nv7fW9ZPUNJ8qxN62G3MKbXl+Ge+/dIpv6UN3kFp5JGRiAZIgfZuWwtUfHWe+tknvTrieHuWBNmvx9WKyvPteXI2nJLTyTMvATLEP8MCuHrT06znxv5R5u6iK3uWDNmze3qj43liNpySE8k7IwAMkUP8zKYE+PDt9bc3LrvbI2aMl5OFEt5BaeSVkYgGSEH2blsbZHh+9t/eTUeyW3QEZ143tFjcEAJCP8MCuTNT06fG+Vhe+DcvC9InsxAMkMP8zKYE+PDt9bIiL5YAAisgN7dIiIlI0BiMhODDdERMp144VuiIiIiNweAxARERGpDgMQERERqQ4DEBEREakOAxARERGpjiwC0IoVKxAREQFvb2/ExcXhxx9/rLf8J598gs6dO8Pb2xu33nortm/fbna/EAKzZ89GaGgofHx8kJCQgOPHjzuzCURERKQgkgeg9evXIzU1FXPmzMG+ffvQvXt3JCYm4vz58xbL79q1C6NGjcJjjz2G/fv3Y9iwYRg2bBgOHTpkKrNo0SIsW7YMq1atwp49e+Dr64vExERcvnzZVc0iIiIiGdMIIYSUFYiLi0OvXr2QmZkJADAajQgPD8czzzyDGTNm1Co/YsQIlJeXY+vWraZtt912G6Kjo7Fq1SoIIRAWFobnnnsOzz//PADAYDAgODgYWVlZGDlyZIN1Ki0thV6vh8FggL+/v4NaSkRERM5ky/e3pD1AVVVV2Lt3LxISEkzbPDw8kJCQgN27d1t8zO7du83KA0BiYqKpfH5+PgoKCszK6PV6xMXF1bnPyspKlJaWmv0RERGR+5J0JeiLFy+iuroawcHBZtuDg4Nx9OhRi48pKCiwWL6goMB0f822usrcKD09HfPmzau1nUGIiIhIOWq+t60Z3OKlMACkpaUhNTXVdPvPP/9Ely5dEB4eLmGtiIiIyB5lZWXQ6/X1lpE0ALVs2RJarRaFhYVm2wsLCxESEmLxMSEhIfWWr/lvYWEhQkNDzcpER0db3KeXlxe8vLxMt5s1a4YzZ87Az88PGo3G5nbVp7S0FOHh4Thz5oxbzi9i+5TP3dvI9imfu7eR7bOfEAJlZWUICwtrsKykAUin0yE2Nha5ubkYNmwYgGuToHNzc5GSkmLxMfHx8cjNzcXUqVNN27766ivEx8cDACIjIxESEoLc3FxT4CktLcWePXvw1FNPWVUvDw8P3HTTTXa3yxr+/v5u+T92DbZP+dy9jWyf8rl7G9k++zTU81ND8iGw1NRUjBs3Dj179kTv3r2RkZGB8vJyTJgwAQAwduxYtG7dGunp6QCAKVOmoH///vjnP/+JIUOGYN26dfj3v/+Nt99+GwCg0WgwdepUvPLKK+jQoQMiIyMxa9YshIWFmUIWERERqZvkAWjEiBG4cOECZs+ejYKCAkRHRyMnJ8c0ifn06dPw8Pj7ZLU+ffpg7dq1eOmll/Diiy+iQ4cO2LRpE2655RZTmenTp6O8vByTJk1CSUkJ+vbti5ycHHh7e7u8fURERCQ/kgcgAEhJSalzyCsvL6/WtgcffBAPPvhgnfvTaDR4+eWX8fLLLzuqig7j5eWFOXPmmM05cidsn/K5exvZPuVz9zayfa4h+UKIRERERK4m+aUwiIiIiFyNAYiIiIhUhwGIiIiIVIcBiIiIiFSHAaiRVqxYgYiICHh7eyMuLg4//vhjveUzMjLQqVMn+Pj4IDw8HM8++ywuX77cqH06k6PbN3fuXGg0GrO/zp07O7sZ9bKljVeuXMHLL7+MqKgoeHt7o3v37sjJyWnUPp3N0e2T03v43XffITk5GWFhYdBoNNi0aVODj8nLy0NMTAy8vLzQvn17ZGVl1Sojp/fPGW1U8nt47tw5jB49Gh07doSHh4fZorjX++STT9C5c2d4e3vj1ltvxfbt2x1feSs4o31ZWVm13j8pl3mxtY0bN27E3XffjVatWsHf3x/x8fH44osvapVz+udQkN3WrVsndDqdWL16tfj111/FxIkTRfPmzUVhYaHF8h9++KHw8vISH374ocjPzxdffPGFCA0NFc8++6zd+3QmZ7Rvzpw5omvXruLcuXOmvwsXLriqSbXY2sbp06eLsLAwsW3bNnHy5Enx5ptvCm9vb7Fv3z679+lMzmifnN7D7du3i5kzZ4qNGzcKAOKzzz6rt/zvv/8umjZtKlJTU8Xhw4fF8uXLhVarFTk5OaYycnr/hHBOG5X8Hubn54vJkyeL7OxsER0dLaZMmVKrzM6dO4VWqxWLFi0Shw8fFi+99JLw9PQUv/zyi3MaUQ9ntG/NmjXC39/f7P0rKChwTgOsYGsbp0yZIhYuXCh+/PFH8dtvv4m0tDTh6enp8uMoA1Aj9O7dWzz99NOm29XV1SIsLEykp6dbLP/000+LgQMHmm1LTU0Vt99+u937dCZntG/OnDmie/fuTqmvPWxtY2hoqMjMzDTbdv/994uHH37Y7n06kzPaJ7f3sIY1B97p06eLrl27mm0bMWKESExMNN2W0/t3I0e1Ucnv4fX69+9vMSA89NBDYsiQIWbb4uLixBNPPNHIGjaOo9q3Zs0aodfrHVYvR7K1jTW6dOki5s2bZ7rtis8hh8DsVFVVhb179yIhIcG0zcPDAwkJCdi9e7fFx/Tp0wd79+41deP9/vvv2L59O+655x679+kszmhfjePHjyMsLAzt2rXDww8/jNOnTzuvIfWwp42VlZW1upp9fHywY8cOu/fpLM5oXw25vIe22r17t9nrAQCJiYmm10NO75+9GmpjDaW+h9aw9jVQskuXLqFt27YIDw/Hfffdh19//VXqKtnNaDSirKwMAQEBAFz3OWQAstPFixdRXV1tumRHjeDgYBQUFFh8zOjRo/Hyyy+jb9++8PT0RFRUFAYMGIAXX3zR7n06izPaBwBxcXHIyspCTk4OVq5cifz8fPTr1w9lZWVObY8l9rQxMTERS5cuxfHjx2E0GvHVV19h48aNOHfunN37dBZntA+Q13toq4KCAouvR2lpKf773//K6v2zV0NtBJT9HlqjrtdAKe9hQzp16oTVq1dj8+bN+OCDD2A0GtGnTx+cPXtW6qrZZcmSJbh06RIeeughAK47jjIAuVBeXh5ee+01vPnmm9i3bx82btyIbdu2Yf78+VJXzSGsad/gwYPx4IMPolu3bkhMTMT27dtRUlKCjz/+WMKaW++NN95Ahw4d0LlzZ+h0OqSkpGDChAlm16tTMmvap/T3kPgeKl18fDzGjh2L6Oho9O/fHxs3bkSrVq3w1ltvSV01m61duxbz5s3Dxx9/jKCgIJc+tyyuBaZELVu2hFarRWFhodn2wsJChISEWHzMrFmz8Mgjj+Dxxx8HANx6662mi7bOnDnTrn06izPaZykkNG/eHB07dsSJEycc34gG2NPGVq1aYdOmTbh8+TKKiooQFhaGGTNmoF27dnbv01mc0T5LpHwPbRUSEmLx9fD394ePjw+0Wq1s3j97NdRGS5T0HlqjrtdAKe+hrTw9PdGjRw/FvX/r1q3D448/jk8++cRsuMtVx1H3+NkqAZ1Oh9jYWOTm5pq2GY1G5ObmIj4+3uJjKioqaoUArVYLABBC2LVPZ3FG+yy5dOkSTp48idDQUAfV3HqNeb29vb3RunVrXL16FRs2bMB9993X6H06mjPaZ4mU76Gt4uPjzV4PAPjqq69Mr4ec3j97NdRGS5T0HlrDntdAyaqrq/HLL78o6v376KOPMGHCBHz00UcYMmSI2X0u+xw6bDq1Cq1bt054eXmJrKwscfjwYTFp0iTRvHlz0+mIjzzyiJgxY4ap/Jw5c4Sfn5/46KOPxO+//y6+/PJLERUVJR566CGr96n09j333HMiLy9P5Ofni507d4qEhATRsmVLcf78eZe3Twjb2/jDDz+IDRs2iJMnT4rvvvtODBw4UERGRoq//vrL6n26kjPaJ6f3sKysTOzfv1/s379fABBLly4V+/fvF3/88YcQQogZM2aIRx55xFS+5hTxadOmiSNHjogVK1ZYPA1eLu+fEM5po5LfQyGEqXxsbKwYPXq02L9/v/j1119N9+/cuVM0adJELFmyRBw5ckTMmTNHstPgndG+efPmiS+++EKcPHlS7N27V4wcOVJ4e3ublXElW9v44YcfiiZNmogVK1aYncpfUlJiKuOKzyEDUCMtX75ctGnTRuh0OtG7d2/xww8/mO7r37+/GDdunOn2lStXxNy5c0VUVJTw9vYW4eHh4h//+IfZl0tD+3Q1R7dvxIgRIjQ0VOh0OtG6dWsxYsQIceLECRe2qDZb2piXlyduvvlm4eXlJQIDA8Ujjzwi/vzzT5v26WqObp+c3sNvvvlGAKj1V9OmcePGif79+9d6THR0tNDpdKJdu3ZizZo1tfYrp/fPGW1U+ntoqXzbtm3Nynz88ceiY8eOQqfTia5du4pt27a5pkE3cEb7pk6davr/Mzg4WNxzzz1ma+i4mq1t7N+/f73lazj7c6gRoo6xCSIiIiI3xTlAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERECpCXlweNRoOSkhKpq0LkFhiAiMjM+PHjodFosGDBArPtmzZtgkajMd0WQuCdd95BfHw8/P390axZM3Tt2hVTpkyx+qKMFRUVSEtLQ1RUFLy9vdGqVSv0798fmzdvNpWJiIhARkaGQ9rmbDWvnUajgaenJyIjIzF9+nRcvnzZpv0MGDAAU6dONdvWp08fnDt3Dnq93oE1JlIvBiAiqsXb2xsLFy7EX3/9ZfF+IQRGjx6NyZMn45577sGXX36Jw4cP491334W3tzdeeeUVq57nySefxMaNG7F8+XIcPXoUOTk5eOCBB1BUVOTI5rhUUlISzp07h99//x2vv/463nrrLcyZM6fR+9XpdAgJCTELoUTUCA69sAYRKd64cePE0KFDRefOncW0adNM2z/77DNRc8j46KOPBACxefNmi/swGo1WPZderxdZWVl13m/pmkE1vv/+e9G3b1/h7e0tbrrpJvHMM8+IS5cume5/7733RGxsrGjWrJkIDg4Wo0aNEoWFhab7a65flJOTI6Kjo4W3t7e48847RWFhodi+fbvo3Lmz8PPzE6NGjRLl5eVWtWfcuHHivvvuM9t2//33ix49ephuX7x4UYwcOVKEhYUJHx8fccstt4i1a9ea7ePGNufn55vqe/219T799FPRpUsXodPpRNu2bcWSJUusqicRCcEeICKqRavV4rXXXsPy5ctx9uzZWvd/9NFH6NSpE+69916Lj7e2lyIkJATbt29HWVmZxfs3btyIm266CS+//DLOnTuHc+fOAQBOnjyJpKQkDB8+HAcPHsT69euxY8cOpKSkmB575coVzJ8/Hz///DM2bdqEU6dOYfz48bWeY+7cucjMzMSuXbtw5swZPPTQQ8jIyMDatWuxbds2fPnll1i+fLlV7bnRoUOHsGvXLuh0OtO2y5cvIzY2Ftu2bcOhQ4cwadIkPPLII/jxxx8BAG+88Qbi4+MxceJEU5vDw8Nr7Xvv3r146KGHMHLkSPzyyy+YO3cuZs2ahaysLLvqSqQ6UicwIpKX63sxbrvtNvHoo48KIcx7gDp37izuvfdes8dNmTJF+Pr6Cl9fX9G6dWurnuvbb78VN910k/D09BQ9e/YUU6dOFTt27DAr07ZtW/H666+bbXvsscfEpEmTzLZ9//33wsPDQ/z3v/+1+Fw//fSTACDKysqEEH/3AH399demMunp6QKAOHnypGnbE088IRITE61qz7hx44RWqxW+vr7Cy8tLABAeHh7i008/rfdxQ4YMEc8995zpdv/+/cWUKVPMytzYAzR69Ghx9913m5WZNm2a6NKli1V1JVI79gARUZ0WLlyI7OxsHDlypMGyM2fOxIEDBzB79mxcunTJqv3fcccd+P3335Gbm4sHHngAv/76K/r164f58+fX+7iff/4ZWVlZaNasmekvMTERRqMR+fn5AK71kCQnJ6NNmzbw8/ND//79AQCnT58221e3bt1M/w4ODkbTpk3Rrl07s23nz5+3qj0AcOedd+LAgQPYs2cPxo0bhwkTJmD48OGm+6urqzF//nzceuutCAgIQLNmzfDFF1/UqldDjhw5gttvv91s2+23347jx4+jurrapn0RqREDEBHV6Y477kBiYiLS0tLMtnfo0AHHjh0z29aqVSu0b98eQUFBNj2Hp6cn+vXrhxdeeAFffvklXn75ZcyfPx9VVVV1PubSpUt44okncODAAdPfzz//jOPHjyMqKgrl5eVITEyEv78/PvzwQ/z000/47LPPAKDWfj09PU3/rjl763oajQZGo9Hq9vj6+qJ9+/bo3r07Vq9ejT179uDdd9813b948WK88cYbeOGFF/DNN9/gwIEDSExMrLe9ROR4TaSuABHJ24IFCxAdHY1OnTqZto0aNQqjR4/G5s2bcd999zn0+bp06YKrV6/i8uXL0Ol00Ol0tXo0YmJicPjwYbRv397iPn755RcUFRVhwYIFpvkz//73vx1aT2t4eHjgxRdfRGpqKkaPHg0fHx/s3LkT9913H8aMGQMAMBqN+O2339ClSxfT4yy1+UY333wzdu7cabZt586d6NixI7RareMbQ+Rm2ANERPW69dZb8fDDD2PZsmWmbSNHjsQDDzyAkSNH4uWXX8aePXtw6tQpfPvtt1i/fr3VX8ADBgzAW2+9hb179+LUqVPYvn07XnzxRdx5553w9/cHcG0doO+++w5//vknLl68CAB44YUXsGvXLqSkpODAgQM4fvw4Nm/ebJoE3aZNG+h0Oixfvhy///47Pv/88waH1ZzlwQcfhFarxYoVKwBc6z376quvsGvXLhw5cgRPPPEECgsLzR4TERFhek0vXrxosQfqueeeQ25uLubPn4/ffvsN2dnZyMzMxPPPP++SdhEpHQMQETXo5ZdfNvsS1mg0WL9+PTIyMrB9+3bcdddd6NSpEx599FGEh4djx44dVu03MTER2dnZGDRoEG6++WY888wzSExMxMcff2z23KdOnUJUVBRatWoF4Nq8nW+//Ra//fYb+vXrhx49emD27NkICwsDcG04LisrC5988gm6dOmCBQsWYMmSJQ58RazXpEkTpKSkYNGiRSgvL8dLL72EmJgYJCYmYsCAAQgJCcGwYcPMHvP8889Dq9WiS5cuaNWqlcX5QTExMfj444+xbt063HLLLZg9ezZefvlli2e6EVFtGiGEkLoSRERERK7EHiAiIiJSHQYgInKa609Tv/Hv+++/l7p6Njl9+nS97bH1NHYikhaHwIjIaeq7KGrr1q3h4+Pjwto0ztWrV3Hq1Kk674+IiECTJjyxlkgpGICIiIhIdTgERkRERKrDAERERESqwwBEREREqsMARERERKrDAERERESqwwBEREREqsMARERERKrDAERERESq8/8Bjuoq8+ruGZoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHHCAYAAACx7iyPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVrdJREFUeJzt3XtcVGXiP/DPzMgAIqCgXENBvJCmIl5YzdsWCq5ivrK8laKVdiM1SpMslbRFW9fIS1r9UswyrTRb0y+WbFQqaSuamZeUMLMAdcgBcQVjnt8fLpMjA8wMczlzzuf9evGSOfPMmfPMOOd8eG6jEkIIEBERESmc2tUHQERERCQFDEVEREREYCgiIiIiAsBQRERERASAoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREABiKiIiIiAAwFBERSVZ2djZUKhXOnj3r6kMhUgSGIiIF+/bbb5GamoquXbvCx8cHbdu2xdixY/Hjjz/WKTtkyBCoVCqoVCqo1Wr4+fmhc+fOmDRpEj7//HOrnnfHjh0YPHgwgoKC0Lx5c7Rv3x5jx45FTk6OvapWx9///nds3769zvb9+/dj4cKFuHz5ssOe+1YLFy40vpYqlQrNmzdHly5d8MILL6C8vNwuz7Fp0yZkZWXZZV9ESsFQRKRgS5cuxdatW3H33Xfjtddew/Tp0/HVV18hLi4Ox44dq1P+tttuw8aNG/HOO+/gH//4B0aNGoX9+/dj2LBhGDduHK5fv97ocy5btgyjRo2CSqVCeno6Xn31VYwZMwanT5/G5s2bHVFNAA2HooyMDKeGolpr1qzBxo0bsXz5csTExODll19GUlIS7PGVlAxFRNZr5uoDICLXSUtLw6ZNm6DVao3bxo0bh27dumHJkiV49913Tcr7+/vjwQcfNNm2ZMkSzJgxA6+//joiIyOxdOnSep/vjz/+wKJFizB06FB89tlnde6/cOFCE2skHVevXkXz5s0bLHPfffehdevWAIDHHnsMY8aMwbZt2/DNN9+gX79+zjhMIroJW4qIFKx///4mgQgAOnbsiK5du+LEiRMW7UOj0WDFihXo0qULVq1aBb1eX2/ZS5cuoby8HHfeeafZ+4OCgkxuX7t2DQsXLkSnTp3g5eWF0NBQ3HvvvSgsLDSWWbZsGfr374/AwEB4e3ujV69e+Oijj0z2o1KpUFlZiQ0bNhi7rKZMmYKFCxdi9uzZAICoqCjjfTeP4Xn33XfRq1cveHt7IyAgAOPHj8cvv/xisv8hQ4bgjjvuwKFDhzBo0CA0b94czz//vEWv383uuusuAEBRUVGD5V5//XV07doVnp6eCAsLw5NPPmnS0jVkyBDs3LkTP//8s7FOkZGRVh8PkdKwpYiITAghUFpaiq5du1r8GI1GgwkTJuDFF1/E3r17MWLECLPlgoKC4O3tjR07duCpp55CQEBAvfusqanByJEjkZubi/Hjx2PmzJmoqKjA559/jmPHjiE6OhoA8Nprr2HUqFF44IEHUF1djc2bN+P+++/Hp59+ajyOjRs34pFHHkHfvn0xffp0AEB0dDR8fHzw448/4v3338err75qbLVp06YNAODll1/Giy++iLFjx+KRRx7BxYsXsXLlSgwaNAiHDx9Gy5Ytjcer0+kwfPhwjB8/Hg8++CCCg4Mtfv1q1Ya9wMDAesssXLgQGRkZSEhIwOOPP45Tp05hzZo1+Pbbb7Fv3z54eHhg3rx50Ov1OH/+PF599VUAQIsWLaw+HiLFEUREN9m4caMAIN5++22T7YMHDxZdu3at93Eff/yxACBee+21Bvc/f/58AUD4+PiI4cOHi5dfflkcOnSoTrl169YJAGL58uV17jMYDMbfr169anJfdXW1uOOOO8Rdd91lst3Hx0ekpKTU2dc//vEPAUAUFRWZbD979qzQaDTi5ZdfNtn+/fffi2bNmplsHzx4sAAg1q5dW2+9b7ZgwQIBQJw6dUpcvHhRFBUViTfeeEN4enqK4OBgUVlZKYQQYv369SbHduHCBaHVasWwYcNETU2NcX+rVq0SAMS6deuM20aMGCHatWtn0fEQ0Q3sPiMio5MnT+LJJ59Ev379kJKSYtVja1siKioqGiyXkZGBTZs2oWfPnti9ezfmzZuHXr16IS4uzqTLbuvWrWjdujWeeuqpOvtQqVTG3729vY2///7779Dr9Rg4cCAKCgqsOv5bbdu2DQaDAWPHjsWlS5eMPyEhIejYsSO++OILk/Kenp6YOnWqVc/RuXNntGnTBlFRUXj00UfRoUMH7Ny5s96xSHv27EF1dTVmzZoFtfrP0/e0adPg5+eHnTt3Wl9RIjJi9xkRAQBKSkowYsQI+Pv746OPPoJGo7Hq8VeuXAEA+Pr6Nlp2woQJmDBhAsrLy3HgwAFkZ2dj06ZNSE5OxrFjx+Dl5YXCwkJ07twZzZo1fJr69NNPsXjxYhw5cgRVVVXG7TcHJ1ucPn0aQgh07NjR7P0eHh4mt8PDw+uMz2rM1q1b4efnBw8PD9x2223GLsH6/PzzzwBuhKmbabVatG/f3ng/EdmGoYiIoNfrMXz4cFy+fBlff/01wsLCrN5H7RT+Dh06WPwYPz8/DB06FEOHDoWHhwc2bNiAAwcOYPDgwRY9/uuvv8aoUaMwaNAgvP766wgNDYWHhwfWr1+PTZs2WV2HmxkMBqhUKvzf//2f2YB46xidm1usLDVo0CDjOCYicj2GIiKFu3btGpKTk/Hjjz9iz5496NKli9X7qKmpwaZNm9C8eXMMGDDApuPo3bs3NmzYgOLiYgA3BkIfOHAA169fr9MqU2vr1q3w8vLC7t274enpady+fv36OmXrazmqb3t0dDSEEIiKikKnTp2srY5DtGvXDgBw6tQptG/f3ri9uroaRUVFSEhIMG5raksZkRJxTBGRgtXU1GDcuHHIz8/Hhx9+aNPaODU1NZgxYwZOnDiBGTNmwM/Pr96yV69eRX5+vtn7/u///g/An11DY8aMwaVLl7Bq1ao6ZcX/FjfUaDRQqVSoqakx3nf27FmzizT6+PiYXaDRx8cHAOrcd++990Kj0SAjI6POYopCCOh0OvOVdKCEhARotVqsWLHC5Jjefvtt6PV6k1l/Pj4+DS6PQER1saWISMGeeeYZ/Otf/0JycjLKysrqLNZ460KNer3eWObq1as4c+YMtm3bhsLCQowfPx6LFi1q8PmuXr2K/v374y9/+QuSkpIQERGBy5cvY/v27fj6668xevRo9OzZEwAwefJkvPPOO0hLS8PBgwcxcOBAVFZWYs+ePXjiiSdwzz33YMSIEVi+fDmSkpIwceJEXLhwAatXr0aHDh1w9OhRk+fu1asX9uzZg+XLlyMsLAxRUVGIj49Hr169AADz5s3D+PHj4eHhgeTkZERHR2Px4sVIT0/H2bNnMXr0aPj6+qKoqAgff/wxpk+fjmeffbZJr7+12rRpg/T0dGRkZCApKQmjRo3CqVOn8Prrr6NPnz4m71evXr2wZcsWpKWloU+fPmjRogWSk5OderxEbseVU9+IyLVqp5LX99NQ2RYtWoiOHTuKBx98UHz22WcWPd/169fFW2+9JUaPHi3atWsnPD09RfPmzUXPnj3FP/7xD1FVVWVS/urVq2LevHkiKipKeHh4iJCQEHHfffeJwsJCY5m3335bdOzYUXh6eoqYmBixfv1645T3m508eVIMGjRIeHt7CwAm0/MXLVokwsPDhVqtrjM9f+vWrWLAgAHCx8dH+Pj4iJiYGPHkk0+KU6dOmbw2DS1XcKva47t48WKD5W6dkl9r1apVIiYmRnh4eIjg4GDx+OOPi99//92kzJUrV8TEiRNFy5YtBQBOzyeygEoIO3zJDhEREZGb45giIiIiIjAUEREREQFgKCIiIiICwFBEREREBIChiIiIiAgAQxERERERAC7eaJbBYMBvv/0GX19fLpVPRETkJoQQqKioQFhYGNRq69t9GIrM+O233xAREeHqwyAiIiIb/PLLL7jtttusfhxDkRm+vr4AbryoDX2PExEREUlHeXk5IiIijNdxazEUmVHbZebn58dQRERE5GZsHfrCgdZEREREYCgiIiIiAsBQRERERASAY4qIiIjspqamBtevX3f1YciWh4cHNBqNw/bPUERERNREQgiUlJTg8uXLrj4U2WvZsiVCQkIcso4gQxEREVET1QaioKAgNG/enAv/OoAQAlevXsWFCxcAAKGhoXZ/DoYiIiKiJqipqTEGosDAQFcfjqx5e3sDAC5cuICgoCC7d6VxoDUREVET1I4hat68uYuPRBlqX2dHjN1iKCIiIrIDdpk5hyNfZ3afSZBOp0N1dXW992u1WjbREhER2RlDkcTodDqsWrWq0XKpqakMRkRERHbE7jOJubWFSK/3RVFRJPR63wbLUcN0Oh2Ki4vr/dHpdK4+RCIip5syZQpUKhVUKhU8PDwQHByMoUOHYt26dTAYDBbvJzs7Gy1btnTcgToJW4okrKCgJ3bsGAkh1FCpDEhO/hRxcYddfVhuh61vRCR1rhw2kZSUhPXr16OmpgalpaXIycnBzJkz8dFHH+Ff//oXmjVTTlRQTk3djF7vawxEACCEGjt2jER09Bn4+1e4+Ojci6Wtamx9IyJXcPUfbp6enggJCQEAhIeHIy4uDn/5y19w9913Izs7G4888giWL1+O9evX46effkJAQACSk5PxyiuvoEWLFsjLy8PUqVMB/DkIesGCBVi4cCE2btyI1157DadOnYKPjw/uuusuZGVlISgoyO71sAd2n0lUWVmgMRDVEkKNsrIAFx2RfNTXJUlE5ApS/MPtrrvuQo8ePbBt2zYAgFqtxooVK/DDDz9gw4YN+Pe//405c+YAAPr374+srCz4+fkZhyQ8++yzAG5Mm1+0aBG+++47bN++HWfPnsWUKVOcVg9rsaVIogICdFCpDCbBSKUyICCgzIVH5f7YJUlEZJmYmBgcPXoUADBr1izj9sjISCxevBiPPfYYXn/9dWi1Wvj7+0OlUhlbnGo99NBDxt/bt2+PFStWoE+fPrhy5QpatGjhlHpYgy1FEuXvX4Hk5E+hUt0Y6FZ7AWfXme3q65JkixERUV1CCGN32J49e3D33XcjPDwcvr6+mDRpEnQ6Ha5evdrgPg4dOoTk5GS0bdsWvr6+GDx4MADg3LlzDj9+W7ClSMLi4g4jOvoMysoCEBBQxkDURA11SfK1JSIydeLECURFReHs2bMYOXIkHn/8cbz88ssICAjA3r178fDDD6O6urrelbwrKyuRmJiIxMREvPfee2jTpg3OnTuHxMREyY7hZCiSGK1Wa3Lb37/C7AX71nLUOHZJEhFZ5t///je+//57PP300zh06BAMBgP++c9/Qq2+cf784IMPTMprtVrU1NSYbDt58iR0Oh2WLFmCiIgIAMB//vMf51TARgxFEhMYGIjU1FSuaO0AtV2St44pYisRkbzxWwIaVlVVhZKSEpMp+ZmZmRg5ciQmT56MY8eO4fr161i5ciWSk5Oxb98+rF271mQfkZGRuHLlCnJzc9GjRw80b94cbdu2hVarxcqVK/HYY4/h2LFjWLRokYtqaRmGIglS8ofTEW5uVWuoS5Ktb0Ty4+rp7u4gJycHoaGhaNasGVq1aoUePXpgxYoVSElJgVqtRo8ePbB8+XIsXboU6enpGDRoEDIzMzF58mTjPvr374/HHnsM48aNg06nM07Jz87OxvPPP48VK1YgLi4Oy5Ytw6hRo1xY24aphBDC1QchNeXl5fD394der4efn5+rD4fsgH8pEilTcXEx3nzzTeNtvd4XZWWBCAjQmfxRNH36dISGhtr0HNeuXUNRURGioqLg5eVl9eMZ3KzT0Ovd1Os3W4pIEXgiISKpLsnBYRPSwVBERESyJ/VvCWDgkQauU0RERLLHbwkgSzAUERGR7NUuyXEzLslBt2IoIiIi2eO3BJAlOKaIiIgUgd8SQI2RREvR6tWrERkZCS8vL8THx+PgwYP1lt22bRt69+6Nli1bwsfHB7Gxsdi4caNJmSlTpkClUpn8JCUlOboaREQkMea+JSAq6uc6gYjrlBEggZaiLVu2IC0tDWvXrkV8fDyysrKQmJiIU6dOISgoqE75gIAAzJs3DzExMdBqtfj0008xdepUBAUFITEx0VguKSkJ69evN9729PR0Sn2IiEg6ON2drOHyULR8+XJMmzYNU6dOBQCsXbsWO3fuxLp16zB37tw65YcMGWJye+bMmdiwYQP27t1rEoo8PT0REhLi0GMnIiLpY+AhS7m0+6y6uhqHDh1CQkKCcZtarUZCQgLy8/MbfbwQArm5uTh16hQGDRpkcl9eXh6CgoLQuXNnPP7449DpdPXup6qqCuXl5SY/RERE1DR5eXlQqVS4fPmyxY+JjIxEVlaWw46pIS4NRZcuXUJNTQ2Cg4NNtgcHB6OkpKTex+n1erRo0QJarRYjRozAypUrMXToUOP9SUlJeOedd5Cbm4ulS5fiyy+/xPDhw+t8g2+tzMxM+Pv7G39qv82XiIhIzmrH4D722GN17nvyySehUqkwZcoU5x+Yi7i8+8wWvr6+OHLkiPEbedPS0tC+fXtj19r48eONZbt164bu3bsjOjoaeXl5uPvuu+vsLz09HWlpacbb5eXlDEZERKQIERER2Lx5M1599VV4e3sDuPH9Yps2bULbtm1dfHTO5dKWotatW0Oj0aC0tNRke2lpaYPjgdRqNTp06IDY2Fg888wzuO+++5CZmVlv+fbt26N169Y4c+aM2fs9PT3h5+dn8kNERKQEcXFxiIiIwLZt24zbtm3bhrZt26Jnz57GbVVVVZgxYwaCgoLg5eWFAQMG4NtvvzXZ165du9CpUyd4e3vjr3/9K86ePVvn+fbu3YuBAwfC29sbERERmDFjBiorKx1WP2u4NBRptVr06tULubm5xm0GgwG5ubno16+fxfsxGAyoqqqq9/7z589Dp9PZ/A3IcqPT6VBcXFzvT0Pjr4iIyLHOnwe++OLGv87y0EMPmczYXrdunXECVK05c+Zg69at2LBhAwoKCtChQwckJiairOzGquC//PIL7r33XiQnJ+PIkSN45JFH6kyYKiwsRFJSEsaMGYOjR49iy5Yt2Lt3L1JTUx1fSQu4vPssLS0NKSkp6N27N/r27YusrCxUVlYa34zJkycjPDzc2BKUmZmJ3r17Izo6GlVVVdi1axc2btyINWvWAACuXLmCjIwMjBkzBiEhISgsLMScOXOMb57S6XQ6rFq1qtFyqampnLFBRORkb78NTJ8OGAyAWg28+Sbw8MOOf94HH3wQ6enp+PnnnwEA+/btw+bNm5GXlwcAqKysxJo1a5CdnY3hw4cDAN566y18/vnnePvttzF79mysWbMG0dHR+Oc//wkA6Ny5M77//nssXbrU+DyZmZl44IEHMGvWLABAx44dsWLFCgwePBhr1qyBl5eX4yvbAJeHonHjxuHixYuYP38+SkpKEBsbi5ycHOPg63PnzkGt/rNBq7KyEk888QTOnz8Pb29vxMTE4N1338W4ceMAABqNBkePHsWGDRtw+fJlhIWFYdiwYVi0aBHXKgLqrNWh1/uirCwQAQE6k8XMGlrTg4iI7O/8+T8DEXDj30cfBRITgdtuc+xzt2nTBiNGjEB2djaEEBgxYgRat25tvL+wsBDXr1/HnXfeadzm4eGBvn374sSJEwCAEydOID4+3mS/t/b6fPfddzh69Cjee+894zYhBAwGA4qKinD77bc7onoWc3koAm60StTXdFabUmstXrwYixcvrndf3t7e2L17tz0PT7YKCnpix46REEJt/B6guLjDrj4sIiJFOn36z0BUq6YGOHPG8aEIuNGFVnstXr16tUOe48qVK3j00UcxY8aMOvdJYVC3JL7mg5xPr/c1BiIAEEKNHTtGQq/3dfGREREpU8eON7rMbqbRAB06OOf5k5KSUF1djevXr9cZbhIdHQ2tVot9+/YZt12/fh3ffvstunTpAgC4/fbb63xN1zfffGNyOy4uDsePH0eHDh3q/Ejhq1YYihSqrCzQGIhqCaFGWVmAi46IiEjZbrvtxhgijebGbY0GeOMN57QS3Xg+DU6cOIHjx49DU3sQ/+Pj44PHH38cs2fPRk5ODo4fP45p06bh6tWrePh/g54ee+wxnD59GrNnz8apU6ewadMmZGdnm+znueeew/79+5GamoojR47g9OnT+OSTTzjQmlwrIEAHlcpgEoxUKgMCAspceFRERMr28MM3xhCdOXOjhchZgahWQ0vSLFmyBAaDAZMmTUJFRQV69+6N3bt3o1WrVgBudH9t3boVTz/9NFauXIm+ffvi73//Ox566CHjPrp3744vv/wS8+bNw8CBAyGEQHR0tHFcsKuphBDC1QchNeXl5fD394der5fdmkXFxcV48803ATQ8pmj69OlcwoCIyALXrl1DUVERoqKiXD57Sgkaer2bev1mS5GCxcUdRnT0GZSVBSAgoMxk9hkREZHSMBQpzK0D2fz9K8yGISkMeCMiInImhiKFCQwMRGpqaoPrEGm1Wi7cSEREisNQpEAMPERERHVxSj4REZEdcN6SczjydWYoIiIiagIPDw8AwNWrV118JMpQ+zrXvu72xO4zIiKiJtBoNGjZsiUuXLgAAGjevDlUKpWLj0p+hBC4evUqLly4gJYtW9ZZYNIeGIqIiIiaKCQkBACMwYgcp2XLlsbX294YiohkSqfTcZYhkZOoVCqEhoYiKCgI169fd/XhyJaHh4dDWohqMRQRyZBOp8OqVasaLZeamspgRGRHGo3GoRdtciwOtCaSoVtbiPR6XxQVRUKv922wHBGRkrGliEjmGvqOOyIi+hNbiohkTK/3NQYiABBCjR07RtZpMSIiIoYiIlkrKws0BqJaQqhRVhbgoiMiIpIuhiIiGQsI0EGlMphsU6kMCAgoc9ERERFJF0MRkYz5+1cgOflTYzCqHVPk71/h4iMjIpIeDrQmkrm4uMOIjj6DsrIABASUMRAREdWDoYhIhrRarcltf/8Ks2Ho1nJERErGUEQkQ4GBgUhNTeWK1kREVmAoIpIpBh4iIutwoDURERERGIqIiIiIADAUEREREQFgKCIiIiICwFBEREREBIChiIiIiAgAQxERERERAIYiIiIiIgAMRUREREQAGIqIiIiIADAUEREREQFgKCIiIiICwFBEREREBEAioWj16tWIjIyEl5cX4uPjcfDgwXrLbtu2Db1790bLli3h4+OD2NhYbNy40aSMEALz589HaGgovL29kZCQgNOnTzu6GkREROTGXB6KtmzZgrS0NCxYsAAFBQXo0aMHEhMTceHCBbPlAwICMG/ePOTn5+Po0aOYOnUqpk6dit27dxvLvPLKK1ixYgXWrl2LAwcOwMfHB4mJibh27ZqzqkVERERuRiWEEK48gPj4ePTp0werVq0CABgMBkREROCpp57C3LlzLdpHXFwcRowYgUWLFkEIgbCwMDzzzDN49tlnAQB6vR7BwcHIzs7G+PHjG91feXk5/P39odfr4efnZ3vliIiIyGmaev1u5oBjslh1dTUOHTqE9PR04za1Wo2EhATk5+c3+nghBP7973/j1KlTWLp0KQCgqKgIJSUlSEhIMJbz9/dHfHw88vPzzYaiqqoqVFVVGW+Xl5c3pVpOp9PpUF1dXe/9Wq0WgYGBTjwiIiIi9+PSUHTp0iXU1NQgODjYZHtwcDBOnjxZ7+P0ej3Cw8NRVVUFjUaD119/HUOHDgUAlJSUGPdx6z5r77tVZmYmMjIymlIVl9HpdMZWtoakpqYyGBERETXA5WOKbOHr64sjR47g22+/xcsvv4y0tDTk5eXZvL/09HTo9Xrjzy+//GK/g3WwhlqIbClHRESkVC5tKWrdujU0Gg1KS0tNtpeWliIkJKTex6nVanTo0AEAEBsbixMnTiAzMxNDhgwxPq60tBShoaEm+4yNjTW7P09PT3h6ejaxNtKg1/uirCwQAQE6+PtXuPpwiIiI3IZLW4q0Wi169eqF3Nxc4zaDwYDc3Fz069fP4v0YDAbjmKCoqCiEhISY7LO8vBwHDhywap/uqKCgJ7KyZmHDhhRkZc1CQUFPVx8SERGR23BpSxEApKWlISUlBb1790bfvn2RlZWFyspKTJ06FQAwefJkhIeHIzMzE8CN8T+9e/dGdHQ0qqqqsGvXLmzcuBFr1qwBAKhUKsyaNQuLFy9Gx44dERUVhRdffBFhYWEYPXq0q6rpcHq9L3bsGAkhbuRcIdTYsWMkoqPPsMWIiIjIAi4PRePGjcPFixcxf/58lJSUIDY2Fjk5OcaB0ufOnYNa/WeDVmVlJZ544gmcP38e3t7eiImJwbvvvotx48YZy8yZMweVlZWYPn06Ll++jAEDBiAnJwdeXl5Or5+zlJUFGgNRLSHUKCsLYCgiIiKygMvXKZIid1qnqLi4GG+++Sb0el9kZc0yCUYqlQGzZmXB378C06dPNxljRUSOx+UyiJzLrdcpIvvx969AcvKnxi40lcqA5ORP2UpE5CJcLoPI/TAUuTmtVmv8PS7uMKKjz6CsLAABAWUmgejmckTkeLe2ENU3M5TLZRBJB0ORmwsMDERqaiqb6IkkrKCgZ51W3Li4w64+LCK6BUORDDDwEEkXZ4YSuQ+GIiIiB+LMUCL3mXTAUETkIu5ykqCmCQjQQaUy1JkZGhBQ5sKjInIed5p0wFBE5ALudJKgpuHMUFI6d5p0wFBE5ALudJKgpmtoZiiRkkh90gFDEZGLSf0kQba5dRkMf/8Ks2GIy2WQUrjDpAOGIiIXcoeTBNmGy2UQmXKHSQcMRUQu5A4nCbIdAw/Rn9xh0oG68SJE5Ci1J4mbSe0kQURkD7WTDmrPeVKcdMCWIiIX4swkIlISqU86YCgicjGpnySIiJrCnSYdMBQRuYA7nSSIiJrCnSYdqIQQwtUHITXl5eXw9/eHXq+Hn5+fqw+HZIorWhMR2VdTr99sKSJyEQYeIiJp4ewzIiIiIjAUEREREQFgKCIiIiICwFBEREREBIADrSWJs5KIiIicj6FIYnQ6HVatWtVoudTUVAYjIiIiO2L3mcTc2kKk1/uiqCgSer1vg+WIiIioadhSJGEFBT3rfCdWXNxhVx8WERGRLDEUSZRe72sMRAAghBo7doxEdPQZfjcWuS2OlyMiKWMokqiyskBjIKolhBplZQEMReSWOF6OiKSOY4okKiBAB5XKYLJNpTIgIKDMRUdE1DQcL0dEUseWIony969AcvKndcYUsZWI5IDj5YhIihiKJCwu7jCio8+grCwAAQFlDEQkCxwvR0RSxVAkMVqt1uS2v3+F2QvFreWI3AXHyxGRVDEUSUxgYCBSU1PdfoYOZxlRfWrHy90cjDhejoikgKFIgtw9LChxlhFDoOU4Xo6IpIqhiOzO3CyjsrJABAToTC58cpll5KwQKKfgxfFyRCRFDEXkUEqYZeSMECiH1jeOlyMiqWMoIodR4iwjR4VAObS+yWW8HBHJlyQWb1y9ejUiIyPh5eWF+Ph4HDx4sN6yb731FgYOHIhWrVqhVatWSEhIqFN+ypQpUKlUJj9JSUmOrgbdoqFZRnJUXwi8dXHCpioo6ImsrFnYsCEFWVmzUFDQ0677d6TAwECEhobW+8NARESu5PJQtGXLFqSlpWHBggUoKChAjx49kJiYiAsXLpgtn5eXhwkTJuCLL75Afn4+IiIiMGzYMPz6668m5ZKSklBcXGz8ef/9951RHbqJ0lbldkYIdFbwIiJSIpeHouXLl2PatGmYOnUqunTpgrVr16J58+ZYt26d2fLvvfcennjiCcTGxiImJgb/7//9PxgMBuTm5pqU8/T0REhIiPGnVatWzqgO3aR2llFtMJL7LCNnhECltb4RETmTS8cUVVdX49ChQ0hPTzduU6vVSEhIQH5+vkX7uHr1Kq5fv46AANOLQl5eHoKCgtCqVSvcddddWLx4MZvmXUBJs4ycMdWca/wQkSXkNFvVmVwaii5duoSamhoEBwebbA8ODsbJkyct2sdzzz2HsLAwJCQkGLclJSXh3nvvRVRUFAoLC/H8889j+PDhyM/Ph0ajqbOPqqoqVFVVGW+Xl5fbWCMClD3LyNEhkGv8EFFj5DBb1VXcevbZkiVLsHnzZuTl5cHLy8u4ffz48cbfu3Xrhu7duyM6Ohp5eXm4++676+wnMzMTGRkZTjlmJVDaLCNnh0Altb4RkfXkMFvVVVwailq3bg2NRoPS0lKT7aWlpQgJCWnwscuWLcOSJUuwZ88edO/evcGy7du3R+vWrXHmzBmzoSg9PR1paWnG2+Xl5YiIiLCiJnQruQQeSzgjBCq59Y2IbKeEteLsyaWhSKvVolevXsjNzcXo0aMBwDhoOjU1td7HvfLKK3j55Zexe/du9O7du9HnOX/+PHQ6HUJDQ83e7+npCU9PT5vqQAQ4PgQqrfWNiJpOiWvFNZXLu8/S0tKQkpKC3r17o2/fvsjKykJlZSWmTp0KAJg8eTLCw8ORmZkJAFi6dCnmz5+PTZs2ITIyEiUlJQCAFi1aoEWLFrhy5QoyMjIwZswYhISEoLCwEHPmzEGHDh2QmJjosnoSNRUDDxFZo6HZqgxF5rk8FI0bNw4XL17E/PnzUVJSgtjYWOTk5BgHX587dw5q9Z9v6po1a1BdXY377rvPZD8LFizAwoULodFocPToUWzYsAGXL19GWFgYhg0bhkWLFrE1iIiIFIOzVa2nEkIIVx+E1JSXl8Pf3x96vR5+fn6uPhwiIiKLFRcX48033wTQ8Jii6dOn1zusxF019frt8pYiIiIicgzOVrUOQxEREZGMcLaq7RiKiIiIZISzVW3HUERERCQzDDy2cfkXwhIRERFJAUMRERERERiKiIiIiABwTBEREZEJnU7HQcoKxVBERET0PzqdDqtWrWq0XGpqKoORDLH7jIiI6H9ubSHS631RVBQJvd63wXIkD2wpIiIiMqOhr8ggeWJLERER0S30el9jIAJufLv8jh0j67QYkbwwFBEREd2irCzQ5NvlgRvBqKwswEVHRM7AUERERHSLgAAdVCqDyTaVyoCAgDIXHRE5A0MRERHRLfz9K5Cc/KkxGNWOKeK3zMsbB1oTERGZERd3GNHRZ1BWFoCAgDIGIgVgKCIiIvofrVZrctvfv8JsGLq1HMkDQxEREdH/BAYGIjU1lStaKxRDERER0U0YeJSLA62JiIiIwFBEREREBIChiIiIiAgAQxERERERAIYiIiIiIgAMRUREREQAGIqIiIiIADAUEREREQFgKCIiIiICwFBEREREBIChiIiIiAgAQxERERERAIYiIiIiIgAMRUREREQAGIqIiIiIADAUEREREQFgKCIiIiICYKdQVFRUhD/++MMeuyIiIiJyCbuEos6dO+P06dM2P3716tWIjIyEl5cX4uPjcfDgwXrLvvXWWxg4cCBatWqFVq1aISEhoU55IQTmz5+P0NBQeHt7IyEhoUnHR0RERPLXzJrC9957r9ntNTU1mDFjBnx9fQEA27Zts3ifW7ZsQVpaGtauXYv4+HhkZWUhMTERp06dQlBQUJ3yeXl5mDBhAvr37w8vLy8sXboUw4YNww8//IDw8HAAwCuvvIIVK1Zgw4YNiIqKwosvvojExEQcP34cXl5e1lSZiIiIFEIlhBCWFlar1Rg0aBCioqJMtr/zzjsYNWoUWrZsCQBYv369xQcQHx+PPn36YNWqVQAAg8GAiIgIPPXUU5g7d26jj6+pqUGrVq2watUqTJ48GUIIhIWF4ZlnnsGzzz4LANDr9QgODkZ2djbGjx/f6D7Ly8vh7+8PvV4PPz8/i+tCRERErtPU67dVLUWbNm3C7NmzkZKSgqlTpxq3v/vuu3j55ZfRpUsXq568uroahw4dQnp6unGbWq1GQkIC8vPzLdrH1atXcf36dQQEBAC4Mb6ppKQECQkJxjL+/v6Ij49Hfn6+2VBUVVWFqqoq4+3y8nKr6kFERETuz6oxRePHj8fXX3+Nt99+G2PGjMHvv//epCe/dOkSampqEBwcbLI9ODgYJSUlFu3jueeeQ1hYmDEE1T7Omn1mZmbC39/f+BMREWFtVYiIiMjNWT3QOjIyEl999RXuuOMO9OjRA7t374ZKpXLEsTVqyZIl2Lx5Mz7++OMmjRVKT0+HXq83/vzyyy92PEoiIiJyB1Z1n9VSq9XIyMjA0KFDMXnyZNTU1Nj05K1bt4ZGo0FpaanJ9tLSUoSEhDT42GXLlmHJkiXYs2cPunfvbtxe+7jS0lKEhoaa7DM2Ntbsvjw9PeHp6WlTHYiIiEgemjQlf8CAATh69CgKCgoQHR1t9eO1Wi169eqF3Nxc4zaDwYDc3Fz069ev3se98sorWLRoEXJyctC7d2+T+6KiohASEmKyz/Lychw4cKDBfRIREZGy2dRSdLMWLVqgR48eNj8+LS0NKSkp6N27N/r27YusrCxUVlYaB3JPnjwZ4eHhyMzMBAAsXboU8+fPx6ZNmxAZGWkcJ9SiRQu0aNECKpUKs2bNwuLFi9GxY0fjlPywsDCMHj26qdUlIiIimbIqFPXs2dOi8UMFBQUW73PcuHG4ePEi5s+fj5KSEsTGxiInJ8c4UPrcuXNQq/9s0FqzZg2qq6tx3333mexnwYIFWLhwIQBgzpw5qKysxPTp03H58mUMGDAAOTk5XKOIiIiI6mXVOkUZGRnG34UQyMzMxGOPPWacDl9rwYIF9jtCF+A6RUREN+h0OlRXV9d7v1arRWBgoBOPiKh+Tb1+WxWKbuXr64vvvvsO7du3t3UXksRQRER0IxDVLqzbkNTUVAYjkoSmXr/t8t1nREQkP7e2EOn1vigqioRe79tgOSJ31eSB1kREJH8FBT2xY8dICKGGSmVAcvKniIs77OrDIrIrthQREVGD9HpfYyACACHU2LFjZJ0WIyJ3Z1VL0YoVK0xu//HHH8jOzkbr1q1Nts+YMaPpR0ZERJJQVhZoDES1hFCjrCwA/v4VLjoqIvuzKhS9+uqrJrdDQkKwceNGk20qlYqhiIhIRgICdFCpDCbBSKUyICCgzIVHRWR/VoWioqIiRx0HORGn2BKRNfz9K5Cc/GmdMUVsJSK5sSoU/fvf/0Zqaiq++eabOlPd9Ho9+vfvj7Vr12LgwIF2PUiyH06xJSJbxMUdRnT0GZSVBSAgoIyBiGTJqlCUlZWFadOmmZ377+/vj0cffRTLly9nKJIwc1Nsy8oCERCgMznJcYqtddj6RnKk1WpNbvv7V5gNQ7eWI3JXVoWi7777DkuXLq33/mHDhmHZsmVNPihyDk6xtQ+2vpFcBQYGIjU1lYGfFMOqUFRaWgoPD4/6d9asGS5evNjkgyLHq2+KbXT0GTaLW4mtbyRnDDykJFaFovDwcBw7dgwdOnQwe//Ro0cRGhpqlwMjx+IUW8dg6xsRkfuyavHGv/3tb3jxxRdx7dq1Ovf997//xYIFCzBy5Ei7HRw5Tu0U25txim3TcIE7IiL3ZlVL0QsvvIBt27ahU6dOSE1NRefOnQEAJ0+exOrVq1FTU4N58+Y55EDJvjjF1v7Y+kakTJxoIR9WhaLg4GDs378fjz/+ONLT0yGEAHBjwcbExESsXr0awcHBDjlQsj9OsbUvLnBHpDycaCEvVn8hbLt27bBr1y78/vvvOHPmDIQQ6NixI1q1auWI4yM74xRbx2HrG5HycKKFvFgdimq1atUKffr0seexkBNwiq1jsfWNSLk40cL92RyKyH0x8NgXW9+IiMucyANDEVETsfWNiKydaMHB2dLEUERkBzx5ESmbNRMtODhbuqxap4iIiIjqqp1oUbv+W0MTLSwddM3B2c7HliIiIiI7sHWiRX0z1sj5GIqIiIhs1NSJFpyxJi0MRURERDexZhB0UyZacMaa9DAUEZnBmSFEymTLIGhbzwWO/GognsNsw1BEdAvODCFSLmcOgnbUVwPxHGY7zj4juoW5ZfuLiiLrfNs9Z4YQyV99n397sGbGmjV4DrMdW4qIGsBBkETK5ajP/82DrhuasWaPVfB5DrMOQ5ECsa/ZMhwESaRcjvz8O2sVfJ7DrMdQpDDsa7acIwdBEpG0Ofrz74zzK89h1uOYIoVhX7PlagdB3swegyCJSPrk8PmXQx2cjaFIwQoKeiIraxY2bEhBVtYsFBT0dPUhSYqjBkESkfTJ4fMvhzo4G7vPFIp9zZaxddl+kieOx5M/Zw6Cdgaew6zDUKRQ7GuuX1OX7Sd5Uup4PKUFQWcNgnYknsNsx1CkUI5aNEwO5HBSJPszNx7P3Jd4ymk8nlKDoLvXhecw2zEUKVRtX/Ot61covZWoFk8W1BClrP2ixCAoFzyH2YahSMHY10xkPaWOx1NKECRlc/nss9WrVyMyMhJeXl6Ij4/HwYMH6y37ww8/YMyYMYiMjIRKpUJWVladMgsXLoRKpTL5iYmJcWAN3Iu5vuaoqJ/rnMzZ10xkXkPj8eSqviDoiK++IHIll7YUbdmyBWlpaVi7di3i4+ORlZWFxMREnDp1CkFBQXXKX716Fe3bt8f999+Pp59+ut79du3aFXv27DHebtaMDWK12NdM1DRKHI/HiRmkFC5NC8uXL8e0adMwdepUAMDatWuxc+dOrFu3DnPnzq1Tvk+fPujTpw8AmL2/VrNmzRASEuKYg5YBBh4i2ylxPJ4SgyApk8tCUXV1NQ4dOoT09HTjNrVajYSEBOTn5zdp36dPn0ZYWBi8vLzQr18/ZGZmom3btvWWr6qqQlVVlfF2eXl5k56fiORNaePxlBgESZlcFoouXbqEmpoaBAcHm2wPDg7GyZMnbd5vfHw8srOz0blzZxQXFyMjIwMDBw7EsWPH4Otrvv87MzMTGRkZNj8nEcmf0td+UVoQJGWS3WCb4cOHG3/v3r074uPj0a5dO3zwwQd4+OGHzT4mPT0daWlpxtvl5eWIiIhw+LESkftQ4ng8pQdBUh6XhaLWrVtDo9GgtLTUZHtpaaldxwO1bNkSnTp1wpkzZ+ot4+npCU9PT7s9JxHJk5wCjyWkGgSVtso2OY/LQpFWq0WvXr2Qm5uL0aNHAwAMBgNyc3ORmppqt+e5cuUKCgsLMWnSJLvtk9wPT6JEtpHa50Kpq2yTc7i0+ywtLQ0pKSno3bs3+vbti6ysLFRWVhpno02ePBnh4eHIzMwEcGNw9vHjx42///rrrzhy5AhatGiBDh06AACeffZZJCcno127dvjtt9+wYMECaDQaTJgwwTWVJJfjSZRIPrjKNjmSS0PRuHHjcPHiRcyfPx8lJSWIjY1FTk6OcfD1uXPnoFb/OQX0t99+Q8+ePY23ly1bhmXLlmHw4MHIy8sDAJw/fx4TJkyATqdDmzZtMGDAAHzzzTdo06aNU+tG0sGTKJE8cZVtsjeXD7ROTU2tt7usNujUioyMhBCiwf1t3rzZXocmW0ruSuJJlEgelPp1K+RYLg9F5FxK7kriSZRIPrjKNjmCy7/7jJzLXFdSUVFkne8wkmNXkhK/s4pIrmpX2b4ZV9mmpmJLkYIprSuJX1VAJB9cZZscgaFIoZTYlcSTKJG8cJVtsjeGIoVSan88T6JE1pHaxAyusk2OxFCkUErqSuJJlMg2UpyYIdVVtkkeGIoUSkldSTyJEtlGqmt88bNKjsJQpGBK6kriSZTMkVrXkJQpbWIGKRNDkcKwK4noBil2DUmVEidmkDIxFCkMu5KIbpBq15AUKXViBikPQ5ECMfAQmWLXUMOUNDGDlI0rWhORotXXNXTrKu9KVjsxo3YFaTlPzCBlY0sRESmau3cNOWuwuJImZpByMRQRkaK5c9eQoweLc2IGKQ1DEREpmjuv2eXoweKcmOG+HN2CKNflLBiKiEjx5NA15KjB4u54YVM6R7cgynk5Cw60JiJFMtc1FBX1c51A5A5dQxwsTjcz14JYVBRZ5/+DrS2Ijt6/K7GliIgUSU5dQ+4+WJwcx9HLTchtOQuGIiJSLHcIPJZw58Hi5DiOXolcjiudMxQRkWTJdTCnvbnzYHFyHEe3IMqxhZKhiIgkSc6DORtiaxCUw2Bxsi9HtyDKsYWSoYiIJEmJ301mbRDkOkLUEEe3IMqxhZKhiIgkT26DOetjbRCU02BxcgxHtyDKrYWSoYiInMaWriE5Dua0hKVBkIGHbuXoFkQ5t1AyFBGRU9g6RkiOgzkbo9QgSPbh6BZEObdQMhQRkVPYOkZIjoM5G6PEIEj25ehA4o6BxxIMRUTkdNaMEZLjYM7GKDEIEkkBQxEROZUtXUNyG8zZGCUGQSIpYCgiIqeytGtIDoM5m7L4pNKCIJEUMBRRo7iqMNmTpV1D7j6Y05aB5XIIgkTujKGIGnTrib2+wbFyW1WYHMeariF3/j9ly8Bydw+CRO6OoYgadPPJuaHBsXJaVZgcQ6/XG39vqGtIr9cjNDTUFYfoMNYMLGfgIXIddeNFiOofHKvX+7r4yMhdCCHMbFVZWM598bND5D7YUkQW4bop1FQtW7Y0/t5Qy8nN5eSAnx0i98GWIrJI7eDYm3HdFLKF0lpO+Nkhch8MRWSR2sGxtSd3rptCtmqo5USO+Nkhch/sPiOLcd0UsgclrtbMzw6Re3B5S9Hq1asRGRkJLy8vxMfH4+DBg/WW/eGHHzBmzBhERkZCpVIhKyuryfsk6/j7VyAq6mee1MlmSmk5MbfmkLnPDtccIiXQ6XQoLi6u90en07n6EAG4uKVoy5YtSEtLw9q1axEfH4+srCwkJibi1KlTCAoKqlP+6tWraN++Pe6//348/fTTdtknNczSEzZP7GQNJbSccM0hohtsWcjUVVwaipYvX45p06Zh6tSpAIC1a9di586dWLduHebOnVunfJ8+fdCnTx8AMHu/LfukhvHETvaixNWa+bkgsm0hU1dxWSiqrq7GoUOHkJ6ebtymVquRkJCA/Px8p+6zqqoKVVVVxtvl5eU2Pb9c8cRO9sCATUTWLGTqCi4LRZcuXUJNTQ2Cg4NNtgcHB+PkyZNO3WdmZiYyMjJsek4ishwDD5Fy1bccR3T0Gcl0obt8oLUUpKenQ6/XG39++eUXVx8SERGRrLjDchwuaylq3bo1NBoNSktLTbaXlpYiJCTEqfv09PSEp6enTc9JREREjXOH5Thc1lKk1WrRq1cv5ObmGrcZDAbk5uaiX79+ktknERERNZ07LMfh0tlnaWlpSElJQe/evdG3b19kZWWhsrLSOHNs8uTJCA8PR2ZmJoAbA6mPHz9u/P3XX3/FkSNH0KJFC3To0MGifRIROYtOp+PAcqKbSH05DpeGonHjxuHixYuYP38+SkpKEBsbi5ycHONA6XPnzkGt/rMx67fffkPPnj2Nt5ctW4Zly5Zh8ODByMvLs2ifRETO4E5rsxA5kjstx6ESQghXH4TUlJeXw9/fH3q9Hn5+fq4+HCJyQ8XFxXjzzTeNt+tbm2X69OkIDQ11xSESOY2zWk2bev3md58RETmY1NdmIXI0d2kNZShSII5zIHIed1ibhYhuYChSGI5zIHKuhtZmYSgikhYu3qgw5r6DpqgoEnq9b4PliMg2tWuz3Exqa7MQ0Q1sKVIwjnMgcrzatVlu/ayxlYhIehiKFIrjHIicR+prsxDRDQxFCsVxDtRUHLDfMHdam4WIbmAoUih3+A4aki4O2G9cYGAgUlNTHR4cGU6J7IehSKE4zoGawtyAfXMLEyp9wL6jwwjDKZF9MRQpGMc5kD1wwL7rMJwS2RdDkcJwnAPZEwfsSwfDKVHTMRQpjLPGOZAycMC+NDCcEtkHQ5ECMfCQvXDAvjQwnBLZB0MREdmMA/Yb5qyZYQynRPbBUERETcIB++Y5c2YYwymRfTAUEZHVOGC/cc6eGcZwStR0DEVEZDUO2LeOo2aGMZxKAxfQlA+GIiKyCU/ylnHkzDCGU9fjAprywlBERORAjp4Zxguta1na/ckFNN2DuvEiRERkq9qZYTfjzDD50ut9UVQUCb3e19WHQjZgSxERkQNxZphyuPOq4hwXdQNDERGRg0lpZhgvfo7hzquKc1zUnxiKiIgcQIozw3jxcxx3XlWcXyz8J4YiIrIJWxwaJsWZYbz4OY5cVhV35y5Ae2AokgFenMjZ2OJgGWfU3dbPv9IvfvYmh7Fj7twFaC8MRW6OFydyBbY4SIOtn39e/Ozn5u7PhsaOucMCmu7cBWgvDEVujhcncjV3bnFw91ZWWz//vPjZjxS7SW0lly7ApmAokhF3vjiRe3LnFge5tbJa8/nnxc++3OH/hyXk0AXYVAxFMuHOFydyX+7c4iCnVlZrP/+8+FF9pLR8hCswFMmEO1+cyH3JpcXB3VtZbfn8K/3iR3+S4vIRrsJQJBNyuTgpibuPZwHk0eIgh1ZWSz//vPhZRg6fTWvIaVxUUzEUyYQcLk5KIqfxLO7e4uDIVlZnXVwt/fzz4tc4OX02rSGnujQFQ5GMuPvFSUncfTyLHFoc9Ho9gMZbWfR6PUJDQ63ev7MvrpZ+/nnxa5i7fzapaRiK3JwcLk5K547jWeTQ4nD9+nUAf7ay/OtfIwGoAZi2stSWs5YzLq78/DuWO342qWkYitycHC5OSubO41nk9n9KpQKEuPGvvTnq4mrL519p42Vs5c6fTbIdQ5EM8ATmvjhr0HWaNbtx+mvs4ldbzlaOvrha8/lX6ngZW/CzqUzqxosQkaPUjme5GWcNOkfLli0BNHzxu7mcrRrbvzOZ69IrKoqEXu/bYDkl4mdTmSQRilavXo3IyEh4eXkhPj4eBw8ebLD8hx9+iJiYGHh5eaFbt27YtWuXyf1TpkyBSqUy+UlKSnJkFcjJdDodiouL6/3R6XSuPkSL1I5nqT35ctag81y+fBlA4xe/2nK2kurFtaCgJ7KyZmHDhhRkZc1CQUFPlx6P1PCzqUwu7z7bsmUL0tLSsHbtWsTHxyMrKwuJiYk4deoUgoKC6pTfv38/JkyYgMzMTIwcORKbNm3C6NGjUVBQgDvuuMNYLikpCevXrzfe9vT0dEp9yPHk1gXAWYOu8ccffwBofDp7bTlbSXG5DI6XsQw/m8rj8lC0fPlyTJs2DVOnTgUArF27Fjt37sS6deswd+7cOuVfe+01JCUlYfbs2QCARYsW4fPPP8eqVauwdu1aYzlPT0+EhIQ4pxLkVHKYMstZQ9IjhOm/9iS1iyvHy9SPn01lc2koqq6uxqFDh5Cenm7cplarkZCQgPz8fLOPyc/PR1pamsm2xMREbN++3WRbXl4egoKC0KpVK9x1111YvHhxva0GVVVVqKqqMt4uLy+3sUbkbO46ZVaKswaVNivJw8MDwJ+tJn+OJjBtNaktZy0pX1y5An79pPjZJOdxaSi6dOkSampqEBwcbLI9ODgYJ0+eNPuYkpISs+VLSkqMt5OSknDvvfciKioKhYWFeP755zF8+HDk5+dDo9HU2WdmZiYyMjLsUCNyJnfvApDSSVVuXZKW8Pf3B9B4q0ltOWtJ+eIqxS49KZHL/3Gynsu7zxxh/Pjxxt+7deuG7t27Izo6Gnl5ebj77rvrlE9PTzdpfSovL0dERIRTjpVsxy4A+5FDl6StHNlqIuWLq9S69IikwKWhqHXr1tBoNCgtLTXZXlpaWu94oJCQEKvKA0D79u3RunVrnDlzxmwo8vT05EBsN8QuAMdw1y5JW0mt1cTabkxryku5S49IClwairRaLXr16oXc3FyMHj0aAGAwGJCbm4vU1FSzj+nXrx9yc3Mxa9Ys47bPP/8c/fr1q/d5zp8/D51OZ9P3F9mD0sZqOIs1FzO+B5Zx9y5JW0ml1cTabkxry0u5S49IClzefZaWloaUlBT07t0bffv2RVZWFiorK42z0SZPnozw8HBkZmYCAGbOnInBgwfjn//8J0aMGIHNmzfjP//5D958800AwJUrV5CRkYExY8YgJCQEhYWFmDNnDjp06IDExESn1+/Wk1Z93RJyGqvhTJZczJQ4XsZWSuqSlGKribXdmLZ0eyr9/zhRQ1weisaNG4eLFy9i/vz5KCkpQWxsLHJycoyDqc+dOwe1+s+TdP/+/bFp0ya88MILeP7559GxY0ds377duEaRRqPB0aNHsWHDBly+fBlhYWEYNmwYFi1a5JIusptPRg11S8hxrIajWHsxU/J4GWspqUtS6q0m1nZjKq3bk8gRXB6KgBt/odfXXZaXl1dn2/3334/777/fbHlvb2/s3r3bnodnF0rtlnCEplzMeOFomNTG1ziatYHHWd2w1p4veH4hsg9JhCIlUFK3hDPYcuHhhcMyUhlfIzXO7Ia19nzB8wuRfTAUOYmSuiWkiheO+klxfI3UOLMb1trzBc8vRPbBUOQkSuuWkCJeOOon9fE1UuPoblhrzxdSOr9wpie5M4YiJ2K3hGtJ6cIhRbxQWcZZ3bDWni+kcH7hTE9ydwxFTlZftwQ5hxQuHOTeHNkNa203ptS6PaU605OtV2QphiIHs/RkpOSxGo4mtQuHksnh4uTorwWxphvTlm5PZ70HUpnpydYrsgZDkYPJYayGu1/I5PAeyIFcLk6O7oa1tu7WlHfWeyClmZ5Sbb0iaWIocgIpn+AbI5cLmZSPTSnkdHFy125YZ70HUp3pKZXWK5IuhiJqkKUnR3e4kJF0uOPFSW7dsI58D6Q401NKrVdy4O49CPVhKCKr1PeXJZGl3PXiJKduWEe/B1Kc6SnV1it3JJceBHMYishi7vjXPUmPO1+c3O0EXx9nvAdS62KUYuuVNaTUMiOnrvBbMRSRRdz1r3uSHne/OMmBo94DKXcxSrH1ylJSbpmR2x/LDEVkEXf+694WUvqrTG7c+eIkF456D6TexSi11itLSbVlRo5/LDMUkUWU9Ne9s/4qU3LwcteLk5w46j2Q2v9ZKbde2UJKLTNy/GOZoYgsoqS/7p0x407KzeGOIreLkztS4nsg9dYra0itZUaOfywzFFGDbj45NvSXpZxOordyxIw7qTaHO5KcLk7uSqnvgRTrY0tLsdRaZuT4xzJDETVIqSfRWs5oqnbUc0ixe05q/0+k+Bo5mtzq445sbSmWYsuM3LrCGYqoUUo9iTqjqdpRz6HE7jlr8TUiV7G1pVgqLTNy7oZlKCKqhzOaqh31HFyJvHF8jUgKrG0plkLLjJx7EBiKiOrhjKZqZzWHcyXyxvE1ImeztKXYGS0z1nYlu2PgsQRDEVE9nNFU7YznkNIUXqnia0SuYGlLsaNbZtiV/CeGIqJbOHvGnSObw6U2hVeK+BqRq1jTUuzIMKLE2bD1YSgiuoUz+sudNVBRalN4pYivEbmKVAZO30zpraYMRURmOLqJ2FkDFaU4hVdq+BqRK0lh4HQttpoyFBG5jDP65qX4l6jU8DUiZ5PqlHa2mjIUEckSVyJvHF8jchWpTmlnqylDEZEsSfWkKyV8jciVpPj/iq2mDEVEsiXFk67U8DUiMiWlMU6uwFBERESkYFId4+QKDEVEREQKxq7kPzEUERERKZwSAo8l1I0XISIiIpI/hiIiIiIiMBQRERERAWAoIiIiIgLAUEREREQEgKGIiIiICABDEREREREAhiIiIiIiAAxFRERERAC4orVZQggAQHl5uYuPhIiIiCxVe92uvY5bi6HIjIqKG1+EFxER4eIjISIiImtVVFTA39/f6sephK1xSsYMBgN+++03+Pr6QqVS2XXf5eXliIiIwC+//AI/Pz+77lsqlFBHgPWUG9ZTXlhPebG0nkIIVFRUICwsDGq19SOE2FJkhlqtxm233ebQ5/Dz85P1f2BAGXUEWE+5YT3lhfWUF0vqaUsLUS0OtCYiIiICQxERERERAIYip/P09MSCBQvg6enp6kNxGCXUEWA95Yb1lBfWU16cVU8OtCYiIiICW4qIiIiIADAUEREREQFgKCIiIiICwFBEREREBIChqMlWr16NyMhIeHl5IT4+HgcPHmywfFZWFjp37gxvb29ERETg6aefxrVr15q0T2ewdz0XLlwIlUpl8hMTE+PoajTKmnpev34dL730EqKjo+Hl5YUePXogJyenSft0FnvXU2rv51dffYXk5GSEhYVBpVJh+/btjT4mLy8PcXFx8PT0RIcOHZCdnV2njNTeS0fUU2rvJWB9PYuLizFx4kR06tQJarUas2bNMlvuww8/RExMDLy8vNCtWzfs2rXL/gdvBUfUMzs7u8776eXl5ZgKWMjaem7btg1Dhw5FmzZt4Ofnh379+mH37t11ytnl8ynIZps3bxZarVasW7dO/PDDD2LatGmiZcuWorS01Gz59957T3h6eor33ntPFBUVid27d4vQ0FDx9NNP27xPZ3BEPRcsWCC6du0qiouLjT8XL150VpXMsraec+bMEWFhYWLnzp2isLBQvP7668LLy0sUFBTYvE9ncEQ9pfZ+7tq1S8ybN09s27ZNABAff/xxg+V/+ukn0bx5c5GWliaOHz8uVq5cKTQajcjJyTGWkeJ76Yh6Su29FML6ehYVFYkZM2aIDRs2iNjYWDFz5sw6Zfbt2yc0Go145ZVXxPHjx8ULL7wgPDw8xPfff++YSljAEfVcv3698PPzM3k/S0pKHFMBC1lbz5kzZ4qlS5eKgwcPih9//FGkp6cLDw8Ph5xrGYqaoG/fvuLJJ5803q6pqRFhYWEiMzPTbPknn3xS3HXXXSbb0tLSxJ133mnzPp3BEfVcsGCB6NGjh0OO11bW1jM0NFSsWrXKZNu9994rHnjgAZv36QyOqKcU389alpx058yZI7p27Wqybdy4cSIxMdF4W4rv5c3sVU8pv5dCWFbPmw0ePNhsWBg7dqwYMWKEybb4+Hjx6KOPNvEI7cNe9Vy/fr3w9/e323HZm7X1rNWlSxeRkZFhvG2vzye7z2xUXV2NQ4cOISEhwbhNrVYjISEB+fn5Zh/Tv39/HDp0yNik99NPP2HXrl3429/+ZvM+Hc0R9ax1+vRphIWFoX379njggQdw7tw5x1WkEbbUs6qqqk4ztLe3N/bu3WvzPh3NEfWsJaX301r5+fkmrwkAJCYmGl8TKb6XtmisnrXc+b20lKWvhRxcuXIF7dq1Q0REBO655x788MMPrj6kJjEYDKioqEBAQAAA+34+GYpsdOnSJdTU1CA4ONhke3BwMEpKSsw+ZuLEiXjppZcwYMAAeHh4IDo6GkOGDMHzzz9v8z4dzRH1BID4+HhkZ2cjJycHa9asQVFREQYOHIiKigqH1qc+ttQzMTERy5cvx+nTp2EwGPD5559j27ZtKC4utnmfjuaIegLSez+tVVJSYvY1KS8vx3//+19Jvpe2aKyegPu/l5aq77Vwp/fTEp07d8a6devwySef4N1334XBYED//v1x/vx5Vx+azZYtW4YrV65g7NixAOx7rmUocqK8vDz8/e9/x+uvv46CggJs27YNO3fuxKJFi1x9aHZlST2HDx+O+++/H927d0diYiJ27dqFy5cv44MPPnDhkVvntddeQ8eOHRETEwOtVovU1FRMnToVarW8PlaW1FMO7yfdwPdSXvr164fJkycjNjYWgwcPxrZt29CmTRu88cYbrj40m2zatAkZGRn44IMPEBQUZPf9N7P7HhWidevW0Gg0KC0tNdleWlqKkJAQs4958cUXMWnSJDzyyCMAgG7duqGyshLTp0/HvHnzbNqnozminuZCQ8uWLdGpUyecOXPG/pWwgC31bNOmDbZv345r165Bp9MhLCwMc+fORfv27W3ep6M5op7muPr9tFZISIjZ18TPzw/e3t7QaDSSey9t0Vg9zXG399JS9b0W7vR+2sLDwwM9e/Z0y/dz8+bNeOSRR/Dhhx+adJXZ81wrrz9pnUir1aJXr17Izc01bjMYDMjNzUW/fv3MPubq1at1AoFGowEACCFs2qejOaKe5ly5cgWFhYUIDQ2105FbpymvvZeXF8LDw/HHH39g69atuOeee5q8T0dxRD3NcfX7aa1+/fqZvCYA8PnnnxtfEym+l7ZorJ7muNt7aSlbXgs5qKmpwffff+927+f777+PqVOn4v3338eIESNM7rPr59PqId9ktHnzZuHp6Smys7PF8ePHxfTp00XLli2N0x0nTZok5s6dayy/YMEC4evrK95//33x008/ic8++0xER0eLsWPHWrxPV3BEPZ955hmRl5cnioqKxL59+0RCQoJo3bq1uHDhgtPrV8vaen7zzTdi69atorCwUHz11VfirrvuElFRUeL333+3eJ+u4Ih6Su39rKioEIcPHxaHDx8WAMTy5cvF4cOHxc8//yyEEGLu3Lli0qRJxvK1U9Vnz54tTpw4IVavXm12Sr7U3ktH1FNq76UQ1tdTCGEs36tXLzFx4kRx+PBh8cMPPxjv37dvn2jWrJlYtmyZOHHihFiwYIHLp+Q7op4ZGRli9+7dorCwUBw6dEiMHz9eeHl5mZRxNmvr+d5774lmzZqJ1atXmywtcPnyZWMZe30+GYqaaOXKlaJt27ZCq9WKvn37im+++cZ43+DBg0VKSorx9vXr18XChQtFdHS08PLyEhEREeKJJ54wubg0tk9XsXc9x40bJ0JDQ4VWqxXh4eFi3Lhx4syZM06skXnW1DMvL0/cfvvtwtPTUwQGBopJkyaJX3/91ap9uoq96ym19/OLL74QAOr81NYrJSVFDB48uM5jYmNjhVarFe3btxfr16+vs1+pvZeOqKfU3kshbKunufLt2rUzKfPBBx+ITp06Ca1WK7p27Sp27tzpnArVwxH1nDVrlvH/bHBwsPjb3/5msr6PK1hbz8GDBzdYvpY9Pp8qIerpzyAiIiJSEI4pIiIiIgJDEREREREAhiIiIiIiAAxFRERERAAYioiIiIgAMBQRERERAWAoIiIiIgLAUERE5Bby8vKgUqlw+fJlVx8KkWwxFBGRiSlTpkClUmHJkiUm27dv3w6VSmW8LYTAW2+9hX79+sHPzw8tWrRA165dMXPmTIu/bPLq1atIT09HdHQ0vLy80KZNGwwePBiffPKJsUxkZCSysrLsUjdHq33tVCoVPDw8EBUVhTlz5uDatWtW7WfIkCGYNWuWybb+/fujuLgY/v7+djxiIroZQxER1eHl5YWlS5fi999/N3u/EAITJ07EjBkz8Le//Q2fffYZjh8/jrfffhteXl5YvHixRc/z2GOPYdu2bVi5ciVOnjyJnJwc3HfffdDpdPasjlMlJSWhuLgYP/30E1599VW88cYbWLBgQZP3q9VqERISYhJMicjObPzqEiKSqZSUFDFy5EgRExMjZs+ebdz+8ccfi9pTxvvvvy8AiE8++cTsPgwGg0XP5e/vL7Kzs+u939x3HtX6+uuvxYABA4SXl5e47bbbxFNPPSWuXLlivP+dd94RvXr1Ei1atBDBwcFiwoQJorS01Hh/7fcv5eTkiNjYWOHl5SX++te/itLSUrFr1y4RExMjfH19xYQJE0RlZaVF9UlJSRH33HOPybZ7771X9OzZ03j70qVLYvz48SIsLEx4e3uLO+64Q2zatMlkH7fWuaioyHi8N3+H4EcffSS6dOkitFqtaNeunVi2bJlFx0lE5rGliIjq0Gg0+Pvf/46VK1fi/Pnzde5///330blzZ4waNcrs4y1tzQgJCcGuXbtQUVFh9v5t27bhtttuw0svvYTi4mIUFxcDAAoLC5GUlIQxY8bg6NGj2LJlC/bu3YvU1FTjY69fv45Fixbhu+++w/bt23H27FlMmTKlznMsXLgQq1atwv79+/HLL79g7NixyMrKwqZNm7Bz50589tlnWLlypUX1udWxY8ewf/9+aLVa47Zr166hV69e2LlzJ44dO4bp06dj0qRJOHjwIADgtddeQ79+/TBt2jRjnSMiIurs+9ChQxg7dizGjx+P77//HgsXLsSLL76I7Oxsm46ViMCWIiIydXNrx1/+8hfx0EMPCSFMW4piYmLEqFGjTB43c+ZM4ePjI3x8fER4eLhFz/Xll1+K2267TXh4eIjevXuLWbNmib1795qUadeunXj11VdNtj388MNi+vTpJtu+/vproVarxX//+1+zz/Xtt98KAKKiokII8WdL0Z49e4xlMjMzBQBRWFho3Pboo4+KxMREi+qTkpIiNBqN8PHxEZ6engKAUKvV4qOPPmrwcSNGjBDPPPOM8fbgwYPFzJkzTcrc2lI0ceJEMXToUJMys2fPFl26dLHoWImoLrYUEVG9li5dig0bNuDEiRONlp03bx6OHDmC+fPn48qVKxbtf9CgQfjpp5+Qm5uL++67Dz/88AMGDhyIRYsWNfi47777DtnZ2WjRooXxJzExEQaDAUVFRQButKQkJyejbdu28PX1xeDBgwEA586dM9lX9+7djb8HBwejefPmaN++vcm2CxcuWFQfAPjrX/+KI0eO4MCBA0hJScHUqVMxZswY4/01NTVYtGgRunXrhoCAALRo0QK7d++uc1yNOXHiBO68806TbXfeeSdOnz6Nmpoaq/ZFRDcwFBFRvQYNGoTExESkp6ebbO/YsSNOnTplsq1Nmzbo0KEDgoKCrHoODw8PDBw4EM899xw+++wzvPTSS1i0aBGqq6vrfcyVK1fw6KOP4siRI8af7777DqdPn0Z0dDQqKyuRmJgIPz8/vPfee/j222/x8ccfA0Cd/Xp4eBh/r501djOVSgWDwWBxfXx8fNChQwf06NED69atw4EDB/D2228b7//HP/6B1157Dc899xy++OILHDlyBImJiQ3Wl4ico5mrD4CIpG3JkiWIjY1F586djdsmTJiAiRMn4pNPPsE999xj1+fr0qUL/vjjD1y7dg1arRZarbZOy0dcXByOHz+ODh06mN3H999/D51OhyVLlhjH4/znP/+x63FaQq1W4/nnn0daWhomTpwIb29v7Nu3D/fccw8efPBBAIDBYMCPP/6ILl26GB9nrs63uv3227Fv3z6Tbfv27UOnTp2g0WjsXxkiBWBLERE1qFu3bnjggQewYsUK47bx48fjvvvuw/jx4/HSSy/hwIEDOHv2LL788kts2bLF4ovykCFD8MYbb+DQoUM4e/Ysdu3aheeffx5//etf4efnB+DGOkVfffUVfv31V1y6dAkA8Nxzz2H//v1ITU3FkSNHcPr0aXzyySfGgdZt27aFVqvFypUr8dNPP+Ff//pXo11yjnL//fdDo9Fg9erVAG60sn3++efYv38/Tpw4gUcffRSlpaUmj4mMjDS+ppcuXTLbUvXMM88gNzcXixYtwo8//ogNGzZg1apVePbZZ51SLyI5Yigioka99NJLJhdmlUqFLVu2ICsrC7t27cLdd9+Nzp0746GHHkJERAT27t1r0X4TExOxYcMGDBs2DLfffjueeuopJCYm4oMPPjB57rNnzyI6Ohpt2rQBcGMc0Jdffokff/wRAwcORM+ePTF//nyEhYUBuNGVl52djQ8//BBdunTBkiVLsGzZMju+IpZr1qwZUlNT8corr6CyshIvvPAC4uLikJiYiCFDhiAkJASjR482ecyzzz4LjUaDLl26oE2bNmbHG8XFxeGDDz7A5s2bcccdd2D+/Pl46aWXzM6wIyLLqIQQwtUHQURERORqbCkiIiIiAkMRETnQzVPmb/35+uuvXX14Vjl37lyD9bF2Sj0RSQ+7z4jIYRr6Ytjw8HB4e3s78Wia5o8//sDZs2frvT8yMhLNmnFCL5E7YygiIiIiArvPiIiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREAID/DwqsSAFkjx4vAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_13.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVKklEQVR4nO3de1iUZcI/8O+AnEQYBeQgoihoVh5BJbTUNQpdxdzcjaw8lbmVVEaHlUzN1wrzFJqm6etpK9SfSa2ntZR0W9NWA9nymBqmJaBADggFyNy/P3x5YmBmYIaZeZ6Z5/u5Lq5k5p5n7vuRnC/3USOEECAiIiJSETe5K0BERETkaAxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERAq2ceNGaDQaXLx4Ue6qELkUBiAilTt27BhSUlJw5513wtfXF506dcJDDz2E77//vlHZYcOGQaPRQKPRwM3NDf7+/rjtttswYcIE7Nu3z6L33blzJ4YOHYrg4GC0bt0aXbt2xUMPPYS9e/faqmmNvPXWW/j0008bPX748GG8/vrruH79ut3eu6HXX39dupcajQatW7fGHXfcgddeew1lZWU2eY/MzExkZGTY5FpEroYBiEjl3n77bWzfvh333nsvli1bhmnTpuHLL79ETEwMTpw40ah8x44d8cEHH+Dvf/87Fi1ahDFjxuDw4cO4//77kZycjJqamibfc/HixRgzZgw0Gg3S0tLwzjvvYNy4cTh37hy2bNlij2YCMB+A5s2b59AAVGfVqlX44IMPsHTpUvTo0QNvvvkmRowYAVsc08gARGRaK7krQETySk1NRWZmJjw9PaXHkpOT0atXLyxYsAAffvihQXmtVovHHnvM4LEFCxbgueeew3vvvYfIyEi8/fbbJt/v5s2bmD9/Pu677z58/vnnjZ6/evVqC1ukHJWVlWjdurXZMn/+858RFBQEAHjqqacwbtw4ZGVl4euvv0Z8fLwjqkmkSuwBIlK5QYMGGYQfAOjWrRvuvPNOnD59ulnXcHd3x/Lly3HHHXdgxYoV0Ol0JssWFxejrKwMgwcPNvp8cHCwwfe//fYbXn/9dXTv3h3e3t4ICwvDgw8+iAsXLkhlFi9ejEGDBiEwMBA+Pj6IjY3Fxx9/bHAdjUaDiooKbNq0SRp2mjx5Ml5//XW8/PLLAIAuXbpIz9Wfc/Phhx8iNjYWPj4+CAgIwMMPP4zLly8bXH/YsGHo2bMncnJyMGTIELRu3Rqvvvpqs+5ffcOHDwcA5Ofnmy333nvv4c4774SXlxc6dOiA6dOnG/RgDRs2DLt378aPP/4otSkyMtLi+hC5KvYAEVEjQggUFRXhzjvvbPZr3N3dMX78eMyePRuHDh3CqFGjjJYLDg6Gj48Pdu7ciWeffRYBAQEmr1lbW4vRo0cjOzsbDz/8MJ5//nmUl5dj3759OHHiBKKiogAAy5Ytw5gxY/Doo4+iuroaW7ZswV/+8hfs2rVLqscHH3yAqVOnYuDAgZg2bRoAICoqCr6+vvj++++xefNmvPPOO1JvTPv27QEAb775JmbPno2HHnoIU6dOxbVr1/Duu+9iyJAhOH78ONq2bSvVt6SkBCNHjsTDDz+Mxx57DCEhIc2+f3Xqgl1gYKDJMq+//jrmzZuHhIQEPP300zh79ixWrVqFY8eO4auvvoKHhwdmzZoFnU6Hn376Ce+88w4AoE2bNhbXh8hlCSKiBj744AMBQKxbt87g8aFDh4o777zT5Os++eQTAUAsW7bM7PXnzJkjAAhfX18xcuRI8eabb4qcnJxG5davXy8AiKVLlzZ6Tq/XS3+urKw0eK66ulr07NlTDB8+3OBxX19fMWnSpEbXWrRokQAg8vPzDR6/ePGicHd3F2+++abB4999951o1aqVweNDhw4VAMTq1atNtru+uXPnCgDi7Nmz4tq1ayI/P1+8//77wsvLS4SEhIiKigohhBAbNmwwqNvVq1eFp6enuP/++0Vtba10vRUrVggAYv369dJjo0aNEp07d25WfYjUhkNgRGTgzJkzmD59OuLj4zFp0iSLXlvXw1BeXm623Lx585CZmYl+/frhs88+w6xZsxAbG4uYmBiDYbft27cjKCgIzz77bKNraDQa6c8+Pj7Sn3/55RfodDrcc889yM3Ntaj+DWVlZUGv1+Ohhx5CcXGx9BUaGopu3brhwIEDBuW9vLwwZcoUi97jtttuQ/v27dGlSxf89a9/RXR0NHbv3m1y7tD+/ftRXV2NGTNmwM3t93/Cn3zySfj7+2P37t2WN5RIhTgERkSSwsJCjBo1ClqtFh9//DHc3d0tev2NGzcAAH5+fk2WHT9+PMaPH4+ysjL85z//wcaNG5GZmYmkpCScOHEC3t7euHDhAm677Ta0amX+n6pdu3bhjTfeQF5eHqqqqqTH64cka5w7dw5CCHTr1s3o8x4eHgbfh4eHN5pP1ZTt27fD398fHh4e6NixozSsZ8qPP/4I4FZwqs/T0xNdu3aVnici8xiAiAgAoNPpMHLkSFy/fh3//ve/0aFDB4uvUbdsPjo6utmv8ff3x3333Yf77rsPHh4e2LRpE/7zn/9g6NChzXr9v//9b4wZMwZDhgzBe++9h7CwMHh4eGDDhg3IzMy0uA316fV6aDQa/POf/zQaBhvOqanfE9VcQ4YMkeYdEZHjMAAREX777TckJSXh+++/x/79+3HHHXdYfI3a2lpkZmaidevWuPvuu62qR//+/bFp0yYUFBQAuDVJ+T//+Q9qamoa9bbU2b59O7y9vfHZZ5/By8tLenzDhg2NyprqETL1eFRUFIQQ6NKlC7p3725pc+yic+fOAICzZ8+ia9eu0uPV1dXIz89HQkKC9FhLe8CIXBnnABGpXG1tLZKTk3HkyBFs27bNqr1namtr8dxzz+H06dN47rnn4O/vb7JsZWUljhw5YvS5f/7znwB+H94ZN24ciouLsWLFikZlxf9tFOju7g6NRoPa2lrpuYsXLxrd8NDX19foZoe+vr4A0Oi5Bx98EO7u7pg3b16jjQmFECgpKTHeSDtKSEiAp6cnli9fblCndevWQafTGay+8/X1NbslAZGasQeISOVefPFF7NixA0lJSSgtLW208WHDTQ91Op1UprKyEufPn0dWVhYuXLiAhx9+GPPnzzf7fpWVlRg0aBDuuusujBgxAhEREbh+/To+/fRT/Pvf/8bYsWPRr18/AMDEiRPx97//HampqTh69CjuueceVFRUYP/+/XjmmWfwwAMPYNSoUVi6dClGjBiBRx55BFevXsXKlSsRHR2Nb7/91uC9Y2NjsX//fixduhQdOnRAly5dEBcXh9jYWADArFmz8PDDD8PDwwNJSUmIiorCG2+8gbS0NFy8eBFjx46Fn58f8vPz8cknn2DatGl46aWXWnT/LdW+fXukpaVh3rx5GDFiBMaMGYOzZ8/ivffew4ABAwz+vmJjY7F161akpqZiwIABaNOmDZKSkhxaXyLFknMJGhHJr275tqkvc2XbtGkjunXrJh577DHx+eefN+v9ampqxNq1a8XYsWNF586dhZeXl2jdurXo16+fWLRokaiqqjIoX1lZKWbNmiW6dOkiPDw8RGhoqPjzn/8sLly4IJVZt26d6Natm/Dy8hI9evQQGzZskJaZ13fmzBkxZMgQ4ePjIwAYLImfP3++CA8PF25ubo2WxG/fvl3cfffdwtfXV/j6+ooePXqI6dOni7NnzxrcG3NbBDRUV79r166ZLddwGXydFStWiB49eggPDw8REhIinn76afHLL78YlLlx44Z45JFHRNu2bQUALoknqkcjhA0OnCEiIiJyIpwDRERERKrDAERERESqwwBEREREqsMARERERKrDAERERESqwwBEREREqsONEI3Q6/W4cuUK/Pz8uJU8ERGRkxBCoLy8HB06dICbm/k+HgYgI65cuYKIiAi5q0FERERWuHz5Mjp27Gi2DAOQEX5+fgBu3UBzZxoRERGRcpSVlSEiIkL6HDeHAciIumEvf39/BiAiIiIn05zpK5wETURERKrDAERERESqwwBEREREqsM5QERERDZSW1uLmpoauavhsjw8PODu7m6TazEAERERtZAQAoWFhbh+/brcVXF5bdu2RWhoaIv36WMAIiIiaqG68BMcHIzWrVtzE107EEKgsrISV69eBQCEhYW16HoMQERERC1QW1srhZ/AwEC5q+PSfHx8AABXr15FcHBwi4bDFDEJeuXKlYiMjIS3tzfi4uJw9OhRk2VPnjyJcePGITIyEhqNBhkZGY3KpKenY8CAAfDz80NwcDDGjh2Ls2fP2rEFRESkVnVzflq3bi1zTdSh7j63dK6V7AFo69atSE1Nxdy5c5Gbm4s+ffogMTFR6uJqqLKyEl27dsWCBQsQGhpqtMy//vUvTJ8+HV9//TX27duHmpoa3H///aioqLBnU4iISMU47OUYtrrPGiGEsMmVrBQXF4cBAwZgxYoVAG4dRBoREYFnn30WM2fONPvayMhIzJgxAzNmzDBb7tq1awgODsa//vUvDBkypMk6lZWVQavVQqfTcSdoIiIy67fffkN+fj66dOkCb29vuavj8szdb0s+v2WdA1RdXY2cnBykpaVJj7m5uSEhIQFHjhyx2fvodDoAQEBAgNHnq6qqUFVVJX1fVlZms/c2p6SkBNXV1Saf9/T05HgyERGRHcgagIqLi1FbW4uQkBCDx0NCQnDmzBmbvIder8eMGTMwePBg9OzZ02iZ9PR0zJs3zybv11wlJSVSrxcA6HR+KC0NREBACbTacunxlJQUhiAiIrKLyZMnY9OmTQCAVq1aISAgAL1798b48eMxefJkuLk1b6bMxo0bMWPGDKfaBsDlV4FNnz4dJ06cwKFDh0yWSUtLQ2pqqvR93Wmy9lS/5yc3tx927hwNIdyg0eiRlLQLMTHHG5UjIiLXJOeIwIgRI7BhwwbU1taiqKgIe/fuxfPPP4+PP/4YO3bsQKtWrhkVZG1VUFAQ3N3dUVRUZPB4UVGRyQnOlkhJScGuXbvw5ZdfomPHjibLeXl5wcvLq8XvZw2dzk8KPwAghBt27hyNqKjzBj1BRETkmhqOCJhirxEBLy8v6TM3PDwcMTExuOuuu3Dvvfdi48aNmDp1KpYuXYoNGzbghx9+QEBAAJKSkrBw4UK0adMGBw8exJQpUwD8PkF57ty5eP311/HBBx9g2bJlOHv2LHx9fTF8+HBkZGQgODjY5u2wlKyrwDw9PREbG4vs7GzpMb1ej+zsbMTHx1t9XSEEUlJS8Mknn+CLL75Aly5dbFFduygtDZTCTx0h3FBaany+EhERuZbm9vQ7ckRg+PDh6NOnD7KysgDcmp+7fPlynDx5Eps2bcIXX3yBV155BQAwaNAgZGRkwN/fHwUFBSgoKMBLL70E4NZS9fnz5+O///0vPv30U1y8eBGTJ092WDvMkb1fKzU1FZMmTUL//v0xcOBAZGRkoKKiQkqTEydORHh4ONLT0wHc+gE4deqU9Oeff/4ZeXl5aNOmDaKjowHcGvbKzMzEP/7xD/j5+aGwsBAAoNVqpU2UlCIgoAQajd4gBGk0egQElMpYKyIiUrsePXrg22+/BQCD1daRkZF444038NRTT+G9996Dp6cntFotNBpNo9Gbxx9/XPpz165dsXz5cgwYMAA3btxAmzZtHNIOU2TfByg5ORmLFy/GnDlz0LdvX+Tl5WHv3r3SxOhLly6hoKBAKn/lyhX069cP/fr1Q0FBARYvXox+/fph6tSpUplVq1ZBp9Nh2LBhCAsLk762bt3q8PY1RastR1LSLmg0egCQ5gBx+IuIiOQkhJCGtPbv3497770X4eHh8PPzw4QJE1BSUoLKykqz18jJyUFSUhI6deoEPz8/DB06FMCtz3a5yd4DBNwa10xJSTH63MGDBw2+j4yMRFNbF8m8tZHFYmKOIyrqPEpLAxAQUMrwQ0REsjt9+jS6dOmCixcvYvTo0Xj66afx5ptvIiAgAIcOHcITTzyB6upqkztgV1RUIDExEYmJifjoo4/Qvn17XLp0CYmJiYpY4KOIAES3eoIYfIiISAm++OILfPfdd3jhhReQk5MDvV6PJUuWSMvi/9//+38G5T09PVFbW2vw2JkzZ1BSUoIFCxZIK6u/+eYbxzSgGWQfAlMrT09Pm5YjIiKyRlVVFQoLC/Hzzz8jNzcXb731Fh544AGMHj0aEydORHR0NGpqavDuu+/ihx9+wAcffIDVq1cbXCMyMhI3btxAdnY2iouLUVlZiU6dOsHT01N63Y4dOzB//nyZWtkYe4BkEhgYiJSUFO4ETUREstq7dy/CwsLQqlUrtGvXDn369MHy5csxadIkuLm5oU+fPli6dCnefvttpKWlYciQIUhPT8fEiROlawwaNAhPPfUUkpOTUVJSIi2D37hxI1599VUsX74cMTExWLx4McaMGSNja38n+1lgSsSzwIiIqLlaehaY3PsAORuXOAuMiIhI7TgiIA8GICIiIpkx3DgeJ0ETERGR6jAAERERkeowABEREZHqMAARERGR6jAAERERkeowABEREZHqMAARERGR6jAAERERkV0cPHgQGo0G169fb/ZrIiMjkZGRYbc61WEAciElJSUoKCgw+VVSUiJ3FYmISEEmT54MjUaDp556qtFz06dPh0ajweTJkx1fMQfgTtAuouFZMjqdH0pLAxEQUAKttlx6nGfJEBFRfREREdiyZQveeecd+Pj4ALh13lZmZiY6deokc+3shz1ALqL+GTK5uf2QkTEDmzZNQkbGDOTm9jNajoiIKCYmBhEREcjKypIey8rKQqdOndCv3++fH1VVVXjuuecQHBwMb29v3H333Th27JjBtfbs2YPu3bvDx8cHf/jDH3Dx4sVG73fo0CHcc8898PHxQUREBJ577jlUVFTYrX2mMAC5GJ3ODzt3joYQt/5qhXDDzp2jodP5yVwzIiJqjp9+Ag4cuPVfR3n88cexYcMG6fv169djypQpBmVeeeUVbN++HZs2bUJubi6io6ORmJiI0tJSAMDly5fx4IMPIikpCXl5eZg6dSpmzpxpcI0LFy5gxIgRGDduHL799lts3boVhw4dQkpKiv0b2QADkIspLQ2Uwk8dIdxQWhogU42IiKi51q0DOncGhg+/9d916xzzvo899hgOHTqEH3/8ET/++CO++uorPPbYY9LzFRUVWLVqFRYtWoSRI0fijjvuwNq1a+Hj44N1/1fJVatWISoqCkuWLMFtt92GRx99tNH8ofT0dDz66KOYMWMGunXrhkGDBmH58uX4+9//jt9++80xjf0/nAPkYgICSqDR6A1CkEajR0BAqYy1IiKipvz0EzBtGqDX3/perwf++lcgMRHo2NG+792+fXuMGjUKGzduhBACo0aNQlBQkPT8hQsXUFNTg8GDB0uPeXh4YODAgTh9+jQA4PTp04iLizO4bnx8vMH3//3vf/Htt9/io48+kh4TQkCv1yM/Px+33367PZpnFAOQi9Fqy5GUtEsaBtNo9EhK2mUwEZqIiJTn3Lnfw0+d2lrg/Hn7ByDg1jBY3VDUypUr7fIeN27cwF//+lc899xzjZ5z9IRrBiAHKCkpMTv52NPT06Yrs2JijiMq6jxKSwMQEFDK8ENE5AS6dQPc3AxDkLs7EB3tmPcfMWIEqqurodFokJiYaPBcVFQUPD098dVXX6Fz584AgJqaGhw7dgwzZswAANx+++3YsWOHweu+/vprg+9jYmJw6tQpRDuqUWYwANlZw+Xppth6ebpWWy5L8HF02CMichUdOwJr1twa9qqtvRV+3n/fMb0/AODu7i4NZ7m7uxs85+vri6effhovv/wyAgIC0KlTJyxcuBCVlZV44oknAABPPfUUlixZgpdffhlTp05FTk4ONm7caHCdv/3tb7jrrruQkpKCqVOnwtfXF6dOncK+ffua9VlpSwxAdtYwDJjan6ely9M9PT1tWs4acoU9IiJX8cQTt+b8nD9/q+fHUeGnjr+/v8nnFixYAL1ejwkTJqC8vBz9+/fHZ599hnbt2gG4NYS1fft2vPDCC3j33XcxcOBAvPXWW3j88cela/Tu3Rv/+te/MGvWLNxzzz0QQiAqKgrJycl2b1tDGiGEcPi7KlxZWRm0Wi10Op3ZH4bmKCgowJo1awDc2p+n4dycmJjjAIBp06YhLCysRe8ld+9L/bYCpsOeLdpKRKQUv/32G/Lz89GlSxd4e3vLXR2XZ+5+W/L5zR4gBzG1P09U1HmbDVUpqVfFXNgjIiKSGwOQg5jbn0erLUdxcXGj1zjrfBlHhD0iIqKWYABykKb259mwYZ/LnN3VVNgjIiKSGwOQg5jbn8fccJEznt3FzRiJiEjpGIAcyNj+PK44XMTNGIlIjbimyDFsdZ8ZgOys4bLzhvvzuOpwETdjJCK18PDwAABUVlbCx8dH5tq4vsrKSgC/33drMQDZWWBgIFJSUhoNZRUXFyMrK8ulhouaCnumyhEROTN3d3e0bdsWV69eBQC0bt0aGo1G5lq5HiEEKisrcfXqVbRt27bRZo2WYgByAHOTmF1puMhU2KvPWVe2ERGZExoaCgBSCCL7adu2rXS/W4IBSAFcabiI4YaI1Eij0SAsLAzBwcGoqamRuzouy8PDo8U9P3UYgBRCrrO7iIjIdtzd3W32AU32xQAkE2vP7pL7uAul4/0hIqLmYACSiTXzZXjYqHm8P0RE1FwMQDKy9EPYUSfLK4WlvTlquz9ERGQ9BiAn5eqHjba0N8fV7w8REbWMW9NFSGlM7R6t0/nJXDPbMdabk58f2aiNxnpz1HB/iIioZdgD5IRcdfdoUyztzVHb/SEiIsuxB8gJ1e0eXZ+z7h7dFGt6c9R0f4iIyDoMQE6obvfoug95Z949uinmenNMUdP9ISIi63AIzEm50u7R5lh7Vpq5+1NcXGz0NZbsEcT9hoiInBsDkBNR42GjlpyV1tz7k5WVZfL9mrNHEPcbIiJyfgxATkSth402t7fL3P0pLi42CD4t2SOI+w0RETk/BiCFUvsQi7W9Xc25J7bcI4j7DREROScGIAXiEIv9ertMrSqLijpv8TwqW16LiIgciwFIgTjEcos9wp0t9wjifkNERM6LAUjhOMRiW9auKrP3tYiIyLG4D5CC8UgH27PlHkHcb4iIyHmxB0jBOMRiH7bcQ0kt+zEREbka2XuAVq5cicjISHh7eyMuLg5Hjx41WfbkyZMYN24cIiMjodFokJGR0ajMl19+iaSkJHTo0AEajQaffvqp/SpvZzzSwXaMrSrr0uXHRoGlOXso2fJaREQkD1l7gLZu3YrU1FSsXr0acXFxyMjIQGJiIs6ePYvg4OBG5SsrK9G1a1f85S9/wQsvvGD0mhUVFejTpw8ef/xxPPjgg/Zugl1ZsgkgmWfLVWVq3Y+JiMiVyBqAli5diieffBJTpkwBAKxevRq7d+/G+vXrMXPmzEblBwwYgAEDBgCA0ecBYOTIkRg5cqT9Ku1gHGKxHVsGEoYbIiLnJlsAqq6uRk5ODtLS0qTH3NzckJCQgCNHjshVLUVQ+pEXat+kkYiInJ9sAai4uBi1tbUICQkxeDwkJARnzpxxaF2qqqpQVVUlfV9WVubQ93cm3KSRiIhcAVeBAUhPT8e8efPkroakuRscXrlypVFZe/e+cJNGIiJyBbIFoKCgILi7u6OoqMjg8aKiIoSGhjq0LmlpaUhNTZW+LysrQ0REhEPrYI6pkGHqVHNH9b5wk0bXwqFNIlIT2QKQp6cnYmNjkZ2djbFjxwIA9Ho9srOzkZKS4tC6eHl5wcvLy6Hv2VzmQoacvS88B8u1cGiTiNRG1iGw1NRUTJo0Cf3798fAgQORkZGBiooKaVXYxIkTER4ejvT0dAC3PthPnTol/fnnn39GXl4e2rRpg+joaADAjRs3cP78eek98vPzkZeXh4CAAHTq1MnBLWwZcyHjwoVoWXtfuEmja2luaObQJhG5ClkDUHJyMq5du4Y5c+agsLAQffv2xd69e6WJ0ZcuXYKb2+8fsleuXEG/fv2k7xcvXozFixdj6NChOHjwIADgm2++wR/+8AepTN3Q1qRJk7Bx40b7N8qGTIWMy5c7yt77wnOwiIjImck+CTolJcXkkFddqKkTGRkJIYTZ6w0bNqzJMs7CVMgANLL1vly/fh1A05s0Xr9+HWFhYXatC9mPqeFVIiJXIXsAItNMhYyIiMuy9b7cvHlT+nNMzHEEBxfi8uVOiIi4hI4dC4yWI+fCye1EpAYMQApUf4NDUztBy3VEhoeHh/Rncx+U9cuR8+DkdiJSCwYgBTJ11lRxcbG09F2uIzK0Wi2Apj8o68qRc+HkdiJSCwYghTK21FhJR2Twg9I1udLkdu5rRETmMAA5ESWdQu5KH5T0e2huanK7XOfPWYr7GhFRUxiAnIxS/rFu6oNSLvyt3zoNw/WcOddw8WIrREbeRIcOAwAMcKp7x32NiKgpDEBkNbnmIZli7W/9DE231G9jWBgQGytjZYiI7IwBiCyipHlIDVlzUCuHStTB1M9CcXFxo7JqCbxEascARBZR0jwkc5q7lw1Pt3d95n4W5D5QmIjkwwBEFjP3wVA3nFRQUGD0eUeEI2v3suEGgMpl7TCltT8LDLxEro8BiGym4XCSqd4Ue/92bc0SfW4AqFwtGaZs6meBR34QqRcDENlM/d+azfWm2Pu3a2uW6HNfI+VqyYoucz8L7PEjUje3posQWcZUb4pO5+eQ969bon/r4Fg0a4l+3QdlfdzXyHk13Neo4c8CAFl/RolIfuwBIptTQm+KpUv0lbqvkdLJsYVAc4atTO1r5O9/FYcPH0d+fqTsP6NEJC8GILI5uXaJbukSfaXta6R0cmwhYMmwlbF9jQoKqnH4MHcyJyIGILIDuXpTrFmir+R9jZTO0VsI2HKiOnv8iIgBiOxCrt4US3sarN3XiLtHG3LEhGJbDK3WD7LmfkYZeIlcHwMQ2Y2p3hSlsTSocPdoQ47aQsAWw1bOspEnEdkfAxDZTHN/a3b23665e7Qhe096t/VJ9Qw3RAQwACmWMw6xqPG3a+4lY/8Jxa52Uj0RKQMDkAI58xCL0upjT9w9+hZHTCjmSfVEZGsMQArUkp1vyXGUsN+RUnALASJyNgxARFay5dCPMw55cgsBInJmDEBOgAc2KpOthn6cdchTjXO+iMh1MAApHCfZKpsthn6ceVUZww0ROSsGIAXjJFtlsufQDwMvEZFjMAApGCfZKpO9hn4YeImIHIcBSMF4YKNy2WPoh4GXiMhx3JouQo7WcOdbjUYPAFbvfEvOoS7w1sfAS0RkH+wBUiDufKtOttxQ0BmX1RMRORIDkEIpeedbaz5c+YHcPLZYVeasy+qJiByJAYgsYs2HqzN/IDsiuNl6VZkzL6snInIUBiCyiDXHdCj9aA9TIUen02Hr1q1Nvr6lwc2eGwpyWT0RkXEMQNQi1uxSraSdrZvbOwXYtyfFHj1fjlhWz6FNInJWDEBkNWt6F5TWI9Hc4SKl1bs57L2s3pmHNm2JIZDIOTEAkVWs6V1Q+kZ/pkKO0uttir33keJcI4ZAImfGAERWsaZ3Qckb/ZkLOUqutzm2XFbfFGfsIbMFpc9vIyLTGIDIKk31LhQXF0uP1/1ZyTtbmws5Sq53U2yxrL4pztpDRkTqxgBEVmmqdyErK8vi18jJXMhRcr2NsedhrcY4aw+ZPShpgj8RmccARBap/6FpTe+CudfIebRHUyHHET0ptmLPZfX1Xb9+HUDTPXvXr19HWFhYi97LGah1GJDIWTEAkUXMfbgWFxcb9PyY+m14ypT7EBQUZPBaJayUaSrk2LsnxZYccS9v3rwJoOnwWFfOlXEYkMj5MACRxZrz4Wrut+GgoCDF9Ag0d7jooYceQtu2bY2+Xu7gphRCGP5XTTgMSOR8GIDI5pzpt2FHDRe5Ig8PDwC//30DdQHA8O+7rpwrc+aJ8kRqxQBENudsvw0z3FhHq9UCaPrvu66cK6rrQWxqGFCJw6REascARDbH34bVRc1/3w17EOfMuYaLF1shMvImOnQYAGAAexCJFIoBiGzO2ZaNU8uo/e+7frgJCwNiY2WsDBE1GwMQ2Uxzl8hzOMA2lHQGlTNtE0BEBDAAkQ1xQrHjKOEMKkdvuEiOoaRgTWRPDEBETkgJB5Ey8LoeJQRrIkdhACKb4T+e8pBzB2L+PboWJQRrIkdhACKb4cnYjudMey6Rc+HRHuTq3JouQmQdnc4P+fmR0On85K6KyzK3Bw+RtUwFa/6/TK6EPUBkF/zt0THk3oOHE2Zdk7NtZkpkDUX0AK1cuRKRkZHw9vZGXFwcjh49arLsyZMnMW7cOERGRkKj0SAjI6PF1yTb4m+PjlO3B49GowcAh+7BUzfna82aNSa/VqxYgZKSErvXhWyrLljXp5bNLUk9ZA9AW7duRWpqKubOnYvc3Fz06dMHiYmJuHr1qtHylZWV6Nq1KxYsWIDQ0FCbXJNsi8MyjhUTcxwzZmRg0qSNmDEjw2E9bcYmzBob8uScL+cjZ7AmchTZh8CWLl2KJ598ElOmTAEArF69Grt378b69esxc+bMRuUHDBiAAQMGAIDR5625JtmW3MMyjiD30I/S9uDhkKfr4eaW5OpkDUDV1dXIyclBWlqa9JibmxsSEhJw5MgRh12zqqoKVVVV0vdlZWVWvTfd4upHIyhhub+S9uBRw0o0uQOvoygtWBPZk6wBqLi4GLW1tQgJCTF4PCQkBGfOnHHYNdPT0zFv3jyr3o9+p5ajMJSyV4pSPnBdfcKsEgKvo1gbrNUSEMm1yD4EpgRpaWlITU2Vvi8rK0NERISMNXJOSuqVcBQO/bj+kKdSAq+jWPr/p5oCIrkWWQNQUFAQ3N3dUVRUZPB4UVGRyQnO9riml5cXvLy8rHo/MqSmf+DUMPTTHJYOeTpzb4FSA68199RWfw9qC4jkOmQNQJ6enoiNjUV2djbGjh0LANDr9cjOzkZKSopirklkjKsP/ViiuRNmld5bYCwUFBcXA1Bu4LXmntrr70GpAZHIGNmHwFJTUzFp0iT0798fAwcOREZGBioqKqQVXBMnTkR4eDjS09MB3Pot4tSpU9Kff/75Z+Tl5aFNmzaIjo5u1jWJbMHVh36aYs2EWSX3FjQVCpQaeK25p/Y4tkapAZHIFNkDUHJyMq5du4Y5c+agsLAQffv2xd69e6VJzJcuXYKb2+//6Fy5cgX9+vWTvl+8eDEWL16MoUOH4uDBg826JpEtuPpqt6a0dM6X0noLmgoSzhB4rb2npkKTJZQaEIlMkT0AAbe6WU0NT9WFmjqRkZEQQrTomkS2ova9UqwdplJ6b4GpIKHkwGvtPbVVEHWGgEhUnyICEJEz4V4pLafk3gJzQULJgdeae2rLIKr2HlFyPgxARBZS43J/W1Nyb0FTQUKpgdeae2rrIKrkgEjUEAMQkRUYblpGyb0FTQWJBx98EEFBQQavUULgteaeNtXWuhVw9TVsK3tEyVkxABHZmDPvc+NISu0taCpIBAUFISwsTOZaGmfpPW2qrVlZWUZfV395PHtEyVkxABHZkNL3uZGbs/QWKDWcGWPNPW3usTWmNAw7avxZJufHAERkQ0re50YJlNxb4CzhrCFr7qmp1xQXFxv0+thieTyRUjEAEdmJ0va5UQql9hYoOZw1xZo6NfUa/vySq2MAIrIDpe9zQ8YpMdzIgT+/pAYMQER2oOR9bogA8+ee8eeX1IABiMgOlLzPDVFTk/X580tq4NZ0ESKyVN3yYo1GDwCK2ueGqKlJ+Pz5JTVgDxCRnTjTUmqynivs+2RstZe5n9/Kykq5qkpkMwxARDbkrEupyToNh5JMLRtX8r5PTa/20jR6TevWrR1XQSI7YQAisiFHLqV2hZ4HZ1f//psLEkrd98ncaq8LF6K5DJ5cGgMQkY05InS4Qs+DK3HWZeOmVntdvtzRKdtDZAkGICIn5Ow9D67GWZeNm1rtBWicsj1EluAqMCInZqrnQafzk7lm6lIXJOpzhmXjplZ7RURcdsr2EFmCPUBETsxZex5cTVOnqitNcw5Ddab2EFmDAYjIiXHDOuVwpm0PmnMYqjO1h8gaDEBETszZeh5cnaltD5TI2OR4buNAasIAROTk+Ju6fJobBJwlMDhyGwciuTEAEbkAZ+p5cKX9i1wxMDhTXYlaggGIyAk5a8+DK+5f5Cz1JCJDDEBETshZex64fxERKQUDEJGTUlq4sYSz7pxMRK6DGyESkcOZ27+IiMgR2ANERA5nq/2LXGlCNRE5FgMQETmcLfYvcsUJ1UTkOAxARCSLlu5fpJQJ1eyFInJOVgWgbdu2YfPmzfj+++8BAN27d8cjjzyCP//5zzatHBG5NlvsX9TUhOri4mKjr7NFMGEvFJHzsigA6fV6jB8/Htu2bUP37t3Ro0cPAMDJkyeRnJyMv/zlL9i8eTM0Go1dKktEzs0e+xc1dSBsVlaW3YKJUnqhiMhyFgWgZcuWYf/+/dixYwdGjx5t8NyOHTswZcoULFu2DDNmzLBlHYnIRdhj/6KmJlQ7IphwWb+ycZiSjLEoAG3YsAGLFi1qFH4AYMyYMVi4cCEDEBGZZesPGnMTqh0VTJrqhSL5NBymNIXDlOpjUQA6d+4cEhISTD6fkJCAlJSUFleKiMgSpiZUOyqY2GpZP1nPVC9PwzlgpoZDOUypPhYFIB8fH1y/fh2dOnUy+nxZWRm8vb1tUjEiIksYm1DtqGBii2X9zkzuIabm9vKYGw4l9bEoAMXHx2PVqlVYtWqV0edXrlyJ+Ph4m1SMiMic5kyU1mrL0bv3t/jvf/sA0AAQ6N37WymYXL9+HWFhYTapT0uX9TsrJQwxNQxfxnp5OE+LGrIoAM2aNQvDhg1DSUkJXnrpJfTo0QNCCJw+fRpLlizBP/7xDxw4cMBedSUikpibUH3u3DkcOHAAOp0fvv22N26FHwDQ4Ntve2P48C+g1Zbj5s2bNq2TLZb1O5vmhA9j5ezFVC8P52lRQxYFoEGDBmHr1q2YNm0atm/fbvBcu3btsHnzZgwePNimFSQiMsVUj0LdvA97f+jZY1m/M3PEEJOx4ba6v29zvTycp0UNWbwR4p/+9CckJibis88+w7lz5wDc2gjx/vvvR+vWrW1eQSIiS3l4eABoeg5QXTlr2WNZv7NyxBBTU8Nt5gJvly4/qnqeFjVmUQD64osvkJKSgq+//hp/+tOfDJ7T6XS48847sXr1atxzzz02rSQRkSW0Wu3//df85OS6ci2hhnDTHI4YYmpquK2pwKvWeVpknEUBKCMjA08++ST8/f0bPafVavHXv/4VS5cuZQAiIsXgh55jOHqIydRwW1O9PKbmaV2/fr3RY2rpvVMriwLQf//7X7z99tsmn7///vuxePHiFleKiMiW1Dg52dEcuRWAueE2c4H3wQcfRFBQ0P9dQ4etW7dKz/2///f/jL4XN0h0XRYFoKKiIrNj5q1atcK1a9daXCkiInI+jupta2q4zVTg7dChg8kwI/fqNXI8iwJQeHg4Tpw4gejoaKPPf/vttzbbU4OIyFpcneU4De+hqfBhy3vd1HBb/Z6e+u9vKvxwg0R1sigA/fGPf8Ts2bMxYsSIRjs+//rrr5g7d67Rc8KIiByJq7Psw9SOz8nJyaipqUGrVq3Qtm3bRs/b+l43NdwWFBTU7F/GuUGielkUgF577TVkZWWhe/fuSElJwW233QYAOHPmDFauXIna2lrMmjXLLhUlIrIEw41tNVyCbmrIyFFzZmw13MYNEtXLogAUEhKCw4cP4+mnn0ZaWhqEEAAAjUaDxMRErFy5EiEhIXapKBERyad+z4+5IaOGPUS2PCfMHsNt3CBRvSzeCLFz587Ys2cPfvnlF5w/fx5CCHTr1g3t2rWzR/2IiEhBLBkysvU5YfYY2lT7QbZqZnEAqtOuXTsMGDDAlnUhIiKFs2TIyB7nhFkzvGbu+AyAe0WpldUBiIiI1MfaISO5Vlo1txfKEavXSFkYgIiIqNmsGTKSc6VVc3uhLF06T86PAYiIiCxi6ZCRUlZameuFsmTpPLkGBiAiIidny5VWzWXJ8SJKWGnF/X6oIbemi9jfypUrERkZCW9vb8TFxeHo0aNmy2/btg09evSAt7c3evXqhT179hg8X1RUhMmTJ6NDhw5o3bo1RowYgXPnztmzCUREsqib47JmzRqsWbMGixZtRlra51i0aLP02IoVK1BSUtKi92nJ7tp1w2YajR4AZFlpZa4XitRJ9h6grVu3IjU1FatXr0ZcXBwyMjKQmJiIs2fPIjg4uFH5w4cPY/z48UhPT8fo0aORmZmJsWPHIjc3Fz179oQQAmPHjoWHhwf+8Y9/wN/fH0uXLkVCQgJOnToFX19fGVpJRGQf1u7PY6mWLkGXa6VV3SnvTfVCXb9+nUNgKiN7D9DSpUvx5JNPYsqUKbjjjjuwevVqtG7dGuvXrzdaftmyZRgxYgRefvll3H777Zg/fz5iYmKkWf7nzp3D119/jVWrVmHAgAG47bbbsGrVKvz666/YvHmzI5tGROQwpoZ4dDo/m71HYGAgwsLCTH41DD/GNi7s0uXHRuHHniutbt68Kb23uV6ounKkHrL2AFVXVyMnJwdpaWnSY25ubkhISMCRI0eMvubIkSNITU01eCwxMRGffvopAKCqqgoADM4qc3Nzg5eXFw4dOoSpU6c2umZVVZX0OgAoKyuzuk1ERHJQykTj+pR4Jtv/HWAg/ZfUS9YAVFxcjNra2kbHZ4SEhODMmTNGX1NYWGi0fGFhIQCgR48e6NSpE9LS0vD+++/D19cX77zzDn766ScUFBQYvWZ6ejrmzZtngxYREclDCRONjZF7GbmHhweA33vIfh/4MJwEXVeO1EP2ITBb8/DwQFZWFr7//nsEBASgdevWOHDgAEaOHAk3N+PNTUtLg06nk74uX77s4FoTEbWMEiYaK5FWqwXQ9CTounKkHrL2AAUFBcHd3R1FRUUGjxcVFSE0NNToa0JDQ5ssHxsbi7y8POh0OlRXV6N9+/aIi4tD//79jV7Ty8sLXl5eLWwNEZG8eKSDaUrtISP5yNoD5OnpidjYWGRnZ0uP6fV6ZGdnIz4+3uhr4uPjDcoDwL59+4yW12q1aN++Pc6dO4dvvvkGDzzwgG0bQESkMKYmGqsde8ioIdmXwaempmLSpEno378/Bg4ciIyMDFRUVGDKlCkAgIkTJyI8PBzp6ekAgOeffx5Dhw7FkiVLMGrUKGzZsgXffPMN1qxZI11z27ZtaN++PTp16oTvvvsOzz//PMaOHYv7779fljYSEdlLS/bnURv2kFF9sgeg5ORkXLt2DXPmzEFhYSH69u2LvXv3ShOdL126ZDB3Z9CgQcjMzMRrr72GV199Fd26dcOnn36Knj17SmUKCgqQmpqKoqIihIWFYeLEiZg9e7bD20ZEZG9KXGmlJMaW4vPQUwIAjRBcDNhQWVkZtFotdDod/P395a4OERG1gBxHhZA8LPn8lr0HiIiIyJ4YbsgYl1sGT0RERNQUBiAiIiJSHQYgIiIiUh0GICIiIlIdBiAiIiJSHa4CIyIip8el7mQpBiAiInJqJSUlWLFiRZPlUlJSGIJIwiEwIiJyag17fnQ6P+TnR0Kn8zNbjtSNPUBEROQycnP7YefO0RDCTTrwNCbmOACguLjY6Gs4PKZODEBEROQSdDo/KfwAgBBu2LlzNKKizkOrLUdWVpbJ13J4TH04BEZERC6htDRQCj91hHBDaWmA9D2Hx6gOe4CIiMglBASUQKPRG4QgjUaPgIBSAOaHx0h92ANEREQuQastR1LSLmg0egCQQo5WW25yeKxhTxCpB3uAiIjIZcTEHEdU1HmUlgYgIKAUWm05APPDY3VlSF0YgIiIyKl5enoafK/VljcKNU0Nj5H6MAAREZFTCwwMREpKitGJzMXFxcjKypKGxxrOAWLvj3oxABERkdNrzhJ2U8NjcuIRHvJhACIiIpfVnOExY+UcgUd4yIsBiIiIXJa54bE6cvWyGDvCo7Q0EAEBJQYhjXsU2QcDEBERuTRn6D3hHkWOx32AiIiIZMQ9iuTBAERERCSj5hzhQbbHAERERCSjuj2K6uMeRfbHAERERCQjc0d4kP1wEjQREZHMlLhHkatjACIiIpKBkvcoUgMGICIiIhkoeY8iNWAAIiIikgnDjXw4CZqIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSnldwVICIisqeSkhJUV1ebfN7T0xOBgYEOrBEpAQMQERG5rJKSEqxYsUL6XqfzQ2lpIAICSqDVlkuPp6SkMASpDAMQERG5rPo9P7m5/bBz52gI4QaNRo+kpF2IiTneqBypA+cAERGRy9Pp/KTwAwBCuGHnztHQ6fxkrhnJhQGIiIhcXmlpoBR+6gjhhtLSAJlqRHJTRABauXIlIiMj4e3tjbi4OBw9etRs+W3btqFHjx7w9vZGr169sGfPHoPnb9y4gZSUFHTs2BE+Pj644447sHr1ans2gYiIFCwgoAQajd7gMY1Gj4CAUplqZF5JSQkKCgpMfpWUlMhdRacn+xygrVu3IjU1FatXr0ZcXBwyMjKQmJiIs2fPIjg4uFH5w4cPY/z48UhPT8fo0aORmZmJsWPHIjc3Fz179gQApKam4osvvsCHH36IyMhIfP7553jmmWfQoUMHjBkzxtFNJCIimWm15UhK2tVoDlD9idBK0XDitimcuN0yGiGEkLMCcXFxGDBggPSXrdfrERERgWeffRYzZ85sVD45ORkVFRXYtWuX9Nhdd92Fvn37Sr08PXv2RHJyMmbPni2ViY2NxciRI/HGG280WaeysjJotVrodDr4+/u3tIlERCSTgoICrFmzRvr+1iqwAAQElBqEn2nTpiEsLEyOKjZivM6NV64pqc5KYcnnt6xDYNXV1cjJyUFCQoL0mJubGxISEnDkyBGjrzly5IhBeQBITEw0KD9o0CDs2LEDP//8M4QQOHDgAL7//nvcf//99mkIERE5Ba22HF26/KjInh9jcnP7ISNjBjZtmoSMjBnIze0nd5VchqxDYMXFxaitrUVISIjB4yEhIThz5ozR1xQWFhotX1hYKH3/7rvvYtq0aejYsSNatWoFNzc3rF27FkOGDDF6zaqqKlRVVUnfl5WVWdskIiJSEE9PT5uWcyRTK9eios47TYBTMtnnANnDu+++i6+//ho7duxA586d8eWXX2L69Ono0KFDo94jAEhPT8e8efNkqCkREdlTYGAgUlJSnHInaHMr1xiAWk7WABQUFAR3d3cUFRUZPF5UVITQ0FCjrwkNDTVb/tdff8Wrr76KTz75BKNGjQIA9O7dG3l5eVi8eLHRAJSWlobU1FTp+7KyMkRERLSobUREpAxKDDfNUbdyrX4IUvLKNWcj6xwgT09PxMbGIjs7W3pMr9cjOzsb8fHxRl8THx9vUB4A9u3bJ5WvqalBTU0N3NwMm+bu7g693nAJZB0vLy/4+/sbfBEREcmpbuVa3fJ9Ja9cc0ayD4GlpqZi0qRJ6N+/PwYOHIiMjAxUVFRgypQpAICJEyciPDwc6enpAIDnn38eQ4cOxZIlSzBq1Chs2bIF33zzjTRj3t/fH0OHDsXLL78MHx8fdO7cGf/617/w97//HUuXLpWtnURERJaKiTmOqKjzRleuUcvIHoCSk5Nx7do1zJkzB4WFhejbty/27t0rTXS+dOmSQW/OoEGDkJmZiddeew2vvvoqunXrhk8//VTaAwgAtmzZgrS0NDz66KMoLS1F586d8eabb+Kpp55yePuIiIgs0XBCtlZbbjT4KHHitjORfR8gJeI+QEREJKeSkhKnnLgtN0s+v2XvASIiIiJD5sJNXTgqKCgw+jzDUfMwABERETkJHpNhO4o4DJWIiIiaZm5YzJpyasYARERE5KR0Oj/k50dCp/Oz6/v89BNw4MCt/7oKDoERERE5odzcfo1Ot4+JOQ7g1lFTDVk6N6hurlFmpg9eeUULvV4DNzeBhQt1eOSRX51+rhEDEBERkZNp6pywrKwso69r7tygurlGOp0fMjJmQAgNAECv1+Dll/3x88/rodWWO/VcIw6BERERORlz54SZY+kcoqbex5nnGjEAEREROZm6c8Lqq39OmK3mBjX1Ps6MQ2BEREROpu6csIZzgLTacrNzg2z5Ps6OAYiIiMhJ1D/+wtg5YU3NDbKGq55HxgBERETkJAIDA5GSktJo7k1xcTGysrLMztlpSXAxdR6ZM2MAIiIiciLmVl3VzdmpH4JcZc6OrXESNBERkYuom7NTN3HZlebs2Bp7gIiIiJxcU3ODjJVr7vVsUU6JNEIIIXcllKasrAxarRY6nQ7+/v5yV4eIiKhJdTs3m2LtTtC2up4jWPL5zR4gIiIiF6C0MKJ0DEBERERkoO4ojDo6nR9KSwMREFBiMKTmzEdhMAARERGRgfpDX+Y2VuRRGERERORyTG2s2NIjNpSAAYiIiIiMsvbQVWfAAERERERGufJhqAxAREREZJQrb6zISdBERERkEg9DJSIiIlVyxcNQOQRGREREBtRwFAZ7gIiIiMhAYGAgUlJSnO4oDEswABEREVEjzhxumoNDYERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6PAqDiIhIpUpKSlz6vC9zGICIiIhUqKSkBCtWrGiyXEpKikuGIA6BERERqZC5nh9ryjkbBiAiIiJSHQYgIiIigk7nh/z8SOh0fnJXxSE4B4iIiEjlcnP7YefO0RDCDRqNHklJuxATc1zuatkVe4CIiIhUTKfzk8IPAAjhhp07R7t8TxB7gIiIiFSstDRQCj91hHBDaWkAtNpyi67lTMvqGYCIiIhULCCgBBqN3iAEaTR6BASUWnQdZ1tWzyEwIiIiFfL09AQAaLXlSEraBY1GDwDSHKC63p+6ck1p2PNjalK1UpbVsweIiIhIhQIDA5GSkiIFkjlzruHixVaIjLyJDh0GABhg9ZCVM0yqZgAiIiJSqfrhJiwMiI1t+TVNTaqOijpv8Zwie+IQGBEREdmMuUnVSsIARERERDZTN6m6PmsmVdsbAxARERHZTFOTqpWCc4CIiIjIpmJijiMq6jxKSwMQEFCquPADKKQHaOXKlYiMjIS3tzfi4uJw9OhRs+W3bduGHj16wNvbG7169cKePXsMntdoNEa/Fi1aZM9mEBERqVbD5fJabTm6dPmxUfhp7rJ6e5O9B2jr1q1ITU3F6tWrERcXh4yMDCQmJuLs2bMIDg5uVP7w4cMYP3480tPTMXr0aGRmZmLs2LHIzc1Fz549AQAFBQUGr/nnP/+JJ554AuPGjXNIm4iIiNSm4bJ6Y5S0E7RGCCHkrEBcXBwGDBgg7R6p1+sRERGBZ599FjNnzmxUPjk5GRUVFdi1a5f02F133YW+ffti9erVRt9j7NixKC8vR3Z2drPqVFZWBq1WC51OB39/fytaRURERI5myee3rENg1dXVyMnJQUJCgvSYm5sbEhIScOTIEaOvOXLkiEF5AEhMTDRZvqioCLt378YTTzxhsh5VVVUoKysz+CIiIiLXJWsAKi4uRm1tLUJCQgweDwkJQWFhodHXFBYWWlR+06ZN8PPzw4MPPmiyHunp6dBqtdJXRESEhS0hIiIiZ6KISdD2tH79ejz66KPw9vY2WSYtLQ06nU76unz5sgNrSERERI4m6yTooKAguLu7o6ioyODxoqIihIaGGn1NaGhos8v/+9//xtmzZ7F161az9fDy8oKXl5eFtSciIiJnJWsPkKenJ2JjYw0mJ+v1emRnZyM+Pt7oa+Lj4xtNZt63b5/R8uvWrUNsbCz69Olj24oTERGRRUpKSlBQUGDyq6SkxKH1kX0ZfGpqKiZNmoT+/ftj4MCByMjIQEVFBaZMmQIAmDhxIsLDw5Geng4AeP755zF06FAsWbIEo0aNwpYtW/DNN99gzZo1BtctKyvDtm3bsGTJEoe3iYiIiH5XUlIirfY2JyUlxWHL5GUPQMnJybh27RrmzJmDwsJC9O3bF3v37pUmOl+6dAlubr93VA0aNAiZmZl47bXX8Oqrr6Jbt2749NNPpT2A6mzZsgVCCIwfP96h7SEiIiJDDfcG0un8UFoaiICAEoONEs3tIWRrsu8DpETcB4iIiMh2CgoKpJGa3Nx+2LlzNIRwk84Ji4k5DgCYNm0awsLCrH4fp9kHiIiIiNRDp/OTwg8ACOGGnTtHQ6fzc3hdGICIiIjIIUpLA6XwU0cIN5SWBji8LgxARERE5BABASXQaPQGj2k0egQElDq8LgxARERE5BBabTmSknZJIahuDlDDE+MdQfZVYERERKQeMTHHERV1HqWlAQgIKJUl/AAMQERERGShkpISs0vWPT09Dfbz8fT0NHheqy03GnwalrMnBiAiIiJqNms2NQwMDERKSopFocneGICIiIio2Zq7WWHDco4MN83BSdBERESkOgxAREREpDoMQERERKQ6DEBERERkNZ3OD/n5kbIcZ9ESnARNREREVjF3sKnSsQeIiIiILKakg02twQBEREREzVa3WWFTB5s6clNDa2iEEELuSihNWVkZtFotdDod/P395a4OERGRopSUlODixZsYODAYer1GetzdXeA//7mKyMhWsuz7Y8nnN3uAiIiIyCKBgYGIjQ3BmjUauLvfeszdHXj/fQ1iY0MUt+mhMZwETURERFZ54gkgMRE4fx6IjgY6dpS7Rs3HAERERERW69jRuYJPHQ6BERERkeowABEREZHqMAARERGR6jAAERERkeowABEREZHqMAARERGR6jAAERERkeowABEREZHqMAARERGR6jAAERERkeowABEREZHq8CwwI4QQAICysjKZa0JERETNVfe5Xfc5bg4DkBHl5eUAgIiICJlrQkRERJYqLy+HVqs1W0YjmhOTVEav1+PKlSvw8/ODRqOx6bXLysoQERGBy5cvw9/f36bXdgZqbz/Ae8D2q7v9AO+B2tsP2O8eCCFQXl6ODh06wM3N/Cwf9gAZ4ebmho4dO9r1Pfz9/VX7gw+w/QDvAduv7vYDvAdqbz9gn3vQVM9PHU6CJiIiItVhACIiIiLVYQByMC8vL8ydOxdeXl5yV0UWam8/wHvA9qu7/QDvgdrbDyjjHnASNBEREakOe4CIiIhIdRiAiIiISHUYgIiIiEh1GICIiIhIdRiA7GDlypWIjIyEt7c34uLicPToUZNlT548iXHjxiEyMhIajQYZGRmOq6idWNL+tWvX4p577kG7du3Qrl07JCQkmC3vDCxpf1ZWFvr374+2bdvC19cXffv2xQcffODA2tqHJfegvi1btkCj0WDs2LH2raCdWdL+jRs3QqPRGHx5e3s7sLb2YenPwPXr1zF9+nSEhYXBy8sL3bt3x549exxUW9uzpP3Dhg1r9DOg0WgwatQoB9bYtiz9+8/IyMBtt90GHx8fRERE4IUXXsBvv/1m30oKsqktW7YIT09PsX79enHy5Enx5JNPirZt24qioiKj5Y8ePSpeeuklsXnzZhEaGireeecdx1bYxixt/yOPPCJWrlwpjh8/Lk6fPi0mT54stFqt+Omnnxxcc9uwtP0HDhwQWVlZ4tSpU+L8+fMiIyNDuLu7i7179zq45rZj6T2ok5+fL8LDw8U999wjHnjgAcdU1g4sbf+GDRuEv7+/KCgokL4KCwsdXGvbsvQeVFVVif79+4s//vGP4tChQyI/P18cPHhQ5OXlObjmtmFp+0tKSgz+/k+cOCHc3d3Fhg0bHFtxG7G0/R999JHw8vISH330kcjPzxefffaZCAsLEy+88IJd68kAZGMDBw4U06dPl76vra0VHTp0EOnp6U2+tnPnzk4fgFrSfiGEuHnzpvDz8xObNm2yVxXtqqXtF0KIfv36iddee80e1XMIa+7BzZs3xaBBg8T//u//ikmTJjl1ALK0/Rs2bBBardZBtXMMS+/BqlWrRNeuXUV1dbWjqmhXLf134J133hF+fn7ixo0b9qqiXVna/unTp4vhw4cbPJaamioGDx5s13pyCMyGqqurkZOTg4SEBOkxNzc3JCQk4MiRIzLWzDFs0f7KykrU1NQgICDAXtW0m5a2XwiB7OxsnD17FkOGDLFnVe3G2nvwP//zPwgODsYTTzzhiGrajbXtv3HjBjp37oyIiAg88MADOHnypCOqaxfW3IMdO3YgPj4e06dPR0hICHr27Im33noLtbW1jqq2zdji38F169bh4Ycfhq+vr72qaTfWtH/QoEHIycmRhsl++OEH7NmzB3/84x/tWlcehmpDxcXFqK2tRUhIiMHjISEhOHPmjEy1chxbtP9vf/sbOnToYPA/j7Owtv06nQ7h4eGoqqqCu7s73nvvPdx33332rq5dWHMPDh06hHXr1iEvL88BNbQva9p/2223Yf369ejduzd0Oh0WL16MQYMG4eTJk3Y/lNkerLkHP/zwA7744gs8+uij2LNnD86fP49nnnkGNTU1mDt3riOqbTMt/Xfw6NGjOHHiBNatW2evKtqVNe1/5JFHUFxcjLvvvhtCCNy8eRNPPfUUXn31VbvWlQGIFGPBggXYsmULDh486BKTQJvLz88PeXl5uHHjBrKzs5GamoquXbti2LBhclfN7srLyzFhwgSsXbsWQUFBcldHFvHx8YiPj5e+HzRoEG6//Xa8//77mD9/vow1cxy9Xo/g4GCsWbMG7u7uiI2Nxc8//4xFixY5XQBqqXXr1qFXr14YOHCg3FVxmIMHD+Ktt97Ce++9h7i4OJw/fx7PP/885s+fj9mzZ9vtfRmAbCgoKAju7u4oKioyeLyoqAihoaEy1cpxWtL+xYsXY8GCBdi/fz969+5tz2rajbXtd3NzQ3R0NACgb9++OH36NNLT050yAFl6Dy5cuICLFy8iKSlJekyv1wMAWrVqhbNnzyIqKsq+lbYhW/wb4OHhgX79+uH8+fP2qKLdWXMPwsLC4OHhAXd3d+mx22+/HYWFhaiuroanp6dd62xLLfkZqKiowJYtW/A///M/9qyiXVnT/tmzZ2PChAmYOnUqAKBXr16oqKjAtGnTMGvWLLi52We2DucA2ZCnpydiY2ORnZ0tPabX65GdnW3wG56rsrb9CxcuxPz587F3717079/fEVW1C1v9/ev1elRVVdmjinZn6T3o0aMHvvvuO+Tl5UlfY8aMwR/+8Afk5eUhIiLCkdVvMVv8DNTW1uK7775DWFiYvappV9bcg8GDB+P8+fNS+AWA77//HmFhYU4VfoCW/Qxs27YNVVVVeOyxx+xdTbuxpv2VlZWNQk5dGBb2PK7UrlOsVWjLli3Cy8tLbNy4UZw6dUpMmzZNtG3bVlrWOmHCBDFz5kypfFVVlTh+/Lg4fvy4CAsLEy+99JI4fvy4OHfunFxNaBFL279gwQLh6ekpPv74Y4NloOXl5XI1oUUsbf9bb70lPv/8c3HhwgVx6tQpsXjxYtGqVSuxdu1auZrQYpbeg4acfRWYpe2fN2+e+Oyzz8SFCxdETk6OePjhh4W3t7c4efKkXE1oMUvvwaVLl4Sfn59ISUkRZ8+eFbt27RLBwcHijTfekKsJLWLt/wN33323SE5OdnR1bc7S9s+dO1f4+fmJzZs3ix9++EF8/vnnIioqSjz00EN2rScDkB28++67olOnTsLT01MMHDhQfP3119JzQ4cOFZMmTZK+z8/PFwAafQ0dOtTxFbcRS9rfuXNno+2fO3eu4ytuI5a0f9asWSI6Olp4e3uLdu3aifj4eLFlyxYZam1bltyDhpw9AAlhWftnzJghlQ0JCRF//OMfRW5urgy1ti1LfwYOHz4s4uLihJeXl+jatat48803xc2bNx1ca9uxtP1nzpwRAMTnn3/u4JrahyXtr6mpEa+//rqIiooS3t7eIiIiQjzzzDPil19+sWsdNULYs3+JiIiISHk4B4iIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiEhGkydPxtixY+WuBpHqMAARkVGTJ0+GRqORvgIDAzFixAh8++23clfNJuq3re7r7rvvttv7Xbx4ERqNBnl5eQaPL1u2DBs3brTb+xKRcQxARGTSiBEjUFBQgIKCAmRnZ6NVq1YYPXq03NWymQ0bNkjtKygowI4dO4yWq6mpsVsdtFot2rZta7frE5FxDEBEZJKXlxdCQ0MRGhqKvn37YubMmbh8+TKuXbuG4cOHIyUlxaD8tWvX4OnpKZ0EHRkZifnz52P8+PHw9fVFeHg4Vq5cafCapUuXolevXvD19UVERASeeeYZ3LhxQ3r+xx9/RFJSEtq1awdfX1/ceeed2LNnDwDgl19+waOPPor27dvDx8cH3bp1w4YNG5rdvrZt20rtCw0NRUBAgNRTs3XrVgwdOhTe3t746KOPUFJSgvHjxyM8PBytW7dGr169sHnzZoPr6fV6LFy4ENHR0fDy8kKnTp3w5ptvAgC6dOkCAOjXrx80Gg2GDRsGoPEQWFVVFZ577jkEBwfD29sbd999N44dOyY9f/DgQWg0GmRnZ6N///5o3bo1Bg0ahLNnzza73UTEAEREzXTjxg18+OGHiI6ORmBgIKZOnYrMzExUVVVJZT788EOEh4dj+PDh0mOLFi1Cnz59cPz4ccycORPPP/889u3bJz3v5uaG5cuX4+TJk9i0aRO++OILvPLKK9Lz06dPR1VVFb788kt89913ePvtt9GmTRsAwOzZs3Hq1Cn885//xOnTp7Fq1SoEBQXZpL11dT19+jQSExPx22+/ITY2Frt378aJEycwbdo0TJgwAUePHpVek5aWhgULFkj1yszMREhICABI5fbv34+CggJkZWUZfd9XXnkF27dvx6ZNm5Cbm4vo6GgkJiaitLTUoNysWbOwZMkSfPPNN2jVqhUef/xxm7SbSDXsetQqETmtSZMmCXd3d+Hr6yt8fX0FABEWFiZycnKEEEL8+uuvol27dmLr1q3Sa3r37i1ef/116fvOnTuLESNGGFw3OTlZjBw50uT7btu2TQQGBkrf9+rVy+Ca9SUlJYkpU6ZY1T4AwtvbW2qfr6+v+OSTT0R+fr4AIDIyMpq8xqhRo8SLL74ohBCirKxMeHl5ibVr1xotW3fd48ePGzw+adIk8cADDwghhLhx44bw8PAQH330kfR8dXW16NChg1i4cKEQQogDBw4IAGL//v1Smd27dwsA4tdff7XkFhCpGnuAiMikP/zhD8jLy0NeXh6OHj2KxMREjBw5Ej/++CO8vb0xYcIErF+/HgCQm5uLEydOYPLkyQbXiI+Pb/T96dOnpe/379+Pe++9F+Hh4fDz88OECRNQUlKCyspKAMBzzz2HN954A4MHD8bcuXMNJmE//fTT2LJlC/r27YtXXnkFhw8ftqh977zzjtS+vLw83HfffdJz/fv3NyhbW1uL+fPno1evXggICECbNm3w2Wef4dKlSwCA06dPo6qqCvfee69FdajvwoULqKmpweDBg6XHPDw8MHDgQIN7BgC9e/eW/hwWFgYAuHr1qtXvTaQ2DEBEZJKvry+io6MRHR2NAQMG4H//939RUVGBtWvXAgCmTp2Kffv24aeffsKGDRswfPhwdO7cudnXv3jxIkaPHo3evXtj+/btyMnJkeYIVVdXS+/xww8/YMKECfjuu+/Qv39/vPvuuwAghbEXXngBV65cwb333ouXXnqp2e8fGhoqtS86Ohq+vr4Gba9v0aJFWLZsGf72t7/hwIEDyMvLQ2JiolRPHx+fZr+vLXh4eEh/1mg0AG7NQSKi5mEAIqJm02g0cHNzw6+//goA6NWrF/r374+1a9ciMzPT6DyUr7/+utH3t99+OwAgJycHer0eS5YswV133YXu3bvjypUrja4RERGBp556CllZWXjxxRelAAYA7du3x6RJk/Dhhx8iIyMDa9assWWTJV999RUeeOABPPbYY+jTpw+6du2K77//Xnq+W7du8PHxkSaAN+Tp6QngVk+SKVFRUfD09MRXX30lPVZTU4Njx47hjjvusFFLiAgAWsldASJSrqqqKhQWFgK4teJqxYoVuHHjBpKSkqQyU6dORUpKCnx9ffGnP/2p0TW++uorLFy4EGPHjsW+ffuwbds27N69GwAQHR2NmpoavPvuu0hKSsJXX32F1atXG7x+xowZGDlyJLp3745ffvkFBw4ckALUnDlzEBsbizvvvBNVVVXYtWuX9JytdevWDR9//DEOHz6Mdu3aYenSpSgqKpKCibe3N/72t7/hlVdegaenJwYPHoxr167h5MmTeOKJJxAcHAwfHx/s3bsXHTt2hLe3N7RarcF7+Pr64umnn8bLL7+MgIAAdOrUCQsXLkRlZSWeeOIJu7SLSK3YA0REJu3duxdhYWEICwtDXFwcjh07hm3btklLuAFg/PjxaNWqFcaPHw9vb+9G13jxxRfxzTffoF+/fnjjjTewdOlSJCYmAgD69OmDpUuX4u2330bPnj3x0UcfIT093eD1tbW1mD59Om6//XaMGDEC3bt3x3vvvQfgVq9KWloaevfujSFDhsDd3R1btmyxy7147bXXEBMTg8TERAwbNgyhoaGNdnCePXs2XnzxRcyZMwe33347kpOTpXk5rVq1wvLly/H++++jQ4cOeOCBB4y+z4IFCzBu3DhMmDABMTExOH/+PD777DO0a9fOLu0iUiuNEELIXQkicl4XL15EVFQUjh07hpiYGIPnIiMjMWPGDMyYMUOeyhERmcAhMCKySk1NDUpKSvDaa6/hrrvuahR+iIiUjENgRGSVr776CmFhYTh27FijeTtye+utt9CmTRujXyNHjpS7ekSkABwCIyKXU1pa2mjn5Do+Pj4IDw93cI2ISGkYgIiIiEh1OARGREREqsMARERERKrDAERERESqwwBEREREqsMARERERKrDAERERESqwwBEREREqsMARERERKrz/wGlLkV8rkgWRAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUuNJREFUeJzt3XtYVNX+P/D3cEeEQVABEQUBtVJRUEwrNaPQlLI6J7Lyluax5JRRlmReOlZ4F+9Wx9upDH8mlbdjKeW3UjspyjEvmRpeSkGFHFAKENbvD86MDMwMM8Psvefyfj0PT7JnzczaW2Terf1Za6mEEAJERERELsRN6Q4QERERyY0BiIiIiFwOAxARERG5HAYgIiIicjkMQERERORyGICIiIjI5TAAERERkcthACIiIiKXwwBERERELocBiIjIjq1btw4qlQpnz55VuitEToUBiMjFHThwAGlpabjjjjvg5+eHdu3a4fHHH8fPP//coO2AAQOgUqmgUqng5uaGgIAAdOrUCSNGjMCuXbsset+tW7eif//+aN26NZo1a4YOHTrg8ccfx86dO211ag288847+Oyzzxoc37dvH2bOnIlr165J9t71zZw5U3ctVSoVmjVrhttvvx1vvPEGSktLbfIeGzZsQFZWlk1ei8jZMAARubg5c+Zg8+bNuO+++7B48WKMHz8e33zzDeLj43H06NEG7du2bYsPPvgA//rXvzBv3jw89NBD2LdvHx544AGkpqaiqqqq0fecP38+HnroIahUKmRkZGDRokV47LHHcOrUKWRnZ0txmgBMB6A333xT1gCktXLlSnzwwQdYuHAhOnfujLfffhuDBg2CLbZpZAAiMs5D6Q4QkbLS09OxYcMGeHl56Y6lpqaia9eumD17Nj788EO99mq1Gk8//bTesdmzZ+OFF17AihUrEBkZiTlz5hh9v5s3b2LWrFm4//778eWXXzZ4/PLly008I/tRXl6OZs2amWzzl7/8BS1btgQATJgwAY899hhycnLw/fffo0+fPnJ0k8glcQSIyMX17dtXL/wAQGxsLO644w6cOHHCrNdwd3fHkiVLcPvtt2PZsmXQaDRG2169ehWlpaW46667DD7eunVrve///PNPzJw5Ex07doSPjw/CwsLw6KOP4syZM7o28+fPR9++fREcHAxfX18kJCTgk08+0XsdlUqFGzduYP369brbTqNHj8bMmTMxefJkAEBUVJTusbo1Nx9++CESEhLg6+uLoKAgPPHEE7hw4YLe6w8YMABdunRBXl4e+vXrh2bNmuH111836/rVNXDgQABAQUGByXYrVqzAHXfcAW9vb7Rp0wYTJ07UG8EaMGAAtm/fjnPnzunOKTIy0uL+EDkrjgARUQNCCBQVFeGOO+4w+znu7u4YPnw4pk2bhu+++w5Dhgwx2K5169bw9fXF1q1b8fe//x1BQUFGX7O6uhpDhw5Fbm4unnjiCbz44osoKyvDrl27cPToUURHRwMAFi9ejIceeghPPfUUKisrkZ2djb/+9a/Ytm2brh8ffPABxo0bh8TERIwfPx4AEB0dDT8/P/z888/4+OOPsWjRIt1oTKtWrQAAb7/9NqZNm4bHH38c48aNw5UrV7B06VL069cPhw8fRmBgoK6/xcXFGDx4MJ544gk8/fTTCAkJMfv6aWmDXXBwsNE2M2fOxJtvvomkpCQ899xzOHnyJFauXIkDBw5g79698PT0xNSpU6HRaPDrr79i0aJFAIDmzZtb3B8ipyWIiOr54IMPBACxevVqveP9+/cXd9xxh9HnffrppwKAWLx4scnXnz59ugAg/Pz8xODBg8Xbb78t8vLyGrRbs2aNACAWLlzY4LGamhrdn8vLy/Ueq6ysFF26dBEDBw7UO+7n5ydGjRrV4LXmzZsnAIiCggK942fPnhXu7u7i7bff1jv+448/Cg8PD73j/fv3FwDEqlWrjJ53XTNmzBAAxMmTJ8WVK1dEQUGBePfdd4W3t7cICQkRN27cEEIIsXbtWr2+Xb58WXh5eYkHHnhAVFdX615v2bJlAoBYs2aN7tiQIUNE+/btzeoPkavhLTAi0vPTTz9h4sSJ6NOnD0aNGmXRc7UjDGVlZSbbvfnmm9iwYQN69OiBL774AlOnTkVCQgLi4+P1brtt3rwZLVu2xN///vcGr6FSqXR/9vX11f35999/h0ajwT333INDhw5Z1P/6cnJyUFNTg8cffxxXr17VfYWGhiI2NhZff/21Xntvb2+MGTPGovfo1KkTWrVqhaioKPztb39DTEwMtm/fbrR2aPfu3aisrMSkSZPg5nbrV/izzz6LgIAAbN++3fITJXJBvAVGRDqFhYUYMmQI1Go1PvnkE7i7u1v0/OvXrwMA/P39G207fPhwDB8+HKWlpfjPf/6DdevWYcOGDUhJScHRo0fh4+ODM2fOoFOnTvDwMP2ratu2bXjrrbeQn5+PiooK3fG6Ickap06dghACsbGxBh/39PTU+z48PLxBPVVjNm/ejICAAHh6eqJt27a623rGnDt3DkBtcKrLy8sLHTp00D1ORKYxABERAECj0WDw4MG4du0avv32W7Rp08bi19BOm4+JiTH7OQEBAbj//vtx//33w9PTE+vXr8d//vMf9O/f36znf/vtt3jooYfQr18/rFixAmFhYfD09MTatWuxYcMGi8+hrpqaGqhUKvz73/82GAbr19TUHYkyV79+/XR1R0QkHwYgIsKff/6JlJQU/Pzzz9i9ezduv/12i1+juroaGzZsQLNmzXD33Xdb1Y+ePXti/fr1uHTpEoDaIuX//Oc/qKqqajDaorV582b4+Pjgiy++gLe3t+742rVrG7Q1NiJk7Hh0dDSEEIiKikLHjh0tPR1JtG/fHgBw8uRJdOjQQXe8srISBQUFSEpK0h1r6ggYkTNjDRCRi6uurkZqair279+PTZs2WbX2THV1NV544QWcOHECL7zwAgICAoy2LS8vx/79+w0+9u9//xvArds7jz32GK5evYply5Y1aCv+t1Cgu7s7VCoVqqurdY+dPXvW4IKHfn5+Bhc79PPzA4AGjz366KNwd3fHm2++2WBhQiEEiouLDZ+khJKSkuDl5YUlS5bo9Wn16tXQaDR6s+/8/PxMLklA5Mo4AkTk4l5++WVs2bIFKSkpKCkpabDwYf1FDzUaja5NeXk5Tp8+jZycHJw5cwZPPPEEZs2aZfL9ysvL0bdvX9x5550YNGgQIiIicO3aNXz22Wf49ttvMWzYMPTo0QMAMHLkSPzrX/9Ceno6fvjhB9xzzz24ceMGdu/ejeeffx4PP/wwhgwZgoULF2LQoEF48skncfnyZSxfvhwxMTE4cuSI3nsnJCRg9+7dWLhwIdq0aYOoqCj07t0bCQkJAICpU6fiiSeegKenJ1JSUhAdHY233noLGRkZOHv2LIYNGwZ/f38UFBTg008/xfjx4/HKK6806fpbqlWrVsjIyMCbb76JQYMG4aGHHsLJkyexYsUK9OrVS+/vKyEhARs3bkR6ejp69eqF5s2bIyUlRdb+EtktJaegEZHytNO3jX2Zatu8eXMRGxsrnn76afHll1+a9X5VVVXi/fffF8OGDRPt27cX3t7eolmzZqJHjx5i3rx5oqKiQq99eXm5mDp1qoiKihKenp4iNDRU/OUvfxFnzpzRtVm9erWIjY0V3t7eonPnzmLt2rW6aeZ1/fTTT6Jfv37C19dXANCbEj9r1iwRHh4u3NzcGkyJ37x5s7j77ruFn5+f8PPzE507dxYTJ04UJ0+e1Ls2ppYIqE/bvytXrphsV38avNayZctE586dhaenpwgJCRHPPfec+P333/XaXL9+XTz55JMiMDBQAOCUeKI6VELYYMMZIiIiIgfCGiAiIiJyOQxARERE5HIYgIiIiMjlMAARERGRy2EAIiIiIpfDAEREREQuhwshGlBTU4OLFy/C39+fS8kTERE5CCEEysrK0KZNG7i5mR7jYQAy4OLFi4iIiFC6G0RERGSFCxcuoG3btibbMAAZ4O/vD6D2Apra04iIiIjsR2lpKSIiInSf46YwABmgve0VEBDAAERERORgzClfYRE0ERERuRwGICIiInI5DEBERETkclgDREREZCPV1dWoqqpSuhtOy9PTE+7u7jZ5LQYgIiKiJhJCoLCwENeuXVO6K04vMDAQoaGhTV6njwGIiIioibThp3Xr1mjWrBkX0ZWAEALl5eW4fPkyACAsLKxJr8cARERE1ATV1dW68BMcHKx0d5yar68vAODy5cto3bp1k26HsQiaiIioCbQ1P82aNVO4J65Be52bWmvFAERERGQDvO0lD1tdZ94CI7tQXFyMyspKo497eXlxaJmIiGyGAYgUV1xcjGXLljXaLi0tjSGIiIhsgrfASHGmRn6saUdEROYZPXo0VCoVVCoVPD09ERISgvvvvx9r1qxBTU2N2a+zbt06BAYGStdRCXAEiOyORuOPkpJgBAUVQ60uU7o7RESSU7IMYNCgQVi7di2qq6tRVFSEnTt34sUXX8Qnn3yCLVu2wMPDOaOCc54Vmc3eam8OHeqBrVuHQgg3qFQ1SEnZhvj4w7K9PxGR3JQuA/D29kZoaCgAIDw8HPHx8bjzzjtx3333Yd26dRg3bhwWLlyItWvX4pdffkFQUBBSUlIwd+5cNG/eHHv27MGYMWMA3CpQnjFjBmbOnIkPPvgAixcvxsmTJ+Hn54eBAwciKysLrVu3tvl5WIoByIXV/0dnbORFrtobjcZfF34AQAg3bN06FNHRpzkSREROyx7LAAYOHIi4uDjk5ORg3LhxcHNzw5IlSxAVFYVffvkFzz//PF599VWsWLECffv2RVZWFqZPn46TJ08CAJo3bw6gdqr6rFmz0KlTJ1y+fBnp6ekYPXo0duzYIdu5GMMA5MLq/mMyNfIi1z+6kpJgXfjREsINJSVBDEBERDLr3Lkzjhw5AgCYNGmS7nhkZCTeeustTJgwAStWrICXlxfUajVUKpVuJEnrmWee0f25Q4cOWLJkCXr16oXr16/rQpJSWARNRkdeNBp/WfsRFFQMlUq/6E6lqkFQUIms/SAiotqtJ7S3tHbv3o377rsP4eHh8Pf3x4gRI1BcXIzy8nKTr5GXl4eUlBS0a9cO/v7+6N+/PwDg/Pnzkve/MQxAZHLkRU5qdRlSUrbpQpB2JIqjP0RE8jtx4gSioqJw9uxZDB06FN26dcPmzZuRl5eH5cuXAzB9h+DGjRtITk5GQEAAPvroIxw4cACffvppo8+TC2+BkW7kpW4IknPkxcvLS/fn+PjDiI4+jZKSIAQFleiFn7rtiIhIOl999RV+/PFHvPTSS8jLy0NNTQ0WLFgAN7faz4n/9//+n157Ly8vVFdX6x376aefUFxcjNmzZyMiIgIAcPDgQXlOwAwMQKQbealfAyTXyEtwcDDS0tLsajYaEZGrqKioQGFhod40+MzMTAwdOhQjR47E0aNHUVVVhaVLlyIlJQV79+7FqlWr9F4jMjIS169fR25uLuLi4tCsWTO0a9cOXl5eWLp0KSZMmICjR49i1qxZCp1lQwxABMD0yIscGG6IiJSxc+dOhIWFwcPDAy1atEBcXByWLFmCUaNGwc3NDXFxcVi4cCHmzJmDjIwM9OvXD5mZmRg5cqTuNfr27YsJEyYgNTUVxcXFumnw69atw+uvv44lS5YgPj4e8+fPx0MPPaTg2d6iEkIIpTthb0pLS6FWq6HRaBAQEKB0dyRz6dIlvPfee422Gz9+PMLCwmToERGR4/nzzz9RUFCAqKgo+Pj4WPx8pdcBcjSmrrcln98cAXJh5tbUsPaGiEg6LANQBgOQC+M/OiIi+8Dfs/JjAHJx/EdHRESuiAHIAdXdv+viRTcUFHggKuom2rSpXT+HozZERESmMQA5mLrFcqa2r2CxHBERkXFcCdrBaEd+Gtu+wh5W2SQiIrJXDEAOyl62ryAiInJEDEAOihuHEhERWY8ByEFx41AiIiLrsQjagSm9fQUREZEpe/bswb333ovff/8dgYGBZj0nMjISkyZNwqRJkyTtG0eAnIJK6Q4QEZEDGj16NFQqFSZMmNDgsYkTJ0KlUmH06NHyd0wGHAFyMNeuXdP92dQ0+GvXrnH/LoXVXa/JEK7XRET2ICIiAtnZ2Vi0aBF8fX0B1O63tWHDBrRr107h3kmHAcjBqFS1oz3GpsFHR5+GWl2ma0fK4OaGROQo4uPjcebMGeTk5OCpp54CAOTk5KBdu3aIiorStauoqMDkyZORnZ2N0tJS9OzZE4sWLUKvXr10bXbs2IFJkybhwoULuPPOOzFq1KgG7/fdd98hIyMDBw8eRMuWLfHII48gMzMTfn5+0p9sHbwFpqDi4mJcunQJly5dQl5eET75pBh5eUW6Y8XFxQ2eo1arATQ+DV7bjpRh7jpMXK+JiOr79Vfg669r/yuXZ555BmvXrtV9v2bNGowZM0avzauvvorNmzdj/fr1OHToEGJiYpCcnIySktrZxxcuXMCjjz6KlJQU5OfnY9y4cZgyZYrea5w5cwaDBg3CY489hiNHjmDjxo347rvvkJaWJv1J1sMRIIU0dUVn7TT4uiHIkafBO/vtIo3GHyUlwQgKKmaxOhEZtXo1MH48UFMDuLkB770HjB0r/fs+/fTTyMjIwLlz5wAAe/fuRXZ2Nvbs2QMAuHHjBlauXIl169Zh8ODBAID3338fu3btwurVqzF58mSsXLkS0dHRWLBgAQCgU6dO+PHHHzFnzhzd+2RmZuKpp57SFTjHxsZiyZIl6N+/P1auXAkfHx/pT/Z/GIAU0tiKztpbWcZCgXYafP3g5IgfrvVvFxkLC456u8hUwCUi0vr111vhB6j979/+BiQnA23bSvverVq1wpAhQ7Bu3ToIITBkyBC0bNlS9/iZM2dQVVWFu+66S3fM09MTiYmJOHHiBADgxIkT6N27t97r9unTR+/7//73vzhy5Ag++ugj3TEhBGpqalBQUIDbbrtNitMziAFIYaZuZTUWZpxlGnzdkGcqLFhyu8heRpQaC7hERFqnTt0KP1rV1cDp09IHIKD2Npj2VtTy5csleY/r16/jb3/7G1544YUGj8ldcM0ApLCm3spSq8uc5oPUVmHBngqQmxJwici1xMbW3vaqG4Lc3YGYGHnef9CgQaisrIRKpUJycrLeY9HR0fDy8sLevXvRvn17AEBVVRUOHDigu5112223YcuWLXrP+/777/W+j4+Px/HjxxEj10mZwCJohXFF51tstb9Z/ZEfjcYfBQWRuo1ijbWTArcsISJztW1bW/Pj7l77vbs78O678oz+1L6fO06cOIHjx4/DXduJ//Hz88Nzzz2HyZMnY+fOnTh+/DieffZZlJeXY+z/ipQmTJiAU6dOYfLkyTh58iQ2bNiAdevW6b3Oa6+9hn379iEtLQ35+fk4deoUPv/8cxZBuypLbmV5eXmZ9ZrmtrMnUhR2K11/40y1WkQkvbFja2t+Tp+uHfmRK/xoBQQEGH1s9uzZqKmpwYgRI1BWVoaePXviiy++QIsWLQDU3sLavHkzXnrpJSxduhSJiYl455138Mwzz+heo1u3bvi///s/TJ06Fffccw+EEIiOjkZqaqrk51YfA5CdMPdWVnBwMNLS0uyivsXWbB0WlKy/qRtATQVcRwyqRCSttm3lCz71R2jq++yzz3R/9vHxwZIlS7BkyRKj7YcOHYqhQ4fqHas/nb5Xr1748ssvjb7G2bNnTfbJVhiAHJAjhhtz2bKwW8n6G2cOqkREzoABSCHOfCurqWxV2K30WkkMN0RE9osBSCEcIbhFqjDI+hsiIjKGAUhBrhBuzCFlGHSWtZKIiMi2GIDILtgyDNYfKTJ2S80Vby8SkXSEEEp3wSXY6jozAJHT4e1FIpKTp6cnAKC8vBy+vr4K98b5lZeXA7h13a3FAEROieGGiOTi7u6OwMBAXL58GQDQrFkzqFQqhXvlfIQQKC8vx+XLlxEYGNhgsUZLMQARERE1UWhoKADoQhBJJzAwUHe9m4IBiIiIqIlUKhXCwsLQunVrVFVVKd0dp+Xp6dnkkR8tBiAiIiIbcXd3t9kHNEmLm6ESERGRy+EIkIKKi4vteqaSvfePiIjIWooHoOXLl2PevHkoLCxEXFycbgdZQ44dO4bp06cjLy8P586dw6JFizBp0iS9Nt988w3mzZuHvLw8XLp0CZ9++imGDRsm/YlYqLi4GMuWLdN9r9H4o6QkGEFBxXpr1qSlpSkSMur3zxil+kdERNQUit4C27hxI9LT0zFjxgwcOnQIcXFxSE5ONlpFX15ejg4dOmD27NlGK8Bv3LiBuLg4LF++XMquN1ndkZVDh3ogK2sS1q8fhaysSTh0qIfBdnKq/74ajT8KCiKh0fibbEdEROQIFB0BWrhwIZ599lmMGTMGALBq1Sps374da9aswZQpUxq079WrF3r16gUABh8HgMGDB2Pw4MHSddrGNBp/3V5VQO1u5Vu3DkV09Gm72bbh0KEeDfbTio8/rHS3ZMNbgbfwWhCRs1AsAFVWViIvLw8ZGRm6Y25ubkhKSsL+/ftl7UtFRQUqKip035eWlsr23iUlwXq7lQO1IaikJMguApAjBDQp8VbgLbwWRORMFAtAV69eRXV1NUJCQvSOh4SE4KeffpK1L5mZmXjzzTdlfU+toKBiqFQ1eiFIpapBUFCJIv2pz54DmhyjEebe4nOFW4G8FkTkTBQvgrYHGRkZSE9P131fWlqKiIgIWd5brS5DSsq2BreYlA4XWvYa0JQajTBWrO6KeC2IyJEpFoBatmwJd3d3FBUV6R0vKiqyyRLXlvD29oa3t7es71lXfPxhREefRklJEIKCSuzqw8ReA5qhIm1DH8a2HI1w9VqoungtiMjRKRaAvLy8kJCQgNzcXN009ZqaGuTm5iItLU2pbilGrS5TPFQYY88BDZDnw9jVa6Hq4rUgImeg6C2w9PR0jBo1Cj179kRiYiKysrJw48YN3aywkSNHIjw8HJmZmQBq/2/++PHjuj//9ttvyM/PR/PmzRETEwMAuH79Ok6fPq17j4KCAuTn5yMoKAjt2rWT+QyN8/Lysmk7W6v/vsYCmlL905Lrw9iea6HkxmtBRM5A0QCUmpqKK1euYPr06SgsLET37t2xc+dOXWH0+fPn4eZ26xftxYsX0aPHrTVy5s+fj/nz56N///7Ys2cPAODgwYO49957dW20tT2jRo3CunXrpD8pMwUHByMtLc1upxTbe/+05PowttdaKCXwWhCRM1C8CDotLc3oLS9tqNGKjIyEEMLk6w0YMKDRNvZC6fDQGHvvHyDfh7G91kIpgdeCiJyB4gGIqCmk/jCue4vPVC2U0rcC5cBrQUTOhAGIHJ6URdqOcitQDrwWRORMGIDIIclZpM0P9Ft4LYjIWTAAkUPiaAQRETUFAxA5LIYbIiKyllvjTYiIiIicC0eASDZybF5KRERkDgYgkoVSm5cSEREZwltgJAtDm5cWFERCo/E32Y6IiEgKHAEi2XEncSIiUhoDEMmKO4mzFoqIyB4wAJGsXH0ncdZCERHZBwYgkpXSO4krPfpibo0Ta6Gso/TfLxE5DgYgMkqKDxMldxK3x9EXjcYfJSXBCAoqdokRMCnZ498vEdkvBiAySMoPEyk3LzXF0Ew0Q+FDrtEXFoPbFkfXiMgSDEBkkK3DgrWbl0p1S0Pp8MFicCIiZTEAUaNsERas2bxUqlEoS8OHFCHM1YvB5cDbi0RkCgMQmWTLkQpLQ4JUt6wsCR9ShTCli8GdndIjfERk/xiAyCR7Gamw5QeaJeFDqhCmZDG4s+PtRSIyBwMQmaTkSIVGo/nff01/oGk0GoSFhZn9utaGD1uEsLo1TqaKwevXQpH57CW0E5F9YwAik5QcqaiqqgLQ+Aeatp0lLJ2JZs2ogrHaodTUVFRVVcHDwwOBgYENHudaNU3D24tEZA4GIGqUUtPWtYKCigHUQH/vXss/0KydiQZYPqrANWnkp/17ayy0c3SNiAAGIDLC3qatAyr971RGmplgzUw0LUtHFextzSFXUP/vd/r0Kzh71gORkTfRpk0vAL04ukZEOgxAZJA9TVsvKQlG/QBkbU2HpR9+165dA9D4qMK1a9eM1iFxRpJ86v79hoUBCQkKdoaI7BoDEBml9LR1D4/aH8/GRl+07aRw8+ZN3Z/j4w+jdetCXLjQDhER59G27SWD7erijCQiIvvEAESSsMWoh7ZAuLHRF0OFxLbi6emp+7Opc6rbri5HnJHEDUWJyBUwAJHNSTHqoVQhtlqtBtD4OWnb1edoM5JYvE1ErsKt8SZEljE16mEJQ4XYUVHnGoQfOWb1WHtO2tErlaoGAOx+wUNDtzELCiKh0fibbEdE5Gg4AkQ2Z6tRj6bM2rK1ppyT0ssIWIvF20TkzBiA7JS912EY6t/Vq1cB2HbxRDnP0Zbn1JQ1h+wBi7eJyNkxANkhe6/DMKd/jjbqUf+c9Gew1R6z5JzsafTKGo5YvE1EZAkGIDtkbn2FUnUY5r6vI4161D0nU7d+LDknew035nC04m0iIksxADkAY+vp2Atj/Xv00UfRsmVLvbb2POoBNH7rxxHPyRrcrZ6InB0DkJ2z90JUU/1r2bKlRbu024PGbv044jlZy9FuYxIRWYIByI7ZeyGqvffPGnLc+rHnAndHL94mIjIXA5AMrP3As/dCVHvvnzWkvvVj7wXujl687ajsORQTOSsGIIk15QPPlqMRUvyCddZCWSlv/TjCLvH8oJWXvYdiImfFACSxpszostVohFS/YJ25UNbYrR9bkqO+iyML9s/eZ30SOSsGIJmZM6Orbn2FqdEIc+swbP0L1tb9swfm9tVW5yRH/RRHFoiIjGMAkpG5/8dv73UY9t4/a8h9To3VT2lXoG5KHxzhdhs1ZO/LXhA5CwYgmVj6f/xShgdb/IJ1pHBjLjnPqbH6qZycHKPPtWbExt6XU6Ba/Hsikg93g5eJrXZIb6pDh3ogK2sS1q8fhaysSTh0qIes70+1zNkl3lY7sRsL3/Vfl5TFvycieXEESCb2MGPKGdftcWSm6qdsORLgjMsVOCP+PRHJiyNAMjHn//ilZi+jUK7M0EKDUVHnGoz82HIkQBu+63KG5QqcDf+eiOTFESCJ2dOMKXsYhXJ1poqtr169ipycHJuPBDjzcgXOQPtvv7G/J0eaVUnkCBiAJGYPM6b4C9a+NPZ3LUVQ5b5e9qv+74jp06/g7FkPREbeRJs2vQD0crhZlUSOgAFIBkr/4jL1C9bPryOqqqLg4eGByspKXLp0Se+5/MUrP1uN2HBfL8dR999YWBiQkKBgZ4hcBAOQizD0C7Z2obyNjT6XC+XJzxYjNvYw+ig3rnxNROZiAHJhXILfvkgxYmPNh72jhgiufE1ElmAAIrIT9jBiUz9EGFs00x5DBAM9EVmCAYh0uAS/5Ww9WqJ0qKh7LqbWIrIkRCg1osSfZyIyhQGIAHAJfms48mhJY2y1aKZSt6X480xEjWEAIq4QbSUpRkvsha3WIlJiQ1b+PBvnqPVdRFJgACIuwd9EzviBK8VaRHKNyjjbz7OtQguLxIn02UUAWr58OebNm4fCwkLExcVh6dKlSExMNNj22LFjmD59OvLy8nDu3DksWrQIkyZNatJrujquEN00zvaBC9h+9Wg5Q6KlP8/2PCpiy9DCInEifYoHoI0bNyI9PR2rVq1C7969kZWVheTkZJw8eRKtW7du0L68vBwdOnTAX//6V7z00ks2eU1XxRWibcNZA6QtV4+WMyRaEt7sfVSEoYVIOooHoIULF+LZZ5/FmDFjAACrVq3C9u3bsWbNGkyZMqVB+169eqFXr14AYPBxa17TVXEJfttw5r22jK1FZCk5QqI1++4pUaPUFLac2cZZcuTqFA1AlZWVyMvLQ0ZGhu6Ym5sbkpKSsH//ftles6KiAhUVFbrvS0tLrXpvR8Ql+G3DWfbaMne0z9JRQTlCYlPXUbL3mWO27J+9nyuRHBQNQFevXkV1dTVCQkL0joeEhOCnn36S7TUzMzPx5ptvWvV+RFq2Gi1RkpSLMcoREq0drbT3QnZb9s/ez5VILorfArMHGRkZSE9P131fWlqKiIgIBXtEjkCq0RKl2fKWp6NsyGrvhey27J+9nyuRXBQNQC1btoS7uzuKior0jhcVFSE0NFS21/T29oa3t7dV70euyx62rrB3jnKNGqtRunr1aoPnyNlvW9ZQOWvRPpGlFA1AXl5eSEhIQG5uLoYNGwYAqKmpQW5uLtLS0uzmNYmMUfqD2xE4wjVqrEYpJyfH4PPkmh1mixoqzvok0qf4LbD09HSMGjUKPXv2RGJiIrKysnDjxg3dDK6RI0ciPDwcmZmZAGqLnI8fP67782+//Yb8/Hw0b94cMTExZr0mEVF9pmqUlJodZs3MNmM465NIn+IBKDU1FVeuXMH06dNRWFiI7t27Y+fOnboi5vPnz8PN7dZQ7cWLF9GjRw/d9/Pnz8f8+fPRv39/7Nmzx6zXJHIm9ryQn70zp0ZJyRlTtr6FyFmfRLeohBBC6U7Ym9LSUqjVamg0GgQEBCjdHSKjnHlDVlsyFRKvXbsGlUoFtVqtO3b16lXk5ORAo/FHVtakBvUykyZlQa0uw/jx4xEWFiZ5/4nIPJZ8fis+AkRE1nPmDVltpSmrPXPGFJHzcmu8CRHZO2Nru2g0/gr3THmGVnsuKIhscG0MhUTtjKm6OGOKyDlwBIjICXCkwjyW1vM48zYnRK6OAYjICXBtl8ZZuwKys2xzQkT6eAuMyAloRyq0t2s4UtGQqVGy+gzNDouKOtfgenLNHCLHxREgIifBkQrTLBklc5QVrInIegxARA7C0FTu+ls0OMOGrFKxtJ6H4YbIuTEAETkAc6dyG8NbNbU4SiYfLtBJ9o4BiMgBGJrKbWjBw0cffRQtW7bUa+vqHzTW7kjvah/gtjzfpqy9RCQXBiAiB2NqKnfLli25MnE91tTzuNoHuK3P19yFN115gU5SHgMQkQOxdiq3q7M0pJg74mbJB7g9jyhJHViMXT8iJTEAETkQLngoP1tshupoI0q2DCxKbiZLZAoDEJED4YKH8rLViJsj3RKyZWDhiCXZMy6ESORAuOChvCxZPNESxvYjU5qt95ST6voR2QJHgIgcDKdyy0eKETd7viVk61usHLEke8YRICIHwK0ZlGHrETdbj7DYmjaw1NWUwMIRS7JnHAEicgDcmkE5thxxs/cidktXyzambhA3df0Y2ElJDEBEDoLhRj7WLp4ImN6yxF5vCdk6sDCwkyNgACIiqsfaD/DGprvbaoTF1qQILAw3ZO8YgIiIDLDmA9ycBRTt9ZYQAwu5GgYgIiIJmJrtNWbM/dyzjUhhDEBERDbW2AKA3LONSHmcBk9EZGNcAJDI/jEAERHZmK3X0yEi22MAIiKyMS4ASGT/WANERCQBV9+yxNB6SHWx6JuUxgBERGQjTVlA0Zk0th6SVlpaGkMQKYYBiIjIRrgCci1T529NOyIpMAAREdmQs4cbaxhaEJJIaQxAREQkGVMLQhIpiQGIiEhhzlow3NiCkERKYgAiIlJQ/YJhY7eLHLFg2NSCkAxApDQGICIiBdUd+TF1u8gWBcNyjzRpF4SsG4K4ICTZCwYgIiI7IPXtIiWmpmsXhKwf6jj6Q/aAAYiIyA5Ifbuo/siPsVttthhpqrvOkakFIZ19PSSybwxARORQ6t7GuXjRDQUFHoiKuok2bWq3nXDUgmE5bxdJPTOL6yGRI2AAIiKHUfc2jqkPcUcsGJbrdpFcM7Mc7fqT62EAIiKHoR1RaOxD3FFXGJZj/zDOzCKqxQBERA7HmT/Eje0fZiucmUVUy63xJkRE9kX7IV6Xo36Im1sIbKuCYe2tNu3148wsclUcASIih+NM06uVKBiW41Ybkb1jACIih+RMH+JyFAzXH0EydquNU9PJVTAAEZHDkrpexplwajqRPqsC0KZNm/Dxxx/j559/BgB07NgRTz75JP7yl7/YtHNERGQ7DDdEt1gUgGpqajB8+HBs2rQJHTt2ROfOnQEAx44dQ2pqKv7617/i448/hkqlkqSzROTa5C4YtmfOuoM8kVwsCkCLFy/G7t27sWXLFgwdOlTvsS1btmDMmDFYvHgxJk2aZMs+EhEBcIzbOHIEE2t3kGdoIrrFogC0du1azJs3r0H4AYCHHnoIc+fOZQAiIknZ8we0tcHEUtbsIC9X34gchUUB6NSpU0hKSjL6eFJSEtLS0prcKSIiR2RNMGkKS7a1kLtvRPbOooUQfX19ce3aNaOPl5aWwsfHp6l9IiJyaMaCiUbjb9P3MbUittJ9I7J3FgWgPn36YOXKlUYfX758Ofr06dPkThEROTJrgok1rFkRW66+Edk7i26BTZ06FQMGDEBxcTFeeeUVdO7cGUIInDhxAgsWLMDnn3+Or7/+Wqq+EhE5BLn227JmRWzuBUZUy6IA1LdvX2zcuBHjx4/H5s2b9R5r0aIFPv74Y9x111027SARkaPQaDQAaoNJt25H8N//xgFQARDo1u2ILphoNBqEhYXZ5D0tXRHbmbYRIWoKixdCfOSRR5CcnIwvvvgCp06dAlC7EOIDDzyAZs2a2byDRESOoqqqCkBtnc2RI91QG34AQIUjR7ph4MCvoFaX6drZiqUrYjvTNiJE1rIoAH311VdIS0vD999/j0ceeUTvMY1GgzvuuAOrVq3CPffcY9NOEhE5ElN1NrYIG7ZYEJLbiJCrsygAZWVl4dlnn0VAQECDx9RqNf72t79h4cKFDEBE5JI8PGp/pTZWZ6NtZy1rFoTkKtpE+iz6V/jf//4Xc+bMMfr4Aw88gPnz51vcieXLl2PevHkoLCxEXFwcli5disTERKPtN23ahGnTpuHs2bOIjY3FnDlz8OCDD+oeLyoqwmuvvYYvv/wS165dQ79+/bB06VLExsZa3DciInMFBgYCaLzORtuuKSxdrNARVtEmkpNFAaioqAienp7GX8zDA1euXLGoAxs3bkR6ejpWrVqF3r17IysrC8nJyTh58iRat27doP2+ffswfPhwZGZmYujQodiwYQOGDRuGQ4cOoUuXLhBCYNiwYfD09MTnn3+OgIAALFy4EElJSTh+/Dj8/Pws6h8RkTXssc6G4YboFovWAQoPD8fRo0eNPn7kyBGLZzYsXLgQzz77LMaMGYPbb78dq1atQrNmzbBmzRqD7RcvXoxBgwZh8uTJuO222zBr1izEx8frlng/deoUvv/+e6xcuRK9evVCp06dsHLlSvzxxx/4+OOPLeobEVFTqNVliIo6Zxfhh4j0WRSAHnzwQUybNg1//vlng8f++OMPzJgxw+A+YcZUVlYiLy9Pb3sNNzc3JCUlYf/+/Qafs3///gbbcSQnJ+vaV1RUAIDeitRubm7w9vbGd999Z/A1KyoqUFpaqvdFREREzsuiAPTGG2+gpKQEHTt2xNy5c/H555/j888/x5w5c9CpUyeUlJRg6tSpZr/e1atXUV1djZCQEL3jISEhKCwsNPicwsJCk+07d+6Mdu3aISMjA7///jsqKysxZ84c/Prrr7h06ZLB18zMzIRardZ9RUREmH0ORERaLDQmchwW1QCFhIRg3759eO6555CRkQEhBABApVIhOTkZy5cvbxBO5Obp6YmcnByMHTsWQUFBcHd3R1JSEgYPHqzrb30ZGRlIT0/XfV9aWsoQREQWY6ExkeOweC5m+/btsWPHDvz+++84ffo0hBCIjY1FixYtLH7zli1bwt3dHUVFRXrHi4qKEBoaavA5oaGhjbZPSEhAfn4+NBoNKisr0apVK/Tu3Rs9e/Y0+Jre3t7w9va2uP9ERPUx3BA5BotugdXVokUL9OrVC4mJiVaFH6D2/4QSEhKQm5urO1ZTU4Pc3Fyjm6r26dNHrz0A7Nq1y2B7tVqNVq1a4dSpUzh48CAefvhhq/pJREREzqVpq3HZQHp6OkaNGoWePXsiMTERWVlZuHHjBsaMGQMAGDlyJMLDw5GZmQkAePHFF9G/f38sWLAAQ4YMQXZ2Ng4ePIj33ntP95qbNm1Cq1at0K5dO/z444948cUXMWzYMDzwwAOKnCMRERHZF8UDUGpqKq5cuYLp06ejsLAQ3bt3x86dO3W1ROfPn4eb262Bqr59+2LDhg1444038PrrryM2NhafffYZunTpomtz6dIlpKeno6ioCGFhYRg5ciSmTZsm+7kRERGRfVIJY5XBLqy0tBRqtRoajcbgth9ERK6kuLiYhd3kECz5/FZ8BIiIiOxXcXGxbqFZoHan+5KSYAQFFest8JiWlsYQRA6FAYiIiIyqO/Jz6FCPBvubxccfbtCOyBFYPQuMiIhch0bjrws/ACCEG7ZuHQqNxl/hnhFZhwGIiIgaVVISrAs/WkK4oaQkSKEeETUNAxARETUqKKgYKlWN3jGVqgZBQSUK9YioaRiAiIioUWp1GVJStulCkLYGiDvdk6NiETQREZklPv4woqNPo6QkCEFBJTYPP5xuT3JiACIiIrOp1WWSjPq44nR7Bj5lMQAREZFRXl5eZrXTaDQGn2vuB7izTrc3FnI0Gg02btzY6POdKfDZGwYgIiIym7GRmffe22GTERtj0+2jo087XL1R/VEtU4xdV0cLfI6EAYiIiIwyZ2TG1IjNxYsXDX6IGxsdMjXd3tECUP3zNhZyTF0/kg4DEBERNcrYyEzr1oUmR2xycnIsqufRTrevG4KcYbq9sZDjTCNejoYBiIiIGmVsZObChXYmR2wsrefRTrev/xxHDgOmQo4zjXg5GgYgIiJqlLGRmYiI80ZHbKwd3ZB6ur3cTIUcZx3xcgRcCJGIiBplbCHEtm0vGV0gsSnbZ6jVZYiKOufw4QcwvYo2F5hUDkeAiIjILMZGZowdt2R0w9zp9ua2syeN3dZzthEvR8EAREREZjO2EKKh45bU8wQHByMtLc1pFwZsLOQYu66OGPgcBQMQEREZ1dQPYEtGNxw13BhT/9oZCzmPP/44AgMDDT7f2a6JPVEJIYTSnbA3paWlUKvV0Gg0CAgIULo7RESKMraa8bVr13Dz5k14enpCrVbrjl+9ehU5OTmNvu748eMRFhZm077aG253IS9LPr85AkRERCYZ+4A2Fl6cuZ7HUgw39osBiIiIbMrZ63kswREg+8UARERENscPdfP3AuOGp8rgOkBEREQSMLQXWEFBJDQaf5PtSB4cASIiIpIYNzy1PxwBIiIikpCxLUHqjwSRvBiAiIiIJKDRaACY3gusbjuSFwMQERGRBKqqqgCY3gusbjuSFwMQERGRhNTqMnTrdgSAdt1hgW7djnDPL4UxABEREUlIo/HHkSPdAKj+d0SFI0e6sQZIYQxAREREEvDwqJ1o3VgNkLYdyYsBiIiISALaDU4bqwEytBEqSY8BiIiISEJqdRlSUrbpQpB2HSDWACmL425EREQSi48/jOjo0ygpCUJQUAnDjx1gACIiIpJA/d3u1eoyg8GnfjuSBwMQERGRBIKDg5GWlibbbvDced4yDEBEREQSkStw1N95XqPxR0lJMIKCivVGnbjz/C0MQERERA6u7siPqY1XufP8LZwFRkRE5CS48ar5GICIiIicRGOLLtItDEBEREROorFFF+kW1gAREREpQIpZW9pFF+vXAHHdoYYYgIiIiGRWf9aWMdbM2uKii+ZhACIiIpKZubOxrJ21ZWzRRbqFNUBEREQK02j8UVAQafVsLXNXk+aq07dwBIiIiEhBptbtMZfcq047AwYgIiIihRhbtyc6+rTBW1jc7sJ2GICIiIgUYmrdnvoBSMrCaVfEGiAiIiKFWLJuT/2RH2N1Q9zuwjwcASIiIlKItev22KJuyNUxABEREcms7mwsU+v2GJq1ZWndEBnGAERERGQGWxYgN2XWliV1Q2QcAxAREVEj6hcgazT+KCkJRlBQsV7osKQA2dpCZW3dUN0QxP2+LMcARERE1Ii6IzWm6m/kKEDmfl+2wQBERERkJnupv+F+X03HAERERGQmJetv6hdEG9vvi9tdmMcuAtDy5csxb948FBYWIi4uDkuXLkViYqLR9ps2bcK0adNw9uxZxMbGYs6cOXjwwQd1j1+/fh1TpkzBZ599huLiYkRFReGFF17AhAkT5DgdIiJyUkrW33C7C9tSfCHEjRs3Ij09HTNmzMChQ4cQFxeH5ORkXL582WD7ffv2Yfjw4Rg7diwOHz6MYcOGYdiwYTh69KiuTXp6Onbu3IkPP/wQJ06cwKRJk5CWloYtW7bIdVpEROSEtPU32sUL5a6/CQ4ORlhYmNEvhh/zqYQQQskO9O7dG7169dJV19fU1CAiIgJ///vfMWXKlAbtU1NTcePGDWzbtk137M4770T37t2xatUqAECXLl2QmpqKadOm6dokJCRg8ODBeOuttxrtU2lpKdRqNTQaDQICApp6ikRE5OAuXbqE9957T/d97SywhvU348ePR1hYmBJdJFj2+a3oCFBlZSXy8vKQlJSkO+bm5oakpCTs37/f4HP279+v1x4AkpOT9dr37dsXW7ZswW+//QYhBL7++mv8/PPPeOCBBwy+ZkVFBUpLS/W+iIiIjFGryxAVdY7Fxw5M0QB09epVVFdXIyQkRO94SEgICgsLDT6nsLCw0fZLly7F7bffjrZt28LLywuDBg3C8uXL0a9fP4OvmZmZCbVarfuKiIho4pkREZEzMbewmAXIjsMuiqBtbenSpfj++++xZcsWtG/fHt988w0mTpyINm3aNBg9AoCMjAykp6frvi8tLWUIIiIiHRYgOx9FA1DLli3h7u6OoqIiveNFRUUIDQ01+JzQ0FCT7f/44w+8/vrr+PTTTzFkyBAAQLdu3ZCfn4/58+cbDEDe3t7w9va2xSkREZGTYrhxLoreAvPy8kJCQgJyc3N1x2pqapCbm4s+ffoYfE6fPn302gPArl27dO2rqqpQVVUFNzf9U3N3d0dNTY2Nz4CIiIgckeK3wNLT0zFq1Cj07NkTiYmJyMrKwo0bNzBmzBgAwMiRIxEeHo7MzEwAwIsvvoj+/ftjwYIFGDJkCLKzs3Hw4EFddX5AQAD69++PyZMnw9fXF+3bt8f//d//4V//+hcWLlyo2HkSERGR/VA8AKWmpuLKlSuYPn06CgsL0b17d+zcuVNX6Hz+/Hm90Zy+fftiw4YNeOONN/D6668jNjYWn332Gbp06aJrk52djYyMDDz11FMoKSlB+/bt8fbbb3MhRCIiIgJgB+sA2SOuA0REROR4HGYdICIiIiIlMAARERGRy2EAIiIiIpfDAEREREQuR/FZYERERM6quLiYq0fbKQYgIiIiCRQXF2PZsmWNtktLS2MIUgBvgREREUmg/siPRuOPgoJIaDT+JtuRPDgCREREJLFDh3pg69ahEMINKlUNUlK2IT7+sNLdcmkMQERERBLSaPx14QcAhHDD1q1DER19Gmp1mc3eh/VGlmEAIiIiklBJSbAu/GgJ4YaSkiCbBSDWG1mOAYiIiEhCQUHFUKlq9EKQSlWDoKASm72HuXVEtqg3qjvSdPGiGwoKPBAVdRNt2tQAcJyRJgYgIiIiCanVZUhJ2dagBsiWt7/q02j8UVISjKCgYpvfZtOONJmqa3KEkSYGICIiIonFxx9GdPRplJQEISioRNLwI2XBtXbkp7G6JkeY2cZp8ERERBLw8vLS+16tLkNU1LkG4ad+u6YwFkzqT71vKlN1TY6CI0BEREQSCA4ORlpamqwzs+QouAbkqWuSGgMQERGRROSug5ErmChR12RrDEBEREROQs5gImddkxQYgIiIiBxc3ToiU8HElvVGQG3gcrTgo8UARERE5OCUqDdydAxARERETsDW4cbQ1hoajcas59p6pEkKDEBERESkx9ytNR5//HEEBgbqHXOUkSYGICIiItJj7kKGgYGBCAsLk7g30uBCiERERGSSRuOPgoJImy+oqCSOABEREZFRUm6toSSOABEREZFBcm2toQQGICIiIjLIGfb8MoYBiIiIiAzSbq1Rl6Pt+WUMAxAREREZpN1aQxuCHHHPL2NYBE1ERER6pN5a49dfgVOngNhYoG3bJnfXKgxAREREpEeKrTW0K0tv2OCLV19Vo6ZGBTc3gblzNXjyyT9kX0CRAYiIiIgasGUY0a4srdH4IytrEoRQAQBqalSYPDkAv/22Bmp1GdLS0mQLQawBIiIiIklpR5Iam1Vm7grUtsAARERERLKwp1llDEBEREQkC3uaVcYaICIiIpKNqVllcmIAIiIiIlmp1WWKryXEW2BERETkchiAiIiIyOXwFhgREZET0C40aIzcCw3Wf29btrMFBiAiIiIHp11osDFyLjRYlxQrSzcVAxAREZGDM3cBQTkXGqxPqdEnY1gDRERE5GQ0Gn8UFERCo/FXuit2iyNARERETuTQoR7YunUohHDTLTQYH39Y6W7ZXY0SAxAREZGT0Gj8deEHqN1na+vWoYiOPq3oujv1a5Q0Gn+UlAQjKKhYr19y1igxABERETkJU5uNKhmA6o78mBqh4maoREREZDF72mzUEGMjVErUKjEAEREROQl72mzUEFMjVHLjLTAiIiIHV3cBQVObjcq50KAh2hGquiFIqREqBiAiIiIHZ48LDRqiHaGqXwOkxAgVAxAREZETUDrcmMvUCJWcGICIiIhIVmp1meJ1SSyCJiIiIklxM1QiIiJyOfZYo8QARERERJKztxolu7gFtnz5ckRGRsLHxwe9e/fGDz/8YLL9pk2b0LlzZ/j4+KBr167YsWOH3uMqlcrg17x586Q8DSIiInIQigegjRs3Ij09HTNmzMChQ4cQFxeH5ORkXL582WD7ffv2Yfjw4Rg7diwOHz6MYcOGYdiwYTh69KiuzaVLl/S+1qxZA5VKhccee0yu0yIiIiI7phJCCCU70Lt3b/Tq1Uu3SVpNTQ0iIiLw97//HVOmTGnQPjU1FTdu3MC2bdt0x+688050794dq1atMvgew4YNQ1lZGXJzc83qU2lpKdRqNTQaDQICAqw4KyIiIpKbJZ/fio4AVVZWIi8vD0lJSbpjbm5uSEpKwv79+w0+Z//+/XrtASA5Odlo+6KiImzfvh1jx4412o+KigqUlpbqfREREZHzUjQAXb16FdXV1QgJCdE7HhISgsLCQoPPKSwstKj9+vXr4e/vj0cffdRoPzIzM6FWq3VfERERFp4JERERORLFa4CktmbNGjz11FPw8fEx2iYjIwMajUb3deHCBRl7SERERHJTdBp8y5Yt4e7ujqKiIr3jRUVFCA0NNfic0NBQs9t/++23OHnyJDZu3GiyH97e3vD29raw90REROSoFB0B8vLyQkJCgl5xck1NDXJzc9GnTx+Dz+nTp0+DYuZdu3YZbL969WokJCQgLi7Oth0nIiIih6b4Qojp6ekYNWoUevbsicTERGRlZeHGjRsYM2YMAGDkyJEIDw9HZmYmAODFF19E//79sWDBAgwZMgTZ2dk4ePAg3nvvPb3XLS0txaZNm7BgwQLZz4mIiIjsm+IBKDU1FVeuXMH06dNRWFiI7t27Y+fOnbpC5/Pnz8PN7dZAVd++fbFhwwa88cYbeP311xEbG4vPPvsMXbp00Xvd7OxsCCEwfPhwWc+HiIiI7J/i6wDZI64DRERE5HgcZh0gIiIiIiUwABEREZHLYQAiIiIil8MARERERC6HAYiIiIhcDgMQERERuRwGICIiInI5DEBERETkchiAiIiIyOUwABEREZHLYQAiIiIil8MARERERC6HAYiIiIhcjofSHSAiIiLnV1xcjMrKSqOPe3l5ITg4WLb+MAARERGRpIqLi7Fs2bJG26WlpckWgngLjIiIiCRlauTHmna2wABERERELocBiIiIiFwOAxARERG5HAYgIiIikpVG44+CgkhoNP6K9YGzwIiIiEg2hw71wNatQyGEG1SqGqSkbEN8/GHZ+8ERICIiIpKFRuOvCz8AIIQbtm4dqshIEAMQERERScrLywsAUFISrAs/WkK4oaQkSK+dHFRCCCHbuzmI0tJSqNVqaDQaBAQEKN0dIiIih1dcXIyzZ28iMbE1ampUuuPu7gL/+c9lREZ6NHkRREs+vzkCRERERJILDg5GQkII3ntPBXf32mPu7sC776qQkBAi6zYYAIugiYiISEZjxwLJycDp00BMDNC2rTL9YAAiIiIiWbVtq1zw0eItMCIiInI5DEBERETkchiAiIiIyOUwABEREZHLYQAiIiIil8MARERERC6HAYiIiIhcDgMQERERuRwGICIiInI5DEBERETkchiAiIiIyOVwLzADhBAAgNLSUoV7QkRERObSfm5rP8dNYQAyoKysDAAQERGhcE+IiIjIUmVlZVCr1SbbqIQ5McnF1NTU4OLFi/D394dKpbL4+aWlpYiIiMCFCxcQEBAgQQ/tH69BLV4HXgMtXgdeA4DXQEuq6yCEQFlZGdq0aQM3N9NVPhwBMsDNzQ1t27Zt8usEBAS49A84wGugxevAa6DF68BrAPAaaElxHRob+dFiETQRERG5HAYgIiIicjkMQBLw9vbGjBkz4O3trXRXFMNrUIvXgddAi9eB1wDgNdCyh+vAImgiIiJyORwBIiIiIpfDAEREREQuhwGIiIiIXA4DEBEREbkcBiArLV++HJGRkfDx8UHv3r3xww8/GG177NgxPPbYY4iMjIRKpUJWVpZ8HZWQJdfg/fffxz333IMWLVqgRYsWSEpKMtnekVhyHXJyctCzZ08EBgbCz88P3bt3xwcffCBjb6VhyTWoKzs7GyqVCsOGDZO2gzKw5BqsW7cOKpVK78vHx0fG3krH0p+Fa9euYeLEiQgLC4O3tzc6duyIHTt2yNRbaVhyDQYMGNDgZ0GlUmHIkCEy9tj2LP05yMrKQqdOneDr64uIiAi89NJL+PPPP6XtpCCLZWdnCy8vL7FmzRpx7Ngx8eyzz4rAwEBRVFRksP0PP/wgXnnlFfHxxx+L0NBQsWjRInk7LAFLr8GTTz4pli9fLg4fPixOnDghRo8eLdRqtfj1119l7rltWXodvv76a5GTkyOOHz8uTp8+LbKysoS7u7vYuXOnzD23HUuvgVZBQYEIDw8X99xzj3j44Yfl6axELL0Ga9euFQEBAeLSpUu6r8LCQpl7bXuWXoeKigrRs2dP8eCDD4rvvvtOFBQUiD179oj8/HyZe247ll6D4uJivZ+Do0ePCnd3d7F27Vp5O25Dll6Djz76SHh7e4uPPvpIFBQUiC+++EKEhYWJl156SdJ+MgBZITExUUycOFH3fXV1tWjTpo3IzMxs9Lnt27d3igDUlGsghBA3b94U/v7+Yv369VJ1URZNvQ5CCNGjRw/xxhtvSNE9WVhzDW7evCn69u0r/vnPf4pRo0Y5fACy9BqsXbtWqNVqmXonH0uvw8qVK0WHDh1EZWWlXF2UXFN/JyxatEj4+/uL69evS9VFyVl6DSZOnCgGDhyodyw9PV3cddddkvaTt8AsVFlZiby8PCQlJemOubm5ISkpCfv371ewZ/KxxTUoLy9HVVUVgoKCpOqm5Jp6HYQQyM3NxcmTJ9GvXz8puyoZa6/BP/7xD7Ru3Rpjx46Vo5uSsvYaXL9+He3bt0dERAQefvhhHDt2TI7uSsaa67Blyxb06dMHEydOREhICLp06YJ33nkH1dXVcnXbpmzxu3H16tV44okn4OfnJ1U3JWXNNejbty/y8vJ0t8l++eUX7NixAw8++KCkfeVmqBa6evUqqqurERISonc8JCQEP/30k0K9kpctrsFrr72GNm3a6P0jcTTWXgeNRoPw8HBUVFTA3d0dK1aswP333y91dyVhzTX47rvvsHr1auTn58vQQ+lZcw06deqENWvWoFu3btBoNJg/fz769u2LY8eO2WQjZiVYcx1++eUXfPXVV3jqqaewY8cOnD59Gs8//zyqqqowY8YMObptU0393fjDDz/g6NGjWL16tVRdlJw11+DJJ5/E1atXcffdd0MIgZs3b2LChAl4/fXXJe0rAxDJbvbs2cjOzsaePXucpvDTEv7+/sjPz8f169eRm5uL9PR0dOjQAQMGDFC6a5IrKyvDiBEj8P7776Nly5ZKd0cxffr0QZ8+fXTf9+3bF7fddhveffddzJo1S8GeyaumpgatW7fGe++9B3d3dyQkJOC3337DvHnzHDIANdXq1avRtWtXJCYmKt0VWe3ZswfvvPMOVqxYgd69e+P06dN48cUXMWvWLEybNk2y92UAslDLli3h7u6OoqIiveNFRUUIDQ1VqFfyaso1mD9/PmbPno3du3ejW7duUnZTctZeBzc3N8TExAAAunfvjhMnTiAzM9MhA5Cl1+DMmTM4e/YsUlJSdMdqamoAAB4eHjh58iSio6Ol7bSN2eJ3gqenJ3r06IHTp09L0UVZWHMdwsLC4OnpCXd3d92x2267DYWFhaisrISXl5ekfba1pvws3LhxA9nZ2fjHP/4hZRclZ801mDZtGkaMGIFx48YBALp27YobN25g/PjxmDp1KtzcpKnWYQ2Qhby8vJCQkIDc3FzdsZqaGuTm5ur9H50zs/YazJ07F7NmzcLOnTvRs2dPOboqKVv9LNTU1KCiokKKLkrO0mvQuXNn/Pjjj8jPz9d9PfTQQ7j33nuRn5+PiIgIObtvE7b4OaiursaPP/6IsLAwqbopOWuuw1133YXTp0/rQjAA/PzzzwgLC3O48AM07Wdh06ZNqKiowNNPPy11NyVlzTUoLy9vEHK0oVhIuV2ppCXWTio7O1t4e3uLdevWiePHj4vx48eLwMBA3TTWESNGiClTpujaV1RUiMOHD4vDhw+LsLAw8corr4jDhw+LU6dOKXUKTWbpNZg9e7bw8vISn3zyid6Uz7KyMqVOwSYsvQ7vvPOO+PLLL8WZM2fE8ePHxfz584WHh4d4//33lTqFJrP0GtTnDLPALL0Gb775pvjiiy/EmTNnRF5ennjiiSeEj4+POHbsmFKnYBOWXofz588Lf39/kZaWJk6ePCm2bdsmWrduLd566y2lTqHJrP33cPfdd4vU1FS5uysJS6/BjBkzhL+/v/j444/FL7/8Ir788ksRHR0tHn/8cUn7yQBkpaVLl4p27doJLy8vkZiYKL7//nvdY/379xejRo3SfV9QUCAANPjq37+//B23IUuuQfv27Q1egxkzZsjfcRuz5DpMnTpVxMTECB8fH9GiRQvRp08fkZ2drUCvbcuSa1CfMwQgISy7BpMmTdK1DQkJEQ8++KA4dOiQAr22PUt/Fvbt2yd69+4tvL29RYcOHcTbb78tbt68KXOvbcvSa/DTTz8JAOLLL7+UuafSseQaVFVViZkzZ4ro6Gjh4+MjIiIixPPPPy9+//13SfuoEkLK8SUiIiIi+8MaICIiInI5DEBERETkchiAiIiIyOUwABEREZHLYQAiIiIil8MARERERC6HAYiIiIhcDgMQEZGCRo8ejWHDhindDSKXwwBERAaNHj0aKpVK9xUcHIxBgwbhyJEjSnfNJuqem/br7rvvluz9zp49C5VKhfz8fL3jixcvxrp16yR7XyIyjAGIiIwaNGgQLl26hEuXLiE3NxceHh4YOnSo0t2ymbVr1+rO79KlS9iyZYvBdlVVVZL1Qa1WIzAwULLXJyLDGICIyChvb2+EhoYiNDQU3bt3x5QpU3DhwgVcuXIFAwcORFpaml77K1euwMvLS7cTdGRkJGbNmoXhw4fDz88P4eHhWL58ud5zFi5ciK5du8LPzw8RERF4/vnncf36dd3j586dQ0pKClq0aAE/Pz/ccccd2LFjBwDg999/x1NPPYVWrVrB19cXsbGxWLt2rdnnFxgYqDu/0NBQBAUF6UZqNm7ciP79+8PHxwcfffQRiouLMXz4cISHh6NZs2bo2rUrPv74Y73Xq6mpwdy5cxETEwNvb2+0a9cOb7/9NgAgKioKANCjRw+oVCoMGDAAQMNbYBUVFXjhhRfQunVr+Pj44O6778aBAwd0j+/ZswcqlQq5ubno2bMnmjVrhr59++LkyZNmnzcRMQARkZmuX7+ODz/8EDExMQgODsa4ceOwYcMGVFRU6Np8+OGHCA8Px8CBA3XH5s2bh7i4OBw+fBhTpkzBiy++iF27duked3Nzw5IlS3Ds2DGsX78eX331FV599VXd4xMnTkRFRQW++eYb/Pjjj5gzZw6aN28OAJg2bRqOHz+Of//73zhx4gRWrlyJli1b2uR8tX09ceIEkpOT8eeffyIhIQHbt2/H0aNHMX78eIwYMQI//PCD7jkZGRmYPXu2rl8bNmxASEgIAOja7d69G5cuXUJOTo7B93311VexefNmrF+/HocOHUJMTAySk5NRUlKi127q1KlYsGABDh48CA8PDzzzzDM2OW8ilyHpVqtE5LBGjRol3N3dhZ+fn/Dz8xMARFhYmMjLyxNCCPHHH3+IFi1aiI0bN+qe061bNzFz5kzd9+3btxeDBg3Se93U1FQxePBgo++7adMmERwcrPu+a9eueq9ZV0pKihgzZoxV5wdA+Pj46M7Pz89PfPrpp6KgoEAAEFlZWY2+xpAhQ8TLL78shBCitLRUeHt7i/fff99gW+3rHj58WO/4qFGjxMMPPyyEEOL69evC09NTfPTRR7rHKysrRZs2bcTcuXOFEEJ8/fXXAoDYvXu3rs327dsFAPHHH39YcgmIXBpHgIjIqHvvvRf5+fnIz8/HDz/8gOTkZAwePBjnzp2Dj48PRowYgTVr1gAADh06hKNHj2L06NF6r9GnT58G3584cUL3/e7du3HfffchPDwc/v7+GDFiBIqLi1FeXg4AeOGFF/DWW2/hrrvuwowZM/SKsJ977jlkZ2eje/fuePXVV7Fv3z6Lzm/RokW688vPz8f999+ve6xnz556baurqzFr1ix07doVQUFBaN68Ob744gucP38eAHDixAlUVFTgvvvus6gPdZ05cwZVVVW46667dMc8PT2RmJiod80AoFu3bro/h4WFAQAuX75s9XsTuRoGICIyys/PDzExMYiJiUGvXr3wz3/+Ezdu3MD7778PABg3bhx27dqFX3/9FWvXrsXAgQPRvn17s1//7NmzGDp0KLp164bNmzcjLy9PVyNUWVmpe49ffvkFI0aMwI8//oiePXti6dKlAKALYy+99BIuXryI++67D6+88orZ7x8aGqo7v5iYGPj5+emde13z5s3D4sWL8dprr+Hrr79Gfn4+kpOTdf309fU1+31twdPTU/dnlUoFoLYGiYjMwwBERGZTqVRwc3PDH3/8AQDo2rUrevbsiffffx8bNmwwWIfy/fffN/j+tttuAwDk5eWhpqYGCxYswJ133omOHTvi4sWLDV4jIiICEyZMQE5ODl5++WVdAAOAVq1aYdSoUfjwww+RlZWF9957z5anrLN37148/PDDePrppxEXF4cOHTrg559/1j0eGxsLX19fXQF4fV5eXgBqR5KMiY6OhpeXF/bu3as7VlVVhQMHDuD222+30ZkQEQB4KN0BIrJfFRUVKCwsBFA742rZsmW4fv06UlJSdG3GjRuHtLQ0+Pn54ZFHHmnwGnv37sXcuXMxbNgw7Nq1C5s2bcL27dsBADExMaiqqsLSpUuRkpKCvXv3YtWqVXrPnzRpEgYPHoyOHTvi999/x9dff60LUNOnT0dCQgLuuOMOVFRUYNu2bbrHbC02NhaffPIJ9u3bhxYtWmDhwoUoKirSBRMfHx+89tprePXVV+Hl5YW77roLV65cwbFjxzB27Fi0bt0avr6+2LlzJ9q2bQsfHx+o1Wq99/Dz88Nzzz2HyZMnIygoCO3atcPcuXNRXl6OsWPHSnJeRK6KI0BEZNTOnTsRFhaGsLAw9O7dGwcOHMCmTZt0U7gBYPjw4fDw8MDw4cPh4+PT4DVefvllHDx4ED169MBbb72FhQsXIjk5GQAQFxeHhQsXYs6cOejSpQs++ugjZGZm6j2/uroaEydOxG233YZBgwahY8eOWLFiBYDaUZWMjAx069YN/fr1g7u7O7KzsyW5Fm+88Qbi4+ORnJyMAQMGIDQ0tMEKztOmTcPLL7+M6dOn47bbbkNqaqquLsfDwwNLlizBu+++izZt2uDhhx82+D6zZ8/GY489hhEjRiA+Ph6nT5/GF198gRYtWkhyXkSuSiWEEEp3gogc19mzZxEdHY0DBw4gPj5e77HIyEhMmjQJkyZNUqZzRERG8BYYEVmlqqoKxcXFeOONN3DnnXc2CD9ERPaMt8CIyCp79+5FWFgYDhw40KBuR2nvvPMOmjdvbvBr8ODBSnePiOwAb4ERkdMpKSlpsHKylq+vL8LDw2XuERHZGwYgIiIicjm8BUZEREQuhwGIiIiIXA4DEBEREbkcBiAiIiJyOQxARERE5HIYgIiIiMjlMAARERGRy2EAIiIiIpfz/wGu5UEF4SZapgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_14.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUkklEQVR4nO3de1xT9eM/8NeGDBBhfkC5KYriLbVUUAlLsT4UmmJ+s0StJMusPlIanyzR8pIVVmaYmlaPvHRBzTTz9rGMsvJSlmgX7xqkFaBCDoQUYu/fH/62GGyDwbZzzs7r+Xjw0J2dnb3f29h58b4djRBCgIiIiEhFtFIXgIiIiMjdGICIiIhIdRiAiIiISHUYgIiIiEh1GICIiIhIdRiAiIiISHUYgIiIiEh1GICIiIhIdRiAiIiISHUYgIiIZGzVqlXQaDTIz8+XuihEHoUBiEjlvvvuO6SlpaFHjx7w9/dHu3btMHr0aJw4caLOvoMHD4ZGo4FGo4FWq0VgYCC6du2Ke++9Fzt37nToebds2YKEhASEhISgefPm6NixI0aPHo0dO3Y4q2p1vPDCC9i0aVOd7Xv37sWcOXNw8eJFlz13bXPmzDG/lhqNBs2bN0f37t3x9NNPo7S01CnPkZ2djaysLKcci8jTMAARqdyLL76IDRs24N///jcWLVqESZMm4auvvkJMTAx+/vnnOvu3bdsW7777Lt555x28/PLLGDFiBPbu3Ytbb70VKSkpqKqqqvc5FyxYgBEjRkCj0SAjIwOvvvoqRo0ahZMnT2Lt2rWuqCYA+wFo7ty5bg1AJsuWLcO7776LhQsXolu3bnj++ecxZMgQOOMyjQxARLY1k7oARCSt9PR0ZGdnQ6fTmbelpKTg2muvxfz58/Hee+9Z7K/X63HPPfdYbJs/fz4ee+wxvP7664iKisKLL75o8/n+/vtvzJs3D7fccgs+/fTTOvefO3euiTWSj4qKCjRv3tzuPnfeeSdatWoFAHj44YcxatQobNy4Ed988w3i4+PdUUwiVWILEJHKDRgwwCL8AEDnzp3Ro0cPHD16tEHH8PLywmuvvYbu3btjyZIlMBgMNve9cOECSktLccMNN1i9PyQkxOL25cuXMWfOHHTp0gW+vr4IDw/HHXfcgdOnT5v3WbBgAQYMGIDg4GD4+fkhNjYWH374ocVxNBoNysvLsXr1anO303333Yc5c+Zg2rRpAIAOHTqY76s55ua9995DbGws/Pz8EBQUhDFjxuDs2bMWxx88eDB69uyJAwcOYNCgQWjevDlmzJjRoNevpptvvhkAkJeXZ3e/119/HT169ICPjw8iIiIwefJkixaswYMHY9u2bfj111/NdYqKinK4PESeii1ARFSHEAJFRUXo0aNHgx/j5eWFsWPH4plnnsHu3bsxbNgwq/uFhITAz88PW7ZswaOPPoqgoCCbx6yursbw4cORk5ODMWPGYMqUKSgrK8POnTvx888/Izo6GgCwaNEijBgxAnfffTcqKyuxdu1a3HXXXdi6dau5HO+++y4mTpyI/v37Y9KkSQCA6Oho+Pv748SJE1izZg1effVVc2tM69atAQDPP/88nnnmGYwePRoTJ07E+fPnsXjxYgwaNAgHDx5Ey5YtzeUtLi7G0KFDMWbMGNxzzz0IDQ1t8OtnYgp2wcHBNveZM2cO5s6di8TERDzyyCM4fvw4li1bhu+++w579uyBt7c3Zs6cCYPBgN9++w2vvvoqAKBFixYOl4fIYwkiolreffddAUC8/fbbFtsTEhJEjx49bD7uo48+EgDEokWL7B5/1qxZAoDw9/cXQ4cOFc8//7w4cOBAnf1WrFghAIiFCxfWuc9oNJr/X1FRYXFfZWWl6Nmzp7j55psttvv7+4vU1NQ6x3r55ZcFAJGXl2exPT8/X3h5eYnnn3/eYvtPP/0kmjVrZrE9ISFBABDLly+3We+aZs+eLQCI48ePi/Pnz4u8vDzxxhtvCB8fHxEaGirKy8uFEEKsXLnSomznzp0TOp1O3HrrraK6utp8vCVLlggAYsWKFeZtw4YNE+3bt29QeYjUhl1gRGTh2LFjmDx5MuLj45GamurQY00tDGVlZXb3mzt3LrKzs9GnTx988sknmDlzJmJjYxETE2PR7bZhwwa0atUKjz76aJ1jaDQa8//9/PzM///zzz9hMBgwcOBA5ObmOlT+2jZu3Aij0YjRo0fjwoUL5p+wsDB07twZX3zxhcX+Pj4+mDBhgkPP0bVrV7Ru3RodOnTAQw89hE6dOmHbtm02xw599tlnqKysxNSpU6HV/vMV/uCDDyIwMBDbtm1zvKJEKsQuMCIyKywsxLBhw6DX6/Hhhx/Cy8vLocdfunQJABAQEFDvvmPHjsXYsWNRWlqKb7/9FqtWrUJ2djaSk5Px888/w9fXF6dPn0bXrl3RrJn9r6qtW7fiueeew6FDh3DlyhXz9pohqTFOnjwJIQQ6d+5s9X5vb2+L223atKkznqo+GzZsQGBgILy9vdG2bVtzt54tv/76K4CrwakmnU6Hjh07mu8nIvsYgIgIAGAwGDB06FBcvHgRX3/9NSIiIhw+hmnafKdOnRr8mMDAQNxyyy245ZZb4O3tjdWrV+Pbb79FQkJCgx7/9ddfY8SIERg0aBBef/11hIeHw9vbGytXrkR2drbDdajJaDRCo9Hgf//7n9UwWHtMTc2WqIYaNGiQedwREbkPAxAR4fLly0hOTsaJEyfw2WefoXv37g4fo7q6GtnZ2WjevDluvPHGRpWjb9++WL16NQoKCgBcHaT87bffoqqqqk5ri8mGDRvg6+uLTz75BD4+PubtK1eurLOvrRYhW9ujo6MhhECHDh3QpUsXR6vjEu3btwcAHD9+HB07djRvr6ysRF5eHhITE83bmtoCRuTJOAaISOWqq6uRkpKCffv2Yf369Y1ae6a6uhqPPfYYjh49isceewyBgYE2962oqMC+ffus3ve///0PwD/dO6NGjcKFCxewZMmSOvuK/79QoJeXFzQaDaqrq8335efnW13w0N/f3+pih/7+/gBQ57477rgDXl5emDt3bp2FCYUQKC4utl5JF0pMTIROp8Nrr71mUaa3334bBoPBYvadv7+/3SUJiNSMLUBEKvff//4XmzdvRnJyMkpKSuosfFh70UODwWDep6KiAqdOncLGjRtx+vRpjBkzBvPmzbP7fBUVFRgwYACuv/56DBkyBJGRkbh48SI2bdqEr7/+GiNHjkSfPn0AAOPHj8c777yD9PR07N+/HwMHDkR5eTk+++wz/Oc//8Htt9+OYcOGYeHChRgyZAjGjRuHc+fOYenSpejUqRN+/PFHi+eOjY3FZ599hoULFyIiIgIdOnRAXFwcYmNjAQAzZ87EmDFj4O3tjeTkZERHR+O5555DRkYG8vPzMXLkSAQEBCAvLw8fffQRJk2ahCeeeKJJr7+jWrdujYyMDMydOxdDhgzBiBEjcPz4cbz++uvo16+fxfsVGxuLdevWIT09Hf369UOLFi2QnJzs1vISyZaUU9CISHqm6du2fuzt26JFC9G5c2dxzz33iE8//bRBz1dVVSXeeustMXLkSNG+fXvh4+MjmjdvLvr06SNefvllceXKFYv9KyoqxMyZM0WHDh2Et7e3CAsLE3feeac4ffq0eZ+3335bdO7cWfj4+Ihu3bqJlStXmqeZ13Ts2DExaNAg4efnJwBYTImfN2+eaNOmjdBqtXWmxG/YsEHceOONwt/fX/j7+4tu3bqJyZMni+PHj1u8NvaWCKjNVL7z58/b3a/2NHiTJUuWiG7duglvb28RGhoqHnnkEfHnn39a7HPp0iUxbtw40bJlSwGAU+KJatAI4YQLzhAREREpCMcAERERkeowABEREZHqMAARERGR6jAAERERkeowABEREZHqMAARERGR6nAhRCuMRiP++OMPBAQEcCl5IiIihRBCoKysDBEREdBq7bfxMABZ8ccffyAyMlLqYhAREVEjnD17Fm3btrW7DwOQFQEBAQCuvoD2rmlERERE8lFaWorIyEjzedweBiArTN1egYGBDEBEREQK05DhKxwETURERKrDAERERESqwwBEREREqsMxQERERE5SXV2NqqoqqYvhsby9veHl5eWUYzEAERERNZEQAoWFhbh48aLURfF4LVu2RFhYWJPX6WMAIiIiaiJT+AkJCUHz5s25iK4LCCFQUVGBc+fOAQDCw8ObdDwGICIioiaorq42h5/g4GCpi+PR/Pz8AADnzp1DSEhIk7rDZDEIeunSpYiKioKvry/i4uKwf/9+m/sePnwYo0aNQlRUFDQaDbKysursk5mZiX79+iEgIAAhISEYOXIkjh8/7sIaEBGRWpnG/DRv3lzikqiD6XVu6lgryQPQunXrkJ6ejtmzZyM3Nxe9evVCUlKSuYmrtoqKCnTs2BHz589HWFiY1X2+/PJLTJ48Gd988w127tyJqqoq3HrrrSgvL3dlVYiISMXY7eUeznqdNUII4ZQjNVJcXBz69euHJUuWALh6IdLIyEg8+uijmD59ut3HRkVFYerUqZg6dard/c6fP4+QkBB8+eWXGDRoUL1lKi0thV6vh8Fg4ErQRERk1+XLl5GXl4cOHTrA19dX6uJ4PHuvtyPnb0nHAFVWVuLAgQPIyMgwb9NqtUhMTMS+ffuc9jwGgwEAEBQUZPX+K1eu4MqVK+bbpaWlTnvuxiguLkZlZaXN+3U6HfuZiYiImkDSAHThwgVUV1cjNDTUYntoaCiOHTvmlOcwGo2YOnUqbrjhBvTs2dPqPpmZmZg7d65Tnq+piouLza1hAGAwBKCkJBhBQcXQ68vM29PS0hiCiIioSe677z6sXr0aANCsWTMEBQXhuuuuw9ixY3HfffdBq23YSJlVq1Zh6tSpiloGwONngU2ePBk///wzdu/ebXOfjIwMpKenm2+briYrhZotP7m5fbBly3AIoYVGY0Ry8lbExByssx8RESmblC3/Q4YMwcqVK1FdXY2ioiLs2LEDU6ZMwYcffojNmzejWTPPjAqS1qpVq1bw8vJCUVGRxfaioiKbA5wdkZaWhq1bt+Krr75C27Ztbe7n4+MDHx+fJj+fMxkMAebwAwBCaLFly3BER5+yaAkiIiJlq93yb4urWv59fHzM59w2bdogJiYG119/Pf79739j1apVmDhxIhYuXIiVK1fil19+QVBQEJKTk/HSSy+hRYsW2LVrFyZMmADgnwHKs2fPxpw5c/Duu+9i0aJFOH78OPz9/XHzzTcjKysLISEhTq+HoySdBabT6RAbG4ucnBzzNqPRiJycHMTHxzf6uEIIpKWl4aOPPsLnn3+ODh06OKO4blVSEmwOPyZCaFFSYn0cExERKVNDW/Td2fJ/8803o1evXti4cSOAq+NzX3vtNRw+fBirV6/G559/jieffBIAMGDAAGRlZSEwMBAFBQUoKCjAE088AeDqVPV58+bhhx9+wKZNm5Cfn4/77rvPbfWwR/J2rfT0dKSmpqJv377o378/srKyUF5ebk6T48ePR5s2bZCZmQng6gfgyJEj5v///vvvOHToEFq0aIFOnToBuNrtlZ2djY8//hgBAQEoLCwEAOj1evMiSnIXFFQMjcZoEYI0GiOCgkokLBUREalFt27d8OOPPwKAxWzrqKgoPPfcc3j44Yfx+uuvQ6fTQa/XQ6PR1Om9uf/++83/79ixI1577TX069cPly5dQosWLdxSD1skXwcoJSUFCxYswKxZs9C7d28cOnQIO3bsMA+MPnPmDAoKCsz7//HHH+jTpw/69OmDgoICLFiwAH369MHEiRPN+yxbtgwGgwGDBw9GeHi4+WfdunVur19j6fVlSE7eCo3GCADmMUDs/iIiIncQQpi7tD777DP8+9//Rps2bRAQEIB7770XxcXFqKiosHuMAwcOIDk5Ge3atUNAQAASEhIAXD23S03yFiDgar9mWlqa1ft27dplcTsqKgr1LV0k8dJGThMTcxDR0adQUhKEoKAShh8iInKbo0ePokOHDsjPz8fw4cPxyCOP4Pnnn0dQUBB2796NBx54AJWVlTZXwC4vL0dSUhKSkpLw/vvvo3Xr1jhz5gySkpJkMZFHFgGIbNPryxh8iIjIrT7//HP89NNPePzxx3HgwAEYjUa88sor5mnxH3zwgcX+Op0O1dXVFtuOHTuG4uJizJ8/3zyz+vvvv3dPBRpA8i4wsqTT6Zy6HxERkT1XrlxBYWEhfv/9d+Tm5uKFF17A7bffjuHDh2P8+PHo1KkTqqqqsHjxYvzyyy949913sXz5cotjREVF4dKlS8jJycGFCxdQUVGBdu3aQafTmR+3efNmzJs3T6Ja1sUWIJkJDg5GWloaV4ImIiK32LFjB8LDw9GsWTP861//Qq9evfDaa68hNTUVWq0WvXr1wsKFC/Hiiy8iIyMDgwYNQmZmJsaPH28+xoABA/Dwww8jJSUFxcXF5mnwq1atwowZM/Daa68hJiYGCxYswIgRIySs7T8kvxaYHPFaYERE1FBNvRaY1OsAKY1HXAuMiIhI7djyLw0GICIiIokx3LgfB0ETERGR6jAAERERkeowABEREZHqMAARERGR6jAAERERkeowABEREZHqMAARERGR6jAAERERkUvs2rULGo0GFy9ebPBjoqKikJWV5bIymTAAkaSKi4tRUFBg86e4uFjqIhIReaz77rsPGo0GDz/8cJ37Jk+eDI1Gg/vuu8/9BXMDrgRNkql9/RuDIQAlJcEICiqGXl9m3s7r3xARuU5kZCTWrl2LV199FX5+fgCuXm8rOzsb7dq1k7h0rsMWIJJMzeve5Ob2QVbWVKxenYqsrKnIze1jdT8iInKumJgYREZGYuPGjeZtGzduRLt27dCnzz/fxVeuXMFjjz2GkJAQ+Pr64sYbb8R3331ncazt27ejS5cu8PPzw0033YT8/Pw6z7d7924MHDgQfn5+iIyMxGOPPYby8nKX1c8WBiCSnMEQgC1bhkOIqx9HIbTYsmU4DIYAiUtGROR+v/0GfPHF1X/d5f7778fKlSvNt1esWIEJEyZY7PPkk09iw4YNWL16NXJzc9GpUyckJSWhpKQEAHD27FnccccdSE5OxqFDhzBx4kRMnz7d4hinT5/GkCFDMGrUKPz4449Yt24ddu/ejbS0NNdXshYGIJJcSUmwOfyYCKFFSUmQRCUiIpLG228D7dsDN9989d+333bP895zzz3YvXs3fv31V/z666/Ys2cP7rnnHvP95eXlWLZsGV5++WUMHToU3bt3x1tvvQU/Pz+8/f8LuWzZMkRHR+OVV15B165dcffdd9cZP5SZmYm7774bU6dORefOnTFgwAC89tpreOedd3D58mX3VPb/4xggklxQUDE0GqNFCNJojAgKKpGwVERE7vXbb8CkSYDRePW20Qg89BCQlAS0beva527dujWGDRuGVatWQQiBYcOGoVWrVub7T58+jaqqKtxwww3mbd7e3ujfvz+OHj0KADh69Cji4uIsjhsfH29x+4cffsCPP/6I999/37xNCAGj0Yi8vDxcc801rqieVQxAJDm9vgzJyVvN3WAajRHJyVstBkITEXm6kyf/CT8m1dXAqVOuD0DA1W4wU1fU0qVLXfIcly5dwkMPPYTHHnuszn3uHnDNAESyEBNzENHRp1BSEoSgoBJFhJ/i4mK7A7R1Oh1nrxFRg3XuDGi1liHIywvo1Mk9zz9kyBBUVlZCo9EgKSnJ4r7o6GjodDrs2bMH7du3BwBUVVXhu+++w9SpUwEA11xzDTZv3mzxuG+++cbidkxMDI4cOYJO7qqUHQxAJBt6fZkigg9Qdwq/LZzCT0QN1bYt8OabV7u9qquvhp833nBP6w8AeHl5mbuzvLy8LO7z9/fHI488gmnTpiEoKAjt2rXDSy+9hIqKCjzwwAMAgIcffhivvPIKpk2bhokTJ+LAgQNYtWqVxXGeeuopXH/99UhLS8PEiRPh7++PI0eOYOfOnQ36TnUmDoImyVRUVDh1P3eq3fJjMAQgLy+qzsw1TuEnIkc88ACQn391Flh+/tXb7hQYGIjAwECr982fPx+jRo3Cvffei5iYGJw6dQqffPIJ/vWvfwG42oW1YcMGbNq0Cb169cLy5cvxwgsvWBzjuuuuw5dffokTJ05g4MCB6NOnD2bNmoWIiAiX1602jRBCuP1ZZa60tBR6vR4Gg8HmB4GarqCgAG+++ab5tq2FECdNmoTw8HApimhTzbLn5vapM34pJuYgAHmWnYic6/Lly8jLy0OHDh3g6+srdXE8nr3X25HzN7vASBbshQg5s7WGUXT0KcV05xERqREDEElOySHC3hpGtcvOQdNERPLBAESScyREyE1D1zDidc+IiOSFAYgkp+SFEBu6hlHt657Z6u7joGkiIvdgACLJKX0hREfWMFJydx8R2cc5Re7hrNeZAYhkQWkLIep0OovbttYwqr2fkrv7iMg6b29vAFeX7PDz85O4NJ7PtDSK6XVvLAYgkkxjQ4QcBAcHIy0tzeFBzUru7iMi67y8vNCyZUucO3cOANC8eXNoNBqJS+V5hBCoqKjAuXPn0LJlyzqLNTqKAYgk09gQIReNKZfSu/uIyLqwsDAAMIcgcp2WLVuaX++mYAAiSck13LiS0rr7iKh+Go0G4eHhCAkJQVVVldTF8Vje3t5NbvkxYQAikoCSrntGRA3n5eXltBM0uRYDECmKUhcTbOg4pqaMd1Lqa0NEJAUGIFIMJV+B3dXjnZT82hARSYEBiBTD2hXYra2m3NjFBF3dguLK4OHq14aIyNMwAJEiOfviqZ7UgqLUC8sSEbmTtv5diOTF1mrKBkNAo49prQUlLy+qzjHl3oLiiteGiMgTsQWIFMfVqykruQWFK00TETUMW4BIcUyrKdfkrNWUld6C4srXhojIkzAAkeKYVlM2neiduZqyvRYUJXDla0NE5EnYBUaK5KrVlD3hWl1caZqIqH5sASLFMF0B2ESvL0OHDr/WOcHX3q8hLl68aD6mvRYU035yY+3CstZeGzleWJaISApsASLFaN68ucVtW2vd1N6vIf7++2/z/2NiDiIkpBBnz7ZDZOQZtG1bYHU/OVH6hWWJiNyNAYgUydkztby9vRt07Jr7yY2Sww0v40FE7sYARIpja6ZWdPSpRo930ev1DTq2aT9yHk9ahJKIlINjgEhxXDlTS+mzwJTIUxahJCJlYQsQKY4rZ2p5wiwwJVPyIpREpCxsASLFceVaN1xHRzpKX4SSiJSFLUCkSK5c64br6EiDl/EgIneSvAVo6dKliIqKgq+vL+Li4rB//36b+x4+fBijRo1CVFQUNBoNsrKy6uzz1VdfITk5GREREdBoNNi0aZPrCk9u5cq1briOjvR4GQ8icidJW4DWrVuH9PR0LF++HHFxccjKykJSUhKOHz+OkJCQOvtXVFSgY8eOuOuuu/D4449bPWZ5eTl69eqF+++/H3fccYerq0Bu5Mq1briOjvRM3Y+1xwCx9YeIXEHSALRw4UI8+OCDmDBhAgBg+fLl2LZtG1asWIHp06fX2b9fv37o168fAFi9HwCGDh2KoUOHuq7QJClXBhCGG+mx+5GI3EWyAFRZWYkDBw4gIyPDvE2r1SIxMRH79u2TqlhE5GbWuh+tBR93dj9yYUYizydZALpw4QKqq6sRGhpqsT00NBTHjh1za1muXLmCK1eumG+Xlpa69fmJSD64MCOROkg+CFoOMjMzodfrzT+RkZFSF4lINeS2EGJDn4cLMxIpm2QtQK1atYKXlxeKioosthcVFSEsLMytZcnIyEB6err5dmlpKUOQm7CrgWqSw0KIFy9etLht66K7Fy9eRHh4uFvLRkTOI1kA0ul0iI2NRU5ODkaOHAkAMBqNyMnJQVpamlvL4uPjAx8fH7c+J7GrgSy54hpvjfH333+b/28vkNXcj4iUR9JZYOnp6UhNTUXfvn3Rv39/ZGVloby83DwrbPz48WjTpg0yMzMBXG1yPnLkiPn/v//+Ow4dOoQWLVqgU6dOAIBLly7h1KlT5ufIy8vDoUOHEBQUhHbt2rm5hmQPuxqoJrkthGgwBGDz5mQAGnNZpAhkROQakgaglJQUnD9/HrNmzUJhYSF69+6NHTt2mAdGnzlzBlrtP1+If/zxB/r06WO+vWDBAixYsAAJCQnYtWsXAOD777/HTTfdZN7H1LWVmpqKVatWub5SRNQorrwOW2O6Ws+ejYQp/JgIocXZs22h1x9tcpmISFqSXwojLS3NZpeXKdSYREVFQQhh93iDBw+udx+SJ1tjLUgdXLUQIrtaicgayQMQESCPwa8kPVcshGhtlpm1oF17v8jIswCMsJwsa0Rk5G9NLhMRSY8BiCQnl8GvJA13LoTYkKDt7e1tLseIEVuxefNwXA1BRowY8U+LlGk/IlImBiCSnNwGv5J7ues6bA0N2nq93vx/ey1SNfcjIuVhAJIhta2N48rBr6QM7vg8NzRoy/HSHETkfAxAMqOmAZumE0h9g195oiFnaGjQdleLFBFJiwFIZtS0Nk7tE82sWeeRn98MUVF/IyKiH4B+PNGQVY1pJXVklhk/c0SejwGIJFXzRBMeDsTGSlgYkowjgaYpraSumGVGRMrEACRzXBuHPJ2jgcbRae0c00NE1jAAyYzBYDD/396UXYPBwAsxkkdo7Do9QMOmtXNMDxFZwwAkM1VVVQDqn7Jr2k9u1DaDjZzLkQUxHVk/Sm6fOf6eEEmPAUimlLg2jppmsJHzObogphJ/R4C6vye2Wrz4e0LkWgxAMhUUVAxry/DLeW0cNc1gI+dzNNAodf2omp9/ey1e/D0hci1t/buQOzVrVjOTWl6JWqOxtR+R8pkCTU32Ao1pWrvpMc66eKq72GrxMhgCJC4ZkTrwLCozLVu2BHD1r+HaAajmX8Om/eTM02ewcRyHczXmavBKntau1C48Ik/BACRTSm3eN/H0q7tzvJNrNCTQeMq0dqX/jhMpHQOQTDXmr2G5UMPV3ZsydZssORpoPGVau5J/x4k8AQOQzNQ8Gdj7a1jOf92qrWnf01u7XK0xgcbRcCPX7kold+ERKR0DkMx4wl+3amraV0Nrlzu48vMs9+5KWy1eRORaDEAyJOdwY48ar+6uttYuJZJbd2VDP/+e9HtCJEcMQOQ0ary6u5pauzyBHLorPaGVV07k2r1J8scARE6ltqu7cyCrcsipu5InZOeQe/cmyRsDEFETcSCrMrC70vNw9XlqCgYgokbwlLVo1ITdlURUEwMQUSNwHIdyGAwGAPV3VxoMBoSHh0tZVGoiT199npyLAYiokRhulKGqqsr8/5iYgwgJKcSZM+3Qrt0ZtG1bYHU/Uh45DHAnZWEAIiKPVvPCwfZOkrzAsHLJaYA7KQevBk9EHs104eD6rr6uhAsMk3X2BrgT2cIARESqwJOk5zINcK+JA9ypPgxARKQKPEl6ntqrz5veX09efZ6ch53eRKQKXLTS86hx9XlyHgYgIvJopmnwgP1FKzkNXvkiIoyIiLC/6CEvnUEmDEBE5NGEEFa2ahq4n+dTciBw9FIYvHQG1cQAREQerebsLnvT4NU4C6wxgUBOgcnRS2Hw0hlUEwMQEUnOHSdVrhVTV+3X3NZKyqb95N6C4uhK0Fw5Wt0YgEhR5PTXJzmHu06qvBiqfQ1ZSdnRwOROjq4EzZWjiQGIFEPuf31S47jrpMqLodrWmNYxOQUIR8vP1kACGIBIQdh/7/lceVLlNHjbHG0dk1uAcLT8bA0kgAGIiGTCHSdVe9Pg1czR1jG5BQhHy++q1kB20SsLAxApFgcwehZXnVRrrwKs15dZPZ6aVwt2tHVMbt2JjpbfFa2B7KJXHgYgUiQ5jT8g55DbSVVtHGkdk0t3Ys3Qaq/8pv0c3d8R7KJXHgYgUhy5jT8g53DVSVXOM5ek1pTWMTl0J9a+FIY1NbudHN2/KdhCLX8MQKQ4cht/QM7j6pMqWw4tORoI5Nid6GhYcUf3Ez9nysAARIrDrhLP4q6TKlsOrXMkELizBUWp+DlTDgYgUgzTCbC+rhI1D2ZVInedVNly6BxqDjcNwc+ZcjAAkWLUPlHOmnUe+fnNEBX1NyIi+gHop/q/PpXKHe8ZWw7JHfg5Uw4GIFKUmifK8HAgNlbCwpCiyGXmEnk2fs6UgwGIiFRDDjOXlI6L/Vnnyin25BoMQG7ALwwi6chx5pJScbE/2zhAXHkYgFyMXxhE0uKJyXm4ppJ9Sv8Mqe2PdQYgF+MXBpH0POlLWy641o1nUeMf6wxAbsQvDCLyBFzrxvOo8VIe2vp3IWew9YVhMARIXDIiIsfYW+uGPIPBEIC8vCiPPkexBchNuDgWEbmDO8ZxcK0bz6aW3gpZtAAtXboUUVFR8PX1RVxcHPbv329z38OHD2PUqFGIioqCRqNBVlZWk4/pDqYvjJr4hUFEzmQax/Hmm2/a/FmyZAmKi4ub9DymtW5M32lc68ZzqKm3QvIAtG7dOqSnp2P27NnIzc1Fr169kJSUhHPnzlndv6KiAh07dsT8+fMRFhbmlGO6A78wiMjVrE26sNaN4YxxHDExBzF1ahZSU1dh6tQsj2whUCM1dW9K3gW2cOFCPPjgg5gwYQIAYPny5di2bRtWrFiB6dOn19m/X79+6NevHwBYvb8xx3QXLsJGRO7iim4MrqnkXHKcdq6m7k1JA1BlZSUOHDiAjIwM8zatVovExETs27fPbce8cuUKrly5Yr5dWlraqOe2hl8YpFZy/HJXC1fN0uKaSs4j12nnarqUh6QB6MKFC6iurkZoaKjF9tDQUBw7dsxtx8zMzMTcuXMb9Xz1CQ4Oxj333IOKigqb+zRv3pxfGORR5PrlrhaunHTB98s55LZGnBov5SF5F5gcZGRkID093Xy7tLQUkZGRTjl2cXEx3nvvvXr344mAPIncvtzVRk3dGJ5ADrOu1Ni6J2kAatWqFby8vFBUVGSxvaioyOYAZ1cc08fHBz4+Po16vvrwRGCfnLpJ5FQWTyKHL3e1caQbg597aclpUUm1vc+SBiCdTofY2Fjk5ORg5MiRAACj0YicnBykpaXJ5pjOwhOBJTl1k8ipLJ5ELl/uajzJN2TSBT/30uMacdKRvAssPT0dqamp6Nu3L/r374+srCyUl5ebZ3CNHz8ebdq0QWZmJoCrLSVHjhwx///333/HoUOH0KJFC3Tq1KlBx5SCXE4EciKnpdfZUucacvhyV9NJ3tFJF/zcS4/dldKRPAClpKTg/PnzmDVrFgoLC9G7d2/s2LHDPIj5zJkz0Gr/+WD88ccf6NOnj/n2ggULsGDBAiQkJGDXrl0NOqYU5HAikDtbX77uxpY655HDl7uaTvJNGcfBz7001DTrSm4kD0DA1b+8bHVPmUKNSVRUFIQQTTqmFORwIpAzuXz5sqXOueT25S6Xz5krNaYVi597aXGNOGnIIgCpgdxOBHIipy9fttQ5n1y+3OX0OZMbfu7dj2vESY8ByI3kciKQGzl9+bKlzjnk+OUup8+Z3PBz735qnHYuNwxALibHE4HcOPLl6+rZPGypcw45frnzJG8bP/fSYLiRFgOQi8nxRCA3Df3ydddsHrbUOYfcPtM8ydvHzz05SunLSzAAuYGcPwBScnTpdVdOm2dLnTrwJG+Jn3tqLE9YXoIBiCTT1NYxZ06bZ0ud5+JJ3jZ+7qmxPGF5CQYgklRjv1hdMZ2ZX/KeiSd5+9Rab3IepS4vwQBEisPpzOQonuSJXEPJ38cMQKQ4Sp3OrPQBg0REtSn1+xhgACIFUuJ0Zk8YMEhEVJsSv49NGIBIceQyndmRFh05XfiViMhZ5PJ93BgMQKQYjk6bd6WmtujI5cKvJA12h5InUeryEgxApBhyms3TlCmgSp0xQc5ROzzb+uywO5TkzBOWl2AAIkWR4wnBkUCj5BkT5Bw1Q7G9zw67Q0nOGvMHqdxaPhmAiJrA0UCj5BkT5FwMw6R0joQVObZ8MgARNYGjgUbJMybIuRiGSU3k2PKprX8XIrLFFGhqshdoTDMmTI9R0owJci5HPztEnsBWy6fBEOD2srAFiKgJGjoFVE4z2EgelDx9mKix5NTyyQBE1EQNmQIqpxlsJB9KnT5M1FhyGgbAAETUCI2ZAspwQ9bY+uwQeSI5tXwyABE1Alt0qLEa2s3J7lDyVHJp+WQAImokhhtqDIZnche5rbtTkxxaPhmAiIjcjOGGXE1u6+7IseWTAYiIiMjDyG3dHTm2fDIAEREReSg5rTgut5ZPLoRIRETkoeytu6N2bAEiIiJSgMYMapbTujtywwBEREQkc40d1CyndXfkhgGIiIgUS85TvZ2pKYOa5bLujtw0KgCtX78ea9aswYkTJwAAXbp0wbhx43DnnXc6tXBERES2yG2qtzs0dlCzHNbdkRuHApDRaMTYsWOxfv16dOnSBd26dQMAHD58GCkpKbjrrruwZs0aaDQalxSWiIjIRG5TvV3JYDAAqP9iogaDAeHh4bJcd0duHApAixYtwmeffYbNmzdj+PDhFvdt3rwZEyZMwKJFizB16lRnlpHsUEvzLxGRLXKa6u0qVVVVAK4OagaMsJzE/c+gZtN+clx3R24cCkArV67Eyy+/XCf8AMCIESPw0ksvMQC5Ue3mX1s8qfmXiKi2+lpFPI9lL4utThd+79vnUAA6efIkEhMTbd6fmJiItLS0JheKGqZ2srfV/+3O5l+2SBGRu6lpqndJSTBqByDPDnuu41AA8vPzw8WLF9GuXTur95eWlsLX19cpBSPH2Ov/dhe2SFFNDMPkLmqa6u3KsFfzd/aPP7TIy2uGDh3+RkSEEYDn/c46FIDi4+OxbNkyLFu2zOr9S5cuRXx8vFMKRg0nl/5vObZIkTQYhsndPH2qd7NmV0/X9YU9036Oqvk7a+8Pak/6nXXolZo5cyYGDx6M4uJiPPHEE+jWrRuEEDh69CheeeUVfPzxx/jiiy9cVVayQY7933JokSLpMAyTFDx5qnfLli3N/7cX9mru5wjT72J9f1B70u+sQwFowIABWLduHSZNmoQNGzZY3Pevf/0La9aswQ033ODUAlL95Nb/LZcWKUexy8Y1GIbJVdQ81dtVYU+Of1C7isNtZf/3f/+HpKQkfPLJJzh58iSAqwsh3nrrrWjevLnTC0j1k1v/txJ/gdhl4xpKDcOkDGqa6u2usCe3P6hdyaEA9PnnnyMtLQ3ffPMN/u///s/iPoPBgB49emD58uUYOHCgUwtJ9ZNT/7cSf4HYZeMaSgzDpCyeEG4awl1hT25/ULuSQwEoKysLDz74IAIDA+vcp9fr8dBDD2HhwoUMQG5SO+nbahKtuZ87unmU/gvELhvnUWIYJpIrd4U9Of1B7UoOBaAffvgBL774os37b731VixYsKDJhaKGcfQvAnd28yj1F4hdNs6l9DBMpFaePKDcxKEAVFRUBG9vb9sHa9YM58+fb3KhqOEcCSqu7uZpTIuU3LDLxvmUGoaJyLM5FIDatGmDn3/+GZ06dbJ6/48//ojw8HCnFIxcyxXdPJ4wIJFdNs7hCWGYSE3UOKPOoQB022234ZlnnsGQIUPqrPj8119/Yfbs2VavE0by4spuHjmHm4Zgl41zeEIYdiUuuUByo8bfWYcC0NNPP42NGzeiS5cuSEtLQ9euXQEAx44dw9KlS1FdXY2ZM2e6pKDkPOzmsY9dNs7hSV+UzlR7LJ6trmguuUDuprbPm0MBKDQ0FHv37sUjjzyCjIwMCCEAABqNBklJSVi6dClCQ0NdUlByHnbz1MUuG88mpxaXmuWw1xXNJReIXMvhhRDbt2+P7du3488//8SpU6cghEDnzp3xr3/9yxXlIxdgN09damz+VQu5LnLJGYdE0mrcVdNw9dIX/fr1c2ZZyI3YzUNqIddFLtkVTSStRgcgUh5289gm11YCci45LXLJrmgiaTEAqQi7eWyTaysBOY/cupzYFU0kLQYglVFjuHGUnFoJyHnk2OXErmgi6TAAEdUgt1YCch65djmp4ZIDaiGn2YZUP1kEoKVLl+Lll19GYWEhevXqhcWLF6N///4291+/fj2eeeYZ5Ofno3PnznjxxRdx2223me8vKirCU089hU8//RQXL17EoEGDsHjxYnTu3Nkd1SEFc2UrAb8cpSWXLic1rrirBlzfSXkkD0Dr1q1Deno6li9fjri4OGRlZSEpKQnHjx9HSEhInf337t2LsWPHIjMzE8OHD0d2djZGjhyJ3Nxc9OzZE0IIjBw5Et7e3vj4448RGBiIhQsXIjExEUeOHIG/v78EtSSlcFUrAQdZy4Mcupw4Fs8zcX0n5dHWv4trLVy4EA8++CAmTJiA7t27Y/ny5WjevDlWrFhhdf9FixZhyJAhmDZtGq655hrMmzcPMTEx5pPLyZMn8c0332DZsmXo168funbtimXLluGvv/7CmjVr3Fk1UiBTK4FGYwQAp7USWBtknZcXBYMhwO5+1HTWZj926PBrnffUnS0uwcHBCA8Pt/nD8KNctrrRa/+uk/QkbQGqrKzEgQMHkJGRYd6m1WqRmJiIffv2WX3Mvn37kJ6ebrEtKSkJmzZtAgBcuXIFACyuVabVauHj44Pdu3dj4sSJdY555coV8+MAoLS0tNF1IuVzdSsBB1m7F1tcyJ3kONierJM0AF24cAHV1dV1Lp8RGhqKY8eOWX1MYWGh1f0LCwsBAN26dUO7du2QkZGBN954A/7+/nj11Vfx22+/oaCgwOoxMzMzMXfuXCfUiJTKXWskcZC1NBhuyF3kOtie6pJ8DJCzeXt7Y+PGjXjggQcQFBQELy8vJCYmYujQoeZrl9WWkZFh0apUWlqKyMhIdxWZZMBdrQT865DIs8llsD3VT9IA1KpVK3h5eaGoqMhie1FREcLCwqw+JiwsrN79Y2NjcejQIRgMBlRWVqJ169aIi4tD3759rR7Tx8cHPj4+TawNKZ07Wgn41yGR55PDYHuqn6SDoHU6HWJjY5GTk2PeZjQakZOTg/j4eKuPiY+Pt9gfAHbu3Gl1f71ej9atW+PkyZP4/vvvcfvttzu3AkQOctUgayKSF1uD7Uk+JO8CS09PR2pqKvr27Yv+/fsjKysL5eXlmDBhAgBg/PjxaNOmDTIzMwEAU6ZMQUJCAl555RUMGzYMa9euxffff48333zTfMz169ejdevWaNeuHX766SdMmTIFI0eOxK233ipJHYlq4l+HRJ6H6zspj+QBKCUlBefPn8esWbNQWFiI3r17Y8eOHeaBzmfOnIFW+09D1YABA5CdnY2nn34aM2bMQOfOnbFp0yb07NnTvE9BQQHS09NRVFSE8PBwjB8/Hs8884zb60ZkwgvREnk2zjZUHo2wNTJYxUpLS6HX62EwGBAYGCh1cchDcCVoIiLXcuT8LXkLEJFaMNwQEcmH5CtBExEREbkbAxARERGpDgMQERERqQ4DEBEREakOAxARERGpDmeBERE1EZc4IFIeBiAioiYoLi7GkiVL6t0vLS2NIYhIRtgFRkTUBLVbfgyGAOTlRcFgCLC7HxFJiy1ARES1NLZLKze3D7ZsGQ4htOYL3cbEHHRlUYmokRiAiIhqaGyXlsEQYA4/ACCEFlu2DEd09Cle8JZIhtgFRkRUQ2O7tEpKgs3hx0QILUpKglxTUCJqErYAERHZ4EiXVlBQMTQao0UI0miMCAoqcVdxicgBbAEiIrLCVpdW7ZYgE72+DMnJW6HRGAHAHJjY/UUkT2wBIiKywl6Xlq1QExNzENHRp1BSEoSgoBKGHyIZYwAiIrKioV1aOp3O4rZeX2Y1+NTej4ikxQBERGSFqUur9hig2uEmODgYaWlpXAmaSGEYgEhSvIQAyVlDu7T4GSVSHgYgkgwvIUByxC4tInVgACLJWFtvpaQkGEFBxRYnHF5CgNyJXVpE6sAARLLASwiQnDDcEHk+rgNEknN0vRUiIqKmYgAiyfESAkRE5G4MQCQ503orNfESAkRE5EoMQCQ5XkKAiIjcjYOgSRZ4CQEiInInBiCSDNdbISIiqTAAkWS43goREUmFAYgkxXBDRERS4CBoIiIiUh0GICIiIlIdBiAiIiJSHQYgIiIiUh0GICIiIlIdBiAiIiJSHQYgIiIiUh0GICIiIlIdBiAiIiJSHQYgIiIiUh0GICIiIlIdBiAiIiJSHQYgIiIiUh0GICIiIlIdBiAiIiJSHQYgIiIiUh0GICIiIlIdBiAiIiJSnWZSF4CIiIg8X3FxMSorK23er9PpEBwc7LbyMAARERGRSxUXF2PJkiXm2wZDAEpKghEUVAy9vsy8PS0tzW0hiAGIiIiIXKpmy09ubh9s2TIcQmih0RiRnLwVMTEH6+znahwDRERERG5hMASYww8ACKHFli3DYTAEuL0sDEBERETkFiUlwebwYyKEFiUlQW4viywC0NKlSxEVFQVfX1/ExcVh//79dvdfv349unXrBl9fX1x77bXYvn27xf2XLl1CWloa2rZtCz8/P3Tv3h3Lly93ZRWISMaKi4tRUFBg86e4uFjqIhKpQlBQMTQao8U2jcaIoKASt5dF8jFA69atQ3p6OpYvX464uDhkZWUhKSkJx48fR0hISJ399+7di7FjxyIzMxPDhw9HdnY2Ro4cidzcXPTs2RMAkJ6ejs8//xzvvfceoqKi8Omnn+I///kPIiIiMGLECHdXkYgkVHvwpS3uHHxJpFZ6fRmSk7fWGQNUcyC0u2iEEMLtz1pDXFwc+vXrZ/6CMhqNiIyMxKOPPorp06fX2T8lJQXl5eXYunWredv111+P3r17m1t5evbsiZSUFDzzzDPmfWJjYzF06FA899xz9ZaptLQUer0eBoMBgYGBTa0iEUmooKAAb775pvm2rdknkyZNQnh4uBRFJPJ41n8PgxAUVOLU30NHzt+SdoFVVlbiwIEDSExMNG/TarVITEzEvn37rD5m3759FvsDQFJSksX+AwYMwObNm/H7779DCIEvvvgCJ06cwK233uqaihCRIuTm9kFW1lSsXp2KrKypyM3tI3WRiFRJry9Dhw6/StLyYyJpF9iFCxdQXV2N0NBQi+2hoaE4duyY1ccUFhZa3b+wsNB8e/HixZg0aRLatm2LZs2aQavV4q233sKgQYOsHvPKlSu4cuWK+XZpaWljq0REMmVr9kl09ClJv4SJ1ECn0zl1P2eQfAyQKyxevBjffPMNNm/ejPbt2+Orr77C5MmTERERUaf1CAAyMzMxd+5cCUpKRO5ib/YJAxCRawUHByMtLY0rQZu0atUKXl5eKCoqstheVFSEsLAwq48JCwuzu/9ff/2FGTNm4KOPPsKwYcMAANdddx0OHTqEBQsWWA1AGRkZSE9PN98uLS1FZGRkk+pGRPJimn1SMwRJNfuESI3kNslA0jFAOp0OsbGxyMnJMW8zGo3IyclBfHy81cfEx8db7A8AO3fuNO9fVVWFqqoqaLWWVfPy8oLRaDn1zsTHxweBgYEWP0TkWUyzT0xTcKWcfUJE0pO8Cyw9PR2pqano27cv+vfvj6ysLJSXl2PChAkAgPHjx6NNmzbIzMwEAEyZMgUJCQl45ZVXMGzYMKxduxbff/+9eXR5YGAgEhISMG3aNPj5+aF9+/b48ssv8c4772DhwoWS1ZOIpBcTcxDR0aeszj4hInWRPAClpKTg/PnzmDVrFgoLC9G7d2/s2LHDPND5zJkzFq05AwYMQHZ2Np5++mnMmDEDnTt3xqZNm8xrAAHA2rVrkZGRgbvvvhslJSVo3749nn/+eTz88MNurx8RSav2oEq9vsxq8HHn4Esikp7k6wDJEdcBIvIsxcXFshp8SUSu4cj5W/IWICIiV3N1uGHAIlIeBiAioibgpTaIlEkWF0MlIlIqey0/jdmPiNyDAYhc5rffgC++uPovkVoYDAHIy4uCwRAgdVGIyA52gZFTmcZCZGf74ckn9TAaNdBqBV56yYBx4/7iWAiShLvG6OTm9qlzleuYmINNPi4ROR8DEDmNaSyEwRCArKypEEIDADAaNZg2LRC//74Cen0Zx0KQW7lrjA6vNUakLOwCI6cx/YVt75pLNfcjcgd3jdGp73NPRPLCAEROZ7rmUk285hLJhavG6PBzT6Qs7AIjpzNdc6n2WAh2A5DUXDlGh597ImVhACKX4DWXSG5cNUan5iU07H3ueakNInlhACKXsXXNJSIp2Buj05TPaXBwMNLS0rgSNJHCMAARkSqYxujUDEHOGqPDcEOkPBwETUSqYBqjYxqozDE6ROrGFiBymoaOceBYCHInjtEhIms0QgghdSHkprS0FHq9HgaDAYGBgVIXR1F4VWySI34uidTBkfM3W4DIqXgSsY0nYenwdSWi2hiAiNyg9uUYDIYAlJQEIyio2KIbhpcJISJyDwYgIjeo2fJjbzE+XiaEiMg9OAuMyI1sLcbn7MsyEBGRfQxARG7EC2YSEckDAxCRG/GCmURE8sAARORGXIyPiEgeOAiayM14oVgiIukxABFJgBeKJSKSFrvAiNyAlwkhIpIXtgARuUFwcDDS0tK4EjQRkUwwABG5CcMNEZF8sAuMiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIeXwiAiItkoLi7mNfPILRiAiIhIFoqLi7FkyZJ690tLS2MIoiZjFxgREcmCvZafxuxHZA8DEBEREakOAxAREcmSwRCAvLwoGAwBUheFPBDHABERkezk5vbBli3DIYQWGo0RyclbERNzUOpikQdhCxAREcmKwRBgDj8AIIQWW7YMZ0sQORVbgIjIJTidmRqrpCTYHH5MhNCipCQIen2ZRKUiT8MAREROx+nM1BRBQcXQaIwWIUijMSIoqETCUpGnYRcYETld7ZYfW4NZOZ2ZatLpdAAAvb4MyclbodEYAcA8BsjU+mPaj6gp2AJERC7FwazUUMHBwUhLSzMH41mzziM/vxmiov5GREQ/AP3YdUpOwwBERC5jazBrdPQpjuUgq2qGm/BwIDZWwsKQR2MXGBG5jL3BrEREUmIAIiKXMQ1mrYmDWYlIDhiAiMhl6hvMSkQkFY4BIiKXiok5iOjoUygpCUJQUAnDDxHJgixagJYuXYqoqCj4+voiLi4O+/fvt7v/+vXr0a1bN/j6+uLaa6/F9u3bLe7XaDRWf15++WVXVoOI/r/a05T1+jJ06PBrnfDD6cxEJBXJW4DWrVuH9PR0LF++HHFxccjKykJSUhKOHz+OkJCQOvvv3bsXY8eORWZmJoYPH47s7GyMHDkSubm56NmzJwCgoKDA4jH/+9//8MADD2DUqFFuqROR2tWezmwNpzMTkZQ0QgghZQHi4uLQr18/86qxRqMRkZGRePTRRzF9+vQ6+6ekpKC8vBxbt241b7v++uvRu3dvLF++3OpzjBw5EmVlZcjJyWlQmUpLS6HX62EwGBAYGNiIWhEREZG7OXL+lrQLrLKyEgcOHEBiYqJ5m1arRWJiIvbt22f1Mfv27bPYHwCSkpJs7l9UVIRt27bhgQcesFmOK1euoLS01OKHiIiIPJekAejChQuorq5GaGioxfbQ0FAUFhZafUxhYaFD+69evRoBAQG44447bJYjMzMTer3e/BMZGelgTYiIiEhJZDEI2pVWrFiBu+++G76+vjb3ycjIgMFgMP+cPXvWjSUkIiIid5N0EHSrVq3g5eWFoqIii+1FRUUICwuz+piwsLAG7//111/j+PHjWLdund1y+Pj4wMfHx8HSExERkVJJ2gKk0+kQGxtrMTjZaDQiJycH8fHxVh8THx9fZzDzzp07re7/9ttvIzY2Fr169XJuwYlIUYqLi1FQUGDzp7i4WOoiEpGbST4NPj09Hampqejbty/69++PrKwslJeXY8KECQCA8ePHo02bNsjMzAQATJkyBQkJCXjllVcwbNgwrF27Ft9//z3efPNNi+OWlpZi/fr1eOWVV9xeJyKSj+LiYvMsU3vS0tI4LZ9IRSQPQCkpKTh//jxmzZqFwsJC9O7dGzt27DAPdD5z5gy02n8aqgYMGIDs7Gw8/fTTmDFjBjp37oxNmzaZ1wAyWbt2LYQQGDt2rFvrQ0TyUnstIoMhACUlwQgKKrZYmNHemkVE5HkkXwdIjrgOEJHnKCgoMLcQ5+b2wZYtwyGE1nxdspiYgwCASZMmITw8XMqiElETKWYdICIidzEYAszhBwCE0GLLluEwGAIkLhkRSYEBiIhUoaQk2Bx+TITQoqQkSKISEZGUGICISBWCgoqh0Rgttmk0RgQFlUhUIiKSEgMQEamCXl+G5OSt5hBkGgNU+wr1RKQOks8CIyJyl5iYg4iOPoWSkiAEBZUw/BCpGAMQEXk0nU5ncVuvL7MafGrvR0T2FRcX210+QqfTyXptLQYgIvJowcHBSEtLU/QXNZHceMICowxAROTx5PoFTKRUDV04VM4LjHIQNBEREakOAxARERGpDgMQERERqQ4DEBERETWJwRCAvLwoRV1ahoOgiYiIqNHsXWRYztgCRERERI2i5IsMMwARERGRQ0wLh9Z3kWE5LzCqEUIIqQshN6WlpdDr9TAYDAgMDJS6OERERLJTXFyM/Py/0b9/CIxGjXm7l5fAt9+eQ1RUM7evweXI+ZstQEREROSw4OBgxMaG4s03NfDyurrNywt44w0NYmNDZb8AKQdBExERUaM98ACQlAScOgV06gS0bSt1iRqGAYiIiIiapG1b5QQfE3aBERERkeowABEREZHqMAARERGR6jAAERERkeowABEREZHqMAARERGR6jAAERERkeowABEREZHqMAARERGR6jAAERERkeowABEREZHq8FpgVgghAAClpaUSl4SIiIgaynTeNp3H7WEAsqKsrAwAEBkZKXFJiIiIyFFlZWXQ6/V299GIhsQklTEajfjjjz8QEBAAjUbj1GOXlpYiMjISZ8+eRWBgoFOPLQesn/J5eh09vX6A59eR9VM+V9VRCIGysjJERERAq7U/yoctQFZotVq0bdvWpc8RGBjosR9sgPXzBJ5eR0+vH+D5dWT9lM8Vdayv5ceEg6CJiIhIdRiAiIiISHUYgNzMx8cHs2fPho+Pj9RFcQnWT/k8vY6eXj/A8+vI+imfHOrIQdBERESkOmwBIiIiItVhACIiIiLVYQAiIiIi1WEAIiIiItVhAGqipUuXIioqCr6+voiLi8P+/fvt7p+VlYWuXbvCz88PkZGRePzxx3H58uUmHdPVnF3HOXPmQKPRWPx069bN1dWwyZH6VVVV4dlnn0V0dDR8fX3Rq1cv7Nixo0nHdDVn109O799XX32F5ORkREREQKPRYNOmTfU+ZteuXYiJiYGPjw86deqEVatW1dlHTu+fK+qo5PewoKAA48aNQ5cuXaDVajF16lSr+61fvx7dunWDr68vrr32Wmzfvt35hW8AV9Rv1apVdd4/X19f11SgARyt48aNG3HLLbegdevWCAwMRHx8PD755JM6+7n891BQo61du1bodDqxYsUKcfjwYfHggw+Kli1biqKiIqv7v//++8LHx0e8//77Ii8vT3zyySciPDxcPP74440+pqu5oo6zZ88WPXr0EAUFBeaf8+fPu6tKFhyt35NPPikiIiLEtm3bxOnTp8Xrr78ufH19RW5ubqOP6UquqJ+c3r/t27eLmTNnio0bNwoA4qOPPrK7/y+//CKaN28u0tPTxZEjR8TixYuFl5eX2LFjh3kfOb1/Qrimjkp+D/Py8sRjjz0mVq9eLXr37i2mTJlSZ589e/YILy8v8dJLL4kjR46Ip59+Wnh7e4uffvrJNZWwwxX1W7lypQgMDLR4/woLC11TgQZwtI5TpkwRL774oti/f784ceKEyMjIEN7e3m7/HmUAaoL+/fuLyZMnm29XV1eLiIgIkZmZaXX/yZMni5tvvtliW3p6urjhhhsafUxXc0UdZ8+eLXr16uWS8jrK0fqFh4eLJUuWWGy74447xN13393oY7qSK+onp/evpoZ88T755JOiR48eFttSUlJEUlKS+bac3r/anFVHJb+HNSUkJFgNCKNHjxbDhg2z2BYXFyceeuihJpawaZxVv5UrVwq9Xu+0cjmTo3U06d69u5g7d675tjt+D9kF1kiVlZU4cOAAEhMTzdu0Wi0SExOxb98+q48ZMGAADhw4YG7G++WXX7B9+3bcdtttjT6mK7mijiYnT55EREQEOnbsiLvvvhtnzpxxXUVsaEz9rly5Uqep2c/PD7t37270MV3FFfUzkcP71xj79u2zeD0AICkpyfx6yOn9a6z66mii1PewIRr6GijZpUuX0L59e0RGRuL222/H4cOHpS5SoxmNRpSVlSEoKAiA+34PGYAa6cKFC6iurkZoaKjF9tDQUBQWFlp9zLhx4/Dss8/ixhtvhLe3N6KjozF48GDMmDGj0cd0JVfUEQDi4uKwatUq7NixA8uWLUNeXh4GDhyIsrIyl9antsbULykpCQsXLsTJkydhNBqxc+dObNy4EQUFBY0+pqu4on6AfN6/xigsLLT6epSWluKvv/6S1fvXWPXVEVD2e9gQtl4DpbyH9enatStWrFiBjz/+GO+99x6MRiMGDBiA3377TeqiNcqCBQtw6dIljB49GoD7vkcZgNxo165deOGFF/D6668jNzcXGzduxLZt2zBv3jypi+Y0Danj0KFDcdddd+G6665DUlIStm/fjosXL+KDDz6QsOQNs2jRInTu3BndunWDTqdDWloaJkyYAK3WM36VGlI/Jb9/dBXfQ2WLj4/H+PHj0bt3byQkJGDjxo1o3bo13njjDamL5rDs7GzMnTsXH3zwAUJCQtz63M3c+mwepFWrVvDy8kJRUZHF9qKiIoSFhVl9zDPPPIN7770XEydOBABce+21KC8vx6RJkzBz5sxGHdOVXFFHa0GhZcuW6NKlC06dOuX8StjRmPq1bt0amzZtwuXLl1FcXIyIiAhMnz4dHTt2bPQxXcUV9bNGqvevMcLCwqy+HoGBgfDz84OXl5ds3r/Gqq+O1ijpPWwIW6+BUt5DR3l7e6NPnz6Ke//Wrl2LiRMnYv369RbdXe76HvWMP1sloNPpEBsbi5ycHPM2o9GInJwcxMfHW31MRUVFnQDg5eUFABBCNOqYruSKOlpz6dIlnD59GuHh4U4qecM05fX29fVFmzZt8Pfff2PDhg24/fbbm3xMZ3NF/ayR6v1rjPj4eIvXAwB27txpfj3k9P41Vn11tEZJ72FDNOY1ULLq6mr89NNPinr/1qxZgwkTJmDNmjUYNmyYxX1u+z102nBqFVq7dq3w8fERq1atEkeOHBGTJk0SLVu2NE9HvPfee8X06dPN+8+ePVsEBASINWvWiF9++UV8+umnIjo6WowePbrBx3Q3V9Txv//9r9i1a5fIy8sTe/bsEYmJiaJVq1bi3Llzsq/fN998IzZs2CBOnz4tvvrqK3HzzTeLDh06iD///LPBx3QnV9RPTu9fWVmZOHjwoDh48KAAIBYuXCgOHjwofv31VyGEENOnTxf33nuveX/TFPFp06aJo0ePiqVLl1qdBi+X908I19RRye+hEMK8f2xsrBg3bpw4ePCgOHz4sPn+PXv2iGbNmokFCxaIo0ePitmzZ0s2Dd4V9Zs7d6745JNPxOnTp8WBAwfEmDFjhK+vr8U+7uRoHd9//33RrFkzsXTpUoup/BcvXjTv447fQwagJlq8eLFo166d0Ol0on///uKbb74x35eQkCBSU1PNt6uqqsScOXNEdHS08PX1FZGRkeI///mPxcmlvmNKwdl1TElJEeHh4UKn04k2bdqIlJQUcerUKTfWyJIj9du1a5e45pprhI+PjwgODhb33nuv+P333x06prs5u35yev+++OILAaDOj6lOqampIiEhoc5jevfuLXQ6nejYsaNYuXJlnePK6f1zRR2V/h5a2799+/YW+3zwwQeiS5cuQqfTiR49eoht27a5p0K1uKJ+U6dONX8+Q0NDxW233Waxho67OVrHhIQEu/ubuPr3UCOEjX4JIiIiIg/FMUBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREQKsWvXLmg0Gly8eFHqohApHgMQEdVx3333QaPRYP78+RbbN23aBI1GY74thMBbb72F+Ph4BAYGokWLFujRowemTJnS4AszVlRUICMjA9HR0fD19UXr1q2RkJCAjz/+2LxPVFQUsrKynFI3VzO9dhqNBt7e3ujQoQOefPJJXL582aHjDB48GFOnTrXYNmDAABQUFECv1zuxxETqxABERFb5+vrixRdfxJ9//mn1fiEExo0bh8ceewy33XYbPv30Uxw5cgRvv/02fH198dxzzzXoeR5++GFs3LgRixcvxrFjx7Bjxw7ceeedKC4udmZ13GrIkCEoKCjAL7/8gldffRVvvPEGZs+e3eTj6nQ6hIWFWYRQImokp15Yg4g8Qmpqqhg+fLjo1q2bmDZtmnn7Rx99JExfG2vWrBEAxMcff2z1GEajsUHPpdfrxapVq2zeb+26QSZff/21uPHGG4Wvr69o27atePTRR8WlS5fM97/zzjsiNjZWtGjRQoSGhoqxY8eKoqIi8/2maxjt2LFD9O7dW/j6+oqbbrpJFBUVie3bt4tu3bqJgIAAMXbsWFFeXt6g+qSmporbb7/dYtsdd9wh+vTpY7594cIFMWbMGBERESH8/PxEz549RXZ2tsUxatc5Ly/PXN6a19b78MMPRffu3YVOpxPt27cXCxYsaFA5idSOLUBEZJWXlxdeeOEFLF68GL/99lud+9esWYOuXbtixIgRVh/f0FaKsLAwbN++HWVlZVbv37hxI9q2bYtnn30WBQUFKCgoAACcPn0aQ4YMwahRo/Djjz9i3bp12L17N9LS0syPraqqwrx58/DDDz9g06ZNyM/Px3333VfnOebMmYMlS5Zg7969OHv2LEaPHo2srCxkZ2dj27Zt+PTTT7F48eIG1ae2n3/+GXv37oVOpzNvu3z5MmJjY7Ft2zb8/PPPmDRpEu69917s378fALBo0SLEx8fjwQcfNNc5MjKyzrEPHDiA0aNHY8yYMfjpp58wZ84cPPPMM1i1alWjykqkKlInMCKSn5qtGNdff724//77hRCWLUDdunUTI0aMsHjclClThL+/v/D39xdt2rRp0HN9+eWXom3btsLb21v07dtXTJ06Vezevdtin/bt24tXX33VYtsDDzwgJk2aZLHt66+/FlqtVvz1119Wn+u7774TAERZWZkQ4p8WoM8++8y8T2ZmpgAgTp8+bd720EMPiaSkpAbVJzU1VXh5eQl/f3/h4+MjAAitVis+/PBDu48bNmyY+O9//2u+nZCQIKZMmWKxT+0WoHHjxolbbrnFYp9p06aJ7t27N6isRGrGFiAisuvFF1/E6tWrcfTo0Xr3nTlzJg4dOoRZs2bh0qVLDTr+oEGD8MsvvyAnJwd33nknDh8+jIEDB2LevHl2H/fDDz9g1apVaNGihfknKSkJRqMReXl5AK62kCQnJ6Ndu3YICAhAQkICAODMmTMWx7ruuuvM/w8NDUXz5s3RsWNHi23nzp1rUH0A4KabbsKhQ4fw7bffIjU1FRMmTMCoUaPM91dXV2PevHm49tprERQUhBYtWuCTTz6pU676HD16FDfccIPFthtuuAEnT55EdXW1Q8ciUhsGICKya9CgQUhKSkJGRobF9s6dO+P48eMW21q3bo1OnTohJCTEoefw9vbGwIED8dRTT+HTTz/Fs88+i3nz5qGystLmYy5duoSHHnoIhw4dMv/88MMPOHnyJKKjo1FeXo6kpCQEBgbi/fffx3fffYePPvoIAOoc19vb2/x/0+ytmjQaDYxGY4Pr4+/vj06dOqFXr15YsWIFvv32W7z99tvm+19++WUsWrQITz31FL744gscOnQISUlJdutLRM7VTOoCEJH8zZ8/H71790bXrl3N28aOHYtx48bh448/xu233+7U5+vevTv+/vtvXL58GTqdDjqdrk6LRkxMDI4cOYJOnTpZPcZPP/2E4uJizJ8/3zx+5vvvv3dqORtCq9VixowZSE9Px7hx4+Dn54c9e/bg9ttvxz333AMAMBqNOHHiBLp3725+nLU613bNNddgz549Ftv27NmDLl26wMvLy/mVIfIgbAEionpde+21uPvuu/Haa6+Zt40ZMwZ33nknxowZg2effRbffvst8vPz8eWXX2LdunUNPgEPHjwYb7zxBg4cOID8/Hxs374dM2bMwE033YTAwEAAV9cB+uqrr/D777/jwoULAICnnnoKe/fuRVpaGg4dOoSTJ0/i448/Ng+CbteuHXQ6HRYvXoxffvkFmzdvrrdbzVXuuusueHl5YenSpQCutp7t3LkTe/fuxdGjR/HQQw+hqKjI4jFRUVHm1/TChQtWW6D++9//IicnB/PmzcOJEyewevVqLFmyBE888YRb6kWkZAxARNQgzz77rMVJWKPRYN26dcjKysL27dvx73//G127dsX999+PyMhI7N69u0HHTUpKwurVq3HrrbfimmuuwaOPPoqkpCR88MEHFs+dn5+P6OhotG7dGsDVcTtffvklTpw4gYEDB6JPnz6YNWsWIiIiAFztjlu1ahXWr1+P7t27Y/78+ViwYIETX5GGa9asGdLS0vDSSy+hvLwcTz/9NGJiYpCUlITBgwcjLCwMI0eOtHjME088AS8vL3Tv3h2tW7e2Oj4oJiYGH3zwAdauXYuePXti1qxZePbZZ63OdCMiSxohhJC6EERERETuxBYgIiIiUh0GICJyqZrT1Gv/fP3111IXzyFnzpyxWx9Hp7ETkXTYBUZELmXvoqht2rSBn5+fG0vTNH///Tfy8/Nt3h8VFYVmzTi5lkgJGICIiIhIddgFRkRERKrDAERERESqwwBEREREqsMARERERKrDAERERESqwwBEREREqsMARERERKrDAERERESq8/8A2FCJA4fxXbQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHHCAYAAACx7iyPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUjpJREFUeJzt3XlYVFXjB/DvgAwgwhioLIqCiJpaKLiklVhRaC75tohaSlaavVIaZYXmlhWaprig5vuk2OKSuaevab7ZoraIWprmFmYLoEIOCLnEnN8f/hgZmBlmhpm5d+79fp7Hp7hz5s45XGbme88591yNEEKAiIiISOW8pK4AERERkRwwFBERERGBoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQREQkazk5OdBoNDhz5ozUVSFSPIYiIpX7/vvvkZaWhvbt2yMgIADNmzfHoEGDcOLEiRple/XqBY1GA41GAy8vLwQFBaFNmzYYNmwYdu7cadfrbtmyBYmJiWjSpAnq16+Pli1bYtCgQdi+fbuzmlbDm2++iY0bN9bYvnfvXkydOhUXL1502WtXN3XqVOPvUqPRoH79+mjXrh1effVVlJSUOOU1Vq5ciaysLKfsi0gNGIqIVG7mzJlYt24d7rnnHsybNw+jRo3Cl19+ifj4eBw5cqRG+WbNmuH999/He++9h1mzZmHAgAHYu3cv7rvvPqSkpODatWu1vubs2bMxYMAAaDQaZGRkYO7cuXjooYdw8uRJrF692hXNBGA9FE2bNs2toajS4sWL8f7772POnDlo27Yt3njjDfTu3RvOuC0lQxGRfepJXQEiklZ6ejpWrlwJrVZr3JaSkoJbbrkFM2bMwAcffGBSXqfT4bHHHjPZNmPGDDz33HNYtGgRoqKiMHPmTIuv988//2D69Om49957sWPHjhqPnzt3ro4tko/y8nLUr1/fapmHH34YjRo1AgCMHj0aDz30ENavX49vvvkG3bt3d0c1iej/saeISOV69OhhEogAIDY2Fu3bt8exY8ds2oe3tzfmz5+Pdu3aYeHChdDr9RbLXrhwASUlJbj99tvNPt6kSROTny9fvoypU6eidevW8PPzQ3h4OB588EGcPn3aWGb27Nno0aMHQkJC4O/vj4SEBHz88ccm+9FoNCgrK8OKFSuMQ1aPP/44pk6divHjxwMAoqOjjY9VncPzwQcfICEhAf7+/ggODsbgwYPx22+/mey/V69e6NChA3Jzc9GzZ0/Ur18fEyZMsOn3V9Xdd98NAMjLy7NabtGiRWjfvj18fX0RERGBMWPGmPR09erVC1u3bsWvv/5qbFNUVJTd9SFSE/YUEVENQggUFhaiffv2Nj/H29sbQ4YMwaRJk/D111+jb9++Zss1adIE/v7+2LJlC5599lkEBwdb3GdFRQX69euHXbt2YfDgwRg7dixKS0uxc+dOHDlyBDExMQCAefPmYcCAAXj00Udx9epVrF69Go888gg++eQTYz3ef/99PPXUU+jatStGjRoFAIiJiUFAQABOnDiBVatWYe7cucZem8aNGwMA3njjDUyaNAmDBg3CU089hfPnz2PBggXo2bMnDh48iIYNGxrrW1RUhD59+mDw4MF47LHHEBoaavPvr1Jl2AsJCbFYZurUqZg2bRqSkpLwzDPP4Pjx41i8eDG+//577NmzBz4+Ppg4cSL0ej1+//13zJ07FwDQoEEDu+tDpCqCiKia999/XwAQ7777rsn2xMRE0b59e4vP27BhgwAg5s2bZ3X/kydPFgBEQECA6NOnj3jjjTdEbm5ujXLLli0TAMScOXNqPGYwGIz/X15ebvLY1atXRYcOHcTdd99tsj0gIECkpqbW2NesWbMEAJGXl2ey/cyZM8Lb21u88cYbJtsPHz4s6tWrZ7I9MTFRABBLliyx2O6qpkyZIgCI48ePi/Pnz4u8vDzxzjvvCF9fXxEaGirKysqEEEIsX77cpG7nzp0TWq1W3HfffaKiosK4v4ULFwoAYtmyZcZtffv2FS1atLCpPkQkBIfPiMjEzz//jDFjxqB79+5ITU2167mVPRGlpaVWy02bNg0rV65Ep06d8Omnn2LixIlISEhAfHy8yZDdunXr0KhRIzz77LM19qHRaIz/7+/vb/z/v/76C3q9HnfeeScOHDhgV/2rW79+PQwGAwYNGoQLFy4Y/4WFhSE2Nhaff/65SXlfX1+MGDHCrtdo06YNGjdujOjoaDz99NNo1aoVtm7danEu0meffYarV69i3Lhx8PK68RE+cuRIBAUFYevWrfY3lIgAcPiMiKooKChA3759odPp8PHHH8Pb29uu51+6dAkAEBgYWGvZIUOGYMiQISgpKcG3336LnJwcrFy5Ev3798eRI0fg5+eH06dPo02bNqhXz/pH1SeffILXX38dhw4dwpUrV4zbqwYnR5w8eRJCCMTGxpp93MfHx+Tnpk2b1pifVZt169YhKCgIPj4+aNasmXFI0JJff/0VwPUwVZVWq0XLli2NjxOR/RiKiAgAoNfr0adPH1y8eBFfffUVIiIi7N5H5SX8rVq1svk5QUFBuPfee3HvvffCx8cHK1aswLfffovExESbnv/VV19hwIAB6NmzJxYtWoTw8HD4+Phg+fLlWLlypd1tqMpgMECj0eC///2v2YBYfY5O1R4rW/Xs2dM4j4mIpMVQRES4fPky+vfvjxMnTuCzzz5Du3bt7N5HRUUFVq5cifr16+OOO+5wqB6dO3fGihUrkJ+fD+D6ROhvv/0W165dq9ErU2ndunXw8/PDp59+Cl9fX+P25cuX1yhrqefI0vaYmBgIIRAdHY3WrVvb2xyXaNGiBQDg+PHjaNmypXH71atXkZeXh6SkJOO2uvaUEakN5xQRqVxFRQVSUlKwb98+rF271qG1cSoqKvDcc8/h2LFjeO655xAUFGSxbHl5Ofbt22f2sf/+978AbgwNPfTQQ7hw4QIWLlxYo6z4/8UNvb29odFoUFFRYXzszJkzZhdpDAgIMLtAY0BAAADUeOzBBx+Et7c3pk2bVmMxRSEEioqKzDfShZKSkqDVajF//nyTOr377rvQ6/UmV/0FBARYXR6BiEyxp4hI5V544QVs3rwZ/fv3R3FxcY3FGqsv1KjX641lysvLcerUKaxfvx6nT5/G4MGDMX36dKuvV15ejh49euC2225D7969ERkZiYsXL2Ljxo346quvMHDgQHTq1AkAMHz4cLz33ntIT0/Hd999hzvvvBNlZWX47LPP8O9//xsPPPAA+vbtizlz5qB3794YOnQozp07h+zsbLRq1Qo//vijyWsnJCTgs88+w5w5cxAREYHo6Gh069YNCQkJAICJEydi8ODB8PHxQf/+/RETE4PXX38dGRkZOHPmDAYOHIjAwEDk5eVhw4YNGDVqFF588cU6/f7t1bhxY2RkZGDatGno3bs3BgwYgOPHj2PRokXo0qWLyfFKSEjAmjVrkJ6eji5duqBBgwbo37+/W+tL5FGkvPSNiKRXeSm5pX/WyjZo0EDExsaKxx57TOzYscOm17t27Zr4z3/+IwYOHChatGghfH19Rf369UWnTp3ErFmzxJUrV0zKl5eXi4kTJ4ro6Gjh4+MjwsLCxMMPPyxOnz5tLPPuu++K2NhY4evrK9q2bSuWL19uvOS9qp9//ln07NlT+Pv7CwAml+dPnz5dNG3aVHh5edW4PH/dunXijjvuEAEBASIgIEC0bdtWjBkzRhw/ftzkd2NtuYLqKut3/vx5q+WqX5JfaeHChaJt27bCx8dHhIaGimeeeUb89ddfJmUuXbokhg4dKho2bCgA8PJ8olpohHDCDXaIiIiIPBznFBERERGBoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREABiKiIiIiABw8UazDAYD/vzzTwQGBnKZfCIiIg8hhEBpaSkiIiLg5WV/vw9DkRl//vknIiMjpa4GEREROeC3335Ds2bN7H4eQ5EZgYGBAK7/Uq3dw4mIiIjko6SkBJGRkcbvcXsxFJlROWQWFBTEUERERORhHJ36wonWRERERGAoIiIiIgLAUEREREQEgHOKiIiInKaiogLXrl2TuhqK5ePjA29vb5ftn6GIiIiojoQQKCgowMWLF6WuiuI1bNgQYWFhLllHkKGIiIiojioDUZMmTVC/fn0u/OsCQgiUl5fj3LlzAIDw8HCnvwZDERERUR1UVFQYA1FISIjU1VE0f39/AMC5c+fQpEkTpw+lcaI1ERFRHVTOIapfv77ENVGHyt+zK+ZuMRQRERE5AYfM3MOVv2cOn7lBUVERrl69avFxrVbLLlciIiKJMRS5WFFRERYuXFhrubS0NAYjIiIiCXH4zMWs9RA5Uo6IiMhZHn/8cWg0Gmg0Gvj4+CA0NBT33nsvli1bBoPBYPN+cnJy0LBhQ9dV1E3YU+Rmen0giotDEBxcBJ2uVOrqEBGRDEg5zaJ3795Yvnw5KioqUFhYiO3bt2Ps2LH4+OOPsXnzZtSrp56ooJ6WysCBA52wZUs/COEFjcaA/v0/QXz8QamrVSvOiSIich2pp1n4+voiLCwMANC0aVPEx8fjtttuwz333IOcnBw89dRTmDNnDpYvX45ffvkFwcHB6N+/P9566y00aNAAu3fvxogRIwDcmAQ9ZcoUTJ06Fe+//z7mzZuH48ePIyAgAHfffTeysrLQpEkTp7fDGRiK3ESvDzQGIgAQwgtbtvRDTMwpWfcYVX+zWurp4pwoIiLHyHGaxd133424uDisX78eTz31FLy8vDB//nxER0fjl19+wb///W+89NJLWLRoEXr06IGsrCxMnjwZx48fBwA0aNAAwPXL5qdPn442bdrg3LlzSE9Px+OPP45t27a5rS32YChyk+LiEGMgqiSEF4qLg2Udiqq+Ca31dHFOFBGRsrRt2xY//vgjAGDcuHHG7VFRUXj99dcxevRoLFq0CFqtFjqdDhqNxtjjVOmJJ54w/n/Lli0xf/58dOnSBZcuXTIGJznhRGs3CQ4ugkZjOmlNozEgOLhYohrZx1JPl14fKHHNiIjIFYQQxuGwzz77DPfccw+aNm2KwMBADBs2DEVFRSgvL7e6j9zcXPTv3x/NmzdHYGAgEhMTAQBnz551ef0dwVDkJjpdKfr3/8QYjCp7WuTcS1SVtZ4uIiJSnmPHjiE6OhpnzpxBv379cOutt2LdunXIzc1FdnY2AOujBGVlZUhOTkZQUBA+/PBDfP/999iwYUOtz5MSh89cTKvVGv8/Pv4gYmJOobg4GMHBxSaBqGo5Oars6aoajDypp4uIiGz3v//9D4cPH8bzzz+P3NxcGAwGvP322/Dyuv4d8NFHH5mU12q1qKioMNn2888/o6ioCDNmzEBkZCQAYP/+/e5pgIMYilwsJCQEaWlpHn/1VmVPV/U5RZ7S00VEROZduXIFBQUFJpfkZ2Zmol+/fhg+fDiOHDmCa9euYcGCBejfvz/27NmDJUuWmOwjKioKly5dwq5duxAXF4f69eujefPm0Gq1WLBgAUaPHo0jR45g+vTpErXSNgxFbiD3wGMraz1dRETkmbZv347w8HDUq1cPN910E+Li4jB//nykpqbCy8sLcXFxmDNnDmbOnImMjAz07NkTmZmZGD58uHEfPXr0wOjRo5GSkoKioiLjJfk5OTmYMGEC5s+fj/j4eMyePRsDBgyQsLXWaYQQQupKyE1JSQl0Oh30ej2CgoKkro6k8vPzsXTp0lrLjRo1CuHh4W6oERGRvFy+fBl5eXmIjo6Gn5+f3c+Xep0iT2Pt913X72/2FJFVts51kvucKCIiuVLKNAslYCgiq/hmJSJyPX6GygNDEdWKb1YiIlIDhiIiM6re7+3PP72Ql1cP0dH/ICLi+jpT7B0jIlIehiKiaqpOerR2axNOeiQiUhauaE1UTWUPUW23NpHriqxEROQYhiIiC3hrEyIidWEoIrLA02/iS0RE9mEoIrLA02/iS0RE9uFEayIreGsTIiLH7d69G3fddRf++usvNGzY0KbnREVFYdy4cRg3bpxL62YOe4qIaqHTlSI6+lenB6KioiLk5+cjPz8fubmF+PjjIuTmFhq3FRUVOfX1iIiqe/zxx6HRaDB69Ogaj40ZMwYajQaPP/64+ysmEfYUKUDVNXXM4Zo68sPL/olILiIjI7F69WrMnTsX/v7+AK7fX2zlypVo3ry5xLVzL4YiD8cbCTqfO+73Vttl/zExp6DTlfKyfyJyufj4eJw+fRrr16/Ho48+CgBYv349mjdvjujoaGO5K1euYPz48Vi9ejVKSkrQuXNnzJ07F126dDGW2bZtG8aNG4fffvsNt912G1JTU2u83tdff42MjAzs378fjRo1wr/+9S9kZmYiICDA9Y2tBUORh7P1S5NfrrZz5/3erF32X9fhOq7KTeSZfv8dOHkSiI0FmjVzz2s+8cQTWL58uTEULVu2DCNGjMDu3buNZV566SWsW7cOK1asQIsWLfDWW28hOTkZp06dQnBwMH777Tc8+OCDGDNmDEaNGoX9+/fjhRdeMHmd06dPo3fv3nj99dexbNkynD9/HmlpaUhLS8Py5cvd01grGIoURq8PRHFxCIKDizgpuAp7hxjdFRYqL/uvGoyccdk/h+eIPNO77wKjRgEGA+DlBSxdCjz5pOtf97HHHkNGRgZ+/fVXAMCePXuwevVqYygqKyvD4sWLkZOTgz59+gAA/vOf/2Dnzp149913MX78eCxevBgxMTF4++23AQBt2rTB4cOHMXPmTOPrZGZm4tFHHzVOoo6NjcX8+fORmJiIxYsXw8/Pz/WNtYKhSEGsffmpWfUhRkvBUYqAUHnZf/XjVtdAy+E5Is/z++83AhFw/b9PPw0kJ7u+x6hx48bo27cvcnJyIIRA37590ahRI+Pjp0+fxrVr13D77bcbt/n4+KBr1644duwYAODYsWPo1q2byX67d+9u8vMPP/yAH3/8ER9++KFxmxACBoMBeXl5uPnmm13RPJsxFClEbV9+SmNPz0/VctaCo1QBwZWX/btyeI6InOvkyRuBqFJFBXDqlHuG0Z544gmkpaUBALKzs13yGpcuXcLTTz+N5557rsZjcpjUzVCkEGr68nN0crmcg6NOV+qSOrhqeI6InC829vqQWdVg5O0NtGrlntfv3bs3rl69Co1Gg+TkZJPHYmJioNVqsWfPHrRo0QIAcO3aNXz//ffGobCbb74ZmzdvNnneN998Y/JzfHw8jh49ilbuapSduE6RQqjplhTVe3T0+kDk5UUZb9RqqZwa72XGVbmJPEezZtfnEHl7X//Z2xt45x33Tbb29vbGsWPHcPToUXhXVuL/BQQE4JlnnsH48eOxfft2HD16FCNHjkR5eTme/P9JT6NHj8bJkycxfvx4HD9+HCtXrkROTo7Jfl5++WXs3bsXaWlpOHToEE6ePIlNmzYZe6ikxp4ihXDV3BS5s2celZx6Tdxx2X8lrspN5DmefPL6HKJTp673ELkrEFUKCgqy+NiMGTNgMBgwbNgwlJaWonPnzvj0009x0003Abg+/LVu3To8//zzWLBgAbp27Yo333wTTzzxhHEft956K7744gtMnDgRd955J4QQiImJQUpKisvbZguGIg9X9UvT2pefM75c5cbe4TA5BUd3XvYPuG54joicr1kz94Wh6j051W3cuNH4/35+fpg/fz7mz59vsXy/fv3Qr18/k20jRoww+blLly7YsWOHxX2cOXPGap1ciaHIw7n7y1VOHJlHJadeEyUeEyIiT8ZQpABq/XJ1dDhMDb0m7hyeIyJSCoYi8li2DoepMSCouQeRiMhRDEXk0WwZDlNrQFBae4iIXI2hiDxO9R4dS8NhVcsxIBCRqwkhpK6CKrjy98xQRB5HrT0/RCRPPj4+AIDy8nL4+/tLXBvlKy8vB3Dj9+5MDEXkkRh4iEguvL290bBhQ5w7dw4AUL9+fWg0GolrpTxCCJSXl+PcuXNo2LBhjQUmnYGhiIiIqI7CwsIAwBiMyHUaNmxo/H07G0MRERFRHWk0GoSHh6NJkya4du2a1NVRLB8fH5f0EFViKCIiInISb29vl35pk2vxhrBEREREYE8REblRUVGRrK4alFt9iEhakoei7OxszJo1CwUFBYiLizPeWdecn376CZMnT0Zubi5+/fVXzJ07F+PGjTMp8+WXX2LWrFnIzc1Ffn4+NmzYgIEDB7q+IURkVVFRERYuXFhrubS0NLcEker10esDUVwcguDgIpN1r9xVHyKSnqTDZ2vWrEF6ejqmTJmCAwcOIC4uDsnJyRZn75eXl6Nly5aYMWOGxZnnZWVliIuLQ3Z2tiurTkR2qt4jo9cHIi8vCnp9oNVy7qjPgQOdkJU1DitWpCIraxwOHOjk9voQkfQk7SmaM2cORo4ciREjRgAAlixZgq1bt2LZsmV45ZVXapTv0qULunTpAgBmHweAPn36oE+fPq6rtAJwyEAe1HwcDhzoVOOedfHxByWpi14faKwLAAjhhS1b+iEm5pTibxxMRKYkC0VXr15Fbm4uMjIyjNu8vLyQlJSEffv2ubUuV65cwZUrV4w/l5SUuPX13UluQxhqpebjILcQUlwcYqxLJSG8UFwczFBEpDKShaILFy6goqICoaGhJttDQ0Px888/u7UumZmZmDZtmltfUyq2DgVwyMC15Hgc3NVzJbcQEhxcBI3GYFInjcaA4OBit9eFiKQl+URrOcjIyEB6errx55KSEkRGRkpYI/exNLmU3Evq4+DOniu5hRCdrhT9+39SYziP7wci9ZEsFDVq1Aje3t4oLCw02V5YWOiy5bst8fX1ha+vr1tfUw7kNK9DzeRwHMxNgjYX0pzRcyXHEBIffxAxMadQXByM4OBiBiIilZIsFGm1WiQkJGDXrl3GS+YNBgN27dqFtLQ0qaqlGnKb16FWcjwO7ghpcgwhOl2pLOpBRNKRdPgsPT0dqamp6Ny5M7p27YqsrCyUlZUZr0YbPnw4mjZtiszMTADXz1KPHj1q/P8//vgDhw4dQoMGDdCqVSsAwKVLl3Dq1Cnja+Tl5eHQoUMIDg5G8+bN3dxC+ZLbvA61kttxcGVI02q1Jj9bCiHVy7mKra/jrvoQkfQkDUUpKSk4f/48Jk+ejIKCAnTs2BHbt283Tr4+e/YsvLxufGH8+eef6NTpxvohs2fPxuzZs5GYmIjdu3cDAPbv34+77rrLWKZyrlBqaipycnJc3ygPIbd5HWolt+PgypAWEhKCtLQ02SxDILf6EJH0JJ9onZaWZnG4rDLoVIqKioIQwur+evXqVWsZkue8DjWS23FwdUiTW8CQW32ISFqShyJyr6pDAdbmdXDIwLXkehzkFtKIiNyJoUhlOGQgD3I+DnKcBE1E5A4MRSrEwCMPcjoOcpsETUQkBYYiIpJ1zxURkbswFBERAHn1XBERScGr9iJEREREyseeIiIiG7nrprlEJA2GIiIiG7jzprlEJA0OnxER2cDcTXPz8qKg1wdaLUdEnoM9RUREdnLHTXOJyP0YiojIIWqdX+PKm+YSkbQYiojIbmqeX+PKm+YSkbQYiqhWau0RIMtsnTcj9/k1jvxtu/qmuUQkHYYiskrNPQJkO70+EMXFIQgOLvKY3hJH/7Y9/aa5PMkhsoyhiKxSSo8AuY6nTjo2dzWZuWBn7m/bU2+ay5McIusYiojIYUqZdGxLsHPXTXNd2ZNTlyBIpAYMRWQXTxwmIddRwqRjW4OdO26a686eHE/t4SNyJYYishk/RKk6T550rNfrAdQe7PR6PcLDwwG4/qa57urJUUoPH5GzMRSRTfghSuZ48qTja9euAag92FWWczdbT0IcGW5TQg8fkSswFJFN+CFKVVWdN2Nt0nFd59e4g05Xiltv/RE//BAHQANA4NZbf5T079rWkxBHh9s8uYePyJUYisgm/BClqtwxv8Zd9PpA/PjjrbgeiABAgx9/vBV33/0/yYKRrSchjg63eXIPH5ErMRSRVZVn+rV9iHpCjwA5lycEHmv+/vtvALUHkMpy7uTISYi9c/48dVkBIldiKCKrqvcITJ58HmfO1ENU1D+IiOgCoIvH9AgQVeXv7w+g9gBSWc5Rjsz5sbcnx9bhNiUsK0DkSgxFVKuqH17h4UBCgoSVIXIyV84pqssl9vb05Ng63Ka0ZQWInI2hiIhUzZVziuyd8+NoT449w21KWVaAyBUYiojIIZ4+ROLj4wOg9l6WynJ1ZcucH0d7cuQ6cZprm5GnYSgiIrspYYhEp9MBqL2XpbJcXdizzpejvy+5TZzm2mbkibxqL0JEZMrcEEleXhT0+kCr5eSospdFozEAgEt6Waz1RtWFueG26Ohfa9RdiqtDXdVmIldiTxER1YkShkhc3cviqnW+5LxeFNc2I0/EUEREDvPkIRJ3XZ5euW9XzfmxN/C4ay6YnOY5yXH+mxzrRAxFRFQHnnz7F3f3sshhzk/1uWCWrgxz1lwwObbZEnfOf5Njneg6hiIicpinD5G4+gvHnb1RtqgaAK0Ne9ZlLpic2+yMcs4gxzrRdQxFROQwOQ2RyJFc5/y4cthTrm2uZKl3TEpyrJNaMRQRUZ3IYYhEzuQ4/OHqYU85thmQ50UBcqyTmjEUEZHd5DZEomaOTNj19GFPR8jxogA51kntGIpUiFc9UF3JfYhELRydsKvGYU85XhQgpzrxe+E6hiKV4VUP5Cz8+5BeXe4zprZhTzn2jtlTJ1eGFn4v3MBQpDK86oHIvdx1Bu7I3BRLw55KJMfeMVvr5OrQwu+FGxiKiIhcxF1n4LbOTbF1jpeS5oJVbYu13jF3ttneOrk7tKj5ajiGIpVT8x8/kavVZXjLHrbOTQkJCcFjjz2G8vJyi/uqX7++ooZI5Dj/TY51qqT2q+EYilRM7X/8RO7kyvebrXNTioqK8MEHH9S6P6XNHZFjW+raM+iKk1leDQd41V6ElMjSH3/1u5wTUd25+v1WOTdFozEAgMW5KeZ6rvLyomrUQw1zRzzVgQOdkJU1DitWpCIraxwOHOjktH1b63FUC/YUqZScLgUlUjp3vN/svZqMPcWex9U9OXK8Qs/d2FOkUpV//FWp7Y+fyF1c9X4zt4hmdPSvNb4gq5djT7FncnVPjq09jkrGniKVqfxwrO1SUCVdfUIkNVddDu7ohF32FHsmV/XkyPEKPakwFKlM9Q/RyZPP48yZeoiK+gcREV0AdFHNyqVE7uSqxRIdea9ymMSzuPpkVs5Xw7kbQ5EKVf3DDg8HEhIkrAyRgsn1HnFyXMiQLHPHyay9z1XqbUEYiojIbZT6QWqJnM/A1XabD08np5NZJd8WhKGIiNxCyR+k1ri6LfYETbn2XJFnUfJtQRiKiMgtlPxBKpXqQdPSon6VQVPOPVdEcsBQRESSUMstZlw5ZFh1v9bWHapajoGndmob5q0rJb2XGYqIyO3UsnCg3G4IS7Wzt/dN7ZT2XmYoUiGeBZGU1PQFLrcbwlLtHOl9UyslvpcZilRGrZNdGQTlQ61f4HK4ISzZTolf+M6mxPeyLG7zkZ2djaioKPj5+aFbt2747rvvLJb96aef8NBDDyEqKgoajQZZWVl13qeaqHGya2UQXLp0qcV/CxcuRFFRkdRVVQU13mJGLjeEJdvx5qi1U+J7WfJQtGbNGqSnp2PKlCk4cOAA4uLikJycjHPnzpktX15ejpYtW2LGjBkICwtzyj5J2dQYBOXo4sWLAGr/Aq8spyTu+IKNjz+IceOykJqag3Hjsjx6XoccKPEL31mqr7Bt6b3siUs7SD58NmfOHIwcORIjRowAACxZsgRbt27FsmXL8Morr9Qo36VLF3Tp0gUAzD7uyD7VTElXDdhKjW2WA41GY/z/+PiDaNKkAL/91hyRkWfRrFm+2XJK4a7hLUvrDpH9uOq3ZUq+XZSkoejq1avIzc1FRkaGcZuXlxeSkpKwb98+t+3zypUruHLlivHnkpISh17b0yjtqgFbqLHNcqHT6Yz/b+04VC2nFK76grX1TNwTz9jlgKt+WyanFbadSdJQdOHCBVRUVCA0NNRke2hoKH7++We37TMzMxPTpk1z6PU8lRonEaqxzXKk1uPgii9YLsboeux9UxfJh8/kICMjA+np6cafS0pKEBkZKWGNXE+JVw3URo1tliM1HQd33FaDgce52PumbpKGokaNGsHb2xuFhYUm2wsLCy1OonbFPn19feHr6+vQ63kqNV7Cq8Y2y5E9x8HTl1JgT47n4TFTN0lDkVarRUJCAnbt2oWBAwcCAAwGA3bt2oW0tDTZ7FNJql81YGmOgxLPgjhxUh5sPQ5KWVNLznUj83jM1Evy4bP09HSkpqaic+fO6Nq1K7KyslBWVma8cmz48OFo2rQpMjMzAVyfSH306FHj///xxx84dOgQGjRogFatWtm0TzVT8lUDllQNeNbmdSgxCMqVLfNr3LUaNBFRJclDUUpKCs6fP4/JkyejoKAAHTt2xPbt240Tpc+ePQsvrxvd7H/++Sc6depk/Hn27NmYPXs2EhMTsXv3bpv2qXZKvWrAEnaHy0Nd5tfwqkGSM08f5qUbNEIIIXUl5KakpAQ6nQ56vR5BQUFSV4dIMez58sjPz8fSpUuh1wciK2tcjTlI48ZlQacrxahRoxAeHu7yujuKX5jKxhvIyktdv78l7ykiIvVw5EvBk69WU8q8KLKMN5BVFslv80FEZI0n327B3LyovLyoGvc84xem53P1/e3IPdhTRESyppSrBjkvStk8uUeTbmAoIiLZ8/TbLah1FW814TpoysDhMyKSJXNXq0VH/1ojRHjCUgrWehFIGWq7Yzx5BvYUEZEsKWkpBfYiqIOn92gSQxERyZgnBB5bKGVeFNXOU28gy6UjrmMoUiH+8RO5H3sRlEkJN5Dl0hE3MBSpDP/4bcPgSM7gyCre/NvzLEoY5uUtdW5gKFIZW/+o1fDHbwmDIzmLvV+Y/NvzTEo6FmpfOoKhSOUsnRGoGYOjerijV8ae5/OMnaTEpSMYilRN7WcEtmJwVCa598rw/UnuxgUoGYpUi2cEtuEXk3LJuUeQ70+SApeO4OKNqsXF5GrHexmpi6X7kkmB70+SAhegZE+RavGMoHbsSlYPufUI8v1JUlH70hHsKVIpnhHUzpPvzk62k2OPIN+f5E5KuqVOXbGnSGWq/lFbOyNQwx9/bbgKsTrItUdQ7Wfs5D5KWGvJWRiKVIZ//LVjcFQXOQ1VcbFHkgr/Rq5jKFIh/vFbx+CoLnLqEeRij0TSYigiMoNfIMon1x5BLvZIJB2GIiJSJaX1CMrtCjoiT8RQRESq5SmBpzZc7JHIOXhJPhGRh+Nij0TOwVBEROThuKYWkXMwFBEReTgu9kjkHJxTROQkXC+GpMTFHonqjqGIyAm4XgxJwZHFHonIMoYiIiewdR0YrhdDzqS0ZQWIpMZQROQClhbRI3I2Bh4i52EoInIyLqJHROSZGIqInIiL6JHS8AICUhOGIiInsraIHkMReZrqFxBYGhbmBQSkFAxFRE5UuYhe1WDERfSUQ229JlXbam1YmBcQkFIwFBE5UeUietW/PNhL5PnUvOwCh4VJLRiKiJyg6jow1hbR43oxnqt6b4iloSQl9ppwWJjUgqGIyAm4Xoy6qO0KQw4LkzNUHX7+808v5OXVQ3T0P4iIuH57Gjl8RjIUETmJ1G9mcg81DiVxWJjqqurws7WTCqmHnxmKiIjsoNahJN5bjeqisoeotpMKqYefGYqIiOyg5qEkS/dWI7KV3E8qvGovQkRElSqHkjSa6/MglDyUZOuFAbyAgGxVeVJRlZxOKthTRERkJ7UMJfECAnI2uc9PYygiIrJB9d4QS0NJSus1YeAhZ5PzSQVDERGRDdhrQuQ8cp2f5lAoWrt2LVatWoUTJ04AAFq3bo2hQ4fi4YcfdmrliIjkhIGHSNnsCkUGgwFDhgzB2rVr0bp1a7Rt2xYA8NNPPyElJQWPPPIIVq1aBY1G45LKEhERqe0edErgKZP27QpF8+bNw2effYbNmzejX79+Jo9t3rwZI0aMwLx58zBu3Dhn1pGIiCQitwBS/R50lm63IvUigFKT23HzlOFnu0LR8uXLMWvWrBqBCAAGDBiAt956i6GIiEgh5BhAqn6pWlsZWepFAKUkx+MGeMbws12h6OTJk0hKSrL4eFJSEtLS0upcKSIikp6cA4gab7diKzkfN7mza/FGf39/XLx40eLjJSUl8PPzq2udiIhIRiwFEL0+ULI6WVsZma6T43GTO7tCUffu3bF48WKLj2dnZ6N79+51rhQREcmHHAOI3FdGlgM5Hje5s2v4bOLEiejVqxeKiorw4osvom3bthBC4NixY3j77bexadMmfP75566qKxERSUCO93uT+8rIcuDK41Z1Iveff3ohL68eoqP/QUTE9aAqh0nTjrArFPXo0QNr1qzBqFGjsG7dOpPHbrrpJqxatQq33367UytIRETSkmsAkfPKyHLgquNWdSK3tTlLnngFoN2LN/7rX/9CcnIyPv30U5w8eRLA9cUb77vvPtSvX9/pFSQiIunJNYDIdWVkuXDFcavsIaptsrsnTuS2KxT973//Q1paGr755hv861//MnlMr9ejffv2WLJkCe68806nVpKIiKQnhwDiKYsAyomrjpu1OUtS/504yq5QlJWVhZEjRyIoKKjGYzqdDk8//TTmzJnDUEREpAByDCCesgiglNx13OQ416yu7ApFP/zwA2bOnGnx8fvuuw+zZ8+2uxLZ2dmYNWsWCgoKEBcXhwULFqBr164Wy69duxaTJk3CmTNnEBsbi5kzZ+L+++83Pl5YWIiXX34ZO3bswMWLF9GzZ08sWLAAsbGxdteNiEit5BpA1Bx4bOGu4ybXuWZ1YVcoKiwshI+Pj+Wd1auH8+fP21WBNWvWID09HUuWLEG3bt2QlZWF5ORkHD9+HE2aNKlRfu/evRgyZAgyMzPRr18/rFy5EgMHDsSBAwfQoUMHCCEwcOBA+Pj4YNOmTQgKCsKcOXOQlJSEo0ePIiAgwK76ERGpGQOIZ3LXcZPrXDNH2bVOUdOmTXHkyBGLj//4448IDw+3qwJz5szByJEjMWLECLRr1w5LlixB/fr1sWzZMrPl582bh969e2P8+PG4+eabMX36dMTHxxtnwp88eRLffPMNFi9ejC5duqBNmzZYvHgx/v77b6xatcquuhEREZF1Ol0poqN/9fhABNgZiu6//35MmjQJly9frvHY33//jSlTppi9L5olV69eRW5ursmtQ7y8vJCUlIR9+/aZfc6+fftq3GokOTnZWP7KlSsAYLKytpeXF3x9ffH111+b3eeVK1dQUlJi8o+IiIjUxa5Q9Oqrr6K4uBitW7fGW2+9hU2bNmHTpk2YOXMm2rRpg+LiYkycONHm/V24cAEVFRUIDQ012R4aGoqCggKzzykoKLBavm3btmjevDkyMjLw119/4erVq5g5cyZ+//135Ofnm91nZmYmdDqd8V9kZKTNbSAiIlITOU7Adxa75hSFhoZi7969eOaZZ5CRkQEhBABAo9EgOTkZ2dnZNQKLu/n4+GD9+vV48sknERwcDG9vbyQlJaFPnz7G+laXkZGB9PR0488lJSUMRkRERGbIdQK+M9i9eGOLFi2wbds2/PXXXzh16hSEEIiNjcVNN91k94s3atQI3t7eKCwsNNleWFiIsLAws88JCwurtXxCQgIOHToEvV6Pq1evonHjxujWrRs6d+5sdp++vr7w9fW1u/5ERERq5ImBxxZ2DZ9VddNNN6FLly7o2rWrQ4EIuJ4kExISsGvXLuM2g8GAXbt2WbyxbPfu3U3KA8DOnTvNltfpdGjcuDFOnjyJ/fv344EHHnConkRERKR8dvcUOVt6ejpSU1PRuXNndO3aFVlZWSgrK8OIESMAAMOHD0fTpk2RmZkJABg7diwSExPx9ttvo2/fvli9ejX279+PpUuXGve5du1aNG7cGM2bN8fhw4cxduxYDBw4EPfdd58kbSQiIiL5kzwUpaSk4Pz585g8eTIKCgrQsWNHbN++3Tg36ezZs/DyutGh1aNHD6xcuRKvvvoqJkyYgNjYWGzcuBEdOnQwlsnPz0d6ejoKCwsRHh6O4cOHY9KkSW5vGxEREXkOjbA0+1jFSkpKoNPpoNfrzd7ShIiIlKuoqEiRk4jVoK7f35L3FBEREclFUVGRcTFg4Pqd4IuLQxAcXGSyOGFaWhqDkQIxFBEREf2/qj1EBw50qnFfr/j4gzXKkXI4fPUZERGRUun1gcZABABCeGHLln7Q6wMlrhm5EkMRERFRNcXFIcZAVEkILxQXB0tUI3IHhiIiIqJqgoOLoNEYTLZpNAYEBxdLVCNyB4YiIiKianS6UvTv/4kxGFXOKVLCneDJMk60JiIii9R8eXp8/EHExJxCcXEwgoOLGYhUgKFIhtT8IURE8sHL06/3GDEMqQdDkcxU/xCyRO4fQgx2RJ5PjZena7Vap5azxNWfkfwMdgxDkcxU/yO2dGYm5w8hpQQ7IrrO0uXpMTGnFNeLEhISgrS0NJcHFlf2wLGHz3EMRTJm7cxMzpQQ7IjoBmuXpystFAGwOyjY2yvj6h44NfbwOQtDkUwp5czMU4MdEd1QeXl61WDEy9Ovq0uvjKs/55XyPeJODEUypYQzM74hiZSh8vL06ic4fB/XrVfG1Z/zSvgecTeGIplSwpkZ35BEysHL061z5CTQ1Z/zSvgecTcu3ihTSlg4jCvCEimLTleK6OhfPepzyF0cuS2Iqz/nlfA94m7sKZIxTz8zY5c7kWdz1+XpSuBor4yrP+c9/XvE3RiKZKb6h4ulhcM85UOIb0giz+WOy9OVoi4nga5eIJILUNqOoUhmlPAhpLRgR6Rmcv6skRtbTwJd3QPHHj7HaYQQQupKyE1JSQl0Oh30ej2CgoKkro5H4mqqRKQG+fn5WLp0aa3lRo0ahfDwcOPPXNHaNer6/c2eInIJJb7ZiIiqc7RXxtWfkfwMdgxDEZGTqPXMjEjNlDDlgW5gKCJyAt7vjUi9+J5WDq5TROQE5u73lpcXBb0+0Go5IiKSD/YUETkZ7/dGROSZGIqInMiV93vjnCUiItdiKCJyIlfd741zloiIXI9zioicyFX3e+OcJSIi12NPEZETueN+b5yzRETkGgxFRE7myvu9uXLOEhGR2jEUETmBu+735qo5S0RExFBE5BTuWtW2cs5S1WDkjDlLRETEUETkNO646ssdc5aIiNSKoYjIw7hyzhIRkZoxFBF5AHfNWSIiUjOGIgXgSsfKxztxExG5HkORh6u+0rFeH4ji4hAEBxeZ9CRwpWPPx+NHRORaDEUermrPgbVF/bjSMRERkXW8zYdCWFrUr/ptIIiIiMg8hiKFsLaoHxEREdWOoUghXHUjUiIiIrXgnCKF4KJ+5Al4pSQRyRlDkYJwUT+Ss+pXSlrCKyWJSCoMRQpjaVE/IqnZegUkr5QkIqlwTpGHs3UFY650THKj1wciLy+KV0gSkWywp8jDcaVj8kTW1tQiIpIKQ5ECMPB4JrVOOra0plZMzCkO/RKRpBiKiCSg5knH1tbUYigiIilxThGRBKr3EFmaX6PEScdcU4uI5Io9RUQSU9v8Gq6pRURyxVBEJCE1za+pegWktTW1eKUkEUmFoYhIQmqaX8MrJclTqPUiCGIoIpJU5fyaqsFIyfNr+EVCclf9Igi9PhDFxSEIDi4yOVFR4kUQxFBEJCnOryGSl6o9RNbm+ynxIghiKCKSHO9ZRyQ/aprvRzcwFBFJoPpkYkv3rOOkYyJpqGm+H90gi1CUnZ2NWbNmoaCgAHFxcViwYAG6du1qsfzatWsxadIknDlzBrGxsZg5cybuv/9+4+OXLl3CK6+8go0bN6KoqAjR0dF47rnnMHr0aHc0h6hWnHRMJG9qm+9H10m+eOOaNWuQnp6OKVOm4MCBA4iLi0NycjLOnTtntvzevXsxZMgQPPnkkzh48CAGDhyIgQMH4siRI8Yy6enp2L59Oz744AMcO3YM48aNQ1paGjZv3uyuZhHVKiQkBOHh4Rb/MRARSadyvl/lQqOc76cOGiGEkLIC3bp1Q5cuXYyz/Q0GAyIjI/Hss8/ilVdeqVE+JSUFZWVl+OSTT4zbbrvtNnTs2BFLliwBAHTo0AEpKSmYNGmSsUxCQgL69OmD119/vdY6lZSUQKfTQa/XIygoqK5NJCIiD5Gfn4+lS5caf75+9VnN+X6jRo1CeHi4FFUkK+r6/S1pT9HVq1eRm5uLpKQk4zYvLy8kJSVh3759Zp+zb98+k/IAkJycbFK+R48e2Lx5M/744w8IIfD555/jxIkTuO+++8zu88qVKygpKTH5R0REpNOVIjr6V/YQqYSkoejChQuoqKhAaGioyfbQ0FAUFBSYfU5BQUGt5RcsWIB27dqhWbNm0Gq16N27N7Kzs9GzZ0+z+8zMzIROpzP+i4yMrGPLiIjIE9l6cQMvglAmWUy0drYFCxbgm2++webNm9GiRQt8+eWXGDNmDCIiImr0MgFARkYG0tPTjT+XlJQwGBERqRAvglA3SUNRo0aN4O3tjcLCQpPthYWFCAsLM/ucsLAwq+X//vtvTJgwARs2bEDfvn0BALfeeisOHTqE2bNnmw1Fvr6+8PX1dUaTiIjIwzHwqJekw2darRYJCQnYtWuXcZvBYMCuXbvQvXt3s8/p3r27SXkA2Llzp7H8tWvXcO3aNXh5mTbN29sbBoPByS0gIiIipZB8+Cw9PR2pqano3LkzunbtiqysLJSVlWHEiBEAgOHDh6Np06bIzMwEAIwdOxaJiYl4++230bdvX6xevRr79+83Xi0QFBSExMREjB8/Hv7+/mjRogW++OILvPfee5gzZ45k7SQiIiJ5kzwUpaSk4Pz585g8eTIKCgrQsWNHbN++3TiZ+uzZsya9Pj169MDKlSvx6quvYsKECYiNjcXGjRvRoUMHY5nVq1cjIyMDjz76KIqLi9GiRQu88cYbXLyRiIiILJJ8nSI54jpFREREnsej1ykiIiIikguGIiIiIiIwFBEREREBYCgiIiIiAiCDq8+IiIjIuYqKirgqtwMYioiIiBSkqKgICxcurLVcWloag1E1HD4jIiJSkOo9RHp9IPLyoqDXB1otR+wpIiIiUqwDBzphy5Z+EMILGo0B/ft/gvj4g1JXS7YYioiIXIhzO0gqen2gMRABgBBe2LKlH2JiTkGnK5W4dvLEUERE5CKc20FSKi4OMQaiSkJ4obg4mKHIAoYiFap65vrnn17Iy6uH6Oh/EBFhAMAzVyJnsXXOBud2kCsEBxdBozGYBCONxoDg4GIJayVvDEUqU/XM1dpYM89ciZxPrw9EcXEIgoOLeKZOLqfTlaJ//09qfM7zb88yhiKVqTwjrW2smWeuRM7FCa8khfj4g4iJOYXi4mAEBxczENWCl+SrlLWxZiJyLksnIdUvkSZyBq1Wa/KzTleK6OhfawSi6uWIPUWqxbFmIvfhhFdyp5CQEKSlpfGqRwcwFKkUx5qJ3IcnIeRuDDyOYShSMY41E7kHT0KIPANDkcrpdKX8YCZykapzNqydhHBuB5E8MBQREbkI53YQeRaGIpWx9YyUZ66ej7eXkAf+jok8B0ORyvDMVR14ewkiIvsxFKkQvwSVj7eXICKyHxdvJFIBvT4QeXlRXCyQiMgK9hQRKRxvL0FEZBv2FBEpGG8vQURkO4YiIgXjPe6IiGzHUESkYJW3l6iKt5cgIjKPoYhIwSpvL1EZjHh7CSIiyzjRWuZ+/x04eRKIjQWaNZO6NuQpeHsJIiL7MRTJUOVKxCtX+uOll3QwGDTw8hJ46y09hg79m4srUq24SCcRkf0YimSmciVivT4QWVnjIIQGAGAwaDB+fBD++GMZdLpSrkRMteLfBxGRfTinSGYqz+xru2qIKxETERE5F0ORTPGqISIiIvdiKJIpXjVERETkXpxTJGPWrhoiIiIi52IokjmdrpRhiIiIyA04fEZEREQEhiIiIiIiABw+kx1bVxjmSsRERORJKhcmtkQOC8oyFMkMVyImIiKlqVyYuDZSL0zMUCRDDDxERKQkti44LPXCxJxTRERERG6l1wciLy8Ken2g1FUxwZ4iUgVPGMsmIlKDAwc6YcuWfhDCy7gwcXz8QamrBYChiFSg+li2Xh+I4uIQBAcXmawBJfVYNhGR0un1gcZABFy/p+eWLf0QE3NKFmvyMRSR4lXtIbJ2hiL1WDYRkdJZu9m5HEIR5xSRalg6Q5HbmDYRkVLJ/WbnDEWkGtbOUIiIyPXkfrNzDp+RalSeoVQNRnI6QyEiUqqqCw5bu9m51AsTMxSRalSeoVSfUySXMxQiIqXylIWJGYpIVaydoRARketIHXhswVBEqqPTlTIMERFRDZxoTYrHm+wSEZEt2FNEiucpY9lERCQthiJSBQYeIiKqjSyGz7KzsxEVFQU/Pz9069YN3333ndXya9euRdu2beHn54dbbrkF27ZtM3lco9GY/Tdr1ixXNoOIiIg8mOShaM2aNUhPT8eUKVNw4MABxMXFITk5GefOnTNbfu/evRgyZAiefPJJHDx4EAMHDsTAgQNx5MgRY5n8/HyTf8uWLYNGo8FDDz3krmYRERGRh9EIIYSUFejWrRu6dOlivGGnwWBAZGQknn32Wbzyyis1yqekpKCsrAyffPKJcdttt92Gjh07YsmSJWZfY+DAgSgtLcWuXbtsqlNJSQl0Oh30ej2CgoIcaBURERG5W12/vyXtKbp69Spyc3ORlJRk3Obl5YWkpCTs27fP7HP27dtnUh4AkpOTLZYvLCzE1q1b8eSTT1qsx5UrV1BSUmLyj4iIiNRF0lB04cIFVFRUIDQ01GR7aGgoCgoKzD6noKDArvIrVqxAYGAgHnzwQYv1yMzMhE6nM/6LjIy0syVERETk6SSfU+Rqy5Ytw6OPPgo/Pz+LZTIyMqDX643/fvvtNzfWkIiIiORA0kvyGzVqBG9vbxQWFppsLywsRFhYmNnnhIWF2Vz+q6++wvHjx7FmzRqr9fD19YWvr6+dtSciIiIlkbSnSKvVIiEhwWQCtMFgwK5du9C9e3ezz+nevXuNCdM7d+40W/7dd99FQkIC4uLinFtxIiIiUhzJF29MT09HamoqOnfujK5duyIrKwtlZWUYMWIEAGD48OFo2rQpMjMzAQBjx45FYmIi3n77bfTt2xerV6/G/v37sXTpUpP9lpSUYO3atXj77bfd3iYiIiLyPJKHopSUFJw/fx6TJ09GQUEBOnbsiO3btxsnU589exZeXjc6tHr06IGVK1fi1VdfxYQJExAbG4uNGzeiQ4cOJvtdvXo1hBAYMmSIW9tDREREnknydYrkiOsUEREReR6PXqeIiIiISC4YioiIiIjAUEREREQEgKGIiIiICABDEREREREAhiIiIiIiAAxFRERERAAYioiIiIgAMBQRERERAWAoIiIiIgLAUEREREQEgKGIiIiICABDEREREREAoJ7UFSAiInKloqIiXL161eLjWq0WISEhbqwRyRVDERERKVZRUREWLlxYa7m0tDQGI+LwGRERKZe1HiJHypGyMRQRERERgaGIiIiICABDEREREREAhiIiIlIRvT4QeXlR0OsDpa4KyRCvPiMiIlU4cKATtmzpByG8oNEY0L//J4iPPyh1tUhG2FNERESKp9cHGgMRAAjhhS1b+rHHiEwwFBERkWJptVoAQHFxiDEQVRLCC8XFwSblSN00QgghdSXkpqSkBDqdDnq9HkFBQVJXh4iI6qCoqAhnzvyDrl2bwGDQGLd7ewt8++05REXV48KNClHX72/2FBERkaKFhIQgISEUS5dq4O19fZu3N/DOOxokJIQyEJERJ1oTEZEqPPkkkJwMnDoFtGoFNGsmdY1IbhiKiIhINZo1Yxgiyzh8RkRERASGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREAHjvM7OEEACAkpISiWtCREREtqr83q78HrcXQ5EZpaWlAIDIyEiJa0JERET2Ki0thU6ns/t5GuFonFIwg8GAP//8E4GBgdBoNE7dd0lJCSIjI/Hbb78hKCjIqfuWEzW0Uw1tBNhOpWE7lYXtNCWEQGlpKSIiIuDlZf8MIfYUmeHl5YVmzZq59DWCgoIU/QdcSQ3tVEMbAbZTadhOZWE7b3Ckh6gSJ1oTERERgaGIiIiICABDkdv5+vpiypQp8PX1lboqLqWGdqqhjQDbqTRsp7Kwnc7FidZEREREYE8REREREQCGIiIiIiIADEVEREREABiKiIiIiAAwFNVZdnY2oqKi4Ofnh27duuG7776zWj4rKwtt2rSBv78/IiMj8fzzz+Py5ct12qc7OLudU6dOhUajMfnXtm1bVzejVva089q1a3jttdcQExMDPz8/xMXFYfv27XXap7s4u51yO55ffvkl+vfvj4iICGg0GmzcuLHW5+zevRvx8fHw9fVFq1atkJOTU6OM3I6lK9opt2MJ2N/O/Px8DB06FK1bt4aXlxfGjRtnttzatWvRtm1b+Pn54ZZbbsG2bducX3k7uKKdOTk5NY6nn5+faxpgI3vbuX79etx7771o3LgxgoKC0L17d3z66ac1yjnl/SnIYatXrxZarVYsW7ZM/PTTT2LkyJGiYcOGorCw0Gz5Dz/8UPj6+ooPP/xQ5OXliU8//VSEh4eL559/3uF9uoMr2jllyhTRvn17kZ+fb/x3/vx5dzXJLHvb+dJLL4mIiAixdetWcfr0abFo0SLh5+cnDhw44PA+3cEV7ZTb8dy2bZuYOHGiWL9+vQAgNmzYYLX8L7/8IurXry/S09PF0aNHxYIFC4S3t7fYvn27sYwcj6Ur2im3YymE/e3My8sTzz33nFixYoXo2LGjGDt2bI0ye/bsEd7e3uKtt94SR48eFa+++qrw8fERhw8fdk0jbOCKdi5fvlwEBQWZHM+CggLXNMBG9rZz7NixYubMmeK7774TJ06cEBkZGcLHx8cln7UMRXXQtWtXMWbMGOPPFRUVIiIiQmRmZpotP2bMGHH33XebbEtPTxe33367w/t0B1e0c8qUKSIuLs4l9XWUve0MDw8XCxcuNNn24IMPikcffdThfbqDK9opx+NZyZYP3Zdeekm0b9/eZFtKSopITk42/izHY1mVs9op52MphG3trCoxMdFsWBg0aJDo27evybZu3bqJp59+uo41dA5ntXP58uVCp9M5rV7OZm87K7Vr105MmzbN+LOz3p8cPnPQ1atXkZubi6SkJOM2Ly8vJCUlYd++fWaf06NHD+Tm5hq79H755Rds27YN999/v8P7dDVXtLPSyZMnERERgZYtW+LRRx/F2bNnXdeQWjjSzitXrtTohvb398fXX3/t8D5dzRXtrCSn42mvffv2mfxOACA5Odn4O5HjsXREbe2s5MnH0la2/i6U4NKlS2jRogUiIyPxwAMP4KeffpK6SnViMBhQWlqK4OBgAM59fzIUOejChQuoqKhAaGioyfbQ0FAUFBSYfc7QoUPx2muv4Y477oCPjw9iYmLQq1cvTJgwweF9upor2gkA3bp1Q05ODrZv347FixcjLy8Pd955J0pLS13aHkscaWdycjLmzJmDkydPwmAwYOfOnVi/fj3y8/Md3qeruaKdgPyOp70KCgrM/k5KSkrw999/y/JYOqK2dgKefyxtZel34UnH0xZt2rTBsmXLsGnTJnzwwQcwGAzo0aMHfv/9d6mr5rDZs2fj0qVLGDRoEADnftYyFLnR7t278eabb2LRokU4cOAA1q9fj61bt2L69OlSV82pbGlnnz598Mgjj+DWW29FcnIytm3bhosXL+Kjjz6SsOb2mTdvHmJjY9G2bVtotVqkpaVhxIgR8PJS1tvKlnYq4XjSdTyWytK9e3cMHz4cHTt2RGJiItavX4/GjRvjnXfekbpqDlm5ciWmTZuGjz76CE2aNHH6/us5fY8q0ahRI3h7e6OwsNBke2FhIcLCwsw+Z9KkSRg2bBieeuopAMAtt9yCsrIyjBo1ChMnTnRon67minaaCw0NGzZE69atcerUKec3wgaOtLNx48bYuHEjLl++jKKiIkREROCVV15By5YtHd6nq7mineZIfTztFRYWZvZ3EhQUBH9/f3h7e8vuWDqitnaa42nH0laWfheedDwd4ePjg06dOnnk8Vy9ejWeeuoprF271mSozJmftco6pXUjrVaLhIQE7Nq1y7jNYDBg165d6N69u9nnlJeX1wgE3t7eAAAhhEP7dDVXtNOcS5cu4fTp0wgPD3dSze1Tl9+9n58fmjZtin/++Qfr1q3DAw88UOd9uoor2mmO1MfTXt27dzf5nQDAzp07jb8TOR5LR9TWTnM87VjaypHfhRJUVFTg8OHDHnc8V61ahREjRmDVqlXo27evyWNOfX/aPeWbjFavXi18fX1FTk6OOHr0qBg1apRo2LCh8XLHYcOGiVdeecVYfsqUKSIwMFCsWrVK/PLLL2LHjh0iJiZGDBo0yOZ9SsEV7XzhhRfE7t27RV5entizZ49ISkoSjRo1EufOnXN7+yrZ285vvvlGrFu3Tpw+fVp8+eWX4u677xbR0dHir7/+snmfUnBFO+V2PEtLS8XBgwfFwYMHBQAxZ84ccfDgQfHrr78KIYR45ZVXxLBhw4zlKy9VHz9+vDh27JjIzs42e0m+3I6lK9opt2MphP3tFEIYyyckJIihQ4eKgwcPip9++sn4+J49e0S9evXE7NmzxbFjx8SUKVMkvyTfFe2cNm2a+PTTT8Xp06dFbm6uGDx4sPDz8zMp4272tvPDDz8U9erVE9nZ2SZLC1y8eNFYxlnvT4aiOlqwYIFo3ry50Gq1omvXruKbb74xPpaYmChSU1ONP1+7dk1MnTpVxMTECD8/PxEZGSn+/e9/m3y51LZPqTi7nSkpKSI8PFxotVrRtGlTkZKSIk6dOuXGFplnTzt3794tbr75ZuHr6ytCQkLEsGHDxB9//GHXPqXi7HbK7Xh+/vnnAkCNf5XtSk1NFYmJiTWe07FjR6HVakXLli3F8uXLa+xXbsfSFe2U27EUwrF2mivfokULkzIfffSRaN26tdBqtaJ9+/Zi69at7mmQBa5o57hx44x/s6GhoeL+++83Wd9HCva2MzEx0Wr5Ss54f2qEsDCeQURERKQinFNEREREBIYiIiIiIgAMRUREREQAGIqIiIiIADAUEREREQFgKCIiIiICwFBEREREBIChiIjIY+zevRsajQYXL16UuipEisRQREQ1PP7449BoNJgxY4bJ9o0bN0Kj0Rh/FkLgP//5D7p3746goCA0aNAA7du3x9ixY22+4WR5eTkyMjIQExMDPz8/NG7cGImJidi0aZOxTFRUFLKyspzSNler/N1pNBr4+PggOjoaL730Ei5fvmzXfnr16oVx48aZbOvRowfy8/Oh0+mcWGMiqsRQRERm+fn5YebMmfjrr7/MPi6EwNChQ/Hcc8/h/vvvx44dO3D06FG8++678PPzw+uvv27T64wePRrr16/HggUL8PPPP2P79u14+OGHUVRU5MzmuFXv3r2Rn5+PX375BXPnzsU777yDKVOm1Hm/Wq0WYWFhJsGUiJzIwVuXEJGCpaamin79+om2bduK8ePHG7dv2LBBVH5srFq1SgAQmzZtMrsPg8Fg02vpdDqRk5Nj8XFz9z2q9NVXX4k77rhD+Pn5iWbNmolnn31WXLp0yfj4e++9JxISEkSDBg1EaGioGDJkiCgsLDQ+XnkPpu3bt4uOHTsKPz8/cdddd4nCwkKxbds20bZtWxEYGCiGDBkiysrKbGpPamqqeOCBB0y2Pfjgg6JTp07Gny9cuCAGDx4sIiIihL+/v+jQoYNYuXKlyT6qtzkvL89Y36r3Efz4449Fu3bthFarFS1atBCzZ8+2qZ5EVBN7iojILG9vb7z55ptYsGABfv/99xqPr1q1Cm3atMGAAQPMPt/W3oywsDBs27YNpaWlZh9fv349mjVrhtdeew35+fnIz88HAJw+fRq9e/fGQw89hB9//BFr1qzB119/jbS0NONzr127hunTp+OHH37Axo0bcebMGTz++OM1XmPq1KlYuHAh9u7di99++w2DBg1CVlYWVq5cia1bt2LHjh1YsGCBTe2p7siRI9i7dy+0Wq1x2+XLl5GQkICtW7fiyJEjGDVqFIYNG4bvvvsOADBv3jx0794dI0eONLY5MjKyxr5zc3MxaNAgDB48GIcPH8bUqVMxadIk5OTkOFRXItWTOpURkfxU7e247bbbxBNPPCGEMO0patu2rRgwYIDJ88aOHSsCAgJEQECAaNq0qU2v9cUXX4hmzZoJHx8f0blzZzFu3Djx9ddfm5Rp0aKFmDt3rsm2J598UowaNcpk21dffSW8vLzE33//bfa1vv/+ewFAlJaWCiFu9BR99tlnxjKZmZkCgDh9+rRx29NPPy2Sk5Ntak9qaqrw9vYWAQEBwtfXVwAQXl5e4uOPP7b6vL59+4oXXnjB+HNiYqIYO3asSZnqPUVDhw4V9957r0mZ8ePHi3bt2tlUVyIyxZ4iIrJq5syZWLFiBY4dO1Zr2YkTJ+LQoUOYPHkyLl26ZNP+e/bsiV9++QW7du3Cww8/jJ9++gl33nknpk+fbvV5P/zwA3JyctCgQQPjv+TkZBgMBuTl5QG43pPSv39/NG/eHIGBgUhMTAQAnD171mRft956q/H/Q0NDUb9+fbRs2dJk27lz52xqDwDcddddOHToEL799lukpqZixIgReOihh4yPV1RUYPr06bjlllsQHByMBg0a4NNPP61Rr9ocO3YMt99+u8m222+/HSdPnkRFRYVd+yIiTrQmolr07NkTycnJyMjIMNkeGxuL48ePm2xr3LgxWrVqhSZNmtj1Gj4+Prjzzjvx8ssvY8eOHXjttdcwffp0XL161eJzLl26hKeffhqHDh0y/vvhhx9w8uRJxMTEoKysDMnJyQgKCsKHH36I77//Hhs2bACAGvv18fEx/n/lVWNVaTQaGAwGm9sTEBCAVq1aIS4uDsuWLcO3336Ld9991/j4rFmzMG/ePLz88sv4/PPPcejQISQnJ1ttLxG5Xj2pK0BE8jdjxgx07NgRbdq0MW4bMmQIhg4dik2bNuGBBx5w6uu1a9cO//zzDy5fvgytVgutVluj5yM+Ph5Hjx5Fq1atzO7j8OHDKCoqwowZM4zzcfbv3+/UetrCy8sLEyZMQHp6OoYOHQp/f3/s2bMHDzzwAB577DEAgMFgwIkTJ9CuXTvj88y1ubqbb74Ze/bsMdm2Z88etG7dGt7e3s5vDJHCsaeIiGp1yy234NFHH8X8+fON2wYPHoyHH34YgwcPxmuvvYZvv/0WZ86cwRdffIE1a9bY/KXcq1cvvPPOO8jNzcWZM2ewbds2TJgwAXfddReCgoIAXF+n6Msvv8Qff/yBCxcuAABefvll7N27F2lpaTh06BBOnjyJTZs2GSdaN2/eHFqtFgsWLMAvv/yCzZs31zok5yqPPPIIvL29kZ2dDeB6L9vOnTuxd+9eHDt2DE8//TQKCwtNnhMVFWX8nV64cMFsT9ULL7yAXbt2Yfr06Thx4gRWrFiBhQsX4sUXX3RLu4iUhqGIiGzy2muvmXwxazQarFmzBllZWdi2bRvuuecetGnTBk888QQiIyPx9ddf27Tf5ORkrFixAvfddx9uvvlmPPvss0hOTsZHH31k8tpnzpxBTEwMGjduDOD6PKAvvvgCJ06cwJ133olOnTph8uTJiIiIAHB9KC8nJwdr165Fu3btMGPGDMyePduJvxHb1atXD2lpaXjrrbdQVlaGV199FfHx8UhOTkavXr0QFhaGgQMHmjznxRdfhLe3N9q1a4fGjRubnW8UHx+Pjz76CKtXr0aHDh0wefJkvPbaa2avsCOi2mmEEELqShARERFJjT1FRERERGAoIiIXq3rJfPV/X331ldTVs8vZs2ettsfeS+qJSF44fEZELmXtxrBNmzaFv7+/G2tTN//88w/OnDlj8fGoqCjUq8eLeok8FUMRERERETh8RkRERASAoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAgD8H/wy8oEa/Rc9AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_15.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABo+klEQVR4nO3de1xUdf4/8NdwGVCEUSBuioKAYt5BJcjUkhXMS6xd0AoveUlXUqK0UPOyVHhF8JKkibKtpGuaa+pqSPndSkwFWS+pGwZaCiiQg5cNEM7vD3+cGJkZmGGGub2ej8c8cs75zDmfc0Dn3efzPu+PRBAEAURERESkEStDd4CIiIjIFDGIIiIiItICgygiIiIiLTCIIiIiItICgygiIiIiLTCIIiIiItICgygiIiIiLTCIIiIiItICgygiIiIiLTCIIiIyc9u3b4dEIkFRUZGhu0JkVhhEEVGLnTp1CrGxsejZsyccHBzQuXNnvPTSS/jvf//bqO2wYcMgkUggkUhgZWUFJycndO/eHTExMcjKytLovF9++SWGDh0KNzc3tG3bFl27dsVLL72Ew4cP6+rSGvnwww+xb9++RtuPHz+OpUuX4vbt23o796OWLl0q3kuJRIK2bdvi8ccfx6JFi1BZWamTc2RmZiIlJUUnxyIyNwyiiKjFVqxYgT179mD48OFITU3FjBkz8O9//xtBQUE4f/58o/adOnXCp59+ir/97W9YtWoVxo4di+PHj2PEiBGIjo5GTU1Nk+dcvXo1xo4dC4lEgoSEBKxduxbPP/88fvrpJ+zcuVMflwlAfRC1bNmyVg2i6m3atAmffvopkpOTERgYiA8++ACRkZHQxdKoDKKIVLMxdAeIyPTFx8cjMzMTUqlU3BYdHY3evXtj+fLl+Pvf/67QXiaT4dVXX1XYtnz5csyZMwcfffQRfHx8sGLFCpXne/DgARITE/GnP/0JX331VaP9N2/ebOEVGY/79++jbdu2atu88MILcHV1BQDMnDkTzz//PPbu3YsTJ04gNDS0NbpJZJE4EkVELRYWFqYQQAFAQEAAevbsiYsXLzbrGNbW1li3bh0ef/xxbNiwAXK5XGXbsrIyVFZW4sknn1S6383NTeH977//jqVLl6Jbt26wt7eHp6cnxo0bhytXrohtVq9ejbCwMLi4uKBNmzYIDg7G559/rnAciUSCe/fuISMjQ5xCmzx5MpYuXYp58+YBAHx9fcV9DXOQ/v73vyM4OBht2rSBs7Mzxo8fj19++UXh+MOGDUOvXr2Qm5uLIUOGoG3btliwYEGz7l9DzzzzDACgsLBQbbuPPvoIPXv2hJ2dHby8vDB79myFkbRhw4bh4MGDuHr1qnhNPj4+GveHyFxxJIqI9EIQBJSWlqJnz57N/oy1tTUmTJiA9957D9999x1GjRqltJ2bmxvatGmDL7/8Em+88QacnZ1VHrO2thajR49GdnY2xo8fj7lz5+LOnTvIysrC+fPn4efnBwBITU3F2LFj8corr6C6uho7d+7Eiy++iAMHDoj9+PTTTzFt2jQMGjQIM2bMAAD4+fnBwcEB//3vf/HZZ59h7dq14qjQY489BgD44IMP8N577+Gll17CtGnTcOvWLaxfvx5DhgzBmTNn0L59e7G/5eXlGDlyJMaPH49XX30V7u7uzb5/9eqDQxcXF5Vtli5dimXLliE8PByzZs3C5cuXsWnTJpw6dQrff/89bG1tsXDhQsjlcvz6669Yu3YtAKBdu3Ya94fIbAlERHrw6aefCgCErVu3KmwfOnSo0LNnT5Wf++KLLwQAQmpqqtrjL168WAAgODg4CCNHjhQ++OADITc3t1G79PR0AYCQnJzcaF9dXZ345/v37yvsq66uFnr16iU888wzCtsdHByESZMmNTrWqlWrBABCYWGhwvaioiLB2tpa+OCDDxS2nzt3TrCxsVHYPnToUAGAkJaWpvK6G1qyZIkAQLh8+bJw69YtobCwUPj4448FOzs7wd3dXbh3754gCIKwbds2hb7dvHlTkEqlwogRI4Ta2lrxeBs2bBAACOnp6eK2UaNGCV26dGlWf4gsDafziEjnLl26hNmzZyM0NBSTJk3S6LP1Ix137txR227ZsmXIzMxE//79ceTIESxcuBDBwcEICgpSmELcs2cPXF1d8cYbbzQ6hkQiEf/cpk0b8c+//fYb5HI5nnrqKeTl5WnU/0ft3bsXdXV1eOmll1BWVia+PDw8EBAQgG+++UahvZ2dHaZMmaLRObp3747HHnsMvr6+eP311+Hv74+DBw+qzKU6evQoqqurERcXByurP74Gpk+fDicnJxw8eFDzCyWyQJzOIyKdKikpwahRoyCTyfD555/D2tpao8/fvXsXAODo6Nhk2wkTJmDChAmorKzEDz/8gO3btyMzMxNjxozB+fPnYW9vjytXrqB79+6wsVH/z92BAwfw/vvvIz8/H1VVVeL2hoGWNn766ScIgoCAgACl+21tbRXed+zYsVF+WVP27NkDJycn2NraolOnTuIUpSpXr14F8DD4akgqlaJr167ifiJSj0EUEemMXC7HyJEjcfv2bXz77bfw8vLS+Bj1JRH8/f2b/RknJyf86U9/wp/+9CfY2toiIyMDP/zwA4YOHdqsz3/77bcYO3YshgwZgo8++gienp6wtbXFtm3bkJmZqfE1NFRXVweJRIJ//etfSgPKR3OMGo6INdeQIUPEPCwiaj0MoohIJ37//XeMGTMG//3vf3H06FE8/vjjGh+jtrYWmZmZaNu2LQYPHqxVPwYMGICMjAwUFxcDeJj4/cMPP6CmpqbRqE+9PXv2wN7eHkeOHIGdnZ24fdu2bY3aqhqZUrXdz88PgiDA19cX3bp10/Ry9KJLly4AgMuXL6Nr167i9urqahQWFiI8PFzc1tKROCJzxpwoImqx2tpaREdHIycnB7t379aqNlFtbS3mzJmDixcvYs6cOXByclLZ9v79+8jJyVG671//+heAP6aqnn/+eZSVlWHDhg2N2gr/vxiltbU1JBIJamtrxX1FRUVKi2o6ODgoLajp4OAAAI32jRs3DtbW1li2bFmj4peCIKC8vFz5RepReHg4pFIp1q1bp9CnrVu3Qi6XKzwV6eDgoLbcBJEl40gUEbXYW2+9hf3792PMmDGoqKhoVFzz0cKacrlcbHP//n0UFBRg7969uHLlCsaPH4/ExES157t//z7CwsLwxBNPIDIyEt7e3rh9+zb27duHb7/9FlFRUejfvz8AYOLEifjb3/6G+Ph4nDx5Ek899RTu3buHo0eP4i9/+Quee+45jBo1CsnJyYiMjMTLL7+MmzdvYuPGjfD398fZs2cVzh0cHIyjR48iOTkZXl5e8PX1RUhICIKDgwEACxcuxPjx42Fra4sxY8bAz88P77//PhISElBUVISoqCg4OjqisLAQX3zxBWbMmIG33367RfdfU4899hgSEhKwbNkyREZGYuzYsbh8+TI++ugjDBw4UOHnFRwcjF27diE+Ph4DBw5Eu3btMGbMmFbtL5HRMuSjgURkHuofzVf1Ute2Xbt2QkBAgPDqq68KX331VbPOV1NTI2zZskWIiooSunTpItjZ2Qlt27YV+vfvL6xatUqoqqpSaH///n1h4cKFgq+vr2Brayt4eHgIL7zwgnDlyhWxzdatW4WAgADBzs5OCAwMFLZt2yaWEGjo0qVLwpAhQ4Q2bdoIABTKHSQmJgodO3YUrKysGpU72LNnjzB48GDBwcFBcHBwEAIDA4XZs2cLly9fVrg36so/PKq+f7du3VLb7tESB/U2bNggBAYGCra2toK7u7swa9Ys4bffflNoc/fuXeHll18W2rdvLwBguQOiBiSCoIPFlYiIiIgsDHOiiIiIiLTAIIqIiIhICwyiiIiIiLTAIIqIiIhICwyiiIiIiLTAIIqIiIhICyy2qSd1dXW4ceMGHB0duWwCERGRiRAEAXfu3IGXlxesrNSPNTGI0pMbN27A29vb0N0gIiIiLfzyyy/o1KmT2jYMovTE0dERwMMfgro1wIiIiMh4VFZWwtvbW/weV4dBlJ7UT+E5OTkxiCIiIjIxzUnFYWI5ERERkRYYRBERERFpgUEUERERkRaYE0VERGRE6urqUF1dbehumDWpVNpk+YLmYBBFRERkJKqrq1FYWIi6ujpDd8WsWVlZwdfXF1KptEXHYRBFRERkBARBQHFxMaytreHt7a2TkRJqrL4YdnFxMTp37tyigtgMooiIiIzAgwcPcP/+fXh5eaFt27aG7o5Ze+yxx3Djxg08ePAAtra2Wh+HYS4REZERqK2tBYAWTzFR0+rvcf091xaDKCIiIiPC9Vb1T1f3mEEUERERkRaYE0VGp7y8XO3jvVKpFC4uLq3YIyIiosYYRJFRKS8vx4YNG8T3crkjKipc4OxcDpnsjrg9NjaWgRQRkZGYPHkyMjIyAAA2NjZwdnZGnz59MGHCBEyePLnZTxpu374dcXFxuH37th57qzsMosioNByBysvrjy+/HA1BsIJEUocxYw4gKOhMo3ZERGT4UfzIyEhs27YNtbW1KC0txeHDhzF37lx8/vnn2L9/P2xszC/kML8rIrMglzuKARQACIIVvvxyNPz8ChRGpIiIqPEovir6HMW3s7ODh4cHAKBjx44ICgrCE088geHDh2P79u2YNm0akpOTsW3bNvz8889wdnbGmDFjsHLlSrRr1w7Hjh3DlClTAPyR+L1kyRIsXboUn376KVJTU3H58mU4ODjgmWeeQUpKCtzc3PRyLc3FxHIyShUVLmIAVU8QrFBR4WygHhERGa/mjs639ij+M888g759+2Lv3r0AHlYKX7duHS5cuICMjAx8/fXXmD9/PgAgLCwMKSkpcHJyQnFxMYqLi/H2228DAGpqapCYmIj//Oc/2LdvH4qKijB58uRWvRZlOBJFRsnZuRwSSZ1CICWR1MHZucKAvSIiIk0FBgbi7NmzAIC4uDhxu4+PD95//33MnDkTH330EaRSKWQyGSQSiTiiVe+1114T/9y1a1esW7cOAwcOxN27d9GuXbtWuQ5lOBJFRkkmu4MxYw5AInm4flR9ThSn8oiITIsgCOL03NGjRzF8+HB07NgRjo6OiImJQXl5Oe7fv6/2GLm5uRgzZgw6d+4MR0dHDB06FABw7do1vfdfHY5EkdEKCjoDP78CVFQ4w9m5ggEUEZEJunjxInx9fVFUVITRo0dj1qxZ+OCDD+Ds7IzvvvsOU6dORXV1tcqlbu7du4eIiAhERERgx44deOyxx3Dt2jVEREQY/CEjBlFk1GSyOwyeiIhM1Ndff41z587hzTffRG5uLurq6rBmzRqx5ME//vEPhfZSqbTRUiyXLl1CeXk5li9fDm9vbwDA6dOnW+cCmsDpPDIqzV0zimtLEREZl6qqKpSUlOD69evIy8vDhx9+iOeeew6jR4/GxIkT4e/vj5qaGqxfvx4///wzPv30U6SlpSkcw8fHB3fv3kV2djbKyspw//59dO7cGVKpVPzc/v37kZiYaKCrVMSRKDIqLi4uiI2NZcVyIiITc/jwYXh6esLGxgYdOnRA3759sW7dOkyaNAlWVlbo27cvkpOTsWLFCiQkJGDIkCFISkrCxIkTxWOEhYVh5syZiI6ORnl5uVjiYPv27ViwYAHWrVuHoKAgrF69GmPHjjXg1T4kEQRBMHQnzFFlZSVkMhnkcjmcnJwM3R0iIjJyv//+OwoLC+Hr6wt7e3uNPmsMdaJMibp7rcn3N0eizFjD6rU3blihsNAGvr4P4OX18Ik3jugQEZkHjuIbBoMoM9Xw/0rULZ9ijP9XYuilC4iITBH/XWx9DKLMVH0Q0tTyKYZ+PPRRXICYiIhMBYMoM6du+RRjLB3ABYiJiMhUsMSBmatfPqUhU1g+RdUImlzuaOCeERERPcSRKDNXv3zKoyM6xjgK1ZCpjaDpGvPCiIiMH4MoC2CMy6eoChLKysoAWPYCxMwLIyIyDQyiLIQxLZ/SnCDBVEfQdIF5YUREpoFBFLW65gYJxjiC1pqaerKSiIgMi4nlZsoU1qBrTvK4THYHvr5XLTJoUJcXRkRkSY4dOwaJRILbt283+zM+Pj5ISUnRW58AIwiiNm7cCB8fH9jb2yMkJAQnT55U23737t0IDAyEvb09evfujUOHDinsnzx5MiQSicIrMjJS3F9UVISpU6fC19cXbdq0gZ+fH5YsWaIwOlJUVNToGBKJBCdOnNDtxetRffXaGTNmqHwZOqemJUGCJSxAbKpPVhKR5an/7p05c2ajfbNnz4ZEIsHkyZNbv2N6ZtDpvF27diE+Ph5paWkICQlBSkoKIiIicPnyZbi5uTVqf/z4cUyYMAFJSUkYPXo0MjMzERUVhby8PPTq1UtsFxkZiW3btonv7ezsxD9funQJdXV1+Pjjj+Hv74/z589j+vTpuHfvHlavXq1wvqNHj6Jnz57ie1NL4jX2/jaVPD5u3Di4uro2+pylPJnWGnlhfAqQiHTF29sbO3fuxNq1a9GmTRsAD9eoy8zMROfOnQ3cO/0waBCVnJyM6dOnY8qUKQCAtLQ0HDx4EOnp6Xj33XcbtU9NTUVkZCTmzZsHAEhMTERWVhY2bNiAtLQ0sZ2dnR08PDyUnjMyMlJhZKpr1664fPkyNm3a1CiIcnFxUXkcarmmggRXV1d4enoauJeGpc+8MC5YSkS6FBQUhCtXrmDv3r145ZVXAAB79+5F586d4evrK7arqqrCvHnzsHPnTlRWVmLAgAFYu3YtBg4cKLY5dOgQ4uLi8Msvv+CJJ57ApEmTGp3vu+++Q0JCAk6fPg1XV1f8+c9/RlJSEhwcHPR/sf+fwabzqqurkZubi/Dw8D86Y2WF8PBw5OTkKP1MTk6OQnsAiIiIaNT+2LFjcHNzQ/fu3TFr1iyUl5er7YtcLoezc+MppLFjx8LNzQ2DBw/G/v371R6jqqoKlZWVCi9qWlDQGcTFpWDSpO2Ii0sRk8qVKS8vR3FxscpXUz9nU6WvvLBHR6DkckcUFvo0KmjKpwCJTM+vvwLffPPwv63ptddeU5gJSk9PFwdK6s2fPx979uxBRkYG8vLy4O/vj4iICFRUPJyF+OWXXzBu3DiMGTMG+fn5mDZtWqOBlStXriAyMhLPP/88zp49i127duG7775DbGys/i+yAYONRJWVlaG2thbu7u4K293d3XHp0iWlnykpKVHavqSkRHwfGRmJcePGwdfXF1euXMGCBQswcuRI5OTkwNrautExCwoKsH79eoVRqHbt2mHNmjV48sknYWVlhT179iAqKgr79u3D2LFjlfYtKSkJy5Yta/b10x+aU37BkkZNDPFQgLqnJInItGzdCsyYAdTVAVZWwObNwNSprXPuV199FQkJCbh69SoA4Pvvv8fOnTtx7NgxAMC9e/ewadMmbN++HSNHjgQAbNmyBVlZWdi6dSvmzZuHTZs2wc/PD2vWrAEAdO/eHefOncOKFSvE8yQlJeGVV15BXFwcACAgIADr1q3D0KFDsWnTJtjb27fK9ZpdiYPx48eLf+7duzf69OkDPz8/HDt2DMOHD1doe/36dURGRuLFF1/E9OnTxe2urq6Ij48X3w8cOBA3btzAqlWrVAZRCQkJCp+prKyEt7e3ri7LrGgTJCgbNVFWgNLURk1U5SS99NJLePDgAWxtbSGTyRrt12WuEkspEJmPX3/9I4ACHv739deBiAigUyf9n/+xxx7DqFGjsH37dgiCgFGjRinktl65cgU1NTV48sknxW22trYYNGgQLl68CAC4ePEiQkJCFI4bGhqq8P4///kPzp49ix07dojbBEFAXV0dCgsL0aNHD31cXiMGC6JcXV1hbW2N0tJShe2lpaUq85A8PDw0ag88zHlydXVFQUGBQhB148YNPP300wgLC8PmzZub7G9ISAiysrJU7rezs1NIYCfV6p8c1Dah2VxGTYxldM3Sl9ghMic//fRHAFWvthYoKGidIAp4OKVXP622ceNGvZzj7t27eP311zFnzpxG+1ozid1gOVFSqRTBwcHIzs4Wt9XV1SE7O7tRxFkvNDRUoT0AZGVlqWwPAL/++ivKy8sVEpSvX7+OYcOGITg4GNu2bYOVVdO3IT8/3+KTnHXJxcUFnp6eKl+qggZzWpjYWHKSWEqByHwEBDycwmvI2hrw92+9PkRGRqK6uho1NTWIiIhQ2Ofn5wepVIrvv/9e3FZTU4NTp07h8ccfBwD06NGjUbmjR0sMBQUF4ccff4S/v3+jV2uWwDHodF58fDwmTZqEAQMGYNCgQUhJScG9e/fEJLSJEyeiY8eOSEpKAgDMnTsXQ4cOxZo1azBq1Cjs3LkTp0+fFkeS7t69i2XLluH555+Hh4cHrly5gvnz54tJa8AfAVSXLl2wevVq3Lp1S+xP/YhWRkYGpFIp+vfvD+Dh0wXp6en45JNPWu3ekHLmOmpiyNE1S15ih8jcdOr0MAfq9dcfjkBZWwMff9x6o1AAYG1tLU7NPZqL7ODggFmzZmHevHlwdnZG586dsXLlSty/fx9T/3/i1syZM7FmzRrMmzcP06ZNQ25uLrZv365wnHfeeQdPPPEEYmNjMW3aNDg4OODHH38Un9hvLQYNoqKjo3Hr1i0sXrwYJSUl6NevHw4fPiwmj1+7dk1hlCgsLAyZmZlYtGgRFixYgICAAOzbt0+sEWVtbY2zZ88iIyMDt2/fhpeXF0aMGIHExERxqi0rKwsFBQUoKChAp0d+qwRBEP+cmJiIq1evwsbGBoGBgdi1axdeeOEFfd8SaoI5LkxsDDlJlr7EDpE5mTr1YQ5UQcHDEajWDKDqOTk5qdy3fPly1NXVISYmBnfu3MGAAQNw5MgRdOjQAcDD6bg9e/bgzTffxPr16zFo0CB8+OGHeO2118Rj9OnTB//3f/+HhQsX4qmnnoIgCPDz80N0dLTer60hidAwciCdqayshEwmg1wuV/vLRM1TXFwsjjiqG7WZMWOGyUy71l9TYaEPMjIa10CZNGk7fH2v6u2ajCUni4ge+v3331FYWAhfX99We7rMUqm715p8f5vd03lk/sxt1MRQo2stTfAnIrJ0DKLIJDyaKKiqtpQprqlnyJwkBkhERNpjEEUmwdxHTcxtdI2IyBIwiCKTYaoBkirmPLpGRGQJGEQRGYi5j64RkXb4vJf+6eoeM4giMiAGSERUr76mUnV1Ndq0aWPg3pi3+v95VbamriYYRBERERkBGxsbtG3bFrdu3YKtrW2zVtMgzdXV1eHWrVto27YtbGxaFgYxiCIiIjICEokEnp6eKCwsxNWrVw3dHbNmZWWFzp07QyKRtOg4DKKIiIiMhFQqRUBAgN7XzLR0UqlUJyN9DKKIiIiMiJWVFSuWmwhOuBIRERFpgUEUERERkRY4nWfGysvLWYOIiIhITxhEmany8nJs2LChyXbR0dGQyWSNtjPAIiIiUo9BlJl6dARKLndERYULnJ3LFZYW2bVrl8pjxMbGMpDSAEf+iIgsC4MoC5CX1x9ffjkagmAFiaQOY8YcQFDQGXG/qgDLUI/YmmIw0tyRPwamRETmg0GUmZPLHcUACgAEwQpffjkafn4FkMnuNBlgtTZTDUaaO/LH2i9EROaDQZSZq6hwEQOoeoJghYoKZwBQG2AZQnODDGMORowtMCUiIv1gEGXmnJ3LIZHUKQRSEkkdnJ0r1AZYhgqiHqVqRMdYNTXyR7philO+RGR+GESZOZnsDsaMOdBoZKT+C11VgGUMTHFEp6nAtKysrNFn+IWvGVOd8iUi88MgygIEBZ2Bn18BKiqc4excIQZQTQVYhmSqIzrqRv4AYO/evUo/xy/85mP+GREZCwZRZkoqlSq8l8nuKA0+VAVYhmYKU43KNBWY8gtft0xxtJKIzAeDKDPl4uKC2NhYpV/Ot2/fxj/+8Q/xvaoA69FArDU1NaJjzFQFpvzC1y1THa0kIvPBIMqMqZoe8vT0VBlg1TN0no4xTzUq09TIH7/wdc9URyuJyHwwiDJjpvgEU8NgRN1UoyFHyZRRNfJXVlaGvXv38gtfD0x5tJKIzAODKDNl7E8wqQvwXnrpJUgkEqVr+gHGGfwBqkf+AH7h64OpjVYSkflhEGWmjPkJJmMP8PSBX/j6YawPRhCRZWAQZQGMLaHZHKqSa4Nf+LrR3CdPdTHla4pT4kTUehhEmTlTSGg2tarkmmjNL3xLoe7J03q6CG4sccSUiDTDIMrMGXtCs7GNkulaa33ha8tUR1pao0+WOmJKRM3HIMrMGXNCsymMkumCMQYhAEdaGlIWTD66RI85j5gSkXYYRJk5Y05oNvZRMnNnzA8ftKbmBJPmPmJKRNqxarqJfm3cuBE+Pj6wt7dHSEgITp48qbb97t27ERgYCHt7e/Tu3RuHDh1S2D958mRIJBKFV2RkpEKbiooKvPLKK3ByckL79u0xdepU3L17V6HN2bNn8dRTT8He3h7e3t5YuXKlbi7YAIKCziAuLgWTJm1HXFyK0fzjXz9K1pCxjJJZmry8/khJiUNGxiSkpMQhL6+/obvUapoKElWNmMrljq3RPSIyYgYNonbt2oX4+HgsWbIEeXl56Nu3LyIiInDz5k2l7Y8fP44JEyZg6tSpOHPmDKKiohAVFYXz588rtIuMjERxcbH4+uyzzxT2v/LKK7hw4QKysrJw4MAB/Pvf/8aMGTPE/ZWVlRgxYgS6dOmC3NxcrFq1CkuXLsXmzZt1fxP0RFlCs6/v1UYjPIZMaK4fJasPpIxplMySMEhQJJc7orDQR7x+dSOmRGTZDDqdl5ycjOnTp2PKlCkAgLS0NBw8eBDp6el49913G7VPTU1FZGQk5s2bBwBITExEVlYWNmzYgLS0NLGdnZ0dPDw8lJ7z4sWLOHz4ME6dOoUBAwYAANavX49nn30Wq1evhpeXF3bs2IHq6mqkp6dDKpWiZ8+eyM/PR3JyskKwZcyMOaH5/v374p/VPfbfsB3pD6dV/6Bs2s7Pr0BtXqFcLoenp6ehukxEBmSwkajq6mrk5uYiPDz8j85YWSE8PBw5OTlKP5OTk6PQHgAiIiIatT927Bjc3NzQvXt3zJo1C+Xl5QrHaN++vRhAAUB4eDisrKzwww8/iG2GDBmiMEoTERGBy5cv47ffftP+oluZi4sLPD09Vb4MlSzctm1bhfeqRskebUf6wWnVh1SNyAFQO2JaU1NjmA4TkcEZbCSqrKwMtbW1cHd3V9ju7u6OS5cuKf1MSUmJ0vYlJSXi+8jISIwbNw6+vr64cuUKFixYgJEjRyInJwfW1tYoKSmBm5ubwjFsbGzg7OwsHqekpAS+vr6NzlO/r0OHDo36VlVVhaqqKvF9ZWVlU7eA/j8+9WRYxvzwQWtSNyIXFHQGbm4luHatMzp3voZOnYrFNjY2fD6HyFKZ3d/+8ePHi3/u3bs3+vTpAz8/Pxw7dgzDhw/X23mTkpKwbNkyvR3fXPGpJ+PAaurqy4Go+z1t3769gXpMRIZmsOk8V1dXWFtbo7S0VGF7aWmpynwmDw8PjdoDQNeuXeHq6oqCggLxGI8mrj948AAVFRXicVSdp36fMgkJCZDL5eLrl19+UdkneogJzYZlCg8ftCZVDzoA4O8pESllsJEoqVSK4OBgZGdnIyoqCgBQV1eH7OxsxMbGKv1MaGgosrOzERcXJ27LyspCaGioyvP8+uuvKC8vFxM/Q0NDcfv2beTm5iI4OBgA8PXXX6Ourg4hISFim4ULF6Kmpga2trbiebp37650Kg94mMxuZ2en0T2wdExoNixjfvigNTUMEpWNyBUW+vD3lIiUMuh0Xnx8PCZNmoQBAwZg0KBBSElJwb1798Sn9SZOnIiOHTsiKSkJADB37lwMHToUa9aswahRo7Bz506cPn1aLD1w9+5dLFu2DM8//zw8PDxw5coVzJ8/H/7+/oiIiAAA9OjRA5GRkZg+fTrS0tJQU1OD2NhYjB8/Hl5eXgCAl19+GcuWLcPUqVPxzjvv4Pz580hNTcXatWsNcJfMl7FWUzfVpVC0YS7X0RKqgsmysjLs3bvXaH9PicjwDBpERUdH49atW1i8eDFKSkrQr18/HD58WEzivnbtGqys/viHKywsDJmZmVi0aBEWLFiAgIAA7Nu3D7169QIAWFtb4+zZs8jIyMDt27fh5eWFESNGIDExUWGUaMeOHYiNjcXw4cNhZWWF559/HuvWrRP3y2QyfPXVV5g9ezaCg4Ph6uqKxYsXm0x5g+YwhkDBGBOauRSKZVL3szTG31MiMg4SQRAEQ3fCHFVWVkImk0Eul8PJycnQ3VFg6EDh0fM/fDqvcUKzIQKV4uJihaKqqp4cnDFjBmsDmTlj/j0lIv3R5Pvb7J7Oo6YZenV6U8nF4ZODls1Ufk+JyHAYRJFB6jQZ+xePqicH/fwKdHqPjGFalVTjvScidRhEWTiOtijXGk8OGnpalYiIWsagCxCTYbFOk2qtsRTKoyNQjy58q6odEREZB45EmbiWTAexTpNq2jyR1ZKfBUcEiYhMD4MoE9bS6SDWv1FPk6VQWvKzaK38KyIi0i0GUSZM2XSQsgRxVaMjrH/TmLKlUJTdj0fbteRnYekjgkyuJyJTxSDKRCj7oikrKxP/rMl0UFPLXChrZyl08Vi7plNzuhoRNMVgRNsRPFO8ViIyPwyiTIDyon/1oxyaTwex/o16LblubabmdDEiaKpP+mkzgmeq10pE5odBlAlo+AWibJSjQ4ffNJ4O4peLfmg7NadJ/pUyLZ3aNQbNHcEzdLFYIqJ6DKJMiKpRjqlTP2GCuJHQZGpO2/yrppjik34tSa43RLFYIiKAQZRJUTXKUVMjZYK4kdBkak4f06qm+qSftiN4phgwEpH5YBBlQtSNcvj6Xm3RdBDpjiZTc7qeVjXVJ/20Sa431YCRiMwHK5abkPpRjvpK2o+Ocshkd+Dre7XRF4glPmXX2pRNzRniZ9Ealdb1oanfbWXUBYxERK2BI1EmRt0ox7hx4+Dq6qrQ3pKfsmtNxvLEoy5rf7V2GQFNk+tZLJaIDI1BlAlSlYDs6uoKT09PA/SIAON54rGlT/oBrVdGoCXJ9SwWS0SGxiDKBDR3CojTdpZL10/6tVbJBG1G8FgsloiMBYMoE2AsU0VkvPT5O6LvJ+A07RP/PhCRsWAQZSL4hUBN0cfviLE+Ace/D0RkDBhEEZFKploywdRwLUAi08QgiohU4hNw+se1AIlMF+tEEZFK2tRvIs1wLUAi08WRKCJSSxclE6j5uBYgkelgEEVEjehrcWRSj2sBEpkWBlFE1EhrlhFgUvVDxvokJBGpxiCKiJRqjcDl0aRqVVNZlpBUzSchiUwPgygiMpiGI1DqprIsIamaT0ISmR4+nUdEBqdqKksudzRwz1oPn4QkMj0ciSIig7PkqSyuBUhkuhhEkVlj0rJpsOSpLGNZC5B/V4g0xyCKFJjTP6SsBG066qeyHs2JMvdRqHqG/v3j3xUi7TCIIpG5/UPKStCmhUU9DYd/V4i0w8RyEpn7P6RyuSMKC30sKlnZ2MnlcoX3Mtkd+PpebRRAPdqO9It/V4iax+BB1MaNG+Hj4wN7e3uEhITg5MmTatvv3r0bgYGBsLe3R+/evXHo0CGVbWfOnAmJRIKUlBRx27FjxyCRSJS+Tp06BQAoKipSuv/EiRM6uWZTYU7/kObl9UdKShwyMiYhJSUOeXn9Dd0lAiAIgsJ7Vb9zj7Yj/eHfFaLmM+h03q5duxAfH4+0tDSEhIQgJSUFERERuHz5Mtzc3Bq1P378OCZMmICkpCSMHj0amZmZiIqKQl5eHnr16qXQ9osvvsCJEyfg5eWlsD0sLAzFxcUK29577z1kZ2djwIABCtuPHj2Knj17iu9NYQpLV8xp+QlWgjZe7du3F/+s7neuYTvSH/5dIdKMQUeikpOTMX36dEyZMgWPP/440tLS0LZtW6Snpyttn5qaisjISMybNw89evRAYmIigoKCGuXxXL9+HW+88QZ27NgBW1tbhX1SqRQeHh7iy8XFBf/85z8xZcoUSCQShbYuLi4KbR89lrkyt5o96h6f11R5eTmKi4tVvsrLy3XVbYtibr9zpkqXf1eILIHBRqKqq6uRm5uLhIQEcZuVlRXCw8ORk5Oj9DM5OTmIj49X2BYREYF9+/aJ7+vq6hATE4N58+YpjCKpsn//fpSXl2PKlCmN9o0dOxa///47unXrhvnz52Ps2LEqj1NVVYWqqirxfWVlZZPnNlbmVrNHV4/Pm1vivTExt985U2XJpSaItGGwkaiysjLU1tbC3d1dYbu7uztKSkqUfqakpKTJ9itWrICNjQ3mzJnTrH5s3boVERER6NSpk7itXbt2WLNmDXbv3o2DBw9i8ODBiIqKwv79+1UeJykpCTKZTHx5e3s36/zGqP4f0oZa8x9SXY/26KoS9KMJ9aryd0w18d6QDP07Rw+xajqRZsyqxEFubi5SU1ORl5fXaGpOmV9//RVHjhzBP/7xD4Xtrq6uCiNeAwcOxI0bN7Bq1SqVo1EJCQkKn6msrDTZQMqQNXt0Odqjz0rQ5pQzZgwsvU6UobFqOpF2DBZEubq6wtraGqWlpQrbS0tL4eHhofQzHh4eatt/++23uHnzJjp37izur62txVtvvYWUlBQUFRUpfHbbtm1wcXFRO01XLyQkBFlZWSr329nZwc7OrsnjGDNj+IdUl2UW9FUJmsm3+sE6UYZjLFXTiUyNwYIoqVSK4OBgZGdnIyoqCsDDfKbs7GzExsYq/UxoaCiys7MRFxcnbsvKykJoaCgAICYmBuHh4QqfiYiIQExMTKOcJ0EQsG3bNkycOLFZCeP5+fnw9PTU4ApNjzH+QyqXO6KiwgXOzuVafanqo6/M39GdRwNymeyO0nvIERD9Y4BEpDmDTufFx8dj0qRJGDBgAAYNGoSUlBTcu3dPDHgmTpyIjh07IikpCQAwd+5cDB06FGvWrMGoUaOwc+dOnD59Gps3bwbw8B+BR/8hsLW1hYeHB7p3766w/euvv0ZhYSGmTZvWqF8ZGRmQSqXo3/9hfZS9e/ciPT0dn3zyic7vgbExpn9IDTVlpmrpm7KyMgBMvtUlYwzciYiay6BBVHR0NG7duoXFixejpKQE/fr1w+HDh8Xk8WvXrsHK6o8vqrCwMGRmZmLRokVYsGABAgICsG/fvkY1oppj69atCAsLQ2BgoNL9iYmJuHr1KmxsbBAYGIhdu3bhhRde0O5CSWOGmjJrTk4W83d0iwESEZkqicBSwHpRWVkJmUwGuVwOJycnQ3fHZBQXF2Pz5s0oLPRBRsakRvsnTdoOX9+rmDFjhl6mV+vPX0/ddOLDfY3zd/TVNzJf5rTwN5Gp0+T726yeziPzYQxTZk1NJzJ/h3SB9ceITBeDKDJKhp4ya2o6cdy4cXB1dW30OY4YkKaU1R9TNvrJ+mNExodBFBkVYyizADT9BJ6rqyun7EjnWH+MyLQwiCKjYixPaxnDdCKZJm3zm1h/jMj0MIgio2MM02GGnk4k09SS/CbWHyMyPQyiTByf6tGf1qigzZ+feWlJfhNHP4lMD4MoE8anenSvNStoP/rzU/WFy5+fadI0v4mjn0Smh0GUCdPlOnP0UGvmZDU8h7ovXP78TI+2+U1cP5DItDCIMiMtXWeOHmrtUR8mFJsfTfKbuH4gkeliEGUm+Gi06WJCsfnRJL/JWJ5IJSLNMYgyAxzJMG1MKDY/muY3MUAiMk0MoswARzJMGxOKzRPzm4jMH4MoM8CRDNPHL1zzwPwmIsvCIMoMcCTDPKj6wiXTwfwmIsvCIMqEGcs6c6Sd5v5czP3nZ24FR02pr0TUMhJBEARDd8IcVVZWQiaTQS6Xw8nJSW/nMbcvIEtj6T8/FhwlImOjyfc3R6JMHL9YTJul//xYcJSITBmDKCIyOEsp02HpI49E5oZBFBEZnCWU6eBal0Tmx6rpJkRE+lVfpqMhcyvT8egIlFzuiMJCH8jljmrbEZHx4kgUERmcpZXp4DJNROaBQRQRGQVLKThqKflfRJaAQRQRGQ1LKDhqCflfRJaCQRQRGYwlFhzlMk2miU9WkjIMoojIYCxxmRRLy/8yB3yyklRhEEVEBmWJXzqWkv9lLpr7xCSfrLQ8DKKISGc45aHao1OSqvK/zGnq0lypWp6ILA+DKCLSCa6Dp54lTl2aI5anoIYYRBGRTnAdvKYxQDJtLE9Bj2LFciLSKVVfNI9W5iYyNerKU5BlYhBFRDrFLxoyV5awPBFphkEUEekUv2jIXNWXp6j//WZ5CmJOFBHpFOsgkblp+MSkuvIUfLLS8hg8iNq4cSNWrVqFkpIS9O3bF+vXr8egQYNUtt+9ezfee+89FBUVISAgACtWrMCzzz6rtO3MmTPx8ccfY+3atYiLixO3+/j44OrVqwptk5KS8O6774rvz549i9mzZ+PUqVN47LHH8MYbb2D+/Pktu1giC8E6SGRO+GQlqWLQIGrXrl2Ij49HWloaQkJCkJKSgoiICFy+fBlubm6N2h8/fhwTJkxAUlISRo8ejczMTERFRSEvLw+9evVSaPvFF1/gxIkT8PLyUnruv/71r5g+fbr43tHxj6TXyspKjBgxAuHh4UhLS8O5c+fw2muvoX379pgxY4aOrp7IvFnCOnikOVOtJWaMfSLDM2gQlZycjOnTp2PKlCkAgLS0NBw8eBDp6ekKo0L1UlNTERkZiXnz5gEAEhMTkZWVhQ0bNiAtLU1sd/36dbzxxhs4cuQIRo0apfTcjo6O8PDwULpvx44dqK6uRnp6OqRSKXr27In8/HwkJycziCJSwRLXwSPNcPkUMjcGC6Kqq6uRm5uLhIQEcZuVlRXCw8ORk5Oj9DM5OTmIj49X2BYREYF9+/aJ7+vq6hATE4N58+ahZ8+eKs+/fPlyJCYmonPnznj55Zfx5ptvwsbGRjzPkCFDFP6xj4iIwIoVK/Dbb7+hQ4cOjY5XVVWFqqoq8X1lZaX6G0BkZjjlQU3h8ilkbgwWRJWVlaG2thbu7u4K293d3XHp0iWlnykpKVHavqSkRHy/YsUK2NjYYM6cOSrPPWfOHAQFBcHZ2RnHjx9HQkICiouLkZycLJ7H19e30Xnq9ykLopKSkrBs2TI1V0xk/hggkSa4fAqZOoMnlutSbm4uUlNTkZeXB4lEorJdw9GsPn36QCqV4vXXX0dSUhLs7Oy0OndCQoLCcSsrK+Ht7a3VsYiIzB2XTyFzYLA6Ua6urrC2tkZpaanC9tLSUpW5Sh4eHmrbf/vtt7h58yY6d+4MGxsb2NjY4OrVq3jrrbfg4+Ojsi8hISF48OABioqK1J6nfp8ydnZ2cHJyUngREVFjrGpP5sJgQZRUKkVwcDCys7PFbXV1dcjOzkZoaKjSz4SGhiq0B4CsrCyxfUxMDM6ePYv8/Hzx5eXlhXnz5uHIkSMq+5Kfnw8rKyvxicDQ0FD8+9//Rk1NjcJ5unfvrnQqj4iImo9V7clcaBRE1dTUYP78+fD398egQYOQnp6usL+0tBTW1tbNPl58fDy2bNmCjIwMXLx4EbNmzcK9e/fEp/UmTpyokHg+d+5cHD58GGvWrMGlS5ewdOlSnD59GrGxsQAe5mP06tVL4WVrawsPDw90794dwMOk8ZSUFPznP//Bzz//jB07duDNN9/Eq6++KgZIL7/8MqRSKaZOnYoLFy5g165dSE1NbZTUTkREmmNVezIXGuVEffDBB/jb3/6Gt99+G7dv30Z8fDx++OEHfPzxx2IbQRCafbzo6GjcunULixcvRklJCfr164fDhw+LSdzXrl2DldUfcV5YWBgyMzOxaNEiLFiwAAEBAdi3b1+jGlHq2NnZYefOnVi6dCmqqqrg6+uLN998UyFAkslk+OqrrzB79mwEBwfD1dUVixcvZnkDIiIdYFV7MhcSQYOoJyAgAGvXrsXo0aMBAAUFBRg5ciQGDx6M9PR03Lx5E15eXqitrdVbh01FZWUlZDIZ5HI586OIiNC4TtTDp/MaV7VnnSgyJE2+vzUKotq2bYsff/xRIUn7+vXreOaZZzBw4ECsXLkS3t7eDKLAIIqISBlTrVhOlkOT72+NpvM8PDxw5coVhSCqY8eO+Oabb/D0009j8uTJ2vSXiEjv+OVtHHiPyZxoFEQ988wzyMzMxPDhwxW2e3l54euvv8awYcN02TciIp1QPo3UuMgjp5GISBMaBVHvvfeeymriHTt2xP/93/8hKytLJx0jItKVhiNQ6oo8crkRItKERkFUly5d0KVLF5X7vby8MGnSpBZ3iohIH1QVefTzK+CTYUSkMa2Kbe7evRvjxo0TazGNGzcOn3/+ua77RkSkUyzySES6pFEQVVdXh+joaERHR+PHH3+Ev78//P39ceHCBURHR2P8+PEa1YkiImpNLPJIRLqkURCVmpqKo0ePYv/+/bh06RL27duHffv24fLly/jiiy+QlZWF1NRUffWViKhF6os81gdSLPJIRC2hUU7Utm3bsGrVKrHYZkNjx47FypUrkZqairi4OF31j4hIp4KCzsDPr0BpkUciIk1oNBL1008/ITw8XOX+8PBw/PTTTy3uFBGRPslkd+Dre5UBFBG1iEYjUW3atMHt27fRuXNnpfsrKythb2+vk44REemKVCrVaTtqXSyUSsZKo2VfRo0ahc6dO2PTpk1K98+cORPXrl3DoUOHdNZBU8VlX4iMizF/ERtz3wzt0UKpqrBQKumK3pZ9WbhwIYYNG4by8nK8/fbbCAwMhCAIuHjxItasWYN//vOf+Oabb1rUeSIifTDWL1hWU1fv0eBS1f1hoVQyBI2CqLCwMOzatQszZszAnj17FPZ16NABn332GZ588kmddpCIyJyxmnrzqbs/RIagURAFAH/+858RERGBI0eOiEnk3bp1w4gRI9C2bVudd5CIyBKwmrp6vD9kjDQKor7++mvExsbixIkT+POf/6ywTy6Xo2fPnkhLS8NTTz2l004SEZk7ddXULSVIUJYbVlZWBoD3h4yTRkFUSkoKpk+frjTRSiaT4fXXX0dycjKDKCIiDdVXU28YKFhSNfWmEsgt/f6QcdKoTtR//vMfREZGqtw/YsQI5ObmtrhTRESWxtKrqStLIC8s9IFc7giA94eMk0YjUaWlpbC1tVV9MBsb3Lp1q8WdIiKyRKym/pCqBHLeHzI2Go1EdezYEefPn1e5/+zZs/D09Gxxp4iILJWlV1NXlUDecERK2f1hoVQyBI1Gop599lm89957iIyMbFSZ/H//+x+WLFmidF09IiJSzliqqWtT8FMfRUKbSiAfN24cXF1dW3weIl3QKIhatGgR9u7di27duiE2Nhbdu3cHAFy6dAkbN25EbW0tFi5cqJeOEhGZIxcXF8TGxhq0Yrk2VcH1VUm8qQRyV1dXzniQ0dAoiHJ3d8fx48cxa9YsJCQkoH7FGIlEgoiICGzcuBHu7u566SgRkbky9CiKNlXB9VVJvD6B/NGcKEud3iTjpnGxzS5duuDQoUP47bffUFBQAEEQEBAQgA4dOuijf0RE1Iq0qQqu60riTCAnU6FxEFWvQ4cOGDhwoC77QkRkVCxtYWBtqoLrqpL4ozlfMtkdpZ/XZ26Ypf28qeW0DqKIiMyZJS4MrE1VcF1VEjd0bpi+crzIvDGIIiJSwhIXBtamKrguK4kbMjjRV44XmTcGUUREajQ1XVW/ttujTHHqR5ukbnNMBNd1jheZLwZRRERqNDVdtXfvXrOa6tMmqVvdZ0wtyNRVjhdZBgZRRERqNDVdZQ5TfdokdTf3M3v37lV5XmMMMnWV40WWgUEUEZEa6qarzGXUQpukbnWfKSsrUwieTCm/SJc5XmT+GEQRETVB1XSVOY1aaDMi1JzPmFp+kTnmeJH+MIgiImoGZdNVHLVQz1RH6ljsk5rLqukm+rVx40b4+PjA3t4eISEhOHnypNr2u3fvRmBgIOzt7dG7d28cOnRIZduZM2dCIpEgJSVF3FZUVISpU6fC19cXbdq0gZ+fH5YsWaIwrFxUVASJRNLodeLEiRZfLxGZhuYUdawftZBI6gCAoxaPUDdSZ2yU5Xj5+l5t9LOUy+UoLi5u9CovL2/N7pKRMOhI1K5duxAfH4+0tDSEhIQgJSUFERERuHz5Mtzc3Bq1P378OCZMmICkpCSMHj0amZmZiIqKQl5eHnr16qXQ9osvvsCJEyfg5eWlsP3SpUuoq6vDxx9/DH9/f5w/fx7Tp0/HvXv3sHr1aoW2R48eRc+ePcX3xpYASUT609ycH45aqGZKI3Xqft63b9/GP/7xDwAPv7fM6WlMahmDBlHJycmYPn06pkyZAgBIS0vDwYMHkZ6ejnfffbdR+9TUVERGRmLevHkAgMTERGRlZWHDhg1IS0sT212/fh1vvPEGjhw5glGjRikcIzIyEpGRkeL7rl274vLly9i0aVOjIMrFxQUeHh46u14iMi3N/UJU9WSapTO1/KKW5ngZY6I86ZfBgqjq6mrk5uYiISFB3GZlZYXw8HDk5OQo/UxOTg7i4+MVtkVERGDfvn3i+7q6OsTExGDevHkKo0jqyOVyODs3Hl4eO3Ysfv/9d3Tr1g3z58/H2LFjVR6jqqoKVVVV4vvKyspmnZuITE9z12/T5zpvpsKcRupMNceL9MdgQVRZWRlqa2vh7u6usN3d3R2XLl1S+pmSkhKl7UtKSsT3K1asgI2NDebMmdOsfhQUFGD9+vUKo1Dt2rXDmjVr8OSTT8LKygp79uxBVFQU9u3bpzKQSkpKwrJly5p1TiIybYZe583YGcNiwvpgTk9jkm6Y1dN5ubm5SE1NRV5eHiQSSZPtr1+/jsjISLz44ouYPn26uN3V1VVhxGvgwIG4ceMGVq1apTKISkhIUPhMZWUlvL29W3A1RGTMLDVAag5zDTJNKceLWofBgihXV1dYW1ujtLRUYXtpaanKPCQPDw+17b/99lvcvHkTnTt3FvfX1tbirbfeQkpKCoqKisTtN27cwNNPP42wsDBs3ry5yf6GhIQgKytL5X47OzvY2dk1eRwiIktgagFSc5hajhfpn8GCKKlUiuDgYGRnZyMqKgrAw3ym7OxsxMbGKv1MaGgosrOzERcXJ27LyspCaGgoACAmJgbh4eEKn4mIiEBMTIyYvA48HIF6+umnERwcjG3btsHKqulKD/n5+fD09NTwKomIzFd5ebnK0abbt29DIpFAJpMp3W+KI1GAeeV4UcsZdDovPj4ekyZNwoABAzBo0CCkpKTg3r17YsAzceJEdOzYEUlJSQCAuXPnYujQoVizZg1GjRqFnTt34vTp0+JIkouLS6O/lLa2tvDw8ED37t0BPAyghg0bhi5dumD16tW4deuW2LZ+RCsjIwNSqRT9+/cH8HDtp/T0dHzyySf6vSFERCaivLwcGzZsEN+reuxf3T5TLQnApzGpnkGDqOjoaNy6dQuLFy9GSUkJ+vXrh8OHD4vJ49euXVMYJQoLC0NmZiYWLVqEBQsWICAgAPv27WtUI0qdrKwsFBQUoKCgAJ06dVLYJwiC+OfExERcvXoVNjY2CAwMxK5du/DCCy+08IqJiMxDwxEodY/9m0NJAD6NSapIhIaRA+lMZWUlZDIZ5HI5nJycDN0dIiKdKi4uxubNmyGXOyIlJa5RsnVcXAoAqNwnk93BjBkzTCZNQt3UJWC605PUmCbf32b1dB4REbUu9Uu7SMymJAADJFKGQRQREWmtqcf+WRKAzJnBFyAmIiLTpW4RZi7QTOaOI1FERNQi6h77Z0kAMmcMooiIqMXUPfbPkgBkrjidR0REGtPF4/wsCUCmjiNRRESksabWxzPXiuVEDTGIIiIiragLgkyl/hNRS3A6j4iIiEgLDKKIiIiItMAgioiIiEgLDKKIiIiItMAgioiIiEgLDKKIiIiItMAgioiIiEgLDKKIiIiItMBim0REZFHKy8tVVloHWE2dmo9BFBERWYzy8nJs2LBBfC+XO6KiwgXOzuUKiyTHxsYykKImMYgiIiKL0XAEKi+vP778cjQEwQoSSR3GjDmAoKAzjdoRqcIgioiILI5c7igGUAAgCFb48svR8PMrUBiRqscpQFKGQRQREVmcigoXMYCqJwhWqKhwbhREPToFqAqnAC0Pn84jIiKL4+xcDomkTmGbRFIHZ+eKRm0fHYGSyx1RWOgDudxRbTsyfxyJIiIiiyOT3cGYMQca5UQpm8prSF0eFVkeBlFERGSRgoLOwM+vABUVznB2rmgygNI0j4rMH4MoIiLSOVNJxJbJ7jQ7ANIkj4osA4MoIiLSKWNOxJZKpVq3q8+jahhIqcqjIsvAIIqIiHRKWSK2soKWhkjEdnFxQWxsrFajZNrmUZH5YhBFRER6Y4yJ2JqOfsnlcvHP6vKo5HI5PD09ddZPMn4scUBERHqhKhH70dIAxk4QBCVbJc1sR+aMI1FERKQX5pKI3b59e/HP6kbWGrYjy8CRKCIi0gtNClqaAnMZWSPdYRBFRER6UZ+IXR9ImXoitrqRNbJMnM4jIiK90aSgpbHXlmKJA3qUwUeiNm7cCB8fH9jb2yMkJAQnT55U23737t0IDAyEvb09evfujUOHDqlsO3PmTEgkEqSkpChsr6iowCuvvAInJye0b98eU6dOxd27dxXanD17Fk899RTs7e3h7e2NlStXan2NRESW5NEaSzLZHfj6Xm0UQDVsV19bavPmzSpfGzZsQHl5eatcgzLmNrJGLWfQkahdu3YhPj4eaWlpCAkJQUpKCiIiInD58mW4ubk1an/8+HFMmDABSUlJGD16NDIzMxEVFYW8vDz06tVLoe0XX3yBEydOwMvLq9FxXnnlFRQXFyMrKws1NTWYMmUKZsyYgczMTABAZWUlRowYgfDwcKSlpeHcuXN47bXX0L59e8yYMUM/N4OIyExoU4vJmGtLNaTpUjFk3gwaRCUnJ2P69OmYMmUKACAtLQ0HDx5Eeno63n333UbtU1NTERkZiXnz5gEAEhMTkZWVhQ0bNiAtLU1sd/36dbzxxhs4cuQIRo0apXCMixcv4vDhwzh16hQGDBgAAFi/fj2effZZrF69Gl5eXtixYweqq6uRnp4OqVSKnj17Ij8/H8nJyQyiiIiaoSXTbsZWW0rZyJqy4Km51dDJfBgsiKqurkZubi4SEhLEbVZWVggPD0dOTo7Sz+Tk5CA+Pl5hW0REBPbt2ye+r6urQ0xMDObNm4eePXsqPUb79u3FAAoAwsPDYWVlhR9++AF//vOfkZOTgyFDhij8hYiIiMCKFSvw22+/oUOHDo2OW1VVhaqqKvF9ZWVl0zeBiIgUGHKRX3U5WdHR0RAEQWUZA0Pna5FhGCyIKisrQ21tLdzd3RW2u7u749KlS0o/U1JSorR9SUmJ+H7FihWwsbHBnDlzVB7j0alCGxsbODs7i8cpKSmBr69vo/PU71MWRCUlJWHZsmVKz0lERM1jqNpSj673p2o60RDr/ZHxMqun83Jzc5Gamoq8vDxIJI2ryepTQkKCwihZZWUlvL29W7UPRESmzlBPwDUcgVI3nWjonCxNGfsTj6bOYEGUq6srrK2tUVpaqrC9tLQUHh4eSj/j4eGhtv23336LmzdvonPnzuL+2tpavPXWW0hJSUFRURE8PDxw8+ZNhWM8ePAAFRUV4nFUnad+nzJ2dnaws7Nr6rKJiEgNQy/ya8jpRF17dHRNFY6uac9gQZRUKkVwcDCys7MRFRUF4GE+U3Z2NmJjY5V+JjQ0FNnZ2YiLixO3ZWVlITQ0FAAQExOD8PBwhc9EREQgJiZGTF4PDQ3F7du3kZubi+DgYADA119/jbq6OoSEhIhtFi5ciJqaGtja2orn6d69u9KpPCIi0h1DPgFnLkvVAM1/4vHGjRuN2nKEqnkMOp0XHx+PSZMmYcCAARg0aBBSUlJw7949MeCZOHEiOnbsiKSkJADA3LlzMXToUKxZswajRo3Czp07cfr0aWzevBnAw6dBHv2h29rawsPDA927dwcA9OjRA5GRkZg+fTrS0tJQU1OD2NhYjB8/XiyH8PLLL2PZsmWYOnUq3nnnHZw/fx6pqalYu3Zta90aIiKLYixPwJlrQU11U5TbtmUx/0tLBg2ioqOjcevWLSxevBglJSXo168fDh8+LCZxX7t2DVZWf/wih4WFITMzE4sWLcKCBQsQEBCAffv2NaoR1ZQdO3YgNjYWw4cPh5WVFZ5//nmsW7dO3C+TyfDVV19h9uzZCA4OhqurKxYvXszyBkREeqJNbSl9MPR0oj6om6K8csXfKPK/fv0V+OknICAA6NSp1U7bYgZPLI+NjVU5fXfs2LFG21588UW8+OKLzT5+UVFRo23Ozs5iYU1V+vTpg2+//bbZ5yEiopYxllEPcyuoqWqK8pdfOhlF/tfWrcCMGUBdHWBlBWzeDEyd2mqnbxGDB1FERETGRtV0oilSNUUJSAya/1VeXo6iogeYMcMNdXUPn6ivqwNef11Av3434eNjYzSBtSoGXzuPiIjI0Jqba2WKVclVrfnn7f2LuK1ea+V/1T85uH79YTGAqldbK8H69f8y+FqJzcGRKCIisnjGkpOlL6qmKHWV/9WwHtWNG1YoLLSBr+8DeHk9DNJUrZXYVCK/sdflYhBFREQE48nJ0pXmPPGoi/yvhvWo1D0FqOxpP1NP5GcQRUREZIZUja6VlZVh79694vuW5n/VH7+pQqWqRpVMOZGfQRQREZGZUja6pq/8r5YUKjXVRH4GUURERBZEX/lf5lqoVB0GUURERBZGH/lfpp7fpA0GUURERE1o+PSZMqb85J4umXJ+kzYYRBEREanR8OkzdbjW3EPNyW8yl7pcDKKIiIjUeHQESi53VLpg740bNxq1NcURqtYYdTOXulwMooiIiJpJXR2khmUDGjKlEapHR91UBYwNr0nbUSVTuSfqMIgiIiJqhqbqIKkKOIy96nZDDfuqLmBs2M5cRpW0wSCKiIioGdTVQbpyxV9lwGGKmgoYH2WOAVJzcAFiIiKiZqivg9SQRFIHW9tqpQGHXO5oiG7qhLqAkf7AIIqIiKgZ6usg1QdS9SNONTV2ZhdwqAoYzblwpjY4nUdERNRMyuogyeWOZlep2xILZ2qDQRQREZEajz5V9mgdJHMNOCytcKY2GEQRERGpoerps7KyMrGsgbkGHKa6MHBrYRBFRETUBGVPnzU1QqWqnTEzl0rirUUiCIJg6E6Yo8rKSshkMsjlcjg5ORm6O0REpAfmuKaeOV6TJjT5/uZIFBERkZbMMZgwx2vSF5Y4ICIiItICgygiIiIiLTCIIiIiItICgygiIiIiLTCIIiIiItICgygiIiIiLTCIIiIiItIC60QRERGZMEsvjmlIDKKIiIhMVHl5OTZs2NBku9jYWAZSesDpPCIiIhOlbgRKm3akGQZRREREZkIud0RhoQ/kckdDd8UiGDyI2rhxI3x8fGBvb4+QkBCcPHlSbfvdu3cjMDAQ9vb26N27Nw4dOqSwf+nSpQgMDISDgwM6dOiA8PBw/PDDD+L+Y8eOQSKRKH2dOnUKAFBUVKR0/4kTJ3R/A4iIiHQgL68/UlLikJExCSkpccjL62/oLpk9gwZRu3btQnx8PJYsWYK8vDz07dsXERERuHnzptL2x48fx4QJEzB16lScOXMGUVFRiIqKwvnz58U23bp1w4YNG3Du3Dl899138PHxwYgRI3Dr1i0AQFhYGIqLixVe06ZNg6+vLwYMGKBwvqNHjyq0Cw4O1t/NICIi0pJc7ogvvxwNQXj4tS4IVvjyy9EckdIzgwZRycnJmD59OqZMmYLHH38caWlpaNu2LdLT05W2T01NRWRkJObNm4cePXogMTERQUFBCkl1L7/8MsLDw9G1a1f07NkTycnJqKysxNmzZwE8fErBw8NDfLm4uOCf//wnpkyZAolEonA+FxcXhba2trb6uxlERERaqqhwEQOoeoJghYoKZwP1yDIYLIiqrq5Gbm4uwsPD/+iMlRXCw8ORk5Oj9DM5OTkK7QEgIiJCZfvq6mps3rwZMpkMffv2Vdpm//79KC8vx5QpUxrtGzt2LNzc3DB48GDs379f7fVUVVWhsrJS4UVERNQanJ3LIZHUKWyTSOrg7FxhoB5ZBoMFUWVlZaitrYW7u7vCdnd3d5SUlCj9TElJSbPaHzhwAO3atYO9vT3Wrl2LrKwsuLq6Kj3m1q1bERERgU6dOonb2rVrhzVr1mD37t04ePAgBg8ejKioKLWBVFJSEmQymfjy9vZWe/1ERES6IpPdwZgxB8RASiKpw5gxByCT3TFwz8ybWdaJevrpp5Gfn4+ysjJs2bIFL730En744Qe4ubkptPv1119x5MgR/OMf/1DY7urqivj4ePH9wIEDcePGDaxatQpjx45Ves6EhASFz1RWVjKQIiIivZJKpeKfg4LOwM+vABUVznB2rlAIoBq2I90xWBDl6uoKa2trlJaWKmwvLS2Fh4eH0s94eHg0q72DgwP8/f3h7++PJ554AgEBAdi6dSsSEhIU2m3btg0uLi4qA6OGQkJCkJWVpXK/nZ0d7OzsmjwOERGRrri4uCA2NpYVyw3EYNN5UqkUwcHByM7OFrfV1dUhOzsboaGhSj8TGhqq0B4AsrKyVLZveNyqqiqFbYIgYNu2bZg4cWKzEsbz8/Ph6enZZDsiIqLW5OLiAk9PT5UvBlD6Y9DpvPj4eEyaNAkDBgzAoEGDkJKSgnv37olJ3hMnTkTHjh2RlJQEAJg7dy6GDh2KNWvWYNSoUdi5cydOnz6NzZs3AwDu3buHDz74AGPHjoWnpyfKysqwceNGXL9+HS+++KLCub/++msUFhZi2rRpjfqVkZEBqVSK/v0f1tjYu3cv0tPT8cknn+jzdhAREZEJMWgQFR0djVu3bmHx4sUoKSlBv379cPjwYTF5/Nq1a7Cy+mOwLCwsDJmZmVi0aBEWLFiAgIAA7Nu3D7169QIAWFtb49KlS8jIyEBZWRlcXFwwcOBAfPvtt+jZs6fCubdu3YqwsDAEBgYq7VtiYiKuXr0KGxsbBAYGYteuXXjhhRf0dCeIiIjI1EgEQRAM3QlzVFlZCZlMBrlcDicnJ0N3h4iIiJpBk+9vgy/7QkRERGSKGEQRERERaYFBFBEREZEWGEQRERERaYFBFBEREZEWGEQRERERaYFBFBEREZEWGEQRERERaYFBFBEREZEWGEQRERERaYFBFBEREZEWGEQRERERaYFBFBEREZEWGEQRERERaYFBFBEREZEWGEQRERERaYFBFBEREZEWbAzdASIiIjJP5eXlqK6uVrlfKpXCxcWlFXukWwyiiIiISOfKy8uxYcOGJtvFxsaabCDF6TwiIiLSOXUjUNq0M0YMooiIiEjv5HJHFBb6QC53NHRXdIbTeURERKRXeXn98eWXoyEIVpBI6jBmzAEEBZ1R2taU8qgYRBEREZHeyOWOYgAFAIJghS+/HA0/vwLIZHcU2ppaHhWn84iIiEhvKipcxACqniBYoaLCuVFbU8uj4kgUERER6Y2zczkkkjqFQEoiqYOzc0WTn5XLHVFR4QJn53KFUauysjKl7Vt7qo9BFBEREemNTHYHY8YcaJQT9ehU3qPU5VHt3btXZYDVmlN9DKKIiIhI56RSqfjnoKAz8PMrQEWFM5ydKxSCnobt6jWVR6UuwGrNqT4GUURERKRzLi4uiI2N1epJu6byqJqbqK5vDKKIiIhIL7SdVlOXR6UuwGrtIIpP5xEREZFRqc+jkkjqAEAhj6o+wGqouYnqusaRKCIiIjIKzcmj0jZRXR8YRBEREZFRUJdHVVZWhr179wJQn6jemgw+nbdx40b4+PjA3t4eISEhOHnypNr2u3fvRmBgIOzt7dG7d28cOnRIYf/SpUsRGBgIBwcHdOjQAeHh4fjhhx8U2vj4+EAikSi8li9frtDm7NmzeOqpp2Bvbw9vb2+sXLlSNxdMREREKrm4uMDT07PRy9XVVaGdTHYHvr5XDRZAAQYOonbt2oX4+HgsWbIEeXl56Nu3LyIiInDz5k2l7Y8fP44JEyZg6tSpOHPmDKKiohAVFYXz58+Lbbp164YNGzbg3Llz+O677+Dj44MRI0bg1q1bCsf661//iuLiYvH1xhtviPsqKysxYsQIdOnSBbm5uVi1ahWWLl2KzZs36+dGEBERkVrKSiG0pJ0uSARBEFrtbI8ICQnBwIEDxXVy6urq4O3tjTfeeAPvvvtuo/bR0dG4d+8eDhw4IG574okn0K9fP6SlpSk9R2VlJWQyGY4ePYrhw4cDeDgSFRcXh7i4OKWf2bRpExYuXIiSkhLxh/Huu+9i3759uHTpUrOurf68crkcTk5OzfoMERERqdYaixNr8v1tsJGo6upq5ObmIjw8/I/OWFkhPDwcOTk5Sj+Tk5Oj0B4AIiIiVLavrq7G5s2bIZPJ0LdvX4V9y5cvh4uLC/r3749Vq1bhwYMHCucZMmSIQjQbERGBy5cv47ffftP4WomIiKjlVE311b9ae1FigyWWl5WVoba2Fu7u7grb3d3dVY72lJSUKG1fUlKisO3AgQMYP3487t+/D09PT2RlZSnMpc6ZMwdBQUFwdnbG8ePHkZCQgOLiYiQnJ4vn8fX1bXSe+n0dOnRo1LeqqipUVVWJ7ysrK5u6BURERGatNUaODMksn857+umnkZ+fj7KyMmzZsgUvvfQSfvjhB7i5uQEA4uPjxbZ9+vSBVCrF66+/jqSkJNjZ2Wl1zqSkJCxbtkwn/SciIjJ15eXlYrqOOq251p2uGWw6z9XVFdbW1igtLVXYXlpaCg8PD6Wf8fDwaFZ7BwcH+Pv744knnsDWrVthY2ODrVu3quxLSEgIHjx4gKKiIrXnqd+nTEJCAuRyufj65ZdfVJ6PiIjI3DV3DbvWXOtO1wwWREmlUgQHByM7O1vcVldXh+zsbISGhir9TGhoqEJ7AMjKylLZvuFxG061PSo/Px9WVlbiSFVoaCj+/e9/o6amRuE83bt3VzqVBwB2dnZwcnJSeBEREZH5MmiJg/j4eGzZsgUZGRm4ePEiZs2ahXv37mHKlCkAgIkTJyIhIUFsP3fuXBw+fBhr1qzBpUuXsHTpUpw+fRqxsbEAgHv37mHBggU4ceIErl69itzcXLz22mu4fv06XnzxRQAPk8ZTUlLwn//8Bz///DN27NiBN998E6+++qoYIL388suQSqWYOnUqLly4gF27diE1NVVhGpCIiIgsm0FzoqKjo3Hr1i0sXrwYJSUl6NevHw4fPiwmcV+7dg1WVn/EeWFhYcjMzMSiRYuwYMECBAQEYN++fejVqxcAwNraGpcuXUJGRgbKysrg4uKCgQMH4ttvv0XPnj0BPBwx2rlzJ5YuXYqqqir4+vrizTffVAiQZDIZvvrqK8yePRvBwcFwdXXF4sWLMWPGjFa8O0REROZDLndERYULnJ3LDVogU5cMWifKnLFOFBERWbLi4mKxSHVeXv9Ga90FBZ0BAMyYMQOenp6G7KoCk6gTRUREROZPLncUAygAEAQrfPnlaMjljgbuWcsxiCIiIiK9qahwEQOoeoJghYoKZwP1SHcYRBEREZHO1a/64excDomkTmGfRFIHZ+cKhXamyCyLbRIREZFhubi4IDY2FtXV1ejYsRLvvCNDba0E1tYCVqyoxMsvTzD5iuVMLNcTJpYTERH94ddfgYICwN8f6NTJ0L1RTZPvb45EERERkd516mTcwZM2mBNFREREpAUGUURERERaYBBFREREpAUGUURERERaYBBFREREpAUGUURERERaYBBFREREpAUGUURERERaYBBFREREpAUGUURERERaYBBFREREpAWunacn9es6V1ZWGrgnRERE1Fz139v13+PqMIjSkzt37gAAvL29DdwTIiIi0tSdO3cgk8nUtpEIzQm1SGN1dXW4ceMGHB0dIZFIdHrsyspKeHt745dffoGTk5NOj20KLP36Ad4DS79+gPeA12/Z1w/o7x4IgoA7d+7Ay8sLVlbqs544EqUnVlZW6NSpk17P4eTkZLF/eQBeP8B7YOnXD/Ae8Pot+/oB/dyDpkag6jGxnIiIiEgLDKKIiIiItMAgygTZ2dlhyZIlsLOzM3RXDMLSrx/gPbD06wd4D3j9ln39gHHcAyaWExEREWmBI1FEREREWmAQRURERKQFBlFEREREWmAQRURERKQFBlFGauPGjfDx8YG9vT1CQkJw8uRJlW0vXLiA559/Hj4+PpBIJEhJSWm9juqJJte/ZcsWPPXUU+jQoQM6dOiA8PBwte1NhSb3YO/evRgwYADat28PBwcH9OvXD59++mkr9lb3NLn+hnbu3AmJRIKoqCj9drAVaHIPtm/fDolEovCyt7dvxd7qnqa/A7dv38bs2bPh6ekJOzs7dOvWDYcOHWql3uqeJtc/bNiwRj9/iUSCUaNGtWKPdU/T34GUlBR0794dbdq0gbe3N9588038/vvv+uugQEZn586dglQqFdLT04ULFy4I06dPF9q3by+UlpYqbX/y5Enh7bffFj777DPBw8NDWLt2bet2WMc0vf6XX35Z2Lhxo3DmzBnh4sWLwuTJkwWZTCb8+uuvrdxz3dH0HnzzzTfC3r17hR9//FEoKCgQUlJSBGtra+Hw4cOt3HPd0PT66xUWFgodO3YUnnrqKeG5555rnc7qiab3YNu2bYKTk5NQXFwsvkpKSlq517qj6fVXVVUJAwYMEJ599lnhu+++EwoLC4Vjx44J+fn5rdxz3dD0+svLyxV+9ufPnxesra2Fbdu2tW7HdUjTe7Bjxw7Bzs5O2LFjh1BYWCgcOXJE8PT0FN5880299ZFBlBEaNGiQMHv2bPF9bW2t4OXlJSQlJTX52S5duph8ENWS6xcEQXjw4IHg6OgoZGRk6KuLetfSeyAIgtC/f39h0aJF+uie3mlz/Q8ePBDCwsKETz75RJg0aZLJB1Ga3oNt27YJMpmslXqnf5pe/6ZNm4SuXbsK1dXVrdVFvWrpvwFr164VHB0dhbt37+qri3qn6T2YPXu28Mwzzyhsi4+PF5588km99ZHTeUamuroaubm5CA8PF7dZWVkhPDwcOTk5BuxZ69DF9d+/fx81NTVwdnbWVzf1qqX3QBAEZGdn4/LlyxgyZIg+u6oX2l7/X//6V7i5uWHq1Kmt0U290vYe3L17F126dIG3tzeee+45XLhwoTW6q3PaXP/+/fsRGhqK2bNnw93dHb169cKHH36I2tra1uq2zuji38GtW7di/PjxcHBw0Fc39UqbexAWFobc3Fxxyu/nn3/GoUOH8Oyzz+qtn1yA2MiUlZWhtrYW7u7uCtvd3d1x6dIlA/Wq9eji+t955x14eXkp/OUzJdreA7lcjo4dO6KqqgrW1tb46KOP8Kc//Unf3dU5ba7/u+++w9atW5Gfn98KPdQ/be5B9+7dkZ6ejj59+kAul2P16tUICwvDhQsX9L4Yuq5pc/0///wzvv76a7zyyis4dOgQCgoK8Je//AU1NTVYsmRJa3RbZ1r67+DJkydx/vx5bN26VV9d1Dtt7sHLL7+MsrIyDB48GIIg4MGDB5g5cyYWLFigt34yiCKzsnz5cuzcuRPHjh0z+aRaTTk6OiI/Px93795FdnY24uPj0bVrVwwbNszQXdOrO3fuICYmBlu2bIGrq6uhu2MwoaGhCA0NFd+HhYWhR48e+Pjjj5GYmGjAnrWOuro6uLm5YfPmzbC2tkZwcDCuX7+OVatWmVwQ1VJbt25F7969MWjQIEN3pVUdO3YMH374IT766COEhISgoKAAc+fORWJiIt577z29nJNBlJFxdXWFtbU1SktLFbaXlpbCw8PDQL1qPS25/tWrV2P58uU4evQo+vTpo89u6pW298DKygr+/v4AgH79+uHixYtISkoyuSBK0+u/cuUKioqKMGbMGHFbXV0dAMDGxgaXL1+Gn5+ffjutY7r4d8DW1hb9+/dHQUGBPrqoV9pcv6enJ2xtbWFtbS1u69GjB0pKSlBdXQ2pVKrXPutSS37+9+7dw86dO/HXv/5Vn13UO23uwXvvvYeYmBhMmzYNANC7d2/cu3cPM2bMwMKFC2FlpfsMJuZEGRmpVIrg4GBkZ2eL2+rq6pCdna3wf5nmStvrX7lyJRITE3H48GEMGDCgNbqqN7r6Hairq0NVVZU+uqhXml5/YGAgzp07h/z8fPE1duxYPP3008jPz4e3t3drdl8ndPE7UFtbi3PnzsHT01Nf3dQbba7/ySefREFBgRhAA8B///tfeHp6mlQABbTs5797925UVVXh1Vdf1Xc39Uqbe3D//v1GgVJ9UC3oa5lgvaWsk9Z27twp2NnZCdu3bxd+/PFHYcaMGUL79u3Fx5VjYmKEd999V2xfVVUlnDlzRjhz5ozg6ekpvP3228KZM2eEn376yVCX0CKaXv/y5csFqVQqfP755wqP+N65c8dQl9Bimt6DDz/8UPjqq6+EK1euCD/++KOwevVqwcbGRtiyZYuhLqFFNL3+R5nD03ma3oNly5YJR44cEa5cuSLk5uYK48ePF+zt7YULFy4Y6hJaRNPrv3btmuDo6CjExsYKly9fFg4cOCC4ubkJ77//vqEuoUW0/TswePBgITo6urW7qxea3oMlS5YIjo6OwmeffSb8/PPPwldffSX4+fkJL730kt76yCDKSK1fv17o3LmzIJVKhUGDBgknTpwQ9w0dOlSYNGmS+L6wsFAA0Og1dOjQ1u+4jmhy/V26dFF6/UuWLGn9juuQJvdg4cKFgr+/v2Bvby906NBBCA0NFXbu3GmAXuuOJtf/KHMIogRBs3sQFxcntnV3dxeeffZZIS8vzwC91h1NfweOHz8uhISECHZ2dkLXrl2FDz74QHjw4EEr91p3NL3+S5cuCQCEr776qpV7qj+a3IOamhph6dKlgp+fn2Bvby94e3sLf/nLX4TffvtNb/2TCIK+xriIiIiIzBdzooiIiIi0wCCKiIiISAsMooiIiIi0wCCKiIiISAsMooiIiIi0wCCKiIiISAsMooiIiIi0wCCKiMgMTJ48GVFRUYbuBpFFYRBFRHo1efJkSCQS8eXi4oLIyEicPXvW0F3TiYbXVv8aPHiw3s5XVFQEiUSC/Px8he2pqanYvn273s5LRI0xiCIivYuMjERxcTGKi4uRnZ0NGxsbjB492tDd0plt27aJ11dcXIz9+/crbVdTU6O3PshkMrRv315vxyeixhhEEZHe2dnZwcPDAx4eHujXrx/effdd/PLLL7h16xaeeeYZxMbGKrS/desWpFKpuIK7j48PEhMTMWHCBDg4OKBjx47YuHGjwmeSk5PRu3dvODg4wNvbG3/5y19w9+5dcf/Vq1cxZswYdOjQAQ4ODujZsycOHToEAPjtt9/wyiuv4LHHHkObNm0QEBCAbdu2Nfv62rdvL16fh4cHnJ2dxRGjXbt2YejQobC3t8eOHTtQXl6OCRMmoGPHjmjbti169+6Nzz77TOF4dXV1WLlyJfz9/WFnZ4fOnTvjgw8+AAD4+voCAPr37w+JRIJhw4YBaDydV1VVhTlz5sDNzQ329vYYPHgwTp06Je4/duwYJBIJsrOzMWDAALRt2xZhYWG4fPlys6+byNIxiCKiVnX37l38/e9/h7+/P1xcXDBt2jRkZmaiqqpKbPP3v/8dHTt2xDPPPCNuW7VqFfr27YszZ87g3Xffxdy5c5GVlSXut7Kywrp163DhwgVkZGTg66+/xvz588X9s2fPRlVVFf7973/j3LlzWLFiBdq1awcAeO+99/Djjz/iX//6Fy5evIhNmzbB1dVVJ9db39eLFy8iIiICv//+O4KDg3Hw4EGcP38eM2bMQExMDE6ePCl+JiEhAcuXLxf7lZmZCXd3dwAQ2x09ehTFxcXYu3ev0vPOnz8fe/bsQUZGBvLy8uDv74+IiAhUVFQotFu4cCHWrFmD06dPw8bGBq+99ppOrpvIIuhtaWMiIkEQJk2aJFhbWwsODg6Cg4ODAEDw9PQUcnNzBUEQhP/9739Chw4dhF27domf6dOnj7B06VLxfZcuXYTIyEiF40ZHRwsjR45Ued7du3cLLi4u4vvevXsrHLOhMWPGCFOmTNHq+gAI9vb24vU5ODgIX3zxhVBYWCgAEFJSUpo8xqhRo4S33npLEARBqKysFOzs7IQtW7YobVt/3DNnzihsnzRpkvDcc88JgiAId+/eFWxtbYUdO3aI+6urqwUvLy9h5cqVgiAIwjfffCMAEI4ePSq2OXjwoABA+N///qfJLSCyWByJIiK9e/rpp5Gfn4/8/HycPHkSERERGDlyJK5evQp7e3vExMQgPT0dAJCXl4fz589j8uTJCscIDQ1t9P7ixYvi+6NHj2L48OHo2LEjHB0dERMTg/Lycty/fx8AMGfOHLz//vt48sknsWTJEoXE9lmzZmHnzp3o168f5s+fj+PHj2t0fWvXrhWvLz8/H3/605/EfQMGDFBoW1tbi8TERPTu3RvOzs5o164djhw5gmvXrgEALl68iKqqKgwfPlyjPjR05coV1NTU4MknnxS32draYtCgQQr3DAD69Okj/tnT0xMAcPPmTa3PTWRJGEQRkd45ODjA398f/v7+GDhwID755BPcu3cPW7ZsAQBMmzYNWVlZ+PXXX7Ft2zY888wz6NKlS7OPX1RUhNGjR6NPnz7Ys2cPcnNzxZyp6upq8Rw///wzYmJicO7cOQwYMADr168HADGge/PNN3Hjxg0MHz4cb7/9drPP7+HhIV6fv78/HBwcFK69oVWrViE1NRXvvPMOvvnmG+Tn5yMiIkLsZ5s2bZp9Xl2wtbUV/yyRSAA8zMkioqYxiCKiVieRSGBlZYX//e9/AIDevXtjwIAB2LJlCzIzM5Xm5Zw4caLR+x49egAAcnNzUVdXhzVr1uCJJ55At27dcOPGjUbH8Pb2xsyZM7F371689dZbYhAHAI899hgmTZqEv//970hJScHmzZt1ecmi77//Hs899xxeffVV9O3bF127dsV///tfcX9AQADatGkjJtU/SiqVAng4oqWKn58fpFIpvv/+e3FbTU0NTp06hccff1xHV0JENobuABGZv6qqKpSUlAB4+CTchg0bcPfuXYwZM0ZsM23aNMTGxsLBwQF//vOfGx3j+++/x8qVKxEVFYWsrCzs3r0bBw8eBAD4+/ujpqYG69evx5gxY/D9998jLS1N4fNxcXEYOXIkunXrht9++w3ffPONGIQtXrwYwcHB6NmzJ6qqqnDgwAFxn64FBATg888/x/Hjx9GhQwckJyejtLRUDG7s7e3xzjvvYP78+ZBKpXjyySdx69YtXLhwAVOnToWbmxvatGmDw4cPo1OnTrC3t4dMJlM4h4ODA2bNmoV58+bB2dkZnTt3xsqVK3H//n1MnTpVL9dFZIk4EkVEenf48GF4enrC09MTISEhOHXqFHbv3i0+ng8AEyZMgI2NDSZMmAB7e/tGx3jrrbdw+vRp9O/fH++//z6Sk5MREREBAOjbty+Sk5OxYsUK9OrVCzt27EBSUpLC52trazF79mz06NEDkZGR6NatGz766CMAD0d3EhIS0KdPHwwZMgTW1tbYuXOnXu7FokWLEBQUhIiICAwbNgweHh6NKo2/9957eOutt7B48WL06NED0dHRYp6SjY0N1q1bh48//hheXl547rnnlJ5n+fLleP755xETE4OgoCAUFBTgyJEj6NChg16ui8gSSQRBEAzdCSKioqIi+Pn54dSpUwgKClLY5+Pjg7i4OMTFxRmmc0RESnA6j4gMqqamBuXl5Vi0aBGeeOKJRgEUEZGx4nQeERnU999/D09PT5w6dapRHpOhffjhh2jXrp3S18iRIw3dPSIyME7nERGpUFFR0ajCd702bdqgY8eOrdwjIjImDKKIiIiItMDpPCIiIiItMIgiIiIi0gKDKCIiIiItMIgiIiIi0gKDKCIiIiItMIgiIiIi0gKDKCIiIiItMIgiIiIi0sL/A7hTrZiV69ZmAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWWFJREFUeJzt3Xtc0/XiP/DXuCPBdBhXURDwfgUVsYulFJhilicvqalHMzuSImWFdzNDMxVNzfR4OyXh1zR/aR5NKb+nlNRAT2lqaaBZgAoxEAoQPr8//LLY2MY2tn0+217Px4NH7LP3Pnt/Pi738n2VCYIggIiIiIhUnMSuABEREZHUMCARERERaWBAIiIiItLAgERERESkgQGJiIiISAMDEhEREZEGBiQiIiIiDQxIRERERBoYkIiIiIg0MCAREdmwHTt2QCaTIT8/X+yqENkVBiQi0uvMmTNISkpC165d4eXlhbZt22LUqFH48ccfG5V95JFHIJPJIJPJ4OTkBB8fH3Ts2BETJkzA0aNHjXrfAwcOYODAgfDz80OLFi3Qvn17jBo1CocPHzbXpTXy1ltvYf/+/Y2Onzx5EosXL0ZpaanF3lvT4sWLVfdSJpOhRYsW6NKlC+bPn4+ysjKzvEdGRgbS09PNci4ie8OARER6rVixAnv37sXgwYOxdu1aTJs2Df/5z38QFRWF8+fPNyrfpk0bfPDBB/jXv/6FlStXYvjw4Th58iQef/xxjB49GjU1NU2+5zvvvIPhw4dDJpMhNTUVa9aswciRI/HTTz8hMzPTEpcJQH9AWrJkiVUDUr333nsPH3zwAVavXo1OnTph2bJlSEhIgDm20WRAItLNRewKEJG0paSkICMjA25ubqpjo0ePRvfu3bF8+XJ8+OGHauXlcjnGjx+vdmz58uWYOXMmNm7ciNDQUKxYsULn+929exdLly7FY489hs8//7zR8zdv3mzmFUlHZWUlWrRoobfM3/72N7Ru3RoAMH36dIwcORL79u3DN998g9jYWGtUk8ghsQWJiPQaMGCAWjgCgMjISHTt2hUXL1406BzOzs5Yt24dunTpgvXr10OpVOose/v2bZSVleGBBx7Q+ryfn5/a4z///BOLFy9Ghw4d4OHhgcDAQDz99NO4evWqqsw777yDAQMGwNfXF56enoiOjsbHH3+sdh6ZTIaKigrs3LlT1a01adIkLF68GHPmzAEAhIWFqZ5rOObnww8/RHR0NDw9PaFQKDBmzBj88ssvaud/5JFH0K1bN+Tk5ODhhx9GixYtMHfuXIPuX0ODBg0CAOTl5ektt3HjRnTt2hXu7u4ICgrCjBkz1FrAHnnkEXz22We4du2a6ppCQ0ONrg+RvWILEhEZTRAEFBUVoWvXrga/xtnZGWPHjsWCBQvw9ddfY+jQoVrL+fn5wdPTEwcOHMBLL70EhUKh85y1tbUYNmwYsrKyMGbMGMyaNQvl5eU4evQozp8/j/DwcADA2rVrMXz4cIwbNw7V1dXIzMzEM888g4MHD6rq8cEHH2Dq1Kno168fpk2bBgAIDw+Hl5cXfvzxR3z00UdYs2aNqjXn/vvvBwAsW7YMCxYswKhRozB16lTcunUL7777Lh5++GGcPXsWLVu2VNW3uLgYQ4YMwZgxYzB+/Hj4+/sbfP/q1Qc/X19fnWUWL16MJUuWIC4uDi+++CIuX76M9957D2fOnMGJEyfg6uqKefPmQalU4saNG1izZg0A4L777jO6PkR2SyAiMtIHH3wgABC2bt2qdnzgwIFC165ddb7uk08+EQAIa9eu1Xv+hQsXCgAELy8vYciQIcKyZcuEnJycRuW2bdsmABBWr17d6Lm6ujrV75WVlWrPVVdXC926dRMGDRqkdtzLy0uYOHFio3OtXLlSACDk5eWpHc/PzxecnZ2FZcuWqR3//vvvBRcXF7XjAwcOFAAImzZt0nndDS1atEgAIFy+fFm4deuWkJeXJ7z//vuCu7u74O/vL1RUVAiCIAjbt29Xq9vNmzcFNzc34fHHHxdqa2tV51u/fr0AQNi2bZvq2NChQ4V27doZVB8iR8MuNiIyyqVLlzBjxgzExsZi4sSJRr22voWivLxcb7klS5YgIyMDvXv3xpEjRzBv3jxER0cjKipKrVtv7969aN26NV566aVG55DJZKrfPT09Vb///vvvUCqVeOihh5Cbm2tU/TXt27cPdXV1GDVqFG7fvq36CQgIQGRkJL788ku18u7u7pg8ebJR79GxY0fcf//9CAsLwwsvvICIiAh89tlnOscuHTt2DNXV1UhOToaT019/xT///PPw8fHBZ599ZvyFEjkgdrERkcEKCwsxdOhQyOVyfPzxx3B2djbq9Xfu3AEAeHt7N1l27NixGDt2LMrKynDq1Cns2LEDGRkZSExMxPnz5+Hh4YGrV6+iY8eOcHHR/1fZwYMH8eabb+LcuXOoqqpSHW8Yokzx008/QRAEREZGan3e1dVV7XFwcHCj8VxN2bt3L3x8fODq6oo2bdqoug11uXbtGoB7waohNzc3tG/fXvU8EenHgEREBlEqlRgyZAhKS0vx1VdfISgoyOhz1C8LEBERYfBrfHx88Nhjj+Gxxx6Dq6srdu7ciVOnTmHgwIEGvf6rr77C8OHD8fDDD2Pjxo0IDAyEq6srtm/fjoyMDKOvoaG6ujrIZDL8+9//1hoWNcf0NGzJMtTDDz+sGvdERNbDgERETfrzzz+RmJiIH3/8EceOHUOXLl2MPkdtbS0yMjLQokULPPjggybVo0+fPti5cycKCgoA3BtEferUKdTU1DRqram3d+9eeHh44MiRI3B3d1cd3759e6OyulqUdB0PDw+HIAgICwtDhw4djL0ci2jXrh0A4PLly2jfvr3qeHV1NfLy8hAXF6c61twWNCJ7xjFIRKRXbW0tRo8ejezsbOzZs8ektXdqa2sxc+ZMXLx4ETNnzoSPj4/OspWVlcjOztb63L///W8Af3UfjRw5Erdv38b69esblRX+byFFZ2dnyGQy1NbWqp7Lz8/XuiCkl5eX1sUgvby8AKDRc08//TScnZ2xZMmSRgs3CoKA4uJi7RdpQXFxcXBzc8O6devU6rR161YolUq12YNeXl56l1wgcmRsQSIivV5++WV8+umnSExMRElJSaOFITUXhVQqlaoylZWVuHLlCvbt24erV69izJgxWLp0qd73q6ysxIABA9C/f38kJCQgJCQEpaWl2L9/P7766iuMGDECvXv3BgA899xz+Ne//oWUlBScPn0aDz30ECoqKnDs2DH84x//wJNPPomhQ4di9erVSEhIwLPPPoubN29iw4YNiIiIwHfffaf23tHR0Th27BhWr16NoKAghIWFISYmBtHR0QCAefPmYcyYMXB1dUViYiLCw8Px5ptvIjU1Ffn5+RgxYgS8vb2Rl5eHTz75BNOmTcMrr7zSrPtvrPvvvx+pqalYsmQJEhISMHz4cFy+fBkbN25E37591f68oqOjsXv3bqSkpKBv37647777kJiYaNX6EkmWmFPoiEj66qen6/rRV/a+++4TIiMjhfHjxwuff/65Qe9XU1MjbNmyRRgxYoTQrl07wd3dXWjRooXQu3dvYeXKlUJVVZVa+crKSmHevHlCWFiY4OrqKgQEBAh/+9vfhKtXr6rKbN26VYiMjBTc3d2FTp06Cdu3b1dNo2/o0qVLwsMPPyx4enoKANSm/C9dulQIDg4WnJycGk3537t3r/Dggw8KXl5egpeXl9CpUydhxowZwuXLl9Xujb4lEDTV1+/WrVt6y2lO86+3fv16oVOnToKrq6vg7+8vvPjii8Lvv/+uVubOnTvCs88+K7Rs2VIAwCn/RA3IBMEMG/oQERER2RGOQSIiIiLSwIBEREREpIEBiYiIiEgDAxIRERGRBgYkIiIiIg0MSEREREQauFCkierq6vDbb7/B29uby/UTERHZCEEQUF5ejqCgIDg56W4nYkAy0W+//YaQkBCxq0FEREQm+OWXX9CmTRudzzMgmcjb2xvAvRusb18pIiIiko6ysjKEhISovsd1YUAyUX23mo+PDwMSERGRjWlqeIzog7Q3bNiA0NBQeHh4ICYmBqdPn9Zbfs+ePejUqRM8PDzQvXt3HDp0SO35SZMmQSaTqf0kJCSolQkNDW1UZvny5Wa/NiIiIrJNogak+l2kFy1ahNzcXPTs2RPx8fG4efOm1vInT57E2LFjMWXKFJw9exYjRozAiBEjcP78ebVyCQkJKCgoUP189NFHjc71xhtvqJV56aWXLHKNREREZHtEDUirV6/G888/j8mTJ6NLly7YtGkTWrRogW3btmktv3btWiQkJGDOnDno3Lkzli5diqioKKxfv16tnLu7OwICAlQ/rVq1anQub29vtTJeXl4WuUYiIiKyPaKNQaqurkZOTg5SU1NVx5ycnBAXF4fs7Gytr8nOzkZKSorasfj4eOzfv1/t2PHjx+Hn54dWrVph0KBBePPNN+Hr66tWZvny5Vi6dCnatm2LZ599FrNnz4aLi+7bUVVVhaqqKtXjsrIyQy+ViIhIpba2FjU1NWJXw265urrC2dm52ecRLSDdvn0btbW18Pf3Vzvu7++PS5cuaX1NYWGh1vKFhYWqxwkJCXj66acRFhaGq1evYu7cuRgyZAiys7NVN2zmzJmIioqCQqHAyZMnkZqaioKCAqxevVpnfdPS0rBkyRJTL5eIiBycIAgoLCxEaWmp2FWxey1btkRAQECz1im0u1lsY8aMUf3evXt39OjRA+Hh4Th+/DgGDx4MAGqtUD169ICbmxteeOEFpKWlwd3dXet5U1NT1V5XP02QiIjIEPXhyM/PDy1atOAiwxYgCAIqKytVY5kDAwNNPpdoAal169ZwdnZGUVGR2vGioiIEBARofU1AQIBR5QGgffv2aN26Na5cuaIKSJpiYmJw9+5d5Ofno2PHjlrLuLu76wxPRERE+tTW1qrCkeaQDzIvT09PAMDNmzfh5+dncnebaIO03dzcEB0djaysLNWxuro6ZGVlITY2VutrYmNj1coDwNGjR3WWB4AbN26guLhYb4o8d+4cnJyc4OfnZ+RVEBERNa1+zFGLFi1EroljqL/PzRnrJWoXW0pKCiZOnIg+ffqgX79+SE9PR0VFBSZPngwAeO655xAcHIy0tDQAwKxZszBw4ECsWrUKQ4cORWZmJr799lts3rwZAHDnzh0sWbIEI0eOREBAAK5evYpXX30VERERiI+PB3BvoPepU6fw6KOPwtvbG9nZ2Zg9ezbGjx+vdbYbERGRubBbzTrMcZ9FDUijR4/GrVu3sHDhQhQWFqJXr144fPiwaiD29evX1TaSGzBgADIyMjB//nzMnTsXkZGR2L9/P7p16wYAcHZ2xnfffYedO3eitLQUQUFBePzxx7F06VJV95i7uzsyMzOxePFiVFVVISwsDLNnz240O46IiIgcl0wQBEHsStiisrIyyOVyKJXKZm81UlxcjOrqap3Pu7m5sc+aiMiG/fnnn8jLy0NYWBg8PDzEro7d03e/Df3+trtZbLamuLhYbaFLpdIbJSW+UCiKIZeXq44nJSUxJBERkdVNmjQJO3fuBAC4uLhAoVCgR48eGDt2LCZNmqTW06PPjh07kJycbDPLHDAgiaxhy1Fubm8cODAMguAEmawOiYkHERV1tlE5IiJyLGL3NCQkJGD79u2ora1FUVERDh8+jFmzZuHjjz/Gp59+qnehZVtlf1dko5RKb1U4AgBBcMKBA8MQHn5FrSWJiIgci2ZPgy6W7Gmo38ILAIKDgxEVFYX+/ftj8ODB2LFjB6ZOnYrVq1dj+/bt+Pnnn6FQKJCYmIi3334b9913H44fP66agFU/gHrRokVYvHgxPvjgA6xduxaXL1+Gl5cXBg0ahPT0dNFnlou6Fxv9paTEVxWO6gmCE0pKFCLViIiIpMDQHgRr9zQMGjQIPXv2xL59+wDc2y5s3bp1uHDhAnbu3IkvvvgCr776KoB7k6zS09Ph4+Oj2iT+lVdeAXBvKv7SpUvx3//+F/v370d+fj4mTZpk1WvRhi1IEqFQFEMmq1MLSTJZHRSKEhFrRUREpFunTp3w3XffAQCSk5NVx0NDQ/Hmm29i+vTp2LhxI9zc3CCXyyGTyRot7vz3v/9d9Xv79u2xbt069O3bF3fu3MF9991nlevQhgFJIuTyciQmHmw0BkkK3WsN+75/+80JeXkuCAu7i6CgOgCcZUdE5KgEQVB1mR07dgxpaWm4dOkSysrKcPfuXfz555+orKzUu0BmTk4OFi9ejP/+97/4/fffUVd377vl+vXr6NKli1WuQxsGJAmJijqL8PArKClRQKEokUw4qu/71jeInLPsiIgcz8WLFxEWFob8/HwMGzYML774IpYtWwaFQoGvv/4aU6ZMQXV1tc6AVFFRgfj4eMTHx2PXrl24//77cf36dcTHx4s+OYkBSWLk8nJJBKN69R/QpgaRi/1BJiIi6/riiy/w/fffY/bs2cjJyUFdXR1WrVqlmvb/P//zP2rl3dzcUFtbq3bs0qVLKC4uxvLly1UbwH/77bfWuYAmcJC2yNzc3MxazlI4iJyIyHFVVVWhsLAQv/76K3Jzc/HWW2/hySefxLBhw/Dcc88hIiICNTU1ePfdd/Hzzz/jgw8+wKZNm9TOERoaijt37iArKwu3b99GZWUl2rZtCzc3N9XrPv30UyxdulSkq1THFiSR+fr6IikpSfIraXMQORGR4zp8+DACAwPh4uKCVq1aoWfPnli3bh0mTpwIJycn9OzZE6tXr8aKFSuQmpqKhx9+GGlpaXjuuedU5xgwYACmT5+O0aNHo7i4WDXNf8eOHZg7dy7WrVuHqKgovPPOOxg+fLiIV3sPtxoxkTm3GpGygoIC1WbA+sYgTZs2DYGBgWJWlYhIspqz1YgU1kGyNdxqxIGJsaqqFAeRExHZO1vpabA3DEg2yBL7t+kKXLdv31Z7LLVB5EREjoDhx/oYkGyQufdvMzRwEREROQoGJBtmrv3bDA1c+og9y46IiMicGJBsmL6p96a0/DQVuJ5++mm0bt260evY901ERPaGAcmGmXvqfVOBq3Xr1pypRkREDoELRdqw+v3bZLJ7+9Y0d/+2+sDVENc6IiIiR8QWJBtnzqn3Ut4wl4iIyJoYkOyAOafec60jIiIidrHZJEvv3yaXlyMs7BrDERERWdzx48chk8lQWlpq8GtCQ0ORnp5usToBbEGySeZeVdVWNswlIiLrmzRpEnbu3IkXXnih0Qa0M2bMwMaNGzFx4kTs2LFDnApaCAOSjTLntHouY09ERPqEhIQgMzMTa9asgaenJ4B7+51lZGSgbdu2ItfOMtjFRgDuhaTAwECdPwxHRESOKyoqCiEhIdi3b5/q2L59+9C2bVv07t1bdayqqgozZ86En58fPDw88OCDD+LMmTNq5zp06BA6dOgAT09PPProo8jPz2/0fl9//TUeeugheHp6IiQkBDNnzkRFRYXFrk8bBiQiIiIbcuMG8OWX9/5rTX//+9+xfft21eNt27Zh8uTJamVeffVV7N27Fzt37kRubi4iIiIQHx+PkpJ7y8X88ssvePrpp5GYmIhz585h6tSpeP3119XOcfXqVSQkJGDkyJH47rvvsHv3bnz99ddISkqy/EU2wIBERERkI7ZuBdq1AwYNuvffrVut997jx4/H119/jWvXruHatWs4ceIExo8fr3q+oqIC7733HlauXIkhQ4agS5cu2LJlCzw9PbH1/yr63nvvITw8HKtWrULHjh0xbtw4TJo0Se190tLSMG7cOCQnJyMyMhIDBgzAunXr8K9//Qt//vmn1a6XY5CIiIhswI0bwLRpQN3/redbVwe88AIQHw+0aWP597///vsxdOhQ7NixA4IgYOjQoWrbT129ehU1NTV44IEHVMdcXV3Rr18/XLx4EQBw8eJFxMTEqJ03NjZW7fF///tffPfdd9i1a5fqmCAIqKurQ15eHjp37myJy2uEAYmIiMgG/PTTX+GoXm0tcOWKdQIScK+brb6ra8OGDRZ5jzt37uCFF17AzJkzGz1nzQHhDEhkEcXFxZwVR0RkRpGRgJOTekhydgYiIqxXh4SEBFRXV0MmkyE+Pl7tufDwcLi5ueHEiRNo164dAKCmpgZnzpxBcnIyAKBz58749NNP1V73zTffqD2OiorCDz/8gAhrXpgWDEhkdsXFxVi/fn2T5ZKSkhiSiIgM1KYNsHnzvW612tp74ej9963XegQAzs7Oqu4yZ2dntee8vLzw4osvYs6cOVAoFGjbti3efvttVFZWYsqUKQCA6dOnY9WqVZgzZw6mTp2KnJycRusnvfbaa+jfvz+SkpIwdepUeHl54YcffsDRo0cN+m4xFw7SJrPTbDlSKr2RlxcKpdJbbzkiItJvyhQgP//eLLb8/HuPrc3Hxwc+Pj5an1u+fDlGjhyJCRMmICoqCleuXMGRI0fQqlUrAPe6yPbu3Yv9+/ejZ8+e2LRpE9566y21c/To0QP/+7//ix9//BEPPfQQevfujYULFyIoKMji19aQTBAEwarvaCfKysogl8uhVCp1flAcVUFBATZv3gwAyM3t3Wjz26ioswCAadOmITAwUMyqEhFZxZ9//om8vDyEhYXBw8ND7OrYPX3329Dvb7YgkcUold6qcAQAguCEAweGNWpJIiIikhoGJLKYkhJfVTiqJwhOKClRiFQjIiIiwzAgkcUoFMWQydTnpMpkdVAoSkSqERERkWEYkMhi5PJyJCYeVIWk+jFIcnm5yDUjIiLSj9P8yaKios4iPPwKSkoUUChKGI4siGtPEUkf50VZhznuMwMSmZ2bm5vaY7m8XGsw0ixHpuPaU0TS5urqCgCorKyEp6enyLWxf5WVlQD+uu+mYEAis/P19UVSUhJbM6xI29pTJSW+UCiK1cIp154iEoezszNatmyJmzdvAgBatGgBmUwmcq3sjyAIqKysxM2bN9GyZctGi1kagwGJLEJf+KnvCiooKND6PMNT8+hbe4qIxBMQEAAAqpBEltOyZUvV/TYVAxJZFbuCLEvX2lPh4Vc4/otIZDKZDIGBgfDz80NNTY3Y1bFbrq6uzWo5qseARFbFriDL0rf2FAMSkTQ4Ozub5QucLIsBiZqlOTOnHKUryJqzy+rXnmoYkrj2FBGR8RiQyGTN6S5zlK4ga3cp1q89pRk87emeEhFZAwMSmaw53WWO0hUkRpci154iImo+BiQyC2O7yxyxK8iSXYpce4qIyLwYkKjZTOkuc7SuIEt3KXLtKSIi82JAomYztbvMkbqCrNGlyPBDRGQ+DEjUbMZ0lzlqV5AjdikSEdkyBiRqNmO6yxy1K0jsLkVuZEtEZBwGJImzlS82Y7rLpFBfMYjVpcjVy4mIjMeAJGFS/2Jz1O4yY0jhHhm6hABXLyci+gsDkoRJ/YvNUbvLjCHFe6RrLSYiIvoLA5INkeIXmxTCj9S7IaVwj+o5yvYuRETNxYBkI/jFpp3UuyGlxJG2d5FyYCYi28CAZAMc5YvNFGJs5WGrHGF7FwZmIjIXBiQb4AhfbObAVjb9HGEtJqmP2yMi28GAZAMc4YvNVKWlpQCabmUrLS1FYGBgs97L1rtuxF6LiYjIljAg2QB+sel29+5dAE23stWXM5Utd900XEJA31pM9rgcgxQnNhCRbWBAkjBH/mIzlkJRDEAAIFMdM2crmy2PdZLiUgPWwC5XImoOBiQJc8QvtuZ1Y6kHJEEwb93q2eIXrz19RgzBiQ1E1FwMSBLnSF9szenGKinxBeCkUdL8A9n5xWsbOLGBiJpL8xuFSDTaurHy8kKhVHrrLOfq6grgr4HsDTXsYqsv11z6vnhJOpr6PBARNYUtSCRJhnZjyeXy//uv/oHs9eWaizMKpa1+PF5TnweO2yOipjAgkeSY2o2lbyC7uXBGobRpjttbuPAW8vNdEBp6F0FBfQH0tbtxe0RkGaJ3sW3YsAGhoaHw8PBATEwMTp8+rbf8nj170KlTJ3h4eKB79+44dOiQ2vOTJk2CTCZT+0lISFArU1JSgnHjxsHHxwctW7bElClTcOfOHbNfG5nGmG4szZYAubwcYWHXGgUWc7YYREWdRXJyOiZO3IHk5HTJD9B2NL6+vggMDERgYCCio/0xcqQvoqP9VccYjojIEKK2IO3evRspKSnYtGkTYmJikJ6ejvj4eFy+fBl+fn6Nyp88eRJjx45FWloahg0bhoyMDIwYMQK5ubno1q2bqlxCQgK2b9+ueuzu7q52nnHjxqGgoABHjx5FTU0NJk+ejGnTpiEjI8NyF0sGM6Yby1oz/bQFMW2tRpbuurH1xSqJiGyFTBAsNRm6aTExMejbt69q5lJdXR1CQkLw0ksv4fXXX29UfvTo0aioqMDBgwdVx/r3749evXph06ZNAO61IJWWlmL//v1a3/PixYvo0qULzpw5gz59+gAADh8+jCeeeAI3btxAUFCQQXUvKyuDXC6HUqmEj4+PMZdNOhQUFGDz5s0A9I9BmjZtWrNXxTaFNcOJtvdSKpXYvXt3k6+V4mKVRERSYej3t2gtSNXV1cjJyUFqaqrqmJOTE+Li4pCdna31NdnZ2UhJSVE7Fh8f3ygMHT9+HH5+fmjVqhUGDRqEN998U/WFkZ2djZYtW6rCEQDExcXByckJp06dwlNPPaX1vauqqlBVVaV6XFZWZtT1knGsMZ7IWPpCR32gKSgo0Pq8MeHJ0OUObGmxSiIiWyNaQLp9+zZqa2vh7++vdtzf3x+XLl3S+prCwkKt5QsLC1WPExIS8PTTTyMsLAxXr17F3LlzMWTIEGRnZ8PZ2RmFhYWNuu9cXFygUCjUzqMpLS0NS5YsMfYy7Z45W1Wk0o1lLHNvQ2LIqt22uFglEZEtsbtZbGPGjFH93r17d/To0QPh4eE4fvw4Bg8ebPJ5U1NT1VqvysrKEBIS0qy62jpzBwNbXTncktuQaAtC4eFXuFglEZGFiRaQWrduDWdnZxQVFakdLyoqQkBAgNbXBAQEGFUeANq3b4/WrVvjypUrGDx4MAICAnDz5k21Mnfv3kVJSYne87i7uzca7G0NUh6Ua4lgIIXw05x7bs6WHV3LHYwcuZerRBMRWZhoAcnNzQ3R0dHIysrCiBEjANwbpJ2VlYWkpCStr4mNjUVWVhaSk5NVx44ePYrY2Fid73Pjxg0UFxerBvXGxsaitLQUOTk5iI6OBgB88cUXqKurQ0xMjHkuzkxsaQd5e+nyac49N/c2JLqWOwAELlZJRGRhoq6DlJKSgi1btmDnzp24ePEiXnzxRVRUVGDy5MkAgOeee05tEPesWbNw+PBhrFq1CpcuXcLixYvx7bffqgLVnTt3MGfOHHzzzTfIz89HVlYWnnzySURERCA+Ph4A0LlzZyQkJOD555/H6dOnceLECSQlJWHMmDEGz2CzFkNbXsQelKsrGGhuEWILTNnupJ65tyHRtV1GSMgNJCYeVD3HxSqJiMxP1DFIo0ePxq1bt7Bw4UIUFhaiV69eOHz4sGog9vXr1+Hk9NcXzoABA5CRkYH58+dj7ty5iIyMxP79+1VrIDk7O+O7777Dzp07UVpaiqCgIDz++ONYunSpWvfYrl27kJSUhMGDB8PJyQkjR47EunXrrHvxdsReNwY1tlXM3NuQ6Fu1W4qz/IiI7Inog7STkpJ0dqkdP3680bFnnnkGzzzzjNbynp6eOHLkSJPvqVAobHJRSF1jfMRmj/uTGdNdplQqATS9DYlSqTR6/SZ9QchWZvmROimPKySiv4gekMgwUh7jY4/7kxnTKlZTU6P6PSrqLPz8CnH9elu0bXsdbdoUaC2nj6HLHYwaNQotW7Zs9Fp+uUqXLY0rJHJ0DEg2wNyDfy3B3rp8jGkVc3H5638jfUG2YTl9bHW5A2qarYwrJCIGJJsg1TE+trqwoyGMaRWrb8VpKshqtvawq4Wk2m1ORAxINkGqY3zsvaXD2FYxY4Isu1pIyt3mRMSAJGn1LS9NtWaI2UJjb1/ezWkVMybIWnL1bWtg61fz2EK3OZGjY0CSMM0WmoULbyE/3wWhoXcRFNQXQF+tX0T88jJdc1rFTB2sLmZLgimfFbZ+ma60tBRA062NpaWlRs94JCLzYkCSuIZfMIGBwP8t/q0Tv7yarzn3xdhuOTFbEkz9rNh665eY7t69C6Dp1sb6ckQkHgYkO8NZMtbXnG45MQfgm+OzwnE0prHHpTGI7A0DElEzNadbTkoD8I2dUcVxNMZzdXVVeywI6v/VVY6IrI8Byc458jRia47FMvU8UmlJMKUlSKrLT0iZXC4H8Fe4/Gs7TPVwWV+OiMTDgGTHHLn7w5bGYom9yKapLUFSav2yNQyXRNLn1HQRskW6vvQ0d6W3V9oGEuflhTa6frHGYmkbtxQWdq3Rl6M1lnDQ92WtT33rl0xWBwAcR2OE+nDZEMMlkbSwBclO8V+of5FiS5qUFtlsTkuQ2K1ftkoqXatEpBsDkp2p31m+qS89U3aWt0VSHkgsdtdePWO/rO15ixlLa3hP9IVL3jsi8TEg2Rnh/6bDNPWlJ2hOm7FTbEnTzdQvaym1ftka3jsi28GAZGcaboiq70tPc+NUe8WBxLo158uaX+Cm470jsg0MSA5BJnYFRMOxHvrxy5qISDsGJDsmxcHJYrDFgcSOtJ+eI10rEdkOBiQ7JeXBydZgywOJbWkNp+ZypGslItvCgGSnHH1wsi0PhnWkzWAd6VqJyLYwINkpDk62j/E1jtRN6kjXSkTSx5W07Ux9l1FTqxxLsWuJ1DnSauiOdK1EZBvYgmRnNLuWFi68hfx8F4SG3kVQUF8AfSXbtUTqHKmb1JGulYhsAwOSHWoYfgIDgehoEStDJnOkblJHulYisg3sYiOSKEfaDNaRrpWIbANbkIgkzBbXcDKVI10rEUkfAxKRGZhzsUNbXsPJWI50rURkW2SCo+xaamZlZWWQy+VQKpXw8fERuzp2T8qrLVtisUMpX6+5OdK1EpH4DP3+ZgsSSZ7UV1u2xGKHjhQIHOlaich2MCCR5BkaLKSw2rKjLHZoj60+9nhNRGQ6BiSyObpaaMTmKPvfSb1FzxT2eE1E1DwMSGRTpNxC4yiLHdrj/mm21EpJRNbBgEQ2Q+otNI642KGUA2tzGNpKyW45IvvFgEQ2Q+otNPWLHWoGBinUzRKkHlhNZWjoY7fcXxgUyR4xIJHNsIUWGkda7FDqgdUUxoQ+W+hqtEZwYVAke8WARE2Syr8OzdlCw4Udm88WAquxTA19xnQ1mvLZM/U11gguHL9F9ooBifSSwr8OGwYLfS00hgYQc1+Tr68vkpKSJBEirckeuxRNCX3GtDqZ8tkz9fMqVnCR6ixTImMxIJFeUvjXobkDiCWuyd7Cj6HsrUvRlNBnTKuTKd1y5vq8WiO42OugfXJMDEhkEywZQPgvXuPYY5dic1opTe1qNDVMmPJ5tUZwsddB++S4GJDIKPYWJvgvXuPZY5dic67JlFYnU8OEKZ9XawUXexy0T46NAYkMZm9hgv/iNZ0thR9DNeeajO1qNCVMmPp5tVZwscdB++TYnJouQqT7L2el0lvkmplO3xcHUVO0dTWGhV1rFDr0dcs11FSYMPXzasp7maK+Ja3+vexh0D45NrYgkUHssfmc/+J1POZc3sHa3XKmfl4tPdvQ0PFbSqVS5+vtsUWSbB8DEhnEHsOEPU5TJ90ssWSFNbvljP28mnt5DF18fX0xfvx4VFZWNnquvLwcR48eBQDs3r1b5zm4iCRJEQMS6VX/l2dTfzk7yowlsl1SWPnalBmApn5erTWYvri4GB9++GGzzsFFJEmKGJBIL82/ZBcuvIX8fBeEht5FUFBfAH1troncHmdhkXHEmnBgymevOZ9Xa3yGjQk39jYLluwbAxI1qeFfsoGBQHS0iJUxE4YfxyX27EVTPnu29HnVFYLsbRYs2T8GJCJyKOaccCCVfQqlQlcIEjuUEpmCAYmIHIqxEw50hSClUql34HE9RxmArC8E2eMsWLJ/DEhE5FCMmQ2mOfNN3xgaMQZ9W4KprWL6QlBTofT27dsGvw+RtTAgEZHDMXSKfcOgoG8MjbnG14jdZdecpRD0haCmQum+ffsMfh8ia2FAIiKH0JxNdvV1HwEwy/gaS6zTZCxDW7u0lWsqBBm77pMx9SGyBAYkInIIzZkur3+bD5lZxtdIYZ0mTYZMyzd0nabRo0dDLpcDuNel1rDViNP/SYoYkIjIYZja8tLUGBpzrzIvhSnxhtahueuKSeFaibThZrVERE3QtxGruTdplcLG0MbWwdfXF4GBgTp/dIUjKVwrkS5sQSIiMoC+7iNTxtfoIoUp8daqgxSulUgXBiQiIgPpGtit7zlj9/STwsbQ1qqDFK6VSBcGJCIiHQwNN6NGjULLli21vt7YcU/GrNNkKdaqgxSulUgXBiSyCWKvD0OOSayNjc3ZZWcMQ2ekGdsqJtb7EDUHAxJJnqGrGXNRObIEa32mmrNOk7lYKxCKFTyJjMGARJJn6GrGXFSObJlUQoO1QgnDD0kdAxLZDO4ITvaOoYFIOrgOEtkM/asZExERmQ9bkMhm2NuUYA48JyKSLgYkshn2NCWYA89Jqhjcie4RPSBt2LABK1euRGFhIXr27Il3330X/fr101l+z549WLBgAfLz8xEZGYkVK1bgiSee0Fp2+vTpeP/997FmzRokJyerjoeGhuLatWtqZdPS0vD666+b5ZrIcsSa/mxuHHhOUqQZ3HVhcCdHIOoYpN27dyMlJQWLFi1Cbm4uevbsifj4eNy8eVNr+ZMnT2Ls2LGYMmUKzp49ixEjRmDEiBE4f/58o7KffPIJvvnmGwQFBWk91xtvvIGCggLVz0svvWTWayPLkcvLERZ2zWbDUUPci4qkRDOQK5XeyMsLbfR5ZHAnRyBqQFq9ejWef/55TJ48GV26dMGmTZvQokULbNu2TWv5tWvXIiEhAXPmzEHnzp2xdOlSREVFNfoXz6+//oqXXnoJu3btgqurq9ZzeXt7IyAgQPXj5eVl9usj8zB03RdbXFSOA89JqnJzeyM9PRk7d05EenoycnN7i10lIqsSrYuturoaOTk5SE1NVR1zcnJCXFwcsrOztb4mOzsbKSkpasfi4+Oxf/9+1eO6ujpMmDABc+bMQdeuXXW+//Lly7F06VK0bdsWzz77LGbPng0XF923o6qqClVVVarHZWVlTV0imYlU1oexBHsbeE72gUtqEIkYkG7fvo3a2lr4+/urHff398elS5e0vqawsFBr+cLCQtXjFStWwMXFBTNnztT53jNnzkRUVBQUCgVOnjyJ1NRUFBQUYPXq1Tpfk5aWhiVLlhhyaWQBthh+DGFPA8/Jfuhr2eRnkxyF6IO0zSknJwdr165Fbm4uZDKZznINW6F69OgBNzc3vPDCC0hLS4O7u7vW16Smpqq9rqysDCEhIearPDksexl4TvaDLZtEIo5Bat26NZydnVFUVKR2vKioCAEBAVpfExAQoLf8V199hZs3b6Jt27ZwcXGBi4sLrl27hpdffhmhoaE66xITE4O7d+8iPz9fZxl3d3f4+Pio/RCZiz0NPCfbV9+yKZPVAQBbNskhidaC5ObmhujoaGRlZWHEiBEA7o0fysrKQlJSktbXxMbGIisrS23K/tGjRxEbGwsAmDBhAuLi4tReEx8fjwkTJmDy5Mk663Lu3Dk4OTnBz8+veRdFZCB7HnhO9oEtm+ToRO1iS0lJwcSJE9GnTx/069cP6enpqKioUIWZ5557DsHBwUhLSwMAzJo1CwMHDsSqVaswdOhQZGZm4ttvv8XmzZsB3BunojlWxdXVFQEBAejYsSOAewO9T506hUcffRTe3t7Izs7G7NmzMX78eLRq1cqKV0+OzJ4HnpPt0gzkcnm51mDE4E6OQNSANHr0aNy6dQsLFy5EYWEhevXqhcOHD6sGYl+/fh1OTn/1Ag4YMAAZGRmYP38+5s6di8jISOzfvx/dunUz+D3d3d2RmZmJxYsXo6qqCmFhYZg9e3aj2XFElmaP4YerMNs2Wwju/IyRtcgEQRDEroQtKisrg1wuh1Kp5HgkInD7FLI8rvRN5mDo97ddzWIjIvFw+xSyNEM/O/yMkTmIupI2Edkfbp9C1qJrKxQic2ALEhGZFRcZJGvQ10pJZA5sQSIis6pfZLAhLjJI5sRWSrIGBiQiMisuMkiWxk2eyRrYxUZEZsdFBsmSuBUKWQNbkIjIIrh9ClkKWynJGtiCRERmwe1TyNIafnb0tVLyM0bmYNRCkTU1NZg3bx727dsHhUKB6dOn4+9//7vq+aKiIgQFBaG2ttYilZUSLhRJ1JjUVzmWev2oafwzpOayyEKRy5Ytw7/+9S+88sorKC0tRUpKCk6dOoX3339fVYYLcxM5Lil/MXGlb/vAPxuyFqMC0q5du/DPf/4Tw4YNAwBMmjQJQ4YMweTJk7Ft2zYAgEwmM38tiYiaiSt9E5ExjBqk/euvv6ptDBsREYHjx4/j5MmTmDBhgkN0rRGRbeMaOkRkCKMCUkBAAK5evap2LDg4GF9++SXOnDmDSZMmmbNuRERmxzV0iMgQRgWkQYMGISMjo9HxoKAgfPHFF8jLyzNbxYiILIErfRORIYwKSAsWLMCoUaO0PhccHIz//d//VY1FIiKSIq6hQ0SGMGqQdrt27dCuXTudzwcFBWHixInNrhQRkSVxpW8iaopJC0Xu2bMHH330EX788UcAQIcOHfDss8/ib3/7m1krR0RkKXJ5uV0EI64LJC3887AfRgWkuro6jB07Fnv27EGHDh3QqVMnAMCFCxcwevRoPPPMM/joo4841Z+IJMceV/rm2k7SovnnoQv/PGyDUQFp7dq1OHbsGD799FPVWkj1Pv30U0yePBlr165FcnKyOetIRNRsvr6+SEpKsqt/3XNtJ2kx9D7zz8M2GBWQtm/fjpUrVzYKRwAwfPhwvP322wxIRCRZthR+jKFrbafw8Ct20Y1oq3S16Glit5w0GRWQfvrpJ8TFxel8Pi4uDklJSc2uFBERGU7f2k4MSOLQ16LXELvlpMuoaf6enp4oLS3V+XxZWRk8PDyaWyciIjIC13aSFmNWa9dsOVIqvZGXF9qoLLvlrM+ogBQbG4v33ntP5/MbNmxAbGxssytFRESG49pO0mLqau25ub2Rnp6MnTsnIj09Gbm5vS1ZTWqCUV1s8+bNwyOPPILi4mK88sor6NSpEwRBwMWLF7Fq1Sr8v//3//Dll19aqq5ERKQD13aSjvoWvYYhqakWPY4jkx6jAtKAAQOwe/duTJs2DXv37lV7rlWrVvjoo4/wwAMPmLWCRERkGHtZ28nW1bfoaY5B0vdnw3Fk0mP0QpFPPfUU4uPjceTIEfz0008A7i0U+fjjj6NFixZmryAREWlnj2s72bKG91lfi562Pw9TWp3IsowKSF988QWSkpLwzTff4KmnnlJ7TqlUomvXrti0aRMeeughs1aSiIgas/baTpyOrl9z/jxMaXUiyzIqIKWnp+P555+Hj49Po+fkcjleeOEFrF69mgGJiMhKrBVIuGq3YZpz7RxHJi1GBaT//ve/WLFihc7nH3/8cbzzzjvNrhQREUkLV+22DM3uNl3jyNhNan1GBaSioiK4urrqPpmLC27dutXsShERkTRxtpV52eMWOPbCqIAUHByM8+fPIyIiQuvz3333HQIDA81SMSIiukdKY38428r8GH6kyaiA9MQTT2DBggVISEhotGL2H3/8gUWLFmndp42IiEwjtbE/nG1FjsKogDR//nzs27cPHTp0QFJSEjp27AgAuHTpEjZs2IDa2lrMmzfPIhUlInJEUhv7w9lW5CiMCkj+/v44efIkXnzxRaSmpkIQBACATCZDfHw8NmzYAH9/f4tUlIjIkUlp7A9nW5EjMHqhyHbt2uHQoUP4/fffceXKFQiCgMjISLRq1coS9SMiIkhv7E9zV+2W0rgqIm2MDkj1WrVqhb59+5qzLkREpIPYY3/MuWq31MZVEWljckAiIiLrEXvsjzmno0ttXBWRNgxIREQ2QuyxP+ZuzZHSuCoiTQxIREQ2pLljf6REauOqiBpyaroIERGJxZxjf6SmflxVQ1xTiaSCLUhERBJmz1tRiD2uytFw5qBxGJCIiCTOnr+0xB5X5Sg4c9B4DEhERCQqexpXJVWcOWg8BiQiIlJp2A3z229OyMtzQVjYXQQF3RsrZI5uGHseVyV1nDloOAYkIiICoN4No6+VobndMPY8rkrqOHPQcAxIREQE4K/ulaZaGczRDcPwIw6xV2S3JZzmT0REavS1MpBtq585WL+8AmcO6sYWJCIiUsNWBvvGmYOGYQsSERGpYSuD/ZPLyxEWdo1/pnqwBYmIiBphK4N94cxB4zEgERGRVlyfyH5w5qDxGJCIiIgcAMOPcTgGiYiIALAbhqghtiAREREAdsMQNcSAREREKgw/RPewi42IiIhIAwMSERERkQZ2sRERkdUVFxdzrBNJGgMSERFZVXFxMdavX696rFR6o6TEFwpFsdq6S0lJSQxJJBoGJCIisqqGLUe5ub1x4MAwCIKTakuTqKizjcoRWRvHIBERkSiUSm9VOAIAQXDCgQPDoFR6i1wzIgYkIiISSUmJryoc1RMEJ5SUKESqEdFfGJCIiEgUCkUxZLI6tWMyWR0UihKRakT0FwYkIiIShVxejsTEg6qQVD8GiRvkkhRwkDYREYkmKuoswsOvoKREAYWihOGIJEP0FqQNGzYgNDQUHh4eiImJwenTp/WW37NnDzp16gQPDw90794dhw4d0ll2+vTpkMlkSE9PVzteUlKCcePGwcfHBy1btsSUKVNw584dc1wOEREZSS4vR1jYNYYjkhRRA9Lu3buRkpKCRYsWITc3Fz179kR8fDxu3ryptfzJkycxduxYTJkyBWfPnsWIESMwYsQInD9/vlHZTz75BN988w2CgoIaPTdu3DhcuHABR48excGDB/Gf//wH06ZNM/v1ERFRY25ubmYtR2QJMkEQBLHePCYmBn379lUtGFZXV4eQkBC89NJLeP311xuVHz16NCoqKnDw4EHVsf79+6NXr17YtGmT6tivv/6KmJgYHDlyBEOHDkVycjKSk5MBABcvXkSXLl1w5swZ9OnTBwBw+PBhPPHEE7hx44bWQKVNWVkZ5HI5lEolfHx8TL0FREQOiStpk1gM/f4WbQxSdXU1cnJykJqaqjrm5OSEuLg4ZGdna31NdnY2UlJS1I7Fx8dj//79qsd1dXWYMGEC5syZg65du2o9R8uWLVXhCADi4uLg5OSEU6dO4amnntL63lVVVaiqqlI9LisrM+g6iYioMYYfkjrRuthu376N2tpa+Pv7qx339/dHYWGh1tcUFhY2WX7FihVwcXHBzJkzdZ7Dz89P7ZiLiwsUCoXO9wWAtLQ0yOVy1U9ISIje6yMiIiLbJfogbXPKycnB2rVrsWPHDshkMrOeOzU1FUqlUvXzyy+/mPX8REREJB2idbG1bt0azs7OKCoqUjteVFSEgIAAra8JCAjQW/6rr77CzZs30bZtW9XztbW1ePnll5Geno78/HwEBAQ0GgR+9+5dlJSU6HxfAHB3d4e7u7tR10hERGQqjtMSl2gByc3NDdHR0cjKysKIESMA3Bs/lJWVhaSkJK2viY2NRVZWlmrANQAcPXoUsbGxAIAJEyYgLi5O7TXx8fGYMGECJk+erDpHaWkpcnJyEB0dDQD44osvUFdXh5iYGDNfJRERkfGKi4tVE5iAe/vWlZT4QqEoVlsOISkpiSHJQkRdKDIlJQUTJ05Enz590K9fP6Snp6OiokIVZp577jkEBwcjLS0NADBr1iwMHDgQq1atwtChQ5GZmYlvv/0WmzdvBnBv0J/mB8XV1RUBAQHo2LEjAKBz585ISEjA888/j02bNqGmpgZJSUkYM2aMwTPYiIiILKlhy1Fubm/Vpr71q41HRZ1tVI7MS9SANHr0aNy6dQsLFy5EYWEhevXqhcOHD6sGYl+/fh1OTn8NkxowYAAyMjIwf/58zJ07F5GRkdi/fz+6detm1Pvu2rULSUlJGDx4MJycnDBy5EisW7fOrNdGRETUXEqltyocAfc28z1wYBjCw69wYU0LE3UdJFvGdZCIiMhSCgoKsHnzZuTlhWLnzomNnp84cQfCwq5h2rRpCAwMFKGGtkvy6yARERGR9sHYt2/fBgAoFMWQyepULUjAvU19FYoSq9bRETEgERERiURzMLYmubwciYkHG41BYvea5TEgERERiUSz5UjbbLWoqLMID7+CkhIFFIoSk8MRlw0wDgMSERGRBOibrSaXlzer1YjLBhiPAYmIiEhkps5Wc3NzM+j8XDbAeAxIREREIisp8VUbiA3cC0klJQrI5eV4+umn0bp1a7XnTekS47IBhmNAIiIiEllTs9Vat25tlun8TQUx+otdbVZLRERkS0pLSwH8NVtNJqsDgEaz1erLNVd9EGuIywZoxxYkIiIikdy9e1f1e1TUWfj5FeKXX9oiJOQ62rQp0FquObhsgOEYkIiIiETi6uqq+l3f4OmG5ZrLXMsG2Dt2sREREYlELpcD0D14Wqn0VitnvvctR1jYNYYjPRiQiIiIRKZv8LQ5GLocgKHlHAG72IiIiERm6T3XfH19kZSUxJW0jcCAREREJDJrDJ5m+DEOAxIREZEEcPC0tDAgERERiURzzI+uPdc4Nsj6GJCIiIhEwrFB0sWAREREJCKGH2niNH8iIiIiDQxIRERERBoYkIiIiIg0cAwSERGRiIqLizlIW4IYkIiIiERSXFyM9evXN1kuKSnJ4JDEwGUeDEhEREQi0RdkTClnicDlqDgGiYiISCKUSm/k5YVCqfQ26fWaQUrX+QwNXI6MLUhEREQSkJvbu9FebFFRZyVzPkfDFiQiIiKRKZXeqjADAILghAMHhpnckmTu8zkiBiQiIiKRlZT4qsJMPUFwQkmJQhLnc0QMSERERCJTKIohk9WpHZPJ6qBQlEjifI6IAYmIiEhkcnk5EhMPqkJN/ZghubxcEudzRBykTUREJBI3NzfV71FRZxEefgUlJQooFCVqYaZhOUPpOx81jQGJiIhIJL6+vkhKSjLbwo6aQUouL9cajEwJXI5GJgiCIHYlbFFZWRnkcjmUSiV8fHzErg4REREArqTdFEO/v9mCREREZEfsIfzcuAH89BMQGQm0aSNOHThIm4iIiCRj61agXTtg0KB7/926VZx6MCARERGR6IqLi5GTU4Rp0wTU/d8KBXV1wAsvCMjJKUJxcbFV68MuNiIiIhJV/Sa7eXmhqKubqPZcba0M7777b4SFXbPqJrtsQSIiIiJR1Q8qb2qBS2tussuARERERJIgpQUu2cVGREREkiGVBS4ZkIiIiCTIkdcz0rXApTUxIBEREUlM/aDlplhz0LKj4RgkIiIiidFsOVIqvZGXFwql0ltvOTIftiARERFJWG5ubxw4MAyC4KQatBwVdVbsatk9tiARERFJlFLprQpHACAITjhwYFijliRbZ+jmudbcZJctSERERBJVUuKrCkf1BMEJJSUK0Qcxm5Ovry+SkpIkNSidAYmIiEii6hdObBiSGi6cKCZzz7KT2mBzBiQiIiKJql84UXMMktitR5qz7JRKb5SU+EKhKFarmy3PsmNAIiIikjCpLJzYUMOWI32DyG15lh0HaRMREUmM5mBkubwcYWHXGoUjaw5a1saeB5GzBYmIiEhipDhoWRt7HkTOgERERCRBYocfQ0h5EHlzsYuNiIiITFI/iFwmqwMAyQwiNwe2IBEREZHJpDiI3BwYkIiIiKhZ5PJyuwlG9RiQiIiIHIA5F3aU4tYg5saAREREZOc0F3bUxdCFHW1lll1zMCARERHZOUMXbDRmYUdbDj+G4Cw2IiIiB6NUeiMvL9QuFnS0FLYgERERORB9W4PQX9iCRERE5CDseWsQc2NAIiIichD6tgYhdQxIREREDqJ+a5CG7GVrEHNjQCIiInIQ9rw1iLlxkDYREZGda7hgo76tQWx5YUdzEz0gbdiwAStXrkRhYSF69uyJd999F/369dNZfs+ePViwYAHy8/MRGRmJFStW4IknnlA9v3jxYmRmZuKXX36Bm5sboqOjsWzZMsTExKjKhIaG4tq1a2rnTUtLw+uvv27+CyQiIhKZIyzsaG6iBqTdu3cjJSUFmzZtQkxMDNLT0xEfH4/Lly/Dz8+vUfmTJ09i7NixSEtLw7Bhw5CRkYERI0YgNzcX3bp1AwB06NAB69evR/v27fHHH39gzZo1ePzxx3HlyhXcf//9qnO98cYbeP7551WPvb05gp+IiOwXw49xZIIgCGK9eUxMDPr27ata/ryurg4hISF46aWXtLbmjB49GhUVFTh48KDqWP/+/dGrVy9s2rRJ63uUlZVBLpfj2LFjGDx4MIB7LUjJyclITk42ue7151UqlfDx8TH5PERERGQ9hn5/izZIu7q6Gjk5OYiLi/urMk5OiIuLQ3Z2ttbXZGdnq5UHgPj4eJ3lq6ursXnzZsjlcvTs2VPtueXLl8PX1xe9e/fGypUrcffuXb31raqqQllZmdoPERER2SfRuthu376N2tpa+Pv7qx339/fHpUuXtL6msLBQa/nCwkK1YwcPHsSYMWNQWVmJwMBAHD16FK1bt1Y9P3PmTERFRUGhUODkyZNITU1FQUEBVq9erbO+aWlpWLJkibGXSURERDZI9EHalvDoo4/i3LlzuH37NrZs2YJRo0bh1KlTqnFNKSkpqrI9evSAm5sbXnjhBaSlpcHd3V3rOVNTU9VeV1ZWhpCQEMteCBEREYlCtC621q1bw9nZGUVFRWrHi4qKEBAQoPU1AQEBBpX38vJCREQE+vfvj61bt8LFxQVbt27VWZeYmBjcvXsX+fn5Osu4u7vDx8dH7YeIiIjsk2gBqX4KflZWlupYXV0dsrKyEBsbq/U1sbGxauUB4OjRozrLNzxvVVWVzufPnTsHJycnrTPniIiIyPGI2sWWkpKCiRMnok+fPujXrx/S09NRUVGByZMnAwCee+45BAcHIy0tDQAwa9YsDBw4EKtWrcLQoUORmZmJb7/9Fps3bwYAVFRUYNmyZRg+fDgCAwNx+/ZtbNiwAb/++iueeeYZAPcGep86dQqPPvoovL29kZ2djdmzZ2P8+PFo1aqVODeCiIiIJEXUgDR69GjcunULCxcuRGFhIXr16oXDhw+rBmJfv34dTk5/NXINGDAAGRkZmD9/PubOnYvIyEjs379ftQaSs7MzLl26hJ07d+L27dvw9fVF37598dVXX6Fr164A7nWVZWZmYvHixaiqqkJYWBhmz56tNr6IiIiIHJuo6yDZMq6DREREZHskvw4SERERkVQxIBERERFpYEAiIiIi0sCARERERKSBAYmIiIhIg11uNUJERETiKS4uRnV1tc7n3dzc4Ovra8UaGY8BiYiIiMymuLgY69evb7JcUlKSpEMSu9iIiIjIbPS1HJlSTixsQSIiIiLRSa1bjgGJiIiILEap9EZJiS8UimLI5eVay0ixW44BiYiIiCwiN7c3DhwYBkFwgkxWh8TEg4iKOtuonBS75TgGiYiIiMxOqfRWhSMAEAQnHDgwDEqlt0GvzcsLNaispbAFiYiIiMyupMRXFY7qCYITSkoUOrvaAMNbnSyNLUhERERkdgpFMWSyOrVjMlkdFIoSna9pTquTuTEgERERkdm4ubkBAOTyciQmHlSFpPrWoPrWo/pyDelrdbI2drERERGR2fj6+iIpKUk1oHrhwlvIz3dBaOhdBAX1BdBX55T9+lanhiGpqVYnS2FAIiIiIrNqGH4CA4HoaMNeV9/qpDkGSd+YJUthQCIiIiJRNexui4o6i/DwKygpUUChKFELR9q65SyFAYmIiIhEpdktpw1X0iYiIiKHI7WNazmLjYiIiEgDAxIRERGRBgYkIiIiIg0MSEREREQaGJCIiIiINDAgEREREWlgQCIiIiLSwHWQiIiISHTFxcVcKJKIiIioXnFxMdavX99kuaSkJKuFJHaxERERkaj0tRyZUs4cGJCIiIiINDAgEREREWlgQCIiIiJJUSq9kZcXCqXSW7Q6cJA2ERERSUZubm8cODAMguAEmawOiYkHERV11ur1YAsSERERSYJS6a0KRwAgCE44cGCYKC1JDEhEREQkCSUlvqpwVE8QnFBSorB6XRiQiIiISFRubm4AAIWiGDJZndpzMlkdFIoStXLWwDFIREREJCpfX18kJSWhuroawcFleO01OWprZXB2FrBiRRmefXas1VfSlgmCIFjt3exIWVkZ5HI5lEolfHx8xK4OERGR3bhxA7hyBYiIANq0Me+5Df3+ZgsSERERSUqbNuYPRsbiGCQiIiIiDQxIRERERBoYkIiIiIg0MCARERERaWBAIiIiItLAgERERESkgQGJiIiISAMDEhEREZEGBiQiIiIiDQxIRERERBoYkIiIiIg0cC82E9Xv8VtWViZyTYiIiMhQ9d/b9d/jujAgmai8vBwAEBISInJNiIiIyFjl5eWQy+U6n5cJTUUo0qqurg6//fYbvL29IZPJjH59WVkZQkJC8Msvv8DHx8cCNZQ+3gPeg3q8D7wHAO9BPd4Hy94DQRBQXl6OoKAgODnpHmnEFiQTOTk5oU2bNs0+j4+Pj8P+D1CP94D3oB7vA+8BwHtQj/fBcvdAX8tRPQ7SJiIiItLAgERERESkgQFJJO7u7li0aBHc3d3FropoeA94D+rxPvAeALwH9XgfpHEPOEibiIiISANbkIiIiIg0MCARERERaWBAIiIiItLAgERERESkgQHJQjZs2IDQ0FB4eHggJiYGp0+f1ln2woULGDlyJEJDQyGTyZCenm69ilqYMfdhy5YteOihh9CqVSu0atUKcXFxesvbCmPuwb59+9CnTx+0bNkSXl5e6NWrFz744AMr1tZyjLkPDWVmZkImk2HEiBGWraAVGHMPduzYAZlMpvbj4eFhxdpahrGfg9LSUsyYMQOBgYFwd3dHhw4dcOjQISvV1nKMuQ+PPPJIo8+CTCbD0KFDrVhj8zP2s5Ceno6OHTvC09MTISEhmD17Nv7880/LVVAgs8vMzBTc3NyEbdu2CRcuXBCef/55oWXLlkJRUZHW8qdPnxZeeeUV4aOPPhICAgKENWvWWLfCFmLsfXj22WeFDRs2CGfPnhUuXrwoTJo0SZDL5cKNGzesXHPzMfYefPnll8K+ffuEH374Qbhy5YqQnp4uODs7C4cPH7Zyzc3L2PtQLy8vTwgODhYeeugh4cknn7ROZS3E2Huwfft2wcfHRygoKFD9FBYWWrnW5mXsPaiqqhL69OkjPPHEE8LXX38t5OXlCcePHxfOnTtn5Zqbl7H3obi4WO1zcP78ecHZ2VnYvn27dStuRsbeg127dgnu7u7Crl27hLy8POHIkSNCYGCgMHv2bIvVkQHJAvr16yfMmDFD9bi2tlYICgoS0tLSmnxtu3bt7CYgNec+CIIg3L17V/D29hZ27txpqSpaXHPvgSAIQu/evYX58+dbonpWY8p9uHv3rjBgwADhn//8pzBx4kSbD0jG3oPt27cLcrncSrWzDmPvwXvvvSe0b99eqK6utlYVraK5fy+sWbNG8Pb2Fu7cuWOpKlqcsfdgxowZwqBBg9SOpaSkCA888IDF6sguNjOrrq5GTk4O4uLiVMecnJwQFxeH7OxsEWtmXea4D5WVlaipqYFCobBUNS2qufdAEARkZWXh8uXLePjhhy1ZVYsy9T688cYb8PPzw5QpU6xRTYsy9R7cuXMH7dq1Q0hICJ588klcuHDBGtW1CFPuwaefforY2FjMmDED/v7+6NatG9566y3U1tZaq9pmZ46/G7du3YoxY8bAy8vLUtW0KFPuwYABA5CTk6Pqhvv5559x6NAhPPHEExarJzerNbPbt2+jtrYW/v7+asf9/f1x6dIlkWplfea4D6+99hqCgoLU/ieyJabeA6VSieDgYFRVVcHZ2RkbN27EY489ZunqWowp9+Hrr7/G1q1bce7cOSvU0PJMuQcdO3bEtm3b0KNHDyiVSrzzzjsYMGAALly4YJaNsq3NlHvw888/44svvsC4ceNw6NAhXLlyBf/4xz9QU1ODRYsWWaPaZtfcvxtPnz6N8+fPY+vWrZaqosWZcg+effZZ3L59Gw8++CAEQcDdu3cxffp0zJ0712L1ZEAiSVq+fDkyMzNx/PhxuxiYagxvb2+cO3cOd+7cQVZWFlJSUtC+fXs88sgjYlfNKsrLyzFhwgRs2bIFrVu3Frs6oomNjUVsbKzq8YABA9C5c2e8//77WLp0qYg1s566ujr4+flh8+bNcHZ2RnR0NH799VesXLnSZgNSc23duhXdu3dHv379xK6KVR0/fhxvvfUWNm7ciJiYGFy5cgWzZs3C0qVLsWDBAou8JwOSmbVu3RrOzs4oKipSO15UVISAgACRamV9zbkP77zzDpYvX45jx46hR48elqymRZl6D5ycnBAREQEA6NWrFy5evIi0tDSbDUjG3oerV68iPz8fiYmJqmN1dXUAABcXF1y+fBnh4eGWrbSZmePvBVdXV/Tu3RtXrlyxRBUtzpR7EBgYCFdXVzg7O6uOde7cGYWFhaiuroabm5tF62wJzfksVFRUIDMzE2+88YYlq2hxptyDBQsWYMKECZg6dSoAoHv37qioqMC0adMwb948ODmZf8QQxyCZmZubG6Kjo5GVlaU6VldXh6ysLLV/Ddo7U+/D22+/jaVLl+Lw4cPo06ePNapqMeb6LNTV1aGqqsoSVbQKY+9Dp06d8P333+PcuXOqn+HDh+PRRx/FuXPnEBISYs3qm4U5Pgu1tbX4/vvvERgYaKlqWpQp9+CBBx7AlStXVAEZAH788UcEBgbaZDgCmvdZ2LNnD6qqqjB+/HhLV9OiTLkHlZWVjUJQfXAWLLWlrMWGfzuwzMxMwd3dXdixY4fwww8/CNOmTRNatmypmqI7YcIE4fXXX1eVr6qqEs6ePSucPXtWCAwMFF555RXh7Nmzwk8//STWJZiFsfdh+fLlgpubm/Dxxx+rTWktLy8X6xKazdh78NZbbwmff/65cPXqVeGHH34Q3nnnHcHFxUXYsmWLWJdgFsbeB032MIvN2HuwZMkS4ciRI8LVq1eFnJwcYcyYMYKHh4dw4cIFsS6h2Yy9B9evXxe8vb2FpKQk4fLly8LBgwcFPz8/4c033xTrEszC1P8fHnzwQWH06NHWrq5FGHsPFi1aJHh7ewsfffSR8PPPPwuff/65EB4eLowaNcpidWRAspB3331XaNu2reDm5ib069dP+Oabb1TPDRw4UJg4caLqcV5engCg0c/AgQOtX3EzM+Y+tGvXTut9WLRokfUrbkbG3IN58+YJERERgoeHh9CqVSshNjZWyMzMFKHW5mfMfdBkDwFJEIy7B8nJyaqy/v7+whNPPCHk5uaKUGvzMvZzcPLkSSEmJkZwd3cX2rdvLyxbtky4e/eulWttfsbeh0uXLgkAhM8//9zKNbUcY+5BTU2NsHjxYiE8PFzw8PAQQkJChH/84x/C77//brH6yQTBUm1TRERERLaJY5CIiIiINDAgEREREWlgQCIiIiLSwIBEREREpIEBiYiIiEgDAxIRERGRBgYkIiIiIg0MSEREEjdp0iSMGDFC7GoQORQGJCIy2aRJkyCTyVQ/vr6+SEhIwHfffSd21cyi4bXV/zz44IMWe7/8/HzIZDKcO3dO7fjatWuxY8cOi70vETXGgEREzZKQkICCggIUFBQgKysLLi4uGDZsmNjVMpvt27errq+goACffvqp1nI1NTUWq4NcLkfLli0tdn4iaowBiYiaxd3dHQEBAQgICECvXr3w+uuv45dffsGtW7cwaNAgJCUlqZW/desW3NzcVDt5h4aGYunSpRg7diy8vLwQHByMDRs2qL1m9erV6N69O7y8vBASEoJ//OMfuHPnjur5a9euITExEa1atYKXlxe6du2KQ4cOAQB+//13jBs3Dvfffz88PT0RGRmJ7du3G3x9LVu2VF1fQEAAFAqFqqVn9+7dGDhwIDw8PLBr1y4UFxdj7NixCA4ORosWLdC9e3d89NFHauerq6vD22+/jYiICLi7u6Nt27ZYtmwZACAsLAwA0Lt3b8hkMjzyyCMAGnexVVVVYebMmfDz84OHhwcefPBBnDlzRvX88ePHIZPJkJWVhT59+qBFixYYMGAALl++bPB1Ezk6BiQiMps7d+7gww8/REREBHx9fTF16lRkZGSgqqpKVebDDz9EcHAwBg0apDq2cuVK9OzZE2fPnsXrr7+OWbNm4ejRo6rnnZycsG7dOly4cAE7d+7EF198gVdffVX1/IwZM1BVVYX//Oc/+P7777FixQrcd999AIAFCxbghx9+wL///W9cvHgR7733Hlq3bm2W662v68WLFxEfH48///wT0dHR+Oyzz3D+/HlMmzYNEyZMwOnTp1WvSU1NxfLly1X1ysjIgL+/PwCoyh07dgwFBQXYt2+f1vd99dVXsXfvXuzcuRO5ubmIiIhAfHw8SkpK1MrNmzcPq1atwrfffgsXFxf8/e9/N8t1EzkEi22DS0R2b+LEiYKzs7Pg5eUleHl5CQCEwMBAIScnRxAEQfjjjz+EVq1aCbt371a9pkePHsLixYtVj9u1ayckJCSonXf06NHCkCFDdL7vnj17BF9fX9Xj7t27q52zocTERGHy5MkmXR8AwcPDQ3V9Xl5ewieffCLk5eUJAIT09PQmzzF06FDh5ZdfFgRBEMrKygR3d3dhy5YtWsvWn/fs2bNqxydOnCg8+eSTgiAIwp07dwRXV1dh165dquerq6uFoKAg4e233xYEQRC+/PJLAYBw7NgxVZnPPvtMACD88ccfxtwCIofFFiQiapZHH30U586dw7lz53D69GnEx8djyJAhuHbtGjw8PDBhwgRs27YNAJCbm4vz589j0qRJaueIjY1t9PjixYuqx8eOHcPgwYMRHBwMb29vTJgwAcXFxaisrAQAzJw5E2+++SYeeOABLFq0SG2Q+IsvvojMzEz06tULr776Kk6ePGnU9a1Zs0Z1fefOncNjjz2meq5Pnz5qZWtra7F06VJ0794dCoUC9913H44cOYLr168DAC5evIiqqioMHjzYqDo0dPXqVdTU1OCBBx5QHXN1dUW/fv3U7hkA9OjRQ/V7YGAgAODmzZsmvzeRI2FAIqJm8fLyQkREBCIiItC3b1/885//REVFBbZs2QIAmDp1Ko4ePYobN25g+/btGDRoENq1a2fw+fPz8zFs2DD06NEDe/fuRU5OjmqMUnV1teo9fv75Z0yYMAHff/89+vTpg3fffRcAVGFt9uzZ+O233zB48GC88sorBr9/QECA6voiIiLg5eWldu0NrVy5EmvXrsVrr72GL7/8EufOnUN8fLyqnp6enga/rzm4urqqfpfJZADujYEioqYxIBGRWclkMjg5OeGPP/4AAHTv3h19+vTBli1bkJGRoXUczDfffNPocefOnQEAOTk5qKurw6pVq9C/f3906NABv/32W6NzhISEYPr06di3bx9efvllVUADgPvvvx8TJ07Ehx9+iPT0dGzevNmcl6xy4sQJPPnkkxg/fjx69uyJ9u3b48cff1Q9HxkZCU9PT9UAdU1ubm4A7rVE6RIeHg43NzecOHFCdaympgZnzpxBly5dzHQlROQidgWIyLZVVVWhsLAQwL0ZY+vXr8edO3eQmJioKjN16lQkJSXBy8sLTz31VKNznDhxAm+//TZGjBiBo0ePYs+ePfjss88AABEREaipqcG7776LxMREnDhxAps2bVJ7fXJyMoYMGYIOHTrg999/x5dffqkKWAsXLkR0dDS6du2KqqoqHDx4UPWcuUVGRuLjjz/GyZMn0apVK6xevRpFRUWq4OLh4YHXXnsNr776Ktzc3PDAAw/g1q1buHDhAqZMmQI/Pz94enri8OHDaNOmDTw8PCCXy9Xew8vLCy+++CLmzJkDhUKBtm3b4u2330ZlZSWmTJlikesickRsQSKiZjl8+DACAwMRGBiImJgYnDlzBnv27FFNUQeAsWPHwsXFBWPHjoWHh0ejc7z88sv49ttv0bt3b7z55ptYvXo14uPjAQA9e/bE6tWrsWLFCnTr1g27du1CWlqa2utra2sxY8YMdO7cGQkJCejQoQM2btwI4F6rTGpqKnr06IGHH34Yzs7OyMzMtMi9mD9/PqKiohAfH49HHnkEAQEBjVbAXrBgAV5++WUsXLgQnTt3xujRo1XjglxcXLBu3Tq8//77CAoKwpNPPqn1fZYvX46RI0diwoQJiIqKwpUrV3DkyBG0atXKItdF5IhkgiAIYleCiOxbfn4+wsPDcebMGURFRak9FxoaiuTkZCQnJ4tTOSIiLdjFRkQWU1NTg+LiYsyfPx/9+/dvFI6IiKSKXWxEZDEnTpxAYGAgzpw502jckNjeeust3HfffVp/hgwZInb1iEhk7GIjIodUUlLSaOXpep6enggODrZyjYhIShiQiIiIiDSwi42IiIhIAwMSERERkQYGJCIiIiINDEhEREREGhiQiIiIiDQwIBERERFpYEAiIiIi0sCARERERKTh/wPiCkLSS0OIywAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_16.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoT0lEQVR4nO3de1xU1d4/8M8MMOAFUEBuioKIkpdUUAnymuRQXqKL11Iyrz2iEmWFmpc4HTQVIbXIjiinI0mmkaWPhpQnS7QETS21NNBSQIEcFJ8AYf/+8MeOgRmYGWaY2+f9es1LZ++1915rz8D+stZ3ry0RBEEAEREREWlFauwKEBEREZkjBlFEREREOmAQRURERKQDBlFEREREOmAQRURERKQDBlFEREREOmAQRURERKQDBlFEREREOmAQRURERKQDBlFERBZux44dkEgkKCgoMHZViCwKgygiarEffvgB0dHR6NOnD9q1a4euXbti0qRJ+OWXXxqVHTlyJCQSCSQSCaRSKZycnNCrVy9Mnz4dWVlZWh33888/x4gRI+Du7o62bduie/fumDRpEg4ePKivpjXyz3/+E5mZmY2WHzt2DKtWrcKtW7cMduyGVq1aJZ5LiUSCtm3bonfv3li+fDnKy8v1coz09HQkJSXpZV9EloZBFBG12Nq1a7Fnzx6MHj0aycnJmDt3Lr755hsEBQXh3Llzjcp36dIFH374If79739j3bp1mDBhAo4dO4YxY8Zg8uTJqK6ubvaY69evx4QJEyCRSBAXF4eNGzfi6aefxq+//opdu3YZopkAmg6iVq9e3apBVJ333nsPH374IRITExEYGIi33noLERER0MejURlEEalna+wKEJH5i42NRXp6OmQymbhs8uTJ6NevH9asWYP//Oc/SuWdnZ3x3HPPKS1bs2YNFi1ahHfffRe+vr5Yu3at2uPdu3cP8fHxePTRR/Hll182Wn/jxo0Wtsh03L17F23btm2yzDPPPAM3NzcAwPz58/H0009j7969OH78OEJDQ1ujmkRWiT1RRNRiYWFhSgEUAAQEBKBPnz44f/68RvuwsbHBO++8g969e2Pz5s1QKBRqy5aUlKC8vBwPP/ywyvXu7u5K7//66y+sWrUKPXv2hIODA7y8vPDUU0/h8uXLYpn169cjLCwMrq6uaNOmDYKDg/HJJ58o7UcikaCiogJpaWniENrzzz+PVatWYcmSJQAAPz8/cV39HKT//Oc/CA4ORps2beDi4oIpU6bg999/V9r/yJEj0bdvX+Tm5mL48OFo27Ytli5dqtH5q++RRx4BAOTn5zdZ7t1330WfPn1gb28Pb29vLFiwQKknbeTIkdi/fz+uXLkitsnX11fr+hBZKvZEEZFBCIKA4uJi9OnTR+NtbGxsMHXqVLzxxhv49ttvMXbsWJXl3N3d0aZNG3z++edYuHAhXFxc1O6zpqYG48aNQ3Z2NqZMmYLFixfj9u3byMrKwrlz5+Dv7w8ASE5OxoQJE/Dss8+iqqoKu3btwsSJE/HFF1+I9fjwww8xe/ZsDBkyBHPnzgUA+Pv7o127dvjll1/w0UcfYePGjWKvUKdOnQAAb731Ft544w1MmjQJs2fPxs2bN7Fp0yYMHz4cp06dQocOHcT6lpaW4rHHHsOUKVPw3HPPwcPDQ+PzV6cuOHR1dVVbZtWqVVi9ejXCw8Px4osv4uLFi3jvvffwww8/4LvvvoOdnR2WLVsGhUKBP/74Axs3bgQAtG/fXuv6EFksgYjIAD788EMBgLBt2zal5SNGjBD69OmjdrtPP/1UACAkJyc3uf8VK1YIAIR27doJjz32mPDWW28Jubm5jcqlpqYKAITExMRG62pra8X/3717V2ldVVWV0LdvX+GRRx5RWt6uXTshKiqq0b7WrVsnABDy8/OVlhcUFAg2NjbCW2+9pbT87Nmzgq2trdLyESNGCACElJQUte2ub+XKlQIA4eLFi8LNmzeF/Px84f333xfs7e0FDw8PoaKiQhAEQdi+fbtS3W7cuCHIZDJhzJgxQk1Njbi/zZs3CwCE1NRUcdnYsWOFbt26aVQfImvD4Twi0rsLFy5gwYIFCA0NRVRUlFbb1vV03L59u8lyq1evRnp6OgYOHIhDhw5h2bJlCA4ORlBQkNIQ4p49e+Dm5oaFCxc22odEIhH/36ZNG/H/f/75JxQKBYYNG4a8vDyt6t/Q3r17UVtbi0mTJqGkpER8eXp6IiAgAF9//bVSeXt7e8ycOVOrY/Tq1QudOnWCn58f5s2bhx49emD//v1qc6kOHz6MqqoqxMTEQCr9+zIwZ84cODk5Yf/+/do3lMgKcTiPiPSqqKgIY8eOhbOzMz755BPY2Nhotf2dO3cAAI6Ojs2WnTp1KqZOnYry8nKcOHECO3bsQHp6OsaPH49z587BwcEBly9fRq9evWBr2/Svuy+++AL/+Mc/cPr0aVRWVorL6wdauvj1118hCAICAgJUrrezs1N637lz50b5Zc3Zs2cPnJycYGdnhy5duohDlOpcuXIFwP3gqz6ZTIbu3buL64moaQyiiEhvFAoFHnvsMdy6dQtHjx6Ft7e31vuomxKhR48eGm/j5OSERx99FI8++ijs7OyQlpaGEydOYMSIERptf/ToUUyYMAHDhw/Hu+++Cy8vL9jZ2WH79u1IT0/Xug311dbWQiKR4H//939VBpQNc4zq94hpavjw4WIeFhG1HgZRRKQXf/31F8aPH49ffvkFhw8fRu/evbXeR01NDdLT09G2bVsMHTpUp3oMGjQIaWlpKCwsBHA/8fvEiROorq5u1OtTZ8+ePXBwcMChQ4dgb28vLt++fXujsup6ptQt9/f3hyAI8PPzQ8+ePbVtjkF069YNAHDx4kV0795dXF5VVYX8/HyEh4eLy1raE0dkyZgTRUQtVlNTg8mTJyMnJwe7d+/WaW6impoaLFq0COfPn8eiRYvg5OSktuzdu3eRk5Ojct3//u//Avh7qOrpp59GSUkJNm/e3Kis8P8no7SxsYFEIkFNTY24rqCgQOWkmu3atVM5oWa7du0AoNG6p556CjY2Nli9enWjyS8FQUBpaanqRhpQeHg4ZDIZ3nnnHaU6bdu2DQqFQumuyHbt2jU53QSRNWNPFBG12Msvv4x9+/Zh/PjxKCsrazS5ZsOJNRUKhVjm7t27uHTpEvbu3YvLly9jypQpiI+Pb/J4d+/eRVhYGB566CFERETAx8cHt27dQmZmJo4ePYrIyEgMHDgQADBjxgz8+9//RmxsLL7//nsMGzYMFRUVOHz4MP7nf/4HTzzxBMaOHYvExERERERg2rRpuHHjBrZs2YIePXrgzJkzSscODg7G4cOHkZiYCG9vb/j5+SEkJATBwcEAgGXLlmHKlCmws7PD+PHj4e/vj3/84x+Ii4tDQUEBIiMj4ejoiPz8fHz66aeYO3cuXnnllRadf2116tQJcXFxWL16NSIiIjBhwgRcvHgR7777LgYPHqz0eQUHByMjIwOxsbEYPHgw2rdvj/Hjx7dqfYlMljFvDSQiy1B3a766V1Nl27dvLwQEBAjPPfec8OWXX2p0vOrqauGDDz4QIiMjhW7dugn29vZC27ZthYEDBwrr1q0TKisrlcrfvXtXWLZsmeDn5yfY2dkJnp6ewjPPPCNcvnxZLLNt2zYhICBAsLe3FwIDA4Xt27eLUwjUd+HCBWH48OFCmzZtBABK0x3Ex8cLnTt3FqRSaaPpDvbs2SMMHTpUaNeundCuXTshMDBQWLBggXDx4kWlc9PU9A8N1dXv5s2bTZZrOMVBnc2bNwuBgYGCnZ2d4OHhIbz44ovCn3/+qVTmzp07wrRp04QOHToIADjdAVE9EkHQw8OViIiIiKwMc6KIiIiIdMAgioiIiEgHDKKIiIiIdMAgioiIiEgHDKKIiIiIdMAgioiIiEgHnGzTQGpra3H9+nU4OjrysQlERERmQhAE3L59G97e3pBKm+5rYhBlINevX4ePj4+xq0FEREQ6+P3339GlS5cmyzCIMhBHR0cA9z+Epp4BRkRERKajvLwcPj4+4nW8KQyiDKRuCM/JyYlBFBERkZnRJBWHieVEREREOmAQRURERKQDBlFEREREOmBOlJHV1NSgurra2NWwWHZ2drCxsTF2NYiIyAIxiDISQRBQVFSEW7duGbsqFq9Dhw7w9PTkfF1ERKRXDKKMpC6Acnd3R9u2bXmBNwBBEHD37l3cuHEDAODl5WXkGhERkSVhEGUENTU1YgDl6upq7OpYtDZt2gAAbty4AXd3dw7tERGR3jCx3AjqcqDatm1r5JpYh7rzzNwzIiLSJwZRRsQhvNbB80xERIbAIIqIiIhIB8yJIiIiIr0oLS1FVVWV2vUymcyicoEZRJFWnn/+eaSlpQEAbG1t4eLiggcffBBTp07F888/D6lUs87NHTt2ICYmhlM8EBFZiNLSUmzevFl8r1A4oqzMFS4upXB2vi0uj46OtphAikGUmTJmtB8REYHt27ejpqYGxcXFOHjwIBYvXoxPPvkE+/btg60tv1ZERNam/jUpL28gPv98HARBComkFuPHf4GgoFONypk7Xu3MUMNoXx1DRfv29vbw9PQEAHTu3BlBQUF46KGHMHr0aOzYsQOzZ89GYmIitm/fjt9++w0uLi4YP3483n77bbRv3x5HjhzBzJkzAfyd9L1y5UqsWrUKH374IZKTk3Hx4kW0a9cOjzzyCJKSkuDu7q73dhARkf4pFI5iAAUAgiDF55+Pg7//JaUeKUvAxHIzpGkU35rR/iOPPIL+/ftj7969AACpVIp33nkHP/30E9LS0vDVV1/h1VdfBQCEhYUhKSkJTk5OKCwsRGFhIV555RUA96chiI+Px48//ojMzEwUFBTg+eefb7V2EBFRy5SVuYoBVB1BkKKszMVINTIc9kSR3gQGBuLMmTMAgJiYGHG5r68v/vGPf2D+/Pl49913IZPJ4OzsDIlEIvZo1XnhhRfE/3fv3h3vvPMOBg8ejDt37qB9+/at0g4iItKdi0spJJJapUBKIqmFi0uZEWtlGOyJIr0RBEEcnjt8+DBGjx6Nzp07w9HREdOnT0dpaSnu3r3b5D5yc3Mxfvx4dO3aFY6OjhgxYgQA4OrVqwavPxERtZyz822MH/8FJJJaABBzoixtKA9gTxTp0fnz5+Hn54eCggKMGzcOL774It566y24uLjg22+/xaxZs1BVVaV2pvaKigrI5XLI5XLs3LkTnTp1wtWrVyGXyy0qEZGIyNIFBZ2Cv/8llJW5wMWlzCIDKIBBFOnJV199hbNnz+Kll15Cbm4uamtrsWHDBnHKg48//lipvEwmQ01NjdKyCxcuoLS0FGvWrIGPjw8A4OTJk63TACIi0itn59sWGzzV4XAeaa2yshJFRUW4du0a8vLy8M9//hNPPPEExo0bhxkzZqBHjx6orq7Gpk2b8Ntvv+HDDz9ESkqK0j58fX1x584dZGdno6SkBHfv3kXXrl0hk8nE7fbt24f4+HgjtZKIiLQhk8n0Ws4csCeKtHbw4EF4eXnB1tYWHTt2RP/+/fHOO+8gKioKUqkU/fv3R2JiItauXYu4uDgMHz4cCQkJmDFjhriPsLAwzJ8/H5MnT0Zpaak4xcGOHTuwdOlSvPPOOwgKCsL69esxYcIEI7aWiIg04erqiujoaKuasVwiCIJg7EpYovLycjg7O0OhUMDJyUlp3V9//YX8/Hz4+fnBwcFB630be54oc9PS801ERNajqet3Q+yJMkPWGO0TERlK/SdAXL8uRX6+Lfz87sHb+/7dZfx9SuowiDJT/IEmImq5+j37TT2qpDV79q3tIb7mjEEUERFZrbpgpblHlbTWNCvW+BBfc8YgioiIrF5Tjyppzdv0rfEhvuaMUxwQEZHVq3tUSX3GfFSJup4xhcLRKPUh1dgTRUREVq/uUSUNe36MNVmkqfSMGZq5538xiCIiIoLmjyppjQu/NTzE1xLyvxhEERER/X/NPaqktS78ptYzZgiWkP/FIIqIiEhDrXnht5aH+DZ3Z6QpY2I5mZQjR45AIpHg1q1bGm/j6+uLpKQkg9WJiCyXrs97a63Eb2fn2/Dzu2LywURLNJX/ZeqMHkRt2bIFvr6+cHBwQEhICL7//vsmy+/evRuBgYFwcHBAv379cODAAaX1zz//PCQSidIrIiJCXF9QUIBZs2bBz88Pbdq0gb+/P1auXKn0V0NBQUGjfUgkEhw/fly/jTdDded3/vz5jdYtWLAAEokEzz//fOtXjIhIB3VPgJg7d67al6qhOUNd+K3xIb6mdmekNow6nJeRkYHY2FikpKQgJCQESUlJkMvluHjxItzd3RuVP3bsGKZOnYqEhASMGzcO6enpiIyMRF5eHvr27SuWi4iIwPbt28X39vb24v8vXLiA2tpavP/+++jRowfOnTuHOXPmoKKiAuvXr1c63uHDh9GnTx/xvakmtrU2Hx8f7Nq1Cxs3bkSbNm0A3H8+XXp6Orp27Wrk2hERaUeX3+2GSvy2xsd6aZP/ZWp38xk1iEpMTMScOXMwc+ZMAEBKSgr279+P1NRUvP76643KJycnIyIiAkuWLAEAxMfHIysrC5s3b0ZKSopYzt7eHp6eniqPGRERodQz1b17d1y8eBHvvfdeoyDK1dVV7X6sWVBQEC5fvoy9e/fi2WefBQDs3bsXXbt2hZ+fn1iusrISS5Yswa5du1BeXo5BgwZh48aNGDx4sFjmwIEDiImJwe+//46HHnoIUVFRjY737bffIi4uDidPnoSbmxuefPJJJCQkoF27doZvLBGRCoZM/LakAElTmuR/NUzqV6c17+Yz2nBeVVUVcnNzER4e/ndlpFKEh4cjJydH5TY5OTlK5QFALpc3Kn/kyBG4u7ujV69eePHFF1FaWtpkXRQKBVxcGnfBTpgwAe7u7hg6dCj27dvX5D4qKytRXl6u9Gotf/wBfP31/X9bywsvvKDU25eamioGw3VeffVV7NmzB2lpacjLy0OPHj0gl8tRVnb/L7Xff/8dTz31FMaPH4/Tp09j9uzZjYLny5cvIyIiAk8//TTOnDmDjIwMfPvtt4iOjjZ8I4nIKpSWlqKwsFDtS901JCjoFGJikhAVtQMxMUliUjnpprn8r4Y9UAqFI/LzfRvlobXm3XxG64kqKSlBTU0NPDw8lJZ7eHjgwoULKrcpKipSWb6oqEh8HxERgaeeegp+fn64fPkyli5disceeww5OTmwsbFptM9Lly5h06ZNSr1Q7du3x4YNG/Dwww9DKpViz549iIyMRGZmJiZMmKCybgkJCVi9erXG7deXbduAuXOB2lpAKgW2bgVmzTL8cZ977jnExcXhypUrAIDvvvsOu3btwpEjRwAAFRUVeO+997Bjxw489thjAIAPPvgAWVlZ2LZtG5YsWYL33nsP/v7+2LBhAwCgV69eOHv2LNauXSseJyEhAc8++yxiYmIAAAEBAXjnnXcwYsQIvPfee3BwcDB8Y4nIYrW0d6O5KRFIvZbkfzV1Z2RrsrgpDqZMmSL+v1+/fnjwwQfh7++PI0eOYPTo0Uplr127hoiICEycOBFz5swRl7u5uSE2NlZ8P3jwYFy/fh3r1q1TG0TFxcUpbVNeXg4fHx99NUulP/74O4AC7v87bx4glwNduhj00OjUqRPGjh2LHTt2QBAEjB07Fm5ubuL6y5cvo7q6Gg8//LC4zM7ODkOGDMH58+cBAOfPn0dISIjSfkNDQ5Xe//jjjzhz5gx27twpLhMEAbW1tcjPz8cDDzxgiOYRkZVQ1buhat6nunKmmPhtanlCmtI1/8uUpkQwWhDl5uYGGxsbFBcXKy0vLi5Wm4fk6empVXngfs6Tm5sbLl26pBREXb9+HaNGjUJYWBi2bt3abH1DQkKQlZWldr29vb1SAntr+PXXvwOoOjU1wKVLhg+igPtDenXDalu2bDHIMe7cuYN58+Zh0aJFjdYxiZ2I9EmT3g1TS/w2xTwhbehSJ1N6JI7RcqJkMhmCg4ORnZ0tLqutrUV2dnaj3og6oaGhSuUBICsrS215APjjjz9QWloKLy8vcdm1a9cwcuRIBAcHY/v27ZBKmz8Np0+fVtqHKQgIuD+EV5+NDdCjR+scPyIiAlVVVaiuroZcLlda5+/vD5lMhu+++05cVl1djR9++AG9e/cGADzwwAONprRoOI1EUFAQfv75Z/To0aPRy5Ju8SUi49Jm3idXV1d4eXmpfbVmsGKKeUKGZkpTIhh1OC82NhZRUVEYNGgQhgwZgqSkJFRUVIgJyjNmzEDnzp2RkJAAAFi8eDFGjBiBDRs2YOzYsdi1axdOnjwp9iTduXMHq1evxtNPPw1PT09cvnwZr776qpjQDPwdQHXr1g3r16/HzZs3xfrU9WilpaVBJpNh4MCBAO7feZaamop//etfrXZuNNGly/0cqHnz7vdA2dgA77/fOr1QAGBjYyMOzTXMN2vXrh1efPFFLFmyBC4uLujatSvefvtt3L17F7P+f9LW/PnzsWHDBixZsgSzZ89Gbm4uduzYobSf1157DQ899BCio6Mxe/ZstGvXDj///LN4VyYRkT6YUu+GrkwlT8jQTOmROEYNoiZPnoybN29ixYoVKCoqwoABA3Dw4EExefzq1atKvURhYWFIT0/H8uXLsXTpUgQEBCAzM1OcI8rGxgZnzpxBWloabt26BW9vb4wZMwbx8fHiUFtWVhYuXbqES5cuoUuDaEMQBPH/8fHxuHLlCmxtbREYGIiMjAw888wzhj4lWps1634O1KVL93ugWiuAquPk5KR23Zo1a1BbW4vp06fj9u3bGDRoEA4dOoSOHTsCuD8ct2fPHrz00kvYtGkThgwZgn/+85944YUXxH08+OCD+O9//4tly5Zh2LBhEAQB/v7+mDx5ssHbRkTWw9wf+GtKeUKtwVQeiSMR6kcOpDfl5eVwdnaGQqFoFGj89ddfyM/Ph5+fH+8uawU830SkTmFhoTia0VRPzty5c00upQP4u/75+b5IS2s8z15U1A74+V0x2fpro7Xyv5q6fjdkcXfnERER6cJUejd0Ye49aZowtaR+gEEUERFZsYY3qKib98nUb2QxpTwhQzK1OwwZRBERkdUyxd4NXZlzT5q5YhBFRERWzRwCJHUspSfNXDGIMiLm9LcOnmcislSW1JNmjhhEGYGdnR0A4O7du2jTpo2Ra2P57t69C+Dv805EZEkYIBkPgygjsLGxQYcOHXDjxg0AQNu2bSGRSIxcK8sjCALu3r2LGzduoEOHDiofQE1ERKQrBlFGUjc7el0gRYbToUOHJp+vSEREpAsGUUYikUjg5eUFd3d3VFdXG7s6FsvOzo49UEREZBAMoozMxsaGF3kiIiIzJG2+CBERERE1xCCKiIiISAccziMiMoDS0lLO3UNk4RhEERHpWWs9bZ6IjItBFBGRnjWcukShcERZmStcXEqVHslx48YNqwyi2EtHloJBFBGRnt27d0/8f17eQHz++TgIghQSSS3Gj/8CQUGnGpXTlrkGIuylI0vCIIqIyEAUCkfs2zcewP0nEgiCFJ9/Pg7+/pdUPiRWU+YciDQM/NT10jUVIBKZCgZRREQG8vvvPqgLoOoIghS//94Fzs7ndd6vpgGGqQciTfXSEZkDBlFERGZOXW+OKVMoHMUACtBfLx3pl7kOG7cWBlFERAbi4/M7gFooT8lXCx+fP/R2DFPpzdH2YltW5ioGUHUEQYqyMhcGUSbCnIeNWwuDKCIiA3F2vo0JE77Avn3jcD+QqsWECV/oLUgwld4cbS62dVxcSiGR1CoFUhJJLVxcygxSR9Ie89eaxyCKiEjP7OzsxP8HBZ2Cv/8llJW5wMWlTOniU7+cLkylN0eXi62z822MH/9Fo1409kKZJlPp8TQ1DKKIiPSsU6dOSu+dnW+rDA4altOWKfbmaHOxbSrAJNNhKj2epohBFBGRnrm6uiI6OtrgCbmm1pujycVWJpMpbaMuwGxYjozHVHo8TRGDKCKyGKZ0J5Ehj1M/wGiqN6e1AxFNLratFWCS/phij6epYBBFRBbB0HcSmVqAZoqBiKYXWwZI5sXUejxNCYMoIrIIhryTyBRv9TbFQIQXW8vF/DXVGEQRkcXR951EljJDeGvgxdZy6JK/Zko9tq2BQRQRWZTWuJPIHGcINyQmi1smbYeNTbHH1tAYRBGRRTH0nUScL6cxXS621tRbYc60+RyssceWQRQRWRRD3knE+XLU0/Ria429FaakNQNYa+ixZRBFRBbFkMnNnC+n5fgoEeNpzQDWWnpspc0XMawtW7bA19cXDg4OCAkJwffff99k+d27dyMwMBAODg7o168fDhw4oLT++eefh0QiUXpFREQolSkrK8Ozzz4LJycndOjQAbNmzcKdO3eUypw5cwbDhg2Dg4MDfHx88Pbbb+unwURkcEFBpxATk4SoqB2IiUnS2y/vul6u+jhfju7y8gYiKSkGaWlRSEqKQV7eQGNXyaK11nCbuh5bhcKxRfs1RUYNojIyMhAbG4uVK1ciLy8P/fv3h1wux40bN1SWP3bsGKZOnYpZs2bh1KlTiIyMRGRkJM6dO6dULiIiAoWFheLro48+Ulr/7LPP4qeffkJWVha++OILfPPNN5g7d664vry8HGPGjEG3bt2Qm5uLdevWYdWqVdi6dav+TwIR6YWq5GY/vyuNeohaktxc18tVF0jxFn7dWdOF1lQpFI7Iz/fV+zlvqsfW0hh1OC8xMRFz5szBzJkzAQApKSnYv38/UlNT8frrrzcqn5ycjIiICCxZsgQAEB8fj6ysLGzevBkpKSliOXt7e3h6eqo85vnz53Hw4EH88MMPGDRoEABg06ZNePzxx7F+/Xp4e3tj586dqKqqQmpqKmQyGfr06YPTp08jMTFRKdgiIutgqjOEmzMOjbY+hUIh/r+p4TaFQgEvLy+dj2NNM5wbLYiqqqpCbm4u4uLixGVSqRTh4eHIyclRuU1OTg5iY2OVlsnlcmRmZiotO3LkCNzd3dGxY0c88sgj+Mc//iGO7+bk5KBDhw5iAAUA4eHhkEqlOHHiBJ588knk5ORg+PDhSr8Q5XI51q5diz///BMdO3ZsafOJSM8MOVRhqjOEmzNrutCaiurqagDN3yBRV05X1jTpqtGCqJKSEtTU1MDDw0NpuYeHBy5cuKBym6KiIpXli4qKxPcRERF46qmn4Ofnh8uXL2Pp0qV47LHHkJOTAxsbGxQVFcHd3V1pH7a2tnBxcRH3U1RUBD8/v0bHqVunKoiqrKxEZWWl+L68vLy5U0BEBqTvO4MYIOmXNV1oTY2hegGtscfW4u7OmzJlivj/fv364cEHH4S/vz+OHDmC0aNHG+y4CQkJWL16tcH2T0Sas5Y7g8wdZzc3DheXUgC1UE6LbnkvoDX22BotiHJzc4ONjQ2Ki4uVlhcXF6vNZ/L09NSqPAB0794dbm5uuHTpEkaPHg1PT89Giev37t1DWVmZuB91x6lbp0pcXJzSUGN5eTl8fHzU1ouIDINzOZk2zm5uKiTK7yRqimnJkgIkTRgtiJLJZAgODkZ2djYiIyMBALW1tcjOzkZ0dLTKbUJDQ5GdnY2YmBhxWVZWFkJDQ9Ue548//kBpaamYJBcaGopbt24hNzcXwcHBAICvvvoKtbW1CAkJEcssW7YM1dXVsLOzE4/Tq1cvtflQ9vb2sLe31+ocEJH+MWHZtFljb4WpsLW9f8kvK3NFwyCq/s9IXTlqnlHPVGxsLKKiojBo0CAMGTIESUlJqKioEO/WmzFjBjp37oyEhAQAwOLFizFixAhs2LABY8eOxa5du3Dy5Elx6oE7d+5g9erVePrpp+Hp6YnLly/j1VdfRY8ePSCXywEADzzwACIiIjBnzhykpKSguroa0dHRmDJlCry9vQEA06ZNw+rVqzFr1iy89tprOHfuHJKTk7Fx40YjnCUi0oY2Cct8/Ihx8JwaR4cOHQA0/zNSV46aZ9QgavLkybh58yZWrFiBoqIiDBgwAAcPHhSTuK9evQqp9O8POSwsDOnp6Vi+fDmWLl2KgIAAZGZmom/fvgAAGxsbnDlzBmlpabh16xa8vb0xZswYxMfHK/US7dy5E9HR0Rg9ejSkUimefvppvPPOO+J6Z2dnfPnll1iwYAGCg4Ph5uaGFStWcHoDsniWEFRomrDMx4+QtWJSv/5IBEEQjF0JS1ReXg5nZ2coFAo4OTkZuzpEzTL3oKJh/e/fndc4Ybmu/oWFhUoT6Kq7m2/u3LktmjOHyFRo+zNirbS5fnPgk4gAmP8T2FuSa8O7+cgaMB9N/xhEEZFK5vgEdl1++Wt6N58lDHUS8TuqXwyiiKgRa+qZ0eRuPnMf6iQiwzDqA4iJyPRY24Nh6+5Uqq/h3XwNe6DUPbjVVIc6icgw2BNFZEZaY0jJnOdZ0uX8aHunkjX10hFR0xhEEZmJ1hpSMtcHw7bk/Gj6+BHOhk5E9TGIIjITqoaUVCV+t3RIyVznkNH2/Gjz+JG6bcy5l05bTKQnah6DKCIj0+ViZYghJUt6Arsm50eb270LCwsBmG8vnbZ06dVj0EXWiEEUkRGpnvyuce9J/edJGmpIyVLmkNHm/GjaFoVCAaD5XjqFQmERE3Nq26vHuxfJWjGIIjKi+herpnpP6pcz5JCSJVzgDHF+qqurxf8HBZ2Cu3sRrl7tiq5dr6JLl0KV5SyFJr165j5RK5GuGEQRmQBtek+sZUhJV4Y4P/Wfat9UUFG/nCXQtdfTHCdqJdIF54kiMgFN9Z40VDekVDe3kbkkfrcWQ5yfuqfaNzeHVl05S6HN97JOXt5AJCXFIC0tCklJMcjLG2joahIZjWX92URkprTtPdH0lnxrZajzY0135wHafy85BQRZG/ZEEZkATXpPVN2S7+d3pdHFyRzunjOE1jg/msxubkm07dXTpeeKyJyxJ4rIRDTXe2Ipd88ZSmucH3OdQ6sltOnVY74eWRsGUUQmRN2Ej3WsNUDSlKHOT90UB0DTQYWlTHGgzUSkDctZW5BJ1o1BFJERaTq0ZK1DdKZCEAQVSyUaljM/2vbqWdJErUTaYBBFZEQcojMP9e+6a2qKA0u6O0+b7xy/x2StGEQRGRkvLOaDd5+px+8xWSMGUUREGrK2KQ6sBZ/7R7piEEVEpCHefWZ5+Nw/agnOE0VEpCHOFm95+Nw/agn2RBERaYGzxVs2PvePtMEgioioGbrOm0Tmpak7L4lUYRBFRNQMV1dXPPfcc7h7967aMm3btmXOjBnjnZekCwZRRETNKC0txX/+8x/xvbohHyYfmy/eeUm6YBBFRNSM+knFTQ35MPnYfPHOS9IF784jItKQuiEfhcLRyDWjluKdl6QL9kQREWmIQz6Wh8/9o5ZgEEWkZ5z92HJxyMfymOJz//g7xHwwiCKzZ0q/cDj7sWWrG/JpmBPFXijzZko/i/wdYl4YRJFZM7VfOJz92LhaI6DmZJtkSPwdYl4YRJFZM/VfOJz9uPW0ZkCtbrJNIn3j7xDTZvS787Zs2QJfX184ODggJCQE33//fZPld+/ejcDAQDg4OKBfv344cOCA2rLz58+HRCJBUlKSuOzIkSOQSCQqXz/88AMAoKCgQOX648eP66XNZDgKhSPy831N4m6pvLyBSEqKQVpaFJKSYpCXN9DYVbJoDQNldd8FXQJqTZOKmXxM+sTfIabPqD1RGRkZiI2NRUpKCkJCQpCUlAS5XI6LFy/C3d29Ufljx45h6tSpSEhIwLhx45Ceno7IyEjk5eWhb9++SmU//fRTHD9+HN7e3krLw8LCUFhYqLTsjTfeQHZ2NgYNGqS0/PDhw+jTp4/4nuPPps2UHtnA2Y+NS9/fBVNMPibLxt8h5sGoPVGJiYmYM2cOZs6cid69eyMlJQVt27ZFamqqyvLJycmIiIjAkiVL8MADDyA+Ph5BQUGNuvCvXbuGhQsXYufOnbCzs1NaJ5PJ4OnpKb5cXV3x2WefYebMmZBIJEplXV1dlco23BeZDlObv6epW+HJsAz1XXB1dYWXl5faFwMo0if+DjEPRguiqqqqkJubi/Dw8L8rI5UiPDwcOTk5KrfJyclRKg8AcrlcqXxtbS2mT5+OJUuWKPUiqbNv3z6UlpZi5syZjdZNmDAB7u7uGDp0KPbt29fkfiorK1FeXq70otZjKr9wbt26BeDvW+Hrq38rfF050j9T+S4QtURzv0PINBgtiCopKUFNTQ08PDyUlnt4eKCoqEjlNkVFRc2WX7t2LWxtbbFo0SKN6rFt2zbI5XJ06dJFXNa+fXts2LABu3fvxv79+zF06FBERkY2GUglJCTA2dlZfPn4+Gh0fNIPU/mFc+/ePQDNz35cV470z1S+C0QtwRnUzYNF3Z2Xm5uL5ORk5OXlNRqaU+WPP/7AoUOH8PHHHystd3NzQ2xsrPh+8ODBuH79OtatW4cJEyao3FdcXJzSNuXl5QykWoFCoQDQ/Pw9CoUCXl5eBq9PwyFfQVD+V1050h/O5UTmjDOomxejBVFubm6wsbFBcXGx0vLi4mJ4enqq3MbT07PJ8kePHsWNGzfQtWtXcX1NTQ1efvllJCUloaCgQGnb7du3w9XVVW1gVF9ISAiysrLUrre3t4e9vX2z+yH9EupFJ039whEaRjEG4uzsDODvvJy/O3uVk0LrypFhcC4nMle8icG8GC2IkslkCA4ORnZ2NiIjIwHcz2fKzs5GdHS0ym1CQ0ORnZ2NmJgYcVlWVhZCQ0MBANOnT1eZMzV9+vRGOU+CIGD79u2YMWOGRr0Cp0+fbpWeDNJOhw4dVCxt3Aupupzh8Blrra/hX+bq5nLiX/Bk6hggmQ+jDufFxsYiKioKgwYNwpAhQ5CUlISKigox4JkxYwY6d+6MhIQEAMDixYsxYsQIbNiwAWPHjsWuXbtw8uRJbN26FcD9L17DL5+dnR08PT3Rq1cvpeVfffUV8vPzMXv27Eb1SktLg0wmw8CB9+fk2Lt3L1JTU/Gvf/1L7+eA9EfT29pbY1ZrPmOt9fEveCJqbUYNoiZPnoybN29ixYoVKCoqwoABA3Dw4EExefzq1auQSv++CIWFhSE9PR3Lly/H0qVLERAQgMzMzEZzRGli27ZtCAsLQ2BgoMr18fHxuHLlCmxtbREYGIiMjAw888wzujWUDE7TOVVaa1Zr5uUYBwMkImpNRk8sj46OVjt8d+TIkUbLJk6ciIkTJ2q8/4Z5UHXS09PVbhMVFYWoqCiNj0HGp+nwmapZrVU9UkEfj4lhXg4Zkik9eJvIWhk9iCLSB12Gzwwxwznzcqg1mNqDt4msFYMosgjaDp8Z6pEKzMuh1tCaPapEpB6DKDJrus6pYsi75xggUWsypWdGElkbBlFk1nTt+eHdc6QtU8xB4kNqiYyLQRSZPV0uXLx7jrRhqjlInI+MyLgYRFkoU/yr2dTw7jnSlKnmILFHlci4GERZIFP9q9kU3L17V8XSxjOcqy5HZFo5SOxRJTIuBlEWSNO/hq3xzp22bduK/2/qYli/HFEdU8xBYo8qkfFImy9C5k6hcER+vi8UCkdjV8VkqLsY8hxRU5rKQWpNquYj8/O70iiA4nxkRIbFnigLZ0pDD6aECbmkC1PJQeJ8ZESmgUGUBTPFoQdTYSoXQzIvppSDxACJyPgYRFkw9raoZ0oXQzIvzEEiojoMoiwYe1uaxoshaYrPRCQiVRhEWTD2tjRP3cWQqD7mIBGRKgyiLJCuz5OzBpq2uTXPDSdGNQ/8DIioIYkgCIKxK2GJysvL4ezsDIVCAScnp1Y/Pi/M6pnSuWk4Maq6mbCtcWJUIiJj0Ob6zZ4oC8ULrnqmdG7qB3NNTUdhjROjEhGZOgZRRCaA01GoZkq9hkREDTGIIjIBnI6iMT4DkohMHR/7QmQC6qajqM/ap6No2AOl7vFFHOokImNhTxSRCeB0FE3j44uIyBQxiCIyEZz8UzXmixGRqWIQRWRCOPlnY8wXIyJTxSCKyIhMcfJPU8PHFxFRHVO7Y5dBFJER8XEizWO+GBEBpnnHLoMoIiOz5gBJU8wXIyJN78RtzTt2GUSR2TO17l3Sj4ZDmOryxax5qJPImql7TFZrYhBFZo3PnrNcHOokInVMZdoTBlFk1vjsOcvGAImIGjKlaU84YzlZBHU/VA1ntyYiIvPW1LQnrY1BFFkEU/qhIiIiwzGlx2QxiCKLYEo/VEREZDh1057U/c435rQnzIkii8C5hIiILFv9O3GbmvakNe/YNXoQtWXLFqxbtw5FRUXo378/Nm3ahCFDhqgtv3v3brzxxhsoKChAQEAA1q5di8cff1xl2fnz5+P999/Hxo0bERMTIy739fXFlStXlMomJCTg9ddfF9+fOXMGCxYswA8//IBOnTph4cKFePXVV1vWWDIoziVERGS5TPGOXaMGURkZGYiNjUVKSgpCQkKQlJQEuVyOixcvwt3dvVH5Y8eOYerUqUhISMC4ceOQnp6OyMhI5OXloW/fvkplP/30Uxw/fhze3t4qj/3mm29izpw54ntHx78TkMvLyzFmzBiEh4cjJSUFZ8+exQsvvIAOHTpg7ty5emo9GQKfPUfWgvOjkTUyte+0UYOoxMREzJkzBzNnzgQApKSkYP/+/UhNTVXqFaqTnJyMiIgILFmyBAAQHx+PrKwsbN68GSkpKWK5a9euYeHChTh06BDGjh2r8tiOjo7w9PRUuW7nzp2oqqpCamoqZDIZ+vTpg9OnTyMxMZFBlInhs+fIGpni4y+IrJHRgqiqqirk5uYiLi5OXCaVShEeHo6cnByV2+Tk5CA2NlZpmVwuR2Zmpvi+trYW06dPx5IlS9CnTx+1x1+zZg3i4+PRtWtXTJs2DS+99BJsbW3F4wwfPlzpwiuXy7F27Vr8+eef6NixY6P9VVZWorKyUnxfXl7e9AkgvTDF7l0iQzPFx18QWSOjBVElJSWoqamBh4eH0nIPDw9cuHBB5TZFRUUqyxcVFYnv165dC1tbWyxatEjtsRctWoSgoCC4uLjg2LFjiIuLQ2FhIRITE8Xj+Pn5NTpO3TpVQVRCQgJWr17dRIvJUBggkbUzhcdfEFkjoyeW61Nubi6Sk5ORl5cHiUSitlz93qwHH3wQMpkM8+bNQ0JCAuzt7XU6dlxcnNJ+y8vL4ePjo9O+iIg0ZSqPvyCyRkabJ8rNzQ02NjYoLi5WWl5cXKw2V8nT07PJ8kePHsWNGzfQtWtX2NrawtbWFleuXMHLL78MX19ftXUJCQnBvXv3UFBQ0ORx6tapYm9vDycnJ6UXEZEhcaZ+IuMyWhAlk8kQHByM7OxscVltbS2ys7MRGhqqcpvQ0FCl8gCQlZUllp8+fTrOnDmD06dPiy9vb28sWbIEhw4dUluX06dPQyqVincEhoaG4ptvvkF1dbXScXr16qVyKI+IyBg4Uz+RcWkVRFVXV+PVV19Fjx49MGTIEKSmpiqtLy4uho2Njcb7i42NxQcffIC0tDScP38eL774IioqKsS79WbMmKGUeL548WIcPHgQGzZswIULF7Bq1SqcPHkS0dHRAO7nxvTt21fpZWdnB09PT/Tq1QvA/aTxpKQk/Pjjj/jtt9+wc+dOvPTSS3juuefEAGnatGmQyWSYNWsWfvrpJ2RkZCA5OblRUjsRkTFxpn4i49IqJ+qtt97Cv//9b7zyyiu4desWYmNjceLECbz//vtiGUEQNN7f5MmTcfPmTaxYsQJFRUUYMGAADh48KCZxX716FVLp33FeWFgY0tPTsXz5cixduhQBAQHIzMxsNEdUU+zt7bFr1y6sWrUKlZWV8PPzw0svvaQUIDk7O+PLL7/EggULEBwcDDc3N6xYsYLTGxCRSeFM/UTGJRG0iHoCAgKwceNGjBs3DgBw6dIlPPbYYxg6dChSU1Nx48YNeHt7o6amxmAVNhfl5eVwdnaGQqFgfhQR6VXDeaLu353XeKZ+zhNFpD1trt9aBVFt27bFzz//rJSkfe3aNTzyyCMYPHgw3n77bfj4+DCIAoMoIjIszlhOZBjaXL+1Gs7z9PTE5cuXlYKozp074+uvv8aoUaPw/PPP61JfIiW8OBA1jz8DRManVRD1yCOPID09HaNHj1Za7u3tja+++gojR47UZ93ICqkepmg8iSCHKYiIyNi0CqLeeOMNtbOJd+7cGf/973+RlZWll4qRdarfA9XUJIJ8nAURERmbVkFUt27d0K1bN7Xrvb29ERUV1eJKEambRNDf/xLvPCIiIpOg02Sbu3fvxlNPPSXOxfTUU0/hk08+0XfdyIpxEkEiIjJ1WgVRtbW1mDx5MiZPnoyff/4ZPXr0QI8ePfDTTz9h8uTJmDJlilbzRBGpw0kEiYjI1GkVRCUnJ+Pw4cPYt28fLly4gMzMTGRmZuLixYv49NNPkZWVheTkZEPVlaxI3SSCdYEUJxEkIiJTo1VO1Pbt27Fu3Tpxss36JkyYgLfffhvJycmIiYnRV/3IigUFnYK//yWVkwgSEREZm1Y9Ub/++ivCw8PVrg8PD8evv/7a4koR1XF2vg0/vysMoIiIyORo1RPVpk0b3Lp1C127dlW5vry8HA4ODnqpGFknmUym13JE+sJJYImoIa0e+zJ27Fh07doV7733nsr18+fPx9WrV3HgwAG9VdBc8bEvujP0xYoXQ9JWw0lg1eEksETmz2CPfVm2bBlGjhyJ0tJSvPLKKwgMDIQgCDh//jw2bNiAzz77DF9//XWLKk9kyIsQZ0QnXTQMutV9bzgJLJF10SqICgsLQ0ZGBubOnYs9e/YorevYsSM++ugjPPzww3qtIJE+cUZ0aqmmvjdEZF20CqIA4Mknn4RcLsehQ4fEJPKePXtizJgxaNu2rd4rSGQInBGddMHvDRHVp1UQ9dVXXyE6OhrHjx/Hk08+qbROoVCgT58+SElJwbBhw/RaSSJ9a2pGdF4MTYep5a/xe0NE9WkVRCUlJWHOnDkqE62cnZ0xb948JCYmMogik1c3I3r9CyJnRDctppjMze8NEdWn1TxRP/74IyIiItSuHzNmDHJzc1tcKSJD44zopk9VMnd+vi8UCscmyxkSvzdEVJ9WPVHFxcWws7NTvzNbW9y8ebPFlSJqDZwR3XyYUjI3vzdEVEernqjOnTvj3LlzatefOXMGXl5eLa4UUWvhjOimT10yd8MeKUNqOLmruu8NJ4Elsi5a9UQ9/vjjeOONNxAREdFoZvL/+7//w8qVK1U+V4/IVLTGjOiGTIY2tUTr1mAKydyurq6Ijo62unNPRE3TKohavnw59u7di549eyI6Ohq9evUCAFy4cAFbtmxBTU0Nli1bZpCKEumDoS+GhkyGNsVE69ZgKsnclnROiUg/tAqiPDw8cOzYMbz44ouIi4tD3RNjJBIJ5HI5tmzZAg8PD4NUlEhfDHkxNOTM1tY6a3ZdMnfDnCgOwRKRsWk92Wa3bt1w4MAB/Pnnn7h06RIEQUBAQAA6duxoiPoRmS1DJkObUqJ1a2AyNxGZIq2DqDodO3bE4MGD9VkX0iNrzJ0xJYac2dpaZs1Wlcytqn2WkszNn1ki86NzEEWmiw/ZNT5DJkObQqJ1a7CmZG5rzXcjMncMoiwQH7JrfIZMhjaVROvWYC0Bg7XmuxGZO63miSLzYgrz61grQ85szVmzLVte3kAkJcUgLS0KSUkxyMsbaOwqEZEa7ImyQAqFAkDzwz4KhYKToxqQpsnQuuTCMNHaMllLvhuRpWAQZYGqq6sB3B/2AWqh3OH497BPXTnSH22TobXJhbG2RGtrZC35bkSWgkGUxZMov5OoKUZ6oW0ytDa5MF5eXlaTaG2trCnfjcgSMIiyYGVlrmgYRPGvWsPTNYjRZO4nBkiWjROLEpkXBlEWjH/Vmg/mwlAd5rsRmQ+j3523ZcsW+Pr6wsHBASEhIfj++++bLL97924EBgbCwcEB/fr1w4EDB9SWnT9/PiQSCZKSksRlBQUFmDVrFvz8/NCmTRv4+/tj5cqVSkMkBQUFkEgkjV7Hjx9vcXtbg63t/di4ubu46sqR8TWVC0PmqbS0FIWFhWpfpaWlYllV+W5+flcaBVDMdyMyLUa9imZkZCA2NhYpKSkICQlBUlIS5HI5Ll68CHd390bljx07hqlTpyIhIQHjxo1Deno6IiMjkZeXh759+yqV/fTTT3H8+HF4e3srLb9w4QJqa2vx/vvvo0ePHjh37hzmzJmDiooKrF+/Xqns4cOH0adPH/G9uQyldOjQQfx/U3/V1i9HxsVeQ8ui7YS31jSxKJElMWoQlZiYiDlz5mDmzJkAgJSUFOzfvx+pqal4/fXXG5VPTk5GREQElixZAgCIj49HVlYWNm/ejJSUFLHctWvXsHDhQhw6dAhjx45V2kdERAQiIiLE9927d8fFixfx3nvvNQqiXF1d4enpqbf2Gou6u7jIdDAXxrLoMuEtAyQi82O0IKqqqgq5ubmIi4sTl0mlUoSHhyMnJ0flNjk5OYiNjVVaJpfLkZmZKb6vra3F9OnTsWTJEqVepKYoFAq4uDQeNpkwYQL++usv9OzZE6+++iomTJigdh+VlZWorKwU35eXl2t0bEPQtMufQwOmhbkwloe5bkSWzWhBVElJCWpqauDh4aG03MPDAxcuXFC5TVFRkcryRUVF4vu1a9fC1tYWixYt0qgely5dwqZNm5R6odq3b48NGzbg4YcfhlQqxZ49exAZGYnMzEy1gVRCQgJWr16t0TENjUMD5oNzP1k2zvtEZNksKrM4NzcXycnJyMvLg0SDCZGuXbuGiIgITJw4EXPmzBGXu7m5KfV4DR48GNevX8e6devUBlFxcXFK25SXl8PHx6cFrWkZBkjmgQGvZWOuG5FlM1oQ5ebmBhsbGxQXFystLy4uVpuH5Onp2WT5o0eP4saNG+jatau4vqamBi+//DKSkpJQUFAgLr9+/TpGjRqFsLAwbN26tdn6hoSEICsrS+16e3t72NvbN7sfooYYIFku5roRWTajBVEymQzBwcHIzs5GZGQkgPv5TNnZ2YiOjla5TWhoKLKzsxETEyMuy8rKQmhoKABg+vTpCA8PV9pGLpdj+vTpYvI6cL8HatSoUQgODsb27dshlTY/08Pp06f5nDkTpe2z53R5Vh2RrpjrRmS5jDqcFxsbi6ioKAwaNAhDhgxBUlISKioqxIBnxowZ6Ny5MxISEgAAixcvxogRI7BhwwaMHTsWu3btwsmTJ8WepLpbheuzs7ODp6cnevXqBeB+ADVy5Eh069YN69evx82bN8WydT1aaWlpkMlkGDjw/tPT9+7di9TUVPzrX/8y7AkhrWl7K7m25Yn0gXfIElkmowZRkydPxs2bN7FixQoUFRVhwIABOHjwoJg8fvXqVaVeorCwMKSnp2P58uVYunQpAgICkJmZ2WiOqKZkZWXh0qVLuHTpErp06aK0ThAE8f/x8fG4cuUKbG1tERgYiIyMDDzzzDMtbDHpm7a3kuty6zmRtniHLJF1kAj1IwfSm/Lycjg7O0OhUMDJycnY1bFYhYWF2Lp1KxQKRyQlxTRK4I2JSYKz823MnTsXXl5eWpcn0hWHjYnMkzbXb4u6O4+sl7a3kvPWczI0BkhEls/oz84j0oe6W8nra+pWcm3LExERNcQgiixCcw9bbml5IiKihjicRxZD21vJees5ERG1BIMosija3krOW8+JiEhXHM4js6btreS89ZyIiPSFUxwYCKc4aD2csZyIiPSFUxyQVdE24GGARERE+sDhPCIiIiIdMIgiIiIi0gGDKCIiIiIdMIgiIiIi0gGDKCIiIiIdMIgiIiIi0gGDKCIiIiIdMIgiIiIi0gEn2yTSM86ITkRkHRhEEelRaWkpNm/eLL5XKBxRVuYKF5dSpQcdR0dHM5AiIjJzDKKI9Kh+D1Re3kB8/vk4CIIUEkktxo//AkFBpxqVIyIi88QgisgAFApHMYACAEGQ4vPPx8Hf/5JSj5S2OFRIRGQ6GEQRGUBZmasYQNURBCnKylx0DqIaDhWqw6FCIqLWwbvziAzAxaUUEkmt0jKJpBYuLmU677NhD5RC4Yj8fF8oFI5NliMiIsNgTxSRATg738b48V80yolqyVBefU3lWxERUetgEEVkIEFBp+DvfwllZS5wcSnTWwBlqHwrIiLSDoMoM8GEYvPk7Hxb74GNIfKtiIhIewyizAATis2HTCbTazlV6vKt6gdSLc23IiIi7TGIMgOqEopVTeDIhGLjc3V1xXPPPYe7d++qLdO2bdsWBbuGzrciIiLNMIgyM0woNm2lpaX4z3/+02y5lvYaGirfioiINMcpDsyIuoTihre4k/EYchqChkOAzs634ed3pVEA1ZKhQiIi0hx7oswIE4rNi757DV1dXREdHc0bDIiITASDKDPChGLzYahpCBggERGZDg7nmZG6hOK6mbCZUGy6muo1JCIiy8CeKDPDhGLzwF5DIiLLZ/SeqC1btsDX1xcODg4ICQnB999/32T53bt3IzAwEA4ODujXrx8OHDigtuz8+fMhkUiQlJSktLysrAzPPvssnJyc0KFDB8yaNQt37txRKnPmzBkMGzYMDg4O8PHxwdtvv61zG1uq4e3y6hKKm7qtnloXew2JiCyfUXuiMjIyEBsbi5SUFISEhCApKQlyuRwXL16Eu7t7o/LHjh3D1KlTkZCQgHHjxiE9PR2RkZHIy8tD3759lcp++umnOH78OLy9vRvt59lnn0VhYSGysrJQXV2NmTNnYu7cuUhPTwcAlJeXY8yYMQgPD0dKSgrOnj2LF154AR06dMDcuXMNczKa0LZtW6X36uaJaliOjIu9hkREls2oPVGJiYmYM2cOZs6cid69eyMlJQVt27ZFamqqyvLJycmIiIjAkiVL8MADDyA+Ph5BQUGNZvO+du0aFi5ciJ07d8LOzk5p3fnz53Hw4EH861//QkhICIYOHYpNmzZh165duH79OgBg586dqKqqQmpqKvr06YMpU6Zg0aJFSExMNMyJ0EJe3kAkJcUgLS0KSUkxyMsbaOwqUT2choCIyHoYrSeqqqoKubm5iIuLE5dJpVKEh4cjJydH5TY5OTmIjY1VWiaXy5GZmSm+r62txfTp07FkyRL06dNH5T46dOiAQYMGicvCw8MhlUpx4sQJPPnkk8jJycHw4cOVLnRyuRxr167Fn3/+iY4dOzbab2VlJSorK8X35eXlzZ8ELVnLg2fN+TmBnIaAiMh6GC2IKikpQU1NDTw8PJSWe3h44MKFCyq3KSoqUlm+qKhIfL927VrY2tpi0aJFavfRcKjQ1tYWLi4u4n6Kiorg5+fX6Dh161QFUQkJCVi9erXKY+qLNcwT1fA5geqGLk35OYGmWi8iItIvi7o7Lzc3F8nJycjLy4NEImnVY8fFxSn1kpWXl8PHx0evx7CGO77q9+A0NVklnxNIrc2ce0iJyDCMFkS5ubnBxsYGxcXFSsuLi4vh6empchtPT88myx89ehQ3btxA165dxfU1NTV4+eWXkZSUhIKCAnh6euLGjRtK+7h37x7KysrE/ag7Tt06Vezt7WFvb99cs1vEmh48ay1Dl2QeGvaQqmPKPaREpH9GC6JkMhmCg4ORnZ2NyMhIAPfzmbKzsxEdHa1ym9DQUGRnZyMmJkZclpWVhdDQUADA9OnTER4errSNXC7H9OnTMXPmTHEft27dQm5uLoKDgwEAX331FWpraxESEiKWWbZsGaqrq8XE9KysLPTq1UvlUF5rspY7vqxh6JLMh6pnIqoaZm5JDyl7uojMj1GH82JjYxEVFYVBgwZhyJAhSEpKQkVFhRjwzJgxA507d0ZCQgIAYPHixRgxYgQ2bNiAsWPHYteuXTh58iS2bt0K4H4uSsNfMnZ2dvD09ESvXr0AAA888AAiIiIwZ84cpKSkoLq6GtHR0ZgyZYo4HcK0adOwevVqzJo1C6+99hrOnTuH5ORkbNy4sbVOjRJVd3ypCiQs6Y4vaxi6JPOk72ciApaRC0hkjYwaRE2ePBk3b97EihUrUFRUhAEDBuDgwYNiEvfVq1chlf59EQ0LC0N6ejqWL1+OpUuXIiAgAJmZmY3miGrOzp07ER0djdGjR0MqleLpp5/GO++8I653dnbGl19+iQULFiA4OBhubm5YsWKFUeaIAqzzji9rGrok82GoYWbmAhIBf/wB/PorEBAAdOli7NpoxuiJ5dHR0WqH744cOdJo2cSJEzFx4kSN919QUNBomYuLizixpjoPPvggjh49qvFxDM2SAiRNWcvQJZkPQw8zMxeQrNW2bcDcuUBtLSCVAlu3ArNmGbtWzTN6EEXUFHVDl0TGYOhhZuYCkrUpLS1FQcE9zJ3rjtra+3fV19YC8+YJGDDgBnx9bU26E8Hoz84jqk/TvC5Lyv8i82HoZyLWBWn1MReQLFVdLuCmTQfFAKpOTY0Emzb9LzZv3ozS0lIj1bB57Ikik2KN+V9kXgw5zMxcQP2of6fj9etS5Ofbws/vHry97weo/B1iGuo+o+Z6eE05F5BBFJkc/nIjU9Oad8gyF7Bl6t/p2FSSPu90NB3m/McDgygioma0dg8pcwF1V/cZNZekb8q9G9bIXP94YBBFRKQBQ/ZaMBdQ/5ikb37M8Y8HBlFEREbGXED944S91BoYRBERmQAGSPplznk2ZD4YRBEAPreLiCyPuebZkPlgEEV8Qj0RWSxzzLOxFpaQC8gginR6Qj17rsja8DtPpF+WkAvIIIqUaPKEevZckbVp+J1X94cGv/PGZwm9G9bE3H9eGESRSNOHn+rSc0Vkzup/l5v6Q4PfeeOzhN4NMh8Mokiky7wqmvRcEVkKTf/QIONigESthQ8gJpG2Dz9Vd0FRKBwNXlciY2jqDw0isj4Mokik7RPqeUEha6PtHxpEZNk4nEdKtJlXhTMCk7XhBI5EVB+DKNL5CfW8oJA14gSORFSHQRS16G4WXlDIGnECRyICGETR/6fN3Sy69lwRmSvOPUREqkgEQRCMXQlLVF5eDmdnZygUCjg5ORm7OnrH2ZvJ2vA7T2QdtLl+syeKdMKLBVkbfueJqCFOcUBERESkAwZRRERERDpgEEVERESkAwZRRERERDpgEEVERESkAwZRRERERDpgEEVERESkA84TRWaPkyASEZExMIgis1ZaWorNmzc3Wy46OpqBFBER6RWH88isNdUDpUs5IiIiTTGIIouiUDgiP98XCoWjsatCREQWzuhB1JYtW+Dr6wsHBweEhITg+++/b7L87t27ERgYCAcHB/Tr1w8HDhxQWr9q1SoEBgaiXbt26NixI8LDw3HixAlx/ZEjRyCRSFS+fvjhBwBAQUGByvXHjx/X/wkgvcnLG4ikpBikpUUhKSkGeXkDjV0lIiKyYEYNojIyMhAbG4uVK1ciLy8P/fv3h1wux40bN1SWP3bsGKZOnYpZs2bh1KlTiIyMRGRkJM6dOyeW6dmzJzZv3oyzZ8/i22+/ha+vL8aMGYObN28CAMLCwlBYWKj0mj17Nvz8/DBo0CCl4x0+fFipXHBwsOFOBrWIQuGIzz8fB0G4/5UWBCk+/3wce6SIiMhgjBpEJSYmYs6cOZg5cyZ69+6NlJQUtG3bFqmpqSrLJycnIyIiAkuWLMEDDzyA+Ph4BAUFKSUWT5s2DeHh4ejevTv69OmDxMRElJeX48yZMwDu36nl6ekpvlxdXfHZZ59h5syZkEgkSsdzdXVVKmtnZ2e4k0EtUlbmKgZQdQRBirIyFyPViIiILJ3Rgqiqqirk5uYiPDz878pIpQgPD0dOTo7KbXJycpTKA4BcLldbvqqqClu3boWzszP69++vssy+fftQWlqKmTNnNlo3YcIEuLu7Y+jQodi3b1+T7amsrER5ebnSi1qPi0spJJJapWUSSS1cXMqMVCMiIrJ0RguiSkpKUFNTAw8PD6XlHh4eKCoqUrlNUVGRRuW/+OILtG/fHg4ODti4cSOysrLg5uamcp/btm2DXC5Hly5dxGXt27fHhg0bsHv3buzfvx9Dhw5FZGRkk4FUQkICnJ2dxZePj0+T7Sf9cna+jfHjvxADKYmkFuPHfwFn59tGrhkREVkqi5wnatSoUTh9+jRKSkrwwQcfYNKkSThx4gTc3d2Vyv3xxx84dOgQPv74Y6Xlbm5uiI2NFd8PHjwY169fx7p16zBhwgSVx4yLi1Papry8nIFUK5DJZOL/g4JOwd//EsrKXODiUqYUQNUvR0REpA9GC6Lc3NxgY2OD4uJipeXFxcXw9PRUuY2np6dG5du1a4cePXqgR48eeOihhxAQEIBt27YhLi5Oqdz27dvh6uqqNjCqLyQkBFlZWWrX29vbw97evtn9kH65uroiOjqaM5YTEVGrM9pwnkwmQ3BwMLKzs8VltbW1yM7ORmhoqMptQkNDlcoDQFZWltry9fdbWVmptEwQBGzfvh0zZszQKGH89OnT8PLyarYctT5XV1d4eXmpfTGAIiIiQzDqcF5sbCyioqIwaNAgDBkyBElJSaioqBCTvGfMmIHOnTsjISEBALB48WKMGDECGzZswNixY7Fr1y6cPHkSW7duBQBUVFTgrbfewoQJE+Dl5YWSkhJs2bIF165dw8SJE5WO/dVXXyE/Px+zZ89uVK+0tDTIZDIMHHh/nqG9e/ciNTUV//rXvwx5OoiIiMiMGDWImjx5Mm7evIkVK1agqKgIAwYMwMGDB8Xk8atXr0Iq/buzLCwsDOnp6Vi+fDmWLl2KgIAAZGZmom/fvgAAGxsbXLhwAWlpaSgpKYGrqysGDx6Mo0ePok+fPkrH3rZtG8LCwhAYGKiybvHx8bhy5QpsbW0RGBiIjIwMPPPMMwY6E0RERGRuJIIgCMauhCUqLy+Hs7MzFAoFnJycjF0dIiIi0oA212+jP/aFiIiIyBwxiCIiIiLSAYMoIiIiIh0wiCIiIiLSAYMoIiIiIh0wiCIiIiLSAYMoIiIiIh0wiCIiIiLSAYMoIiIiIh0wiCIiIiLSAYMoIiIiIh0wiCIiIiLSAYMoIiIiIh0wiCIiIiLSAYMoIiIiIh0wiCIiIiLSAYMoIiIiIh3YGrsCRKS50tJSVFVVqV0vk8ng6uraijUiIrJeDKKIzERpaSk2b97cbLno6GgGUkRErYDDeURmoqkeKF3KERFRyzCIIjJTCoUj8vN9oVA4GrsqRERWicN5RGYoL28gPv98HARBComkFuPHf4GgoFPGrpbeMQeMiEwZgygiM6NQOIoBFAAIghSffz4O/v6X4Ox828i10x/mgBGRqeNwHpGZKStzFQOoOoIgRVmZi5FqZBjMASMiU8eeKCIz4+JSComkVimQkkhq4eJSZsRaGZ5C4YiyMle4uJQapceNQ4tE1BCDKCIz4+x8G+PHf9EoJ8qShvIaMnYOWMOhRXUBHYcWiawLgygiMyGTycT/BwWdgr//JZSVucDFpUzpQl6/nCUwhRyw+j1QTQV0HFoksi4MoojMhKurK6Kjo61uSKmpHLDW7n0zhYCOiEwHgygiM2JpAZImTCkHzJQCOiIyPt6dR0QmrS4HTCKpBQCj5oDVBXT1WUNSPxGpxp4oIjJJppgDZo1J/USkHoMoIjJJppoD1lRAR0TWxejDeVu2bIGvry8cHBwQEhKC77//vsnyu3fvRmBgIBwcHNCvXz8cOHBAaf2qVasQGBiIdu3aoWPHjggPD8eJEyeUyvj6+kIikSi91qxZo1TmzJkzGDZsGBwcHODj44O3335bPw0mIo25urrCy8tL7ctYOWLOzrfh53eFARSRlTNqEJWRkYHY2FisXLkSeXl56N+/P+RyOW7cuKGy/LFjxzB16lTMmjULp06dQmRkJCIjI3Hu3DmxTM+ePbF582acPXsW3377LXx9fTFmzBjcvHlTaV9vvvkmCgsLxdfChQvFdeXl5RgzZgy6deuG3NxcrFu3DqtWrcLWrVsNcyKIyKRpOmRoadNLEFHTJIIgCMY6eEhICAYPHixOYldbWwsfHx8sXLgQr7/+eqPykydPRkVFBb744gtx2UMPPYQBAwYgJSVF5THKy8vh7OyMw4cPY/To0QDu90TFxMQgJiZG5Tbvvfceli1bhqKiIvGX4uuvv47MzExcuHBBo7bVHVehUMDJyUmjbYjIdHHGciLroM3122g9UVVVVcjNzUV4ePjflZFKER4ejpycHJXb5OTkKJUHALlcrrZ8VVUVtm7dCmdnZ/Tv319p3Zo1a+Dq6oqBAwdi3bp1uHfvntJxhg8frvRXpVwux8WLF/Hnn39q3VYiMn+mOrRIRMZjtMTykpIS1NTUwMPDQ2m5h4eH2t6eoqIileWLioqUln3xxReYMmUK7t69Cy8vL2RlZcHNzU1cv2jRIgQFBcHFxQXHjh1DXFwcCgsLkZiYKB7Hz8+v0XHq1nXs2LFR3SorK1FZWSm+Ly8vb+4UkBr8i5+IiMyBRd6dN2rUKJw+fRolJSX44IMPMGnSJJw4cQLu7u4AgNjYWLHsgw8+CJlMhnnz5iEhIQH29vY6HTMhIQGrV6/WS/2tWcNnlKnDZ5QREZGxGW04z83NDTY2NiguLlZaXlxcDE9PT5XbeHp6alS+Xbt26NGjBx566CFs27YNtra22LZtm9q6hISE4N69eygoKGjyOHXrVImLi4NCoRBfv//+u9rjkXqaPnuMzygjIiJjM1oQJZPJEBwcjOzsbHFZbW0tsrOzERoaqnKb0NBQpfIAkJWVpbZ8/f3WH2pr6PTp05BKpWJPVWhoKL755htUV1crHadXr14qh/IAwN7eHk5OTkovIiIislxGneIgNjYWH3zwAdLS0nD+/Hm8+OKLqKiowMyZMwEAM2bMQFxcnFh+8eLFOHjwIDZs2IALFy5g1apVOHnyJKKjowEAFRUVWLp0KY4fP44rV64gNzcXL7zwAq5du4aJEycCuJ80npSUhB9//BG//fYbdu7ciZdeegnPPfecGCBNmzYNMpkMs2bNwk8//YSMjAwkJycrDQMSERGRdTNqTtTkyZNx8+ZNrFixAkVFRRgwYAAOHjwoJnFfvXoVUunfcV5YWBjS09OxfPlyLF26FAEBAcjMzETfvn0BADY2Nrhw4QLS0tJQUlICV1dXDB48GEePHkWfPn0A3O8x2rVrF1atWoXKykr4+fnhpZdeUgqQnJ2d8eWXX2LBggUIDg6Gm5sbVqxYgblz57bi2SEAUCgcUVbmCheXUk5sSEREJsWo80RZMs4TpZvCwkJxUtO8vIGNnlEWFHQKADB37lx4eXkZs6pERGSBzGKeKKKmKBSOYgAFAIIgxeefj4NC4WjkmhEREd3HIIpMUlmZqxhA1REEKcrKXIxUIyIiImUMosik1M0S7+JSComkVmmdRFILF5cypXJERETGYpGTbZL5cnV1RXR0NKqqqtC5czlee80ZNTUS2NgIWLu2HNOmTeWM5UREZBKYWG4gTCzXjz/+AC5dAnr0ALp0MXZtiIjI0mlz/WZPFJm0Ll0YPBERkWliThQRERGRDhhEEREREemAQRQRERGRDhhEEREREemAQRQRERGRDhhEEREREemAQRQRERGRDhhEEREREemAQRQRERGRDhhEEREREemAQRQRERGRDvjsPAOpe65zeXm5kWtCREREmqq7btddx5vCIMpAbt++DQDw8fExck2IiIhIW7dv34azs3OTZSSCJqEWaa22thbXr1+Ho6MjJBKJXvddXl4OHx8f/P7773ByctLrvk2BpbcPsPw2sn3mz9LbyPaZP0O1URAE3L59G97e3pBKm856Yk+UgUilUnTp0sWgx3BycrLYHw7A8tsHWH4b2T7zZ+ltZPvMnyHa2FwPVB0mlhMRERHpgEEUERERkQ4YRJkhe3t7rFy5Evb29sauikFYevsAy28j22f+LL2NbJ/5M4U2MrGciIiISAfsiSIiIiLSAYMoIiIiIh0wiCIiIiLSAYMoIiIiIh0wiDIBW7Zsga+vLxwcHBASEoLvv/++yfJJSUno1asX2rRpAx8fH7z00kv466+/WrRPQ9N3G1etWgWJRKL0CgwMNHQz1NKmfdXV1XjzzTfh7+8PBwcH9O/fHwcPHmzRPluDvttoSp/hN998g/Hjx8Pb2xsSiQSZmZnNbnPkyBEEBQXB3t4ePXr0wI4dOxqVMZXP0BDtM+fPr7CwENOmTUPPnj0hlUoRExOjstzu3bsRGBgIBwcH9OvXDwcOHNB/5TVkiDbu2LGj0Wfo4OBgmAY0Q9v27d27F48++ig6deoEJycnhIaG4tChQ43KGfpnkEGUkWVkZCA2NhYrV65EXl4e+vfvD7lcjhs3bqgsn56ejtdffx0rV67E+fPnsW3bNmRkZGDp0qU679PQDNFGAOjTpw8KCwvF17ffftsazWlE2/YtX74c77//PjZt2oSff/4Z8+fPx5NPPolTp07pvE9DM0QbAdP5DCsqKtC/f39s2bJFo/L5+fkYO3YsRo0ahdOnTyMmJgazZ89W+iVuSp+hIdoHmO/nV1lZiU6dOmH58uXo37+/yjLHjh3D1KlTMWvWLJw6dQqRkZGIjIzEuXPn9Fl1jRmijcD92b7rf4ZXrlzRV5W1om37vvnmGzz66KM4cOAAcnNzMWrUKIwfP771f48KZFRDhgwRFixYIL6vqakRvL29hYSEBJXlFyxYIDzyyCNKy2JjY4WHH35Y530amiHauHLlSqF///4Gqa+2tG2fl5eXsHnzZqVlTz31lPDss8/qvE9DM0QbTekzrA+A8OmnnzZZ5tVXXxX69OmjtGzy5MmCXC4X35vaZ1hHX+0z58+vvhEjRgiLFy9utHzSpEnC2LFjlZaFhIQI8+bNa2ENW05fbdy+fbvg7Oyst3rpi7btq9O7d29h9erV4vvW+BlkT5QRVVVVITc3F+Hh4eIyqVSK8PBw5OTkqNwmLCwMubm5Ypfkb7/9hgMHDuDxxx/XeZ+GZIg21vn111/h7e2N7t2749lnn8XVq1cN1xA1dGlfZWVloy7zNm3aiH/FW8Jn2Fwb65jCZ6iLnJwcpfMBAHK5XDwfpvYZaqu59tUx189PE5qeA3N3584ddOvWDT4+PnjiiSfw008/GbtKOqmtrcXt27fh4uICoPV+BhlEGVFJSQlqamrg4eGhtNzDwwNFRUUqt5k2bRrefPNNDB06FHZ2dvD398fIkSPFoS5d9mlIhmgjAISEhGDHjh04ePAg3nvvPeTn52PYsGG4ffu2QdvTkC7tk8vlSExMxK+//ora2lpkZWVh7969KCws1HmfhmSINgKm8xnqoqioSOX5KC8vx//93/+Z3GeorebaB5j356cJdefAHD4/TfXq1Qupqan47LPP8J///Ae1tbUICwvDH3/8YeyqaW39+vW4c+cOJk2aBKD1fo8yiDIzR44cwT//+U+8++67yMvLw969e7F//37Ex8cbu2p6o0kbH3vsMUycOBEPPvgg5HI5Dhw4gFu3buHjjz82Ys01k5ycjICAAAQGBkImkyE6OhozZ86EVGo5P46atNGcP0Pi52cJQkNDMWPGDAwYMAAjRozA3r170alTJ7z//vvGrppW0tPTsXr1anz88cdwd3dv1WPbturRSImbmxtsbGxQXFystLy4uBienp4qt3njjTcwffp0zJ49GwDQr18/VFRUYO7cuVi2bJlO+zQkQ7RRVbDRoUMH9OzZE5cuXdJ/I5qgS/s6deqEzMxM/PXXXygtLYW3tzdef/11dO/eXed9GpIh2qiKsT5DXXh6eqo8H05OTmjTpg1sbGxM6jPUVnPtU8WcPj9NqDsH5vD56crOzg4DBw40q89w165dmD17Nnbv3q00dNdav0ct509fMySTyRAcHIzs7GxxWW1tLbKzsxEaGqpym7t37zYKImxsbAAAgiDotE9DMkQbVblz5w4uX74MLy8vPdVcMy053w4ODujcuTPu3buHPXv24IknnmjxPg3BEG1UxVifoS5CQ0OVzgcAZGVliefD1D5DbTXXPlXM6fPThC7nwNzV1NTg7NmzZvMZfvTRR5g5cyY++ugjjB07Vmldq/0M6i1FnXSya9cuwd7eXtixY4fw888/C3PnzhU6dOggFBUVCYIgCNOnTxdef/11sfzKlSsFR0dH4aOPPhJ+++034csvvxT8/f2FSZMmabzP1maINr788svCkSNHhPz8fOG7774TwsPDBTc3N+HGjRsm377jx48Le/bsES5fvix88803wiOPPCL4+fkJf/75p8b7bG2GaKMpfYa3b98WTp06JZw6dUoAICQmJgqnTp0Srly5IgiCILz++uvC9OnTxfK//fab0LZtW2HJkiXC+fPnhS1btgg2NjbCwYMHxTKm9Bkaon3m/PkJgiCWDw4OFqZNmyacOnVK+Omnn8T13333nWBrayusX79eOH/+vLBy5UrBzs5OOHv2bKu2rY4h2rh69Wrh0KFDwuXLl4Xc3FxhypQpgoODg1KZ1qJt+3bu3CnY2toKW7ZsEQoLC8XXrVu3xDKt8TPIIMoEbNq0Sejatasgk8mEIUOGCMePHxfXjRgxQoiKihLfV1dXC6tWrRL8/f0FBwcHwcfHR/if//kfpYtTc/s0Bn23cfLkyYKXl5cgk8mEzp07C5MnTxYuXbrUii1Spk37jhw5IjzwwAOCvb294OrqKkyfPl24du2aVvs0Bn230ZQ+w6+//loA0OhV16aoqChhxIgRjbYZMGCAIJPJhO7duwvbt29vtF9T+QwN0T5z//xUle/WrZtSmY8//ljo2bOnIJPJhD59+gj79+9vnQapYIg2xsTEiN9PDw8P4fHHHxfy8vJar1H1aNu+ESNGNFm+jqF/BiWCoGZ8hIiIiIjUYk4UERERkQ4YRBERERHpgEEUERERkQ4YRBERERHpgEEUERERkQ4YRBERERHpgEEUERERkQ4YRBERWZEjR45AIpHg1q1bxq4KkdljEEVEBvH8889DIpFgzZo1SsszMzMhkUjE94Ig4IMPPkBoaCicnJzQvn179OnTB4sXL9b4Qah3795FXFwc/P394eDggE6dOmHEiBH47LPPxDK+vr5ISkrSS9sMre7cSSQS2NnZwc/PD6+++ir++usvrfYzcuRIxMTEKC0LCwtDYWEhnJ2d9VhjIuvEIIqIDMbBwQFr167Fn3/+qXK9IAiYNm0aFi1ahMcffxxffvklfv75Z2zbtg0ODg74xz/+odFx5s+fj71792LTpk24cOECDh48iGeeeQalpaX6bE6rioiIQGFhIX777Tds3LgR77//PlauXNni/cpkMnh6eioFskSkI70+RIaI6P+LiooSxo0bJwQGBgpLliwRl3/66adC3a+ejz76SAAgfPbZZyr3UVtbq9GxnJ2dhR07dqhdr+o5W3WOHj0qDB06VHBwcBC6dOkiLFy4ULhz5464/t///rcQHBwstG/fXvDw8BCmTp0qFBcXi+vrnvl18OBBYcCAAYKDg4MwatQoobi4WDhw4IAQGBgoODo6ClOnThUqKio0ak9UVJTwxBNPKC176qmnhIEDB4rvS0pKhClTpgje3t5CmzZthL59+wrp6elK+2jY5vz8fLG+9Z9F+cknnwi9e/cWZDKZ0K1bN2H9+vUa1ZPI2rEniogMxsbGBv/85z+xadMm/PHHH43Wf/TRR+jVqxcmTJigcntNe0s8PT1x4MAB3L59W+X6vXv3okuXLnjzzTdRWFiIwsJCAMDly5cRERGBp59+GmfOnEFGRga+/fZbREdHi9tWV1cjPj4eP/74IzIzM1FQUIDnn3++0TFWrVqFzZs349ixY/j9998xadIkJCUlIT09Hfv378eXX36JTZs2adSehs6dO4djx45BJpOJy/766y8EBwdj//79OHfuHObOnYvp06fj+++/BwAkJycjNDQUc+bMEdvs4+PTaN+5ubmYNGkSpkyZgrNnz2LVqlV44403sGPHDp3qSmRVjB3FEZFlqt+b8tBDDwkvvPCCIAjKPVGBgYHChAkTlLZbvHix0K5dO6Fdu3ZC586dNTrWf//7X6FLly6CnZ2dMGjQICEmJkb49ttvlcp069ZN2Lhxo9KyWbNmCXPnzlVadvToUUEqlQr/93//p/JYP/zwgwBAuH37tiAIf/dEHT58WCyTkJAgABAuX74sLps3b54gl8s1ak9UVJRgY2MjtGvXTrC3txcACFKpVPjkk0+a3G7s2LHCyy+/LL4fMWKEsHjxYqUyDXuipk2bJjz66KNKZZYsWSL07t1bo7oSWTP2RBGRwa1duxZpaWk4f/58s2WXLVuG06dPY8WKFbhz545G+x8+fDh+++03ZGdn45lnnsFPP/2EYcOGIT4+vsntfvzxR+zYsQPt27cXX3K5HLW1tcjPzwdwv6dm/Pjx6Nq1KxwdHTFixAgAwNWrV5X29eCDD4r/9/DwQNu2bdG9e3elZTdu3NCoPQAwatQonD59GidOnEBUVBRmzpyJp59+WlxfU1OD+Ph49OvXDy4uLmjfvj0OHTrUqF7NOX/+PB5++GGlZQ8//DB+/fVX1NTUaLUvImvDIIqIDG748OGQy+WIi4tTWh4QEICLFy8qLevUqRN69OgBd3d3rY5hZ2eHYcOG4bXXXsOXX36JN998E/Hx8aiqqlK7zZ07dzBv3jycPn1afP3444/49ddf4e/vj4qKCsjlcjg5OWHnzp344Ycf8OmnnwJAo/3a2dmJ/6+7q64+iUSC2tpajdvTrl079OjRA/3790dqaipOnDiBbdu2ievXrVuH5ORkvPbaa/j6669x+vRpyOXyJttLRPpla+wKEJF1WLNmDQYMGIBevXqJy6ZOnYpp06bhs88+wxNPPKHX4/Xu3Rv37t3DX3/9BZlMBplM1qhnJSgoCD///DN69Oihch9nz55FaWkp1qxZI+YTnTx5Uq/11IRUKsXSpUsRGxuLadOmoU2bNvjuu+/wxBNP4LnnngMA1NbW4pdffkHv3r3F7VS1uaEHHngA3333ndKy7777Dj179oSNjY3+G0NkQdgTRUStol+/fnj22WfxzjvviMumTJmCZ555BlOmTMGbb76JEydOoKCgAP/973+RkZGh8UV85MiReP/995Gbm4uCggIcOHAAS5cuxahRo+Dk5ATg/jxR33zzDa5du4aSkhIAwGuvvYZjx44hOjoap0+fxq+//orPPvtMTCzv2rUrZDIZNm3ahN9++w379u1rdojQUCZOnAgbGxts2bIFwP1evKysLBw7dgznz5/HvHnzUFxcrLSNr6+veE5LSkpU9oS9/PLLyM7ORnx8PH755RekpaVh8+bNeOWVV1qlXUTmjEEUEbWaN998U+lCLpFIkJGRgaSkJBw4cACjR49Gr1698MILL8DHxwfffvutRvuVy+VIS0vDmDFj8MADD2DhwoWQy+X4+OOPlY5dUFAAf39/dOrUCcD9PKb//ve/+OWXXzBs2DAMHDgQK1asgLe3N4D7Q4s7duzA7t270bt3b6xZswbr16/X4xnRnK2tLaKjo/H222+joqICy5cvR1BQEORyOUaOHAlPT09ERkYqbfPKK6/AxsYGvXv3RqdOnVTmSwUFBeHjjz/Grl270LdvX6xYsQJvvvmmyjsQiUiZRBAEwdiVICIiIjI37IkiIiIi0gGDKCIyefWnIGj4Onr0qLGrp5WrV6822R5tpyggIuPhcB4RmbymHkTcuXNntGnTphVr0zL37t1DQUGB2vW+vr6wteWN00TmgEEUERERkQ44nEdERESkAwZRRERERDpgEEVERESkAwZRRERERDpgEEVERESkAwZRRERERDpgEEVERESkAwZRRERERDr4fwGRM+egJsCGAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWJVJREFUeJzt3XlYVGXjPvB7BhhABHJQWRQFEfcVUsIyUykolyzLXdFc+4aKlCVqblTo6xJuZfZzqzfUTLM0X80oy4XMQDNLTQ00C1AhB8RXUOb8/vCdiYEZODPMcmbm/lwXV3HmmcPznJGZm2c7MkEQBBARERFRjeS2rgARERGRPWBoIiIiIhKBoYmIiIhIBIYmIiIiIhEYmoiIiIhEYGgiIiIiEoGhiYiIiEgEhiYiIiIiERiaiIiIiERgaCIismObN2+GTCZDbm6uratC5PAYmoioRidOnEBCQgLat28PLy8vNGvWDEOGDMFvv/1Wrexjjz0GmUwGmUwGuVwOHx8ftG7dGqNHj8bBgweN+rl79uxBr1690LhxY9SrVw8tWrTAkCFDsH//fnM1rZq33noLu3fvrnb82LFjWLBgAW7evGmxn13VggULtNdSJpOhXr16aNeuHebOnYvi4mKz/Iz09HSkpaWZ5VxEzoChiYhqtGTJEuzcuRN9+/bFypUrMWnSJHz33XeIiIjAmTNnqpVv2rQpPvzwQ3zwwQdYunQpBg4ciGPHjuGJJ57A0KFDcffu3Vp/5rJlyzBw4EDIZDIkJyfj7bffxuDBg3HhwgVs27bNEs0EUHNoWrhwoVVDk8a7776LDz/8ECtWrECbNm3w5ptvIi4uDua4bShDE5FxXG1dASKStqSkJKSnp0OhUGiPDR06FB07dsTixYvx73//W6e8r68vRo0apXNs8eLFmDZtGt555x2EhIRgyZIlBn/evXv3kJKSgscffxxffvlltcevXbtWxxZJx+3bt1GvXr0ayzz33HNo2LAhAGDKlCkYPHgwdu3ahe+//x7R0dHWqCYR/Q97moioRj169NAJTAAQHh6O9u3b4+zZs6LO4eLiglWrVqFdu3ZYs2YNVCqVwbI3btxAcXExHn74Yb2PN27cWOf7O3fuYMGCBWjVqhU8PDwQGBiIZ599FpcuXdKWWbZsGXr06AE/Pz94enoiMjISn3zyic55ZDIZSktLsWXLFu2Q2NixY7FgwQLMnDkTABAaGqp9rPIcon//+9+IjIyEp6cnlEolhg0bhj/++EPn/I899hg6dOiArKwsPProo6hXrx5mz54t6vpV1qdPHwBATk5OjeXeeecdtG/fHu7u7ggKCsJLL72k01P22GOP4YsvvsDly5e1bQoJCTG6PkTOhD1NRGQ0QRBQUFCA9u3bi36Oi4sLhg8fjtdffx1HjhxBv3799JZr3LgxPD09sWfPHkydOhVKpdLgOSsqKtC/f39kZGRg2LBhmD59OkpKSnDw4EGcOXMGYWFhAICVK1di4MCBGDlyJMrLy7Ft2zY8//zz2Lt3r7YeH374ISZMmIDu3btj0qRJAICwsDB4eXnht99+w9atW/H2229re30aNWoEAHjzzTfx+uuvY8iQIZgwYQKuX7+O1atX49FHH8XJkyfxwAMPaOtbWFiIJ598EsOGDcOoUaPg7+8v+vppaMKgn5+fwTILFizAwoULERMTgxdffBHnz5/Hu+++ixMnTuDo0aNwc3PDnDlzoFKpcPXqVbz99tsAgPr16xtdHyKnIhARGenDDz8UAAgbNmzQOd6rVy+hffv2Bp/36aefCgCElStX1nj+efPmCQAELy8v4cknnxTefPNNISsrq1q5jRs3CgCEFStWVHtMrVZr///27ds6j5WXlwsdOnQQ+vTpo3Pcy8tLiI+Pr3aupUuXCgCEnJwcneO5ubmCi4uL8Oabb+oc//nnnwVXV1ed47169RIACOvWrTPY7srmz58vABDOnz8vXL9+XcjJyRHee+89wd3dXfD39xdKS0sFQRCETZs26dTt2rVrgkKhEJ544gmhoqJCe741a9YIAISNGzdqj/Xr109o3ry5qPoQkSBweI6IjHLu3Dm89NJLiI6ORnx8vFHP1fRklJSU1Fhu4cKFSE9PR9euXXHgwAHMmTMHkZGRiIiI0BkS3LlzJxo2bIipU6dWO4dMJtP+v6enp/b///77b6hUKvTs2RPZ2dlG1b+qXbt2Qa1WY8iQIbhx44b2KyAgAOHh4fjmm290yru7u2PcuHFG/YzWrVujUaNGCA0NxeTJk9GyZUt88cUXBudCffXVVygvL0diYiLk8n/e4idOnAgfHx988cUXxjeUiABweI6IjJCfn49+/frB19cXn3zyCVxcXIx6/q1btwAA3t7etZYdPnw4hg8fjuLiYhw/fhybN29Geno6BgwYgDNnzsDDwwOXLl1C69at4epa81vZ3r178cYbb+DUqVMoKyvTHq8crExx4cIFCIKA8PBwvY+7ubnpfN+kSZNq88Nqs3PnTvj4+MDNzQ1NmzbVDjkacvnyZQD3w1ZlCoUCLVq00D5ORMZjaCIiUVQqFZ588kncvHkThw8fRlBQkNHn0GxR0LJlS9HP8fHxweOPP47HH38cbm5u2LJlC44fP45evXqJev7hw4cxcOBAPProo3jnnXcQGBgINzc3bNq0Cenp6Ua3oTK1Wg2ZTIb//Oc/egNk1TlClXu8xHr00Ue186iIyLYYmoioVnfu3MGAAQPw22+/4auvvkK7du2MPkdFRQXS09NRr149PPLIIybV48EHH8SWLVuQl5cH4P5E7ePHj+Pu3bvVenU0du7cCQ8PDxw4cADu7u7a45s2bapW1lDPk6HjYWFhEAQBoaGhaNWqlbHNsYjmzZsDAM6fP48WLVpoj5eXlyMnJwcxMTHaY3XtaSNyNpzTREQ1qqiowNChQ5GZmYkdO3aYtDdQRUUFpk2bhrNnz2LatGnw8fExWPb27dvIzMzU+9h//vMfAP8MPQ0ePBg3btzAmjVrqpUV/rf5o4uLC2QyGSoqKrSP5ebm6t3E0svLS+8Gll5eXgBQ7bFnn30WLi4uWLhwYbXNJgVBQGFhof5GWlBMTAwUCgVWrVqlU6cNGzZApVLprFr08vKqcfsHItLFniYiqtHLL7+Mzz//HAMGDEBRUVG1zSyrbmSpUqm0ZW7fvo2LFy9i165duHTpEoYNG4aUlJQaf97t27fRo0cPPPTQQ4iLi0NwcDBu3ryJ3bt34/Dhwxg0aBC6du0KABgzZgw++OADJCUl4YcffkDPnj1RWlqKr776Cv/3f/+Hp59+Gv369cOKFSsQFxeHESNG4Nq1a1i7di1atmyJ06dP6/zsyMhIfPXVV1ixYgWCgoIQGhqKqKgoREZGAgDmzJmDYcOGwc3NDQMGDEBYWBjeeOMNJCcnIzc3F4MGDYK3tzdycnLw6aefYtKkSXjllVfqdP2N1ahRIyQnJ2PhwoWIi4vDwIEDcf78ebzzzjvo1q2bzusVGRmJ7du3IykpCd26dUP9+vUxYMAAq9aXyK7YcukeEUmfZqm8oa+aytavX18IDw8XRo0aJXz55Zeift7du3eF999/Xxg0aJDQvHlzwd3dXahXr57QtWtXYenSpUJZWZlO+du3bwtz5swRQkNDBTc3NyEgIEB47rnnhEuXLmnLbNiwQQgPDxfc3d2FNm3aCJs2bdIu6a/s3LlzwqOPPip4enoKAHS2H0hJSRGaNGkiyOXyatsP7Ny5U3jkkUcELy8vwcvLS2jTpo3w0ksvCefPn9e5NjVtx1CVpn7Xr1+vsVzVLQc01qxZI7Rp00Zwc3MT/P39hRdffFH4+++/dcrcunVLGDFihPDAAw8IALj9AFEtZIJghhsYERERETk4zmkiIiIiEoGhiYiIiEgEhiYiIiIiERiaiIiIiERgaCIiIiISgaGJiIiISARubmkitVqNv/76C97e3rwVARERkZ0QBAElJSUICgqCXG5c3xFDk4n++usvBAcH27oaREREZII//vgDTZs2Neo5DE0m8vb2BnD/otd0Hy0iIiKSjuLiYgQHB2s/x43B0GQizZCcj48PQxMREZGdMWVqjc0ngq9duxYhISHw8PBAVFQUfvjhhxrL79ixA23atIGHhwc6duyIffv26Tw+duxYyGQyna+4uDidMiEhIdXKLF682OxtIyIiIsdh09Ckubv2/PnzkZ2djc6dOyM2NhbXrl3TW/7YsWMYPnw4xo8fj5MnT2LQoEEYNGgQzpw5o1MuLi4OeXl52q+tW7dWO9eiRYt0ykydOtUibSQiIiLHYNPQtGLFCkycOBHjxo1Du3btsG7dOtSrVw8bN27UW37lypWIi4vDzJkz0bZtW6SkpCAiIgJr1qzRKefu7o6AgADtV4MGDaqdy9vbW6eMl5eXRdpIREREjsFmc5rKy8uRlZWF5ORk7TG5XI6YmBhkZmbqfU5mZiaSkpJ0jsXGxmL37t06xw4dOoTGjRujQYMG6NOnD9544w34+fnplFm8eDFSUlLQrFkzjBgxAjNmzICrq+HLUVZWhrKyMu33xcXFtbZRrVajvLy81nJkOoVCYfSSUSIiIlPYLDTduHEDFRUV8Pf31znu7++Pc+fO6X1Ofn6+3vL5+fna7+Pi4vDss88iNDQUly5dwuzZs/Hkk08iMzMTLi4uAIBp06YhIiICSqUSx44dQ3JyMvLy8rBixQqD9U1NTcXChQtFt6+8vBw5OTlQq9Win0PGk8vlCA0NhUKhsHVViIjIwTnc6rlhw4Zp/79jx47o1KkTwsLCcOjQIfTt2xcAdHqrOnXqBIVCgcmTJyM1NRXu7u56z5ucnKzzPM2SRX0EQUBeXh5cXFwQHBzMnhAL0WwwmpeXh2bNmnGTUSIisiibhaaGDRvCxcUFBQUFOscLCgoQEBCg9zkBAQFGlQeAFi1aoGHDhrh48aI2NFUVFRWFe/fuITc3F61bt9Zbxt3d3WCgqurevXu4ffs2goKCUK9ePVHPIdM0atQIf/31F+7duwc3NzdbV4eIiByYzbpAFAoFIiMjkZGRoT2mVquRkZGB6Ohovc+Jjo7WKQ8ABw8eNFgeAK5evYrCwkIEBgYaLHPq1CnI5XI0btzYyFboV1FRAQAcMrICzTXWXHMiIiJLsenwXFJSEuLj4/Hggw+ie/fuSEtLQ2lpKcaNGwcAGDNmDJo0aYLU1FQAwPTp09GrVy8sX74c/fr1w7Zt2/Djjz9i/fr1AIBbt25h4cKFGDx4MAICAnDp0iW8+uqraNmyJWJjYwHcn0x+/Phx9O7dG97e3sjMzMSMGTMwatQovavs6oLDRZbHa0xERNZi09A0dOhQXL9+HfPmzUN+fj66dOmC/fv3ayd7X7lyRWc+UI8ePZCeno65c+di9uzZCA8Px+7du9GhQwcAgIuLC06fPo0tW7bg5s2bCAoKwhNPPIGUlBTt0Jq7uzu2bduGBQsWoKysDKGhoZgxY0a1VXlERERElckEQRBsXQl7VFxcDF9fX6hUqmq3Ublz5w5ycnIQGhoKDw8PG9XQOfBaExFZR2FhYY3b6CgUimrb+0hRTZ/ftXG41XNkurFjx2LLli0AAFdXVyiVSnTq1AnDhw/H2LFjRa8C3Lx5MxITE3Hz5k0L1paIiKylsLBQZyNplcobRUV+UCoL4etboj2ekJBgF8HJVAxNEmTLNB8XF4dNmzahoqICBQUF2L9/P6ZPn45PPvkEn3/+eY0bgBIRkWOq/JmUnd0Ve/b0hyDIIZOpMWDAXkREnKxWzhHxE1BiqqZ5QyyV5jW3oAGAJk2aICIiAg899BD69u2LzZs3Y8KECVixYgU2bdqE33//HUqlEgMGDMC//vUv1K9fH4cOHdJO5NdM0p4/fz4WLFiADz/8ECtXrsT58+fh5eWFPn36IC0tzWyrFomIyLJUKm9tYAIAQZBjz57+CAu7qNPj5Ki466LEiE3p1kzzffr0QefOnbFr1y4A93fhXrVqFX755Rds2bIFX3/9NV599VUA9yfrp6WlwcfHR3sz5FdeeQUAcPfuXaSkpOCnn37C7t27kZubi7Fjx1qtHUREVDdFRX7awKQhCHIUFSltVCPrYk8TidKmTRucPn0aAJCYmKg9HhISgjfeeANTpkzBO++8A4VCAV9fX8hksmqbjr7wwgva/2/RogVWrVqFbt264datW6hfv75V2kFERKZTKgshk6l1gpNMpoZSWWTDWlkPQxOJIgiCdrjtq6++QmpqKs6dO4fi4mLcu3cPd+7cwe3bt2vcAT0rKwsLFizATz/9hL///lt7X74rV66gXbt2VmkHERGZzte3BAMG7K02p0nf0Fzl+bl//SVHTo4rQkPvISjo/nu/vay2q4yhiUQ5e/YsQkNDkZubi/79++PFF1/Em2++CaVSiSNHjmD8+PEoLy83GJpKS0sRGxuL2NhYfPTRR2jUqBGuXLmC2NhYh584SETkSCIiTiIs7CKKipRQKosMBibN/NyaJo7b22o7hiaq1ddff42ff/4ZM2bMQFZWFtRqNZYvX67dguDjjz/WKa9QKKrd1uTcuXMoLCzE4sWLtTc6/vHHH63TACIiMitf35IaJ35r/hiubeK4vf3RzIngpKOsrAz5+fn4888/kZ2djbfeegtPP/00+vfvjzFjxqBly5a4e/cuVq9ejd9//x0ffvgh1q1bp3OOkJAQ3Lp1CxkZGbhx4wZu376NZs2aQaFQaJ/3+eefIyUlxUatJCIiY4i9l2rVco42cZw9TaRj//79CAwMhKurKxo0aIDOnTtj1apViI+Ph1wuR+fOnbFixQosWbIEycnJePTRR5GamooxY8Zoz9GjRw9MmTIFQ4cORWFhoXbLgc2bN2P27NlYtWoVIiIisGzZMgwcONCGrSUiIjH8/PyQkJBg9B6CjjZxnLdRMZGlbqNi632a7A1vo0JEJD15eXlYv349gJrnNE2aNAmBgYFWrRtvo+JATE3zRETkOBzlPm+AuInj9oKhSYLs5ReBiIjMz5T7vEk9ZNU2cdxeMDQRERFJiLH3eePNdK2HoYmIiEiCxN7nTYo30zV1tZ3UMTQRERFJUE3L9fUNdUnpZrqOOj+XoYmIiEiCjF2ub2zIsjR7C0RicHNLIiIiCdLc500mu3+vtpru8wb8E7Iqs+c9kaSIPU1EREQSZcxyfWNupkumYWgiIiKSMGOW6zvSnkhSxOE5sppDhw5BJpPh5s2bop8TEhKCtLQ0i9WJiEhq6rryzNe3BKGhlxmYLIA9TaQ1duxYbNmyBZMnT652E96XXnoJ77zzDuLj47F582bbVJCIyAkYu/LMUZf3SxFDE+kIDg7Gtm3b8Pbbb8PT0xPA/fu7paeno1mzZjauHRGRczBm5ZmjLu+XIg7PkY6IiAgEBwdj165d2mO7du1Cs2bN0LVrV+2xsrIyTJs2DY0bN4aHhwceeeQRnDhxQudc+/btQ6tWreDp6YnevXsjNze32s87cuQIevbsCU9PTwQHB2PatGkoLS21WPuIiByRn58fAgMDDX4xMJkHQ5PEXb0KfPPN/f9aywsvvIBNmzZpv9+4cSPGjRunU+bVV1/Fzp07sWXLFmRnZ6Nly5aIjY1FUdH9pa1//PEHnn32WQwYMACnTp3ChAkTMGvWLJ1zXLp0CXFxcRg8eDBOnz6N7du348iRI0hISLB8I4mIiIzE0CRhGzYAzZsDffrc/++GDdb5uaNGjcKRI0dw+fJlXL58GUePHsWoUaO0j5eWluLdd9/F0qVL8eSTT6Jdu3Z4//334enpiQ3/q+S7776LsLAwLF++HK1bt8bIkSMxduxYnZ+TmpqKkSNHIjExEeHh4ejRowdWrVqFDz74AHfu3LFOY4mIiETinCaJunoVmDQJUP9vnzK1Gpg8GYiNBZo2tezPbtSoEfr164fNmzdDEAT069cPDRs21D5+6dIl3L17Fw8//LD2mJubG7p3746zZ88CAM6ePYuoqCid80ZHR+t8/9NPP+H06dP46KOPtMcEQYBarUZOTg7atm1rieYRERGZhKFJoi5c+CcwaVRUABcvWj40AfeH6DTDZGvXrrXIz7h16xYmT56MadOmVXuMk86JiEhqGJokKjwckMt1g5OLC9CypXV+flxcHMrLyyGTyRAbG6vzWFhYGBQKBY4ePYrmzZsDAO7evYsTJ04gMTERANC2bVt8/vnnOs/7/vvvdb6PiIjAr7/+ipbWahQRkQGFhYVcfUa1YmiSqKZNgfXr7w/JVVTcD0zvvWedXiYAcHFx0Q61ubi46Dzm5eWFF198ETNnzoRSqUSzZs3wr3/9C7dv38b48eMBAFOmTMHy5csxc+ZMTJgwAVlZWdX2d3rttdfw0EMPISEhARMmTICXlxd+/fVXHDx4EGvWrLFKO4mICgsLRb3nJCQkMDg5OU4El7Dx44Hc3Pur53Jz739vTT4+PvDx8dH72OLFizF48GCMHj0aERERuHjxIg4cOIAGDRoAuD+8tnPnTuzevRudO3fGunXr8NZbb+mco1OnTvj222/x22+/oWfPnujatSvmzZuHoKAgi7eNiEijag+TSuWNnJwQqFTeNZYj5yMTBEGwdSXsUXFxMXx9faFSqaoFizt37iAnJwehoaHw8PCwUQ2dA681EdVVXl4e1q9fDwDIzu5a7Ya3EREnAQCTJk1CYGCgLatKZlDT53dt2NNERESE+z1MmsAEAIIgx549/av1OJHzYmgiIiICUFTkpw1MGoIgR1GR0kY1IqlhaCIiIgKgVBZCJtPd60UmU0OpLLJRjUhqGJqIiIgA+PqWYMCAvdrgpJnT5OtbYuOakVRwywEL4hx7y+M1JiJziog4ibCwiygqUkKpLGJgqoR7WTE0WYRmX6Py8nJ4enrauDaOTfMLXHUvKSIisRQKhc73vr4lesNS1XLOhHtZ3cfQZAGurq6oV68erl+/Djc3N8jlHAW1BLVajevXr6NevXpwdeU/ZSIyjZ+fHxISEpy+F6Um+vayKiryg1JZqBMwHX0vK37SWIBMJkNgYCBycnJw+fJlW1fHocnlcjRr1gwymczWVSEikaQ4zOPMgchYNe1l5egYmixEoVAgPDzc4VO3rSkUCvbkEdkRDvPYN0N7WYWFXXSK+V8MTRYkl8u5SzURUSUc5rFvNe1lxdBEREROx1rDZ/Y8zCPFIUZr0OxlVTk4OdNeVgxNRESkZa3hM3se5nHmIUbNXlZVw67UXzNzYWgiIiItaw2f2fMwj7MPMTrzXlYMTUREpJclh88cZZjHnocYjcG9rO5jaCIiomosPXzmCMM89jzEaCzuZXUfQxMREVVjjeEzex/msechRlM4eiASg6GJiIiqsdTwmSMN8zjKECOJx9BERETVWGr4zJGGeYy5Rs66RYGjYWgiIqqBM3/YWWr4zJGul5hr5MxbFDgahiYiIgOc8cPOkYbPLMXYayR26wFH3aLAkTA0EREZ4Iwfdo40fGYpdb1GhvZ1IuljaCIiEskeP+xMGV505kAklqnXyFn2dXJUDE1ERCLY44edMw4vSpkz7etkCnuYP8jQRERUC3v9sHP2231IjbPt62QMewn4DE1ERLWQ0oedqX+N22NPmaPhvk6G2cv8QYYmIqJaSOXDztS/xo3tKbOHYRJ75Ai3jnF2DE1ERLWQyoedqcNtxvSU2cswiT2pvEVBTfs6OfM2DlVJddEFQxMRkQFS/rAzZrjNmJ4yzoMyP27jYBwpDyUzNBERGWDKh501hraMHW4ztadMyh9e9oaBSBypL7pgaCIiqoExH3bWGtoyZWK6sbdEkfqHFzkmKS260IehiYjITKw1tCV2uK0ut0SR+ocXOSapLLowhKGJiMgCLDm0JXa4rS5zaaT+4UWORRPca/u3bevJ8gxNRERmZo2hLbHDbaYOA0plxSA5h6oBf96868jNdUVIyD0EBXUD0E0Sk+XltRexrLVr1yIkJAQeHh6IiorCDz/8UGP5HTt2oE2bNvDw8EDHjh2xb98+ncfHjh0LmUym8xUXF6dTpqioCCNHjoSPjw8eeOABjB8/Hrdu3TJ724jIOdU0tFUX+obbQkMvVwsy5vprPCLiJBIT0xAfvxmJiWmcBE4W5efnh8DAQAQGBiIy0h+DB/shMtJfe8zWgQmwcU/T9u3bkZSUhHXr1iEqKgppaWmIjY3F+fPn0bhx42rljx07huHDhyM1NRX9+/dHeno6Bg0ahOzsbHTo0EFbLi4uDps2bdJ+7+7urnOekSNHIi8vDwcPHsTdu3cxbtw4TJo0Cenp6ZZrLBE5DUsNbVlj6Xpd5kEROTqbhqYVK1Zg4sSJGDduHABg3bp1+OKLL7Bx40bMmjWrWvmVK1ciLi4OM2fOBACkpKTg4MGDWLNmDdatW6ct5+7ujoCAAL0/8+zZs9i/fz9OnDiBBx98EACwevVqPPXUU1i2bBmCgoLM3UwicjKWHNoyNhBxd28i87FZaCovL0dWVhaSk5O1x+RyOWJiYpCZman3OZmZmUhKStI5Fhsbi927d+scO3ToEBo3bowGDRqgT58+eOONN7RvCpmZmXjggQe0gQkAYmJiIJfLcfz4cTzzzDN6f3ZZWRnKysq03xcXFxvVXiJyLmLnHFky1JiyBQI3tyQyzGah6caNG6ioqIC/v7/OcX9/f5w7d07vc/Lz8/WWz8/P134fFxeHZ599FqGhobh06RJmz56NJ598EpmZmXBxcUF+fn61oT9XV1colUqd81SVmpqKhQsXGttMIjKCvfeKGDu0Zel9neoagLi5JZEuh1s9N2zYMO3/d+zYEZ06dUJYWBgOHTqEvn37mnze5ORknV6u4uJiBAcH16muRPQPR7jnmbFzjqzZq2NsAOLmlkTV2Sw0NWzYEC4uLigoKNA5XlBQYHA+UkBAgFHlAaBFixZo2LAhLl68iL59+yIgIADXrl3TKXPv3j0UFRXVeB53d/dqE8qJ7J2UenakOixk7DUy9XpZslfHlADEzS2JqrNZaFIoFIiMjERGRgYGDRoEAFCr1cjIyEBCQoLe50RHRyMjIwOJiYnaYwcPHkR0dLTBn3P16lUUFhYiMDBQe46bN28iKysLkZGRAICvv/4aarUaUVFR5mkckR2Qcs+OVIaFrHWNLN2rY0oA4uaWRNXZdJ+mpKQkvP/++9iyZQvOnj2LF198EaWlpdrVdGPGjNGZKD59+nTs378fy5cvx7lz57BgwQL8+OOP2pB169YtzJw5E99//z1yc3ORkZGBp59+Gi1btkRsbCwAoG3btoiLi8PEiRPxww8/4OjRo0hISMCwYcO4co6citgeG2v37BgKECqVt1XrAejv/crJCalWl7peI0vt66ShCUCV1RaANCsANc/j5pZENp7TNHToUFy/fh3z5s1Dfn4+unTpgv3792sne1+5cgVy+T9vJD169EB6ejrmzp2L2bNnIzw8HLt379bu0eTi4oLTp09jy5YtuHnzJoKCgvDEE08gJSVFZ2jto48+QkJCAvr27Qu5XI7Bgwdj1apV1m08Eekl1WEhS/Z+WbpXx9QtEIy9yS+Ro7P5RPCEhASDw3GHDh2qduz555/H888/r7e8p6cnDhw4UOvPVCqV3MiSqApDc4isTUrDQiqV6n//rXn4TKVSaacAmMIatywRG4C4uSWZi5TmTJqLzUMTEdmeVOYQAdK659ndu3cB1N77pSlXF5bo1TElAFlj13FyfFKeM1kXDE1ETk6KS8ulNiykVBYCUEN3Gmjde78s3atjagCypw8xkiapzpmsK4YmIicnlTlE0h8Wkul+JzNQzAjW6NVhACIpkMrwf10xNBE5OanMIZLisFBJyf0396IiP1QNTZWDpaacKRhqyNFJafi/rhiaiJyUpsemtjlE1uzZkWqAkEqwNIUjTsYl87DGvw0pDv/XBUMTkURZ+g2tas/OvHnXkZvripCQewgK6gagm9N/oHp739+Pyde3BJ06ncZPP3XG/R4nAZ06nda+6WvKmUJqN+wl52CtfxtSGf43F4YmIgmy1hta5ecGBgL/2ySfqlCpvHH6dCf8M0Qnw+nTndCnz9d1euOX+g17yXFZa6K2PffS6sPQRCRBjrryxN64ubkBqP2vZU05Y1nzdXakeSVkfpaaqC2lLUTMgaGJiMgAX19fALX/tawpV1eW+uBytHklZF6WCNSV50LWtIWIvW2SytBEZAekslzXWScVW+OvZUv2BDnavBIyH0sFaimuhjUHhiYiiZPKsIqzTyq25Iablu4JcrR5JWQ+lgzUjvg+IK+9CBHZiqEPU5XK9NVaptI3qTgnJ6RaXRxpnpW+DTdDQy9X+zCp6xBDTR9c5qDpKZPJ1ABg9/NKyHw0gboyBmrD2NNEZCJrDFVJdVhFKr1flmatIQZr9ARJ7dY0JA2ONlHb0hiaiExgraEqKQ6rONukYmsMMVjqg0v6t6YhW3HUidqWxtBEZAJLLxWX4m7dGlLt/bJHlv7gctTJuFR3/LdhGoYmIgmS8m7dUuz9sle8YS/ZEv9tGI+hicgMLLElgFR36+YcCPPiBxeR/WBoIqojZ5kUXZnYScXOuq+TMXiNiOwHQxNRHTjTpGhjJxU7+75OYvAaEdkXhiaiOnCmSdHGzr/hzWJrx2tEZF8YmojqwNkmRZva2+GMQ5jG4jUikj7uCE5kgqpbAhjaaZl7nEhrV3Op4jUisg/saSIygZS3BJAaZxrCNBWvEZF9YGgiMpFUtwSQGmcbwjQFrxGRfeDwHBFZFG8WWzteIyL7wJ4mIrI43iy2drxGRNLH0EQkUfa+6SFvFls7XiMi+yITBEGwdSXsUXFxMXx9faFSqeDj42Pr6pAZSCmkOMqmh1K6plLFa0RkXXX5/GZPExGkF1IcZdNDftjXjteIyH4wNBFBfPiwRUix500P2YtSO14jIvvB0ESkh6GeHVvUw17vbSe13jsp4jUisi8MTURVSKlnx543PXSUIUZLknIPJxFVx9BEVInUenYcZdNDKQVRKRPTw8nhPCLbYWgiqkRqPTuaTQ+rBg6p9zJVJrUgKlVigiWH88icGMCNx9BEVIkUe3bsfdNDqQVRKRIbLDnkKQ7DQO0YwE3D0ERmIcU3KVPqJJWeHUfa9FCKQVRqTAmWYoc8rfG7KaXff4YBcTifzjQMTVRnUnyTMrZOlcNHTT071gopfn5+SEhIkMwHUV1IJYhKmbHBUmzPlDV+N6X2+88wYBqprBiWOoYmqjMpvkkZWycphhR7CERi2fsQo6UZGyzF9kxZYzhPir//lTEM1I4LNcRjaCKnIOaN05FCihQ40hCjpZjaw2nKkKe1PhilFFIYBmrHhRrGYWgis5PSmybAN05bkWLvndSYeo2M7Zmy1gejlH7XGAbE4UIN4zA0kVlJ6U0T4BunrTlzIBLL1GtkzJCnNT4Ypfa7xjAgDhdqGEdeexEicQy9aapU3jarU01vnET2Rt+QZ2jo5WohwNBwXmXm/mCU2u+aNdrsCDS9lpprxYUaNWNPE5mNFP+y419R9kVKS9elyFrDeaaQ2u+ava/atPTvgtRWDNsLhiYyG6m9aQL2/8bpTKS2dF2qrDGcZwqp/K5ZKwxYMtRY43eBcw5Nw9BEdaZ586ntTdOaf7Hwryj7w92uzc8aKxil9rtmjTBg6VBjrW0cGIiMx9BEdVb1TWrevOvIzXVFSMg9BAV1A9DNJnsc8a8o+yW1BQX2yhq/B1L8XbP0z7L23lRSW5HszBiayCwqv0kFBgKRkTaszP8wENknqa3CsnfW+D1w9t81S4Ya/gEhLQxNRCQpxiwo4MRxsjVLhhr+ASE9DE1EJCliFxRw4jjZmqVDjRRXJDs7hiYikoSbN28CqH1Bwc2bNxEYGMiJ4xLirD1+lu4VleKKZGfH0EREknDv3j2d7wVB97+GygGWHSJx1kAgljP3+Fm6V1Qq2zjQPxiaiEgS3NzcAPwz5PHPDQt0hzw05TQsOUTizIFALGuvJJMSsaHG2GsktW0c6B8MTUQkCb6+vgBqH/LQlNOw5LwPDgEazxmWx9c11NR2jaS4jQPdx9BERJJi7DwOa8374NLv2jnLNapLqBF7jRiIpIk37CUiSTH2BqLWuOGoFG9GLTXOdo38/PwQGBho8Etf6HG2a+SI2NNERJJj7H3SLH1fNS79rh2vUe14jewfQxMRSZKh+6RpWOO+ahpc+l07XqPa8RrZP4YmIpIEseFGU86ak2W59Lt2vEa14zWyfwxNEsB9YIhMC0HW/L2w9BCgveLy+NrxGjkOhiYbq7oPjKGlqM68Dww5D6n9G7fmEKC94vL42vEaOQ6GJhur/EtU01JU7gNDZH38sBPH2dsvBq+RY2BokgjezZpImvhhR0Qa3KdJImpaikpERES2x54mibD0UlRONiciIqobhiaJsORSVE42J7Ie/oFC5LhsHprWrl2LpUuXIj8/H507d8bq1avRvXt3g+V37NiB119/Hbm5uQgPD8eSJUvw1FNP6S07ZcoUvPfee3j77beRmJioPR4SEoLLly/rlE1NTcWsWbPM0iZTWWpJMyebE1lH1T9QDOEfKET2yaZzmrZv346kpCTMnz8f2dnZ6Ny5M2JjY3Ht2jW95Y8dO4bhw4dj/PjxOHnyJAYNGoRBgwbhzJkz1cp++umn+P777xEUFKT3XIsWLUJeXp72a+rUqWZtm6l8fUsQGnrZIpO/ed8jIsuq+oeHSuWNnJyQar9j/AOFyD7ZNDStWLECEydOxLhx49CuXTusW7cO9erVw8aNG/WWX7lyJeLi4jBz5ky0bdsWKSkpiIiIqPaX3Z9//ompU6fio48+gpubm95zeXt7IyAgQPvl5eVl9vaJYewuyHXByeZE1pOd3RVpaYnYsiUeaWmJyM7uausqEVEd2Wx4rry8HFlZWUhOTtYek8vliImJQWZmpt7nZGZmIikpSedYbGwsdu/erf1erVZj9OjRmDlzJtq3b2/w5y9evBgpKSlo1qwZRowYgRkzZsDV1fDlKCsrQ1lZmfb74uLi2pooijX3geF9j4isg1uIEDkmm4WmGzduoKKiAv7+/jrH/f39ce7cOb3Pyc/P11s+Pz9f+/2SJUvg6uqKadOmGfzZ06ZNQ0REBJRKJY4dO4bk5GTk5eVhxYoVBp+TmpqKhQsXimma0aw1t4H3PSKyDt7Nnsgx2XwiuDllZWVh5cqVyM7OhkwmM1iucm9Vp06doFAoMHnyZKSmpsLd3V3vc5KTk3WeV1xcjODgYPNV3kp4/ywiy2OvLpFjstmcpoYNG8LFxQUFBQU6xwsKChAQEKD3OQEBATWWP3z4MK5du4ZmzZrB1dUVrq6uuHz5Ml5++WWEhIQYrEtUVBTu3buH3Nxcg2Xc3d3h4+Oj82WvLDnZnIj+6dWVydQAwF5dIgdhs54mhUKByMhIZGRkYNCgQQDuz0fKyMhAQkKC3udER0cjIyNDZ/uAgwcPIjo6GgAwevRoxMTE6DwnNjYWo0ePxrhx4wzW5dSpU5DL5WjcuHHdGiVR1pxsTkT3sVeXyPHYdHguKSkJ8fHxePDBB9G9e3ekpaWhtLRUG3DGjBmDJk2aIDU1FQAwffp09OrVC8uXL0e/fv2wbds2/Pjjj1i/fj2A+3ODqs4PcnNzQ0BAAFq3bg3g/mTy48ePo3fv3vD29kZmZiZmzJiBUaNGoUGDBlZsvfXwpqNE1lH1Dw9f3xK9YYl/oBDZJ5uGpqFDh+L69euYN28e8vPz0aVLF+zfv1872fvKlSuQy/8ZQezRowfS09Mxd+5czJ49G+Hh4di9ezc6dOgg+me6u7tj27ZtWLBgAcrKyhAaGooZM2ZUW5XnaIwNRNzVmMh4zvoHCt8vyFnIBEEQbF0Je1RcXAxfX1+oVCq7nt+kD2+7QkRicRd0sjd1+fx2qNVzZB687QoRiSX2fYDvF+QIbLojOEkbb7tCRMYydOsYIkfAniYyiBv0EZExauqZJnIE7GkigzQb9FXGDfqISB/2TJMzYGgig7hBHxGJxRuCkzPg8BzViBv0EZEYvHUMOQP2NFGteNsVIqoNe6bJGbCniarhbVeISKzK7wM19Uzz/YIcgVGbW969exdz5szBrl27oFQqMWXKFLzwwgvaxwsKChAUFISKigqLVFZKHHlzS8D4HX65IzCR8+LvP9kTq21u+eabb+KDDz7AK6+8gps3byIpKQnHjx/He++9py3DDcYdgzFvcNxBnMi58feanIVRoemjjz7C//t//w/9+/cHAIwdOxZPPvkkxo0bh40bNwIAZDKZ+WtJksYdxImIyBkYNRH8zz//1Lk5bsuWLXHo0CEcO3YMo0ePdophOTKM+7QQEZEjMyo0BQQE4NKlSzrHmjRpgm+++QYnTpzA2LFjzVk3sjPcp4WIiByZUaGpT58+SE9Pr3Y8KCgIX3/9NXJycsxWMbI/3EGciIgcmVGh6fXXX8eQIUP0PtakSRN8++232rlN5Hy4TwsRETkyoyaCN2/eHM2bNzf4eFBQEOLj4+tcKbJf3EGciIgclUmbW+7YsQNbt27Fb7/9BgBo1aoVRowYgeeee86slSP75OtbYpdhiXvNEJFYfL9wTkaFJrVajeHDh2PHjh1o1aoV2rRpAwD45ZdfMHToUDz//PPYunUrtx1wMo6wgzj3miIisaq+XxjC9wvHY1RoWrlyJb766it8/vnn2r2aND7//HOMGzcOK1euRGJiojnrSBLn5+eHhIQEu/6ri3tNEZFYYt8H+H7heIwKTZs2bcLSpUurBSYAGDhwIP71r38xNDkpKQciYxjaayos7KJdDjkSkeUZ6pmWOg4xGs+o0HThwgXExMQYfDwmJgYJCQl1rhSRrdS015Q9vRkSkXXU1DMtZRxiNI1RWw54enri5s2bBh8vLi6Gh4dHXetEZDPca4qIxLLnuyBU7WFSqbyRkxNSre4cYtRlVGiKjo7Gu+++a/DxtWvXIjo6us6VIrIV7jVFRGI5yl0QsrO7Ii0tEVu2xCMtLRHZ2V1tXSXJMmp4bs6cOXjsscdQWFiIV155BW3atIEgCDh79iyWL1+Ozz77DN98842l6kpkFdxriojE0PRMVw5O9tYzzXmcxjEqNPXo0QPbt2/HpEmTsHPnTp3HGjRogK1bt+Lhhx82awWJbMFe95oiIuvR9ExXndNkT+8dnMdpHKM3t3zmmWcQGxuLAwcO4MKFCwDub275xBNPoF69emavIJE1OMJeU0RkHZXfB2rqmbaH9wtH6C2zJqNC09dff42EhAR8//33eOaZZ3QeU6lUaN++PdatW4eePXuatZJElmbKXlNcrkvknBxhbzoNR+gtsyajQlNaWhomTpwIHx+fao/5+vpi8uTJWLFiBUMT2SVj3uC4gziRc3Ok32vO4xTPqND0008/YcmSJQYff+KJJ7Bs2bI6V4pI6riDOBHZs6pDh4bmcdrDEKM1GRWaCgoK4ObmZvhkrq64fv16nStFZC+48oSI7JEjDTFak1GhqUmTJjhz5gxatmyp9/HTp08jMDDQLBUj2+J8HXG48oSI7BXfw41nVGh66qmn8PrrryMuLq7azt///e9/MX/+fL33pSP7wvk64nHlCRGR8zAqNM2dOxe7du1Cq1atkJCQgNatWwMAzp07h7Vr16KiogJz5syxSEXJejhfRzyuPCEich5GhSZ/f38cO3YML774IpKTkyEIAgBAJpMhNjYWa9euhb+/v0UqStbH+TricOUJEZFzMHpzy+bNm2Pfvn34+++/cfHiRQiCgPDwcDRo0MAS9SMb4nwd8cTsIM55YkRE9s3o0KTRoEEDdOvWzZx1IYnhfB3DjN1BnPPEiIjsn8mhiRwf5+sYZuxyXc4TIyKyfwxNVCPO1zHMlB4hzhMjIrJfDE1UKzHzdUgczhMjIrJf8tqLkLMxdr4OiaeZJ1YZ54kREdkH9jRRNdxe33I4T4yISD97WGHM0ER62fofpiPjPDEiIl32ssKYoYnIBjhPjIjoH/aywpihifSq3E36119y5OS4IjT0HoKC7s/HkUI3qT3hPDEiotpJfYUxQxNVU7mbtKbEb+tuUnvCeWJERLWT+gpjhiaqRvPBXlvit3U3qb1hICIiqpnU70TBLQfIoJoSPxERkblpVhhrtmaR2gpj9jSRQVJP/ERE5HikvMKYPU1kkNQTPxEROSZf3xKEhl6W3OcNe5qoRlJO/ERE5BjsZYUxQxPVinsKERGRJdnLCmOGJiIiIrI5WwciMTiniaqxl25SIiIia2JPE1VjL92kRERE1sTQRHoxEBEREeni8BwRERGRCAxNRERERCJweI70Kiws5JwmIiKiShiaqJrCwkKsWbNG+71K5Y2iIj8olYU6+zUlJCQwOBERkdNgaKJqKvcwZWd3xZ49/SEIcu1tVCIiTlYrR0RE5Og4p4kMUqm8tYEJAARBjj17+kOl8rZxzYiIiKyPoYkMKiry0wYmDUGQo6hIaaMaERER2Q5DExmkVBZCJlPrHJPJ1FAqi2xUIyIiItthaCKDfH1LMGDAXm1w0sxp4s17iYjIGXEiONUoIuIkwsIuoqhICaWyiIGJiIicls17mtauXYuQkBB4eHggKioKP/zwQ43ld+zYgTZt2sDDwwMdO3bEvn37DJadMmUKZDIZ0tLSdI4XFRVh5MiR8PHxwQMPPIDx48fj1q1b5miOQ/L1LUFo6GUGJiIicmo2DU3bt29HUlIS5s+fj+zsbHTu3BmxsbG4du2a3vLHjh3D8OHDMX78eJw8eRKDBg3CoEGDcObMmWplP/30U3z//fcICgqq9tjIkSPxyy+/4ODBg9i7dy++++47TJo0yezts1cKhcKs5YiIiByBTBAEwVY/PCoqCt26ddNupKhWqxEcHIypU6di1qxZ1coPHToUpaWl2Lt3r/bYQw89hC5dumDdunXaY3/++SeioqJw4MAB9OvXD4mJiUhMTAQAnD17Fu3atcOJEyfw4IMPAgD279+Pp556ClevXtUbsvQpLi6Gr68vVCoVfHx8TL0EksUdwYmIyBHV5fPbZnOaysvLkZWVheTkZO0xuVyOmJgYZGZm6n1OZmYmkpKSdI7FxsZi9+7d2u/VajVGjx6NmTNnon379nrP8cADD2gDEwDExMRALpfj+PHjeOaZZ/T+7LKyMpSVlWm/Ly4uFtVOe8VAREREpMtmw3M3btxARUUF/P39dY77+/sjPz9f73Py8/NrLb9kyRK4urpi2rRpBs/RuHFjnWOurq5QKpUGfy4ApKamwtfXV/sVHBxcY/uIiIjIsdh8Irg5ZWVlYeXKldi8eTNkMplZz52cnAyVSqX9+uOPP8x6fiIiIpI2mw3PNWzYEC4uLigoKNA5XlBQgICAAL3PCQgIqLH84cOHce3aNTRr1kz7eEVFBV5++WWkpaUhNzcXAQEB1Saa37t3D0VFRQZ/LgC4u7vD3d3dqDYSkXE4l46IpMxmoUmhUCAyMhIZGRkYNGgQgPvzkTIyMpCQkKD3OdHR0cjIyNBO6gaAgwcPIjo6GgAwevRoxMTE6DwnNjYWo0ePxrhx47TnuHnzJrKyshAZGQkA+Prrr6FWqxEVFWXmVhKRWIWFhdpFIcD9ex8WFflBqSzU2e4iISGBwYmIbMKmm1smJSUhPj4eDz74ILp37460tDSUlpZqA86YMWPQpEkTpKamAgCmT5+OXr16Yfny5ejXrx+2bduGH3/8EevXrwdwf/Jy1TdTNzc3BAQEoHXr1gCAtm3bIi4uDhMnTsS6detw9+5dJCQkYNiwYaJXzhGR+VXuYcrO7qq9WbRmJ/qIiJPVyhERWZNNQ9PQoUNx/fp1zJs3D/n5+ejSpQv279+vnex95coVyOX/TLvq0aMH0tPTMXfuXMyePRvh4eHYvXs3OnToYNTP/eijj5CQkIC+fftCLpdj8ODBWLVqlVnbRkSmUam8tYEJuH+T6D17+iMs7CI3WCUim7LpPk32zNH3aSKytry8PKxfvx45OSHYsiW+2uPx8ZsRGnoZkyZNQmBgoA1qSESOwC73aSIi83KUSdRKZSFkMrW2pwm4f7NopbLIhrUiImJoInIIVSdRG2IPk6h9fUswYMDeanOaODRHRLbG0ETkAKr2MBlaeWYvk6gjIk4iLOwiioqUUCqLHDowOUoPIZEzYGgicjA1rTyzJ76+JQ4dlgBus0BkbxiaiByIPa88UygUZi1nD7jNApF9YWgiciBFRX46E6iB+8GpqEgp+dDk5+eHhIQEpxyqsuewS+RMGJqIrMQac1fsfeWZIwYiMew57BI5E4YmIiuw1uo2rjyzT/YedomcBUMTkRVYc3WbM608cxQMu0T2gaGJyMossbqt6uRoQyvPHGkStaNh2CWSPoYmIiuy1IRfZ55E7UicYZsFInvG0ERkRZac8MtAZH+ccZsFInvG0ERkRZzwS5Wxh5DIvjA0EVkRJ/xSVQxERPaDoYnIyjjhl4jIPjE0EVkBV7cREdk/hiYiK+DcFSIi+8fQRGQlDERERPZNXnsRIiIiImJoIiIiIhKBoYmIiIhIBM5pIpsoLCzkpGgiIrIrDE1kdYWFhVizZk2t5RISEpw6ODFYEhFJC0MTWV1NQcCUco6IwZKISHo4p4lsTqXyRk5OCFQqb1tXRTKqBkZD18iZgyURkbWxp4lsKju7a7X7sEVEnLR1tSSF14iISBrY00Q2o1J5a8MAAAiCHHv29GePUyW8RkRE0sHQRDZTVOSnDQMagiBHUZHSRjWSHl4jIiLpYGgim1EqCyGTqXWOyWRqKJVFNqqR9PAaERFJB0MT2YyvbwkGDNirDQWa+Tq+viU2rpl08BoREUkHJ4KT1SkUCu3/R0ScRFjYRRQVKaFUFumEgcrlnFlN14iIiKyHoYmszs/PDwkJCdy4sQZVA6Ovb4nesMRgSURkPTJBEARbV8IeFRcXw9fXFyqVCj4+PrauDjkg7ghORGR+dfn8Zk8TkUQxEBHZxtWrwIULQHg40LSprWtDUsKJ4ERERP+zYQPQvDnQp8/9/27YYOsakZQwNBERkdMrLCxEVlYBJk0SoP7fLh9qNTB5soCsrAIUFhbatoIkCRyeIyIip6a5QXZOTgjU6nidxyoqZFi9+j8IDb3MG2QTe5qIiMi5aRZc1LaZLG+QTQxNRERE4GayVDsOzxEREf0PN5OlmjA02SHu30NEZDmGNpMlYmiyM5oJi7XhhEUiIiLz4pwmO1O1h0ml8kZOTghUKu8ayxEREVHdsKfJjmVnd8WePf0hCHLthMWIiJO2rhYREZFDYk+TnVKpvLWBCQAEQY49e/pX63EiIqKaib3xNW+QTexpslNFRX7awKQhCHIUFSk5gZGIyAh+fn5ISEjgAhuqFUOTndJswlY5OFXehI1IDK7EJLqP/85JDIYmO6XZhK3qnCb2MpFYVVdiqlTeKCryg1JZqPPviCsxiYjuY2iyY9yEjeqicg9TTYsKuBKTiOg+TgS3M1UnIvr6liA09HK1wMQJiyQWFxUQEYnDniY7wwmLZG5cVEBEJA5Dkx1iICJz4qICIiJxODxH5OR4Z3ciInHY00REXFRARCQCQxMRAeCd3YmIasPQ5CS4iSFVxVtHEBEZh6HJCVTdxNAQbmLoXLgSk4jIOAxNTkDs5oTcxND5MBAREYnH1XNOSKXyRk5OCDcvJCIiMgJ7mpxMTbfLICIiIsPY0+REeLsMIiIi0zE0OZGabpdBRERENWNociKa22VUxttlEBERicPQ5ER4uwwiIiLTcSK4E6i8OWFNt8vgJoZERESG2Tw0rV27FkuXLkV+fj46d+6M1atXo3v37gbL79ixA6+//jpyc3MRHh6OJUuW4KmnntI+vmDBAmzbtg1//PEHFAoFIiMj8eabbyIqKkpbJiQkBJcvX9Y5b2pqKmbNmmX+BkoANzEkIiKqO5uGpu3btyMpKQnr1q1DVFQU0tLSEBsbi/Pnz6Nx48bVyh87dgzDhw9Hamoq+vfvj/T0dAwaNAjZ2dno0KEDAKBVq1ZYs2YNWrRogf/+9794++238cQTT+DixYto1KiR9lyLFi3CxIkTtd97ezv2CjIGIiIiorqRCYIg2OqHR0VFoVu3btpbfKjVagQHB2Pq1Kl6e32GDh2K0tJS7N27V3vsoYceQpcuXbBu3Tq9P6O4uBi+vr746quv0LdvXwD3e5oSExORmJhoct0151WpVPDx8TH5PERERGQ9dfn8ttlE8PLycmRlZSEmJuafysjliImJQWZmpt7nZGZm6pQHgNjYWIPly8vLsX79evj6+qJz5846jy1evBh+fn7o2rUrli5dinv37tVY37KyMhQXF+t8ERERkfOw2fDcjRs3UFFRAX9/f53j/v7+OHfunN7n5Ofn6y2fn5+vc2zv3r0YNmwYbt++jcDAQBw8eBANGzbUPj5t2jRERERAqVTi2LFjSE5ORl5eHlasWGGwvqmpqVi4cKGxzSQiIiIHYfOJ4JbQu3dvnDp1Cjdu3MD777+PIUOG4Pjx49p5UklJSdqynTp1gkKhwOTJk5Gamgp3d3e950xOTtZ5XnFxMYKDgy3bECIiIpIMmw3PNWzYEC4uLigoKNA5XlBQgICAAL3PCQgIEFXey8sLLVu2xEMPPYQNGzbA1dUVGzZsMFiXqKgo3Lt3D7m5uQbLuLu7w8fHR+eLiIiInIfNQpNmO4CMjAztMbVajYyMDERHR+t9TnR0tE55ADh48KDB8pXPW1ZWZvDxU6dOQS6X612xR0RERATYeHguKSkJ8fHxePDBB9G9e3ekpaWhtLQU48aNAwCMGTMGTZo0QWpqKgBg+vTp6NWrF5YvX45+/fph27Zt+PHHH7F+/XoAQGlpKd58800MHDgQgYGBuHHjBtauXYs///wTzz//PID7k8mPHz+O3r17w9vbG5mZmZgxYwZGjRqFBg0a2OZCEBERkeTZNDQNHToU169fx7x585Cfn48uXbpg//792sneV65cgVz+T2dYjx49kJ6ejrlz52L27NkIDw/H7t27tXs0ubi44Ny5c9iyZQtu3LgBPz8/dOvWDYcPH0b79u0B3B9m27ZtGxYsWICysjKEhoZixowZOvOViIiIiKqy6T5N9oz7NBEREdkfu9yniYiIiMieMDQRERERicDQRERERCQCQxMRERGRCAxNRERERCI45G1UqO4KCwtRXl5u8HGFQgE/Pz8r1oiIiMi2GJqomsLCQqxZs6bWcgkJCQxORETkNDg8R9XU1MNkSjkiIiJHwJ4mov/hkCQREdWEoYlqpVJ5o6jID0plIXx9S2xdHYvgkCQREdWGoYlqlJ3dFXv29IcgyCGTqTFgwF5ERJy0dbXMjkOSRERUG85pIoNUKm9tYAIAQZBjz57+UKm8bVwzy1OpvJGTE+IUbSUiInHY00QGFRX5aQOThiDIUVSkdNhhOsB5eteIiMg47Gkig5TKQshkap1jMpkaSmWRjWpkec7cu0ZERDVjaKJqFAoFAMDXtwQDBuzVBidNr4uml0lTzpHU1LtGRETOjcNzVI2fnx8SEhK0k57nzbuO3FxXhITcQ1BQNwDdHHb5vaZ3rXJwcvTeNSIiEoehifSqHIgCA4HISBtWxoo0vWtV5zQ58hwuIiISh6GJCLpDjRERJxEWdhFFRUoolUU6gckRhySJiEgchiYiVB+S1MdRhySJiEgchiai/2EgIiKimnD1HBEREZEIDE1EREREIjA0EREREYnA0EREREQkAkMTERERkQgMTUREREQiMDQRERERicB9muxQYWEhN2EkIiKyMoYmO1NYWIg1a9bUWi4hIYHBiYiIyIw4PGdnauphMqUcERERicPQRERERCQCQxMRERGRCAxNdk6l8kZOTghUKm9bV4WIiMihcSK4HcvO7oo9e/pDEOSQydQYMGAvIiJO2rpaREREDok9TXZKpfLWBiYAEAQ59uzpzx4nIiIiC2FoslNFRX7awKQhCHIUFSltVCMiIiLHxtBkZxQKBQBAqSyETKbWeUwmU0OpLNIpR0RERObBOU12xs/PDwkJCSgvL0eTJsV47TVfVFTI4OIiYMmSYowYMZw7ghMREVmATBAEwdaVsEfFxcXw9fWFSqWCj4+Pzepx9Spw8SLQsiXQtKnNqkFERGQX6vL5zZ4mO9e0KcMSERGRNXBOExEREZEIDE1EREREIjA0EREREYnA0EREREQkAkMTERERkQgMTUREREQiMDQRERERicDQRERERCQCQxMRERGRCAxNRERERCIwNBERERGJwHvPmUhzn+Pi4mIb14SIiIjE0nxuaz7HjcHQZKKSkhIAQHBwsI1rQkRERMYqKSmBr6+vUc+RCaZELYJarcZff/0Fb29vyGQys523uLgYwcHB+OOPP+Dj42O280oN2+lY2E7HwnY6DmdoI2BcOwVBQElJCYKCgiCXGzdLiT1NJpLL5WjatKnFzu/j4+PQ/8A12E7HwnY6FrbTcThDGwHx7TS2h0mDE8GJiIiIRGBoIiIiIhKBoUli3N3dMX/+fLi7u9u6KhbFdjoWttOxsJ2OwxnaCFivnZwITkRERCQCe5qIiIiIRGBoIiIiIhKBoYmIiIhIBIYmIiIiIhEYmqxg7dq1CAkJgYeHB6KiovDDDz/UWD4tLQ2tW7eGp6cngoODMWPGDNy5c6dO57QGc7dzwYIFkMlkOl9t2rSxdDNqZEwb7969i0WLFiEsLAweHh7o3Lkz9u/fX6dzWou52ynF1/K7777DgAEDEBQUBJlMht27d9f6nEOHDiEiIgLu7u5o2bIlNm/eXK2M1F5PS7TTEV7PvLw8jBgxAq1atYJcLkdiYqLecjt27ECbNm3g4eGBjh07Yt++feavvBEs0c7NmzdXez09PDws0wARjG3jrl278Pjjj6NRo0bw8fFBdHQ0Dhw4UK2cOX43GZosbPv27UhKSsL8+fORnZ2Nzp07IzY2FteuXdNbPj09HbNmzcL8+fNx9uxZbNiwAdu3b8fs2bNNPqc1WKKdANC+fXvk5eVpv44cOWKN5uhlbBvnzp2L9957D6tXr8avv/6KKVOm4JlnnsHJkydNPqc1WKKdgLReSwAoLS1F586dsXbtWlHlc3Jy0K9fP/Tu3RunTp1CYmIiJkyYoPPmLMXX0xLtBOz/9SwrK0OjRo0wd+5cdO7cWW+ZY8eOYfjw4Rg/fjxOnjyJQYMGYdCgQThz5ow5q24US7QTuL+TduXX8/Lly+aqstGMbeN3332Hxx9/HPv27UNWVhZ69+6NAQMGWOa9ViCL6t69u/DSSy9pv6+oqBCCgoKE1NRUveVfeukloU+fPjrHkpKShIcfftjkc1qDJdo5f/58oXPnzhaprymMbWNgYKCwZs0anWPPPvusMHLkSJPPaQ2WaKfUXsuqAAiffvppjWVeffVVoX379jrHhg4dKsTGxmq/l+LrWZm52ukIr2dlvXr1EqZPn17t+JAhQ4R+/frpHIuKihImT55cxxqah7nauWnTJsHX19ds9TInY9uo0a5dO2HhwoXa7831u8meJgsqLy9HVlYWYmJitMfkcjliYmKQmZmp9zk9evRAVlaWttvw999/x759+/DUU0+ZfE5Ls0Q7NS5cuICgoCC0aNECI0eOxJUrVyzXkBqY0saysrJqXdyenp7av8gd5bWsrZ0aUnktTZWZmalzXQAgNjZWe12k+HqaorZ2atj76ymG2GvhCG7duoXmzZsjODgYTz/9NH755RdbV8lkarUaJSUlUCqVAMz7u8nQZEE3btxARUUF/P39dY77+/sjPz9f73NGjBiBRYsW4ZFHHoGbmxvCwsLw2GOPaYetTDmnpVminQAQFRWFzZs3Y//+/Xj33XeRk5ODnj17oqSkxKLt0ceUNsbGxmLFihW4cOEC1Go1Dh48iF27diEvL8/kc1qaJdoJSOu1NFV+fr7e61JcXIz//ve/knw9TVFbOwHHeD3FMHQt7On1FKN169bYuHEjPvvsM/z73/+GWq1Gjx49cPXqVVtXzSTLli3DrVu3MGTIEADmfa9laJKYQ4cO4a233sI777yD7Oxs7Nq1C1988QVSUlJsXTWzEtPOJ598Es8//zw6deqE2NhY7Nu3Dzdv3sTHH39sw5qLt3LlSoSHh6NNmzZQKBRISEjAuHHjIJc71q+dmHba+2tJuvh6Opbo6GiMGTMGXbp0Qa9evbBr1y40atQI7733nq2rZrT09HQsXLgQH3/8MRo3bmz287ua/Yyk1bBhQ7i4uKCgoEDneEFBAQICAvQ+5/XXX8fo0aMxYcIEAEDHjh1RWlqKSZMmYc6cOSad09Is0U59weKBBx5Aq1atcPHiRfM3ohamtLFRo0bYvXs37ty5g8LCQgQFBWHWrFlo0aKFyee0NEu0Ux9bvpamCggI0HtdfHx84OnpCRcXF8m9nqaorZ362OPrKYaha2FPr6cp3Nzc0LVrV7t7Pbdt24YJEyZgx44dOkNx5nyvdaw/eSVGoVAgMjISGRkZ2mNqtRoZGRmIjo7W+5zbt29XCwwuLi4AAEEQTDqnpVminfrcunULly5dQmBgoJlqLl5drruHhweaNGmCe/fuYefOnXj66afrfE5LsUQ79bHla2mq6OhonesCAAcPHtReFym+nqaorZ362OPrKYYp18IRVFRU4Oeff7ar13Pr1q0YN24ctm7din79+uk8ZtbfTaOnpJNRtm3bJri7uwubN28Wfv31V2HSpEnCAw88IOTn5wuCIAijR48WZs2apS0/f/58wdvbW9i6davw+++/C19++aUQFhYmDBkyRPQ5bcES7Xz55ZeFQ4cOCTk5OcLRo0eFmJgYoWHDhsK1a9es3j5BML6N33//vbBz507h0qVLwnfffSf06dNHCA0NFf7++2/R57QFS7RTaq+lIAhCSUmJcPLkSeHkyZMCAGHFihXCyZMnhcuXLwuCIAizZs0SRo8erS3/+++/C/Xq1RNmzpwpnD17Vli7dq3g4uIi7N+/X1tGiq+nJdrpCK+nIAja8pGRkcKIESOEkydPCr/88ov28aNHjwqurq7CsmXLhLNnzwrz588X3NzchJ9//tmqbavMEu1cuHChcODAAeHSpUtCVlaWMGzYMMHDw0OnjDUZ28aPPvpIcHV1FdauXSvk5eVpv27evKktY67fTYYmK1i9erXQrFkzQaFQCN27dxe+//577WO9evUS4uPjtd/fvXtXWLBggRAWFiZ4eHgIwcHBwv/93//pfADVdk5bMXc7hw4dKgQGBgoKhUJo0qSJMHToUOHixYtWbFF1xrTx0KFDQtu2bQV3d3fBz89PGD16tPDnn38adU5bMXc7pfhafvPNNwKAal+atsXHxwu9evWq9pwuXboICoVCaNGihbBp06Zq55Xa62mJdjrK66mvfPPmzXXKfPzxx0KrVq0EhUIhtG/fXvjiiy+s0yADLNHOxMRE7b9Zf39/4amnnhKys7Ot16gqjG1jr169aiyvYY7fTZkgGBgLISIiIiItzmkiIiIiEoGhiYiIiEgEhiYiIiIiERiaiIiIiERgaCIiIiISgaGJiIiISASGJiIiIiIRGJqIiBzEoUOHIJPJcPPmTVtXhcghMTQRkdHGjh0LmUyGxYsX6xzfvXs3ZDKZ9ntBEPD+++8jOjoaPj4+qF+/Ptq3b4/p06eLvhno7du3kZycjLCwMHh4eKBRo0bo1asXPvvsM22ZkJAQpKWlmaVtlqa5djKZDG5ubggNDcWrr76KO3fuGHWexx57DImJiTrHevTogby8PPj6+pqxxkSkwdBERCbx8PDAkiVL8Pfff+t9XBAEjBgxAtOmTcNTTz2FL7/8Er/++is2bNgADw8PvPHGG6J+zpQpU7Br1y6sXr0a586dw/79+/Hcc8+hsLDQnM2xqri4OOTl5eH333/H22+/jffeew/z58+v83kVCgUCAgJ0gisRmZGJt4YhIicWHx8v9O/fX2jTpo0wc+ZM7fFPP/1U0LytbN26VQAgfPbZZ3rPoVarRf0sX19fYfPmzQYf13ffKY3Dhw8LjzzyiODh4SE0bdpUmDp1qnDr1i3t4x988IEQGRkp1K9fX/D39xeGDx8uFBQUaB/X3ANr//79QpcuXQQPDw+hd+/eQkFBgbBv3z6hTZs2gre3tzB8+HChtLRUVHvi4+OFp59+WufYs88+K3Tt2lX7/Y0bN4Rhw4YJQUFBgqenp9ChQwchPT1d5xxV25yTk6Otb+V7OH7yySdCu3btBIVCITRv3lxYtmyZqHoSUXXsaSIik7i4uOCtt97C6tWrcfXq1WqPb926Fa1bt8bAgQP1Pl9sb0hAQAD27duHkpISvY/v2rULTZs2xaJFi5CXl4e8vDwAwKVLlxAXF4fBgwfj9OnT2L59O44cOYKEhATtc+/evYuUlBT89NNP2L17N3JzczF27NhqP2PBggVYs2YNjh07hj/++ANDhgxBWloa0tPT8cUXX+DLL7/E6tWrRbWnqjNnzuDYsWNQKBTaY3fu3EFkZCS++OILnDlzBpMmTcLo0aPxww8/AABWrlyJ6OhoTJw4Udvm4ODgaufOysrCkCFDMGzYMPz8889YsGABXn/9dWzevNmkuhI5PVunNiKyP5V7Sx566CHhhRdeEARBt6epTZs2wsCBA3WeN336dMHLy0vw8vISmjRpIupnffvtt0LTpk0FNzc34cEHHxQSExOFI0eO6JRp3ry58Pbbb+scGz9+vDBp0iSdY4cPHxbkcrnw3//+V+/POnHihABAKCkpEQThn56mr776SlsmNTVVACBcunRJe2zy5MlCbGysqPbEx8cLLi4ugpeXl+Du7i4AEORyufDJJ5/U+Lx+/foJL7/8svb7Xr16CdOnT9cpU7WnacSIEcLjjz+uU2bmzJlCu3btRNWViHSxp4mI6mTJkiXYsmULzp49W2vZOXPm4NSpU5g3bx5u3bol6vyPPvoofv/9d2RkZOC5557DL7/8gp49eyIlJaXG5/3000/YvHkz6tevr/2KjY2FWq1GTk4OgPs9MQMGDECzZs3g7e2NXr16AQCuXLmic65OnTpp/9/f3x/16tVDixYtdI5du3ZNVHsAoHfv3jh16hSOHz+O+Ph4jBs3DoMHD9Y+XlFRgZSUFHTs2BFKpRL169fHgQMHqtWrNmfPnsXDDz+sc+zhhx/GhQsXUFFRYdS5iIgTwYmojh599FHExsYiOTlZ53h4eDjOnz+vc6xRo0Zo2bIlGjdubNTPcHNzQ8+ePfHaa6/hyy+/xKJFi5CSkoLy8nKDz7l16xYmT56MU6dOab9++uknXLhwAWFhYSgtLUVsbCx8fHzw0Ucf4cSJE/j0008BoNp53dzctP+vWfVWmUwmg1qtFt0eLy8vtGzZEp07d8bGjRtx/PhxbNiwQfv40qVLsXLlSrz22mv45ptvcOrUKcTGxtbYXiKyPFdbV4CI7N/ixYvRpUsXtG7dWnts+PDhGDFiBD777DM8/fTTZv157dq1w71793Dnzh0oFAooFIpqPScRERH49ddf0bJlS73n+Pnnn1FYWIjFixdr5wP9+OOPZq2nGHK5HLNnz0ZSUhJGjBgBT09PHD16FE8//TRGjRoFAFCr1fjtt9/Qrl077fP0tbmqtm3b4ujRozrHjh49ilatWsHFxcX8jSFycOxpIqI669ixI0aOHIlVq1Zpjw0bNgzPPfcchg0bhkWLFuH48ePIzc3Ft99+i+3bt4v+0H7sscfw3nvvISsrC7m5udi3bx9mz56N3r17w8fHB8D9fZq+++47/Pnnn7hx4wYA4LXXXsOxY8eQkJCAU6dO4cKFC/jss8+0E8GbNWsGhUKB1atX4/fff8fnn39e65CfpTz//PNwcXHB2rVrAdzvpTt48CCOHTuGs2fPYvLkySgoKNB5TkhIiPaa3rhxQ29P18svv4yMjAykpKTgt99+w5YtW7BmzRq88sorVmkXkaNhaCIis1i0aJHOB7dMJsP27duRlpaGffv2oW/fvmjdujVeeOEFBAcH48iRI6LOGxsbiy1btuCJJ55A27ZtMXXqVMTGxuLjjz/W+dm5ubkICwtDo0aNANyfh/Ttt9/it99+Q8+ePdG1a1fMmzcPQUFBAO4PFW7evBk7duxAu3btsHjxYixbtsyMV0Q8V1dXJCQk4F//+hdKS0sxd+5cREREIDY2Fo899hgCAgIwaNAgnee88sorcHFxQbt27dCoUSO9850iIiLw8ccfY9u2bejQoQPmzZuHRYsW6V0hSES1kwmCINi6EkRERERSx54mIiIiIhEYmojIpipvCVD16/Dhw7aunlGuXLlSY3uM3TKAiKSFw3NEZFM13bi3SZMm8PT0tGJt6ubevXvIzc01+HhISAhcXblomcheMTQRERERicDhOSIiIiIRGJqIiIiIRGBoIiIiIhKBoYmIiIhIBIYmIiIiIhEYmoiIiIhEYGgiIiIiEoGhiYiIiEiE/w8dRGOsd87yfAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_17.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaoElEQVR4nO3de1yUZf4//teADGcGBuUoiqJploqIkuYpw8VWsbb6Rm6JWeaakhmtqWseWi3UzMhzmae1XK3EfmouliT76WCrga5pSGp4KkABHRASRub6/cHOLQMzAwNzZF7Px2MeMfd93fdc12Ty7rrf1/uSCSEEiIiIiJyIi607QERERGRtDICIiIjI6TAAIiIiIqfDAIiIiIicDgMgIiIicjoMgIiIiMjpMAAiIiIip8MAiIiIiJwOAyAiIiJyOgyAiIjs1NatWyGTyXDhwgVbd4WozWEAROTEjh07hpSUFNxzzz3w9vZGp06d8MQTT+Dnn39u1HbEiBGQyWSQyWRwcXGBn58fevTogQkTJuDLL7806XP37duH4cOHIygoCF5eXujatSueeOIJZGZmmmtojbz55pv47LPPGh3/7rvvsGjRIty4ccNin93QokWLpO9SJpPBy8sLvXr1wmuvvYby8nKzfMaOHTuQnp5ulnsRtUUMgIic2LJly7B79248+OCDePfddzFlyhT83//9H2JiYnDq1KlG7Tt27Ijt27fjH//4B9566y2MGzcO3333Hf7whz8gKSkJarW6yc9csWIFxo0bB5lMhrlz5+Kdd97BY489hrNnz2Lnzp2WGCYA4wHQ66+/btUASGv9+vXYvn07Vq5ciZ49e+KNN97A6NGjYY4tGhkAERnXztYdICLbSU1NxY4dOyCXy6VjSUlJ6N27N5YuXYoPP/xQp71CocDTTz+tc2zp0qWYMWMG1q1bh8jISCxbtszg592+fRuLFy/GqFGj8MUXXzQ6f/Xq1VaOyH5UVVXBy8vLaJvHH38c7du3BwBMnToVjz32GDIyMvD9999j0KBB1ugmkdPiDBCRExs8eLBO8AMA3bt3xz333IO8vLxm3cPV1RWrVq1Cr169sGbNGqhUKoNtS0pKUF5ejvvvv1/v+aCgIJ33t27dwqJFi3DXXXfBw8MDoaGhePTRR3H+/HmpzYoVKzB48GAEBgbC09MT/fv3x6effqpzH5lMhsrKSmzbtk167PTMM89g0aJFmDVrFgCgS5cu0rn6OTcffvgh+vfvD09PTyiVSjz55JO4fPmyzv1HjBiBe++9Fzk5ORg2bBi8vLzwt7/9rVnfX30jR44EABQUFBhtt27dOtxzzz1wd3dHWFgYpk+frjODNWLECHz++ee4ePGiNKbIyEiT+0PUlnEGiIh0CCFQXFyMe+65p9nXuLq6Yvz48Zg/fz6++eYbjBkzRm+7oKAgeHp6Yt++fXjxxRehVCoN3rO2thZjx45FVlYWnnzySbz00kuoqKjAl19+iVOnTiEqKgoA8O6772LcuHF46qmnUFNTg507d+L//b//h/3790v92L59OyZPnoyBAwdiypQpAICoqCh4e3vj559/xj//+U+888470mxMhw4dAABvvPEG5s+fjyeeeAKTJ0/GtWvXsHr1agwbNgzHjx+Hv7+/1N/S0lI89NBDePLJJ/H0008jODi42d+fljawCwwMNNhm0aJFeP311xEfH48XXngB+fn5WL9+PY4dO4Zvv/0Wbm5umDdvHlQqFa5cuYJ33nkHAODj42Nyf4jaNEFEVM/27dsFALFp0yad48OHDxf33HOPwev27NkjAIh3333X6P0XLFggAAhvb2/x0EMPiTfeeEPk5OQ0ard582YBQKxcubLROY1GI/1cVVWlc66mpkbce++9YuTIkTrHvb29xcSJExvd66233hIAREFBgc7xCxcuCFdXV/HGG2/oHP/xxx9Fu3btdI4PHz5cABAbNmwwOO76Fi5cKACI/Px8ce3aNVFQUCDee+894e7uLoKDg0VlZaUQQogtW7bo9O3q1atCLpeLP/zhD6K2tla635o1awQAsXnzZunYmDFjROfOnZvVHyJnxEdgRCQ5c+YMpk+fjkGDBmHixIkmXaudYaioqDDa7vXXX8eOHTvQr18/HDx4EPPmzUP//v0RExOj89ht9+7daN++PV588cVG95DJZNLPnp6e0s/Xr1+HSqXC0KFDkZuba1L/G8rIyIBGo8ETTzyBkpIS6RUSEoLu3bvj8OHDOu3d3d0xadIkkz6jR48e6NChA7p06YK//OUv6NatGz7//HODuUOHDh1CTU0NZs6cCReXO399P//88/Dz88Pnn39u+kCJnBQfgRERAKCoqAhjxoyBQqHAp59+CldXV5Ouv3nzJgDA19e3ybbjx4/H+PHjUV5ejv/85z/YunUrduzYgcTERJw6dQoeHh44f/48evTogXbtjP81tX//fixZsgQnTpxAdXW1dLx+kNQSZ8+ehRAC3bt313vezc1N5314eHijfKqm7N69G35+fnBzc0PHjh2lx3qGXLx4EUBd4FSfXC5H165dpfNE1DQGQEQElUqFhx56CDdu3MDXX3+NsLAwk++hXTbfrVu3Zl/j5+eHUaNGYdSoUXBzc8O2bdvwn//8B8OHD2/W9V9//TXGjRuHYcOGYd26dQgNDYWbmxu2bNmCHTt2mDyG+jQaDWQyGf71r3/pDQYb5tTUn4lqrmHDhkl5R0RkXQyAiJzcrVu3kJiYiJ9//hmHDh1Cr169TL5HbW0tduzYAS8vLwwZMqRF/YiNjcW2bdtQWFgIoC5J+T//+Q/UanWj2Rat3bt3w8PDAwcPHoS7u7t0fMuWLY3aGpoRMnQ8KioKQgh06dIFd911l6nDsYjOnTsDAPLz89G1a1fpeE1NDQoKChAfHy8da+0MGFFbxxwgIidWW1uLpKQkHDlyBJ988kmLas/U1tZixowZyMvLw4wZM+Dn52ewbVVVFY4cOaL33L/+9S8Adx7vPPbYYygpKcGaNWsatRX/KxTo6uoKmUyG2tpa6dyFCxf0Fjz09vbWW+zQ29sbABqde/TRR+Hq6orXX3+9UWFCIQRKS0v1D9KC4uPjIZfLsWrVKp0+bdq0CSqVSmf1nbe3t9GSBETOjjNARE7slVdewd69e5GYmIiysrJGhQ8bFj1UqVRSm6qqKpw7dw4ZGRk4f/48nnzySSxevNjo51VVVWHw4MG47777MHr0aERERODGjRv47LPP8PXXX+ORRx5Bv379AADJycn4xz/+gdTUVBw9ehRDhw5FZWUlDh06hGnTpuHhhx/GmDFjsHLlSowePRp//vOfcfXqVaxduxbdunXDyZMndT67f//+OHToEFauXImwsDB06dIFcXFx6N+/PwBg3rx5ePLJJ+Hm5obExERERUVhyZIlmDt3Li5cuIBHHnkEvr6+KCgowJ49ezBlyhT89a9/bdX3b6oOHTpg7ty5eP311zF69GiMGzcO+fn5WLduHQYMGKDz76t///7YtWsXUlNTMWDAAPj4+CAxMdGq/SWya7ZcgkZEtqVdvm3oZaytj4+P6N69u3j66afFF1980azPU6vVYuPGjeKRRx4RnTt3Fu7u7sLLy0v069dPvPXWW6K6ulqnfVVVlZg3b57o0qWLcHNzEyEhIeLxxx8X58+fl9ps2rRJdO/eXbi7u4uePXuKLVu2SMvM6ztz5owYNmyY8PT0FAB0lsQvXrxYhIeHCxcXl0ZL4nfv3i2GDBkivL29hbe3t+jZs6eYPn26yM/P1/lujJUIaEjbv2vXrhlt13AZvNaaNWtEz549hZubmwgODhYvvPCCuH79uk6bmzdvij//+c/C399fAOCSeKIGZEKYYdMZIiIiIgfCHCAiIiJyOgyAiIiIyOkwACIiIiKnwwCIiIiInA4DICIiInI6DICIiIjI6bAQoh4ajQa//fYbfH19WU6eiIjIQQghUFFRgbCwMLi4GJ/jYQCkx2+//YaIiAhbd4OIiIha4PLly+jYsaPRNgyA9PD19QVQ9wUa29eIiIiI7Ed5eTkiIiKk3+PGMADSQ/vYy8/PjwEQERGRg2lO+gqToImIiMjpMAAiIiIip8MAiIiIiJwOc4CIiIjMpLa2Fmq12tbdaLPc3Nzg6upqlnvZRQC0du1avPXWWygqKkLfvn2xevVqDBw4UG/bjIwMvPnmmzh37hzUajW6d++OV155BRMmTNDbfurUqXjvvffwzjvvYObMmRYcBREROSshBIqKinDjxg1bd6XN8/f3R0hISKvr9Nk8ANq1axdSU1OxYcMGxMXFIT09HQkJCcjPz0dQUFCj9kqlEvPmzUPPnj0hl8uxf/9+TJo0CUFBQUhISNBpu2fPHnz//fcICwuz1nCIiMgJaYOfoKAgeHl5sYiuBQghUFVVhatXrwIAQkNDW3U/mRBCmKNjLRUXF4cBAwZgzZo1AOqqMEdERODFF1/EnDlzmnWPmJgYjBkzBosXL5aO/frrr4iLi8PBgwcxZswYzJw5s9kzQOXl5VAoFFCpVFwGT0RERtXW1uLnn39GUFAQAgMDbd2dNq+0tBRXr17FXXfd1ehxmCm/v22aBF1TU4OcnBzEx8dLx1xcXBAfH48jR440eb0QAllZWcjPz8ewYcOk4xqNBhMmTMCsWbNwzz33NHmf6upqlJeX67yIiIiaQ5vz4+XlZeOeOAft99zaXCubBkAlJSWora1FcHCwzvHg4GAUFRUZvE6lUsHHxwdyuRxjxozB6tWrMWrUKOn8smXL0K5dO8yYMaNZ/UhLS4NCoZBe3AaDiIhMxcde1mGu79nmOUAt4evrixMnTuDmzZvIyspCamoqunbtihEjRiAnJwfvvvsucnNzm/0lzZ07F6mpqdJ7bSltSystLUVNTY3B83K5nNOpREREFmDTAKh9+/ZwdXVFcXGxzvHi4mKEhIQYvM7FxQXdunUDAERHRyMvLw9paWkYMWIEvv76a1y9ehWdOnWS2tfW1uKVV15Beno6Lly40Oh+7u7ucHd3N8+gmqm0tFTKezImJSWFQRAREZGZ2fQRmFwuR//+/ZGVlSUd02g0yMrKwqBBg5p9H41Gg+rqagDAhAkTcPLkSZw4cUJ6hYWFYdasWTh48KDZx9BSDWd+VCpfFBREQqXyNdqOiIjIXJ555hnIZDLIZDK4ubkhODgYo0aNwubNm6HRaJp9n61bt8Lf399yHbUAmz8CS01NxcSJExEbG4uBAwciPT0dlZWVmDRpEgAgOTkZ4eHhSEtLA1CXrxMbG4uoqChUV1fjwIED2L59O9avXw8ACAwMbDRj4ubmhpCQEPTo0cO6g/sffY+6SkpKpJ9zc/th376xEMIFMpkGiYn7ERNz3NrdJCIiG7FlSsTo0aOxZcsW1NbWori4GJmZmXjppZfw6aefYu/evWjXzuahgkXYfFRJSUm4du0aFixYgKKiIkRHRyMzM1NKjL506RJcXO5MVFVWVmLatGm4cuUKPD090bNnT3z44YdISkqy1RCMaupRl0rlKwU/ACCEC/btG4uoqHNQKCqs1U0iIrIRW6dEuLu7S2kn4eHhiImJwX333YcHH3wQW7duxeTJk7Fy5Ups2bIFv/zyC5RKJRITE7F8+XL4+PggOztbmrTQ5t4uXLgQixYtwvbt2/Huu+8iPz8f3t7eGDlyJNLT0/XW+bM2mwdAQN2/1JSUFL3nsrOzdd4vWbIES5YsMen++vJ+rKWpR1hlZYFS8KMlhAvKypQMgIiInEBzUx2smRIxcuRI9O3bFxkZGZg8eTJcXFywatUqdOnSBb/88gumTZuGV199FevWrcPgwYORnp6OBQsWID8/HwDg4+MDoG6p+uLFi9GjRw9cvXoVqampeOaZZ3DgwAGrjcUQuwiAnIlK5YuyskAolaVQKCqgVJZCJtPoBEEymQZKZZkNe0lERM6uZ8+eOHnyJADoFBKOjIzEkiVLMHXqVKxbtw5yuRwKhQIymazRAqZnn31W+rlr165YtWoVBgwYgJs3b0pBkq0wALIiQ7k+iYn7Gx3Xzv7cuHGj1eW+iYiITCWEkB5pHTp0CGlpaThz5gzKy8tx+/Zt3Lp1C1VVVUYLQObk5GDRokX473//i+vXr0uJ1ZcuXUKvXr2sMg5DGABZibFcn5iY4wgKKsLly50QEXEJHTsWStfdvn272Z/BukJERGQueXl56NKlCy5cuICxY8fihRdewBtvvAGlUolvvvkGzz33HGpqagwGQJWVlUhISEBCQgI++ugjdOjQAZcuXUJCQoJdrHBmAGQlxnJ9zp/vZnAVmJubW7Pub+skOiIiaju++uor/Pjjj3j55ZeRk5MDjUaDt99+W1qU9PHHH+u0l8vlqK2t1Tl25swZlJaWYunSpVJx4R9++ME6A2gGBkBWYijXx82txugqMIVCoXMfQ7M89ZfVA41zjbTsIeomIiL7UV1djaKiIp1l8GlpaRg7diySk5Nx6tQpqNVqrF69GomJifj222+xYcMGnXtERkZKuzP07dsXXl5e6NSpE+RyOVavXo2pU6fi1KlTOpuW2xoDICtRKCr05vqo1e5GV4HVD2xUKhV27drV5GexrhARETVXZmYmQkND0a5dOwQEBKBv375YtWoVJk6cCBcXF/Tt2xcrV67EsmXLMHfuXAwbNgxpaWlITk6W7jF48GBMnToVSUlJKC0tlZbBb926FX/729+watUqxMTEYMWKFRg3bpwNR3uHTAghbN0Je1NeXg6FQgGVSgU/P79W3avho6m6mRkllMoyKBQVUKl8kZ4+s9HM0MyZ6U0ug9c3y9PU/aZMmcKkaiIiM7p16xYKCgrQpUsXeHh4mHw9UxhMY+z7NuX3N2eALCwwMBApKSl6K0FnZGQYnBmqH/zoC3QMzfKwrhARkWMx9HuiPi5iMT8GQFbQ1B/amJjjiIo6pzMzpKUv0ImKOmcwb4h1hYiIHA+DG+uz6Waozkwul+u8Vygq0KXLxUYzP/oCncuXI4zO8iQm7odMVldrQd+MEhERkbPjDJCNGJvyPHv2LA4fPmzwcRYgjM7yGJtRIiIiIgZANmVoylO78svNrRqAACCrd1bA3/9Gk3lDdUvoGwc+DWeeiIiInBEDIDumVrtDN/gBABnU6rogRrt+r+E6vgceeADdu3dvdD9LJ9GxEjURETkKBkB26ObNmwCaLp54J4VLt3hiUFCQ1Ze6cxknERE5EiZB2yFtaSZDCc3GiifWXadbPdoaGs78qFS+KCiIhErla7QdERGRLXAGyA75+t4JGrQbpV661AmdOtVtlKpS+dr1UndWoiYiInvHGSA71K7dnbg0N7cfNm2ajC++GI1NmyYjN7efzZe6l5aWorCwUOelTdw2tHS/4UwQERG1fdnZ2ZDJZLhx40azr4mMjER6errF+qTFGSA75O/vD8BwMBEVdc7oUndLrvRqKteHlaiJiBzHM888g23btuEvf/lLow1Op0+fjnXr1mHixInYunWrbTpoQQyA7FhTwcSkSaPQvn17nfOWXml19epVnfcNt+lgJWoiIscSERGBnTt34p133oGnpyeAuv22duzYgU6dOtm4d5bDR2B2TBtM1Fc/mGjfvj1CQ0N1XpZeYXX79m3p59zcfkhPn4lt2yYiPX2mXTyeIyIi08TExCAiIgIZGRnSsYyMDHTq1An9+vWTjlVXV2PGjBkICgqCh4cHhgwZgmPHjunc68CBA7jrrrvg6emJBx54ABcuXGj0ed988w2GDh0KT09PREREYMaMGaisrLTY+AxhAGTH7DmYUKl8sXdvot5cn5iY45g5Mx0TJ27FzJnpLU6A1pdrVP9VWlpqziEREdmFK1eAw4fr/mktzz77LLZs2SK937x5MyZNmqTT5tVXX8Xu3buxbds25Obmolu3bkhISEBZWd3/lF++fBmPPvooEhMTceLECUyePBlz5szRucf58+cxevRoPPbYYzh58iR27dqFb775BikpKZYfZAN8BGaH6ufw2CrXpymXL0egYZFGIVxw+XJHKBR5ra5EzbpCROSMNm0CpkwBNBrAxQV4/33guecs/7lPP/005s6di4sXLwIAvv32W+zcuRPZ2dkAgMrKSqxfvx5bt27FQw89BADYuHEjvvzyS2zatAmzZs3C+vXrERUVhbfffhsA0KNHD/z4449YtmyZ9DlpaWl46qmnMHPmTABA9+7dsWrVKgwfPhzr16+Hh4eH5Qf7PwyA7JCxfcK02npVZX11hernGhlqR0TkqK5cuRP8AHX//MtfgIQEoGNHy352hw4dMGbMGGzduhVCCIwZM0Ynx/T8+fNQq9W4//77pWNubm4YOHAg8vLyAAB5eXmIi4vTue+gQYN03v/3v//FyZMn8dFHH0nHhBDQaDQoKCjA3XffbYnh6cUAyE7Ze3ATEXEZgAa6T1E1iIiom7M1Z8DCukJE5AzOnr0T/GjV1gLnzlk+AALqHoNpH0WtXbvWIp9x8+ZN/OUvf8GMGTManbN2wjUDIGoRhaIC48btx9692i05NBg3ri4/yZwBi7FSAPoesXE/MiJyVN271z32qh8EuboC3bpZ5/NHjx6NmpoayGQyJCQk6JyLioqCXC7Ht99+i86dOwMA1Go1jh07Jj3Ouvvuu7F3716d677//nud9zExMfjpp5/QzVqDMoIBEJnk1q1b0s/68pNMDViaYkpdIeYNEZEj69ixLufnL3+pm/lxdQXee886sz8A4OrqKj3OcnV11Tnn7e2NF154AbNmzYJSqUSnTp2wfPlyVFVV4bn/JSlNnToVb7/9NmbNmoXJkycjJyenUf2g2bNn47777kNKSgomT54Mb29v/PTTT/jyyy+b9fe3OXEVGJnEx8dHz9E7ydDGApaWaKoUQH3cj4yIHN1zzwEXLtStArtwwToJ0PX5+fnBz89P77mlS5fisccew4QJExATE4Nz587h4MGDCAgIAFD3CGv37t347LPP0LdvX2zYsAFvvvmmzj369OmDf//73/j5558xdOhQ9OvXDwsWLEBYWJjFx9YQZ4DIJNoq1YD+3JyoqHNGCyFqt8xoyNCjKW0pgIaf09RskrHHcKb2gYjImjp2tN6sT1MVnj/77DPpZw8PD6xatQqrVq0y2H7s2LEYO3aszrGGy+kHDBiAL774wuA99NUOsgQGQNQihh51zZyZbjRgqV9oqyFDj6aMlQIwpW/ax3At6QMREbUtDICoRYw96tK3g319zVkh1rBekCl1hZqTN8Rl9UREzo0BELWIsT2/jD1+au4KsZbUQtLuNtzUfmRcVk9EREyCphYxtE0HAL2Pn1QqX4OPphomKWsFBgY22uvM2L5n2n3KjG0hYmofiIiobeIMELWYvtycgoJII6vAZM1e0m4OQuj+EzBtWT0RkSlE/b9syGLM9T0zACKTNJWb4+ZWDUBAd58wATe3Gvj63jT6aKq13NzcANxJgr4zwXknCbqpx2P6VojpWx3GgotEpKX9u6eqqgqenp427k3bV1VVBeDO995SDIDIJIZyc86ePYvDhw9DrXZHw01SARnUanmLl7Q3l0KhAGB8lqdLl4stWqVWf3UYCy4SUX2urq7w9/fH1atXAQBeXl6QyRr+PUitJYRAVVUVrl69Cn9//0bFGk3FAIhMpu+XunbmpKkZFlOXtLdEa/rQnNVhzV0pxhVlRM4jJCQEAKQgiCzH399f+r5bgwEQmUW7dnV/lJozy2PKkvaWaGkfWro6zFDQRETOQyaTITQ0FEFBQVCr1bbuTpvl5ubW6pkfLQZAZBb1K0Qbm2F59NFH0b59+0bXmztnprl9KCkpQUZGRov3MOOSeiKqz9XV1Wy/oMmyGACRWTS3cGFYWJjF8mJa04eWrA4z98avRERkPQyAyCxaUrjQHvrQ3OKJN27cQGhoqM69uKSeiMhxMQAis7GHFU+m9qFh8URDeUPXrl2THvMVFBQAaFnQRERE9sEuKkGvXbsWkZGR8PDwQFxcHI4ePWqwbUZGBmJjY+Hv7w9vb29ER0dj+/bt0nm1Wo3Zs2ejd+/e8Pb2RlhYGJKTk/Hbb79ZYyjk4PQVTwSAw4cP4/3338f777+PL7/8EoDxitPAneCKiIjsj80DoF27diE1NRULFy5Ebm4u+vbti4SEBINLCZVKJebNm4cjR47g5MmTmDRpEiZNmoSDBw8CqCuQlJubi/nz5yM3NxcZGRnIz8/HuHHjrDkschBNFU+sv0WGSuWLgoLIRttmGAqaWluki4iILMfmj8BWrlyJ559/HpMmTQIAbNiwAZ9//jk2b96MOXPmNGo/YsQInfcvvfQStm3bhm+++QYJCQlQKBTS/6FrrVmzBgMHDsSlS5fQqVMni42FHE9ziicqFBV6V3tFRZ0zWHG6LgFbYd3BEBFRs9l0BqimpgY5OTmIj4+Xjrm4uCA+Ph5Hjhxp8nohBLKyspCfn49hw4YZbKdSqSCTyXSWatdXXV2N8vJynRc5F20+T33afB5Dq70uX44wsu8ZERHZM5sGQCUlJaitrUVwcLDO8eDgYBQVFRm8TqVSwcfHB3K5HGPGjMHq1asxatQovW1v3bqF2bNnY/z48fDz89PbJi0tDQqFQnpFRES0fFDkkIzl8xiaHQKEwaCJiIjsm80fgbWEr68vTpw4gZs3byIrKwupqano2rVro8djarUaTzzxBIQQWL9+vcH7zZ07F6mpqdL78vJyBkFOyFDxREOrvSIirlh0bzMiIrIcmwZA7du3h6urK4qLi3WOFxcXG93nw8XFBd26dQMAREdHIy8vD2lpaToBkDb4uXjxIr766iuDsz8A4O7uDnd399YNhhxSc4onGlsib669zbi7PBGRddk0AJLL5ejfvz+ysrLwyCOPAAA0Gg2ysrKQkpLS7PtoNBpUV1dL77XBj3aHcv7iIEOMFU/UbpMBGN9aw1DF6aqqqmb1gbvLExFZn80fgaWmpmLixImIjY3FwIEDkZ6ejsrKSmlVWHJyMsLDw5GWlgagLl8nNjYWUVFRqK6uxoEDB7B9+3bpEZdarcbjjz+O3Nxc7N+/H7W1tVI+kVKpNNuGm9R2GAoqmru1hqHNUL28vJr1+Q2Dr+bsSE9ERK1j8wAoKSkJ165dw4IFC1BUVITo6GhkZmZKidGXLl2Ci8ud3IvKykpMmzYNV65cgaenJ3r27IkPP/wQSUlJAIBff/0Ve/fuBVD3eKy+w4cPN8oTIjLE0OxQ/Zkhc2+Gys1ViYisw+YBEFA3tW/okVd2drbO+yVLlmDJkiUG7xUZGQnRsCIdUQsZe+TU1GaoJSUleq8zlM/DzVWJiKzHLgIgIkfUVPFE7SyRPvryebi5KhGR9dh8KwwiR2WseKKWoe0z9OXzNOd+RERkHpwBImqhpnaQNzWfp6n7ERGR+TAAImoFQ8vjW5rPY466Qi2pKcQ6RETkbBgAEZmoOcvjTcnnae5y+4bt9AUtKpUKu3btanIM9XOQWIeIiJwRAyAiEzWneKKh7TP05fMYu59WwxmYhkGLbu0gGDiuv6YQ6xARkTNiAETUAk3NhJiaz2PqzEr9YMRQrlFLagqxDhEROQsGQEQWYq59wowxlGsUFFRkcg4S6xARkTNhAERkRi3N52kpQ7lGly51MrmmEOsQEZEzYQBEZEYtyedpDUO5Rp06XWp2DlJT92IdIiJqi1gIkcjMAgMDERoaavBlzpVU2lwjbQFFbd5Ox46Feo8bm8kxdC/O/hBRW8QZICIHpFKppJ9jYo4jKKgIly51QqdOl9CxY6F03NQcJFOvYf0gInJUDICIHJBarZZ+NrZyqzk5SK2pQ8T6QUTkqBgAETmgdu3q/tNtauXWqFGj0KVLF51rG87KtDRvifWDiMiRMQAickD+/v4Aml651aVLF4SGhjZ5v9bO0LB+EBE5GiZBEzkwW+4gr81DMjQLpVL56rQjIrInDICIHJgtV26VlZX975+GZ6HqtyMisid8BEbk4KxRcVqf27dvA6ibhQI00P3/qTuzUNp2RET2hAEQURtgaOWWJVVVVdV7J2twVmagHRGRfeAjMCIH1NytNMy15YY+tbW1AIDLlyOgLwC6fLmjTjsiInvCGSAiB2TtLTf0cXV1NWs7IiJrYgBE5KBsXVzQy8sLAODvfx2AgO4skIC//w2ddkRE9oQBEBG1ilrtDn2PwNRq8z1+45YbRGRuDICIqEXc3NwANL2LvLZdS3HLDSKyBAZARNQiAQEBAO7UImpYCVq7Kk3bTsvU2ZzmbqXBLTeIyBQMgIioRRQKhfSzsVpE9duZYzbH0J5jRESmYABERC3Skl3kW7uBKvccIyJzYQBERC3S2qX4pgYzhvYci4o6x5kgIjIZAyAiarGWJh23JJgxtueYvmu4coyIjGEARERWc+PGDQBNBzM3btxAaGiozvmmVpvVx5VjRNQUboVBRFZTfwNV7Q72WvWDGX0bqGpXm2mva7jarD59uUYFBZFQqXyNtiMi58EZICKyOoWiAn36nMR//9sXdUUUBfr0OdlkErWx1WaG9j1j4jQR6cMAiIisTqXyxcmTfXCngrQMJ0/2wciRXzUKglqTbN1UrlFJSUmz70VEbQsDICKyGm1V6KZygBpWj25pQNLU52RkZOi9jrlBRG0fc4CIyGq0RRGbygGqXzyxNZr6HOYGETkvzgARkdU1tX2GNT6HuUFEzo0BEBHZhLGEZkt/DosqEhEDICKympZsn2GJzzG1qCIRtT0MgIjIalq7fUZDxqo9JyUlQQgBf39/6VhJSQkyMjJMKqpIRG0TAyAisipzra5qWO3Z0Maq+lZ0WSsHiYjsFwMgInJI9Wd+jCU0G5ohslYOEhHZJ7tYBr927VpERkbCw8MDcXFxOHr0qMG2GRkZiI2Nhb+/P7y9vREdHY3t27frtBFCYMGCBQgNDYWnpyfi4+Nx9uxZSw+DiGzAUEKzdml7SUkJCgsLUVhYCJVKpXOtQlGBLl0uNgp+WpuDRET2z+YzQLt27UJqaio2bNiAuLg4pKenIyEhAfn5+QgKCmrUXqlUYt68eejZsyfkcjn279+PSZMmISgoCAkJCQCA5cuXY9WqVdi2bRu6dOmC+fPnIyEhAT/99BM8PDysPUQisqCWFjsEgCeeeEInR+jGjRuQyWSoqalBYWFho/asEk3Udtg8AFq5ciWef/55TJo0CQCwYcMGfP7559i8eTPmzJnTqP2IESN03r/00kvYtm0bvvnmGyQkJEAIgfT0dLz22mt4+OGHAQD/+Mc/EBwcjM8++wxPPvmkxcdERNbTnIRmQ/lBAKRd50tLS/Hxxx83+XmsEk3UNtj0EVhNTQ1ycnIQHx8vHXNxcUF8fDyOHDnS5PVCCGRlZSE/Px/Dhg0DABQUFKCoqEjnngqFAnFxcQbvWV1djfLycp0XETmGpnaJz83th/T0mdi2bSLS02ciN7efdG39Xee5gzyRc7HpDFBJSQlqa2sRHBysczw4OBhnzpwxeJ1KpUJ4eDiqq6vh6uqKdevWYdSoUQCAoqIi6R4N76k911BaWhpef/311gyFiGzIUEKzSuWLvXsTod10tbkFD40lVXMDVaK2weaPwFrC19cXJ06cwM2bN5GVlYXU1FR07dq10eOx5po7dy5SU1Ol9+Xl5YiIiDBTb4nIGvQVVbx8OQJ3dpyvI4QLLl/uCIUiT+99mqoSbSinqGE+kRaDIyL7ZNMAqH379nB1dUVxcbHO8eLiYoSEhBi8zsXFBd26dQMAREdHIy8vD2lpaRgxYoR0XXFxsfRsX/s+Ojpa7/3c3d3h7u7eytEQkTVZaqVWU0nVhvKJjOUPMW+IyP7YNACSy+Xo378/srKy8MgjjwAANBoNsrKykJKS0uz7aDQaVFdXAwC6dOmCkJAQZGVlSQFPeXk5/vOf/+CFF14w9xCIyEaMVZU+e/YsDh8+jIiIywA00E131CAi4orB+xpLqm5qA1VDwRHzhojsj80fgaWmpmLixImIjY3FwIEDkZ6ejsrKSmlVWHJyMsLDw5GWlgagLl8nNjYWUVFRqK6uxoEDB7B9+3asX78eACCTyTBz5kwsWbIE3bt3l5bBh4WFSUEWEbUNhmZVtHk6CkUFxo3bj717x6IuCNJg3DjjFZ8NVYkGYPTRGHeXJ3IsNg+AkpKScO3aNSxYsABFRUWIjo5GZmamlMR86dIluLjc+T+xyspKTJs2DVeuXIGnpyd69uyJDz/8EElJSVKbV199FZWVlZgyZQpu3LiBIUOGIDMzkzWAiJyEm5ub9LOxis/129Wn75qCgkiDj8YA48EREdkfmwdAQN3zcUOPvLKzs3XeL1myBEuWLDF6P5lMhr///e/4+9//bq4uEpED6dChg857Q7vO12/X1A7yxh6NcXd5IsdjFwEQEZE5tWTXeUPXaHeQb2oDVWPFGFUqlc6iDCKyPQZARNQmtWTVVVPXGHqcpg2O6uca1Q+O1Gq1yX0hIstiAEREZERTj8bqk8kAIer+SUT2jQEQEZERxh6nnTp1Ct99912TxRN///13a3ebiJrAAIiIqAlNLbdvKgna09PT4n0kItPYdDNUIqK2QKksBSB0jjXckZ6I7AsDICIis9ANgIQw0IyI7AIDICKiViorC0Tjv07vFEkkIvvDAIiIqIW0laS1RRLrq/8IzFDFaSKyHQZAREQtpFAo/vfPujpA2iCoYZFEbTsish9cBUZEZAbG9hwjIvvDAIiIqIWaWySxYTsisj0GQERELdSSPceIyD4wACIiagUGN0SOiUnQRERE5HQYABEREZHTYQBEREREToc5QEREDq60tJSJ2EQmYgBEROTASktLsWbNmibbpaSkMAgiqoePwIiIHFjDmR+VyhcFBZFQqXyNtiNydpwBIiJqI3Jz+2HfvrEQwkXajiMm5ritu0VklzgDRETUBqhUvlLwAwBCuGDfvrGNZoKIqA4DICKiNqCsLFAKfrSEcEFZmdJGPSKybwyAiIjaAKWyVNqNXksm00CpLLNRj4jsGwMgIqI2QKGoQGLifikI0uYAcVd6Iv2YBE1E1EbExBxHVNQ5lJUpoVSWMfghMoIBEBGRA6uqqtJzVNZkOxZPJGfHAIiIyIF5eXlJPxtbBl+/HYsnEjEHiIioTTBlGfzVq1cbXauveGLDdkRtCWeAiIjaAGPL4BvmAt2+fVv62disUf12RG0NAyAiojZAuwy+fhDU1DJ4lcoXe/cmQpszpJ01ioo6B4WiAtevX0dhYaHONcwNoraCARARURugXQbfcDbH2Eqwy5cj0DBhWggXXL7cEQpFHg4fPozDhw83uo65QdQWMAAiImojzL0MXqXyRVlZIJTKUp17Xb16lQEQOTwGQEREbYhCUdHswCci4jIADXTXw2gQEXHFaG7QjRs3zN1tIqvjKjAiIgcml8tb3E6hqMC4cftRFwQBgOZ/72F0RZlarW51v4lsjTNAREQOLDAwECkpKSYVNXRzc5N+1vfYrKAgstkryogcFQMgIiIHZ2o+TocOHXTeN3xsVlPTDoCAboK0QE2NG4jaCgZAREROxtCsUW5uLn744QeUlrZH4+00ZCgrCwRwzlrdJLIoBkBERE5I36yRr29djk+nThehbwYoIuKSVfpGZA1MgiYiIgBAu3Z1/0/csWMh+vb9L+qCIAAQ6Nv3v+jYsVCnHZEj459iIiICAAQEBEg//+lP/x8GDDiKy5c7ISLikhT8NGxH5KhsPgO0du1aREZGwsPDA3FxcTh69KjBths3bsTQoUMREBCAgIAAxMfHN2p/8+ZNpKSkoGPHjvD09ESvXr2wYcMGSw+DiMjhBQUF6bzv2LEQgwb9Ryf4AQCZTIbCwkLpdebMGfz444/Iy8vTOa59lZaWWnMYRM0iE0KIpptZxq5du5CcnIwNGzYgLi4O6enp+OSTT5Cfn9/oP0QAeOqpp3D//fdj8ODB8PDwwLJly7Bnzx6cPn0a4eHhAIApU6bgq6++wgcffIDIyEh88cUXmDZtGjIyMjBu3Lhm9au8vBwKhQIqlQp+fn5mHTMRkT0rLS3Vu6T+xo0b+Pjjj1t8X26fQdZgyu9vmwZAcXFxGDBgANasWQMA0Gg0iIiIwIsvvog5c+Y0eX1tbS0CAgKwZs0aJCcnAwDuvfdeJCUlYf78+VK7/v3746GHHsKSJUua1S8GQEREugoLC/H+++9L7w1tk2Ho+JQpUxAaGmrVPpPzMeX3t81ygGpqapCTk4O5c+dKx1xcXBAfH48jR4406x5VVVVQq9VQKpXSscGDB2Pv3r149tlnERYWhuzsbPz888945513DN6nuroa1dXV0vvy8vIWjIiIyDkY2ibD2PYZRPbGZjlAJSUlqK2tRXBwsM7x4OBgFBUVNeses2fPRlhYGOLj46Vjq1evRq9evdCxY0fI5XKMHj0aa9euxbBhwwzeJy0tDQqFQnpFRES0bFBERG2cSuWrd5uMK1dCjW6fQWRvbJ4E3VJLly7Fzp07sWfPHnh4eEjHV69eje+//x579+5FTk4O3n77bUyfPh2HDh0yeK+5c+dCpVJJr8uXL1tjCEREDqesLFDvNhmXLnUyuH0GAKhUKqv1kag5bPYIrH379nB1dUVxcbHO8eLiYoSEhBi9dsWKFVi6dCkOHTqEPn36SMd///13/O1vf8OePXswZswYAECfPn1w4sQJrFixQmemqD53d3e4u7u3ckRERG2fUlkKmUyjE+zIZBp06nRJ73GlsgwAN1Al+2OzGSC5XI7+/fsjKytLOqbRaJCVlYVBgwYZvG758uVYvHgxMjMzERsbq3NOrVZDrVbDxUV3WK6urtBoNCAiotZRKCqQmLgfMlnd36naXJ+OHQvRp89J1C+e2KfPSW6eSnbLpoUQU1NTMXHiRMTGxmLgwIFIT09HZWUlJk2aBABITk5GeHg40tLSAADLli3DggULsGPHDkRGRkq5Qj4+PvDx8YGfnx+GDx+OWbNmwdPTE507d8a///1v/OMf/8DKlSttNk4iorZE3w7yKpUvTp7sgzvbZ8hw8mQfjBz5FYMgsks2DYCSkpJw7do1LFiwAEVFRYiOjkZmZqaUGH3p0iWd2Zz169ejpqYGjz/+uM59Fi5ciEWLFgEAdu7ciblz5+Kpp55CWVkZOnfujDfeeANTp0612riIiNoauVyu877hDvKGcoPKypRQKCq4fQbZHZvWAbJXrANERNSYviKJJSUlyMjIgErli/T0mY1ygGbOTIdCUYFHH30U7du3b3RPuVzOAolkNg5RB4iIiByLsUBFmxvUsA6QdpYoIyPD4LWsEk22wACIiIjMQl9uUH2GqkTr23qDyNIYABERUYs1lRukxSrRZG8YABERUYsFBgYiJSVF7yxO/fwgfVWio6LOcYUY2QwDICIiapWm8neaWiFGZAsOuxUGERE5Bm316PrqV4kmsgWTA6ADBw5g8uTJePXVV3HmzBmdc9evX8fIkSPN1jkiInJ8hqpHc/aHbMmkR2A7duxAcnIyRo8ejfz8fKxevRoffPABnnrqKQB1mfz//ve/LdJRIiJyXE2tECOyNpMCoLfeegsrV67EjBkzAAAff/wxnn32Wdy6dQvPPfecRTpIRESOqbkrxBq2I7IGkwKgs2fPIjExUXr/xBNPoEOHDhg3bhzUajX+9Kc/mb2DRETkmIytENNiJWiyFZMCID8/PxQXF6NLly7SsQceeAD79+/H2LFjceXKFbN3kIiIHBeDG7JXJiVBDxw4EP/6178aHR8+fDj27duH9PR0c/WLiIiIyGJMCoBefvlleHh46D03YsQI7Nu3D8nJyWbpGBEREZGlmLQbfHl5ebPaOfoO6twNnoiIyPFYbDd4f39/yGSyJtvV1taaclsiIiIiqzIpADp8+LD0sxACf/zjH/HBBx8gPDzc7B0jIiKqr7S0lCvKyGxMCoCGDx+u897V1RX33XcfunbtatZOERER1VdaWoo1a9Y02S4lJYVBEDUL9wIjIiK713DmR6XyRUFBJFQqX6PtiAzhbvBERORQcnP7Yd++sRDCRdpXLCbmuK27RQ6m1TNAzUmKJiIiMgeVylcKfgBACBfs2ze20UwQUVNMmgF69NFHdd7funULU6dOhbe3t87xjIyM1veMiIiogbKyQCn40RLCBWVlSm6wSiYxKQBSKBQ6759++mmzdoaIiMgYpbIUMplGJwiSyTRQKssAACUlJXqv4woxasikAGjLli2W6gcREVGTFIoKJCbub5QDpJ39MfYEgivEqD4mQRMRkUOJiTmOqKhzKCtTQqksa/ToS6XyRVlZIJTKUp1zXCFG9TEAIiIiuyeXy3XeKxQVenN+uEKMmosBEBER2b3AwECkpKToncW5cOECvvjiC4MrxKKizkGhqIBKpUJoaKi1u052igEQERE5BEP5O9rE56ZWiKnVaov3kRwHAyAiImoTlMpSABrolri7s0Ls+vXrKCws1LmGq8OcFwMgIiJqQ3SL89av1Xv48GGdTb21uDrMOXEvMCIiahPKygLRMADSPgIDDO8fdu3aNWt1kewIZ4CIiMihtWtX96vMWJHE3Nx+2Lt3LOr+v1+DcePurA4rKyuzQa/J1jgDREREDs3f3x/AnSKJMpkGAKRl8ADqBT8A4IK9e+/sH3b79m0r95jsAWeAiIiozdBXJPHUqV5o/P/7Lrh8uSMUijxUVVXZoqtkYwyAiIjIoTVVJLGqykPvdVVVngCA2tpay3WO7BYDICIicmiGiiR+/fXXyMvLg5fXLb3XeXn9bo3ukZ1iAERERA5P3zJ2b29vAIC//3UAArorxAT8/W8AACorKxvVBwJYI6itYwBERERtkrbys1rtjobL4wEZ1Oq6R2d5eXnIy8vTew/WCGq7uAqMiIjaJE/Puhwf7fL4+rTL47UM1QjiDvJtF2eAiIioTfL1rQtmFIoK9OlzEv/9b1/UzQQJ9OlzUkqU5g7yzokzQERE1CZpAyCVyhcnT/bBncdgMpw82Qcqla/BHeQbzgRR28MZICIiapO0FaKN7RIPyIzuIE9tl81ngNauXYvIyEh4eHggLi4OR48eNdh248aNGDp0KAICAhAQEID4+Hi97fPy8jBu3DgoFAp4e3tjwIABuHTpkiWHQUREdkZbIdpYDlBz8oOobbJpALRr1y6kpqZi4cKFyM3NRd++fZGQkICrV6/qbZ+dnY3x48fj8OHDOHLkCCIiIvCHP/wBv/76q9Tm/PnzGDJkCHr27Ins7GycPHkS8+fPh4eH/kJYRETUthnaIkNbMNHQOWrbZEIIYasPj4uLw4ABA7BmzRoAgEajQUREBF588UXMmTOnyetra2sREBCANWvWIDk5GQDw5JNPws3NDdu3b29xv8rLy6FQKKBSqeDn59fi+xARke0UFhbi/fffl96rVL46W2TUZ+jclClTEBoaarU+U+uY8vvbZjNANTU1yMnJQXx8/J3OuLggPj4eR44cadY9qqqqoFaroVQqAdQFUJ9//jnuuusuJCQkICgoCHFxcfjss8+M3qe6uhrl5eU6LyIicmz6tsjo0uWi3tkdQ+ca3oPaDpslQZeUlKC2thbBwcE6x4ODg3HmzJlm3WP27NkICwuTgqirV6/i5s2bWLp0KZYsWYJly5YhMzMTjz76KA4fPozhw4frvU9aWhpef/311g2IiIjsiqEtMrRUKhWEEFKuUEOsBN22OewqsKVLl2Lnzp3Izs6W8ns0mrpnuA8//DBefvllAEB0dDS+++47bNiwwWAANHfuXKSmpkrvy8vLERERYeEREBGRpRkLYPhoy7nZLABq3749XF1dUVxcrHO8uLgYISEhRq9dsWIFli5dikOHDqFPnz4692zXrh169eql0/7uu+/GN998Y/B+7u7ucHd3b8EoiIiIyBHZLAdILpejf//+yMrKko5pNBpkZWVh0KBBBq9bvnw5Fi9ejMzMTMTGxja654ABA5Cfn69z/Oeff0bnzp3NOwAiIiJyWDZ9BJaamoqJEyciNjYWAwcORHp6OiorKzFp0iQAQHJyMsLDw5GWlgYAWLZsGRYsWIAdO3YgMjISRUVFAAAfHx/4+PgAAGbNmoWkpCQMGzYMDzzwADIzM7Fv3z5kZ2fbZIxERERkf2waACUlJeHatWtYsGABioqKEB0djczMTCkx+tKlS3BxuTNJtX79etTU1ODxxx/Xuc/ChQuxaNEiAMCf/vQnbNiwAWlpaZgxYwZ69OiB3bt3Y8iQIVYbFxEREdk3m9YBslesA0REROR4HKIOEBEREZGtMAAiIiIip8MAiIiIiJwOAyAiIiJyOgyAiIiIyOkwACIiIiKnwwCIiIiInA4DICIiInI6DICIiIjI6TAAIiIiIqfDAIiIiIicDgMgIiIicjoMgIiIiMjpMAAiIiIip8MAiIiIiJwOAyAiIiJyOgyAiIiIyOkwACIiIiKnwwCIiIiInA4DICIiInI6DICIiIjI6TAAIiIiIqfDAIiIiIicTjtbd4CIiMhZlZaWoqamxuB5uVyOwMBAK/bIeTAAIiIisoHS0lKsWbOmyXYpKSkMgiyAj8CIiIhsoOHMj0rli4KCSKhUvkbbkXlwBoiIiMjGcnP7Yd++sRDCBTKZBomJ+xETc9zW3WrTOANERERkQyqVrxT8AIAQLti3b2yjmSAyLwZARERENlRWFigFP1pCuKCsTGmjHjkHBkBEREQ2pFSWQibT6ByTyTRQKsts1CPnwACIiIjIhhSKCiQm7peCIG0OkEJRYeOetW1MgiYiIrKxmJjjiIo6h7IyJZTKMgY/VsAAiIiIyAbkcrnOe4WiQm/g07AdmQcDICIiIhsIDAxESkoKK0HbCAMgIiIiGzEU3Gi3yKipqUFhYWGj8wyMWo8BEBERkR3hFhnWwVVgREREdoRbZFgHZ4CIiIjsFLfIsBzOABEREdkhbpFhWQyAiIiI7BC3yLAsBkBERER2iFtkWJZdBEBr165FZGQkPDw8EBcXh6NHjxpsu3HjRgwdOhQBAQEICAhAfHy80fZTp06FTCZDenq6BXpORERkGdwiw7JsngS9a9cupKamYsOGDYiLi0N6ejoSEhKQn5+PoKCgRu2zs7Mxfvx4DB48GB4eHli2bBn+8Ic/4PTp0wgPD9dpu2fPHnz//fcICwuz1nCIiIjMhltkWI7NZ4BWrlyJ559/HpMmTUKvXr2wYcMGeHl5YfPmzXrbf/TRR5g2bRqio6PRs2dPfPDBB9BoNMjKytJp9+uvv+LFF1/ERx99BDc3N2sMhYiIqNX0bZHRpcvFRsGPSqVCYWFho1dpaak1u+uwbDoDVFNTg5ycHMydO1c65uLigvj4eBw5cqRZ96iqqoJarYZSeScpTKPRYMKECZg1axbuueeeJu9RXV2N6upq6X15ebkJoyAiIjIfY1tk3LhxAx9//DGAuicohrBIYtNsGgCVlJSgtrYWwcHBOseDg4Nx5syZZt1j9uzZCAsLQ3x8vHRs2bJlaNeuHWbMmNGse6SlpeH1119vfseJiIgsqLXBC4skNs3mj8BaY+nSpdi5cyf27NkDDw8PAEBOTg7effddbN26FTKZrFn3mTt3LlQqlfS6fPmyJbtNRERkFoaqRFPTbDoD1L59e7i6uqK4uFjneHFxMUJCQoxeu2LFCixduhSHDh1Cnz59pONff/01rl69ik6dOknHamtr8corryA9PR0XLlxodC93d3e4u7u3bjBERERWxCrRrWPTGSC5XI7+/fvrJDBrE5oHDRpk8Lrly5dj8eLFyMzMRGxsrM65CRMm4OTJkzhx4oT0CgsLw6xZs3Dw4EGLjYWIiMhaWCW69Wy+DD41NRUTJ05EbGwsBg4ciPT0dFRWVmLSpEkAgOTkZISHhyMtLQ1AXX7PggULsGPHDkRGRqKoqAgA4OPjAx8fHwQGBjZ6durm5oaQkBD06NHDuoMjIiKyAGNVorlUvnlsHgAlJSXh2rVrWLBgAYqKihAdHY3MzEwpMfrSpUtwcbnzL3n9+vWoqanB448/rnOfhQsXYtGiRdbsOhERkU1oq0TXD4JYJdo0Ng+AgLrleikpKXrPZWdn67zXl8PTlJZcQ0REZK+0VaIb5gBx9qf57CIAIiIioqbVL5JorEp0w2KK1JhMCCFs3Ql7U15eDoVCAZVKBT8/P1t3h4iISFJaWqq3zo9KpYJarUa7du3g7+/f6LxcLm/zxRFN+f3NGSAiIiIHoi+IKS0tNVoZWosVou9w6EKIRERE1Ljys6ECiawQfQdngIiIiNoQFkhsHs4AERERtREskNh8DICIiIjaCGMFEkkXAyAiIqI2QlsgsT4WSNSPARAREVEboS2QqA2CWCDRMCZBExERtSHGCiTSHQyAiIiIHFzDys8KRYXewIcVou9gAEREROTgAgMDkZKSYrTOjzNUgjYFAyAiIqI2gMGNaZgETURERE6HARARERE5HQZARERE5HQYABEREZHTYQBERERETocBEBERETkdBkBERETkdBgAERERkdNhAEREREROhwEQEREROR1uhUFEROSkSktLnXb/MAZARERETqi0tBRr1qxpsl1KSkqbDIL4CIyIiMgJNZz5Ual8UVAQCZXK12i7toIzQERERE4uN7cf9u0bCyFcIJNpkJi4HzExx23dLYviDBAREZETU6l8peAHAIRwwb59YxvNBLU1DICIiIicWFlZoBT8aAnhgrIypY16ZB0MgIiIiJyYUlkKmUyjc0wm00CpLLNRj6yDARAREZETUygqkJi4XwqCtDlACkWFjXtmWUyCJiIicnIxMccRFXUOZWVKKJVlbT74ARgAEREROSW5XK7zXqGo0Bv4FBQUoKSkpNFxLy8vREVFWax/liYTQghbd8LelJeXQ6FQQKVSwc/Pz9bdISIisghDlaCvXLmCAwcOSO9VKl+UlQVCqSzVCZKefvppuwqCTPn9zRkgIiIiJ2WownP9GZ/c3H7Yu3cs6tKGNRg37k6NoKqqKiv00jKYBE1ERER6qVS+9YIfAHDB3r1to0YQAyAiIiLS6/LlCDQOFVxw+XJHW3THrBgAERERkdNhAERERER6RURcBqC7Vkom0yAi4optOmRGDICIiIhIL4WiAuPG7WuTRRK5CoyIiIgMaqtFEu1iBmjt2rWIjIyEh4cH4uLicPToUYNtN27ciKFDhyIgIAABAQGIj4/Xaa9WqzF79mz07t0b3t7eCAsLQ3JyMn777TdrDIWIiMjheXl56bxXKCrQpcvFRsFPw3aOxOaFEHft2oXk5GRs2LABcXFxSE9PxyeffIL8/HwEBQU1av/UU0/h/vvvx+DBg+Hh4YFly5Zhz549OH36NMLDw6FSqfD444/j+eefR9++fXH9+nW89NJLqK2txQ8//NCsPrEQIhERObvz588brfNjj5WgTfn9bfMAKC4uDgMGDMCaNWsAABqNBhEREXjxxRcxZ86cJq+vra1FQEAA1qxZg+TkZL1tjh07hoEDB+LixYvo1KlTk/dkAEREROR4TPn9bdNHYDU1NcjJyUF8fLx0zMXFBfHx8Thy5Eiz7lFVVQW1Wg2lUmmwjUqlgkwmg7+/v97z1dXVKC8v13kRERFR22XTAKikpAS1tbUIDg7WOR4cHIyioqJm3WP27NkICwvTCaLqu3XrFmbPno3x48cbjAbT0tKgUCikV0REhGkDISIiIofi0KvAli5dip07dyI7OxseHh6NzqvVajzxxBMQQmD9+vUG7zN37lykpqZK78vLyxkEERER6WFoA1UtuVxucI8xe2LTAKh9+/ZwdXVFcXGxzvHi4mKEhIQYvXbFihVYunQpDh06hD59+jQ6rw1+Ll68iK+++sros0B3d3e4u7u3bBBEREROorS0VMrZNSYlJcXugyCbPgKTy+Xo378/srKypGMajQZZWVkYNGiQweuWL1+OxYsXIzMzE7GxsY3Oa4Ofs2fP4tChQ3b/L4GIiMgRGJv5aUk7W7L5I7DU1FRMnDgRsbGxGDhwINLT01FZWYlJkyYBAJKTkxEeHo60tDQAwLJly7BgwQLs2LEDkZGRUq6Qj48PfHx8oFar8fjjjyM3Nxf79+9HbW2t1EapVEIul9tmoERERG2MSuWLsrJAKJWlDlcg0eYBUFJSEq5du4YFCxagqKgI0dHRyMzMlBKjL126BBeXOxNV69evR01NDR5//HGd+yxcuBCLFi3Cr7/+ir179wIAoqOjddocPnwYI0aMsOh4iIiInEFubj/s2zcWQrhIW2TExBy3dbeazeYBEFD3rDAlJUXvuezsbJ33Fy5cMHqvyMhI2Li0ERERUZumUvlKwQ8ACOGCffvGIirqnMPMBNnFVhhERETkOMrKAqXgR0sIF5SVGa7JZ28YABEREZFJlMpSaYd4LZlMA6WyzEY9Mh0DICIiIjKJQlGBxMT9UhCkzQFylMdfgJ3kABEREZH9q7+SOibmOKKizqGsTAmlskwn+HGEFdcMgIiIiKhZAgMDkZKSwkrQRERE5FyMBTfabTIKCwv1nren4IgBEBEREbVaw20yDBVJtJdtMhgAERERUavVfyxmrEiivWyTwVVgREREZDaGiiSqVL427pkuBkBERERkNo5SJJEBEBEREZmNoxRJZABEREREZuMoRRKZBE1ERERmZaxIor1gAERERERmp1BU2GXgo8VHYERERNRqzd3+wl62yeAMEBEREbWao22TwQCIiIiIzMJegpvm4CMwIiIicjqcASIiIiKL0m6SaogtHo0xACIiIiKLabhJqiHW3iSVj8CIiIjIYhrO/KhUvigoiGy0N5i1N0nlDBARERFZhbFd4q2NM0BERERkcfa2SzwDICIiIrI4e9slngEQERERWZy97RLPAIiIiIgszt52iWcSNBEREVmFPe0SzwCIiIiILKbh5qeGdom39iapDICIiIjIYux1k1QGQERERGRR9rhJKpOgiYiIyOkwACIiIiKnwwCIiIiInA4DICIiInI6DICIiIjI6TAAIiIiIqfDAIiIiIicDgMgIiIicjoMgIiIiMjpsBK0HkIIAEB5ebmNe0JERETNpf29rf09bgwDID0qKuo2aYuIiLBxT4iIiMhUFRUVUCgURtvIRHPCJCej0Wjw22+/wdfXFzKZzKz3Li8vR0REBC5fvgw/Pz+z3tsRcPzOPX6A34Gzjx/gd8DxW278QghUVFQgLCwMLi7Gs3w4A6SHi4sLOnbsaNHP8PPzc8o/+Focv3OPH+B34OzjB/gdcPyWGX9TMz9aTIImIiIip8MAiIiIiJwOAyArc3d3x8KFC+Hu7m7rrtgEx+/c4wf4HTj7+AF+Bxy/fYyfSdBERETkdDgDRERERE6HARARERE5HQZARERE5HQYABEREZHTYQBkZmvXrkVkZCQ8PDwQFxeHo0ePGmx7+vRpPPbYY4iMjIRMJkN6err1OmpBpnwHGzduxNChQxEQEICAgADEx8cbbe8ITBl/RkYGYmNj4e/vD29vb0RHR2P79u1W7K1lmPId1Ldz507IZDI88sgjlu2ghZky/q1bt0Imk+m8PDw8rNhbyzD1z8CNGzcwffp0hIaGwt3dHXfddRcOHDhgpd6anynjHzFiRKM/AzKZDGPGjLFij83L1H//6enp6NGjBzw9PREREYGXX34Zt27dsmwnBZnNzp07hVwuF5s3bxanT58Wzz//vPD39xfFxcV62x89elT89a9/Ff/85z9FSEiIeOedd6zbYQsw9Tv485//LNauXSuOHz8u8vLyxDPPPCMUCoW4cuWKlXtuHqaO//DhwyIjI0P89NNP4ty5cyI9PV24urqKzMxMK/fcfEz9DrQKCgpEeHi4GDp0qHj44Yet01kLMHX8W7ZsEX5+fqKwsFB6FRUVWbnX5mXqd1BdXS1iY2PFH//4R/HNN9+IgoICkZ2dLU6cOGHlnpuHqeMvLS3V+fd/6tQp4erqKrZs2WLdjpuJqeP/6KOPhLu7u/joo49EQUGBOHjwoAgNDRUvv/yyRfvJAMiMBg4cKKZPny69r62tFWFhYSItLa3Jazt37twmAqDWfAdCCHH79m3h6+srtm3bZqkuWlRrxy+EEP369ROvvfaaJbpnFS35Dm7fvi0GDx4sPvjgAzFx4kSHDoBMHf+WLVuEQqGwUu+sw9TvYP369aJr166ipqbGWl20qNb+PfDOO+8IX19fcfPmTUt10aJMHf/06dPFyJEjdY6lpqaK+++/36L95CMwM6mpqUFOTg7i4+OlYy4uLoiPj8eRI0ds2DPrMcd3UFVVBbVaDaVSaaluWkxrxy+EQFZWFvLz8zFs2DBLdtViWvod/P3vf0dQUBCee+45a3TTYlo6/ps3b6Jz586IiIjAww8/jNOnT1ujuxbRku9g7969GDRoEKZPn47g4GDce++9ePPNN1FbW2utbpuNOf4e3LRpE5588kl4e3tbqpsW05LxDx48GDk5OdJjsl9++QUHDhzAH//4R4v2lZuhmklJSQlqa2sRHBysczw4OBhnzpyxUa+syxzfwezZsxEWFqbzH4+jaOn4VSoVwsPDUV1dDVdXV6xbtw6jRo2ydHctoiXfwTfffINNmzbhxIkTVuihZbVk/D169MDmzZvRp08fqFQqrFixAoMHD8bp06ctvimzJbTkO/jll1/w1Vdf4amnnsKBAwdw7tw5TJs2DWq1GgsXLrRGt82mtX8PHj16FKdOncKmTZss1UWLasn4//znP6OkpARDhgyBEAK3b9/G1KlT8be//c2ifWUARHZj6dKl2LlzJ7Kzs9tEEmhz+fr64sSJE7h58yaysrKQmpqKrl27YsSIEbbumsVVVFRgwoQJ2LhxI9q3b2/r7tjEoEGDMGjQIOn94MGDcffdd+O9997D4sWLbdgz69FoNAgKCsL7778PV1dX9O/fH7/++iveeusthwuAWmvTpk3o3bs3Bg4caOuuWE12djbefPNNrFu3DnFxcTh37hxeeuklLF68GPPnz7fY5zIAMpP27dvD1dUVxcXFOseLi4sREhJio15ZV2u+gxUrVmDp0qU4dOgQ+vTpY8luWkxLx+/i4oJu3boBAKKjo5GXl4e0tDSHDIBM/Q7Onz+PCxcuIDExUTqm0WgAAO3atUN+fj6ioqIs22kzMsffA25ubujXrx/OnTtniS5aXEu+g9DQULi5ucHV1VU6dvfdd6OoqAg1NTWQy+UW7bM5tebPQGVlJXbu3Im///3vluyiRbVk/PPnz8eECRMwefJkAEDv3r1RWVmJKVOmYN68eXBxsUy2DnOAzEQul6N///7IysqSjmk0GmRlZen8311b1tLvYPny5Vi8eDEyMzMRGxtrja5ahLn+DGg0GlRXV1uiixZn6nfQs2dP/Pjjjzhx4oT0GjduHB544AGcOHECERER1ux+q5njz0BtbS1+/PFHhIaGWqqbFtWS7+D+++/HuXPnpOAXAH7++WeEhoY6VPADtO7PwCeffILq6mo8/fTTlu6mxbRk/FVVVY2CHG0wLCy5XalFU6ydzM6dO4W7u7vYunWr+Omnn8SUKVOEv7+/tKR1woQJYs6cOVL76upqcfz4cXH8+HERGhoq/vrXv4rjx4+Ls2fP2moIrWbqd7B06VIhl8vFp59+qrMMtKKiwlZDaBVTx//mm2+KL774Qpw/f1789NNPYsWKFaJdu3Zi48aNthpCq5n6HTTk6KvATB3/66+/Lg4ePCjOnz8vcnJyxJNPPik8PDzE6dOnbTWEVjP1O7h06ZLw9fUVKSkpIj8/X+zfv18EBQWJJUuW2GoIrdLS/waGDBkikpKSrN1dszN1/AsXLhS+vr7in//8p/jll1/EF198IaKiosQTTzxh0X4yADKz1atXi06dOgm5XC4GDhwovv/+e+nc8OHDxcSJE6X3BQUFAkCj1/Dhw63fcTMy5Tvo3Lmz3u9g4cKF1u+4mZgy/nnz5olu3boJDw8PERAQIAYNGiR27txpg16blynfQUOOHgAJYdr4Z86cKbUNDg4Wf/zjH0Vubq4Nem1epv4Z+O6770RcXJxwd3cXXbt2FW+88Ya4ffu2lXttPqaO/8yZMwKA+OKLL6zcU8swZfxqtVosWrRIREVFCQ8PDxERESGmTZsmrl+/btE+yoSw5PwSERERkf1hDhARERE5HQZARERE5HQYABEREZHTYQBERERETocBEBERETkdBkBERETkdBgAERERkdNhAEREZEPPPPMMHnnkEVt3g8jpMAAiIr2eeeYZyGQy6RUYGIjRo0fj5MmTtu6aWdQfm/Y1ZMgQi33ehQsXIJPJcOLECZ3j7777LrZu3WqxzyUi/RgAEZFBo0ePRmFhIQoLC5GVlYV27dph7Nixtu6W2WzZskUaX2FhIfbu3au3nVqttlgfFAoF/P39LXZ/ItKPARARGeTu7o6QkBCEhIQgOjoac+bMweXLl3Ht2jWMHDkSKSkpOu2vXbsGuVwu7QQdGRmJxYsXY/z48fD29kZ4eDjWrl2rc83KlSvRu3dveHt7IyIiAtOmTcPNmzel8xcvXkRiYiICAgLg7e2Ne+65BwcOHAAAXL9+HU899RQ6dOgAT09PdO/eHVu2bGn2+Pz9/aXxhYSEQKlUSjM1u3btwvDhw+Hh4YGPPvoIpaWlGD9+PMLDw+Hl5YXevXvjn//8p879NBoNli9fjm7dusHd3R2dOnXCG2+8AQDo0qULAKBfv36QyWQYMWIEgMaPwKqrqzFjxgwEBQXBw8MDQ4YMwbFjx6Tz2dnZkMlkyMrKQmxsLLy8vDB48GDk5+c3e9xExACIiJrp5s2b+PDDD9GtWzcEBgZi8uTJ2LFjB6qrq6U2H374IcLDwzFy5Ejp2FtvvYW+ffvi+PHjmDNnDl566SV8+eWX0nkXFxesWrUKp0+fxrZt2/DVV1/h1Vdflc5Pnz4d1dXV+L//+z/8+OOPWLZsGXx8fAAA8+fPx08//YR//etfyMvLw/r169G+fXuzjFfb17y8PCQkJODWrVvo378/Pv/8c5w6dQpTpkzBhAkTcPToUemauXPnYunSpVK/duzYgeDgYACQ2h06dAiFhYXIyMjQ+7mvvvoqdu/ejW3btiE3NxfdunVDQkICysrKdNrNmzcPb7/9Nn744Qe0a9cOzz77rFnGTeQ0LLrVKhE5rIkTJwpXV1fh7e0tvL29BQARGhoqcnJyhBBC/P777yIgIEDs2rVLuqZPnz5i0aJF0vvOnTuL0aNH69w3KSlJPPTQQwY/95NPPhGBgYHS+969e+vcs77ExEQxadKkFo0PgPDw8JDG5+3tLfbs2SMKCgoEAJGent7kPcaMGSNeeeUVIYQQ5eXlwt3dXWzcuFFvW+19jx8/rnN84sSJ4uGHHxZCCHHz5k3h5uYmPvroI+l8TU2NCAsLE8uXLxdCCHH48GEBQBw6dEhq8/nnnwsA4vfffzflKyByapwBIiKDHnjgAZw4cQInTpzA0aNHkZCQgIceeggXL16Eh4cHJkyYgM2bNwMAcnNzcerUKTzzzDM69xg0aFCj93l5edL7Q4cO4cEHH0R4eDh8fX0xYcIElJaWoqqqCgAwY8YMLFmyBPfffz8WLlyok4T9wgsvYOfOnYiOjsarr76K7777zqTxvfPOO9L4Tpw4gVGjRknnYmNjddrW1tZi8eLF6N27N5RKJXx8fHDw4EFcunQJAJCXl4fq6mo8+OCDJvWhvvPnz0OtVuP++++Xjrm5uWHgwIE63xkA9OnTR/o5NDQUAHD16tUWfzaRs2EAREQGeXt7o1u3bujWrRsGDBiADz74AJWVldi4cSMAYPLkyfjyyy9x5coVbNmyBSNHjkTnzp2bff8LFy5g7Nix6NOnD3bv3o2cnBwpR6impkb6jF9++QUTJkzAjz/+iNjYWKxevRoApGDs5Zdfxm+//YYHH3wQf/3rX5v9+SEhIdL4unXrBm9vb52x1/fWW2/h3XffxezZs3H48GGcOHECCQkJUj89PT2b/bnm4ObmJv0sk8kA1OUgEVHzMAAiomaTyWRwcXHB77//DgDo3bs3YmNjsXHjRuzYsUNvHsr333/f6P3dd98NAMjJyYFGo8Hbb7+N++67D3fddRd+++23RveIiIjA1KlTkZGRgVdeeUUKwACgQ4cOmDhxIj788EOkp6fj/fffN+eQJd9++y0efvhhPP300+jbty+6du2Kn3/+WTrfvXt3eHp6SgngDcnlcgB1M0mGREVFQS6X49tvv5WOqdVqHDt2DL169TLTSIgIANrZugNEZL+qq6tRVFQEoG7F1Zo1a3Dz5k0kJiZKbSZPnoyUlBR4e3vjT3/6U6N7fPvtt1i+fDkeeeQRfPnll/jkk0/w+eefAwC6desGtVqN1atXIzExEd9++y02bNigc/3MmTPx0EMP4a677sL169dx+PBhKYBasGAB+vfvj3vuuQfV1dXYv3+/dM7cunfvjk8//RTfffcdAgICsHLlShQXF0uBiYeHB2bPno1XX30Vcrkc999/P65du4bTp0/jueeeQ1BQEDw9PZGZmYmOHTvCw8MDCoVC5zO8vb3xwgsvYNasWVAqlejUqROWL1+OqqoqPPfccxYZF5Gz4gwQERmUmZmJ0NBQhIaGIi4uDseOHcMnn3wiLeEGgPHjx6Ndu3YYP348PDw8Gt3jlVdewQ8//IB+/fphyZIlWLlyJRISEgAAffv2xcqVK7Fs2TLce++9+Oijj5CWlqZzfW1tLaZPn467774bo0ePxl133YV169YBqJtVmTt3Lvr06YNhw4bB1dUVO3futMh38dprryEmJgYJCQkYMWIEQkJCGlVwnj9/Pl555RUsWLAAd999N5KSkqS8nHbt2mHVqlV47733EBYWhocffljv5yxduhSPPfYYJkyYgJiYGJw7dw4HDx5EQECARcZF5KxkQghh604QkeO6cOECoqKicOzYMcTExOici4yMxMyZMzFz5kzbdI6IyAA+AiOiFlGr1SgtLcVrr72G++67r1HwQ0Rkz/gIjIha5Ntvv0VoaCiOHTvWKG/H1t588034+PjofT300EO27h4R2QE+AiOiNqesrKxR5WQtT09PhIeHW7lHRGRvGAARERGR0+EjMCIiInI6DICIiIjI6TAAIiIiIqfDAIiIiIicDgMgIiIicjoMgIiIiMjpMAAiIiIip8MAiIiIiJzO/w+udpQ3kBchIgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW11JREFUeJzt3XtcVGXCB/DfcBlAhMEBuYqiaJoloqCkXTSjsFXMzFdyS80y15LMMDPWvL1WqJlS4mVz85Lm6pbYq9ZiirjbxVZDzTQlNVRMQQEdEFYYmef9g50jA8wN5sIwv+/nM59lzjznzHPOmvx8rjIhhAARERGRE3GxdwWIiIiIbI0BiIiIiJwOAxARERE5HQYgIiIicjoMQEREROR0GICIiIjI6TAAERERkdNhACIiIiKnwwBERERETocBiIiohdqwYQNkMhnOnz9v76oQtToMQERO7PDhw0hOTsY999wDb29vdOzYEWPGjMGvv/7aoOzgwYMhk8kgk8ng4uICX19fdO/eHePGjcPevXvN+t5du3Zh0KBBCAwMRJs2bdClSxeMGTMGWVlZlrq1Bt5991188cUXDY5///33mD9/Pm7cuGG1765v/vz50rOUyWRo06YNevbsibfeegtlZWUW+Y4tW7YgPT3dItciao0YgIic2OLFi7F9+3Y88sgj+OCDDzB58mT861//Qt++fXHixIkG5Tt06IBNmzbhk08+wXvvvYcRI0bg+++/x2OPPYakpCSo1Wqj37l06VKMGDECMpkMqampWL58OZ566imcOXMGW7dutcZtAjAcgBYsWGDTAKS1evVqbNq0CcuWLUOPHj3wzjvvYOjQobDEFo0MQESGudm7AkRkPykpKdiyZQvkcrl0LCkpCb169cKiRYuwefNmnfIKhQLPPvuszrFFixZh2rRpWLVqFSIiIrB48WK933f79m0sXLgQjz76KL7++usGn1+9erWZd9RyVFZWok2bNgbLjB49GgEBAQCAKVOm4KmnnkJmZiZ++OEHDBgwwBbVJHJabAEicmIDBw7UCT8A0K1bN9xzzz04deqUSddwdXXFhx9+iJ49eyIjIwMqlUpv2eLiYpSVleH+++9v9PPAwECd97du3cL8+fNx1113wdPTEyEhIRg1ahTOnTsnlVm6dCkGDhwIf39/eHl5ISYmBp9//rnOdWQyGSoqKrBx40ap2+m5557D/PnzMXPmTABA586dpc/qjrnZvHkzYmJi4OXlBaVSiaeffhoFBQU61x88eDDuvfde5Obm4qGHHkKbNm3w5z//2aTnV9eQIUMAAPn5+QbLrVq1Cvfccw88PDwQGhqKqVOn6rRgDR48GF9++SUuXLgg3VNERITZ9SFqzdgCREQ6hBAoKirCPffcY/I5rq6uGDt2LObMmYNvv/0Ww4YNa7RcYGAgvLy8sGvXLrzyyitQKpV6r1lTU4Phw4cjOzsbTz/9NF599VWUl5dj7969OHHiBCIjIwEAH3zwAUaMGIFnnnkG1dXV2Lp1K/7nf/4Hu3fvluqxadMmTJo0Cf3798fkyZMBAJGRkfD29savv/6Kv/3tb1i+fLnUGtO+fXsAwDvvvIM5c+ZgzJgxmDRpEq5du4YVK1bgoYcewtGjR+Hn5yfVt6SkBI8//jiefvppPPvsswgKCjL5+Wlpg52/v7/eMvPnz8eCBQsQHx+Pl156CXl5eVi9ejUOHz6M7777Du7u7pg9ezZUKhUuXbqE5cuXAwDatm1rdn2IWjVBRFTHpk2bBADx8ccf6xwfNGiQuOeee/Set2PHDgFAfPDBBwavP3fuXAFAeHt7i8cff1y88847Ijc3t0G5devWCQBi2bJlDT7TaDTSz5WVlTqfVVdXi3vvvVcMGTJE57i3t7eYMGFCg2u99957AoDIz8/XOX7+/Hnh6uoq3nnnHZ3jP//8s3Bzc9M5PmjQIAFArFmzRu991zVv3jwBQOTl5Ylr166J/Px88Ze//EV4eHiIoKAgUVFRIYQQYv369Tp1u3r1qpDL5eKxxx4TNTU10vUyMjIEALFu3Trp2LBhw0SnTp1Mqg+RM2IXGBFJTp8+jalTp2LAgAGYMGGCWedqWxjKy8sNlluwYAG2bNmCPn36YM+ePZg9ezZiYmLQt29fnW637du3IyAgAK+88kqDa8hkMulnLy8v6efr169DpVLhwQcfxJEjR8yqf32ZmZnQaDQYM2YMiouLpVdwcDC6deuGnJwcnfIeHh6YOHGiWd/RvXt3tG/fHp07d8af/vQndO3aFV9++aXesUP79u1DdXU1pk+fDheXO399v/jii/D19cWXX35p/o0SOSl2gRERAKCwsBDDhg2DQqHA559/DldXV7POv3nzJgDAx8fHaNmxY8di7NixKCsrw7///W9s2LABW7ZsQWJiIk6cOAFPT0+cO3cO3bt3h5ub4b+mdu/ejbfffhvHjh1DVVWVdLxuSGqKM2fOQAiBbt26Nfq5u7u7zvuwsLAG46mM2b59O3x9feHu7o4OHTpI3Xr6XLhwAUBtcKpLLpejS5cu0udEZBwDEBFBpVLh8ccfx40bN/DNN98gNDTU7Gtop8137drV5HN8fX3x6KOP4tFHH4W7uzs2btyIf//73xg0aJBJ53/zzTcYMWIEHnroIaxatQohISFwd3fH+vXrsWXLFrPvoS6NRgOZTIZ//OMfjYbB+mNq6rZEmeqhhx6Sxh0RkW0xABE5uVu3biExMRG//vor9u3bh549e5p9jZqaGmzZsgVt2rTBAw880KR6xMbGYuPGjbhy5QqA2kHK//73v6FWqxu0tmht374dnp6e2LNnDzw8PKTj69evb1BWX4uQvuORkZEQQqBz58646667zL0dq+jUqRMAIC8vD126dJGOV1dXIz8/H/Hx8dKx5raAEbV2HANE5MRqamqQlJSEgwcP4rPPPmvS2jM1NTWYNm0aTp06hWnTpsHX11dv2crKShw8eLDRz/7xj38AuNO989RTT6G4uBgZGRkNyor/LhTo6uoKmUyGmpoa6bPz5883uuCht7d3o4sdent7A0CDz0aNGgVXV1csWLCgwcKEQgiUlJQ0fpNWFB8fD7lcjg8//FCnTh9//DFUKpXO7Dtvb2+DSxIQOTu2ABE5sRkzZmDnzp1ITExEaWlpg4UP6y96qFKppDKVlZU4e/YsMjMzce7cOTz99NNYuHChwe+rrKzEwIEDcd9992Ho0KEIDw/HjRs38MUXX+Cbb77ByJEj0adPHwDA+PHj8cknnyAlJQWHDh3Cgw8+iIqKCuzbtw8vv/wynnjiCQwbNgzLli3D0KFD8cc//hFXr17FypUr0bVrVxw/flznu2NiYrBv3z4sW7YMoaGh6Ny5M+Li4hATEwMAmD17Np5++mm4u7sjMTERkZGRePvtt5Gamorz589j5MiR8PHxQX5+Pnbs2IHJkyfj9ddfb9bzN1f79u2RmpqKBQsWYOjQoRgxYgTy8vKwatUq9OvXT+f/r5iYGGzbtg0pKSno168f2rZti8TERJvWl6hFs+cUNCKyL+30bX0vQ2Xbtm0runXrJp599lnx9ddfm/R9arVarF27VowcOVJ06tRJeHh4iDZt2og+ffqI9957T1RVVemUr6ysFLNnzxadO3cW7u7uIjg4WIwePVqcO3dOKvPxxx+Lbt26CQ8PD9GjRw+xfv16aZp5XadPnxYPPfSQ8PLyEgB0psQvXLhQhIWFCRcXlwZT4rdv3y4eeOAB4e3tLby9vUWPHj3E1KlTRV5ens6zMbREQH3a+l27ds1gufrT4LUyMjJEjx49hLu7uwgKChIvvfSSuH79uk6Zmzdvij/+8Y/Cz89PAOCUeKJ6ZEJYYNMZIiIiIgfCMUBERETkdBiAiIiIyOkwABEREZHTYQAiIiIip8MARERERE6nRQSglStXIiIiAp6enoiLi8OhQ4f0ls3MzERsbCz8/Pzg7e2N6OhobNq0SW/5KVOmQCaTIT093Qo1JyIiIkdk94UQtQt1rVmzBnFxcUhPT0dCQgLy8vIQGBjYoLxSqcTs2bPRo0cPyOVy7N69GxMnTkRgYCASEhJ0yu7YsQM//PCD2fsaaTQaXL58GT4+PlxOnoiIyEEIIVBeXo7Q0FC4uBhp47HzOkSif//+YurUqdL7mpoaERoaKtLS0ky+Rp8+fcRbb72lc+zSpUsiLCxMnDhxQnTq1EksX77c5OsVFBQYXByOL7744osvvvhqua+CggKjv+vt2gJUXV2N3NxcpKamSsdcXFwQHx+vd7+guoQQ2L9/P/Ly8rB48WLpuEajwbhx4zBz5kzcc889ZtfLx8cHAFBQUGBwXyMiIiJqOcrKyhAeHi79HjfErgGouLgYNTU1CAoK0jkeFBSE06dP6z1PpVIhLCwMVVVVcHV1xapVq/Doo49Kny9evBhubm6YNm2aSfWoqqpCVVWV9L68vBwA4OvrywBERETkYEwZvmL3MUBN4ePjg2PHjuHmzZvIzs5GSkoKunTpgsGDByM3NxcffPABjhw5YvL4nbS0NCxYsMDKtSYiIqKWwq6zwAICAuDq6oqioiKd40VFRQgODtZ7nouLC7p27Yro6GjMmDEDo0ePRlpaGgDgm2++wdWrV9GxY0e4ubnBzc0NFy5cwIwZMxAREdHo9VJTU6FSqaRXQUGBxe6RiIiIWh67BiC5XI6YmBhkZ2dLxzQaDbKzszFgwACTr6PRaKQurHHjxuH48eM4duyY9AoNDcXMmTOxZ8+eRs/38PCQurvY7UVERNT62b0LLCUlBRMmTEBsbCz69++P9PR0VFRUYOLEiQCA8ePHIywsTGrhSUtLQ2xsLCIjI1FVVYWvvvoKmzZtwurVqwEA/v7+8Pf31/kOd3d3BAcHo3v37ra9OSIicio1NTVQq9X2rkar5e7uDldXV4tcy+4BKCkpCdeuXcPcuXNRWFiI6OhoZGVlSQOjL168qDOXv6KiAi+//DIuXboELy8v9OjRA5s3b0ZSUpK9boGIiJycEAKFhYW4ceOGvavS6vn5+SE4OLjZ6/TJhBDCQnVqNcrKyqBQKKBSqdgdRkRERl25cgU3btxAYGAg2rRpw0V0rUAIgcrKSly9ehV+fn4ICQlpUMac3992bwEiIiJyZDU1NVL4qT8EgyzLy8sLAHD16lUEBgY2qzusRewFRkRE5Ki0Y37atGlj55o4B+1zbu5YKwYgIiIiC2C3l21Y6jmzC8yOSkpKUF1drfdzuVzO5lQiIiIrYACyk5KSEmRkZBgtl5yczBBERERkYewCs5P6LT8qlQ/y8yOgUvkYLFdSUoIrV67ofZWUlFi97kRE1Do899xzkMlkkMlkcHd3R1BQEB599FGsW7cOGo3G5Ots2LABfn5+1quoFbAFqAU4cqQPdu0aDiFcIJNpkJi4G337Hm1Qrn6rkUrlg9JSfyiVJVAoyqXjbDUiInIs9hwSMXToUKxfvx41NTUoKipCVlYWXn31VXz++efYuXMn3NxaZ1RonXflQFQqHyn8AIAQLti1azgiI8/qhBqgdtqflqHQdPXqVQYgIiIHYe8hER4eHtL+m2FhYejbty/uu+8+PPLII9iwYQMmTZqEZcuWYf369fjtt9+gVCqRmJiIJUuWoG3btjhw4IC0e4N2gPK8efMwf/58bNq0CR988AHy8vLg7e2NIUOGID09HYGBgRa/D3OxC8xOtKuFlpb6S+FHSwgXlJYqdcoBwO3btwHUhqadOxMbhCZt95m2nCnYpUZEZF+GWn6aUs4ShgwZgt69eyMzMxNA7SbkH374IU6ePImNGzdi//79eOONNwAAAwcORHp6Onx9faXfHa+//jqA2qnqCxcuxE8//YQvvvgC58+fx3PPPWez+zCELUB2og0pSmUJAAHgzrQ+mUwDpbJUp1xdBQXhOuWB2hBUUNABCsUpk+vALjUiItKnR48eOH78OABg+vTp0vGIiAi8/fbbmDJlClatWgW5XA6FQgGZTCa1JGk9//zz0s9dunTBhx9+iH79+uHmzZto27atTe5DHwagFkE3ANlqc5K6/5ow1KVmy391EBFRyyCEkLq09u3bh7S0NJw+fRplZWW4ffs2bt26hcrKSoMLQObm5mL+/Pn46aefcP36dWlg9cWLF9GzZ0+b3Ic+7AKzs9JSfzT8v+FOF1hjwsMLANQfna9BePilJtVB3zik+jPSiIjIeZw6dQqdO3fG+fPnMXz4cERFRWH79u3Izc3FypUrARj+B3JFRQUSEhLg6+uLTz/9FIcPH8aOHTuMnmcrDEB24u7uDqC2C0wm0w0zdbvAtOXqUijKMWLEbtwJQRqMGLG7waBpUxkbh0RERM5l//79+Pnnn/HUU08hNzcXGo0G77//Pu677z7cdddduHz5sk55uVyOmpoanWOnT59GSUkJFi1ahAcffBA9evTQmcxjb+wCsxOFQvHf/y1HYuLuBt1P2jCjLVdf375HERl5FqWlSiiVpU0OP8CdEFY3BNUNYURE1HpVVVWhsLBQZxp8Wloahg8fjvHjx+PEiRNQq9VYsWIFEhMT8d1332HNmjU614iIiMDNmzeRnZ2N3r17o02bNujYsSPkcjlWrFiBKVOm4MSJE1i4cKGd7rIhtgC1AH37HsX06emYMGEDpk9Pb3QNIKBha5BCUY7OnS80CD+NtRoZog1h2pao+iGMiIhar6ysLISEhCAiIgJDhw5FTk4OPvzwQ/zf//0fXF1d0bt3byxbtgyLFy/Gvffei08//RRpaWk61xg4cCCmTJmCpKQktG/fHkuWLEH79u2xYcMGfPbZZ+jZsycWLVqEpUuX2ukuG2ILkA00tsBVcXGxznuFotxo4Gjfvr1J32dqubos2aJERESmk8vlFi1njg0bNmDDhg1Gy7322mt47bXXdI6NGzdO5/3q1auxevVqnWNjx47F2LFjdY4JW830MYIByMpMXeBKn7p/4P39/ZGcnGy11UJNCWFERGRZ1v67nRrHAGRlje351dhaO6NGjUJAQID0/saNG5DJZKiursaVK1caXNcS/zGY+q8JlUql93xL/Qdpz2XgiYjsjX+/2R4DkA0ZWmsnICAAISEhAGrDwN///nej12vuAoWG/tVx48YNqQ7btm2z6iKJ9l4GnoiInA8DkI2Ys+eXqa1GllhHwZRAYe1FEm15v0RERAADkM0YWmvH0LgbU3eKtxZzgpsl2Pt+iYjIOXAavI0YW/CwMS1hhWZbLpLYEu6XiIicAwOQjTRlrR17rtCsHfhsLLjpGyBtDu2O98buV1uOiIioudgFZkPmrrVjyRWazZ1lpVarAdwJbjt3DkdtXtYNbtpyzaHd8d7Y/WrLERERNRcDkJXVn2qub62dxqakG9smw1SWmGUlk9XuUi+TNfqxRSgU5YiKOo6ffuoNQAZAICrqONcmIiIii2MAsrLmLnBliRWamzPLypKDoPW1Ql2/fl36ruPHo1AbfgBAhuPHozBkyH6GICIiB3TgwAE8/PDDuH79Ovz8/Ew6JyIiAtOnT8f06dOtWjcGIBswd+2a5rQaGWNollXd7TnKy2u/z9jstfLycp2FGlUqFdRqNdzc3HT+sNddV0gfY99l7h5nRERk2HPPPYeNGzfiT3/6U4MNTqdOnYpVq1ZhwoQJJm2X4WgYgFogay2Lbqw1JzMzs8E5xsbl7N2716w61K1L/VYoY9+lUChMujZXlSYiMl14eDi2bt2K5cuXw8vLCwBw69YtbNmyBR07drRz7ayHAaiFssYv6KasRWTKOCR9XWr6jutrhTJ3zFNjQUelUmHbtm1GnwVXlSYiqtW3b1+cO3cOmZmZeOaZZwAAmZmZ6NixIzp37iyVq6qqwsyZM7F161aUlZUhNjYWy5cvR79+/aQyX331FaZPn46CggLcd999mDBhQoPv+/bbb5Gamooff/wRAQEBePLJJ5GWlgZvb2/r32wdDEBOxFgLi77AYmgckr4wo++4sVYoU8c8mTqwm6tKE5GjuXQJOHMG6NYN6NDBNt/5/PPPY/369VIAWrduHSZOnIgDBw5IZd544w1s374dGzduRKdOnbBkyRIkJCTg7NmzUCqVKCgowKhRozB16lRMnjwZP/74I2bMmKHzPefOncPQoUPx9ttvY926dbh27RqSk5ORnJyM9evX2+Zm/4sByIkYamExtgJzY+OQ9IWZwMBCvSHHlFYofWOe6q4DVHe8krYu9YMOV5UmIkfz8cfA5MmARgO4uAAffQS88IL1v/fZZ59FamoqLly4AAD47rvvsHXrVikAVVRUYPXq1diwYQMef/xxAMDatWuxd+9efPzxx5g5cyZWr16NyMhIvP/++wCA7t274+eff8bixYul70lLS8MzzzwjDXDu1q0bPvzwQwwaNAirV6+Gp6en9W/2vxiAnExjLSzGWmXq71RfXFyMzMxMvWHm4sWOekOOsVaout9VvztL3yDqxoJOZORZm27hQUTUXJcu3Qk/QO3//ulPQEKC9VuC2rdvj2HDhmHDhg0QQmDYsGE6f++fO3cOarUa999/v3TM3d0d/fv3x6lTpwAAp06dQlxcnM51BwwYoPP+p59+wvHjx/Hpp59Kx4QQ0Gg0yM/Px913322N22sUA5ATMDarzFirTN2d6uvSF2Y6dryoN+QYG+dT97vqrzLdWCuPvvD21FPbm7T3GhGRvZw5cyf8aNXUAGfP2qYr7Pnnn0dycjIAYOXKlVb5jps3b+JPf/oTpk2b1uAzWw+4ZgByAvpmlWlbcpq64rS+MNOhwxWDIcfUcT51V5k+cqSPzmrUI0bUdmfpC2+AsNgq2kREttCtW223V90Q5OoKdO1qm+8fOnQoqqurIZPJkJCQoPNZZGQk5HI5vvvuO3Tq1AlA7d/Rhw8flrqz7r77buzcuVPnvB9++EHnfd++ffHLL7+gq61uygAGICdhaMZTc1ac1hdmjIUcc9Y2Uql86oQfAHDBzp213Vn6wlt4+CWLrKJNRGQrHTrUjvn5059qW35cXYG//MV2A6FdXV2l7ixXV1edz7y9vfHSSy9h5syZUCqV6NixI5YsWYLKykq88N9BSlOmTMH777+PmTNnYtKkScjNzW2wftCsWbNw3333ITk5GZMmTYK3tzd++eUX7N2716SJLZbEAOTE6oYNQ4GlfigxdaFGfceTkpIaXdNH3/o8BQXhaLhvrwsKCjrg3ntP6Q06llhFm4jIll54oXbMz9mztS0/tgo/Wr6+vno/W7RoETQaDcaNG4fy8nLExsZiz549aNeuHYDaLqzt27fjtddew4oVK9C/f3+8++67eP7556VrREVF4Z///Cdmz56NBx98EEIIREZGIikpyer3Vp9MCCFs/q0tXFlZGRQKBVQqlcE/DK1BUxcN1HeevpWgjV2vMT///DMyMzNx4kRPfP75/zT4fPTov+Pee0/993t9zAo65oYwIiJ9bt26hfz8fHTu3Nmms5iclaHnbc7vb7YAObmm/rLXd15jg6WbKzy8AIDAnT3C7nRzaelrbRozZowUxOpux2FoscT6iyRyZWkiotaHAYhaPIWiHCNG7NI7nufhhx9Gt27dGpxnLJiYskiiqQsuNrayNIMTEVHLxQBELZab250/nobG87Rv397slidTF0lsuNWGaStLNyc4ERGR9TEAUYsVGBio815fN1f9csYYW/hRH3NWlm5qcCIiIttgAKIWS9/6RXU1pRvJ2MKPdbfZ0P7c1NAEcEsOImfBOUW2YannXH9usV2sXLkSERER8PT0RFxcHA4dOqS3bGZmJmJjY+Hn5wdvb29ER0dj06ZN0udqtRqzZs1Cr1694O3tjdDQUIwfPx6XL1+2xa2Qhfn7+yMkJETvqyndR9q1g+qqu0hiZmYmPvroI3z00UfIzMwEYDg0AQ1XrdbSF5xUKh+z601ELZO7uzsAoLKy0s41cQ7a56x97k1l9xagbdu2ISUlBWvWrEFcXBzS09ORkJCAvLy8Rrs2lEolZs+ejR49ekAul2P37t2YOHEiAgMDkZCQgMrKShw5cgRz5sxB7969cf36dbz66qsYMWIEfvzxRzvcIbU0piz8WL/Lythq2aWlja8wbcrmr0Tk2FxdXeHn54erV68CANq0aQOZTGbkLDKXEAKVlZW4evUq/Pz8GizWaC67B6Bly5bhxRdfxMSJEwEAa9aswZdffol169bhzTffbFB+8ODBOu9fffVVbNy4Ed9++y0SEhKgUCiwd+9enTIZGRno378/Ll68aPO9RqhlMjSoWl+XVVTUcfz0U2/UTscXiIo6Lp13+/btRr+nqduMEJFjCQ4OBgApBJH1+Pn5Sc+7OewagKqrq5Gbm4vU1FTpmIuLC+Lj43Hw4EGj5wshsH//fuTl5WHx4sV6y6lUKshkskYX5iPnYcoK1vq6rAIDC+uEHwCQ4fjxKAwZst9gS05zthkhIschk8kQEhKCwMBAnX0MybLc3d2b3fKjZdcAVFxcjJqaGgQFBekcDwoKwunTp/Wep1KpEBYWhqqqKri6umLVqlV49NFHGy1769YtzJo1C2PHjtW7KmRVVRWqqqqk92VlZU24G2rpDA2q1m4Mq6/L6tdfu6HuQoza4wUFHaBQnNKZsl+fodamugOutbg+EJHjcnV1tdgvaLIuu3eBNYWPjw+OHTuGmzdvIjs7GykpKejSpUuD7jG1Wo0xY8ZACIHVq1frvV5aWhoWLFhg5VpTS2AsWOjrsmrbtsLgeT4+uoOa6w+G1DeFXzvIuj6uD0REZF12nQUWEBAAV1dXFBUV6RwvKioy2L/n4uKCrl27Ijo6GjNmzMDo0aORlpamU0Ybfi5cuIC9e/ca3BMkNTUVKpVKehUUFDTvxshhabustLPEtF1W3bv/CkBTr7Tudhx1tWnTRue9SuWD/PwIk2d/cX0gIiLrsmsLkFwuR0xMDLKzszFy5EgAgEajQXZ2NpKTk02+jkaj0enC0oafM2fOICcnx+i/pD08PODh4dGke6DWR1+X1YgRu7Fz53DU/rtBgxEj7ozluX79Oq5cuSJdo27XlqF1gPQtkEhERNZl9y6wlJQUTJgwAbGxsejfvz/S09NRUVEhzQobP348wsLCpBaetLQ0xMbGIjIyElVVVfjqq6+wadMmqYtLrVZj9OjROHLkCHbv3o2amhoUFhYCqJ1CX38gLBFg2gBpQ2N5cnJykJOT0+C6hhZQPHeuKxdIJCKyE7sHoKSkJFy7dg1z585FYWEhoqOjkZWVJQ2MvnjxIlxc7vTUVVRU4OWXX8alS5fg5eWFHj16YPPmzUhKSgIA/P7779i5cycAIDo6Wue7cnJyGowTIgL0D5Cuu4M8oH8sD9B4a46+QdUFBR0Mrix948YNs/c3IyIi08kE1+5uoKysDAqFAiqVyuDYIXIO+nZ1184cA/R3c6lUPkhPn95gUPVTT23H55//T4NrTpiwAZ07X8CoUaPQq1cv690UEVErZM7vb7u3ABG1dMbGkBnbJ6yxdYDCwwsACNSdWs8FEomIbIcBiKiZjG130djYodrZYLoBqG5bbP1B1VpcI4iIyDIYgIiayZTtLuqPHSot9UfDVSjuhKacnBx88cWPjc4Q4xpBRETNxwBE1EzGtrsYNWoUAgICANwZN2QsNBmaOs81goiImo8BiMgCDE2RDwgIaDCjy1BoMjamiIiImo8BiKiJTFk7qLFyWvpCk7ExRURE1HwMQERNZGhzVa36g5ZNCU2mjCkiIqLmYQAiagZzByObsiO9sTFFRETUfAxARDZmSmgyNKbIHPoWcdTitHoiclYMQEQtlL4xRXU3WtVqLMiUlJQgIyNDeq9v41VzptUzUBFRa8EARNRCmLpRr3b7jfqSkpKgUCik96buSG/qtPr6gUofrlNERI6AAYiohdA3PqjunmOA/pacbdu2NfqZudPqDe19Vpe+enCdIiJyBAxARC2IsZYTQy05+j4zZ1q9qa08hupBROQI6q/FT0QtlL6WHJXKx+Bn2mn1dembVl+/9Ual8kF+fsR/9y4zXg8iIkfBFiAiB2GoJQeQ6f2sc+cLTZpWb4kWJSKilooBiMhBGFsg0dBnpk6rV6lU//1f/eOGuFAjEbUG7AIjchDaBRK13Vl1W3IMfVb3/M6dLxhspVGr1QCMb8dh7LuIiFo6tgARORBDLTlNXTyxsen3SmUJAA10/41kfosSEVFLxQBE1MKZuumqoc9GjRqFgICARq+tf+aZTPed7luzN38lImpJGICIWjhD+4fduHEDf//7341eIzQ01KzFCUtL/VE/ANXtAnv44YfRrVu3BudxJWgichQMQEQOQF+oCAkJMXtHekPc3Gr/SjA20Ll9+/YICQkxtfpERC0OAxCRg7Nki4ufnx+AOwOu9U2d15YjInJUDEBE1CgOdCai1owBiIgkpg64NmegM3eQJ6KWiAGIiCSGBlxrmRNYuIM8EbVUDEBEpMOSQaSxvcW4gzwRtQQMQERkE9xBnohaEm6FQURWxx3kiailYQAiIqszvJM9EZHtMQARkdVpF1asizvIE5E9cQwQEVmdsYUVLYHT7YnIHAxARGQT1lxYkdPtichcDEBEZDXWWFixMaZOo+d0eyLSYgAiIqux9MKKptK33hARkRYDEBFZla27nLjeEBGZgrPAiKjV4HpDRGQqBiAicng3btwAYHy9IW05IiIGICJyeLdv3wZgfL0hbTkiIgYgImo1FIpyREUdByD+e0QgKuo4B0ITUQMMQETk8Nzd3QHUjgE6fjwKgOy/n8hw/HiUNAZIW46IiAGIiByeQqEAYHwMkLYcERGnwRORQ2lsy4vi4mIAd8YA1Q1BdccAacvVx20yiJwPAxAROYz6W17oLnhofM+xzMxMvdfmNhlEzqVFdIGtXLkSERER8PT0RFxcHA4dOqS3bGZmJmJjY+Hn5wdvb29ER0dj06ZNOmWEEJg7dy5CQkLg5eWF+Ph4nDlzxtq3QURWVrfl58iRPkhPn46NGycgPX06jhzpA6B2z7Hp09MxYcIGTJ+e3mARRJXKB/n5EQ3WBrp8+TKuXLnS4FVSUmL9GyMim7N7C9C2bduQkpKCNWvWIC4uDunp6UhISEBeXh4CAwMblFcqlZg9ezZ69OgBuVyO3bt3Y+LEiQgMDERCQgIAYMmSJfjwww+xceNGdO7cGXPmzEFCQgJ++eUXeHp62voWicjC9C14GBl5VtpvrLGZX4ZWiWbrEJFzsXsL0LJly/Diiy9i4sSJ6NmzJ9asWYM2bdpg3bp1jZYfPHgwnnzySdx9992IjIzEq6++iqioKHz77bcAalt/0tPT8dZbb+GJJ55AVFQUPvnkE1y+fBlffPGFDe+MiKzF2GDnUaNGYfLkyZg8eTJGjRoFwLRVovW1DnETVaLWx64tQNXV1cjNzUVqaqp0zMXFBfHx8Th48KDR84UQ2L9/P/Ly8rB48WIAQH5+PgoLCxEfHy+VUygUiIuLw8GDB/H00083uE5VVRWqqqqk92VlZc25LSKyMmODnQMCAhASEqJzjqHQpFCUcw8xIidj1xag4uJi1NTUICgoSOd4UFAQCgsL9Z6nUqnQtm1byOVyDBs2DCtWrMCjjz4KANJ55lwzLS0NCoVCeoWHhzfntojIyrSDnbWrPtcf7NwYQ6tEG2sdKi4u5tggolbG7mOAmsLHxwfHjh3DzZs3kZ2djZSUFHTp0gWDBw9u0vVSU1ORkpIivS8rK2MIImrh+vY9isjIsygtVUKpLDW62rOhGWL5+REGW4f0jQ/i2CAix2XXABQQEABXV1cUFRXpHC8qKkJwcLDe81xcXNC1a1cAQHR0NE6dOoW0tDQMHjxYOq+oqEinCbyoqAjR0dGNXs/DwwMeHh7NvBsisjV9g5310ReajHWp6U63v/N9HBtE5Ljs2gUml8sRExOD7Oxs6ZhGo0F2djYGDBhg8nU0Go00hqdz584IDg7WuWZZWRn+/e9/m3VNImp55HK52eXqn6NQlKNz5ws6QcZQl5q+6fZAbXc8ETkmu3eBpaSkYMKECYiNjUX//v2Rnp6OiooKTJw4EQAwfvx4hIWFIS0tDUDteJ3Y2FhERkaiqqoKX331FTZt2oTVq1cDAGQyGaZPn463334b3bp1k6bBh4aGYuTIkfa6TSKyAH9/fyQnJxtseam/qrOhc4qLi6XurcZah4xNt1er1Ra+QyKyFbsHoKSkJFy7dg1z585FYWEhoqOjkZWVJQ1ivnjxIlxc7jRUVVRU4OWXX8alS5fg5eWFHj16YPPmzUhKSpLKvPHGG6ioqMDkyZNx48YNPPDAA8jKyuIaQEStQFPG3Og7p7HWobotQ8ZmjhGR45IJIYS9K9HSlJWVQaFQQKVSwdfX197VISIramxvsTNnziAnJweXLoXgr399EXd2lwcAgUmT1qJDhysYNWoUevXqZdP6EpF+5vz+tnsLEBGRPTXWOqTdNFWt9oBu+AEAGdRq08YiEVHLZfeVoImIWipDawcRkWNjACIiqsfNrbZx3NiCi9pyROR4+F8vEVE9fn5+0s+GFlysW46IHAsDEBFRPcZmh+krBzQ+qLr+OVw9msj+GICIiOppynpDQG34ycjIMHp9bqFBZH8MQEREjWhKQKkfmPRtoXH58mWdsjdu3IBMJoNCoWj0umw1IrI8BiAiIis4cqRPg41X+/Y9CgB6N1c1hK1GRJbFWWBERBambwsNlcrHpHPz8yMalOXGq0SWxRYgIiILuXHjBgDjW2jo6xoz1GpERJbFAEREZCHaAKRdQLFuCNIuoKgv5BjbeJWILItdYEREFqLdHV6hKEdY2CUA2q0WxX/fQ2/XmKFWIyKyPLYAERFZ2KVLIbh0KRx39hGT4dKlcOTlddMbcgy1GgF39ieri7PDiJqOAYiIyEK0W2NcvNgJjW2iWlHRVm/I0W67Ub97TNv9pW/mGGeHETUNAxARkYX4+NTO3OrY8QJqu7/qhiCBbt3OQKEo1xtyDG27oW/gNGeHETUNAxARkYV16HAFvXv/hJ9+6o3aECTQu/dP6NDhCjp0uKI35Nyh23rE2WFElscARERkBU8++X/o1+8QCgo6Ijz8Ijp0uCJ9NnJkLLp16wagdmyPtnursaATGXmWs8OIrIABiIjIQrRjgLS0LT71tW/fHiEhITrH9E2Df+qp7QbXFCKipuE0eCIiCwkMDGxyOX3T4AEBmUyjc7zu7DAiahq2ABERWUhTd5EH9C+eGB5+yeDsMCJqGgYgIiILauqUdEPT4A3NDiOipmEAIiJqIQwFHYWivNHgI5fLbVlFolaDAYiIyI7qBxh9QScpKQkKhaLBuVwEkahpZEIIYbyYcykrK4NCoYBKpYKvr6+9q0NErVxJSYnZ44aacg5Ra2fO72+2ABER2Zm5QaWkpAQZGRlGy3GbDCL9GICIiBxM/ZYfU7fJYKsR0R0MQEREDszUbTLYakSkiwshEhE5KH2rR6tUPg3KmrppKjdXJWfBAERE5KD0rR5dWqo0eq5K5YP8/IhGwxKRM2AXGBGRg9K3erSxbTK4uzwRW4CIiByWdvVo7V5hpmyTYU63GVFrxhYgIiIHZuo2GSqVCoDhbjOFohwqlarBTvVErREDEBGRgzF19ei65dRqNQDj3WZXr15tsOK09lqcHUatCQMQEZGDacqu8zdv3gRQG5aioo7jp596A5ABEIiKOi4FqJycHOTk5DR6TU6Rp9aEAYiIyAGZG0S0ux6pVD44fjwKteEHAGQ4fjwKQ4bsN7rLPKfIU2vCQdBERE7Ax6d2kLMpU+c5RZ6cAVuAiIiciLt7FQCBOy1AACDg7l7busMp8uQs2AJERORE1GoP6IYfAJBBrZZzijw5FQYgIiInop0FVpd2FlhzVpYmcjQMQERETsDNrXbEg6HFEw2FI6LWhmOAiIicgJ+fn/SzvsUTteGo/hggY7PDiBwRAxARkRMwdfFEQytL178GkSOzewBauXIl3nvvPRQWFqJ3795YsWIF+vfv32jZtWvX4pNPPsGJEycAADExMXj33Xd1yt+8eRNvvvkmvvjiC5SUlKBz586YNm0apkyZYpP7ISJqiYwtnnjjxg3IZLJGV4EGuBI0tT52DUDbtm1DSkoK1qxZg7i4OKSnpyMhIQF5eXkIDAxsUP7AgQMYO3YsBg4cCE9PTyxevBiPPfYYTp48ibCwMABASkoK9u/fj82bNyMiIgJff/01Xn75ZYSGhmLEiBG2vkUiohbDUIDh/l/kbGRCuzyoHcTFxaFfv37IyMgAAGg0GoSHh+OVV17Bm2++afT8mpoatGvXDhkZGRg/fjwA4N5770VSUhLmzJkjlYuJicHjjz+Ot99+26R6lZWVQaFQQKVSwdfXtwl3RkTUepSUlJi17QaRvZjz+9tuLUDV1dXIzc1FamqqdMzFxQXx8fE4ePCgSdeorKyEWq2GUnlniubAgQOxc+dOPP/88wgNDcWBAwfw66+/Yvny5XqvU1VVhaqqKul9WVlZE+6IiKj1KSkpkf6Ragj3CSNHY7dp8MXFxaipqUFQUJDO8aCgIBQWFpp0jVmzZiE0NBTx8fHSsRUrVqBnz57o0KED5HI5hg4dipUrV+Khhx7Se520tDQoFArpFR4e3rSbIiJqZeq3/OjbJoP7hJGjsfsg6KZatGgRtm7digMHDsDT01M6vmLFCvzwww/YuXMnOnXqhH/961+YOnVqg6BUV2pqKlJSUqT3ZWVlDEFERABUKpX085EjfbBz53DU/ttZgxEj7myToVKpOI6IHIrdAlBAQABcXV1RVFSkc7yoqAjBwcEGz126dCkWLVqEffv2ISoqSjr+n//8B3/+85+xY8cODBs2DAAQFRWFY8eOYenSpXoDkIeHBzw8PJp5R0RErY9arQZQ2/JzJ/wAgAt27hyOyMizUCjKpXJaHDdELZ3dApBcLkdMTAyys7MxcuRIALWDoLOzs5GcnKz3vCVLluCdd97Bnj17EBsbq/OZWq2GWq2Gi4tuz56rqys0Gt3VTYmIyHQFBeFoOGrCBQUFHaBQnNI5ynFD5Ajs2gWWkpKCCRMmIDY2Fv3790d6ejoqKiowceJEAMD48eMRFhaGtLQ0AMDixYsxd+5cbNmyBREREdJYobZt26Jt27bw9fXFoEGDMHPmTHh5eaFTp0745z//iU8++QTLli2z230SEbV2169fx5UrVwDUjvGsS6XyQWmpP5TKEp2FFTluiOzJrgEoKSkJ165dw9y5c1FYWIjo6GhkZWVJA6MvXryo05qzevVqVFdXY/To0TrXmTdvHubPnw8A2Lp1K1JTU/HMM8+gtLQUnTp1wjvvvMOFEImImiE8vACAQN2d5GUyDcLDLwEAcnJykJOT0+C8I0f6NNhag+OGqCWw6zpALRXXASIiqvXzzz8jMzMTgLEw07CVR6XyQXr6dJ0d5mUyDaZPT4dCUY5Ro0ahV69etr8parUcYh0gIiJq+bS7yAP69wnTF4xKS/11wg8ACOGC0lIlN1glu2MAIiIiveruIg803ERVpfKRwg9QG3B27aqdHebuXoX63WaAgLs7x/6Q/TEAERGRXsZ2gDfUylMbfGT1zpBBreau8mR/DEBERKSXvl3ki4uLkZmZCaWyBDKZpsE4H6WyVPpZ32dE9mS3rTCIiMgx+Pv7IyQkROcVEBAAoLZLLDFxN2Sy2rXWtGOAtF1l+j4DahevJbIXtgAREVGz6BscraWda1x/zrGXl5eNakjUEFuAiIjIbPXHBikU5ejc+UKjA6Trbp+xa9dwaSNVd3d3G9WWqCG2ABERkdn0jQ0C7owPMjYNXqFQ2Kq6RA0wABERUZMY28fL2ABpIntiFxgREVmFsUHQRPbEFiAiIrIaYwOkiezF7Bagr776CpMmTcIbb7yB06dP63x2/fp1DBkyxGKVIyIix9fYAGkiezMrAG3ZsgUjRoxAYWEhDh48iD59+uDTTz+VPq+ursY///lPi1eSiIgch7HVo80tR2QNZnWBvffee1i2bBmmTZsGAPj73/+O559/Hrdu3cILL7xglQoSEZFjMTRDTEsulzcYRF1SUmL2OURNZVYAOnPmDBITE6X3Y8aMQfv27TFixAio1Wo8+eSTFq8gERE5HnODSklJCTIyMoyWS05OZggiizArAPn6+qKoqAidO3eWjj388MPYvXs3hg8fjkuXLlm8gkRE1PrVb/lRqXxQWuoPpbJEZ+yQoRYiInOYFYD69++Pf/zjH7jvvvt0jg8aNAi7du3C8OHDLVo5IiJyPkeO9MGuXcMhhIs0db5v36P2rha1MmYNgn7ttdfg6enZ6GeDBw/Grl27MH78eItUjIiInI92+wzt4olC6G6fQWQpZrUA9enTB3369EFZWVmjn8fExCAmJsYiFSMiIudjbPsMIksxKwD5+flBJpMZLVdTU9PkChERkfPi9hlkK2YFoJycHOlnIQT+8Ic/4K9//SvCwsIsXjEiInI+2u0z6o8BYusPWZpZAWjQoEE6711dXXHfffehS5cuFq0UERE5L26fQbbAvcCIiMju6q8KrVCUNxp8uHo0WQoDEBER2V1TV48maqpmByBTBkUTEREZw3BDtmRWABo1apTO+1u3bmHKlCnw9vbWOZ6Zmdn8mhERERFZiVkBSKFQ6Lx/9tlnLVoZIiIiIlswKwCtX7/eWvUgIiIishmztsIgIiIiag0YgIiIiMjpMAARERGR02EAIiIiIqfDAEREREROhwGIiIiInA4DEBERETkdBiAiIiJyOgxARERE5HQYgIiIiMjpMAARERGR02EAIiIiIqfDAEREREROhwGIiIiInI7dA9DKlSsREREBT09PxMXF4dChQ3rLrl27Fg8++CDatWuHdu3aIT4+vtHyp06dwogRI6BQKODt7Y1+/frh4sWL1rwNIiIiciB2DUDbtm1DSkoK5s2bhyNHjqB3795ISEjA1atXGy1/4MABjB07Fjk5OTh48CDCw8Px2GOP4ffff5fKnDt3Dg888AB69OiBAwcO4Pjx45gzZw48PT1tdVtERETUwsmEEMJeXx4XF4d+/fohIyMDAKDRaBAeHo5XXnkFb775ptHza2pq0K5dO2RkZGD8+PEAgKeffhru7u7YtGlTk+tVVlYGhUIBlUoFX1/fJl+HiIiIbMec3992awGqrq5Gbm4u4uPj71TGxQXx8fE4ePCgSdeorKyEWq2GUqkEUBugvvzyS9x1111ISEhAYGAg4uLi8MUXXxi8TlVVFcrKynReRERE1HrZLQAVFxejpqYGQUFBOseDgoJQWFho0jVmzZqF0NBQKURdvXoVN2/exKJFizB06FB8/fXXePLJJzFq1Cj885//1HudtLQ0KBQK6RUeHt70GyMiIqIWz83eFWiqRYsWYevWrThw4IA0vkej0QAAnnjiCbz22msAgOjoaHz//fdYs2YNBg0a1Oi1UlNTkZKSIr0vKytjCCIiImrF7BaAAgIC4OrqiqKiIp3jRUVFCA4ONnju0qVLsWjRIuzbtw9RUVE613Rzc0PPnj11yt9999349ttv9V7Pw8MDHh4eTbgLIiIickR26wKTy+WIiYlBdna2dEyj0SA7OxsDBgzQe96SJUuwcOFCZGVlITY2tsE1+/Xrh7y8PJ3jv/76Kzp16mTZGyAiIiKHZdcusJSUFEyYMAGxsbHo378/0tPTUVFRgYkTJwIAxo8fj7CwMKSlpQEAFi9ejLlz52LLli2IiIiQxgq1bdsWbdu2BQDMnDkTSUlJeOihh/Dwww8jKysLu3btwoEDB+xyj0RERNTy2DUAJSUl4dq1a5g7dy4KCwsRHR2NrKwsaWD0xYsX4eJyp5Fq9erVqK6uxujRo3WuM2/ePMyfPx8A8OSTT2LNmjVIS0vDtGnT0L17d2zfvh0PPPCAze6LiIiIWja7rgPUUnEdICIiIsfjEOsAEREREdkLAxARERE5HQYgIiIicjoOuxAiERGRLZWUlKC6ulrv53K5HP7+/jasETUHAxAREZERJSUl0sbdhiQnJzMEOQh2gRERERlRv+VHpfJBfn4EVCofg+Wo5WILEBERkRmOHOmDXbuGQwgXyGQaJCbuRt++R+1dLTITW4CIiIhMpFL5SOEHAIRwwa5dwxu0BFHLxwBERERkotJSfyn8aAnhgtJSpZ1qRE3FAERERGQipbIEMplG55hMpoFSWWqnGlFTMQARERGZSKEoR2LibikEaccAKRTldq4ZmYuDoImIiMzQt+9RREaeRWmpEkplKcOPg2IAIiIiMkIul+u8VyjKGw0+9ctRy8UAREREZIS/vz+Sk5O5EnQrwgBERERkAoab1oUBiIiIyErOnTuHyspKvZ+3adMGkZGRNqwRaTEAERERWcG5c+ewefNm6b1K5YPSUn8olSU644eeffZZhiA7YAAiIiKygqtXr0o/G9o+4+rVqwxAdsB1gIiIiKxArVYDqG352bkzUe/2GdpyZFsMQERERFZUUBAOQKZzTAgXFBR0sE+FCAADEBERkVVVVnqZdZxsgwGIiIjICrSzv9q0+U+jn2uPG5olRtbDAERERGQFNTU1AIDw8AIAQuczmUyD8PBLOuXItjgLjIiIyIoUinL07v0TfvqpN2rHAglERR2XpsJXVFTgypUrDc7jytLWxQBERERkBdp9wVQqHxw/HoU7A6FlOH48CkOG7IdCUY5Tp07h1KlTjV4jOTmZIchK2AVGRERkBR061M7yKi31l6bAawnhgtJSpfRepfJBfn6ENDVey9DeY9Q8bAEiIiKyAj8/PwCAUlkCmUyjE4JkMg2UylIAhhdJvHHjBkJCQmxed2fAFiAiIiIrUijKkZi4GzKZBgCkkKNQlEOl8pHCD9BwkcTbt2/brd6tHVuAiIiIrKxv36OIjDyL0lIllMpSaQC0oe6xuvuFkeUxABEREVmBdhC0lkJR3iDUuLtXoXaKfN2VogXc3Tn2x9oYgIiIiKzA398fycnJjQ5kPnPmDHJycqBWe6D+NhmADGq1vME5ZFkMQERERFaibwp7cXExAOMDpMl6OAiaiIjIxtzd3QEYHiBdtxxZHluAiIiIbEyhUEg/6xsgXb8cWRYDEBERkY2ZMkC6sXJkOQxARERENmZogLQW9wKzLgYgIiIiO2C4sS8OgiYiIiKnwwBERERETocBiIiIiJwOAxARERE5HQYgIiIicjotIgCtXLkSERER8PT0RFxcHA4dOqS37Nq1a/Hggw+iXbt2aNeuHeLj4w2WnzJlCmQyGdLT061QcyIiInJEdg9A27ZtQ0pKCubNm4cjR46gd+/eSEhIwNWrVxstf+DAAYwdOxY5OTk4ePAgwsPD8dhjj+H3339vUHbHjh344YcfEBoaau3bICIisrqSkhJcuXJF76ukpMTeVXQYMiGEsGcF4uLi0K9fP2RkZAAANBoNwsPD8corr+DNN980en5NTQ3atWuHjIwMjB8/Xjr++++/Iy4uDnv27MGwYcMwffp0TJ8+3aQ6lZWVQaFQQKVSwdfXt0n3RUREZEklJSXS70pDkpOTnXaNIXN+f9u1Bai6uhq5ubmIj4+Xjrm4uCA+Ph4HDx406RqVlZVQq9VQKpXSMY1Gg3HjxmHmzJm45557jF6jqqoKZWVlOi8iIqKWpP6q0SqVD/LzI6BS+RgsR42z60rQxcXFqKmpQVBQkM7xoKAgnD592qRrzJo1C6GhoTohavHixXBzc8O0adNMukZaWhoWLFhgesWJiIjs6MiRPti1aziEcJF2kO/b96i9q+VQ7D4GqDkWLVqErVu3YseOHfD09AQA5Obm4oMPPsCGDRsgk8lMuk5qaipUKpX0KigosGa1iYiImkyl8pHCDwAI4YJdu4Y3aAkiw+wagAICAuDq6oqioiKd40VFRQgODjZ47tKlS7Fo0SJ8/fXXiIqKko5/8803uHr1Kjp27Ag3Nze4ubnhwoULmDFjBiIiIhq9loeHB3x9fXVeRERELVFpqb8UfrSEcEFpqVLPGdQYuwYguVyOmJgYZGdnS8c0Gg2ys7MxYMAAvectWbIECxcuRFZWFmJjY3U+GzduHI4fP45jx45Jr9DQUMycORN79uyx2r0QERHZglJZAplMo3NMJtNAqSy1U40ck913g09JScGECRMQGxuL/v37Iz09HRUVFZg4cSIAYPz48QgLC0NaWhqA2vE9c+fOxZYtWxAREYHCwkIAQNu2bdG2bVv4+/s3GP3u7u6O4OBgdO/e3bY3R0REZGEKRTkSE3c3GAOkUJTbu2oOxe4BKCkpCdeuXcPcuXNRWFiI6OhoZGVlSQOjL168CBeXOw1Vq1evRnV1NUaPHq1znXnz5mH+/Pm2rDoREZFd9O17FJGRZ1FaqoRSWcrw0wR2XweoJeI6QERE1NKYug7QmDFj4Ofn1+C4XC5v9esDmfP7mwGoEQxARETUEpWUlDS6zo9KpcK2bduMnt/aF0k05/e33bvAiIiIyDSmhheVygelpf5QKkt0use4SOIdDEBEREQOTqVSST8bWiRRpVIhJCTEXtVsURx6IUQiIiIC1Go1AOOLJGrLEQMQERFRq8FFEk3HAEREROTgystrx/m4u1cBqD+3ScDdvVqnHDEAERERObzbt28DANRqDwD198GUQa2W65QjBiAiIqJWQ6ksQf0WIG6T0TgGICIiIgfn5lZ3UrduAKq72p9uOefGAEREROTgfHxqZ3mVlvqj4a/2O4OgteWIAYiIiMjhubu7AzC+U7y2HDEAEREROTyFQvHf/63dKV4bgurvFK8tR1wJmoiIqFXhTvGmYQAiIiJycHK5XOe9QlHeaPCpX86ZMQARERE5OH9/fyQnJxvc7FQul7fqneDNxQBERETUCjDcmIeDoImIiMjpMAARERGR02EAIiIiIqfDAEREREROhwGIiIiInA4DEBERETkdBiAiIiJyOgxARERE5HQYgIiIiMjpMAARERGR02EAIiIiIqfDAEREREROhwGIiIiInA4DEBERETkdBiAiIiJyOgxARERE5HQYgIiIiMjpuNm7AkRERNTylJSUoLq6Wu/ncrkc/v7+NqyRZTEAERERkY6SkhJkZGQYLZecnOywIYhdYERERKSjfsuPSuWD/PwIqFQ+Bss5ErYAERERkV5HjvTBrl3DIYQLZDINEhN3o2/fo/auVrOxBYiIiIgapVL5SOEHAIRwwa5dwxu0BDkiBiAiIiJqVGmpvxR+tIRwQWmp0k41shwGICIiImqUUlkCmUyjc0wm00CpLLVTjSyHAYiIiIgapVCUIzFxtxSCtGOAFIpyO9es+TgImoiIiPTq2/coIiPPorRUCaWytFWEH6CFtACtXLkSERER8PT0RFxcHA4dOqS37Nq1a/Hggw+iXbt2aNeuHeLj43XKq9VqzJo1C7169YK3tzdCQ0Mxfvx4XL582Ra3QkRE5PDkcrnOe4WiHJ07X2gQfuqXcyQyIYSwZwW2bduG8ePHY82aNYiLi0N6ejo+++wz5OXlITAwsEH5Z555Bvfffz8GDhwIT09PLF68GDt27MDJkycRFhYGlUqF0aNH48UXX0Tv3r1x/fp1vPrqq6ipqcGPP/5oUp3KysqgUCigUqng6+tr6VsmIiJq8RxxJWhzfn/bPQDFxcWhX79+0oqTGo0G4eHheOWVV/Dmm28aPb+mpgbt2rVDRkYGxo8f32iZw4cPo3///rhw4QI6duxo9JoMQERERI7HnN/fdh0DVF1djdzcXKSmpkrHXFxcEB8fj4MHD5p0jcrKSqjVaiiV+qfkqVQqyGQy+Pn5Nfp5VVUVqqqqpPdlZWWm3QAREZGTccSWocbYNQAVFxejpqYGQUFBOseDgoJw+vRpk64xa9YshIaGIj4+vtHPb926hVmzZmHs2LF602BaWhoWLFhgXuWJiIicTP09wlQqH5SW+kOpLNEZH+QIe4Q59CywRYsWYevWrThw4AA8PT0bfK5WqzFmzBgIIbB69Wq910lNTUVKSor0vqysDOHh4VapMxERkaOq2/JjaIsMR9gjzK4BKCAgAK6urigqKtI5XlRUhODgYIPnLl26FIsWLcK+ffsQFRXV4HNt+Llw4QL2799vsC/Qw8MDHh4eTbsJIiIiJ6Nvi4zIyLMOM03ertPg5XI5YmJikJ2dLR3TaDTIzs7GgAED9J63ZMkSLFy4EFlZWYiNjW3wuTb8nDlzBvv27WvxzXBERESOpDVskWH3LrCUlBRMmDABsbGx6N+/P9LT01FRUYGJEycCAMaPH4+wsDCkpaUBABYvXoy5c+diy5YtiIiIQGFhIQCgbdu2aNu2LdRqNUaPHo0jR45g9+7dqKmpkcoolUqHXrOAiIioJdBukVE3BDnaFhl2D0BJSUm4du0a5s6di8LCQkRHRyMrK0saGH3x4kW4uNx5wKtXr0Z1dTVGjx6tc5158+Zh/vz5+P3337Fz504AQHR0tE6ZnJwcDB482Kr3Q0RE1Nppt8ioPwbIUbq/gBawDlBLxHWAiIiIGrpy5Qo++ugj6X3tLLCGW2RMnjwZISEhNq+fw6wDRERERI5LoSh3qFafulrEXmBERETU8pk6jtYRxtuyBYiIiIhM4u/vj+TkZK4ETURERM7FEcKNKdgFRkRERE6HAYiIiIicDgMQEREROR0GICIiInI6DEBERETkdBiAiIiIyOkwABEREZHTYQAiIiIip8MARERERE6HAYiIiIicDgMQEREROR0GICIiInI6DEBERETkdBiAiIiIyOm42bsCRERE1LqdO3cOlZWVej9v06YNIiMjbVgjBiAiIiKyonPnzmHz5s1Gyz377LM2DUHsAiMiIiKrKSoq0nl/6VIIvv/+Ply6FGKwnLWxBYiIiIis5vbt29LPO3Y8gZ9+6g1ABkCgd++f8OST/9egnC2wBYiIiIis7tKlkDrhBwBk+Omn3g1agmyFAYiIiIis7uLFTrgTfrRkKCjoaI/qMAARERGR9fn7FwMQ9Y4KKJUl9qgOAxARERFZn1x+G421AMnlantUhwGIiIiIrE+pLIFMptE5JpNpoFSW2qU+DEBERERkNZ6engAAhaIciYm7pRAkk2mQmLgbCkW5Tjlb4TR4IiIispq6ixv27XsUkZFnUVqqhFJZKoWf+uVsgQGIiIiIrMbf3x/Jycmorq7WW0Yul8Pf39+GtWIAIiIiIiuzdbgxBccAERERkdNhACIiIiKnwwBERERETocBiIiIiJwOAxARERE5HQYgIiIicjoMQEREROR0GICIiIjI6TAAERERkdNhACIiIiKnw60wGiGEAACUlZXZuSZERERkKu3vbe3vcUMYgBpRXl67O214eLida0JERETmKi8vh0KhMFhGJkyJSU5Go9Hg8uXL8PHxgUwmM/v8srIyhIeHo6CgAL6+vlaoYcvHZ1CLz4HPAOAz0OJz4DMArPsMhBAoLy9HaGgoXFwMj/JhC1AjXFxc0KFDh2Zfx9fX12n/gGvxGdTic+AzAPgMtPgc+AwA6z0DYy0/WhwETURERE6HAYiIiIicDgOQFXh4eGDevHnw8PCwd1Xshs+gFp8DnwHAZ6DF58BnALScZ8BB0EREROR02AJERERETocBiIiIiJwOAxARERE5HQYgIiIicjoMQE20cuVKREREwNPTE3FxcTh06JDesidPnsRTTz2FiIgIyGQypKen266iVmTOM1i7di0efPBBtGvXDu3atUN8fLzB8o7EnOeQmZmJ2NhY+Pn5wdvbG9HR0di0aZMNa2sd5jyDurZu3QqZTIaRI0dat4I2YM4z2LBhA2Qymc7L09PThrW1HnP/LNy4cQNTp05FSEgIPDw8cNddd+Grr76yUW2tw5xnMHjw4AZ/FmQyGYYNG2bDGlueuX8O0tPT0b17d3h5eSE8PByvvfYabt26Zd1KCjLb1q1bhVwuF+vWrRMnT54UL774ovDz8xNFRUWNlj906JB4/fXXxd/+9jcRHBwsli9fbtsKW4G5z+CPf/yjWLlypTh69Kg4deqUeO6554RCoRCXLl2ycc0ty9znkJOTIzIzM8Uvv/wizp49K9LT04Wrq6vIysqycc0tx9xnoJWfny/CwsLEgw8+KJ544gnbVNZKzH0G69evF76+vuLKlSvSq7Cw0Ma1tjxzn0NVVZWIjY0Vf/jDH8S3334r8vPzxYEDB8SxY8dsXHPLMfcZlJSU6Pw5OHHihHB1dRXr16+3bcUtyNxn8OmnnwoPDw/x6aefivz8fLFnzx4REhIiXnvtNavWkwGoCfr37y+mTp0qva+pqRGhoaEiLS3N6LmdOnVqFQGoOc9ACCFu374tfHx8xMaNG61VRZto7nMQQog+ffqIt956yxrVs4mmPIPbt2+LgQMHir/+9a9iwoQJDh+AzH0G69evFwqFwka1sx1zn8Pq1atFly5dRHV1ta2qaHXN/Tth+fLlwsfHR9y8edNaVbQ6c5/B1KlTxZAhQ3SOpaSkiPvvv9+q9WQXmJmqq6uRm5uL+Ph46ZiLiwvi4+Nx8OBBO9bMdizxDCorK6FWq6FUKq1VTatr7nMQQiA7Oxt5eXl46KGHrFlVq2nqM/jf//1fBAYG4oUXXrBFNa2qqc/g5s2b6NSpE8LDw/HEE0/g5MmTtqiu1TTlOezcuRMDBgzA1KlTERQUhHvvvRfvvvsuampqbFVti7LE340ff/wxnn76aXh7e1urmlbVlGcwcOBA5ObmSt1kv/32G7766iv84Q9/sGpduRmqmYqLi1FTU4OgoCCd40FBQTh9+rSdamVblngGs2bNQmhoqM5/JI6mqc9BpVIhLCwMVVVVcHV1xapVq/Doo49au7pW0ZRn8O233+Ljjz/GsWPHbFBD62vKM+jevTvWrVuHqKgoqFQqLF26FAMHDsTJkyctshGzPTTlOfz222/Yv38/nnnmGXz11Vc4e/YsXn75ZajVasybN88W1bao5v7deOjQIZw4cQIff/yxtapodU15Bn/84x9RXFyMBx54AEII3L59G1OmTMGf//xnq9aVAYhsbtGiRdi6dSsOHDjQagZ+msPHxwfHjh3DzZs3kZ2djZSUFHTp0gWDBw+2d9Wsrry8HOPGjcPatWsREBBg7+rYzYABAzBgwADp/cCBA3H33XfjL3/5CxYuXGjHmtmWRqNBYGAgPvroI7i6uiImJga///473nvvPYcMQM318ccfo1evXujfv7+9q2JTBw4cwLvvvotVq1YhLi4OZ8+exauvvoqFCxdizpw5VvteBiAzBQQEwNXVFUVFRTrHi4qKEBwcbKda2VZznsHSpUuxaNEi7Nu3D1FRUdasptU19Tm4uLiga9euAIDo6GicOnUKaWlpDhmAzH0G586dw/nz55GYmCgd02g0AAA3Nzfk5eUhMjLSupW2MEv8neDu7o4+ffrg7Nmz1qiiTTTlOYSEhMDd3R2urq7SsbvvvhuFhYWorq6GXC63ap0trTl/FioqKrB161b87//+rzWraHVNeQZz5szBuHHjMGnSJABAr169UFFRgcmTJ2P27NlwcbHOaB2OATKTXC5HTEwMsrOzpWMajQbZ2dk6/6JrzZr6DJYsWYKFCxciKysLsbGxtqiqVVnqz4JGo0FVVZU1qmh15j6DHj164Oeff8axY8ek14gRI/Dwww/j2LFjCA8Pt2X1LcISfw5qamrw888/IyQkxFrVtLqmPIf7778fZ8+elUIwAPz6668ICQlxuPADNO/PwmeffYaqqio8++yz1q6mVTXlGVRWVjYIOdpQLKy5XalVh1i3Ulu3bhUeHh5iw4YN4pdffhGTJ08Wfn5+0jTWcePGiTfffFMqX1VVJY4ePSqOHj0qQkJCxOuvvy6OHj0qzpw5Y69baDZzn8GiRYuEXC4Xn3/+uc6Uz/LycnvdgkWY+xzeffdd8fXXX4tz586JX375RSxdulS4ubmJtWvX2usWms3cZ1Bfa5gFZu4zWLBggdizZ484d+6cyM3NFU8//bTw9PQUJ0+etNctWIS5z+HixYvCx8dHJCcni7y8PLF7924RGBgo3n77bXvdQrM19b+HBx54QCQlJdm6ulZh7jOYN2+e8PHxEX/729/Eb7/9Jr7++msRGRkpxowZY9V6MgA10YoVK0THjh2FXC4X/fv3Fz/88IP02aBBg8SECROk9/n5+QJAg9egQYNsX3ELMucZdOrUqdFnMG/ePNtX3MLMeQ6zZ88WXbt2FZ6enqJdu3ZiwIABYuvWrXaotWWZ8wzqaw0BSAjznsH06dOlskFBQeIPf/iDOHLkiB1qbXnm/ln4/vvvRVxcnPDw8BBdunQR77zzjrh9+7aNa21Z5j6D06dPCwDi66+/tnFNrcecZ6BWq8X8+fNFZGSk8PT0FOHh4eLll18W169ft2odZUJYs32JiIiIqOXhGCAiIiJyOgxARERE5HQYgIiIiMjpMAARERGR02EAIiIiIqfDAEREREROhwGIiIiInA4DEBGRHT333HMYOXKkvatB5HQYgIioUc899xxkMpn08vf3x9ChQ3H8+HF7V80i6t6b9vXAAw9Y7fvOnz8PmUyGY8eO6Rz/4IMPsGHDBqt9LxE1jgGIiPQaOnQorly5gitXriA7Oxtubm4YPny4vatlMevXr5fu78qVK9i5c2ej5dRqtdXqoFAo4OfnZ7XrE1HjGICISC8PDw8EBwcjODgY0dHRePPNN1FQUIBr165hyJAhSE5O1il/7do1yOVyaSfoiIgILFy4EGPHjoW3tzfCwsKwcuVKnXOWLVuGXr16wdvbG+Hh4Xj55Zdx8+ZN6fMLFy4gMTER7dq1g7e3N+655x589dVXAIDr16/jmWeeQfv27eHl5YVu3bph/fr1Jt+fn5+fdH/BwcFQKpVSS822bdswaNAgeHp64tNPP0VJSQnGjh2LsLAwtGnTBr169cLf/vY3netpNBosWbIEXbt2hYeHBzp27Ih33nkHANC5c2cAQJ8+fSCTyTB48GAADbvAqqqqMG3aNAQGBsLT0xMPPPAADh8+LH1+4MAByGQyZGdnIzY2Fm3atMHAgQORl5dn8n0TEQMQEZno5s2b2Lx5M7p27Qp/f39MmjQJW7ZsQVVVlVRm8+bNCAsLw5AhQ6Rj7733Hnr37o2jR4/izTffxKuvvoq9e/dKn7u4uODDDz/EyZMnsXHjRuzfvx9vvPGG9PnUqVNRVVWFf/3rX/j555+xePFitG3bFgAwZ84c/PLLL/jHP/6BU6dOYfXq1QgICLDI/WrreurUKSQkJODWrVuIiYnBl19+iRMnTmDy5MkYN24cDh06JJ2TmpqKRYsWSfXasmULgoKCAEAqt2/fPly5cgWZmZmNfu8bb7yB7du3Y+PGjThy5Ai6du2KhIQElJaW6pSbPXs23n//ffz4449wc3PD888/b5H7JnIaVt1qlYgc1oQJE4Srq6vw9vYW3t7eAoAICQkRubm5Qggh/vOf/4h27dqJbdu2SedERUWJ+fPnS+87deokhg4dqnPdpKQk8fjjj+v93s8++0z4+/tL73v16qVzzboSExPFxIkTm3R/AISnp6d0f97e3mLHjh0iPz9fABDp6elGrzFs2DAxY8YMIYQQZWVlwsPDQ6xdu7bRstrrHj16VOf4hAkTxBNPPCGEEOLmzZvC3d1dfPrpp9Ln1dXVIjQ0VCxZskQIIUROTo4AIPbt2yeV+fLLLwUA8Z///MecR0Dk1NgCRER6Pfzwwzh27BiOHTuGQ4cOISEhAY8//jguXLgAT09PjBs3DuvWrQMAHDlyBCdOnMBzzz2nc40BAwY0eH/q1Cnp/b59+/DII48gLCwMPj4+GDduHEpKSlBZWQkAmDZtGt5++23cf//9mDdvns4g7Jdeeglbt25FdHQ03njjDXz//fdm3d/y5cul+zt27BgeffRR6bPY2FidsjU1NVi4cCF69eoFpVKJtm3bYs+ePbh48SIA4NSpU6iqqsIjjzxiVh3qOnfuHNRqNe6//37pmLu7O/r376/zzAAgKipK+jkkJAQAcPXq1SZ/N5GzYQAiIr28vb3RtWtXdO3aFf369cNf//pXVFRUYO3atQCASZMmYe/evbh06RLWr1+PIUOGoFOnTiZf//z58xg+fDiioqKwfft25ObmSmOEqqurpe/47bffMG7cOPz888+IjY3FihUrAEAKY6+99houX76MRx55BK+//rrJ3x8cHCzdX9euXeHt7a1z73W99957+OCDDzBr1izk5OTg2LFjSEhIkOrp5eVl8vdagru7u/SzTCYDUDsGiYhMwwBERCaTyWRwcXHBf/7zHwBAr169EBsbi7Vr12LLli2NjkP54YcfGry/++67AQC5ubnQaDR4//33cd999+Guu+7C5cuXG1wjPDwcU6ZMQWZmJmbMmCEFMABo3749JkyYgM2bNyM9PR0fffSRJW9Z8t133+GJJ57As88+i969e6NLly749ddfpc+7desGLy8vaQB4fXK5HEBtS5I+kZGRkMvl+O6776RjarUahw8fRs+ePS10J0QEAG72rgARtVxVVVUoLCwEUDvjKiMjAzdv3kRiYqJUZtKkSUhOToa3tzeefPLJBtf47rvvsGTJEowcORJ79+7FZ599hi+//BIA0LVrV6jVaqxYsQKJiYn47rvvsGbNGp3zp0+fjscffxx33XUXrl+/jpycHClAzZ07FzExMbjnnntQVVWF3bt3S59ZWrdu3fD555/j+++/R7t27bBs2TIUFRVJwcTT0xOzZs3CG2+8Ablcjvvvvx/Xrl3DyZMn8cILLyAwMBBeXl7IyspChw4d4OnpCYVCofMd3t7eeOmllzBz5kwolUp07NgRS5YsQWVlJV544QWr3BeRs2ILEBHplZWVhZCQEISEhCAuLg6HDx/GZ599Jk3hBoCxY8fCzc0NY8eOhaenZ4NrzJgxAz/++CP69OmDt99+G8uWLUNCQgIAoHfv3li2bBkWL16Me++9F59++inS0tJ0zq+pqcHUqVNx9913Y+jQobjrrruwatUqALWtKqmpqYiKisJDDz0EV1dXbN261SrP4q233kLfvn2RkJCAwYMHIzg4uMEKznPmzMGMGTMwd+5c3H333UhKSpLG5bi5ueHDDz/EX/7yF4SGhuKJJ55o9HsWLVqEp556CuPGjUPfvn1x9uxZ7NmzB+3atbPKfRE5K5kQQti7EkTkuM6fP4/IyEgcPnwYffv21fksIiIC06dPx/Tp0+1TOSIiPdgFRkRNolarUVJSgrfeegv33Xdfg/BDRNSSsQuMiJrku+++Q0hICA4fPtxg3I69vfvuu2jbtm2jr8cff9ze1SOiFoBdYETU6pSWljZYOVnLy8sLYWFhNq4REbU0DEBERETkdNgFRkRERE6HAYiIiIicDgMQEREROR0GICIiInI6DEBERETkdBiAiIiIyOkwABEREZHTYQAiIiIip/P/6NiMiPnOXXsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_18.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXo0lEQVR4nO3de1xUZeIG8GcGGUBuBio3URBN0lIEwtXyUotha2pbrqilRqW5RWq0pmZ5T/DyMwxN2zavaVp5ydtiSVJ56bKgWal4Q61WUCEHhBWIeX9/uMwyMMAAM3POmfN8Px8+OmfeObzvDDPnmfd9z3s0QggBIiIiIhXRSl0BIiIiIntjACIiIiLVYQAiIiIi1WEAIiIiItVhACIiIiLVYQAiIiIi1WEAIiIiItVhACIiIiLVYQAiIiIi1WEAIiKSqXXr1kGj0eDixYtSV4XI4TAAEanYd999h8TERHTr1g3u7u5o3749RowYgTNnztQqO2DAAGg0Gmg0Gmi1Wnh5eaFLly4YM2YMPvvss0b93t27d6N///5o27YtWrZsiY4dO2LEiBFIT0+3VtNqWbhwIXbu3Flr+5EjRzBnzhzcuHHDZr+7pjlz5hifS41Gg5YtW6Jr16547bXXUFRUZJXfsXnzZqSmplplX0SOiAGISMUWLVqEbdu24Y9//COWL1+OCRMm4Msvv0RkZCR+/PHHWuXbtWuHjRs3YsOGDViyZAmGDh2KI0eO4KGHHkJ8fDwqKioa/J1Lly7F0KFDodFoMGPGDLz55pt4/PHHcfbsWWzZssUWzQRQfwCaO3euXQNQlVWrVmHjxo1YtmwZwsPD8cYbb2DQoEGwxiUaGYCI6tdC6goQkXSSkpKwefNm6HQ647b4+Hjcc889SElJwfvvv29S3tvbG08++aTJtpSUFEyaNAlvv/02QkJCsGjRojp/3++//4758+dj4MCB+PTTT2vdf/Xq1Wa2SD5KS0vRsmXLessMHz4crVu3BgBMnDgRjz/+OLZv346vv/4avXv3tkc1iVSLPUBEKtanTx+T8AMAnTt3Rrdu3XDq1CmL9uHk5IS33noLXbt2xYoVK6DX6+sse/36dRQVFeG+++4ze3/btm1Nbt+6dQtz5szBnXfeCVdXVwQEBOCxxx7D+fPnjWWWLl2KPn36wNfXF25uboiKisLHH39ssh+NRoOSkhKsX7/eOOz01FNPYc6cOZg6dSoAIDQ01Hhf9Tk377//PqKiouDm5gYfHx+MHDkSP//8s8n+BwwYgLvvvhtZWVno168fWrZsiVdffdWi56+6Bx98EACQm5tbb7m3334b3bp1g4uLCwIDA/HCCy+Y9GANGDAAe/fuxaVLl4xtCgkJaXR9iBwZe4CIyIQQAvn5+ejWrZvFj3FycsKoUaPw+uuv49ChQxg8eLDZcm3btoWbmxt2796NF198ET4+PnXus7KyEo888ggyMjIwcuRITJ48GcXFxfjss8/w448/IiwsDACwfPlyDB06FE888QTKy8uxZcsW/OUvf8GePXuM9di4cSOeffZZxMTEYMKECQCAsLAwuLu748yZM/jggw/w5ptvGntj2rRpAwB444038Prrr2PEiBF49tlnce3aNaSlpaFfv344duwYWrVqZaxvQUEBHn74YYwcORJPPvkk/Pz8LH7+qlQFO19f3zrLzJkzB3PnzkVsbCz++te/IicnB6tWrcJ3332Hw4cPw9nZGTNnzoRer8cvv/yCN998EwDg4eHR6PoQOTRBRFTNxo0bBQDx3nvvmWzv37+/6NatW52P27FjhwAgli9fXu/+Z82aJQAId3d38fDDD4s33nhDZGVl1Sq3Zs0aAUAsW7as1n0Gg8H4/9LSUpP7ysvLxd133y0efPBBk+3u7u5i3Lhxtfa1ZMkSAUDk5uaabL948aJwcnISb7zxhsn2H374QbRo0cJke//+/QUAsXr16jrbXd3s2bMFAJGTkyOuXbsmcnNzxTvvvCNcXFyEn5+fKCkpEUIIsXbtWpO6Xb16Veh0OvHQQw+JyspK4/5WrFghAIg1a9YYtw0ePFh06NDBovoQqRGHwIjI6PTp03jhhRfQu3dvjBs3rlGPrephKC4urrfc3LlzsXnzZvTs2RP79+/HzJkzERUVhcjISJNht23btqF169Z48cUXa+1Do9EY/+/m5mb8/2+//Qa9Xo++ffsiOzu7UfWvafv27TAYDBgxYgSuX79u/PH390fnzp1x8OBBk/IuLi5ISEho1O/o0qUL2rRpg9DQUDz33HPo1KkT9u7dW+fcoQMHDqC8vBxTpkyBVvu/j+/x48fDy8sLe/fubXxDiVSKQ2BEBADIy8vD4MGD4e3tjY8//hhOTk6NevzNmzcBAJ6eng2WHTVqFEaNGoWioiJ88803WLduHTZv3owhQ4bgxx9/hKurK86fP48uXbqgRYv6P6b27NmDBQsW4Pjx4ygrKzNurx6SmuLs2bMQQqBz585m73d2dja5HRQUVGs+VUO2bdsGLy8vODs7o127dsZhvbpcunQJwO3gVJ1Op0PHjh2N9xNRwxiAiAh6vR4PP/wwbty4ga+++gqBgYGN3kfVafOdOnWy+DFeXl4YOHAgBg4cCGdnZ6xfvx7ffPMN+vfvb9Hjv/rqKwwdOhT9+vXD22+/jYCAADg7O2Pt2rXYvHlzo9tQncFggEajwT//+U+zYbDmnJrqPVGW6tevn3HeERHZFwMQkcrdunULQ4YMwZkzZ3DgwAF07dq10fuorKzE5s2b0bJlS9x///1Nqkd0dDTWr1+PK1euALg9Sfmbb75BRUVFrd6WKtu2bYOrqyv2798PFxcX4/a1a9fWKltXj1Bd28PCwiCEQGhoKO68887GNscmOnToAADIyclBx44djdvLy8uRm5uL2NhY47bm9oAROTrOASJSscrKSsTHx+Po0aP46KOPmrT2TGVlJSZNmoRTp05h0qRJ8PLyqrNsaWkpjh49ava+f/7znwD+N7zz+OOP4/r161ixYkWtsuK/CwU6OTlBo9GgsrLSeN/FixfNLnjo7u5udrFDd3d3AKh132OPPQYnJyfMnTu31sKEQggUFBSYb6QNxcbGQqfT4a233jKp03vvvQe9Xm9y9p27u3u9SxIQqR17gIhU7OWXX8auXbswZMgQFBYW1lr4sOaih3q93limtLQU586dw/bt23H+/HmMHDkS8+fPr/f3lZaWok+fPvjDH/6AQYMGITg4GDdu3MDOnTvx1Vdf4dFHH0XPnj0BAGPHjsWGDRuQlJSEb7/9Fn379kVJSQkOHDiA559/HsOGDcPgwYOxbNkyDBo0CKNHj8bVq1excuVKdOrUCSdOnDD53VFRUThw4ACWLVuGwMBAhIaGolevXoiKigIAzJw5EyNHjoSzszOGDBmCsLAwLFiwADNmzMDFixfx6KOPwtPTE7m5udixYwcmTJiAv/3tb816/hurTZs2mDFjBubOnYtBgwZh6NChyMnJwdtvv417773X5PWKiorC1q1bkZSUhHvvvRceHh4YMmSIXetLJGtSnoJGRNKqOn27rp/6ynp4eIjOnTuLJ598Unz66acW/b6Kigrx7rvvikcffVR06NBBuLi4iJYtW4qePXuKJUuWiLKyMpPypaWlYubMmSI0NFQ4OzsLf39/MXz4cHH+/Hljmffee0907txZuLi4iPDwcLF27VrjaebVnT59WvTr10+4ubkJACanxM+fP18EBQUJrVZb65T4bdu2ifvvv1+4u7sLd3d3ER4eLl544QWRk5Nj8tzUt0RATVX1u3btWr3lap4GX2XFihUiPDxcODs7Cz8/P/HXv/5V/PbbbyZlbt68KUaPHi1atWolAPCUeKIaNEJY4aIzRERERArCOUBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6XAjRDIPBgH//+9/w9PTkcvJEREQKIYRAcXExAgMDodXW38fDAGTGv//9bwQHB0tdDSIiImqCn3/+Ge3atau3DAOQGZ6engBuP4H1XdeIiIiI5KOoqAjBwcHG43h9GIDMqBr28vLyYgAiIiJSGEumr3ASNBEREakOAxARERGpDgMQERERqQ4DEBEREamOLALQypUrERISAldXV/Tq1QvffvttnWW3b9+O6OhotGrVCu7u7oiIiMDGjRvrLD9x4kRoNBqkpqbaoOZERESkRJIHoK1btyIpKQmzZ89GdnY2evTogbi4OFy9etVseR8fH8ycORNHjx7FiRMnkJCQgISEBOzfv79W2R07duDrr79GYGCgrZtBRERECiJ5AFq2bBnGjx+PhIQEdO3aFatXr0bLli2xZs0as+UHDBiAP//5z7jrrrsQFhaGyZMno3v37jh06JBJuV9//RUvvvgiNm3aBGdnZ3s0hYiIiBRC0gBUXl6OrKwsxMbGGrdptVrExsbi6NGjDT5eCIGMjAzk5OSgX79+xu0GgwFjxozB1KlT0a1btwb3U1ZWhqKiIpMfIiIiclySBqDr16+jsrISfn5+Jtv9/PyQl5dX5+P0ej08PDyg0+kwePBgpKWlYeDAgcb7Fy1ahBYtWmDSpEkW1SM5ORne3t7GH14Gg4iIyLEpciVoT09PHD9+HDdv3kRGRgaSkpLQsWNHDBgwAFlZWVi+fDmys7MtvpDpjBkzkJSUZLxdtZS2FAoKClBeXl7n/TqdDr6+vnasERERkeORNAC1bt0aTk5OyM/PN9men58Pf3//Oh+n1WrRqVMnAEBERAROnTqF5ORkDBgwAF999RWuXr2K9u3bG8tXVlbi5ZdfRmpqKi5evFhrfy4uLnBxcbFOo5qhoKAAK1asaLBcYmIiQxAREVEzSDoEptPpEBUVhYyMDOM2g8GAjIwM9O7d2+L9GAwGlJWVAQDGjBmDEydO4Pjx48afwMBATJ061eyZYnJSs+dHr/dEbm4I9HrPessRERFR40g+BJaUlIRx48YhOjoaMTExSE1NRUlJCRISEgAAY8eORVBQEJKTkwHcnq8THR2NsLAwlJWVYd++fdi4cSNWrVoFAPD19a3VO+Ls7Ax/f3906dLFvo1rhuzsnti9+xEIoYVGY8CQIXsQGXlM6mpRNRyuJCJSLskDUHx8PK5du4ZZs2YhLy8PERERSE9PN06Mvnz5MrTa/3VUlZSU4Pnnn8cvv/wCNzc3hIeH4/3330d8fLxUTbA6vd7TGH4AQAgtdu9+BGFh5+DtXSxx7QjgcCURkdJJHoCA2weJxMREs/dlZmaa3F6wYAEWLFjQqP2bm/cjZ4WFvsbwU0UILQoLfRiAZMLSYUgOVxIRyZMsAhCZ8vEpgEZjMAlBGo0BPj6FEtaK6qPXe6Kw0Bc+PgV1hlQOmRERyQcDkAx5exdjyJA9teYAsfdHniyZr8UhMyIieWEAkqnIyGMICzuHwkIf+PgUOmz4UXqviKXztcyd4Weux4hDZkRE9sEAJCM6nc7ktrd3sdngU7OcUjlCr0hT5mvxDD8iIukxAMmIr68vEhMTFd0j0hiO0CvS2PlatjzDT+m9aURE9sQAJDNqPUAptVeksfO1bHWGn9J70xjeiMjeGIBIckpc96j6MGR987VqDlfa6gw/JfemKT28EZEyMQCR5JS47lFThyvtcYaf0nrT5Bje2CNF5PgYgEhySl33qKkHQFue4afE3rTq5BDe2CNFpA6SXgyVCPhfr4hGYwAAh1z3yNwZfqGhl2q1sbln+NXXmyZ3dYW3mhcDtrWrV6/Wqpe5ixLXLEdEysIeIJIFR1/3yF5n+Cm1Nw2Qz1Do77//bvx/fT1S1csRkfIwAJFk1LbukT2GS5S8irjcwpvShxOJqH4MQCQZX19fPPnkkygtLa2zTMuWLTnPopGU2psmt/Amlx4pqh8nrFNTMQCRZAoKCvD+++83WI6TTRvmKL1pcgpvzs5lAAQATbWtAs7O8ltKQK04YZ2agwGIJCPH05+VSsmriMs1vFVUuMA0/ACABhUV8g6RamLpZwM/Q8gcBiCSBTmc/qx0cgw3lpBreJPbnCRqWF1foojMYQAiyXGyKcmJs7MzgIbnJFWVI3nglyhqLAYgkhwnm6qbPeZxNGaibJs2bYzb65uTVL0cSYtfoqgpGIBIchxqUDdbzwVrbMCS65Ac1Y1foqgpGIBIcnI7/ZmkY4thjKYELIYbZeGXKGoKBiCSBTmc/sz1RKRlj2EMzhNxTPwSRU3BAESSkdPpz1xPRHq2HsaQ0zwRhm3rqP7ZUN+XKLmvf0XSYAAiychprgXXJJKerYcx5DJPhGHbeuT0GULKwwBEkpLjBxOHSaRh62EMucwTYdi2Ljl+hpAyMACRoth66EBOwyRqZMu5YHKcJ8KwbX8cfqQqDECkGPYYOpDLMIma2HMumBwm21dh2LY/Dj9SdQxApBj2GDqQyzCJmth6HoecJttXx7Btfxx+pOoYgEiRbDV0IMdhEjWw5bdtuU6UZdi2jqYOadniM4TDa8rCAESKY4uhgxs3bhj/X98wyY0bNxAQENCs+pP9yfGgw7DdfE0d0rLFZwiH15SHAYgUxxZDBxqNxtxWC8uRvTnKN205zUlSoqYOadniM8QRhtcc5X1lKQYgUhxbDB14e3sb/19f13j1ciQNpX/TluucJKVrzJCWrYcflXh2n9LfV03BAESKY8uhA56ZI39K/6Yt1zlJStbY9y0/Q2pT+vuqKRiASJFsNXTAM3OURYnftAF5zklSsqa8b/kZUjelvq8aiwGIFMMeQwc8M0caTZl7oNRv2mR9lr5v+RnSMDW9rxiAiKrhmTn219S5B47wTZusw9L3rT2GH5X+GaKm9xUDECmGpWPPzR2j5pk59tXUuQdK/6ZN1mXp+9Yew49K/gxR0/uKAYgUq64DZVPwzBx5aMzcA6V/06bmk9P7Vk51aQ41va8YgEiRrD1Jj2fmSK8pcw+U/E2bmk9O71s51aW51PK+YgAixbHVJD0lfDA5MkvnHjjKN22lkttieXJ638qpLo2lxvcVAxApjpom6amJpXMPmvJNW24HbaVS42J5auFIPViWYgAixVHTJD01aczcg8Z8CPOgXb/GhEM1LpanJmr7+5dFAFq5ciWWLFmCvLw89OjRA2lpaYiJiTFbdvv27Vi4cCHOnTuHiooKdO7cGS+//DLGjBkDAKioqMBrr72Gffv24cKFC/D29kZsbCxSUlIQGBhoz2aRjahpkp7a2GLuAQ/adWtOOFTLYnnkuCQPQFu3bkVSUhJWr16NXr16ITU1FXFxccjJyUHbtm1rlffx8cHMmTMRHh4OnU6HPXv2ICEhAW3btkVcXBxKS0uRnZ2N119/HT169MBvv/2GyZMnY+jQofjXv/4lQQvJWqqPPdd3oHSkMWo1sOfcAx60TTU1HKppsTxyXJIHoGXLlmH8+PFISEgAAKxevRp79+7FmjVrMH369FrlBwwYYHJ78uTJWL9+PQ4dOoS4uDh4e3vjs88+MymzYsUKxMTE4PLly2jfvr3N2kK2pcYxajWw1+vKg3b9GhMOOQ+PHIGkAai8vBxZWVmYMWOGcZtWq0VsbCyOHj3a4OOFEPj888+Rk5ODRYsW1VlOr9dDo9GgVatWZu8vKytDWVmZ8XZRUZHljSC7YrhxTPZ4XXnQrltjwyHn4ZEj0DZcxHauX7+OyspK+Pn5mWz38/NDXl5enY/T6/Xw8PCATqfD4MGDkZaWhoEDB5ote+vWLUybNg2jRo2Cl5eX2TLJycnw9vY2/gQHBze9UUQkS1UH7ep40L6tvnBoTtU8vKrnk/PwSIkkHwJrCk9PTxw/fhw3b95ERkYGkpKS0LFjx1rDYxUVFRgxYgSEEFi1alWd+5sxYwaSkpKMt4uKihiCiBwMJ8/XrSk9OmpZLI8cl6QBqHXr1nByckJ+fr7J9vz8fPj7+9f5OK1Wi06dOgEAIiIicOrUKSQnJ5sEoKrwc+nSJXz++ed19v4AgIuLC1xcXJrXGCKSPR60zbM0HKpxsTxb4vpU0pI0AOl0OkRFRSEjIwOPPvooAMBgMCAjIwOJiYkW78dgMJjM4akKP2fPnsXBgwf5B0SkYqWlpSa36zpo1yynNpaEQ56IYD1cn0p6kg+BJSUlYdy4cYiOjkZMTAxSU1NRUlJiPCts7NixCAoKQnJyMoDb83Wio6MRFhaGsrIy7Nu3Dxs3bjQOcVVUVGD48OHIzs7Gnj17UFlZaZxP5OPjw28mRCrTsmVLk9t1nepds5waNKVHhwdj6+D6VNKTPADFx8fj2rVrmDVrFvLy8hAREYH09HTjxOjLly9Dq/3fuHRJSQmef/55/PLLL3Bzc0N4eDjef/99xMfHAwB+/fVX7Nq1C8Dt4bHqDh48WGueEBGpB9cBMsUeHXng36U0JA9AwO0uvrqGvDIzM01uL1iwAAsWLKhzXyEhIRBCWLN6ROQAuA6QeQw30lLy36XS5zDJIgAREdka1wEiOVLq36UjzGGSdB0gIiJ74TpAJEdK/bs0N4cpNzcEer1nveXkhD1ARKQKXAeI5MgR/i6VOoeJAYgkpfQxZFIWrgNEcqTkv0slz2FiACLJOMIYMskf1wGyLn5psQ5HWVRSqXOYAAYgkhDXwSB74DpA1lPzS0tdzyW/tDTMUZYgUPKFcRmASBaUOoZMysK/s+apfrCu77nklxbLyD3cWELJc5gYgEhySh5DJuXg35n18Lmk6pQ6h4mnwZPk6htDJrIW/p1ZD59LMjeHKTT0UoMX0JUT9gCR5JQ8hkzKwb8z6+FzSY4wh4kBiCSn5DFkUg7+nVkPn0sCGjeHSY5nDzIAkSwocQxZjm9oqp8S/87kis8lWUquZw8yAJFklLwOBtcwUg4l/53JXV3PJVF1cj17kAGIJKPkMWSuYaQcSv47kxtLQyLDJJkjt7MHGYBIUo5w0OHaMs1n6+FER/g7kwOGSWoOua0azQBE1Axy+0ajRPYYTuR8Levh80RNJbezBxmAiJpBbt9olMjWw4mcr0UkD3I7e5ABiKgZ5PaNRulsMZyotvla7O0iOZPT2YMMQETNILdvNEpmj+FER5+vxd4uUgK5nD3IAETUTHL6RqNkth5OVMN8LbX1dpEyyPXsQQYgoibg2jLWZ+vhRLXN13L03i5SDrmePcgARNQEcn1DK5mthxPVNF9LDb1dpCxy/CxkACKrUtMETEdph5zYcjhRTfO11NbbRdQUDEBkNZyASU1hz+FEtczXUlNvF1FTMQCR1Vg6sZITMKk6Ww8nqnG+VmN6u9TUa0tUHQMQ2UxdZ6AQ1WTLA6xa52tZ0tvFXltSMwYgsgmegUJyopaDd2N7u3jaPKkZAxBZHc9AIZJGc3q7+KWF1IYBSGYcYTyeZ6AQSacpnw/80uKYHOF4YksMQDLiKOPxPAOFSFn4pcXxOMrxxJa0DRchezE3Hp+bGwK93rPecnJTdQaKRmMAAIdeb4XIEVR9aamOX1qUzVGOJ7bEHiCZUuJ4fPUJmPWdgeJIpxsTOQI1LRKpRko8ntgDA5AMKXU8Xq2nGxM5ArUsEqk2Sj2e2AMDkIzo9XoADY/H6/V6BAQESFHFBjHcECmHGheJVBvO76obA5CMVFRUAGh4EnFVOSKi5mCvrePjSSl1YwCSIW/vYnTvfgLff98DgAaAQPfuJ1Sf1onI+hhuHBvnd9WNAUiG9HpPnDjRHbfDDwBocOJEdzz44Of8oyUiokbh/C7zGIBkpEWL2y9HQ2O2VeWIiIjM4fyuhvFIKiOtWrUC0PCYbVU5IiJSj8as7Mz5XQ1jAJIhjtkSEVF1NVd2ruvCtdVXdlZzuLEEA5BMccyWiIiqVO/JqW9hQzWv7NxYsrgUxsqVKxESEgJXV1f06tUL3377bZ1lt2/fjujoaLRq1Qru7u6IiIjAxo0bTcoIITBr1iwEBATAzc0NsbGxOHv2rK2b0WzmxmxDQy/VCj9qHrMlIlKzuhY2rHmJC2qY5D1AW7duRVJSElavXo1evXohNTUVcXFxyMnJQdu2bWuV9/HxwcyZMxEeHg6dToc9e/YgISEBbdu2RVxcHABg8eLFeOutt7B+/XqEhobi9ddfR1xcHE6ePAlXV1d7N9FiHLMlsg1eFZuUzh4L5artfSJ5AFq2bBnGjx+PhIQEAMDq1auxd+9erFmzBtOnT69VfsCAASa3J0+ejPXr1+PQoUOIi4uDEAKpqal47bXXMGzYMADAhg0b4Ofnh507d2LkyJE2b1NzONIfF5Ec8KrY5AhsvVCuGt8nkg6BlZeXIysrC7GxscZtWq0WsbGxOHr0aIOPF0IgIyMDOTk56NevHwAgNzcXeXl5Jvv09vZGr1696txnWVkZioqKTH6IyDHwqtjkSKoWygXEf7dYZ6FcNb5PJO0Bun79OiorK+Hn52ey3c/PD6dPn67zcXq9HkFBQSgrK4OTkxPefvttDBw4EACQl5dn3EfNfVbdV1NycjLmzp3bnKYQUTVy7UrnVbFJ6eyxUK5a3ieSD4E1haenJ44fP46bN28iIyMDSUlJ6NixY63hMUvNmDEDSUlJxttFRUUIDg62Um3JmuR6YKX/kWtXOq+KTY7A1hc3VdP7RNIA1Lp1azg5OSE/P99ke35+Pvz9/et8nFarRadOnQAAEREROHXqFJKTkzFgwADj4/Lz800mguXn5yMiIsLs/lxcXODi4tLM1pCtyfXASqbMdaWbW6/E3l3pvCo2KVnVFQAamgPU3CsFqOl9IukcIJ1Oh6ioKGRkZBi3GQwGZGRkoHfv3hbvx2AwoKysDAAQGhoKf39/k30WFRXhm2++adQ+SX7UOEatdNnZPZGaOgXr149DauoUZGf3lKwuVQeO6nhVbFKKqisAVC2UW/W3XHOh3OZeKUBN7xPJh8CSkpIwbtw4REdHIyYmBqmpqSgpKTGeFTZ27FgEBQUhOTkZwO35OtHR0QgLC0NZWRn27duHjRs3YtWqVQAAjUaDKVOmYMGCBejcubPxNPjAwEA8+uijUjWTrEwtY9RKJreudK6wTo7Clgvlqul9InkAio+Px7Vr1zBr1izk5eUhIiIC6enpxknMly9fhlb7v46qkpISPP/88/jll1/g5uaG8PBwvP/++4iPjzeWeeWVV1BSUoIJEybgxo0buP/++5Geni7rNYDIcnI7sJJ5cuxK5wrrpFT2vLipWt4nkgcg4PacjcTERLP3ZWZmmtxesGABFixYUO/+NBoN5s2bh3nz5lmriiQjcjywUm0NzVWwFzleFZuT+amxbL1QrhzfJ7YmiwBE1BhyObBS/eTSlS63FdY5mZ+aypZ/D3J7n9gDAxApjlwOrNQwuXSly+lDW65nyRHJ6X1iDwxApEhyObBSbWrsSm8qTuZvPg4nUlMxAJFi8MCqDGrsSm8KTuZvPg4nUnMwAJFi8MCqHHwNGsbJ/M3H4URqDgYgUhQeWMlRcDK/dXE4kRpL0pWgiYjUqqEVfclydQ0n1lwlnqg69gAREUmEk/mtg8OJ1BQMQEREdsTJ/NbH4URqCgYgIiI74mR+6+PaYNQUDEBERHbGcGN9HE6kxmIAIiIiReJwIjUHAxARESkShxOpORiAiIhIsRhuqKm4DhARERGpDgMQERERqQ4DEBEREakO5wAR/VdBQQEnUxIRqQQDEBFuh58VK1Y0WC4xMZEhiIjIAXAIjAio1fOj13siNzek1sUU6+shIiIi5WAPEFEN2dk9ay2pHxl5TOpqERGRFbEHiKgavd7TGH6A21eU3r37kVo9QUREpGwMQETVFBb6mlxRGrgdggoLfSSqERER2QIDEFE1Pj4F0GgMJts0GgN8fAolqhEREdkCAxBRNd7exRgyZI8xBFXNAeKVpYmIHAsnQRPVEBl5DGFh51BY6AMfn0KGHyKyCNcSUxYGIJKUXD4wdDqdyW1v72KzwadmOSIioPZaYnq9JwoLfeHjU2DyWcK1xOSDAYgkI6fFB319fZGYmGjTMCaXsEdE1lf9vV3fUhpcS0w+GIBIMuYWHzT3jcleHxi2DB9yCntEZDt1LaURFnaOw+kywwBEsuDoiw/KLewRkW3Ut5QGA5C8MADZAYc+6qe2b0yOHvaI1KxqKY3qIYhLacgTA5CNceijYY35xqT0MKm2sEekNlVLadT8ksP3t/wwANkYhz4aZuk3JrmFyaaEMXaPEzk+LqWhDAxAdsShD/Ms/cZkaUi0R5hsahhj9ziROtS1lAbJBwOQnXDoo35N+cZUV2+aPTS1Z4/d40SOydI1wriWmHwwANkJhz5qa87ig3LqTWtsXdg9TuR47LGWGFkXA5CdcOijtqZ+YMipN83SunClaSLHx3CjLAxAdsKhD/Oa8oEhp940S+vCb4dERPLCAGRHHPqwDjn1pjWmLgw3RETyoW24CDWHuaGP0NBLtcIPhz4sV9WbptEYAEDS3jQ51YWIiCzHHiAb49CH9VQPifX1ptk7TLJnj4hIeSQPQCtXrsSSJUuQl5eHHj16IC0tDTExMWbLvvvuu9iwYQN+/PFHAEBUVBQWLlxoUv7mzZuYPn06du7ciYKCAoSGhmLSpEmYOHGiXdpDtiOnMMlJzdQcSl/RnMgRSBqAtm7diqSkJKxevRq9evVCamoq4uLikJOTg7Zt29Yqn5mZiVGjRqFPnz5wdXXFokWL8NBDD+Gnn35CUFAQACApKQmff/453n//fYSEhODTTz/F888/j8DAQAwdOtTeTZTd6sVKJ5fnSE5hjJSFnwlE8iDpHKBly5Zh/PjxSEhIQNeuXbF69Wq0bNkSa9asMVt+06ZNeP755xEREYHw8HD84x//gMFgQEZGhrHMkSNHMG7cOAwYMAAhISGYMGECevTogW+//dZezTJhbsG83NwQ6PWe9ZYj+fP19UVAQECdPzx4kTn8TCCSB8l6gMrLy5GVlYUZM2YYt2m1WsTGxuLo0aMW7aO0tBQVFRXw8fExbuvTpw927dqFp59+GoGBgcjMzMSZM2fw5ptv1rmfsrIylJWVGW8XFRU1oUUNk9PifUQkPX4mEElHsgB0/fp1VFZWws/Pz2S7n58fTp8+bdE+pk2bhsDAQMTGxhq3paWlYcKECWjXrh1atGgBrVaLd999F/369atzP8nJyZg7d27TGmIhOS3eR2RrnOPSMH4mEElL8knQTZWSkoItW7YgMzMTrq6uxu1paWn4+uuvsWvXLnTo0AFffvklXnjhhVpBqboZM2YgKSnJeLuoqAjBwcFWra+cFu8jsiXOcbEMPxOIpCVZAGrdujWcnJyQn59vsj0/Px/+/v71Pnbp0qVISUnBgQMH0L17d+P2//znP3j11VexY8cODB48GADQvXt3HD9+HEuXLq0zALm4uMDFxaWZLaqfnBbvI7Klpl4oVm34mUAkLckmQet0OkRFRZlMYK6a0Ny7d+86H7d48WLMnz8f6enpiI6ONrmvoqICFRUV0GpNm+Xk5ASDwWDdBjQSF8wjNcrO7onU1ClYv34cUlOnIDu7p9RVkg1+JhBJS9IhsKSkJIwbNw7R0dGIiYlBamoqSkpKkJCQAAAYO3YsgoKCkJycDABYtGgRZs2ahc2bNyMkJAR5eXkAAA8PD3h4eMDLywv9+/fH1KlT4ebmhg4dOuCLL77Ahg0bsGzZMsnaWYUL5pGacI5Lw/iZQCQdSQNQfHw8rl27hlmzZiEvLw8RERFIT083Toy+fPmySW/OqlWrUF5ejuHDh5vsZ/bs2ZgzZw4AYMuWLZgxYwaeeOIJFBYWokOHDnjjjTckWwiRC+aRWnGOi3n8TCCSB40QQkhdCbkpKiqCt7c39Ho9vLy8mr0/nhFDanLlyhX8/e9/h17vidTUKbXmuEyZkgpv72JMmDABAQEBdqmT3N6DcqsPkaNozPFbsWeBKQk/yEiNqua41Fznxt69P3I8K42fCUTSYwAiIpuRwxwXnpVGROYwABGRVcl5jgtXXiaiKgxARGRVcr1QLM9KI6LqGICIyOrkOMeFZ6URUXWSXg2eiMheqlZero4rLxOpV6MD0L59+/Dss8/ilVdeqXXR0t9++w0PPvig1SpHRGQtXHmZiKpr1BDY5s2bMXbsWAwaNAg5OTlIS0vDP/7xDzzxxBMAbp9F8cUXX9ikokREzSWHs9KISB4aFYCWLFmCZcuWYdKkSQCADz/8EE8//TRu3bqFZ555xiYVJCJqDjmflUZE0mlUADp79iyGDBlivD1ixAi0adMGQ4cORUVFBf785z9bvYJERM0h17PSiEhajQpAXl5eyM/PR2hoqHHbAw88gD179uCRRx7BL7/8YvUKEhE1F8MNEdXUqEnQMTEx+Oc//1lre//+/bF7926kpqZaq15ERERENtOoAPTSSy/B1dXV7H0DBgzA7t27MXbsWKtUjIiIiMhWGnU1+KKiIovKWeMK6lKy9tXgiYiIyPZsdjX4Vq1aQaPRNFiusrKyMbslIiIisqtGBaCDBw8a/y+EwJ/+9Cf84x//QFBQkNUrRmRvBQUFPFOIiEglGhWA+vfvb3LbyckJf/jDH9CxY0erVorI3goKCrBixYoGyyUmJjIEERE5AF4LjAio1fOj13siNzcEer1nveWIiEiZeDV4ohqys3ti9+5HIITWeL2oyMhjUleLiIisqNk9QJZMiiZSCr3e0xh+AEAILXbvfqRWTxARESlbo3qAHnvsMZPbt27dwsSJE+Hu7m6yffv27c2vGZEECgt9jeGnihBaFBb68MKZREQOpFEByNvb2+T2k08+adXKkPIp/UwqH58CaDQGkxCk0Rjg41MoYa2IiMjaGhWA1q5da6t6kANwhDOpvL2LMWTInlpzgNj7Q0TkWDgJmqzG3JlUhYW+8PEpMAkQcj+TKjLyGMLCzqGw0Ac+PoUMP0REDogBiGxCaWdS6XQ6k9ve3sVmg0/NckSA8od+idSIAYisrq4zqcLCzsm2N8XX1xeJiYk8iFGjOcLQL5EaMQCR1Sn1TCoenKgpHGXol0htGIAUTo5d7zyTitRKaUO/RGrGAKRgcu16V+qZVHIMk6QcShz6JVIzBiAFk3PXu9LOpLJHmGTAcmxKHfolUisGIAchh653JZ9JZeswKdfeOrIeDv0SKQsDkAOQS9e7o5xJZYswKefeOqqtKb11Sh36JVIrBiAHIKeud7mHm4bYI0zKobeO6tac3jqlDf0SqVmzrwZP0qvqeq+OXe9NU1+YtAZebV7+zPXW5eaG1HqNqsqZG/oNDb1UK/zIceiXSM3YA+QA2PVuPbaexyGn3jpqmCW9dY4y9EukNgxADsLSrneeiVQ/W4dJTpRVjsYMh6r5PUNkCTkeexiAFKyxZ13xTCTL2HIeB3vrlIO9dUTWIddjDwOQgjW2651nItXNnqfwc6KsMrC3jsg65HrsYQBSuKamZZ6JZMrW8ziUvEaSWrG3jsj65HTsYQBSIbmsGyQ3tux65URZZWJvHZH1yO3YwwCkQpzbIA2GG2Vgbx2Rbcjt2CN5AFq5ciWWLFmCvLw89OjRA2lpaYiJiTFb9t1338WGDRvw448/AgCioqKwcOHCWuVPnTqFadOm4YsvvsDvv/+Orl27Ytu2bWjfvr3N26MEnNtAVDf21hHZhtyOPZIuhLh161YkJSVh9uzZyM7ORo8ePRAXF4erV6+aLZ+ZmYlRo0bh4MGDOHr0KIKDg/HQQw/h119/NZY5f/487r//foSHhyMzMxMnTpzA66+/DldXV3s1S/aq5jZULZ7IuQ1Epnx9fREQEFDnD8MPUePJ7dijEUIISX4zgF69euHee+81nh5nMBgQHByMF198EdOnT2/w8ZWVlbjjjjuwYsUKjB07FgAwcuRIODs7Y+PGjU2uV1FREby9vaHX6+Hl5dXk/cjNlStX8Pe//914+/ZM/NpzGyZMmICAgAApqkhERA7Gnseexhy/JesBKi8vR1ZWFmJjY/9XGa0WsbGxOHr0qEX7KC0tRUVFBXx8bl+mwGAwYO/evbjzzjsRFxeHtm3bolevXti5c2e9+ykrK0NRUZHJjyPikv1ERGRvcj32SDYH6Pr166isrISfn5/Jdj8/P5w+fdqifUybNg2BgYHGEHX16lXcvHkTKSkpWLBgARYtWoT09HQ89thjOHjwIPr37292P8nJyZg7d27zGqQAnNtARET2Jtdjj+SToJsqJSUFW7ZsQWZmpnF+j8Fwe1xx2LBheOmllwAAEREROHLkCFavXl1nAJoxYwaSkpKMt4uKihAcHGzjFkiD4YaIiOxNjsceyQJQ69at4eTkhPz8fJPt+fn58Pf3r/exS5cuRUpKCg4cOIDu3bub7LNFixbo2rWrSfm77roLhw4dqnN/Li4ucHFxaUIriIiISIkkmwOk0+kQFRWFjIwM4zaDwYCMjAz07t27zsctXrwY8+fPR3p6OqKjo2vt895770VOTo7J9jNnzqBDhw7WbQAREREplqRDYElJSRg3bhyio6MRExOD1NRUlJSUICEhAQAwduxYBAUFITk5GQCwaNEizJo1C5s3b0ZISAjy8vIAAB4eHvDw8AAATJ06FfHx8ejXrx8eeOABpKenY/fu3cjMzJSkjURERCQ/kgag+Ph4XLt2DbNmzUJeXh4iIiKQnp5unBh9+fJlaLX/66RatWoVysvLMXz4cJP9zJ49G3PmzAEA/PnPf8bq1auRnJyMSZMmoUuXLti2bRvuv/9+u7WLiIiI5E3SdYDkylHXASIiInJkilgHiIiIiEgqDEBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERESkOi2krgCpW0FBAcrLy+u8X6fTwdfX1441IiIiNWAAIskUFBRgxYoVDZZLTExkCCIiIqviEBhJpmbPj17vidzcEOj1nvWWIyIiai72AJEsZGf3xO7dj0AILTQaA4YM2YPIyGNSV4uIiBwUe4BIcnq9pzH8AIAQWuze/UitniAiIiJrYQAiyRUW+hrDTxUhtCgs9JGoRkRE5OgYgEhyPj4F0GgMJts0GgN8fAolqhERETk6BiCSnLd3MYYM2WMMQVVzgLy9iyWuGREROSpOgiZZiIw8hrCwcygs9IGPTyHDDxER2RQDEElGp9OZ3Pb2LjYbfGqWIyIiai4GIJKMr68vEhMTuRI0ERHZHQMQSYrhhuyBl1whopoYgIjIofGSK0RkDs8CIyKHxkuuEJE57AEiItXgJVeIqAp7gIhIFXjJFSKqjgGIiFSBl1whouoYgIhIFXjJFSKqThYBaOXKlQgJCYGrqyt69eqFb7/9ts6y7777Lvr27Ys77rgDd9xxB2JjY+stP3HiRGg0GqSmptqg5kSkFLzkChFVJ/kk6K1btyIpKQmrV69Gr169kJqairi4OOTk5KBt27a1ymdmZmLUqFHo06cPXF1dsWjRIjz00EP46aefEBQUZFJ2x44d+PrrrxEYGGiv5hCRjPGSK0RURfIAtGzZMowfPx4JCQkAgNWrV2Pv3r1Ys2YNpk+fXqv8pk2bTG7/4x//wLZt25CRkYGxY8cat//666948cUXsX//fgwePNi2jSAi2bLHJVe40CKR8kgagMrLy5GVlYUZM2YYt2m1WsTGxuLo0aMW7aO0tBQVFRXw8fnfREaDwYAxY8Zg6tSp6NatW4P7KCsrQ1lZmfF2UVFRI1pBRHJm60uucKFFImWSNABdv34dlZWV8PPzM9nu5+eH06dPW7SPadOmITAwELGxscZtixYtQosWLTBp0iSL9pGcnIy5c+daXnEiUhRbBg9LF1DkQotE8iKLSdBNlZKSgi1btmDHjh1wdXUFAGRlZWH58uVYt24dNBqNRfuZMWMG9Hq98efnn3+2ZbWJyIHVtdI0EcmLpD1ArVu3hpOTE/Lz80225+fnw9/fv97HLl26FCkpKThw4AC6d+9u3P7VV1/h6tWraN++vXFbZWUlXn75ZaSmpuLixYu19uXi4gIXF5fmNYaIVI8rTRMph6Q9QDqdDlFRUcjIyDBuMxgMyMjIQO/evet83OLFizF//nykp6cjOjra5L4xY8bgxIkTOH78uPEnMDAQU6dOxf79+23WFiJSN640TaQskp8FlpSUhHHjxiE6OhoxMTFITU1FSUmJ8aywsWPHIigoCMnJyQBuz++ZNWsWNm/ejJCQEOTl5QEAPDw84OHhAV9f31rj/c7OzvD390eXLl3s2zgiUo36Vprm6fZE8iN5AIqPj8e1a9cwa9Ys5OXlISIiAunp6caJ0ZcvX4ZW+78PlVWrVqG8vBzDhw832c/s2bMxZ84ce1adiMioaqXp6iGIK00TyZfkAQi4fXpoYmKi2fsyMzNNbpubw9OQpjyGiKgxqlaarjkHiL0/RPIkiwBERKRU1RdQrG+l6eYstEhE1scAREQOz5YrNdt6oUUisg0GICJyaPZYqZnhhkh5FL0QIhFRQ2r2zNS1UCFXaiZSF/YAEZFqcKFCIqrCHiAiUgUuVEhE1TEAEZEq1LdQIRGpDwMQEalC1UKF1XGhQiL1YgAiIlWoWqiwKgRxoUIideMkaCJSjfoWKiQidWEAIiKHVnMFZm/vYrPBhys1E6kLAxAROTSu1ExE5jAAEZHDY7ghopo4CZqIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUh5fCICIi2SgoKOB128guGICIiEgWCgoKsGLFigbLJSYmMgRRs3EIjIiIZKFmz49e74nc3BDo9Z71liNqCvYAERGR7GRn98Tu3Y9ACC00GgOGDNmDyMhjUleLHAh7gIiISFb0ek9j+AEAIbTYvfuRWj1BRM3BAERERLJSWOhrDD9VhNCisNBHohqRI2IAIiIiWfHxKYBGYzDZptEY4ONTKFGNyBExABERkax4exdjyJA9xhBUNQfI27tY4pqRI+EkaCIikp3IyGMICzuHwkIf+PgUMvyQ1TEAkVVxEbO68bkhqp9OpzO57e1dbDb41CxH1BQMQGQ1NRcx0+s9UVjoCx+fApMPMTUuYsYF3oga5uvri8TERH5RILtgACKrqf6hVd8aHmpcxMzcAm/mwqEanxui6hhuyF4YgMjq6lrDIyzsHMfxwQXeiIjkgGeBkdVxDY+6cYE3IiJ5YAAiq+MaHnVjOCQikgcOgTWREAK///47Kisrpa6KbFRUVMDd3R3u7gY89VQ6Dh4cYBzmeeCBTAQGGgC4o6KiArdu3Wpwf05OTmjRogU0Go3tK28nVeGweghiOCQisj8GoCYoLy/HlStXUFpaKnVVZKWyshL33XcfAOC++4BnnvkBBoMWWq0BWu0dAG7fV1RUhJKSEov22bJlSwQEBDjMaa9VC7zVnAPEuVFERPbFANRIBoMBubm5cHJyQmBgIHQ6nUP1UDRHeXk5bty40WC5Vq1aNRhohBAoLy/HtWvXkJubi86dO0OrdYwRWy7wRkQkPVkEoJUrV2LJkiXIy8tDjx49kJaWhpiYGLNl3333XWzYsAE//vgjACAqKgoLFy40lq+oqMBrr72Gffv24cKFC/D29kZsbCxSUlIQGBjY7LqWl5fDYDAgODgYLVu2bPb+HEmLFi1w8+bNBsu1bNkSLVo0/Kfn5uYGZ2dnXLp0CeXl5XB1dbVGNSXBBd6IiORF8gC0detWJCUlYfXq1ejVqxdSU1MRFxeHnJwctG3btlb5zMxMjBo1Cn369IGrqysWLVqEhx56CD/99BOCgoJQWlqK7OxsvP766+jRowd+++03TJ48GUOHDsW//vUvq9XbUXojrKlFixZo27YtDAZDnWW0Wq1F4ad6eUfABd6IiORFI4QQUlagV69euPfee42r5Fb1rrz44ouYPn16g4+vrKzEHXfcgRUrVmDs2LFmy3z33XeIiYnBpUuX0L59+wb3WVRUBG9vb+j1enh5eZncd+vWLeTm5iI0NFTRPRJKweebiIgsVd/xuyZJv16Xl5cjKysLsbGxxm1arRaxsbE4evSoRfsoLS1FRUUFfHzqPo1Yr9dDo9GgVatWZu8vKytDUVGRyQ8RERE5LkkD0PXr11FZWQk/Pz+T7X5+fsjLy7NoH9OmTUNgYKBJiKru1q1bmDZtGkaNGlVnGkxOToa3t7fxJzg4uHENUYinnnoKGo0GGo0Gzs7O8PPzw8CBA7FmzZp6h61qWrduXZ1hkoiISAkknwPUHCkpKdiyZQsyMzPNDo9UVFRgxIgREEJg1apVde5nxowZSEpKMt4uKiqyWQiS+orggwYNwtq1a1FZWYn8/Hykp6dj8uTJ+Pjjj7Fr165Gzc8hIiL1kvp41lySHu1at24NJycn5Ofnm2zPz8+Hv79/vY9dunQpUlJScODAAXTv3r3W/VXh59KlS/j888/rHQt0cXGBi4tL0xrRCHK4IriLi4vxuQ0KCkJkZCT+8Ic/4I9//CPWrVuHZ599FsuWLcPatWtx4cIF+Pj4YMiQIVi8eDE8PDyQmZmJhIQEADCe/j979mzMmTMHGzduxPLly5GTkwN3d3c8+OCDSE1NNTuZnYiIlEsOx7PmknQITKfTISoqChkZGcZtBoMBGRkZ6N27d52PW7x4MebPn4/09HRER0fXur8q/Jw9exYHDhyQzZNv6ZW+7X1F8AcffBA9evTA9u3bAdyeh/XWW2/hp59+wvr16/H555/jlVdeAQD06dMHqamp8PLywpUrV3DlyhX87W9/A3D7eZ8/fz6+//577Ny5ExcvXsRTTz1l17YQEZHtyfV41hiSj3ckJSVh3LhxiI6ORkxMDFJTU1FSUmLsZRg7diyCgoKQnJwMAFi0aBFmzZqFzZs3IyQkxDhXyMPDAx4eHqioqMDw4cORnZ2NPXv2oLKy0ljGx8eH66zUITw8HCdOnAAATJkyxbg9JCQECxYswMSJE/H2229Dp9PB29sbGo2mVi/d008/bfx/x44d8dZbb+Hee+/FzZs34eHhYZd2EBGR/en1nigs9IWPT4FiFneVPADFx8fj2rVrmDVrFvLy8hAREYH09HTjxOjLly+brAWzatUqlJeXY/jw4Sb7qRqG+fXXX7Fr1y4AQEREhEmZgwcPYsCAATZtj1IJIYxDWgcOHEBycjJOnz6NoqIi/P7777h16xZKS0vrXfwxKysLc+bMwffff4/ffvvNOLH68uXL6Nq1q13aQURE9pWd3bPW5X0iI49JXa0GSR6AgNtjhImJiWbvy8zMNLl98eLFevcVEhICiZc2UqRTp04hNDQUFy9exCOPPIK//vWveOONN+Dj44NDhw7hmWeeQXl5eZ0BqKSkBHFxcYiLi8OmTZvQpk0bXL58GXFxcbLuAiUioqbT6z2N4QcAhNBi9+5HEBZ2TvY9QbIIQCStzz//HD/88ANeeuklZGVlwWAw4P/+7/+MPW8ffvihSXmdTofKykqTbadPn0ZBQQFSUlKMZ9BZc+VtIiKSn8JCX2P4qSKEFoWFPrIPQI5xnQGyWFlZGfLy8vDrr78iOzsbCxcuxLBhw/DII49g7Nix6NSpEyoqKpCWloYLFy5g48aNWL16tck+QkJCcPPmTWRkZOD69esoLS1F+/btodPpjI/btWsX5s+fL1EriYjIHnx8CqDRmK4jp9EY4ONTKFGNLMcApDLp6ekICAhASEgIBg0ahIMHD+Ktt97CJ598AicnJ/To0QPLli3DokWLcPfdd2PTpk3GCehV+vTpg4kTJyI+Ph5t2rTB4sWL0aZNG6xbtw4fffQRunbtipSUFCxdulSiVhIRkT14exdjyJA9xhBUNQdI7r0/gAyuBSZHtroWmCOsm2BvvBYYEZH81Dye3T4LzAc+PoUm4cfex7PGXAuMc4DsiFcEJyIiR+AIxzMGIDuT8x8DkbUofYl8ImqY0t/DDEBEZFXmu8ZrL5DGoV4ikhIDEBFZVfWen/oWSOP6UEQkJZ4FRkQ2UdcCaXq9p8Q1IyJiACIiG6lvgTQiIqkxABGRTSh5gTQicnwMQERkE0peII2IHB8nQRORzURGHkNY2DmzC6QREUmJPUBkNZmZmdBoNLhx44bFjwkJCUFqaqrN6kTS8/YuRmjoJYYfIpIVBiAVeeqpp6DRaDBx4sRa973wwgvQaDR46qmn7F8xcig6nc6q5YiIbIFDYCoTHByMLVu24M0334SbmxuA29fb2rx5M9q3by9x7cgROMIS+UTk+NgDpDKRkZEIDg7G9u3bjdu2b9+O9u3bo2fPnsZtZWVlmDRpEtq2bQtXV1fcf//9+O6770z2tW/fPtx5551wc3PDAw88gIsXL9b6fYcOHULfvn3h5uaG4OBgTJo0CSUlJTZrH8mDr68vAgIC6vxh+CEiqTEASeiXX4CDB2//a09PP/001q5da7y9Zs0aJCQkmJR55ZVXsG3bNqxfvx7Z2dno1KkT4uLiUFh4+xTmn3/+GY899hiGDBmC48eP49lnn8X06dNN9nH+/HkMGjQIjz/+OE6cOIGtW7fi0KFDSExMtH0jiYiI6sEAJJH33gM6dAAefPD2v++9Z7/f/eSTT+LQoUO4dOkSLl26hMOHD+PJJ5803l9SUoJVq1ZhyZIlePjhh9G1a1e8++67cHNzw3v/reiqVasQFhaG//u//0OXLl3wxBNP1Jo/lJycjCeeeAJTpkxB586d0adPH7z11lvYsGEDbt26Zb8Gk+oVFBTgypUrdf4UFBRIXUUisjPOAZLAL78AEyYAhv+uEWcwAM89B8TFAe3a2f73t2nTBoMHD8a6desghMDgwYPRunVr4/3nz59HRUUF7rvvPuM2Z2dnxMTE4NSpUwCAU6dOoVevXib77d27t8nt77//HidOnMCmTZuM24QQMBgMyM3NxV133WWL5hGZqHlx1rrw4qxE6sIAJIGzZ/8XfqpUVgLnztknAAG3h8GqhqJWrlxpk99x8+ZNPPfcc5g0aVKt+zjhmuyl5mTsuq5Oz4uzEqkLA5AEOncGtFrTEOTkBHTqZL86DBo0COXl5dBoNIiLizO5LywsDDqdDocPH0aHDh0AABUVFfjuu+8wZcoUAMBdd92FXbt2mTzu66+/NrkdGRmJkydPopM9G0ZUj/quTk9E6sI5QBJo1w74+99vhx7g9r/vvGO/3p/bv9MJp06dwsmTJ+FUVZH/cnd3x1//+ldMnToV6enpOHnyJMaPH4/S0lI888wzAICJEyfi7NmzmDp1KnJycrB582asW7fOZD/Tpk3DkSNHkJiYiOPHj+Ps2bP45JNPOAmaJMGr0xNRdQxAEnnmGeDixdtngV28ePu2vXl5ecHLy8vsfSkpKXj88ccxZswYREZG4ty5c9i/fz/uuOMOALeHsLZt24adO3eiR48eWL16NRYuXGiyj+7du+OLL77AmTNn0LdvX/Ts2ROzZs1CYGCgzdtGVBOvTk9E1WmEEELqSshNUVERvL29odfrawWEW7duITc3F6GhoXB1dZWohurB55ua68qVK/j73/8Ovd4TqalTTEKQRmPAlCmp8PYuxoQJExAQECBhTYmoueo7ftfEHiAiUgVenZ6IquMkaCJSDV6dnoiqMAARkUOredFVb+9is8GHF2clUhcGICJyaLw4KxGZwwBERA6P4YaIauIk6CbiyXP2weeZiIhsgQGokZydnQEApaWlEtdEHaqe56rnnYiIyBo4BNZITk5OaNWqFa5evQoAaNmyJTQajcS1cjxCCJSWluLq1ato1apVrdWqiYiImoMBqAn8/f0BwBiCyHZatWplfL6JiIishQGoCTQaDQICAtC2bVtUVFRIXR2H5ezszJ4fIiKyCQagZnBycuIBmoiISIE4CZqIiIhUhwGIiIiIVIcBiIiIiFSHc4DMqFp8r6ioSOKaEBERkaWqjtuWLKLLAGRGcfHtCyUGBwdLXBMiIiJqrOLiYnh7e9dbRiN4rYFaDAYD/v3vf8PT09PqixwWFRUhODgYP//8M7y8vKy6bzlg+5TP0dvI9imfo7eR7Ws6IQSKi4sRGBgIrbb+WT7sATJDq9WiXbt2Nv0dXl5eDvmHXYXtUz5HbyPbp3yO3ka2r2ka6vmpwknQREREpDoMQERERKQ6DEB25uLigtmzZ8PFxUXqqtgE26d8jt5Gtk/5HL2NbJ99cBI0ERERqQ57gIiIiEh1GICIiIhIdRiAiIiISHUYgIiIiEh1GICaaeXKlQgJCYGrqyt69eqFb7/9tt7yqamp6NKlC9zc3BAcHIyXXnoJt27datY+bcna7ZszZw40Go3JT3h4uK2bUa/GtLGiogLz5s1DWFgYXF1d0aNHD6Snpzdrn7Zm7fbJ6TX88ssvMWTIEAQGBkKj0WDnzp0NPiYzMxORkZFwcXFBp06dsG7dulpl5PT62aKNSn4Nr1y5gtGjR+POO++EVqvFlClTzJb76KOPEB4eDldXV9xzzz3Yt2+f9StvAVu0b926dbVeP1dXV9s0wAKNbeP27dsxcOBAtGnTBl5eXujduzf2799fq5zN34eCmmzLli1Cp9OJNWvWiJ9++kmMHz9etGrVSuTn55stv2nTJuHi4iI2bdokcnNzxf79+0VAQIB46aWXmrxPW7JF+2bPni26desmrly5Yvy5du2avZpUS2Pb+Morr4jAwECxd+9ecf78efH2228LV1dXkZ2d3eR92pIt2ien13Dfvn1i5syZYvv27QKA2LFjR73lL1y4IFq2bCmSkpLEyZMnRVpamnBychLp6enGMnJ6/YSwTRuV/Brm5uaKSZMmifXr14uIiAgxefLkWmUOHz4snJycxOLFi8XJkyfFa6+9JpydncUPP/xgm0bUwxbtW7t2rfDy8jJ5/fLy8mzTAAs0to2TJ08WixYtEt9++604c+aMmDFjhnB2drb75ygDUDPExMSIF154wXi7srJSBAYGiuTkZLPlX3jhBfHggw+abEtKShL33Xdfk/dpS7Zo3+zZs0WPHj1sUt+maGwbAwICxIoVK0y2PfbYY+KJJ55o8j5tyRbtk9trWMWSD95XXnlFdOvWzWRbfHy8iIuLM96W0+tXk7XaqOTXsLr+/fubDQgjRowQgwcPNtnWq1cv8dxzzzWzhs1jrfatXbtWeHt7W61e1tTYNlbp2rWrmDt3rvG2Pd6HHAJrovLycmRlZSE2Nta4TavVIjY2FkePHjX7mD59+iArK8vYjXfhwgXs27cPf/rTn5q8T1uxRfuqnD17FoGBgejYsSOeeOIJXL582XYNqUdT2lhWVlarq9nNzQ2HDh1q8j5txRbtqyKX17Cxjh49avJ8AEBcXJzx+ZDT69dUDbWxilJfQ0tY+hwo2c2bN9GhQwcEBwdj2LBh+Omnn6SuUpMZDAYUFxfDx8cHgP3ehwxATXT9+nVUVlbCz8/PZLufnx/y8vLMPmb06NGYN28e7r//fjg7OyMsLAwDBgzAq6++2uR92oot2gcAvXr1wrp165Ceno5Vq1YhNzcXffv2RXFxsU3bY05T2hgXF4dly5bh7NmzMBgM+Oyzz7B9+3ZcuXKlyfu0FVu0D5DXa9hYeXl5Zp+PoqIi/Oc//5HV69dUDbURUPZraIm6ngOlvIYN6dKlC9asWYNPPvkE77//PgwGA/r06YNffvlF6qo1ydKlS3Hz5k2MGDECgP0+RxmA7CgzMxMLFy7E22+/jezsbGzfvh179+7F/Pnzpa6aVVjSvocffhh/+ctf0L17d8TFxWHfvn24ceMGPvzwQwlrbrnly5ejc+fOCA8Ph06nQ2JiIhISEqDVOsZbyZL2Kf01JL6GSte7d2+MHTsWERER6N+/P7Zv3442bdrgnXfekbpqjbZ582bMnTsXH374Idq2bWvX393Crr/NgbRu3RpOTk7Iz8832Z6fnw9/f3+zj3n99dcxZswYPPvsswCAe+65ByUlJZgwYQJmzpzZpH3aii3aZy4ktGrVCnfeeSfOnTtn/UY0oCltbNOmDXbu3Ilbt26hoKAAgYGBmD59Ojp27NjkfdqKLdpnjpSvYWP5+/ubfT68vLzg5uYGJycn2bx+TdVQG81R0mtoibqeA6W8ho3l7OyMnj17Ku7127JlC5599ll89NFHJsNd9vocdYyvrRLQ6XSIiopCRkaGcZvBYEBGRgZ69+5t9jGlpaW1QoCTkxMAQAjRpH3aii3aZ87Nmzdx/vx5BAQEWKnmlmvO8+3q6oqgoCD8/vvv2LZtG4YNG9bsfVqbLdpnjpSvYWP17t3b5PkAgM8++8z4fMjp9WuqhtpojpJeQ0s05TlQssrKSvzwww+Kev0++OADJCQk4IMPPsDgwYNN7rPb+9Bq06lVaMuWLcLFxUWsW7dOnDx5UkyYMEG0atXKeDrimDFjxPTp043lZ8+eLTw9PcUHH3wgLly4ID799FMRFhYmRowYYfE+ld6+l19+WWRmZorc3Fxx+PBhERsbK1q3bi2uXr1q9/YJ0fg2fv3112Lbtm3i/Pnz4ssvvxQPPvigCA0NFb/99pvF+7QnW7RPTq9hcXGxOHbsmDh27JgAIJYtWyaOHTsmLl26JIQQYvr06WLMmDHG8lWniE+dOlWcOnVKrFy50uxp8HJ5/YSwTRuV/BoKIYzlo6KixOjRo8WxY8fETz/9ZLz/8OHDokWLFmLp0qXi1KlTYvbs2ZKdBm+L9s2dO1fs379fnD9/XmRlZYmRI0cKV1dXkzL21Ng2btq0SbRo0UKsXLnS5FT+GzduGMvY433IANRMaWlpon379kKn04mYmBjx9ddfG+/r37+/GDdunPF2RUWFmDNnjggLCxOurq4iODhYPP/88yYHl4b2aW/Wbl98fLwICAgQOp1OBAUFifj4eHHu3Dk7tqi2xrQxMzNT3HXXXcLFxUX4+vqKMWPGiF9//bVR+7Q3a7dPTq/hwYMHBYBaP1VtGjdunOjfv3+tx0RERAidTic6duwo1q5dW2u/cnr9bNFGpb+G5sp36NDBpMyHH34o7rzzTqHT6US3bt3E3r177dOgGmzRvilTphj/Pv38/MSf/vQnkzV07K2xbezfv3+95avY+n2oEaKOsQkiIiIiB8U5QERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERAqQmZkJjUaDGzduSF0VIofAAEREJp566iloNBqkpKSYbN+5cyc0Go3xthAC7777Lnr37g0vLy94eHigW7dumDx5ssUXZSwtLcWMGTMQFhYGV1dXtGnTBv3798cnn3xiLBMSEoLU1FSrtM3Wqp47jUYDZ2dnhIaG4pVXXsGtW7catZ8BAwZgypQpJtv69OmDK1euwNvb24o1JlIvBiAiqsXV1RWLFi3Cb7/9ZvZ+IQRGjx6NSZMm4U9/+hM+/fRTnDx5Eu+99x5cXV2xYMECi37PxIkTsX37dqSlpeH06dNIT0/H8OHDUVBQYM3m2NWgQYNw5coVXLhwAW+++SbeeecdzJ49u9n71el08Pf3NwmhRNQMVr2wBhEp3rhx48QjjzwiwsPDxdSpU43bd+zYIao+Mj744AMBQHzyySdm92EwGCz6Xd7e3mLdunV13m/umkFVvvrqK3H//fcLV1dX0a5dO/Hiiy+KmzdvGu/fsGGDiIqKEh4eHsLPz0+MGjVK5OfnG++vun5Renq6iIiIEK6uruKBBx4Q+fn5Yt++fSI8PFx4enqKUaNGiZKSEovaM27cODFs2DCTbY899pjo2bOn8fb169fFyJEjRWBgoHBzcxN333232Lx5s8k+arY5NzfXWN/q19b7+OOPRdeuXYVOpxMdOnQQS5cutaieRCQEe4CIqBYnJycsXLgQaWlp+OWXX2rd/8EHH6BLly4YOnSo2cdb2kvh7++Pffv2obi42Oz927dvR7t27TBv3jxcuXIFV65cAQCcP38egwYNwuOPP44TJ05g69atOHToEBITE42PraiowPz58/H9999j586duHjxIp566qlav2POnDlYsWIFjhw5gp9//hkjRoxAamoqNm/ejL179+LTTz9FWlqaRe2p6ccff8SRI0eg0+mM227duoWoqCjs3bsXP/74IyZMmIAxY8bg22+/BQAsX74cvXv3xvjx441tDg4OrrXvrKwsjBgxAiNHjsQPP/yAOXPm4PXXX8e6deuaVFci1ZE6gRGRvFTvxfjDH/4gnn76aSGEaQ9QeHi4GDp0qMnjJk+eLNzd3YW7u7sICgqy6Hd98cUXol27dsLZ2VlER0eLKVOmiEOHDpmU6dChg3jzzTdNtj3zzDNiwoQJJtu++uorodVqxX/+8x+zv+u7774TAERxcbEQ4n89QAcOHDCWSU5OFgDE+fPnjduee+45ERcXZ1F7xo0bJ5ycnIS7u7twcXERAIRWqxUff/xxvY8bPHiwePnll423+/fvLyZPnmxSpmYP0OjRo8XAgQNNykydOlV07drVoroSqR17gIioTosWLcL69etx6tSpBsvOnDkTx48fx6xZs3Dz5k2L9t+vXz9cuHABGRkZGD58OH766Sf07dsX8+fPr/dx33//PdatWwcPDw/jT1xcHAwGA3JzcwHc7iEZMmQI2rdvD09PT/Tv3x8AcPnyZZN9de/e3fh/Pz8/tGzZEh07djTZdvXqVYvaAwAPPPAAjh8/jm+++Qbjxo1DQkICHn/8ceP9lZWVmD9/Pu655x74+PjAw8MD+/fvr1Wvhpw6dQr33Xefybb77rsPZ8+eRWVlZaP2RaRGDEBEVKd+/fohLi4OM2bMMNneuXNn5OTkmGxr06YNOnXqhLZt2zbqdzg7O6Nv376YNm0aPv30U8ybNw/z589HeXl5nY+5efMmnnvuORw/ftz48/333+Ps2bMICwtDSUkJ4uLi4OXlhU2bNuG7777Djh07AKDWfp2dnY3/rzp7qzqNRgODwWBxe9zd3dGpUyf06NEDa9aswTfffIP33nvPeP+SJUuwfPlyTJs2DQcPHsTx48cRFxdXb3uJyPpaSF0BIpK3lJQUREREoEuXLsZto0aNwujRo/HJJ59g2LBhVv19Xbt2xe+//45bt25Bp9NBp9PV6tGIjIzEyZMn0alTJ7P7+OGHH1BQUICUlBTj/Jl//etfVq2nJbRaLV599VUkJSVh9OjRcHNzw+HDhzFs2DA8+eSTAACDwYAzZ86ga9euxseZa3NNd911Fw4fPmyy7fDhw7jzzjvh5ORk/cYQORj2ABFRve655x488cQTeOutt4zbRo4cieHDh2PkyJGYN28evvnmG1y8eBFffPEFtm7davEBeMCAAXjnnXeQlZWFixcvYt++fXj11VfxwAMPwMvLC8DtdYC+/PJL/Prrr7h+/ToAYNq0aThy5AgSExNx/PhxnD17Fp988olxEnT79u2h0+mQlpaGCxcuYNeuXQ0Oq9nKX/7yFzg5OWHlypUAbveeffbZZzhy5AhOnTqF5557Dvn5+SaPCQkJMT6n169fN9sD9fLLLyMjIwPz58/HmTNnsH79eqxYsQJ/+9vf7NIuIqVjACKiBs2bN8/kIKzRaLB161akpqZi3759+OMf/4guXbrg6aefRnBwMA4dOmTRfuPi4rB+/Xo89NBDuOuuu/Diiy8iLi4OH374ocnvvnjxIsLCwtCmTRsAt+ftfPHFFzhz5gz69u2Lnj17YtasWQgMDARwezhu3bp1+Oijj9C1a1ekpKRg6dKlVnxGLNeiRQskJiZi8eLFKCkpwWuvvYbIyEjExcVhwIAB8Pf3x6OPPmrymL/97W9wcnJC165d0aZNG7PzgyIjI/Hhhx9iy5YtuPvuuzFr1izMmzfP7JluRFSbRgghpK4EERERkT2xB4iIiIhUhwGIiGym+mnqNX+++uorqavXKJcvX663PY09jZ2IpMUhMCKymfouihoUFAQ3Nzc71qZ5fv/9d1y8eLHO+0NCQtCiBU+sJVIKBiAiIiJSHQ6BERERkeowABEREZHqMAARERGR6jAAERERkeowABEREZHqMAARERGR6jAAERERkeowABEREZHq/D8btXKZ7oCtgAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHHCAYAAACx7iyPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVxhJREFUeJzt3XtcVGXiP/DPMDKA3BRUEERBNElLERDSUqzFsLzUlitqqdGWuUlquKZkoaYFmmt4t2+/FLNMa0XLy6JJUnnpspiVqXjDWyuokAPCCsQ8vz9cRgYYmBnmcmbO5/168ao5c+bM88w453zO8zznOQohhAARERGRzDnZugBEREREUsBQRERERASGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIAEMREZFkZWZmQqFQ4Pz587YuCpEsMBQRydgPP/yApKQk9OrVC+7u7ujcuTNGjx6NU6dONVh38ODBUCgUUCgUcHJygpeXF3r06IHx48fjiy++MOp9d+zYgdjYWHTo0AGtW7dG165dMXr0aGRnZ5urag289dZb2L59e4Plhw4dwrx583Djxg2LvXd98+bN036WCoUCrVu3Rs+ePfHaa6+htLTULO+xadMmZGRkmGVbRHLBUEQkY4sWLcLWrVvxpz/9CcuWLcOkSZPw9ddfIyIiAseOHWuwfqdOnbBx40Z88MEHePvttzFy5EgcOnQIDz/8MBISElBdXd3sey5ZsgQjR46EQqFASkoK3nnnHTz55JM4ffo0Nm/ebIlqAmg6FM2fP9+qoajWmjVrsHHjRixduhRhYWF48803MXToUJjjlpQMRUTGa2XrAhCR7SQnJ2PTpk1QqVTaZQkJCbj33nuRnp6ODz/8UGd9b29vPP300zrL0tPTMXXqVKxevRrBwcFYtGiR3vf7448/sGDBAgwZMgR79+5t8PzVq1dbWCPpqKioQOvWrZtcZ9SoUWjXrh0AYPLkyXjyySeRlZWFb7/9Fv3797dGMYmoDrYUEcnYgAEDdAIRAHTv3h29evXCiRMnDNqGUqnE8uXL0bNnT6xcuRJqtVrvutevX0dpaSnuv//+Rp/v0KGDzuNbt25h3rx5uOuuu+Dq6oqOHTviiSeewNmzZ7XrLFmyBAMGDICvry/c3NwQGRmJf/7znzrbUSgUKC8vx4YNG7RdVs888wzmzZuHmTNnAgBCQkK0z9Udw/Phhx8iMjISbm5u8PHxwZgxY3Dp0iWd7Q8ePBj33HMP8vLyMGjQILRu3RqvvvqqQZ9fXQ899BAAoKCgoMn1Vq9ejV69esHFxQUBAQGYMmWKTkvX4MGDsWvXLly4cEFbp+DgYKPLQyQ3bCkiIh1CCBQVFaFXr14Gv0apVGLs2LF4/fXXceDAAQwbNqzR9Tp06AA3Nzfs2LEDL730Enx8fPRus6amBsOHD0dOTg7GjBmDadOmoaysDF988QWOHTuG0NBQAMCyZcswcuRIPPXUU6iqqsLmzZvxl7/8BTt37tSWY+PGjXjuuecQHR2NSZMmAQBCQ0Ph7u6OU6dO4eOPP8Y777yjbbVp3749AODNN9/E66+/jtGjR+O5557DtWvXsGLFCgwaNAg//vgj2rRpoy1vcXExHnnkEYwZMwZPP/00/Pz8DP78atWGPV9fX73rzJs3D/Pnz0dcXBz+9re/IT8/H2vWrMEPP/yAgwcPwtnZGXPmzIFarcbly5fxzjvvAAA8PDyMLg+R7Agiojo2btwoAIj3339fZ3lsbKzo1auX3tdt27ZNABDLli1rcvupqakCgHB3dxePPPKIePPNN0VeXl6D9datWycAiKVLlzZ4TqPRaP+/oqJC57mqqipxzz33iIceekhnubu7u5g4cWKDbb399tsCgCgoKNBZfv78eaFUKsWbb76ps/yXX34RrVq10lkeGxsrAIi1a9fqrXddc+fOFQBEfn6+uHbtmigoKBDvvvuucHFxEX5+fqK8vFwIIcT69et1ynb16lWhUqnEww8/LGpqarTbW7lypQAg1q1bp102bNgw0aVLF4PKQ0S3sfuMiLROnjyJKVOmoH///pg4caJRr61tiSgrK2tyvfnz52PTpk3o27cv9uzZgzlz5iAyMhIRERE6XXZbt25Fu3bt8NJLLzXYhkKh0P6/m5ub9v9///13qNVqDBw4EEeOHDGq/PVlZWVBo9Fg9OjRuH79uvbP398f3bt3x/79+3XWd3FxQWJiolHv0aNHD7Rv3x4hISF44YUX0K1bN+zatUvvWKR9+/ahqqoK06dPh5PTnd33888/Dy8vL+zatcv4ihKRFrvPiAgAUFhYiGHDhsHb2xv//Oc/oVQqjXr9zZs3AQCenp7Nrjt27FiMHTsWpaWl+O6775CZmYlNmzZhxIgROHbsGFxdXXH27Fn06NEDrVo1vZvauXMnFi5ciKNHj6KyslK7vG5wMsXp06chhED37t0bfd7Z2VnncWBgYIPxWc3ZunUrvLy84OzsjE6dOmm7BPW5cOECgNthqi6VSoWuXbtqnyci0zAUERHUajUeeeQR3LhxA9988w0CAgKM3kbtJfzdunUz+DVeXl4YMmQIhgwZAmdnZ2zYsAHfffcdYmNjDXr9N998g5EjR2LQoEFYvXo1OnbsCGdnZ6xfvx6bNm0yug51aTQaKBQK/Otf/2o0INYfo1O3xcpQgwYN0o5jIiLbYygikrlbt25hxIgROHXqFPbt24eePXsavY2amhps2rQJrVu3xgMPPGBSOaKiorBhwwZcuXIFwO2B0N999x2qq6sbtMrU2rp1K1xdXbFnzx64uLhol69fv77BuvpajvQtDw0NhRACISEhuOuuu4ytjkV06dIFAJCfn4+uXbtql1dVVaGgoABxcXHaZS1tKSOSI44pIpKxmpoaJCQk4PDhw/j0009NmhunpqYGU6dOxYkTJzB16lR4eXnpXbeiogKHDx9u9Ll//etfAO50DT355JO4fv06Vq5c2WBd8b/JDZVKJRQKBWpqarTPnT9/vtFJGt3d3RudoNHd3R0AGjz3xBNPQKlUYv78+Q0mUxRCoLi4uPFKWlBcXBxUKhWWL1+uU6b3338farVa56o/d3f3JqdHIKKG2FJEJGMzZszA559/jhEjRqCkpKTBZI31J2pUq9XadSoqKnDmzBlkZWXh7NmzGDNmDBYsWNDk+1VUVGDAgAG47777MHToUAQFBeHGjRvYvn07vvnmGzz++OPo27cvAGDChAn44IMPkJycjO+//x4DBw5EeXk59u3bhxdffBGPPfYYhg0bhqVLl2Lo0KEYN24crl69ilWrVqFbt274+eefdd47MjIS+/btw9KlSxEQEICQkBDExMQgMjISADBnzhyMGTMGzs7OGDFiBEJDQ7Fw4UKkpKTg/PnzePzxx+Hp6YmCggJs27YNkyZNwt///vcWff7Gat++PVJSUjB//nwMHToUI0eORH5+PlavXo1+/frpfF+RkZHYsmULkpOT0a9fP3h4eGDEiBFWLS+R3bHlpW9EZFu1l5Lr+2tqXQ8PD9G9e3fx9NNPi7179xr0ftXV1eK9994Tjz/+uOjSpYtwcXERrVu3Fn379hVvv/22qKys1Fm/oqJCzJkzR4SEhAhnZ2fh7+8vRo0aJc6ePatd5/333xfdu3cXLi4uIiwsTKxfv157yXtdJ0+eFIMGDRJubm4CgM7l+QsWLBCBgYHCycmpweX5W7duFQ888IBwd3cX7u7uIiwsTEyZMkXk5+frfDZNTVdQX235rl271uR69S/Jr7Vy5UoRFhYmnJ2dhZ+fn/jb3/4mfv/9d511bt68KcaNGyfatGkjAPDyfCIDKIQww012iIiIiOwcxxQRERERgaGIiIiICABDEREREREAhiIiIiIiAAxFRERERAAkEopWrVqF4OBguLq6IiYmBt9//73edbOyshAVFYU2bdrA3d0d4eHh2Lhxo971J0+eDIVCgYyMDAuUnIiIiByFzSdvrJ1cbO3atYiJiUFGRgbi4+ORn5+PDh06NFjfx8cHc+bMQVhYGFQqFXbu3InExER06NAB8fHxOutu27YN3377rdH3cdJoNPjPf/4DT09PTpVPRERkJ4QQKCsrQ0BAAJycTGj3sfE8SSI6OlpMmTJF+7impkYEBASItLQ0g7fRt29f8dprr+ksu3z5sggMDBTHjh0TXbp0Ee+8847B27t06VKTE9rxj3/84x//+Mc/6f5dunTJ4GN+XTZtKaqqqkJeXh5SUlK0y5ycnBAXF6f3/kh1CSHw5ZdfIj8/H4sWLdIu12g0GD9+PGbOnIlevXoZXS5PT08AwKVLl5q8jxMRERFJR2lpKYKCgrTHcWPZNBRdv34dNTU18PPz01nu5+eHkydP6n2dWq1GYGAgKisroVQqsXr1agwZMkT7/KJFi9CqVStMnTrVoHJUVlaisrJS+7isrAwA4OXlxVBERERkZ0wd+mLzMUWm8PT0xNGjR3Hz5k3k5OQgOTkZXbt2xeDBg5GXl4dly5bhyJEjBn8oaWlpmD9/voVLTURERFJm06vP2rVrB6VSiaKiIp3lRUVF8Pf31/s6JycndOvWDeHh4ZgxYwZGjRqFtLQ0AMA333yDq1evonPnzmjVqhVatWqFCxcuYMaMGQgODm50eykpKVCr1dq/S5cuma2OREREZB9sGopUKhUiIyORk5OjXabRaJCTk4P+/fsbvB2NRqPt/ho/fjx+/vlnHD16VPsXEBCAmTNnYs+ePY2+3sXFRdtVxi4zIiIiebJ591lycjImTpyIqKgoREdHIyMjA+Xl5UhMTAQATJgwAYGBgdqWoLS0NERFRSE0NBSVlZXYvXs3Nm7ciDVr1gAAfH194evrq/Mezs7O8Pf3R48ePaxbOSIiIrIbNg9FCQkJuHbtGlJTU1FYWIjw8HBkZ2drB19fvHhRZ66B8vJyvPjii7h8+TLc3NwQFhaGDz/8EAkJCbaqAhERETkAhRBC2LoQUlNaWgpvb2+o1Wp2pREREdmJlh6/JXGbDyIiIiJbYygiIiIiAkMREREREQAJDLQmIssoLi5GVVWV3udVKlWDKzWJiOSMoYjIARUXF2PlypXNrpeUlMRgRET0PwxFRI2w91aW+mVXqz1RUuILH59ieHuX6V2PiEjOGIqI6qnfyqIvULS0lcVawevIkb7YsWM4hHCCQqHBiBE7ERHxY4u3S0TkaBiKiOqpG1SaChQtaWWxVvBSqz215QcAIZywY8dwhIae0XkfubL3FkEiMi+GImqWXA8clgwU1gheAFBS4qstfy0hnFBS4iP7UGStYEpE9oOhiJok5wOHNQKFpVtyfHyKoVBodOqhUGjg41PS4m3bO2sFUyKyHwxF1CQ5HzisESgsHby8vcswYsTOBt+b3FuJ6mIXIxHVYigig8jxwGGNQGGN4BUR8SNCQ8+gpMQHPj4lDvt9mYpdjERUi6GIDCLXA4elA4WlgpdKpWrwPo1ts/56csQuRiKqxVBEBpHzgUNfoDAXSwQvX19fJCUlyXKAvLHYxUhEtRiKyCByOnAY2npizlYWSwQvBh7DsYuRiACGIjKCXA4c1mhlsUXwoqZZukWQSMrkOvVKfQxFZBS5HDgs/eNn95btMZgS3cZ7Jd7BUGQF9pzAeeCwHKl+55Ykpd8CgynZkpR+C7xX4h0MRRZm7wmcBw4yFylOBMp/t2QLUj4uyP1eiQxFFuYICZwHDjIHOU8ESlSXVI8LcpyPrj6GIiuSewInArjjJapLSscFuc5HVxdDkZXwQGBbUuq/lzvueG2LvwXpkNpxQc7z0dViKLISHghsR8r993LEHa/t8LcgLVI7LshpPjp9GIqshAcC25Fq/71cccdrO/wtSIsxxwVrtfDJZT46fRiKrIQHAmmQUv+9nMl9xysF/C3YnqHHBUu38PFeiXcwFFkRDwS2JbX+e7mzx4lAHWU8Dn8L0mHIccHSLXyceuUOhiILYwKXDqn138uNvU8E6kjjcSz5W5BicJRamVpyXLBUC5+x9ZfaZ2ouDEUWxgRuGab8IDmuy7bs/bfgSONxLPVbkGJwlGKZTP0tSKWFT4qfqbkwFFmBvf2jkDpTf5Ac19U0a5z5Ocpvwd7H41jqtyDF4CjFMgGm/Rak0tpt6GdlDycI9TEUkd1pyU6O47oa58hnfuYmlbP1lrL0b0GKwVGKZTKGVFu79e2D7RFDEdk1Q3ZyHNfVPKmeTUuRpc/WLdliZ63fghSDoxTLZCwptnbbe9Csj6GI7JahOzl7H8tibY62kzM3S56tm9JiZ0yIstZvQSrdPFIvkymk1NrtCEGzPoYislvG7OQYeAzjiDs5c7Pk2bqxLXamhChr/Bak2M0jxTIZSqqt3Y4SNOtiKCK7Zc87OalyxJ2cJVjjbN2QFjupdntKsZtHimUylFRbux1xH8xQRHbLnndyUuWIOzlzsebZuiktdlLr9pRSN4+Uy2QoKbZ2O+I+mKGI7Jo97+SkyBF3cuZizbN1Y1vspNLtKcVuHimWyd7V/aya2gfb42fKUER2hzs5y5JT0DT2Si9rna0b22InlW5PKXbzSLFM9s6RP1OGIrI7jvKDlNI0+XIMmlKem8nYFjspdXtK8XcnxTLZO0f9TBmKHICUDq7WYu/1kdoB2VGCpjGkOki5ljEtduz2JDIPhiI7J7WDKxlGigdkOf/7kMog5Za02Mmp25PIUhiK7JwUD65kHKkckOVKKoOUAeNb7OTY7UlkSQxFDoQHV/sjpQOyXEllkHItY1rsTOn2lGN3O5GhJBGKVq1ahbfffhuFhYXo06cPVqxYgejo6EbXzcrKwltvvYUzZ86guroa3bt3x4wZMzB+/HgAQHV1NV577TXs3r0b586dg7e3N+Li4pCeno6AgABrVsuqeHC1T1I7IMuJWq0G0PwgZbVajY4dO5r0HtYIIMa8nt3tRE2zeSjasmULkpOTsXbtWsTExCAjIwPx8fHIz89Hhw4dGqzv4+ODOXPmICwsDCqVCjt37kRiYiI6dOiA+Ph4VFRU4MiRI3j99dfRp08f/P7775g2bRpGjhyJf//73zaooXXw4GqfpHTVkNxUV1cDuDNI+fPPhwNwAqA7SLl2PWNJMYCwu52oaTYPRUuXLsXzzz+PxMREAMDatWuxa9curFu3DrNnz26w/uDBg3UeT5s2DRs2bMCBAwcQHx8Pb29vfPHFFzrrrFy5EtHR0bh48SI6d+5ssbrYEg+u9olXDUmHQgEIcfu/5iD1AMLudqKGbBqKqqqqkJeXh5SUFO0yJycnxMXF4fDhw82+XgiBL7/8Evn5+Vi0aJHe9dRqNRQKBdq0aWOOYksSD672i1cN2UarVrd3f811Pdeu1xJSCyDsbidqnE1D0fXr11FTUwM/Pz+d5X5+fjh58qTe16nVagQGBqKyshJKpRKrV6/GkCFDGl331q1bmDVrFsaOHQsvL69G16msrERlZaX2cWlpqQm1sT0eXO2HI1w1ZO8DdmtPkprrem7pyZQUAwi724kaZ/PuM1N4enri6NGjuHnzJnJycpCcnIyuXbs26Fqrrq7G6NGjIYTAmjVr9G4vLS0N8+fPt3CpLcMRDq5yZO+TJUpxvIyxbty4AaD5rucbN26YPNAakGYAYXc7UeNsGoratWsHpVKJoqIineVFRUXw9/fX+zonJyd069YNABAeHo4TJ04gLS1NJxTVBqILFy7gyy+/1NtKBAApKSlITk7WPi4tLUVQUJCJtbIuez+4ypk9fyeGjoOR8oDdP/74A0DzXc+165lKigGE3e1EjbNpKFKpVIiMjEROTg4ef/xxAIBGo0FOTg6SkpIM3o5Go9Hp/qoNRKdPn8b+/fubPfi4uLjAxcXFpDpIgT0fXMkx6BtEbE+E0P2vuUg1gLC7XT977xom09m8+yw5ORkTJ05EVFQUoqOjkZGRgfLycu3VaBMmTEBgYCDS0tIA3O7qioqKQmhoKCorK7F7925s3LhR2z1WXV2NUaNG4ciRI9i5cydqampQWFgI4Pbl/OxGIjIvqQ0iNpSzszOAO2N+bl+ODwC6Y35q12sJSwYQYw7g7G5vniN0DZPpbB6KEhIScO3aNaSmpqKwsBDh4eHIzs7WDr6+ePEinJzuNDuXl5fjxRdfxOXLl+Hm5oawsDB8+OGHSEhIAAD89ttv+PzzzwHc7lqra//+/Q3GHRGR6aQ4iNhQ3t7eAJof81O7nrGsEUCMPYCzu715Up9KgSzL5qEIuP2D1dddlpubq/N44cKFWLhwod5tBQcHQ5i7/ZuIGiXFQcTGstSYH2sEEFMO4HIOPMay11ZQMp0kQhER2ScpDiI2liXH/FgzgPAAbl723ApKpmMoIiKTSXUQsbHsfdCxMQdwDiI2jCO0gpLxGIqIyGh1x8E0FSikPGDXkQYdG3oArz8GSV93GwcRO0YrKBmPoYiIjOYIA3YdoQ61DD2A161rU91tHETsOK2gZByGIiIyiT2EheY4Qh0A4w/gHC9jGHvvViXjMRQRETkAYw7gHC+jnyN1q5LxGIqIiOyUqQdwjpfRz5G6Vcl4DEVERHbK1AM4x8s0jYFHvhiKiIgsxBqXv5v6eo6XIWqIoUiGOE8JkeXZw+Xv+rrbSH54XLiNoUhmeLNDIuuQ4uXvhg4O5iBi49h7oOBx4Q6GIpnhzQ7JXOz9QGAtUrr8nYOIzc8eWgSbw+PCHQxFMsZ7JZGpeGZpOKld/i7378PcpNgi2BJyPy44Nb8KOSJ9Z69qtaeNS0b2oLEzy4KC4Ab/fuzlQGBJtZe/18XL3x2PI+xTHaEOLcWWIpmS2tkr2S+5n1k2x9KXv7MbUxocYZ/qCHVoKYYimeLkbWQOUhovI2WWuvyd3ZjS4Qj7VEeoQ0ux+0ymas9ea5v1OXkbmaKpM0vS5e1dhpCQC2b9jbEbUzocYZ/qCHVoKbYUyRgnb6OW4pmlfta+/J3dmLbnCPtUR6hDSzAUyQxvdkjmxNtF6GfNy9/ZjSkd9jghJo8LdzAUyQznKSFzk/uZZVOs9TviAFnbcYQJMXlcuIOhSIbk8A+bLItnltLCbkzbcZRAIfXyWQtDEREZzVEOBI6C3Zi2xX/njoOhiIhMwgOBtLAbk6jlGIqIiCzE0hMrshuTyLwYioiILMAaEyuyG5PIvBiKiIgswFp3HmfgITIfhiIiIgvjxIpE9oG3+SAisiDeeZzIfjAUERFZEO8PR2Q/GIqIiCyodmLFujixIpE0cUwRNcvSlxUTOTJOrEhkPxiKqEnWuKyYyNFxYkUi+8BQRE0y9HLhll5WTORoOLEikf1hKCKj6JtrhYh0cWJFIvvDUEQG41wrRMZh4CGyLwxFZBB9c62Ehp5hixEZjIP2iUjKGIrIIE3NtcJQRIbgoH0ikjrOU0QG4Vwr1FKN3QusoCC4wczOHLRPRLbCliIyCOdaIXPi+DQikiKGImpS3cuFm5prhZcVk6E4Po2IpIqhiJrEy4rJ3Dg+jYikiqGImsXAQ+ZUOz6tbjBy1PFpvNqO6DZ7+S0wFBGRVcllfBqvtiO6rf5vQd8kwFL4LUji6rNVq1YhODgYrq6uiImJwffff6933aysLERFRaFNmzZwd3dHeHg4Nm7cqLOOEAKpqano2LEj3NzcEBcXh9OnT1u6GkRkoIiIHzF9egYmTszE9OkZDjnImlfbEd1W99/4kSN9kZExHRs2TERGxnQcOdK30fVsxeYtRVu2bEFycjLWrl2LmJgYZGRkID4+Hvn5+ejQoUOD9X18fDBnzhyEhYVBpVJh586dSExMRIcOHRAfHw8AWLx4MZYvX44NGzYgJCQEr7/+OuLj43H8+HG4urpau4pEBKCiokLnsb57gdVfzxHwajsi+7jIwuYtRUuXLsXzzz+PxMRE9OzZE2vXrkXr1q2xbt26RtcfPHgw/vznP+Puu+9GaGgopk2bht69e+PAgQMAbrcSZWRk4LXXXsNjjz2G3r1744MPPsB//vMfbN++3Yo1I6K6WrdurfNYX8tJ/fXsnb4DQf16Ezm6pi6ykAqbhqKqqirk5eUhLi5Ou8zJyQlxcXE4fPhws68XQiAnJwf5+fkYNGgQAKCgoACFhYU62/T29kZMTIzebVZWVqK0tFTnj4gsp6kmdEdjDwcCImuwh0mAbdp9dv36ddTU1MDPz09nuZ+fH06ePKn3dWq1GoGBgaisrIRSqcTq1asxZMgQAEBhYaF2G/W3WftcfWlpaZg/f35LqkJEBjKmCd1erlhpipyutiNqij1cZGHzMUWm8PT0xNGjR3Hz5k3k5OQgOTkZXbt2xeDBg03aXkpKCpKTk7WPS0tLERQUZKbSElFdhs5T5ChXb9nDgYDIWpqaBFgKbBqK2rVrB6VSiaKiIp3lRUVF8Pf31/s6JycndOvWDQAQHh6OEydOIC0tDYMHD9a+rqioCB07dtTZZnh4eKPbc3FxgYuLSwtrQ0SGMLTlpLGrtxq7jFcKV6w0x5gDgSO0jhE1Rd9FFlJg01CkUqkQGRmJnJwcPP744wAAjUaDnJwcJCUlGbwdjUaDyspKAEBISAj8/f2Rk5OjDUGlpaX47rvv8Le//c3cVSAiI5nScmKPV2/Vv/WNvgNB3fUcpXWMqC5DbwMlhdtF2bz7LDk5GRMnTkRUVBSio6ORkZGB8vJyJCYmAgAmTJiAwMBApKWlAbg9/icqKgqhoaGorKzE7t27sXHjRqxZswYAoFAoMH36dCxcuBDdu3fXXpIfEBCgDV5EZFvGtJzYw2W8jTHlFjmO1DpGVMuebhdl81CUkJCAa9euITU1FYWFhQgPD0d2drZ2oPTFixfh5HSnmb28vBwvvvgiLl++DDc3N4SFheHDDz9EQkKCdp1XXnkF5eXlmDRpEm7cuIEHHngA2dnZnKOIyIZMaTkB7PteaS3Zydtj6xiRPlIIPIZQCCGErQshNaWlpfD29oZarYaXl5eti0PkMIwZL3PlyhX83//9H9RqT2RkTG8wBmn69Ax4e5dh0qRJOuMH7Zkc60xkTi09ftu8pYiI5MOUs0U5Xr1lz61jRPaMoYiIJE/ql/GaG+c2IrINm9/mg4ioMY2NQQoJudAgEEnhihVzq20dq539Vw6tY0RSwJYiIpIke7pixRLk1jpGJAUMRUQkWY4aePQxdW4juQZHInNjKCIikghjW8c42SOReTEUyRDPLIluk+JvwZj342SPRObFUCQzPLMkus3Rfguc7JGo5RiKZIZnlkS3Gfpv3B5+C/Z6KxSyHCm2gtoDhiIZ45kl0R36ThDsASd7pLqs0QrqqKGLoUimeGZJdIe9nyBwskeqy9I9AvVDl77t20vXc10MRTLFM0ui2xzhBEGOt0Ihw1gi8NcNU01t3x66nutjKJIpuZ1ZOmpTL7Wco5wgcLJHqs/Sgd8RTijqYyiSKTmdWTraVUZkXvZ8gmDKZI/G4gmF/bJ04HeUE4q6GIpkTC5nlrzijppizycIlr4VCk8o7JulA789n1Dow1AkM9Y4s5Qyex9QS+ZT9994UycIUv8tWDKM8ITCvlk68NvzCYU+DEUyI+ebbDpi/zeZTs6/BVPwhMI+WbpHwNF6HBiKZEiuO3lH7P+mlpHrb8FYPKGwL9buEdC3fXvEUESy4Yj930TWwBMK+2LpVlBDw5TUu54bw1BEsuGI/d9E1sATCvtjyVZQR+56ZigiWXG0/m8ia+AJBdVnj4HHEAxF5PDkfsUdkTnwhILkgKGIHJ4jN/USWRJPKEhuFEIIYetCSE1paSm8vb2hVqvh5eVl6+IQEdmMFGe0lmKZSBpaevxmSxEREekltXDBWbbJkhiKZIhnWURkrzjLNlkSQ5HM8CyLiBwFZ9kmc3NqfhVyJIaePfEsi4ikTN8s22q1p41LRvaMoUjm1GpPFBQEc0dCRHalqVm2iUzF7jMZY9MzEdkrzrJNlsBQJFO8wSOR8XiRgnRwlm2yBIYimeINHomMw4sUpIezbJO5MRTJFJuem8YWAapPrpeCS+23wFm2yZIYimSKTc/6sUWAmiOX8XhS/C3wtj1kSQxFMlP37Kmppmc5n2Vx2gJqipzG40m1dYyBhyyFoUhmeJZlPH0HApInuY7Hk0vrGMkbQ5EMMfAYjgcCqk+O4/Hk1DpG8sbJG4n04Iy51Jja8XgKhQYAZDEejxMlklywpYhID7l2k1Dz5HYpuBxbx0ie2FJEpEftgaAuHgjkq7FLwUNCLjQIRI54kYIcW8dInthSRKQHpy2guuR+kYLcWsdInhiKiOrhtAWkj6MGHn04USLJjUIIIWxZgFWrVuHtt99GYWEh+vTpgxUrViA6OrrRdd977z188MEHOHbsGAAgMjISb731ls76N2/exOzZs7F9+3YUFxcjJCQEU6dOxeTJkw0uU2lpKby9vaFWq+Hl5dWyCpJdktosvkS2wt8C2ZOWHr9t2lK0ZcsWJCcnY+3atYiJiUFGRgbi4+ORn5+PDh06NFg/NzcXY8eOxYABA+Dq6opFixbh4Ycfxq+//orAwEAAQHJyMr788kt8+OGHCA4Oxt69e/Hiiy8iICAAI0eOtHYVyU5xJ090G38LJCc2bSmKiYlBv379tNPIazQaBAUF4aWXXsLs2bObfX1NTQ3atm2LlStXYsKECQCAe+65BwkJCXj99de160VGRuKRRx7BwoULDSoXW4qIiOSLrWP2y25biqqqqpCXl4eUlBTtMicnJ8TFxeHw4cMGbaOiogLV1dXw8bkzV8aAAQPw+eef49lnn0VAQAByc3Nx6tQpvPPOO3q3U1lZicrKSu3j0tJSE2pERET2Tor3eyPrsVkoun79OmpqauDn56ez3M/PDydPnjRoG7NmzUJAQADi4uK0y1asWIFJkyahU6dOaNWqFZycnPDee+9h0KBBereTlpaG+fPnm1YRIiJyGFK935ux2NplGru9+iw9PR2bN29Gbm4uXF1dtctXrFiBb7/9Fp9//jm6dOmCr7/+GlOmTGkQnupKSUlBcnKy9nFpaSmCgoIsXgciIpIue73NT/3WLn3Bjq1dDdksFLVr1w5KpRJFRUU6y4uKiuDv79/ka5csWYL09HTs27cPvXv31i7/73//i1dffRXbtm3DsGHDAAC9e/fG0aNHsWTJEr2hyMXFBS4uLi2skf3gGQQRUdPs+X5vdffvTQU7qbd22YLNQpFKpUJkZCRycnLw+OOPA7g90DonJwdJSUl6X7d48WK8+eab2LNnD6KionSeq66uRnV1NZycdCfqViqV0Gh0ZyaWK/aXExE1zxFu82PPwc5WbNp9lpycjIkTJyIqKgrR0dHIyMhAeXk5EhMTAQATJkxAYGAg0tLSAACLFi1CamoqNm3ahODgYBQWFgIAPDw84OHhAS8vL8TGxmLmzJlwc3NDly5d8NVXX+GDDz7A0qVLbVZPKXGU/nKpYesbkWOx9P3erLHPcIRgZ202DUUJCQm4du0aUlNTUVhYiPDwcGRnZ2sHX1+8eFGn1WfNmjWoqqrCqFGjdLYzd+5czJs3DwCwefNmpKSk4KmnnkJJSQm6dOmCN99806jJG+XCXvvLpYatb0SOx5K3+bHWPoM38jWezQdaJyUl6e0uy83N1Xl8/vz5Zrfn7++P9evXm6Fkjo3NqubD1jcix2Sp+71Za5/B+zcaz+ahiGyDzaqWwdY3Ivtm7fu9WXqfwRv5GoehSKbYrGp+bH0jsn++vr5ISkqyyhhBa+0z9AU7aoihSKbYrGp+bH0jcgzWGvtnqX2Goa1Y5mrtciQMRTLGZlXzYusbkTyZeiWZpfYZ1mztcjQMRTJj7f5yOWHrG5H8tGT2aEvuMxh4TMNQJDM8g7Astr4RyUtLZ4/mPkNaGIpkiIHHvNj6RkTGDJrmPkO6GIqIWoitb0RkzKBp7jOki6GIyAy48yKSN2MHTXOfIU1Oza9CRERETakdNK1Q3L75OC+0sE9sKSIiIjIDDpq2f0a3FO3evRvPPfccXnnlFZw8eVLnud9//x0PPfSQ2QpHRERkT7y9yxAScoGByE4ZFYo2bdqEkSNHorCwEIcPH0bfvn3x0UcfaZ+vqqrCV199ZfZCEhERSRFnj3YsRnWfvf3221i6dCmmTp0KAPjkk0/w7LPP4tatW/jrX/9qkQISEZHtmDpbs1zwSjLHYlQoOn36NEaMGKF9PHr0aLRv3x4jR45EdXU1/vznP5u9gEREZBv1Z2vWp7HZmuVEznV3NEaFIi8vLxQVFSEkJES77MEHH8TOnTsxfPhwXL582ewFJCIi26jf+qHvFhZNtZIQ2ROjQlF0dDT+9a9/4b777tNZHhsbix07dmD48OFmLRwREUlDU7ewIHIURg20fvnll+Hq6troc4MHD8aOHTswYcIEsxSMiIikQd8tLNRqTxuXjMi8jGop6tu3L/r27YvS0tJGn4+MjERkZKRZCkZERNJgzC0siOyZUaGoTZs2UCgUza5XU1NjcoGIiEhajL2FBZG9MioU7d+/X/v/Qgg8+uij+H//7/8hMDDQ7AUjIiJpqL2FRf0xRWwlIkdjVCiKjY3VeaxUKnHfffeha9euZi0UERFJC29hQXLAe58REVGj6s/C7O1d1mgY4mzN5CgYioiIqFGcrZnkpsWhyJCB10REZJ8YeEhOjApFTzzxhM7jW7duYfLkyXB3d9dZnpWV1fKSEREREVmRUaHI29tb5/HTTz9t1sIQERER2YpRoWj9+vWWKgcRERGRTRl1mw8iIiIiR8VQRERERASGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBkEAoWrVqFYKDg+Hq6oqYmBh8//33etd97733MHDgQLRt2xZt27ZFXFxco+ufOHECI0eOhLe3N9zd3dGvXz9cvHjRktUgIiIiO2fTULRlyxYkJydj7ty5OHLkCPr06YP4+HhcvXq10fVzc3MxduxY7N+/H4cPH0ZQUBAefvhh/Pbbb9p1zp49iwceeABhYWHIzc3Fzz//jNdffx2urq7WqhYRERHZIYUQQtjqzWNiYtCvXz+sXLkSAKDRaBAUFISXXnoJs2fPbvb1NTU1aNu2LVauXIkJEyYAAMaMGQNnZ2ds3LjR5HKVlpbC29sbarUaXl5eJm+HiIiIrKelx2+btRRVVVUhLy8PcXFxdwrj5IS4uDgcPnzYoG1UVFSguroaPj4+AG6Hql27duGuu+5CfHw8OnTogJiYGGzfvr3J7VRWVqK0tFTnj4iIiOTFZqHo+vXrqKmpgZ+fn85yPz8/FBYWGrSNWbNmISAgQBusrl69ips3byI9PR1Dhw7F3r178ec//xlPPPEEvvrqK73bSUtLg7e3t/YvKCjI9IoRERGRXWpl6wKYKj09HZs3b0Zubq52vJBGowEAPPbYY3j55ZcBAOHh4Th06BDWrl2L2NjYRreVkpKC5ORk7ePS0lIGIyIiIpmxWShq164dlEolioqKdJYXFRXB39+/ydcuWbIE6enp2LdvH3r37q2zzVatWqFnz54669999904cOCA3u25uLjAxcXFhFoQERGRo7BZ95lKpUJkZCRycnK0yzQaDXJyctC/f3+9r1u8eDEWLFiA7OxsREVFNdhmv379kJ+fr7P81KlT6NKli3krQERERA7Fpt1nycnJmDhxIqKiohAdHY2MjAyUl5cjMTERADBhwgQEBgYiLS0NALBo0SKkpqZi06ZNCA4O1o498vDwgIeHBwBg5syZSEhIwKBBg/Dggw8iOzsbO3bsQG5urk3qSERERPbBpqEoISEB165dQ2pqKgoLCxEeHo7s7Gzt4OuLFy/CyelOY9aaNWtQVVWFUaNG6Wxn7ty5mDdvHgDgz3/+M9auXYu0tDRMnToVPXr0wNatW/HAAw9YrV5ERERkf2w6T5FUcZ4iIiIi+2O38xQRERERSQlDEREREREYioiIiIgA2PHkjURERJZQXFyMqqoqvc+rVCr4+vpasURkLQxFRERE/1NcXKy9SXlTkpKSGIwcELvPiIiI/qd+C5Fa7YmCgmCo1Z5NrkeOgS1FREREjThypC927BgOIZygUGgwYsRORET8aOtikQWxpYiIiKgetdpTG4gAQAgn7NgxvEGLETkWhiIiIqJ6Skp8tYGolhBOKCnxsVGJyBoYioiIiOrx8SmGQqHRWaZQaODjU2KjEpE1MBQRERHV4+1dhhEjdmqDUe2YIm/vMhuXjCyJA62JiIgaERHxI0JDz6CkxAc+PiUMRDLAUERERPQ/KpVK57G3d1mjYaj+euQYGIqIiIj+x9fXF0lJSZzRWqYYioiIiOpg4JEvhiKyCLndO0hu9SUickQMRWR29e8dpFZ7oqTEFz4+xTp9845y7yBr3SuJwYuIyLIYisjs6h64m5om31HuHdTYvZIaC4EtqS9vUklEZHkMRWQx+qbJDw0947CXtlrqXknWCF5ERHLHUEQW09Q0+Y4YiqwVAnmTSiIiy2AoIoupnSa/bjBy5GnyrREC5dj6RkTG4xhE0zAUkcXUTpNfv1XDUQ/e1giBcmt9IyLjcQyi6RiKyKLkNE2+NUKg3FrfiMh4HINoOoYiCXK0Zk990+Q7IkuHQLm1vhFRy3AMonEYiiTGEZo9Db0nkKPcO8ja90qSU+sbEZmOYxCNx1AkMY7Q7Cm3ewdZo76OcpNKR2sFJZIyjkE0HkORhNlzs6fcDmyWrq8jBE1HaAUlsiccg2g8hiKJYrMn1WfvQcERWkGJ7AnHIBqPoUii2OxJjsyeW0GJ7AnHIBrHqflVyBZqmz3rYrMnOQJ9raBqtaeNS0bkGBobgxgScqFBIJL6GERbYEuRRLHZkxwVW0GJLMsRxiDaCkORhLHZkxwRB38SWR4Dj2nYfSYxbPYkR1fbClrbPcxWUCKSCrYUSQybPUkO2ApKRFLEUCRBDDzkiBxlAkoiclwMRURkFWwFJSKpYygiIqth4CEiKeNAayIiIiIwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIgERC0apVqxAcHAxXV1fExMTg+++/17vue++9h4EDB6Jt27Zo27Yt4uLimlx/8uTJUCgUyMjIsEDJiYiIyFHYPBRt2bIFycnJmDt3Lo4cOYI+ffogPj4eV69ebXT93NxcjB07Fvv378fhw4cRFBSEhx9+GL/99luDdbdt24Zvv/0WAQEBlq4GkdGKi4tx5coVvX/FxcW2LiIRkawohBDClgWIiYlBv379sHLlSgCARqNBUFAQXnrpJcyePbvZ19fU1KBt27ZYuXIlJkyYoF3+22+/ISYmBnv27MGwYcMwffp0TJ8+3aAylZaWwtvbG2q1Gl5eXibVi6gpxcXF2n/zTUlKSuLcPkREBmrp8dumLUVVVVXIy8tDXFycdpmTkxPi4uJw+PBhg7ZRUVGB6upq+Pj4aJdpNBqMHz8eM2fORK9evZrdRmVlJUpLS3X+iCyp/qzOarUnCgqCoVZ7NrkeERFZjk1ntL5+/Tpqamrg5+ens9zPzw8nT540aBuzZs1CQECATrBatGgRWrVqhalTpxq0jbS0NMyfP9/wghOZ0ZEjfbFjx3AI4aS9Y3xExI+2LhYRkezYfExRS6Snp2Pz5s3Ytm0bXF1dAQB5eXlYtmwZMjMzoVAoDNpOSkoK1Gq19u/SpUuWLDaRllrtqQ1EACCEE3bsGN6gxYiIiCzPpqGoXbt2UCqVKCoq0lleVFQEf3//Jl+7ZMkSpKenY+/evejdu7d2+TfffIOrV6+ic+fOaNWqFVq1aoULFy5gxowZCA4ObnRbLi4u8PLy0vkjsoaSEl9tIKolhBNKSnz0vIKIiCzFpqFIpVIhMjISOTk52mUajQY5OTno37+/3tctXrwYCxYsQHZ2NqKionSeGz9+PH7++WccPXpU+xcQEICZM2diz549FqsLkSl8fIqhUGh0likUGvj4lNioRERE8mXTMUUAkJycjIkTJyIqKgrR0dHIyMhAeXk5EhMTAQATJkxAYGAg0tLSANweL5SamopNmzYhODgYhYWFAAAPDw94eHjA19e3wdU6zs7O8Pf3R48ePaxbOaJmeHuXYcSInQ3GFHl7l9m6aEREsmPzUJSQkIBr164hNTUVhYWFCA8PR3Z2tnbw9cWLF+HkdKdBa82aNaiqqsKoUaN0tjN37lzMmzfPmkUnMouIiB8RGnoGJSU+8PEpYSAiIrIRm89TJEX2Nk9RcXFxk5duq1QqznUjMZyniIjI/Fp6/LZ5SxG1DA+u9snX1xdJSUkMs0REEsJQZOcamwSwpMQXPj7FOt0wnARQehh4HB9bcYnsC0ORA+EkgETSwVZcIvtj15M30h2cBJBIWngrFyL7w5YiB9HUJIC8monIttiKS3JnL13JDEUOonYSwLrBiJMAEtmevlbc0NAzPGEhWbCnrmR2nzmI2kkAa2dH5iSARNLAW7mQ3NlTVzJbihwIJwEkkh624hLdIfWuZLYU2TmVSqXz2Nu7DCEhFxoEovrrEZF1sBWX6DZ7uCCILUV2jpMAEkkfW3GJ7OOCIIYiB8DAQyQ9jbXiNrbjZysuyYU9dCUzFBERWQBbcYl01XYl1x9TJJVWIoChiIjIYhh4iHRJvSuZoYiIiIgsxp66khmKiIiIyGLsqSuZoYiIiIgsSgqBxxCcp4iIiIgIDEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIAEMREREREQCGIiIiIiIAQCtbF4CILKO4uBhVVVV6n1epVPD19bViiYiIpI2hiMgBFRcXY+XKlc2ul5SUxGBERPQ/7D4jckD1W4jUak8UFARDrfZscj0iIjljSxGRgztypC927BgOIZygUGgwYsRORET8aOtiERFJDluKiByYWu2pDUQAIIQTduwY3qDFiIiIGIqIHFpJia82ENUSwgklJT42KhERkXQxFBE5MB+fYigUGp1lCoUGPj4lNioREZF0MRQROTBv7zKMGLFTG4xqxxR5e5fZuGRERNLDgdZEDi4i4keEhp5BSYkPfHxKGIiILEQIgT/++AM1NTW2LorDUiqVaNWqFRQKhUW2L4lQtGrVKrz99tsoLCxEnz59sGLFCkRHRze67nvvvYcPPvgAx44dAwBERkbirbfe0q5fXV2N1157Dbt378a5c+fg7e2NuLg4pKenIyAgwGp1IrIllUql89jbu6zRMFR/PSIyTVVVFa5cuYKKigpbF8XhtW7dGh07drTI/kshhBBm36oRtmzZggkTJmDt2rWIiYlBRkYGPv30U+Tn56NDhw4N1n/qqadw//33Y8CAAXB1dcWiRYuwbds2/PrrrwgMDIRarcaoUaPw/PPPo0+fPvj9998xbdo01NTU4N///rdBZSotLYW3tzfUajW8vLzMXWUiq+CM1kTWodFocPr0aSiVSrRv3x4qlcpiLRlyJoRAVVUVrl27hpqaGnTv3h1OTrqjgFp6/LZ5KIqJiUG/fv20s+9qNBoEBQXhpZdewuzZs5t9fU1NDdq2bYuVK1diwoQJja7zww8/IDo6GhcuXEDnzp2b3SZDERERGerWrVsoKChAly5d0Lp1a1sXx+FVVFTgwoULCAkJgaurq85zLT1+27T7rKqqCnl5eUhJSdEuc3JyQlxcHA4fPmzQNioqKlBdXQ0fH/2XGKvVaigUCrRp06bR5ysrK1FZWal9XFpaalgF7BRbEIiIzK9+qwVZhiU/Z5uGouvXr6OmpgZ+fn46y/38/HDy5EmDtjFr1iwEBAQgLi6u0edv3bqFWbNmYezYsXpTY1paGubPn29c4e1U/XtiqdWeKCnxhY9Psc6YE94Ti4iI5EYSA61NlZ6ejs2bNyM3N7dBExpwe9D16NGjIYTAmjVr9G4nJSUFycnJ2selpaUICgqySJltrW4LUVO3f+A9sYiISG5s2tbXrl07KJVKFBUV6SwvKiqCv79/k69dsmQJ0tPTsXfvXvTu3bvB87WB6MKFC/jiiy+a7Ft0cXGBl5eXzp+j4+0fiIjomWeegUKhgEKhgLOzM/z8/DBkyBCsW7cOGo2m+Q38T2Zmpt4hKvbEpqFIpVIhMjISOTk52mUajQY5OTno37+/3tctXrwYCxYsQHZ2NqKioho8XxuITp8+jX379rEbqBG8/QMRkXQUFxfjypUrev+Ki4st9t5Dhw7FlStXcP78efzrX//Cgw8+iGnTpmH48OH4448/LPa+UmTz7rPk5GRMnDgRUVFRiI6ORkZGBsrLy5GYmAgAmDBhAgIDA5GWlgYAWLRoEVJTU7Fp0yYEBwejsLAQAODh4QEPDw9UV1dj1KhROHLkCHbu3ImamhrtOj4+PpyX5X9qb/9QNxjx9g9ERNZXf6ynPpYa6+ni4qLtnQkMDERERATuu+8+/OlPf0JmZiaee+45LF26FOvXr8e5c+fg4+ODESNGYPHixfDw8EBubq72mF07FcHcuXMxb948bNy4EcuWLUN+fj7c3d3x0EMPISMjo9Epd6TA5kPlExISsGTJEqSmpiI8PBxHjx5Fdna2dvD1xYsXceXKFe36a9asQVVVFUaNGoWOHTtq/5YsWQIA+O233/D555/j8uXLCA8P11nn0KFDNqmjFPH2D0RE0mDoGE5rjvV86KGH0KdPH2RlZQG4fcXX8uXL8euvv2LDhg348ssv8corrwAABgwYgIyMDHh5eWlbtv7+978DuN1zs2DBAvz000/Yvn07zp8/j2eeecZq9TCWzVuKgNvpNykpqdHncnNzdR6fP3++yW0FBwfDxlMv2Q3e/oGIiPQJCwvDzz//DACYPn26dnlwcDAWLlyIyZMnY/Xq1VCpVPD29oZCoWgwHvjZZ5/V/n/Xrl2xfPly9OvXDzdv3oSHh4dV6mEMSYQish19t38gIiJ5E0Jou8P27duHtLQ0nDx5EqWlpfjjjz9w69YtVFRUNDlhZV5eHubNm4effvoJv//+u3bw9sWLF9GzZ0+r1MMYNu8+I+sydEwVx14REcnbiRMnEBISgvPnz2P48OHo3bs3tm7diry8PKxatQpA01165eXliI+Ph5eXFz766CP88MMP2LZtW7OvsyW2FMmMr68vkpKSOKM1ERHp9eWXX+KXX37Byy+/jLy8PGg0GvzjH//Qzib9ySef6KyvUqlQU1Ojs+zkyZMoLi5Genq6du4/Q+9BaisMRTLEwENERLUqKytRWFiImpoaFBUVITs7G2lpaRg+fDgmTJiAY8eOobq6GitWrMCIESNw8OBBrF27VmcbwcHBuHnzJnJyctCnTx+0bt0anTt3hkqlwooVKzB58mQcO3YMCxYssFEtDcPuMyIiIhnLzs5Gx44dERwcjKFDh2L//v1Yvnw5PvvsMyiVSvTp0wdLly7FokWLcM899+Cjjz7STpNTa8CAAZg8eTISEhLQvn17LF68GO3bt0dmZiY+/fRT9OzZE+np6dorxaVKIXipVgMtvcsuERHJx61bt1BQUNDoXdsNYet5iuxNU593S4/f7D4jIiKyIY71lA6GIiIiIhtj4JEGjikiIiIiAkMREREREQCGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQRERERBaSm5sLhUKBGzduGPya4OBgZGRkWKxMTWEoIiIikqlnnnkGCoUCkydPbvDclClToFAo8Mwzz1i/YDbCUERERCRjQUFB2Lx5M/773/9ql926dQubNm1C586dbVgy62MokqDi4mJcuXJF719xcbGti2h3+JkSETUuIiICQUFByMrK0i7LyspC586d0bdvX+2yyspKTJ06FR06dICrqyseeOAB/PDDDzrb2r17N+666y64ubnhwQcfxPnz5xu834EDBzBw4EC4ubkhKCgIU6dORXl5ucXqZwze+0xieLdk8+NnSiRvxcXFdnWz1cuXgdOnge7dgU6drPOezz77LNavX4+nnnoKALBu3TokJiYiNzdXu84rr7yCrVu3YsOGDejSpQsWL16M+Ph4nDlzBj4+Prh06RKeeOIJTJkyBZMmTcK///1vzJgxQ+d9zp49i6FDh2LhwoVYt24drl27hqSkJCQlJWH9+vXWqWwTGIokpv4PV632REmJL3x8iuHtXaZ3PdKPnymRfNnbSdH77wOTJgEaDeDkBPzf/wF//avl3/fpp59GSkoKLly4AAA4ePAgNm/erA1F5eXlWLNmDTIzM/HII48AAN577z188cUXeP/99zFz5kysWbMGoaGh+Mc//gEA6NGjB3755RcsWrRI+z5paWl46qmnMH36dABA9+7dsXz5csTGxmLNmjVwdXW1fGWbwFAkYUeO9MWOHcMhhBMUCg1GjNiJiIgfbV0su8bPlEheDD3ZkcJJ0eXLdwIRcPu/L7wAxMdbvsWoffv2GDZsGDIzMyGEwLBhw9CuXTvt82fPnkV1dTXuv/9+7TJnZ2dER0fjxIkTAIATJ04gJiZGZ7v9+/fXefzTTz/h559/xkcffaRdJoSARqNBQUEB7r77bktUz2AMRRKlVntqD94AIIQTduwYjtDQMzqtG2Q4fqZEpK+lWApOn74TiGrV1ABnzlinG+3ZZ59FUlISAGDVqlUWeY+bN2/ihRdewNSpUxs8J4VB3QxFElVS4qs9eNcSwgklJT6S+yHbC36mRPIm9Zbi7t1vd5nVDUZKJdCtm3Xef+jQoaiqqoJCoUB8fLzOc6GhoVCpVDh48CC6dOkCAKiursYPP/yg7Qq7++678fnnn+u87ttvv9V5HBERgePHj6ObtSplJF59JlE+PsVQKHRPGRQKDXx8SmxUIvvHz5RIvvS1FKvVnjYu2R2dOt0eQ6RU3n6sVALvvmu9wdZKpRInTpzA8ePHoawtxP+4u7vjb3/7G2bOnIns7GwcP34czz//PCoqKvDX/w16mjx5Mk6fPo2ZM2ciPz8fmzZtQmZmps52Zs2ahUOHDiEpKQlHjx7F6dOn8dlnn2lbqGyNoUiivL3LMGLETu1BvPashi0apuNnSiRfTbUUS8lf/wqcPw/s33/7v9YYZF2Xl5cXvLy8Gn0uPT0dTz75JMaPH4+IiAicOXMGe/bsQdu2bQHc7v7aunUrtm/fjj59+mDt2rV46623dLbRu3dvfPXVVzh16hQGDhyIvn37IjU1FQEBARavmyHYfSZhERE/IjT0DEpKfODjU8KDtxnwMyWSp9qW4rrBSKotxZ06Wa91qH5LTn3bt2/X/r+rqyuWL1+O5cuX611/+PDhGD58uM6yxMREncf9+vXD3r179W6jsbmNrIUtRRKjUql0Hnt7lyEk5EKDg3f99Ug/fqZExJZiMgRbiiTG19cXSUlJdjXRmNTxMyWSr7onO021FPOkiACGIkniwdn8+JkSyRNPisgYDEVEROTQGHjIUBxTRERERASGIiIiIrMQQti6CLJgyc+ZoYiIiKgFnJ2dAQAVFRU2Lok81H7OtZ+7OXFMERERUQsolUq0adMGV69eBQC0bt0aCoXCxqVyPEIIVFRU4OrVq2jTpk2DWbfNgaGIiIiohfz9/QFAG4zIctq0aaP9vM2NoYiIiKiFFAoFOnbsiA4dOqC6utrWxXFYzs7OFmkhqsVQREREZCZKpdKiB22yLA60JiIiIgJDEREREREAhiIiIiIiABxT1KjaiaFKS0ttXBIiIiIyVO1x29QJHhmKGlFWdvvOyUFBQTYuCRERERmrrKwM3t7eRr9OITgveQMajQb/+c9/4OnpafYJuEpLSxEUFIRLly7By8vLrNuWCjnUEWA9HQ3r6VhYT8diaD2FECgrK0NAQACcnIwfIcSWokY4OTmhU6dOFn0PLy8vh/4HDMijjgDr6WhYT8fCejoWQ+ppSgtRLQ60JiIiIgJDEREREREAhiKrc3Fxwdy5c+Hi4mLroliMHOoIsJ6OhvV0LKynY7FWPTnQmoiIiAhsKSIiIiICwFBEREREBIChiIiIiAgAQxERERERAIaiFlu1ahWCg4Ph6uqKmJgYfP/9902un5GRgR49esDNzQ1BQUF4+eWXcevWrRZt0xrMXc958+ZBoVDo/IWFhVm6Gs0ypp7V1dV44403EBoaCldXV/Tp0wfZ2dkt2qa1mLueUvs+v/76a4wYMQIBAQFQKBTYvn17s6/Jzc1FREQEXFxc0K1bN2RmZjZYR2rfpSXqKbXvEjC+nleuXMG4ceNw1113wcnJCdOnT290vU8//RRhYWFwdXXFvffei927d5u/8EawRD0zMzMbfJ+urq6WqYCBjK1nVlYWhgwZgvbt28PLywv9+/fHnj17Gqxnlt+nIJNt3rxZqFQqsW7dOvHrr7+K559/XrRp00YUFRU1uv5HH30kXFxcxEcffSQKCgrEnj17RMeOHcXLL79s8jatwRL1nDt3rujVq5e4cuWK9u/atWvWqlKjjK3nK6+8IgICAsSuXbvE2bNnxerVq4Wrq6s4cuSIydu0BkvUU2rf5+7du8WcOXNEVlaWACC2bdvW5Prnzp0TrVu3FsnJyeL48eNixYoVQqlUiuzsbO06UvwuLVFPqX2XQhhfz4KCAjF16lSxYcMGER4eLqZNm9ZgnYMHDwqlUikWL14sjh8/Ll577TXh7OwsfvnlF8tUwgCWqOf69euFl5eXzvdZWFhomQoYyNh6Tps2TSxatEh8//334tSpUyIlJUU4OztbZF/LUNQC0dHRYsqUKdrHNTU1IiAgQKSlpTW6/pQpU8RDDz2ksyw5OVncf//9Jm/TGixRz7lz54o+ffpYpLymMraeHTt2FCtXrtRZ9sQTT4innnrK5G1agyXqKcXvs5YhO91XXnlF9OrVS2dZQkKCiI+P1z6W4ndZl7nqKeXvUgjD6llXbGxso2Fh9OjRYtiwYTrLYmJixAsvvNDCEpqHueq5fv164e3tbbZymZux9azVs2dPMX/+fO1jc/0+2X1moqqqKuTl5SEuLk67zMnJCXFxcTh8+HCjrxkwYADy8vK0TXrnzp3D7t278eijj5q8TUuzRD1rnT59GgEBAejatSueeuopXLx40XIVaYYp9aysrGzQDO3m5oYDBw6YvE1Ls0Q9a0np+zTW4cOHdT4TAIiPj9d+JlL8Lk3RXD1r2fN3aShDPwtHcPPmTXTp0gVBQUF47LHH8Ouvv9q6SC2i0WhQVlYGHx8fAOb9fTIUmej69euoqamBn5+fznI/Pz8UFhY2+ppx48bhjTfewAMPPABnZ2eEhoZi8ODBePXVV03epqVZop4AEBMTg8zMTGRnZ2PNmjUoKCjAwIEDUVZWZtH66GNKPePj47F06VKcPn0aGo0GX3zxBbKysnDlyhWTt2lplqgnIL3v01iFhYWNfialpaX473//K8nv0hTN1ROw/+/SUPo+C3v6Pg3Ro0cPrFu3Dp999hk+/PBDaDQaDBgwAJcvX7Z10Uy2ZMkS3Lx5E6NHjwZg3n0tQ5EV5ebm4q233sLq1atx5MgRZGVlYdeuXViwYIGti2ZWhtTzkUcewV/+8hf07t0b8fHx2L17N27cuIFPPvnEhiU3zrJly9C9e3eEhYVBpVIhKSkJiYmJcHJyrJ+VIfV0hO+TbuN36Vj69++PCRMmIDw8HLGxscjKykL79u3x7rvv2rpoJtm0aRPmz5+PTz75BB06dDD79luZfYsy0a5dOyiVShQVFeksLyoqgr+/f6Ovef311zF+/Hg899xzAIB7770X5eXlmDRpEubMmWPSNi3NEvVsLDS0adMGd911F86cOWP+ShjAlHq2b98e27dvx61bt1BcXIyAgADMnj0bXbt2NXmblmaJejbG1t+nsfz9/Rv9TLy8vODm5galUim579IUzdWzMfb2XRpK32dhT9+nKZydndG3b1+7/D43b96M5557Dp9++qlOV5k597WOdUprRSqVCpGRkcjJydEu02g0yMnJQf/+/Rt9TUVFRYNAoFQqAQBCCJO2aWmWqGdjbt68ibNnz6Jjx45mKrlxWvLZu7q6IjAwEH/88Qe2bt2Kxx57rMXbtBRL1LMxtv4+jdW/f3+dzwQAvvjiC+1nIsXv0hTN1bMx9vZdGsqUz8IR1NTU4JdffrG77/Pjjz9GYmIiPv74YwwbNkznObP+Po0e8k1amzdvFi4uLiIzM1McP35cTJo0SbRp00Z7ueP48ePF7NmztevPnTtXeHp6io8//licO3dO7N27V4SGhorRo0cbvE1bsEQ9Z8yYIXJzc0VBQYE4ePCgiIuLE+3atRNXr161ev1qGVvPb7/9VmzdulWcPXtWfP311+Khhx4SISEh4vfffzd4m7ZgiXpK7fssKysTP/74o/jxxx8FALF06VLx448/igsXLgghhJg9e7YYP368dv3aS9VnzpwpTpw4IVatWtXoJflS+y4tUU+pfZdCGF9PIYR2/cjISDFu3Djx448/il9//VX7/MGDB0WrVq3EkiVLxIkTJ8TcuXNtfkm+Jeo5f/58sWfPHnH27FmRl5cnxowZI1xdXXXWsTZj6/nRRx+JVq1aiVWrVulMLXDjxg3tOub6fTIUtdCKFStE586dhUqlEtHR0eLbb7/VPhcbGysmTpyofVxdXS3mzZsnQkNDhaurqwgKChIvvviizsGluW3airnrmZCQIDp27ChUKpUIDAwUCQkJ4syZM1asUeOMqWdubq64++67hYuLi/D19RXjx48Xv/32m1HbtBVz11Nq3+f+/fsFgAZ/tfWaOHGiiI2NbfCa8PBwoVKpRNeuXcX69esbbFdq36Ul6im171II0+rZ2PpdunTRWeeTTz4Rd911l1CpVKJXr15i165d1qmQHpao5/Tp07X/Zv38/MSjjz6qM7+PLRhbz9jY2CbXr2WO36dCCD39GUREREQywjFFRERERGAoIiIiIgLAUEREREQEgKGIiIiICABDEREREREAhiIiIiIiAAxFRERERAAYioiI7EJubi4UCgVu3Lhh66IQOSyGIiLS8cwzz0ChUCA9PV1n+fbt26FQKLSPhRB477330L9/f3h5ecHDwwO9evXCtGnTDL7ZZEVFBVJSUhAaGgpXV1e0b98esbGx+Oyzz7TrBAcHIyMjwyx1s7Taz06hUMDZ2RkhISF45ZVXcOvWLaO2M3jwYEyfPl1n2YABA3DlyhV4e3ubscREVBdDERE14OrqikWLFuH3339v9HkhBMaNG4epU6fi0Ucfxd69e3H8+HG8//77cHV1xcKFCw16n8mTJyMrKwsrVqzAyZMnkZ2djVGjRqG4uNic1bGqoUOH4sqVKzh37hzeeecdvPvuu5g7d26Lt6tSqeDv768TTInIzEy8dQkROaiJEyeK4cOHi7CwMDFz5kzt8m3btonaXcbHH38sAIjPPvus0W1oNBqD3svb21tkZmbqfb6xex7V+uabb8QDDzwgXF1dRadOncRLL70kbt68qX3+gw8+EJGRkcLDw0P4+fmJsWPHiqKiIu3ztfdfys7OFuHh4cLV1VU8+OCDoqioSOzevVuEhYUJT09PMXbsWFFeXm5QfSZOnCgee+wxnWVPPPGE6Nu3r/bx9evXxZgxY0RAQIBwc3MT99xzj9i0aZPONurXuaCgQFveuvcQ/Oc//yl69uwpVCqV6NKli1iyZIlB5SSixrGliIgaUCqVeOutt7BixQpcvny5wfMff/wxevTogZEjRzb6ekNbM/z9/bF7926UlZU1+nxWVhY6deqEN954A1euXMGVK1cAAGfPnsXQoUPx5JNP4ueff8aWLVtw4MABJCUlaV9bXV2NBQsW4KeffsL27dtx/vx5PPPMMw3eY968eVi5ciUOHTqES5cuYfTo0cjIyMCmTZuwa9cu7N27FytWrDCoPvUdO3YMhw4dgkql0i67desWIiMjsWvXLhw7dgyTJk3C+PHj8f333wMAli1bhv79++P555/X1jkoKKjBtvPy8jB69GiMGTMGv/zyC+bNm4fXX38dmZmZJpWViMCWIiLSVbe147777hPPPvusEEK3pSgsLEyMHDlS53XTpk0T7u7uwt3dXQQGBhr0Xl999ZXo1KmTcHZ2FlFRUWL69OniwIEDOut06dJFvPPOOzrL/vrXv4pJkybpLPvmm2+Ek5OT+O9//9voe/3www8CgCgrKxNC3Gkp2rdvn3adtLQ0AUCcPXtWu+yFF14Q8fHxBtVn4sSJQqlUCnd3d+Hi4iIACCcnJ/HPf/6zydcNGzZMzJgxQ/s4NjZWTJs2TWed+i1F48aNE0OGDNFZZ+bMmaJnz54GlZWIGmJLERHptWjRImzYsAEnTpxodt05c+bg6NGjSE1Nxc2bNw3a/qBBg3Du3Dnk5ORg1KhR+PXXXzFw4EAsWLCgydf99NNPyMzMhIeHh/YvPj4eGo0GBQUFAG63pIwYMQKdO3eGp6cnYmNjAQAXL17U2Vbv3r21/+/n54fWrVuja9euOsuuXr1qUH0A4MEHH8TRo0fx3XffYeLEiUhMTMSTTz6pfb6mpgYLFizAvffeCx8fH3h4eGDPnj0NytWcEydO4P7779dZdv/99+P06dOoqakxaltEdBtDERHpNWjQIMTHxyMlJUVneffu3ZGfn6+zrH379ujWrRs6dOhg1Hs4Oztj4MCBmDVrFvbu3Ys33ngDCxYsQFVVld7X3Lx5Ey+88AKOHj2q/fvpp59w+vRphIaGory8HPHx8fDy8sJHH32EH374Adu2bQOABtt1dnbW/n/tVWN1KRQKaDQag+vj7u6Obt26oU+fPli3bh2+++47vP/++9rn3377bSxbtgyzZs3C/v37cfToUcTHxzdZXyKyjla2LgARSVt6ejrCw8PRo0cP7bKxY8di3Lhx+Oyzz/DYY4+Z9f169uyJP/74A7du3YJKpYJKpWrQ8hEREYHjx4+jW7dujW7jl19+QXFxMdLT07Xjcf7973+btZyGcHJywquvvork5GSMGzcObm5uOHjwIB577DE8/fTTAACNRoNTp06hZ8+e2tc1Vuf67r77bhw8eFBn2cGDB3HXXXdBqVSavzJEMsCWIiJq0r333ounnnoKy5cv1y4bM2YMRo0ahTFjxuCNN97Ad999h/Pnz+Orr77Cli1bDD4oDx48GO+++y7y8vJw/vx57N69G6+++ioefPBBeHl5Abg9T9HXX3+N3377DdevXwcAzJo1C4cOHUJSUhKOHj2K06dP47PPPtMOtO7cuTNUKhVWrFiBc+fO4fPPP2+2S85S/vKXv0CpVGLVqlUAbreyffHFFzh06BBOnDiBF154AUVFRTqvCQ4O1n6m169fb7SlasaMGcjJycGCBQtw6tQpbNiwAStXrsTf//53q9SLyBExFBFRs9544w2dA7NCocCWLVuQkZGB3bt3409/+hN69OiBZ599FkFBQThw4IBB242Pj8eGDRvw8MMP4+6778ZLL72E+Ph4fPLJJzrvff78eYSGhqJ9+/YAbo8D+uqrr3Dq1CkMHDgQffv2RWpqKgICAgDc7srLzMzEp59+ip49eyI9PR1Lliwx4ydiuFatWiEpKQmLFy9GeXk5XnvtNURERCA+Ph6DBw+Gv78/Hn/8cZ3X/P3vf4dSqUTPnj3Rvn37RscbRURE4JNPPsHmzZtxzz33IDU1FW+88UajV9gRkWEUQghh60IQERER2RpbioiIiIjAUEREFlT3kvn6f998842ti2eUixcvNlkfYy+pJyLpYfcZEVlMUzeGDQwMhJubmxVL0zJ//PEHzp8/r/f54OBgtGrFC3qJ7BlDERERERHYfUZEREQEgKGIiIiICABDEREREREAhiIiIiIiAAxFRERERAAYioiIiIgAMBQRERERAWAoIiIiIgIA/H8W7AwiNNtUrAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_19.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaUUlEQVR4nO3deVxUVcMH8N+AbCKLoCwiioL7zqpWYkWhj6K8+RZaKvq4ZMlTSJu0uLymWBKSe/q4PRVppvXmkqak9ViWhvLmXhrugAI5KBQQ3PcPH24MzMDMMDP3ztzf9/PhE3PnzJ1zBuL+POfcc1SCIAggIiIiUhA7qStAREREZGkMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREQytmnTJqhUKly6dEnqqhDZFAYgIoU7duwYkpKS0KtXL7i6uqJDhw544okn8PPPPzcoO3ToUKhUKqhUKtjZ2cHd3R3dunXDhAkTsH//foPed+fOnYiOjoaPjw9atmyJzp0744knnsDevXtN1bQGFi1ahM8++6zB8e+++w7z5s3D7du3zfbe9c2bN0/8LFUqFVq2bImePXvi9ddfR2lpqUneIysrC5mZmSY5F5GtYQAiUri33noL27dvx8MPP4x3330X06dPxzfffIPQ0FCcOnWqQfn27dvj/fffx7/+9S8sWbIEo0aNwnfffYdHH30UCQkJqKqqavI909PTMWrUKKhUKqSmpmLp0qUYM2YMfvnlF2zZssUczQTQeACaP3++RQNQrdWrV+P9999HRkYGunfvjoULF2LYsGEwxTaNDEBEurWQugJEJK2UlBRkZWXB0dFRPJaQkIA+ffpg8eLF+OCDDzTKe3h4YPz48RrHFi9ejOeeew6rVq1CUFAQ3nrrLZ3v9+eff2LBggV45JFH8OWXXzZ4/ubNm81skXyUl5ejZcuWjZb57//+b7Rp0wYAMGPGDIwZMwY7duzA999/j0GDBlmimkSKxB4gIoUbPHiwRvgBgC5duqBXr144e/asXuewt7fHsmXL0LNnT6xYsQJqtVpn2aKiIpSWluK+++7T+ryPj4/G4z/++APz5s1D165d4ezsDH9/fzz22GO4ePGiWCY9PR2DBw+Gt7c3XFxcEBYWhk8++UTjPCqVCmVlZdi8ebM47DRp0iTMmzcPL730EgCgU6dO4nN159x88MEHCAsLg4uLC7y8vDB27FhcvXpV4/xDhw5F7969kZOTgyFDhqBly5Z49dVX9fr86nrooYcAAHl5eY2WW7VqFXr16gUnJye0a9cOM2fO1OjBGjp0KHbv3o3Lly+LbQoKCjK4PkS2ij1ARNSAIAgoLCxEr1699H6Nvb09xo0bhzfeeAOHDx/GiBEjtJbz8fGBi4sLdu7ciX/84x/w8vLSec7q6mqMHDkS2dnZGDt2LJ5//nncuXMH+/fvx6lTpxAcHAwAePfddzFq1Cg89dRTqKysxJYtW/D4449j165dYj3ef/99TJ06FZGRkZg+fToAIDg4GK6urvj555/x0UcfYenSpWJvTNu2bQEACxcuxBtvvIEnnngCU6dOxa1bt7B8+XIMGTIEJ06cgKenp1jf4uJiDB8+HGPHjsX48ePh6+ur9+dXqzbYeXt76ywzb948zJ8/HzExMXjmmWdw/vx5rF69GseOHcO3334LBwcHvPbaa1Cr1bh27RqWLl0KAGjVqpXB9SGyWQIRUT3vv/++AEBYv369xvHo6GihV69eOl/36aefCgCEd999t9Hzz5kzRwAguLq6CsOHDxcWLlwo5OTkNCi3YcMGAYCQkZHR4Lmamhrx+/Lyco3nKisrhd69ewsPPfSQxnFXV1chMTGxwbmWLFkiABDy8vI0jl+6dEmwt7cXFi5cqHH85MmTQosWLTSOR0dHCwCENWvW6Gx3XXPnzhUACOfPnxdu3bol5OXlCe+9957g5OQk+Pr6CmVlZYIgCMLGjRs16nbz5k3B0dFRePTRR4Xq6mrxfCtWrBAACBs2bBCPjRgxQujYsaNe9SFSGg6BEZGGc+fOYebMmRg0aBASExMNem1tD8OdO3caLTd//nxkZWVhwIAB2LdvH1577TWEhYUhNDRUY9ht+/btaNOmDf7xj380OIdKpRK/d3FxEb//7bffoFar8cADD+D48eMG1b++HTt2oKamBk888QSKiorELz8/P3Tp0gUHDx7UKO/k5ITJkycb9B7dunVD27Zt0alTJzz99NMICQnB7t27dc4dOnDgACorK5GcnAw7u7/+hE+bNg3u7u7YvXu34Q0lUiAOgRGRqKCgACNGjICHhwc++eQT2NvbG/T6u3fvAgDc3NyaLDtu3DiMGzcOpaWl+OGHH7Bp0yZkZWUhLi4Op06dgrOzMy5evIhu3bqhRYvG/1Tt2rULb775JnJzc1FRUSEerxuSjPHLL79AEAR06dJF6/MODg4ajwMCAhrMp2rK9u3b4e7uDgcHB7Rv314c1tPl8uXLAO4Fp7ocHR3RuXNn8XkiahwDEBEBANRqNYYPH47bt2/j3//+N9q1a2fwOWpvmw8JCdH7Ne7u7njkkUfwyCOPwMHBAZs3b8YPP/yA6OhovV7/73//G6NGjcKQIUOwatUq+Pv7w8HBARs3bkRWVpbBbairpqYGKpUKX3zxhdYwWH9OTd2eKH0NGTJEnHdERJbDAERE+OOPPxAXF4eff/4ZBw4cQM+ePQ0+R3V1NbKystCyZUvcf//9RtUjPDwcmzdvRn5+PoB7k5R/+OEHVFVVNehtqbV9+3Y4Oztj3759cHJyEo9v3LixQVldPUK6jgcHB0MQBHTq1Aldu3Y1tDlm0bFjRwDA+fPn0blzZ/F4ZWUl8vLyEBMTIx5rbg8YkS3jHCAihauurkZCQgKOHDmCbdu2GbX2THV1NZ577jmcPXsWzz33HNzd3XWWLS8vx5EjR7Q+98UXXwD4a3hnzJgxKCoqwooVKxqUFf6zUKC9vT1UKhWqq6vF5y5duqR1wUNXV1etix26uroCQIPnHnvsMdjb22P+/PkNFiYUBAHFxcXaG2lGMTExcHR0xLJlyzTqtH79eqjVao2771xdXRtdkoBIydgDRKRwL7zwAj7//HPExcWhpKSkwcKH9Rc9VKvVYpny8nJcuHABO3bswMWLFzF27FgsWLCg0fcrLy/H4MGDMXDgQAwbNgyBgYG4ffs2PvvsM/z73/9GfHw8BgwYAACYOHEi/vWvfyElJQVHjx7FAw88gLKyMhw4cADPPvssRo8ejREjRiAjIwPDhg3Dk08+iZs3b2LlypUICQnBTz/9pPHeYWFhOHDgADIyMtCuXTt06tQJUVFRCAsLAwC89tprGDt2LBwcHBAXF4fg4GC8+eabSE1NxaVLlxAfHw83Nzfk5eXh008/xfTp0/Hiiy826/M3VNu2bZGamor58+dj2LBhGDVqFM6fP49Vq1YhIiJC4+cVFhaGrVu3IiUlBREREWjVqhXi4uIsWl8i2ZLyFjQikl7t7du6vhor26pVK6FLly7C+PHjhS+//FKv96uqqhLWrVsnxMfHCx07dhScnJyEli1bCgMGDBCWLFkiVFRUaJQvLy8XXnvtNaFTp06Cg4OD4OfnJ/z3f/+3cPHiRbHM+vXrhS5dughOTk5C9+7dhY0bN4q3mdd17tw5YciQIYKLi4sAQOOW+AULFggBAQGCnZ1dg1vit2/fLtx///2Cq6ur4OrqKnTv3l2YOXOmcP78eY3PprElAuqrrd+tW7caLVf/NvhaK1asELp37y44ODgIvr6+wjPPPCP89ttvGmXu3r0rPPnkk4Knp6cAgLfEE9WhEgQTbDhDREREZEU4B4iIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHCyFqUVNTgxs3bsDNzY1LyRMREVkJQRBw584dtGvXDnZ2jffxMABpcePGDQQGBkpdDSIiIjLC1atX0b59+0bLMABp4ebmBuDeB9jYnkZEREQkH6WlpQgMDBSv441hANKidtjL3d2dAYiIiMjK6DN9hZOgiYiISHEYgIiIiEhxGICIiIhIcTgHiIiIyESqq6tRVVUldTVsloODA+zt7U1yLgYgIiKiZhIEAQUFBbh9+7bUVbF5np6e8PPza/Y6fQxAREREzVQbfnx8fNCyZUsuomsGgiCgvLwcN2/eBAD4+/s363wMQERERM1QXV0thh9vb2+pq2PTXFxcAAA3b96Ej49Ps4bDOAmaiIioGWrn/LRs2VLimihD7efc3LlWDEBEREQmwGEvyzDV58wARERERIrDOUBkUsXFxaisrNT5vKOjI8fIiYhIcgxAZDLFxcVYsWKF+FitdkNJiTe8vIrh4XFHPJ6UlMQQREQkA5MmTcLmzZsBAC1atICXlxf69u2LcePGYdKkSbCz02+gaNOmTUhOTraqZQAYgMhk6vb8HD8+ADt3joQg2EGlqkFc3C6Ehp5oUI6IiKTtPR82bBg2btyI6upqFBYWYu/evXj++efxySef4PPPP0eLFrYZFWyzVSQptdpNDD8AIAh22LlzJIKDL2j0BBERUcPec13M1Xvu5OQEPz8/AEBAQABCQ0MxcOBAPPzww9i0aROmTp2KjIwMbNy4Eb/++iu8vLwQFxeHt99+G61atcKhQ4cwefJkAH9NUJ47dy7mzZuH999/H++++y7Onz8PV1dXPPTQQ8jMzISPj4/J22EoToImkysp8RbDTy1BsENJiZdENSIiki99e8Ut2Xv+0EMPoV+/ftixYwcAwM7ODsuWLcPp06exefNmfPXVV3j55ZcBAIMHD0ZmZibc3d2Rn5+P/Px8vPjiiwDu3aq+YMEC/N///R8+++wzXLp0CZMmTbJYOxrDHiAyOS+vYqhUNRohSKWqgZdXiYS1IiIiQ3Tv3h0//fQTACA5OVk8HhQUhDfffBMzZszAqlWr4OjoCA8PD6hUKrEnqdbf//538fvOnTtj2bJliIiIwN27d9GqVSuLtEMX9gCRyXl43EFc3C6oVDUAIM4B4vAXEZH1EARBHNI6cOAAHn74YQQEBMDNzQ0TJkxAcXExysvLGz1HTk4O4uLi0KFDB7i5uSE6OhoAcOXKFbPXvynsASKzCA09geDgCygp8YKXVwnDDxGRlTl79iw6deqES5cuYeTIkXjmmWewcOFCeHl54fDhw5gyZQoqKyt1roBdVlaG2NhYxMbG4sMPP0Tbtm1x5coVxMbGyuJmGFn0AK1cuRJBQUFwdnZGVFQUjh49qrPs6dOnMWbMGAQFBUGlUiEzM7NBmXnz5kGlUml8de/e3YwtIG08PO6gU6fLDD9ERFbmq6++wsmTJzFmzBjk5OSgpqYG77zzDgYOHIiuXbvixo0bGuUdHR1RXV2tcezcuXMoLi7G4sWL8cADD6B79+7iRqZyIHkA2rp1K1JSUjB37lwcP34c/fr1Q2xsrM4Pqby8HJ07d8bixYsbjDXW1atXL3EyVn5+Pg4fPmyuJtB/ODo6mrQcERGZX0VFBQoKCnD9+nUcP34cixYtwujRozFy5EhMnDgRISEhqKqqwvLly/Hrr7/i/fffx5o1azTOERQUhLt37yI7OxtFRUUoLy9Hhw4d4OjoKL7u888/x4IFCyRqZUOSD4FlZGRg2rRp4i10a9aswe7du7FhwwbMnj27QfmIiAhEREQAgNbna7Vo0aLRgESm5+3tjaSkJK4ETURkRfbu3Qt/f3+0aNECrVu3Rr9+/bBs2TIkJibCzs4O/fr1Q0ZGBt566y2kpqZiyJAhSEtLw8SJE8VzDB48GDNmzEBCQgKKi4vF2+A3bdqEV199FcuWLUNoaCjS09MxatQoCVv7F0kDUGVlJXJycpCamioes7OzQ0xMDI4cOdKsc//yyy9o164dnJ2dMWjQIKSlpaFDhw7NrTI1geGGiMgwUvaeb9q0CZs2bWqy3KxZszBr1iyNYxMmTNB4vHr1aqxevVrj2Lhx4zBu3DiNY4IgGFdZE5M0ABUVFaG6uhq+vr4ax319fXHu3DmjzxsVFYVNmzahW7duyM/Px/z58/HAAw/g1KlTcHNza1C+oqICFRUV4uPS0lKj35uIiMgQ7D2XhuRDYOYwfPhw8fu+ffsiKioKHTt2xMcff4wpU6Y0KJ+Wlob58+dbsopkw7ghLBEZin8TLE/SANSmTRvY29ujsLBQ43hhYaFJ5+94enqia9euuHDhgtbnU1NTkZKSIj4uLS1FYGCgyd6flEPqJe2JiEg/kt4F5ujoiLCwMGRnZ4vHampqkJ2djUGDBpnsfe7evYuLFy/C399f6/NOTk5wd3fX+CIyhhyXtCciooYkHwJLSUlBYmIiwsPDERkZiczMTJSVlYl3hU2cOBEBAQFIS0sDcO/CcebMGfH769evIzc3F61atUJISAgA4MUXX0RcXBw6duyIGzduYO7cubC3t28wEYvI3NRqN5SUeMPLq5jrIRERyYjkASghIQG3bt3CnDlzUFBQgP79+2Pv3r3ixOgrV67Azu6vjqobN25gwIAB4uP09HSkp6cjOjoahw4dAgBcu3YN48aNQ3FxMdq2bYv7778f33//Pdq2bWvRtpGyHT8+ADt3joQg2InbgYSGnjDZ+TnXiIjIeJIHIODefIikpCStz9WGmlpBQUFN3kK3ZcsWU1WNyChqtZsYfgBAEOywc+dIBAdfMElPEOcaERE1j+QrQRPZopISbzH81BIEO5SUeJnk/JxrRETUPLLoASLbwWGZe7y8iqFS1WiEIJWqBl5eJWZ5P841IiIyDAMQmUz9YRldF2UlDMt4eNxBXNyuBnOAzBFOzD3XiIjIWIcOHcKDDz6I3377DZ6ennq9JigoCMnJyUhOTjZr3RiAyGTq9vw0dlG25WGZukvVh4aeQHDwBZSUeMHLq0Qj/JhqSXtzzzUiIts2adIkbN68GU8//XSDDU5nzpyJVatWITExUa/tMqwNAxCZnJIvypZe0r6xuUa2/lkTkWkEBgZiy5YtWLp0KVxcXAAAf/zxB7Kysmx6D01Ogpap4uJi5OfnIz8/Hzk5hfjkk2Lk5BSKx4qLi6Wuok7mngAsd97e3vD399f5Zcrhv9q5RnWZc64REdme0NBQBAYGYseOHeKxHTt2oEOHDhrLzlRUVOC5556Dj48PnJ2dcf/99+PYsWMa59qzZw+6du0KFxcXPPjgg7h06VKD9zt8+DAeeOABuLi4IDAwEM899xzKysrM1j5dGIBkqHYuzdq1azFjxjFERLTF4497IyKiLWbMOIa1a9dixYoVsg1BvChbTu1co9rP25xzjYjIMq5dAw4evPdfS/n73/+OjRs3io83bNggLkhc6+WXX8b27duxefNmHD9+HCEhIYiNjUVJyb2/7VevXsVjjz2GuLg45ObmYurUqZg9e7bGOS5evIhhw4ZhzJgx+Omnn7B161YcPnxY51I45sQAJEO1wye6hpLUajeNcnLDi7L51Z9rlJycicTETUhOztSYAG2quUZEZBnr1wMdOwIPPXTvv+vXW+Z9x48fj8OHD+Py5cu4fPkyvv32W4wfP158vqysDKtXr8aSJUswfPhw9OzZE+vWrYOLiwvW/6eSq1evRnBwMN555x1069YNTz31FCZNmqTxPmlpaXjqqaeQnJyMLl26YPDgwVi2bBn+9a9/4Y8//rBMY/+Dc4BkzJrndzQ2AZiaz9JzjYjI/K5dA6ZPB2r+04FeUwM8/TQQGwu0b2/e927bti1GjBiBTZs2QRAEjBgxAm3atBGfv3jxIqqqqnDfffeJxxwcHBAZGYmzZ88CAM6ePYuoqCiN89bf1/P//u//8NNPP+HDDz8UjwmCgJqaGuTl5aFHjx7maJ5WDEAyZum1ZPSla62foqIijcceHncYfMyI4YbItvzyy1/hp1Z1NXDhgvkDEHBvGKx2KGrlypVmeY+7d+/i6aefxnPPPdfgOUtPuGYAkjFLriWjL33X+mkMh2WIiBrq0gWws9MMQfb2wH/2+Ta7YcOGobKyEiqVCrGxsRrPBQcHw9HREd9++y06duwIAKiqqsKxY8fE9Xp69OiBzz//XON133//vcbj0NBQnDlzRty8XEoMQDInt6Ekfdf6eeyxxzS6T2vZyrAMV7wmIlNr3x5Yu/besFd19b3w8957lun9AQB7e3txOMve3l7jOVdXVzzzzDN46aWX4OXlhQ4dOuDtt99GeXk5pkyZAgCYMWMG3nnnHbz00kuYOnUqcnJyGqwf9Morr2DgwIFISkrC1KlT4erqijNnzmD//v167W9oSgxAVkCOQ0lNrfXTpk0b+Pv7S1xL8+BGpERkLlOm3Jvzc+HCvZ4fS4WfWu7u7jqfW7x4MWpqajBhwgTcuXMH4eHh2LdvH1q3bg3g3hDW9u3bMWvWLCxfvhyRkZFYtGgR/v73v4vn6Nu3L77++mu89tpreOCBByAIAoKDg5GQkGD2ttXHAERGseYJ2s1Vv+dH1zCgXO/SIyJ5a9/ecsGnqRWeP/vsM/F7Z2dnLFu2DMuWLdNZfuTIkRg5cqTGsfq300dERODLL7/UeQ5taweZAwOQDOk7R0bKuTRynaBtadyHi4jIOjEAyZA13OIsxwnalqbkLT+IiKwdA5BMWcPcEblN0LY0JQ8DEhFZOwYgahZ9J2jb4l1THAYkIrJeDEBkEGPmJ+m7dpC13TXFYUAiqksQBKmroAim+pwZgMggxsxP0nftIGu8a0rpw4BEdG9LCAAoLy+Hi4uLxLWxfeXl5QD++tyNxQBEBjO2l8ZWJg3X7wXTNQzIFa+JlMHe3h6enp64efMmAKBly5ZQqVQS18r2CIKA8vJy3Lx5E56eng0WazQUAxBZjK1MGraGu/SIyLL8/PwAQAxBZD6enp7i590cDEBkMbY0aZjhhojqUqlU8Pf3h4+PD6qqqqSujs1ycHBods9PLQYgshhOGiYiW2dvb2+yCzSZFwMQWRQnDRMRkRwwAJHFyXFzVyIiUha7posQNY817G1GRETKwh4gMjveNUVERHLDAEQWwXBDRERywgBERBZli/vCEZH1YQAiIoupvy+cLta2LxwRWR9OgiYii9F3vzdr3BeOiKwLAxARSUatdkNeXhDUajepq0JECsMhMCKSxPHjAxqsCh4aekLqahGRQrAHiIgsTq12E8MPcG9T3J07R7IniIgsRhYBaOXKlQgKCoKzszOioqJw9OhRnWVPnz6NMWPGICgoCCqVCpmZmY2ee/HixVCpVEhOTjZtpYnIaCUl3hqb4gL3QlBJiZfJ3qO4uBj5+fk6v4qLi032XkRkfSQfAtu6dStSUlKwZs0aREVFITMzE7GxsTh//jx8fHwalC8vL0fnzp3x+OOPY9asWY2e+9ixY3jvvffQt29fc1WfiIzg5VUMlapGIwSpVDXw8ioxyfl5txkRNUXyHqCMjAxMmzYNkydPRs+ePbFmzRq0bNkSGzZs0Fo+IiICS5YswdixY+Hk5KTzvHfv3sVTTz2FdevWoXXr1uaqPhEZwcPjDuLidkGlqgEAcQ6QqfaI491mRNQUSXuAKisrkZOTg9TUVPGYnZ0dYmJicOTIkWade+bMmRgxYgRiYmLw5ptvNreqRGQCdfd7Cw09geDgCygp8YKXV4lG+OG+cERkbpIGoKKiIlRXV8PX11fjuK+vL86dO2f0ebds2YLjx4/j2LFjepWvqKhARUWF+Li0tNTo9yYi3aTaF06tdkNJiTe8vIpN1stERNZN8jlApnb16lU8//zz2L9/P5ydnfV6TVpaGubPn2/mmhERYPl94Xi7PRFpI2kAatOmDezt7VFYWKhxvLCwEH5+fkadMycnBzdv3kRoaKh4rLq6Gt988w1WrFiBiooK2Nvba7wmNTUVKSkp4uPS0lIEBgYa9f5kfbg3lfXS9bMrKioCoPt2++DgC+wJIlI4SQOQo6MjwsLCkJ2djfj4eABATU0NsrOzkZSUZNQ5H374YZw8eVLj2OTJk9G9e3e88sorDcIPADg5OTU6oZpsF+8Wsl76/Owau92eAYhI2SQfAktJSUFiYiLCw8MRGRmJzMxMlJWVYfLkyQCAiRMnIiAgAGlpaQDuTZw+c+aM+P3169eRm5uLVq1aISQkBG5ubujdu7fGe7i6usLb27vBcSLeLWS99PmZmPt2eyKyXpIHoISEBNy6dQtz5sxBQUEB+vfvj71794oTo69cuQI7u7/+eN24cQMDBgwQH6enpyM9PR3R0dE4dOiQpatPNoaTZa2Xtp9d7e329ecA1T7Pu82IlEvyAATcG17QNeRVP9QEBQVBEASDzs9gRPrgZFnr1djPrrHb7YlIuSRfCJFIDrg3lfXS52fn4XEHnTpdbhB+OLRJpFwMQESwzN5UZB76/OzUajfk5QUx0BKRSBZDYERSa2qybO1t1fXxFnnpNfWz49AmEWnDAESEpifL7tixQ+dreYu8tBr72XEdICLShQFIpqx1cT5rq7e+e1MBuu8Q4zwSaejzs+M6QESkCwOQDNVf4E3XhTchIQEeHh4ar5UyYFjjooKN7U1VVFQk9vxwGEV+9PnZcR0gItKFAUiG6v5Bb+zCu3XrVq2vlypg1L8QWUuPSVOfFYdR5Kupn11TQ5tEpFwMQDLW1IVXzgHDlnpMOIxiffQd2uRCiETKxQAkY41deC9eDJFtwLC1HhMOo1ifxobHasltPhoRWRYDkIzpuvA6OFTKOmDYWo+JXIdRrG3CuaUpue1E1DQGIBnTdeGtqnKSdcCwxR4TuW2nYI0TzomI5IQBSOa0XXjVajdZBwy59pgYqv78EA+PO1rbIMU8EmudcE5EJBcMQFag/oXXGgKG3HpMjGEt80hsacI5EZGlMADJkD49CnIMGHLuMTGW1OGmKbY24ZyIyFIYgGRIV8/D7du38fHHH4uP5RYwrKXHxJbY2oRzIiJLYQCSKW0hwd/fX/YBg+HGsmxxwjkRkSUwAFkZBgyqyxrmgxERyREDEBmM68/IixzngxERyR0DEBmE68/Igy1OOCcisiQGIJmSay+LvuvKcP0Z8+KEcyKi5mEAkiFr6mXRtQAfmZ/UP3siImvGACRD1rLKLxfgIyIia8UAJHNyDRlcgI+IiKyZXdNFSCq6QoZa7SZxzRpfgI+IiEjuGIBkTM4ho3YBvrq4AB8REVkLBiAZk3PIqF2Ar7Z+XICPiIisCecAyZgcV/mtu65MYwvwcf0ZIiKSMwYgmZPbKr/e3t4YP348ysvLdZZp2bIlb9EmIiJZYwCSITmv8ltcXIwPPvigyXJyWKOIiIhIFwYgGZLzKr9cCZrqMmbFcrmuck5EysIAJFPWcgHgStDKZcyK5da0yjkR2TYGIDKaHBdpZO+C5RizYjl7EIlILhiAyChyXAmavQvSMTYMsweRiKTCAERGaWyRRqkuZJbcQ409TX8xNgzLsQfRGPxdILJODEBklNpFGuuGILks0giY9+LKniZNxoRhOfYgGoO/C0TWSxYrQa9cuRJBQUFwdnZGVFQUjh49qrPs6dOnMWbMGAQFBUGlUiEzM7NBmdWrV6Nv375wd3eHu7s7Bg0ahC+++MKMLVAeOa8Ebe491LT1NOXlBTU4v1LmsRizYrmct3kxBOc0EVkvyXuAtm7dipSUFKxZswZRUVHIzMxEbGwszp8/Dx8fnwbly8vL0blzZzz++OOYNWuW1nO2b98eixcvRpcuXSAIAjZv3ozRo0fjxIkT6NWrl7mbZNOsYSVoSw7P2cowTnMYs2K53HsQjSXVnCYOwxEZTvIAlJGRgWnTpmHy5MkAgDVr1mD37t3YsGEDZs+e3aB8REQEIiIiAEDr8wAQFxen8XjhwoVYvXo1vv/+ewagZpLzGkW1LHVxtZVhHFMwdMVyOW7z0lxShWEOwxEZR9IAVFlZiZycHKSmporH7OzsEBMTgyNHjpjkPaqrq7Ft2zaUlZVh0KBBJjmn0sn9j6ilLq6m7Gmyxn/BG7NiuTX0IBpDyjDMYTgi40gagIqKilBdXQ1fX1+N476+vjh37lyzzn3y5EkMGjQIf/zxB1q1aoVPP/0UPXv21Fq2oqICFRUV4uPS0tJmvTdJz5AeCWPDh6l6mqz1X/DG9AZaQw+iMeR4VyQRNU7yITBz6datG3Jzc6FWq/HJJ58gMTERX3/9tdYQlJaWhvnz50tQSzIlY3okmhM+TNXTZMnb903NmKBibeFGH3Ka08S1lYj0I2kAatOmDezt7VFYWKhxvLCwEH5+fs06t6OjI0JCQgAAYWFhOHbsGN5991289957DcqmpqYiJSVFfFxaWorAwMBmvb+5WONQiaUY07vQ3PBh6NyXpnBStXWSy5wm/v4Q6U/SAOTo6IiwsDBkZ2cjPj4eAFBTU4Ps7GwkJSWZ9L1qamo0hrnqcnJygpOTk0nfzxysdajEkprTbn0vHsb0NOmDk6qtj5zmNPH3h8gwkg+BpaSkIDExEeHh4YiMjERmZibKysrEu8ImTpyIgIAApKWlAbj3L/EzZ86I31+/fh25ublo1aqV2OOTmpqK4cOHo0OHDrhz5w6ysrJw6NAh7Nu3T5pGmog1D5XInSEXD3PNY+E8EusjpzlN/P0hMozkASghIQG3bt3CnDlzUFBQgP79+2Pv3r3ixOgrV67Azu6v/6lv3LiBAQMGiI/T09ORnp6O6OhoHDp0CABw8+ZNTJw4Efn5+fDw8EDfvn2xb98+PPLIIxZtmzmxq9u0DL14mOOCZsp5JBwqtRy5fI5ymodEZA0kD0DAvSEbXUNetaGmVlBQEARBaPR869evN1XVZIld3aYnh4uHqeaRcKhUWWqH15r6/bG2pQWIzE0WAYgMw65u05PLJFZTTKrmUKmy1B+GmzPnFi5daoGgoD/Rrl0EgAj2+BFpwQBkheTQW2GLTH1Hl77MNaka4FCpUtQNN/7+QFiYhJUhshIMQBIydp6GXHorbIE5w4e+zDWRlkOlRES6MQBJpLnzNKTqrbA1crmLxxzn51ApEZFuDEASMWb/Hjn0VtgiW50bwaFSIiLdGIBkQp/l6+XSW0HWgUOlRES6MQBZgLa5PkVFReL3hkxUZbghQ3ColIhIOwYgM2tqrg8nqpKpWXKolAsuEpG1YgAys6bWZOFEVTI1Sw2V1g/3uoZxueAiEckRA5AFaRvqCg6+wImqZHKWCBx1A1Zjw7hccJGI5Miu6SJkCrqGugAgLm4XVKoaAOBEVbI6un631Wo3iWtGRKQbe4AspLGhrsYmqvKWdpI7DuMSkTViALKQptZkmTz5EbRp00bjNZxAStaA6w0RkTXiEJiF1K7Jomuoq02bNvD399f4Yvgha9DU7zYRkRyxB8iCuCYL2Sr+bhORtWEAMjNuX0FKoet3m0hqXK+KtGEAMjNuX0G2St/QznBPUmruxtNkuxiALID/UxERScOYjadJGTgJmoiMom2V87y8oAbr//DCQkRyxB4gImo2Qzb0tTWcX2JddG3ZQsrDAEREzaLkDX05v8S6KDmoU0McAiOiZmlsJWhbx2FA68EtW6g+9gARUbNwJeh72Lsgb9yyhepjDxARNQtXgmbvgjWoDep1KTGo01/YA0REzab0laDZuyBftetQ1Qb1+r10tT8frlelPAxARGQUrnL+Fw4Dylf9xWjnzLmFS5daICjoT7RrFwEggnfqKRQDEBEZhauc/6Wp3gWSVt3fQX9/ICxMwsqQbDAAkWxxfRX5s7XPvzm/c0ofBiSyNgxAJEtcX4UszZjfOQ4DElkvBiCSJe7fQ5ambU0fbSsG1y3HYUAi68UARFaBy9eTJRmypg/DDZF1YgAi2TPVAnOcU0T6UPLWHkRKwgBkQ2zxAm+qixHnFJG+uKYPkTIwANkIW73Am+pixDlFpC+u6UOkDNwKw0bY6gXeXMvX69q0kohbexApgywC0MqVKxEUFARnZ2dERUXh6NGjOsuePn0aY8aMQVBQEFQqFTIzMxuUSUtLQ0REBNzc3ODj44P4+HicP3/ejC2QH1u5wJvjYnT8+ABkZiZj8+ZEZGYm4/jxAaaqLtmI0NATSE7ORGLiJiQnZ3JTUyIbJPkQ2NatW5GSkoI1a9YgKioKmZmZiI2Nxfnz5+Hj49OgfHl5OTp37ozHH38cs2bN0nrOr7/+GjNnzkRERAT+/PNPvPrqq3j00Udx5swZuLq6mrtJkrOFXanrrpvS2AJzhq6vwgmupAvX9CFSFskDUEZGBqZNm4bJkycDANasWYPdu3djw4YNmD17doPyERERiIiIAACtzwPA3r17NR5v2rQJPj4+yMnJwZAhQ0zcAnmxlQu8udZX4QRX0oVr+hApi6QBqLKyEjk5OUhNTRWP2dnZISYmBkeOHDHZ+6jVagCAl5eXyc4pV1Jf4E15J5o5LjSc4EqNYbghUg5JA1BRURGqq6vh6+urcdzX1xfnzp0zyXvU1NQgOTkZ9913H3r37q21TEVFBSoqKsTHpaWlJnlvKUh5gbeGO9G4aSUREQEyGAIzt5kzZ+LUqVM4fPiwzjJpaWmYP3++BWtlPlJe4OVwJ5quHqjbt2+L35tyThEREVknSQNQmzZtYG9vj8LCQo3jhYWF8PPza/b5k5KSsGvXLnzzzTdo3769znKpqalISUkRH5eWliIwMLDZ729J5po03ByW3r5C3x6ohIQEeHh4NDjO+R1ERMohaQBydHREWFgYsrOzER8fD+DekFV2djaSkpKMPq8gCPjHP/6BTz/9FIcOHUKnTp0aLe/k5AQnJyej308O5DaBU4o70fTdzNLDwwP+/v5mrQsREcmb5ENgKSkpSExMRHh4OCIjI5GZmYmysjLxrrCJEyciICAAaWlpAO5d5M6cOSN+f/36deTm5qJVq1YICQkBcG/YKysrC//7v/8LNzc3FBQUALh34XNxcZGglZYhl94LOdyJZgtLAZB82OI2M0RKJ3kASkhIwK1btzBnzhwUFBSgf//+2Lt3rzgx+sqVK7Cz+2tC740bNzBgwF8L16WnpyM9PR3R0dE4dOgQAGD16tUAgKFDh2q818aNGzFp0iSztoekvxNNDgGMbIc1TO4nIsNJHoCAe384dA151YaaWkFBQRAEodHzNfU8mZfUt5pLHcDItug7tGpt28wQKZ0sAhDZFqlvNbdEAOOQiDJxaJXIdjAAkcnI5U40cwcwDokoE4dWiWwLAxCZjJzuRGssgDUXh0SUiUOrRLbF6AB0+/ZtXLhwAQAQEhICT09PU9WJrJiUPR5SbGbJIRHlkHpumxxw6JdsicEB6NKlS5g5cyb27dsnTjZWqVQYNmwYVqxYgaCgIFPXkUgvlu6B4pCIsi6IUs9tkxqHfsnWGBSArl69ioEDB8LBwQELFixAjx49AABnzpzB6tWrMWjQIBw7dqzRVZeJzMmSf3iVPiRS/4KoayjQli6I5hxalTs5bHVDZEoGBaB58+ahW7du2LdvH5ydncXj8fHxmDVrFoYNG4Z58+bhn//8p8krSiQ3Sh8SqXuha2wo0NoviFIMrVoDS291Q2RqBgWgvXv3YuvWrRrhp5aLiwsWLFiAsWPHmqxyRHKm9CGRWrY+FCinyf1ywblvZAsMCkBFRUWNzvHp3LkzSkqU8a9fU1DS/AlbpeQhkVpKGArk/4d/sfXAS8phUADy9/fHmTNndM7xOXXqlEl2cVcCTii0XhwS0aT0oUClUULgJWUwKADFx8fjxRdfRHZ2Ntq2bavx3M2bN/HKK6+Iu7pT4zih0HpxSEQThwKVhYGXbIVBAWju3LnYs2cPgoODMX78eHTv3h2CIODs2bPIysqCn58f5syZY666EsmGUsKNvjgUqBwMvGQrDApArVu3xg8//IBXX30VW7Zswe3btwEAnp6eePLJJ7Fo0SJ4eXmZo542j3dUkLXTNRRItkEuW90QmYrBCyG2bt0aq1evxqpVq3Dr1i0AQNu2baFSqUxeOaXgHRVkjfS90PGCaBs49Eu2xuitMFQqFXx8fExZF0XiHRVkrXhBVB7+LMmWGByA9uzZgx07dsDLywuTJ08WV4MGgN9++w1jxozBV199ZdJK2jLeUUHWjBdEIrJWdk0X+UtWVhZGjRqFgoICHDlyBKGhofjwww/F5ysrK/H111+bvJK2rPaOirp4RwUREZF5GRSAlixZgoyMDOzatQv//ve/sXnzZjz99NNYv369uepns2rnRdTeUVEbgurfUcH5E0RERKanEmq3dNdDq1atcPLkSXTq1Ek8dvDgQYwaNQpLlizBf/3Xf6Fdu3aorq42S2UtpbS0FB4eHlCr1XB3dzfb+9RdCfrGDTtcutQCQUF/ol27e2GI8yeIiIj0Z8j126A5QO7u7igsLNQIQA8++CB27dqFkSNH4tq1a8bVWKHqhht/fyAsTMLKkOLVD+R5eS3QqRMDORHZJoMCUGRkJL744gsMHDhQ43h0dDR27tyJkSNHmrRyRGQZdbdmaWxZBm7NQkS2wqA5QLNmzdK6EzwADB06FDt37sTEiRNNUjEispzanh9dyzKo1W4a5YiIrJ1BPUADBgzAgAEDUFpaqvX5sLAwhHEch8hqcVkGIlIKgwKQp6enXis+W/skaCKl4kaXRKQUBgWggwcPit8LgoC//e1v+Oc//4mAgACTV4yILI8bXZKp1Z1crw0n15NUDApA0dHRGo/t7e0xcOBAdO7c2aSVIiLpcGd3MpW6k+sbw8n1JAWj9wIjItvFnd3JFPSdNM/J9SQFg+4CIyIiMpZa7Ya8vCDxrkIiKTW7B0ifSdFEJG/6brnCrVnIWI2tL0UkBYMC0GOPPabx+I8//sCMGTPg6uqqcXzHjh3NrxkRWYy3tzeSkpI4WZXMQtf6UsHBFzjUSpIxKAB5eHhoPB4/frxJK0NE0mG4IXPh+lIkRwYFoI0bN5qrHkREZKO4vhTJESdBExGRWdWuL6VS3dtYl+tLkRzwNngiImoWXYsd3r59W/y+sfWlOLmepMAARERERtN3scOEhIQG80gB002u54rTZCjJA9DKlSuxZMkSFBQUoF+/fli+fDkiIyO1lj19+jTmzJmDnJwcXL58GUuXLkVycrJGmW+++QZLlixBTk4O8vPz8emnnyI+Pt78DSEiUiB9FzH08PCAv7+/WerAFafJGJLOAdq6dStSUlIwd+5cHD9+HP369UNsbCxu3ryptXx5eTk6d+6MxYsXw8/PT2uZsrIy9OvXDytXrjRn1YnIgoqLi5Gfn4/8/Hzk5BTik0+KkZNTKB4rLi6Wuor0H1Isdlg/hOmqA1ecprok7QHKyMjAtGnTMHnyZADAmjVrsHv3bmzYsAGzZ89uUD4iIgIREREAoPV5ABg+fDiGDx9uvkoTkUXV/dd9Y4vp8V/30pPDYodyqANZB8l6gCorK5GTk4OYmJi/KmNnh5iYGBw5ckSqahGRzNT+q13XYnq1/8rnv+6l1dTPRyl1IOshWQAqKipCdXU1fH19NY77+vqioKDAonWpqKhAaWmpxhcRyUtji+mR9OTw85FDHch6cB0gAGlpafDw8BC/AgMDpa4SEdVTu5heXVxMTz7k8PORQx3IekgWgNq0aQN7e3sUFhZqHC8sLNQ5wdlcUlNToVarxa+rV69a9P2JqGlcTE/e5PDzkUMdyHpINgna0dERYWFhyM7OFm9Tr6mpQXZ2NpKSkixaFycnJzg5OVn0PYnIcI0tpieVuuvP3Lhhh7y8FujU6U+0a3fvImzr68/UXcRQDosdyvF3hORJ0rvAUlJSkJiYiPDwcERGRiIzMxNlZWXiXWETJ05EQEAA0tLSANyb5HjmzBnx++vXryM3NxetWrVCSEgIAODu3bu4cOGC+B55eXnIzc2Fl5cXOnToYOEWEpGpeXjckc1FjXeo3dtENykpSdJFCOuHK12/I2q1WufrbfXnQ7pJGoASEhJw69YtzJkzBwUFBejfvz/27t0rToy+cuUK7Oz+GqW7ceMGBgwYID5OT09Heno6oqOjcejQIQDAjz/+iAcffFAsk5KSAgBITEzEpk2bzN8oIlKMpu5QCw6+AA+POzZ/h5rU4aGxEHb79m18/PHHAO6tPaeLLYdU0k7ylaCTkpJ0DnnVhppaQUFBEASh0fMNHTq0yTJEZD30HTqRcj+pxu4+kktvVX22tnWEvnVVq91QUuINL69ijZ+NrYdUakjyAERE1Bg5DLE0pfbuo7ohSM53H9XfOkJXKLC1XhEukkh1MQARkezJ/SJce/dR/YurpXp/DO3NqVu2sVBgS70iTQ1TkvIwABERmYBUdx81pzdHSaHAGocpybwYgIiITESKO9Sa05ujpFBgbcOUZH5cCZqIyAYYsw+WklZO5iKJVB97gIiIjCSnO9SM6c2Reu6SpXGRRKqLAYiIyEhyukPN2CGexkJBUVFRg/JS33FnKH0XSZRyGQWSBgMQEVEzyCUMNKc3R1co2LFjh9by1nR7vJxCKskLAxARkY3Qd4hH394OW1k0kOGGtGEAIiKyIfrciaarV6SoqEjs9eGigWTrGICIiKyYsROxG+sVUdL6QKRcDEBERFbMHHNclLQ+ECkXAxARkZUz9RwXLhpISsCFEImISAMXDSQlYA8QEdmkuhuE3rhhh7y8FujU6U+0a3fvos5bnxvHRQPJ1jEAEZHNqbtBaGN3M1nTejaWwEUDSUkYgIjI5tT2/DR1N9ONGzcaTB5Wcs8QFw0kJWEAIiKb1dTdTBs37te60J+Se4aU2m5SHgYgIrJZjd3N1NjQmLWtdExEhuNdYERks3TdzQRA69CYWu0mWV2JyLLYA0RENk3b3Ux5eUFc6E+HunfPacM5QFTftWvAL78AXboA7dtLXRv9MQARkc2rfzcTF/rTHnRu376Njz/+WHysazNUJc+RIk3r1wPTpwM1NYCdHbB2LTBlitS10g8DEBEpTu3QWP05QErp/am7TABQP+jcO8Y5UtSUa9f+Cj/Avf8+/TQQG2sdPUEMQERkc/RZp0bJC/3VDTDagk5w8AVuhkqNKi4uxvffAzU1mj2B1dXADz8Uw8VF/ncUMgARkc3RtZ5NUVERduzYIT7WtdCfUuhaJ2nMmO2cI0U61fYgqtVuUKmSGwwlf/vtZpw6dUf2Q6UMQERkk7T94dV3BWOlrHSsa50kQFD8HCnSrfYfFk0NJct9qJQBiIgUgysda9I1GTww8Jqi50iR/qx5KJkBiIgURSnhRh+N/Qvemi9sZFnWOpTMAEREpGCNBR1rvbAR6YMBiIhI4QwNOkqZI0W2jQGIiEhh9A0wCQkJ8KhdGKjOazmMSLaAAYiISGE4GZyIAYiISJEYbshYtrKcBAMQERER6c1WehAZgIiIyGoYs1s9d7g3PVv4vGQRgFauXIklS5agoKAA/fr1w/LlyxEZGam17OnTpzFnzhzk5OTg8uXLWLp0KZKTk5t1TiIikr/6m7jqUncLBmNeQ8pg13QR89q6dStSUlIwd+5cHD9+HP369UNsbCxu3ryptXx5eTk6d+6MxYsXw8/PzyTnJCIi+avfi6NWuyEvLwhqtZvOcsa8RqmuXQMOHrz3XyWQvAcoIyMD06ZNw+TJkwEAa9aswe7du7FhwwbMnj27QfmIiAhEREQAgNbnjTknERFZF2272IeGnjD5a2xd7fBgVpYLXn7ZAzU1KtjZCXj7bTWefPJ3mx4elLQHqLKyEjk5OYiJiRGP2dnZISYmBkeOHJHNOYmISD507WJfv1enua+xdbXDg0uWfISXXnJHTY0KAFBTo8JLL7ljyZKPsGLFChQXF0tcU/OQNAAVFRWhuroavr6+Gsd9fX1RUFBgsXNWVFSgtLRU44uIiORJ1y72JSVeJn2Nrasd9mvqs7HV4UHJh8DkIC0tDfPnz5e6GkREpAddu9h7eZWY9DVyZeq72mzpszGEpAGoTZs2sLe3R2FhocbxwsJCnROczXHO1NRUpKSkiI9LS0sRGBho1PsTEZF5NbaLvSlfIyVdIef27dv4+OOPxcdqtRtKSrzh5VWs0RZD7mqzts/GVCQNQI6OjggLC0N2djbi4+MBADU1NcjOzkZSUpLFzunk5AQnJyej3o+IiCyvsV3sTfkaKdS/dV9XyGlsUrehw1bW8tmYkuRDYCkpKUhMTER4eDgiIyORmZmJsrIy8Q6uiRMnIiAgAGlpaQDu/VDPnDkjfn/9+nXk5uaiVatWCAkJ0eucRERkfepvraBrF/u65Yx5jdTqhhddIUfXpO7g4AtGhxddn42tkjwAJSQk4NatW5gzZw4KCgrQv39/7N27V5zEfOXKFdjZ/TUueePGDQwYMEB8nJ6ejvT0dERHR+PQoUN6nZOIiKyPKbZg0NWbIkeNhZzGJi7LvV1yIXkAAu6NVeoanqoNNbWCgoIgCEKzzklERNbJ0DVp9OlNqV9OLhoLOUqduGxKkq8ETUREZG7WuA5Qbcipqzbk1E5crn3emInLtrKru7Fk0QNERERkTtY4ZNTU3VnNnbhsK7u6G4sBiIiIbJ61Dhk1FXKaO3HZVsONPjgERkRENs8UQ0ZS8fC4g06dLptleEvJ2ANERESKYC1r3egbXhISEuDh4aH19Uru2dEXAxAREYlMvc2C3FjDWjdKn5tjKQxAREQEoOEKxLoYss2C1Kz1Tidr+XytGQMQEREBaLgWjq5FA+W4Zo4u7E0hXRiAiIiogcYWDbQ2DDekDQMQERFpMMc+U+Zm63OX9MHPwDAMQEREpMHaFg20xblLhtJ3B3lb/gwMxQBEREQarG3RQFucu2Qoa97zTCoMQEREpKGpLRjqk9PQiy3NXTKGNQ5fSoUBiIiIGtB30UA5DT/x4m99w5dSYgAiIiIADdfC0bVoYN1ychp+4sXf+oYvpcQAREREAJq/Zo7Uw0+8+Bs+fKlkDEBERCQydphKDsNPvPjfYy17nkmNAYiIiJpNLsNPvPjfYw17nkmNAYiIiJpNyuEnY+Yu2Rpr3fNMSgxARETUbFIOP3G/L34GxmAAIiIik5By+IkXdn4GhmIAIiIio3H4iawVAxARERmNQy9krRiAiIioWRhuyBrZNV2EiIiIyLYwABEREZHicAiMiIhsmpx2qyf5YAAiIiKbpe9u9U888QQ8PT01jjEY2TYGICIisln67la/bt0XWo8nJSUxBNkoBiAiIlIEXbvVN7aLfWNDZ2TdOAmaiIhsnq7d6q9d89d6XK12k7K6ZAEMQEREZPN07VZ/5UoHnbvYk21jACIiIptXu1t9XSpVDTp0uKL1uCV2sSdpMQAREZHNq92tvjbs1M71ad8+X+txS27kStLgJGgiIlIEXbvVS7mLPUlHFj1AK1euRFBQEJydnREVFYWjR482Wn7btm3o3r07nJ2d0adPH+zZs0fj+cLCQkyaNAnt2rVDy5YtMWzYMPzyyy/mbAIREcmQtt3qO3W63CDk6DpOtkvyHqCtW7ciJSUFa9asQVRUFDIzMxEbG4vz58/Dx8enQfnvvvsO48aNQ1paGkaOHImsrCzEx8fj+PHj6N27NwRBQHx8PBwcHPC///u/cHd3R0ZGBmJiYnDmzBm4urpK0EoiIpKCrt3q1Wo1tm7d2uTr6wcosh0qQRAEKSsQFRWFiIgIcaXOmpoaBAYG4h//+Admz57doHxCQgLKysqwa9cu8djAgQPRv39/rFmzBj///DO6deuGU6dOoVevXuI5/fz8sGjRIkydOrXJOpWWlsLDwwNqtRru7u4maikREckJt8iwPYZcvyUdAqusrEROTg5iYmLEY3Z2doiJicGRI0e0vubIkSMa5QEgNjZWLF9RUQEAcHZ21jink5MTDh8+bOomEBGRlfL29oa/v7/OL4Yf2yZpACoqKkJ1dTV8fX01jvv6+qKgoEDrawoKChot3717d3To0AGpqan47bffUFlZibfeegvXrl1Dfn6+1nNWVFSgtLRU44uIiIhsl+RzgEzNwcEBO3bswJQpU+Dl5QV7e3vExMRg+PDh0DXal5aWhvnz51u4pkREpHQchpOOpAGoTZs2sLe3R2FhocbxwsJC+Pn5aX2Nn59fk+XDwsKQm5sLtVqNyspKtG3bFlFRUQgPD9d6ztTUVKSkpIiPS0tLERgYaGyziIiImqTvTvXckNU8JB0Cc3R0RFhYGLKzs8VjNTU1yM7OxqBBg7S+ZtCgQRrlAWD//v1ay3t4eKBt27b45Zdf8OOPP2L06NFaz+nk5AR3d3eNLyIiInPStlN9Xl5Qg33IuCGreUg+BJaSkoLExESEh4cjMjISmZmZKCsrw+TJkwEAEydOREBAANLS0gAAzz//PKKjo/HOO+9gxIgR2LJlC3788UesXbtWPOe2bdvQtm1bdOjQASdPnsTzzz+P+Ph4PProo5K0kYiIqDGN7UhP5iF5AEpISMCtW7cwZ84cFBQUoH///ti7d6840fnKlSuws/uro2rw4MHIysrC66+/jldffRVdunTBZ599ht69e4tl8vPzkZKSgsLCQvj7+2PixIl44403LN42IiKipujaqT44+AIXZjQjydcBkiOuA0REROaWn5+PtWvXIi8vCJs3JzZ4PjFxEzp1uozp06fD399fghpaH6tZB4iIiEjpdO1Uzx3pzYsBiIiISEK6dqrn8Jd5ST4HiIiISOm4I73lMQARERFJQNtO9dqCDzdkNQ8GICIiIgno2qm+Lq4EbT4MQERERBJhuJEOJ0ETERGR4jAAERERkeIwABEREZHiMAARERGR4jAAERERkeIwABEREZHi8DZ4IiIiMrvi4mJZrXnEAEREREQmoSvkqNVqbN26tcnXJyUlWSwEMQARERFRsxUXF2PFihXNOkdjPUSmxgBEREREDRg6ZGVIeFGr3VBS4g0vr2LJNn5lACIiIiIN+vbmNDZkpSvkHD8+ADt3joQg2EGlqkFc3C6Ehp4wWd31xQBEREREGvTtzdFVTlfIUavdxOMAIAh22LlzJIKDL1i8J4i3wRMREVGj1Go35OUFQa1206ustpBT2yNUe7yWINihpMTLLPVuDHuAiIiISCdDh6waCzleXsVQqWo0nlepauDlVWK2+uvCHiAiIiLSqrHeHF1qQ05dtSHHw+MO4uJ2ic/XBiopJkKzB4iIiIi0aqw3R1doqQ059XuNasuHhp5AcPCF//QIlWicx9HR0XyNqYcBiIiIiLQyZMiqbnhpLOQ88cQT8PT01Pp6rgRNREREkmuqN6cub29vJCUlyWq7i8YwABEREZEGfXtz6g9ZySXc6IMBiIiIiDRYW2+OMRiAiIiIqAFrDjf64G3wREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOLIIQCtXrkRQUBCcnZ0RFRWFo0ePNlp+27Zt6N69O5ydndGnTx/s2bNH4/m7d+8iKSkJ7du3h4uLC3r27Ik1a9aYswlEREQ2pbi4GPn5+Tq/iouLpa5is0i+FcbWrVuRkpKCNWvWICoqCpmZmYiNjcX58+fh4+PToPx3332HcePGIS0tDSNHjkRWVhbi4+Nx/Phx9O7dGwCQkpKCr776Ch988AGCgoLw5Zdf4tlnn0W7du0watQoSzeRiIjIqhQXF2PFihVNlktKSrLaLTMk7wHKyMjAtGnTMHnyZLGnpmXLltiwYYPW8u+++y6GDRuGl156CT169MCCBQsQGhqq8YP67rvvkJiYiKFDhyIoKAjTp09Hv379muxZIiIiIjS6Caox5eRI0gBUWVmJnJwcxMTEiMfs7OwQExODI0eOaH3NkSNHNMoDQGxsrEb5wYMH4/PPP8f169chCAIOHjyIn3/+GY8++qjWc1ZUVKC0tFTji4iIiGyXpAGoqKgI1dXV8PX11Tju6+uLgoICra8pKChosvzy5cvRs2dPtG/fHo6Ojhg2bBhWrlyJIUOGaD1nWloaPDw8xK/AwMBmtoyIiIjkTPIhMHNYvnw5vv/+e3z++efIycnBO++8g5kzZ+LAgQNay6empkKtVotfV69etXCNiYiIyJIknQTdpk0b2Nvbo7CwUON4YWEh/Pz8tL7Gz8+v0fK///47Xn31VXz66acYMWIEAKBv377Izc1Fenp6g+EzAHBycoKTk5MpmkRERGRz1Go3lJR4w8urGB4ed6SujklI2gPk6OiIsLAwZGdni8dqamqQnZ2NQYMGaX3NoEGDNMoDwP79+8XyVVVVqKqqgp2dZtPs7e1RU1Nj4hYQERHZtuPHByAzMxmbNyciMzMZx48PkLpKJiH5bfApKSlITExEeHg4IiMjkZmZibKyMkyePBkAMHHiRAQEBCAtLQ0A8PzzzyM6OhrvvPMORowYgS1btuDHH3/E2rVrAQDu7u6Ijo7GSy+9BBcXF3Ts2BFff/01/vWvfyEjI0OydhIREVkbtdoNO3eOhCDc61QQBDvs3DkSwcEXrL4nSPIAlJCQgFu3bmHOnDkoKChA//79sXfvXnGi85UrVzR6cwYPHoysrCy8/vrrePXVV9GlSxd89tln4hpAALBlyxakpqbiqaeeQklJCTp27IiFCxdixowZFm8fERGRtXF0dAQAlJR4i+GnliDYoaTECx4ed8Ry1kglCIIgdSXkprS0FB4eHlCr1XB3d5e6OkRERBZXXFyMS5f+RGSkD2pqVOJxe3sBP/xwE0FBLWS3CKIh12+bvAuMiIiImsfb2xthYb5Yu1YFe/t7x+ztgffeUyEszFd24cdQkg+BERERkXxNmQLExgIXLgAhIUD79lLXyDQYgIiIiKhR7dvbTvCpxSEwIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIc7gWmhSAIAIDS0lKJa0JERET6qr1u117HG8MApMWdO3cAAIGBgRLXhIiIiAx1584deHh4NFpGJegTkxSmpqYGN27cgJubG1QqlUnPXVpaisDAQFy9ehXu7u4mPbc1UHr7AX4GbL+y2w/wM1B6+wHzfQaCIODOnTto164d7Owan+XDHiAt7Ozs0L59e7O+h7u7u2J/8QG2H+BnwPYru/0APwOltx8wz2fQVM9PLU6CJiIiIsVhACIiIiLFYQCyMCcnJ8ydOxdOTk5SV0USSm8/wM+A7Vd2+wF+BkpvPyCPz4CToImIiEhx2ANEREREisMARERERIrDAERERESKwwBEREREisMAZAYrV65EUFAQnJ2dERUVhaNHj+ose/r0aYwZMwZBQUFQqVTIzMy0XEXNxJD2r1u3Dg888ABat26N1q1bIyYmptHy1sCQ9u/YsQPh4eHw9PSEq6sr+vfvj/fff9+CtTUPQz6DurZs2QKVSoX4+HjzVtDMDGn/pk2boFKpNL6cnZ0tWFvzMPR34Pbt25g5cyb8/f3h5OSErl27Ys+ePRaqrekZ0v6hQ4c2+B1QqVQYMWKEBWtsWob+/DMzM9GtWze4uLggMDAQs2bNwh9//GHeSgpkUlu2bBEcHR2FDRs2CKdPnxamTZsmeHp6CoWFhVrLHz16VHjxxReFjz76SPDz8xOWLl1q2QqbmKHtf/LJJ4WVK1cKJ06cEM6ePStMmjRJ8PDwEK5du2bhmpuGoe0/ePCgsGPHDuHMmTPChQsXhMzMTMHe3l7Yu3evhWtuOoZ+BrXy8vKEgIAA4YEHHhBGjx5tmcqagaHt37hxo+Du7i7k5+eLXwUFBRautWkZ+hlUVFQI4eHhwt/+9jfh8OHDQl5ennDo0CEhNzfXwjU3DUPbX1xcrPHzP3XqlGBvby9s3LjRshU3EUPb/+GHHwpOTk7Chx9+KOTl5Qn79u0T/P39hVmzZpm1ngxAJhYZGSnMnDlTfFxdXS20a9dOSEtLa/K1HTt2tPoA1Jz2C4Ig/Pnnn4Kbm5uwefNmc1XRrJrbfkEQhAEDBgivv/66OapnEcZ8Bn/++acwePBg4Z///KeQmJho1QHI0PZv3LhR8PDwsFDtLMPQz2D16tVC586dhcrKSktV0aya+3dg6dKlgpubm3D37l1zVdGsDG3/zJkzhYceekjjWEpKinDfffeZtZ4cAjOhyspK5OTkICYmRjxmZ2eHmJgYHDlyRMKaWYYp2l9eXo6qqip4eXmZq5pm09z2C4KA7OxsnD9/HkOGDDFnVc3G2M/gf/7nf+Dj44MpU6ZYoppmY2z77969i44dOyIwMBCjR4/G6dOnLVFdszDmM/j8888xaNAgzJw5E76+vujduzcWLVqE6upqS1XbZEzxd3D9+vUYO3YsXF1dzVVNszGm/YMHD0ZOTo44TPbrr79iz549+Nvf/mbWunIzVBMqKipCdXU1fH19NY77+vri3LlzEtXKckzR/ldeeQXt2rXT+J/HWhjbfrVajYCAAFRUVMDe3h6rVq3CI488Yu7qmoUxn8Hhw4exfv165ObmWqCG5mVM+7t164YNGzagb9++UKvVSE9Px+DBg3H69Gmzb8psDsZ8Br/++iu++uorPPXUU9izZw8uXLiAZ599FlVVVZg7d64lqm0yzf07ePToUZw6dQrr1683VxXNypj2P/nkkygqKsL9998PQRDw559/YsaMGXj11VfNWlcGIJKNxYsXY8uWLTh06JBNTALVl5ubG3Jzc3H37l1kZ2cjJSUFnTt3xtChQ6WumtnduXMHEyZMwLp169CmTRupqyOJQYMGYdCgQeLjwYMHo0ePHnjvvfewYMECCWtmOTU1NfDx8cHatWthb2+PsLAwXL9+HUuWLLG6ANRc69evR58+fRAZGSl1VSzm0KFDWLRoEVatWoWoqChcuHABzz//PBYsWIA33njDbO/LAGRCbdq0gb29PQoLCzWOFxYWws/PT6JaWU5z2p+eno7FixfjwIED6Nu3rzmraTbGtt/Ozg4hISEAgP79++Ps2bNIS0uzygBk6Gdw8eJFXLp0CXFxceKxmpoaAECLFi1w/vx5BAcHm7fSJmSKvwEODg4YMGAALly4YI4qmp0xn4G/vz8cHBxgb28vHuvRowcKCgpQWVkJR0dHs9bZlJrzO1BWVoYtW7bgf/7nf8xZRbMypv1vvPEGJkyYgKlTpwIA+vTpg7KyMkyfPh2vvfYa7OzMM1uHc4BMyNHREWFhYcjOzhaP1dTUIDs7W+NfeLbK2Pa//fbbWLBgAfbu3Yvw8HBLVNUsTPXzr6mpQUVFhTmqaHaGfgbdu3fHyZMnkZubK36NGjUKDz74IHJzcxEYGGjJ6jebKX4HqqurcfLkSfj7+5urmmZlzGdw33334cKFC2L4BYCff/4Z/v7+VhV+gOb9Dmzbtg0VFRUYP368uatpNsa0v7y8vEHIqQ3Dgjm3KzXrFGsF2rJli+Dk5CRs2rRJOHPmjDB9+nTB09NTvK11woQJwuzZs8XyFRUVwokTJ4QTJ04I/v7+wosvviicOHFC+OWXX6RqQrMY2v7FixcLjo6OwieffKJxG+idO3ekakKzGNr+RYsWCV9++aVw8eJF4cyZM0J6errQokULYd26dVI1odkM/Qzqs/a7wAxt//z584V9+/YJFy9eFHJycoSxY8cKzs7OwunTp6VqQrMZ+hlcuXJFcHNzE5KSkoTz588Lu3btEnx8fIQ333xTqiY0i7H/D9x///1CQkKCpatrcoa2f+7cuYKbm5vw0UcfCb/++qvw5ZdfCsHBwcITTzxh1noyAJnB8uXLhQ4dOgiOjo5CZGSk8P3334vPRUdHC4mJieLjvLw8AUCDr+joaMtX3EQMaX/Hjh21tn/u3LmWr7iJGNL+1157TQgJCRGcnZ2F1q1bC4MGDRK2bNkiQa1Ny5DPoD5rD0CCYFj7k5OTxbK+vr7C3/72N+H48eMS1Nq0DP0d+O6774SoqCjByclJ6Ny5s7Bw4ULhzz//tHCtTcfQ9p87d04AIHz55ZcWrql5GNL+qqoqYd68eUJwcLDg7OwsBAYGCs8++6zw22+/mbWOKkEwZ/8SERERkfxwDhAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQEZGEJk2ahPj4eKmrQaQ4DEBEpNWkSZOgUqnEL29vbwwbNgw//fST1FUzibptq/26//77zfZ+ly5dgkqlQm5ursbxd999F5s2bTLb+xKRdgxARKTTsGHDkJ+fj/z8fGRnZ6NFixYYOXKk1NUymY0bN4rty8/Px+eff661XFVVldnq4OHhAU9PT7Odn4i0YwAiIp2cnJzg5+cHPz8/9O/fH7Nnz8bVq1dx69YtPPTQQ0hKStIof+vWLTg6Ooo7QQcFBWHBggUYN24cXF1dERAQgJUrV2q8JiMjA3369IGrqysCAwPx7LPP4u7du+Lzly9fRlxcHFq3bg1XV1f06tULe/bsAQD89ttveOqpp9C2bVu4uLigS5cu2Lhxo97t8/T0FNvn5+cHLy8vsadm69atiI6OhrOzMz788EMUFxdj3LhxCAgIQMuWLdGnTx989NFHGuerqanB22+/jZCQEDg5OaFDhw5YuHAhAKBTp04AgAEDBkClUmHo0KEAGg6BVVRU4LnnnoOPjw+cnZ1x//3349ixY+Lzhw4dgkqlQnZ2NsLDw9GyZUsMHjwY58+f17vdRMQARER6unv3Lj744AOEhITA29sbU6dORVZWFioqKsQyH3zwAQICAvDQQw+Jx5YsWYJ+/frhxIkTmD17Np5//nns379ffN7Ozg7Lli3D6dOnsXnzZnz11Vd4+eWXxednzpyJiooKfPPNNzh58iTeeusttGrVCgDwxhtv4MyZM/jiiy9w9uxZrF69Gm3atDFJe2vrevbsWcTGxuKPP/5AWFgYdu/ejVOnTmH69OmYMGECjh49Kr4mNTUVixcvFuuVlZUFX19fABDLHThwAPn5+dixY4fW93355Zexfft2bN68GcePH0dISAhiY2NRUlKiUe61117DO++8gx9//BEtWrTA3//+d5O0m0gxzLrVKhFZrcTERMHe3l5wdXUVXF1dBQCCv7+/kJOTIwiCIPz+++9C69atha1bt4qv6du3rzBv3jzxcceOHYVhw4ZpnDchIUEYPny4zvfdtm2b4O3tLT7u06ePxjnriouLEyZPnmxU+wAIzs7OYvtcXV2FTz/9VMjLyxMACJmZmU2eY8SIEcILL7wgCIIglJaWCk5OTsK6deu0lq0974kTJzSOJyYmCqNHjxYEQRDu3r0rODg4CB9++KH4fGVlpdCuXTvh7bffFgRBEA4ePCgAEA4cOCCW2b17twBA+P333w35CIgUjT1ARKTTgw8+iNzcXOTm5uLo0aOIjY3F8OHDcfnyZTg7O2PChAnYsGEDAOD48eM4deoUJk2apHGOQYMGNXh89uxZ8fGBAwfw8MMPIyAgAG5ubpgwYQKKi4tRXl4OAHjuuefw5ptv4r777sPcuXM1JmE/88wz2LJlC/r374+XX34Z3333nUHtW7p0qdi+3NxcPPLII+Jz4eHhGmWrq6uxYMEC9OnTB15eXmjVqhX27duHK1euAADOnj2LiooKPPzwwwbVoa6LFy+iqqoK9913n3jMwcEBkZGRGp8ZAPTt21f83t/fHwBw8+ZNo9+bSGkYgIhIJ1dXV4SEhCAkJAQRERH45z//ibKyMqxbtw4AMHXqVOzfvx/Xrl3Dxo0b8dBDD6Fjx456n//SpUsYOXIk+vbti+3btyMnJ0ecI1RZWSm+x6+//ooJEybg5MmTCA8Px/LlywFADGOzZs3CjRs38PDDD+PFF1/U+/39/PzE9oWEhMDV1VWj7XUtWbIE7777Ll555RUcPHgQubm5iI2NFevp4uKi9/uagoODg/i9SqUCcG8OEhHphwGIiPSmUqlgZ2eH33//HQDQp08fhIeHY926dcjKytI6D+X7779v8LhHjx4AgJycHNTU1OCdd97BwIED0bVrV9y4caPBOQIDAzFjxgzs2LEDL7zwghjAAKBt27ZITEzEBx98gMzMTKxdu9aUTRZ9++23GD16NMaPH49+/fqhc+fO+Pnnn8Xnu3TpAhcXF3ECeH2Ojo4A7vUk6RIcHAxHR0d8++234rGqqiocO3YMPXv2NFFLiAgAWkhdASKSr4qKChQUFAC4d8fVihUrcPfuXcTFxYllpk6diqSkJLi6uuK//uu/Gpzj22+/xdtvv434+Hjs378f27Ztw+7duwEAISEhqKqqwvLlyxEXF4dvv/0Wa9as0Xh9cnIyhg8fjq5du+K3337DwYMHxQA1Z84chIWFoVevXqioqMCuXbvE50ytS5cu+OSTT/Ddd9+hdevWyMjIQGFhoRhMnJ2d8corr+Dll1+Go6Mj7rvvPty6dQunT5/GlClT4OPjAxcXF+zduxft27eHs7MzPDw8NN7D1dUVzzzzDF566SV4eXmhQ4cOePvtt1FeXo4pU6aYpV1ESsUeICLSae/evfD394e/vz+ioqJw7NgxbNu2TbyFGwDGjRuHFi1aYNy4cXB2dm5wjhdeeAE//vgjBgwYgDfffBMZGRmIjY0FAPTr1w8ZGRl466230Lt3b3z44YdIS0vTeH11dTVmzpyJHj16YNiwYejatStWrVoF4F6vSmpqKvr27YshQ4bA3t4eW7ZsMctn8frrryM0NBSxsbEYOnQo/Pz8Gqzg/MYbb+CFF17AnDlz0KNHDyQkJIjzclq0aIFly5bhvffeQ7t27TB69Git77N48WKMGTMGEyZMQGhoKC5cuIB9+/ahdevWZmkXkVKpBEEQpK4EEVmvS5cuITg4GMeOHUNoaKjGc0FBQUhOTkZycrI0lSMi0oFDYERklKqqKhQXF+P111/HwIEDG4QfIiI54xAYERnl22+/hb+/P44dO9Zg3o7UFi1ahFatWmn9Gj58uNTVIyIZ4BAYEdmckpKSBisn13JxcUFAQICFa0REcsMARERERIrDITAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUpz/BxIEE5KKbiryAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATyhJREFUeJzt3XlcVOXiBvBnQDaRRUBWURBMLVdwt8TMQlPMm/emlqZmeS3IlLIyy+W6Lym5lylaSXhL67qlKWXd1NJQfrmnBqkpqJCDSgLC+/vDOyMjzMAMc+acmfN8Px8+MWcOZ97zMjkP76oRQggQERERqYiT3AUgIiIisjUGICIiIlIdBiAiIiJSHQYgIiIiUh0GICIiIlIdBiAiIiJSHQYgIiIiUh0GICIiIlIdBiAiIiJSHQYgIiKFWrt2LTQaDXJycuQuCpHDYQAiUrGDBw8iKSkJDzzwADw9PdGoUSM89dRT+PXXXyud26NHD2g0Gmg0Gjg5OcHb2xvNmjXDsGHDsGvXLrNed8uWLYiLi0NgYCDq1q2LJk2a4KmnnsKOHTusdWuVzJo1C19++WWl4/v27cPUqVNx7do1yV77XlOnTtXXpUajQd26dXH//ffj7bffRmFhoVVeIy0tDSkpKVa5FpEjYgAiUrG5c+di48aNeOSRR/Dee+9h9OjR+P777xETE4OjR49WOr9hw4b4+OOP8dFHH2H+/Pno378/9u3bh8ceewyDBg1CaWlpta+5YMEC9O/fHxqNBhMnTsSiRYswcOBAnD59Gunp6VLcJgDTAWjatGk2DUA6K1aswMcff4yFCxeiefPmmDlzJnr37g1rbNHIAERkWh25C0BE8klOTkZaWhpcXV31xwYNGoRWrVphzpw5+OSTTwzO9/HxwdChQw2OzZkzB2PHjsXy5csRERGBuXPnGn2927dvY/r06Xj00Ufx9ddfV3r+8uXLtbwj5SgqKkLdunVNnvP3v/8dAQEBAIAxY8Zg4MCB2LRpE3788Ud06dLFFsUkUi22ABGpWNeuXQ3CDwA0bdoUDzzwAE6cOFGjazg7O2Px4sW4//77sXTpUmi1WqPnXr16FYWFhejWrVuVzwcGBho8vnXrFqZOnYr77rsP7u7uCAkJwZNPPomzZ8/qz1mwYAG6du0Kf39/eHh4IDY2Fp9//rnBdTQaDW7evIl169bpu51GjBiBqVOnYsKECQCAyMhI/XMVx9x88skniI2NhYeHB/z8/DB48GCcP3/e4Po9evRAy5YtkZmZie7du6Nu3bp46623alR/FfXs2RMAkJ2dbfK85cuX44EHHoCbmxtCQ0ORmJho0ILVo0cPbNu2Db///rv+niIiIswuD5EjYwsQERkQQiAvLw8PPPBAjX/G2dkZQ4YMwTvvvIMffvgBffv2rfK8wMBAeHh4YMuWLXj55Zfh5+dn9JplZWXo168fMjIyMHjwYLzyyiu4fv06du3ahaNHjyIqKgoA8N5776F///545plnUFJSgvT0dPzjH//A1q1b9eX4+OOP8fzzz6Njx44YPXo0ACAqKgqenp749ddf8emnn2LRokX61pgGDRoAAGbOnIl33nkHTz31FJ5//nlcuXIFS5YsQffu3XH48GH4+vrqy5ufn48+ffpg8ODBGDp0KIKCgmpcfzq6YOfv72/0nKlTp2LatGno1asXXnzxRZw6dQorVqzAwYMHsXfvXri4uGDSpEnQarW4cOECFi1aBACoV6+e2eUhcmiCiKiCjz/+WAAQq1evNjgeFxcnHnjgAaM/98UXXwgA4r333jN5/cmTJwsAwtPTU/Tp00fMnDlTZGZmVjpvzZo1AoBYuHBhpefKy8v13xcVFRk8V1JSIlq2bCl69uxpcNzT01MMHz680rXmz58vAIjs7GyD4zk5OcLZ2VnMnDnT4PiRI0dEnTp1DI7HxcUJAGLlypVG77uiKVOmCADi1KlT4sqVKyI7O1u8//77ws3NTQQFBYmbN28KIYRITU01KNvly5eFq6ureOyxx0RZWZn+ekuXLhUAxJo1a/TH+vbtKxo3blyj8hCpEbvAiEjv5MmTSExMRJcuXTB8+HCzflbXwnD9+nWT502bNg1paWlo164ddu7ciUmTJiE2NhYxMTEG3W4bN25EQEAAXn755UrX0Gg0+u89PDz03//555/QarV46KGHcOjQIbPKf69NmzahvLwcTz31FK5evar/Cg4ORtOmTfHtt98anO/m5oaRI0ea9RrNmjVDgwYNEBkZiX/+85+Ijo7Gtm3bjI4d2r17N0pKSjBu3Dg4Od395/uFF16At7c3tm3bZv6NEqkUu8CICACQm5uLvn37wsfHB59//jmcnZ3N+vkbN24AALy8vKo9d8iQIRgyZAgKCwvx008/Ye3atUhLS0NCQgKOHj0Kd3d3nD17Fs2aNUOdOqb/mdq6dStmzJiBrKwsFBcX649XDEmWOH36NIQQaNq0aZXPu7i4GDwOCwurNJ6qOhs3boS3tzdcXFzQsGFDfbeeMb///juAO8GpIldXVzRp0kT/PBFVjwGIiKDVatGnTx9cu3YN//3vfxEaGmr2NXTT5qOjo2v8M97e3nj00Ufx6KOPwsXFBevWrcNPP/2EuLi4Gv38f//7X/Tv3x/du3fH8uXLERISAhcXF6SmpiItLc3se6iovLwcGo0GX331VZVh8N4xNRVbomqqe/fu+nFHRGRbDEBEKnfr1i0kJCTg119/xe7du3H//febfY2ysjKkpaWhbt26ePDBBy0qR/v27bFu3TpcunQJwJ1Byj/99BNKS0srtbbobNy4Ee7u7ti5cyfc3Nz0x1NTUyuda6xFyNjxqKgoCCEQGRmJ++67z9zbkUTjxo0BAKdOnUKTJk30x0tKSpCdnY1evXrpj9W2BYzI0XEMEJGKlZWVYdCgQdi/fz8+++wzi9aeKSsrw9ixY3HixAmMHTsW3t7eRs8tKirC/v37q3zuq6++AnC3e2fgwIG4evUqli5dWulc8b+FAp2dnaHRaFBWVqZ/Licnp8oFDz09Patc7NDT0xMAKj335JNPwtnZGdOmTau0MKEQAvn5+VXfpIR69eoFV1dXLF682KBMq1evhlarNZh95+npaXJJAiK1YwsQkYq9+uqr2Lx5MxISElBQUFBp4cN7Fz3UarX6c4qKinDmzBls2rQJZ8+exeDBgzF9+nSTr1dUVISuXbuic+fO6N27N8LDw3Ht2jV8+eWX+O9//4sBAwagXbt2AIBnn30WH330EZKTk3HgwAE89NBDuHnzJnbv3o2XXnoJTzzxBPr27YuFCxeid+/eePrpp3H58mUsW7YM0dHR+OWXXwxeOzY2Frt378bChQsRGhqKyMhIdOrUCbGxsQCASZMmYfDgwXBxcUFCQgKioqIwY8YMTJw4ETk5ORgwYAC8vLyQnZ2NL774AqNHj8Zrr71Wq/o3V4MGDTBx4kRMmzYNvXv3Rv/+/XHq1CksX74cHTp0MPh9xcbGYsOGDUhOTkaHDh1Qr149JCQk2LS8RIom5xQ0IpKXbvq2sS9T59arV080bdpUDB06VHz99dc1er3S0lKxatUqMWDAANG4cWPh5uYm6tatK9q1ayfmz58viouLDc4vKioSkyZNEpGRkcLFxUUEBweLv//97+Ls2bP6c1avXi2aNm0q3NzcRPPmzUVqaqp+mnlFJ0+eFN27dxceHh4CgMGU+OnTp4uwsDDh5ORUaUr8xo0bxYMPPig8PT2Fp6enaN68uUhMTBSnTp0yqBtTSwTcS1e+K1eumDzv3mnwOkuXLhXNmzcXLi4uIigoSLz44ovizz//NDjnxo0b4umnnxa+vr4CAKfEE91DI4QVNp0hIiIisiMcA0RERESqwwBEREREqsMARERERKrDAERERESqwwBEREREqsMARERERKrDhRCrUF5ejosXL8LLy4vLyRMREdkJIQSuX7+O0NBQODmZbuNhAKrCxYsXER4eLncxiIiIyALnz59Hw4YNTZ7DAFQFLy8vAHcq0NS+RkRERKQchYWFCA8P13+Om8IAVAVdt5e3tzcDEBERkZ2pyfAVDoImIiIi1WEAIiIiItVhACIiIiLV4RggIiIiKykrK0NpaancxXBYLi4ucHZ2tsq1GICIiIhqSQiB3NxcXLt2Te6iODxfX18EBwfXep0+BiAiIqJa0oWfwMBA1K1bl4voSkAIgaKiIly+fBkAEBISUqvrMQARERHVQllZmT78+Pv7y10ch+bh4QEAuHz5MgIDA2vVHcZB0ERERLWgG/NTt25dmUuiDrp6ru1YKwYgIiIiK2C3l21Yq54ZgIiIiEh1OAbIBvLz81FSUmL0eVdXV/YbExER2RADkMTy8/OxdOlS/WOt1gsFBf7w88uHj891/fGkpCSGICIisqkRI0Zg3bp1AIA6derAz88PrVu3xpAhQzBixAg4OdWso2jt2rUYN26cXS0DwAAksYotP4cOtcOWLf0ghBM0mnIkJGxFTMzhSucREZG6yNlT0Lt3b6SmpqKsrAx5eXnYsWMHXnnlFXz++efYvHkz6tRxzKjgmHelQFqtlz78AIAQTtiypR+ios4YtAQREZG63NtTYIxUPQVubm4IDg4GAISFhSEmJgadO3fGI488grVr1+L555/HwoULkZqait9++w1+fn5ISEjAvHnzUK9ePezZswcjR44EcHeA8pQpUzB16lR8/PHHeO+993Dq1Cl4enqiZ8+eSElJQWBgoNXvw1wcBG0jBQX++vCjI4QTCgr8ZCrRHfn5+bh06RIuXbqEzMw8fP55PjIz8/TH8vPzZS0fEZGjq2kPgC17Cnr27Ik2bdpg06ZNAAAnJycsXrwYx44dw7p16/DNN9/g9ddfBwB07doVKSkp8Pb21n92vPbaawDuTFWfPn06/u///g9ffvklcnJyMGLECJvdhylsAbIRP798aDTlBiFIoymHn1+BbGWq+FeHqe45jk8iIlKf5s2b45dffgEAjBs3Tn88IiICM2bMwJgxY7B8+XK4urrCx8cHGo1G35Kk89xzz+m/b9KkCRYvXowOHTrgxo0bqFevnk3uwxi2ANmIj891JCRshUZTDgD6kCFn95furwlj3XNarZfBeUREpB5CCH2X1u7du/HII48gLCwMXl5eGDZsGPLz81FUVGTyGpmZmUhISECjRo3g5eWFuLg4AMC5c+ckL3912AJkQzExhxEVdQYFBX7w8ytQzNgfU91zSikjERHZ1okTJxAZGYmcnBz069cPL774ImbOnAk/Pz/88MMPGDVqFEpKSoyugH3z5k3Ex8cjPj4e69evR4MGDXDu3DnEx8cr4g9rBiAb8/G5rrhQocTuOSIiks8333yDI0eOYPz48cjMzER5eTneffdd/bT4f//73wbnu7q6oqyszODYyZMnkZ+fjzlz5iA8PBwA8PPPP9vmBmqAXWASc3V1tep5UlBi9xwREdlGcXExcnNz8ccff+DQoUOYNWsWnnjiCfTr1w/PPvssoqOjUVpaiiVLluC3337Dxx9/jJUrVxpcIyIiAjdu3EBGRgauXr2KoqIiNGrUCK6urvqf27x5M6ZPny7TXVbGFiCJ+fv7IykpSfErQSu1e46IiKS1Y8cOhISEoE6dOqhfvz7atGmDxYsXY/jw4XByckKbNm2wcOFCzJ07FxMnTkT37t0xe/ZsPPvss/prdO3aFWPGjMGgQYOQn5+vnwa/du1avPXWW1i8eDFiYmKwYMEC9O/fX8a7vUsjhBByF0JpCgsL4ePjA61WC29vb7mLI5lLly7hgw8+qPa80aNHIyQkxAYlIiKyP7du3UJ2djYiIyPh7u5u9s/LvQ6QvTFV3+Z8frMFiIiISEb20lPgaBiAVMwexicREakBw43tMQCpGP/qICIitWIAUgk5N9ojIiJSGgYghbJmYLl3gJ1W64WCAn/4+eUbzPbiADsiIlILBiAFsnZgqRikTO35pYSVOYmIiGyBAUiBpAosxvb8ioo6w3V/iIhIVbgStIJVt0mpuUzt+UVERKQmDEAKZu3AotvzqyLu+UVERGrEAKRg1g4s3POLiIhsac+ePdBoNLh27VqNfyYiIgIpKSmSlUmHAUjBpAgsMTGHMW5cCoYPX4tx41L044mIiEh9RowYAY1GgzFjxlR6LjExERqNBiNGjLB9wWyAg6AVTopNSn18rrPVh4iIAADh4eFIT0/HokWL4OHhAeDOfltpaWlo1KiRzKWTDluA7ICPz3VERv5ucWjhlhdERGRMTEwMwsPDsWnTJv2xTZs2oVGjRmjXrp3+WHFxMcaOHYvAwEC4u7vjwQcfxMGDBw2utX37dtx3333w8PDAww8/jJycnEqv98MPP+Chhx6Ch4cHwsPDMXbsWNy8eVOy+zOGLUAKZO3Awi0viIjsx4ULwOnTQNOmQMOGtnnN5557DqmpqXjmmWcAAGvWrMHIkSOxZ88e/Tmvv/46Nm7ciHXr1qFx48aYN28e4uPjcebMGfj5+eH8+fN48sknkZiYiNGjR+Pnn3/Gq6++avA6Z8+eRe/evTFjxgysWbMGV65cQVJSEpKSkpCammqbm/0fBiAFkiKwMNwQESnf6tXA6NFAeTng5AR88AEwapT0rzt06FBMnDgRv//+OwBg7969SE9P1wegmzdvYsWKFVi7di369OkDAFi1ahV27dqF1atXY8KECVixYgWioqLw7rvvAgCaNWuGI0eOYO7cufrXmT17Np555hmMGzcOANC0aVMsXrwYcXFxWLFiBdzd3aW/2f9hAFIoBhYiInW5cOFu+AHu/Pef/wTi46VvCWrQoAH69u2LtWvXQgiBvn37IiAgQP/82bNnUVpaim7duumPubi4oGPHjjhx4gQA4MSJE+jUqZPBdbt06WLw+P/+7//wyy+/YP369fpjQgiUl5cjOzsbLVq0kOL2qsQAREREpACnT98NPzplZcCZM7bpCnvuueeQlJQEAFi2bJkkr3Hjxg3885//xNixYys9Z+sB1wxARERECtC06Z1ur4ohyNkZiI62zev37t0bJSUl0Gg0iI+PN3guKioKrq6u2Lt3Lxo3bgwAKC0txcGDB/XdWS1atMDmzZsNfu7HH380eBwTE4Pjx48j2lY3ZQJngRERESlAw4Z3xvw4O9957OwMvP++7QZCOzs748SJEzh+/DicdYX4H09PT7z44ouYMGECduzYgePHj+OFF15AUVERRv1vkNKYMWNw+vRpTJgwAadOnUJaWhrWrl1rcJ033ngD+/btQ1JSErKysnD69Gn85z//0bc82RJbgIiIiBRi1Kg7Y37OnLnT8mOr8KPj7e1t9Lk5c+agvLwcw4YNw/Xr19G+fXvs3LkT9evXB3CnC2vjxo0YP348lixZgo4dO2LWrFl47rnn9Ndo3bo1vvvuO0yaNAkPPfQQhBCIiorCoEGDJL+3e2mEEMLmr6pwhYWF8PHxgVarNflmICIiunXrFrKzsxEZGWnTWUxqZaq+zfn8ZhcYERERqQ67wIjsQH5+PheyJCKyIgYgIoXLz8/H0qVLqz0vKSmJIYiIqIbYBUakcKZafiw5j4iI2AJEFmKXjHy0Wi8UFPjDzy/f4g1yicj6OKfINqxVzwxAZLZ7u2SMfSCzS8b6Dh1qhy1b+kEIJ2g05UhI2IqYmMNyF4tI1VxcXAAARUVF8PDwkLk0jq+oqAjA3Xq3FAMQma1iy4+pD2R2yViXVuulr2sAEMIJW7b0Q1TUGbYEEcnI2dkZvr6+uHz5MgCgbt260Gg0MpfK8QghUFRUhMuXL8PX17fSYo3mYgAii/ED2bYKCvz1da0jhBMKCvxY30QyCw4OBgB9CCLp+Pr66uu7NhiAyGL8QLYtP798aDTlBnWu0ZTDz69AxlIREQBoNBqEhIQgMDAQpaWlchfHYbm4uNS65UeHAYgsxg9k2/LxuY6EhK2VuhwZNomUw9nZ2Wof0CQtBiCyGD+QbcPV1VX/fUzMYURFnUFBgR/8/AoM6rrieUREZBoDENWKqQ9ksg5/f38kJSVx2QEiIitiAKJa8/G5zuAjMYYbIiLr4krQZLaadrWwS4aIiJSKLUBkNnbJEBGRvWMAIosw3NzBLUFsj3VORNbAAERkIe7SbnuscyKyFo4BIrLQva0QWq0XsrMjoNV6mTyPLFfTumSdE1F12AJEVqXW7gluUioPYxvxEhFVhwGIrEatu8TLvScaQydDJxGZjwGIrEatu8TLuSeaWsfEyB06icj+cQwQWZ2xD6d7x8Y4Ct2eaBXZak80tY6JMRU6iYhqQvYAtGzZMkRERMDd3R2dOnXCgQMHjJ577NgxDBw4EBEREdBoNEhJSTF57Tlz5kCj0WDcuHHWLTSZpLYPJ92eaLoQJOeeaMYGYjsaOUMnETkGWbvANmzYgOTkZKxcuRKdOnVCSkoK4uPjcerUKQQGBlY6v6ioCE2aNME//vEPjB8/3uS1Dx48iPfffx+tW7eWqvhkhBp3iVfCnmhqGhPDjXiJqLZkDUALFy7ECy+8gJEjRwIAVq5ciW3btmHNmjV48803K53foUMHdOjQAQCqfF7nxo0beOaZZ7Bq1SrMmDFDmsKrgKWDa9Xy4XTvVh/G9kSzxZYgahkTU7EuTYVObsNCRNWRLQCVlJQgMzMTEydO1B9zcnJCr169sH///lpdOzExEX379kWvXr1qFICKi4tRXFysf1xYWFir13cEtR1cq4QWEakpaUsQOQdi25KS6pyI7JtsAejq1asoKytDUFCQwfGgoCCcPHnS4uump6fj0KFDOHjwYI1/Zvbs2Zg2bZrFr+mIqlrkr6op7aY+iNSwS7xSPmjV1O2olDonIvvmUNPgz58/j1deeQW7du2Cu7t7jX9u4sSJSE5O1j8uLCxEeHi4FEW0SzUdW8Jd4uWjlm5HIiJrkS0ABQQEwNnZGXl5eQbH8/LyEBwcbNE1MzMzcfnyZcTExOiPlZWV4fvvv8fSpUtRXFwMZ2fnSj/n5uYGNzc3i17T0ZkztoTdE7bHMTFERJaRLQC5uroiNjYWGRkZGDBgAACgvLwcGRkZSEpKsuiajzzyCI4cOWJwbOTIkWjevDneeOONKsMPmWbu2BKGG9ti6CQisoysXWDJyckYPnw42rdvj44dOyIlJQU3b97Uzwp79tlnERYWhtmzZwO4M97k+PHj+u//+OMPZGVloV69eoiOjoaXlxdatmxp8Bqenp7w9/evdJxqRk1jS+wVww0RkflkDUCDBg3ClStXMHnyZOTm5qJt27bYsWOHfmD0uXPn4OR094P34sWLaNeunf7xggULsGDBAsTFxWHPnj22Lr4qcGwJERE5Io0QQshdCKUpLCyEj48PtFotvL295S6OLC5duoQPPvhA//jOLLDKY0tGjx6NkJAQOYpIRERkwJzPb4eaBUbWo6RF/oiIiKyNAYiqxMG1RETkyBiAyCglhBtLt+Mgkgvfs0T2gQGIFKu223EQ2Rrfs0T2gwGIFMsa23GYg3+5U23V9L1orfcsEVmOAYjsQk2347AU/3InIlIXBiAZscWhZszZjsNStm5tInUw9j4iIvkxAMmELQ7Vu3btGoDqt+O4du2aVdcikrq1idSB7yMiZXOq/hSSAscKVO/27dsA7m7HUVHF7Th051mDsdYmrdbLaq9Bjo/vIyLlYwBSCK3WC9nZEfwHsgo+PtfRuvUvAHSLlgu0bv2LJF0KplqbiGqK7yMi5WMXmAKwqdw0rdYLv/zSGoDmf0c0+OWX1ujZ8xurhyBu/krWwPcRkfKxBUhmbCo3zsXFBUD1f03rzrMG3eavui43bv5K5igqKgJQ/ftIdx4RyYctQDKrboCvIzF31puPjw+A6v+a1p1nLTExhxEVdabKzV+lxpmB9q1u3br67029jyqeR0TyYACSmVqaymsz60331/S93YTWDCZK2PyVMwMdj7H3ERHJjwFIZrb4cFeC2q6zI3WrjBI2f+VaRI6H6wARKRcDkEwqtiSY+nCXssVBLjUd9G3rVhlbtaoY6+a6evWq/nsOjLd//B0SKRsDkEyU0OIgB3NWdXbEOqpJN5ctVr4mafF3SKR8DEAysqcPbmsxd9C3o9VRTbq51DQw3lHxd0ikfAxAZFP2OOhbqplZxrpI7LGOyBB/h0TKxwBENmVvg76lmplVXReJPdUR3aUbj1bd79ARx/YR2RsGILI5OdfZMZdUM7Oq6yKxpzqiu+4dtzZ58hXk5NRBRMRthIZ2ANDB7satETkqBiCyCSWss1Nb1pzVU5MuEnusIzIctxYSAsTGylgYIjKKAYhswt5ndFl7Vk91XSRPPvkkAgICKv2ckuuIiMieMACRzdjzB7cUs3pMdXMFBAQgJCSkVmUmIiLjGIBIVSyd0WWtWT2O0BVIROQIGIBINZSwH5m9dwUSETkKBiAyytF2JlfKfmRKrzNH+70TEVWFAYiq5Og7kyt1PzK5OfrvnYhIx6n6U0iNqmotyc6OgFbrZfI8e2BsRte996ZGjvx7JyKqiC1AVC1H29XanBldUi2EaA8c7fdORFQRAxCZ5Ii7Wls6o8vcQKCEsTSWlsERf+9ERBUxAJFJjrirtSUzuswNBEoYS1ObMjji752IqCIGIDLJUXe1NndGl7mBQAldZ7Upg6P+3omIdBiAZKSELpLqONLO5LWZ0VWbQKCEsTTmlsGRfu9ERFVhAJKJErpIaspRdiavzSKElgYCJYylsbQMjvJ7JyKqCgOQTGra9SHX7CJHXf+mNmHSkkCghLE05pTBUX/vRET3YgCiKnHLhjtqGwiUMJbGnDLw905VsYfueiJzMQAphLEBqnLiP2i1DwRKGEtjbhn4e6eK7Km7nsgcDEAKoIRBsmRcbf9RV8JYGiWUgeyT0rvriSzFACQzJQySJetTwlgaJZSBiEipGIBkpoRBsmR9ShhLo4QyABw/4miU2F1PZAkGIJkpYZAsSUMJH+pyl4HjRxwLu+vJkXA3eJnouh10A1Q1mnIAqDRAld0TZM+4u7zjMNZdf+/vkshesAVIJvd2T0yefAU5OXUQEXEboaEdAHRg10A12LViX9h6YN/YXU+OhgFIRhU/nENCgNjY6n+GH/p3sGvFvnCwv/1jdz05GgYgO8IP/buUsNko1RxbD6zPVn8M3dtdb2w9KXbXk71hALIjXI+jauxaUT62HliXLf8YYnc9OSoGILJr7FqxD0pYEduR2PqPIUu664mUjgHIjnE9Dnat2BOuRu14OCaR7BkDkJ1it88d9ti1oqYPDa5GbRty/DHEMYlk7xiA7BC7fe6yt64VtX1oKGU1akcm1x9DHJNI9o4ByA6x28eQPXWtqHH2mhLCjdJb3Swtn63+GKqqfFevXq1UFrV3yZN9YQCyQ/bY7WNtjtC1wm5M27C01c1Woak2rYK2+GOoJuXje5nsEQOQHeF6HHfZe9cKuzFtx5JWt9qEEnODU226kmzxx1B15eN7mewVA5CdsqduH6koNdzUBLsx5VHTlgpLuyqtMcarJl1JSvpjiO9lslcMQHbk3n9sjXX7ONL4EUfFbkzbs7SlwpzundoODK7pa8m5OOG9Aa269/K9Y4V0lNxCS+rAAEQkA3ubveYILGmpqG33jjkDg819LTkWJzQW0Ey9lzdt2mT0eo4y25HsEwOQHeOsC/vGbkzbsqTVrTbdO+YODFZ6V5KpgGbpe5mt1SQnBiA7xVkX9skRZq/ZK0ta3SztqrSk5Ujp3aLVBbSRIx9FQEAAgDvdXqZafoiUgAHIDnHWhf2yh9lrSl8zpzbMbamwtKvSktYcpXeLVhfQAgICEBISUuXPsrWalIgByA4pvamcTFNyeHDElapr2+pmSfeOOa05FV/X1GvJ1SpY2xlnbK0mpWIAskNKbyp3NI7cInIvR1yp2pJWt9qGJnNac5TeKlibGWdsrSYlYwCyI0pa+0MtHLFFpKYc6S93c383loYSS1tzlP7esXTGGVurSckYgOyInGt/qJUjtojUBP9ytyyUKL01x9bYWk1KxgBkZ+RY+4PucKQWkerwL3fLKTnc2Ko7l63VZA8YgIhqQG0tIvzL3fHYsjuXrdVkDxiASBGUPtBYbS0iSp+STeazdXcuW6tJ6RiASHb2MNBYjS0iXKnacampO5fIGKfqTyGSVm03kLQFXYuIRlMOAA7bIlLV9O/IyN8r3SfHbtgvY925Wq2XzCUjsi22AJHiKHXVWDW0iNjzLCald6Mqhdq6c4mMkT0ALVu2DPPnz0dubi7atGmDJUuWoGPHjlWee+zYMUyePBmZmZn4/fffsWjRIowbN87gnNmzZ2PTpk04efIkPDw80LVrV8ydOxfNmjWzwd1QbSmtaV6Ne3fZY0iwh25UpVBjdy5RVWQNQBs2bEBycjJWrlyJTp06ISUlBfHx8Th16hQCAwMrnV9UVIQmTZrgH//4B8aPH1/lNb/77jskJiaiQ4cOuH37Nt566y089thjOH78ODw9PaW+JaoFJc60sucWETVR63pNluAAd6I7ZA1ACxcuxAsvvICRI0cCAFauXIlt27ZhzZo1ePPNNyud36FDB3To0AEAqnweAHbs2GHweO3atQgMDERmZia6d+9u5Tsga1Jq0zzDjX2xViuitbvUlNRFp4buXKLqyBaASkpKkJmZiYkTJ+qPOTk5oVevXti/f7/VXker1QIA/Pz8jJ5TXFyM4uJi/ePCwkKrvT7VHJvmqbas1Ypo7S41JXTRqbE7l8gU2QLQ1atXUVZWhqCgIIPjQUFBOHnypFVeo7y8HOPGjUO3bt3QsmVLo+fNnj0b06ZNs8prkuXYNE+1ZUkrYlUtM1evXjV4XNsuNSV00bE7l8iQ7IOgpZSYmIijR4/ihx9+MHnexIkTkZycrH9cWFiI8PBwqYtH/2PpBpLGKKmrgWzL3FbEe1tmDIPJnWPWHpgv50B/vu+J7pItAAUEBMDZ2Rl5eXkGx/Py8hAcHFzr6yclJWHr1q34/vvv0bBhQ5Pnurm5wc3NrdavSZax5l+mSuhqIPmY24pY8T1XVTCJijpj1YH5ShzoT6RWsgUgV1dXxMbGIiMjAwMGDABwp8sqIyMDSUlJFl9XCIGXX34ZX3zxBfbs2YPIyEgrlZikZK0wooSuBpKXJQN8jQWTgQM3WnVgvlIH+hOpkaxdYMnJyRg+fDjat2+Pjh07IiUlBTdv3tTPCnv22WcRFhaG2bNnA7jzoXX8+HH993/88QeysrJQr149REdHA7jT7ZWWlob//Oc/8PLyQm5uLgDAx8cHHh4eMtylsjlyd5HS1hQi6dR2gK+xYAIIqw7M50B/IuWQNQANGjQIV65cweTJk5Gbm4u2bdtix44d+oHR586dg5PT3X8oLl68iHbt2ukfL1iwAAsWLEBcXBz27NkDAFixYgUAoEePHgavlZqaihEjRkh6P/bGkbuL2NWgLrXtRjUWTMLDL1h1YD4H+hMph+yDoJOSkox2eelCjU5ERASEECavV93zdJc97MFlKXY1qE9tQrqpYGLtNXO4Bg+RMsgegIikwK4GMpepYFLbNXO4Bg+R8jAAkZ5SNyG1BLsayBLGgsmTTz6JgIAAg2PmjI/jGjxEysMARAAcc8AwuxqoOjVtcQkNDa11OFFCuHHkSQ9E5mIAIocaMMyuBjKHmlpmHHnSA5ElGIDIoQYMq+kDjaxDLe8FrpFFZIgBiBxuwLBaPtCILKXULm920ZEtMQCpmK4bqLoBw+wuInIcSu3yZhcd2RoDkIrd2100efIV5OTUQUTEbYSGdgDQgX9xETkYpXZ5s4uObI0BSOUqhpuQECA2VsbCEJHk7KHLW6lddORYnKo/hYiIHIWuy1ujKQcAxa2RZayLTqv1krlk5GjYAkREpDJKXiNLqV105HgYgIiIVMBe1siyhy46c3Bmm3IxABERqYC9rJHlSNvYcGabslkcgK5du4YzZ84AAKKjo+Hr62utMhERkQTs5UNWyV105qjpjDXObJOH2QEoJycHiYmJ2LlzJ4QQAACNRoPevXtj6dKliIiIsHYZiYjIwdlDF11tu7McacNpR2BWADp//jw6d+4MFxcXTJ8+HS1atAAAHD9+HCtWrECXLl1w8OBBNGzYUJLCEhGRY1J6F11tu7M4tV95zApAU6dORbNmzbBz5064u7vrjw8YMADjx49H7969MXXqVHz44YdWLygRETk2JXfR1aY7S6mrb6udWQFox44d2LBhg0H40fHw8MD06dMxePBgqxWOiIhIiczpzuLUfmUyKwBdvXrV5BifJk2aoKDAPqcqEhER1YS53VmONrXfUZi1EnRISAiOHz9u9PmjR48iODi41oUiIiJSIktWqlb66ttqZVYL0IABA/Daa68hIyMDDRo0MHju8uXLeOONNzBgwABrlo+IiEgxzOnOqjhjzdTUfrkXn1QrswLQlClTsH37dkRFRWHo0KFo3rw5hBA4ceIE0tLSEBwcjMmTJ0tVVnJgXC2ViOyBOd1ZSp/ZpnZmBaD69evjp59+wltvvYX09HRcu3YNAODr64unn34as2bNgp+fnxTlJAfG1VKJyF6Yu1I1/81SLrMXQqxfvz5WrFiB5cuX48qVKwCABg0aQKPRWL1wpA73/nVkbHaFva2WylYtIsfB7izHY/FWGBqNBoGBgdYsC5HDLBZ2b6uWsVDHVi0i+8DuLMdjdgDavn07Nm3aBD8/P4wcOVK/GjQA/Pnnnxg4cCC++eYbqxaS1MGRFgur+I+kqVBnb61aRGrGcONYzJoGn5aWhv79+yM3Nxf79+9HTEwM1q9fr3++pKQE3333ndULSepganaFvbJkyiwREUnPrBag+fPnY+HChRg7diwA4N///jeee+453Lp1C6NGjZKkgKQejrhYGFeAJSJbqTju8OJFJ2Rn10Fk5G2Eht5Zf4hddIbMCkCnT59GQkKC/vFTTz2FBg0aoH///igtLcXf/vY3qxeQ1MPc2RX2wBFDHREpT8Vxh6a63Tnu8C6zApC3tzfy8vIQGRmpP/bwww9j69at6NevHy5cuGD1ApK6mJpdYY8cMdQRkfLoWn6qG0vJcYd3mRWAOnbsiK+++gqdO3c2OB4XF4ctW7agX79+Vi0cqcO900Z9fK5XGRDsdXqpo4U6IlIudrvXnFkBaPz48di3b1+Vz/Xo0QNbtmzBRx99ZJWCkXqoYXqpsVBnb7i2EZGysdu95swKQO3atUO7du1QWFhY5fOxsbGIjY21SsFIXRztQ7OmrVX21KrFtY2IlI/d7jVnVgDy9fWt0YrPZWVlFheIyBE4YqsW1zYisg/sdq8ZswLQt99+q/9eCIHHH38cH374IcLCwqxeMCJ7Z0/hxhyOtGAlkaNylG53KZkVgOLi4gweOzs7o3PnzmjSpIlVC0VEysVBlkTkCMxaCZqISDfIsiIOsiSSlyOOO5SaxZuhEpE6cZAlkfI44rhDqdU6ANVkUDQRORYlDrLkNgCkdnx/m8esAPTkk08aPL516xbGjBkDT09Pg+ObNm2qfcmISNGUNMiS2wAQkbnMCkA+Pj4Gj4cOHWrVwhCRcil5jAG3ASAic5kVgFJTU6UqBxEpnD2MMXC0GWrs1iOSDgdBE1GNKf3D1pG2AWC3HpG0OA2eiByGboaabpq+Pc9Qq65bT6v1MjiPiMzDFiAicihKnKFWG47WrUekFAxARORwlDRDrbYcqVuPSEnYBUZEpGCO1K1HpCRsASIiu6fkKfrW4GjdekRKwABERHbPHqbo15bU3XoVp9xXxd7rj+heDEBE5BD44Wy5ilPugTszzwoK/OHnl28QujjlnhwJAxARkQLZsluvYsuPqTWHOOWeHAkDEBGRAsnRrVfdViJEjoQBiIhIoWzd3cQ1h0hNOA2eiIgA3F1zqCKuOUSOii1AREQE4O6aQ/eOAbKk9YezykjpGICIiEjPGmsOcVYZ2QMGICIiMlDbNYc4q4zsAccAERGpnFRT7qvbyZ5ITmwBIiKSWcXxMhcvOiE7uw4iI28jNPTOgGSpx8tINeWes8pIyRiAiIhkVHG8jKnuIqnHy0hxbe5kT0rGLjAiIhnpWl2q6y6yx/Ey3MmelIwtQERECuCo3UXcyZ6UigGIiEgBHLm7SOqd7IkswS4wIiIFcKTuIltu5EpkKbYAEREphKN0F8mxkSuRuRiAiIgUxFG6ixhuSOnYBUZERESqwwBERCQjjpchkge7wIiIZCTXeJkLF4DTp4GmTYGGDa16aSK7wABERCQzW42X0W25kZbmgddf90F5uQZOTgLz5mnx9NN/cWAyqYrsXWDLli1DREQE3N3d0alTJxw4cMDouceOHcPAgQMREREBjUaDlJSUWl+TiEgNdFtuzJ//KSZM8EZ5uQYAUF6uwYQJ3pg//1MsXboU+fn5MpeUyDZkDUAbNmxAcnIypkyZgkOHDqFNmzaIj4/H5cuXqzy/qKgITZo0wZw5cxAcHGyVaxIRqYGui83UitMVzyNydLIGoIULF+KFF17AyJEjcf/992PlypWoW7cu1qxZU+X5HTp0wPz58zF48GC4ublZ5ZpERGqiW3G6IkdZcZrIHLIFoJKSEmRmZqJXr153C+PkhF69emH//v02vWZxcTEKCwsNvoiIHJEjrThNVBuyDYK+evUqysrKEBQUZHA8KCgIJ0+etOk1Z8+ejWnTpln0mkRE9sZRVpwmqg3ZB0ErwcSJE6HVavVf58+fl7tIRESS8vG5jsjI3xl+SLVkawEKCAiAs7Mz8vLyDI7n5eUZHeAs1TXd3NyMjikiIiIixyNbC5CrqytiY2ORkZGhP1ZeXo6MjAx06dJFMdckIiIixyPrQojJyckYPnw42rdvj44dOyIlJQU3b97EyJEjAQDPPvsswsLCMHv2bAB3BjkfP35c//0ff/yBrKws1KtXD9HR0TW6JhGRGnHLDSJDsgagQYMG4cqVK5g8eTJyc3PRtm1b7NixQz+I+dy5c3ByuttIdfHiRbRr107/eMGCBViwYAHi4uKwZ8+eGl2TiEiN5Npyg4zTrcxtDH8f0tIIIYTchVCawsJC+Pj4QKvVwtvbW+7iEBGRg9GtzF2dpKSkGocgBirzPr+5FxgREVldxQ/jixedkJ1dB5GRtxEaemf9ITV8GJtyb1DRar1QUOAPP798g5l5NV2Z+95AZex65gQqR8cAREREVlXxw/jQoXbYsqUfhHDSL7oYE3MYAD+MdUzVUU1VDEqmrsetTu7iOkBERGRVug9ZrdZL/0EM3NlzbMuWftBqvQzOU7Pq6kju6zkyBiAiIpJEdRuvkvXriHVecwxAREQkCW68Wj1r1xHrvOYYgIiISBLceLV61q4j1nnNcRA0ERFJhhuvVs/adcQ6rxkGICIikpSPz3XVfggbW5tHq9UaPDZWR5auzK3mOq8pBiAiIiIJ1HSxw6eeegq+vr6VjpuzVhK3OjEfAxAREVkVP4zvqOlih76+vggJCanVa3GrE/MxABERkVXxw7gyayx2WB011ac1MAAREZHV8cP4LmOLE0ZFneE4HRlxGjwREZGEuDihMjEAERERSYiLEyoTAxAREZGEuDihMnEMEBERkQSuXbum/97U4oTXrl2r9SwwMh9bgIiIiCSg0WiqOlrD80hqbAEiIiKSgI+Pj/57U9PgK56nBhcuAKdPA02bAg0bylcOtgARERFJyNg0eK3WS+aS2d7q1UDjxkDPnnf+u3q1fGVhACIiIpIQp8HfceECMHo0UP6/CXHl5cA//3nnuBwYgIiIiCTEafB39kX78cd8ffjRKSsDfvopH/n5+TYvEwMQERGRhNQ+DV63Key+feuqDIJ7967D0qVLbR6COAiaiIhIYqamwTs63Z5wuiB472BwXV2Y2jtOCgxAREREErh3t3sfn+tVBp97z3NkSgqCDEBEREQS8Pf3R1JSksmWDVdXV9VtHGssCNoaAxAREZFE1BZu7AkDEBERkZ3Iz89ni5KVMAARERHZAd1squokJSUxBNUAp8ETERHZgZrOkrL1bCp7xQBERERkh7RaL2RnRyh+S42aznKz9Ww4doERERHZGVObqyqNUmfDMQARERHZEWObq0ZFnVHE9PKqKHFMEgMQERGRRKSYtWVqc1WlBiAlYgAiIiKSgFSztnSbq1YMQWrbXNUaOAiaiIhIAve2/BgbtGzurC21b65qLWwBIiIikpg1Bi1XnCVlak8tNe0tVhsMQERERBKy1qBlpc6mslcMQERERBKy5qBlhhvr4RggIiIiCekGLVfEQcvyYwAiIiKSEActKxO7wIiIiCRmatAyyYMBiIiISAL3zsby8bleZfDhrC15MAARERFJgLO2lI0BiIiISCIMN8rFQdBERESkOmwBIiIiokqk2MhVSRiAiIiIyIBUG7kqCbvAiIiIyIBUG7kqCVuAiIiIyChrbOSqRGwBIiIioioZ28j13pYge8QARERERFUytZGrvWMXGBERkQzsYZaVbiPXiiHIUTZyZQAiIiKyMXuZZaXbyPXeMUCOsJcZAxAREZGNVTXLqqDAH35++QbhQgmzrBx1I1cGICIiIhkpcZaVGjZyZQAiIiKSibFZVlFRZ2RtaVHDRq4MQERERDIxNctK7q4mew43NcFp8ERERDLRzbKqyFFmWSkdAxAREZFMdLOsdCHIkWZZKR27wIiIiGTkqLOslI4BiIiIyMbUMMtK6RiAiIiIbEwNs6yUjgGIiIhIBtYON/awtYaSMAARERHZOXvZWkNJOAuMiIjIztV0ywwlbK2hFAxAREREpDoMQERERA5Gq/VCdnYEtFovuYuiWBwDRERE5ECUuLmqErEFiIiIyEEY21yVLUGVMQARERE5CFObq5Ih2QPQsmXLEBERAXd3d3Tq1AkHDhwwef5nn32G5s2bw93dHa1atcL27dsNnr9x4waSkpLQsGFDeHh44P7778fKlSulvAUiIiJF4OaqNSdrANqwYQOSk5MxZcoUHDp0CG3atEF8fDwuX75c5fn79u3DkCFDMGrUKBw+fBgDBgzAgAEDcPToUf05ycnJ2LFjBz755BOcOHEC48aNQ1JSEjZv3myr2yIiIrIp3ZYZ1W2uyq017tIIIYRcL96pUyd06NBBv3hTeXk5wsPD8fLLL+PNN9+sdP6gQYNw8+ZNbN26VX+sc+fOaNu2rb6Vp2XLlhg0aBDeeecd/TmxsbHo06cPZsyYUaNyFRYWwsfHB1qtFt7e3rW5RSIiIpuouBL0xYtOyMmpg4iI2wgNvROG1LAStDmf37K1AJWUlCAzMxO9evW6WxgnJ/Tq1Qv79++v8mf2799vcD4AxMfHG5zftWtXbN68GX/88QeEEPj222/x66+/4rHHHjNaluLiYhQWFhp8ERER2RN/f3+EhIQgJCQEsbFBGDjQH7GxQfpjjh5+zCVbALp69SrKysoQFBRkcDwoKAi5ublV/kxubm615y9ZsgT3338/GjZsCFdXV/Tu3RvLli1D9+7djZZl9uzZ8PHx0X+Fh4fX4s6IiIhI6WQfBG1tS5YswY8//ojNmzcjMzMT7777LhITE7F7926jPzNx4kRotVr91/nz521YYiIiIrI12RZCDAgIgLOzM/Ly8gyO5+XlITg4uMqfCQ4ONnn+X3/9hbfeegtffPEF+vbtCwBo3bo1srKysGDBgkrdZzpubm5wc3Or7S0RERGRnZCtBcjV1RWxsbHIyMjQHysvL0dGRga6dOlS5c906dLF4HwA2LVrl/780tJSlJaWwsnJ8LacnZ1RXm44LZCIiIjUS9atMJKTkzF8+HC0b98eHTt2REpKCm7evImRI0cCAJ599lmEhYVh9uzZAIBXXnkFcXFxePfdd9G3b1+kp6fj559/xgcffAAA8Pb2RlxcHCZMmAAPDw80btwY3333HT766CMsXLhQtvskIiIiZZE1AA0aNAhXrlzB5MmTkZubi7Zt22LHjh36gc7nzp0zaM3p2rUr0tLS8Pbbb+Ott95C06ZN8eWXX6Jly5b6c9LT0zFx4kQ888wzKCgoQOPGjTFz5kyMGTPG5vdHREREyiTrOkBKxXWAiIiI7I9drANEREREJBdZu8CIiIjI8VVcpboqcqxSzQBERERENWZumMnPz9dveWVKUlKSTUMQAxARERHViCVhxlRYqqim51kLxwARERFRjSg1zFiCAYiIiIhsRqv1QnZ2BLRaL1nLwS4wIiIisolDh9phy5Z+EMIJGk05EhK2IibmsCxlYQsQERERWcSc1hyt1ksffgBACCds2dJPtpYgtgARERGR2cxtzSko8NeHHx0hnFBQ4Acfn+tSF7cStgARERGRWSxpzfHzy4dGY7gxuUZTDj+/AknLagwDEBEREZnFVGvOvVxdXQEAPj7XkZCwVR+CdK1GutYf3Xm2wi4wIiIiqhFdSNG15lQMQRVbcyqGGX9/fyQlJemnxk+efAU5OXUQEXEboaEdAHSQZSVoboZaBW6GSkREVDXdStBpaR544w0flJVp4OwsMHeuFk8//ZcsYUbHnM9vBqAqMAARERFV78IF4MwZIDoaaNhQ7tKY9/nNLjAiIiKySMOGygg+luAgaCIiIlIdBiAiIiJSHQYgIiIiUh0GICIiIlIdBiAiIiJSHQYgIiIiUh0GICIiIlIdBiAiIiJSHS6ESERERJLSbZ9hjBzbZzAAERERkWTy8/OxdOnSas9LSkqyaQhiFxgRERFJxlTLjyXnWQsDEBEREakOAxARERGpDgMQERER2YxW64Xs7AhotV6yloODoImIiMgmDh1qhy1b+kEIJ2g05UhI2IqYmMOylIUtQERERCQ5rdZLH34AQAgnbNnST7aWIAYgIiIiklxBgb8+/OgI4YSCAj9ZysMARERERJJxdXUFAPj55UOjKTd4TqMph59fgcF5tsIxQERERCQZf39/JCUloaSkBGFhhXjjDR+UlWng7Cwwd24hnn56iCwrQWuEEMKmr2gHCgsL4ePjA61WC29vb7mLQ0RE5DAuXADOnAGio4GGDa17bXM+v9kCRERERDbTsKH1g48lOAaIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSHe4FVQbc/bGFhocwlISIioprSfW7XZJ93BqAqXL9+HQAQHh4uc0mIiIjIXNevX4ePj4/JczSiJjFJZcrLy3Hx4kV4eXlBo9GY/fOFhYUIDw/H+fPn4e3tLUEJlY91cAfrgXUAsA50WA+sA0DaOhBC4Pr16wgNDYWTk+lRPmwBqoKTkxMaNmxY6+t4e3ur9g2uwzq4g/XAOgBYBzqsB9YBIF0dVNfyo8NB0ERERKQ6DEBERESkOgxAEnBzc8OUKVPg5uYmd1Fkwzq4g/XAOgBYBzqsB9YBoJw64CBoIiIiUh22ABEREZHqMAARERGR6jAAERERkeowABEREZHqMABZaNmyZYiIiIC7uzs6deqEAwcOGD332LFjGDhwICIiIqDRaJCSkmK7gkrInDpYtWoVHnroIdSvXx/169dHr169TJ5vT8yph02bNqF9+/bw9fWFp6cn2rZti48//tiGpZWGOXVQUXp6OjQaDQYMGCBtAW3AnDpYu3YtNBqNwZe7u7sNSysdc98L165dQ2JiIkJCQuDm5ob77rsP27dvt1FppWFOHfTo0aPSe0Gj0aBv3742LLH1mfs+SElJQbNmzeDh4YHw8HCMHz8et27dkraQgsyWnp4uXF1dxZo1a8SxY8fECy+8IHx9fUVeXl6V5x84cEC89tpr4tNPPxXBwcFi0aJFti2wBMytg6efflosW7ZMHD58WJw4cUKMGDFC+Pj4iAsXLti45NZlbj18++23YtOmTeL48ePizJkzIiUlRTg7O4sdO3bYuOTWY24d6GRnZ4uwsDDx0EMPiSeeeMI2hZWIuXWQmpoqvL29xaVLl/Rfubm5Ni619ZlbD8XFxaJ9+/bi8ccfFz/88IPIzs4We/bsEVlZWTYuufWYWwf5+fkG74OjR48KZ2dnkZqaatuCW5G5dbB+/Xrh5uYm1q9fL7Kzs8XOnTtFSEiIGD9+vKTlZACyQMeOHUViYqL+cVlZmQgNDRWzZ8+u9mcbN27sEAGoNnUghBC3b98WXl5eYt26dVIV0SZqWw9CCNGuXTvx9ttvS1E8m7CkDm7fvi26du0qPvzwQzF8+HC7D0Dm1kFqaqrw8fGxUelsx9x6WLFihWjSpIkoKSmxVRElV9t/ExYtWiS8vLzEjRs3pCqi5Mytg8TERNGzZ0+DY8nJyaJbt26SlpNdYGYqKSlBZmYmevXqpT/m5OSEXr16Yf/+/TKWzHasUQdFRUUoLS2Fn5+fVMWUXG3rQQiBjIwMnDp1Ct27d5eyqJKxtA7+9a9/ITAwEKNGjbJFMSVlaR3cuHEDjRs3Rnh4OJ544gkcO3bMFsWVjCX1sHnzZnTp0gWJiYkICgpCy5YtMWvWLJSVldmq2FZljX8bV69ejcGDB8PT01OqYkrKkjro2rUrMjMz9d1kv/32G7Zv347HH39c0rJyM1QzXb16FWVlZQgKCjI4HhQUhJMnT8pUKtuyRh288cYbCA0NNfifxN5YWg9arRZhYWEoLi6Gs7Mzli9fjkcffVTq4krCkjr44YcfsHr1amRlZdmghNKzpA6aNWuGNWvWoHXr1tBqtViwYAG6du2KY8eOWWUjZjlYUg+//fYbvvnmGzzzzDPYvn07zpw5g5deegmlpaWYMmWKLYptVbX9t/HAgQM4evQoVq9eLVURJWdJHTz99NO4evUqHnzwQQghcPv2bYwZMwZvvfWWpGVlACKbmzNnDtLT07Fnzx6HGfhpDi8vL2RlZeHGjRvIyMhAcnIymjRpgh49eshdNMldv34dw4YNw6pVqxAQECB3cWTTpUsXdOnSRf+4a9euaNGiBd5//31Mnz5dxpLZVnl5OQIDA/HBBx/A2dkZsbGx+OOPPzB//ny7DEC1tXr1arRq1QodO3aUuyg2tWfPHsyaNQvLly9Hp06dcObMGbzyyiuYPn063nnnHclelwHITAEBAXB2dkZeXp7B8by8PAQHB8tUKtuqTR0sWLAAc+bMwe7du9G6dWspiyk5S+vByckJ0dHRAIC2bdvixIkTmD17tl0GIHPr4OzZs8jJyUFCQoL+WHl5OQCgTp06OHXqFKKioqQttJVZ498EFxcXtGvXDmfOnJGiiDZhST2EhITAxcUFzs7O+mMtWrRAbm4uSkpK4OrqKmmZra0274WbN28iPT0d//rXv6QsouQsqYN33nkHw4YNw/PPPw8AaNWqFW7evInRo0dj0qRJcHKSZrQOxwCZydXVFbGxscjIyNAfKy8vR0ZGhsFfdI7M0jqYN28epk+fjh07dqB9+/a2KKqkrPVeKC8vR3FxsRRFlJy5ddC8eXMcOXIEWVlZ+q/+/fvj4YcfRlZWFsLDw21ZfKuwxvugrKwMR44cQUhIiFTFlJwl9dCtWzecOXNGH4IB4Ndff0VISIjdhR+gdu+Fzz77DMXFxRg6dKjUxZSUJXVQVFRUKeToQrGQcrtSSYdYO6j09HTh5uYm1q5dK44fPy5Gjx4tfH199dNYhw0bJt588039+cXFxeLw4cPi8OHDIiQkRLz22mvi8OHD4vTp03LdQq2ZWwdz5swRrq6u4vPPPzeY8nn9+nW5bsEqzK2HWbNmia+//lqcPXtWHD9+XCxYsEDUqVNHrFq1Sq5bqDVz6+BejjALzNw6mDZtmti5c6c4e/asyMzMFIMHDxbu7u7i2LFjct2CVZhbD+fOnRNeXl4iKSlJnDp1SmzdulUEBgaKGTNmyHULtWbp/w8PPvigGDRokK2LKwlz62DKlCnCy8tLfPrpp+K3334TX3/9tYiKihJPPfWUpOVkALLQkiVLRKNGjYSrq6vo2LGj+PHHH/XPxcXFieHDh+sfZ2dnCwCVvuLi4mxfcCsypw4aN25cZR1MmTLF9gW3MnPqYdKkSSI6Olq4u7uL+vXriy5duoj09HQZSm1d5tTBvRwhAAlhXh2MGzdOf25QUJB4/PHHxaFDh2QotfWZ+17Yt2+f6NSpk3BzcxNNmjQRM2fOFLdv37Zxqa3L3Do4efKkACC+/vprG5dUOubUQWlpqZg6daqIiooS7u7uIjw8XLz00kvizz//lLSMGiGkbF8iIiIiUh6OASIiIiLVYQAiIiIi1WEAIiIiItVhACIiIiLVYQAiIiIi1WEAIiIiItVhACIiIiLVYQAiIpLRiBEjMGDAALmLQaQ6DEBEVKURI0ZAo9Hov/z9/dG7d2/88ssvchfNKirem+7rwQcflOz1cnJyoNFokJWVZXD8vffew9q1ayV7XSKqGgMQERnVu3dvXLp0CZcuXUJGRgbq1KmDfv36yV0sq0lNTdXf36VLl7B58+YqzystLZWsDD4+PvD19ZXs+kRUNQYgIjLKzc0NwcHBCA4ORtu2bfHmm2/i/PnzuHLlCnr27ImkpCSD869cuQJXV1f9TtARERGYPn06hgwZAk9PT4SFhWHZsmUGP7Nw4UK0atUKnp6eCA8Px0svvYQbN27on//999+RkJCA+vXrw9PTEw888AC2b98OAPjzzz/xzDPPoEGDBvDw8EDTpk2Rmppa4/vz9fXV319wcDD8/Pz0LTUbNmxAXFwc3N3dsX79euTn52PIkCEICwtD3bp10apVK3z66acG1ysvL8e8efMQHR0NNzc3NGrUCDNnzgQAREZGAgDatWsHjUaDHj16AKjcBVZcXIyxY8ciMDAQ7u7uePDBB3Hw4EH983v27IFGo0FGRgbat2+PunXromvXrjh16lSN75uIGICIqIZu3LiBTz75BNHR0fD398fzzz+PtLQ0FBcX68/55JNPEBYWhp49e+qPzZ8/H23atMHhw4fx5ptv4pVXXsGuXbv0zzs5OWHx4sU4duwY1q1bh2+++Qavv/66/vnExEQUFxfj+++/x5EjRzB37lzUq1cPAPDOO+/g+PHj+Oqrr3DixAmsWLECAQEBVrlfXVlPnDiB+Ph43Lp1C7Gxsdi2bRuOHj2K0aNHY9iwYThw4ID+ZyZOnIg5c+boy5WWloagoCAA0J+3e/duXLp0CZs2barydV9//XVs3LgR69atw6FDhxAdHY34+HgUFBQYnDdp0iS8++67+Pnnn1GnTh0899xzVrlvItWQdKtVIrJbw4cPF87OzsLT01N4enoKACIkJERkZmYKIYT466+/RP369cWGDRv0P9O6dWsxdepU/ePGjRuL3r17G1x30KBBok+fPkZf97PPPhP+/v76x61atTK4ZkUJCQli5MiRFt0fAOHu7q6/P09PT/HFF1+I7OxsAUCkpKRUe42+ffuKV199VQghRGFhoXBzcxOrVq2q8lzddQ8fPmxwfPjw4eKJJ54QQghx48YN4eLiItavX69/vqSkRISGhop58+YJIYT49ttvBQCxe/du/Tnbtm0TAMRff/1lThUQqRpbgIjIqIcffhhZWVnIysrCgQMHEB8fjz59+uD333+Hu7s7hg0bhjVr1gAADh06hKNHj2LEiBEG1+jSpUulxydOnNA/3r17Nx555BGEhYXBy8sLw4YNQ35+PoqKigAAY8eOxYwZM9CtWzdMmTLFYBD2iy++iPT0dLRt2xavv/469u3bZ9b9LVq0SH9/WVlZePTRR/XPtW/f3uDcsrIyTJ8+Ha1atYKfnx/q1auHnTt34ty5cwCAEydOoLi4GI888ohZZajo7NmzKC0tRbdu3fTHXFxc0LFjR4M6A4DWrVvrvw8JCQEAXL582eLXJlIbBiAiMsrT0xPR0dGIjo5Ghw4d8OGHH+LmzZtYtWoVAOD555/Hrl27cOHCBaSmpqJnz55o3Lhxja+fk5ODfv36oXXr1ti4cSMyMzP1Y4RKSkr0r/Hbb79h2LBhOHLkCNq3b48lS5YAgD6MjR8/HhcvXsQjjzyC1157rcavHxwcrL+/6OhoeHp6Gtx7RfPnz8d7772HN954A99++y2ysrIQHx+vL6eHh0eNX9caXFxc9N9rNBoAd8YgEVHNMAARUY1pNBo4OTnhr7/+AgC0atUK7du3x6pVq5CWllblOJQff/yx0uMWLVoAADIzM1FeXo53330XnTt3xn333YeLFy9WukZ4eDjGjBmDTZs24dVXX9UHMABo0KABhg8fjk8++QQpKSn44IMPrHnLenv37sUTTzyBoUOHok2bNmjSpAl+/fVX/fNNmzaFh4eHfgD4vVxdXQHcaUkyJioqCq6urti7d6/+WGlpKQ4ePIj777/fSndCRABQR+4CEJFyFRcXIzc3F8CdGVdLly7FjRs3kJCQoD/n+eefR1JSEjw9PfG3v/2t0jX27t2LefPmYcCAAdi1axc+++wzbNu2DQAQHR2N0tJSLFmyBAkJCdi7dy9Wrlxp8PPjxo1Dnz59cN999+HPP//Et99+qw9QkydPRmxsLB544AEUFxdj69at+uesrWnTpvj888+xb98+1K9fHwsXLkReXp4+mLi7u+ONN97A66+/DldXV3Tr1g1XrlzBsWPHMGrUKAQGBsLDwwM7duxAw4YN4e7uDh8fH4PX8PT0xIsvvogJEybAz88PjRo1wrx581BUVIRRo0ZJcl9EasUWICIyaseOHQgJCUFISAg6deqEgwcP4rPPPtNP4QaAIUOGoE6dOhgyZAjc3d0rXePVV1/Fzz//jHbt2mHGjBlYuHAh4uPjAQBt2rTBwoULMXfuXLRs2RLr16/H7NmzDX6+rKwMiYmJaNGiBXr37o377rsPy5cvB3CnVWXixIlo3bo1unfvDmdnZ6Snp0tSF2+//TZiYmIQHx+PHj16IDg4uNIKzu+88w5effVVTJ48GS1atMCgQYP043Lq1KmDxYsX4/3330doaCieeOKJKl9nzpw5GDhwIIYNG4aYmBicOXMGO3fuRP369SW5LyK10gghhNyFICL7lZOTg6ioKBw8eBAxMTEGz0VERGDcuHEYN26cPIUjIjKCXWBEZJHS0lLk5+fj7bffRufOnSuFHyIiJWMXGBFZZO/evQgJCcHBgwcrjduR26xZs1CvXr0qv/r06SN38YhIAdgFRkQOp6CgoNLKyToeHh4ICwuzcYmISGkYgIiIiEh12AVGREREqsMARERERKrDAERERESqwwBEREREqsMARERERKrDAERERESqwwBEREREqsMARERERKrz/zLOidLOJV7BAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_20.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaZElEQVR4nO3deVyU1eI/8M8wsomAoayKoriQmguIqKVYUeh1/WW5laLl0r1SIjdLrFyywq5EuFv3q2LdSCuXMr2YcbNyKQ213HILd0CFBIUrIHN+f3hnYmCAmWFmnmfm+bxfL14yz5x55pwZcD6cc55zVEIIASIiIiIFcZK6AkRERES2xgBEREREisMARERERIrDAERERESKwwBEREREisMARERERIrDAERERESKwwBEREREisMARERERIrDAEREJGPp6elQqVQ4f/681FUhcigMQEQKd/DgQcTHx6Nz587w8PBAq1atMGrUKJw+fbpG2QEDBkClUkGlUsHJyQleXl7o2LEjxo8fj127dpn0vNu2bUN0dDT8/PzQuHFjtG3bFqNGjUJmZqalmlbD22+/ja1bt9Y4vm/fPsyfPx83b9602nNXN3/+fN1rqVKp0LhxY3Tq1AmvvfYaiouLLfIcGRkZSEtLs8i5iBwNAxCRwr3zzjvYtGkTHn30USxZsgRTp07F999/j/DwcBw7dqxG+ZYtW+Kjjz7Chx9+iMWLF2PYsGHYt28fHn/8cYwePRoVFRX1PmdKSgqGDRsGlUqFpKQkvPfeexg5ciTOnDmDDRs2WKOZAOoOQAsWLLBpANJatWoVPvroI6SmpiIsLAxvvfUWBg4cCEts08gARFS7RlJXgIiklZiYiIyMDLi4uOiOjR49Gg888AAWLVqEf/3rX3rlvb298cwzz+gdW7RoEV588UWsXLkSISEheOedd2p9vrt372LhwoV47LHH8PXXX9e4/9q1aw1skXyUlpaicePGdZZ58skn0bx5cwDA888/j5EjR2Lz5s348ccf0adPH1tUk0iR2ANEpHB9+/bVCz8A0L59e3Tu3BknT5406hxqtRpLly5Fp06dsHz5chQVFdVa9saNGyguLsaDDz5o8H4/Pz+923fu3MH8+fPRoUMHuLm5ITAwEE888QTOnTunK5OSkoK+ffuiWbNmcHd3R0REBD7//HO986hUKpSUlGD9+vW6YaeJEydi/vz5mDVrFgCgTZs2uvuqzrn517/+hYiICLi7u8PHxwdjxozBpUuX9M4/YMAAdOnSBdnZ2ejfvz8aN26MOXPmGPX6VfXII48AAHJycuost3LlSnTu3Bmurq4ICgrC9OnT9XqwBgwYgO3bt+PChQu6NoWEhJhcHyJHxR4gIqpBCIH8/Hx07tzZ6Meo1WqMHTsWr7/+Ovbs2YPBgwcbLOfn5wd3d3ds27YNL7zwAnx8fGo9Z2VlJYYMGYKsrCyMGTMGM2bMwK1bt7Br1y4cO3YMoaGhAIAlS5Zg2LBhePrpp1FeXo4NGzbgqaeewldffaWrx0cffYTJkyejV69emDp1KgAgNDQUHh4eOH36ND755BO89957ut4YX19fAMBbb72F119/HaNGjcLkyZNx/fp1LFu2DP3798fhw4fRtGlTXX0LCgowaNAgjBkzBs888wz8/f2Nfv20tMGuWbNmtZaZP38+FixYgJiYGPz1r3/FqVOnsGrVKhw8eBB79+6Fs7MzXn31VRQVFeHy5ct47733AABNmjQxuT5EDksQEVXz0UcfCQBizZo1esejo6NF586da33cli1bBACxZMmSOs8/d+5cAUB4eHiIQYMGibfeektkZ2fXKLd27VoBQKSmpta4T6PR6L4vLS3Vu6+8vFx06dJFPPLII3rHPTw8RFxcXI1zLV68WAAQOTk5esfPnz8v1Gq1eOutt/SOHz16VDRq1EjveHR0tAAgVq9eXWu7q5o3b54AIE6dOiWuX78ucnJyxPvvvy9cXV2Fv7+/KCkpEUIIsW7dOr26Xbt2Tbi4uIjHH39cVFZW6s63fPlyAUCsXbtWd2zw4MGidevWRtWHSGk4BEZEen777TdMnz4dffr0QVxcnEmP1fYw3Lp1q85yCxYsQEZGBnr06IGdO3fi1VdfRUREBMLDw/WG3TZt2oTmzZvjhRdeqHEOlUql+97d3V33/R9//IGioiL069cPhw4dMqn+1W3evBkajQajRo3CjRs3dF8BAQFo3749vv32W73yrq6umDRpkknP0bFjR/j6+qJNmzaYNm0a2rVrh+3bt9c6d+ibb75BeXk5EhIS4OT053/hU6ZMgZeXF7Zv3256Q4kUiENgRKSTl5eHwYMHw9vbG59//jnUarVJj799+zYAwNPTs96yY8eOxdixY1FcXIyffvoJ6enpyMjIwNChQ3Hs2DG4ubnh3Llz6NixIxo1qvu/qq+++gpvvvkmjhw5grKyMt3xqiHJHGfOnIEQAu3btzd4v7Ozs97tFi1a1JhPVZ9NmzbBy8sLzs7OaNmypW5YrzYXLlwAcC84VeXi4oK2bdvq7ieiujEAEREAoKioCIMGDcLNmzfxww8/ICgoyORzaC+bb9eundGP8fLywmOPPYbHHnsMzs7OWL9+PX766SdER0cb9fgffvgBw4YNQ//+/bFy5UoEBgbC2dkZ69atQ0ZGhsltqEqj0UClUuHf//63wTBYfU5N1Z4oY/Xv318374iIbIcBiIhw584dDB06FKdPn8Y333yDTp06mXyOyspKZGRkoHHjxnjooYfMqkfPnj2xfv165ObmArg3Sfmnn35CRUVFjd4WrU2bNsHNzQ07d+6Eq6ur7vi6detqlK2tR6i246GhoRBCoE2bNujQoYOpzbGK1q1bAwBOnTqFtm3b6o6Xl5cjJycHMTExumMN7QEjcmScA0SkcJWVlRg9ejT279+Pzz77zKy1ZyorK/Hiiy/i5MmTePHFF+Hl5VVr2dLSUuzfv9/gff/+978B/Dm8M3LkSNy4cQPLly+vUVb8b6FAtVoNlUqFyspK3X3nz583uOChh4eHwcUOPTw8AKDGfU888QTUajUWLFhQY2FCIQQKCgoMN9KKYmJi4OLigqVLl+rVac2aNSgqKtK7+s7Dw6POJQmIlIw9QEQK9/e//x1ffvklhg4disLCwhoLH1Zf9LCoqEhXprS0FGfPnsXmzZtx7tw5jBkzBgsXLqzz+UpLS9G3b1/07t0bAwcORHBwMG7evImtW7fihx9+wIgRI9CjRw8AwIQJE/Dhhx8iMTERBw4cQL9+/VBSUoJvvvkGf/vb3zB8+HAMHjwYqampGDhwIMaNG4dr165hxYoVaNeuHX799Ve9546IiMA333yD1NRUBAUFoU2bNoiKikJERAQA4NVXX8WYMWPg7OyMoUOHIjQ0FG+++SaSkpJw/vx5jBgxAp6ensjJycGWLVswdepUvPTSSw16/U3l6+uLpKQkLFiwAAMHDsSwYcNw6tQprFy5EpGRkXrvV0REBDZu3IjExERERkaiSZMmGDp0qE3rSyRbUl6CRkTS016+XdtXXWWbNGki2rdvL5555hnx9ddfG/V8FRUV4p///KcYMWKEaN26tXB1dRWNGzcWPXr0EIsXLxZlZWV65UtLS8Wrr74q2rRpI5ydnUVAQIB48sknxblz53Rl1qxZI9q3by9cXV1FWFiYWLdune4y86p+++030b9/f+Hu7i4A6F0Sv3DhQtGiRQvh5ORU45L4TZs2iYceekh4eHgIDw8PERYWJqZPny5OnTql99rUtURAddr6Xb9+vc5y1S+D11q+fLkICwsTzs7Owt/fX/z1r38Vf/zxh16Z27dvi3HjxommTZsKALwknqgKlRAW2HCGiIiIyI5wDhAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOF0I0QKPR4OrVq/D09ORS8kRERHZCCIFbt24hKCgITk519/EwABlw9epVBAcHS10NIiIiMsOlS5fQsmXLOsswABng6ekJ4N4LWNeeRkRERCQfxcXFCA4O1n2O14UByADtsJeXlxcDEBERkZ0xZvoKJ0ETERGR4jAAERERkeIwABEREZHicA5QA1RWVqKiokLqajgsZ2dnqNVqqatBREQOiAHIDEII5OXl4ebNm1JXxeE1bdoUAQEBXI+JiIgsigHIDNrw4+fnh8aNG/PD2QqEECgtLcW1a9cAAIGBgRLXiIiIHAkDkIkqKyt14adZs2ZSV8ehubu7AwCuXbsGPz8/DocREZHFcBK0ibRzfho3bixxTZRB+zpzrhUREVkSA5CZOOxlG3ydiYjIGhiAiIiISHE4B4iIiIhQUFCA8vLyWu93cXFxqLmvDEAKMnHiRKxfvx4A0KhRI/j4+KBr164YO3YsJk6cCCcn4zoE09PTkZCQwGUAiIgcREFBAZYvX667XVTkicLCZvDxKYC39y3d8fj4eIcJQQxAEpAyZQ8cOBDr1q1DZWUl8vPzkZmZiRkzZuDzzz/Hl19+iUaN+CNBRKQ0VT+TDh3qgW3bhkAIJ6hUGgwd+hXCww/XKGfv+GlnY9VTdm2slbJdXV0REBAAAGjRogXCw8PRu3dvPProo0hPT8fkyZORmpqKdevW4ffff4ePjw+GDh2Kf/zjH2jSpAl2796NSZMmAfhzgvK8efMwf/58fPTRR1iyZAlOnToFDw8PPPLII0hLS4Ofn5/F20FERJZXVOSpCz8AIIQTtm0bgtDQs3o9QY6Ak6BtzNj0bMuU/cgjj6Bbt27YvHkzAMDJyQlLly7F8ePHsX79evznP//Byy+/DADo27cv0tLS4OXlhdzcXOTm5uKll14CcO9S9YULF+KXX37B1q1bcf78eUycONFm7SAiooYpLGymCz9aQjihsNBHohpZD3uACAAQFhaGX3/9FQCQkJCgOx4SEoI333wTzz//PFauXAkXFxd4e3tDpVLpepK0nn32Wd33bdu2xdKlSxEZGYnbt2+jSZMmNmkHERGZz8enACqVRi8EqVQa+PgUSlgr62APEAG4t/WEdkjrm2++waOPPooWLVrA09MT48ePR0FBAUpLS+s8R3Z2NoYOHYpWrVrB09MT0dHRAICLFy9avf5ERNRw3t63MHToV1CpNACgmwPkaMNfAHuA6H9OnjyJNm3a4Pz58xgyZAj++te/4q233oKPjw/27NmD5557DuXl5bWugF1SUoLY2FjExsbi448/hq+vLy5evIjY2FiHmjRHROTowsMPIzT0LAoLfeDjU+iQ4QeQSQ/QihUrEBISAjc3N0RFReHAgQO1lj1+/DhGjhyJkJAQqFQqpKWl1Sgzf/58qFQqva+wsDArtsC+/ec//8HRo0cxcuRIZGdnQ6PR4N1330Xv3r3RoUMHXL16Va+8i4sLKisr9Y799ttvKCgowKJFi9CvXz+EhYXpNjIlIiL74u19C23aXHDY8APIIABt3LgRiYmJmDdvHg4dOoRu3bohNja21g/P0tJStG3bFosWLaoxB6Wqzp076ybp5ubmYs+ePdZqgl0pKytDXl4erly5gkOHDuHtt9/G8OHDMWTIEEyYMAHt2rVDRUUFli1bht9//x0fffQRVq9erXeOkJAQ3L59G1lZWbhx4wZKS0vRqlUruLi46B735ZdfYuHChRK1koiITOHi4mLRcvZA8iGw1NRUTJkyRXdp9erVq7F9+3asXbsWs2fPrlE+MjISkZGRAGDwfq1GjRrVGZCUKjMzE4GBgWjUqBHuu+8+dOvWDUuXLkVcXBycnJzQrVs3pKam4p133kFSUhL69++P5ORkTJgwQXeOvn374vnnn8fo0aNRUFCguww+PT0dc+bMwdKlSxEeHo6UlBQMGzZMwtYSEZExmjVrhvj4eK4EbSvl5eXIzs5GUlKS7piTkxNiYmKwf//+Bp37zJkzCAoKgpubG/r06YPk5GS0atWqoVVuMClTdnp6OtLT0+stN3PmTMycOVPv2Pjx4/Vur1q1CqtWrdI7NnbsWIwdO1bvmBDCvMoSEZFNOVK4MYakAejGjRuorKyEv7+/3nF/f3/89ttvZp83KioK6enp6NixI3Jzc7FgwQL069cPx44dg6enZ43yZWVlKCsr090uLi42+7nro8SUTUREJDeSD4FZw6BBg3Tfd+3aFVFRUWjdujU+/fRTPPfcczXKJycnY8GCBTarH8MNERHZO3vfPFXSANS8eXOo1Wrk5+frHc/Pz7fo/J2mTZuiQ4cOOHv2rMH7k5KSkJiYqLtdXFyM4OBgiz0/ERGRI5F6WydLkPQqMBcXF0RERCArK0t3TKPRICsrC3369LHY89y+fRvnzp1DYGCgwftdXV3h5eWl90VERESGyXFbJ1NJPgSWmJiIuLg49OzZE7169UJaWhpKSkp0V4VNmDABLVq0QHJyMoB7L+aJEyd031+5cgVHjhxBkyZN0K5dOwDASy+9hKFDh6J169a4evUq5s2bB7VaXWOCLhERETVcUZEnCgubwcenwG7WDpI8AI0ePRrXr1/H3LlzkZeXh+7duyMzM1M3MfrixYtwcvqzo+rq1avo0aOH7nZKSgpSUlIQHR2N3bt3AwAuX76MsWPHoqCgAL6+vnjooYfw448/wtfX16ZtIyIicnSHDvXQ7SCv3TojPPxwjXJymzMkeQAC7o0RxsfHG7xPG2q0QkJC6r20esOGDZaqGhEREdWiqMhTF36AezvHb9s2BKGhZ/V6guQ4Z0jylaCJiIjIPhUWNtPbOR64F4IKC330jslxzpAseoCIiIjsndyGeGzBx6cAKpVGLwSpVBr4+BTW+Tg5zBliACKL2b17Nx5++GH88ccfaNq0qVGPCQkJQUJCAhISEqxaNyIia6o+xFPbB7ycLws3h7f3LQwd+lWNOUB1hRpj5wxZGwOQgkycOBHr16/HtGnTamxwOn36dKxcuRJxcXFGbZdBRER/qtrzU9cHvJwvCzdF1e2awsMPIzT0LAoLfeDjU6gXfqpv62TsnCFbYABSmODgYGzYsAHvvfce3N3dAQB37txBRkaGLPZKIyKyZ3L6gLcmc7d1qmvOkK1fH06CVpjw8HAEBwdj8+bNumObN29Gq1at9JYXKCsrw4svvgg/Pz+4ubnhoYcewsGDB/XOtWPHDnTo0AHu7u54+OGHcf78+RrPt2fPHvTr1w/u7u4IDg7Giy++iJKSEqu1j4iUpaCgALm5ucjNzUV2dj4+/7wA2dn5umMFBQU2rY+xk4IdQbNmzRAYGFjrl6GhPu2coaqMmTNkDQxAErt8Gfj223v/2sqzzz6LdevW6W6vXbtWt/Ck1ssvv4xNmzZh/fr1OHToENq1a4fY2FgUFt77Ib106RKeeOIJDB06FEeOHMHkyZMxe/ZsvXOcO3cOAwcOxMiRI/Hrr79i48aN2LNnT61LHhARmUI77+aDDz7A888fRGSkL556qhkiI33x/PMH8cEHH2D58uU2DUFy+oCXI+2cIe1rZMycIWthAJLQmjVA69bAI4/c+3fNGts87zPPPIM9e/bgwoULuHDhAvbu3YtnnnlGd39JSQlWrVqFxYsXY9CgQejUqRP++c9/wt3dHWv+V8lVq1YhNDQU7777Ljp27Iinn34aEydO1Hue5ORkPP3000hISED79u3Rt29fLF26FB9++CHu3Lljm8YSkcPSDr/UNuxUVOSpV84W5PQBLyfV5wwlJKQhLi4dCQlpehOgq88ZsibOAZLI5cvA1KmA5n9/KGg0wLRpQGws0LKldZ/b19cXgwcPRnp6OoQQGDx4MJo3b667/9y5c6ioqMCDDz6oO+bs7IxevXrh5MmTAICTJ08iKipK77zV92/75Zdf8Ouvv+Ljjz/WHRNCQKPRICcnB/fff781mkdECiOneSVA3ZOClcrcOUPWxAAkkTNn/gw/WpWVwNmz1g9AwL1hMO1Q1IoVK6zyHLdv38a0adPw4osv1riPE66JyFJMWYvGVmv1eHvfYvCpRm6X/zMASaR9e8DJST8EqdXA//ZztbqBAweivLwcKpUKsbGxeveFhobCxcUFe/fuRevWrQEAFRUVOHjwoG69nvvvvx9ffvml3uN+/PFHvdvh4eE4ceKEbpNaIiJrMHYtGmuu1WPs0I0th3iobgxAEmnZEvjgg3vDXpWV98LP++/bpvcHANRqtW44S61W693n4eGBv/71r5g1axZ8fHzQqlUr/OMf/0BpaSmee+45AMDzzz+Pd999F7NmzcLkyZORnZ1dY/2gV155Bb1790Z8fDwmT54MDw8PnDhxArt27TJqTxgiImMZM+xkzbV6zBniUeLK0XLCACSh5567N+fn7Nl7PT+2Cj9aXl5etd63aNEiaDQajB8/Hrdu3ULPnj2xc+dO3HfffQDuDWFt2rQJM2fOxLJly9CrVy+8/fbbePbZZ3Xn6Nq1K7777ju8+uqr6NevH4QQCA0NxejRo63eNiJSHmOHnay1Vo8pYUWOm4MqDQOQxFq2tF3wqW+F561bt+q+d3Nzw9KlS7F06dJayw8ZMgRDhgzRO1b9cvrIyEh8/fXXtZ7D0NpBRETWJIdJ09V7fmobjnOUlaPliAGIiIjskrnzbszdwNNa5LI3ltIwABERkV0y99JqczbwtBalbJ0hRwxARERkt8ydHyOXtXrkMBynVAxARERktxpyJZUc1uqR23CckjAAmUkIIXUVFIGvMxHVxtR1feS4Vo+chuOUhgHIRM7OzgCA0tJSuLu7S1wbx1daWgrgz9ediEjL1HV95LgdAyCf4TilYQAykVqtRtOmTXHt2jUAQOPGjaFSqSSuleMRQqC0tBTXrl1D06ZNayzWSESkZcpEYrmsqVO9l6m24TiuHG09DEBmCAgIAABdCCLradq0qe71JiIyxB4nEsu1N0pJGIDMoFKpEBgYCD8/P1RUVEhdHYfl7OzMnh8iqpe9TiRmuJEWA1ADqNVqfkATEUmME4nJHAxARERk9ziRmEzFAERERA5BDuv6kP1wqr8IERGR/MhxXR+yH+wBIiIiu8QrqaghGICIiMhuMdyQuRiAiIiIHFBD9klTAgYgIiIiB1N9n7TaaPdJUyJOgiYiInIwdfX8mFPOETEAERERObiiIk/k5ISgqMhT6qrIBofAiIiIHNihQz1qrJIdHn5Y6mpJjj1AREREDqqoyFMXfoB7m8Ru2zaEPUGQSQBasWIFQkJC4ObmhqioKBw4cKDWssePH8fIkSMREhIClUqFtLS0Os+9aNEiqFQqJCQkWLbSREREMldY2Exvk1jgXggqLPSpUbagoAC5ubm1fhUUFNiq2jYh+RDYxo0bkZiYiNWrVyMqKgppaWmIjY3FqVOn4OfnV6N8aWkp2rZti6eeegozZ86s89wHDx7E+++/j65du1qr+kRERLLl41MAlUqjF4JUKg18fAr1yinxqjHJe4BSU1MxZcoUTJo0CZ06dcLq1avRuHFjrF271mD5yMhILF68GGPGjIGrq2ut5719+zaefvpp/POf/8R9991nreoTERHJlrf3LQwd+hVUKg0A6OYAVd8zTYlXjUnaA1ReXo7s7GwkJSXpjjk5OSEmJgb79+9v0LmnT5+OwYMHIyYmBm+++WZDq0pERGQ3qu5/Fh5+GKGhZ1FY6AMfn0K98KPkfdIkDUA3btxAZWUl/P399Y77+/vjt99+M/u8GzZswKFDh3Dw4EGjypeVlaGsrEx3u7i42OznJiIiklpD90krKvJEYWEz+PgU1OgtchSSzwGytEuXLmHGjBnYtWsX3NzcjHpMcnIyFixYYOWaERER2Y65c3WUctm8pAGoefPmUKvVyM/P1zuen5+PgIAAs86ZnZ2Na9euITw8XHessrIS33//PZYvX46ysjKo1Wq9xyQlJSExMVF3u7i4GMHBwWY9PxGRI+P+UtKxxWtf22XzoaFnHa4nSNIA5OLigoiICGRlZWHEiBEAAI1Gg6ysLMTHx5t1zkcffRRHjx7VOzZp0iSEhYXhlVdeqRF+AMDV1bXOCdVERKTMK4XkwlavfV2XzTMAWVhiYiLi4uLQs2dP9OrVC2lpaSgpKcGkSZMAABMmTECLFi2QnJwM4N7E6RMnTui+v3LlCo4cOYImTZqgXbt28PT0RJcuXfSew8PDA82aNatxnIiIjKfEK4XkwlavvbGXzTsCyQPQ6NGjcf36dcydOxd5eXno3r07MjMzdROjL168CCenP9+Iq1evokePHrrbKSkpSElJQXR0NHbv3m3r6hMRKZYSJsrKlaVfe+3VYNrL5qvPAdI+hyNdNaYSQgipKyE3xcXF8Pb2RlFREby8vKSuDhGRLOTm5uKDDz4AUPdE2alTpyIwMFDKqjqc3377DRs3bgRQ92s/evRohIWFmfUcVecYXb3qhPPnGyEk5C6Cgu6tIWQP87tM+fyWvAeIiIjsi5ImyspFRUUFgPpfe205c1QNN4GBQEREw+osd5KvBE1ERPbFlP2lyLL42lsOe4CIiBTMnEurlTRRVm58fAoAaKDff8HX3hwMQERECmXupdX1TZQla1Pp31LVUozqxABERFSNtReck8tigtXrUNuVRdpy3F9KOo0a3fu4LixshuoBqOo6PdpyVD++UkREVVTvFaktFJi74JxcFxM0ZvuDhu4vReZr2rQpgPqHH7XlqH4MQEREVVy7dk33fV2h4Nq1a2Z90Jva62ILplzVxXAjLQ4/Wg4DEBFRFXfv3gVQfyjQlmsIuWw6qaTtD+wVhx8tjwGIiMgAa4cCOa2lw6u65I/Dj5bHAEREZICzcxkAAf0JpwLOzpYZmpJTr4spwypymcCtRHxdLYsBiIjIgIoKV1S/2gZQoaLCMkMMcut1qWtYRUuuE7iJzMGVoImIDNAGlKosGVC0vS7a55BiMmv1+SLe3rfQps2FGnXQljM0gTsnJwRFRZ56x7kbPNkD9gARERlgi6ttjOl1saaGzCuRywRuInMxABERVeHs7Kz7vq6AUrWcKQz1uhgKPra6msecoSo5TeAmMhcDEBFRFb6+vnq3awso1csZyxGu5pHTBG4iczEAERFVYYuAIudwYwy5TeAmMgcDEBFRNfYeUKyNqxGTI2AAIiKHx7VrLE/qCdxEDcUAREQOjWvXWI7cJnATNQQDEBFJzpo9NMauScO1a+rnCBO4ibQYgIhIUrbuoalt93UyDsMNOQoGICKSlKHVhQ0FFEv00HDxPiLSYgAiItmwZkDh4n1EVBX3AiMiWagtoFTfZ8pcdS3eR0TKwwBERLJg7YBi7c1Nici+MAARkSwoYfd1IpIPzgEiIlmw1urCVdekqWvxPq5dQ6QsDEBEJBvWWF2Ya9cQkSEMQEQkqdLSUr3bta0uXL2cKRhuiKg6BiAiklTjxo0tWk7pTF1Vm/ukkVIxABGRrHClZvOZuqo290kjJWMAIiLZMHYhRPZaGGbqqtrcJ42UjAGIiGTB2JWa2WthHHNW1WbvGykJAxARyUJdCyHWtSeYMXuHKa3HyJxtP+x1nzSlvbdkOQxARCQL2oUQq4ag+hZCNOZDW4k9RsaGSS173SdNie8tWY4sVoJesWIFQkJC4ObmhqioKBw4cKDWssePH8fIkSMREhIClUqFtLS0GmVWrVqFrl27wsvLC15eXujTpw/+/e9/W7EFRNRQpq7UbOzeYYZ6jHJyQuotZ89MXVXbXvdJ4xwmagjJe4A2btyIxMRErF69GlFRUUhLS0NsbCxOnToFPz+/GuVLS0vRtm1bPPXUU5g5c6bBc7Zs2RKLFi1C+/btIYTA+vXrMXz4cBw+fBidO3e2dpOIyATmrtRsai8HYL/DPKYydVVtc3rf5EjqOUwcjrMvkgeg1NRUTJkyBZMmTQIArF69Gtu3b8fatWsxe/bsGuUjIyMRGRkJAAbvB4ChQ4fq3X7rrbewatUq/PjjjwxARDJj7krNpn5o2+swj7lMWVXbWtuQ2JLU4ZbDcfZH0gBUXl6O7OxsJCUl6Y45OTkhJiYG+/fvt8hzVFZW4rPPPkNJSQn69OljkXMSkWWZ84Fg6oe2OT1G9qZ6L1ltq2pryznKPmlyCLccjrM/kgagGzduoLKyEv7+/nrH/f398dtvvzXo3EePHkWfPn1w584dNGnSBFu2bEGnTp0Mli0rK0NZWZnudnFxcYOem4hMY+7QgTG9HEVFRQDq7zEqKipCYGBgQ5siKVN70xxlnzQlhFuyPMmHwKylY8eOOHLkCIqKivD5558jLi4O3333ncEQlJycjAULFkhQSyIydejA1F6OiooKXbmhQ7/Cl18Owb3rP/R7jLTl7J2pYUXu4cYYcpzDJPV8JKqfpAGoefPmUKvVyM/P1zuen5+PgICABp3bxcUF7dq1AwBERETg4MGDWLJkCd5///0aZZOSkpCYmKi7XVxcjODg4AY9P5Gt2esETFPX9Wlor4VKBQhx719yDHKbwyT1fCQyjqQByMXFBREREcjKysKIESMAABqNBllZWYiPj7foc2k0Gr1hrqpcXV3h6upq0ecjsiVHmYBp7AeHKW1o1Ojef3P1zRPRliP7Icc5THKYj0TGkfw3PjExEXFxcejZsyd69eqFtLQ0lJSU6K4KmzBhAlq0aIHk5GQA9/4KPHHihO77K1eu4MiRI2jSpImuxycpKQmDBg1Cq1atcOvWLWRkZGD37t3YuXOnNI0ksjJzVkeWG2t9cDRt2hRA/fNEtOXIfshxDhPnI9kPyQPQ6NGjcf36dcydOxd5eXno3r07MjMzdROjL168CCenP3+Yrl69ih49euhup6SkICUlBdHR0di9ezcA4Nq1a5gwYQJyc3Ph7e2Nrl27YufOnXjsscds2jYiKdhr97u1PzjkOE+EGk5uPZr8ObMfkgcg4F63fG1DXtpQoxUSEgIhRJ3nW7NmjaWqRmRX7Ln73VofHNqrwOqbJ+IIV4GRdLTDbPX9nMl9SQElkUUAIiLLsOfud2tNZK16dVd4+GH4+eXh4sVWaNXqIlq2zDVYjshU1Yfj5s69jvPnGyEk5C6CgiIBRMr2QgSlYgAiciD23v1uyurFxqo6ubmu4UFOgqaGqhpuAgOBiAgJK0P14m88kY3Y4jJ1uV0ObAxT1/UxlXZyc33Dg5wETaQsDEBENmDLy9St0YtiTba6kseehweJyPIYgIhswNr7BFm7F8XabDEvwt6HB4nIshiAiCRg6WXy5bgeitzY4/AgEVkPAxCRmcyd02OtdXqUHG6MZW/Dg0RkPQxARGYwd06PPa/TY6/sfXiQiKzDqf4iRFSdoa0ncnJCUFTkWWe5uibikm3U9l4RkbKwB4iogUwZ0uJEXNurGkLreq/kvE8aEVkee4CIGqC2Ia3aehe0E3FVKg0AcCKuDZn6XhGRY2MPEFEDGLu2TNX5JXVNxOU8FOvhOkBEVBUDEFEDGDukxcvUpcfhRyKqigGIqAFMWVuG4UZaXAeIiKpiACJqIK4tYz/4XhGRFgMQkRm4toz9qu29IiLrssWG0KZgACIyA+f0WJY1/2M0NoQyrBJZjy03hDYWAxCRmRhuLMPa/zEyrBJJz9obQpuDAYiIJGVoVW1DG8U25D9Ghhsiqo4BiIhkw1obxcqN3OZCENlabX/o2BIDEBHJglI2ipXjXAgiW5LLHzrcCoOIZEEpG8Wau5EukSOQ05Y07AEiIllQ4krNcvlLmMhW5LQlDXuAiEgWlLZRrJz+EiayFe0fOlVJ9YcOe4CISDaUtFKznP4SJrI27Tpb9W1JY8v1uBiAiEhSSl1VW4lDfqRc1dfjmjv3Os6fb4SQkLsICooEEMmVoIlIWZS6UCE3ZyWlqfo7HBgIRERIWBkwABHpcG0W6Vj7dZXre6ukIT8iuWEAIgLXZnFkcntvlTrkRyQ3DEBEkOc+NWQZtthqwxRKHfIjkhsGICID5LBMO1meXNbdYbghkh4DEFE1cvmQJMtSylYbRGQcBiCSlFwmp968eRNA/R+SN2/eRGBgoNXrQ5bHdXeIqCoGIJKMnCan3r17F0D9H5LacmR/uO4OEVXFrTBIMnKceCynZdrJspS21QYR1U0WAWjFihUICQmBm5sboqKicODAgVrLHj9+HCNHjkRISAhUKhXS0tJqlElOTkZkZCQ8PT3h5+eHESNG4NSpU1ZsAVlCbbti25K39y107forAPG/IwJdu/7KD0kHER5+GAkJaYiLS0dCQhrndhEpmOQBaOPGjUhMTMS8efNw6NAhdOvWDbGxsbh27ZrB8qWlpWjbti0WLVqEgIAAg2W+++47TJ8+HT/++CN27dqFiooKPP744ygpKbFmU6gBDh3qgbS0BKxfH4e0tAQcOtTDps/v7OwM4F4I+/XXrgBU/7tHhV9/7aoLZdpyZD8MrbvTps2FGqGW6+4QKYvkc4BSU1MxZcoUTJo0CQCwevVqbN++HWvXrsXs2bNrlI+MjERkZCQAGLwfADIzM/Vup6enw8/PD9nZ2ejfv7+FW0ANJYerc7y9vQHUPwdIW47sB9fdISJDJA1A5eXlyM7ORlJSku6Yk5MTYmJisH//fos9T1FREQDAx8fHYucky5HT1TmcKOuYGG6IqDpJh8Bu3LiByspK+Pv76x339/dHXl6eRZ5Do9EgISEBDz74ILp06WKwTFlZGYqLi/W+yPr+DKZ1TzzWlrMFTpQlIlIGyYfArG369Ok4duwY9uzZU2uZ5ORkLFiwwIa1IgCoqKgAUP+u2NpygPXWDao6/6OuDSo5T4SIyDFIGoCaN28OtVqN/Px8veP5+fm1TnA2RXx8PL766it8//33aNmyZa3lkpKSkJiYqLtdXFyM4ODgBj8/1a1Roz9//MLDD8PPLw8XL7ZCq1YX0bJlbo1y1lw3iPNEiIiURdIA5OLigoiICGRlZWHEiBEA7g1ZZWVlIT4+3uzzCiHwwgsvYMuWLdi9ezfatGlTZ3lXV1e4urqa/XxknqZNm+q+r2v7CW05a29qyXBDRKQckg+BJSYmIi4uDj179kSvXr2QlpaGkpIS3VVhEyZMQIsWLZCcnAzg3ofbiRMndN9fuXIFR44cQZMmTdCuXTsA94a9MjIy8MUXX8DT01M3n8jb2xvu7u4StJLqYs5VYNyvS/7kss0JEZEhkgeg0aNH4/r165g7dy7y8vLQvXt3ZGZm6iZGX7x4EU5Of87Vvnr1Knr0+HONmJSUFKSkpCA6Ohq7d+8GAKxatQoAMGDAAL3nWrduHSZOnGjV9pDpTL0KTA6XzVPd5LTNCRGRIZIHIODef4K1DXlpQ41WSEgIhBAGy2rVdz/Ji6mXnsvpsnkyzNrDlUREDSWLAETKVt9VYNVxrR77wuFKIpIjBiCSjKmXnt+8eRNA/YHp5s2bCAwMtF1DqFYcriQiuWIAIsmYeun53bt3dce1l81futQKwcH6l81XLUfS4nAlEcmV2QHo5s2bOHv2LACgXbt2epc0ExnLlAmwVTcirWtYhRuWygeHKw3jFXJE0jM5AJ0/fx7Tp0/Hzp07dZONVSoVBg4ciOXLlyMkJMTSdSQC8OeGpfUNq9hqw1J+iNXP1PldSsAr5IjkwaQAdOnSJfTu3RvOzs5YuHAh7r//fgDAiRMnsGrVKvTp0wcHDx6sc9VlooaSw7BK9Q+x2q5y4odY3fO7lMjYK994hRyRdZkUgObPn4+OHTti586dcHNz0x0fMWIEZs6ciYEDB2L+/Pn4v//7P4tXlEhLDsMqVT+c6hqOU+qHWPU90+71zNUMPtxbrfbwTETWZVIAyszMxMaNG/XCj5a7uzsWLlyIMWPGWKxyRIbIaViFVzkZxr3VjMMlAoikY1IAunHjRp1zfNq2bYvCQmVPbrQEzi2pn1yGVeQwHCdXSv8ZrQ/DM5G0TApAgYGBOHHiRK1zfI4dO2aRXdyVjBMkayfHYRU5DMeRfWJ4JpKWSQFoxIgReOmll5CVlQVfX1+9+65du4ZXXnlFt6s7mYcTJGsnx2EVOQ3HkX1heCaSlkkBaN68edixYwdCQ0PxzDPPICwsDEIInDx5EhkZGQgICMDcuXOtVVciWfZ6yWU4juwLwzORtEwKQPfddx9++uknzJkzBxs2bNBtTdC0aVOMGzcOb7/9Nnx8fKxRT8XiFSL2obbhOKLqTN0Choisw+SFEO+77z6sWrUKK1euxPXr1wEAvr6+UKlUFq+c0vEKEfky9sOJH2JUnRyHcomUyOytMFQqFfz8/CxZF6qCV4jIGz/EqCH4c0EkPZMD0I4dO7B582b4+Phg0qRJutWgAeCPP/7AyJEj8Z///MeilVQiXiEif/wQIyKyX071F/lTRkYGhg0bhry8POzfvx/h4eH4+OOPdfeXl5fju+++s3gllUh7hUhVvEKEiIjIMkwKQIsXL0Zqaiq++uor/PDDD1i/fj2mTZuGNWvWWKt+iqOdM6K9QkQbgqpfIcK5JUREROZTCe2W7kZo0qQJjh49ijZt2uiOffvttxg2bBgWL16M//f//h+CgoJQWVlplcraSnFxMby9vVFUVAQvLy+bP3/VlaCvXnXC+fONEBJyF0FB98IQ55YQERHVZMrnt0lzgLy8vJCfn68XgB5++GF89dVXGDJkCC5fvmxejUlP1XATGAhEREhYGSurHvZychqhTRuGPSIisi6TAlCvXr3w73//G71799Y7Hh0djW3btmHIkCEWrRw5tqrbftR1yb8St/0gIiLrMmkO0MyZMw3uBA8AAwYMwLZt2zBhwgSLVIwcn7bnp7ZL/ouKPPXKERERWYpJPUA9evRAjx49UFxcbPD+iIgIRDjyeA1ZBS/5JyIiWzMpADVt2tSoFZ/tfRI02RY3hSQiIlszKQB9++23uu+FEPjLX/6C//u//0OLFi0sXjFSDm4KSdZWdbK9IZxsT6Q8JgWg6OhovdtqtRq9e/dG27ZtLVopUh7uqE7WUnWyfV042Z5IWczeC4zI0rijOlmDsZPoOdmeSFlMugqMiMjeFRV5IicnRHeVIREpU4N7gIyZFE1kiLHbeXDbD7KUutabIiJlMSkAPfHEE3q379y5g+effx4eHh56xzdv3tzwmpHDa9asGeLj4zk5lWyitvWmQkPPcuiVSIFMCkDe3t56t5955hmLVoaUh+GGbIXrTRFRVSYFoHXr1lmrHkREVsX1poioKk6CJiJF0K43pVLd22iX600RKRsvgyciq5DL4oNVJ9HXtd4UJ9sTKQsDEBFZnJwWH7TFZHu5hD0iMp7kAWjFihVYvHgx8vLy0K1bNyxbtgy9evUyWPb48eOYO3cusrOzceHCBbz33ntISEjQK/P9999j8eLFyM7ORm5uLrZs2YIRI0ZYvyFEpCO3xQetGT7kFPaIyHiSzgHauHEjEhMTMW/ePBw6dAjdunVDbGwsrl27ZrB8aWkp2rZti0WLFiEgIMBgmZKSEnTr1g0rVqywZtWpFgUFBcjNzUVubi6ys/Px+ecFyM7O1x0rKCiQuookAUdefLB6iKutrVxpmkheJO0BSk1NxZQpUzBp0iQAwOrVq7F9+3asXbsWs2fPrlE+MjISkZGRAGDwfgAYNGgQBg0aZL1KU62q/iVc14Jz/EtYWZS0+KCS2kpk7yTrASovL0d2djZiYmL+rIyTE2JiYrB//36pqkUNoP0Lt7YF57R/EfMvYeWo72fBkSiprUSOQLIAdOPGDVRWVsLf31/vuL+/P/Ly8mxal7KyMhQXF+t9kfnqWnCOlEVJPwtKaiuRI+A6QACSk5Ph7e2t+woODpa6SnZNu+BcVVxwTpmU9LOgpLYSOQLJAlDz5s2hVquRn5+vdzw/P7/WCc7WkpSUhKKiIt3XpUuXbPr8joYLzpGWkn4WlNRWIkcg2SRoFxcXREREICsrS3eZukajQVZWFuLj421aF1dXV7i6utr0OR1dXQvONUTV9VauXnVCTk4jtGlzF0FB9z50uN6KPCh18UFr/dwTkeVJehVYYmIi4uLi0LNnT/Tq1QtpaWkoKSnRXRU2YcIEtGjRAsnJyQDuTZ49ceKE7vsrV67gyJEjaNKkCdq1awcAuH37Ns6ePat7jpycHBw5cgQ+Pj5o1aqVjVuobN7etyz6AcCrzOyHLRYftCZTFjasHuJq+7l3tLBHZO8kDUCjR4/G9evXMXfuXOTl5aF79+7IzMzUTYy+ePEinJz+HKW7evUqevToobudkpKClJQUREdHY/fu3QCAn3/+GQ8//LCuTGJiIgAgLi4O6enp1m8UWU19V5mFhp6Ft/ctXmUmE3INN/UxdWFDew97REol+UrQ8fHxtQ55aUONVkhICIQQdZ5vwIAB9ZYh6zD2L9yG/iVc19U2ch5y4HYJ9sHQwoaFhc3g41Og9/NVtRzfNyL7I3kAIsdhq7+EtVfbVA1Bcr/apnqvQm0fqhy+kxcubEjkuBiAyKJs8eGtvdqm+gdTQ3t/rNlDU/W8dX2ocvhOPuobaiUi+8YARHbJ0lfb2KqHhh+q9sNeh1qJyDgMQGS3LHmVma16aPihaj/scaiViIzHlaCJqrD2fk5cLdh+cGFDIsfGHiCyG7a4yszaPTTWmr9E1sGFDYkcFwMQ2Q1bXGVmyrCHuZOm+aEqb1zYkEgZGIDIrlj7KjNje2hMXSzP0PMw+MgTFzYkUgYGIKJqjOmhMXWxPFstEkmWwXBD5PgYgIgMMKWHxpjF8tirQEQkLwxARDC/h8aUdX0YboiI5IMBiAjm99BwXR8iIvvEAET0P+b00HCxPCIi+8SFEIkagIvlERHZJ/YAyVDV9WWuXnVCTk4jtGlzF0FB9z5kOVlWXriuDxGR/WEAkpmq68vUdXVRQzflpIbhYnlERPaNAUhmtD0/9V1d1NBNOalheFk7EZF9YwCSmaKiIgD1X11UVFSEwMBAKapI/8NwQ0RkvzgJWmYqKioA3Lu6CNBUu/fPq4u05YiIiMh0DECyptK/paqlGBEREZmEQ2AyVVjYDNUDEBfYM38HdiIisp7Ll4EzZ4D27YGWLaWujXEYgGRKKQvsmRJoqu/AXtsGpLxCjojIdtasAaZOBTQawMkJ+OAD4LnnpK5V/RiAZEq7wF71y+AdqffH1EBTNSjVtUQAr5AjIrKNy5f/DD/AvX+nTQNiY+XfE8QAJDONGv35ltS1wF7VcvbK3EBjygakRERkHQUFBfjxR0Cj0e9xr6wEfvqpAO7u8r5alpOgZaZp06Z6t729b6FNmws1Ptirl7NntQWaoiJPg+XrWiKAiIisT9uDv2/fet1WQFoqlQZ7967H8uXLUVBQIFEN68cAJDPGrhzsSCsMmxpotPOjqnLE+VFERHKl7Zmvbz9EOU9JsP9xFAejxBWGTZ3wrYT5UURE9sJe90NkAJIhRwo3xjAn0NjrLxwRkSOqbT9EOWMAIlkwJ9DY4y8cERHJAwMQyUZ9gUaJ86OIiMg6GIBIMqYGGiXOjyIiIutgACLJmBNoGG6IiMgSGIBIUgw0RET2xxGmJDAAERERkUkcYUoCAxDR/1h7p3nuZE9EjsTe/7+SRQBasWIFFi9ejLy8PHTr1g3Lli1Dr169DJY9fvw45s6di+zsbFy4cAHvvfceEhISGnROouobs9bG3J3mrX1+IiIyjeRbYWzcuBGJiYmYN28eDh06hG7duiE2NhbXrl0zWL60tBRt27bFokWLEBAQYJFzEhnacDUnJ6TGfmTmLutu7fMTOaLLl4Fvv733L5GlSd4DlJqaiilTpmDSpEkAgNWrV2P79u1Yu3YtZs+eXaN8ZGQkIiMjAcDg/eack6iqunamt4fzE9kz7VBxRoY7Xn7ZGxqNCk5OAv/4RxHGjfsvh4rJYiTtASovL0d2djZiYmJ0x5ycnBATE4P9+/fL5pykHKbuTC+38xPZM+1Q8eLFn2DWLC9oNCoAgEajwqxZXli8+BPZ7zBO9kPSAHTjxg1UVlbC399f77i/vz/y8vJsds6ysjIUFxfrfZEymbozvdzOT2TPtEPA9f2ecKiYLEHyITA5SE5OxoIFC6SuBsmAqTvTy+38JA1e4WdZ/D0hW5A0ADVv3hxqtRr5+fl6x/Pz82ud4GyNcyYlJSExMVF3u7i4GMHBwWY9P9k3c3aml9P5yTBrBpTqV/gVFXmisLAZfHwK9N5XXuFnPP6ekC1IGoBcXFwQERGBrKwsjBgxAgCg0WiQlZWF+Ph4m53T1dUVrq6uZj0fOR5zdqaX0/lJn7UDStVgVdcEdw7bmIa/J2Rtkg+BJSYmIi4uDj179kSvXr2QlpaGkpIS3RVcEyZMQIsWLZCcnAzg3n8iJ06c0H1/5coVHDlyBE2aNEG7du2MOidRddWXa69tZ3pzl3W39vmpdrYKKLVNcA8NPcsPbzPV9ntCZAmSB6DRo0fj+vXrmDt3LvLy8tC9e3dkZmbqJjFfvHgRTk5/jgNfvXoVPXr00N1OSUlBSkoKoqOjsXv3bqPOSVSf2noJzOUIy8bbO2sHlLom7vJDnEh+JA9AwL2u59qGp7ShRiskJARCiAadk6g6W/QSMNxIy9oBhRN3ieyL5CtBE8kJ1+lxXNqAUpUlA4p24q72OThx13SOsMM42Q9Z9AARyQWHMRyXLa4s4sTdhuFQMdkSAxBRFRzGcGy2CCicuNswDDdkKxwCI6qCwxiOz9v7Ftq0uWCx95TDNkT2iT1ARNVwGMOxWDugcNiGyD4xANkAl8m3PxzGcBy2CCj8/SWyPwxAVlZ9FdracJl8aXEYw7Hxd4uIqmMAsrLqf3XWtsAel8mXFocxiIiUhQHIhupaYI+kx3BDRKQcDEA2opR9gjjfieSIP5dEVB0DkI0oYYE9znciObL2bvBEZJ8YgGxECQvscb4TyZGtdoMnIvvCAGQjtliGX04434nkRinD0ERkHAYgK7t586bu+7oW2Lt58yYCAwMlqKHl8YOG5EgJw9BEZDxuhWFlKpXK0FEjy9mnuj5oiKRi7d3gici+sAfIyry9vXXf1zUsVLWcvVPCfCeyP0obhiaiujEA2YiShoX4QUNyxX3eiEiLAchGlDb/gB80JFfc542IAAYgm1HCsFD1fbJq+6DhflpkS9znjYgMYQCyESUMC3E/LZIj/lwSkSEMQDakhGEhfoiQHPHnkoiqYwCyMg4LERERyQ8DkJWx+52IiEh+GIBsgOGGiIhIXrgSNBERESkOAxAREREpDofA7FxBQQHnFxEREZmIAciOFRQUYPny5fWWi4+P14UgBiYiIiIGILtWPcgUFXmisLAZfHwK9C6115arHphqK181MBERETkiBiAHUddO81pVA1Nd5evqISIiInIEnATtAGrbab6oyNMi5YmIiBwNA5ADqGuneUuUJyIicjQMQA5Au9N8VXXtNG9qeSIiIkfDAOQAtDvNa0NNfTvNm1qeiIjI0XAStIMwdad5JexMT0REVBtZ9ACtWLECISEhcHNzQ1RUFA4cOFBn+c8++wxhYWFwc3PDAw88gB07dujdn5+fj4kTJyIoKAiNGzfGwIEDcebMGWs2QRKGdppv0+ZCjTBT207ztZUnIiJydJL3AG3cuBGJiYlYvXo1oqKikJaWhtjYWJw6dQp+fn41yu/btw9jx45FcnIyhgwZgoyMDIwYMQKHDh1Cly5dIITAiBEj4OzsjC+++AJeXl5ITU1FTEwMTpw4AQ8PDwlaaR2m7jRfWxAy9BgiIiJHphJCCCkrEBUVhcjISN0CfRqNBsHBwXjhhRcwe/bsGuVHjx6NkpISfPXVV7pjvXv3Rvfu3bF69WqcPn0aHTt2xLFjx9C5c2fdOQMCAvD2229j8uTJ9dapuLgY3t7eKCoqgpeXl4VaKg9cCZqIiByVKZ/fkg6BlZeXIzs7GzExMbpjTk5OiImJwf79+w0+Zv/+/XrlASA2NlZXvqysDADg5uamd05XV1fs2bPH0k2wO82aNUNgYGCtXww/RESkBJIGoBs3bqCyshL+/v56x/39/ZGXl2fwMXl5eXWWDwsLQ6tWrZCUlIQ//vgD5eXleOedd3D58mXk5uYaPGdZWRmKi4v1voiIiMhxST4HyNKcnZ2xefNmPPfcc/Dx8YFarUZMTAwGDRqE2kb7kpOTsWDBAhvXlAAOyRERkTQkDUDNmzeHWq1Gfn6+3vH8/HwEBAQYfExAQEC95SMiInDkyBEUFRWhvLwcvr6+iIqKQs+ePQ2eMykpCYmJibrbxcXFCA4ONrdZZCRzdrMnIiKyBEmHwFxcXBAREYGsrCzdMY1Gg6ysLPTp08fgY/r06aNXHgB27dplsLy3tzd8fX1x5swZ/Pzzzxg+fLjBc7q6usLLy0vvi6zP0G72OTkhNfYk4+asRERkaZIPgSUmJiIuLg49e/ZEr169kJaWhpKSEkyaNAkAMGHCBLRo0QLJyckAgBkzZiA6OhrvvvsuBg8ejA0bNuDnn3/GBx98oDvnZ599Bl9fX7Rq1QpHjx7FjBkzMGLECDz++OOStJHqZ8xu9kRERJYieQAaPXo0rl+/jrlz5yIvLw/du3dHZmambqLzxYsX4eT0Z0dV3759kZGRgddeew1z5sxB+/btsXXrVnTp0kVXJjc3F4mJicjPz0dgYCAmTJiA119/3eZtI+PUtjt9aOhZLtJIRERWIfk6QHLkyOsAyUlubi4++OAD5OSEYP36uBr3x8Wlo02bC5g6dSoCAwMlqCEREdkTu1kHiAjg7vRERGR7DEAkOe5OT0REtib5HCAigLvTExGRbTEAkWQM7WZvKPhwc1YiIrI0BiCSjKm72RMREVkKAxBJiuGGiIikwEnQREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOLwMnogcXkFBAdebIiI9DEBEZBVyCR0FBQVYvnx5veXi4+MZgogUhAGIiCxOTqGjrhBmTjkicgwMQEQ2IpceEVuQc+goKvJEYWEz+PgUcNNdIgVjACKyATn1iEhBLqHj0KEe2LZtCIRwgkqlwdChXyE8/LBk9SEi6TAAEdmAnHtErE0uoaOoyFNXDwAQwgnbtg1BaOhZ9gQRKRAvgyeSQFGRJ3JyQlBU5Cl1VayqttAhRbsLC5vp6qElhBMKC31sXhcikh57gIhsTC49IrZQV+iwda+Lj08BVCqNXn1UKg18fAptWg8ikgf2ABHZkJx6RGxBGzqqkip0eHvfwtChX+nqow2fHP4iUib2ABHZkJx6RGxBGzqq93jZsq0uLi6678PDDyM09CwKC33g41OoV4+q5YjI8TEAEdmQUoZh5BQ6mjVrhvj4eMUsQUBExmEAIrIhOfSI2ILcQgfDDRFVxwBEZANy6hGxFYYOIpIzBiAiG5BbjwgRkdIxABHZCMMNEZF88DJ4IiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHFkEoBUrViAkJARubm6IiorCgQMH6iz/2WefISwsDG5ubnjggQewY8cOvftv376N+Ph4tGzZEu7u7ujUqRNWr15tzSbQ/xQUFCA3N7fWr4KCAqmrSEREJP1WGBs3bkRiYiJWr16NqKgopKWlITY2FqdOnYKfn1+N8vv27cPYsWORnJyMIUOGICMjAyNGjMChQ4fQpUsXAEBiYiL+85//4F//+hdCQkLw9ddf429/+xuCgoIwbNgwWzdRMQoKCrB8+fJ6y8XHx3NbCCIikpTkPUCpqamYMmUKJk2apOupady4MdauXWuw/JIlSzBw4EDMmjUL999/PxYuXIjw8HC9D959+/YhLi4OAwYMQEhICKZOnYpu3brV27NEDVPXRp/mlCMiIrIWSQNQeXk5srOzERMTozvm5OSEmJgY7N+/3+Bj9u/fr1ceAGJjY/XK9+3bF19++SWuXLkCIQS+/fZbnD59Go8//rjBc5aVlaG4uFjvi4iIiByXpAHoxo0bqKyshL+/v95xf39/5OXlGXxMXl5eveWXLVuGTp06oWXLlnBxccHAgQOxYsUK9O/f3+A5k5OT4e3trfsKDg5uYMuIiIhIziQfArOGZcuW4ccff8SXX36J7OxsvPvuu5g+fTq++eYbg+WTkpJQVFSk+7p06ZKNa0xERES2JOkk6ObNm0OtViM/P1/veH5+PgICAgw+JiAgoM7y//3vfzFnzhxs2bIFgwcPBgB07doVR44cQUpKSo3hMwBwdXWFq6urJZpEVRQVeaKwsBl8fArg7X1L6uoQERHpSNoD5OLigoiICGRlZemOaTQaZGVloU+fPgYf06dPH73yALBr1y5d+YqKClRUVMDJSb9parUaGo3Gwi2g2hw61ANpaQlYvz4OaWkJOHSoh9RVIiIi0pH8MvjExETExcWhZ8+e6NWrF9LS0lBSUoJJkyYBACZMmIAWLVogOTkZADBjxgxER0fj3XffxeDBg7Fhwwb8/PPP+OCDDwAAXl5eiI6OxqxZs+Du7o7WrVvju+++w4cffojU1FTJ2qkkRUWe2LZtCIS4F0KFcMK2bUMQGnqWPUFERCQLkgeg0aNH4/r165g7dy7y8vLQvXt3ZGZm6iY6X7x4Ua83p2/fvsjIyMBrr72GOXPmoH379ti6datuDSAA2LBhA5KSkvD000+jsLAQrVu3xltvvYXnn3/e5u1TEhcXFwBAYWEzXfjREsIJhYU+8Pa+pStHREQkFZUQQkhdCbkpLi6Gt7c3ioqK4OXlJXV17EpBQQHOn7+LXr38oNGodMfVaoGffrqGkJBGXASRiIiswpTPb4e8Coyk06xZM0RE+OODD1RQq+8dU6uB999XISLCn+GHiIhkQfIhMHJMzz0HxMYCZ88C7doBLVtKXSMiIqI/MQCR1bRsyeBDRETyxCEwIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIc7gVmgBACAFBcXCxxTYiIiMhY2s9t7ed4XRiADLh16xYAIDg4WOKaEBERkalu3boFb2/vOsuohDExSWE0Gg2uXr0KT09PqFQqi567uLgYwcHBuHTpEry8vCx6bjlg++yfo7fR0dsHOH4b2T77Z602CiFw69YtBAUFwcmp7lk+7AEywMnJCS1btrTqc3h5eTnsDzbA9jkCR2+jo7cPcPw2sn32zxptrK/nR4uToImIiEhxGICIiIhIcRiAbMzV1RXz5s2Dq6ur1FWxCrbP/jl6Gx29fYDjt5Hts39yaCMnQRMREZHisAeIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBqIFWrFiBkJAQuLm5ISoqCgcOHKizfFpaGjp27Ah3d3cEBwdj5syZuHPnToPOaW2WbuP8+fOhUqn0vsLCwqzdjFqZ0r6Kigq88cYbCA0NhZubG7p164bMzMwGndPaLN0+Ob1/33//PYYOHYqgoCCoVCps3bq13sfs3r0b4eHhcHV1Rbt27ZCenl6jjJzeP2u00Z7fw9zcXIwbNw4dOnSAk5MTEhISDJb77LPPEBYWBjc3NzzwwAPYsWOH5StvBGu0Lz09vcb75+bmZp0GGMHUNm7evBmPPfYYfH194eXlhT59+mDnzp01yln991CQ2TZs2CBcXFzE2rVrxfHjx8WUKVNE06ZNRX5+vsHyH3/8sXB1dRUff/yxyMnJETt37hSBgYFi5syZZp/T2qzRxnnz5onOnTuL3Nxc3df169dt1SQ9prbv5ZdfFkFBQWL79u3i3LlzYuXKlcLNzU0cOnTI7HNakzXaJ6f3b8eOHeLVV18VmzdvFgDEli1b6iz/+++/i8aNG4vExERx4sQJsWzZMqFWq0VmZqaujJzePyGs00Z7fg9zcnLEiy++KNavXy+6d+8uZsyYUaPM3r17hVqtFv/4xz/EiRMnxGuvvSacnZ3F0aNHrdOIOlijfevWrRNeXl56719eXp51GmAEU9s4Y8YM8c4774gDBw6I06dPi6SkJOHs7Gzz/0cZgBqgV69eYvr06brblZWVIigoSCQnJxssP336dPHII4/oHUtMTBQPPvig2ee0Nmu0cd68eaJbt25Wqa+pTG1fYGCgWL58ud6xJ554Qjz99NNmn9OarNE+Ob1/VRnzH+/LL78sOnfurHds9OjRIjY2VndbTu9fdZZqoz2/h1VFR0cbDAijRo0SgwcP1jsWFRUlpk2b1sAaNoyl2rdu3Trh7e1tsXpZkqlt1OrUqZNYsGCB7rYtfg85BGam8vJyZGdnIyYmRnfMyckJMTEx2L9/v8HH9O3bF9nZ2bpuvN9//x07duzAX/7yF7PPaU3WaKPWmTNnEBQUhLZt2+Lpp5/GxYsXrdeQWpjTvrKyshpdze7u7tizZ4/Z57QWa7RPSw7vnzn279+v93oAQGxsrO71kNP7Z6762qhlr++hMYx9DezZ7du30bp1awQHB2P48OE4fvy41FUym0ajwa1bt+Dj4wPAdr+HDEBmunHjBiorK+Hv76933N/fH3l5eQYfM27cOLzxxht46KGH4OzsjNDQUAwYMABz5swx+5zWZI02AkBUVBTS09ORmZmJVatWIScnB/369cOtW7es2p7qzGlfbGwsUlNTcebMGWg0GuzatQubN29Gbm6u2ee0Fmu0D5DP+2eOvLw8g69HcXEx/vvf/8rq/TNXfW0E7Ps9NEZtr4G9vIf16dixI9auXYsvvvgC//rXv6DRaNC3b19cvnxZ6qqZJSUlBbdv38aoUaMA2O7/UQYgG9q9ezfefvttrFy5EocOHcLmzZuxfft2LFy4UOqqWYwxbRw0aBCeeuopdO3aFbGxsdixYwdu3ryJTz/9VMKaG2fJkiVo3749wsLC4OLigvj4eEyaNAlOTo7xq2RM++z5/aN7+B7atz59+mDChAno3r07oqOjsXnzZvj6+uL999+Xumomy8jIwIIFC/Dpp5/Cz8/Pps/dyKbP5kCaN28OtVqN/Px8veP5+fkICAgw+JjXX38d48ePx+TJkwEADzzwAEpKSjB16lS8+uqrZp3TmqzRRkNBoWnTpujQoQPOnj1r+UbUwZz2+fr6YuvWrbhz5w4KCgoQFBSE2bNno23btmaf01qs0T5DpHr/zBEQEGDw9fDy8oK7uzvUarVs3j9z1ddGQ+zpPTRGba+BvbyHpnJ2dkaPHj3s7v3bsGEDJk+ejM8++0xvuMtW/486xp+tEnBxcUFERASysrJ0xzQaDbKystCnTx+DjyktLa0RANRqNQBACGHWOa3JGm005Pbt2zh37hwCAwMtVHPjNOT1dnNzQ4sWLXD37l1s2rQJw4cPb/A5Lc0a7TNEqvfPHH369NF7PQBg165dutdDTu+fueproyH29B4aw5zXwJ5VVlbi6NGjdvX+ffLJJ5g0aRI++eQTDB48WO8+m/0eWmw6tQJt2LBBuLq6ivT0dHHixAkxdepU0bRpU93liOPHjxezZ8/WlZ83b57w9PQUn3zyifj999/F119/LUJDQ8WoUaOMPqetWaONf//738Xu3btFTk6O2Lt3r4iJiRHNmzcX165dk337fvzxR7Fp0yZx7tw58f3334tHHnlEtGnTRvzxxx9Gn9OWrNE+Ob1/t27dEocPHxaHDx8WAERqaqo4fPiwuHDhghBCiNmzZ4vx48frymsvEZ81a5Y4efKkWLFihcHL4OXy/glhnTba83sohNCVj4iIEOPGjROHDx8Wx48f192/d+9e0ahRI5GSkiJOnjwp5s2bJ9ll8NZo34IFC8TOnTvFuXPnRHZ2thgzZoxwc3PTK2NLprbx448/Fo0aNRIrVqzQu5T/5s2bujK2+D1kAGqgZcuWiVatWgkXFxfRq1cv8eOPP+rui46OFnFxcbrbFRUVYv78+SI0NFS4ubmJ4OBg8be//U3vw6W+c0rB0m0cPXq0CAwMFC4uLqJFixZi9OjR4uzZszZskT5T2rd7925x//33C1dXV9GsWTMxfvx4ceXKFZPOaWuWbp+c3r9vv/1WAKjxpW1TXFyciI6OrvGY7t27CxcXF9G2bVuxbt26GueV0/tnjTba+3toqHzr1q31ynz66aeiQ4cOwsXFRXTu3Fls377dNg2qxhrtS0hI0P18+vv7i7/85S96a+jYmqltjI6OrrO8lrV/D1VC1DIuQUREROSgOAeIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIjITuzevRsqlQo3b96UuipEdo8BiIhqmDhxIlQqFRYtWqR3fOvWrVCpVLrbQgj885//RJ8+feDl5YUmTZqgc+fOmDFjhtEbM5aWliIpKQmhoaFwc3ODr68voqOj8cUXX+jKhISEIC0tzSJtszbta6dSqeDs7Iw2bdrg5Zdfxp07d0w6z4ABA5CQkKB3rG/fvsjNzYW3t7cFa0ykTAxARGSQm5sb3nnnHfzxxx8G7xdCYNy4cXjxxRfxl7/8BV9//TVOnDiBNWvWwM3NDW+++aZRz/P8889j8+bNWLZsGX777TdkZmbiySefREFBgSWbY1MDBw5Ebm4ufv/9d7z33nt4//33MW/evAaf18XFBQEBAXohlIjMZNGNNYjIIcTFxYkhQ4aIsLAwMWvWLN3xLVu2CO1/G5988okAIL744guD59BoNEY9l7e3t0hPT6/1fkP7Bmn98MMP4qGHHhJubm6iZcuW4oUXXhC3b9/W3f/hhx+KiIgI0aRJE+Hv7y/Gjh0r8vPzdfdr9zDKzMwU3bt3F25ubuLhhx8W+fn5YseOHSIsLEx4enqKsWPHipKSEqPaExcXJ4YPH6537IknnhA9evTQ3b5x44YYM2aMCAoKEu7u7qJLly4iIyND7xzV25yTk6Orb9W99T7//HPRqVMn4eLiIlq3bi1SUlKMqieR0rEHiIgMUqvVePvtt7Fs2TJcvny5xv2ffPIJOnbsiGHDhhl8vLG9FAEBAdixYwdu3bpl8P7NmzejZcuWeOONN5Cbm4vc3FwAwLlz5zBw4ECMHDkSv/76KzZu3Ig9e/YgPj5e99iKigosXLgQv/zyC7Zu3Yrz589j4sSJNZ5j/vz5WL58Ofbt24dLly5h1KhRSEtLQ0ZGBrZv346vv/4ay5YtM6o91R07dgz79u2Di4uL7tidO3cQERGB7du349ixY5g6dSrGjx+PAwcOAACWLFmCPn36YMqUKbo2BwcH1zh3dnY2Ro0ahTFjxuDo0aOYP38+Xn/9daSnp5tVVyJFkTqBEZH8VO3F6N27t3j22WeFEPo9QGFhYWLYsGF6j5sxY4bw8PAQHh4eokWLFkY913fffSdatmwpnJ2dRc+ePUVCQoLYs2ePXpnWrVuL9957T+/Yc889J6ZOnap37IcffhBOTk7iv//9r8HnOnjwoAAgbt26JYT4swfom2++0ZVJTk4WAMS5c+d0x6ZNmyZiY2ONak9cXJxQq9XCw8NDuLq6CgDCyclJfP7553U+bvDgweLvf/+77nZ0dLSYMWOGXpnqPUDjxo0Tjz32mF6ZWbNmiU6dOhlVVyIlYw8QEdXpnXfewfr163Hy5Ml6y7766qs4cuQI5s6di9u3bxt1/v79++P3339HVlYWnnzySRw/fhz9+vXDwoUL63zcL7/8gvT0dDRp0kT3FRsbC41Gg5ycHAD3ekiGDh2KVq1awdPTE9HR0QCAixcv6p2ra9euuu/9/f3RuHFjtG3bVu/YtWvXjGoPADz88MM4cuQIfvrpJ8TFxWHSpEkYOXKk7v7KykosXLgQDzzwAHx8fNCkSRPs3LmzRr3qc/LkSTz44IN6xx588EGcOXMGlZWVJp2LSGkYgIioTv3790dsbCySkpL0jrdv3x6nTp3SO+br64t27drBz8/PpOdwdnZGv3798Morr+Drr7/GG2+8gYULF6K8vLzWx9y+fRvTpk3DkSNHdF+//PILzpw5g9DQUJSUlCA2NhZeXl74+OOPcfDgQWzZsgUAapzX2dlZ97326q2qVCoVNBqN0e3x8PBAu3bt0K1bN6xduxY//fQT1qxZo7t/8eLFWLJkCV555RV8++23OHLkCGJjY+tsLxFZViOpK0BE8rdo0SJ0794dHTt21B0bO3Ysxo0bhy+++ALDhw+36PN16tQJd+/exZ07d+Di4gIXF5caPRrh4eE4ceIE2rVrZ/AcR48eRUFBARYtWqSbP/Pzzz9btJ7GcHJywpw5c5CYmIhx48bB3d0de/fuxfDhw/HMM88AADQaDU6fPo1OnTrpHmeozdXdf//92Lt3r96xvXv3okOHDlCr1ZZvDJEDYQ8QEdXrgQcewNNPP42lS5fqjo0ZMwZPPvkkxowZgzfeeAM//fQTzp8/j++++w4bN240+gN4wIABeP/995GdnY3z589jx44dmDNnDh5++GF4eXkBuLcO0Pfff48rV67gxo0bAIBXXnkF+/btQ3x8PI4cOYIzZ87giy++0E2CbtWqFVxcXLBs2TL8/vvv+PLLL+sdVrOWp556Cmq1GitWrABwr/ds165d2LdvH06ePIlp06YhPz9f7zEhISG61/TGjRsGe6D+/ve/IysrCwsXLsTp06exfv16LF++HC+99JJN2kVkzxiAiMgob7zxht6HsEqlwsaNG5GWloYdO3bg0UcfRceOHfHss88iODgYe/bsMeq8sbGxWL9+PR5//HHcf//9eOGFFxAbG4tPP/1U77nPnz+P0NBQ+Pr6Arg3b+e7777D6dOn0a9fP/To0QNz585FUFAQgHvDcenp6fjss8/QqVMnLFq0CCkpKRZ8RYzXqFEjxMfH4x//+AdKSkrw2muvITw8HLGxsRgwYAACAgIwYsQIvce89NJLUKvV6NSpE3x9fQ3ODwoPD8enn36KDRs2oEuXLpg7dy7eeOMNg1e6EZE+lRBCSF0JIiIiIltiDxAREREpDgMQEVlV1cvUq3/98MMPUlfPJBcvXqyzPaZexk5E0uEQGBFZVV2borZo0QLu7u42rE3D3L17F+fPn6/1/pCQEDRqxItriewBAxAREREpDofAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhx/j/BGrm20g+5UgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHHCAYAAACx7iyPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATy9JREFUeJzt3XlYVGXjPvB7GBk2AQORRVAQTVNzgdS0FCsLyyV/We5ri9lXcqGs0DeXrNQ0I/fqTbGFtJJM0xczysolM9RyXyE1BRVyQHgVZJ7fH74zMTADM8OcmTNz7s91cSlnzpx5nhlg7nlWlRBCgIiIiEjhPJxdACIiIiI5YCgiIiIiAkMREREREQCGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiISLbS0tKgUqmQm5vr7KIQKQJDEZGC7d27F0lJSWjTpg38/PzQpEkTDBo0CCdOnKh2bs+ePaFSqaBSqeDh4YGAgAC0bNkSI0eOxLZt26x63E2bNiEhIQGNGjWCr68vmjVrhkGDBiEzM9NeVavmzTffxIYNG6od37VrF2bNmoWrV69K9thVzZo1y/BcqlQq+Pr6onXr1vjXv/6FoqIiuzxGeno6UlNT7XItIqVgKCJSsPnz52P9+vV44IEH8O6772LcuHH46aefEBcXh0OHDlU7PzIyEh9//DE++ugjLFiwAP3798euXbvw0EMPYfDgwSgvL6/1MRcuXIj+/ftDpVIhJSUF77zzDgYOHIiTJ09i7dq1UlQTQM2haPbs2Q4NRXorVqzAxx9/jEWLFqFVq1Z444030Lt3b9hjS0qGIiLr1XN2AYjIeZKTk5Geng6NRmM4NnjwYNx5552YN28ePvnkE6PzAwMDMWLECKNj8+bNw8SJE7F8+XJER0dj/vz5Zh/v5s2bmDNnDh588EF8++231W6/dOlSHWskH6WlpfD19a3xnMcffxwNGzYEAIwfPx4DBw5ERkYGfvnlF3Tt2tURxSSiSthSRKRg3bp1MwpEANCiRQu0adMGR48etegaarUaixcvRuvWrbF06VJotVqz5165cgVFRUW45557TN7eqFEjo++vX7+OWbNm4fbbb4e3tzfCw8Px2GOP4fTp04ZzFi5ciG7duiE4OBg+Pj6Ij4/Hl19+aXQdlUqFkpISrFmzxtBlNWbMGMyaNQtTp04FAMTExBhuqzyG55NPPkF8fDx8fHwQFBSEIUOG4Ny5c0bX79mzJ9q2bYvs7Gz06NEDvr6+mDZtmkXPX2X3338/ACAnJ6fG85YvX442bdrAy8sLERERmDBhglFLV8+ePbF582b8+eefhjpFR0dbXR4ipWFLEREZEUIgPz8fbdq0sfg+arUaQ4cOxauvvoodO3agT58+Js9r1KgRfHx8sGnTJjz//PMICgoye82Kigr07dsXWVlZGDJkCCZNmoTi4mJs27YNhw4dQmxsLADg3XffRf/+/TF8+HCUlZVh7dq1eOKJJ/DNN98YyvHxxx/j6aefRufOnTFu3DgAQGxsLPz8/HDixAl89tlneOeddwytNiEhIQCAN954A6+++ioGDRqEp59+GpcvX8aSJUvQo0cP7N+/Hw0aNDCUt6CgAA8//DCGDBmCESNGIDQ01OLnT08f9oKDg82eM2vWLMyePRu9evXCc889h+PHj2PFihXYu3cvdu7cCU9PT0yfPh1arRbnz5/HO++8AwCoX7++1eUhUhxBRFTJxx9/LACIDz/80Oh4QkKCaNOmjdn7ffXVVwKAePfdd2u8/owZMwQA4efnJx5++GHxxhtviOzs7GrnrVq1SgAQixYtqnabTqcz/L+0tNTotrKyMtG2bVtx//33Gx338/MTo0ePrnatBQsWCAAiJyfH6Hhubq5Qq9XijTfeMDp+8OBBUa9ePaPjCQkJAoBYuXKl2XpXNnPmTAFAHD9+XFy+fFnk5OSI9957T3h5eYnQ0FBRUlIihBBi9erVRmW7dOmS0Gg04qGHHhIVFRWG6y1dulQAEKtWrTIc69Onj2jatKlF5SGiW9h9RkQGx44dw4QJE9C1a1eMHj3aqvvqWyKKi4trPG/27NlIT09Hx44dsXXrVkyfPh3x8fGIi4sz6rJbv349GjZsiOeff77aNVQqleH/Pj4+hv///fff0Gq16N69O/bt22dV+avKyMiATqfDoEGDcOXKFcNXWFgYWrRogR9++MHofC8vL4wdO9aqx2jZsiVCQkIQExODZ599Fs2bN8fmzZvNjkX67rvvUFZWhsmTJ8PD458/38888wwCAgKwefNm6ytKRAbsPiMiAEBeXh769OmDwMBAfPnll1Cr1Vbd/9q1awAAf3//Ws8dOnQohg4diqKiIuzZswdpaWlIT09Hv379cOjQIXh7e+P06dNo2bIl6tWr+c/UN998g9dffx0HDhzAjRs3DMcrBydbnDx5EkIItGjRwuTtnp6eRt83bty42vis2qxfvx4BAQHw9PREZGSkoUvQnD///BPArTBVmUajQbNmzQy3E5FtGIqICFqtFg8//DCuXr2Kn3/+GREREVZfQz+Fv3nz5hbfJyAgAA8++CAefPBBeHp6Ys2aNdizZw8SEhIsuv/PP/+M/v37o0ePHli+fDnCw8Ph6emJ1atXIz093eo6VKbT6aBSqfCf//zHZECsOkancouVpXr06GEYx0REzsdQRKRw169fR79+/XDixAl89913aN26tdXXqKioQHp6Onx9fXHvvffaVI677roLa9aswcWLFwHcGgi9Z88elJeXV2uV0Vu/fj28vb2xdetWeHl5GY6vXr262rnmWo7MHY+NjYUQAjExMbj99tutrY4kmjZtCgA4fvw4mjVrZjheVlaGnJwc9OrVy3Csri1lRErEMUVEClZRUYHBgwdj9+7d+OKLL2xaG6eiogITJ07E0aNHMXHiRAQEBJg9t7S0FLt37zZ523/+8x8A/3QNDRw4EFeuXMHSpUurnSv+t7ihWq2GSqVCRUWF4bbc3FyTizT6+fmZXKDRz88PAKrd9thjj0GtVmP27NnVFlMUQqCgoMB0JSXUq1cvaDQaLF682KhMH374IbRardGsPz8/vxqXRyCi6thSRKRgL7zwAjZu3Ih+/fqhsLCw2mKNVRdq1Gq1hnNKS0tx6tQpZGRk4PTp0xgyZAjmzJlT4+OVlpaiW7duuPvuu9G7d29ERUXh6tWr2LBhA37++WcMGDAAHTt2BACMGjUKH330EZKTk/Hrr7+ie/fuKCkpwXfffYf/+7//w6OPPoo+ffpg0aJF6N27N4YNG4ZLly5h2bJlaN68Of744w+jx46Pj8d3332HRYsWISIiAjExMejSpQvi4+MBANOnT8eQIUPg6emJfv36ITY2Fq+//jpSUlKQm5uLAQMGwN/fHzk5Ofjqq68wbtw4vPjii3V6/q0VEhKClJQUzJ49G71790b//v1x/PhxLF++HJ06dTJ6veLj47Fu3TokJyejU6dOqF+/Pvr16+fQ8hK5HGdOfSMi59JPJTf3VdO59evXFy1atBAjRowQ3377rUWPV15eLj744AMxYMAA0bRpU+Hl5SV8fX1Fx44dxYIFC8SNGzeMzi8tLRXTp08XMTExwtPTU4SFhYnHH39cnD592nDOhx9+KFq0aCG8vLxEq1atxOrVqw1T3is7duyY6NGjh/Dx8REAjKbnz5kzRzRu3Fh4eHhUm56/fv16ce+99wo/Pz/h5+cnWrVqJSZMmCCOHz9u9NzUtFxBVfryXb58ucbzqk7J11u6dKlo1aqV8PT0FKGhoeK5554Tf//9t9E5165dE8OGDRMNGjQQADg9n8gCKiHssMkOERERkYvjmCIiIiIiMBQRERERAWAoIiIiIgLAUEREREQEgKGIiIiICABDEREREREALt5okk6nw4ULF+Dv78+l8omIiFyEEALFxcWIiIiAh4f17T4MRSZcuHABUVFRzi4GERER2eDcuXOIjIy0+n4MRSb4+/sDuPWk1rSPExEREclHUVERoqKiDO/j1mIoMkHfZRYQEMBQRERE5GJsHfrCgdZEREREYCgiIiIiAsBQRERERASAY4rqpKKiAuXl5c4uhtvy9PSEWq12djGIiEghGIpsIIRAXl4erl696uyiuL0GDRogLCyM60UREZHkGIpsoA9EjRo1gq+vL9+wJSCEQGlpKS5dugQACA8Pd3KJiIjI3TEUWamiosIQiIKDg51dHLfm4+MDALh06RIaNWrErjQiIpIUB1pbST+GyNfX18klUQb988yxW0REJDWGIhuxy8wx+DwTEZGjMBQRERERgWOKiIiIFK+goABlZWVmb9doNIoYR8tQpCBjxozBmjVrAAD16tVDUFAQ2rVrh6FDh2LMmDHw8LCs4TAtLQ2TJ0/mkgRERG6goKAAS5cuNXyv1fqjsDAYQUEFCAwsNhxPSkpy+2DEUORgzk7jvXv3xurVq1FRUYH8/HxkZmZi0qRJ+PLLL7Fx40bUq8cfCSIiJan8nrRvX0ds2tQXQnhApdKhX79vEBe3v9p57orvgA5UNY2bI2Ua9/LyQlhYGACgcePGiIuLw913340HHngAaWlpePrpp7Fo0SKsXr0aZ86cQVBQEPr164e33noL9evXx/bt2zF27FgA/wyCnjlzJmbNmoWPP/4Y7777Lo4fPw4/Pz/cf//9SE1NRaNGjSSpCxER2Y9W628IRAAghAc2beqL2NhTRi1G7owDrR3I0pTt6DR+//33o3379sjIyAAAeHh4YPHixTh8+DDWrFmD77//Hi+99BIAoFu3bkhNTUVAQAAuXryIixcv4sUXXwRwa9r8nDlz8Pvvv2PDhg3Izc3FmDFjHFoXIiKyTWFhsCEQ6QnhgcLCoGrnFhQUGN4DsrPz8eWXBcjOzjccKygocFSx7YotRQQAaNWqFf744w8AwOTJkw3Ho6Oj8frrr2P8+PFYvnw5NBoNAgMDoVKpDC1Oek8++aTh/82aNcPixYvRqVMnXLt2DfXr13dIPYiIyDZBQQVQqXRGwUil0iEoqNDovMq9HjV1t7niGCS2FBGAW9tq6LvDvvvuOzzwwANo3Lgx/P39MXLkSBQUFKC0tLTGa2RnZ6Nfv35o0qQJ/P39kZCQAAA4e/as5OUnIqK6CQwsRr9+30Cl0gGAIeRU7TrT92aY627Tav2NznMlbCkiAMDRo0cRExOD3Nxc9O3bF8899xzeeOMNBAUFYceOHXjqqadQVlZmdiXvkpISJCYmIjExEZ9++ilCQkJw9uxZJCYmuuQvBhGREsXF7Uds7CkUFgYhKKiwxrFENXW3ueoYJIYiwvfff4+DBw9iypQpyM7Ohk6nw9tvv22Yov/5558bna/RaFBRUWF07NixYygoKMC8efMQFRUFAPjtt98cUwEiIrKbwMBii0KNpd1troTdZwpz48YN5OXl4a+//sK+ffvw5ptv4tFHH0Xfvn0xatQoNG/eHOXl5ViyZAnOnDmDjz/+GCtXrjS6RnR0NK5du4asrCxcuXIFpaWlaNKkCTQajeF+GzduxJw5c5xUSyIispRGo7HpPEu721wJW4oUJjMzE+Hh4ahXrx5uu+02tG/fHosXL8bo0aPh4eGB9u3bY9GiRZg/fz5SUlLQo0cPzJ07F6NGjTJco1u3bhg/fjwGDx6MgoICw5T8tLQ0TJs2DYsXL0ZcXBwWLlyI/v37O7G2RERUm+DgYCQlJdm0hp413W2uQCWEEM4uhNwUFRUhMDAQWq0WAQEBRrddv34dOTk5iImJgbe3t1XXlcM6Ra6mLs83ERHZ38WLF/H+++/Xet64ceMQHh7ugBL9o6b3b0uwpciB6pLGiYiISFoMRQ7GwENERK7M1jFIroChiIiIiCzmzr0eDEVEREQy5+zNxKtyxcBjCYYiIiIiB7Mm5FSdpKPV+qOwMBhBQQVGs704SafuGIqIiIgcyNqQUzk81bTXGHcPqDuGIiIiIgeyNeSY22ssNvaUy68PJBdc0ZqIiMgJattQtaqa9hoj+2AoIiIicgJrQ45+r7HKXH2vMblhKCK72b59O1QqFa5evWrxfaKjo5GamipZmYiI5MrakOOOe43JDUORgowZMwYqlQrjx4+vdtuECROgUqkwZswYxxeMiEiBbAk5cXH7MXlyKkaPTsPkyamG8UdkHxxorTBRUVFYu3Yt3nnnHfj4+AC4tb9Yeno6mjRp4uTSEREpiy0bqgYGFrN1SCJsKVKYuLg4REVFISMjw3AsIyMDTZo0QceOHQ3Hbty4gYkTJ6JRo0bw9vbGvffei7179xpda8uWLbj99tvh4+OD++67D7m5udUeb8eOHejevTt8fHwQFRWFiRMnoqSkRLL6ERG5msDAYsTE/Gk26Ljzthpyw5YiJzp/Hjh5EmjRAoiMdNzjPvnkk1i9ejWGDx8OAFi1ahXGjh2L7du3G8556aWXsH79eqxZswZNmzbFW2+9hcTERJw6dQpBQUE4d+4cHnvsMUyYMAHjxo3Db7/9hhdeeMHocU6fPo3evXvj9ddfx6pVq3D58mUkJSUhKSkJq1evdlyFiYhkxNqQ487basgNQ5GTfPghMG4coNMBHh7A++8DTz3lmMceMWIEUlJS8OeffwIAdu7cibVr1xpCUUlJCVasWIG0tDQ8/PDDAIAPPvgA27Ztw4cffoipU6dixYoViI2Nxdtvvw0AaNmyJQ4ePIj58+cbHmfu3LkYPnw4Jk+eDABo0aIFFi9ejISEBKxYsQLe3t6OqTARkYzYEnIYeByDocgJzp//JxABt/599lkgMdExLUYhISHo06cP0tLSIIRAnz590LBhQ8Ptp0+fRnl5Oe655x7DMU9PT3Tu3BlHjx4FABw9ehRdunQxum7Xrl2Nvv/999/xxx9/4NNPPzUcE0JAp9MhJycHd9xxhxTVIyKSPYYceWIocoKTJ/8JRHoVFcCpU47rRnvyySeRlJQEAFi2bJkkj3Ht2jU8++yzmDhxYrXbOKibiIjkhqHICVq0uNVlVjkYqdVA8+aOK0Pv3r1RVlYGlUqFxMREo9tiY2Oh0Wiwc+dONG3aFABQXl6OvXv3GrrC7rjjDmzcuNHofr/88ovR93FxcThy5AiaO7JiRERENuLsMyeIjLw1hkitvvW9Wg28955jB1ur1WocPXoUR44cgVpfkP/x8/PDc889h6lTpyIzMxNHjhzBM888g9LSUjz1v4FP48ePx8mTJzF16lQcP34c6enpSEtLM7rOyy+/jF27diEpKQkHDhzAyZMn8fXXXxtaqIiIiOSELUVO8tRTt8YQnTp1q4XIkYFILyAgwOxt8+bNg06nw8iRI1FcXIy77roLW7duxW233QbgVvfX+vXrMWXKFCxZsgSdO3fGm2++iSeffNJwjXbt2uHHH3/E9OnT0b17dwghEBsbi8GDB0teNyIiImuphBDC2YWQm6KiIgQGBkKr1VYLDtevX0dOTg5iYmI4e8oB+HwTEZGlanr/tgS7z4iIiIjA7jMiIiLFKygo4OKQYCgiIiJStIKCAixdurTW85KSktw+GLH7jIiISMFqaiGy5TxXxpYiG3F8umPweSaiumLXkHW0Wn8UFgYjKKjA7Ca17oqhyEqenp4AgNLSUvj4+Di5NO6vtLQUwD/POxGRNap2DZl7w1dC15Al9u3riE2b+kIID6hUOvTr9w3i4vY7u1gOw1BkJbVajQYNGuDSpUsAAF9fX6hUKieXyv0IIVBaWopLly6hQYMG1RaYJCKyROUWopre8JXQNVQbrdbf8PwAgBAe2LSpL2JjTymmxYihyAZhYWEAYAhGJJ0GDRoYnm8iIlvxDb92hYXBhudHTwgPFBYGKeY5YiiygUqlQnh4OBo1aoTy8nJnF8dteXp6soWIiOyCb/i1CwoqgEqlM3qeVCodgoIKnVgqx2IoqgO1Ws03bSIiF8A3/NoFBhajX79vqnUxKik0MhQREZHb4xu+eRqNxvD/uLj9iI09hcLCIAQFFRo9P5XPc1cMRUREpAg1veErWXBwMJKSkrhsARiKiIhIQQIDixmGTFBC4LEEV7QmIiK3ZWmXjxK6hqh2bCkiIiK3xa4hsgZDERERuTVrAw+3BbE/V3lOGYqIiIj+hzvG258rPaccU0RERPQ/VVsztFp/5OREQ6v1r/E8Ms/S50oOzylbioiIyG5cpZvEEkrfHFUq5jbllQOGIiIisgt32pHemr3S3CkISk3uQZOhiIiI7MKddqS3dK80Vxov42yusCkvxxQREZFdmXvzqzouR870e6VVZmqvNFcaL+NsNQVNuXB6KFq2bBmio6Ph7e2NLl264NdffzV77uHDhzFw4EBER0dDpVIhNTW1xmvPmzcPKpUKkydPtm+hiYjILFd486uNfq80fTCydK80cwOzyfKg6UxO7T5bt24dkpOTsXLlSnTp0gWpqalITEzE8ePH0ahRo2rnl5aWolmzZnjiiScwZcqUGq+9d+9evPfee2jXrp1UxSciIhPcZUd6a/dKk/t4GWdzhU15nRqKFi1ahGeeeQZjx44FAKxcuRKbN2/GqlWr8Morr1Q7v1OnTujUqRMAmLxd79q1axg+fDg++OADvP7669IUnojIBTliULArvPmZU3W7D3N7pVU9zxXGyzhL5eeqpqAph61WnBaKysrKkJ2djZSUFMMxDw8P9OrVC7t3767TtSdMmIA+ffqgV69eFoWiGzdu4MaNG4bvi4qK6vT4RERy5MhBwa66I72t24JYOjBbiVxpqxWnhaIrV66goqICoaGhRsdDQ0Nx7Ngxm6+7du1a7Nu3D3v37rX4PnPnzsXs2bNtfkwiIldgamFCU1Pm7TUo2FV3pLflzdldugylIofAYwm3mpJ/7tw5TJo0Cdu2bYO3t7fF90tJSUFycrLh+6KiIkRFRUlRRCIiWZBi/IuSd6R35S5D+ofTQlHDhg2hVquRn59vdDw/Px9hYWE2XTM7OxuXLl1CXFyc4VhFRQV++uknLF26FDdu3IBara52Py8vL3h5edn0mERErkaq8S+u1E1iL640XoZq57RQpNFoEB8fj6ysLAwYMAAAoNPpkJWVhaSkJJuu+cADD+DgwYNGx8aOHYtWrVrh5ZdfNhmIiIiURsrxL+4UeCyhxCDozpzafZacnIzRo0fjrrvuQufOnZGamoqSkhLDbLRRo0ahcePGmDt3LoBb/dxHjhwx/P+vv/7CgQMHUL9+fTRv3hz+/v5o27at0WP4+fkhODi42nEiIqXi+Bf7YuBxH04NRYMHD8bly5cxY8YM5OXloUOHDsjMzDQMvj579iw8PP75pb1w4QI6duxo+H7hwoVYuHAhEhISsH37dkcXn4jIJXH8C5FpKiGEcHYh5KaoqAiBgYHQarUICAhwdnGIiOzi4sWLeP/99w3f35p9Vn38y7hx4xAeHu6MIhLVSV3fv91q9hkREZln68KERErBUEREpBAcFExUM4YiIiIXZu22HQw8ZA+O2C7GGRiKiIhclCO37SDSc+efO4YiIiIXZcu2He76CZ8cx9JtYOy1XYwjMRQREbkBS7btcOdP+ET2wFBERIolx1YTW8pk6bYdjt4QlpTB3M+RK2IoIiJFkmOria1lsmXbDik2hCXlcbefI4/aTyEicj9yHBdhqiUnJycaWq1/jefpt+2orKZtO8y1LFV9HKKauOPPEVuKiIggvy4Aaz6BW7tth5QbwpJyuOPPEUMRESme3LoALB0jVFlc3H7Exp4yuW1HVdwQ1v05YrycO/4cMRQRkaLZEkCkZukncFu37eCGsO5N6vFy+p+n2n6OXHG7GIYiIlI0a7oAHDVbzdJP4HXZtsOaliVyLVKPl6v6czdjxmXk5tZDdPRNRER0AtDJZde7YigiIkWzNIA4craaNS051jxWaWlptccxdc2q5xFVVfnnLjwciI93YmHsiKGIiBTN0gDi6DV+pGjJ8fX1NfreXB2qnkeuTW6TCOSMoYiIFKnyeIeaAoipcRFSDcy2ZYyQrV16chtcTtLg62wdhiIiUiRbx+NIOTDb2jLZ2qUnx8HlZH98na3HUEREimXL2B+p12axpky2dum54/oyVB1fZ+sxFBERWcGatVkcubeaNd0k7ri+DFXH19l6DEVERFawdGC2I2erWdtNwnWK3Js7ryMkNYYiIiIrWTIzzJGz1WzpJuE6Re7LndcRkhpDERGRBWxdPRqQfgaQpd0kdakDuRZ3XUdIagxFREQWkONsNT1Lu8PqsgI2kRIwFBERWUiOs9X0LO0OY+AhMo+hiIgUy9V3Emd3GJF9MRQRkSI5anaYlDO92B1GZF8MRUTkMI5ct6c2jpwdxpleRK6BoYiIHMKR6/ZYS4rZYY7o2pLzc0rkihiKiMghHL3LfG20Wq2hHDXNDtNqtQgPD7f6+o7o2pLbc0rk6hiKiMjh5LBzd3l5OYDaZ4fpz7OFI1tn5PCcErk6hiIicii57dwdFFQAQAegcjCyz+wwR42hkttzSuSqGIqIyKHksnN3cXHlx1IZ3aZSmTvPco4c7yOX55TI1XnUfgoRkf3o1+2pzBk7d9+8eRPArUBRNRTpA0Xl86xlarxPTk40tFr/Gs+zhVyeUyJXx5YiIjclp+nvlcllh/Z69W79+bvVfSZQORhVDhT68+pC6vE+cnlOiVwdQxGRG5L7VG05rNvj71+5xcY4FAlh7jzrOWq8jxyeUyJXx1BE5IYs7ZJx5FRtuW5Jcav7rOpIAvuNx5FyvI9cn1MiV8VQREQOIbctKTw9PQHUvjeZ/jxbSbn3mdyeU5IPuXafyx1DEZECmFvUz9Hk9Ec4MDDwf//WPB5Hf57tjyPteB85PackD3LvPpczhiIiN8dF/Won9XgcjvchR5Jj97mrYCgicmNc1M88qcfjcLwPkethKCJyY1zUzzypx+MEBwdjxIgRKC0tNXuOr68vuy9IcnLpPncFDEVEbkzKQb7uQMpAUlBQgE8++aTW8ziug6TE7nPrcEVrIjek75LRD/LVr3ZcdZAvu26k48gVrYlMMdd9XvVnkP7BliIiN1S1a2jGjMvIza2H6OibiIjoBKBTta4hTuGVDj+tkzOw+9x6DEVETiJ1CKl83/BwID6+5rJwCq80ONidnIXd59ZjKCJyArmFEFNdPaYGZrKrx3r8tG5/bNWsWdXuc3NrZLH7vDqGIiInkPM6IuzqsS9+WrcvuX2gkCNbus/pFoYiIjJgV4/9cQd7+5LzBwo5sab7nP7BUEQkA3JZR4RdPdLgitZUFbsA5YmhiMjJ5NRdZU1XD/+o14wrWjuGXD5QWINdgPLFUETkRHLrrrK0q4d/1GvHHeylJ6cPFNZgF6B8MRQROZEcu6ss6erhbDXlkGuLoJQfKBxdZ1ds7XJXDEVETiSXmUl16epx1U/rUrO1NU1OIUTOLYJSfaBwdJ35+yMvDEVEJkj9xiS3dURs7eqRW/efnNjSmmbLG7KUP6ty7uaR6gOFI+vM3x/5YSgiqsIRnxTluI6ILY8lx+4/ObK0NcDaIOXoVg05dPPI7QNFXfD3R34YioiqcNQnRXdYR0Qu3X9yZmtrgCVBypGtGnLp5nH0BwpLgqCtrXX8/ZEfhiIishkXJqydLa0BtgYpqVpy5NbN46gPFJYEwbq01vH3R34YiohqIYcuAznjwoQ1s6U1wJYgJWVLjhK7eSwNgra01lXu2qvp98cVugDdDUMRUQ3k0mUgN1yY0HK2tAZYG6SkbslRYjePlEGQa1jJF0MRkRly6zKQk+DgYIwYMQKlpaVmz/H19eUf9f+xtjXN2iAldUuOErt5bA2ClrYs83dDnhiKiMxQYpeBpQoKCvDJJ5/Uep6SV7Sua2uaNUFKqpYcJXbz1GV2G1uWXR9DEZEZUncZyGmRPmtxReva2dJFYmuQkqolR4ndPLbObmPLsntgKCKqwhHroMh5pWBr8dOxeda+dtaGEEe05Mj9508KtsxuY8uye2AoIqrCEeuguEtLCz8d2581P1dKbMmRKyUORndHDEVEJjhyYUVXbmnhp2PnkzrwuHI3ryO40wrbxFBE5FSu3tLCT8fuzZ26eaUixy17yHYMRaQIcv206+otLUqcqq0k7tLNKzV32LKHbmEoIrcn50+77tDSwhWtlcGVu3mJLOVR+ylErs2Rm2ZaS9/SolLpAMBlWlpMTQmPifmzWrk5jsI9mOvm1Wr9nVwyIvtiSxEpjtz2MnPFlhZbZz3JtRuTaubq3bxElnJ6KFq2bBkWLFiAvLw8tG/fHkuWLEHnzp1Nnnv48GHMmDED2dnZ+PPPP/HOO+9g8uTJRufMnTsXGRkZOHbsGHx8fNCtWzfMnz8fLVu2dEBtSO7k0gXgDnuHWRte5NyNSTVzh25eIks4NRStW7cOycnJWLlyJbp06YLU1FQkJibi+PHjaNSoUbXzS0tL0axZMzzxxBOYMmWKyWv++OOPmDBhAjp16oSbN29i2rRpeOihh3DkyBH4+flJXSWSMTnN9FLi+jIctOu6OKCelMKpoWjRokV45plnMHbsWADAypUrsXnzZqxatQqvvPJKtfM7deqETp06AYDJ2wEgMzPT6Pu0tDQ0atQI2dnZ6NGjh51rQK5Ebl0A7hR4rGVpi53U3W3szrOcK3bzElnLaaGorKwM2dnZSElJMRzz8PBAr169sHv3brs9jlarBQAEBQWZPefGjRu4ceOG4fuioiK7PT7JB7sA5MHSFjupu9vYnVc7d+jmJbKG00LRlStXUFFRgdDQUKPjoaGhOHbsmF0eQ6fTYfLkybjnnnvQtm1bs+fNnTsXs2fPtstjknyxC0AeLG2xk7q7jd15tVNiNy8pm9MHWktpwoQJOHToEHbs2FHjeSkpKUhOTjZ8X1RUhKioKKmLR3VgTbeHIzbNpNpdvXoVQO0tdlevXkV4eLjRfaUeIC+XAfhyxMBDSuK0UNSwYUOo1Wrk5+cbHc/Pz0dYWFidr5+UlIRvvvkGP/30EyIjI2s818vLC15eXnV+THIMa7s9+GlXHm7evAngVotdu3Z/4Pff2wNQARBo1+4PQ0DVn6cn9QB5OQ3AJyLnctrijRqNBvHx8cjKyjIc0+l0yMrKQteuXW2+rhACSUlJ+Oqrr/D9998jJibGHsUlGTHV7ZGTE11tIbnK5wUHByM8PNzsFwOR42i1/vjjj3a4FYgAQIU//mhndiHAmrrb7EHq6xOR63Bq91lycjJGjx6Nu+66C507d0ZqaipKSkoMs9FGjRqFxo0bY+7cuQBuvckdOXLE8P+//voLBw4cQP369dG8eXMAt7rM0tPT8fXXX8Pf3x95eXkAgMDAQPj4+Dihlq5PzjN02O3hOjw9PQHUPqZIf56e1APkOQCfiPScGooGDx6My5cvY8aMGcjLy0OHDh2QmZlpGHx99uxZeHj884fqwoUL6Nixo+H7hQsXYuHChUhISMD27dsBACtWrAAA9OzZ0+ixVq9ejTFjxkhaH3ck5xk67PZwLYGBgQBqDyH68/65n7QD5DkAn4j0nD7QOikpCUlJSSZv0wcdvejoaAgharxebbeTdeS8b5jc1h0iy9gSQqReI4dr8BARIINQRGQrdnu4LktCiNRr5HANHiKqiqGIrCKnzVTZ7eHazIUQPalnDXJWIhFVxVBEFpPjoGZ2e7gOS1tcKp8ndSCxZVNbhigi98VQRBaR06Bmdnu4JldvmZHzpAMisg+GIrKInAY1u/qbq5K58mvCbUGI3B9DEVlEboOaXfnNlVyfHLuSpcIuQ1IShiKqkb4LqrZBzeyqIqWQU1ey1NhlSErDUEQ1qtpVNWPGZeTm1kN09E1ERHQC0ImfFElR5NSVLDV2GZLSMBRRrSoHnvBwID7eiYUhcjK5dSU7ipK6DEm5nLYhLBGRK9J3JatUOgBQxPpY5roMzW3iS+Sq2FJERGQlpa2PpaQuQ1I2hiIiIgsoeX0spXYZujLOGrQNQxERkQWUvD4Wt9RxLZw1aDubQ9HVq1dx6tQpAEDz5s3RoEEDe5WJiEiWlPwGorQuQ1dm6WxAzhqszupQlJubiwkTJmDr1q0QQgAAVCoVevfujaVLlyI6OtreZSQiIidQapehu3U9yWkjb7mzKhSdO3cOd999Nzw9PTFnzhzccccdAIAjR45gxYoV6Nq1K/bu3YvIyEhJCktERI6jxC5Dd+t64lIK1rEqFM2aNQstW7bE1q1b4e3tbTg+YMAATJkyBb1798asWbPw73//2+4FJSIix3OFN357cqeuJyWtvm4vVoWizMxMrFu3zigQ6fn4+GDOnDkYMmSI3QpHRETkTK7c9cSlFKxnVSi6cuVKjWOGmjVrhsJCTtEkIiLX5+pdT1xKwXpWrWgdHh6OI0eOmL390KFDCAsLq3OhiIiInMkdVvFW4urrdWVVS9GAAQPw4osvIisrCyEhIUa3Xbp0CS+//DIGDBhgz/IRERE5nCt3PVWeDVjTUgruNmvQHqwKRTNnzsSWLVsQGxuLESNGoFWrVhBC4OjRo0hPT0dYWBhmzJghVVldlrtN7yQicneu3PWkxFmD9mJVKLrtttuwZ88eTJs2DWvXrsXVq1cBAA0aNMCwYcPw5ptvIigoSIpyuix3m95JRKQErr6KN99PbGP14o233XYbVqxYgeXLl+Py5csAgJCQEKhUKrsXzh1UTermZjLUZXonW6KIiOyDXU/KZvM2HyqVCo0aNbJnWdyeFDMZqrZEmQtdbIkiIqodu56UzepQtGXLFmRkZCAoKAhjx441rGoNAH///TcGDhyI77//3q6FdAdSLaJV+Re3ptDlCguNERHJAQOPclk1JT89PR39+/dHXl4edu/ejbi4OHz66aeG28vKyvDjjz/avZDuoKaZDPbgDtNHiYiInMmqlqIFCxZg0aJFmDhxIgDg888/x5NPPonr16/jqaeekqSA7kLqmQyuPH2UiIjcW+WxrxcueCAnpx5iYm4iIuLWGkpy6ZK0KhSdPHkS/fr1M3w/aNAghISEoH///igvL8f/+3//z+4FdBdSz2Rw5emjRETkviqPfa1pmIccxr5aFYoCAgKQn5+PmJgYw7H77rsP33zzDfr27Yvz58/bvYDupKaZDHXl6tNHiYjIPelbiGobWyuHsa9WhaLOnTvjP//5D+6++26j4wkJCdi0aRP69u1r18K5g6rTNgMDi00GFXtM75QydBEREdWFKwzzsCoUTZkyBbt27TJ5W8+ePbFp0yZ89NFHdimYu3D09E5zoasyrmtERESO5grDPKwKRR07dkTHjh1RVFRk8vb4+HjEx8fbpWDuRMqAYWkLk/48rmtERETO4ArDPKwKRQ0aNLBo5eqKigqbC0TWsbYliusaERGRs8h9mIdVoeiHH34w/F8IgUceeQT//ve/0bhxY7sXjCxnS4uOVItJEhER1cSSYR7OYlUoSkhIMPperVbj7rvvRrNmzexaKJKeKwx4IyIiciSrVrQm96Ef8FaZ3Aa8ERGR67N27Ksz2bwhLLk2VxjwRkRErs+VNtmtcyiyZOA1yZOlA95cZXl2IiKSJ1d5j7AqFD322GNG31+/fh3jx4+Hn5+f0fGMjIy6l4wcorYBb660PDsREVFdWBWKAgMDjb4fMWKEXQtD0rO2b9eVlmcnIiKqC6tC0erVq6UqBzmIrX27rj5bjV2ARERUGw60ViBb3vxdYXl2c9gFSEREluCUfLKIfraafhq/K81Wq60LUKv1NzqPiIiUiS1FZDG5L89eG1fvAiQiImkxFJFV5Lw8e21cuQuQiIikx+4zUgxX7gIkIiLpsaWIauRKy7NbwtW7AImISDoMRVQjV1qe3VKWdAFWnsJviqvVmYiIasdQRLVS2pt/5Sn8wK1Za4WFwQgKKjAKU5zCT0TkXhiKyO3Zuoo3UPO6RpzCT0TkXhiKyO3Z2gVY29YmRETkXhiKSBFs6ebiukZERMrCKflEZujXNaqM6xoREbkvthQRmaFf16jqmCJTrUScrUZE5PoYiohqYMm6RpytRkTkHhiKiGpR27pGnK1GROQeOKaIqApbV/E2N1tNq/W3exmJiMj+2FKkQJXHv1y44IGcnHqIibmJiIhbg4qVPv7F1in8nK1GROTaGIoUpvL4l5q6epQ+/sWWuutnq1UORpytRkTkOth9pjD61o/auno4/sV6+tlq+mn8Nc1WIyIi+WFLkUKxq0calsxWIyIieWIoUih29UinttlqREQkT+w+Uyh29diPrbPViIhIXthSpGDs6rEPW2erERGRvDAUKRy7euyDgYeIyPWx+4yIiIgIDEWKw/EvREREprH7TGGqjn/hitZERES3sKVIwdLTfdC5cyM88UQwOnduhPR0H2cXiYiIyGmcHoqWLVuG6OhoeHt7o0uXLvj111/Nnnv48GEMHDgQ0dHRUKlUSE1NrfM1lUa/zceCBZ9h6tQA6HQqAIBOp8LUqQFYsOAzLF26FAUFBU4uKRERkWM5NRStW7cOycnJmDlzJvbt24f27dsjMTERly5dMnl+aWkpmjVrhnnz5iEsLMwu11QafbdZTStaVz6PiIhIKZwaihYtWoRnnnkGY8eORevWrbFy5Ur4+vpi1apVJs/v1KkTFixYgCFDhsDLy8su11Qq/YrWlXFFayIiUjKnhaKysjJkZ2ejV69e/xTGwwO9evXC7t27HXrNGzduoKioyOjL3XFFayIiImNOm3125coVVFRUIDQ01Oh4aGgojh075tBrzp07F7Nnz7bpMV0ZV7QmIiL6h9MHWstBSkoKtFqt4evcuXPOLpLDBAYWIybmTwYiIiJSPKe1FDVs2BBqtRr5+flGx/Pz880Oopbqml5eXmbHKBEREZEyOK2lSKPRID4+HllZWYZjOp0OWVlZ6Nq1q2yuSURERMrg1BWtk5OTMXr0aNx1113o3LkzUlNTUVJSgrFjxwIARo0ahcaNG2Pu3LkAbg2kPnLkiOH/f/31Fw4cOID69eujefPmFl1T6bjNBxERkWlODUWDBw/G5cuXMWPGDOTl5aFDhw7IzMw0DJQ+e/YsPDz+acy6cOECOnbsaPh+4cKFWLhwIRISErB9+3aLrql0Vbf5MIXbfJBUCgoK+LNHRLKlEkIIZxdCboqKihAYGAitVouAgABnF4fILehXU69NUlKS2wQjhkAix6rr+zc3hFWgyn+ouSEsOUrVcKDV+qOwMBhBQQVGsx/dZTX1qiHQXH3dKQQSuTqGIoWp/Id6376O2LSpL4TwMCzeGBe3HwD/UJO0avrZcxeVw11N9XWXEEjkDrhOkcLo/wBrtf6GP9LArX3PNm3qC63W3+g8Inur7WfP3SitvkSujKFIoWrbEJZIKkr72VNafYlcGUORQnFDWHIWpf3sKa2+RK6MoUihuCEsOYvSfvaUVl8iV8aB1grGDWHJWZT2s6e0+hK5KoYihQsMLOYfaBfh6mveVF0l3dzPnruups7fNSL5YygicgHusPCh0lZT55Y6RK6HoUhh+IfaNbnLwofuEngsobQQSOQOGIoUhn+oXZ8SFj50F/w9InItDEUKxD/UrsvcQoCxsac4XoWIqI44JZ/IhXAhQCIi6TAUEbkQLgRIRCQddp8R2YGjpsvrFwKsOqaIXWdERHXHUERUR46eLs+FAImIpMFQRFRHjpgur/SFD4mIHIGhiMiOpJouz6UUiOzj/Hng5EmgRQsgMtLZpSG5YSgishOpp8sz8BDVzYcfAuPGATod4OEBvP8+8NRTzi4VyQlnnxHZCafLE8nX+fP/BCLg1r/PPnvrOJEeQxGRnXC6PJE8FRQU4JdfCgyBSK+iAtizpwAFBQXOKRjJDkMRkZ3op8vrgxGnyxM5n3526K5da0x+aNm5cw2WLl3KYEQAOKaIyK44XZ5IXvSTE2pb40vumymTYzAUEdURp8sTuQZ+aKHaMBQR1RGnyxO5DnMfWogAhiIiu2DgISJyfQxFRE7iqP3SiIjIMgxFRE7g6P3SiIiodpyST+QEls504YwYIiLHYSgikgGt1h85OdHQav2dXRQit2LprE/ODiWA3WdETifVJrJExNmhZB2GIiInknoTWSLi7FCyHEMRSYIzqyxT0yayDEVERI7FUER2x5lVltNvIls5GHETWSIi5+BAa7K7qi1E5gYRc2YVN5ElIpITthSRpDiI2LTKM11q2o+JM2KIiByHoYgkw0HE5nFGDBGR/DAUkWQ4iLhmDDxERPLCMUUkGf0g4so4iJiIiOSKoYgkw0HERETkSth9RpKqaRAxERGRnDAUkd1VnTEVGFhsMgxxZhUREckJQxHZHWdWERGRK2IoIkkw8BARkavhQGsiIiIisKWIyG1xU14iIuswFBG5IW7KS0RkPXafEbkhbspLRGQ9thQRuTluyktEZBm2FBG5MXOb8lZtMSIiIoYiIrdW06a8RERkjN1nMsRZQ2Qv+k15KwcjbspLRGQaQ5HMcNYQ2ZN+U96qY4q4Bx0RUXUMRTJjatZQYWEwgoIKjN7IOGuILMVNeYmILMNQJGOcNUS24qa8RETWYyiSKXOzhmJjT/GTPtWKm/ISEVmPoUimapo1xFBElmDgISKyDqfky5R+1lBlnDVEREQkHYYimdLPGtIHI84aIiIikha7z2SMs4aIiIgch6FIZjhriIiIyDkYimSGs4aIiIicg6FIhqwNPNwWhIiIqO4YilwctwUhIiKyD84+c3GWbvfBbUGIiIhqxlBEREREBIYit6PV+iMnJxparb+zi0JERORSOKbIjXADWSIiItuxpchNmNtAli1GRERElmEochM1bSBLREREtXN6KFq2bBmio6Ph7e2NLl264Ndff63x/C+++AKtWrWCt7c37rzzTmzZssXo9mvXriEpKQmRkZHw8fFB69atsXLlSimrIAvcQJaIiKhunBqK1q1bh+TkZMycORP79u1D+/btkZiYiEuXLpk8f9euXRg6dCieeuop7N+/HwMGDMCAAQNw6NAhwznJycnIzMzEJ598gqNHj2Ly5MlISkrCxo0bHVUth9Jv91HbBrLcFoSIiKhmKiGEcNaDd+nSBZ06dTIsPqjT6RAVFYXnn38er7zySrXzBw8ejJKSEnzzzTeGY3fffTc6dOhgaA1q27YtBg8ejFdffdVwTnx8PB5++GG8/vrrFpWrqKgIgYGB0Gq1CAgIqEsVHaLyitYXLnggN7ceoqNvIiLiVkDiitZERKQEdX3/dlpLUVlZGbKzs9GrV69/CuPhgV69emH37t0m77N7926j8wEgMTHR6Pxu3bph48aN+OuvvyCEwA8//IATJ07goYceMluWGzduoKioyOjLlQQHByM8PBzh4eGIjw/FwIHBiI8PNRxjICIiIqqd00LRlStXUFFRgdDQUKPjoaGhyMvLM3mfvLy8Ws9fsmQJWrdujcjISGg0GvTu3RvLli1Djx49zJZl7ty5CAwMNHxFRUXVoWZERETkipw+0NrelixZgl9++QUbN25EdnY23n77bUyYMAHfffed2fukpKRAq9Uavs6dO+fAEhMREZEcOG3xxoYNG0KtViM/P9/oeH5+PsLCwkzeJywsrMbz//vf/2LatGn46quv0KdPHwBAu3btcODAASxcuLBa15uel5cXvLy86lolIiIicmFOaynSaDSIj49HVlaW4ZhOp0NWVha6du1q8j5du3Y1Oh8Atm3bZji/vLwc5eXl8PAwrpZarYZOZzxdnYiIiKgyp27zkZycjNGjR+Ouu+5C586dkZqaipKSEowdOxYAMGrUKDRu3Bhz584FAEyaNAkJCQl4++230adPH6xduxa//fYb3n//fQBAQEAAEhISMHXqVPj4+KBp06b48ccf8dFHH2HRokVOqycRERHJn1ND0eDBg3H58mXMmDEDeXl56NChAzIzMw2Dqc+ePWvU6tOtWzekp6fjX//6F6ZNm4YWLVpgw4YNaNu2reGctWvXIiUlBcOHD0dhYSGaNm2KN954A+PHj3d4/YiIiMh1OHWdIrlytXWKiIiIyIXXKSIiIiKSE6d2nxE5SuVVv03hqt9ERMRQpEBKCwgFBQWGrWRqkpSU5Fb1JiIi6zAUKYwSA0JNAdCW84iIyD1xTJHCMCAQERGZxlBEiqPV+iMnJxparb+zi0JERDLC7jNSlH37OmLTpr4QwgMqlQ79+n2DuLj9zi4WERHJAFuKFE5JrSZarb8hEAGAEB7YtKmvIupORES1Y0uRgimt1aSwMNgQiPSE8EBhYRACA4udVCoiIpILthQplBJbTYKCCqBSGW8MrFLpEBRU6KQSERGRnDAUKVRNrSbuRqPRAAACA4vRr983hmCkbx3TtxLpzyMiImVi95nC6N/49a0mlYNR5VYTdwoIwcHBSEpKMiwzMGPGZeTm1kN09E1ERHQC0MntFqwkIiLrcUNYE9x9Q1j9itbp6T54+eVAVFSooFYLzJ+vxbBh/2VAICIil1TX92+GIhPcPRRVdv48cOoU0Lw5EBnp7NIQERHZrq7v3+w+U7jISIYhIiIigAOtiYiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREALh4oyzpt+Ewh9twEBER2R9DkcwUFBRg6dKltZ6XlJTEYERERGRH7D6TmZpaiGw5j4iIiCzDUEREREQEhiIiIiIiAAxFsqfV+iMnJxparb+zi0JEROTWONBaxvbt64hNm/pCCA+oVDr06/cN4uL2O7tYREREboktRTKl1fobAhEACOGBTZv6ssWIiIhIIgxFMlVYGGwIRHpCeKCwMMhJJSIiInJvDEUyo9FoAABBQQVQqXRGt6lUOgQFFRqdR0RERPbBMUUyExwcjKSkJJSVlaFx4yK8/HIgKipUUKsF5s8vwrBhQ7miNRERkQRUQgjh7ELITVFREQIDA6HVahEQEODUspw/D5w6BTRvDkRGOrUoREREslbX92+2FMlcZCTDEBERkSNwTBERERERGIqIiIiIADAUEREREQFgKCIiIiICwFBEREREBIChiIiIiAgAQxERERERAIYiIiIiIgAMRUREREQAGIqIiIiIADAUEREREQHg3mcm6ffILSoqcnJJiIiIyFL6921b97pnKDKhuLgYABAVFeXkkhAREZG1iouLERgYaPX9VMLWOOXGdDodLly4AH9/f6hUKrteu6ioCFFRUTh37hwCAgLsem25UEIdAdbT3bCe7oX1dC+W1lMIgeLiYkRERMDDw/oRQmwpMsHDwwORkZGSPkZAQIBb/wADyqgjwHq6G9bTvbCe7sWSetrSQqTHgdZEREREYCgiIiIiAsBQ5HBeXl6YOXMmvLy8nF0UySihjgDr6W5YT/fCeroXR9WTA62JiIiIwJYiIiIiIgAMRUREREQAGIqIiIiIADAUEREREQFgKKqzZcuWITo6Gt7e3ujSpQt+/fXXGs9PTU1Fy5Yt4ePjg6ioKEyZMgXXr1+v0zUdwd71nDVrFlQqldFXq1atpK5GraypZ3l5OV577TXExsbC29sb7du3R2ZmZp2u6Sj2rqfcXs+ffvoJ/fr1Q0REBFQqFTZs2FDrfbZv3464uDh4eXmhefPmSEtLq3aO3F5LKeopt9cSsL6eFy9exLBhw3D77bfDw8MDkydPNnneF198gVatWsHb2xt33nkntmzZYv/CW0GKeqalpVV7Pb29vaWpgIWsrWdGRgYefPBBhISEICAgAF27dsXWrVurnWeX309BNlu7dq3QaDRi1apV4vDhw+KZZ54RDRo0EPn5+SbP//TTT4WXl5f49NNPRU5Ojti6dasIDw8XU6ZMsfmajiBFPWfOnCnatGkjLl68aPi6fPmyo6pkkrX1fOmll0RERITYvHmzOH36tFi+fLnw9vYW+/bts/majiBFPeX2em7ZskVMnz5dZGRkCADiq6++qvH8M2fOCF9fX5GcnCyOHDkilixZItRqtcjMzDScI8fXUop6yu21FML6eubk5IiJEyeKNWvWiA4dOohJkyZVO2fnzp1CrVaLt956Sxw5ckT861//Ep6enuLgwYPSVMICUtRz9erVIiAgwOj1zMvLk6YCFrK2npMmTRLz588Xv/76qzhx4oRISUkRnp6ekvytZSiqg86dO4sJEyYYvq+oqBARERFi7ty5Js+fMGGCuP/++42OJScni3vuucfmazqCFPWcOXOmaN++vSTltZW19QwPDxdLly41OvbYY4+J4cOH23xNR5CinnJ8PfUs+aP70ksviTZt2hgdGzx4sEhMTDR8L8fXsjJ71VPOr6UQltWzsoSEBJNhYdCgQaJPnz5Gx7p06SKeffbZOpbQPuxVz9WrV4vAwEC7lcverK2nXuvWrcXs2bMN39vr95PdZzYqKytDdnY2evXqZTjm4eGBXr16Yffu3Sbv061bN2RnZxua9M6cOYMtW7bgkUcesfmaUpOinnonT55EREQEmjVrhuHDh+Ps2bPSVaQWttTzxo0b1ZqhfXx8sGPHDpuvKTUp6qknp9fTWrt37zZ6TgAgMTHR8JzI8bW0RW311HPl19JSlj4X7uDatWto2rQpoqKi8Oijj+Lw4cPOLlKd6HQ6FBcXIygoCIB9fz8Zimx05coVVFRUIDQ01Oh4aGgo8vLyTN5n2LBheO2113DvvffC09MTsbGx6NmzJ6ZNm2bzNaUmRT0BoEuXLkhLS0NmZiZWrFiBnJwcdO/eHcXFxZLWxxxb6pmYmIhFixbh5MmT0Ol02LZtGzIyMnDx4kWbryk1KeoJyO/1tFZeXp7J56SoqAj//e9/Zfla2qK2egKu/1paytxz4UqvpyVatmyJVatW4euvv8Ynn3wCnU6Hbt264fz5884ums0WLlyIa9euYdCgQQDs+7eWociBtm/fjjfffBPLly/Hvn37kJGRgc2bN2POnDnOLppdWVLPhx9+GE888QTatWuHxMREbNmyBVevXsXnn3/uxJJb591330WLFi3QqlUraDQaJCUlYezYsfDwcK9fK0vq6Q6vJ93C19K9dO3aFaNGjUKHDh2QkJCAjIwMhISE4L333nN20WySnp6O2bNn4/PPP0ejRo3sfv16dr+iQjRs2BBqtRr5+flGx/Pz8xEWFmbyPq+++ipGjhyJp59+GgBw5513oqSkBOPGjcP06dNtuqbUpKinqdDQoEED3H777Th16pT9K2EBW+oZEhKCDRs24Pr16ygoKEBERAReeeUVNGvWzOZrSk2Kepri7NfTWmFhYSafk4CAAPj4+ECtVsvutbRFbfU0xdVeS0uZey5c6fW0haenJzp27OiSr+fatWvx9NNP44svvjDqKrPn31r3+kjrQBqNBvHx8cjKyjIc0+l0yMrKQteuXU3ep7S0tFogUKvVAAAhhE3XlJoU9TTl2rVrOH36NMLDw+1UcuvU5bn39vZG48aNcfPmTaxfvx6PPvpona8pFSnqaYqzX09rde3a1eg5AYBt27YZnhM5vpa2qK2eprjaa2kpW54Ld1BRUYGDBw+63Ov52WefYezYsfjss8/Qp08fo9vs+vtp9ZBvMli7dq3w8vISaWlp4siRI2LcuHGiQYMGhumOI0eOFK+88orh/JkzZwp/f3/x2WefiTNnzohvv/1WxMbGikGDBll8TWeQop4vvPCC2L59u8jJyRE7d+4UvXr1Eg0bNhSXLl1yeP30rK3nL7/8ItavXy9Onz4tfvrpJ3H//feLmJgY8ffff1t8TWeQop5yez2Li4vF/v37xf79+wUAsWjRIrF//37x559/CiGEeOWVV8TIkSMN5+unqk+dOlUcPXpULFu2zOSUfLm9llLUU26vpRDW11MIYTg/Pj5eDBs2TOzfv18cPnzYcPvOnTtFvXr1xMKFC8XRo0fFzJkznT4lX4p6zp49W2zdulWcPn1aZGdniyFDhghvb2+jcxzN2np++umnol69emLZsmVGSwtcvXrVcI69fj8ZiupoyZIlokmTJkKj0YjOnTuLX375xXBbQkKCGD16tOH78vJyMWvWLBEbGyu8vb1FVFSU+L//+z+jN5faruks9q7n4MGDRXh4uNBoNKJx48Zi8ODB4tSpUw6skWnW1HP79u3ijjvuEF5eXiI4OFiMHDlS/PXXX1Zd01nsXU+5vZ4//PCDAFDtS1+v0aNHi4SEhGr36dChg9BoNKJZs2Zi9erV1a4rt9dSinrK7bUUwrZ6mjq/adOmRud8/vnn4vbbbxcajUa0adNGbN682TEVMkOKek6ePNnwMxsaGioeeeQRo/V9nMHaeiYkJNR4vp49fj9VQpjpzyAiIiJSEI4pIiIiIgJDEREREREAhiIiIiIiAAxFRERERAAYioiIiIgAMBQRERERAWAoIiIiIgLAUERE5BK2b98OlUqFq1evOrsoRG6LoYiIjIwZMwYqlQrz5s0zOr5hwwaoVCrD90IIfPDBB+jatSsCAgJQv359tGnTBpMmTbJ4s8nS0lKkpKQgNjYW3t7eCAkJQUJCAr7++mvDOdHR0UhNTbVL3aSmf+5UKhU8PT0RExODl156CdevX7fqOj179sTkyZONjnXr1g0XL15EYGCgHUtMRJUxFBFRNd7e3pg/fz7+/vtvk7cLITBs2DBMnDgRjzzyCL799lscOXIEH374Iby9vfH6669b9Djjx49HRkYGlixZgmPHjiEzMxOPP/44CgoK7Fkdh+rduzcuXryIM2fO4J133sF7772HmTNn1vm6Go0GYWFhRsGUiOzMxq1LiMhNjR49WvTt21e0atVKTJ061XD8q6++Evo/GZ999pkAIL7++muT19DpdBY9VmBgoEhLSzN7u6k9j/R+/vlnce+99wpvb28RGRkpnn/+eXHt2jXD7R999JGIj48X9evXF6GhoWLo0KEiPz/fcLt+/6XMzEzRoUMH4e3tLe677z6Rn58vtmzZIlq1aiX8/f3F0KFDRUlJiUX1GT16tHj00UeNjj322GOiY8eOhu+vXLkihgwZIiIiIoSPj49o27atSE9PN7pG1Trn5OQYylt5D8Evv/xStG7dWmg0GtG0aVOxcOFCi8pJRKaxpYiIqlGr1XjzzTexZMkSnD9/vtrtn332GVq2bIn+/fubvL+lrRlhYWHYsmULiouLTd6ekZGByMhIvPbaa7h48SIuXrwIADh9+jR69+6NgQMH4o8//sC6deuwY8cOJCUlGe5bXl6OOXPm4Pfff8eGDRuQm5uLMWPGVHuMWbNmYenSpdi1axfOnTuHQYMGITU1Fenp6di8eTO+/fZbLFmyxKL6VHXo0CHs2rULGo3GcOz69euIj4/H5s2bcejQIYwbNw4jR47Er7/+CgB499130bVrVzzzzDOGOkdFRVW7dnZ2NgYNGoQhQ4bg4MGDmDVrFl599VWkpaXZVFYiAluKiMhY5daOu+++Wzz55JNCCOOWolatWon+/fsb3W/SpEnCz89P+Pn5icaNG1v0WD/++KOIjIwUnp6e4q677hKTJ08WO3bsMDqnadOm4p133jE69tRTT4lx48YZHfv555+Fh4eH+O9//2vysfbu3SsAiOLiYiHEPy1F3333neGcuXPnCgDi9OnThmPPPvusSExMtKg+o0ePFmq1Wvj5+QkvLy8BQHh4eIgvv/yyxvv16dNHvPDCC4bvExISxKRJk4zOqdpSNGzYMPHggw8anTN16lTRunVri8pKRNWxpYiIzJo/fz7WrFmDo0eP1nru9OnTceDAAcyYMQPXrl2z6Po9evTAmTNnkJWVhccffxyHDx9G9+7dMWfOnBrv9/vvvyMtLQ3169c3fCUmJkKn0yEnJwfArZaUfv36oUmTJvD390dCQgIA4OzZs0bXateuneH/oaGh8PX1RbNmzYyOXbp0yaL6AMB9992HAwcOYM+ePRg9ejTGjh2LgQMHGm6vqKjAnDlzcOeddyIoKAj169fH1q1bq5WrNkePHsU999xjdOyee+7ByZMnUVFRYdW1iOgWhiIiMqtHjx5ITExESkqK0fEWLVrg+PHjRsdCQkLQvHlzNGrUyKrH8PT0RPfu3fHyyy/j22+/xWuvvYY5c+agrKzM7H2uXbuGZ599FgcOHDB8/f777zh58iRiY2NRUlKCxMREBAQE4NNPP8XevXvx1VdfAUC163p6ehr+r581VplKpYJOp7O4Pn5+fmjevDnat2+PVatWYc+ePfjwww8Nty9YsADvvvsuXn75Zfzwww84cOAAEhMTa6wvETlGPWcXgIjkbd68eejQoQNatmxpODZ06FAMGzYMX3/9NR599FG7Pl7r1q1x8+ZNXL9+HRqNBhqNplrLR1xcHI4cOYLmzZubvMbBgwdRUFCAefPmGcbj/Pbbb3YtpyU8PDwwbdo0JCcnY9iwYfDx8cHOnTvx6KOPYsSIEQAAnU6HEydOoHXr1ob7mapzVXfccQd27txpdGznzp24/fbboVar7V8ZIgVgSxER1ejOO+/E8OHDsXjxYsOxIUOG4PHHH8eQIUPw2muvYc+ePcjNzcWPP/6IdevWWfym3LNnT7z33nvIzs5Gbm4utmzZgmnTpuG+++5DQEAAgFvrFP3000/466+/cOXKFQDAyy+/jF27diEpKQkHDhzAyZMn8fXXXxsGWjdp0gQajQZLlizBmTNnsHHjxlq75KTyxBNPQK1WY9myZQButbJt27YNu3btwtGjR/Hss88iPz/f6D7R0dGG5/TKlSsmW6peeOEFZGVlYc6cOThx4gTWrFmDpUuX4sUXX3RIvYjcEUMREdXqtddeM3pjVqlUWLduHVJTU7FlyxY88MADaNmyJZ588klERUVhx44dFl03MTERa9aswUMPPYQ77rgDzz//PBITE/H5558bPXZubi5iY2MREhIC4NY4oB9//BEnTpxA9+7d0bFjR8yYMQMREREAbnXlpaWl4YsvvkDr1q0xb948LFy40I7PiOXq1auHpKQkvPXWWygpKcG//vUvxMXFITExET179kRYWBgGDBhgdJ8XX3wRarUarVu3RkhIiMnxRnFxcfj888+xdu1atG3bFjNmzMBrr71mcoYdEVlGJYQQzi4EERERkbOxpYiIiIgIDEVEJKHKU+arfv3888/OLp5Vzp49W2N9rJ1ST0Tyw+4zIpJMTRvDNm7cGD4+Pg4sTd3cvHkTubm5Zm+Pjo5GvXqc0EvkyhiKiIiIiMDuMyIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIAEMREREREQDg/wPv/mNUyOMrQwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_21.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdU0lEQVR4nO3de1zT9eI/8Ne4DBBhMIirKAimdlEElDRvGYUeRbv9JE+p2cVTSmaUKce8pQmaKXk/efKSl7SS+no7VKKcb5YdDeVUpqSGtwIUyKFQY7LP7w++Wwy2sY1tn429no8Hj9xn7332fi9yr95XiSAIAoiIiIhciJvYFSAiIiKyNwYgIiIicjkMQERERORyGICIiIjI5TAAERERkcthACIiIiKXwwBERERELocBiIiIiFwOAxARERG5HAYgIiIHtXnzZkgkEly4cEHsqhC1OwxARC7s+PHjyMjIwJ133glfX1907twZY8eOxU8//dSi7NChQyGRSCCRSODm5gZ/f390794d48ePxxdffGHW++7duxdDhgxBSEgIOnTogK5du2Ls2LHIz8+3VtNaWLx4MT799NMW17/++mvMnz8f169ft9l7Nzd//nztZymRSNChQwfccccdeP3111FTU2OV99ixYwdyc3Otci+i9ogBiMiFLVmyBLt378b999+Pd955B5MnT8b//u//IiEhAT/88EOL8p06dcLWrVvx/vvv46233sLo0aPx9ddf48EHH0R6ejpUKlWr77ls2TKMHj0aEokEWVlZWLFiBR599FGcPXsWO3futEUzARgPQAsWLLBrANJYt24dtm7diuXLl6NHjx548803MXz4cFjjiEYGICLjPMSuABGJJzMzEzt27IBUKtVeS09Px913342cnBxs27ZNp7xMJsOTTz6pcy0nJwfTpk3D2rVrER0djSVLlhh8v1u3bmHhwoV44IEH8Pnnn7d4/urVq21skeOoq6tDhw4djJZ57LHHEBwcDAB4/vnn8eijjyIvLw/ffPMN+vfvb49qErks9gARubABAwbohB8A6NatG+68806cPn3apHu4u7tj5cqVuOOOO7B69WooFAqDZSsrK1FTU4N7771X7/MhISE6j//44w/Mnz8ft99+O7y9vREeHo5HHnkE58+f15ZZtmwZBgwYgKCgIPj4+CAxMREff/yxzn0kEglqa2uxZcsW7bDTU089hfnz52PGjBkAgJiYGO1zTefcbNu2DYmJifDx8YFcLsfjjz+Oy5cv69x/6NChuOuuu1BUVITBgwejQ4cO+Pvf/27S59fUsGHDAAClpaVGy61duxZ33nknvLy8EBERgalTp+r0YA0dOhT79+/HxYsXtW2Kjo42uz5E7Rl7gIhIhyAIqKiowJ133mnya9zd3TFu3DjMmTMHR44cwciRI/WWCwkJgY+PD/bu3YsXX3wRcrnc4D0bGhowatQoFBQU4PHHH8dLL72EGzdu4IsvvsAPP/yA2NhYAMA777yD0aNH44knnkB9fT127tyJ//f//h/27dunrcfWrVvx7LPPol+/fpg8eTIAIDY2Fr6+vvjpp5/wwQcfYMWKFdremNtuuw0A8Oabb2LOnDkYO3Ysnn32WVy7dg2rVq3C4MGDcfLkSQQEBGjrW1VVhREjRuDxxx/Hk08+idDQUJM/Pw1NsAsKCjJYZv78+ViwYAFSUlLwwgsvoKSkBOvWrcPx48fx1VdfwdPTE7Nnz4ZCocCVK1ewYsUKAEDHjh3Nrg9RuyYQETWxdetWAYDw3nvv6VwfMmSIcOeddxp83SeffCIAEN555x2j9587d64AQPD19RVGjBghvPnmm0JRUVGLchs3bhQACMuXL2/xnFqt1v65rq5O57n6+nrhrrvuEoYNG6Zz3dfXV5g4cWKLe7311lsCAKG0tFTn+oULFwR3d3fhzTff1Ln+/fffCx4eHjrXhwwZIgAQ1q9fb7DdTc2bN08AIJSUlAjXrl0TSktLhX/84x+Cl5eXEBoaKtTW1gqCIAibNm3SqdvVq1cFqVQqPPjgg0JDQ4P2fqtXrxYACBs3btReGzlypNClSxeT6kPkijgERkRaZ86cwdSpU9G/f39MnDjRrNdqehhu3LhhtNyCBQuwY8cO9OnTB5999hlmz56NxMREJCQk6Ay77d69G8HBwXjxxRdb3EMikWj/7OPjo/3zb7/9BoVCgUGDBuHEiRNm1b+5vLw8qNVqjB07FpWVldqfsLAwdOvWDYcPH9Yp7+XlhUmTJpn1Ht27d8dtt92GmJgY/O1vf0NcXBz2799vcO7QwYMHUV9fj+nTp8PN7c+/vp977jn4+/tj//795jeUyEVxCIyIAADl5eUYOXIkZDIZPv74Y7i7u5v1+ps3bwIA/Pz8Wi07btw4jBs3DjU1NfjPf/6DzZs3Y8eOHUhLS8MPP/wAb29vnD9/Ht27d4eHh/G/pvbt24dFixahuLgYSqVSe71pSLLE2bNnIQgCunXrpvd5T09PnceRkZEt5lO1Zvfu3fD394enpyc6deqkHdYz5OLFiwAag1NTUqkUXbt21T5PRK1jACIiKBQKjBgxAtevX8eXX36JiIgIs++hWTYfFxdn8mv8/f3xwAMP4IEHHoCnpye2bNmC//znPxgyZIhJr//yyy8xevRoDB48GGvXrkV4eDg8PT2xadMm7Nixw+w2NKVWqyGRSPCvf/1LbxhsPqemaU+UqQYPHqydd0RE9sUAROTi/vjjD6SlpeGnn37CwYMHcccdd5h9j4aGBuzYsQMdOnTAwIEDLapHUlIStmzZgrKyMgCNk5T/85//QKVSteht0di9eze8vb3x2WefwcvLS3t906ZNLcoa6hEydD02NhaCICAmJga33367uc2xiS5dugAASkpK0LVrV+31+vp6lJaWIiUlRXutrT1gRO0d5wARubCGhgakp6fj6NGj+Oijjyzae6ahoQHTpk3D6dOnMW3aNPj7+xssW1dXh6NHj+p97l//+heAP4d3Hn30UVRWVmL16tUtygr/t1Ggu7s7JBIJGhoatM9duHBB74aHvr6+ejc79PX1BYAWzz3yyCNwd3fHggULWmxMKAgCqqqq9DfShlJSUiCVSrFy5UqdOr333ntQKBQ6q+98fX2NbklA5OrYA0Tkwl555RXs2bMHaWlpqK6ubrHxYfNNDxUKhbZMXV0dzp07h7y8PJw/fx6PP/44Fi5caPT96urqMGDAANxzzz0YPnw4oqKicP36dXz66af48ssv8dBDD6FPnz4AgAkTJuD9999HZmYmjh07hkGDBqG2thYHDx7ElClTMGbMGIwcORLLly/H8OHD8de//hVXr17FmjVrEBcXh++++07nvRMTE3Hw4EEsX74cERERiImJQXJyMhITEwEAs2fPxuOPPw5PT0+kpaUhNjYWixYtQlZWFi5cuICHHnoIfn5+KC0txSeffILJkyfj1VdfbdPnb67bbrsNWVlZWLBgAYYPH47Ro0ejpKQEa9euRd++fXX+fSUmJmLXrl3IzMxE37590bFjR6Slpdm1vkQOTcwlaEQkLs3ybUM/xsp27NhR6Natm/Dkk08Kn3/+uUnvp1KphA0bNggPPfSQ0KVLF8HLy0vo0KGD0KdPH+Gtt94SlEqlTvm6ujph9uzZQkxMjODp6SmEhYUJjz32mHD+/Hltmffee0/o1q2b4OXlJfTo0UPYtGmTdpl5U2fOnBEGDx4s+Pj4CAB0lsQvXLhQiIyMFNzc3Fosid+9e7cwcOBAwdfXV/D19RV69OghTJ06VSgpKdH5bIxtEdCcpn7Xrl0zWq75MniN1atXCz169BA8PT2F0NBQ4YUXXhB+++03nTI3b94U/vrXvwoBAQECAC6JJ2pGIghWOHSGiIiIyIlwDhARERG5HAYgIiIicjkMQERERORyGICIiIjI5TAAERERkcthACIiIiKXw40Q9VCr1fj111/h5+fH7eSJiIichCAIuHHjBiIiIuDmZryPhwFIj19//RVRUVFiV4OIiIgscPnyZXTq1MloGQYgPfz8/AA0foDGzjUiIiIix1FTU4OoqCjt97gxDEB6aIa9/P39GYCIiIicjCnTVzgJmoiIiFwOAxARERG5HNED0Jo1axAdHQ1vb28kJyfj2LFjBsvm5eUhKSkJAQEB8PX1RXx8PLZu3dqi3OnTpzF69GjIZDL4+vqib9++uHTpki2bQURERE5E1DlAu3btQmZmJtavX4/k5GTk5uYiNTUVJSUlCAkJaVFeLpdj9uzZ6NGjB6RSKfbt24dJkyYhJCQEqampAIDz589j4MCBeOaZZ7BgwQL4+/vj1KlT8Pb2tnfziIjIxTQ0NEClUoldjXbL09MT7u7uVrmXRBAEwSp3skBycjL69u2L1atXA2jcfycqKgovvvgiZs2aZdI9EhISMHLkSCxcuBAA8Pjjj8PT01Nvz5CpampqIJPJoFAoOAmaiIhaJQgCysvLcf36dbGr0u4FBAQgLCxM70Rnc76/ResBqq+vR1FREbKysrTX3NzckJKSgqNHj7b6ekEQcOjQIZSUlGDJkiUAGgPU/v378dprryE1NRUnT55ETEwMsrKy8NBDDxm8l1KphFKp1D6uqamxvGFERORyNOEnJCQEHTp04Ca6NiAIAurq6nD16lUAQHh4eJvuJ1oAqqysRENDA0JDQ3Wuh4aG4syZMwZfp1AoEBkZCaVSCXd3d6xduxYPPPAAAODq1au4efMmcnJysGjRIixZsgT5+fl45JFHcPjwYQwZMkTvPbOzs7FgwQLrNY6IiFxGQ0ODNvwEBQWJXZ12zcfHB0Dj931ISEibhsOcbh8gPz8/FBcX4+bNmygoKEBmZia6du2KoUOHQq1WAwDGjBmDl19+GQAQHx+Pr7/+GuvXrzcYgLKyspCZmal9rNlIiYiIqDWaOT8dOnQQuSauQfM5q1Qq5wxAwcHBcHd3R0VFhc71iooKhIWFGXydm5sb4uLiADSGm9OnTyM7OxtDhw5FcHAwPDw8cMcdd+i8pmfPnjhy5IjBe3p5ecHLy6sNrSEiIlfHYS/7sNbnLNoyeKlUisTERBQUFGivqdVqFBQUoH///ibfR61Wa+fvSKVS9O3bFyUlJTplfvrpJ3Tp0sU6FSciIiKnJ+oQWGZmJiZOnIikpCT069cPubm5qK2txaRJkwAAEyZMQGRkJLKzswE0ztVJSkpCbGwslEolDhw4gK1bt2LdunXae86YMQPp6ekYPHgw7rvvPuTn52Pv3r0oLCwUo4lGVVVVob6+3uDzUqmU48lEREQ2IGoASk9Px7Vr1zB37lyUl5cjPj4e+fn52onRly5d0jnOvra2FlOmTMGVK1fg4+ODHj16YNu2bUhPT9eWefjhh7F+/XpkZ2dj2rRp6N69O3bv3o2BAwfavX3GVFVVaZf/A4BC4Yfq6iDI5VWQyW5or2dkZDAEERGRTTz11FPYsmULAMDDwwNyuRy9evXCuHHj8NRTT+l8BxuzefNmTJ8+3am2ARB9EnRGRgYyMjL0Pte812bRokVYtGhRq/d8+umn8fTTT1ujejbTtOfnxIk+2Lt3FATBDRKJGmlp+5CQcLJFOSIiap/EHBEYPnw4Nm3ahIaGBlRUVCA/Px8vvfQSPv74Y+zZswceHqJHBZton61yIgqFnzb8AIAguGHv3lGIjT2n0xNERETtU/MRAUNsNSLg5eWlXXwUGRmJhIQE3HPPPbj//vuxefNmPPvss1i+fDk2bdqEn3/+GXK5HGlpaVi6dCk6duyIwsJC7dQVzQTlefPmYf78+di6dSveeecdlJSUwNfXF8OGDUNubq7e0x7sTfSzwFxddXWQNvxoCIIbqqvlItWIiIjsydSefnuOCAwbNgy9e/dGXl4egMYV2CtXrsSpU6ewZcsWHDp0CK+99hoAYMCAAcjNzYW/vz/KyspQVlaGV199FUDjUvWFCxfiv//9Lz799FNcuHABTz31lN3aYQx7gEQml1dBIlHrhCCJRA25vFrEWhERkavr0aMHvvvuOwDA9OnTtdejo6OxaNEiPP/881i7di2kUilkMhkkEkmLbWyaTkfp2rUrVq5cib59++LmzZvo2LGjXdphCHuARCaT3UBa2j5IJI2bOGrmAHH4i4iIxCQIgnZI6+DBg7j//vsRGRkJPz8/jB8/HlVVVairqzN6j6KiIqSlpaFz587w8/PTbkh86dIlm9e/NewBcgAJCScRG3sO1dVyyOXVDD9ERCS606dPIyYmBhcuXMCoUaPwwgsv4M0334RcLseRI0fwzDPPoL6+3uAO2LW1tUhNTUVqaiq2b9+O2267DZcuXUJqaqpDLPBhAHIQMtkNBh8iInIIhw4dwvfff4+XX34ZRUVFUKvVePvtt7XL4j/88EOd8lKpFA0NDTrXzpw5g6qqKuTk5GiPl/r222/t0wATcAhMJFKp1KrliIiILKFUKlFeXo5ffvkFJ06cwOLFizFmzBiMGjUKEyZMQFxcHFQqFVatWoWff/4ZW7duxfr163XuER0drT2js7KyEnV1dejcuTOkUqn2dXv27MHChQtFamVL7AESSVBQEDIyMrgTNBERiSo/Px/h4eHw8PBAYGAgevfujZUrV2LixIlwc3ND7969sXz5cixZsgRZWVkYPHgwsrOzMWHCBO09BgwYgOeffx7p6emoqqrSLoPfvHkz/v73v2PlypVISEjAsmXLMHr0aBFb+yeJIAiC2JVwNDU1NZDJZFAoFPD392/z/XjkBRFR+/XHH3+gtLQUMTEx8Pb2Nvv1Yu8D5GyMfd7mfH+zB8jG7PmLzaBFROR8OCIgDgYgG2v+C23ozK+2zojn/0EQETkv/r1sfwxAdmTszK/KysoW5c1J/PYKWkRERO0BA5CdtHbml2a78eYs6bExFrSIiIiIy+DtprUzvxQKP5SWRkOh8NMpY26PjaGg1fy+RERErow9QHZi7Mwva/bYGAta3GiRiIioEXuA7MTQmV8ArNpjowlaTfFwVSIiIl3sAbIjfWd+lZZGW7XHRhO0mvcosfeHiIjoTwxANtb8KIvmZ34ZGxqzFA9XJSIiMo4ByMYMbXBVWVmJvLw8s3tsDG12eP36dZ3Hhg5X5dliRERkL4WFhbjvvvvw22+/ISAgwKTXREdHY/r06Zg+fbpN68YAZAetLWM3tcfG1M0O09PTIZPJWly39U6i3ImaiMi5PPXUU9iyZQv+9re/tTjgdOrUqVi7di0mTpyIzZs3i1NBG2IAEklrQ2P6ypm62aFMJkN4eLiVa2xc83BmqG7ciZqIyLFERUVh586dWLFiBXx8fAA0nre1Y8cOdO7cWeTa2Q4DkEjaevaLo2122LQdxurGnaiJiBxLQkICzp8/j7y8PDzxxBMAgLy8PHTu3BkxMTHackqlEjNmzMDOnTtRU1ODpKQkrFixAn379tWWOXDgAKZPn47Lly/jnnvuwcSJE1u835EjR5CVlYVvv/0WwcHBePjhh5GdnQ1fX1/bN7YJLoMXUVBQEMLDw/X+SKVS1NfXo6ysTPujOS7DkTc7dOS6ERE5gytXgMOHG/9pL08//TQ2bdqkfbxx40ZMmjRJp8xrr72G3bt3Y8uWLThx4gTi4uKQmpqK6urGRTuXL1/GI488grS0NBQXF+PZZ5/FrFmzdO5x/vx5DB8+HI8++ii+++477Nq1C0eOHEFGRobtG9kMe4AcUGtzfRx5s0NHrhsRkaN77z1g8mRArQbc3IB33wWeecb27/vkk08iKysLFy9eBAB89dVX2LlzJwoLCwEAtbW1WLduHTZv3owRI0YAADZs2IAvvvgC7733HmbMmIF169YhNjYWb7/9NgCge/fu+P7777FkyRLt+2RnZ+OJJ57QTnDu1q0bVq5ciSFDhmDdunXw9va2fWP/DwOQA2ptro8tls5biyPXjYjIkV258mf4ARr/+be/AampQKdOtn3v2267DSNHjsTmzZshCAJGjhyJ4OBg7fPnz5+HSqXCvffeq73m6emJfv364fTp0wCA06dPIzk5Wee+/fv313n83//+F9999x22b9+uvSYIAtRqNUpLS9GzZ09bNE8vBiAHZ2g+jaNudsiNGImILHP27J/hR6OhATh3zvYBCGgcBtMMRa1Zs8Ym73Hz5k387W9/w7Rp01o8Z+8J1wxADszYCfKOvNmhI9eNiMhRdevWOOzVNAS5uwNxcfZ5/+HDh6O+vh4SiQSpqak6z8XGxkIqleKrr75Cly5dAAAqlQrHjx/XDmf17NkTe/bs0XndN998o/M4ISEBP/74I+Ls1SgjOAnaAWk2NWztBHmZ7AZiYi62CBiOsNmhoboREZF+nTo1zvlxd2987O4O/OMf9un9aXw/d5w+fRo//vgj3DWV+D++vr544YUXMGPGDOTn5+PHH3/Ec889h7q6Ojzzf5OUnn/+eZw9exYzZsxASUkJduzY0WL/oJkzZ+Lrr79GRkYGiouLcfbsWfzP//wPJ0FTo1u3bgFofT5NUlJSiy7DDh06iLLPjqmhyxHCGRGRo3rmmcY5P+fONfb82Cv8aPj7+xt8LicnB2q1GuPHj8eNGzeQlJSEzz77DIGBgQAah7B2796Nl19+GatWrUK/fv2wePFiPP3009p79OrVC//+978xe/ZsDBo0CIIgIDY2Funp6TZvW3MSQRAEu7+rg6upqYFMJoNCoTD6y2Ar33//PfLy8gAAn3wyBv/9b28AEgACevf+Lx5++H+Mvl6szQatvRM0d5YmImfwxx9/oLS0FDExMXZdxeSqjH3e5nx/swfIgSkUfvjuu15oDD8AIMF33/XCsGGHIJPdMLjbslibDVozjJh67Ad3liYiIkswADkgT09PAMbnAJ0/H+dQO0Fbm6nHfjQvx14jIiIyBQOQA9IcZGpoDpCnZ73B1WH2mHRs75Bh6rEf7DUiIiJTMQA5MEN76qhUXqLttmzvkGFsK4DmbbW014iIiFwPA5CD07enjkLhJ9puy/YOGZYereFoh8USUfvHNUX2Ya3PmQHIATVfKi6T3dD5sneU3ZbtETIsOVrDnF4jIqK20szbrKurg4+Pj8i1af/q6uoA/Pm5W4oByAEFBQUhIyOjRS9KZWWldnm8WLstazZpbC1kXL9+HeHh4W1+P0vCXmu9RpWVlXpfxwnSRGQJd3d3BAQE4OrVqwAa92OTSCStvIrMJQgC6urqcPXqVQQEBLTYrNFcDEAOSt8XcWs9Q4bKWZNmk8bWQoamnDWYG/Za6zXShEh9OEGaiCwRFhYGANoQRLYTEBCg/bzbggHIQRlaaTV27FjcunULnp6e2tViTdmrF0MurwIg4M89iqw7D6ktYc+UXiNOkCYia5JIJAgPD0dISAhUKpXY1Wm3PD0929zzo+EQAWjNmjV46623UF5ejt69e2u30NYnLy8Pixcvxrlz56BSqdCtWze88sorGD9+vN7yzz//PP7xj39gxYoV2gPbHJ3zLOfWDUDWnP9naBiwKWNhz1ivESdIE5GtuLu7W+0LmmxL9AC0a9cuZGZmYv369UhOTkZubi5SU1NRUlKCkJCQFuXlcjlmz56NHj16QCqVYt++fZg0aRJCQkJanF77ySef4JtvvkFERIS9mmMVpvZCiNlbUV0dhJZn6Vp3Kb654c6UXiNrTZDmhotERM5N9AC0fPlyPPfcc5g0aRIAYP369di/fz82btyIWbNmtSg/dOhQnccvvfQStmzZgiNHjugEoF9++QUvvvgiPvvsM4wcOdKmbbA1Q8M1YtDMum9tns3NmzdRVlam81pbhwJjvUaaCeSWLqtvynl66IiIyBBRA1B9fT2KioqQlZWlvebm5oaUlBQcPXq01dcLgoBDhw6hpKQES5Ys0V7XnFY7Y8YM3Hnnna3eR6lUQqlUah/X1NSY2RLbcbThGs28o9bm2Xz++ed6X2/rUNDavS1ZVt8cN1wkInJ+ogagyspKNDQ0IDQ0VOd6aGgozpw5Y/B1CoUCkZGRUCqVcHd3x9q1a/HAAw9on1+yZAk8PDwwbdo0k+qRnZ2NBQsWWNYIG3L0/WyMzbNx1FBg7T2UHC2gEhGRaUQfArOEn58fiouLcfPmTRQUFCAzMxNdu3bF0KFDUVRUhHfeeQcnTpwweR+GrKwsZGZmah/X1NQgKirKVtU3mTWGa6zNlHk2jh4KrLWHkqMHVCIiMkzUABQcHAx3d3dUVFToXK+oqDC6xt/NzQ1xcXEAgPj4eJw+fRrZ2dkYOnQovvzyS1y9ehWdO3fWlm9oaMArr7yC3NxcXLhwocX9vLy84OXlZZ1GWZE1hmusrbVNGh01FNhiDyVHDKhERGQaUQOQVCpFYmIiCgoK8NBDDwFonL9TUFCAjIwMk++jVqu1c3jGjx+PlJQUnedTU1Mxfvx47URrZ+EoR140Z2yejdihwNjqrPT0dAiCgICAAL3PmztJ2xEDKhERmUb0IbDMzExMnDgRSUlJ6NevH3Jzc1FbW6sNKxMmTEBkZCSys7MBNM7XSUpKQmxsLJRKJQ4cOICtW7di3bp1ABq/nJt/iXl6eiIsLAzdu3e3b+Ms1LQXwthwjS13fLaUmKHA3quzHDWgEhFR60QPQOnp6bh27Rrmzp2L8vJyxMfHIz8/Xzsx+tKlS3Bz+/PLtLa2FlOmTMGVK1fg4+ODHj16YNu2bUhPTxerCVbX1k0AxSRmKBBjdZZYZ7IREVHbiB6AgMb/Izc05FVYWKjzeNGiRVi0aJFZ99c378fROWK4MZUjhAJzJmKbu6mhI5zJRkREbeMQAYici77AoDklXkPMUGDORGxLhs2cuYeOiIgaMQCRWUwNDOnp6S0Oa7VXKDBnIralw2YMN0REzo0BiMxiamCQyWQIDw/XPtb0GjU/HkPDmuHI0onYjr5/ERERWQ8DEFnM1MDgDKuzHHX/IiIisg0GILKIOYFBjNPtzZ2ILfb+RUREZF8MQGSR1gJDZWWl9nrTPwO2O92+LauzuKkhEZFrYQAii7QWGPLy8vS+zpbzbNqyOsvcYTNzl84TEZFjYQAii7QWGPT18thjnk1bQoepw2b2ntNERETWxwBEFjMUGAz18jjiPBtLhs3E2HGaiIisiwGIzNJaYDDWy+OI82zauqkhl84TETknBiAyi6HAUFlZiby8PKO9PDExFx3y8FBLh6na09J5zmkiIlfDAERm0/dFqFAoALQ+OdoRT7e39MvfEYf0LME5TUTkihiAyCpUKhWAPydH79kzCoAbAN1envvuuw/dunVr8XqxehhM/fIfO3YsAgICAPy5rN8Rh/QsIcY+TUREYmMAIpuQSABBaPxnU4GBgTpHZIjN1AnNH374YbPnLNtx2hBHGoKy1T5NRESOhAGIrMLDo/FXqbV5MZpyjsjYhGZDz5m747Q+jjQExUndROQq3FovQtQ6zfCQsXkxTcs5GkPBTaHwM/oc0NgTFBNzsUX4MXVOk75eqNLSaO39DZWzttbaSUTUnjju/46TU3LWeTHGg5vE6GTnRx55BMHBwTrPWzpkJWYPTHuZ1E1EZAr2AJFVaebFSCRqAHCYpe6t0QS3pjTBzdhzABAcHIzw8HCdH0vCj9g9MK21k4ioPWEPEFmdNebF2FtrE5rtsX+R2D0w1pzUTUTk6BiAyCrachK7ozAW3OwR6sQaPmz678QR92kiIrIFBiCyirYeKSEWU4Nba89Zg1g9MM76746IqC0YgMhqnPEL0tiXv0KhwK5du1q9hzV7Rqy1rN7cMGPpvztH2r+IiMgcDEDk8gx9QYeHh9ulZ8Saw4f23FPIkfYvIiIyFwMQkRH2+OK25hCUqTtbW2NPIXu+FxGRtTEAEVnA2kM/tgha9txTiDtIE5GzYQAiMpMzDP20diSJs74XEZG1cCNEIjM5ytEVxrR2JImzvhcRkbWwB4ioDcQc+tE3DFdZWQnAvnsKOevxJ0Tk2hiAiCwk5tBPa8Nw9txTyB7vxeX2RGRtDEBEFhLz6ApTVmDZ80gSW76XM8y5IiLnwwBEZCFHGfoxNgxnyyNJ7HX8iaXL7dlrRETGMAARWai1oR/NfJzmrPnF29ow3COPPILg4GCbvb+9mTrnir1GRNQaBiCiNjA29JOXl2fwddb64m1tGC44OBjh4eFtfh997L0RojlzrrhJIxG1hgGIyEzmHKBq6y9eMYfhrl+/rv2zsZ6Z69evWyWEWTrnyljd9PXSOXMPGRGZjgGIyEzGjq6orKzU9vzYY4m8WCfIA8CtW7cAtN4zoynXVpaEvdbqZqiXjkNjRO0fAxCRBVr7crTnEnl7rvbSx16r4SwJe5bWjUNjRO0fAxCRDdg6FNhrBZYpPD2VAAQAkiZXBXh6Wj9EmBv2Wus1MjRESUTtHwMQkQ3Yem6ONU+QbyuVygu64QcAJFCprBO+2hL2jPUa8QBXItfmEAFozZo1eOutt1BeXo7evXtj1apV6Nevn96yeXl5WLx4Mc6dOweVSoVu3brhlVdewfjx4wEAKpUKr7/+Og4cOICff/4ZMpkMKSkpyMnJQUREhD2bRS7MHnNzHGWOiqOHPX29RjzAlYhED0C7du1CZmYm1q9fj+TkZOTm5iI1NRUlJSUICQlpUV4ul2P27Nno0aMHpFIp9u3bh0mTJiEkJASpqamoq6vDiRMnMGfOHPTu3Ru//fYbXnrpJYwePRrffvutCC0kVyX23Bxb+/333wG0HvY05drC3LDXWq+RmLt4E5FjED0ALV++HM899xwmTZoEAFi/fj3279+PjRs3YtasWS3KDx06VOfxSy+9hC1btuDIkSNITU2FTCbDF198oVNm9erV6NevHy5duoTOnTvbrC1EjjQ3x9Z8fHy0f05IOImQkHJcvtwZUVGX0KlTmd5y9mKo10izSs9RdvEmIvGIGoDq6+tRVFSErKws7TU3NzekpKTg6NGjrb5eEAQcOnQIJSUlWLJkicFyCoUCEokEAQEB1qg2kUGONDfH1jw9PbV/Njafpmk5ezL2GYu5fQAROQZRA1BlZSUaGhoQGhqqcz00NBRnzpwx+DqFQoHIyEgolUq4u7tj7dq1eOCBB/SW/eOPPzBz5kyMGzcO/v7+essolUoolUrt45qaGgtaQ9TIXuFG7LOuZDIZgNaX/GvKOYKmPW/GhijbQw8dERkn+hCYJfz8/FBcXIybN2+ioKAAmZmZ6Nq1a4vhMZVKhbFjx0IQBKxbt87g/bKzs7FgwQIb15rIepqfdWVoObc9NvRzpvk0rtRDR0TGiRqAgoOD4e7ujoqKCp3rFRUVCAsLM/g6Nzc3xMXFAQDi4+Nx+vRpZGdn6wQgTfi5ePEiDh06ZLD3BwCysrKQmZmpfVxTU4OoqCgLW0Vke02/wI0NP9ljQz9nm0/DcENEAODWehHbkUqlSExMREFBgfaaWq1GQUEB+vfvb/J91Gq1zhCWJvycPXsWBw8ebPUvPC8vL/j7++v8EDkDQ8NPCoWf3eqgmU8jkagBoNX5NFVVVSgrKzP4U1VVZbe6E5HrEn0ILDMzExMnTkRSUhL69euH3Nxc1NbWaleFTZgwAZGRkcjOzgbQOFyVlJSE2NhYKJVKHDhwAFu3btUOcalUKjz22GM4ceIE9u3bh4aGBpSXlwNoXELPsX1qTxxl+MnUJf/Nh+4M4VlcRGRrogeg9PR0XLt2DXPnzkV5eTni4+ORn5+vnRh96dIluLn9+Rd8bW0tpkyZgitXrsDHxwc9evTAtm3bkJ6eDgD45ZdfsGfPHgCNw2NNHT58uMU8ISJnJubwkyVL/psPyRmau8SzuIjI1iSCIAhiV8LR1NTUQCaTQaFQcDiMHFJZWRneffddAMbnAE2ePBnh4eE2q4e5K9Ecpd5E1D6Z8/0teg8QEbWNmDtOWzpMxaMoiEhsDEBE7YCh4SdH5Shzl4jIdYm6CoyILGPqZH5HnfSvmbvUlCMvnSei9oc9QEROyNk39GtPR1GIvSM3EVmGAYjISTn7l6qYc5eshcv6iZwXAxAR2Y0lS+cdmanL9bmsn8jxMAARkd04+9Bdawzta0REjocBiIjsylnDTWuM7WtERI6HAYiI7Ko9ThrmvkZEzocBiIjsxtEnDVsazrivEZHzYQAiIrtx5LPATA1nY8eORUBAAACgsrISgLhnshGRZRiAiEgUjjZnxtRw9uGHH7Z4bXva14jIVTAAEZHdOfqcGWPhzFAwMravkbMs6ydyJQxARGR3jjxnxlg4O38+zmAweuSRRxAcHNzifs44qZvIFTAAEZHdOfKcGUPh7PLlTkZ7rYKDgxEeHi5GlYnIAjwMlYjsTjNnRnMgqiPNmTF0UCsgMdhrRUTOhz1ARCQKa5wFZos9hQxNaI6KuuywvVZEZD4GICKyG2ueBWbLPYUMhTOu9CJqPxiAiMhurHkWmLX3FDIlnLWHE+yJqBEDEBHZlS1WRBlbtq7ZrLC55kHLUDhTKBTYtWuX9rGzn2BPRI0YgIjIqbW2p1BeXp7B1zYfHtMXzsLDw432WikUCgiCgPr6epSVlbV4nsvgiRwTAxAROTVT9hRq6/CYoQBTVVWl0ztkiFhnmxGRYQxAROTUWttTyNjw2PXr19u0d48jn21GRMYxABGRUzN2Dldrw2O3bt2yWj0c7WwzIjKOAYiInJ6h1Vn2OnLD0c82I6KWGICIyCmZsmzd01MJQAAgaXJVgKendYekHPlsMyLSjwGIiJySsT2Fzp49i8OHD0Ol8oJu+AEACVQq6y5Zd+SzzYhIPwYgInJahlZWafb+sVcwMTYPyR5scSQIUXvHAERE7Y6npyeA1oOJppw1iLVLtC2PBCFqzxiAiKjdkclk2j8bCyZNy1mirq5Oz9XmQ26GylkHl+ITWYYBiIjaHWseumpMhw4dtH82tgy+aTlb4lJ8ItMxABFRu2PNQ1dN4QjL4B2hDkTOhAGIiNole853cYRl8NaqAydUk6tgACIiaiNHWAZvbh30BR2FQsGzzchlMAAREbWR2Mvgza2DqSvHOKGa2jMGICIiKxBrGbwldTAlwHBCNbV3DEBERFZiaLWZLVljxVvznh5OqCZXwABERGQhU5fRt3W5vTFtXfGmr6cnMPA30Sd1E9kaAxARkYXsvdzeWD0sYain55ln/in6pG4iW3NrvYjtrVmzBtHR0fD29kZycjKOHTtmsGxeXh6SkpIQEBAAX19fxMfHY+vWrTplBEHA3LlzER4eDh8fH6SkpODs2bO2bgYRuaCgoCCEh4cb/HHE1VLXr18HYHjpvEolRVraPkgkagAQZVI3ka2J3gO0a9cuZGZmYv369UhOTkZubi5SU1NRUlKCkJCQFuXlcjlmz56NHj16QCqVYt++fZg0aRJCQkKQmpoKAFi6dClWrlyJLVu2ICYmBnPmzEFqaip+/PFHeHt727uJREQO5datWwCML52PiblocEL19evXER4ebvd6E1mT6D1Ay5cvx3PPPYdJkybhjjvuwPr169GhQwds3LhRb/mhQ4fi4YcfRs+ePREbG4uXXnoJvXr1wpEjRwA09v7k5ubi9ddfx5gxY9CrVy+8//77+PXXX/Hpp5/asWVERI5Ns3TeUE+PTHYDMTEXW/T8SCQtzzsjcjaiBqD6+noUFRUhJSVFe83NzQ0pKSk4evRoq68XBAEFBQUoKSnB4MGDAQClpaUoLy/XuadMJkNycrLBeyqVStTU1Oj8EBG1V56enjqPBUH3nxoKhR9KS6OhUPjpXG9+iGxVVRXKysoM/lRVVVm9DURtJeoQWGVlJRoaGhAaGqpzPTQ0FGfOnDH4OoVCgcjISCiVSri7u2Pt2rV44IEHAADl5eXaezS/p+a55rKzs7FgwYK2NIWIyGloAoxmEvSf/y/853L38+fjDO4DpFAotENgpm6qyN2jydGIPgRmCT8/PxQXF+P48eN48803kZmZicLCQovvl5WVBYVCof25fPmy9SpLROSgDE2Cvny5k97VYZqeIJVKpS3f8jgN/b1G3D2aHI2oPUDBwcFwd3dHRUWFzvWKigqEhYUZfJ2bmxvi4uIAAPHx8Th9+jSys7MxdOhQ7esqKip0JulVVFQgPj5e7/28vLzg5eXVxtYQETkXQ5OgAYlF+wBx92hyJqL2AEmlUiQmJqKgoEB7Ta1Wo6CgAP379zf5Pmq1GkqlEgAQExODsLAwnXvW1NTgP//5j1n3JCJq7wxNgo6KugxA3ay08X2ADO0p1LwniMhRiL4MPjMzExMnTkRSUhL69euH3Nxc1NbWYtKkSQCACRMmIDIyEtnZ2QAa5+skJSUhNjYWSqUSBw4cwNatW7Fu3ToAjasTpk+fjkWLFqFbt27aZfARERF46KGHxGomEZHDaLoztb7zwxpDi+5Kr9YWfhkaTuPu0eSoRA9A6enpuHbtGubOnYvy8nLEx8cjPz9fO4n50qVLcHP78z+q2tpaTJkyBVeuXIGPjw969OiBbdu2IT09XVvmtddeQ21tLSZPnozr169j4MCByM/P5x5AREQwvIN1aWkpvvjiC1RXB6F5AGoaZjw8Wn51GNtTiMgRiR6AgMbVARkZGXqfaz65edGiRVi0aJHR+0kkErzxxht44403rFVFIqJ2xdiKrNbCTEBAQIvXaIbTms8BYu8POSqHCEBEROQ4LA0z+obTiBwVAxARkZOrqqqyyoGsrc0N0leu+Un3MtkNvcGneTkisUkEofnen1RTUwOZTAaFQgF/f3+xq0NEZFDzjQgVCj9UVwdBLq/SCSKmbkRoSZiyVgAjaitzvr/ZA0RE5MSaBg9j+/CYuhGhJUGF4YackVPuBE1ERLq4Dw+ReRiAiIjaAWP78BBRSwxARETtgGbpelPch4fIMAYgIqJ2wNCxFlyKTqQfJ0ETEbUT3IeHyHQMQERE7YihfXhsicvgyRkxABEROTFTNxi0xkaE+oKOQqHArl27Wn2tqfsQEdkLAxARkRMzdLBpU9bogTG+4SIMXP+zJ8rUfYiI7IUBiIjIydmjZ8WUDReNbcRI5Gi4CoyIiExmaMPFK1fCuREjORUGICIiMpmhDRcvXerMjRjJqZgdgA4cOIBnn30Wr732Gs6cOaPz3G+//YZhw4ZZrXJERORYDG242LnzJW7ESE7FrAC0Y8cOjB49GuXl5Th69Cj69OmD7du3a5+vr6/Hv//9b6tXkoiIHIOhDRc7dSrjRozkVMyaBP3WW29h+fLlmDZtGgDgww8/xNNPP40//vgDzzzzjE0qSEREjsXQhovGNmKsrKzUey/uEURiMSsAnT17FmlpadrHY8eOxW233YbRo0dDpVLh4YcftnoFiYjI8RjacNHQ9by8PIP34h5BJAazApC/vz8qKioQExOjvXbfffdh3759GDVqFK5cuWL1ChIRkfhM3Uhx7NixCAgIANDY69M0+HCPIHIkZgWgfv364V//+hfuuecenetDhgzB3r17MWrUKKtWjoiIHENbN1zkHkHkaMwKQC+//DK+/vprvc8NHToUe/fuxfvvv2+VihERkWOxdJjK0N5BsbHnOEmaRGNWABoyZAiGDBli8Pn77rsP9913X5srRURE7YehvYOqq+UMQCQaswKQm5sbJBKJ0TISiQS3bt1qU6WIiKj90Owd1DQEcY8gEptZAeiTTz4x+NzRo0excuVKqNVqg2WIiMj1aPYOaj4HiL0/JCazAtCYMWNaXCspKcGsWbOwd+9ePPHEE3jjjTesVjkiImofjO0RZKqqqiqbn3pPrsPi0+B//fVXzJs3D1u2bEFqaiqKi4tx1113WbNuRETkxJovnTe0R5ApS+yrqqqwevXqVstxTyEyldkBSKFQYPHixVi1ahXi4+NRUFCAQYMG2aJuRETkxNq6dL6p5vcwtKfQr7/+qvf92DtEzZkVgJYuXYolS5YgLCwMH3zwgd4hMSIiIg1bhA5jewpxx2kylVkBaNasWfDx8UFcXBy2bNmCLVu26C1n7BeQiIjIUm3ZU4g7TlNTZgWgCRMmtLoMnoiIyFZM2VPI0PAYUVNmBaDNmzfbqBpERESta21PIWPDY/pOpOfcINdl8SowIiIiezO2p1Brw2OGpmdwbpBrYgAiIiKnYmhPodaGx3gaPTXFAERERA7PlD2FjA2P8TR6ao4BiIiIHJ6xPYUqKyuRl5dncHgMAE+jpxYYgIiIyCkYmqfTtHdI3/BYaWk0T6OnFhiAiIjIqRnqHdL0DPE0etKHAYiIiJyesVVcPI2e9HFrvYhtrVmzBtHR0fD29kZycjKOHTtmsOyGDRswaNAgBAYGIjAwECkpKS3K37x5ExkZGejUqRN8fHxwxx13YP369bZuBhERORiFQqH9c0LCSUyfnouJEzdj+vRcnQnQpaWlKCsra/FTVVUlRrXJTkTtAdq1axcyMzOxfv16JCcnIzc3F6mpqSgpKUFISEiL8oWFhRg3bhwGDBgAb29vLFmyBA8++CBOnTqFyMhIAEBmZiYOHTqEbdu2ITo6Gp9//jmmTJmCiIgIjB492t5NJCIikQiCoOdqy9MMvvjiC4P34B5B7ZdE0P8bYhfJycno27cvVq9eDQBQq9WIiorCiy++iFmzZrX6+oaGBgQGBmL16tWYMGECAOCuu+5Ceno65syZoy2XmJiIESNGYNGiRSbVq6amBjKZDAqFAv7+/ha0jIiIxHb69Gl8+OGHAIzvEA0YPj5j8uTJCA8Pt3vdyTLmfH+L1gNUX1+PoqIiZGVlaa+5ubkhJSUFR48eNekedXV1UKlUkMvl2msDBgzAnj178PTTTyMiIgKFhYX46aefsGLFCoP3USqVUCqV2sc1NTUWtIiIiMRSVVXVYhL0tWvXALR+gCr3CHJNogWgyspKNDQ0IDQ0VOd6aGgozpw5Y9I9Zs6ciYiICKSkpGivrVq1CpMnT0anTp3g4eEBNzc3bNiwAYMHDzZ4n+zsbCxYsMCyhhARkaiqqqq0Iwn6GNshGuAeQa5K9EnQlsrJycHOnTvxySefwNvbW3t91apV+Oabb7Bnzx4UFRXh7bffxtSpU3Hw4EGD98rKyoJCodD+XL582R5NICIiK2je86NQ+KG0NBoKhR8AwNNTCaD5bA8Bnp71rYYjar9E6wEKDg6Gu7s7KioqdK5XVFQgLCzM6GuXLVuGnJwcHDx4EL169dJe//333/H3v/8dn3zyCUaOHAkA6NWrF4qLi7Fs2TKdnqKmvLy84OXl1cYWERGR2PQNZwUG/oaWk58lUKmk3CPIhYnWAySVSpGYmIiCggLtNbVajYKCAvTv39/g65YuXYqFCxciPz8fSUlJOs+pVCqoVCq4uek2y93dHWq12roNICIih2Joro+npxISie53gCbkaPYI0jzPPYJch6jL4DMzMzFx4kQkJSWhX79+yM3NRW1tLSZNmgQAmDBhAiIjI5GdnQ0AWLJkCebOnYsdO3YgOjoa5eXlAICOHTuiY8eO8Pf3x5AhQzBjxgz4+PigS5cu+Pe//433338fy5cvF62dRERke4aGs1QqqdGNEA2dLk/tm6gBKD09HdeuXcPcuXNRXl6O+Ph45OfnaydGX7p0Sac3Z926daivr8djjz2mc5958+Zh/vz5AICdO3ciKysLTzzxBKqrq9GlSxe8+eabeP755+3WLiIisj9jw1kxMReNhhx9p8sDLU+hp/ZD1H2AHBX3ASIich5lZWV49913AbS+348+I0aMQFRUVIvrUqmUmyA6GafYB4iIiMjajA1nGdrsMCoqipsduiAGICIicmrNh6n0DWdxs0NqjgGIiIicWlBQEDIyMlrsB1RZWYm8vLxWd4Im18QARERETs/YXB1jmx0yALkup90JmoiIyBSa1WFNcbNDYgAiIqJ2jZsdkj4cAiMionaPmx1ScwxARETULpmyOkxfOXINDEBERNQuGVod1hQ3O3RdDEBERNRuMdyQIZwETURERC6HAYiIiIhcDgMQERERuRzOASIionarqqqKk6BJLwYgIiJql6qqqrB69epWy2VkZDAEuSAOgRERUbvUvOdHofBDaWk0FAo/o+XINbAHiIiI2r0TJ/poT4TXHIWRkHBS7GqRiNgDRERE7ZpC4acNP0DjSfB7945q0RNEroUBiIiI2rXq6iBt+NEQBDdUV8tFqhE5AgYgIiJq1+TyKu1J8BoSiRpyebVINSJHwABERETtmkx2A2lp+7QhSDMHiCfCuzZOgiYionYvIeEkYmPPobpaDrm8muGHGICIiKh9kkqlOo9lsht6g0/zcuQaGICIiKhdCgoKQkZGBneCJr0YgIiIqN1iuCFDOAmaiIiIXA4DEBEREbkcBiAiIiJyOQxARERE5HIYgIiIiMjlMAARERGRy+EyeCIiIpFUVVVxnyKRMAARERGJoKqqCqtXr9Y+Vij8UF0dBLm8SmfH6oyMDIYgG2AAIiIiEkHTnp8TJ/pg795REAQ37WGtCQknW5Qj6+EcICIiIhEpFH7a8AMAguCGvXtHQaHwE7lm7RsDEBERkYiqq4O04UdDENxQXS0XqUaugQGIiIhIRHJ5FSQStc41iUQNubxapBq5BgYgIiIiEclkN5CWtk8bgjRzgJpOhCbr4yRoIiIikSUknERs7DlUV8shl1cz/NiB6D1Aa9asQXR0NLy9vZGcnIxjx44ZLLthwwYMGjQIgYGBCAwMREpKit7yp0+fxujRoyGTyeDr64u+ffvi0qVLtmwGERFRm8hkNxATc5Hhx05EDUC7du1CZmYm5s2bhxMnTqB3795ITU3F1atX9ZYvLCzEuHHjcPjwYRw9ehRRUVF48MEH8csvv2jLnD9/HgMHDkSPHj1QWFiI7777DnPmzIG3t7e9mkVERNQqqVRq1XJkHokgCIJYb56cnIy+fftqN4JSq9WIiorCiy++iFmzZrX6+oaGBgQGBmL16tWYMGECAODxxx+Hp6cntm7danG9ampqIJPJoFAo4O/vb/F9iIiIjOFO0NZlzve3aD1A9fX1KCoqQkpKyp+VcXNDSkoKjh49atI96urqoFKpIJc3LhVUq9XYv38/br/9dqSmpiIkJATJycn49NNPjd5HqVSipqZG54eIiMjWgoKCEB4ebvCH4cd2RAtAlZWVaGhoQGhoqM710NBQlJeXm3SPmTNnIiIiQhuirl69ips3byInJwfDhw/H559/jocffhiPPPII/v3vfxu8T3Z2NmQymfYnKirK8oYRERGRw3PaVWA5OTnYuXMnCgsLtfN71OrGJYRjxozByy+/DACIj4/H119/jfXr12PIkCF675WVlYXMzEzt45qaGoYgIiKidky0ABQcHAx3d3dUVFToXK+oqEBYWJjR1y5btgw5OTk4ePAgevXqpXNPDw8P3HHHHTrle/bsiSNHjhi8n5eXF7y8vCxoBRERETkj0YbApFIpEhMTUVBQoL2mVqtRUFCA/v37G3zd0qVLsXDhQuTn5yMpKanFPfv27YuSkhKd6z/99BO6dOli3QYQERGR0xJ1CCwzMxMTJ05EUlIS+vXrh9zcXNTW1mLSpEkAgAkTJiAyMhLZ2dkAgCVLlmDu3LnYsWMHoqOjtXOFOnbsiI4dOwIAZsyYgfT0dAwePBj33Xcf8vPzsXfvXhQWForSRiIiInI8ogag9PR0XLt2DXPnzkV5eTni4+ORn5+vnRh96dIluLn92Um1bt061NfX47HHHtO5z7x58zB//nwAwMMPP4z169cjOzsb06ZNQ/fu3bF7924MHDjQbu0iIiIixybqPkCOivsAERGRmLg/kGXM+f522lVgRERE7VFVVZV2g2BjMjIyGILaQPSzwIiIiOhPxnp+LClH+jEAEREROTCFwg+lpdFQKPzErkq7wiEwIiIiB3XiRB/s3TsKguAGiUSNtLR9SEg4KXa12gX2ABERETkghcJPG34AQBDcsHfvKPYEWQkDEBERkQOqrg7Shh8NQXBDdbVcpBq1LwxAREREDkgur4JEota5JpGoIZdXi1Sj9oUBiIiIyAHJZDeQlrZPG4I0c4Bkshsi16x94CRoIiIiByKVSrV/Tkg4idjYc6iulkMur9YJP03LkfkYgIiIiBxIUFAQMjIyuBO0jTEAERERORhj4UZzTEZZWZne5xmOTMMARERE5CR4TIb1cBI0ERGRk2g+LGZol2gek9E69gARERE5Ie4S3TbsASIiInIy3CW67RiAiIiInAx3iW47BiAiIiInw12i245zgIiIiJyMZpfo5nOANBslVlZWtngNl8frYgAiIiJyQsZ2ic7Ly9P7Gi6P/xMDEBERkZNofvyFTHbDrLPBuDz+TwxARERETsLQMRmVlZU6vT4KhR+qq4Mgl1fx8FQDGICIiIicSGtDWNwfyDRcBUZERNROcH8g0zEAERERtRPcH8h0DEBERETtBPcHMh0DEBERUTuh2R9IE4Ka7w9Ef+IkaCIiIifXdHm8sf2Bmi+jd2UMQERERE7O0PL4prgTtC4GICIionaA4cY8nANERERELocBiIiIiFwOAxARERG5HAYgIiIicjkMQERERORyGICIiIjI5TAAERERkcthACIiIiKXwwBERERELocBiIiIiFyOQwSgNWvWIDo6Gt7e3khOTsaxY8cMlt2wYQMGDRqEwMBABAYGIiUlxWj5559/HhKJBLm5uTaoORERUftUVVWFsrIylJWVoaioAh9/XIWiogrttaqqKrGr2CainwW2a9cuZGZmYv369UhOTkZubi5SU1NRUlKCkJCQFuULCwsxbtw4DBgwAN7e3liyZAkefPBBnDp1CpGRkTplP/nkE3zzzTeIiIiwV3OIiIicXlVVFVavXg0AOHGiD/buHQVBcINEokZa2j4kJJwEAGRkZDjtGWSi9wAtX74czz33HCZNmoQ77rgD69evR4cOHbBx40a95bdv344pU6YgPj4ePXr0wD//+U+o1WoUFBTolPvll1/w4osvYvv27fD09LRHU4iIiNoFzanyCoWfNvwAgCC4Ye/eUVAo/HTKOSNRA1B9fT2KioqQkpKivebm5oaUlBQcPXrUpHvU1dVBpVJBLpdrr6nVaowfPx4zZszAnXfe2eo9lEolampqdH6IiIhcXXV1kDb8aAiCG6qr5QZe4TxEHQKrrKxEQ0MDQkNDda6HhobizJkzJt1j5syZiIiI0AlRS5YsgYeHB6ZNm2bSPbKzs7FgwQLTK05ERNQOVFVV6e3FuXDhAgBALq+CRKLWCUESiRpyeTUAQKFQIDw83C51tTbR5wC1RU5ODnbu3InCwkJ4e3sDAIqKivDOO+/gxIkTkEgkJt0nKysLmZmZ2sc1NTWIioqySZ2JiIgcQdN5PobIZDeQlrYPe/aMQuOgUeMcIJnsBgBApVLZvqI2IuoQWHBwMNzd3VFRUaFzvaKiAmFhYUZfu2zZMuTk5ODzzz9Hr169tNe//PJLXL16FZ07d4aHhwc8PDxw8eJFvPLKK4iOjtZ7Ly8vL/j7++v8EBERtWfmzN/R9CeY2K/gFEQNQFKpFImJiToTmDUTmvv372/wdUuXLsXChQuRn5+PpKQknefGjx+P7777DsXFxdqfiIgIzJgxA5999pnN2kJEROTMFAo/lJZGayc4a64ZmwTtzEQfAsvMzMTEiRORlJSEfv36ITc3F7W1tZg0aRIAYMKECYiMjER2djaAxvk9c+fOxY4dOxAdHY3y8nIAQMeOHdGxY0cEBQW1WJLn6emJsLAwdO/e3b6NIyIicgKGlrobmwStGQZzVqIHoPT0dFy7dg1z585FeXk54uPjkZ+fr50YfenSJbi5/fnhr1u3DvX19Xjsscd07jNv3jzMnz/fnlUnIiJyeoZ6eWJjz7U6CdrDQ/QYYTGHqHlGRgYyMjL0PldYWKjzWDMz3RyWvIaIiMgVGOvliYm5iLS0fS16hzS9PwEBASLU2DocIgARERGROFrr5UlIOInY2HOorpZDLq92+qEvDdF3giYiIiLxaJa6SyRqAGjRy6MpExNzsUX4kUqldq2rNbEHiIiIyAU1DS/GennGjh2rd6hLKpU67TlgAAMQERGRSwoKCkJGRobR/YCcPeQYwwBERETkotpruDEF5wARERGRy2EAIiIiIpfDAEREREQuhwGIiIiIXA4DEBEREbkcBiAiIiJyOQxARERE5HIYgIiIiMjlMAARERGRy2EAIiIiIpfDAEREREQuhwGIiIiIXA4DEBEREbkcBiAiIiJyOR5iV4CIiIjah6qqKtTX1xt8XiqVIigoyI41MowBiIiIiExmKORcv34dH374ofaxQuGH6uogyOVVkMluaK9nZGQ4RAhiACIiIiKTVFVVYfXq1a2WO3GiD/buHQVBcINEokZa2j4kJJwEAKM9RPbEOUBERERkElPCi0Lhpw0/ACAIbti7dxQUCj9bV88sDEBERERkNdXVQdrwoyEIbqiulotUI/0YgIiIiMgiCoUfSkujdXp35PIqSCRqnXISiRpyebW9q2cU5wARERGR2QzN85HJbiAtbV+L55pOhHYEDEBERERkFkPzfGJjz0Emu4GEhJOIjT2H6mo55PJqhws/AAMQERERmcnYPB9N2JHJbjhk8NHgHCAiIiIyS1vm+UilUltVyyzsASIiIiKTaMJLa/N80tPTIZPJ9L7eETZBBACJIAiC2JVwNDU1NZDJZFAoFPD39xe7OkRERA6j6U7Qv/7qhgsXPBAdfQsREY09QmKGHHO+v9kDRERERCZrGm7Cw4HERBEr0wacA0REREQuhz1AREREZFOOeEo8AxARERHZjKkHqNr7lHgOgREREZHNNO/50Xd8hr5ytsYeICIiIrILQ8dniIE9QERERGRzho7PaN4TZC8OEYDWrFmD6OhoeHt7Izk5GceOHTNYdsOGDRg0aBACAwMRGBiIlJQUnfIqlQozZ87E3XffDV9fX0RERGDChAn49ddf7dEUIiIi0sPY8RliED0A7dq1C5mZmZg3bx5OnDiB3r17IzU1FVevXtVbvrCwEOPGjcPhw4dx9OhRREVF4cEHH8Qvv/wCAKirq8OJEycwZ84cnDhxAnl5eSgpKcHo0aPt2SwiIiJqoi3HZ9iC6DtBJycno2/fvtoZ4mq1GlFRUXjxxRcxa9asVl/f0NCAwMBArF69GhMmTNBb5vjx4+jXrx8uXryIzp07t3pP7gRNRERkHWVlZXj33XcBGJ8DNHnyZISHh7fpvZxmJ+j6+noUFRUhKytLe83NzQ0pKSk4evSoSfeoq6uDSqWCXG64C02hUEAikSAgIEDv80qlEkqlUvu4pqbGtAYQERGRyRISTiI29hyqq+WQy6tFPS1e1CGwyspKNDQ0IDQ0VOd6aGgoysvLTbrHzJkzERERgZSUFL3P//HHH5g5cybGjRtnMA1mZ2dDJpNpf6KiosxrCBEREenV/PR3mewGYmIutgg/9j4l3qmXwefk5GDnzp0oLCyEt7d3i+dVKhXGjh0LQRCwbt06g/fJyspCZmam9nFNTQ1DEBERkRUEBQUhIyODO0E3FRwcDHd3d1RUVOhcr6ioQFhYmNHXLlu2DDk5OTh48CB69erV4nlN+Ll48SIOHTpkdCzQy8sLXl5eljWCiIiIjBLrdHhjRB0Ck0qlSExMREFBgfaaWq1GQUEB+vfvb/B1S5cuxcKFC5Gfn4+kpKQWz2vCz9mzZ3Hw4EGH/OCJiIhIPKIPgWVmZmLixIlISkpCv379kJubi9raWkyaNAkAMGHCBERGRiI7OxsAsGTJEsydOxc7duxAdHS0dq5Qx44d0bFjR6hUKjz22GM4ceIE9u3bh4aGBm0ZuVxu9zFGIiIicjyiB6D09HRcu3YNc+fORXl5OeLj45Gfn6+dGH3p0iW4uf3ZUbVu3TrU19fjscce07nPvHnzMH/+fPzyyy/Ys2cPACA+Pl6nzOHDhzF06FCbtoeIiIgcn+j7ADki7gNERETkfMz5/hZ9J2giIiIie2MAIiIiIpfDAEREREQuhwGIiIiIXA4DEBEREbkc0ZfBOyLNwjgeikpEROQ8NN/bpixwZwDS48aNxgPaeB4YERGR87lx4wZkMpnRMtwHSA+1Wo1ff/0Vfn5+kEgkVr235qDVy5cvu+QeQ2y/a7cf4Gfg6u0H+Bmw/bZrvyAIuHHjBiIiInQ2UdaHPUB6uLm5oVOnTjZ9D39/f5f8xddg+127/QA/A1dvP8DPgO23Tftb6/nR4CRoIiIicjkMQERERORyGIDszMvLC/PmzYOXl5fYVREF2+/a7Qf4Gbh6+wF+Bmy/Y7Sfk6CJiIjI5bAHiIiIiFwOAxARERG5HAYgIiIicjkMQERERORyGICsbM2aNYiOjoa3tzeSk5Nx7Ngxg2VPnTqFRx99FNHR0ZBIJMjNzbVfRW3InM9gw4YNGDRoEAIDAxEYGIiUlBSj5Z2BOe3Py8tDUlISAgIC4Ovri/j4eGzdutWOtbUNcz6Dpnbu3AmJRIKHHnrIthW0MXPav3nzZkgkEp0fb29vO9bWNsz9Hbh+/TqmTp2K8PBweHl54fbbb8eBAwfsVFvrM6f9Q4cObfE7IJFIMHLkSDvW2LrM/fefm5uL7t27w8fHB1FRUXj55Zfxxx9/2LaSAlnNzp07BalUKmzcuFE4deqU8NxzzwkBAQFCRUWF3vLHjh0TXn31VeGDDz4QwsLChBUrVti3wjZg7mfw17/+VVizZo1w8uRJ4fTp08JTTz0lyGQy4cqVK3auuXWY2/7Dhw8LeXl5wo8//iicO3dOyM3NFdzd3YX8/Hw719x6zP0MNEpLS4XIyEhh0KBBwpgxY+xTWRswt/2bNm0S/P39hbKyMu1PeXm5nWttXeZ+BkqlUkhKShL+8pe/CEeOHBFKS0uFwsJCobi42M41tw5z219VVaXz7/+HH34Q3N3dhU2bNtm34lZibvu3b98ueHl5Cdu3bxdKS0uFzz77TAgPDxdefvllm9aTAciK+vXrJ0ydOlX7uKGhQYiIiBCys7NbfW2XLl3aRQBqy2cgCIJw69Ytwc/PT9iyZYutqmhTbW2/IAhCnz59hNdff90W1bMLSz6DW7duCQMGDBD++c9/ChMnTnTqAGRu+zdt2iTIZDI71c4+zP0M1q1bJ3Tt2lWor6+3VxVtqq1/D6xYsULw8/MTbt68aasq2pS57Z86daowbNgwnWuZmZnCvffea9N6cgjMSurr61FUVISUlBTtNTc3N6SkpODo0aMi1sx+rPEZ1NXVQaVSQS6X26qaNtPW9guCgIKCApSUlGDw4MG2rKrNWPoZvPHGGwgJCcEzzzxjj2rajKXtv3nzJrp06YKoqCiMGTMGp06dskd1bcKSz2DPnj3o378/pk6ditDQUNx1111YvHgxGhoa7FVtq7HG34PvvfceHn/8cfj6+tqqmjZjSfsHDBiAoqIi7TDZzz//jAMHDuAvf/mLTevKw1CtpLKyEg0NDQgNDdW5HhoaijNnzohUK/uyxmcwc+ZMRERE6PzH4ywsbb9CoUBkZCSUSiXc3d2xdu1aPPDAA7aurk1Y8hkcOXIE7733HoqLi+1QQ9uypP3du3fHxo0b0atXLygUCixbtgwDBgzAqVOnbH4osy1Y8hn8/PPPOHToEJ544gkcOHAA586dw5QpU6BSqTBv3jx7VNtq2vr34LFjx/DDDz/gvffes1UVbcqS9v/1r39FZWUlBg4cCEEQcOvWLTz//PP4+9//btO6MgCRw8jJycHOnTtRWFjYLiaBmsrPzw/FxcW4efMmCgoKkJmZia5du2Lo0KFiV83mbty4gfHjx2PDhg0IDg4Wuzqi6N+/P/r37699PGDAAPTs2RP/+Mc/sHDhQhFrZj9qtRohISF499134e7ujsTERPzyyy946623nC4AtdV7772Hu+++G/369RO7KnZTWFiIxYsXY+3atUhOTsa5c+fw0ksvYeHChZgzZ47N3pcByEqCg4Ph7u6OiooKnesVFRUICwsTqVb21ZbPYNmyZcjJycHBgwfRq1cvW1bTZixtv5ubG+Li4gAA8fHxOH36NLKzs50yAJn7GZw/fx4XLlxAWlqa9pparQYAeHh4oKSkBLGxsbattBVZ4+8BT09P9OnTB+fOnbNFFW3Oks8gPDwcnp6ecHd3117r2bMnysvLUV9fD6lUatM6W1Nbfgdqa2uxc+dOvPHGG7asok1Z0v45c+Zg/PjxePbZZwEAd999N2prazF58mTMnj0bbm62ma3DOUBWIpVKkZiYiIKCAu01tVqNgoICnf+7a88s/QyWLl2KhQsXIj8/H0lJSfaoqk1Y63dArVZDqVTaooo2Z+5n0KNHD3z//fcoLi7W/owePRr33XcfiouLERUVZc/qt5k1fgcaGhrw/fffIzw83FbVtClLPoN7770X586d04ZfAPjpp58QHh7uVOEHaNvvwEcffQSlUoknn3zS1tW0GUvaX1dX1yLkaMKwYMvjSm06xdrF7Ny5U/Dy8hI2b94s/Pjjj8LkyZOFgIAA7ZLW8ePHC7NmzdKWVyqVwsmTJ4WTJ08K4eHhwquvviqcPHlSOHv2rFhNaDNzP4OcnBxBKpUKH3/8sc4y0Bs3bojVhDYxt/2LFy8WPv/8c+H8+fPCjz/+KCxbtkzw8PAQNmzYIFYT2szcz6A5Z18FZm77FyxYIHz22WfC+fPnhaKiIuHxxx8XvL29hVOnTonVhDYz9zO4dOmS4OfnJ2RkZAglJSXCvn37hJCQEGHRokViNaFNLP1vYODAgUJ6erq9q2t15rZ/3rx5gp+fn/DBBx8IP//8s/D5558LsbGxwtixY21aTwYgK1u1apXQuXNnQSqVCv369RO++eYb7XNDhgwRJk6cqH1cWloqAGjxM2TIEPtX3IrM+Qy6dOmi9zOYN2+e/StuJea0f/bs2UJcXJzg7e0tBAYGCv379xd27twpQq2ty5zPoDlnD0CCYF77p0+fri0bGhoq/OUvfxFOnDghQq2ty9zfga+//lpITk4WvLy8hK5duwpvvvmmcOvWLTvX2nrMbf+ZM2cEAMLnn39u55rahjntV6lUwvz584XY2FjB29tbiIqKEqZMmSL89ttvNq2jRBBs2b9ERERE5Hg4B4iIiIhcDgMQERERuRwGICIiInI5DEBERETkchiAiIiIyOUwABEREZHLYQAiIiIil8MAREQkoqeeegoPPfSQ2NUgcjkMQESk11NPPQWJRKL9CQoKwvDhw/Hdd9+JXTWraNo2zc/AgQNt9n4XLlyARCJBcXGxzvV33nkHmzdvttn7EpF+DEBEZNDw4cNRVlaGsrIyFBQUwMPDA6NGjRK7WlazadMmbfvKysqwZ88eveVUKpXN6iCTyRAQEGCz+xORfgxARGSQl5cXwsLCEBYWhvj4eMyaNQuXL1/GtWvXMGzYMGRkZOiUv3btGqRSqfYk6OjoaCxcuBDjxo2Dr68vIiMjsWbNGp3XLF++HHfffTd8fX0RFRWFKVOm4ObNm9rnL168iLS0NAQGBsLX1xd33nknDhw4AAD47bff8MQTT+C2226Dj48PunXrhk2bNpncvoCAAG37wsLCIJfLtT01u3btwpAhQ+Dt7Y3t27ejqqoK48aNQ2RkJDp06IC7774bH3zwgc791Go1li5diri4OHh5eaFz58548803AQAxMTEAgD59+kAikWDo0KEAWg6BKZVKTJs2DSEhIfD29sbAgQNx/Phx7fOFhYWQSCQoKChAUlISOnTogAEDBqCkpMTkdhMRAxARmejmzZvYtm0b4uLiEBQUhGeffRY7duyAUqnUltm2bRsiIyMxbNgw7bW33noLvXv3xsmTJzFr1iy89NJL+OKLL7TPu7m5YeXKlTh16hS2bNmCQ4cO4bXXXtM+P3XqVCiVSvzv//4vvv/+eyxZsgQdO3YEAMyZMwc//vgj/vWvf+H06dNYt24dgoODrdJeTV1Pnz6N1NRU/PHHH0hMTMT+/fvxww8/YPLkyRg/fjyOHTumfU1WVhZycnK09dqxYwdCQ0MBQFvu4MGDKCsrQ15ent73fe2117B7925s2bIFJ06cQFxcHFJTU1FdXa1Tbvbs2Xj77bfx7bffwsPDA08//bRV2k3kMmx61CoROa2JEycK7u7ugq+vr+Dr6ysAEMLDw4WioiJBEATh999/FwIDA4Vdu3ZpX9OrVy9h/vz52sddunQRhg8frnPf9PR0YcSIEQbf96OPPhKCgoK0j++++26dezaVlpYmTJo0yaL2ARC8vb217fP19RU++eQTobS0VAAg5ObmtnqPkSNHCq+88oogCIJQU1MjeHl5CRs2bNBbVnPfkydP6lyfOHGiMGbMGEEQBOHmzZuCp6ensH37du3z9fX1QkREhLB06VJBEATh8OHDAgDh4MGD2jL79+8XAAi///67OR8BkUtjDxARGXTfffehuLgYxcXFOHbsGFJTUzFixAhcvHgR3t7eGD9+PDZu3AgAOHHiBH744Qc89dRTOvfo379/i8enT5/WPj548CDuv/9+REZGws/PD+PHj0dVVRXq6uoAANOmTcOiRYtw7733Yt68eTqTsF944QXs3LkT8fHxeO211/D111+b1b4VK1Zo21dcXIwHHnhA+1xSUpJO2YaGBixcuBB333035HI5OnbsiM8++wyXLl0CAJw+fRpKpRL333+/WXVo6vz581CpVLj33nu11zw9PdGvXz+dzwwAevXqpf1zeHg4AODq1asWvzeRq2EAIiKDfH19ERcXh7i4OPTt2xf//Oc/UVtbiw0bNgAAnn32WXzxxRe4cuUKNm3ahGHDhqFLly4m3//ChQsYNWoUevXqhd27d6OoqEg7R6i+vl77Hj///DPGjx+P77//HklJSVi1ahUAaMPYyy+/jF9//RX3338/Xn31VZPfPywsTNu+uLg4+Pr66rS9qbfeegvvvPMOZs6cicOHD6O4uBipqanaevr4+Jj8vtbg6emp/bNEIgHQOAeJiEzDAEREJpNIJHBzc8Pvv/8OALj77ruRlJSEDRs2YMeOHXrnoXzzzTctHvfs2RMAUFRUBLVajbfffhv33HMPbr/9dvz6668t7hEVFYXnn38eeXl5eOWVV7QBDABuu+02TJw4Edu2bUNubi7effddazZZ66uvvsKYMWPw5JNPonfv3ujatSt++ukn7fPdunWDj4+PdgJ4c1KpFEBjT5IhsbGxkEql+Oqrr7TXVCoVjh8/jjvuuMNKLSEiAPAQuwJE5LiUSiXKy8sBNK64Wr16NW7evIm0tDRtmWeffRYZGRnw9fXFww8/3OIeX331FZYuXYqHHnoIX3zxBT766CPs378fABAXFweVSoVVq1YhLS0NX331FdavX6/z+unTp2PEiBG4/fbb8dtvv+Hw4cPaADV37lwkJibizjvvhFKpxL59+7TPWVu3bt3w8ccf4+uvv0ZgYCCWL1+OiooKbTDx9vbGzJkz8dprr0EqleLee+/FtWvXcOrUKTzzzDMICQmBj48P8vPz0alTJ3h7e0Mmk+m8h6+vL1544QXMmDEDcrkcnTt3xtKlS1FXV4dnnnnGJu0iclXsASIig/Lz8xEeHo7w8HAkJyfj+PHj+Oijj7RLuAFg3Lhx8PDwwLhx4+Dt7d3iHq+88gq+/fZb9OnTB4sWLcLy5cuRmpoKAOjduzeWL1+OJUuW4K677sL27duRnZ2t8/qGhgZMnToVPXv2xPDhw3H77bdj7dq1ABp7VbKystCrVy8MHjwY7u7u2Llzp00+i9dffx0JCQlITU3F0KFDERYW1mIH5zlz5uCVV17B3Llz0bNnT6Snp2vn5Xh4eGDlypX4xz/+gYiICIwZM0bv++Tk5ODRRx/F+PHjkZCQgHPnzuGzzz5DYGCgTdpF5KokgiAIYleCiJzXhQsXEBsbi+PHjyMhIUHnuejoaEyfPh3Tp08Xp3JERAZwCIyILKJSqVBVVYXXX38d99xzT4vwQ0TkyDgERkQW+eqrrxAeHo7jx4+3mLcjtsWLF6Njx456f0aMGCF29YjIAXAIjIjanerq6hY7J2v4+PggMjLSzjUiIkfDAEREREQuh0NgRERE5HIYgIiIiMjlMAARERGRy2EAIiIiIpfDAEREREQuhwGIiIiIXA4DEBEREbkcBiAiIiJyOf8fUoIj05Sd/v4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWc9JREFUeJzt3XtcVHX+P/DXcEeEkUtcRVEwLRNRENK8ZRS6irrWT3QL0TLXlMxwTVnztl7AS0besPzmJc10S+rhbTFF3c2yNJC1zCgNNUtQQIdbwsic3x/sHBlgYGaYmcMwr+fjwaPmzJkzn3PWlVefz/vz+cgEQRBAREREZEVspG4AERERkbkxABEREZHVYQAiIiIiq8MARERERFaHAYiIiIisDgMQERERWR0GICIiIrI6DEBERERkdRiAiIiIyOowABERtVI7duyATCbD1atXpW4KUZvDAERkxc6dO4fExET07NkTLi4u6NSpE8aPH4+ffvqpwblDhw6FTCaDTCaDjY0N3Nzc0L17d8THx+PYsWN6fe/BgwcxZMgQeHt7o127dujatSvGjx+PzMxMY91aAytXrsRnn33W4PhXX32FJUuW4O7duyb77vqWLFkiPkuZTIZ27drh0UcfxZtvvonS0lKjfMeePXuQlpZmlGsRtUUMQERWbNWqVdi/fz+eeuopvPPOO5g2bRr+85//oG/fvvj+++8bnN+xY0fs2rULH3zwAdasWYPRo0fjq6++wjPPPIO4uDgolcpmv3Pt2rUYPXo0ZDIZkpOT8fbbb+PZZ5/Fzz//jL1795riNgE0HYCWLl1q1gCklp6ejl27dmHdunXo0aMHVqxYgeHDh8MYWzQyABE1zU7qBhCRdJKSkrBnzx44ODiIx+Li4tCrVy+kpqZi9+7dGufL5XK88MILGsdSU1Mxa9YsbN68GUFBQVi1apXW77t//z6WLVuGp59+Gp9//nmD92/dutXCO2o9Kisr0a5duybPee655+Dl5QUAmD59Op599llkZGTg66+/Rv/+/c3RTCKrxR4gIis2YMAAjfADAN26dUPPnj1x6dIlna5ha2uL9evX49FHH8XGjRuhUCi0nltUVITS0lI88cQTjb7v7e2t8frevXtYsmQJHn74YTg5OcHPzw/jxo3DlStXxHPWrl2LAQMGwNPTE87OzggPD8cnn3yicR2ZTIaKigrs3LlTHHaaPHkylixZgrlz5wIAunTpIr5Xt+Zm9+7dCA8Ph7OzMzw8PDBhwgT8+uuvGtcfOnQoHnvsMWRnZ2Pw4MFo164d/v73v+v0/OoaNmwYACA/P7/J8zZv3oyePXvC0dER/v7+mDlzpkYP1tChQ3H48GFcu3ZNvKegoCC920PUlrEHiIg0CIKAwsJC9OzZU+fP2NraYuLEiVi4cCFOnz6NkSNHNnqet7c3nJ2dcfDgQbz66qvw8PDQes2amhqMGjUKWVlZmDBhAl577TWUlZXh2LFj+P777xEcHAwAeOeddzB69Gg8//zzqK6uxt69e/H//t//w6FDh8R27Nq1C1OnTkVkZCSmTZsGAAgODoaLiwt++uknfPTRR3j77bfF3piHHnoIALBixQosXLgQ48ePx9SpU3H79m1s2LABgwcPxvnz59GhQwexvcXFxRgxYgQmTJiAF154AT4+Pjo/PzV1sPP09NR6zpIlS7B06VJER0fjlVdeQV5eHtLT03Hu3Dl8+eWXsLe3x4IFC6BQKHDjxg28/fbbAID27dvr3R6iNk0gIqpj165dAgDh/fff1zg+ZMgQoWfPnlo/9+mnnwoAhHfeeafJ6y9atEgAILi4uAgjRowQVqxYIWRnZzc4b9u2bQIAYd26dQ3eU6lU4r9XVlZqvFddXS089thjwrBhwzSOu7i4CAkJCQ2utWbNGgGAkJ+fr3H86tWrgq2trbBixQqN4999951gZ2encXzIkCECAGHLli1a77uuxYsXCwCEvLw84fbt20J+fr7w7rvvCo6OjoKPj49QUVEhCIIgbN++XaNtt27dEhwcHIRnnnlGqKmpEa+3ceNGAYCwbds28djIkSOFzp0769QeImvEITAiEv3444+YOXMm+vfvj4SEBL0+q+5hKCsra/K8pUuXYs+ePejTpw+OHj2KBQsWIDw8HH379tUYdtu/fz+8vLzw6quvNriGTCYT/93Z2Vn89zt37kChUGDQoEHIycnRq/31ZWRkQKVSYfz48SgqKhJ/fH190a1bN5w8eVLjfEdHR0yZMkWv7+jevTseeughdOnSBX/9618REhKCw4cPa60dOn78OKqrqzF79mzY2Dz46/vll1+Gm5sbDh8+rP+NElkpDoEREQCgoKAAI0eOhFwuxyeffAJbW1u9Pl9eXg4AcHV1bfbciRMnYuLEiSgtLcU333yDHTt2YM+ePYiNjcX3338PJycnXLlyBd27d4edXdN/TR06dAjLly9Hbm4uqqqqxON1Q5Ihfv75ZwiCgG7dujX6vr29vcbrgICABvVUzdm/fz/c3Nxgb2+Pjh07isN62ly7dg1AbXCqy8HBAV27dhXfJ6LmMQARERQKBUaMGIG7d+/iiy++gL+/v97XUE+bDwkJ0fkzbm5uePrpp/H000/D3t4eO3fuxDfffIMhQ4bo9PkvvvgCo0ePxuDBg7F582b4+fnB3t4e27dvx549e/S+h7pUKhVkMhn+9a9/NRoG69fU1O2J0tXgwYPFuiMiMi8GICIrd+/ePcTGxuKnn37C8ePH8eijj+p9jZqaGuzZswft2rXDwIEDDWpHREQEdu7ciZs3bwKoLVL+5ptvoFQqG/S2qO3fvx9OTk44evQoHB0dxePbt29vcK62HiFtx4ODgyEIArp06YKHH35Y39sxic6dOwMA8vLy0LVrV/F4dXU18vPzER0dLR5raQ8YUVvHGiAiK1ZTU4O4uDicOXMGH3/8sUFrz9TU1GDWrFm4dOkSZs2aBTc3N63nVlZW4syZM42+969//QvAg+GdZ599FkVFRdi4cWODc4X/LRRoa2sLmUyGmpoa8b2rV682uuChi4tLo4sduri4AECD98aNGwdbW1ssXbq0wcKEgiCguLi48Zs0oejoaDg4OGD9+vUabXr//fehUCg0Zt+5uLg0uSQBkbVjDxCRFZszZw4OHDiA2NhYlJSUNFj4sP6ihwqFQjynsrISly9fRkZGBq5cuYIJEyZg2bJlTX5fZWUlBgwYgMcffxzDhw9HYGAg7t69i88++wxffPEFxo4diz59+gAAJk2ahA8++ABJSUk4e/YsBg0ahIqKChw/fhwzZszAmDFjMHLkSKxbtw7Dhw/HX/7yF9y6dQubNm1CSEgILly4oPHd4eHhOH78ONatWwd/f3906dIFUVFRCA8PBwAsWLAAEyZMgL29PWJjYxEcHIzly5cjOTkZV69exdixY+Hq6or8/Hx8+umnmDZtGv72t7+16Pnr66GHHkJycjKWLl2K4cOHY/To0cjLy8PmzZvRr18/jf+9wsPDsW/fPiQlJaFfv35o3749YmNjzdpeolZNyiloRCQt9fRtbT9Nndu+fXuhW7duwgsvvCB8/vnnOn2fUqkUtm7dKowdO1bo3Lmz4OjoKLRr107o06ePsGbNGqGqqkrj/MrKSmHBggVCly5dBHt7e8HX11d47rnnhCtXrojnvP/++0K3bt0ER0dHoUePHsL27dvFaeZ1/fjjj8LgwYMFZ2dnAYDGlPhly5YJAQEBgo2NTYMp8fv37xcGDhwouLi4CC4uLkKPHj2EmTNnCnl5eRrPpqklAupTt+/27dtNnld/Grzaxo0bhR49egj29vaCj4+P8Morrwh37tzROKe8vFz4y1/+InTo0EEAwCnxRPXIBMEIm84QERERWRDWABEREZHVYQAiIiIiq8MARERERFaHAYiIiIisDgMQERERWR0GICIiIrI6XAixESqVCr///jtcXV25nDwREZGFEAQBZWVl8Pf3h41N0308DECN+P333xEYGCh1M4iIiMgAv/76Kzp27NjkOQxAjXB1dQVQ+wCb2teIiIiIWo/S0lIEBgaKv8ebwgDUCPWwl5ubGwMQERGRhdGlfIVF0ERERGR1GICIiIjI6jAAERERkdVhDRAREZGR1NTUQKlUSt2MNsve3h62trZGuRYDEBERUQsJgoCCggLcvXtX6qa0eR06dICvr2+L1+ljACIiImohdfjx9vZGu3btuIiuCQiCgMrKSty6dQsA4Ofn16LrMQARERG1QE1NjRh+PD09pW5Om+bs7AwAuHXrFry9vVs0HMYiaCIiohZQ1/y0a9dO4pZYB/VzbmmtFQMQERGREXDYyzyM9ZwZgIiIiMjqsAbIyhUXF6O6ulrr+w4ODhzTJiKiNocByMIYM7AUFxdj48aN4muFwhUlJZ7w8CiGXF4mHk9MTGQIIiJqgyZPnoydO3cCAOzs7ODh4YHQ0FBMnDgRkydPho2NbgNFO3bswOzZsy1qGQAGIAti7MBSN0jl5PTBwYOjIAg2kMlUiI09hL59zzc4j4iIjE/K3vjhw4dj+/btqKmpQWFhITIzM/Haa6/hk08+wYEDB2Bn1zajQtu8qzbKVIFFoXAVrwUAgmCDgwdHITj4skawIiIi46v/H7famKo33tHREb6+vgCAgIAA9O3bF48//jieeuop7NixA1OnTsW6deuwfft2/PLLL/Dw8EBsbCxWr16N9u3b49SpU5gyZQqABwXKixcvxpIlS7Br1y688847yMvLg4uLC4YNG4a0tDR4e3sb/T70xQAkIUMTv7EDS0mJp3gtNUGwQUmJh9kCEGuRiMha6fofrebsjR82bBh69+6NjIwMTJ06FTY2Nli/fj26dOmCX375BTNmzMAbb7yBzZs3Y8CAAUhLS8OiRYuQl5cHAGjfvj2A2qnqy5YtQ/fu3XHr1i0kJSVh8uTJOHLkiNnuRRsGIIkYMpylHlttLrDcvXtXrxUyPTyKIZOpNK4pk6ng4VFiyK3pTer/+iEiooZ69OiBCxcuAABmz54tHg8KCsLy5csxffp0bN68GQ4ODpDL5ZDJZGJPktqLL74o/nvXrl2xfv169OvXD+Xl5WJIkgoDkEQMGc66f/8+gOYDi/o8XcnlZYiNPdSgDebq/WmN//VDRGTtBEEQh7SOHz+OlJQU/PjjjygtLcX9+/dx7949VFZWNrkAZHZ2NpYsWYL//ve/uHPnDlQqFQDg+vXrePTRR81yH9owAEnMkOEsubwMoaEX8N//9gYgAyAgNPRCiwJL377nERx8GSUlHvDwKJG09kdbbxgREZnPpUuX0KVLF1y9ehWjRo3CK6+8ghUrVsDDwwOnT5/GSy+9hOrqaq0BqKKiAjExMYiJicGHH36Ihx56CNevX0dMTEyr+A9aBiCJGVJ/o1C44sKFUNSGHwCQ4cKFUAwbdqJFgUEuL5M8cDTVG0ZEROZx4sQJfPfdd3j99deRnZ0NlUqFt956S5wW/89//lPjfAcHB9TU1Ggc+/HHH1FcXIzU1FQEBgYCAL799lvz3IAOuBK0xNTDWXU1V3/TVGjSh4ODg1HPayltvWEKhatZvp+IyBpVVVWhoKAAv/32G3JycrBy5UqMGTMGo0aNwqRJkxASEgKlUokNGzbgl19+wa5du7BlyxaNawQFBaG8vBxZWVkoKipCZWUlOnXqBAcHB/FzBw4cwLJlyyS6y4bYAyQxfepv7O3tATRfA6Q+rzmenp5ITExsNbOvWsNsNCIia5OZmQk/Pz/Y2dnB3d0dvXv3xvr165GQkAAbGxv07t0b69atw6pVq5CcnIzBgwcjJSUFkyZNEq8xYMAATJ8+HXFxcSguLhanwe/YsQN///vfsX79evTt2xdr167F6NGjJbzbBxiAWgFd62/kcvn//tl0aFKfp4vWNKtK6tloRERSkLI3fseOHdixY0ez573++ut4/fXXNY7Fx8drvE5PT0d6errGsYkTJ2LixIkaxwRBMKyxRsYA1EroW3/TmoqWjUXq2WhERFJobb3x1oIBSCKVlZV6n1c//WsLTeaq2TGWuu1tKthZ2n0REemK4cb8GIAkUn/aoLap33XPa6v/ldBW74uIiFovBqBWQJ+p3201BLTV+yIiotaJAUhi3Ii0FvcCIyIic2IAkhinfnMvMCIiMj8uhCgxQxZCbGvq9/woFK7Izw9qsABia1g6nYiI2gb2AEmsNU/9lmJYilthEBGROTAAtQKtcU0fKYalWA9FRETmwiEwiTS2pk+XLtca/KKXau0bKYaljLXHWXFxMW7evKn1p7i42GhtJiIi7U6dOgWZTIa7d+/q/JmgoCCkpaWZrE1q7AGSiCWtfWOuYSljbIXBgmoiIt1NnjwZO3fuxF//+tcGG5zOnDkTmzdvRkJCgk7bZVga9gBJyNPTE35+flp/WsMvaHPu0K6uh1IXhRtSD8WCaiIi/QQGBmLv3r34448/xGP37t3Dnj170KlTJwlbZloMQNQkYw1L6apv3/OYPTsNCQk7MHt2Wot6mnJy+iAtbTZ27kxAWtps5OT0MWJLiYjahr59+yIwMBAZGRnisYyMDHTq1Al9+jz4e7OqqgqzZs2Ct7c3nJycMHDgQJw7d07jWkeOHMHDDz8MZ2dnPPnkk7h69WqD7zt9+jQGDRoEZ2dnBAYGYtasWaioqDDZ/WnDAERNMsc0fVPUQ5mz54qIyJhu3ABOnqz9p7m8+OKL2L59u/h627ZtmDJlisY5b7zxBvbv34+dO3ciJycHISEhiImJQUlJ7e+DX3/9FePGjUNsbCxyc3MxdepUzJ8/X+MaV65cwfDhw/Hss8/iwoUL2LdvH06fPo3ExETT32Q9rAGiJpljmr4p6qFawwKTXN2aiPT1/vvAtGmASgXY2ADvvQe89JLpv/eFF15AcnIyrl27BgD48ssvsXfvXpw6dQoAUFFRgfT0dOzYsQMjRowAAGzduhXHjh3D+++/j7lz5yI9PR3BwcF46623AADdu3fHd999h1WrVonfk5KSgueffx6zZ88GAHTr1g3r16/HkCFDkJ6eDicnJ9Pf7P+0igC0adMmrFmzBgUFBejduzc2bNiAyMjIRs/NyMjAypUrcfnyZSiVSnTr1g1z5sxBfHx8o+dPnz4d7777Lt5++23xgZN+zDFN39hBwBgF1S3BYmwi0teNGw/CD1D7z7/+FYiJATp2NO13P/TQQxg5ciR27NgBQRAwcuRIeHl5ie9fuXIFSqUSTzzxhHjM3t4ekZGRuHTpEgDg0qVLiIqK0rhu//79NV7/97//xYULF/Dhhx+KxwRBgEqlQn5+Ph555BFT3F6jJA9A+/btQ1JSErZs2YKoqCikpaUhJiYGeXl58Pb2bnC+h4cHFixYgB49esDBwQGHDh3ClClT4O3tjZiYGI1zP/30U3z99dfw9/c31+20GY0NSzUWfKSapt8cqReY1LXImsXYRKT2888Pwo9aTQ1w+bLpAxBQOwymHoratGmTSb6jvLwcf/3rXzFr1qwG75m74FryALRu3Tq8/PLL4ljjli1bcPjwYWzbtq3B2CEADB06VOP1a6+9hp07d+L06dMaAei3337Dq6++iqNHj2LkyJEmvYe2yBKm6Tc2xFRUVCT+e2taYFKhcEVJiSc8PIq5qCMRNapbt9phr7ohyNYWCAkxz/cPHz4c1dXVkMlkDToUgoOD4eDggC+//BKdO3cGACiVSpw7d04cXXnkkUdw4MABjc99/fXXGq/79u2LH374ASHmuqkmSBqAqqurkZ2djeTkZPGYjY0NoqOjcebMmWY/LwgCTpw4gby8PI0xRpVKhfj4eMydOxc9e/Zs9jpVVVWoqqoSX5eWlup5J2Ruug4xtYaeK27vQUS66Nixtubnr3+t7fmxtQXefdc8vT8AYGtrKw5n2draarzn4uKCV155BXPnzoWHhwc6deqE1atXo7KyEi/9r0hp+vTpeOuttzB37lxMnToV2dnZDdYPmjdvHh5//HEkJiZi6tSpcHFxwQ8//IBjx47p9He6MUkagIqKilBTUwMfHx+N4z4+Pvjxxx+1fk6hUCAgIABVVVWwtbXF5s2b8fTTT4vvr1q1CnZ2do12sTUmJSUFS5cuNewm2ihT1LAYsyi4sfV+GuthGTdunMY4tr7f01Lc3oOI9PHSS7U1P5cv1/b8mCv8qLm5uWl9LzU1VexgKCsrQ0REBI4ePQp3d3cAtUNY+/fvx+uvvy7W8q5cuRIvvviieI3Q0FD8+9//xoIFCzBo0CAIgoDg4GDExcWZ/N7qk3wIzBCurq7Izc1FeXk5srKykJSUhK5du2Lo0KHIzs7GO++8g5ycHMhkMp2ul5ycjKSkJPF1aWkpAgMDTdV8i6BrwNC1hsWURcFN9bB4eXnBz89Pr+sZU2uYjUZElqVjR/MFn+ZWeP7ss8/Ef3dycsL69euxfv16reePGjUKo0aN0jhWfzp9v3798Pnnn2u9RmNrB5mCpAHIy8sLtra2KCws1DheWFgIX19frZ+zsbERxw/DwsJw6dIlpKSkYOjQofjiiy9w69YtjWKqmpoazJkzB2lpaY0+WEdHRzg6OhrnphphSM9Ha5pCbYwhHGMHqrrXac09LFLPRiMiosZJGoAcHBwQHh6OrKwsjB07FkBt/U5WVpZeiyKpVCqxhic+Ph7R0dEa78fExCA+Pr5BCjUHQ3o+WtMUalMEDGPWxJijh6UlYVTq2WhERNQ4yYfAkpKSkJCQgIiICERGRiItLQ0VFRViWJk0aRICAgKQkpICoLZeJyIiAsHBwaiqqsKRI0ewa9cupKenA6idvVT/l5G9vT18fX3RvXt3894cDJsObareEkMYO2AYO1CZuofF0DBat8i6qdlorXUZASKitk7yABQXF4fbt29j0aJFKCgoQFhYGDIzM8XC6OvXr8PG5sEvt4qKCsyYMQM3btyAs7MzevTogd27d0tSQGUIfadDSz2DyNgBw9iBytQ9LIaGUUtYRoCIyJpJHoCA2v961jbkpV6GW2358uVYvny5Xtc3V0FVc/QNM62hvkXfgKFtuEi9Po8pemzMtd6Pvv/7MdwQWRdBEKRuglUw1nNuFQHIGhgSZlrLDCJdA4Yuw0XGClR3795tcF1TrvfTGsIoEbVO9vb2AIDKyko4OztL3Jq2r7KyEsCD524oBiAzMSTMGLO3RN9CXl23wqgbROquwgxoHy4yZqACaodR5XJ5s/fUEq0ljBJR62Nra4sOHTrg1q1bAIB27drpvAwL6U4QBFRWVuLWrVvo0KFDg8Ua9cUAZCaGhBlj1bcYUsjbVA2LQqHAvn37AAD//Oc/G71Wc8NFuvTY3L59u973aq+f0nWtH0NndHE6OxE1Rb10izoEkel06NChyaVydMUAZCaGhhlj1LcYujGnrr0n9YNJc8NFja3ODDQMH0qlUvz3nJw+OHBgFAAbACqMHv0gUNU9ryktWV6A09mJqCkymQx+fn7w9vbW+e8k0p+9vX2Le37UGIBMzJDp0Kbeid2YG3M21tPj7n6nyeEifVdnVihc64QfALDBgQP619+0dHmB1rS5KhG1Tra2tkb7BU2mxQBkYoZMhzblFGpjTqvX1tPz0kv/Z9Thol9/DcSD8KNmg19/7Qi5/JJB19T1OZg6jBIRkTQYgMzAkKBiiinUxp7JpK0wWKl0aNXDRfo8B67nQ0TUNjEAWZHmZjLVn8UFNP3LvanC4C5drhltuCgw8FcAAoAHsypkMhUCA28YdD3O6CIiIgYgK9LcTKaMjIxGP6dtz7HmCoONNVwkl5dh9OiDRutR0mdGV2val42IiIyHAciKGDqTqanhn6YKgxub7aXPcJGd3YM/nk19T93zdKHPczDFvmwt2VyViIiMgwHICug6E03X2WG6Fgb7+/u36Be5t7e3Tt9T/zxd6Dqjq+5Cj00VTt+9e1enmW3sUSIiah0YgKyAtkLeoqIicdhLn9lh5ioMNvb3GLK6tXoxxuYKp+/fv69TG0zRo0RERPpjALISTYUEQ2aHmat3wpjf05LVrQ0pnG5sqKtuobkxlyQgIiL9MACRVc2KMnR1a3v7KtSfiQYIsLdvvKem/lCX5vUsd3NV1i8RUVvBAETc56oebatba4YfAJBBqWx8RlvdkGDIatmtEeuXiKgtqb+8Llkh9awomUwFAK1u4UJz0tYzY29fJT4fNV1CorGvJyVD95QjImqN2ANkxQzZp6ytM3R1a3t7e6NezxIYc085IiJzYwCyYtzmoSFDV7eWy+VGvV5rxwJuIrJ0DEBWzprCjS6Mvbq1uVbLNidLLeAmIqqLAYioHmOvbt3U9Z588km4u7trnN+uXbtWHUytadYgEbVdDEBEMP3q1tqud/LkyUbPb80zqThrkIjaAgYgIph+1WltLHElaEP3lCMiak0YgIj+xxyrThu6/UhrwFmDRNSWMAARtYChKyM3V0hcd8sMXa5nDpw1SERtCQMQkYFasjJyc4XE6l4iXa9nLgw3RNRWMAARGaglO7vrUkgsVX0Q9/siImvAAERkBPrW8zRXSCxVfRD3+yIia8EARNRChi4MqK2Q2JgLDerbm8P9vojIWjAAEbWQPgsD6rLekLEWGjRGbw73+yKitooBiKiF9FkYsKmZVOop8sZaaLAlNUqA5U3TJyLSBwMQUQvpuzBgc7UzplhoUN8ww/2+iKitYwAiMoKmFgaU+nqGhBnu90VEbR0DEJGBdN0/TNeVkY19PTVDwgz3+yKito4BiMhAxl4Z2VQrLRsSZrjfFxG1dQxARC1g7LVwTLG2jj5hhvt9EZG1YAAisgK61hR5enrihRdeQGVlpdZrtWvXrlUugsgVrIlIHwxARG2UITVFxcXF2L17d7PXbm0rQXMFayLSFwMQkYVrqucjLi4OgiCgQ4cOjb7f3ErQUu1Hpi9LbTcRSYcBiMiCmbLnw1IXQrTUdhOReTEAEVkAbb08RUVFGq+N1fNhqQshWmq7icj8WkUA2rRpE9asWYOCggL07t0bGzZsQGRkZKPnZmRkYOXKlbh8+TKUSiW6deuGOXPmID4+HgCgVCrx5ptv4siRI/jll18gl8sRHR2N1NRU+Pv7m/O2iIxC114eY/Z8WOpCiJbabiIyP5vmTzGtffv2ISkpCYsXL0ZOTg569+6NmJgY3Lp1q9HzPTw8sGDBApw5cwYXLlzAlClTMGXKFBw9ehQAUFlZiZycHCxcuBA5OTnIyMhAXl4eRo8ebc7bIjKaxupb8vODoFC4ahxrrOej7jn6UK8dVJclLIRoqe0mIvOTvAdo3bp1ePnllzFlyhQAwJYtW3D48GFs27YN8+fPb3D+0KFDNV6/9tpr2LlzJ06fPo2YmBjI5XIcO3ZM45yNGzciMjIS169fR6dOnUx2L0Smpq2Xx9g9H8ZcCNGc09O5gCMR6UrSAFRdXY3s7GwkJyeLx2xsbBAdHY0zZ840+3lBEHDixAnk5eVh1apVWs9TKBSQyWRaZ8JUVVWhqqpKfF1aWqr7TRCZSVP1LabYusIY+5FJMT3d2PuyEVHbJOkQWFFREWpqauDj46Nx3MfHBwUFBVo/p1Ao0L59ezg4OGDkyJHYsGEDnn766UbPvXfvHubNm4eJEyfCzc2t0XNSUlIgl8vFn8DAQMNvishEmuvliY09JA7/GNrz0djaQV26XGtwHV1XgtZl+K6x8/Rl7HYTUdsn+RCYIVxdXZGbm4vy8nJkZWUhKSkJXbt2bTA8plQqMX78eAiCgPT0dK3XS05ORlJSkvi6tLSUIYhaneZ6eYzR82Gq/cgA005PN2W7iahtkjQAeXl5wdbWFoWFhRrHCwsL4evrq/VzNjY2CAkJAQCEhYXh0qVLSElJ0QhA6vBz7do1nDhxQmvvDwA4OjrC0dGxZTdDZGK61LcYYwd5U4QEc0xPZ7ghIn1IGoAcHBwQHh6OrKwsjB07FgCgUqmQlZWFxMREna+jUqk0anjU4efnn3/GyZMn+RcjtRlN9fKMGzcOXl5eDT7TGno+OD2diFobyYfAkpKSkJCQgIiICERGRiItLQ0VFRXirLBJkyYhICAAKSkpAGrrdSIiIhAcHIyqqiocOXIEu3btEoe4lEolnnvuOeTk5ODQoUOoqakR64k8PDxYA0AWR9c9vfz9/SUPOtqYokibiKglJA9AcXFxuH37NhYtWoSCggKEhYUhMzNTLIy+fv06bGwe/KVZUVGBGTNm4MaNG3B2dkaPHj2we/duxMXFAQB+++03HDhwAEDt8FhdJ0+ebFAnRNTatYX6FnNMT+du8ESkD5kgCILUjWhtSktLIZfLoVAomqwdIqKm3bx5E++99574unarjobDd9OmTYOfn5/B38Pd4IkI0O/3t+Q9QETUduk6fNfSoWldp9FzN3giUmMAIiKTkWr4TtumsEREagxARGRS5h5yMuV6Q0TUdki+GSoRkbEYe1NYImq7GICIqM1oar0hIqK6GICIqM1QrzdUF9cbIqLGsAaIiNoMQ9Yb4vpBRNaJAYiILF7dafRNbRdSf7o91w8isl4MQERk8Zqbbq9QKCAIAqqrq3Hz5k3xeFFRUb3zGp8+z/WDiNoeBiAiahO09dAUFxdj3759zX6e0+eJrAuLoImoTavfe6NQuCI/P0hjajynzxNZH/YAEZHV0NbL09T0ebm8rMFQGWDc4mgWYhOZHwMQEVkFbb08wcGXxenzdUNQ3enzGRkZjV7TGMXRLMQmkgaHwIjIKjTXyxMbe0hcQ6j+9PnGhs0A4xRHcyNXImmwB4iIrEJzvTzaps+buziaG7kSmQcDEBFZBV0WSZTLyzReNzVsZopwwploRObDAEREVqOpRRLHjRsHLy8vALXrA2VkZDQ7bGZM5g5bRNaOAYiI2rT6qz/X7+VR8/f3F4uMFQoFgOaHzRQKBfz8/IzSTnOGLSJiACKiNq65VaKBhtPMlUolgAfDZgcOjELtnBHNYTP1ecbQXNgiIuNiACKiNq+l08dlMkAQav9pKoZs5EpEhmMAIiKLYo5FA+3sav9qbK4uR31eSxi6kSsRtQwDEBFZjPqLBmqbMt7SRQM7dOgAoPm6HPV5LdHUEN3du3dx//592NvbN9jIFeAK0UQtwQBERBajbkhoasq4sRYNNFddTmMhpri4GP/85z+b/SxXiCYyDFeCJiKLY67NS5tbIdqUuEI0kWmxB4iILI45p4w3VZdjTlwhmsi4GICIyOKYemhK17WDGitM1lakrVAooFQqYWdn12jtUFP1PFwhmsj4GICIyOKYesq4IWsHAbrv7K5NY/U8XCGayDQYgIjIIpl6aMqQwuL6gUnbsJW2440FLq4QTWQaDEBEZLG0DU21BtqGrfQdzuIK0USmwVlgRGQxdF0MUOpFA7UNW9244af37DUpZ6IRtWXsASIii2FobY65aRu2un69k87DWaZYIdocq2gTWQoGICKyKJbwC1rbsFWnTtd1Hs4ydtjTtUCbCyuStWAAIiIyMm2z1Dp2vKnX7DVjBhEurEikiQGIiMgEtA1bcWFFotaBAYiIyEh0XUBRn4UVTYELKxIxABERGU1TdTstWQnamLiwIlEtBiAiIiPSFmL8/Py0fkY9O+vmzZuNvm/McMSFFYlqMQARERmRvlPNzT07iwsrEtViACIiMhJDwoyu22cYa3aWqfdRI7IUDEBEREbS0jBjyuJkUyysSGTJWkUA2rRpE9asWYOCggL07t0bGzZsQGRkZKPnZmRkYOXKlbh8+TKUSiW6deuGOXPmID4+XjxHEAQsXrwYW7duxd27d/HEE08gPT0d3bp1M9ctEZGV0zfMmLo42VJW0SYyF8n3Atu3bx+SkpKwePFi5OTkoHfv3oiJicGtW7caPd/DwwMLFizAmTNncOHCBUyZMgVTpkzB0aNHxXNWr16N9evXY8uWLfjmm2/g4uKCmJgY3Lt3z1y3RURWSKFQ/O+fjYcZ9Z5f6vPqaqo42Vg8PT3h5+en9Yfhh6yJ5D1A69atw8svv4wpU6YAALZs2YLDhw9j27ZtmD9/foPzhw4dqvH6tddew86dO3H69GnExMRAEASkpaXhzTffxJgxYwAAH3zwAXx8fPDZZ59hwoQJJr8nIrJOSqUSQPMzrdTn1SV1cTL3CSNrI2kAqq6uRnZ2NpKTk8VjNjY2iI6OxpkzZ5r9vCAIOHHiBPLy8rBq1SoAQH5+PgoKChAdHS2eJ5fLERUVhTNnzjQagKqqqlBVVSW+Li0tbcltEZGVs7evAiAAkNU5KsDeXnvAkLI4mfuEkTWSNAAVFRWhpqYGPj4+Gsd9fHzw448/av2cQqFAQEAAqqqqYGtri82bN+Ppp58GABQUFIjXqH9N9Xv1paSkYOnSpS25FSIikVLpCM3wAwAyKJVNFxhLtU2GuWeiEbUGkg+BGcLV1RW5ubkoLy9HVlYWkpKS0LVr1wbDY7pKTk5GUlKS+Lq0tBSBgYFGai0RWRt9hrN03T6D22QQGZekAcjLywu2trYoLCzUOF5YWAhfX1+tn7OxsUFISAgAICwsDJcuXUJKSgqGDh0qfq6wsFBj5dXCwkKEhYU1ej1HR0c4Ojq28G6IyNrZ2dX+ldrccJb6PKB1zc7iNhlkTSQNQA4ODggPD0dWVhbGjh0LAFCpVMjKykJiYqLO11GpVGINT5cuXeDr64usrCwx8JSWluKbb77BK6+8YuxbICIS1d3jq6nhrPp7gbWWuhpuk0HWRPIhsKSkJCQkJCAiIgKRkZFIS0tDRUWFOCts0qRJCAgIQEpKCoDaep2IiAgEBwejqqoKR44cwa5du5Ceng4AkMlkmD17NpYvX45u3bqhS5cuWLhwIfz9/cWQRURkDtqGs4zBFLO2pJ6JRmROkgeguLg43L59G4sWLUJBQQHCwsKQmZkpFjFfv34dNjYP/s9YUVGBGTNm4MaNG3B2dkaPHj2we/duxMXFiee88cYbqKiowLRp03D37l0MHDgQmZmZcHJyMvv9EZH10LVOp6X1PPVnbWkrWq4/a0tbaCoqKgLAbTLIusgEQRCkbkRrU1paCrlcDoVCATc3N6mbQ0QWxBzr6dy8eRPvvfcegKaLlqdNmybWQuo61R1QB6qGQ3d1r0fUGunz+1vyHiAiorbEnPU8+hQt6zrVHZB+JhqROTAAERFZKEOLlpvqNRo3bhy8vLwafEbfniuuLE2tHQMQEZGFMqRoubleIy8vrxYPc3FlabIEkm+GSkREhlEXLctkKgDQqWjZHJuu6rpiNFeWJimxB4iIyILpun2Gegf65nqNFAqF0Qudm6o3IpIKAxARkYXTZb0h9Q70cnkZQkMv4L//7Y3a/coEhIZeED/f2E71LcGtNai14hAYEZGFacl6QwqFKy5cCMWDzVpluHAhFAqFq/EaWOe7Gqs3MsV3EemLPUBERBbGkP3D1PuPNTdzrO4+ZS3FrTWoNWMAIiKyQPrOnlLvP9ZcDVD9fcpagltrUGvGITAiIitiyMwxfakLrpv7LvV5RFJgDxARkZXRdeaYoerusNTUd3EnJpISAxARkRUy5U71jQ+jyRocMeZwG5G+GICIiKyAuXaqr4/T4Km1YgAiIrIChswcayl9NmslMjcGICIiK2Hufbc4DZ5aM84CIyIik1BPg6+L0+CptWAAIiIikzDHlHsiQ3EIjIiIjKpuIXVT0+CNXXBNpA8GICIialJxcbFexdNSFFwT6YsBiIiItCouLsbGjRvF1wqFK0pKPOHhUazRm5OYmNggBBG1ZgxARESkVd1enKbW9Gmqt4eoNWIRNBERNUvbmj4KhavELSMyDAMQERE1q6k1fYgsEQMQERFppd6xvbk1fbizO1kaBiAiItJKqVQCqF3TJzT0AgD1Du4CQkMviIXQ6vOILAWLoImIqFkKhSsuXAjFg13dZbhwIRTDhp2AXF6GO3fu4ObNmxqf4VR3as0YgIiIqFnN7ev12WffoqQkv9np8USthd4B6MiRI8jIyICHhwdefPFF9OjRQ3zvzp07ePbZZ3HixAmjNpKIiKRhZ1f7a0JdA1Q3BKlrgDg9niyRXjVAe/bswejRo1FQUIAzZ86gT58++PDDD8X3q6ur8e9//9vojSQiIml06NABgPZ9vQBwejxZJL16gNasWYN169Zh1qxZAIB//vOfePHFF3Hv3j289NJLJmkgERG1Do3t65WfH9Tk0FhRUVGj12J9EElNrwD0888/IzY2Vnw9fvx4PPTQQxg9ejSUSiX+/Oc/G72BRETUesjlZRo1Pk0NjQFARkaG1muxPoikpFcAcnNzQ2FhIbp06SIee/LJJ3Ho0CGMGjUKN27cMHoDiYhIOs3t2K4eGqtfA1Q3JGnbP4z1QSQlvQJQZGQk/vWvf+Hxxx/XOD5kyBAcPHgQo0aNMmrjiIhIWtp2di8qKhJ7dxobGlNrqkCaSEp6BaDXX38dX331VaPvDR06FAcPHsQHH3xglIYREVHroMswVf2hMUD7/mHBwZcbnEtkbnoFoCFDhmDIkCFa33/yySfx5JNPtrhRRETUujU3NAY0v3YQkZT0CkA2NjaQyWRNniOTyXD//v0WNYqIiFo3bUNjwIPhseYKpOsrLi5usi6IM8fImPQKQJ9++qnW986cOYP169dDpVJpPYeIiNqO5sKILgXSasXFxdi4caP4WlvhNGeOkbHoFYDGjBnT4FheXh7mz5+PgwcP4vnnn8c//vEPozWOiIgsW1MF0nXV7fnhytJkDgbvBv/777/j5ZdfRq9evXD//n3k5uZi586d6Ny5szHbR0REFqZ+fZBcXoYuXa41CD+N1RFpK5zmytJkbHrvBaZQKLBy5Ups2LABYWFhyMrKwqBBg0zRNiIiskBN1QepaavnYeE0mYtePUCrV69G165dcejQIXz00Uf46quvWhx+Nm3ahKCgIDg5OSEqKgpnz57Veu7WrVsxaNAguLu7w93dHdHR0Q3OLy8vR2JiIjp27AhnZ2c8+uij2LJlS4vaSERE+vH09ISfn5/WH211POrC6bqaKpwmMpRePUDz58+Hs7MzQkJCsHPnTuzcubPR85pa+ryuffv2ISkpCVu2bEFUVBTS0tIQExODvLw8eHt7Nzj/1KlTmDhxIgYMGAAnJyesWrUKzzzzDC5evIiAgAAAQFJSEk6cOIHdu3cjKCgIn3/+OWbMmAF/f3+MHj1an9slIiIz06dwmqglZIIgCLqePHny5GanwQPA9u3bdbpeVFQU+vXrJ1b+q1QqBAYG4tVXX8X8+fOb/XxNTQ3c3d2xceNGTJo0CQDw2GOPIS4uDgsXLhTPCw8Px4gRI7B8+XKd2lVaWgq5XA6FQgE3NzedPkNERIa7efMm3nvvPfF17SywhoXT06ZNg5+fnxRNJAugz+9vvXqAduzY0ZJ2aaiurkZ2djaSk5PFYzY2NoiOjsaZM2d0ukZlZSWUSiU8PDzEYwMGDMCBAwfw4osvwt/fH6dOncJPP/2Et99+W+t1qqqqUFVVJb4uLS014I6IiMhYGltZmsiYDJ4F1lJFRUWoqamBj4+PxnEfHx8UFBTodI158+bB398f0dHR4rENGzbg0UcfRceOHeHg4IDhw4dj06ZNGDx4sNbrpKSkQC6Xiz+BgYGG3RQRERlEl5Wl9TmPqDl6zwJrLVJTU7F3716cOnUKTk5O4vENGzbg66+/xoEDB9C5c2f85z//wcyZMxsEpbqSk5ORlJQkvi4tLWUIIiIyo5bMHCMyhGQByMvLC7a2tigsLNQ4XlhYCF9f3yY/u3btWqSmpuL48eMIDQ0Vj//xxx/4+9//jk8//RQjR44EAISGhiI3Nxdr167VGoAcHR3h6OjYwjsiIqKWYLghc5JsCMzBwQHh4eHIysoSj6lUKmRlZaF///5aP7d69WosW7YMmZmZiIiI0HhPqVRCqVTCxkbztmxtbblFBxEREYkkHQJLSkpCQkICIiIiEBkZibS0NFRUVGDKlCkAgEmTJiEgIAApKSkAgFWrVmHRokXYs2cPgoKCxFqh9u3bo3379nBzc8OQIUMwd+5cODs7o3Pnzvj3v/+NDz74AOvWrZPsPomIiKh1kTQAxcXF4fbt21i0aBEKCgoQFhaGzMxMsTD6+vXrGr056enpqK6uxnPPPadxncWLF2PJkiUAgL179yI5ORnPP/88SkpK0LlzZ6xYsQLTp083230RERFR66bXOkDWgusAERERWR59fn9LVgNEREREJBUGICIiIrI6DEBERERkdRiAiIiIyOowABEREZHVYQAiIiIiq8MARERERFaHAYiIiIisDgMQERERWR0GICIiIrI6DEBERERkdRiAiIiIyOowABEREZHVYQAiIiIiq8MARERERFaHAYiIiIisDgMQERERWR0GICIiIrI6DEBERERkdRiAiIiIyOowABEREZHVYQAiIiIiq2MndQOIiIjaquLiYlRXV2t938HBAZ6enmZsEakxABEREZlAcXExNm7c2Ox5iYmJDEES4BAYERGRCdTv+VEoXJGfHwSFwrXJ88g82ANERERkYjk5fXDw4CgIgg1kMhViYw+hb9/zUjfLqrEHiIiIyIQUClcx/ACAINjg4MFRDXqCyLzYA0RERKQDfQua7969CwAoKfEUw4+aINigpMQDcnkZ8vPzdboeGRcDEBERUTMMKWi+f/8+AMDDoxgymUojBMlkKnh4lAAAjh07ptP1yLg4BEZERNQMQwqay8vLAQByeRlCQy8AEP73joDQ0AuQy8v0uh4ZF3uAiIiI9KBrQbNSqQRQG24uXAgFIPvfOzJcuBCKYcNOQC4vY4G0RNgDREREpCN9Cprt7Gr7GJqqAWKBtHQYgIiIiHTUVJipz9W1NsTY21fhwfCX+CnY21frdT0yLgYgIiIiHakLmuuqW9DcGKXSEQ+Gv8RPQal0MOh6ZBwMQERERDqSy8sQG3tIDC3qmp26Bc31NRVyDLkeGQeLoImIiPTQt+95BAdfRkmJhxhiGqOuAVKHnPqFzurP6Xo9Mi4GICIiomY4ODhovJbLyxoNKnXP69Chg/jvzYUcXa5HxsUARERE1AxPT08kJibqtRK0rqFp/PjxGmFJ2/XIuGSCINQvTbd6paWlkMvlUCgUcHNzk7o5RERkofTdPoNaRp/f3+wBIiIiMhGGm9ZL8llgmzZtQlBQEJycnBAVFYWzZ89qPXfr1q0YNGgQ3N3d4e7ujujo6EbPv3TpEkaPHg25XA4XFxf069cP169fN+VtEBER6aW4uBg3b97U+lNcXCx1E9s0SXuA9u3bh6SkJGzZsgVRUVFIS0tDTEwM8vLy4O3t3eD8U6dOYeLEiRgwYACcnJywatUqPPPMM7h48SICAgIAAFeuXMHAgQPx0ksvYenSpXBzc8PFixfh5ORk7tsjIiJqlCGbq5JxSVoDFBUVhX79+ol/CFQqFQIDA/Hqq69i/vz5zX6+pqYG7u7u2LhxIyZNmgQAmDBhAuzt7bFr1y6D28UaICIiMqWbN2/ivffeE18rFK4oKfGEh0exRqH0tGnT4OfnJ0UTLZI+v78lGwKrrq5GdnY2oqOjHzTGxgbR0dE4c+aMTteorKyEUqmEh0ftkuEqlQqHDx/Gww8/jJiYGHh7eyMqKgqfffZZk9epqqpCaWmpxg8REZE55OT0QVrabOzcmYC0tNnIyekjdZOsgmQBqKioCDU1NfDx8dE47uPjg4KCAp2uMW/ePPj7+4sh6tatWygvL0dqaiqGDx+Ozz//HH/+858xbtw4/Pvf/9Z6nZSUFMjlcvEnMDDQ8BsjIiLSETdDlY7kRdCGSk1Nxd69e/Hpp5+K9T0qVe1S4mPGjMHrr7+OsLAwzJ8/H6NGjcKWLVu0Xis5ORkKhUL8+fXXX81yD0REZN24Gap0JCuC9vLygq2tLQoLCzWOFxYWwtfXt8nPrl27FqmpqTh+/DhCQ0M1rmlnZ4dHH31U4/xHHnkEp0+f1no9R0dHODo6GnAXRERE2mlbB6ioqAjAg33C6oYgboZqHpIFIAcHB4SHhyMrKwtjx44FUNuDk5WVhcTERK2fW716NVasWIGjR48iIiKiwTX79euHvLw8jeM//fQTOnfubPR7ICIi0kaXmV7N7RNGpiPpNPikpCQkJCQgIiICkZGRSEtLQ0VFBaZMmQIAmDRpEgICApCSkgIAWLVqFRYtWoQ9e/YgKChIrBVq37492rdvDwCYO3cu4uLiMHjwYDz55JPIzMzEwYMHcerUKUnukYiIrFP9nh9tM724Gao0JA1AcXFxuH37NhYtWoSCggKEhYUhMzNTLIy+fv06bGwedAump6ejuroazz33nMZ1Fi9ejCVLlgAA/vznP2PLli1ISUnBrFmz0L17d+zfvx8DBw40230RERHVlZPTp0EvT9++58X3uRmq+XEvsEZwHSAiImop9Vo/CoUr0tJmN6jzmT07DXJ5GcaNGwcvL68Gn+c+YfrjXmBEREStRFMzveTyMnh5eXGxQwlY7DR4IiIiS6Ce6VUXZ3pJjwGIiIjIhNQzvdQhiDO9WgcOgREREZmYsWZ6aVtXSI11Q7pjACIiIjKB+jO4WjrTizvIGxcDEBERkQl4enoiMTHRaD02uq4r9Pvvvzf6newd0sQAREREZCKmChxNrSuUkZGh9XPsHXqARdBEREQWRJcd5BUKV+TnBzXYVb6p3ihrwx4gIiIiC9LcukLNrTpNtdgDREREZEGaWldIl94hqsUAREREZEGaWleoqd4h0sQhMCIiIgujbV0hde9Q/X3HuOp0Q+wBIiIisgCNrSvUpcs1jSnwXHVad+wBIiIisgBNrStUVFQkTn831qrTbR0DEBERkYXQtoaPsVedtgYMQERERBbO2KtOWwMGICIiojaA4UY/LIImIiIiq8MARERERFaHAYiIiIisDmuAiIiI2oDi4mIWQeuBAYiIiMjCFRcXY+PGjc2el5iYyBD0PxwCIyIisnD1e34UClfk5wc12AS1qR4ia8MeICIiojYkJ6ePuCO8eiuMvn3PS92sVoc9QERERG2EQuEqhh+gdif4gwdHNegJIgYgIiKiNqOkxFNjJ3igNgSVlHhI1KLWiwGIiIiojfDwKBZ3gleTyVTw8CiRqEWtFwMQERFRGyGXlyE29pAYgtQ1QNwRviEWQRMREbUhffueR3DwZZSUeMDDo4ThRwsGICIiIgvn4OCg8VouL2s0+NQ/z5oxABEREVk4T09PJCYmciVoPbAGiIiIiKwOe4CIiIgsHLfC0B97gIiIiCycrltccCuMBxiAiIiI2hhte4HRAxwCIyIiakO4F5hu2ANERETURnAvMN0xABEREbUR3AtMdwxAREREbQT3AtMdAxAREVEbwb3AdNcqAtCmTZsQFBQEJycnREVF4ezZs1rP3bp1KwYNGgR3d3e4u7sjOjq6yfOnT58OmUyGtLQ0E7SciIhIenW3uOjb9zxmz05DQsIOzJ6dplEAza0wHpB8Fti+ffuQlJSELVu2ICoqCmlpaYiJiUFeXh68vb0bnH/q1ClMnDgRAwYMgJOTE1atWoVnnnkGFy9eREBAgMa5n376Kb7++mv4+/ub63aIiIjMjlth6E8mCIIgZQOioqLQr18/cQVLlUqFwMBAvPrqq5g/f36zn6+pqYG7uzs2btyISZMmicd/++03REVF4ejRoxg5ciRmz56N2bNn69Sm0tJSyOVyKBQKuLm5GXRfREREZF76/P6WdAisuroa2dnZiI6OFo/Z2NggOjoaZ86c0ekalZWVUCqV8PB4UOGuUqkQHx+PuXPnomfPns1eo6qqCqWlpRo/RERE1HZJGoCKiopQU1MDHx8fjeM+Pj4oKCjQ6Rrz5s2Dv7+/RohatWoV7OzsMGvWLJ2ukZKSArlcLv4EBgbqfhNERERkcSSvAWqJ1NRU7N27F6dOnYKTkxMAIDs7G++88w5ycnIgk8l0uk5ycjKSkpLE16WlpQxBRERk1YqLi9t0TZGkAcjLywu2trYoLCzUOF5YWAhfX98mP7t27Vqkpqbi+PHjCA0NFY9/8cUXuHXrFjp16iQeq6mpwZw5c5CWloarV682uJajoyMcHR1bdjNERERthDXsLi/pEJiDgwPCw8ORlZUlHlOpVMjKykL//v21fm716tVYtmwZMjMzERERofFefHw8Lly4gNzcXPHH398fc+fOxdGjR012L0RERG1F/Z4fbZurWvLu8pIPgSUlJSEhIQERERGIjIxEWloaKioqMGXKFADApEmTEBAQgJSUFAC19T2LFi3Cnj17EBQUJNYKtW/fHu3bt4enp2eDNGpvbw9fX190797dvDdHRERk4drq5qqSB6C4uDjcvn0bixYtQkFBAcLCwpCZmSkWRl+/fh02Ng86qtLT01FdXY3nnntO4zqLFy/GkiVLzNl0IiKiNk3b5qrBwZctfnVpyQMQUDuGmJiY2Oh7p06d0njdWA1Pcwz5DBERkbVranNVubwMRUVFDT5jKcXRrSIAERERUeuj3ly1bgiqu7nq9u3HUFLiCQ+PYo0eIUsojmYAIiIiokapN1etXwMkl5c1WRtkCcXRDEBERESkVd++5xEcfBklJR7w8CiBXF7WJmqDGICIiIhIQ/1d4+XyMo1g01xtkCVgACIiIiIN2naXLyoqQkZGRrO1QZaAAYiIiIgaaKqIuanaIEvBAERERER6a6w2yJIwABEREZFB6tcGWRJJ9wIjIiIiy1G/OLql50mJPUBERESkE23F0XVxJWgiIiJqcywh3OiCQ2BERERkdRiAiIiIyOowABEREZHVYQAiIiIiq8MARERERFaHAYiIiIisDgMQERERWR0GICIiIrI6DEBERERkdRiAiIiIyOowABEREZHVYQAiIiIiq8PNUImIiMikiouLW90O8gxAREREZDLFxcXYuHGj+FqhcEVJiSc8PIohl5eJxxMTE80aghiAiIiIyGTq9vzk5PTBwYOjIAg2kMlUiI09hL59zzc4zxxYA0REREQmp1C4iuEHAATBBgcPjoJC4SpJexiAiIiIyORKSjzF8KMmCDYoKfGQpD0MQERERGRyHh7FkMlUGsdkMhU8PEokaQ8DEBEREZnM3bt3AQByeRliYw+JIUhdA6QuhFafZy4MQERERGQy9+/f13gtCJr/1HaeqTEAERERkcmpi6AfRA8WQRMREVEbZW9vD6D5Imj1eebCAEREREQmI5fLATRfBK0+z1wYgIiIiMjkmiuCNjeuBE1ERERm0bfveQQHX0ZJiQc8PEokCz8AAxARERGZkVxeJmnwUeMQGBEREZmMg4ODUc8zFvYAERERkcl4enoiMTGxyc1OHRwczLoTPMAARERERCZm7nCji1YxBLZp0yYEBQXByckJUVFROHv2rNZzt27dikGDBsHd3R3u7u6Ijo7WOF+pVGLevHno1asXXFxc4O/vj0mTJuH33383x60QERFRPcXFxbh586bWn+LiYrO3SfIeoH379iEpKQlbtmxBVFQU0tLSEBMTg7y8PHh7ezc4/9SpU5g4cSIGDBgAJycnrFq1Cs888wwuXryIgIAAVFZWIicnBwsXLkTv3r1x584dvPbaaxg9ejS+/fZbCe6QiIjIehUXF2Pjxo3NnpeYmGjWniKZINTfjcO8oqKi0K9fP/HhqFQqBAYG4tVXX8X8+fOb/XxNTQ3c3d2xceNGTJo0qdFzzp07h8jISFy7dg2dOnVq9pqlpaWQy+VQKBRwc3PT74aIiIhIdPPmTbz33nvNnjdt2jT4+fm16Lv0+f0t6RBYdXU1srOzER0dLR6zsbFBdHQ0zpw5o9M1KisroVQq4eHhofUchUIBmUyGDh06NPp+VVUVSktLNX6IiIio7ZI0ABUVFaGmpgY+Pj4ax318fFBQUKDTNebNmwd/f3+NEFXXvXv3MG/ePEycOFFrGkxJSYFcLhd/AgMD9bsRIiIi0olC4Yr8/CDJNkFVk7wGqCVSU1Oxd+9enDp1Ck5OTg3eVyqVGD9+PARBQHp6utbrJCcnIykpSXxdWlrKEERERGRkOTl9cPDgKAiCjbgVRt++5yVpi6QByMvLC7a2tigsLNQ4XlhYCF9f3yY/u3btWqSmpuL48eMIDQ1t8L46/Fy7dg0nTpxocizQ0dERjo6Oht0EERERNUuhcBXDD1C7E/zBg6MQHHxZkpWhJR0Cc3BwQHh4OLKyssRjKpUKWVlZ6N+/v9bPrV69GsuWLUNmZiYiIiIavK8OPz///DOOHz/eKtcfICIisiYlJZ5i+FETBBuUlGiv4TUlyYfAkpKSkJCQgIiICERGRiItLQ0VFRWYMmUKAGDSpEkICAhASkoKAGDVqlVYtGgR9uzZg6CgILFWqH379mjfvj2USiWee+455OTk4NChQ6ipqRHP8fDwMPtS20RERAR4eBRDJlNphCCZTAUPjxJJ2iN5AIqLi8Pt27exaNEiFBQUICwsDJmZmWJh9PXr12Fj8+Bhpaeno7q6Gs8995zGdRYvXowlS5bgt99+w4EDBwAAYWFhGuecPHkSQ4cONen9EBER0QPqjge5vAyxsYca1ACph7/M3UEh+TpArRHXASIiIjKe4uJicS+w33+3wdWrdggKug9/fxUA4+0Fps/vb8l7gIiIiKhtqxtu/PyA8HAJG/M/rWIvMCIiIiJzYgAiIiIiq8MARERERFaHAYiIiIisDgMQERERWR0GICIiIrI6DEBERERkdRiAiIiIyOowABEREZHVYQAiIiIiq8MARERERFaHe4E1Qr0/bGlpqcQtISIiIl2pf2/rss87A1AjysrKAACBgYESt4SIiIj0VVZWBrlc3uQ5MkGXmGRlVCoVfv/9d7i6ukImk+n9+dLSUgQGBuLXX3+Fm5ubCVrY+vEZ1OJz4DMA+AzU+Bz4DADTPgNBEFBWVgZ/f3/Y2DRd5cMeoEbY2NigY8eOLb6Om5ub1f4BV+MzqMXnwGcA8Bmo8TnwGQCmewbN9fyosQiaiIiIrA4DEBEREVkdBiATcHR0xOLFi+Ho6Ch1UyTDZ1CLz4HPAOAzUONz4DMAWs8zYBE0ERERWR32ABEREZHVYQAiIiIiq8MARERERFaHAYiIiIisDgOQgTZt2oSgoCA4OTkhKioKZ8+e1XruxYsX8eyzzyIoKAgymQxpaWnma6gJ6fMMtm7dikGDBsHd3R3u7u6Ijo5u8nxLos9zyMjIQEREBDp06AAXFxeEhYVh165dZmytaejzDOrau3cvZDIZxo4da9oGmoE+z2DHjh2QyWQaP05OTmZsreno+2fh7t27mDlzJvz8/ODo6IiHH34YR44cMVNrTUOfZzB06NAGfxZkMhlGjhxpxhYbn75/DtLS0tC9e3c4OzsjMDAQr7/+Ou7du2faRgqkt7179woODg7Ctm3bhIsXLwovv/yy0KFDB6GwsLDR88+ePSv87W9/Ez766CPB19dXePvtt83bYBPQ9xn85S9/ETZt2iScP39euHTpkjB58mRBLpcLN27cMHPLjUvf53Dy5EkhIyND+OGHH4TLly8LaWlpgq2trZCZmWnmlhuPvs9ALT8/XwgICBAGDRokjBkzxjyNNRF9n8H27dsFNzc34ebNm+JPQUGBmVttfPo+h6qqKiEiIkL405/+JJw+fVrIz88XTp06JeTm5pq55caj7zMoLi7W+HPw/fffC7a2tsL27dvN23Aj0vcZfPjhh4Kjo6Pw4YcfCvn5+cLRo0cFPz8/4fXXXzdpOxmADBAZGSnMnDlTfF1TUyP4+/sLKSkpzX62c+fObSIAteQZCIIg3L9/X3B1dRV27txpqiaaRUufgyAIQp8+fYQ333zTFM0zC0Oewf3794UBAwYI//d//yckJCRYfADS9xls375dkMvlZmqd+ej7HNLT04WuXbsK1dXV5mqiybX074S3335bcHV1FcrLy03VRJPT9xnMnDlTGDZsmMaxpKQk4YknnjBpOzkEpqfq6mpkZ2cjOjpaPGZjY4Po6GicOXNGwpaZjzGeQWVlJZRKJTw8PEzVTJNr6XMQBAFZWVnIy8vD4MGDTdlUkzH0GfzjH/+At7c3XnrpJXM006QMfQbl5eXo3LkzAgMDMWbMGFy8eNEczTUZQ57DgQMH0L9/f8ycORM+Pj547LHHsHLlStTU1Jir2UZljL8b33//fUyYMAEuLi6maqZJGfIMBgwYgOzsbHGY7JdffsGRI0fwpz/9yaRt5WaoeioqKkJNTQ18fHw0jvv4+ODHH3+UqFXmZYxnMG/ePPj7+2v8n8TSGPocFAoFAgICUFVVBVtbW2zevBlPP/20qZtrEoY8g9OnT+P9999Hbm6uGVpoeoY8g+7du2Pbtm0IDQ2FQqHA2rVrMWDAAFy8eNEoGzFLwZDn8Msvv+DEiRN4/vnnceTIEVy+fBkzZsyAUqnE4sWLzdFso2rp341nz57F999/j/fff99UTTQ5Q57BX/7yFxQVFWHgwIEQBAH379/H9OnT8fe//92kbWUAIrNLTU3F3r17cerUqTZT+KkPV1dX5Obmory8HFlZWUhKSkLXrl0xdOhQqZtmcmVlZYiPj8fWrVvh5eUldXMk079/f/Tv3198PWDAADzyyCN49913sWzZMglbZl4qlQre3t547733YGtri/DwcPz2229Ys2aNRQaglnr//ffRq1cvREZGSt0Uszp16hRWrlyJzZs3IyoqCpcvX8Zrr72GZcuWYeHChSb7XgYgPXl5ecHW1haFhYUaxwsLC+Hr6ytRq8yrJc9g7dq1SE1NxfHjxxEaGmrKZpqcoc/BxsYGISEhAICwsDBcunQJKSkpFhmA9H0GV65cwdWrVxEbGyseU6lUAAA7Ozvk5eUhODjYtI02MmP8nWBvb48+ffrg8uXLpmiiWRjyHPz8/GBvbw9bW1vx2COPPIKCggJUV1fDwcHBpG02tpb8WaioqMDevXvxj3/8w5RNNDlDnsHChQsRHx+PqVOnAgB69eqFiooKTJs2DQsWLICNjWmqdVgDpCcHBweEh4cjKytLPKZSqZCVlaXxX3RtmaHPYPXq1Vi2bBkyMzMRERFhjqaalLH+LKhUKlRVVZmiiSan7zPo0aMHvvvuO+Tm5oo/o0ePxpNPPonc3FwEBgaas/lGYYw/BzU1Nfjuu+/g5+dnqmaanCHP4YknnsDly5fFEAwAP/30E/z8/Cwu/AAt+7Pw8ccfo6qqCi+88IKpm2lShjyDysrKBiFHHYoFU25XatIS6zZq7969gqOjo7Bjxw7hhx9+EKZNmyZ06NBBnMYaHx8vzJ8/Xzy/qqpKOH/+vHD+/HnBz89P+Nvf/iacP39e+Pnnn6W6hRbT9xmkpqYKDg4OwieffKIx5bOsrEyqWzAKfZ/DypUrhc8//1y4cuWK8MMPPwhr164V7OzshK1bt0p1Cy2m7zOory3MAtP3GSxdulQ4evSocOXKFSE7O1uYMGGC4OTkJFy8eFGqWzAKfZ/D9evXBVdXVyExMVHIy8sTDh06JHh7ewvLly+X6hZazND/PwwcOFCIi4szd3NNQt9nsHjxYsHV1VX46KOPhF9++UX4/PPPheDgYGH8+PEmbScDkIE2bNggdOrUSXBwcBAiIyOFr7/+WnxvyJAhQkJCgvg6Pz9fANDgZ8iQIeZvuBHp8ww6d+7c6DNYvHix+RtuZPo8hwULFgghISGCk5OT4O7uLvTv31/Yu3evBK02Ln2eQX1tIQAJgn7PYPbs2eK5Pj4+wp/+9CchJydHglYbn75/Fr766ishKipKcHR0FLp27SqsWLFCuH//vplbbVz6PoMff/xRACB8/vnnZm6p6ejzDJRKpbBkyRIhODhYcHJyEgIDA4UZM2YId+7cMWkbZYJgyv4lIiIiotaHNUBERERkdRiAiIiIyOowABEREZHVYQAiIiIiq8MARERERFaHAYiIiIisDgMQERERWR0GICIiCU2ePBljx46VuhlEVocBiIgaNXnyZMhkMvHH09MTw4cPx4ULF6RumlHUvTf1z8CBA032fVevXoVMJkNubq7G8XfeeQc7duww2fcSUeMYgIhIq+HDh+PmzZu4efMmsrKyYGdnh1GjRkndLKPZvn27eH83b97EgQMHGj1PqVSarA1yuRwdOnQw2fWJqHEMQESklaOjI3x9feHr64uwsDDMnz8fv/76K27fvo1hw4YhMTFR4/zbt2/DwcFB3Ak6KCgIy5Ytw8SJE+Hi4oKAgABs2rRJ4zPr1q1Dr1694OLigsDAQMyYMQPl5eXi+9euXUNsbCzc3d3h4uKCnj174siRIwCAO3fu4Pnnn8dDDz0EZ2dndOvWDdu3b9f5/jp06CDen6+vLzw8PMSemn379mHIkCFwcnLChx9+iOLiYkycOBEBAQFo164devXqhY8++kjjeiqVCqtXr0ZISAgcHR3RqVMnrFixAgDQpUsXAECfPn0gk8kwdOhQAA2HwKqqqjBr1ix4e3vDyckJAwcOxLlz58T3T506BZlMhqysLERERKBdu3YYMGAA8vLydL5vImIAIiIdlZeXY/fu3QgJCYGnpyemTp2KPXv2oKqqSjxn9+7dCAgIwLBhw8Rja9asQe/evXH+/HnMnz8fr732Go4dOya+b2Njg/Xr1+PixYvYuXMnTpw4gTfeeEN8f+bMmaiqqsJ//vMffPfdd1i1ahXat28PAFi4cCF++OEH/Otf/8KlS5eQnp4OLy8vo9yvuq2XLl1CTEwM7t27h/DwcBw+fBjff/89pk2bhvj4eJw9e1b8THJyMlJTU8V27dmzBz4+PgAgnnf8+HHcvHkTGRkZjX7vG2+8gf3792Pnzp3IyclBSEgIYmJiUFJSonHeggUL8NZbb+Hbb7+FnZ0dXnzxRaPcN5HVMOlWq0RksRISEgRbW1vBxcVFcHFxEQAIfn5+QnZ2tiAIgvDHH38I7u7uwr59+8TPhIaGCkuWLBFfd+7cWRg+fLjGdePi4oQRI0Zo/d6PP/5Y8PT0FF/36tVL45p1xcbGClOmTDHo/gAITk5O4v25uLgIn376qZCfny8AENLS0pq9xsiRI4U5c+YIgiAIpaWlgqOjo7B169ZGz1Vf9/z58xrHExIShDFjxgiCIAjl5eWCvb298OGHH4rvV1dXC/7+/sLq1asFQRCEkydPCgCE48ePi+ccPnxYACD88ccf+jwCIqvGHiAi0urJJ59Ebm4ucnNzcfbsWcTExGDEiBG4du0anJycEB8fj23btgEAcnJy8P3332Py5Mka1+jfv3+D15cuXRJfHz9+HE899RQCAgLg6uqK+Ph4FBcXo7KyEgAwa9YsLF++HE888QQWL16sUYT9yiuvYO/evQgLC8Mbb7yBr776Sq/7e/vtt8X7y83NxdNPPy2+FxERoXFuTU0Nli1bhl69esHDwwPt27fH0aNHcf36dQDApUuXUFVVhaeeekqvNtR15coVKJVKPPHEE+Ixe3t7REZGajwzAAgNDRX/3c/PDwBw69Ytg7+byNowABGRVi4uLggJCUFISAj69euH//u//0NFRQW2bt0KAJg6dSqOHTuGGzduYPv27Rg2bBg6d+6s8/WvXr2KUaNGITQ0FPv370d2drZYI1RdXS1+xy+//IL4+Hh89913iIiIwIYNGwBADGOvv/46fv/9dzz11FP429/+pvP3+/r6ivcXEhICFxcXjXuva82aNXjnnXcwb948nDx5Erm5uYiJiRHb6ezsrPP3GoO9vb347zKZDEBtDRIR6YYBiIh0JpPJYGNjgz/++AMA0KtXL0RERGDr1q3Ys2dPo3UoX3/9dYPXjzzyCAAgOzsbKpUKb731Fh5//HE8/PDD+P333xtcIzAwENOnT0dGRgbmzJkjBjAAeOihh5CQkIDdu3cjLS0N7733njFvWfTll19izJgxeOGFF9C7d2907doVP/30k/h+t27d4OzsLBaA1+fg4ACgtidJm+DgYDg4OODLL78UjymVSpw7dw6PPvqoke6EiADATuoGEFHrVVVVhYKCAgC1M642btyI8vJyxMbGiudMnToViYmJcHFxwZ///OcG1/jyyy+xevVqjB07FseOHcPHH3+Mw4cPAwBCQkKgVCqxYcMGxMbG4ssvv8SWLVs0Pj979myMGDECDz/8MO7cuYOTJ0+KAWrRokUIDw9Hz549UVVVhUOHDonvGVu3bt3wySef4KuvvoK7uzvWrVuHwsJCMZg4OTlh3rx5eOONN+Dg4IAnnngCt2/fxsWLF/HSSy/B29sbzs7OyMzMRMeOHeHk5AS5XK7xHS4uLnjllVcwd+5ceHh4oFOnTli9ejUqKyvx0ksvmeS+iKwVe4CISKvMzEz4+fnBz88PUVFROHfuHD7++GNxCjcATJw4EXZ2dpg4cSKcnJwaXGPOnDn49ttv0adPHyxfvhzr1q1DTEwMAKB3795Yt24dVq1ahcceewwffvghUlJSND5fU1ODmTNn4pFHHsHw4cPx8MMPY/PmzQBqe1WSk5MRGhqKwYMHw9bWFnv37jXJs3jzzTfRt29fxMTEYOjQofD19W2wgvPChQsxZ84cLFq0CI888gji4uLEuhw7OzusX78e7777Lvz9/TFmzJhGvyc1NRXPPvss4uPj0bdvX1y+fBlHjx6Fu7u7Se6LyFrJBEEQpG4EEVmuq1evIjg4GOfOnUPfvn013gsKCsLs2bMxe/ZsaRpHRKQFh8CIyCBKpRLFxcV488038fjjjzcIP0RErRmHwIjIIF9++SX8/Pxw7ty5BnU7Ulu5ciXat2/f6M+IESOkbh4RtQIcAiOiNqekpKTByslqzs7OCAgIMHOLiKi1YQAiIiIiq8MhMCIiIrI6DEBERERkdRiAiIiIyOowABEREZHVYQAiIiIiq8MARERERFaHAYiIiIisDgMQERERWZ3/D5fRKTvDNbXkAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_22.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbcUlEQVR4nO3deVxU5eI/8M8MMoAIKCggiKJokpYiIKSlUJfCrluLV7RSosW6RWp0TclySRMwr5F79csll7SbaLlcLDG6mbZc0FbFJcwsQYUcFK5AzPP7wy8TAwwMMDPnnDmf9+vFS+fMM4fzzDBzPvNsRyOEECAiIiJSEa3UB0BERERkbwxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERESkOgxAREREpDoMQERERKQ6DEBERDK1fv16aDQanDlzRupDIXI4DEBEKvb1118jOTkZ/fv3h7u7O7p3747x48fjxIkTDcrGxsZCo9FAo9FAq9XC09MTffv2xaRJk/Dxxx+36Pfu2rULMTEx8PX1Rfv27dGrVy+MHz8e2dnZ1qpaA4sWLcLOnTsbbD906BDmzZuHy5cv2+x31zdv3jzjc6nRaNC+fXv069cPL774IsrKyqzyO7Zs2YLMzEyr7IvIETEAEalYRkYGtm/fjr/85S94/fXXMWXKFPznP/9BeHg4vv/++wblu3Xrho0bN+Kdd97Bq6++ijFjxuDQoUO46667kJCQgOrq6mZ/55IlSzBmzBhoNBqkpqbitddew/3334+TJ09i69attqgmgKYD0Pz58+0agGqtXr0aGzduxNKlSxEaGopXXnkFI0aMgDUu0cgARNS0dlIfABFJJyUlBVu2bIFOpzNuS0hIwM0334z09HRs2rTJpLyXlxceeughk23p6emYOnUqVq1aheDgYGRkZJj9fX/88QcWLFiAO++8Ex999FGD+y9cuNDGGslHRUUF2rdv32SZcePGoXPnzgCAJ598Evfffz+ysrLwxRdfYMiQIfY4TCLVYgsQkYoNHTrUJPwAQJ8+fdC/f38cO3bMon04OTlh2bJl6NevH1asWAG9Xm+27KVLl1BWVoZbb7210ft9fX1Nbl+7dg3z5s3DDTfcAFdXV3Tt2hX33XcfTp8+bSyzZMkSDB06FD4+PnBzc0NERATef/99k/1oNBqUl5djw4YNxm6nhx9+GPPmzcOMGTMAAD179jTeV3fMzaZNmxAREQE3Nzd4e3tjwoQJ+OWXX0z2Hxsbi5tuugl5eXkYPnw42rdvjxdeeMGi56+uO+64AwBQWFjYZLlVq1ahf//+cHFxQUBAAJ5++mmTFqzY2Fjs2bMHP//8s7FOwcHBLT4eIkfGFiAiMiGEQHFxMfr372/xY5ycnDBx4kS89NJLOHjwIEaOHNloOV9fX7i5uWHXrl145pln4O3tbXafNTU1GDVqFHJycjBhwgRMmzYNV65cwccff4zvv/8eISEhAIDXX38dY8aMwYMPPoiqqips3boVf/vb37B7927jcWzcuBGPPfYYoqKiMGXKFABASEgI3N3dceLECbz77rt47bXXjK0xXbp0AQC88soreOmllzB+/Hg89thjuHjxIpYvX47hw4fjyJEj6Nixo/F4S0pKcPfdd2PChAl46KGH4OfnZ/HzV6s22Pn4+JgtM2/ePMyfPx9xcXH4+9//joKCAqxevRpff/01Pv/8czg7O2P27NnQ6/U4d+4cXnvtNQBAhw4dWnw8RA5NEBHVsXHjRgFAvP322ybbY2JiRP/+/c0+bseOHQKAeP3115vc/5w5cwQA4e7uLu6++27xyiuviLy8vAbl1q5dKwCIpUuXNrjPYDAY/19RUWFyX1VVlbjpppvEHXfcYbLd3d1dJCYmNtjXq6++KgCIwsJCk+1nzpwRTk5O4pVXXjHZ/t1334l27dqZbI+JiREAxJo1a8zWu665c+cKAKKgoEBcvHhRFBYWijfeeEO4uLgIPz8/UV5eLoQQYt26dSbHduHCBaHT6cRdd90lampqjPtbsWKFACDWrl1r3DZy5EjRo0cPi46HSI3YBUZERsePH8fTTz+NIUOGIDExsUWPrW1huHLlSpPl5s+fjy1btmDQoEHYt28fZs+ejYiICISHh5t0u23fvh2dO3fGM88802AfGo3G+H83Nzfj/3///Xfo9XoMGzYM+fn5LTr++rKysmAwGDB+/HhcunTJ+OPv748+ffrgk08+MSnv4uKCpKSkFv2Ovn37okuXLujZsyeeeOIJ9O7dG3v27DE7dmj//v2oqqrC9OnTodX++fH9+OOPw9PTE3v27Gl5RYlUil1gRAQAKCoqwsiRI+Hl5YX3338fTk5OLXr81atXAQAeHh7Nlp04cSImTpyIsrIyfPnll1i/fj22bNmC0aNH4/vvv4erqytOnz6Nvn37ol27pj+mdu/ejYULF+Lo0aOorKw0bq8bklrj5MmTEEKgT58+jd7v7OxscjswMLDBeKrmbN++HZ6ennB2dka3bt2M3Xrm/PzzzwCuB6e6dDodevXqZbyfiJrHAERE0Ov1uPvuu3H58mV89tlnCAgIaPE+aqfN9+7d2+LHeHp64s4778Sdd94JZ2dnbNiwAV9++SViYmIsevxnn32GMWPGYPjw4Vi1ahW6du0KZ2dnrFu3Dlu2bGlxHeoyGAzQaDT497//3WgYrD+mpm5LlKWGDx9uHHdERPbFAESkcteuXcPo0aNx4sQJ7N+/H/369WvxPmpqarBlyxa0b98et912W6uOIzIyEhs2bMD58+cBXB+k/OWXX6K6urpBa0ut7du3w9XVFfv27YOLi4tx+7p16xqUNdciZG57SEgIhBDo2bMnbrjhhpZWxyZ69OgBACgoKECvXr2M26uqqlBYWIi4uDjjtra2gBE5Oo4BIlKxmpoaJCQk4PDhw/jXv/7VqrVnampqMHXqVBw7dgxTp06Fp6en2bIVFRU4fPhwo/f9+9//BvBn987999+PS5cuYcWKFQ3Kiv9bKNDJyQkajQY1NTXG+86cOdPogofu7u6NLnbo7u4OAA3uu+++++Dk5IT58+c3WJhQCIGSkpLGK2lDcXFx0Ol0WLZsmckxvf3229Dr9Saz79zd3ZtckoBI7dgCRKRizz33HD788EOMHj0apaWlDRY+rL/ooV6vN5apqKjAqVOnkJWVhdOnT2PChAlYsGBBk7+voqICQ4cOxS233IIRI0YgKCgIly9fxs6dO/HZZ5/hnnvuwaBBgwAAkydPxjvvvIOUlBR89dVXGDZsGMrLy7F//3489dRTGDt2LEaOHImlS5dixIgReOCBB3DhwgWsXLkSvXv3xrfffmvyuyMiIrB//34sXboUAQEB6NmzJ6KjoxEREQEAmD17NiZMmABnZ2eMHj0aISEhWLhwIVJTU3HmzBncc8898PDwQGFhIXbs2IEpU6bgH//4R5ue/5bq0qULUlNTMX/+fIwYMQJjxoxBQUEBVq1ahcGDB5u8XhEREdi2bRtSUlIwePBgdOjQAaNHj7br8RLJmpRT0IhIWrXTt839NFW2Q4cOok+fPuKhhx4SH330kUW/r7q6Wrz11lvinnvuET169BAuLi6iffv2YtCgQeLVV18VlZWVJuUrKirE7NmzRc+ePYWzs7Pw9/cX48aNE6dPnzaWefvtt0WfPn2Ei4uLCA0NFevWrTNOM6/r+PHjYvjw4cLNzU0AMJkSv2DBAhEYGCi0Wm2DKfHbt28Xt912m3B3dxfu7u4iNDRUPP3006KgoMDkuWlqiYD6ao/v4sWLTZarPw2+1ooVK0RoaKhwdnYWfn5+4u9//7v4/fffTcpcvXpVPPDAA6Jjx44CAKfEE9WjEcIKF50hIiIiUhCOASIiIiLVYQAiIiIi1WEAIiIiItVhACIiIiLVYQAiIiIi1WEAIiIiItXhQoiNMBgM+O233+Dh4cHl5ImIiBRCCIErV64gICAAWm3TbTwMQI347bffEBQUJPVhEBERUSv88ssv6NatW5NlGIAa4eHhAeD6E9jUdY2IiIhIPsrKyhAUFGQ8jzeFAagRtd1enp6eDEBEREQKY8nwFQ6CJiIiItVhACIiIiLVkTwArVy5EsHBwXB1dUV0dDS++uors2WzsrIQGRmJjh07wt3dHWFhYdi4cWODcseOHcOYMWPg5eUFd3d3DB48GGfPnrVlNYiIiEhBJB0DtG3bNqSkpGDNmjWIjo5GZmYm4uPjUVBQAF9f3wblvb29MXv2bISGhkKn02H37t1ISkqCr68v4uPjAQCnT5/GbbfdhkcffRTz58+Hp6cnfvjhB7i6utq7ekREpDI1NTWorq6W+jAclrOzM5ycnKyyL40QQlhlT60QHR2NwYMHY8WKFQCur78TFBSEZ555BrNmzbJoH+Hh4Rg5ciQWLFgAAJgwYQKcnZ0bbRmyVFlZGby8vKDX6zkImoiImiWEQFFRES5fviz1oTi8jh07wt/fv9GBzi05f0vWAlRVVYW8vDykpqYat2m1WsTFxeHw4cPNPl4IgQMHDqCgoAAZGRkArgeoPXv24Pnnn0d8fDyOHDmCnj17IjU1Fffcc4/ZfVVWVqKystJ4u6ysrPUVIyIi1akNP76+vmjfvj0X0bUBIQQqKipw4cIFAEDXrl3btD/JAtClS5dQU1MDPz8/k+1+fn44fvy42cfp9XoEBgaisrISTk5OWLVqFe68804AwIULF3D16lWkp6dj4cKFyMjIQHZ2Nu677z588skniImJaXSfaWlpmD9/vvUqR0REqlFTU2MMPz4+PlIfjkNzc3MDcP187+vr26buMMWtA+Th4YGjR4/i6tWryMnJQUpKCnr16oXY2FgYDAYAwNixY/Hss88CAMLCwnDo0CGsWbPGbABKTU1FSkqK8XbtQkpERETNqR3z0759e4mPRB1qn+fq6mplBqDOnTvDyckJxcXFJtuLi4vh7+9v9nFarRa9e/cGcD3cHDt2DGlpaYiNjUXnzp3Rrl079OvXz+QxN954Iw4ePGh2ny4uLnBxcWlDbYiISO3Y7WUf1nqeJZsGr9PpEBERgZycHOM2g8GAnJwcDBkyxOL9GAwG4/gdnU6HwYMHo6CgwKTMiRMn0KNHD+scOBERESmepF1gKSkpSExMRGRkJKKiopCZmYny8nIkJSUBACZPnozAwECkpaUBuD5WJzIyEiEhIaisrMTevXuxceNGrF692rjPGTNmICEhAcOHD8ftt9+O7Oxs7Nq1C7m5uVJUscVKSkpQVVVl9n6dTsc+ZiIiojaSNAAlJCTg4sWLmDNnDoqKihAWFobs7GzjwOizZ8+aXM6+vLwcTz31FM6dOwc3NzeEhoZi06ZNSEhIMJa59957sWbNGqSlpWHq1Kno27cvtm/fjttuu83u9WupkpIS45IAAKDXe6C01Afe3iXw8rpi3J6cnMwQREREbfbwww9jw4YNAIB27drB29sbAwYMwMSJE/Hwww+bnIObsn79ekyfPl1RywBIPgg6OTkZycnJjd5Xv9Vm4cKFWLhwYbP7fOSRR/DII49Y4/Dsqm7LT37+IOzaNQpCaKHRGDB69G6Ehx9pUI6IiJRPytb/ESNGYN26daipqUFxcTGys7Mxbdo0vP/++/jwww/Rrp3kUcEmHLNWCqfXexjDDwAIocWuXaMQEnLKpCWIiIiUr37rvzm2av13cXExTj4KDAxEeHg4brnlFvzlL3/B+vXr8dhjj2Hp0qVYt24dfvrpJ3h7e2P06NFYvHgxOnTogNzcXOPQldoBynPnzsW8efOwceNGvP766ygoKIC7uzvuuOMOZGZmNnq1B3uT/Fpg1FBpqY8x/NQSQovSUm+JjoiIiGzF0lZ9e7b+33HHHRg4cCCysrIAXJ+BvWzZMvzwww/YsGEDDhw4gOeffx4AMHToUGRmZsLT0xPnz5/H+fPn8Y9//APA9anqCxYswDfffIOdO3fizJkzePjhh+1Wj6awBUiGvL1LoNEYTEKQRmOAt3ephEdFRERqEhoaim+//RYAMH36dOP24OBgLFy4EE8++SRWrVoFnU4HLy8vaDSaBsvY1B2O0qtXLyxbtgyDBw/G1atX0aFDB7vUwxy2AMmQl9cVjB69GxrN9YUda8cAsfuLiIjsRQhh7NLav38//vKXvyAwMBAeHh6YNGkSSkpKUFFR0eQ+8vLyMHr0aHTv3h0eHh7GBYnPnj1r8+NvDluAZCo8/AhCQk6htNQb3t6lDD9ERGRXx44dQ8+ePXHmzBmMGjUKf//73/HKK6/A29sbBw8exKOPPoqqqiqzK2CXl5cjPj4e8fHx2Lx5M7p06YKzZ88iPj5eFpN5GIBkzMvrCoMPERHZ3YEDB/Ddd9/h2WefRV5eHgwGA/75z38ap8W/9957JuV1Oh1qampMth0/fhwlJSVIT083Xl7qv//9r30qYAF2gcmITqezajkiIqLmVFZWoqioCL/++ivy8/OxaNEijB07FqNGjcLkyZPRu3dvVFdXY/ny5fjpp5+wceNGrFmzxmQfwcHBxmt0Xrp0CRUVFejevTt0Op3xcR9++CEWLFggUS0bYguQjPj4+CA5OZkrQRMRkd1kZ2eja9euaNeuHTp16oSBAwdi2bJlSExMhFarxcCBA7F06VJkZGQgNTUVw4cPR1paGiZPnmzcx9ChQ/Hkk08iISEBJSUlxmnw69evxwsvvIBly5YhPDwcS5YswZgxYySs7Z80Qggh9UHITVlZGby8vKDX6+Hp6Sn14ZBM8bIlRAQA165dQ2FhIXr27AlXV9cWP17qdYCUpqnnuyXnb7YAkaSUGiL4gUVE1sLWf2kwAJFklBwi6n9QmbtumxxmOhCR/MntM04NGIBIMo4SIpq6bltdSm3tIiJyRAxAJAuWhgi5sfS6bUpu7SIickScBk+SMxci9HoPiY+seZZet62x1q7CwuAGdZR7axcRkaNgCxBJrqkQIfeFIFtz3TaltnYRETkStgCR5GpDRF1KufhrS6/bpuTWLiIiR8IWIJJcbYio3yoi99afWi25bpuSW7uIiBwJAxDJgtIu/lr/ciTmrttWv1xrusyIiMj6GIBIMq0NEXLQ2oXLbNnaxWn2RCQ3ubm5uP322/H777+jY8eOFj0mODgY06dPx/Tp0216bAxAJBkfHx889NBDqKioMFumffv2sj1pt/a4bNHaxWn2RNQaDz/8MDZs2IAnnniiwQVOn376aaxatQqJiYlYv369NAdoQwxAJJmSkhJs2rTJeNvcQoiOcNK2dWuXoywqSUT2FxQUhK1bt+K1116Dm5sbgOvX29qyZQu6d+8u8dHZDgMQSabuybipqeGOcNK257V+OM2eiFoiPDwcp0+fRlZWFh588EEAQFZWFrp3746ePXsay1VWVmLGjBnYunUrysrKEBkZiddeew2DBw82ltm7dy+mT5+OX375BbfccgsSExMb/L6DBw8iNTUV//3vf9G5c2fce++9SEtLg7u7u+0rWwenwZPk1DI13MfHB127djX7Y43wo9TnsqSkBOfPnzf7U1JSIvUhEtnNuXPAJ59c/9deHnnkEaxbt854e+3atUhKSjIp8/zzz2P79u3YsGED8vPz0bt3b8THx6O09Pokjl9++QX33XcfRo8ejaNHj+Kxxx7DrFmzTPZx+vRpjBgxAvfffz++/fZbbNu2DQcPHkRycrLtK1kPW4BIcpwabj1KfC45fonoT2+/DUyZAhgMgFYLvPkm8Oijtv+9Dz30EFJTU/Hzzz8DAD7//HNs3boVubm5AIDy8nKsXr0a69evx9133w0AeOutt/Dxxx/j7bffxowZM7B69WqEhITgn//8JwCgb9+++O6775CRkWH8PWlpaXjwwQeNA5z79OmDZcuWISYmBqtXr4arq6vtK/t/GIBIcpwabj1KfC45fonounPn/gw/wPV/n3gCiI8HunWz7e/u0qULRo4cifXr10MIgZEjR6Jz587G+0+fPo3q6mrceuutxm3Ozs6IiorCsWPHAADHjh1DdHS0yX6HDBlicvubb77Bt99+i82bNxu3CSFgMBhQWFiIG2+80RbVaxQDEElO6QshyonSn0uOXyI1O3nyz/BTq6YGOHXK9gEIuN4NVtsVtXLlSpv8jqtXr+KJJ57A1KlTG9xn7wHXDEAkC0pbCFHOlPpcmhu/FBJyyu514JpKJIU+fa53e9UNQU5OQO/e9vn9I0aMQFVVFTQaDeLj403uCwkJgU6nw+eff44ePXoAAKqrq/H1118bu7NuvPFGfPjhhyaP++KLL0xuh4eH48cff0Rve1WqCQxAJBvmpoZT85S8qGQtuYxf4pgkkkq3btfH/DzxxPWWHycn4I037NP6AwBOTk7G7iwnJyeT+9zd3fH3v/8dM2bMgLe3N7p3747FixejoqICj/7fIKUnn3wS//znPzFjxgw89thjyMvLa7B+0MyZM3HLLbcgOTkZjz32GNzd3fHjjz/i448/tuh9Z00MQCQZS0/Gcj5py4U9p9nbilzGL3FMEknp0Uevj/k5dep6y4+9wk8tT09Ps/elp6fDYDBg0qRJuHLlCiIjI7Fv3z506tQJwPUurO3bt+PZZ5/F8uXLERUVhUWLFuGRRx4x7mPAgAH49NNPMXv2bAwbNgxCCISEhCAhIcHmdatPI4QQdv+tMldWVgYvLy/o9fom/xio7eTU1SCnY1GT8+fP48033wTQ9BigKVOmoGvXrjY/nmPHjuG9995r9njGjx9v1wGbJF/Xrl1DYWEhevbsaddZTGrV1PPdkvM3W4BIUnIJFOz2kAc5jF/6448/ADQ/Jqm2HBEpEwMQKYqtWmnY7SEduY5fksuYJCKyDQYgUgx7tdJwKrZ9yfWiuM7OlQAEAE2drQLOzgzBRI6AAYgUwx6tNHKaiq0W9S+Ka469ux+rq11gGn4AQIPqag7KJ3IEDECkSLZqpWG3h/3JtftRLrPSSDk4p8g+rPU8MwCR4tiylYYnPWnZKti2ZOyYs7MzgOZX1a4tR1T7t1BRUQE3NzeJj8bx1XaXt/U9yABEimPLVhqlX0pCyWwVbFs6dszLy8u4ralZaXXLkbo5OTmhY8eOuHDhAoDrY9Y0mvrdp9RWQghUVFTgwoUL6NixY4PFGluKAYgUxxatNJcvXzb+v6mT3uXLl+2yFo0a2SrYtrSLTa6z0kje/P39AcAYgsh2OnbsaHy+24IBiBTHFq00jX9ba7iN3+psxx7dj5Z0sTnCqtpqIpcFTDUaDbp27QpfX19UV1fb/PeplbOzc5tbfmrJIgCtXLkSr776KoqKijBw4EDjEtqNycrKwqJFi3Dq1ClUV1ejT58+eO655zBp0qRGyz/55JN444038Nprrxkv2EbKZ+0F8+p2ZzR1kmS3h+3YuvuxJV1sDDfKIMcFTJ2cnKx2gibbkjwAbdu2DSkpKVizZg2io6ORmZmJ+Ph4FBQUwNfXt0F5b29vzJ49G6GhodDpdNi9ezeSkpLg6+vb4Oq1O3bswBdffIGAgAB7VYdsyB5dE5wGLy1brgTNGX6Ox9KZgVzAlBojeQBaunQpHn/8cSQlJQEA1qxZgz179mDt2rWYNWtWg/KxsbEmt6dNm4YNGzbg4MGDJgHo119/xTPPPIN9+/Zh5MiRNq0DOQ6eJO3PXmNu5DTDTy7dNo7G3PguosZIGoCqqqqQl5eH1NRU4zatVou4uDgcPny42ccLIXDgwAEUFBQgIyPDuL32arUzZsxA//79m91PZWUlKisrjbfLyspaWBOyB3usFyOnk6Ra2GvMjVxm+Mmx28YRcAV3ailJA9ClS5dQU1MDPz8/k+1+fn44fvy42cfp9XoEBgaisrISTk5OWLVqFe68807j/RkZGWjXrh2mTp1q0XGkpaVh/vz5rasEScJWH3ZyOUmqjb1O9HK42KpcF35UMnZdU2tI3gXWGh4eHjh69CiuXr2KnJwcpKSkoFevXoiNjUVeXh5ef/115OfnWzxjJzU1FSkpKcbbZWVlCAoKstXhUxvZ+sNODidJsh45T2tnq4V1sOuaWkPSANS5c2c4OTmhuLjYZHtxcXGTc/y1Wi169+4NAAgLC8OxY8eQlpaG2NhYfPbZZ7hw4QK6d+9uLF9TU4PnnnsOmZmZOHPmTIP9ubi4wMXFxTqVIpuzxYednE+S1DZyndbOVgvrYdc1tYakAUin0yEiIgI5OTm45557AFwfv5OTk4Pk5GSL92MwGIxjeCZNmoS4uDiT++Pj4zFp0iTjQGtSNlt82Mn1JEmNa+kgYjm+bmy1sB52XVNrSN4FlpKSgsTERERGRiIqKgqZmZkoLy83hpXJkycjMDAQaWlpAK6P14mMjERISAgqKyuxd+9ebNy4EatXrwZw/YOu/oeds7Mz/P390bdvX/tWjmzCVh92cjxJUkOOMoiYrRZtV7dFtqmua7bcUmMkD0AJCQm4ePEi5syZg6KiIoSFhSE7O9s4MPrs2bPQav/8gCgvL8dTTz2Fc+fOwc3NDaGhodi0aRMSEhKkqgJJgON01MtRBhGz1aLt2HJLbSF5AAKuf1Mz1+WVm5trcnvhwoVYuHBhi/bf2LgfUh6O03FcrV0XR+mDiBnk247hhlpLFgGIyBL8tueYWtulpdRBxAzy0uIilFSLAYgUhR9Mjqe1XVpKHUTMIC8dRxk/RtbBAEREstGSLi0lDyLmydV6WtKi4yjjx8g6GICISBZa2qXFQcTUlhYdpY8fo7ZjACIiWWhNlxYHEatba68Gr9TxY2RdDEBEJAuWdmlxEDGZY+nV4G01fowDrJWFAYiIZMHSLq3WDCLmicnxST1+jAOslYcBiIhkw9IurZacQHhicnxyGD/GAdbKwwBERJKydZcWT0yOT27jxzjAWhkYgIhIUvZcF4cnJsckp/FjHGCtHAxAJCmOzSDAPuvi8MTkuGw5fqyllLpAJ6C+z2MGIJIMx2aQPSn5xCQncjpJtuZq8LY+NqUu0KnGz2MGIJJMa9fwIGoNpZ6YbK0lgUZuJ0k5XlZEqQt0qnGsHAMQyYala3gQtYZST0y2VD/QmHsP1gYaOZ4k5dgaofQFOtUyVo4BiGRBLW84sj+9Xm/8f1MnJr1ej65du0pxiJKpG1Saeg82Fmj4njXlKAt0qmmsHAMQSU5NbziyPyFEI1s1FpZTh5a+B/mebUiO3XGtoaaxcgxAJDk1veHI/jp27Gj8f1OtFnXLqU1L34N8zzZO7uHGEmoaK6dtvgiRbdW+4epy1DccScdcq4Ve7yHxkUmvpe9BvmcdV+1YudrX15HHyrEFiCTHwalkD2y1MK+l70G+Zx2b0gdxW4oBiCTTmjU8iFpLTU37rdHSk55aTpJq4SiDuFuCAYgk4yiDBkkZ2GrRPHMnvVpqPEmqhRo/jxmASFJKfjPJaUVcsgxbLUxZGlRqy6nxJKkmanvdGICIWkFuK+KSeRUVFSa3zbVa1C+nBq0JNPx7JkfBAETUCnJcEZca1759e5Pb5l6r+uXUgoGG1IoBiKiNuCKucvC1IjlhN7q0GICI2oAr4ioHXyuSE3ajS48LIRK1QVNry5C88LUiOWmsG72wMLjBwpzsRrcdtgARtQHXllEOvlbWwW4b62PXrDQYgMiq1PbhyLVllIOvVdux28b62DUrHQYgshq1fjhybRnl4GvVNpz9aH28RIt0GIBkRsktKGr6cOSKuNZly797vla2wW4b62DXrHQYgGTEkVpQHP3DkSviWo+t/+75Wlkfu22sR8lds0r+wg4wAMmKo7SgqOXDUc5vbCVxlL97NWG3jXUpsWvWEb6wMwDJlJJbUPjhSK1li797R/iglht227Sd0rtmHeGLCwOQjOj1+v/7t+kWFL1ej65du0p5qE3ihyO1hq1aDh3hg1pulNxtIxeO1DWr1C/sDEAyUl1dDaD5FpTacnLFD0dqDXu0HCr1g1qOlNhtIzdKCDfNUfKQBwYgGXKEFhR+OFJL2frvXskf1HKh9G4bsj4lD3lgAJIhL68rGDDgW3zzzUAAGgACAwZ8K/s/Jn44UlvYuuVQyR/UcuFI3TZkHUr+wi6LALRy5Uq8+uqrKCoqwsCBA7F8+XJERUU1WjYrKwuLFi3CqVOnUF1djT59+uC5557DpEmTAFzvRnrxxRexd+9e/PTTT/Dy8kJcXBzS09MREBBgz2q1ml7vgW+/HYDr4QcANPj22wG4444Dsv6g5ocjtZUtWw6V/EHdEraemsz3L9Wl5CEPkgegbdu2ISUlBWvWrEF0dDQyMzMRHx+PgoIC+Pr6Nijv7e2N2bNnIzQ0FDqdDrt370ZSUhJ8fX0RHx+PiooK5Ofn46WXXsLAgQPx+++/Y9q0aRgzZgz++9//SlBDy7Vrd/3laO6bam05OeKHI7WUvVoOlfxBbSnOeCMpKHXIg+Rn0qVLl+Lxxx9HUlISAGDNmjXYs2cP1q5di1mzZjUoHxsba3J72rRp2LBhAw4ePIj4+Hh4eXnh448/NimzYsUKREVF4ezZs+jevbvN6tJWHTt2BND8N9XackSOwJ4th0r9oLYUZ7yRvTjCkAdJA1BVVRXy8vKQmppq3KbVahEXF4fDhw83+3ghBA4cOICCggJkZGSYLafX66HRaBQTHNTwTZWoLlu2RjjCB3VrcMYb2ZIjDHmQNABdunQJNTU18PPzM9nu5+eH48ePm32cXq9HYGAgKisr4eTkhFWrVuHOO+9stOy1a9cwc+ZMTJw4EZ6eno2WqaysRGVlpfF2WVlZK2rTdnU/gJv6pupoH9REtuQIH9QtxRlvZA8tec/I8bIZkneBtYaHhweOHj2Kq1evIicnBykpKejVq1eD7rHq6mqMHz8eQgisXr3a7P7S0tIwf/58Gx9189T4QU1kD2p7z3DGG8lJ/bFp5rpm7T02TdIA1LlzZzg5OaG4uNhke3FxMfz9/c0+TqvVonfv3gCAsLAwHDt2DGlpaSYBqDb8/Pzzzzhw4IDZ1h8ASE1NRUpKivF2WVkZgoKCWlmrtlHbBzURWZ9aZryRMtT9Ut9U16y9x6Zpmy9iOzqdDhEREcjJyTFuMxgMyMnJwZAhQyzej8FgMOnCqg0/J0+exP79+5sNFS4uLvD09DT5ISJSqtpxhBqNAQCaHEdYUlKC8+fPm/0pKSmx9+GTgzLXNavXe0hyPJJ3gaWkpCAxMRGRkZGIiopCZmYmysvLjbPCJk+ejMDAQKSlpQG43l0VGRmJkJAQVFZWYu/evdi4caOxi6u6uhrjxo1Dfn4+du/ejZqaGhQVFQG4PoWe42eISA0smfHGafNkT3LrmpU8ACUkJODixYuYM2cOioqKEBYWhuzsbOPA6LNnz0Kr/fMJKy8vx1NPPYVz587Bzc0NoaGh2LRpExISEgAAv/76Kz788EMA17vH6vrkk08ajBMiInIULZ3xxmnzZE9y65rVCCGEJL9ZxsrKyuDl5QW9Xs/uMCJSlJbMtjl//jzefPNNAE2PzZgyZQq6du1q+4Mnh2TPv7OWnL8lbwEiIiLraU1XFafNk73IaTFSBiAiIpWT29gMcmzmumbtTdJZYEREJL3asRl1cdo8WYulk4/sPUmJLUCkKHJcTZRI6Xj5HbIluS7yywBEisEpu0S2I6exGeR45PiZzABEimHpVFxO2SWyjFovFEsEMACRgplbs4SILCPXrgkie2AAIkVqai0JIrIcww2pFQMQKQ7XLCEiah4njTSNAYgUh2uWUEvxREBqw0kjzWMAIsWR2/VkqCE5BQ6eCEiNeJ235jEAkeJwzRJ5k1vg4ImA1I5jJhvHAESKUXcqblNrlnDKrrTkHDh4IiC14ZhJ8xiASDE4ZVd55BQ4eCIgNeKYSfMYgEhRGG6UQ26BgycCUiOOmTSPF0MlIptoKnBIgRf8JDWqHTNZ+7fPMZN/YgsQEdmE3L55cvA8KV1rZ1fyOm+NYwAiIpuQY+DgiYCUqqWzK3mdt+YxABGRzcghcPBEQI6gpbMrOWmkeQxARGRVcgscPBGQo7F0diX/ppvGAEREViXHwCG3E4GcVsomZdDr9f/3b9OzK/V6Pbp27SrloSoGAxARWR1P3ubJbaVsUobq6moAzS/nUFuuNdQWzBmAiIjsSM4rZZP8eXuXADDAdBWbts+uVGMwZwAiIpKInFbKJiXRmN7SmCnWAmoM5gxAREQSkNtK2aQMpaU+qB+ArL2iuVqCOVeCJiKSgNxWyiZ5a9fuentFcyua15ZrLXPBXK/3aNN+5YgBiIhIArw0B7VEx44dATR/aYvacq2lpmDOLjCi/6O2GRAkLTmulE3KYMsFRuV2CRtbYgAigjpnQJD05LBSttKp5YuLvRYYVVMwZwAigjpnQJA05LZStpLV/+Ji7n3rCF9c7LnAqFqCOQMQUT1qmQFB0pDjStlKVfc5bOp96yhfXGz5N6HGYM4ARFQHpyaTPTDcWBfft22nxmDOAGQHaumjdgTNLTNPRPLD9611qO08xABkYxxc2zS5hUM1zYAgchR831JrMADZGAfXmifHcKimGRBEjoLvW2oNBiA74uBaU5aGPnuHQ7XMgCByJHzfUksxANkJB+k1z1zrmD2ocQYEkaMx974lagwDkJ1wkF7TpG4dU+MMCCKls/QLCb+4UGMYgOyEg/TMk0vrmK3DjdwGfBMpHb+4UFvIIgCtXLkSr776KoqKijBw4EAsX74cUVFRjZbNysrCokWLcOrUKVRXV6NPnz547rnnMGnSJGMZIQTmzp2Lt956C5cvX8att96K1atXo0+fPvaqUgMcpGdeS1rHlBoi5Djgm8gR8P1CrSV5ANq2bRtSUlKwZs0aREdHIzMzE/Hx8SgoKICvr2+D8t7e3pg9ezZCQ0Oh0+mwe/duJCUlwdfXF/Hx8QCAxYsXY9myZdiwYQN69uyJl156CfHx8fjxxx/h6upq7yoacZBe4yxtHVNyiJDrgG8iIrXSNl/EtpYuXYrHH38cSUlJ6NevH9asWYP27dtj7dq1jZaPjY3FvffeixtvvBEhISGYNm0aBgwYgIMHDwK43vqTmZmJF198EWPHjsWAAQPwzjvv4LfffsPOnTvtWLPrGhtc27Pnzw3Cj5r7qGtbxzQaAwCYbR1zpBCh13ugsDAYer2H1IdCRKRKkrYAVVVVIS8vD6mpqcZtWq0WcXFxOHz4cLOPF0LgwIEDKCgoQEZGBgCgsLAQRUVFiIuLM5bz8vJCdHQ0Dh8+jAkTJjTYT2VlJSorK423y8rK2lItEz4+PnjooYdQUVFhtkz79u1l12JhD3VDX1OtY+bCoZSzxoDWd8dJPeCbiIgkDkCXLl1CTU0N/Pz8TLb7+fnh+PHjZh+n1+sRGBiIyspKODk5YdWqVbjzzjsBAEVFRcZ91N9n7X31paWlYf78+W2pilklJSXYtGlTs+Xk2G1ja20ZwCh1iGhtd5xcBnwTEamd5GOAWsPDwwNHjx7F1atXkZOTg5SUFPTq1QuxsbGt2l9qaipSUlKMt8vKyhAUFGSVY+VK0E1rTeiTQ4hobXccl0MgIpIHSQNQ586d4eTkhOLiYpPtxcXF8Pf3N/s4rVaL3r17AwDCwsJw7NgxpKWlITY21vi44uJidO3a1WSfYWFhje7PxcUFLi4ubaxN86RutXAUcgwRlnbHcTkEIiJ5kHQQtE6nQ0REBHJycozbDAYDcnJyMGTIEIv3YzAYjGN4evbsCX9/f5N9lpWV4csvv2zRPq3NXKsFB8G2XG2IqEvKEJGfPwiZmdOxYUMiMjOnIz9/kNmylg74JiIi25K8CywlJQWJiYmIjIxEVFQUMjMzUV5ejqSkJADA5MmTERgYiLS0NADXx+tERkYiJCQElZWV2Lt3LzZu3IjVq1cDADQaDaZPn46FCxeiT58+xmnwAQEBuOeee6SqpixbLZRKTmsqWdod19YB30REZF2SB6CEhARcvHgRc+bMQVFREcLCwpCdnW0cxHz27FlotX8Gh/Lycjz11FM4d+4c3NzcEBoaik2bNiEhIcFY5vnnn0d5eTmmTJmCy5cv47bbbkN2drakawCx66Pt5BgiLA22XLGWiEheNEIIIfVByE1ZWRm8vLyg1+vh6enZpn2dP38eb775JoCmxwBNmTLFZMwSNU4uK0HXvq56vQcyM6c3CLbTp2fCy+sKX1ciIjtqyflb8hYgNeFK0G0ntxYSOXXHERGR5RiAbKyxlaAbOzly7IeyyLE7joikJZcWarIMu8AaYc0uMIBvCkfF15WIatVfHNXc0hhqXPTWntgFJjP8Y3dMfF2JqFbdL0NNjfdU66K3ciT5xVCJiIgcBdd8Uw4GICIiIitpamkMkhcGICIiIiuR20r1ZB4DEBERkZXwcjfKwUHQREREVsQ135SBAYiIrI5LBJDamVvzjeSDAYiIrKr+eijmqHk9FAZEx2PpoqdcHFU+GICIyKrqn9jNLQin1vVQuGCeY+IFj5WHAYiIbKapBeHUigvmOS6GG2XhLDAisgkuCNc0Pj9E0mIAIiKb4IJwTePzQyStFgegvXv34rHHHsPzzz+P48ePm9z3+++/44477rDawRGRcnFBuKbx+SGSVosC0JYtWzBmzBgUFRXh8OHDGDRoEDZv3my8v6qqCp9++qnVD5KIlIcLwjWNzw+RtFo0CPrVV1/F0qVLMXXqVADAe++9h0ceeQTXrl3Do48+apMDJCLlksuCcHKddi6X54dIjVoUgE6ePInRo0cbb48fPx5dunTBmDFjUF1djXvvvdfqB0hEylJ/nRNzC8LZaz0Uua9LxAXziKTRogDk6emJ4uJi9OzZ07jt9ttvx+7duzFq1CicO3fO6gdIRMoit/VQ5LYuERfMI5KHFgWgqKgo/Pvf/8Ytt9xisj0mJga7du3CqFGjrHpwRKRMcl0PRQ7rEsktIBKpVYsC0LPPPotDhw41el9sbCx27dqFd955xyoHRkRkTebW3QkJOWX3LiiGGyLptSgAxcTEICYmxuz9t99+O26//fY2HxQRkbU1te4Ox+AQqU+LApBWq4VGo2myjEajwR9//NGmgyIisrbadXfqhiCuu0OkXi0KQDt27DB73+HDh7Fs2TIYDAazZYiIpFK77k79MUBs/SFSpxYFoLFjxzbYVlBQgFmzZmHXrl148MEH8fLLL1vt4IjsSa5rxZD1cN0dIqrV6qvB//bbb5g7dy42bNiA+Ph4HD16FDfddJM1j43IbuS+Vgy1ntzWJSIieWhxANLr9Vi0aBGWL1+OsLAw5OTkYNiwYbY4NlIgpbaiyG2tGLIeTjsnosa0KAAtXrwYGRkZ8Pf3x7vvvttolxipl6O0oshhrRiyLjn/vRGRNFoUgGbNmgU3Nzf07t0bGzZswIYNGxotl5WVZZWDI2WxtHVEzq0oclorhoiIbKdFAWjy5MnNToMnqmWuG0nOuFYMEZE6tCgArV+/3kaHQa0l1zE3Su1G4loxRETq0OpZYCQ9uY65UXI3EteKISJSBwYgBZPrzCWldyNxrRgiIsfHAOQg5NTlpMRuJK4VQ0SkLgxADkBuXU5K7EbiWjFEROrCAOQA5NLlVLd1pKluJLm2ojDcEBGpBwOQA5BLlxNbUYiISCkYgByAnLqclBxu5LqkABERWZ/kAWjlypV49dVXUVRUhIEDB2L58uWIiopqtOxbb72Fd955B99//z0AICIiAosWLTIpf/XqVcyaNQs7d+5ESUkJevbsialTp+LJJ5+0S32kYunMJZ7kGyfXJQWIiMg2JA1A27ZtQ0pKCtasWYPo6GhkZmYiPj4eBQUF8PX1bVA+NzcXEydOxNChQ+Hq6oqMjAzcdddd+OGHHxAYGAgASElJwYEDB7Bp0yYEBwfjo48+wlNPPYWAgACMGTPG3lW0qZbOXOJJ3jx7LCnA8ElEJB+SBqClS5fi8ccfR1JSEgBgzZo12LNnD9auXYtZs2Y1KL9582aT2//v//0/bN++HTk5OZg8eTIA4NChQ0hMTERsbCwAYMqUKXjjjTfw1VdfOVwAaumYG7muGyQ3tlhSgOGTiEheJAtAVVVVyMvLQ2pqqnGbVqtFXFwcDh8+bNE+KioqUF1dDW9vb+O2oUOH4sMPP8QjjzyCgIAA5Obm4sSJE3jttdfM7qeyshKVlZXG22VlZa2okTRae7KU07pBcmKrJQUYPh0bW/eIlEeyAHTp0iXU1NTAz8/PZLufnx+OHz9u0T5mzpyJgIAAxMXFGbctX74cU6ZMQbdu3dCuXTtotVq89dZbGD58uNn9pKWlYf78+a2riALJbd0gObHHkgIMn46FrXtEyqRtvog8paenY+vWrdixYwdcXV2N25cvX44vvvgCH374IfLy8vDPf/4TTz/9NPbv3292X6mpqdDr9cafX375xR5VkExTJ3m1q11SoC5rLilgLnzq9R5W2T/ZX2Ote4WFwQ1eU7buEcmLZC1AnTt3hpOTE4qLi022FxcXw9/fv8nHLlmyBOnp6di/fz8GDBhg3P6///0PL7zwAnbs2IGRI0cCAAYMGICjR49iyZIlJi1Fdbm4uMDFxaWNNVIOuawbJEe2XlJALotWkm2wdY9IOSQLQDqdDhEREcjJycE999wDADAYDMjJyUFycrLZxy1evBivvPIK9u3bh8jISJP7qqurUV1dDa3W9ATj5OQEg8H0W72ayWndIDmy5cVQGT4dF7uWiZRF0llgKSkpSExMRGRkJKKiopCZmYny8nLjrLDJkycjMDAQaWlpAICMjAzMmTMHW7ZsQXBwMIqKigAAHTp0QIcOHeDp6YmYmBjMmDEDbm5u6NGjBz799FO88847WLp0qWT1lCNe8dyUvS6GyvDpuNi6R6QskgaghIQEXLx4EXPmzEFRURHCwsKQnZ1tHBh99uxZk9ac1atXo6qqCuPGjTPZz9y5czFv3jwAwNatW5GamooHH3wQpaWl6NGjB1555RWHXwjRErziuXn2vIwHw6f8tWZWF1v3iJRF8pWgk5OTzXZ55ebmmtw+c+ZMs/vz9/fHunXrrHBkjofX6mqaLevN8KkcrZ3VxdY9ImWRPACRfak13EiN4VM52rJmE1v3iJSDAYjIThhulMeSWV1s3SNSJgYgIqJGWDqri617RMrEAERE1IiWzOpiuCFSHsWuBE1EZEu2XhWciKTFAERE1IjaWV21IYizuogcC7vAiIjM4KwuIsfFAEREVAdndRGpAwMQEVEdnNVFpA4MQERE9TDcEDk+DoImIiIi1WEAIiIiItVhACIiIiLV4RggIiIisqmSkhLZTSxgACIiIiKbKSkpwYoVK5otl5ycbNcQxC4wIiIispn6LT96vQcKC4Oh13s0Wc7W2AJEREREdpGfPwi7do2CEFrj5WXCw49IcixsASIiIiKb0+s9jOEHAITQYteuUQ1aguyFAYiIiIhsrrTUxxh+agmhRWmptyTHwwBERERENuftXQKNxmCyTaMxwNu7VJLjYQAiIiIim/PyuoLRo3cbQ1DtGKDGLjZsDxwETURERHYRHn4EISGnUFrqDW/vUsnCD8AARERERDak0+lMbnt5XWk0+NQvZ2sMQERERGQzPj4+SE5O5krQREREpC72DjeW4CBoIiIiUh0GICIiIlIdBiAiIiJSHQYgIiIiUh0GICIiIlIdBiAiIiJSHU6DJ0mVlJTIbm0IIiJyfAxAJJmSkhKsWLHCeFuv90BpqQ+8vUtMVglNTk5mCCIiIqtiACLJ1G35yc8fhF27RkEIrfECeeHhRxqUIyIisgaOASLJ6fUexvADAEJosWvXKOj1HhIfGREROSoGIJJcaamPMfzUEkKL0lJviY6IiIgcHQMQSc7buwQajcFkm0ZjgLd3qURHREREjo4BiCTn5XUFo0fvNoag2jFAdQdCExERWRMHQZMshIcfQUjIKZSWesPbu5Thh4iIbEryFqCVK1ciODgYrq6uiI6OxldffWW27FtvvYVhw4ahU6dO6NSpE+Li4hotf+zYMYwZMwZeXl5wd3fH4MGDcfbsWVtWg6zAy+sKevb8meGHiIhsTtIAtG3bNqSkpGDu3LnIz8/HwIEDER8fjwsXLjRaPjc3FxMnTsQnn3yCw4cPIygoCHfddRd+/fVXY5nTp0/jtttuQ2hoKHJzc/Htt9/ipZdegqurq72qRRbS6XRWLUdERGQpjRBCSPXLo6OjMXjwYONieAaDAUFBQXjmmWcwa9asZh9fU1ODTp06YcWKFZg8eTIAYMKECXB2dsbGjRtbfVxlZWXw8vKCXq+Hp6dnq/dDzeNK0EREZC0tOX9L1gJUVVWFvLw8xMXF/XkwWi3i4uJw+PBhi/ZRUVGB6upqeHtfny5tMBiwZ88e3HDDDYiPj4evry+io6Oxc+fOJvdTWVmJsrIykx+yDx8fH3Tt2tXsD8MPERHZgmQB6NKlS6ipqYGfn5/Jdj8/PxQVFVm0j5kzZyIgIMAYoi5cuICrV68iPT0dI0aMwEcffYR7770X9913Hz799FOz+0lLS4OXl5fxJygoqPUVIyIiItlT7Cyw9PR0bN26Fbm5ucbxPQbD9WnUY8eOxbPPPgsACAsLw6FDh7BmzRrExMQ0uq/U1FSkpKQYb5eVlTEEEREROTDJAlDnzp3h5OSE4uJik+3FxcXw9/dv8rFLlixBeno69u/fjwEDBpjss127dujXr59J+RtvvBEHDx40uz8XFxe4uLi0ohZERESkRJJ1gel0OkRERCAnJ8e4zWAwICcnB0OGDDH7uMWLF2PBggXIzs5GZGRkg30OHjwYBQUFJttPnDiBHj16WLcCREREpFiSdoGlpKQgMTERkZGRiIqKQmZmJsrLy5GUlAQAmDx5MgIDA5GWlgYAyMjIwJw5c7BlyxYEBwcbxwp16NABHTp0AADMmDEDCQkJGD58OG6//XZkZ2dj165dyM3NlaSOREREJD+SBqCEhARcvHgRc+bMQVFREcLCwpCdnW0cGH327FlotX82Uq1evRpVVVUYN26cyX7mzp2LefPmAQDuvfderFmzBmlpaZg6dSr69u2L7du347bbbrNbvYiIiEjeJF0HSK64DhCRY+F6U0Tq0JLzt2JngRERWaKkpMS42GpTkpOTGYKIVETya4EREdlSUy0/rSlHRI6BAYiIVEWv90BhYTD0eg+pD4WIJMQuMCJSjfz8Qdi1axSE0EKjMWD06N0IDz8i9WERkQTYAkREqqDXexjDDwAIocWuXaPYEkSkUgxARKQKpaU+xvBTSwgtSku9JToiIpISAxARqYK3dwk0GoPJNo3GAG/vUomOiIikxABERKrg5XUFo0fvNoag2jFAXl5XJD4yIpICB0ETkUPT6XTG/4eHH0FIyCmUlnrD27vUJPzULUdEjo8BiIgcmo+PD5KTk7kSNBGZYAAiIodn63DDS20QKQ8DEBFRG/BSG0TKxEHQRERtUL/lx9xK07zUBpG8sAWIiMhKuNI0kXKwBYiIyAq40jSRsjAAERFZAVeaJlIWBiAiIivgStNEysIxQETk8OwxTb12pen6Y4C40jSRPDEAEZFDs+c09aZWmiYieWEAIiKHZun089ZOU69/CQ0vryuNBh9eaoNIXhiAiEhV9HoPlJb6wNu7xCotNLzUBpEyMQARkWrYap0ehhsi5eEsMCJSBa7TQ0R1MQARkSpwnR4iqosBiIhUgev0EFFdDEBEpAq16/TUhiCu00OkbhwETUQOre7086bW6eE0dSJ1YQAiIofGaepE1BgGICJyeAw3RFQfxwARERGR6jAAERERkeowABEREZHqMAARERGR6jAAERERkeowABEREZHqMAARERGR6jAAERERkeowABEREZHqMAARERGR6sgiAK1cuRLBwcFwdXVFdHQ0vvrqK7Nl33rrLQwbNgydOnVCp06dEBcX12T5J598EhqNBpmZmTY4cqqvpKQE58+fx/nz55GXV4z33y9BXl6xcVtJSYnUh0hERCT9tcC2bduGlJQUrFmzBtHR0cjMzER8fDwKCgrg6+vboHxubi4mTpyIoUOHwtXVFRkZGbjrrrvwww8/IDAw0KTsjh078MUXXyAgIMBe1VG1kpISrFixAgCQnz8Iu3aNghBaaDQGjB69G+HhRwAAycnJvDYTERFJSvIWoKVLl+Lxxx9HUlIS+vXrhzVr1qB9+/ZYu3Zto+U3b96Mp556CmFhYQgNDcX/+3//DwaDATk5OSblfv31VzzzzDPYvHkznJ2d7VEV1au92rZe72EMPwAghBa7do2CXu9hUo6IiEgqkrYAVVVVIS8vD6mpqcZtWq0WcXFxOHz4sEX7qKioQHV1Nby9vY3bDAYDJk2ahBkzZqB///7N7qOyshKVlZXG22VlZS2oBdVXWupjDD+1hNCitNQbXl5XJDoq6ZWUlDQZ/nQ6HVvGiIjsRNIAdOnSJdTU1MDPz89ku5+fH44fP27RPmbOnImAgADExcUZt2VkZKBdu3aYOnWqRftIS0vD/PnzLT9wapK3dwk0GoNJCNJoDPD2LpXwqKRVt3uwKeweJLXjFwWyF8nHALVFeno6tm7ditzcXLi6ugIA8vLy8PrrryM/Px8ajcai/aSmpiIlJcV4u6ysDEFBQTY5ZjXw8rqC0aN3NxgDpObWn/of6Hq9B0pLfeDtXWLyvLB7kNSMXxTIniQNQJ07d4aTkxOKi4tNthcXF8Pf37/Jxy5ZsgTp6enYv38/BgwYYNz+2Wef4cKFC+jevbtxW01NDZ577jlkZmbizJkzDfbl4uICFxeXtlWGTISHH0FIyCmUlnrD27tU1eGnvqYGiBOpmaVfAPhFgaxB0kHQOp0OERERJgOYawc0DxkyxOzjFi9ejAULFiA7OxuRkZEm902aNAnffvstjh49avwJCAjAjBkzsG/fPpvVhRry8rqCnj1/Zvipo7kB4kT0J73eA4WFwXx/kE1I3gWWkpKCxMREREZGIioqCpmZmSgvL0dSUhIAYPLkyQgMDERaWhqA6+N75syZgy1btiA4OBhFRUUAgA4dOqBDhw7w8fFp0DTq7OwMf39/9O3b176VI6qHA8SJLMOWUrI1yQNQQkICLl68iDlz5qCoqAhhYWHIzs42Dow+e/YstNo/TxirV69GVVUVxo0bZ7KfuXPnYt68efY8dKpHp9NZtZwj4gBxouaZaykNCTnFLwpkNZIHIOD6gLbk5ORG78vNzTW53dgYnua05jHUcj4+PkhOTuYMjiZwgDhR89hSSvYgiwBEjkPN4cZSHCBO1DS2lJI9SL4SNJEa1O/2MzdAXM3dg0S1altKNRoDALCllGyCLUBEdsDuQaLm1f0C0FRLKb8okDVohBBC6oOQm7KyMnh5eUGv18PT01PqwyEiUg2uBE1t0ZLzN1uAiIhINhhuyF44BoiIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVIcBiIiIiFSHAYiIiIhUhwGIiIiIVKed1AdARI6npKQEVVVVZu/X6XTw8fGx4xEREZliACIiqyopKcGKFSuMt/V6D5SW+sDbuwReXleM25OTkxmCiBRM6V90GICIyKrqfiDm5w/Crl2jIIQWGo0Bo0fvRnj4kQbliEhZ6n/RMUfOX3Q4BoiIbEKv9zCGHwAQQotdu0ZBr/eQ+MiIqK0s/QIj5y86DEBEZBOlpT7G8FNLCC1KS70lOiIioj8xABGRTXh7l0CjMZhs02gM8PYuleiIiMhW9HoPFBYGK6qFl2OAiMgmvLyuYPTo3Q3GANUdCE1EytfUWD85YwAiIpsJDz+CkJBTKC31hrd3KcMPkYMxN9YvJOSU7N/vDEBEZFNeXldk/0FIRK3T1Fg/ub/vOQaIiKxKp9NZtRwRyZeSx/qxBYiIrMrHxwfJycmKXiCNiJpW+wWmubF+cv6ioxFCCKkPQm7Kysrg5eUFvV4PT09PqQ+HiIhIduquBP3bb1qcOdMOwcF/ICDgeouQFF90WnL+ZgsQERERtVjdcNO1KxARIeHBtALHABEREZHqsAWIiBye0i/aSETWxwBERA7NES7aSETWxy4wInJo9Vt+zC3ZL+eLNhKR9bEFiIhUQ6lL9hOR9bEFiIhUwdyS/Uq6eCMRWY8sAtDKlSsRHBwMV1dXREdH46uvvjJb9q233sKwYcPQqVMndOrUCXFxcSblq6urMXPmTNx8881wd3dHQEAAJk+ejN9++80eVSEimWpqyX4iUh/JA9C2bduQkpKCuXPnIj8/HwMHDkR8fDwuXLjQaPnc3FxMnDgRn3zyCQ4fPoygoCDcdddd+PXXXwEAFRUVyM/Px0svvYT8/HxkZWWhoKAAY8aMsWe1iEhmlLxkPxFZn+QrQUdHR2Pw4MHGWRoGgwFBQUF45plnMGvWrGYfX1NTg06dOmHFihWYPHlyo2W+/vprREVF4eeff0b37t2b3SdXgiZyHOfPn8ebb74JoOkxQFOmTEHXrl2lPFQiaiPFrARdVVWFvLw8pKamGrdptVrExcXh8OHDFu2joqIC1dXV8PY234yt1+uh0WjQsWPHRu+vrKxEZWWl8XZZWZllFSAiRQkPP4KQkFMoLfWGt3ep7K9WTUS2I2kX2KVLl1BTUwM/Pz+T7X5+figqKrJoHzNnzkRAQADi4uIavf/atWuYOXMmJk6caDYNpqWlwcvLy/gTFBTUsooQkWzVvxijl9cV9Oz5c4PwI+eLNhKR9Sl6Gnx6ejq2bt2K3NxcuLq6Nri/uroa48ePhxACq1evNruf1NRUpKSkGG+XlZUxBBE5CF6dnogaI2kA6ty5M5ycnFBcXGyyvbi4GP7+/k0+dsmSJUhPT8f+/fsxYMCABvfXhp+ff/4ZBw4caLIv0MXFBS4uLq2rBBHJHsMNEdUnaReYTqdDREQEcnJyjNsMBgNycnIwZMgQs49bvHgxFixYgOzsbERGRja4vzb8nDx5Evv37+eHHxEREZmQvAssJSUFiYmJiIyMRFRUFDIzM1FeXo6kpCQAwOTJkxEYGIi0tDQAQEZGBubMmYMtW7YgODjYOFaoQ4cO6NChA6qrqzFu3Djk5+dj9+7dqKmpMZbx9vZmPz8RERFJH4ASEhJw8eJFzJkzB0VFRQgLC0N2drZxYPTZs2eh1f7ZULV69WpUVVVh3LhxJvuZO3cu5s2bh19//RUffvghACAsLMykzCeffILY2Fib1oeIiIjkT/J1gOSI6wAREREpT0vO35KvBE1ERERkbwxAREREpDoMQERERKQ6DEBERESkOgxAREREpDqST4OXo9qJcbwoKhERkXLUnrctmeDOANSIK1euXySR1wMjIiJSnitXrsDLy6vJMlwHqBEGgwG//fYbPDw8oNForLrv2gut/vLLLw65xhDrp3yOXkfWT/kcvY6sX+sJIXDlyhUEBASYLKLcGLYANUKr1aJbt242/R2enp4O+Yddi/VTPkevI+unfI5eR9avdZpr+anFQdBERESkOgxAREREpDoMQHbm4uKCuXPnwsXFRepDsQnWT/kcvY6sn/I5eh1ZP/vgIGgiIiJSHbYAERERkeowABEREZHqMAARERGR6jAAERERkeowALXRypUrERwcDFdXV0RHR+Orr75qsnxmZib69u0LNzc3BAUF4dlnn8W1a9fatE9bsnb95s2bB41GY/ITGhpq62o0qSV1rK6uxssvv4yQkBC4urpi4MCByM7ObtM+bc3a9ZPTa/if//wHo0ePRkBAADQaDXbu3NnsY3JzcxEeHg4XFxf07t0b69evb1BGTq+fLeqo5Nfw/PnzeOCBB3DDDTdAq9Vi+vTpjZb717/+hdDQULi6uuLmm2/G3r17rX/wFrBF/davX9/g9XN1dbVNBSzQ0jpmZWXhzjvvRJcuXeDp6YkhQ4Zg3759DcrZ/H0oqNW2bt0qdDqdWLt2rfjhhx/E448/Ljp27CiKi4sbLb9582bh4uIiNm/eLAoLC8W+fftE165dxbPPPtvqfdqSLeo3d+5c0b9/f3H+/Hnjz8WLF+1VpQZaWsfnn39eBAQEiD179ojTp0+LVatWCVdXV5Gfn9/qfdqSLeonp9dw7969Yvbs2SIrK0sAEDt27Giy/E8//STat28vUlJSxI8//iiWL18unJycRHZ2trGMnF4/IWxTRyW/hoWFhWLq1Kliw4YNIiwsTEybNq1Bmc8//1w4OTmJxYsXix9//FG8+OKLwtnZWXz33Xe2qUQTbFG/devWCU9PT5PXr6ioyDYVsEBL6zht2jSRkZEhvvrqK3HixAmRmpoqnJ2d7f45ygDUBlFRUeLpp5823q6pqREBAQEiLS2t0fJPP/20uOOOO0y2paSkiFtvvbXV+7QlW9Rv7ty5YuDAgTY53tZoaR27du0qVqxYYbLtvvvuEw8++GCr92lLtqif3F7DWpZ88D7//POif//+JtsSEhJEfHy88bacXr/6rFVHJb+GdcXExDQaEMaPHy9Gjhxpsi06Olo88cQTbTzCtrFW/datWye8vLysdlzW1NI61urXr5+YP3++8bY93ofsAmulqqoq5OXlIS4uzrhNq9UiLi4Ohw8fbvQxQ4cORV5enrEZ76effsLevXvx17/+tdX7tBVb1K/WyZMnERAQgF69euHBBx/E2bNnbVeRJrSmjpWVlQ2amt3c3HDw4MFW79NWbFG/WnJ5DVvq8OHDJs8HAMTHxxufDzm9fq3VXB1rKfU1tISlz4GSXb16FT169EBQUBDGjh2LH374QepDajWDwYArV67A29sbgP3ehwxArXTp0iXU1NTAz8/PZLufnx+KiooafcwDDzyAl19+GbfddhucnZ0REhKC2NhYvPDCC63ep63Yon4AEB0djfXr1yM7OxurV69GYWEhhg0bhitXrti0Po1pTR3j4+OxdOlSnDx5EgaDAR9//DGysrJw/vz5Vu/TVmxRP0Ber2FLFRUVNfp8lJWV4X//+5+sXr/Waq6OgLJfQ0uYew6U8ho2p2/fvli7di0++OADbNq0CQaDAUOHDsW5c+ekPrRWWbJkCa5evYrx48cDsN/nKAOQHeXm5mLRokVYtWoV8vPzkZWVhT179mDBggVSH5pVWFK/u+++G3/7298wYMAAxMfHY+/evbh8+TLee+89CY/ccq+//jr69OmD0NBQ6HQ6JCcnIykpCVqtY7yVLKmf0l9D4muodEOGDMHkyZMRFhaGmJgYZGVloUuXLnjjjTekPrQW27JlC+bPn4/33nsPvr6+dv3d7ez62xxI586d4eTkhOLiYpPtxcXF8Pf3b/QxL730EiZNmoTHHnsMAHDzzTejvLwcU6ZMwezZs1u1T1uxRf0aCwkdO3bEDTfcgFOnTlm/Es1oTR27dOmCnTt34tq1aygpKUFAQABmzZqFXr16tXqftmKL+jVGytewpfz9/Rt9Pjw9PeHm5gYnJyfZvH6t1VwdG6Ok19AS5p4DpbyGLeXs7IxBgwYp7vXbunUrHnvsMfzrX/8y6e6y1+eoY3xtlYBOp0NERARycnKM2wwGA3JycjBkyJBGH1NRUdEgBDg5OQEAhBCt2qet2KJ+jbl69SpOnz6Nrl27WunILdeW59vV1RWBgYH4448/sH37dowdO7bN+7Q2W9SvMVK+hi01ZMgQk+cDAD7++GPj8yGn16+1mqtjY5T0GlqiNc+BktXU1OC7775T1Ov37rvvIikpCe+++y5Gjhxpcp/d3odWG06tQlu3bhUuLi5i/fr14scffxRTpkwRHTt2NE5HnDRpkpg1a5ax/Ny5c4WHh4d49913xU8//SQ++ugjERISIsaPH2/xPpVev+eee07k5uaKwsJC8fnnn4u4uDjRuXNnceHCBbvXT4iW1/GLL74Q27dvF6dPnxb/+c9/xB133CF69uwpfv/9d4v3aU+2qJ+cXsMrV66II0eOiCNHjggAYunSpeLIkSPi559/FkIIMWvWLDFp0iRj+dop4jNmzBDHjh0TK1eubHQavFxePyFsU0clv4ZCCGP5iIgI8cADD4gjR46IH374wXj/559/Ltq1ayeWLFkijh07JubOnSvZNHhb1G/+/Pli37594vTp0yIvL09MmDBBuLq6mpSxp5bWcfPmzaJdu3Zi5cqVJlP5L1++bCxjj/chA1AbLV++XHTv3l3odDoRFRUlvvjiC+N9MTExIjEx0Xi7urpazJs3T4SEhAhXV1cRFBQknnrqKZOTS3P7tDdr1y8hIUF07dpV6HQ6ERgYKBISEsSpU6fsWKOGWlLH3NxcceONNwoXFxfh4+MjJk2aJH799dcW7dPerF0/Ob2Gn3zyiQDQ4Ke2TomJiSImJqbBY8LCwoROpxO9evUS69ata7BfOb1+tqij0l/Dxsr36NHDpMx7770nbrjhBqHT6UT//v3Fnj177FOhemxRv+nTpxv/Pv38/MRf//pXkzV07K2ldYyJiWmyfC1bvw81QpjpmyAiIiJyUBwDRERERKrDAERERESqwwBEREREqsMARERERKrDAERERESqwwBEREREqsMARERERKrDAEREpAC5ubnQaDS4fPmy1IdC5BAYgIjIxMMPPwyNRoP09HST7Tt37oRGozHeFkLgrbfewpAhQ+Dp6YkOHTqgf//+mDZtmsUXZayoqEBqaipCQkLg6uqKLl26ICYmBh988IGxTHBwMDIzM61SN1urfe40Gg2cnZ3Rs2dPPP/887h27VqL9hMbG4vp06ebbBs6dCjOnz8PLy8vKx4xkXoxABFRA66ursjIyMDvv//e6P1CCDzwwAOYOnUq/vrXv+Kjjz7Cjz/+iLfffhuurq5YuHChRb/nySefRFZWFpYvX47jx48jOzsb48aNQ0lJiTWrY1cjRozA+fPn8dNPP+G1117DG2+8gblz57Z5vzqdDv7+/iYhlIjawKoX1iAixUtMTBSjRo0SoaGhYsaMGcbtO3bsELUfGe+++64AID744ING92EwGCz6XV5eXmL9+vVm72/smkG1PvvsM3HbbbcJV1dX0a1bN/HMM8+Iq1evGu9/5513REREhOjQoYPw8/MTEydOFMXFxcb7a69flJ2dLcLCwoSrq6u4/fbbRXFxsdi7d68IDQ0VHh4eYuLEiaK8vNyi+iQmJoqxY8eabLvvvvvEoEGDjLcvXbokJkyYIAICAoSbm5u46aabxJYtW0z2Ub/OhYWFxuOte229999/X/Tr10/odDrRo0cPsWTJEouOk4iEYAsQETXg5OSERYsWYfny5Th37lyD+99991307dsXY8aMafTxlrZS+Pv7Y+/evbhy5Uqj92dlZaFbt254+eWXcf78eZw/fx4AcPr0aYwYMQL3338/vv32W2zbtg0HDx5EcnKy8bHV1dVYsGABvvnmG+zcuRNnzpzBww8/3OB3zJs3DytWrMChQ4fwyy+/YPz48cjMzMSWLVuwZ88efPTRR1i+fLlF9anv+++/x6FDh6DT6Yzbrl27hoiICOzZswfff/89pkyZgkmTJuGrr74CALz++usYMmQIHn/8cWOdg4KCGuw7Ly8P48ePx4QJE/Ddd99h3rx5eOmll7B+/fpWHSuR6kidwIhIXuq2Ytxyyy3ikUceEUKYtgCFhoaKMWPGmDxu2rRpwt3dXbi7u4vAwECLftenn34qunXrJpydnUVkZKSYPn26OHjwoEmZHj16iNdee81k26OPPiqmTJlisu2zzz4TWq1W/O9//2v0d3399dcCgLhy5YoQ4s8WoP379xvLpKWlCQDi9OnTxm1PPPGEiI+Pt6g+iYmJwsnJSbi7uwsXFxcBQGi1WvH+++83+biRI0eK5557zng7JiZGTJs2zaRM/RagBx54QNx5550mZWbMmCH69etn0bESqR1bgIjIrIyMDGzYsAHHjh1rtuzs2bNx9OhRzJkzB1evXrVo/8OHD8dPP/2EnJwcjBs3Dj/88AOGDRuGBQsWNPm4b775BuvXr0eHDh2MP/Hx8TAYDCgsLARwvYVk9OjR6N69Ozw8PBATEwMAOHv2rMm+BgwYYPy/n58f2rdvj169eplsu3DhgkX1AYDbb78dR48exZdffonExEQkJSXh/vvvN95fU1ODBQsW4Oabb4a3tzc6dOiAffv2NTiu5hw7dgy33nqrybZbb70VJ0+eRE1NTYv2RaRGDEBEZNbw4cMRHx+P1NRUk+19+vRBQUGBybYuXbqgd+/e8PX1bdHvcHZ2xrBhwzBz5kx89NFHePnll7FgwQJUVVWZfczVq1fxxBNP4OjRo8afb775BidPnkRISAjKy8sRHx8PT09PbN68GV9//TV27NgBAA326+zsbPx/7eytujQaDQwGg8X1cXd3R+/evTFw4ECsXbsWX375Jd5++23j/a+++ipef/11zJw5E5988gmOHj2K+Pj4JutLRNbXTuoDICJ5S09PR1hYGPr27WvcNnHiRDzwwAP44IMPMHbsWKv+vn79+uGPP/7AtWvXoNPpoNPpGrRohIeH48cff0Tv3r0b3cd3332HkpISpKenG8fP/Pe//7XqcVpCq9XihRdeQEpKCh544AG4ubnh888/x9ixY/HQQw8BAAwGA06cOIF+/foZH9dYneu78cYb8fnnn5ts+/zzz3HDDTfAycnJ+pUhcjBsASKiJt1888148MEHsWzZMuO2CRMmYNy4cZgwYQJefvllfPnllzhz5gw+/fRTbNu2zeITcGxsLN544w3k5eXhzJkz2Lt3L1544QXcfvvt8PT0BHB9HaD//Oc/+PXXX3Hp0iUAwMyZM3Ho0CEkJyfj6NGjOHnyJD744APjIOju3btDp9Nh+fLl+Omnn/Dhhx82261mK3/729/g5OSElStXArjeevbxxx/j0KFDOHbsGJ544gkUFxebPCY4ONj4nF66dKnRFqjnnnsOOTk5WLBgAU6cOIENGzZgxYoV+Mc//mGXehEpHQMQETXr5ZdfNjkJazQabNu2DZmZmdi7dy/+8pe/oG/fvnjkkUcQFBSEgwcPWrTf+Ph4bNiwAXfddRduvPFGPPPMM4iPj8d7771n8rvPnDmDkJAQdOnSBcD1cTuffvopTpw4gWHDhmHQoEGYM2cOAgICAFzvjlu/fj3+9a9/oV+/fkhPT8eSJUus+IxYrl27dkhOTsbixYtRXl6OF198EeHh4YiPj0dsbCz8/f1xzz33mDzmH//4B5ycnNCvXz906dKl0fFB4eHheO+997B161bcdNNNmDNnDl5++eVGZ7oRUUMaIYSQ+iCIiIiI7IktQERERKQ6DEBEZDN1p6nX//nss8+kPrwWOXv2bJP1aek0diKSFrvAiMhmmrooamBgINzc3Ox4NG3zxx9/4MyZM2bvDw4ORrt2nFhLpBQMQERERKQ67AIjIiIi1WEAIiIiItVhACIiIiLVYQAiIiIi1WEAIiIiItVhACIiIiLVYQAiIiIi1WEAIiIiItX5/wx6uglGFqNIAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHHCAYAAACx7iyPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV+JJREFUeJzt3Xtc0/X+B/DXhgxQYIoXEERRNElLEUzS8lIHw463TnnES2hUmqdIDY8pWV7SAtRjeLf6pZBlWomWl4MmReWlywHNUsNLqF0AFXIgHIHY5/eHh8Vgg22wfb/bXs/Hg0ftu+++fD8b215+Pu/P56sQQggQEREROTml1CdAREREJAcMRURERERgKCIiIiICwFBEREREBIChiIiIiAgAQxERERERAIYiIiIiIgAMRUREREQAGIqIiIiIADAUERHJVmpqKhQKBS5evCj1qRA5BYYiIif27bffIi4uDr1790arVq3QuXNnjB8/HmfPnq2377Bhw6BQKKBQKKBUKuHt7Y2ePXsiJiYGn3zyiVm/d8+ePRg6dCg6dOiAli1bolu3bhg/fjwyMjKaq2n1vPrqq9i9e3e97UePHsXixYtx/fp1q/3uuhYvXqx7LhUKBVq2bIlevXrhxRdfRElJSbP8jm3btiElJaVZjkXkLBiKiJxYcnIydu7cib/85S9YvXo1pk+fji+++AJhYWH44Ycf6u3fqVMnbN26FW+//TZWrFiBMWPG4OjRo3jggQcQHR2NqqqqRn/nypUrMWbMGCgUCiQkJOC1117DI488gnPnzmH79u3WaCaAhkPRkiVLbBqKamzcuBFbt27FqlWrEBISgldeeQUjRoxAc1ySkqGIyHwtpD4BIpJOfHw8tm3bBpVKpdsWHR2NO++8E0lJSXjnnXf09ler1Xj00Uf1tiUlJWHmzJnYsGEDgoKCkJycbPT3/fHHH1i6dCmGDx+OgwcP1rv/ypUrTWyRfJSXl6Nly5YN7jNu3Di0a9cOADBjxgw88sgjSE9Px1dffYWBAwfa4jSJqBb2FBE5sUGDBukFIgDo0aMHevfujTNnzph0DBcXF6xZswa9evXCunXroNFojO577do1lJSU4J577jF4f4cOHfRu37x5E4sXL8Ztt90Gd3d3dOzYEQ8//DAuXLig22flypUYNGgQ2rZtCw8PD4SHh+PDDz/UO45CoUBZWRnS0tJ0Q1aPPfYYFi9ejLlz5wIAunbtqruvdg3PO++8g/DwcHh4eMDHxwcTJkzAzz//rHf8YcOG4Y477kB2djaGDBmCli1b4oUXXjDp+avt/vvvBwDk5eU1uN+GDRvQu3dvuLm5wd/fH88884xeT9ewYcOwb98+XLp0SdemoKAgs8+HyNmwp4iI9AghUFhYiN69e5v8GBcXF0ycOBEvvfQSDh8+jJEjRxrcr0OHDvDw8MCePXvw7LPPwsfHx+gxq6urMWrUKGRmZmLChAmYNWsWSktL8cknn+CHH35AcHAwAGD16tUYM2YMJk+ejMrKSmzfvh1///vfsXfvXt15bN26FU8++SQGDBiA6dOnAwCCg4PRqlUrnD17Fu+99x5ee+01Xa9N+/btAQCvvPIKXnrpJYwfPx5PPvkkrl69irVr12LIkCE4fvw4WrdurTvfoqIiPPjgg5gwYQIeffRR+Pr6mvz81agJe23btjW6z+LFi7FkyRJERkbiH//4B3Jzc7Fx40Z8++23OHLkCFxdXbFgwQJoNBr88ssveO211wAAnp6eZp8PkdMRRES1bN26VQAQb731lt72oUOHit69ext93K5duwQAsXr16gaPv3DhQgFAtGrVSjz44IPilVdeEdnZ2fX227x5swAgVq1aVe8+rVar+//y8nK9+yorK8Udd9wh7r//fr3trVq1ElOnTq13rBUrVggAIi8vT2/7xYsXhYuLi3jllVf0tn///feiRYsWetuHDh0qAIhNmzYZbXdtixYtEgBEbm6uuHr1qsjLyxOvv/66cHNzE76+vqKsrEwIIcSWLVv0zu3KlStCpVKJBx54QFRXV+uOt27dOgFAbN68Wbdt5MiRokuXLiadDxHdwuEzItL58ccf8cwzz2DgwIGYOnWqWY+t6YkoLS1tcL8lS5Zg27Zt6NevHw4cOIAFCxYgPDwcYWFhekN2O3fuRLt27fDss8/WO4ZCodD9v4eHh+7/f//9d2g0GgwePBg5OTlmnX9d6enp0Gq1GD9+PK5du6b78fPzQ48ePfDZZ5/p7e/m5obY2FizfkfPnj3Rvn17dO3aFU899RS6d++Offv2Ga1FOnToECorKzF79mwolX9+fE+bNg3e3t7Yt2+f+Q0lIh0OnxERAKCgoAAjR46EWq3Ghx9+CBcXF7Mef+PGDQCAl5dXo/tOnDgREydORElJCb7++mukpqZi27ZtGD16NH744Qe4u7vjwoUL6NmzJ1q0aPhjau/evVi2bBlOnDiBiooK3fbawckS586dgxACPXr0MHi/q6ur3u2AgIB69VmN2blzJ7y9veHq6opOnTrphgSNuXTpEoBbYao2lUqFbt266e4nIsswFBERNBoNHnzwQVy/fh1ffvkl/P39zT5GzRT+7t27m/wYb29vDB8+HMOHD4erqyvS0tLw9ddfY+jQoSY9/ssvv8SYMWMwZMgQbNiwAR07doSrqyu2bNmCbdu2md2G2rRaLRQKBf79738bDIh1a3Rq91iZasiQIbo6JiKSHkMRkZO7efMmRo8ejbNnz+LQoUPo1auX2ceorq7Gtm3b0LJlS9x7770WnUf//v2RlpaG/Px8ALcKob/++mtUVVXV65WpsXPnTri7u+PAgQNwc3PTbd+yZUu9fY31HBnbHhwcDCEEunbtittuu83c5lhFly5dAAC5ubno1q2bbntlZSXy8vIQGRmp29bUnjIiZ8SaIiInVl1djejoaBw7dgwffPCBRWvjVFdXY+bMmThz5gxmzpwJb29vo/uWl5fj2LFjBu/797//DeDPoaFHHnkE165dw7p16+rtK/63uKGLiwsUCgWqq6t19128eNHgIo2tWrUyuEBjq1atAKDefQ8//DBcXFywZMmSeospCiFQVFRkuJFWFBkZCZVKhTVr1uid01tvvQWNRqM3669Vq1YNLo9ARPWxp4jIic2ZMwcff/wxRo8ejeLi4nqLNdZdqFGj0ej2KS8vx/nz55Geno4LFy5gwoQJWLp0aYO/r7y8HIMGDcLdd9+NESNGIDAwENevX8fu3bvx5Zdf4qGHHkK/fv0AAFOmTMHbb7+N+Ph4fPPNNxg8eDDKyspw6NAhPP300xg7dixGjhyJVatWYcSIEZg0aRKuXLmC9evXo3v37jh58qTe7w4PD8ehQ4ewatUq+Pv7o2vXroiIiEB4eDgAYMGCBZgwYQJcXV0xevRoBAcHY9myZUhISMDFixfx0EMPwcvLC3l5edi1axemT5+Of/7zn016/s3Vvn17JCQkYMmSJRgxYgTGjBmD3NxcbNiwAXfddZfe6xUeHo4dO3YgPj4ed911Fzw9PTF69Gibni+R3ZFy6hsRSatmKrmxn4b29fT0FD169BCPPvqoOHjwoEm/r6qqSrz55pvioYceEl26dBFubm6iZcuWol+/fmLFihWioqJCb//y8nKxYMEC0bVrV+Hq6ir8/PzEuHHjxIULF3T7vPXWW6JHjx7Czc1NhISEiC1btuimvNf2448/iiFDhggPDw8BQG96/tKlS0VAQIBQKpX1pufv3LlT3HvvvaJVq1aiVatWIiQkRDzzzDMiNzdX77lpaLmCumrO7+rVqw3uV3dKfo1169aJkJAQ4erqKnx9fcU//vEP8fvvv+vtc+PGDTFp0iTRunVrAYDT84lMoBCiGS6yQ0RERGTnWFNEREREBIYiIiIiIgAMRUREREQAGIqIiIiIADAUEREREQFgKCIiIiICwMUbDdJqtfjtt9/g5eXFpfKJiIjshBACpaWl8Pf3h1Jpfr8PQ5EBv/32GwIDA6U+DSIiIrLAzz//jE6dOpn9OIYiA7y8vADcelIbuo4TERERyUdJSQkCAwN13+PmYigyoGbIzNvbm6GIiIjIzlha+sJCayIiIiIwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREB4GU+yARFRUWorKw0er9KpULbtm1teEZERETNj6GIGlRUVIR169bpbms0XigubgsfnyKo1aW67XFxcQ4VjBgEiYicD0MRNah2MMjJ6Yc9e0ZBCCUUCi1Gj96LsLDj9fazd84aBImInB1DEZlEo/HSBSIAEEKJPXtGITj4vF5QcATOGASJiIihyCYcYSimuLitLhDVEEKJ4mIfhwtFNawdBK39d+EIf3dERLbEUGRldYdijJH7UIyPTxEUCq1eMFIotPDxKZbwrKzLmkHQ2n8XHAIkIjIfQ5GVmTrEIvehGLW6FKNH7603lOSovUSAdYNg3dfbWGix9O+CQ4BEROZjKLIxY19+9iAs7DiCg8+juNgHPj7Fdnf+5rJVEGwotDSVM9WCERE1FUORDVnzy89W1OpSp/oytXYQtHZoccZaMCIiS3FFaxsx9uWn0XhJfGYNU6lUzbqfPVKrS9G16yWrhIiGQktzqBkCrM3Ra8GIiCzFniIbsdd/sbdt2xZxcXFONYvJlkHQ2gXszlgLRkRkKYYiG7Hn2VuOFHhMYcsgaIvQ4my1YERElmIoshH+i92+2DII2iK0OFstmKm4lhMR1cZQZGW1h1ga+vJz5Jocqq/u620stFj6d8FasMY5yhpiRNR8GIqszBlrcqhx1v674N9d46y9VhQR2R+GIhtw5i8eMs7afxf8uzOdIyyXQURNx1BEToG1I2QMF7gkohoMReTwWDtCDbHX5TKIqPlx8UZyeIZqR/LyguotnMnaEefEBS6JqAZ7isipsHZEWnIcxuRyGURUg6GInAZrR6Ql52FMLnBJRABDEdkpS3ocWDsiLblNgbf2WlFEZH8YisjuWNrjYM+XWnE0chjG5FpORFQXQxHZHUt7HFg7Ig9yGsZk4CGi2hiKyK6Z2+PA2hHpcRiTiOSKU/LJbhnrcag71d5Q7UjXrpfqfQGzdsQ2OAWeiOSKPUUOQI7TnG3B1B4H1o7IC4cxiUiuZBGK1q9fjxUrVqCgoAB9+/bF2rVrMWDAAIP7pqen49VXX8X58+dRVVWFHj16YM6cOYiJiTG4/4wZM/D666/jtddew+zZs63YCmnIeZqztZlTOO1obbd3HMYkIjmSfPhsx44diI+Px6JFi5CTk4O+ffsiKioKV65cMbi/j48PFixYgGPHjuHkyZOIjY1FbGwsDhw4UG/fXbt24auvvoK/v7+1myEZU6cvO+JqzTU9DjVDMexxkDcOYxKR3EneU7Rq1SpMmzYNsbGxAIBNmzZh37592Lx5M+bPn19v/2HDhundnjVrFtLS0nD48GFERUXptv/666949tlnceDAAYwcOdKqbZATYzOxHBV7HJqPtYdhOYxJRHInaSiqrKxEdnY2EhISdNuUSiUiIyNx7NixRh8vhMCnn36K3NxcJCcn67ZrtVrExMRg7ty56N27d6PHqaioQEVFhe52SUmJmS2RBzms/WILXHSv+dlqGJaBR3rOWoNIZApJQ9G1a9dQXV0NX19fve2+vr748ccfjT5Oo9EgICAAFRUVcHFxwYYNGzB8+HDd/cnJyWjRogVmzpxp0nkkJiZiyZIlljVCJuS09ou1sceh+clttWm5svdA4cw1iESmkHz4zBJeXl44ceIEbty4gczMTMTHx6Nbt24YNmwYsrOzsXr1auTk5EChUJh0vISEBMTHx+tul5SUIDAw0FqnbxXOtvYLP7Ctx1l6HM3lCIGC4ZeoYZKGonbt2sHFxQWFhYV62wsLC+Hn52f0cUqlEt27dwcAhIaG4syZM0hMTMSwYcPw5Zdf4sqVK+jcubNu/+rqasyZMwcpKSm4ePFiveO5ubnBzc2teRolEV7CgpqDM/U4msvRAgXDr7Tk1usot/ORiqShSKVSITw8HJmZmXjooYcA3KoHyszMRFxcnMnH0Wq1upqgmJgYREZG6t0fFRWFmJgYXTG3I+LaL/ZHjh9CztbjaCl7DxQMv9KSW6+j3M5HSpIPn8XHx2Pq1Kno378/BgwYgJSUFJSVlekCzJQpUxAQEIDExEQAt+p/+vfvj+DgYFRUVGD//v3YunUrNm7cCODWsErdF83V1RV+fn7o2bOnbRtnA7WLiRuaicWiY3mR64cQexwb5wiBguFXWnLrdXTmpV3qkjwURUdH4+rVq1i4cCEKCgoQGhqKjIwMXfH15cuXoVT++eYtKyvD008/jV9++QUeHh4ICQnBO++8g+joaKmaICkWHdsnuX0o1mCPY+McIVAw/MqHHHsdnW1pl9okD0XArX8NGxsuy8rK0ru9bNkyLFu2zKzjG6ojciQMPPZNbh+KXPupYY4QKKwZfuU4LCxXcux1lNvnka3JIhQROSu5fChy7SfTWbs3zVahwhrhV67DwnIlt15HuXweSYmhiEhCcvlQ5DCseazVm2ZJqDAnRFk7/Mp1WFiuvVfm9Draog1y+TySEkMRkYTkNBTjjIFHToECMD9UmBuibBl+5TIMI+feK1N7HW3VBjl9HkmFoYhIQixslo6cAwVgWqiwpGfGFl/8chqGkWvvVQ1Teh1tNTuMn0cMRUSSY2GzNOQaKGrOxdxQIZeeGUC+wzByeY6a2uvY3LPDuLTLnxiKiCTAwmZ5kcuXZQ1zQ4WcemYAeQ7DyOk5akqvozX+VllT+CeGIiIJ8ENIPuT0ZVnD3FAht54ZOQ7DyO05suS9bc2/VX7W3MJQRCQRfgjJg9y+LAHzQ4Uce2bkNiwsx+fIXHL6W5XrjL6mYigiIqek0WgANP5lqdFo0LFjR5ufnzmhQi49M3IeFpbLc9QUcgl2cp7R11QMRURkEXv/l2JVVRWAP78sP/54FAAlAP0vy5r9LGHuc9SUUCGHnhm5DwvL4TlqCrkEO0e+VhpDERGZzRH/pahQAELc+m9zsOQ5MjdUyLFnRm6vtxyfI3PJfXaYI10rjaGIiMwm97VfTNGixa2Pv8aKV2v2M5elz5E5ocKSnhl77+Ezl9x7r0wh5zbIbeZmUzEUEVGT2OuHYuvWrQE0Xrxas19TWPM5MueL0BF7+EzhCG2RYxvkOHOzqRiKnJCz/UuRrMeePxSvX78OoPHi1evXrzep0FpOz5Ej9PCRfMhpNlxzYShyMs76L0WyDnv+UPzjjz8A3Kox6dPnJL77ri8ABQCBPn1O6s6/Zj9LyfU5stcePpIPucyGa07KxnchR+LIswbI9mo+FGuztw9FjcYLJ0/2wa1ABAAKnDzZBxqNV7McX47PkbHeq+ZqMzmHmtlwNX/f9rjMQV3sKXJyjjRrgGxPLlOELeHq6gqg8Z6cmv0sJcfnSK69V2Qf5D4brikYipwYu8+pOdjr2i9qtRpA40MANfs1hdyeI0cc9iDbkfNsuKZiKHJScir+JPvjCGu/1LBWT46cnyM59l6RfbHHwGMKhiInxe5zagpH+5eiNXpybPUcWTqbVG69V0RywFDkpNh9Tk1lL4HHVMZ6cprC2s+RubNJ5dx7RSQHDEVOit3n5OxM/eKXc0Awd90hR+vhI2puDEVOxpFnDRCZw9ECgqkTJ+ylPURSYChyMo72RUDUFI7yd27OxAmuaN84PkfOi6HICfHNTORYTJ04wRXtG8fnyLkxFBGRRfivafkwdeIEr33WOD5Hzo2hiIjMxn9Ny4slEye4eGvj+Bw5H4YiIjIbr6FnGlv2ppmz7hAXb20cnyPnxFBERE3Ga+jVZ4veNEvXHeLirY3jc+ScGIqIqEk4xGCYLWpTLJ1NysVbG8fnyDkxFBGRxTjEYBprBkdLepm4eGvj+Bw5J4YiIrIYhxgaJ9fgyGufNY7PkfNhKCIii3GIoXFyCo689lnj+Bw5N4YiIrIYhxgaJ6fgyBXtG8fnyLkxFBGR2XgNPdPJLTjyy7xxfI6cF0MRNYorF1Nd/Ne0eaxZm8L3J1HzYSiiBnHlYjKGr3fDbFGbwvcnUfNiKKIG8TpARJaxRW8a35/ywN46x8FQRCbjIn1E5rHlFyHfn9Jgb51jYSgik8h1rRUi4vtTSo7SW8ferltkEYrWr1+PFStWoKCgAH379sXatWsxYMAAg/ump6fj1Vdfxfnz51FVVYUePXpgzpw5iImJAQBUVVXhxRdfxP79+/HTTz9BrVYjMjISSUlJ8Pf3t2WzHIqc1lohIn18f8qDvfbWsbfrT8rGd7GuHTt2ID4+HosWLUJOTg769u2LqKgoXLlyxeD+Pj4+WLBgAY4dO4aTJ08iNjYWsbGxOHDgAACgvLwcOTk5eOmll5CTk4P09HTk5uZizJgxtmyWw6lZa6U2LtJHJA98f0rPWG+dRuMl8Zk1zlBvV15eUL1zl3tvV3OQvKdo1apVmDZtGmJjYwEAmzZtwr59+7B582bMnz+/3v7Dhg3Tuz1r1iykpaXh8OHDiIqKglqtxieffKK3z7p16zBgwABcvnwZnTt3tlpbHJnc1lohsge2GpLg+1N6jtJbZ6+9Xc1F0lBUWVmJ7OxsJCQk6LYplUpERkbi2LFjjT5eCIFPP/0Uubm5SE5ONrqfRqOBQqFA69atDd5fUVGBiooK3e2SkhLTG+FEeB0gItPZekiC709pyWnlckuxNk3i4bNr166huroavr6+ett9fX1RUFBg9HEajQaenp5QqVQYOXIk1q5di+HDhxvc9+bNm5g3bx4mTpwIb29vg/skJiZCrVbrfgIDAy1vlIMxtNZK166X6r1BuHIxkT5bDEnw/SkfNb11NcOY9thb11Bvl7OQfPjMEl5eXjhx4gRu3LiBzMxMxMfHo1u3bvWG1qqqqjB+/HgIIbBx40ajx0tISEB8fLzudklJCYPR/3DlYqKms9aQBN+f8mLvvXWO0NvVVJKGonbt2sHFxQWFhYV62wsLC+Hn52f0cUqlEt27dwcAhIaG4syZM0hMTNQLRTWB6NKlS/j000+N9hIBgJubG9zc3JrWGAfGD1Qiy1l7SILvT2nZYuVyW2FtmsShSKVSITw8HJmZmXjooYcAAFqtFpmZmYiLizP5OFqtVq8mqCYQnTt3Dp999hk/NIhIMo5SgEuGOVpvnb33djWV5MNn8fHxmDp1Kvr3748BAwYgJSUFZWVlutloU6ZMQUBAABITEwHcqv/p378/goODUVFRgf3792Pr1q264bGqqiqMGzcOOTk52Lt3L6qrq3X1ST4+PnaR1onIcXBIwvHZS+AxxpF6u5pK8lAUHR2Nq1evYuHChSgoKEBoaCgyMjJ0xdeXL1+GUvnnh0lZWRmefvpp/PLLL/Dw8EBISAjeeecdREdHAwB+/fVXfPzxxwBuDa3V9tlnn9WrOyIi23HGVXM5JEFy52i9XU2hEEIIqU9CbkpKSqBWq6HRaBqsRSIi0znbqrn5+fl44403dLdvXf6h/pDE9OnT0bFjRylOkcjhNPX7W/KeIiJyDqZOPXeUVXM5JEFkfxiKiEgSxi6c6Sg4JEFkfxiKiMjmnOVSAgw8RPZF8gvCEpFzsecLZxKRY2MoIiKb4qUEiEiuGIqIyKZq1u2pjev2EJEcMBQRkU05woUzicgxsdCaiGyivLxc9/8NXUqg9n5ERLbEUERENtGyZUsDWxUm7mefnHEFbyJ7xlBERDbnDFPynW0FbyJHwJoiIrIpZ5mSX7eHSKPxQl5eUL12OsoK3kSOgD1FTohd+iSlhqbk1y22dpS/VWfoGSNyBAxFToZd+iS1min5tYORoSn5jvK3aqxnLDj4PGfcEckMh8+cjLNdlJPkx9Qp+Y4y/MTFKonsB3uKnJyjX5ST5KmhKfmG2PPwk6k9Y0QkPYYiJ2bPXzRkf1Qqld5ttbrUYBiqu5+9Dz/V9IzVfa/Zw7kTORuGIidl7180ZH/atm2LuLg4swunzSnMlitzesYcpbicyB4xFDkpR/iiIftjyZe5vQ4/WdIz5ijF5UT2iqHISdnrFw05H3sdfrKkZ8xQcbmhmj+5F5cT2SuGIidlr1805JzMLcyWi6b05rDmj8j2GIqcTO2u+oa+aOp2/RPZmqWF2Y6ANX/kaOylVo6hyMlYWuxq7+zlDUl/cta/VYA1f+RY6tbKGRsWlkOtHEORE5L6j87WWLxqv5z19WDNHzmS2v+waWhYWA61clzRmhweV/Eme2Pqqt9E9sQeLgbNniJyOlzFm+yBvRaXExljD8PCDEXkVDijh2qTW62ZpWsbyakNRMbYw7AwQxE5Dc7oodrkWGtmbnG5HNtAZIw9LAXDUEROwx66bsl25LpQojnhRa5tIDJG7sPCDEXkNOyh65ak4QjDqo7QBnIOxoaF5YCzz8hpcEYPGWIPM2Ia4whtIMdl6gKrcliIlT1FTsjZCjO5ijc1xBGGVR2hDeS47GkhVoYiJ+OMhZn29IYk23OEYVVHaAM5Nnv5fGUocjLOupChvbwhyfbsYUZMYxyhDURywFDk5LiQIZH8Z8SYwhHaQCQ1hiInxtkq5MwsWShRbhyhDURywlDkpLiQITk7R6g1c4Q2EMkJQ5GT4mwVIseoNbN2G5xttio5N4YiJ8XZKkTUGGecreooGGYtw1DkpDhbhYgaw8uI2CeGWcsxFDkZLmRIRJbgxAz7wTBrOVmEovXr12PFihUoKChA3759sXbtWgwYMMDgvunp6Xj11Vdx/vx5VFVVoUePHpgzZw5iYmJ0+wghsGjRIrz55pu4fv067rnnHmzcuBE9evSwVZNki4WZRGQuTsywX9YKs446PCd5KNqxYwfi4+OxadMmREREICUlBVFRUcjNzUWHDh3q7e/j44MFCxYgJCQEKpUKe/fuRWxsLDp06ICoqCgAwPLly7FmzRqkpaWha9eueOmllxAVFYXTp0/D3d3d1k2UHXv8QyUi6XBihn2yVpitOzxnrCfKHofnJA9Fq1atwrRp0xAbGwsA2LRpE/bt24fNmzdj/vz59fYfNmyY3u1Zs2YhLS0Nhw8fRlRUFIQQSElJwYsvvoixY8cCAN5++234+vpi9+7dmDBhgtXbRPbPUf8VRGQJTsywT9YKs7U/GxvqibLH4TlJQ1FlZSWys7ORkJCg26ZUKhEZGYljx441+nghBD799FPk5uYiOTkZAJCXl4eCggJERkbq9lOr1YiIiMCxY8cMhqKKigpUVFTobpeUlDSlWWTnWKRIpI8TM+yTtcOsIw6rShqKrl27hurqavj6+upt9/X1xY8//mj0cRqNBgEBAaioqICLiws2bNiA4cOHAwAKCgp0x6h7zJr76kpMTMSSJUua0hRyICxSJKqPlxGxP9YOs444rCr58JklvLy8cOLECdy4cQOZmZmIj49Ht27d6g2tmSohIQHx8fG62yUlJQgMDGymsyV7xhk35Mx4GRH7Z80w64jDqpKGonbt2sHFxQWFhYV62wsLC+Hn52f0cUqlEt27dwcAhIaG4syZM0hMTMSwYcN0jyssLETHjh31jhkaGmrweG5ubnBzc2tia8jROGLXMJE5OFvVPtkqzDrisKqkoUilUiE8PByZmZl46KGHAABarRaZmZmIi4sz+TharVZXE9S1a1f4+fkhMzNTF4JKSkrw9ddf4x//+EdzN4EcmCN2DROZi4HH/tgyzDrasKrkw2fx8fGYOnUq+vfvjwEDBiAlJQVlZWW62WhTpkxBQEAAEhMTAdyq/+nfvz+Cg4NRUVGB/fv3Y+vWrdi4cSMAQKFQYPbs2Vi2bBl69Oihm5Lv7++vC15EpnDErmEiR8DZoY2zZfuN9UTZI8lDUXR0NK5evYqFCxeioKAAoaGhyMjI0BVKX758GUrln19KZWVlePrpp/HLL7/Aw8MDISEheOeddxAdHa3b5/nnn0dZWRmmT5+O69ev495770VGRgbXKCKzOGLXMDUNv4yl58hr5NgLU4fd7LHWTCGEEFKfhNyUlJRArVZDo9HA29tb6tMhG8vPz8cbb7yhu33rQ7d+1/D06dP16tbIsXGpBnmo/f5saCIE35/WJdd/IDT1+1vyniIiueGMGzKESzXICydCSMtRgz9DkROSa8KXC864ocZwqQbpcSIEWQNDkZPhEIBpnLnt1DD2UMgDJ0KQNTAUORlTu/Y5BEBkmLP1UMi1Z5kTIcgaGIqcnLG6CCIyzJl6KOQ+08vR1sgh6TEUOTHWRRCZz5l6KOzhauiOtEYOSY+hyEmxLoLIcs7WQyGnzwtHXiOHpMdQ5KScrS6CqKmceakGOX1ecHYoWRNDkZNyproIW5BrMSo1H2f+Mpbb54UjPsckDwxFTsqZ6iKsjcscOA9nff34eUHOgqHIydTu2m+oLsIRhwCshcsckDNwtjoqck4MRU7GmYcAbIXLHJCj4kwvcnQMRU6Igcd6uMwBORLO9CJnw1BE1EzkNG2ZqDmwZ5mcDUMRUTOR07RloubCwEPORNn4LkRkipppy7VxmQMiIvvBUETUTGqmLdcEI05bJiKyLxw+I2oiLnNAROQYGIqImojFqESOhSvUOy+GIqJmwA9IIsdQd4V6Y+uOcYV6x8RQRERE9D+1e4gaWneMK9Q7JhZaExER1WFs3TGNxkviMyNrYk8RERFRHfa+7hjroizDUERERFRHzbpjtYORvaw7xrooyzEUERER1VGz7ljdmiJ76CViXZTlGIqIiIgMaGjdsaayxfAWr8doPoYiIiIiI9Tq0mYPELYa3rL3uigpmB2K9u/fj/T0dPj4+ODxxx9HSEiI7r7ff/8djzzyCD799NNmPUkiIiJbMHXl+aasUG+r4S17rouSilmhaNu2bZgyZQpGjBiB3NxcrF27Fv/3f/+HyZMnA7j1An7++edWOVEiIiJrs+UK9dYe3rLnuiipmBWKVqxYgVWrVmHmzJkAgPfffx+PP/44bt68iSeeeMIqJ0hERGRL5gYeS+uDbDG8Zc26KEdkVig6d+4cRo8erbs9fvx4tG/fHmPGjEFVVRX+9re/NfsJEhERyVXd+iBjDNUH2Wp4yxp1UY7KrFDk7e2NwsJCdO3aVbftvvvuw969ezFq1Cj88ssvzX6CREREclW3h8hY0bShniRrDW/Zoi7KUZkVigYMGIB///vfuPvuu/W2Dx06FHv27MGoUaOa9eSIiIjsRUNF08ZYY3jLlnVRjsasUPTcc8/h6NGjBu8bNmwY9uzZg7fffrtZToyIiMheNKVo2hrDWww8ljErFA0dOhRDhw41ev99992H++67r8knRUREZE/MKZrm8JZ8mRWKlEolFApFg/soFAr88ccfTTopIiKSB15Y1DTmFE1zeEu+zApFu3btMnrfsWPHsGbNGmi12iafFBERSY8XFjWduUXTzv58yZVZoWjs2LH1tuXm5mL+/PnYs2cPJk+ejJdffrnZTo6IiKTDC4uah2sC2T9l47sY9ttvv2HatGm488478ccff+DEiRNIS0tDly5dmvP8iIhIYsaKiDUaL4nPTHp1637U6lJ07XrJ4joikpbZ1z7TaDR49dVXsXbtWoSGhiIzMxODBw+2xrkREZEM8MKixrE+yLGY1VO0fPlydOvWDXv37sV7772Ho0ePNjkQrV+/HkFBQXB3d0dERAS++eYbo/u++eabGDx4MNq0aYM2bdogMjKy3v43btxAXFwcOnXqBA8PD/Tq1QubNm1q0jkSETmzmiLi2nhh0T+1bdsWHTt2NPrDQGQ/zOopmj9/Pjw8PNC9e3ekpaUhLS3N4H7p6ekmHW/Hjh2Ij4/Hpk2bEBERgZSUFERFRSE3NxcdOnSot39WVhYmTpyIQYMGwd3dHcnJyXjggQdw6tQpBAQEAADi4+Px6aef4p133kFQUBAOHjyIp59+Gv7+/hgzZow5zSUiIvDCouQ8FEIIYerOjz32WKNT8gFgy5YtJh0vIiICd911l252g1arRWBgIJ599lnMnz+/0cdXV1ejTZs2WLduHaZMmQIAuOOOOxAdHY2XXnpJt194eDgefPBBLFu2zKTzKikpgVqthkajgbe3t0mPISJyNPn5+XjjjTd0t2/NPqtfRDx9+nR07NhRilMk0tPU72+zeopSU1PN/gXGVFZWIjs7GwkJCbptSqUSkZGROHbsmEnHKC8vR1VVFXx8fHTbBg0ahI8//hiPP/44/P39kZWVhbNnz+K1114zepyKigpUVFTobpeUlFjQIiIix8YLi5Kjs3j2WVNdu3YN1dXV8PX11dvu6+uLgoICk44xb948+Pv7IzIyUrdt7dq16NWrFzp16gSVSoURI0Zg/fr1GDJkiNHjJCYmQq1W634CAwMtaxQRkQPhysvkbMyefSYXSUlJ2L59O7KysuDu7q7bvnbtWnz11Vf4+OOP0aVLF3zxxRd45pln6oWn2hISEhAfH6+7XVJSwmBERE6PM6vI2UgWitq1awcXFxcUFhbqbS8sLISfn1+Dj125ciWSkpJw6NAh9OnTR7f9v//9L1544QXs2rULI0eOBAD06dMHJ06cwMqVK42GIjc3N7i5uTWxRUREjoeBh5yJZMNnKpUK4eHhyMzM1G3TarXIzMzEwIEDjT5u+fLlWLp0KTIyMtC/f3+9+6qqqlBVVQWlUr9ZLi4uvPwIERERNUjS4bP4+HhMnToV/fv3x4ABA5CSkoKysjLExsYCAKZMmYKAgAAkJiYCAJKTk7Fw4UJs27YNQUFButojT09PeHp6wtvbG0OHDsXcuXPh4eGBLl264PPPP8fbb7+NVatWSdZOIiIikj9JQ1F0dDSuXr2KhQsXoqCgAKGhocjIyNAVX1++fFmv12fjxo2orKzEuHHj9I6zaNEiLF68GACwfft2JCQkYPLkySguLkaXLl3wyiuvYMaMGTZrFxEREdkfs9YpchZcp4iIiMj+NPX7W7KaIiIiIiI5YSgiIiIiAkMREREREQCGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREABiKiIiIiAAALaQ+AXJMRUVFqKysNHq/SqVC27ZtbXhGREREDWMoomZXVFSEdevWNbpfXFwcgxEREckGh8+o2dXtIdJovJCXFwSNxqvB/YiIiKTEniKyqpycftizZxSEUEKh0GL06L0ICzsu9WkRERHVw1BEVqPReOkCEQAIocSePaMQHHweanWpxGfXvFhDRURk/xiKZMhRvmCLi9vqAlENIZQoLvZxqFDEGioix+Ion8FkPoYimXGkL1gfnyIoFFq9YKRQaOHjUyzhWTU/QzVUxcVt4eNTpBf+mlpDxQ9qIutzpM9gMh9DkczY6gvWFtTqUowevbdeTZEj9RLVZa0aKn5QE9mGI30Gk/kYimTMEYqUw8KOIzj4PIqLfeDjU+zQgciaNVT8oCayPUf4DCbzMBTJlD0XKatUKr3banWpwXOuu5+9s1UNFT+oiazPnj+DyXIMRTJlz0XKbdu2RVxcnNPVv9iihoof1ES2Yc+fwWQ5hiKZsvciZUcLPKawRQ0VP6iJbMPeP4PJMgxFMuWMRcqOwNo1VPygJrINfgY7J4YiGXOmImV7ZssaKn5QE9kOP4OdD0ORzDhrkbI9s3UNFT+oiayHn8HOjaFIZpy1SNneWfv14Ac1kW3wM9i5KYQQQuqTkJuSkhKo1WpoNBp4e3tLfTpEALiiNRFRY5r6/c2eIiI7wcBDRGRdysZ3sa7169cjKCgI7u7uiIiIwDfffGN03zfffBODBw9GmzZt0KZNG0RGRhrc/8yZMxgzZgzUajVatWqFu+66C5cvX7ZmM4jIBEVFRcjPzzf6U1RUJPUpEpETk7SnaMeOHYiPj8emTZsQERGBlJQUREVFITc3Fx06dKi3f1ZWFiZOnIhBgwbB3d0dycnJeOCBB3Dq1CkEBAQAAC5cuIB7770XTzzxBJYsWQJvb2+cOnUK7u7utm4eEdXC67cRkdxJWlMUERGBu+66S/dBqdVqERgYiGeffRbz589v9PHV1dVo06YN1q1bhylTpgAAJkyYAFdXV2zdutXi82JNEVHzy8/PxxtvvKG7bez6bdOnT0fHjh2lOEUisnNN/f6WbPissrIS2dnZiIyM/PNklEpERkbi2LFjJh2jvLwcVVVV8PHxAXArVO3btw+33XYboqKi0KFDB0RERGD37t0NHqeiogIlJSV6P0RkPTk5/ZCSMhtpaVORkjIbOTn9pD4lIiLpQtG1a9dQXV0NX19fve2+vr4oKCgw6Rjz5s2Dv7+/LlhduXIFN27cQFJSEkaMGIGDBw/ib3/7Gx5++GF8/vnnRo+TmJgItVqt+wkMDLS8YUTUIGPXb9NovCQ+MyJydpIXWlsqKSkJ27dvx65du3T1QlqtFgAwduxYPPfccwgNDcX8+fMxatQobNq0yeixEhISoNFodD8///yzTdpA5Iwaun4bEZGUJCu0bteuHVxcXFBYWKi3vbCwEH5+fg0+duXKlUhKSsKhQ4fQp08fvWO2aNECvXr10tv/9ttvx+HDh40ez83NDW5ubha0gojMxeu3EVkf1zWzjGShSKVSITw8HJmZmXjooYcA3OrpyczMRFxcnNHHLV++HK+88goOHDiA/v371zvmXXfdhdzcXL3tZ8+eRZcuXZq9DURkPl6/jci6ONPTcpJOyY+Pj8fUqVPRv39/DBgwACkpKSgrK0NsbCwAYMqUKQgICEBiYiIAIDk5GQsXLsS2bdsQFBSkqz3y9PSEp6cnAGDu3LmIjo7GkCFDcN999yEjIwN79uxBVlaWJG0kovp4/TYi66nbQ2RspmdDPUnOStJQFB0djatXr2LhwoUoKChAaGgoMjIydMXXly9fhlL5Zxf7xo0bUVlZiXHjxukdZ9GiRVi8eDEA4G9/+xs2bdqExMREzJw5Ez179sTOnTtx77332qxdRFQfr99GZHs5Of3q9cqGhR2X+rRki9c+M4DrFBFZB+sciKyvZk0wjcYLKSmz69XvzZ6dArW61CHXBOO1z4jIbjDwENlOQzM9OWRtmN1OySciIiLjamZ61saZng1jKCIiInJANTM9a4IRZ3o2jsNnRBJhfQ0RWRtnepqHoYhIAlxHhIishTM9LcdQ5ADY42B/uI4IEVlL27ZtERcXx+8FCzAU2Tn2ONg/riNCRM2Nn/eWYaG1nTPU45CXF1TviuPscZAnXjGeiEg+2FPkQNjjYH+4jggRkXywp8hBsMfBPnEdESIi+WAochAN9TiQfHEdESIi+eDwmYOo6XGoe40b9jjIH9cRISKSB/YUOQj2ONgXQ+uIdO16qd7rxXVEiIhshz1FDoQ9DvaD64gQEckPQ5Gd48ql9ouBh4hIXhiK7Bx7HIiIiJoHQ5EDYOAhIiJqOhZaExEREYGhiIiIiAgAQxERERERANYUERFZTVFRESdBENkRhiIiIisoKirCunXrGt0vLi6OwYhIJjh8RkRkBXV7iDQaL+TlBdW7SHNDPUlEZFvsKSIisrKcnH7Ys2cUhFDqLsETFnZc6tMiojrYU0REZEUajZcuEAGAEErs2TOqXo8REUmPoYiIyIqKi9vqAlENIZQoLvaR6IyIyBiGIiIiK/LxKYJCodXbplBo4eNTLNEZEZExDEVERFakVpdi9Oi9umBUU1Nk6MLNRCQtFloTEVlZWNhxBAefR3GxD3x8ihmIiGSKoYiIyApUKpXebbW61GAYqrsfEUmHoYiIyAratm2LuLg4rmhNZEcYioiIrISBh+gWe7nkDUMRERERWY09XfKGs8+IiIjIaky9lI0cLnnDUEREREQ2Y+w6gHLA4TMiIiKyCblfB5A9RURERGR19nAdQIYiIiIisjp7uA4gQxERERFZnT1cB5ChiIiIiKzOHq4DKItQtH79egQFBcHd3R0RERH45ptvjO775ptvYvDgwWjTpg3atGmDyMjIBvefMWMGFAoFUlJSrHDmRERE1JDal7IJCzuO2bNTMHVqKmbPTtErspbDJW8kn322Y8cOxMfHY9OmTYiIiEBKSgqioqKQm5uLDh061Ns/KysLEydOxKBBg+Du7o7k5GQ88MADOHXqFAICAvT23bVrF7766iv4+/vbqjlERERUiz1d8kYhhBBSnkBERATuuusu3WqXWq0WgYGBePbZZzF//vxGH19dXY02bdpg3bp1mDJlim77r7/+ioiICBw4cAAjR47E7NmzMXv2bJPOqaSkBGq1GhqNBt7e3ha1i4iIiGyrqd/fkg6fVVZWIjs7G5GRkbptSqUSkZGROHbsmEnHKC8vR1VVFXx8/qxe12q1iImJwdy5c9G7d+9Gj1FRUYGSkhK9HyIiInIukoaia9euobq6Gr6+vnrbfX19UVBQYNIx5s2bB39/f71glZycjBYtWmDmzJkmHSMxMRFqtVr3ExgYaHojiIiIyCFIXlPUFElJSdi+fTuysrLg7u4OAMjOzsbq1auRk5MDhUJh0nESEhIQHx+vu11SUsJgRHbPXq5KTUQkF5KGonbt2sHFxQWFhYV62wsLC+Hn59fgY1euXImkpCQcOnQIffr00W3/8ssvceXKFXTu3Fm3rbq6GnPmzEFKSgouXrxY71hubm5wc3NrWmOIZMSerkpNRCQXkg6fqVQqhIeHIzMzU7dNq9UiMzMTAwcONPq45cuXY+nSpcjIyED//v317ouJicHJkydx4sQJ3Y+/vz/mzp2LAwcOWK0tRHJSt4fI2AUY5XBVaiIiuZB8+Cw+Ph5Tp05F//79MWDAAKSkpKCsrAyxsbEAgClTpiAgIACJiYkAbtULLVy4ENu2bUNQUJCu9sjT0xOenp5o27ZtvX/5urq6ws/PDz179rRt44hkQO4XYCQikgvJQ1F0dDSuXr2KhQsXoqCgAKGhocjIyNAVX1++fBlK5Z8dWhs3bkRlZSXGjRund5xFixZh8eLFtjx1ItkzdgHG4ODzslpFlohIDiQPRcCtuoa4uDiD92VlZendNlQT1BhLHuPIWIDrPBq6ACNDERGRPlmEIrKdugW4Go0XiovbwsenSO9LkgW4jqHmAoy1g5HcLsBIRCQXDEVOpnYPUUO1JizAdQw1F2Cs+zqzl4iIqD6GIifFWhPnERZ2HMHB51Fc7AMfn2K+vkRERjAUOSnWmji2ulebVqtLDb6ucrgqNRGRXDAUOSnWmjg2e7oqNRGRXDAUOSnWmjg+Bh4iIvMwFDkx1poQERH9iaHIyRmrNSEiInI2kl77jGzP1MJaFuASEZGzYU+Rk2EBLhERkWEMRU6IgYeIqPkJIfDHH3+gurpa6lNxWC4uLmjRogUUCoVVjs9QRERE1ESVlZXIz89HeXm51Kfi8Fq2bImOHTtapcyDoYiIiKgJtFot8vLy4OLiAn9/f6hUKqv1ZDgzIQQqKytx9epV5OXloUePHlAqm7c0mqGIiIioCSorK6HVahEYGIiWLVtKfToOzcPDA66urrh06RIqKyvh7u7erMfn7DMiIqJm0Ny9FmSYNZ9nvoJEREREYCgiIiIiAsBQRERE5LQee+wxKBQKKBQKuLq6wtfXF8OHD8fmzZuh1WpNPk5qaipat25tvRO1ERZaExERSayoqEiyRXVHjBiBLVu2oLq6GoWFhcjIyMCsWbPw4Ycf4uOPP0aLFs4TFZynpURERDJUVFSEdevWNbpfXFycVYKRm5sb/Pz8AAABAQEICwvD3Xffjb/85S9ITU3Fk08+iVWrVmHLli346aef4OPjg9GjR2P58uXw9PREVlYWYmNjAUC3FMGiRYuwePFibN26FatXr0Zubi5atWqF+++/HykpKejQoUOzt6M5cPiMiIhIQg31EFmyX3O4//770bdvX6SnpwO4NeNrzZo1OHXqFNLS0vDpp5/i+eefBwAMGjQIKSkp8Pb2Rn5+PvLz8/HPf/4TAFBVVYWlS5fiu+++w+7du3Hx4kU89thjNmuHudhTRERERPWEhITg5MmTAIDZs2frtgcFBWHZsmWYMWMGNmzYAJVKBbVaDYVCoetxqvH444/r/r9bt25Ys2YN7rrrLty4cQOenp42aYc52FNERERE9QghdMNhhw4dwl/+8hcEBATAy8sLMTExKCoqavSyJtnZ2Rg9ejQ6d+4MLy8vDB06FABw+fJlq5+/JRiKZKioqEjXBWnop6ioSOpTJCIiB3fmzBl07doVFy9exKhRo9CnTx/s3LkT2dnZWL9+PYCGh/TKysoQFRUFb29vvPvuu/j222+xa9euRh8nJQ6fyUzdgjuNxgvFxW3h41MEtbpUt91aBXdERESffvopvv/+ezz33HPIzs6GVqvFv/71L91q0u+//77e/iqVCtXV1XrbfvzxRxQVFSEpKQmBgYEAgP/85z+2aYCFGIpkpnZ6zsnphz17RkEIJRQKLUaP3ouwsOP19iMiIrJURUUFCgoK9KbkJyYmYtSoUZgyZQp++OEHVFVVYe3atRg9ejSOHDmCTZs26R0jKCgIN27cQGZmJvr27YuWLVuic+fOUKlUWLt2LWbMmIEffvgBS5culaiVpuHwmUxpNF66QAQAQiixZ88oaDReEp8ZERE5koyMDHTs2BFBQUEYMWIEPvvsM6xZswYfffQRXFxc0LdvX6xatQrJycm444478O677yIxMVHvGIMGDcKMGTMQHR2N9u3bY/ny5Wjfvj1SU1PxwQcfoFevXkhKSsLKlSslaqVp2FMkU8XFbXWBqIYQShQX++gNoxERkX1TqVTNup85UlNTkZqa2uh+zz33HJ577jm9bTExMXq3N27ciI0bN+ptmzhxIiZOnKi3TQhh2cnaAEORTPn4FEGh0OoFI4VCCx+fYgnPyn5JuVosEVFD2rZti7i4OH5GyQBDkUyp1aUYPXpvvZoi9hKZj8XrRCR3/OyRB4YiGQsLO47g4PMoLvaBj08xA5GFWLxORESmYKG1zKnVpeja9RIDUTNg8ToRETWEoUhmpCy4c3QNFa8TERFx+ExmWHBnPSxeJyKihjAUyRADj3WweJ2IiBrCUEROhcXrRERkDEMROR21upRhiIiI6mGhNTk8Fq8TEUkjKysLCoUC169fN/kxQUFBSElJsdo5NYQ9ReTwWLxORGTYY489hrS0NDz11FP1LvL6zDPPYMOGDZg6dapJlwJxBAxF5BQYeIiIDAsMDMT27dvx2muvwcPDAwBw8+ZNbNu2DZ07d5b47GxLFsNn69evR1BQENzd3REREYFvvvnG6L5vvvkmBg8ejDZt2qBNmzaIjIzU27+qqgrz5s3DnXfeiVatWsHf3x9TpkzBb7/9ZoumEBGRzBQVFSE/P9/oT1FRkdSnKKmwsDAEBgYiPT1dty09PR2dO3dGv379dNsqKiowc+ZMdOjQAe7u7rj33nvx7bff6h1r//79uO222+Dh4YH77rsPFy9erPf7Dh8+jMGDB8PDwwOBgYGYOXMmysrKrNY+c0jeU7Rjxw7Ex8dj06ZNiIiIQEpKCqKiopCbm4sOHTrU2z8rKwsTJ07EoEGD4O7ujuTkZDzwwAM4deoUAgICUF5ejpycHLz00kvo27cvfv/9d8yaNQtjxozBf/7zHwlaSEREUql77UNj5HTtw19+Ac6dA3r0ADp1ss3vfPzxx7FlyxZMnjwZALB582bExsYiKytLt8/zzz+PnTt3Ii0tDV26dMHy5csRFRWF8+fPw8fHBz///DMefvhhPPPMM5g+fTr+85//YM6cOXq/58KFCxgxYgSWLVuGzZs34+rVq4iLi0NcXBy2bNlim8Y2QPKeolWrVmHatGmIjY1Fr169sGnTJrRs2RKbN282uP+7776Lp59+GqGhoQgJCcH//d//QavVIjMzEwCgVqvxySefYPz48ejZsyfuvvturFu3DtnZ2bh8+bItm0ZERBIz9ZqGcrn24VtvAV26APfff+u/b71lm9/76KOP4vDhw7h06RIuXbqEI0eO4NFHH9XdX1ZWho0bN2LFihV48MEH0atXL7z55pvw8PDAW/87yY0bNyI4OBj/+te/0LNnT0yePBmPPfaY3u9JTEzE5MmTMXv2bPTo0QODBg3CmjVr8Pbbb+PmzZu2aWwDJO0pqqysRHZ2NhISEnTblEolIiMjcezYMZOOUV5ejqqqKvj4GL9Ug0ajgUKhQOvWrQ3eX1FRgYqKCt3tkpIS0xpARETUTH75BZg+HdBqb93WaoGnngKioqzfY9S+fXuMHDkSqampEEJg5MiRaNeune7+CxcuoKqqCvfcc49um6urKwYMGIAzZ84AAM6cOYOIiAi94w4cOFDv9nfffYeTJ0/i3Xff1W0TQkCr1SIvLw+33367NZpnMklD0bVr11BdXQ1fX1+97b6+vvjxxx9NOsa8efPg7++PyMhIg/ffvHkT8+bNw8SJE+Ht7W1wn8TERCxZssS8kyciIruj0XihuLgtfHyKZLde2blzfwaiGtXVwPnzthlGe/zxxxEXFwfgVq2vNdy4cQNPPfUUZs6cWe8+ORR1S15T1BRJSUnYvn07srKy4O7uXu/+qqoqjB8/HkIIbNy40ehxEhISEB8fr7tdUlKCwMBAq5wzERFJIyenX73L/ISFHZf6tHR69ACUSv1g5OICdO9um98/YsQIVFZWQqFQICoqSu++4OBgqFQqHDlyBF26dAFw6zv222+/xezZswEAt99+Oz7++GO9x3311Vd6t8PCwnD69Gl0t1WjzCRpTVG7du3g4uKCwsJCve2FhYXw8/Nr8LErV65EUlISDh48iD59+tS7vyYQXbp0CZ988onRXiIAcHNzg7e3t94PERE5Do3GSxeIAEAIJfbsGQWNxkviM/tTp07AG2/cCkLArf++/rrtiq1dXFxw5swZnD59Gi41J/E/rVq1wj/+8Q/MnTsXGRkZOH36NKZNm4by8nI88cQTAIAZM2bg3LlzmDt3LnJzc7Ft27Z66xvNmzcPR48eRVxcHE6cOIFz587ho48+0vVQSU3SUKRSqRAeHq4rkgagK5quOw5Z2/Lly7F06VJkZGSgf//+9e6vCUTnzp3DoUOHZDOjgIiIpFFc3FYXiGoIoURxsfF6VCk88QRw8SLw2We3/vu/vGEzDXUMJCUl4ZFHHkFMTAzCwsJw/vx5HDhwAG3atAFwa/hr586d2L17N/r27YtNmzbh1Vdf1TtGnz598Pnnn+Ps2bMYPHgw+vXrh4ULF8Lf39/qbTOFQgghpDyBHTt2YOrUqXj99dcxYMAApKSk4P3338ePP/4IX19fTJkyBQEBAUhMTAQAJCcnY+HChdi2bZtewZenpyc8PT1RVVWFcePGIScnB3v37tWrV/Lx8THpUg4lJSVQq9XQaDTsNSIismP5+fl44403oNF4ISVltl4wUii0mD07BWp1KaZPn46OHTta9Dtu3ryJvLw8dO3a1WApBzWvhp7vpn5/S15TFB0djatXr2LhwoUoKChAaGgoMjIydGHm8uXLUCr//CPeuHEjKisrMW7cOL3jLFq0CIsXL8avv/6qG9MMDQ3V2+ezzz7DsGHDrNoeIiKSj5p/CKvVpRg9em+9mqKaYmte+5AAGfQUyRF7ioiIHEdRUZFuHaLfflPi4sUWCAr6A/7+tyqam3rtQ/YU2ZZD9xQRERFZU+3A07EjEB4u4cmQrEm+ojURERGRHDAUEREREYGhiIiIqFmwRNc2rPk8MxQRERE1gaurK4Bb1+Ik66t5nmue9+bEQmsiIqImcHFxQevWrXHlyhUAQMuWLaFQKCQ+K8cjhEB5eTmuXLmC1q1b11t1uzkwFBERETVRzaWpaoIRWU/r1q0bvRSYpRiKiIiImkihUKBjx47o0KEDqqqqpD4dh+Xq6mqVHqIaDEVERETNxMXFxapf2mRdLLQmIiIiAkMREREREQCGIiIiIiIArCkyqGZhqJKSEonPhIiIiExV871t6QKPDEUGlJaWAgACAwMlPhMiIiIyV2lpKdRqtdmPUwiuS16PVqvFb7/9Bi8vr2ZfgKukpASBgYH4+eef4e3t3azHlgtnaCPAdjoattOxsJ2OxdR2CiFQWloKf39/KJXmVwixp8gApVKJTp06WfV3eHt7O/QfMOAcbQTYTkfDdjoWttOxmNJOS3qIarDQmoiIiAgMRUREREQAGIpszs3NDYsWLYKbm5vUp2I1ztBGgO10NGynY2E7HYut2slCayIiIiKwp4iIiIgIAEMREREREQCGIiIiIiIADEVEREREABiKmmz9+vUICgqCu7s7IiIi8M033zS4f0pKCnr27AkPDw8EBgbiueeew82bN5t0TFto7nYuXrwYCoVC7yckJMTazWiUOe2sqqrCyy+/jODgYLi7u6Nv377IyMho0jFtpbnbKbfX84svvsDo0aPh7+8PhUKB3bt3N/qYrKwshIWFwc3NDd27d0dqamq9feT2WlqjnXJ7LQHz25mfn49Jkybhtttug1KpxOzZsw3u98EHHyAkJATu7u648847sX///uY/eTNYo52pqan1Xk93d3frNMBE5rYzPT0dw4cPR/v27eHt7Y2BAwfiwIED9fZrlvenIItt375dqFQqsXnzZnHq1Ckxbdo00bp1a1FYWGhw/3fffVe4ubmJd999V+Tl5YkDBw6Ijh07iueee87iY9qCNdq5aNEi0bt3b5Gfn6/7uXr1qq2aZJC57Xz++eeFv7+/2Ldvn7hw4YLYsGGDcHd3Fzk5ORYf0xas0U65vZ779+8XCxYsEOnp6QKA2LVrV4P7//TTT6Jly5YiPj5enD59Wqxdu1a4uLiIjIwM3T5yfC2t0U65vZZCmN/OvLw8MXPmTJGWliZCQ0PFrFmz6u1z5MgR4eLiIpYvXy5Onz4tXnzxReHq6iq+//576zTCBNZo55YtW4S3t7fe61lQUGCdBpjI3HbOmjVLJCcni2+++UacPXtWJCQkCFdXV6t81jIUNcGAAQPEM888o7tdXV0t/P39RWJiosH9n3nmGXH//ffrbYuPjxf33HOPxce0BWu0c9GiRaJv375WOV9LmdvOjh07inXr1ulte/jhh8XkyZMtPqYtWKOdcnw9a5jyofv888+L3r17622Ljo4WUVFRuttyfC1ra652yvm1FMK0dtY2dOhQg2Fh/PjxYuTIkXrbIiIixFNPPdXEM2wezdXOLVu2CLVa3Wzn1dzMbWeNXr16iSVLluhuN9f7k8NnFqqsrER2djYiIyN125RKJSIjI3Hs2DGDjxk0aBCys7N1XXo//fQT9u/fj7/+9a8WH9ParNHOGufOnYO/vz+6deuGyZMn4/Lly9ZrSCMsaWdFRUW9bmgPDw8cPnzY4mNamzXaWUNOr6e5jh07pvecAEBUVJTuOZHja2mJxtpZw55fS1OZ+lw4ghs3bqBLly4IDAzE2LFjcerUKalPqUm0Wi1KS0vh4+MDoHnfnwxFFrp27Rqqq6vh6+urt93X1xcFBQUGHzNp0iS8/PLLuPfee+Hq6org4GAMGzYML7zwgsXHtDZrtBMAIiIikJqaioyMDGzcuBF5eXkYPHgwSktLrdoeYyxpZ1RUFFatWoVz585Bq9Xik08+QXp6OvLz8y0+prVZo52A/F5PcxUUFBh8TkpKSvDf//5Xlq+lJRprJ2D/r6WpjD0X9vR6mqJnz57YvHkzPvroI7zzzjvQarUYNGgQfvnlF6lPzWIrV67EjRs3MH78eADN+1nLUGRDWVlZePXVV7Fhwwbk5OQgPT0d+/btw9KlS6U+tWZlSjsffPBB/P3vf0efPn0QFRWF/fv34/r163j//fclPHPzrF69Gj169EBISAhUKhXi4uIQGxsLpdKx3lamtNMRXk+6ha+lYxk4cCCmTJmC0NBQDB06FOnp6Wjfvj1ef/11qU/NItu2bcOSJUvw/vvvo0OHDs1+/BbNfkQn0a5dO7i4uKCwsFBve2FhIfz8/Aw+5qWXXkJMTAyefPJJAMCdd96JsrIyTJ8+HQsWLLDomNZmjXYaCg2tW7fGbbfdhvPnzzd/I0xgSTvbt2+P3bt34+bNmygqKoK/vz/mz5+Pbt26WXxMa7NGOw2R+vU0l5+fn8HnxNvbGx4eHnBxcZHda2mJxtppiL29lqYy9lzY0+tpCVdXV/Tr188uX8/t27fjySefxAcffKA3VNacn7WO9U9aG1KpVAgPD0dmZqZum1arRWZmJgYOHGjwMeXl5fUCgYuLCwBACGHRMa3NGu005MaNG7hw4QI6duzYTGdunqY89+7u7ggICMAff/yBnTt3YuzYsU0+prVYo52GSP16mmvgwIF6zwkAfPLJJ7rnRI6vpSUaa6ch9vZamsqS58IRVFdX4/vvv7e71/O9995DbGws3nvvPYwcOVLvvmZ9f5pd8k0627dvF25ubiI1NVWcPn1aTJ8+XbRu3Vo33TEmJkbMnz9ft/+iRYuEl5eXeO+998RPP/0kDh48KIKDg8X48eNNPqYUrNHOOXPmiKysLJGXlyeOHDkiIiMjRbt27cSVK1ds3r4a5rbzq6++Ejt37hQXLlwQX3zxhbj//vtF165dxe+//27yMaVgjXbK7fUsLS0Vx48fF8ePHxcAxKpVq8Tx48fFpUuXhBBCzJ8/X8TExOj2r5mqPnfuXHHmzBmxfv16g1Py5fZaWqOdcnsthTC/nUII3f7h4eFi0qRJ4vjx4+LUqVO6+48cOSJatGghVq5cKc6cOSMWLVok+ZR8a7RzyZIl4sCBA+LChQsiOztbTJgwQbi7u+vtY2vmtvPdd98VLVq0EOvXr9dbWuD69eu6fZrr/clQ1ERr164VnTt3FiqVSgwYMEB89dVXuvuGDh0qpk6dqrtdVVUlFi9eLIKDg4W7u7sIDAwUTz/9tN6XS2PHlEpztzM6Olp07NhRqFQqERAQIKKjo8X58+dt2CLDzGlnVlaWuP3224Wbm5to27atiImJEb/++qtZx5RKc7dTbq/nZ599JgDU+6lp19SpU8XQoUPrPSY0NFSoVCrRrVs3sWXLlnrHldtraY12yu21FMKydhrav0uXLnr7vP/+++K2224TKpVK9O7dW+zbt882DTLCGu2cPXu27m/W19dX/PWvf9Vb30cK5rZz6NChDe5foznenwohjIxnEBERETkR1hQRERERgaGIiIiICABDEREREREAhiIiIiIiAAxFRERERAAYioiIiIgAMBQRERERAWAoIiKyC1lZWVAoFLh+/brUp0LksBiKiEjPY489BoVCgaSkJL3tu3fvhkKh0N0WQuDNN9/EwIED4e3tDU9PT/Tu3RuzZs0y+WKT5eXlSEhIQHBwMNzd3dG+fXsMHToUH330kW6foKAgpKSkNEvbrK3muVMoFHB1dUXXrl3x/PPP4+bNm2YdZ9iwYZg9e7betkGDBiE/Px9qtboZz5iIamMoIqJ63N3dkZycjN9//93g/UIITJo0CTNnzsRf//pXHDx4EKdPn8Zbb70Fd3d3LFu2zKTfM2PGDKSnp2Pt2rX48ccfkZGRgXHjxqGoqKg5m2NTI0aMQH5+Pn766Se89tpreP3117Fo0aImH1elUsHPz08vmBJRM7Pw0iVE5KCmTp0qRo0aJUJCQsTcuXN123ft2iVqPjLee+89AUB89NFHBo+h1WpN+l1qtVqkpqYavd/QNY9qfPnll+Lee+8V7u7uolOnTuLZZ58VN27c0N3/9ttvi/DwcOHp6Sl8fX3FxIkTRWFhoe7+musvZWRkiNDQUOHu7i7uu+8+UVhYKPbv3y9CQkKEl5eXmDhxoigrKzOpPVOnThVjx47V2/bwww+Lfv366W5fu3ZNTJgwQfj7+wsPDw9xxx13iG3btukdo26b8/LydOdb+xqCH374oejVq5dQqVSiS5cuYuXKlSadJxEZxp4iIqrHxcUFr776KtauXYtffvml3v3vvfceevbsiTFjxhh8vKm9GX5+fti/fz9KS0sN3p+eno5OnTrh5ZdfRn5+PvLz8wEAFy5cwIgRI/DII4/g5MmT2LFjBw4fPoy4uDjdY6uqqrB06VJ899132L17Ny5evIjHHnus3u9YvHgx1q1bh6NHj+Lnn3/G+PHjkZKSgm3btmHfvn04ePAg1q5da1J76vrhhx9w9OhRqFQq3babN28iPDwc+/btww8//IDp06cjJiYG33zzDQBg9erVGDhwIKZNm6Zrc2BgYL1jZ2dnY/z48ZgwYQK+//57LF68GC+99BJSU1MtOlciAnuKiEhf7d6Ou+++Wzz++ONCCP2eopCQEDFmzBi9x82aNUu0atVKtGrVSgQEBJj0uz7//HPRqVMn4erqKvr37y9mz54tDh8+rLdPly5dxGuvvaa37YknnhDTp0/X2/bll18KpVIp/vvf/xr8Xd9++60AIEpLS4UQf/YUHTp0SLdPYmKiACAuXLig2/bUU0+JqKgok9ozdepU4eLiIlq1aiXc3NwEAKFUKsWHH37Y4ONGjhwp5syZo7s9dOhQMWvWLL196vYUTZo0SQwfPlxvn7lz54pevXqZdK5EVB97iojIqOTkZKSlpeHMmTON7rtgwQKcOHECCxcuxI0bN0w6/pAhQ/DTTz8hMzMT48aNw6lTpzB48GAsXbq0wcd99913SE1Nhaenp+4nKioKWq0WeXl5AG71pIwePRqdO3eGl5cXhg4dCgC4fPmy3rH69Omj+39fX1+0bNkS3bp109t25coVk9oDAPfddx9OnDiBr7/+GlOnTkVsbCweeeQR3f3V1dVYunQp7rzzTvj4+MDT0xMHDhyod16NOXPmDO655x69bffccw/OnTuH6upqs45FRLcwFBGRUUOGDEFUVBQSEhL0tvfo0QO5ubl629q3b4/u3bujQ4cOZv0OV1dXDB48GPPmzcPBgwfx8ssvY+nSpaisrDT6mBs3buCpp57CiRMndD/fffcdzp07h+DgYJSVlSEqKgre3t5499138e2332LXrl0AUO+4rq6uuv+vmTVWm0KhgFarNbk9rVq1Qvfu3dG3b19s3rwZX3/9Nd566y3d/StWrMDq1asxb948fPbZZzhx4gSioqIabC8R2UYLqU+AiOQtKSkJoaGh6Nmzp27bxIkTMWnSJHz00UcYO3Zss/6+Xr164Y8//sDNmzehUqmgUqnq9XyEhYXh9OnT6N69u8FjfP/99ygqKkJSUpKuHuc///lPs56nKZRKJV544QXEx8dj0qRJ8PDwwJEjRzB27Fg8+uijAACtVouzZ8+iV69euscZanNdt99+O44cOaK37ciRI7jtttvg4uLS/I0hcgLsKSKiBt15552YPHky1qxZo9s2YcIEjBs3DhMmTMDLL7+Mr7/+GhcvXsTnn3+OHTt2mPylPGzYMLz++uvIzs7GxYsXsX//frzwwgu477774O3tDeDWOkVffPEFfv31V1y7dg0AMG/ePBw9ehRxcXE4ceIEzp07h48++khXaN25c2eoVCqsXbsWP/30Ez7++ONGh+Ss5e9//ztcXFywfv16ALd62T755BMcPXoUZ86cwVNPPYXCwkK9xwQFBeme02vXrhnsqZozZw4yMzOxdOlSnD17FmlpaVi3bh3++c9/2qRdRI6IoYiIGvXyyy/rfTErFArs2LEDKSkp2L9/P/7yl7+gZ8+eePzxxxEYGIjDhw+bdNyoqCikpaXhgQcewO23345nn30WUVFReP/99/V+98WLFxEcHIz27dsDuFUH9Pnnn+Ps2bMYPHgw+vXrh4ULF8Lf3x/AraG81NRUfPDBB+jVqxeSkpKwcuXKZnxGTNeiRQvExcVh+fLlKCsrw4svvoiwsDBERUVh2LBh8PPzw0MPPaT3mH/+859wcXFBr1690L59e4P1RmFhYXj//fexfft23HHHHVi4cCFefvllgzPsiMg0CiGEkPokiIiIiKTGniIiIiIiMBQRkRXVnjJf9+fLL7+U+vTMcvny5QbbY+6UeiKSHw6fEZHVNHRh2ICAAHh4eNjwbJrmjz/+wMWLF43eHxQUhBYtOKGXyJ4xFBERERGBw2dEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIAEMREREREQCGIiIiIiIAwP8DOazabcebj0AAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_23.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWK0lEQVR4nO3deXxM5/4H8M9kmywkEbInBImt9qg09hJN0JRf3Vv71lhLlbRVqrarFUUJtZUby20pP0V/bvVGCW5bctGQX5WILUFUYk8kYRKT8/tjfhlGtplklnPmfN6v17yYM2d5njOZOd95nu95HoUgCAKIiIiIZMjG0gUgIiIishQGQkRERCRbDISIiIhIthgIERERkWwxECIiIiLZYiBEREREssVAiIiIiGSLgRARERHJFgMhIiIiki0GQkREErBlyxYoFApkZmZauihEVoWBEBEBAE6dOoUpU6bgpZdegouLC+rXr4+33noLFy9eLLNujx49oFAooFAoYGNjA1dXVzRt2hQjRozAwYMHDTruP//5T3Tv3h1eXl5wdnZGo0aN8NZbbyExMdFYVStj0aJF+P7778ssP378OObPn4+HDx+a7Ngvmj9/vvZcKhQKODs7o0WLFvjkk0+Ql5dnlGNs374d8fHxRtkXkbVhIEREAIDPP/8cu3fvRq9evbBy5UqMHz8eP//8M9q3b48//vijzPoBAQH4+uuv8Y9//ANLly7FG2+8gePHj+O1117DoEGDUFxcXOUxly1bhjfeeAMKhQKzZs3CihUrMHDgQFy6dAk7duwwRTUBVB4ILViwwKyBUKl169bh66+/xvLly9GsWTN89tlniIqKgjGmg2QgRFQxO0sXgIjEITY2Ftu3b4eDg4N22aBBg9CqVSssXrwY33zzjc76bm5uGD58uM6yxYsXY+rUqVi7di2CgoLw+eefV3i8p0+fYuHChejduzd++umnMq/fvn27hjUSj8LCQjg7O1e6zl/+8hfUq1cPADBx4kQMHDgQe/bswX/+8x+Eh4ebo5hEssQWISICAHTq1EknCAKAkJAQvPTSS0hLS9NrH7a2tli1ahVatGiB1atXIzc3t8J17969i7y8PHTu3Lnc1728vHSeP3nyBPPnz0eTJk3g6OgIX19fvPnmm7hy5Yp2nWXLlqFTp06oW7cunJycEBoaiu+++05nPwqFAgUFBdi6dau2O2r06NGYP38+PvzwQwBAw4YNta89n5PzzTffIDQ0FE5OTvDw8MDgwYNx48YNnf336NEDLVu2REpKCrp16wZnZ2d8/PHHep2/5/Xs2RMAkJGRUel6a9euxUsvvQSlUgk/Pz9MnjxZp0WrR48e2L9/P65du6atU1BQkMHlIbJWbBEiogoJgoCcnBy89NJLem9ja2uLIUOGYM6cOfj111/Rr1+/ctfz8vKCk5MT/vnPf+Ldd9+Fh4dHhftUq9V4/fXXkZSUhMGDB+O9997Do0ePcPDgQfzxxx9o3LgxAGDlypV44403MGzYMBQVFWHHjh3461//ih9++EFbjq+//hpjx45Fx44dMX78eABA48aN4eLigosXL+Lbb7/FihUrtK0znp6eAIDPPvsMc+bMwVtvvYWxY8fizp07+PLLL9GtWzecOXMG7u7u2vLeu3cPffr0weDBgzF8+HB4e3vrff5KlQZ4devWrXCd+fPnY8GCBYiIiMCkSZOQnp6OdevW4dSpUzh27Bjs7e0xe/Zs5ObmIisrCytWrAAA1KpVy+DyEFktgYioAl9//bUAQEhISNBZ3r17d+Gll16qcLu9e/cKAISVK1dWuv+5c+cKAAQXFxehT58+wmeffSakpKSUWW/Tpk0CAGH58uVlXispKdH+v7CwUOe1oqIioWXLlkLPnj11lru4uAijRo0qs6+lS5cKAISMjAyd5ZmZmYKtra3w2Wef6Sw/e/asYGdnp7O8e/fuAgBh/fr1Fdb7efPmzRMACOnp6cKdO3eEjIwM4auvvhKUSqXg7e0tFBQUCIIgCJs3b9Yp2+3btwUHBwfhtddeE9RqtXZ/q1evFgAImzZt0i7r16+f0KBBA73KQyQ37BojonJduHABkydPRnh4OEaNGmXQtqUtDo8ePap0vQULFmD79u1o164dDhw4gNmzZyM0NBTt27fX6Y7bvXs36tWrh3fffbfMPhQKhfb/Tk5O2v8/ePAAubm56Nq1K06fPm1Q+V+0Z88elJSU4K233sLdu3e1Dx8fH4SEhODIkSM66yuVSowZM8agYzRt2hSenp5o2LAhJkyYgODgYOzfv7/C3KJDhw6hqKgI06ZNg43Ns6/ycePGwdXVFfv37ze8okQyxEBITz///DOio6Ph5+cHhUJR7h0n5j7e6NGjdW67VSgUiIqKMmm5SB6ys7PRr18/uLm54bvvvoOtra1B2+fn5wMAateuXeW6Q4YMwS+//IIHDx7gp59+wtChQ3HmzBlER0fjyZMnADTdRE2bNoWdXeW9+T/88ANeeeUVODo6wsPDA56enli3bl2luUr6uHTpEgRBQEhICDw9PXUeaWlpZRK7/f39y+RbVWX37t04ePAgjh49isuXL+OPP/5AaGhohetfu3YNgCaAep6DgwMaNWqkfZ2IKsccIT0VFBSgTZs2ePvtt/Hmm2+K5nhRUVHYvHmz9rlSqTR52ci65ebmok+fPnj48CF++eUX+Pn5GbyP0tvtg4OD9d7G1dUVvXv3Ru/evWFvb4+tW7fixIkT6N69u17b//LLL3jjjTfQrVs3rF27Fr6+vrC3t8fmzZuxfft2g+vwvJKSEigUCvzrX/8qNyh8Mefm+ZYpfXXr1k2bl0RE5sNASE99+vRBnz59KnxdpVJh9uzZ+Pbbb/Hw4UO0bNkSn3/+OXr06GGS45VSKpXw8fGp1jGIXvTkyRNER0fj4sWLOHToEFq0aGHwPtRqNbZv3w5nZ2d06dKlWuXo0KEDtm7dilu3bgHQJDOfOHECxcXFsLe3L3eb3bt3w9HREQcOHND5QfD8D4VSz3en6bO8cePGEAQBDRs2RJMmTQytjkk0aNAAAJCeno5GjRpplxcVFSEjIwMRERHaZRXVi4jYNWY0U6ZMQXJyMnbs2IHff/8df/3rXxEVFYVLly6Z9LhHjx6Fl5cXmjZtikmTJuHevXsmPR5ZL7VajUGDBiE5ORm7du2q1tg1arUaU6dORVpaGqZOnQpXV9cK1y0sLERycnK5r/3rX/8C8KzbZ+DAgbh79y5Wr15dZl3h/wcctLW1hUKhgFqt1r6WmZlZbreyi4tLuYMmuri4AECZ1958803Y2tpiwYIFZQY4FATBIp+7iIgIODg4YNWqVTplSkhIQG5urs7dei4uLjXuHiSyVmwRMoLr169j8+bNuH79urYb4YMPPkBiYiI2b96MRYsWmeS4UVFRePPNN9GwYUNcuXIFH3/8Mfr06YPk5GSDczqI3n//fezbtw/R0dG4f/9+mQEUXxw8MTc3V7tOYWEhLl++jD179uDKlSsYPHgwFi5cWOnxCgsL0alTJ7zyyiuIiopCYGAgHj58iO+//x6//PILBgwYgHbt2gEARo4ciX/84x+IjY3FyZMn0bVrVxQUFODQoUN455130L9/f/Tr1w/Lly9HVFQUhg4ditu3b2PNmjUIDg7G77//rnPs0NBQHDp0CMuXL4efnx8aNmyIsLAwbU7O7NmzMXjwYNjb2yM6OhqNGzfGp59+ilmzZiEzMxMDBgxA7dq1kZGRgb1792L8+PH44IMPanT+DeXp6YlZs2ZhwYIFiIqKwhtvvIH09HSsXbsWL7/8ss77FRoaip07dyI2NhYvv/wyatWqhejoaLOWl0i0LHnLmlQBEPbu3at9/sMPP2hvAX7+YWdnJ7z11luCIAhCWlqaAKDSx0cffaTX8Spy5coVAYBw6NAhY1STZKb0tu+KHpWtW6tWLSEkJEQYPny48NNPP+l1vOLiYmHjxo3CgAEDhAYNGghKpVJwdnYW2rVrJyxdulRQqVQ66xcWFgqzZ88WGjZsKNjb2ws+Pj7CX/7yF+HKlSvadRISEoSQkBBBqVQKzZo1EzZv3qy9Pf15Fy5cELp16yY4OTkJAHRupV+4cKHg7+8v2NjYlLmVfvfu3UKXLl20n/FmzZoJkydPFtLT03XOTWVDC7yotHx37typdL0Xb58vtXr1aqFZs2aCvb294O3tLUyaNEl48OCBzjr5+fnC0KFDBXd3dwEAb6Uneo5CEIwwkY3MKBQK7N27FwMGDAAA7Ny5E8OGDcO5c+fKtMTUqlULPj4+KCoqwtWrVyvdb926dbWDt1V2vMp4enri008/xYQJE/SuDxERkVyxa8wI2rVrB7Vajdu3b6Nr167lruPg4IBmzZqZtBxZWVm4d+8efH19TXocIiIia8FASE/5+fm4fPmy9nlGRgZSU1Ph4eGBJk2aYNiwYRg5ciS++OILtGvXDnfu3EFSUhJat25d4RQD1T1e/fr1kZ+fjwULFmDgwIHw8fHBlStXMGPGDAQHByMyMtIodSYiIrJ27BrT09GjR/Hqq6+WWT5q1Chs2bIFxcXF+PTTT/GPf/wDN2/eRL169fDKK69gwYIFaNWqldGP9/jxYwwYMABnzpzBw4cP4efnh9deew0LFy6s1rxGREREcsRAiIiIiGRLUuMIVWeai6NHj6J9+/ZQKpUIDg7Gli1bTF5OIiIikgZJBUKl006sWbNGr/UzMjLQr18/vPrqq0hNTcW0adMwduxYHDhwwMQlJSIiIimQbNeYPreUf/TRR9i/f7923iMAGDx4MB4+fIjExES9jlNSUoI///wTtWvX5jD1REREEiEIAh49egQ/Pz/Y2FTc7mPVd40lJyfrzLcDAJGRkZg2bVqF26hUKqhUKu3zmzdvVmu+JSIiIrK8GzduICAgoMLXrToQys7OLnMHlbe3N/Ly8vD48eNyZ4iOi4vDggULyiy/ceNGpfMmERERkXjk5eUhMDAQtWvXrnQ9qw6EqmPWrFmIjY3VPi89ka6urgyEiIiIJKaqtBarDoR8fHyQk5OjsywnJweurq7ltgYBgFKphFKpNEfxiIiIyMIkddeYocLDw5GUlKSz7ODBgwgPD7dQiYiIiEhMJBUI5efnIzU1FampqQCeTTtx/fp1AJpurZEjR2rXnzhxIq5evYoZM2bgwoULWLt2Lf77v/8b06dPt0TxiYiISGQk1TX222+/6Uw7UZrLUzrtxK1bt7RBEQA0bNgQ+/fvx/Tp07Fy5UoEBATg73//O+fiIiIik1Or1SguLrZ0MayWvb09bG1ta7wfyY4jZC55eXlwc3NDbm4uk6WJiKhKgiAgOzsbDx8+tHRRrJ67uzt8fHzKTYjW9/otqRYhIiIisSsNgry8vODs7MzBeE1AEAQUFhbi9u3bAABfX99q74uBEBERkZGo1WptEFS3bl1LF8eqld79ffv2bXh5eVW7m0xSydJERERiVpoT5OzsbOGSyEPpea5JLhYDISIiIiNjd5h5GOM8MxAiIiIi2WIgRERERLLFQIhMLisLOHJE8y8REYnT6NGjoVAooFAoYG9vD29vb/Tu3RubNm1CSUmJ3vvZsmUL3N3dTVdQI+NdY2RSCQnA+PFASQlgYwNs2ADExFi6VERE4nXv3j0UFRVV+LqDg4PJ7kiLiorC5s2boVarkZOTg8TERLz33nv47rvvsG/fPtjZWV/YYH01ItHIynoWBAGafydMACIjgYAAy5aNiEiM7t27h9WrV1e53pQpU0wSDCmVSvj4+AAA/P390b59e7zyyivo1asXtmzZgrFjx2L58uXYvHkzrl69Cg8PD0RHR2PJkiWoVasWjh49ijFjxgB4lsg8b948zJ8/H19//TVWrlyJ9PR0uLi4oGfPnoiPj4eXl5fR62EIdo2RyVy69CwIKqVWA5cvW6Y8RERiV1lLUHXWM4aePXuiTZs22LNnDwDAxsYGq1atwrlz57B161YcPnwYM2bMAAB06tQJ8fHxcHV1xa1bt3Dr1i188MEHADS3uC9cuBD/+7//i++//x6ZmZkYPXq02epREbYIkcmEhGi6w54PhmxtgeBgy5WJiIgM16xZM/z+++8AgGnTpmmXBwUF4dNPP8XEiROxdu1aODg4wM3NDQqFQtuyVOrtt9/W/r9Ro0ZYtWoVXn75ZeTn56NWrVpmqUd52CJEJhMQoMkJKh3s09YW+OordosREUmNIAjarq5Dhw6hV69e8Pf3R+3atTFixAjcu3cPhYWFle4jJSUF0dHRqF+/PmrXro3u3bsDgM5k6ZbAQIhMKiYGyMzU3DWWmclEaSIiKUpLS0PDhg2RmZmJ119/Ha1bt8bu3buRkpKCNWvWAKi8u66goACRkZFwdXXFtm3bcOrUKezdu7fK7cyBXWNkcgEBbAUiIpKqw4cP4+zZs5g+fTpSUlJQUlKCL774AjY2mraU//7v/9ZZ38HBAWq1WmfZhQsXcO/ePSxevBiBgYEAgN9++808FagCW4SIiIgIAKBSqZCdnY2bN2/i9OnTWLRoEfr374/XX38dI0eORHBwMIqLi/Hll1/i6tWr+Prrr7F+/XqdfQQFBSE/Px9JSUm4e/cuCgsLUb9+fTg4OGi327dvHxYuXGihWupiIEREREQAgMTERPj6+iIoKAhRUVE4cuQIVq1ahf/5n/+Bra0t2rRpg+XLl+Pzzz9Hy5YtsW3bNsTFxenso1OnTpg4cSIGDRoET09PLFmyBJ6entiyZQt27dqFFi1aYPHixVi2bJmFaqlLIQiCYOlCiFleXh7c3NyQm5sLV1dXSxeHiIhE7MmTJ8jIyEDDhg3h6Oho8PaWHkdIaio73/pev5kjREREJBJ169bFlClTLDaytBwxECIiIhIRBjnmxRwhIiIiki0GQkRERCRbDISIiIhIthgIERERkWwxECIiIiLZYiBEREREssVAiIiIiGSLgRARERGZ3NGjR6FQKPDw4UO9twkKCkJ8fLzJygQwECIiIiIAo0ePhkKhwMSJE8u8NnnyZCgUCowePdr8BTMxBkJEREQEAAgMDMSOHTvw+PFj7bInT55g+/btqF+/vgVLZjoMhIiIiAgA0L59ewQGBmLPnj3aZXv27EH9+vXRrl077TKVSoWpU6fCy8sLjo6O6NKlC06dOqWzrx9//BFNmjSBk5MTXn31VWRmZpY53q+//oquXbvCyckJgYGBmDp1KgoKCkxWv/IwECIiIhKprCzgyBHNv+by9ttvY/PmzdrnmzZtwpgxY3TWmTFjBnbv3o2tW7fi9OnTCA4ORmRkJO7fvw8AuHHjBt58801ER0cjNTUVY8eOxcyZM3X2ceXKFURFRWHgwIH4/fffsXPnTvz666+YMmWK6Sv5HAZCREREIpSQADRoAPTsqfk3IcE8xx0+fDh+/fVXXLt2DdeuXcOxY8cwfPhw7esFBQVYt24dli5dij59+qBFixbYuHEjnJyckPD/hVy3bh0aN26ML774Ak2bNsWwYcPK5BfFxcVh2LBhmDZtGkJCQtCpUyesWrUK//jHP/DkyRPzVBYSDITWrFmDoKAgODo6IiwsDCdPnqx0/fj4eDRt2lTb7DZ9+nSznmAiIiJDZWUB48cDJSWa5yUlwIQJ5mkZ8vT0RL9+/bBlyxZs3rwZ/fr1Q7169bSvX7lyBcXFxejcubN2mb29PTp27Ii0tDQAQFpaGsLCwnT2Gx4ervP8f//3f7FlyxbUqlVL+4iMjERJSQkyMjJMWENddmY7khHs3LkTsbGxWL9+PcLCwhAfH4/IyEikp6fDy8urzPrbt2/HzJkzsWnTJnTq1AkXL17UZsUvX77cAjUgIiKq2qVLz4KgUmo1cPkyEBBg+uO//fbb2i6qNWvWmOQY+fn5mDBhAqZOnVrmNXMmZkuqRWj58uUYN24cxowZgxYtWmD9+vVwdnbGpk2byl3/+PHj6Ny5M4YOHYqgoCC89tprGDJkSJWtSERERJYUEgLYvHCFtrUFgoPNc/yoqCgUFRWhuLgYkZGROq81btwYDg4OOHbsmHZZcXExTp06hRYtWgAAmjdvXuZa+5///Efnefv27XH+/HkEBweXeTg4OJioZmVJJhAqKipCSkoKIiIitMtsbGwQERGB5OTkcrfp1KkTUlJStG/G1atX8eOPP6Jv374VHkelUiEvL0/nQWQMlkh6JCJpCggANmzQBD+A5t+vvjJPa5DmeLZIS0vD+fPnYVtaiP/n4uKCSZMm4cMPP0RiYiLOnz+PcePGobCwEDExMQCAiRMn4tKlS/jwww+Rnp6O7du3Y8uWLTr7+eijj3D8+HFMmTIFqampuHTpEv7nf/6HydIVuXv3LtRqNby9vXWWe3t7Izs7u9xthg4dir/97W/o0qUL7O3t0bhxY/To0QMff/xxhceJi4uDm5ub9hEYGGjUepA8WSrpkYikKyYGyMzU/IDKzNQ8NydXV1e4urqW+9rixYsxcOBAjBgxAu3bt8fly5dx4MAB1KlTB4Cma2v37t34/vvv0aZNG6xfvx6LFi3S2Ufr1q3x73//GxcvXkTXrl3Rrl07zJ07F35+fiav2/MUgiAIZj1iNf3555/w9/fH8ePHdRKuZsyYgX//+984ceJEmW2OHj2KwYMH49NPP0VYWBguX76M9957D+PGjcOcOXPKPY5KpYJKpdI+z8vLQ2BgIHJzcyv8g6DKZWVp+rtDQsz3a0ZMsrI0wc/z/f22tpovNjmeDyJr9uTJE2RkZKBhw4ZwdHS0dHGsXmXnOy8vD25ublVevyWTLF2vXj3Y2toiJydHZ3lOTg58fHzK3WbOnDkYMWIExo4dCwBo1aoVCgoKMH78eMyePRs2L3bAAlAqlVAqlcavgEwlJDy788HGRtPUa+5fNZZm6aRHIiKqmGS6xhwcHBAaGoqkpCTtspKSEiQlJZW5Ja9UYWFhmWCntK9TIg1hZUgpz8SSt3+KiaWTHomIqGKSCYQAIDY2Fhs3bsTWrVuRlpaGSZMmoaCgQDvi5ciRIzFr1izt+tHR0Vi3bh127NiBjIwMHDx4EHPmzEF0dHSZ5C8pkFqeSWUtIXJi6aRHIiKqmGS6xgBg0KBBuHPnDubOnYvs7Gy0bdsWiYmJ2gTq69ev67QAffLJJ1AoFPjkk09w8+ZNeHp6Ijo6Gp999pmlqlBtFbWuREaK94Ja2hLyYm6MHFtCYmI079Xly5r6i/U9IyKSG8kkS1uKvslWpnbkiKYlqLzlPXqYvTh6S0jQBGxq9bOWELnlCBGRfJQm7wYFBcHJycnSxbF6jx8/RmZmpjySpeVOqq0rbAkhIjmxt7cHoMlRZSBkeoWFhQCenffqYCAkEaV5Ji+2rkghsAgIkEY5rYXchysgsiRbW1u4u7vj9u3bAABnZ2coFAoLl8r6CIKAwsJC3L59G+7u7jXK+2UgJCFsXaGqcLgCIssrHdKlNBgi03F3d69wCB19MUeoCmLJESKqCgduJBIXtVqN4uJiSxfDatnb21faEsQcISKZ4cCNROJia2sryaFa5EZS4wgRUcU4cCMRkeEYCBFZCQ7cSERkOHaNkdHwbiXLY0I9EZFh2CJERiG16T+sWUCAZpBNBkFERFVjIEQ1xslViYhIqhgIUY1xclUiIpIqBkJUY7xbiYiIpIqBENUY71YiIiKp4l1jZBS8W4mIiKSIgRAZDSdXJSIiqWHXGBEREckWAyEiIiKSLQZCREREJFsMhIiMKCsLOHKEg0kSEUkFAyEiI+E0I0RE0sNAiMgIOM0IEZE0MRAii7KWriROM0JEJE0MhMhirKkridOMEBFJEwMhsghr60riNCNERNLEkaXJIirrSpJq8MBpRoiIpIeBEFlEaVfS88GQNXQlcZoRIiJpYdcYWQS7koiISAzYIkQWw64kIiKyNAZCZFHsSiIiIkti1xgRERHJFgMhIiIiki0GQkRERCRbkguE1qxZg6CgIDg6OiIsLAwnT56sdP2HDx9i8uTJ8PX1hVKpRJMmTfDjjz+aqbREREQkZpJKlt65cydiY2Oxfv16hIWFIT4+HpGRkUhPT4eXl1eZ9YuKitC7d294eXnhu+++g7+/P65duwZ3d3fzF56IiIhERyEIgmDpQugrLCwML7/8MlavXg0AKCkpQWBgIN59913MnDmzzPrr16/H0qVLceHCBdjb21frmHl5eXBzc0Nubi5cXV1rVH4iIiIyD32v35LpGisqKkJKSgoiIiK0y2xsbBAREYHk5ORyt9m3bx/Cw8MxefJkeHt7o2XLlli0aBHUarW5ik1EREQiJpmusbt370KtVsPb21tnube3Ny5cuFDuNlevXsXhw4cxbNgw/Pjjj7h8+TLeeecdFBcXY968eeVuo1KpoFKptM/z8vKMVwkiIiISFcm0CFVHSUkJvLy8sGHDBoSGhmLQoEGYPXs21q9fX+E2cXFxcHNz0z4CAwPNWGIiIiIyJ8kEQvXq1YOtrS1ycnJ0lufk5MDHx6fcbXx9fdGkSRPYlk5oBaB58+bIzs5GUVFRudvMmjULubm52seNGzeMVwkiIiISFckEQg4ODggNDUVSUpJ2WUlJCZKSkhAeHl7uNp07d8bly5dR8twU5xcvXoSvry8cHBzK3UapVMLV1VXnQURERNZJMoEQAMTGxmLjxo3YunUr0tLSMGnSJBQUFGDMmDEAgJEjR2LWrFna9SdNmoT79+/jvffew8WLF7F//34sWrQIkydPtlQViIiISEQkkywNAIMGDcKdO3cwd+5cZGdno23btkhMTNQmUF+/fh02Ns9iu8DAQBw4cADTp09H69at4e/vj/feew8fffSRpapAREREIiKpcYQsgeMIERERSY/VjSNEREREZGwMhIiIiEi2GAgRERGRbDEQIiIiItliIEREFpeVBRw5ovmXiMicGAgRkUUlJAANGgA9e2r+TUiwdImISE4YCBGRxWRlAePHA6WDv5eUABMmsGWIiMyHgRARWcylS8+CoFJqNXD5smXKQ0Tyw0CIiCwmJASweeFbyNYWCA62THmISH4YCBGRxQQEABs2aIIfQPPvV19plhMRmYOk5hojIusTEwNERmq6w4KDGQQRkXkxECIiiwsIYABERJbBrjEikhWOWUREz2MgRESywTGLiOhFDISISBY4ZhERlYeBEBHJAscsIqLyMBAiIlngmEVEVB4GQkQkCxyziIjKw9vniUg2OGYREb2IgRARyQrHLCKi57FrjKgCHG+GiMj6MRAiKgfHm5E2BrFEpC8GQkQv4Hgz0sYglogMwUCI6AUcb0a6GMQSkaEYCBG9gOPNSBeDWCIyFAMhohdwvBnp0ieIZf4QET2PgRBROWJigMxMzQUzM1PznMSvqiCW+UNE9CKFIAiCpQshZnl5eXBzc0Nubi5cXV0tXRwi0kNWVtlBE7OyNMHP811ntraaQJetfUTWR9/rNwdUlJisLE0eREgIv7yJKlLeoImV5Q/xs0QkX+wakxA26xNVH5Pgiag8DIQkQsq3BVtjcqo11snaMQmeiMrDQEgiqrotWKwXZmtsxbLGOskFk+CJ6EWSC4TWrFmDoKAgODo6IiwsDCdPntRrux07dkChUGDAgAGmLaCJVNasL9YLs5RbsSpijXWSm4AAoEcPtgQRkYakAqGdO3ciNjYW8+bNw+nTp9GmTRtERkbi9u3blW6XmZmJDz74AF27djVTSY2vomZ9QLwXZmsc3M4a60REJGeSCoSWL1+OcePGYcyYMWjRogXWr18PZ2dnbNq0qcJt1Go1hg0bhgULFqBRo0ZmLK3xldesL+YLszUmp1pjnYiI5EwygVBRURFSUlIQERGhXWZjY4OIiAgkJydXuN3f/vY3eHl5IcZKkgFebNYX84XZGpNTrbFORERyJplxhO7evQu1Wg1vb2+d5d7e3rhw4UK52/z6669ISEhAamqq3sdRqVRQqVTa53l5edUqr7mUXpgnTNC0BIntwhwTA0RGlh3cTsqssU5ERHIlmUDIUI8ePcKIESOwceNG1KtXT+/t4uLisGDBAhOWzPjEfmEub3A7qbPGOhERyZFkAqF69erB1tYWOTk5OstzcnLg4+NTZv0rV64gMzMT0dHR2mUl/59MY2dnh/T0dDRu3LjMdrNmzUJsbKz2eV5eHgIDA41VDZPhhZmIiMhwkgmEHBwcEBoaiqSkJO0t8CUlJUhKSsKUKVPKrN+sWTOcPXtWZ9knn3yCR48eYeXKlRUGN0qlEkql0ujlJyIiIvGRTCAEALGxsRg1ahQ6dOiAjh07Ij4+HgUFBRgzZgwAYOTIkfD390dcXBwcHR3RsmVLne3d3d0BoMxyIiIikidJBUKDBg3CnTt3MHfuXGRnZ6Nt27ZITEzUJlBfv34dNi/eQkUkM5yYl4hIfwpBEARLF0LM8vLy4ObmhtzcXLi6ulq6OESVSkh4NsCmjY3mjkIrGTmCiMgg+l6/2XxCZCU4/QcRkeEYCBFZCTGPMk5EJFYMhIishJhHGSciEisGQkRWgtN/EBEZTlJ3jRFR5cQ+yjgRkdgwECKyMhxlnIhIf+waIyIiItliIERERESyxUCIiIiIZIuBEBlNVhZw5AgH8CMiIulgICQxYg02EhKABg2Anj01/yYkWLpEREREVWMgJCFiDTY4tQMREUkVAyGJEHOwwakdiIhIqhgISYSYgw1O7UBERFLFQEgixBxscGoHIiKSKgZCEiH2YCMmBsjM1CRyZ2ZqnhMREYmdQhAEwdKFELO8vDy4ubkhNzcXrq6uli4OsrI4jxQREVFV9L1+c64xieE8UkRERMbDrjEiIiKSLQZCREREJFsMhIiIiEi2GAgRERGRbDEQIiIiItliIERERESyxUCIjCYrSzOgohjmPyMiItIHAyEyioQEoEEDoGdPzb8JCZYuEZFlWfqHgaWPTyQVDISoxrKygPHjn00KW1ICTJjAL2C5qs4F2Nou2pb+YWDp4xNJCQMhqrFLl54FQaXUas1UICQv1bkAW9tF29I/DCx9fCKpYSBENRYSAti88Jdka6uZD43kozoXYGu8aFv6h4Glj08kNQyEqMYCAoANGzTBD6D596uvOCea3FTnAmyNF21L/zCw9PGJpIaBEBlFTAyQmanJ88jM1DwneanOBdgaL9qW/mFg6eMTSY1CEATB0oUQs7y8PLi5uSE3Nxeurq6WLg5VU1aWpvUhJIQXBFNKSNB0banVzy7AVQXF1dlGCrKyNC1bwcGW+Zuz9PGJLE3f67fkWoTWrFmDoKAgODo6IiwsDCdPnqxw3Y0bN6Jr166oU6cO6tSpg4iIiErXJ+tkbcm4YladlkFrbU0MCAB69LBcEGLp4xNJhaQCoZ07dyI2Nhbz5s3D6dOn0aZNG0RGRuL27dvlrn/06FEMGTIER44cQXJyMgIDA/Haa6/h5s2bZi45WYo1JuOKXXUuwLxok7lZ25ANVH2S6hoLCwvDyy+/jNWrVwMASkpKEBgYiHfffRczZ86scnu1Wo06depg9erVGDlypF7HZNeYtB05omkJKm95jx7GPx674IjELyHh2Q8kGxtNTpW1tETSM1bXNVZUVISUlBRERERol9nY2CAiIgLJycl67aOwsBDFxcXw8PAwVTFJZMyZjMsuOCLxYysxvUgygdDdu3ehVqvh7e2ts9zb2xvZ2dl67eOjjz6Cn5+fTjD1IpVKhby8PJ0HSZe57qDhlyuRNFjjkA1UM5IJhGpq8eLF2LFjB/bu3QtHR8cK14uLi4Obm5v2ERgYaMZSkimYIxmXX65E0mCNQzZQzUgmEKpXrx5sbW2Rk5OjszwnJwc+Pj6Vbrts2TIsXrwYP/30E1q3bl3purNmzUJubq72cePGjRqXnSzP1Mm4/HIlkgaOs0Qvkkwg5ODggNDQUCQlJWmXlZSUICkpCeHh4RVut2TJEixcuBCJiYno0KFDlcdRKpVwdXXVeRBVhV+uRNJhrUM2UPXYWboAhoiNjcWoUaPQoUMHdOzYEfHx8SgoKMCYMWMAACNHjoS/vz/i4uIAAJ9//jnmzp2L7du3IygoSJtLVKtWLdSqVcti9SDrFBMDREZyEDsiKQgI4GeUNKoVCGVlZcHd3b1MMFFcXIzk5GR069bNKIV70aBBg3Dnzh3MnTsX2dnZaNu2LRITE7UJ1NevX4fNc/0T69atQ1FREf7yl7/o7GfevHmYP3++ScpI8sYvVyIiaTFoHKFbt26hf//+SElJgUKhwNChQ7F27VptQJSTkwM/Pz+o1WqTFdjcOI4QWRLHJSIiqh6TjCM0c+ZM2NjY4MSJE0hMTMT58+fx6quv4sGDB9p1JDQ+I5GocVwiIiLTM6hFyN/fH3v37kXHjh0BaMbc+etf/4obN24gKSkJxcXFbBEiq2HJ1pisLE3w8/wt+ba2msROtgwREVXNJC1Cubm5qFOnjva5UqnEnj17EBQUhFdffbXCOb+IpMbSrTEcl4iIyDwMCoQaNWqE33//XWeZnZ0ddu3ahUaNGuH11183auFIf5xA0HjEMEo0xyUiIjIPgwKhPn36YMOGDWWWlwZDbdu2NVa5yACWbr2wNmJojeG4RERE5mFQjtDTp09RWFio7Wu7e/cuAM2oz6Wv37x5Ew0aNDBBUS1D7DlCzCUxPjGd06wsjktERFQdJskRsrOzQ0lJCSZPnox69erB29sb3t7eqFevHqZMmYL8/HyrCoKkQAytF9ZGTK0xxpwahN2nRERlGTSg4v379xEeHo6bN29i2LBhaN68OQDg/Pnz2LJlC5KSknD8+HGdhGoyrdJckhdbL5hLUjPWNkp0QsKzvCcbG02gx2kFiIgM7BqbNm0akpKScOjQIe1ozqWys7Px2muvoVevXlixYoXRC2opYu8aAzQXuQkTNC1Bpa0XvMhRKTF19RERmYtJusa+//57LFu2rEwQBAA+Pj5YsmQJ9u7da3hpqUY4gSBVht2nREQVM6hr7NatW3jppZcqfL1ly5baiU3JvDjHFVWE3adERBUzqEWoXr16yMzMrPD1jIwMeHh41LRMRGREYkr+JiISG4NyhN5++21cuXIFBw8ehIODg85rKpUKkZGRaNSoETZt2mT0glqKFHKEiPTBW/GJSE70vX4bFAhlZWWhQ4cOUCqVmDx5Mpo1awZBEJCWloa1a9dCpVLht99+Q2BgoFEqIQYMhIiIiKRH3+u3QTlCAQEBSE5OxjvvvINZs2ZpZ5pXKBTo3bs3Vq9ebVVBEBEREVk3gwIhAGjYsCH+9a9/4cGDB7h06RIAIDg4mLlBRmTJWc+JiIjkxOBAqFSdOnXQsWNHY5aFwIHvSPoYyBORlBh01xiZlhhmPSeqCU4ATERSw0BIRDjwHUkZA3kikiIGQiJSOvDd8zjwHUkFA3kikiIGQiLCge9IyhjIE5EUMRASGc4bRlLFQJ6IpMigARXlyFQDKvLOGrJWHMGaiMTAJLPPk3HwzhqyZgEBQI8eDIKISBoYCJkZ76whkoesLE0XNz/bROLGQMjMeGcNkfVjqy+RdDAQMjPeWUNk3djqSyQtDITMjHfWEFk3tvoSSUu15xqj6ouJASIjeWcNkTUqbfV9Phhiqy+ReLFFyEJ4Zw2RdWKrL5G0sEWIiIyKY2Sx1ZdIStgiRERGw7ulnmGrL5E0SK5FaM2aNVi6dCmys7PRpk0bfPnll+jYsWOF6+/atQtz5sxBZmYmQkJC8Pnnn6Nv375mLPEz9+7dQ1FRUbmv3bhxA2q1GrVq1SrzWkZGBkpKSuDh4aGz/P79+ygqKoKTkxOCgoJ0Xnv06BHs7OwQGBhY7vEcHBxQt27d6lXkOWfOnMGjR4/KLM/MzMSTJ0+gVCpRr149ndeePHkCJycntGvXTu+yVXbuKtrmypUrKCwsLLPuo0eP8PTpUzg6OpY5Pzdu3MDTp09Ru3btcrcr75xeuHABhYWFsLW1hbOzs85rhYWFUCqVaNasmUXqmp+fj+Li4nLraszj//LLL7h6tQjjxvWEICgAaHJkxo8vgZ3dETRq5ICuXbvqVeZSzs7OaNy4cZnlFZUvNzcXxcXFsLOzg7u7u85r6enpePLkSbnvj1qthrOzc5n36OHDh1AoFHBzc9P7OBcuXIBKpSpznFK1a9eu8O/eGKp7TivaLiMjA0+ePIG9vX2Z97ywsBCOjo5o2rSpzvKsrCw8fvwYdnZ2ZT5Hjx49gr29PQIqiA4N+V6q6vu0vM/x77//joKCAtjb28PFxUXntaKiIjg7OyM8PLzGZauu6vxtV+fvFDD8s5+VlYXi4uIy57Sy7xhjls2UJBUI7dy5E7GxsVi/fj3CwsIQHx+PyMhIpKenw8vLq8z6x48fx5AhQxAXF4fXX38d27dvx4ABA3D69Gm0bNnSrGW/d+8eVq9ebbL9nz592uBtpkyZUqM/tjNnzmDfvn1VrpeZmVnu8lOnTlW4zfNl0/fcPb/NlStX8M0331S5jbn8/PPPFb5m6brW9Pi//PILDh8+jIyMIG0QVKqkxAZHjtxAZuY1ANAGQ/qWefjw4ToXblN+jip7j4zNFMFQdc9pTf9+/v3vf1d72/Lo871kyr+Ds2fPVvhaTb8zK2Pqa0R5qvPZNxdTnusXSaprbPny5Rg3bhzGjBmDFi1aYP369XB2dsamTZvKXX/lypWIiorChx9+iObNm2PhwoVo3769Rd7syn5hW0pNy1ReS5CxPF82fcv5/HqV/SoWG0vXtabHz8vLAwB4eNyDQqF737hCUQIPj/s66wH6l/nF9cT4OTKUqT431T2nYvus6PMeW+rvwJTHtUSdqvPZNxdzlkcygVBRURFSUlIQERGhXWZjY4OIiAgkJyeXu01ycrLO+gAQGRlZ4fpEVH1ubo8QHf2DNhhSKEoQHf0D3NxMFzATEdWUZLrG7t69C7VaDW9vb53l3t7euHDhQrnbZGdnl7t+dnZ2hcdRqVRQqVTa58//iiWiyrVvfwaNG1/G/fse8PC4zyCIiERPMi1C5hIXFwc3Nzfto6JkYyIqn5vbIzRseM2qgqDc3NrIyAhCbm7ZJHoikjbJtAjVq1cPtra2yMnJ0Vmek5MDHx+fcrfx8fExaH0AmDVrFmJjY7XP8/LyGAwRydjp0+3wz3++DkGw0Xb3tW9/xtLFIiIjkUyLkIODA0JDQ5GUlKRdVlJSgqSkpApvdwwPD9dZHwAOHjxY4foAoFQq4erqqvMgInnKza2tDYIAQBBs8M9/vs6WISIrIpkWIQCIjY3FqFGj0KFDB3Ts2BHx8fEoKCjAmDFjAAAjR46Ev78/4uLiAADvvfceunfvji+++AL9+vXDjh078Ntvv2HDhg2WrAYRScT9+3W1QVApQbDB/fseVtX1RyRnkgqEBg0ahDt37mDu3LnIzs5G27ZtkZiYqE2Ivn79Omxsnn1pderUCdu3b8cnn3yCjz/+GCEhIfj+++/NPoYQoGnREpualqm8QQeN5fmy6VvO59eraEA7MbJ0XWt6fH1bTZ9fT98yv7ieuT9HpUMCPB8MPT8kQHWY6nNT3XMqts+KPu+xpb5PTXlcS9SpOp99czFneRSCIAhmO5oE5eXlwc3NDbm5uTXuJuPI0hocWdp8dTXnyNKV3WHp6uoq2ZGl9+/3wUcfuUGtVsDWVsD8+dno3/8uR5bmyNJGx5GlKy5bdeh7/WYgVAVjBkJEJE1ZWZxAlUhq9L1+S6prjIjIEgICGAARVSUrC7h0CQgJkdbnRTJ3jREREZE4JSQADRoAPXtq/k1IsHSJ9MdAiIiIiKotKwsYPx4o+f+pBktKgAkTNMulgIEQERERVdulS8+CoFJqtSavTgoYCBEREVG1hYQANi9EE7a2mpsLpICBEBER1UhWFnDkiHS6Qsi4AgKADRs0wQ+g+ferr6STMM1AiIiIqk3KSbJkPDExQGamJiDOzNQ8lwqOI1QFjiNERFS+rCxN8PN8foitreZCKJXWALJe+l6/2SJERETVIvUkWSKAgRBJEPMRiMRB6kmyRAADIZIY5iMQiYfUk2SJAOYIVYk5QuLBfAQiceJcbCRGnGuMrE5l+Qj88iWyHM7FRlLGrjGSDOYjkNgwX41I+hgIkWSYIh+BFzKqLuarEVkH5ghVgTlC4mOsfISEhGcTBdrYaIIsKQ0CRpbDfDUi8eM4QmS1AgKAHj1q3hIk5dmSybI4fg6R9WAgRLLECxnVBPPViKwHAyEZYB5MWbyQUU1w/Bwi68FAyMoxobN8vJBRTUl5kkkieobJ0lWQcrI0EzqrxoHgiIisEwdUJA5AqAcOBEdEJG/sGrNizIMhIiKqHAMhK8Y8GCIiosqxa8zKxcQAkZHMgyEiIioPAyEZYB4MERFR+dg1RkREZmeu8c04jhpVhYEQmRy/iIjoeeYa34zjqJE+OI5QFaQ8jpAYiGVi06wszXACISHsJiSyJHONb8Zx1IiTrpLFiWViU/4qJBIPc83zx/kESV8MhMhkxPBFJJZgjIg0zDW+GcdRqxk5pTRIJhC6f/8+hg0bBldXV7i7uyMmJgb5+fmVrv/uu++iadOmcHJyQv369TF16lTk5uaasdTyJoYvIjEEY0T0jLnGN+M4atUnt1Z0yeQI9enTB7du3cJXX32F4uJijBkzBi+//DK2b99e7vp//PEH5s2bh9GjR6NFixa4du0aJk6ciNatW+O7777T+7jMEaqZhARNC4xa/eyLyJw5QswTMD/mY5E+zDXPH+cTNIw1fWfqe/2WRCCUlpaGFi1a4NSpU+jQoQMAIDExEX379kVWVhb8/Pz02s+uXbswfPhwFBQUwM5OvyGUGAjVnKW/iCwdjMmJWJLjiah6jhzRtASVt7xHD7MXp0asKlk6OTkZ7u7u2iAIACIiImBjY4MTJ07ovZ/Sk6FvEETGERCg+QBZ6tdETIzm18yRI5p/eWE2DeZjkZTIKQfGEGJIaTA3SQRC2dnZ8PLy0llmZ2cHDw8PZGdn67WPu3fvYuHChRg/fnyl66lUKuTl5ek8SPrMFYzJ+cuV+VgkFXLLgTGEHHOrLBoIzZw5EwqFotLHhQsXanycvLw89OvXDy1atMD8+fMrXTcuLg5ubm7aR2BgYI2PT/Ig9y9XOf6SJOlhy2XV5NaKbtEcoTt37uDevXuVrtOoUSN88803eP/99/HgwQPt8qdPn8LR0RG7du3Cf/3Xf1W4/aNHjxAZGQlnZ2f88MMPcHR0rPR4KpUKKpVK+zwvLw+BgYHMEaJKWVOCYU0wH4vEzppyYKhy+uYIWTRZxtPTE56enlWuFx4ejocPHyIlJQWhoaEAgMOHD6OkpARhYWEVbpeXl4fIyEgolUrs27evyiAIAJRKJZRKpf6VIELl3UJyCoRiYoDISN6lQ+JV2nL54o8WtlzKlyRyhJo3b46oqCiMGzcOJ0+exLFjxzBlyhQMHjxYe8fYzZs30axZM5w8eRKAJgh67bXXUFBQgISEBOTl5SE7OxvZ2dlQq9WWrA5ZIXYLPWPp5HgSDzHmzMkxB4YqJ4lACAC2bduGZs2aoVevXujbty+6dOmCDRs2aF8vLi5Geno6CgsLAQCnT5/GiRMncPbsWQQHB8PX11f7uHHjhqWqQVaKX65EusScMye3HBiqnCTGEbIkjiNEhrD0mElEYsCcORIDSeQIEVmbgAB+0RMxZ46kRDJdY0REJA3MmSMpYSBERERGxZw5khJ2jRERkdFxKAWSCgZCRERkEsyZIylg1xgRERHJFgMhIiIiki0GQkRERCRbDISIiIisgBinNJECBkJEREQSJ+YpTcSOgRAREZGEZWUB48c/G827pASYMIEtQ/piIERERCRhlU1pQlVjIERERCRhnNKkZhgIEVGFmHxJJH6c0qRmGAiJEC8+JAZMviQSn4quDzExQGam5rXMTM1z0g8DIZHhxYfEgMmXROJT1fUhIADo0YMtQYZiICQivPiQWDD5kkhceH0wHQZCIsKLD4kFky/li13z4sTrg+kwEBIRXnxILJh8KU/smhcvXh9Mh4GQiPDiQ2LC5Et5YdeLuNXk+sBWvsopBEEQLF0IMcvLy4Obmxtyc3Ph6upqlmNmZWmaO4ODGQQRkXkcOaJpCSpveY8eZi8OVcDQ60NCwrMA18ZGE0zJ5UeNvtdvBkJVsEQgRERkbllZmu6w5/NQbG01rYH8QSZNcn9P9b1+s2uMiIjYNW+FmGCtHztLF4CIiMQhJgaIjGTXvLUoTbB+sUWICda62CJERERaHJTPerCVTz9sESIiskJZWZqukZAQ41z4jL0/Mg+28lWNLUJERFbG2OMBcXwhaWMrX+V411gVeNcYEVWHpVpQjH2nkNzvPCLp4l1jREQWYskWFGPfKcQ7j8jaMRAiIskS44i5lh6h2dhTMXBqB7J2DISISJLEmrdi6RYUY98pxDuPyNoxR6gKzBEiEh8x562IpWzGnqqHU/+Q1FhdjtD9+/cxbNgwuLq6wt3dHTExMcjPz9drW0EQ0KdPHygUCnz//femLSgRmZylW10qI5YWFGPfKcQ7j8haSWYcoWHDhuHWrVs4ePAgiouLMWbMGIwfPx7bt2+vctv4+HgoFAozlJKIzEHsI+Zy7BYi6ZBEIJSWlobExEScOnUKHTp0AAB8+eWX6Nu3L5YtWwY/P78Kt01NTcUXX3yB3377Db6+vuYqMhGZUGmry4QJmpYgMeatBASIqzxEVD5JdI0lJyfD3d1dGwQBQEREBGxsbHDixIkKtyssLMTQoUOxZs0a+Pj4mKOoRGQmMTGavJsjRzT/xsRYukQkJWK841COxPA+SCIQys7OhpeXl84yOzs7eHh4IDs7u8Ltpk+fjk6dOqF///56H0ulUiEvL0/nQUTixLwVqg6x3nEoN2J5HywaCM2cORMKhaLSx4ULF6q173379uHw4cOIj483aLu4uDi4ublpH4GBgdU6PhERiY+lx3kiDTG9DxbNEXr//fcxevToStdp1KgRfHx8cPv2bZ3lT58+xf379yvs8jp8+DCuXLkCd3d3neUDBw5E165dcfTo0XK3mzVrFmJjY7XP8/LyGAwREVmJyu44ZMui+YjpfbBoIOTp6QlPT88q1wsPD8fDhw+RkpKC0NBQAJpAp6SkBGFhYeVuM3PmTIwdO1ZnWatWrbBixQpER0dXeCylUgmlUmlALYiISCrEfsehXIjpfZBEjlDz5s0RFRWFcePG4eTJkzh27BimTJmCwYMHa+8Yu3nzJpo1a4aTJ08CAHx8fNCyZUudBwDUr18fDRs2tFhdiIjIcsQyzpPciel9kMTt8wCwbds2TJkyBb169YKNjQ0GDhyIVatWaV8vLi5Geno6CgsLLVhKIiLrlJWl6c4ICRFf0GBo2TjOkziI5X3gFBtV4BQbRCR3CQnPElttbDS/5MUyXIGYy0aWpe/1m4FQFRgIEZGciWXutPKIuWxkeVY31xgREZmfmOd1E3PZSJcYBk6sCAMhIiLSevGCVXp3z/PEcpdVTcom5guztRHLwIkVYSBEREQAyr9gienunhdVt2xivzBbEzENnFgR5ghVgTlCRCQHVeXbZGVZ/u6eihhSNuYVmdeRI5qAs7zlPXqY9tj6Xr8lc/s8ERGZTlUj/ZY+xMiQsolpRGM5ENPAiRVh1xgREYk6F8iY5FJPsRBz12opBkJERCSJC5YxyKWeYhITo+l6PHJE86/YxnlijlAVmCNERHIi5lwgY5JLPeWMOUJERGQwMecCGZNc6klVY9cYERERyRYDISIiIpItBkJEREQkWwyEiIiISLYYCBEREZFsMRAiIlnhZJtE9DwGQkQkG5VNtskAiUg/1vZZYSBERLJQ2SzYnI2cSD/W+FlhIEREslDRZJvJyRUHSET0TGU/JqSMgRARyUJFk20KQsWzkRPRMxX9mJD6Z4WBEBHJQkWTbXbqxNnIrZm15bNYUkU/JqT+WWEgRESyUd4s2JyN3HpZYz6LJVnrZ4Wzz1eBs88TyQNnI7cuWVma4Of5rhxbW00AzPe3ZqTyWeHs80REBuBs5NalsnwWvs81Y22fFXaNERGR1bHWfBYyPgZCRERkdaw1n4WMj11jRERklWJigMhIaeSzkOUwECIiIqsl1XyWrCxNnlNIiDTLLyXsGiMiIhIR3vZvXgyEiIiIRMJap7EQMwZCREREImGt01iIGQMhIiIikeBt/+YnmUDo/v37GDZsGFxdXeHu7o6YmBjk5+dXuV1ycjJ69uwJFxcXuLq6olu3bnj8+LEZSkxERGQY3vZvfpIJhIYNG4Zz587h4MGD+OGHH/Dzzz9j/PjxlW6TnJyMqKgovPbaazh58iROnTqFKVOmwObFcJuIiOj/WXqi1vLmxCPTkcRcY2lpaWjRogVOnTqFDh06AAASExPRt29fZGVlwc/Pr9ztXnnlFfTu3RsLFy6s9rE51xgRkXwkJDxLVrax0bTOMBCRJn2v35JoGklOToa7u7s2CAKAiIgI2NjY4MSJE+Vuc/v2bZw4cQJeXl7o1KkTvL290b17d/z666/mKjYREUkI79iSJ0kEQtnZ2fDy8tJZZmdnBw8PD2RnZ5e7zdWrVwEA8+fPx7hx45CYmIj27dujV69euHTpUoXHUqlUyMvL03kQEcmdpbuLjK28+vCOLXmyaCA0c+ZMKBSKSh8XLlyo1r5L/v+vecKECRgzZgzatWuHFStWoGnTpti0aVOF28XFxcHNzU37CAwMrNbxiYishbUN8FdRfXjHljxZNBB6//33kZaWVumjUaNG8PHxwe3bt3W2ffr0Ke7fvw8fH59y9+3r6wsAaNGihc7y5s2b4/r16xWWadasWcjNzdU+bty4UcNaEhFJV026i8TYilRZfXjHljxZdK4xT09PeHp6VrleeHg4Hj58iJSUFISGhgIADh8+jJKSEoSFhZW7TVBQEPz8/JCenq6z/OLFi+jTp0+Fx1IqlVAqlQbUgojIelXWXVRZgCDWpOOq6sOJWuVHEjlCzZs3R1RUFMaNG4eTJ0/i2LFjmDJlCgYPHqy9Y+zmzZto1qwZTp48CQBQKBT48MMPsWrVKnz33Xe4fPky5syZgwsXLiBGDJ9GIiIJqE53kZiTjvWpT0AA0KMHgyC5kEQgBADbtm1Ds2bN0KtXL/Tt2xddunTBhg0btK8XFxcjPT0dhYWF2mXTpk3DrFmzMH36dLRp0wZJSUk4ePAgGjdubIkqEBFJTnW6i8ScdMzur5oTY5dnTUhiHCFL4jhCRESai56+3UVZWZok5OeDIVtbzeCAYgk4DKkPPSPWLs/y6Hv9ZiBUBQZCRESGS0jQdIep1c9aXcR6wST9SCHAfZ6+12+LJksTEZF1YtKx9alu4rzYMRAiIiKTCAiQ9gWSdJUmmr/YIiT1cZYkkyxNRERElmOtieZsESIiIiK9WGOXJwMhIiIi0pu1dXmya4yIiIhki4EQERERyRYDISIiIpItBkJEREQkWwyEiIiISLYYCBEREZFsMRAiIiIi2WIgRERERLLFQIiIiIhki4EQERERyRYDISIiIpItzjVWBUEQAAB5eXkWLgkRERHpq/S6XXodrwgDoSo8evQIABAYGGjhkhAREZGhHj16BDc3twpfVwhVhUoyV1JSgj///BO1a9eGQqEw2n7z8vIQGBiIGzduwNXV1Wj7lRK5nwO51x/gOZB7/QGeA9bfdPUXBAGPHj2Cn58fbGwqzgRii1AVbGxsEBAQYLL9u7q6yvKP/3lyPwdyrz/AcyD3+gM8B6y/aepfWUtQKSZLExERkWwxECIiIiLZYiBkIUqlEvPmzYNSqbR0USxG7udA7vUHeA7kXn+A54D1t3z9mSxNREREssUWISIiIpItBkJEREQkWwyEiIiISLYYCBEREZFsMRAyoTVr1iAoKAiOjo4ICwvDyZMnK1z33LlzGDhwIIKCgqBQKBAfH2++gpqQIedg48aN6Nq1K+rUqYM6deogIiKi0vWlwJD679mzBx06dIC7uztcXFzQtm1bfP3112YsrWkYcg6et2PHDigUCgwYMMC0BTQxQ+q/ZcsWKBQKnYejo6MZS2t8hr7/Dx8+xOTJk+Hr6wulUokmTZrgxx9/NFNpTcOQc9CjR48yfwMKhQL9+vUzY4mNy9C/gfj4eDRt2hROTk4IDAzE9OnT8eTJE9MVUCCT2LFjh+Dg4CBs2rRJOHfunDBu3DjB3d1dyMnJKXf9kydPCh988IHw7bffCj4+PsKKFSvMW2ATMPQcDB06VFizZo1w5swZIS0tTRg9erTg5uYmZGVlmbnkxmFo/Y8cOSLs2bNHOH/+vHD58mUhPj5esLW1FRITE81ccuMx9ByUysjIEPz9/YWuXbsK/fv3N09hTcDQ+m/evFlwdXUVbt26pX1kZ2ebudTGY2j9VSqV0KFDB6Fv377Cr7/+KmRkZAhHjx4VUlNTzVxy4zH0HNy7d0/n/f/jjz8EW1tbYfPmzeYtuJEYWv9t27YJSqVS2LZtm5CRkSEcOHBA8PX1FaZPn26yMjIQMpGOHTsKkydP1j5Xq9WCn5+fEBcXV+W2DRo0sIpAqCbnQBAE4enTp0Lt2rWFrVu3mqqIJlXT+guCILRr10745JNPTFE8s6jOOXj69KnQqVMn4e9//7swatQoSQdChtZ/8+bNgpubm5lKZ3qG1n/dunVCo0aNhKKiInMV0eRq+j2wYsUKoXbt2kJ+fr6pimhShtZ/8uTJQs+ePXWWxcbGCp07dzZZGdk1ZgJFRUVISUlBRESEdpmNjQ0iIiKQnJxswZKZjzHOQWFhIYqLi+Hh4WGqYppMTesvCAKSkpKQnp6Obt26mbKoJlPdc/C3v/0NXl5eiImJMUcxTaa69c/Pz0eDBg0QGBiI/v3749y5c+YortFVp/779u1DeHg4Jk+eDG9vb7Rs2RKLFi2CWq02V7GNyhjfgwkJCRg8eDBcXFxMVUyTqU79O3XqhJSUFG332dWrV/Hjjz+ib9++JisnJ101gbt370KtVsPb21tnube3Ny5cuGChUpmXMc7BRx99BD8/P50PkVRUt/65ubnw9/eHSqWCra0t1q5di969e5u6uCZRnXPw66+/IiEhAampqWYooWlVp/5NmzbFpk2b0Lp1a+Tm5mLZsmXo1KkTzp07Z9LJn02hOvW/evUqDh8+jGHDhuHHH3/E5cuX8c4776C4uBjz5s0zR7GNqqbfgydPnsQff/yBhIQEUxXRpKpT/6FDh+Lu3bvo0qULBEHA06dPMXHiRHz88ccmKycDIRKlxYsXY8eOHTh69Kjkk0UNUbt2baSmpiI/Px9JSUmIjY1Fo0aN0KNHD0sXzeQePXqEESNGYOPGjahXr56li2MR4eHhCA8P1z7v1KkTmjdvjq+++goLFy60YMnMo6SkBF5eXtiwYQNsbW0RGhqKmzdvYunSpZIMhGoqISEBrVq1QseOHS1dFLM5evQoFi1ahLVr1yIsLAyXL1/Ge++9h4ULF2LOnDkmOSYDIROoV68ebG1tkZOTo7M8JycHPj4+FiqVedXkHCxbtgyLFy/GoUOH0Lp1a1MW02SqW38bGxsEBwcDANq2bYu0tDTExcVJMhAy9BxcuXIFmZmZiI6O1i4rKSkBANjZ2SE9PR2NGzc2baGNyBjfA/b29mjXrh0uX75siiKaVHXq7+vrC3t7e9ja2mqXNW/eHNnZ2SgqKoKDg4NJy2xsNfkbKCgowI4dO/C3v/3NlEU0qerUf86cORgxYgTGjh0LAGjVqhUKCgowfvx4zJ49GzY2xs/oYY6QCTg4OCA0NBRJSUnaZSUlJUhKStL5tWfNqnsOlixZgoULFyIxMREdOnQwR1FNwlh/AyUlJVCpVKYooskZeg6aNWuGs2fPIjU1Vft444038OqrryI1NRWBgYHmLH6NGeNvQK1W4+zZs/D19TVVMU2mOvXv3LkzLl++rA2AAeDixYvw9fWVXBAE1OxvYNeuXVCpVBg+fLipi2ky1al/YWFhmWCnNDAWTDU1qsnSsGVux44dglKpFLZs2SKcP39eGD9+vODu7q69FXbEiBHCzJkzteurVCrhzJkzwpkzZwRfX1/hgw8+EM6cOSNcunTJUlWoMUPPweLFiwUHBwfhu+++07l99NGjR5aqQo0YWv9FixYJP/30k3DlyhXh/PnzwrJlywQ7Ozth48aNlqpCjRl6Dl4k9bvGDK3/ggULhAMHDghXrlwRUlJShMGDBwuOjo7CuXPnLFWFGjG0/tevXxdq164tTJkyRUhPTxd++OEHwcvLS/j0008tVYUaq+5noEuXLsKgQYPMXVyjM7T+8+bNE2rXri18++23wtWrV4WffvpJaNy4sfDWW2+ZrIwMhEzoyy+/FOrXry84ODgIHTt2FP7zn/9oX+vevbswatQo7fOMjAwBQJlH9+7dzV9wIzLkHDRo0KDcczBv3jzzF9xIDKn/7NmzheDgYMHR0VGoU6eOEB4eLuzYscMCpTYuQ87Bi6QeCAmCYfWfNm2adl1vb2+hb9++wunTpy1QauMx9P0/fvy4EBYWJiiVSqFRo0bCZ599Jjx9+tTMpTYuQ8/BhQsXBADCTz/9ZOaSmoYh9S8uLhbmz58vNG7cWHB0dBQCAwOFd955R3jw4IHJyqcQBFO1NRERERGJG3OEiIiISLYYCBEREZFsMRAiIiIi2WIgRERERLLFQIiIiIhki4EQERERyRYDISIiIpItBkJERCIxevRoDBgwwNLFIJIVBkJEVKXRo0dDoVBoH3Xr1kVUVBR+//13SxfNKJ6vW+mjS5cuJjteZmYmFAoFUlNTdZavXLkSW7ZsMdlxiagsBkJEpJeoqCjcunULt27dQlJSEuzs7PD6669bulhGs3nzZm39bt26hX379pW7XnFxscnK4ObmBnd3d5Ptn4jKYiBERHpRKpXw8fGBj48P2rZti5kzZ+LGjRu4c+cOevbsiSlTpuisf+fOHTg4OGhnng4KCsLChQsxZMgQuLi4wN/fH2vWrNHZZvny5WjVqhVcXFwQGBiId955B/n5+drXr127hujoaNSpUwcuLi546aWX8OOPPwIAHjx4gGHDhsHT0xNOTk4ICQnB5s2b9a6fu7u7tn4+Pj7w8PDQttzs3LkT3bt3h6OjI7Zt24Z79+5hyJAh8Pf3h7OzM1q1aoVvv/1WZ38lJSVYsmQJgoODoVQqUb9+fXz22WcAgIYNGwIA2rVrB4VCgR49egAo2zWmUqkwdepUeHl5wdHREV26dMGpU6e0rx89ehQKhQJJSUno0KEDnJ2d0alTJ6Snp+tdbyK5YyBERAbLz8/HN998g+DgYNStWxdjx47F9u3boVKptOt888038Pf3R8+ePbXLli5dijZt2uDMmTOYOXMm3nvvPRw8eFD7uo2NDVatWoVz585h69atOHz4MGbMmKF9ffLkyVCpVPj5559x9uxZfP7556hVqxYAYM6cOTh//jz+9a9/IS0tDevWrUO9evWMUt/SsqalpSEyMhJPnjxBaGgo9u/fjz/++APjx4/HiBEjcPLkSe02s2bNwuLFi7Xl2r59O7y9vQFAu96hQ4dw69Yt7Nmzp9zjzpgxA7t378bWrVtx+vRpBAcHIzIyEvfv39dZb/bs2fjiiy/w22+/wc7ODm+//bZR6k0kCyabzpWIrMaoUaMEW1tbwcXFRXBxcREACL6+vkJKSoogCILw+PFjoU6dOsLOnTu127Ru3VqYP3++9nmDBg2EqKgonf0OGjRI6NOnT4XH3bVrl1C3bl3t81atWuns83nR0dHCmDFjqlU/AIKjo6O2fi4uLsLevXuFjIwMAYAQHx9f5T769esnvP/++4IgCEJeXp6gVCqFjRs3lrtu6X7PnDmjs3zUqFFC//79BUEQhPz8fMHe3l7Ytm2b9vWioiLBz89PWLJkiSAIgnDkyBEBgHDo0CHtOvv37xcACI8fPzbkFBDJFluEiEgvr776KlJTU5GamoqTJ08iMjISffr0wbVr1+Do6IgRI0Zg06ZNAIDTp0/jjz/+wOjRo3X2ER4eXuZ5Wlqa9vmhQ4fQq1cv+Pv7o3bt2hgxYgTu3buHwsJCAMDUqVPx6aefonPnzpg3b55OsvakSZOwY8cOtG3bFjNmzMDx48cNqt+KFSu09UtNTUXv3r21r3Xo0EFnXbVajYULF6JVq1bw8PBArVq1cODAAVy/fh0AkJaWBpVKhV69ehlUhudduXIFxcXF6Ny5s3aZvb09OnbsqHPOAKB169ba//v6+gIAbt++Xe1jE8kJAyEi0ouLiwuCg4MRHByMl19+GX//+99RUFCAjRs3AgDGjh2LgwcPIisrC5s3b0bPnj3RoEEDvfefmZmJ119/Ha1bt8bu3buRkpKizSEqKirSHuPq1asYMWIEzp49iw4dOuDLL78EAG1QNn36dPz555/o1asXPvjgA72P7+Pjo61fcHAwXFxcdOr+vKVLl2LlypX46KOPcOTIEaSmpiIyMlJbTicnJ72Pawz29vba/ysUCgCaHCUiqhoDISKqFoVCARsbGzx+/BgA0KpVK3To0AEbN27E9u3by81T+c9//lPmefPmzQEAKSkpKCkpwRdffIFXXnkFTZo0wZ9//llmH4GBgZg4cSL27NmD999/XxuIAYCnpydGjRqFb775BvHx8diwYYMxq6x17Ngx9O/fH8OHD0ebNm3QqFEjXLx4Uft6SEgInJyctIniL3JwcACgaVmqSOPGjeHg4IBjx45plxUXF+PUqVNo0aKFkWpCRHaWLgARSYNKpUJ2djYAzR1aq1evRn5+PqKjo7XrjB07FlOmTIGLiwv+67/+q8w+jh07hiVLlmDAgAE4ePAgdu3ahf379wMAgoODUVxcjC+//BLR0dE4duwY1q9fr7P9tGnT0KdPHzRp0gQPHjzAkSNHtIHU3LlzERoaipdeegkqlQo//PCD9jVjCwkJwXfffYfjx4+jTp06WL58OXJycrQBiqOjIz766CPMmDEDDg4O6Ny5M+7cuYNz584hJiYGXl5ecHJyQmJiIgICAuDo6Ag3NzedY7i4uGDSpEn48MMP4eHhgfr162PJkiUoLCxETEyMSepFJEdsESIivSQmJsLX1xe+vr4ICwvDqVOnsGvXLu2t3wAwZMgQ2NnZYciQIXB0dCyzj/fffx+//fYb2rVrh08//RTLly9HZGQkAKBNmzZYvnw5Pv/8c7Rs2RLbtm1DXFyczvZqtRqTJ09G8+bNERUVhSZNmmDt2rUANK0ss2bNQuvWrdGtWzfY2tpix44dJjkXn3zyCdq3b4/IyEj06NEDPj4+ZUaEnjNnDt5//33MnTsXzZs3x6BBg7R5O3Z2dli1ahW++uor+Pn5oX///uUeZ/HixRg4cCBGjBiB9u3b4/Llyzhw4ADq1KljknoRyZFCEATB0oUgIuuQmZmJxo0b49SpU2jfvr3Oa0FBQZg2bRqmTZtmmcIREZWDXWNEVGPFxcW4d+8ePvnkE7zyyitlgiAiIrFi1xgR1dixY8fg6+uLU6dOlcnrsbRFixahVq1a5T769Olj6eIRkYWxa4yIrNr9+/fLjMRcysnJCf7+/mYuERGJCQMhIiIiki12jREREZFsMRAiIiIi2WIgRERERLLFQIiIiIhki4EQERERyRYDISIiIpItBkJEREQkWwyEiIiISLb+D4FoMUhVP/JaAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASZtJREFUeJzt3Xl4U1Xi//FPmq6UtuxQaClLiygCsgiCyKZOYbDKV2fcGdEqoDDquDOowKCCgIiIIDqlMCriT0HHFQUso6KODMsoqxSoEGRHW0qlLe39/ZFpIHRNm/Xm/XqePG1ubpJzT5b7yTnnnmsxDMMQAABAgAvxdQEAAADcgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAF62aNEiWSwW5eTk+LoogKkQagATWrduncaNG6dOnTopOjparVu31vXXX68ff/yx3LoDBw6UxWKRxWJRSEiIYmNjdd5552nEiBFauXKlS8/7wQcfaMCAAWrWrJnq1aundu3a6frrr9eKFSvctWnlPPPMM3rvvffKLf/66681adIk/frrrx577nNNmjTJUZcWi0X16tXTBRdcoMcff1x5eXlueY4lS5Zo9uzZbnkswGwINYAJPfvss1q2bJkuv/xyvfDCCxo1apS++OILde/eXZs3by63fkJCgl577TX94x//0IwZM3T11Vfr66+/1u9+9zvdcMMNKi4urvY5Z86cqauvvloWi0Xjx4/X888/r+uuu047d+7U0qVLPbGZkqoONZMnT/ZqqCkzf/58vfbaa5o1a5Y6duyop59+WkOGDJE7TrVHqAEqF+rrAgBwvwceeEBLlixReHi4Y9kNN9ygzp07a9q0aXr99ded1o+Li9Ott97qtGzatGm69957NW/ePLVp00bPPvtspc93+vRpTZkyRVdeeaU+++yzcrcfPny4jlvkPwoKClSvXr0q1/nDH/6gJk2aSJLGjBmj6667TsuXL9e3336rPn36eKOYQFCipQYwob59+zoFGklKSUlRp06dtG3btho9htVq1Zw5c3TBBRdo7ty5ys3NrXTdo0ePKi8vT5deemmFtzdr1szp+qlTpzRp0iR16NBBkZGRio+P17XXXqtdu3Y51pk5c6b69u2rxo0bKyoqSj169NA777zj9DgWi0UnT57U4sWLHV0+I0eO1KRJk/Twww9Lktq2beu47ewxLK+//rp69OihqKgoNWrUSDfeeKP27dvn9PgDBw7UhRdeqPXr16t///6qV6+e/vrXv9ao/s42ePBgSdKePXuqXG/evHnq1KmTIiIi1LJlS40dO9appWngwIH66KOP9NNPPzm2qU2bNi6XBzArWmqAIGEYhg4dOqROnTrV+D5Wq1U33XSTnnjiCX311VcaNmxYhes1a9ZMUVFR+uCDD/TnP/9ZjRo1qvQxS0pKdNVVV2n16tW68cYbdd999+nEiRNauXKlNm/erPbt20uSXnjhBV199dW65ZZbVFRUpKVLl+qPf/yjPvzwQ0c5XnvtNd15553q1auXRo0aJUlq3769oqOj9eOPP+rNN9/U888/72g1adq0qSTp6aef1hNPPKHrr79ed955p44cOaIXX3xR/fv318aNG9WgQQNHeY8dO6ahQ4fqxhtv1K233qrmzZvXuP7KlIW1xo0bV7rOpEmTNHnyZF1xxRW6++67tWPHDs2fP1/r1q3T2rVrFRYWpgkTJig3N1c2m03PP/+8JKl+/foulwcwLQNAUHjttdcMSUZGRobT8gEDBhidOnWq9H7vvvuuIcl44YUXqnz8J5980pBkREdHG0OHDjWefvppY/369eXWW7hwoSHJmDVrVrnbSktLHf8XFBQ43VZUVGRceOGFxuDBg52WR0dHG7fddlu5x5oxY4YhydizZ4/T8pycHMNqtRpPP/200/IffvjBCA0NdVo+YMAAQ5Lx8ssvV7rdZ5s4caIhydixY4dx5MgRY8+ePcaCBQuMiIgIo3nz5sbJkycNwzCMzMxMp7IdPnzYCA8PN373u98ZJSUljsebO3euIclYuHChY9mwYcOMpKSkGpUHCDZ0PwFBYPv27Ro7dqz69Omj2267zaX7lrUEnDhxosr1Jk+erCVLlqhbt2769NNPNWHCBPXo0UPdu3d36vJatmyZmjRpoj//+c/lHsNisTj+j4qKcvz/yy+/KDc3V5dddpk2bNjgUvnPtXz5cpWWlur666/X0aNHHZcWLVooJSVFWVlZTutHRETo9ttvd+k5zjvvPDVt2lRt27bV6NGjlZycrI8++qjSsTirVq1SUVGR7r//foWEnPlavuuuuxQbG6uPPvrI9Q0FglBQhpovvvhCaWlpatmypSwWS4VHTvji+bZt26arr75acXFxio6O1sUXX6y9e/d6tGwwv4MHD2rYsGGKi4vTO++8I6vV6tL98/PzJUkxMTHVrnvTTTfpyy+/1C+//KLPPvtMN998szZu3Ki0tDSdOnVKkr0r5rzzzlNoaNW93x9++KEuueQSRUZGqlGjRmratKnmz59f5diemti5c6cMw1BKSoqaNm3qdNm2bVu5Qc2tWrUqNz6pOsuWLdPKlSu1Zs0aZWdna/PmzerRo0el6//000+S7GHobOHh4WrXrp3jdgBVC8oxNSdPnlTXrl11xx136Nprr/WL59u1a5f69eun9PR0TZ48WbGxsdqyZYsiIyM9Xj6YV25uroYOHapff/1VX375pVq2bOnyY5QdAp6cnFzj+8TGxurKK6/UlVdeqbCwMC1evFj//ve/NWDAgBrd/8svv9TVV1+t/v37a968eYqPj1dYWJgyMzO1ZMkSl7fhbKWlpbJYLPrkk08qDHjnjlE5u8Wopvr37+8YxwPAe4Iy1AwdOlRDhw6t9PbCwkJNmDBBb775pn799VddeOGFevbZZzVw4ECPPJ8kTZgwQb///e81ffp0x7KyAZNAbZw6dUppaWn68ccftWrVKl1wwQUuP0ZJSYmWLFmievXqqV+/frUqR8+ePbV48WIdOHBAkv19/e9//1vFxcUKCwur8D7Lli1TZGSkPv30U0VERDiWZ2Zmllv37C6rmixv3769DMNQ27Zt1aFDB1c3xyOSkpIkSTt27FC7du0cy4uKirRnzx5dccUVjmWVbReAIO1+qs64ceP0zTffaOnSpfr+++/1xz/+UUOGDNHOnTs98nylpaX66KOP1KFDB6WmpqpZs2bq3bu3x7vFYF4lJSW64YYb9M033+jtt9+u1dwoJSUluvfee7Vt2zbde++9io2NrXTdgoICffPNNxXe9sknn0g607Vy3XXX6ejRo5o7d265dY3/TU5ntVplsVhUUlLiuC0nJ6fCz0R0dHSFE+xFR0dLUrnbrr32WlmtVk2ePLncZHiGYejYsWMVb6QHXXHFFQoPD9ecOXOcypSRkaHc3Fyno86io6Pr3AUHmFVQttRUZe/evcrMzNTevXsdTfUPPfSQVqxYoczMTD3zzDNuf87Dhw8rPz9f06ZN01NPPaVnn31WK1as0LXXXqusrKwaN9kDZR588EG9//77SktL0/Hjx8tNtnfuRHu5ubmOdQoKCpSdna3ly5dr165duvHGGzVlypQqn6+goEB9+/bVJZdcoiFDhigxMVG//vqr3nvvPX355ZcaPny4unXrJkn605/+pH/84x964IEH9N133+myyy7TyZMntWrVKt1zzz265pprNGzYMM2aNUtDhgzRzTffrMOHD+ull15ScnKyvv/+e6fn7tGjh1atWqVZs2apZcuWatu2rXr37u0YwzJhwgTdeOONCgsLU1pamtq3b6+nnnpK48ePV05OjoYPH66YmBjt2bNH7777rkaNGqWHHnqoTvXvqqZNm2r8+PGaPHmyhgwZoquvvlo7duzQvHnzdPHFFzu9Xj169NBbb72lBx54QBdffLHq16+vtLQ0r5YX8Fu+PPTKH0gy3n33Xcf1Dz/80HFY6tmX0NBQ4/rrrzcMwzC2bdtmSKry8uijj9bo+QzDMPbv329IMm666San5WlpacaNN97o1u1FcCg7FLmyS1Xr1q9f30hJSTFuvfVW47PPPqvR8xUXFxuvvvqqMXz4cCMpKcmIiIgw6tWrZ3Tr1s2YMWOGUVhY6LR+QUGBMWHCBKNt27ZGWFiY0aJFC+MPf/iDsWvXLsc6GRkZRkpKihEREWF07NjRyMzMdBwyfbbt27cb/fv3N6KiogxJTod3T5kyxWjVqpUREhJS7vDuZcuWGf369XN8xjt27GiMHTvW2LFjh1PdVHW4+7nKynfkyJEq1zv3kO4yc+fONTp27GiEhYUZzZs3N+6++27jl19+cVonPz/fuPnmm40GDRoYkji8GziLxTDccDKSAGaxWPTuu+9q+PDhkqS33npLt9xyi7Zs2VJuEGH9+vXVokULFRUVaffu3VU+buPGjR0TfVX1fJK93zw6OloTJ07U448/7lj+6KOP6quvvtLatWtrv4EAAAQJup/O0a1bN5WUlOjw4cO67LLLKlwnPDxcHTt2dNtzhoeH6+KLL9aOHTuclv/444+OAYQAAKBqQRlq8vPzlZ2d7bi+Z88ebdq0SY0aNVKHDh10yy236E9/+pOee+45devWTUeOHNHq1avVpUuXSqeJr+3ztW7dWpL08MMP64YbblD//v01aNAgrVixQh988IHWrFlT5+0FACAYBGX305o1azRo0KByy2+77TYtWrRIxcXFeuqpp/SPf/xD+/fvV5MmTXTJJZdo8uTJ6ty5s9ufr8zChQs1depU2Ww2nXfeeZo8ebKuueYal58PAIBgFJShBgAAmA/z1AAAAFMg1AAAAFMIqoHCpaWl+vnnnxUTE8NU4wAABAjDMHTixAm1bNnS6Uz25wqqUPPzzz8rMTHR18UAAAC1sG/fPiUkJFR6e1CFmpiYGEn2SqnqPDYAAMB/5OXlKTEx0bEfr0xQhZqyLqfY2FhCDQAAAaa6oSMMFAYAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqIFX2GxSVpb9LwAAnkCogcdlZEhJSdLgwfa/GRm+LhEAwIwINfAom00aNUoqLbVfLy2VRo+mxQYA4H6EGnjUzp1nAk2ZkhIpO9s35QEAmBehBh6VkiKFnPMus1ql5GTflAcAYF6EGnhUQoL0yiv2ICPZ/y5YYF8OAIA7hfq6ADC/9HQpNdXe5ZScTKABAHgGoQZekZBAmAEAeBbdTwAAwBQINQAAwBQINQAAwBQINQAAwBQINQAAwBQINQAAwBQINQAAwBQINQAAwBQINQAAwBQINQAAwBQINQAAwBQINQAAwBQINUAt2WxSVpb9LwDA9wg1QC1kZEhJSdLgwfa/GRm+LhEAgFADuMhmk0aNkkpL7ddLS6XRo2mxAQBfI9QALtq580ygKVNSImVn+6Y8AAA7Qg3gopQUKeScT47VKiUn+6Y8AAA7Qg3gooQE6ZVX7EFGsv9dsMC+HADgO6G+LgAQiNLTpdRUe5dTcjKBBgD8AaEGqKWEBMIMAPgTup8AAIApEGoAODChIIBARqgBIIkJBQEEPkINACYUBGAKhJogQJcCqsOEggDMgFBjcnQpoCaYUBCAGRBqTIwuBdQUEwp6Hi2mgOcFTKiZOnWqLr74YsXExKhZs2YaPny4duzY4eti+TW6FOCK9HQpJ8e+483JsV+He3izxZTwBF/xh/dewISaf/3rXxo7dqy+/fZbrVy5UsXFxfrd736nkydP+rpofosuBbgqIUEaONB/W2j84UvTVd5sMfV2d3Mgvh7wDH8Z6mAxDMPwzVPXzZEjR9SsWTP961//Uv/+/Wt0n7y8PMXFxSk3N1exsbEeLqF/yMiwf4GWlJzpUuAXOAJRRsaZcBASYu8uC4T3claW/Yu+ouUDB7rveWw2+87k7NZZq9Xe6uaJkBqor4e32Wz2VvOUFP/9sVBX3njv1XT/HTAtNefKzc2VJDVq1KjSdQoLC5WXl+d0CTZ0KcAMAnl8mLdaTL3Z3RzIr4c3+Uvrhaf501CHgAw1paWluv/++3XppZfqwgsvrHS9qVOnKi4uznFJTEz0Yin9h793KQDV8acvTVd5axC2N7ubA/n18JZgCn7+NNQhIEPN2LFjtXnzZi1durTK9caPH6/c3FzHZd++fV4qIQB38qcvzdrwRoupN49gC/TXwxs8Efz8dQyTPx09GXBn6R43bpw+/PBDffHFF0qopsYiIiIUERHhpZIB8JSyL81zx4cFUuujN87qnp4upabad5zJyZ57PjO8Hp5WFvzOHWdS2+Dn72OY0tOlLl2kr76S+vWTLr7YN+UImIHChmHoz3/+s959912tWbNGKSkpLj9GMA4UBszEZvP8Dhs1x+thV9lgYHcdqOHtQeBlz+nKAGdPh66a7r8DJtTcc889WrJkif75z3/qvPPOcyyPi4tTVFRUjR6DUAMAcKfqdubuCH6eOoKuqjDmSkDxp6OfAibUWCyWCpdnZmZq5MiRNXoMQg0AwF281YLiieepLLjU5rm8MW2B6Q7pNgyjwktNAw0AAO7kraPA3D0Qt6ojs2qzTfXrV7w8Orp25auLgBsoDACAP3D3YOAyFXULuXMQeFXBpTbblJ9f8XJfTPgfMC01AAD4E08cylzVhH3umnOsqkPya7NN/nSIf8CMqXEHxtQAANxt3Tr3HMrszaOcqjsyy9UBzp4+JY/pBgq7A6EGAOBO7jyU2VvnCSvj7kPyPXmIP6GmAoQaAIC7uLtlxRfz0QQK0x39BACAP3H30U/+dLqBQMXRTwAA1IInDmWu6ignV2f5DUa01ACAD/nrSQpRvZocylyb17eio5yqOioKZxBqAMBHvL2jIkC5V3WHMrvr9a1qsjw4I9QAgA94e0fliQAV7CGpqjEw7nx9vTVzsRkQahCQgv3LFIHPmzsqTwQoukPs0tPtRydlZdn/lh3O7c7X158mt/N3hBoEHL5MYQbe3FG5O0DRHeKsojEw7nx9OSqq5gg1CCh8mcIsvLmjcneAojukeu5+fStrEYIzDulGQKnqy5RfLQg07jxJYVXKdrDnTmNf2+fz1Ikczcbdr29CAt9z1SHUIKDwZQqz8daOyp07WHeHJDMjiHgXoQYBhS9ToPbcuYP1VisTzmDyvepx7icEJE+eOA0A/I07T5wZiDihZQUINQCAQMOJLjmhJQAApsDRZjVHqIFXMFkeANQOk+/VHKEGHsdkeQBQe0y+V3OMqYFH0RcMAO4RzAdI1HT/zSHd8CgmywMA92DOm+rR/QSPoi8YAOAthBp4FH3BAABvofsJHsfMowAAbyDUwCvoCwYAeBrdTwAAwBQINQAAwBQINQAAwBQINQAAwBQINQAA1AHntvMfhBo/xAcEAAID57bzL4QaP8MHBAB8x5UflTabNGrUmVPBlJZKo0fzg9SXCDV+hA8IAPiOqz8qqzq3HXyDUONH+IAAgG/U5kcl57bzP4QaP8IHBAB8ozY/Kjm3nf8h1PgRPiAA4Bu1/VGZni7l5NjH4eTk2K/Ddzj3k5/h5I8A4H1lPypHj7a30Ljyo5Jz2/kPi2EYhq8L4S15eXmKi4tTbm6uYmNjfV0c+BGbzd78nJLClxMQzGw2flT6o5ruv+l+QtDjMHoAZRISpIEDCTSBilCDoMZh9ABgHoQaBDUOowcA8yDUIKhxGD0AmAehBkGNw+gB7+LcdvAkQg2CHvNMwEz8OTQwKB+eRqgBxBEPZubPO3l38+fQwKB8eAOhBoBp+fNO3t38PTQwKB/eQKgBYEr+vpN3N38PDQzKhzcQagAEDFe6kmqykzdT15S/hwYG5cMbCDUAAoKrXUnV7eTN1jUVCKGBQfnwNM795Ic4DxHgzGazB4+zW16sVvuOsarPSEZG+RMUpqfX/vECAecughlx7qcAZbZfj4A71Ha8SGUtA54af+IP3VkcyYdgRqjxI8E2sBGoqbqMF6loJ++J8Sf8IAF8j1DjR/z96AXAV9w9XsTdj8cPEsA/hPq6ADij7Nfjuf38/nL0AswjEMdtpadLqanuGy/izser6gdJoNQvYAa01PiRQDh6AYEvkLtJ3D1exF2P5++HUwPBgqOf/BBHL8BTzHzUj69VdqQVgLqr6f6b7ic/lJDADgaeQTeJ57i7ewyA6wg1QBBh3JZn8YME8C3G1ABBhHFbAMyMlppaOnbsmIqKiiq8bd++fSopKVH9+vXL3XbixAmFhYUp4Zy9iM1m02+//abQ0FDFxMSUu1+9evXUvn37GpfBZrOpuLi4wsc6dOiQDMNQixYtnJbn5+eruLhYkZGRSkxMdLotNzdXhmGoQYMG5R7v119/lcViUVxcnNPyffv26dSpUxVu08GDByWpXBmkyusoNzdXxcXFCg0NLVeOyspQ1X22b9+uwsJC1atXr1wZfvvtN4WHh6tjx44VblNYWFi51/fgwYOyWCxq3rx5hdsUGhpaYb26c5skKTw8XI0bNy63fNeuXSooKFCvXtInn4Rq374IJSYWKjr6F33xxWlFRUWVq/OqHq+q919V96tMZY9XVZ3n5+fLarWWq9dff/1Vp0+fVlhYWLn6q+qzIVX8Wdu4caNOnDhR4foFBQWKiIgo914pK/vp06fLPdeJEyd0+nTFdV7VZ02quF7PLt/hw+Gy2aKUkPCbmjUrqrR8VX3nVPYZlKr+3EhSTEyMunXr5rTM3e8Vd6tN+b788kvl5eVVuH5ubq7CwsIqfE9Irn2fb9++XQUFBbJarRXWeUX1XZWqtrWu772KuFq+ugq4UPPSSy9pxowZOnjwoLp27aoXX3xRvXr18moZjh07prlz53r1OSXp1ltvdXwQfFWGYPPFF1/4ugi1Mm7cOKcvn127dun1118vt96+fbV7vJq+/869X2X87f189mdt48aNev/996u9jzffK2fX69nl27Chmz744CoZRogsllKlpX2o7t03er18khw7Mne/V9ytNuX78ssv9fnnn1d7n61bt1Z6m7u/z2sSHNzxPJW999xRPncIqO6nt956Sw888IAmTpyoDRs2qGvXrkpNTdXhw4e9Wo6qEr0nFRQU+LwMCAznvj/Ofu+44/Fq+v5z93recnZ9VfUr1FfOrq+y8uXmxjgCjSQZRog++OAq5eZW3CLlSWfXmb+/B2pTvspaaFzhzu/zmr5H3VHHFb33quPNz1BAhZpZs2bprrvu0u23364LLrhAL7/8surVq6eFCxf6umiAk9zcGO3Z08YnOxQEp+PHGzsCTRnDCNHx4418VCLA+wKm+6moqEjr16/X+PHjHctCQkJ0xRVX6JtvvqnwPoWFhSosLHRcd0e6BqpTVRcA4CmNGh2TxVLqFGwsllI1anTch6UCvCtgWmqOHj2qkpKScoMwmzdv7hh0eq6pU6cqLi7OcTl3MCH8X6C1ePhTFwCCS1zcCaWlfSiLxX68flmgjovzXNN/oH0+YX4B01JTG+PHj9cDDzzguJ6Xl0ewCSCB2OJRVReAJ3cugCR1775R7dtn6/jxRmrU6LhH33OB+PmE+QVMqGnSpImsVqsOHTrktPzQoUMVHhYsSREREYqIiPBG8eBmlbV4tG+f7dfhgC4A+Fpc3AmPf0YC9fMJ8wuY7qfw8HD16NFDq1evdiwrLS3V6tWr1adPHx+WDJ4QqIMefdEFAHhboH4+YX4B01IjSQ888IBuu+029ezZU7169dLs2bN18uRJ3X777V4tR3h4uFefr8zZEy/5qgzeEsgtHt7sAqjMue+PyiZKq+3j1fT95+71vOXs+qpskj5fOru+3FG+3NwYHT/eWI0aHavR+7W6z+fZZfL390BtyueOEyK78/u8pu8Bd9Rxbd573vwMBdxZuufOneuYfO+iiy7SnDlz1Lt37xrd151n6WZG4TM8NaPwF1+k6NFH41RSYpHVamjSpIO65pqjzChcxxmFKypbZbPbVvV4wTqjcE1n7C0ru7dnFD5XdTMKf/JJS02f3l6lpRaFhBh68sn9uvLKvdXOKJyV1U4zZ6Y47vfQQzs1bNhBZhQWMwrXpXyVqen+O+BCTV24M9TUlM1mPzNySgrn16kNm42zHqNmavNZc/U+GRnSqFH2E4KGhNjPo5WeXrdy+5LNJiUllT/BaU7Omfqoqo74fMJbarr/DpgxNYEoI8P+hTF4sP1vRoavSxR4EhKkgQP5wkTVavNZc/U+NtuZQCPZ/44ebV9eEzablJVV8/W9YedO50AjSSUl9qAiVV9HfD7hb2ip8ZCa/AICUHe1+azV5j5ZWfade0XLBw6suoz+2sJTVT1IfIfBf9BS42PV/QIC4B61+azV5j4pKfZAcjar1d71UpW6tvB4UkKCPWBZrfbrVqu0YIF9Od9hCESEGg+p7RcgANfU5rNWm/tUFQCq4u/hID3d3vqSlWX/W9aCxHcYAhGhxkNq+wUIwDW1+azV9vNZWQCoSiCEg4rGxvAdhkDEmBoP4+gAwDtq81nz1uczI8Pe5VRSciYc1CQQ+cPRk3yHwR9wSHcFfBFqAEByPRz46+BiwBcINRUg1AAIBBw9CTjj6CcACFD+PrgY8FeEGgDwM94eXOyPEwMCtUGoAQA/480jj5j5HGbCmBoAdeYPR+mYkaePPGLsDgIFY2oAeAW/9D3H0+dWYuwOzIZQA6DW/PkUAKheIEwMCLiCUAOg1vilH9iYNRhmE+rrAgAIXGW/9M8dk8Ev/cCRni6lpjJrMMyBlhoAtcYvfXPw9NgdwFtoqQFQJ/zSB+AvCDUA6iwhgTADwPfofgpyzCQKADALQk0QY36RuiEQAoB/IdQEKeYXqRsCIQD4H0JNkGJ+kdrzp0BIaxEAnEGoCVLMJFp7/hIIaS0CAGeEmiDF/CLOXGnx8IdA6E+tRQDgLwg1QSw93X423qws+9/0dF+XyDdcbfHwh0DoL61FAOBPLIZhGL4uhLfU9NTlCB42mz3InDvNf05O9SHFZvPdhHN1KTcABJqa7r9pqUFQq0uLhy+nlveH1iIA8DfMKAzTsdnsYSUlpfqdfCCfkJHTEwCAM1pqYCqBOD6mLjgRIQCcwZgamEagjo/xBVdaswDA1xhTg6ATqONjvI35bQCYFaEGpuEP88f4O+a3AWBmhBqYRqCPj/EG5rcBYGYc/QRT4YigqgXy0V4AUB1aamA6wTQ+xlW0ZgEwM1pqgCBDaxYAsyLUAEEoIYEwA8B86H4CAACmQKgBZD+kOSuLQ5sBIJARahD0mIwOAMyBUIOgxmR0AGAehBoENSajAwDzINQgqHFqBQAwD0INghqT0cFVDCoH/FetQo3NZlN+fn655cXFxfriiy/qXCjAm9LTpZwc+44qJ8d+HagIg8oB/+ZSqDlw4IB69eqlpKQkNWjQQH/605+cws3x48c1aNAgtxcS8DR3n1qBX/Pmw6BywP+5FGoee+wxhYSE6N///rdWrFihrVu3atCgQfrll18c6xiG4fZCInCwM+fXvFkxqBzwfy6FmlWrVmnOnDnq2bOnrrjiCq1du1bx8fEaPHiwjh8/LkmyWCweKSj8Hztzfs2bGYPKAf/nUqjJzc1Vw4YNHdcjIiK0fPlytWnTRoMGDdLhw4fdXkAEBnbmdvyaNy8GlQP+z6VQ065dO33//fdOy0JDQ/X222+rXbt2uuqqq9xaOAQOduZ2Nfk1Txdd4GJQOeDfXAo1Q4cO1SuvvFJueVmwueiii9xVLgQYmubtqvs1Txdd4HP3oHIA7mMxXBjZe/r0aRUUFCg2NlaSdPToUUlSkyZNHLfv379fSUlJHihq3eXl5SkuLk65ubmObYD7ZGTYu5xKSs7szIP1l6zNZm+lSk4+s/Oz2exB5uwWLavV/oufHWTgsNnsLZMpKbxugLfUdP/tUktNaGioSktLNXbsWDVp0kTNmzdX8+bN1aRJE40bN075+fl+G2jgeTTNn1HRr3m66AIfLW2Af3Oppeb48ePq06eP9u/fr1tuuUXnn3++JGnr1q1asmSJEhMT9fXXXzsNJvYntNTAl2ipCWy8foDv1HT/HerKg/7tb39TeHi4du3apebNm5e77Xe/+53+9re/6fnnn69dqQETKxtvc24XHTvEwFBVSxuvIeAfXGqpadOmjRYsWKDU1NQKb1+xYoXGjBmjnJwcd5XPrWipgT+oaLwN/B8tNYDveGRMzYEDB9SpU6dKb7/wwgt18OBBVx7S9Dh8F+fi6JnAxDw1gP9zKdQ0adKkylaYPXv2qFGjRnUtk2kwqBAwFwbDA/7Npe6nO+64Q7t27dLKlSsVHh7udFthYaFSU1PVrl07LVy40O0FdQdvdj/RVF1zHCILAKiKxwYK9+zZUykpKRo7dqw6duwowzC0bds2zZs3T4WFhXrttdfqXHgzYFBhzWRknDm9QkiIvXmfX78AgNpwqaVGsncx3XPPPfrss88cZ+S2WCy68sorNXfuXCX78RSytNT4F+oIAFATHhkoLElt27bVJ598oqNHj+rbb7/Vt99+qyNHjmjFihUeCzQ5OTlKT09X27ZtFRUVpfbt22vixIkqKiryyPO5A4MKq8dkdAAAd3Kp++lsDRs2VK9evdxZlkpt375dpaWlWrBggZKTk7V582bdddddOnnypGbOnOmVMtRGerqUmsrhu5UpO1/UuS01ftzYBwDwYy53P/mLGTNmaP78+dq9e3eN78M8Nf7Hm+eLYkAyAAQmjwwU9ie5ubnVHj5eWFiowsJCx/W8vDxPFwsu8lZrFgOSAcD8XB5T4w+ys7P14osvavTo0VWuN3XqVMXFxTkuiYmJXiohXOHpyehstjOBRrL/HT2aCREBwGx8Gmoee+wxWSyWKi/bt293us/+/fs1ZMgQ/fGPf9Rdd91V5eOPHz9eubm5jsu+ffs8uTmoJU/PusyAZAAIDj4dU3PkyBEdO3asynXatWvnmOjv559/1sCBA3XJJZdo0aJFCglxLZMxpsb/eKNbiEPHASCw1XT/HTADhffv369BgwapR48eev3112UtO1baBYQa/+LNsOHNAckAAPcy1UDh/fv3a+DAgUpKStLMmTN15MgRx20tWrTwYclQF96cdZnD6wHA/AIi1KxcuVLZ2dnKzs5Wwjl7owBpaEIFvD1PTUICYQYAzCwgjn4aOXKkDMOo8ILAxazLAAB3CoiWGpgX3UIAAHch1MDn6BYCALhDQHQ/AQAAVIdQAwAATIFQAwAATIFQAwAATIFQAwAATIFQAwAATIFQAwAATIFQAwAATIFQAwAATIFQAwAATIFQA8Dv2GxSVpb9LwDUFKEGgF/JyJCSkqTBg+1/MzJ8XSIAgYJQA8Bv2GzSqFFSaan9emmpNHo0LTYAaoZQA8Bv7Nx5JtCUKSmRsrN9Ux4AgYVQE+QYuxAYguV1SkmRQs75VrJapeRk35QHQGAh1AQxxi4EhmB6nRISpFdesQcZyf53wQL7cgCojsUwDMPXhfCWvLw8xcXFKTc3V7Gxsb4ujk/ZbPYd5NlN/VarlJPDDsSfBOvrZLPZu5ySk829nQBqpqb771Avlgl+pKqxC+xE/Eewvk4JCebePgCeQfdTkGLsQmDgdQKAmiPUBCnGLgQGXicAqDnG1AQ5xi4EBl4nAMGMMTWoEcYuBAZeJwCoHt1PAADAFAg1AADAFAg1AADAFAg1cFmwTNkPAAgshBq4JJim7C9DiAOAwECoQY3ZbNKoUWdmuC0tlUaPNvfOPhhDHAAEKkINaqyqKfvNKBhDHAAEMkINaizYpuwPthAHAIGOUIMaC7Yp+4MtxAFAoCPUwCXp6VJOjn3gbE6O/bpZBVuIA4BAx7mfgGpw3iUA8C3O/QS4CeddAoDAQPcTAAAwBUINAAAwBUINAAAwBUINAAAwBUINAAAwBUINAAAwBUINAAAwBUINAAAwBUINAAAwBUINAAAwBUIN4CdsNvuJQm02X5cEAAIToQbwAxkZUlKSNHiw/W9Ghq9LBACBh1AD+JjNJo0aJZWW2q+XlkqjR9NiAwCuItQAPrZz55lAU6akRMrO9k15ACBQEWoAH0tJkULO+SRarVJysm/KAwCBilAD+FhCgvTKK/YgI9n/LlhgXw4AqLlQXxcAgJSeLqWm2ruckpMJNABQG4QawE8kJBBmAKAu6H4CAACmQKgBAACmQKhBhZjdFgAQaAg1KIfZbQEAgYhQAyfMbgsACFSEGjhhdlsAQKAi1MAJs9sCAAIVoQZOmN0WABComHwP5TC7LQAgEAVcS01hYaEuuugiWSwWbdq0ydfFMa2EBGngQAINACBwBFyoeeSRR9SyZUtfFwMAAPiZgAo1n3zyiT777DPNnDnT10UBAAB+JmDG1Bw6dEh33XWX3nvvPdWrV69G9yksLFRhYaHjel5enqeKBwAAfCwgWmoMw9DIkSM1ZswY9ezZs8b3mzp1quLi4hyXxMRED5YSAAD4kk9DzWOPPSaLxVLlZfv27XrxxRd14sQJjR8/3qXHHz9+vHJzcx2Xffv2eWhLAACAr1kMwzB89eRHjhzRsWPHqlynXbt2uv766/XBBx/IYrE4lpeUlMhqteqWW27R4sWLa/R8eXl5iouLU25urmJjY+tUdgAA4B013X/7NNTU1N69e53Gw/z8889KTU3VO++8o969eyuhhscdE2oAAAg8Nd1/B8RA4datWztdr1+/viSpffv2NQ40AADA3AJioDAAAEB1AqKl5lxt2rRRAPSaAQAAL6KlBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhBgAAmAKhxiRsNikry/4XAIBgRKgxgYwMKSlJGjzY/jcjw9clAgDA+wg1Ac5mk0aNkkpL7ddLS6XRo2mxAQAEH0KND7mjy2jnzjOBpkxJiZSdXbeyAQAQaAg1PuKuLqOUFCnknFfRapWSk+teRgAAAgmhxgfc2WWUkCC98oo9yEj2vwsW2JcDABBMQn1dgGBUVZdRbcJIerqUmmq/f3IygQYAEJwINT5Q1mV0drCpa5dRQgJhBgA8wTAMnT59WiUlJb4uimlZrVaFhobKYrHU6XEINT5Q1mU0erS9hYYuIwDwT0VFRTpw4IAKCgp8XRTTq1evnuLj4xUeHl7rx7AYhmG4sUx+LS8vT3FxccrNzVVsbKyviyObjS4jAPBXpaWl2rlzp6xWq5o2barw8PA6tySgPMMwVFRUpCNHjqikpEQpKSkKOecImJruv2mp8SG6jADAfxUVFam0tFSJiYmqV6+er4tjalFRUQoLC9NPP/2koqIiRUZG1upxOPoJAIAqnNtqAM9wRz3zSgEAAFMg1AAAAFMg1AAAYDIjR46UxWKRxWJRWFiYmjdvriuvvFILFy5U6bkTpVVh0aJFatCggecK6mYMFAYAwEOOHTumoqKiSm8PDw9X48aNPfLcQ4YMUWZmpkpKSnTo0CGtWLFC9913n9555x29//77Cg01XwQw3xYBAOAHjh07prlz51a73rhx4zwSbCIiItSiRQtJUqtWrdS9e3ddcskluvzyy7Vo0SLdeeedmjVrljIzM7V79241atRIaWlpmj59uurXr681a9bo9ttvlyTHoewTJ07UpEmT9Nprr+mFF17Qjh07FB0drcGDB2v27Nlq1qyZ27fDFXQ/AQDgAVW10NRmPXcYPHiwunbtquXLl0uyH3E0Z84cbdmyRYsXL9bnn3+uRx55RJLUt29fzZ49W7GxsTpw4IAOHDighx56SJJUXFysKVOm6L///a/ee+895eTkaOTIkV7bjsrQUgMAQBDp2LGjvv/+e0nS/fff71jepk0bPfXUUxozZozmzZun8PBwxcXFyWKxOFp8ytxxxx2O/9u1a6c5c+bo4osvVn5+vurXr++V7agILTUAAAQRwzAc3UmrVq3S5ZdfrlatWikmJkYjRozQsWPHqj0txPr165WWlqbWrVsrJiZGAwYMkCTt3bvX4+WvCqEGAIAgsm3bNrVt21Y5OTm66qqr1KVLFy1btkzr16/XSy+9JKnqLrGTJ08qNTVVsbGxeuONN7Ru3Tq9++671d7PG+h+AgAgSHz++ef64Ycf9Je//EXr169XaWmpnnvuOcdsvv/v//0/p/XDw8PLnZ18+/btOnbsmKZNm6bExERJ0n/+8x/vbEA1aKkBAMCECgsLdfDgQe3fv18bNmzQM888o2uuuUZXXXWV/vSnPyk5OVnFxcV68cUXtXv3br322mt6+eWXnR6jTZs2ys/P1+rVq3X06FEVFBSodevWCg8Pd9zv/fff15QpU3y0lc4INUHAZpOysux/AQDBYcWKFYqPj1ebNm00ZMgQZWVlac6cOfrnP/8pq9Wqrl27atasWXr22Wd14YUX6o033tDUqVOdHqNv374aM2aMbrjhBjVt2lTTp09X06ZNtWjRIr399tu64IILNG3aNM2cOdNHW+nMYhiG4etCeEtNT11uJhkZ0qhRUmmpFBIivfKKlJ7u61IBgP87deqU9uzZo7Zt29bqrNG+nqcm0FRV3zXdfzOmxsRstjOBRrL/HT1aSk2VEhJ8WzYAMLvGjRtr3LhxPptROBgRakxs584zgaZMSYmUnU2oAQBvILB4F2NqTCwlxd7ldDarVUpO9k15AADwJEKNiSUk2MfQWK3261artGABrTQAAHOi+8nk0tPtY2iys+0tNAQaAIBZEWqCQEICYQYAYH50PwEAAFMg1AAAAFMIqFDz0UcfqXfv3oqKilLDhg01fPhwXxcJAAD4iYAJNcuWLdOIESN0++2367///a/Wrl2rm2++2dfFAgAg6KxZs0YWi0W//vprje/Tpk0bzZ4922NlkgIk1Jw+fVr33XefZsyYoTFjxqhDhw664IILdP311/u6aAAA+J2RI0fKYrFozJgx5W4bO3asLBaLRo4c6f2CeVhAhJoNGzZo//79CgkJUbdu3RQfH6+hQ4dq8+bNVd6vsLBQeXl5ThcAAIJBYmKili5dqt9++82x7NSpU1qyZIlat27tw5J5TkCEmt27d0uSJk2apMcff1wffvihGjZsqIEDB+r48eOV3m/q1KmKi4tzXBITE71VZAAAfKp79+5KTEzU8uXLHcuWL1+u1q1bq1u3bo5lhYWFuvfee9WsWTNFRkaqX79+WrdundNjffzxx+rQoYOioqI0aNAg5eTklHu+r776SpdddpmioqKUmJioe++9VydPnvTY9lXEp6Hmsccek8ViqfKyfft2lf7vBEYTJkzQddddpx49eigzM1MWi0Vvv/12pY8/fvx45ebmOi779u3z1qYBAODEZpOysux/veWOO+5QZmam4/rChQt1++23O63zyCOPaNmyZVq8eLE2bNig5ORkpaamOhoN9u3bp2uvvVZpaWnatGmT7rzzTj322GNOj7Fr1y4NGTJE1113nb7//nu99dZb+uqrrzRu3DjPb+RZfDr53oMPPlhtn167du104MABSdIFF1zgWB4REaF27dpp7969ld43IiJCERERbikrAAC1lZEhjRplP8lwSIj9FDbp6Z5/3ltvvVXjx4/XTz/9JElau3atli5dqjVr1kiSTp48qfnz52vRokUaOnSoJOnVV1/VypUrlZGRoYcffljz589X+/bt9dxzz0mSzjvvPP3www969tlnHc8zdepU3XLLLbr//vslSSkpKZozZ44GDBig+fPnKzIy0vMbKx+HmqZNm6pp06bVrtejRw9FRERox44d6tevnySpuLhYOTk5SkpK8nQxAQCoNZvtTKCR7H9Hj7afwsbTs703bdpUw4YN06JFi2QYhoYNG6YmTZo4bt+1a5eKi4t16aWXOpaFhYWpV69e2rZtmyRp27Zt6t27t9Pj9unTx+n6f//7X33//fd64403HMsMw1Bpaan27Nmj888/3xObV05AnCYhNjZWY8aM0cSJE5WYmKikpCTNmDFDkvTHP/7Rx6Wzv2F37rSfFZvTEQAAzrZz55lAU6akxH5OPm/sM+644w5HN9BLL73kkefIz8/X6NGjde+995a7zZuDkgMi1EjSjBkzFBoaqhEjRui3335T79699fnnn6thw4Y+LZevmhQBAIEhJcW+fzg72Fit9pMMe8OQIUNUVFQki8Wi1NRUp9vat2+v8PBwrV271tHzUVxcrHXr1jm6ks4//3y9//77Tvf79ttvna53795dW7duVbK3NqoSAXH0k2RvDps5c6YOHTqkvLw8rVy5Up06dfJpmSprUvTmIDAAgH9LSLD/4LVa7detVmnBAu+17FutVm3btk1bt26VtawQ/xMdHa27775bDz/8sFasWKGtW7fqrrvuUkFBgdL/9wt9zJgx2rlzpx5++GHt2LFDS5Ys0aJFi5we59FHH9XXX3+tcePGadOmTdq5c6f++c9/en2gcMCEGn9UVZMiAABl0tOlnBz70U85Od5v0Y+NjVVsbGyFt02bNk3XXXedRowYoe7duys7O1uffvqpoyekdevWWrZsmd577z117dpVL7/8sp555hmnx+jSpYv+9a9/6ccff9Rll12mbt266cknn1TLli09vm1nsxiGYXj1GX0oLy9PcXFxys3NrfTFdYXNJiUllW9SzMlhbA0ABLpTp05pz549atu2rdeO3glmVdV3TffftNTUga+bFAEAwBkBM1DYX6Wn2w/Ly862D/oi0AAA4BuEGjdISCDMAADga3Q/AQAAUyDUAAAAUyDUAABQhSA6SNin3FHPhBoAACoQFhYmSSooKPBxSYJDWT2X1XttMFAYAIAKWK1WNWjQQIcPH5Yk1atXTxaLxcelMh/DMFRQUKDDhw+rQYMG5WY9dgWhBgCASrRo0UKSHMEGntOgQQNHfdcWoQYAgEpYLBbFx8erWbNmKi4u9nVxTCssLKxOLTRlCDUAAFTDarW6ZacLz2KgMAAAMAVCDQAAMAVCDQAAMIWgGlNTNrFPXl6ej0sCAABqqmy/Xd0EfUEVak6cOCFJSkxM9HFJAACAq06cOKG4uLhKb7cYQTT/c2lpqX7++WfFxMTUagKlvLw8JSYmat++fYqNjfVACf0fdUAdlKEeqIMy1AN1IHm2DgzD0IkTJ9SyZUuFhFQ+ciaoWmpCQkKUkJBQ58eJjY0N2jdtGeqAOihDPVAHZagH6kDyXB1U1UJThoHCAADAFAg1AADAFAg1LoiIiNDEiRMVERHh66L4DHVAHZShHqiDMtQDdSD5Rx0E1UBhAABgXrTUAAAAUyDUAAAAUyDUAAAAUyDUAAAAUyDUnOOll15SmzZtFBkZqd69e+u7776rdN0tW7bouuuuU5s2bWSxWDR79mzvFdSDXKmDV199VZdddpkaNmyohg0b6oorrqhy/UDhSh0sX75cPXv2VIMGDRQdHa2LLrpIr732mhdL6zmu1MPZli5dKovFouHDh3u2gF7gSh0sWrRIFovF6RIZGenF0nqGq++DX3/9VWPHjlV8fLwiIiLUoUMHffzxx14qree4Ug8DBw4s916wWCwaNmyYF0vsfq6+F2bPnq3zzjtPUVFRSkxM1F/+8hedOnXKcwU04LB06VIjPDzcWLhwobFlyxbjrrvuMho0aGAcOnSowvW/++4746GHHjLefPNNo0WLFsbzzz/v3QJ7gKt1cPPNNxsvvfSSsXHjRmPbtm3GyJEjjbi4OMNms3m55O7jah1kZWUZy5cvN7Zu3WpkZ2cbs2fPNqxWq7FixQovl9y9XK2HMnv27DFatWplXHbZZcY111zjncJ6iKt1kJmZacTGxhoHDhxwXA4ePOjlUruXq3VQWFho9OzZ0/j9739vfPXVV8aePXuMNWvWGJs2bfJyyd3L1Xo4duyY0/tg8+bNhtVqNTIzM71bcDdytQ7eeOMNIyIiwnjjjTeMPXv2GJ9++qkRHx9v/OUvf/FYGQk1Z+nVq5cxduxYx/WSkhKjZcuWxtSpU6u9b1JSkilCTV3qwDAM4/Tp00ZMTIyxePFiTxXR4+paB4ZhGN26dTMef/xxTxTPa2pTD6dPnzb69u1r/P3vfzduu+22gA81rtZBZmamERcX56XSeYerdTB//nyjXbt2RlFRkbeK6BV1/V54/vnnjZiYGCM/P99TRfQ4V+tg7NixxuDBg52WPfDAA8all17qsTLS/fQ/RUVFWr9+va644grHspCQEF1xxRX65ptvfFgy73FHHRQUFKi4uFiNGjXyVDE9qq51YBiGVq9erR07dqh///6eLKpH1bYe/va3v6lZs2ZKT0/3RjE9qrZ1kJ+fr6SkJCUmJuqaa67Rli1bvFFcj6hNHbz//vvq06ePxo4dq+bNm+vCCy/UM888o5KSEm8V2+3c8d2YkZGhG2+8UdHR0Z4qpkfVpg769u2r9evXO7qodu/erY8//li///3vPVbOoDqhZVWOHj2qkpISNW/e3Gl58+bNtX37dh+VyrvcUQePPvqoWrZs6fTGDyS1rYPc3Fy1atVKhYWFslqtmjdvnq688kpPF9djalMPX331lTIyMrRp0yYvlNDzalMH5513nhYuXKguXbooNzdXM2fOVN++fbVlyxa3nEzX22pTB7t379bnn3+uW265RR9//LGys7N1zz33qLi4WBMnTvRGsd2urt+N3333nTZv3qyMjAxPFdHjalMHN998s44ePap+/frJMAydPn1aY8aM0V//+lePlZNQA7eZNm2ali5dqjVr1phicKQrYmJitGnTJuXn52v16tV64IEH1K5dOw0cONDXRfOKEydOaMSIEXr11VfVpEkTXxfHZ/r06aM+ffo4rvft21fnn3++FixYoClTpviwZN5TWlqqZs2a6ZVXXpHValWPHj20f/9+zZgxI2BDTV1lZGSoc+fO6tWrl6+L4lVr1qzRM888o3nz5ql3797Kzs7WfffdpylTpuiJJ57wyHMSav6nSZMmslqtOnTokNPyQ4cOqUWLFj4qlXfVpQ5mzpypadOmadWqVerSpYsni+lRta2DkJAQJScnS5Iuuugibdu2TVOnTg3YUONqPezatUs5OTlKS0tzLCstLZUkhYaGaseOHWrfvr1nC+1m7vhOCAsLU7du3ZSdne2JInpcbeogPj5eYWFhslqtjmXnn3++Dh48qKKiIoWHh3u0zJ5Ql/fCyZMntXTpUv3tb3/zZBE9rjZ18MQTT2jEiBG68847JUmdO3fWyZMnNWrUKE2YMEEhIe4fAcOYmv8JDw9Xjx49tHr1asey0tJSrV692umXl5nVtg6mT5+uKVOmaMWKFerZs6c3iuox7noflJaWqrCw0BNF9ApX66Fjx4764YcftGnTJsfl6quv1qBBg7Rp0yYlJiZ6s/hu4Y73QklJiX744QfFx8d7qpgeVZs6uPTSS5Wdne0ItZL0448/Kj4+PiADjVS398Lbb7+twsJC3XrrrZ4upkfVpg4KCgrKBZeysGt46rSTHhuCHICWLl1qREREGIsWLTK2bt1qjBo1ymjQoIHjkMwRI0YYjz32mGP9wsJCY+PGjcbGjRuN+Ph446GHHjI2btxo7Ny501ebUGeu1sG0adOM8PBw45133nE6fPHEiRO+2oQ6c7UOnnnmGeOzzz4zdu3aZWzdutWYOXOmERoaarz66qu+2gS3cLUezmWGo59crYPJkycbn376qbFr1y5j/fr1xo033mhERkYaW7Zs8dUm1JmrdbB3714jJibGGDdunLFjxw7jww8/NJo1a2Y89dRTvtoEt6jt56Ffv37GDTfc4O3ieoSrdTBx4kQjJibGePPNN43du3cbn332mdG+fXvj+uuv91gZCTXnePHFF43WrVsb4eHhRq9evYxvv/3WcduAAQOM2267zXF9z549hqRylwEDBni/4G7kSh0kJSVVWAcTJ070fsHdyJU6mDBhgpGcnGxERkYaDRs2NPr06WMsXbrUB6V2P1fq4VxmCDWG4Vod3H///Y51mzdvbvz+9783NmzY4INSu5er74Ovv/7a6N27txEREWG0a9fOePrpp43Tp097udTu52o9bN++3ZBkfPbZZ14uqee4UgfFxcXGpEmTjPbt2xuRkZFGYmKicc899xi//PKLx8pnMQxPtQEBAAB4D2NqAACAKRBqAACAKRBqAACAKRBqAACAKRBqAACAKRBqAACAKRBqAACAKRBqAMADRo4cqeHDh/u6GEBQIdQAQWbkyJGyWCyOS+PGjTVkyBB9//33vi6aW5y9bWWXfv36eez5cnJyZLFYtGnTJqflL7zwghYtWuSx5wVQHqEGCEJDhgzRgQMHdODAAa1evVqhoaG66qqrfF0st8nMzHRs34EDB/T+++9XuF5xcbHHyhAXF6cGDRp47PEBlEeoAYJQRESEWrRooRYtWuiiiy7SY489pn379unIkSMaPHiwxo0b57T+kSNHFB4e7jhDb5s2bTRlyhTddNNNio6OVqtWrfTSSy853WfWrFnq3LmzoqOjlZiYqHvuuUf5+fmO23/66SelpaWpYcOGio6OVqdOnfTxxx9Lkn755Rfdcsstatq0qaKiopSSkqLMzMwab1+DBg0c29eiRQs1atTI0aLy1ltvacCAAYqMjNQbb7yhY8eO6aabblKrVq1Ur149de7cWW+++abT45WWlmr69OlKTk5WRESEWrduraefflqS1LZtW0lSt27dZLFYNHDgQEnlu58KCwt17733qlmzZoqMjFS/fv20bt06x+1r1qyRxWLR6tWr1bNnT9WrV099+/bVjh07arzdQLAj1ABBLj8/X6+//rqSk5PVuHFj3XnnnVqyZIkKCwsd67z++utq1aqVBg8e7Fg2Y8YMde3aVRs3btRjjz2m++67TytXrnTcHhISojlz5mjLli1avHixPv/8cz3yyCOO28eOHavCwkJ98cUX+uGHH/Tss8+qfv36kqQnnnhCW7du1SeffKJt27Zp/vz5atKkiVu2t6ys27ZtU2pqqk6dOqUePXroo48+0ubNmzVq1CiNGDFC3333neM+48eP17Rp0xzlWrJkiZo3by5JjvVWrVqlAwcOaPny5RU+7yOPPKJly5Zp8eLF2rBhg5KTk5Wamqrjx487rTdhwgQ999xz+s9//qPQ0FDdcccdbtluICh47FSZAPzSbbfdZlitViM6OtqIjo42JBnx8fHG+vXrDcMwjN9++81o2LCh8dZbbznu06VLF2PSpEmO60lJScaQIUOcHveGG24whg4dWunzvv3220bjxo0d1zt37uz0mGdLS0szbr/99lptnyQjMjLSsX3R0dHGu+++a+zZs8eQZMyePbvaxxg2bJjx4IMPGoZhGHl5eUZERITx6quvVrhu2eNu3LjRafnZZynPz883wsLCjDfeeMNxe1FRkdGyZUtj+vTphmEYRlZWliHJWLVqlWOdjz76yJBk/Pbbb65UARC0aKkBgtCgQYO0adMmbdq0Sd99951SU1M1dOhQ/fTTT4qMjNSIESO0cOFCSdKGDRu0efNmjRw50ukx+vTpU+76tm3bHNdXrVqlyy+/XK1atVJMTIxGjBihY8eOqaCgQJJ077336qmnntKll16qiRMnOg1Uvvvuu7V06VJddNFFeuSRR/T111+7tH3PP/+8Y/s2bdqkK6+80nFbz549ndYtKSnRlClT1LlzZzVq1Ej169fXp59+qr1790qStm3bpsLCQl1++eUuleFsu3btUnFxsS699FLHsrCwMPXq1cupziSpS5cujv/j4+MlSYcPH671cwPBhFADBKHo6GglJycrOTlZF198sf7+97/r5MmTevXVVyVJd955p1auXCmbzabMzEwNHjxYSUlJNX78nJwcXXXVVerSpYuWLVum9evXO8bcFBUVOZ5j9+7dGjFihH744Qf17NlTL774oiQ5AtZf/vIX/fzzz7r88sv10EMP1fj5W7Ro4di+5ORkRUdHO2372WbMmKEXXnhBjz76qLKysrRp0yalpqY6yhkVFVXj53WHsLAwx/8Wi0WSfUwPgOoRagDIYrEoJCREv/32mySpc+fO6tmzp1599VUtWbKkwnEd3377bbnr559/viRp/fr1Ki0t1XPPPadLLrlEHTp00M8//1zuMRITEzVmzBgtX75cDz74oCNUSVLTpk1122236fXXX9fs2bP1yiuvuHOTHdauXatrrrlGt956q7p27ap27drpxx9/dNyekpKiqKgoxyDpc4WHh0uyt/hUpn379goPD9fatWsdy4qLi7Vu3TpdcMEFbtoSAKG+LgAA7yssLNTBgwcl2Y80mjt3rvLz85WWluZY584779S4ceMUHR2t//u//yv3GGvXrtX06dM1fPhwrVy5Um+//bY++ugjSVJycrKKi4v14osvKi0tTWvXrtXLL7/sdP/7779fQ4cOVYcOHfTLL78oKyvLEYqefPJJ9ejRQ506dVJhYaE+/PBDx23ulpKSonfeeUdff/21GjZsqFmzZunQoUOOsBEZGalHH31UjzzyiMLDw3XppZfqyJEj2rJli9LT09WsWTNFRUVpxYoVSkhIUGRkpOLi4pyeIzo6WnfffbcefvhhNWrUSK1bt9b06dNVUFCg9PR0j2wXEIxoqQGC0IoVKxQfH6/4+Hj17t1b69at09tvv+04HFmSbrrpJoWGhuqmm25SZGRkucd48MEH9Z///EfdunXTU089pVmzZik1NVWS1LVrV82aNUvPPvusLrzwQr3xxhuaOnWq0/1LSko0duxYnX/++RoyZIg6dOigefPmSbK3fowfP15dunRR//79ZbVatXTpUo/UxeOPP67u3bsrNTVVAwcOVIsWLcrNBPzEE0/owQcf1JNPPqnzzz9fN9xwg2OcS2hoqObMmaMFCxaoZcuWuuaaayp8nmnTpum6667TiBEj1L17d2VnZ+vTTz9Vw4YNPbJdQDCyGIZh+LoQAPxPTk6O2rdvr3Xr1ql79+5Ot7Vp00b333+/7r//ft8UDgAqQPcTACfFxcU6duyYHn/8cV1yySXlAg0A+Cu6nwA4Wbt2reLj47Vu3bpy42B87ZlnnlH9+vUrvAwdOtTXxQPgY3Q/AQgYx48fLzcDb5moqCi1atXKyyUC4E8INQAAwBTofgIAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqAEAAKbw/wFNoyvvRGZx1AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_24.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVeUlEQVR4nO3deVxU9f4/8NcMwuAGZLKIoCigiJYLJmG5pOigZvbLUnM3XOpKLrRp5l6pZeae1hfFStNc66YXM9JyITXUNnFDSPEKbgkCCcR8fn/MndGRbQbnzJwz83o+HvPAOfM553w+5zicN59VJYQQICIiInJCantngIiIiMheGAgRERGR02IgRERERE6LgRARERE5LQZCRERE5LQYCBEREZHTYiBERERETouBEBERETktBkJERETktBgIEREpQGJiIlQqFTIzM+2dFSKHwkCIiAAAR48eRVxcHFq2bInatWujUaNGGDBgAM6cOVMmbdeuXaFSqaBSqaBWq+Hh4YHmzZtj2LBh2LNnj0Xn/fe//40uXbrAx8cHtWrVQtOmTTFgwAAkJSVZq2hlvPvuu9ixY0eZ7YcOHcKsWbNw8+ZNyc59r1mzZhmvpUqlQq1atRAeHo633noLeXl5VjnHhg0bsHjxYqsci8jRMBAiIgDAggULsHXrVnTv3h1LlizB2LFj8eOPP6Jdu3b4/fffy6QPCAjAZ599hk8//RTvv/8+nnrqKRw6dAg9e/bEwIEDUVJSUuU5Fy5ciKeeegoqlQpTp07Fhx9+iP79++Ps2bPYuHGjFMUEUHkgNHv2bJsGQgYfffQRPvvsMyxatAhhYWF45513EBMTA2ssB8lAiKhiNeydASKSh/j4eGzYsAFubm7GbQMHDsRDDz2E+fPn4/PPPzdJ7+npiaFDh5psmz9/PiZMmICVK1ciKCgICxYsqPB8//zzD+bOnYsePXrg22+/LfP5lStX7rNE8lFYWIhatWpVmubZZ59F/fr1AQAvvvgi+vfvj23btuGnn35CVFSULbJJ5JRYI0REAICOHTuaBEEAEBoaipYtWyItLc2sY7i4uGDp0qUIDw/H8uXLkZubW2Haa9euIS8vD4899li5n/v4+Ji8v337NmbNmoVmzZrB3d0dDRo0wDPPPIP09HRjmoULF6Jjx4548MEHUbNmTURERGDLli0mx1GpVCgoKMC6deuMzVEjR47ErFmz8NprrwEAmjRpYvzs7j45n3/+OSIiIlCzZk3Uq1cPgwYNwsWLF02O37VrV7Rq1Qqpqano3LkzatWqhTfffNOs63e3bt26AQAyMjIqTbdy5Uq0bNkSGo0G/v7+GD9+vEmNVteuXbFz5078+eefxjIFBQVZnB8iR8UaISKqkBACOTk5aNmypdn7uLi44Pnnn8f06dNx4MAB9OnTp9x0Pj4+qFmzJv7973/j5ZdfRr169So8ZmlpKZ588kkkJydj0KBBmDhxIm7duoU9e/bg999/R3BwMABgyZIleOqppzBkyBAUFxdj48aNeO655/DNN98Y8/HZZ59h9OjR6NChA8aOHQsACA4ORu3atXHmzBl88cUX+PDDD421M97e3gCAd955B9OnT8eAAQMwevRoXL16FcuWLUPnzp1x/PhxeHl5GfN7/fp19OrVC4MGDcLQoUPh6+tr9vUzMAR4Dz74YIVpZs2ahdmzZyM6OhovvfQSTp8+jY8++ghHjx7FwYMH4erqimnTpiE3NxdZWVn48MMPAQB16tSxOD9EDksQEVXgs88+EwBEQkKCyfYuXbqIli1bVrjf9u3bBQCxZMmSSo8/Y8YMAUDUrl1b9OrVS7zzzjsiNTW1TLo1a9YIAGLRokVlPtPpdMZ/FxYWmnxWXFwsWrVqJbp162ayvXbt2mLEiBFljvX+++8LACIjI8Nke2ZmpnBxcRHvvPOOyfbffvtN1KhRw2R7ly5dBACxatWqCst9t5kzZwoA4vTp0+Lq1asiIyNDrF69Wmg0GuHr6ysKCgqEEEKsXbvWJG9XrlwRbm5uomfPnqK0tNR4vOXLlwsAYs2aNcZtffr0EY0bNzYrP0TOhk1jRFSuU6dOYfz48YiKisKIESMs2tdQ43Dr1q1K082ePRsbNmxA27ZtsXv3bkybNg0RERFo166dSXPc1q1bUb9+fbz88stljqFSqYz/rlmzpvHff/31F3Jzc9GpUyccO3bMovzfa9u2bdDpdBgwYACuXbtmfPn5+SE0NBR79+41Sa/RaDBq1CiLztG8eXN4e3ujSZMmGDduHEJCQrBz584K+xZ99913KC4uxqRJk6BW3/lVPmbMGHh4eGDnzp2WF5TICTEQMtOPP/6Ivn37wt/fHyqVqtwRJ7Y+38iRI02G3apUKsTExEiaL3IO2dnZ6NOnDzw9PbFlyxa4uLhYtH9+fj4AoG7dulWmff7557F//3789ddf+PbbbzF48GAcP34cffv2xe3btwHom4maN2+OGjUqb83/5ptv8Oijj8Ld3R316tWDt7c3Pvroo0r7Kpnj7NmzEEIgNDQU3t7eJq+0tLQyHbsbNmxYpr9VVbZu3Yo9e/Zg3759OHfuHH7//XdERERUmP7PP/8EoA+g7ubm5oamTZsaPyeiyrGPkJkKCgrQunVrvPDCC3jmmWdkc76YmBisXbvW+F6j0UieN3Jsubm56NWrF27evIn9+/fD39/f4mMYhtuHhISYvY+Hhwd69OiBHj16wNXVFevWrcPhw4fRpUsXs/bfv38/nnrqKXTu3BkrV65EgwYN4OrqirVr12LDhg0Wl+FuOp0OKpUK//nPf8oNCu/tc3N3zZS5OnfubOyXRES2w0DITL169UKvXr0q/LyoqAjTpk3DF198gZs3b6JVq1ZYsGABunbtKsn5DDQaDfz8/Kp1DqJ73b59G3379sWZM2fw3XffITw83OJjlJaWYsOGDahVqxYef/zxauWjffv2WLduHS5fvgxA35n58OHDKCkpgaura7n7bN26Fe7u7ti9e7fJHwR3/6FgcHdzmjnbg4ODIYRAkyZN0KxZM0uLI4nGjRsDAE6fPo2mTZsatxcXFyMjIwPR0dHGbRWVi4jYNGY1cXFxSElJwcaNG/Hrr7/iueeeQ0xMDM6ePSvpefft2wcfHx80b94cL730Eq5fvy7p+chxlZaWYuDAgUhJScHmzZurNXdNaWkpJkyYgLS0NEyYMAEeHh4Vpi0sLERKSkq5n/3nP/8BcKfZp3///rh27RqWL19eJq3434SDLi4uUKlUKC0tNX6WmZlZbrNy7dq1y500sXbt2gBQ5rNnnnkGLi4umD17dpkJDoUQdvneRUdHw83NDUuXLjXJU0JCAnJzc01G69WuXfu+mweJHBVrhKzgwoULWLt2LS5cuGBsRnj11VeRlJSEtWvX4t1335XkvDExMXjmmWfQpEkTpKen480330SvXr2QkpJicZ8OoldeeQVff/01+vbtixs3bpSZQPHeyRNzc3ONaQoLC3Hu3Dls27YN6enpGDRoEObOnVvp+QoLC9GxY0c8+uijiImJQWBgIG7evIkdO3Zg//79ePrpp9G2bVsAwPDhw/Hpp58iPj4eR44cQadOnVBQUIDvvvsO//rXv9CvXz/06dMHixYtQkxMDAYPHowrV65gxYoVCAkJwa+//mpy7oiICHz33XdYtGgR/P390aRJE0RGRhr75EybNg2DBg2Cq6sr+vbti+DgYLz99tuYOnUqMjMz8fTTT6Nu3brIyMjA9u3bMXbsWLz66qv3df0t5e3tjalTp2L27NmIiYnBU089hdOnT2PlypV45JFHTO5XREQENm3ahPj4eDzyyCOoU6cO+vbta9P8EsmWPYesKRUAsX37duP7b775xjgE+O5XjRo1xIABA4QQQqSlpQkAlb7eeOMNs85XkfT0dAFAfPfdd9YoJjkZw7Dvil6Vpa1Tp44IDQ0VQ4cOFd9++61Z5yspKRGffPKJePrpp0Xjxo2FRqMRtWrVEm3bthXvv/++KCoqMklfWFgopk2bJpo0aSJcXV2Fn5+fePbZZ0V6eroxTUJCgggNDRUajUaEhYWJtWvXGoen3+3UqVOic+fOombNmgKAyVD6uXPnioYNGwq1Wl1mKP3WrVvF448/bvyOh4WFifHjx4vTp0+bXJvKpha4lyF/V69erTTdvcPnDZYvXy7CwsKEq6ur8PX1FS+99JL466+/TNLk5+eLwYMHCy8vLwGAQ+mJ7qISwgoL2TgZlUqF7du34+mnnwYAbNq0CUOGDMEff/xRpiamTp068PPzQ3FxMc6fP1/pcR988EHj5G2Vna8y3t7eePvttzFu3Dizy0NEROSs2DRmBW3btkVpaSmuXLmCTp06lZvGzc0NYWFhkuYjKysL169fR4MGDSQ9DxERkaNgIGSm/Px8nDt3zvg+IyMDJ06cQL169dCsWTMMGTIEw4cPxwcffIC2bdvi6tWrSE5OxsMPP1zhEgPVPV+jRo2Qn5+P2bNno3///vDz80N6ejpef/11hISEQKvVWqXMREREjo5NY2bat28fnnjiiTLbR4wYgcTERJSUlODtt9/Gp59+ikuXLqF+/fp49NFHMXv2bDz00ENWP9/ff/+Np59+GsePH8fNmzfh7++Pnj17Yu7cudVa14iIiMgZMRAiIiIip6WoeYSqs8zFvn370K5dO2g0GoSEhCAxMVHyfBIREZEyKCoQMiw7sWLFCrPSZ2RkoE+fPnjiiSdw4sQJTJo0CaNHj8bu3bslzikREREpgWKbxswZUv7GG29g586dxnWPAGDQoEG4efMmkpKSzDqPTqfDf//7X9StW5fT1BMRESmEEAK3bt2Cv78/1OqK630cetRYSkqKyXo7AKDVajFp0qQK9ykqKkJRUZHx/aVLl6q13hIRERHZ38WLFxEQEFDh5w4dCGVnZ5cZQeXr64u8vDz8/fff5a4QPW/ePMyePbvM9osXL1a6bhIRERHJR15eHgIDA1G3bt1K0zl0IFQdU6dORXx8vPG94UJ6eHgwECIiIlKYqrq1OHQg5Ofnh5ycHJNtOTk58PDwKLc2CAA0Gg00Go0tskdERER2pqhRY5aKiopCcnKyybY9e/YgKirKTjkiIiIiOVFUIJSfn48TJ07gxIkTAO4sO3HhwgUA+mat4cOHG9O/+OKLOH/+PF5//XWcOnUKK1euxJdffonJkyfbI/tEREQkM4pqGvv5559Nlp0w9OUxLDtx+fJlY1AEAE2aNMHOnTsxefJkLFmyBAEBAfi///s/SdbiKi0tRUlJidWPS3qurq5wcXGxdzaIiMjBKHYeIVvJy8uDp6cncnNzy+0sLYRAdnY2bt68afvMORkvLy/4+flxPiciIqpSVc9vA0XVCMmRIQjy8fFBrVq1+JCWgBAChYWFuHLlCgCgQYMGds4RERE5CgZC96G0tNQYBD344IP2zo5DM4zyu3LlCnx8fNhMRkREVqGoztJyY+gTVKtWLTvnxDkYrjP7YhERkbUwELICNofZBq8zERFZGwMhIiIicloMhIiIiMhpMRByUiNHjoRKpYJKpYKrqyt8fX3Ro0cPrFmzBjqdzuzjJCYmwsvLS7qMEhGRXWVlAXv36n86Io4as6Pr16+juLi4ws/d3NwkHY0WExODtWvXorS0FDk5OUhKSsLEiROxZcsWfP3116hRg/89iIicWUICMHYsoNMBajXw8cdAbKy9c2VdfNLZyfXr17F8+fIq08XFxUkWDGk0Gvj5+QEAGjZsiHbt2uHRRx9F9+7dkZiYiNGjR2PRokVYu3Ytzp8/j3r16qFv37547733UKdOHezbtw+jRo0CcKcj88yZMzFr1ix89tlnWLJkCU6fPo3atWujW7duWLx4MXx8fCQpCxERWVdW1p0gCND/HDcO0GqBgAD75s2a2DRmJ5XVBFUnnbV069YNrVu3xrZt2wAAarUaS5cuxR9//IF169bh+++/x+uvvw4A6NixIxYvXgwPDw9cvnwZly9fxquvvgpAP8R97ty5+OWXX7Bjxw5kZmZi5MiRNi0LERFV39mzd4Igg9JS4Nw5++RHKqwRojLCwsLw66+/AgAmTZpk3B4UFIS3334bL774IlauXAk3Nzd4enpCpVIZa5YMXnjhBeO/mzZtiqVLl+KRRx5Bfn4+6tSpY5NyEBFR9YWG6pvD7g6GXFyAkBD75UkKrBGiMoQQxqau7777Dt27d0fDhg1Rt25dDBs2DNevX0dhYWGlx0hNTUXfvn3RqFEj1K1bF126dAEAk0VxiYhIvgIC9H2CDBP5u7gAq1c7VrMYwECIypGWloYmTZogMzMTTz75JB5++GFs3boVqampWLFiBYDKm+wKCgqg1Wrh4eGB9evX4+jRo9i+fXuV+xERkbzExgKZmfpRY5mZjtdRGmDTGN3j+++/x2+//YbJkycjNTUVOp0OH3zwAdRqfcz85ZdfmqR3c3NDaWmpybZTp07h+vXrmD9/PgIDAwEAP//8s20KQEREVhUQ4Hi1QHdjjZATKyoqQnZ2Ni5duoRjx47h3XffRb9+/fDkk09i+PDhCAkJQUlJCZYtW4bz58/js88+w6pVq0yOERQUhPz8fCQnJ+PatWsoLCxEo0aN4ObmZtzv66+/xty5c+1USiIioooxEHJiSUlJaNCgAYKCghATE4O9e/di6dKl+Oqrr+Di4oLWrVtj0aJFWLBgAVq1aoX169dj3rx5Jsfo2LEjXnzxRQwcOBDe3t5477334O3tjcTERGzevBnh4eGYP38+Fi5caKdSEhERVUwlhBD2zoSc5eXlwdPTE7m5ufDw8DD57Pbt28jIyECTJk3g7u5u0XHlMI+Q0tzP9SYiIudS2fP7buwjZCcPPvgg4uLi7DqzNBERkbNjIGRHDHKIiIjsi32EiIiIyGkxECIiIiKnxUCIiIiInBYDISIiInJaDISIiIjIaTEQIiIiIqfFQIiIiIicFgMhksS+ffugUqlw8+ZNs/cJCgrC4sWLJcsTERHRvRgIOamRI0dCpVLhxRdfLPPZ+PHjoVKpMHLkSNtnjIiIyIYYCDmxwMBAbNy4EX///bdx2+3bt7FhwwY0atTIjjkjIiKyDQZCTqxdu3YIDAzEtm3bjNu2bduGRo0aoW3btsZtRUVFmDBhAnx8fODu7o7HH38cR48eNTnWrl270KxZM9SsWRNPPPEEMjMzy5zvwIED6NSpE2rWrInAwEBMmDABBQUFkpWPiIioKgyEZCIrC9i7V//Tll544QWsXbvW+H7NmjUYNWqUSZrXX38dW7duxbp163Ds2DGEhIRAq9Xixo0bAICLFy/imWeeQd++fXHixAmMHj0aU6ZMMTlGeno6YmJi0L9/f/z666/YtGkTDhw4gLi4OOkLSUREVAEGQjKQkAA0bgx066b/mZBgu3MPHToUBw4cwJ9//ok///wTBw8exNChQ42fFxQU4KOPPsL777+PXr16ITw8HJ988glq1qyJhP9l9KOPPkJwcDA++OADNG/eHEOGDCnTv2jevHkYMmQIJk2ahNDQUHTs2BFLly7Fp59+itu3b9uuwERERHdRXCC0YsUKBAUFwd3dHZGRkThy5Eil6RcvXozmzZsbm2MmT54sqwdvVhYwdiyg0+nf63TAuHG2qxny9vZGnz59kJiYiLVr16JPnz6oX7++8fP09HSUlJTgscceM25zdXVFhw4dkJaWBgBIS0tDZGSkyXGjoqJM3v/yyy9ITExEnTp1jC+tVgudToeMjAwJS0hERFSxGvbOgCU2bdqE+Ph4rFq1CpGRkVi8eDG0Wi1Onz4NHx+fMuk3bNiAKVOmYM2aNejYsSPOnDljHC21aNEiO5SgrLNn7wRBBqWlwLlzQECAbfLwwgsvGJuoVqxYIck58vPzMW7cOEyYMKHMZ+yYTURE9qKoGqFFixZhzJgxGDVqFMLDw7Fq1SrUqlULa9asKTf9oUOH8Nhjj2Hw4MEICgpCz5498fzzz1dZi2RLoaGA+p674OIChITYLg8xMTEoLi5GSUkJtFqtyWfBwcFwc3PDwYMHjdtKSkpw9OhRhIeHAwBatGhR5pr+9NNPJu/btWuHkydPIiQkpMzLzc1NopIRERFVTjGBUHFxMVJTUxEdHW3cplarER0djZSUlHL36dixI1JTU40P6fPnz2PXrl3o3bt3hecpKipCXl6eyUtKAQHAxx/rgx9A/3P1atvVBunP6YK0tDScPHkSLoaM/E/t2rXx0ksv4bXXXkNSUhJOnjyJMWPGoLCwELGxsQCAF198EWfPnsVrr72G06dPY8OGDUhMTDQ5zhtvvIFDhw4hLi4OJ06cwNmzZ/HVV1+xszQRkQOx18Cf+6GYQOjatWsoLS2Fr6+vyXZfX19kZ2eXu8/gwYMxZ84cPP7443B1dUVwcDC6du2KN998s8LzzJs3D56ensZXYGCgVctRnthYIDNT/58nM1P/3tY8PDzg4eFR7mfz589H//79MWzYMLRr1w7nzp3D7t278cADDwDQN21t3boVO3bsQOvWrbFq1Sq8++67Jsd4+OGH8cMPP+DMmTPo1KkT2rZtixkzZsDf31/yshERkfTsOfDnfqiEEMLemTDHf//7XzRs2BCHDh0y6Yj7+uuv44cffsDhw4fL7LNv3z4MGjQIb7/9NiIjI3Hu3DlMnDgRY8aMwfTp08s9T1FREYqKiozv8/LyEBgYiNzc3DKBwu3bt5GRkYEmTZrA3d3dSiWlivB6E5ESZWXp+4OGhtq2tt+WsrL0wc/dfV5dXPR/3NurzHl5efD09Cz3+X03xXSWrl+/PlxcXJCTk2OyPScnB35+fuXuM336dAwbNgyjR48GADz00EMoKCjA2LFjMW3aNKjv7ZwDQKPRQKPRWL8ARETkdBIS7owMVqv1XSHsUesvNTkM/KkuxTSNubm5ISIiAsnJycZtOp0OycnJZYZqGxQWFpYJdgx9YBRSEUZERNUgh74q9p4exZbkMPCnuhQTCAFAfHw8PvnkE6xbtw5paWl46aWXUFBQYJwJefjw4Zg6daoxfd++ffHRRx9h48aNyMjIwJ49ezB9+nT07du3TKdgIiJyDHLpq1JZLYmjkcPAn+pSTNMYAAwcOBBXr17FjBkzkJ2djTZt2iApKcnYgfrChQsmNUBvvfUWVCoV3nrrLVy6dAne3t7o27cv3nnnHXsVgYiIJFRRLYxWa/uHsqGW5N5+M0qoJamO2Fj9dT53Tl9GJQRBgII6S9tLZZ2tDJ13g4KCULNmTTvl0Hn8/fffyMzMZGdpIqrQ3r36mqDytnftavPsICFBH4iVlt6pJXHEPkJy5HCdpeXI1dUVgL4vEgMh6RUWFgK4c92JiO4lt1oYpdaSOBMGQvfBxcUFXl5euHLlCgCgVq1aUKlUds6V4xFCoLCwEFeuXIGXlxf7dxFRhQx9Ve6thbFnABIQwACoInKYWoCB0H0yDN03BEMkHS8vrwqnSiAiMmAtjDLIZWoB9hGqgrltjKWlpSgpKbFhzpyLq6sra4KIiByELSZgZB8hG3NxceGDmoiIyAxymoBRUfMIERERkfLJaQJGBkJERERkU3KagJFNY0RE5NTkMHLJGcmlUztrhIiIyGnJZTkOZxUQoJ/o0p4BKAMhIiJySs60KCpVjIEQERE5JWdaFJUqxkCIiIickpxGLpH9MBAiIiKnJKeRS2Q/HDVGREROSy4jl8h+GAgREZFT46Kozo1NY0REROS0GAgRERGR02IgRERERE6LgRAREZGMZGUBe/dyYkdbYSBEREQkE1zyw/YYCBEREckAl/ywDwZCRETkcJTYvMQlP+yDgRARETkUpTYvcckP+2AgREREDkPJzUtc8sM+OLM0ERE5jMqal5QQUHDJD9tjIERERA7D0Lx0dzCktOYlLvlhW2waIyIih8HmJbIUa4SIiMihsHmJLMFAiIiIHA6bl8hcbBojIiIip8VAiIiIiJwWAyEiIiJyWooLhFasWIGgoCC4u7sjMjISR44cqTT9zZs3MX78eDRo0AAajQbNmjXDrl27bJRbIiIikjNFdZbetGkT4uPjsWrVKkRGRmLx4sXQarU4ffo0fHx8yqQvLi5Gjx494OPjgy1btqBhw4b4888/4eXlZfvMExERkeyohBDC3pkwV2RkJB555BEsX74cAKDT6RAYGIiXX34ZU6ZMKZN+1apVeP/993Hq1Cm4urpW65x5eXnw9PREbm4uPDw87iv/REREZBvmPr8V0zRWXFyM1NRUREdHG7ep1WpER0cjJSWl3H2+/vprREVFYfz48fD19UWrVq3w7rvvorS01FbZJiIiIhlTTNPYtWvXUFpaCl9fX5Ptvr6+OHXqVLn7nD9/Ht9//z2GDBmCXbt24dy5c/jXv/6FkpISzJw5s9x9ioqKUFRUZHyfl5dnvUIQERGRrCimRqg6dDodfHx88PHHHyMiIgIDBw7EtGnTsGrVqgr3mTdvHjw9PY2vwMBAG+aYiIiIbEkxgVD9+vXh4uKCnJwck+05OTnw8/Mrd58GDRqgWbNmcDEsOgOgRYsWyM7ORnFxcbn7TJ06Fbm5ucbXxYsXrVcIIiIikhXFBEJubm6IiIhAcnKycZtOp0NycjKioqLK3eexxx7DuXPnoLtrGeIzZ86gQYMGcHNzK3cfjUYDDw8PkxcRERE5JsUEQgAQHx+PTz75BOvWrUNaWhpeeuklFBQUYNSoUQCA4cOHY+rUqcb0L730Em7cuIGJEyfizJkz2LlzJ959912MHz/eXkUgIiIiGVFMZ2kAGDhwIK5evYoZM2YgOzsbbdq0QVJSkrED9YULF6BW34ntAgMDsXv3bkyePBkPP/wwGjZsiIkTJ+KNN96wVxGIiIhIRhQ1j5A9cB4hIiIi5XG4eYSIiIiIrI2BEBERETktBkJERETktBgIERERkdNiIEREROREsrKAvXv1P4mBEBERkdNISAAaNwa6ddP/TEiwd47sj4EQERGRE8jKAsaOBQyLLeh0wLhxrBliIEREROQEzp69EwQZlJYC587ZJz9ywUCIiIjICYSGAup7nvouLkBIiH3yIxcMhIiIiJxAQADw8cf64AfQ/1y9Wr/dmSlqrTEiIiKqvthYQKvVN4eFhDAIAhgIEREROZWAAAZAd2PTGBEREVXI0ecdYiBERERE5XKGeYcYCBEREVEZzjLvEAMhIiIiKsNZ5h1iIERERERlOMu8QwyEiIiIqAxnmXeIw+eJiIioXM4w7xADISIiIqqQo887xKYxIiK6b44+1ww5LgZCRER0X5xhrhk5YxB6fxgIERFRtTnLXDNyxSD0/jEQIiKianOWuWbkiEGodTAQIiKianOWuWbkiEGodTAQIiKianOWuWbkiEGodTAQIiKi+xIbC2Rm6jvsZmbq35P0AgKAYcNMtw0dyiDUUiohhLB3JuQsLy8Pnp6eyM3NhYeHh72zQ0REBEDfF6hxY9PmMRcXfTDKYMj85zdrhIiIzMRhyiQn7CNkHQyEiIjMwGHKJDfsI2QdDISIiKpgq2HKcqpxklNeqHzsqG4dDISIiKpgiyYIOdU4ySkvVDl2VL9/iguEVqxYgaCgILi7uyMyMhJHjhwxa7+NGzdCpVLh6aefljaDRORwQkMBlcp0m1ptvSYIOU2MJ6e8kHkCAoCuXVkTVF2KCoQ2bdqE+Ph4zJw5E8eOHUPr1q2h1Wpx5cqVSvfLzMzEq6++ik6dOtkop0Tk6Kw53lZOnV7llBciW1BUILRo0SKMGTMGo0aNQnh4OFatWoVatWphzZo1Fe5TWlqKIUOGYPbs2WjatKkNc0tEjuLs2bKBjxDWCw7k1OlVTnkhsgXFBELFxcVITU1FdHS0cZtarUZ0dDRSUlIq3G/OnDnw8fFBLBtOiaiapA4O5NTpVU55IbKFGvbOgLmuXbuG0tJS+Pr6mmz39fXFqVOnyt3nwIEDSEhIwIkTJ8w+T1FREYqKiozv8/LyqpVfInIchuBg3Dh9M5EUwUFsLKDV6muZQkLsG3jIKS9EUlNMIGSpW7duYdiwYfjkk09Qv359s/ebN28eZs+eLWHOiEiJbBEcBATIJ+iQU16IpKSYQKh+/fpwcXFBTk6OyfacnBz4+fmVSZ+eno7MzEz07dvXuE33vx6ANWrUwOnTpxEcHFxmv6lTpyI+Pt74Pi8vD4GBgdYqBhEpGIMDIsejmEDIzc0NERERSE5ONg6B1+l0SE5ORlxcXJn0YWFh+O2330y2vfXWW7h16xaWLFlSYXCj0Wig0Wisnn8iIiKSH8UEQgAQHx+PESNGoH379ujQoQMWL16MgoICjBo1CgAwfPhwNGzYEPPmzYO7uztatWplsr+XlxcAlNlOREREzklRgdDAgQNx9epVzJgxA9nZ2WjTpg2SkpKMHagvXLgA9b1DO4iISHJZWfppBkJD2XxIyqISwprTgjmevLw8eHp6Ijc3Fx4eHvbODhGR7CQk3JmNWq3Wj7DjjCVkb+Y+v1l9QkRE1cYlOUjpGAgREVG1cUkOUjoGQkREVG1ckoOUjoEQERFVG5fkIKVT1KgxIiKSHy7JQUrGQIiIiO4bZ90mpWLTGBERETktBkJERETktBgIERERkdNiIERETisrC9i7l5P/ETkzBkJEJFtSBioJCUDjxkC3bvqfCQnWPwcRyR8DISKSJSkDFS4LQUQGDISISHakDlS4LAQRGTAQIiLZkTpQ4bIQRGTAQIiIZEfqQIXLQhCRAQMhIpIdWwQqsbFAZqa+M3Zmpv49ETkflRBC2DsTcpaXlwdPT0/k5ubCw8PD3tkhcipZWVy/ioiqx9znN9caIyLZ4vpVRCQ1No0RERGR02IgRERERE6LgRARERE5LQZCRERE5LQYCBEREZHTYiBERERETouBEBHJlpSrzxMRAQyEiEimpFx9nhyfnIJoOeWFymIgRESyI/Xq887I0oexkh/ecgqi5ZQXKh8DISKSHalXn3c2lj6MlfzwllMQLae8UMUYCBGR7Ei9+rwzsfRhrPSHt5yCaDnlhSrGQIiIZMcWq887C0sfxkp/eMspiJZTXqhiDISISJZiY4HMTH0/lcxM/XuynKUPY6U/vOUURMspL1QxlRBC2DsTcpaXlwdPT0/k5ubCw8PD3tkhokpkZelrNEJD+bC5W0KCvnmrtPTOw7iywNLS9HKUlaWvxQoJsf//BTnlxZmY+/xWXI3QihUrEBQUBHd3d0RGRuLIkSMVpv3kk0/QqVMnPPDAA3jggQcQHR1daXoiUi4ld/CVmqW1a45QGxcQAHTtKo/AQ055obIUFQht2rQJ8fHxmDlzJo4dO4bWrVtDq9XiypUr5abft28fnn/+eezduxcpKSkIDAxEz549cenSJRvnnIikpPQOvrZg6cOYD2+yBTlM06CoprHIyEg88sgjWL58OQBAp9MhMDAQL7/8MqZMmVLl/qWlpXjggQewfPlyDB8+3KxzsmmMSP727tXXBJW3vWvXivdjUxqR/SQk3PkDRq3W96eyZu2jwzWNFRcXIzU1FdHR0cZtarUa0dHRSElJMesYhYWFKCkpQb169aTKJhHZQXU6+LIpjch+5FSLq5hA6Nq1aygtLYWvr6/Jdl9fX2RnZ5t1jDfeeAP+/v4mwdS9ioqKkJeXZ/IiInmzdHSOnH4JEzkjOU3ToJhA6H7Nnz8fGzduxPbt2+Hu7l5hunnz5sHT09P4CgwMtGEuiai6LOngK6dfwkTOSE7TNCgmEKpfvz5cXFyQk5Njsj0nJwd+fn6V7rtw4ULMnz8f3377LR5++OFK006dOhW5ubnG18WLF+8770RkG+Z28JXTL2EiZySnOZYUEwi5ubkhIiICycnJxm06nQ7JycmIioqqcL/33nsPc+fORVJSEtq3b1/leTQaDTw8PExeRORY5PRLmMhZyWWahhr2OW31xMfHY8SIEWjfvj06dOiAxYsXo6CgAKNGjQIADB8+HA0bNsS8efMAAAsWLMCMGTOwYcMGBAUFGfsS1alTB3Xq1LFbOYjI/mJjAa2WE90R2VNAgP2/e9UKhLKysuDl5VUmmCgpKUFKSgo6d+5slczda+DAgbh69SpmzJiB7OxstGnTBklJScYO1BcuXID6rvrujz76CMXFxXj22WdNjjNz5kzMmjVLkjwSkXLI4ZcwEdmXRfMIXb58Gf369UNqaipUKhUGDx6MlStXGgOinJwc+Pv7o7S0VLIM2xrnESJyXJxHiMhxSTKP0JQpU6BWq3H48GEkJSXh5MmTeOKJJ/DXX38Z0yhofkYicmKcR4iIAAtrhBo2bIjt27ejQ4cOAPRz7jz33HO4ePEikpOTUVJSwhohIrIaqWpssrL0wc/dQ+hdXPQdNlkzROQYJKkRys3NxQMPPGB8r9FosG3bNgQFBeGJJ56ocM0vIiJLSVljw3mEiMjAokCoadOm+PXXX0221ahRA5s3b0bTpk3x5JNPWjVzRHT/5LCooaWknvmZ8wgRkYFFgVCvXr3w8ccfl9luCIbatGljrXwRkRUotR+M1DU2nEeIiAws6iP0zz//oLCw0NjWdu3aNQD6WZ8Nn1+6dAmNGzeWIKv2wT5CpFRK7gdjq7xnZXEeISJHJUkfoRo1akCn02H8+PGoX78+fH194evri/r16yMuLg75+fkOFQQRKZmS+8HYssaGA12JnJtFEyreuHEDUVFRuHTpEoYMGYIWLVoAAE6ePInExEQkJyfj0KFDJh2qicg+DP1g7q1VUUo/GKlnfk5IuNMPSa3WB172muKfiOzHoqaxSZMmITk5Gd99951xNmeD7Oxs9OzZE927d8eHH35o9YzaC5vGSMkSEvSdjEtL79Sq8GGv7GZDIjKPJE1jO3bswMKFC8sEQQDg5+eH9957D9u3b7c8t0QkCbksaig3Sm42JCLrsqhp7PLly2jZsmWFn7dq1cq4sCkRyQPX0ypL6c2GRGQ9FtUI1a9fH5mZmRV+npGRgXr16t1vnoiIJMXh80RkYFEfoRdeeAHp6enYs2cP3NzcTD4rKiqCVqtF06ZNsWbNGqtn1F7YR4jIcXH4PJHjMvf5bVEglJWVhfbt20Oj0WD8+PEICwuDEAJpaWlYuXIlioqK8PPPPyMwMNAqhZADBkJERETKY+7z26I+QgEBAUhJScG//vUvTJ061bjSvEqlQo8ePbB8+XKHCoKIiIjIsVkUCAFAkyZN8J///Ad//fUXzp49CwAICQlh3yCiapJqhXUiIqqaxYGQwQMPPIAOHTpYMy9EToeT+tkXg1AismjUGBFZj9QrrFPllLogLRFZFwMhIjvhpH72wyCUiAwYCBHZiWFSv7txUj/bYBBKRAYMhIjshJP62Q+DUCIyYCBEZEdcC8w+GIQSkYFFEyo6I06oSJbiSCTl4MzSRI5LktXniahyHImkLAEBQNeuDIKInBkDISIr4Ugkul9ZWfpmUv6fIbIdBkJEVsKRSHQ/WJtIZB8MhIishCORqLpYm0hkPwyEiKyEI5GoulibSGQ/1V5rjIjKio0FtFqORCLLGGoT7w6GWJtIZBusESKyMo5EIkuxNpHIflgjRESy5UxzMrE2kcg+WCNERLLkjKOoWJtIZHuKqxFasWIF3n//fWRnZ6N169ZYtmwZOnToUGH6zZs3Y/r06cjMzERoaCgWLFiA3r172zDHd6Snp6OwsLDCz2vVqoXg4GDj++PHj+PWrVsVpq9bty7atm1rfH/9+nUUFxdXmN7NzQ0PPvhgtdNbytL87969G7m5uRWm9/T0hFarNb7fv38/8vLyKkzv4eGBTp06WZjr6uXF0rJKmXdA+ntriepcm/PnizFmTDcIoQKg7zszdqwONWrsRdOmbibXxtKyrl69Gvn5+RWmr1OnDsaNG1ft/Ev9PbeEpdfG0rxbmt5Slubfkmsp9XfE0msj9b2S8vhy+39jKUUFQps2bUJ8fDxWrVqFyMhILF68GFqtFqdPn4aPj0+Z9IcOHcLzzz+PefPm4cknn8SGDRvw9NNP49ixY2jVqpVN856eno7PP/+8ynRDhw5FcHAwjh8/jq+//tqsY7dt2xbXr1/H8uXLq0wbFxeHBx980OL0lrI0/7t378ZPP/1kVnqtVov9+/fj+++/Nyu9pQGFpXmxtKxS5h2A5PfWEtW9NhkZQcYgyECnU2Pv3ovIzPwTgP7aWFrW1atXIzs7u9K0+fn5WL16NcaNG2dx/qX+nlvC0mtjad4tTW8pS/NvybVs1KiRpN8RS6+N1PdKyuMDkNX/m+pQVNPYokWLMGbMGIwaNQrh4eFYtWoVatWqhTVr1pSbfsmSJYiJicFrr72GFi1aYO7cuWjXrp1Z/yGsrbLot7x0lf1VczdDusoi/bsZ0lma3lKW5r+y2pe7GdJVVptyN3PTlXcOc9NZWlYp8w5If28tUd1rU6/edahUpuPJVSod6tW7YZLO0rJWVhN0N0M6S/Mv9ffcEpZeG0vzbml6S1maf0uupdTfEUuvjdT3Ssrjy+3/TXUoJhAqLi5GamoqoqOjjdvUajWio6ORkpJS7j4pKSkm6QH9X/AVpSciefD0vIW+fb8xBkMqlQ59+34DT0/LAwIiosoopmns2rVrKC0tha+vr8l2X19fnDp1qtx9srOzy01fWdV4UVERioqKjO+r+1c5Ed2fdu2OIzj4HG7cqId69W4wCCIiSSimRshW5s2bB09PT+MrMDDQ3lkiclqenrfQpMmfkgVBubl1kZERhNzcupIcn4jkTzE1QvXr14eLiwtycnJMtufk5MDPz6/cffz8/CxKDwBTp05FfHy88X1eXh6DISIHdOxYW/z7309CCLWx6a1du+P2zhYR2ZhiaoTc3NwQERGB5ORk4zadTofk5GRERUWVu09UVJRJegDYs2dPhekBQKPRwMPDw+RFRI4lN7euMQgCACHU+Pe/n2TNEJETUkyNEADEx8djxIgRaN++PTp06IDFixejoKAAo0aNAgAMHz4cDRs2xLx58wAAEydORJcuXfDBBx+gT58+2LhxI37++Wd8/PHH9iwGEdnZjRsPGoMgAyHUuHGjHvsiETkZRQVCAwcOxNWrVzFjxgxkZ2ejTZs2SEpKMnaIvnDhAtTqO7/cOnbsiA0bNuCtt97Cm2++idDQUOzYscPmcwgB+gmiLElXt655f5ka0rm5uZmV3pDO0vSWsjT/np6eZqU3pDO3pq46NXqW5sXSskqZd0D6e2sJqa+NpWWtU6cO8vPzjcPz7w6G7h6eX6dOnWrlX+rvuSUsvTaW5t3S9JayNP+WXEupvyOWXhup75XUx7ckrdT/b6pDJYQQNjubAuXl5cHT0xO5ubn33UzGmaVNcWZpziwN3P+1qe7M0ocPt8KWLT2MfYSefXYPIiN/58zSMpohmDNLV5wfOR1fbv9vDMx9fjMQqoI1AyEikpesLC5ySuSozH1+K6ppjIjImgICGAARWVNWFnD2LBAaqpzvlmJGjREREZF8JSQAjRsD3brpfyYk2DtH5mEgRERERPclKwsYOxbQ/W+JQJ0OGDdOv13uGAgRERHRfTl79k4QZFBaqu+DJ3cMhIiIiOi+hIYC6nsiChcX/UAEuWMgREQkE1lZwN69ymhOILpbQADw8cf64AfQ/1y9WhkdphkIERHJgFI7mhIZxMYCmZn6YD4zU/9eCTiPUBU4jxARSS0rSx/83N3HwsVF/zBRwl/URHJk7vObNUJERHam5I6mRErHQIioCuy3QVJTckdTIqVjIERUCfbbIFtQckdTIqVjH6EqsI+Q82K/DbI1rn1GZD1ca4zoPlXWb4MPKZIC1z4jsj02jRFVgP02rI/9rYhIbhgIEVWA/Tasi/2tiEiOGAgRVeHuRQSpepS8ICMROTYGQkQVMDy8DcMJhODDu7o4Tw4RyRUDIaIK8OFtPexvRURyxUCIZEkOnWr58LYe9rciIrliIESyI5dOtXx4W5dSF2QkIsfGCRWrwAkVbUuOkxhykjsiIuXhhIqkSHKcxJCT3BEROS42jZGssF8OERHZEgMhkhX2yyEiIlti0xjJTmwsoNWyXw4REUmPgRDJEvvlEBGRLbBpjIicltTzVclhPiwiqhwDIZIlPkBIalLPVyWX+bCIqHKcR6gKnEfI9hIS7izQqVbrO09XNfleVpZ+6H1oKJvUqGpSz1clx/mwiJyNuc9v1giRrFRnlXL+5U2WknodOa5TR6QcDIRIVix9gFQncCKSer4qzodlfWwuJ6koJhC6ceMGhgwZAg8PD3h5eSE2Nhb5+fmVpn/55ZfRvHlz1KxZE40aNcKECROQm5trw1yTpSx9gPAvb6oOqeer4nxY1sVaX5KSYvoI9erVC5cvX8bq1atRUlKCUaNG4ZFHHsGGDRvKTf/7779j5syZGDlyJMLDw/Hnn3/ixRdfxMMPP4wtW7aYfV72EbK9hAR9rU5p6Z0HSEV9hOTYF4P9lZRD6nXkuE7d/ZPjd5yUwdzntyICobS0NISHh+Po0aNo3749ACApKQm9e/dGVlYW/P39zTrO5s2bMXToUBQUFKBGDfOmUGIgZB+WPEAsCZykVp2O3kRUsb179TVB5W3v2tXm2SEFcajO0ikpKfDy8jIGQQAQHR0NtVqNw4cPm30cw8UwNwgi+wkI0P+SM+cvvthY/V+He/fqf9or8GB/JcfHfiq2x/5WJDVFBELZ2dnw8fEx2VajRg3Uq1cP2dnZZh3j2rVrmDt3LsaOHVtpuqKiIuTl5Zm8SBnsXbfJ/kqOjf1U7IP9rUhqdg2EpkyZApVKVenr1KlT932evLw89OnTB+Hh4Zg1a1alaefNmwdPT0/jKzAw8L7PT9KSywOKf7k6Ltb22Zdcan3JMdm1j9DVq1dx/fr1StM0bdoUn3/+OV555RX89ddfxu3//PMP3N3dsXnzZvy///f/Ktz/1q1b0Gq1qFWrFr755hu4u7tXer6ioiIUFRUZ3+fl5SEwMJB9hGRKbh0p5dRfiayH/VSIlMfcPkJ27Szj7e0Nb2/vKtNFRUXh5s2bSE1NRUREBADg+++/h06nQ2RkZIX75eXlQavVQqPR4Ouvv64yCAIAjUYDjUZjfiHIriprjrJHIBQbC2i1HCnkaAy1ffcG3KztI1I+RfQRatGiBWJiYjBmzBgcOXIEBw8eRFxcHAYNGmQcMXbp0iWEhYXhyJEjAPRBUM+ePVFQUICEhATk5eUhOzsb2dnZKC0ttWdxyIrk2BxlSUdvZ6PUzsbsp0LkuBQRCAHA+vXrERYWhu7du6N37954/PHH8fHHHxs/LykpwenTp1FYWAgAOHbsGA4fPozffvsNISEhaNCggfF18eJFexWDrIwPKOWQS1+u6mI/FSLHpIh5hOyJ8wgpAyeukze59eUiIseniD5CRNYSEMAHqpzJrS8XEZGBYprGiEi55NiXi4gIYCBERDbAvlxEJFdsGiMim+DUAkQkRwyEiMhm2JeLiOSGTWNERETktBgIERERkdNiIEREREROi4EQEZFElLqkCJEzYSBERCQBpS8pQuQsGAgREVlZVhYwduyd2bR1OmDcONYMEckRAyEiIiurbEkRIpIXBkJERFbGJUWIlIOBEMkSO5mSknFJESLlYCCkEM4UGLCTKdmKlN+r2FggM1N//MxM/Xsikh8GQgrgTIEBO5mSrdjiexUQAHTtypogIjljICRzzhYYsJMp2YKzfa+IqGIMhGTO2QIDZ+xk6kzNnnLhbN8rIqoYAyGZc7bAwNk6mTpTs6ecONv3iogqxkBI5pwtMACcp5Mpm2fsx/C9MgRDarXjf6+IqHw17J0BqlpsLKDV6qvtQ0Kc45d1QIDjl7Oy5hlHLzsRkVyohBDC3pmQs7y8PHh6eiI3NxceHh72zg45kKwsfXPY3cGQi4u+FoyBkLR47Ykcn7nPbzaNEdmJMzZ7ygU7SxORAZvGiOzIGZs95cDQWfreGiF2liZyPqwRIrIzTrpne6yNIyID1ggRVSErS9+UEhpq3oPS0vRkH6yNIyKANUJElbJ0nh/OC6QsrI0jIo4aqwJHjSmDFLUwlo4s4kgkIiL54KgxchpS1cJYOrKII5GIiJSHgRDZhFTraUk5O7OlyzBw2QYiIuVhIESSk7LfjJS1MJaOLOJIJCIi5WEfoSqwj9D9kbrfjC365WRlWTayyNL0RERkfQ7XR+jGjRsYMmQIPDw84OXlhdjYWOTn55u1rxACvXr1gkqlwo4dO6TNKJmQut+MLWphLB1ZxJFIRETKoZh5hIYMGYLLly9jz549KCkpwahRozB27Fhs2LChyn0XL14MlUplg1zSvWwxgy/ngyEioupSRCCUlpaGpKQkHD16FO3btwcALFu2DL1798bChQvh7+9f4b4nTpzABx98gJ9//hkNGjSwVZbpfww1NuPG6WuCpOo34wyr1RMRkfUpomksJSUFXl5exiAIAKKjo6FWq3H48OEK9yssLMTgwYOxYsUK+Pn52SKrVI7YWH2fnb179T9jY+2dI3mRakQdVY3XnogUEQhlZ2fDx8fHZFuNGjVQr149ZGdnV7jf5MmT0bFjR/Tr18/scxUVFSEvL8/kRfeP/WbKx5mo7YfXnogAOwdCU6ZMgUqlqvR16tSpah3766+/xvfff4/FixdbtN+8efPg6elpfAUGBlbr/ERVkXIOJKocrz0RGdi1j9Arr7yCkSNHVpqmadOm8PPzw5UrV0y2//PPP7hx40aFTV7ff/890tPT4eXlZbK9f//+6NSpE/bt21fuflOnTkV8fLzxfV5eHoMhkkRlI+pYcyYtXnsiMrBrIOTt7Q1vb+8q00VFReHmzZtITU1FREQEAH2go9PpEBkZWe4+U6ZMwejRo022PfTQQ/jwww/Rt2/fCs+l0Wig0WgsKAVR9dhiRB2Vj9eeiAwU0UeoRYsWiImJwZgxY3DkyBEcPHgQcXFxGDRokHHE2KVLlxAWFoYjR44AAPz8/NCqVSuTFwA0atQITZo0sVtZiAw4E7X98NoTkYEihs8DwPr16xEXF4fu3btDrVajf//+WLp0qfHzkpISnD59GoWFhXbMJdmLFKvP2+LYnAPJfnjtiQjgEhtV4hIb8peQcKfjq1qt/0vfWkP0pTw2ERFJx9znNwOhKjAQkjcp1xqzxTpmREQkDYdba4yoPFKuZSb1OmnOiBMYEpHcMBAiWTL3gWkY/XM3a43+kfLYzogTGBKRHDEQItmx5IEp5eifgABg2DDTbUOHslmsOjiBIRHJFfsIVYF9hGyruv1ysrKsP/qHfYSsZ+9efWBb3vauXW2eHSJyAuY+vxUzfJ6cQ3Vn/JVi9XnOPmw9nMCQiOSKTWMkK3LqlyOnvCgdJzAkIrliIESyIqcHppzy4ghiY/XNinv36n9yPiYikgP2EaoC+wjZhxR9fhwhL0REZB72ESJFk6LPT3XJKS9ERGRdbBojIiIip8VAiIiIiJwWAyEiIiJyWgyEiIiIyGkxECIiIiKnxUBIIbhqNxERkfUxEFKAhASgUSP9Wk2NGnHVbkfDIJeIyH4YCMlcVhYwZgxgmPZSCP17PjQdQ0KCfmHXbt30PxnkEhHZFgMhmTt06E4QZCAEkJJin/yQ9WRlAWPH3lmIVKcDxo1jkEtEZEsMhIjspLLV7YmIyDYYCMlcx46ASmW6Ta0GoqLsk5/qYj+Ysri6PRGR/TEQkrmAAOCTT0xXQP/4Y2WtfcV+MOXj6vZERPbH1eerIJfV55W6AnpWlj74ubsJyMUFyMxUVjmkpNR7S0QkZ1x93sEodQX0yvrBKLE8UlDqvSUicgRsGiNJsR8MERHJGQMhkhT7wRARkZyxaYwkFxsLaLXsB0NERPLDQIhswtJ+MFlZ+v5FoaEMnIiISDpsGiPZ4XB7IiKyFQZCJCtcdoKIiGyJgRDJCpedICIiW2IgRLLC4fZERGRLigmEbty4gSFDhsDDwwNeXl6IjY1Ffn5+lfulpKSgW7duqF27Njw8PNC5c2f8/fffNsgxVQeH2xMRkS0pJhAaMmQI/vjjD+zZswfffPMNfvzxR4wdO7bSfVJSUhATE4OePXviyJEjOHr0KOLi4qC+t8qBZLUoamysfgmOvXv1P2Nj7Z0jIiJyVIpYaywtLQ3h4eE4evQo2rdvDwBISkpC7969kZWVBX9//3L3e/TRR9GjRw/MnTu32ueWy1pjUkpIuNNBWa3W18gw+CAiIiUz9/mtiKqRlJQUeHl5GYMgAIiOjoZarcbhw4fL3efKlSs4fPgwfHx80LFjR/j6+qJLly44cOCArbKtCBylRUREzkwRgVB2djZ8fHxMttWoUQP16tVDdnZ2ufucP38eADBr1iyMGTMGSUlJaNeuHbp3746zZ89WeK6ioiLk5eWZvKQgdVOUucfnKC0iInJmdg2EpkyZApVKVenr1KlT1Tq27n9P93HjxmHUqFFo27YtPvzwQzRv3hxr1qypcL958+bB09PT+AoMDKzW+Ssj9YSBlhyfo7SIiMiZ2TUQeuWVV5CWllbpq2nTpvDz88OVK1dM9v3nn39w48YN+Pn5lXvsBg0aAADCw8NNtrdo0QIXLlyoME9Tp05Fbm6u8XXx4sX7LKUpqZuiLD0+R2kREZEzs+taY97e3vD29q4yXVRUFG7evInU1FREREQAAL7//nvodDpERkaWu09QUBD8/f1x+vRpk+1nzpxBr169KjyXRqOBRqOxoBSWqawpyhrBR3WOz0VRiYjIWSmij1CLFi0QExODMWPG4MiRIzh48CDi4uIwaNAg44ixS5cuISwsDEeOHAEAqFQqvPbaa1i6dCm2bNmCc+fOYfr06Th16hRi7Tgkqk6d8rfXrm2d41e3qSsgAOjalUEQERE5F8WsPr9+/XrExcWhe/fuUKvV6N+/P5YuXWr8vKSkBKdPn0ZhYaFx26RJk3D79m1MnjwZN27cQOvWrbFnzx4EBwfbowgAgIrmgCwosM7xDU1d48bpa4Lk0tTF1eSJiEiOFDGPkD1Zex6hrCx9B+a7m69cXPQTB1ozQMjKkk9TF+cpIiIiW3OoeYQcia06J8ulqYvzFBERkZwppmnMkThT52SpO4cTERHdDwZCdhIQ4ByBgKHz9r1NgZyniIiI5IBNYyQpzlNERERyxhohkpwzNQUSEZGyMBAim3CWpkAiIlIWNo0RERGR02IgRERERE6LgRARERE5LQZCRERE5LQYCBEREZHTYiBERERETouBEBERETktBkJERETktBgIERERkdNiIEREREROi4EQEREROS2uNVYFIQQAIC8vz845ISIiInMZntuG53hFGAhV4datWwCAwMBAO+eEiIiILHXr1i14enpW+LlKVBUqOTmdTof//ve/qFu3LlQqldWOm5eXh8DAQFy8eBEeHh5WO66cOHoZHb18gOOXkeVTPkcvI8tXfUII3Lp1C/7+/lCrK+4JxBqhKqjVagQEBEh2fA8PD4f8z303Ry+jo5cPcPwysnzK5+hlZPmqp7KaIAN2liYiIiKnxUCIiIiInBYDITvRaDSYOXMmNBqNvbMiGUcvo6OXD3D8MrJ8yufoZWT5pMfO0kREROS0WCNERERETouBEBERETktBkJERETktBgIERERkdNiIGRFK1asQFBQENzd3REZGYkjR45Umn7x4sVo3rw5atasicDAQEyePBm3b9++r2NKydrlmzVrFlQqlckrLCxM6mJUypIylpSUYM6cOQgODoa7uztat26NpKSk+zqm1KxdPjndwx9//BF9+/aFv78/VCoVduzYUeU++/btQ7t27aDRaBASEoLExMQyaeRy/6Qon5zuH2B5GS9fvozBgwejWbNmUKvVmDRpUrnpNm/ejLCwMLi7u+Ohhx7Crl27rJ95M0hRvsTExDL30N3dXZoCmMHSMm7btg09evSAt7c3PDw8EBUVhd27d5dJJ+n3UJBVbNy4Ubi5uYk1a9aIP/74Q4wZM0Z4eXmJnJycctOvX79eaDQasX79epGRkSF2794tGjRoICZPnlztY0pJivLNnDlTtGzZUly+fNn4unr1qq2KVIalZXz99deFv7+/2Llzp0hPTxcrV64U7u7u4tixY9U+ppSkKJ+c7uGuXbvEtGnTxLZt2wQAsX379krTnz9/XtSqVUvEx8eLkydPimXLlgkXFxeRlJRkTCOn+ydF+eR0/4SwvIwZGRliwoQJYt26daJNmzZi4sSJZdIcPHhQuLi4iPfee0+cPHlSvPXWW8LV1VX89ttv0hSiElKUb+3atcLDw8PkHmZnZ0tTADNYWsaJEyeKBQsWiCNHjogzZ86IqVOnCldXV5v+HmUgZCUdOnQQ48ePN74vLS0V/v7+Yt68eeWmHz9+vOjWrZvJtvj4ePHYY49V+5hSkqJ8M2fOFK1bt5Ykv9VhaRkbNGggli9fbrLtmWeeEUOGDKn2MaUkRfnkdg8NzPkF/Prrr4uWLVuabBs4cKDQarXG93K6f3ezVvnkev+EMK+Md+vSpUu5gcKAAQNEnz59TLZFRkaKcePG3WcO74+1yrd27Vrh6elptXxZk6VlNAgPDxezZ882vpf6e8imMSsoLi5GamoqoqOjjdvUajWio6ORkpJS7j4dO3ZEamqqsXrv/Pnz2LVrF3r37l3tY0pFivIZnD17Fv7+/mjatCmGDBmCCxcuSFeQSlSnjEVFRWWqoGvWrIkDBw5U+5hSkaJ8BnK5h5ZKSUkxuR4AoNVqjddDTvevOqoqn4FS75+5zL0OSpafn4/GjRsjMDAQ/fr1wx9//GHvLFWbTqfDrVu3UK9ePQC2+R4yELKCa9euobS0FL6+vibbfX19kZ2dXe4+gwcPxpw5c/D444/D1dUVwcHB6Nq1K958881qH1MqUpQPACIjI5GYmIikpCR89NFHyMjIQKdOnXDr1i1Jy1Oe6pRRq9Vi0aJFOHv2LHQ6Hfbs2YNt27bh8uXL1T6mVKQoHyCve2ip7Ozscq9HXl4e/v77b1ndv+qoqnyAsu+fuSq6Dkq4h+Zo3rw51qxZg6+++gqff/45dDodOnbsiKysLHtnrVoWLlyI/Px8DBgwAIBtfo8yELKTffv24d1338XKlStx7NgxbNu2DTt37sTcuXPtnTWrMKd8vXr1wnPPPYeHH34YWq0Wu3btws2bN/Hll1/aMefmW7JkCUJDQxEWFgY3NzfExcVh1KhRUKsd42tlTvmUfg+dHe+f8kVFRWH48OFo06YNunTpgm3btsHb2xurV6+2d9YstmHDBsyePRtffvklfHx8bHbeGjY7kwOrX78+XFxckJOTY7I9JycHfn5+5e4zffp0DBs2DKNHjwYAPPTQQygoKMDYsWMxbdq0ah1TKlKUr7xgwcvLC82aNcO5c+esX4gqVKeM3t7e2LFjB27fvo3r16/D398fU6ZMQdOmTat9TKlIUb7y2PMeWsrPz6/c6+Hh4YGaNWvCxcVFNvevOqoqX3mUdP/MVdF1UMI9rA5XV1e0bdtWcfdw48aNGD16NDZv3mzSDGaL36OO8aernbm5uSEiIgLJycnGbTqdDsnJyYiKiip3n8LCwjLBgIuLCwBACFGtY0pFivKVJz8/H+np6WjQoIGVcm6++7ne7u7uaNiwIf755x9s3boV/fr1u+9jWpsU5SuPPe+hpaKiokyuBwDs2bPHeD3kdP+qo6rylUdJ989c1bkOSlZaWorffvtNUffwiy++wKhRo/DFF1+gT58+Jp/Z5HtolS7XJDZu3Cg0Go1ITEwUJ0+eFGPHjhVeXl7GYYzDhg0TU6ZMMaafOXOmqFu3rvjiiy/E+fPnxbfffiuCg4PFgAEDzD6m0sv3yiuviH379omMjAxx8OBBER0dLerXry+uXLli8/IJYXkZf/rpJ7F161aRnp4ufvzxR9GtWzfRpEkT8ddff5l9TFuSonxyuoe3bt0Sx48fF8ePHxcAxKJFi8Tx48fFn3/+KYQQYsqUKWLYsGHG9Ibh5a+99ppIS0sTK1asKHf4vFzunxTlk9P9E8LyMgohjOkjIiLE4MGDxfHjx8Uff/xh/PzgwYOiRo0aYuHChSItLU3MnDnTbsPnpSjf7Nmzxe7du0V6erpITU0VgwYNEu7u7iZpbMnSMq5fv17UqFFDrFixwmQKgJs3bxrTSP09ZCBkRcuWLRONGjUSbm5uokOHDuKnn34yftalSxcxYsQI4/uSkhIxa9YsERwcLNzd3UVgYKD417/+ZfKQqeqYtmbt8g0cOFA0aNBAuLm5iYYNG4qBAweKc+fO2bBEZVlSxn379okWLVoIjUYjHnzwQTFs2DBx6dIli45pa9Yun5zu4d69ewWAMi9DmUaMGCG6dOlSZp82bdoINzc30bRpU7F27doyx5XL/ZOifHK6f0JUr4zlpW/cuLFJmi+//FI0a9ZMuLm5iZYtW4qdO3fapkD3kKJ8kyZNMv7/9PX1Fb179zaZg8fWLC1jly5dKk1vIOX3UCVEBe0URERERA6OfYSIiIjIaTEQIiIiIqfFQIiIiIicFgMhIiIicloMhIiIiMhpMRAiIiIip8VAiIiIiJwWAyEiIoXZt28fVCoVbt68ae+sECkeAyEiqtDIkSOhUqkwf/58k+07duyASqUyvhdC4JNPPkFUVBQ8PDxQp04dtGzZEhMnTjR78cfCwkJMnToVwcHBcHd3h7e3N7p06YKvvvrKmCYoKAiLFy+2StmkZrh2KpUKrq6uaNKkCV5//XXcvn3bouN07doVkyZNMtnWsWNHXL58GZ6enlbMMZFzYiBERJVyd3fHggUL8Ndff5X7uRACgwcPxoQJE9C7d298++23OHnyJBISEuDu7o63337brPO8+OKL2LZtG5YtW4ZTp04hKSkJzz77LK5fv27N4thUTEwMLl++jPPnz+PDDz/E6tWrMXPmzPs+rpubG/z8/EyCUSKqJqst1kFEDmfEiBHiySefFGFhYeK1114zbt++fbsw/Pr44osvBADx1VdflXsMnU5n1rk8PT1FYmJihZ+XtyaRwf79+8Xjjz8u3N3dRUBAgHj55ZdFfn6+8fNPP/1UREREiDp16ghfX1/x/PPPi5ycHOPnhvWRkpKSRJs2bYS7u7t44oknRE5Ojti1a5cICwsTdevWFc8//7woKCgwqzwjRowQ/fr1M9n2zDPPiLZt2xrfX7t2TQwaNEj4+/uLmjVrilatWokNGzaYHOPeMmdkZBjze/fafVu2bBHh4eHCzc1NNG7cWCxcuNCsfBI5O9YIEVGlXFxc8O6772LZsmXIysoq8/kXX3yB5s2b46mnnip3f3NrLfz8/LBr1y7cunWr3M+3bduGgIAAzJkzB5cvX8bly5cBAOnp6YiJiUH//v3x66+/YtOmTThw4ADi4uKM+5aUlGDu3Ln45ZdfsGPHDmRmZmLkyJFlzjFr1iwsX74chw4dwsWLFzFgwAAsXrwYGzZswM6dO/Htt99i2bJlZpXnXr///jsOHToENzc347bbt28jIiICO3fuxO+//46xY8di2LBhOHLkCABgyZIliIqKwpgxY4xlDgwMLHPs1NRUDBgwAIMGDcJvv/2GWbNmYfr06UhMTKxWXomcir0jMSKSr7trNR599FHxwgsvCCFMa4TCwsLEU089ZbLfxIkTRe3atUXt2rVFw4YNzTrXDz/8IAICAoSrq6to3769mDRpkjhw4IBJmsaNG4sPP/zQZFtsbKwYO3asybb9+/cLtVot/v7773LPdfToUQFA3Lp1Swhxp0bou+++M6aZN2+eACDS09ON28aNGye0Wq1Z5RkxYoRwcXERtWvXFhqNRgAQarVabNmypdL9+vTpI1555RXj+y5duoiJEyeapLm3Rmjw4MGiR48eJmlee+01ER4eblZeiZwZa4SIyCwLFizAunXrkJaWVmXaadOm4cSJE5gxYwby8/PNOn7nzp1x/vx5JCcn49lnn8Uff/yBTp06Ye7cuZXu98svvyAxMRF16tQxvrRaLXQ6HTIyMgDoa0z69u2LRo0aoW7duujSpQsA4MKFCybHevjhh43/9vX1Ra1atdC0aVOTbVeuXDGrPADwxBNP4MSJEzh8+DBGjBiBUaNGoX///sbPS0tLMXfuXDz00EOoV68e6tSpg927d5fJV1XS0tLw2GOPmWx77LHHcPbsWZSWllp0LCJnw0CIiMzSuXNnaLVaTJ061WR7aGgoTp8+bbLN29sbISEh8PHxsegcrq6u6NSpE9544w18++23mDNnDubOnYvi4uIK98nPz8e4ceNw4sQJ4+uXX37B2bNnERwcjIKCAmi1Wnh4eGD9+vU4evQotm/fDgBljuvq6mr8t2G0191UKhV0Op3Z5alduzZCQkLQunVrrFmzBocPH0ZCQoLx8/fffx9LlizBG2+8gb179+LEiRPQarWVlpeIrKuGvTNARMoxf/58tGnTBs2bNzdue/755zF48GB89dVX6Nevn1XPFx4ejn/++Qe3b9+Gm5sb3NzcytRwtGvXDidPnkRISEi5x/jtt99w/fp1zJ8/39i/5ueff7ZqPs2hVqvx5ptvIj4+HoMHD0bNmjVx8OBB9OvXD0OHDgUA6HQ6nDlzBuHh4cb9yivzvVq0aIGDBw+abDt48CCaNWsGFxcX6xeGyIGwRoiIzPbQQw9hyJAhWLp0qXHboEGD8Oyzz2LQoEGYM2cODh8+jMzMTPzwww/YtGmT2Q/irl27YvXq1UhNTUVmZiZ27dqFN998E0888QQ8PDwA6OcR+vHHH3Hp0iVcu3YNAPDGG2/g0KFDiIuLw4kTJ3D27Fl89dVXxs7SjRo1gpubG5YtW4bz58/j66+/rrK5TSrPPfccXFxcsGLFCgD62rQ9e/bg0KFDSEtLw7hx45CTk2OyT1BQkPGaXrt2rdwaqVdeeQXJycmYO3cuzpw5g3Xr1mH58uV49dVXbVIuIiVjIEREFpkzZ47Jw1ilUmHTpk1YvHgxdu3ahe7du6N58+Z44YUXEBgYiAMHDph1XK1Wi3Xr1qFnz55o0aIFXn75ZWi1Wnz55Zcm587MzERwcDC8vb0B6Pv1/PDDDzhz5gw6deqEtm3bYsaMGfD39wegb6ZLTEzE5s2bER4ejvnz52PhwoVWvCLmq1GjBuLi4vDee++hoKAAb731Ftq1awetVouuXbvCz88PTz/9tMk+r776KlxcXBAeHg5vb+9y+w+1a9cOX375JTZu3IhWrVphxowZmDNnTrkj44jIlEoIIeydCSIiIiJ7YI0QEREROS0GQkRkE3cPb7/3tX//fntnzyIXLlyotDyWDn8nIvth0xgR2URli682bNgQNWvWtGFu7s8///yDzMzMCj8PCgpCjRoclEukBAyEiIiIyGmxaYyIiIicFgMhIiIicloMhIiIiMhpMRAiIiIip8VAiIiIiJwWAyEiIiJyWgyEiIiIyGkxECIiIiKn9f8Bd4MTy29xNewAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHHCAYAAAC2rPKaAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASRpJREFUeJzt3Xl4U1Xi//FPGrqxtIjsthRoCwgqAgqCIsuohUHUxwURRNDKMgMqgyuDI5sjIAwioA7OUxYXXFlcQBYZUBZ1/CK4gVCWCkV2pGWRgu35/ZFfI6FbkiZNcvN+PU+eNjc3N+fcm+R+cs6599qMMUYAAAAWFBHoAgAAAPgLQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAKtjcuXNls9mUlZUV6KIAlkfQASzo66+/1rBhw9SiRQtVqVJFDRo0UK9evbR9+/Yi83bu3Fk2m002m00RERGKi4tT06ZN1a9fP61cudKj1/3oo4/UqVMn1a5dW5UrV1bjxo3Vq1cvLVu2zFdVK+K5557T4sWLi0zfsGGDxowZo+PHj/vttS80ZswY57q02WyqXLmymjdvrqefflq5ubk+eY358+dr2rRpPlkWEA4IOoAFTZo0SQsWLNCf/vQnvfjiixo0aJA+//xztW7dWj/88EOR+RMSEvT666/rtdde0+TJk3XLLbdow4YNuummm3T33Xfr3LlzZb7mlClTdMstt8hms2nkyJF64YUXdMcddygzM1Nvv/22P6opqfSgM3bs2AoNOoVeeeUVvf7665o6daqaNWumf/7zn+rWrZt8cWlBgg7gmUqBLgAA3xsxYoTmz5+vqKgo57S7775bl19+uSZOnKg33njDZf74+Hjde++9LtMmTpyohx9+WC+//LIaNmyoSZMmlfh6v//+u8aPH68bb7xRK1asKPL4oUOHylmj4HH69GlVrly51HnuvPNO1axZU5I0ZMgQ3XHHHVq4cKG+/PJLtW/fviKKCeD/o0UHsKAOHTq4hBxJSk1NVYsWLbR161a3lmG32zV9+nQ1b95cM2fOVE5OTonzHjlyRLm5ubr22muLfbx27dou98+cOaMxY8aoSZMmiomJUb169XT77bdr586dznmmTJmiDh066OKLL1ZsbKzatGmj999/32U5NptNp06d0rx585zdRQMGDNCYMWP0+OOPS5IaNWrkfOz8MTFvvPGG2rRpo9jYWNWoUUO9e/fW3r17XZbfuXNnXXbZZdq4caOuv/56Va5cWX//+9/dWn/n69q1qyRp9+7dpc738ssvq0WLFoqOjlb9+vU1dOhQlxapzp07a8mSJfr555+ddWrYsKHH5QHCCS06QJgwxujgwYNq0aKF28+x2+2655579I9//EPr1q1Tjx49ip2vdu3aio2N1UcffaSHHnpINWrUKHGZ+fn5uvnmm7Vq1Sr17t1bjzzyiE6cOKGVK1fqhx9+UHJysiTpxRdf1C233KK+ffvq7Nmzevvtt3XXXXfp448/dpbj9ddf14MPPqi2bdtq0KBBkqTk5GRVqVJF27dv11tvvaUXXnjB2bpSq1YtSdI///lP/eMf/1CvXr304IMP6vDhw5oxY4auv/56bdq0SdWrV3eW9+jRo+revbt69+6te++9V3Xq1HF7/RUqDHAXX3xxifOMGTNGY8eO1Q033KC//OUv2rZtm1555RV9/fXXWr9+vSIjIzVq1Cjl5OQoOztbL7zwgiSpatWqHpcHCCsGQFh4/fXXjSSTkZHhMr1Tp06mRYsWJT5v0aJFRpJ58cUXS13+M888YySZKlWqmO7du5t//vOfZuPGjUXmmz17tpFkpk6dWuSxgoIC5/+nT592eezs2bPmsssuM127dnWZXqVKFdO/f/8iy5o8ebKRZHbv3u0yPSsry9jtdvPPf/7TZfr3339vKlWq5DK9U6dORpL597//XWK9zzd69GgjyWzbts0cPnzY7N6928yaNctER0ebOnXqmFOnThljjJkzZ45L2Q4dOmSioqLMTTfdZPLz853LmzlzppFkZs+e7ZzWo0cPk5SU5FZ5ABhD1xUQBn766ScNHTpU7du3V//+/T16bmGLwYkTJ0qdb+zYsZo/f75atWql5cuXa9SoUWrTpo1at27t0l22YMEC1axZUw899FCRZdhsNuf/sbGxzv9//fVX5eTkqGPHjvrmm288Kv+FFi5cqIKCAvXq1UtHjhxx3urWravU1FStXr3aZf7o6Gjdf//9Hr1G06ZNVatWLTVq1EiDBw9WSkqKlixZUuLYnk8//VRnz57V8OHDFRHxx9fywIEDFRcXpyVLlnheUQCSwnSMzueff66ePXuqfv36stlsxR6xEYjX27p1q2655RbFx8erSpUquvrqq7Vnzx6/lg3Wd+DAAfXo0UPx8fF6//33ZbfbPXr+yZMnJUnVqlUrc9577rlHa9eu1a+//qoVK1aoT58+2rRpk3r27KkzZ85IcnTjNG3aVJUqld5z/vHHH+uaa65RTEyMatSooVq1aumVV14pdayQOzIzM2WMUWpqqmrVquVy27p1a5GB05dcckmR8U5lWbBggVauXKk1a9Zox44d+uGHH9SmTZsS5//5558lOQLS+aKiotS4cWPn4wA8F5ZjdE6dOqWWLVvqgQce0O233x4Ur7dz505dd911Sk9P19ixYxUXF6cff/xRMTExfi8frCsnJ0fdu3fX8ePHtXbtWtWvX9/jZRQejp6SkuL2c+Li4nTjjTfqxhtvVGRkpObNm6evvvpKnTp1cuv5a9eu1S233KLrr79eL7/8surVq6fIyEjNmTNH8+fP97gO5ysoKJDNZtMnn3xSbOi7cMzL+S1L7rr++uud44IABFZYBp3u3bure/fuJT6el5enUaNG6a233tLx48d12WWXadKkSercubNfXk+SRo0apT//+c96/vnnndMKB2UC3jhz5ox69uyp7du369NPP1Xz5s09XkZ+fr7mz5+vypUr67rrrvOqHFdddZXmzZun/fv3S3K8r7/66iudO3dOkZGRxT5nwYIFiomJ0fLlyxUdHe2cPmfOnCLznt/d5c705ORkGWPUqFEjNWnSxNPq+EVSUpIkadu2bWrcuLFz+tmzZ7V7927dcMMNzmkl1QtA8cKy66osw4YN0xdffKG3335b3333ne666y5169ZNmZmZfnm9goICLVmyRE2aNFFaWppq166tdu3a+b1LDdaVn5+vu+++W1988YXee+89r87dkp+fr4cfflhbt27Vww8/rLi4uBLnPX36tL744otiH/vkk08k/dEtc8cdd+jIkSOaOXNmkXnN/z+hnt1ul81mU35+vvOxrKysYj8TVapUKfakgFWqVJGkIo/dfvvtstvtGjt2bJET+BljdPTo0eIr6Uc33HCDoqKiNH36dJcyZWRkKCcnx+VotypVqpS7+w4IJ2HZolOaPXv2aM6cOdqzZ4+zmf+xxx7TsmXLNGfOHD333HM+f81Dhw7p5MmTmjhxop599llNmjRJy5Yt0+23367Vq1e73dwPFHr00Uf14YcfqmfPnjp27FiREwReeHLAnJwc5zynT5/Wjh07tHDhQu3cuVO9e/fW+PHjS32906dPq0OHDrrmmmvUrVs3JSYm6vjx41q8eLHWrl2r2267Ta1atZIk3XfffXrttdc0YsQI/e9//1PHjh116tQpffrpp/rrX/+qW2+9VT169NDUqVPVrVs39enTR4cOHdJLL72klJQUfffddy6v3aZNG3366aeaOnWq6tevr0aNGqldu3bOMTGjRo1S7969FRkZqZ49eyo5OVnPPvusRo4cqaysLN12222qVq2adu/erUWLFmnQoEF67LHHyrX+PVWrVi2NHDlSY8eOVbdu3XTLLbdo27Ztevnll3X11Ve7bK82bdronXfe0YgRI3T11VeratWq6tmzZ4WWFwgpgTzkKxhIMosWLXLe//jjj52HyJ5/q1SpkunVq5cxxpitW7caSaXennzySbdezxhj9u3bZySZe+65x2V6z549Te/evX1aX4SHwsOiS7qVNm/VqlVNamqquffee82KFSvcer1z586Z//znP+a2224zSUlJJjo62lSuXNm0atXKTJ482eTl5bnMf/r0aTNq1CjTqFEjExkZaerWrWvuvPNOs3PnTuc8GRkZJjU11URHR5tmzZqZOXPmOA/fPt9PP/1krr/+ehMbG2skuRxqPn78eHPJJZeYiIiIIoeaL1iwwFx33XXOz3izZs3M0KFDzbZt21zWTWmH3l+osHyHDx8udb4LDy8vNHPmTNOsWTMTGRlp6tSpY/7yl7+YX3/91WWekydPmj59+pjq1asbSRxqDpTBZowPLr4Swmw2mxYtWqTbbrtNkvTOO++ob9+++vHHH4sMVKxatarq1q2rs2fPateuXaUu9+KLL3aenKy015Mc/fBVqlTR6NGj9fTTTzunP/nkk1q3bp3Wr1/vfQUBAAhjdF1doFWrVsrPz9ehQ4fUsWPHYueJiopSs2bNfPaaUVFRuvrqq7Vt2zaX6du3b3cOUgQAAJ4Ly6Bz8uRJ7dixw3l/9+7d2rx5s2rUqKEmTZqob9++uu+++/Svf/1LrVq10uHDh7Vq1SpdccUVJZ4C39vXa9CggSTp8ccf1913363rr79eXbp00bJly/TRRx9pzZo15a4vAADhKiy7rtasWaMuXboUmd6/f3/NnTtX586d07PPPqvXXntN+/btU82aNXXNNddo7Nixuvzyy33+eoVmz56tCRMmKDs7W02bNtXYsWN16623evx6AADAISyDDgAACA+cRwcAAFgWQQcAAFhWWA1GLigo0C+//KJq1apxGnUAAEKEMUYnTpxQ/fr1FRHhWRtNWAWdX375RYmJiYEuBgAA8MLevXuVkJDg0XPCKuhUq1ZNkmNFlXbdHgAAEDxyc3OVmJjo3I97IqyCTmF3VVxcHEEHAIAQ482wEwYjAwAAyyLoAAAAyyLoAAAAywqrMToAAHgjPz9f586dC3QxLCsyMlJ2u90vyyboAABQAmOMDhw4oOPHjwe6KJZXvXp11a1b1+fnuSPoAABQgsKQU7t2bVWuXJmTzfqBMUanT5/WoUOHJEn16tXz6fIJOgAAFCM/P98Zci6++OJAF8fSYmNjJUmHDh1S7dq1fdqNxWBkAACKUTgmp3LlygEuSXgoXM++HgtF0AEAoBR0V1UMf61ngg4AALAsgg4AALAsgo4PZGdLq1c7/gIAEGgDBgyQzWaTzWZTZGSk6tSpoxtvvFGzZ89WQUGB28uZO3euqlev7r+CVgCOuiqnjAxp0CCpoECKiJBefVVKTw90qQAAweDo0aM6e/ZsiY9HRUX57Yiubt26ac6cOcrPz9fBgwe1bNkyPfLII3r//ff14YcfqlKl8IgA4VFLP8nO/iPkSI6/gwdLaWlSQkJgywYACKyjR49q5syZZc43bNgwv4Sd6Oho1a1bV5J0ySWXqHXr1rrmmmv0pz/9SXPnztWDDz6oqVOnas6cOdq1a5dq1Kihnj176vnnn1fVqlW1Zs0a3X///ZL+GCg8evRojRkzRq+//rpefPFFbdu2TVWqVFHXrl01bdo01a5d2+f1KC+6rsohM/OPkFMoP1/asSMw5QEABI/SWnK8mc8XunbtqpYtW2rhwoWSpIiICE2fPl0//vij5s2bp//+97964oknJEkdOnTQtGnTFBcXp/3792v//v167LHHJDkOAR8/fry+/fZbLV68WFlZWRowYECF1cMTtOiUQ2qqo7vq/LBjt0spKYErEwAApWnWrJm+++47SdLw4cOd0xs2bKhnn31WQ4YM0csvv6yoqCjFx8fLZrM5W4YKPfDAA87/GzdurOnTp+vqq6/WyZMnVbVq1Qqph7to0SmHhATHmJzCEzja7dKsWXRbAQCClzHG2RX16aef6k9/+pMuueQSVatWTf369dPRo0d1+vTpUpexceNG9ezZUw0aNFC1atXUqVMnSdKePXv8Xn5PEXTKKT1dyspyHHWVlcVAZABAcNu6dasaNWqkrKws3Xzzzbriiiu0YMECbdy4US+99JKk0rvTTp06pbS0NMXFxenNN9/U119/rUWLFpX5vECh68oHEhJoxQEABL///ve/+v777/W3v/1NGzduVEFBgf71r38pIsLR7vHuu++6zB8VFaX8/HyXaT/99JOOHj2qiRMnKjExUZL0f//3fxVTAS/QogMAgAXl5eXpwIED2rdvn7755hs999xzuvXWW3XzzTfrvvvuU0pKis6dO6cZM2Zo165dev311/Xvf//bZRkNGzbUyZMntWrVKh05ckSnT59WgwYNFBUV5Xzehx9+qPHjxweolmUj6AAAYEHLli1TvXr11LBhQ3Xr1k2rV6/W9OnT9cEHH8hut6tly5aaOnWqJk2apMsuu0xvvvmmJkyY4LKMDh06aMiQIbr77rtVq1YtPf/886pVq5bmzp2r9957T82bN9fEiRM1ZcqUANWybDZjjAl0ISpKbm6u4uPjlZOTo7i4uEAXBwAQxM6cOaPdu3erUaNGiomJ8fj5gT6PTqgpbX2XZ//NGB0AAPzg4osv1rBhwwJ2ZmQ4EHQAAPATQkzgMUYHAABYFkEHAABYFkEHAABYFkEHAABYFkEHAABYFkEHAABYFkEHAABYFkEnRGRnO66Qnp0d6JIAAMLdmjVrZLPZdPz4cbef07BhQ02bNs1vZSoJQScEZGRISUlS166OvxkZgS4RACCYDRgwQDabTUOGDCny2NChQ2Wz2TRgwICKL1gAEHSCXHa2NGiQVFDguF9QIA0eTMsOAKB0iYmJevvtt/Xbb785p505c0bz589XgwYNAliyikXQCXKZmX+EnEL5+dKOHYEpDwAgNLRu3VqJiYlauHChc9rChQvVoEEDtWrVyjktLy9PDz/8sGrXrq2YmBhdd911+vrrr12WtXTpUjVp0kSxsbHq0qWLsrKyirzeunXr1LFjR8XGxioxMVEPP/ywTp065bf6uYugE+RSU6WIC7aS3S6lpASmPAAA7wRirOUDDzygOXPmOO/Pnj1b999/v8s8TzzxhBYsWKB58+bpm2++UUpKitLS0nTs2DFJ0t69e3X77berZ8+e2rx5sx588EE99dRTLsvYuXOnunXrpjvuuEPfffed3nnnHa1bt07Dhg3zfyXLQNAJcgkJ0quvOsKN5Pg7a5ZjOgAgNARqrOW9996rdevW6eeff9bPP/+s9evX695773U+furUKb3yyiuaPHmyunfvrubNm+s///mPYmNjlfH/C/nKK68oOTlZ//rXv9S0aVP17du3yPieCRMmqG/fvho+fLhSU1PVoUMHTZ8+Xa+99prOnDlTMZUtAVcvDwHp6VJamqO7KiWFkAMAoaSksZZpaf7/Pq9Vq5Z69OihuXPnyhijHj16qGbNms7Hd+7cqXPnzunaa691TouMjFTbtm21detWSdLWrVvVrl07l+W2b9/e5f63336r7777Tm+++aZzmjFGBQUF2r17ty699FJ/VM8tBJ0QkZBAwAGAUFTaWMuK+F5/4IEHnF1IL730kl9e4+TJkxo8eLAefvjhIo8FeuAzQQcAAD8qHGt5ftipyLGW3bp109mzZ2Wz2ZSWlubyWHJysqKiorR+/XolJSVJks6dO6evv/5aw4cPlyRdeuml+vDDD12e9+WXX7rcb926tbZs2aKUIBxAyhgdi+IEgwAQHAI91tJut2vr1q3asmWL7IWF+P+qVKmiv/zlL3r88ce1bNkybdmyRQMHDtTp06eVnp4uSRoyZIgyMzP1+OOPa9u2bZo/f77mzp3rspwnn3xSGzZs0LBhw7R582ZlZmbqgw8+YDAy/IMTDAJAcElPl7KyHD9As7Ic9ytSXFyc4uLiin1s4sSJuuOOO9SvXz+1bt1aO3bs0PLly3XRRRdJcnQ9LViwQIsXL1bLli3173//W88995zLMq644gp99tln2r59uzp27KhWrVrpmWeeUf369f1et7LYjDEm0IWoKLm5uYqPj1dOTk6JGzzUZWc7ws2FTaRZWYzxAQBPnDlzRrt371ajRo0UExMT6OJYXmnruzz7b1p0LMbbEwzS1QUAsCKCjsV4c4JBuroAAFZF0LGYwkFvhWEnIqL0QW9cSwsAYGUhE3QmTJigq6++WtWqVVPt2rV12223adu2bYEuVsjjWloArIDud5QkZILOZ599pqFDh+rLL7/UypUrde7cOd10001BccGwYJKdLQ0c6NpCM2hQyR9+rqUFINT5u/s9jI7ZCSh/reeQCTrLli3TgAED1KJFC7Vs2VJz587Vnj17tHHjxkAXzSv++vWxYYN04XuloED64ovi509IkPr1c512770coQUgNPiz+z0yMlKSdPr06fIvDGUqXM+F691XQvbMyDk5OZKkGjVqlDhPXl6e8vLynPdzc3P9Xi53ZGT88cGMiHCMqfHVORWOHvVsena29PrrrtPeeEN69lnCDoDg58/LK9jtdlWvXl2HDh2SJFWuXFk2m618C0URxhidPn1ahw4dUvXq1Yuc1LC8QjLoFBQUaPjw4br22mt12WWXlTjfhAkTNHbs2AosWdn8fXG3iy/2bHqgr8ECAOXh78sr1K1bV5KcYQf+U716def69qWQDDpDhw7VDz/8oHXr1pU638iRIzVixAjn/dzcXCUmJvq7eKXyNlhkZzuem5pa+nwdOkg2m2v3VUSEdMGFZp0CfQ0WACiPwiNNBw92fJf6+vIKNptN9erVU+3atXXu3DnfLBRFREZG+rwlp1DIBZ1hw4bp448/1ueff66EMt7J0dHRio6OrqCSucebYOFJV1dCgvSf/7j/off3l0RFcjcMArCW9HRHq/iOHY7vUn98/u12u992xPCvkLkEhDFGDz30kBYtWqQ1a9YoNTXV42UEyyUgMjKKBouSgou3l3T4+mtp3Trpuuukq68uu0zZ2Z59SQRbqPDnuCcAQGCVZ/8dMkHnr3/9q+bPn68PPvhATZs2dU6Pj49XbGysW8sIlqAjuR9EVq92HDJZ3PTOnYt/jr93+sEWKsL5+l7BFjgBwB/CIuiUNNJ9zpw5GjBggFvLCJag40lQ8HQn7u+dfjCGCm/CoBUEW+AEAH8Ji4t6GmOKvbkbcoKFp+d8KBxDU9g1XNYYGn+f6TgYz6Qcjic95NIdAOCekAk6VuFNUEhPd7SYrF7t+Fvar3Z/7/SDMVR4GgYrij9PSR+MgRMAghFBp4J5GxQSEhzdMGXtvP290w/WUOFJGKwI/j4lfTAGTgAIRiEzRscXgmmMjrtHXXnL06Oogm35wcjdgb8VNY6pIt5HABAMwmIwsi8ES9CRwjMohDJPBv5W5OBo3kcAwgFBx03BFHQQOiryyDcOFweAosLiqCsgUDwd+OvtOCZ/j+sBgHBEiw5QBm9baDzpVgrG8xPBPbTCAf5Hiw4g/x3O7W0LjbtHyknWOVzcn4fUByNa4YDgR9CBJXizw/Fkp+zvw9etcLh4uO30OWkjEBoIOgh53uxwvN0p+6ujN1jPT+SucNzpW6UVDrA6gg6ClrstLp7ucCoyGHki2E566Ilw3OlboRUOCAcEHQQlT4KFpzucighG3vJkXE8wCcedfqi3wgHhgqCDoOPvC5/6OxiFo3Dd6YdyKxwQLioFugDAhUoLFiXtONPTpbQ09w7nLtwpX3j5hLKC0YWHflu5tcIbnmwDK0lICJ+6AqGIoIOg422w8GSH489gFM7Y6QMINgQdBJ2KChb+CkYAEI6C9eSZnBkZQYsLVgJAaPDkwsfe4KKebiLoAADgWxVxCRsuAQEAAAIi2I9MJejAMsLtOksAEAyC/TxaBB1YQrhdZwkAgkWwn0eLMToIeRXRPwwAKJ0/DyApz/6bw8sR8rw5wSAAwLeC9TxadF0h5AV7/zAAIHAIOgh5wd4/DAAIHLquYAmcuRgAUByCDiwjWPuHAQCBQ9cVAACwLIIOAACwLIIOAACwLIIOAACwLIIOAAAhiOv7uYegg7DFlwSAUMX1/dxH0EFY4ksCCG+h/EMnO1saNOiPS98UFEiDB4dmXSoCQQdhhy8JILyF+g+d0q7vh6IIOgg7fEkA4csKP3S4vp9nCDoIO3xJAOHLCj90uL6fZwg6CDt8SQDhyyo/dNLTpawsxzijrCzHfRSPa10hLHERUCA8Ff7QGTzY0ZITyj90uL6fe2zGGBPoQlSU3NxcxcfHKycnR3FxcYEuDiwuO9vRTJ6aypcREGyys/mhE0rKs/+m6wrwg1A/qgOwuoQEqXNnQk44IOgAPmaFozoAwCoIOoCPWeGoDgCwCoIO4GNWOaoDAKyAoAP4GIevI9SE8uUQgLIQdAA/4BwXoSvcdvoMnIfVEXQAPwnHozpCPSSE206fgfMIBwQdAD4R6iEhHHf6DJxHOCDoACg3K4SEcNzpM3Ae4YCgA6DcvA0JwdTVFY47fQbOIxwQdACUW2qqZLO5TrPZSg8JwdbVFa47fQbOw+q41hXgJ+F0ravsbKlBA+n8b5OICOnnn4uve3a2I9yc3wpktzt2tIFeV1wDCQg+XOsKCDLB1lrhb5mZriFHcoSYkrquKnI8jKfdY+F4tBxgZQQdwMesMDDXU56Ob6mo8TDhFjgBFEXQAXwsHI/e8XR8S0WMhwnHwAmgqEqBLgBgNYWtFReOPwnFo3c8GWeUni6lpbk/vsXT+T1VWuCkWwoIH7ToAD5mlaN3vOn28XR8iz/Hw4Tj4eIAiuKoK8BPQvnonWA+KsoTGRmO7qr8/D8CJ4dPA6GnPPtvuq4AP0lICK1QcD6rdPv4u3sMQPAj6AAowkrjjEI5cAIoP8boACjCKuOMAIAWHS8dPXpUZ8+eLfHxqKgoXXzxxS7Tdu7cqdOnT5f4nMqVKys5Odnr+ZcvX66cnJwS54+Pj1daWprXy/emzp7y9DU2bdqkEydOlDh/tWrV1KpVK+d9f28DT8sjeV5nf2+3wuW3bSt98kkl7d0brcTEPNWt+7u+/77o8teuXavc3NwSlx8XF6eOHTt6XR5v+Puz4O/lS56vV0/fe+fPf+hQlLKzY5WQ8Jtq1z5b7PzB+Pn39+fT398X3qzTYKuDN+/tihZyQeell17S5MmTdeDAAbVs2VIzZsxQ27ZtK7QMR48e1cyZM8ucb9iwYc436c6dO/XGG2+U+Zx7771XycnJHs+/fPlyffnll2UXXlJaWprHy/emzp7y9DU2bdqkDz/80K1lt2rVyu/bwNPySJ7X2d/braTl791b/PLXrl2r//73v2UuX5I6duxYIe8jf38W/L18SR6vV0/fe+fP/803rfTRRzfLmAjZbAXq2fNjtW69yWX+YPz8+/vz6e/vC2/WabDVwZv3diCEVNfVO++8oxEjRmj06NH65ptv1LJlS6WlpenQoUMVWo7SEnhJ85WWeM9XOJ+n85f26/J8hfN5unxv6uwpT1+jtF815yucz9/bwNPySJ7X2d/bzdPll9bicL7C+SrifeTvz4K/ly95vl49fe8V/s3JqeYMOZJkTIQ++uhm5eRUc5kvGD///v58+vv7wpt1Gmx18Oa9HQghFXSmTp2qgQMH6v7771fz5s3173//W5UrV9bs2bMDXTTAknJyqmn37obOHR+s5dixi50hp5AxETp2rEaASgT4Xsh0XZ09e1YbN27UyJEjndMiIiJ0ww036Isvvij2OXl5ecrLy3Ped/dXEoCyuzQQ+mrUOCqbrcAl7NhsBapR41gASwX4Vsi06Bw5ckT5+fmqU6eOy/Q6derowIEDxT5nwoQJio+Pd94SExMroqhA0HK3haasLg1YQ3z8CfXs+bFsNsd5BAoDbXy8e10k4YTWzdAVMi063hg5cqRGjBjhvJ+bm0vYQdjypIWmtC4NdoLW0rr1JiUn79CxYzVUo8Yxtm8xaN0MbSETdGrWrCm73a6DBw+6TD948KDq1q1b7HOio6MVHR1dEcUDglpJLTTJyTuK3bHRpRFe4uNPEHBK4OlnB8EnZLquoqKi1KZNG61atco5raCgQKtWrVL79u0DWDIg+Hk66JQuDcCBAduhL2RadCRpxIgR6t+/v6666iq1bdtW06ZN06lTp3T//fdXaDmioqI8nq9y5cpuPadwPk/nj4+Pd2v+wvk8Xb43dfaUp69RrZp7feWF8/l7G3haHsnzOnu73cpqoSlu+aV1aRTO5+7F9Qrnq4j3kb8/C/5evuT5evX0vefp/MH4+S/v5zMnp5qOHbtYNWocdXlvX/h9UdZnx9vvC2/WabB953nz3g6EkLt6+cyZM50nDLzyyis1ffp0tWvXzq3n+vLq5ZwZuSjOjBzcZ0aePz9WTz4Zr/x8m+x2o0mTctSnz2/lXj5nRvb98iXX9XrkSIx++aWK6tc/pZo1z0jy7ZmR3Zk/GD//3n4+lyypqylTUlVQYFNEhNFjj2WqR48DJX5fLFx4kcaNu8Q5/zPP7NPtt//KmZG9mN9b5dl/h1zQKQ9fBh0gGGRnO640nprq3nWosrO5krevebMNPJk/I0MaNMhxgdWICMc1yNLTy1/ucJWdLSUlFb1gbVZW6dvD08+Op9sZpSvP/jtkxugAcJWR4fjC7trV8Tcjo+znJCRInTvzxesrnm4DT+fPzv4j5EiOv4MHO6b7Una2tHq175cbjDIzXUOOJOXnO0JMaTz57Hjz2YT/0KIDhCBvf5XCdzzdBt5ss9WrHTvL4qZ37lyOwp8n3FqM/P3Z4bPpH7ToAGHG21+l8B1Pt4E32yw11RE+zme3O7pPfKGiWoyCSUKCI8zZ7Y77drs0a5bvQgifzeBD0AFCkL93gCibp9vAm23GTtk/0tMdLSyrVzv++rIFi89m8CHoACHI3ztAlM3TbeDtNmOn7B/+Gq/GZzP4MEYHCGEcRRV43hyNE0zbLCPD0V2Vn//HTjkYxuiE+lFLwbadQx2Hl7uJoAMARQXbTjncBkijbAQdNxF0ACC4cdQSisNRVwAASwjXAdLwH4IOACBohPMAaU+F04key4OgAwAIGhy15B7Ovuw+xugAQDmE+tFBwSrYBkgHk3Acx8QYHQAIAH5V+w/XZSsZ45g8Q9ABAC+E4+UTEBwYx+QZgg4AeIFf1QgUxjF5plKgCwAAoajwV/WF4yT4VY2KkJ4upaUxjskdtOgAgBf4VY1AYxyTe2jRAQAv8asaCH4EHQAoh4QEAg4QzOi6AuAznKkVQLAh6ADwiWA9pwzhCwhvBB0A5Ras55QJ1vAFoOIQdACUWzCeU6aiwhctRkBwI+gAKLdgPFNrRYQvWoyA4EfQAVBuwXhOGX+Hr2DtrgPgiqADwCfS0x1XT1692vE3PT2w5UlIkPr1c512772+C1/B2F0HoCibMcYEuhAVpTyXeQcQWrKzHd1JF16iISvLN2HH38sH8Ify7L9p0QFgSf5ucQnG7joARXFmZACWVBEX3eQSEEDwo0UHgCX5e4zO+a/DhRWB4EXQAWBJ2dnS66+7TnvjjdA8Kopz9QDeI+gAsCSrHBXFuXqA8iHoALCkYDyJoac4Vw9QfgQdAJZkhaOirNIqBQQSR10BsKxQPyqqIo4cA6yOFh0AlhbKR0VZoVUKCDRadAAgiIV6qxQQaAQdAAhyCQkEHMBbdF0BAADLIugAQDlwMj8guBF0AMBLnMwPCH4EHQDwAifzA0IDQQcAvMDJ/IDQQNABAC9Y4RITQDgg6ACAFziZHwKNgfDu8SroZGdn6+TJk0Wmnzt3Tp9//nm5CwUAoSA9XcrKcuxssrIc94GKwEB493kUdPbv36+2bdsqKSlJ1atX13333ecSeI4dO6YuXbr4vJAAEKwq4hIT/HLH+RgI7xmPgs5TTz2liIgIffXVV1q2bJm2bNmiLl266Ndff3XOY4zxeSEBoKIEW6jglzsuxEB4z3gUdD799FNNnz5dV111lW644QatX79e9erVU9euXXXs2DFJks1m80tBAcDfgi1U8MsdxWEgvGc8Cjo5OTm66KKLnPejo6O1cOFCNWzYUF26dNGhQ4d8XkAAqAjBGCr45Y7iMBDeMx4FncaNG+u7775zmVapUiW99957aty4sW6++WafFg4AKkowhgpvf7kHW/cbfI+B8O7zKOh0795dr776apHphWHnyiuv9FW5AKBCBWN3gDe/3IOt+w3+UxED4a3AZjwYPfz777/r9OnTiouLkyQdOXJEklSzZk3n4/v27VNSUpIfilp+ubm5io+PV05OjrMOAFAoI8PRXZWf/0eoCIZfytnZjpallJTSd2rZ2Y5wc37LlN3u+MXPzhCeys52tHSmpgb+/VOe/bdHLTqVKlVSQUGBhg4dqpo1a6pOnTqqU6eOatasqWHDhunkyZNBG3IAoCzB2h3g7i/3YOx+Q2iyUsugRy06x44dU/v27bVv3z717dtXl156qSRpy5Ytmj9/vhITE7VhwwaXAcvBhBYdAFZGiw58IRjfR+XZf1fyZOZx48YpKipKO3fuVJ06dYo8dtNNN2ncuHF64YUXPCoEAKD8Csf0XNj9RsiBJ0prGQzF95JHLToNGzbUrFmzlJaWVuzjy5Yt05AhQ5SVleWr8vkULToAwoG7Y3qA4litRcfjS0C0aNGixMcvu+wyHThwwKMCAIA/heOh1hyNg/Kw2nl6PAo6NWvWLLW1Zvfu3apRo0Z5ywQAPmGlAZVARQrWgfne8Kjr6oEHHtDOnTu1cuVKRUVFuTyWl5entLQ0NW7cWLNnz/Z5QX2BrisgfARj87sUXIfsAqGiQgcjX3XVVUpNTdXQoUPVrFkzGWO0detWvfzyy8rLy9Prr7/uUQEAwB+CcUBlRsYfl5mIiHB0D4TyL2UgFHjUoiM5uqf++te/asWKFc4rldtsNt14442aOXOmUoL4qmK06ADhI9hadIKtPEAoqbDByJLUqFEjffLJJzpy5Ii+/PJLffnllzp8+LCWLVvmt5CTlZWl9PR0NWrUSLGxsUpOTtbo0aN19uxZv7wegNAXbAMqOZkfEBgedV2d76KLLlLbtm19WZYS/fTTTyooKNCsWbOUkpKiH374QQMHDtSpU6c0ZcqUCikDgNCTni6lpQXHodaF19K6sEUniBvBAUvwuOsqWEyePFmvvPKKdu3a5fZz6LoCEEgVdS0tBjzDaipsMHIwycnJKfNQ9ry8POXl5Tnv5+bm+rtYAFCiimhhYsAz4MrjMTrBYMeOHZoxY4YGDx5c6nwTJkxQfHy885aYmFhBJQSA4vnzZH7Z2X+EHMnxd/Dg8DpZInChgAadp556SjabrdTbTz/95PKcffv2qVu3brrrrrs0cODAUpc/cuRI5eTkOG979+71Z3UAwC/cPbszA56BogI6Rufw4cM6evRoqfM0btzYeXLCX375RZ07d9Y111yjuXPnKiLCs5zGGB0AocaTrigOYYdVlWf/HTKDkfft26cuXbqoTZs2euONN2QvPGbUAwQdAKHEm+BSUQOegYpk+cHI+/btU+fOnZWUlKQpU6bo8OHDzsfq1q0bwJIBgP94c3bnYDqkHggGIRF0Vq5cqR07dmjHjh1KuOBTGyINUgDgMW/PvZOQQMABCoXEUVcDBgyQMabYGwBYVbCd3RkIRSHRogMA4YquKKB8CDoAEOToigK8FxJdVwAAAN4g6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAgHLLzpZWr3b8DSYEHQAAUC4ZGVJSktS1q+NvRkagS/QHgg4AAPBadrY0aJBUUOC4X1AgDR4cPC07BB0AAOC1zMw/Qk6h/Hxpx47AlOdCBB0AsJhgHSsRylinJUtNlSIuSBN2u5SSEpjyXIigAwAWEsxjJUIV67R0CQnSq686wo3k+DtrlmN6MLAZY0ygC1FRcnNzFR8fr5ycHMXFxQW6OADgU9nZjh3x+d0IdruUlRU8O51Qwzp1X3a2o7sqJcX366Y8++9Kvi0KACBQShsrwU7ZO6xT9yUkBOc6oesKACwi2MdKhCLWaegj6ACARQT7WIlQxDoNfYzRAQCL8edYiXDFOg0sxugAAJyCdaxEKGOdhi66rgAAgGURdAAAgGURdAAAgGURdAAAHuFyCAglBB0AgNuscjkEwlr4IOgAANySnS0NGvTHmYILCqTBg0MvLFglrME9BB0AgFtKuxxCqLBKWIP7CDoAALdY4XIIVghr8AxBBwDgFitcDsEKYQ2eIegAANyWni5lZTkG8mZlOe6HEiuENXiGa10BAMIO164KLVzrCgAAD3DtqvBB1xUAALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AAGEgO9txMdbs7ECXpGIRdAAAsLiMDCkpSera1fE3IyPQJao4BB0AACwsO1saNEgqKHDcLyiQBg8On5Ydgg4AABaWmflHyCmUny/t2BGY8lQ0gg4AABaWmipFXLC3t9ullJTAlKeiEXQAALCwhATp1Vcd4UZy/J01yzE9HFQKdAEAAIB/padLaWmO7qqUlPAJORJBBwCAsJCQEF4BpxBdVwAAwLIIOgAAwLIIOgCAkBeuZ/1F2Qg6AICQFs5n/UXZCDoAgJAV7mf9RdkIOgCAkBXuZ/1F2Qg6AICQFe5n/UXZCDoAgJAV7mf9Rdk4YSAAIKSF81l/UbaQa9HJy8vTlVdeKZvNps2bNwe6OACAIJCQIHXuTMhBUSEXdJ544gnVr18/0MUAAAAhIKSCzieffKIVK1ZoypQpgS4KAAAIASEzRufgwYMaOHCgFi9erMqVK7v1nLy8POXl5Tnv5+bm+qt4AAAgCIVEi44xRgMGDNCQIUN01VVXuf28CRMmKD4+3nlLTEz0YykBAECwCWjQeeqpp2Sz2Uq9/fTTT5oxY4ZOnDihkSNHerT8kSNHKicnx3nbu3evn2oCAACCkc0YYwL14ocPH9bRo0dLnadx48bq1auXPvroI9lsNuf0/Px82e129e3bV/PmzXPr9XJzcxUfH6+cnBzFxcWVq+wAAKBilGf/HdCg4649e/a4jK/55ZdflJaWpvfff1/t2rVTgpvHExJ0AAAIPeXZf4fEYOQGDRq43K9ataokKTk52e2QAwAAwk9IDEYGAADwRki06FyoYcOGCoEeNwAAEGC06AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMsi6AAAEGDZ2dLq1Y6/8C2CDgAAAZSRISUlSV27Ov5mZAS6RNZC0AEAIECys6VBg6SCAsf9ggJp8GBadnyJoAMAgI+52xWVmflHyCmUny/t2OG/soUbgg4AAD7kSVdUaqoUccGe2G6XUlL8W8ZwQtABAMBHPO2KSkiQXn3VEW4kx99ZsxzT4RuVAl0AAACsorSuqJLCS3q6lJbmmCclhZDjawQdAAB8pLAr6vyw405XVEICAcdf6LoCAMBH6IoKPrToAADgQ3RFBReCDgAAPkZXVPCg6woAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAABSRnS2tXu34G8oIOgAAwEVGhpSUJHXt6vibkRHoEnmPoAMAAJyys6VBg6SCAsf9ggJp8ODQbdkh6AAAAKfMzD9CTqH8fGnHjsCUp7wIOgAAwCk1VYq4IB3Y7VJKSmDKU14EHQAA4JSQIL36qiPcSI6/s2Y5poeiSoEuAAAACC7p6VJamqO7KiUldEOORNABAADFSEgI7YBTiK4rAABgWQQdAABgWSEVdJYsWaJ27dopNjZWF110kW677bZAFwkAAASxkBmjs2DBAg0cOFDPPfecunbtqt9//10//PBDoIsFAACCWEgEnd9//12PPPKIJk+erPT0dOf05s2bB7BUAAAg2IVE19U333yjffv2KSIiQq1atVK9evXUvXv3Mlt08vLylJub63IDAADhIySCzq5duyRJY8aM0dNPP62PP/5YF110kTp37qxjx46V+LwJEyYoPj7eeUtMTKyoIgMAgCAQ0KDz1FNPyWazlXr76aefVPD/L7oxatQo3XHHHWrTpo3mzJkjm82m9957r8Tljxw5Ujk5Oc7b3r17K6pqAAAgCAR0jM6jjz6qAQMGlDpP48aNtX//fkmuY3Kio6PVuHFj7dmzp8TnRkdHKzo62idlBQAAoSegQadWrVqqVatWmfO1adNG0dHR2rZtm6677jpJ0rlz55SVlaWkpCR/FxMAAISokDjqKi4uTkOGDNHo0aOVmJiopKQkTZ48WZJ01113Bbh0AAAEv+xsKTPTcXVyK1zawV0hEXQkafLkyapUqZL69eun3377Te3atdN///tfXXTRRYEuGgAAQS0jQxo0SCookCIiHFcnP+9sLZZmM8aYQBeiouTm5io+Pl45OTmKi4sLdHEAAPC77GwpKckRcgrZ7VJWVui07JRn/x0Sh5cDAADvZGa6hhxJys+XduwITHkqGkEHAAALS011dFedz26XUlICU56KRtABAMDCEhIcY3Lsdsd9u12aNSt0uq3KK2QGIwMAAO+kp0tpaY7uqpSU8Ak5EkEHAICwkJAQXgGnEF1XAADAsgg6AADAsgg6AADAsgg6AADAsgg6AADAsgg6AADAsgg6AADAsgg6AADAsgg6AADAsgg6AADAsgg6AADAssLqWlfGGElSbm5ugEsCAADcVbjfLtyPeyKsgs6JEyckSYmJiQEuCQAA8NSJEycUHx/v0XNsxpt4FKIKCgr0yy+/qFq1arLZbD5bbm5urhITE7V3717FxcX5bLnBhnpaC/W0FuppLeFQT0/qaIzRiRMnVL9+fUVEeDbqJqxadCIiIpTgx2vUx8XFWfYNeT7qaS3U01qop7WEQz3draOnLTmFGIwMAAAsi6ADAAAsi6DjA9HR0Ro9erSio6MDXRS/op7WQj2thXpaSzjUs6LqGFaDkQEAQHihRQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQacEL730kho2bKiYmBi1a9dO//vf/0qdf9q0aWratKliY2OVmJiov/3tbzpz5ky5llkRfF3PMWPGyGazudyaNWvm72qUyZN6njt3TuPGjVNycrJiYmLUsmVLLVu2rFzLrAi+rmMwbsvPP/9cPXv2VP369WWz2bR48eIyn7NmzRq1bt1a0dHRSklJ0dy5c4vME2zb0h/1tML23L9/v/r06aMmTZooIiJCw4cPL3a+9957T82aNVNMTIwuv/xyLV261PeF94A/6jl37twi2zMmJsY/FXCTp/VcuHChbrzxRtWqVUtxcXFq3769li9fXmS+cn8+DYp4++23TVRUlJk9e7b58ccfzcCBA0316tXNwYMHi53/zTffNNHR0ebNN980u3fvNsuXLzf16tUzf/vb37xeZkXwRz1Hjx5tWrRoYfbv3++8HT58uKKqVCxP6/nEE0+Y+vXrmyVLlpidO3eal19+2cTExJhvvvnG62X6mz/qGIzbcunSpWbUqFFm4cKFRpJZtGhRqfPv2rXLVK5c2YwYMcJs2bLFzJgxw9jtdrNs2TLnPMG2LY3xTz2tsD13795tHn74YTNv3jxz5ZVXmkceeaTIPOvXrzd2u908//zzZsuWLebpp582kZGR5vvvv/dPJdzgj3rOmTPHxMXFuWzPAwcO+KcCbvK0no888oiZNGmS+d///me2b99uRo4caSIjI33+XUvQKUbbtm3N0KFDnffz8/NN/fr1zYQJE4qdf+jQoaZr164u00aMGGGuvfZar5dZEfxRz9GjR5uWLVv6pbze8rSe9erVMzNnznSZdvvtt5u+fft6vUx/80cdg3Fbns+dL9InnnjCtGjRwmXa3XffbdLS0pz3g21bXshX9bTC9jxfp06dig0AvXr1Mj169HCZ1q5dOzN48OByltA3fFXPOXPmmPj4eJ+Vy9c8rWeh5s2bm7Fjxzrv++LzSdfVBc6ePauNGzfqhhtucE6LiIjQDTfcoC+++KLY53To0EEbN250Nqft2rVLS5cu1Z///Gevl+lv/qhnoczMTNWvX1+NGzdW3759tWfPHv9VpAze1DMvL69IE3BsbKzWrVvn9TL9yR91LBRM29IbX3zxhct6kaS0tDTnegm2bemtsupZKNS3pzvcXRdWcPLkSSUlJSkxMVG33nqrfvzxx0AXqVwKCgp04sQJ1ahRQ5LvPp8EnQscOXJE+fn5qlOnjsv0OnXq6MCBA8U+p0+fPho3bpyuu+46RUZGKjk5WZ07d9bf//53r5fpb/6opyS1a9dOc+fO1bJly/TKK69o9+7d6tixo06cOOHX+pTEm3qmpaVp6tSpyszMVEFBgVauXKmFCxdq//79Xi/Tn/xRRyn4tqU3Dhw4UOx6yc3N1W+//RZ029JbZdVTssb2dEdJ6yKUtqc7mjZtqtmzZ+uDDz7QG2+8oYKCAnXo0EHZ2dmBLprXpkyZopMnT6pXr16SfPddS9DxgTVr1ui5557Tyy+/rG+++UYLFy7UkiVLNH78+EAXzafcqWf37t1111136YorrlBaWpqWLl2q48eP69133w1gyT3z4osvKjU1Vc2aNVNUVJSGDRum+++/XxER1vm4uFNHK2xL/IHtaS3t27fXfffdpyuvvFKdOnXSwoULVatWLc2aNSvQRfPK/PnzNXbsWL377ruqXbu2T5ddyadLs4CaNWvKbrfr4MGDLtMPHjyounXrFvucf/zjH+rXr58efPBBSdLll1+uU6dOadCgQRo1apRXy/Q3f9SzuCBQvXp1NWnSRDt27PB9JdzgTT1r1aqlxYsX68yZMzp69Kjq16+vp556So0bN/Z6mf7kjzoWJ9Db0ht169Ytdr3ExcUpNjZWdrs9qLalt8qqZ3FCcXu6o6R1EUrb0xuRkZFq1apVSG7Pt99+Ww8++KDee+89l24qX33XWucnqo9ERUWpTZs2WrVqlXNaQUGBVq1apfbt2xf7nNOnTxfZydvtdkmSMcarZfqbP+pZnJMnT2rnzp2qV6+ej0rumfKs+5iYGF1yySX6/ffftWDBAt16663lXqY/+KOOxQn0tvRG+/btXdaLJK1cudK5XoJtW3qrrHoWJxS3pzu8WRdWkJ+fr++//z7ktudbb72l+++/X2+99ZZ69Ojh8pjPPp8eD4kOA2+//baJjo42c+fONVu2bDGDBg0y1atXdx66169fP/PUU0855x89erSpVq2aeeutt8yuXbvMihUrTHJysunVq5fbywwEf9Tz0UcfNWvWrDG7d+8269evNzfccIOpWbOmOXToUIXXr5Cn9fzyyy/NggULzM6dO83nn39uunbtaho1amR+/fVXt5dZ0fxRx2DclidOnDCbNm0ymzZtMpLM1KlTzaZNm8zPP/9sjDHmqaeeMv369XPOX3jY9eOPP262bt1qXnrppWIPLw+mbWmMf+pphe1pjHHO36ZNG9OnTx+zadMm8+OPPzofX79+valUqZKZMmWK2bp1qxk9enTADy/3Rz3Hjh1rli9fbnbu3Gk2btxoevfubWJiYlzmqWie1vPNN980lSpVMi+99JLLYfLHjx93zuOLzydBpwQzZswwDRo0MFFRUaZt27bmyy+/dD7WqVMn079/f+f9c+fOmTFjxpjk5GQTExNjEhMTzV//+leXnUZZywwUX9fz7rvvNvXq1TNRUVHmkksuMXfffbfZsWNHBdaoeJ7Uc82aNebSSy810dHR5uKLLzb9+vUz+/bt82iZgeDrOgbjtly9erWRVORWWLf+/fubTp06FXnOlVdeaaKiokzjxo3NnDlziiw32LalP+pple1Z3PxJSUku87z77rumSZMmJioqyrRo0cIsWbKkYipUAn/Uc/jw4c73bJ06dcyf//xnl/PPBIKn9ezUqVOp8xcq7+fTZkwJfQ4AAAAhjjE6AADAsgg6AADAsgg6AADAsgg6AADAsgg6AADAsgg6AADAsgg6AADAsgg6ABBAa9askc1m0/HjxwNdFMCSCDpAmBgwYIBsNpsmTpzoMn3x4sWy2WzO+8YY/ec//1H79u0VFxenqlWrqkWLFnrkkUfcvmDg6dOnNXLkSCUnJysmJka1atVSp06d9MEHHzjnadiwoaZNm+aTuvlb4bqz2WyKjIxUo0aN9MQTT+jMmTMeLadz584aPny4y7QOHTpo//79io+P92GJARQi6ABhJCYmRpMmTdKvv/5a7OPGGPXp00cPP/yw/vznP2vFihXasmWLMjIyFBMTo2effdat1xkyZIgWLlyoGTNm6KefftKyZct055136ujRo76sToXq1q2b9u/fr127dumFF17QrFmzNHr06HIvNyoqSnXr1nUJmwB8qByXtQAQQvr3729uvvlm06xZM/P44487py9atMgUfhW89dZbRpL54IMPil1GQUGBW68VHx9v5s6dW+LjxV3jptDatWvNddddZ2JiYkxCQoJ56KGHzMmTJ52Pv/baa6ZNmzamatWqpk6dOuaee+4xBw8edD5eeL2dZcuWmSuvvNLExMSYLl26mIMHD5qlS5eaZs2amWrVqpl77rnHnDp1yq369O/f39x6660u026//XbTqlUr5/0jR46Y3r17m/r165vY2Fhz2WWXmfnz57ss48I6796921ne868Z9/7775vmzZubqKgok5SUZKZMmeJWOQEURYsOEEbsdruee+45zZgxQ9nZ2UUef+utt9S0aVPdcsstxT7f3VaHunXraunSpTpx4kSxjy9cuFAJCQkaN26c9u/fr/3790uSdu7cqW7duumOO+7Qd999p3feeUfr1q3TsGHDnM89d+6cxo8fr2+//VaLFy9WVlaWBgwYUOQ1xowZo5kzZ2rDhg3au3evevXqpWnTpmn+/PlasmSJVqxYoRkzZrhVnwv98MMP2rBhg6KiopzTzpw5ozZt2mjJkiX64YcfNGjQIPXr10//+9//JEkvvvii2rdvr4EDBzrrnJiYWGTZGzduVK9evdS7d299//33GjNmjP7xj39o7ty5XpUVCHuBTloAKsb5rRLXXHONeeCBB4wxri06zZo1M7fccovL8x555BFTpUoVU6VKFXPJJZe49VqfffaZSUhIMJGRkeaqq64yw4cPN+vWrXOZJykpybzwwgsu09LT082gQYNcpq1du9ZERESY3377rdjX+vrrr40kc+LECWPMHy06n376qXOeCRMmGElm586dzmmDBw82aWlpbtWnf//+xm63mypVqpjo6GgjyURERJj333+/1Of16NHDPProo877nTp1Mo888ojLPBe26PTp08fceOONLvM8/vjjpnnz5m6VFYArWnSAMDRp0iTNmzdPW7duLXPeUaNGafPmzXrmmWd08uRJt5Z//fXXa9euXVq1apXuvPNO/fjjj+rYsaPGjx9f6vO+/fZbzZ07V1WrVnXe0tLSVFBQoN27d0tytHj07NlTDRo0ULVq1dSpUydJ0p49e1yWdcUVVzj/r1OnjipXrqzGjRu7TDt06JBb9ZGkLl26aPPmzfrqq6/Uv39/3X///brjjjucj+fn52v8+PG6/PLLVaNGDVWtWlXLly8vUq6ybN26Vddee63LtGuvvVaZmZnKz8/3aFkAGIwMhKXrr79eaWlpGjlypMv01NRUbdu2zWVarVq1lJKSotq1a3v0GpGRkerYsaOefPJJrVixQuPGjdP48eN19uzZEp9z8uRJDR48WJs3b3bevv32W2VmZio5OVmnTp1SWlqa4uLi9Oabb+rrr7/WokWLJKnIciMjI53/Fx4tdT6bzaaCggK361OlShWlpKSoZcuWmj17tr766itlZGQ4H588ebJefPFFPfnkk1q9erU2b96stLS0UusLwP8qBboAAAJj4sSJuvLKK9W0aVPntHvuuUd9+vTRBx98oFtvvdWnr9e8eXP9/vvvOnPmjKKiohQVFVWkhaJ169basmWLUlJSil3G999/r6NHj2rixInO8S3/93//59NyuiMiIkJ///vfNWLECPXp00exsbFav369br31Vt17772SpIKCAm3fvl3Nmzd3Pq+4Ol/o0ksv1fr1612mrV+/Xk2aNJHdbvd9ZQCLo0UHCFOXX365+vbtq+nTpzun9e7dW3feead69+6tcePG6auvvlJWVpY+++wzvfPOO27vaDt37qxZs2Zp48aNysrK0tKlS/X3v/9dXbp0UVxcnCTHeXQ+//xz7du3T0eOHJEkPfnkk9qwYYOGDRumzZs3KzMzUx988IFzMHKDBg0UFRWlGTNmaNeuXfrwww/L7A7zl7vuukt2u10vvfSSJEdr2MqVK7VhwwZt3bpVgwcP1sGDB12e07BhQ+c6PXLkSLEtSo8++qhWrVql8ePHa/v27Zo3b55mzpypxx57rELqBVgNQQcIY+PGjXPZ2dpsNr3zzjuaNm2ali5dqj/96U9q2rSpHnjgASUmJmrdunVuLTctLU3z5s3TTTfdpEsvvVQPPfSQ0tLS9O6777q8dlZWlpKTk1WrVi1JjnE1n332mbZv366OHTuqVatWeuaZZ1S/fn1Jjm60uXPn6r333lPz5s01ceJETZkyxYdrxH2VKlXSsGHD9Pzzz+vUqVN6+umn1bp1a6Wlpalz586qW7eubrvtNpfnPPbYY7Lb7WrevLlq1apV7Pid1q1b691339Xbb7+tyy67TM8884zGjRtX7JFlAMpmM8aYQBcCAADAH2jRAQAAlkXQAeCx8w//vvC2du3aQBfPI3v27Cm1Pp4eHg4guNB1BcBjpV3c85JLLlFsbGwFlqZ8fv/9d2VlZZX4eMOGDVWpEgeoAqGKoAMAACyLrisAAGBZBB0AAGBZBB0AAGBZBB0AAGBZBB0AAGBZBB0AAGBZBB0AAGBZBB0AAGBZ/w8VoysuTBl2IQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_25.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLcElEQVR4nO3dd1hT9/4H8HdAhijDwRAaxdE6qiIuqq1FLV60Fld766qAq85apUNwRVyodVeqrQtrHah1XaWiojgqt9ZZrZMKhSrgqICCMpLz+8OfuY0JmGCSk/F+PU+e23xyzsknBy958/2eIREEQQARERGRhbARuwEiIiIifWK4ISIiIovCcENEREQWheGGiIiILArDDREREVkUhhsiIiKyKAw3REREZFEYboiIiMiiMNwQERGRRWG4ISKTJJFIMH36dLHbUAoPD4evr6/YbRCRFhhuiEhrcXFxkEgkyoejoyNee+01jB07Fjk5OQZ975MnT2L69OnIzc3V63Y7duyo8pmqV6+ONm3aYO3atVAoFHp5jzlz5mDXrl162RYRvVglsRsgIvMzY8YM1K1bF0+ePMGJEyewYsUKJCQk4NKlS3ByctLLezx+/BiVKv3vV9TJkycRHR2N8PBwuLm56eU9nnnllVcQExMDALh79y6+//57DB06FNevX8fcuXNfevtz5szBBx98gF69er30tojoxRhuiEhn3bp1Q+vWrQEAw4YNQ40aNbBo0SLs3r0b/fv3r/B2FQoFiouL4ejoCEdHR321+0Kurq746KOPlM9HjBiBhg0bYvny5Zg5cybs7OyM1gsRvTxOSxHRS+vcuTMAIC0tDQCwYMECtG/fHjVq1EDlypXRqlUrbN++XW09iUSCsWPHYuPGjXj99dfh4OCA/fv3K197dszN9OnT8cUXXwAA6tatq5xCSk9PR2BgIPz8/DT21bBhQwQHB+v8eZycnPDGG2+goKAAd+/eLXO5goICfPbZZ5BKpXBwcEDDhg2xYMECCIKg8hkLCgqwfv16Zd/h4eE690RE2uPIDRG9tD/++AMAUKNGDQDA0qVL0aNHDwwcOBDFxcXYsmUL/v3vf2Pv3r3o3r27yrqHDx/G1q1bMXbsWNSsWVPjQbt9+vTB9evXsXnzZixevBg1a9YEALi7u2PQoEEYPnw4Ll26hKZNmyrX+fXXX3H9+nVMmTKlQp/p5s2bsLW1LXMKTBAE9OjRA0eOHMHQoUPRokULJCYm4osvvsCtW7ewePFiAMCGDRswbNgwtG3bFh9//DEAoH79+hXqiYi0JBARaWndunUCAOHQoUPC3bt3hczMTGHLli1CjRo1hMqVKwt//fWXIAiCUFhYqLJecXGx0LRpU6Fz584qdQCCjY2N8Pvvv6u9FwBBJpMpn3/11VcCACEtLU1ludzcXMHR0VGYOHGiSn3cuHFClSpVhEePHpX7mQIDA4VGjRoJd+/eFe7evStcuXJFGDdunABACAkJUS4XFhYm1KlTR/l8165dAgBh1qxZKtv74IMPBIlEIqSmpiprVapUEcLCwsrtg4j0h9NSRKSzoKAguLu7QyqVol+/fqhatSp27twJHx8fAEDlypWVyz548AB5eXno0KEDzp49q7atwMBANGnSpMK9uLq6omfPnti8ebNyOkgulyM+Ph69evVClSpVXriNq1evwt3dHe7u7mjcuDG+/vprdO/eHWvXri1znYSEBNja2mLcuHEq9c8++wyCIOCnn36q8GciopfDaSki0llsbCxee+01VKpUCZ6enmjYsCFsbP73t9LevXsxa9YsnD9/HkVFRcq6RCJR21bdunVfup/Q0FDEx8fj+PHjePvtt3Ho0CHk5ORg0KBBWq3v6+uLVatWKU9vf/XVV+Hh4VHuOn/++Se8vb3h7OysUm/cuLHydSISB8MNEemsbdu2yrOlnnf8+HH06NEDb7/9Nr755hvUqlULdnZ2WLduHTZt2qS2/D9HeSoqODgYnp6e+OGHH/D222/jhx9+gJeXF4KCgrRav0qVKlovS0Smj9NSRKRXP/74IxwdHZGYmIghQ4agW7duegkOmkZ9nrG1tcWAAQOwfft2PHjwALt27UL//v1ha2v70u9bljp16uD27dt4+PChSv3q1avK158pr3ci0j+GGyLSK1tbW0gkEsjlcmUtPT39pa/Q++zYmbKuUDxo0CA8ePAAI0aMwKNHj1SuW2MI7777LuRyOZYvX65SX7x4MSQSCbp166asValSRe9XViaisnFaioj0qnv37li0aBG6du2KAQMG4M6dO4iNjUWDBg3w22+/VXi7rVq1AgBMnjwZ/fr1g52dHUJCQpShx9/fH02bNsW2bdvQuHFjtGzZUi+fpywhISHo1KkTJk+ejPT0dPj5+eHAgQPYvXs3xo8fr3K6d6tWrXDo0CEsWrQI3t7eqFu3LgICAgzaH5E148gNEelV586dsWbNGmRnZ2P8+PHYvHkz5s2bh969e7/Udtu0aYOZM2fiwoULCA8PR//+/dUusBcaGgoAWh9I/DJsbGywZ88ejB8/Hnv37sX48eNx+fJlfPXVV1i0aJHKsosWLUKrVq0wZcoU9O/fHytWrDB4f0TWTCII/7iUJhGRGVu6dCkmTJiA9PR01K5dW+x2iEgkDDdEZBEEQYCfnx9q1KiBI0eOiN0OEYmIx9wQkVkrKCjAnj17cOTIEVy8eBG7d+8WuyUiEhlHbojIrKWnp6Nu3bpwc3PD6NGjMXv2bLFbIiKRMdwQERGRReHZUkRERGRRGG6IiIjIoljdAcUKhQK3b9+Gs7MzL4lORERkJgRBwMOHD+Ht7a1yo15NrC7c3L59G1KpVOw2iIiIqAIyMzPxyiuvlLuM1YUbZ2dnAE93jouLi8jdEBERkTby8/MhlUqV3+Plsbpw82wqysXFheGGiIjIzGhzSAkPKCYiIiKLwnBDREREFkXUcHPs2DGEhITA29sbEokEu3btKnf5HTt2oEuXLnB3d4eLiwvatWuHxMRE4zRLREREZkHUY24KCgrg5+eHIUOGoE+fPi9c/tixY+jSpQvmzJkDNzc3rFu3DiEhIfjll1/g7++v197kcjlKSkr0uk0yTfb29i88rZCIiMyHydx+QSKRYOfOnejVq5dO673++uvo27cvpk2bptXy+fn5cHV1RV5ensYDigVBQHZ2NnJzc3Xqg8yXjY0N6tatC3t7e7FbISKiMrzo+/ufzPpsKYVCgYcPH6J69eplLlNUVISioiLl8/z8/HK3+SzYeHh4wMnJiRf6s3DPLuqYlZWF2rVr8+dNRGQBzDrcLFiwAI8ePcKHH35Y5jIxMTGIjo7WantyuVwZbGrUqKGvNsnEubu74/bt2ygtLYWdnZ3Y7RAR0Usy2wMNNm3ahOjoaGzduhUeHh5lLhcVFYW8vDzlIzMzs8xlnx1j4+TkpPd+yXQ9m46Sy+Uid0JERPpgliM3W7ZswbBhw7Bt2zYEBQWVu6yDgwMcHBx02j6nJqwLf95ERJbF7EZuNm/ejMGDB2Pz5s3o3r272O0QERGRiRF15ObRo0dITU1VPk9LS8P58+dRvXp11K5dG1FRUbh16xa+//57AE+nosLCwrB06VIEBAQgOzsbAFC5cmW4urqK8hmIiIjItIg6cnP69Gn4+/srr1ETEREBf39/5WndWVlZyMjIUC7/3XffobS0FGPGjEGtWrWUj08//VSU/k1JeHg4JBIJJBIJ7Ozs4OnpiS5dumDt2rVQKBRabycuLg5ubm6Ga5SIiMjARB256dixI8q7zE5cXJzK8+TkZMM2ZOa6du2KdevWQS6XIycnB/v378enn36K7du3Y8+ePahUySwPsSIiIjNy//59uLq6ivqdY3bH3FDZHBwc4OXlBR8fH7Rs2RKTJk3C7t278dNPPymD4qJFi9CsWTNUqVIFUqkUo0ePxqNHjwA8DY+DBw9GXl6echRo+vTpAIANGzagdevWcHZ2hpeXFwYMGIA7d+6I9EmJiMjUFBYWIjo6GsuXL8fo0f/Bnj3i9cJw8wKCIKC4uFiUhz4uHt25c2f4+flhx44dAJ5ejXfZsmX4/fffsX79ehw+fBhffvklAKB9+/ZYsmQJXFxckJWVhaysLHz++ecAnp4mP3PmTFy4cAG7du1Ceno6wsPDX7o/IiIyf1euXMFXX32lfJ6a6oq5c8Xrh/MUL1BSUoKYmBhR3jsqKkovtwRo1KgRfvvtNwDA+PHjlXVfX1/MmjULI0eOxDfffAN7e3u4urpCIpHAy8tLZRtDhgxR/ne9evWwbNkytGnTBo8ePULVqlVfukciIjJP33//PdLS0pTPPT3fxJMnnREZKV5PDDdWQBAE5bVcDh06hJiYGFy9ehX5+fkoLS3FkydPUFhYWO7FC8+cOYPp06fjwoULePDggfIg5YyMDDRp0sQon4OIiExHQUEBFixYoFIbMWIEvLy8MHKkSE39P4abF7Czs0NUVJRo760PV65cQd26dZGeno733nsPo0aNwuzZs1G9enWcOHECQ4cORXFxcZnhpqCgAMHBwQgODsbGjRvh7u6OjIwMBAcHo7i4WC89EhGR+bh06RJ+/PFH5XNbW1tERUXB1tZWxK7+h+HmBSQSiVnfLfrw4cO4ePEiJkyYgDNnzkChUGDhwoWwsXl6uNXWrVtVlre3t1e7DcHVq1dx//59zJ07F1KpFMDT0/iJiMi6CIKAtWvX4q+//lLWOnbsiMDAQBG7UsdwY0GKioqQnZ2tcip4TEwM3nvvPYSGhuLSpUsoKSnB119/jZCQEPz8889YuXKlyjZ8fX3x6NEjJCUlwc/PD05OTqhduzbs7e3x9ddfY+TIkbh06RJmzpwp0qckIiIxPHz4EIsWLVKpjRo1qtz7O4qFZ0tZkP3796NWrVrw9fVF165dceTIESxbtgy7d++Gra0t/Pz8sGjRIsybNw9NmzbFxo0b1Q6Wbt++PUaOHIm+ffvC3d0d8+fPh7u7O+Li4rBt2zY0adIEc+fOVZtnJSIiy3Xu3DmVYOPo6IipU6eaZLABAImgj/ONzUh+fj5cXV2Rl5cHFxcXldeePHmCtLQ01K1bF46OjiJ1SMbGnzsRkWaCIGDGjBkqtXfeeQdvvfWW0Xsp7/v7eRy5ISIiIjWZmZlqweb48bGiBBtd8ZgbIiIiUrFq1Srcvn1bpXbgwBRMnGgaZ0O9CMMNERERAdA8DeXm5oZPP/0UMplITVUAww0REREhLS0N33//vUpt0KBBqFevnkgdVRzDDRERkZVbvnw57t+/r1KbOnWq8ppo5obhhoiIyEopFAq165Z5eXlhxIgRInWkHww3REREVujGjRvYtGmTSm3w4MGoXbu2SB3pD8MNERGRlVmwYAEKCgpUatOmTVPeZNncMdwQERFZCblcjlmzZqnU6tSpg/DwcHEaMhDzPFKIRBMeHo5evXopn3fs2BHjx49/qW3qYxtERFS+y5cvqwWb4cOHW1ywAThyYzHCw8Oxfv16AICdnR1q166N0NBQTJo0CZUqGe7HvGPHDtjZ2Wm1bHJyMjp16oQHDx7Azc2tQtsgIiLdzZo1C3K5XKVmSdNQz2O4sSBdu3bFunXrUFRUhISEBIwZMwZ2dnaIiopSWa64uBj29vZ6ec/q1aubxDaIiEhdSUkJ5syZo1J77bXX0L9/f5E6Mg5OS1kQBwcHeHl5oU6dOhg1ahSCgoKwZ88e5VTS7Nmz4e3tjYYNGwJ4et+QDz/8EG5ubqhevTp69uyJ9PR05fbkcjkiIiLg5uaGGjVq4Msvv8Tz91l9fkqpqKgIEydOhFQqhYODAxo0aIA1a9YgPT0dnTp1AgBUq1YNEolEORT6/DYePHiA0NBQVKtWDU5OTujWrRtu3LihfD0uLg5ubm5ITExE48aNUbVqVXTt2hVZWVnKZZKTk9G2bVtUqVIFbm5uePPNN/Hnn3/qaU8TEZm+3377TS3YjBw50uKDDcBwY9EqV66M4uJiAEBSUhKuXbuGgwcPYu/evSgpKUFwcDCcnZ1x/Phx/Pzzz8qQ8GydhQsXIi4uDmvXrsWJEyfw999/Y+fOneW+Z2hoKDZv3oxly5bhypUr+Pbbb1G1alVIpVL8+OOPAIBr164hKysLS5cu1biN8PBwnD59Gnv27EFKSgoEQcC7776LkpIS5TKFhYVYsGABNmzYgGPHjiEjIwOff/45AKC0tBS9evVCYGAgfvvtN6SkpODjjz+22OFXIqLnRUdHq/2+lslk8PT0FKkj4+K0lAUSBAFJSUlITEzEJ598grt376JKlSpYvXq1cjrqhx9+gEKhwOrVq5Vf+uvWrYObmxuSk5Pxr3/9C0uWLEFUVBT69OkDAFi5ciUSExPLfN/r169j69atOHjwIIKCggBA5bLdz6afPDw8VI65+acbN25gz549+Pnnn9G+fXsAwMaNGyGVSrFr1y78+9//BvB0qHXlypWoX78+AGDs2LHK+6Hk5+cjLy8P7733nvL1xo0b674jiYjMzOPHjzF//nyVWrNmzZS/x60FR24MaM8eoH37p/9rDHv37kXVqlXh6OiIbt26oW/fvpg+fTqAp/+4/3mczYULF5CamgpnZ2dUrVoVVatWRfXq1fHkyRP88ccfyMvLQ1ZWFgICApTrVKpUCa1bty7z/c+fPw9bW1sEBgZW+DNcuXIFlSpVUnnfGjVqoGHDhrhy5Yqy5uTkpAwuAFCrVi3cuXMHwNMQFR4ejuDgYISEhGDp0qUqU1ZERJZo7969asHm+PExVhdsAI7cGNTcuUBKytP/7dHD8O/XqVMnrFixAvb29vD29lY5S6pKlSoqyz569AitWrXCxo0b1bbj7u5eofevXLlyhdariOfPrpJIJCrHA61btw7jxo3D/v37ER8fjylTpuDgwYN44403jNYjEZGxREdHq9USE2WIjBShGRPAkRsDiowE2rWD0f5xValSBQ0aNEDt2rVfePp3y5YtcePGDXh4eKBBgwYqD1dXV7i6uqJWrVr45ZdflOuUlpbizJkzZW6zWbNmUCgUOHr0qMbXn40cPX864j81btwYpaWlKu97//59XLt2DU2aNCn3Mz3P398fUVFROHnyJJo2bap2mXEiInOXm5urFmyePHGGTCbDyZPG+cPaFDHcGFCPHjDZf1wDBw5EzZo10bNnTxw/fhxpaWlITk7GuHHj8NdffwEAPv30U8ydOxe7du3C1atXMXr0aOTm5pa5TV9fX4SFhWHIkCHYtWuXcptbt24F8PQqmBKJBHv37sXdu3fx6NEjtW28+uqr6NmzJ4YPH44TJ07gwoUL+Oijj+Dj44OePXtq9dnS0tIQFRWFlJQU/Pnnnzhw4ABu3LjB426IyKIsXbpU7cSMU6fC0K5dhEgdmQ6GGyvl5OSEY8eOoXbt2ujTpw8aN26MoUOH4smTJ3BxcQEAfPbZZxg0aBDCwsLQrl07ODs7o3fv3uVud8WKFfjggw8wevRoNGrUCMOHD1fev8THxwfR0dGIjIyEp6cnxo4dq3Eb69atQ6tWrfDee++hXbt2EAQBCQkJWl/oz8nJCVevXsX777+P1157DR9//DHGjBlj9ne5JSJ6Jjo6Wu2PTZlMhn37fE3yD2pjkwjPX7jEwuXn58PV1RV5eXnKL/Fnnjx5grS0NNStWxeOjo4idUjGxp87EZmLe/fuITY2Vq0uk8lE6Ma4yvv+fh4PKCYiIjIDs2fPRmlpqUpt2LBh8PHxEakj08VwQ0REZOI0nQ1lDaM1FcVwQ0REZKKysrLw3XffqdUZbMrHcENERGSCNI3WjBo1Ch4eHiJ0Y14YbjSwsmOsrR5/3kRkajgN9XIYbv7h2anGhYWFRr3aLonr2Y1CbW1tRe6EiKxdRkYG1q1bp1KrUqWK8sbApB2Gm3+wtbWFm5ub8h5FTk5OvJO0hVMoFLh79y6cnJxeeFVnIiJD0jRaM27cOFSrVk2Ebswbf5s/x8vLCwCUAYcsn42NDWrXrs0gS0Si4TSUfjHcPEcikaBWrVrw8PBASUmJ2O2QEdjb28PGhhfrJiLju3TpEn788UeV2sOH7nj77dEidWQZGG7KYGtry2MwiIjIYDSN1kRERMDZ2VmEbiwL/1wlIiIyMk3BJjFRxmCjJxy5ISIiMpJjx47hyJEjKjVbW0ckJExEZKRITVkghhsiIiIj0DRa07RpBN5/3xlTpojQkAVjuCEiIjIgQRAwY8YMtTrPhjIchhsiIiID2b9/P3755Re1OoONYTHcEBERGYCmaagvvvgCTk5OInRjXRhuiIiI9IjTUOJjuCEiItKTbdu24fLlyyo1Z2dnREREiNSRdWK4ISIi0gNN01CRkZFwcHAQoRvrxnBDRET0EuRyOWbNmqVW5zSUeBhuiIiIKmjp0qXIzc1VqZWUOKJt24niNEQAGG6IiIgqRNM01KRJk2BnZydCN/RPDDdEREQ6KC4uRkxMjFqd01Cmg+GGiIhISzNnzoRCoVCpeXh4YNSoUSJ1RJow3BAREWlB0zTU1KlTYWNjI0I3VB6GGyIionIUFhbiq6++UqtzGsp0MdwQERGVQdNoTYMGDTBw4EARuiFtMdwQERFpoCnYTJs2DRKJRIRuSBecKCQiIvqH3NxcjcEmMVHGYGMmOHJDRET0/zSFGheXV7Ft2wBERorQEFWIqCM3x44dQ0hICLy9vSGRSLBr164XrpOcnIyWLVvCwcEBDRo0QFxcnMH7JCIiy1fWNNSECQNw8iTQo4cITVGFiBpuCgoK4Ofnh9jYWK2WT0tLQ/fu3dGpUyecP38e48ePx7Bhw5CYmGjgTomIyFJlZ2drDDYyGaehzJWo01LdunVDt27dtF5+5cqVqFu3LhYuXAgAaNy4MU6cOIHFixcjODjYUG0SEZGF0hRqbt9uhu7d+4jQDemLWR1zk5KSgqCgIJVacHAwxo8fL05DRERktsoarSHzZ1bhJjs7G56enio1T09P5Ofn4/Hjx6hcubLaOkVFRSgqKlI+z8/PN3ifRERkuv7880+Nx2sy2FgOswo3FRETE6MxnRMRkfXR9H3Qvn17dOnSRYRuyFDM6jo3Xl5eyMnJUanl5OTAxcVF46gNAERFRSEvL0/5yMzMNEarRERkYjQFG39/GYONBTKrkZt27dohISFBpXbw4EG0a9euzHUcHBzg4OBg6NaIiMhEXbx4ETt27FCrcxrKcokabh49eoTU1FTl87S0NJw/fx7Vq1dH7dq1ERUVhVu3buH7778HAIwcORLLly/Hl19+iSFDhuDw4cPYunUr9u3bJ9ZHICIiE6ZptCY1NRD//ndH4zdDRiNquDl9+jQ6deqkfB4REQEACAsLQ1xcHLKyspCRkaF8vW7duti3bx8mTJiApUuX4pVXXsHq1at5GjgREanh2VDWSyIIgiB2E8aUn58PV1dX5OXlwcXFRex2iIhIz44fP47Dhw+r1S9dkmHbNhEaIr3Q5fvbrI65ISIiKo+m0ZouXbqgffv2InRDYmG4ISIii8BpKHqG4YaIiMzavn37cPr0abU6g431YrghIiKzpWm0pnfv3mjevLkI3ZCpMKuL+BERET2jKdgkJsoYbIgjN0REZF7WrVuncpmQZzZvlmH+fBEaIpPDcENERGZD02hNv3790LBhQ/AQG3qG4YaIiMwCz4YibTHcEBGRSVu4cCEePXqkVmewobIw3BARkcnSNFrzyy9DMHKkVIRuyFww3BARkckRBAEzZsxQq3O0hrTBcENERCZF02gNwGBD2mO4ISIik6Ep2IwePRru7u4idEPmiuGGiIhEp1AoMHPmTLU6R2uoIhhuiIhIVJyGIn1juCEiItFoCjYTJkyAi4uLCN2QpWC4ISIioyspKcGcOXPU6hytIX1guCEiIqMqaxrK35/BhvSD4YaIiIxGU7CZOHEiHB0dReiGLBXDDRERGdzjx48xX8MtuzkNRYbAcENERAbFs6HI2BhuiIjIYDQFm8mTJ6NSJX79kOHwXxcREeldfn4+Fi9erFbnaA0ZA8MNERHpFaehSGwMN0REpDeags3UqVNhY2MjQjdkrRhuiIjopd25cwcrVqxQq3O0hsTAcENERC+F01BkajhOSEREFaYp2CQmTuPVhklUHLkhIiKdZWRkYN26dWp1mUwGDtiQ2BhuiIhIJ5pGa5ydnRERESFCN0TqGG6IiEhrmqehZDh5UoRmiMrAcENERC909epVxMfHq9UTE2WIjBShIaJyMNwQEVG5NI3W1KlTB+Hh4Ty+hkwSww0REZVJU7DhKd5k6hhuiIhIzenTp7Fv3z61OoMNmQOGGyIiUqFptMbPzw+9evUyfjNEFcBwQ0RESpyGIkvAcENERPjPf/6Ds2fPqtUZbMgcMdwQEVk5TaM1HTp0QOfOnUXohujl8d5SRERWTFOw2bxZxmBDZo0jN0REVmjNmjX466+/1OqJiTLMny9CQ0R6xHBDRGRlNI3WpKR0wOjRnXlRPrIIDDdERFakrHtDRUYCPXqI0BCRATDcEBFZgXnz5uHJkydqdZlMxtEasjgMN0REFk7TaE337t3RunVrEbohMjyGGyIiC8aL8pE1YrghIrJAmkINwGBD1oHhhojIwmgKNv369UPDhg1F6IbI+BhuiIgshCAImDFjhlqdozVkbRhuiIgsAKehiP6Ht18gIjJzmoLNnj2D4e/PYEPWiSM3RERmSqFQYObMmWp1XruGrJ3O4cbW1hZZWVnw8PBQqd+/fx8eHh6Qy+V6a46IiDTjNBRR2XQON4IgaKwXFRXB3t7+pRsiIqLyaQo2Y8aMQc2aNUXohsj0aB1uli1bBgCQSCRYvXo1qlatqnxNLpfj2LFjaNSokf47JCIiAEBxcTFiYmLU6v7+MjDXEP2P1uFm8eLFAJ6O3KxcuRK2trbK1+zt7eHr64uVK1fqv0MiIuI0FJEOtA43aWlpAIBOnTphx44dqFatmsGaIiKi/9EUbCIiIuDs7CxCN0SmT+djbo4cOWKIPoiI6DkFBQVYsGCBWp2jNUTl0zncDBkypNzX165dW+FmiIjoKU5DEVWczuHmwYMHKs9LSkpw6dIl5ObmonPnznprjIjIWmkKNlFRUTwjlUhLOoebnTt3qtUUCgVGjRqF+vXr66UpIiJrdP/+fSxfvlytztEaIt3o5fYLNjY2iIiIUJ5RpYvY2Fj4+vrC0dERAQEBOHXqVLnLL1myBA0bNkTlypUhlUoxYcIEPHnypKKtExGZhOjoaAYbIj3R272l/vjjD5SWluq0Tnx8PCIiIiCTyXD27Fn4+fkhODgYd+7c0bj8pk2bEBkZCZlMhitXrmDNmjWIj4/HpEmT9PERiIhEoWka6sCBKbw3FFEFSYSyLjlchoiICJXngiAgKysL+/btQ1hYmMa/PMoSEBCANm3aKNdRKBSQSqX45JNPEBkZqbb82LFjceXKFSQlJSlrn332GX755RecOHFCq/fMz8+Hq6sr8vLy4OLionWvRET69ueffyIuLk6tztEaInW6fH/rfMzNuXPnVJ7b2NjA3d0dCxcufOGZVP9UXFyMM2fOICoqSmVbQUFBSElJ0bhO+/bt8cMPP+DUqVNo27Ytbt68iYSEBAwaNKjM9ykqKkJRUZHyeX5+vtY9EhEZCs+GIjIc0a5zc+/ePcjlcnh6eqrUPT09cfXqVY3rDBgwAPfu3cNbb70FQRBQWlqKkSNHljstFRMTU+YvESIiMWj6nZSYOA2RkRIRuiGyPBU+5ubOnTs4fvw4jh8/XuYxMvqWnJyMOXPm4JtvvsHZs2exY8cO7Nu3DzNnzixznaioKOTl5SkfmZmZRumViOh5ly9f1hhsZDIZTp6UoEcPEZoiskA6j9zk5+djzJgx2Lx5MxQKBQDA1tYWffv2RWxsLFxdXbXaTs2aNWFra4ucnByVek5ODry8vDSuM3XqVAwaNAjDhg0DADRr1gwFBQX4+OOPMXnyZNjYqGc1BwcHODg46PIRiYj0jtNQRMaj88jN8OHD8csvv2Dfvn3Izc1Fbm4u9u7di9OnT2PEiBFab8fe3h6tWrVSOThYoVAgKSkJ7dq107hOYWGhWoB5dgNPHY+LJiIyGk3BZtUqGc+GIjIQnUdu9u7di8TERLz11lvKWnBwMFatWoWuXbvqtK2IiAiEhYWhdevWaNu2LZYsWYKCggIMHjwYABAaGgofHx/ExMQAAEJCQrBo0SL4+/sjICAAqampmDp1KkJCQlTuUk5EZApSUlJw4MABtbpMJgMHbIgMR+dwU6NGDY1TT66urjrfKbxv3764e/cupk2bhuzsbLRo0QL79+9XHmSckZGhMlIzZcoUSCQSTJkyBbdu3YK7uztCQkIwe/ZsXT8GEZFBcRqKSDw6X+fmu+++w7Zt27BhwwblsTHZ2dkICwtDnz59dJqaEgOvc0NEhqYp2Pj7y3jAMNFL0OX7W+dw4+/vj9TUVBQVFaF27doAno6wODg44NVXX1VZ9uzZszq2bngMN0RkKAkJCfj111/V6hytIXp5Br2IX8+ePSGR8FoMRET/pGm0prTUDjNn8vYwRMamc7iZPn26AdogIjJfmi/KJ4OGu8gQkRHofCp4vXr1cP/+fbV6bm4u6tWrp5emiIjMQXx8fDkX5QOPsSESic4jN+np6ZDL5Wr1oqIi/PXXX3ppiojI1GkKNT4+PsqLjBKReLQON3v27FH+d2Jiosrp4HK5HElJSahbt65+uyMiMkFlTUOdPClCM0SkRutw06tXLwCARCJBWFiYymt2dnbw9fXFwoUL9docEZEpiY2Nxb1799TqPL6GyLRoHW6e3Ueqbt26+PXXX1GzZk2DNUVEZGo0jda0bNkSISEhvNowkYnR+ZibtLQ0Q/RBRGSyyrooX0iICM0Q0QvpHG5mzJhR7uvTpk2rcDNERKaEt1AgMk86h5udO3eqPC8pKUFaWhoqVaqE+vXrM9wQkUXQFGyCgoLw5ptvitANEelC53Bz7tw5tVp+fj7Cw8PRu3dvvTRFRCSmsq5dQ0TmQed7S5Xl4sWLCAkJQXp6uj42ZzC8txQRlYXTUESmS5fvb52vUFyWvLw85OXl6WtzRERGpSnYXLjQB/7+DDZE5kbnaally5apPBcEAVlZWdiwYQO6deumt8aIiIyF01BElkXncLN48WKV5zY2NnB3d0dYWBiioqL01hgRkaFxGorIMvE6N0RklTQFm9DQUN5GhsgC6BxugKd3AE9NTQUANGjQAG5ubvrsiYjIYBQKBWbOnKlW52gNkeXQKdykp6djzJgxSExMxLOTrCQSCbp27Yrly5fD19fXED0SEekFp6GIrIPW4SYzMxNvvPEG7OzsMHPmTDRu3BgAcPnyZaxYsQLt2rXDr7/+ildeecVgzRIRVZSmYPPzz6MwdqyHCN0QkSFpfZ2boUOHIjU1FYmJiXB0dFR57fHjx+jatSteffVVrF692iCN6guvc0NkXUpKSjBnzhy1OkdriMyLLt/fWo/c7N+/H/Hx8WrBBgAqV66MmTNnol+/frp3S0RkIJyGIrJOWoebe/fulXtMTb169fD333/royciopemKdhERETA2dlZhG6IyJi0vkJxrVq1cPny5TJfv3TpEry8vPTSFBFRRRUWFpZ5UT4GGyLroPXITa9evfD5558jKSkJ7u7uKq/duXMHEydORK9evfTdHxGR1jgNRUSADgcUP3jwAAEBAcjOzsZHH32ERo0aQRAEXLlyBZs2bYKXlxf++9//onr16obu+aXwgGIiy6Qp2ERGRsLBwUGEbohI3wxyQHG1atXwyy+/YNKkSdiyZQtyc3MBAG5ubhgwYADmzJlj8sGGiCzPgwcP1O55B3C0hsiaaT1y80+CIODu3bsAAHd3d0gkEr03ZigcuSGyHJyGIrIeBhm5+SeJRAIPD174iojEoynYTJkyBba2tiJ0Q0SmpELhhohILLdv38aqVavU6hytIaJnGG6IyGxwGoqItMFwQ0RmQVOwmTZtmlkd80dExsFwQ0Qm7erVq4iPj1erc7SGiMqiVbjRdJplWcaNG1fhZoiI/onTUERUEVqFm8WLF2u1MYlEwnBDRHqhKdgkJsoQGSlCM0RkVip0nRtzxuvcEJm2U6dO4aefflKrc7SGyLoZ/Do3AFBcXIy0tDTUr18flSrx0B0ienmchiIifdA5lRQWFuKTTz7B+vXrAQDXr19HvXr18Mknn8DHxweRHDMmogoo607eRES6stF1haioKFy4cAHJyclwdHRU1oOCgjSe0UBEVJ7ExESNwcbfn8GGiCpG55GbXbt2IT4+Hm+88YbK9SVef/11/PHHH3ptjogsm6ZQY2Njg6lTp4rQDRFZCp3Dzd27dzXeV6qgoIAX0yIirXEaiogMRedpqdatW2Pfvn3K588CzerVq9GuXTv9dUZEFmnz5s0MNkRkUDqP3MyZMwfdunXD5cuXUVpaiqVLl+Ly5cs4efIkjh49aogeichCaAo1+fmeCAwcKUI3RGSpdA43b731Fs6fP4+5c+eiWbNmOHDgAFq2bImUlBQ0a9bMED0SkQXgaA0RGQsv4kdEBrVs2TI8ePBArc5gQ0S60PtF/PLz87V+cwYGInpG02hN06ZN8f7774vQDRFZC63CjZubm9ZnQsnl8pdqiIgsA6ehiEgsWoWbI0eOKP87PT0dkZGRCA8PV54dlZKSgvXr1yMmJsYwXRKR2eAtFIhIbDofc/POO+9g2LBh6N+/v0p906ZN+O6775CcnKzP/vSOx9wQGY6mYOPp2QEjR3YWoRsisiS6fH/rfJ2blJQUtG7dWq3eunVrnDp1StfNEZGFKGsaisGGiIxN51PBpVIpVq1ahfnz56vUV69eDalUqrfGiMg8lDUNxXtDEZFYdA43ixcvxvvvv4+ffvoJAQEBAIBTp07hxo0b+PHHH/XeIBGZLk3B5vLldxEf30aEboiIntJ5Wurdd9/FjRs3EBISgr///ht///03QkJCcP36dbz77ruG6JGITJCmYJOYKMPAgQw2RCQuXsSPiHTCs6GISAx6v4jf83Jzc7FmzRpcuXIFAPD6669jyJAhcHV1rcjmiMhMaAo2/fr1Q8OGDUXohohIM52npU6fPo369etj8eLFymmpRYsWoX79+jh79qwheiQikQmCUObZUAw2RGRqdJ6W6tChAxo0aIBVq1ahUqWnAz+lpaUYNmwYbt68iWPHjhmkUX3htBSRbjgNRUSmQJfvb53DTeXKlXHu3Dk0atRIpX758mW0bt0ahYWFundsRAw3RNrTFGyGDx8Ob29vEbohImtm0Iv4ubi4ICMjQ62emZkJZ2dnXTdHRCaotLS0zGkoBhsiMnU6H1Dct29fDB06FAsWLED79u0BAD///DO++OILtVsyEJH54TQUEZk7nUduFixYgD59+iA0NBS+vr7w9fVFeHg4PvjgA8ybN0/nBmJjY+Hr6wtHR0cEBAS88BYOubm5GDNmDGrVqgUHBwe89tprSEhI0Pl9iUidpmBz9Oh4Xm2YiMxKha9zU1hYiD/++AMAUL9+fTg5Oem8jfj4eISGhmLlypUICAjAkiVLsG3bNly7dg0eHh5qyxcXF+PNN9+Eh4cHJk2aBB8fH/z5559wc3ODn5+fVu/JY26I1D1+/FjtlioAR2uIyHQY9IBifQoICECbNm2wfPlyAIBCoYBUKsUnn3yCyMhIteVXrlyJr776ClevXoWdnV2F3pPhhkgVp6GIyBwY5CJ+Q4YM0Wq5tWvXarVccXExzpw5g6ioKGXNxsYGQUFBSElJ0bjOnj170K5dO4wZMwa7d++Gu7s7BgwYgIkTJ8LW1lbjOkVFRSgqKlI+z8/P16o/ImugKdh8+eWXqFy5sgjdEBHph9bhJi4uDnXq1IG/vz/0Mdhz7949yOVyeHp6qtQ9PT1x9epVjevcvHkThw8fxsCBA5GQkIDU1FSMHj0aJSUlZf6VGRMTU+ZfpkTW6sGDB1i2bJlanaM1RGQJtA43o0aNwubNm5GWlobBgwfjo48+QvXq1Q3ZmxqFQgEPDw989913sLW1RatWrXDr1i189dVXZf5SjoqKQkREhPJ5fn4+pFKpsVomMjmchiIiS6f12VKxsbHIysrCl19+if/85z+QSqX48MMPkZiYWKGRnJo1a8LW1hY5OTkq9ZycHHh5eWlcp1atWnjttddUpqAaN26M7OxsFBcXa1zHwcEBLi4uKg8ia6Up2EyePJnBhogsik6ngjs4OKB///44ePAgLl++jNdffx2jR4+Gr68vHj16pNMb29vbo1WrVkhKSlLWFAoFkpKS0K5dO43rvPnmm0hNTYVCoVDWrl+/jlq1asHe3l6n9yeyJtnZ2RqDjb+/THkbFSIiS1Hh32o2NjaQSCQQBAFyubxC24iIiEBYWBhat26Ntm3bYsmSJSgoKMDgwYMBAKGhofDx8UFMTAyAp1Njy5cvx6effopPPvkEN27cwJw5czBu3LiKfgwii8dpKCKyNjqFm6KiIuzYsQNr167FiRMn8N5772H58uXo2rUrbGx0vh4g+vbti7t372LatGnIzs5GixYtsH//fuVBxhkZGSrblUqlSExMxIQJE9C8eXP4+Pjg008/xcSJE3V+byJroCnYTJs2DRKJRIRuiIiMQ+vr3IwePRpbtmyBVCrFkCFDMHDgQNSsWdPQ/ekdr3ND1iA1NRUbN25Uq3O0hojMlUEu4mdjY4PatWvD39+/3L/6duzYoVu3RsZwQ5aO01BEZIkMchG/0NBQDmUTmbiy7uRNRGRNdLqIHxGZpnPnzmHPnj1qdQYbIrJGPAeUyMxxGoqISBXDDZEZ4zQUEZE6hhsiM5ScnIyjR4+q1RlsiIgYbojMjqbRGjs7O0yaNEmEboiITA/DDZEZ4TQUEdGLMdwQmYFdu3bhwoULanUGGyIidQw3RCZO02iNt7c3hg8fLkI3RESmj+GGyIRxGoqISHcMN0QmaPXq1bh165ZancGGiOjFGG6ITIym0ZrmzZujd+/eInRDRGR+GG6ITAinoYiIXh7DDZEJiImJQXFxsVq9uJjBhohIVww3RCLTNFoTGBiIjh07Gr8ZIiILwHBDJCJOQxER6R/DDZEIeCdvIiLDsRG7ASJroynYXLrUA/7+DDZERPrAkRsiI+I0FBGR4THcEBlBWdNQHK0hItI/hhsiA9MUbPr164eGDRuK0A0RkeVjuCEyEEEQMGPGDLU6p6GIiAyL4YbIAHg2FBGReBhuiPRMU7AZNmwYfHx8ROiGiMj6MNwQ6UlpaSlmz56tVudoDRGRcTHcEOkBz4YiIjIdDDdEL0lTsBk3bhyqVasmQjdERMRwQ1RBT548wbx589TqnIYiIhIXww1RBXAaiojIdDHcEOlIU7D54osv4OTkJEI3RET0PIYbIi3l5eVhyZIlanVOQxERmRaGGyIt8KJ8RETmw0bsBohMnaZgc/DgZB5fQ0RkojhyQ1SGO3fuYMWKFWp1f38ZOGBDRGS6GG6INOA0FBGR+eK0FNFzNAWbxMRpnIYiIjITHLkh+n/p6elYv369Wl0m4zQUEZE5YbghAqehiIgsCaelyOppnoaScRqKiMhMceSGrNbvv/+O7du3q9U5DUVEZN4YbsgqcRqKiMhyMdyQ1dEUbBhqiIgsB8MNWY2UlBQcOHBArc5ja4iILAvDDVkFTaM1hYVumDfvUxG6ISIiQ+LZUmTxyjob6s03GWyIiCwRR27IYv300084deqUWp1nQxERWTaGG7JImkZrpFIphgwZIkI3RERkTAw3ZHHKmoY6eVKEZoiIyOgYbshibNq0CTdu3FCrJybKEBkpQkNERCQKhhuyCJpGa1q0aIGePXvy+BoiIivDcENmjxflIyKif2K4IbO1fPly3L9/X63OYENEZN0YbsgsaRqt6dixIwIDA0XohoiITAnDDZkdTkMREVF5GG7IbMyaNQtyuVytzntDERHRPzHckFnQNFrTp08fNGvWTIRuiIjIlDHckMnjNBQREemC4YZMlqZQAzDYEBFR+XhXcDJJmoLNr7+G8vgaIiJ6IY7ckEkRBAEzZsxQq3O0hoiItGUSIzexsbHw9fWFo6MjAgICcOrUKa3W27JlCyQSCXr16mXYBskooqOjGWyIiOiliT5yEx8fj4iICKxcuRIBAQFYsmQJgoODce3aNXh4eJS5Xnp6Oj7//HN06NDBiN2SoWiahhoxYgS8vLxE6IaIiMyZ6CM3ixYtwvDhwzF48GA0adIEK1euhJOTE9auXVvmOnK5HAMHDkR0dDTq1atnxG5J3xQKRZlnQzHYEBFRRYg6clNcXIwzZ84gKipKWbOxsUFQUBBSUlLKXG/GjBnw8PDA0KFDcfz48XLfo6ioCEVFRcrn+fn5L9846QXPhiIiIkMQdeTm3r17kMvl8PT0VKl7enoiOztb4zonTpzAmjVrsGrVKq3eIyYmBq6ursqHVCp96b7p5WkKNitXTuDZUERE9NJEn5bSxcOHDzFo0CCsWrUKNWvW1GqdqKgo5OXlKR+ZmZkG7pLKU1xcrDHYJCbK8O23LujRQ4SmiIjIoog6LVWzZk3Y2toiJydHpZ6Tk6PxeIs//vgD6enpCAkJUdYUCgUAoFKlSrh27Rrq16+vso6DgwMcHBwM0D3pqrxpKM5EERGRvogabuzt7dGqVSskJSUpT+dWKBRISkrC2LFj1ZZv1KgRLl68qFKbMmUKHj58iKVLl3LKyYRpCjYTJ06Eo6OjCN0QEZElE/1U8IiICISFhaF169Zo27YtlixZgoKCAgwePBgAEBoaCh8fH8TExMDR0RFNmzZVWd/NzQ0A1OpkGgoKCrBgwQK1ur+/DMw1RERkCKKHm759++Lu3buYNm0asrOz0aJFC+zfv195kHFGRgZsbMzq0CD6fzwbioiIxCARBEEQuwljys/Ph6urK/Ly8uDi4iJ2OxZLU7CZPHkyKlUSPU8TEZEZ0uX7m980pFe5ublYunSpWt3fXwbmGiIiMgZ+3ZDecBqKiIhMAcMN6YWmYDNt2jRIJBIRuiEiImvGcEMv5c6dO1ixYoVa3d9fBuYaIiISA8MNVZim0ZpKlSph8uTJInRDRET0FMMNVUhZd/ImIiISG8MN6SQjIwPr1q1TqzPYEBGRqWC4Ia1pGq1xd3fH6NGjReiGiIhIM4Yb0gqnoYiIyFww3FC5bty4gU2bNqnVGWyIiMhUMdxQmTSN1jRs2BD9+vUToRsiIiLtMNyQRpqCTWKiDBywISIiU8dwQyouXLiAXbt2qdUTE2WIjDR+P0RERLpiuCElTaM1N2++hfXr3+GIDRERmQ0bsRsg01DWNNT7778jQjdEREQVx5EbK1fWNJS/P4+vISIi88RwY8U0jdb06NED/v7+InRDRESkHww3VkpTsPH3l4G5hoiIzB3DjZVJSUnBgQMH1Oq8KB8REVkKhhsromm05qOPPkL9+vVF6IaIiMgwGG6sBO8NRURE1oLhxsKdOXMGe/fuVasz2BARkaViuLFgmkZrUlKGYf9+HxG6ISIiMg6GGwulKdhs3izD/PkiNENERGREDDcWRtM0VGmpPdq0ieJF+YiIyCow3FgQTaM1ERERcHZ2FqEbIiIicTDcWABBEDBjxgy1Og8aJiIia8RwY+Y03RuqoKAG5s8fK05DREREImO4MWOapqEOHYrEF184iNANERGRaWC4MUPlTUNxJoqIiKwdw42ZOXXqFH766SeVWsuWLRESEiJSR0RERKaF4caMaJqGmjRpEuzs7ETohoiIyDQx3JgBhUKBmTNnqtV5NhQREZE6hhsTd+zYMRw5ckSl1r59e3Tp0kWkjoiIiEwbw40J0zQNNWXKFNja2orQDRERkXlguDFBcrkcs2bNUqtzGoqIiOjFGG5MTGJiIv773/+q1Dp37owOHTqI1BEREZF5YbgxIZqmoaZOnQobGxsRuiEiIjJPDDcmoKSkBHPmzFGrcxqKiIhIdww3Itu9ezfOnz+vUnv33XfRpk0bcRoiIiIycww3ItI0DTVt2jRIJBIRuiEiIrIMDDciePLkCebNm6dW5zQUERHRy2O4MbL4+HhcvXpVpda7d280b95cpI6IiIgsC8ONEXEaioiIyPAYboyA01BERETGw3BjYAkJCfj1119VanXr9kVoaCOROiIiIrJsDDcGpGkaiqM1REREhsVwYwBFRUWYO3euSq1KlSr4/PPPReqIiIjIejDc6FlmZibWrl2rUjt58mMkJtYSqSMiIiLrwnCjR5qOr0lMlCEyUqSGiIiIrBDDjZ5kZWWpBJuLF3siNLQFeIgNERGRcTHc6En16tWV/52UNBHHjjmK2A0REZH1YrjREwcHB/j7yzB3LjgNRUREJCKGGz3q0ePpg4iIiMRjI3YDRERERPrEcENEREQWheGGiIiILArDDREREVkUhhsiIiKyKAw3REREZFFMItzExsbC19cXjo6OCAgIwKlTp8pcdtWqVejQoQOqVauGatWqISgoqNzliYiIyLqIHm7i4+MREREBmUyGs2fPws/PD8HBwbhz547G5ZOTk9G/f38cOXIEKSkpkEql+Ne//oVbt24ZuXMiIiIyRRJBEAQxGwgICECbNm2wfPlyAIBCoYBUKsUnn3yCSC0u9SuXy1GtWjUsX74coaGhL1w+Pz8frq6uyMvLg4uLy0v3T0RERIany/e3qCM3xcXFOHPmDIKCgpQ1GxsbBAUFISUlRattFBYWoqSkROXeTv9UVFSE/Px8lQcRERFZLlHDzb179yCXy+Hp6alS9/T0RHZ2tlbbmDhxIry9vVUC0j/FxMTA1dVV+ZBKpS/dNxEREZku0Y+5eRlz587Fli1bsHPnTjg6ar4Ld1RUFPLy8pSPzMxMI3dJRERExiTqjTNr1qwJW1tb5OTkqNRzcnLg5eVV7roLFizA3LlzcejQITRv3rzM5RwcHODg4KCXfomIiMj0iRpu7O3t0apVKyQlJaFXr14Anh5QnJSUhLFjx5a53vz58zF79mwkJiaidevWOr3ns+OneewNERGR+Xj2va3VeVCCyLZs2SI4ODgIcXFxwuXLl4WPP/5YcHNzE7KzswVBEIRBgwYJkZGRyuXnzp0r2NvbC9u3bxeysrKUj4cPH2r1fpmZmQIAPvjggw8++ODDDB+ZmZkv/K4XdeQGAPr27Yu7d+9i2rRpyM7ORosWLbB//37lQcYZGRmwsfnfoUErVqxAcXExPvjgA5XtyGQyTJ8+/YXv5+3tjczMTDg7O0MikQB4mgalUikyMzN5eriRcd+Li/tfXNz/4uL+F5eu+18QBDx8+BDe3t4vXFb069yYAl77Rjzc9+Li/hcX97+4uP/FZcj9b9ZnSxERERE9j+GGiIiILArDDZ6eLi6TyXjKuAi478XF/S8u7n9xcf+Ly5D7n8fcEBERkUXhyA0RERFZFIYbIiIisigMN0RERGRRGG6IiIjIolhFuImNjYWvry8cHR0REBCAU6dOlbnsqlWr0KFDB1SrVg3VqlVDUFBQucvTi+my//9py5YtkEgkyvuOUcXouv9zc3MxZswY1KpVCw4ODnjttdeQkJBgpG4tj677f8mSJWjYsCEqV64MqVSKCRMm4MmTJ0bq1rIcO3YMISEh8Pb2hkQiwa5du164TnJyMlq2bAkHBwc0aNAAcXFxBu/TUum6/3fs2IEuXbrA3d0dLi4uaNeuHRITEyv03hYfbuLj4xEREQGZTIazZ8/Cz88PwcHBuHPnjsblk5OT0b9/fxw5cgQpKSmQSqX417/+hVu3bhm5c8ug6/5/Jj09HZ9//jk6dOhgpE4tk677v7i4GF26dEF6ejq2b9+Oa9euYdWqVfDx8TFy55ZB1/2/adMmREZGQiaT4cqVK1izZg3i4+MxadIkI3duGQoKCuDn54fY2Fitlk9LS0P37t3RqVMnnD9/HuPHj8ewYcMq/AVr7XTd/8eOHUOXLl2QkJCAM2fOoFOnTggJCcG5c+d0f3Od73RpZtq2bSuMGTNG+Vwulwve3t5CTEyMVuuXlpYKzs7Owvr16w3VokWryP4vLS0V2rdvL6xevVoICwsTevbsaYROLZOu+3/FihVCvXr1hOLiYmO1aNF03f9jxowROnfurFKLiIgQ3nzzTYP2aQ0ACDt37ix3mS+//FJ4/fXXVWp9+/YVgoODDdiZddBm/2vSpEkTITo6Wuf1LHrkpri4GGfOnEFQUJCyZmNjg6CgIKSkpGi1jcLCQpSUlKB69eqGatNiVXT/z5gxAx4eHhg6dKgx2rRYFdn/e/bsQbt27TBmzBh4enqiadOmmDNnDuRyubHathgV2f/t27fHmTNnlFNXN2/eREJCAt59912j9GztUlJSVH5eABAcHKz19wXpl0KhwMOHDyv0/Sv6XcEN6d69e5DL5co7jD/j6emJq1evarWNiRMnwtvbW+0fPL1YRfb/iRMnsGbNGpw/f94IHVq2iuz/mzdv4vDhwxg4cCASEhKQmpqK0aNHo6SkBDKZzBhtW4yK7P8BAwbg3r17eOuttyAIAkpLSzFy5EhOSxlJdna2xp9Xfn4+Hj9+jMqVK4vUmXVasGABHj16hA8//FDndS165OZlzZ07F1u2bMHOnTvh6OgodjsW7+HDhxg0aBBWrVqFmjVrit2OVVIoFPDw8MB3332HVq1aoW/fvpg8eTJWrlwpdmtWITk5GXPmzME333yDs2fPYseOHdi3bx9mzpwpdmtERrVp0yZER0dj69at8PDw0Hl9ix65qVmzJmxtbZGTk6NSz8nJgZeXV7nrLliwAHPnzsWhQ4fQvHlzQ7ZpsXTd/3/88QfS09MREhKirCkUCgBApUqVcO3aNdSvX9+wTVuQivz7r1WrFuzs7GBra6usNW7cGNnZ2SguLoa9vb1Be7YkFdn/U6dOxaBBgzBs2DAAQLNmzVBQUICPP/4YkydPho0N/x41JC8vL40/LxcXF47aGNGWLVswbNgwbNu2rcKzJhb9/xR7e3u0atUKSUlJyppCoUBSUhLatWtX5nrz58/HzJkzsX//frRu3doYrVokXfd/o0aNcPHiRZw/f1756NGjh/LMBalUasz2zV5F/v2/+eabSE1NVYZKALh+/Tpq1arFYKOjiuz/wsJCtQDzLGgKvA2gwbVr107l5wUABw8eLPf7gvRr8+bNGDx4MDZv3ozu3btXfEM6H4JsZrZs2SI4ODgIcXFxwuXLl4WPP/5YcHNzE7KzswVBEIRBgwYJkZGRyuXnzp0r2NvbC9u3bxeysrKUj4cPH4r1Ecyarvv/eTxb6uXouv8zMjIEZ2dnYezYscK1a9eEvXv3Ch4eHsKsWbPE+ghmTdf9L5PJBGdnZ2Hz5s3CzZs3hQMHDgj169cXPvzwQ7E+gll7+PChcO7cOeHcuXMCAGHRokXCuXPnhD///FMQBEGIjIwUBg0apFz+5s2bgpOTk/DFF18IV65cEWJjYwVbW1th//79Yn0Es6br/t+4caNQqVIlITY2VuX7Nzc3V+f3tvhwIwiC8PXXXwu1a9cW7O3thbZt2wr//e9/la8FBgYKYWFhyud16tQRAKg9ZDKZ8Ru3ELrs/+cx3Lw8Xff/yZMnhYCAAMHBwUGoV6+eMHv2bKG0tNTIXVsOXfZ/SUmJMH36dKF+/fqCo6OjIJVKhdGjRwsPHjwwfuMW4MiRIxp/nz/b52FhYUJgYKDaOi1atBDs7e2FevXqCevWrTN635ZC1/0fGBhY7vK6kAgCxzqJiIjIclj0MTdERERkfRhuiIiIyKIw3BAREZFFYbghIiIii8JwQ0RERBaF4YaIiIgsCsMNERERWRSGGyKiMvj6+mLJkiVit0FEOmK4ISKd3L17F6NGjULt2rXh4OAALy8vBAcH4+effwYASCQS7Nq1S9wmtdSxY0dIJBK1R2lpqditEdFLsOi7ghOR/r3//vsoLi7G+vXrUa9ePeTk5CApKQn3798Xu7UKGT58OGbMmKFSq1SJvxqJzBlHbohIa7m5uTh+/DjmzZuHTp06oU6dOmjbti2ioqLQo0cP+Pr6AgB69+4NiUSifA4Au3fvRsuWLeHo6Ih69eohOjpaZYRk0aJFaNasGapUqQKpVIrRo0fj0aNHytfj4uLg5uaGvXv3omHDhnBycsIHH3yAwsJCrF+/Hr6+vqhWrRrGjRsHuVyu9WdycnKCl5eXyqMsGRkZ6NmzJ6pWrQoXFxd8+OGHyMnJAQDk5eXB1tYWp0+fBvD0DuDVq1fHG2+8oVz/hx9+4N3tiYyA4YaItFa1alVUrVoVu3btQlFRkdrrv/76KwBg3bp1yMrKUj4/fvw4QkND8emnn+Ly5cv49ttvERcXh9mzZyvXtbGxwbJly/D7779j/fr1OHz4ML788kuV7RcWFmLZsmXYsmUL9u/fj+TkZPTu3RsJCQlISEjAhg0b8O2332L79u16/+wKhQI9e/bE33//jaNHj+LgwYO4efMm+vbtCwBwdXVFixYtkJycDAC4ePEiJBIJzp07pwxpR48eRWBgoN57I6Ln6OPOn0RkPbZv3y5Uq1ZNcHR0FNq3by9ERUUJFy5cUL4OQNi5c6fKOu+8844wZ84cldqGDRuEWrVqlfk+27ZtE2rUqKF8vm7dOgGAkJqaqqyNGDFCcHJyEh4+fKisBQcHCyNGjNDqswQGBgp2dnZClSpVlI+IiAjl63Xq1BEWL14sCIIgHDhwQLC1tRUyMjKUr//+++8CAOHUqVOCIAhCRESE0L17d0EQBGHJkiVC3759BT8/P+Gnn34SBEEQGjRoIHz33Xda9UZEFceRGyLSyfvvv4/bt29jz5496Nq1K5KTk9GyZUvExcWVuc6FCxcwY8YM5chP1apVMXz4cGRlZaGwsBAAcOjQIbzzzjvw8fGBs7MzBg0ahPv37ytfB55OIdWvX1/53NPTE76+vqhatapK7c6dO1p/noEDB+L8+fPKR1RUlMblrly5AqlUqjKt1KRJE7i5ueHKlSsAgMDAQJw4cQJyuRxHjx5Fx44d0bFjRyQnJ+P27dtITU1Fx44dte6NiCqG4YaIdObo6IguXbpg6tSpOHnyJMLDwyGTycpc/tGjR4iOjlYJERcvXsSNGzfg6OiI9PR0vPfee2jevDl+/PFHnDlzBrGxsQCA4uJi5Xbs7OxUtiuRSDTWFAqF1p/F1dUVDRo0UD5q1qyp9brPe/vtt/Hw4UOcPXsWx44dUwk3R48ehbe3N1599dUKb5+ItMNTAojopTVp0kR5+rednZ3aAb0tW7bEtWvX0KBBA43rnzlzBgqFAgsXLoSNzdO/ubZu3WrQnnXVuHFjZGZmIjMzUzl6c/nyZeTm5qJJkyYAADc3NzRv3hzLly+HnZ0dGjVqBA8PD/Tt2xd79+7l8TZERsKRGyLS2v3799G5c2f88MMP+O2335CWloZt27Zh/vz56NmzJ4CnF75LSkpCdnY2Hjx4AACYNm0avv/+e0RHR+P333/HlStXsGXLFkyZMgUA0KBBA5SUlODrr7/GzZs3sWHDBqxcuVK0z6lJUFAQmjVrhoEDB+Ls2bM4deoUQkNDERgYiNatWyuX69ixIzZu3KgMMtWrV0fjxo0RHx/PcENkJAw3RKS1qlWrIiAgAIsXL8bbb7+Npk2bYurUqRg+fDiWL18OAFi4cCEOHjwIqVQKf39/AEBwcDD27t2LAwcOoE2bNnjjjTewePFi1KlTBwDg5+eHRYsWYd68eWjatCk2btyImJgY0T6nJhKJBLt370a1atXw9ttvIygoCPXq1UN8fLzKcoGBgZDL5SrH1nTs2FGtRkSGIxEEQRC7CSIiIiJ94cgNERERWRSGGyKySMePH1c59fz5BxFZLk5LEZFFevz4MW7dulXm62WduUVE5o/hhoiIiCwKp6WIiIjIojDcEBERkUVhuCEiIiKLwnBDREREFoXhhoiIiCwKww0RERFZFIYbIiIisigMN0RERGRR/g+Z0FNywmlgYQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATJZJREFUeJzt3XlYVGX/BvB7QBYRAZVVQ3EpxSVFUcLKpTA0Q61M01Jwy92UMiEX3FFTJHPBNPcNM0VTEpPElTTXXHCHsAREk1VlmTm/P/w5r9MMOAMzc2a5P9fF9b7znXPOfOdYcvc8zzlHIgiCACIiIiITYSF2A0RERETaxHBDREREJoXhhoiIiEwKww0RERGZFIYbIiIiMikMN0RERGRSGG6IiIjIpDDcEBERkUlhuCEiIiKTwnBDRAZJIpFg+vTpYrchFxISAi8vL7HbICI1MNwQkdrWrVsHiUQi/7G1tcUrr7yCMWPGICsrS6effeLECUyfPh05OTlaPW6nTp0UvlPNmjXRtm1brFmzBjKZTCufMXfuXMTFxWnlWET0YlXEboCIjM/MmTNRv359PHnyBMeOHcOKFSsQHx+PS5cuwc7OTiuf8fjxY1Sp8r+/ok6cOIEZM2YgJCQETk5OWvmMZ1566SVERkYCALKzs7FhwwYMGTIE169fx7x58yp9/Llz56J3797o1atXpY9FRC/GcENEGuvWrRt8fX0BAEOHDkWtWrUQFRWF3bt3o1+/fhU+rkwmQ3FxMWxtbWFra6utdl/I0dERn376qfz18OHD0bhxYyxduhSzZs2ClZWV3nohosrjtBQRVdpbb70FAEhNTQUALFy4EO3bt0etWrVQtWpVtGnTBjt27FDaTyKRYMyYMdi8eTOaNWsGGxsb7N+/X/7eszU306dPx8SJEwEA9evXl08hpaWloWPHjmjZsqXKvho3bozAwECNv4+dnR1ee+01FBYWIjs7u8ztCgsL8cUXX8DT0xM2NjZo3LgxFi5cCEEQFL5jYWEh1q9fL+87JCRE456ISH0cuSGiSrt16xYAoFatWgCAb7/9Fj169MAnn3yC4uJibNu2DR999BH27t2L7t27K+z722+/Yfv27RgzZgycnZ1VLtr94IMPcP36dWzduhWLFy+Gs7MzAMDFxQUDBgzAsGHDcOnSJTRv3ly+zx9//IHr169jypQpFfpOt2/fhqWlZZlTYIIgoEePHjh06BCGDBmCVq1aISEhARMnTsQ///yDxYsXAwA2btyIoUOHol27dvjss88AAA0bNqxQT0SkJoGISE1r164VAAgHDx4UsrOzhTt37gjbtm0TatWqJVStWlX4+++/BUEQhEePHinsV1xcLDRv3lx46623FOoABAsLC+Hy5ctKnwVAiIiIkL/+5ptvBABCamqqwnY5OTmCra2tMGnSJIX6uHHjhGrVqgkFBQXlfqeOHTsKTZo0EbKzs4Xs7GwhJSVFGDdunABACAoKkm8XHBws1KtXT/46Li5OACDMnj1b4Xi9e/cWJBKJcPPmTXmtWrVqQnBwcLl9EJH2cFqKiDQWEBAAFxcXeHp64uOPP4a9vT127dqFOnXqAACqVq0q3/bhw4fIzc3Fm2++ibNnzyodq2PHjmjatGmFe3F0dETPnj2xdetW+XSQVCpFbGwsevXqhWrVqr3wGFevXoWLiwtcXFzg7e2N7777Dt27d8eaNWvK3Cc+Ph6WlpYYN26cQv2LL76AIAj45ZdfKvydiKhyOC1FRBpbtmwZXnnlFVSpUgVubm5o3LgxLCz+999Ke/fuxezZs3H+/HkUFRXJ6xKJROlY9evXr3Q/AwcORGxsLI4ePYoOHTrg4MGDyMrKwoABA9Ta38vLC6tWrZJf3v7yyy/D1dW13H3++usv1K5dG9WrV1eoe3t7y98nInEw3BCRxtq1aye/Wuq/jh49ih49eqBDhw5Yvnw5PDw8YGVlhbVr12LLli1K2z8/ylNRgYGBcHNzw6ZNm9ChQwds2rQJ7u7uCAgIUGv/atWqqb0tERk+TksRkVb99NNPsLW1RUJCAgYPHoxu3bppJTioGvV5xtLSEv3798eOHTvw8OFDxMXFoV+/frC0tKz055alXr16uHv3LvLz8xXqV69elb//THm9E5H2MdwQkVZZWlpCIpFAKpXKa2lpaZW+Q++ztTNl3aF4wIABePjwIYYPH46CggKF+9bowrvvvgupVIqlS5cq1BcvXgyJRIJu3brJa9WqVdP6nZWJqGycliIirerevTuioqLQtWtX9O/fH/fu3cOyZcvQqFEj/PnnnxU+bps2bQAAkydPxscffwwrKysEBQXJQ4+Pjw+aN2+OH3/8Ed7e3mjdurVWvk9ZgoKC0LlzZ0yePBlpaWlo2bIlDhw4gN27d2P8+PEKl3u3adMGBw8eRFRUFGrXro369evDz89Pp/0RmTOO3BCRVr311lv44YcfkJmZifHjx2Pr1q2YP38+3n///Uodt23btpg1axYuXLiAkJAQ9OvXT+kGewMHDgQAtRcSV4aFhQX27NmD8ePHY+/evRg/fjyuXLmCb775BlFRUQrbRkVFoU2bNpgyZQr69euHFStW6Lw/InMmEYTnbqVJRGTEvv32W0yYMAFpaWmoW7eu2O0QkUgYbojIJAiCgJYtW6JWrVo4dOiQ2O0QkYi45oaIjFphYSH27NmDQ4cO4eLFi9i9e7fYLRGRyDhyQ0RGLS0tDfXr14eTkxNGjRqFOXPmiN0SEYmM4YaIiIhMCq+WIiIiIpPCcENEREQmxewWFMtkMty9exfVq1fnLdGJiIiMhCAIyM/PR+3atRUe1KuK2YWbu3fvwtPTU+w2iIiIqALu3LmDl156qdxtzC7cVK9eHcDTk+Pg4CByN0RERKSOvLw8eHp6yn+Pl8fsws2zqSgHBweGGyIiIiOjzpISLigmIiIik8JwQ0RERCaF4YaIiIhMitmtuVGXVCpFSUmJ2G2QHlhbW7/wskIiIjIeDDf/IQgCMjMzkZOTI3YrpCcWFhaoX78+rK2txW6FiIi0gOHmP54FG1dXV9jZ2fFGfybu2U0dMzIyULduXf55ExGZAIab50ilUnmwqVWrltjtkJ64uLjg7t27KC0thZWVldjtEBFRJXGhwXOerbGxs7MTuRPSp2fTUVKpVOROiIhIGxhuVODUhHnhnzcRkWlhuCEiIiKTwnBDREREJoXhxkSEhIRAIpFAIpHAysoKbm5u6NKlC9asWQOZTKb2cdatWwcnJyfdNUpERKRjDDcmpGvXrsjIyEBaWhp++eUXdO7cGZ9//jnee+89lJaWit0eERGZgQcPHoj+O4fhxoTY2NjA3d0dderUQevWrfH1119j9+7d+OWXX7Bu3ToAQFRUFFq0aIFq1arB09MTo0aNQkFBAQAgKSkJgwYNQm5urnwUaPr06QCAjRs3wtfXF9WrV4e7uzv69++Pe/fuifRNiYjI0Dx69AgzZszA0qVLMWrUz9izR7xeGG5eQBAEFBcXi/IjCEKl+3/rrbfQsmVL7Ny5E8DTu/EuWbIEly9fxvr16/Hbb7/hq6++AgC0b98e0dHRcHBwQEZGBjIyMvDll18CeHqZ/KxZs3DhwgXExcUhLS0NISEhle6PiIiMX0pKCr755hv565s3HTFvnnj98CZ+L1BSUoLIyEhRPjs8PFwrjwRo0qQJ/vzzTwDA+PHj5XUvLy/Mnj0bI0aMwPLly2FtbQ1HR0dIJBK4u7srHGPw4MHy/9+gQQMsWbIEbdu2RUFBAezt7SvdIxERGacNGzYgNTVV/trN7XU8efIWwsLE64nhxgwIgiC/l8vBgwcRGRmJq1evIi8vD6WlpXjy5AkePXpU7s0Lz5w5g+nTp+PChQt4+PChfJFyeno6mjZtqpfvQUREhqOwsBALFy5UqA0fPhzu7u4YMUKkpv4fw80LWFlZITw8XLTP1oaUlBTUr18faWlpeO+99zBy5EjMmTMHNWvWxLFjxzBkyBAUFxeXGW4KCwsRGBiIwMBAbN68GS4uLkhPT0dgYCCKi4u10iMRERmPS5cu4aeffpK/trS0RHh4OCwtLUXs6n8Ybl5AIpEY9dOif/vtN1y8eBETJkzAmTNnIJPJsGjRIlhYPF1utX37doXtra2tlR5DcPXqVTx48ADz5s2Dp6cnAOD06dP6+QJERGQwBEHAmjVr8Pfff8trnTp1QseOHUXsShnDjQkpKipCZmYmpFIpsrKysH//fkRGRuK9997DwIEDcenSJZSUlOC7775DUFAQjh8/jpiYGIVjeHl5oaCgAImJiWjZsiXs7OxQt25dWFtb47vvvsOIESNw6dIlzJo1S6RvSUREYsjPz0dUVJRCbeTIkXB1dRWpo7LxaikTsn//fnh4eMDLywtdu3bFoUOHsGTJEuzevRuWlpZo2bIloqKiMH/+fDRv3hybN29WWizdvn17jBgxAn379oWLiwsWLFgAFxcXrFu3Dj/++COaNm2KefPmKc2zEhGR6Tp//rxCsLG1tcXUqVMNMtgAgETQxvXGRiQvLw+Ojo7Izc2Fg4ODwntPnjxBamoq6tevD1tbW5E6JH3jnzsRkWqCIGDlypXIysqS195++2288cYbeu+lvN/f/8VpKSIiIlKSm5uL6OhohdqYMWNQq1YtcRrSAMMNERERKThz5gz27t0rf21vb48JEybIL0YxdAw3REREBODpNNTSpUvx77//ymuBgYF47bXXROxKcww3REREhIcPH2LJkiUKtXHjxqFGjRoidVRxDDdERERm7uTJk9i/f7/8dc2aNTFmzBj53e2NDcMNERGRmRIEAdHR0cjLy5PXunfvDl9fXxG7qjyGGyIiIjP04MEDLF26VKE2fvx4ODo6itSR9oi67PnIkSMICgpC7dq1IZFIEBcXV+72O3fuRJcuXeDi4gIHBwf4+/sjISFBP80SERGZiOPHjysEGzc3N0ybNs0kgg0gcrgpLCxEy5YtsWzZMrW2P3LkCLp06YL4+HicOXMGnTt3RlBQEM6dO6fjTomIiIyfTCbD/PnzcfDgQXmtZ8+eGDFihNGur1FF1Gmpbt26oVu3bmpv/9+bCc2dOxe7d+/Gzz//DB8fHy13R6qEhIQgJydHPsrWqVMntGrVSunPRhPaOAYREZUvOzsby5cvV6iFhoaievXqInWkO0a95kYmkyE/Px81a9Ysc5uioiIUFRXJXz+/aMqUhISEYP369QAAKysr1K1bFwMHDsTXX3+NKlV098e8c+dOWFlZqbVtUlISOnfujIcPH8LJyalCxyAiIs3Nnr0AUulj+es6depgyJAhJjVa8zyjDjcLFy5EQUEB+vTpU+Y2kZGRmDFjhh67Ek/Xrl2xdu1aFBUVIT4+HqNHj4aVlRXCw8MVtisuLoa1tbVWPrO8YKnPYxARkbKSkhLMnTtXofbBBx+gRYsWInWkH8ZxH2UVtmzZghkzZmD79u3lPpU0PDwcubm58p87d+7osUv9srGxgbu7O+rVq4eRI0ciICAAe/bsQUhICHr16oU5c+agdu3aaNy4MQDgzp076NOnD5ycnFCzZk307NkTaWlp8uNJpVKEhobCyckJtWrVwldffYX/Pme1U6dOGD9+vPx1UVERJk2aBE9PT9jY2KBRo0b44YcfkJaWhs6dOwMAatSoAYlEgpCQEJXHePjwIQYOHIgaNWrAzs4O3bp1w40bN+Tvr1u3Dk5OTkhISIC3tzfs7e3RtWtXZGRkyLdJSkpCu3btUK1aNTg5OeH111/HX3/9paUzTURk+P7880+lYNOs2ecmH2wAIw0327Ztw9ChQ7F9+3YEBASUu62NjQ0cHBwUfsxF1apVUVxcDABITEzEtWvX8Ouvv2Lv3r0oKSlBYGAgqlevjqNHj+L48ePykPBsn0WLFmHdunVYs2YNjh07hn///Re7du0q9zMHDhyIrVu3YsmSJUhJScHKlSthb28PT09P/PTTTwCAa9euISMjA99++63KY4SEhOD06dPYs2cPkpOTIQgC3n33XZSUlMi3efToERYuXIiNGzfiyJEjSE9Px5dffgkAKC0tRa9evdCxY0f8+eefSE5OxmeffWayw69ERP81Y8YMpb+vIyIi0Lu3kzgN6ZnRTUtt3boVgwcPxrZt29C9e3ex2zFIgiAgMTERCQkJGDt2LLKzs1GtWjWsXr1aPh21adMmyGQyrF69Wv5Lf+3atXByckJSUhLeeecdREdHIzw8HB988AEAICYmptxL769fv47t27fj119/lYfOBg0ayN9/Nv3k6uqqsObmeTdu3MCePXtw/PhxtG/fHgCwefNmeHp6Ii4uDh999BGAp0OtMTExaNiwIYCnT6qdOXMmgKfrqnJzc/Hee+/J3/f29tb8RBIRGZnHjx9jwYIFCrUWLVrI/x43F6KGm4KCAty8eVP+OjU1FefPn0fNmjVRt25dhIeH459//sGGDRsAPJ2KCg4Oxrfffgs/Pz9kZmYCeDpCYYjX5u/ZA8ybB4SFAT166P7z9u7dC3t7e5SUlEAmk6F///6YPn06Ro8ejRYtWiiss7lw4QJu3ryptEr+yZMnuHXrFnJzc5GRkQE/Pz/5e1WqVIGvr6/S1NQz58+fh6WlJTp27Fjh75CSkoIqVaoofG6tWrXQuHFjpKSkyGt2dnby4AIAHh4euHfvHoCnISokJASBgYHo0qULAgIC0KdPH3h4eFS4LyIiQ/fzzz/j7NmzCrUxY8agVq1aInUkHlGnpU6fPg0fHx/5ZdyhoaHw8fHBtGnTAAAZGRlIT0+Xb//999+jtLQUo0ePhoeHh/zn888/F6X/F5k3D0hOfvq/+tC5c2ecP38eN27cwOPHj7F+/XpUq1YNAOT/+0xBQQHatGmD8+fPK/xcv34d/fv3r9DnV61atdLfQV3/vbpKIpEohK61a9ciOTkZ7du3R2xsLF555RX8/vvveuuPiEifZsyYoRRsEhIizDLYACKP3HTq1KnMUQDg6cLR5yUlJem2IS0LC/vfyI0+VKtWDY0aNVJr29atWyM2Nhaurq5lrkPy8PDAyZMn0aFDBwBP17KcOXMGrVu3Vrl9ixYtIJPJcPjwYZVroZ6NHEml0jL78vb2RmlpKU6ePCmflnrw4AGuXbuGpk2bqvXdnnkWnMPDw+Hv748tW7bgtdde0+gYRESGrKCgAIsWLVKoWVlVx969oXr73WOIjHJBsbHo0QM4cUI/U1Ka+uSTT+Ds7IyePXvi6NGjSE1NRVJSEsaNG4e///4bAPD5559j3rx5iIuLw9WrVzFq1Cjk5OSUeUwvLy8EBwdj8ODBiIuLkx9z+/btAIB69epBIpFg7969yM7ORkFBgdIxXn75ZfTs2RPDhg3DsWPHcOHCBXz66aeoU6cOevbsqdZ3S01NRXh4OJKTk/HXX3/hwIEDuHHjBtfdEJFJ2bFjh1KwGT58OL7+OtRgf/foC8ONmbKzs8ORI0dQt25dfPDBB/D29saQIUPw5MkT+UjOF198gQEDBiA4OBj+/v6oXr063n///XKPu2LFCvTu3RujRo1CkyZNMGzYMBQWFgJ4etOoGTNmICwsDG5ubhgzZozKY6xduxZt2rTBe++9B39/fwiCgPj4eLVv9GdnZ4erV6/iww8/xCuvvILPPvsMo0ePxvDhwzU4Q0REhmvGjBm4fPmyQi0iIgLu7u4idWRYJEJ580ImKC8vD46OjsjNzVWajnny5AlSU1NRv3592NraitQh6Rv/3InIWNy/f1/peYxubm4YMWKESB3pT3m/v//L6C4FJyIiMkdz5sxBaWmpQm306NFwdnYWqSPDxXBDRERk4FQ9RsjHJwLMNaox3BARERmozMxMrFy5UqkeEREhQjfGg+GGiIjIAKkarRk5cmS5z1OkpxhuVDCzNdZmj3/eRGRoVAUbjtaoj+HmOc8uNX706JFe77ZL4nr2oFBLS0uROyEic5eeno61a9cq1KpVqyZ/MDCph+HmOZaWlnBycpI/o8jOzo5PkjZxMpkM2dnZsLOzQ5Uq/NeBiMSjarRm3LhxqFGjhgjdGDf+bf4fz26A9CzgkOmzsLBA3bp1GWSJSDSchtIuhpv/kEgk8PDwgKurK0pKSsRuh/TA2toaFha8WTcR6d/NmzexefNmhZqrqytGjhwpUkemgeGmDJaWllyDQUREOqNqtCY0NBTVq1cXoRvTwnBDRESkZ5yG0i2GGyIiIj25cuUKfvzxR4Wal5cXgoODRerINDHcEBER6YGq0ZqJEyfCzs5OhG5MG8MNERGRDgmCgJkzZyrVOQ2lOww3REREOnLu3Dns2bNHoebt7Y0+ffqI1JF5YLghIiLSAVXTUGFhYbCxsRGhG/PCcENERKRFnIYSH8MNERGRlvz+++9ISEhQqLVu3RpBQUEidWSeGG6IiIi0QNU01Ndffy1/KDPpD8MNERFRJchkMsyaNUupzmko8TDcEBERVVBSUhIOHz6sUHv99dcREBAgUkcEMNwQERFViKppqClTpvC5hAaA4YaIiEgDpaWlmDNnjlKd01CGg+GGiIhITfv378fJkycVam+//TbeeOMNkToiVRhuiIiI1KBqGmrq1KmwsLAQoRsqD8MNERFROYqLixEZGalU5zSU4WK4ISIiKsOuXbvw559/KtS6d+8OX19fkToidTDcEBERqaBqGiohYRoiIiQidEOaYLghIiJ6zpMnTzB//nylekJCBMLCRGiINMZwQ0RE9P+2bNmCGzduKNQ++OADtGjRAlxiYzwYboiIiKB6GoqLho0Tww0REZm1vLw8LF68WKnOYGO8GG6IiMhszZo1CzKZTKF29uzH2L27sUgdkTYw3BARkVlSfTUUFw2bAoYbIiIyKw8ePMDSpUuV6hEREVw0bCIYboiIyGyoGq3p06cPvL29ReiGdIXhhoiIzAKvhjIfDDdERGTSMjMzsXLlSqU6g43pYrghIiKTpWq0ZsCAAWjQoIEI3ZC+MNwQEZFJ4jSU+WK4ISIik5KSkoLt27cr1X18GGzMBcMNERGZDFWjNX/8MRB799YXoRsSi4XYDRAREWlDWTfl++wzBhtzw5EbIiIyamfPnsXPP/+sVOdN+cwXww0RERktVaM1ISEhqFevngjdkKFguCEiIqPEq6GoLAw3RERkVI4dO4bExESlOoMNPcNwQ0RERkPVaM3w4cPh7u4uQjdkqBhuiIjIKHAaitQl6qXgR44cQVBQEGrXrg2JRIK4uLgX7pOUlITWrVvDxsYGjRo1wrp163TeJxERiSchIYHBhjQi6shNYWEhWrZsicGDB+ODDz544fapqano3r07RowYgc2bNyMxMRFDhw6Fh4cHAgMD9dAxERHpk6pQM3bsWNSsWVOEbshYiBpuunXrhm7duqm9fUxMDOrXr49FixYBALy9vXHs2DEsXryY4YaIyIQIgoCZM2cq1TlaQ+owqjU3ycnJCAgIUKgFBgZi/PjxZe5TVFSEoqIi+eu8vDxdtUdERFqwYcMGpKamKtUZbEhdRhVuMjMz4ebmplBzc3NDXl4eHj9+jKpVqyrtExkZqXJYk4iIDI+qv69DQ0NRvXp1EbohY2Xyz5YKDw9Hbm6u/OfOnTtit0RERP8hCILKYOPjE8FgQxozqpEbd3d3ZGVlKdSysrLg4OCgctQGAGxsbGBjY6OP9oiIqAK+++47/Pvvv0p1TkNRRRlVuPH390d8fLxC7ddff4W/v79IHRERUWWoGq2ZOHEi7OzsROiGTIWo01IFBQU4f/48zp8/D+Dppd7nz59Heno6gKdTSgMHDpRvP2LECNy+fRtfffUVrl69iuXLl2P79u2YMGGCGO0TEVEFSaXSMu9dw2BDlSXqyM3p06fRuXNn+evQ0FAAQHBwMNatW4eMjAx50AGA+vXrY9++fZgwYQK+/fZbvPTSS1i9ejUvAyciMiKzZ8+GVCpVqnMairRFIgiCIHYT+pSXlwdHR0fk5ubCwcFB7HaIiMyKqtGa8PBwWFtbi9ANGRNNfn8b1ZobIiIyTsXFxYiMjFSqc7SGdIHhhoiIdErVaI2VlRW+/vprEbohc8BwQ0REOqMq2EyZMgWWlpYidEPmguGGiIi0rqCgQP4cwOf5+ESAuYZ0jeGGiIi0StVoTUmJDWbPDhOhGzJHJv/4BSIi0h9VwSYhYRratWOwIf3hyA0REVVadnY2li9frlQvLo7AiRMiNERmjeGGiIgqRdVoTVGRPebO/UKEbogYboiIqBJUBZuFC6dh82aJCN0QPcVwQ0REGrt79y5WrVqlVE9IiMDmzUCPHiI0RfT/GG6IiEgjqkZratWqhTFjxoA3HCZDwHBDRERqU301FBcNk2FhuCEiohe6desWNm3apFRPSIhAGK/yJgPDcENEROVSNVrTvHlzfPjhh5yGIoPEcENERGVSFWz4JG8ydAw3RESk5NSpU/jll1+U6j4+DDZk+BhuiIhIgarRmjt3WmP16iARuiHSHJ8tRUREcmVdDdWjB4MNGQ+O3BAREQ4ePIjjx48r1SMiIrhomIwOww0RkZlTNVrz+uuvIyAgQIRuiCqP4YaIyIzxaigyRQw3RERmaOfOnbh48aJSncGGTAHDDRGRmVE1WtO1a1f4+fmJ0A2R9jHcEBGZEU5DkTlguCEiMgMrV65EZmamUp3BhkwRww0RkYlTNVrTu3dvNGvWTIRuiHSP4YaIyIRxGorMEcMNEZEJUhVqAKC4mMGGTB/DDRGRiVEVbD799FM0bNhQhG6I9I/hhojIRAiCgJkzZyrVfXwiwFxD5oThhojIBJQ1DcX1NWSOGG6IiIycqmAzdOhQ1KlTR4RuiMTHcENEZKRkMhlmzZqlVOdoDZk7jcONpaUlMjIy4OrqqlB/8OABXF1dIZVKtdYcERGpxmkoorJpHG4EQVBZLyoqgrW1daUbIiKi8qkKNmPHjkXNmjVF6IbI8KgdbpYsWQIAkEgkWL16Nezt7eXvSaVSHDlyBE2aNNF+h0REBAAoLi5GZGSkinoEmGuI/kftcLN48WIAT0duYmJiYGlpKX/P2toaXl5eiImJ0X6HRERU5jSUj08EevTQczNEBk7tcJOamgoA6Ny5M3bu3IkaNWrorCkiIvofVcEmKWkCJkxwYLAhUkEilLWIxkTl5eXB0dERubm5cHBwELsdIqIyFRQUYNGiRUp1Lhomc6TJ72+NFxQPHjy43PfXrFmj6SGJiOg/eDUUUcVpHG4ePnyo8LqkpASXLl1CTk4O3nrrLa01RkRkrlQFm7CwMNjY2IjQDZHx0Tjc7Nq1S6kmk8kwcuRIPpSNiKgS7t27hxUrVijVOVpDpBmtrbm5du0aOnXqhIyMDG0cTme45oaIDBGnoYjKp8nvbwttfeitW7dQWlqqrcMREZkNVcEmKmoKiosZbIgqQuNpqdDQUIXXgiAgIyMD+/btQ3BwsNYaIyIydampqdiwYYNSPSIiAhywIao4jcPNuXPnFF5bWFjAxcUFixYteuGVVERE9BSnoYh0R+Nwc+jQIV30QURkNlQFm1atpqFnT4kI3RCZHo3DzTP37t3DtWvXAACNGzdWeko4EREpunDhAuLi4pTqHK0h0i6Nw01eXh5Gjx6NrVu3QiaTAQAsLS3Rt29fLFu2DI6OjlpvkojI2HEaikh/NL5aatiwYTh58iT27duHnJwc5OTkYO/evTh9+jSGDx+uix6JiIyaqmDzdNEwgw2RLmh8n5tq1aohISEBb7zxhkL96NGj6Nq1KwoLC7XaoLbxPjdEpC+JiYk4duyYUp2hhkhzOn22VK1atVROPTk6OvJJ4URE/4/TUETi0XhaasqUKQgNDUVmZqa8lpmZiYkTJ2Lq1KkaN7Bs2TJ4eXnB1tYWfn5+OHXqVLnbR0dHo3HjxqhatSo8PT0xYcIEPHnyROPPJSLSFVXBxseH01BE+qLxyM2KFStw8+ZN1K1bF3Xr1gUApKenw8bGBtnZ2Vi5cqV827Nnz5Z7rNjYWISGhiImJgZ+fn6Ijo5GYGAgrl27pvLqqy1btiAsLAxr1qxB+/btcf36dYSEhEAikSAqKkrTr0JEpFXbt29HSkqKUp2hhki/NA43PXv2hESinXsxREVFYdiwYRg0aBAAICYmBvv27cOaNWsQFhamtP2JEyfw+uuvo3///gAALy8v9OvXDydPntRKP0REFcVpKCLDoXG4mT59ulY+uLi4GGfOnEF4eLi8ZmFhgYCAACQnJ6vcp3379ti0aRNOnTqFdu3a4fbt24iPj8eAAQPK/JyioiIUFRXJX+fl5WmlfyKiZ8q6GoqIxKFxuGnQoAH++OMP1KpVS6Gek5OD1q1b4/bt22od5/79+5BKpXBzc1Oou7m54erVqyr36d+/P+7fv4833ngDgiCgtLQUI0aMwNdff13m50RGRpb5X1RERJURFRWF/Px8pTqDDZG4NF5QnJaWBqlUqlQvKirC33//rZWmypKUlIS5c+di+fLlOHv2LHbu3Il9+/Zh1qxZZe4THh6O3Nxc+c+dO3d02iMRmYcZM2YoBZtHj6rCx4fBhkhsao/c7NmzR/7/ExISFC4Hl0qlSExMRP369dX+YGdnZ1haWiIrK0uhnpWVBXd3d5X7TJ06FQMGDMDQoUMBAC1atEBhYSE+++wzTJ48GRYWylnNxsYGNjY2avdFRPQiqkaDt22LwPz5QI8eIjRERArUDje9evUCAEgkEgQHByu8Z2VlBS8vLyxatEjtD7a2tkabNm2QmJgoP7ZMJkNiYiLGjBmjcp9Hjx4pBRhLS0sAgIb3IiQi0lh5i4Y5E0VkONQON8+eI1W/fn388ccfcHZ2rvSHh4aGIjg4GL6+vmjXrh2io6NRWFgov3pq4MCBqFOnDiIjIwEAQUFBiIqKgo+PD/z8/HDz5k1MnToVQUFB8pBDRKQLqoLN3bt14Ow8VIRuiKg8Gi8oTk1N1dqH9+3bF9nZ2Zg2bRoyMzPRqlUr7N+/X77IOD09XWGkZsqUKZBIJJgyZQr++ecfuLi4ICgoCHPmzNFaT0RE/8WroYiMi8bPlpo5c2a570+bNq1SDekany1FROrivWuIDIdOny21a9cuhdclJSVITU1FlSpV0LBhQ4MPN0RE6lD9CAUf9OCKYSKDp3G4OXfunFItLy8PISEheP/997XSFBGRmDgNRWTcNJ6WKsvFixcRFBSEtLQ0bRxOZzgtRURl4TQUkeHS6bRUWZ7dJI+IyBipCjZdunRB+/btReiGiCpD43CzZMkShdeCICAjIwMbN25Et27dtNYYEZG+cBqKyLRoHG4WL16s8NrCwgIuLi4IDg5WeAgmEZGh4zQUkWkS9T43RERiURVsevfujWbNmonQDRFpU4XW3OTk5ODmzZsAgEaNGsHJyUmbPRER6YxMJlP5sF2O1hCZDo3CTVpaGkaPHo2EhAT5s5wkEgm6du2KpUuXwsvLSxc9EhFpBaehiMyD2uHmzp07eO2112BlZYVZs2bB29sbAHDlyhWsWLEC/v7++OOPP/DSSy/prFkioopSFWwGDx4MT09PEbohIl1S+z43Q4YMwc2bN5GQkABbW1uF9x4/foyuXbvi5ZdfxurVq3XSqLbwPjdE5qW4uFj+8N3ncbSGyLjo5D43+/fvR2xsrFKwAYCqVati1qxZ+PjjjzXvlohIRzgNRWSe1A439+/fL3dNTYMGDfDvv/9qoyciokpTFWzGjRuHGjVqiNANEemT2uHGw8MDV65cKXNNzaVLl+Du7q61xoiIKiI/Px9RUVFKdY7WEJkPtcNNr1698OWXXyIxMREuLi4K7927dw+TJk1Cr169tN0fEZHaypqG8vFhsCEyJ2ovKH748CH8/PyQmZmJTz/9FE2aNIEgCEhJScGWLVvg7u6O33//HTVr1tR1z5XCBcVEpklVsJk4cSLs7OxE6IaItE0nC4pr1KiBkydP4uuvv8a2bduQk5MDAHByckL//v0xd+5cgw82RGR6MjMzsXLlSqU6p6GIzJfaIzfPEwQB2dnZAAAXFxdIJBKtN6YrHLkhMh3lTUP16KHnZohIp3QycvM8iUQCV1fXCjVHRKQNqoLN5MmTUaVKhf5aIyITwr8FiMio3L59Gxs3blSq+/hEgLmGiACGGyIyIrwpHxGpg+GGiIyCqmAzbdo0o1rzR0T6wXBDRAbt3Llz2LNnj1KdozVEVBa1ws2SJUvUPuC4ceMq3AwR0fN4Uz4iqgi1LgWvX7++egeTSHD79u1KN6VLvBScyDioCjYcrSEyX1q/FDw1NVUrjRERvciBAweQnJysVGewISJ1VXjNTXFxMVJTU9GwYUPeV4KItIJXQxGRNlhousOjR48wZMgQ2NnZoVmzZkhPTwcAjB07FvPmzdN6g0RkHlQFm4SECAYbItKYxuEmPDwcFy5cQFJSEmxtbeX1gIAAxMbGarU5IjJ9mzdvLjPYhIWJ0BARGT2N55Pi4uIQGxuL1157TeH+Es2aNcOtW7e02hwRmbbypqE4YENEFaVxuMnOzlb5XKnCwkLeTIuI1MaroYhIVzQON76+vti3bx/Gjh0LAPJAs3r1avj7+2u3OyIyOYsWLUJBQYFSncGGiLRF43Azd+5cdOvWDVeuXEFpaSm+/fZbXLlyBSdOnMDhw4d10SMRmQheDUVE+qDxguI33ngD58+fR2lpKVq0aIEDBw7A1dUVycnJaNOmjS56JCITUNY0FIMNEWlbhW5Q07BhQ6xatUrbvRCRCeIjFIhI39QKN3l5eWofkI80IKJnVAWbWrVqYcyYMSJ0Q0TmQq1w4+TkpPaVUFKptFINEZFp4NVQRCQWtcLNoUOH5P8/LS0NYWFhCAkJkV8dlZycjPXr1yMyMlI3XRKR0eCiYSISm1pPBX/e22+/jaFDh6Jfv34K9S1btuD7779HUlKSNvvTOj4VnEh3VAWbZs2aoXfv3iJ0Q0SmRJPf3xpfLZWcnAxfX1+luq+vL06dOqXp4YjIRJT1CAUGGyLSN42vlvL09MSqVauwYMEChfrq1avh6emptcaIyDiUNQ3FZ0MRkVg0DjeLFy/Ghx9+iF9++QV+fn4AgFOnTuHGjRv46aeftN4gERkuVcHmxo3O6NOnA58NRUSi0XjNDQD8/fffWL58Oa5evQoA8Pb2xogRI4xi5IZrboi0g1dDEZE+afL7u0Lhxpgx3BBVDq+GIiIxaPL7u0J3KM7JycEPP/yAlJQUAE+vhhg8eDAcHR0rcjgiMhKqgs3777+PV199VYRuiIhU0/hqqdOnT6Nhw4ZYvHgx/v33X/z777+IiopCw4YNcfbsWV30SEQiEwShzKuhGGyIyNBoPC315ptvolGjRli1ahWqVHk68FNaWoqhQ4fi9u3bOHLkiE4a1RZOSxFp5kVXQ/XooeeGiMgs6XTNTdWqVXHu3Dk0adJEoX7lyhX4+vri0aNHmnesRww3ROpTFWwGDRqEunXritANEZkznd7Ez8HBAenp6Ur1O3fuoHr16poejogMUElJSZnTUAw2RGToNF5Q3LdvXwwZMgQLFy5E+/btAQDHjx/HxIkTlR7JQETGhzflIyJjp3G4WbhwISQSCQYOHIjS0lIAgJWVFUaOHIl58+ZpvUEi0h9VwWblyjGIianFm/IRkdGo8H1uHj16hFu3bgEAGjZsCDs7O602pitcc0OkrLCwEAsXLlSqc9EwERkKna65ecbOzg4tWrRAixYtKhVsli1bBi8vL9ja2sLPz++FD9/MycnB6NGj4eHhARsbG7zyyiuIj4+v8OcTmbsZM2aoDDYRERE4cYLBhoiMj9rTUoMHD1ZruzVr1qj94bGxsQgNDUVMTAz8/PwQHR2NwMBAXLt2Da6urkrbFxcXo0uXLnB1dcWOHTtQp04d/PXXX3ByclL7M4nof1RNQ02cONFoRmKJiFRRe1rKwsIC9erVg4+PD8rbZdeuXWp/uJ+fH9q2bYulS5cCAGQyGTw9PTF27FiEqVi5GBMTg2+++QZXr16FlZWV2p/zPE5LEQEPHjyQ/3v3PD5CgYgMlU4evzBy5Ehs3boVqampGDRoED799FPUrFmzwk0WFxfjzJkzCA8Pl9csLCwQEBCA5ORklfvs2bMH/v7+GD16NHbv3g0XFxf0798fkyZNgqWlpcp9ioqKUFRUJH+dl5dX4Z6JTAGfDUVEpk7tNTfLli1DRkYGvvrqK/z888/w9PREnz59kJCQUO5ITlnu378PqVQKNzc3hbqbmxsyMzNV7nP79m3s2LEDUqkU8fHxmDp1KhYtWoTZs2eX+TmRkZFwdHSU/xjDk8uJdEVVsJk8eTKDDRGZFI0WFNvY2KBfv3749ddfceXKFTRr1gyjRo2Cl5cXCgoKdNWjnEwmg6urK77//nu0adMGffv2xeTJkxETE1PmPuHh4cjNzZX/3LlzR+d9Ehmav//+W2WwiYiIkD9GhYjIVFT4bzULCwtIJBIIggCpVKrx/s7OzrC0tERWVpZCPSsrC+7u7ir38fDwgJWVlcIUlLe3NzIzM1FcXAxra2ulfWxsbGBjY6Nxf0SmoqxpKB8fjtYQkWnSaOSmqKgIW7duRZcuXfDKK6/g4sWLWLp0KdLT02Fvb6/RB1tbW6NNmzZITEyU12QyGRITE+Hv769yn9dffx03b96ETCaT165fvw4PDw+VwYbI3KkKNq1aTUNERAQv8SYik6X2yM2oUaOwbds2eHp6YvDgwdi6dSucnZ0r9eGhoaEIDg6Gr68v2rVrh+joaBQWFmLQoEEAgIEDB6JOnTqIjIwE8HRR89KlS/H5559j7NixuHHjBubOnYtx48ZVqg8iU5OSkoLt27cr1bm2hojMgdrhJiYmBnXr1kWDBg1w+PBhHD58WOV2O3fuVPvD+/bti+zsbEybNg2ZmZlo1aoV9u/fL19knJ6eDguL/w0ueXp6IiEhARMmTMCrr76KOnXq4PPPP8ekSZPU/kwiU8eroYjI3Kl9n5uQkBBIJJIXbrd27dpKN6VLvM8NmbKyFg0TERk7ndznZt26dZXti4h05Pfff0dCQoJSncGGiMwRrwElMnKchiIiUsRwQ2TEOA1FRKSM4YbICP3yyy84deqUUr24mMGGiIjhhsjIlHdTPt67hohIw5v4EZG4VAWbhIQIBhsioudw5IbICGzcuBG3b99WqkdERIBLbIiIFDHcEBk4VaM1dnZ2mDhxogjdEBEZPoYbIgPGq6GIiDTHcENkgBYtWoSCggKlOoMNEdGLMdwQGRhVozUPHnghICBYhG6IiIwPww2RAeE0FBFR5THcEBmA8u5dQ0REmmG4IRKZqmDj6+uL7t27i9ANEZHxY7ghEhGnoYiItI/hhkgEfJI3EZHuMNwQ6ZmqYPPOO+/A399fhG6IiEwPww2RHnEaiohI9xhuiPSA01BERPrDcEOkY6qCzUcffYSmTZuK0A0RkeljuCHSEUEQMHPmTKU6R2uIiHSL4YZIBzgNRUQkHoYbIi1TFWwGDx4MT09PEbohIjI/DDdEWlJaWoo5c+Yo1X18IsBcQ0SkPww3RFrAaSgiIsPBcENUSaqCzdixY1GzZk0RuiEiIoYbogp6/PgxFixYoFTnaA0RkbgYbogqgNNQRESGy0LsBoiMjapg89tvE+Hjw2BDRGQIOHJDpKbc3FxER0cr1SMiIsABGyIiw8FwQ6SGsqahOFpDRGR4GG6IXkBVsJk8eTKqVOG/PkREhoh/OxOVITMzEytXrlSqc9EwEZFhY7ghUoFXQxERGS+GG6L/UBVspk2bBolEIkI3RESkKYYbov+XmpqKDRs2KNV9fCLAXENEZDwYbojAaSgiIlPCcENmT1WwYaghIjJeDDdkti5duoSffvpJqc5gQ0Rk3BhuyCxxGoqIyHQx3JDZ4TQUEZFpY7ghs3Hy5Ens379fqc5gQ0RkWhhuyCyoGq2RSqtg5szJInRDRES6ZCF2A0S6pirYJCREwNeXwYaIyBRx5IZM1tGjR/Hbb78p1X18IsCZKCIi08VwQyZJ1WhN48aN8fHHH4vQDRER6RPDDZkcVcHGxycCPXqI0AwREekdww2ZjH379uH06dNKdV4NRURkXhhuyCSoGq1544038Pbbb4vQDRERiYnhhoweb8pHRETPY7gho7Vjxw5cvnxZqe7jw2BDRGTOGG7IKKkarenRowd8fHxE6IaIiAyJQdzEb9myZfDy8oKtrS38/Pxw6tQptfbbtm0bJBIJevXqpdsGyaCUNQ3FYENERIABjNzExsYiNDQUMTEx8PPzQ3R0NAIDA3Ht2jW4urqWuV9aWhq+/PJLvPnmm3rslsS0YcMGpKamKtW5voaIiJ4nEQRBELMBPz8/tG3bFkuXLgUAyGQyeHp6YuzYsQgLC1O5j1QqRYcOHTB48GAcPXoUOTk5iIuLU+vz8vLy4OjoiNzcXDg4OGjra5COqRqt6d+/P15++WURuiEiIn3T5Pe3qNNSxcXFOHPmDAICAuQ1CwsLBAQEIDk5ucz9Zs6cCVdXVwwZMuSFn1FUVIS8vDyFHzIuZT0bisGGiIhUEXVa6v79+5BKpXBzc1Oou7m54erVqyr3OXbsGH744QecP39erc+IjIxU+cuRDN/SpUvx4MEDpXpCQgTKGNQjIiISf82NJvLz8zFgwACsWrUKzs7Oau0THh6O0NBQ+eu8vDx4enrqqkXSElWB9LPPPoOHhwcfeklEROUSNdw4OzvD0tISWVlZCvWsrCy4u7srbX/r1i2kpaUhKChIXpPJZACAKlWq4Nq1a2jYsKHCPjY2NrCxsdFB96QLgiBg5syZSnUuGiYiInWJGm6sra3Rpk0bJCYmyi/nlslkSExMxJgxY5S2b9KkCS5evKhQmzJlCvLz8/Htt99yRMbIzZw5E6rWtzPYEBGRJkSflgoNDUVwcDB8fX3Rrl07REdHo7CwEIMGDQIADBw4EHXq1EFkZCRsbW3RvHlzhf2dnJwAQKlOxkXVNNTYsWNRs2ZNEbohIiJjJnq46du3L7KzszFt2jRkZmaiVatW2L9/v3yRcXp6OiwsDOJeg6QDMpkMs2bNUqpztIaIiCpK9Pvc6Bvvc2M4yrqKjcGGiIj+S5Pf36KP3JB5UhVsvvjiC9jb24vQDRERmRKGG9KrkpISzJ07V6nO0RoiItIWhhvSm7KmoXx8GGyIiEh7GG5IL1QFm7CwMN6DiIiItI7hhnTq8ePHWLBggVKd01BERKQrDDekM7waioiIxMBwQzqhKthMmTIFlpaWInRDRETmhOGGtCovLw+LFy9WqnO0hoiI9IXhhrSG01BERGQIGG5IK1QFm2nTpkEikYjQDRERmTOGG6qU7OxsLF++XKnO0RoiIhILww1VmKrRGltbW0yaNEmEboiIiJ5iuKEK4TQUEREZKoYb0sjdu3exatUqpbqPTwSYa4iIyBAw3JDaVI3W3L/fEF26fIoePURoiIiISAWGG1KLqmDDRcNERGSIGG6oXLdu3cKmTZuU6nySNxERGSqGGyqTqtGa1q1bIygoSIRuiIiI1MNwQypxGoqIiIwVww0puHr1KmJjY5XqnIYiIiJjwXBDcqpGa7p06YL27duL0A0REVHFMNwQAE5DERGR6WC4MXOXLl3CTz/9pFTnNBQRERkrhhszpmq05qOPPkLTpk1F6IaIiEg7GG7MFKehiIjIVDHcmJkLFy4gLi5Oqc5gQ0REpoLhxoyoGq35/ffBGDnSU4RuiIiIdIPhxkxwGoqIiMwFw42J+/3335GQkKBUZ7AhIiJTxXBjwlSN1owcORKurq4idENERKQfDDcmSlWw8fGJAHMNERGZOoYbE3P06FH89ttvSnVOQxERkblguDEhqkZrxo8fD0dHRxG6ISIiEgfDjQkQBAEzZ85UqnO0hoiIzBHDjZE7fvw4Dh48qFRnsCEiInPFcGPEVE1Dffnll6hWrZoI3RARERkGhhsjVNY0lI9PBJhriIjI3DHcGJmUlBRs375doVa3bl0MGjRIpI6IiIgMC8ONEVE1DfXjj+G4dMlahG6IiIgME8ONEZDJZJg1a5ZSPSEhAnPnitAQERGRAWO4MXAXLlxAXFycQu3dd99F27ZtwQuiiIiIlDHcGDBV01BTpkyBpaWlCN0QEREZB4YbAySVSjF79mylOu9dQ0RE9GIMNwbmjz/+QHx8vELt/fffx6uvvipSR0RERMaF4caAqJqGmjZtGiQSiQjdEBERGSeGGwNQWlqKOXPmKNU5DUVERKQ5hhuRHTt2DImJiQq1Pn36wNvbW6SOiIiIjBvDjYg4DUVERKR9DDciKCkpwVwVd9/jNBQREVHlMdzo2cWLF7Fz506F2qeffoqGDRuK1BEREZFpYbjRI1XTUAkJ0xARwWkoIiIibWG40QNVN+VzcmqG2NjeCAsTqSkiIiITxXCjYxkZGfj+++8VaqNHj4azszM+/1ykpoiIiEyYhdgNAMCyZcvg5eUFW1tb+Pn54dSpU2Vuu2rVKrz55puoUaMGatSogYCAgHK3F9OBAwcUgk1urgd8fCLg7OwsYldERESmTfSRm9jYWISGhiImJgZ+fn6Ijo5GYGAgrl27BldXV6Xtk5KS0K9fP7Rv3x62traYP38+3nnnHVy+fBl16tQR4RsoU3VTvr59+6JJkyYidURERGQ+JIIgCGI24Ofnh7Zt22Lp0qUAAJlMBk9PT4wdOxZhaixIkUqlqFGjBpYuXYqBAwe+cPu8vDw4OjoiNzcXDg4Ole7/v/7++2/88MMPCrWvvvoKVatW1fpnERERmQtNfn+LOnJTXFyMM2fOIDw8XF6zsLBAQEAAkpOT1TrGo0ePUFJSgpo1a6p8v6ioCEVFRfLXeXl5lWu6HPHx8fjjjz/kr5s0aYK+ffvq7POIiIhImahrbu7fvw+pVAo3NzeFupubGzIzM9U6xqRJk1C7dm0EBASofD8yMhKOjo7yH09Pz0r3rUpGRoZCsPnkk08YbIiIiERgEAuKK2revHnYtm0bdu3aBVtbW5XbhIeHIzc3V/5z584dnfTy/MhRYuIkNGrUSCefQ0REROUTdVrK2dkZlpaWyMrKUqhnZWXB3d293H0XLlyIefPm4eDBg3j11VfL3M7GxgY2NjZa6bc8NjY28PGJwLx54L1riIiIRCTqyI21tTXatGmj8FRsmUyGxMRE+Pv7l7nfggULMGvWLOzfvx++vr76aFUtPXoAJ048/V8iIiISh+iXgoeGhiI4OBi+vr5o164doqOjUVhYiEGDBgEABg4ciDp16iAyMhIAMH/+fEybNg1btmyBl5eXfG2Ovb097O3tRfseREREZBhEDzd9+/ZFdnY2pk2bhszMTLRq1Qr79++XLzJOT0+HhcX/BphWrFiB4uJi9O7dW+E4ERERmD59uj5bJyIiIgMk+n1u9E3X97khIiIi7dPk97dRXy1FRERE9F8MN0RERGRSGG6IiIjIpDDcEBERkUlhuCEiIiKTwnBDREREJoXhhoiIiEwKww0RERGZFIYbIiIiMikMN0RERGRSRH+2lL49e9pEXl6eyJ0QERGRup793lbnqVFmF27y8/MBAJ6eniJ3QkRERJrKz8+Ho6NjuduY3YMzZTIZ7t69i+rVq0MikWj9+Hl5efD09MSdO3f4YE4t4TnVPp5T7eM51T6eU+0y9vMpCALy8/NRu3ZtWFiUv6rG7EZuLCws8NJLL+n8cxwcHIzyHx5DxnOqfTyn2sdzqn08p9plzOfzRSM2z3BBMREREZkUhhsiIiIyKQw3WmZjY4OIiAjY2NiI3YrJ4DnVPp5T7eM51T6eU+0yp/NpdguKiYiIyLRx5IaIiIhMCsMNERERmRSGGyIiIjIpDDdERERkUhhuKmDZsmXw8vKCra0t/Pz8cOrUqTK3XbVqFd58803UqFEDNWrUQEBAQLnbmytNzunztm3bBolEgl69eum2QSOk6TnNycnB6NGj4eHhARsbG7zyyiuIj4/XU7fGQdNzGh0djcaNG6Nq1arw9PTEhAkT8OTJEz11a9iOHDmCoKAg1K5dGxKJBHFxcS/cJykpCa1bt4aNjQ0aNWqEdevW6bxPY6LpOd25cye6dOkCFxcXODg4wN/fHwkJCfppVscYbjQUGxuL0NBQRERE4OzZs2jZsiUCAwNx7949ldsnJSWhX79+OHToEJKTk+Hp6Yl33nkH//zzj547N1yantNn0tLS8OWXX+LNN9/UU6fGQ9NzWlxcjC5duiAtLQ07duzAtWvXsGrVKtSpU0fPnRsuTc/pli1bEBYWhoiICKSkpOCHH35AbGwsvv76az13bpgKCwvRsmVLLFu2TK3tU1NT0b17d3Tu3Bnnz5/H+PHjMXToUJP5ZawNmp7TI0eOoEuXLoiPj8eZM2fQuXNnBAUF4dy5czruVA8E0ki7du2E0aNHy19LpVKhdu3aQmRkpFr7l5aWCtWrVxfWr1+vqxaNTkXOaWlpqdC+fXth9erVQnBwsNCzZ089dGo8ND2nK1asEBo0aCAUFxfrq0Wjo+k5HT16tPDWW28p1EJDQ4XXX39dp30aIwDCrl27yt3mq6++Epo1a6ZQ69u3rxAYGKjDzoyXOudUlaZNmwozZszQfkN6xpEbDRQXF+PMmTMICAiQ1ywsLBAQEIDk5GS1jvHo0SOUlJSgZs2aumrTqFT0nM6cOROurq4YMmSIPto0KhU5p3v27IG/vz9Gjx4NNzc3NG/eHHPnzoVUKtVX2watIue0ffv2OHPmjHzq6vbt24iPj8e7776rl55NTXJyssL5B4DAwEC1/+6lF5PJZMjPzzeJ309m9+DMyrh//z6kUinc3NwU6m5ubrh69apax5g0aRJq166t9C+puarIOT127Bh++OEHnD9/Xg8dGp+KnNPbt2/jt99+wyeffIL4+HjcvHkTo0aNQklJCSIiIvTRtkGryDnt378/7t+/jzfeeAOCIKC0tBQjRozgtFQFZWZmqjz/eXl5ePz4MapWrSpSZ6Zj4cKFKCgoQJ8+fcRupdI4cqNH8+bNw7Zt27Br1y7Y2tqK3Y5Rys/Px4ABA7Bq1So4OzuL3Y7JkMlkcHV1xffff482bdqgb9++mDx5MmJiYsRuzWglJSVh7ty5WL58Oc6ePYudO3di3759mDVrltitESnZsmULZsyYge3bt8PV1VXsdiqNIzcacHZ2hqWlJbKyshTqWVlZcHd3L3ffhQsXYt68eTh48CBeffVVXbZpVDQ9p7du3UJaWhqCgoLkNZlMBgCoUqUKrl27hoYNG+q2aQNXkX9OPTw8YGVlBUtLS3nN29sbmZmZKC4uhrW1tU57NnQVOadTp07FgAEDMHToUABAixYtUFhYiM8++wyTJ0+GhQX/21IT7u7uKs+/g4MDR20qadu2bRg6dCh+/PFHk5lV4L9dGrC2tkabNm2QmJgor8lkMiQmJsLf37/M/RYsWIBZs2Zh//798PX11UerRkPTc9qkSRNcvHgR58+fl//06NFDfgWFp6enPts3SBX55/T111/HzZs35UERAK5fvw4PDw+zDzZAxc7po0ePlALMs/Ao8JF+GvP391c4/wDw66+/lvt3L73Y1q1bMWjQIGzduhXdu3cXux3tEXtFs7HZtm2bYGNjI6xbt064cuWK8NlnnwlOTk5CZmamIAiCMGDAACEsLEy+/bx58wRra2thx44dQkZGhvwnPz9frK9gcDQ9p//Fq6WUaXpO09PTherVqwtjxowRrl27Juzdu1dwdXUVZs+eLdZXMDiantOIiAihevXqwtatW4Xbt28LBw4cEBo2bCj06dNHrK9gUPLz84Vz584J586dEwAIUVFRwrlz54S//vpLEARBCAsLEwYMGCDf/vbt24KdnZ0wceJEISUlRVi2bJlgaWkp7N+/X6yvYHA0PaebN28WqlSpIixbtkzh91NOTo5YX0FrGG4q4LvvvhPq1q0rWFtbC+3atRN+//13+XsdO3YUgoOD5a/r1asnAFD6iYiI0H/jBkyTc/pfDDeqaXpOT5w4Ifj5+Qk2NjZCgwYNhDlz5gilpaV67tqwaXJOS0pKhOnTpwsNGzYUbG1tBU9PT2HUqFHCw4cP9d+4ATp06JDKvxufncPg4GChY8eOSvu0atVKsLa2Fho0aCCsXbtW730bMk3PaceOHcvd3phJBIHjo0RERGQ6uOaGiIiITArDDREREZkUhhsiIiIyKQw3REREZFIYboiIiMikMNwQERGRSWG4ISIiIpPCcENEVAYvLy9ER0eL3QYRaYjhhog0kp2djZEjR6Ju3bqwsbGBu7s7AgMDcfz4cQCARCJBXFycuE2qqVOnTpBIJEo/paWlYrdGRJXAp4ITkUY+/PBDFBcXY/369WjQoAGysrKQmJiIBw8eiN1ahQwbNgwzZ85UqFWpwr8aiYwZR26ISG05OTk4evQo5s+fj86dO6NevXpo164dwsPD0aNHD3h5eQEA3n//fUgkEvlrANi9ezdat24NW1tbNGjQADNmzFAYIYmKikKLFi1QrVo1eHp6YtSoUSgoKJC/v27dOjg5OWHv3r1o3Lgx7Ozs0Lt3bzx69Ajr16+Hl5cXatSogXHjxkEqlar9nezs7ODu7q7wU5b09HT07NkT9vb2cHBwQJ8+fZCVlQUAyM3NhaWlJU6fPg3g6VPDa9asiddee02+/6ZNm/jkeiI9YLghIrXZ29vD3t4ecXFxKCoqUnr/jz/+AACsXbsWGRkZ8tdHjx7FwIED8fnnn+PKlStYuXIl1q1bhzlz5sj3tbCwwJIlS3D58mWsX78ev/32G7766iuF4z969AhLlizBtm3bsH//fiQlJeH9999HfHw84uPjsXHjRqxcuRI7duzQ+neXyWTo2bMn/v33Xxw+fBi//vorbt++jb59+wIAHB0d0apVKyQlJQEALl68CIlEgnPnzslD2uHDh9GxY0et90ZE/yH2kzuJyLjs2LFDqFGjhmBrayu0b99eCA8PFy5cuCB/H4Cwa9cuhX3efvttYe7cuQq1jRs3Ch4eHmV+zo8//ijUqlVL/nrt2rUCAOHmzZvy2vDhwwU7OzshPz9fXgsMDBSGDx+u1nfp2LGjYGVlJVSrVk3+ExoaKn+/Xr16wuLFiwVBEIQDBw4IlpaWQnp6uvz9y5cvCwCEU6dOCYIgCKGhoUL37t0FQRCE6OhooW/fvkLLli2FX375RRAEQWjUqJHw/fffq9UbEVUcR26ISCMffvgh7t69iz179qBr165ISkpC69atsW7dujL3uXDhAmbOnCkf+bG3t8ewYcOQkZGBR48eAQAOHjyIt99+G3Xq1EH16tUxYMAAPHjwQP4+8HQKqWHDhvLXbm5u8PLygr29vULt3r17an+fTz75BOfPn5f/hIeHq9wuJSUFnp6eCtNKTZs2hZOTE1JSUgAAHTt2xLFjxyCVSnH48GF06tQJnTp1QlJSEu7evYubN2+iU6dOavdGRBXDcENEGrO1tUWXLl0wdepUnDhxAiEhIYiIiChz+4KCAsyYMUMhRFy8eBE3btyAra0t0tLS8N577+HVV1/FTz/9hDNnzmDZsmUAgOLiYvlxrKysFI4rkUhU1mQymdrfxdHREY0aNZL/ODs7q73vf3Xo0AH5+fk4e/Ysjhw5ohBuDh8+jNq1a+Pll1+u8PGJSD28JICIKq1p06byy7+trKyUFvS2bt0a165dQ6NGjVTuf+bMGchkMixatAgWFk//m2v79u067VlT3t7euHPnDu7cuSMfvbly5QpycnLQtGlTAICTkxNeffVVLF26FFZWVmjSpAlcXV3Rt29f7N27l+ttiPSEIzdEpLYHDx7grbfewqZNm/Dnn38iNTUVP/74IxYsWICePXsCeHrju8TERGRmZuLhw4cAgGnTpmHDhg2YMWMGLl++jJSUFGzbtg1TpkwBADRq1AglJSX47rvvcPv2bWzcuBExMTGifU9VAgIC0KJFC3zyySc4e/YsTp06hYEDB6Jjx47w9fWVb9epUyds3rxZHmRq1qwJb29vxMbGMtwQ6QnDDRGpzd7eHn5+fli8eDE6dOiA5s2bY+rUqRg2bBiWLl0KAFi0aBF+/fVXeHp6wsfHBwAQGBiIvXv34sCBA2jbti1ee+01LF68GPXq1QMAtGzZElFRUZg/fz6aN2+OzZs3IzIyUrTvqYpEIsHu3btRo0YNdOjQAQEBAWjQoAFiY2MVtuvYsSOkUqnC2ppOnTop1YhIdySCIAhiN0FERESkLRy5ISIiIpPCcENEJuno0aMKl57/94eITBenpYjIJD1+/Bj//PNPme+XdeUWERk/hhsiIiIyKZyWIiIiIpPCcENEREQmheGGiIiITArDDREREZkUhhsiIiIyKQw3REREZFIYboiIiMikMNwQERGRSfk/NC+kLT/2YMgAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_26.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcJklEQVR4nO3deVxU1f8/8NeADKsDLqyKikuouSEq0uKSJCoutLqUQqKmgqWUIabiVpi75laZSyVupebHDQ1FU8mFREWF1CAtQXioMIKyn98f/rhfxxl0wIHL8no+Hjxyzj1z531vU7w8595zFUIIASIiIiJ6KiO5CyAiIiKqChiaiIiIiPTA0ERERESkB4YmIiIiIj0wNBERERHpgaGJiIiISA8MTURERER6YGgiIiIi0gNDExEREZEeGJqIqEZRKBSYOXOm3GVI/P390aRJE7nLICI9MDQRkew2bNgAhUIh/ZiZmeGFF15AUFAQbt++Xa6fffLkScycORMZGRkG3W+PHj00jqlu3bro3Lkz1q1bh6KiIoN8xpdffoldu3YZZF9E9Gy15C6AiKjY7Nmz4eLigpycHBw/fhyrV6/Gvn37EB8fDwsLC4N8xsOHD1Gr1v/9r+/kyZOYNWsW/P39YWNjY5DPKNawYUOEh4cDANLT0/HDDz8gICAAf/31F+bNm/fc+//yyy/x9ttvw9fX97n3RUTPxtBERJVG37590alTJwDAqFGjUK9ePSxevBi//vorhg4dWub9FhUVIS8vD2ZmZjAzMzNUuc9kbW2N999/X3r94YcfwtXVFStWrMCcOXNgYmJSYbUQ0fPj9BwRVVqvvfYaACApKQkAsHDhQrz00kuoV68ezM3N4e7ujp9//lnrfQqFAkFBQdi0aRNefPFFmJqa4sCBA9K24muaZs6cicmTJwMAXFxcpKm05ORkdO/eHe3bt9dZl6urK7y9vUt9PBYWFujatSuys7ORnp5eYr/s7Gx88skncHZ2hqmpKVxdXbFw4UIIITSOMTs7Gxs3bpTq9vf3L3VNRKQ/jjQRUaV1/fp1AEC9evUAAMuWLcPAgQPx3nvvIS8vD1u2bME777yDPXv2wMfHR+O9hw8fxrZt2xAUFIT69evrvNj6zTffxF9//YXNmzdjyZIlqF+/PgDA1tYWw4cPx+jRoxEfH482bdpI7zlz5gz++usvTJs2rUzH9Pfff8PY2LjEqUAhBAYOHIgjR44gICAAHTp0QGRkJCZPnoz//vsPS5YsAQD8+OOPGDVqFLp06YIxY8YAAJo1a1ammohIT4KISGbr168XAMRvv/0m0tPTxc2bN8WWLVtEvXr1hLm5ufj333+FEEI8ePBA4315eXmiTZs24rXXXtNoByCMjIzEpUuXtD4LgAgLC5NeL1iwQAAQSUlJGv0yMjKEmZmZCAkJ0Wj/6KOPhKWlpcjKynrqMXXv3l20bNlSpKeni/T0dHHlyhXx0UcfCQBiwIABUj8/Pz/RuHFj6fWuXbsEADF37lyN/b399ttCoVCIa9euSW2WlpbCz8/vqXUQkeFweo6IKg0vLy/Y2trC2dkZQ4YMgZWVFXbu3IkGDRoAAMzNzaW+9+7dQ2ZmJl599VX8+eefWvvq3r07WrduXeZarK2tMWjQIGzevFmaFissLMTWrVvh6+sLS0vLZ+4jISEBtra2sLW1RatWrfD111/Dx8cH69atK/E9+/btg7GxMT766CON9k8++QRCCOzfv7/Mx0REz4fTc0RUaaxcuRIvvPACatWqBXt7e7i6usLI6P/+brdnzx7MnTsXcXFxyM3NldoVCoXWvlxcXJ67nhEjRmDr1q34/fff0a1bN/z222+4ffs2hg8frtf7mzRpgu+++05aRqFFixaws7N76nv++ecfODk5oXbt2hrtrVq1krYTkTwYmoio0ujSpYt099yTfv/9dwwcOBDdunXDqlWr4OjoCBMTE6xfvx4RERFa/R8flSorb29v2Nvb46effkK3bt3w008/wcHBAV5eXnq939LSUu++RFT5cXqOiKqEX375BWZmZoiMjMTIkSPRt29fgwQSXaNUxYyNjTFs2DD8/PPPuHfvHnbt2oWhQ4fC2Nj4uT+3JI0bN8atW7dw//59jfaEhARpe7Gn1U5EhsfQRERVgrGxMRQKBQoLC6W25OTk514Ru/japJJWBB8+fDju3buHDz/8EFlZWRrrLpWHfv36obCwECtWrNBoX7JkCRQKBfr27Su1WVpaGnwlcyIqGafniKhK8PHxweLFi9GnTx8MGzYMaWlpWLlyJZo3b44LFy6Ueb/u7u4AgM8//xxDhgyBiYkJBgwYIIUpNzc3tGnTBtu3b0erVq3QsWNHgxxPSQYMGICePXvi888/R3JyMtq3b4+DBw/i119/xcSJEzWWFXB3d8dvv/2GxYsXw8nJCS4uLvDw8CjX+ohqMo40EVGV8Nprr+H7779HamoqJk6ciM2bN+Orr77CG2+88Vz77dy5M+bMmYPz58/D398fQ4cO1Vp4csSIEQCg9wXgz8PIyAi7d+/GxIkTsWfPHkycOBGXL1/GggULsHjxYo2+ixcvhru7O6ZNm4ahQ4di9erV5V4fUU2mEOKxJWaJiEjLsmXLMGnSJCQnJ6NRo0Zyl0NEMmFoIiJ6CiEE2rdvj3r16uHIkSNyl0NEMuI1TUREOmRnZ2P37t04cuQILl68iF9//VXukohIZhxpIiLSITk5GS4uLrCxscH48ePxxRdfyF0SEcmMoYmIiIhID7x7joiIiEgPDE1EREREeuCF4AZSVFSEW7duoXbt2ny0ARERURUhhMD9+/fh5OSk8YBwXRiaDOTWrVtwdnaWuwwiIiIqg5s3b6Jhw4ZP7cPQZCC1a9cG8Oikq1QqmashIiIifajVajg7O0u/x5+GoclAiqfkVCoVQxMREVEVo8+lNbwQnIiIiEgPDE1EREREemBoIiIiItIDr2mqYIWFhcjPz5e7DKoASqXymbevEhFR1cHQVEGEEEhNTUVGRobcpVAFMTIygouLC5RKpdylEBGRATA0VZDiwGRnZwcLCwsugFnNFS92mpKSgkaNGvHfNxFRNcDQVAEKCwulwFSvXj25y6EKYmtri1u3bqGgoAAmJiZyl0NERM+JF1xUgOJrmCwsLGSuhCpS8bRcYWGhzJUQEZEhMDRVIE7R1Cz8901EVL0wNBERERHpgaGJiIiISA8MTfRU/v7+UCgUUCgUMDExgb29PV5//XWsW7cORUVFeu9nw4YNsLGxKb9CiYiIyhlDEz1Tnz59kJKSguTkZOzfvx89e/bExx9/jP79+6OgoEDu8oiIqAaoDAtDMzTRM5mamsLBwQENGjRAx44dMXXqVPz666/Yv38/NmzYAABYvHgx2rZtC0tLSzg7O2P8+PHIysoCAERHR+ODDz5AZmamNGo1c+ZMAMCPP/6ITp06oXbt2nBwcMCwYcOQlpYm05ESEVFlk5eXh1mzZuHLL7/EkCF/YPdu+WphaJKJEAJ5eXkV/iOEMEj9r732Gtq3b48dO3YAeLT69fLly3Hp0iVs3LgRhw8fxmeffQYAeOmll7B06VKoVCqkpKQgJSUFn376KYBHf3OYM2cOzp8/j127diE5ORn+/v4GqZGIiKq2pKQkhIeHS6///tsI8+bJVw8Xt5RJfn6+xhehooSGhhrssR4tW7bEhQsXAAATJ06U2ps0aYK5c+di7NixWLVqFZRKJaytraFQKODg4KCxj5EjR0p/btq0KZYvX47OnTsjKysLVlZWBqmTiIiqnl9++QXx8fHS63r13FCrVhdMmSJfTQxNVGZCCGktot9++w3h4eFISEiAWq1GQUEBcnJy8ODBg6cu6hkbG4uZM2fi/PnzuHfvnnRx+Y0bN9C6desKOQ4iIqo8cnJy8NVXX2m0+fv7o3HjxggKkqmo/4+hSSYmJiYIDQ2V5XMN5cqVK3BxcUFycjL69++PcePG4YsvvkDdunVx/PhxBAQEIC8vr8TQlJ2dDW9vb3h7e2PTpk2wtbXFjRs34O3tjby8PIPVSUREVcPVq1cRERGh0TZ16tRK8ygqhiaZKBQKg02TyeHw4cO4ePEiJk2ahNjYWBQVFWHRokUwMnp0mdy2bds0+iuVSq3HiSQkJODOnTuYN28enJ2dAQBnz56tmAMgIqJKZcuWLUhMTJRed+nSBX379pWxIm0MTfRMubm5SE1NRWFhIW7fvo0DBw4gPDwc/fv3x4gRIxAfH4/8/Hx8/fXXGDBgAE6cOIE1a9Zo7KNJkybIyspCVFQU2rdvDwsLCzRq1AhKpRJff/01xo4di/j4eMyZM0emoyQiIjk8fPgQ8+fP12gbNWoUGjRoIFNFJePdc/RMBw4cgKOjI5o0aYI+ffrgyJEjWL58OX799VcYGxujffv2WLx4Mb766iu0adMGmzZt0rrI/aWXXsLYsWMxePBg2NraYv78+bC1tcWGDRuwfft2tG7dGvPmzcPChQtlOkoiIqpoCQkJWoHp888/r5SBCQAUwlD3oNdwarUa1tbWyMzMhEql0tiWk5ODpKQkuLi4wMzMTKYKqaLx3zsRUcl+/PFH/P3339Lrl156Ca+//nqF1/G0399P4vQcERERVZjs7GytWYUxY8bA0dFRpor0x9BEREREFeLSpUv4+eefpdcKhQKff/45jI2NZaxKfwxNREREVK6EEFi/fj1u3rwptXXv3h09evSQr6gyYGgiIiKicnP//n0sXrxYo23cuHGws7OTqaKyY2giIiKiclH8XNFiSqUSISEh0pp+VQ1DExERERmUEALffvstUlNTpbZevXrhlVdekbGq58fQRERERAajVquxZMkSjbbAwEDUr19fpooMh6GJiIiIDCI2NhZ79uyRXltZWWHSpElVdjruSQxNRERE9FyEEFi5ciXu3LkjtXl7e6Nr164yVmV41SP6UZXn7+8PX19f6XWPHj0wceLE59qnIfZBRERPd+/ePcyePVsjMH300UfVLjABHGmiZ/D398fGjRsBACYmJmjUqBFGjBiBqVOnolat8vv67NixAyYmJnr1jY6ORs+ePXHv3j3Y2NiUaR9ERFR6ixZtQFbWP9LrunXrIigoCAqFQsaqyg9DEz1Tnz59sH79euTm5mLfvn0IDAyEiYkJQkNDNfrl5eVBqVQa5DPr1q1bKfZBRETaioqKMGfOHI02Hx8fdOrUSaaKKgan5+iZTE1N4eDggMaNG2PcuHHw8vLC7t27pSm1L774Ak5OTnB1dQUA3Lx5E++++y5sbGxQt25dDBo0CMnJydL+CgsLERwcDBsbG9SrVw+fffYZnnxu9JNTa7m5uQgJCYGzszNMTU3RvHlzfP/990hOTkbPnj0BAHXq1IFCoYC/v7/Ofdy7dw8jRoxAnTp1YGFhgb59++Lq1avS9g0bNsDGxgaRkZFo1aoVrKys0KdPH6SkpEh9oqOj0aVLF1haWsLGxgYvv/wy/vnn//6WRURU3V29elUrMLVuPaHaByaAoYnKwNzcHHl5eQCAqKgoJCYm4tChQ9izZw/y8/Ph7e2N2rVr4/fff8eJEyek8FH8nkWLFmHDhg1Yt24djh8/jrt372Lnzp1P/cwRI0Zg8+bNWL58Oa5cuYJvvvkGVlZWcHZ2xi+//AIASExMREpKCpYtW6ZzH/7+/jh79ix2796NmJgYCCHQr18/5OfnS30ePHiAhQsX4scff8SxY8dw48YNfPrppwCAgoIC+Pr6onv37rhw4QJiYmIwZsyYajsMTUT0pIULFyIiIkKjbcaMGXjnnZoxss/pOdKbEAJRUVGIjIzEhAkTkJ6eDktLS6xdu1aalvvpp59QVFSEtWvXSmFi/fr1sLGxQXR0NHr37o2lS5ciNDQUb775JgBgzZo1iIyMLPFz//rrL2zbtg2HDh2Cl5cXAKBp06bS9uJpODs7O41rmh539epV7N69GydOnMBLL70EANi0aROcnZ2xa9cuvPPOOwCA/Px8rFmzBs2aNQMABAUFYfbs2QAerT2SmZmJ/v37S9tbtWpV+hNJRFTFFBYWYu7cuRptTZo0gZ+fn0wVyYMjTVXQ7t3ASy89+mdF2LNnD6ysrGBmZoa+ffti8ODBmDlzJgCgbdu2GtcxnT9/HteuXUPt2rVhZWUFKysr1K1bFzk5Obh+/ToyMzORkpICDw8P6T21atV66rBuXFwcjI2N0b179zIfw5UrV1CrVi2Nz61Xrx5cXV1x5coVqc3CwkIKRADg6OiItLQ0AI/Cmb+/P7y9vTFgwAAsW7ZMY+qOiKg6unz5slZgGj16dI0LTABHmqqkefOAmJhH/xw4sPw/r2fPnli9ejWUSiWcnJw07pqztLTU6JuVlQV3d3ds2rRJaz+2trZl+nxzc/Myva8snrzbTqFQaFxvtX79enz00Uc4cOAAtm7dimnTpuHQoUPV8tZaIqI5c+agqKhIo61DhxlwcqqZlyVwpKkKmjIF8PR89M+KYGlpiebNm6NRo0bPXGagY8eOuHr1Kuzs7NC8eXONH2tra1hbW8PR0RGnTp2S3lNQUIDY2NgS99m2bVsUFRXh6NGjOrcXj3QVFhaWuI9WrVqhoKBA43Pv3LmDxMREtG7d+qnH9CQ3NzeEhobi5MmTaNOmjdb8PhFRVZefn49Zs2ZpBCZXV1eEhYVh0KCaGZgAhqYqaeBA4OTJihllKq333nsP9evXx6BBg/D7778jKSkJ0dHR+Oijj/Dvv/8CAD7++GPMmzcPu3btQkJCAsaPH4+MjIwS91k8bz5y5Ejs2rVL2ue2bdsAAI0bN4ZCocCePXuQnp6OrKwsrX20aNECgwYNwujRo3H8+HGcP38e77//Pho0aIBBgwbpdWxJSUkIDQ1FTEwM/vnnHxw8eBBXr17ldU1EVK2cP38eX375pUbbuHHjMGTIEJkqqjwYmsigLCwscOzYMTRq1AhvvvkmWrVqhYCAAOTk5EClUgEAPvnkEwwfPhx+fn7w9PRE7dq18cYbbzx1v6tXr8bbb7+N8ePHo2XLlhg9ejSys7MBAA0aNMCsWbMwZcoU2NvbIygoSOc+1q9fD3d3d/Tv3x+enp4QQmDfvn16L4BpYWGBhIQEvPXWW3jhhRcwZswYBAYG4sMPPyzFGSIiqrxmzZqFXbt2abSFhYXBzs5OnoIqGYV4coEcKhO1Wg1ra2tkZmZK4aBYTk4OkpKS4OLiAjMzM5kqpIrGf+9EVFVkZGRoLdfy33/t8O23T/8LbXXwtN/fT+KF4ERERDXYrFmztNp++ikAixY1lKGayo2hiYiIqIbSFZi2bAnDokWV87pZucl6TdPq1avRrl07qFQqqFQqeHp6Yv/+/dL2Hj16QKFQaPyMHTtWYx83btyAj48PLCwsYGdnh8mTJ6OgoECjT3R0NDp27Cg9fmPDhg1ataxcuRJNmjSBmZkZPDw8cPr06XI5ZiIiIrmlpKToDExhYWG4coWBqSSyjjQ1bNgQ8+bNQ4sWLSCEwMaNGzFo0CCcO3cOL774IoBHC2gVr8gMPLoYt1hhYSF8fHzg4OCAkydPIiUlBSNGjICJiYl05X9SUhJ8fHwwduxYbNq0CVFRURg1ahQcHR3h7e0NANi6dSuCg4OxZs0aeHh4YOnSpfD29kZiYiIvfiMiompFV1i6cOFN+Pm1laGaqqXSXQhet25dLFiwAAEBAejRowc6dOiApUuX6uy7f/9+9O/fH7du3YK9vT2AR4/kCAkJQXp6OpRKJUJCQrB3717Ex8dL7xsyZAgyMjJw4MABAICHhwc6d+6MFStWAHj09GZnZ2dMmDABU/RcDEmfC8GbNGlSoQs1krwePnyI5ORkXghORJVGSaNLNVlpLgSvNEsOFBYWYsuWLcjOzoanp6fUvmnTJtSvXx9t2rRBaGgoHjx4IG2LiYlB27ZtpcAEAN7e3lCr1bh06ZLUp/h5ZY/3iYmJAQDk5eUhNjZWo4+RkRG8vLykPrrk5uZCrVZr/JSk+Jb2x2un6q/4AcXGxsYyV0JENV1ycjIDkwHIfiH4xYsX4enpiZycHFhZWWHnzp3SCs3Dhg1D48aN4eTkhAsXLiAkJASJiYnYsWMHACA1NVUjMAGQXqempj61j1qtxsOHD3Hv3j0UFhbq7JOQkFBi3eHh4Tq/gLoYGxvDxsZGeoaZhYWF9DBbqp6KioqQnp4OCwuLZ66iTkRUnnT9rho2bBhatGghQzVVm+z/N3d1dUVcXBwyMzPx888/w8/PD0ePHkXr1q0xZswYqV/btm3h6OiIXr164fr16xoPVZVDaGgogoODpddqtRrOzs4l9ndwcAAAKThR9WdkZIRGjRoxIBORbDi6ZFiyhyalUonmzZsDANzd3XHmzBksW7YM33zzjVbf4ifUX7t2Dc2aNYODg4PWXW63b98G8H8hxcHBQWp7vI9KpYK5uTmMjY1hbGyss0/xPnQxNTWFqamp3sepUCjg6OgIOzs75Ofn6/0+qrqUSiWMjCrNDDgR1SAJCQnYunWrVjsD0/ORPTQ9qaioCLm5uTq3xcXFAQAcHR0BAJ6envjiiy+QlpYm3eV26NAhqFQqaYrP09MT+/bt09jPoUOHpOumlEol3N3dERUVBV9fX6mGqKioEh/H8TyKQxoREVF50DW69MEHH6BRo0YyVFO9yBqaQkND0bdvXzRq1Aj3799HREQEoqOjERkZievXryMiIgL9+vVDvXr1cOHCBUyaNAndunVDu3btAAC9e/dG69atMXz4cMyfPx+pqamYNm0aAgMDpVGgsWPHYsWKFfjss88wcuRIHD58GNu2bcPevXulOoKDg+Hn54dOnTqhS5cuWLp0KbKzs/HBBx/Icl6IiIjKgtNx5UvW0JSWloYRI0YgJSUF1tbWaNeuHSIjI/H666/j5s2b+O2336QA4+zsjLfeegvTpk2T3m9sbIw9e/Zg3Lhx8PT0hKWlJfz8/DTWdXJxccHevXsxadIkLFu2DA0bNsTatWulNZoAYPDgwUhPT8eMGTOQmpqKDh064MCBA1oXhxMREVVGMTExOHjwoFY7A5NhVbp1mqqq0qzzQEREZCi6RpdOnBiLoCB7ruytBz6wl4iIqAYo6dlxV67IUEwNwNBERERUxfz22284ceKEVntkZBi++kqGgmoIhiYiIqIqRNfoUmBgIOrXrw9ewlS+GJqIiIiqACGExo1OxXixd8VhaCIiIqrkNm3ahGvXrmm1MzBVLIYmIiKiSkzXdNzRox9j4kSbii+mhmNoIiIiqoQ4HVf5MDQRERFVMqtWrUJ6erpWOwOTvBiaiIiIKhFd03GTJ0+GhYWFDNXQ4xiaiIiIKoHCwkLMnTtXq52jS5UHQxMREZHMdI0uAQxMlQ1DExERkYx0BabQ0FAolUoZqqGnYWgiIiKSQW5uLubNm6fV7uYWBualyomhiYiIqIJxOq5qYmgiIiKqQLoCU/v2n8PXl7+SKzv+GyIiIqoAWVlZWLRokVY7R5eqDoYmIiKicsbpuOqBoYmIiKgc6QpMM2bMgEKhkKEaeh4MTUREROXgzp07WLFihVY7R5eqLoYmIiIiA9M1upSdXRevvDJBhmrIUBiaiIiIDIjTcdUXQxMREZEB3Lp1C999951WO6fjqg+GJiIioueka3SpWbNmeP/992WohsoLQxMREdFz0BWYOLpUPTE0ERERlUFiYiK2bNmi1c7AVH0xNBEREZWSrtGljh07YsCAATJUQxXFSO4CiIiIqhJdgSkyMoyBqQbgSBMREZEe/vjjD0RGRmq1b9kShq++kqEgqnAMTURERM/wtOk4XsJUczA0ERERPQXvjqNiDE1EREQ67NmzB7GxsVrtbm4MTDUVQxMREdETdI0uvfLKK+jVq5cM1VBlwdBERET0GE7HUUkYmoiIiAD89NNPuH79ulY7p+OoGEMTERHVeLpGl3x8fNCpUycZqqHKiqGJiIhqNE7Hkb4YmoiIqEZasmQJ1Gq1VjsDE5WEoYmIiGocXaNLQ4YMgaurqwzVUFXB0ERERDWKrsDk5hYG5iV6FoYmIiKqEXSFJYDTcaQ/hiYiIqr2dAWmgIAANGzYUIZqqKpiaCIiompLCIHZs2drtXN0icqCoYmIiKolTseRoTE0ERFRtaMrMAUFBaFevXoyVEPVBUMTERFVG4WFhZg7d65WO0eXyBAYmoiIqFooaTqOz44jQzGSuwAiIqLnpSswHT78KdzcwjBwoAwFUbXEkSYiIqqycnNzMW/ePK32sLAwcEaODI2hiYiIqiTeHUcVjaGJiIiqHF2BadmyUNy9q5ShGqopZL2mafXq1WjXrh1UKhVUKhU8PT2xf/9+aXtOTg4CAwNRr149WFlZ4a233sLt27c19nHjxg34+PjAwsICdnZ2mDx5MgoKCjT6REdHo2PHjjA1NUXz5s2xYcMGrVpWrlyJJk2awMzMDB4eHjh9+nS5HDMREZWdWq3WGZgWLgzDuHEMTFS+ZA1NDRs2xLx58xAbG4uzZ8/itddew6BBg3Dp0iUAwKRJk/C///0P27dvx9GjR3Hr1i28+eab0vsLCwvh4+ODvLw8nDx5Ehs3bsSGDRswY8YMqU9SUhJ8fHzQs2dPxMXFYeLEiRg1ahQiIyOlPlu3bkVwcDDCwsLw559/on379vD29kZaWlrFnQwiInqqWbNmYcmSJVrtYWFhuH8f+OILGYqiGkUhhBByF/G4unXrYsGCBXj77bdha2uLiIgIvP322wCAhIQEtGrVCjExMejatSv279+P/v3749atW7C3twcArFmzBiEhIUhPT4dSqURISAj27t2L+Ph46TOGDBmCjIwMHDhwAADg4eGBzp07Y8WKFQCAoqIiODs7Y8KECZgyZYpedavValhbWyMzMxMqlcqQp4SIqMbTNbo0bdo0GBsby1ANVSel+f1daZYcKCwsxJYtW5CdnQ1PT0/ExsYiPz8fXl5eUp+WLVuiUaNGiImJAQDExMSgbdu2UmACAG9vb6jVamm0KiYmRmMfxX2K95GXl4fY2FiNPkZGRvDy8pL66JKbmwu1Wq3xQ0REhpWWlqYzMIWFhTEwUYWT/ULwixcvwtPTEzk5ObCyssLOnTvRunVrxMXFQalUwsbGRqO/vb09UlNTAQCpqakagal4e/G2p/VRq9V4+PAh7t27h8LCQp19EhISSqw7PDy8xDs3iIjo+fHuOKpsZA9Nrq6uiIuLQ2ZmJn7++Wf4+fnh6NGjcpf1TKGhoQgODpZeq9VqODs7y1gREVH1oSswzZgxAwqFQoZqiB6RPTQplUo0b94cAODu7o4zZ85g2bJlGDx4MPLy8pCRkaEx2nT79m04ODgAABwcHLTuciu+u+7xPk/ecXf79m2oVCqYm5vD2NgYxsbGOvsU70MXU1NTmJqalu2giYhIp6tXryIiIkKr3c0tDMxLJLdKc01TsaKiIuTm5sLd3R0mJiaIioqStiUmJuLGjRvw9PQEAHh6euLixYsad7kdOnQIKpUKrVu3lvo8vo/iPsX7UCqVcHd31+hTVFSEqKgoqQ8REZW/WbNm6QxMYWF8FApVDrKONIWGhqJv375o1KgR7t+/j4iICERHRyMyMhLW1tYICAhAcHAw6tatC5VKhQkTJsDT0xNdu3YFAPTu3RutW7fG8OHDMX/+fKSmpmLatGkIDAyURoHGjh2LFStW4LPPPsPIkSNx+PBhbNu2DXv37pXqCA4Ohp+fHzp16oQuXbpg6dKlyM7OxgcffCDLeSEiqmlKutibqDKRNTSlpaVhxIgRSElJgbW1Ndq1a4fIyEi8/vrrAIAlS5bAyMgIb731FnJzc+Ht7Y1Vq1ZJ7zc2NsaePXswbtw4eHp6wtLSEn5+fpg9e7bUx8XFBXv37sWkSZOwbNkyNGzYEGvXroW3t7fUZ/DgwUhPT8eMGTOQmpqKDh064MCBA1oXhxMRkWHFxsZiz549Wu0MTFQZVbp1mqoqrtNERFQ6vDuOKoPS/P6W/UJwIiKqeTgdR1URQxMREVWYAwcO4NSpU1rtDExUFTA0ERFRhdA1upSXZw4Pj89kqIao9BiaiIio3HE6jqoDhiYiIio3P/30E65fv67VzsBEVRFDExERlQtdo0uNGzeGv79/xRdDZAAMTUREZHCcjqPqiKGJiIgMJjw8HHl5eVrtDExUHTA0ERGRQegaXYqLc8fOnf1lqIbI8CrdA3uJiKjq0RWYFi4MQ+vWDExUfXCkiYiIyuxpj0LhjBxVNwxNRERUJroCU8+ePdGtWzcZqiEqfwxNRERUaroCk5tbGJiXqDpjaCIiIr09bTqOqLpjaCIiIr3oCkxvvPEG2rVrJ0M1RBWPoYmIiJ5KCIHZs2drtXN0iWoahiYiIipRSdNxbm4MTFTzMDQREZFOugLTiBEj4OLiIkM1RPJjaCIiIg2FhYWYO3euVjun46imK3VoMjY2RkpKCuzs7DTa79y5Azs7OxQWFhqsOCIiqli8O46oZKUOTUIIne25ublQKpXPXRAREclDV2AaP348bG1tZaiGqPLROzQtX74cAKBQKLB27VpYWVlJ2woLC3Hs2DG0bNnS8BUSEVG5ysnJwVdffaXVztElIk16h6YlS5YAeDTStGbNGhgbG0vblEolmjRpgjVr1hi+QiIiKjecjiPSn96hKSkpCcCj5wrt2LEDderUKbeiiIio/OkKTJ988onGTAIR/Z9SX9N05MiR8qiDiIgqSEZGBpYtW6bVztEloqcrdWgaOXLkU7evW7euzMUQEVH54nQcUdmVOjTdu3dP43V+fj7i4+ORkZGB1157zWCFERGRYekKTIcOTcXx4yYyVENU9ZQ6NO3cuVOrraioCOPGjUOzZs0MUhQRERnOrVu38N1332m1R0aGYcoUGQoiqqIUoqSFl0opMTERPXr0QEpKiiF2V+Wo1WpYW1sjMzMTKpVK7nKIiABwOo7oWUrz+9tgj1G5fv06CgoKDLU7IiJ6TroC0/Tp02FkZCRDNURVX6lDU3BwsMZrIQRSUlKwd+9e+Pn5GawwIiIqm7/++gubN2/WaufoEtHzKXVoOnfunMZrIyMj2NraYtGiRc+8s46IiMpXSdNxbm4MTETPi+s0ERFVE7oCU/HF3gMHylAQUTVT5mua0tLSkJiYCABwdXWFnZ2dwYoiIiL9nTlzBvv27dNqDwsLA2fkiAyn1KFJrVYjMDAQmzdvRlFREQDA2NgYgwcPxsqVK2FtbW3wIomISDfeHUdUcUp9C8Xo0aNx6tQp7N27FxkZGcjIyMCePXtw9uxZfPjhh+VRIxER6aArMD0aXWJgIioPpV6nydLSEpGRkXjllVc02n///Xf06dMH2dnZBi2wquA6TURUUSIjI/HHH39otTMsEZVeua7TVK9ePZ1TcNbW1qhTp05pd0dERKXA6Tgi+ZQ6NE2bNg3BwcH48ccf4eDgAABITU3F5MmTMX36dIMXSEREj5Q0HUdEFaPU03Nubm64du0acnNz0ahRIwDAjRs3YGpqihYtWmj0/fPPPw1XaSXH6TkiKi+bNm3CtWvXtNoZmIieX7lOzw0aNAgKhaLMxRERkf50jS7Vrl1b6+kMRFT+DPbA3pqOI01EZGi6ApObWxgXqiQyoHIdaWratCnOnDmDevXqabRnZGSgY8eO+Pvvv0u7SyIiesyiRYuQlZWl1c7pOCJ5lTo0JScno7CwUKs9NzcX//77r0GKIiKqqXSNLrVo0QLDhg2ToRoiepzeoWn37t3SnyMjIzWWHSgsLERUVBRcXFwMWx0RUQ3Cu+OIKje9Q5Ovry8AQKFQwM/PT2ObiYkJmjRpgkWLFhm0OCKimoBrLxFVDXqHpuLnzLm4uODMmTOoX79+uRVFRFRT6ApMnp6e6N27twzVENHTlPqapqSkpPKog4ioxuF0HFHVUurQNHv27KdunzFjRpmLISKqCTgdR1Q1lTo07dy5U+N1fn4+kpKSUKtWLTRr1oyhiYjoKXQFpoICH8yZ00mGaoioNEodms6dO6fVplar4e/vjzfeeMMgRRERVUdcrJKoajMyxE5UKhVmzZpV6gf2hoeHo3Pnzqhduzbs7Ozg6+uLxMREjT49evSAQqHQ+Bk7dqxGnxs3bsDHxwcWFhaws7PD5MmTUVBQoNEnOjoaHTt2hKmpKZo3b44NGzZo1bNy5Uo0adIEZmZm8PDwwOnTp0t1PEREusyaNYuBiagaKPVIU0kyMzORmZlZqvccPXoUgYGB6Ny5MwoKCjB16lT07t0bly9fhqWlpdRv9OjRGtdSWVhYSH8uLCyEj48PHBwccPLkSaSkpGDEiBEwMTHBl19+CeDRxes+Pj4YO3YsNm3ahKioKIwaNQqOjo7w9vYGAGzduhXBwcFYs2YNPDw8sHTpUnh7eyMxMRF2dnbPc2qIqAbTFZaGDx+Opk2bylANET2PUj97bvny5RqvhRBISUnBjz/+iO7duyMiIqLMxaSnp8POzg5Hjx5Ft27dADwaaerQoQOWLl2q8z379+9H//79cevWLdjb2wMA1qxZg5CQEKSnp0OpVCIkJAR79+5FfHy89L4hQ4YgIyMDBw4cAAB4eHigc+fOWLFiBYBHSyw4OztjwoQJmDJlyjNr57PniOhxRUVFmDNnjlZ7ZGQYTp6UoSAi0qlcnz23ZMkSjddGRkawtbWFn58fQkNDS7s7DcUjVXXr1tVo37RpE3766Sc4ODhgwIABmD59ujTaFBMTg7Zt20qBCQC8vb0xbtw4XLp0CW5uboiJiYGXl5fGPr29vTFx4kQAQF5eHmJjYzXqNzIygpeXF2JiYnTWmpubi9zcXOm1Wq0u+4ETUbVS0t1xkZFh0OPvYERUSVWadZqKioowceJEvPzyy2jTpo3UPmzYMDRu3BhOTk64cOECQkJCkJiYiB07dgAAUlNTNQITAOl1amrqU/uo1Wo8fPgQ9+7dQ2Fhoc4+CQkJOusNDw8v8X+MRFRz6fr/wokTYxEUZA+uKEBUtZXpmqaMjAxcu3YNANC8eXPY2Ng8dyGBgYGIj4/H8ePHNdrHjBkj/blt27ZwdHREr169cP36dTRr1uy5P7esQkNDERwcLL1Wq9VwdnaWrR4ikld+fr50HeXjuPYSUfVRqtCUnJyMwMBAREZGovhSKIVCgT59+mDFihVo0qRJmYoICgrCnj17cOzYMTRs2PCpfT08PAAA165dQ7NmzeDg4KB1l9vt27cBAA4ODtI/i9se76NSqWBubg5jY2MYGxvr7FO8jyeZmprC1NRU/4MkomqLi1US1Qx6h6abN2+ia9euMDExwZw5c9CqVSsAwOXLl7F69Wp4enrizJkzzww9jxNCYMKECdi5cyeio6Ph4uLyzPfExcUBABwdHQE8ekbTF198gbS0NOkut0OHDkGlUqF169ZSn3379mns59ChQ/D09AQAKJVKuLu7IyoqSnowcVFREaKiohAUFKT38RBRzaMrMAUHB6N27doyVENE5Unvu+cCAgJw7do1REZGwszMTGPbw4cP0adPH7Ro0QJr167V+8PHjx+PiIgI/Prrr3B1dZXara2tYW5ujuvXryMiIgL9+vVDvXr1cOHCBUyaNAkNGzbE0aNHATxacqBDhw5wcnLC/PnzkZqaiuHDh2PUqFEaSw60adMGgYGBGDlyJA4fPoyPPvoIe/fu1VhywM/PD9988w26dOmCpUuXYtu2bUhISNC61kkX3j1HVLM8ePAACxYs0Grn6BJR1VKa3996h6YGDRpg69ateOWVV3RuP3bsGIYMGYJbt27pXahCodDZvn79evj7++PmzZt4//33ER8fj+zsbDg7O+ONN97AtGnTNA7sn3/+wbhx4xAdHQ1LS0v4+flh3rx5qFXr/wbSoqOjMWnSJFy+fBkNGzbE9OnT4e/vr/G5K1aswIIFC5CamooOHTpg+fLl0nTgszA0EdUcnI4jqj7KJTSZmpri+vXrJU6//fvvv2jevDlycnJKX3E1wNBEVDPoCkxTpkzhNY5EVVRpfn/r/RgVR0dHXL58ucTt8fHxJV40TURU1d25c0dnYAoLC2NgIqoh9L4Q3NfXF59++imioqJga2ursS0tLQ0hISHSRdRERNUJp+OICCjF9Ny9e/fg4eGB1NRUvP/++2jZsiWEELhy5QoiIiLg4OCAP/74Q2s175qC03NE1ZOuwNShw3QMGmSQ550TkczK5TEqderUwalTpzB16lRs2bIFGRkZAAAbGxsMGzYMX375ZY0NTERU/dy8eRPr1q3TaufoElHNVeoH9gKP1ldKT08HANja2pZ4F1xNwpEmouqjpOk4N7cwDBxYwcUQUbkq1wf2Ao+WCiheSJKIqDrRFZhmzJjBvxwSUdlCExFRdXP58mVs375dq53TcURUjKGJiGo83h1HRPpgaCKiGq2ktZeIiJ7E0ERENdIff/yByMhIrXYGJiIqiV6hafny5Xrv8KOPPipzMUREFYHTcURUFnotOeDi4qLfzhQK/P33389dVFXEJQeIqgZOxxHR4wy+5EBSUpJBCiMiksu+fftw5swZrXYGJiLSV5mvacrLy0NSUhKaNWuGWrV4aRQRVV66Rpfq1KnDywmIqFRK/fCkBw8eICAgABYWFnjxxRdx48YNAMCECRMwb948gxdIRPQ8SpqOY2AiotIqdWgKDQ3F+fPnER0dDTMzM6ndy8sLW7duNWhxRERl9eOPP/L6JSIyqFLPq+3atQtbt25F165dNR4r8OKLL+L69esGLY6IqCx0haUXXngBQ4cOlaEaIqouSh2a0tPTdT53Ljs7m89mIiLZcXSJiMpLqUNTp06dsHfvXkyYMAEApKC0du1aeHp6GrY6IiI9LVy4ENnZ2VrtDExEZCilDk1ffvkl+vbti8uXL6OgoADLli3D5cuXcfLkSRw9erQ8aiQieipdo0svvfQSXn/9dRmqIaLqqtQXgr/yyiuIi4tDQUEB2rZti4MHD8LOzg4xMTFwd3cvjxqJiEpU0nQcAxMRGVqZFlhq1qwZvvvuO0PXQkSkt5IeheLmxuk4IiofeoUmtVqt9w75CBEiKm+6ApO3tze6du0qQzVEVFPoFZpsbGz0vjOusLDwuQoiInoa3h1HRHLRKzQdOXJE+nNycjKmTJkCf39/6W65mJgYbNy4EeHh4eVTJRHVeCVNxzEwEVFFUQghRGne0KtXL4waNUprkbiIiAh8++23iI6ONmR9VUZpnpJMRKWjKzC9++67aNWqlQzVEFF1Uprf36W+ey4mJgadOnXSau/UqRNOnz5d2t0REZVICKEzMLm5hTEwEVGFK/Xdc87Ozvjuu+8wf/58jfa1a9fC2dnZYIURUc3G6TgiqmxKHZqWLFmCt956C/v374eHhwcA4PTp07h69Sp++eUXgxdIRDWPrsAUEBCAhg0bylANEdEjpZ6e69evH65evYoBAwbg7t27uHv3LgYMGIC//voL/fr1K48aiaiGKCwsLPHuOAYmIpJbmRa3bNiwIb788ktD10JENRgXqySiyq5MoSkjIwPff/89rly5AgB48cUXMXLkSFhbWxu0OCKqGXQFptatP8I779SRoRoiIt1KveTA2bNn4e3tDXNzc3Tp0gUAcObMGTx8+BAHDx5Ex44dy6XQyo5LDhCVXk5ODr766iutdl7sTUQVpTS/v0sdml599VU0b94c3333HWrVejRQVVBQgFGjRuHvv//GsWPHyl55FcbQRFQ6vDuOiCqDcg1N5ubmOHfuHFq2bKnRfvnyZXTq1AkPHjwofcXVAEMTkf50BabJkyfDwsJChmqIqCYr18UtVSoVbty4odV+8+ZN1K5du7S7I6IaJDMzs8TFKhmYiKiyK/WF4IMHD0ZAQAAWLlyIl156CQBw4sQJTJ48WevRKkRExTgdR0RVXalD08KFC6FQKDBixAgUFBQAAExMTDBu3DjMmzfP4AUSUdWnKzB9/vnn0nWRRERVQamvaSr24MEDXL9+HQDQrFmzGj+0zmuaiLSlpqbim2++0Wrn6BIRVRal+f1d5r/mWVhYoG3btmV9OxFVc5yOI6LqRu/QNHLkSL36rVu3rszFEFH1oCswzZgxAwqFQoZqiIgMQ+/QtGHDBjRu3Bhubm4o44weEVVzV69eRUREhFY7R5eIqDrQOzSNGzcOmzdvRlJSEj744AO8//77qFu3bnnWRkRVCJ8dR0TVXakuBM/NzcWOHTuwbt06nDx5Ej4+PggICEDv3r1r/LA7LwSnmkxXYOLoEhFVBeW6Inixf/75Bxs2bMAPP/yAgoICXLp0CVZWVmUquDpgaKKaKDY2Fnv27NFqZ2AioqqiQu6eMzIygkKhgBAChYWFZd0NEVVRnI4jopqmVKHp8em548ePo3///lixYgX69OkDI6NSP5GFiKooTscRUU2kd2gaP348tmzZAmdnZ4wcORKbN29G/fr1y7M2IqpkoqKicPz4ca12BiYiqgn0vqbJyMgIjRo1gpub21Mv+t6xY4fBiqtKeE0TVXe6RpfMzc3x2WefyVANEZFhlMs1TSNGjKjxd8gR1VS6ApObWxgGDpShGCIimZRqcUtDCw8Px44dO5CQkABzc3O89NJL+Oqrr+Dq6ir1ycnJwSeffIItW7YgNzcX3t7eWLVqFezt7aU+N27cwLhx43DkyBFYWVnBz88P4eHhGg8DjY6ORnBwMC5dugRnZ2dMmzYN/v7+GvWsXLkSCxYsQGpqKtq3b4+vv/4aXbp0MfhxE1UV27dvx+XLl7XaOR1HRDWRrFdvHz16FIGBgfjjjz9w6NAh5Ofno3fv3sjOzpb6TJo0Cf/73/+wfft2HD16FLdu3cKbb74pbS8sLISPjw/y8vJw8uRJbNy4ERs2bMCMGTOkPklJSfDx8UHPnj0RFxeHiRMnYtSoUYiMjJT6bN26FcHBwQgLC8Off/6J9u3bw9vbG2lpaRVzMogqmVmzZmkFpsaNGzMwEVGNVeZ1mspDeno67OzscPToUXTr1g2ZmZmwtbVFREQE3n77bQBAQkICWrVqhZiYGHTt2hX79+9H//79cevWLWn0ac2aNQgJCUF6ejqUSiVCQkKwd+9exMfHS581ZMgQZGRk4MCBAwAADw8PdO7cGStWrAAAFBUVwdnZGRMmTMCUKVOeWTuvaaLqhHfHEVFNUZrf35VqnYDMzEwAkB7PEhsbi/z8fHh5eUl9WrZsiUaNGiEmJgYAEBMTg7Zt22pM13l7e0OtVuPSpUtSn8f3UdyneB95eXmIjY3V6GNkZAQvLy+pD1FNsGrVqhKvXyIiqunKvLiloRUVFWHixIl4+eWX0aZNGwBAamoqlEolbGxsNPra29sjNTVV6vN4YCreXrztaX3UajUePnyIe/fuobCwUGefhIQEnfXm5uYiNzdXeq1Wq0t5xESVi66w1LFjRwwYMECGaoiIKp9KE5oCAwMRHx+vcw2Yyig8PLzEFZGJqhpOxxERPVulCE1BQUHYs2cPjh07hoYNG0rtDg4OyMvLQ0ZGhsZo0+3bt+Hg4CD1OX36tMb+bt++LW0r/mdx2+N9VCoVzM3NYWxsDGNjY519ivfxpNDQUAQHB0uv1Wo1nJ2dS3nkRPIqKfgzMBERaZP1miYhBIKCgrBz504cPnwYLi4uGtvd3d1hYmKCqKgoqS0xMRE3btyAp6cnAMDT0xMXL17UuMvt0KFDUKlUaN26tdTn8X0U9yneh1KphLu7u0afoqIiREVFSX2eZGpqCpVKpfFDVJXoCkxeXl4MTEREJZB1pCkwMBARERH49ddfUbt2bekaJGtra5ibm8Pa2hoBAQEIDg5G3bp1oVKpMGHCBHh6eqJr164AgN69e6N169YYPnw45s+fj9TUVEybNg2BgYEwNTUFAIwdOxYrVqzAZ599hpEjR+Lw4cPYtm0b9u7dK9USHBwMPz8/dOrUCV26dMHSpUuRnZ2NDz74oOJPDFE543QcEVHpybrkQEkrjK9fv15aeLJ4ccvNmzdrLG75+LTZP//8g3HjxiE6OhqWlpbw8/PDvHnztBa3nDRpEi5fvoyGDRti+vTpWotbrlixQlrcskOHDli+fDk8PDz0OhYuOUBVAafjiIg0leb3d6Vap6kqY2iiyk5XYHrrrbeku1WJiGqicnn2HBFVTUIIzJ49W6udo0tERKXD0ERUjXE6jojIcBiaiKopXYHJ398fjRs3lqEaIqKqj6GJqJopKirCnDlztNo5ukRE9HwYmoiqEU7HERGVH4YmompCV2AKDAxE/fr1ZaiGiKj6YWgiquLy8vIQHh6u1c7RJSIiw2JoIqrCOB1HRFRxGJqIqihdgemTTz6BlZWVDNUQEVV/DE1EVUxWVhYWLVqk1c7RJSKi8sXQRFSFcDqOiEg+RnIXQET60RWYfvstFG5uDExERBWBI01ElVxaWhpWr16t1R4WFgYOMBERVRyGJqJKrKTpOI4uERFVPIYmokpKV2CaPn06jIw4q05EJAeGJqJKJikpCT/88INWOy/2JiKSF0MTUSXCu+OIiCovhiaiSkJXYOrQYQYGDVLIUA0RET2JoYlIZufPn8euXbu02jm6RERUuTA0EcmI03FERFUHQxORTHQFJoYlIqLKi6GJqIIdP34cUVFRWu0MTERElRtDE1EF4nQcEVHVxVXyiCqIrsC0ZUsYV/cmIqoiONJEVM7279+P06dPa7VHRobhyhUZCiIiojJhaCIqR7pGl9LTnfHnnyMxZYoMBRERUZkxNBGVE12BafPmMMyfD6xYIUNBRET0XBiaiAxs06ZNuHbtmlZ7WFgYeL03EVHVxdBEZEC6H4XSAYMGDZKhGiIiMiSGJiID0RWY3NzCMHCgDMUQEZHBMTQRPaelS5ciMzNTq51rLxERVS8MTUTPQdfoUs+ePdGtWzcZqiEiovLE0ERURnx2HBFRzcLQRFRKfBQKEVHNxNBEVAq6AtOFC2/gl1/ayVANERFVJD57jkhPugJTZGQY/PwYmIiIagKONBE9w9Om4zgjR0RUczA0ET2FrsA0fPhwNG3aVIZqiIhITgxNRDoIITB79mytdl7sTURUczE0ET2Bd8cREZEuDE1Ej9EVmMaNGwc7OzsZqiEiosqEoYkIQEFBAb744gutdje3MDAvERERwNBExOk4IiLSC9dpohpNV2CKjp4ENzcGJiIi0sSRJqqRHj58iPnz52u1c+0lIiIqCUMT1TicjiMiorJgaKIaRVdgmjJlCkxNTWWohoiIqhKGJqoR1Go1lixZotXu5hYG5iUiItIHQxNVe5yOIyIiQ2BoompNV2Dq0GEaBg0ylqEaIiKqyhiaqFpKS0vD6tWrtdo5ukRERGUl6zpNx44dw4ABA+Dk5ASFQoFdu3ZpbPf394dCodD46dOnj0afu3fv4r333oNKpYKNjQ0CAgKQlZWl0efChQt49dVXYWZmBmdnZ523mm/fvh0tW7aEmZkZ2rZti3379hn8eKlizJo1i4GJiIgMTtbQlJ2djfbt22PlypUl9unTpw9SUlKkn82bN2tsf++993Dp0iUcOnQIe/bswbFjxzBmzBhpu1qtRu/evdG4cWPExsZiwYIFmDlzJr799lupz8mTJzF06FAEBATg3Llz8PX1ha+vL+Lj4w1/0FSudE3HzZgxg4GJiIiem0IIIeQuAgAUCgV27twJX19fqc3f3x8ZGRlaI1DFrly5gtatW+PMmTPo1KkTAODAgQPo168f/v33Xzg5OWH16tX4/PPPkZqaCqVSCeDRLea7du1CQkICAGDw4MHIzs7Gnj17pH137doVHTp0wJo1a/SqX61Ww9raGpmZmVCpVGU4A/Q8kpOTsXHjRq12hiUiInqa0vz+rvSPUYmOjoadnR1cXV0xbtw43LlzR9oWExMDGxsbKTABgJeXF4yMjHDq1CmpT7du3aTABADe3t5ITEzEvXv3pD5eXl4an+vt7Y2YmJgS68rNzYVardb4IXnMmjWLgYmIiMpdpb4QvE+fPnjzzTfh4uKC69evY+rUqejbty9iYmJgbGyM1NRU2D3xCPpatWqhbt26SE1NBQCkpqbCxcVFo4+9vb20rU6dOkhNTZXaHu9TvA9dwsPDS7yVnSqOrn8Hbm5hGDhQhmKIiKhaq9ShaciQIdKf27Zti3bt2qFZs2aIjo5Gr169ZKwMCA0NRXBwsPRarVbD2dlZxopqlqtXryIiIkKrnaNLRERUXip1aHpS06ZNUb9+fVy7dg29evWCg4MD0tLSNPoUFBTg7t27cHBwAAA4ODjg9u3bGn2KXz+rT/F2XUxNTfnoDZnoGl3KzLRFjx7jZaiGiIhqikp/TdPj/v33X9y5cweOjo4AAE9PT2RkZCA2Nlbqc/jwYRQVFcHDw0Pqc+zYMeTn50t9Dh06BFdXV9SpU0fqExUVpfFZhw4dgqenZ3kfEpWSrsAUFhaGxYvHc0qOiIjKlayhKSsrC3FxcYiLiwMAJCUlIS4uDjdu3EBWVhYmT56MP/74A8nJyYiKisKgQYPQvHlzeHt7AwBatWqFPn36YPTo0Th9+jROnDiBoKAgDBkyBE5OTgCAYcOGQalUIiAgAJcuXcLWrVuxbNkyjam1jz/+GAcOHMCiRYuQkJCAmTNn4uzZswgKCqrwc0K6nTt3rsTAREREVBFkXXIgOjoaPXv21Gr38/PD6tWr4evri3PnziEjIwNOTk7o3bs35syZo3HR9t27dxEUFIT//e9/MDIywltvvYXly5fDyspK6nPhwgUEBgbizJkzqF+/PiZMmICQkBCNz9y+fTumTZuG5ORktGjRAvPnz0e/fv30PhYuOVB+dD8KpQMGDRokQzVERFSdlOb3d6VZp6mqY2gqHxxdIiKi8lSa399V6kJwqjliYmJw8OBBrXYGJiIikgtDE1U6ukaXrl3rjh9/7FHxxRAREf1/VeruOar+dAWmyMgwvPNOj4ovhoiI6DEcaaJK4eDBgzofWxMWFgbOyBERUWXA0ESy0zW6dOHCG/jll3YyVENERKQbp+dIViVNx/n5MTAREVHlwpEmksXPP/+MS5cuabVzOo6IiCorhiaqcLpGl95//300a9ZMhmqIiIj0w9BEFYqLVRIRUVXF0EQVYu3atfjvv/+02hmYiIioqmBoonKna3Rp9OjR0kOViYiIqgKGJio3QgjMnj1bq52jS0REVBUxNFG5mD9/Ph4+fKjVzsBERERVFUMTGZyu6bgJEyagbt26MlRDRERkGAxNZDBFRUWYM2eOVjtHl4iIqDpgaCKDmDt3LgoLC7XaGZiIiKi64GNU6LnNmjVLKzAdPjwZbm4MTEREVH1wpInKrKCgAF988YVWOx+FQkRE1RFDE5WJrou9AU7HERFR9cXQRKWmKzBNnToVJiYmMlRDRERUMRiaSG95eXkIDw/XaufoEhER1QQMTaQXXaNLxsZmmDYtRIZqiIiIKh5DEz2TrsA0ffp0GBnx5ksiIqo5GJqoRA8fPsT8+fO12jkdR0RENRFDE+m0cOFCZGdna7T9+68bBgwYKFNFRERE8mJoIi26puNmzJgBhUIhQzVERESVA0MTSbKzs7Fw4UKtdk7HERERMTTR/7do0SJkZWVptF254o1hw7rKVBEREVHlwtBEOqfjOLpERESkiaGpBsvKysKiRYu02hmYiIiItDE01VDffvstUlJSNNrOn38L/v5tZKqIiIiocmNoqoE4HUdERFR6DE01SEZGBpYtW6bVzsBERET0bAxNNcTixYtx//59jTY/Pz80adJEnoKIiIiqGIamGoDTcURERM+PoakaS09Px6pVq7TaGZiIiIhKj6Gpmpo9ezaEEBpto0ePhpOTk0wVERERVW0MTdUQp+OIiIgMj6GpGrl16xa+++47jTYjIyNMnz5dpoqIiIiqD4amauKbb75BamqqRtv48eNha2srU0VERETVC0NTNcDpOCIiovLH0FSFpaam4ptvvnmirTX69n1HpoqIiIiqL4amKuqXX35BfHy8Rtsnn3wCKysrmSoiIiKq3hiaqiBOxxEREVU8hqYq5MGDB1iwYIFG2/Xrr+Ltt1+TqSIiIqKag6Gpirh8+TK2b9+u0RYaGgqlUilTRURERDULQ1MVsHHjRiQnJ0uvb9zohEGDfMC8REREVHEYmiq5W7duaQSmsWPHwt7eXr6CiIiIaigjuQugp7O2tkZ6enOkp9fHwYPTGJiIiIhkwtBUyVlaWqJ37/fw55+BCAkxlrscIiKiGovTc1XAwIGPfoiIiEg+so40HTt2DAMGDICTkxMUCgV27dqlsV0IgRkzZsDR0RHm5ubw8vLC1atXNfrcvXsX7733HlQqFWxsbBAQEICsrCyNPhcuXMCrr74KMzMzODs7Y/78+Vq1bN++HS1btoSZmRnatm2Lffv2Gfx4iYiIqOqSNTRlZ2ejffv2WLlypc7t8+fPx/Lly7FmzRqcOnUKlpaW8Pb2Rk5OjtTnvffew6VLl3Do0CHs2bMHx44dw5gxY6TtarUavXv3RuPGjREbG4sFCxZg5syZ+Pbbb6U+J0+exNChQxEQEIBz587B19cXvr6+WituExERUQ0mKgkAYufOndLroqIi4eDgIBYsWCC1ZWRkCFNTU7F582YhhBCXL18WAMSZM2ekPvv37xcKhUL8999/QgghVq1aJerUqSNyc3OlPiEhIcLV1VV6/e677wofHx+Nejw8PMSHH36od/2ZmZkCgMjMzNT7PURERCSv0vz+rrQXgiclJSE1NRVeXl5Sm7W1NTw8PBATEwMAiImJgY2NDTp16iT18fLygpGREU6dOiX16datm8YikN7e3khMTMS9e/ekPo9/TnGf4s/RJTc3F2q1WuOHiIiIqq9KG5pSU1MBQOsWe3t7e2lbamoq7OzsNLbXqlULdevW1eijax+Pf0ZJfYq36xIeHg5ra2vpx9nZubSHSERERFVIpQ1NlV1oaCgyMzOln5s3b8pdEhEREZWjShuaHBwcAAC3b9/WaL99+7a0zcHBAWlpaRrbCwoKcPfuXY0+uvbx+GeU1Kd4uy6mpqZQqVQaP0RERFR9VdrQ5OLiAgcHB0RFRUltarUap06dgqenJwDA09MTGRkZiI2NlfocPnwYRUVF8PDwkPocO3YM+fn5Up9Dhw7B1dUVderUkfo8/jnFfYo/h4iIiEjW0JSVlYW4uDjExcUBeHTxd1xcHG7cuAGFQoGJEydi7ty52L17Ny5evIgRI0bAyckJvr6+AIBWrVqhT58+GD16NE6fPo0TJ04gKCgIQ4YMgZOTEwBg2LBhUCqVCAgIwKVLl7B161YsW7YMwcHBUh0ff/wxDhw4gEWLFiEhIQEzZ87E2bNnERQUVNGnhIiIiCqrCribr0RHjhwRALR+/Pz8hBCPlh2YPn26sLe3F6ampqJXr14iMTFRYx937twRQ4cOFVZWVkKlUokPPvhA3L9/X6PP+fPnxSuvvCJMTU1FgwYNxLx587Rq2bZtm3jhhReEUqkUL774oti7d2+pjoVLDhAREVU9pfn9rRBCCBkzW7WhVqthbW2NzMxMXt9ERERURZTm93elvaaJiIiIqDJhaCIiIiLSQy25C6guimc5uTI4ERFR1VH8e1ufq5UYmgzk/v37AMCVwYmIiKqg+/fvw9ra+ql9eCG4gRQVFeHWrVuoXbs2FAqFXu9Rq9VwdnbGzZs3efH4c+K5NByeS8PgeTQcnkvD4bnUJoTA/fv34eTkBCOjp1+1xJEmAzEyMkLDhg3L9F6uKG44PJeGw3NpGDyPhsNzaTg8l5qeNcJUjBeCExEREemBoYmIiIhIDwxNMjI1NUVYWBhMTU3lLqXK47k0HJ5Lw+B5NByeS8PhuXw+vBCciIiISA8caSIiIiLSA0MTERERkR4YmoiIiIj0wNBEREREpAeGplI6duwYBgwYACcnJygUCuzatUtjuxACM2bMgKOjI8zNzeHl5YWrV69q9Ll79y7ee+89qFQq2NjYICAgAFlZWRp9Lly4gFdffRVmZmZwdnbG/PnztWrZvn07WrZsCTMzM7Rt2xb79u0z+PGWp2edS39/fygUCo2fPn36aPThuQTCw8PRuXNn1K5dG3Z2dvD19UViYqJGn5ycHAQGBqJevXqwsrLCW2+9hdu3b2v0uXHjBnx8fGBhYQE7OztMnjwZBQUFGn2io6PRsWNHmJqaonnz5tiwYYNWPStXrkSTJk1gZmYGDw8PnD592uDHXB70OY89evTQ+k6OHTtWo09NP48AsHr1arRr105aQNHT0xP79++XtvP7qL9nnUt+JyuYoFLZt2+f+Pzzz8WOHTsEALFz506N7fPmzRPW1tZi165d4vz582LgwIHCxcVFPHz4UOrTp08f0b59e/HHH3+I33//XTRv3lwMHTpU2p6ZmSns7e3Fe++9J+Lj48XmzZuFubm5+Oabb6Q+J06cEMbGxmL+/Pni8uXLYtq0acLExERcvHix3M+BoTzrXPr5+Yk+ffqIlJQU6efu3bsafXguhfD29hbr168X8fHxIi4uTvTr1080atRIZGVlSX3Gjh0rnJ2dRVRUlDh79qzo2rWreOmll6TtBQUFok2bNsLLy0ucO3dO7Nu3T9SvX1+EhoZKff7++29hYWEhgoODxeXLl8XXX38tjI2NxYEDB6Q+W7ZsEUqlUqxbt05cunRJjB49WtjY2Ijbt29XzMl4Dvqcx+7du4vRo0drfCczMzOl7TyPj+zevVvs3btX/PXXXyIxMVFMnTpVmJiYiPj4eCEEv4+l8axzye9kxWJoeg5P/qIvKioSDg4OYsGCBVJbRkaGMDU1FZs3bxZCCHH58mUBQJw5c0bqs3//fqFQKMR///0nhBBi1apVok6dOiI3N1fqExISIlxdXaXX7777rvDx8dGox8PDQ3z44YcGPcaKUlJoGjRoUInv4bnULS0tTQAQR48eFUI8+g6amJiI7du3S32uXLkiAIiYmBghxKMAa2RkJFJTU6U+q1evFiqVSjp3n332mXjxxRc1Pmvw4MHC29tbet2lSxcRGBgovS4sLBROTk4iPDzc8Adazp48j0I8+gX18ccfl/genseS1alTR6xdu5bfRwMoPpdC8DtZ0Tg9Z0BJSUlITU2Fl5eX1GZtbQ0PDw/ExMQAAGJiYmBjY4NOnTpJfby8vGBkZIRTp05Jfbp16walUin18fb2RmJiIu7duyf1efxzivsUf051ER0dDTs7O7i6umLcuHG4c+eOtI3nUrfMzEwAQN26dQEAsbGxyM/P1zjGli1bolGjRhrfy7Zt28Le3l7q4+3tDbVajUuXLkl9nnae8vLyEBsbq9HHyMgIXl5eVfJcPnkei23atAn169dHmzZtEBoaigcPHkjbeB61FRYWYsuWLcjOzoanpye/j8/hyXNZjN/JisMH9hpQamoqAGh8OYtfF29LTU2FnZ2dxvZatWqhbt26Gn1cXFy09lG8rU6dOkhNTX3q51QHffr0wZtvvgkXFxdcv34dU6dORd++fRETEwNjY2OeSx2KioowceJEvPzyy2jTpg2AR8epVCphY2Oj0ffJ76Wuc1C87Wl91Go1Hj58iHv37qGwsFBnn4SEBIMdY0XQdR4BYNiwYWjcuDGcnJxw4cIFhISEIDExETt27ADA8/i4ixcvwtPTEzk5ObCyssLOnTvRunVrxMXF8ftYSiWdS4DfyYrG0ESV1pAhQ6Q/t23bFu3atUOzZs0QHR2NXr16yVhZ5RUYGIj4+HgcP35c7lKqtJLO45gxY6Q/t23bFo6OjujVqxeuX7+OZs2aVXSZlZqrqyvi4uKQmZmJn3/+GX5+fjh69KjcZVVJJZ3L1q1b8ztZwTg9Z0AODg4AoHUXyO3bt6VtDg4OSEtL09heUFCAu3fvavTRtY/HP6OkPsXbq6OmTZuifv36uHbtGgCeyycFBQVhz549OHLkCBo2bCi1Ozg4IC8vDxkZGRr9n/xelvU8qVQqmJubo379+jA2Nq7y57Kk86iLh4cHAGh8J3keH1EqlWjevDnc3d0RHh6O9u3bY9myZfw+lkFJ51IXfifLF0OTAbm4uMDBwQFRUVFSm1qtxqlTp6T5Z09PT2RkZCA2Nlbqc/jwYRQVFUlfdk9PTxw7dgz5+flSn0OHDsHV1RV16tSR+jz+OcV9Hp/nrm7+/fdf3LlzB46OjgB4LosJIRAUFISdO3fi8OHDWtOR7u7uMDEx0TjGxMRE3LhxQ+N7efHiRY0QeujQIahUKmka4FnnSalUwt3dXaNPUVERoqKiqsS5fNZ51CUuLg4ANL6TNf08lqSoqAi5ubn8PhpA8bnUhd/Jcib3lehVzf3798W5c+fEuXPnBACxePFice7cOfHPP/8IIR4tOWBjYyN+/fVXceHCBTFo0CCdSw64ubmJU6dOiePHj4sWLVpo3CafkZEh7O3txfDhw0V8fLzYsmWLsLCw0LpNvlatWmLhwoXiypUrIiwsrErdJi/E08/l/fv3xaeffipiYmJEUlKS+O2330THjh1FixYtRE5OjrQPnkshxo0bJ6ytrUV0dLTGbccPHjyQ+owdO1Y0atRIHD58WJw9e1Z4enoKT09PaXvxbcm9e/cWcXFx4sCBA8LW1lbnbcmTJ08WV65cEStXrtR5W7KpqanYsGGDuHz5shgzZoywsbHRuHOnsnrWebx27ZqYPXu2OHv2rEhKShK//vqraNq0qejWrZu0D57HR6ZMmSKOHj0qkpKSxIULF8SUKVOEQqEQBw8eFELw+1gaTzuX/E5WPIamUjpy5IgAoPXj5+cnhHi07MD06dOFvb29MDU1Fb169RKJiYka+7hz544YOnSosLKyEiqVSnzwwQfi/v37Gn3Onz8vXnnlFWFqaioaNGgg5s2bp1XLtm3bxAsvvCCUSqV48cUXxd69e8vtuMvD087lgwcPRO/evYWtra0wMTERjRs3FqNHj9b6D5TnUug8hwDE+vXrpT4PHz4U48ePF3Xq1BEWFhbijTfeECkpKRr7SU5OFn379hXm5uaifv364pNPPhH5+fkafY4cOSI6dOgglEqlaNq0qcZnFPv6669Fo0aNhFKpFF26dBF//PFHeRy2wT3rPN64cUN069ZN1K1bV5iamormzZuLyZMna6yJIwTPoxBCjBw5UjRu3FgolUpha2srevXqJQUmIfh9LI2nnUt+JyueQgghKm5ci4iIiKhq4jVNRERERHpgaCIiIiLSA0MTERERkR4YmoiIiIj0wNBEREREpAeGJiIiIiI9MDQRERER6YGhiYgqtRMnTqBt27YwMTGBr6+v3OUQUQ3G0ERE5cbf3x8KhQIKhQImJiZwcXHBZ599hpycHL33ERwcjA4dOiApKQkbNmwov2Ir0IYNG6TzYmxsjDp16sDDwwOzZ89GZmZmqfenUCiwa9cuwxdKRBoYmoioXPXp0wcpKSn4+++/sWTJEnzzzTcICwvT+/3Xr1/Ha6+9hoYNG8LGxqZMNeTl5ZXpfWUhhEBBQcEz+6lUKqSkpODff//FyZMnMWbMGPzwww/o0KEDbt26VQGVElFpMTQRUbkyNTWFg4MDnJ2d4evrCy8vLxw6dAjAoyelh4eHw8XFBebm5mjfvj1+/vlnAEBycjIUCgXu3LmDkSNHQqFQSCNNR48eRZcuXWBqagpHR0dMmTJFI6j06NEDQUFBmDhxIurXrw9vb29ER0dDoVAgMjISbm5uMDc3x2uvvYa0tDTs378frVq1gkqlwrBhw/DgwQNpX0+rEYC03/3798Pd3R2mpqY4fvz4M8+LQqGAg4MDHB0d0apVKwQEBODkyZPIysrCZ599JvVr0qQJli5dqvHeDh06YObMmdJ2AHjjjTegUCjQpEkTJCcnw8jICGfPntV439KlS9G4cWMUFRU9sz4i0sbQREQVJj4+HidPnoRSqQQAhIeH44cffsCaNWtw6dIlTJo0Ce+//z6OHj0KZ2dnpKSkQKVSYenSpUhJScHgwYPx33//oV+/fujcuTPOnz+P1atX4/vvv8fcuXM1Pmvjxo1QKpU4ceIE1qxZI7XPnDkTK1aswMmTJ3Hz5k28++67WLp0KSIiIrB3714cPHgQX3/9tdT/aTU+bsqUKZg3bx6uXLmCdu3alen82NnZ4b333sPu3btRWFio13vOnDkDAFi/fj1SUlJw5swZNGnSBF5eXli/fr1G3/Xr18Pf3x9GRvxfP1GZyPzAYCKqxvz8/ISxsbGwtLQUpqamAoAwMjISP//8s8jJyREWFhbi5MmTGu8JCAgQQ4cOlV5bW1trPHF96tSpwtXVVRQVFUltK1euFFZWVqKwsFAIIUT37t2Fm5ubxn6PHDkiAIjffvtNagsPDxcAxPXr16W2Dz/8UHh7ewshhF41Fu93165dep+X9evXC2tra53bVq9eLQCI27dvCyGEaNy4sViyZIlGn/bt24uwsDDpNQCxc+dOjT5bt24VderUETk5OUIIIWJjY4VCoRBJSUl610lEmmrJGdiIqPrr2bMnVq9ejezsbCxZsgS1atXCW2+9hUuXLuHBgwd4/fXXNfrn5eXBzc2txP1duXIFnp6eUCgUUtvLL7+MrKws/Pvvv2jUqBEAwN3dXef7Hx8Fsre3h4WFBZo2barRdvr0aQDAtWvX9K6xU6dOTzsNehNCAIDG8ZWFr68vAgMDsXPnTgwZMgQbNmxAz549pek8Iio9hiYiKleWlpZo3rw5AGDdunVo3749vv/+e7Rp0wYAsHfvXjRo0EDjPaampgb5XF1MTEykPxff1fc4hUIhXfOTlZWld40lfV5pXblyBSqVCvXq1QMAGBkZSUGqWH5+/jP3o1QqMWLECKxfvx5vvvkmIiIisGzZMoPUSFRTMTQRUYUxMjLC1KlTERwcjL/++gumpqa4ceMGunfvrvc+WrVqhV9++QVCCGk05sSJE6hduzYaNmxo0Hpbt25dphrLKi0tDREREfD19ZWuO7K1tUVKSorUR61WIykpSeN9JiYmOq+BGjVqFNq0aYNVq1ahoKAAb775ZvkeAFE1x9BERBXqnXfeweTJk/HNN9/g008/xaRJk1BUVIRXXnkFmZmZOHHiBFQqFfz8/HS+f/z48Vi6dCkmTJiAoKAgJCYmIiwsDMHBwQa/wLl27dplqlEfQgikpqZCCIGMjAzExMTgyy+/hLW1NebNmyf1e+2117BhwwYMGDAANjY2mDFjBoyNjTX21aRJE0RFReHll1+Gqakp6tSpA+BRwOzatStCQkIwcuRImJubl7leImJoIqIKVqtWLQQFBWH+/PlISkqCra0twsPD8ffff8PGxgYdO3bE1KlTS3x/gwYNsG/fPkyePBnt27dH3bp1ERAQgGnTppVLvXPmzCl1jfpQq9VwdHSEQqGASqWCq6sr/Pz88PHHH0OlUkn9QkNDkZSUhP79+8Pa2hpz5szRGmlatGgRgoOD8d1336FBgwZITk6WthUvZTBy5MjnqpeIAIV4crKciIiqjTlz5mD79u24cOGC3KUQVXlcrIOIqBrKyspCfHw8VqxYgQkTJshdDlG1wNBERGRgL774IqysrHT+bNq0qUJqCAoKgru7O3r06MGpOSID4fQcEZGB/fPPPyUuC2Bvb4/atWtXcEVEZAgMTURERER64PQcERERkR4YmoiIiIj0wNBEREREpAeGJiIiIiI9MDQRERER6YGhiYiIiEgPDE1EREREemBoIiIiItLD/wOmOr3S9j5LlgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHHCAYAAACbXt0gAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYUZJREFUeJzt3Xl8TPf+P/DXZJtsJrFkoYJU1FJbBJH2VotUEEtKe1ElqajSUKRFooilFRe1ldJbrbT32nuL1hYRQklqCUEsqSURrkySi2QIsn5+f/jlfI2ZkGWSk0lez8djHtd8zmfOvOeYa179fM75HIUQQoCIiIiIysVE7gKIiIiIjBnDFBEREVEFMEwRERERVQDDFBEREVEFMEwRERERVQDDFBEREVEFMEwRERERVQDDFBEREVEFMEwRERERVQDDFBHVKgqFAnPmzJG7DElAQACaNWsmdxlEVAEMU0Qku4iICCgUCulhaWmJV155BRMmTEB6enqlvndsbCzmzJmDrKwsg+73rbfe0vpM9erVQ5cuXfDjjz+iqKjIIO+xYMEC7NixwyD7IqLyM5O7ACKiYvPmzYOrqyseP36Mo0ePYs2aNdizZw8SExNhbW1tkPd49OgRzMz+75++2NhYzJ07FwEBAbC3tzfIexRr3LgxwsPDAQCZmZn4+eefERgYiL/++gsLFy6s8P4XLFiAd999F35+fhXeFxGVH8MUEVUbffv2RefOnQEAY8aMQf369bF06VLs3LkTw4cPL/d+i4qKkJeXB0tLS1haWhqq3Beys7PDBx98ID3/+OOP0bJlS6xatQrz58+Hubl5ldVCRJWH03xEVG317NkTAJCcnAwAWLJkCV577TXUr18fVlZW8PDwwC+//KLzOoVCgQkTJmDDhg149dVXoVQqsW/fPmlb8TlTc+bMwdSpUwEArq6u0pRcSkoK3nzzTXTo0EFvXS1btoSPj0+ZP4+1tTW6deuGnJwcZGZmltgvJycHn332GVxcXKBUKtGyZUssWbIEQgitz5iTk4OffvpJqjsgIKDMNRFRxXFkioiqrWvXrgEA6tevDwBYsWIFBg4ciBEjRiAvLw+bN2/Ge++9h127dsHX11frtQcPHsTWrVsxYcIENGjQQO9J3oMHD8Zff/2FTZs2YdmyZWjQoAEAwMHBASNHjsRHH32ExMREtG3bVnrNyZMn8ddff2HmzJnl+kzXr1+HqalpiVOKQggMHDgQhw4dQmBgIDp27IjIyEhMnToV//3vf7Fs2TIAwL/+9S+MGTMGXbt2xdixYwEAzZs3L1dNRFRBgohIZuvXrxcAxIEDB0RmZqa4efOm2Lx5s6hfv76wsrISt27dEkII8fDhQ63X5eXlibZt24qePXtqtQMQJiYm4sKFCzrvBUCEhYVJzxcvXiwAiOTkZK1+WVlZwtLSUkyfPl2r/dNPPxU2NjbiwYMHz/1Mb775pmjVqpXIzMwUmZmZ4tKlS+LTTz8VAMSAAQOkfv7+/qJp06bS8x07dggA4ssvv9Ta37vvvisUCoW4evWq1GZjYyP8/f2fWwcRVT5O8xFRteHt7Q0HBwe4uLhg2LBhsLW1xfbt2/HSSy8BAKysrKS+9+7dQ3Z2Nt544w2cPn1aZ19vvvkm2rRpU+5a7OzsMGjQIGzatEmaXissLMSWLVvg5+cHGxubF+7j8uXLcHBwgIODA1q3bo1vvvkGvr6++PHHH0t8zZ49e2BqaopPP/1Uq/2zzz6DEAJ79+4t92ciosrBaT4iqjZWr16NV155BWZmZnByckLLli1hYvJ//823a9cufPnll0hISEBubq7UrlAodPbl6upa4XpGjRqFLVu24I8//kD37t1x4MABpKenY+TIkaV6fbNmzfD9999Lyz20aNECjo6Oz33NjRs30KhRI9SpU0ervXXr1tJ2IqpeGKaIqNro2rWrdDXfs/744w8MHDgQ3bt3x7fffouGDRvC3Nwc69evx8aNG3X6Pz2KVV4+Pj5wcnLCv//9b3Tv3h3//ve/4ezsDG9v71K93sbGptR9ich4cZqPiIzCf/7zH1haWiIyMhKjR49G3759DRJU9I1qFTM1NcX777+PX375Bffu3cOOHTswfPhwmJqaVvh9S9K0aVPcvn0b9+/f12q/fPmytL3Y82onoqrDMEVERsHU1BQKhQKFhYVSW0pKSoVXAC8+96mkFdBHjhyJe/fu4eOPP8aDBw+01o2qDP369UNhYSFWrVql1b5s2TIoFAr07dtXarOxsTH4yu1EVHac5iMio+Dr64ulS5eiT58+eP/995GRkYHVq1fDzc0N586dK/d+PTw8AABffPEFhg0bBnNzcwwYMEAKWe7u7mjbti22bduG1q1bo1OnTgb5PCUZMGAAevTogS+++AIpKSno0KED9u/fj507d2Ly5Mlayx94eHjgwIEDWLp0KRo1agRXV1d4enpWan1EpIsjU0RkFHr27IkffvgBarUakydPxqZNm/CPf/wD77zzToX226VLF8yfPx9nz55FQEAAhg8frrOg5qhRowCg1CeeV4SJiQl+++03TJ48Gbt27cLkyZNx8eJFLF68GEuXLtXqu3TpUnh4eGDmzJkYPnw41qxZU+n1EZEuhRBPLalLREQ6VqxYgSlTpiAlJQVNmjSRuxwiqmYYpoiInkMIgQ4dOqB+/fo4dOiQ3OUQUTXEc6aIiPTIycnBb7/9hkOHDuH8+fPYuXOn3CURUTXFkSkiIj1SUlLg6uoKe3t7fPLJJ/jqq6/kLomIqimGKSIiIqIK4NV8RERERBXAMEVERERUATwB3UCKiopw+/Zt1KlTh7d4ICIiMhJCCNy/fx+NGjXSurF6WTBMGcjt27fh4uIidxlERERUDjdv3kTjxo3L9VqGKQOpU6cOgCd/GSqVSuZqiIiIqDQ0Gg1cXFyk3/HyYJgykOKpPZVKxTBFRERkZCpyig5PQCciIiKqAIYpIiIiogpgmCIiIiKqAJ4zVcUKCwuRn58vdxlUBSwsLMp9mS0RERkPhqkqIoSAWq1GVlaW3KVQFTExMYGrqyssLCzkLoWIiCpRtQlTCxcuRGhoKCZNmoTly5cDAB4/fozPPvsMmzdvRm5uLnx8fPDtt9/CyclJel1qairGjx+PQ4cOwdbWFv7+/ggPD4eZ2f99tJiYGAQHB+PChQtwcXHBzJkzERAQoPX+q1evxuLFi6FWq9GhQwd888036Nq1q8E+X3GQcnR0hLW1NRf2rOGKF3FNS0tDkyZN+PdNRFSDVYswdfLkSXz33Xdo3769VvuUKVOwe/dubNu2DXZ2dpgwYQIGDx6MY8eOAXgyZebr6wtnZ2fExsYiLS0No0aNgrm5ORYsWAAASE5Ohq+vL8aNG4cNGzYgOjoaY8aMQcOGDeHj4wMA2LJlC4KDg7F27Vp4enpi+fLl8PHxQVJSEhwdHSv8+QoLC6UgVb9+/Qrvj4yDg4MDbt++jYKCApibm8tdDhERVRYhs/v374sWLVqIqKgo8eabb4pJkyYJIYTIysoS5ubmYtu2bVLfS5cuCQAiLi5OCCHEnj17hImJiVCr1VKfNWvWCJVKJXJzc4UQQkybNk28+uqrWu85dOhQ4ePjIz3v2rWrCAoKkp4XFhaKRo0aifDw8FJ/juzsbAFAZGdn62x79OiRuHjxonj48GGp90fG7+HDh+LixYvi0aNHcpdCREQleN7vd2nJfnZsUFAQfH194e3trdUeHx+P/Px8rfZWrVqhSZMmiIuLAwDExcWhXbt2WtN+Pj4+0Gg0uHDhgtTn2X37+PhI+8jLy0N8fLxWHxMTE3h7e0t99MnNzYVGo9F6vAinemoX/n0TEdUOsk7zbd68GadPn8bJkyd1tqnValhYWMDe3l6r3cnJCWq1WurzdJAq3l687Xl9NBoNHj16hHv37qGwsFBvn8uXL5dYe3h4OObOnVu6D0pEREQ1lmwjUzdv3sSkSZOwYcMGWFpaylVGuYWGhiI7O1t63Lx5U+6SiIiISAayhan4+HhkZGSgU6dOMDMzg5mZGQ4fPoyVK1fCzMwMTk5OyMvL01lKID09Hc7OzgAAZ2dnpKen62wv3va8PiqVClZWVmjQoAFMTU319inehz5KpVK6D19Nvh9fQEAAFAoFFAoFzM3N4eTkhLfffhs//vgjioqKSr2fiIgInVFGIiKimkC2MNWrVy+cP38eCQkJ0qNz584YMWKE9Gdzc3NER0dLr0lKSkJqaiq8vLwAAF5eXjh//jwyMjKkPlFRUVCpVGjTpo3U5+l9FPcp3oeFhQU8PDy0+hQVFSE6OlrqU9v16dMHaWlpSElJwd69e9GjRw9MmjQJ/fv3R0FBgdzlERFRDSeEQGZmZpn+I75KGe58+Ip7+mo+IYQYN26caNKkiTh48KA4deqU8PLyEl5eXtL2goIC0bZtW9G7d2+RkJAg9u3bJxwcHERoaKjU5/r168La2lpMnTpVXLp0SaxevVqYmpqKffv2SX02b94slEqliIiIEBcvXhRjx44V9vb2WlcJvkhpruYzxqu6/P39xaBBg3Tao6OjBQDx/fffCyGE+Prrr0Xbtm2FtbW1aNy4sRg/fry4f/++EEKIQ4cOCQBaj7CwMCGEED///LPw8PAQtra2wsnJSQwfPlykp6dX1cerVMb8905EVF3cuXNHzJkzR8yZM0eMHHlQ7Nxp2P0b4mq+arHOVEmWLVsGExMTDBkyRGvRzmKmpqbYtWsXxo8fDy8vL9jY2MDf3x/z5s2T+ri6umL37t2YMmUKVqxYgcaNG2PdunXSGlMAMHToUGRmZmL27NlQq9Xo2LEj9u3bp3NSuiEJIWS5rYy5ublBrjLr2bMnOnTogF9//RVjxoyBiYkJVq5cCVdXV1y/fh2ffPIJpk2bhm+//RavvfYali9fjtmzZyMpKQkAYGtrCwDIz8/H/Pnz0bJlS2RkZCA4OBgBAQHYs2dPhWskIiLjFhsbi6ioKOl5fLwjrl4FBg6UsSg9FEIIIXcRNYFGo4GdnR2ys7N1zp96/PgxkpOT4erqKp1sn5eXh/Dw8CqvMzQ0tEy3NwkICEBWVhZ27Nihs23YsGE4d+4cLl68qLPtl19+wbhx4/C///0PwJNzpiZPnvzC2+mcOnUKXbp0wf3796XAZaz0/b0TEdGLFRUVYcmSJXj06JHU1qTJQHz/vTtCQgwbpp73+11a1Xpkiqo3IYQ0ynXgwAGEh4fj8uXL0Gg0KCgowOPHj/Hw4UNYW1uXuI/4+HjMmTMHZ8+exb1796T58NTUVOm8NyIiqj0yMzO1ZqEAIDg4GHXq1MGHH8pU1AswTMnE3NwcoaGhsryvoVy6dAmurq5ISUlB//79MX78eHz11VeoV68ejh49isDAQOTl5ZUYpnJycuDj4wMfHx9s2LABDg4OSE1NhY+PD/Ly8gxWJxERGYcjR47g0KFD0vOXXnoJgYGB1X4RZIYpmSgUijJNt1U3Bw8exPnz5zFlyhTEx8ejqKgIX3/9NUxMnlwgunXrVq3+FhYWKCws1Gq7fPky7ty5g4ULF8LFxQXAk2k+IiKqXYqKihAeHq51hfg777yjc8/e6ophil4oNzcXarUahYWFSE9Px759+xAeHo7+/ftj1KhRSExMRH5+Pr755hsMGDAAx44dw9q1a7X20axZMzx48ADR0dHo0KEDrK2t0aRJE1hYWOCbb77BuHHjkJiYiPnz58v0KYmISA7p6ek6vxmfffaZUZ03K/u9+aj627dvHxo2bIhmzZqhT58+OHToEFauXImdO3fC1NQUHTp0wNKlS/GPf/wDbdu2xYYNG3ROrn/ttdcwbtw4DB06FA4ODli0aBEcHBwQERGBbdu2oU2bNli4cCGWLFki06ckIqKqdvDgQa0g1axZM4SFhRlVkAJ4NZ/BlPVqPqr5+PdORKRfYWEhvvzyS6229957T5YLj3g1HxERERmV27dv4/vvv9dqmzp16nOv/K7uGKaIiIioSuzfvx9xcXHSczc3N4wYMULGigyDYYqIiIgqVUFBAb766iuttmHDhqFly5YyVWRYDFNERERUaW7duoUffvhBq23atGmwsrKSqSLDY5giIiKiSrFnzx6cPHlSet66dWv8/e9/l7GiysEwRURERAaVn5+PBQsWaLWNGDECbm5uMlVUuRimiIiIyGBu3LiBiIgIrbaQkBAolUp5CqoCDFNERERkED///DOSk5Ol5+3bt8c777wjY0VVg2GKiIiIKuTBgwf4+uuvtdpGjRoFV1dXmSqqWrydDFULAQEB8PPzk56/9dZbmDx5coX2aYh9EBHR8x08eFAnSB04EFprghTAkSl6gYCAAPz0008AAHNzczRp0gSjRo3CjBkzYGZWeV+fX3/9Febm5qXqGxMTgx49euDevXuwt7cv1z6IiKjs5s6dq9MWGRmGkBAZipERwxS9UJ8+fbB+/Xrk5uZiz549CAoKgrm5OUJDQ7X65eXlwcLCwiDvWa9evWqxDyIi0pWdnY3ly5drtXl7e+P1119HWJg8NcmJ03z0QkqlEs7OzmjatCnGjx8Pb29v/Pbbb9LU3FdffYVGjRpJK9nevHkTf//732Fvb4969eph0KBBSElJkfZXWFiI4OBg2Nvbo379+pg2bRqevd/2s1N0ubm5mD59OlxcXKBUKuHm5oYffvgBKSkp6NGjBwCgbt26UCgUCAgI0LuPe/fuYdSoUahbty6sra3Rt29fXLlyRdoeEREBe3t7REZGonXr1rC1tUWfPn2QlpYm9YmJiUHXrl1hY2MDe3t7vP7667hx44aBjjQRUfW3b98+nSA1bdo0vP766/IUVA0wTFGZWVlZIS8vDwAQHR2NpKQkREVFYdeuXcjPz4ePjw/q1KmDP/74A8eOHZNCSfFrvv76a0RERODHH3/E0aNHcffuXWzfvv257zlq1Chs2rQJK1euxKVLl/Ddd9/B1tYWLi4u+M9//gMASEpKQlpaGlasWKF3HwEBATh16hR+++03xMXFQQiBfv36IT8/X+rz8OFDLFmyBP/6179w5MgRpKam4vPPPwfw5HYIfn5+ePPNN3Hu3DnExcVh7NixUCgUFT6mRETGYO7cuTh+/LhWW1hYWI1azbw8OM1HpSaEQHR0NCIjIzFx4kRkZmbCxsYG69atk6b3/v3vf6OoqAjr1q2TQsb69ethb2+PmJgY9O7dG8uXL0doaCgGDx4MAFi7di0iIyNLfN+//voLW7duRVRUFLy9vQEAL7/8srS9eDrP0dFR65ypp125cgW//fYbjh07htdeew0AsGHDBri4uGDHjh147733ADxZaG7t2rVo3rw5AGDChAmYN28eAECj0SA7Oxv9+/eXtrdu3brsB5KIyMjcu3cPK1eu1Grr27cvunbtKlNF1QtHpozQb78Br7325H+rwq5du2BrawtLS0v07dsXQ4cOxZw5cwAA7dq10zpP6uzZs7h69Srq1KkDW1tb2Nraol69enj8+DGuXbuG7OxspKWlwdPTU3qNmZkZOnfuXOL7JyQkwNTUFG+++Wa5P8OlS5dgZmam9b7169dHy5YtcenSJanN2tpaCkoA0LBhQ2RkZAB4EtoCAgLg4+ODAQMGYMWKFVpTgERENdHOnTt1glRISAiD1FM4MmWEFi4E4uKe/O/AgZX/fj169MCaNWtgYWGBRo0aaV3FZ2Njo9X3wYMH8PDwwIYNG3T24+DgUK73r8rh42ev/lMoFFrnc61fvx6ffvop9u3bhy1btmDmzJmIiopCt27dqqxGIqKqou9qvbDaeIb5C3BkygiFhABeXqiyS09tbGzg5uaGJk2avHA5hE6dOuHKlStwdHSEm5ub1sPOzg52dnZo2LCh1px7QUEB4uPjS9xnu3btUFRUhMOHD+vdXjwyVlhYWOI+WrdujYKCAq33vXPnDpKSktCmTZvnfqZnubu7IzQ0FLGxsWjbti02btxYptcTEVV3mZmZOkFq4MCBDFIlYJgyQgMHArGxVTMqVVYjRoxAgwYNMGjQIPzxxx9ITk5GTEwMPv30U9y6dQsAMGnSJCxcuBA7duzA5cuX8cknnyArK6vEfTZr1gz+/v4YPXo0duzYIe1z69atAICmTZtCoVBg165dyMzMxIMHD3T20aJFCwwaNAgfffQRjh49irNnz+KDDz7ASy+9hEGDBpXqsyUnJyM0NBRxcXG4ceMG9u/fjytXrvC8KSKqUebOnYtvv/1Wqy00NBTu7u4yVVT9MUyRQVlbW+PIkSNo0qQJBg8ejNatWyMwMBCPHz+GSqUCAHz22WcYOXIk/P394eXlhTp16rzw3k1r1qzBu+++i08++QStWrXCRx99hJycHADASy+9hLlz5yIkJAROTk6YMGGC3n2sX78eHh4e6N+/P7y8vCCEwJ49e0q9sKe1tTUuX76MIUOG4JVXXsHYsWMRFBSEjz/+uAxHiIioehJClDitZ6g1BGsqhXh2gR8qF41GAzs7O2RnZ0uhodjjx4+RnJwMV1dXWFpaylQhVTX+vRORsTh79ix27Nih1Xbt2ht4992e1XIWxJCe9/tdWjwBnYiIqBbTNxoVGhrK0agyYJgiIiKqhYQQ0jp6T3N3DwNzVNkwTBEREdUyJ06cwN69e7Xa3N3dMbCmz+lVEoYpIiKiWkTftN6MGTNKfTEO6WKYqkI817924d83EVUnRUVFmD9/vk47146qOIapKlCc9h8+fFjrbwZZmxTf2NnU1FTmSoiotjty5AgOHTqk1ebl5YXevXvLVFHNwjBVBUxNTWFvby/d483a2lq6CTDVTEVFRcjMzIS1tfULV40nIqpM+qb1Zs6cyf/QMyD+K19FnJ2dAUAKVFTzmZiYoEmTJgzORCSLwsJCfPnllzrtnNYzPIapKqJQKNCwYUM4OjoiPz9f7nKoClhYWMDEhDcZIKKqt3//fsTFxWm19ejRA927d5epopqNYaqKmZqacmiViIgqjb5pvVmzZvE/7ioRwxQREVENkJ+fjwULFui0c1qv8jFMERERGbmdO3ciISFBq61v377o2rWrPAXVMgxTRERERkzftN7s2bN58UsVYpgiIiIyQg8fPsTixYt12jmtV/UYpoiIiIzMypUrce/ePa22c+f88J//dJCpotqNYYqIiMiI6JvWi4ycjZAQTuvJhWGKiIjICNy/fx9Lly7VaQ8LCwNn9uTFMEVERFTNLViwQGfB5wEDBqBTp04yVURPk3UFrzVr1qB9+/ZQqVRQqVTw8vLC3r17pe1vvfUWFAqF1mPcuHFa+0hNTYWvry+sra3h6OiIqVOnoqCgQKtPTEwMOnXqBKVSCTc3N0REROjUsnr1ajRr1gyWlpbw9PTEiRMnKuUzExERlcXcuXN1glRYWBiDVDUia5hq3LgxFi5ciPj4eJw6dQo9e/bEoEGDcOHCBanPRx99hLS0NOmxaNEiaVthYSF8fX2Rl5eH2NhY/PTTT4iIiMDs2bOlPsnJyfD19UWPHj2QkJCAyZMnY8yYMYiMjJT6bNmyBcHBwQgLC8Pp06fRoUMH+Pj48D56REQkm3v37uk9P4pX61U/CiGEkLuIp9WrVw+LFy9GYGAg3nrrLXTs2BHLly/X23fv3r3o378/bt++DScnJwDA2rVrMX36dGRmZsLCwgLTp0/H7t27kZiYKL1u2LBhyMrKwr59+wAAnp6e6NKlC1atWgUAKCoqgouLCyZOnIiQkJBS1a3RaGBnZ4fs7GyoVKoKHAEiIqrt9IWo9957D23atJGhmprNEL/f1eZGPYWFhdi8eTNycnLg5eUltW/YsAENGjRA27ZtERoaiocPH0rb4uLi0K5dOylIAYCPjw80Go00uhUXFwdvb2+t9/Lx8ZFuAJmXl4f4+HitPiYmJvD29ta5SeTTcnNzodFotB5EREQVVdJoFINU9SX7Cejnz5+Hl5cXHj9+DFtbW2zfvl36wrz//vto2rQpGjVqhHPnzmH69OlISkrCr7/+CgBQq9VaQQqA9FytVj+3j0ajwaNHj3Dv3j0UFhbq7XP58uUS6w4PD9f7hSciIiqP9PR0rF27Vqed03rVn+xhqmXLlkhISEB2djZ++eUX+Pv74/Dhw2jTpg3Gjh0r9WvXrh0aNmyIXr164dq1a2jevLmMVQOhoaEIDg6Wnms0Gri4uMhYERERGSt9/3H+wQcfyP5bR6Uje5iysLCAm5sbAMDDwwMnT57EihUr8N133+n09fT0BABcvXoVzZs3h7Ozs85Vd+np6QAAZ2dn6X+L257uo1KpYGVlBVNTU5iamurtU7wPfZRKJZRKZRk/LRERkTZ9QcrdPQzMUcaj2pwzVayoqAi5ubl6txXfEbthw4YAAC8vL5w/f17rqruoqCioVCppqtDLywvR0dFa+4mKipLOy7KwsICHh4dWn6KiIkRHR2udu0VERGRIt27dKvH8qIEDZSiIyk3WkanQ0FD07dsXTZo0wf3797Fx40bExMQgMjIS165dw8aNG9GvXz/Ur18f586dw5QpU9C9e3e0b98eANC7d2+0adMGI0eOxKJFi6BWqzFz5kwEBQVJo0bjxo3DqlWrMG3aNIwePRoHDx7E1q1bsXv3bqmO4OBg+Pv7o3PnzujatSuWL1+OnJwcfPjhh7IcFyIiqtn0hajRo0fzdBEjJWuYysjIwKhRo5CWlgY7Ozu0b98ekZGRePvtt3Hz5k0cOHBACjYuLi4YMmQIZs6cKb3e1NQUu3btwvjx4+Hl5QUbGxv4+/tj3rx5Uh9XV1fs3r0bU6ZMwYoVK9C4cWOsW7cOPj4+Up+hQ4ciMzMTs2fPhlqtRseOHbFv3z6dk9KJiIgqimtH1TzVbp0pY8V1poiI6HkuXLiAX375RaedQUpehvj9lv0EdCIioppO32jUn38GYvz4xjJUQ4bGMEVERFSJOK1X8zFMERERVYLY2FhERUXptLu7M0jVNAxTREREBqZvNGrs2LHS0j5UszBMERERGRCn9WofhikiIiID2Llzp7S49NMYpGo+hikiIqIK0jca9ccfE3DgQH0ZqqGqxjBFRERUTkIIrYWii0VGhiEkRIaCSBYMU0REROWwYcMGXL16Vac9LCwMnNmrXRimiIiIykjftN7kyZNhZ2cnQzUkN4YpIiKiUippWo8nmdduDFNERESlsGbNGmRkZOi0M0gRwxQREdEL6JvW+/zzz2FjYyNDNVTdMEwRERGVoLCwEF9++aVOu7t7GJijqBjDFBERkR7h4eHIy8vTaee0Hj2LYYqIiOgZ+qb1QkJCoFQqZaiGqjuGKSIiov8vLy8P4eHhOu0cjaLnYZgiIiKC/tGooiITzJ07S4ZqyJiYyF0AERGR3PQFqf37v4CHB4MUvRhHpoiIqNbKycnBkiVLdNrd3XlLGCo9hikiIqqV9I1GmZmZ4YsvvpChGjJmDFNERFTr6AtSs2bNgokJz36hsmOYIiKiWuPu3bv45ptvdNp5tR5VBMMUERHVCvpGoxo0aICgoCAZqqGahGGKiIhqPH1BqmPH2Rg0SCFDNVTTMEwREVGN9d///hfr1q3Taee0HhkSwxQREdVI+kajsrMbYunSsTJUQzUZL1sgIqIaR1+QiowMw1tvMUiR4XFkioiIaowrV65g48aNOu1hYVyEkyoPwxQREdUI+kaj7t5thl69/GWohmoThikiIjJ6+oIUTzKnqsIwRURERishIQE7d+7UaWeQoqrEMEVEREZJ/9pRHTFo0CAZqqHajGGKiIiMDqf1qDphmCIiIqNx7NgxHDhwQKedQYrkxDBFRERGQd9oVPfu3dGjRw8ZqiH6PwxTRERU7XFaj6ozhikiIqq29uzZg5MnT+q0M0hRdcIwRURE1ZK+0ah+/fqhS5cuMlRDVDKGKSIiqnY4rUfGhGGKiIiqjfXr1yM1NVWnnUGKqjOGKSIiqhb0jUbt2jUYs2a1k6EaotJjmCIiItnpC1KRkWGYNQsYOFCGgojKgGGKiIhk89VXX6GgoECn3d09DJzZI2PBMEVERLLQNxo1YsQIuLm5yVANUfkxTBERUZXj1XpUk5jI+eZr1qxB+/btoVKpoFKp4OXlhb1790rbHz9+jKCgINSvXx+2trYYMmQI0tPTtfaRmpoKX19fWFtbw9HREVOnTtUZMo6JiUGnTp2gVCrh5uaGiIgInVpWr16NZs2awdLSEp6enjhx4kSlfGYiotps7ty5DFJU48gapho3boyFCxciPj4ep06dQs+ePTFo0CBcuHABADBlyhT8/vvv2LZtGw4fPozbt29j8ODB0usLCwvh6+uLvLw8xMbG4qeffkJERARmz54t9UlOToavry969OiBhIQETJ48GWPGjEFkZKTUZ8uWLQgODkZYWBhOnz6NDh06wMfHBxkZGVV3MIiIajh9IWrMmDEMUmT0FEIIIXcRT6tXrx4WL16Md999Fw4ODti4cSPeffddAMDly5fRunVrxMXFoVu3bti7dy/69++P27dvw8nJCQCwdu1aTJ8+HZmZmbCwsMD06dOxe/duJCYmSu8xbNgwZGVlYd++fQAAT09PdOnSBatWrQIAFBUVwcXFBRMnTkRISEip6tZoNLCzs0N2djZUKpUhDwkRkVETQmDevHk67ZGRYYiNlaEgoqcY4vdb1pGppxUWFmLz5s3IycmBl5cX4uPjkZ+fD29vb6lPq1at0KRJE8TFxQEA4uLi0K5dOylIAYCPjw80Go00uhUXF6e1j+I+xfvIy8tDfHy8Vh8TExN4e3tLffTJzc2FRqPRehARkba5c+eWGKRK+d+qRNWe7GHq/PnzsLW1hVKpxLhx47B9+3a0adMGarUaFhYWsLe31+rv5OQEtVoNAFCr1VpBqnh78bbn9dFoNHj06BH+97//obCwUG+f4n3oEx4eDjs7O+nh4uJSrs9PRFRT6ZvWO3r0E7i7PxmR4vpRVFPIHqZatmyJhIQEHD9+HOPHj4e/vz8uXrwod1kvFBoaiuzsbOlx8+ZNuUsiIqoWCgoK9AYpd/cwREU5MERRjSP70ggWFhbSmiIeHh44efIkVqxYgaFDhyIvLw9ZWVlao1Pp6elwdnYGADg7O+tcdVd8td/TfZ69AjA9PR0qlQpWVlYwNTWFqamp3j7F+9BHqVRCqVSW70MTEdVQ+kIUwKv1qGaTfWTqWUVFRcjNzYWHhwfMzc0RHR0tbUtKSkJqaiq8vLwAAF5eXjh//rzWVXdRUVFQqVRo06aN1OfpfRT3Kd6HhYUFPDw8tPoUFRUhOjpa6kNERC+mL0h9++1nDFJU48k6MhUaGoq+ffuiSZMmuH//PjZu3IiYmBhERkbCzs4OgYGBCA4ORr169aBSqTBx4kR4eXmhW7duAIDevXujTZs2GDlyJBYtWgS1Wo2ZM2ciKChIGjUaN24cVq1ahWnTpmH06NE4ePAgtm7dit27d0t1BAcHw9/fH507d0bXrl2xfPly5OTk4MMPP5TluBARGZNHjx5h0aJFOu1LloTh009lKIioiskapjIyMjBq1CikpaXBzs4O7du3R2RkJN5++20AwLJly2BiYoIhQ4YgNzcXPj4++Pbbb6XXm5qaYteuXRg/fjy8vLxgY2MDf39/rStHXF1dsXv3bkyZMgUrVqxA48aNsW7dOvj4+Eh9hg4diszMTMyePRtqtRodO3bEvn37dE5KJyIibc+b1uOAFNUW1W6dKWPFdaaIqLbRF6RCQkJ4PikZlRq1zhQRERmHe/fu6Q1SkZFhDFJUK8l+NR8RERmPkqb1uAgn1WYMU0REVCr6gtTMmTNhamrK86OoVmOYIiKi57p9+za+//57nXYueUD0BMMUERGViItwEr0YwxQREemlL0jNnj0bCoVChmqIqi9ezUdERFouX76sN0ht2hTGIEWkR5lHpkxNTZGWlgZHR0et9jt37sDR0RGFhYUGK46IiKrW867W07PIORGhHGGqpDU+c3NzYWFhUeGCiIhIHvqCVPG5UTxFiqhkpQ5TK1euBAAoFAqsW7cOtra20rbCwkIcOXIErVq1MnyFRERUqeLi4rB//36d9rw8Jiii0ih1mFq2bBmAJyNTa9euhampqbTNwsICzZo1w9q1aw1fIRERVRperUdUcaUOU8nJyQCAHj164Ndff0XdunUrrSgiIqp8Jd0ShiuZE5UNb3RsILzRMREZiz179uDkyZM67RyNotrIEL/fZT4BffTo0c/d/uOPP5arECIiqnwlTeu5uzNIEZVXmcPUvXv3tJ7n5+cjMTERWVlZ6Nmzp8EKIyIiw3re1XpEVH5lDlPbt2/XaSsqKsL48ePRvHlzgxRFRESG869//QvXr1/XaWeQIjIMg6yAbmJiguDgYOmKPyIiqh7mzp2rE6QePqzLaT0iAzLYvfmuXbuGgoICQ+2OiIgqiNN6RFWjzGEqODhY67kQAmlpadi9ezf8/f0NVhgREZXP119/jQcPHui0M0gRVY4yh6kzZ85oPTcxMYGDgwO+/vrrF17pR0RElUvfaNQrr7yC4cOHy1ANUe1Q5jB16NChyqiDiIgqiNN6RPIo9zlTGRkZSEpKAgC0bNkSjo6OBiuKiIhKj2tHEcmrzGFKo9EgKCgImzZtQlFREQDA1NQUQ4cOxerVq2FnZ2fwIomISD99QapLly7o16+fDNUQ1U5lXhrho48+wvHjx7F7925kZWUhKysLu3btwqlTp/Dxxx9XRo1ERKRHSdN6DFJEVavM9+azsbFBZGQk/va3v2m1//HHH+jTpw9ycnIMWqCx4L35iKiqlDStx/OjiMpOlnvz1a9fX+9Unp2dHerWrVuuIoiIqHT0BSkfHx9069ZNhmqICCjHNN/MmTMRHBwMtVottanVakydOhWzZs0yaHFERPR/SprWY5AikleZp/nc3d1x9epV5ObmokmTJgCA1NRUKJVKtGjRQqvv6dOnDVdpNcdpPiKqLJzWI6o8skzzDRo0CAqFolxvRkREZaMvSLm6vodRo9rIUA0R6VPmkSnSjyNTRGRIQgjMmzdPp52jUUSGJcvI1Msvv4yTJ0+ifv36Wu1ZWVno1KmTzt3JiYiobDitR2RcyhymUlJSUFhYqNOem5uLW7duGaQoIqLaSl+QCgwMROPGjWWohohKo9Rh6rfffpP+HBkZqbU8QmFhIaKjo+Hq6mrY6oiIaon8/HwsWLBAp52jUUTVX6nDlJ+fHwBAoVDA399fa5u5uTmaNWuGr7/+2qDFERHVBpzWIzJupQ5Txffhc3V1xcmTJ9GgQYNKK4qIqLbQF6T++GMiPv20ngzVEFF5lPmcqeTk5Mqog4ioVsnJycGSJUt02jkaRWR8yhym9F2q+7TZs2eXuxgiotqA03pENUuZw9T27du1nufn5yM5ORlmZmZo3rw5wxQR0XPoC1JTp06FtbW1DNUQkSGUOUydOXNGp02j0SAgIADvvPOOQYoiIqppMjMz8e233+q0czSKyPgZbAX08+fPY8CAAUhJSTHE7owOV0AnopJwWo+o+pJlBfSSZGdnIzs721C7IyKqEfQFqWXLvsDPPxvsn18iklmZ/9+8cuVKredCCKSlpeFf//oX+vbta7DCiIiMWXJyMn7++Wed9sjIMPz8MzBwoAxFEVGlKPM037OrnJuYmMDBwQE9e/ZEaGgo6tSpY9ACjQWn+YioGKf1iIyHLNN8XGeKiKhk+oLU7NmzoVAoZKiGiKpCuSbts7KycPXqVQCAm5sb7O3tDVkTEZHRSUhIwM6dO3XaORpFVPOZlKVzSkoKfH190aBBA3h6esLT0xMNGjRA//79y3UVX3h4OLp06YI6derA0dERfn5+SEpK0urz1ltvQaFQaD3GjRun1Sc1NRW+vr6wtraGo6Mjpk6dioKCAq0+MTEx6NSpE5RKJdzc3BAREaFTz+rVq9GsWTNYWlrC09MTJ06cKPNnIqLaZ+7cuQxSRLVYqUembt68iW7dusHc3Bzz589H69atAQAXL17EmjVr4OXlhZMnT6Jx48alfvPDhw8jKCgIXbp0QUFBAWbMmIHevXvj4sWLsLGxkfp99NFHWiuvP724XWFhIXx9feHs7IzY2FikpaVh1KhRMDc3l+7AnpycDF9fX4wbNw4bNmxAdHQ0xowZg4YNG8LHxwcAsGXLFgQHB2Pt2rXw9PTE8uXL4ePjg6SkJDg6Opb6MxFR7aJvWo8hiqh2KfUJ6IGBgbh69SoiIyNhaWmpte3Ro0fo06cPWrRogXXr1pW7mMzMTDg6OuLw4cPo3r07gCcjUx07dsTy5cv1vmbv3r3o378/bt++DScnJwDA2rVrMX36dGRmZsLCwgLTp0/H7t27kZiYKL1u2LBhyMrKwr59+wAAnp6e6NKlC1atWgXgyY2dXVxcMHHiRISEhLywdp6ATlS7HDx4EH/88YdOu7t7GK/UIzIihvj9LvU03759+/DVV1/pBCkAsLKywvz587Fnz55yFVGseJ2qevW075a+YcMGNGjQAG3btkVoaCgePnwobYuLi0O7du2kIAUAPj4+0Gg0uHDhgtTH29tba58+Pj6Ii4sDAOTl5SE+Pl6rj4mJCby9vaU+z8rNzYVGo9F6EFHtMHfuXL1BKiyMQYqoNir1NN///vc/NGvWrMTtL7/8Mu7evVvuQoqKijB58mS8/vrraNu2rdT+/vvvo2nTpmjUqBHOnTuH6dOnIykpCb/++isAQK1WawUpANJztVr93D4ajQaPHj3CvXv3UFhYqLfP5cuX9dYbHh5e4uXPRFRzcVqPiJ5V6jDVsGFDXLx4scRzohITE+Hs7FzuQoKCgpCYmIijR49qtY8dO1b6c7t27dCwYUP06tUL165dQ/Pmzcv9fhUVGhqK4OBg6blGo4GLi4ts9RBR5dq4cSOuXLmi0+7uziBFVNuVOkz5+fnh888/R3R0NBwcHLS2ZWRkYPr06fDz8ytXERMmTMCuXbtw5MiRF57A7unpCQC4evUqmjdvDmdnZ52r7tLT0wFACnfOzs5S29N9VCoVrKysYGpqClNTU719SgqISqUSSqWy9B+SiIwWF+EkoucpdZgKCwvDnj170Lx5c3zwwQdo1aoVhBC4dOkSNm7cCGdnZ8yePbtMby6EwMSJE7F9+3bExMTorK6uT0JCAoAnI2UA4OXlha+++goZGRnSVXdRUVFQqVRo06aN1OfZ87mioqLg5eUFALCwsICHhweio6OlQFhUVITo6GhMmDChTJ+JiGoWTusR0YuUOkzVrVsXx48fx4wZM7B582ZkZWUBAOzt7fH+++9jwYIFOieOv0hQUBA2btyInTt3ok6dOtI5TnZ2drCyssK1a9ewceNG9OvXD/Xr18e5c+cwZcoUdO/eHe3btwcA9O7dG23atMHIkSOxaNEiqNVqzJw5E0FBQdLI0bhx47Bq1SpMmzYNo0ePxsGDB7F161bs3r1bqiU4OBj+/v7o3LkzunbtiuXLlyMnJwcffvhhmT4TEdUMX3/9NR48eKDTziBFRM8q8735gCcjSpmZmQAABweHct8moaTXrV+/HgEBAbh58yY++OADJCYmIicnBy4uLnjnnXcwc+ZMrcsXb9y4gfHjxyMmJgY2Njbw9/fHwoULYWb2f1kxJiYGU6ZMkc77mjVrFgICArTed9WqVVi8eDHUajU6duyIlStXStOKL8KlEYhqDk7rEdUehvj9LleYIl0MU0Q1A6f1iGoXWW50TERUE3E0iojKi2GKiGo9fUHKysoK06ZNk6EaIjI2DFNEVKtxWo+IKophiohqJU7rEZGhlCpMrVy5stQ7/PTTT8tdDBFRVdAXpF5++WWMHDlShmqIyNiV6mq+0iymCTxZ6uD69esVLsoY8Wo+IuPAaT0ielqVXc2XnJxcrp0TEVUXnNYjospS7nOm8vLykJycjObNm2stjklEVN3oC1LdunWDj4+PDNUQUU1jUtYXPHz4EIGBgbC2tsarr76K1NRUAMDEiROxcOFCgxdIRFQRJU3rMUgRkaGUOUyFhobi7NmziImJgaWlpdTu7e2NLVu2GLQ4IqLymjt3Ls+PIqIqUeb5uR07dmDLli3o1q2b1r31Xn31VVy7ds2gxRERlYe+EOXr64vOnTvLUA0R1XRlDlOZmZlwdHTUac/JySn3DY+JiAxBCIF58+bptHM0iogqU5nDVOfOnbF7925MnDgRAKQAtW7dOnh5eRm2OiKiUuLVekQklzKHqQULFqBv3764ePEiCgoKsGLFCly8eBGxsbE4fPhwZdRIRPRc+oLUiBEj4ObmJkM1RFTblPkE9L/97W9ISEhAQUEB2rVrh/3798PR0RFxcXHw8PCojBqJiPQqKCjQG6Tc3cMYpIioypRqBXR6Ma6ATlS1SprWc3cPw8CBVVwMERmtKlsBXaPRlHqHDBJEVNn0Baljx8Zh/34nGaohotquVGHK3t6+1FfqFRYWVqggIqKSPHz4EIsXL9Zp37w5DP/4hwwFERGhlGHq0KFD0p9TUlIQEhKCgIAA6eq9uLg4/PTTTwgPD6+cKomo1nve1Xq8YI+I5FTmc6Z69eqFMWPGYPjw4VrtGzduxD//+U/ExMQYsj6jwXOmiCqPviB16NBniImxlaEaIqpJDPH7Xear+eLi4vSuIty5c2ecOHGiXEUQEelz584dvUEqMjIMwcEMUkRUPZQ5TLm4uOD777/XaV+3bh1cXFwMUhQR0dy5c7Fq1Sqd9rCwMMTGglfsEVG1UeZFO5ctW4YhQ4Zg79698PT0BACcOHECV65cwX/+8x+DF0hEtY++0ajQ0FBYWFjIUA0R0fOVeWSqX79+uHLlCgYMGIC7d+/i7t27GDBgAP766y/069evMmokoloiNTVVb5AKCwtjkCKiaqvMI1MA0LhxYyxYsMDQtRBRLfa8RTiJiKqzcoWprKws/PDDD7h06RIA4NVXX8Xo0aNhZ2dn0OKIqHbQF6RmzZoFE5MyD54TEVW5Mv9LderUKTRv3hzLli2TpvmWLl2K5s2b4/Tp05VRIxHVUImJiSVO6zFIEZGxKPM6U2+88Qbc3Nzw/fffw8zsycBWQUEBxowZg+vXr+PIkSOVUmh1x3WmiMrmeYtwEhFVFUP8fpc5TFlZWeHMmTNo1aqVVvvFixfRuXNnPHz4sFyFGDuGKaLS0xekeINiIpJDld3o+GkqlQqpqak6YermzZuoU6dOuYogotohNjYWUVFROu0cjSIiY1bmMDV06FAEBgZiyZIleO211wAAx44dw9SpU3VuMUNEVIzTekRUU5U5TC1ZsgQKhQKjRo1CQUEBAMDc3Bzjx4/HwoULDV4gERk/fUFqyZIwbNggQzFERAZW5nOmij18+BDXrl0DADRv3hzW1tYGLczY8JwpIl2///673qt8IyPDEBLCW8IQkfxkOQGd9GOYItLGaT0iMgZVegL66NGjS9Xvxx9/LFchRFRzlLR2FBFRTVTqMBUREYGmTZvC3d0dHMwiIn1++OEH3Lp1S6edQYqIarJSh6nx48dj06ZNSE5OxocffogPPvgA9erVq8zaiMiIcFqPiGqrUt+vYfXq1UhLS8O0adPw+++/w8XFBX//+98RGRnJkSqiWk5fkIqMDONNiomoVij3Ceg3btxAREQEfv75ZxQUFODChQuwtbU1dH1GgyegU220ePFivXc94GrmRGQsZFkBvZiJiQkUCgWEECgsLCzvbojISOkbjXJycsK4ceNkqIaISD5lui17bm4uNm3ahLfffhuvvPIKzp8/j1WrViE1NbVWj0oR1TYlXa3HIEVEtVGpR6Y++eQTbN68GS4uLhg9ejQ2bdqEBg0aVGZtRFTNlHSSOc+NIqLarNTnTJmYmKBJkyZwd3eHQqEosd+vv/5qsOKMCc+ZoppOX5Bq164dBg8eLEM1RESGUaXnTI0aNeq5IYqIai59QYonmRMRPVGmRTuJqHbh2lFERC9W7qv5iKhm0xek3nrrLbz55psyVENEVH2V6Wo+QwsPD0eXLl1Qp04dODo6ws/PD0lJSVp9Hj9+jKCgINSvXx+2trYYMmQI0tPTtfqkpqbC19cX1tbWcHR0xNSpU1FQUKDVJyYmBp06dYJSqYSbm5vekbbVq1ejWbNmsLS0hKenJ06cOGHwz0xkDEq6Wo9BiohIl6xh6vDhwwgKCsKff/6JqKgo5Ofno3fv3sjJyZH6TJkyBb///ju2bduGw4cP4/bt21onvBYWFsLX1xd5eXmIjY3FTz/9hIiICMyePVvqk5ycDF9fX/To0QMJCQmYPHkyxowZg8jISKnPli1bEBwcjLCwMJw+fRodOnSAj48PMjIyquZgEFUDc+fO5U2KiYjKqNwroFeGzMxMODo64vDhw+jevTuys7Ph4OCAjRs34t133wUAXL58Ga1bt0ZcXBy6deuGvXv3on///rh9+zacnJwAAGvXrsX06dORmZkJCwsLTJ8+Hbt370ZiYqL0XsOGDUNWVhb27dsHAPD09ESXLl2watUqAEBRURFcXFwwceJEhISEvLB2Xs1Hxk5fiPLz80OHDh1kqIaIqGoY4vdb1pGpZ2VnZwOAdAPl+Ph45Ofnw9vbW+rTqlUrNGnSBHFxcQCAuLg4tGvXTgpSAODj4wONRoMLFy5IfZ7eR3Gf4n3k5eUhPj5eq4+JiQm8vb2lPs/Kzc2FRqPRehAZIyFEiaNRDFJERC9WbU5ALyoqwuTJk/H666+jbdu2AAC1Wg0LCwvY29tr9XVycoJarZb6PB2kircXb3teH41Gg0ePHuHevXsoLCzU2+fy5ct66w0PDy/xSiciY8Gr9YiIKq7ahKmgoCAkJibi6NGjcpdSKqGhoQgODpaeazQauLi4yFgRUdnoC1KjRo2Cq6urDNUQERmvahGmJkyYgF27duHIkSNo3Lix1O7s7Iy8vDxkZWVpjU6lp6fD2dlZ6vPsVXfFV/s93efZKwDT09OhUqlgZWUFU1NTmJqa6u1TvI9nKZVKKJXK8n1gIhkVFhbiyy+/1GnnaBQRUfnIes6UEAITJkzA9u3bcfDgQZ3/Ivbw8IC5uTmio6OltqSkJKSmpsLLywsA4OXlhfPnz2tddRcVFQWVSoU2bdpIfZ7eR3Gf4n1YWFjAw8NDq09RURGio6OlPkQ1wdy5cxmkiIgMTNaRqaCgIGzcuBE7d+5EnTp1pHOc7OzsYGVlBTs7OwQGBiI4OBj16tWDSqXCxIkT4eXlhW7dugEAevfujTZt2mDkyJFYtGgR1Go1Zs6ciaCgIGnkaNy4cVi1ahWmTZuG0aNH4+DBg9i6dSt2794t1RIcHAx/f3907twZXbt2xfLly5GTk4MPP/yw6g8MUSXQN6139OgniIpykKEaIqKaQ9alEUq619/69esREBAA4MminZ999hk2bdqE3Nxc+Pj44Ntvv9Wafrtx4wbGjx+PmJgY2NjYwN/fHwsXLoSZ2f9lxZiYGEyZMgUXL15E48aNMWvWLOk9iq1atQqLFy+GWq1Gx44dsXLlSnh6epbqs3BpBKquHj9+jH/84x867ZGRYQgJAe+vR0S1miF+v6vVOlPGjGGKqqOSrtbjTYqJiJ4wxO93tTgBnYgMT1+Q+uyzz2BraytDNURENRfDFFENk52djeXLl+u08yRzIqLKwTBFVIM8b1qPiIgqB8MUUQ2hL0iFhobCwsJChmqIiGqPanVvPiIqu/T0dL1BavPmMAYpIqIqwJEpIiNW0rReZGQY9KyGQERElYBhishI6QtSHTvOwqBBJuC55kREVYdhisjIXL9+Hf/617902nm1HhGRPBimiIxISdN6DFJERPJhmCIyEvqC1OzZs0u8LRMREVUNhimiau78+fP49ddfddrd3cPAHEVEJD+GKaJqjNN6RETVH8MUUTWlL0gxRBERVT8MU0TVzNGjRxEdHa3TziBFRFQ9MUwRVSOc1iMiMj4MU0TVBKf1iIiME8MUkcx+//13nD59WqedQYqIyDgwTBHJSN9olL29PSZNmiRDNUREVB4MU0Qy4bQeEVHNwDBFVMU2btyIK1eu6LQzSBERGSeGKaIqpG80KjPTDatWjZChGiIiMgQTuQsgqi30BanIyDD07s0gRURkzDgyRVTJvvvuO6jVap32sLAwcGaPiMj4MUwRVSJ9o1HXr7+On37ylqEaIiKqDJzmI6okJU3rDRnCIEVEVJNwZIrIwL766isUFBTotLu7c1qPiKgmYpgiMiB9o1EDBw6Eu7u7DNUQEVFVYJgiMhAuwklEVDsxTBFVkL4QBTBIERHVFgxTRBWgL0i9//77aNGihQzVEBGRHBimiMpBCIF58+bptHM0ioio9mGYIiojTusREdHTuM4UURnoC1KxsWPh7s4gRURUW3FkiqgUioqKMH/+fJ12jkYRERHDFNELcFqPiIieh2GK6Dn0BalJkybB3t6+6oshIqJqiWGKSI/8/HwsWLBAp52jUURE9CyGKaJncFqPiIjKgmGK6Cn6gtTBg1Nx+LC1DNUQEZExYJgiAvDo0SMsWrRIpz0yMgwhITIURERERoNhimq9503rcWaPiIhehGGKajV9QWrGjBkwNzeXoRoiIjJGDFNUK2VnZ2P58uU67TzJnIiIyophimodXq1HRESGxDBFtYq+IDVr1iyYmPA2lUREVD6y/oIcOXIEAwYMQKNGjaBQKLBjxw6t7QEBAVAoFFqPPn36aPW5e/cuRowYAZVKBXt7ewQGBuLBgwdafc6dO4c33ngDlpaWcHFx0XvV1rZt29CqVStYWlqiXbt22LNnj8E/L8knIyNDb5AKCwtjkCIiogqR9VckJycHHTp0wOrVq0vs06dPH6SlpUmPTZs2aW0fMWIELly4gKioKOzatQtHjhzB2LFjpe0ajQa9e/dG06ZNER8fj8WLF2POnDn45z//KfWJjY3F8OHDERgYiDNnzsDPzw9+fn5ITEw0/IemKjd37lysWbNGp93dndN6RERUcQohhJC7CABQKBTYvn07/Pz8pLaAgABkZWXpjFgVu3TpEtq0aYOTJ0+ic+fOAIB9+/ahX79+uHXrFho1aoQ1a9bgiy++gFqthoWFBQAgJCQEO3bswOXLlwEAQ4cORU5ODnbt2iXtu1u3bujYsSPWrl1bqvo1Gg3s7OyQnZ0NlUpVjiNAlUHfaNTs2bOhUChkqIaIiKobQ/x+V/v5jZiYGDg6OqJly5YYP3487ty5I22Li4uDvb29FKQAwNvbGyYmJjh+/LjUp3v37lKQAgAfHx8kJSXh3r17Uh9vb2+t9/Xx8UFcXFyJdeXm5kKj0Wg9qPpITU0tcVqPQYqIiAypWp+A3qdPHwwePBiurq64du0aZsyYgb59+yIuLg6mpqZQq9VwdHTUeo2ZmRnq1asHtVoNAFCr1XB1ddXq4+TkJG2rW7cu1Gq11PZ0n+J96BMeHl7iVWEkL31/L3Xq1EFwcLAM1RARUU1XrcPUsGHDpD+3a9cO7du3R/PmzRETE4NevXrJWBkQGhqq9eOs0Wjg4uIiY0UE6A9SXPKAiIgqU7UOU896+eWX0aBBA1y9ehW9evWCs7MzMjIytPoUFBTg7t27cHZ2BgA4OzsjPT1dq0/x8xf1Kd6uj1KphFKprPBnIsO4cuUKNm7cqNPOk8yJiKiyVftzpp5269Yt3LlzBw0bNgQAeHl5ISsrC/Hx8VKfgwcPoqioCJ6enlKfI0eOID8/X+oTFRWFli1bom7dulKf6OhorfeKioqCl5dXZX8kMoC5c+fqBKmWLVsiLCwMAwfKVBQREdUasoapBw8eICEhAQkJCQCA5ORkJCQkIDU1FQ8ePMDUqVPx559/IiUlBdHR0Rg0aBDc3Nzg4+MDAGjdujX69OmDjz76CCdOnMCxY8cwYcIEDBs2DI0aNQIAvP/++7CwsEBgYCAuXLiALVu2YMWKFVpTdJMmTcK+ffvw9ddf4/Lly5gzZw5OnTqFCRMmVPkxobIpaVrv6SliIiKiyiTr0ggxMTHo0aOHTru/vz/WrFkDPz8/nDlzBllZWWjUqBF69+6N+fPna50sfvfuXUyYMAG///47TExMMGTIEKxcuRK2trZSn3PnziEoKAgnT55EgwYNMHHiREyfPl3rPbdt24aZM2ciJSUFLVq0wKJFi9CvX79SfxYujVC1zp49q3fJDJ4fRUREZWGI3+9qs86UsWOYqjr6RqO6dOlSpvBLREQEGOb326hOQCfi1XpERFTdMEyRUTh69KjORQIAgxQREcmPYYqqPX2jUT179sQbb7whQzVERETaGKaoWuO0HhERVXcMU1Qt7d27FydOnNBpZ5AiIqLqhmGKqh19o1GDBg1Cx44dq74YIiKiF2CYomqF03pERGRsGKaoWti6dSsuXbqk084gRURE1R3DFMlO32jU8OHD8corr8hQDRERUdkwTJGsOK1HRETGjmGKZPHTTz8hJSVFp51BioiIjA3DFFU5faNRf/45Gnv3ushQDRERUcUwTFGVEUJg3rx5Ou1LloRhwwYZCiIiIjIAhimqEt988w3u3r2r075585MgNXCgDEUREREZAMMUVTp903oTJ05EvXr1wFOkiIjI2DFMUaUpaVqPJ5kTEVFNwjBFlWL58uXIzs7WaWeQIiKimoZhigxO37TeoUOfIzjYRoZqiIiIKhfDFBlMYWEhvvzyS532sLAwnhtFREQ1FsMUGcTSpUtx//59nXZO6xERUU3HMEUVpm9a78CBEPzxh1KGaoiIiKoWwxSVW0FBAb766iud9sjIMISEyFAQERGRDBimqFy+++47qNVqrba8PCt89dU0nh9FRES1CsMUlZm+ab2tW2ciPNxUhmqIiIjkxTBFpZabm4uFCxfqtPNqPSIiqs0YpqhUlixZgpycHK22du3aYfDgwTJVREREVD0wTNEL6ZvWmz17NhQKhQzVEBERVS8MU1SinJwcLFmyRKeda0cRERH9H4Yp0kvfaJSnpyf69OkjQzVERETVF8MU6eC0HhERUekxTJHk/v37WLp0qU47p/WIiIhKxjBFAICFCxciNzdXq61Hjx7o3r27TBUREREZB4Yp0jut5+4eBuYoIiKiF2OYqsXu3buHlStX6rRzWo+IiKj0GKZqqZUrV+LevXtabUOGDEHbtm1lqoiIiMg4MUzVQvqm9TgaRUREVD4mchdAVefu3bt6g1RkJIMUERFReXFkqpZYvHgxHj58qNXWosVorFrlgpAQmYoiIiKqARimaoHnTeu9/35VV0NERFSzMEzVYLxaj4iIqPIxTNVQERERuHHjhlbbH39MxKef1pOpIiIiopqJYaoG4tV6REREVYdhqgb53//+h9WrV2u1ubm5YcSIETJVREREVPMxTNUQ+/fvR1xcnFbb5MmTYWdnJ1NFREREtQPDVA3AaT0iIiL5MEwZMX1X61265IP33+8mU0VERES1j6wroB85cgQDBgxAo0aNoFAosGPHDq3tQgjMnj0bDRs2hJWVFby9vXHlyhWtPnfv3sWIESOgUqlgb2+PwMBAPHjwQKvPuXPn8MYbb8DS0hIuLi5YtGiRTi3btm1Dq1atYGlpiXbt2mHPnj0G/7yG9Pvvv+sEqenTp2Pz5m4YOFCmooiIiGohWcNUTk4OOnTooHPSdLFFixZh5cqVWLt2LY4fPw4bGxv4+Pjg8ePHUp8RI0bgwoULiIqKwq5du3DkyBGMHTtW2q7RaNC7d280bdoU8fHxWLx4MebMmYN//vOfUp/Y2FgMHz4cgYGBOHPmDPz8/ODn54fExMTK+/AVMHfuXJw+fVqrLSwsDJaWljJVREREVHsphBBC7iIAQKFQYPv27fDz8wPwZFSqUaNG+Oyzz/D5558DALKzs+Hk5ISIiAgMGzYMly5dQps2bXDy5El07twZALBv3z7069cPt27dQqNGjbBmzRp88cUXUKvVsLCwAACEhIRgx44duHz5MgBg6NChyMnJwa5du6R6unXrho4dO2Lt2rWlql+j0cDOzg7Z2dlQqVSGOixaHj58iMWLF2u19e/fHx4eHpXyfkRERDWdIX6/q+2NjpOTk6FWq+Ht7S212dnZwdPTU7pqLS4uDvb29lKQAgBvb2+YmJjg+PHjUp/u3btLQQoAfHx8kJSUhHv37kl9nn6f4j7PXh33tNzcXGg0Gq1HZbp48aJOkDpwIJRBioiISGbVNkyp1WoAgJOTk1a7k5OTtE2tVsPR0VFru5mZGerVq6fVR98+nn6PkvoUb9cnPDwcdnZ20sPFxaWsH7HUfvrpJ2zbtu2p2t5AZGQYpk61eM6riIiIqCrwar5yCg0NRXBwsPRco9FUSqC6ffs2UlJSpOfjxo2Dk5MTxo0z+FsRERFROVTbkSlnZ2cAQHp6ulZ7enq6tM3Z2RkZGRla2wsKCnD37l2tPvr28fR7lNSneLs+SqUSKpVK61EZ7OzskJnphszMBti/f6bOCBoRERHJq9qGKVdXVzg7OyM6Olpq02g0OH78OLy8vAAAXl5eyMrKQnx8vNTn4MGDKCoqgqenp9TnyJEjyM/Pl/pERUWhZcuWqFu3rtTn6fcp7lP8PnKysbFB794jcPp0EKZPN5W7HCIiInqWkNH9+/fFmTNnxJkzZwQAsXTpUnHmzBlx48YNIYQQCxcuFPb29mLnzp3i3LlzYtCgQcLV1VU8evRI2kefPn2Eu7u7OH78uDh69Kho0aKFGD58uLQ9KytLODk5iZEjR4rExESxefNmYW1tLb777jupz7Fjx4SZmZlYsmSJuHTpkggLCxPm5ubi/Pnzpf4s2dnZAoDIzs42wJEhIiKiqmCI329Zw9ShQ4cEAJ2Hv7+/EEKIoqIiMWvWLOHk5CSUSqXo1auXSEpK0trHnTt3xPDhw4Wtra1QqVTiww8/FPfv39fqc/bsWfG3v/1NKJVK8dJLL4mFCxfq1LJ161bxyiuvCAsLC/Hqq6+K3bt3l+mzMEwREREZH0P8flebdaaMXVWsM0VERESGVaPXmSIiIiIyBgxTRERERBXAMEVERERUAQxTRERERBXAMEVERERUAQxTRERERBXAMEVERERUAQxTRERERBXAMEVERERUAQxTRERERBXAMEVERERUAWZyF1BTFN/iUKPRyFwJERERlVbx73ZFblXMMGUg9+/fBwC4uLjIXAkRERGV1f3792FnZ1eu1ypERaIYSYqKinD79m3UqVMHCoWiUt5Do9HAxcUFN2/eLPedrWsTHq+y4fEqGx6vsuHxKhser9Kr6LESQuD+/fto1KgRTEzKd/YTR6YMxMTEBI0bN66S91KpVPw/VxnweJUNj1fZ8HiVDY9X2fB4lV5FjlV5R6SK8QR0IiIiogpgmCIiIiKqAIYpI6JUKhEWFgalUil3KUaBx6tseLzKhserbHi8yobHq/Sqw7HiCehEREREFcCRKSIiIqIKYJgiIiIiqgCGKSIiIqIKYJgiIiIiqgCGqUp25MgRDBgwAI0aNYJCocCOHTu0tgshMHv2bDRs2BBWVlbw9vbGlStXtPrcvXsXI0aMgEqlgr29PQIDA/HgwQOtPufOncMbb7wBS0tLuLi4YNGiRTq1bNu2Da1atYKlpSXatWuHPXv2GPzzVtSLjldAQAAUCoXWo0+fPlp9asvxCg8PR5cuXVCnTh04OjrCz88PSUlJWn0eP36MoKAg1K9fH7a2thgyZAjS09O1+qSmpsLX1xfW1tZwdHTE1KlTUVBQoNUnJiYGnTp1glKphJubGyIiInTqWb16NZo1awZLS0t4enrixIkTBv/MFVGa4/XWW2/pfL/GjRun1ae2HK81a9agffv20kKIXl5e2Lt3r7Sd3y1tLzpe/G6VbOHChVAoFJg8ebLUZnTfL0GVas+ePeKLL74Qv/76qwAgtm/frrV94cKFws7OTuzYsUOcPXtWDBw4ULi6uopHjx5Jffr06SM6dOgg/vzzT/HHH38INzc3MXz4cGl7dna2cHJyEiNGjBCJiYli06ZNwsrKSnz33XdSn2PHjglTU1OxaNEicfHiRTFz5kxhbm4uzp8/X+nHoCxedLz8/f1Fnz59RFpamvS4e/euVp/acrx8fHzE+vXrRWJiokhISBD9+vUTTZo0EQ8ePJD6jBs3Tri4uIjo6Ghx6tQp0a1bN/Haa69J2wsKCkTbtm2Ft7e3OHPmjNizZ49o0KCBCA0Nlfpcv35dWFtbi+DgYHHx4kXxzTffCFNTU7Fv3z6pz+bNm4WFhYX48ccfxYULF8RHH30k7O3tRXp6etUcjFIozfF68803xUcffaT1/crOzpa216bj9dtvv4ndu3eLv/76SyQlJYkZM2YIc3NzkZiYKITgd+tZLzpe/G7pd+LECdGsWTPRvn17MWnSJKnd2L5fDFNV6NlwUFRUJJydncXixYultqysLKFUKsWmTZuEEEJcvHhRABAnT56U+uzdu1coFArx3//+VwghxLfffivq1q0rcnNzpT7Tp08XLVu2lJ7//e9/F76+vlr1eHp6io8//tign9GQSgpTgwYNKvE1tfl4ZWRkCADi8OHDQogn3yVzc3Oxbds2qc+lS5cEABEXFyeEeBJeTUxMhFqtlvqsWbNGqFQq6fhMmzZNvPrqq1rvNXToUOHj4yM979q1qwgKCpKeFxYWikaNGonw8HDDf1ADefZ4CfHkB+/pf9CfVZuPlxBC1K1bV6xbt47frVIqPl5C8Lulz/3790WLFi1EVFSU1vExxu8Xp/lklJycDLVaDW9vb6nNzs4Onp6eiIuLAwDExcXB3t4enTt3lvp4e3vDxMQEx48fl/p0794dFhYWUh8fHx8kJSXh3r17Up+n36e4T/H7GJOYmBg4OjqiZcuWGD9+PO7cuSNtq83HKzs7GwBQr149AEB8fDzy8/O1PkerVq3QpEkTre9Xu3bt4OTkJPXx8fGBRqPBhQsXpD7POxZ5eXmIj4/X6mNiYgJvb2+jOl7FNmzYgAYNGqBt27YIDQ3Fw4cPpW219XgVFhZi8+bNyMnJgZeXF79bL/Ds8SrG75a2oKAg+Pr66nwmY/x+8UbHMlKr1QCg9WUofl68Ta1Ww9HRUWu7mZkZ6tWrp9XH1dVVZx/F2+rWrQu1Wv3c9zEWffr0weDBg+Hq6opr165hxowZ6Nu3L+Li4mBqalprj1dRUREmT56M119/HW3btgXw5LNYWFjA3t5eq++z3y99n7N42/P6aDQaPHr0CPfu3UNhYaHePpcvXzbYZzQkfccLAN5//300bdoUjRo1wrlz5zB9+nQkJSXh119/BVD7jtf58+fh5eWFx48fw9bWFtu3b0ebNm2QkJDA75YeJR0vgN+tZ23evBmnT5/GyZMndbYZ479dDFNkVIYNGyb9uV27dmjfvj2aN2+OmJgY9OrVS8bK5BUUFITExEQcPXpU7lKMQknHa+zYsdKf27Vrh4YNG6JXr164du0amjdvXtVlyq5ly5ZISEhAdnY2fvnlF/j7++Pw4cNyl1VtlXS82rRpw+/WU27evIlJkyYhKioKlpaWcpdjEJzmk5GzszMA6FyhkJ6eLm1zdnZGRkaG1vaCggLcvXtXq4++fTz9HiX1Kd5urF5++WU0aNAAV69eBVA7j9eECROwa9cuHDp0CI0bN5banZ2dkZeXh6ysLK3+z36/ynssVCoVrKys0KBBA5iamhr98dLH09MTALS+X7XpeFlYWMDNzQ0eHh4IDw9Hhw4dsGLFCn63SlDS8dKnNn+34uPjkZGRgU6dOsHMzAxmZmY4fPgwVq5cCTMzMzg5ORnd94thSkaurq5wdnZGdHS01KbRaHD8+HFpnt3LywtZWVmIj4+X+hw8eBBFRUXS/xm9vLxw5MgR5OfnS32ioqLQsmVL1K1bV+rz9PsU93l6Pt8Y3bp1C3fu3EHDhg0B1K7jJYTAhAkTsH37dhw8eFBn6tLDwwPm5uZanyMpKQmpqala36/z589rBdCoqCioVCppeuJFx8LCwgIeHh5afYqKihAdHW1Ux0ufhIQEAND6ftWW46VPUVERcnNz+d0qpeLjpU9t/m716tUL58+fR0JCgvTo3LkzRowYIf3Z6L5fZTpdncrs/v374syZM+LMmTMCgFi6dKk4c+aMuHHjhhDiydII9vb2YufOneLcuXNi0KBBepdGcHd3F8ePHxdHjx4VLVq00LrUPysrSzg5OYmRI0eKxMREsXnzZmFtba1zqb+ZmZlYsmSJuHTpkggLC6t2l/oL8fzjdf/+ffH555+LuLg4kZycLA4cOCA6deokWrRoIR4/fizto7Ycr/Hjxws7OzsRExOjdbn1w4cPpT7jxo0TTZo0EQcPHhSnTp0SXl5ewsvLS9pefHlx7969RUJCgti3b59wcHDQe3nx1KlTxaVLl8Tq1av1Xl6sVCpFRESEuHjxohg7dqywt7fXutJGbi86XlevXhXz5s0Tp06dEsnJyWLnzp3i5ZdfFt27d5f2UZuOV0hIiDh8+LBITk4W586dEyEhIUKhUIj9+/cLIfjdetbzjhe/Wy/27NWOxvb9YpiqZIcOHRIAdB7+/v5CiCfLI8yaNUs4OTkJpVIpevXqJZKSkrT2cefOHTF8+HBha2srVCqV+PDDD8X9+/e1+pw9e1b87W9/E0qlUrz00kti4cKFOrVs3bpVvPLKK8LCwkK8+uqrYvfu3ZX2ucvrecfr4cOHonfv3sLBwUGYm5uLpk2bio8++kjnS19bjpe+4wRArF+/Xurz6NEj8cknn4i6desKa2tr8c4774i0tDSt/aSkpIi+ffsKKysr0aBBA/HZZ5+J/Px8rT6HDh0SHTt2FBYWFuLll1/Weo9i33zzjWjSpImwsLAQXbt2FX/++WdlfOxye9HxSk1NFd27dxf16tUTSqVSuLm5ialTp2qtBSRE7Tleo0ePFk2bNhUWFhbCwcFB9OrVSwpSQvC79aznHS9+t17s2TBlbN8vhRBClG0si4iIiIiK8ZwpIiIiogpgmCIiIiKqAIYpIiIiogpgmCIiIiKqAIYpIiIiogpgmCIiIiKqAIYpIiIiogpgmCKiau3YsWNo164dzM3N4efnJ3c5REQ6GKaIqNIEBARAoVBAoVDA3Nwcrq6umDZtGh4/flzqfQQHB6Njx45ITk5GRERE5RVbhSIiIqTjYmpqirp168LT0xPz5s1DdnZ2mfenUCiwY8cOwxdKRKXCMEVElapPnz5IS0vD9evXsWzZMnz33XcICwsr9euvXbuGnj17onHjxrC3ty9XDXl5eeV6XXkIIVBQUPDCfiqVCmlpabh16xZiY2MxduxY/Pzzz+jYsSNu375dBZUSkaEwTBFRpVIqlXB2doaLiwv8/Pzg7e2NqKgoAE/u0B4eHg5XV1dYWVmhQ4cO+OWXXwAAKSkpUCgUuHPnDkaPHg2FQiGNTB0+fBhdu3aFUqlEw4YNERISohVg3nrrLUyYMAGTJ09GgwYN4OPjg5iYGCgUCkRGRsLd3R1WVlbo2bMnMjIysHfvXrRu3RoqlQrvv/8+Hj58KO3reTUCkPa7d+9eeHh4QKlU4ujRoy88LgqFAs7OzmjYsCFat26NwMBAxMbG4sGDB5g2bZrUr1mzZli+fLnWazt27Ig5c+ZI2wHgnXfegUKhQLNmzZCSkgITExOcOnVK63XLly9H06ZNUVRU9ML6iKj0GKaIqMokJiYiNjYWFhYWAIDw8HD8/PPPWLt2LS5cuIApU6bggw8+wOHDh+Hi4oK0tDSoVCosX74caWlpGDp0KP773/+iX79+6NKlC86ePYs1a9bghx9+wJdffqn1Xj/99BMsLCxw7NgxrF27VmqfM2cOVq1ahdjYWNy8eRN///vfsXz5cmzcuBG7d+/G/v378c0330j9n1fj00JCQrBw4UJcunQJ7du3L9fxcXR0xIgRI/Dbb7+hsLCwVK85efIkAGD9+vVIS0vDyZMn0axZM3h7e2P9+vVafdevX4+AgACYmPCffiKDKvOtkYmISsnf31+YmpoKGxsboVQqBQBhYmIifvnlF/H48WNhbW0tYmNjtV4TGBgohg8fLj23s7PTutP7jBkzRMuWLUVRUZHUtnr1amFraysKCwuFEE/uQO/u7q6130OHDgkA4sCBA1JbeHi4ACCuXbsmtX388cfCx8dHCCFKVWPxfnfs2FHq47J+/XphZ2end9uaNWsEAJGeni6EEKJp06Zi2bJlWn06dOggwsLCpOcAxPbt27X6bNmyRdStW1c8fvxYCCFEfHy8UCgUIjk5udR1ElHpmMkZ5Iio5uvRowfWrFmDnJwcLFu2DGZmZhgyZAguXLiAhw8f4u2339bqn5eXB3d39xL3d+nSJXh5eUGhUEhtr7/+Oh48eIBbt26hSZMmAAAPDw+9r3961MjJyQnW1tZ4+eWXtdpOnDgBALh69Wqpa+zcufPzDkOpCSEAQOvzlYefnx+CgoKwfft2DBs2DBEREejRo4c0LUhEhsMwRUSVysbGBm5ubgCAH3/8ER06dMAPP/yAtm3bAgB2796Nl156Ses1SqXSIO+rj7m5ufTn4qsMn6ZQKKRzih48eFDqGkt6v7K6dOkSVCoV6tevDwAwMTGRAlax/Pz8F+7HwsICo0aNwvr16zF48GBs3LgRK1asMEiNRKSNYYqIqoyJiQlmzJiB4OBg/PXXX1AqlUhNTcWbb75Z6n20bt0a//nPfyCEkEZvjh07hjp16qBx48YGrbdNmzblqrG8MjIysHHjRvj5+UnnNTk4OCAtLU3qo9FokJycrPU6c3NzvedYjRkzBm3btsW3336LgoICDB48uHI/AFEtxTBFRFXqvffew9SpU/Hdd9/h888/x5QpU1BUVIS//e1vyM7OxrFjx6BSqeDv76/39Z988gmWL1+OiRMnYsKECUhKSkJYWBiCg4MNfmJ1nTp1ylVjaQghoFarIYRAVlYW4uLisGDBAtjZ2WHhwoVSv549eyIiIgIDBgyAvb09Zs+eDVNTU619NWvWDNHR0Xj99dehVCpRt25dAE+CZ7du3TB9+nSMHj0aVlZW5a6XiErGMEVEVcrMzAwTJkzAokWLkJycDAcHB4SHh+P69euwt7dHp06dMGPGjBJf/9JLL2HPnj2YOnUqOnTogHr16iEwMBAzZ86slHrnz59f5hpLQ6PRoGHDhlAoFFCpVGjZsiX8/f0xadIkqFQqqV9oaCiSk5PRv39/2NnZYf78+TojU19//TWCg4Px/fff46WXXkJKSoq0rXjJhdGjR1eoXiIqmUI8OxlPREQ1xvz587Ft2zacO3dO7lKIaiwuNkJEVAM9ePAAiYmJWLVqFSZOnCh3OUQ1GsMUEZGBvfrqq7C1tdX72LBhQ5XUMGHCBHh4eOCtt97iFB9RJeM0HxGRgd24caPE5QucnJxQp06dKq6IiCoTwxQRERFRBXCaj4iIiKgCGKaIiIiIKoBhioiIiKgCGKaIiIiIKoBhioiIiKgCGKaIiIiIKoBhioiIiKgCGKaIiIiIKuD/Ab3JfaIvbqLqAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_27.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABe50lEQVR4nO3deVxU9f4/8NeA7AqoKIuhkCKuXyFUhGuRRRfNjW510W4iRpotJuGSeBHEJdw1l0QzxMoFvRqYGWqoWYK4gbumBqLpIKaAYoIy5/eHP06Oc0AGGQ4z83o+HvPg8pnPOec9R+7Mq8/nzOcoBEEQQERERER1zkTuAoiIiIgMFYMWERERkY4waBERERHpCIMWERERkY4waBERERHpCIMWERERkY4waBERERHpCIMWERERkY4waBERERHpCIMWEdETKBQKTJ06Ve4yRGFhYXBzc5O7DCKqAQYtItJLSUlJUCgU4sPS0hLt27fHRx99hIKCAp0eOyMjA1OnTkVRUVGd7vfFF19Ue03NmjVDjx49kJiYCJVKVSfH+Oyzz5CSklIn+yKiJ2skdwFERE9j2rRpcHd3x7179/Drr79i+fLl2L59O06ePAlra+s6OcZff/2FRo3+frvMyMhAXFwcwsLCYG9vXyfHqPTMM88gPj4eAFBYWIivv/4a4eHh+O233zBr1qyn3v9nn32GN954A8HBwU+9LyJ6MgYtItJr/fr1Q/fu3QEA7777Lpo3b44FCxYgNTUVQ4cOrfV+VSoVysvLYWlpCUtLy7oq94ns7Ozw9ttvi7+/99578PT0xNKlSzF9+nSYmZnVWy1E9PQ4dUhEBuWll14CAOTm5gIA5s2bB39/fzRv3hxWVlbw8fHB//73P43tFAoFPvroI6xduxadO3eGhYUF0tLSxOcqr9GaOnUqJkyYAABwd3cXp/ny8vIQEBCAbt26Sdbl6emJoKAgrV+PtbU1evXqhdLSUhQWFlbZr7S0FOPGjYOrqyssLCzg6emJefPmQRAEtddYWlqKNWvWiHWHhYVpXRMR1RxHtIjIoFy8eBEA0Lx5cwDA559/jkGDBuE///kPysvLsWHDBrz55pvYtm0b+vfvr7bt7t27sXHjRnz00UdwcHCQvOD8X//6F3777TesX78eCxcuhIODAwCgRYsWGDZsGEaOHImTJ0+iS5cu4jaHDh3Cb7/9hujo6Fq9pt9//x2mpqZVTlMKgoBBgwZhz549CA8Ph5eXF3bs2IEJEybgjz/+wMKFCwEA33zzDd5991307NkTo0aNAgC0bdu2VjURUQ0JRER6aPXq1QIA4aeffhIKCwuFy5cvCxs2bBCaN28uWFlZCVeuXBEEQRDu3r2rtl15ebnQpUsX4aWXXlJrByCYmJgIp06d0jgWACE2Nlb8fe7cuQIAITc3V61fUVGRYGlpKXz66adq7R9//LFgY2Mj3Llzp9rXFBAQIHTo0EEoLCwUCgsLhTNnzggff/yxAEAYOHCg2G/48OFCmzZtxN9TUlIEAMKMGTPU9vfGG28ICoVCuHDhgthmY2MjDB8+vNo6iKjucOqQiPRaYGAgWrRoAVdXVwwZMgSNGzfGd999h1atWgEArKysxL63bt1CcXExnn/+eRw9elRjXwEBAejUqVOta7Gzs8PgwYOxfv16ccquoqICycnJCA4Oho2NzRP3cfbsWbRo0QItWrRAx44dsWTJEvTv3x+JiYlVbrN9+3aYmpri448/VmsfN24cBEHAjz/+WOvXRERPh1OHRKTXli1bhvbt26NRo0ZwdHSEp6cnTEz+/m/Ibdu2YcaMGcjJyUFZWZnYrlAoNPbl7u7+1PWEhoYiOTkZv/zyC1544QX89NNPKCgowLBhw2q0vZubG7788ktxyQoPDw+0bNmy2m0uXboEFxcXNGnSRK29Y8eO4vNEJA8GLSLSaz179hS/dfi4X375BYMGDcILL7yAL774As7OzjAzM8Pq1auxbt06jf6Pjn7VVlBQEBwdHfHtt9/ihRdewLfffgsnJycEBgbWaHsbG5sa9yWiho9Th0RksDZv3gxLS0vs2LED77zzDvr161cnIUZqNKySqakp3nrrLfzvf//DrVu3kJKSgqFDh8LU1PSpj1uVNm3a4OrVq7h9+7Za+9mzZ8XnK1VXOxHVPQYtIjJYpqamUCgUqKioENvy8vKeemX0ymutqloZftiwYbh16xbee+893LlzR21dLF149dVXUVFRgaVLl6q1L1y4EAqFAv369RPbbGxs6nxFeyKqGqcOichg9e/fHwsWLEDfvn3x1ltv4fr161i2bBnatWuH48eP13q/Pj4+AID//ve/GDJkCMzMzDBw4EAxgHl7e6NLly7YtGkTOnbsiOeee65OXk9VBg4ciD59+uC///0v8vLy0K1bN+zcuROpqamIiIhQW8LBx8cHP/30ExYsWAAXFxe4u7vD19dXp/URGTOOaBGRwXrppZfw1VdfQalUIiIiAuvXr8fs2bPx2muvPdV+e/TogenTp+PYsWMICwvD0KFDNRYTDQ0NBYAaXwT/NExMTLB161ZERERg27ZtiIiIwOnTpzF37lwsWLBAre+CBQvg4+OD6OhoDB06FMuXL9d5fUTGTCEIjywbTEREdeLzzz/HJ598gry8PLRu3VrucohIJgxaRER1TBAEdOvWDc2bN8eePXvkLoeIZMRrtIiI6khpaSm2bt2KPXv24MSJE0hNTZW7JCKSGUe0iIjqSF5eHtzd3WFvb48PPvgAM2fOlLskIpIZgxYRERGRjvBbh0REREQ6wqBFREREpCO8GF5GKpUKV69eRZMmTXhbDCIiIj0hCAJu374NFxcXtZvYS2HQktHVq1fh6uoqdxlERERUC5cvX8YzzzxTbR8GLRk1adIEwMN/KFtbW5mrISIiopooKSmBq6ur+DleHQYtGVVOF9ra2jJoERER6ZmaXPbDi+GJiIiIdIRBi4iIiEhHGLSIiIiIdITXaOmBiooK3L9/X+4yqB6Ym5s/8avCRESkPxi0GjBBEKBUKlFUVCR3KVRPTExM4O7uDnNzc7lLISKiOsCg1YBVhqyWLVvC2tqai5oauMoFbK9du4bWrVvz35uIyAAwaDVQFRUVYshq3ry53OVQPWnRogWuXr2KBw8ewMzMTO5yiIjoKfFikAaq8posa2trmSuh+lQ5ZVhRUSFzJUREVBcYtBo4Th8ZF/57ExEZFgYtIiIiIh1h0CIiIiLSEQYtqnNhYWFQKBRQKBQwMzODo6MjXnnlFSQmJkKlUtV4P0lJSbC3t9ddoURERDrGoEU60bdvX1y7dg15eXn48ccf0adPH4wdOxYDBgzAgwcP5C6PiIioXjBokU5YWFjAyckJrVq1wnPPPYfJkycjNTUVP/74I5KSkgAACxYsQNeuXWFjYwNXV1d88MEHuHPnDgBg7969GDFiBIqLi8XRsalTpwIAvvnmG3Tv3h1NmjSBk5MT3nrrLVy/fl2mV0pERA2RIAjYuPFP+PsL2LpVvjoYtPSIIAgoLy+v94cgCHVS/0svvYRu3bphy5YtAB6ugr548WKcOnUKa9aswe7duzFx4kQAgL+/PxYtWgRbW1tcu3YN165dw/jx4wE8XPpi+vTpOHbsGFJSUpCXl4ewsLA6qZGIiPTfrVu3MG3aNJw5sxQWFnsxa5Z8tXDBUj1y//59xMfH1/txo6Ki6uyWMB06dMDx48cBABEREWK7m5sbZsyYgdGjR+OLL76Aubk57OzsoFAo4OTkpLaPd955R/zfzz77LBYvXowePXrgzp07aNy4cZ3USURE+ikrKwtpaWni702btoCc/y3OoEX1ShAEca2on376CfHx8Th79ixKSkrw4MED3Lt3D3fv3q12odYjR45g6tSpOHbsGG7duiVeYJ+fn49OnTrVy+sgIqKGRaVSYeHCheIlKADQv39/xMZ2kbEqBi29YmZmhqioKFmOW1fOnDkDd3d35OXlYcCAAXj//fcxc+ZMNGvWDL/++ivCw8NRXl5eZdAqLS1FUFAQgoKCsHbtWrRo0QL5+fkICgpCeXl5ndVJRET6488//8TSpUvV2iIiImBnZydTRX9j0NIjCoWizqbw5LB7926cOHECn3zyCY4cOQKVSoX58+fDxOThpYIbN25U629ubq5xK5qzZ8/izz//xKxZs+Dq6goAOHz4cP28ACIianB+/fVXpKeni787OTlh1KhRDeZOGwxapBNlZWVQKpWoqKhAQUEB0tLSEB8fjwEDBiA0NBQnT57E/fv3sWTJEgwcOBD79+9HQkKC2j7c3Nxw584dpKeno1u3brC2tkbr1q1hbm6OJUuWYPTo0Th58iSmT58u06skIiK5qFQqzJo1S7w3MAAEBwejW7duMlalid86JJ1IS0uDs7Mz3Nzc0LdvX+zZsweLFy9GamoqTE1N0a1bNyxYsACzZ89Gly5dsHbtWo0L/f39/TF69GiEhISgRYsWmDNnDlq0aIGkpCRs2rQJnTp1wqxZszBv3jyZXiUREcmhoKAA06dPVwtZkZGRDS5kAYBCqKvv7pPWSkpKYGdnh+LiYtja2qo9d+/ePeTm5sLd3R2WlpYyVUj1jf/uRETV2717N3755Rfx99atW4t3JKkv1X1+P072Ea1ly5bBzc0NlpaW8PX1xcGDB6vtv2nTJnTo0AGWlpbo2rUrtm/frva8IAiIiYmBs7MzrKysEBgYiPPnz0vuq6ysDF5eXlAoFMjJyRHb9+7di8GDB8PZ2Rk2Njbw8vLC2rVr1bZNSkoSF9KsfPCDkYiISDcqKioQFxenFrLeeOMNjBgxosFcjyVF1qCVnJyMyMhIxMbG4ujRo+jWrRuCgoKqXOU7IyMDQ4cORXh4OLKzsxEcHIzg4GCcPHlS7DNnzhwsXrwYCQkJyMrKgo2NDYKCgnDv3j2N/U2cOBEuLi6Sx/m///s/bN68GcePH8eIESMQGhqKbdu2qfV7dDHNa9eu4dKlS095RoiIiOhxV69exYwZM9TaJkyYgM6dO8tUUc3JOnXo6+uLHj16iF/JVKlUcHV1xZgxYzBp0iSN/iEhISgtLVULPL169YKXlxcSEhIgCAJcXFwwbtw4cRXx4uJiODo6IikpCUOGDBG3+/HHHxEZGYnNmzejc+fOyM7OhpeXV5W19u/fH46OjkhMTATwcEQrIiICRUVFtX79nDqkx/HfnYhI3bZt23DkyBHxdw8PD7z11lsyVqQnU4fl5eU4cuQIAgMD/y7GxASBgYHIzMyU3CYzM1OtPwAEBQWJ/XNzc6FUKtX62NnZwdfXV22fBQUFGDlyJL755ptqF8Z8VHFxMZo1a6bWdufOHbRp0waurq4YPHgwTp06Ve0+ysrKUFJSovYgIiIiTX/99Rfi4uLUQtbQoUNlD1naki1o3bhxAxUVFXB0dFRrd3R0hFKplNxGqVRW27/yZ3V9BEFAWFgYRo8eje7du9eo1o0bN+LQoUMYMWKE2Obp6YnExESkpqbi22+/hUqlgr+/P65cuVLlfuLj42FnZyc+KteBIiIior+tX78ec+bMUWtLT/8U7du3l6mi2pP9Yvj6tmTJEty+fbvGK6zv2bMHI0aMwJdffqk2F+zn54fQ0FB4eXkhICAAW7ZsQYsWLbBixYoq9xUVFYXi4mLxcfny5ad+PURERIYkLi4Ov/32m1rbjh2xGD9ePy+nkC1oOTg4wNTUFAUFBWrtBQUFGjcRruTk5FRt/8qf1fXZvXs3MjMzYWFhgUaNGqFdu3YAgO7du2P48OFq2/38888YOHAgFi5ciNDQ0Gpfj5mZGby9vXHhwoUq+1hYWMDW1lbtQURERA9npeLi4tTabt1yhbd3LDIygEGDZCrsKckWtMzNzeHj46O2bL5KpUJ6ejr8/Pwkt/Hz81PrDwC7du0S+7u7u8PJyUmtT0lJCbKyssQ+ixcvxrFjx5CTk4OcnBxxeYjk5GTMnDlT3G7v3r3o378/Zs+ejVGjRj3x9VRUVODEiRNwdnau4RkgIiIi4OEo1uMzQmPGjMGiRe/obcCqJOsteCIjIzF8+HB0794dPXv2xKJFi1BaWipeCxUaGopWrVqJK4aPHTsWAQEBmD9/Pvr3748NGzbg8OHDWLlyJYCH9wKMiIjAjBkz4OHhAXd3d0yZMgUuLi4IDg4G8HBhs0c1btwYANC2bVs888wzAB5OFw4YMABjx47F66+/Ll7fZW5uLl4QP23aNPTq1Qvt2rVDUVER5s6di0uXLuHdd9/V7UkjIiIyII+PYgGAt3csHvv+md6SNWiFhISgsLAQMTExUCqV8PLyQlpamngxe35+vnjDYeDhLVnWrVuH6OhoTJ48GR4eHkhJSUGXLl3EPhMnTkRpaSlGjRqFoqIi9O7dG2lpaVp9VX7NmjW4e/cu4uPj1W4LExAQgL179wIAbt26hZEjR0KpVKJp06bw8fFBRkYGOnXq9JRnhWoqLCwMRUVFSElJAQC8+OKL8PLywqJFi2q9z7rYBxERPVleXh7WrFmj1mZtbY0JEybIVJFu8BY8MjLUdbTCwsLE//OYmZmhdevWCA0NxeTJk9GoUd1l+8eD1s2bN2FmZoYmTZo8cdu9e/eiT58+uHXrFuzt7cV2bfahC/r8705EVFNSo1gff/wxmjZtKkM12tNmHS1ZR7TIcPXt2xerV69GWVkZtm/fjg8//BBmZmYa3/YsLy+Hubl5nRzz8XXO5NoHERFVTSpkxcbGylBJ/TC65R2oflhYWMDJyQlt2rTB+++/j8DAQGzduhVhYWEIDg7GzJkz4eLiAk9PTwDA5cuX8e9//xv29vZo1qwZBg8ejLy8PHF/FRUViIyMhL29PZo3b46JEyfi8cHYF198EREREeLvZWVl+PTTT+Hq6goLCwu0a9cOX331FfLy8tCnTx8AQNOmTaFQKBAWFia5j1u3biE0NBRNmzaFtbU1+vXrp3bvzKSkJNjb22PHjh3o2LEjGjdujL59++LatWtin71796Jnz56wsbGBvb09/vGPf/B2TURkdI4ePaoRspydnQ06ZAEMWlRPrKysUF5eDgBIT0/HuXPnsGvXLmzbtg33799HUFAQmjRpgl9++QX79+8XA0vlNvPnz0dSUhISExPx66+/4ubNm/juu++qPWZoaCjWr1+PxYsX48yZM1ixYgUaN24MV1dXbN68GQBw7tw5XLt2DZ9//rnkPsLCwnD48GFs3boVmZmZEAQBr776Ku7fvy/2uXv3LubNm4dvvvkG+/btQ35+vngLqAcPHiA4OBgBAQE4fvw4MjMzMWrUqAZ9A1QioroWFxeH77//Xq1t3LhxNfpWv77j1CHplCAISE9Px44dOzBmzBgUFhbCxsYGq1atEqcMK1fWX7VqlRhAVq9eDXt7e+zduxf//Oc/sWjRIkRFReFf//oXACAhIQE7duyo8ri//fYbNm7ciF27dom3ZHr22WfF5yunCFu2bKl2jdajzp8/j61bt2L//v3w9/cHAKxduxaurq5ISUnBm2++CQC4f/8+EhIS0LZtWwDARx99hGnTpgF4OI9fXFyMAQMGiM937NhR+xNJRKSHBEEQ3w8f5e0di///pX+DxxEtI7F1K+Dv//Bnfdi2bRsaN24MS0tL9OvXDyEhIZg6dSoAoGvXrmrXZR07dgwXLlxAkyZN0LhxYzRu3BjNmjXDvXv3cPHiRRQXF+PatWvw9fUVt2nUqFG1t1DKycmBqakpAgICav0azpw5g0aNGqkdt3nz5vD09MSZM2fENmtrazFEAQ+Hwq9fvw7gYaALCwtDUFAQBg4ciM8//1xtWpGIyFBt375dI2SZmzdFbGys3q+NpQ2OaBmJWbOAzMyHP+vjD7xPnz5Yvnw5zM3N4eLiovZtQxsbG7W+d+7cgY+PD9auXauxnxYtWtTq+FZWVrXarjbMzMzUflcoFGrXj61evRoff/wx0tLSkJycjOjoaOzatQu9evWqtxqJiOqT1AXv48eP13j/NwYc0TISkyYBfn4Pf9YHGxsbtGvXDq1bt37ikg7PPfcczp8/j5YtW6Jdu3Zqj8obcDs7OyMrK0vc5sGDB2p3dH9c165doVKp8PPPP0s+XzmiVlFRUeU+OnbsiAcPHqgd988//8S5c+e0Xi/N29sbUVFRyMjIQJcuXbBu3Tqttici0gcqlarKbxUaY8gCGLSMxqBBaLD3ivrPf/4DBwcHDB48GL/88gtyc3Oxd+9efPzxx7hy5QqAh3cFmDVrFlJSUnD27Fl88MEHKCoqqnKfbm5uGD58ON555x2kpKSI+9y4cSMAoE2bNlAoFNi2bRsKCwtx584djX14eHhg8ODBGDlyJH799VccO3YMb7/9Nlq1aoXBgwfX6LXl5uYiKioKmZmZuHTpEnbu3Inz58/zOi0iMjgJCQmYPn26Rru3t2F/q/BJGLRIdtbW1ti3bx9at26Nf/3rX+jYsSPCw8Nx7949cSG4cePGYdiwYRg+fDj8/PzQpEkTvPbaa9Xud/ny5XjjjTfwwQcfoEOHDhg5ciRKS0sBAK1atUJcXBwmTZoER0dHfPTRR5L7WL16NXx8fDBgwAD4+flBEARs375dY7qwutd29uxZvP7662jfvj1GjRqFDz/8EO+9954WZ4iIqGGLi4tDQUGBWtukSZOM7nosKVwZXkaGujI81R7/3YlIn5SXl6vdqq6Soa+NxZXhiYiISKekrsW6e9ces2ePlaGahotTh0RERKQVqZC1c2c0/vEPhqzHcUSLiIiIauT27dtYsGCBRntsbCwMfLaw1hi0iIiI6ImkRrHKy63g6ztRhmr0B4NWA8fvKhgX/nsTUUMkFbJiYmJ439YaYNBqoCqXD7h79269rnJO8qq8ibapqanMlRARAZcvX0ZiYqJGu7d3LJixaoZBq4EyNTWFvb29eM88a2tr/peDgVOpVCgsLIS1tfUTV9MnItI1qVGsO3ccMHfuhzJUo7/4bt6AOTk5AYAYtsjwmZiYoHXr1gzVRCQrqZC1YUMsZs+WoRg9xwVLZVTTBc8qKipw//79eqyM5GJubg4TE666QkTyyMnJQWpqqka7oS9Aqi0uWGpgTE1Nec0OERHplNQolrOzM0aNGiVDNYaDQYuIiMjISYUsb2/ep7AuMGgREREZqbS0NGRlZWm0M2TVHQYtIiIiIyQ1imVr64FPPnlLhmoMF6+6JSIiMjJSIWvq1Fhs2sSQVdc4okVERGQkli1bhhs3bmi0e3vHws8PmDRJhqIMHIMWERGREZAaxfr9939gzZpAAOA1WTrCqUMiIiIDV9UCpK+/HihDNcaFI1pEREQGSipgAQ8XIOUapPWDQYuIiMgASYWs/v37o3v37jJUY7wYtIiIiAyMVMjibXTkwaBFRERkIKqbKiR58GJ4IiIiAyAVsg4eHA5vb4YsOXFEi4iISI+pVCpMnz5do52jWA0DgxYREZGe4lRhw8epQyIiIj0kFbJWrfqIU4UNDEe0iIiI9EhZWRlmzZql0b5jRyyWLeMK7w0NgxYREZGe4AKk+odTh0RERHpAKmSlp0/kVGEDJ3vQWrZsGdzc3GBpaQlfX18cPHiw2v6bNm1Chw4dYGlpia5du2L79u1qzwuCgJiYGDg7O8PKygqBgYE4f/685L7Kysrg5eUFhUKBnJwcteeOHz+O559/HpaWlnB1dcWcOXO0roWIiOhp3bp1q8oFSPfts+JUYQMna9BKTk5GZGQkYmNjcfToUXTr1g1BQUG4fv26ZP+MjAwMHToU4eHhyM7ORnBwMIKDg3Hy5Emxz5w5c7B48WIkJCQgKysLNjY2CAoKwr179zT2N3HiRLi4uGi0l5SU4J///CfatGmDI0eOYO7cuZg6dSpWrlypVS1ERERPIy4uDosXL9Zo5yiW/lAIgiDIdXBfX1/06NEDS5cuBfBwLRBXV1eMGTMGkyZN0ugfEhKC0tJSbNu2TWzr1asXvLy8kJCQAEEQ4OLignHjxmH8+PEAgOLiYjg6OiIpKQlDhgwRt/vxxx8RGRmJzZs3o3PnzsjOzoaXlxcAYPny5fjvf/8LpVIJc3NzAMCkSZOQkpKCs2fP1qiWmigpKYGdnR2Ki4tha2urxZkjIiJDJzWKFR0dDVNTUxmqoUdp8/kt24hWeXk5jhw5gsDAwL+LMTFBYGAgMjMzJbfJzMxU6w8AQUFBYv/c3FwolUq1PnZ2dvD19VXbZ0FBAUaOHIlvvvkG1tbWksd54YUXxJBVeZxz587h1q1bNapFSllZGUpKStQeREREj8rLy5MMWd7esQxZeki2bx3euHEDFRUVcHR0VGt3dHQUR40ep1QqJfsrlUrx+cq2qvoIgoCwsDCMHj0a3bt3R15enuRx3N3dNfZR+VzTpk2fWIuU+Pj4Kr8xQkRExAVIDY/RLe+wZMkS3L59G1FRUfV+7KioKERGRoq/l5SUwNXVtd7rICKihkcqZMXExEChUMhQDdUV2YKWg4MDTE1NUVBQoNZeUFAAJycnyW2cnJyq7V/5s6CgAM7Ozmp9Kq+/2r17NzIzM2FhYaG2n+7du+M///kP1qxZU+VxHj3Gk2qRYmFhoXFcIiIybkeOHFG73reSt3csmLH0n2zXaJmbm8PHxwfp6elim0qlQnp6Ovz8/CS38fPzU+sPALt27RL7u7u7w8nJSa1PSUkJsrKyxD6LFy/GsWPHkJOTg5ycHHFJhuTkZMycOVM8zr59+3D//n2143h6eqJp06Y1qoWIiOhJ4uLiJENWbGwsl20wFIKMNmzYIFhYWAhJSUnC6dOnhVGjRgn29vaCUqkUBEEQhg0bJkyaNEnsv3//fqFRo0bCvHnzhDNnzgixsbGCmZmZcOLECbHPrFmzBHt7eyE1NVU4fvy4MHjwYMHd3V3466+/JGvIzc0VAAjZ2dliW1FRkeDo6CgMGzZMOHnypLBhwwbB2tpaWLFihVa1PElxcbEAQCguLq7xNkREZBimTp2q8QAEwc9P7sroSbT5/Jb1Gq2QkBAUFhYiJiYGSqUSXl5eSEtLEy8yz8/Ph4nJ34Nu/v7+WLduHaKjozF58mR4eHggJSUFXbp0EftMnDgRpaWlGDVqFIqKitC7d2+kpaXB0tKyxnXZ2dlh586d+PDDD+Hj4wMHBwfExMRg1KhRWtVCRET0uO+//x5Hjx7VaPf2joWfHyCxuhHpMVnX0TJ2XEeLiMi4SF3wbmJijilT6v8LWlR72nx+G923DomIiORQ1W10yLAxaBEREenQ8uXLJW8tx5BlHBi0iIiIdERqFMvV1RXvvPOODNWQHBi0iIiIdIBThQQwaBEREdUp3kaHHsWgRUREVEekQlavXr0QFBQkQzXUEDBoERER1QFOFZIUBi0iIqKnUNVUobc3QxbJeK9DIiIifScVsk6eHARvb96rkB7iiBYREZGWBEHAtGnTNNq9vWPB2UJ6FIMWERGRFvitQtIGgxYREVENSYWs4cOHw83Nrf6LIb3AoEVERPQE9+/fx2effabRzlEsehIGLSIiomrwW4X0NBi0iIiIqiAVsn7+eSx277av/2JILzFoERERPaakpAQLFy7UaN+xIxaTJslQEOktBi0iIqJHVDVVWF4ei4yMei6G9B6DFhER0f8nFbI++ywKPj7mDFlUKwxaRERk9C5fvozExESN9vLyWPj4gNOFVGsMWkREZNS4ACnpEoMWEREZLamQtWNHDDIyFDJUQ4aIQYuIiIxOTk4OUlNTNdr5rUKqawxaRERkVKqbKuRsIdU1Bi0iIjIaUiGL12KRLjFoERGRwfviix0oLDyg0c7b6JCuMWgREZFB47cKSU4MWkREZLA4VUhyY9AiIiKD89VXX+HKlSsa7QxZVN8YtIiIyKBIjWKZm5sjKipKhmrI2DFoERGRweBUITU0DFpERKT3pk2bBkEQNNoZskhuDFpERKTXpEax7Ow8ERExRIZqiNQxaBERkd7iVCE1dAxaRESkd7g2FukLBi0iItIrUiErMDAQ//jHP2Sohqh6DFpERKQ3OFVI+oZBi4iIGjxOFZK+YtAiIqIGTSpkDR06FO3bt5ehGiLtmMhdwLJly+Dm5gZLS0v4+vri4MGD1fbftGkTOnToAEtLS3Tt2hXbt29Xe14QBMTExMDZ2RlWVlYIDAzE+fPn1foMGjQIrVu3hqWlJZydnTFs2DBcvXpVfH7q1KlQKBQaDxsbG7FPUlKSxvOWlpZ1cEaIiAgAVCpVlVOFDFmkL2QNWsnJyYiMjERsbCyOHj2Kbt26ISgoCNevX5fsn5GRgaFDhyI8PBzZ2dkIDg5GcHAwTp48KfaZM2cOFi9ejISEBGRlZcHGxgZBQUG4d++e2KdPnz7YuHEjzp07h82bN+PixYt44403xOfHjx+Pa9euqT06deqEN998U60eW1tbtT6XLl2q4zNERGSc4uLiMH36dI32HTs4VUj6RSFILaVbT3x9fdGjRw8sXboUwMP/enF1dcWYMWMwadIkjf4hISEoLS3Ftm3bxLZevXrBy8sLCQkJEAQBLi4uGDduHMaPHw8AKC4uhqOjI5KSkjBkiPTidVu3bkVwcDDKyspgZmam8fyxY8fg5eWFffv24fnnnwfwcEQrIiICRUVFtX79JSUlsLOzQ3FxMWxtbWu9HyIiQyI1itWhw/v4/POWmDQJGDRIhqKIHqHN57dsI1rl5eU4cuQIAgMD/y7GxASBgYHIzMyU3CYzM1OtPwAEBQWJ/XNzc6FUKtX62NnZwdfXt8p93rx5E2vXroW/v79kyAKAVatWoX379mLIqnTnzh20adMGrq6uGDx4ME6dOvXkF05ERJL++uuvKqcKQ0JaIiODIYv0j2xB68aNG6ioqICjo6Nau6OjI5RKpeQ2SqWy2v6VP2uyz08//RQ2NjZo3rw58vPzkZqaKnnMe/fuYe3atQgPD1dr9/T0RGJiIlJTU/Htt99CpVLB398fV65cqfI1l5WVoaSkRO1BREQPR7HmzJmj0e7tzalC0m+yXwwvlwkTJiA7Oxs7d+6EqakpQkNDJW9I+t133+H27dsYPny4Wrufnx9CQ0Ph5eWFgIAAbNmyBS1atMCKFSuqPGZ8fDzs7OzEh6ura52/LiIifSM1ijVhwgTExsZyBIv0nmxBy8HBAaampigoKFBrLygogJOTk+Q2Tk5O1fav/FmTfTo4OKB9+/Z45ZVXsGHDBmzfvh0HDhzQOOaqVaswYMAAjVGyx5mZmcHb2xsXLlyosk9UVBSKi4vFx+XLl6vdJxGRIbtx44ZkyNqxIxbW1tYyVERU92QLWubm5vDx8UF6errYplKpkJ6eDj8/P8lt/Pz81PoDwK5du8T+7u7ucHJyUutTUlKCrKysKvdZeVzg4dTeo3Jzc7Fnzx6NaUMpFRUVOHHiBJydnavsY2FhAVtbW7UHEZExiouLw7JlyzTa16+PhcR3oYj0lqwLlkZGRmL48OHo3r07evbsiUWLFqG0tBQjRowAAISGhqJVq1aIj48HAIwdOxYBAQGYP38++vfvjw0bNuDw4cNYuXIlAEChUCAiIgIzZsyAh4cH3N3dMWXKFLi4uCA4OBgAkJWVhUOHDqF3795o2rQpLl68iClTpqBt27YaYSwxMRHOzs7o16+fRu3Tpk1Dr1690K5dOxQVFWHu3Lm4dOkS3n33XR2eMSIi/Sc1ihUdHQ1TU1NwoXcyNLIGrZCQEBQWFiImJgZKpRJeXl5IS0sTp+ny8/NhYvL3oJu/vz/WrVuH6OhoTJ48GR4eHkhJSUGXLl3EPhMnTkRpaSlGjRqFoqIi9O7dG2lpaeJiotbW1tiyZQtiY2NRWloKZ2dn9O3bF9HR0bCwsBD3o1KpkJSUhLCwMJiammrUfuvWLYwcORJKpRJNmzaFj48PMjIy0KlTJ12dLiIivfb777/jm2++0WjnbXTIkMm6jpax4zpaRGQseK9CMiTafH7zXodERKRTUiErJiYGCoVChmqI6heDFhER6cTBgwfx448/arR7e8eCGYuMBYMWERHVOU4VEj3EoEVERHWqqtvoEBkjBi0iIqoTS5d+jz//PKrRzpBFxkzrBUtNTU1x/fp1jfY///xTchkEIiIyfHFxcRohy8zMjCGLjJ7WI1pVrQZRVlYGc3Pzpy6IiIj0i9RUobc371NIBGgRtBYvXgzg4errq1atQuPGjcXnKioqsG/fPnTo0KHuKyQiogYpMTFR8p6tHMUi+luNg9bChQsBPBzRSkhIUJsmNDc3h5ubGxISEuq+QiIianCkRrE6dOiAkJAQGaoharhqHLRyc3MBAH369MGWLVvQtGlTnRVFREQNF79VSFRzWl+jtWfPHl3UQUREDRzXxiLSntZB65133qn2+cTExFoXQ0REDZNUyHrxxRcREBAgQzVE+kProHXr1i213+/fv4+TJ0+iqKgIL730Up0VRkREDQOnColqT+ug9d1332m0qVQqvP/++2jbtm2dFEVERPLjVCHR09N6wVLJnZiYIDIyUvxmIhER6TepkHXs2L/g7c2QRaSNOrsFz8WLF/HgwYO62h0REclAEARMmzZNo52jWES1o3XQioyMVPtdEARcu3YNP/zwA4YPH15nhRERUf3iVCFR3dM6aGVnZ6v9bmJighYtWmD+/PlP/EYiERE1TFIhKzw8HM8884wM1RAZDq6jRURkxO7fv4/PPvtMo52jWER1o9bXaF2/fh3nzp0DAHh6eqJly5Z1VhQREeleVVOFvOCdqO5oHbRKSkrw4YcfYv369VCpVAAAU1NThISEYNmyZbCzs6vzIomIqG5Jhay9eyOxZ08TGaohMlxaL+8wcuRIZGVl4YcffkBRURGKioqwbds2HD58GO+9954uaiQiojpy+/ZtyZC1Y0csPvmEIYuorikEQRC02cDGxgY7duxA79691dp/+eUX9O3bF6WlpXVaoCErKSmBnZ0diouLYWtrK3c5RGTg+K1Corqhzee31lOHzZs3l5wetLOzQ9OmTbXdHRER1QOpkBUVFQVzc3MZqiEyHlpPHUZHRyMyMhJKpVJsUyqVmDBhAqZMmVKnxRER0dP5448/qrxXIUMWke5pPaK1fPlyXLhwAa1bt0br1q0BAPn5+bCwsEBhYSFWrFgh9j169GjdVUpERFrhtwqJ5Kd10Bo8eDAUCoUuaiEiojoifcF7DDIy+P5NVJ+0DlpTp07VQRlERFQXTp48ic2bN2u079gRi0mTZCiIyMhpfY3Ws88+iz///FOjvaioCM8++2ydFEVERNqLi4uTDFmxsbHIyAAGDZKhKCIjp/WIVl5eHioqKjTay8rKcOXKlTopioiItCM1VejtHctwRSSzGgetrVu3iv97x44daks8VFRUID09He7u7nVbHRERVWvXrl3IyMjQaGfIImoYahy0goODAQAKhQLDhw9Xe87MzAxubm6YP39+nRZHRERV4wKkRA1fjYNW5X0N3d3dcejQITg4OOisKCIiql5Va2MRUcOi9TVaubm5uqiDiIhqICkpCZcuXdJoZ8giapi0DlrTpk2r9vmYmJhaF0NERFWTGsWys7NDRERE/RdDRDWiddD67rvv1H6/f/8+cnNz0ahRI7Rt25ZBi4hIBzhVSKSftA5a2dnZGm0lJSUICwvDa6+9VidFERHRQ/Hx8SgvL9doZ8gi0g8KQRCEutjRiRMnMHDgQOTl5dXF7oxCSUkJ7OzsUFxcDFtbW7nLIaIGRnptLG8M4roNRLLS5vNb6xGtqhQXF6O4uLiudkdEZNQ4VUhkGLS+Bc/ixYvVHp9//jkmTZqEkJAQ9OvXT+sCli1bBjc3N1haWsLX1xcHDx6stv+mTZvQoUMHWFpaomvXrti+fbva84IgICYmBs7OzrCyskJgYCDOnz+v1mfQoEFo3bo1LC0t4ezsjGHDhuHq1avi83l5eVAoFBqPAwcOaFULEZG24uLiGLKIDIjWU4ePr/5uYmKCFi1a4KWXXkJUVBSaNGlS430lJycjNDQUCQkJ8PX1xaJFi7Bp0yacO3cOLVu21OifkZGBF154AfHx8RgwYADWrVuH2bNn4+jRo+jSpQsAYPbs2YiPj8eaNWvg7u6OKVOm4MSJEzh9+jQsLS0BAAsXLoSfnx+cnZ3xxx9/YPz48eL+gYdBy93dHT/99BM6d+4sHr958+YwMzOrcS1PwqlDInqUVMDq168fevbsKUM1RFQVbT6/6+wardrw9fVFjx49sHTpUgAPF0V1dXXFmDFjMEniNvMhISEoLS3Ftm3bxLZevXrBy8sLCQkJEAQBLi4uGDdunBieiouL4ejoiKSkJAwZMkSyjq1btyI4OBhlZWUwMzMTg1Z2dja8vLwkt3lSLTXBoEVEwMOReKmlcziKRdQwafP5rfXUIQAUFRXh8OHDOHz4MIqKimqzC5SXl+PIkSMIDAz8uxgTEwQGBiIzM1Nym8zMTLX+ABAUFCT2z83NhVKpVOtjZ2cHX1/fKvd58+ZNrF27Fv7+/uJoVaVBgwahZcuW6N27t9q9HmtSi5SysjKUlJSoPYjIuMXFxTFkERkwrYJWXl4e+vfvDwcHB/j6+sLX1xcODg4YMGCA1t82vHHjBioqKuDo6KjW7ujoCKVSKbmNUqmstn/lz5rs89NPP4WNjQ2aN2+O/Px8pKamis81btwY8+fPx6ZNm/DDDz+gd+/eCA4OVgtbT6pFSnx8POzs7MSHq6trlX2JyPBJTRW+/fbbDFlEBqTG3zq8fPkyevXqBTMzM0yfPh0dO3YEAJw+fRrLly+Hn58fDh06hGeeeUZnxdalCRMmIDw8HJcuXUJcXBxCQ0Oxbds2KBQKODg4IDIyUuzbo0cPXL16FXPnzn2qr1VHRUWp7bekpIRhi8gIVVRUYMaMGRrtDFhEhqfGQWvq1Knw9PTEjh07xIvKASA4OBiffPIJ+vbti6lTp2LVqlU12p+DgwNMTU1RUFCg1l5QUAAnJyfJbZycnKrtX/mzoKAAzs7Oan0ev9bKwcEBDg4OaN++PTp27AhXV1ccOHAAfn5+ksf29fXFrl27alyLFAsLC1hYWFT5PBEZPqlRLIAhi8hQ1XjqMC0tDTNnzlQLWZWsrKwwffp0rZY3MDc3h4+PD9LT08U2lUqF9PT0KsOOn5+fWn8A2LVrl9jf3d0dTk5Oan1KSkqQlZVV5T4rjws8vIaqKjk5OWrh7Um1EBE9Tipk/fLLh/D2ZsgiMlQ1HtG6ceMG3Nzcqnz+2Wefxc2bN7U6eGRkJIYPH47u3bujZ8+eWLRoEUpLSzFixAgAQGhoKFq1aoX4+HgAwNixYxEQEID58+ejf//+2LBhAw4fPoyVK1cCABQKBSIiIjBjxgx4eHiIyzu4uLggODgYAJCVlYVDhw6hd+/eaNq0KS5evIgpU6agbdu2Ykhas2YNzM3N4e3tDQDYsmULEhMT1UbrnlQLEVGlu3fvYu7cuRrtHMUiMnw1DlrOzs44ffp0lddgnTx5stppMykhISEoLCxETEwMlEolvLy8kJaWJl5knp+fDxOTvwfd/P39sW7dOkRHR2Py5Mnw8PBASkqK2rpVEydORGlpKUaNGoWioiL07t0baWlp4kictbU1tmzZgtjYWJSWlsLZ2Rl9+/ZFdHS02rTe9OnTcenSJTRq1AgdOnRAcnIy3njjDa1qISLiVCGRcavxOloRERHYvXs30tPT0aJFC7Xnrl+/jldeeQV9+vTBokWLdFGnQeI6WkSGTSpkTZw4EVZWVjJUQ0R1RScLlt66dQu+vr5QKpV4++230aFDBwiCgDNnzmDdunVwcnLCgQMH0KxZszp5EcaAQYvIMN24cQPLli3TaOcoFpFh0MlNpZs2bYqsrCxMnjwZGzZsEBcqtbe3x1tvvYXPPvuMIYuIjB6nConoUbW6BY8gCCgsLAQAtGjRAgqFos4LMwYc0SIyLFIhKzo6GqampjJUQ0S6opMRrUcpFArJmz4TERmj3NxcfP311xrtHMUioloFLSIieqiqqUKujUVEAIMWEVGtSYUsjmIR0aMYtIiItHT48GH88MMPGu0MWUT0OAYtIiIt8FuFRKSNGgWtxYsX13iHH3/8ca2LISJqyDhVSETaqtHyDu7u7jXbmUKB33///amLMhZc3oFIP2zfvh2HDh3SaGfIIjJOdb68Q25ubp0URkSkb6RGsWxtbfHJJ5/IUA0R6ZtaX6NVXl6O3NxctG3bFo0a8VIvIjI8nCokoqdlou0Gd+/eRXh4OKytrdG5c2fk5+cDAMaMGYNZs2bVeYFERPXt22+/lQxZXBuLiLSlddCKiorCsWPHsHfvXlhaWortgYGBSE5OrtPiiIjqW1xcHC5evKjW1q1bN8TGxmLQIJmKIiK9pfWcX0pKCpKTk9GrVy+1exx27txZ482JiEifSI1i7dgRC84WElFtaR20CgsLJe9zWFpayptLE5FeWrBgAW7fvq3RvmNHLCZNkqEgIjIYWk8ddu/eXW1F5MpwtWrVKvj5+dVdZURE9SAuLk4jZL366quIjY1FRgY4XUhET0XrEa3PPvsM/fr1w+nTp/HgwQN8/vnnOH36NDIyMvDzzz/rokYiIp3gtwqJSNe0HtHq3bs3cnJy8ODBA3Tt2hU7d+5Ey5YtkZmZCR8fH13USERUp+Li4hiyiKhe1GoBrLZt2+LLL7+s61qIiHROKmAdOhSKUaNqdgcMIiJt1CholZSU1HiHvJUMETVEgiBg2rRpGu0cxSIiXapR0LK3t6/xNworKiqeqiAioromNYoFMGQRke7VKGjt2bNH/N95eXmYNGkSwsLCxG8ZZmZmYs2aNYiPj9dNlUREtSQVsj788EM4ODjIUA0RGRuFIAiCNhu8/PLLePfddzF06FC19nXr1mHlypXYu3dvXdZn0LS5+zcRaefBgweYOXOmRjtHsYjoaWnz+a110LK2tsaxY8fg4eGh1v7bb7/By8sLd+/e1b5iI8WgRaQbnCokIl3S5vNb6+UdXF1dJb9xuGrVKri6umq7OyKiOiUVsnbvnsAbQhORLLRe3mHhwoV4/fXX8eOPP8LX1xcAcPDgQZw/fx6bN2+u8wKJiGri7t27mDt3rkb7vHmxkLi7DhFRvdA6aL366qs4f/48vvjiC5w9exYAMHDgQIwePZojWkQki6qmCufNi8XHH9dzMUREj9D6Gi2qO7xGi+jpSYWsnTv/i/37a7UeMxHRE2nz+V2rd6KioiJ89dVXOHPmDACgc+fOeOedd2BnZ1eb3RERae3GjRtYtmyZRvuOHbGYNEmGgoiIJGg9onX48GEEBQXBysoKPXv2BAAcOnQIf/31F3bu3InnnntOJ4UaIo5oEdUOv1VIRHLS6fIOzz//PNq1a4cvv/wSjRo9HBB78OAB3n33Xfz+++/Yt29f7Ss3MgxaRNqTClkxMTE1vnsFEdHT0mnQsrKyQnZ2Njp06KDWfvr0aXTv3p3raGmBQYuo5vLz87F69WqNdo5iEVF90+k1Wra2tsjPz9cIWpcvX0aTJk203R0R0RNJjWKZm5sjKipKhmqIiGpO66AVEhKC8PBwzJs3D/7+/gCA/fv3Y8KECRq35SEielpSIcvbOxaDBslQDBGRlrQOWvPmzYNCoUBoaCgePHgAADAzM8P777+PWbNm1XmBRGScTp48KbkIMqcKiUif1Hodrbt37+LixYsAgLZt28La2rpOCzMGvEaLSJrUKJanpyeGDBkiQzVEROp0vo4W8PDm0l27dq3t5kREkqRCFkexiEhf1fim0u+8806NHtpatmwZ3NzcYGlpCV9fXxw8eLDa/ps2bUKHDh1gaWmJrl27Yvv27WrPC4KAmJgYODs7w8rKCoGBgTh//rxan0GDBqF169awtLSEs7Mzhg0bhqtXr4rP7927F4MHD4azszNsbGzg5eWFtWvXqu0jKSkJCoVC7WFpaan16yeih3799VeGLCIyODUOWklJSdizZw+Kiopw69atKh/aSE5ORmRkJGJjY3H06FF069YNQUFBuH79umT/jIwMDB06FOHh4cjOzkZwcDCCg4Nx8uRJsc+cOXOwePFiJCQkICsrCzY2NggKCsK9e/fEPn369MHGjRtx7tw5bN68GRcvXsQbb7yhdpz/+7//w+bNm3H8+HGMGDECoaGh2LZtm1o9tra2uHbtmvi4dOmSVq+fiB6Ki4tDenq6Wts//vEPhiwi0ns1vkbrww8/xPr169GmTRuMGDECb7/9Npo1a/ZUB/f19UWPHj2wdOlSAIBKpYKrqyvGjBmDSRL30AgJCUFpaala4OnVqxe8vLyQkJAAQRDg4uKCcePGYfz48QCA4uJiODo6IikpqcrrO7Zu3Yrg4GCUlZXBzMxMsk///v3h6OiIxMREAA+DZ0REBIqKimr9+nmNFhGnColI/2jz+V3jEa1ly5bh2rVrmDhxIr7//nu4urri3//+N3bs2IHaXE9fXl6OI0eOIDAw8O9iTEwQGBiIzMxMyW0yMzPV+gNAUFCQ2D83NxdKpVKtj52dHXx9favc582bN7F27Vr4+/tXGbKAh4Ht8WB5584dtGnTBq6urhg8eDBOnTpV/YsmIlFKSgpDFhEZvBoHLQCwsLDA0KFDsWvXLpw+fRqdO3fGBx98ADc3N9y5c0erA9+4cQMVFRVwdHRUa3d0dIRSqZTcRqlUVtu/8mdN9vnpp5/CxsYGzZs3R35+PlJTU6usdePGjTh06BBGjBghtnl6eiIxMRGpqan49ttvoVKp4O/vjytXrlS5n7KyMpSUlKg9iIxRXFwcjh07ptY2aNAghiwiMjhaBS21DU1MoFAoIAgCKioq6rKmejFhwgRkZ2dj586dMDU1RWhoqOTI3J49ezBixAh8+eWX6Ny5s9ju5+eH0NBQeHl5ISAgAFu2bEGLFi2wYsWKKo8ZHx8POzs78eHq6qqT10bUkFU1iuXt7S1DNUREuqVV0CorK8P69evxyiuvoH379jhx4gSWLl2K/Px8NG7cWKsDOzg4wNTUFAUFBWrtBQUFcHJyktzGycmp2v6VP2uyTwcHB7Rv3x6vvPIKNmzYgO3bt+PAgQNqfX7++WcMHDgQCxcuRGhoaLWvx8zMDN7e3rhw4UKVfaKiolBcXCw+Ll++XO0+iQzJypUrOVVIREanxkHrgw8+gLOzM2bNmoUBAwbg8uXL2LRpE1599VWYmGg/MGZubg4fHx+1bxqpVCqkp6fDz89Pchs/Pz+Nbybt2rVL7O/u7g4nJye1PiUlJcjKyqpyn5XHBR4GyUp79+5F//79MXv2bIwaNeqJr6eiogInTpyAs7NzlX0sLCxga2ur9iAyBnFxcbh27Zpa27BhwxiyiMjg1XjB0oSEBLRu3RrPPvssfv75Z/z888+S/bZs2VLjg0dGRmL48OHo3r07evbsiUWLFqG0tFS8Fio0NBStWrVCfHw8AGDs2LEICAjA/Pnz0b9/f2zYsAGHDx/GypUrAQAKhQIRERGYMWMGPDw84O7ujilTpsDFxQXBwcEAgKysLBw6dAi9e/dG06ZNcfHiRUyZMgVt27YVw9iePXswYMAAjB07Fq+//rp4fZe5ubl4Qfy0adPQq1cvtGvXDkVFRZg7dy4uXbqEd999t8avn8jQCYKAadOmabQzYBGRsahx0AoNDYVCoajTg4eEhKCwsBAxMTFQKpXw8vJCWlqaeDF7fn6+2miZv78/1q1bh+joaEyePBkeHh5ISUlBly5dxD4TJ05EaWkpRo0ahaKiIvTu3RtpaWniYqLW1tbYsmULYmNjUVpaCmdnZ/Tt2xfR0dGwsLAAAKxZswZ3795FfHy8GPIAICAgAHv37gUA3Lp1CyNHjoRSqUTTpk3h4+ODjIwMdOrUqU7PEZG+mjdvHkpLSzXaGbKIyJjU+l6H9PS4jhYZKqlrsd5//320bNlShmqIiOpWvdzrkIjocSqVCtOnT9do9/aOBTMWERkjBi0iqhNSo1gApwqJyLgxaBHRU5MKWePHj4eNjY0M1RARNRwMWkRUa+Xl5WpfGKnEUSwioocYtIioVjhVSET0ZAxaRKQ1qZA1efLkam/MTkRkjBi0iKjGbt++jQULFmi0cxSLiEgagxYR1QinComItMegRURPJBWypkyZUqv7nBIRGRMGLSKq0vXr17F8+XKNdo5iERHVDIMWEUmSGsWys7NDRERE/RdDRKSnGLSISINUyOIoFhGR9hi0iEiUm5uLr7/+WqOdIYuIqHYYtIgIgPQoVvv27TF06FAZqiEiMgwMWkTEqUIiIh1h0CIyYjk5OUhNTdVoZ8giIqobDFpERkpqFMvPzw///Oc/ZaiGiMgwMWgRGSFOFRIR1Q8GLSIjkpGRgV27dmm0M2QREekGgxaRkZAaxTpxIhihod1kqIaIyDgwaBEZAU4VEhHJg0GLyID98MMPOHz4sEY7QxYRUf1g0CIyUFKjWKGhoXB3d5ehGiIi48SgRWSAOFVIRNQwMGgRGZA1a9YgLy9Po50hi4hIHgxaRAZCahRr9OjRcHR0lKEaIiICGLSI9J4gCJg2bZpGO0exiIjkx6BFpMfmzZuH0tJSjXaGLCKihoFBi0hPSU0VfvLJJ7C1tZWhGiIiksKgRaRnHjx4gJkzZ2q0cxSLiKjhYdAi0iNSo1gAQxYRUUPFoEWkJ6RC1qRJk2BhYSFDNUREVBMMWkQN3L179zB79myNdo5iERE1fAxaRA0YpwqJiPQbgxZRAyUVsqKjo2FqaipDNUREVBsMWkQNTElJCRYuXKjRzlEsIiL9w6BF1IBIjWLZ29tj7NixMlRDRERPi0GLqIGQClleXjEYPFghQzVERFQXGLSIZHb9+nUsX75co51ThURE+s9E7gKWLVsGNzc3WFpawtfXFwcPHqy2/6ZNm9ChQwdYWlqia9eu2L59u9rzgiAgJiYGzs7OsLKyQmBgIM6fP6/WZ9CgQWjdujUsLS3h7OyMYcOG4erVq2p9jh8/jueffx6WlpZwdXXFnDlztK6F6Eni4uI0QpaXlxdDFhGRgZA1aCUnJyMyMhKxsbE4evQounXrhqCgIFy/fl2yf0ZGBoYOHYrw8HBkZ2cjODgYwcHBOHnypNhnzpw5WLx4MRISEpCVlQUbGxsEBQXh3r17Yp8+ffpg48aNOHfuHDZv3oyLFy/ijTfeEJ8vKSnBP//5T7Rp0wZHjhzB3LlzMXXqVKxcuVKrWoiqIzVVGBsbi8GDB8tQDRER6YJCEARBroP7+vqiR48eWLp0KQBApVLB1dUVY8aMwaRJkzT6h4SEoLS0FNu2bRPbevXqBS8vLyQkJEAQBLi4uGDcuHEYP348AKC4uBiOjo5ISkrCkCFDJOvYunUrgoODUVZWBjMzMyxfvhz//e9/oVQqYW5uDuDhCtwpKSk4e/ZsjWqpiZKSEtjZ2aG4uJg3AjYiubm5+PrrrzXaOYpFRKQftPn8lm1Eq7y8HEeOHEFgYODfxZiYIDAwEJmZmZLbZGZmqvUHgKCgILF/bm4ulEqlWh87Ozv4+vpWuc+bN29i7dq18Pf3h5mZmXicF154QQxZlcc5d+4cbt26VaNapJSVlaGkpETtQcYlLi5OI2S9+OKLDFlERAZKtqB148YNVFRUwNHRUa3d0dERSqVSchulUllt/8qfNdnnp59+ChsbGzRv3hz5+flITU194nEePcaTapESHx8POzs78eHq6lplXzI8VU0VBgQEyFANERHVB9kvhpfLhAkTkJ2djZ07d8LU1BShoaHQ9SxqVFQUiouLxcfly5d1ejxqGI4fP15lyCIiIsMm2/IODg4OMDU1RUFBgVp7QUEBnJycJLdxcnKqtn/lz4KCAjg7O6v18fLy0ji+g4MD2rdvj44dO8LV1RUHDhyAn59flcd59BhPqkWKhYUFLCwsqnyeDI9UwBo8eLDG3yMRERkm2Ua0zM3N4ePjg/T0dLFNpVIhPT0dfn5+ktv4+fmp9QeAXbt2if3d3d3h5OSk1qekpARZWVlV7rPyuMDDa6gqj7Nv3z7cv39f7Tienp5o2rRpjWohqmoUiyGLiMh4yDp1GBkZiS+//BJr1qzBmTNn8P7776O0tBQjRowAAISGhiIqKkrsP3bsWKSlpWH+/Pk4e/Yspk6disOHD+Ojjz4CACgUCkRERGDGjBnYunUrTpw4gdDQULi4uCA4OBgAkJWVhaVLlyInJweXLl3C7t27MXToULRt21YMSW+99RbMzc0RHh6OU6dOITk5GZ9//jkiIyNrXAsZr8OHD0uGrB07OFVIRGRsZF0ZPiQkBIWFhYiJiYFSqYSXlxfS0tLEi8zz8/NhYvJ3FvT398e6desQHR2NyZMnw8PDAykpKejSpYvYZ+LEiSgtLcWoUaNQVFSE3r17Iy0tDZaWlgAAa2trbNmyBbGxsSgtLYWzszP69u2L6OhocVrPzs4OO3fuxIcffggfHx84ODggJiYGo0aN0qoWMj5SAcvDIwxLl7aBxIolRERk4GRdR8vYcR0tw8IL3omIjIM2n9+81yHRU0pPT8evv/6q0c6QRUREDFpET0FqFOuDDz5AixYtZKiGiIgaGgYtoloQBAHTpk3TaOcoFhERPYpBi0hLO3bswIEDBzTaGbKIiOhxDFpEWpCaKvzkk0/4ZQYiIpJktLfgIdKGSqWqcm0shiwiIqoKR7SInmDjxo04c+aMWlujRo3xww/juDYWERFVi0GLqBpSo1iTJk2ChYUF/vtfGQoiIiK9wqBFJOHBgweYOXOmRjsveCciIm0waBE9ZsWKFVAqlWptrVu3Fu/BSUREVFMMWkSPkJoqjI6OhqmpqQzVEBGRvmPQIgJw7949zJ49W6OdU4VERPQ0GLTI6H322We4f/++Wtv//d//4bXXXpOpIiIiMhQMWmTUpKYKY2JioFAoZKiGiIgMDYMWGaWSkhIsXLhQo51ThUREVJcYtMjoSI1iPf/883jppZdkqIaIiAwZgxYZFamQxVEsIiLSFQYtMgqFhYX44osvNNoZsoiISJcYtMjgSY1ivfrqq+jRo4cM1RARkTFh0CKDxqlCIiKSE4MWGaT8/HysXr1ao50hi4iI6hODFhkcqVGsf//73+jYsaMM1RARkTFj0CKDwqlCIiJqSBi0yCCcPXsWycnJGu0MWUREJCcGLdJ7UqNYYWFhaNOmjQzVEBER/Y1Bi/QapwqJiKghY9AivXTq1Cn873//02hnyCIiooaEQYv0jtQo1pgxY9CsWTMZqiEiIqoagxbpFU4VEhGRPmHQIr2Qm5uLr7/+Wq3NwsICkyZNkqkiIiKiJ2PQogZPahSrvHwcYmMby1ANERFRzTFoUYMlCAKmTZum0T51aiz8/GQoiIiISEsMWtQgSS1A2qdPHxQVvQA/P4AzhkREpA8YtKjBkZoqnDx5MszMzAAAgwbVd0VERES1w6BFDYZKpcL06dM12vmtQiIi0lcMWtQg5OTkIDU1Va3t1VdfRY8ePWSqiIiI6OkxaJHspKYKp0yZAhMTExmqISIiqjsMWiSbiooKzJgxQ6OdU4VERGQoZB8yWLZsGdzc3GBpaQlfX18cPHiw2v6bNm1Chw4dYGlpia5du2L79u1qzwuCgJiYGDg7O8PKygqBgYE4f/68+HxeXh7Cw8Ph7u4OKysrtG3bFrGxsSgvLxf7TJ06FQqFQuNhY2Mj9klKStJ43tLSso7OiuHLzMzUCFmvv/46QxYRERkUWYNWcnIyIiMjERsbi6NHj6Jbt24ICgrC9evXJftnZGRg6NChCA8PR3Z2NoKDgxEcHIyTJ0+KfebMmYPFixcjISEBWVlZsLGxQVBQEO7duwfg4bIBKpUKK1aswKlTp7Bw4UIkJCRg8uTJ4j7Gjx+Pa9euqT06deqEN998U60eW1tbtT6XLl3SwVkyPHFxcdi5c6daW0xMDLp06SJTRURERLqhEARBkOvgvr6+6NGjB5YuXQrg4bfOXF1dMWbMGMlbq4SEhKC0tBTbtm0T23r16gUvLy8kJCRAEAS4uLhg3LhxGD9+PACguLgYjo6OSEpKwpAhQyTrmDt3LpYvX47ff/9d8vljx47By8sL+/btw/PPPw/g4YhWREQEioqKav36S0pKYGdnh+LiYtja2tZ6P/qivLwc8fHxGu0cxSIiIn2izee3bCNa5eXlOHLkCAIDA/8uxsQEgYGByMzMlNwmMzNTrT8ABAUFif1zc3OhVCrV+tjZ2cHX17fKfQIPw1izZs2qfH7VqlVo3769GLIq3blzB23atIGrqysGDx6MU6dOVf2CAZSVlaGkpETtYSzS09M1QtZbb73FkEVERAZNtqB148YNVFRUwNHRUa3d0dERSqVSchulUllt/8qf2uzzwoULWLJkCd577z3J5+/du4e1a9ciPDxcrd3T0xOJiYlITU3Ft99+C5VKBX9/f1y5cqWKVwzEx8fDzs5OfLi6ulbZ15DExcXh119/VWuLiYmBh4eHTBURERHVD9kvhpfTH3/8gb59++LNN9/EyJEjJft89913uH37NoYPH67W7ufnh9DQUHh5eSEgIABbtmxBixYtsGLFiiqPFxUVheLiYvFx+fLlOn09Dc1ff/2lsXSDQqFAbGwsFAqFTFURERHVH9mWd3BwcICpqSkKCgrU2gsKCuDk5CS5jZOTU7X9K38WFBTA2dlZrY+Xl5fadlevXkWfPn3g7++PlStXVlnnqlWrMGDAAI1RsseZmZnB29sbFy5cqLKPhYUFLCwsqt2Pofj+++9x9OhRtbYRI0agdevWMlVERERU/2Qb0TI3N4ePjw/S09PFNpVKhfT0dPj5+Ulu4+fnp9YfAHbt2iX2d3d3h5OTk1qfkpISZGVlqe3zjz/+wIsvvggfHx+sXr26yoUxc3NzsWfPHo1pQykVFRU4ceKEWsAzVnFxcRohKzY2liGLiIiMjqwLlkZGRmL48OHo3r07evbsiUWLFqG0tBQjRowAAISGhqJVq1biRdRjx45FQEAA5s+fj/79+2PDhg04fPiwOCKlUCgQERGBGTNmwMPDA+7u7pgyZQpcXFwQHBwM4O+Q1aZNG8ybNw+FhYViPY+PpCUmJsLZ2Rn9+vXTqH3atGno1asX2rVrh6KiIsydOxeXLl3Cu+++q4tTpRdu376NBQsWqLXZ2dkhIiJCnoKIiIhkJmvQCgkJQWFhIWJiYqBUKuHl5YW0tDRxmi4/P19ttMnf3x/r1q1DdHQ0Jk+eDA8PD6SkpKitvzRx4kSUlpZi1KhRKCoqQu/evZGWliYuJrpr1y5cuHABFy5cwDPPPKNWz6MrXahUKiQlJSEsLAympqYatd+6dQsjR46EUqlE06ZN4ePjg4yMDHTq1KlOz5G+2LBhA86dO6fWNnr06CdOuRIRERkyWdfRMnaGso6W1L0KuWwDEREZKm0+v3mvQ6q1mzdvYsmSJWptrVq1MurpUyIiokcxaFGtrFq1Cn/88Yda25gxY6pd+JWIiMjYMGiR1jhVSEREVDMMWlRjBQUFSEhIUGvz9PSs8h6SRERExo5Bi2pk4cKFGvdmjIyMRJMmTWSqiIiIqOFj0KIn4lQhERFR7TBoUZXu3r2LuXPnqrU999xzGDhwoEwVERER6RcGLZJ06tQp/O9//1Nr2717ImJjrWSqiIiISP8waJEaQRCQlJSE/Px8se3sWT9kZ/8Tc+bIWBgREZEeYtAi0Z07dzB//ny1tv37R2PXLkf4+QGDBslUGBERkZ5i0CIAwLFjx5CSkiL+bm5ujk8//RTbtpngzh1g0iT5aiMiItJXDFpGThAErFixAgUFBWLbyy+/jN69ewN4OIrFkSwiIqLaYdAyYsXFxVi0aJFa24cffggHBwd5CiIiIjIwDFpG6vDhw/jhhx/E35s0aYJPPvkECoVCxqqIiIgMC4OWkREEAYsXL0ZRUZHY1rdvX/j6+spXFBERkYFi0DIiN2/exJIlS9Taxo4dC3t7e3kKIiIiMnAMWkYiMzMTO3fuFH93cHDABx98wKlCIiIiHWLQMnAqlQrz5s3DX3/9JbYNGjQI3t7eMlZFRERkHBi0DFhhYSG++OILtbZPPvkEtra2MlVERERkXBi0DNTPP/+MvXv3ir+3atUK4eHhnCokIiKqRwxaBqiwsFAtZP3rX/9C165d5SuIiIjISJnIXQDVPTMzM/z1lx0AYM+e8QxZREREMuGIlgGyt7eHv38EZs3iPQqJiIjkxKBloHiPQiIiIvlx6pCIiIhIRxi0iIiIiHSEQYuIiIhIRxi0iIiIiHSEQYuIiIhIRxi0iIiIiHSEQYuIiIhIRxi0iIiIiHSEQYuIiIhIRxi0iIiIiHSEQYuIiIhIRxi0iIiIiHSEQYuIiIhIRxrJXYAxEwQBAFBSUiJzJURERFRTlZ/blZ/j1WHQktHt27cBAK6urjJXQkRERNq6ffs27Ozsqu2jEGoSx0gnVCoVrl69iiZNmkChUMhdjs6VlJTA1dUVly9fhq2trdzlyIbn4W88Fw/xPPyN5+Ihnoe/NcRzIQgCbt++DRcXF5iYVH8VFke0ZGRiYoJnnnlG7jLqna2tbYP5P4uceB7+xnPxEM/D33guHuJ5+FtDOxdPGsmqxIvhiYiIiHSEQYuIiIhIRxi0qN5YWFggNjYWFhYWcpciK56Hv/FcPMTz8Deei4d4Hv6m7+eCF8MTERER6QhHtIiIiIh0hEGLiIiISEcYtIiIiIh0hEGLiIiISEcYtAgAsGzZMri5ucHS0hK+vr44ePBgtf03bdqEDh06wNLSEl27dsX27dvVnhcEATExMXB2doaVlRUCAwNx/vx58fm8vDyEh4fD3d0dVlZWaNu2LWJjY1FeXi72mTp1KhQKhcbDxsZG7JOUlKTxvKWlpV6dCwAYNGgQWrduDUtLSzg7O2PYsGG4evWqWp/jx4/j+eefh6WlJVxdXTFnzhyta9FGQzwPe/fuxeDBg+Hs7AwbGxt4eXlh7dq1avswlr+JvLw8yf9/HDhwQKta9P08GNP7RKWysjJ4eXlBoVAgJydH7TljeJ+oVNV5kOt9okoCGb0NGzYI5ubmQmJionDq1Clh5MiRgr29vVBQUCDZf//+/YKpqakwZ84c4fTp00J0dLRgZmYmnDhxQuwza9Yswc7OTkhJSRGOHTsmDBo0SHB3dxf++usvQRAE4ccffxTCwsKEHTt2CBcvXhRSU1OFli1bCuPGjRP3cfv2beHatWtqj06dOgnDhw8X+6xevVqwtbVV66NUKvXqXAiCICxYsEDIzMwU8vLyhP379wt+fn6Cn5+f+HxxcbHg6Ogo/Oc//xFOnjwprF+/XrCyshJWrFihVS36fh5mzpwpREdHC/v37xcuXLggLFq0SDAxMRG+//57sY+x/E3k5uYKAISffvpJ7bWWl5drVYu+nwdjep+o9PHHHwv9+vUTAAjZ2dliu7G8TzzpPMjxPlEdBi0SevbsKXz44Yfi7xUVFYKLi4sQHx8v2f/f//630L9/f7U2X19f4b333hMEQRBUKpXg5OQkzJ07V3y+qKhIsLCwENavX19lHXPmzBHc3d2rfD4nJ0cAIOzbt09sW716tWBnZ1ft69NGQzkXqampgkKhED80v/jiC6Fp06ZCWVmZ2OfTTz8VPD09a1yLNhrqeZDy6quvCiNGjBB/N5a/icqg9egHjLa1aKOhnofHGfr7xPbt24UOHToIp06d0vj3N6b3ierOgxRdv09Uh1OHRq68vBxHjhxBYGCg2GZiYoLAwEBkZmZKbpOZmanWHwCCgoLE/rm5uVAqlWp97Ozs4OvrW+U+AaC4uBjNmjWr8vlVq1ahffv2eP7559Xa79y5gzZt2sDV1RWDBw/GqVOnqn7B1Wgo5+LmzZtYu3Yt/P39YWZmJh7nhRdegLm5udpxzp07h1u3btWolppqyOdBitTfjTH8TVQaNGgQWrZsid69e2Pr1q1a1VJT+nAeKhny+0RBQQFGjhyJb775BtbW1pLHMYb3iSedBym6fJ94EgYtI3fjxg1UVFTA0dFRrd3R0RFKpVJyG6VSWW3/yp/a7PPChQtYsmQJ3nvvPcnn7927h7Vr1yI8PFyt3dPTE4mJiUhNTcW3334LlUoFf39/XLlypYpXXDW5z8Wnn34KGxsbNG/eHPn5+UhNTX3icR49xpNqqamGfB4et3HjRhw6dAgjRowQ24zlb6Jx48aYP38+Nm3ahB9++AG9e/dGcHCwWtgytr8JQ36fEAQBYWFhGD16NLp3767VcR49hr7/TdTkPDxO1+8TT8KgRbL7448/0LdvX7z55psYOXKkZJ/vvvsOt2/fxvDhw9Xa/fz8EBoaCi8vLwQEBGDLli1o0aIFVqxYUR+l16kJEyYgOzsbO3fuhKmpKUJDQyEY4Y0banoe9uzZgxEjRuDLL79E586dxXZj+ZtwcHBAZGQkfH190aNHD8yaNQtvv/025s6dK3PVda+mfxOG/D6xZMkS3L59G1FRUXKXIittz0NDeJ9g0DJyDg4OMDU1RUFBgVp7QUEBnJycJLdxcnKqtn/lz5rs8+rVq+jTpw/8/f2xcuXKKutctWoVBgwYoPFfOo8zMzODt7c3Lly4UG0/KXKfCwcHB7Rv3x6vvPIKNmzYgO3bt4vfIKvqOI8e40m11FRDPg+Vfv75ZwwcOBALFy5EaGhota/HUP8mpPj6+qq9TmP6mwAM+31i9+7dyMzMhIWFBRo1aoR27doBALp37y4GS2N4n6jJeahUX+8TT8KgZeTMzc3h4+OD9PR0sU2lUiE9PR1+fn6S2/j5+an1B4Bdu3aJ/d3d3eHk5KTWp6SkBFlZWWr7/OOPP/Diiy/Cx8cHq1evhomJ9J9jbm4u9uzZozEdIKWiogInTpyAs7PzE/s+Ts5z8TiVSgXg4deXK4+zb98+3L9/X+04np6eaNq0aY1qqamGfB6Ah1/d7t+/P2bPno1Ro0Y98fUY6t+ElJycHLXXaSx/E4Dhv08sXrwYx44dQ05ODnJycsRlEZKTkzFz5kzxOIb+PlGT8wDU7/vEE9XLJffUoG3YsEGwsLAQkpKShNOnTwujRo0S7O3txa+6Dhs2TJg0aZLYf//+/UKjRo2EefPmCWfOnBFiY2Mlv6Jrb28vpKamCsePHxcGDx6s9hXdK1euCO3atRNefvll4cqVK2pfsX1cdHS04OLiIjx48EDjubi4OHGJiCNHjghDhgwRLC0thVOnTunNuThw4ICwZMkSITs7W8jLyxPS09MFf39/oW3btsK9e/cEQXj4zRtHR0dh2LBhwsmTJ4UNGzYI1tbWGl/bflIt+n4edu/eLVhbWwtRUVFqfzN//vmneBxj+ZtISkoS1q1bJ5w5c0Y4c+aMMHPmTMHExERITEzUqhZ9Pw+VDP194nFS3zo1hveJmpwHOd4nqsOgRYIgCMKSJUuE1q1bC+bm5kLPnj2FAwcOiM8FBASorUkjCIKwceNGoX379oK5ubnQuXNn4YcfflB7XqVSCVOmTBEcHR0FCwsL4eWXXxbOnTsnPr969WoBgOTjURUVFcIzzzwjTJ48WbLuiIgIsW5HR0fh1VdfFY4ePapX5+L48eNCnz59hGbNmgkWFhaCm5ubMHr0aOHKlStq+zl27JjQu3dvwcLCQmjVqpUwa9YsjdqfVIu+n4fhw4dL/s0EBASIfYzlbyIpKUno2LGjYG1tLdja2go9e/YUNm3apFG7of9NCIJxvE88rqrlPQz9feJxUudBrveJqigEwQivtiUiIiKqB7xGi4iIiEhHGLSIiIiIdIRBi4iIiEhHGLSIiIiIdIRBi4iIiEhHGLSIiIiIdIRBi4iIiEhHGLSIiIiIdIRBi4joKWVmZsLU1BT9+/dXa8/Ly4NCoRAfzZo1Q0BAAH755ReZKiWi+sagRUT0lL766iuMGTMG+/btw9WrVzWe/+mnn3Dt2jXs27cPLi4uGDBgAAoKCmSolIjqG4MWEdFTuHPnDpKTk/H++++jf//+SEpK0ujTvHlzODk5oUuXLpg8eTJKSkqQlZVV/8USUb1j0CIiegobN25Ehw4d4OnpibfffhuJiYmo6hayf/31F77++msAgLm5eX2WSUQyaSR3AURE+uyrr77C22+/DQDo27cviouL8fPPP+PFF18U+/j7+8PExAR3796FIAjw8fHByy+/LFPFRFSfOKJFRFRL586dw8GDBzF06FAAQKNGjRASEoKvvvpKrV9ycjKys7OxefNmtGvXDklJSTAzM5OjZCKqZxzRIiKqpa+++goPHjyAi4uL2CYIAiwsLLB06VKxzdXVFR4eHvDw8MCDBw/w2muv4eTJk7CwsJCjbCKqRxzRIiKqhQcPHuDrr7/G/PnzkZOTIz6OHTsGFxcXrF+/XnK7N954A40aNcIXX3xRzxUTkRwYtIiIamHbtm24desWwsPD0aVLF7XH66+/rjF9WEmhUODjjz/GrFmzcPfu3XqumojqG4MWEVEtfPXVVwgMDISdnZ3Gc6+//joOHz6MkpISyW2HDx+O+/fvq00vEpFhUghVfQ+ZiIiIiJ4KR7SIiIiIdIRBi4iIiEhHGLSIiIiIdIRBi4iIiEhHGLSIiIiIdIRBi4iIiEhHGLSIiIiIdIRBi4iIiEhHGLSIiIiIdIRBi4iIiEhHGLSIiIiIdIRBi4iIiEhH/h+NDAClMgzUCgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAHHCAYAAAD+sy9fAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYxJJREFUeJzt3XtcFPX+P/DXgtxVUFEWbFVSxOsRQkX4WmRxDhaGVBZaCRiK3UwOmoohiGl417wkliGd8oIeDT1mqJFmBeINL3hLDbwvagkoCijM7w9/TI47IODCLOzr+Xjsg7Of/czMeyfO8vLzmf2MShAEAURERESkKBOlCyAiIiIihjIiIiIig8BQRkRERGQAGMqIiIiIDABDGREREZEBYCgjIiIiMgAMZUREREQGgKGMiIiIyAAwlBEREREZAIYyIqJHUKlUmDp1qtJliEJDQ9GhQwelyyAiPWMoI6IGKSkpCSqVSnxYWlqic+fO+OCDD5CXl1enx05PT8fUqVORn5+v1/0+++yzkvfUsmVL9OnTB4mJiSgvL9fLMT799FOkpKToZV9EpF9NlC6AiOhxTJs2Dc7OziguLsavv/6KZcuWYevWrcjOzoa1tbVejnHnzh00afL3x2V6ejri4uIQGhoKOzs7vRyjwhNPPIH4+HgAwLVr1/Cf//wHYWFh+P333zFz5szH3v+nn36KIUOGIDAw8LH3RUT6xVBGRA3aCy+8gN69ewMARo4ciVatWmH+/PnYtGkThg0bVuv9lpeXo7S0FJaWlrC0tNRXuY9ka2uLt956S3w+evRouLq6YsmSJfjkk09gZmZWb7UQUf3i9CURNSrPPfccACAnJwcAMHfuXHh7e6NVq1awsrKCh4cH/vvf/+psp1Kp8MEHH2DVqlXo3r07LCwskJqaKr5WcU3Z1KlT8dFHHwEAnJ2dxanG3Nxc+Pj4oFevXrJ1ubq6ws/Pr8bvx9raGv369UNRURGuXbtWab+ioiKMGzcOGo0GFhYWcHV1xdy5cyEIguQ9FhUV4euvvxbrDg0NrXFNRFQ3OFJGRI3K2bNnAQCtWrUCAHz22WcICAjAm2++idLSUqxduxavvfYatmzZAn9/f8m2P/30E9atW4cPPvgA9vb2shfTv/LKK/j999+xZs0aLFiwAPb29gCA1q1bY/jw4Rg1ahSys7PRo0cPcZt9+/bh999/R3R0dK3e0x9//AFTU9NKp0oFQUBAQAB27tyJsLAwuLm5Ydu2bfjoo49w6dIlLFiwAADwzTffYOTIkejbty/Cw8MBAB07dqxVTURUBwQiogZo5cqVAgDhxx9/FK5duyZcuHBBWLt2rdCqVSvByspKuHjxoiAIgnD79m3JdqWlpUKPHj2E5557TtIOQDAxMRGOHTumcywAQmxsrPh8zpw5AgAhJydH0i8/P1+wtLQUJk6cKGn/8MMPBRsbG+HWrVtVvicfHx+hS5cuwrVr14Rr164JJ06cED788EMBgPDSSy+J/UJCQoT27duLz1NSUgQAwvTp0yX7GzJkiKBSqYQzZ86IbTY2NkJISEiVdRCRMjh9SUQNmq+vL1q3bg2NRoOhQ4eiadOm+O6779C2bVsAgJWVldj3xo0bKCgowNNPP42DBw/q7MvHxwfdunWrdS22trYYPHgw1qxZI04blpWVITk5GYGBgbCxsXnkPk6ePInWrVujdevW6Nq1KxYvXgx/f38kJiZWus3WrVthamqKDz/8UNI+btw4CIKAH374odbviYjqD6cviahBW7p0KTp37owmTZrAwcEBrq6uMDH5+9+bW7ZswfTp03Ho0CGUlJSI7SqVSmdfzs7Oj11PcHAwkpOT8csvv+CZZ57Bjz/+iLy8PAwfPrxa23fo0AFffvmluMyHi4sL2rRpU+U2586dg5OTE5o1ayZp79q1q/g6ERk+hjIiatD69u0rfvvyYb/88gsCAgLwzDPP4PPPP4ejoyPMzMywcuVKrF69Wqf/g6NqteXn5wcHBwd8++23eOaZZ/Dtt99CrVbD19e3Wtvb2NhUuy8RNS6cviSiRmvDhg2wtLTEtm3b8Pbbb+OFF17QS+CRG2WrYGpqijfeeAP//e9/cePGDaSkpGDYsGEwNTV97ONWpn379rh8+TJu3rwpaT958qT4eoWqaiciZTGUEVGjZWpqCpVKhbKyMrEtNzf3sVe0r7g2rLIV/YcPH44bN25g9OjRuHXrlmTdsbrw4osvoqysDEuWLJG0L1iwACqVCi+88ILYZmNjo/c7ERCRfnD6kogaLX9/f8yfPx8DBw7EG2+8gatXr2Lp0qXo1KkTjhw5Uuv9enh4AAA+/vhjDB06FGZmZnjppZfEsObu7o4ePXpg/fr16Nq1K5566im9vJ/KvPTSSxgwYAA+/vhj5ObmolevXti+fTs2bdqEiIgIybIXHh4e+PHHHzF//nw4OTnB2dkZnp6edVofEVUPR8qIqNF67rnn8NVXX0Gr1SIiIgJr1qzBrFmz8PLLLz/Wfvv06YNPPvkEhw8fRmhoKIYNG6azsGtwcDAAVPsC/8dhYmKCzZs3IyIiAlu2bEFERASOHz+OOXPmYP78+ZK+8+fPh4eHB6KjozFs2DAsW7aszusjoupRCcIDyz0TEZFefPbZZ/j3v/+N3NxctGvXTulyiKgBYCgjItIzQRDQq1cvtGrVCjt37lS6HCJqIHhNGRGRnhQVFWHz5s3YuXMnjh49ik2bNildEhE1IBwpIyLSk9zcXDg7O8POzg7vvfceZsyYoXRJRNSAMJQRERERGQB++5KIiIjIADCUERERERkAXuivoPLycly+fBnNmjXjrU+IiIgaCEEQcPPmTTg5OcHERH/jWwxlCrp8+TI0Go3SZRAREVEtXLhwAU888YTe9sdQpqBmzZoBuP8ftXnz5gpXQ0RERNVRWFgIjUYj/h3XF4YyBVVMWTZv3pyhjIiIqIHR96VHvNCfiIiIyAAwlBEREREZAIYyIiIiIgPAa8oagLKyMty9e1fpMqgemJub6/Xr1URE1HAwlBkwQRCg1WqRn5+vdClUT0xMTODs7Axzc3OlSyEionrGUGbAKgJZmzZtYG1tzQVmG7mKxYSvXLmCdu3a8b83EZGxERS2ZMkSoX379oKFhYXQt29fITMzs8r+69atE1xdXQULCwuhR48ewvfffy95vby8XJgyZYqgVqsFS0tL4fnnnxd+//132X0VFxcLvXr1EgAIWVlZYvvOnTuFgIAAQa1WC9bW1kKvXr2Eb7/9VrLtypUrBQCSh4WFRY3ee0FBgQBAKCgo0Hnt3r17wvHjx4Xr16/XaJ/UsOXn5wvHjx8XSktLlS6FiIgqUdXf78eh6MUrycnJiIyMRGxsLA4ePIhevXrBz88PV69ele2fnp6OYcOGISwsDFlZWQgMDERgYCCys7PFPrNnz8aiRYuQkJCAzMxM2NjYwM/PD8XFxTr7mzBhApycnGSP849//AMbNmzAkSNHMGLECAQHB2PLli2Sfs2bN8eVK1fEx7lz5x7zjPyt4hoya2trve2TDF/FtGVZWZnClRARUb3Ta8Srob59+wrvv/+++LysrExwcnIS4uPjZfu//vrrgr+/v6TN09NTGD16tCAI90fJ1Gq1MGfOHPH1/Px8wcLCQlizZo1ku61btwpdunQRjh07pjNSJufFF18URowYIT5fuXKlYGtrW523WamqkvadO3eE48ePC3fu3HmsY1DDwv/uRESGr9GNlJWWluLAgQPw9fUV20xMTODr64uMjAzZbTIyMiT9AcDPz0/sn5OTA61WK+lja2sLT09PyT7z8vIwatQofPPNN9UeiSooKEDLli0lbbdu3UL79u2h0WgwePBgHDt2rFr7IiIiInqYYqHs+vXrKCsrg4ODg6TdwcEBWq1WdhutVltl/4qfVfURBAGhoaF455130Lt372rVum7dOuzbtw8jRowQ21xdXZGYmIhNmzbh22+/RXl5Oby9vXHx4sVK91NSUoLCwkLJg4iIiAgwwsVjFy9ejJs3byIqKqpa/Xfu3IkRI0bgyy+/RPfu3cV2Ly8vBAcHw83NDT4+Pti4cSNat26N5cuXV7qv+Ph42Nraig+NRvPY78cQhYaGQqVSQaVSwczMDA4ODvjnP/+JxMRElJeXV3s/SUlJsLOzq7tCiYiIDIhiocze3h6mpqbIy8uTtOfl5UGtVstuo1arq+xf8bOqPj/99BMyMjJgYWGBJk2aoFOnTgCA3r17IyQkRLLdzz//jJdeegkLFixAcHBwle/HzMwM7u7uOHPmTKV9oqKiUFBQID4uXLhQ5T4bsoEDB+LKlSvIzc3FDz/8gAEDBmDs2LEYNGgQ7t27p3R5REREBkexUGZubg4PDw+kpaWJbeXl5UhLS4OXl5fsNl5eXpL+ALBjxw6xv7OzM9RqtaRPYWEhMjMzxT6LFi3C4cOHcejQIRw6dAhbt24FcP+boDNmzBC327VrF/z9/TFr1iyEh4c/8v2UlZXh6NGjcHR0rLSPhYUFmjdvLnk0VhYWFlCr1Wjbti2eeuopTJ48GZs2bcIPP/yApKQkAMD8+fPRs2dP2NjYQKPR4L333sOtW7cA3D//I0aMQEFBgTjqNnXqVADAN998g969e6NZs2ZQq9V44403Kv3GLhERGSdBELB+/V/w9hawebPS1VSPoovHRkZGIiQkBL1790bfvn2xcOFCFBUVidduBQcHo23btoiPjwcAjB07Fj4+Ppg3bx78/f2xdu1a7N+/H1988QUAQKVSISIiAtOnT4eLiwucnZ0xZcoUODk5ITAwEADQrl07SQ1NmzYFAHTs2BFPPPEEgPtTloMGDcLYsWPx6quvitejmZubixf7T5s2Df369UOnTp2Qn5+POXPm4Ny5cxg5cmSdnS9BEBS53ZKZmZleFjJ97rnn0KtXL2zcuBEjR46EiYkJFi1aBGdnZ/zxxx947733MGHCBHz++efw9vbGwoULERMTg1OnTgH4+7/V3bt38cknn8DV1RVXr15FZGQkQkNDxYBNRETGbf36Gzh+fBEAwMLCBzNnPouAAIWLqgZFQ1lQUBCuXbuGmJgYaLVauLm5ITU1VbxQ//z585L7AHp7e2P16tWIjo7G5MmT4eLigpSUFPTo0UPsM2HCBBQVFSE8PBz5+fno378/UlNTYWlpWe26vv76a9y+fRvx8fFiIAQAHx8f7Nq1CwBw48YNjBo1ClqtFi1atICHhwfS09PRrVu3xzwrlbt7966knvoSFRWlt9v+dOnSBUeOHAEAREREiO0dOnTA9OnT8c477+Dzzz+Hubk5bG1toVKpdKaz3377bfF/P/nkk1i0aBH69OmDW7duicGNiIiM08KFC1FQUCA+b9HCHqGhytVTEypBEASlizBWhYWFsLW1RUFBgc5UZnFxMXJycuDs7CwGytLS0gYRykJDQ5Gfn4+UlBSd14KCgpCdnY1jx47hxx9/RHx8PE6ePInCwkLcu3cPxcXFKCoqgrW1NZKSkhAREaFz788DBw5g6tSpOHz4MG7cuIHy8nLcvn0bx44dq9NQXB/k/rsTEdGjpaSU4fDh6ZI2jcYfb79dvZUWaqKqv9+Pg/e+bEDMzMyq/a1RfR9XX06cOAFnZ2fk5uZi0KBBePfddzFjxgy0bNkSv/76K8LCwlBaWlrp+nFFRUXw8/ODn58fVq1ahdatW+P8+fPw8/NDaWmp3uokIqKGY/nyndBqd0vawsLCxMuSGgqGsgZEpVLpbRpRCT/99BOOHj2Kf//73zhw4ADKy8sxb948cYp63bp1kv7m5uY6txs6efIk/vzzT8ycOVNcUmT//v318waIiMjgxMXF6bTFxMTo5Vro+mZ065RR/SgpKYFWq8WlS5dw8OBBfPrppxg8eDAGDRqE4OBgdOrUCXfv3sXixYvxxx9/4JtvvkFCQoJkHx06dMCtW7eQlpaG69ev4/bt22jXrh3Mzc3F7TZv3oxPPvlEoXdJRERKyc/Plw1ksbGxDTKQAQxlVEdSU1Ph6OiIDh06YODAgdi5cycWLVqETZs2wdTUFL169cL8+fMxa9Ys9OjRA6tWrdK5Xs7b2xvvvPMOgoKC0Lp1a8yePRutW7dGUlIS1q9fj27dumHmzJmYO3euQu+SiIiUEBcXh88++0zSlpUVhNjYWIUq0g9e6K+gml7oT40f/7sTEVVNbnRs27ZYTJqEelv2ghf6ExERkdG6ePEivvrqK5322NhYNPABMhFDGRERERk0udGx4OBgODs7K1BN3WEoIyIiIoNV2cX8jRFDGRERERmcgwcP4n//+59Oe2MNZABDGRERERkYudGx9957D61bt1agmvrDUEZEREQGQRAETJs2Tafd3T0WjTyPAWAoIyIiIgOwdetW7Nu3T6e9MU9XPoyhjIiIiBQlN10ZGRmJZs2aKVCNchjKiIiISBFlZWWYPn26TrsxjY49iKGMGqzQ0FDk5+cjJSUFAPDss8/Czc0NCxcurPU+9bEPIiJ6tLlz56KoqEjSZm7eAlFRHypUkfIYykjvQkND8fXXXwMAzMzM0K5dOwQHB2Py5Mlo0qTufuU2btwIMzOzavXdtWsXBgwYgBs3bsDOzq5W+yAiotqRm66MioqCubm5AtUYDoYyqhMDBw7EypUrUVJSgq1bt+L999+HmZkZoqKiJP1KS0v19n/Cli1bGsQ+iIhIXlFREebOnavTbqzTlQ8zUboAapwsLCygVqvRvn17vPvuu/D19cXmzZsRGhqKwMBAzJgxA05OTnB1dQUAXLhwAa+//jrs7OzQsmVLDB48GLm5ueL+ysrKEBkZCTs7O7Rq1QoTJkyAIAiSYz777LOIiIgQn5eUlGDixInQaDSwsLBAp06d8NVXXyE3NxcDBgwAALRo0QIqlQqhoaGy+7hx4waCg4PRokULWFtb44UXXsDp06fF15OSkmBnZ4dt27aha9euaNq0KQYOHIgrV66IfXbt2oW+ffvCxsYGdnZ2+L//+z+cO3dOT2eaiKhhiIuL0wlkTZu2ZyB7AEMZ1QsrKyuUlpYCANLS0nDq1Cns2LEDW7Zswd27d+Hn54dmzZrhl19+wW+//SaGm4pt5s2bh6SkJCQmJuLXX3/FX3/9he+++67KYwYHB2PNmjVYtGgRTpw4geXLl6Np06bQaDTYsGEDAODUqVO4cuUKPvvsM9l9hIaGYv/+/di8eTMyMjIgCAJefPFF3L17V+xz+/ZtzJ07F9988w12796N8+fPY/z48QCAe/fuITAwED4+Pjhy5AgyMjIQHh4OlUr12OeUiKihkJuujImJwbhxofVfjAHj9CXVKUEQkJaWhm3btmHMmDG4du0abGxssGLFCnHa8ttvv0V5eTlWrFghhpWVK1fCzs4Ou3btwr/+9S8sXLgQUVFReOWVVwAACQkJ2LZtW6XH/f3337Fu3Trs2LEDvr6+AIAnn3xSfL1imrJNmzaSa8oedPr0aWzevBm//fYbvL29AQCrVq2CRqNBSkoKXnvtNQDA3bt3kZCQgI4dOwIAPvjgA3Hxw8LCQhQUFGDQoEHi6127dq35iSQiaoAuX76ML7/8Uqedo2PyOFJmJDZvBry97/+sD1u2bEHTpk1haWmJF154AUFBQZg6dSoAoGfPnpLryA4fPowzZ86gWbNmaNq0KZo2bYqWLVuiuLgYZ8+eRUFBAa5cuQJPT09xmyZNmqB3796VHv/QoUMwNTWFj49Prd/DiRMn0KRJE8lxW7VqBVdXV5w4cUJss7a2FgMXADg6OuLq1asA7oe/0NBQ+Pn54aWXXsJnn30mmdokImqs4uLidALZxYtucHdnIKsMR8qMxMyZQEbG/Z8BAXV/vAEDBmDZsmUwNzeHk5OT5FuXNjY2kr63bt2Ch4cHVq1apbOf2t7nzMrKqlbb1cbD39ZUqVSS691WrlyJDz/8EKmpqUhOTkZ0dDR27NiBfv361VuNRET1SW66kqNjj8aRMiMxaRLg5XX/Z32wsbFBp06d0K5du0cug/HUU0/h9OnTaNOmDTp16iR52NrawtbWFo6OjsjMzBS3uXfvHg4cOFDpPnv27Iny8nL8/PPPsq9XjNSVlZVVuo+uXbvi3r17kuP++eefOHXqFLp161ble3qYu7s7oqKikJ6ejh49emD16tU12p6IqCE4evQoA9ljYCgzEgEBQHp6/YyS1dSbb74Je3t7DB48GL/88gtycnKwa9cufPjhh7h48SIAYOzYsZg5cyZSUlJw8uRJvPfee8jPz690nx06dEBISAjefvttpKSkiPtct24dAKB9+/ZQqVTYsmULrl27hlu3bunsw8XFBYMHD8aoUaPw66+/4vDhw3jrrbfQtm1bDB48uFrvLScnB1FRUcjIyMC5c+ewfft2nD59mteVEVGjExcXh40bN0raXnzxRQayGmAoI8VZW1tj9+7daNeuHV555RV07doVYWFhKC4uRvPmzQEA48aNw/DhwxESEgIvLy80a9YML7/8cpX7XbZsGYYMGYL33nsPXbp0wahRo8TVo9u2bYu4uDhMmjQJDg4O+OCDD2T3sXLlSnh4eGDQoEHw8vKCIAjYunVrtReYtba2xsmTJ/Hqq6+ic+fOCA8Px/vvv4/Ro0fX4AwRERm2ykbH+vTpo0A1DZdKeHixJ6o3hYWFsLW1RUFBgRg+KhQXFyMnJwfOzs6wtLRUqEKqb/zvTkQNyfr163H8+HGd9sY+OlbV3+/HwQv9iYiIqMbkRscOHHgTI0d2UqCaxoGhjIiIiKpNEARxLcYHubvHopEPkNU5hjIiIiKqFrnRMeB+IDPEL5I1NLzQn4iIiB5JLpClp4czkOkRR8oMHL+HYVz435uIDE1paSni4+N12ufOjcXNmwoU1IgxlBmoiiUXbt++Xa+r05OyKm7AbmpqqnAlRESVT1fOnRuLDz+s52KMAEOZgTI1NYWdnZ14D0Vra2vxZt3UOJWXl+PatWuwtrZ+5F0QiIjqmlwgS0ubgN27rXhBfx3hJ78BU6vVACAGM2r8TExM0K5dOwZwIlLMX3/9hcWLF+u0b9sWW2+36jNWXDxWQdVdfK6srAx3796tx8pIKebm5jAx4fdviEgZlU1XNvbFYGuKi8caMVNTU15jREREdUoukM2dG4NVqzhyX18YyoiIiIxYVlYWNm/erNM+d24sVq0Cl7uoRwxlRERERqqy6covv2QgUwJDGRERkRGSC2QVC8HyEjJlMJQREREZkf/+9784duyYTjsv5lee4l/zWrp0KTp06ABLS0t4enpi7969VfZfv349unTpAktLS/Ts2RNbt26VvC4IAmJiYuDo6AgrKyv4+vri9OnTsvsqKSmBm5sbVCoVDh06JHntyJEjePrpp2FpaQmNRoPZs2fXuBYiIiJDEhcXpxPINBoNA5mBUDSUJScnIzIyErGxsTh48CB69eoFPz+/StflSk9Px7BhwxAWFoasrCwEBgYiMDAQ2dnZYp/Zs2dj0aJFSEhIQGZmJmxsbODn54fi4mKd/U2YMAFOTk467YWFhfjXv/6F9u3b48CBA5gzZw6mTp2KL774oka1EBERGQq56crY2Fi8/fbbClRDchRdp8zT0xN9+vTBkiVLANxf0Vyj0WDMmDGYJLNCXVBQEIqKirBlyxaxrV+/fnBzc0NCQgIEQYCTkxPGjRuH8ePHAwAKCgrg4OCApKQkDB06VNzuhx9+QGRkJDZs2IDu3bsjKysLbm5uAIBly5bh448/hlarhbm5OQBg0qRJSElJwcmTJ6tVS3XU1TonREREFSq7mH/btlikp9dzMY1EXf39VmykrLS0FAcOHICvr+/fxZiYwNfXFxkZGbLbZGRkSPoDgJ+fn9g/JycHWq1W0sfW1haenp6Sfebl5WHUqFH45ptvYG1tLXucZ555RgxkFcc5deoUbty4Ua1a5JSUlKCwsFDyICIiqitygezoUR+sWcPV+Q2RYhf6X79+HWVlZXBwcJC0Ozg4iKNRD9NqtbL9tVqt+HpFW2V9BEFAaGgo3nnnHfTu3Ru5ubmyx3F2dtbZR8VrLVq0eGQtcuLj4yv9FwsREZG+CIKAadOm6bTz2jHDZnTfvly8eDFu3ryJqKioej92VFQUIiMjxeeFhYXQaDT1XgcRETVelf3j392dgczQKRbK7O3tYWpqiry8PEl7Xl6eeCPuh6nV6ir7V/zMy8uDo6OjpE/F9WI//fQTMjIyYGFhIdlP79698eabb+Lrr7+u9DgPHuNRtcixsLDQOS4REZG+yAWyN998E506dVKgGqopxa4pMzc3h4eHB9LS0sS28vJypKWlwcvLS3YbLy8vSX8A2LFjh9jf2dkZarVa0qewsBCZmZlin0WLFuHw4cM4dOgQDh06JC5jkZycjBkzZojH2b17t+Qm4Dt27ICrqytatGhRrVqIiIjqS3FxcaWLwTKQNRyKTl9GRkYiJCQEvXv3Rt++fbFw4UIUFRVhxIgRAIDg4GC0bdsW8fHxAICxY8fCx8cH8+bNg7+/P9auXYv9+/eLS1WoVCpERERg+vTpcHFxgbOzM6ZMmQInJycEBgYCANq1ayepoWnTpgCAjh074oknngAAvPHGG4iLi0NYWBgmTpyI7OxsfPbZZ1iwYIG43aNqISIiqg9VTVfyNkkNi6KhLCgoCNeuXUNMTAy0Wi3c3NyQmpoqXkB//vx5mJj8PZjn7e2N1atXIzo6GpMnT4aLiwtSUlLQo0cPsc+ECRNQVFSE8PBw5Ofno3///khNTYWlpWW167K1tcX27dvx/vvvw8PDA/b29oiJiUF4eHiNaiEiIqpLcoHs3//+N5dZaqAUXafM2HGdMiIiqo0LFy4gMTFRp51rj9WPuvr7bXTfviQiImrIqloMlmuPNWwMZURERA2EXCCbMmUKTExMwCXIGj6GMiIiIgO3c+dO7N69W6edi8E2LgxlREREBqyy6UoGssaHoYyIiMhAVbb2GJe6aJwYyoiIiAzMwoULUVBQoNPO0bHGjaGMiIjIgHC60ngxlBERERkIuUDGMGY8GMqIiIgUVtnoWGkpA5kxYSgjIiJSkFwg69mzJ1555RUFqiElMZQREREpQBAETJs2Taed05XGi6GMiIionlU2XenuzkBmzBjKiIiI6pFcIHN2fg3Bwd0UqIYMCUMZERFRPbhz5w5mz56t087pSqrAUEZERFTHuPYYVQdDGRERUR2SC2QRERGwtbVVoBoyZAxlREREdSA3Nxdff/21TjtHx6gyDGVERER6xulKqg2GMiIiIj2SC2RTpkyBiYmJAtVQQ8JQRkREpAepqanIzMzUaefoGFUXQxkREdFj4nQl6QPHUomIiB6DXCCbOjUW27YxkFHNcKSMiIioFmbPno07d+7otJeWxsLLC5g0SYGiqEFjKCMiIqohTldSXeD0JRERUQ3IBbJt22J5M3F6bBwpIyIiqoaqRsc4QEb6wFBGRET0CHKB7B//+AdefvllBaqhxoqhjIiIqBKCIGDatGk67e7usQgIUKAgatQYyoiIiGTwYn6qbwxlRERED5ELZEOGDEH37t0VqIaMBUMZERHR/3f79m3MmTNHp52jY1QfGMqIiIjA6UpSHkMZEREZPblAFhERAVtbWwWqIWPFUEZEREbrjz/+wDfffKPTztExUgJDGRERGSVOV5Kh4W2WiIjI6MjfKmkKb5VEiuJIGRERGY3U1FRkZmbqtPNWSWQIGMqIiMgocLqSDB1DGRERNXpygYxhjAwNQxkRETVa06ZNgyAIOu0MZGSIFL/Qf+nSpejQoQMsLS3h6emJvXv3Vtl//fr16NKlCywtLdGzZ09s3bpV8rogCIiJiYGjoyOsrKzg6+uL06dPS/oEBASgXbt2sLS0hKOjI4YPH47Lly+Lr0+dOhUqlUrnYWNjI/ZJSkrSed3S0lIPZ4SIiPQhLi6OgYwaFEVDWXJyMiIjIxEbG4uDBw+iV69e8PPzw9WrV2X7p6enY9iwYQgLC0NWVhYCAwMRGBiI7Oxssc/s2bOxaNEiJCQkIDMzEzY2NvDz80NxcbHYZ8CAAVi3bh1OnTqFDRs24OzZsxgyZIj4+vjx43HlyhXJo1u3bnjttdck9TRv3lzS59y5c3o+Q0REVBuVTVcykJEhUwly/4yoJ56enujTpw+WLFkCACgvL4dGo8GYMWMwadIknf5BQUEoKirCli1bxLZ+/frBzc0NCQkJEAQBTk5OGDduHMaPHw8AKCgogIODA5KSkjB06FDZOjZv3ozAwECUlJTAzMxM5/XDhw/Dzc0Nu3fvxtNPPw3g/khZREQE8vPza/3+CwsLYWtri4KCAjRv3rzW+yEiovsqu5h/27ZYpKfXczHUaNXV32/FRspKS0tx4MAB+Pr6/l2MiQl8fX2RkZEhu01GRoakPwD4+fmJ/XNycqDVaiV9bG1t4enpWek+//rrL6xatQre3t6ygQwAVqxYgc6dO4uBrMKtW7fQvn17aDQaDB48GMeOHavyPZeUlKCwsFDyICIi/ZALZHZ2XbFtWyxk/p1PZHAUC2XXr19HWVkZHBwcJO0ODg7QarWy22i12ir7V/yszj4nTpwIGxsbtGrVCufPn8emTZtkj1lcXIxVq1YhLCxM0u7q6orExERs2rQJ3377LcrLy+Ht7Y2LFy9W+p7j4+Nha2srPjQaTaV9iYioegRBkA1k7u6xGDv2daSnAwEBChRGVEOKX+ivlI8++ghZWVnYvn07TE1NERwcLHtB6HfffYebN28iJCRE0u7l5YXg4GC4ubnBx8cHGzduROvWrbF8+fJKjxkVFYWCggLxceHCBb2/LyIiYxIXF4dp06bptMfGxjKIUYOj2JIY9vb2MDU1RV5enqQ9Ly8ParVadhu1Wl1l/4qfeXl5cHR0lPRxc3PTOb69vT06d+6Mrl27QqPRYM+ePfDy8pL0W7FiBQYNGqQz+vYwMzMzuLu748yZM5X2sbCwgIWFRZX7ISKi6pEbHRsyZAi6d++uQDVEj0+xkTJzc3N4eHggLS1NbCsvL0daWppOMKrg5eUl6Q8AO3bsEPs7OztDrVZL+hQWFiIzM7PSfVYcF7h/zdeDcnJysHPnTp2pSzllZWU4evSoJAwSEZH+3b59u5J7V8YykFGDpujisZGRkQgJCUHv3r3Rt29fLFy4EEVFRRgxYgQAIDg4GG3btkV8fDwAYOzYsfDx8cG8efPg7++PtWvXYv/+/fjiiy8AACqVChEREZg+fTpcXFzg7OyMKVOmwMnJCYGBgQCAzMxM7Nu3D/3790eLFi1w9uxZTJkyBR07dtQJbomJiXB0dMQLL7ygU/u0adPQr18/dOrUCfn5+ZgzZw7OnTuHkSNH1uEZIyIyblV9u5IX81NDp2goCwoKwrVr1xATEwOtVgs3NzekpqaKU4Xnz5+Hicnfg3ne3t5YvXo1oqOjMXnyZLi4uCAlJQU9evQQ+0yYMAFFRUUIDw9Hfn4++vfvj9TUVHFhV2tra2zcuBGxsbEoKiqCo6MjBg4ciOjoaMnUYnl5OZKSkhAaGgpTU1Od2m/cuIFRo0ZBq9WiRYsW8PDwQHp6Orp161ZXp4uIyKjJBbL58yPQvbstl7ugRkHRdcqMHdcpIyJ6tD/++APffPONTru7eyxmzgQmTeK3K6l+1dXfb977koiIDFZl05UVK/MzjFFjwlBGREQGZ/NmICtLN5BNmTJFclkLUWPCUEZERAYlNTUVWVmZOu3u7rFgHqPGjKGMiIgMxqOmK4kaM4YyIiIyCHKBjGGMjAlDGRERKWr27Nm4c+eOTjsDGRkbhjIiIlIMpyuJ/sZQRkREiqjsVklcCJaMFUMZERHVK94qiUgeQxkREdUbuUDm7u6OgIAAcMaSjB1XfCEiojonCEKl05UBXJafCABHyoiIqI5VNl25dm0sZs2q52KIDBhDGRER1Rm5QDZ06FC4urpyupLoIQxlRESkd7dv38acOXN02rnUBVHlGMqIiEivuPYYUe0wlBERkd7IBbLIyEg0a9ZMgWqIGhaGMiIiemw5OTn4z3/+o9PO0TGi6qvxkhimpqa4evWqTvuff/4JU1NTvRRFREQNR1xcnGwg27aNgYyoJmo8UiYIgmx7SUkJzM3NH7sgIiJqOOSmK93cpmDWLBOuzk9UQ9UOZYsWLQIAqFQqrFixAk2bNhVfKysrw+7du9GlSxf9V0hERAbnp59+wi+//KLTXjFdOXhwfVdE1PBVO5QtWLAAwP2RsoSEBMlUpbm5OTp06ICEhAT9V0hERAaF364kqhvVDmU5OTkAgAEDBmDjxo1o0aJFnRVFRESGSf7elbHgnZKIHl+NrynbuXNnXdRBREQG7Msvv8Tly5d12hnIiPSnxqHs7bffrvL1xMTEWhdDRESGR250zMbGBuPHj1egGqLGq8ah7MaNG5Lnd+/eRXZ2NvLz8/Hcc8/prTAiIlIepyuJ6k+NQ9l3332n01ZeXo53330XHTt21EtRRESkLF7MT1T/VEJlC4/V0KlTp/Dss8/iypUr+tidUSgsLIStrS0KCgrQvHlzpcshIgIgH8ieeeYZDBgwQIFqiAxPXf391tttls6ePYt79+7pa3dERFTPBEHAtGnTdNo5OkZUP2ocyiIjIyXPBUHAlStX8P333yMkJERvhRERUf2pbLpy27ZYMJMR1Y8ah7KsrCzJcxMTE7Ru3Rrz5s175DcziYjI8MgFMheXUCxZ0p63SiKqR3q7poxqjteUEZGS7ty5g9mzZ+u0c7qSqGoGd03Z1atXcerUKQCAq6sr2rRpo7eiiIiobvHblUSGp8ahrLCwEO+//z7WrFmD8vJyAICpqSmCgoKwdOlS2Nra6r1IIiLSH7lANn78eNjY2ChQDRFVMKnpBqNGjUJmZia+//575OfnIz8/H1u2bMH+/fsxevTouqiRiIj04NKlS5UuBstARqS8Gl9TZmNjg23btqF///6S9l9++QUDBw5EUVGRXgtszHhNGRHVl8qmK7k6P1HNGcw1Za1atZKdorS1tUWLFi30UhQREemPXCCLiYmBSqVSoBoiqkyNpy+jo6MRGRkJrVYrtmm1Wnz00UeYMmWKXosjIqLa27dvn2wgi42NZSAjMkA1nr50d3fHmTNnUFJSgnbt2gEAzp8/DwsLC7i4uEj6Hjx4UH+VNkKcviSiusJvVxLVHYOZvhw8eDD/hUVEZMDkAtm2bbFIT1egGCKqthqHsqlTp+q1gKVLl2LOnDnQarXo1asXFi9ejL59+1baf/369ZgyZQpyc3Ph4uKCWbNm4cUXXxRfFwQBsbGx+PLLL5Gfn4//+7//w7JlyySjeAEBATh06BCuXr2KFi1awNfXF7NmzYKTkxMAIDc3F87OzjrHzsjIQL9+/apdCxFRfVq9ejVOnz6t075mTSxk1oglIgNT42vKnnzySfz555867fn5+XjyySdrtK/k5GRERkYiNjYWBw8eRK9eveDn54erV6/K9k9PT8ewYcMQFhaGrKwsBAYGIjAwENnZ2WKf2bNnY9GiRUhISEBmZiZsbGzg5+eH4uJisc+AAQOwbt06nDp1Chs2bMDZs2cxZMgQneP9+OOPuHLlivjw8PCoUS1ERPUlLi5OJ5C1b98esbGxOHkS/IYlUQNQ42vKTExMoNVqdVbwz8vLg0ajQWlpabX35enpiT59+mDJkiUAgPLycmg0GowZMwaTZG64FhQUhKKiImzZskVs69evH9zc3JCQkABBEODk5IRx48Zh/PjxAICCggI4ODggKSkJQ4cOla1j8+bNCAwMRElJCczMzMSRsqysLLi5uclu86haqoPXlBGRPlR2MT8R1Q3FrynbvHmz+L+3bdsmWRajrKwMaWlpslN+lSktLcWBAwcQFRUltpmYmMDX1xcZGRmy22RkZCAyMlLS5ufnh5SUFABATk4OtFotfH19xddtbW3h6emJjIwM2VD2119/YdWqVfD29oaZmZnktYCAABQXF6Nz586YMGECAh74p+ajapFTUlKCkpIS8XlhYWGlfYmIHoUX8xM1LtUOZYGBgQAAlUqFkJAQyWtmZmbo0KED5s2bV+0DX79+HWVlZXBwcJC0Ozg44OTJk7LbaLVa2f4Vy3NU/KyqT4WJEydiyZIluH37Nvr16ycZ8WratCnmzZuH//u//4OJiQk2bNiAwMBApKSkiMHsUbXIiY+Pr/RDlIioJuQ+S/75z3/C29tbgWqISB+qHcoq7nPp7OyMffv2wd7evs6Kqg8fffQRwsLCcO7cOcTFxSE4OBhbtmyBSqWCvb29ZBSsT58+uHz5MubMmSMZLaupqKgoyX4LCwuh0Wge630QkXERBAHTpk3TaefoGFHDV+NvX+bk5OjlwPb29jA1NUVeXp6kPS8vD2q1WnYbtVpdZf+Kn3l5eXB0dJT0efjaMHt7e9jb26Nz587o2rUrNBoN9uzZAy8vL9lje3p6YseOHdWuRY6FhQUsLCwqfZ2IqCqcriRq3GocyuT+hfagmJiYau3H3NwcHh4eSEtLE6dGy8vLkZaWhg8++EB2Gy8vL6SlpSEiIkJs27FjhxiknJ2doVarkZaWJoawwsJCZGZm4t133620lopRwAev93rYoUOHJEHvUbUQEemTXCDbs2ck3n23rQLVEFFdqHEo++677yTP7969i5ycHDRp0gQdO3asdigDgMjISISEhKB3797o27cvFi5ciKKiIowYMQIAEBwcjLZt2yI+Ph4AMHbsWPj4+GDevHnw9/fH2rVrsX//fnzxxRcA7l/vFhERgenTp8PFxQXOzs6YMmUKnJycxOCXmZmJffv2oX///mjRogXOnj2LKVOmoGPHjmKg+vrrr2Fubg53d3cAwMaNG5GYmIgVK1aItT+qFiIifSguLsasWbN02jk6RtT41DiUZWVl6bQVFhYiNDQUL7/8co32FRQUhGvXriEmJgZarRZubm5ITU0VL6A/f/48TEz+XkrN29sbq1evRnR0NCZPngwXFxekpKSgR48eYp8JEyagqKgI4eHhyM/PR//+/ZGamgpLS0sAgLW1NTZu3IjY2FgUFRXB0dERAwcORHR0tGRq8ZNPPsG5c+fQpEkTdOnSBcnJyZK1zKpTCxHR4+B0JZFxqfE6ZZU5evQoXnrpJeTm5upjd0aB65QRUWXkAtmECRNgZWWlQDVE9CDF1yl7lIKCAhQUFOhrd0RERkmr1WL58uU67RwdI2r8ahzKFi1aJHkuCAKuXLmCb775Bi+88ILeCiMiMjacriQybjUOZQsWLJA8NzExQevWrRESEiJZnZ+IiKpPLpDFxMRApVIpUA0RKUGxdcqIiAg4ePAg/ve//+m0c3SMyPjU6pqy/Px8nDlzBgDQqVMn2NnZ6bMmIiKjwOlKInpQjUJZbm4u3n//fWzbtg0VX9pUqVQYOHAglixZgg4dOtRFjUREjY5cIGMYIzJu1Q5lFy5cQL9+/WBmZoZPPvkEXbt2BQAcP34cy5Ytg5eXF/bt24cnnniizoolImroUlJScPjwYZ12BjIiqvY6ZWFhYThz5gy2bdsmLsRa4c6dOxg4cCBcXFwkq95T1bhOGZFxkRsda97cBf/+9xsKVENEtaX4OmWpqalITk7WCWQAYGVlhU8++QRDhw7VW2FERI3F5s1AVhanK4moatUOZdevX6/ymrEnn3wSf/31lz5qIiJqND799FPcvXtXp52BjIgeVu1Q5ujoiOPHj1d6zVh2djbUarXeCiMiaujkpitfeuklPPXUUwpUQ0SGzuTRXe4LDAzE+PHjce3aNZ3Xrl69iokTJyIwMFCftRERNUiCIFT67UoGMiKqTLUv9L9x4wY8PT2h1Wrx1ltvoUuXLhAEASdOnMDq1auhVquxZ88etGzZsq5rbjR4oT9R48O1x4gaP8Uv9G/RogUyMzMxefJkrF27Fvn5+QAAOzs7vPHGG/j0008ZyIjIqMkFsvDwcDg6OipQDRE1NNUeKXuQIAjiNGbr1q15b7Za4kgZUeNQUlKCmTNn6rRzdIyocVJ8pOxBKpUKbdq00VsRREQNFacriUhfahXKiIhIPpBNnDhRdj1HIqJHYSgjIqqhq1evYtmyZTrtHB0josfBUEZEVAOcriSiusJQRkRUTXKBLCYmhl92IiK9qFYoW7RoUbV3+OGHH9a6GCIiQ5SdnY0NGzbotHN0jIj0qVqhbMGCBdXamUqlYigjokZFbnSspMQa/fp9pEA1RNSYVSuU5eTk1HUdREQGp7JbJRER1YVaX1NWWlqKnJwcdOzYEU2a8NI0Imo8vv/+e+zfv1+nnYGMiOpStW9IXuH27dsICwuDtbU1unfvjvPnzwMAxowZI7uiNRFRQxIXF6cTyNzd3RnIiKjO1TiURUVF4fDhw9i1a5dkgURfX18kJyfrtTgiovpU2XRlQECAAtUQkbGp8bxjSkoKkpOT0a9fP8nXwLt3746zZ8/qtTgiovqwYMECFBYW6rRzdIyI6lONQ9m1a9dk73tZVFTEtXqIqMGRGx175ZVX0LNnTwWqISJjVuPpy969e+P7778Xn1cEsRUrVsDLy0t/lRER1SFBECqdrmQgIyIl1Hik7NNPP8ULL7yA48eP4969e/jss89w/PhxpKen4+eff66LGomI9Iq3SiIiQ1TjkbL+/fvj0KFDuHfvHnr27Int27ejTZs2yMjIgIeHR13USESkN3KB7N1332UgIyLFqQRBEJQuwlgVFhbC1tYWBQUFaN68udLlEDVqJSUlssv2MIwRUU3V1d/vak1fyn0rqTIMF0RkaDhdSUQNQbVCmZ2dXbW/WVlWVvZYBRER6ZNcIJs4caJknUUiIkNQrVC2c+dO8X/n5uZi0qRJCA0NFb9tmZGRga+//hrx8fF1UyURUQ1dvXoVy5Yt02nn6BgRGaoaX1P2/PPPY+TIkRg2bJikffXq1fjiiy+wa9cufdbXqPGaMqK6welKIqpLdfX3u8ahzNraGocPH4aLi4uk/ffff4ebmxtu376tt+IaO4YyIv2TC2QxMTFc3JqI9Kau/n7XeEkMjUaDL7/8Uqd9xYoV0Gg0eimKiKimsrOzK10MloGMiBqCGi8eu2DBArz66qv44Ycf4OnpCQDYu3cvTp8+jQ0bNui9QCKiR5ELYzY2Nhg/frwC1RAR1U6t1im7ePEiPv/8c5w8eRIA0LVrV7zzzjscKashTl8SPb7KRseIiOqKwUxfAsATTzyBTz/9FBs3bsTGjRsxY8aMWgeypUuXokOHDrC0tISnpyf27t1bZf/169ejS5cusLS0RM+ePbF161bJ64IgICYmBo6OjrCysoKvry9Onz4t6RMQEIB27drB0tISjo6OGD58OC5fviy+vmvXLgwePBiOjo6wsbGBm5sbVq1aJdlHUlISVCqV5MGv2BPVn++//56BjIgalVqFsvz8fMybNw8jR47EyJEjsWDBAhQUFNR4P8nJyYiMjERsbCwOHjyIXr16wc/PD1evXpXtn56ejmHDhiEsLAxZWVkIDAxEYGAgsrOzxT6zZ8/GokWLkJCQgMzMTNjY2MDPzw/FxcVinwEDBmDdunU4deoUNmzYgLNnz2LIkCGS4/zjH//Ahg0bcOTIEYwYMQLBwcHYsmWLpJ7mzZvjypUr4uPcuXM1PgdEVHNxcXHYv3+/pO2pp55iICOiBq3G05f79++Hn58frKys0LdvXwDAvn37cOfOHWzfvh1PPfVUtffl6emJPn36YMmSJQCA8vJyaDQajBkzBpMmTdLpHxQUhKKiIkk46tevH9zc3JCQkABBEODk5IRx48aJ15IUFBTAwcEBSUlJGDp0qGwdmzdvRmBgIEpKSmBmZibbx9/fHw4ODkhMTARwf6QsIiIC+fn51X6/D+P0JVHNcXSMiJRmMNOX//73vxEQEIDc3Fxx+jInJweDBg1CREREtfdTWlqKAwcOwNfX9+9iTEzg6+uLjIwM2W0yMjIk/QHAz89P7J+TkwOtVivpY2trC09Pz0r3+ddff2HVqlXw9vauNJAB98Ndy5YtJW23bt1C+/btodFoMHjwYBw7dqzK91xSUoLCwkLJg4iqZ/78+QxkRNSo1TiU7d+/HxMnTkSTJn9/cbNJkyaYMGGCznRCVa5fv46ysjI4ODhI2h0cHKDVamW30Wq1Vfav+FmdfU6cOBE2NjZo1aoVzp8/j02bNlVa67p167Bv3z6MGDFCbHN1dUViYiI2bdqEb7/9FuXl5fD29sbFixcr3U98fDxsbW3FB78YQVQ9cXFxuHnzpqTtlVdeYSAjokalxqGsefPmOH/+vE77hQsX0KxZM70UVR8++ugjZGVlYfv27TA1NUVwcDDkZnJ37tyJESNG4Msvv0T37t3Fdi8vLwQHB8PNzQ0+Pj7YuHEjWrdujeXLl1d6zKioKBQUFIiPCxcu1Ml7I2osBEGodHSsZ8+eClRERFR3arxOWVBQEMLCwjB37lx4e3sDAH777Td89NFHOrdeqoq9vT1MTU2Rl5cnac/Ly4NarZbdRq1WV9m/4mdeXh4cHR0lfdzc3HSOb29vj86dO6Nr167QaDTYs2ePeD9PAPj555/x0ksvYcGCBQgODq7y/ZiZmcHd3R1nzpyptI+FhQUsLCyq3A8R3cdbJRGRsanxSNncuXPxyiuvIDg4GB06dECHDh0QGhqKIUOGYNasWdXej7m5OTw8PJCWlia2lZeXIy0tTRKMHuTl5SXpDwA7duwQ+zs7O0OtVkv6FBYWIjMzs9J9VhwXuH/NV4Vdu3bB398fs2bNQnh4+CPfT1lZGY4ePSoJg0RUO3KB7N1332UgI6JGrcYjZebm5vjss88QHx+Ps2fPAgA6duwIa2vrGh88MjISISEh6N27N/r27YuFCxeiqKhIvHYrODgYbdu2RXx8PABg7Nix8PHxwbx58+Dv74+1a9di//79+OKLLwAAKpUKERERmD59OlxcXODs7IwpU6bAyckJgYGBAIDMzEzs27cP/fv3R4sWLXD27FlMmTIFHTt2FIPbzp07MWjQIIwdOxavvvqqeD2aubm5eLH/tGnT0K9fP3Tq1An5+fmYM2cOzp07h5EjR9b4PBDRfSUlJZg5c6ZOO8MYERmDGoeyCtbW1o99TUdQUBCuXbuGmJgYaLVauLm5ITU1VbxQ//z58zAx+Xswz9vbG6tXr0Z0dDQmT54MFxcXpKSkoEePHmKfCRMmoKioCOHh4cjPz0f//v2RmpoqLuxqbW2NjRs3IjY2FkVFRXB0dMTAgQMRHR0tTi1+/fXXuH37NuLj48VACAA+Pj7YtWsXAODGjRsYNWoUtFotWrRoAQ8PD6Snp6Nbt26PdU6IjBWnK4nI2FV7nbK33367WjusWMeLHo3rlBHdJxfIJk2axGswicgg1dXf72qPlCUlJaF9+/Zwd3eX/ZYiEVFNXb16FcuWLdNp5+gYERmjaoeyd999F2vWrEFOTg5GjBiBt956S2cxVSKi6uJ0JRGRVI1us1RSUoKNGzciMTER6enp8Pf3R1hYGP71r39BpVLVZZ2NEqcvyVjJBbKYmBh+jhBRg1BXf79rfO/LCufOnUNSUhL+85//4N69ezh27BiaNm2qt8KMAUMZGZujR49i48aNOu0cHSOihkTxa8oeZmJiApVKBUEQUFZWpreCiKhxkhsds7Gxwfjx4xWohojI8NQolD04ffnrr79i0KBBWLJkCQYOHChZuoKI6EG8kTgR0aNVO5S99957WLt2LTQaDd5++22sWbMG9vb2dVkbETVwW7ZswYEDB3TaGciIiHRV+5oyExMTtGvXDu7u7lVejCt3vQjJ4zVl1JjJjY55eHhg0KBBClRDRKQ/il9TFhwczG9GEVG1cLqSiKjmarR4LBFRVebNm4dbt27ptDOQERE9Wq2/fUlE9CC50bFXXnnlse+RS0RkLBjKiOixCIKAadOm6bRzdIyIqGYYyoio1nirJCIi/WEoI6JakQtkv/76LnbsaKNANUREDR9DGRHVSGlpKeLj43Xa166NxaxZChRERNRIMJQRUbVVNl1ZWhqLEyfquRgiokaGoYyIqkUukEVFRcHc3FyBaoiIGh+GMiKq0l9//YXFixfrtPNifiIi/WIoI6JK8duVRET1h6GMiGTJBbKYmBjebo2IqI4wlBGRxJkzZ7Bq1Sqddo6OERHVLYYyIhLJjY517NgRb731lgLVEBEZF4YyIgIgH8g4OkZEVH8YyoiM3C+//IKffvpJp52BjIiofjGUERkxudGx5557Dk8//bQC1RARGTeGMiIjxelKIiLDwlBGZGQ2bNiA7OxsnXYGMiIiZTGUERkRudGxvXtDMHp0h/ovhoiIJBjKiIyAIAiYNm2aTjtHx4iIDAdDGVEjN2fOHNy+fVunnYGMiMiwMJQRNWJy05Vjx46FnZ1d/RdDRERVYigjaoTu3r2LTz/9VKedo2NERIaLoYyokZEbHQMAd3cGMiIiQ8ZQRtSIyAWyyZMnw8zMTIFqiIioJhjKiBqBgoICLFy4UKed05VERA0HQxlRAyc3OqZWqzF69GgFqiEiotpiKCNqwOQCWUxMDFQqlQLVEBHR42AoI2qALly4gMTERJ12TlcSETVcDGVEDYzc6FifPn3w4osvKlANERHpi4nSBSxduhQdOnSApaUlPD09sXfv3ir7r1+/Hl26dIGlpSV69uyJrVu3Sl4XBAExMTFwdHSElZUVfH19cfr0aUmfgIAAtGvXDpaWlnB0dMTw4cNx+fJlSZ8jR47g6aefhqWlJTQaDWbPnl3jWoj0TS6QxcbGMpARETUCioay5ORkREZGIjY2FgcPHkSvXr3g5+eHq1evyvZPT0/HsGHDEBYWhqysLAQGBiIwMBDZ2dlin9mzZ2PRokVISEhAZmYmbGxs4Ofnh+LiYrHPgAEDsG7dOpw6dQobNmzA2bNnMWTIEPH1wsJC/Otf/0L79u1x4MABzJkzB1OnTsUXX3xRo1qI9OXYsWOVBjIiImocVIIgCEod3NPTE3369MGSJUsAAOXl5dBoNBgzZgwmTZqk0z8oKAhFRUXYsmWL2NavXz+4ubkhISEBgiDAyckJ48aNw/jx4wHcXyrAwcEBSUlJGDp0qGwdmzdvRmBgIEpKSmBmZoZly5bh448/hlarhbm5OQBg0qRJSElJwcmTJ6tVS3UUFhbC1tYWBQUFaN68ebW2IeMjF8YOHRqCESO6IyBAgYKIiIxcXf39VmykrLS0FAcOHICvr+/fxZiYwNfXFxkZGbLbZGRkSPoDgJ+fn9g/JycHWq1W0sfW1haenp6V7vOvv/7CqlWr4O3tLS6wmZGRgWeeeUYMZBXHOXXqFG7cuFGtWoj0obLRse++YyAjImpsFAtl169fR1lZGRwcHCTtDg4O0Gq1sttotdoq+1f8rM4+J06cCBsbG7Rq1Qrnz5/Hpk2bHnmcB4/xqFrklJSUoLCwUPIgkpORkcHpSiIiI6P4hf5K+eijj5CVlYXt27fD1NQUwcHBqOuZ3Pj4eNja2ooPjUZTp8ejhikuLg7bt2+XtLm6hjOQERE1cootiWFvbw9TU1Pk5eVJ2vPy8qBWq2W3UavVVfav+JmXlwdHR0dJHzc3N53j29vbo3PnzujatSs0Gg327NkDLy+vSo/z4DEeVYucqKgoREZGis8LCwsZzEgkCAKmTZum084wRkRkHBQbKTM3N4eHhwfS0tLEtvLycqSlpcHLy0t2Gy8vL0l/ANixY4fY39nZGWq1WtKnsLAQmZmZle6z4rjA/enFiuPs3r0bd+/elRzH1dUVLVq0qFYtciwsLNC8eXPJgwgANm3axEBGRGTkFF08NjIyEiEhIejduzf69u2LhQsXoqioCCNGjAAABAcHo23btoiPjwcAjB07Fj4+Ppg3bx78/f2xdu1a7N+/X1yqQqVSISIiAtOnT4eLiwucnZ0xZcoUODk5ITAwEACQmZmJffv2oX///mjRogXOnj2LKVOmoGPHjmKgeuONNxAXF4ewsDBMnDgR2dnZ+Oyzz7BgwQKx9kfVQlRdcteOjR8/HjY2NgpUQ0RESlE0lAUFBeHatWuIiYmBVquFm5sbUlNTxQvoz58/DxOTvwfzvL29sXr1akRHR2Py5MlwcXFBSkoKevToIfaZMGECioqKEB4ejvz8fPTv3x+pqamwtLQEAFhbW2Pjxo2IjY1FUVERHB0dMXDgQERHR8PCwgLA/W9sbt++He+//z48PDxgb2+PmJgYhIeH16gWoqrcu3cPM2bM0Gnn6BgRkXFSdJ0yY8d1yozX559/jmvXrknaHBwc8M477yhUERERVVdd/f3mvS+J6pncdOXHH3+MJk34f0ciImPGvwJE9aSoqAhz587Vaed0JRERAQxlRPVCbnTM3d0dAVyWn4iI/j+GMqI6JhfIYmJioFKpFKiGiIgMFUMZUR25evUqli1bptPO6UoiIpLDUEZUB+RGxwYOHAhPT08FqiEiooaAoYxIz3gjcSIiqg2GMiI9OXfuHJKSknTaGciIiKg6GMqI9EBudCwzcwTeeaedAtUQEVFDxFBG9Jg4XUlERPrAUEZUS4cPH0ZKSopOOwMZERHVBkMZUS3IjY6NGTMGLVu2VKAaIiJqDBjKiGpAEARMmzZNp52jY0RE9LgYyoiq6aeffsIvv/wiabO1tUVERIQyBRERUaPCUEZUDXLTlRMmTICVlZUC1RARUWPEUEZUhbKyMkyfPl2nndOVRESkbwxlRJVYu3YtTp06JWnr2rUrXn/9dYUqIiKixoyhjEiG3HRldHQ0TE1NFaiGiIiMgYnSBRAZkjt37sgGsm3bYhnIiIioTnGkjOj/mz9/Pm7evClpU6t98PXXz2LSJGVqIiIi48FQRgT56cqYmBioVCqMHq1AQUREZHQYysio/fnnn1iyZIlOO79dSURE9Y2hjIyW3OjYyy+/jH/84x8KVENERMaOoYyMklwg4+gYEREpiaGMjMq5c+eQlJSk085ARkRESmMoI6MhNzo2YsQItGvXToFqiIiIpBjKyChwupKIiAwdQxk1aocPH0ZKSopOOwMZEREZGoYyarTkRsfGjBmDli1bKlANERFR1RjKqNERBAHTpk3TaefoGBERGTKGMmpU0tLS8Ouvv0ra7OzsMHbsWIUqIiIiqh6GMmo05KYrJ0yYACsrKwWqISIiqhmGMmrwysrKMH36dJ12TlcSEVFDwlBGDdq2bduwZ88eSZtW2xXLlr2uUEVERES1w1BGDZbcdOX27dGYONFUgWqIiIgeD0MZNTjFxcWYNWuWTntsbCw4Y0lERA0VQxk1GJs3Azt2fAt7+7OSdn9/f/Tu3VuhqoiIiPSDoYwajKysONjbS9tiYmKgUqmUKYiIiEiPGMrI4N26dQvz5s3Taee3K4mIqDFhKCODtm7dOpw4cULS9tZbb6Fjx44KVURERFQ3TJQuYOnSpejQoQMsLS3h6emJvXv3Vtl//fr16NKlCywtLdGzZ09s3bpV8rogCIiJiYGjoyOsrKzg6+uL06dPi6/n5uYiLCwMzs7OsLKyQseOHREbG4vS0lKxz9SpU6FSqXQeNjY2Yp+kpCSd1y0tLfV0Vgi4/+3KhwNZbGwsAxkRETVKioay5ORkREZGIjY2FgcPHkSvXr3g5+eHq1evyvZPT0/HsGHDEBYWhqysLAQGBiIwMBDZ2dlin9mzZ2PRokVISEhAZmYmbGxs4Ofnh+LiYgDAyZMnUV5ejuXLl+PYsWNYsGABEhISMHnyZHEf48ePx5UrVySPbt264bXXXpPU07x5c0mfc+fO1cFZMj5//vmnznIXarWa05VERNSoqQRBEJQ6uKenJ/r06YMlS5YAAMrLy6HRaDBmzBhMmjRJp39QUBCKioqwZcsWsa1fv35wc3NDQkICBEGAk5MTxo0bh/HjxwMACgoK4ODggKSkJAwdOlS2jjlz5mDZsmX4448/ZF8/fPgw3NzcsHv3bjz99NMA7o+URUREID8/v9bvv7CwELa2tigoKEDz5s1rvZ/G5PPPP8e1a9ckbWPGjEHLli0VqoiIiEiqrv5+KzZSVlpaigMHDsDX1/fvYkxM4Ovri4yMDNltMjIyJP0BwM/PT+yfk5MDrVYr6WNrawtPT89K9wncD25V/dFfsWIFOnfuLAayCrdu3UL79u2h0WgwePBgHDt2rPI3DKCkpASFhYWSB/0tLi5OJ5DFxsYykBERkVFQLJRdv34dZWVlcHBwkLQ7ODhAq9XKbqPVaqvsX/GzJvs8c+YMFi9ejNGjR8u+XlxcjFWrViEsLEzS7urqisTERGzatAnffvstysvL4e3tjYsXL1byjoH4+HjY2tqKD41GU2lfY3LhwgWd6cru3btzupKIiIyKUX/78tKlSxg4cCBee+01jBo1SrbPd999h5s3byIkJETS7uXlBS8vL/G5t7c3unbtiuXLl+OTTz6R3VdUVBQiIyPF54WFhUYfzORulTR+/HjJlyqIiIiMgWKhzN7eHqampsjLy5O05+XlQa1Wy26jVqur7F/xMy8vD46OjpI+bm5uku0uX76MAQMGwNvbG1988UWlda5YsQKDBg3SGX17mJmZGdzd3XHmzJlK+1hYWMDCwqLK/RgLQRAwbdo0nXaOjhERkbFSbPrS3NwcHh4eSEtLE9vKy8uRlpYmGYF6kJeXl6Q/AOzYsUPs7+zsDLVaLelTWFiIzMxMyT4vXbqEZ599Fh4eHli5ciVMTORPQ05ODnbu3KkzdSmnrKwMR48elYRBknfy5EmdQNa/f38GMiIiMmqKTl9GRkYiJCQEvXv3Rt++fbFw4UIUFRVhxIgRAIDg4GC0bdsW8fHxAICxY8fCx8cH8+bNg7+/P9auXYv9+/eLI10qlQoRERGYPn06XFxc4OzsjClTpsDJyQmBgYEA/g5k7du3x9y5cyUXlj88QpeYmAhHR0e88MILOrVPmzYN/fr1Q6dOnZCfn485c+bg3LlzGDlyZF2cqkZDbrpy8uTJMDMzU6AaIiIiw6FoKAsKCsK1a9cQExMDrVYLNzc3pKamilOF58+fl4xieXt7Y/Xq1YiOjsbkyZPh4uKClJQU9OjRQ+wzYcIEFBUVITw8HPn5+ejfvz9SU1PFhV137NiBM2fO4MyZM3jiiSck9Ty4Okh5eTmSkpIQGhoKU1NTndpv3LiBUaNGQavVokWLFvDw8EB6ejq6deum13PUWJSXl8tea8fRMSIiovsUXafM2BnLOmV79+7FDz/8IGnz9/dH7969FaqIiIio9urq77dRf/uS6p7cdOWUKVMqvY6PiIjIWDGUUZ0oLS0VrwV8EKcriYiI5DGUkd7t2LED6enpkrahQ4fC1dVVoYqIiIgMH0MZ6ZXcdGVMTAxUKpUC1RARETUcDGWkF7du3cK8efMkbaampoiOjlaoIiIiooaFoYweW3JyMk6ePClpGzlyJNq2batQRURERA0PQxk9FrnpSl7MT0REVHMMZVQrf/75J5YsWSJpc3R0RHh4uEIVERERNWwMZVRjn3/+ueT2VAAwZswYtGzZUqGKiIiIGj6GMqqWzZuBmTMBPz9OVxIREdUFhjKqls8/vwQ/vxWSth49euDVV19VqCIiIqLGhaGMHmn9+vXw8jouaRs/fjxsbGwUqoiIiKjxYSijSgmCgGnTpum0c7qSiIhI/xjKSNalS5ewYoV0uvKVV15Bz549FaqIiIiocWMoIx1z565EUdF5SdvHH3+MJk3460JERFRX+FeWRIIgYPHixSgquiG2NWvWDJGRkQpWRUREZBwYyggA8Ndff2Hx4sWSto4dh+Ott55UqCIiIiLjwlBG+PXXX5GWliY+t7e3x3vvvQeVSqVgVURERMaFocyIlZeXY+bMmbh7967YFhAQAHd3dwWrIiIiMk4MZUZKq9Vi+fLlkrbIyEg0a9ZMoYqIiIiMG0OZEdqxYwfS09PF5+3bt0dISAinK4mIiBTEUGZE7t27hxkzZkjaXn/9dXTt2lWhioiIiKgCQ5mROH/+PFauXClpmzBhAqysrBSqiIiIiB7EUGYENm/ejKysLPF5165d8frrrytYERERET2MoawRKykpwcyZMyVtw4cPx5NPcu0xIiIiQ8NQ1kidOXMGq1atkrRFRUXB3NxcoYqIiIioKgxljVB+fr4kkHl4eGDQoEEKVkRERESPwlDWCD24GGxYWBieeOIJBashIiKi6mAoa4Rat26NXr0+xuzZTeDuDjCTERERGT4TpQugujF7dhNkZAAPXedPREREBoqhrJGaNAnw8rr/k4iIiAwfpy8bqYCA+w8iIiJqGDhSRkRERGQAGMqIiIiIDABDGREREZEBYCgjIiIiMgAMZUREREQGgKGMiIiIyAAwlBEREREZAIYyIiIiIgOgeChbunQpOnToAEtLS3h6emLv3r1V9l+/fj26dOkCS0tL9OzZE1u3bpW8LggCYmJi4OjoCCsrK/j6+uL06dPi67m5uQgLC4OzszOsrKzQsWNHxMbGorS0VNJHpVLpPPbs2VOjWoiIiIiqS9FQlpycjMjISMTGxuLgwYPo1asX/Pz8cPXqVdn+6enpGDZsGMLCwpCVlYXAwEAEBgYiOztb7DN79mwsWrQICQkJyMzMhI2NDfz8/FBcXAwAOHnyJMrLy7F8+XIcO3YMCxYsQEJCAiZPnqxzvB9//BFXrlwRHx4eHjWqhYiIiKi6VIIgCEod3NPTE3369MGSJUsAAOXl5dBoNBgzZgwmydy0MSgoCEVFRdiyZYvY1q9fP7i5uSEhIQGCIMDJyQnjxo3D+PHjAQAFBQVwcHBAUlIShg4dKlvHnDlzsGzZMvzxxx8A7o+UOTs7IysrC25ubrLbPKqW6igsLIStrS0KCgrQvHnzam1DREREyqqrv9+KjZSVlpbiwIED8PX1/bsYExP4+voiIyNDdpuMjAxJfwDw8/MT++fk5ECr1Ur62NrawtPTs9J9AveDW8uWLXXaAwIC0KZNG/Tv3x+bN2+uUS1ySkpKUFhYKHkQERERAQqGsuvXr6OsrAwODg6SdgcHB2i1WtlttFptlf0rftZkn2fOnMHixYsxevRosa1p06aYN28e1q9fj++//x79+/dHYGCgJJg9qhY58fHxsLW1FR8ajabSvkRERGRcmihdgJIuXbqEgQMH4rXXXsOoUaPEdnt7e0RGRorP+/Tpg8uXL2POnDkICAio9fGioqIk+y0oKEC7du04YkZERNSAVPzd1vcVYIqFMnt7e5iamiIvL0/SnpeXB7VaLbuNWq2usn/Fz7y8PDg6Okr6PHxt2OXLlzFgwAB4e3vjiy++eGS9np6e2LFjR7VrkWNhYQELCwvxecV/VI6YERERNTw3b96Era2t3vanWCgzNzeHh4cH0tLSEBgYCOD+hf5paWn44IMPZLfx8vJCWloaIiIixLYdO3bAy8sLAODs7Ay1Wo20tDQxhBUWFiIzMxPvvvuuuM2lS5cwYMAAeHh4YOXKlTAxefQs7qFDhyRB71G1VIeTkxMuXLiAZs2aQaVSVXu7xqqwsBAajQYXLlzgFx/+P54TKZ4PXTwnUjwfunhOpPRxPgRBwM2bN+Hk5KTf4gQFrV27VrCwsBCSkpKE48ePC+Hh4YKdnZ2g1WoFQRCE4cOHC5MmTRL7//bbb0KTJk2EuXPnCidOnBBiY2MFMzMz4ejRo2KfmTNnCnZ2dsKmTZuEI0eOCIMHDxacnZ2FO3fuCIIgCBcvXhQ6deokPP/888LFixeFK1euiI8KSUlJwurVq4UTJ04IJ06cEGbMmCGYmJgIiYmJNaqFaqagoEAAIBQUFChdisHgOZHi+dDFcyLF86GL50TKkM+HoteUBQUF4dq1a4iJiYFWq4WbmxtSU1PFC+jPnz8vGcXy9vbG6tWrER0djcmTJ8PFxQUpKSno0aOH2GfChAkoKipCeHg48vPz0b9/f6SmpsLS0hLA/dGsM2fO4MyZM3jiiSck9QgPzA1/8sknOHfuHJo0aYIuXbogOTkZQ4YMqVEtRERERNWl6DplRA/ium26eE6keD508ZxI8Xzo4jmRMuTzofhtlogqWFhYIDY2VvJlCGPHcyLF86GL50SK50MXz4mUIZ8PjpQRERERGQCOlBEREREZAIYyIiIiIgPAUEZERERkABjKiIiIiAwAQxlV29KlS9GhQwdYWlrC09MTe/furbL/+vXr0aVLF1haWqJnz57YunWr5HVBEBATEwNHR0dYWVnB19cXp0+fFl/Pzc1FWFgYnJ2dYWVlhY4dOyI2NhalpaVin6lTp0KlUuk8bGxsxD5JSUk6r1esW9eQzgcABAQEoF27drC0tISjoyOGDx+Oy5cvS/ocOXIETz/9NCwtLaHRaDB79uwa11JbhnhOdu3ahcGDB8PR0RE2NjZwc3PDqlWrJPswpt+R3Nxc2f/P7Nmzp0a11JYhnhNj+xypUFJSAjc3N6hUKhw6dEjymrF9jlSo7JzU2+eIMmvWUkOzdu1awdzcXEhMTBSOHTsmjBo1SrCzsxPy8vJk+//222+CqampMHv2bOH48eNCdHS07N0XbG1thZSUFOHw4cNCQECA5O4LP/zwgxAaGips27ZNOHv2rLBp0yahTZs2wrhx48R93Lx5U3JXhitXrgjdunUTQkJCxD4rV64UmjdvLulTcdeIhnQ+BEEQ5s+fL2RkZAi5ubnCb7/9Jnh5eQleXl7i6wUFBYKDg4Pw5ptvCtnZ2cKaNWsEKysrYfny5TWqpTGdkxkzZgjR0dHCb7/9Jpw5c0ZYuHChYGJiIvzvf/8T+xjT70hOTo4AQPjxxx8l77e0tLRGtTSmc2JsnyMVPvzwQ+GFF14QAAhZWVliuzF+jjzqnNTX5whDGVVL3759hffff198XlZWJjg5OQnx8fGy/V9//XXB399f0ubp6SmMHj1aEARBKC8vF9RqtTBnzhzx9fz8fMHCwkJYs2ZNpXXMnj1bcHZ2rvT1Q4cOCQCE3bt3i20rV64UbG1tq3x/NWUo52PTpk2CSqUS/6B+/vnnQosWLYSSkhKxz8SJEwVXV9dq11JbhnpO5Lz44ovCiBEjxOfG9DtSEcoe/INT01pqy1DPycOM4XNk69atQpcuXYRjx47p/D4Y6+dIVedETl18jnD6kh6ptLQUBw4cgK+vr9hmYmICX19fZGRkyG6TkZEh6Q8Afn5+Yv+cnBxotVpJH1tbW3h6ela6TwAoKChAy5YtK319xYoV6Ny5M55++mlJ+61bt9C+fXtoNBoMHjwYx44dq/wNP4KhnI+//voLq1atgre3N8zMzMTjPPPMMzA3N5cc59SpU7hx40a1aqkNQz4ncuR+j4zld6RCQEAA2rRpg/79+2Pz5s01qqU2GsI5qdDYP0fy8vIwatQofPPNN7C2tpY9jrF9jjzqnMipi88RhjJ6pOvXr6OsrEy8J2kFBwcHaLVa2W20Wm2V/St+1mSfZ86cweLFizF69GjZ14uLi7Fq1SqEhYVJ2l1dXZGYmIhNmzbh22+/RXl5Oby9vXHx4sVK3nHVlD4fEydOhI2NDVq1aoXz589j06ZNjzzOg8d4VC21Ycjn5GHr1q3Dvn37MGLECLHNmH5HmjZtinnz5mH9+vX4/vvv0b9/fwQGBkqCmTH/jjT2zxFBEBAaGop33nkHvXv3rtFxHjxGY/odqc45eVhdfY4wlFGDcOnSJQwcOBCvvfYaRo0aJdvnu+++w82bNxESEiJp9/LyQnBwMNzc3ODj44ONGzeidevWWL58eX2UrncfffQRsrKysH37dpiamiI4OBiCkd+Yo7rnZOfOnRgxYgS+/PJLdO/eXWw3pt8Re3t7REZGwtPTE3369MHMmTPx1ltvYc6cOQpXXbeq+zvS2D9HFi9ejJs3byIqKkrpUgxGTc9JXX6OMJTRI9nb28PU1BR5eXmS9ry8PKjVatlt1Gp1lf0rflZnn5cvX8aAAQPg7e2NL774otI6V6xYgUGDBun8i+hhZmZmcHd3x5kzZ6rsVxmlz4e9vT06d+6Mf/7zn1i7di22bt0qfnOusuM8eIxH1VIbhnxOKvz888946aWXsGDBAgQHB1f5fhrz74gcT09PyXs11t8RoPF/jvz000/IyMiAhYUFmjRpgk6dOgEAevfuLQZRY/scqc45qVDXnyMMZfRI5ubm8PDwQFpamthWXl6OtLQ0eHl5yW7j5eUl6Q8AO3bsEPs7OztDrVZL+hQWFiIzM1Oyz0uXLuHZZ5+Fh4cHVq5cCRMT+V/ZnJwc7Ny5U2fKQU5ZWRmOHj0KR0fHR/aVo+T5eFh5eTmA+1/jrjjO7t27cffuXclxXF1d0aJFi2rVUhuGfE6A+19n9/f3x6xZsxAeHv7I99OYf0fkHDp0SPJejfF3BDCOz5FFixbh8OHDOHToEA4dOiQuH5GcnIwZM2aIxzGmz5HqnBOgnj5HHutrAmQ01q5dK1hYWAhJSUnC8ePHhfDwcMHOzk78uu/w4cOFSZMmif1/++03oUmTJsLcuXOFEydOCLGxsbJfU7azsxM2bdokHDlyRBg8eLDka8oXL14UOnXqJDz//PPCxYsXJV8zflh0dLTg5OQk3Lt3T+e1uLg4cVmNAwcOCEOHDhUsLS2FY8eONajzsWfPHmHx4sVCVlaWkJubK6SlpQne3t5Cx44dheLiYkEQ7n+ryMHBQRg+fLiQnZ0trF27VrC2ttb5KvujamlM5+Snn34SrK2thaioKMnv0J9//ikex5h+R5KSkoTVq1cLJ06cEE6cOCHMmDFDMDExERITE2tUS2M6JxWM4XPkYXLfxjW2z5HqnJP6+hxhKKNqW7x4sdCuXTvB3Nxc6Nu3r7Bnzx7xNR8fH8maPoIgCOvWrRM6d+4smJubC927dxe+//57yevl5eXClClTBAcHB8HCwkJ4/vnnhVOnTomvr1y5UgAg+3hQWVmZ8MQTTwiTJ0+WrTsiIkKs28HBQXjxxReFgwcPPubZqP/zceTIEWHAgAFCy5YtBQsLC6FDhw7CO++8I1y8eFGyn8OHDwv9+/cXLCwshLZt2wozZ87Uqf1RtdSWIZ6TkJAQ2d8hHx8fsY8x/Y4kJSUJXbt2FaytrYXmzZsLffv2FdavX69TuzH9jgiC8XyOPKyyJVKM6XPkYXLnpL4+R1SCYORXCBMREREZAF5TRkRERGQAGMqIiIiIDABDGREREZEBYCgjIiIiMgAMZUREREQGgKGMiIiIyAAwlBEREREZAIYyIiIiIgPAUEZE9JgyMjJgamoKf39/SXtubi5UKpX4aNmyJXx8fPDLL78oVCkRGTKGMiKix/TVV19hzJgx2L17Ny5fvqzz+o8//ogrV65g9+7dcHJywqBBg5CXl6dApURkyBjKiIgew61bt5CcnIx3330X/v7+SEpK0unTqlUrqNVq9OjRA5MnT0ZhYSEyMzPrv1giMmgMZUREj2HdunXo0qULXF1d8dZbbyExMRGV3VL4zp07+M9//gMAMDc3r88yiagBaKJ0AUREDdlXX32Ft956CwAwcOBAFBQU4Oeff8azzz4r9vH29oaJiQlu374NQRDg4eGB559/XqGKichQcaSMiKiWTp06hb1792LYsGEAgCZNmiAoKAhfffWVpF9ycjKysrKwYcMGdOrUCUlJSTAzM1OiZCIyYBwpIyKqpa+++gr37t2Dk5OT2CYIAiwsLLBkyRKxTaPRwMXFBS4uLrh37x5efvllZGdnw8LCQomyichAcaSMiKgW7t27h//85z+YN28eDh06JD4OHz4MJycnrFmzRna7IUOGoEmTJvj888/ruWIiMnQMZUREtbBlyxbcuHEDYWFh6NGjh+Tx6quv6kxhVlCpVPjwww8xc+ZM3L59u56rJiJDxlBGRFQLX331FXx9fWFra6vz2quvvor9+/ejsLBQdtuQkBDcvXtXMsVJRKQSKvvuNhERERHVG46UERERERkAhjIiIiIiA8BQRkRERGQAGMqIiIiIDABDGREREZEBYCgjIiIiMgAMZUREREQGgKGMiIiIyAAwlBEREREZAIYyIiIiIgPAUEZERERkABjKiIiIiAzA/wN0SLKJUS2jkgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_28.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHHCAYAAABA5XcCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYLElEQVR4nO3deVxU5f4H8M+wI7IoyGYoqCSavoBQEfNerbiBmUpZFy0XlNzXsLyujKiJua9JZmlZClmJRgYpWppycQE19w3C1AFMYRSV9fz+8OfcppkhBmY4s3zerxcv5JnnnPme4zIfn+ec50gEQRBARERERCosxC6AiIiIyFAxKBERERFpwKBEREREpAGDEhEREZEGDEpEREREGjAoEREREWnAoERERESkAYMSERERkQYMSkREREQaMCgRkUmTSCSYN2+e2GUoxMTEwNfXV+wyiKiOGJSIqNFt2bIFEolE8WVnZ4enn34aEydORGFhoV7f+8iRI5g3bx5KSkp0ut/evXsrHVPz5s3RtWtXfPrpp6ipqdHJeyxatAipqak62RcR1Y2V2AUQkfmaP38+/Pz88OjRI/zyyy/YsGED9uzZgzNnzqBJkyY6eY+HDx/Cyup//9QdOXIECQkJiImJgYuLi07e44mnnnoKiYmJAIDi4mJ8/vnniI2NxaVLl7B48eIG73/RokV4/fXXERUV1eB9EVHdMCgRkWj69OmDLl26AADefvttuLq6YsWKFdi1axcGDx5c7/3W1NSgoqICdnZ2sLOz01W5f8vZ2RlDhgxR/DxmzBi0b98e69atw4IFC2Btbd1otRCRbnDqjYgMxgsvvAAAyMvLAwAsW7YMPXr0gKurK+zt7RESEoKvv/5aZTuJRIKJEyfiyy+/xDPPPANbW1ukp6crXntyjdK8efPw3nvvAQD8/PwU02T5+fno1asXAgMD1dbVvn17REREaH08TZo0Qffu3VFWVobi4mKN/crKyjBt2jT4+PjA1tYW7du3x7JlyyAIgtIxlpWV4bPPPlPUHRMTo3VNRKQdjigRkcG4evUqAMDV1RUAsHr1avTv3x9vvfUWKioqkJycjDfeeANpaWno27ev0rb79+/HV199hYkTJ8LNzU3tBdOvvfYaLl26hO3bt2PlypVwc3MDALRo0QJDhw7FqFGjcObMGXTq1EmxzbFjx3Dp0iXMmTOnXsd07do1WFpaapzmEwQB/fv3x4EDBxAbG4ugoCBkZGTgvffew40bN7By5UoAwNatW/H222+jW7duGD16NACgbdu29aqJiLQgEBE1ss2bNwsAhH379gnFxcXC9evXheTkZMHV1VWwt7cXfv/9d0EQBOHBgwdK21VUVAidOnUSXnjhBaV2AIKFhYVw9uxZlfcCIEilUsXPS5cuFQAIeXl5Sv1KSkoEOzs74T//+Y9S++TJkwUHBwfh/v37tR5Tr169hICAAKG4uFgoLi4Wzp8/L0yePFkAIPTr10/Rb/jw4ULr1q0VP6empgoAhIULFyrt7/XXXxckEolw5coVRZuDg4MwfPjwWusgIt3i1BsRiSY8PBwtWrSAj48PBg0ahKZNm2Lnzp1o2bIlAMDe3l7R9+7duygtLcU//vEP5OTkqOyrV69e6NixY71rcXZ2xoABA7B9+3bFlFd1dTVSUlIQFRUFBweHv93HhQsX0KJFC7Ro0QIdOnTA2rVr0bdvX3z66acat9mzZw8sLS0xefJkpfZp06ZBEAT88MMP9T4mImo4Tr0RkWjWr1+Pp59+GlZWVvDw8ED79u1hYfG//7+lpaVh4cKFOHnyJMrLyxXtEolEZV9+fn4NrmfYsGFISUnBoUOH8M9//hP79u1DYWEhhg4dWqftfX198fHHHyuWPPD394e7u3ut2/z222/w9vaGo6OjUnuHDh0UrxOReBiUiEg03bp1U9z19leHDh1C//798c9//hMffvghvLy8YG1tjc2bN2Pbtm0q/f88+lRfERER8PDwwBdffIF//vOf+OKLL+Dp6Ynw8PA6be/g4FDnvkRkHDj1RkQG6ZtvvoGdnR0yMjIwcuRI9OnTRychRN1o1BOWlpZ488038fXXX+Pu3btITU3F4MGDYWlp2eD31aR169a4efMm7t27p9R+4cIFxetP1FY7EekHgxIRGSRLS0tIJBJUV1cr2vLz8xu8MvWTa400rcw9dOhQ3L17F2PGjMH9+/eV1kXSh5dffhnV1dVYt26dUvvKlSshkUjQp08fRZuDg4POVxQnotpx6o2IDFLfvn2xYsUKREZG4s0330RRURHWr1+Pdu3a4fTp0/Xeb0hICABg9uzZGDRoEKytrdGvXz9FgAoODkanTp2wY8cOdOjQAc8++6xOjkeTfv364fnnn8fs2bORn5+PwMBA/Pjjj9i1axemTp2qtARASEgI9u3bhxUrVsDb2xt+fn4IDQ3Va31E5o4jSkRkkF544QV88sknkMlkmDp1KrZv344PPvgAr776aoP227VrVyxYsACnTp1CTEwMBg8erLIY5LBhwwCgzhdxN4SFhQV2796NqVOnIi0tDVOnTsW5c+ewdOlSrFixQqnvihUrEBISgjlz5mDw4MHYsGGD3usjMncSQfjT0q9ERITVq1fjnXfeQX5+Plq1aiV2OUQkIgYlIqI/EQQBgYGBcHV1xYEDB8Quh4hExmuUiIjw+Hlru3fvxoEDB/Drr79i165dYpdERAaAI0pERHh8R52fnx9cXFwwfvx4vP/++2KXREQGgEGJiIiISAPe9UZERESkAYMSERERkQa8mLueampqcPPmTTg6OvKxAkREREZCEATcu3cP3t7eSg/h1oRBqZ5u3rwJHx8fscsgIiKierh+/Tqeeuqpv+3HoFRPjo6OAB6faCcnJ5GrISIiorqQy+Xw8fFRfI7/HQalenoy3ebk5MSgREREZGTqetkML+YmIiIi0oBBiYiIiEgDBiUiIiIiDXiNkp5VV1ejsrJS7DJIz6ytrWFpaSl2GUREpGMMSnoiCAJkMhlKSkrELoUaiYuLCzw9PbmuFhGRCWFQ0pMnIcnd3R1NmjThh6cJEwQBDx48QFFREQDAy8tL5IqIiEhXRA9K69evx9KlSyGTyRAYGIi1a9eiW7duGvvv2LEDc+fORX5+Pvz9/fHBBx/g5ZdfVrz+7bffIikpCSdOnMCdO3eQm5uLoKAgxet37tyBVCrFjz/+iIKCArRo0QJRUVFYsGABnJ2ddXJM1dXVipDk6uqqk32SYbO3twcAFBUVwd3dndNwREQmQtSLuVNSUhAXFwepVIqcnBwEBgYiIiJC8T/zvzpy5AgGDx6M2NhY5ObmIioqClFRUThz5oyiT1lZGXr27IkPPvhA7T5u3ryJmzdvYtmyZThz5gy2bNmC9PR0xMbG6uy4nlyT1KRJE53tkwzfk99vXpNGRGQ6JIIgCGK9eWhoKLp27Yp169YBePz8NB8fH0yaNAkzZsxQ6R8dHY2ysjKkpaUp2rp3746goCAkJSUp9c3Pz4efn5/KiJI6O3bswJAhQ1BWVgYrq7oNssnlcjg7O6O0tFRlwclHjx4hLy8Pfn5+sLOzq9P+yPjx952IyPDV9vmtjmgjShUVFThx4gTCw8P/V4yFBcLDw5GVlaV2m6ysLKX+ABAREaGxf109OVm1haTy8nLI5XKlLyIiIjJtogWl27dvo7q6Gh4eHkrtHh4ekMlkareRyWRa9a9rHQsWLMDo0aNr7ZeYmAhnZ2fFFx+IS0REZPrMesFJuVyOvn37omPHjpg3b16tfWfOnInS0lLF1/Xr1xunyEYWExMDiUQCiUQCa2treHh44F//+hc+/fRT1NTU1Hk/W7ZsgYuLi/4KJSIiagSiBSU3NzdYWlqisLBQqb2wsBCenp5qt/H09NSqf23u3buHyMhIODo6YufOnbC2tq61v62treIBuKb+INzIyEjcunUL+fn5+OGHH/D8889jypQpeOWVV1BVVSV2eUREZOIEQTCYG2NEC0o2NjYICQlBZmamoq2mpgaZmZkICwtTu01YWJhSfwDYu3evxv6ayOVyvPTSS7CxscHu3bt54e1f2NrawtPTEy1btsSzzz6LWbNmYdeuXfjhhx+wZcsWAMCKFSvQuXNnODg4wMfHB+PHj8f9+/cBAD/99BNGjBiB0tJSxejUkxG7rVu3okuXLnB0dISnpyfefPNNjXc5EhGR+bl8+TLmz5+PRYsW4euvxb8eWNR1lOLi4jB8+HB06dIF3bp1w6pVq1BWVoYRI0YAAIYNG4aWLVsiMTERADBlyhT06tULy5cvR9++fZGcnIzjx49j48aNin3euXMHBQUFuHnzJgDg4sWLAB6PRnl6eipC0oMHD/DFF18oXZjdokULvax/I2Yytra21slily+88AICAwPx7bff4u2334aFhQXWrFkDPz8/XLt2DePHj8f06dPx4YcfokePHli1ahXi4+MV579p06YAHt86v2DBArRv3x5FRUWIi4tDTEwM9uzZ0+AaiYjIuCUnJys+NwBg7VorvP66iAVB5KAUHR2N4uJixMfHQyaTISgoCOnp6YoLtgsKCmBh8b9Brx49emDbtm2YM2cOZs2aBX9/f6SmpqJTp06KPrt371YELQAYNGgQAEAqlWLevHnIyclBdnY2AKBdu3ZK9eTl5cHX11fnx1lZWakIe41t5syZsLGx0cm+AgICcPr0aQDA1KlTFe2+vr5YuHAhxo4diw8//BA2NjZwdnaGRCJRmRYdOXKk4tdt2rTBmjVr0LVrV9y/f18RpoiIyLw8fPgQS5YsUWrLynob06aJvx6h6CtzT5w4ERMnTlT72k8//aTS9sYbb+CNN97QuL+YmBjExMRofL13794QcekooyYIgmJ0at++fUhMTMSFCxcgl8tRVVWFR48e4cGDB7UutHnixAnMmzcPp06dwt27dxUXiBcUFKBjx46NchxERGQ4Lly4gJSUFKW22bNn13ldQ30zjCpMnLW1NWbOnCnae+vK+fPn4efnh/z8fLzyyisYN24c3n//fTRv3hy//PILYmNjUVFRoTEolZWVISIiAhEREfjyyy/RokULFBQUICIiAhUVFTqrk4iIjMPWrVtx7do1xc/PPfecynqJYmNQagQSiURn019i2b9/P3799Ve88847OHHiBGpqarB8+XLF1OhXX32l1N/GxgbV1dVKbRcuXMAff/yBxYsXK9ahOn78eOMcABERGYyysjIsW7ZMqW306NEG+VBxBiVSUV5eDplMhurqahQWFiI9PR2JiYl45ZVXMGzYMJw5cwaVlZVYu3Yt+vXrh8OHD6s8QsbX1xf3799HZmYmAgMD0aRJE7Rq1Qo2NjZYu3Ytxo4dizNnzmDBggUiHSUREYnh7Nmz+PrrrxU/W1hYYNasWQb7MHGzXnCS1EtPT4eXlxd8fX0RGRmJAwcOYM2aNdi1axcsLS0RGBiIFStW4IMPPkCnTp3w5Zdfqlys3qNHD4wdOxbR0dFo0aIFlixZghYtWmDLli3YsWMHOnbsiMWLF6v8j4KIiEyTIAj49NNPlUJSr169MHfuXIMNSYDID8U1ZnwoLv0Vf9+JiNS7d+8eVqxYodQ2btw4uLu7N3ot2j4Ul1NvREREpDenTp1Camqq4mdbW1tMnz5dafkfQ8agRERERDonCAI2btyo9OD6F198ET179hSxKu0xKBEREZFOyeVyrFy5UqltwoQJcHNzE6mi+mNQIiIiIp355JNP8Pvvvyt+btq0Kd555x2jmWr7KwYlIiIiajBBEDB//nyltgsXIrB9e3eRKtINBiUiIiJqkPz8fHz22WdKbcePD8GoUW1Fqkh3GJSIiIio3tavX4/bt28rtc2dO9dop9r+ikGJiIiItFZTU6PydAUPDw+MHTtWpIr0g0GJiIiItHLlyhV8+eWXSm0jRoxAq1atRKpIf0xjXIyMTkxMDKKiohQ/9+7dG1OnTm3QPnWxDyIiqt2KFStUQlJ8fLxJhiSAI0r0FzExMYoL8qytrdGqVSsMGzYMs2bNgpWV/v64fPvtt7C2tq5T359++gnPP/887t69CxcXl3rtg4iItFNdXY2FCxcqtbVq1QojRowQqaLGwaBEKiIjI7F582aUl5djz549mDBhAqytrTFz5kylfhUVFbCxsdHJezZv3twg9kFERKrOnz+Pr776Sqlt1KhR8Pb2FqmixsOpN1Jha2sLT09PtG7dGuPGjUN4eDh2796tmC57//334e3tjfbt2wMArl+/jn//+99wcXFB8+bNMWDAAOTn5yv2V11djbi4OLi4uMDV1RXTp0/HX5/F/Ndps/LycvznP/+Bj48PbG1t0a5dO3zyySfIz8/H888/DwBo1qwZJBIJYmJi1O7j7t27GDZsGJo1a4YmTZqgT58+uHz5suL1LVu2wMXFBRkZGejQoQOaNm2KyMhI3Lp1S9Hnp59+Qrdu3eDg4AAXFxc899xz+O2333R0pomIDN+iRYtUQlJ8fLxZhCSAQYnqwN7eHhUVFQCAzMxMXLx4EXv37kVaWhoqKysREREBR0dHHDp0CIcPH1YEjifbLF++HFu2bMGnn36KX375BXfu3MHOnTtrfc9hw4Zh+/btWLNmDc6fP4+PPvoITZs2hY+PD7755hsAwMWLF3Hr1i2sXr1a7T5iYmJw/Phx7N69G1lZWRAEAS+//DIqKysVfR48eIBly5Zh69atOHjwIAoKCvDuu+8CAKqqqhAVFYVevXrh9OnTyMrKwujRoyGRSBp8TomIDF1VVRUSEhKU/s309/eHVCo1q38HOfVGGgmCgMzMTGRkZGDSpEkoLi6Gg4MDNm3apJhy++KLL1BTU4NNmzYp/uJs3rwZLi4u+Omnn/DSSy9h1apVmDlzJl577TUAQFJSEjIyMjS+76VLl/DVV19h7969CA8PBwC0adNG8fqTKTZ3d3ela5T+7PLly9i9ezcOHz6MHj16AAC+/PJL+Pj4IDU1FW+88QYAoLKyEklJSWjb9vGiaBMnTlSsLCuXy1FaWopXXnlF8XqHDh20P5FEREbm119/xbfffqvUNnbsWHh4eIhUkXg4omTgdu8GevR4/L2xpKWloWnTprCzs0OfPn0QHR2NefPmAQA6d+6sdF3SqVOncOXKFTg6OqJp06Zo2rQpmjdvjkePHuHq1asoLS3FrVu3EBoaqtjGysoKXbp00fj+J0+ehKWlJXr16lXvYzh//jysrKyU3tfV1RXt27fH+fPnFW1NmjRRhCAA8PLyQlFREYDHgSwmJgYRERHo168fVq9erTQtR0RkihISElRCklQqNcuQBHBEyeAtXgxkZT3+3r9/47zn888/jw0bNsDGxgbe3t5Kd7s5ODgo9b1//z5CQkJUbhUFgBYtWtTr/e3t7eu1XX389S45iUSidP3U5s2bMXnyZKSnpyMlJQVz5szB3r170b27cT+7iIjoryoqKpCYmKjU1qlTJwwcOFCkigwDR5QM3IwZQFjY4++NxcHBAe3atUOrVq3+dkmAZ599FpcvX4a7uzvatWun9OXs7AxnZ2d4eXkhOztbsU1VVRVOnDihcZ+dO3dGTU0Nfv75Z7WvPxnRqq6u1riPDh06oKqqSul9//jjD1y8eBEdO3as9Zj+Kjg4GDNnzsSRI0fQqVMnbNu2TavtiYgMXU5OjkpImjBhgtmHJIBByeD17w8cOdJ4o0naeuutt+Dm5oYBAwbg0KFDyMvLw08//YTJkyfj999/BwBMmTIFixcvRmpqKi5cuIDx48ejpKRE4z59fX0xfPhwjBw5EqmpqYp9PrnronXr1pBIJEhLS0NxcTHu37+vsg9/f38MGDAAo0aNwi+//IJTp05hyJAhaNmyJQYMGFCnY8vLy8PMmTORlZWF3377DT/++CMuX77M65SIyKQkJCTgu+++U2qTSqVwc3MTqSLDwqBEDdKkSRMcPHgQrVq1wmuvvYYOHTogNjYWjx49gpOTEwBg2rRpGDp0KIYPH46wsDA4Ojri1VdfrXW/GzZswOuvv47x48cjICAAo0aNQllZGQCgZcuWSEhIwIwZM+Dh4YGJEyeq3cfmzZsREhKCV155BWFhYRAEAXv27KnzopRNmjTBhQsXMHDgQDz99NMYPXo0JkyYgDFjxmhxhoiIDNOjR4+QkJCg1Pbss89CKpWKVJFhkgh/XdCG6kQul8PZ2RmlpaWKQPDEo0ePkJeXBz8/P9jZ2YlUITU2/r4TkbHIzs5Genq6UtvkyZPRrFkzkSpqPLV9fqvDi7mJiIjMyF9HkQBwFKkWDEpERERm4MGDB1i6dKlSW/fu3RERESFSRcaBQYmIiMjEbdu2TekRTgDwzjvv1GnqydwxKBEREZkwTrU1DIOSHvE6efPC328iMiQymQwfffSRUtvvv7dCv34jRKrIODEo6cGT288fPHjQqKtMk7gePHgAQHW1byKixqZuFOnw4bGYONHDYNflM1QMSnpgaWkJFxcXxTPDmjRpYlZPWjY3giDgwYMHKCoqgouLCywtLcUuiYjMGKfadItBSU88PT0BQBGWyPS5uLgoft+JiBrblStX1D53MziYIakhGJT0RCKRwMvLC+7u7qisrBS7HNIza2trjiQRkWjUjSKNGzcO7u7uIlRjWhiU9MzS0pIfoEREpDecatMvBiUiIiIjdPbsWXz99dcq7QxJusWgREREZGTUjSKZy7PaGhuDEhERkRHhVFvjYlAiIiIyAjk5Ofjuu++U2qytrTFr1iyRKjIPDEpEREQGTt0oUlxcHBwdHUWoxrwwKBERERkoQRAwf/58lXZOtTUeBiUiIiIDdPjwYezbt0+prXnz5pg0aZJIFZknBiUiIiIDo26qbfr06Xx+qAgYlIiIiAwEp9oMD4MSERGRAdi3bx8OHz6s1Obj44ORI0eKVBEBDEpERESiUzfVNnPmTNjY2IhQDf0ZgxIREZFIampqsGDBApV2TrUZDguxC1i/fj18fX1hZ2eH0NBQHD16tNb+O3bsQEBAAOzs7NC5c2fs2bNH6fVvv/0WL730ElxdXSGRSHDy5EmVfTx69AgTJkyAq6srmjZtioEDB6KwsFCXh0VERFSrL774QiUkBQQEMCQZGFGDUkpKCuLi4iCVSpGTk4PAwEBERESgqKhIbf8jR45g8ODBiI2NRW5uLqKiohAVFYUzZ84o+pSVlaFnz5744IMPNL7vO++8g++++w47duzAzz//jJs3b+K1117T+fERERGpk5CQgKtXryq1zZ49G9HR0SJVRJpIBEEQxHrz0NBQdO3aFevWrQPweAjSx8cHkyZNwowZM1T6R0dHo6ysDGlpaYq27t27IygoCElJSUp98/Pz4efnh9zcXAQFBSnaS0tL0aJFC2zbtg2vv/46AODChQvo0KEDsrKy0L179zrVLpfL4ezsjNLSUjg5OWl76EREZIYqKyuxaNEilfbgYCn69xehIDOk7ee3aNcoVVRU4MSJE5g5c6aizcLCAuHh4cjKylK7TVZWFuLi4pTaIiIikJqaWuf3PXHiBCorKxEeHq5oCwgIQKtWrbQKSkRERNrYsGGDyoxJ27ZtMWTIEJEqoroQLSjdvn0b1dXV8PDwUGr38PDAhQsX1G4jk8nU9pfJZHV+X5lMBhsbG7i4uGi1n/LycpSXlyt+lsvldX5PIiIyb+ruaps7dy4sLES/VJj+Bn+H6igxMRHOzs6KLx8fH7FLIiIiA1deXq42JEmlUoYkIyHaiJKbmxssLS1V7jYrLCyEp6en2m08PT216q9pHxUVFSgpKVEaVfq7/cycOVNp2k8ulzMsERGRRkuWLMHDhw+V2gIDAxEVFSVOQVQvosVZGxsbhISEIDMzU9FWU1ODzMxMhIWFqd0mLCxMqT8A7N27V2N/dUJCQmBtba20n4sXL6KgoKDW/dja2sLJyUnpi4iISJ2EhASVkBQfH8+QZIREXXAyLi4Ow4cPR5cuXdCtWzesWrUKZWVlGDFiBABg2LBhaNmyJRITEwEAU6ZMQa9evbB8+XL07dsXycnJOH78ODZu3KjY5507d1BQUICbN28CeByCgMcjSZ6ennB2dkZsbCzi4uLQvHlzODk5YdKkSQgLC+OF3ERE1CD379/H8uXLVdq5NpLxEjUoRUdHo7i4GPHx8ZDJZAgKCkJ6errigu2CggKlOdwePXpg27ZtmDNnDmbNmgV/f3+kpqaiU6dOij67d+9WBC0AGDRoEIDHf0jnzZsHAFi5ciUsLCwwcOBAlJeXIyIiAh9++GEjHDEREZkqddcihYWF4aWXXhKhGtIVUddRMmZcR4mIiJ5QF5Li4+MhkUhEqIZqYzTrKBERERm7kpISrF69WqWdU22mg0GJiIioHtSNIr344ovo2bOnCNWQvjAoERERaUnT2khkehiUiIiI6qi4uFjtzT8MSaaLQYmIiKgO1I0ivfLKKwgJCRGhGmosDEpERER/g1Nt5otBiYiISIMbN25g06ZNKu0MSeaDQYmIiEgNdaNIr7/+Op555hkRqiGxMCgRERH9Bafa6AkGJSIiov938eJFJCcnq7QzJJkvBiUiIiKoH0XKzY3GyJEBIlRDhoJBiYiIzB6n2kgTBiUiIjJbJ0+exK5du1TaGZLoCQYlIiIyS+pGkYYPHw5fX9/GL4YMFoMSERGZHU61UV0xKBERkdk4cuQI9u7dq9LOkESaMCgREZFZUDeKNHr0aHh5eYlQDRkLBiUiIjJ5nGqj+mJQIiIik7V7927k5uaqtDMkUV0xKBERkUlSN4o0ceJEuLq6ilANGSsGJSIiMimCIGD+/Pkq7cHBUjAjkbYYlIiIyGR8+eWXuHLliko7p9qovhiUiIjIJKibaps6dSqcnZ1FqIZMBYMSEREZNU1TbRxFIl1gUCIiIqO1YcMGFBUVqbQzJJGuMCgREZFRUjfV9t5776FJkyYiVEOmikGJiIiMSnV1NRYuXKjSzlEk0gcGJSIiMhrqRpEAhiTSHwYlIiIyCupC0owZM2BraytCNWQuGJSIiMigVVRUIDExUaU9OFgKZiTSNwYlIiIyWJxqI7ExKBERkUFSF5Jmz54NKyt+dFHj4Z82IiIyKPfv38fy5ctV2jmKRGJgUCIiIoOhbhTJysoKs2fPFqEaIgYlIiIyEOpCUkbGXBw5YiFCNUSPMSgREZGo7ty5g7Vr16q0Z2RIMWOGCAUR/QmDEhERiUbdKJK9vT2mT58OXpJEhoBBiYiIRKEuJMXHx0MikYhQDZF6DEpERNSobt26hY0bN6q08642MkQMSkRE1GjUjSJ5eXlh9OjRIlRD9PcYlIiIqFGoC0kcRSJDx6BERER6lZeXh88//1ylnSGJjAGDEhER6Y26UaSAgABER0eLUA2R9hiUiIhILzjVRqaAQYmIiHTqzJkz+Oabb1TaGZLIGDEoERGRzqgbRQoNDUVkZKQI1RA1HIMSERHpBKfayBQxKBERUYMcPXoUP/zwg0o7QxKZAgYlIiKqN3WjSOHh4XjuuedEqIZI9yzELmD9+vXw9fWFnZ0dQkNDcfTo0Vr779ixAwEBAbCzs0Pnzp2xZ88epdcFQUB8fDy8vLxgb2+P8PBwXL58WanPpUuXMGDAALi5ucHJyQk9e/bEgQMHdH5sRESmTNNUG0MSmRJRg1JKSgri4uIglUqRk5ODwMBAREREoKioSG3/I0eOYPDgwYiNjUVubi6ioqIQFRWFM2fOKPosWbIEa9asQVJSErKzs+Hg4ICIiAg8evRI0eeVV15BVVUV9u/fjxMnTiAwMBCvvPIKZDKZ3o+ZiMjYZWZm8nokMhsSQRAEsd48NDQUXbt2xbp16wAANTU18PHxwaRJkzBjxgyV/tHR0SgrK0NaWpqirXv37ggKCkJSUhIEQYC3tzemTZuGd999FwBQWloKDw8PbNmyBYMGDcLt27fRokULHDx4EP/4xz8AAPfu3YOTkxP27t2L8PDwOtUul8vh7OyM0tJSODk5NfRUEBEZBXUBacCAAQgKCmr8YojqQdvPb9FGlCoqKnDixAmlYGJhYYHw8HBkZWWp3SYrK0slyERERCj65+XlQSaTKfVxdnZGaGiooo+rqyvat2+Pzz//HGVlZaiqqsJHH30Ed3d3hISEaKy3vLwccrlc6YuIyJxoGkViSCJTJtrF3Ldv30Z1dTU8PDyU2j08PHDhwgW128hkMrX9n0yZPfleWx+JRIJ9+/YhKioKjo6OsLCwgLu7O9LT09GsWTON9SYmJqr9R4KIyNTt3LkTp0+fVmnnVBuZA7O7600QBEyYMAHu7u44dOgQ7O3tsWnTJvTr1w/Hjh2Dl5eX2u1mzpyJuLg4xc9yuRw+Pj6NVTYRkSjU/QfxzTffhL+/vwjVEDU+0YKSm5sbLC0tUVhYqNReWFgIT09Ptdt4enrW2v/J98LCQqXAU1hYqBga3r9/P9LS0nD37l3F3OSHH36IvXv34rPPPlN7bRQA2NrawtbWVvsDJSIyUrxgm0jEa5RsbGwQEhKCzMxMRVtNTQ0yMzMRFhamdpuwsDCl/gCwd+9eRX8/Pz94enoq9ZHL5cjOzlb0efDgAYDH10P9mYWFBWpqahp+YERERu6zzz5jSCL6f6JOvcXFxWH48OHo0qULunXrhlWrVqGsrAwjRowAAAwbNgwtW7ZEYmIiAGDKlCno1asXli9fjr59+yI5ORnHjx/Hxo0bATy+/mjq1KlYuHAh/P394efnh7lz58Lb2xtRUVEAHoetZs2aYfjw4YiPj4e9vT0+/vhj5OXloW/fvqKcByIiQ6EuIMXGxuKpp54SoRoi8YkalKKjo1FcXIz4+HjIZDIEBQUhPT1dcTF2QUGB0shPjx49sG3bNsyZMwezZs2Cv78/UlNT0alTJ0Wf6dOno6ysDKNHj0ZJSQl69uyJ9PR02NnZAXg85Zeeno7Zs2fjhRdeQGVlJZ555hns2rULgYGBjXsCiIgMCEeRiFSJuo6SMeM6SkRkKlavXo2SkhKVdoYkMkXafn5rPaJkaWmJW7duwd3dXan9jz/+gLu7O6qrq7XdJRERiUTdKNL48ePRokULEaohMjxaByVNA1Dl5eWwsbFpcEFERKR/giBg/vz5Ku0cRSJSVuegtGbNGgCPL5jetGkTmjZtqnituroaBw8eREBAgO4rJCIindK0eC5DEpGqOgellStXAnj8v5CkpCRYWloqXrOxsYGvry+SkpJ0XyEREemMupD0zjvv8FpLIg3qHJTy8vIAAM8//zy+/fbbWh/3QUREhqW6uhoLFy5UaecoElHttL5G6cCBA/qog4iI9IRTbUT1p3VQGjlyZK2vf/rpp/UuhoiIdEtdSJo+fTrs7e1FqIbI+GgdlO7evav0c2VlJc6cOYOSkhK88MILOiuMiIjqr6KiQvFUgz/jKBKRdrQOSjt37lRpq6mpwbhx49C2bVudFEVERPXHqTYi3dHZytwXL15E7969cevWLV3szuBxZW4iMkTqQtKsWbNgbW0tQjVEhkfvK3NrcvXqVVRVVelqd0REpIWysjIsW7ZMpZ2jSEQNo3VQiouLU/pZEATcunUL33//PYYPH66zwoiIqG441UakP1oHpdzcXKWfLSws0KJFCyxfvvxv74gjIiLdUheS5s6dCwsLCxGqITI9XEeJiMgIlZSUYPXq1SrtHEUi0q16X6NUVFSEixcvAgDat28Pd3d3nRVFRESaqRtFqqqyxoIFs0Sohsi0aT02K5fLMXToUHh7e6NXr17o1asXWrZsiSFDhqC0tFQfNRIR0f9TF5IyMuLRtStDEpE+aB2URo0ahezsbHz//fcoKSlBSUkJ0tLScPz4cYwZM0YfNRIRmT2ZTKY2JEmlUhw5IkH//iIURWQGtF5HycHBARkZGejZs6dS+6FDhxAZGYmysjKdFmiouI4SETUWdQHJ3d0d48aNE6EaIuOm93WUXF1d4ezsrNLu7OyMZs2aabs7IiKqhaZRJCJqHFpPvc2ZMwdxcXGQyWSKNplMhvfeew9z587VaXFERObq6tWrDElEBkDrqbfg4GBcuXIF5eXlaNWqFQCgoKAAtra28Pf3V+qbk5Oju0oNDKfeiEhf1AWkp59+GoMHDxahGiLToveptwEDBkAikdSrOCIiqp36u9qk4EASkTi0Dkrz5s3TQxlEROYtJycH3333nUp7RoYUM2aIUBARAahHUGrTpg2OHTsGV1dXpfaSkhI8++yzuHbtms6KIyIyB+pGkW7e7IyPPnqNI0lEItP6Yu78/HxUV1ertJeXl+P333/XSVFEROZCXUhKTpaib9/XRKiGiP6qziNKu3fvVvw6IyNDaYmA6upqZGZmws/PT7fVERGZqH379uHw4cMq7VIpr0ciMiR1DkpRUVEAAIlEguHDhyu9Zm1tDV9fXyxfvlynxRERmSJ1o0hubl0xYcLLIlRDRLWpc1CqqakBAPj5+eHYsWNwc3PTW1FERKaKayMRGRetL+bOy8vTRx1ERCZt27ZtuHz5sko7QxKRYdM6KM2fP7/W1+Pj4+tdDBGRKVI3iuTp+U+MGfO8CNUQkTa0Dko7d+5U+rmyshJ5eXmwsrJC27ZtGZSIiP6EU21Exk3roJSbm6vSJpfLERMTg1dffVUnRRERGbulS5fiwYMHKu3BwQxJRMZE62e9afLrr7+iX79+yM/P18XuDB6f9UZEmqgbRfrXv/6FHj16iFANEf2Ztp/fWi84qUlpaSlKS0t1tTsiIqOk6VltDElExknrqbc1a9Yo/SwIAm7duoWtW7eiT58+OiuMiMiYqAtIAJ/VRmTstJ56++vq2xYWFmjRogVeeOEFzJw5E46Ojjot0FBx6o2InlAXkgYOHIhOnTqJUA0R1Ubbz2+uo0RE1AC8q43ItGkdlACgpKQEV65cAQC0a9cOLi4uuqyJiMjgaZpq411tRKZFq6CUn5+PCRMmICMjA09m7CQSCSIjI7Fu3Tr4+vrqo0YiIoOiLiQNGTIEbdu2FaEaItKnOgel69evo3v37rC2tsaCBQvQoUMHAMC5c+ewYcMGhIWF4dixY3jqqaf0ViwRkZgEQVD7dAJOtRGZrjpfzB0bG4srV64gIyMDdnZ2Sq89fPgQkZGR8Pf3x6ZNm/RSqKHhxdxE5kXTVBtDEpFx0dvF3Onp6UhJSVEJSQBgb2+PBQsWYNCgQdpVS0RkBNSFpDFjxsDT01OEaoioMdU5KN2+fbvWa5DatGmDO3fu6KImIiKDUFVVhffff1+lnaNIROajzkHJy8sL586d03gN0pkzZ/i/KyIyGZxqIyJAi6AUFRWFd999F5mZmWjRooXSa0VFRfjPf/6DqKgoXddHRNTo1IWkqVOnwtnZWYRqiEhMdb6Y++7duwgNDYVMJsOQIUMQEBAAQRBw/vx5bNu2DZ6envjvf/+L5s2b67tmg8CLuYlMz8OHD7FkyRKVdo4iEZkOvV3M3axZM2RnZ2PWrFlITk5GSUkJAMDFxQVvvvkmFi1aZDYhiYhMD6faiEgdrZ/1BjxeS6S4uBgA0KJFC0gkEp0XZug4okRkOtSFpP/85z9q7/IlIuOm7ee3RX3eRCKRwN3dHe7u7g0OSevXr4evry/s7OwQGhqKo0eP1tp/x44dCAgIgJ2dHTp37ow9e/YovS4IAuLj4+Hl5QV7e3uEh4fj8uXLKvv5/vvvERoaCnt7ezRr1ozXVxGZodLSUo3PamNIIiKgnkFJV1JSUhAXFwepVIqcnBwEBgYiIiICRUVFavsfOXIEgwcPRmxsLHJzcxEVFYWoqCicOXNG0WfJkiVYs2YNkpKSkJ2dDQcHB0RERODRo0eKPt988w2GDh2KESNG4NSpUzh8+DDefPNNvR8vERmOhIQErFq1SqWdU21E9Gf1mnrTldDQUHTt2hXr1q0DANTU1MDHxweTJk3CjBkzVPpHR0ejrKwMaWlpirbu3bsjKCgISUlJEAQB3t7emDZtGt59910Aj//H6OHhgS1btmDQoEGoqqqCr68vEhISEBsbW+/aOfVGZLzUjSLNnj0bVlb1ek44ERmRRpl604WKigqcOHEC4eHh/yvGwgLh4eHIyspSu01WVpZSfwCIiIhQ9M/Ly4NMJlPq4+zsjNDQUEWfnJwc3LhxAxYWFggODoaXlxf69OmjNCqlTnl5OeRyudIXERkXmUymcaqNIYmI1BEtKN2+fRvV1dXw8PBQavfw8IBMJlO7jUwmq7X/k++19bl27RoAYN68eZgzZw7S0tLQrFkz9O7du9aVxRMTE+Hs7Kz48vHx0eJoiUhsCQkJ+Oijj1TaOdVGRLWp03+h1qxZU+cdTp48ud7FNIaamhoAj4fZBw4cCADYvHkznnrqKezYsQNjxoxRu93MmTMRFxen+FkulzMsERkJdaNI8fHxZnnHLhFpp05BaeXKlXXamUQiqXNQcnNzg6WlJQoLC5XaCwsLNT4KxdPTs9b+T74XFhbCy8tLqU9QUBAAKNo7duyoeN3W1hZt2rRBQUGBxnptbW1ha2tbp2MjIsNw5coVfPnllyrtHEUiorqqU1DKy8vT+Rvb2NggJCQEmZmZilvza2pqkJmZiYkTJ6rdJiwsDJmZmZg6daqibe/evQgLCwMA+Pn5wdPTE5mZmYpgJJfLkZ2djXHjxgEAQkJCYGtri4sXL6Jnz54AgMrKSuTn56N169Y6P04iEgcXkCQiXaj31YsVFRXIy8tD27Zt630RZFxcHIYPH44uXbqgW7duWLVqFcrKyjBixAgAwLBhw9CyZUskJiYCAKZMmYJevXph+fLl6Nu3L5KTk3H8+HFs3LgRwOMRralTp2LhwoXw9/eHn58f5s6dC29vb0UYc3JywtixYyGVSuHj44PWrVtj6dKlAIA33nijvqeDiAyIpgu2iYi0pXXCefDgASZNmoTPPvsMAHDp0iW0adMGkyZNQsuWLdXe1q9JdHQ0iouLER8fD5lMhqCgIKSnpysuxi4oKICFxf+uN+/Rowe2bduGOXPmYNasWfD390dqaio6deqk6DN9+nSUlZVh9OjRKCkpQc+ePZGenq60eNzSpUthZWWFoUOH4uHDhwgNDcX+/fvRrFkzbU8HERmQnJwcfPfddyrtDElEVF9ar6M0ZcoUHD58GKtWrUJkZCROnz6NNm3aYNeuXZg3bx5yc3P1VatB4TpKRIaFU21EVBd6eyjuE6mpqUhJSUH37t2V7hh55plncPXqVW13R0TUYOpCUkaGFEeOiFAMEZkUrYNScXEx3N3dVdrLysp4qy0RNaqff/4ZP/30k0p7RoYUWlwFQESkkdYLTnbp0gXff/+94ucn4WjTpk2Ku8+IiPQtISFBJSRZWVlBKn08ktS/vzh1EZFp0XpEadGiRejTpw/OnTuHqqoqrF69GufOncORI0fw888/66NGIiIlvKuNiBqL1iNKPXv2xMmTJ1FVVYXOnTvjxx9/hLu7O7KyshASEqKPGomIAAA7duxQG5KCgxmSiEg/tL7rjR7jXW9EjUtdQHJ1ddW4QC0RkTp6uetNLpfXuQCGBiLSNU61EZFY6hSUXFxc6nxHW3V1dYMKIiJ64sMPP0RxcbFKO0MSETWWOgWlAwcOKH6dn5+PGTNmICYmRnGXW1ZWFj777DPFo0aIiBpK3ShSQEAAoqOjRaiGiMyV1tcovfjii3j77bcxePBgpfZt27Zh48aNatc0MUW8RolIfzjVRkT6ou3nt9ZBqUmTJjh16hT8/f2V2i9duoSgoCA8ePBAu4qNFIMSke4lJiaioqJCpZ0hiYh0RdvPb62XB/Dx8cHHH3+s0r5p0yb4+PhouzsiIgCPR5H+GpLc3XswJBGRqLRecHLlypUYOHAgfvjhB4SGhgIAjh49isuXL+Obb77ReYFEZPo0rY3E1bWJSGz1Wkfp999/x4cffogLFy4AADp06ICxY8ea1YgSp96IGk5dQAI41UZE+qP3a5ToMQYlooZRF5Jat45CTEygCNUQkbnQy4KTf1VSUoJPPvkE58+fBwA888wzGDlyJJydneuzOyIyM7yrjYiMhdYjSsePH0dERATs7e3RrVs3AMCxY8fw8OFD/Pjjj3j22Wf1Uqih4YgSkfY41UZEYtP71Ns//vEPtGvXDh9//DGsrB4PSFVVVeHtt9/GtWvXcPDgwfpVbmQYlIi0oy4kDR06FG3atBGhGiIyV3oPSvb29sjNzUVAQIBS+7lz59ClSxeuo0RESgRBwPz581XaMzKkOHJEhIKIyKzp/RolJycnFBQUqASl69evw9HRUdvdEZEJ0zTVlpEhxYwZjVwMEVE9aL3gZHR0NGJjY5GSkoLr16/j+vXrSE5OVvtYEyIyX+pC0pEjoxEc/HgkiWskEZEx0HpEadmyZZBIJBg2bBiqqqoAANbW1hg3bhwWL16s8wKJyLhUV1dj4cKFKu28YJuIjFG911F68OABrl69CgBo27YtmjRpotPCDB2vUSJSxbvaiMjQNco6SsDjh+N27ty5vpsTkYlRF5ImT56MZs2aiVANEZFu1DkojRw5sk79Pv3003oXQ0TG59GjR/jggw9U2jmKRESmoM5BacuWLWjdujWCg4PBp54QEcCpNiIyfXUOSuPGjcP27duRl5eHESNGYMiQIWjevLk+ayMiA6YuJE2fPh329vYiVENEpB91Xh5g/fr1uHXrFqZPn47vvvsOPj4++Pe//42MjAyOMBGZEblcrvFZbQxJRGRq6n3X22+//YYtW7bg888/R1VVFc6ePYumTZvquj6DxbveyBxxqo2IjF2j3fVmYWEBiUQCQRBQXV1d390QkZFQF5ICA2cjKqre/4wQERk8rVbmLi8vx/bt2/Gvf/0LTz/9NH799VesW7cOBQUFZjWaRGROCgsLNU61MSQRkamr879y48ePR3JyMnx8fDBy5Ehs374dbm5u+qyNiETGqTYiMnd1vkbJwsICrVq1QnBwMCQSicZ+3377rc6KM2S8RolMnbqQFB8fX+vffyIiQ6e3a5SGDRvGfyCJzMC1a9ewdetWlXaOIhGROdJqwUkiMm2aptqCgxmSiMg88UpMIgKgPiRxFImIzB2DEpGZO336NHbu3KnSzpBERMSgRGTWeFcbEVHtGJSIzBSn2oiI/h6DEpGZOXToEPbv36/SzpBERKSKQYnIjHCqjYhIOwxKRGaCU21ERNpjUCIycbt370Zubq5KO0MSEdHfY1AiMmHqRpHc3d0xbtw4EaohIjI+DEpEJopTbUREDcegRGRitmzZgt9++02lnSGJiEh7DEpEJkTdKFLHjh3xxhtviFANEZHxY1AiMhGcaiMi0j0LsQsAgPXr18PX1xd2dnYIDQ3F0aNHa+2/Y8cOBAQEwM7ODp07d8aePXuUXhcEAfHx8fDy8oK9vT3Cw8Nx+fJltfsqLy9HUFAQJBIJTp48qatDImo0S5cuZUgiItIT0YNSSkoK4uLiIJVKkZOTg8DAQERERKCoqEht/yNHjmDw4MGIjY1Fbm4uoqKiEBUVhTNnzij6LFmyBGvWrEFSUhKys7Ph4OCAiIgIPHr0SGV/06dPh7e3t96Oj0ifEhIS8ODBA6W25557jiGJiEhHJIIgCGIWEBoaiq5du2LdunUAgJqaGvj4+GDSpEmYMWOGSv/o6GiUlZUhLS1N0da9e3cEBQUhKSkJgiDA29sb06ZNw7vvvgsAKC0thYeHB7Zs2YJBgwYptvvhhx8QFxeHb775Bs888wxyc3MRFBRUp7rlcjmcnZ1RWloKJyenBpwBovrhKBIRkfa0/fwWdUSpoqICJ06cQHh4uKLNwsIC4eHhyMrKUrtNVlaWUn8AiIiIUPTPy8uDTCZT6uPs7IzQ0FClfRYWFmLUqFHYunUrmjRp8re1lpeXQy6XK30RiSEhIYEhiYiokYgalG7fvo3q6mp4eHgotXt4eEAmk6ndRiaT1dr/yffa+giCgJiYGIwdOxZdunSpU62JiYlwdnZWfPn4+NRpOyJdUheQzp7ti+BghiQiIn0wy7ve1q5di3v37mHmzJl13mbmzJmIi4tT/CyXyxmWqFFxFImIqPGJGpTc3NxgaWmJwsJCpfbCwkJ4enqq3cbT07PW/k++FxYWwsvLS6nPk+uP9u/fj6ysLNja2irtp0uXLnjrrbfw2Wefqbyvra2tSn+ixqAuIAHgKBIRUSMQderNxsYGISEhyMzMVLTV1NQgMzMTYWFharcJCwtT6g8Ae/fuVfT38/ODp6enUh+5XI7s7GxFnzVr1uDUqVM4efIkTp48qVheICUlBe+//75Oj5GoIdSFpJycQZBKpejfX4SCiIjMjOhTb3FxcRg+fDi6dOmCbt26YdWqVSgrK8OIESMAAMOGDUPLli2RmJgIAJgyZQp69eqF5cuXo2/fvkhOTsbx48exceNGAIBEIsHUqVOxcOFC+Pv7w8/PD3PnzoW3tzeioqIAAK1atVKqoWnTpgCAtm3b4qmnnmqkIyfSTBAEzJ8/X6U9I0MKNTeDEhGRnogelKKjo1FcXIz4+HjIZDIEBQUhPT1dcTF2QUEBLCz+N/DVo0cPbNu2DXPmzMGsWbPg7++P1NRUdOrUSdFn+vTpKCsrw+jRo1FSUoKePXsiPT0ddnZ2jX58RNrSNNUmlUrBS5KIiBqX6OsoGSuuo0T6oC4kjRw5kjcOEBHpiLaf36KPKBERUF1djYULF6q08642IiJxMSgRiay2qTYiIhIXgxKRiNSFpIkTJ8LV1VWEaoiI6K8YlIhEUF5ejsWLF6u0BwdLwYxERGQ4GJSIGlltC0hybSQiIsPCoETUiNSFpPfee69OD2YmIqLGx6BE1Aju3buHFStWqLTzgm0iIsPGoESkZ7yrjYjIeIn6rDciU6cuJO3dO4sPtCUiMhIcUSLSg9u3b2P9+vUq7XwMCRGRcWFQItIxTrUREZkOBiUiHVIXkubOnav0YGciIjIeDEpEOvDbb79hy5YtKu0cRSIiMm4MSkQNpGmqraKCIYmIyNgxKBE1gLqQFB8fD4lEIkI1RESkawxKRPVw6tQppKamqrRzqo2IyLQwKBFpqbZntRERkWnhrThEWlAXkjIypHygLRGRieKIElEdHDx4EAcOHFBp5wKSRESmjUGJ6G9wAUkiIvPFoERUC3UhiQGJiMh8MCgRqbFr1y6cPHlSpZ0hiYjIvDAoEf2FulEkR0dHxMXFiVANERGJiUGJ6E841UZERH/GoEQEYMOGDSgqKlJpZ0giIjJvDEpk9tSNIv3xhx/WrBkmQjVERGRIuOAkmTVNC0iGhzMkERERR5TITNX2GBLOthER0RMMSmR21IWkTp06YeDAgSJUQ0REhoxBicwK72ojIiJtMCiRWahtqo2IiEgTXsxNJk9dSPrll14IDpaif38RCiIiIqPBESUyaZruapsxAwxJRET0txiUyCRpmmqTSnlXGxER1R2DEpkcdSFpwIABCAoKavxiiIjIqDEokckQBAHz589XaeddbUREVF8MSmQSeFcbERHpA4MSGT11IWno0KFo06aNCNUQEZEpYVAio1VdXY2FCxeqtHOqjYiIdIVBiYxSbXe1ERER6QqDEhkddSFp3LhxcHd3F6EaIiIyZQxKZDTKy8uxePFilXaOIhERkb4wKJFR4FQbERGJgUGJDJ66kNSpUxwGDnQUoRoiIjInDEpksORyOVauXKnSzlEkIiJqLAxKZJA41UZERIaAQYkMjrqQNGPGDNja2opQDRERmTMGJTIYhYWFSEpKUmkPDpaCGYmIiMRgIXYBALB+/Xr4+vrCzs4OoaGhOHr0aK39d+zYgYCAANjZ2aFz587Ys2eP0uuCICA+Ph5eXl6wt7dHeHg4Ll++rHg9Pz8fsbGx8PPzg729Pdq2bQupVIqKigq9HB/9vYSEBI0hqX9/EQoiIiKCAQSllJQUxMXFQSqVIicnB4GBgYiIiEBRUZHa/keOHMHgwYMRGxuL3NxcREVFISoqCmfOnFH0WbJkCdasWYOkpCRkZ2fDwcEBERERePToEQDgwoULqKmpwUcffYSzZ89i5cqVSEpKwqxZsxrlmEmZuqm2uXPnQiplSCIiInFJBEEQxCwgNDQUXbt2xbp16wAANTU18PHxwaRJkzBjxgyV/tHR0SgrK0NaWpqirXv37ggKCkJSUhIEQYC3tzemTZuGd999FwBQWloKDw8PbNmyBYMGDVJbx9KlS7FhwwZcu3atTnXL5XI4OzujtLQUTk5O2h42AcjLy8Pnn3+u0s4LtomISF+0/fwWdUSpoqICJ06cQHh4uKLNwsIC4eHhyMrKUrtNVlaWUn8AiIiIUPTPy8uDTCZT6uPs7IzQ0FCN+wQeh6nmzZs35HBICwkJCQxJRERk8ES9mPv27duorq6Gh4eHUruHhwcuXLigdhuZTKa2v0wmU7z+pE1Tn7+6cuUK1q5di2XLlmmstby8HOXl5Yqf5XK5xr5UO3VTbRkZ8ZgxQyJCNURERJqJfo2S2G7cuIHIyEi88cYbGDVqlMZ+iYmJcHZ2Vnz5+Pg0YpWm4fTp02pDklQqxZEjEl6PREREBkfUoOTm5gZLS0sUFhYqtRcWFsLT01PtNp6enrX2f/K9Lvu8efMmnn/+efTo0QMbN26stdaZM2eitLRU8XX9+vW/P0BSSEhIwM6dO1XaOdVGRESGTNSgZGNjg5CQEGRmZiraampqkJmZibCwMLXbhIWFKfUHgL179yr6+/n5wdPTU6mPXC5Hdna20j5v3LiB3r17IyQkBJs3b4aFRe2nwtbWFk5OTkpfVDeaRpEYkoiIyNCJvuBkXFwchg8fji5duqBbt25YtWoVysrKMGLECADAsGHD0LJlSyQmJgIApkyZgl69emH58uXo27cvkpOTcfz4ccWIkEQiwdSpU7Fw4UL4+/vDz88Pc+fOhbe3N6KiogD8LyS1bt0ay5YtQ3FxsaIeTSNZpL2srCz8+OOPKu0MSEREZCxED0rR0dEoLi5GfHw8ZDIZgoKCkJ6errgYu6CgQGm0p0ePHti2bRvmzJmDWbNmwd/fH6mpqejUqZOiz/Tp01FWVobRo0ejpKQEPXv2RHp6Ouzs7AA8HoG6cuUKrly5gqeeekqpHpFXSzAZfFYbERGZAtHXUTJWXEdJM3Uhaft2KTTcyEhERNRotP38Fn1EiUzHgQMHcPDgQZX2jAwpliwRoSAiIqIGYlAinVA3inTnTnO8+OIkcLaNiIiMFYMSNZj6BSSlmDEDXBuJiIiMGoMS1dvOnTtx+vRplfbHt/6LUBAREZGOMShRvagbRbp1qxNefnmgCNUQERHpB4MSaU1dSAoO5igSERGZHgYlqrOtW7fi2rVrKu3BwVJei0RERCaJQYnqRN0o0uXLz+Pf//4nQxIREZksBiX6W5qe1UZERGTqGJRIo9WrV6OkpESlPTiYIYmIiMwDgxKppW4U6ddf+2PYsGBOtRERkdlgUCIVnGojIiJ6jEGJFBYtWoTKykqVdoYkIiIyVwxKBED9KNKbb74Jf39/EaohIiIyDAxKZk4QBMyfP1+lPThYCmYkIiIydwxKZkzdKBLAqTYiIqInGJTMlLqQNGbMGHh6eopQDRERkWFiUDIzmqbaOIpERESkikHJjHCqjYiISDsMSmZCXUj6+ecp2L/fpfGLISIiMhIMSiauuroaCxcuVGlftkyKL78UoSAiIiIjwqBkwhYvXozy8nKV9uTkxyGJjyIhIiKqHYOSiVI31bZmzQyMHWuL8+dFKIiIiMgIMSiZmMrKSixatEilvaJCij/+EKEgIiIiI8agZELUjSLV1FggJGQup9mIiIjqgUHJRKgLSbNnz4aVFX+LiYiI6oufokbu4cOHWLJkiUo710YiIiJqOAYlI6ZuFKlZs2aYPHmyCNUQERGZHgYlI6UuJM2dOxcWFhYiVENERGSaGJSMzP3797F8+XKVdk61ERER6R6DkhFRN4p0544vVq8eLkI1REREpo/zNEZCXUjKyIjHiy8yJBEREekLR5QM3KNHj/DBBx+otEulUnC2jYiISL8YlAxYeno6srOzldp+/PEV9O4dIlJFRERE5oVByUDt3LkTp0+fVmpbtkyKe/dEKoiIiMgMMSgZmKqqKrz//vtKbQ8e2GPNmumIixOpKCIiIjPFoGRgkpL2KP28fv27GDXKAQ8filQQERGRGeNdbwbm4MGWAIDCwvaQSqUoKnLAXwaYiIiIqJEwKBmYIUNCkJEhRWTkILFLISIiMnucejMw/fs//iIiIiLxcUSJiIiISAMGJSIiIiINGJSIiIiINGBQIiIiItKAQYmIiIhIAwYlIiIiIg0YlIiIiIg0YFAiIiIi0oBBiYiIiEgDgwhK69evh6+vL+zs7BAaGoqjR4/W2n/Hjh0ICAiAnZ0dOnfujD17lB8kKwgC4uPj4eXlBXt7e4SHh+Py5ctKfe7cuYO33noLTk5OcHFxQWxsLO7fv6/zYyMiIiLjJXpQSklJQVxcHKRSKXJychAYGIiIiAgUFRWp7X/kyBEMHjwYsbGxyM3NRVRUFKKionDmzBlFnyVLlmDNmjVISkpCdnY2HBwcEBERgUePHin6vPXWWzh79iz27t2LtLQ0HDx4EKNHj9b78RIREZHxkAiCIIhZQGhoKLp27Yp169YBAGpqauDj44NJkyZhxowZKv2jo6NRVlaGtLQ0RVv37t0RFBSEpKQkCIIAb29vTJs2De+++y4AoLS0FB4eHtiyZQsGDRqE8+fPo2PHjjh27Bi6dOkCAEhPT8fLL7+M33//Hd7e3n9bt1wuh7OzM0pLS+Hk5KSLU0FERER6pu3nt6gjShUVFThx4gTCw8MVbRYWFggPD0dWVpbabbKyspT6A0BERISif15eHmQymVIfZ2dnhIaGKvpkZWXBxcVFEZIAIDw8HBYWFsjOzlb7vuXl5ZDL5UpfREREZNqsxHzz27dvo7q6Gh4eHkrtHh4euHDhgtptZDKZ2v4ymUzx+pO22vq4u7srvW5lZYXmzZsr+vxVYmIiEhISVNoZmIiIiIzHk8/tuk6oiRqUjMnMmTMRFxen+PnGjRvo2LEjfHx8RKyKiIiI6uPevXtwdnb+236iBiU3NzdYWlqisLBQqb2wsBCenp5qt/H09Ky1/5PvhYWF8PLyUuoTFBSk6PPXi8Wrqqpw584dje9ra2sLW1tbxc9NmzbFuXPn0LFjR1y/fp3XKWlJLpfDx8eH566eeP7qj+euYXj+6o/nrmF0df4EQcC9e/fqdD0yIHJQsrGxQUhICDIzMxEVFQXg8cXcmZmZmDhxotptwsLCkJmZialTpyra9u7di7CwMACAn58fPD09kZmZqQhGcrkc2dnZGDdunGIfJSUlOHHiBEJCQgAA+/fvR01NDUJDQ+tUu4WFBVq2bAkAcHJy4h/6euK5axiev/rjuWsYnr/647lrGF2cv7qMJD0h+tRbXFwchg8fji5duqBbt25YtWoVysrKMGLECADAsGHD0LJlSyQmJgIApkyZgl69emH58uXo27cvkpOTcfz4cWzcuBEAIJFIMHXqVCxcuBD+/v7w8/PD3Llz4e3trQhjHTp0QGRkJEaNGoWkpCRUVlZi4sSJGDRoUJ0TJhEREZk+0YNSdHQ0iouLER8fD5lMhqCgIKSnpysuxi4oKICFxf9uzuvRowe2bduGOXPmYNasWfD390dqaio6deqk6DN9+nSUlZVh9OjRKCkpQc+ePZGeng47OztFny+//BITJ07Eiy++CAsLCwwcOBBr1qxpvAMnIiIiwydQvT169EiQSqXCo0ePxC7F6PDcNQzPX/3x3DUMz1/98dw1jFjnT/QFJ4mIiIgMleiPMCEiIiIyVAxKRERERBowKBERERFpwKBEREREpIFZB6X169fD19cXdnZ2CA0NxdGjR2vtv2PHDgQEBMDOzg6dO3fGnj17lF4XBAHx8fHw8vKCvb09wsPDcfnyZaU+d+7cwVtvvQUnJye4uLggNjYW9+/f1/mxNYbGPn/5+fmIjY2Fn58f7O3t0bZtW0ilUlRUVOjl+PRJjD97T5SXlyMoKAgSiQQnT57U1SE1KrHO3/fff4/Q0FDY29ujWbNmirXZjIkY5+7SpUsYMGAA3Nzc4OTkhJ49e+LAgQM6P7bGoOvz9+233+Kll16Cq6urxr+Tjx49woQJE+Dq6oqmTZti4MCBKk+oMAaNfe7u3LmDSZMmoX379rC3t0erVq0wefJklJaWald4o95jZ0CSk5MFGxsb4dNPPxXOnj0rjBo1SnBxcREKCwvV9j98+LBgaWkpLFmyRDh37pwwZ84cwdraWvj1118VfRYvXiw4OzsLqampwqlTp4T+/fsLfn5+wsOHDxV9IiMjhcDAQOG///2vcOjQIaFdu3bC4MGD9X68uibG+fvhhx+EmJgYISMjQ7h69aqwa9cuwd3dXZg2bVqjHLOuiPVn74nJkycLffr0EQAIubm5+jpMvRHr/H399ddCs2bNhA0bNggXL14Uzp49K6SkpOj9eHVJrHPn7+8vvPzyy8KpU6eES5cuCePHjxeaNGki3Lp1S+/HrEv6OH+ff/65kJCQIHz88cca/06OHTtW8PHxETIzM4Xjx48L3bt3F3r06KGvw9QLMc7dr7/+Krz22mvC7t27hStXrgiZmZmCv7+/MHDgQK1qN9ug1K1bN2HChAmKn6urqwVvb28hMTFRbf9///vfQt++fZXaQkNDhTFjxgiCIAg1NTWCp6ensHTpUsXrJSUlgq2trbB9+3ZBEATh3LlzAgDh2LFjij4//PCDIJFIhBs3bujs2BqDGOdPnSVLlgh+fn4NOZRGJ+a527NnjxAQECCcPXvWaIOSGOevsrJSaNmypbBp0yZdH06jEuPcFRcXCwCEgwcPKvrI5XIBgLB3716dHVtj0PX5+7O8vDy1fydLSkoEa2trYceOHYq28+fPCwCErKysBhxN4xLj3Knz1VdfCTY2NkJlZWWdazfLqbeKigqcOHEC4eHhijYLCwuEh4cjKytL7TZZWVlK/QEgIiJC0T8vLw8ymUypj7OzM0JDQxV9srKy4OLigi5duij6hIeHw8LCAtnZ2To7Pn0T6/ypU1paiubNmzfkcBqVmOeusLAQo0aNwtatW9GkSRNdHlajEev85eTk4MaNG7CwsEBwcDC8vLzQp08fnDlzRteHqDdinTtXV1e0b98en3/+OcrKylBVVYWPPvoI7u7uimdtGgN9nL+6OHHiBCorK5X2ExAQgFatWmm1HzGJde7UKS0thZOTE6ys6v5gErMMSrdv30Z1dbXiMSlPeHh4QCaTqd1GJpPV2v/J97/r4+7urvS6lZUVmjdvrvF9DZFY5++vrly5grVr12LMmDH1Og4xiHXuBEFATEwMxo4dqxTUjY1Y5+/atWsAgHnz5mHOnDlIS0tDs2bN0Lt3b9y5c6fhB9YIxDp3EokE+/btQ25uLhwdHWFnZ4cVK1YgPT0dzZo108mxNQZ9nL+6kMlksLGxgYuLS4P2Iyaxzp26OhYsWIDRo0drtZ1ZBiUyfjdu3EBkZCTeeOMNjBo1SuxyDN7atWtx7949zJw5U+xSjFJNTQ0AYPbs2Rg4cCBCQkKwefNmSCQS7NixQ+TqDJsgCJgwYQLc3d1x6NAhHD16FFFRUejXrx9u3boldnlkJuRyOfr27YuOHTti3rx5Wm1rlkHJzc0NlpaWKncNFBYWwtPTU+02np6etfZ/8v3v+hQVFSm9XlVVhTt37mh8X0Mk1vl74ubNm3j++efRo0cPbNy4sUHH0tjEOnf79+9HVlYWbG1tYWVlhXbt2gEAunTpguHDhzf8wBqJWOfPy8sLANCxY0fF67a2tmjTpg0KCgoacESNR8w/e2lpaUhOTsZzzz2HZ599Fh9++CHs7e3x2Wef6eTYGoM+zl9deHp6oqKiAiUlJQ3aj5jEOndP3Lt3D5GRkXB0dMTOnTthbW2t1fZmGZRsbGwQEhKCzMxMRVtNTQ0yMzMRFhamdpuwsDCl/gCwd+9eRX8/Pz94enoq9ZHL5cjOzlb0CQsLQ0lJCU6cOKHos3//ftTU1CA0NFRnx6dvYp0/4PFIUu/evRX/o7ewMK4/wmKduzVr1uDUqVM4efIkTp48qbjNNiUlBe+//75Oj1GfxDp/ISEhsLW1xcWLFxV9KisrkZ+fj9atW+vs+PRJrHP34MEDAFD5u2phYaEYqTMG+jh/dRESEgJra2ul/Vy8eBEFBQVa7UdMYp074PGfx5deegk2NjbYvXs37OzstD+AOl/2bWKSk5MFW1tbYcuWLcK5c+eE0aNHCy4uLoJMJhMEQRCGDh0qzJgxQ9H/8OHDgpWVlbBs2TLh/PnzglQqVXubrIuLi7Br1y7h9OnTwoABA9QuDxAcHCxkZ2cLv/zyi+Dv72+0ywM09vn7/fffhXbt2gkvvvii8Pvvvwu3bt1SfBkTsf7s/Zk2d4kYGrHO35QpU4SWLVsKGRkZwoULF4TY2FjB3d1duHPnTuMdfAOJce6Ki4sFV1dX4bXXXhNOnjwpXLx4UXj33XcFa2tr4eTJk417AhpIH+fvjz/+EHJzc4Xvv/9eACAkJycLubm5Sv+ujR07VmjVqpWwf/9+4fjx40JYWJgQFhbWeAeuA2Kcu9LSUiE0NFTo3LmzcOXKFaXPjKqqqjrXbrZBSRAEYe3atUKrVq0EGxsboVu3bsJ///tfxWu9evUShg8frtT/q6++Ep5++mnBxsZGeOaZZ4Tvv/9e6fWamhph7ty5goeHh2Brayu8+OKLwsWLF5X6/PHHH8LgwYOFpk2bCk5OTsKIESOEe/fu6e0Y9amxz9/mzZsFAGq/jI0Yf/b+zJiDkiCIc/4qKiqEadOmCe7u7oKjo6MQHh4unDlzRm/HqC9inLtjx44JL730ktC8eXPB0dFR6N69u7Bnzx69HaM+6fr8afp3TSqVKvo8fPhQGD9+vNCsWTOhSZMmwquvvmp0/0EUhMY/dwcOHND4mZGXl1fnuiWCIAjaj0MRERERmT7jusCDiIiIqBExKBERERFpwKBEREREpAGDEhEREZEGDEpEREREGjAoEREREWnAoERERESkAYMSERERkQYMSkRkkmQyGSZNmoQ2bdrA1tYWPj4+6NevHzIzM3Hnzh1MmjQJ7du3h729PVq1aoXJkyejtLRUsX1+fj4kEglOnjypsu/evXtj6tSpSm3nz59H//794ezsDAcHB3Tt2tVoHphLRJpZiV0AEZGu5efn47nnnoOLiwuWLl2Kzp07o7KyEhkZGZgwYQK+/vpr3Lx5E8uWLUPHjh3x22+/YezYsbh58ya+/vprrd/v6tWr6NmzJ2JjY5GQkAAnJyecPXu2fg/gJCKDwkeYEJHJefnll3H69GlcvHgRDg4OSq+VlJTAxcVFZZsdO3ZgyJAhKCsrg5WVFfLz8+Hn54fc3FwEBQUp9e3duzeCgoKwatUqAMCgQYNgbW2NrVu36umIiEgsnHojIpNy584dpKenY8KECSohCYDakAQApaWlcHJygpWVdgPtNTU1+P777/H0008jIiIC7u7uCA0NRWpqaj2qJyJDw6BERCblypUrEAQBAQEBdd7m9u3bWLBgAUaPHq3yWo8ePdC0aVOlr0OHDileLyoqwv3797F48WJERkbixx9/xKuvvorXXnsNP//8s06OiYjEw2uUiMikaHs1gVwuR9++fdGxY0fMmzdP5fWUlBR06NBBqe2tt95S/LqmpgYAMGDAALzzzjsAgKCgIBw5cgRJSUno1auXlkdARIaEQYmITIq/vz8kEgkuXLjwt33v3buHyMhIODo6YufOnbC2tlbp4+Pjg3bt2im12dvbK37t5uYGKysrdOzYUalPhw4d8Msvv9TzKIjIUHDqjYhMSvPmzREREYH169ejrKxM5fWSkhIAj0eSXnrpJdjY2GD37t31vkPNxsYGXbt2xcWLF5XaL126hNatW9drn0RkOBiUiMjkrF+/HtXV1ejWrRu++eYbXL58GefPn8eaNWsQFhamCEllZWX45JNPIJfLIZPJIJPJUF1drfX7vffee0hJScHHH3+MK1euYN26dfjuu+8wfvx4PRwdETUmTr0Rkclp06YNcnJy8P7772PatGm4desWWrRogZCQEGzYsAE5OTnIzs4GAJVptby8PPj6+mr1fq+++iqSkpKQmJiIyZMno3379vjmm2/Qs2dPXR0SEYmE6ygRERERacCpNyIiIiINGJSIiIiINGBQIiIiItKAQYmIiIhIAwYlIiIiIg0YlIiIiIg0YFAiIiIi0oBBiYiIiEgDBiUiIiIiDRiUiIiIiDRgUCIiIiLSgEGJiIiISIP/A7zniZ1R2S7WAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV7NJREFUeJzt3XlcVPX+P/DXgKwqICgMKgopidtDEBXxeq9WXNFMpazQNNHIJRU1NBNDRlzC3DKXJCuluqlIKfpFBREtTbi4oeWCS0FoOogpoKis5/eHP+c2zIEAZzizvJ6PBw/iM59z5n2O2Lz8fD7nHJkgCAKIiIiISMVM6gKIiIiI9A0DEhEREVE1DEhERERE1TAgEREREVXDgERERERUDQMSERERUTUMSERERETVMCARERERVcOARERERFQNAxIRGTWZTIaFCxdKXYbK+PHj4e7uLnUZRPQ3GJCIqNHFxcVBJpOpvqytrfHss89i+vTpyM/P1+l7p6enY+HChSgsLNTqfgcOHKh2TI6Ojujduzc2b96MqqoqrbzHhx9+iMTERK3si4hq10TqAojIdC1atAgeHh549OgRfvrpJ2zcuBH79u3DuXPnYGtrq5X3ePjwIZo0+d//6tLT0xEdHY3x48fDwcFBK+/xRNu2bRETEwMAKCgowNdff43Q0FBcvnwZy5Yte+r9f/jhh3j11VcRFBT01PsiotoxIBGRZIYMGYJevXoBAN5++204OTlh9erV2L17N0aPHt3g/VZVVaGsrAzW1tawtrbWVrl/y97eHmPHjlX9PHnyZHTq1Anr16/H4sWLYWFh0Wi1ENHT4RQbEemN559/HgCQk5MDAFi5ciX69esHJycn2NjYwNfXF999953GdjKZDNOnT8e3336Lrl27wsrKCsnJyarXnqxBWrhwId577z0AgIeHh2o6LDc3FwMGDECPHj1E6+rUqRMCAwPrfTy2trbo27cvSkpKUFBQUGO/kpISzJ49G25ubrCyskKnTp2wcuVKCIKgdowlJSX46quvVHWPHz++3jURUd1wBImI9Mavv/4KAHBycgIAfPLJJxg+fDjGjBmDsrIybN++Ha+99hqSkpIwdOhQtW0PHTqEHTt2YPr06WjZsqXoQuhXXnkFly9fxrZt2/Dxxx+jZcuWAIBWrVrhzTffxMSJE3Hu3Dl069ZNtc2JEydw+fJlREZGNuiYfvvtN5ibm9c4nScIAoYPH47Dhw8jNDQU3t7eSElJwXvvvYc//vgDH3/8MQDgm2++wdtvv40+ffpg0qRJAIAOHTo0qCYiqgOBiKiRbdmyRQAgHDx4UCgoKBCuXbsmbN++XXBychJsbGyE69evC4IgCA8ePFDbrqysTOjWrZvw/PPPq7UDEMzMzITz589rvBcAQaFQqH5esWKFAEDIyclR61dYWChYW1sL77//vlr7jBkzhKZNmwr379+v9ZgGDBggeHl5CQUFBUJBQYFw8eJFYcaMGQIAYdiwYap+ISEhQvv27VU/JyYmCgCEJUuWqO3v1VdfFWQymXD16lVVW9OmTYWQkJBa6yAi7eAUGxFJJiAgAK1atYKbmxtGjRqFZs2aYdeuXWjTpg0AwMbGRtX37t27KCoqwj//+U+cPn1aY18DBgxAly5dGlyLvb09RowYgW3btqmmtiorKxEfH4+goCA0bdr0b/eRnZ2NVq1aoVWrVujcuTPWrVuHoUOHYvPmzTVus2/fPpibm2PGjBlq7bNnz4YgCNi/f3+Dj4mIGo5TbEQkmQ0bNuDZZ59FkyZN4OLigk6dOsHM7H//bktKSsKSJUtw5swZlJaWqtplMpnGvjw8PJ66nnHjxiE+Ph5Hjx7Fv/71Lxw8eBD5+fl4880367S9u7s7Pv/8c9WtCzw9PeHs7FzrNr///jtat26N5s2bq7V37txZ9ToRNT4GJCKSTJ8+fVRXsVV39OhRDB8+HP/617/w6aefwtXVFRYWFtiyZQu2bt2q0f+vo00NFRgYCBcXF/znP//Bv/71L/znP/+BXC5HQEBAnbZv2rRpnfsSkX7jFBsR6aXvv/8e1tbWSElJwVtvvYUhQ4ZoJXyIjT49YW5ujjfeeAPfffcd7t69i8TERIwePRrm5uZP/b41ad++PW7cuIF79+6ptWdnZ6tef6K22olIuxiQiEgvmZubQyaTobKyUtWWm5v71HeSfrKWqKY7ab/55pu4e/cuJk+ejPv376vd10gXXnzxRVRWVmL9+vVq7R9//DFkMhmGDBmiamvatKnW7wBOROI4xUZEemno0KFYvXo1Bg8ejDfeeAO3bt3Chg0b0LFjR/z8888N3q+vry8A4IMPPsCoUaNgYWGBYcOGqYKTj48PunXrhoSEBHTu3Bk9e/bUyvHUZNiwYXjuuefwwQcfIDc3Fz169MCBAwewe/duzJo1S+1Sfl9fXxw8eBCrV69G69at4eHhAT8/P53WR2SqOIJERHrp+eefx5dffgmlUolZs2Zh27Zt+Oijj/Dyyy8/1X579+6NxYsX4+zZsxg/fjxGjx6tcRPHcePGAUCdF2c/DTMzM+zZswezZs1CUlISZs2ahQsXLmDFihVYvXq1Wt/Vq1fD19cXkZGRGD16NDZu3Kjz+ohMlUwQ/nKrViIiwieffIJ3330Xubm5aNeundTlEJEEGJCIiP5CEAT06NEDTk5OOHz4sNTlEJFEuAaJiAiPn4e2Z88eHD58GL/88gt2794tdUlEJCGOIBER4fEVch4eHnBwcMDUqVOxdOlSqUsiIgkxIBERERFVw6vYiIiIiKphQCIiIiKqhou0G6iqqgo3btxA8+bNeft/IiIiAyEIAu7du4fWrVurPRy7OgakBrpx4wbc3NykLoOIiIga4Nq1a2jbtm2NrzMgNVDz5s0BPD7BdnZ2EldDREREdVFcXAw3NzfV53hNGJAa6Mm0mp2dHQMSERGRgfm75TFcpE1ERERUDQMSERERUTUMSERERETVcA2SjlVWVqK8vFzqMkjHLCwsYG5uLnUZRESkJQxIOiIIApRKJQoLC6UuhRqJg4MD5HI574tFRGQEGJB05Ek4cnZ2hq2tLT80jZggCHjw4AFu3boFAHB1dZW4IiIieloMSDpQWVmpCkdOTk5Sl0ONwMbGBgBw69YtODs7c7qNiMjAcZG2DjxZc2RraytxJdSYnvx5c80ZEZHhY0DSIU6rmRb+eRMRGQ8GJCIiIqJqGJCIiIiIqmFAIjXjx4+HTCaDTCaDhYUFXFxc8O9//xubN29GVVVVnfcTFxcHBwcH3RVKRESkQwxIpGHw4MG4efMmcnNzsX//fjz33HOYOXMmXnrpJVRUVEhdHhERGTlBECS/4EXygLRhwwa4u7vD2toafn5+OH78eK39ExIS4OXlBWtra3Tv3h379u1Te33nzp0YNGgQnJycIJPJcObMGbXX79y5g7CwMHTq1Ak2NjZo164dZsyYgaKiIm0fmsGysrKCXC5HmzZt0LNnT8yfPx+7d+/G/v37ERcXBwBYvXo1unfvjqZNm8LNzQ1Tp07F/fv3AQA//PADJkyYgKKiItVo1MKFCwEA33zzDXr16oXmzZtDLpfjjTfeUN0/iIiI6MqVK1i0aBE+/PBDfPddsWR1SBqQ4uPjER4eDoVCgdOnT6NHjx4IDAys8QMzPT0do0ePRmhoKLKyshAUFISgoCCcO3dO1aekpAT9+/fHRx99JLqPGzdu4MaNG1i5ciXOnTuHuLg4JCcnIzQ0VCfHCDxOwmVlZZJ8CYKglWN4/vnn0aNHD+zcuRMAYGZmhrVr1+L8+fP46quvcOjQIcydOxcA0K9fP6xZswZ2dna4efMmbt68iTlz5gB4fAn84sWLcfbsWSQmJiI3Nxfjx4/XSo1ERGTYtm/fjq1bt6p+XrdOuts1ygRtfYI2gJ+fH3r37o3169cDAKqqquDm5oawsDDMmzdPo39wcDBKSkqQlJSkauvbty+8vb0RGxur1jc3NxceHh7IysqCt7d3rXUkJCRg7NixKCkpQZMmdfvDKC4uhr29PYqKimBnZ6f22qNHj5CTkwMPDw9YW1ujrKwMMTExddqvtkVERMDS0rLO/cePH4/CwkIkJiZqvDZq1Cj8/PPPuHDhgsZr3333HaZMmYLbt28DeLwGadasWX/7qJWTJ0+id+/euHfvHpo1a1bnOvVR9T93IiKqmzt37mDdunVqbRkZb2Pq1DYYPly771Xb5/dfSRbNysrKcOrUKURERKjazMzMEBAQgIyMDNFtMjIyEB4ertYWGBgo+mFeH09OUm3hqLS0FKWlpaqfi4ulG/aTiiAIqnv9HDx4EDExMcjOzkZxcTEqKirw6NEjPHjwoNYbZJ46dQoLFy7E2bNncffuXdXC77y8PHTp0qVRjoOIiPRHYmIizp49q9b2wQcf1HnAQlcke/fbt2+jsrISLi4uau0uLi7Izs4W3UapVIr2VyqVT1XH4sWLMWnSpFr7xcTEIDo6ukHvYWFhoRYEG5OFhYXW9nXx4kV4eHggNzcXL730Et555x0sXboUjo6O+OmnnxAaGoqysrIaA1JJSQkCAwMRGBiIb7/9Fq1atUJeXh4CAwNRVlamtTqJiMgwVP9craqSITU1CgqFRAX9hUk/i624uBhDhw5Fly5dVIuIaxIREaE2elVcXAw3N7c6vY9MJqvXNJc+OnToEH755Re8++67OHXqFKqqqrBq1SqYmT1exrZjxw61/paWlqisrFRry87Oxp9//olly5apzt3Jkycb5wCIiEhvFBQU4NNPP1Vra9duOD7/3AciK2wkIVlAatmyJczNzZGfn6/Wnp+fD7lcLrqNXC6vV//a3Lt3D4MHD0bz5s2xa9euvx1psbKygpWVVb3fxxCVlpZCqVSisrIS+fn5SE5ORkxMDF566SWMGzcO586dQ3l5OdatW4dhw4bh2LFjGmvA3N3dcf/+faSlpaFHjx6wtbVFu3btYGlpiXXr1mHKlCk4d+4cFi9eLNFREhGRFHbs2IGLFy+qtc2fPx8WFhaYMEGiokRIdhWbpaUlfH19kZaWpmqrqqpCWloa/P39Rbfx9/dX6w8AqampNfavSXFxMQYNGgRLS0vs2bOHC2qrSU5OhqurK9zd3TF48GAcPnwYa9euxe7du2Fubo4ePXpg9erV+Oijj9CtWzd8++23GovQ+/XrhylTpiA4OBitWrXC8uXL0apVK8TFxSEhIQFdunTBsmXLsHLlSomOkoiIGpMgCIiOjtYIRwqFQqvLQbRF0qvY4uPjERISgs8++wx9+vTBmjVrsGPHDmRnZ8PFxQXjxo1DmzZtVB++6enpGDBgAJYtW4ahQ4di+/bt+PDDD3H69Gl069YNwOOV8Hl5ebhx44aqT6dOnSCXyyGXy1Xh6MGDB9i1axeaNm2qqqdVq1YwNzevU+31uYqNTAP/3ImIxN28eRObNm1Sa3v11VfRtWvXRq9F769iAx5ftl9QUICoqCgolUp4e3sjOTlZtRA7Ly9PtcYFeDwqsXXrVkRGRmL+/Pnw9PREYmKiKhwBwJ49ezDhL2N0o0aNAvA4oS5cuBCnT59GZmYmAKBjx45q9eTk5MDd3V1Xh0tERGRyvv76a+Tk5Ki16cNVan9H0hEkQ8YRJKqOf+5ERP8jCAIWLVqk1mZlZSV6n8PGZBAjSERERGR8Lly4gISEBLW206dHYffuThJVVH8MSERERKQ1YvcMPHDgA7z/vmFFDsOqloiIiPRSVVWV6K1bFAqFXtz4sb4YkIiIiOipnDlzBrt371ZrGzp0KHr16iVRRU+PAYmIiIgaTGxKbcGCBWpXoRsiBiQiIiKqt8rKSixZskSjXWGI82kiGJCIiIioXo4fP479+/ertb3yyivo3r27RBVpHwMSSWL8+PEoLCxEYmIiAGDgwIHw9vbGmjVrGrxPbeyDiIhqJzalFhUVBZlMJkE1umPYE4SkdePHj4dMJoNMJoOlpSU6duyIRYsWoaKiQqfvu3Pnzjo/uPaHH36ATCZDYWFhg/dBRET1U15eLhqOFAqF0YUjgCNIJGLw4MHYsmULSktLsW/fPkybNg0WFhaIiIhQ61dWVgZLS0utvKejo6Ne7IOIiDQdPXoUhw4dUmsbNWoUOnUynBs/1hdHkEiDlZUV5HI52rdvj3feeQcBAQHYs2cPxo8fj6CgICxduhStW7dW/cW4du0aXn/9dTg4OMDR0REjRoxAbm6uan+VlZUIDw+Hg4MDnJycMHfuXFR/ws3AgQMxa9Ys1c+lpaV4//334ebmBisrK3Ts2BFffvklcnNz8dxzzwEAWrRoAZlMhvHjx4vu4+7duxg3bhxatGgBW1tbDBkyBFeuXFG9HhcXBwcHB6SkpKBz585o1qwZBg8ejJs3b6r6/PDDD+jTpw+aNm0KBwcH/OMf/8Dvv/+upTNNRKT/oqOjNcJRVFSUUYcjgAGJ6sDGxgZlZWUAgLS0NFy6dAmpqalISkpCeXk5AgMD0bx5cxw9ehTHjh1TBY0n26xatQpxcXHYvHkzfvrpJ9y5cwe7du2q9T3HjRuHbdu2Ye3atbh48SI+++wzNGvWDG5ubvj+++8BAJcuXcLNmzfxySefiO5j/PjxOHnyJPbs2YOMjAwIgoAXX3wR5eXlqj4PHjzAypUr8c033+DIkSPIy8vDnDlzAAAVFRUICgrCgAED8PPPPyMjIwOTJk0yyqFkIqLqysrKTGpKrTpOsVGNBEFAWloaUlJSEBYWhoKCAjRt2hRffPGFamrtP//5D6qqqvDFF1+o/sJs2bIFDg4O+OGHHzBo0CCsWbMGEREReOWVVwAAsbGxSElJqfF9L1++jB07diA1NRUBAQEAgGeeeUb1+pOpNGdnZzg4OIju48qVK9izZw+OHTuGfv36AQC+/fZbuLm5ITExEa+99hqAx3PqsbGx6NChAwBg+vTpqocrFhcXo6ioCC+99JLq9c6dO9f/RBIRGZiDBw/i2LFjam1jx45V/b/QFHAESc/t2QP06/f4e2NJSkpCs2bNYG1tjSFDhiA4OBgLFy4EAHTv3l1t3dHZs2dx9epVNG/eHM2aNUOzZs3g6OiIR48e4ddff0VRURFu3rwJPz8/1TZNmjSp9e6qZ86cgbm5OQYMGNDgY7h48SKaNGmi9r5OTk7o1KkTLl68qGqztbVV+wvv6uqKW7duAXgcxMaPH4/AwEAMGzYMn3zyidr0GxGRMYqOjtYIRwqFwqTCEcARJL23bBmQkfH4+/DhjfOezz33HDZu3AhLS0u0bt0aTZr879ekadOman3v378PX19ffPvttxr7adWqVYPe38bGpkHbNYSFhYXazzKZTG191JYtWzBjxgwkJycjPj4ekZGRSE1NRd++fRutRiKixvDw4UMsX75crc3MzAwLFiyQqCJpcQRJz82bB/j7P/7eWJo2bYqOHTuiXbt2auFITM+ePXHlyhU4OzujY8eOal/29vawt7eHq6srMjMzVdtUVFTg1KlTNe6ze/fuqKqqwo8//ij6+pMRrMrKyhr30blzZ1RUVKi9759//olLly6hS5cutR5TdT4+PoiIiEB6ejq6deuGrVu31mt7IiJ998UXX2iEowkTJphsOAIYkPTe8OFAenrjjR7V15gxY9CyZUuMGDECR48eRU5ODn744QfMmDED169fBwDMnDkTy5YtQ2JiIrKzszF16lSNexj9lbu7O0JCQvDWW28hMTFRtc8dO3YAANq3bw+ZTIakpCQUFBTg/v37Gvvw9PTEiBEjMHHiRPz00084e/Ysxo4dizZt2mDEiBF1OracnBxEREQgIyMDv//+Ow4cOIArV65wHRIRGZXo6Gj88ccfam0KhQLt2rWTqCL9wIBET8XW1hZHjhxBu3bt8Morr6Bz584IDQ3Fo0ePYGdnBwCYPXs23nzzTYSEhMDf3x/NmzfHyy+/XOt+N27ciFdffRVTp06Fl5cXJk6ciJKSEgBAmzZtEB0djXnz5sHFxQXTp08X3ceWLVvg6+uLl156Cf7+/hAEAfv27dOYVqvt2LKzszFy5Eg8++yzmDRpEqZNm4bJkyfX4wwREemnoqIi0avUUlKM41lqT0smVL8hDdVJcXEx7O3tUVRUpAoCTzx69Ag5OTnw8PCAtbW1RBVSY+OfOxEZirVr1+Lu3btqbR07jsOGDR6YN09/Zy20obbP77/iIm0iIiITUtO9jQBgzJjGrkZ/MSARERGZgD///BPr16/XaH8SjkgdAxIREZGRi4mJUT3d4InQ0FC0bdtWoor0HwMSERGREattSo1qxoCkQ1z/blr4501E+kSpVOKzzz7TaGc4qhsGJB14chn5gwcPGvWu0CStBw8eANC8OzcRUWMTGzV655134OzsLEE1hokBSQfMzc3h4OCgeqaXra2tSTz52FQJgoAHDx7g1q1bcHBwgLm5udQlEZEJ45SadjAg6YhcLgcAVUgi4+fg4KD6cyciamzXrl3D5s2b1dpsbW3x3nvvSVSRYWNA0hGZTAZXV1c4OzujvLxc6nJIxywsLDhyRESSERs1CgsLg6OjowTVGAcGJB0zNzfnBycREekMp9R0gwGJiIjIAP3222/45ptv1NpatmyJadOmSVSRcWFAIiIiMjBio0bvvvturc8Wo/phQCIiIjIgnFJrHAxIREREBuDUqVNISkpSa7t7tx3WrJkgUUXGjQGJiIhIz4mNGv3wQzjefbe5BNWYBgYkIiIiPSUIAhYtWqTRrlAowFk13WJAIiIi0kPHjh3DwYMH1docHR0RFhYmUUWmhQGJiIhIz4hNqc2dO5fP92xEDEhERER6orYpNWpcDEhERER64ODBgzh27JhaW7t27TBhAq9SkwIDEhERkcTEptQiIiJgaWkpQTUEMCARERFJpqqqCosXL9Zo55Sa9BiQiIiIJLBnzx5kZWWptXl5eSE4OFiiiuivGJCIiIgamdiU2gcffIAmTfixrC/4J0FERNRIKioqsHTpUo12TqnpHwYkIiKiRrB9+3ZcunRJra1nz54YNmyYRBVRbRiQiIiIdExsSm3BggUwMzOToBqqCwYkIiIiHSkrK0NMTIxGO6fU9J/k0XXDhg1wd3eHtbU1/Pz8cPz48Vr7JyQkwMvLC9bW1ujevTv27dun9vrOnTsxaNAgODk5QSaT4cyZMxr7ePToEaZNmwYnJyc0a9YMI0eORH5+vjYPi4iITNyXX36pEY769+/PcGQgJA1I8fHxCA8Ph0KhwOnTp9GjRw8EBgbi1q1bov3T09MxevRohIaGIisrC0FBQQgKCsK5c+dUfUpKStC/f3989NFHNb7vu+++i//7v/9DQkICfvzxR9y4cQOvvPKK1o+PiIhMU3R0NK5fv67WFhUVhRdeeEGiiqi+ZIIgCFK9uZ+fH3r37o3169cDeHzDLDc3N4SFhWHevHka/YODg1FSUoKkpCRVW9++feHt7Y3Y2Fi1vrm5ufDw8EBWVha8vb1V7UVFRWjVqhW2bt2KV199FQCQnZ2Nzp07IyMjA3379q1T7cXFxbC3t0dRURHs7Ozqe+hERGSEHjx4gBUrVmi0c9RIf9T181uyNUhlZWU4deoUIiIiVG1mZmYICAhARkaG6DYZGRkIDw9XawsMDERiYmKd3/fUqVMoLy9HQECAqs3Lywvt2rWrNSCVlpaitLRU9XNxcXGd35OIiIzf2rVrcffuXbW2f//73+jXr59EFdHTkCwg3b59G5WVlXBxcVFrd3FxQXZ2tug2SqVStL9Sqazz+yqVSlhaWsLBwaFe+4mJiRG9CoGIiEjs8yEqKgoymUyCakgbJF+kbSgiIiJQVFSk+rp27ZrUJRERkcTu3bsnGo4UCgXDkYGTbASpZcuWMDc317h6LD8/H3K5XHQbuVxer/417aOsrAyFhYVqo0h/tx8rKytYWVnV+X2IiMi4ffjhhygvL1drGzZsGHr27ClRRaRNko0gWVpawtfXF2lpaaq2qqoqpKWlwd/fX3Qbf39/tf4AkJqaWmN/Mb6+vrCwsFDbz6VLl5CXl1ev/RARkemKjo7WCEcKhYLhyIhIeqPI8PBwhISEoFevXujTpw/WrFmDkpISTJgwAQAwbtw4tGnTRnUfiZkzZ2LAgAFYtWoVhg4diu3bt+PkyZPYtGmTap937txBXl4ebty4AQCq27rL5XLI5XLY29sjNDQU4eHhcHR0hJ2dHcLCwuDv71/nK9iIiMg03blzB+vWrdNo51VqxkfSgBQcHIyCggJERUVBqVTC29sbycnJqoXYeXl5ardh79evH7Zu3YrIyEjMnz8fnp6eSExMRLdu3VR99uzZowpYADBq1CgAj395Fy5cCAD4+OOPYWZmhpEjR6K0tBSBgYH49NNPG+GIiYjIUImtNXrttdfQpUsXCaohXZP0PkiGjPdBIiIyHTUtxCbDo/f3QSIiItJ3+fn5GjciBhiOTAEDEhERkQixUaMxY8agY8eOElRDjY0BiYiIqBpOqREDEhER0f/322+/4ZtvvtFoZzgyPQxIREREEB81OnlyLCZO7CBBNSQ1BiQiIjJ5nFKj6hiQiIjIZF24cAEJCQka7QxHxIBEREQmSWzUKDQ0FG3btpWgGtI3DEhERGRyOKVGf4cBiYiITEZ6ejpSU1M12hmOqDoGJCIiMglio0bp6ZMwbZqrBNWQvmNAIiIio8cpNaovBiQiIjJaqampSE9P12hnOKK/w4BERERGSWzUaPr06XBycpKgGjI0DEhERGRUBEHAokWLNNo5akT1wYBERERG49tvv8XVq1c12n18GI6ofhiQiIjIKIhNqXXrFo6RI5tLUA0ZOgYkIiIyaJxSI11gQCIiIoO1ceNG3Lp1S6Od4YieFgMSEREZJLEptffeew+2trYSVEPGhgGJiIgMSmVlJZYsWaLRzlEj0iYGJCIiMhgxMTEoKyvTaGc4Im1jQCIiIoMgNqU2b948WFlZSVANGTsGJCIi0mtlZWWIiYnRaOeoEekSAxIREektsVEjc3NzREZGSlANmRIGJCIi0kti4SgyMhLm5uYSVEOmhgGJiIj0ysOHD7F8+XKNdk6pUWNiQCIiIr0hNmrk6OiIsLAwCaohU8aAREREekEsHEVFRUEmk0lQDZk6BiQiIpJUUVER1qxZo9HOKTWSEgMSERFJRmzUyN3dHSEhIRJUQ/Q/DEhERCQJTqmRPmNAIiKiRlVQUIBPP/1Uo93HRwFmI9IXDEhERNRoxEaNOnfujNdff12CaohqxoBERESNQiwccSE26SsGJCIi0qnc3Fx89dVXGu0MR6TPGJCIiEhnxEaNfv+9NzZvflGCaojqzkzqAoiIyDiJhaOUFAWCghiOSP9xBImIiLTq4sWL2LFjh0a7QqEAZ9XIUDAgERGR1oiNGvXr1w///ve/JaiGqOEYkIiISCt4lRoZEwYkIiJ6KhkZGThw4IBGO8MRGTIGJCIiajCxUaMrV57D66//S4JqiLSHAYmIiBpELBz5+HAhNhkHBiQiIqqXAwcOICMjQ6Pdx0eB4cMlKIhIBxiQiIiozsRGjYYNG4aePXtKUA2R7jAgERFRnfAqNTIlkt9Je8OGDXB3d4e1tTX8/Pxw/PjxWvsnJCTAy8sL1tbW6N69O/bt26f2uiAIiIqKgqurK2xsbBAQEIArV66o9bl8+TJGjBiBli1bws7ODv3798fhw4e1fmxERMYgISGB4YhMjqQBKT4+HuHh4VAoFDh9+jR69OiBwMBA3Lp1S7R/eno6Ro8ejdDQUGRlZSEoKAhBQUE4d+6cqs/y5cuxdu1axMbGIjMzE02bNkVgYCAePXqk6vPSSy+hoqIChw4dwqlTp9CjRw+89NJLUCqVOj9mIiJDEh0djQsXLqi1jRo1iuGIjJ5MEARBqjf38/ND7969sX79egBAVVUV3NzcEBYWhnnz5mn0Dw4ORklJCZKSklRtffv2hbe3N2JjYyEIAlq3bo3Zs2djzpw5AICioiK4uLggLi4Oo0aNwu3bt9GqVSscOXIE//znPwEA9+7dg52dHVJTUxEQEFCn2ouLi2Fvb4+ioiLY2dk97akgItI7HDUiY1TXz2/JRpDKyspw6tQptUBiZmaGgIAA0asjgMc3I6seYAIDA1X9c3JyoFQq1frY29vDz89P1cfJyQmdOnXC119/jZKSElRUVOCzzz6Ds7MzfH19tX2YREQGZ926dTVewk9kKiRbpH379m1UVlbCxcVFrd3FxQXZ2dmi2yiVStH+T6bGnnyvrY9MJsPBgwcRFBSE5s2bw8zMDM7OzkhOTkaLFi1qrLe0tBSlpaWqn4uLi+t4pEREhkMsGIWEhMDd3b3xiyGSkOSLtBubIAiYNm0anJ2dcfToURw/fhxBQUEYNmwYbt68WeN2MTExsLe3V325ubk1YtVERLpX05QawxGZIskCUsuWLWFubo78/Hy19vz8fMjlctFt5HJ5rf2ffK+tz6FDh5CUlITt27fjH//4B3r27IlPP/0UNjY2+Oqrr2qsNyIiAkVFRaqva9eu1e+AiYj0VHR0NNcbEVVT74Bkbm4uepXZn3/+CXNz8zrvx9LSEr6+vkhLS1O1VVVVIS0tDf7+/qLb+Pv7q/UHgNTUVFV/Dw8PyOVytT7FxcXIzMxU9Xnw4AGAx+ud/srMzAxVVVU11mtlZQU7Ozu1LyIiQycWjCZPnsxwRCav3muQarrorbS0FJaWlvXaV3h4OEJCQtCrVy/06dMHa9asQUlJCSZMmAAAGDduHNq0aYOYmBgAwMyZMzFgwACsWrUKQ4cOxfbt23Hy5Els2rQJwOP1RbNmzcKSJUvg6ekJDw8PLFiwAK1bt0ZQUBCAxyGrRYsWCAkJQVRUFGxsbPD5558jJycHQ4cOre/pICIySIIgYNGiRRrtDEZEj9U5IK1duxbA4xDyxRdfoFmzZqrXKisrceTIEXh5edXrzYODg1FQUICoqCgolUp4e3sjOTlZtcg6Ly9PbaSnX79+2Lp1KyIjIzF//nx4enoiMTER3bp1U/WZO3cuSkpKMGnSJBQWFqJ///5ITk6GtbU1gMdTe8nJyfjggw/w/PPPo7y8HF27dsXu3bvRo0ePetVPRGSIxEaNAIYjor+q832QPDw8AAC///472rZtqzadZmlpCXd3dyxatAh+fn66qVTP8D5IRGSIxMLRzJkz4eDg0PjFEEmgrp/fdR5BysnJAQA899xz2LlzZ62XxBMRkX6prKzEkiVLNNo5akQkrt5rkPjMMiIiw8IpNaL6q3dAeuutt2p9ffPmzQ0uhoiItEssHL333nuwtbWVoBoiw1HvgHT37l21n8vLy3Hu3DkUFhbi+eef11phRETUcKWlpVi2bJlGO0eNiOqm3gFp165dGm1VVVV455130KFDB60URUREDccpNaKnV+er2P7OpUuXMHDgwFof12FMeBUbEekjsXA0f/58WFhYSFANkf7R+lVsf+fXX39FRUWFtnZHRET1cO/ePaxevVqjnaNGRA1T74AUHh6u9rMgCLh58yb27t2LkJAQrRVGRER1U9OUmo8PwxFRQ9U7IGVlZan9bGZmhlatWmHVqlV/e4UbERFpl1g4ioyMrNezMYlIE++DRERkgG7fvo0NGzZotHNKjUg7GrwG6datW7h06RIAoFOnTnB2dtZaUUREVDNepUake/UOSMXFxZg2bRq2bduGqqoqAIC5uTmCg4OxYcMG2Nvba71IIiJ6TCwcRUVFQSaTSVANkfEyq+8GEydORGZmJvbu3YvCwkIUFhYiKSkJJ0+exOTJk3VRIxGRybt27ZpoOFIoFAxHRDpQ7/sgNW3aFCkpKejfv79a+9GjRzF48GCUlJRotUB9xfsgEVFj4ZQakfbo7D5ITk5OotNo9vb2aNGiRX13R0REtahp1IiIdKveU2yRkZEIDw+HUqlUtSmVSrz33ntYsGCBVosjIjJV2dnZDEdEEqr3FJuPjw+uXr2K0tJStGvXDgCQl5cHKysreHp6qvU9ffq09irVM5xiIyJdEQtGDg4OmDlzpgTVEBkXnU2xjRgxggsCiYh0hKNGRPpBaw+rNTUcQSIibTp58iT27t2r0c5wRKRdOhtBeuaZZ3DixAk4OTmptRcWFqJnz5747bff6l8tEZEJExs16tChA8aOHStBNUQENCAg5ebmorKyUqO9tLQU169f10pRRESmglNqRPqpzgFpz549qv9OSUlRu9S/srISaWlp8PDw0G51RERG6vDhwzhy5IhGO8MRkX6oc0AKCgoCAMhkMoSEhKi9ZmFhAXd3d6xatUqrxRERGSOxUaOePXti2LBhElRDRGLqHJCePHfNw8MDJ06cQMuWLXVWFBGRseKUGpFhqPcapJycHF3UQURk1Hbt2oWff/5Zo53hiEg/1TsgLVq0qNbXo6KiGlwMEZExEhs1eu655/Cvf/1LgmqIqC7qHZB27dql9nN5eTlycnLQpEkTdOjQgQGJiOgvOKVGZJjqHZCysrI02oqLizF+/Hi8/PLLWimKiMjQbdmyBXl5eRrtDEdEhkFrd9L+5ZdfMGzYMOTm5mpjd3qPd9ImopqIjRoNHz4cPj4+ElRDRH+lsztp16SoqAhFRUXa2h0RkUHilBqRcah3QFq7dq3az4Ig4ObNm/jmm28wZMgQrRVGRGRIVq9ejXv37mm0MxwRGaZ6B6SPP/5Y7WczMzO0atUKISEhiIiI0FphRESGQmzU6I033oCnp6cE1RCRNvA+SERET4FTakTGqUFrkAoLC3H16lUAQMeOHeHg4KDNmoiI9J5YMAIYjoiMRb0CUm5uLqZNm4aUlBQ8ufhNJpNh8ODBWL9+Pdzd3XVRIxGRXhELR2+//TbatGkjQTVEpAt1DkjXrl1D3759YWFhgcWLF6Nz584AgAsXLmDjxo3w9/fHiRMn0LZtW50VS0QkJUEQRJ8mwFEjIuNT5/sghYaG4urVq0hJSYG1tbXaaw8fPsTgwYPh6emJL774QieF6hveB4nItHBKjcg4aP0+SMnJyYiPj9cIRwBgY2ODxYsXY9SoUQ2rlohIj4mFo+nTp8PJyUmCaoioMdQ5IN2+fbvWNUbPPPMM7ty5o42aiIj0QmVlJZYsWaLRzlEjIuNX54Dk6uqKCxcu1LjG6Ny5c5DL5VorjIhISpxSIzJtdQ5IQUFBmDNnDtLS0tCqVSu1127duoX3338fQUFB2q6PiKjRiYWj2bNno1mzZhJUQ0RSqPMi7bt378LPzw9KpRJjx46Fl5cXBEHAxYsXsXXrVsjlcvz3v/+Fo6OjrmvWC1ykTWR8SktLsWzZMo12jhoRGQ+tL9Ju0aIFMjMzMX/+fGzfvh2FhYUAAAcHB7zxxhv48MMPTSYcEZHx4ZQaEf1VnUeQ/koQBBQUFAAAWrVqBZlMpvXC9B1HkIiMh1g4mjdvHqysrCSohoh0SesjSH8lk8ng7Ozc4OKIiPTB/fv3sWrVKo12jhoRUYMCEhGRoeOUGhHVhgGJiEyOWDiKjIyEubm5BNUQkT4yk7oAIqLG8ueff4qGo5QUBcMREamRPCBt2LAB7u7usLa2hp+fH44fP15r/4SEBHh5ecHa2hrdu3fHvn371F4XBAFRUVFwdXWFjY0NAgICcOXKFY397N27F35+frCxsUGLFi14DyciIxcdHY3169drtKekKDBvngQFEZFeq9MU29q1a+u8wxkzZtS5b3x8PMLDwxEbGws/Pz+sWbMGgYGBuHTpkugi8PT0dIwePRoxMTF46aWXsHXrVgQFBeH06dPo1q0bAGD58uVYu3YtvvrqK3h4eGDBggUIDAzEhQsXVM+R+/777zFx4kR8+OGHeP7551FRUYFz587VuW4iMixio0ZRUVGQyWTgkiMiElOny/w9PDzqtjOZDL/99lud39zPzw+9e/dW/auuqqoKbm5uCAsLwzyRf9IFBwejpKQESUlJqra+ffvC29sbsbGxEAQBrVu3xuzZszFnzhwAQFFREVxcXBAXF4dRo0ahoqIC7u7uiI6ORmhoaJ1rrY6X+RPpv+vXr+PLL7/UaOdCbCLTpdXL/HNycrRW2BNlZWU4deoUIiIiVG1mZmYICAhARkaG6DYZGRkIDw9XawsMDERiYqKqTqVSiYCAANXr9vb28PPzQ0ZGBkaNGoXTp0/jjz/+gJmZGXx8fKBUKuHt7Y0VK1aoRqHElJaWorS0VPVzcXFxQw6biBoJr1IjoqfR4DVIZWVluHTpEioqKhq0/e3bt1FZWQkXFxe1dhcXFyiVStFtlEplrf2ffK+tz5MRroULFyIyMhJJSUlo0aIFBg4ciDt37tRYb0xMDOzt7VVfbm5u9ThaImpMYuFIoVAwHBFRndU7ID148AChoaGwtbVF165dkZeXBwAICwsTfYaRvqmqqgIAfPDBBxg5ciR8fX2xZcsWyGQyJCQk1LhdREQEioqKVF/Xrl1rrJKJqI4uXrxYYzgiIqqPegekiIgInD17Fj/88INq0TMABAQEID4+vs77admyJczNzZGfn6/Wnp+fD7lcLrqNXC6vtf+T77X1cXV1BQB06dJF9bqVlRWeeeYZVdgTY2VlBTs7O7UvItIf0dHR2LFjh1pbRYUFfHwYjoio/uodkBITE7F+/Xr0799f7RlsXbt2xa+//lrn/VhaWsLX1xdpaWmqtqqqKqSlpcHf3190G39/f7X+AJCamqrq7+HhAblcrtanuLgYmZmZqj6+vr6wsrLCpUuXVH3Ky8uRm5uL9u3b17l+ItIfNY0aLV48H8OHS1AQERm8et9Ju6CgQPQS/JKSkno/tDY8PBwhISHo1asX+vTpgzVr1qCkpAQTJkwAAIwbNw5t2rRBTEwMAGDmzJkYMGAAVq1ahaFDh2L79u04efIkNm3aBODxVXSzZs3CkiVL4OnpqbrMv3Xr1qr7HNnZ2WHKlClQKBRwc3ND+/btsWLFCgDAa6+9Vt/TQUQSSk9PR2pqqkY7R42I6GnVOyD16tULe/fuRVhYGACoQtEXX3xR48hPTYKDg1FQUICoqCjV1WTJycmqRdZ5eXkwM/vfIFe/fv2wdetWREZGYv78+fD09ERiYqLa1Wdz585FSUkJJk2ahMLCQvTv3x/Jyclq04ErVqxAkyZN8Oabb+Lhw4fw8/PDoUOH0KJFi/qeDiKSiNiokYODA2bOnClBNURkbOp0H6S/+umnnzBkyBCMHTsWcXFxmDx5Mi5cuID09HT8+OOP8PX11VWteoX3QSKSDhdiE1FD1fXzu95rkPr3748zZ86goqIC3bt3x4EDB+Ds7IyMjAyTCUdEJI09e/YwHBFRo6j3CBI9xhEkosYlFoxu3+6AdevGSlANERkqrd5Juz53jWZYICJtEwtHfMgsEelSnQKSg4NDna9Qq6ysfKqCiIieiIuLw++//67R/viu2BIUREQmo04B6fDhw6r/zs3Nxbx58zB+/HjVVWsZGRn46quvVJfjExE9LbFRI29vb4wYMUKCaojI1NR7DdILL7yAt99+G6NHj1Zr37p1KzZt2oQffvhBm/XpLa5BItIdLsQmIl2p6+d3vQOSra0tzp49C09PT7X2y5cvw9vbGw8ePGhYxQaGAYlI+1auXImSkhKNdoYjItIWnV3m7+bmhs8//1yj/YsvvuAT7omowaKjozXC0ZUrAxmOiEgS9b6T9scff4yRI0di//798PPzAwAcP34cV65cwffff6/1AonI+PEqNSLSNw26D9L169fx6aefIjs7GwDQuXNnTJkyxaRGkDjFRvT0xIIRwCk1ItIdna1BoscYkIiejlg4GjFiBLy9vRu/GCIyGVq9UWR1hYWF+PLLL3Hx4kUAQNeuXfHWW2/B3t6+YdUSkUnhVWpEpO/qPYJ08uRJBAYGwsbGBn369AEAnDhxAg8fPsSBAwfQs2dPnRSqbziCRFR/nFIjIqnpbIrtn//8Jzp27IjPP/8cTZo8HoCqqKjA22+/jd9++w1Hjhx5usoNBAMSUf2IhaP4+LFYtqwDhg+XoCAiMkk6C0g2NjbIysqCl5eXWvuFCxfQq1cv3geJiNQIgoBFixZptD+5So3hiIgak87WINnZ2SEvL08jIF27dg3Nmzevf6VEZLRqm1LjrBoR6bN6B6Tg4GCEhoZi5cqV6NevHwDg2LFjeO+99zQeP0JEpkssHIWGhqJt27YSVENEVD/1DkgrV66ETCbDuHHjUFFRAQCwsLDAO++8g2XLlmm9QCIyLBUVFVi6dKlGu4+PAsxGRGQoGnwfpAcPHuDXX38FAHTo0AG2trZaLUzfcQ0SkSZepUZE+k6n90ECHj+0tnv37g3dnIiMjFg4mj59OpycnCSohojo6dQ5IL311lt16rd58+YGF0NEhufhw4dYvny5RjtHjYjIkNU5IMXFxaF9+/bw8fEBn05CREDNU2o+PgxHRGTY6hyQ3nnnHWzbtg05OTmYMGECxo4dC0dHR13WRkR6TCwcHTr0HmbPtuW9jYjI4NVrkXZpaSl27tyJzZs3Iz09HUOHDkVoaCgGDRoEmUymyzr1Dhdpk6kqLCzEJ598otHOKTUiMgQ6u5P2E7///jvi4uLw9ddfo6KiAufPn0ezZs0aXLChYUAiU8Sr1IjI0On8KjYzMzPIZDIIgoDKysqG7oaIDIRYOJo/fz4sLCwkqIaISLfM6tO5tLQU27Ztw7///W88++yz+OWXX7B+/Xrk5eWZ1OgRkSm5ceOGaDhSKBQMR0RktOo8gjR16lRs374dbm5ueOutt7Bt2za0bNlSl7URkcQ4pUZEpqrOa5DMzMzQrl07+Pj41Loge+fOnVorTp9xDRIZO7FwtGDBApiZ1WvgmYhIr2h9DdK4ceNM7ko1IlN0+fJlbNu2TaOdo0ZEZErqdaNIIjJunFIjInqswVexEZFxqWkhNhGRKWJAIjJx//3vf5GSkqLRzseFEJEpY0AiMmG1PUuNjwshIlPGgERkojilRkRUMwYkIhOzb98+nDhxQqOd4YiI6H8YkIhMCK9SIyKqG97xjchEiIWjlBQFF2MTEYngCBKRkfv666+Rk5Oj0a5QKMCBIyIicQxIREaMU2pERA3DgERkpHiVGhFRwzEgERmZpUuXoqKiQqOda42IiOqOAYnIiIiNGjk6OiIsLEyCaoiIDBcDEpGR4JQaEZH2MCARGbjaHhdCREQNw4BEZMDEwpGXlxeCg4MlqIaIyHgwIBEZKE6pERHpjl7cSXvDhg1wd3eHtbU1/Pz8cPz48Vr7JyQkwMvLC9bW1ujevTv27dun9rogCIiKioKrqytsbGwQEBCAK1euiO6rtLQU3t7ekMlkOHPmjLYOiUhnoqOjGY6IiHRM8oAUHx+P8PBwKBQKnD59Gj169EBgYCBu3bol2j89PR2jR49GaGgosrKyEBQUhKCgIJw7d07VZ/ny5Vi7di1iY2ORmZmJpk2bIjAwEI8ePdLY39y5c9G6dWudHR+RNokFo/79+zMcERFpmUwQBEHKAvz8/NC7d2+sX78eAFBVVQU3NzeEhYVh3rx5Gv2Dg4NRUlKCpKQkVVvfvn3h7e2N2NhYCIKA1q1bY/bs2ZgzZw4AoKioCC4uLoiLi8OoUaNU2+3fvx/h4eH4/vvv0bVrV2RlZcHb27tOdRcXF8Pe3h5FRUWws7N7ijNAVDdi4cjHR4HhwyUohojIQNX181vSNUhlZWU4deoUIiIiVG1mZmYICAhARkaG6DYZGRkIDw9XawsMDERiYiIAICcnB0qlEgEBAarX7e3t4efnh4yMDFVAys/Px8SJE5GYmAhbW9u/rbW0tBSlpaWqn4uLi+t8nERPg48LISJqfJJOsd2+fRuVlZVwcXFRa3dxcYFSqRTdRqlU1tr/yffa+giCgPHjx2PKlCno1atXnWqNiYmBvb296svNza1O2xE9DbFwlJw8nJfwExHpmORrkKSwbt063Lt3T23k6u9ERESgqKhI9XXt2jUdVkimThAE0XCUkqJARIQPp9WIiHRM0im2li1bwtzcHPn5+Wrt+fn5kMvlotvI5fJa+z/5np+fD1dXV7U+T9YXHTp0CBkZGbCyslLbT69evTBmzBh89dVXGu9rZWWl0Z9IF2qbUuOsGhFR45B0BMnS0hK+vr5IS0tTtVVVVSEtLQ3+/v6i2/j7+6v1B4DU1FRVfw8PD8jlcrU+xcXFyMzMVPVZu3Ytzp49izNnzuDMmTOq2wTEx8dj6dKlWj1GovoQC0dvvPEG1xsRETUyyW8UGR4ejpCQEPTq1Qt9+vTBmjVrUFJSggkTJgAAxo0bhzZt2iAmJgYAMHPmTAwYMACrVq3C0KFDsX37dpw8eRKbNm0CAMhkMsyaNQtLliyBp6cnPDw8sGDBArRu3RpBQUEAgHbt2qnV0KxZMwBAhw4d0LZt20Y6cqL/qaioEA3nDEZERNKQPCAFBwejoKAAUVFRUCqV8Pb2RnJysmqRdV5eHszM/jfQ1a9fP2zduhWRkZGYP38+PD09kZiYiG7duqn6zJ07FyUlJZg0aRIKCwvRv39/JCcnw9rautGPj+jv8FlqRET6R/L7IBkq3geJtEEsHHXqNBGjRvHmpUREumAQ90EiMlUPHz7E8uXLNdo5pUZEpB8YkIgaGW/8SESk/0zyPkhEUhELRz/+OIvrjYiI9AxHkIgawZ9//ql63uBfcdSIiEg/MSAR6Rin1IiIDA8DEpEOiYWjefPm8a7sRER6jgGJSAfy8vKwZcsWjXaOGhERGQYGJCIt440fiYgMH69iI9IisXB04MAC+PgoMHy4BAUREVGDcASJSAt++eUX7Ny5U6NdoVCAs2pERIaHAYnoKXFKjYjI+DAgET0FsXAUFRUFmUwmQTVERKQtDEhEDXDkyBEcPnxYo51XqRERGQcGJKJ64o0fiYiMHwMSUT2IhSMGIyIi48OARFQHu3fvxpkzZzTaGY6IiIwT74NE9Deio6NFw1FKCsMREZGx4ggSUS3EptR8fBRYtgyYN0+CgoiIqFEwIBGJ2LRpE27evKnR/mRKjXfFJiIybgxIRNXwKjUiImJAIvoLXqVGREQAAxIRAI4aERGROgYkMnli4cjCwgLz58+XoBoiItIHDEhk0jilRkREYhiQyCTVNKXm48NwREREDEhkgsTCUYcOHTB27FgJqiEiIn3EgEQmhVNqRERUFwxIZBJ4lRoREdUHAxIZPbFw1KqVH6ZOHSxBNUREZAgYkMiocUqNiIgaggGJjBKn1IiI6GkwIJHREQtHQ4YMQZ8+fSSohoiIDBEDEhkNQRCwaNEijXaOGhERUX0xIJFR4I0fiYhIm8ykLoDoaYmFo1OnxsDHR4HhwyUoiIiIDB5HkMhgVVZWYsmSJRrtnFIjIqKnxYBEBolXqRERkS4xIJHBEQtHkydPhlwul6AaIiIyRgxIZDAePXqEjz76SKOdo0ZERKRtDEhkEDilRkREjYlXsZHeEwtHP/zwLi/hJyIineEIEumtoqIirFmzRqNdoVCAA0dERKRLDEiklzilRkREUmJAIr0jFo4OHpyHo0etJKiGiIhMEQMS6Y2bN29i06ZNGu0pKQrMmydBQUREZLIYkEgv1Dalxlk1IiJqbAxIJDmxcHTgwAIcO8aLLImISBp68Qm0YcMGuLu7w9raGn5+fjh+/Hit/RMSEuDl5QVra2t0794d+/btU3tdEARERUXB1dUVNjY2CAgIwJUrV1Sv5+bmIjQ0FB4eHrCxsUGHDh2gUChQVlamk+MjcVeuXBENRykpCrz/vl78ahIRkYmS/FMoPj4e4eHhUCgUOH36NHr06IHAwEDcunVLtH96ejpGjx6N0NBQZGVlISgoCEFBQTh37pyqz/Lly7F27VrExsYiMzMTTZs2RWBgIB49egQAyM7ORlVVFT777DOcP38eH3/8MWJjYzF//vxGOWZ6PGq0detWjXaFQoH0dGD4cAmKIiIi+v9kgiAIUhbg5+eH3r17Y/369QCAqqoquLm5ISwsDPNEVuYGBwejpKQESUlJqra+ffvC29sbsbGxEAQBrVu3xuzZszFnzhwAj++n4+Ligri4OIwaNUq0jhUrVmDjxo347bff6lR3cXEx7O3tUVRUBDs7u/oetkkTGzWKioqCTCaToBoiIjIldf38lnQEqaysDKdOnUJAQICqzczMDAEBAcjIyBDdJiMjQ60/AAQGBqr65+TkQKlUqvWxt7eHn59fjfsEHocoR0fHGl8vLS1FcXGx2hfVz7lz50TDkY+PguGIiIj0iqSLtG/fvo3Kykq4uLiotbu4uCA7O1t0G6VSKdpfqVSqXn/SVlOf6q5evYp169Zh5cqVNdYaExNT45VW9PdqOnc+PgpOpxERkd4x+avY/vjjDwwePBivvfYaJk6cWGO/iIgIhIeHq34uLi6Gm5tbY5Ro8MTCEe+ITURE+kzSgNSyZUuYm5sjPz9frT0/Px9yuVx0G7lcXmv/J9/z8/Ph6uqq1sfb21ttuxs3buC5555Dv379RG9Q+FdWVlawsuKdnOsjMzMTycnJGu18yCwREek7SdcgWVpawtfXF2lpaaq2qqoqpKWlwd/fX3Qbf39/tf4AkJqaqurv4eEBuVyu1qe4uBiZmZlq+/zjjz8wcOBA+Pr6YsuWLTAzk/yCPqMSHR0tGo4UCk6pERGR/pN8ii08PBwhISHo1asX+vTpgzVr1qCkpAQTJkwAAIwbNw5t2rRBTEwMAGDmzJkYMGAAVq1ahaFDh2L79u04efKkagRIJpNh1qxZWLJkCTw9PeHh4YEFCxagdevWCAoKAvC/cNS+fXusXLkSBQUFqnpqGrmiuuOUGhERGTrJA1JwcDAKCgoQFRUFpVIJb29vJCcnqxZZ5+XlqY3u9OvXD1u3bkVkZCTmz58PT09PJCYmolu3bqo+c+fORUlJCSZNmoTCwkL0798fycnJsLa2BvB4xOnq1au4evUq2rZtq1aPxHc9MGhHjhzB4cOHNdoZjoiIyNBIfh8kQ8X7IKkTGzUqLrbHgAGzOKVGRER6o66f35KPIJHhEwtHn3+uwKef8o7YRERkmBiQqMH2798v+tw8hUIBzqoREZEhY0CiBhEbNerRo4dqITwREZEhY0CieqvpcSGcTiMiImPBgER1tmvXLvz8888a7bxKjYiIjA0DEtWJ2KjRxYuD8cYbfhJUQ0REpFsMSPS3xMJRSooC6ekSFENERNQIGJCoRlu3bsWVK1c02lNSFJg3T4KCiIiIGgkDEokSGzV69dVX0bVrV17CT0RERo8BiTTUdJVa164SFENERCQBBiRS2bx5M65du6bRzqvUiIjI1DAgEQDxUaMJEyagXbt2ElRDREQkLQYkEycIAhYtWqTRXlamALMRERGZKgYkE7Z69Wrcu3dPo72sTIGlSyUoiIiISE8wIJkosSm16dOnw8nJSYJqiIiI9AsDkompaUqNC7GJiIj+hwHJhCxfvhwPHz7UaPfxYTgiIiL6KwYkEyE2pTZ79mw0a9ZMgmqIiIj0GwOSkausrMSSJUs02jmlRkREVDMGJCMmNmoEcEqNiIjo7zAgGSmxcDRv3jxYWVlJUA0REZFhYUAyMuXl5fjwww812n18FGA2IiIiqhsGJCOybNkylJaWarT7+CgwfLgEBRERERkoBiQjITal9vHHH+Drr5swHBEREdUTA5KBKy0txbJlyzTaU1IU+PprMBwRERE1AAOSAYuLi8Pvv/+u1qZUdsGQIa+BV/ETERE1HAOSgRKbUouKioJMJpOgGiIiIuPCgGRgHj16hI8++kij3cdHAWYjIiIi7WBAMiA7duzAxYsX1dpeeOEF9O/fX6KKiIiIjBMDkoEQm1JbuTIKCgWHjYiIiLSNAUnP1TSltnKlAjNmSFAQERGRCWBA0mNHjhzB4cOH1dpef/11dO7cmVepERER6RADkp5KTU1Fenq6WpuPjwKdO0tUEBERkQlhQNIzFRUVWLp0qVpbSYktfvrpPY4aERERNRIGJD0TG7tP7efvv5+L8nIbiCxDIiIiIh1hQNIzR460QdeuWcjP74RPPx3FUSMiIiIJmEldAKkbO9YXKSkKDB48SupSiIiITBZHkPTM8OF8wCwREZHUOIJEREREVA0DEhEREVE1DEhERERE1TAgEREREVXDgERERERUDQMSERERUTUMSERERETVMCARERERVcOARERERFSNXgSkDRs2wN3dHdbW1vDz88Px48dr7Z+QkAAvLy9YW1uje/fu2LdP/QGvgiAgKioKrq6usLGxQUBAAK5cuaLW586dOxgzZgzs7Ozg4OCA0NBQ3L9/X+vHRkRERIZH8oAUHx+P8PBwKBQKnD59Gj169EBgYCBu3bol2j89PR2jR49GaGgosrKyEBQUhKCgIJw7d07VZ/ny5Vi7di1iY2ORmZmJpk2bIjAwEI8ePVL1GTNmDM6fP4/U1FQkJSXhyJEjmDRpks6Pl4iIiPSfTBAEQcoC/Pz80Lt3b6xfvx4AUFVVBTc3N4SFhWHevHka/YODg1FSUoKkpCRVW9++feHt7Y3Y2FgIgoDWrVtj9uzZmDNnDgCgqKgILi4uiIuLw6hRo3Dx4kV06dIFJ06cQK9evQAAycnJePHFF3H9+nW0bt36b+suLi6Gvb09ioqKYGdnp41TQURERDpW189vSUeQysrKcOrUKQQEBKjazMzMEBAQgIyMDNFtMjIy1PoDQGBgoKp/Tk4OlEqlWh97e3v4+fmp+mRkZMDBwUEVjgAgICAAZmZmyMzM1NrxERERkWFqIuWb3759G5WVlXBxcVFrd3FxQXZ2tug2SqVStL9SqVS9/qSttj7Ozs5qrzdp0gSOjo6qPtWVlpaitLRU9XNRURGAx0mUiIiIDMOTz+2/m0CTNCAZkpiYGERHR2u0u7m5SVANERERPY179+7B3t6+xtclDUgtW7aEubk58vPz1drz8/Mhl8tFt5HL5bX2f/I9Pz8frq6uan28vb1VfaovAq+oqMCdO3dqfN+IiAiEh4erfi4sLET79u2Rl5dX6wkmdcXFxXBzc8O1a9e4dqseeN4ahuet4XjuGobnrWEa87wJgoB79+797XpjSQOSpaUlfH19kZaWhqCgIACPF2mnpaVh+vTpotv4+/sjLS0Ns2bNUrWlpqbC398fAODh4QG5XI60tDRVICouLkZmZibeeecd1T4KCwtx6tQp+Pr6AgAOHTqEqqoq+Pn5ib6vlZUVrKysNNrt7e35l6AB7OzseN4agOetYXjeGo7nrmF43hqmsc5bXQY2JJ9iCw8PR0hICHr16oU+ffpgzZo1KCkpwYQJEwAA48aNQ5s2bRATEwMAmDlzJgYMGIBVq1Zh6NCh2L59O06ePIlNmzYBAGQyGWbNmoUlS5bA09MTHh4eWLBgAVq3bq0KYZ07d8bgwYMxceJExMbGory8HNOnT8eoUaPqdAUbERERGTfJA1JwcDAKCgoQFRUFpVIJb29vJCcnqxZZ5+Xlwczsfxfb9evXD1u3bkVkZCTmz58PT09PJCYmolu3bqo+c+fORUlJCSZNmoTCwkL0798fycnJsLa2VvX59ttvMX36dLzwwgswMzPDyJEjsXbt2sY7cCIiItJfAjXIo0ePBIVCITx69EjqUgwKz1vD8Lw1DM9bw/HcNQzPW8Po43mT/EaRRERERPpG8keNEBEREekbBiQiIiKiahiQiIiIiKphQCIiIiKqxmQD0oYNG+Du7g5ra2v4+fnh+PHjtfZPSEiAl5cXrK2t0b17d+zbt0/tdUEQEBUVBVdXV9jY2CAgIABXrlxR63Pnzh2MGTMGdnZ2cHBwQGhoKO7fv6/1Y9Olxj5vubm5CA0NhYeHB2xsbNChQwcoFAqUlZXp5Ph0RYrftydKS0vh7e0NmUyGM2fOaOuQGo1U527v3r3w8/ODjY0NWrRoobqPmqGQ4rxdvnwZI0aMQMuWLWFnZ4f+/fvj8OHDWj82XdL2edu5cycGDRoEJyenGv8OPnr0CNOmTYOTkxOaNWuGkSNHajwxQt819nm7c+cOwsLC0KlTJ9jY2KBdu3aYMWOG6jmpWiHhFXSS2b59u2BpaSls3rxZOH/+vDBx4kTBwcFByM/PF+1/7NgxwdzcXFi+fLlw4cIFITIyUrCwsBB++eUXVZ9ly5YJ9vb2QmJionD27Flh+PDhgoeHh/Dw4UNVn8GDBws9evQQ/vvf/wpHjx4VOnbsKIwePVrnx6stUpy3/fv3C+PHjxdSUlKEX3/9Vdi9e7fg7OwszJ49u1GOWRuk+n17YsaMGcKQIUMEAEJWVpauDlMnpDp33333ndCiRQth48aNwqVLl4Tz588L8fHxOj9ebZHqvHl6egovvviicPbsWeHy5cvC1KlTBVtbW+HmzZs6P2Zt0MV5+/rrr4Xo6Gjh888/r/Hv4JQpUwQ3NzchLS1NOHnypNC3b1+hX79+ujpMrZPivP3yyy/CK6+8IuzZs0e4evWqkJaWJnh6egojR47U2nGZZEDq06ePMG3aNNXPlZWVQuvWrYWYmBjR/q+//rowdOhQtTY/Pz9h8uTJgiAIQlVVlSCXy4UVK1aoXi8sLBSsrKyEbdu2CYIgCBcuXBAACCdOnFD12b9/vyCTyYQ//vhDa8emS1KcNzHLly8XPDw8nuZQGpWU523fvn2Cl5eXcP78eYMMSFKcu/LycqFNmzbCF198oe3DaTRSnLeCggIBgHDkyBFVn+LiYgGAkJqaqrVj0yVtn7e/ysnJEf07WFhYKFhYWAgJCQmqtosXLwoAhIyMjKc4msYjxXkTs2PHDsHS0lIoLy+v3wHUwOSm2MrKynDq1CkEBASo2szMzBAQEICMjAzRbTIyMtT6A0BgYKCqf05ODpRKpVofe3t7+Pn5qfpkZGTAwcEBvXr1UvUJCAiAmZkZMjMztXZ8uiLVeRNTVFQER0fHpzmcRiPlecvPz8fEiRPxzTffwNbWVpuH1SikOnenT5/GH3/8ATMzM/j4+MDV1RVDhgzBuXPntH2IOiHVeXNyckKnTp3w9ddfo6SkBBUVFfjss8/g7OyseualPtPFeauLU6dOoby8XG0/Xl5eaNeuXb32IxWpzpuYoqIi2NnZoUkT7TwkxOQC0u3bt1FZWal6lMkTLi4uUCqVotsolcpa+z/5/nd9nJ2d1V5v0qQJHB0da3xffSLVeavu6tWrWLduHSZPntyg42hsUp03QRAwfvx4TJkyRS2UGxKpzt1vv/0GAFi4cCEiIyORlJSEFi1aYODAgbhz587TH5iOSXXeZDIZDh48iKysLDRv3hzW1tZYvXo1kpOT0aJFC60cmy7p4rzVhVKphKWlJRwcHJ5qP1KR6ryJ1bF48WJMmjSpwfuozuQCEhmuP/74A4MHD8Zrr72GiRMnSl2OXlu3bh3u3buHiIgIqUsxOFVVVQCADz74ACNHjoSvry+2bNkCmUyGhIQEiavTX4IgYNq0aXB2dsbRo0dx/PhxBAUFYdiwYbh586bU5ZERKy4uxtChQ9GlSxcsXLhQa/s1uYDUsmVLmJuba1whkJ+fD7lcLrqNXC6vtf+T73/X59atW2qvV1RU4M6dOzW+rz6R6rw9cePGDTz33HPo168fNm3a9FTH0pikOm+HDh1CRkYGrKys0KRJE3Ts2BEA0KtXL4SEhDz9gTUCqc6dq6srAKBLly6q162srPDMM88gLy/vKY6ocUj5O5eUlITt27fjH//4B3r27IlPP/0UNjY2+Oqrr7RybLqki/NWF3K5HGVlZSgsLHyq/UhFqvP2xL179zB48GA0b94cu3btgoWFRb33UROTC0iWlpbw9fVFWlqaqq2qqgppaWnw9/cX3cbf31+tPwCkpqaq+nt4eEAul6v1KS4uRmZmpqqPv78/CgsLcerUKVWfQ4cOoaqqCn5+flo7Pl2R6rwBj0eOBg4cqPqXvJmZ4fzaSnXe1q5di7Nnz+LMmTM4c+aM6hLa+Ph4LF26VKvHqCtSnTtfX19YWVnh0qVLqj7l5eXIzc1F+/bttXZ8uiLVeXvw4AEAaPz9NDMzU43K6TNdnLe68PX1hYWFhdp+Ll26hLy8vHrtRypSnTfg8e/goEGDYGlpiT179sDa2rr+B1AbrSz1NjDbt28XrKyshLi4OOHChQvCpEmTBAcHB0GpVAqCIAhvvvmmMG/ePFX/Y8eOCU2aNBFWrlwpXLx4UVAoFKKXwDo4OAi7d+8Wfv75Z2HEiBGil/n7+PgImZmZwk8//SR4enoa3GX+jX3erl+/LnTs2FF44YUXhOvXrws3b95UfRkKqX7f/qo+V4LoE6nO3cyZM4U2bdoIKSkpQnZ2thAaGio4OzsLd+7cabyDfwpSnLeCggLByclJeOWVV4QzZ84Ily5dEubMmSNYWFgIZ86cadwT0EC6OG9//vmnkJWVJezdu1cAIGzfvl3IyspS+3/YlClThHbt2gmHDh0STp48Kfj7+wv+/v6Nd+BPSYrzVlRUJPj5+Qndu3cXrl69qvbZUFFRoZXjMsmAJAiCsG7dOqFdu3aCpaWl0KdPH+G///2v6rUBAwYIISEhav137NghPPvss4KlpaXQtWtXYe/evWqvV1VVCQsWLBBcXFwEKysr4YUXXhAuXbqk1ufPP/8URo8eLTRr1kyws7MTJkyYINy7d09nx6gLjX3etmzZIgAQ/TIkUvy+/ZWhBiRBkObclZWVCbNnzxacnZ2F5s2bCwEBAcK5c+d0doy6IMV5O3HihDBo0CDB0dFRaN68udC3b19h3759OjtGXdD2eavp/2EKhULV5+HDh8LUqVOFFi1aCLa2tsLLL79sUP8IFITGP2+HDx+u8bMhJydHK8ckEwRB0O6YFBEREZFhM5zFHERERESNhAGJiIiIqBoGJCIiIqJqGJCIiIiIqmFAIiIiIqqGAYmIiIioGgYkIiIiomoYkIiIiIiqYUAiIqOkVCoRFhaGZ555BlZWVnBzc8OwYcOQlpaGO3fuICwsDJ06dYKNjQ3atWuHGTNmoKioSLV9bm4uZDIZzpw5o7HvgQMHYtasWWptFy9exPDhw2Fvb4+mTZuid+/eBvFwWyIS10TqAoiItC03Nxf/+Mc/4ODggBUrVqB79+4oLy9HSkoKpk2bhu+++w43btzAypUr0aVLF/z++++YMmUKbty4ge+++67e7/frr7+if//+CA0NRXR0NOzs7HD+/HntPzyTiBoNHzVCREbnxRdfxM8//4xLly6hadOmaq8VFhbCwcFBY5uEhASMHTsWJSUlaNKkCXJzc+Hh4YGsrCx4e3ur9R04cCC8vb2xZs0aAMCoUaNgYWGBb775RkdHRESNjVNsRGRU7ty5g+TkZEybNk0jHAEQDUcAUFRUBDs7OzRpUr+B9aqqKuzduxfPPvssAgMD4ezsDD8/PyQmJjageiLSFwxIRGRUrl69CkEQ4OXlVedtbt++jcWLF2PSpEkar/Xr1w/NmjVT+zp69Kjq9Vu3buH+/ftYtmwZBg8ejAMHDuDll1/GK6+8gh9//FErx0REjY9rkIjIqNR31UBxcTGGDh2KLl26YOHChRqvx8fHo3PnzmptY8aMUf13VVUVAGDEiBF49913AQDe3t5IT09HbGwsBgwYUM8jICJ9wIBEREbF09MTMpkM2dnZf9v33r17GDx4MJo3b45du3bBwsJCo4+bmxs6duyo1mZjY6P675YtW6JJkybo0qWLWp/OnTvjp59+auBREJHUOMVGREbF0dERgYGB2LBhA0pKSjReLywsBPB45GjQoEGwtLTEnj17GnzFmaWlJXr37o1Lly6ptV++fBnt27dv0D6JSHoMSERkdDZs2IDKykr06dMH33//Pa5cuYKLFy9i7dq18Pf3V4WjkpISfPnllyguLoZSqYRSqURlZWW93++9995DfHw8Pv/8c1y9ehXr16/H//3f/2Hq1Kk6ODoiagycYiMio/PMM8/g9OnTWLp0KWbPno2bN2+iVatW8PX1xcaNG3H69GlkZmYCgMb0WU5ODtzd3ev1fi+//DJiY2MRExODGTNmoFOnTvj+++/Rv39/bR0SETUy3geJiIiIqBpOsRERERFVw4BEREREVA0DEhEREVE1DEhERERE1TAgEREREVXDgERERERUDQMSERERUTUMSERERETVMCARERERVcOARERERFQNAxIRERFRNQxIRERERNX8P7ECrup6bXl9AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_29.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXY0lEQVR4nO3deVxUVf8H8M+AsguoyGYoqOSSPkKoCI+5FE9YmtKmmYkkibmVYZmYgrhh7rtkpli5oJXkYwoRaWYQ7pprWhBug5QCicp6fn/44z6OMxAzDNyZ4fN+vXjRnDn33u9cDT6ec++5CiGEABERERFpxUzuAoiIiIiMEUMUERERkQ4YooiIiIh0wBBFREREpAOGKCIiIiIdMEQRERER6YAhioiIiEgHDFFEREREOmCIIiIiItIBQxQRNXgKhQIzZ86UuwxJWFgYPD095S6DiP4BQxQRGaSEhAQoFArpy8rKCo8++igmTJiA3NzcOj12eno6Zs6cifz8fL3ut2/fviqfqVmzZujevTs2bNiAiooKvRxj3rx5SEpK0su+iKh6jeQugIioOrNmzYKXlxfu3buHgwcPYu3atdizZw9Onz4NGxsbvRzj7t27aNTofz8O09PTERsbi7CwMDg6OurlGJUeeeQRxMXFAQDy8vLw6aefIjw8HL/++ivmz59f6/3PmzcPL730EkJCQmq9LyKqHkMUERm0Z555Bt26dQMAvPHGG2jevDmWLFmCr7/+GsOGDdN5vxUVFSgpKYGVlRWsrKz0Ve4/cnBwwGuvvSa9HjNmDNq3b49Vq1Zh9uzZaNy4cb3VQkS1w+k8IjIqTz75JAAgKysLALBo0SIEBgaiefPmsLa2hp+fH7744gu17RQKBSZMmIDNmzfjscceg6WlJZKTk6X3Kq+JmjlzJt577z0AgJeXlzT1lp2djT59+qBr164a62rfvj2Cg4O1/jw2Njbo2bMnioqKkJeXV2W/oqIiTJ48GR4eHrC0tET79u2xaNEiCCFUPmNRURE2bdok1R0WFqZ1TURUMxyJIiKj8ttvvwEAmjdvDgBYvnw5Bg0ahOHDh6OkpATbtm3Dyy+/jN27d2PAgAEq237//ffYvn07JkyYACcnJ40Xb7/wwgv49ddfsXXrVixduhROTk4AgBYtWmDEiBEYPXo0Tp8+jc6dO0vbHD58GL/++iumT5+u02f6/fffYW5uXuXUoRACgwYNwr59+xAeHg4fHx+kpKTgvffew9WrV7F06VIAwGeffYY33ngDPXr0QEREBACgbdu2OtVERDUgiIgM0MaNGwUA8d1334m8vDxx+fJlsW3bNtG8eXNhbW0trly5IoQQ4s6dOyrblZSUiM6dO4snn3xSpR2AMDMzE2fOnFE7FgARExMjvV64cKEAILKyslT65efnCysrK/H++++rtL/11lvC1tZW3L59u9rP1KdPH9GhQweRl5cn8vLyxLlz58Rbb70lAIjnnntO6jdy5EjRunVr6XVSUpIAIObMmaOyv5deekkoFApx6dIlqc3W1laMHDmy2jqISD84nUdEBi0oKAgtWrSAh4cHXnnlFdjZ2WHnzp1o2bIlAMDa2lrqe+vWLRQUFOCJJ57AsWPH1PbVp08fdOrUSedaHBwcMHjwYGzdulWaRisvL0diYiJCQkJga2v7j/s4f/48WrRogRYtWqBjx45YuXIlBgwYgA0bNlS5zZ49e2Bubo633npLpX3y5MkQQmDv3r06fyYi0h2n84jIoK1evRqPPvooGjVqBBcXF7Rv3x5mZv/799/u3bsxZ84cnDhxAsXFxVK7QqFQ25eXl1et6wkNDUViYiJ+/PFH9O7dG9999x1yc3MxYsSIGm3v6emJjz/+WFq2wdvbG87OztVu88cff8Dd3R1NmjRRae/YsaP0PhHVP4YoIjJoPXr0kO7Oe9iPP/6IQYMGoXfv3lizZg3c3NzQuHFjbNy4EVu2bFHr/+Cola6Cg4Ph4uKCzz//HL1798bnn38OV1dXBAUF1Wh7W1vbGvclIsPG6TwiMlpffvklrKyskJKSglGjRuGZZ57RS0DRNIpVydzcHK+++iq++OIL3Lp1C0lJSRg2bBjMzc1rfdyqtG7dGteuXcPff/+t0n7+/Hnp/UrV1U5E+sUQRURGy9zcHAqFAuXl5VJbdnZ2rVfsrry2qaoVy0eMGIFbt25hzJgxuH37tsq6T3Xh2WefRXl5OVatWqXSvnTpUigUCjzzzDNSm62trd5XWicizTidR0RGa8CAAViyZAn69++PV199FTdu3MDq1avRrl07nDp1Suf9+vn5AQA++OADvPLKK2jcuDGee+45KVz5+vqic+fO2LFjBzp27IjHH39cL5+nKs899xz69euHDz74ANnZ2ejatSu+/fZbfP3115g0aZLKMgZ+fn747rvvsGTJEri7u8PLywv+/v51Wh9RQ8WRKCIyWk8++SQ++eQTKJVKTJo0CVu3bsWHH36I559/vlb77d69O2bPno2TJ08iLCwMw4YNU1sIMzQ0FABqfEF5bZiZmWHXrl2YNGkSdu/ejUmTJuHs2bNYuHAhlixZotJ3yZIl8PPzw/Tp0zFs2DCsXbu2zusjaqgUQjyw3C0REdXI8uXL8c477yA7OxutWrWSuxwikgFDFBGRloQQ6Nq1K5o3b459+/bJXQ4RyYTXRBER1VBRURF27dqFffv24ZdffsHXX38td0lEJCOORBER1VB2dja8vLzg6OiIcePGYe7cuXKXREQyYogiIiIi0gHvziMiIiLSAUMUERERkQ54YXkdqqiowLVr19CkSRM+ioGIiMhICCHw999/w93dXeWB5w9jiKpD165dg4eHh9xlEBERkQ4uX76MRx55pMr3GaLqUJMmTQDc/0Owt7eXuRoiIiKqicLCQnh4eEi/x6vCEFWHKqfw7O3tGaKIiIiMzD9disMLy4mIiIh0wBBFREREpAOGKCIiIiId8JoomZWXl6O0tFTuMqgeNG7cGObm5nKXQUREesIQJRMhBJRKJfLz8+UuheqRo6MjXF1duW4YEZEJYIiSSWWAcnZ2ho2NDX+pmjghBO7cuYMbN24AANzc3GSuiIiIaoshSgbl5eVSgGrevLnc5VA9sba2BgDcuHEDzs7OnNojIjJyvLBcBpXXQNnY2MhcCdW3yj9zXgdHRGT8GKJkxCm8hod/5kREpoMhioiIiEgHDFFEREREOmCIIq2EhYVBoVBAoVCgcePGcHFxwX/+8x9s2LABFRUVNd5PQkICHB0d665QIiKiOsYQRVrr378/rl+/juzsbOzduxf9+vXD22+/jYEDB6KsrEzu8oiIqAEoKytDSUmJrDUwRJHWLC0t4erqipYtW+Lxxx/HtGnT8PXXX2Pv3r1ISEgAACxZsgRdunSBra0tPDw8MG7cONy+fRsAsH//frz++usoKCiQRrVmzpwJAPjss8/QrVs3NGnSBK6urnj11VeltZWIiIgAYO/evZg7dy7i4uKwa5d8dTBEGQghBEpKSmT5EkLUuv4nn3wSXbt2xVdffQUAMDMzw4oVK3DmzBls2rQJ33//PaZMmQIACAwMxLJly2Bvb4/r16/j+vXrePfddwHcv/V/9uzZOHnyJJKSkpCdnY2wsLBa10dERMavtLQUsbGxOHTokNQ2f37tf4fpiottGojS0lLExcXJcuyoqChYWFjUej8dOnTAqVOnAACTJk2S2j09PTFnzhy8+eabWLNmDSwsLODg4ACFQgFXV1eVfYwaNUr67zZt2mDFihXo3r07bt++DTs7u1rXSERExiknJwcbN25UaUtLex9Tp8q3dAxDFOmNEEJaB+m7775DXFwczp8/j8LCQpSVleHevXu4c+dOtYuMHj16FDNnzsTJkydx69Yt6WL1nJwcdOrUqV4+BxERGZb//ve/OHbsmPS6c+fOePHFFxETI2NRYIgyGI0bN0ZUVJRsx9aHc+fOwcvLC9nZ2Rg4cCDGjh2LuXPnolmzZjh48CDCw8NRUlJSZYgqKipCcHAwgoODsXnzZrRo0QI5OTkIDg6W/eJBIiKqfyUlJWqzNCNGjECbNm1kqkgVQ5SBUCgUeplSk8v333+PX375Be+88w6OHj2KiooKLF68GGZm9y+72759u0p/CwsLlJeXq7SdP38ef/31F+bPnw8PDw8AwJEjR+rnAxARkUHJysrCp59+qtI2depUWFpaylSROoYo0lpxcTGUSiXKy8uRm5uL5ORkxMXFYeDAgQgNDcXp06dRWlqKlStX4rnnnsNPP/2E+Ph4lX14enri9u3bSEtLQ9euXWFjY4NWrVrBwsICK1euxJtvvonTp09j9uzZMn1KIiKSy86dO6VrbAHAx8cHgwcPlrEizXh3HmktOTkZbm5u8PT0RP/+/bFv3z6sWLECX3/9NczNzdG1a1csWbIEH374ITp37ozNmzerDccGBgbizTffxNChQ9GiRQssWLAALVq0QEJCAnbs2IFOnTph/vz5WLRokUyfkoiI6ltxcTFiY2NVAlRYWJhBBigAUAh93N9OGhUWFsLBwQEFBQWwt7eX2u/du4esrCx4eXnByspKxgqpvvHPnohIs0uXLmHz5s0qbdOmTdPbdbvaqOr398M4nUdERESy2r59O86dOye97tatGwYMGCBjRTVjENN5q1evhqenJ6ysrODv76+yiJYmO3bsQIcOHWBlZYUuXbpgz549Ku8LIRAdHQ03NzdYW1sjKCgIFy9elN7Pzs5GeHg4vLy8YG1tjbZt2yImJkblDrDs7GxpNe0Hv37++Wf9fngiIqIG6u7du4iNjVUJUOHh4UYRoAADCFGJiYmIjIxETEwMjh07hq5duyI4OLjKR32kp6dj2LBhCA8Px/HjxxESEoKQkBCcPn1a6rNgwQKsWLEC8fHxyMzMhK2tLYKDg3Hv3j0A9+8Cq6iowEcffYQzZ85g6dKliI+Px7Rp09SO991330mral+/fh1+fn51cyKIiIgakAsXLmDBggUqbR988AEeeeQRmSrSnuzXRPn7+6N79+5YtWoVAKCiogIeHh6YOHEipk6dqtZ/6NChKCoqwu7du6W2nj17wsfHB/Hx8RBCwN3dHZMnT5YeJVJQUAAXFxckJCTglVde0VjHwoULsXbtWvz+++8A7o9EeXl54fjx4/Dx8dHps/GaKHoY/+yJiIDY2FiV1z179kRwcLBM1air6TVRso5ElZSU4OjRowgKCpLazMzMEBQUhIyMDI3bZGRkqPQHgODgYKl/VlYWlEqlSh8HBwf4+/tXuU/gftBq1qyZWvugQYPg7OyMXr16Ydc/POWwuLgYhYWFKl9ERER0359//qkWoDIyRhtUgNKGrCHqzz//RHl5OVxcXFTaXVxcoFQqNW6jVCqr7V/5XZt9Xrp0CStXrsSYMWOkNjs7OyxevBg7duzAN998g169eiEkJKTaIBUXFwcHBwfpq3LBSCIioobuq6++wurVq1XavvsuCuPGuctUUe01+Lvzrl69iv79++Pll1/G6NGjpXYnJydERkZKr7t3745r165h4cKFGDRokMZ9RUVFqWxTWFjIIEVERA3ew6NPABATEyP7s+9qS9YQ5eTkBHNzc+Tm5qq05+bmwtXVVeM2rq6u1fav/J6bmws3NzeVPg9f23Tt2jX069cPgYGBWLdu3T/W6+/vj9TU1Crft7S0NKjl6ImIiOSUm5ur9sSK559/Hv/6179kqki/ZJ3Os7CwgJ+fH9LS0qS2iooKpKWlISAgQOM2AQEBKv0BIDU1Verv5eUFV1dXlT6FhYXIzMxU2efVq1fRt29f+Pn5YePGjdIz3qpz4sQJlWBGREREmm3dulUtQE2bNs1kAhRgANN5kZGRGDlyJLp164YePXpg2bJlKCoqwuuvvw4ACA0NRcuWLaXHhrz99tvo06cPFi9ejAEDBmDbtm04cuSINJKkUCgwadIkzJkzB97e3vDy8sKMGTPg7u6OkJAQAP8LUK1bt8aiRYuQl5cn1VM5krVp0yZYWFjA19cXwP253A0bNmD9+vX1dWoatLCwMOTn5yMpKQkA0LdvX/j4+GDZsmU671Mf+yAiouoJITBr1iyVtkaNGuGDDz6QqaK6I3uIGjp0KPLy8hAdHQ2lUgkfHx8kJydLF4bn5OSojBIFBgZiy5YtmD59OqZNmwZvb28kJSWhc+fOUp8pU6agqKgIERERyM/PR69evZCcnCzdUp6amopLly7h0qVLautRPLjiw+zZs/HHH3+gUaNG6NChAxITE/HSSy/V5ekweGFhYdi0aRMAoHHjxmjVqhVCQ0Mxbdo0NGpUd3+dvvrqqxov/b9//37069cPt27dgqOjo077ICIi7V27dg0ff/yxStuQIUPQsWNHmSqqW7KvE2XKTHGdqLCwMOTm5mLjxo0oLi7Gnj17MH78eMydOxdRUVEqfUtKSmBhYaHzcR4cidJGVSHKEBjznz0RUXUSEhLwxx9/qLRNnz4d5ubmMlWkO6NYJ4qMk6WlJVxdXdG6dWuMHTsWQUFB2LVrF8LCwhASEoK5c+fC3d0d7du3BwBcvnwZQ4YMgaOjI5o1a4bBgwcjOztb2l95eTkiIyPh6OiI5s2bY8qUKXg42/ft2xeTJk2SXhcXF+P999+Hh4cHLC0t0a5dO3zyySfIzs5Gv379AABNmzaFQqFAWFiYxn3cunULoaGhaNq0KWxsbPDMM8+oPB4oISEBjo6OSElJQceOHWFnZ4f+/fvj+vXrUp/9+/ejR48esLW1haOjI/7973+r/RAhIjJlQgjExsaq/Oyzs7NDTEyMUQYobTBEUa1ZW1tLzx1MS0vDhQsXkJqait27d6O0tBTBwcFo0qQJfvzxR/z0009SGKncZvHixUhISMCGDRtw8OBB3Lx5Ezt37qz2mKGhodi6dStWrFiBc+fO4aOPPoKdnR08PDzw5ZdfArj/SIHr169j+fLlGvcRFhaGI0eOYNeuXcjIyIAQAs8++yxKS0ulPnfu3MGiRYvw2Wef4cCBA8jJyZFWwi8rK0NISAj69OmDU6dOISMjAxEREVAoFLU+p0RExiAnJ0ft+qdXX30VkydPlqmi+iX7NVFkvIQQSEtLQ0pKCiZOnIi8vDzY2tpi/fr10jTe559/joqKCqxfv14KFxs3boSjoyP279+Pp59+GsuWLUNUVBReeOEFAEB8fDxSUlKqPO6vv/6K7du3IzU1VVqZvk2bNtL7lSvPOzs7Vzmdd/HiRezatQs//fQTAgMDAQCbN2+Gh4cHkpKS8PLLLwMASktLER8fj7Zt2wIAJkyYIP3AKCwsREFBAQYOHCi9b6rz/kRED/voo4/UFrGeMWNGje52NxUN55OasF27gMDA+9/rw+7du2FnZwcrKys888wzGDp0KGbOnAkA6NKli8p1UCdPnsSlS5fQpEkT2NnZwc7ODs2aNcO9e/fw22+/oaCgANevX4e/v7+0TaNGjdCtW7cqj3/ixAmYm5ujT58+On+Gc+fOoVGjRirHbd68Odq3b6/yNHEbGxspIAGAm5ub9HDsZs2aISwsDMHBwXjuueewfPlylak+IiJTVFFRgdjYWJUA1bx5c8TExDSoAAVwJMokzJ8PZGTc/17FYup61a9fP6xduxYWFhZwd3dXuSvP1tZWpe/t27fh5+eHzZs3q+2nRYsWOh3f2tpap+108fDdfAqFQuV6rY0bN+Ktt95CcnIyEhMTMX36dKSmpqJnz571ViMRUX35/fff8dlnn6m0hYaGwsvLS6aK5NWwIqOJmjoVCAi4/70+2Nraol27dmjVqtU/Lmvw+OOP4+LFi3B2dka7du1UviqfMejm5obMzExpm7KyMhw9erTKfXbp0gUVFRX44YcfNL5fORJWXl5e5T46duyIsrIyleP+9ddfuHDhAjp16lTtZ3qYr68voqKikJ6ejs6dO2PLli1abU9EZAyWL1+uFqCio6MbbIACGKJMwqBBQHp6/YxCaWv48OFwcnLC4MGD8eOPPyIrKwv79+/HW2+9hStXrgC4v4Dq/PnzkZSUhPPnz2PcuHHIz8+vcp+enp4YOXIkRo0ahaSkJGmf27dvBwC0bt0aCoUCu3fvRl5eHm7fvq22D29vbwwePBijR4/GwYMHcfLkSbz22mto2bIlBg8eXKPPlpWVhaioKGRkZOCPP/7At99+i4sXL/K6KCIyKeXl5YiNjVX5uezu7o6YmJgGfyMNQxTVKRsbGxw4cACtWrXCCy+8gI4dOyI8PBz37t2T1t6YPHkyRowYgZEjRyIgIABNmjTB888/X+1+165di5deegnjxo1Dhw4dMHr0aBQVFQEAWrZsidjYWEydOhUuLi6YMGGCxn1s3LgRfn5+GDhwIAICAiCEwJ49e2q8IKeNjQ3Onz+PF198EY8++igiIiIwfvx4jBkzRoszRERkuH799VfMmTNHpW3UqFEYPXq0TBUZFi62WYdMcbFNqh3+2RORsViwYAHu3r2r0hYdHd0gRp9qutgmLywnIiIiSVlZGebOnavS1qZNG4wYMUKmigwXQxQREREBAM6cOYMvvvhCpS0iIgJubm4yVWTYGKKIiIgIsbGxam0NZfpOVwxRREREDdidO3ewcOFClbbc3A5Ys2aoTBUZD4YoGfGa/oaHf+ZEZEg+/fRTZGVlqbQlJo7E/Pme8hRkZBiiZFB5C/2dO3fqdfVtkt+dO3cAqK+ETkRU3zRN36WkxNTb0y9MAUOUDMzNzeHo6Cg9g83GxoZzziZOCIE7d+7gxo0bcHR0hLm5udwlEVEDlZ+fj+XLl6u1x8TEICZGhoKMGEOUTFxdXQFAClLUMDg6Okp/9kRE9U3T6NOpUy9g5MguMlRj/BiiZKJQKODm5gZnZ2eUlpbKXQ7Vg8aNG3MEiohkoylAxXDoqVYYomRmbm7OX6xERFRn8vLysGbNGrV2BqjaY4giIiIyUZpGn4YNG4ZHH31UhmpMD0MUERGRCeL0Xd1jiCIiIjIh165dw8cff6zWzgClfwxRREREJkLT6FNYWBhat24tQzWmjyGKiIjIBHD6rv4xRBERERmx7OxsbNq0Sa2dAaruMUQREREZKU2jTxEREXBzc5OhmoaHIYqIiMgIcfpOfgxRRERERuTChQvYtm2bWjsDVP1jiCIiIjISmkafxo8fDycnJxmqIYYoIiIiI8DpO8PDEEVERGTATp06hZ07d6q1M0DJjyGKiIjIQGkafZo0aRIcHBxkqIYexhBFRERkgDh9Z/gYooiIiAzIvn37cODAAZU2IRR4/PFomSqiqjBEERERGQhNo0/vvPMO7O3tZaiG/glDFBERkcyEEJg1a5ZaO6fvDBtDFBERkYy++eYbHDlyRKXNzMwMM2bMkKkiqimGKCIiIplomr6bMmUKrK2tZaiGtMUQRUREVM8qKiowe/ZstXZO3xkXhigiIqJ6tH37dpw7d06lzdHREW+//bZMFZGuGKKIiIjqiabpu6ioKFhYWMhQDdUWQxQREVEdKy8vx5w5c9TaOX1n3BiiiIiI6tCGDRtw+fJllTYPDw+MGjVKpopIXxiiiIiI6oim6bsPPvgAjRrx168p4J8iERGRnpWUlCAuLk6tndN3poUhioiISI+WL1+O/Px8lbaOHTtiyJAh8hREdYYhioiISE80Td/NmDEDZmZmMlRDdY0hioiIqJbu3r2LBQsWqLVz+s60MUQRERHVwpw5c1BeXq7S5ufnh4EDB8pUEdUXhigiIiIdaZq+i46OhkKhkKEaqm8MUURERFrKz8/H8uXL1do5fdewMEQRERFpQdPo02+/9cann/aToRqSE28XICIiqiFNASolJQYvvcQA1RBxJIqIiOgf5OXlYc2aNWrtMTEx4Axew8UQRUREVA1No099+vRB3759678YMigMUURERFXQFKB48ThVYogiIiJ6yJUrV/DJJ5+otTNA0YMM4sLy1atXw9PTE1ZWVvD398ehQ4eq7b9jxw506NABVlZW6NKlC/bs2aPyvhAC0dHRcHNzg7W1NYKCgnDx4kXp/ezsbISHh8PLywvW1tZo27YtYmJiUFJSorKfU6dO4YknnoCVlRU8PDw0rkZLRESmJTY2Vi1A9e/fnwGK1MgeohITExEZGYmYmBgcO3YMXbt2RXBwMG7cuKGxf3p6OoYNG4bw8HAcP34cISEhCAkJwenTp6U+CxYswIoVKxAfH4/MzEzY2toiODgY9+7dAwCcP38eFRUV+Oijj3DmzBksXboU8fHxmDZtmrSPwsJCPP3002jdujWOHj2KhQsXYubMmVi3bl3dnhAiIpJNVdN3/v7+MlRDhk4hhBByFuDv74/u3btj1apVAICKigp4eHhg4sSJmDp1qlr/oUOHoqioCLt375baevbsCR8fH8THx0MIAXd3d0yePBnvvvsuAKCgoAAuLi5ISEjAK6+8orGOhQsXYu3atfj9998BAGvXrsUHH3wApVIJCwsLAMDUqVORlJSE8+fP1+izFRYWwsHBAQUFBbC3t6/5SSEionr122+/4fPPP1dr5+hTw1TT39+yjkSVlJTg6NGjCAoKktrMzMwQFBSEjIwMjdtkZGSo9AeA4OBgqX9WVhaUSqVKHwcHB/j7+1e5T+B+0GrWrJnKcXr37i0FqMrjXLhwAbdu3dK4j+LiYhQWFqp8ERGRYYuNjVULUC+88AIDFP0jWUPUn3/+ifLycri4uKi0u7i4QKlUatxGqVRW27/yuzb7vHTpElauXIkxY8b843EePMbD4uLi4ODgIH15eHho7EdERIahqum7Ll26yFANGRvZr4mS29WrV9G/f3+8/PLLGD16dK32FRUVhYKCAunr8uXLeqqSiIj06fjx4xoDlK8vR5+o5mRd4sDJyQnm5ubIzc1Vac/NzYWrq6vGbVxdXavtX/k9NzcXbm5uKn18fHxUtrt27Rr69euHwMBAtQvGqzrOg8d4mKWlJSwtLTW+R0REhkFTeHr55ZfRqVMnGaohYybrSJSFhQX8/PyQlpYmtVVUVCAtLQ0BAQEatwkICFDpDwCpqalSfy8vL7i6uqr0KSwsRGZmpso+r169ir59+8LPzw8bN26EmZnqqQgICMCBAwdQWlqqcpz27dujadOmun9oIiKSTVXTdwxQpAvZp/MiIyPx8ccfY9OmTTh37hzGjh2LoqIivP766wCA0NBQREVFSf3ffvttJCcnY/HixTh//jxmzpyJI0eOYMKECQAAhUKBSZMmYc6cOdi1axd++eUXhIaGwt3dHSEhIQD+F6BatWqFRYsWIS8vD0qlUuVap1dffRUWFhYIDw/HmTNnkJiYiOXLlyMyMrL+Tg4REenFwYMHufo46Z3sK5YPHToUeXl5iI6OhlKphI+PD5KTk6WLuHNyclRGiQIDA7FlyxZMnz4d06ZNg7e3N5KSktC5c2epz5QpU1BUVISIiAjk5+ejV69eSE5OhpWVFYD7I0qXLl3CpUuX8Mgjj6jUU7nig4ODA7799luMHz8efn5+cHJyQnR0NCIiIur6lBARkR5pCk+hoaHw8vKSoRoyJbKvE2XKuE4UEZG8OPpEuqjp72/ZR6KIiIj0LTk5GZmZmWrtDFCkTwxRRERkUjSNPkVERKjcsU2kDwxRRERkMjh9R/WJIYqIiIzep59+iqysLLV2Lp5JdYkhioiIjJqm0adx48ahRYsWMlRDDQlDFBERGSUhBGbNmqXWzuk7qi8MUUREZHTmzZun8kSJSgxQVJ8YooiIyKhomr6bNGkSHBwcZKiGGjLZH/tCRERUExUVFRoDVEpKDAMUyYIjUUREZPA0hSfgfoCaOrWeiyH6fwxRRERk0DQFqHfffRe2trbgJVAkJ4YoIiIySKWlpZg3b55aOy8eJ0PBEEVERAanquk7BigyJAxRRERkUDQFqKioKFhYWMhQDVHVGKKIiMgg3L17FwsWLFBr5+gTGSqGKCIikh2n78gYMUQREZGsNAWo6dOnw9zcXIZqiGqOIYqIiGRRWFiIpUuXqrVz9ImMBUMUERHVO07fkSlgiCIionqlKUBFR0dDoVDIUA2R7hiiiIioXuTl5WHNmjVq7Rx9ImPFEEVERHVO0+iTo6Mj3n77bRmqIdIPhigiIqpTmgIUR5/IFDBEERFRnbh8+TI2bNig1s4ARaaCIYqIiPRO0+iTp6cnRo4cKUM1RHWDIYqIiPSK03fUUDBEERGRXvz666/YunWrWjsDFJkqhigiIqo1TaNPXbt2RUhISP0XQ1RPGKKIiKhWOH1HDRVDFBER6eT48ePYtWuXWjsDFDUUDFFERKQ1TaNPTzzxBJ588kkZqiGSB0MUERFphdN3RPcxRBERUY0cPHgQaWlpau0MUNRQMUQREdE/0jT69Mwzz6BHjx4yVENkGLQOUebm5rh+/TqcnZ1V2v/66y84OzujvLxcb8UREZH8OH1HpJnWIUoIobG9uLgYFhYWtS6IiIgMw969e3Ho0CG1dgYoovtqHKJWrFgBAFAoFFi/fj3s7Oyk98rLy3HgwAF06NBB/xUSEVG90zT69NJLL+Gxxx6ToRoiw1TjELV06VIA90ei4uPjYW5uLr1nYWEBT09PxMfH679CIiKqV5y+I6qZGoeorKwsAEC/fv3w1VdfoWnTpnVWFBER1b/ExEScP39erZ0Bikgzra+J2rdvX13UQUREMtI0+hQaGgovLy8ZqiEyDlqHqFGjRlX7/oYNG3QuhoiI6h+n74h0o3WIunXrlsrr0tJSnD59Gvn5+Vzun4jIiKxbtw7Xr19Xa2eAIqoZrUPUzp071doqKiowduxYtG3bVi9FERFR3dI0+hQREQE3NzcZqiEyTgpR1cJPWrpw4QL69u2r8V81DVVhYSEcHBxQUFAAe3t7ucshIoIQArNmzVJr5+gT0f/U9Pe33h778ttvv6GsrExfuyMiIj378MMPce/ePbV2Bigi3WgdoiIjI1VeCyFw/fp1fPPNNxg5cqTeCiMiIv3RNH03ceJENGvWTIZqiEyD1iHq+PHjKq/NzMzQokULLF68+B/v3CMiovpVUVGB2bNnq7Vz9Imo9rhOFBGRidI0+gQwQBHpi87XRN24cQMXLlwAALRv3x7Ozs56K4qIiGpHU4Dat+9d7N9vK0M1RKbJTNsNCgsLMWLECLi7u6NPnz7o06cPWrZsiddeew0FBQV1USMREdVQWVmZxgCVkhKDyEgGKCJ90jpEjR49GpmZmfjmm2+Qn5+P/Px87N69G0eOHMGYMWPqokYiIqqB2NhYzJ07V609JiYG6enAoEEyFEVkwrReJ8rW1hYpKSno1auXSvuPP/6I/v37o6ioSK8FGjOuE0VE9UXT6NPUqVNhaWkpQzVExq3O1olq3rw5HBwc1NodHBzQtGlTbXdHRES1cO/ePXz44Ydq7bx4nKjuaR2ipk+fjsjISHz22WdwdXUFACiVSrz33nuYMWOG3gskIiLNePcdkby0ns7z9fXFpUuXUFxcjFatWgEAcnJyYGlpCW9vb5W+x44d01+lRojTeURUVzQFqOnTp8Pc3FyGaohMS51N5w0ePBgKhaJWxRERkW7y8/OxfPlytfaUlBhwAIqofmkdombOnKnXAlavXo2FCxdCqVSia9euWLlyJXr06FFl/x07dmDGjBnIzs6Gt7c3PvzwQzz77LPS+0IIxMTE4OOPP0Z+fj7+/e9/Y+3atSqjZHPnzsU333yDEydOwMLCAvn5+WrH0RQUt27dildeeaV2H5iISEdVTd+lpMRg6tR6LoaItF/ioE2bNvjrr7/U2vPz89GmTRut9pWYmIjIyEjExMTg2LFj6Nq1K4KDg3Hjxg2N/dPT0zFs2DCEh4fj+PHjCAkJQUhICE6fPi31WbBgAVasWIH4+HhkZmbC1tYWwcHBKg/dLCkpwcsvv4yxY8dWW9/GjRtx/fp16SskJESrz0dEpC+a136K5vIFRDLS+pooMzMzKJVKtRXKc3Nz4eHhgZKSkhrvy9/fH927d8eqVasA3H/Gk4eHByZOnIipGv5ZNXToUBQVFWH37t1SW8+ePeHj44P4+HgIIeDu7o7Jkyfj3XffBQAUFBTAxcUFCQkJaqNICQkJmDRpUpUjUTt37qxVcOI1UURUW9evX8e6devU2rdti8GHHzI8EdUFvV8TtWvXLum/U1JSVJY5KC8vR1paGry8vGpcYElJCY4ePYqoqCipzczMDEFBQcjIyNC4TUZGBiIjI1XagoODkZSUBADIysqCUqlEUFCQ9L6DgwP8/f2RkZGh9VTc+PHj8cYbb6BNmzZ488038frrr/N6MCKqN9Xdfcfrn4jkV+MQVTkio1AoMHLkSJX3GjduDE9PTyxevLjGB/7zzz9RXl4OFxcXlXYXFxecP39e4zZKpVJjf6VSKb1f2VZVn5qaNWsWnnzySdjY2ODbb7/FuHHjcPv2bbz11ltVblNcXIzi4mLpdWFhoVbHJCKqpClA+fhEY/Bg/kOOyFDUOERVVFQAALy8vHD48GE4OTnVWVGG4ME1r3x9fVFUVISFCxdWG6Li4uKq/JcjEVFN/Prrr9i6dataO9d+IjI8Wl9YnpWVpZcA5eTkBHNzc+Tm5qq05+bmSot4PszV1bXa/pXftdlnTfn7++PKlSsqI00Pi4qKQkFBgfR1+fLlWh2TiBqW2NhYBigiI6L1EgezZs2q9v3o6Oga7cfCwgJ+fn5IS0uTpgorKiqQlpaGCRMmaNwmICAAaWlpmDRpktSWmpqKgIAAAPdHyVxdXZGWlgYfHx8A96fUMjMz//FOvH9y4sQJNG3atNrnUFlaWvI5VUSkE02j2L6+MbxwnMiAaR2idu7cqfK6tLQUWVlZaNSoEdq2bVvjEAUAkZGRGDlyJLp164YePXpg2bJlKCoqwuuvvw4ACA0NRcuWLREXFwcAePvtt9GnTx8sXrwYAwYMwLZt23DkyBHpzhWFQoFJkyZhzpw58Pb2hpeXF2bMmAF3d3eVu+xycnJw8+ZN5OTkoLy8HCdOnAAAtGvXDnZ2dvjvf/+L3Nxc9OzZE1ZWVkhNTcW8efOkO/6IiPTl0KFD2Lt3r1o7R5+IDJ/WIer48eNqbYWFhQgLC8Pzzz+v1b6GDh2KvLw8REdHQ6lUwsfHB8nJydKF4Tk5OTAz+9+MY2BgILZs2YLp06dj2rRp8Pb2RlJSEjp37iz1mTJlCoqKihAREYH8/Hz06tULycnJsLKykvpER0dj06ZN0mtfX18AwL59+9C3b180btwYq1evxjvvvAMhBNq1a4clS5Zg9OjRWn0+IqLqaBp9KitrjO7dp8lQDRFpS+t1oqryyy+/4LnnnkN2drY+dmcSuE4UEVVFU4Di6BORYaizZ+dVpfJiaiIiqlpqairS09PV2hmgiIyP1iFqxYoVKq+FELh+/To+++wzPPPMM3orjIjI1GgafSoocEPfvhEyVENEtaV1iFq6dKnKazMzM7Ro0QIjR45UWX2ciIj+h9N3RKZH6xCVlZVVF3UQEZmkzz//HL/99ptaOwMUkfHT6Zqo/Px8XLp0CcD9ZQEcHR31WRMRkUnQNPp048ajCA4eJkM1RKRvWoWo7OxsjB8/HikpKai8qU+hUKB///5YtWoVPD0966JGIiKjw+k7ItNX4xB1+fJl9OzZE40bN8bs2bPRsWNHAMDZs2exdu1aBAQE4PDhw3jkkUfqrFgiIkO3bNkyjXcqM0ARmZ4arxMVHh6OS5cuISUlRWXhSgC4e/cu+vfvD29vb6xfv75OCjVGXCeKqGHRNPrUs2dPBAcHy1ANEelK7+tEJScnIzExUS1AAYC1tTVmz56NV155RbdqiYiMHKfviBqeGoeoP//8s9prntq0aYObN2/qoyYiIqOhKTwBDFBEDUGNQ5SbmxvOnj1b5TVPp0+fhqurq94KIyIydJoCVP/+/eHv7y9DNURU38z+uct9ISEhePfdd5GXl6f23o0bN/D+++8jJCREn7URERmsqqbvGKCIGo4aX1h+69Yt+Pv7Q6lU4rXXXkOHDh0ghMC5c+ewZcsWuLq64ueff0azZs3qumajwQvLiUwPp++ITJ/eLyxv2rQpMjMzMW3aNGzbtg35+fkAAEdHR7z66quYN28eAxQRmTRNAWrIkCHSki9E1LDUeCTqQUIIaVqvRYsWUCgUei/MFHAkisg0CCEwa9YstXaOPhGZJr2PRD1IoVDA2dlZ5+KIiIwFp++IqCo6hSgiooZAU4AaNWoUPDw8ZKiGiAwNQxQR0UMqKiowe/ZstXaOPhHRgxiiiIgewOk7Iqophigiov+nKUBNmDABzZs3l6EaIjJ0NQpRK1asqPEO33rrLZ2LISKSQ0lJCeLi4tTaOfpERNWp0RIHXl5eNduZQoHff/+91kWZCi5xQGT4OH1HRA/T6xIHWVlZeiuMiMhQaApQkydPhp2dnQzVEJGxqfGz8x5WUlKCCxcuoKysTJ/1EBHVudu3b1f57DsGKCKqKa1D1J07dxAeHg4bGxs89thjyMnJAQBMnDgR8+fP13uBRET6FBsbi8WLF6u1c/qOiLSldYiKiorCyZMnsX//flhZWUntQUFBSExM1GtxRET6pGn06V//imKAIiKdaL3EQVJSEhITE9GzZ0+VZ+Y99thj+O233/RaHBGRPvz1119YtWqVWjvDExHVhtYhKi8vT+Nz84qKivggYiIyOFXdfefrywBFRLWjdYjq1q0bvvnmG0ycOBEApOC0fv16BAQE6Lc6IqJa0BSgZsyYATMzne+pISKSaB2i5s2bh2eeeQZnz55FWVkZli9fjrNnzyI9PR0//PBDXdRIRKSVP/74AwkJCWrtnL4jIn3S+p9jvXr1wokTJ1BWVoYuXbrg22+/hbOzMzIyMuDn51cXNRIR1VhsbCwDFBHVixqtWE664YrlRPVL0/RddHQ0r9ckIq3odcXywsLCGh+YYYGI6tvp06fx5ZdfqrVz9ImI6lKNQpSjo2ON/yVXXl5eq4KIiLTBZ98RkVxqFKL27dsn/Xd2djamTp2KsLAw6W68jIwMbNq0SeNT0ImI6kpVj24hIqoPWl8T9dRTT+GNN97AsGHDVNq3bNmCdevWYf/+/fqsz6jxmiiiupGZmYnk5GS1dgYoItKHmv7+1vruvIyMDHTr1k2tvVu3bjh06JC2uyMi0kpsbCwDFBEZBK1DlIeHBz7++GO19vXr18PDw0MvRRERaaJp+s7XN4YBiohkofVim0uXLsWLL76IvXv3wt/fHwBw6NAhXLx4UePdMUREtZWWloaDBw+qtfv6xmDQIBkKIiKCjutEXblyBWvWrMH58+cBAB07dsSbb77JkaiH8JoootrTNPrUuLE9pk17R4ZqiKghqOnvby62WYcYoohqp6rpO44+EVFd0utimw/Lz8/HJ598gnPnzgEAHnvsMYwaNQoODg66VUtE9IAvv/wSp0+fVmvntU9EZEi0Hok6cuQIgoODYW1tjR49egAADh8+jLt37+Lbb7/F448/XieFGiOORBFpT9PoU8eOHTFkyBAZqiGihqjOpvOeeOIJtGvXDh9//DEaNbo/kFVWVoY33ngDv//+Ow4cOFC7yk0IQxSRdrh4JhEZgjoLUdbW1jh+/Dg6dOig0n727Fl069YNd+7c0a1iE8QQRVQzK1euxM2bN9XaGaCISA51ttimvb09cnJy1NovX76MJk2aaLs7ImrgYmNj1QLUsWPd4evLAEVEhk3rEDV06FCEh4cjMTERly9fxuXLl7Ft2zaNj4IhIqqOpum7lJQYhIc/yzvwiMjgaX133qJFi6BQKBAaGoqysjIAQOPGjTF27FjMnz9f7wUSkenRFJ6A+9N3nMEjImOh8zpRd+7cwW+//QYAaNu2LWxsbPRamCngNVFE6jQFqP/85z8IDAyUoRoiInV1uk4UANjY2KBLly66bk5EDRDvviMiU1LjEDVq1Kga9duwYYPOxRCRaapu+o6IyFjVOEQlJCSgdevW8PX1BZ8UQ0Q1pSlAvfjii+jcubMM1RAR6U+NQ9TYsWOxdetWZGVl4fXXX8drr72GZs2a1WVtRGTEhBCYNWuWWjtHn4jIVGh1YXlxcTG++uorbNiwAenp6RgwYADCw8Px9NNPQ6FQ1GWdRokXllNDxek7IjJmdbZieaU//vgDCQkJ+PTTT1FWVoYzZ87Azs5O54JNEUMUNUSaAlRYWBhat24tQzVERNqr87vzzMzMoFAoIIRAeXm5rrshIhNRUVGB2bNnq7X7+saA+YmITJFWIerB6byDBw9i4MCBWLVqFfr37w8zM60XPyciE8HpOyJqiGqcfMaNGwc3NzfMnz8fAwcOxOXLl7Fjxw48++yztQpQq1evhqenJ6ysrODv749Dhw5V23/Hjh3o0KEDrKys0KVLF+zZs0flfSEEoqOj4ebmBmtrawQFBeHixYsqfebOnYvAwEDY2NjA0dFR43FycnIwYMAA2NjYwNnZGe+99560QjsR/Y+mADVu3DgGKCIyeTUeiYqPj0erVq3Qpk0b/PDDD/jhhx809vvqq69qfPDExERERkYiPj4e/v7+WLZsGYKDg3HhwgU4Ozur9U9PT8ewYcMQFxeHgQMHYsuWLQgJCcGxY8ek26UXLFiAFStWYNOmTfDy8sKMGTMQHByMs2fPwsrKCgBQUlKCl19+GQEBAfjkk0/UjlNeXo4BAwbA1dUV6enpuH79OkJDQ9G4cWPMmzevxp+PyJSVlpZq/P+B4YmIGooaX1geFhZWozvwNm7cWOOD+/v7o3v37li1ahWA+9dUeHh4YOLEiZg6dapa/6FDh6KoqAi7d++W2nr27AkfHx/Ex8dDCAF3d3dMnjwZ7777LgCgoKAALi4uSEhIwCuvvKKyv4SEBEyaNAn5+fkq7Xv37sXAgQNx7do1uLi4ALgfIt9//33k5eXBwsKiRp+PF5aTqeL0HRGZMr1fWJ6QkKCPuiQlJSU4evQooqKipDYzMzMEBQUhIyND4zYZGRmIjIxUaQsODkZSUhIAICsrC0qlEkFBQdL7Dg4O8Pf3R0ZGhlqIqkpGRga6dOkiBajK44wdOxZnzpyBr6+vxu2Ki4tRXFwsvS4sLKzR8YiMiaYAtW9fJCIjm8hQDRGRfGS7GvzPP/9EeXm5SlABABcXFyiVSo3bKJXKavtXftdmn9oc58FjaBIXFwcHBwfpy8PDo8bHJDJ0RUVFVT77bv/+Jhg0SIaiiIhkpPMSB6QuKipKZaSssLCQQYpMAqfviIjUyRainJycYG5ujtzcXJX23NxcuLq6atzG1dW12v6V33Nzc+Hm5qbSx8fHp8a1ubq6qt0lWHncqmoDAEtLS1haWtb4OETGQFOAmjp1Kv+uE1GDJ9t0noWFBfz8/JCWlia1VVRUIC0tDQEBARq3CQgIUOkPAKmpqVJ/Ly8vuLq6qvQpLCxEZmZmlfus6ji//PILbty4oXIce3t7dOrUqcb7ITJmN2/erHL6jgGKiEjm6bzIyEiMHDkS3bp1Q48ePbBs2TIUFRXh9ddfBwCEhoaiZcuWiIuLAwC8/fbb6NOnDxYvXowBAwZg27ZtOHLkCNatWwcAUCgUmDRpEubMmQNvb29piQN3d3eEhIRIx83JycHNmzeRk5OD8vJynDhxAgDQrl072NnZ4emnn0anTp0wYsQILFiwAEqlEtOnT8f48eP5y4MaBE7fERH9M1lD1NChQ5GXl4fo6GgolUr4+PggOTlZuog7JydHZSHPwMBAbNmyBdOnT8e0adPg7e2NpKQkaY0oAJgyZQqKiooQERGB/Px89OrVC8nJydIaUQAQHR2NTZs2Sa8r77bbt28f+vbtC3Nzc+zevRtjx45FQEAAbG1tMXLkSI1PpCcyNZoC1PTp02Fubi5DNUREhkvnBxDTP+M6UWRMrly5onHxWY4+EVFDU+cPICYi08HpOyIi7TFEETVwmgJUdHR0jZ5QQETUkDFEETVQFy5cwLZt29TaOfpERFQzDFFEDRCn74iIao8hiqiBqWrtJyIi0g5DFFEDcfjwYezZs0etnQGKiEg3DFFEDQCn74iI9I8hisjEcfqOiKhuMEQRmajU1FSkp6ertTNAERHpB0MUkQnSNPpUXGyLefPelaEaIiLTZPbPXYjImGgKUCkpMejZkwGKiEifOBJFZCK2b9+Oc+fOqbXHxMSAM3hERPrHEEVkAjSNPtnZeWLy5JEyVENE1DAwRBEZuaqm7zRcU05ERHrEEEVkpJYuXYrCwkK19pSUGEydKkNBREQNDEMUkRHSNPrUvLkvJkwYxOufiIjqCUMUkZHh4plERIaBIYrISPDRLUREhoUhisgIaApQffr0Qd++feu/GCIiAsAQRWTwOH1HRGSYGKKIDFRV03e+vgxQRESGgI99ITJAmgLUqVMvwNc3BoMGyVAQERGp4UgUkYHh9B0RkXFgiCIyELz7jojIuDBEERkATQHq8OFQ7N7tJUM1RERUE7wmikhGQogqn30XEcEARURkyDgSRSST6qbvOINHRGT4GKKIZKApQI0bNw4tWrSQoRoiItIFQxRRPSorK8PcuXPV2nnxOBGR8WGIIqonvPuOiMi08MJyonqgKUB9/fU7XH2ciMiIcSSKqA7duXMHCxcuVGvnxeNERMaPIYqojnD6jojItDFEEdUBTQFq5cr3sWGDlQzVEBFRXWCIItKjmzdvYuXKlWrtKSkx2LABfHgwEZEJYYgi0hMunklE1LAwRBHpgaYANX36dJibm8tQDRER1QeGKKJauHr1KtavX6/WzovHiYhMH0MUkY549x0RUcPGEEWkA00BKjo6GgqFQoZqiIhIDgxRRFo4e/YsduzYodbO0SciooaHIYqohjh9R0RED2KIIqoBTQEqJSUG6ekyFENERAaBIYqoGgcPHkRaWppae0pKDKZOlaEgIiIyGAxRRFWoavrO15eLZxIREUMUkUaaAhSvfSIiogcxRBE9YNeuXTh+/LhaOwMUERE9jCGK6P9VN31HRET0MIYoImgOUCUlMZg7V4ZiiIjIKDBEUYO2YcMGXL58Wa3d1zcGgwbJUBARERkNhihqsDSNPtnY2OC9996ToRoiIjI2DFHUIPHuOyIiqi2GKGpQ5s2bh9LSUrV2BigiItIWQxQ1GJpGn/76ywtBQaEyVENERMaOIYoaBE7fERGRvjFEkUmrau0nBigiIqothigyWZoCVPfu3fHss8/KUA0REZkaM7kLAIDVq1fD09MTVlZW8Pf3x6FDh6rtv2PHDnTo0AFWVlbo0qUL9uzZo/K+EALR0dFwc3ODtbU1goKCcPHiRZU+N2/exPDhw2Fvbw9HR0eEh4fj9u3b0vvZ2dlQKBRqXz///LP+PjjVmaqm7xigiIhIX2QPUYmJiYiMjERMTAyOHTuGrl27Ijg4GDdu3NDYPz09HcOGDUN4eDiOHz+OkJAQhISE4PTp01KfBQsWYMWKFYiPj0dmZiZsbW0RHByMe/fuSX2GDx+OM2fOIDU1Fbt378aBAwcQERGhdrzvvvsO169fl778/Pz0fxJIb2JjY3n9ExER1QuFEELIWYC/vz+6d++OVatWAQAqKirg4eGBiRMnYurUqWr9hw4diqKiIuzevVtq69mzJ3x8fBAfHw8hBNzd3TF58mS8++67AICCggK4uLggISEBr7zyCs6dO4dOnTrh8OHD6NatGwAgOTkZzz77LK5cuQJ3d3dkZ2fDy8sLx48fh4+Pj06frbCwEA4ODigoKIC9vb1O+6Ca0xSenn76aQQEBMhQDRERGaua/v6WdSSqpKQER48eRVBQkNRmZmaGoKAgZGRkaNwmIyNDpT8ABAcHS/2zsrKgVCpV+jg4OMDf31/qk5GRAUdHRylAAUBQUBDMzMyQmZmpsu9BgwbB2dkZvXr1wq5du6r9PMXFxSgsLFT5ovqhKUD5+sYwQBERUZ2R9cLyP//8E+Xl5XBxcVFpd3Fxwfnz5zVuo1QqNfZXKpXS+5Vt1fVxdnZWeb9Ro0Zo1qyZ1MfOzg6LFy/Gv//9b5iZmeHLL79ESEgIkpKSMKiKh6rFxcVVeTcY1Q3efUdERHLh3XlVcHJyQmRkpPS6e/fuuHbtGhYuXFhliIqKilLZprCwEB4eHnVea0OlKUANGTIEHTt2lKEaIiJqaGQNUU5OTjA3N0dubq5Ke25uLlxdXTVu4+rqWm3/yu+5ublwc3NT6VN5bZOrq6vahetlZWW4efNmlccF7l+/lZqaWuX7lpaWsLS0rPJ90g8hBGbNmqXWztEnIiKqT7JeE2VhYQE/Pz+kpaVJbRUVFUhLS6vyWpaAgACV/gCQmpoq9ffy8oKrq6tKn8LCQmRmZkp9AgICkJ+fj6NHj0p9vv/+e1RUVMDf37/Kek+cOKESzKj+xcbGagxQvr4MUEREVL9kn86LjIzEyJEj0a1bN/To0QPLli1DUVERXn/9dQBAaGgoWrZsibi4OADA22+/jT59+mDx4sUYMGAAtm3bhiNHjmDdunUAAIVCgUmTJmHOnDnw9vaGl5cXZsyYAXd3d4SEhAAAOnbsiP79+2P06NGIj49HaWkpJkyYgFdeeQXu7u4AgE2bNsHCwgK+vr4AgK+++gobNmzA+vXr6/kMUSVN03ePPhqOYcMekaEaIiJq6GQPUUOHDkVeXh6io6OhVCrh4+OD5ORk6cLwnJwcmJn9b8AsMDAQW7ZswfTp0zFt2jR4e3sjKSkJnTt3lvpMmTIFRUVFiIiIQH5+Pnr16oXk5GRYWVlJfTZv3owJEybgqaeegpmZGV588UWsWLFCpbbZs2fjjz/+QKNGjdChQwckJibipZdequMzQg8rKyvD3Llz1do5fUdERHKSfZ0oU8Z1omqPd98REVF9q+nvb9lHooiqoilAHTgwEWlpzWSohoiISBVDFBmcu3fvYsGCBWrtKSkx0LCIPRERkSwYosigVDd9xxk8IiIyJAxRZDA0BagpU6bA2tpahmqIiIiqxxBFsrt165banZEALx4nIiLDxhBFsuLdd0REZKwYokg2mgLUBx98gEaN+NeSiIgMn6yPfaGG6caNGxoD1NatMQxQRERkNPgbi+pVVdN3KSkx0LCqARERkcFiiKJ6oylALVoUjc2bFVy+gIiIjA5DFNW57OxsbNq0Sa09JSUGmzcDgwbJUBQREVEtMURRneLimUREZKp4YTnVGU0BKiUlBr6+TE9ERGT8OBJFenf+/HkkJiaqtfv6cvSJiIhMB0MU6VVV03e+vjG89omIiEwKQxTpjaYAxfBERESmiiGKau3w4cPYs2ePWjsf3UJERKaMIYpqRdPok5WVC95//00ZqiEiIqo/DFGkM07fERFRQ8YQRVr77rvv8NNPP6m1c/qOiIgaEoYo0oqm0aeOHTtiyJAhMlRDREQkH4YoqjFNAYqjT0RE1FAxRNE/+u9//4tjx46ptXPlcSIiasgYoqhamkafevfujX79+slQDRERkeFgiKIqcfqOiIioagxRpGb79u04d+6cWjsDFBER0f8wRJEKTaNPAwYMQLdu3WSohoiIyHCZyV0AGQ5NASolJYYBioiISAOORBGSkpJw8uRJtfZFi2KwebMMBRERERkBhqgGTtPo0zffhKJRIy9s3gw+woWIiKgKDFENmKYAtXVrDBYsYHgiIiL6JwxRDdAXX3yBM2fOqLWXlMTg/HkZCiIiIjJCDFENjKbRpx9/nIC33mrO0SciIiItMEQ1EEIIzJo1S62daz8RERHphiGqAdiwYQMuX76s1s4ARUREpDuGKBOnafouMjISTZo0kaEaIiIi08EQZaIqKiowe/ZstXaOPhEREekHQ5QJ4vQdERFR3WOIMjGapu/S0qbgwAFrGaohIiIyXQxRJqK8vBxz5sxRa09JicHUqTIUREREZOIYokzADz/8gP3796u03bljgw8/fA+cwSMiIqobDFFGTtP03ZIl0zFhgrkM1RARETUcDFFGqqrFM1NSYlBQIENBREREDQxDlBH666+/sGrVKpW2L798ATdvdsGaNTIVRURE1MAwRBmhBwNUcbEVdu6cgg8/VPDZd0RERPWIIcoIXb3aFS1bnsQvvwzGF1/4YN48uSsiIiJqeMzkLoC0N3BgCFJSYhAa6iN3KURERA0WR6KM0KBB4NQdERGRzDgSRURERKQDhigiIiIiHTBEEREREemAIYqIiIhIBwxRRERERDpgiCIiIiLSAUMUERERkQ4YooiIiIh0wBBFREREpAODCFGrV6+Gp6cnrKys4O/vj0OHDlXbf8eOHejQoQOsrKzQpUsX7NmzR+V9IQSio6Ph5uYGa2trBAUF4eLFiyp9bt68ieHDh8Pe3h6Ojo4IDw/H7du3VfqcOnUKTzzxBKysrODh4YEFCxbo5wMTERGR0ZM9RCUmJiIyMhIxMTE4duwYunbtiuDgYNy4cUNj//T0dAwbNgzh4eE4fvw4QkJCEBISgtOnT0t9FixYgBUrViA+Ph6ZmZmwtbVFcHAw7t27J/UZPnw4zpw5g9TUVOzevRsHDhxARESE9H5hYSGefvpptG7dGkePHsXChQsxc+ZMrFu3ru5OBhERERkPIbMePXqI8ePHS6/Ly8uFu7u7iIuL09h/yJAhYsCAASpt/v7+YsyYMUIIISoqKoSrq6tYuHCh9H5+fr6wtLQUW7duFUIIcfbsWQFAHD58WOqzd+9eoVAoxNWrV4UQQqxZs0Y0bdpUFBcXS33ef/990b59+xp/toKCAgFAFBQU1HgbIiIikldNf3/LOhJVUlKCo0ePIigoSGozMzNDUFAQMjIyNG6TkZGh0h8AgoODpf5ZWVlQKpUqfRwcHODv7y/1ycjIgKOjI7p16yb1CQoKgpmZGTIzM6U+vXv3hoWFhcpxLly4gFu3bmmsrbi4GIWFhSpfREREZJoayXnwP//8E+Xl5XBxcVFpd3Fxwfnz5zVuo1QqNfZXKpXS+5Vt1fVxdnZWeb9Ro0Zo1qyZSh8vLy+1fVS+17RpU7Xa4uLiEBsbq9bOMEVERGQ8Kn9vCyGq7SdriDI1UVFRiIyMlF5fvXoVnTp1goeHh4xVERERkS7+/vtvODg4VPm+rCHKyckJ5ubmyM3NVWnPzc2Fq6urxm1cXV2r7V/5PTc3F25ubip9fHx8pD4PX7heVlaGmzdvquxH03EePMbDLC0tYWlpKb22s7PD2bNn0alTJ1y+fBn29vYatyP9KCwshIeHB891HeN5rj881/WH57r+GMO5FkLg77//hru7e7X9ZA1RFhYW8PPzQ1paGkJCQgAAFRUVSEtLw4QJEzRuExAQgLS0NEyaNElqS01NRUBAAADAy8sLrq6uSEtLk0JTYWEhMjMzMXbsWGkf+fn5OHr0KPz8/AAA33//PSoqKuDv7y/1+eCDD1BaWorGjRtLx2nfvr3GqTxNzMzM0LJlSwCAvb29wf5lMTU81/WD57n+8FzXH57r+mPo57q6EShJvVzmXo1t27YJS0tLkZCQIM6ePSsiIiKEo6OjUCqVQgghRowYIaZOnSr1/+mnn0SjRo3EokWLxLlz50RMTIxo3Lix+OWXX6Q+8+fPF46OjuLrr78Wp06dEoMHDxZeXl7i7t27Up/+/fsLX19fkZmZKQ4ePCi8vb3FsGHDpPfz8/OFi4uLGDFihDh9+rTYtm2bsLGxER999JFWn4936NUfnuv6wfNcf3iu6w/Pdf0xpXMt+zVRQ4cORV5eHqKjo6FUKuHj44Pk5GTpIu6cnByYmf3vJsLAwEBs2bIF06dPx7Rp0+Dt7Y2kpCR07txZ6jNlyhQUFRUhIiIC+fn56NWrF5KTk2FlZSX12bx5MyZMmICnnnoKZmZmePHFF7FixQrpfQcHB3z77bcYP348/Pz84OTkhOjoaJW1pIiIiKjhUgjxD5eeU60UFxcjLi4OUVFRKtdLkf7xXNcPnuf6w3Ndf3iu648pnWuGKCIiIiIdyP7YFyIiIiJjxBBFREREpAOGKCIiIiIdMEQRERER6YAh6iGrV6+Gp6cnrKys4O/vj0OHDlXbf8eOHejQoQOsrKzQpUsX7NmzR+V9IQSio6Ph5uYGa2trBAUF4eLFiyp9bt68ieHDh8Pe3h6Ojo4IDw/H7du3VfqcOnUKTzzxBKysrODh4YEFCxbo5wPLxBDPc3Z2NhQKhdrXzz//rL8PLgM5zvXcuXMRGBgIGxsbODo6ajxOTk4OBgwYABsbGzg7O+O9995DWVlZrT6r3Az1XGv6e71t27ZafVa51fe5zs7ORnh4OLy8vGBtbY22bdsiJiYGJSUlKvsxtZ/VgGGea4P5eS3XAlWGaNu2bcLCwkJs2LBBnDlzRowePVo4OjqK3Nxcjf1/+uknYW5uLhYsWCDOnj0rpk+frnHhTwcHB5GUlCROnjwpBg0apHHhz65du4qff/5Z/Pjjj6Jdu3YqC38WFBQIFxcXMXz4cHH69GmxdetWYW1trfXCn4bCUM9zVlaWACC+++47cf36demrpKSk7k5GHZPrXEdHR4slS5aIyMhI4eDgoHacsrIy0blzZxEUFCSOHz8u9uzZI5ycnERUVJTez0F9MdRzLYQQAMTGjRtV/l4/uA9jI8e53rt3rwgLCxMpKSnit99+E19//bVwdnYWkydPlvZhaj+rhTDcc20oP68Zoh7Qo0cPMX78eOl1eXm5cHd3F3FxcRr7DxkyRAwYMEClzd/fX4wZM0YIIURFRYVwdXUVCxculN7Pz88XlpaWYuvWrUIIIc6ePSsAiMOHD0t99u7dKxQKhbh69aoQQog1a9aIpk2biuLiYqnP+++/L9q3b1/LTywPQz3Plf9THj9+XC+f0xDIca4ftHHjRo2/2Pfs2SPMzMykJxMIIcTatWuFvb29yt9zY2Ko51qI+yFq586dWn4iwyX3ua60YMEC4eXlJb02tZ/VQhjuuTaUn9eczvt/JSUlOHr0KIKCgqQ2MzMzBAUFISMjQ+M2GRkZKv0BIDg4WOqflZUFpVKp0sfBwQH+/v5Sn4yMDDg6OqJbt25Sn6CgIJiZmSEzM1Pq07t3b1hYWKgc58KFC7h161YtP3n9MuTzXGnQoEFwdnZGr169sGvXrtp9YBnJda5rIiMjA126dJGeTFB5nMLCQpw5c6bG+zEUhnyuK40fPx5OTk7o0aMHNmzYAGGkSwQa0rkuKChAs2bNVI5jKj+rAcM+15Xk/nnNEPX//vzzT5SXl6v8UAcAFxcXKJVKjdsolcpq+1d+/6c+zs7OKu83atQIzZo1U+mjaR8PHsNYGPJ5trOzw+LFi7Fjxw5888036NWrF0JCQow2SMl1rmvClP5OA4Z9rgFg1qxZ2L59O1JTU/Hiiy9i3LhxWLlypVb7MBSGcq4vXbqElStXYsyYMf94nAePYUwM+Vwbys9r2Z+dR2QonJycEBkZKb3u3r07rl27hoULF2LQoEEyVkZUOzNmzJD+29fXF0VFRVi4cCHeeustGasyXlevXkX//v3x8ssvY/To0XKXY9KqOteG8vOaI1H/z8nJCebm5sjNzVVpz83Nhaurq8ZtXF1dq+1f+f2f+ty4cUPl/bKyMty8eVOlj6Z9PHgMY2HI51kTf39/XLp0qQafzPDIda5rwpT+TgOGfa418ff3x5UrV1BcXFyr/chB7nN97do19OvXD4GBgVi3bl2NjvPgMYyJIZ9rTeT4ec0Q9f8sLCzg5+eHtLQ0qa2iogJpaWkICAjQuE1AQIBKfwBITU2V+nt5ecHV1VWlT2FhITIzM6U+AQEByM/Px9GjR6U+33//PSoqKuDv7y/1OXDgAEpLS1WO0759ezRt2rSWn7x+GfJ51uTEiRNwc3PT/oMaALnOdU0EBATgl19+UQm2qampsLe3R6dOnWq8H0NhyOdakxMnTqBp06ZG+fBXOc/11atX0bdvX/j5+WHjxo0wM1P9FWpKP6sBwz7Xmsjy81rWy9oNzLZt24SlpaVISEgQZ8+eFREREcLR0VG6g2jEiBFi6tSpUv+ffvpJNGrUSCxatEicO3dOxMTEaLyV09HRUXz99dfi1KlTYvDgwRpvvff19RWZmZni4MGDwtvbW+XW+/z8fOHi4iJGjBghTp8+LbZt2yZsbGyM9rZZQz3PCQkJYsuWLeLcuXPi3LlzYu7cucLMzExs2LChHs5K3ZDrXP/xxx/i+PHjIjY2VtjZ2Ynjx4+L48ePi7///lsI8b8lDp5++mlx4sQJkZycLFq0aGH0SxwY4rnetWuX+Pjjj8Uvv/wiLl68KNasWSNsbGxEdHR0PZ0Z/ZPjXF+5ckW0a9dOPPXUU+LKlSsqt9VXMrWf1UIY7rk2lJ/XDFEPWblypWjVqpWwsLAQPXr0ED///LP0Xp8+fcTIkSNV+m/fvl08+uijwsLCQjz22GPim2++UXm/oqJCzJgxQ7i4uAhLS0vx1FNPiQsXLqj0+euvv8SwYcOEnZ2dsLe3F6+//rr0A7DSyZMnRa9evYSlpaVo2bKlmD9/vn4/eD0zxPOckJAgOnbsKGxsbIS9vb3o0aOH2LFjh/4/fD2T41yPHDlSAFD72rdvn9QnOztbPPPMM8La2lo4OTmJyZMni9LSUr1//vpkiOd67969wsfHR9jZ2QlbW1vRtWtXER8fL8rLy+vkHNSX+j7XGzdu1HieHx6LMLWf1UIY5rk2lJ/XCiGM9D5XIiIiIhnxmigiIiIiHTBEEREREemAIYqIiIhIBwxRRERERDpgiCIiIiLSAUMUERERkQ4YooiIiIh0wBBFREREpAOGKCJqkJRKJSZOnIg2bdrA0tISHh4eeO6556Rneo0ZMwZt27aFtbU1WrRogcGDB+P8+fPS9tnZ2VAoFDhx4oTavvv27YtJkyZJr2/fvo0JEybgkUcegbW1NTp16oT4+Pi6/ohEVMcayV0AEVF9y87Oxr///W84Ojpi4cKF6NKlC0pLS5GSkoLx48fj/Pnz8PPzw/Dhw9GqVSvcvHkTM2fOxNNPP42srCyYm5trdbzIyEh8//33+Pzzz+Hp6Ylvv/0W48aNg7u7OwYNGlRHn5KI6hpDFBE1OOPGjYNCocChQ4dga2srtT/22GMYNWoUACAiIkJq9/T0xJw5c9C1a1dkZ2ejbdu2Wh0vPT0dI0eORN++faV9f/TRRzh06BBDFJER43QeETUoN2/eRHJyMsaPH68SoCo5OjqqtRUVFWHjxo3w8vKCh4eH1scMDAzErl27cPXqVQghsG/fPvz66694+umndfkIRGQgGKKIqEG5dOkShBDo0KHDP/Zds2YN7OzsYGdnh7179yI1NRUWFhYqfQIDA6U+lV8//vijSp+VK1eiU6dOeOSRR2BhYYH+/ftj9erV6N27t14/GxHVL07nEVGDIoSocd/hw4fjP//5D65fv45FixZhyJAh+Omnn2BlZSX1SUxMRMeOHdW2e9DKlSvx888/Y9euXWjdujUOHDiA8ePHw93dHUFBQbX7QEQkG4YoImpQvL29oVAoVO60q4qDgwMcHBzg7e2Nnj17omnTpti5cyeGDRsm9fHw8EC7du1UtrO2tpb+++7du5g2bRp27tyJAQMGAAD+9a9/4cSJE1i0aBFDFJER43QeETUozZo1Q3BwMFavXo2ioiK19/Pz8zVuJ4SAEALFxcVaHa+0tBSlpaUwM1P9cWtubo6Kigqt9kVEhoUhioganNWrV6O8vBw9evTAl19+iYsXL+LcuXNYsWIFAgIC8PvvvyMuLg5Hjx5FTk4O0tPT8fLLL8Pa2hrPPvusVseyt7dHnz598N5772H//v3IyspCQkICPv30Uzz//PN19AmJqD5wOo+IGpw2bdrg2LFjmDt3LiZPnozr16+jRYsW8PPzw9q1a2FlZYUff/wRy5Ytw61bt+Di4oLevXsjPT0dzs7OWh9v27ZtiIqKwvDhw3Hz5k20bt0ac+fOxZtvvlkHn46I6otCaHOVJREREREB4HQeERERkU4YooiIiIh0wBBFREREpAOGKCIiIiIdMEQRERER6YAhioiIiEgHDFFEREREOmCIIiIiItIBQxQRERGRDhiiiIiIiHTAEEVERESkA4YoIiIiIh38H+foM4e5W5L0AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVttJREFUeJzt3XlcVPX+P/DXgOwKqMhmqKTkkl4hVIRrLsUVSlNazMwUjcRc46KpmIJrmFvmklSmtBlkJfkzhYj0ukCY5L6lCZHLIKWAYrLN5/eHX05OM+AwzHBm4PV8PHjYfOYz57zP0Tu87udzzucohBACRERERFQnFnIXQERERGSOGKKIiIiI9MAQRURERKQHhigiIiIiPTBEEREREemBIYqIiIhIDwxRRERERHpgiCIiIiLSA0MUERERkR4YooioyVMoFFiwYIHcZUjGjRuHDh06yF0GEd0HQxQRmaTExEQoFArpx9bWFg899BCmTp2KgoICo+47MzMTCxYsQFFRkUG3O3DgQLVjatWqFXr37o3NmzdDpVIZZB9vvvkmUlJSDLItIqpdM7kLICKqzaJFi+Dt7Y07d+7gwIED2LhxI3bt2oWTJ0/C3t7eIPv466+/0KzZ31+HmZmZWLhwIcaNGwdnZ2eD7KPaAw88gPj4eABAYWEhPv74Y0REROCXX37BsmXL6r39N998E8899xzCwsLqvS0iqh1DFBGZtCeeeAK9evUCALzyyito3bo1Vq9ejW+++QajRo3Se7sqlQrl5eWwtbWFra2tocq9LycnJ7z00kvS64kTJ6Jz585Yv349Fi9eDCsrqwarhYjqh9N5RGRWHnvsMQBAbm4uAGDlypUICgpC69atYWdnB39/f3z55Zcan1MoFJg6dSo+++wzPPzww7CxsUFqaqr0XvU1UQsWLMDrr78OAPD29pam3vLy8jBgwAD07NlTa12dO3dGSEhInY/H3t4effv2RWlpKQoLC2vsV1paihkzZsDLyws2Njbo3LkzVq5cCSGE2jGWlpbio48+kuoeN25cnWsiIt1wJIqIzMqvv/4KAGjdujUA4J133sGwYcMwevRolJeXIykpCSNGjMDOnTsxZMgQtc/+8MMP+OKLLzB16lS4uLhovXj7mWeewS+//ILPP/8cb7/9NlxcXAAAbdq0wZgxYzBhwgScPHkS3bt3lz7z008/4ZdffsG8efP0OqaLFy/C0tKyxqlDIQSGDRuGPXv2ICIiAr6+vkhLS8Prr7+Oy5cv4+233wYAfPLJJ3jllVfQp08fREZGAgA6duyoV01EpANBRGSCtmzZIgCI77//XhQWForff/9dJCUlidatWws7Oztx6dIlIYQQt2/fVvtceXm56N69u3jsscfU2gEICwsLcerUKY19ARBxcXHS6xUrVggAIjc3V61fUVGRsLW1FbNnz1Zrnz59unBwcBC3bt2q9ZgGDBggunTpIgoLC0VhYaE4c+aMmD59ugAgnnrqKalfeHi4aN++vfQ6JSVFABBLlixR295zzz0nFAqFuHDhgtTm4OAgwsPDa62DiAyD03lEZNKCg4PRpk0beHl54YUXXkDz5s2xfft2tG3bFgBgZ2cn9b1x4waKi4vx6KOP4ueff9bY1oABA9CtWze9a3FycsLw4cPx+eefS9NoVVVVSE5ORlhYGBwcHO67jbNnz6JNmzZo06YNunbtinXr1mHIkCHYvHlzjZ/ZtWsXLC0tMX36dLX2GTNmQAiB3bt3631MRKQ/TucRkUnbsGEDHnroITRr1gxubm7o3LkzLCz+/v9/O3fuxJIlS3D06FGUlZVJ7QqFQmNb3t7e9a5n7NixSE5Oxv79+9G/f398//33KCgowJgxY3T6fIcOHfDBBx9Iyzb4+PjA1dW11s/89ttv8PT0RIsWLdTau3btKr1PRA2PIYqITFqfPn2ku/P+af/+/Rg2bBj69++Pd999Fx4eHrCyssKWLVuwdetWjf73jlrpKyQkBG5ubvj000/Rv39/fPrpp3B3d0dwcLBOn3dwcNC5LxGZNk7nEZHZ+uqrr2Bra4u0tDS8/PLLeOKJJwwSULSNYlWztLTEiy++iC+//BI3btxASkoKRo0aBUtLy3rvtybt27fHlStXcPPmTbX2s2fPSu9Xq612IjIshigiMluWlpZQKBSoqqqS2vLy8uq9Ynf1tU01rVg+ZswY3LhxAxMnTsStW7fU1n0yhieffBJVVVVYv369Wvvbb78NhUKBJ554QmpzcHAw+ErrRKQdp/OIyGwNGTIEq1evRmhoKF588UVcu3YNGzZsQKdOnXD8+HG9t+vv7w8AeOONN/DCCy/AysoKTz31lBSu/Pz80L17d2zbtg1du3bFI488YpDjqclTTz2FQYMG4Y033kBeXh569uyJ7777Dt988w2ioqLUljHw9/fH999/j9WrV8PT0xPe3t4ICAgwan1ETRVHoojIbD322GP48MMPoVQqERUVhc8//xxvvfUWnn766Xptt3fv3li8eDGOHTuGcePGYdSoURoLYY4dOxYAdL6gvD4sLCywY8cOREVFYefOnYiKisLp06exYsUKrF69Wq3v6tWr4e/vj3nz5mHUqFHYuHGj0esjaqoUQtyz3C0REenknXfewX//+1/k5eWhXbt2cpdDRDJgiCIiqiMhBHr27InWrVtjz549cpdDRDLhNVFERDoqLS3Fjh07sGfPHpw4cQLffPON3CURkYw4EkVEpKO8vDx4e3vD2dkZkydPxtKlS+UuiYhkxBBFREREpAfenUdERESkB4YoIiIiIj3wwnIjUqlUuHLlClq0aMFHMRAREZkJIQRu3rwJT09PtQee/xNDlBFduXIFXl5ecpdBREREevj999/xwAMP1Pg+Q5QRtWjRAsDdvwRHR0eZqyEiIiJdlJSUwMvLS/o9XhOGKCOqnsJzdHRkiCIiIjIz97sUhxeWExEREemBIYqIiIhIDwxRRERERHrgNVEyq6qqQkVFhdxlUAOwsrKCpaWl3GUQEZGBMETJRAgBpVKJoqIiuUuhBuTs7Ax3d3euG0ZE1AgwRMmkOkC5urrC3t6ev1QbOSEEbt++jWvXrgEAPDw8ZK6IiIjqiyFKBlVVVVKAat26tdzlUAOxs7MDAFy7dg2urq6c2iMiMnO8sFwG1ddA2dvby1wJNbTqv3NeB0dEZP4YomTEKbymh3/nRESNB0MUERERkR4YooiIiIj0wBBFdTJu3DgoFAooFApYWVnBzc0N//nPf7B582aoVCqdt5OYmAhnZ2fjFUpERGRkDFFUZ6Ghobh69Sry8vKwe/duDBo0CK+99hqGDh2KyspKucsjIqImoLKyEuXl5bLWwBBFdWZjYwN3d3e0bdsWjzzyCObOnYtvvvkGu3fvRmJiIgBg9erV6NGjBxwcHODl5YXJkyfj1q1bAIC9e/di/PjxKC4ulka1FixYAAD45JNP0KtXL7Ro0QLu7u548cUXpbWViIiIAGD37t1YunQp4uPjsWOHfHUwRJkIIQTKy8tl+RFC1Lv+xx57DD179sTXX38NALCwsMDatWtx6tQpfPTRR/jhhx8wa9YsAEBQUBDWrFkDR0dHXL16FVevXsXMmTMB3L31f/HixTh27BhSUlKQl5eHcePG1bs+IiIyfxUVFVi4cCEOHToktS1bVv/fYfriYpsmoqKiAvHx8bLsOyYmBtbW1vXeTpcuXXD8+HEAQFRUlNTeoUMHLFmyBK+++ireffddWFtbw8nJCQqFAu7u7mrbePnll6X/fvDBB7F27Vr07t0bt27dQvPmzetdIxERmaeDBw/i+++/V2vLyJiNOXPkWzqGIYoMRgghrYP0/fffIz4+HmfPnkVJSQkqKytx584d3L59u9ZFRnNycrBgwQIcO3YMN27ckC5Wz8/PR7du3RrkOIiIyLQsXLhQ7bWzc3e89tqziIuTqaD/wxBlIqysrBATEyPbvg3hzJkz8Pb2Rl5eHoYOHYpJkyZh6dKlaNWqFQ4cOICIiAiUl5fXGKJKS0sREhKCkJAQfPbZZ2jTpg3y8/MREhIi+8WDRETU8EpLS7Fy5Uq1trS0wQAC8dpr8tR0L4YoE6FQKAwypSaXH374ASdOnMB///tf5OTkQKVSYdWqVbCwuHvZ3RdffKHW39raGlVVVWptZ8+exZ9//olly5bBy8sLAHD48OGGOQAiIjIpe/bswb59+9TaunePRlpaC8yZI1NR/8AQRXVWVlYGpVKJqqoqFBQUIDU1FfHx8Rg6dCjGjh2LkydPoqKiAuvWrcNTTz2FgwcPIiEhQW0bHTp0wK1bt5CRkYGePXvC3t4e7dq1g7W1NdatW4dXX30VJ0+exOLFi2U6SiIikss/p+8AIO7/5u6efbahq6kZ786jOktNTYWHhwc6dOiA0NBQ7NmzB2vXrsU333wDS0tL9OzZE6tXr8Zbb72F7t2747PPPtO4aD4oKAivvvoqRo4ciTZt2mD58uVo06YNEhMTsW3bNnTr1g3Lli3TGMYlIqLGq6SkRCNADRo0SApQpkYhDHF/O2lVUlICJycnFBcXw9HRUWq/c+cOcnNz4e3tDVtbWxkrpIbGv3siIu3S0tLw448/qrW9/vrrtd6MZCw1/f7+J07nERERkaxqm74zZQxRREREJIurV6/i/fffV2sLCQlB3759ZaqobhiiiIiIqMGtWrVKehxYtYyM2YiLM59LHRiiiIiIqEFpm75LS4szmaULdMUQRURERA3i999/x+bNm9Xa/P39MXToUNlXH9cHQxQREREZ3ZIlSzQWWZ41axbs7Oxkqqj+GKKIiIjIqMz17rv7MYnFNjds2IAOHTrA1tYWAQEBOHToUK39t23bhi5dusDW1hY9evTArl271N4XQiA2NhYeHh6ws7NDcHAwzp8/L72fl5eHiIgIeHt7w87ODh07dkRcXJza89ny8vKgUCg0fv65hgURERFpd/HiRY0AFRQU1CgCFGACISo5ORnR0dGIi4vDzz//jJ49eyIkJATXrl3T2j8zMxOjRo1CREQEjhw5grCwMISFheHkyZNSn+XLl2Pt2rVISEhAdnY2HBwcEBISgjt37gC4+4w2lUqF9957D6dOncLbb7+NhIQEzJ07V2N/33//Pa5evSr9+Pv7G+dEEBERNSILFy7EJ598otY2Z84c/Oc//5GpIsOTfcXygIAA9O7dG+vXrwcAqFQqeHl5Ydq0aZij5TL9kSNHorS0FDt37pTa+vbtC19fXyQkJEAIAU9PT8yYMQMzZ84EABQXF8PNzQ2JiYl44YUXtNaxYsUKbNy4ERcvXgRwdyTK29sbR44cga+vr17HxhXL9Tdu3DgUFRUhJSUFADBw4ED4+vpizZo1em/TENuoL/7dE1FjJ4TAokWLNNrNafRJ1xXLZR2JKi8vR05ODoKDg6U2CwsLBAcHIysrS+tnsrKy1PoDdxfmqu6fm5sLpVKp1sfJyQkBAQE1bhO4G7RatWql0T5s2DC4urqiX79+2LFjR52OrzEaN26cNLVpbW2NTp06YdGiRaisrDTqfr/++mudH0a8d+9eKBQKFBUV6b0NIiKqu3PnzmkEKFN+9l19yXph+R9//IGqqiq4ubmptbu5ueHs2bNaP6NUKrX2VyqV0vvVbTX1+acLFy5g3bp1ag+7bd68OVatWoV///vfsLCwwFdffYWwsDCkpKRg2LBhWrdTVlaGsrIy6XVJSYnWfuYuNDQUW7ZsQVlZGXbt2oUpU6bAysoKMTExav3Ky8thbW1tkH1qC7hybIOIiLTTdvH43LlzYWVlJUM1DUP2a6LkdvnyZYSGhmLEiBGYMGGC1O7i4oLo6GhpunHZsmV46aWXsGLFihq3FR8fDycnJ+nHy8urIQ6hwdnY2MDd3R3t27fHpEmTEBwcjB07dmDcuHEICwvD0qVL4enpic6dOwO4uy7I888/D2dnZ7Rq1QrDhw9HXl6etL2qqipER0fD2dkZrVu3xqxZs/DPWeaBAwciKipKel1WVobZs2fDy8sLNjY26NSpEz788EPk5eVh0KBBAICWLVtCoVBg3LhxWrdx48YNjB07Fi1btoS9vT2eeOIJtRsQEhMT4ezsjLS0NHTt2hXNmzdHaGgorl69KvXZu3cv+vTpAwcHBzg7O+Pf//43fvvtNwOdaSIi0yeEqPHuu8YcoACZQ5SLiwssLS1RUFCg1l5QUAB3d3etn3F3d6+1f/WfumzzypUrGDRoEIKCgjSe3aNNQEAALly4UOP7MTExKC4uln5+//33+26zMbCzs5PubMzIyMC5c+eQnp6OnTt3oqKiAiEhIWjRogX279+PgwcPSmGk+jOrVq1CYmIiNm/ejAMHDuD69evYvn17rfscO3YsPv/8c6xduxZnzpzBe++9h+bNm8PLywtfffUVgLvDylevXsU777yjdRvjxo3D4cOHsWPHDmRlZUEIgSeffBIVFRVSn9u3b2PlypX45JNPsG/fPuTn50vX2lVWViIsLAwDBgzA8ePHkZWVhcjISCgUinqfUyIic3DixAmN6bvQ0NBGO333T7JO51lbW8Pf3x8ZGRkICwsDcPfC8oyMDEydOlXrZwIDA5GRkaE2opCeno7AwEAAgLe3N9zd3ZGRkSFdEF5SUoLs7GxMmjRJ+szly5cxaNAg+Pv7Y8uWLbCwuH+ePHr0KDw8PGp838bGBjY2NvfdTmMhhEBGRgbS0tIwbdo0FBYWwsHBAZs2bZKm8T799FOoVCps2rRJChdbtmyBs7Mz9u7di8GDB2PNmjWIiYnBM888AwBISEhAWlpajfv95Zdf8MUXXyA9PV269u3BBx+U3q+etnN1dYWzs7PWbZw/fx47duzAwYMHERQUBAD47LPP4OXlhZSUFIwYMQIAUFFRgYSEBHTs2BEAMHXqVOkLo6SkBMXFxRg6dKj0fteuXet+IomIzJC20ad58+bB0tJShmrkIftim9HR0QgPD0evXr3Qp08frFmzBqWlpRg/fjyAuyMObdu2RXx8PADgtddew4ABA7Bq1SoMGTIESUlJOHz4sDSSpFAoEBUVhSVLlsDHxwfe3t6YP38+PD09paB2+fJlDBw4EO3bt8fKlStRWFgo1VM9WvXRRx/B2toafn5+AO5elLx582Zs2rSpoU6NznbsAJYtA+bMAWq4XMugdu7ciebNm6OiogIqlQovvvgiFixYgClTpqBHjx5q10EdO3YMFy5cQIsWLdS2cefOHfz6668oLi7G1atXERAQIL3XrFkz9OrVS2NKr9rRo0dhaWmJAQMG6H0MZ86cQbNmzdT227p1a3Tu3BlnzpyR2uzt7aWABAAeHh7S8hutWrXCuHHjEBISgv/85z8IDg7G888/X2vQJiIydyqVSutNOk1l9OlesoeokSNHorCwELGxsVAqlfD19UVqaqp0YXh+fr7aKFFQUBC2bt2KefPmYe7cufDx8UFKSgq6d+8u9Zk1axZKS0sRGRmJoqIi9OvXD6mpqdIt5enp6bhw4QIuXLiABx54QK2ee39xL168GL/99huaNWuGLl26IDk5Gc8995wxT4deli0DsrLu/tkQIWrQoEHYuHEjrK2t4enpiWbN/v5n5ODgoNb31q1b8Pf3x2effaaxnTZt2ui1/4Z8RMA/5/MVCoXav5EtW7Zg+vTpSE1NRXJyMubNm4f09HT07du3wWokImooOTk5aksMAXfvYq8ecGhqZA9RwN0pkpqm7/bu3avRNmLECGm6RRuFQoFFixZpXacCuHstTPXFxjUJDw9HeHh4rX1MxZw5f49ENQQHBwd06tRJp76PPPIIkpOT4erqWuNaGx4eHsjOzkb//v0B3L3WKCcnB4888ojW/j169IBKpcL//vc/jeUuAEgjYf98RtO9unbtisrKSmRnZ0vTeX/++SfOnTuHbt266XRs1fz8/ODn54eYmBgEBgZi69atDFFE1Ohom76bP3++TpfDNFZN98gbkWHDgMzMhhmFqqvRo0fDxcUFw4cPx/79+5Gbm4u9e/di+vTpuHTpEoC7U7TLli1DSkoKzp49i8mTJ2us8XSvDh06IDw8HC+//DJSUlKkbX7xxRcAgPbt20OhUGDnzp0oLCzErVu3NLbh4+OD4cOHY8KECThw4ACOHTuGl156CW3btsXw4cN1Orbc3FzExMQgKysLv/32G7777jucP3+e10URUaNSUVFR4913TTlAAQxRZGT29vbYt28f2rVrh2eeeQZdu3ZFREQE7ty5I41MzZgxA2PGjEF4eDgCAwPRokULPP3007Vud+PGjXjuuecwefJkdOnSBRMmTEBpaSkAoG3btli4cCHmzJkDNze3Gkc5t2zZAn9/fwwdOhSBgYEQQmDXrl0635Jrb2+Ps2fP4tlnn8VDDz2EyMhITJkyBRMnTqzDGSIiMl07d+7Em2++qdZ26tSQJnn9kzayP/alMeNjX+if+HdPROZC2+hTWlos5sxRmOTMhyHp+tgXk7gmioiIiExDWVkZli1bptEeFxcHDkCpY4giIiIiAMC2bdtw+vRptbamfPfd/TBEERERkdbpu9jYWD6FoRYMUURERE3Y7du3tT4XlheP3x9DlIx4TX/Tw79zIjIlH3/8MXJzc9XannvuOTz88MMyVWReGKJkUH0L/e3btxt09W2S3+3btwForoRORNTQalr7iXTHECUDS0tLODs7S89gs7e355xzIyeEwO3bt3Ht2jU4Ozs3qQd0EpFpuXnzJlavXq3RzgBVdwxRMql+0HF1kKKmwdnZWfq7JyJqaAkJCSgoKFBrGz16tM6P8iJ1DFEyUSgU8PDwgKurKyoqKuQuhxqAlZUVR6CISDacvjM8hiiZWVpa8hcrEREZzY0bN7B27VqNdgao+mOIIiIiaqRWrVql8RD28ePHo127djJV1LgwRBERETVCnL4zPoYoIiKiRuTKlSv44IMPNNoZoAyPIYqIiKiR0Db6lJkZibQ0Dxmqafws5C6AiIiI6k9bgEpLi8OUKQxQxsKRKCIiIjOWm5uLjz/+WKM9Li4OnMEzLoYoIiIiM6Vt9CkyMhIeHhx9aggMUURERGaId9/JjyGKiIjIjJw7dw5JSUka7QxQDY8hioiIyExoG32aMmUKXFxcZKiGGKKIiIjMAKfvTA9DFBERkQk7fvw4tm/frtHOACU/higiIiITpW30KSoqCk5OTjJUQ//EEEVERGSCOH1n+hiiiIiITEh2djZSU1PV2hwcHDBz5kyZKqKaMEQRERGZCG2jTzNnzoSDg4MM1dD9MEQRERHJTAiBRYsWabRz+s60MUQRERHJ6H//+x/27t2r1ubu7o6JEyfKUxDpjCGKiIhIJtqm72bPng1bW1sZqqG6YogiIiJqYCqVCosXL9Zo5/SdeWGIIiIiakCpqanIzs5Wa3vwwQcxZswYmSoifTFEERERNRBt03dz586FlZWVDNVQfTFEERERGVlVVRWWLFmi0c7pO/PGEEVERGREX3/9NU6cOKHW1qNHDzzzzDMyVUSGwhBFRERkJNqm7+bNmwdLS0sZqiFDY4giIiIysIqKCrz55psa7Zy+a1wYooiIiAzok08+wcWLF9XaAgICEBoaKlNFZCwMUURERAaibfouNjYWCoVChmrI2BiiiIiI6unOnTt46623NNo5fde4MUQRERHVw3vvvQelUqnWNnDgQAwYMECmiqihMEQRERHpidN3TRtDFBERUR3dvHkTq1ev1mjn9F3TwhBFRERUB9pGn86cCUVSUoAM1ZCcLOQugIiIyFxoC1BpaXF48UUGqKaII1FERET3cf36daxbt06jPS4uDpzBa7oYooiIiGqhbfQpNDQUAQEcfWrqGKKIiIhqoC1A8eJxqsYQRURE9A+XLl3Chx9+qNHOAEX3YogiIiK6h7bRp+PHw/DVVz1lqIZMGe/OIyIi+j813X0XHs4ARZo4EkVERE3er7/+ik8//VSjnXffUW0YooiIqEnTNvr0zDPPoEePHjJUQ+aEIYqIiJos3n1H9WES10Rt2LABHTp0gK2tLQICAnDo0KFa+2/btg1dunSBra0tevTogV27dqm9L4RAbGwsPDw8YGdnh+DgYJw/f156Py8vDxEREfD29oadnR06duyIuLg4lJeXq23n+PHjePTRR2FrawsvLy8sX77ccAdNRESyOXLkCAMU1ZvsISo5ORnR0dGIi4vDzz//jJ49eyIkJATXrl3T2j8zMxOjRo1CREQEjhw5grCwMISFheHkyZNSn+XLl2Pt2rVISEhAdnY2HBwcEBISgjt37gAAzp49C5VKhffeew+nTp3C22+/jYSEBMydO1faRklJCQYPHoz27dsjJycHK1aswIIFC/D+++8b94QQEZFRLVy4EDt27FBry8kZDT8/BiiqG4UQQshZQEBAAHr37o3169cDAFQqFby8vDBt2jTMmTNHo//IkSNRWlqKnTt3Sm19+/aFr68vEhISIISAp6cnZsyYgZkzZwIAiouL4ebmhsTERLzwwgta61ixYgU2btyIixcvAgA2btyIN954A0qlEtbW1gCAOXPmICUlBWfPntXp2EpKSuDk5ITi4mI4OjrqflKIiMgotI0++fnFYdgwGYohk6Xr729ZR6LKy8uRk5OD4OBgqc3CwgLBwcHIysrS+pmsrCy1/gAQEhIi9c/NzYVSqVTr4+TkhICAgBq3CdwNWq1atVLbT//+/aUAVb2fc+fO4caNG1q3UVZWhpKSErUfIiKS34EDB2qcvmOAIn3JemH5H3/8gaqqKri5uam1u7m51Tjao1QqtfZXKpXS+9VtNfX5pwsXLmDdunVYuXKl2n68vb01tlH9XsuWLTW2Ex8fr/V/pEREJB9t38tjx47V+I4nqivZr4mS2+XLlxEaGooRI0ZgwoQJ9dpWTEwMiouLpZ/ff//dQFUSEZE+ahp9YoAiQ5B1JMrFxQWWlpYoKChQay8oKIC7u7vWz7i7u9fav/rPgoICeHh4qPXx9fVV+9yVK1cwaNAgBAUFaVwwXtN+7t3HP9nY2MDGxkbre0RE1HBSU1ORnZ2t0c6778iQZB2Jsra2hr+/PzIyMqQ2lUqFjIwMBAYGav1MYGCgWn8ASE9Pl/p7e3vD3d1drU9JSQmys7PVtnn58mUMHDgQ/v7+2LJlCyws1E9FYGAg9u3bh4qKCrX9dO7cWetUHhERmYaFCxdqBKjIyEgGKDI42afzoqOj8cEHH+Cjjz7CmTNnMGnSJJSWlmL8+PEA7s5bx8TESP1fe+01pKamYtWqVTh79iwWLFiAw4cPY+rUqQAAhUKBqKgoLFmyBDt27MCJEycwduxYeHp6IiwsDMDfAapdu3ZYuXIlCgsLoVQq1a6ZevHFF2FtbY2IiAicOnUKycnJeOeddxAdHd1wJ4eIiOqkpum7e2cmiAxF9hXLR44cicLCQsTGxkKpVMLX1xepqanSRdz5+flqo0RBQUHYunUr5s2bh7lz58LHxwcpKSno3r271GfWrFkoLS1FZGQkioqK0K9fP6SmpsLW1hbA3RGlCxcu4MKFC3jggQfU6qle8cHJyQnfffcdpkyZAn9/f7i4uCA2NhaRkZHGPiVERFRHX375JU6dOqXRztEnMibZ14lqzLhOFBGR8WkbfZo2bZrasjVEdaHr72/ZR6KIiIj0IYTAokWLNNo5+kQNhSGKiIjMzpYtW5Cfn6/RzgBFDYkhioiIzIq26bvo6Gi0aNFChmqoKWOIIiIis6BSqbB48WKNdo4+kVwYooiIyOS99dZbuHPnjkY7AxTJiSGKiIhMmrbpu1mzZsHOzk6Gaoj+xhBFREQmqbKyEkuXLtVo5+gTmQqGKCIiMjnaRp8AwM+PAYpMB0MUERGZFG0Bau7cubCyspKhGqKaMUQREZFJuHPnDt566y2Ndk7fkaliiCIiItlpG32ysLDA/PnzZaiGSDcMUUREJCttAeq77+bh4EFLGaoh0h1DFBERyeLmzZtYvXq1RntaWhzmzJGhIKI6YogiIqIGp230ycrKCnPnzgUvgSJzwRBFREQNSluAio2NhUKhkKEaIv0xRBERUYMoLCzEu+++q9HOu+/IXDFEERGR0Wkbfbp50xUrV06SoRoiw7CQuwAiImrctAWotLQ49O/PAEXmjSNRRERkFPn5+diyZYtGu59fHC8ep0aBIYqIiAxO2+hTUdEDGDQoAsOGyVAQkREwRBERkUFpC1C8eJwaI4YoIiIyiHPnziEpKUmjnQGKGiuGKCIiqjdto08PP/wwnnvuORmqIWoYDFFERFQvnL6jpoohioiI9JKdnY3U1FSNdgYoaioYooiIqM60jT61adMXkyeHyFANkTwYooiIqE44fUd0F0MUERHpJD09HZmZmRrtDFDUVDFEERHRfWkbfRo0aBD69+8vQzVEpqHOIcrS0hJXr16Fq6urWvuff/4JV1dXVFVVGaw4IiKSH6fviLSrc4gSQmhtLysrg7W1db0LIiIi0/DVV1/h5MmTGu0MUER36Ryi1q5dCwBQKBTYtGkTmjdvLr1XVVWFffv2oUuXLoavkIiIGpy20adhw4bBz89PhmqITJPOIertt98GcHckKiEhAZaWltJ71tbW6NChAxISEgxfIRERNShO3xHpRucQlZubC+DuhYRff/01WrZsabSiiIio4W3atAmXL1/WaGeAItKuztdE7dmzxxh1EBGRjLSNPo0aNQoPPfSQDNUQmYc6h6iXX3651vc3b96sdzFERNTwOH1HpJ86h6gbN26ova6oqMDJkydRVFSExx57zGCFERGRca1YsQK3b9/WaGeAItJNnUPU9u3bNdpUKhUmTZqEjh07GqQoIiIyLm2jTxEREXjggQdkqIbIPClETQs/1dG5c+cwcOBAXL161RCbaxRKSkrg5OSE4uJiODo6yl0OERGEEFi0aJFGO0efiP6m6+9vgz325ddff0VlZaWhNkdERAambfQJYIAi0ledQ1R0dLTaayEErl69im+//Rbh4eEGK4yIiAxHW4Dq2nUKnn/eRYZqiBqHOoeoI0eOqL22sLBAmzZtsGrVqvveuUdERA1LpVJh8eLFGu0cfSKqP64TRUTUSHH6jsi49L4m6tq1azh37hwAoHPnznB1dTVYUUREVD/aAtR///tf3uRCZEAWdf1ASUkJxowZA09PTwwYMAADBgxA27Zt8dJLL6G4uNgYNRIRkY4qKipqXDyTAYrIsOocoiZMmIDs7Gx8++23KCoqQlFREXbu3InDhw9j4sSJxqiRiIh0sHDhQrz55psa7Zy+IzKOOq8T5eDggLS0NPTr10+tff/+/QgNDUVpaalBCzRnXCeKiBqKttGn2bNnw9bWVoZqiMyb0daJat26NZycnDTanZyc0LJly7pujoiI6uH27dtYsWKFRjtHn4iMr84hat68eYiOjsYnn3wCd3d3AIBSqcTrr7+O+fPnG7xAIiLSjnffEcmrztN5fn5+uHDhAsrKytCuXTsAQH5+PmxsbODj46PW9+effzZcpWaI03lEZCzaAtQbb7yBZs0M9iAKoibLaNN5w4cPh0KhqFdxRESkn6KiIrzzzjsa7Rx9Imp4BnsAMWniSBQRGRKn74gahtFGoh588EH89NNPaN26tVp7UVERHnnkEVy8eLHu1RIRUa20BajY2FjODBDJqM4hKi8vD1VVVRrtZWVluHTpkkGKIiKiu5RKJd577z2Ndo4+EclP5xC1Y8cO6b/T0tLUljmoqqpCRkYGvL29DVsdEVETxuk7ItOmc4gKCwsDACgUCoSHh6u9Z2VlhQ4dOmDVqlUGLY6IqKni9B2R6dP5sS8qlQoqlQrt2rXDtWvXpNcqlQplZWU4d+4chg4dWucCNmzYgA4dOsDW1hYBAQE4dOhQrf23bduGLl26wNbWFj169MCuXbvU3hdCIDY2Fh4eHrCzs0NwcDDOnz+v1mfp0qUICgqCvb09nJ2dte5HoVBo/CQlJdX5+IiI6uLixYs1PvuOAYrItNT52Xm5ublwcXExyM6Tk5MRHR2NuLg4/Pzzz+jZsydCQkJw7do1rf0zMzMxatQoRERE4MiRIwgLC0NYWBhOnjwp9Vm+fDnWrl2LhIQEZGdnw8HBASEhIbhz547Up7y8HCNGjMCkSZNqrW/Lli24evWq9FM9GkdEZAwLFy7EJ598otZmZWXF6TsiE1XnJQ4WLVpU6/uxsbE6bysgIAC9e/fG+vXrAdwd7fLy8sK0adMwZ84cjf4jR45EaWkpdu7cKbX17dsXvr6+SEhIgBACnp6emDFjBmbOnAkAKC4uhpubGxITE/HCCy+obS8xMRFRUVEoKirS2JdCocD27dvrFZy4xAER6aqm0ScianhGW+Jg+/btaq8rKiqQm5uLZs2aoWPHjjqHqPLycuTk5CAmJkZqs7CwQHBwMLKysrR+JisrC9HR0WptISEhSElJAXB3lEypVCI4OFh638nJCQEBAcjKytIIUfczZcoUvPLKK3jwwQfx6quvYvz48bUOp5eVlaGsrEx6XVJSUqf9EVHTc+LECXz99dca7QxQRKavziHqyJEjGm0lJSUYN24cnn76aZ2388cff6Cqqgpubm5q7W5ubjh79qzWzyiVSq39lUql9H51W019dLVo0SI89thjsLe3x3fffYfJkyfj1q1bmD59eo2fiY+Pr/FuGiKif9L2feHh4YHIyEgZqiGiujLIQ5YcHR2xcOFCPPXUUxgzZowhNim7ex+m7Ofnh9LSUqxYsaLWEBUTE6M2UlZSUgIvLy+j1klE5onTd0Tmr84XltekuLgYxcXFOvd3cXGBpaUlCgoK1NoLCgrg7u6u9TPu7u619q/+sy7b1FVAQAAuXbqkNl33TzY2NnB0dFT7ISK6V2ZmJgMUUSNR55GotWvXqr0WQuDq1av45JNP8MQTT+i8HWtra/j7+yMjI0O6eFulUiEjIwNTp07V+pnAwEBkZGQgKipKaktPT0dgYCAAwNvbG+7u7sjIyICvry+Au6NB2dnZ970T736OHj2Kli1bwsbGpl7bIaKmS1t46tatG0aMGCFDNURUX3UOUW+//bbaawsLC7Rp0wbh4eFqF4nrIjo6GuHh4ejVqxf69OmDNWvWoLS0FOPHjwcAjB07Fm3btkV8fDwA4LXXXsOAAQOwatUqDBkyBElJSTh8+DDef/99AHfvqIuKisKSJUvg4+MDb29vzJ8/H56enmp32eXn5+P69evIz89HVVUVjh49CgDo1KkTmjdvjv/3//4fCgoK0LdvX9ja2iI9PR1vvvmmdMcfEVFdcfSJqPGpc4jKzc012M5HjhyJwsJCxMbGQqlUwtfXF6mpqdKF4fn5+bCw+HvGMSgoCFu3bsW8efMwd+5c+Pj4ICUlBd27d5f6zJo1C6WlpYiMjERRURH69euH1NRU2NraSn1iY2Px0UcfSa/9/PwAAHv27MHAgQNhZWWFDRs24L///S+EEOjUqRNWr16NCRMmGOzYiahpSE1NRXZ2tkY7AxSR+avzOlEAUFRUhAsXLgC4O3pT06rfTR3XiSJq2rSNPgUGBmLw4MEyVENEujLKOlF5eXmYMmUK0tLSUJ29FAoFQkNDsX79enTo0KFeRRMRNRacviNq/HQOUb///jv69u0LKysrLF68GF27dgUAnD59Ghs3bkRgYCB++uknPPDAA0YrlojI1CUlJeHcuXMa7QxQRI2PztN5ERERuHDhAtLS0tSuLwKAv/76C6GhofDx8cGmTZuMUqg54nQeUdOibfQpJCQEffv2laEaItKXwafzUlNTkZycrBGgAMDOzg6LFy+u82NViIgaC07fETU9OoeoP/74o9Zrnh588EFcv37dEDUREZmNjRs34tq1axrtDFBEjZ/OIcrDwwOnT5+u8ZqnkydP1ntVcCIic6Jt9Om5557Dww8/LEM1RNTQdH7sS1hYGGbOnInCwkKN965du4bZs2erLWhJRNSY1TR9xwBF1HTofGH5jRs3EBAQAKVSiZdeegldunSBEAJnzpzB1q1b4e7ujh9//BGtWrUyds1mgxeWEzU+S5YsQVVVlUY7p++IGg+DX1jesmVLZGdnY+7cuUhKSkJRUREAwNnZGS+++CLefPNNBigiatS0jT6NHTsW3t7eMlRDRHLTa8VyIYQ0rdemTRsoFAqDF9YYcCSKqHEQQmDRokUa7Rx9ImqcjLJieTWFQgFXV1e9iyMiMhfaRp8ABigi0jNEERE1BdoC1Kuvvio9JJ2ImjaGKCKif1CpVFi8eLFGO0efiOheDFFERPfg9B0R6UrndaKIiBo7bQHqf/+Lgp8fAxQRadJpJGrt2rU6b3D69Ol6F0NEJIeKigq8+eabGu0cfSKi2ui0xIGua6AoFApcvHix3kU1FlzigMj0cfqOiP7JoEsc5ObmGqwwIiJToS1AzZo1C3Z2djJUQ0TmRu9rosrLy3Hu3DlUVlYash4iIqO7fft2jc++Y4AiIl3VOUTdvn0bERERsLe3x8MPP4z8/HwAwLRp07Bs2TKDF0hEZEgLFy7EihUrNNo5fUdEdVXnEBUTE4Njx45h7969sLW1ldqDg4ORnJxs0OKIiAxJ2+hTz55zGaCISC91XicqJSUFycnJ6Nu3r9oz8x5++GH8+uuvBi2OiMgQbty4ofUuY4YnIqqPOoeowsJCrc/NKy0t5YOIicjk1HT3Hdd+IqL6qnOI6tWrF7799ltMmzYNAKTgtGnTJgQGBhq2OiKietAWoObPnw8LC64zTET1V+cQ9eabb+KJJ57A6dOnUVlZiXfeeQenT59GZmYm/ve//xmjRiKiOrl06RI+/PBDjXZO3xGRIdX5/47169cPR48eRWVlJXr06IHvvvsOrq6uyMrKgr+/vzFqJCLS2cKFCxmgiKhB6LRiOemHK5YTNSxt03dpabHIzOT1mkSkO4OuWF5SUqLzjhkWiKihnTt3DklJSRrtaWlxmDNHhoKIqEnQKUQ5OzvrfOddVVVVvQoiIqqL2p59xxk8IjImnULUnj17pP/Oy8vDnDlzMG7cOOluvKysLHz00UeIj483TpVERFrU9OgWIqKGUOdroh5//HG88sorGDVqlFr71q1b8f7772Pv3r2GrM+s8ZooIuP46aefsGvXLo12BigiMgRdf3/X+e68rKws9OrVS6O9V69eOHToUF03R0RUJwsXLmSAIiKTUOcQ5eXlhQ8++ECjfdOmTfDy8jJIUURE2mi/+y6OAYqIZFHnxTbffvttPPvss9i9ezcCAgIAAIcOHcL58+fx1VdfGbxAIqL09HRkZmZqtPPuOyKSk17rRF26dAnvvvsuzp49CwDo2rUrXn31VY5E/QOviSKqP22jTy1btsT06dNlqIaImgJdf39zsU0jYogiqh/efUdEcjDoYpv/VFRUhA8//BBnzpwBADz88MN4+eWX4eTkpF+1RET32LJlC/Lz8zXaGaCIyJTUeSTq8OHDCAkJgZ2dHfr06QPg7u3Gf/31F7777js88sgjRinUHHEkiqjutI0+Xbvmgw0bXpShGiJqiow2nffoo4+iU6dO+OCDD9Cs2d2BrMrKSrzyyiu4ePEi9u3bV7/KGxGGKKK60Rag3norDklJwLBhMhRERE2S0abzDh8+rBagAKBZs2aYNWuW1vWjiIjuZ/ny5fjrr7802tPSGKCIyHTVOUQ5OjoiPz8fXbp0UWv//fff0aJFC4MVRkRNg7bRp3/96194+umn+ew7IjJpdQ5RI0eOREREBFauXImgoCAAwMGDB/H6669rPAqGiKg2vPuOiMxZnUPUypUroVAoMHbsWFRWVgIArKysMGnSJCxbtszgBRJR46MtPAGAnx8DFBGZD73Xibp9+zZ+/fVXAEDHjh1hb29v0MIaA15YTqRJW4Dq168fHn/8cRmqISLSZNR1ogDA3t4ePXr00PfjRNQEcfqOiBoTnUPUyy+/rFO/zZs3610METVONU3fMUARkTnTOUQlJiaiffv28PPzA58UQ0S60hag0tKGYs4cfxmqISIyHJ1D1KRJk/D5558jNzcX48ePx0svvYRWrVoZszYiMmNCCCxatEijPS0tDnPmcO0nIjJ/dbqwvKysDF9//TU2b96MzMxMDBkyBBERERg8eDAUCoUx6zRLvLCcmipO3xGROTPaY1+q/fbbb0hMTMTHH3+MyspKnDp1Cs2bN9e74MaIIYqaIm0BavTo0ejUqZMM1RAR1Z3R786zsLCAQqGAEAJVVVX6boaIGgmVSoXFixdrtHP0iYgaqzqFqHun8w4cOIChQ4di/fr1CA0NhYWFhbFqJCITx+k7ImqKdA5RkydPRlJSEry8vPDyyy/j888/h4uLizFrIyIzoC1ATZw4Ee7u7jJUQ0TUcHS+JsrCwgLt2rWDn59frReRf/311wYrztzxmihqzMrLyxEfH6/RztEnIjJ3Br8mauzYsbwDj4gAcPqOiAio42KbxrBhwwasWLECSqUSPXv2xLp169CnT58a+2/btg3z589HXl4efHx88NZbb+HJJ5+U3hdCIC4uDh988AGKiorw73//Gxs3boSPj4/UZ+nSpfj2229x9OhRWFtbo6ioSGM/+fn5mDRpEvbs2YPmzZsjPDwc8fHxaNZM72vxiRoFbQEqKioKTk5OMlRDRCQfWa8GT05ORnR0NOLi4vDzzz+jZ8+eCAkJwbVr17T2z8zMxKhRoxAREYEjR44gLCwMYWFhOHnypNRn+fLlWLt2LRISEpCdnQ0HBweEhITgzp07Up/y8nKMGDECkyZN0rqfqqoqDBkyBOXl5cjMzMRHH32ExMRExMbGGvYEEJmRW7du1fjsOwYoImqK9F4nyhACAgLQu3dvrF+/HsDdW6S9vLwwbdo0zJkzR6P/yJEjUVpaip07d0ptffv2ha+vLxISEiCEgKenJ2bMmIGZM2cCAIqLi+Hm5obExES88MILattLTExEVFSUxkjU7t27MXToUFy5cgVubm4AgISEBMyePRuFhYWwtrbW6fh4TRQ1FjVN3/n5xXHlcSJqdHT9/S3bSFR5eTlycnIQHBz8dzEWFggODkZWVpbWz2RlZan1B4CQkBCpf25uLpRKpVofJycnBAQE1LjNmvbTo0cPKUBV76ekpASnTp2q8XNlZWUoKSlR+yEyd9oCVEbGbAYoImryZAtRf/zxB6qqqtSCCgC4ublBqVRq/YxSqay1f/WfddlmXfZz7z60iY+Ph5OTk/Tj5eWl8z6JTM21a9dqnL7bt8+WAYqImjxeJW1AMTExiI6Oll6XlJQwSJFZ4t13RET3J1uIcnFxgaWlJQoKCtTaCwoKalykz93dvdb+1X8WFBTAw8NDrY+vr6/Otbm7u+PQoUMa+7l3H9rY2NjAxsZG5/0QmSJtAapnz3kIC7OUoRoiItMl23SetbU1/P39kZGRIbWpVCpkZGQgMDBQ62cCAwPV+gNAenq61N/b2xvu7u5qfUpKSpCdnV3jNmvaz4kTJ9TuEkxPT4ejoyO6deum83aIzElubm6N03cMUEREmmSdzouOjkZ4eDh69eqFPn36YM2aNSgtLcX48eMB3F3gs23bttKqyK+99hoGDBiAVatWYciQIUhKSsLhw4fx/vvvAwAUCgWioqKwZMkS+Pj4wNvbG/Pnz4enpyfCwsKk/ebn5+P69evIz89HVVUVjh49CgDo1KkTmjdvjsGDB6Nbt24YM2YMli9fDqVSiXnz5mHKlCkcaaJGidN3RER1J2uIGjlyJAoLCxEbGwulUglfX1+kpqZKF3Hn5+erPdg4KCgIW7duxbx58zB37lz4+PggJSUF3bt3l/rMmjULpaWliIyMRFFREfr164fU1FTY2tpKfWJjY/HRRx9Jr/38/AAAe/bswcCBA2FpaYmdO3di0qRJCAwMhIODA8LDw7Fo0SJjnxKiBqctQMXGxvIJBURE9yHrOlGNHdeJIlN25MgR7NixQ6Odo09E1NQZ/Nl5RNR41LZ4JhER6YYhiqiJqenicSIiqhuGKKImIiMjAwcOHNBoZ4AiItIPQxRRE8DpOyIiw2OIImrkOH1HRGQcDFFEjVRycjLOnj2r0c4ARURkGAxRRI0QF88kIjI+hiiiRobTd0REDYMhiqiRWLVqFW7duqXRzovHiYiMgyGKqBHQNvpkZWWFuXPnylANEVHTwBBFZOa0BaikpDicOSNDMURETQhDFJGZquni8bS0OLz1VgMXQ0TUBDFEEZkhbQHKzc0Nr776KngNORFRw2CIIjIzvPuOiMg0MEQRmQmu/UREZFoYoojMgLYA1bLlvzB9+tMyVENERABDFJHJ0xag/PziMGyYDMUQEZGEIYrIRHH6jojItDFEEZkgbQGqX79+ePzxx2WohoiItGGIIjIxNU3fMT8REZkWhigiE8HpOyIi88IQRWQCtAWo4cOHw9fXt+GLISIinTBEEclIpVJh8eLFGu0cfSIiMn0MUUQy4fQdEZF5s5C7AKKmSFuASk4eCz8/BigiInPBkSiiBlReXo74+HiN9rS0OCxbBi6gSURkRhiiiBpIbdN3nMEjIjI/nM4jagDaAtT+/VM4fUdEZMY4EkVkRDdv3sTq1as12nnxOBGR+WOIIjIS3n1HRNS4MUQRGYG2ADVz5kw4ODjIUA0RERkDQxSRARUUFCAhIUGjnaNPRESND0MUkYFw+o6IqGlhiCIyAG0BKj39DRw4wP+JERE1VvyGJ6qHixcv4pNPPtFoT0uLw5w5MhREREQNhiGKSE9cPJOIqGljiCLSg7YAFRsbC4VCIUM1REQkB4YoojrIycnBzp07Ndp58TgRUdPDEEWkI959R0RE92KIItKBtgDF8ERE1LQxRBHV4ocffsD+/fs12hmgiIiIIYqoBjVN3/n5MUARERFDFJFWnL4jIqL7YYgiuse2bdtw+vRpjXYGKCIi+ieGKKL/w7vviIioLhiiiKA9QPn5xWHYMBmKISIis8AQRU3a+vXr8eeff2q0c/SJiIjuhyGKmixO3xERUX0wRFGTxLvviIiovhiiqEnh6BMRERmKhdwFEDUUbQHq5k1XLp5JRER64UgUNQm8+46IiAyNIYoaNU7fERGRsTBEUaOlLUD5+vpi+PDhMlRDRESNDUMUNUq8+46IiIyNIYoaFU7fERFRQzGJu/M2bNiADh06wNbWFgEBATh06FCt/bdt24YuXbrA1tYWPXr0wK5du9TeF0IgNjYWHh4esLOzQ3BwMM6fP6/W5/r16xg9ejQcHR3h7OyMiIgI3Lp1S3o/Ly8PCoVC4+fHH3803IGTQWkLUL/88jgDFBERGYXsISo5ORnR0dGIi4vDzz//jJ49eyIkJATXrl3T2j8zMxOjRo1CREQEjhw5grCwMISFheHkyZNSn+XLl2Pt2rVISEhAdnY2HBwcEBISgjt37kh9Ro8ejVOnTiE9PR07d+7Evn37EBkZqbG/77//HlevXpV+/P39DX8SqN60Bai0tDiMHNlPhmqIiKgpUAghhJwFBAQEoHfv3li/fj0AQKVSwcvLC9OmTcOcOXM0+o8cORKlpaXYuXOn1Na3b1/4+voiISEBQgh4enpixowZmDlzJgCguLgYbm5uSExMxAsvvIAzZ86gW7du+Omnn9CrVy8AQGpqKp588klcunQJnp6eyMvLg7e3N44cOQJfX1+9jq2kpAROTk4oLi6Go6OjXtug2nH6joiIDE3X39+yjkSVl5cjJycHwcHBUpuFhQWCg4ORlZWl9TNZWVlq/QEgJCRE6p+bmwulUqnWx8nJCQEBAVKfrKwsODs7SwEKAIKDg2FhYYHs7Gy1bQ8bNgyurq7o168fduzYUevxlJWVoaSkRO2HjEdbgHr22WcZoIiIqEHIGqL++OMPVFVVwc3NTa3dzc0NSqVS62eUSmWt/av/vF8fV1dXtfebNWuGVq1aSX2aN2+OVatWYdu2bfj222/Rr18/hIWF1Rqk4uPj4eTkJP14eXnd7xSQHoQQNU7fde/eXYaKiIioKeLdeTVwcXFBdHS09Lp37964cuUKVqxYgWE1LHMdExOj9pmSkhIGKQOrafouLS0OWmZ/iYiIjEbWEOXi4gJLS0sUFBSotRcUFMDd3V3rZ9zd3WvtX/1nQUEBPDw81PpUX9vk7u6uceF6ZWUlrl+/XuN+gbvXb6Wnp9f4vo2NDWxsbGp8n+pHW4AaP3482rVrB87gERFRQ5N1Os/a2hr+/v7IyMiQ2lQqFTIyMhAYGKj1M4GBgWr9ASA9PV3q7+3tDXd3d7U+JSUlyM7OlvoEBgaiqKgIOTk5Up8ffvgBKpUKAQEBNdZ79OhRtWBGDaOysrLGxTPbtWsnQ0VEREQmMJ0XHR2N8PBw9OrVC3369MGaNWtQWlqK8ePHAwDGjh2Ltm3bIj4+HgDw2muvYcCAAVi1ahWGDBmCpKQkHD58GO+//z4AQKFQICoqCkuWLIGPjw+8vb0xf/58eHp6IiwsDADQtWtXhIaGYsKECUhISEBFRQWmTp2KF154AZ6engCAjz76CNbW1vDz8wMAfP3119i8eTM2bdrUwGeoaatp+s7Pj0NPREQkL9lD1MiRI1FYWIjY2FgolUr4+voiNTVVujA8Pz8fFhZ/D5gFBQVh69atmDdvHubOnQsfHx+kpKSoXVA8a9YslJaWIjIyEkVFRejXrx9SU1Nha2sr9fnss88wdepUPP7447CwsMCzzz6LtWvXqtW2ePFi/Pbbb2jWrBm6dOmC5ORkPPfcc0Y+I1RNW4Dq2nUKnn/eRYZqiIiI1Mm+TlRjxnWi9PPXX39h+fLlGu1cuoCIiBqCrr+/ZR+JIroXp++IiMhcyP7YF6Jq2gLUV1+9Dj+/ONSwqgQREZFsOBJFsisuLsaaNWs02uPi4rh0ARERmSyGKJIVp++IiMhcMUSRbLQFqDfeeAPNmvGfJRERmT7+tqIGp1Qq8d5772m08+47IiIyJwxR1KBqmr5jgCIiInPDEEUNRluAWrkyFp99ppChGiIiovphiCKj++2335CYmKjR/sEHcfjsM3D5AiIiMksMUWRUtU3fcQaPiIjMGUMUGY22AMVrn4iIqLFgiCKD+/XXX/Hpp59qtHPtJyIiakwYosigtI0+2draYvbs2TJUQ0REZDwMUWQw2gIUn3tHRESNFUMU1duxY8eQkpKi0Z6WxovHiYio8WKIonrRNvrUosWD+PLLMZgzR4aCiIiIGghDFOmttrvvoqMbuhoiIqKGxRBFdZadnY3U1FSNdt59R0RETQlDFNWJttGnvn37IiQkRIZqiIiI5MMQRTrj4plERER/Y4ii+9q3bx/27Nmj0V5ezgBFRERNF0MU1Urb6NNPPw1BZGQvrv9ERERNGkMU1YjTd0RERDVjiCINGRkZOHDggEY7AxQREdHfGKJIjbbRJ2/vERg7tpsM1RAREZkuhiiScPqOiIhIdwxRhO3bt+P48eMa7QxQRERENWOIauK0jT79+OPLmDTJS4ZqiIiIzAdDVBPG6TsiIiL9MUQ1QTVN3/HZd0RERLpjiGpitI0+7do1GdnZbWSohoiIyHwxRDURQggsWrRIoz0tLQ5vvCFDQURERGaOIaoJ2L17Nw4dOqTR7ucXB14CRUREpB+GqEZO2/TdDz+8jhkz7PnsOyIionpgiGqkapq+i4vj6BMREZEhMEQ1Qunp6cjMzFRr+/NPbwQHj5WpIiIiosaHIaqR0TZ9FxMTA2traxmqISIiarwYohoJlUqFxYsXa7Rz8UwiIiLjYIhqBI4cOYIdO3aotf34Yz888sjjMlVERETU+DFEmTlt03fz5s2DpaWlDNUQERE1HQxRZkoIgbfffluj3c8vDsxPRERExscQZYb+/PNPrF+/Xq1t585n8NNPPWSqiIiIqOmxkLsAqrt7A5RK5YaVK2MxeDADFBERUUPiSJQZuny5J9q2PYYTJ4bjyy99oeWyKCIiIjIyjkSZoaFDw5CWFoexY33lLoWIiKjJ4kiUGRo2DHzuHRERkcw4EkVERESkB4YoIiIiIj0wRBERERHpgSGKiIiISA8MUURERER6YIgiIiIi0gNDFBEREZEeGKKIiIiI9MAQRURERKQHkwhRGzZsQIcOHWBra4uAgAAcOnSo1v7btm1Dly5dYGtrix49emDXrl1q7wshEBsbCw8PD9jZ2SE4OBjnz59X63P9+nWMHj0ajo6OcHZ2RkREBG7duqXW5/jx43j00Udha2sLLy8vLF++3DAHTERERGZP9hCVnJyM6OhoxMXF4eeff0bPnj0REhKCa9euae2fmZmJUaNGISIiAkeOHEFYWBjCwsJw8uRJqc/y5cuxdu1aJCQkIDs7Gw4ODggJCcGdO3ekPqNHj8apU6eQnp6OnTt3Yt++fYiMjJTeLykpweDBg9G+fXvk5ORgxYoVWLBgAd5//33jnQwiIiIyH0Jmffr0EVOmTJFeV1VVCU9PTxEfH6+1//PPPy+GDBmi1hYQECAmTpwohBBCpVIJd3d3sWLFCun9oqIiYWNjIz7//HMhhBCnT58WAMRPP/0k9dm9e7dQKBTi8uXLQggh3n33XdGyZUtRVlYm9Zk9e7bo3LmzzsdWXFwsAIji4mKdP0NERETy0vX3t6wjUeXl5cjJyUFwcLDUZmFhgeDgYGRlZWn9TFZWllp/AAgJCZH65+bmQqlUqvVxcnJCQECA1CcrKwvOzs7o1auX1Cc4OBgWFhbIzs6W+vTv3x/W1tZq+zl37hxu3LhRzyMnIiIic9dMzp3/8ccfqKqqgpubm1q7m5sbzp49q/UzSqVSa3+lUim9X91WWx9XV1e195s1a4ZWrVqp9fH29tbYRvV7LVu21KitrKwMZWVl0uvi4mIAd6cGiYiIyDxU/94WQtTaT9YQ1djEx8dj4cKFGu1eXl4yVENERET1cfPmTTg5OdX4vqwhysXFBZaWligoKFBrLygogLu7u9bPuLu719q/+s+CggJ4eHio9fH19ZX6/PPC9crKSly/fl1tO9r2c+8+/ikmJgbR0dHS66KiIrRv3x75+fm1/iWQ/kpKSuDl5YXff/8djo6OcpfTKPEcNwyeZ+PjOTa+xnKOhRC4efMmPD09a+0na4iytraGv78/MjIyEBYWBgBQqVTIyMjA1KlTtX4mMDAQGRkZiIqKktrS09MRGBgIAPD29oa7uzsyMjKk0FRSUoLs7GxMmjRJ2kZRURFycnLg7+8PAPjhhx+gUqkQEBAg9XnjjTdQUVEBKysraT+dO3fWOpUHADY2NrCxsdFod3JyMut/TObA0dGR59jIeI4bBs+z8fEcG19jOMc6DX40yGXutUhKShI2NjYiMTFRnD59WkRGRgpnZ2ehVCqFEEKMGTNGzJkzR+p/8OBB0axZM7Fy5Upx5swZERcXJ6ysrMSJEyekPsuWLRPOzs7im2++EcePHxfDhw8X3t7e4q+//pL6hIaGCj8/P5GdnS0OHDggfHx8xKhRo6T3i4qKhJubmxgzZow4efKkSEpKEvb29uK9997T+dh4d57x8RwbH89xw+B5Nj6eY+NraudY9muiRo4cicLCQsTGxkKpVMLX1xepqanSRdz5+fmwsPj7JsKgoCBs3boV8+bNw9y5c+Hj44OUlBR0795d6jNr1iyUlpYiMjISRUVF6NevH1JTU2Frayv1+eyzzzB16lQ8/vjjsLCwwLPPPou1a9dK7zs5OeG7777DlClT4O/vDxcXF8TGxqqtJUVERERNl0KI+1x6TnorKytDfHw8YmJitE7zUf3xHBsfz3HD4Hk2Pp5j42tq55ghioiIiEgPsj/2hYiIiMgcMUQRERER6YEhioiIiEgPDFFEREREemCI+j8bNmxAhw4dYGtri4CAABw6dKjW/tu2bUOXLl1ga2uLHj16YNeuXWrvCyEQGxsLDw8P2NnZITg4GOfPn1frc/36dYwePRqOjo5wdnZGREQEbt26pdbn+PHjePTRR2FrawsvLy8sX77cMAcsE1M8z3l5eVAoFBo/P/74o+EOvAHJcY6XLl2KoKAg2Nvbw9nZWet+8vPzMWTIENjb28PV1RWvv/46Kisr63WscjHVc6zt33FSUlK9jlVODX2e8/LyEBERAW9vb9jZ2aFjx46Ii4tDeXm52nYa0/eyKZ5js/pOlmuBKlOSlJQkrK2txebNm8WpU6fEhAkThLOzsygoKNDa/+DBg8LS0lIsX75cnD59WsybN0/rgp9OTk4iJSVFHDt2TAwbNkzrgp89e/YUP/74o9i/f7/o1KmT2oKfxcXFws3NTYwePVqcPHlSfP7558LOzq5OC36aElM9z7m5uQKA+P7778XVq1eln/LycuOdDCOR6xzHxsaK1atXi+joaOHk5KSxn8rKStG9e3cRHBwsjhw5Inbt2iVcXFxETEyMwc+BsZnqORZCCABiy5Ytav+O792GOZHjPO/evVuMGzdOpKWliV9//VV88803wtXVVcyYMUPaRmP6XjbVc2xO38kMUUKIPn36iClTpkivq6qqhKenp4iPj9fa//nnnxdDhgxRawsICBATJ04UQgihUqmEu7u7WLFihfR+UVGRsLGxEZ9//rkQQojTp08LAOKnn36S+uzevVsoFApx+fJlIYQQ7777rmjZsqUoKyuT+syePVt07ty5nkcsD1M9z9X/gz1y5IhBjlNOcpzje23ZskXrL/hdu3YJCwsL6UkEQgixceNG4ejoqPbv2xyY6jkW4m6I2r59ex2PyDTJfZ6rLV++XHh7e0uvG9P3sqmeY3P6Tm7y03nl5eXIyclBcHCw1GZhYYHg4GBkZWVp/UxWVpZafwAICQmR+ufm5kKpVKr1cXJyQkBAgNQnKysLzs7O6NWrl9QnODgYFhYWyM7Olvr0798f1tbWavs5d+4cbty4Uc8jb1imfJ6rDRs2DK6urujXrx927NhRvwOWgVznWBdZWVno0aOH9CSC6v2UlJTg1KlTOm9HbqZ8jqtNmTIFLi4u6NOnDzZv3gxhhksBmtJ5Li4uRqtWrdT20xi+l035HFczh+/kJh+i/vjjD1RVVal9uQOAm5sblEql1s8olcpa+1f/eb8+rq6uau83a9YMrVq1UuujbRv37sNcmPJ5bt68OVatWoVt27bh22+/Rb9+/RAWFmay/6OtiVznWBeN5d+yKZ9jAFi0aBG++OILpKen49lnn8XkyZOxbt26Om3DFJjKeb5w4QLWrVuHiRMn3nc/9+7DHJjyOTan72TZn51HJDcXFxdER0dLr3v37o0rV65gxYoVGDZsmIyVEdXN/Pnzpf/28/NDaWkpVqxYgenTp8tYlXm6fPkyQkNDMWLECEyYMEHuchqlms6xOX0nN/mRKBcXF1haWqKgoECtvaCgAO7u7lo/4+7uXmv/6j/v1+fatWtq71dWVuL69etqfbRt4959mAtTPs/aBAQE4MKFCzocmemQ6xzrorH8Wzblc6xNQEAALl26hLKysnptp6HJfZ6vXLmCQYMGISgoCO+//75O+7l3H+bAlM+xNqb6ndzkQ5S1tTX8/f2RkZEhtalUKmRkZCAwMFDrZwIDA9X6A0B6errU39vbG+7u7mp9SkpKkJ2dLfUJDAxEUVERcnJypD4//PADVCoVAgICpD779u1DRUWF2n46d+6Mli1b1vPIG5Ypn2dtjh49Cg8Pj7ofqIzkOse6CAwMxIkTJ9QCbXp6OhwdHdGtWzedtyM3Uz7H2hw9ehQtW7Y0uwfBynmeL1++jIEDB8Lf3x9btmyBhYX6r8nG8r1syudYG5P9Tpb7ynZTkJSUJGxsbERiYqI4ffq0iIyMFM7OztKdRGPGjBFz5syR+h88eFA0a9ZMrFy5Upw5c0bExcVpvc3T2dlZfPPNN+L48eNi+PDhWm+99/PzE9nZ2eLAgQPCx8dH7db7oqIi4ebmJsaMGSNOnjwpkpKShL29vVneSiuE6Z7nxMREsXXrVnHmzBlx5swZsXTpUmFhYSE2b97cAGfFsOQ6x7/99ps4cuSIWLhwoWjevLk4cuSIOHLkiLh586YQ4u8lDgYPHiyOHj0qUlNTRZs2bcx2iQNTPMc7duwQH3zwgThx4oQ4f/68ePfdd4W9vb2IjY1toDNjWHKc50uXLolOnTqJxx9/XFy6dEnt9vpqjel72VTPsTl9JzNE/Z9169aJdu3aCWtra9GnTx/x448/Su8NGDBAhIeHq/X/4osvxEMPPSSsra3Fww8/LL799lu191UqlZg/f75wc3MTNjY24vHHHxfnzp1T6/Pnn3+KUaNGiebNmwtHR0cxfvx46Qux2rFjx0S/fv2EjY2NaNu2rVi2bJlhD7yBmeJ5TkxMFF27dhX29vbC0dFR9OnTR2zbts3wB99A5DjH4eHhAoDGz549e6Q+eXl54oknnhB2dnbCxcVFzJgxQ1RUVBj8+BuCKZ7j3bt3C19fX9G8eXPh4OAgevbsKRISEkRVVZVRzkFDaOjzvGXLFq3n+J/jDY3pe9kUz7E5fScrhDDD+1+JiIiIZNbkr4kiIiIi0gdDFBEREZEeGKKIiIiI9MAQRURERKQHhigiIiIiPTBEEREREemBIYqIiIhIDwxRRERERHpgiCKiJkmpVGLatGl48MEHYWNjAy8vLzz11FPSc78mTpyIjh07ws7ODm3atMHw4cNx9uxZ6fN5eXlQKBQ4evSoxrYHDhyIqKgo6fWtW7cwdepUPPDAA7Czs0O3bt2QkJBg7EMkIiNrJncBREQNLS8vD//+97/h7OyMFStWoEePHqioqEBaWhqmTJmCs2fPwt/fH6NHj0a7du1w/fp1LFiwAIMHD0Zubi4sLS3rtL/o6Gj88MMP+PTTT9GhQwd89913mDx5Mjw9PTFs2DAjHSURGRtDFBE1OZMnT4ZCocChQ4fg4OAgtT/88MN4+eWXAQCRkZFSe4cOHbBkyRL07NkTeXl56NixY532l5mZifDwcAwcOFDa9nvvvYdDhw4xRBGZMU7nEVGTcv36daSmpmLKlClqAaqas7OzRltpaSm2bNkCb29veHl51XmfQUFB2LFjBy5fvgwhBPbs2YNffvkFgwcP1ucQiMhEMEQRUZNy4cIFCCHQpUuX+/Z999130bx5czRv3hy7d+9Geno6rK2t1foEBQVJfap/9u/fr9Zn3bp16NatGx544AFYW1sjNDQUGzZsQP/+/Q16bETUsDidR0RNihBC576jR4/Gf/7zH1y9ehUrV67E888/j4MHD8LW1lbqk5ycjK5du2p87l7r1q3Djz/+iB07dqB9+/bYt28fpkyZAk9PTwQHB9fvgIhINgxRRNSk+Pj4QKFQqN1pVxMnJyc4OTnBx8cHffv2RcuWLbF9+3aMGjVK6uPl5YVOnTqpfc7Ozk7677/++gtz587F9u3bMWTIEADAv/71Lxw9ehQrV65kiCIyY5zOI6ImpVWrVggJCcGGDRtQWlqq8X5RUZHWzwkhIIRAWVlZnfZXUVGBiooKWFiof91aWlpCpVLVaVtEZFoYooioydmwYQOqqqrQp08ffPXVVzh//jzOnDmDtWvXIjAwEBcvXkR8fDxycnKQn5+PzMxMjBgxAnZ2dnjyySfrtC9HR0cMGDAAr7/+Ovbu3Yvc3FwkJibi448/xtNPP22kIySihsDpPCJqch588EH8/PPPWLp0KWbMmIGrV6+iTZs28Pf3x8aNG2Fra4v9+/djzZo1uHHjBtzc3NC/f39kZmbC1dW1zvtLSkpCTEwMRo8ejevXr6N9+/ZYunQpXn31VSMcHRE1FIWoy1WWRERERASA03lEREREemGIIiIiItIDQxQRERGRHhiiiIiIiPTAEEVERESkB4YoIiIiIj0wRBERERHpgSGKiIiISA8MUURERER6YIgiIiIi0gNDFBEREZEeGKKIiIiI9PD/AYOd/kaHfal7AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_30.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhdElEQVR4nO3de1hU1f4G8HcG5KpA3hgwEiwvmB4hUMRjmskJjUrKSskElaTjLQ3NxBDEG4ZaamqcLoqWF6SLGRlkoFnJQcUrgpcMQ8tBFIEjKrdZvz/8uWucgQCBPcy8n+fhoVmz9t7fhSVva+29RiGEECAiIiKielHKXQARERFRS8QQRURERNQADFFEREREDcAQRURERNQADFFEREREDcAQRURERNQADFFEREREDcAQRURERNQADFFEREREDcAQRUQmT6FQYP78+XKXIRk3bhxcXV3lLoOI/gZDFBEZpISEBCgUCunLysoK3bp1w9SpU1FQUNCk196/fz/mz5+P4uLiRj3vY489pjWmtm3bom/fvli/fj00Gk2jXGPJkiXYsWNHo5yLiGpnLncBRES1WbBgAdzc3HDr1i389NNPeP/997Fr1y5kZ2fDxsamUa5x8+ZNmJv/+dfh/v37ERMTg3HjxsHBwaFRrnHH/fffj9jYWABAYWEhNm3ahNDQUJw5cwZLly695/MvWbIEzz//PAIDA+/5XERUO4YoIjJow4cPh7e3NwDglVdeQbt27fDOO+/gq6++QlBQUIPPq9FoUFFRASsrK1hZWTVWuX/L3t4eL7/8svT61VdfRffu3bFmzRosXLgQrVq1arZaiOjecDmPiFqUxx9/HACQl5cHAFi+fDkGDBiAdu3awdraGl5eXvjss890jlMoFJg6dSo2b96Mhx9+GJaWlkhJSZHeu3NP1Pz58/HGG28AANzc3KSlt/Pnz2Pw4MHo06eP3rq6d+8Of3//eo/HxsYG/fv3R1lZGQoLC2vsV1ZWhpkzZ8LFxQWWlpbo3r07li9fDiGE1hjLysqwceNGqe5x48bVuyYiqhvORBFRi3Lu3DkAQLt27QAAq1atwjPPPIMxY8agoqIC27ZtwwsvvIDk5GQEBARoHZueno7t27dj6tSpaN++vd6bt5977jmcOXMGW7duxbvvvov27dsDADp06ICxY8di4sSJyM7ORq9evaRjDh48iDNnziAyMrJBY/r1119hZmZW49KhEALPPPMM9uzZg9DQUHh4eCA1NRVvvPEGfv/9d7z77rsAgE8++QSvvPIK+vXrh7CwMADAgw8+2KCaiKgOBBGRAdqwYYMAIL7//ntRWFgoLly4ILZt2ybatWsnrK2txcWLF4UQQty4cUPruIqKCtGrVy/x+OOPa7UDEEqlUpw8eVLnWgBEdHS09HrZsmUCgMjLy9PqV1xcLKysrMSbb76p1f7aa68JW1tbcf369VrHNHjwYNGjRw9RWFgoCgsLRW5urnjttdcEAPH0009L/UJCQkTnzp2l1zt27BAAxKJFi7TO9/zzzwuFQiF++eUXqc3W1laEhITUWgcRNQ4u5xGRQfPz80OHDh3g4uKC0aNHo3Xr1vjyyy/RqVMnAIC1tbXU99q1aygpKcGjjz6Kw4cP65xr8ODB6NmzZ4Nrsbe3x4gRI7B161ZpGa26uhqJiYkIDAyEra3t357j1KlT6NChAzp06AB3d3e89957CAgIwPr162s8ZteuXTAzM8Nrr72m1T5z5kwIIfDtt982eExE1HBcziMig7Z27Vp069YN5ubmcHR0RPfu3aFU/vn/f8nJyVi0aBGOHj2K8vJyqV2hUOicy83N7Z7rCQ4ORmJiIn788UcMGjQI33//PQoKCjB27Ng6He/q6ooPP/xQ2raha9eu6NixY63H/Pbbb3B2dkabNm202t3d3aX3iaj5MUQRkUHr16+f9HTe3X788Uc888wzGDRoENatWwcnJye0atUKGzZswJYtW3T6/3XWqqH8/f3h6OiITz/9FIMGDcKnn34KlUoFPz+/Oh1va2tb575EZNi4nEdELdbnn38OKysrpKamYsKECRg+fHijBBR9s1h3mJmZ4aWXXsJnn32Ga9euYceOHQgKCoKZmdk9X7cmnTt3xh9//IH//e9/Wu2nTp2S3r+jttqJqHExRBFRi2VmZgaFQoHq6mqp7fz58/e8Y/ede5tq2rF87NixuHbtGl599VVcv35da9+npvDkk0+iuroaa9as0Wp/9913oVAoMHz4cKnN1ta20XdaJyL9uJxHRC1WQEAA3nnnHQwbNgwvvfQSLl++jLVr1+Khhx7C8ePHG3xeLy8vAMBbb72F0aNHo1WrVnj66aelcOXp6YlevXohKSkJ7u7ueOSRRxplPDV5+umnMWTIELz11ls4f/48+vTpg++++w5fffUVZsyYobWNgZeXF77//nu88847cHZ2hpubG3x8fJq0PiJTxZkoImqxHn/8cXz88cdQq9WYMWMGtm7dirfffhvPPvvsPZ23b9++WLhwIY4dO4Zx48YhKChIZyPM4OBgAKjzDeX3QqlUYufOnZgxYwaSk5MxY8YM5OTkYNmyZXjnnXe0+r7zzjvw8vJCZGQkgoKC8P777zd5fUSmSiHEX7a7JSKiOlm1ahVef/11nD9/Hg888IDc5RCRDBiiiIjqSQiBPn36oF27dtizZ4/c5RCRTHhPFBFRHZWVlWHnzp3Ys2cPTpw4ga+++krukohIRpyJIiKqo/Pnz8PNzQ0ODg6YPHkyFi9eLHdJRCQjhigiIiKiBuDTeUREREQNwBBFRERE1AC8sbwJaTQa/PHHH2jTpg0/ioGIiKiFEELgf//7H5ydnbU+8PxuDFFN6I8//oCLi4vcZRAREVEDXLhwAffff3+N7zNENaE2bdoAuP2HYGdnJ3M1REREVBelpaVwcXGRfo/XhCGqCd1ZwrOzs2OIIiIiamH+7lYc3lhORERE1AAMUUREREQNwBBFRERE1AC8J0pm1dXVqKyslLsMagatWrWCmZmZ3GUQEVEjYYiSiRACarUaxcXFcpdCzcjBwQEqlYr7hhERGQGGKJncCVAdO3aEjY0Nf6kaOSEEbty4gcuXLwMAnJycZK6IiIjuFUOUDKqrq6UA1a5dO7nLoWZibW0NALh8+TI6duzIpT0iohaON5bL4M49UDY2NjJXQs3tzp8574MjImr5GKJkxCU808M/cyIi48EQRURERNQADFFEREREDcAQRfUybtw4KBQKKBQKtGrVCo6OjvjXv/6F9evXQ6PR1Pk8CQkJcHBwaLpCiYiImhhDFNXbsGHDcOnSJZw/fx7ffvsthgwZgunTp+Opp55CVVWV3OUREZEJ0Gg0qK6ulrUGhiiqN0tLS6hUKnTq1AmPPPII5s6di6+++grffvstEhISAADvvPMOevfuDVtbW7i4uGDy5Mm4fv06AGDv3r0YP348SkpKpFmt+fPnAwA++eQTeHt7o02bNlCpVHjppZekvZWIiIgA4Ntvv8XChQsxe/ZH2LlTvjoYogyEEAIVFRWyfAkh7rn+xx9/HH369MEXX3wBAFAqlVi9ejVOnjyJjRs3Ij09HbNnzwYADBgwACtXroSdnR0uXbqES5cuYdasWQBuP/q/cOFCHDt2DDt27MD58+cxbty4e66PiIhavsrKSsTExODAgQMAADs7NZYuvfffYQ3FzTYNRGVlJWJjY2W5dkREBCwsLO75PD169MDx48cBADNmzJDaXV1dsWjRIvz73//GunXrYGFhAXt7eygUCqhUKq1zTJgwQfrnLl26YPXq1ejbty+uX7+O1q1b33ONRETUMuXn52PDhg1abWlpb2LOHPm2jmGIokYjhJD2Qfr+++8RGxuLU6dOobS0FFVVVbh16xZu3LhR6yajWVlZmD9/Po4dO4Zr165JN6vn5+ejZ8+ezTIOIiIyLF9//TUOHz4sve7VqxdGjhyJ6GgZiwJDlMFo1aoVIiIiZLt2Y8jNzYWbmxvOnz+Pp556CpMmTcLixYvRtm1b/PTTTwgNDUVFRUWNIaqsrAz+/v7w9/fH5s2b0aFDB+Tn58Pf3x8VFRWNUiMREbUcFRUVOqs0Y8eORZcuXWSqSBtDlIFQKBSNsqQml/T0dJw4cQKvv/46srKyoNFosGLFCiiVt2+72759u1Z/CwsLnacqTp06hatXr2Lp0qVwcXEBABw6dKh5BkBERAYlLy8PmzZt0mqbM2cOLC0tZapIF0MU1Vt5eTnUajWqq6tRUFCAlJQUxMbG4qmnnkJwcDCys7NRWVmJ9957D08//TR+/vlnxMfHa53D1dUV169fR1paGvr06QMbGxs88MADsLCwwHvvvYd///vfyM7OxsKFC2UaJRERyeXLL7+U7rEFAA8PD4wYMULGivTj03lUbykpKXBycoKrqyuGDRuGPXv2YPXq1fjqq69gZmaGPn364J133sHbb7+NXr16YfPmzTrTsQMGDMC///1vjBo1Ch06dEBcXBw6dOiAhIQEJCUloWfPnli6dCmWL18u0yiJiKi5lZeXIyYmRitAjRs3ziADFAAoRGM83056lZaWwt7eHiUlJbCzs5Pab926hby8PLi5ucHKykrGCqm58c+eiEi/X375BZs3b9Zqmzt3bqPdt1sfNf3+vhuX84iIiEhW27dvR25urvTa29sbAQEBMlZUNwxRREREJIubN28iLi5Oqy00NBT333+/TBXVD0MUERERNbvTp09j27ZtWm1vvfUWzM1bTjRpOZUSERGRUYiJidF63b9/f/j7+8tUTcPx6TwiIiJqFleuXNEJUBkZE1tkgAI4E0VERETN4IsvvsCJEye02r7/PgJvvNFyN5pmiCIiIqImdffsEwBER0fL/tl394ohioiIiJpEQUGBzidWPPvss/jHP/4hU0WNS/Z7otauXQtXV1dYWVnBx8cHBw4cqLV/UlISevToASsrK/Tu3Ru7du3Sel8IgaioKDg5OcHa2hp+fn44e/asVp/FixdjwIABsLGxgYODQ63Xu3r1Ku6//34oFAoUFxc3ZIhEREQmZ+vWrToBau7cuUYToACZQ1RiYiLCw8MRHR2Nw4cPo0+fPvD398fly5f19t+/fz+CgoIQGhqKI0eOIDAwEIGBgcjOzpb6xMXFYfXq1YiPj0dmZiZsbW3h7++PW7duSX0qKirwwgsvYNKkSX9bY2hoqFH9gbcU48aNQ2BgoPT6sccew4wZM+7pnI1xDiIiqp0QAjExMThz5ozUZm5ujujoaFl2H29SQkb9+vUTU6ZMkV5XV1cLZ2dnERsbq7f/iy++KAICArTafHx8xKuvviqEEEKj0QiVSiWWLVsmvV9cXCwsLS3F1q1bdc63YcMGYW9vX2N969atE4MHDxZpaWkCgLh27Vo9RidESUmJACBKSkq02m/evClycnLEzZs363U+QxASEiIACACiVatW4sEHHxQxMTGisrKy0a8zYsQI6fXVq1dFaWlpnY7ds2eP3j+v+pyjqbTkP3sior/z+++/i/nz52t95eTkyF1WvdX0+/tuss1EVVRUICsrC35+flKbUqmEn58fMjIy9B6TkZGh1R8A/P39pf55eXlQq9Vafezt7eHj41PjOWuSk5ODBQsWYNOmTVAq6/ZjKi8vR2lpqdaXMRo2bBguXbqEs2fPYubMmZg/fz6WLVum06+ioqLRrtm2bVu0adNG9nMQEZF+CQkJ+PDDD7XaIiMj4e7uLlNFTU+2EHXlyhVUV1fD0dFRq93R0RFqtVrvMWq1utb+d77X55z6lJeXIygoCMuWLcMDDzxQ5+NiY2Nhb28vfbm4uNT52JbE0tISKpUKnTt3xqRJk+Dn54edO3dKS3CLFy+Gs7MzunfvDgC4cOECXnzxRTg4OKBt27YYMWIEzp8/L52vuroa4eHhcHBwQLt27TB79myIuz4X++6luPLycrz55ptwcXGBpaUlHnroIXz88cc4f/48hgwZAgC47777oFAoMG7cOL3nuHbtGoKDg3HffffBxsYGw4cP17p/LiEhAQ4ODkhNTYW7uztat24tBcg79u7di379+sHW1hYODg745z//id9++62RftJERIZP/P/y3V//7mvdujWio6NhZmYmY2VNT/Ybyw1RREQE3N3d8fLLL9f7uJKSEunrwoULTVShYbG2tpZmndLS0nD69Gns3r0bycnJqKyshL+/P9q0aYMff/wRP//8sxRG7hyzYsUKJCQkYP369fjpp59QVFSEL7/8stZrBgcHY+vWrVi9ejVyc3Pxn//8B61bt4aLiws+//xzALc/UuDSpUtYtWqV3nOMGzcOhw4dws6dO5GRkQEhBJ588klUVlZKfW7cuIHly5fjk08+wb59+5Cfn49Zs2YBAKqqqhAYGIjBgwfj+PHjyMjIQFhYGBQKxT3/TImIWoL8/HwsWLBAq+2ll17CzJkzZaqoecm2xUH79u1hZmaGgoICrfaCggKoVCq9x6hUqlr73/leUFAAJycnrT4eHh51ri09PR0nTpzAZ599BgDSrEj79u3x1ltv6d3vArg9Q2NpaVnn67R0QgikpaUhNTUV06ZNQ2FhIWxtbfHRRx/BwuL25mmffvopNBoNPvroIylcbNiwAQ4ODti7dy+eeOIJrFy5EhEREXjuuecAAPHx8UhNTa3xumfOnMH27duxe/duaem2S5cu0vtt27YFAHTs2LHGpy/Pnj2LnTt34ueff8aAAQMAAJs3b4aLiwt27NiBF154AQBQWVmJ+Ph4PPjggwCAqVOnSn9hlJaWoqSkBE899ZT0vjFPWxMR/dV//vMfnVWeefPm1fkWGGMg20gtLCzg5eWFtLQ0qU2j0SAtLQ2+vr56j/H19dXqDwC7d++W+ru5uUGlUmn1KS0tRWZmZo3n1Ofzzz/HsWPHcPToURw9ehQfffQRAODHH3/ElClT6nye5rJzJzBgwO3vzSE5ORmtW7eGlZUVhg8fjlGjRmH+/PkAgN69e0sBCgCOHTuGX375BW3atEHr1q3RunVrtG3bFrdu3cK5c+dQUlKCS5cuwcfHRzrG3Nwc3t7eNV7/6NGjMDMzw+DBgxs8htzcXJibm2tdt127dujevTtyc3OlNhsbGykgAYCTk5P09Gjbtm0xbtw4+Pv74+mnn8aqVau0lvqIiIyRRqNBTEyMVoBq164doqOjTSpAATJvthkeHo6QkBB4e3ujX79+WLlyJcrKyjB+/HgAt5dsOnXqhNjYWADA9OnTMXjwYKxYsQIBAQHYtm0bDh06hA8++AAAoFAoMGPGDCxatAhdu3aFm5sb5s2bB2dnZ63H5fPz81FUVIT8/HxUV1fj6NGjAICHHnoIrVu31vqlCdy+fwu4Pcvwd/tKyWHpUiAj4/b3Z55p+usNGTIE77//PiwsLODs7Kz1idu2trZafa9fvw4vLy9s3rxZ5zwdOnRo0PWtra0bdFxD3P04rkKh0Lpfa8OGDXjttdeQkpKCxMREREZGYvfu3ejfv3+z1UhE1Fx+/fVXfPLJJ1ptwcHBcHNzk6kieckaokaNGoXCwkJERUVBrVbDw8MDKSkp0o3h+fn5Wql2wIAB2LJlCyIjIzF37lx07doVO3bsQK9evaQ+s2fPRllZGcLCwlBcXIyBAwciJSUFVlZWUp+oqChs3LhReu3p6QkA2LNnDx577LEmHnXjmzPndoCaM6d5rmdra4uHHnqoTn0feeQRJCYmomPHjrCzs9Pbx8nJCZmZmRg0aBCA2/caZWVl4ZFHHtHbv3fv3tBoNPjhhx90ntYEIM2EVVdX11iXu7s7qqqqkJmZKS3nXb16FadPn0bPnj3rNLY7PD094enpiYiICPj6+mLLli0MUURkdFatWqWz6XRUVJRJ3wcq+7zb1KlT8dtvv6G8vByZmZlayyt79+5FQkKCVv8XXngBp0+fRnl5ObKzs/Hkk09qva9QKLBgwQKo1WrcunUL33//Pbp166bVJyEhAUIIna+aAtRjjz0GIYRBzkIBt2ef9u9vnlmo+hozZgzat2+PESNG4Mcff0ReXh727t2L1157DRcvXgRwe4Zx6dKl2LFjB06dOoXJkyfXuju8q6srQkJCMGHCBOzYsUM65/bt2wEAnTt3hkKhQHJyMgoLC3H9+nWdc3Tt2hUjRozAxIkT8dNPP+HYsWN4+eWX0alTJ4wYMaJOY8vLy0NERAQyMjLw22+/4bvvvsPZs2d5XxQRGZXq6mrExMRo/b3s7OyM6Ohokw5QgAGEKDJuNjY22LdvHx544AE899xzcHd3R2hoKG7duiXNTM2cORNjx45FSEgIfH190aZNGzz77LO1nvf999/H888/j8mTJ6NHjx6YOHEiysrKAACdOnVCTEwM5syZA0dHR0ydOlXvOTZs2AAvLy889dRT8PX1hRACu3btqvOOujY2Njh16hRGjhyJbt26ISwsDFOmTMGrr75aj58QEZHhOnPmDBYtWqTVNmHCBEycOFGmigyLQty9IQ81mtLSUtjb26OkpERrKevWrVvIy8uDm5ub1jIjGT/+2RNRSxEXF4ebN29qtZnK8l1Nv7/vJus9UURERGRYqqqqsHjxYq22Ll26YOzYsTJVZLgYooiIiAgAcPLkSWmPxDvCwsK09l6kPzFEERERkd6NpE1l+a6hGKKIiIhM2I0bN3Q+RL6goAfWrRslU0UtB0OUjHhPv+nhnzkRGZJNmzYhLy9Pqy0xMQRLl7rKU1ALwxAlgzuP0N+4caNZd98m+d24cQOA7k7oRETNTd/yXWpqdLN9+oUxYIiSgZmZGRwcHKTPYLOxseGas5ETQuDGjRu4fPkyHBwcYGZmJndJRGSiiouLsWrVKp326OhoREfLUFALxhAlE5VKBQBSkCLT4ODgIP3ZExE1N32zT8ePP4eQkN4yVNPyMUTJRKFQwMnJCR07dkRlZaXc5VAzaNWqFWegiEg2+gJUNKee7glDlMzMzMz4i5WIiJpMYWEh1q1bp9POAHXvGKKIiIiMlL7Zp6CgIHTr1k2GaowPQxQREZER4vJd02OIIiIiMiJ//PEHPvzwQ512BqjGxxBFRERkJPTNPo0bNw6dO3eWoRrjxxBFRERkBLh81/wYooiIiFqw8+fPY+PGjTrtDFBNjyGKiIiohdI3+xQWFgYnJycZqjE9DFFEREQtEJfv5McQRURE1IKcPn0a27Zt02lngGp+DFFEREQthL7ZpylTpqB9+/YyVEMMUURERC0Al+8MD0MUERGRATt+/Di+/PJLnXYGKPkxRBERERkofbNPM2bMgL29vQzV0N0YooiIiAwQl+8MH0MUERGRAdmzZw/27dun0+7pyQBlaBiiiIiIDIS+2afXX38ddnZ2MlRDf4chioiISGZCCCxYsECnnct3ho0hioiISEbJycnIysrSalMqlZg3b55MFVFdMUQRERHJRN/y3ezZs2FtbS1DNVRfDFFERETNTKPRYOHChTrtXL5rWRiiiIiImtH27duRm5ur1ebg4IDp06fLVBE1FEMUERFRM9G3fBcREQELCwsZqqF7xRBFRETUxKqqqrB48WKddi7ftWwMUURERE1o/fr1uHDhglabi4sLJkyYIFNF1FiUchewdu1auLq6wsrKCj4+Pjhw4ECt/ZOSktCjRw9YWVmhd+/e2LVrl9b7QghERUXByckJ1tbW8PPzw9mzZ7X6LF68GAMGDICNjQ0cHBx0rnHs2DEEBQXBxcUF1tbWcHd3x6pVq+55rEREZFpiYmJ0AtRbb73FAGUkZA1RiYmJCA8PR3R0NA4fPow+ffrA398fly9f1tt///79CAoKQmhoKI4cOYLAwEAEBgYiOztb6hMXF4fVq1cjPj4emZmZsLW1hb+/P27duiX1qaiowAsvvIBJkybpvU5WVhY6duyITz/9FCdPnsRbb72FiIgIrFmzpnF/AEREZJQqKipq/Ow7c3MuAhkLhRBCyHVxHx8f9O3bVwonGo0GLi4umDZtGubMmaPTf9SoUSgrK0NycrLU1r9/f3h4eCA+Ph5CCDg7O2PmzJmYNWsWAKCkpASOjo5ISEjA6NGjtc6XkJCAGTNmoLi4+G9rnTJlCnJzc5Genl7n8ZWWlsLe3h4lJSXcsp+IyESsWrVK5/dKjx49MGrUKHkKonqr6+9v2WaiKioqkJWVBT8/vz+LUSrh5+eHjIwMvcdkZGRo9QcAf39/qX9eXh7UarVWH3t7e/j4+NR4zroqKSlB27Zt7+kcRERk3GJiYnQC1Lx58xigjJRsc4pXrlxBdXU1HB0dtdodHR1x6tQpvceo1Wq9/dVqtfT+nbaa+jTE/v37kZiYiG+++abWfuXl5SgvL5del5aWNviaRETUcty8eRNxcXE67Xz6zrhxYfZvZGdnY8SIEYiOjsYTTzxRa9/Y2Fi9a+BERGS8Fi1ahOrqaq02Ly8vPPXUUzJVRM1FtuW89u3bw8zMDAUFBVrtBQUFUKlUeo9RqVS19r/zvT7nrE1OTg6GDh2KsLAwREZG/m3/iIgIlJSUSF93P5FBRETGJSYmRidARUVFMUCZCNlClIWFBby8vJCWlia1aTQapKWlwdfXV+8xvr6+Wv0BYPfu3VJ/Nzc3qFQqrT6lpaXIzMys8Zw1OXnyJIYMGYKQkBC9G6TpY2lpCTs7O60vIiIyPsXFxTU+fadQKGSoiOQg63JeeHg4QkJC4O3tjX79+mHlypUoKyvD+PHjAQDBwcHo1KkTYmNjAQDTp0/H4MGDsWLFCgQEBGDbtm04dOgQPvjgAwCAQqHAjBkzsGjRInTt2hVubm6YN28enJ2dERgYKF03Pz8fRUVFyM/PR3V1NY4ePQoAeOihh9C6dWtkZ2fj8ccfh7+/P8LDw6X7qczMzNChQ4fm+wEREZHB0Reezp0bhE2bhshQDclJ1hA1atQoFBYWIioqCmq1Gh4eHkhJSZFuDM/Pz4dS+edk2YABA7BlyxZERkZi7ty56Nq1K3bs2IFevXpJfWbPno2ysjKEhYWhuLgYAwcOREpKCqysrKQ+UVFR2Lhxo/Ta09MTALBnzx489thj+Oyzz1BYWIhPP/0Un376qdSvc+fOOH/+fFP9OIiIyMDpC1CpqdHQsysPmQBZ94kydtwniojIOBQWFmLdunU67Xz6zjjV9fc3n84jIiKqhb7Zp0GDBmHIEC7fmTqGKCIiohrUdPM4EcAQRUREpOPixYv4+OOPddoZoOivGKKIiIj+Qt/s07Bhw+Dj4yNDNWTIGKKIiIj+H5fvqD4YooiIyOSdO3dOa0ubOxigqDYMUUREZNL0zT4999xz6N27twzVUEvCEEVERCaLy3d0LxiiiIjI5Bw+fBhff/21TrunJwMU1R1DFBERmRR9s08vvPACevbsKUM11JIxRBERkcng8h01JoYoIiIyej/99BPS0tJ02hmg6F4wRBERkVHTN/sUHBwMNzc3GaohY8IQRURERovLd9SUGKKIiMjopKSkIDMzU6edAYoaE0MUEREZFX2zT2FhYXBycpKhGjJmDFFERGQ0uHxHzYkhioiIWrxNmzYhLy9Pp52bZ1JTYogiIqIWTd/s0+TJk9GhQwcZqiFTwhBFREQtkhACCxYs0Gnn8h01F4YoIiJqcZYsWYLKykqddgYoak4MUURE1KLoW76bMWMG7O3tZaiGTJlS7gKIiIjqQqPR6A1QqanRDFAkC85EERGRwdMXnoDbAWrOnGYuhuj/MUQREZFB0xegZs2aBVtbW/AWKJITQxQRERmkyspKLFmyRKedN4+ToWCIIiIig1PT8h0DFBkShigiIjIo+gJUREQELCwsZKiGqGYMUUREZBBu3ryJuLg4nXbOPpGhYogiIiLZcfmOWiKGKCIikpW+ABUZGQkzMzMZqiGqO4YoIiKSRWlpKd59912dds4+UUvBEEVERM2Oy3dkDBiiiIioWekLUFFRUVAoFDJUQ9RwDFFERNQsCgsLsW7dOp12zj5RS8UQRURETU7f7NN9992H1157TYZqiBoHQxQRETUpfQGKs09kDJRyF7B27Vq4urrCysoKPj4+OHDgQK39k5KS0KNHD1hZWaF3797YtWuX1vtCCERFRcHJyQnW1tbw8/PD2bNntfosXrwYAwYMgI2NDRwcHPReJz8/HwEBAbCxsUHHjh3xxhtvoKqq6p7GSkRkSi5evMgARUZN1hCVmJiI8PBwREdH4/Dhw+jTpw/8/f1x+fJlvf3379+PoKAghIaG4siRIwgMDERgYCCys7OlPnFxcVi9ejXi4+ORmZkJW1tb+Pv749atW1KfiooKvPDCC5g0aZLe61RXVyMgIAAVFRXYv38/Nm7ciISEBERFRTXuD4CIyEjFxMTg448/1mpzdXVlgCKjohBCCLku7uPjg759+2LNmjUAAI1GAxcXF0ybNg1z5szR6T9q1CiUlZUhOTlZauvfvz88PDwQHx8PIQScnZ0xc+ZMzJo1CwBQUlICR0dHJCQkYPTo0VrnS0hIwIwZM1BcXKzV/u233+Kpp57CH3/8AUdHRwBAfHw83nzzTRQWFtb585tKS0thb2+PkpIS2NnZ1fnnQkTUknH2iVq6uv7+lm0mqqKiAllZWfDz8/uzGKUSfn5+yMjI0HtMRkaGVn8A8Pf3l/rn5eVBrVZr9bG3t4ePj0+N56zpOr1795YC1J3rlJaW4uTJkzUeV15ejtLSUq0vIiJTcebMGQYoMimy3Vh+5coVVFdXawUVAHB0dMSpU6f0HqNWq/X2V6vV0vt32mrqUxc1Xeev19AnNja2xg3kiIiMmb6/+/r06YPAwMDmL4aomch+Y7kxiYiIQElJifR14cIFuUsiImpyNc0+MUCRsZNtJqp9+/YwMzNDQUGBVntBQQFUKpXeY1QqVa3973wvKCiAk5OTVh8PD48616ZSqXSeErxz3ZpqAwBLS0tYWlrW+TpERC3Z0aNH8dVXX+m0c/mOTIVsM1EWFhbw8vJCWlqa1KbRaJCWlgZfX1+9x/j6+mr1B4Ddu3dL/d3c3KBSqbT6lJaWIjMzs8Zz1nSdEydOaD0luHv3btjZ2aFnz551Pg8RkbGKiYnRCVCPPvooAxSZFFk32wwPD0dISAi8vb3Rr18/rFy5EmVlZRg/fjwAIDg4GJ06dUJsbCwAYPr06Rg8eDBWrFiBgIAAbNu2DYcOHcIHH3wAAFAoFJgxYwYWLVqErl27ws3NDfPmzYOzs7PWtHJ+fj6KioqQn5+P6upqHD16FADw0EMPoXXr1njiiSfQs2dPjB07FnFxcVCr1YiMjMSUKVM400REJo83jxPdJmuIGjVqFAoLCxEVFQW1Wg0PDw+kpKRIN3Hn5+dDqfxzsmzAgAHYsmULIiMjMXfuXHTt2hU7duxAr169pD6zZ89GWVkZwsLCUFxcjIEDByIlJQVWVlZSn6ioKGzcuFF67enpCQDYs2cPHnvsMZiZmSE5ORmTJk2Cr68vbG1tERISggULFjT1j4SIyGD99NNPOqsBAAMUmS5Z94kydtwnioiMhb7Zp+HDh6Nfv34yVEPUtOr6+7veM1FmZma4dOkSOnbsqNV+9epVdOzYEdXV1fWvloiIDBaX74j0q3eIqmniqry8vM47eRMRkeH79ttv9X6eKQMU0W11DlGrV68GcPvm7Y8++gitW7eW3quursa+ffvQo0ePxq+QiIianb7Zp+effx4PP/ywDNUQGaY6h6h3330XwO2ZqPj4eJiZmUnvWVhYwNXVFfHx8Y1fIRERNSsu3xHVTZ1DVF5eHgBgyJAh+OKLL3Dfffc1WVFERNT8tm/fjtzcXJ12Bigi/ep9T9SePXuaog4iIpKRvtmn4OBguLm5yVANUctQ7xA1YcKEWt9fv359g4shIqLmx+U7ooapd4i6du2a1uvKykpkZ2ejuLgYjz/+eKMVRkRETeuDDz7ApUuXdNoZoIjqpt4h6ssvv9Rp02g0mDRpEh588MFGKYqIiJqWvtmnV199tdYPWScibY22Y/np06fx2GOP6f2/GlPFHcuJyNAIIfR+hBVnn4j+1GQ7ltfk3LlzqKqqaqzTERFRI3v77bdx69YtnXYGKKKGqXeICg8P13othMClS5fwzTffICQkpNEKIyKixqNv+e61117jdjVE96DeIerIkSNar5VKJTp06IAVK1b87ZN7RETUvDQaDRYuXKjTztknonvHfaKIiIyUvtkngAGKqLE0+J6oy5cv4/Tp0wCA7t27o2PHjo1WFBER3Rt9AWrPnlnYu9dWhmqIjJOyvgeUlpZi7NixcHZ2xuDBgzF48GB06tQJL7/8MkpKSpqiRiIiqqOqqiq9ASo1NRrh4QxQRI2p3iFq4sSJyMzMxDfffIPi4mIUFxcjOTkZhw4dwquvvtoUNRIRUR3ExMRg8eLFOu3R0dHYvx945hkZiiIyYvXeJ8rW1hapqakYOHCgVvuPP/6IYcOGoaysrFELbMm4TxQRNRd9s09z5syBpaWlDNUQtWxNtk9Uu3btYG9vr9Nub2/PR2WJiJrZrVu38Pbbb+u08+ZxoqZX7xAVGRmJ8PBwfPLJJ9LHA6jVarzxxhuYN29eoxdIRET68ek7InnVeznP09MTv/zyC8rLy/HAAw8AAPLz82FpaYmuXbtq9T18+HDjVdoCcTmPiJqKvgAVGRkJMzMzGaohMi5Ntpw3YsQIKBSKeyqOiIgapri4GKtWrdJpT02NBiegiJpXvUPU/Pnzm6AMIiL6OzUt36WmRmPOnGYuhojqv8VBly5dcPXqVZ324uJidOnSpVGKIiIibfr3fori9gVEMqr3TNT58+dRXV2t015eXo6LFy82SlFERHTbpUuX8MEHH+i0b9sWDT0P5RFRM6pziNq5c6f0z6mpqVrbHFRXVyMtLQ1ubm6NWx0RkQmr7ek73v9EJL86h6jAwEAAgEKhQEhIiNZ7rVq1gqurK1asWNGoxRERmSp9AcrDIwojRvDBHiJDUecQpdFoAABubm44ePAg2rdv32RFERGZqjNnzmDr1q067dz7icjw1PueqLy8vKaog4jI5HHzTKKWpd4hasGCBbW+HxUV1eBiiIhMlb4A5ekZzafuiAxYvUPUl19+qfW6srISeXl5MDc3x4MPPsgQRURUDwcOHMC3336r087ZJyLDV+8QdeTIEZ220tJSjBs3Ds8++2yjFEVEZAr0zT5VV5vD2/stGaohovqq92fn1eTEiRN4+umncf78+cY4nVHgZ+cRUU30BSjOPhEZhib77LyalJSUoKSkpLFOR0RklHbv3o39+/frtDNAEbU89Q5Rq1ev1nothMClS5fwySefYPjw4Y1WGBGRsdE3+1RaqsLgwa/KUA0R3at6h6h3331X67VSqUSHDh0QEhKCiIiIRiuMiMiYcPmOyPjU+wOI8/LytL7OnTuH//73v1iyZAnatGlT7wLWrl0LV1dXWFlZwcfHBwcOHKi1f1JSEnr06AErKyv07t0bu3bt0npfCIGoqCg4OTnB2toafn5+OHv2rFafoqIijBkzBnZ2dnBwcEBoaCiuX7+u1Sc1NRX9+/dHmzZt0KFDB4wcOZL3exFRvX366acMUERGqt4hCgCKi4tx6NAhHDp0CMXFxQ2+eGJiIsLDwxEdHY3Dhw+jT58+8Pf3x+XLl/X2379/P4KCghAaGoojR44gMDAQgYGByM7OlvrExcVh9erViI+PR2ZmJmxtbeHv749bt25JfcaMGYOTJ09i9+7dSE5Oxr59+xAWFia9n5eXhxEjRuDxxx/H0aNHkZqaiitXruC5555r8FiJyPTExMTg3LlzWm2XL3eDpycDFJExqNfTeefPn8eUKVOQmpqKO4cpFAoMGzYMa9asgaura70u7uPjg759+2LNmjUAbn+0jIuLC6ZNm4Y5c+bo9B81ahTKysqQnJwstfXv3x8eHh6Ij4+HEALOzs6YOXMmZs2aBeD2De+Ojo5ISEjA6NGjkZubi549e+LgwYPw9vYGAKSkpODJJ5/ExYsX4ezsjM8++wxBQUEoLy+HUnk7Z3799dcYMWIEysvL0apVqzqNj0/nEZkuzj4RtVx1/f1d55moCxcuoH///jh+/DgWLlyIzz//HJ9//jkWLFiAY8eOwdfXFxcvXqxzgRUVFcjKyoKfn9+fxSiV8PPzQ0ZGht5jMjIytPoDgL+/v9Q/Ly8ParVaq4+9vT18fHykPhkZGXBwcJACFAD4+flBqVQiMzMTAODl5QWlUokNGzaguroaJSUl+OSTT+Dn51drgCovL0dpaanWFxGZlpUrVzJAEZmIOt9YPn/+fHTv3h2pqamwsrKS2gMDA/H6669j2LBhmD9/Pj766KM6ne/KlSuorq6Go6OjVrujoyNOnTql9xi1Wq23v1qtlt6/01Zbn44dO2q9b25ujrZt20p93Nzc8N133+HFF1/Eq6++iurqavj6+urcf3W32NjYGj/7ioiMn77//vv37w9/f38ZqiGiplbnmaiUlBQsXrxYK0DdYW1tjYULF/5tyGgp1Go1Jk6ciJCQEBw8eBA//PADLCws8Pzzz6O21c+IiAhpv6ySkhJcuHChGasmIjnVNPvEAEVkvOo8E3XlypVa73nq0qULioqK6nzh9u3bw8zMDAUFBVrtBQUFUKlUeo9RqVS19r/zvaCgAE5OTlp9PDw8pD5337heVVWFoqIi6fi1a9fC3t4ecXFxUp9PP/0ULi4uyMzMRP/+/fXWZ2lpCUtLy78bOhEZkZpmn7l8R2T86jwT5eTkhJycnBrfz87OrjH86GNhYQEvLy+kpaVJbRqNBmlpafD19dV7jK+vr1Z/4Pbuv3f6u7m5QaVSafUpLS1FZmam1MfX1xfFxcXIysqS+qSnp0Oj0cDHxwcAcOPGDemG8jvMzMykGomIAP0BatiwYQxQRCaiziEqMDAQs2bNQmFhoc57ly9fxptvvonAwMB6XTw8PBwffvghNm7ciNzcXEyaNAllZWUYP348ACA4OFhrA8/p06cjJSUFK1aswKlTpzB//nwcOnQIU6dOBXD7ScEZM2Zg0aJF2LlzJ06cOIHg4GA4OztLtbm7u2PYsGGYOHEiDhw4gJ9//hlTp07F6NGj4ezsDAAICAjAwYMHsWDBApw9exaHDx/G+PHj0blzZ3h6etZrjERknGpavrvzP2NEZPzqvJwXHR2NXbt24cEHH8TLL7+MHj16QAiB3NxcbNmyBSqVClFRUfW6+KhRo1BYWIioqCio1Wp4eHggJSVFujE8Pz9fa0ZowIAB2LJlCyIjIzF37lx07doVO3bsQK9evaQ+s2fPRllZGcLCwlBcXIyBAwciJSVF616uzZs3Y+rUqRg6dCiUSiVGjhyp9XE2jz/+OLZs2YK4uDjExcXBxsYGvr6+SElJgbW1db3GSETGhct3RHRHvfaJunbtGubOnYvExERpk00HBwe8+OKLWLJkCdq2bdtUdbZI3CeKyLjoC1AvvPACevbsKUM1RNRU6vr7u14h6g4hhLSs16FDBygUioZXasQYooiMgxACCxYs0Gnn7BORcarr7+96fwAxcPveo7v3WiIiMkZcviOimjQoRBERmQJ9AWrChAlwcXGRoRoiMjQMUUREd9FoNFi4cKFOO2efiOivGKKIiP6Cy3dEVFcMUURE/09fgJo6dSratWsnQzVEZOjqFKL+uofS33nttdcaXAwRkRwqKioQGxur087ZJyKqTZ22OHBzc6vbyRQK/Prrr/dclLHgFgdEho/Ld0R0t0bd4iAvL6/RCiMiMhT6AtTMmTPRunVrGaohopamzp+dd7eKigqcPn0aVVVVjVkPEVGTu379eo2ffccARUR1Ve8QdePGDYSGhsLGxgYPP/ww8vPzAQDTpk3D0qVLG71AIqLGFBMTgxUrVui0c/mOiOqr3iEqIiICx44dw969e7U+1NfPzw+JiYmNWhwRUWPSN/v0j39EMEARUYPUe4uDHTt2IDExEf3799f6zLyHH34Y586da9TiiIgaw9WrV7FmzRqddoYnIroX9Q5RhYWFej83r6ysjB9ETEQGp6an7zw9GaCI6N7UO0R5e3vjm2++wbRp0wBACk4fffQRfH19G7c6IqJ7oC9AzZs3D0plg5+pISKS1DtELVmyBMOHD0dOTg6qqqqwatUq5OTkYP/+/fjhhx+aokYionr57bffkJCQoNPO5Tsiakz1/t+xgQMH4ujRo6iqqkLv3r3x3XffoWPHjsjIyICXl1dT1EhEVGcxMTEMUETULOq0Yzk1DHcsJ2pe+pbvoqKieL8mEdVLo+5YXlpaWucLMywQUXPLzs7G559/rtPO2Sciakp1ClEODg51/j+56urqeyqIiKg++Nl3RCSXOoWoPXv2SP98/vx5zJkzB+PGjZOexsvIyMDGjRv1fgo6EVFTqemjW4iImkO974kaOnQoXnnlFQQFBWm1b9myBR988AH27t3bmPW1aLwniqhpZGZmIiUlRaedAYqIGkNdf3/X++m8jIwMeHt767R7e3vjwIED9T0dEVG9xMTEMEARkUGod4hycXHBhx9+qNP+0UcfwcXFpVGKIiLSR9/ynadnNAMUEcmi3pttvvvuuxg5ciS+/fZb+Pj4AAAOHDiAs2fP6n06hojoXqWnp+PHH3/Uaff0jMYzz8hQEBERGrhP1MWLF7Fu3TqcOnUKAODu7o5///vfnIm6C++JIrp3+mafWrWyw9y5r8tQDRGZgrr+/uZmm02IIYro3tS0fMfZJyJqSo262ebdiouL8fHHHyM3NxcA8PDDD2PChAmwt7dvWLVERH/x+eefIzs7W6ed9z4RkSGp90zUoUOH4O/vD2tra/Tr1w8AcPDgQdy8eRPfffcdHnnkkSYptCXiTBRR/embferRowdGjRolQzVEZIqabDnv0UcfxUMPPYQPP/wQ5ua3J7Kqqqrwyiuv4Ndff8W+ffvurXIjwhBFVD/cPJOIDEGThShra2scOXIEPXr00GrPycmBt7c3bty40bCKjRBDFFHdrFmzBlevXtVpZ4AiIjk02WabdnZ2yM/P12m/cOEC2rRpU9/TEZGJi4mJ0QlQR470hacnAxQRGbZ6h6hRo0YhNDQUiYmJuHDhAi5cuIBt27bp/SgYIqLa6Fu+S02NxoQJT/IJPCIyePV+Om/58uVQKBQIDg5GVVUVAKBVq1aYNGkSli5d2ugFEpHx0ReegNvLd1zBI6KWosH7RN24cQPnzp0DADz44IOwsbFp1MKMAe+JItKlL0D961//woABA2SohohIV5PuEwUANjY26N27d0MPJyITxKfviMiY1PmeqAkTJtTpq77Wrl0LV1dXWFlZwcfHBwcOHKi1f1JSEnr06AErKyv07t0bu3bt0npfCIGoqCg4OTnB2toafn5+OHv2rFafoqIijBkzBnZ2dnBwcEBoaCiuX7+uc57ly5ejW7dusLS0RKdOnbB48eJ6j4+IbocnBigiMjZ1DlEJCQnYs2cPiouLce3atRq/6iMxMRHh4eGIjo7G4cOH0adPH/j7++Py5ct6++/fvx9BQUEIDQ3FkSNHEBgYiMDAQK2djePi4rB69WrEx8cjMzMTtra28Pf3x61bt6Q+Y8aMwcmTJ7F7924kJydj3759CAsL07rW9OnT8dFHH2H58uU4deoUdu7cKW0uSkR1py88jRw5kgGKiFq8Ot8TNWXKFGzduhWdO3fG+PHj8fLLL6Nt27b3dHEfHx/07dsXa9asAQBoNBq4uLhg2rRpmDNnjk7/UaNGoaysDMnJyVJb//794eHhgfj4eAgh4OzsjJkzZ2LWrFkAgJKSEjg6OiIhIQGjR49Gbm4uevbsiYMHD8Lb2xsAkJKSgieffBIXL16Es7MzcnNz8Y9//APZ2dno3r17g8fHe6LIlAkhsGDBAp12hiciMnSNvk/U2rVrcenSJcyePRtff/01XFxc8OKLLyI1NRUNuTe9oqICWVlZ8PPz+7MYpRJ+fn7IyMjQe0xGRoZWfwDw9/eX+ufl5UGtVmv1sbe3h4+Pj9QnIyMDDg4OUoACAD8/PyiVSmRmZgIAvv76a3Tp0gXJyclwc3ODq6srXnnlFRQVFdV7nESmKCYmhgGKiIxevW4st7S0RFBQEIKCgvDbb78hISEBkydPRlVVFU6ePInWrVvX+VxXrlxBdXU1HB0dtdodHR1x6tQpvceo1Wq9/dVqtfT+nbba+nTs2FHrfXNzc7Rt21bq8+uvv+K3335DUlISNm3ahOrqarz++ut4/vnnkZ6eXuOYysvLUV5eLr0uLS2tsS+RsdK3fDdu3Dh07txZhmqIiJpOg5/OUyqVUCgUEEKgurq6MWuSnUajQXl5OTZt2oRu3boBAD7++GN4eXnh9OnTNS7xxcbG1rj/DZGx02g0WLhwoU67p2c0mJ+IyBjVa8fy8vJybN26Ff/617/QrVs3nDhxAmvWrEF+fn69ZqEAoH379jAzM0NBQYFWe0FBAVQqld5jVCpVrf3vfP+7PnffuF5VVYWioiKpj5OTE8zNzaUABQDu7u4AoPcjb+6IiIhASUmJ9HXhwoUa+xIZk5iYGL0BKjo6mjuPE5HRqnOImjx5MpycnLB06VI89dRTuHDhApKSkvDkk09Cqaz3p8fAwsICXl5eSEtLk9o0Gg3S0tLg6+ur9xhfX1+t/gCwe/duqb+bmxtUKpVWn9LSUmRmZkp9fH19UVxcjKysLKlPeno6NBoNfHx8AAD//Oc/UVVVJW0mCgBnzpwBgFqXJCwtLWFnZ6f1RWTs9M2+Tp48mfc/EZHRq/PTeUqlEg888AA8PT2hUChq7PfFF1/U+eKJiYkICQnBf/7zH/Tr1w8rV67E9u3bcerUKTg6OiI4OBidOnVCbGwsgNtbHAwePBhLly5FQEAAtm3bhiVLluDw4cPo1asXAODtt9/G0qVLsXHjRri5uWHevHk4fvw4cnJyYGVlBQAYPnw4CgoKEB8fj8rKSowfPx7e3t7YsmULgNthrm/fvmjdujVWrlwJjUaDKVOmwM7ODt99912dx8en88iYVVZWYsmSJTrtDE9E1NI1+o7lwcHBtYanhhg1ahQKCwsRFRUFtVoNDw8PpKSkSDeG5+fna81yDRgwAFu2bEFkZCTmzp2Lrl27YseOHVKAAoDZs2ejrKwMYWFhKC4uxsCBA5GSkiIFKADYvHkzpk6diqFDh0KpVGLkyJFYvXq19L5SqcTXX3+NadOmYdCgQbC1tcXw4cOxYsWKRh0/UUtV22ffERGZigZ/dh79Pc5EkTHSF6D27AlHeHgb3v9EREahyT87j4hMy40bN7Bs2TKd9ujoaHACiohMEUMUEf0tLt8REeliiCKiWukLUHPmzIGlpaUM1RARGQ6GKCLSq6ioCO+9955OO2efiIhuY4giIh1cviMi+nsMUUSkRV+AioyMhJmZmQzVEBEZLoYoIgIA/P777/joo4902jn7RESkH0MUEXH5joioARiiiEycvgAVFRXV6J9QQERkbBiiiEzU6dOnsW3bNp12zj4REdUNQxSRCeLyHRHRvWOIIjIx+gIUwxMRUf0xRBGZiIMHD2LXrl067QxQREQNwxBFZAK4fEdE1PgYooiMHJfviIiaBkMUkZH6/vvv8fPPP+u0M0ARETUOhigiI6Rv9qm83BZLlsySoRoiIuOklLsAImpc+gJUamo0+vdngCIiakyciSIyEklJScjJydFpj46OBlfwiIgaH0MUkRHQN/vUurUrZs4MkaEaIiLTwBBF1MLVtHy3f78MxRARmRCGKKIWauXKlSgpKdFpT02Nxpw5MhRERGRiGKKIWiB9s0/t2nli6tRneP8TEVEzYYgiamG4eSYRkWFgiCJqIfjRLUREhoUhiqgF0BegBg8ejMcee6z5iyEiIgAMUUQGj8t3RESGiSGKyEDVtHzn6ckARURkCPixL0QGSF+AOn78OXh6RuOZZ2QoiIiIdHAmisjAcPmOiKhlYIgiMhB8+o6IqGVhiCIyAPoC1MGDwUhOdpOhGiIiqgveE0UkIyFEjZ99FxbGAEVEZMg4E0Ukk9qW77iCR0Rk+BiiiGSgL0BNnjwZHTp0kKEaIiJqCIYoomZUVVWFxYsX67Tz5nEiopaHIYqomfDpOyIi42IQN5avXbsWrq6usLKygo+PDw4cOFBr/6SkJPTo0QNWVlbo3bs3du3apfW+EAJRUVFwcnKCtbU1/Pz8cPbsWa0+RUVFGDNmDOzs7ODg4IDQ0FBcv35d7/V++eUXtGnTBg4ODvc0TjJd+gLUV1+9zt3HiYhaMNlDVGJiIsLDwxEdHY3Dhw+jT58+8Pf3x+XLl/X2379/P4KCghAaGoojR44gMDAQgYGByM7OlvrExcVh9erViI+PR2ZmJmxtbeHv749bt25JfcaMGYOTJ09i9+7dSE5Oxr59+xAWFqZzvcrKSgQFBeHRRx9t/MGT0btx40aNm2cePmzH3ceJiFowhRBCyFmAj48P+vbtizVr1gAANBoNXFxcMG3aNMyZM0en/6hRo1BWVobk5GSprX///vDw8EB8fDyEEHB2dsbMmTMxa9YsAEBJSQkcHR2RkJCA0aNHIzc3Fz179sTBgwfh7e0NAEhJScGTTz6JixcvwtnZWTr3m2++iT/++ANDhw7FjBkzUFxcXOexlZaWwt7eHiUlJbCzs2vIj4daMC7fERG1THX9/S3rTFRFRQWysrLg5+cntSmVSvj5+SEjI0PvMRkZGVr9AcDf31/qn5eXB7VardXH3t4ePj4+Up+MjAw4ODhIAQoA/Pz8oFQqkZmZKbWlp6cjKSkJa9eurdN4ysvLUVpaqvVFpklfgHrvvTe5fEdEZERkDVFXrlxBdXU1HB0dtdodHR2hVqv1HqNWq2vtf+f73/Xp2LGj1vvm5uZo27at1Ofq1asYN24cEhIS6jyLFBsbC3t7e+nLxcWlTseR8SgqKqpx88z16624fEdEZET4dF4NJk6ciJdeegmDBg2q8zEREREIDw+XXpeWljJImRBunklEZFpkDVHt27eHmZkZCgoKtNoLCgqgUqn0HqNSqWrtf+d7QUEBnJyctPp4eHhIfe6+cb2qqgpFRUXS8enp6di5cyeWL18O4PYTfxqNBubm5vjggw8wYcIEndosLS1haWlZ1+GTEdEXoCIjI2FmZiZDNURE1BxkXc6zsLCAl5cX0tLSpDaNRoO0tDT4+vrqPcbX11erPwDs3r1b6u/m5gaVSqXVp7S0FJmZmVIfX19fFBcXIysrS+qTnp4OjUYDHx8fALfvmzp69Kj0tWDBArRp0wZHjx7Fs88+2zg/AGrxfv/99xqfvmOAIiIybrIv54WHhyMkJATe3t7o168fVq5cibKyMowfPx4AEBwcjE6dOiE2NhYAMH36dAwePBgrVqxAQEAAtm3bhkOHDuGDDz4AACgUCsyYMQOLFi1C165d4ebmhnnz5sHZ2RmBgYEAAHd3dwwbNgwTJ05EfHw8KisrMXXqVIwePVp6Ms/d3V2rzkOHDkGpVKJXr17N9JMhQ8en74iITJvsIWrUqFEoLCxEVFQU1Go1PDw8kJKSIt0Ynp+fD6XyzwmzAQMGYMuWLYiMjMTcuXPRtWtX7NixQyvczJ49G2VlZQgLC0NxcTEGDhyIlJQUWFlZSX02b96MqVOnYujQoVAqlRg5ciRWr17dfAOnFk1fgIqKioJCoZChGiIikoPs+0QZM+4TZXxycnKQlJSk087ZJyIi41HX39+yz0QRtRRcviMior9iiCKqg5r2ftq/X4ZiiIjIIDBEEdXip59+0nkaFLgdoPR8KhEREZkQhiiiGtS0fOfpyc0ziYiIIYpIr5r2fiIiIrqDIYroL3bu3IkjR47otDNAERHR3RiiiP5fbct3REREd2OIIoL+AFVREY3Fi2UohoiIWgSGKDJp69evx4ULF3TaPT2j8cwzMhREREQtBkMUmSx9s082NjZ44403ZKiGiIhaGoYoMkl8+o6IiO4VQxSZlCVLlqCyslKnnQGKiIjqiyGKTIa+2aerV93g5xcsQzVERNTSMUSRSeDyHRERNTaGKDJqNe39xABFRET3iiGKjJa+ANW3b188+eSTMlRDRETGhiGKjBKX74iIqKkxRJFR4fIdERE1F4YoMhr6AtQTTzwBX19fGaohIiJjxxBFRkFfgPL0jAbzExERNRWGKGrRuHxHRERyYYiiFktfgHrxxRfh7u4uQzVERGRqGKKoxRFCYMGCBTrtnH0iIqLmxBBFLUpNy3eengxQRETUvBiiqMXQF6C6dQtFUND9MlRDRESmjiGKDF5VVRUWL16s087lOyIikhNDFBk0Pn1HRESGiiGKDJa+ALVv3zSkpbWVoRoiIiJtDFFkcG7evIm4uDid9tTUaMyZI0NBREREejBEkUGpbfmOK3hERGRIGKLIYOgLUG+88QZsbGxkqIaIiKh2DFEku2vXrmH16tU67bx5nIiIDBlDFMmKT98REVFLxRBFstEXoN566y2Ym/NfSyIiMnxKuQsg03P58mW9AWrr1mgGKCIiajH4G4uaVU3Ld6mp0dCzqwEREZHBMoiZqLVr18LV1RVWVlbw8fHBgQMHau2flJSEHj16wMrKCr1798auXbu03hdCICoqCk5OTrC2toafnx/Onj2r1aeoqAhjxoyBnZ0dHBwcEBoaiuvXr0vv7927FyNGjICTkxNsbW3h4eGBzZs3N96gTZC+ALV8eRQ8PaOxfz/wzDMyFEVERNRAsoeoxMREhIeHIzo6GocPH0afPn3g7++Py5cv6+2/f/9+BAUFITQ0FEeOHEFgYCACAwORnZ0t9YmLi8Pq1asRHx+PzMxM2Nrawt/fH7du3ZL6jBkzBidPnsTu3buRnJyMffv2ISwsTOs6//jHP/D555/j+PHjGD9+PIKDg5GcnNx0Pwwjdf78eb0BKjU1Gps3KxieiIioRVIIIYScBfj4+KBv375Ys2YNAECj0cDFxQXTpk3DHD3bU48aNQplZWVaYaZ///7w8PBAfHw8hBBwdnbGzJkzMWvWLABASUkJHB0dkZCQgNGjRyM3Nxc9e/bEwYMH4e3tDQBISUnBk08+iYsXL8LZ2VlvrQEBAXB0dMT69evrNLbS0lLY29ujpKQEdnZ29fq5GAs+fUdERC1NXX9/yzoTVVFRgaysLPj5+UltSqUSfn5+yMjI0HtMRkaGVn8A8Pf3l/rn5eVBrVZr9bG3t4ePj4/UJyMjAw4ODlKAAgA/Pz8olUpkZmbWWG9JSQnatq35c9vKy8tRWlqq9WXKapp98vRkgCIiopZP1hB15coVVFdXw9HRUavd0dERarVa7zFqtbrW/ne+/12fjh07ar1vbm6Otm3b1njd7du34+DBgxg/fnyN44mNjYW9vb305eLiUmNfY5abm6s3QPHeJyIiMiZ8Oq8O9uzZg/Hjx+PDDz/Eww8/XGO/iIgIhIeHS69LS0tNLkjVtHzn6RnN8EREREZF1hDVvn17mJmZoaCgQKu9oKAAKpVK7zEqlarW/ne+FxQUwMnJSauPh4eH1OfuG9erqqpQVFSkc90ffvgBTz/9NN59910EBwfXOh5LS0tYWlrW2seY1TT7xPBERETGSNblPAsLC3h5eSEtLU1q02g0SEtLg6+vr95jfH19tfoDwO7du6X+bm5uUKlUWn1KS0uRmZkp9fH19UVxcTGysrKkPunp6dBoNPDx8ZHa9u7di4CAALz99ttaT+6RtoMHD+oNUNHRDFBERGS8ZF/OCw8PR0hICLy9vdGvXz+sXLkSZWVl0r1HwcHB6NSpE2JjYwEA06dPx+DBg7FixQoEBARg27ZtOHToED744AMAgEKhwIwZM7Bo0SJ07doVbm5umDdvHpydnREYGAgAcHd3x7BhwzBx4kTEx8ejsrISU6dOxejRo6Un8/bs2YOnnnoK06dPx8iRI6V7pSwsLGq9udzU6AtPVlYd8eabk2SohoiIqPnIHqJGjRqFwsJCREVFQa1Ww8PDAykpKdKN4fn5+VAq/5wwGzBgALZs2YLIyEjMnTsXXbt2xY4dO9CrVy+pz+zZs1FWVoawsDAUFxdj4MCBSElJgZWVldRn8+bNmDp1KoYOHQqlUomRI0di9erV0vsbN27EjRs3EBsbKwU4ABg8eDD27t3bhD+RloPLd0REZMpk3yfKmBnrPlHff/89fv75Z5127v1ERETGoK6/v2WfiaKWRd/sk7u7O1588UUZqiEiIpIPQxTVWU03jxMREZkihij6Wzt37sSRI0d02rnzOBERmTKGKKqVvtmnQYMGYciQITJUQ0REZDgYoqhGXL4jIiKqGUMU6UhMTMSpU6d02hmgiIiI/sQQRVr0zT4FBATA29tbhmqIiIgMl6wf+0KGRV+ASk2NZoAiIiLSgzNRhC+//BLHjx/XaV++PBqbN8tQEBERUQvAEGXi9M0+ffNNMMzN3bB5M/gRLkRERDVgiDJh+gLU1q3RiItjeCIiIvo7DFEmKCkpCTk5OTrtFRXR0PNQHhEREenBEGVi9M0+/fjjVLz2WjvOPhEREdUDQ5SJEEJgwYIFOu3c+4mIiKhhGKJMwPr163HhwgWddgYoIiKihmOIMnL6lu/Cw8PRpk0bGaohIiIyHgxRRkqj0WDhwoU67Zx9IiIiahwMUUbo448/xsWLF3XaGaCIiIgaD0OUkdG3fJeW9ib27bOSoRoiIiLjxRBlJKqrq7Fo0SKd9tTUaMyZI0NBRERERo4hygj88MMP2Lt3r1bbjRs2ePvtN8AVPCIioqbBENXC6Vu+e+edSEydaiZDNURERKaDIaqFqmnzzNTUaJSUyFAQERGRiWGIaoGuXr2KNWvWaLV99tlIXLvWC+vWyVQUERGRiWGIaoH+GqDKy63w5Zez8fbbCn72HRERUTNiiGqBfv+9Dzp1OoYTJ0bgs888sGSJ3BURERGZHqXcBVD9PfVUIFJToxEc7CF3KURERCaLM1Et0DPPgEt3REREMuNMFBEREVEDMEQRERERNQBDFBEREVEDMEQRERERNQBDFBEREVEDMEQRERERNQBDFBEREVEDMEQRERERNQBDFBEREVEDGESIWrt2LVxdXWFlZQUfHx8cOHCg1v5JSUno0aMHrKys0Lt3b+zatUvrfSEEoqKi4OTkBGtra/j5+eHs2bNafYqKijBmzBjY2dnBwcEBoaGhuH79ulaf48eP49FHH4WVlRVcXFwQFxfXOAMmIiKiFk/2EJWYmIjw8HBER0fj8OHD6NOnD/z9/XH58mW9/ffv34+goCCEhobiyJEjCAwMRGBgILKzs6U+cXFxWL16NeLj45GZmQlbW1v4+/vj1q1bUp8xY8bg5MmT2L17N5KTk7Fv3z6EhYVJ75eWluKJJ55A586dkZWVhWXLlmH+/Pn44IMPmu6HQURERC2HkFm/fv3ElClTpNfV1dXC2dlZxMbG6u3/4osvioCAAK02Hx8f8eqrrwohhNBoNEKlUolly5ZJ7xcXFwtLS0uxdetWIYQQOTk5AoA4ePCg1Ofbb78VCoVC/P7770IIIdatWyfuu+8+UV5eLvV58803Rffu3es8tpKSEgFAlJSU1PkYIiIiklddf3/LOhNVUVGBrKws+Pn5SW1KpRJ+fn7IyMjQe0xGRoZWfwDw9/eX+ufl5UGtVmv1sbe3h4+Pj9QnIyMDDg4O8Pb2lvr4+flBqVQiMzNT6jNo0CBYWFhoXef06dO4du2a3trKy8tRWlqq9UVERETGyVzOi1+5cgXV1dVwdHTUand0dMSpU6f0HqNWq/X2V6vV0vt32mrr07FjR633zc3N0bZtW60+bm5uOue48959992nU1tsbCxiYmJ02hmmiIiIWo47v7eFELX2kzVEGZuIiAiEh4dLr3///Xf07NkTLi4uMlZFREREDfG///0P9vb2Nb4va4hq3749zMzMUFBQoNVeUFAAlUql9xiVSlVr/zvfCwoK4OTkpNXHw8ND6nP3jetVVVUoKirSOo++6/z1GneztLSEpaWl9Lp169bIyclBz549ceHCBdjZ2ek9zliVlpbCxcXFJMcOmPb4TXnsAMdvyuM35bEDxjN+IQT+97//wdnZudZ+soYoCwsLeHl5IS0tDYGBgQAAjUaDtLQ0TJ06Ve8xvr6+SEtLw4wZM6S23bt3w9fXFwDg5uYGlUqFtLQ0KTSVlpYiMzMTkyZNks5RXFyMrKwseHl5AQDS09Oh0Wjg4+Mj9XnrrbdQWVmJVq1aSdfp3r273qU8fZRKJTp16gQAsLOza9H/Qt0LUx47YNrjN+WxAxy/KY/flMcOGMf4a5uBukP2LQ7Cw8Px4YcfYuPGjcjNzcWkSZNQVlaG8ePHAwCCg4MREREh9Z8+fTpSUlKwYsUKnDp1CvPnz8ehQ4ek0KVQKDBjxgwsWrQIO3fuxIkTJxAcHAxnZ2cpqLm7u2PYsGGYOHEiDhw4gJ9//hlTp07F6NGjpdT50ksvwcLCAqGhoTh58iQSExOxatUqreU6IiIiMl2y3xM1atQoFBYWIioqCmq1Gh4eHkhJSZFu4s7Pz4dS+WfWGzBgALZs2YLIyEjMnTsXXbt2xY4dO9CrVy+pz+zZs1FWVoawsDAUFxdj4MCBSElJgZWVldRn8+bNmDp1KoYOHQqlUomRI0di9erV0vv29vb47rvvMGXKFHh5eaF9+/aIiorS2kuKiIiITFizbLhgwm7duiWio6PFrVu35C6l2Zny2IUw7fGb8tiF4PhNefymPHYhTG/8CiH+5vk9IiIiItIh+z1RRERERC0RQxQRERFRAzBEERERETUAQxQRERFRAzBE3WXt2rVwdXWFlZUVfHx8cODAgVr7JyUloUePHrCyskLv3r2xa9curfeFEIiKioKTkxOsra3h5+eHs2fPavUpKirCmDFjYGdnBwcHB4SGhuL69etafY4fP45HH30UVlZWcHFxQVxcXOMM+C8Mcex79+7FiBEj4OTkBFtbW3h4eGDz5s2NN+i/MMTx/9Uvv/yCNm3awMHB4Z7GqY+hjl0IgeXLl6Nbt26wtLREp06dsHjx4sYZ9F8Y6vhTU1PRv39/tGnTBh06dMDIkSNx/vz5RhnzHXKMffHixRgwYABsbGxq/Pc5Pz8fAQEBsLGxQceOHfHGG2+gqqrqnsaqjyGO/9ixYwgKCoKLiwusra3h7u6OVatW3fNY9THE8f/V1atXcf/990OhUKC4uLghQ2xaMj0VaJC2bdsmLCwsxPr168XJkyfFxIkThYODgygoKNDb/+effxZmZmYiLi5O5OTkiMjISNGqVStx4sQJqc/SpUuFvb292LFjhzh27Jh45plnhJubm7h586bUZ9iwYaJPnz7iv//9r/jxxx/FQw89JIKCgqT3S0pKhKOjoxgzZozIzs4WW7duFdbW1uI///mP0Y998eLFIjIyUvz888/il19+EStXrhRKpVJ8/fXXjTZ2Qx7/HRUVFcLb21sMHz5c2Nvbm8zYp02bJrp37y6++uor8euvv4pDhw6J7777ziTG/+uvvwpLS0sREREhfvnlF5GVlSUGDRokPD09W/zYo6KixDvvvCPCw8P1/vtcVVUlevXqJfz8/MSRI0fErl27RPv27UVERESjjd2Qx//xxx+L1157Tezdu1ecO3dOfPLJJ8La2lq89957JjH+vxoxYoQYPny4ACCuXbvWGMNuVAxRf9GvXz8xZcoU6XV1dbVwdnYWsbGxevu/+OKLIiAgQKvNx8dHvPrqq0IIITQajVCpVGLZsmXS+8XFxcLS0lJs3bpVCCFETk6OACAOHjwo9fn222+FQqEQv//+uxBCiHXr1on77rtPlJeXS33efPNN0b1793sc8Z8Mdez6PPnkk2L8+PH1H2QtDH38s2fPFi+//LLYsGFDo4coQx17Tk6OMDc3F6dOnWqcgdbAUMeflJQkzM3NRXV1tdRn586dQqFQiIqKinsc9W1yjP2vavr3edeuXUKpVAq1Wi21vf/++8LOzk7r78F7Zajj12fy5MliyJAhdepbV4Y+/nXr1onBgweLtLQ0gw1RXM77fxUVFcjKyoKfn5/UplQq4efnh4yMDL3HZGRkaPUHAH9/f6l/Xl4e1Gq1Vh97e3v4+PhIfTIyMuDg4ABvb2+pj5+fH5RKJTIzM6U+gwYNgoWFhdZ1Tp8+jWvXrt3jyA177PqUlJSgbdu29R9oDQx9/Onp6UhKSsLatWvvfbB3MeSxf/311+jSpQuSk5Ph5uYGV1dXvPLKKygqKmqcwcOwx+/l5QWlUokNGzaguroaJSUl+OSTT+Dn5yd9nmdLHHtdZGRkoHfv3tInV9y5TmlpKU6ePFnn89TGkMevj7H8vVdXOTk5WLBgATZt2qT1qSWGxnAra2ZXrlxBdXW11n+0AODo6Ai1Wq33GLVaXWv/O9//rk/Hjh213jc3N0fbtm21+ug7x1+vcS8Meex32759Ow4ePCh9tmJjMOTxX716FePGjUNCQkKTfJinIY/9119/xW+//YakpCRs2rQJCQkJyMrKwvPPP9/A0eoy5PG7ubnhu+++w9y5c2FpaQkHBwdcvHgR27dvb+Botck19rpo6r/zAMMe/93279+PxMTERv3YMUMef3l5OYKCgrBs2TI88MADdT5ODgxR1GLs2bMH48ePx4cffoiHH35Y7nKaxcSJE/HSSy9h0KBBcpfS7DQaDcrLy7Fp0yY8+uijeOyxx/Dxxx9jz549OH36tNzlNTm1Wo2JEyciJCQEBw8exA8//AALCws8//zzEPygCZORnZ2NESNGIDo6Gk888YTc5TSLiIgIuLu74+WXX5a7lL/FEPX/2rdvDzMzMxQUFGi1FxQUQKVS6T1GpVLV2v/O97/rc/nyZa33q6qqUFRUpNVH3zn+eo17Ychjv+OHH37A008/jXfffRfBwcH1HGHtDHn86enpWL58OczNzWFubo7Q0FCUlJTA3Nwc69evb+CI/2TIY3dycoK5uTm6desm9XF3dwdw+8mtxmDI41+7di3s7e0RFxcHT09PDBo0CJ9++inS0tJqXe6uK7nGXhdN/XceYNjjvyMnJwdDhw5FWFgYIiMj6318bQx5/HduYbjz997QoUOlmqOjo+t8nubAEPX/LCws4OXlhbS0NKlNo9EgLS0Nvr6+eo/x9fXV6g8Au3fvlvq7ublBpVJp9SktLUVmZqbUx9fXF8XFxcjKypL6pKenQ6PRwMfHR+qzb98+VFZWal2ne/fuuO++++5x5IY9duD2NgcBAQF4++23G3U6+w5DHn9GRgaOHj0qfS1YsABt2rTB0aNH8eyzzxr12P/5z3+iqqoK586dk/qcOXMGANC5c+d7GbbEkMd/48YNnXtBzMzMpBrvlVxjrwtfX1+cOHFCK2ju3r0bdnZ26NmzZ53PUxtDHj8AnDx5EkOGDEFISEiTbOthyOP//PPPcezYMenvvY8++ggA8OOPP2LKlCl1Pk+zkPvOdkOybds2YWlpKRISEkROTo4ICwsTDg4O0hMiY8eOFXPmzJH6//zzz8Lc3FwsX75c5ObmiujoaL2Pezo4OIivvvpKHD9+XIwYMULvo86enp4iMzNT/PTTT6Jr165ajzoXFxcLR0dHMXbsWJGdnS22bdsmbGxsGn2LA0Mce3p6urCxsRERERHi0qVL0tfVq1cbbeyGPP67NcXTeYY69urqavHII4+IQYMGicOHD4tDhw4JHx8f8a9//cskxp+WliYUCoWIiYkRZ86cEVlZWcLf31907txZ3Lhxo0WP/bfffhNHjhwRMTExonXr1uLIkSPiyJEj4n//+58Q4s8tDp544glx9OhRkZKSIjp06NAkWxwY4vhPnDghOnToIF5++WWtv/cuX75sEuO/2549ewz26TyGqLu899574oEHHhAWFhaiX79+4r///a/03uDBg0VISIhW/+3bt4tu3boJCwsL8fDDD4tvvvlG632NRiPmzZsnHB0dhaWlpRg6dKg4ffq0Vp+rV6+KoKAg0bp1a2FnZyfGjx+v8y/TsWPHxMCBA4WlpaXo1KmTWLp0aeMOXBjm2ENCQgQAna/BgwebxPjv1hQhSgjDHfvvv/8unnvuOdG6dWvh6Ogoxo0b1+gBWgjDHf/WrVuFp6ensLW1FR06dBDPPPOMyM3NbfFjr+m/6z179kh9zp8/L4YPHy6sra1F+/btxcyZM0VlZWWjjt1Qxx8dHa33/c6dO5vE+O9myCFKIQTvUCQiIiKqL94TRURERNQADFFEREREDcAQRURERNQADFFEREREDcAQRURERNQADFFEREREDcAQRURERNQADFFEREREDcAQRUQmQa1WY9q0aejSpQssLS3h4uKCp59+WuezwIQQGD58OBQKBXbs2CG1nz9/HgqFAkePHtU592OPPYYZM2ZIr7/44gs88cQTaNeuXY3H3Lp1C1OmTEG7du3QunVrjBw5UueDW4nIsDFEEZHRO3/+PLy8vJCeno5ly5bhxIkTSElJwZAhQ3Q+0HTlypVQKBT3dL2ysjIMHDgQb7/9do19Xn/9dXz99ddISkrCDz/8gD/++APPPffcPV2XiJqXudwFEBE1tcmTJ0OhUODAgQOwtbWV2h9++GFMmDBBen306FGsWLEChw4dgpOTU4OvN3bsWAC3w5s+JSUl+Pjjj7FlyxY8/vjjAIANGzbA3d0d//3vf9G/f/8GX5uImg9noojIqBUVFSElJQVTpkzRClB3ODg4AABu3LiBl156CWvXroVKpWrSmrKyslBZWQk/Pz+prUePHnjggQeQkZHRpNcmosbDmSgiMmq//PILhBDo0aNHrf1ef/11DBgwACNGjKi134ABA6BUav//582bN+Hh4VHnmtRqNSwsLKQAd4ejoyPUanWdz0NE8mKIIiKjJoT42z47d+5Eeno6jhw58rd9ExMT4e7urtU2ZsyYBtdHRC0XQxQRGbWuXbtCoVDg1KlTNfZJT0/HuXPndGaGRo4ciUcffRR79+6V2lxcXPDQQw9p9bO2tq5XTSqVChUVFSguLta6ZkFBQZMvJRJR4+E9UURk1Nq2bQt/f3+sXbsWZWVlOu8XFxdjzpw5OH78OI4ePSp9AcC7776LDRs2NHpNXl5eaNWqldb2CqdPn0Z+fj58fX0b/XpE1DQ4E0VERm/t2rX45z//iX79+mHBggX4xz/+gaqqKuzevRvvv/8+cnNz9c4APfDAA3Bzc6v39YqKipCfn48//vgDwO2ABNyegVKpVLC3t0doaCjCw8PRtm1b2NnZYdq0afD19eWTeUQtCEMUERm9Ll264PDhw1i8eDFmzpyJS5cuoUOHDvDy8sL777/f6NfbuXMnxo8fL70ePXo0ACA6Ohrz588HcHuWS6lUYuTIkSgvL4e/vz/WrVvX6LUQUdNRiLrcdUlEREREWnhPFBEREVEDMEQRERERNQBDFBEREVEDMEQRERERNQBDFBEREVEDMEQRERERNQBDFBEREVEDMEQRERERNQBDFBEREVEDMEQRERERNQBDFBEREVEDMEQRERERNcD/Afc0uWjAOxFLAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYQZJREFUeJzt3XlcVOX+B/DPDDso4MpiKJSouCSIiXBNUueG5kZZV9ECjaRMTUJTIQVxCddU0uRaKWmaZIsZ10AClxJCxSX3TDG0HDQRSIx1zu8Pf54aZ0CWgTMzfN6vFy8vz3znnO9DXfn0POeckQmCIICIiIiI6kQudQNEREREhoghioiIiKgeGKKIiIiI6oEhioiIiKgeGKKIiIiI6oEhioiIiKgeGKKIiIiI6oEhioiIiKgeGKKIiIiI6oEhioiaPZlMhgULFkjdhmjixIlwdXWVug0iegiGKCLSS4mJiZDJZOKXpaUlunTpgmnTpiE/P79Rz52ZmYkFCxagsLBQp8d96qmn1ObUunVrPPHEE9i0aRNUKpVOzvHOO+9g165dOjkWEdXMVOoGiIhqsnDhQri5uaG0tBQ//PADNmzYgD179uD06dOwtrbWyTn++usvmJr+/ddhZmYmYmNjMXHiRNjb2+vkHPc98sgjiIuLAwDcvHkTW7ZsQWhoKH7++WcsXbq0wcd/55138PzzzyMwMLDBxyKimjFEEZFeGzZsGPr27QsAeOWVV9CmTRu8++67+PrrrxEUFFTv46pUKpSXl8PS0hKWlpa6aveh7Ozs8OKLL4rfv/rqq+jatSvWrVuHRYsWwczMrMl6IaKG4XYeERmUwYMHAwByc3MBACtXroSfnx/atGkDKysreHt74/PPP9d4n0wmw7Rp07Bt2zb06NEDFhYWSElJEV+7f03UggUL8NZbbwEA3NzcxK23K1euwN/fH71799baV9euXREQEFDn+VhbW6N///4oKSnBzZs3q60rKSnBzJkz4eLiAgsLC3Tt2hUrV66EIAhqcywpKcHHH38s9j1x4sQ690REtcOVKCIyKJcuXQIAtGnTBgCwdu1ajBo1ChMmTEB5eTl27NiBF154AcnJyRg+fLjaezMyMvDZZ59h2rRpaNu2rdaLt5977jn8/PPP+PTTT7F69Wq0bdsWANCuXTu89NJLmDx5Mk6fPo2ePXuK7zly5Ah+/vlnzJs3r15zunz5MkxMTKrdOhQEAaNGjcK+ffsQGhoKT09PpKam4q233sJvv/2G1atXAwC2bt2KV155Bf369UNYWBgA4LHHHqtXT0RUCwIRkR7avHmzAED47rvvhJs3bwpXr14VduzYIbRp00awsrISrl27JgiCINy9e1ftfeXl5ULPnj2FwYMHq40DEORyuXDmzBmNcwEQYmJixO9XrFghABByc3PV6goLCwVLS0thzpw5auNvvPGGYGNjI9y5c6fGOfn7+wvdunUTbt68Kdy8eVM4d+6c8MYbbwgAhJEjR4p1ISEhQqdOncTvd+3aJQAQFi9erHa8559/XpDJZMIvv/wijtnY2AghISE19kFEusHtPCLSawqFAu3atYOLiwvGjRuHFi1a4KuvvkKHDh0AAFZWVmLt7du3UVRUhCeffBLHjh3TOJa/vz+6d+9e717s7OwwevRofPrpp+I2WlVVFZKSkhAYGAgbG5uHHuP8+fNo164d2rVrBw8PD7z33nsYPnw4Nm3aVO179uzZAxMTE7zxxhtq4zNnzoQgCPj222/rPSciqj9u5xGRXlu/fj26dOkCU1NTODg4oGvXrpDL//7vv+TkZCxevBgnTpxAWVmZOC6TyTSO5ebm1uB+goODkZSUhO+//x4DBw7Ed999h/z8fLz00ku1er+rqys++OAD8bEN7u7uaN++fY3v+fXXX+Hs7IyWLVuqjXt4eIivE1HTY4giIr3Wr18/8e68B33//fcYNWoUBg4ciPfffx9OTk4wMzPD5s2bsX37do36f65a1VdAQAAcHBzwySefYODAgfjkk0/g6OgIhUJRq/fb2NjUupaI9Bu384jIYH3xxRewtLREamoqXn75ZQwbNkwnAUXbKtZ9JiYmGD9+PD7//HPcvn0bu3btQlBQEExMTBp83up06tQJv//+O/7880+18fPnz4uv31dT70SkWwxRRGSwTExMIJPJUFVVJY5duXKlwU/svn9tU3VPLH/ppZdw+/ZtvPrqq7hz547ac58awzPPPIOqqiqsW7dObXz16tWQyWQYNmyYOGZjY6PzJ60TkXbcziMigzV8+HC8++67GDp0KMaPH48bN25g/fr16Ny5M3766ad6H9fb2xsA8Pbbb2PcuHEwMzPDyJEjxXDl5eWFnj17YufOnfDw8ECfPn10Mp/qjBw5EoMGDcLbb7+NK1euoHfv3ti7dy++/vprhIeHqz3GwNvbG9999x3effddODs7w83NDT4+Po3aH1FzxZUoIjJYgwcPxkcffQSlUonw8HB8+umnWLZsGZ599tkGHfeJJ57AokWLcPLkSUycOBFBQUEaD8IMDg4GgFpfUN4Qcrkcu3fvRnh4OJKTkxEeHo6zZ89ixYoVePfdd9Vq3333XXh7e2PevHkICgrChg0bGr0/ouZKJgj/eNwtERHVytq1a/Hmm2/iypUr6Nixo9TtEJEEGKKIiOpIEAT07t0bbdq0wb59+6Ruh4gkwmuiiIhqqaSkBLt378a+fftw6tQpfP3111K3REQS4koUEVEtXblyBW5ubrC3t8frr7+OJUuWSN0SEUmIIYqIiIioHnh3HhEREVE9MEQRERER1QMvLG9EKpUKv//+O1q2bMmPYiAiIjIQgiDgzz//hLOzs9oHnj+IIaoR/f7773BxcZG6DSIiIqqHq1ev4pFHHqn2dYaoRtSyZUsA9/4h2NraStwNERER1UZxcTFcXFzE3+PVYYhqRPe38GxtbRmiiIiIDMzDLsXhheVERERE9cAQRURERFQPDFFERERE9cBroiRWVVWFiooKqdugJmBmZgYTExOp2yAiIh1hiJKIIAhQKpUoLCyUuhVqQvb29nB0dORzw4iIjABDlETuB6j27dvD2tqav1SNnCAIuHv3Lm7cuAEAcHJykrgjIiJqKIYoCVRVVYkBqk2bNlK3Q03EysoKAHDjxg20b9+eW3tERAaOF5ZL4P41UNbW1hJ3Qk3t/j9zXgdHRGT4GKIkxC285of/zImIjAdDFBEREVE9MEQRERER1QNDFNXJxIkTIZPJIJPJYGZmBgcHB/z73//Gpk2boFKpan2cxMRE2NvbN16jREREjYwhiups6NChuH79Oq5cuYJvv/0WgwYNwowZMzBixAhUVlZK3R4RETUDlZWVKC8vl7QHhiiqMwsLCzg6OqJDhw7o06cPoqKi8PXXX+Pbb79FYmIiAODdd99Fr169YGNjAxcXF7z++uu4c+cOAGD//v2YNGkSioqKxFWtBQsWAAC2bt2Kvn37omXLlnB0dMT48ePFZysREREBwLfffoslS5YgLi4Ou3dL1wdDlJ4QBAHl5eWSfAmC0OD+Bw8ejN69e+PLL78EAMjlcsTHx+PMmTP4+OOPkZGRgdmzZwMA/Pz8sGbNGtja2uL69eu4fv06Zs2aBeDerf+LFi3CyZMnsWvXLly5cgUTJ05scH9ERGT4KioqEBsbi8OHD4tjS5c2/HdYffFhm3qioqICcXFxkpw7MjIS5ubmDT5Ot27d8NNPPwEAwsPDxXFXV1csXrwYr732Gt5//32Ym5vDzs4OMpkMjo6Oasd4+eWXxf/96KOPIj4+Hk888QTu3LmDFi1aNLhHIiIyTIcOHcJ3332nNpaePgdz50r36BiGKNIZQRDE5yB99913iIuLw/nz51FcXIzKykqUlpbi7t27NT5kNCcnBwsWLMDJkydx+/Zt8WL1vLw8dO/evUnmQURE+iU2Nlbte3v7npgxYwxiYiRq6P8xROkJMzMzREZGSnZuXTh37hzc3Nxw5coVjBgxAlOmTMGSJUvQunVr/PDDDwgNDUV5eXm1IaqkpAQBAQEICAjAtm3b0K5dO+Tl5SEgIEDyiweJiKjplZSUYOXKlWpjqalPA/DFjBnS9PRPDFF6QiaT6WRLTSoZGRk4deoU3nzzTeTk5EClUmHVqlWQy+9ddvfZZ5+p1Zubm6Oqqkpt7Pz587h16xaWLl0KFxcXAMDRo0ebZgJERKRX9u3bh4MHD6qN9ewZgdTUlpg7V6KmHsAQRXVWVlYGpVKJqqoq5OfnIyUlBXFxcRgxYgSCg4Nx+vRpVFRU4L333sPIkSNx6NAhJCQkqB3D1dUVd+7cQXp6Onr37g1ra2t07NgR5ubmeO+99/Daa6/h9OnTWLRokUSzJCIiqTy4fQcAMf+/dzdmTFN3Uz3enUd1lpKSAicnJ7i6umLo0KHYt28f4uPj8fXXX8PExAS9e/fGu+++i2XLlqFnz57Ytm2bxkXzfn5+eO211zB27Fi0a9cOy5cvR7t27ZCYmIidO3eie/fuWLp0qcYyLhERGa/i4mKNADVo0CAxQOkbmaCL+9tJq+LiYtjZ2aGoqAi2trbieGlpKXJzc+Hm5gZLS0sJO6Smxn/2RETapaam4scff1Qbe+utt2q8GamxVPf7+0HcziMiIiJJ1bR9p88YooiIiEgS169fx8aNG9XGAgIC0L9/f4k6qhuGKCIiImpyq1atEj8O7L709DmIiTGcSx0YooiIiKhJadu+S02N0ZtHF9QWQxQRERE1iatXr2LTpk1qY97e3hgxYoTkTx+vD4YoIiIianSLFy/WeMjy7NmzYWVlJVFHDccQRURERI3KUO++exiGKCIiImoUly9fxtatW9XG/Pz88O9//1uijnSLIYqIiIh0Ttvq09y5c2FhYSFBN42DH/tCemnixIkIDAwUv3/qqacQHh7eoGPq4hhERFQzQRCq3b4zpgAFcCWK6mjixIn4+OOPAQBmZmbo2LEjgoODERUVBVPTxvvX6csvv4SZmVmtavfv349Bgwbh9u3bsLe3r9cxiIio7i5cuIAdO3aojQ0aNAgDBw6UqKPGxRBFdTZ06FBs3rwZZWVl2LNnD6ZOnQozMzNERkaq1ZWXl8Pc3Fwn52zdurVeHIOIiLTTtvoUFRVl1P/xyu08qjMLCws4OjqiU6dOmDJlChQKBXbv3i1uwS1ZsgTOzs7o2rUrgHvPBfnPf/4De3t7tG7dGqNHj8aVK1fE41VVVSEiIgL29vZo06YNZs+ejQc/F/vBrbiysjLMmTMHLi4usLCwQOfOnfHRRx/hypUrGDRoEACgVatWkMlkmDhxotZj3L59G8HBwWjVqhWsra0xbNgwXLx4UXw9MTER9vb2SE1NhYeHB1q0aIGhQ4fi+vXrYs3+/fvRr18/2NjYwN7eHv/617/w66+/6ugnTUSk/2ravjPmAAUwRJEOWFlZoby8HACQnp6OCxcuIC0tDcnJyaioqEBAQABatmyJ77//HocOHRLDyP33rFq1ComJidi0aRN++OEHFBQU4KuvvqrxnMHBwfj0008RHx+Pc+fO4b///S9atGgBFxcXfPHFFwDuLStfv34da9eu1XqMiRMn4ujRo9i9ezeysrIgCAKeeeYZVFRUiDV3797FypUrsXXrVhw8eBB5eXmYNWsWAKCyshKBgYHw9/fHTz/9hKysLISFhUEmkzX4Z0pEZAhOnTqFhQsXqo0NHTrUKB5fUBuSh6j169fD1dUVlpaW8PHxweHDh2us37lzJ7p16wZLS0v06tULe/bsUXtdEARER0fDyckJVlZWUCgUaqsLALBkyRL4+fnB2tpa7ZoZbW7duoVHHnkEMpkMhYWF9Zmi0RIEAd999x1SU1MxePBgAICNjQ0+/PBD9OjRAz169EBSUhJUKhU+/PBD9OrVCx4eHti8eTPy8vKwf/9+AMCaNWsQGRmJ5557Dh4eHkhISICdnV215/3555/x2WefYdOmTXj22Wfx6KOPYsiQIRg7dixMTEzEbbv27dvD0dFR67EuXryI3bt348MPP8STTz6J3r17Y9u2bfjtt9+wa9cusa6iogIJCQno27cv+vTpg2nTpiE9PR0AUFxcjKKiIowYMQKPPfYYPDw8EBISgo4dO+roJ0xEpL9iY2Px5Zdfqo3NmzcPPj4+EnXU9CQNUUlJSYiIiEBMTAyOHTuG3r17IyAgADdu3NBan5mZiaCgIISGhuL48eMIDAxEYGAgTp8+LdYsX74c8fHxSEhIQHZ2NmxsbBAQEIDS0lKxpry8HC+88AKmTJny0B5DQ0Px+OOPN3yyjWj3bsDP796fTSE5ORktWrSApaUlhg0bhrFjx2LBggUAgF69eqldB3Xy5En88ssvaNmyJVq0aIEWLVqgdevWKC0txaVLl1BUVITr16+r/Z/O1NQUffv2rfb8J06cgImJCfz9/es9h3PnzsHU1FTtvG3atEHXrl1x7tw5ccza2hqPPfaY+L2Tk5P472fr1q0xceJEBAQEYOTIkVi7dq3aVh8RkTFSqVTVbt+ZmJhI0JF0JA1R7777LiZPnoxJkyahe/fuSEhIgLW1tcbn6ty3du1aDB06FG+99RY8PDywaNEi9OnTB+vWrQNwb2VkzZo1mDdvHkaPHo3HH38cW7Zswe+//662uhAbG4s333wTvXr1qrG/DRs2oLCwUNy+0VdLlwJZWff+bAqDBg3CiRMncPHiRfz111/4+OOPYWNjAwDin/fduXMH3t7eOHHihNrXzz//jPHjx9fr/E35EQEP7ufLZDK167U2b96MrKws+Pn5ISkpCV26dMGPP/7YZP0RETWlnJwcLFq0SG1s1KhRzWb77kGShajy8nLk5ORAoVD83YxcDoVCgaysLK3vycrKUqsHgICAALE+NzcXSqVSrcbOzg4+Pj7VHrM6Z8+excKFC7FlyxbI5bX7MZWVlaG4uFjtqynMnQv4+qLJPv3axsYGnTt3RseOHR/6WIM+ffrg4sWLaN++PTp37qz2ZWdnBzs7Ozg5OSE7O1t8T2VlJXJycqo9Zq9evaBSqXDgwAGtr99fCXvwM5r+ycPDA5WVlWrnvXXrFi5cuIDu3bvXOKcHeXl5ITIyEpmZmejZsye2b99ep/cTERmC2NhYJCcnq43Nnz8fXl5eEnUkPclC1B9//IGqqio4ODiojTs4OECpVGp9j1KprLH+/p91OaY2ZWVlCAoKwooVK+p0fUtcXJwYDOzs7ODi4lLr9zbEqFFAZua9P/XNhAkT0LZtW4wePRrff/89cnNzsX//frzxxhu4du0aAGDGjBlYunQpdu3ahfPnz+P111+v8fozV1dXhISE4OWXX8auXbvEY3722WcAgE6dOkEmkyE5ORk3b97EnTt3NI7h7u6O0aNHY/Lkyfjhhx9w8uRJvPjii+jQoQNGjx5dq7nl5uYiMjISWVlZ+PXXX7F3715cvHgRHh4edf9BERHpqYqKimq372q7yGCsmvfsqxEZGQkPDw+8+OKLdX5fUVGR+HX16tVG6tBwWFtb4+DBg+jYsaN44XhoaChKS0tha2sLAJg5cyZeeuklhISEwNfXFy1btsSzzz5b43E3bNiA559/Hq+//jq6deuGyZMno6SkBADQoUMHxMbGYu7cuXBwcMC0adO0HmPz5s3w9vbGiBEj4OvrC0EQsGfPnlrfkmttbY3z589jzJgx6NKlC8LCwjB16lS8+uqrdfgJERHpr+TkZLzzzjtqY6dOjW6223cPkgkPPpCniZSXl8Pa2hqff/652sd7hISEoLCwEF9//bXGezp27IiIiAi1Z/3ExMRg165dOHnyJC5fvozHHnsMx48fh6enp1jj7+8PT09PjVvdExMTER4errHq4enpiVOnTom3qguCAJVKBRMTE7z99ttaE7k2xcXFsLOzQ1FRkRgYAKC0tBS5ublwc3ODpaVlrY5FxoH/7InIUGj7XZeaGo25c2V6ufOhS9X9/n6QZCtR5ubm8Pb2Fm8XB+5d8Z+eng5fX1+t7/H19VWrB4C0tDSx3s3NDY6Ojmo1xcXFyM7OrvaY2nzxxRc4efKkeBH0hx9+CAD4/vvvMXXq1Fofh4iIyNCUlZVVu32XmWn8AaouJP3Yl4iICISEhKBv377o168f1qxZg5KSEkyaNAnAvQcqdujQAXFxcQDuXTvj7++PVatWYfjw4dixYweOHj2KjRs3Arh351R4eDgWL14Md3d3uLm5Yf78+XB2dlZb7crLy0NBQQHy8vJQVVWFEydOAAA6d+6MFi1aqN3SDty7fgu4dzHyw54rRUREZKh27tyJs2fPqo2NHDkSffr0kagj/SZpiBo7dixu3ryJ6OhoKJVKeHp6IiUlRbwwPC8vT+2iNT8/P2zfvh3z5s1DVFQU3N3dsWvXLvTs2VOsmT17NkpKShAWFobCwkIMGDAAKSkpalsn0dHR4ofoAhDvLNi3bx+eeuqpRp41ERGR/tG2+hQdHc1PYaiBZNdENQe8JooexH/2RKRv7t69ixUrVmiMN+eLx2t7TZSkK1HNHfNr88N/5kSkT7Zs2YLc3Fy1seeffx49evSQqCPDwhAlgfu30N+9e7dJn75N0rt79y4AzSehExE1teouHqfaY4iSgImJCezt7cXPYLO2tuaes5ETBAF3797FjRs3YG9v3+w+X4qI9Meff/6Jd999V2OcAaruGKIk4ujoCADVftgyGSd7e3vxnz0RUVNLSEhAfn6+2tiECRPQuXNniToybAxREpHJZHByckL79u1RUVEhdTvUBMzMzLgCRUSS4fad7jFESczExIS/WImIqNHcvn0b8fHxGuMMUA3HEEVERGSkVq1apfEh7BMnTkSnTp0k6si4MEQREREZIW7fNT6GKCIiIiPy+++/44MPPtAYZ4DSPYYoIiIiI6Ft9SkrazJSUpwl6Mb4yR9eQkRERPpOW4BKTY3B668zQDUWrkQREREZsNzcXGzZskVjPCYmBtzBa1wMUURERAZK2+rT5MmT4ezM1aemwBBFRERkgHj3nfQYooiIiAzIhQsXsGPHDo1xBqimxxBFRERkILStPk2dOhVt27aVoBtiiCIiIjIA3L7TPwxRREREeuynn37CV199pTHOACU9higiIiI9pW31KTw8HHZ2dhJ0Qw9iiCIiItJD3L7TfwxRREREeiQ7OxspKSlqYzY2Npg1a5ZEHVF1GKKIiIj0hLbVp1mzZsHGxkaCbuhhGKKIiIgkJggCFi5cqDHO7Tv9xhBFREQkoQMHDmD//v1qYw4ODnjttdekaYhqjSGKiIhIItq27+bMmQNLS0sJuqG6YogiIiJqYiqVCosWLdIY5/adYWGIIiIiakIpKSnIzs5WG3v00Ufx0ksvSdQR1RdDFBERURPRtn0XFRUFMzMzCbqhhmKIIiIiamRVVVVYvHixxji37wwbQxQREVEj+vLLL3Hq1Cm1sV69euG5556TqCPSFYYoIiKiRqJt+27evHkwMTGRoBvSNYYoIiIiHauoqMA777yjMc7tO+PCEEVERKRDW7duxeXLl9XG+vXrh2HDhknUETUWhigiIiId0bZ9N3/+fMjlcgm6ocbGEEVERNRApaWlWLZsmcY4t++MG0MUERFRAyQkJCA/P19t7KmnnoK/v79EHVFTkXx9cf369XB1dYWlpSV8fHxw+PDhGut37tyJbt26wdLSEr169cKePXvUXhcEAdHR0XBycoKVlRUUCgUuXryoVrNkyRL4+fnB2toa9vb2Guc4efIkgoKC4OLiAisrK3h4eGDt2rUNnisRERmX2NhYjQAVHR3NANVMSBqikpKSEBERgZiYGBw7dgy9e/dGQEAAbty4obU+MzMTQUFBCA0NxfHjxxEYGIjAwECcPn1arFm+fDni4+ORkJCA7Oxs2NjYICAgAKWlpWJNeXk5XnjhBUyZMkXreXJyctC+fXt88sknOHPmDN5++21ERkZi3bp1uv0BEBGRQSouLtZ6/VNMTAxkMpkEHZEUZIIgCFKd3MfHB0888YQYTlQqFVxcXDB9+nTMnTtXo37s2LEoKSlBcnKyONa/f394enoiISEBgiDA2dkZM2fOxKxZswAARUVFcHBwQGJiIsaNG6d2vMTERISHh6OwsPChvU6dOhXnzp1DRkZGredXXFwMOzs7FBUVwdbWttbvIyIi/aUtPJ07NxQ7dvhI0A01htr+/pZsJaq8vBw5OTlQKBR/NyOXQ6FQICsrS+t7srKy1OoBICAgQKzPzc2FUqlUq7Gzs4OPj0+1x6ytoqIitG7dusaasrIyFBcXq30REZHx0BagUlNjMH48A1RzJFmI+uOPP1BVVQUHBwe1cQcHByiVSq3vUSqVNdbf/7Mux6yNzMxMJCUlISwsrMa6uLg42NnZiV8uLi71PicREemPgoKCarfvMjOBUaMkaIokx7vzHuL06dMYPXo0YmJi8PTTT9dYGxkZiYiICPH74uJiBikiIgOnLTwFBASgf//+EnRD+kSyENW2bVuYmJho3NWQn58PR0dHre9xdHSssf7+n/n5+XByclKr8fT0rHOPZ8+exZAhQxAWFoZ58+Y9tN7CwgIWFhZ1Pg8REemn6lafiAAJt/PMzc3h7e2N9PR0cUylUiE9PR2+vr5a3+Pr66tWDwBpaWlivZubGxwdHdVqiouLkZ2dXe0xq3PmzBkMGjQIISEhWLJkSZ3eS0REhu3atWsMUPRQkm7nRUREICQkBH379kW/fv2wZs0alJSUYNKkSQCA4OBgdOjQAXFxcQCAGTNmwN/fH6tWrcLw4cOxY8cOHD16FBs3bgQAyGQyhIeHY/HixXB3d4ebmxvmz58PZ2dnBAYGiufNy8tDQUEB8vLyUFVVhRMnTgAAOnfujBYtWuD06dMYPHgwAgICEBERIV5PZWJignbt2jXdD4iIiJqctvB06tRofP65Z9M3Q3pN0hA1duxY3Lx5E9HR0VAqlfD09ERKSop4YXheXp7a5w35+flh+/btmDdvHqKiouDu7o5du3ahZ8+eYs3s2bNRUlKCsLAwFBYWYsCAAUhJSYGlpaVYEx0djY8//lj83svLCwCwb98+PPXUU/j8889x8+ZNfPLJJ/jkk0/Euk6dOuHKlSuN9eMgIiKJVXf3nZan7hBJ+5woY8fnRBERGYZLly6p/Ufzfdy+a55q+/ubd+cREVGzpm316bnnnkOvXr0k6IYMCUMUERE1W7x4nBqCIYqIiJqdY8eO4ZtvvtEYZ4CiumCIIiKiZkXb6lNOzni88oq7BN2QIWOIIiKiZkNbgPLyigEXoKg+GKKIiMjo/fDDDxoPawa4fUcNwxBFRERGTdvqU3BwMNzc3CTohowJQxQRERkt3n1HjYkhioiIjE5KSgqys7M1xhmgSJcYooiIyKhoW30KCwuDk5OTBN2QMWOIIiIio8HtO2pKDFFERGTwPv/8c5w5c0ZjnAGKGhNDFBERGTRtq0/Tpk1DmzZtJOiGmhOGKCIiMkiCIGDhwoUa41x9oqbCEEVERAZn8+bNyMvL0xhngKKmxBBFREQGRdv2XUREBFq2bClBN9ScMUQREZFBUKlUWLRokcY4V59IKgxRRESk95YtW4bS0lKNcQYokhJDFBER6TVt23ezZ8+GlZWVBN0Q/Y0hioiI9FJlZSWWLFmiMc7VJ9IXDFFERKR3tK0+AYCXFwMU6Q+GKCIi0ivaAlRUVBTMzMwk6IaoegxRRESkF0pLS7Fs2TKNcW7fkb5iiCIiIslpW32SyWSIjo6WoBui2mGIIiIiSWkLUHv3zsOhQyYSdENUewxRREQkieLiYqxevVpjPDU1BnPnStAQUR0xRBERUZPTtvpkamqKt99+G7wEigwFQxQRETUpbQEqOjoaMplMgm6I6o8hioiImsSNGzewYcMGjXHefUeGiiGKiIganbbVpz//bI+VK6dI0A2RbsilboCIiIybtgCVmhqDgQMZoMiwcSWKiIgaRV5eHjZv3qwx7uUVw4vHySgwRBERkc5pW30qLOyAQYNewahREjRE1AgYooiISKe0BShePE7GiCGKiIh04vz580hKStIYZ4AiYyX5heXr16+Hq6srLC0t4ePjg8OHD9dYv3PnTnTr1g2Wlpbo1asX9uzZo/a6IAiIjo6Gk5MTrKysoFAocPHiRbWaJUuWwM/PD9bW1rC3t9d6nry8PAwfPhzW1tZo37493nrrLVRWVjZorkRExio2NlYjQPXo0YMBioyapCEqKSkJERERiImJwbFjx9C7d28EBATgxo0bWuszMzMRFBSE0NBQHD9+HIGBgQgMDMTp06fFmuXLlyM+Ph4JCQnIzs6GjY0NAgICUFpaKtaUl5fjhRdewJQp2u8MqaqqwvDhw1FeXo7MzEx8/PHHSExM5AdhEhFpUd323fPPPy9BN0RNRyYIgiDVyX18fPDEE09g3bp1AACVSgUXFxdMnz4dc7V8cNLYsWNRUlKC5ORkcax///7w9PREQkICBEGAs7MzZs6ciVmzZgEAioqK4ODggMTERIwbN07teImJiQgPD0dhYaHa+LfffosRI0bg999/h4ODAwAgISEBc+bMwc2bN2Fubl6r+RUXF8POzg5FRUWwtbWt9c+FiMgQ/Pjjj0hNTdUY5+oTGbra/v6WbCWqvLwcOTk5UCgUfzcjl0OhUCArK0vre7KystTqASAgIECsz83NhVKpVKuxs7ODj49Ptces7jy9evUSA9T98xQXF+PMmTO1Pg4RkbGKjY3VCFDt2vVjgKJmRbILy//44w9UVVWpBRUAcHBwwPnz57W+R6lUaq1XKpXi6/fHqqupjerO889zaFNWVoaysjLx++Li4lqfk4jIUPDuO6J7eHeeDsXFxWn9y4WIyBikpaUhMzNTY5wBiporybbz2rZtCxMTE+Tn56uN5+fnw9HRUet7HB0da6y//2ddjlmX8/zzHNpERkaiqKhI/Lp69Wqtz0lEpM9iY2M1AtRTTz3FAEXNWp1DlImJida7527dugUTE5NaH8fc3Bze3t5IT08Xx1QqFdLT0+Hr66v1Pb6+vmr1wL3/Mrpf7+bmBkdHR7Wa4uJiZGdnV3vM6s5z6tQptXmmpaXB1tYW3bt3r/Z9FhYWsLW1VfsiIjJ01W3f+fv7S9ANkf6o83ZedTfzlZWV1fqutfsiIiIQEhKCvn37ol+/flizZg1KSkowadIkAEBwcDA6dOiAuLg4AMCMGTPg7++PVatWYfjw4dixYweOHj2KjRs3AgBkMhnCw8OxePFiuLu7w83NDfPnz4ezszMCAwPF8+bl5aGgoAB5eXmoqqrCiRMnAACdO3dGixYt8PTTT6N79+546aWXsHz5ciiVSsybNw9Tp06FhYVFHX9iRESG6fPPP9d6Mw1Xn4juqXWIio+PB3AvqHz44Ydo0aKF+FpVVRUOHjyIbt261enkY8eOxc2bNxEdHQ2lUglPT0+kpKSIF3Hn5eVBLv97sczPzw/bt2/HvHnzEBUVBXd3d+zatQs9e/YUa2bPno2SkhKEhYWhsLAQAwYMQEpKCiwtLcWa6OhofPzxx+L3Xl5eAIB9+/bhqaeegomJCZKTkzFlyhT4+vrCxsYGISEhWLhwYZ3mR0RkqLStPo0cORJ9+vSRoBsi/VTr50S5ubkBAH799Vc88sgjalt35ubmcHV1xcKFC+Hj49M4nRogPieKiAwR776j5q62v79rvRKVm5sLABg0aBC+/PJLtGrVquFdEhGR3vjwww/x22+/aYwzQBFpV+drovbt29cYfRARkYS0rT4FBQWhS5cuEnRDZBjqHKJefvnlGl/ftGlTvZshIqKmx+07ovqpc4i6ffu22vcVFRU4ffo0CgsLMXjwYJ01RkREjWvFihW4e/euxjgDFFHt1DlEffXVVxpjKpUKU6ZMwWOPPaaTpoiIqHFpW316+eWX4eLiIkE3RIap1nfnPcyFCxfw1FNP4fr167o4nFHg3XlEpG8EQdD6uBauPhH9Ted35z3MpUuXUFlZqavDERGRjlX32Z4MUET1U+cQFRERofa9IAi4fv06/ve//yEkJERnjRERke5oC1AeHlPxn/+0laAbIuNQ5xB1/Phxte/lcjnatWuHVatWPfTOPSIialoqlQqLFi3SGOfqE1HD8TlRRERGitt3RI2r3tdE3bhxAxcuXAAAdO3aFe3bt9dZU0RE1DDaAtSbb77Jm1yIdEj+8BJ1xcXFeOmll+Ds7Ax/f3/4+/ujQ4cOePHFF1FUVNQYPRIRUS1VVFRU+/BMBigi3apziJo8eTKys7Pxv//9D4WFhSgsLERycjKOHj2KV199tTF6JCKiWoiNjcU777yjMc7tO6LGUefnRNnY2CA1NRUDBgxQG//+++8xdOhQlJSU6LRBQ8bnRBFRU9G2+jRnzhxYWlpK0A2RYWu050S1adMGdnZ2GuN2dnZo1apVXQ9HREQNcPfuXaxYsUJjnKtPRI2vziFq3rx5iIiIwNatW+Ho6AgAUCqVeOuttzB//nydN0hERNrx7jsiadV5O8/Lywu//PILysrK0LFjRwBAXl4eLCws4O7urlZ77Ngx3XVqgLidR0SNRVuAevvtt2FqqrMPoiBqthptO2/06NGQyWQNao6IiOqnsLAQa9eu1Rjn6hNR09PZBxCTJq5EEZEucfuOqGk02krUo48+iiNHjqBNmzZq44WFhejTpw8uX75c926JiKhG2gJUdHQ0dwaIJFTnEHXlyhVUVVVpjJeVleHatWs6aYqIiO5RKpX473//qzHO1Sci6dU6RO3evVv836mpqWqPOaiqqkJ6ejrc3Nx02x0RUTPG7Tsi/VbrEBUYGAgAkMlkCAkJUXvNzMwMrq6uWLVqlU6bIyJqrrh9R6T/ah2iVCoVAMDNzQ1HjhxB27ZtG60pIqLm6vLly9i6davGOFefiPRPna+Jys3NbYw+iIiaPW2rT2ZmZoiKipKgGyJ6mDqHqIULF9b4enR0dL2bISJqrrQFKK4+Eem3Ooeor776Su37iooK5ObmwtTUFI899hhDFBFRHZw6dQpffvmlxjgDFJH+q3OIOn78uMZYcXExJk6ciGeffVYnTRERNQfaVp+cnJwQFhYmQTdEVFc6e2L5qVOnMHLkSFy5ckUXhzMKfGI5EVWH23dE+qvRnlhenaKiIhQVFenqcERERikzMxNpaWka4wxQRIanziEqPj5e7XtBEHD9+nVs3boVw4YN01ljRETGRtvqU/fu3fHCCy9I0A0RNVSdQ9Tq1avVvpfL5WjXrh1CQkIQGRmps8aIiIwJt++IjA+fE0VE1IhSUlKQnZ2tMc4ARWT46nVNVGFhIX755RcAQOfOnWFvb6/LnoiIjIK21SdfX188/fTTEnRDRLpWpxB15coVTJ06Fampqbh/U59MJsPQoUOxbt06uLq6NkaPREQGh9t3RMav1iHq6tWr6N+/P8zMzLBo0SJ4eHgAAM6ePYsNGzbA19cXR44cwSOPPNJozRIR6bsdO3bgwoULGuMMUETGR17bwgULFqBr1664ePEiIiMjERgYiMDAQERFReHnn39Gly5dsGDBgjo3sH79eri6usLS0hI+Pj44fPhwjfU7d+5Et27dYGlpiV69emHPnj1qrwuCgOjoaDg5OcHKygoKhQIXL15UqykoKMCECRNga2sLe3t7hIaG4s6dO2o1qamp6N+/P1q2bIl27dphzJgxfAYWEdUoNjZWI0AFBAQwQBEZqVqHqJSUFCxZsgSWlpYar1lZWWHRokUageZhkpKSEBERgZiYGBw7dgy9e/dGQEAAbty4obU+MzMTQUFBCA0NxfHjx8Ugd/r0abFm+fLliI+PR0JCArKzs2FjY4OAgACUlpaKNRMmTMCZM2eQlpaG5ORkHDx4UO0Jwbm5uRg9ejQGDx6MEydOIDU1FX/88Qeee+65Os2PiJqP6rbv+vfvL0E3RNQUav3EcgsLC1y6dKna7bpr166hc+fOamHlYXx8fPDEE09g3bp1AACVSgUXFxdMnz4dc+fO1agfO3YsSkpKkJycLI71798fnp6eSEhIgCAIcHZ2xsyZMzFr1iwA9x4C6uDggMTERIwbNw7nzp1D9+7dceTIEfTt2xfAvYD4zDPP4Nq1a3B2dsbnn3+OoKAglJWVQS6/lzO/+eYbjB49GmVlZTAzM6vV/PjEciLj9/777+PmzZsa41x9IjJctf39XeuVKCcnJ5w9e7ba10+fPg1HR8daN1heXo6cnBwoFIq/m5HLoVAokJWVpfU9WVlZavXAvaXy+/W5ublQKpVqNXZ2dvDx8RFrsrKyYG9vLwYoAFAoFJDL5eJtyN7e3pDL5di8eTOqqqpQVFSErVu3QqFQ1BigysrKUFxcrPZFRMYrNjZWI0A9//zzDFBEzUStQ1RgYCBmzZql9b+4bty4gTlz5iAwMLDWJ/7jjz9QVVUFBwcHtXEHBwcolUqt71EqlTXW3//zYTXt27dXe93U1BStW7cWa9zc3LB3715ERUXBwsIC9vb2uHbtGj777LMa5xQXFwc7Ozvxy8XFpcZ6IjJc1W3f9ejRQ4JuiEgKtQ5RMTExKC0txWOPPYbXX38d8fHxWLt2LV577TV07twZf/31F6Kjoxuz1yajVCoxefJkhISE4MiRIzhw4ADMzc3x/PPPo6bdz8jISPEzBIuKinD16tUm7JqImsKiRYv4+AIiAlCHRxy0atUK2dnZiIqKwo4dO1BYWAgAsLe3x/jx4/HOO++gdevWtT5x27ZtYWJigvz8fLXx/Pz8arcFHR0da6y//2d+fj6cnJzUajw9PcWaBy9cr6ysREFBgfj+9evXw87ODsuXLxdrPvnkE7i4uCA7O7vaC0UtLCxgYWHxsKkTkYHSFp6Cg4Ph5uYmQTdEJLVar0QB94LUhg0bcOvWLSiVSiiVSty6dQsJCQl1ClAAYG5uDm9vb6Snp4tjKpUK6enp8PX11foeX19ftXoASEtLE+vd3Nzg6OioVlNcXIzs7GyxxtfXF4WFhcjJyRFrMjIyoFKp4OPjAwC4e/eueEH5fSYmJmKPRNS8CIJQ7eoTAxRR81Wvj32RyWQa1xXVR0REBEJCQtC3b1/069cPa9asQUlJCSZNmgTg3n/hdejQAXFxcQCAGTNmwN/fH6tWrcLw4cOxY8cOHD16FBs3bhT7Cg8Px+LFi+Hu7g43NzfMnz8fzs7O4vVaHh4eGDp0KCZPnoyEhARUVFRg2rRpGDduHJydnQEAw4cPx+rVq7Fw4UIEBQXhzz//RFRUFDp16gQvL68Gz5uIDIe28ARw+46I6hmidGXs2LG4efMmoqOjoVQq4enpiZSUFPHC8Ly8PLUVIT8/P2zfvh3z5s1DVFQU3N3dsWvXLvTs2VOsmT17NkpKShAWFobCwkIMGDAAKSkpas+32rZtG6ZNm4YhQ4ZALpdjzJgxiI+PF18fPHgwtm/fjuXLl2P58uWwtraGr68vUlJSYGVl1QQ/GSLSB9oC1GuvvaZx8woRNU+1fk4U1R2fE0VkmFQqFRYtWqQxztUnouahtr+/JV2JIiLSN9y+I6LaqtOF5URExkxbgDpwIBxeXgxQRKSpVitR/7xe6GHeeOONejdDRCSFiooKvPPOOxrjXH0ioprU6pqo2t7CK5PJcPny5QY3ZSx4TRSR/uP2HRE9SKfXROXm5uqsMSIifaEtQM2ePZt34RJRrdT7mqjy8nJcuHABlZWVuuyHiKjR3b17t9qHZzJAEVFt1TlE3b17F6GhobC2tkaPHj2Ql5cHAJg+fTqWLl2q8waJiHQpNjYWK1as0Bjn9h0R1VWdQ1RkZCROnjyJ/fv3qz3AUqFQICkpSafNERHpkrbVp969oxigiKhe6vycqF27diEpKQn9+/eHTCYTx3v06IFLly7ptDkiIl24ffu21ruMGZ6IqCHqHKJu3ryp9XPzSkpK1EIVEZE+qO7uOz77iYgaqs4hqm/fvvjf//6H6dOnA4AYnD788EP4+vrqtjsiogbQFqDmz5+v9pmcRET1VecQ9c4772DYsGE4e/YsKisrsXbtWpw9exaZmZk4cOBAY/RIRFQnV69exaZNmzTGuX1HRLpU5/8cGzBgAE6cOIHKykr06tULe/fuRfv27ZGVlQVvb+/G6JGIqNZiY2MZoIioSdTqieVUP3xiOVHT0rZ9l5oajcxMXq9JRLWn0yeWFxcX1/rEDAtE1NTOnz+v9RErqakxmDtXgoaIqFmoVYiyt7ev9Z13VVVVDWqIiKguavrsO+7gEVFjqlWI2rdvn/i/r1y5grlz52LixIni3XhZWVn4+OOPERcX1zhdEhFpUd1HtxARNYU6XxM1ZMgQvPLKKwgKClIb3759OzZu3Ij9+/frsj+DxmuiiBrHkSNHsGfPHo1xBigi0oXa/v6u8915WVlZ6Nu3r8Z43759cfjw4boejoioTmJjYxmgiEgv1DlEubi44IMPPtAY//DDD+Hi4qKTpoiItNF+910MAxQRSaLOD9tcvXo1xowZg2+//RY+Pj4AgMOHD+PixYv44osvdN4gEVFaWhoyMzM1xnn3HRFJqV7Pibp27Rref/99nD9/HgDg4eGB1157jStRD+A1UUQNp231qVWrVnjjjTck6IaImoPa/v7mwzYbEUMUUcPw7jsikoJOH7b5oMLCQnz00Uc4d+4cAKBHjx54+eWXYWdnV79uiYj+YfPmzcjLy9MYZ4AiIn1S55Woo0ePIiAgAFZWVujXrx+Ae7cb//XXX9i7dy/69OnTKI0aIq5EEdWdttWnGzfcsX79eAm6IaLmqNG285588kl07twZH3zwAUxN7y1kVVZW4pVXXsHly5dx8ODBhnVuRBiiiOpGW4BatiwGO3YAo0ZJ0BARNUuNtp139OhRtQAFAKamppg9e7bW50cRET3MsmXLUFpaqjGemsoARUT6q84hytbWFnl5eejWrZva+NWrV9GyZUudNUZEzYO21afHH38czz77LD/7joj0Wp1D1NixYxEaGoqVK1fCz88PAHDo0CG89dZbGh8FQ0RUE959R0SGrM4hauXKlZDJZAgODkZlZSUAwMzMDFOmTMHSpUt13iARGR9t4QkAvLwYoIjIcNT7OVF3797FpUuXAACPPfYYrK2tddqYMeCF5USatAWoAQMGYMiQIRJ0Q0SkqVGfEwUA1tbW6NWrV33fTkTNELfviMiY1DpEvfzyy7Wq27RpU72bISLjVN32HQMUERmyWoeoxMREdOrUCV5eXuAnxRBRbWkLUKmpIzB3rrcE3RAR6U6tQ9SUKVPw6aefIjc3F5MmTcKLL76I1q1bN2ZvRGTABEHAwoULNcZTU2Mwdy6f/UREhq9OF5aXlZXhyy+/xKZNm5CZmYnhw4cjNDQUTz/9NGQyWWP2aZB4YTk1V9y+IyJDVtvf3/K6HNTCwgJBQUFIS0vD2bNn0aNHD7z++utwdXXFnTt36tXo+vXr4erqCktLS/j4+ODw4cM11u/cuRPdunWDpaUlevXqhT179qi9LggCoqOj4eTkBCsrKygUCly8eFGtpqCgABMmTICtrS3s7e0RGhqq0b8gCFi5ciW6dOkCCwsLdOjQAUuWLKnXHImaE20BasKECQxQRGR06hSi1N4ol0Mmk0EQBFRVVdXrGElJSYiIiEBMTAyOHTuG3r17IyAgADdu3NBan5mZiaCgIISGhuL48eMIDAxEYGAgTp8+LdYsX74c8fHxSEhIQHZ2NmxsbBAQEKD2kRITJkzAmTNnkJaWhuTkZBw8eBBhYWFq55oxYwY+/PBDrFy5EufPn8fu3bvFD1wmIk0qlarau+86d+4sQUdERI2r3tt5P/zwA0aMGIFJkyZh6NChkMvrnsd8fHzwxBNPYN26dQDu/SXs4uKC6dOnY+7cuRr1Y8eORUlJCZKTk8Wx/v37w9PTEwkJCRAEAc7Ozpg5cyZmzZoFACgqKoKDgwMSExMxbtw4nDt3Dt27d8eRI0fEz/pLSUnBM888g2vXrsHZ2Rnnzp3D448/jtOnT6Nr1651ntd93M6j5oLbd0RkTHS+nff666/DyckJS5cuxYgRI3D16lXs3LkTzzzzTL0CVHl5OXJycqBQKP5uRi6HQqFAVlaW1vdkZWWp1QNAQECAWJ+bmwulUqlWY2dnBx8fH7EmKysL9vb2ah+WrFAoIJfLkZ2dDQD45ptv8OijjyI5ORlubm5wdXXFK6+8goKCghrnVFZWhuLiYrUvImOnLUCFhYUxQBGR0av13XkJCQno2LEjHn30URw4cAAHDhzQWvfll1/W6nh//PEHqqqq4ODgoDbu4OCA8+fPa32PUqnUWq9UKsXX74/VVNO+fXu1101NTdG6dWux5vLly/j111+xc+dObNmyBVVVVXjzzTfx/PPPIyMjo9o5xcXFVftf5ETGpry8HHFxcRrjDE9E1FzUOkQFBwc3mzvwVCoVysrKsGXLFnTp0gUA8NFHH8Hb2xsXLlyodosvMjISERER4vfFxcVwcXFpkp6JmhK374iI6viwTV1q27YtTExMkJ+frzaen58PR0dHre9xdHSssf7+n/n5+XByclKr8fT0FGsevHC9srISBQUF4vudnJxgamoqBigA8PDwAADk5eVVG6IsLCxgYWFR47yJDJ22ABUeHg47OzsJuiEikk69785rKHNzc3h7eyM9PV0cU6lUSE9Ph6+vr9b3+Pr6qtUDQFpamljv5uYGR0dHtZri4mJkZ2eLNb6+vigsLEROTo5Yk5GRAZVKBR8fHwDAv/71L1RWVoofsAwAP//8MwCgU6dODZk2kcG6c+dOtXffMUARUXNU7w8g1oWIiAiEhISgb9++6NevH9asWYOSkhJMmjQJwL0txA4dOojXXcyYMQP+/v5YtWoVhg8fjh07duDo0aPYuHEjAEAmkyE8PByLFy+Gu7s73NzcMH/+fDg7OyMwMBDAvRWloUOHYvLkyUhISEBFRQWmTZuGcePGwdnZGcC9C8379OmDl19+GWvWrIFKpcLUqVPx73//W211iqi5qG77zsuL23dE1HxJGqLGjh2LmzdvIjo6GkqlEp6enkhJSREvDM/Ly1O788/Pzw/bt2/HvHnzEBUVBXd3d+zatQs9e/YUa2bPno2SkhKEhYWhsLAQAwYMQEpKCiwtLcWabdu2Ydq0aRgyZAjkcjnGjBmD+Ph48XW5XI5vvvkG06dPx8CBA2FjY4Nhw4Zh1apVTfBTIdIv2gJUevoczJplyY9uIaJmrU7PiaK64XOiyJDduHEDGzZs0BjnxeNEZOxq+/tb0pUoItJPvPuOiOjhGKKISI22ALV37zwcOmQiQTdERPqLIYqIANx74v+WLVs0xlNTY6DlU5iIiJo9higiqnH7jjt4RETaMUQRNXPaAlR0dHSz+YQCIqL6YogiaqaOHz+O3bt3a4zz4nEiotphiCJqhvjwTCKihmOIImpmqvvoFiIiqhuGKKJmIj09HT/88IPGOAMUEVH9MEQRNQPcviMi0j2GKCIjx+07IqLGwRBFZKSSkpJw/vx5jXEGKCIi3WCIIjJC/Ow7IqLGxxBFZGS4fUdE1DQYooiMxKpVq3Dnzh2NcV48TkTUOBiiiIyAttUnMzMzREVFSdANEVHzwBBFZOC0BagdO2Jw7pwEzRARNSMMUUQGqrqLx1NTY7BsWRM3Q0TUDDFEERkgbQHKwcEBr732GngNORFR02CIIjIwvPuOiEg/MEQRGQg++4mISL8wRBEZAG0BqlWrx/HGG89K0A0REQEMUUR6T1uA8vKKwahREjRDREQihigiPcXtOyIi/cYQRaSHtAWoJ598EoMHD5agGyIi0oYhikjPVLd9x/xERKRfGKKI9AS374iIDAtDFJEe0BagRo8eDU9Pz6ZvhoiIaoUhikhCKpUKixYt0hjn6hMRkf5jiCKSCLfviIgMm1zqBoiaI20BKikpGF5eDFBERIaCK1FETai8vBxxcXEa46mpMVi6FHyAJhGRAWGIImoiNW3fcQePiMjwcDuPqAloC1Dffz+V23dERAaMK1FEjai4uBirV6/WGOfF40REhk8vVqLWr18PV1dXWFpawsfHB4cPH66xfufOnejWrRssLS3Rq1cv7NmzR+11QRAQHR0NJycnWFlZQaFQ4OLFi2o1BQUFmDBhAmxtbWFvb4/Q0FDcuXNH6/l++eUXtGzZEvb29g2aJzUvsbGxDFBEREZM8hCVlJSEiIgIxMTE4NixY+jduzcCAgJw48YNrfWZmZkICgpCaGgojh8/jsDAQAQGBuL06dNizfLlyxEfH4+EhARkZ2fDxsYGAQEBKC0tFWsmTJiAM2fOIC0tDcnJyTh48CDCwsI0zldRUYGgoCA8+eSTup88GS1t23ezZs1igCIiMiIyQRAEKRvw8fHBE088gXXr1gG49/BBFxcXTJ8+HXPnztWoHzt2LEpKSpCcnCyO9e/fH56enkhISIAgCHB2dsbMmTMxa9YsAEBRUREcHByQmJiIcePG4dy5c+jevTuOHDmCvn37AgBSUlLwzDPP4Nq1a3B2dhaPPWfOHPz+++8YMmQIwsPDUVhYWOu5FRcXw87ODkVFRbC1ta3Pj4cMTH5+PhISEjTGGZ6IiAxHbX9/S7oSVV5ejpycHCgUCnFMLpdDoVAgKytL63uysrLU6gEgICBArM/NzYVSqVSrsbOzg4+Pj1iTlZUFe3t7MUABgEKhgFwuR3Z2tjiWkZGBnTt3Yv369bWaT1lZGYqLi9W+qPmIjY1lgCIiakYkvbD8jz/+QFVVFRwcHNTGHRwccP78ea3vUSqVWuuVSqX4+v2xmmrat2+v9rqpqSlat24t1ty6dQsTJ07EJ598UutVpLi4uGpvYyfjpu2fe1paFH74wUyCboiIqClIfk2Uvpo8eTLGjx+PgQMH1vo9kZGRKCoqEr+uXr3aiB2SPrh06ZLWAJWaGoPZsxmgiIiMmaQrUW3btoWJiQny8/PVxvPz8+Ho6Kj1PY6OjjXW3/8zPz8fTk5OajWenp5izYMXrldWVqKgoEB8f0ZGBnbv3o2VK1cCuHfHn0qlgqmpKTZu3IiXX35ZozcLCwtYWFjUdvpk4PjwTCKi5k3SlShzc3N4e3sjPT1dHFOpVEhPT4evr6/W9/j6+qrVA0BaWppY7+bmBkdHR7Wa4uJiZGdnizW+vr4oLCxETk6OWJORkQGVSgUfHx8A966bOnHihPi1cOFCtGzZEidOnMCzzz6rmx8AGSxtASo6OprXPxERNSOSP2wzIiICISEh6Nu3L/r164c1a9agpKQEkyZNAgAEBwejQ4cO4ueNzZgxA/7+/li1ahWGDx+OHTt24OjRo9i4cSMAQCaTITw8HIsXL4a7uzvc3Nwwf/58ODs7IzAwEADg4eGBoUOHYvLkyUhISEBFRQWmTZuGcePGiXfmeXh4qPV59OhRyOVy9OzZs4l+MqSPcnJy1O4MvY/hiYio+ZE8RI0dOxY3b95EdHQ0lEolPD09kZKSIl4YnpeXB7n87wUzPz8/bN++HfPmzUNUVBTc3d2xa9cutXAze/ZslJSUICwsDIWFhRgwYABSUlJgaWkp1mzbtg3Tpk3DkCFDIJfLMWbMGMTHxzfdxMng1LR9R0REzY/kz4kyZnxOlPHQFqAYnoiIjFNtf39LvhJFpM8yMjLw/fffa4wzQBEREUMUUTWq277z8mKAIiIihigirbh9R0RED8MQRfQPO3fuxNmzZzXGGaCIiOhBDFFE/4933xERUV0wRBFBe4Dy8orBqFESNENERAaBIYqatXXr1uHWrVsa41x9IiKih2GIomaL23dERNQQDFHULPHuOyIiaiiGKGpWuPpERES6In94CZFx0Bag/vyzPR+eSURE9cKVKGoWePcdERHpGkMUGTVu3xERUWNhiCKjpX31yQujuPxEREQ6wBBFRol33xERUWNjiCKjwu07IiJqKgxRZDS0Baiffx6CbdsGSNANEREZOz7igIyCtgCVmhqDsWMZoIiIqHFwJYoMWk3bd9zBIyKixsQQRQZLW4AaM2YMevbsKUE3RETU3HA7jwyOIAjVbt8xQBERUVPhShQZlOq271JTYzB3bhM3Q0REzRpDFBkMbQFq0qRJ6NixI69/IiKiJscQRXqvsrISS5Ys0Rjns5+IiEhKDFGk16rbvvPyYoAiIiJpMUSR3tIWoDw8puI//2krQTdERETqGKJI7/z1119Yvny5xji374iISJ8wRJFe4fYdEREZCj4nivSGtgD1xRdvwcsrBqNGSdAQERFRDbgSRZIrKirCmjVrNMb50S1ERKTPGKJIUty+IyIiQ8UQRZLRFqDefvttmJryX0siItJ//G1FTU6pVOK///2vxjjvviMiIkPCEEVNqrrtOwYoIiIyNAxR1GS0BaiVK6OxbZtMgm6IiIgahiGKGt2vv/6KxMREjfEPPojBtm3g4wuIiMgg6cVzotavXw9XV1dYWlrCx8cHhw8frrF+586d6NatGywtLdGrVy/s2bNH7XVBEBAdHQ0nJydYWVlBoVDg4sWLajUFBQWYMGECbG1tYW9vj9DQUNy5c0d8ff/+/Rg9ejScnJxgY2MDT09PbNu2TXeTbiZiY2O1BqiYmBhcu8YARUREhkvyEJWUlISIiAjExMTg2LFj6N27NwICAnDjxg2t9ZmZmQgKCkJoaCiOHz+OwMBABAYG4vTp02LN8uXLER8fj4SEBGRnZ8PGxgYBAQEoLS0VayZMmIAzZ84gLS0NycnJOHjwIMLCwtTO8/jjj+OLL77ATz/9hEmTJiE4OBjJycmN98MwMtq27+49+4nXPxERkeGTCYIgSNmAj48PnnjiCaxbtw4AoFKp4OLigunTp2Pu3Lka9WPHjkVJSYlamOnfvz88PT2RkJAAQRDg7OyMmTNnYtasWQDuPczRwcEBiYmJGDduHM6dO4fu3bvjyJEj6Nu3LwAgJSUFzzzzDK5duwZnZ2etvQ4fPhwODg7YtGlTreZWXFwMOzs7FBUVwdbWtk4/F0P2yy+/aF2145PHiYjIENT297ekK1Hl5eXIycmBQqEQx+RyORQKBbKysrS+JysrS60eAAICAsT63NxcKJVKtRo7Ozv4+PiINVlZWbC3txcDFAAoFArI5XJkZ2dX229RURFat25d7etlZWUoLi5W+2puYmNjNQKUpaUlYmIYoIiIyLhIGqL++OMPVFVVwcHBQW3cwcEBSqVS63uUSmWN9ff/fFhN+/bt1V43NTVF69atqz3vZ599hiNHjmDSpEnVzicuLg52dnbil4uLS7W1xkjb9p2XVwzmzJkjQTdERESNS/JrogzBvn37MGnSJHzwwQfo0aNHtXWRkZEoKioSv65evdqEXUrn5MmTWgNUaipXn4iIyHhJ+oiDtm3bwsTEBPn5+Wrj+fn5cHR01PoeR0fHGuvv/5mfnw8nJye1Gk9PT7HmwQvXKysrUVBQoHHeAwcOYOTIkVi9ejWCg4NrnI+FhQUsLCxqrDE22sJTixZu+OKLYGi5pI2IiMhoSLoSZW5uDm9vb6Snp4tjKpUK6enp8PX11foeX19ftXoASEtLE+vd3Nzg6OioVlNcXIzs7GyxxtfXF4WFhcjJyRFrMjIyoFKp4OPjI47t378fw4cPx7Jly9Tu3KN7qrv7bubMYGRm8vEFRERk3CR/2GZERARCQkLQt29f9OvXD2vWrEFJSYl47VFwcDA6dOiAuLg4AMCMGTPg7++PVatWYfjw4dixYweOHj2KjRs3AgBkMhnCw8OxePFiuLu7w83NDfPnz4ezszMCAwMBAB4eHhg6dCgmT56MhIQEVFRUYNq0aRg3bpx4Z96+ffswYsQIzJgxA2PGjBGvlTI3N6/x4vLmIDs7GykpKRrjXl58dAERETUfkoeosWPH4ubNm4iOjoZSqYSnpydSUlLEC8Pz8vIgl/+9YObn54ft27dj3rx5iIqKgru7O3bt2oWePXuKNbNnz0ZJSQnCwsJQWFiIAQMGICUlBZaWlmLNtm3bMG3aNAwZMgRyuRxjxoxBfHy8+PrHH3+Mu3fvIi4uTgxwAODv74/9+/c34k9Ev2lbferfvz8CAgIk6IaIiEg6kj8nypgZ23Oiqtu+IyIiMia1/f0t+UoU6b+DBw9i3759GuPl5QxQRETUfDFEUY20rT4dOTIcYWF9eeE4ERE1awxRVC1u3xEREVWPIYo0fPfddzh06JDGOAMUERHR3xiiSI221Sc3txcQHNxdgm6IiIj0F0MUibh9R0REVHsMUYSvvvoKP/30k8Y4AxQREVH1GKKaOW2rTz/+GIopUx6RoBsiIiLDwRDVjHH7joiIqP4YopqhL7/8EqdOndIY52ffERER1R5DVDOjbfVpz57XkZ3dToJuiIiIDBdDVDMhCAIWLlyoMZ6aGoO335agISIiIgPHENUM/O9//8PRo0c1xr28YsBLoIiIiOqHIcrIadu+y8h4CzNnWvOz74iIiBqAIcpIVbd9FxPD1SciIiJdYIgyQnv37kVWVpba2K1brlAoQiTqiIiIyPgwRBkZbdt3kZGRMDc3l6AbIiIi48UQZSRUKhUWLVqkMc6HZxIRETUOhigjcPz4cezevVtt7McfB6BPnyESdURERGT8GKIMnLbtu3nz5sHExESCboiIiJoPhigDJQgCVq9erTHu5RUD5iciIqLGxxBlgG7duoV169apjSUnP4cjR3pJ1BEREVHzI5e6Aaq7fwYolcoBK1dG4+mnGaCIiIiaEleiDNBvv/VGhw4ncerUaHz+uSe0XBZFREREjYwrUQZoxIhApKbGIDjYU+pWiIiImi2uRBmgUaPAz70jIiKSGFeiiIiIiOqBIYqIiIioHhiiiIiIiOqBIYqIiIioHhiiiIiIiOqBIYqIiIioHhiiiIiIiOqBIYqIiIioHhiiiIiIiOpBL0LU+vXr4erqCktLS/j4+ODw4cM11u/cuRPdunWDpaUlevXqhT179qi9LggCoqOj4eTkBCsrKygUCly8eFGtpqCgABMmTICtrS3s7e0RGhqKO3fuqNX89NNPePLJJ2FpaQkXFxcsX75cNxMmIiIigyd5iEpKSkJERARiYmJw7Ngx9O7dGwEBAbhx44bW+szMTAQFBSE0NBTHjx9HYGAgAgMDcfr0abFm+fLliI+PR0JCArKzs2FjY4OAgACUlpaKNRMmTMCZM2eQlpaG5ORkHDx4EGFhYeLrxcXFePrpp9GpUyfk5ORgxYoVWLBgATZu3Nh4PwwiIiIyHILE+vXrJ0ydOlX8vqqqSnB2dhbi4uK01v/nP/8Rhg8frjbm4+MjvPrqq4IgCIJKpRIcHR2FFStWiK8XFhYKFhYWwqeffioIgiCcPXtWACAcOXJErPn2228FmUwm/Pbbb4IgCML7778vtGrVSigrKxNr5syZI3Tt2rXWcysqKhIACEVFRbV+DxEREUmrtr+/JV2JKi8vR05ODhQKhTgml8uhUCiQlZWl9T1ZWVlq9QAQEBAg1ufm5kKpVKrV2NnZwcfHR6zJysqCvb09+vbtK9YoFArI5XJkZ2eLNQMHDoS5ubnaeS5cuIDbt283cOZERERk6EylPPkff/yBqqoqODg4qI07ODjg/PnzWt+jVCq11iuVSvH1+2M11bRv317tdVNTU7Ru3Vqtxs3NTeMY919r1aqVRm9lZWUoKysTvy8qKgJwb2uQiIiIDMP939uCINRYJ2mIMjZxcXGIjY3VGHdxcZGgGyIiImqIP//8E3Z2dtW+LmmIatu2LUxMTJCfn682np+fD0dHR63vcXR0rLH+/p/5+flwcnJSq/H09BRrHrxwvbKyEgUFBWrH0Xaef57jQZGRkYiIiBC/LywsRKdOnZCXl1fjPwRjU1xcDBcXF1y9ehW2trZSt9Okmuvcm+u8geY79+Y6b4Bzbw5zFwQBf/75J5ydnWuskzREmZubw9vbG+np6QgMDAQAqFQqpKenY9q0aVrf4+vri/T0dISHh4tjaWlp8PX1BQC4ubnB0dER6enpYmgqLi5GdnY2pkyZIh6jsLAQOTk58Pb2BgBkZGRApVLBx8dHrHn77bdRUVEBMzMz8Txdu3bVupUHABYWFrCwsNAYt7OzM+p/2apja2vbLOcNNN+5N9d5A8137s113gDnbuxzr83ih+SPOIiIiMAHH3yAjz/+GOfOncOUKVNQUlKCSZMmAQCCg4MRGRkp1s+YMQMpKSlYtWoVzp8/jwULFuDo0aNi6JLJZAgPD8fixYuxe/dunDp1CsHBwXB2dhaDmoeHB4YOHYrJkyfj8OHDOHToEKZNm4Zx48aJqXP8+PEwNzdHaGgozpw5g6SkJKxdu1ZtpYmIiIiaL8mviRo7dixu3ryJ6OhoKJVKeHp6IiUlRbyIOy8vD3L531nPz88P27dvx7x58xAVFQV3d3fs2rULPXv2FGtmz56NkpIShIWFobCwEAMGDEBKSgosLS3Fmm3btmHatGkYMmQI5HI5xowZg/j4ePF1Ozs77N27F1OnToW3tzfatm2L6OhotWdJERERUTPWJA9caKZKS0uFmJgYobS0VOpWmlRznbcgNN+5N9d5C0LznXtznbcgcO7Nde7ayAThIffvEREREZEGya+JIiIiIjJEDFFERERE9cAQRURERFQPDFFERERE9cAQ9f/Wr18PV1dXWFpawsfHB4cPH66xfufOnejWrRssLS3Rq1cv7NmzR+11QRAQHR0NJycnWFlZQaFQ4OLFi2o1BQUFmDBhAmxtbWFvb4/Q0FDcuXNHreann37Ck08+CUtLS7i4uGD58uW6mfA/6OPc9+/fj9GjR8PJyQk2Njbw9PTEtm3bdDfp/6ePc/+nX375BS1btoS9vX2D5vkgfZ23IAhYuXIlunTpAgsLC3To0AFLlizRzaT/n77OPTU1Ff3790fLli3Rrl07jBkzBleuXNHJnAFp5r1kyRL4+fnB2tq62n+H8/LyMHz4cFhbW6N9+/Z46623UFlZ2aC5Pkgf537y5EkEBQXBxcUFVlZW8PDwwNq1axs813/Sx3n/061bt/DII49AJpOhsLCwPlOUnkR3BeqVHTt2CObm5sKmTZuEM2fOCJMnTxbs7e2F/Px8rfWHDh0STExMhOXLlwtnz54V5s2bJ5iZmQmnTp0Sa5YuXSrY2dkJu3btEk6ePCmMGjVKcHNzE/766y+xZujQoULv3r2FH3/8Ufj++++Fzp07C0FBQeLrRUVFgoODgzBhwgTh9OnTwqeffipYWVkJ//3vf41+7kuWLBHmzZsnHDp0SPjll1+ENWvWCHK5XPjmm2+Mfu73lZeXC3379hWGDRsm2NnZNYt5T58+Xejatavw9ddfC5cvXxaOHj0q7N271+jnfvnyZcHCwkKIjIwUfvnlFyEnJ0cYOHCg4OXlZdDzjo6OFt59910hIiJC67/DlZWVQs+ePQWFQiEcP35c2LNnj9C2bVshMjJSJ/PW57l/9NFHwhtvvCHs379fuHTpkrB161bByspKeO+994x63v80evRoYdiwYQIA4fbt27qYdpNjiBIEoV+/fsLUqVPF76uqqgRnZ2chLi5Oa/1//vMfYfjw4WpjPj4+wquvvioIgiCoVCrB0dFRWLFihfh6YWGhYGFhIXz66aeCIAjC2bNnBQDCkSNHxJpvv/1WkMlkwm+//SYIgiC8//77QqtWrYSysjKxZs6cOULXrl0bOOO/6evctXnmmWeESZMm1X2S1dD3uc+ePVt48cUXhc2bN+s0ROnrvM+ePSuYmpoK58+f181EtdDXue/cuVMwNTUVqqqqxJrdu3cLMplMKC8vb+CspZn3P1X37/CePXsEuVwuKJVKcWzDhg2Cra2t2t97DaGvc9fm9ddfFwYNGlSr2ofR93m///77gr+/v5Cenm7QIarZb+eVl5cjJycHCoVCHJPL5VAoFMjKytL6nqysLLV6AAgICBDrc3NzoVQq1Wrs7Ozg4+Mj1mRlZcHe3h59+/YVaxQKBeRyObKzs8WagQMHwtzcXO08Fy5cwO3btxs4c/2euzZFRUVo3bp13Seqhb7PPSMjAzt37sT69esbPtl/0Od5f/PNN3j00UeRnJwMNzc3uLq64pVXXkFBQYHRz93b2xtyuRybN29GVVUVioqKsHXrVigUCvGzOw1t3rWRlZWFXr16iZ9Qcf88xcXFOHPmTK2PUx19nrs2uvo7Tt/nffbsWSxcuBBbtmxR+0QSQ2TY3evAH3/8gaqqKrX/EwOAg4MDlEql1vcolcoa6+//+bCa9u3bq71uamqK1q1bq9VoO8Y/z9EQ+jz3B3322Wc4cuSI+JmKDaXPc7916xYmTpyIxMREnX/Apz7P+/Lly/j111+xc+dObNmyBYmJicjJycHzzz9fz9mq0+e5u7m5Ye/evYiKioKFhQXs7e1x7do1fPbZZ/Wc7d+kmndtGOvfcfWRmZmJpKQknXy0mD7Pu6ysDEFBQVixYgU6duxY6/fpq2Yfokj/7du3D5MmTcIHH3yAHj16SN1Oo5s8eTLGjx+PgQMHSt1Kk1KpVCgrK8OWLVvw5JNP4qmnnsJHH32Effv24cKFC1K316iUSiUmT56MkJAQHDlyBAcOHIC5uTmef/55CPxQCaN3+vRpjB49GjExMXj66aelbqdRRUZGwsPDAy+++KLUrehEsw9Rbdu2hYmJCfLz89XG8/Pz4ejoqPU9jo6ONdbf//NhNTdu3FB7vbKyEgUFBWo12o7xz3M0hD7P/b4DBw5g5MiRWL16NYKDg+s4w+rp89wzMjKwcuVKmJqawtTUFKGhoSgqKoKpqSk2bdpUzxnfo8/zdnJygqmpKbp06SLWeHh4ALh3B1dD6fPc169fDzs7OyxfvhxeXl4YOHAgPvnkE6Snp9e4xV0bUs27Noz177i6OHv2LIYMGYKwsDDMmzevzu/XRp/nff9Shft/vw0ZMkTsOSYmptbH0RfNPkSZm5vD29sb6enp4phKpUJ6ejp8fX21vsfX11etHgDS0tLEejc3Nzg6OqrVFBcXIzs7W6zx9fVFYWEhcnJyxJqMjAyoVCr4+PiINQcPHkRFRYXaebp27YpWrVo1cOb6PXfg3mMOhg8fjmXLlulkifuf9HnuWVlZOHHihPi1cOFCtGzZEidOnMCzzz5rtPP+17/+hcrKSly6dEms+fnnnwEAnTp1asi0Aej33O/evatxbYiJiYnYY0NINe/a8PX1xalTp9RCZlpaGmxtbdG9e/daH6c6+jx3ADhz5gwGDRqEkJAQnT7KQ5/n/cUXX+DkyZPi328ffvghAOD777/H1KlTa30cvSH1le36YMeOHYKFhYWQmJgonD17VggLCxPs7e3FO0ZeeuklYe7cuWL9oUOHBFNTU2HlypXCuXPnhJiYGK23gtrb2wtff/218NNPPwmjR4/Wetuzl5eXkJ2dLfzwww+Cu7u72m3PhYWFgoODg/DSSy8Jp0+fFnbs2CFYW1vr/BEH+jj3jIwMwdraWoiMjBSuX78uft26dcvo5/4gXd+dp6/zrqqqEvr06SMMHDhQOHbsmHD06FHBx8dH+Pe//230c09PTxdkMpkQGxsr/Pzzz0JOTo4QEBAgdOrUSbh7967BzvvXX38Vjh8/LsTGxgotWrQQjh8/Lhw/flz4888/BUH4+xEHTz/9tHDixAkhJSVFaNeunc4fcaCPcz916pTQrl074cUXX1T7O+7GjRtGPe8H7du3z6DvzmOI+n/vvfee0LFjR8Hc3Fzo16+f8OOPP4qv+fv7CyEhIWr1n332mdClSxfB3Nxc6NGjh/C///1P7XWVSiXMnz9fcHBwECwsLIQhQ4YIFy5cUKu5deuWEBQUJLRo0UKwtbUVJk2apPEv2smTJ4UBAwYIFhYWQocOHYSlS5fqduKCfs49JCREAKDx5e/vb/Rzf5CuQ5Qg6O+8f/vtN+G5554TWrRoITg4OAgTJ07UaXDW57l/+umngpeXl2BjYyO0a9dOGDVqlHDu3DmDnnd1/z/et2+fWHPlyhVh2LBhgpWVldC2bVth5syZQkVFhc7mra9zj4mJ0fp6p06djHreDzL0ECUTBF61SERERFRXzf6aKCIiIqL6YIgiIiIiqgeGKCIiIqJ6YIgiIiIiqgeGKCIiIqJ6YIgiIiIiqgeGKCIiIqJ6YIgiIiIiqgeGKCJqFpRKJaZPn45HH30UFhYWcHFxwciRIzU+L0wQBAwbNgwymQy7du0Sx69cuQKZTIYTJ05oHPupp55CeHi4+P2XX36Jp59+Gm3atKn2PaWlpZg6dSratGmDFi1aYMyYMRof7kpE+o0hioiM3pUrV+Dt7Y2MjAysWLECp06dQkpKCgYNGqTxoadr1qyBTCZr0PlKSkowYMAALFu2rNqaN998E9988w127tyJAwcO4Pfff8dzzz3XoPMSUdMylboBIqLG9vrrr0Mmk+Hw4cOwsbERx3v06IGXX35Z/P7EiRNYtWoVjh49Cicnp3qf76WXXgJwL7xpU1RUhI8++gjbt2/H4MGDAQCbN2+Gh4cHfvzxR/Tv37/e5yaipsOVKCIyagUFBUhJScHUqVPVAtR99vb2AIC7d+9i/PjxWL9+PRwdHRu1p5ycHFRUVEChUIhj3bp1Q8eOHZGVldWo5yYi3eFKFBEZtV9++QWCIKBbt2411r355pvw8/PD6NGja6zz8/ODXK7+359//fUXPD09a92TUqmEubm5GODuc3BwgFKprPVxiEhaDFFEZNQEQXhoze7du5GRkYHjx48/tDYpKQkeHh5qYxMmTKh3f0RkuBiiiMioubu7QyaT4fz589XWZGRk4NKlSxorQ2PGjMGTTz6J/fv3i2MuLi7o3LmzWp2VlVWdenJ0dER5eTkKCwvVzpmfn9/oW4lEpDu8JoqIjFrr1q0REBCA9evXo6SkROP1wsJCzJ07Fz/99BNOnDghfgHA6tWrsXnzZp335O3tDTMzM7XHK1y4cAF5eXnw9fXV+fmIqHFwJYqIjN769evxr3/9C/369cPChQvx+OOPo7KyEmlpadiwYQPOnTundQWoY8eOcHNzq/P5CgoKkJeXh99//x3AvYAE3FuBcnR0hJ2dHUJDQxEREYHWrVvD1tYW06dPh6+vL+/MIzIgDFFEZPQeffRRHDt2DEuWLMHMmTNx/fp1tGvXDt7e3tiwYYPOz7d7925MmjRJ/H7cuHEAgJiYGCxYsADAvVUuuVyOMWPGoKysDAEBAXj//fd13gsRNR6ZUJurLomIiIhIDa+JIiIiIqoHhigiIiKiemCIIiIiIqoHhigiIiKiemCIIiIiIqoHhigiIiKiemCIIiIiIqoHhigiIiKiemCIIiIiIqoHhigiIiKiemCIIiIiIqoHhigiIiKievg/kG6hT0eZNNQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_31.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRcklEQVR4nO3deVxUZf8//tcwCggIqOzcKJu5CwQ6UZlWJJgbZd1oC6CWpbmFK2aMiAkaKamknyzTLLe6TfuaQcott5mkud+uqWFugLgAAgnInN8f/pi7cQ7KwAxnltfz8ZiHzDVnrnmfwzjz4rrOIhMEQQARERGRBbGSugAiIiKi5sYARERERBaHAYiIiIgsDgMQERERWRwGICIiIrI4DEBERERkcRiAiIiIyOIwABEREZHFYQAiIiIii8MAREQmSyaTYc6cOVKXoRYfHw9fX1+pyyCiBmAAIiK9Wr16NWQymfpma2uLRx55BOPHj0dRUZFBX3vv3r2YM2cOSkpK9Npvv379NNapbdu26NWrF1atWgWVSqWX15g/fz62bNmil76I6OFaSF0AEZmnuXPnws/PD3fu3MGePXuwfPlybN++HcePH4ednZ1eXuOvv/5Cixb/+xjbu3cvkpOTER8fD2dnZ728Rp1//OMfSE1NBQAUFxfjyy+/xOjRo/H7778jLS2tyf3Pnz8fL730EqKjo5vcFxE9HAMQERnEgAEDEBYWBgB444030K5dOyxatAhbt27FiBEjGt2vSqVCdXU1bG1tYWtrq69yH8rJyQmvvfaa+v5bb72FTp06YdmyZUhJSUHLli2brRYiajpOgRFRs3jmmWcAAPn5+QCA9PR0PP7442jXrh1atWqF0NBQfPvtt1rPk8lkGD9+PL7++mt069YNNjY2yMrKUj9Wtw/QnDlzMG3aNACAn5+ferrqwoUL6Nu3L4KCgkTr6tSpEyIjI3VeHzs7Ozz22GOoqKhAcXFxvctVVFRgypQp8PHxgY2NDTp16oT09HQIgqCxjhUVFVizZo267vj4eJ1rIqKG4wgQETWL8+fPAwDatWsHAPj4448xZMgQvPrqq6iursaGDRvw8ssvY9u2bRg4cKDGc//9739j06ZNGD9+PFxcXER3NH7xxRfx+++/Y/369Vi8eDFcXFwAAK6urnj99dfx5ptv4vjx4+jevbv6Ob/99ht+//13zJ49u1Hr9Mcff0Aul9c73SYIAoYMGYJdu3Zh9OjRCA4ORnZ2NqZNm4YrV65g8eLFAIC1a9fijTfeQO/evTFmzBgAQEBAQKNqIqIGEoiI9OiLL74QAAg7d+4UiouLhUuXLgkbNmwQ2rVrJ7Rq1Uq4fPmyIAiCUFlZqfG86upqoXv37sIzzzyj0Q5AsLKyEk6cOKH1WgAEpVKpvv/hhx8KAIT8/HyN5UpKSgRbW1thxowZGu0TJ04U7O3thfLy8geuU9++fYXOnTsLxcXFQnFxsXDq1Clh4sSJAgBh8ODB6uXi4uKEDh06qO9v2bJFACDMmzdPo7+XXnpJkMlkwrlz59Rt9vb2Qlxc3APrICL94RQYERlEREQEXF1d4ePjg+HDh8PBwQHfffcdvL29AQCtWrVSL3vr1i2UlpaiT58+OHTokFZfffv2RdeuXRtdi5OTE4YOHYr169erp55qa2uxceNGREdHw97e/qF9nD59Gq6urnB1dUWXLl2wdOlSDBw4EKtWrar3Odu3b4dcLsfEiRM12qdMmQJBEPDjjz82ep2IqGk4BUZEBpGZmYlHHnkELVq0gLu7Ozp16gQrq//9zbVt2zbMmzcPR44cQVVVlbpdJpNp9eXn59fkemJjY7Fx40b8/PPPeOqpp7Bz504UFRXh9ddfb9DzfX19sXLlSvWh/R07doSbm9sDn/Pnn3/Cy8sLrVu31mjv0qWL+nEikgYDEBEZRO/evdVHgd3v559/xpAhQ/DUU0/hk08+gaenJ1q2bIkvvvgC69at01r+76NFjRUZGQl3d3d89dVXeOqpp/DVV1/Bw8MDERERDXq+vb19g5clIuPHKTAianb/+te/YGtri+zsbIwaNQoDBgzQS7gQGz2qI5fL8corr+Dbb7/FrVu3sGXLFowYMQJyubzJr1ufDh064OrVq7h9+7ZG++nTp9WP13lQ7USkfwxARNTs5HI5ZDIZamtr1W0XLlxo8pmQ6/blqe9M0K+//jpu3bqFt956C+Xl5Rrn9TGE559/HrW1tVi2bJlG++LFiyGTyTBgwAB1m729vd7PYE1E9eMUGBE1u4EDB2LRokWIiorCK6+8gmvXriEzMxOBgYE4duxYo/sNDQ0FALz33nsYPnw4WrZsicGDB6uDUUhICLp3745vvvkGXbp0waOPPqqX9anP4MGD8fTTT+O9997DhQsXEBQUhJ9++glbt27F5MmTNQ51Dw0Nxc6dO7Fo0SJ4eXnBz88PCoXCoPURWTKOABFRs3vmmWfw+eefo7CwEJMnT8b69euxYMECvPDCC03qt1evXkhJScHRo0cRHx+PESNGaJ2kMDY2FgAavPNzU1hZWeH777/H5MmTsW3bNkyePBknT57Ehx9+iEWLFmksu2jRIoSGhmL27NkYMWIEli9fbvD6iCyZTBD+djpSIiIz9/HHH+Pdd9/FhQsX0L59e6nLISKJMAARkcUQBAFBQUFo164ddu3aJXU5RCQh7gNERGavoqIC33//PXbt2oX//ve/2Lp1q9QlEZHEOAJERGbvwoUL8PPzg7OzM8aNG4cPPvhA6pKISGIMQERERGRxeBQYERERWRwGICIiIrI43AlahEqlwtWrV9G6dWuenp6IiMhECIKA27dvw8vLS+Piy2IYgERcvXoVPj4+UpdBREREjXDp0iX84x//eOAyDEAiWrduDeDeBnR0dJS4GiIiImqIsrIy+Pj4qL/HH4QBSETdtJejoyMDEBERkYlpyO4r3AmaiIiILA4DEBEREVkcBiAiIiKyONwHqAlqa2tRU1MjdRlkYC1btoRcLpe6DCIi0iMGoEYQBAGFhYUoKSmRuhRqJs7OzvDw8OB5oYiIzAQDUCPUhR83NzfY2dnxS9GMCYKAyspKXLt2DQDg6ekpcUVERKQPDEA6qq2tVYefdu3aSV0ONYNWrVoBAK5duwY3NzdOhxERmQHuBK2jun1+7OzsJK6EmlPd75v7fBERmQcGoEbitJdl4e+biMi8MAARERGRxWEAIiIiIovDAGRB4uPjIZPJIJPJ0LJlS7i7u+O5557DqlWroFKpGtzP6tWr4ezsbLhCiYiIDIwByMJERUWhoKAAFy5cwI8//oinn34akyZNwqBBg3D37l2pyyMiIgtgDAeUMABZGBsbG3h4eMDb2xuPPvooZs2aha1bt+LHH3/E6tWrAQCLFi1Cjx49YG9vDx8fH4wbNw7l5eUAgNzcXIwcORKlpaXq0aQ5c+YAANauXYuwsDC0bt0aHh4eeOWVV9TnzyEiIiorK0NycjLmz5+PL788JWktDEB6IAgCqqurm/0mCIJe6n/mmWcQFBSEzZs3AwCsrKywZMkSnDhxAmvWrMG///1vTJ8+HQDw+OOPIyMjA46OjigoKEBBQQGmTp0K4F6iT0lJwdGjR7FlyxZcuHAB8fHxeqmRiIhM2+HDh7F48WL1/U2bbCSshidC1IuamhqkpqY2++smJibC2tpaL3117twZx44dAwBMnjxZ3e7r64t58+bh7bffxieffAJra2s4OTlBJpPBw8NDo49Ro0apf/b398eSJUvQq1cvlJeXw8HBQS91EhGRaREEAcuXL0dxcbG67cyZ5zBmjL+EVTEA0f9PEAT1uW527tyJ1NRUnD59GmVlZbh79y7u3LmDysrKB54A8uDBg5gzZw6OHj2KW7duqXesvnjxIrp27dos60FERMajtLQUGRkZGm3jx483iispMADpQcuWLZGYmCjJ6+rLqVOn4OfnhwsXLmDQoEEYO3YsPvjgA7Rt2xZ79uzB6NGjUV1dXW8AqqioQGRkJCIjI/H111/D1dUVFy9eRGRkJKqrq/VWJxERmYbffvsN27dvV993cnLCpEmTjObEsgxAeiCTyfQ2FSWFf//73/jvf/+Ld999FwcPHoRKpcJHH30EK6t7u4ht2rRJY3lra2vU1tZqtJ0+fRo3btxAWloafHx8AAAHDhxonhUgIiKjIQgCli5dilu3bqnbBgwYgN69e0tYlTYGIAtTVVWFwsJC1NbWoqioCFlZWUhNTcWgQYMQGxuL48ePo6amBkuXLsXgwYPxyy+/YMWKFRp9+Pr6ory8HDk5OQgKCoKdnR3at28Pa2trLF26FG+//TaOHz+OlJQUidaSiIikcPPmTSxdulSjbdKkSUZ57jgeBWZhsrKy4OnpCV9fX0RFRWHXrl1YsmQJtm7dCrlcjqCgICxatAgLFixA9+7d8fXXX2vt4P3444/j7bffRkxMDFxdXbFw4UK4urpi9erV+Oabb9C1a1ekpaUhPT1dorUkIqLm9uuvv2qEn3bt2iEpKckoww8AyAR9HUvdBJmZmfjwww9RWFiIoKAgLF26tN6hss2bN2P+/Pk4d+4campq0LFjR0yZMgWvv/66epn4+HisWbNG43mRkZHIyspqUD1lZWVwcnJCaWkpHB0dNR67c+cO8vPz4efnB1tbWx3XlEwVf+9EROJUKhUWLVqEiooKddugQYMQGhra7LU86Pv7fpJPgW3cuBEJCQlYsWIFFAoFMjIyEBkZiTNnzsDNzU1r+bZt2+K9995D586dYW1tjW3btmHkyJFwc3NDZGSkermoqCh88cUX6vs2NtKeb4CIiMjcXL9+HZmZmRpt77777kPDhzGQPAAtWrQIb775JkaOHAkAWLFiBX744QesWrUKM2fO1Fq+X79+GvcnTZqENWvWYM+ePRoBqO6Mx0RERKR/e/bsQU5Ojvq+h4cHxowZYzRHeT2MpPsAVVdX4+DBg4iIiFC3WVlZISIiAnl5eQ99viAIyMnJwZkzZ/DUU09pPJabmws3Nzd06tQJY8eOxY0bN/RePxERkaVRqVRITU3VCD/R0dF46623TCb8ABKPAF2/fh21tbVwd3fXaHd3d8fp06frfV5paSm8vb1RVVUFuVyOTz75BM8995z68aioKLz44ovw8/PD+fPnMWvWLAwYMAB5eXmQy+Va/VVVVaGqqkp9v6ysTA9rR0REZF5OnDiBb7/9VqMtISEBrVu3lqiixpN8CqwxWrdujSNHjqgPxU5ISIC/v796emz48OHqZXv06IGePXsiICAAubm5ePbZZ7X6S01NRXJycnOVT0REZHLu/54sK/NAerrpTHndT9IpMBcXF8jlchQVFWm0FxUVPXD/HSsrKwQGBiI4OBhTpkzBSy+99MBrcfn7+8PFxQXnzp0TfTwxMRGlpaXq26VLlxq3QkRERGampqZGK/wUFXVG376mNeV1P0lHgKytrREaGoqcnBxER0cDuDe3mJOTg/Hjxze4H5VKpTGFdb/Lly/jxo0b8PT0FH3cxsaGR4kRERHd58iRI9i6datG29ixY0WP0jY1kk+BJSQkIC4uDmFhYejduzcyMjJQUVGhPiosNjYW3t7e6hGe1NRUhIWFISAgAFVVVdi+fTvWrl2L5cuXAwDKy8uRnJyMYcOGwcPDA+fPn8f06dMRGBiocZQYERER1U9s1xClUilBJYYheQCKiYlBcXExkpKSUFhYiODgYGRlZal3jL548aL6mlTAvYtujhs3DpcvX0arVq3QuXNnfPXVV4iJiQEAyOVyHDt2DGvWrEFJSQm8vLzQv39/pKSkcJSHiIjoIaqqqpCWlqbRFhQUpJ6pMRdGcSZoY8MzQTdNfHw8SkpKsGXLFgD3zt0UHByMjIyMRvepjz6agr93IrIE91/BHQAmTJiAtm3bSlSRbkzqTNDUfP5+iZCWLVuiffv2iI2NxaxZs9CiheHeCps3b0bLli0btGxubi6efvpp3Lp1S+P6Mbr0QUREujP3Ka/7MQBZmLpLhNTtP/XOO++gZcuWSExM1Fiuuroa1tbWenlNffzlYCp/fRARmZq//voLCxcu1Gjr1asXnn/+eYkqah68GryFqbtESIcOHTB27FhERETg+++/R3x8PKKjo/HBBx/Ay8sLnTp1AgBcunQJ//znP+Hs7Iy2bdti6NChuHDhgrq/2tpaJCQkwNnZGe3atcP06dNx/6xqv379MHnyZPX9qqoqzJgxAz4+PrCxsUFgYCA+//xzXLhwAU8//TQAoE2bNpDJZIiPjxft49atW4iNjUWbNm1gZ2eHAQMG4OzZs+rHV69eDWdnZ2RnZ6NLly5wcHBAVFQUCgoK1Mvk5uaid+/esLe3h7OzM5544gn8+eefetrSRETGb+/evVrhZ9KkSWYffgAGIIvXqlUrVFdXA4D6siI7duzAtm3bUFNTg8jISLRu3Ro///wzfvnlF3WQqHvORx99hNWrV2PVqlXYs2cPbt68ie++++6BrxkbG4v169djyZIlOHXqFP7v//4PDg4O8PHxwb/+9S8AwJkzZ1BQUICPP/5YtI/4+HgcOHAA33//PfLy8iAIAp5//nnU1NSol6msrER6ejrWrl2L3bt34+LFi5g6dSoA4O7du4iOjkbfvn1x7Ngx5OXlmdQ1bIiImio5ORk7duzQaFMqlRq7H5gzToFZqLrrqGVnZ2PChAkoLi6Gvb09PvvsM/XU11dffQWVSoXPPvtMHQy++OILODs7Izc3F/3790dGRgYSExPx4osvArh3Mdvs7Ox6X/f333/Hpk2bsGPHDvU14Pz9/dWP1011ubm51fuf8OzZs/j+++/xyy+/4PHHHwcAfP311/Dx8cGWLVvw8ssvA7h38q4VK1YgICAAADB+/HjMnTsXwL0d5UpLSzFo0CD14126dNF9QxIRmZiKigqkp6drtD3xxBMa1+W0BBwBktD33wOPP37v3+aybds2ODg4wNbWFgMGDEBMTAzmzJkD4N5lQ/6+38/Ro0dx7tw5tG7dGg4ODnBwcEDbtm1x584dnD9/HqWlpSgoKIBCoVA/p0WLFggLC6v39Y8cOQK5XI6+ffs2eh1OnTqFFi1aaLxuu3bt0KlTJ5w6dUrdZmdnpw43AODp6Ylr164BuBe04uPjERkZicGDB+Pjjz/WmB4jIjJHubm5WuEnISHB4sIPwBEgSaWlAXl59/4dMqR5XvPpp5/G8uXLYW1tDS8vL42jv+zt7TWWLS8vR2hoKL7++mutflxdXRv1+q1atWrU8xrj/qPGZDKZxv5JX3zxBSZOnIisrCxs3LgRs2fPxo4dO/DYY481W41ERM3F0o7yehiOAElo5kwgPPzev83F3t4egYGBaN++/UMPfX/00Udx9uxZuLm5ITAwUOPm5OQEJycneHp6Yt++fern3L17FwcPHqy3zx49ekClUuE///mP6ON1I1C1tbX19tGlSxfcvXtX43Vv3LiBM2fOoGvXrg9cp/uFhIQgMTERe/fuRffu3bFu3Tqdnk9EZOxu376tFX769etn0eEHYACS1JAhwN69zTf6o6tXX30VLi4uGDp0KH7++Wfk5+cjNzcXEydOxOXLlwHcO1ogLS0NW7ZswenTpzFu3DiUlJTU26evry/i4uIwatQobNmyRd3npk2bAAAdOnSATCbDtm3bUFxcjPLycq0+OnbsiKFDh+LNN9/Enj17cPToUbz22mvw9vbG0KFDG7Ru+fn5SExMRF5eHv7880/89NNPOHv2LPcDIiKz8tNPP2HRokUabdOmTWvSbgjmggGI6mVnZ4fdu3ejffv2ePHFF9GlSxeMHj0ad+7cUZ9hc8qUKXj99dcRFxeH8PBwtG7dGi+88MID+12+fDleeukljBs3Dp07d8abb76JiooKAIC3tzeSk5Mxc+ZMuLu713tR3C+++AKhoaEYNGgQwsPDIQgCtm/f3uCTJdrZ2eH06dMYNmwYHnnkEYwZMwbvvPMO3nrrLR22EBGR8UpOTkZeXp5Gm1KphJ2dnUQVGRdeCkMEL4VB9+PvnYhMRUlJidYpRPr374/w8HCJKmo+vBQGERGRBdq2bZvWfpgzZszgH24iGICIiIjMAI/y0g0DEBERkQm7fPkyPv/8c422gQMHPvCcbMQAREREZLLERn0SExP1djFrc8YA1Ejcd9yy8PdNRMZGLPyEhCjB7NMwDEA6qjvMurKyslnPakzSqqysBKB9dmkioua2b98+ZGVlabRdvx6A5557zWjPK2eMGIB0JJfL4ezsrL6mlJ2dHa8gbsYEQUBlZSWuXbsGZ2dnyOVyqUsiIgsmNuozffp0/kHeCAxAjeDh4QEA6hBE5s/Z2Vn9eyciam6CIGDu3Lla7SEhSjD7NA4DUCPIZDJ4enrCzc0NNTU1UpdDBtayZUuO/BCRZHJzc7Wun+jh4cEz1zcRA1ATyOVyfjESEZHBiE158cSG+sEAREREZGRUKhVSUlK02nliQ/1hACIiIjIiP/74I/bv36/RFhAQgNdee02iiswTAxAREZGREJvymjVrFk/BYQAMQERERBKrra3FvHnztNo55WU4DEBEREQS+te//oXjx49rtPXo0QMvvviiRBVZBgYgIiIiiYhNec2ePZtHGDcDBiAiIqJmVlNTg/nz52u1c8qr+TAAERERNaO1a9fijz/+0GhTKBSIioqSqCLLxABERETUTMSmvJKSknhNSQkwABERERnYnTt3sGDBAq12TnlJhwGIiIjIgJYvX6518ex+/fqhb9++ElVEAAMQERGRwXDKy3gxABEREelZWVkZFi9erNXOKS/jwQBERESkR2KjPgMGDEDv3r0lqIbqwwBERESkJ2LhJyRECWYf48MARERE1EQ3btzAsmXLtNo55WW8GICIiIiaQGzUJyoqCgqFQoJqqKGspC4AADIzM+Hr6wtbW1soFArs37+/3mU3b96MsLAwODs7w97eHsHBwVi7dq3GMoIgICkpCZ6enmjVqhUiIiJw9uxZQ68GERFZGLHwo1QqGX5MgOQBaOPGjUhISIBSqcShQ4cQFBSEyMhIrXMm1Gnbti3ee+895OXl4dixYxg5ciRGjhyJ7Oxs9TILFy7EkiVLsGLFCuzbtw/29vaIjIzEnTt3mmu1iIjIjBUWFtYbfsg0yARBEKQsQKFQoFevXuq5U5VKBR8fH0yYMAEzZ85sUB+PPvooBg4ciJSUFAiCAC8vL0yZMgVTp04FAJSWlsLd3R2rV6/G8OHDH9pfWVkZnJycUFpaCkdHx8avHBERmR2x4BMdHY2goCAJqqG/0+X7W9IRoOrqahw8eBARERHqNisrK0RERCAvL++hzxcEATk5OThz5gyeeuopAEB+fj4KCws1+nRycoJCoai3z6qqKpSVlWnciIiI7lffqA/Dj+mRdCfo69evo7a2Fu7u7hrt7u7uOH36dL3PKy0thbe3N6qqqiCXy/HJJ5/gueeeA3BvWLKuj/v7rHvsfqmpqaJvaiIiIgD4888/sXr1aq12TnmZLpM8Cqx169Y4cuQIysvLkZOTg4SEBPj7+6Nfv36N6i8xMREJCQnq+2VlZfDx8dFTtUREZMrE/kAePnw4OnXqJEE1pC+SBiAXFxfI5XIUFRVptBcVFcHDw6Pe51lZWSEwMBAAEBwcjFOnTiE1NRX9+vVTP6+oqAienp4afQYHB4v2Z2NjAxsbmyauDRERmRvu6Gy+JN0HyNraGqGhocjJyVG3qVQq5OTkIDw8vMH9qFQqVFVVAQD8/Pzg4eGh0WdZWRn27dunU59ERGS5fv/9d4YfMyf5FFhCQgLi4uIQFhaG3r17IyMjAxUVFRg5ciQAIDY2Ft7e3khNTQVwb3+dsLAwBAQEoKqqCtu3b8fatWuxfPlyAIBMJsPkyZMxb948dOzYEX5+fnj//ffh5eWF6OhoqVaTiIhMhFjwiY+PR4cOHSSohgxF8gAUExOD4uJiJCUlobCwEMHBwcjKylLvxHzx4kVYWf1voKqiogLjxo3D5cuX0apVK3Tu3BlfffUVYmJi1MtMnz4dFRUVGDNmDEpKSvDkk08iKysLtra2zb5+RERkOjjqYzkkPw+QMeJ5gIiILMuxY8fw3XffabUz/JgWXb6/JR8BIiIikpLYqM+YMWM0DqQh88MAREREFotTXpaLAYiIiCzOr7/+qnENyToMP5aDAYiIiCyK2KjP+PHj0a5dOwmqIakwABERkcXglBfVYQAiIiKz98MPP+DAgQNa7SEhDD+WigGIiIjMmtioz6RJk+Ds7Nz8xZDRYAAiIiKzJAgC5s6dq9XOKS8CGICIiMgMbdq0CadOndJqZ/ihOgxARERkVsSmvKZOnQp7e3sJqiFjxQBERERmQaVSISUlRaudoz4khgGIiIhM3meffYYrV65otTP8UH0YgIiIyKSJTXnNmDEDtra2ElRDpoIBiIiITNLdu3fxwQcfaLVz1IcaggGIiIhMjtioj729PaZOnSpBNWSKGICIiMikiIWfoKD3EB3NrzRqOL5biIjIJFRVVSEtLU2rnVNe1BgMQEREZPTERn3s7Owwbdo0Caohc8AARERERk0s/Lz//vuwsrKSoBoyFwxARERklMrLy/HRRx9ptXPKi/SBAYiIiIyO2KiPp6cnxowZI0E1ZI4YgIiIyKiIhZ+kpCTIZDIJqiFzxQBERERG4caNG1i2bJlWO6e8yBAYgIiISHJioz6dOnXC8OHDJaiGLAEDEBERSUos/ISEKDFkiATFkMVgACIiIklcvXoVK1eu1GrnlBc1BwYgIiJqdmKjPl27dsXLL78sQTVkiRiAiIioWYmFH476UHNjACIiombx+++/Y/369VrtDD8kBQYgIiIyOLFRnz//7I1VqwZIUA0RwAupEBGRQYmFn+xsJaKjGX5IOhwBIiIigzh8+DC+//57rXalUgnOepHUGICIiEjvxEZ9+vTpg2eeeUaCaoi0MQAREZFe8SgvMgUMQEREpBd79uxBTk6OVjvDDxkjBiAiImoysVGf559/Hr169ZKgGqKHYwAiIqIm4ZQXmSIGICIiapTt27fjt99+02pn+CFTYBTnAcrMzISvry9sbW2hUCiwf//+epdduXIl+vTpgzZt2qBNmzaIiIjQWj4+Ph4ymUzjFhUVZejVICKyGMnJyVrh5+WXX2b4IZMheQDauHEjEhISoFQqcejQIQQFBSEyMhLXrl0TXT43NxcjRozArl27kJeXBx8fH/Tv3x9XrlzRWC4qKgoFBQXqm9jp14mISHf1TXl17dpVgmqIGkcmCIIgZQEKhQK9evXCsmXLAAAqlQo+Pj6YMGECZs6c+dDn19bWok2bNli2bBliY2MB3BsBKikpwZYtWxpVU1lZGZycnFBaWgpHR8dG9UFEZG42bNiAM2fOaLVz1IeMhS7f35LuA1RdXY2DBw8iMTFR3WZlZYWIiAjk5eU1qI/KykrU1NSgbdu2Gu25ublwc3NDmzZt8Mwzz2DevHlo166daB9VVVWoqqpS3y8rK2vE2hARmS+xUZ/Y2Fj4+flJUA1R00k6BXb9+nXU1tbC3d1do93d3R2FhYUN6mPGjBnw8vJCRESEui0qKgpffvklcnJysGDBAvznP//BgAEDUFtbK9pHamoqnJyc1DcfH5/GrxQRkZmpb8qL4YdMmUkfBZaWloYNGzYgNzcXtra26vbhw4erf+7Rowd69uyJgIAA5Obm4tlnn9XqJzExEQkJCer7ZWVlDEFEZPH+7//+T/SPUU55kTmQNAC5uLhALpejqKhIo72oqAgeHh4PfG56ejrS0tKwc+dO9OzZ84HL+vv7w8XFBefOnRMNQDY2NrCxsdF9BYiIzJTYqM9bb7310M9mIlMh6RSYtbU1QkNDNU6drlKpkJOTg/Dw8Hqft3DhQqSkpCArKwthYWEPfZ3Lly/jxo0b8PT01EvdRETmShCEeqe8GH7InEg+BZaQkIC4uDiEhYWhd+/eyMjIQEVFBUaOHAng3k523t7eSE1NBQAsWLAASUlJWLduHXx9fdXDsw4ODnBwcEB5eTmSk5MxbNgweHh44Pz585g+fToCAwMRGRkp2XoSERm7tLQ0jQNC6nDKi8yR5AEoJiYGxcXFSEpKQmFhIYKDg5GVlaXeMfrixYuwsvrfQNXy5ctRXV2Nl156SaMfpVKJOXPmQC6X49ixY1izZg1KSkrg5eWF/v37IyUlhdNcRET1EBv1mThxItq0aSNBNUSGJ/l5gIwRzwNERJZCpVIhJSVFq52jPmSKTOY8QEREJB2xUR+A4YcsAwMQEZEFEgs/U6dOhb29vQTVEDU/BiAiIgty9+5dfPDBB1rtHPUhS8MARERkITjlRfQ/DEBERBZALPzMnDmTR8eSxWIAIiIyY3fu3MGCBQu02jnqQ5ZO5wAkl8tRUFAANzc3jfYbN27Azc2t3guOEhFR8+KUF1H9dA5A9Z02qKqqCtbW1k0uiIiImk4s/MyePRtyuVyCaoiMT4MD0JIlSwAAMpkMn332GRwcHNSP1dbWYvfu3ejcubP+KyQiogYrKyvD4sWLtdo56kOkqcEBqO4/lCAIWLFihcZfEdbW1vD19cWKFSv0XyERETUIp7yIGq7BASg/Px8A8PTTT2Pz5s28PgwRkRERCz9JSUmQyWQSVENk/HTeB2jXrl2GqIOIiBrh+vXryMzM1GrnqA/Rg+kcgEaNGvXAx1etWtXoYoiIqOHERn0cHR3x7rvvSlANkWnROQDdunVL435NTQ2OHz+OkpISPPPMM3orjIiI6icWfjjqQ9RwOgeg7777TqtNpVJh7NixCAgI0EtRREQk7vLly/j888+12hl+iHQjE+o7sY+Ozpw5g379+qGgoEAf3UmqrKwMTk5OKC0thaOjo9TlEBEBEB/1ad++PUaOHClBNUTGR5fvb71dCuP8+fO4e/euvrojIqK/4ZQXkX7pHIASEhI07guCgIKCAvzwww+Ii4vTW2FERAScPXsW69at02pn+CFqGp0D0OHDhzXuW1lZwdXVFR999NFDjxAjIqKGExv16dmzJ1544QUJqiEyLzwPEBGREeKUF5FhNXofoGvXruHMmTMAgE6dOmldHZ6IiHR39OhRbNmyRas9O1sJ5h8i/dE5AJWVleGdd97B+vXroVKpAAByuRwxMTHIzMyEk5OT3oskIrIEYqM+7u5P4MsvIzBzpgQFEZkxK12f8Oabb2Lfvn344YcfUFJSgpKSEmzbtg0HDhzAW2+9ZYgaiYjMXn1TXm+/HYG9e4EhQyQoisiM6XweIHt7e2RnZ+PJJ5/UaP/5558RFRWFiooKvRYoBZ4HiIiay969e7Fjxw6tdu7vQ6Q7g54HqF27dqLTXE5OTrxCPBGRDsRGfSIjI/HYY49JUA2RZdF5Cmz27NlISEhAYWGhuq2wsBDTpk3D+++/r9fiiIjMVX1TXgw/RM1D5ymwkJAQnDt3DlVVVWjfvj0A4OLFi7CxsUHHjh01lj106JD+Km1GnAIjIkPZunUrjhw5otXOKS+ipjPoFNjQoUMhk8kaXRwRkaUSG/U5enQYNm/uLkE1RJZN5wA0Z84cA5RBRGTexMJPdraSh7cTSUTnAOTv74/ffvsN7dq102gvKSnBo48+ij/++ENvxRERmbpPP/0UBQUFWu3Z2Urs3StBQUQEoBEB6MKFC6itrdVqr6qqwuXLl/VSFBGRORAb9fn553/iypUuWLBAgoKISK3BAej7779X/5ydna1xKHxtbS1ycnLg5+en3+qIiEwUr+VFZNwaHICio6MBADKZDHFxcRqPtWzZEr6+vvjoo4/0WhwRkakRCz4Aww+RsWlwAKq77pefnx9+++03uLi4GKwoIiJTJBZ+YmNjOTpOZIR03gcoPz/fEHUQEZksQRAwd+5crXaO+hAZL50DkNh/8r9LSkpqdDFERKamvimvkBCGHyJjpnMA+u677zTu19TUID8/Hy1atEBAQAADEBFZDLHwM2bMGHh6ekpQDRHpQudrgR0+fFjjdvz4cRQUFODZZ5/Fu+++26giMjMz4evrC1tbWygUCuzfv7/eZVeuXIk+ffqgTZs2aNOmDSIiIrSWFwQBSUlJ8PT0RKtWrRAREYGzZ882qjYiovupVCrR8BMSomT4ITIROgcgMY6OjkhOTm7UxVA3btyIhIQEKJVKHDp0CEFBQYiMjMS1a9dEl8/NzcWIESOwa9cu5OXlwcfHB/3798eVK1fUyyxcuBBLlizBihUrsG/fPtjb2yMyMhJ37txp9DoSEQH3Rn1SUlK02pVKJYYMkaAgImoUnS+GWp89e/Zg8ODBuHXrlk7PUygU6NWrF5YtWwbg3l9WPj4+mDBhAmY24BzxtbW1aNOmDZYtW4bY2FgIggAvLy9MmTIFU6dOBQCUlpbC3d0dq1evxvDhwx/aJy+GSkRixEZ9du+egJycthJUQ0T3M+jFUJcsWaJxXxAEFBQUYO3atRgwYIBOfVVXV+PgwYNITExUt1lZWSEiIgJ5eXkN6qOyshI1NTVo2/beB1B+fj4KCwsRERGhXsbJyQkKhQJ5eXkNCkBERH9XXV2N1NRUrXZey4vIdOkcgBYvXqxx38rKCq6uroiLi9MIMg1x/fp11NbWwt3dXaPd3d0dp0+fblAfM2bMgJeXlzrwFBYWqvu4v8+6x+5XVVWFqqoq9f2ysrIGrwMRmbcHndiQR7kTmS6TPg9QWloaNmzYgNzcXNja2ja6n9TU1Ho/5IjIcol9LkydOhX29vYSVENE+tSonaBLSkpw4MABHDhwACUlJY1+cRcXF8jlchQVFWm0FxUVwcPD44HPTU9PR1paGn766Sf07NlT3V73PF36TExMRGlpqfp26dKlxqwOEZmJ8vLyeo/yYvghMg86BaALFy5g4MCBcHFxgUKhgEKhgIuLCwYNGoQLFy7o/OLW1tYIDQ1FTk6Ouk2lUiEnJwfh4eH1Pm/hwoVISUlBVlYWwsLCNB7z8/ODh4eHRp9lZWXYt29fvX3a2NjA0dFR40ZElik5OVn0uoY8yovIvDR4CuzSpUt47LHH0LJlS6SkpKBLly4AgJMnT2L58uUIDw/Hb7/9hn/84x86FZCQkIC4uDiEhYWhd+/eyMjIQEVFBUaOHAng3nV0vL291TsgLliwAElJSVi3bh18fX3V+/U4ODjAwcEBMpkMkydPxrx589CxY0f4+fnh/fffh5eXl/qCrkREYsRGfRITE2FtbS1BNURkSA0+DH706NE4d+4csrOztfa3+euvvxAVFYWOHTvis88+07mIZcuW4cMPP0RhYSGCg4OxZMkSKBQKAEC/fv3g6+uL1atXAwB8fX3x559/avWhVCoxZ84cAPeOTFMqlfj0009RUlKCJ598Ep988gkeeeSRBtXDw+CJLMv169eRmZmp1c5reRGZFl2+vxscgLy9vbFx40Y8+eSToo/v3r0bw4cPx9WrV3Wv2MgwABFZjgcd5UVEpsUg5wG6fv06fH19633c398fN2/ebHCRRERSEws/77//Pqys9HKSfCIyYg0OQJ6enjh58mS9+/gcP378oUduEREZg4sXL+KLL77QaueoD5HlaHAAio6OxtSpU5GTkwNXV1eNx65du4YZM2ZwJ2MiMnqc8iIiQId9gG7dugWFQoHCwkK89tpr6Ny5MwRBwKlTp7Bu3Tp4eHjg119/VV+SwpRxHyAi8yQWfpKSkiCTySSohoj0zSD7ALVp0wb79u3DrFmzsGHDBvUJEJ2dnfHKK69g/vz5ZhF+iMj8nDx5Et98841WO0d9iCxXo64GLwgCiouLAQCurq5m99cTR4CIzAenvIgsh0GvBg8AMpkMbm5ujSqOiKi5iIUfBh8iAhoZgIiIjNmvv/6K7OxsrXaGHyKqwwBERGaFU15E1BAMQERkNjjlRUQNxQBERCYvKysL+/bt02pn+CGi+jQoAC1ZsqTBHU6cOLHRxRAR6Ups1MfZ2RmTJk2SoBoiMhUNOgzez8+vYZ3JZPjjjz+aXJTUeBg8kWnglBcR/Z3eD4PPz8/XS2FERPrw9ddf49y5c1rtDD9E1FCN3geouroa+fn5CAgIQIsW3JWIiJqH2KhPYGAgXn31VQmqISJTZaXrEyorKzF69GjY2dmhW7duuHjxIgBgwoQJSEtL03uBRER16pvyYvghIl3pHIASExNx9OhR5ObmwtbWVt0eERGBjRs36rU4IiLg3oEYYuEnJIRTXkTUODrPXW3ZsgUbN27EY489pnENsG7duuH8+fN6LY6ISCz4XLr0KD77bLAE1RCRudB5BKi4uFj0OmAVFRVmd1FUIpKWWPjJzlZiyBCGHyJqGp1HgMLCwvDDDz9gwoQJAKAOPZ999hnCw8P1Wx0RWaQHXc6CB3oRkT7oHIDmz5+PAQMG4OTJk7h79y4+/vhjnDx5Env37sV//vMfQ9RIRBZELPz079+ff2ARkV7pPAX25JNP4siRI7h79y569OiBn376CW5ubsjLy0NoaKghaiQiC1Hfjs4MP0Skbw06E7Sl4ZmgiZoXr+BORPqg9zNBl5WVNfjFGRiISBdi4eeFF15Az549JaiGiCxFgwKQs7Nzg4/wqq2tbVJBRGQZBEHA3Llztdo56kNEzaFBAWjXrl3qny9cuICZM2ciPj5ePS+fl5eHNWvWIDU11TBVEpFZ4ZQXEUlN532Ann32WbzxxhsYMWKERvu6devw6aefIjc3V5/1SYL7ABEZjlj4iYuLg6+vb/MXQ0RmRZfvb52PAsvLy0NYWJhWe1hYGPbv369rd0RkIVQqVb3X8mL4IaLmpvN5gHx8fLBy5UosXLhQo/2zzz6Dj4+P3gojIvPBKS8iMjY6B6DFixdj2LBh+PHHH6FQKAAA+/fvx9mzZ/Gvf/1L7wUSkWkTCz+rVr2D115zkaAaIqJ7dA5Azz//PM6ePYtPPvkEp0+fBgAMHjwYb7/9NkeAiEitpqYG8+fP12oPCVHizz8lKIiI6G94IkQR3AmaqGnqm/IKCVFiyJBmLoaILIbeT4R4v5KSEnz++ec4deoUAKBbt24YNWoUnJycGtMdEZkRsfAzZcoUODg4SFANEZE4nY8CO3DgAAICArB48WLcvHkTN2/exKJFixAQEIBDhw4ZokYiMgEVFRX1HuXF8ENExkbnKbA+ffogMDAQK1euRIsW9waQ7t69izfeeAN//PEHdu/ebZBCmxOnwIh0w6O8iMgY6PL9rXMAatWqFQ4fPozOnTtrtJ88eRJhYWGorKzUvWIjwwBE1HBi4adnz0S88IK1BNUQkSUz6D5Ajo6OuHjxolYAunTpElq3bq1rd0Rkom7cuIFly5ZptXPUh4hMgc4BKCYmBqNHj0Z6ejoef/xxAMAvv/yCadOmaV0eg4jM04OO8iIiMgU67wSdnp6OF198EbGxsfD19YWvry/i4+Px0ksvYcGCBToXkJmZCV9fX9ja2kKhUDzwchonTpzAsGHD4OvrC5lMhoyMDK1l5syZA5lMpnG7f7SKiBpPLPy8//77UCp5iDsRmQ6dR4Csra3x8ccfIzU1FefPnwcABAQEwM7OTucX37hxIxISErBixQooFApkZGQgMjISZ86cgZubm9bylZWV8Pf3x8svv4x333233n67deuGnTt3qu/X7axNRI13+fJlfP7551rtnPIiIlPU6GRgZ2eHHj16NOnFFy1ahDfffBMjR44EAKxYsQI//PADVq1ahZkzZ2ot36tXL/Tq1QsARB+v06JFC3h4eDSpNiL6Hx7lRUTmpsEBaNSoUQ1abtWqVQ1arrq6GgcPHkRiYqK6zcrKChEREcjLy2toWaLOnj0LLy8v2NraIjw8HKmpqWjfvn29y1dVVaGqqkp9v6ysrEmvT2ROxMJPUlISZDKZBNUQEelHgwPQ6tWr0aFDB4SEhEAfV8+4fv06amtr4e7urtHu7u6uvsZYYygUCqxevRqdOnVCQUEBkpOT0adPHxw/frzeo9RSU1Pr/QuXyFKdPn0aGzdu1GrnqA8RmYMGB6CxY8di/fr1yM/Px8iRI/Haa6+hbdu2hqytUQYMGKD+uWfPnlAoFOjQoQM2bdqE0aNHiz4nMTERCQkJ6vtlZWW8sCtZNE55EZG5a/BRYJmZmSgoKMD06dPx//7f/4OPjw/++c9/Ijs7u1EjQi4uLpDL5SgqKtJoLyoq0uv+O87OznjkkUdw7ty5epexsbGBo6Ojxo3IUtV3OQuGHyIyJzodBm9jY4MRI0Zgx44dOHnyJLp164Zx48bB19cX5eXlOr2wtbU1QkNDkZOTo25TqVTIyclBeHi4Tn09SHl5Oc6fPw9PT0+99Ulkjvbv319v+CEiMjeNPgrMysoKMpkMgiCgtra2UX0kJCQgLi4OYWFh6N27NzIyMlBRUaE+Kiw2Nhbe3t5ITU0FcG/H6ZMnT6p/vnLlCo4cOQIHBwcEBgYCAKZOnYrBgwejQ4cOuHr1KpRKJeRyOU/SSPQAnPIiIkujUwCqqqrC5s2bsWrVKuzZsweDBg3CsmXLEBUVBSsrnc+piJiYGBQXFyMpKQmFhYUIDg5GVlaWesfoixcvavR79epVhISEqO+np6cjPT0dffv2RW5uLoB75yoZMWIEbty4AVdXVzz55JP49ddf4erqqnN9RJaAoz5EZIkafDHUcePGYcOGDfDx8cGoUaPw6quvwsXFxdD1SYIXQyVL8NNPP4mecoLhh4hMlUGuBm9lZYX27dsjJCTkgef/2Lx5s27VGiEGIDJ3YqM+rVu31jgakojI1BjkavCxsbE88RmRGeCUFxGRjidCJCLTtXHjRtGTjPIK7kRkiXiVUCILIDbq4+fnh9jYWAmqISKSHgMQkZnjlBcRkTYGICIzlZmZievXr2u1M/wQETEAEZklsVGf0NBQDBo0SIJqiIiMDwMQkZnhlBcR0cMxABGZCV7Ogoio4RiAiMyAWPiJiIjAE088IUE1RETGjwGIyMRxyouISHcMQEQmilNeRESNxwBEZILEws+wYcPQvXt3CaohIjI9DEBEJkQQBMydO1ernaM+RES6YQAiMhGc8iIi0h8GICITIBZ+4uLi4Ovr2/zFEBGZAQYgIiOmUqmQkpKi1c5RHyKipmEAIjJSnPIiIjIcBiAiIyQWfsaOHQs3NzcJqiEiMj8MQERGpKamBvPnz9dq56gPEZF+MQARGYn6prxCQhh+iIj0jQGIyAiIhZ+EhAS0bt1agmqIiMyfldQFEFmyyspK0fCTna1k+CEiMiCOABFJpL4pr+xsJWbObOZiiIgsDAMQkQTEws/OnTMxbZoNuL8zEZHhMQARNaObN29i6dKlWu3Z2Urs3StBQUREFooBiKiZcMqLiMh4MAARNQOx8DN79mzI5XJOeRERSYABiMiArl69ipUrV2q188SGRETSYgAiMhBey4uIyHjxPEBEBiB+bp8kntWZiMhIcASISI9+//13rF+/Xqs9JETJfX2IiIwIAxCRnnDKi4jIdDAAEemBWPhh8CEiMl4MQERNcOTIEWzdulWrneGHiMi4MQARNVJ9U17c0ZmIyPgxABE1Aqe8iIhMGwMQkQ52796NXbt2abUz/BARmRbJzwOUmZkJX19f2NraQqFQYP/+/fUue+LECQwbNgy+vr6QyWTIyMhocp9EDZWcnKwVftq0acPwQ0RkgiQNQBs3bkRCQgKUSiUOHTqEoKAgREZG4tq1a6LLV1ZWwt/fH2lpafDw8NBLn0QNUd+U18SJEyWohoiImkomCIIg1YsrFAr06tULy5YtAwCoVCr4+PhgwoQJmPmQy2P7+vpi8uTJmDx5st76rFNWVgYnJyeUlpbC0dFR9xUjs/Htt9/ixIkTWu3r1ytx+rQEBRERUb10+f6WbASouroaBw8eRERExP+KsbJCREQE8vLymrXPqqoqlJWVadyIkpOTtcKPvX17ZGcrsXChREUREZFeSLYT9PXr11FbWwt3d3eNdnd3d5xu5J/Wje0zNTW13kOayTI96CivqVObuxoiItI3HgUGIDExEQkJCer7ZWVl8PHxkbAiksqSJUtw69YtrXae24eIyLxIFoBcXFwgl8tRVFSk0V5UVFTvDs6G6tPGxgY2NjaNek0yH2KjPgUF3fH888MwZIgEBRERkcFItg+QtbU1QkNDkZOTo25TqVTIyclBeHi40fRJlqG+Ka8VKxh+iIjMkaRTYAkJCYiLi0NYWBh69+6NjIwMVFRUYOTIkQCA2NhYeHt7IzU1FcC9nZxPnjyp/vnKlSs4cuQIHBwcEBgY2KA+if6OV3AnIrJMkgagmJgYFBcXIykpCYWFhQgODkZWVpZ6J+aLFy/Cyup/g1RXr15FSEiI+n56ejrS09PRt29f5ObmNqhPojpi4adPnz545plnJKiGiIiak6TnATJWPA+Q+eO1vIiIzI8u3988CowsCqe8iIgIYAAiCyIWfgYPHoxHH31UgmqIiEhKDEBkETjlRUREf8cARGaNU15ERCRG0qvBExmSWPg5dGg4z+pMREQcASLzIwgC5s6dq9UeEqIEB36IiAhgACIzwykvIiJqCAYgMhti4Wf06NH4xz/+IUE1RERkzBiAyOTV1NRg/vz5Wu0hIUow+xARkRgGIDJp9U15VVcreRFTIiKqFwMQmSyx8LN790RMmtSG4YeIiB6IAYhMTkVFBdLT07XauaMzERE1FAMQmRQe5UVERPrAAEQmQyz8TJs2DXZ2dhJUQ0REpowBiIzejRs3sGzZMq32kBAlmH2IiKgxGIDIqHHKi4iIDIEBiIyWWPh577330KIF37ZERNQ0/CYho3Pp0iWsWrVKq52jPkREpC8MQGRUOOVFRETNgQGIjIZY+ElKSoJMJpOgGiIiMmcMQCS5kydP4ptvvtFq56gPEREZCgMQSYpTXkREJAUGIJKMWPhh8CEioubAAETNbs+ePcjJydFqZ/ghIqLmwgBEzYpTXkREZAwYgKjZiIWfkBAlhgyRoBgiIrJoDEBkcNu3b8dvv/2m1Z6drQQHfoiISAoMQGRQ9U15ZWcrMXNmMxdDRET0/2MAIoN50FFeHPkhIiIpMQCR3q1fvx6///67Vjt3dCYiImPBAER6JTbqU1nZBk88MVGCaoiIiMQxAJHe8MSGRERkKhiAqMmWLFmCW7duabUz/BARkbFiAKImERv1eeSRRzBixAgJqiEiImoYBiBqNE55ERGRqWIAIp3Nnz8fNTU1Wu0MP0REZCoYgEgnYqM+p06FY8OG/hJUQ0RE1DhWUhcAAJmZmfD19YWtrS0UCgX279//wOW/+eYbdO7cGba2tujRowe2b9+u8Xh8fDxkMpnGLSoqypCrYBHEwk96uhKvvMLwQ0REpkXyALRx40YkJCRAqVTi0KFDCAoKQmRkJK5duya6/N69ezFixAiMHj0ahw8fRnR0NKKjo3H8+HGN5aKiolBQUKC+rV+/vjlWxywlJyeLhp/sbCW+/hq8mCkREZkcmSAIgpQFKBQK9OrVC8uWLQMAqFQq+Pj4YMKECZgpcrGomJgYVFRUYNu2beq2xx57DMHBwVixYgWAeyNAJSUl2LJlS6NqKisrg5OTE0pLS+Ho6NioPsyFWPA5evRFxMf3YPAhIiKjosv3t6QjQNXV1Th48CAiIiLUbVZWVoiIiEBeXp7oc/Ly8jSWB4DIyEit5XNzc+Hm5oZOnTph7NixuHHjhv5XwMzVN+qzeTPDDxERmTZJd4K+fv06amtr4e7urtHu7u6O06dPiz6nsLBQdPnCwkL1/aioKLz44ovw8/PD+fPnMWvWLAwYMAB5eXmQy+VafVZVVaGqqkp9v6ysrCmrZfJ4BXciIjJ3ZnkU2PDhw9U/9+jRAz179kRAQAByc3Px7LPPai2fmppa75e+pRHbDoGBsXj1VT9ewZ2IiMyGpFNgLi4ukMvlKCoq0mgvKiqCh4eH6HM8PDx0Wh4A/P394eLignPnzok+npiYiNLSUvXt0qVLOq6J6RMEQTT8hIQo8eqrfhJUREREZDiSBiBra2uEhoYiJydH3aZSqZCTk4Pw8HDR54SHh2ssDwA7duyod3kAuHz5Mm7cuAFPT0/Rx21sbODo6KhxsyTJycmYO3euVntIiJL7+hARkVmSfAosISEBcXFxCAsLQ+/evZGRkYGKigqMHDkSABAbGwtvb2+kpqYCACZNmoS+ffvio48+wsCBA7FhwwYcOHAAn376KQCgvLwcycnJGDZsGDw8PHD+/HlMnz4dgYGBiIyMlGw9jZXYqM+4cePg6uoqQTVERETNQ/IAFBMTg+LiYiQlJaGwsBDBwcHIyspS7+h88eJFWFn9b6Dq8ccfx7p16zB79mzMmjULHTt2xJYtW9C9e3cAgFwux7Fjx7BmzRqUlJTAy8sL/fv3R0pKCmxsbCRZR2NUW1uLefPmabWHhCjB7ENEROZO8vMAGSNzPw9QfTt8c8qLiIhMmS7f35KPAFHzEgs/7777rlkGPSIiovowAFmI6upq9X5Uf8cruBMRkSViALIA9U15MfwQEZGlkvxiqGRYYuFn586ZCAlh+CEiIsvFESAzVVFRgfT0dK12pVLJMzoTEZHFYwAyQ5zyIiIiejAGIDMjFn5mz54tehFYIiIiS8UAZCZKSkrw8ccfa7Vz1IeIiEgbA5AZ4JQXERGRbngUmIkTCz/r1yfxKC8iIqIH4AiQibp16xaWLFmi1R4SwqO8iIiIHoYByASJjfpcueIDV9dRvJYXERFRAzAAmRix8LNypRKXL0tQDBERkYliADIRRUVFWLFihVZ7drYSn3wiQUFEREQmjAHIBIiN+oSFhWHgwIHc34eIiKgRGICMnFj44eHtRERETcMAZKT+/PNPrF69Wqud4YeIiKjpGICMkNioT79+/dC3b18JqiEiIjI/DEBGhlNeREREhsczQRuJixcvioaf7GyGHyIiIn3jCJAREAs+HTq8gE8/7YmZMyUoiIiIyMwxAEmsvlGfvXuB+Pjmr4eIiMgSMABJ5ObNm1i6dKlW+4YNSixYIEFBREREFoQBSALnzp3D119/rdH21Vdv4OxZb57YkIiIqBkwADWzb7/9FidOnNBoS0tTIiFBooKIiIgsEANQMzp37pxG+Pnmm9cwdGgA/vpLwqKIiIgsEANQM7Kzs8Pdu9Zo0aIaO3bMwvHjLaUuiYiIyCIxADUjLy8v9OqViLQ08PB2IiIiCTEANbMhQ+7diIiISDo8EzQRERFZHAYgIiIisjgMQERERGRxGICIiIjI4jAAERERkcVhACIiIiKLwwBEREREFocBiIiIiCwOAxARERFZHKMIQJmZmfD19YWtrS0UCgX279//wOW/+eYbdO7cGba2tujRowe2b9+u8bggCEhKSoKnpydatWqFiIgInD171pCrQERERCZE8gC0ceNGJCQkQKlU4tChQwgKCkJkZCSuXbsmuvzevXsxYsQIjB49GocPH0Z0dDSio6Nx/Phx9TILFy7EkiVLsGLFCuzbtw/29vaIjIzEnTt3mmu1iIiIyIjJBEEQpCxAoVCgV69eWLZsGQBApVLBx8cHEyZMwEyRK4bGxMSgoqIC27ZtU7c99thjCA4OxooVKyAIAry8vDBlyhRMnToVAFBaWgp3d3esXr0aw4cPf2hNZWVlcHJyQmlpKRwdHfW0pkRERGRIunx/SzoCVF1djYMHDyIiIkLdZmVlhYiICOTl5Yk+Jy8vT2N5AIiMjFQvn5+fj8LCQo1lnJycoFAo6u2zqqoKZWVlGjciIiIyX5JeDf769euora2Fu7u7Rru7uztOnz4t+pzCwkLR5QsLC9WP17XVt8z9UlNTkZycrNXOIERERGQ66r63GzK5JWkAMhaJiYlISEhQ379y5Qq6du0KHx8fCasiIiKixrh9+zacnJweuIykAcjFxQVyuRxFRUUa7UVFRfDw8BB9joeHxwOXr/u3qKgInp6eGssEBweL9mljYwMbGxv1fQcHB5w8eRJdu3bFpUuXLHY/oLKyMvj4+HAbWPg2ALgdAG4DgNugDreD8W4DQRBw+/ZteHl5PXRZSQOQtbU1QkNDkZOTg+joaAD3doLOycnB+PHjRZ8THh6OnJwcTJ48Wd22Y8cOhIeHAwD8/Pzg4eGBnJwcdeApKyvDvn37MHbs2AbVZWVlBW9vbwCAo6OjUf1ypcBtwG1Qh9uB2wDgNqjD7WCc2+BhIz91JJ8CS0hIQFxcHMLCwtC7d29kZGSgoqICI0eOBADExsbC29sbqampAIBJkyahb9+++OijjzBw4EBs2LABBw4cwKeffgoAkMlkmDx5MubNm4eOHTvCz88P77//Pry8vNQhi4iIiCyb5AEoJiYGxcXFSEpKQmFhIYKDg5GVlaXeifnixYuwsvrfwWqPP/441q1bh9mzZ2PWrFno2LEjtmzZgu7du6uXmT59OioqKjBmzBiUlJTgySefRFZWFmxtbZt9/YiIiMj4SB6AAGD8+PH1Tnnl5uZqtb388st4+eWX6+1PJpNh7ty5mDt3bqNrsrGxgVKp1Ng3yNJwG3Ab1OF24DYAuA3qcDuYxzaQ/ESIRERERM1N8kthEBERETU3BiAiIiKyOAxAREREZHEYgIiIiMjiWEwAyszMhK+vL2xtbaFQKLB///4HLv/NN9+gc+fOsLW1RY8ePbB9+3aNxwVBQFJSEjw9PdGqVStERETg7NmzhlyFJtP3NoiPj4dMJtO4RUVFGXIV9EKX7XDixAkMGzYMvr6+kMlkyMjIaHKfxkDf22DOnDla74XOnTsbcA2aTpdtsHLlSvTp0wdt2rRBmzZtEBERobW8KX4mAPrfDqb4uaDLNti8eTPCwsLg7OwMe3t7BAcHY+3atRrLmOJ7Qd/bwCTeB4IF2LBhg2BtbS2sWrVKOHHihPDmm28Kzs7OQlFRkejyv/zyiyCXy4WFCxcKJ0+eFGbPni20bNlS+O9//6teJi0tTXBychK2bNkiHD16VBgyZIjg5+cn/PXXX821WjoxxDaIi4sToqKihIKCAvXt5s2bzbVKjaLrdti/f78wdepUYf369YKHh4ewePHiJvcpNUNsA6VSKXTr1k3jvVBcXGzgNWk8XbfBK6+8ImRmZgqHDx8WTp06JcTHxwtOTk7C5cuX1cuY2meCIBhmO5ja54Ku22DXrl3C5s2bhZMnTwrnzp0TMjIyBLlcLmRlZamXMbX3giG2gSm8DywiAPXu3Vt455131Pdra2sFLy8vITU1VXT5f/7zn8LAgQM12hQKhfDWW28JgiAIKpVK8PDwED788EP14yUlJYKNjY2wfv16A6xB0+l7GwjCvTf40KFDDVKvoei6Hf6uQ4cOol/+TelTCobYBkqlUggKCtJjlYbV1N/Z3bt3hdatWwtr1qwRBME0PxMEQf/bQRBM73NBH/9/Q0JChNmzZwuCYJrvBX1vA0EwjfeB2U+BVVdX4+DBg4iIiFC3WVlZISIiAnl5eaLPycvL01geACIjI9XL5+fno7CwUGMZJycnKBSKevuUkiG2QZ3c3Fy4ubmhU6dOGDt2LG7cuKH/FdCTxmwHKfo0JEPWe/bsWXh5ecHf3x+vvvoqLl682NRyDUIf26CyshI1NTVo27YtANP7TAAMsx3qmMrnQlO3gSAIyMnJwZkzZ/DUU08BML33giG2QR1jfx+YfQC6fv06amtr1ZfWqOPu7o7CwkLR5xQWFj5w+bp/delTSobYBgAQFRWFL7/8Ejk5OViwYAH+85//YMCAAaitrdX/SuhBY7aDFH0akqHqVSgUWL16NbKysrB8+XLk5+ejT58+uH37dlNL1jt9bIMZM2bAy8tL/aVhap8JgGG2A2BanwuN3QalpaVwcHCAtbU1Bg4ciKVLl+K5554DYHrvBUNsA8A03gdGcSkMMk3Dhw9X/9yjRw/07NkTAQEByM3NxbPPPithZdTcBgwYoP65Z8+eUCgU6NChAzZt2oTRo0dLWJn+paWlYcOGDcjNzbXo6wvWtx0s4XOhdevWOHLkCMrLy5GTk4OEhAT4+/ujX79+UpfWbB62DUzhfWD2I0AuLi6Qy+UoKirSaC8qKoKHh4foczw8PB64fN2/uvQpJUNsAzH+/v5wcXHBuXPnml60ATRmO0jRpyE1V73Ozs545JFHjPK90JRtkJ6ejrS0NPz000/o2bOnut3UPhMAw2wHMcb8udDYbWBlZYXAwEAEBwdjypQpeOmll5CamgrA9N4LhtgGYozxfWD2Acja2hqhoaHIyclRt6lUKuTk5CA8PFz0OeHh4RrLA8COHTvUy/v5+cHDw0NjmbKyMuzbt6/ePqVkiG0g5vLly7hx4wY8PT31U7ieNWY7SNGnITVXveXl5Th//rxRvhcauw0WLlyIlJQUZGVlISwsTOMxU/tMAAyzHcQY8+eCvv4/qFQqVFVVATC994IhtoEYo3wfSL0XdnPYsGGDYGNjI6xevVo4efKkMGbMGMHZ2VkoLCwUBEEQXn/9dWHmzJnq5X/55RehRYsWQnp6unDq1ClBqVSKHgbv7OwsbN26VTh27JgwdOhQoz/MUZ/b4Pbt28LUqVOFvLw8IT8/X9i5c6fw6KOPCh07dhTu3LkjyTo2hK7boaqqSjh8+LBw+PBhwdPTU5g6dapw+PBh4ezZsw3u09gYYhtMmTJFyM3NFfLz84VffvlFiIiIEFxcXIRr1641+/o1hK7bIC0tTbC2tha+/fZbjcN6b9++rbGMKX0mCIL+t4Mpfi7oug3mz58v/PTTT8L58+eFkydPCunp6UKLFi2ElStXqpcxtfeCvreBqbwPLCIACYIgLF26VGjfvr1gbW0t9O7dW/j111/Vj/Xt21eIi4vTWH7Tpk3CI488IlhbWwvdunUTfvjhB43HVSqV8P777wvu7u6CjY2N8OyzzwpnzpxpjlVpNH1ug8rKSqF///6Cq6ur0LJlS6FDhw7Cm2++abRf+n+ny3bIz88XAGjd+vbt2+A+jZG+t0FMTIzg6ekpWFtbC97e3kJMTIxw7ty5Zlwj3emyDTp06CC6DZRKpXoZU/xMEAT9bgdT/VzQZRu89957QmBgoGBrayu0adNGCA8PFzZs2KDRnym+F/S5DUzlfSATBEFo3jEnIiIiImmZ/T5ARERERPdjACIiIiKLwwBEREREFocBiIiIiCwOAxARERFZHAYgIiIisjgMQERERGRxGICIiIjI4jAAEZHJKywsxIQJE+Dv7w8bGxv4+Phg8ODB6usb+fr6IiMjQ+t5c+bMQXBwsGifGzZsgEwmQ3R0tOEKJyLJtJC6ACKiprhw4QKeeOIJODs748MPP0SPHj1QU1OD7OxsvPPOOzh9+nSj+pw6dSr69OljgIqJyBgwABGRSRs3bhxkMhn2798Pe3t7dXu3bt0watQonfurra3Fq6++iuTkZPz8888oKSnRY7VEZCw4BUZEJuvmzZvIysrCO++8oxF+6jg7O+vc59y5c+Hm5obRo0froUIiMlYcASIik3Xu3DkIgoDOnTs/dNkZM2Zg9uzZGm3V1dXo2rWr+v6ePXvw+eef48iRI/oulYiMDAMQEZksQRAavOy0adMQHx+v0bZkyRLs3r0bAHD79m28/vrrWLlyJVxcXPRZJhEZIQYgIjJZHTt2hEwma9COzi4uLggMDNRoa9u2rfrn8+fP48KFCxg8eLC6TaVSAQBatGiBM2fOICAgQE+VE5HUuA8QEZmstm3bIjIyEpmZmaioqNB6XJcdmDt37oz//ve/OHLkiPo2ZMgQPP300zhy5Ah8fHz0WDkRSY0jQERk0jIzM/HEE0+gd+/emDt3Lnr27Im7d+9ix44dWL58OU6dOtWgfmxtbdG9e3eNtrqdqO9vJyLTxwBERCbN398fhw4dwgcffIApU6agoKAArq6uCA0NxfLly6Uuj4iMlEzQZS9CIiIiIjPAfYCIiIjI4jAAERERkcVhACIiIiKLwwBEREREFocBiIiIiCwOAxARERFZHAYgIiIisjgMQERERGRxGICIiIjI4jAAERERkcVhACIiIiKLwwBEREREFuf/AykJAN7UlrGbAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATm1JREFUeJzt3XlcVNX/P/DXMGyCCio7oWwGaioEMmmLWiSYa2ahLYCalWuGpqAGbgkqKi4kn69mmKXYYtbPDEySNOOjZS65pgSpKYgmIJCAzP394cP5NM1FGRjmzvJ6Ph48cs7cOfM+OMKrc869VyYIggAiIiIiM2IhdQFERERE+sYARERERGaHAYiIiIjMDgMQERERmR0GICIiIjI7DEBERERkdhiAiIiIyOwwABEREZHZYQAiIiIis8MARERGSyaTYd68eVKXoRIbGwtvb2+pyyCiRmAAIiKdyszMhEwmU33Z2triwQcfxOTJk1FSUtKi7/3jjz9i3rx5KCsr02m//fr1UxtT+/bt0atXL2zcuBFKpVIn77F48WLs2LFDJ30R0f1ZSl0AEZmmBQsWwMfHB7du3cIPP/yAdevWYdeuXThx4gTs7Ox08h5///03LC3/92Psxx9/xPz58xEbGwtHR0edvMddDzzwAJKTkwEApaWl+PDDDzFu3Dj89ttvSElJaXb/ixcvxsiRIzF8+PBm90VE98cAREQtYuDAgQgNDQUAvPrqq+jQoQNWrFiBL7/8EqNHj25yv0qlErW1tbC1tYWtra2uyr0vBwcHvPzyy6rHr7/+OgICArB27VosXLgQVlZWequFiJqPS2BEpBdPPvkkAKCwsBAAkJqaij59+qBDhw5o1aoVQkJC8Nlnn2m8TiaTYfLkyfj444/RrVs32NjYIDs7W/Xc3T1A8+bNw9tvvw0A8PHxUS1XFRUVoW/fvujZs6doXQEBAYiIiNB6PHZ2dnjkkUdQVVWF0tLSBo+rqqrC9OnT4eXlBRsbGwQEBCA1NRWCIKiNsaqqCps2bVLVHRsbq3VNRNR4nAEiIr0oKCgAAHTo0AEAsGrVKgwdOhQvvfQSamtrkZWVheeffx47d+7EoEGD1F773Xff4ZNPPsHkyZPh5OQkutF4xIgR+O2337B161asXLkSTk5OAABnZ2e88sorGD9+PE6cOIGHHnpI9ZqffvoJv/32G+bOndukMf3++++Qy+UNLrcJgoChQ4di7969GDduHIKCgpCTk4O3334bf/75J1auXAkA2Lx5M1599VWEhYXhtddeAwD4+fk1qSYiaiSBiEiHPvjgAwGAsGfPHqG0tFS4ePGikJWVJXTo0EFo1aqVcOnSJUEQBKG6ulrtdbW1tcJDDz0kPPnkk2rtAAQLCwvh5MmTGu8FQEhKSlI9XrZsmQBAKCwsVDuurKxMsLW1FWbNmqXWPnXqVMHe3l6orKy855j69u0rBAYGCqWlpUJpaalw+vRpYerUqQIAYciQIarjYmJihE6dOqke79ixQwAgLFq0SK2/kSNHCjKZTDh//ryqzd7eXoiJiblnHUSkO1wCI6IWER4eDmdnZ3h5eWHUqFFo3bo1vvjiC3h6egIAWrVqpTr2xo0bKC8vx+OPP45ffvlFo6++ffuia9euTa7FwcEBw4YNw9atW1VLT/X19di2bRuGDx8Oe3v7+/Zx5swZODs7w9nZGV26dMGaNWswaNAgbNy4scHX7Nq1C3K5HFOnTlVrnz59OgRBwDfffNPkMRFR83AJjIhaRHp6Oh588EFYWlrC1dUVAQEBsLD43/9z7dy5E4sWLcLRo0dRU1OjapfJZBp9+fj4NLue6OhobNu2Dfv378cTTzyBPXv2oKSkBK+88kqjXu/t7Y3169erTu3v3LkzXFxc7vmaP/74Ax4eHmjTpo1ae5cuXVTPE5E0GICIqEWEhYWpzgL7t/3792Po0KF44okn8N5778Hd3R1WVlb44IMPsGXLFo3j/zlb1FQRERFwdXXFRx99hCeeeAIfffQR3NzcEB4e3qjX29vbN/pYIjJ8XAIjIr37/PPPYWtri5ycHIwdOxYDBw7USbgQmz26Sy6X48UXX8Rnn32GGzduYMeOHRg9ejTkcnmz37chnTp1wuXLl3Hz5k219jNnzqiev+tetROR7jEAEZHeyeVyyGQy1NfXq9qKioqafSXku3t5GroS9CuvvIIbN27g9ddfR2Vlpdp1fVrCM888g/r6eqxdu1atfeXKlZDJZBg4cKCqzd7eXudXsCaihnEJjIj0btCgQVixYgUiIyPx4osv4urVq0hPT4e/vz+OHz/e5H5DQkIAAHPmzMGoUaNgZWWFIUOGqIJRcHAwHnroIXz66afo0qULHn74YZ2MpyFDhgxB//79MWfOHBQVFaFnz57YvXs3vvzyS0ybNk3tVPeQkBDs2bMHK1asgIeHB3x8fKBQKFq0PiJzxhkgItK7J598Eu+//z6Ki4sxbdo0bN26FUuWLMGzzz7brH579eqFhQsX4tixY4iNjcXo0aM1LlIYHR0NAI3e/NwcFhYW+OqrrzBt2jTs3LkT06ZNw6lTp7Bs2TKsWLFC7dgVK1YgJCQEc+fOxejRo7Fu3boWr4/InMkE4R+XIyUiMnGrVq3CW2+9haKiInTs2FHqcohIIgxARGQ2BEFAz5490aFDB+zdu1fqcohIQtwDREQmr6qqCl999RX27t2LX3/9FV9++aXUJRGRxDgDREQmr6ioCD4+PnB0dMTEiRPx7rvvSl0SEUmMAYiIiIjMDs8CIyIiIrPDAERERERmh5ugRSiVSly+fBlt2rTh5emJiIiMhCAIuHnzJjw8PNRuviyGAUjE5cuX4eXlJXUZRERE1AQXL17EAw88cM9jGIBEtGnTBsCdb2Dbtm0lroaIiIgao6KiAl5eXqrf4/fCACTi7rJX27ZtGYCIiIiMTGO2r3ATNBEREZkdBiAiIiIyOwxAREREZHa4B6gZ6uvrUVdXJ3UZ1MKsrKwgl8ulLoOIiHSIAagJBEFAcXExysrKpC6F9MTR0RFubm68LhQRkYlgAGqCu+HHxcUFdnZ2/KVowgRBQHV1Na5evQoAcHd3l7giIiLSBQYgLdXX16vCT4cOHaQuh/SgVatWAICrV6/CxcWFy2FERCaAm6C1dHfPj52dncSVkD7d/fvmni8iItPAANREXPYyL/z7JiIyLQxAREREZHYYgIiIiMjsMACZkdjYWMhkMshkMlhZWcHV1RVPP/00Nm7cCKVS2eh+MjMz4ejo2HKFEhERtTAGIDMTGRmJK1euoKioCN988w369++PN998E4MHD8bt27elLo+IiMzA33//LXUJDEDmxsbGBm5ubvD09MTDDz+M2bNn48svv8Q333yDzMxMAMCKFSvQvXt32Nvbw8vLCxMnTkRlZSUAIC8vD2PGjEF5eblqNmnevHkAgM2bNyM0NBRt2rSBm5sbXnzxRdX1c4iIiCoqKjB//nwsXboUa9bskLQWBiAdEAQBtbW1ev8SBEEn9T/55JPo2bMntm/fDgCwsLDA6tWrcfLkSWzatAnfffcdZs6cCQDo06cP0tLS0LZtW1y5cgVXrlzBjBkzANw5RXzhwoU4duwYduzYgaKiIsTGxuqkRiIiMm5HjhzBypUrVY9/+slBwmp4IUSdqKurQ3Jyst7fNyEhAdbW1jrpKzAwEMePHwcATJs2TdXu7e2NRYsW4Y033sB7770Ha2trODg4QCaTwc3NTa2PsWPHqv7s6+uL1atXo1evXqisrETr1q11UicRERkXQRCwYMECtbazZ5/GqFF9JKroDgYgAnDnA3r3Wjd79uxBcnIyzpw5g4qKCty+fRu3bt1CdXX1PS8AefjwYcybNw/Hjh3DjRs3VBurL1y4gK5du+plHEREZDguXLiADz74QK1t8uTJBnEnBQYgHbCyskJCQoIk76srp0+fho+PD4qKijB48GBMmDAB7777Ltq3b48ffvgB48aNQ21tbYMBqKqqChEREYiIiMDHH38MZ2dnXLhwAREREaitrdVZnUREZBwyMjJQUlKi1paTk4ikJMO4sCwDkA7IZDKdLUVJ4bvvvsOvv/6Kt956C4cPH4ZSqcTy5cthYXFni9gnn3yidry1tTXq6+vV2s6cOYPr168jJSUFXl5eAICff/5ZPwMgIiKDoVQqsXDhQrU2GxsnfPXVJMTHS1SUCAYgM1NTU4Pi4mLU19ejpKQE2dnZSE5OxuDBgxEdHY0TJ06grq4Oa9aswZAhQ3DgwAFkZGSo9eHt7Y3Kykrk5uaiZ8+esLOzQ8eOHWFtbY01a9bgjTfewIkTJzT+ARARkWkrKCjARx99pNYWExMDb29vgwo/AM8CMzvZ2dlwd3eHt7c3IiMjsXfvXqxevRpffvkl5HI5evbsiRUrVmDJkiV46KGH8PHHH2ts8O7Tpw/eeOMNREVFwdnZGUuXLoWzszMyMzPx6aefomvXrkhJSUFqaqpEoyQiIn1btWqVRvhJTEyEt7e3NAXdh0zQ1bnUJqSiogIODg4oLy9H27Zt1Z67desWCgsL4ePjA1tbW4kqJH3j3zsRkbj6+nosWrRIrc3T0xOvvvqq3mu51+/vf+MSGBERETXJ2bNnkZWVpdY2btw4PPDAAxJV1HgMQERERKS1+fPna7QlJiaqLqli6BiAiIiIqNHq6uqwePFitbZr1/ywZs3LElXUNAxARERE1Ch79+7Fvn371NoOH34Rr77aWaKKmo4BiIiIiO7L2Je8/o0BiIiIiBpUU1ODlJQUjfakpCQJqtEdg7gOUHp6Ory9vWFrawuFQoFDhw41eOz27dsRGhoKR0dH2NvbIygoCJs3b1Y7JjY2FjKZTO0rMjKypYdBRERkUrKzszXCT0xMjNGHH8AAZoC2bduGuLg4ZGRkQKFQIC0tDRERETh79ixcXFw0jm/fvj3mzJmDwMBAWFtbY+fOnRgzZgxcXFwQERGhOi4yMlLtBmw2NjZ6GQ8REZEpEFvyMoXgc5fkM0ArVqzA+PHjMWbMGHTt2hUZGRmws7PDxo0bRY/v168fnn32WXTp0gV+fn5488030aNHD/zwww9qx9nY2MDNzU311a5dO30Mh4iIyKhVV1drhB9bW1uTCj+AxAGotrYWhw8fRnh4uKrNwsIC4eHhyM/Pv+/rBUFAbm4uzp49iyeeeELtuby8PLi4uCAgIAATJkzA9evXG+ynpqYGFRUVal/UdLGxsRg+fLjqcb9+/TBt2rRm9amLPoiI6N6+/PJLLFu2TK3t1VdfxaxZsySqqOVIugR27do11NfXw9XVVa3d1dUVZ86cafB15eXl8PT0RE1NDeRyOd577z08/fTTqucjIyMxYsQI+Pj4oKCgALNnz8bAgQORn58PuVyu0V9ycrLoVJ+piY2NxaZNmwAAVlZW6NixI6KjozF79mxYWrbcR2H79u2wsrJq1LF5eXno378/bty4AUdHxyb1QURE2jP1Ja9/k3wPUFO0adMGR48eVd2RPC4uDr6+vujXrx8AYNSoUapju3fvjh49esDPzw95eXl46qmnNPpLSEhAXFyc6nFFRQW8vLxafBxSuLs3qqamBrt27cKkSZNgZWWFhIQEteNqa2thbW2tk/ds3769QfRBRESabt68iRUrVqi1tWvXDlOnTpWoIv2QdAnMyckJcrkcJSUlau0lJSVwc3Nr8HUWFhbw9/dHUFAQpk+fjpEjR2rcsfyffH194eTkhPPnz4s+b2Njg7Zt26p9maq7e6M6deqECRMmIDw8HF999ZVq2erdd9+Fh4cHAgICAAAXL17ECy+8AEdHR7Rv3x7Dhg1DUVGRqr/6+nrExcXB0dERHTp0wMyZM/Hv++v+e/mqpqYGs2bNgpeXF2xsbODv74/3338fRUVF6N+/P4A7//hkMhliY2NF+7hx4waio6PRrl072NnZYeDAgTh37pzq+czMTDg6OiInJwddunRB69atERkZiStXrqiOycvLQ1hYGOzt7eHo6IhHH30Uf/zxh46+00REhm/btm0a4WfChAkmH34AiQOQtbU1QkJCkJubq2pTKpXIzc1F7969G92PUqlETU1Ng89funQJ169fh7u7e7PqNUWtWrVCbW0tAKj2U3377bfYuXMn6urqEBERgTZt2mD//v04cOCAKkjcfc3y5cuRmZmJjRs34ocffsBff/2FL7744p7vGR0dja1bt2L16tU4ffo0/vOf/6B169bw8vLC559/DuDODfauXLmCVatWifYRGxuLn3/+GV999RXy8/MhCAKeeeYZ1NXVqY6prq5GamoqNm/ejH379uHChQuYMWMGAOD27dsYPnw4+vbti+PHjyM/Px+vvfaa0V7Qi4hIW/Pnz9fYbpKUlCR6BrYpknwJLC4uDjExMQgNDUVYWBjS0tJQVVWFMWPGALjzy9LT01M1w5OcnIzQ0FD4+fmplnE2b96MdevWAQAqKysxf/58PPfcc3Bzc0NBQQFmzpwJf39/tdPkzd3dDeQ5OTmYMmUKSktLYW9vjw0bNqiWvj766CMolUps2LBBFQw++OADODo6Ii8vDwMGDEBaWhoSEhIwYsQIAEBGRgZycnIafN/ffvsNn3zyCb799lvV5ndfX1/V83eXulxcXNT2AP3TuXPn8NVXX+HAgQPo06cPAODjjz+Gl5cXduzYgeeffx7AnfvVZGRkwM/PDwAwefJkLFiwAMCdZc7y8nIMHjxY9XyXLl20/0YSERmZsrIyjf+59PDwwPjx4yWqSBqSB6CoqCiUlpYiMTERxcXFCAoKQnZ2tmpj9IULF2Bh8b+JqqqqKkycOBGXLl1Cq1atEBgYiI8++ghRUVEAALlcjuPHj2PTpk0oKyuDh4cHBgwYgIULFxrctYC++gpISQHi44GhQ/Xznjt37kTr1q1RV1cHpVKJF198EfPmzcOkSZPQvXt3tX0/x44dw/nz59GmTRu1Pm7duoWCggKUl5fjypUrUCgUqucsLS0RGhqqsQx219GjRyGXy9G3b98mj+H06dOwtLRUe98OHTogICAAp0+fVrXZ2dmpwg0AuLu74+rVqwDuBK3Y2FhERETg6aefRnh4OF544QXOEhKRScvMzNRY6p88eTI6dOggUUXSkTwAAXe++ZMnTxZ9Li8vT+3xokWLsGjRogb7atWq1T1nIAxJSgqQn3/nv/oKQP3798e6detgbW0NDw8PtbO/7O3t1Y6trKxESEgIPv74Y41+nJ2dm/T+rVq1atLrmuLfZ43JZDK1YPbBBx9g6tSpyM7OxrZt2zB37lx8++23eOSRR/RWIxGRvpjbWV73I/mFEM1ZfDzQu/ed/+qLvb09/P390bFjx/ue+v7www/j3LlzcHFxgb+/v9qXg4MDHBwc4O7ujoMHD6pec/v2bRw+fLjBPrt37w6lUonvv/9e9Pm7M1D19fUN9tGlSxfcvn1b7X2vX7+Os2fPomvXrvcc078FBwcjISEBP/74Ix566CFs2bJFq9cTERm6P//8UyP8+Pn5mXX4ARiAJDV0KPDjj/qb/dHWSy+9BCcnJwwbNgz79+9HYWEh8vLyMHXqVFy6dAkA8OabbyIlJQU7duzAmTNnMHHiRJSVlTXYp7e3N2JiYjB27Fjs2LFD1ecnn3wCAOjUqRNkMhl27tyJ0tJSVFZWavTRuXNnDBs2DOPHj8cPP/yAY8eO4eWXX4anpyeGDRvWqLEVFhYiISEB+fn5+OOPP7B7926cO3eO+4CIyKTMnz8fGzZsUGubNm0aXn75ZYkqMhwMQNQgOzs77Nu3Dx07dsSIESPQpUsXjBs3Drdu3VJdKmD69Ol45ZVXEBMTg969e6NNmzZ49tln79nvunXrMHLkSEycOBGBgYEYP348qqqqAACenp6YP38+4uPj4erq2uDS6AcffICQkBAMHjwYvXv3hiAI2LVrV6MvlmhnZ4czZ87gueeew4MPPojXXnsNkyZNwuuvv67Fd4iIyHCJLXnl5CTBwcFBgmoMj0xoaLeqGauoqICDgwPKy8s1rgl069YtFBYWwsfHB7a2thJVSPrGv3ciMhZFRUWqq/7fZWXlgJ07p+n1pBsp3Ov3978ZxCZoIiIiaj6xWZ8333wTjo6OmD1bgoIMGAMQERGRCeBZXtphACIiIjJiv/32G7Zu3arWZo4XNtQWAxAREZGREpv1mT59Olq3bi1BNcaFAaiJuHfcvPDvm4gMDZe8mocBSEt3T7Ourq7W61WNSVrV1dUANK8uTUSkbydOnFDdOPouPz8/XttHSwxAWpLL5XB0dFTdU8rOzo53EDdhgiCguroaV69ehaOjI+RyudQlEZEZE5v1mTlzJv+HvAkYgJrAzc0NAFQhiEyfo6Oj6u+diEjfBEHAggULNNq55NV0DEBNIJPJ4O7uDhcXF9TV1UldDrUwKysrzvwQkWQOHz6MnTt3qrV1794dI0aMkKgi08AA1AxyuZy/GImIqMWILXklJCSobhxNTccAREREZGC45NXyGICIiIgMyP79+/Hdd9+ptfXq1QvPPPOMRBWZJgYgIiIiAyG25DVnzhxYWvLXta7xO0pERCSx+vp6LFq0SKOdS14thwGIiIhIQp9//jlOnDih1vbnnz0wePCzElVkHhiAiIiIJCK25DV37lyeYawHDEBERER6VldXh8WLF2u0c8lLfxiAiIiI9OjDDz9EYWGhWtsjjzyCiIgIiSoyTwxAREREeiK25JWYmMh7SkqAAYiIiKiF3bp1C0uWLNFo55KXdBiAiIiIWtC6des0bp7dv39/PPHEExJVRAADEBERUYvhkpfhYgAiIiLSscrKSixfvlyjnUtehoMBiIiISIeWLVuG6upqtbaBAwciLCxMoopIDAMQERGRjogteXHWxzAxABERETVTWVkZVq1apdHO8GO4GICIiIiaQWzW59lnn0WPHj0kqIYaiwGIiIioibjkZbwYgIiIiLR07do1pKena7Qz/BgPBiAiIiItiM36jBo1CgEBARJUQ03FAERERNRIXPIyHQxARERE93H58mWsX79eo53hx3gxABEREd2D2KxPTEwMvL299V8M6YyF1AUAQHp6Ory9vWFrawuFQoFDhw41eOz27dsRGhoKR0dH2NvbIygoCJs3b1Y7RhAEJCYmwt3dHa1atUJ4eDjOnTvX0sMgIiIT09CSF8OP8ZM8AG3btg1xcXFISkrCL7/8gp49eyIiIkLjzrl3tW/fHnPmzEF+fj6OHz+OMWPGYMyYMcjJyVEds3TpUqxevRoZGRk4ePAg7O3tERERgVu3bulrWEREZMSKioq438fEyQRBEKQsQKFQoFevXli7di0AQKlUwsvLC1OmTEF8fHyj+nj44YcxaNAgLFy4EIIgwMPDA9OnT8eMGTMAAOXl5XB1dUVmZiZGjRp13/4qKirg4OCA8vJytG3btumDIyIioyMWfMaPHw8PDw8JqiFtaPP7W9IZoNraWhw+fBjh4eGqNgsLC4SHhyM/P/++rxcEAbm5uTh79iyeeOIJAEBhYSGKi4vV+nRwcIBCoWiwz5qaGlRUVKh9ERGR+Wlo1ofhx/RIugn62rVrqK+vh6urq1q7q6srzpw50+DrysvL4enpiZqaGsjlcrz33nt4+umnAQDFxcWqPv7d593n/i05OVn0Q09ERObht99+w9atWzXaueRluozyLLA2bdrg6NGjqKysRG5uLuLi4uDr64t+/fo1qb+EhATExcWpHldUVMDLy0tH1RIRkSET+x/gSZMmwcnJSYJqSF8kDUBOTk6Qy+UoKSlRay8pKYGbm1uDr7OwsIC/vz8AICgoCKdPn0ZycjL69eunel1JSQnc3d3V+gwKChLtz8bGBjY2Ns0cDRERGRtudDZfku4Bsra2RkhICHJzc1VtSqUSubm56N27d6P7USqVqKmpAQD4+PjAzc1Nrc+KigocPHhQqz6JiMh0HTx4kOHHzEm+BBYXF4eYmBiEhoYiLCwMaWlpqKqqwpgxYwAA0dHR8PT0RHJyMoA7+3VCQ0Ph5+eHmpoa7Nq1C5s3b8a6desAADKZDNOmTcOiRYvQuXNn+Pj44J133oGHhweGDx8u1TCJiMhAiAWfN998E46OjvovhiQjeQCKiopCaWkpEhMTUVxcjKCgIGRnZ6s2MV+4cAEWFv+bqKqqqsLEiRNx6dIltGrVCoGBgfjoo48QFRWlOmbmzJmoqqrCa6+9hrKyMjz22GPIzs6Gra2t3sdHRESGQyz85OQkgRM/5kfy6wAZIl4HiIjItOzduxf79u3TaM/JSUJ8PDB0qARFkc5p8/tb8hkgIiKiliQ26/PWW2+hbdu2nPkxYwxARERkkgRBwIIFCzTaudGZAAYgIiIyQTt37sThw4fV2mQyGRITEyWqiAwNAxAREZkUsSWvt99+G3Z2dhJUQ4aKAYiIiEyCUqnEwoULNdq55EViGICIiMjobdiwAX/++adGe3Awww+JYwAiIiKjJrbkFR8fz1sc0T0xABERkVG6ffs23n33XY12LnlRYzAAERGR0VmxYgVu3ryp1mZvb48ZM2ZIVBEZGwYgIiIyKmJLXnPmzIGlJX+lUePx00JEREbh1q1bWLJkiUZ7cHASmH1IW/zIEBGRwROb9bG1dcGsWRMkqIZMAQMQEREZNLHw884778DCwkKCashUMAAREZFBqqysxPLlyzXaeZYX6QIDEBERGRyxWR93d3e89tprElRDpogBiIiIDIpY+ElMTIRMJpOgGjJVDEBERGQQ/vrrL6xZs0ajnUte1BIYgIiISHJisz4BAQEYNWqUBNWQOWAAIiIiSYmFH876UEtjACIiIkkUFxfjP//5j0Y7ww/pAwMQERHpndisT2hoKAYNGiRBNWSOGICIiEivuORFhoABiIiI9OKPP/5AZmamRjvDD0mBAYiIiFqc2KxP37590a9fP/0XQwQGICIiamFc8iJDxABEREQt4tSpU/j000812hl+yBAwABERkc6JzfqcPh2BrKxHJKiGSJOF1AUQEZFpEQs/OTlJePFFhh8yHJwBIiIinfj555/x9ddfa7QnJSWBq15kaBiAiIio2cRmfUaMGIHu3btLUA3R/TEAERFRs/AsLzJGDEBERNQku3fvRn5+vkY7ww8ZAwYgIiLSmtisz5EjURg7NlCCaoi0xwBERERa4ZIXmQIGICIiapRt27bhzJkzGu0MP2SMGICIiOi+xGZ9YmNj0alTJwmqIWo+g7gQYnp6Ory9vWFrawuFQoFDhw41eOz69evx+OOPo127dmjXrh3Cw8M1jo+NjYVMJlP7ioyMbOlhEBGZpIaWvBh+yJhJPgO0bds2xMXFISMjAwqFAmlpaYiIiMDZs2fh4uKicXxeXh5Gjx6NPn36wNbWFkuWLMGAAQNw8uRJeHp6qo6LjIzEBx98oHpsY2Ojl/EQEZmKNWvW4K+//tJoDw7mkhcZP5kgCIKUBSgUCvTq1Qtr164FACiVSnh5eWHKlCmIj4+/7+vr6+vRrl07rF27FtHR0QDuzACVlZVhx44dTaqpoqICDg4OKC8vR9u2bZvUBxGRMROb9QkIeA2jRrlLUA1R42jz+1vSJbDa2locPnwY4eHhqjYLCwuEh4eLXltCTHV1Nerq6tC+fXu19ry8PLi4uCAgIAATJkzA9evXdVo7EZEpEgRBNPwEBycx/JBJkXQJ7Nq1a6ivr4erq6tau6urq+iZBmJmzZoFDw8PtRAVGRmJESNGwMfHBwUFBZg9ezYGDhyI/Px8yOVyjT5qampQU1OjelxRUdHEERERGS+x4APwLC8yTZLvAWqOlJQUZGVlIS8vD7a2tqr2UaNGqf7cvXt39OjRA35+fsjLy8NTTz2l0U9ycnKD//CJiMyB2M/AKVOmaMyuE5kKSZfAnJycIJfLUVJSotZeUlICNze3e742NTUVKSkp2L17N3r06HHPY319feHk5ITz58+LPp+QkIDy8nLV18WLF7UbCBGRkVIqlQ2e5cXwQ6ZM0hkga2trhISEIDc3F8OHDwdw5x9jbm4uJk+e3ODrli5dinfffRc5OTkIDQ297/tcunQJ169fh7u7+Pq1jY0NzxIjIrPDJS8yZ5IvgcXFxSEmJgahoaEICwtDWloaqqqqMGbMGABAdHQ0PD09kZycDABYsmQJEhMTsWXLFnh7e6O4uBgA0Lp1a7Ru3RqVlZWYP38+nnvuObi5uaGgoAAzZ86Ev78/IiIiJBsnEZEhEQs/06dPR+vWrSWohkj/JA9AUVFRKC0tRWJiIoqLixEUFITs7GzVxugLFy7AwuJ/K3Xr1q1DbW0tRo4cqdZPUlIS5s2bB7lcjuPHj2PTpk0oKyuDh4cHBgwYgIULF3KWh4jMXl1dHRYvXqzRHhycBGYfMieSXwfIEPE6QERkirjkRaZOm9/fks8AERFRyxMLP/Hx8ZwZJ7PFAEREZMKqq6uxbNkyjXbO+pC50zoAyeVyXLlyReM+XdevX4eLiwvq6+t1VhwRETUdl7yIGqZ1AGpoy1BNTQ2sra2bXRARETWfWPiZM2cOLC058U8EaBGAVq9eDQCQyWTYsGGD2qmS9fX12LdvHwIDA3VfIRERNVpZWRlWrVql0c5ZHyJ1jQ5AK1euBHBnBigjI0PtnlrW1tbw9vZGRkaG7iskIqJG4ZIXUeM1OgAVFhYCAPr374/t27ejXbt2LVYUERFpRyz8JCYmQiaTSVANkeHTejF47969LVEHERE1QUlJiejsO2d9iO5N6wA0duzYez6/cePGJhdDRESNxyUvoqbTOgDduHFD7XFdXR1OnDiBsrIyPPnkkzorjIiIGtbQHdyJqHG0DkBffPGFRptSqcSECRPg5+enk6KIiEhcUVERNm3apNHO8EOkHZ3dC+zs2bPo168frly5oovuJMV7gRGRIRKb9XF0dMSbb74pQTVEhkeSe4EVFBTg9u3buuqOiIj+gUteRLqldQCKi4tTeywIAq5cuYKvv/4aMTExOiuMiIiAY8eOYceOHRrtwcEMP0TNoXUAOnLkiNpjCwsLODs7Y/ny5fc9Q4yIiBpPbNbHw8MD48ePl6AaItPC6wARERkgLnkRtawm7wG6evUqzp49CwAICAjQuDs8ERFp78CBA9izZ49GO8MPkW5pHYAqKiowadIkbN26FUqlEgAgl8sRFRWF9PR0ODg46LxIIiJzIDbr061bN4wcOVKCaohMm4W2Lxg/fjwOHjyIr7/+GmVlZSgrK8POnTvx888/4/XXX2+JGomITF5DS14MP0QtQ+vrANnb2yMnJwePPfaYWvv+/fsRGRmJqqoqnRYoBV4HiIj0ZdeuXfjpp5802rnkRaS9Fr0OUIcOHUSXuRwcHHiHeCIiLYjN+vTu3RsDBgyQoBoi86L1EtjcuXMRFxeH4uJiVVtxcTHefvttvPPOOzotjojIVDW05MXwQ6QfWi+BBQcH4/z586ipqUHHjh0BABcuXICNjQ06d+6sduwvv/yiu0r1iEtgRNRStmzZgnPnzmm0c8mLqPladAls2LBhkMlkTS6OiMhcic36REZGQqFQSFANkXnT2c1QTQlngIhI13hhQ6KW16IzQL6+vvjpp5/QoUMHtfaysjI8/PDD+P3337XtkojIZKWnp+PatWsa7Qw/RNLSOgAVFRWhvr5eo72mpgaXLl3SSVFERKZAbNbn+eefR9euXSWohoj+qdEB6KuvvlL9OScnR+1U+Pr6euTm5sLHx0e31RERGSkueREZtkYHoOHDhwMAZDIZYmJi1J6zsrKCt7c3li9frtPiiIiMzYIFCyC2tZLhh8iwNDoA3b3vl4+PD3766Sc4OTm1WFFERMZIbNYnJiYG3t7e+i+GiO5J6z1AhYWFLVEHEZHREgQBCxYs0GjnrA+R4dI6AIn9I/+nxMTEJhdDRGRsxGZ9AIYfIkOndQD64osv1B7X1dWhsLAQlpaW8PPzYwAiIrMhFn7eeOMNuLq6SlANEWlD6wB05MgRjbaKigrExsbi2Wef1UlRRESGTKlUYuHChRrtnPUhMh46uxL0r7/+iiFDhqCoqEgX3UmKV4ImooZwyYvIcLXolaAbUl5ejvLycl11R0RkcMTCz7Rp09Sui0ZExkHrALR69Wq1x4Ig4MqVK9i8eTMGDhyos8KIiAxFXV0dFi9erNHOWR8i46V1AFq5cqXaYwsLCzg7OyMmJgYJCQlNKiI9PR3Lli1DcXExevbsiTVr1iAsLEz02PXr1+PDDz/EiRMnAAAhISFYvHix2vGCICApKQnr169HWVkZHn30Uaxbtw6dO3duUn1EZL645EVkmiS/DtC2bdsQFxeHjIwMKBQKpKWlISIiAmfPnoWLi4vG8Xl5eRg9ejT69OkDW1tbLFmyBAMGDMDJkyfh6ekJAFi6dClWr16NTZs2wcfHB++88w4iIiJw6tQp2Nra6rR+IjJdYuFn5syZaNWqlQTVEJEuNWkTdFlZGc6fPw8A8Pf3h6OjY5MLUCgU6NWrF9auXQvgztkVXl5emDJlCuLj4+/7+vr6erRr1w5r165FdHQ0BEGAh4cHpk+fjhkzZgC4sz/J1dUVmZmZGDVq1H375CZoIvNWXV2NZcuWabRz1ofIsGnz+9tCm46LioowaNAgODk5QaFQQKFQwMnJCYMHD27S2V+1tbU4fPgwwsPD/1eQhQXCw8ORn5/fqD6qq6tRV1eH9u3bA7gzQ1VcXKzWp4ODAxQKRaP7JCLzNX/+fIYfIjPQ6CWwixcv4pFHHoGVlRUWLlyILl26AABOnTqFdevWoXfv3vjpp5/wwAMPNPrNr127hvr6eo2Lhrm6uuLMmTON6mPWrFnw8PBQBZ7i4mJVH//u8+5z/1ZTU4OamhrV44qKikaPgYhMh9iS1+zZs2FlZSVBNUTUkhodgObNm4eAgADk5OSo7aMZPnw43nrrLURGRmLevHnYsGFDixQqJiUlBVlZWcjLy2vW3p7k5OQGNzoSkekrKyvDqlWrNNo560NkuhodgLKzs7Ft2zbRoNGqVSssXLiwUftr/snJyQlyuRwlJSVq7SUlJXBzc7vna1NTU5GSkoI9e/agR48eqva7ryspKYG7u7tan0FBQaJ9JSQkIC4uTvW4oqICXl5eWo2FiIwTz/IiMk+N3gN07do1eHt7N/i8r68v/vrrL63e3NraGiEhIcjNzVW1KZVK5Obmonfv3g2+bunSpVi4cCGys7MRGhqq9pyPjw/c3NzU+qyoqMDBgwcb7NPGxgZt27ZV+yIi0ycWft555x2GHyIz0OgZIHd3d5w6darBPT4nTpy476yNmLi4OMTExCA0NBRhYWFIS0tDVVUVxowZAwCIjo6Gp6cnkpOTAQBLlixBYmIitmzZAm9vb9W+ntatW6N169aQyWSYNm0aFi1ahM6dO6tOg/fw8MDw4cO1ro+ITE9xcTH+85//aLQz+BCZj0YHoOHDh2PGjBnIzc2Fs7Oz2nNXr17FrFmzmhQwoqKiUFpaisTERBQXFyMoKAjZ2dmqTcwXLlyAhcX/JqrWrVuH2tpajBw5Uq2fpKQkzJs3D8Cd63RUVVXhtddeQ1lZGR577DFkZ2fzGkBExCUvIgKgxXWAbty4AYVCgeLiYrz88ssIDAyEIAg4ffo0tmzZAjc3N/z3v/9VnY5uzHgdICLTJBZ+EhMTIZPJJKiGiHStRW6G2q5dOxw8eBCzZ89GVlYWysrKAACOjo548cUXsXjxYpMIP0RkegoLC/Hhhx9qtHPWh8h8NelK0IIgoLS0FADg7Oxscv/3xBkgItMhNutjaWmJOXPmSFANEbWkFpkB+ieZTCZ6ny4iIkMiFn4460NEQBMDEBGRITtx4gQ+//xzjXaGHyK6iwGIiEyK2KyPq6sr3njjDQmqISJDxQBERCZDLPzk5CThxx8lKIaIDBoDEBEZvfz8fOzevVujPScnCfHxEhRERAavUQFo9erVje5w6tSpTS6GiEhbYrM+gYGBiIqKArf8EFFDGnUavI+PT+M6k8nw+++/N7soqfE0eCLjwLO8iOifdH4afGFhoU4KIyLShezsbBw8eFCjneGHiBqryXuAamtrUVhYCD8/P1hacisREemH2KyPQqFAZGSkBNUQkbGyuP8h6qqrqzFu3DjY2dmhW7duuHDhAgBgypQpSElJ0XmBRER3NbTkxfBDRNrSOgAlJCTg2LFjyMvLU7u7enh4OLZt26bT4oiIAGDDhg2i4Sc4mEteRNQ0Wq9d7dixA9u2bcMjjzyidg+wbt26oaCgQKfFERGJBZ/ffnsSH3/8uATVEJGp0HoGqLS0VPQ+YFVVVSZ3U1QiklZDFzaMimL4IaLm0XoGKDQ0FF9//TWmTJkCAKrQs2HDBvTu3Vu31RGRWUpJSUFNTY1Ge1JSEq/tQ0Q6oXUAWrx4MQYOHIhTp07h9u3bWLVqFU6dOoUff/wR33//fUvUSERmRGzWZ/DgwQgJCZGgGiIyVVovgT322GM4evQobt++je7du2P37t1wcXFBfn4+f0ARUbM0dJYXf7YQka416krQ5oZXgibSL7HgA/DChkSkHZ1fCbqioqLRb87AQETaEAs/R48+jzFjukpQDRGZi0YFIEdHx0af4VVfX9+sgojIPAiCgAULFmi0c9aHiPShUQFo7969qj8XFRUhPj4esbGxqrO+8vPzsWnTJiQnJ7dMlURkUrjkRURS03oP0FNPPYVXX30Vo0ePVmvfsmUL/u///g95eXm6rE8S3ANE1HLEws/YsWPh5eUlQTVEZEq0+f2t9Vlg+fn5CA0N1WgPDQ3FoUOHtO2OiMyEUqls8Cwvhh8i0jetrwPk5eWF9evXY+nSpWrtGzZs4A8xIhLFJS8iMjRaB6CVK1fiueeewzfffAOFQgEAOHToEM6dO4fPP/9c5wUSkXETCz/790/C1KlOElRDRHRHk64DdOnSJbz33ns4c+YMAKBLly544403TGYGiHuAiJqvrq4Oixcv1mjnrA8RtRRtfn/zQogiGICImodLXkQkBZ1fCPHfysrK8P777+P06dMAgG7dumHs2LFwcHBoSndEZELEws/06dPRunVrCaohIhKn9VlgP//8M/z8/LBy5Ur89ddf+Ouvv7BixQr4+fnhl19+aYkaicgIVFZWioafnJwkhh8iMjhaL4E9/vjj8Pf3x/r162FpeWcC6fbt23j11Vfx+++/Y9++fS1SqD5xCYxIOw0teWVlJWHJEmDoUD0XRERmqUX3ALVq1QpHjhxBYGCgWvupU6cQGhqK6upq7Ss2MAxARI0nFn727InH22/bMPgQkV616IUQ27ZtiwsXLmi0X7x4EW3atNG2OyIyUqWlpQ1e2HD/foYfIjJsWm+CjoqKwrhx45Camoo+ffoAAA4cOIC3335b4/YYRGSaeJYXERk7rQNQamoqZDIZoqOjcfv2bQCAlZUVJkyYgJSUFJ0XSESGRSz8BAXNxbBhcgmqISJqmiZfB6i6uhoFBQUAAD8/P9jZ2em0MClxDxCRpsLCQnz44Yca7Zz1ISJD0eLXAQIAOzs7dO/evakvJyIjwiUvIjI1jQ5AY8eObdRxGzdu1KqA9PR0LFu2DMXFxejZsyfWrFmDsLAw0WNPnjyJxMREHD58GH/88QdWrlyJadOmqR0zb948jR/WAQEBqtt2EJF2xMJPYmIiZDKZBNUQEelGowNQZmYmOnXqhODgYOjq7hnbtm1DXFwcMjIyoFAokJaWhoiICJw9exYuLi4ax1dXV8PX1xfPP/883nrrrQb77datG/bs2aN6fPd6RUTUeMePH8cXX3yh0R4cnARmHyIydo1OBhMmTMDWrVtRWFiIMWPG4OWXX0b79u2b9eYrVqzA+PHjMWbMGABARkYGvv76a2zcuBHx8fEax/fq1Qu9evUCANHn77K0tISbm1uzaiMyZw0teQUHJ/H0diIyCY2+DlB6ejquXLmCmTNn4v/9v/8HLy8vvPDCC8jJyWnSjFBtbS0OHz6M8PDw/xVjYYHw8HDk5+dr3d8/nTt3Dh4eHvD19cVLL70ket2if6qpqUFFRYXaF5G5aujaPklJDD9EZDq0uhCijY0NRo8ejW+//RanTp1Ct27dMHHiRHh7e6OyslKrN7527Rrq6+vh6uqq1u7q6ori4mKt+vonhUKBzMxMZGdnY926dSgsLMTjjz+OmzdvNvia5ORkODg4qL68vLya/P5Exmrfvn0Nhh8iIlPT5M0xFhYWkMlkEAQB9fX1uqypWQYOHKj6c48ePaBQKNCpUyd88sknGDdunOhrEhISEBcXp3pcUVHBEERmhWd5EZG50SoA1dTUYPv27di4cSN++OEHDB48GGvXrkVkZCQsLLS7q4aTkxPkcjlKSkrU2ktKSnS6f8fR0REPPvggzp8/3+AxNjY2sLGx0dl7EhkTzvoQkTlqdGqZOHEi3N3dkZKSgsGDB+PixYv49NNP8cwzz2gdfgDA2toaISEhyM3NVbUplUrk5uaid+/eWvfXkMrKShQUFMDd3V1nfRKZgh07djD8EJHZavQMUEZGBjp27AhfX198//33+P7770WP2759e6PfPC4uDjExMQgNDUVYWBjS0tJQVVWlOissOjoanp6eSE5OBnBn4/SpU6dUf/7zzz9x9OhRtG7dGv7+/gCAGTNmYMiQIejUqRMuX76MpKQkyOVy3qeM6B+45EVE5q7RASg6OlrnFz6LiopCaWkpEhMTUVxcjKCgIGRnZ6s2Rl+4cEFtduny5csIDg5WPU5NTUVqair69u2LvLw8AMClS5cwevRoXL9+Hc7Oznjsscfw3//+F87OzjqtnchYcdaHiKgZ9wIzZbwXGJmi9evX4/LlyxrtDD9EZCr0ci8wIjIeYrM+7du3x5QpUySohohIegxARCZOLPzwis5EZO4YgIhMFG9nQUTUMAYgIhMkFn78/Pzw8ssvS1ANEZHhYQAiMjE8y4uI6P4YgIhMBK/tQ0TUeAxARCZALPwoFApERkZKUA0RkeFjACIyclzyIiLSHgMQkZHikhcRUdMxABEZIbHwc/r0QGRlhUlQDRGR8dH+Nu5EJCmx8JOTk4QXX2T4ISJqLM4AERmJey15cdWLiEg7DEBERkAs/Lzwwgvo0qWLBNUQERk/BiAiA6ZUKrFw4UKN9uDgJDD7EBE1HQMQkYHiWV5ERC2HAYjIAImFn3HjxuGBBx6QoBoiItPDAERkQGpra5GcnKzRzlkfIiLdYgAiMhBc8iIi0h8GICIDIBZ+unadiuefbydBNUREpo8BiEhCN2/exIoVKzTaOetDRNSyGICIJNLQkldwMMMPEVFL460wiCQgFn6++24mgoOTMHSoBAUREZkZzgAR6VFJSQkyMjI02nk7CyIi/WIAItITnuVFRGQ4GICI9EAs/MyZMweWlvwnSEQkBf70JWpBZ8+eRVZWlkZ7cHASmH2IiKTDH8FELeReZ3lxozMRkbQYgIhagFj4SUxMhEwmk6AaIiL6NwYgIh06dOgQvvnmG412bnQmIjIsDEBEOsILGxIRGQ8GICIdEAs/nPUhIjJcDEBEzfDNN9/g0KFDGu0MP0REho0BiKiJeGFDIiLjxQBE1ARi4ScnJwk//ihBMUREpDUGICItbNq0CUVFRRrtOTlJiI/Xfz1ERNQ0DEBEjXSvJS+uehERGRcGIKJG4JIXEZFpsZC6gPT0dHh7e8PW1hYKhUL0jJq7Tp48ieeeew7e3t6QyWRIS0trdp9E95KSktJg+OGSFxGR8ZI0AG3btg1xcXFISkrCL7/8gp49eyIiIgJXr14VPb66uhq+vr5ISUmBm5ubTvokasj8+fNRU1Oj0Z6UdGfmh/fzIiIyXjJBEASp3lyhUKBXr15Yu3YtAECpVMLLywtTpkxB/H3+99rb2xvTpk3DtGnTdNbnXRUVFXBwcEB5eTnatm2r/cDI6PHChkRExkeb39+S7QGqra3F4cOHkZCQoGqzsLBAeHg48vPz9dpnTU2N2v/pV1RUNOn9yfjx2j5EROZBsiWwa9euob6+Hq6urmrtrq6uKC4u1mufycnJcHBwUH15eXk16f3JuImFn7Zt2zL8EBGZIJ4FBiAhIQFxcXGqxxUVFQxBZoZLXkRE5kWyAOTk5AS5XI6SkhK19pKSkgY3OLdUnzY2NrCxsWnSe5Jxa2jJKyeH1/YhIjJlki2BWVtbIyQkBLm5uao2pVKJ3Nxc9O7d22D6JNMlFn4cHbvxFHciIjMg6RJYXFwcYmJiEBoairCwMKSlpaGqqgpjxowBAERHR8PT0xPJyckA7mxyPnXqlOrPf/75J44ePYrWrVvD39+/UX0SAfde8nrzTX1XQ0RE+iZpAIqKikJpaSkSExNRXFyMoKAgZGdnqzYxX7hwARYW/5ukunz5MoKDg1WPU1NTkZqair59+yIvL69RfZJ541leREQESHwdIEPF6wCZJrHw07dvX/Tr10//xRARkc4ZxXWAiPSJZ3kREdE/MQCRSeOSFxERiWEAIpMlFn6GDx+Onj17SlANEREZEgYgMjmCIGDBggUa7cHBSWD2ISIigAGITAyXvIiIqDEYgMhkiIWfMWPGoGPHjhJUQ0REhowBiIxeXV0dFi9erNHOWR8iImoIAxAZtYaWvIKDGX6IiKhhDEBktMTCz+TJk9GhQwcJqiEiImPCAERGp7KyEsuXL9do55IXERE1FgMQGRWe5UVERLrAAERGQyz8zJgxA/b29hJUQ0RExowBiAzetWvXkJ6ertEeHJwEZh8iImoKBiAyaPc6y2voUD0XQ0REJoMBiAyWWPiZM2cOLC35sSUioubhbxIyOH/88QcyMzM12rnRmYiIdIUBiAwKz/IiIiJ9YAAigyEWfhITEyGTySSohoiITBkDEEnu119/xfbt2zXaOetDREQthQGIJMV7eRERkRQYgEgyYuGHsz5ERKQPDECkd/v378d3332n0c7wQ0RE+sIARHrFs7yIiMgQWEhdAJkPsfCTk5PE/T5ERKR3nAGiFvf555/jxIkTGu1JSUngxA8REUmBAYhaFJe8iIjIEHEJjFoMl7yIiMhQcQaIdC4zMxN//PGHRntwMJe8iIjIMDAAkU6JzfrIZDIkJiZKUA0REZE4BiDSGbHwExychKFDJSiGiIjoHhiAqNk2bNiAP//8U6O9tpbhh4iIDBMDEDWL2KxPly5d8MILL0hQDRERUeMwAFGTccmLiIiMFQMQaS0lJQU1NTUa7by2DxERGQsGINKK2KxP37590a9fP/0XQ0RE1ES8ECI1WkMXNmT4ISIiY8MZILqvhm5nkZWVhCVL9FwMERGRDhjEDFB6ejq8vb1ha2sLhUKBQ4cO3fP4Tz/9FIGBgbC1tUX37t2xa9cutedjY2Mhk8nUviIjI1tyCCZLLPz897/DERychNOnwQ3PRERklCQPQNu2bUNcXBySkpLwyy+/oGfPnoiIiMDVq1dFj//xxx8xevRojBs3DkeOHMHw4cMxfPhwjbuNR0ZG4sqVK6qvrVu36mM4JkUs/CQlJeGbb3oy+BARkVGTCYIgSFmAQqFAr169sHbtWgCAUqmEl5cXpkyZgvj4eI3jo6KiUFVVhZ07d6raHnnkEQQFBSEjIwPAnRmgsrIy7Nixo0k1VVRUwMHBAeXl5Wjbtm2T+jBmvIM7EREZI21+f0s6A1RbW4vDhw8jPDxc1WZhYYHw8HDk5+eLviY/P1/teACIiIjQOD4vLw8uLi4ICAjAhAkTcP369QbrqKmpQUVFhdqXuRILPwcPjuEd3ImIyKRIugn62rVrqK+vh6urq1q7q6srzpw5I/qa4uJi0eOLi4tVjyMjIzFixAj4+PigoKAAs2fPxsCBA5Gfnw+5XK7RZ3JycoOzHuZCEAQsWLBAo52zPkREZIpM8iywUaNGqf7cvXt39OjRA35+fsjLy8NTTz2lcXxCQgLi4uJUjysqKuDl5aWXWg1BQ+GPsz5ERGSqJA1ATk5OkMvlKCkpUWsvKSmBm5ub6Gvc3Ny0Oh4AfH194eTkhPPnz4sGIBsbG9jY2DRhBMZP/F5ek/HCCx0kqIaIiEg/JN0DZG1tjZCQEOTm5qralEolcnNz0bt3b9HX9O7dW+14APj2228bPB4ALl26hOvXr8Pd3V03hZuA+vr6Bs/yYvghIiJTJ/kSWFxcHGJiYhAaGoqwsDCkpaWhqqoKY8aMAQBER0fD09MTycnJAIA333wTffv2xfLlyzFo0CBkZWXh559/xv/93/8BACorKzF//nw899xzcHNzQ0FBAWbOnAl/f39ERERINk5DwrO8iIjI3EkegKKiolBaWorExEQUFxcjKCgI2dnZqo3OFy5cgIXF/yaq+vTpgy1btmDu3LmYPXs2OnfujB07duChhx4CAMjlchw/fhybNm1CWVkZPDw8MGDAACxcuNBsl7n+SSz8PPTQdDz3XGsJqiEiIpKG5NcBMkSmeB2guro6LF68WKOdsz5ERGQqtPn9LfkMELU8LnkRERGpYwAycWLhZ/nyBHz0kbUE1RARERkGBiAT9ffff2Pp0qUa7VlZSfjoI97ElIiIzBsDkAm615IXV72IiIgYgEyOWPiZO3eu6C1AiIiIzBUDkIm4efMmVqxYodEeHJwEZh8iIiJ1DEAmQGzWp02bNmr3NyMiIqL/YQAycmLhJycnET/+KJOgGiIiIuPAAGSkrl+/jrVr12q05+QkIT5egoKIiIiMCAOQERKb9blx4wGkpY3jWV5ERESNIOnd4El74kteSXjyyXESVENERGScOANkJK5du4b09HSN9uBgXtuHiIhIWwxARkBs1ufo0VCMGTOIV3QmIiJqAgYgA9fQkld8PG9nQURE1FQMQAaKS15EREQthwHIAInN+vz66zB89lmQ/oshIiIyQTwLzMA0tOQVHR2k/2KIiIhMFGeADERDS168gzsREZHuMQAZgEWLFqG+vl6tbdu2aJw65SNRRURERKaNS2ASmz9/vkb4SU1NwrPPMvwQERG1FM4ASeTWrVtYsmSJRjuXvIiIiFoeA5AEfv/9d2zevFmtLTBwAqKiXCSqiIiIyLwwAOnZZ599hpMnT6q1paYm4eZNiQoiIiIyQwxAenT+/Hm18FNXNxarVnlh6lQJiyIiIjJDDEB6ZGdnh9u3rWFpWYtvv52NH36wwqJFUldFRERkfhiA9MjDwwO9eiUgJQWIj5e6GiIiIvPFAKRnQ4fyJqZERERS43WAiIiIyOwwABEREZHZYQAiIiIis8MARERERGaHAYiIiIjMDgMQERERmR0GICIiIjI7DEBERERkdhiAiIiIyOwwABEREZHZYQAiIiIis8MARERERGaHAYiIiIjMDu8GL0IQBABARUWFxJUQERFRY939vX339/i9MACJuHnzJgDAy8tL4kqIiIhIWzdv3oSDg8M9j5EJjYlJZkapVOLy5cto06YNZDKZ1OXoXUVFBby8vHDx4kW0bdtW6nL0juM37/ED/B5w/By/sY5fEATcvHkTHh4esLC49y4fzgCJsLCwwAMPPCB1GZJr27at0X34dYnjN+/xA/wecPwcvzGO/34zP3dxEzQRERGZHQYgIiIiMjsMQKTBxsYGSUlJsLGxkboUSXD85j1+gN8Djp/jN4fxcxM0ERERmR3OABEREZHZYQAiIiIis8MARERERGaHAYiIiIjMDgOQGUhPT4e3tzdsbW2hUChw6NChex7/6aefIjAwELa2tujevTt27dql9nxsbCxkMpnaV2RkZEsOodm0+R6cPHkSzz33HLy9vSGTyZCWltbsPqWm6/HPmzdP4zMQGBjYgiNoHm3Gv379ejz++ONo164d2rVrh/DwcI3jBUFAYmIi3N3d0apVK4SHh+PcuXMtPYwm0/X4Tf1nwPbt2xEaGgpHR0fY29sjKCgImzdvVjvGlD8DjRm/MX4GNAhk0rKysgRra2th48aNwsmTJ4Xx48cLjo6OQklJiejxBw4cEORyubB06VLh1KlTwty5cwUrKyvh119/VR0TExMjREZGCleuXFF9/fXXX/oakta0/R4cOnRImDFjhrB161bBzc1NWLlyZbP7lFJLjD8pKUno1q2b2megtLS0hUfSNNqO/8UXXxTS09OFI0eOCKdPnxZiY2MFBwcH4dKlS6pjUlJSBAcHB2HHjh3CsWPHhKFDhwo+Pj7C33//ra9hNVpLjN/Ufwbs3btX2L59u3Dq1Cnh/PnzQlpamiCXy4Xs7GzVMab8GWjM+I3tMyCGAcjEhYWFCZMmTVI9rq+vFzw8PITk5GTR41944QVh0KBBam0KhUJ4/fXXVY9jYmKEYcOGtUi9LUHb78E/derUSTQANKdPfWuJ8SclJQk9e/bUYZUtp7l/V7dv3xbatGkjbNq0SRAEQVAqlYKbm5uwbNky1TFlZWWCjY2NsHXrVt0WrwO6Hr8gmNfPgLuCg4OFuXPnCoJgfp8BQVAfvyAY32dADJfATFhtbS0OHz6M8PBwVZuFhQXCw8ORn58v+pr8/Hy14wEgIiJC4/i8vDy4uLggICAAEyZMwPXr13U/AB1oyvdAij5bSkvWeu7cOXh4eMDX1xcvvfQSLly40NxydU4X46+urkZdXR3at28PACgsLERxcbFanw4ODlAoFCb59//v8d9lLj8DBEFAbm4uzp49iyeeeAKAeX0GxMZ/l7F8BhrCm6GasGvXrqG+vh6urq5q7a6urjhz5ozoa4qLi0WPLy4uVj2OjIzEiBEj4OPjg4KCAsyePRsDBw5Efn4+5HK57gfSDE35HkjRZ0tpqVoVCgUyMzMREBCAK1euYP78+Xj88cdx4sQJtGnTprll64wuxj9r1ix4eHiofoHc/bdwv38nhqAlxg+Yx8+A8vJyeHp6oqamBnK5HO+99x6efvppAObxGbjX+AHj+gw0hAGItDZq1CjVn7t3744ePXrAz88PeXl5eOqppySsjPRl4MCBqj/36NEDCoUCnTp1wieffIJx48ZJWJlupaSkICsrC3l5ebC1tZW6HL1raPzm8DOgTZs2OHr0KCorK5Gbm4u4uDj4+vqiX79+UpemF/cbvyl8BrgEZsKcnJwgl8tRUlKi1l5SUgI3NzfR17i5uWl1PAD4+vrCyckJ58+fb37ROtaU74EUfbYUfdXq6OiIBx980OA+A80Zf2pqKlJSUrB792706NFD1X73dab+99/Q+MWY4s8ACwsL+Pv7IygoCNOnT8fIkSORnJwMwDw+A/cavxhD/gw0hAHIhFlbWyMkJAS5ubmqNqVSidzcXPTu3Vv0Nb1791Y7HgC+/fbbBo8HgEuXLuH69etwd3fXTeE61JTvgRR9thR91VpZWYmCggKD+ww0dfxLly7FwoULkZ2djdDQULXnfHx84ObmptZnRUUFDh48aDJ///cavxhz+BmgVCpRU1MDwDw+A//2z/GLMeTPQIOk3oVNLSsrK0uwsbERMjMzhVOnTgmvvfaa4OjoKBQXFwuCIAivvPKKEB8frzr+wIEDgqWlpZCamiqcPn1aSEpKUjsN/ubNm8KMGTOE/Px8obCwUNizZ4/w8MMPC507dxZu3bolyRjvR9vvQU1NjXDkyBHhyJEjgru7uzBjxgzhyJEjwrlz5xrdpyFpifFPnz5dyMvLEwoLC4UDBw4I4eHhgpOTk3D16lW9j+9+tB1/SkqKYG1tLXz22Wdqp/jevHlT7RhHR0fhyy+/FI4fPy4MGzbMoE+B1uX4zeFnwOLFi4Xdu3cLBQUFwqlTp4TU1FTB0tJSWL9+veoYU/4M3G/8xvgZEMMAZAbWrFkjdOzYUbC2thbCwsKE//73v6rn+vbtK8TExKgd/8knnwgPPvigYG1tLXTr1k34+uuvVc9VV1cLAwYMEJydnQUrKyuhU6dOwvjx4w3yF/8/afM9KCwsFABofPXt27fRfRoaXY8/KipKcHd3F6ytrQVPT08hKipKOH/+vB5HpB1txt+pUyfR8SclJamOUSqVwjvvvCO4uroKNjY2wlNPPSWcPXtWjyPSji7Hbw4/A+bMmSP4+/sLtra2Qrt27YTevXsLWVlZav2Z8mfgfuM31s/Av8kEQRD0O+dEREREJC3uASIiIiKzwwBEREREZocBiIiIiMwOAxARERGZHQYgIiIiMjsMQERERGR2GICIiIjI7DAAERERkdlhACIio1dcXIwpU6bA19cXNjY28PLywpAhQ1T3P/L29kZaWprG6+bNm4egoCDRPrOysiCTyTB8+PCWK5yIJGMpdQFERM1RVFSERx99FI6Ojli2bBm6d++Ouro65OTkYNKkSThz5kyT+pwxYwYef/zxFqiYiAwBAxARGbWJEydCJpPh0KFDsLe3V7V369YNY8eO1bq/+vp6vPTSS5g/fz7279+PsrIyHVZLRIaCS2BEZLT++usvZGdnY9KkSWrh5y5HR0et+1ywYAFcXFwwbtw4HVRIRIaKM0BEZLTOnz8PQRAQGBh432NnzZqFuXPnqrXV1taia9euqsc//PAD3n//fRw9elTXpRKRgWEAIiKjJQhCo499++23ERsbq9a2evVq7Nu3DwBw8+ZNvPLKK1i/fj2cnJx0WSYRGSAGICIyWp07d4ZMJmvURmcnJyf4+/urtbVv317154KCAhQVFWHIkCGqNqVSCQCwtLTE2bNn4efnp6PKiUhq3ANEREarffv2iIiIQHp6OqqqqjSe12YDc2BgIH799VccPXpU9TV06FD0798fR48ehZeXlw4rJyKpcQaIiIxaeno6Hn30UYSFhWHBggXo0aMHbt++jW+//Rbr1q3D6dOnG9WPra0tHnroIbW2u5uo/91ORMaPAYiIjJqvry9++eUXvPvuu5g+fTquXLkCZ2dnhISEYN26dVKXR0QGSiZos4uQiIiIyARwDxARERGZHQYgIiIiMjsMQERERGR2GICIiIjI7DAAERERkdlhACIiIiKzwwBEREREZocBiIiIiMwOAxARERGZHQYgIiIiMjsMQERERGR2GICIiIjI7Px/6bfOeD6Kus4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_32.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLe0lEQVR4nO3df3zN9f//8fvZ2GZ+bGHMjzEiv2MNw/tdqq93I2Glkn74Gf1Aaf0yyZJEhfyM3uVXvQt5F/aWLK1JZSW/Kr8pQrah2Jja2F7fP3yc9/t0ztiZc87r7Jzb9XLZhT3P67zO4/VSdvd8Pl/Pp8UwDEMAAAB+JMDsAgAAADyNAAQAAPwOAQgAAPgdAhAAAPA7BCAAAOB3CEAAAMDvEIAAAIDfIQABAAC/QwACAAB+hwAEoMyyWCx64YUXzC7DasCAAYqOjja7DAAlQAAC4FILFy6UxWKxfoWEhOiaa67R8OHDlZ2d7dbP3rBhg1544QWdOnXKpee98cYbba6patWqateunebPn6+ioiKXfMbLL7+sFStWuORcAC6vnNkFAPBNL774oho0aKA///xTX331lebMmaPVq1dr+/btCg0Ndcln/PHHHypX7r9/jW3YsEHjxo3TgAEDFB4e7pLPuKhu3bqaOHGiJOn48eN65513NHjwYO3du1eTJk264vO//PLLuvPOO5WQkHDF5wJweQQgAG7RrVs3tW3bVpL04IMPqlq1apo6dapWrlypvn37lvq8RUVFKigoUEhIiEJCQlxV7mWFhYXp/vvvt37/0EMPqUmTJpo1a5bGjx+v8uXLe6wWAFeOITAAHnHzzTdLkg4cOCBJmjx5sjp16qRq1aqpQoUKio2N1b///W+791ksFg0fPlzvvfeeWrRooeDgYK1Zs8b62sU5QC+88IKefvppSVKDBg2sw1UHDx5U586d1bp1a4d1NWnSRPHx8U5fT2hoqDp06KC8vDwdP3682OPy8vL05JNPKioqSsHBwWrSpIkmT54swzBsrjEvL0+LFi2y1j1gwACnawJQcvQAAfCIn376SZJUrVo1SdL06dPVs2dP3XfffSooKNCSJUt01113adWqVerevbvNez///HN98MEHGj58uKpXr+5wovEdd9yhvXv3avHixXr99ddVvXp1SVJERIQeeOABDRkyRNu3b1fLli2t7/nuu++0d+9ejRkzplTX9PPPPyswMLDY4TbDMNSzZ0+lp6dr8ODBatOmjVJTU/X000/r119/1euvvy5Jevfdd/Xggw+qffv2Gjp0qCTp6quvLlVNAErIAAAXWrBggSHJ+Oyzz4zjx48bhw8fNpYsWWJUq1bNqFChgnHkyBHDMAzj7NmzNu8rKCgwWrZsadx888027ZKMgIAAY8eOHXafJclITk62fv/aa68ZkowDBw7YHHfq1CkjJCTEePbZZ23aH3vsMaNixYrGmTNnLnlNnTt3Npo2bWocP37cOH78uLFr1y7jscceMyQZPXr0sB7Xv39/o379+tbvV6xYYUgyXnrpJZvz3XnnnYbFYjH2799vbatYsaLRv3//S9YBwHUYAgPgFl26dFFERISioqJ0zz33qFKlSlq+fLnq1KkjSapQoYL12JMnTyonJ0fXX3+9tmzZYneuzp07q3nz5qWuJSwsTL169dLixYutQ0+FhYVaunSpEhISVLFixcueY/fu3YqIiFBERISaNWummTNnqnv37po/f36x71m9erUCAwP12GOP2bQ/+eSTMgxDn3zySamvCcCVYQgMgFvMnj1b11xzjcqVK6eaNWuqSZMmCgj477+5Vq1apZdeeknbtm1Tfn6+td1isdidq0GDBldcT79+/bR06VJ9+eWXuuGGG/TZZ58pOztbDzzwQIneHx0drbfeesv6aH/jxo1Vo0aNS77nl19+Ue3atVW5cmWb9mbNmllfB2AOAhAAt2jfvr31KbC/+vLLL9WzZ0/dcMMNeuONN1SrVi2VL19eCxYs0Pvvv293/P/2FpVWfHy8atasqX/961+64YYb9K9//UuRkZHq0qVLid5fsWLFEh8LwPsxBAbA4z788EOFhIQoNTVVgwYNUrdu3VwSLhz1Hl0UGBioe++9V//+97918uRJrVixQn379lVgYOAVf25x6tevr6NHj+r06dM27bt377a+ftGlagfgegQgAB4XGBgoi8WiwsJCa9vBgweveCXki3N5ilsJ+oEHHtDJkyf10EMP6cyZMzbr+rjDrbfeqsLCQs2aNcum/fXXX5fFYlG3bt2sbRUrVnT5CtYAiscQGACP6969u6ZOnaquXbvq3nvv1bFjxzR79mw1atRIP/zwQ6nPGxsbK0l67rnndM8996h8+fLq0aOHNRjFxMSoZcuWWrZsmZo1a6brrrvOJddTnB49euimm27Sc889p4MHD6p169b69NNPtXLlSo0cOdLmUffY2Fh99tlnmjp1qmrXrq0GDRooLi7OrfUB/oweIAAed/PNN2vevHnKysrSyJEjtXjxYr3yyiu6/fbbr+i87dq10/jx4/X9999rwIAB6tu3r90ihf369ZOkEk9+vhIBAQFKSUnRyJEjtWrVKo0cOVI7d+7Ua6+9pqlTp9ocO3XqVMXGxmrMmDHq27ev5syZ4/b6AH9mMYz/WY4UAHzc9OnT9cQTT+jgwYOqV6+e2eUAMAkBCIDfMAxDrVu3VrVq1ZSenm52OQBMxBwgAD4vLy9PKSkpSk9P148//qiVK1eaXRIAk9EDBMDnHTx4UA0aNFB4eLgeffRRTZgwweySAJiMAAQAAPwOT4EBAAC/QwACAAB+h0nQDhQVFeno0aOqXLkyy9MDAFBGGIah06dPq3bt2jabLztCAHLg6NGjioqKMrsMAABQCocPH1bdunUveQwByIHKlStLunADq1SpYnI1AACgJHJzcxUVFWX9OX4pBCAHLg57ValShQAEAEAZU5LpK0yCBgAAfocABAAA/A4BCAAA+B3mAF2BwsJCnTt3zuwy4AFBQUGXfaQSAFB2EIBKwTAMZWVl6dSpU2aXAg8JCAhQgwYNFBQUZHYpAAAXIACVwsXwU6NGDYWGhrJYoo+7uDBmZmam6tWrx583APgAApCTCgsLreGnWrVqZpcDD4mIiNDRo0d1/vx5lS9f3uxyAABXyCsmNcyePVvR0dEKCQlRXFycNm7cWOyxO3bsUO/evRUdHS2LxaJp06bZHTNx4kS1a9dOlStXVo0aNZSQkKA9e/a4pNaLc35CQ0Ndcj6UDReHvgoLC02uBADgCqYHoKVLlyoxMVHJycnasmWLWrdurfj4eB07dszh8WfPnlXDhg01adIkRUZGOjzmiy++0LBhw/TNN99o7dq1OnfunG655Rbl5eW5rG6GQfwLf94A4FsshmEYZhYQFxendu3aadasWZIuzLeIiorSiBEjNGrUqEu+Nzo6WiNHjtTIkSMvedzx48dVo0YNffHFF7rhhhsuW1Nubq7CwsKUk5NjtxL0n3/+qQMHDqhBgwYKCQm57LngG/hzBwDvd6mf339lag9QQUGBNm/erC5duljbAgIC1KVLF2VkZLjsc3JyciRJVatWdfh6fn6+cnNzbb4AAIDvMjUAnThxQoWFhapZs6ZNe82aNZWVleWSzygqKtLIkSP1t7/9TS1btnR4zMSJExUWFmb98tWd4AcMGCCLxSKLxaLy5curZs2a+sc//qH58+erqKioxOdZuHChwsPD3VcoAABuZvocIHcbNmyYtm/friVLlhR7TFJSknJycqxfhw8f9mCFntW1a1dlZmbq4MGD+uSTT3TTTTfp8ccf12233abz58+bXR4AAB5hagCqXr26AgMDlZ2dbdOenZ1d7ARnZwwfPlyrVq1Senq66tatW+xxwcHB1p3ffX0H+ODgYEVGRqpOnTq67rrrNHr0aK1cuVKffPKJFi5cKEmaOnWqWrVqpYoVKyoqKkqPPvqozpw5I0lat26dBg4cqJycHGtv0gsvvCBJevfdd9W2bVtVrlxZkZGRuvfee4udzA4A8F8pKVKnThd+NYupASgoKEixsbFKS0uzthUVFSktLU0dO3Ys9XkNw9Dw4cO1fPlyff7552rQoIEryr3k5xUUFHj8y1Xz12+++Wa1bt1aH330kaQL87BmzJihHTt2aNGiRfr888/1zDPPSJI6deqkadOmqUqVKsrMzFRmZqaeeuopSReWCBg/fry+//57rVixQgcPHtSAAQNcUiMAwDccOnRIW7eO04kT+zRpknl1mL4QYmJiovr376+2bduqffv2mjZtmvLy8jRw4EBJUr9+/VSnTh1NnDhR0oWJ0zt37rT+/tdff9W2bdtUqVIlNWrUSNKFYa/3339fK1euVOXKla3zicLCwlShQgWXX8O5c+es9XlSUlKSy7ZmaNq0qX744QdJsnmqLjo6Wi+99JIefvhhvfHGGwoKClJYWJgsFotdL92gQYOsv2/YsKFmzJihdu3a6cyZM6pUqZJL6gQAlF0rVqzQ999/L0m67773FROTbFotpgegPn366Pjx4xo7dqyysrLUpk0brVmzxjox+tChQzabUB49elQxMTHW7ydPnqzJkyerc+fOWrdunSRpzpw5kqQbb7zR5rMWLFhAj0QxDMOwrnXz2WefaeLEidq9e7dyc3N1/vx5/fnnnzp79uwlF4DcvHmzXnjhBX3//fc6efKkdWL1oUOH1Lx5c49cBwDA+/z555965ZVXbNoefPBB1aljUkHyggAkXZirM3z4cIevXQw1F0VHR1926MfTSxuVL19eSUlJHv3Mi5/rKrt27VKDBg108OBB3XbbbXrkkUc0YcIEVa1aVV999ZUGDx6sgoKCYgNQXl6e4uPjFR8fr/fee08RERE6dOiQ4uPjVVBQ4LI6AQBly+7du7V06VKbNleOYJSWVwSgss5isZj+B3klPv/8c/3444964okntHnzZhUVFWnKlCnWnrcPPvjA5vigoCC7LSF2796t3377TZMmTbIuI7Bp0ybPXAAAwOsYhqFFixbpl19+sbbFxcWpa9euJlb1XwQgP5Ofn6+srCwVFhYqOztba9as0cSJE3XbbbepX79+2r59u86dO6eZM2eqR48e+vrrrzV37lybc0RHR+vMmTNKS0tT69atFRoaqnr16ikoKEgzZ87Uww8/rO3bt2v8+PEmXSUAwEynT5/W1KlTbdqGDh2qWrVqmVSRPZ9fBwi21qxZo1q1aik6Olpdu3ZVenq6ZsyYoZUrVyowMFCtW7fW1KlT9corr6hly5Z677337CZ4d+rUSQ8//LD69OmjiIgIvfrqq4qIiNDChQu1bNkyNW/eXJMmTdLkyZNNukoAgFk2b95sE36CgoI0ZswYrwo/khfsBeaN2AsMf8WfOwBcmmEYmjZtms12Uv/4xz/UqVMnj9XgzF5gDIEBAIArcuLECc2ePdum7bHHHtNVV11lUkWXRwACAACltm7dOn3xxRfW72vUqKGHH37YurSKtyIAAQAAp50/f14TJkywabv99tt17bXXmlSRcwhAAADAKYcPH9b8+fNt2p566ilVrFjRpIqcRwACAAAllpKSoq1bt1q/v+aaa9S3b18TKyodAhAAALis/Px8TfrL7qX333+/rr76apMqujIEIAAAcEl79+7V4sWLbdq8YTuLK0EAAgAAxXrnnXd04MAB6/ft2rXTrbfeamJFrkEAAgAAdhxtZzFkyBDVrl3bpIpci60w4HIDBgxQQkKC9fsbb7xRI0eOvKJzuuIcAICS2bJli034KVeunMaMGeMz4UeiB8ivDBgwQIsWLZIklS9fXvXq1VO/fv00evRolSvnvv8UPvroI5UvX75Ex65bt0433XSTTp48qfDw8FKdAwBQOoZhaObMmTp58qS17f/9v/+nv//97yZW5R4EID/TtWtXLViwQPn5+Vq9erWGDRum8uXLKykpyea4goICl01uq1q1qlecAwBQvN9++02zZs2yaRsxYoTP/v3LEJifCQ4OVmRkpOrXr69HHnlEXbp0UUpKinXYasKECapdu7aaNGki6cJiV3fffbfCw8NVtWpV9erVSwcPHrSer7CwUImJiQoPD1e1atX0zDPP6K/76/51+Co/P1/PPvusoqKiFBwcrEaNGmnevHk6ePCgbrrpJknSVVddJYvFogEDBjg8x8mTJ9WvXz9dddVVCg0NVbdu3bRv3z7r6wsXLlR4eLhSU1PVrFkzVapUSV27dlVmZqb1mHXr1ql9+/aqWLGiwsPD9be//U2//PKLi+40AJQd69evtwk/1atX19ixY302/EgEIL9XoUIFFRQUSJLS0tK0Z88erV27VqtWrdK5c+cUHx+vypUr68svv9TXX39tDRIX3zNlyhQtXLhQ8+fP11dffaXff/9dy5cvv+Rn9uvXT4sXL9aMGTO0a9cuvfnmm6pUqZKioqL04YcfSpL27NmjzMxMTZ8+3eE5BgwYoE2bNiklJUUZGRkyDEO33nqrzp07Zz3m7Nmzmjx5st59912tX79ehw4d0lNPPSXpwhLuCQkJ6ty5s3744QdlZGRo6NChXr93DQC40ooVhXrhhXFKT0+3tvXq1UvDhg3z+b8PGQLzU4ZhKC0tTampqRoxYoSOHz+uihUr6u2337YOff3rX/9SUVGR3n77bev/CAsWLFB4eLjWrVunW265RdOmTVNSUpLuuOMOSdLcuXOVmppa7Ofu3btXH3zwgdauXasuXbpIkho2bGh9/eK/NmrUqGEzB+h/7du3TykpKfr666/VqVMnSdJ7772nqKgorVixQnfddZck6dy5c5o7d651ka7hw4frxRdflCTl5uYqJydHt912m/X1Zs2aOX8jAaCM2rhxo77//hP9b8558sknValSJfOK8iB6gEyWkiJ16nThV09YtWqVKlWqpJCQEHXr1k19+vTRCy+8IElq1aqVzbyf77//Xvv371flypVVqVIlVapUSVWrVtWff/6pn376STk5OcrMzFRcXJz1PeXKlVPbtm2L/fxt27YpMDBQnTt3LvU17Nq1S+XKlbP53GrVqqlJkybatWuXtS00NNRmhdJatWrp2LFjki4ErQEDBig+Pl49evTQ9OnTbYbHAMCXjRs3Tp988on1+9DQukpOTvab8CPRA2S6SZOkjIwLv/bs6f7Pu+mmmzRnzhwFBQWpdu3aNk9//XUTuzNnzig2Nlbvvfee3XkiIiJK9fkVKlQo1ftK469PjVksFpv5SQsWLNBjjz2mNWvWaOnSpRozZozWrl2rDh06eKxGAPAkR2v7tG/fXt26dTOpIvPQA2SyUaOkjh0v/OoJFStWVKNGjVSvXr3LPvp+3XXXad++fapRo4YaNWpk8xUWFqawsDDVqlVL3377rfU958+f1+bNm4s9Z6tWrVRUVKQvvvjC4esXe6AKCwuLPUezZs10/vx5m8/97bfftGfPHjVv3vyS1/RXMTExSkpK0oYNG9SyZUu9//77Tr0fAMqKTz75xC78JCYm+mX4kQhApuvZU9qwwTO9P8667777VL16dfXq1UtffvmlDhw4oHXr1umxxx7TkSNHJEmPP/64Jk2apBUrVmj37t169NFHderUqWLPGR0drf79+2vQoEFasWKF9ZwffPCBJKl+/fqyWCxatWqVjh8/rjNnztido3HjxurVq5eGDBmir776St9//73uv/9+1alTR7169SrRtR04cEBJSUnKyMjQL7/8ok8//VT79u1jHhAAnzRu3Dht3LjRpi05OVmVK1c2qSLzEYBQrNDQUK1fv1716tXTHXfcoWbNmmnw4MH6888/VaVKFUkXJsw98MAD6t+/vzp27KjKlSvr9ttvv+R558yZozvvvFOPPvqomjZtqiFDhigvL0+SVKdOHY0bN06jRo1SzZo1NXz4cIfnWLBggWJjY3XbbbepY8eOMgxDq1evLvFiiaGhodq9e7d69+6ta665RkOHDtWwYcP00EMPOXGHAMC7ZWdna9y4cTZt3bp1U3JyskkVeQ+L8ddFW6Dc3FyFhYUpJyfH+oP+oj///FMHDhxQgwYNFBISYlKF8DT+3AGUNYsWLbJZt00q+zu4X86lfn7/FZOgAQDwIUVFRRo/frxNW7ly5fTcc8+ZVJF3IgABAOAj1qxZY/OAiCRt3txXKSnXmFSR9yIAAQDgA/4610eSPv10jJ59NtCEarwfAQgAgDLs7Nmzeu211+zaY2KSxVzn4hGASom54/6FP28A3mjGjBk6efKkTVvPnj0VExNjUkVlBwHISRcfsz579qxHVzWGuS5u/hoYSFcyAO/gaMiLx9tLjgDkpMDAQIWHh1v3lAoNDfX5HXP9XVFRkY4fP67Q0NDLrp4NAO526NAhLViwwK6d8OMc/jYvhcjISEmyhiD4voCAANWrV4+wC8BUjnp9Nm26X0OGXO3gaFwKAagULBaLatWqpRo1aujcuXNmlwMPCAoKUkAAC6cDMA9DXq5FALoCgYGBzAkBALjVxo0b9cknn9i1E36uDAEIAAAv5ajX5/HHH1d4eLjni/ExBCAAALyMo+0sJHp9XIkABACAF1m2bJl27txp0xYVFaVBgwaZVJFvIgABAOAlHA15jR492roGHVyHAAQAgMlycnI0bdo0u3aGvNyHAAQAgIkc9frs33+D3n33JhOq8R8sbAIAgEkchZ/Fi8fqrrsIP+5GDxAAAB62Y8cO/fvf/7ZrT05mB3dPIQABAOBBjnp96tbtpsGD25tQjf8iAAEA4CFsZ+E9CEAAALjZypUrtW3bNrt2wo95CEAAALiRo16fQYMGKSoqyoRqcBEBCAAANygsLNRLL71k106vj3cgAAEA4GKOen0kwo83YR0gAABcyFH4eeONJ1VQQPjxJvQAAQDgAidOnNDs2bPt2lnbxzsRgAAAuEIMeZU9pg+BzZ49W9HR0QoJCVFcXJw2btxY7LE7duxQ7969FR0dLYvF4nDjuPXr16tHjx6qXbu2LBaLVqxY4b7iAQB+z1H4adNmLOHHy5kagJYuXarExEQlJydry5Ytat26teLj43Xs2DGHx589e1YNGzbUpEmTFBkZ6fCYvLw8tW7d2mE3JAAArvLdd98Vu7Bhr14WEyqCMyyGYRhmfXhcXJzatWunWbNmSZKKiooUFRWlESNGaNSoUZd8b3R0tEaOHKmRI0cWe4zFYtHy5cuVkJDgVF25ubkKCwtTTk6OqlSp4tR7AQC+z1Hwady4se69914TqsFFzvz8Nm0OUEFBgTZv3qykpCRrW0BAgLp06aKMjAyzygIA4JLYzsI3mBaATpw4ocLCQtWsWdOmvWbNmtq9e7dHa8nPz1d+fr71+9zcXI9+PgDA+7311ls6evSoXTvhp2ziKTBJEydOLHYGPwAAjn5G3HHHHWrVqpUJ1cAVTJsEXb16dQUGBio7O9umPTs7u9gJzu6SlJSknJwc69fhw4c9+vkAAO9UVFRU7JAX4adsM60HKCgoSLGxsUpLS7NOUi4qKlJaWpqGDx/u0VqCg4MVHBzs0c8EAHg31vbxbaYOgSUmJqp///5q27at2rdvr2nTpikvL08DBw6UJPXr10916tTRxIkTJV2YOL1z507r73/99Vdt27ZNlSpVUqNGjSRJZ86c0f79+62fceDAAW3btk1Vq1ZVvXr1PHyFAICyyFH4GTlypMLCwkyoBu5g6mPwkjRr1iy99tprysrKUps2bTRjxgzFxcVJkm688UZFR0dr4cKFkqSDBw+qQYMGdufo3Lmz1q1bJ0lat26dbrrpJrtj+vfvbz3P5fAYPAD4p2PHjmnOnDl27YsXJ8vDz+egFJz5+W16APJGBCAA8D/FDXmlpiZr1CipZ08PFwSnlYl1gAAA8BaOwk9q6vMaNSqAjUx9FAEIAOC30tPTtX79ert2dnD3faZvhgoAgBnGjRvnMPykppJ8/AE9QAAAv+NoyCsmJlmTJkmX2YoSPoIABADwG8VNdI6JSVbPnkx09icEIACAX3AUftq3b69u3bqZUA3MRgACAPi0oqIijR8/3q6dFZ39GwEIAOCz2M4CxSEAAQB8kqPwM2TIENWuXduEauBtCEAAAJ9y4sQJzZ492649JiZZZB9cRAACAPiM4oa8XnghWR078pQX/osABADwCY7CT+vWzykgoJw6dmR9H9giAAEAyrTPPvtMX3/9tV37xbV9JHp+YI8ABAAosy61gzsPeuFSCEAAgDKJ7SxwJQhAAIAypbhen4ICtrNAyRGAAABlhqPwc+xYE73xxj3q2NGEglBmEYAAAF7PMAy9+OKLdu3JyclKSZG2bmXYC84hAAEAvNrltrNg2AulEWB2AQAAFMdR+HnnnQeUmsojXrgyBCAAgNf57bffin3Kq2bNhgx34YoxBAYA8ColGfICrhQ9QAAAr+Eo/Hz2WZJiYhjygmvRAwQAMN26dev0xRdf2LUnJ7OiM9yDAAQAMNXlhrwAd2AIDABgGkfhJzU1mSEvuB09QAAAj7vUJqYZGdKkSUx2hnsRgAAAHuUo/NSqVUtDhw5VTIzYzBQeQQACAHhEcdtZxMQkW3t7WNUZnkIAAgC4HROd4W0IQAAAt3IUfnr37q2WLVuaUA1wAQEIAOAWp06d0vTp0+3a6fWBNyAAAQBcjiEveDsCEADApRyFn2eeeUYVKlQwoRrAMQIQAMAlNmzYoLVr19q10+sDb0QAAgBcseKGvFjRGd6KAAQAuCKOws/kyck6fdqEYoASIgABAEpl0qRJys/Pt2t/5ZVkPfGECQUBTiAAAQCc5qjX58yZSrr++id19qwJBQFOYjd4AIBTitvB/frrn2QbC5QZ9AABAErkUmv78KAXyhp6gAAAl+Uo/CxfnqDUVJIPyiYCEACgWGfOnHEYfmJikhUa2lqjRplQFOACDIEBABwqbsgrNfXCkBfzfVCWEYAAAHYchZ+CgqeUnl6RXh/4BAIQAMBqy5Yt+s9//mPXznYW8DUEIACAJHZwh38hAAEAHIYfgg98GQEIAPzY5MmTlZeXZ9dO+IGvIwABgJ9y1OtjsVg0duxYE6oBPIsABAB+iCEv+DsCEAD4ESY6AxewEjQA+AlH4Wfnzm6KiSH8wP94RQCaPXu2oqOjFRISori4OG3cuLHYY3fs2KHevXsrOjpaFotF06ZNu+JzAoAv+/PPP4vdzmLp0vas6Ay/ZHoAWrp0qRITE5WcnKwtW7aodevWio+P17Fjxxwef/bsWTVs2FCTJk1SZGSkS84JAL5q3LhxeuWVV+zaU1OTCT7wa04HoMDAQIdB4rffflNgYKDTBUydOlVDhgzRwIED1bx5c82dO1ehoaGaP3++w+PbtWun1157Tffcc4+Cg4Ndck4A8EWOen1atHhCqanJbGcBv+f0JGjDMBy25+fnKygoyKlzFRQUaPPmzUpKSrK2BQQEqEuXLsrIyHC2tFKfMz8/X/n5+dbvc3NzS/XZAOANdu7cqWXLltm1X5zofOednq4I8D4lDkAzZsyQdGGNiLfffluVKlWyvlZYWKj169eradOmTn34iRMnVFhYqJo1a9q016xZU7t373bqXFdyzokTJxb7ZAQAlCU85QWUTIkD0Ouvvy7pQg/Q3LlzbYa7goKCFB0drblz57q+Qg9ISkpSYmKi9fvc3FxFRUWZWBEAOM9R+ElNHatRoywmVAN4txIHoAMHDkiSbrrpJn300Ue66qqrrvjDq1evrsDAQGVnZ9u0Z2dnFzvB2R3nDA4OLnY+EQB4uzfeeEPHjx+3a09OThYdP4BjTk+CTk9Pd0n4kS70HMXGxiotLc3aVlRUpLS0NHXs2NFrzgkA3mrcuHHFhh8AxXN6EvSgQYMu+bqzT1olJiaqf//+atu2rdq3b69p06YpLy9PAwcOlCT169dPderU0cSJEyVdmOS8c+dO6+9//fVXbdu2TZUqVVKjRo1KdE4A8AWOh7x4wgsoCacD0MmTJ22+P3funLZv365Tp07p5ptvdrqAPn366Pjx4xo7dqyysrLUpk0brVmzxjqJ+dChQwoI+G9H1dGjRxUTE2P9fvLkyZo8ebI6d+6sdevWleicAFCWFTfROSaGIS+gpCxGcc+1O6GoqEiPPPKIrr76aj3zzDOuqMtUubm5CgsLU05OjqpUqWJ2OQBg5Sj87N/fWXfddSMLG8LvOfPz2yUBSJL27NmjG2+8UZmZma44nakIQAC8TUFBgXUqwP9irg/wX878/HbZbvA//fSTzp8/76rTAQD+T3FDXpMnM+QFlJbTAeh/18uRLqwLlJmZqY8//lj9+/d3WWEAAMfhZ+nSETp8uKoee8yEggAf4XQA2rp1q833AQEBioiI0JQpUy77hBgAoGT27t2rxYsX27WnpiZr0iQx3we4Qi6bA+RLmAMEwExsZwGUjkfmAB07dkx79uyRJDVp0kQ1atQo7akAAP/HUfgZO3asLBa2swBcyekAlJubq2HDhmnx4sUqKiqSJAUGBqpPnz6aPXu2wsLCXF4kAPi6t956S0ePHrVrp9cHcA+nt8IYMmSIvv32W3388cc6deqUTp06pVWrVmnTpk166KGH3FEjAPi0cePGEX4AD3N6DlDFihWVmpqqv//97zbtX375pbp27aq8vDyXFmgG5gAB8JTitrPYsMGEYoAyzq1zgKpVq+ZwmCssLMxlm6QCgK8rbqLzkiXJeuUVDxcD+CGnh8DGjBmjxMREZWVlWduysrL09NNP6/nnn3dpcQDgixyFn+uuu07JycnatYtH3AFPcHoILCYmRvv371d+fr7q1asn6cKGpcHBwWrcuLHNsVu2bHFdpR7EEBgAdzh//rwmTJhg185cH8A13DoE1qtXLx7HBAAnsbYP4F1YCNEBeoAAuJKj8DN06FDVqlXLhGoA3+XMz2+n5wA1bNhQv/32m137qVOn1LBhQ2dPBwA+66effir2KS/CD2Aup4fADh48qMLCQrv2/Px8HTlyxCVFAUBZV9yQV2pqskaN8nAxAOyUOAClpKRYf5+ammrzKHxhYaHS0tLUoEED11YHAGVMSoq0dat9+Bk37nl16BDA+j6AlyhxAEpISJAkWSwW9e/f3+a18uXLKzo6WlOmTHFpcQBQlixcuFC//PKLXXtMTLI6dBA9P4AXKXEAurjvV4MGDfTdd9+pevXqbisKAMqayz3lxdo+gHdxeg7QgQMH3FEHAJRZjsIPj7cD3s3pAPTiiy9e8vWxY8eWuhgAKEtY2wcou5wOQMuXL7f5/ty5czpw4IDKlSunq6++mgAEwC84Cj/XXHON+vbta0I1AJzldADaunWrXVtubq4GDBig22+/3SVFAYC3Kiws1EsvvWTXTq8PULa4bCXoH3/8UT169NDBgwddcTpTsRI0AEcY8gK8m1v3AitOTk6OcnJyXHU6APAqjsJP//79FR0d7fliAFwxpwPQjBkzbL43DEOZmZl699131a1bN5cVBgDe4MiRI5o3b55dO70+QNnmdAB6/fXXbb4PCAhQRESE+vfvr6SkJJcVBgBmY8gL8F2sAwQADjgKP2PGjFFgYKAJ1QBwtVLNATp16pT2798vSWrUqJHCw8NdWRMAmGb58uX64Ycf7Nrp9QF8S4AzBx88eFDdu3dX9erVFRcXp7i4OFWvXl233XabTzz9BcC/jRs3jvAD+IkS9wAdPnxYHTp0UPny5TV+/Hg1a9ZMkrRz507NmTNHHTt21Hfffae6deu6rVgAcBe2swD8S4nXARo8eLD279+v1NRUhYSE2Lz2xx9/qGvXrmrcuLHefvtttxTqSawDBPgPJjoDvsMt6wCtWbNGS5cutQs/klShQgWNHz9e99xzj/PVAoBJHIWfBg0aqF+/fiZUA8CTShyATpw4cckFvxo2bKjff//dFTUBgFsZhuFwY2d6fQD/UeIAVKtWLe3cubPYOT7bt29XZGSkywoDAHdgyAuA5EQASkhI0FNPPaW0tDRFRETYvHbs2DE9++yzSkhIcHV9AOAyjsLPAw88oIYNG5pQDQAzlXgS9MmTJxUXF6esrCzdf//9atq0qQzD0K5du/T+++8rMjJS33zzjapWrerumt2OSdCA70hJkWbMOKHrr59t9xq9PoBvccsk6KuuukrffvutRo8erSVLlujUqVOSpPDwcN177716+eWXfSL8APAtW7eO0/XX27fHxBB+AH9W4h6g/2UYho4fPy5JioiIkMVicXlhZqIHCPANjoa81q59Tl99VapF8AF4Obf0AP0vi8WiGjVqlKo4AHC3b7/9VmvWrLFrT01N1qhRJhQEwOvwzyAAPqW4p7xiYpLFlB8AFxGAAPgMtrMAUFIEIABl3uzZs3XixAm7dsIPgOIQgACUaY56fX75pZ0SEm41oRoAZUWJAtCMGTNKfMLHHnus1MUAQEmxnQWAK1Gix+AbNGhQspNZLPr555+vuCiz8Rg84N3YzgKAIy5/DP7AgQMuKQwArpSj8PPtt4P08MNRJlQDoKwq9RyggoICHThwQFdffbXKlWMqEQD3On36tKZOnWrXTq8PgNIIcPYNZ8+e1eDBgxUaGqoWLVro0KFDkqQRI0Zo0qRJLi8QAMaNG0f4AeBSTgegpKQkff/991q3bp1CQkKs7V26dNHSpUtdWhwAOBryGj16NOEHwBVxeuxqxYoVWrp0qTp06GCzB1iLFi30008/ubQ4AP7rhx9+0PLly+3aY2KSVb68CQUB8ClOB6Djx4873AcsLy/P5zZFBWAOnvIC4G5OD4G1bdtWH3/8sfX7i6Hn7bffVseOHV1XGQC/5Cj8pKYmKyaG8APAdZwOQC+//LJGjx6tRx55ROfPn9f06dN1yy23aMGCBZowYUKpipg9e7aio6MVEhKiuLg4bdy48ZLHL1u2TE2bNlVISIhatWql1atX27yenZ2tAQMGqHbt2goNDVXXrl21b9++UtUGwDPee++9Yvfy2rBB6tnThKIA+CynA9Df//53bdu2TefPn1erVq306aefqkaNGsrIyFBsbKzTBSxdulSJiYlKTk7Wli1b1Lp1a8XHx+vYsWMOj9+wYYP69u2rwYMHa+vWrUpISFBCQoK2b98u6cLqsAkJCfr555+1cuVKbd26VfXr11eXLl2Ul5fndH0A3G/cuHHav3+/TduRIzH0+gBwmxKtBO1OcXFxateunWbNmiVJKioqUlRUlEaMGKFRo0bZHd+nTx/l5eVp1apV1rYOHTqoTZs2mjt3rvbu3asmTZpo+/btatGihfWckZGRevnll/Xggw9etiZWggY8hx3cAbiKy1eCzs3NLfGHOxMYCgoKtHnzZiUlJVnbAgIC1KVLF2VkZDh8T0ZGhhITE23a4uPjtWLFCklSfn6+JNk8oh8QEKDg4GB99dVXDgNQfn6+9X2Sc9cLoHSY6AzATCUKQOHh4SV+wquwsLDEH37ixAkVFhaqZs2aNu01a9bU7t27Hb4nKyvL4fFZWVmSpKZNm6pevXpKSkrSm2++qYoVK+r111/XkSNHlJmZ6fCcEydOLPYvYwCu5+j/t0aN+uu++6I9XwwAv1SiAJSenm79/cGDBzVq1CgNGDDA+tRXRkaGFi1apIkTJ7qnSieUL19eH330kQYPHqyqVasqMDBQXbp0Ubdu3VTcaF9SUpJNr1Jubq6iothXCHC1P/74Q6+++qpdO70+ADytRAGoc+fO1t+/+OKLmjp1qvr27Wtt69mzp1q1aqV//vOf6t+/f4k/vHr16goMDFR2drZNe3Z2tiIjIx2+JzIy8rLHx8bGatu2bcrJyVFBQYEiIiIUFxentm3bOjxncHCwgoODS1w3AOcV18vKRGcAZnD6KbCMjAyHQaJt27aXfXz9r4KCghQbG6u0tDRrW1FRkdLS0opdU6hjx442x0vS2rVrHR4fFhamiIgI7du3T5s2bVKvXr2cqg+AazgKP0lJSUpOTubxdgCmcDoARUVF6a233rJrf/vtt0s1bJSYmKi33npLixYt0q5du/TII48oLy9PAwcOlCT169fPZpL0448/rjVr1mjKlCnavXu3XnjhBW3atEnDhw+3HrNs2TKtW7fO+ij8P/7xDyUkJOiWW25xuj4ApffTTz8V+5RXUFCQCRUBwAVOb4Xx+uuvq3fv3vrkk08UFxcnSdq4caP27dunDz/80OkC+vTpo+PHj2vs2LHKyspSmzZttGbNGutE50OHDikg4L85rVOnTnr//fc1ZswYjR49Wo0bN9aKFSvUsmVL6zGZmZlKTExUdna2atWqpX79+un55593ujYApcdTXgC8WanWATpy5IjeeOMN65NazZo108MPP+wzE4dZBwi4MqztA8AMzvz8Nn0hRG9EAAJKJyUlRVu3brVrJ/wA8ASXL4T4V6dOndK8efO0a9cuSVKLFi00aNAghYWFleZ0AHyAo16f6667Tj169DChGgC4NKd7gDZt2qT4+HhVqFBB7du3lyR99913+uOPP/Tpp5/quuuuc0uhnkQPEOAchrwAeAO3DoFdf/31atSokd566y2VK3ehA+n8+fN68MEH9fPPP2v9+vWlr9xLEICAkmGiMwBv4tYAVKFCBW3dulVNmza1ad+5c6fatm2rs2fPOl+xlyEAAZfnKPw88MADatiwoQnVAICb5wBVqVJFhw4dsgtAhw8fVuXKlZ09HYAyJj8/X5MmTbJrp9cHQFnidADq06ePBg8erMmTJ6tTp06SpK+//lpPP/20zfYYAHwPQ14AfIXTAWjy5MmyWCzq16+fzp8/L+nCBqSPPPKIw38VAvANjsLPM888owoVKphQDQBcmVKvA3T27Fn99NNPkqSrr75aoaGhLi3MTMwBAv7r0KFDWrBggV07vT4AvI3b1wGSpNDQULVq1aq0bwdQBjDkBcBXlTgADRo0qETHzZ8/v9TFAPAerO0DwJeVOAAtXLhQ9evXV0xMjNg9A/Bdqamp+uabb+zaCT8AfEmJA9AjjzyixYsX68CBAxo4cKDuv/9+Va1a1Z21AfAwR70+mZktdeutvU2oBgDcx6lJ0Pn5+froo480f/58bdiwQd27d9fgwYN1yy23yGKxuLNOj2ISNPwRQ14AyjqP7Ab/yy+/aOHChXrnnXd0/vx57dixQ5UqVSpVwd6GAAR/8uqrr+qPP/6wayf8AChrPPIUWEBAgCwWiwzDUGFhYWlPA8BEjnp9tmy5RytXNjGhGgDwnABnDs7Pz9fixYv1j3/8Q9dcc41+/PFHzZo1S4cOHfKZ3h/AH5w7d85h+ElNTdbgwYQfAL6vxD1Ajz76qJYsWaKoqCgNGjRIixcvVvXq1d1ZGwA3uNTaPox6AfAXJZ4DFBAQoHr16ikmJuaSE54/+ugjlxVnFuYAwVc5Cj9PP/20T63kDsB/uWUOUL9+/XzqSS/An2RlZenNN9+0a2eiMwB/5dRCiADKHrazAAB7pX4KDID3cxR+xo4dS28uAL9HAAJ80MaNG/XJJ5/YtdPrAwAXEIAAH+Oo1+fIkTbq0aOXCdUAgHciAAE+hO0sAKBkCECAD5g3b56OHDli1074AQDHCEBAGeeo1+e+++5To0aNTKgGAMoGAhBQRhUWFuqll16ya6fXBwAujwAElEGs7QMAV4YABJQxjsLPU089pYoVK5pQDQCUTQQgoIz4/fffNXPmTLt2en0AwHkEIKAMYMgLAFyLAAR4ObazAADXIwABXmrr1q1KSUmxa6fXBwCuHAEI8EKOen2uvfZa3X777SZUAwC+hwAEeBm2swAA9yMAAV7i3Xff1c8//2zXTvgBANcjAAFewFGvz913361mzZqZUA0A+D4CEGCioqIijR8/3q6dXh8AcC8CEGAS1vYBAPMQgAATOAo/TzzxhKpUqWJCNQDgfwhAgAedOnVK06dPt2un1wcAPIsABHgIQ14A4D0IQIAHsJ0FAHgXAhDgRtu3b9eHH35o106vDwCYiwAEuImjXp8mTZronnvuMaEaAMD/IgABbsB2FgDg3QhAgAt98MEH2rVrl1074QcAvAsBCHARR70+t99+u6699loTqgEAXAoBCLhChmHoxRdftGun1wcAvBcBCLgCrO0DAGUTAQgoJUfh5/HHH1d4eLjniwEAOCXA7AIkafbs2YqOjlZISIji4uK0cePGSx6/bNkyNW3aVCEhIWrVqpVWr15t8/qZM2c0fPhw1a1bVxUqVFDz5s01d+5cd14C/MiZM2eKfcqL8AMAZYPpAWjp0qVKTExUcnKytmzZotatWys+Pl7Hjh1zePyGDRvUt29fDR48WFu3blVCQoISEhK0fft26zGJiYlas2aN/vWvf2nXrl0aOXKkhg8frpSUFE9dFnzUuHHjNGXKFLt2hrwAoGyxGIZhmFlAXFyc2rVrp1mzZkmSioqKFBUVpREjRmjUqFF2x/fp00d5eXlatWqVta1Dhw5q06aNtZenZcuW6tOnj55//nnrMbGxserWrZteeumly9aUm5ursLAw5eTksDs3rBz1+jz//PMKCDD93xEAADn389vUv7kLCgq0efNmdenSxdoWEBCgLl26KCMjw+F7MjIybI6XpPj4eJvjO3XqpJSUFP36668yDEPp6enau3evbrnlFvdcCHza/v37ix3yIvwAQNlk6iToEydOqLCwUDVr1rRpr1mzpnbv3u3wPVlZWQ6Pz8rKsn4/c+ZMDR06VHXr1lW5cuUUEBCgt956SzfccIPDc+bn5ys/P9/6fW5ubmkvCT7GUfBp3ry57rrrLhOqAQC4ik8+BTZz5kx98803SklJUf369bV+/XoNGzZMtWvXtus9kqSJEycW+zgz/BfbWQCA7zI1AFWvXl2BgYHKzs62ac/OzlZkZKTD90RGRl7y+D/++EOjR4/W8uXL1b17d0nStddeq23btmny5MkOA1BSUpISExOt3+fm5ioqKuqKrg1l17p16/TFF1/YtaemJov8AwC+wdQJDEFBQYqNjVVaWpq1raioSGlpaerYsaPD93Ts2NHmeElau3at9fhz587p3LlzdnMzAgMDVVRU5PCcwcHBqlKlis0X/NO4cePswk+DBncrNTVZDubkAwDKKNOHwBITE9W/f3+1bdtW7du317Rp05SXl6eBAwdKkvr166c6depo4sSJki4sNNe5c2dNmTJF3bt315IlS7Rp0yb985//lCRVqVJFnTt31tNPP60KFSqofv36+uKLL/TOO+9o6tSppl0nvNvltrPo18/TFQEA3Mn0ANSnTx8dP35cY8eOVVZWltq0aaM1a9ZYJzofOnTIpjenU6dOev/99zVmzBiNHj1ajRs31ooVK9SyZUvrMUuWLFFSUpLuu+8+/f7776pfv74mTJighx9+2OPXB+83a9Ys/fbbb3btzPcBAN9l+jpA3oh1gPwH21kAgO9w5ue36T1AgBn++OMPvfrqq3bt9PoAgH8gAMHvsIM7AIAABL/iKPyMGTNGgYGBJlQDADALAQh+4ciRI5o3b55dO70+AOCfCEDweY56fa699lrdfvvtJlQDAPAGBCD4nJQUadIkadQoaetWtrMAANhjK2v4nEmTpHPnNjkMP6mphB8AAD1A8EHx8fbBp2HDezRnThO2swAASCIAwYdcbjuLBx7wdEUAAG9FAIJPKG4Hd+b7AAAcIQChzHP0lNe6dU8oPZ1tTAAAjhGAUGadP39eEyZMsGtPTU1mrg8A4JIIQCiTFixYoEOHDtm0NWvWTHfffbcY9QIAXA4BCGUO21kAAK4UAQhlxqlTpzR9+nS7diY6AwCcRQBCmeCo16dr166Ki4szoRoAQFlHAILXcxR+6PUBAFwJAhC81s8//6x3333Xrp3wAwC4UgQgeJ2UFMebmA4YMED169c3oSIAgK8hAMHrsIM7AMDdCEDwGtu2bdPKlSvt2gk/AABXIwDBKzia6JyYmKjKlSubUA0AwNcRgGCqwsJCvfTSS3bt9PoAANyJAATTrF69Wt99951NW7t27XTrrbeaVBEAwF8QgGAKtrMAAJiJAASPysvL0+TJk+3aGfICAHgSAQge88Ybb+j48eM2bQkJCWrdurVJFQEA/BUBCB7BdhYAAG9CAIJbZWZm6p///KddO+EHAGAmAhDcxlGvz4MPPqg6deqYUA0AAP9FAIJbMOQFAPBmBCC41Pbt2/Xhhx/atF111VV67LHHTKoIAAB7BCC4jKNenyeffFKVKlUyoRoAAIpHAMIVKyoq0vjx4+3aGfICAHgrAhCuyKeffqqMjAybtpiYGPXs2dOkigAAuDwCEErN0ZDXc889p3Ll+M8KAODd+EkFp509e1avvfaaXTtDXgCAsoIABKe89dZbOnr0qE1bjx49dN1115lUEQAAziMAocQcDXmNHTtWFovFhGoAACg9AhAuKzs7W3PnzrVrZ8gLAFBWEYBwSY56fQYOHKh69eqZUA0AAK5BAEKx2M4CAOCrCECw88svv2jhwoU2bZUqVdKTTz5pTkEAALgYAQg2HPX6pKc/qcREtrMAAPgOAhAkSYZh6MUXX7RrT01NVkaGVFAgsbgzAMBXEICgLVu26D//+Y9N20033aQbbrhBMTHSpEnSqFEmFQcAgBsQgPycoyGvMWPGKDAwUNKFXh96fgAAvoYA5KcKCgo0ceJEu3ae8gIA+AMCkB/67rvvtHr1apu2u+++W82aNTOpIgAAPIsA5GfYzgIAAAKQ38jLy9PkyZNt2s6cqabrrx8usg8AwN8QgPxAWlqavvrqK5u2xx9/XOHh4eYUBACAyQhAPo7tLAAAsBdgdgGSNHv2bEVHRyskJERxcXHauHHjJY9ftmyZmjZtqpCQELVq1cpuQq/FYnH49dprr7nzMrzKb7/9Zhd+br75ZsIPAADyggC0dOlSJSYmKjk5WVu2bFHr1q0VHx+vY8eOOTx+w4YN6tu3rwYPHqytW7cqISFBCQkJ2r59u/WYzMxMm6/58+fLYrGod+/enrosUy1dulSzZs2yaXv22Wd1/fXXm1QRAADexWIYhmFmAXFxcWrXrp31B3ZRUZGioqI0YsQIjXKw/HCfPn2Ul5enVatWWds6dOigNm3aaO7cuQ4/IyEhQadPn1ZaWlqJasrNzVVYWJhycnJUpUqVUlyVOYrbzoJeHwCAP3Dm57epc4AKCgq0efNmJSUlWdsCAgLUpUsXZWRkOHxPRkaGEhMTbdri4+O1YsUKh8dnZ2fr448/1qJFi4qtIz8/X/n5+dbvc3NznbgK73Dw4EG7a7zzzjvVokULkyoCAMB7mRqATpw4ocLCQtWsWdOmvWbNmtq9e7fD92RlZTk8Pisry+HxixYtUuXKlXXHHXcUW8fEiRMdThYuK6ZPn65Tp07ZtP3vdhYAAMCW6XOA3G3+/Pm67777FBISUuwxSUlJysnJsX4dPnzYgxWW3vnz5zVu3Dib8BMREaHk5GTCDwAAl2BqD1D16tUVGBio7Oxsm/bs7GxFRkY6fE9kZGSJj//yyy+1Z88eLV269JJ1BAcHKzg42MnqzfXDDz9o+fLlNm2DBg1SVFSUSRUBAFB2mNoDFBQUpNjYWJvJyUVFRUpLS1PHjh0dvqdjx452k5nXrl3r8Ph58+YpNjZWrVu3dm3hJhs3bpxd+Bk7dizhBwCAEjJ9IcTExET1799fbdu2Vfv27TVt2jTl5eVp4MCBkqR+/fqpTp061p3LH3/8cXXu3FlTpkxR9+7dtWTJEm3atEn//Oc/bc6bm5urZcuWacqUKR6/Jnc5e/as3VpGLVu29JvH+wEAcBXTA1CfPn10/PhxjR07VllZWWrTpo3WrFljneh86NAhBQT8t6OqU6dOev/99zVmzBiNHj1ajRs31ooVK9SyZUub8y5ZskSGYahv374evR53SU9P1/r1623aRowYoapVq5pUEQAAZZfp6wB5I29bB4jtLAAAuLwysw4QLu2PP/7Qq6++atN24403qnPnziZVBACAbyAAeakdO3bo3//+t03bM888owoVKphUEQAAvoMA5GUMw9C8efP066+/WtsOHOioO+64RWQfAABcgwDkRXJycjRt2jSbtocffthu5WsAAHBlCEBe4ttvv9WaNWus34eGhurJJ5+0eQIOAAC4BgHIZEVFRZoyZYrOnj1rbevatavi4uJMrAoAAN9GADLRsWPHNGfOHJu2xx9/XOHh4eYUBACAnyAAmeSzzz7T119/bf2+du3aevDBB2WxWEysCgAA/0AA8rBz587p5Zdftmnr3bu33UrWAADAfQhAHuQo/Dz99NMKDQ01qSIAAPwTAciDjh49av198+bNddddd5lYDQAA/osA5EH16tXTfffdp6uuukrVqlUzuxwAAPwWAciDLBaLGjVqZHYZAAD4PVbZ87CUFKlTpwu/AgAAcxCAPGzSJCkj48KvAADAHAQgDxs1SurY8cKvAADAHMwB8rCePS98AQAA89ADBAAA/A4BCAAA+B0CEAAA8DsEIAAA4HcIQAAAwO8QgAAAgN8hAAEAAL9DAAIAAH6HAAQAAPwOAQgAAPgdAhAAAPA7BCAAAOB3CEAAAMDvsBu8A4ZhSJJyc3NNrgQAAJTUxZ/bF3+OXwoByIHTp09LkqKiokyuBAAAOOv06dMKCwu75DEWoyQxyc8UFRXp6NGjqly5siwWi9nllFhubq6ioqJ0+PBhValSxexyfAr31j24r+7DvXUf7q37XOm9NQxDp0+fVu3atRUQcOlZPvQAORAQEKC6deuaXUapValShf8p3YR76x7cV/fh3roP99Z9ruTeXq7n5yImQQMAAL9DAAIAAH6HAORDgoODlZycrODgYLNL8TncW/fgvroP99Z9uLfu48l7yyRoAADgd+gBAgAAfocABAAA/A4BCAAA+B0CEAAA8DsEIC82e/ZsRUdHKyQkRHFxcdq4ceMlj1+2bJmaNm2qkJAQtWrVSqtXr7Z53WKxOPx67bXX3HkZXsnV9/bMmTMaPny46tatqwoVKqh58+aaO3euOy/Ba7n63mZnZ2vAgAGqXbu2QkND1bVrV+3bt8+dl+C1nLm3O3bsUO/evRUdHS2LxaJp06Zd8Tl9lavv6/r169WjRw/Vrl1bFotFK1ascF/xXs7V93bixIlq166dKleurBo1aighIUF79uwpXXEGvNKSJUuMoKAgY/78+caOHTuMIUOGGOHh4UZ2drbD47/++msjMDDQePXVV42dO3caY8aMMcqXL2/8+OOP1mMyMzNtvubPn29YLBbjp59+8tRleQV33NshQ4YYV199tZGenm4cOHDAePPNN43AwEBj5cqVnrosr+Dqe1tUVGR06NDBuP76642NGzcau3fvNoYOHWrUq1fPOHPmjCcvzXTO3tuNGzcaTz31lLF48WIjMjLSeP3116/4nL7IHfd19erVxnPPPWd89NFHhiRj+fLl7r0IL+WOexsfH28sWLDA2L59u7Ft2zbj1ltvLfXfBwQgL9W+fXtj2LBh1u8LCwuN2rVrGxMnTnR4/N133210797dpi0uLs546KGHiv2MXr16GTfffLNrCi5D3HFvW7RoYbz44os2x1x33XXGc88958LKvZ+r7+2ePXsMScb27dttzhkREWG89dZbbrgC7+Xsvf1f9evXd/jD5ErO6SvccV//lz8HIHffW8MwjGPHjhmSjC+++MLp+hgC80IFBQXavHmzunTpYm0LCAhQly5dlJGR4fA9GRkZNsdLUnx8fLHHZ2dn6+OPP9bgwYNdV3gZ4K5726lTJ6WkpOjXX3+VYRhKT0/X3r17dcstt7jnQryQO+5tfn6+JCkkJMTmnMHBwfrqq69cfQleqzT31oxzljXcA/fx1L3NycmRJFWtWtXp9xKAvNCJEydUWFiomjVr2rTXrFlTWVlZDt+TlZXl1PGLFi1S5cqVdccdd7im6DLCXfd25syZat68uerWraugoCB17dpVs2fP1g033OD6i/BS7ri3TZs2Vb169ZSUlKSTJ0+qoKBAr7zyio4cOaLMzEz3XIgXKs29NeOcZQ33wH08cW+Lioo0cuRI/e1vf1PLli2dfj+7wfup+fPn67777rP5lzVKb+bMmfrmm2+UkpKi+vXra/369Ro2bJhq165t18OBkitfvrw++ugjDR48WFWrVlVgYKC6dOmibt26yWARe8CvDRs2TNu3by91bzAByAtVr15dgYGBys7OtmnPzs5WZGSkw/dERkaW+Pgvv/xSe/bs0dKlS11XdBnhjnv7xx9/aPTo0Vq+fLm6d+8uSbr22mu1bds2TZ482W8CkLv+u42NjdW2bduUk5OjgoICRUREKC4uTm3btnX9RXip0txbM85Z1nAP3Mfd93b48OFatWqV1q9fr7p165bqHAyBeaGgoCDFxsYqLS3N2lZUVKS0tDR17NjR4Xs6duxoc7wkrV271uHx8+bNU2xsrFq3bu3awssAd9zbc+fO6dy5cwoIsP3fKTAwUEVFRS6+Au/l7v9uw8LCFBERoX379mnTpk3q1auXay/Ai5Xm3ppxzrKGe+A+7rq3hmFo+PDhWr58uT7//HM1aNCg9EU6PW0aHrFkyRIjODjYWLhwobFz505j6NChRnh4uJGVlWUYhmE88MADxqhRo6zHf/3110a5cuWMyZMnG7t27TKSk5PtHtU2DMPIyckxQkNDjTlz5nj0eryJO+5t586djRYtWhjp6enGzz//bCxYsMAICQkx3njjDY9fn5nccW8/+OADIz093fjpp5+MFStWGPXr1zfuuOMOj1+b2Zy9t/n5+cbWrVuNrVu3GrVq1TKeeuopY+vWrca+fftKfE5/4I77evr0aesxkoypU6caW7duNX755RePX5+Z3HFvH3nkESMsLMxYt26dzbIuZ8+edbo+ApAXmzlzplGvXj0jKCjIaN++vfHNN99YX+vcubPRv39/m+M/+OAD45prrjGCgoKMFi1aGB9//LHdOd98802jQoUKxqlTp9xdvldz9b3NzMw0BgwYYNSuXdsICQkxmjRpYkyZMsUoKiryxOV4FVff2+nTpxt169Y1ypcvb9SrV88YM2aMkZ+f74lL8TrO3NsDBw4Ykuy+OnfuXOJz+gtX39f09HSHx/z1v31/4Op76+h1ScaCBQucrs3yfycEAADwG8wBAgAAfocABAAA/A4BCAAA+B0CEAAA8DsEIAAA4HcIQAAAwO8QgAAAgN8hAAEAAL9DAALgk7KysjRixAg1bNhQwcHBioqKUo8ePWz2JtqwYYNuvfVWXXXVVQoJCVGrVq00depUFRYWmlg5AE8gAAHwOQcPHlRsbKw+//xzvfbaa/rxxx+1Zs0a3XTTTRo2bJgkafny5ercubPq1q2r9PR07d69W48//rheeukl3XPPPWKRfMC3sRUGAJ9z66236ocfftCePXtUsWJFm9dOnTql8uXLq379+urcubM+/PBDm9f/85//qGfPnlqyZIn69OnjybIBeBA9QAB8yu+//641a9Zo2LBhduFHksLDw/Xpp5/qt99+01NPPWX3eo8ePXTNNddo8eLFnigXgEkIQAB8yv79+2UYhpo2bVrsMXv37pUkNWvWzOHrTZs2tR4DwDcRgAD4FGdG9ZkBAPgvAhAAn9K4cWNZLBbt3r272GOuueYaSdKuXbscvr5r1y7rMQB8EwEIgE+pWrWq4uPjNXv2bOXl5dm9furUKd1yyy2qWrWqpkyZYvd6SkqK9u3bp759+3qiXAAmIQAB8DmzZ89WYWGh2rdvrw8//FD79u3Trl27NGPGDHXs2FEVK1bUm2++qZUrV2ro0KH64YcfdPDgQc2bN08DBgzQnXfeqbvvvtvsywDgRjwGD8AnZWZmasKECVq1apUyMzMVERGh2NhYPfHEE7rxxhslSV9++aUmTJigjIwM/fnnn2rcuLEGDhyokSNHKjAw0NwLAOBWBCAAAOB3GAIDAAB+hwAEAAD8DgEIAAD4HQIQAADwOwQgAADgdwhAAADA7xCAAACA3yEAAQAAv0MAAgAAfocABAAA/A4BCAAA+B0CEAAA8Dv/H4ryPlyZ1tlRAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASRBJREFUeJzt3XlclOX+//H3gCyigqkoqSDuWpoaKuLvFOax0Eql5WS2KC6tWhktB8wjbqWVWy5li6YtLm0ax0wyjx4rLdOwcksrSC1AW4TEBIX794df5zTNoIAzc8/yej4ePGquuefmc98t8/a6rvu6LIZhGAIAAPAjAWYXAAAA4G4EIAAA4HcIQAAAwO8QgAAAgN8hAAEAAL9DAAIAAH6HAAQAAPwOAQgAAPgdAhAAAPA7BCAAXstisWjChAlml2GVkpKi2NhYs8sAUAkEIABOtXjxYlksFutPaGio2rRpo9GjR6ugoMClv3vz5s2aMGGCjh496tTz9urVy+aa6tWrp27dumnRokUqLy93yu944okntGrVKqecC8C51TC7AAC+adKkSWrevLlOnDihjz/+WM8995zWrFmjnTt3KiwszCm/448//lCNGv/739jmzZs1ceJEpaSkqG7duk75HWc0bdpUU6dOlSQdOXJEr7zyikaMGKF9+/Zp2rRp533+J554QjfeeKOSk5PP+1wAzo0ABMAl+vXrp65du0qSRo4cqfr162vmzJl69913NXjw4Gqft7y8XKWlpQoNDVVoaKizyj2niIgI3XbbbdbXd911l9q2bat58+Zp8uTJCgoKclstAM4fQ2AA3KJ3796SpJycHEnS9OnT1bNnT9WvX181a9ZUXFyc3nrrLbvPWSwWjR49Wq+//rouvvhihYSEaO3atdb3zswBmjBhgh555BFJUvPmza3DVbm5uUpMTFSnTp0c1tW2bVslJSVV+XrCwsLUo0cPFRcX68iRIxUeV1xcrIceekjR0dEKCQlR27ZtNX36dBmGYXONxcXFWrJkibXulJSUKtcEoPLoAQLgFt99950kqX79+pKkZ555RgMGDNCtt96q0tJSLV++XP/4xz+0evVqXXPNNTaf/c9//qM33nhDo0ePVoMGDRxONL7++uu1b98+LVu2TLNmzVKDBg0kSZGRkbr99tt1xx13aOfOnerQoYP1M59//rn27duncePGVeuavv/+ewUGBlY43GYYhgYMGKANGzZoxIgR6ty5s7KysvTII4/oxx9/1KxZsyRJr776qkaOHKnu3bvrzjvvlCS1bNmyWjUBqCQDAJzo5ZdfNiQZH374oXHkyBHj4MGDxvLly4369esbNWvWNA4dOmQYhmEcP37c5nOlpaVGhw4djN69e9u0SzICAgKMXbt22f0uSUZGRob19dNPP21IMnJycmyOO3r0qBEaGmr885//tGm///77jVq1ahnHjh076zUlJiYa7dq1M44cOWIcOXLE2LNnj3H//fcbkoz+/ftbjxs6dKjRrFkz6+tVq1YZkowpU6bYnO/GG280LBaL8e2331rbatWqZQwdOvSsdQBwHobAALhEnz59FBkZqejoaN18882qXbu2Vq5cqSZNmkiSatasaT32t99+U2FhoS677DJ98cUXdudKTEzURRddVO1aIiIiNHDgQC1btsw69FRWVqYVK1YoOTlZtWrVOuc59u7dq8jISEVGRqp9+/aaO3eurrnmGi1atKjCz6xZs0aBgYG6//77bdofeughGYah999/v9rXBOD8MAQGwCXmz5+vNm3aqEaNGmrUqJHatm2rgID//Zlr9erVmjJlinbs2KGSkhJru8VisTtX8+bNz7ueIUOGaMWKFfroo490+eWX68MPP1RBQYFuv/32Sn0+NjZWL774ovXR/tatW6thw4Zn/cwPP/ygxo0bq06dOjbt7du3t74PwBwEIAAu0b17d+tTYH/10UcfacCAAbr88sv17LPP6sILL1RQUJBefvllLV261O74P/cWVVdSUpIaNWqk1157TZdffrlee+01RUVFqU+fPpX6fK1atSp9LADPxxAYALd7++23FRoaqqysLA0fPlz9+vVzSrhw1Ht0RmBgoG655Ra99dZb+u2337Rq1SoNHjxYgYGB5/17K9KsWTP99NNP+v33323a9+7da33/jLPVDsD5CEAA3C4wMFAWi0VlZWXWttzc3PNeCfnMXJ6KVoK+/fbb9dtvv+muu+7SsWPHbNb1cYWrr75aZWVlmjdvnk37rFmzZLFY1K9fP2tbrVq1nL6CNYCKMQQGwO2uueYazZw5U3379tUtt9yiw4cPa/78+WrVqpW++uqrap83Li5OkvTYY4/p5ptvVlBQkPr3728NRl26dFGHDh305ptvqn379rr00kudcj0V6d+/v6644go99thjys3NVadOnfTBBx/o3Xff1ZgxY2wedY+Li9OHH36omTNnqnHjxmrevLni4+NdWh/gz+gBAuB2vXv31sKFC5Wfn68xY8Zo2bJlevLJJ3Xddded13m7deumyZMn68svv1RKSooGDx5st0jhkCFDJKnSk5/PR0BAgDIzMzVmzBitXr1aY8aM0e7du/X0009r5syZNsfOnDlTcXFxGjdunAYPHqznnnvO5fUB/sxiGH9ajhQAfNwzzzyjBx98ULm5uYqJiTG7HAAmIQAB8BuGYahTp06qX7++NmzYYHY5AEzEHCAAPq+4uFiZmZnasGGDvv76a7377rtmlwTAZPQAAfB5ubm5at68uerWrat7771Xjz/+uNklATAZAQgAAPgdngIDAAB+hwAEAAD8DpOgHSgvL9dPP/2kOnXqsDw9AABewjAM/f7772rcuLHN5suOEIAc+OmnnxQdHW12GQAAoBoOHjyopk2bnvUYApADderUkXT6BoaHh5tcDQAAqIyioiJFR0dbv8fPhgDkwJlhr/DwcAIQAABepjLTV5gEDQAA/A4BCAAA+B0CEAAA8DvMAToPZWVlOnnypNllwA2Cg4PP+UglAMB7EICqwTAM5efn6+jRo2aXAjcJCAhQ8+bNFRwcbHYpAAAnIABVw5nw07BhQ4WFhbFYoo87szBmXl6eYmJi+OcNAD6AAFRFZWVl1vBTv359s8uBm0RGRuqnn37SqVOnFBQUZHY5AIDzxKSGKjoz5ycsLMzkSuBOZ4a+ysrKTK4EAOAMBKBqYhjEv/DPGwB8CwEIAAD4HQIQAADwOwQgP5KSkiKLxSKLxaKgoCA1atRIV155pRYtWqTy8vJKn2fx4sWqW7eu6woFAMDFCEB+pm/fvsrLy1Nubq7ef/99XXHFFXrggQd07bXX6tSpU2aXBwDwA56wiDAByM+EhIQoKipKTZo00aWXXqqxY8fq3Xff1fvvv6/FixdLkmbOnKmOHTuqVq1aio6O1r333qtjx45JkjZu3Khhw4apsLDQ2ps0YcIESdKrr76qrl27qk6dOoqKitItt9yiw4cPm3SlAABPU1JSookTJ+qJJ57QZ599ZmotBCAnMAxDpaWlbv8xDMMp9ffu3VudOnXSO++8I+n0qsdz5szRrl27tGTJEv3nP//Ro48+Kknq2bOnZs+erfDwcOXl5SkvL08PP/ywpNOJfvLkyfryyy+1atUq5ebmKiUlxSk1AgC82/79+zVt2jTr65kzLcrMNK8eFkJ0gpMnT2rq1Klu/73p6elO25qhXbt2+uqrryRJY8aMsbbHxsZqypQpuvvuu/Xss88qODhYERERslgsioqKsjnH8OHDrX/fokULzZkzR926ddOxY8dUu3Ztp9QJAPA+S5cu1f79+62vDx68VG+80V0HD0oDBphTEwEIkk73Yp1Z6+bDDz/U1KlTtXfvXhUVFenUqVM6ceKEjh8/ftYFILdv364JEyboyy+/1G+//WadWH3gwAFddNFFbrkOAIDnePvtYu3cOd2mbcSIEfrii6bavVtKSzOpMBGAnCIoKEjp6emm/F5n2bNnj5o3b67c3Fxde+21uueee/T444+rXr16+vjjjzVixAiVlpZWGICKi4uVlJSkpKQkvf7664qMjNSBAweUlJSk0tJSp9UJAPAOf+31kaTHHntMNWrUUNOm5vX8nEEAcgKLxeLVu4T/5z//0ddff60HH3xQ27dvV3l5uWbMmKGAgNNTxN544w2b44ODg+22hNi7d69++eUXTZs2TdHR0ZKkbdu2uecCAAAewzAMTZo0yaYtKupy3XXXFSZV5BgByM+UlJQoPz9fZWVlKigo0Nq1azV16lRde+21GjJkiHbu3KmTJ09q7ty56t+/vz755BMtWLDA5hyxsbE6duyY1q9fr06dOiksLEwxMTEKDg7W3Llzdffdd2vnzp2aPHmySVcJADDDDz/8YH2i+Iybb75Zbdu2Naegs+ApMD+zdu1aXXjhhYqNjVXfvn21YcMGzZkzR++++64CAwPVqVMnzZw5U08++aQ6dOig119/3W6Cd8+ePXX33Xdr0KBBioyM1FNPPaXIyEgtXrxYb775pi666CJNmzZN06dPr6AKAICvmTNnjl34GTdunEeGH0myGM56ltqHFBUVKSIiQoWFhQoPD7d578SJE8rJyVHz5s0VGhpqUoVwN/65A4BjZWVlmjJlik1bZGSk7r33XrfXcrbv779iCAwAAFTLzp079fbbb9u0DRs2TDExMSZVVHkEIAAAUGUTJ060axs/frx1SRVPRwACAACVduLECT355JM2be3bt9dNN91kUkXVQwACAACVsnnzZq1bt86mbdSoUWrQoIFJFVUfAQgAAJyToyGvjIwMEypxDgIQAABwKDNTmjWrSL16zbJp79mzp6688kqTqnIOAhAAAHDo3XfXqFevz23aHnroIZ/Y4JoABAAA7EycOFF/fZrdm4e8/ooABAAArL7//nu9+uqrNm1XX321unXrZlJFrkEAgtOlpKTo6NGjWrVqlSSpV69e6ty5s2bPnl3tczrjHACAs3M00fnRRx9VzZo1TajGtdgLzI+kpKTIYrFYd69v1aqVJk2apFOnTrn0977zzjuV3hh148aNslgsOnr0aLXPAQCoGsMwKnzKyxfDj0QPkN/p27evXn75ZZWUlGjNmjUaNWqUgoKClJ6ebnNcaWmpgoODnfI769Wr5xHnAADYy87OVmZmpk3b3//+d/3tb38zqSL3oAfIz4SEhCgqKkrNmjXTPffcoz59+igzM1MpKSlKTk7W448/rsaNG1t37z148KBuuukm1a1bV/Xq1dPAgQOVm5trPV9ZWZlSU1NVt25d1a9fX48++qj+ur9ur169NGbMGOvrkpIS/fOf/1R0dLRCQkLUqlUrLVy4ULm5ubriiiskSRdccIEsFotSUlIcnuO3337TkCFDdMEFFygsLEz9+vXT/v37re8vXrxYdevWVVZWltq3b6/atWurb9++ysvLsx6zceNGde/eXbVq1VLdunX1//7f/9MPP/zgpDsNAJ4tM/P0kNdfw8+4ceN8PvxIBCC/V7NmTZWWlkqS1q9fr2+++Ubr1q3T6tWrdfLkSSUlJalOnTr66KOP9Mknn1iDxJnPzJgxQ4sXL9aiRYv08ccf69dff9XKlSvP+juHDBmiZcuWac6cOdqzZ4+ef/551a5dW9HR0dZN9b755hvl5eXpmWeecXiOlJQUbdu2TZmZmdqyZYsMw9DVV1+tkydPWo85fvy4pk+frldffVWbNm3SgQMH9PDDD0uSTp06peTkZCUmJuqrr77Sli1bdOedd3rNHjYAcD5KSkqUne14yCswMNCEityPITA/ZRiG1q9fr6ysLN133306cuSIatWqpZdeesk69PXaa6+pvLxcL730kjUYvPzyy6pbt642btyoq666SrNnz1Z6erquv/56SdKCBQuUlZVV4e/dt2+f3njjDa1bt059+vSRJLVo0cL6/pmhroYNG6pu3boOz7F//35lZmbqk08+Uc+ePSVJr7/+uqKjo7Vq1Sr94x//kCSdPHlSCxYsUMuWLSVJo0eP1qRJkyRJRUVFKiws1LXXXmt9v3379lW/kQDgZZYtW6Z9+/bZtN144426+OKLTarIHPQAmSwzU+rZ8/Rf3WH16tWqXbu2QkND1a9fPw0aNEgTJkyQJHXs2NFm3s+XX36pb7/9VnXq1FHt2rVVu3Zt1atXTydOnNB3332nwsJC5eXlKT4+3vqZGjVqqGvXrhX+/h07digwMFCJiYnVvoY9e/aoRo0aNr+3fv36atu2rfbs2WNtCwsLs4YbSbrwwgt1+PBhSaeDVkpKipKSktS/f38988wzNsNjAOBLznzXTJw40S78jB8/3u/Cj0QPkOmmTZO2bDn91wEDXP/7rrjiCj333HMKDg5W48aNVaPG//4VqFWrls2xx44dU1xcnF5//XW780RGRlbr97vzaYKgoCCb1xaLxWZ+0ssvv6z7779fa9eu1YoVKzRu3DitW7dOPXr0cFuNAOAOc+b8rKSk+XbtvrSwYVXRA2SytDQpIeH0X92hVq1aatWqlWJiYmzCjyOXXnqp9u/fr4YNG6pVq1Y2PxEREYqIiNCFF16ozz77zPqZU6dOafv27RWes2PHjiovL9d///tfh++f6YEqKyur8Bzt27fXqVOnbH7vL7/8om+++UYXXXTRWa/pr7p06aL09HRt3rxZHTp00NKlS6v0eQDwdBMnTtRll9mGn3feuU5ZWf4bfiQCkOkGDJA2b3ZP709V3XrrrWrQoIEGDhyojz76SDk5Odq4caPuv/9+HTp0SJL0wAMPaNq0aVq1apX27t2re++9124Nnz+LjY3V0KFDNXz4cK1atcp6zjfeeEOS1KxZM1ksFq1evVpHjhzRsWPH7M7RunVrDRw4UHfccYc+/vhjffnll7rtttvUpEkTDRw4sFLXlpOTo/T0dG3ZskU//PCDPvjgA+3fv595QAB8iqO1fbp0yVCtWpe47Q/enooAhAqFhYVp06ZNiomJ0fXXX6/27dtrxIgROnHihMLDwyWd3hTv9ttv19ChQ5WQkKA6derouuuuO+t5n3vuOd14442699571a5dO91xxx0qLi6WJDVp0kQTJ05UWlqaGjVqpNGjRzs8x8svv6y4uDhde+21SkhIkGEYWrNmjd2w19mube/evbrhhhvUpk0b3XnnnRo1apTuuuuuKtwhAPBM27dvr3BhQ0/+g7c7WYy/LtoCFRUVKSIiQoWFhdYv+jNOnDihnJwcNW/eXKGhoSZVCHfjnzsAb+Eo+AwePFht2rQxoRr3Otv3918xCRoAAB9RUa8P7BGAAADwcq+99pq+++47u3bCT8UIQAAAeDFHvT733ntvtZcr8RcEIAAAvNCpU6f0+OOP27XT61M5BKBqYu64f+GfNwBP4qjXRyL8VAUBqIrOPGZ9/Phxt65qDHOd2fzVXzYJBOC5HIWftLQ0hYSEmFCN9yIAVVFgYKDq1q1r3VMqLCyMHcR9XHl5uY4cOaKwsLBzrp4NAK5SWFio2bNn27XT61M9/N+8GqKioiTJGoLg+wICAhQTE0PYBWAKR70+kZGRuvfee02oxjcQgKrBYrHowgsvVMOGDXXy5Emzy4EbBAcHKyCAhdMBuJ+j8DN+/Hj+QHaeCEDnITAwkDkhAACX+P777/Xqq6/atTPk5RwEIAAAPIyjXp+ePXvqyiuvNKEa30QAAgDAg7CdhXuYPqlh/vz5io2NVWhoqOLj47V169YKj921a5duuOEGxcbGymKxOJwNv2nTJvXv31+NGzeWxWLRqlWrXFc8AABOsmnTJsKPG5kagFasWKHU1FRlZGToiy++UKdOnZSUlFTh01XHjx9XixYtNG3aNOuTWH9VXFysTp06af78+a4sHQAAp5k4caI2bNhg0zZo0CDCjwtZDBOXuI2Pj1e3bt00b948SafXW4mOjtZ9992ntLS0s342NjZWY8aM0ZgxYyo8xmKxaOXKlUpOTq5SXUVFRYqIiFBhYaHCw8Or9FkAACorM1PKzqbXx1mq8v1t2hyg0tJSbd++Xenp6da2gIAA9enTR1u2bHFrLSUlJSopKbG+LioqcuvvBwD4n7lz5+rXX3+1ayf8uIdpAejnn39WWVmZGjVqZNPeqFEj7d271621TJ06tcJ9VQAAcDZH3zmjR49W/fr1TajGP5k+CdoTpKenq7Cw0Ppz8OBBs0sCAPigkydPOgw/XbpkEH7czLQeoAYNGigwMFAFBQU27QUFBRVOcHaVkJAQNpEDALgUO7h7FtN6gIKDgxUXF6f169db28rLy7V+/XolJCSYVRYAAE7nKPykp6cTfkxk6kKIqampGjp0qLp27aru3btr9uzZKi4u1rBhwyRJQ4YMUZMmTTR16lRJpydO79692/r3P/74o3bs2KHatWurVatWkqRjx47p22+/tf6OnJwc7dixQ/Xq1VNMTIybrxAA4M8KCgq0YMECu/asrAyRfcxlagAaNGiQjhw5ovHjxys/P1+dO3fW2rVrrROjDxw4YLMB5U8//aQuXbpYX0+fPl3Tp09XYmKiNm7cKEnatm2brrjiCusxqampkqShQ4dq8eLFrr8oAABU8ZDXsmUZeuopNxcDO6auA+SpWAcIAHA+HIWfrKzxSkuzaMAAEwryE16xDhAAAL5m+/btWr16tV17RgZDXp6GAAQAgBM46vVp06aNBg8ebEI1OBcCEAAA54lNTL0PAQgAgGpaunSp9u/fb9dO+PF8BCAAAKrBUa9P//79demll5pQDaqKAAQAQBUYhqFJkybZtdPr410IQAAAVBLbWfgOAhAAAJXgKPzcfffd1sV74V0IQAAAnMWJEyf05JNP2rXT6+PdCEAAAFSAIS/fRQACAMCBinZwDw4ONqEaOBsBCACAPzl06JAWLlxo106vj28hAAEA8H8qGvLq0oXw42sIQAAAiO0s/A0BCADg1zZs2KBNmzbZtRN+fBsBCADgtxz1+rRq1Uq33nqrCdXAnQhAAAC/5Cj8ZGVliI4f/0AAAgD4lYomOmdlZSgtzc3FwDQBZhcAAIC7OAo/2dl91KVLhjZvlgYMMKEomIIABADweYZhOAw/EyZk6PDh/0fw8UMMgQEAfNrZ1vZJSBDDXn6KAAQA8FmOwk+bNiM1eHATSQx5+TMCEADA5xQVFWnWrFl27V26ZBB6IIkABADwMezgjsogAAEAfIaj8HPJJWm67roQE6qBJyMAAQC83ldffaWVK1fatdPrg4oQgAAAXo0d3FEdBCAAgNdiB3dUFwEIAOB1Fi9erB9++MGuvbSU8IPKIQABALwKT3nBGQhAAACvwZAXnIUABADweEx0hrMRgAAAHs1R+ElISNBVV11lQjXwFQQgAIBHKi8v1+TJk+3aGfKCMxCAAAAeh4nOcLUAswsAAODPHIWfl14armXLCD9wHnqAAAAe4ZdfftG8efPs2pcvz1CtWtJTT5lQFHwWAQgAYLqzDXkx6gVXIAABAEzlKPykp6crODjYhGrgLwhAAABTbN68WevWrbNrZ6Iz3IEABABwOxY2hNl4CgwA4FaOws+yZRnq0iVDAwaYUBD8Ej1AAAC3mDZtmkpKSuzaJ0zI+L/3RQCC2xCAAAAuV9GQ14QJGQoNlZo1k9LS3FwU/BoBCADgUhXt4J6ZKSUknA4+9PzA3QhAAACXONdE5wEDCD4wDwEIAOB0jsJPly5dNIDEAw9BAAIAOE1ZWZmmTJli187aPvA0BCAAgFOwgzu8CQEIAHDeHIWfYcOGKSYmxoRqgHMjAAEAqi0vL08vvPCCXTu9PvB0BCAAQLUw5AVvRgACAFSZo/DTqdNYJScHmVANUHUEIABApa1bt06bN2+2a58wIUMJCVJysvtrAqrDIzZDnT9/vmJjYxUaGqr4+Hht3bq1wmN37dqlG264QbGxsbJYLJo9e/Z5nxMAcG4TJ050GH6WL89Q27ZsZQHvYnoAWrFihVJTU5WRkaEvvvhCnTp1UlJSkg4fPuzw+OPHj6tFixaaNm2aoqKinHJOAMDZORryysrKUEZGhvbskfbuZVVneBeLYRiGmQXEx8erW7dumjdvniSpvLxc0dHRuu+++5R2jj9OxMbGasyYMRozZozTzilJRUVFioiIUGFhocLDw6t3YQDgAyqa6Lx8eYaefJLQA89Sle9vU3uASktLtX37dvXp08faFhAQoD59+mjLli0ec04A8Edne8przx7CD7ybqZOgf/75Z5WVlalRo0Y27Y0aNdLevXvdds6SkhKVlJRYXxcVFVXrdwOAr3C8l1cGoQc+g6fAJE2dOrXCP+kAgD+p6P+FZ57yIgDBV5g6BNagQQMFBgaqoKDApr2goKDCCc6uOGd6eroKCwutPwcPHqzW7wYAb+Yo/Hz6aXdNmJCh2rV5ygu+xdQAFBwcrLi4OK1fv97aVl5ervXr1yshIcFt5wwJCVF4eLjNDwD4i5MnT1Y45JWT00/t2kmvv07vD3yL6UNgqampGjp0qLp27aru3btr9uzZKi4u1rBhwyRJQ4YMUZMmTTR16lRJpyc579692/r3P/74o3bs2KHatWurVatWlTonAOC0c21nQeiBrzI9AA0aNEhHjhzR+PHjlZ+fr86dO2vt2rXWScwHDhxQQMD/Oqp++ukndenSxfp6+vTpmj59uhITE7Vx48ZKnRMA4Dj8jBw5Uk2aNDGhGsC9TF8HyBOxDhAAX3bw4EEtWrTIrp1NTOHtqvL9bXoPEADAfdjBHTjN9K0wAADu4Sj8TJ48TllZhB/4H3qAAMDHvffee9q2bZtde5cuGerencfb4Z8IQADgw3jKC3CMAAQAPspR+GGuD3BalQNQYGCg8vLy1LBhQ5v2X375RQ0bNlRZWZnTigMAVF1FvT5duhB+gDOqHIAqemq+pKREwcHB510QAKD6HIUfi8Wi8ePHm1AN4LkqHYDmzJkj6fR/SC+99JJq165tfa+srEybNm1Su3btnF8hAKBSGPICKq/SAWjWrFmSTvcALViwQIGBgdb3goODFRsbqwULFji/QgDAWbG2D1B1lQ5AOTk5kqQrrrhC77zzji644AKXFQUAqBxH4adXr15KTEw0oRrAe1R5DtCGDRtcUQcAoApKS0utm0T/Gb0+QOVUOQANHz78rO872l8GAOA8DHkB56/KAei3336zeX3y5Ent3LlTR48eVe/evZ1WGADAnqPwc/LkPZoypaGDowFUpMoBaOXKlXZt5eXluueee9SyZUunFAUAsHXo0CEtXLjQrn3ChAwlJJhQEODlLEZFC/tU0TfffKNevXopLy/PGaczVVFRkSIiIlRYWKjw8HCzywHg5yoa8nrxxQzFxJzey4stLYCqfX87bSuM7777TqdOnXLW6QAAchx+Onf+l558MkDPPkvwAaqrygEoNTXV5rVhGMrLy9N7772noUOHOq0wAPBn69at0+bNm+3az0x0HjjQ3RUBvqXKASg7O9vmdUBAgCIjIzVjxoxzPiEGADg39vICXI91gADAg7CdBeAe1Z4DdPjwYX3zzTeSpLZt29rtDg8AqDzW9gHcK6CqHygqKtLtt9+uxo0bKzExUYmJiWrSpIluu+02FRYWuqJGAPBpjsJPkyZNCD+AC1U5AN1xxx367LPP9N577+no0aM6evSoVq9erW3btumuu+5yRY0A4LMqGvIaOXKkCdUA/qPK6wDVqlVLWVlZ+tvf/mbT/tFHH6lv374qLi52aoFmYB0gAK7GkBfgfC5dB6h+/fqKiIiwa4+IiGCHeACoBEfhJyZmgIYN62JCNYB/qvIQ2Lhx45Samqr8/HxrW35+vh555BH961//cmpxAOBLSkpKKhzyIvwA7lXlIbAuXbro22+/VUlJiWJiYiRJBw4cUEhIiFq3bm1z7BdffOG8St2IITAAzsaQF+B6Lh0CGzhwoCwWS7WLAwB/4yj8jBkzxuF0AgDu4bTNUH0JPUAAnOGHH37Q4sWL7drp9QFcoyrf31WeA9SiRQv98ssvdu1Hjx5VixYtqno6APBJEydOJPwAHqzKQ2C5ubkqKyuzay8pKdGhQ4ecUhQAeDNHQ17jx49n+gDgQSodgDIzM61/n5WVZTN2XVZWpvXr16t58+bOrQ4AvMjatWv12Wef2bXT6wN4nkrPAQoIOD1aZrFY9NePBAUFKTY2VjNmzNC1117r/CrdjDlAAKqqoqe8srIytHmzm4sB/JRLngIrLy+XJDVv3lyff/65GjRocH5VAoCPcBR+unTJ0LRpUlqaCQUBOKcqzwHKyclxRR0A4HXOtbbPgAHurAZAVVQ5AE2aNOms748fP77axQCAt3AUftq2baubb77ZhGoAVFWVA9DKlSttXp88eVI5OTmqUaOGWrZsSQAC4PMqGvKixwfwHlUOQNnZ2XZtRUVFSklJ0XXXXeeUogDAE7GdBeA7nLYS9Ndff63+/fsrNzfXGaczFU+BATgjM1OaNk1KSrIPP//4xz900UUXmVAVAEdcuhJ0RQoLC1VYWOis0wGAR5g+/YTD8JOVlUH4AbxYlYfA5syZY/PaMAzl5eXp1VdfVb9+/ZxWGACYbeLEifr73+3bs7IyeLwd8HJVHgL762rPAQEBioyMVO/evZWenq46deo4tUAzMAQGwNF8n4ceeki1a9c2oRoAleGShRDPYB0gAL4sJydHr7zyil07E50B31LlACSd3vn922+/lSS1atVKdevWdWZNAGAKnvIC/EeVAlBubq5GjRqlrKws635gFotFffv21bx58xQbG+uKGgHA5djBHfAvlQ5ABw8eVI8ePRQUFKTJkyerffv2kqTdu3frueeeU0JCgj7//HM1bdrUZcUCgLOtWbNGn3/+uV07vT6Ab6v0JOgRI0bo22+/VVZWlkJDQ23e++OPP9S3b1+1bt1aL730kksKdScmQQP+gSEvwLe4ZBL02rVrtWLFCrvwI0k1a9bU5MmT2QMHgNdwFH4IPoD/qHQA+vnnn886x6dFixb69ddfnVETALhEZqaUnU2vD4AqBKALL7xQu3fvrnCOz86dOxUVFeW0wgDAmSoKP5deeqn69+9vQkUAzFTpAJScnKyHH35Y69evV2RkpM17hw8f1j//+U8lJyc7uz4AOG+GYSg7e5JdO70+gP+q9CTo3377TfHx8crPz9dtt92mdu3ayTAM7dmzR0uXLlVUVJQ+/fRT1atXz9U1uxyToAHfwURnwH+4ZBL0BRdcoM8++0xjx47V8uXLdfToUUlS3bp1dcstt+iJJ57wifADwHc4Cj+33367WrRoYUI1ADxJlfcCk053Jx85ckSSFBkZ6XMLhdEDBHivzExpxow/1Lv3U3bv0esD+DaX7gUmnV79uWHDhtUqDgBcKTt7onr3tm8n/AD4s2oFIADwRI6GvB599FHVrFnThGoAeLIAswuQpPnz5ys2NlahoaGKj4/X1q1bz3r8m2++qXbt2ik0NFQdO3bUmjVrbN4vKChQSkqKGjdurLCwMPXt21f79+935SUAMFFubm6FCxsSfgA4YnoAWrFihVJTU5WRkaEvvvhCnTp1UlJSkg4fPuzw+M2bN2vw4MEaMWKEsrOzlZycrOTkZO3cuVPS6flJycnJ+v777/Xuu+8qOztbzZo1U58+fVRcXOzOSwPgBhMnTtSSJUvs2hnyAnA21ZoE7Uzx8fHq1q2b5s2bJ0kqLy9XdHS07rvvPqWlpdkdP2jQIBUXF2v16tXWth49eqhz585asGCB9u3bp7Zt22rnzp26+OKLreeMiorSE088oZEjR56zJiZBA96BHdwB/JnTJ0HPmTOn0r/8/vvvr/SxpaWl2r59u9LT061tAQEB6tOnj7Zs2eLwM1u2bFFqaqpNW1JSklatWiVJKikpkSSbPcsCAgIUEhKijz/+2GEAKikpsX5OOn0DAXiuDz74wOH/I+j1AVBZlQpAs2bNqtTJLBZLlQLQzz//rLKyMjVq1MimvVGjRtq7d6/Dz+Tn5zs8Pj8/X5LUrl07xcTEKD09Xc8//7xq1aqlWbNm6dChQ8rLy3N4zqlTp1a4WBoAz+Lov9Xw8HA9+OCDJlQDwFtVKgDl5OS4ug6nCQoK0jvvvKMRI0aoXr16CgwMVJ8+fdSvXz9VNNqXnp5u06tUVFSk6Ohod5UMoJLYwR2As1T7MfjS0lLl5OSoZcuWqlGjeqdp0KCBAgMDVVBQYNNeUFBQ4caqUVFR5zw+Li5OO3bsUGFhoUpLSxUZGan4+Hh17drV4TlDQkIUEhJSrWsA4HpPPPGETp48addO+AFQXVV+Cuz48eMaMWKEwsLCdPHFF+vAgQOSpPvuu0/Tpk2r0rmCg4MVFxen9evXW9vKy8u1fv16JSQkOPxMQkKCzfGStG7dOofHR0REKDIyUvv379e2bds0cODAKtUHwHwTJ060Cz+9evUi/AA4L1UOQOnp6fryyy+1ceNGm4nGffr00YoVK6pcQGpqql588UUtWbJEe/bs0T333KPi4mINGzZMkjRkyBCbSdIPPPCA1q5dqxkzZmjv3r2aMGGCtm3bptGjR1uPefPNN7Vx40bro/BXXnmlkpOTddVVV1W5PgDmMAyjwiGvxMREEyoC4EuqPHa1atUqrVixQj169LB51PTiiy/Wd999V+UCBg0apCNHjmj8+PHKz89X586dtXbtWutE5wMHDigg4H85rWfPnlq6dKnGjRunsWPHqnXr1lq1apU6dOhgPSYvL0+pqakqKCjQhRdeqCFDhuhf//pXlWsDYA52cAfgalVeBygsLEw7d+5UixYtVKdOHX355Zdq0aKFvvzyS11++eUqLCx0Va1uwzpAgHkchZ+RI0eqSZMmJlQDwJtU5fu7ykNgXbt21XvvvWd9faYX6KWXXqpw3g4AnEtxcXGFQ16EHwDOVuUhsCeeeEL9+vXT7t27derUKT3zzDPavXu3Nm/erP/+97+uqBGAj2PIC4C7VTkA/e1vf9OOHTs0bdo0dezYUR988IEuvfRSbdmyRR07dnRFjQB8VGamlJ1tH37S0tJYmgKAS1VrAZ+WLVvqxRdfdHYtAPzIt99+q+zs1+3a6fUB4A6VCkBV2RuLScMAzoUhLwBmq1QAqlu3bqV3Vy4rKzuvggD4NrazAOAJKhWANmzYYP373NxcpaWlKSUlxfrU15YtW7RkyRJNnTrVNVUC8HqrV6/W9u3b7doJPwDMUOV1gP7+979r5MiRGjx4sE370qVL9cILL2jjxo3OrM8UrAMEOJejXp/IyEjde++9JlQDwFdV5fu7Wgshfvnll2rdurVN+759+9S5c2cdP3686hV7GAIQ4DwMeQFwl6p8f1f5KbDo6Gi9+OKLeuqpp2zaX3rpJUVHR1f1dAB8FBOdAXiyKgegWbNm6YYbbtD777+v+Ph4SdLWrVu1f/9+vf32204vEID3cRR+rrrqKlaLB+AxqjwEJkmHDh3Ss88+q71790qS2rdvr7vvvttneoAYAgOq57HHDAUHT7Jrp9cHgDu4dA6QPyAAAVXHkBcAs7l0DpAkHT16VAsXLtSePXskSRdffLGGDx+uiIiI6pwOgJdzFH42b75Lo0ZFmVANAJxblXuAtm3bpqSkJNWsWVPdu3eXJH3++ef6448/rPuCeTt6gIDKKS4u1vTp0+3au3TJ0IABJhQEwK+5dAjssssuU6tWrfTiiy+qRo3THUinTp3SyJEj9f3332vTpk3Vr9xDEICAc2PIC4CncWkAqlmzprKzs9WuXTub9t27d6tr166sAwT4AUfh57HHHrP+oQgAzFCV7++Aqp48PDxcBw4csGs/ePCg6tSpU9XTAfAiOTk5FS5sSPgB4E2q/H+sQYMGacSIEZo+fbp69uwpSfrkk0/0yCOP2G2PAcB3MOQFwJdUOQBNnz5dFotFQ4YM0alTpyRJQUFBuueeezRt2jSnFwjAfGxnAcDXVHsdoOPHj+u7776TJLVs2VJhYWFOLcxMzAECTlu/fr0+/vhju3bCDwBP5PJ1gKTTm6J27Nixuh8H4OEc9fpccskluu6660yoBgCcq9IBaPjw4ZU6btGiRdUuBoBnYMgLgK+rdABavHixmjVrpi5duojdMwDfNGvWLBUVFdm1E34A+JpKB6B77rlHy5YtU05OjoYNG6bbbrtN9erVc2VtANzIUa/PDTfcoA4dOphQDQC4VqXXAZo/f77y8vL06KOP6t///reio6N10003KSsrix4hwIuVl5dXOORF+AHgq6r9FNgPP/ygxYsX65VXXtGpU6e0a9cu1a5d29n1mYKnwOAvKlrbh728AHgjtzwFFhAQIIvFIsMwVFZWVt3TADCJo/DzwAMPqG7duu4vBgDcrEpbYZSUlGjZsmW68sor1aZNG3399deaN2+eDhw44DO9P4CvO3bsWIVDXoQfAP6i0j1A9957r5YvX67o6GgNHz5cy5YtU4MGDVxZGwAnYzsLADit0nOAAgICFBMToy5dushisVR43DvvvOO04szCHCD4Ikfh54MPxumTTwJNqAYAnM8lc4CGDBly1uADwDN9//33evXVV+3as7IylJZmQkEA4AGq/RSYL6MHCL7CUa9PrVq19PDDD5tQDQC4llueAgPg2djOAgAqRgACfAw7uAPAuRGAAB/iqNenR48eSkpKMqEaAPBcBCDARzDkBQCVRwACvFhmpvTJJ3MUFvab3XuEHwCoGAEI8GLZ2RMVFmbbdsstt6h169bmFAQAXoIABHih8vJyTZ482a6dXh8AqBwCEOBl2M4CAM4fAQjwIo7CT2pqqurUqWNCNQDgvQhAgBf4/fffNXPmTLt2en0AoHoIQICHY8gLAJyPAAR4MEfh51//+pcCAgJMqAYAfAcBCPBAP/zwgxYvXmzXTq8PADgHAQjwMI56fY4ebaJZs0aaUA0A+Cb60QEP4ij8ZGVl6IorCD8A4Ez0AAEe4JNPPtGHH35o156RkSFGvQDA+QhAgMkc9fr069dP3bt3N6EaAPAPBCDAROzgDgDmIAABJnjrrbe0a9cuu/YuXQg/AOAOBCDAzRz1+tx1112KiooyoRoA8E8EIMBN2MEdADwHAQhwg7lz5+rXX3+1ayf8AIA5PGIdoPnz5ys2NlahoaGKj4/X1q1bz3r8m2++qXbt2ik0NFQdO3bUmjVrbN4/duyYRo8eraZNm6pmzZq66KKLtGDBAldeAlChiRMn2oWfjh0fJfwAgIlMD0ArVqxQamqqMjIy9MUXX6hTp05KSkrS4cOHHR6/efNmDR48WCNGjFB2draSk5OVnJysnTt3Wo9JTU3V2rVr9dprr2nPnj0aM2aMRo8erczMTHddFqDjx49X+JTX9dfXNKEiAMAZFsMwDDMLiI+PV7du3TRv3jxJp+dJREdH67777lNaWprd8YMGDVJxcbFWr15tbevRo4c6d+5s7eXp0KGDBg0apH/961/WY+Li4tSvXz9NmTLlnDUVFRUpIiJChYWFCg8PP99LhB9yFHyaNGmikSNZ0RkAXKUq39+m9gCVlpZq+/bt6tOnj7UtICBAffr00ZYtWxx+ZsuWLTbHS1JSUpLN8T179lRmZqZ+/PFHGYahDRs2aN++fbrqqqscnrOkpERFRUU2P0B1OQo/48ePJ/wAgAcxNQD9/PPPKisrU6NGjWzaGzVqpPz8fIefyc/PP+fxc+fO1UUXXaSmTZsqODhYffv21fz583X55Zc7POfUqVMVERFh/YmOjj7PK4M/+umnnyoc8rJYLCZUBACoiE8+BTZ37lx9+umnyszMVLNmzbRp0yaNGjVKjRs3tus9kqT09HSlpqZaXxcVFRGCUCWOgs9ll12m3r17m1ANAOBcTA1ADRo0UGBgoAoKCmzaCwoKKlwULioq6qzH//HHHxo7dqxWrlypa665RpJ0ySWXaMeOHZo+fbrDABQSEqKQkBBnXBL8ENtZAID3MXUILDg4WHFxcVq/fr21rby8XOvXr1dCQoLDzyQkJNgcL0nr1q2zHn/y5EmdPHlSAQG2lxYYGKjy8nInXwH82Y4dOwg/AOClTB8CS01N1dChQ9W1a1d1795ds2fPVnFxsYYNGyZJGjJkiJo0aaKpU6dKkh544AElJiZqxowZuuaaa7R8+XJt27ZNL7zwgiQpPDxciYmJeuSRR1SzZk01a9ZM//3vf/XKK69o5syZpl0nfIuj4DNo0CC1a9fOhGoAAFVlegAaNGiQjhw5ovHjxys/P1+dO3fW2rVrrROdDxw4YNOb07NnTy1dulTjxo3T2LFj1bp1a61atUodOnSwHrN8+XKlp6fr1ltv1a+//qpmzZrp8ccf19133+3264PvodcHALyf6esAeSLWAYIjmZmZys7Otmsn/ACAZ6jK97fpPUCAN3DU6zNq1Cg1aNDAhGoAAOeLAAScRVlZmcPVw+n1AQDvRgACKjBz5kz9/vvvdu2EHwDwfgQgwAFHQ15paWmsFwUAPoIABPzJsWPHNGPGDLt2en0AwLcQgID/46jXp1mzZkpJSXF/MQAAlyIAAap4B3c2MQUA30QAgl87dOiQFi5caNfOkBcA+DYCEPyWo16fXr16KTEx0YRqAADuRACCX2I7CwDwbwQg+JWdO3fq7bfftmvv0oXwAwD+hAAEv+Go12fo0KGKjY11fzEAAFMRgODTMjOladOkpCSGvAAA/0MAgk9bvvwTJSV9aNdO+AEA/xZgdgGAq0ycOFFt29qGn+nTU5WVRfgBAH9HDxB8Tnl5uSZPnmzX3qVLhjp2lNLSTCgKAOBRCEDwKevWrdPmzZtt2tq3b6+bbrpJkjRggBlVAQA8DQEIPsPRU17jxo1TYGCgCdUAADwZAQhe78SJE3ryySft2pnoDACoCAEIXu2VV15RTk6OTdvVV1+tbt26mVQRAMAbEIDgtdjBHQBQXQQgeJ1ff/1Vc+fOtWtnyAsAUFkEIHiVxx9/XKdOnbJpu/3229WiRQuTKgIAeCMCELwGO7gDAJyFAASPl5ubqyVLlti1E34AANVFAIJHc9Tr89FHo/Thhw1MqAYA4CsIQPBIhmFo0qRJdu1ZWRlsZQEAOG8EIHic7OxsZWZm2rRFR0dr+PDhYtQLAOAMBCB4FEdDXo8++qhq1qxpQjUAAF9FAIJHKCsr05QpU+zamegMAHAFAhBMkZkpTZsmpaVJISFZ+vTTT23ej4+PV9++fU2qDgDg6whAMMW0adKWLVJ2Nju4AwDcjwAEUzz88B/6+uun7NoZ8gIAuAMBCG63evVqff31dpu2/v3769JLLzWpIgCAvyEAwa3YwR0A4AkIQHCLwsJCzZ49266dIS8AgBkIQHC5JUuWKDc316btrrvuUlRUlDkFAQD8HgEILsUO7gAAT0QAgkvk5eXphRdesGlr0aKFbr/9dpMqAgDgfwhAcLqpU6eqtLTUpu3BBx9UeHi4SRUBAGCLAASnqWgHd4a8AACehgAEp9i3b5+WLVtm09ajRw8lJSWZVBEAABUjAOG8LVy4UIcOHbJpS09PV3BwsEkVAQBwdgQgVFt5ebkmT55s186QFwDA0xGAUC379+/X0qVLbdpeeeU2NWrUUuQfAICnIwChSjIzpa1bpykoqMSmvXPn8crKsigtzaTCAACoAgIQKq2srEzZ2VMUFPS/tmbNmiklJUWSNHCgOXUBAFBVBCBUiqOFDdnOAgDgrQhAOKe1a9fqs88+s74OCgrS2LFjTawIAIDzQwBChU6ePKknnnjCpu3mm29W27ZtTaoIAADnIADBoZycHL3yyis2bf/85z8VGhpqUkUAADgPAQh23nrrLe3atcv6+pJLLtF1111nYkUAADgXAQhWf/zxh5566imbtpSUFDVr1sykigAAcA0CECRJu3fv1ptvvmnTNnbsWAX9+Zl3AAB8RIDZBUjS/PnzFRsbq9DQUMXHx2vr1q1nPf7NN99Uu3btFBoaqo4dO2rNmjU271ssFoc/Tz/9tCsvwysZhqGXX37ZJvz07NlTGRkZhB8AgM8yPQCtWLFCqampysjI0BdffKFOnTopKSlJhw8fdnj85s2bNXjwYI0YMULZ2dlKTk5WcnKydu7caT0mLy/P5mfRokWyWCy64YYb3HVZXqGoqEiTJk3SgQMHrG133323rrzyShOrAgDA9SyGYRhmFhAfH69u3bpp3rx5kk5vsBkdHa377rtPaQ72VRg0aJCKi4u1evVqa1uPHj3UuXNnLViwwOHvSE5O1u+//67169dXqqaioiJFRESosLBQ4eHh1bgqz7d9+3abexgaGqpHHnlEAQGmZ2IAAKqlKt/fps4BKi0t1fbt25Wenm5tCwgIUJ8+fbRlyxaHn9myZYtSU1Nt2pKSkrRq1SqHxxcUFOi9997TkiVLnFa3NzMMQ3PmzNHRo0etbVdddZUSEhLMKwoAADczNQD9/PPPKisrU6NGjWzaGzVqpL179zr8TH5+vsPj8/PzHR6/ZMkS1alTR9dff32FdZSUlKik5H+bexYVFVX2ErzKzz//rPnz59u03X///brgggtMqggAAHP4/FNgixYt0q233nrWBfymTp2qiRMnurEq99u0aZM2bNhgfd2wYUPdfffdslgsJlYFAIA5TA1ADRo0UGBgoAoKCmzaCwoKKtxkMyoqqtLHf/TRR/rmm2+0YsWKs9aRnp5uM6xWVFSk6Ojoyl6GRysrK9MTTzyh8vJya1tycrI6depkYlUAAJjL1BmvwcHBiouLs5mcXF5ervXr11c4JyUhIcFuMvO6descHr9w4ULFxcWd88s+JCRE4eHhNj++4KefftKUKVNsws9DDz1E+AEA+D3Th8BSU1M1dOhQde3aVd27d9fs2bNVXFysYcOGSZKGDBmiJk2aaOrUqZKkBx54QImJiZoxY4auueYaLV++XNu2bdMLL7xgc96ioiK9+eabmjFjhtuvyRO8//77NusptWzZUrfddpuJFQEA4DlMD0CDBg3SkSNHNH78eOXn56tz585au3atdaLzgQMHbB7N7tmzp5YuXapx48Zp7Nixat26tVatWqUOHTrYnHf58uUyDEODBw926/WYrbS01BoWzxg8eLDatGljUkUAAHge09cB8kTeug7Q999/r1dffdWmLS0tTSEhISZVBACA+3jNOkBwnjfeeEN79uyxvu7cubMGDhxoYkUAAHguApCXO378uN0eZ8OGDVNMTIxJFQEA4PkIQF5s165deuutt2zaHnvsMdWowT9WAADOhm9KL2QYhhYtWqRDhw5Z2/72t7/p73//u4lVAQDgPQhAXqaoqEizZs2yabv77rvttgcBAAAVIwB5kW3btum9996zvg4LC9NDDz3EDu4AAFQRAcgLGIah2bNn22zSmpSUpB49ephYFQAA3osA5OEc7eD+wAMPqG7duuYUBACADyAAebD//ve/2rhxo/V1o0aNdNddd7GDOwAA54kA5IHKyso0ZcoUm7brrrtOl1xyiUkVAQDgWwhAHubHH3/USy+9ZNP28MMPq1atWiZVBACA7yEAeZD33ntP27Zts75u3bq1brnlFhMrAgDANxGAPICjHdxvueUWtW7d2qSKAADwbQQgk3333Xd67bXXbNrYwR0AANciAJloxYoV2rt3r/V1ly5dNGDAABMrAgDAPxCATOBoB/fhw4crOjrapIoAAPAvBCA327lzp95++22bNnZwBwDAvfjWdaNff/3VJvxcdtll6t27t4kVAQDgnwhAbmQYhvXv77nnHjVs2NDEagAA8F8W48/fypAkFRUVKSIiQoWFhQoPD3fquQ3DYCsLAABcoCrf3wFuqgn/h/ADAID5CEBulpkp9ex5+q8AAMAcBCA3mzZN2rLl9F8BAIA5CEBulpYmJSSc/isAADAHT4G52YABp38AAIB56AECAAB+hwAEAAD8DgEIAAD4HQIQAADwOwQgAADgdwhAAADA7xCAAACA3yEAAQAAv0MAAgAAfocABAAA/A4BCAAA+B0CEAAA8DsEIAAA4HfYDd4BwzAkSUVFRSZXAgAAKuvM9/aZ7/GzIQA58Pvvv0uSoqOjTa4EAABU1e+//66IiIizHmMxKhOT/Ex5ebl++ukn1alTRxaLxexynK6oqEjR0dE6ePCgwsPDzS7HJ3GPXY977HrcY/fgPjuPYRj6/fff1bhxYwUEnH2WDz1ADgQEBKhp06Zml+Fy4eHh/MfmYtxj1+Meux732D24z85xrp6fM5gEDQAA/A4BCAAA+B0CkB8KCQlRRkaGQkJCzC7FZ3GPXY977HrcY/fgPpuDSdAAAMDv0AMEAAD8DgEIAAD4HQIQAADwOwQgAADgdwhAPmD+/PmKjY1VaGio4uPjtXXr1rMe/+abb6pdu3YKDQ1Vx44dtWbNGpv3LRaLw5+nn37alZfh8Zx9n48dO6bRo0eradOmqlmzpi666CItWLDAlZfg8Zx9jwsKCpSSkqLGjRsrLCxMffv21f79+115CR6vKvd4165duuGGGxQbGyuLxaLZs2ef9zn9gbPv8aZNm9S/f381btxYFotFq1atcl3x/sSAV1u+fLkRHBxsLFq0yNi1a5dxxx13GHXr1jUKCgocHv/JJ58YgYGBxlNPPWXs3r3bGDdunBEUFGR8/fXX1mPy8vJsfhYtWmRYLBbju+++c9dleRxX3Oc77rjDaNmypbFhwwYjJyfHeP75543AwEDj3XffdddleRRn3+Py8nKjR48exmWXXWZs3brV2Lt3r3HnnXcaMTExxrFjx9x5aR6jqvd469atxsMPP2wsW7bMiIqKMmbNmnXe5/R1rrjHa9asMR577DHjnXfeMSQZK1eudO1F+AkCkJfr3r27MWrUKOvrsrIyo3HjxsbUqVMdHn/TTTcZ11xzjU1bfHy8cdddd1X4OwYOHGj07t3bOQV7KVfc54svvtiYNGmSzTGXXnqp8dhjjzmxcu/h7Hv8zTffGJKMnTt32pwzMjLSePHFF11wBZ6vqvf4z5o1a+bwy/l8zumLXHGP/4wA5DwMgXmx0tJSbd++XX369LG2BQQEqE+fPtqyZYvDz2zZssXmeElKSkqq8PiCggK99957GjFihPMK9zKuus89e/ZUZmamfvzxRxmGoQ0bNmjfvn266qqrXHMhHswV97ikpESSFBoaanPOkJAQffzxx86+BI9XnXtsxjm9GffDuxCAvNjPP/+ssrIyNWrUyKa9UaNGys/Pd/iZ/Pz8Kh2/ZMkS1alTR9dff71zivZCrrrPc+fO1UUXXaSmTZsqODhYffv21fz583X55Zc7/yI8nCvucbt27RQTE6P09HT99ttvKi0t1ZNPPqlDhw4pLy/PNRfiwapzj804pzfjfngXAhDOatGiRbr11ltt/hQN55g7d64+/fRTZWZmavv27ZoxY4ZGjRqlDz/80OzSfEJQUJDeeecd7du3T/Xq1VNYWJg2bNigfv36KSCA//UB/q6G2QWg+ho0aKDAwEAVFBTYtBcUFCgqKsrhZ6Kioip9/EcffaRvvvlGK1ascF7RXsgV9/mPP/7Q2LFjtXLlSl1zzTWSpEsuuUQ7duzQ9OnT7YZ2fJ2r/l2Oi4vTjh07VFhYqNLSUkVGRio+Pl5du3Z1/kV4uOrcYzPO6c24H96FPwZ5seDgYMXFxWn9+vXWtvLycq1fv14JCQkOP5OQkGBzvCStW7fO4fELFy5UXFycOnXq5NzCvYwr7vPJkyd18uRJu56IwMBAlZeXO/kKPJ+r/12OiIhQZGSk9u/fr23btmngwIHOvQAvUJ17bMY5vRn3w8uYPQsb52f58uVGSEiIsXjxYmP37t3GnXfeadStW9fIz883DMMwbr/9diMtLc16/CeffGLUqFHDmD59urFnzx4jIyPD7vFswzCMwsJCIywszHjuuefcej2eyhX3OTEx0bj44ouNDRs2GN9//73x8ssvG6Ghocazzz7r9uvzBK64x2+88YaxYcMG47vvvjNWrVplNGvWzLj++uvdfm2eoqr3uKSkxMjOzjays7ONCy+80Hj44YeN7OxsY//+/ZU+p79xxT3+/fffrcdIMmbOnGlkZ2cbP/zwg9uvz5cQgHzA3LlzjZiYGCM4ONjo3r278emnn1rfS0xMNIYOHWpz/BtvvGG0adPGCA4ONi6++GLjvffeszvn888/b9SsWdM4evSoq8v3Gs6+z3l5eUZKSorRuHFjIzQ01Gjbtq0xY8YMo7y83B2X45GcfY+feeYZo2nTpkZQUJARExNjjBs3zigpKXHHpXisqtzjnJwcQ5LdT2JiYqXP6Y+cfY83bNjg8Ji//veAqrEYhmG4v98JAADAPMwBAgAAfocABAAA/A4BCAAA+B0CEAAA8DsEIAAA4HcIQAAAwO8QgAAAgN8hAAEAAL9DAALgk/Lz83XfffepRYsWCgkJUXR0tPr372+zT9PmzZt19dVX64ILLlBoaKg6duyomTNnqqyszMTKAbgDAQiAz8nNzVVcXJz+85//6Omnn9bXX3+ttWvX6oorrtCoUaMkSStXrlRiYqKaNm2qDRs2aO/evXrggQc0ZcoU3XzzzWKRfMC3sRUGAJ9z9dVX66uvvtI333yjWrVq2bx39OhRBQUFqVmzZkpMTNTbb79t8/6///1vDRgwQMuXL9egQYPcWTYAN6IHCIBP+fXXX7V27VqNGjXKLvxIUt26dfXBBx/ol19+0cMPP2z3fv/+/dWmTRstW7bMHeUCMAkBCIBP+fbbb2UYhtq1a1fhMfv27ZMktW/f3uH77dq1sx4DwDcRgAD4lKqM6jMDAPBfBCAAPqV169ayWCzau3dvhce0adNGkrRnzx6H7+/Zs8d6DADfRAAC4FPq1aunpKQkzZ8/X8XFxXbvHz16VFdddZXq1aunGTNm2L2fmZmp/fv3a/Dgwe4oF4BJCEAAfM78+fNVVlam7t276+2339b+/fu1Z88ezZkzRwkJCapVq5aef/55vfvuu7rzzjv11VdfKTc3VwsXLlRKSopuvPFG3XTTTWZfBgAX4jF4AD4pLy9Pjz/+uFavXq28vDxFRkYqLi5ODz74oHr16iVJ+uijj/T4449ry5YtOnHihFq3bq1hw4ZpzJgxCgwMNPcCALgUAQgAAPgdhsAAAIDfIQABAAC/QwACAAB+hwAEAAD8DgEIAAD4HQIQAADwOwQgAADgdwhAAADA7xCAAACA3yEAAQAAv0MAAgAAfocABAAA/M7/B2ansptEGrijAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_33.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhLElEQVR4nO3de1wU9f4/8NdyVxQQEBBDwRuYkhAqQqZ55AhmEaeToZZ4QTPzGqmJmYhWoIji7atH83Y6qWglGqmElGmCmigZJZYmmsrNC6CY3HZ+f/hjctoBYQWGXV7Px2MfuZ/57Mz7w7ry6vOZnVEJgiCAiIiIiOrEQOkCiIiIiHQRQxQRERGRFhiiiIiIiLTAEEVERESkBYYoIiIiIi0wRBERERFpgSGKiIiISAsMUURERERaYIgiIiIi0gJDFBE1ayqVCgsXLlS6DNHYsWPh7OysdBlEVAsMUUTU5GzduhUqlUp8mJmZoVu3bpg6dSry8vIa9NipqalYuHAhCgsL63W/zz33nGRM1tbW6NOnDzZv3gy1Wl0vx/joo4+QkJBQL/siokczUroAIqLqLFq0CC4uLrh//z6+//57rFu3Dvv370dmZiZatmxZL8f4888/YWT01z+FqampiIyMxNixY2FlZVUvx6jyxBNPICoqCgBQUFCA//73vwgNDcWvv/6K6Ojox97/Rx99hFdeeQVBQUGPvS8iejSGKCJqsoYOHYrevXsDACZMmAAbGxssX74ce/fuxciRI7Xer1qtRllZGczMzGBmZlZf5T6SpaUlXn/9dfH5pEmT4OrqijVr1mDx4sUwNjZutFqI6PFxOY+IdMY//vEPAMClS5cAAMuWLYOvry9sbGzQokULeHl54bPPPtN4nUqlwtSpU/Hpp5+iR48eMDU1xcGDB8VtVedELVy4ELNnzwYAuLi4iEtv2dnZGDhwIHr16iVbl6urK/z9/es8npYtW6Jfv34oKSlBQUFBtf1KSkrwzjvvwMnJCaampnB1dcWyZcsgCIJkjCUlJdi2bZtY99ixY+tcExHVHmeiiEhnXLx4EQBgY2MDAFi5ciUCAwPx2muvoaysDDt37sTw4cORmJiIYcOGSV77zTffYNeuXZg6dSpsbW1lT95++eWX8euvv2LHjh1YsWIFbG1tAQBt27bF6NGjMXHiRGRmZqJnz57ia3744Qf8+uuvmD9/vlZj+v3332FoaFjt0qEgCAgMDMS3336L0NBQeHh4ICkpCbNnz8a1a9ewYsUKAMAnn3yCCRMmoG/fvnjjjTcAAJ07d9aqJiKqJYGIqInZsmWLAEA4dOiQUFBQIPzxxx/Czp07BRsbG6FFixbC1atXBUEQhHv37kleV1ZWJvTs2VP4xz/+IWkHIBgYGAg///yzxrEACBEREeLzmJgYAYBw6dIlSb/CwkLBzMxMePfddyXt06dPF8zNzYW7d+/WOKaBAwcKbm5uQkFBgVBQUCCcO3dOmD59ugBAePHFF8V+Y8aMETp27Cg+T0hIEAAIH3zwgWR/r7zyiqBSqYQLFy6Ibebm5sKYMWNqrIOI6g+X84ioyfLz80Pbtm3h5OSEESNGoFWrVtizZw/at28PAGjRooXY9/bt2ygqKsKzzz6L06dPa+xr4MCBePLJJ7WuxdLSEi+99BJ27NghLqNVVlYiPj4eQUFBMDc3f+Q+srKy0LZtW7Rt2xbdu3fH6tWrMWzYMGzevLna1+zfvx+GhoaYPn26pP2dd96BIAg4cOCA1mMiosfD5TwiarLWrl2Lbt26wcjICPb29nB1dYWBwV//75eYmIgPPvgAGRkZKC0tFdtVKpXGvlxcXB67npCQEMTHx+Po0aMYMGAADh06hLy8PIwePbpWr3d2dsbGjRvFyzZ07doVdnZ2Nb7m8uXLcHR0ROvWrSXt3bt3F7cTkTIYooioyerbt6/47by/O3r0KAIDAzFgwAD83//9H9q1awdjY2Ns2bIF27dv1+j/8KyVtvz9/WFvb4///e9/GDBgAP73v//BwcEBfn5+tXq9ubl5rfsSUdPH5Twi0kmff/45zMzMkJSUhPHjx2Po0KH1ElDkZrGqGBoaYtSoUfjss89w+/ZtJCQkYOTIkTA0NHzs41anY8eOuH79Ou7cuSNpz8rKErdXqal2Iqp/DFFEpJMMDQ2hUqlQWVkptmVnZz/2Fburzm2q7orlo0ePxu3btzFp0iTcvXtXct2nhvD888+jsrISa9askbSvWLECKpUKQ4cOFdvMzc3r/UrrRFQ9LucRkU4aNmwYli9fjoCAAIwaNQr5+flYu3YtunTpgrNnz2q9Xy8vLwDAe++9hxEjRsDY2BgvvviiGK48PT3Rs2dP7N69G927d8fTTz9dL+OpzosvvohBgwbhvffeQ3Z2Nnr16oWvv/4ae/fuxcyZMyWXMfDy8sKhQ4ewfPlyODo6wsXFBd7e3g1aH1FzxpkoItJJ//jHP7Bp0ybk5uZi5syZ2LFjB5YsWYJ//etfj7XfPn36YPHixfjxxx8xduxYjBw5UuNCmCEhIQBQ6xPKH4eBgQH27duHmTNnIjExETNnzsQvv/yCmJgYLF++XNJ3+fLl8PLywvz58zFy5EisW7euwesjas5UgvDQJW+JiOiRVq5cibfffhvZ2dno0KGD0uUQkUIYooiI6kAQBPTq1Qs2Njb49ttvlS6HiBTEc6KIiGqhpKQE+/btw7fffouffvoJe/fuVbokIlIYZ6KIiGohOzsbLi4usLKywltvvYUPP/xQ6ZKISGEMUURERERa4LfziIiIiLTAEEVERESkBZ5Y3kDUajWuX7+O1q1b81YMREREOkIQBNy5cweOjo6SG57LYYhqINevX4eTk5PSZRAREZEW/vjjDzzxxBM19mGIaiCtW7cG8OBNsLCwULgaIiIiqo3i4mI4OTmJv8drwhDVQKqW8CwsLBiiiIiIdExtTsXhieVEREREWmCIIiIiItICQxQRERGRFnhOlMIqKytRXl6udBnUCIyNjWFoaKh0GUREVE8YohQiCAJyc3NRWFiodCnUiKysrODg4MBrhxER6QGGKIVUBSg7Ozu0bNmSv1T1nCAIuHfvHvLz8wEA7dq1U7giIiJ6XAxRCqisrBQDlI2NjdLlUCNp0aIFACA/Px92dnZc2iMi0nE8sVwBVedAtWzZUuFKqLFVvec8D46ISPcxRCmIS3jND99zIiL9wRBFREREpAWGKCIiIiItMERRnYwdOxYqlQoqlQrGxsawt7fHP//5T2zevBlqtbrW+9m6dSusrKwarlAiIqIGxhBFdRYQEICcnBxkZ2fjwIEDGDRoEGbMmIEXXngBFRUVSpdHRETUKBiiqM5MTU3h4OCA9u3b4+mnn8a8efOwd+9eHDhwAFu3bgUALF++HO7u7jA3N4eTkxPeeust3L17FwBw+PBhjBs3DkVFReKs1sKFCwEAn3zyCXr37o3WrVvDwcEBo0aNEq+tREREVGXvXgG+vgL27VOuBoaoJkIQBJSVlSnyEAThsev/xz/+gV69euGLL74AABgYGGDVqlX4+eefsW3bNnzzzTeYM2cOAMDX1xdxcXGwsLBATk4OcnJyMGvWLAAPvvq/ePFi/Pjjj0hISEB2djbGjh372PUREZH+OHDgADIyFsHW9ktERytXBy+22USUl5cjKipKkWOHh4fDxMTksffj5uaGs2fPAgBmzpwptjs7O+ODDz7Am2++if/7v/+DiYkJLC0toVKp4ODgINnH+PHjxT936tQJq1atQp8+fXD37l20atXqsWskIiLdVVZWJvld+eSTv8PXV7l6GKKo3giCIF4H6dChQ4iKikJWVhaKi4tRUVGB+/fv4969ezVeZDQ9PR0LFy7Ejz/+iNu3b4snq1+5cgVPPvlko4yDiIiant9//x2ffPKJpC0ycjJMTRUqCAxRTYaxsTHCw8MVO3Z9OHfuHFxcXJCdnY0XXngBkydPxocffghra2t8//33CA0NRVlZWbUhqqSkBP7+/vD398enn36Ktm3b4sqVK/D390dZWVm91EhERLonPj4eWVlZ4nMPDw+89NJLClb0AENUE6FSqeplSU0p33zzDX766Se8/fbbSE9Ph1qtRmxsLAwMHpx2t2vXLkl/ExMTVFZWStqysrJw8+ZNREdHw8nJCQBw6tSpxhkAERE1Offu3UNMTIykbfz48eLvCKUxRFGdlZaWIjc3F5WVlcjLy8PBgwcRFRWFF154ASEhIcjMzER5eTlWr16NF198EceOHcP69esl+3B2dsbdu3eRkpKCXr16oWXLlujQoQNMTEywevVqvPnmm8jMzMTixYsVGiURESkpMzMTn3/+uaTtvffeg5FR04ku/HYe1dnBgwfRrl07ODs7IyAgAN9++y1WrVqFvXv3wtDQEL169cLy5cuxZMkS9OzZE59++qnGSfO+vr548803ERwcjLZt22Lp0qVo27Yttm7dit27d+PJJ59EdHQ0li1bptAoiYhICYIgYOPGjZIA9eyzzyIiIqJJBSgAUAn18f120lBcXAxLS0sUFRXBwsJCsu3+/fu4dOkSXFxcYGZmplCFpAS+90RE1SsqKkJcXJykbfLkybCzs2u0Gmr6/f13TSvSERERUbN08uRJHDhwQHxubm6OsLAw8dzapoghioiIiBSjVquxfPlylJSUiG1Dhw5F3759FayqdhiiiIiIqNHt2wesXp2P/v3XSdpnzpwJS0tLhaqqG4YoIiIianSffZaC/v2/F587OjpiwoQJ4kWbdQFDFBERETWaPXvu4+zZJejc+a+2f//73+jZs6dyRWmJIYqIiIgaxd+vPA4As2fPrvF2YE0ZQxQRERE1uMjISI22iIgIBSqpPwxRRERE1GDy8/Oxbp305HEHBwdMmjRJoYrqD0MUERERNQi52afp06ejTZs2ClRT/5ruFayoWRs7diyCgoLE58899xxmzpz5WPusj30QEVHtVLd8py8BCmgCIWrt2rVwdnaGmZkZvL29cfLkyRr77969G25ubjAzM4O7uzv2798v2T527FioVCrJIyAgQNyenZ2N0NBQuLi4oEWLFujcuTMiIiJQVlYm6fP3fahUKhw/frx+B6+DHv75mpiYoEuXLli0aBEqKioa9LhffPFFrW9GfPjwYahUKhQWFmq9DyIi0s6xY8c0ApS1tYfOn/8kR9HlvPj4eISFhWH9+vXw9vZGXFwc/P39cf78edn75KSmpmLkyJGIiorCCy+8gO3btyMoKAinT5+WfDUyICAAW7ZsEZ+bmpqKf87KyoJarcZ//vMfdOnSBZmZmZg4cSJKSko0bnZ76NAh9OjRQ3xuY2NTn8PXWVU/39LSUuzfvx9TpkyBsbExwsPDJf3KyspgYmJSL8e0trZuEvsgIqLqyc0+zZo1C+bm5gpU0/AUnYlavnw5Jk6ciHHjxuHJJ5/E+vXr0bJlS2zevFm2/8qVKxEQEIDZs2eje/fuWLx4MZ5++mmsWbNG0s/U1BQODg7i4+Gpw6oAMGTIEHTq1AmBgYGYNWsWvvjiC43j2djYSPZjbGxcvz8AHVX18+3YsSMmT54MPz8/7Nu3T1yC+/DDD+Ho6AhXV1cAwB9//IFXX30VVlZWsLa2xksvvYTs7Gxxf5WVlQgLC4OVlRVsbGwwZ84c/P2+2H9fiistLcW7774LJycnmJqaokuXLti0aROys7MxaNAgAECbNm2gUqkwduxY2X3cvn0bISEhaNOmDVq2bImhQ4fit99+E7dv3boVVlZWSEpKQvfu3dGqVSsEBAQgJydH7HP48GH07dsX5ubmsLKywjPPPIPLly/X00+aiEg3VFZWygYoT88IvQ1QgIIhqqysDOnp6fDz8/urGAMD+Pn5IS0tTfY1aWlpkv4A4O/vr9H/8OHDsLOzg6urKyZPnoybN2/WWEtRUZHsLEVgYCDs7OzQv39/7Nu3r8Z9lJaWori4WPJoLlq0aCEuh6akpOD8+fNITk5GYmIiysvL4e/vj9atW+Po0aM4duyYGEaqXhMbG4utW7di8+bN+P7773Hr1i3s2bOnxmOGhIRgx44dWLVqFc6dO4f//Oc/aNWqFZycnPD5558DAM6fP4+cnBysXLlSdh9jx47FqVOnsG/fPqSlpUEQBDz//PMoLy8X+9y7dw/Lli3DJ598giNHjuDKlSuYNWsWAKCiogJBQUEYOHAgzp49i7S0NLzxxhs6dbVdIqLHFR8fjw8++EDS1qlTJ0RERCAwUKGiGoliy3k3btxAZWUl7O3tJe329vYaF+KqkpubK9s/NzdXfB4QEICXX34ZLi4uuHjxIubNm4ehQ4ciLS0NhoaGGvu8cOECVq9eLVnKa9WqFWJjY/HMM8/AwMAAn3/+OYKCgpCQkIDAav5GREVFyaZwfSYIAlJSUpCUlIRp06ahoKAA5ubm+Pjjj8VlvP/9739Qq9X4+OOPxXCxZcsWWFlZ4fDhwxgyZAji4uIQHh6Ol19+GQCwfv16JCUlVXvcX3/9Fbt27UJycrIYqjt16iRurwrEdnZ2sLKykt3Hb7/9hn379uHYsWPw9fUFAHz66adwcnJCQkIChg8fDgAoLy/H+vXr0fn/X1p36tSpWLRoEQCguLgYRUVFeOGFF8Tt3bt3r/sPkohIR8n93nvvvfdgZNQ8vvyvd6McMWKE+Gd3d3c89dRT6Ny5Mw4fPozBgwdL+l67dg0BAQEYPnw4Jk6cKLbb2toiLCxMfN6nTx9cv34dMTEx1Yao8PBwyWuKi4vh5ORUX8Oq0b59QHQ0MHcuGiX1JyYmolWrVigvL4darcaoUaOwcOFCTJkyBe7u7pLzoH788UdcuHABrVu3luzj/v37uHjxIoqKipCTkwNvb29xm5GREXr37q2xpFclIyMDhoaGGDhwoNZjOHfuHIyMjCTHtbGxgaurK86dOye2tWzZUgxIANCuXTvk5+cDeBDWxo4dC39/f/zzn/+En58fXn31VbRr107ruoiIdMGdO3ewfPlyjXZ9PHm8JoqFKFtbWxgaGiIvL0/SnpeXBwcHB9nXODg41Kk/8GCGwtbWFhcuXJCEqOvXr2PQoEHw9fXFhg0bHlmvt7c3kpOTq91uamoqOYG9MUVHA2lpD/7bGCFq0KBBWLduHUxMTODo6Cj5P46/r33fvXsXXl5e+PTTTzX207ZtW62O36JFC61ep42/nwenUqkk4W7Lli2YPn06Dh48iPj4eMyfPx/Jycno169fo9VIRNSY5GafLlwYiE8+ea7xi1GYYudEmZiYwMvLCykpKWKbWq1GSkoKfHx8ZF/j4+Mj6Q8AycnJ1fYHgKtXr+LmzZuS2YFr167hueeeg5eXF7Zs2QIDg0f/GDIyMprsDMPcuYCPz4P/NgZzc3N06dIFHTp0eOSU7dNPP43ffvsNdnZ26NKli+RhaWkJS0tLtGvXDidOnBBfU1FRgfT09Gr36e7uDrVaje+++052e9VMWGVlZbX76N69OyoqKiTHvXnzJs6fP48nn3yyxjH9naenJ8LDw5GamoqePXti+/btdXo9EZGukAtQSUkLMHz4c41fTBOg6LfzwsLCsHHjRmzbtg3nzp3D5MmTUVJSgnHjxgF4cPLww1+bnzFjBg4ePIjY2FhkZWVh4cKFOHXqFKZOnQrgwazH7Nmzcfz4cWRnZyMlJQUvvfQSunTpAn9/fwB/BagOHTpg2bJlKCgoQG5uruS8qm3btmHHjh3IyspCVlYWPvroI2zevBnTpk1rxJ9O7QUGAqmpjTMLVVevvfYabG1t8dJLL+Ho0aO4dOkSDh8+jOnTp+Pq1asAHryv0dHRSEhIQFZWFt566y2Nazw9zNnZGWPGjMH48eORkJAg7nPXrl0AgI4dO0KlUiExMREFBQW4e/euxj66du2Kl156CRMnTsT333+PH3/8Ea+//jrat2+Pl156qVZju3TpEsLDw5GWlobLly/j66+/xm+//cbzoohI71y8eLHai2empqqa5O+fxqDoOVHBwcEoKCjAggULkJubCw8PDxw8eFA8efzKlSuSWSJfX19s374d8+fPx7x589C1a1ckJCSI14gyNDTE2bNnsW3bNhQWFsLR0RFDhgzB4sWLxaW25ORkXLhwARcuXMATTzwhqefhZZrFixfj8uXLMDIygpubG+Lj4/HKK6809I9E77Rs2RJHjhzBu+++i5dffhl37txB+/btMXjwYFhYWAAA3nnnHeTk5GDMmDEwMDDA+PHj8a9//QtFRUXV7nfdunWYN28e3nrrLdy8eRMdOnTAvHnzAADt27dHZGQk5s6di3HjxiEkJARbt27V2MeWLVswY8YMvPDCCygrK8OAAQOwf//+Wl/KomXLlsjKysK2bdvE2c4pU6boxf2giIiqyIWnc+cCMGqUt0zv5kUlVHf2Lj2W4uJiWFpaoqioSAwLVe7fv49Lly7BxcUFZmZmClVISuB7T0S6pLrZJ31W0+/vv9O7b+cRERHR4/nuu+9w+PBhjXZPT/0OUHXFEEVEREQiudmn0NBQjVNgiCGKiIiI8OC84KqLCT9M35fvHgdDFBERUTO3efNm/PHHHxrtDFA1Y4hSEM/pb374nhNRUyO3fPfOO++gVatWClSjWxiiFFD1Ffp79+416tW3SXn37t0DoHkldCKixnb//n0sWbJEo52zT7XHEKUAQ0NDWFlZifdga9mypXhzXtJPgiDg3r17yM/Ph5WVlezNsImIGovc7JOVlRVmzJihQDW6iyFKIVX3+6sKUtQ8WFlZ1XivRyKihiYXoN5///1a3QKNpBiiFKJSqdCuXTvY2dmhvLxc6XKoERgbG3MGiogUk5eXh/Xr12u0c/lOewxRCjM0NOQvViIialBys099+/bF0KFDFahGfzBEERER6bHmeOuWxsIQRUREpIfOnj2LPXv2aLQzQNUfhigiIiI9Izf7NHz4cDz55JMKVKO/GKKIiIj0CJfvGg9DFBERkR748ssvcfr0aY12BqiGwxBFRESk4+Rmn9566y20bdtWgWqaD4YoIiIiHVVZWYkPPvhAo52zT42DIYqIiEgHyc0+AQxQjYnXeCciItIxcgHq0KFweHoyQDUmzkQRERHpiMLCQqxcuVKjPSkpAqmpChTUzDFEERER6QC52afCwrY4cOAtLF2qQEHEEEVERNTUyQWopKQFSE1VYcUKBQoiAAxRRERETdbPP/+Mzz77TKM9KSkCc+cqUBBJMEQRERE1QXKzT23b9sNbb/mDX8BrGvjtPCIioiZGLkAtXBiB//3PX4FqqDqciSIiImoi9u7di4yMDI12T88I+PiAS3hNDEMUERFREyA3+5SR8QrGjeuBwEAgMFCBoqhGDFFEREQKEgQBixYt0mjnlcebPoYoIiIihfDWLbqNIYqIiEgBcgHqyJFpSEmxVqAa0gZDFBERUSO6d+8eYmJiNNp57SfdwxBFRETUSKpbvuO973ST4teJWrt2LZydnWFmZgZvb2+cPHmyxv67d++Gm5sbzMzM4O7ujv3790u2jx07FiqVSvIICAiQ9Ll16xZee+01WFhYwMrKCqGhobh7966kz9mzZ/Hss8/CzMwMTk5OWMobExER0WOQC1BlZfM4A6XDFA1R8fHxCAsLQ0REBE6fPo1evXrB398f+fn5sv1TU1MxcuRIhIaG4syZMwgKCkJQUBAyMzMl/QICApCTkyM+duzYIdn+2muv4eeff0ZycjISExNx5MgRvPHGG+L24uJiDBkyBB07dkR6ejpiYmKwcOFCbNiwof5/CEREpNcuXbpU7cUzv/3WGKmpvHyBrlIJgiAodXBvb2/06dMHa9asAQCo1Wo4OTlh2rRpmCsTy4ODg1FSUoLExESxrV+/fvDw8MD69esBPJiJKiwsREJCguwxz507hyeffBI//PADevfuDQA4ePAgnn/+eVy9ehWOjo5Yt24d3nvvPeTm5sLExAQAMHfuXCQkJCArK6tWYysuLoalpSWKiopgYWFR658JERHpj+qW7zw9IxAd/eDimQxQTUtdfn8rNhNVVlaG9PR0+Pn5/VWMgQH8/PyQlpYm+5q0tDRJfwDw9/fX6H/48GHY2dnB1dUVkydPxs2bNyX7sLKyEgMUAPj5+cHAwAAnTpwQ+wwYMEAMUFXHOX/+PG7fvq39oImIqNmQC1CenhGIiIhAYCA4A6UHFDux/MaNG6isrIS9vb2k3d7evtrZntzcXNn+ubm54vOAgAC8/PLLcHFxwcWLFzFv3jwMHToUaWlpMDQ0RG5uLuzs7CT7MDIygrW1tbif3NxcuLi4aBynalubNm00aistLUVpaan4vLi4+FE/AiIi0kNff/217GRAUlIEbxysZ/Tu23kjRowQ/+zu7o6nnnoKnTt3xuHDhzF48OAGO25UVFS107ZERNQ8yP0esLXtjU8/HcaTx/WQYst5tra2MDQ0RF5enqQ9Ly8PDg4Osq9xcHCoU38A6NSpE2xtbXHhwgVxH38/cb2iogK3bt0S91Pdcaq2yQkPD0dRUZH4+OOPP6qtiYiI9I9cgIqIiMCUKcO4dKenFAtRJiYm8PLyQkpKitimVquRkpICHx8f2df4+PhI+gNAcnJytf0B4OrVq7h58ybatWsn7qOwsBDp6elin2+++QZqtRre3t5inyNHjqC8vFxyHFdXV9mlPAAwNTWFhYWF5EFERPovMjJSNkAtW8a1O32n6CUOwsLCsHHjRmzbtg3nzp3D5MmTUVJSgnHjxgEAQkJCEB4eLvafMWMGDh48iNjYWGRlZWHhwoU4deoUpk6dCgC4e/cuZs+ejePHjyM7OxspKSl46aWX0KVLF/j7+wMAunfvjoCAAEycOBEnT57EsWPHMHXqVIwYMQKOjo4AgFGjRsHExAShoaH4+eefER8fj5UrVyIsLKyRf0JERNSUyYWn8vJgLFsWgenTFSiIGpWi50QFBwejoKAACxYsQG5uLjw8PHDw4EHxJO4rV67AwOCvnOfr64vt27dj/vz5mDdvHrp27YqEhAT07NkTAGBoaIizZ89i27ZtKCwshKOjI4YMGYLFixfD1NRU3M+nn36KqVOnYvDgwTAwMMC///1vrFq1StxuaWmJr7/+GlOmTIGXlxdsbW2xYMECybWkiIio+aqsrMQHH3yg0V5142CZTaSHFL1OlD7jdaKIiPRTdV8iiuBX7/RCXX5/692384iIiBqKXIAKCwtD69atFaiGlMYQRURE9Ag3btzA2rVrNdo5+9S8MUQRERHVgMt3VB1Fv51HRETUlMkFqKSkBfD0ZIAizkQRERFpOHbsGA4dOqTRnpQUgdRUBQqiJokhioiI6CFys08GBiY4cCCct24hCYYoIiKi/09++e7B7NP77ytQEDVpDFFERNTsxcXFoaioSKM9KSmCs09ULYYoIiJq1uRmn7y9vREQEAB+AY9qwhBFRETNkiAIWLRokUY7L11AtcUQRUREzU51137auTOCs09UawxRRETUrMgFqG++CUF5uQuWLFGgINJZDFFERNQs3Lt3DzExMRrtVSePBwYqUBTpNIYoIiLSe9Ut35WV8eKZpD2GKCIi0mtyAerQobmYPduUs0/0WBiiiIhIL/3222/Yvn27RntEBE8ep/rBEEVERHqnuuU7Xr6A6hNDFBER6RW5AMXwRA2BIYqIiPTCF198gZ9++kmjnQGKGgpDFBER6Ty52ae7d9siJuYtBaqh5sJA6QKIiIgeh1yASkqKwLPPMkBRw+JMFBER6aSaTh7nCh41BoYoIiLSOXIBaujQoejbt68C1VBzxRBFREQ6o7KyEh988IFGO08eJyUwRBERkU7gtZ+oqWGIIiKiJk8uQB09OgWHDtkqUA3RAwxRRETUZOXn52PdunUa7UlJEZg7V4GCiB7CEEVERE0Sv31HTR1DFBERNTlyAWr+/PkwNDRUoBoieQxRRETUZBw7dgyHDh3SaOfJ49QUMUQREVGTUN3ynacnAxQ1TQxRRESkOLkAxdknauoYooiISDGxsbG4e/euRjsDFOkCxW9AvHbtWjg7O8PMzAze3t44efJkjf13794NNzc3mJmZwd3dHfv376+275tvvgmVSoW4uDix7fDhw1CpVLKPH374AQCQnZ0tu/348eP1MmYiInow+/T3ANW9e3cGKNIZioao+Ph4hIWFISIiAqdPn0avXr3g7++P/Px82f6pqakYOXIkQkNDcebMGQQFBSEoKAiZmZkafffs2YPjx4/D0dFR0u7r64ucnBzJY8KECXBxcUHv3r0lfQ8dOiTp5+XlVX+DJyJqxqpbvnv11VcVqIZIOypBEASlDu7t7Y0+ffpgzZo1AAC1Wg0nJydMmzYNc2WuohYcHIySkhIkJiaKbf369YOHhwfWr18vtl27dg3e3t5ISkrCsGHDMHPmTMycOVO2hvLycrRv3x7Tpk3D+++/D+DBTJSLiwvOnDkDDw8PrcZWXFwMS0tLFBUVwcLCQqt9EBHpm+pOHk9KikBqaiMXQySjLr+/FZuJKisrQ3p6Ovz8/P4qxsAAfn5+SEtLk31NWlqapD8A+Pv7S/qr1WqMHj0as2fPRo8ePR5Zx759+3Dz5k2MGzdOY1tgYCDs7OzQv39/7Nu3r7ZDIyIiGXIBaseOEYiO5tXHSTcpdmL5jRs3UFlZCXt7e0m7vb09srKyZF+Tm5sr2z83N1d8vmTJEhgZGWH69Om1qmPTpk3w9/fHE088Iba1atUKsbGxeOaZZ2BgYIDPP/8cQUFBSEhIQGBgoOx+SktLUVpaKj4vLi6u1fGJiPTdn3/+iaVLl2q0l5VFwNoaWLoUqOafVqImTa++nZeeno6VK1fi9OnTUKlUj+x/9epVJCUlYdeuXZJ2W1tbhIWFic/79OmD69evIyYmptoQFRUVVe00NRFRc1XTrVuIdJ1iy3m2trYwNDREXl6epD0vLw8ODg6yr3FwcKix/9GjR5Gfn48OHTrAyMgIRkZGuHz5Mt555x04Oztr7G/Lli2wsbGpNhg9zNvbGxcuXKh2e3h4OIqKisTHH3/88ch9EhHpM7kANWvWLAYo0huKhSgTExN4eXkhJSVFbFOr1UhJSYGPj4/sa3x8fCT9ASA5OVnsP3r0aJw9exYZGRniw9HREbNnz0ZSUpLkdYIgYMuWLQgJCYGxsfEj683IyEC7du2q3W5qagoLCwvJg4ioObp48WK1374zNzdXoCKihqHocl5YWBjGjBmD3r17o2/fvoiLi0NJSYl4kndISAjat2+PqKgoAMCMGTMwcOBAxMbGYtiwYdi5cydOnTqFDRs2AABsbGxgY2MjOYaxsTEcHBzg6uoqaf/mm29w6dIlTJgwQaOubdu2wcTEBJ6engCAL774Aps3b8bHH39c7z8DIiJ9wlu3UHOiaIgKDg5GQUEBFixYgNzcXHh4eODgwYPiyeNXrlyBgcFfk2W+vr7Yvn075s+fj3nz5qFr165ISEhAz54963zsTZs2wdfXF25ubrLbFy9ejMuXL8PIyAhubm6Ij4/HK6+8ot1AiYiaAbkAtWDBglqdo0qkixS9TpQ+43WiiKi52LNnD86ePavRzms/kS6qy+9vvfp2HhERNS652ScDAxMcOBDOaz+R3mOIIiIirVR38jgA/P8bQBDpNYYoIiKqE177iegBhigiIqo1uQB14cJz+OSTgQpUQ6Qsxa4TRUREukOtVssGqKSkCAwfzgBFzRNnooiIqEY1XfuJK3jUnNU5RBkaGiInJwd2dnaS9ps3b8LOzg6VlZX1VhwRESlLLkCFhoZKbtpO1FzVOURVd1mp0tJSmJiYPHZBRESkvBs3bmDt2rUa7Tx5nOgvtQ5Rq1atAgCoVCp8/PHHaNWqlbitsrISR44cqfbq30REpDv47Tui2ql1iFqxYgWABzNR69evh6GhobjNxMQEzs7OWL9+ff1XSEREjUYuQCUnv4c5c3gKLdHf1fm2L4MGDcIXX3yBNm3aNFRNeoG3fSEiXfLdd9/h8OHDGu2cfaLmpi6/v+t8iYNvv/2WAYqISI9ERkbKBqikJAYooprUeX52/PjxNW7fvHmz1sUQEVHjklu+8/SMQHQ0eO87okeoc4i6ffu25Hl5eTkyMzNRWFiIf/zjH/VWGBERNZxHnTweGNiY1RDppjqHqD179mi0qdVqTJ48GZ07d66XooiIqOHIBShLS0vMnDmz8Ysh0mF1PrG8OufPn8dzzz2HnJyc+tidzuOJ5UTUFMkFKJ48TvSXuvz+rrfvrF68eBEVFRX1tTsiIqpHvPYTUf2rc4gKCwuTPBcEATk5Ofjqq68wZsyYeiuMiIjqh1yAev7559GnTx8FqiHSH3UOUWfOnJE8NzAwQNu2bREbG/vIb+4REVHjKS0tRXR0tEY7Z5+I6kedQ9S3337bEHUQEVE94vIdUcPT+pyo/Px8nD9/HgDg6uoKOzu7eiuKiIi0JxegevSYgVdesWr8Yoj0WJ1DVHFxMaZMmYIdO3ZArVYDAAwNDREcHIy1a9fC0tKy3oskIqJHu3TpEv773/9qtHP2iahh1Pm2LxMnTsSJEyfw1VdfobCwEIWFhUhMTMSpU6cwadKkhqiRiIgeITIykgGKqJHVeSYqMTERSUlJ6N+/v9jm7++PjRs3IiAgoF6LIyKiR5NbvktKWoC5c1UKVEPUfNQ5RNnY2Mgu2VlaWvLGxEREjWjv3r3IyMjQaI+IiAAnoIgaXp2X8+bPn4+wsDDk5uaKbbm5uZg9ezbef//9ei2OiIjkRUZGVhugiKhx1Pm2L56enrhw4QJKS0vRoUMHAMCVK1dgamqKrl27SvqePn26/irVMbztCxE1FN66hajhNOhtX1566SWoVFxnJyJqbLz2E1HTUm83ICYpzkQRUX2SC1BeXl544YUXFKiGSH/V5fd3nc+J6tSpE27evKnRXlhYiE6dOtV1d0REVIO9e4Vqvn0XwQBFpLA6L+dlZ2ejsrJSo720tBRXr16tl6KIiKj65bukpAjMndvIxRCRhlqHqH379ol/TkpKklzmoLKyEikpKXBxcanf6oiImim5ADV27Fh07NiRly8gaiJqHaKCgoIAACqVCmPGjJFsMzY2hrOzM2JjY+u1OCKi5qawsBArV67UaOfJ40RNT63PiVKr1VCr1ejQoQPy8/PF52q1GqWlpTh//rxW6/Nr166Fs7MzzMzM4O3tjZMnT9bYf/fu3XBzc4OZmRnc3d2xf//+avu++eabUKlUiIuLk7Q7OztDpVJJHtHR0ZI+Z8+exbPPPgszMzM4OTlh6dKldR4bEVFdREZGMkAR6ZA6nxN16dKlejt4fHw8wsLCsH79enh7eyMuLg7+/v44f/487OzsNPqnpqZi5MiRiIqKwgsvvIDt27cjKCgIp0+fRs+ePSV99+zZg+PHj8PR0VH22IsWLcLEiRPF561btxb/XFxcjCFDhsDPzw/r16/HTz/9hPHjx8PKygpvvPFGPY2eiOgvcst34eHhMDExUaAaIqqNOl/iYNGiRTVuX7BgQa335e3tjT59+mDNmjUAHsx2OTk5Ydq0aZgrc9ZkcHAwSkpKkJiYKLb169cPHh4eWL9+vdh27do1eHt7IykpCcOGDcPMmTMxc+ZMcbuzs7NG28PWrVuH9957D7m5ueI/YHPnzkVCQgKysrJqNTZe4oCIaiM9PV3yb1oVzj4RKaNBL7a5Z88eyfPy8nJcunQJRkZG6Ny5c61DVFlZGdLT0xEeHi62GRgYwM/PD2lpabKvSUtLQ1hYmKTN398fCQkJ4nO1Wo3Ro0dj9uzZ6NGjR7XHj46OxuLFi9GhQweMGjUKb7/9NoyMjMTjDBgwQPJ/gP7+/liyZAlu374te4/A0tJSlJaWis+Li4tr/gEQUbPHi2cS6bY6h6gzZ85otBUXF2Ps2LH417/+Vev93LhxA5WVlbC3t5e029vbVzvbk5ubK9v/4fv4LVmyBEZGRpg+fXq1x54+fTqefvppWFtbIzU1FeHh4cjJycHy5cvF4/z9m4ZVx83NzZUNUVFRUdX+g0hE9He8dQuR7qtziJJjYWGByMhIvPjiixg9enR97FIr6enpWLlyJU6fPl3jrWkens166qmnYGJigkmTJiEqKgqmpqZaHTs8PFyy3+LiYjg5OWm1LyLSX6tWrcLt27c12hmgiHRPna9YXp2ioiIUFRXVur+trS0MDQ2Rl5cnac/Ly4ODg4PsaxwcHGrsf/ToUeTn56NDhw4wMjKCkZERLl++jHfeeQfOzs7V1uLt7Y2KigpkZ2fXeJyqbXJMTU1hYWEheRARPSwyMlIjQFlbWzNAEemoOs9ErVq1SvJcEATk5OTgk08+wdChQ2u9HxMTE3h5eSElJUW8BpVarUZKSgqmTp0q+xofHx+kpKRITghPTk6Gj48PAGD06NHw8/OTvMbf3x+jR4/GuHHjqq0lIyMDBgYG4jcCfXx88N5776G8vBzGxsbicVxdXWWX8oiIHqW6W7ekpipQDBHVizqHqBUrVkieGxgYoG3bthgzZozkJPHaCAsLw5gxY9C7d2/07dsXcXFxKCkpEQNPSEgI2rdvj6ioKADAjBkzMHDgQMTGxmLYsGHYuXMnTp06hQ0bNgAAbGxsYGNjIzmGsbExHBwc4OrqCuDBSeMnTpzAoEGD0Lp1a6SlpeHtt9/G66+/LgakUaNGITIyEqGhoXj33XeRmZmJlStXaoydiOhReOsWIv2l6HWigoODUVBQgAULFiA3NxceHh44ePCgeBL3lStXYGDw14qjr68vtm/fjvnz52PevHno2rUrEhISNK4RVRNTU1Ps3LkTCxcuRGlpKVxcXPD2229LzmeytLTE119/jSlTpsDLywu2trZYsGABrxFFRHUiF6CGDBkCHx8f3rqFSA/U+TpRwIPbEly4cAEA0KVLF1hZWdV3XTqP14kiar7Ky8vx0UcfabTz3Ceipq/BrhOVnZ2NKVOmICkpCVXZS6VSISAgAGvWrKnx5G0iouaA134iaj5qHaL++OMP9OvXD8bGxli8eDG6d+8OAPjll1+wbt06+Pj44IcffsATTzzRYMUSETVlcgFq2rRpsLa2VqAaImpotV7OCw0NxYULF5CUlAQzMzPJtj///BMBAQHo2rUrPv744wYpVNdwOY+o+bhy5Qq2bNmi0c7ZJyLd0yDLeQcPHkR8fLxGgAKAFi1aYPHixRgxYkTdqyUi0mFcviNqvmodom7cuFHjOU+dOnXCrVu36qMmIqImb98+4MwZzQD1/vvvS75VTET6q9af9Hbt2uGXX36pdntmZma1V/MmItInSUlJsgEqIiKCAYqoGan1pz0oKAizZs1CQUGBxrb8/Hy8++674pXHiYj0VWRkJI4fP67RzuU7ouan1ieW3759G97e3sjNzcXrr78ONzc3CIKAc+fOYfv27XBwcMDx48f5LZT/jyeWE+kfufOfGJ6I9EuDnFjepk0bnDhxAvPmzcPOnTtRWFgIALCyssKoUaPw0UcfMUARkV7iyeNEJEerK5YLgiAu67Vt2xYqlareC9N1nIki0g9yAcrd3R0vv/yyAtUQUUNrsCuWV1GpVLCzs9OqOCIiXSAIAhYtWqTRztknIqqiVYgiItJnXL4jotpgiCIieohcgHr99dfRuXNnBaohoqaMIYqICMDdu3cRGxur0c7ZJyKqDkMUETV7XL4jIm3UKkStWrWq1jucPn261sUQETU2uQCVkvIujhzRvE8oEdHDahWiVqxYUaudqVQqhigi0gnnzp3Drl27NNqTkiIwd64CBRGRztHqOlH0aLxOFFHTxeU7IqpOg18nCgDKyspw6dIldO7cGUZGPLWKiHQDb91CRPWlzrcbv3fvHkJDQ9GyZUv06NEDV65cAQBMmzYN0dHR9V4gEVF9+OyzzxigiKhe1TlEhYeH48cff8Thw4dhZvbXiZd+fn6Ij4+v1+KIiOpDZGQkfv75Z0mblZUVAxQRPZY6r8MlJCQgPj4e/fr1k9wzr0ePHrh48WK9FkdE9LjkZp88PSMQGKhAMUSkV+ocogoKCmTvm1dSUsIbERNRk8GTx4moodV5Oa9379746quvxOdVwenjjz+Gj49P/VVGRKQluQD1/PPPM0ARUb2q80zURx99hKFDh+KXX35BRUUFVq5ciV9++QWpqan47rvvGqJGIqJaqaysxAcffKDRzvBERA2hzjNR/fv3R0ZGBioqKuDu7o6vv/4adnZ2SEtLg5eXV0PUSET0SJGRkQxQRNSoeLHNBsKLbRI1Hrnlu7KyqfjwQxsFqiEiXVbvF9ssLi6u9cEZGIioscTHFyAr6/802jn7RESNoVYhysrKqtbfvKusrHysgoiIaoPfviMipdUqRH377bfin7OzszF37lyMHTtW/DZeWloatm3bhqioqIapkojoIXIB6uuv38exY3U+zZOISGt1Pidq8ODBmDBhAkaOHClp3759OzZs2IDDhw/XZ306i+dEEdW/jz9Ow7VrX2u0JyVFYO5c8AKaRPTY6vL7u84hqmXLlvjxxx/RtWtXSfuvv/4KDw8P3Lt3r+4V6yGGKKL6xeU7ImoM9X5i+cOcnJywceNGLF26VNL+8ccfw8nJqa67IyJ6JN44mIiaojqfQLBixQqsXr0a7u7umDBhAiZMmICnnnoKq1evxooVK+pcwNq1a+Hs7AwzMzN4e3vj5MmTNfbfvXs33NzcYGZmBnd3d+zfv7/avm+++SZUKhXi4uLEtuzsbISGhsLFxQUtWrRA586dERERgbKyMkkflUql8Th+/Hidx0dE2lu1ahUDFBE1WXUOUc8//zx+++03vPjii7h16xZu3bqFF198Eb/++iuef/75Ou0rPj4eYWFhiIiIwOnTp9GrVy/4+/sjPz9ftn9qaipGjhyJ0NBQnDlzBkFBQQgKCkJmZqZG3z179uD48eNwdHSUtGdlZUGtVuM///kPfv75Z6xYsQLr16/HvHnzNPZx6NAh5OTkiA9eTJSo8URGRuL27duSNmtrDwYoImoyFL3Ypre3N/r06YM1a9YAANRqNZycnDBt2jTMnTtXo39wcDBKSkqQmJgotvXr1w8eHh5Yv3692Hbt2jV4e3sjKSkJw4YNw8yZMzFz5sxq64iJicG6devw+++/A3gwE+Xi4oIzZ87Aw8NDq7HxnCgi7XH2iYiU0qDnRAFAYWEhNm3ahHPnzgEAevTogfHjx8PS0rLW+ygrK0N6ejrCw8PFNgMDA/j5+SEtLU32NWlpaQgLC5O0+fv7IyEhQXyuVqsxevRozJ49Gz169KhVLUVFRbC2ttZoDwwMxP3799GtWzfMmTMHgTV89ae0tBSlpaXi87pcoJSIHuDJ40SkS+q8nHfq1Cl07twZK1asEJfzli9fjs6dO+P06dO13s+NGzdQWVkJe3t7Sbu9vT1yc3NlX5Obm/vI/kuWLIGRkRGmT59eqzouXLiA1atXY9KkSWJbq1atEBsbi927d+Orr75C//79ERQUhH379lW7n6ioKFhaWooPnmRPVDdyAeq1115jgCKiJqvOM1Fvv/02AgMDsXHjRhgZPXh5RUUFJkyYgJkzZ+LIkSP1XmRtpaenY+XKlTh9+nStrrB+7do1BAQEYPjw4Zg4caLYbmtrK5nx6tOnD65fv46YmJhqZ6PCw8MlrykuLmaQIqqF+/fvY8mSJRrtDE9E1NTVOUSdOnVKEqAAwMjICHPmzEHv3r1rvR9bW1sYGhoiLy9P0p6XlwcHBwfZ1zg4ONTY/+jRo8jPz0eHDh3E7ZWVlXjnnXcQFxeH7Oxssf369esYNGgQfH19sWHDhkfW6+3tjeTk5Gq3m5qawtTU9JH7IaK/cPmOiHRZnZfzLCwscOXKFY32P/74A61bt671fkxMTODl5YWUlBSxTa1WIyUlRbydzN/5+PhI+gNAcnKy2H/06NE4e/YsMjIyxIejoyNmz56NpKQk8TXXrl3Dc889By8vL2zZsgUGBo/+MWRkZKBdu3a1Hh8R1UwuQM2ZM4cBioh0Rp1nooKDgxEaGoply5bB19cXAHDs2DHMnj1b41YwjxIWFoYxY8agd+/e6Nu3L+Li4lBSUoJx48YBAEJCQtC+fXvxnnwzZszAwIEDERsbi2HDhmHnzp04deqUOJNkY2MDGxsbyTGMjY3h4OAAV1dXAH8FqI4dO2LZsmUoKCgQ+1bNaG3btg0mJibw9PQEAHzxxRfYvHkzPv7447r+uIjob7Kzs7Ft2zaNdoYnItI1dQ5Ry5Ytg0qlQkhICCoqKgA8CCqTJ09GdHR0nfYVHByMgoICLFiwALm5ufDw8MDBgwfFk8evXLkimSXy9fXF9u3bMX/+fMybNw9du3ZFQkICevbsWetjJicn48KFC7hw4QKeeOIJybaHr/awePFiXL58GUZGRnBzc0N8fDxeeeWVOo2PiKS4fEdE+kTr60Tdu3cPFy9eBAB07twZLVu2rNfCdB2vE0UkJRegFixYUKsvgRARNZYGv04U8OBGxO7u7tq+nIiaiQMHDsjezomzT0Sk62odosaPH1+rfps3b9a6GCLSL3KzT2q1PSIj31SgGiKi+lXrELV161Z07NgRnp6eUPBOMUSkI3jrFiLSd7UOUZMnT8aOHTtw6dIljBs3Dq+//rrsrVKIqHnjyeNE1FzU+jpRa9euRU5ODubMmYMvv/wSTk5OePXVV5GUlMSZKSICIB+gAgICGKCISC9p/e28y5cvY+vWrfjvf/+LiooK/Pzzz2jVqlV916ez+O08ak7UajUWL16s0c7wRES6plG+nWdgYACVSgVBEFBZWantbohIx3H5joiaqzrd9qW0tBQ7duzAP//5T3Tr1g0//fQT1qxZgytXrnAWiqgZkgtQb731FgMUETULtZ6Jeuutt7Bz5044OTlh/Pjx2LFjB2xtbRuyNiJqom7fvo1Vq1ZptDM8EVFzUutzogwMDNChQwd4enrWeIXhL774ot6K02U8J4r0FZfviEifNcg5USEhIbw9A1EzJxeg5s+fD0NDQwWqISJSVp0utklEzVNGRgb27t2r0c7ZJyJqzrT+dh4RNQ9cviMikscQRUTV4q1biIiqxxBFRBq2bduG7OxsjXYGKCKivzBEEZGE3OyTu7s7Xn75ZQWqISJquhiiiEjE5TsiotpjiCIinjxORKQFhiiiZk4uQI0cORLdunVToBoiIt3BEEXUTJWVlSEqKkqjnbNPRES1wxBF1Axx+Y6I6PExRBE1M3IBqmfPWfj3v80VqIaISHcxRBE1E9evX8fGjRs12jn7RESkHYYoomaAy3dERPWPIYpIz8kFqAULFkClUilQDRGR/mCIItJTR48exTfffKPR7ukZAeYnIqLHxxBFpIfkZp/s7OwwefJkBaohItJPDFFEeoa3biEiahwMUUR6Ii4uDkVFRRrtDFBERA2DIYpID8jNPvn7+6Nfv34KVENE1DwwRBHpMEEQsGjRIo12T88IMD8RETUshigiHcVrPxERKYshikgHyQUoN7c3ERxsr0A1RETNk4HSBaxduxbOzs4wMzODt7c3Tp48WWP/3bt3w83NDWZmZnB3d8f+/fur7fvmm29CpVIhLi5O0n7r1i289tprsLCwgJWVFUJDQ3H37l1Jn7Nnz+LZZ5+FmZkZnJycsHTpUq3HSFRf7ty5U+237xigiIgal6IhKj4+HmFhYYiIiMDp06fRq1cv+Pv7Iz8/X7Z/amoqRo4cidDQUJw5cwZBQUEICgpCZmamRt89e/bg+PHjcHR01Nj22muv4eeff0ZycjISExNx5MgRvPHGG+L24uJiDBkyBB07dkR6ejpiYmKwcOFCbNiwof4GT1RHkZGRWL58uUY7l++IiJShEgRBUOrg3t7e6NOnD9asWQMAUKvVcHJywrRp0zB37lyN/sHBwSgpKUFiYqLY1q9fP3h4eGD9+vVi27Vr1+Dt7Y2kpCQMGzYMM2fOxMyZMwEA586dw5NPPokffvgBvXv3BgAcPHgQzz//PK5evQpHR0esW7cO7733HnJzc2FiYgIAmDt3LhISEpCVlVWrsRUXF8PS0hJFRUWwsLDQ6udDVEVu9mnevHkwNjZWoBoiIv1Vl9/fis1ElZWVIT09HX5+fn8VY2AAPz8/pKWlyb4mLS1N0h948DXuh/ur1WqMHj0as2fPRo8ePWT3YWVlJQYoAPDz84OBgQFOnDgh9hkwYIAYoKqOc/78edy+fVu2ttLSUhQXF0seRI/rt99+q3b5jgGKiEhZioWoGzduoLKyEvb20vM47O3tkZubK/ua3NzcR/ZfsmQJjIyMMH369Gr3YWdnJ2kzMjKCtbW1uJ/qjlO1TU5UVBQsLS3Fh5OTk2w/otqKjIzE9u3bNdq5fEdE1DTo1bfz0tPTsXLlSpw+fbrR71AfHh6OsLAw8XlxcTGDFGlNbvbJ0zMCgYEKFENERLIUC1G2trYwNDREXl6epD0vLw8ODg6yr3FwcKix/9GjR5Gfn48OHTqI2ysrK/HOO+8gLi4O2dnZcHBw0DhxvaKiArdu3RL3U91xqrbJMTU1hamp6aOGTVSjtWv348aNHzTaOftERNT0KLacZ2JiAi8vL6SkpIhtarUaKSkp8PHxkX2Nj4+PpD8AJCcni/1Hjx6Ns2fPIiMjQ3w4Ojpi9uzZSEpKEvdRWFiI9PR0cR/ffPMN1Go1vL29xT5HjhxBeXm55Diurq5o06ZN/fwAiP4mMjJSI0B5eXkxQBERNVGKLueFhYVhzJgx6N27N/r27Yu4uDiUlJRg3LhxAICQkBC0b98eUVFRAIAZM2Zg4MCBiI2NxbBhw7Bz506cOnVKvPSAjY0NbGxsJMcwNjaGg4MDXF1dAQDdu3dHQEAAJk6ciPXr16O8vBxTp07FiBEjxMshjBo1CpGRkQgNDcW7776LzMxMrFy5EitWrGisHw01M9WdPE5ERE2XoiEqODgYBQUFWLBgAXJzc+Hh4YGDBw+KJ3FfuXIFBgZ/TZb5+vpi+/btmD9/PubNm4euXbsiISEBPXv2rNNxP/30U0ydOhWDBw+GgYEB/v3vf2PVqlXidktLS3z99deYMmUKvLy8YGtriwULFkiuJUVUH9auXYsbN25otDNAERE1fYpeJ0qf8TpR9Chys0+jR49Gp06dFKiGiIiAuv3+1qtv5xHpgsrKSnzwwQca7Z6eEWB+IiLSHQxRRA1s3z4gOhqYOxc4c0Zz9gng8h0RkS5iiCJqYNHRQFqafICaM2cOWrRooUBVRET0uBiiiBrY228Xwt9/pUY7Z5+IiHQbQxRRA6hawvP315x9MjQ0xPz58xWoioiI6hNDFFEDqC5ALViwoNFvSURERA2DIYqonl25cgX+/ls02rl8R0SkXxiiiOqR3LWffHx8MGTIEAWqISKihsQQRVRPeOsWIqLmhSGK6DEdP35cvMH1wxigiIj0G0MU0WOQm30KCQmBi4uLAtUQEVFjYogi0oIgCFi0aJFGO2efiIiaD4Yoojrat28fzpw5o9HOAEVE1LwwRBHVgdzy3dtvv/3IO30TEZH+MVC6ACJdUFFRIRugkpIiGKCIiJopzkQRPcK2bduQnZ0tabt1ywE//DAJc+cqUxMRESmPIYqoBnKzT/Hx8xEdbYiVmvcUJiKiZoQhikhGcXExVqxYodEeEREBnj9OREQAQxSRBrnZp3/+85/w9fVVoBoiImqqGKKIHsJbtxARUW0xRBEBuHLlCrZs2aLRzgBFRETVYYiiZk9u9un1119H586dFaiGiIh0BUMUNWtcviMiIm0xRFGzlJ6ejsTERI12BigiIqothihqduRmn6ZNmwZra2sFqiEiIl3FEEXNhiAIWLRokUY7Z5+IiEgbDFHULHz55Zc4ffq0pM3Ozg6TJ09WqCIiItJ1DFGk9+SW78LDw2FiYqJANUREpC8Yokhv3b9/H0uWLNFo5/IdERHVB4Yo0kurVq3C7du3JW19+/bF0KFDFaqIiIj0DUMU6R255bsFCxZApVIpUA0REekrhijSGzdu3MDatWs12rl8R0REDYEhivSC3OxTUFAQevXqpUA1RETUHBgoXcDatWvh7OwMMzMzeHt74+TJkzX23717N9zc3GBmZgZ3d3fs379fsn3hwoVwc3ODubk52rRpAz8/P5w4cULcfvjwYahUKtnHDz/8AADIzs6W3X78+PH6/wHQY6vu1i0MUERE1JAUDVHx8fEICwtDREQETp8+jV69esHf3x/5+fmy/VNTUzFy5EiEhobizJkzCAoKQlBQEDIzM8U+3bp1w5o1a/DTTz/h+++/h7OzM4YMGYKCggIAgK+vL3JyciSPCRMmwMXFBb1795Yc79ChQ5J+Xl5eDffDoDq7cuUK731HRESKUQmCICh1cG9vb/Tp0wdr1qwBAKjVajg5OWHatGmYO3euRv/g4GCUlJRI7nnWr18/eHh4YP369bLHKC4uhqWlJQ4dOoTBgwdrbC8vL0f79u0xbdo0vP/++wAezES5uLjgzJkz8PDw0GpsVcctKiqChYWFVvug6smFp7S0CTh4sL0C1RARkb6oy+9vxWaiysrKkJ6eDj8/v7+KMTCAn58f0tLSZF+TlpYm6Q8A/v7+1fYvKyvDhg0bYGlpWe3Szr59+3Dz5k2MGzdOY1tgYCDs7OzQv39/7Nu3r8bxlJaWori4WPKg+icIgmyASkqKwFtvMUAREVHjUezE8hs3bqCyshL29vaSdnt7e2RlZcm+Jjc3V7Z/bm6upC0xMREjRozAvXv30K5dOyQnJ8PW1lZ2n5s2bYK/vz+eeOIJsa1Vq1aIjY3FM888AwMDA3z++ecICgpCQkICAgMDZfcTFRUl+8ud6s/p06fx5ZdfStrat2+PCRMmgCt4RETU2PTy23mDBg1CRkYGbty4gY0bN+LVV1/FiRMnYGdnJ+l39epVJCUlYdeuXZJ2W1tbhIWFic/79OmD69evIyYmptoQFR4eLnlNcXExnJyc6nFUzZtcQJ09ezZatmypQDVEREQKLufZ2trC0NAQeXl5kva8vDw4ODjIvsbBwaFW/c3NzdGlSxf069cPmzZtgpGRETZt2qSxvy1btsDGxqbaYPQwb29vXLhwodrtpqamsLCwkDzo8VVWVlZ78jgDFBERKUmxEGViYgIvLy+kpKSIbWq1GikpKfDx8ZF9jY+Pj6Q/ACQnJ1fb/+H9lpaWStoEQcCWLVsQEhICY2PjR9abkZGBdu3aPbIf1Z8DBw7ggw8+kLT17duX374jIqImQdHlvLCwMIwZMwa9e/dG3759ERcXh5KSEvEk75CQELRv3x5RUVEAgBkzZmDgwIGIjY3FsGHDsHPnTpw6dQobNmwAAJSUlODDDz9EYGAg2rVrJ17B+tq1axg+fLjk2N988w0uXbqECRMmaNS1bds2mJiYwNPTEwDwxRdfYPPmzfj4448b8sdBD5GbfZo/fz4MDQ0VqIaIiEiToiEqODgYBQUFWLBgAXJzc+Hh4YGDBw+KJ49fuXIFBgZ/TZb5+vpi+/btmD9/PubNm4euXbsiISEBPXv2BAAYGhoiKysL27Ztw40bN2BjY4M+ffrg6NGj6NGjh+TYmzZtgq+vL9zc3GRrW7x4MS5fvgwjIyO4ubkhPj4er7zySgP9JKjKvXv3EBMTo9HO2SciImpqFL1OlD7jdaLqbuPGjbh+/bqkLTAwUJwRJCIiamh1+f2tl9/OI93DK48TEZGuYYgiReXn52PdunUa7QxQRETU1DFEkWLkZp/GjRuHDh06KFANERFR3TBEkSK4fEdERLqOIYoa1a+//oodO3ZI2lq0aIE5c+YoVBEREZF2GKKo0cjNPs2YMQNWVlaNXwwREdFjYoiiBicIAhYtWqTRzuU7IiLSZQxR1KCOHTuGQ4cOSdrc3NwQHBysUEVERET1gyGKGozc8l14eDhMTEwUqIaIiKh+MURRvSsvL8dHH32k0c7lOyIi0icMUVSvdu/ejV9++UXSNmjQIAwYMEChioiIiBoGQxTVG7nluwULFkClUilQDRERUcNiiKLHVlRUhLi4OI12Lt8REZE+Y4iixxIbG4u7d+9K2oKDg+Hm5qZQRURERI2DIYq0xlu3EBFRc8YQRXV29epVbNq0SaOdAYqIiJoThiiqE7nZp0mTJsHBwUGBaoiIiJTDEEW1xuU7IiKivzBE0SP9+OOPSEhIkLTZ2dlh8uTJyhRERETUBDBEUY3kZp9mzZoFc3NzBaohIiJqOhiiSJZarcbixYs12rl8R0RE9ABDFGk4deoUvvrqK0mbl5cXXnjhBYUqIiIianoYokhCbvmuV6/5eOEFQwWqISIiaroMlC6AmobS0lLZALVwYQSWLmWAIiIi+jvORBEOHDiAkydPStpGjBiB8+dd4eMDzJ2rUGFERERNGENUMyc3+7RgwQKoVCq4ugKBgQoURUREpAMYopqpe/fuISYmRtJmZmaGd999V6GKiIiIdAtDVDO0fv03yMs7KmlLTZ2EpCTeuoWIiKi2GKKama1btyIv77KkLSkpguc9ERER1RFDVDPx559/YunSpZK2du0G4Y03BoDXzyQiIqo7hqhm4JdffsHu3bslbfPmzYOxsbFCFREREek+hig9JggCNm/ejKtXr4ptvr6++Oc//6lgVURERPpB8Yttrl27Fs7OzjAzM4O3t7fG9Yr+bvfu3XBzc4OZmRnc3d2xf/9+yfaFCxfCzc0N5ubmaNOmDfz8/HDixAlJH2dnZ6hUKskjOjpa0ufs2bN49tlnYWZmBicnJ42lsKauuLgYixYtkgSoN998kwGKiIionigaouLj4xEWFoaIiAicPn0avXr1gr+/P/Lz82X7p6amYuTIkQgNDcWZM2cQFBSEoKAgZGZmin26deuGNWvW4KeffsL3338PZ2dnDBkyBAUFBZJ9LVq0CDk5OeJj2rRp4rbi4mIMGTIEHTt2RHp6OmJiYrBw4UJs2LChYX4Q9ezUqVNYsWKF+NzMzAzvv/8+7O3tFayKiIhIv6gEQRCUOri3tzf69OmDNWvWAADUajWcnJwwbdo0zJX5ulhwcDBKSkqQmJgotvXr1w8eHh5Yv3697DGKi4thaWmJQ4cOYfDgwQAezETNnDkTM2fOlH3NunXr8N577yE3NxcmJiYAgLlz5yIhIQFZWVm1GlvVcYuKimBhYVGr1zwutVqNuLg43LlzR2wbMmQIfHx8GuX4REREuq4uv78Vm4kqKytDeno6/Pz8/irGwAB+fn5IS0uTfU1aWpqkPwD4+/tX27+srAwbNmyApaUlevXqJdkWHR0NGxsbeHp6IiYmBhUVFZLjDBgwQAxQVcc5f/48bt++XeexNoaCggIsXrxYEqBmzJjBAEVERNRAFDux/MaNG6isrNRYYrK3t692tic3N1e2f25urqQtMTERI0aMwL1799CuXTskJyfD1tZW3D59+nQ8/fTTsLa2RmpqKsLDw5GTk4Ply5eLx3FxcdE4TtW2Nm3aaNRWWlqK0tJS8XlxcfGjfgT15vDhw/juu+/E5/b29pg0aRJUKlWj1UBERNTc6OW38wYNGoSMjAzcuHEDGzduxKuvvooTJ07Azs4OABAWFib2feqpp2BiYoJJkyYhKioKpqamWh0zKipK9j50DamiogIffvihpO3ll1+Gu7t7o9ZBRETUHCm2nGdrawtDQ0Pk5eVJ2vPy8uDgIH/7EQcHh1r1Nzc3R5cuXdCvXz9s2rQJRkZG2LRpU7W1eHt7o6KiAtnZ2TUep2qbnPDwcBQVFYmPP/74o9rj1YerV69qBKhZs2YxQBERETUSxUKUiYkJvLy8kJKSIrap1WqkpKRUex6Pj4+PpD8AJCcnP/K8H7VaLVlq+7uMjAwYGBiIM1U+Pj44cuQIysvLJcdxdXWVXcoDAFNTU1hYWEgeDSUpKUkSCrt164aIiAiYm5s32DGJiIhIStHlvLCwMIwZMwa9e/dG3759ERcXh5KSEowbNw4AEBISgvbt2yMqKgrAgxOlBw4ciNjYWAwbNgw7d+7EqVOnxEsPlJSU4MMPP0RgYCDatWuHGzduYO3atbh27RqGDx8O4MFJ4ydOnMCgQYPQunVrpKWl4e2338brr78uBqRRo0YhMjISoaGhePfdd5GZmYmVK1dKLhuglMrKShw/flx8/tprr6FLly4KVkRERNRMCQpbvXq10KFDB8HExETo27evcPz4cXHbwIEDhTFjxkj679q1S+jWrZtgYmIi9OjRQ/jqq6/EbX/++afwr3/9S3B0dBRMTEyEdu3aCYGBgcLJkyfFPunp6YK3t7dgaWkpmJmZCd27dxc++ugj4f79+5Lj/Pjjj0L//v0FU1NToX379kJ0dHSdxlVUVCQAEIqKiur0uto4fPiw8N///lejZiIiIno8dfn9reh1ovSZEteJIiIiosejE9eJIu3t2wf4+j74LxERESmDIUoHRUcDaWkP/ktERETKYIjSQXPnAj4+D/5LREREytDLi23qu8DABw8iIiJSDmeiiIiIiLTAEEVERESkBYYoIiIiIi0wRBERERFpgSGKiIiISAsMUURERERaYIgiIiIi0gJDFBEREZEWGKKIiIiItMAQRURERKQFhigiIiIiLTBEEREREWmBIYqIiIhIC0ZKF6CvBEEAABQXFytcCREREdVW1e/tqt/jNWGIaiB37twBADg5OSlcCREREdXVnTt3YGlpWWMflVCbqEV1plarcf36dbRu3RoqlarBj1dcXAwnJyf88ccfsLCwaPDjKa05jbc5jRXgePVZcxorwPHqKkEQcOfOHTg6OsLAoOaznjgT1UAMDAzwxBNPNPpxLSwsdPovb101p/E2p7ECHK8+a05jBTheXfSoGagqPLGciIiISAsMUURERERaYIjSE6ampoiIiICpqanSpTSK5jTe5jRWgOPVZ81prADH2xzwxHIiIiIiLXAmioiIiEgLDFFEREREWmCIIiIiItICQxQRERGRFhiiFLJ27Vo4OzvDzMwM3t7eOHnyZI39d+/eDTc3N5iZmcHd3R379++XbF+4cCHc3Nxgbm6ONm3awM/PDydOnJD0cXZ2hkqlkjyio6Mlfc6ePYtnn30WZmZmcHJywtKlS3VyvIcPH9YYa9Xjhx9+AABkZ2fLbj9+/HiTGuvD3nzzTahUKsTFxUnab926hddeew0WFhawsrJCaGgo7t69K+mjK+/tw+TGm52djdDQULi4uKBFixbo3LkzIiIiUFZWJunTEO+tEuMFlPvsNvZYlfzcNsR4x44dq1FnQECApI9Sn93GHqvSn9sGI1Cj27lzp2BiYiJs3rxZ+Pnnn4WJEycKVlZWQl5enmz/Y8eOCYaGhsLSpUuFX375RZg/f75gbGws/PTTT2KfTz/9VEhOThYuXrwoZGZmCqGhoYKFhYWQn58v9unYsaOwaNEiIScnR3zcvXtX3F5UVCTY29sLr732mpCZmSns2LFDaNGihfCf//xH58ZbWloqGWdOTo4wYcIEwcXFRVCr1YIgCMKlS5cEAMKhQ4ck/crKyprUWKt88cUXQq9evQRHR0dhxYoVkm0BAQFCr169hOPHjwtHjx4VunTpIowcOVLcrkvv7aPGe+DAAWHs2LFCUlKScPHiRWHv3r2CnZ2d8M4774h9GuK9VWq8gqDMZ1eJsSr1uW2o8Y4ZM0YICAiQ1Hnr1i3JfpT47CoxViU/tw2JIUoBffv2FaZMmSI+r6ysFBwdHYWoqCjZ/q+++qowbNgwSZu3t7cwadKkao9RVFQk/mWs0rFjR41/nB/2f//3f0KbNm2E0tJSse3dd98VXF1dHzWkGik13oeVlZUJbdu2FRYtWiS2VX1gz5w5U4fR1Kyhxnr16lWhffv2QmZmpsb7+MsvvwgAhB9++EFsO3DggKBSqYRr164JgqB7721N45WzdOlSwcXFRXzeEO+tICg3XiU+u03hvW2sz60gNMx4x4wZI7z00kvVHlOpz64SY5XTWJ/bhsTlvEZWVlaG9PR0+Pn5iW0GBgbw8/NDWlqa7GvS0tIk/QHA39+/2v5lZWXYsGEDLC0t0atXL8m26Oho2NjYwNPTEzExMaioqJAcZ8CAATAxMZEc5/z587h9+3adx1pVi5LjrbJv3z7cvHkT48aN09gWGBgIOzs79O/fH/v27avt0GTraIixqtVqjB49GrNnz0aPHj1k92FlZYXevXuLbX5+fjAwMBCXOHXpvX3UeOUUFRXB2tpao72+3ltA+fE25mdX6bFWaYzPLdCw/04dPnwYdnZ2cHV1xeTJk3Hz5k3JPhr7s6vUWOU0xue2oTFENbIbN26gsrIS9vb2knZ7e3vk5ubKviY3N7dW/RMTE9GqVSuYmZlhxYoVSE5Ohq2trbh9+vTp2LlzJ7799ltMmjQJH330EebMmfPI41Rt04aS433Ypk2b4O/vL7kpdKtWrRAbG4vdu3fjq6++Qv/+/REUFKT1h7ahxrpkyRIYGRlh+vTp1e7Dzs5O0mZkZARra2txP7r03j5qvH934cIFrF69GpMmTRLb6vu9BZQdb2N/dpvKe9sYn1ug4cYbEBCA//73v0hJScGSJUvw3XffYejQoaisrBT30difXaXG+neN9bltaEZKF0D1Z9CgQcjIyMCNGzewceNGvPrqqzhx4oT4IQ0LCxP7PvXUUzAxMcGkSZMQFRWlk5fpf9R4q1y9ehVJSUnYtWuXpN3W1lbyM+nTpw+uX7+OmJgYBAYGNsoYHiU9PR0rV67E6dOnoVKplC6nwdV1vNeuXUNAQACGDx+OiRMniu268N4CtR+vPnx26/re6vLntsqIESPEP7u7u+Opp55C586dcfjwYQwePFjByupfXcaq65/bh3EmqpHZ2trC0NAQeXl5kva8vDw4ODjIvsbBwaFW/c3NzdGlSxf069cPmzZtgpGRETZt2lRtLd7e3qioqEB2dnaNx6napo2mMN4tW7bAxsamVh9Cb29vXLhw4ZH95DTEWI8ePYr8/Hx06NABRkZGMDIywuXLl/HOO+/A2dlZ3Ed+fr5kHxUVFbh165a4H115b2sz3irXr1/HoEGD4Ovriw0bNjyy3sd5bwHlx/v3sTTkZ7cpjLWxPrdAw/479bBOnTrB1tZWrFWJz65SY63S2J/bhsYQ1chMTEzg5eWFlJQUsU2tViMlJQU+Pj6yr/Hx8ZH0B4Dk5ORq+z+839LS0mq3Z2RkwMDAQJy58fHxwZEjR1BeXi45jqurK9q0afPIsclReryCIGDLli0ICQmBsbHxI+vNyMhAu3btHtlPTkOMdfTo0Th79iwyMjLEh6OjI2bPno2kpCRxH4WFhUhPTxf38c0330CtVsPb21vsowvvbW3GCzz4P9nnnnsOXl5e2LJlCwwMHv1P2eO8t4Cy45UbS0N+dpUea2N+boHG+3fq6tWruHnzplirEp9dpcYKKPO5bXBKn9neHO3cuVMwNTUVtm7dKvzyyy/CG2+8IVhZWQm5ubmCIAjC6NGjhblz54r9jx07JhgZGQnLli0Tzp07J0REREi+Xnr37l0hPDxcSEtLE7Kzs4VTp04J48aNE0xNTYXMzExBEAQhNTVVWLFihZCRkSFcvHhR+N///ie0bdtWCAkJEY9TWFgo2NvbC6NHjxYyMzOFnTt3Ci1btqyXr8E39nirHDp0SAAgnDt3TqOurVu3Ctu3bxfOnTsnnDt3Tvjwww8FAwMDYfPmzU1mrHLkvtEUEBAgeHp6CidOnBC+//57oWvXrpKvSevKe1ub8V69elXo0qWLMHjwYOHq1auSr0JXaYj3VqnxKvXZVervsiA0/ue2IcZ7584dYdasWUJaWppw6dIl4dChQ8LTTz8tdO3aVbh//764HyU+u0qMVcnPbUNiiFLI6tWrhQ4dOggmJiZC3759hePHj4vbBg4cKIwZM0bSf9euXUK3bt0EExMToUePHsJXX30lbvvzzz+Ff/3rX4Kjo6NgYmIitGvXTggMDBROnjwp9klPTxe8vb0FS0tLwczMTOjevbvw0UcfST7MgiAIP/74o9C/f3/B1NRUaN++vRAdHa2T460ycuRIwdfXV7amrVu3Ct27dxdatmwpWFhYCH379hV2797dpMYqR+4Xz82bN4WRI0cKrVq1EiwsLIRx48YJd+7ckfTRhfdWzt/Hu2XLFgGA7KNKQ723SoxXyc+uEn+XBUGZz60g1O947927JwwZMkRo27atYGxsLHTs2FGYOHGiGFSqKPXZbeyxKv25bSgqQRAEJWbAiIiIiHQZz4kiIiIi0gJDFBEREZEWGKKIiIiItMAQRURERKQFhigiIiIiLTBEEREREWmBIYqIiIhICwxRRERERFpgiCIiApCbm4tp06ahU6dOMDU1hZOTE1588UXJPcNSU1Px/PPPo02bNjAzM4O7uzuWL1+OyspKsU92djZCQ0Ph4uKCFi1aoHPnzoiIiEBZWZkSwyKiBmSkdAFERErLzs7GM888AysrK8TExMDd3R3l5eVISkrClClTkJWVhT179uDVV1/FuHHj8O2338LKygqHDh3CnDlzkJaWhl27dkGlUiErKwtqtRr/+c9/0KVLF2RmZmLixIkoKSnBsmXLlB4qEdUj3vaFiJq9559/HmfPnsX58+dhbm4u2VZYWAhjY2N07NgRAwcOxOeffy7Z/uWXXyIwMBA7d+5EcHCw7P5jYmKwbt06/P777w02BiJqfFzOI6Jm7datWzh48CCmTJmiEaAAwMrKCl9//TVu3ryJWbNmaWx/8cUX0a1bN+zYsaPaYxQVFcHa2rpe6yYi5TFEEVGzduHCBQiCADc3t2r7/PrrrwCA7t27y253c3MT+8jtf/Xq1Zg0adLjF0tETQpDFBE1a3U5o6GuZz9cu3YNAQEBGD58OCZOnFjX0oioiWOIIqJmrWvXruIJ4dXp1q0bAODcuXOy28+dOyf2qXL9+nUMGjQIvr6+2LBhQ/0VTERNBkMUETVr1tbW8Pf3x9q1a1FSUqKxvbCwEEOGDIG1tTViY2M1tu/btw+//fYbRo4cKbZdu3YNzz33HLy8vLBlyxYYGPCfWiJ9xG/nEVGz9/vvv+OZZ56BtbU1Fi1ahKeeegoVFRVITk7GunXrcO7cOXz22WcYMWIExo8fj6lTp8LCwgIpKSmYPXs2Bg8eLF7ioCpAdezYEdu2bYOhoaF4HAcHBwVHSUT1jSGKiAhATk4OPvzwQyQmJiInJwdt27aFl5cX3n77bTz33HMAgKNHj+LDDz9EWloa7t+/j65du2LcuHGYOXOmGJa2bt2KcePGyR6D/9wS6ReGKCIiIiItcKGeiIiISAsMUURERERaYIgiIiIi0gJDFBEREZEWGKKIiIiItMAQRURERKQFhigiIiIiLTBEEREREWmBIYqIiIhICwxRRERERFpgiCIiIiLSAkMUERERkRb+H7cJqaRerTSRAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHHCAYAAACWQK1nAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT71JREFUeJzt3XlcVGX///H3sLsB7oihuKWmprghdt+ZyS2YabaqlXtm5U5ZYiYuGVjuaZmV2V1uLaZ+zSQ1vbMgyy0zl9Iks0BRU1wSBM7vD39OTTMY4MCZgdfz8ZiHzTXXnPkcTwNvr+s651gMwzAEAACA6+JhdgEAAAAlAaEKAADACQhVAAAATkCoAgAAcAJCFQAAgBMQqgAAAJyAUAUAAOAEhCoAAAAnIFQBAAA4AaEKQIlmsVg0ceJEs8uw6t+/v0JDQ80uA0ARIFQBKHaLFy+WxWKxPvz8/HTjjTdq2LBhOn78eJF+dlJSkiZOnKgzZ844dbu33XabzT5VqlRJbdq00aJFi5Sbm+uUz3jhhRe0atUqp2wLgPN5mV0AgNJr8uTJqlOnji5duqQvvvhCr776qtatW6e9e/eqbNmyTvmMP/74Q15ef/6oS0pK0qRJk9S/f38FBgY65TOuuuGGGxQfHy9JSk9P13//+18NGjRIP/zwgxISEq57+y+88ILuu+8+9ejR47q3BcD5CFUATNOlSxe1bt1akvTII4+ocuXKmjlzplavXq3evXsXeru5ubnKysqSn5+f/Pz8nFXuPwoICNDDDz9sfT5kyBA1bNhQ8+bN05QpU+Tt7V1stQAofkz/AXAZt99+uyTpyJEjkqTp06erffv2qly5ssqUKaNWrVrpgw8+sHufxWLRsGHDtGTJEjVp0kS+vr5av3699bWra6omTpyoMWPGSJLq1KljnapLSUlRhw4d1Lx5c4d1NWzYUFFRUQXen7Jly6pdu3a6cOGC0tPT8+x34cIFPfnkkwoJCZGvr68aNmyo6dOnyzAMm328cOGC3n77bWvd/fv3L3BNAIoOI1UAXMbhw4clSZUrV5YkzZkzR927d9dDDz2krKwsLV++XPfff7/Wrl2rrl272rz3s88+03vvvadhw4apSpUqDheD33PPPfrhhx+0bNkyzZo1S1WqVJEkVa1aVX369NHgwYO1d+9eNW3a1Pqeb775Rj/88IPGjx9fqH366aef5OnpmedUo2EY6t69uzZv3qxBgwapRYsWSkxM1JgxY/Trr79q1qxZkqR33nlHjzzyiNq2batHH31UklSvXr1C1QSgiBgAUMzeeustQ5KxceNGIz093fjll1+M5cuXG5UrVzbKlCljHDt2zDAMw7h48aLN+7KysoymTZsat99+u027JMPDw8P4/vvv7T5LkhEXF2d9/tJLLxmSjCNHjtj0O3PmjOHn52c888wzNu0jRowwypUrZ5w/f/6a+9ShQwejUaNGRnp6upGenm7s37/fGDFihCHJ6Natm7Vfv379jNq1a1ufr1q1ypBkPP/88zbbu++++wyLxWIcOnTI2lauXDmjX79+16wDgHmY/gNgmsjISFWtWlUhISHq1auXypcvr48++kg1a9aUJJUpU8ba9/fff9fZs2f173//Wzt37rTbVocOHXTTTTcVupaAgADdddddWrZsmXXaLScnRytWrFCPHj1Urly5f9zGgQMHVLVqVVWtWlWNGzfWyy+/rK5du2rRokV5vmfdunXy9PTUiBEjbNqffPJJGYahTz75pND7BKB4Mf0HwDTz58/XjTfeKC8vL1WvXl0NGzaUh8ef/9Zbu3atnn/+ee3evVuZmZnWdovFYretOnXqXHc9ffv21YoVK7R161bdeuut2rhxo44fP64+ffrk6/2hoaF6/fXXrZeJaNCggapVq3bN9/z8888KDg5WhQoVbNobN25sfR2AeyBUATBN27ZtrWf//d3WrVvVvXt33XrrrXrllVdUo0YNeXt766233tLSpUvt+v91VKuwoqKiVL16db377ru69dZb9e677yooKEiRkZH5en+5cuXy3RdAycP0HwCX9OGHH8rPz0+JiYkaOHCgunTp4pTA4miU6ypPT089+OCD+uCDD/T7779r1apV6t27tzw9Pa/7c/NSu3Zt/fbbbzp37pxN+4EDB6yvX3Wt2gGYj1AFwCV5enrKYrEoJyfH2paSknLdVxS/ujYqryuq9+nTR7///ruGDBmi8+fP21x3qijccccdysnJ0bx582zaZ82aJYvFoi5duljbypUr5/QrwQNwHqb/ALikrl27aubMmYqOjtaDDz6oEydOaP78+apfv7727NlT6O22atVKkvTss8+qV69e8vb2Vrdu3axhKywsTE2bNtX777+vxo0bq2XLlk7Zn7x069ZNHTt21LPPPquUlBQ1b95cn376qVavXq1Ro0bZXDahVatW2rhxo2bOnKng4GDVqVNH4eHhRVofgPxjpAqAS7r99tv15ptvKi0tTaNGjdKyZcs0bdo03X333de13TZt2mjKlCn69ttv1b9/f/Xu3dvuwpx9+/aVpHwvUL8eHh4eWrNmjUaNGqW1a9dq1KhR2rdvn1566SXNnDnTpu/MmTPVqlUrjR8/Xr1799arr75a5PUByD+LYfzlkr0AAM2ZM0ejR49WSkqKatWqZXY5ANwEoQoA/sIwDDVv3lyVK1fW5s2bzS4HgBthTRUA6Mr999asWaPNmzfru+++0+rVq80uCYCbYaQKAHTlzMI6deooMDBQTzzxhKZOnWp2SQDcDKEKAADACTj7DwAAwAkIVQAAAE7AQvVCys3N1W+//aYKFSpw6wgAANyEYRg6d+6cgoODbW7g7gyEqkL67bffFBISYnYZAACgEH755RfdcMMNTt0moaqQKlSoIOnKQfH39ze5GgAAkB8ZGRkKCQmx/h53JkJVIV2d8vP39ydUAQDgZopi6Y7pC9Xnz5+v0NBQ+fn5KTw8XF9//fU1+7///vtq1KiR/Pz81KxZM61bt87m9f79+8tisdg8oqOjbfqEhoba9UlISHD6vgEAgNLD1FC1YsUKxcTEKC4uTjt37lTz5s0VFRWlEydOOOyflJSk3r17a9CgQdq1a5d69OihHj16aO/evTb9oqOjlZqaan0sW7bMbluTJ0+26TN8+PAi2UcAAFA6mBqqZs6cqcGDB2vAgAG66aabtGDBApUtW1aLFi1y2H/OnDmKjo7WmDFj1LhxY02ZMkUtW7bUvHnzbPr5+voqKCjI+qhYsaLdtipUqGDTp1y5ckWyjwAAoHQwbU1VVlaWduzYodjYWGubh4eHIiMjlZyc7PA9ycnJiomJsWmLiorSqlWrbNq2bNmiatWqqWLFirr99tv1/PPPq3LlyjZ9EhISNGXKFNWqVUsPPvigRo8eLS+vvP86MjMzlZmZaX2ekZHxj/uYm5urrKysf+wH9+ft7S1PT0+zywAAmMi0UHXy5Enl5OSoevXqNu3Vq1fXgQMHHL4nLS3NYf+0tDTr8+joaN1zzz2qU6eODh8+rHHjxqlLly5KTk62/tIbMWKEWrZsqUqVKikpKUmxsbFKTU3VzJkz86w3Pj5ekyZNyvf+ZWVl6ciRI8rNzc33e+DeAgMDFRQUxHXLAKCUKnFn//Xq1cv6382aNdPNN9+sevXqacuWLerUqZMk2Yx23XzzzfLx8dGQIUMUHx8vX19fh9uNjY21ed/VUzIdMQxDqamp8vT0VEhIiNMvLgbXYhiGLl68aF0LWKNGDZMrAgCYwbRQVaVKFXl6eur48eM27cePH1dQUJDD9wQFBRWovyTVrVtXVapU0aFDh6yh6u/Cw8OVnZ2tlJQUNWzY0GEfX1/fPAPX32VnZ+vixYsKDg5W2bJl8/UeuLcyZcpIkk6cOKFq1aoxFQgApZBpQyg+Pj5q1aqVNm3aZG3Lzc3Vpk2bFBER4fA9ERERNv0lacOGDXn2l6Rjx47p1KlT1xw92L17tzw8PFStWrUC7oVjOTk5kq7sI0qPqwH68uXLJlcCADCDqdN/MTEx6tevn1q3bq22bdtq9uzZunDhggYMGCBJ6tu3r2rWrKn4+HhJ0siRI9WhQwfNmDFDXbt21fLly7V9+3YtXLhQknT+/HlNmjRJ9957r4KCgnT48GE9/fTTql+/vqKioiRdWey+bds2dezYURUqVFBycrJGjx6thx9+2OFZgteDtTWlC8cbAEo3U0NVz549lZ6ergkTJigtLU0tWrTQ+vXrrYvRjx49arMeqX379lq6dKnGjx+vcePGqUGDBlq1apWaNm0qSfL09NSePXv09ttv68yZMwoODlbnzp01ZcoU69Sdr6+vli9frokTJyozM1N16tTR6NGj7c4qBAAAKAiLYRiG2UW4o4yMDAUEBOjs2bN2t6m5dOmSjhw5ojp16sjPz8+kClHcOO4A4Pqu9fv7enFaGqz+eosfb29vVa9eXf/5z3+0aNGiAl0aYvHixQoMDCy6QgEAcEGEKti4eouflJQUffLJJ+rYsaNGjhypO++8U9nZ2WaXBwCAyyJUwcbVW/zUrFlTLVu21Lhx47R69Wp98sknWrx4saQrtxdq1qyZypUrp5CQED3xxBM6f/68pCtXsx8wYIDOnj1rHfWaOHGiJOmdd95R69atrbcIevDBB/O8zyMAoPRas0Zq3/7Kn+6EUFUMDMNQVlaWKQ9nLJm7/fbb1bx5c61cuVLSldsJzZ07V99//73efvttffbZZ3r66aclXTmZYPbs2fL397ferPqpp56SdOVSA1OmTNG3336rVatWKSUlRf3797/u+gAAJcuHH27UDTe8r4QEsyspmBJ3RXVXdPnyZetlIYpbbGysU66X1ahRI+3Zs0eSNGrUKGt7aGionn/+eT322GN65ZVX5OPjo4CAAFksFruLsg4cOND633Xr1tXcuXPVpk0bnT9/XuXLl7/uGgEA7u2PP/7Qiy++qLp1rzx/4IEMSc5dTF6UCFXIF8MwrNdh2rhxo+Lj43XgwAFlZGQoOztbly5d0sWLF695BfkdO3Zo4sSJ+vbbb/X7779bF78fPXpUN910U7HsBwDANe3bt0/vv/++9bnFYtF997lPoJIIVcXC29tbsbGxpn22M+zfv1916tRRSkqK7rzzTj3++OOaOnWqKlWqpC+++EKDBg1SVlZWnqHqwoULioqKUlRUlJYsWaKqVavq6NGjioqKUlZWllNqBAC4H8MwtGjRIh07dsza1r59e/3nP/8xsarCIVQVA4vF4ta3rPnss8/03XffafTo0dqxY4dyc3M1Y8YM64VZ33vvPZv+Pj4+1lv1XHXgwAGdOnVKCQkJ1htRb9++vXh2AADgctaskWbNytBtt82yaX/sscesFwF3N4Qq2MjMzFRaWppycnJ0/PhxrV+/XvHx8brzzjvVt29f7d27V5cvX9bLL7+sbt266csvv9SCBQtsthEaGqrz589r06ZNat68ucqWLatatWrJx8dHL7/8sh577DHt3btXU6ZMMWkvAQBme/fd7brtto+tz/38/DRmzBibO6m4G/etHEVi/fr1qlGjhkJDQxUdHa3Nmzdr7ty5Wr16tTw9PdW8eXPNnDlT06ZNU9OmTbVkyRK7Rfjt27fXY489pp49e6pq1ap68cUXVbVqVS1evFjvv/++brrpJiUkJGj69Okm7SUAwCw5OTmaNGmSmjT5M1B17txZzzzzjFsHKonb1BQat6nB33HcAeDa9u/fb7dkZOTIkcV6F46ivE0N038AAKDITZo0ya5twoQJ1jPLSwJCFQAAKDKZmZlK+NtVPBs0aKAHH3zQpIqKDqEKAAAUiW3btmn9+vU2bY8//riqVatmUkVFi1AFAACcztF0X1xcnAmVFB9CFQAAcJr33jul/fvn2bSFh4crOjrapIqKD6EKAAA4haPRqaZNYxQdXcGEaoofoQoAAFy30jjd93eEKgAAUGjff/+9PvjgA5u2SpUqafjw4SZVZB5CFQAAKBRHo1MxMTGqUKF0TPf9nXtfDx5uqX///urRo4f1+W233aZRo0Zd1zadsQ0AQP7k5ubmOd1XWgOVxEgV/qJ///56++23JUne3t6qVauW+vbtq3HjxsnLq+j+V1m5cqW8vb3z1XfLli3q2LGjfv/9d5vbGhRkGwCAwtu8ebM+//xzm7bmzZvb/GO5tCJUwUZ0dLTeeustZWZmat26dRo6dKi8vb0VGxtr0y8rK0s+Pj5O+cxKlSq5xDYAANfmaHTq2WefLdJ/eLsTpv9gw9fXV0FBQapdu7Yef/xxRUZGas2aNdYpu6lTpyo4OFgNGzaUJP3yyy964IEHFBgYqEqVKumuu+5SSkqKdXs5OTmKiYlRYGCgKleurKefflp/v4f336fuMjMz9cwzzygkJES+vr6qX7++3nzzTaWkpKhjx46SpIoVK8pisah///4Ot/H777+rb9++qlixosqWLasuXbroxx9/tL6+ePFiBQYGKjExUY0bN1b58uUVHR2t1NRUa58tW7aobdu2KleunAIDA3XLLbfo559/dtLfNAC4j8zMzDyn+whUfyJU4ZrKlCmjrKwsSdKmTZt08OBBbdiwQWvXrtXly5cVFRWlChUqaOvWrfryyy+t4eTqe2bMmKHFixdr0aJF+uKLL3T69Gl99NFH1/zMvn37atmyZZo7d67279+v1157TeXLl1dISIg+/PBDSdLBgweVmpqqOXPmONxG//79tX37dq1Zs0bJyckyDEN33HGHLl++bO1z8eJFTZ8+Xe+8844+//xzHT16VE899ZQkKTs7Wz169FCHDh20Z88eJScn69FHHy1RN/4EgPxYsmSJ3b37oqKiSt3lEvKDeAmHDMPQpk2blJiYqOHDhys9PV3lypXTG2+8YZ32e/fdd5Wbm6s33njDGjbeeustBQYGasuWLercubNmz56t2NhY3XPPPZKkBQsWKDExMc/P/eGHH/Tee+9pw4YNioyMlCTVrVvX+vrVab5q1arZrKn6qx9//FFr1qzRl19+qfbt20u68kMhJCREq1at0v333y9Junz5shYsWKB69epJkoYNG6bJkydLkjIyMnT27Fndeeed1tcbN25c8L9IAHBjjkanJkyYwD8w88BIlYtbs0Zq3/7Kn8Vh7dq1Kl++vPz8/NSlSxf17NlTEydOlCQ1a9bMZh3Vt99+q0OHDqlChQoqX768ypcvr0qVKunSpUs6fPiwzp49q9TUVIWHh1vf4+XlpdatW+f5+bt375anp6c6dOhQ6H3Yv3+/vLy8bD63cuXKatiwofbv329tK1u2rDUwSVKNGjV04sQJSVfCW//+/RUVFaVu3bppzpw5NlODAFCS/f7773lO9xGo8sZIlYtLSJCSk6/82b170X9ex44d9eqrr8rHx0fBwcE2c+XlypWz6Xv+/Hm1atVKS5YssdtO1apVC/X5ZcqUKdT7CuPvZwtaLBab9V5vvfWWRowYofXr12vFihUaP368NmzYoHbt2hVbjQBQ3KZOnars7Gybtoceekj169c3qSL3wUiVixs7VoqIuPJncShXrpzq16+vWrVq/ePiw5YtW+rHH39UtWrVVL9+fZtHQECAAgICVKNGDW3bts36nuzsbO3YsSPPbTZr1ky5ubn63//+5/D1qyNlOTk5eW6jcePGys7OtvncU6dO6eDBg7rpppuuuU9/FxYWptjYWCUlJalp06ZaunRpgd4PAO5k0qRJdoEqLi6OQJVPhCoX1727lJRUPKNUBfXQQw+pSpUquuuuu7R161YdOXJEW7Zs0YgRI3Ts2DFJ0siRI5WQkKBVq1bpwIEDeuKJJ3TmzJk8txkaGqp+/fpp4MCBWrVqlXWb7733niSpdu3aslgsWrt2rdLT03X+/Hm7bTRo0EB33XWXBg8erC+++ELffvutHn74YdWsWVN33XVXvvbtyJEjio2NVXJysn7++Wd9+umn+vHHH1lXBaBESklJ4d59TkCoQqGVLVtWn3/+uWrVqqV77rlHjRs31qBBg3Tp0iX5+/tLkp588kn16dNH/fr1U0REhCpUqKC77777mtt99dVXdd999+mJJ55Qo0aNNHjwYF24cEGSVLNmTU2aNEljx45V9erVNWzYMIfbeOutt9SqVSvdeeedioiIkGEYWrduXb4vEFq2bFkdOHBA9957r2688UY9+uijGjp0qIYMGVKAvyEAcH2TJk2yXvj5qqFDhxKoCsFi/P2iQciXjIwMBQQE6OzZs9YAcdWlS5d05MgR1alTR35+fiZViOLGcQfgTgzDsJ7x/FclPUxd6/f39WKhOgAApcyOHTu0du1am7aQkBANHDjQpIpKBkIVAACliKO1U08//XSxnn1dUhGqAAAoBXJycvT888/btYeFxYk85RyEKgAASriPP/5Y27dvt2lr166doqKiTKqoZCJUFSHOAShdON4AXJGj6b7nnntOHh5cAMDZCFVFwNPTU5KUlZXFHHUpcvHiRUn2V2oHADNcuHBB06dPt2sv6Wf3mYlQVQS8vLxUtmxZpaeny9vbm38NlHCGYejixYs6ceKEAgMDraEaAMzy2muvKS0tzaatR48eat68uUkVlQ6EqiJgsVhUo0YNHTlyRD///LPZ5aCYBAYGKigoyOwyAJRyXBndPISqIuLj46MGDRooKyvL7FJQDLy9vRmhAmCqY8eO6c0337RrJ1AVH0JVEfLw8ODK2gCAIudodGrgwIEKCQkxoZrSi1AFAIAbcxSowsLiRJ4qfoQqAADcUHJysj799FO7dqb7zEOoAgDAzTganRo2bJgqV65sQjW4ilAFAICbMAxDkydPtmsPC4sTecp8hCoAANyAo2tPSUz3uRJCFQAALs7RdN8zzzzDGeYuhlAFAICL+uOPP/Tiiy/atWdlxYk85XoIVQAAuCBHo1NVq1bVE088YUI1yA9CFQAALsZRoHruuee4l6yLI1QBAOAiUlNTtXDhQrt2FqO7B0IVAAAuwNHoVEREhDp37mxCNSgMQhUAACZzFKgYnXI/hCoAAEzy+eefa/PmzXbtBCr3RKgCAMAEjkandu16QKtWNTahGjgDoQoAgGLmKFBNnx6nJUtMKAZOQ6gCAKCYzJw5U+fOnbNrT0y8Eqi6dzehKDgNoQoAgGLgaHRqyJAhCgoKEkuoSgZCFQAARejy5ct64YUX7NrDwuIUFGRCQSgyhCoAAIqIo9EpibP7Siqudw8AQBFwFKgSEp5WYiKBqqRipAoAACdKS0vTa6+9ZteelRWnsDBp7FgTikKxIFQBAOAkeU33hYXFcWZfKUCoAgDACRwFqgkTJshisZhQDcxg+pqq+fPnKzQ0VH5+fgoPD9fXX399zf7vv/++GjVqJD8/PzVr1kzr1q2zeb1///6yWCw2j+joaJs+p0+f1kMPPSR/f38FBgZq0KBBOn/+vNP3DQBQ8m3dujXPe/cRqEoXU0PVihUrFBMTo7i4OO3cuVPNmzdXVFSUTpw44bB/UlKSevfurUGDBmnXrl3q0aOHevToob1799r0i46OVmpqqvWxbNkym9cfeughff/999qwYYPWrl2rzz//XI8++miR7ScAoGSaNGmSPvvsM5u2c+eqKiyMxeilkcUwDMOsDw8PD1ebNm00b948SVJubq5CQkI0fPhwjXWwkq9nz566cOGC1q5da21r166dWrRooQULFki6MlJ15swZrVq1yuFn7t+/XzfddJO++eYbtW7dWpK0fv163XHHHTp27JiCg4PzVXtGRoYCAgJ09uxZ+fv7F2S3AQAlQF6jU3BtRfn727SRqqysLO3YsUORkZF/FuPhocjISCUnJzt8T3Jysk1/SYqKirLrv2XLFlWrVk0NGzbU448/rlOnTtlsIzAw0BqoJCkyMlIeHh7atm1bnvVmZmYqIyPD5gEAKH3mzp1LoIJDpi1UP3nypHJyclS9enWb9urVq+vAgQMO35OWluawf1pamvV5dHS07rnnHtWpU0eHDx/WuHHj1KVLFyUnJ8vT01NpaWmqVq2azTa8vLxUqVIlm+38XXx8fJ5ndQAASgdHvwf+85//qH379iZUA1dT4s7+69Wrl/W/mzVrpptvvln16tXTli1b1KlTp0JvNzY2VjExMdbnGRkZCgkJua5aAQDuwTAMTZ482a6d0Sn8lWmhqkqVKvL09NTx48dt2o8fP66gPG6GFBQUVKD+klS3bl1VqVJFhw4dUqdOnRQUFGS3ED47O1unT5++5nZ8fX3l6+v7T7sFAChhuNUM8su0NVU+Pj5q1aqVNm3aZG3Lzc3Vpk2bFBER4fA9ERERNv0lacOGDXn2l6Rjx47p1KlTqlGjhnUbZ86c0Y4dO6x9PvvsM+Xm5io8PPx6dgkAUMI4ClTJyYM5uw8OmTr9FxMTo379+ql169Zq27atZs+erQsXLmjAgAGSpL59+6pmzZqKj4+XJI0cOVIdOnTQjBkz1LVrVy1fvlzbt2/XwoULJUnnz5/XpEmTdO+99yooKEiHDx/W008/rfr16ysqKkqS1LhxY0VHR2vw4MFasGCBLl++rGHDhqlXr175PvMPAFCynT17VrNnz7ZrDwuLEwNUyIupoapnz55KT0/XhAkTlJaWphYtWmj9+vXWxehHjx6Vh8efg2nt27fX0qVLNX78eI0bN04NGjTQqlWr1LRpU0mSp6en9uzZo7fffltnzpxRcHCwOnfurClTpthM3S1ZskTDhg1Tp06d5OHhoXvvvVdz584t3p0HALgkbjWDwjL1OlXujOtUAUDJ4yhQbdwYqzFjfAhUJURR/v4ucWf/AQBQUN9++63Di0bHxTHdh/wjVAEASrVrTfcBBUGoAgCUWo4C1cSJcYqIECNUKDBCFQCg1Fm8eLF+/vlnu/awsCuBysHtZ4F/RKgCAJQqjkancnOratKkJySJBekoNNMu/gkAQHHLa7pvw4YnTKgGJQ0jVQCAEu9ai9GZ7oOzEKoAACWao0B1xx13qE2bNpKY7oPzEKoAACVSdna2pk6datceFhan/5+nAKciVAEASpy8pvviuE4CihAL1QEAJYqjQDVv3lAtW0agQtFipAoAUCIcO3ZMb775pl3766/HqUEDFqOj6BGqAABuL6/pvokT49SwoZSUVMwFoVQiVAEA3JqjQPXcc89p7VoPLpeAYkWoAgC4pbVr12rHjh127VcXo3fvzuUSULwIVQAAt3Oti3kCZiFUAQDciqNAxaUS4AoIVQAAt8C1p+DqCFUAAJfnKFCVKxeip54aaEI1gGNc/BMA4NIcBaqJE+O0ciWBCq6FkSoAgEu61mJ0LpUAV0SoAgC4HEeBqkePHmrevLkkLpUA10SoAgC4jHPnzmnmzJl27SxGhzsgVAEAXEJe031ZWQQquAdCFQDAdI4CVUxMjCpUqGBCNUDhEKoAAKbZsWOH1q5da9fOdB/cEaEKAGAKLuaJkoZQBQAodtxqBiURoQoAUGxmzpypc+fO2bUTqFASEKoAAMWC6T6UdIQqAECRY7oPpQGhCgBQZBidQmnCDZUBAEXCUaA6fryxwsIIVCiZGKkCADhVbm6upkyZYteemBinpCQTCgKKCaEKAOA0eU33JSbGaezYYi4GKGaEKgCAUzgKVJs399GWLXXFEiqUBoQqAMB1SUtL02uvvWbXzugUShtCFQCg0K51dh+jUyhtOPsPAFAojgLVhg3jOLsPpRYjVQCAAvnf//6nLVu22LVzdh9KO0IVACDf8prumz49TkuWFHMxgIshVAEA8sVRoJoyJU5t20pLlkjdu5tQFOBCCFUAgGuaPHmyDMOwa584MU41a4opP+D/I1QBAPLkaHTK399f9eqNVkSEuGQC8BeEKgCAQ44C1V9vhMx0H2CLUAUAsHGta08ByBuhCgBg5ShQRUdHKzw83IRqAPdCqAIAKDMzUwkJCXbtjE4B+UeoAoBSjuk+wDkKfJsaT09PnThxwq791KlT8vT0dEpRAIDi4ShQzZkzQomJBCqgoAo8UuXoWiXSlaFjHx+f6y4IAFD0Dh8+rHfffdeufeLEOJUvz6USgMLId6iaO3euJMliseiNN95Q+fLlra/l5OTo888/V6NGjZxfIQDAqfKa7gsLi7Nee4rLJQAFl+9QNWvWLElXRqoWLFhgM9Xn4+Oj0NBQLViwwPkVAgCcxlGgmjBhgiwWiyTCFHA98h2qjhw5Iknq2LGjVq5cqYoVKxZZUQAA51q5cqW+++47u3YWowPOU+A1VZs3by6KOgAARYSz+4DiUeBQNXDgwGu+vmjRokIXAwBwLkeBavr0OJ07Z0IxQAlX4FD1+++/2zy/fPmy9u7dqzNnzuj22293WmEAgMLLa3QqISFOMTHFXAxQShQ4VH300Ud2bbm5uXr88cdVr149pxQFACg8R4GqefPm6tGjh5jxA4qOxcjrwlMFdPDgQd12221KTU11xuZcXkZGhgICAnT27Fn5+/ubXQ4AyDAMTZ482a6dtVPAn4ry97fTblNz+PBhZWdnO2tzAIACYDE6YL4Ch6qYv03GG4ah1NRUffzxx+rXr5/TCgMA5I+jQPXwww+zJAMoZgUOVbt27bJ57uHhoapVq2rGjBn/eGYgAMB5PvggQ99/P8uundEpwBxcpwoA3BDTfYDrKfSaqhMnTujgwYOSpIYNG6patWpOKwoAkDdHgeqZZ56Rn5+fCdUAuKrAoSojI0NDhw7VsmXLlJubK0ny9PRUz549NX/+fAUEBDi9SACA9O2332rVqlV27YxOAa7Bo6BvGDx4sLZt26aPP/5YZ86c0ZkzZ7R27Vpt375dQ4YMKXAB8+fPV2hoqPz8/BQeHq6vv/76mv3ff/99NWrUSH5+fmrWrJnWrVuXZ9/HHntMFotFs2fPtmkPDQ2VxWKxeSQkJBS4dgAoLpMmTSJQAS6uwCNVa9euVWJiov71r39Z26KiovT6668rOjq6QNtasWKFYmJitGDBAoWHh2v27NmKiorSwYMHHU4nJiUlqXfv3oqPj9edd96ppUuXqkePHtq5c6eaNm1q0/ejjz7SV199peDgYIefPXnyZA0ePNj6vEKFCgWqHQCKi6PpPsIU4HoKPFJVuXJlh1N8AQEBqlixYoG2NXPmTA0ePFgDBgzQTTfdpAULFqhs2bJ53j9wzpw5io6O1pgxY9S4cWNNmTJFLVu21Lx582z6/frrrxo+fLiWLFkib29vh9uqUKGCgoKCrI9y5coVqHYAKGqvvPIKgQpwIwUOVePHj1dMTIzS0tKsbWlpaRozZoyee+65fG8nKytLO3bsUGRk5J/FeHgoMjJSycnJDt+TnJxs01+6Mkr21/65ubnq06ePxowZoyZNmuT5+QkJCapcubLCwsL00ksv/eOFSzMzM5WRkWHzAICiMmnSJKWnp9u0eXr6EagAF1bg6b9XX31Vhw4dUq1atVSrVi1J0tGjR+Xr66v09HS99tpr1r47d+7MczsnT55UTk6OqlevbtNevXp1HThwwOF70tLSHPb/a8CbNm2avLy8NGLEiDw/e8SIEWrZsqUqVaqkpKQkxcbGKjU1VTNnzszzPfHx8XmewgwAzsToFOCeChyq7rrrLlkslqKo5brt2LFDc+bM0c6dO69Z41+vCn/zzTfLx8dHQ4YMUXx8vHx9fR2+JzY21uZ9GRkZCgkJcV7xAEq9vP7hFhZGoALcQYFD1cSJE53ywVWqVJGnp6eOHz9u0378+HEFBQU5fE9QUNA1+2/dulUnTpywjqBJUk5Ojp588knNnj1bKSkpDrcbHh6u7OxspaSkqGHDhg77+Pr65hm4AOB6OQpUt956qzp27GhCNQAKo8BrqurWratTp07ZtZ85c0Z169bN93Z8fHzUqlUrbdq0ydqWm5urTZs2KSIiwuF7IiIibPpL0oYNG6z9+/Tpoz179mj37t3WR3BwsMaMGaPExMQ8a9m9e7c8PDy4gCmAYpednZ3ndB+BCnAvBR6pSklJUU5Ojl17Zmamjh07VqBtxcTEqF+/fmrdurXatm2r2bNn68KFCxowYIAkqW/fvqpZs6bi4+MlSSNHjlSHDh00Y8YMde3aVcuXL9f27du1cOFCSVfOTKxcubLNZ3h7eysoKMg6ApWcnKxt27apY8eOqlChgpKTkzV69Gg9/PDDBT57EQCuB7eaAUqWfIeqNWvWWP87MTHR5rIKOTk52rRpk+rUqVOgD+/Zs6fS09M1YcIEpaWlqUWLFlq/fr11MfrRo0fl4fHnYFr79u21dOlSjR8/XuPGjVODBg20atUqu2tUXYuvr6+WL1+uiRMnKjMzU3Xq1NHo0aNt1ksBQFFzFKiGDBmS5/IHAK7PYhiGkZ+OV8ONxWLR39/i7e2t0NBQzZgxQ3feeafzq3RBGRkZCggI0NmzZ+Xv7292OQDcxG+//abXX3/drp3RKaB4FOXv73yPVF29z1+dOnX0zTffqEqVKk4tBABKOqb7gJKtwGuqjhw5UhR1AECJtWaNtGuXfaAaP368PD09TagIQFEocKiaPHnyNV+fMGFCoYsBgJJmw4YN2rUrya6d0Smg5ClwqProo49snl++fFlHjhyRl5eX6tWrR6gCgP+P6T6gdClwqNq1a5ddW0ZGhvr376+7777bKUUBgLtzFKgSE+OUZD9oBaCEKHCocsTf31+TJk1St27d1KdPH2dsEgDcUl6jU4mJcRo7tpiLAVCsnBKqJOns2bM6e/asszYHAG7HUaCqWbOmHnnkETHjB5R8BQ5Vc+fOtXluGIZSU1P1zjvvqEuXLk4rDADcSV63mgFQehQ4VM2aNcvmuYeHh6pWrap+/fopNjbWaYUBgDtgMTqAq7hOFQAUkqNAdffdd+vmm282oRoAZivUmqozZ87o0KFDkqT69esrMDDQmTUBgEu7ePGiXnrpJbt2RqeA0q1AoSolJUVDhw5VYmKi9f5/FotF0dHRmjdvnkJDQ4uiRgBwGUz3AchLvkPVL7/8onbt2snb21tTpkxR48aNJUn79u3Tq6++qoiICH3zzTe64YYbiqxYADCTo0AVExOjChUqmFANAFdjMa4OOf2DQYMG6dChQ0pMTJSfn5/Na3/88Yeio6PVoEEDvfHGG0VSqKspyrtcA3AtBw8e1PLly+3aGZ0C3E9R/v7O90jV+vXrtWLFCrtAJUllypTRlClT1KtXL6cWBwBmY7oPQH7lO1SdPHnymmum6tatq9OnTzujJgBwCY4C1YQJE2SxWEyoBoCry3eoqlGjhvbt25fnmqm9e/cqKCjIaYUBgFmWLl2qH3/80a6d0SkA1+KR3449evTQU089pfT0dLvXTpw4oWeeeUY9evRwZm0AUOwmTZpEoAJQKPleqP77778rPDxcaWlpevjhh9WoUSMZhqH9+/dr6dKlCgoK0ldffaVKlSoVdc0ugYXqQMnDrWaAks8lFqpXrFhR27Zt07hx47R8+XKdOXNGkhQYGKgHH3xQL7zwQqkJVABKFhajA3CGfI9U/ZVhGNZpwKpVq5bKRZuMVAElg6NA1bJlS3Xr1s2EagAUNZcYqfori8WiatWqObUQAChOhmFo8uTJdu2MTgEorEKFKgBwZ3lN9yUmxolMBaCwCFUAShVHgerGGwfp5Zdv0NixJhQEoMQgVAEoFc6cOaM5c+bYtV+d7uvdu7grAlDSEKoAlHh5TfeFhTHXB8B58hWq5s6dm+8NjhgxotDFAICzOQpU48aNk7e3twnVACjJ8nVJhTp16uRvYxaLfvrpp+suyh1wSQXAte3evVurV6+2a+fsPqB0M/2SCkeOHHHqhwJAUeJingDMUOg1VVlZWTpy5Ijq1asnLy+WZgEw35o10q5d3GoGgDnyfUPlqy5evKhBgwapbNmyatKkiY4ePSpJGj58uBISEpxeIADkx5IlSwhUAExV4FAVGxurb7/9Vlu2bJGfn5+1PTIyUitWrHBqcQCQH5MmTdKhQ4ds2mrVqkWgAlCsCjxvt2rVKq1YsULt2rWzuedfkyZNdPjwYacWBwD/xNH6KcIUADMUOFSlp6c7vO/fhQsXSuWNlQEUv7zWTkkEKgDmKfD0X+vWrfXxxx9bn18NUm+88YYiIiKcVxkA5MFRoLrnnnsIVABMVeCRqhdeeEFdunTRvn37lJ2drTlz5mjfvn1KSkrS//73v6KoEQAkSdnZ2Zo6dapdO2EKgCso8EjVv/71L+3evVvZ2dlq1qyZPv30U1WrVk3Jyclq1apVUdQIAJo0aRKBCoBLy9cV1WGPK6oDxSOv9VOjR4/muwegwEy/onpGRka+N8gPOQDOcuLECe3a9apdO6NTAFxRvkJVYGBgvs/sy8nJua6CAEDiVjMA3E++QtXmzZut/52SkqKxY8eqf//+1rP9kpOT9fbbbys+Pr5oqgRQqjgKVBMmTOCyLQBcWoHXVHXq1EmPPPKIevfubdO+dOlSLVy4UFu2bHFmfS6LNVWA823fvt3mki1XMToFwFmK8vd3gc/+S05OVuvWre3aW7dura+//topRQEofSZNmmQXqAIDAwlUANxGga9TFRISotdff10vvviiTfsbb7yhkJAQpxUGoHTI6+w+whQAd1PgUDVr1izde++9+uSTTxQeHi5J+vrrr/Xjjz/qww8/dHqBAEqut956S0ePHrVrJ1ABcEeFuk7VsWPH9Morr+jAgQOSpMaNG+uxxx4rVSNVrKkCCmfNGikhQYqKsh+d6tixo2699VYTqgJQWhTl728u/llIhCqgcNq3NxQVNdmundEpAMXB9It//t2ZM2f05ptvav/+/ZKkJk2aaODAgQoICHBqcQBKlkmTJikqyr6dQAWgJCjwSNX27dsVFRWlMmXKqG3btpKkb775Rn/88Yc+/fRTtWzZskgKdTWMVAEF4+jaU4888ohq1qxpQjUASiuXmv7797//rfr16+v111+Xl9eVga7s7Gw98sgj+umnn/T55587tUBXRagC8ufSpUuaNm2aXTujUwDM4FKhqkyZMtq1a5caNWpk075v3z61bt1aFy9edGqBropQBfwzbjUDwNW41Joqf39/HT161C5U/fLLL6pQoYLTCgPg3hwFqtjYWPn4+JhQDQAUvQKHqp49e2rQoEGaPn262rdvL0n68ssvNWbMGLtb1wAofX755RctWrTIrp3RKQAlXYFD1fTp02WxWNS3b19lZ2dLkry9vfX4448rISHB6QUCcB9M9wEozQp9naqLFy/q8OHDkqR69eqpbNmyTi3M1bGmCrDlKFARpgC4GpdaU3VV2bJl1axZM2fWAsAN/e9//9OWLVvs2glUAEqbfIeqgQMH5qufo7UUAEomR6NTTZs21b333mtCNQBgrnyHqsWLF6t27doKCwsTd7YBwHQfANjKd6h6/PHHtWzZMh05ckQDBgzQww8/rEqVKhVlbQBc0Msvv6zTp0/btROoAJR2BVqonpmZqZUrV2rRokVKSkpS165dNWjQIHXu3FkWi6Uo63Q5LFRHaeRodOq+++5TkyZNTKgGAArOpa6oftXPP/+sxYsX67///a+ys7P1/fffq3z58k4tzpURqlCarF6dq927p9i1MzoFwN245Nl/Hh4eslgsMgxDOTk5zqwJgAvh2lMAkD8FClV/nf774osvdOedd2revHmKjo6Wh4dHUdUIwCSOAtXIkSMVGBhY/MUAgIvLd6h64okntHz5coWEhGjgwIFatmyZqlSpUpS1ATDJuXPnNHPmTLt2RqcAIG/5XlPl4eGhWrVqKSws7JqL0leuXOm04lwZa6pQUjHdB6AkK8rf3/mes+vbt686duyowMBABQQE5PkoqPnz5ys0NFR+fn4KDw/X119/fc3+77//vho1aiQ/Pz81a9ZM69aty7PvY489JovFotmzZ9u0nz59Wg899JD8/f0VGBioQYMG6fz58wWuHShpHAWq5557jkAFAPlQoIt/OtuKFSsUExOjBQsWKDw8XLNnz1ZUVJQOHjyoatWq2fVPSkpS7969FR8frzvvvFNLly5Vjx49tHPnTjVt2tSm70cffaSvvvpKwcHBdtt56KGHlJqaqg0bNujy5csaMGCAHn30US1dutTp+wi4gx9//NHh//+EKQDIv0JfUsEZwsPD1aZNG82bN0+SlJubq5CQEA0fPlxjx46169+zZ09duHBBa9eutba1a9dOLVq00IIFC6xtv/76q8LDw5WYmKiuXbtq1KhRGjVqlCRp//79uummm/TNN9+odevWkqT169frjjvu0LFjxxyGMEeY/kNJ4Wh0qnr16nrsscdMqAYAipZLTP85W1ZWlnbs2KHIyMg/i/HwUGRkpJKTkx2+Jzk52aa/JEVFRdn0z83NVZ8+fTRmzBiHFyRMTk5WYGCgNVBJUmRkpDw8PLRt27Y8683MzFRGRobNA3B3ed1qhkAFAAVX6OtUXa+TJ08qJydH1atXt2mvXr26Dhw44PA9aWlpDvunpaVZn0+bNk1eXl4aMWJEntv4+9Sil5eXKlWqZLOdv4uPj89zAS/gbtavX+/wHxFM9wFA4ZkWqorCjh07NGfOHO3cudPpt82JjY1VTEyM9XlGRoZCQkKc+hlAcXD0j4Pbb79d//73v02oBgBKDtNCVZUqVeTp6anjx4/btB8/flxBQUEO3xMUFHTN/lu3btWJEydUq1Yt6+s5OTl68sknNXv2bKWkpCgoKEgnTpyw2UZ2drZOnz6d5+dKkq+vr3x9fQu0j4CryWu6DwBw/UxbU+Xj46NWrVpp06ZN1rbc3Fxt2rRJERERDt8TERFh01+SNmzYYO3fp08f7dmzR7t377Y+goODNWbMGCUmJlq3cebMGe3YscO6jc8++0y5ubkKDw939m4CLmHatGkEKgAoYqZO/8XExKhfv35q3bq12rZtq9mzZ+vChQsaMGCApCvXxqpZs6bi4+MlXbk9RocOHTRjxgx17dpVy5cv1/bt27Vw4UJJUuXKlVW5cmWbz/D29lZQUJAaNmwoSWrcuLGio6M1ePBgLViwQJcvX9awYcPUq1evfJ/5B7gTR2Fq4MCBTF8DgJOZGqp69uyp9PR0TZgwQWlpaWrRooXWr19vXYx+9OhRm3sKtm/fXkuXLtX48eM1btw4NWjQQKtWrbK7RtU/WbJkiYYNG6ZOnTrJw8ND9957r+bOnevUfQPMdvnyZb3wwgt27YxOAUDRMPU6Ve6M61TBlXGrGQBwrCh/f5eos/8AOA5UzzzzjPz8/EyoBgBKD0IVUEKcOnXKeneCvwoLixN5CgCKHqEKKAEcjU55eXnp2WefNaEaACidCFWAm3MUqCZMmOD0C+ACAK6NUAW4qe+++04rV660a2cxOgCYg1AFuCFHo1NhYWHq3r27CdUAACRCFeB2HAeqOJGnAMBchCrATaxfv17btm2za2e6DwBcA6EKcAOORqceeOABNW7c2IRqAACOEKoAF2YYhiZPnmzXzugUALgeQhXgombOnKlz587ZtROoAMA1EaoAF+Roum/kyJEKDAws/mIAAPlCqAJcyKVLlzRt2jS79rCwOJGnAMC1EaoAF+FodEpiug8A3AWhCnABjgLV+PHj5enpaUI1AIDCIFQBJkpNTdXChQvt2hmdAgD3Q6gCTOJodKpu3brq06ePCdUAAK4XoQowgaNAxegUALg3QhVQjLZv366PP/7Yrp1ABQDuj1AFFBNHo1OdO3dWRESECdUAAJyNUAUUA6b7AKDkI1QBRWjFihU6cOCAXTuBCgBKHkIVUEQcjU4NGjRIN9xwgwnVAACKGqEKcLLc3FxNmTLFrp3RKQAo2QhVgBNxqxkAKL0IVYCTOApUY8aMUdmyZU2oBgBQ3AhVwHW6ePGiXnrpJbt2RqcAoHQhVAHXwdHoVHa2t6ZMGWdCNQAAM3mYXQDgrhwFqmXLJqhNGwIVAJRGjFQBBfTbb7/p9ddft2uPi4sTM34AUHoRqoACcDQ61alTJ/3rX/8yoRoAgCshVAH5xK1mAADXQqgC/sGuXbu0Zs0au3YCFQDgrwhVwDU4Gp3q06eP6tata0I1AABXRqgC8sB0HwCgILikAkq9NWuk9u2v/ClJq1evJlABAAqMkSqUegkJUnLylT937bIPUyNHjlRgYGDxFwYAcCuMVKHUGztWuuWWbEVFOR6dIlABAPKDkSqUegcPvqT//OeiTVuZMmX09NNPm1QRAMAdEapQqjlaO/Xss8/Ky4uvBgCgYPjNgVLp3Llzmjlzpl07i9EBAIVFqEKp42h06pZbblFkZKQJ1QAASgpCFUoVLpUAACgqhCqUCr/88osWLVpk106gAgA4C6EKJZ6j0an7779fN910kwnVAABKKq5ThRLNUaBKTIwjUAEAnI6RKpRIe/bs0UcffWTXnpgYp7FjTSgIAFDiEapQ4jganRo6dKiqVKkillABAIoKoQolhmEYmjx5sl07i9EBAMWBUIUS4ZVX1is9fZtNW2BgoEaOHGlSRQCA0oZQBbfnaLrvmWeekZ+fnwnVAABKK0IV3Nbly5f1wgsv2LUz3QcAMAOhCm5p5cqV+u6772zaOnTooNtuu82cggAApR6hCm7H0XTfhAkTZLFYTKgGAIArCFVwGxkZGZo1a5ZdO9N9AABXQKiCW5g9e7bOnj1r08atZgAAroRQBZfnaLqP0SkAgKshVMFl/frrr3rjjTfs2glUAABXRKiCS3I0OvXoo4+qRo0aJlQDAMA/I1TB5TDdBwBwR4QquIwjR47ov//9r02br28VjR071KSKAADIP0IVXIKj0alp055WixZlNHasCQUBAFBAhCqYKjc3V1OmTLFrDwuLU4sWIlABANwGoQqm2blzp/7v//7Ppi0yMlK33HKLJKl7dzOqAgCgcAhVMIWj6b7x48fL09PThGoAALh+HmYXMH/+fIWGhsrPz0/h4eH6+uuvr9n//fffV6NGjeTn56dmzZpp3bp1Nq9PnDhRjRo1Urly5VSxYkVFRkZq27ZtNn1CQ0NlsVhsHgkJCU7fN9jLysrK8+w+AhUAwJ2ZGqpWrFihmJgYxcXFaefOnWrevLmioqJ04sQJh/2TkpLUu3dvDRo0SLt27VKPHj3Uo0cP7d2719rnxhtv1Lx58/Tdd9/piy++UGhoqDp37qz09HSbbU2ePFmpqanWx/Dhw4t0XyF9+umnio+Pt2l74IEHuFwCAKBEsBiGYZj14eHh4WrTpo3mzZsn6cqi5ZCQEA0fPlxjHaxQ7tmzpy5cuKC1a9da29q1a6cWLVpowYIFDj8jIyNDAQEB2rhxozp16iTpykjVqFGjNGrUqELXfnW7Z8+elb+/f6G3U1o4Gp2aMGGCLBaLCdUAAEqrovz9bdpIVVZWlnbs2KHIyMg/i/HwUGRkpJKTkx2+Jzk52aa/JEVFReXZPysrSwsXLlRAQICaN29u81pCQoIqV66ssLAwvfTSS8rOzr5mvZmZmcrIyLB54J9lZGTYBSovLy/FxcURqAAAJYppC9VPnjypnJwcVa9e3aa9evXqOnDggMP3pKWlOeyflpZm07Z27Vr16tVLFy9eVI0aNbRhwwZVqVLF+vqIESPUsmVLVapUSUlJSYqNjVVqaqpmzpyZZ73x8fEOR1uQt//+9786cuSITdvgwYMVHBxsUkUAABSdEnn2X8eOHbV7926dPHlSr7/+uh544AFt27ZN1apVkyTFxMRY+958883y8fHRkCFDFB8fL19fX4fbjI2NtXlfRkaGQkJCinZH3Bi3mgEAlDamTf9VqVJFnp6eOn78uE378ePHFRQU5PA9QUFB+epfrlw51a9fX+3atdObb74pLy8vvfnmm3nWEh4eruzsbKWkpOTZx9fXV/7+/jYP2EtNTbULVKGhoQQqAECJZ1qo8vHxUatWrbRp0yZrW25urjZt2qSIiAiH74mIiLDpL0kbNmzIs/9ft5uZmZnn67t375aHh4d1JAuFk5CQoIULF9q0jR49Wv369TOpIgAAio+p038xMTHq16+fWrdurbZt22r27Nm6cOGCBgwYIEnq27evatasaT0Nf+TIkerQoYNmzJihrl27avny5dq+fbv1F/mFCxc0depUde/eXTVq1NDJkyc1f/58/frrr7r//vslXVnsvm3bNnXs2FEVKlRQcnKyRo8erYcfflgVK1Y05y/CzRmGocmTJ9u1MzoFAChNTA1VPXv2VHp6uiZMmKC0tDS1aNFC69evty5GP3r0qDw8/hxMa9++vZYuXarx48dr3LhxatCggVatWqWmTZtKkjw9PXXgwAG9/fbbOnnypCpXrqw2bdpo69atatKkiaQr03jLly/XxIkTlZmZqTp16mj06NE266WQfwcPHtTy5ctt2sLDwxUdHW1SRQAAmMPU61S5M65T5XgxemxsrHx8fEyoBgCAf1aUv79L5Nl/KFo5OTl6/vnn7dqZ7gMAlGaEKhRIUlKSNmzYYNPWtWtXtW7d2qSKAABwDYQq5Juj6b7nnnvOZt0bAAClFaEK/+iPP/7Qiy++aNfOdB8AAH8iVOGaVq9erd27d9u0Pfzww6pXr545BQEA4KIIVcgTt5oBACD/CFWwc/r0ab388ss2bQEBARo1apQ5BQEA4AYIVbCxYMECu/srPvHEE6patapJFQEA4B4IVbBiug8AgMIjVEHp6el65ZVXbNoaNWqknj17mlQRAADuh1BVyi1fvlwHDx60aXvqqadUrlw5kyoCAMA9EapKKcMwNHnyZLv2sLA4kacAACg4QlUp5Gi6b/fu+7RqVRNFREjdu5tUGAAAboxQVcps27ZN69evt2kbP368Pv7YU8ePS2PHmlQYAABujlBVSuTm5mrGjBm6ePGitS0jI0gdOgyRp+eV0SlGqAAAKDxCVSlw4sQJvfrqqzZt//vfKG3eHKDkZMIUAADOQKgq4TZt2qQvvvjC+jw4OFiPPPKI/u//LLp0iek+AACchVBVQmVnZ2vq1Kk2bffee6+aNm0qiek+AACcjVBVAh09elRvvfWWTduYMWNUtmxZkyoCAKDkI1SVMKtXr9bu3butzxs3bqwHHnjAvIIAACglCFUlxKVLlzRt2jSbtj59+qhu3bomVQQAQOlCqCoBfvjhBy1btsymLTY2Vj4+PiZVBABA6UOocnPvvPOOfvrpJ+vzNm3a6I477jCxIgAASidClZs6f/68ZsyYYdM2ePBgBQcHm1QRAAClG6HKDe3evVurV6+2Pvf09FRsbKw8PT1NrAoAgNKNUOVGDMPQ/PnzderUKWvb7bffrn//+98mVgUAACRClds4ffq0Xn75ZZu2YcOGqXLlyiZVBAAA/opQ5Qa+/PJLbdy40fq8YsWKGj58uCwWi4lVAQCAvyJUubCcnBxNmzZNly9ftrZ169ZNLVu2NLEqAADgCKHKRaWmpmrhwoU2bTExMapQoYJJFQEAgGshVLmg9evXa9u2bdbnoaGh6tu3L9N9AAC4MEKVi5k3b57N2X09e/ZUo0aNTKwIAADkB6HKxfw1UD3zzDPy8/MzsRoAAJBfhCoXM3r0aP36669q3Lix2aUAAIAC8DC7ANjassVfgwY11po1ZlcCAAAKglDlYhISpOTkK38CAAD3QahyMWPHShERV/4EAADugzVVLqZ79ysPAADgXhipAgAAcAJCFQAAgBMQqgAAAJyAUAUAAOAEhCoAAAAnIFQBAAA4AaEKAADACQhVAAAATkCoAgAAcAJCFQAAgBMQqgAAAJyAUAUAAOAEhCoAAAAn8DK7AHdlGIYkKSMjw+RKAABAfl39vX3197gzEaoK6dy5c5KkkJAQkysBAAAFde7cOQUEBDh1mxajKKJaKZCbm6vffvtNFSpUkMViMbscl5aRkaGQkBD98ssv8vf3N7sc/A3Hx3VxbFwXx8a1Xev4GIahc+fOKTg4WB4ezl0FxUhVIXl4eOiGG24wuwy34u/vzw8fF8bxcV0cG9fFsXFteR0fZ49QXcVCdQAAACcgVAEAADgBoQpFztfXV3FxcfL19TW7FDjA8XFdHBvXxbFxbWYdHxaqAwAAOAEjVQAAAE5AqAIAAHACQhUAAIATEKoAAACcgFCFfzR//nyFhobKz89P4eHh+vrrr6/Z//3331ejRo3k5+enZs2aad26dTavT5w4UY0aNVK5cuVUsWJFRUZGatu2bTZ9QkNDZbFYbB4JCQlO37eSwNnH568ee+wxWSwWzZ4926b99OnTeuihh+Tv76/AwEANGjRI58+fd8bulChmHBu+O/nj7GPTv39/u7/36Ohomz58b/LPjOPjlO+OAVzD8uXLDR8fH2PRokXG999/bwwePNgIDAw0jh8/7rD/l19+aXh6ehovvviisW/fPmP8+PGGt7e38d1331n7LFmyxNiwYYNx+PBhY+/evcagQYMMf39/48SJE9Y+tWvXNiZPnmykpqZaH+fPny/y/XU3RXF8rlq5cqXRvHlzIzg42Jg1a5bNa9HR0Ubz5s2Nr776yti6datRv359o3fv3kWxi27LrGPDd+efFcWx6devnxEdHW3z93769Gmb7fC9yR+zjo8zvjuEKlxT27ZtjaFDh1qf5+TkGMHBwUZ8fLzD/g888IDRtWtXm7bw8HBjyJAheX7G2bNnDUnGxo0brW21a9e2+2UBe0V1fI4dO2bUrFnT2Lt3r92x2LdvnyHJ+Oabb6xtn3zyiWGxWIxff/3VCXtVMphxbAyD705+FMWx6devn3HXXXfl+Zl8b/LPjONjGM757jD9hzxlZWVpx44dioyMtLZ5eHgoMjJSycnJDt+TnJxs01+SoqKi8uyflZWlhQsXKiAgQM2bN7d5LSEhQZUrV1ZYWJheeuklZWdnX+celSxFdXxyc3PVp08fjRkzRk2aNHG4jcDAQLVu3draFhkZKQ8PD7tp3NLKrGNzFd+dvBXlz7UtW7aoWrVqatiwoR5//HGdOnXKZht8b/6ZWcfnquv97nBDZeTp5MmTysnJUfXq1W3aq1evrgMHDjh8T1pamsP+aWlpNm1r165Vr169dPHiRdWoUUMbNmxQlSpVrK+PGDFCLVu2VKVKlZSUlKTY2FilpqZq5syZTto791dUx2fatGny8vLSiBEj8txGtWrVbNq8vLxUqVIlu+NcWpl1bCS+O/+kqI5NdHS07rnnHtWpU0eHDx/WuHHj1KVLFyUnJ8vT05PvTT6ZdXwk53x3CFUwRceOHbV7926dPHlSr7/+uh544AFt27bN+kMnJibG2vfmm2+Wj4+PhgwZovj4eG4LUYR27NihOXPmaOfOnbJYLGaXg7/I77Hhu2OOXr16Wf+7WbNmuvnmm1WvXj1t2bJFnTp1MrEySPk7Ps747jD9hzxVqVJFnp6eOn78uE378ePHFRQU5PA9QUFB+epfrlw51a9fX+3atdObb74pLy8vvfnmm3nWEh4eruzsbKWkpBRuZ0qgojg+W7du1YkTJ1SrVi15eXnJy8tLP//8s5588kmFhoZat3HixAmbbWRnZ+v06dN5fm5pY9axcYTvjq2i/Ln2V3Xr1lWVKlV06NAh6zb43vwzs46PI4X57hCqkCcfHx+1atVKmzZtsrbl5uZq06ZNioiIcPieiIgIm/6StGHDhjz7/3W7mZmZeb6+e/dueXh42A2fl2ZFcXz69OmjPXv2aPfu3dZHcHCwxowZo8TEROs2zpw5ox07dli38dlnnyk3N1fh4eHO3k23ZNaxcYTvjq3i+rl27NgxnTp1SjVq1LBug+/NPzPr+DhSqO/OdS1zR4m3fPlyw9fX11i8eLGxb98+49FHHzUCAwONtLQ0wzAMo0+fPsbYsWOt/b/88kvDy8vLmD59urF//34jLi7O5tTW8+fPG7GxsUZycrKRkpJibN++3RgwYIDh6+tr7N271zAMw0hKSjJmzZpl7N692zh8+LDx7rvvGlWrVjX69u1b/H8BLs7Zx8cRR2fEREdHG2FhYca2bduML774wmjQoAGnhv+NGceG707+OPvYnDt3znjqqaeM5ORk48iRI8bGjRuNli1bGg0aNDAuXbpk3Q7fm/wx4/g467tDqMI/evnll41atWoZPj4+Rtu2bY2vvvrK+lqHDh2Mfv362fR/7733jBtvvNHw8fExmjRpYnz88cfW1/744w/j7rvvNoKDgw0fHx+jRo0aRvfu3Y2vv/7a2mfHjh1GeHi4ERAQYPj5+RmNGzc2XnjhBZsfTviTM4+PI45C1alTp4zevXsb5cuXN/z9/Y0BAwYY586dc9YulRjFfWz47uSfM4/NxYsXjc6dOxtVq1Y1vL29jdq1axuDBw+2hoCr+N7kX3EfH2d9dyyGYRj5H9cCAACAI6ypAgAAcAJCFQAAgBMQqgAAAJyAUAUAAOAEhCoAAAAnIFQBAAA4AaEKAADACQhVAAAATkCoAlAqpKWlafjw4apbt658fX0VEhKibt262dwzLCkpSXfccYcqVqwoPz8/NWvWTDNnzlROTo61T0pKigYNGqQ6deqoTJkyqlevnuLi4pSVlWXGbgFwIV5mFwAARS0lJUW33HKLAgMD9dJLL6lZs2a6fPmyEhMTNXToUB04cEAfffSRHnjgAQ0YMECbN29WYGCgNm7cqKefflrJycl67733ZLFYdODAAeXm5uq1115T/fr1tXfvXg0ePFgXLlzQ9OnTzd5VACbiNjUASrw77rhDe/bs0cGDB1WuXDmb186cOSNvb2/Vrl1bHTp00Icffmjz+v/93/+pe/fuWr58uXr27Olw+y+99JJeffVV/fTTT0W2DwBcH9N/AEq006dPa/369Ro6dKhdoJKkwMBAffrppzp16pSeeuopu9e7deumG2+8UcuWLcvzM86ePatKlSo5tW4A7odQBaBEO3TokAzDUKNGjfLs88MPP0iSGjdu7PD1Ro0aWfs42v7LL7+sIUOGXH+xANwaoQpAiVaQFQ4FXQ3x66+/Kjo6Wvfff78GDx5c0NIAlDCEKgAlWoMGDawLzPNy4403SpL279/v8PX9+/db+1z122+/qWPHjmrfvr0WLlzovIIBuC1CFYASrVKlSoqKitL8+fN14cIFu9fPnDmjzp07q1KlSpoxY4bd62vWrNGPP/6o3r17W9t+/fVX3XbbbWrVqpXeeusteXjwoxQAZ/8BKAV++ukn3XLLLapUqZImT56sm2++WdnZ2dqwYYNeffVV7d+/Xx988IF69eqlgQMHatiwYfL399emTZs0ZswYderUyXpJhauBqnbt2nr77bfl6elp/ZygoCAT9xKA2QhVAEqF1NRUTZ06VWvXrlVqaqqqVq2qVq1aafTo0brtttskSVu3btXUqVOVnJysS5cuqUGDBhowYIBGjRplDU+LFy/WgAEDHH4GP06B0o1QBQAA4AQsBAAAAHACQhUAAIATEKoAAACcgFAFAADgBIQqAAAAJyBUAQAAOAGhCgAAwAkIVQAAAE5AqAIAAHACQhUAAIATEKoAAACcgFAFAADgBP8PWrjhI3dz438AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_34.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHHCAYAAAC4BYz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRGElEQVR4nO3deVhUZf8G8HvYEZRVQBAF9yUVFCFb1HpJLBTNLDMTUVvM3MIM0AR3wEhxS8pSC1O0wuU1AxOhNFFLU98ScUNNk8VSUEjAmfP7w59T0xx0BmY4s9yf6+KqeebMM99zxJnb53nOOTJBEAQQERERmRkLqQsgIiIikgJDEBEREZklhiAiIiIySwxBREREZJYYgoiIiMgsMQQRERGRWWIIIiIiIrPEEERERERmiSGIiIiIzBJDEBEZLZlMhjlz5khdhlJUVBT8/PykLoOINMQQREQ6tX79eshkMuWPnZ0dOnTogEmTJqGkpESv733gwAHMmTMHN27c0Gm//fv3V9knV1dX9O7dG2vXroVCodDJeyxatAjbtm3TSV9EpBkrqQsgItM0b948+Pv74/bt29i/fz9Wr16NXbt24ZdffkGTJk108h5//fUXrKz+/hg7cOAA5s6di6ioKDg7O+vkPe5p2bIlEhMTAQBlZWX47LPPMH78eJw+fRpJSUkN7n/RokUYPnw4hg4d2uC+iEgzDEFEpBdPP/00goKCAACvvPIK3NzcsGTJEmzfvh0jR46sd78KhQI1NTWws7ODnZ2drsp9ICcnJ7z88svKx6+//jo6duyIlStXYv78+bC2tm60WohINzgdRkSN4sknnwQAFBUVAQBSUlLwyCOPwM3NDfb29ujVqxe+/PJLtdfJZDJMmjQJn3/+Obp27QpbW1tkZWUpn7u3JmjOnDmYMWMGAMDf3185dXXhwgX069cPPXr0EK2rY8eOCAsL03p/mjRpgocffhiVlZUoKyurc7vKykpMnz4dvr6+sLW1RceOHZGSkgJBEFT2sbKyEp9++qmy7qioKK1rIiLtcCSIiBrFuXPnAABubm4AgGXLliEiIgKjRo1CTU0NMjIy8Pzzz2Pnzp0IDw9Xee3evXuxZcsWTJo0Ce7u7qKLj4cNG4bTp09j06ZNWLp0Kdzd3QEAzZs3x+jRo/Hqq6/il19+wUMPPaR8zY8//ojTp0/j3Xffrdc+nT9/HpaWlnVOvQmCgIiICOTm5mL8+PEICAhAdnY2ZsyYgStXrmDp0qUAgPT0dLzyyisIDg7Ga6+9BgBo27ZtvWoiIi0IREQ6tG7dOgGAsGfPHqGsrEz47bffhIyMDMHNzU2wt7cXLl++LAiCIFRVVam8rqamRnjooYeEJ598UqUdgGBhYSH8+uuvau8FQEhISFA+fu+99wQAQlFRkcp2N27cEOzs7ISYmBiV9ilTpggODg7CrVu37rtP/fr1Ezp16iSUlZUJZWVlQkFBgTBlyhQBgDB48GDldmPGjBFat26tfLxt2zYBgLBgwQKV/oYPHy7IZDLh7NmzyjYHBwdhzJgx962DiHSL02FEpBehoaFo3rw5fH198eKLL8LR0RFbt26Fj48PAMDe3l657fXr11FeXo7HH38cR48eVeurX79+6NKlS71rcXJywpAhQ7Bp0yblNJRcLsfmzZsxdOhQODg4PLCPU6dOoXnz5mjevDk6d+6MFStWIDw8HGvXrq3zNbt27YKlpSWmTJmi0j59+nQIgoBvvvmm3vtERA3H6TAi0otVq1ahQ4cOsLKygqenJzp27AgLi7//3bVz504sWLAAx44dQ3V1tbJdJpOp9eXv79/geiIjI7F582bs27cPffv2xZ49e1BSUoLRo0dr9Ho/Pz+sWbNGedp/+/bt4eHhcd/XXLx4Ed7e3mjatKlKe+fOnZXPE5F0GIKISC+Cg4OVZ4f92759+xAREYG+ffvigw8+QIsWLWBtbY1169Zh48aNatv/c9SovsLCwuDp6YkNGzagb9++2LBhA7y8vBAaGqrR6x0cHDTeloiMA6fDiKjRffXVV7Czs0N2djbGjRuHp59+WicBQ2wU6R5LS0u89NJL+PLLL3H9+nVs27YNI0eOhKWlZYPfty6tW7fG77//jps3b6q0nzp1Svn8PfernYj0gyGIiBqdpaUlZDIZ5HK5su3ChQsNvmLyvbU9dV0xevTo0bh+/Tpef/113Lp1S+W6P/rwzDPPQC6XY+XKlSrtS5cuhUwmw9NPP61sc3Bw0PmVrono/jgdRkSNLjw8HEuWLMHAgQPx0ksvobS0FKtWrUK7du1w4sSJevfbq1cvAMCsWbPw4osvwtraGoMHD1aGo8DAQDz00EP44osv0LlzZ/Ts2VMn+1OXwYMH44knnsCsWbNw4cIF9OjRA7t378b27dsxbdo0ldPge/XqhT179mDJkiXw9vaGv78/QkJC9FofkbnjSBARNbonn3wSn3zyCYqLizFt2jRs2rQJycnJePbZZxvUb+/evTF//nwcP34cUVFRGDlypNqFDCMjIwFA4wXRDWFhYYEdO3Zg2rRp2LlzJ6ZNm4aTJ0/ivffew5IlS1S2XbJkCXr16oV3330XI0eOxOrVq/VeH5G5kwnCPy5bSkRk4pYtW4a33noLFy5cQKtWraQuh4gkxBBERGZDEAT06NEDbm5uyM3NlbocIpIY1wQRkcmrrKzEjh07kJubi//973/Yvn271CURkQHgSBARmbwLFy7A398fzs7OmDhxIhYuXCh1SURkABiCiIiIyCzx7DAiIiIySwxBREREZJa4MFqEQqHA77//jqZNm/JS9kREREZCEATcvHkT3t7eKjdsrgtDkIjff/8dvr6+UpdBRERE9fDbb7+hZcuWD9yOIUhE06ZNAdw9iM2aNZO4GiIiItJERUUFfH19ld/jD8IQJOLeFFizZs0YgoiIiIyMpktZuDCaiIiIzBJDEBEREZklhiAiIiIyS1wT1AByuRy1tbVSl0F6Zm1tDUtLS6nLICIiHTOIELRq1Sq89957KC4uRo8ePbBixQoEBweLbpuZmYlFixbh7NmzqK2tRfv27TF9+nSMHj1adPsJEybgww8/xNKlSzFt2jSd1CsIAoqLi3Hjxg2d9EeGz9nZGV5eXrxuFBGRCZE8BG3evBnR0dFIS0tDSEgIUlNTERYWhsLCQnh4eKht7+rqilmzZqFTp06wsbHBzp07MXbsWHh4eCAsLExl261bt+LgwYPw9vbWac33ApCHhweaNGnCL0YTJggCqqqqUFpaCgBo0aKFxBUREZGuSH4D1ZCQEPTu3RsrV64EcPdqzb6+vpg8eTJiY2M16qNnz54IDw/H/PnzlW1XrlxBSEgIsrOzER4ejmnTpmk8ElRRUQEnJyeUl5ernSIvl8tx+vRpeHh4wM3NTbOdJKP3xx9/oLS0FB06dODUGBGRgbrf97cYSRdG19TU4MiRIwgNDVW2WVhYIDQ0FPn5+Q98vSAIyMnJQWFhIfr27atsVygUGD16NGbMmIGuXbs+sJ/q6mpUVFSo/NTl3hqgJk2aPLBfMh33/ry5BoyIyHRIGoKuXbsGuVwOT09PlXZPT08UFxfX+bry8nI4OjrCxsYG4eHhWLFiBZ566inl88nJybCyssKUKVM0qiMxMRFOTk7KH01umcEpMPPCP28iItMj+Zqg+mjatCmOHTuGW7duIScnB9HR0WjTpg369++PI0eOYNmyZTh69KjGX1xxcXGIjo5WPr532W0iIiIyXZKGIHd3d1haWqKkpESlvaSkBF5eXnW+zsLCAu3atQMABAQEoKCgAImJiejfvz/27duH0tJStGrVSrm9XC7H9OnTkZqaigsXLqj1Z2trC1tbW93sFBERERkFSafDbGxs0KtXL+Tk5CjbFAoFcnJy0KdPH437USgUqK6uBgCMHj0aJ06cwLFjx5Q/3t7emDFjBrKzs3W+D8YkKioKMpkMMpkM1tbW8PT0xFNPPYW1a9dCoVBo3M/69evh7Oysv0KJiIgageTTYdHR0RgzZgyCgoIQHByM1NRUVFZWYuzYsQCAyMhI+Pj4IDExEcDd9TtBQUFo27YtqqursWvXLqSnp2P16tUAADc3N7WztqytreHl5YWOHTs27s4ZoIEDB2LdunWQy+UoKSlBVlYWpk6dii+//BI7duyAlZXkvxJERESNQvLbZowYMQIpKSmIj49HQEAAjh07hqysLOVi6UuXLuHq1avK7SsrKzFx4kR07doVjz76KL766its2LABr7zyilS7YFRsbW3h5eUFHx8f9OzZEzNnzsT27dvxzTffYP369QCAJUuWoFu3bnBwcICvry8mTpyIW7duAQDy8vIwduxYlJeXK0eV5syZAwBIT09HUFAQmjZtCi8vL7z00kvK6+sQEREBwKZNl/HiiweRmfmX1KVIf50gQ3S/6wzcvn0bRUVF8Pf3h52dHYC7p+pLceq0tbW1VmctRUVF4caNG9i2bZvacwEBAfD29sauXbuQmpqKHj16wN/fH+fPn8fEiRPx5JNP4oMPPkBNTQ1Wr16N+Ph4FBYWAgAcHR3h6OiItWvXokWLFujYsSNKS0sRHR0NZ2dn7Nq1S1e7LBmxP3ciItLOtm3bcPz4cQBAQcHTyMgQvztEfWl7nSDOfehAbW2tcrquMcXFxcHGxkYnfXXq1AknTpwAAJWLSvr5+WHBggWYMGECPvjgA9jY2MDJyQkymUxt8fq4ceOU/9+mTRssX74cvXv3xq1bt+Do6KiTOomIyPhUV1cjKSlJpe3557tIVM3fGIIIwN3RrHujSnv27EFiYiJOnTqFiooK3LlzB7dv30ZVVdV9LxJ55MgRzJkzB8ePH8f169eVi60vXbqELl2k/2UnIqLGl5+fj927d6u0zZw5E9bW1hJV9DeGIB2wtrZGXFycJO+rKwUFBfD398eFCxcwaNAgvPHGG1i4cCFcXV2xf/9+jB8/HjU1NXWGoMrKSoSFhSEsLAyff/45mjdvjkuXLiEsLAw1NTU6q5OIiIzH3LlzVR4HBQUhPDxcomrUMQTpgEwm09m0lBT27t2L//3vf3jrrbdw5MgRKBQKvP/++7CwuLtufsuWLSrb29jYQC6Xq7SdOnUKf/zxB5KSkpQXmvzpp58aZweIiMigXL9+HcuXL1dp+/HHSCQk+EtUkTiGIDNTXV2N4uJilVPkExMTMWjQIERGRuKXX35BbW0tVqxYgcGDB+OHH35AWlqaSh9+fn7Kq3X36NEDTZo0QatWrWBjY4MVK1ZgwoQJ+OWXX1RuaEtERObhvffeQ1VVlUpbTk4M3n7b8E4qkfwUeWpcWVlZaNGiBfz8/DBw4EDk5uZi+fLl2L59OywtLdGjRw8sWbIEycnJeOihh/D555+rLfp+5JFHMGHCBIwYMQLNmzfH4sWL0bx5c6xfvx5ffPEFunTpgqSkJKSkpEi0l0REJIW5c+eqBaCEhAR8/70dIiIkKuo+eIq8CG1PkSfTxz93IqK6FRQUqC2duHixN4YOfaZRww9PkSciIqJG8+/FzwAQExNjFP9gZAgiIiIirQmCgHnz5qm1BwYmwAjyDwCGICIiItLS119/rXYGcJcuXfD8889LVFH9MAQRERGRxsSmv7p3j8Wzz9pKUE3DMAQRERHRAykUCtFLnwQGJhjkmV+aYAgiIiKi+1q8eDH++kv1ru9VVc5ITp4qUUW6wRBEREREdRKb/tqzJxYzZhjf9Ne/MQQRERGRmpqaGrWL5QJAdnYCDhyQoCA9YAgiIiIiFWKjP8DdABQb28jF6BFDEOlcVFQUbty4gW3btgEA+vfvj4CAAKSmpta7T130QUREDyYWgGbNmgUrKyskJEhQkB7x3mFmJCoqCjKZTHnX+3bt2mHevHm4c+eOXt83MzNT45up5uXlQSaT4caNG/Xug4iItHfr1i3RAJSQkAArK9McMzHNvaI6DRw4EOvWrUN1dTV27dqFN998E9bW1oiLi1PZrqamBjY2Njp5T1dXV4Pog4iIxImFnz/+cMVPP002udGff+JIkJmxtbWFl5cXWrdujTfeeAOhoaHYsWMHoqKiMHToUCxcuBDe3t7o2LEjAOC3337DCy+8AGdnZ7i6umLIkCG4cOGCsj+5XI7o6Gg4OzvDzc0N77zzDv59T97+/ftj2rRpysfV1dWIiYmBr68vbG1t0a5dO3zyySe4cOECnnjiCQCAi4sLZDIZoqKiRPu4fv06IiMj4eLigiZNmuDpp5/GmTNnlM+vX78ezs7OyM7ORufOneHo6IiBAwfi6tWrym3y8vIQHBwMBwcHODs749FHH8XFixd1dKSJiIyDWAAKCIjHTz9NNqn1P2IYgsycvb09ampqAAA5OTkoLCzEt99+i507d6K2thZhYWFo2rQp9u3bhx9++EEZJu695v3338f69euxdu1a7N+/H3/++Se2bt163/eMjIzEpk2bsHz5chQUFODDDz+Eo6MjfH198dVXXwEACgsLcfXqVSxbtky0j6ioKPz000/YsWMH8vPzIQgCnnnmGdTW1iq3qaqqQkpKCtLT0/H999/j0qVLePvttwEAd+7cwdChQ9GvXz+cOHEC+fn5eO211yCTyRp8TImIjEFpaWmd019Dhshw4ACM9iKImuJ0mJkSBAE5OTnIzs7G5MmTUVZWBgcHB3z88cfKabANGzZAoVDg448/VoaDdevWwdnZGXl5eRgwYABSU1MRFxeHYcOGAQDS0tKQnZ1d5/uePn0aW7ZswbfffovQ0FAAQJs2bZTP35v28vDwgLOzs2gfZ86cwY4dO/DDDz/gkUceAQB8/vnn8PX1xbZt25T3rqmtrUVaWhratm0LAJg0aZLyZn8VFRUoLy/HoEGDlM937txZ+wNJRGSExMKPt7c3Xn31VQmqkQ5HgiS0YwfwyCN3/9tYdu7cCUdHR9jZ2eHpp5/GiBEjMGfOHABAt27dVNYBHT9+HGfPnkXTpk3h6OgIR0dHuLq64vbt2zh37hzKy8tx9epVhISEKF9jZWWFoKCgOt//2LFjsLS0RL9+/eq9DwUFBbCyslJ5Xzc3N3Ts2BEFBQXKtiZNmigDDgC0aNECpaWlAO6GraioKISFhWHw4MFYtmyZylQZEZGpEgtAgYEJZheAAI4ESSopCcjPv/vfxhpyfOKJJ7B69WrY2NjA29tbZcW/g4ODyra3bt1Cr1698Pnnn6v107x583q9v729fb1eVx/W1tYqj2Uymcp6pXXr1mHKlCnIysrC5s2b8e677+Lbb7/Fww8/3Gg1EhE1lnPnzmHDhg1q7cZ876+G4kiQhGJjgT590KgLzxwcHNCuXTu0atXqgac89uzZE2fOnIGHhwfatWun8uPk5AQnJye0aNEChw4dUr7mzp07OHLkSJ19duvWDQqFAt99953o8/dGouRyeZ19dO7cGXfu3FF53z/++AOFhYXo0qXLfffp3wIDAxEXF4cDBw7goYcewsaNG7V6PRGRMZg7d65aAPLx8UFCgvkGIIAhSFIRETDohWejRo2Cu7s7hgwZgn379qGoqAh5eXmYMmUKLl++DACYOnUqkpKSsG3bNpw6dQoTJ05Uu8bPP/n5+WHMmDEYN24ctm3bpuxzy5YtAIDWrVtDJpNh586dKCsrw61bt9T6aN++PYYMGYJXX30V+/fvx/Hjx/Hyyy/Dx8cHQ4YM0WjfioqKEBcXh/z8fFy8eBG7d+/GmTNnuC6IiExOXYufX3nlFQmqMSwMQVSnJk2a4Pvvv0erVq0wbNgwdO7cGePHj8ft27fRrFkzAMD06dMxevRojBkzBn369EHTpk3x7LPP3rff1atXY/jw4Zg4cSI6deqEV199FZWVlQDu/stk7ty5iI2NhaenJyZNmiTax7p169CrVy8MGjQIffr0gSAI2LVrl9oU2P327dSpU3juuefQoUMHvPbaa3jzzTfx+uuva3GEiIgM16FDh+pc/0N3yYR/X9SFUFFRAScnJ5SXlyu/7O+5ffs2ioqK4O/vDzs7O4kqpMbGP3ciMiZi4aesrB0GDBhlsLMPunC/728xXBhNRERkQuqa/iJ1DEFEREQm4JtvvsHhw4fV2hmA6sYQREREZOTERn9++ulhdO8eJkE1xoMhiIiIyIhx+qv+GILqievJzQv/vInI0KSkpCjPrP0nBiDNMQRp6d4p2FVVVY169WOSVlVVFQD1q1ATEUlBbPTn++8fh6vrkxJUY7wYgrRkaWkJZ2dn5T2omjRpwjuPmzBBEFBVVYXS0lI4OzvD0tJS6pKIyMxx+kt3GILqwcvLCwCUQYhMn7Ozs/LPnYhICmLhBwBqahiA6oshqB5kMhlatGgBDw8P1NbWSl0O6Zm1tTVHgIhIUmIB6LnnnsNDDz0kQTWmgyGoASwtLfnlSEREeiMIAubNm6fWzukv3WAIIiIiMkB1TX8xAOkOQxAREZGBEQtAGzeOQ2GhrwTVmC7eRZ6IiMhAKBQK0QCUkpKA4cMZgHTNIELQqlWr4OfnBzs7O4SEhIje++SezMxMBAUFwdnZGQ4ODggICEB6erry+draWsTExKBbt25wcHCAt7c3IiMj8fvvvzfGrhAREdXL3LlzMX/+fLX2hIQE3LwJLFwoQVEmTvLpsM2bNyM6OhppaWkICQlBamoqwsLCUFhYCA8PD7XtXV1dMWvWLHTq1Ak2NjbYuXMnxo4dCw8PD4SFhaGqqgpHjx7F7Nmz0aNHD1y/fh1Tp05FREQEfvrpJwn2kIiI6P7ERn8mTZoENzc3CaoxHzJB4vsBhISEoHfv3li5ciWAu0OBvr6+mDx5MmJjYzXqo2fPnggPDxdN0ADw448/Ijg4GBcvXkSrVq0e2F9FRQWcnJxQXl6OZs2aab4zREREWrh9+zaSk5PV2rn4uX60/f6WdCSopqYGR44cQVxcnLLNwsICoaGhyM/Pf+DrBUHA3r17UVhYKPpLdE95eTlkMhmcnZ1Fn6+urkZ1dbXycUVFheY7QUREVA91nf0VGMgA1FgkDUHXrl2DXC6Hp6enSrunpydOnTpV5+vKy8vh4+OD6upqWFpa4oMPPsBTTz0luu3t27cRExODkSNH1pkKExMT6/xlJCIi0jWx75xu3d7BsGG8J2VjknxNUH00bdoUx44dw61bt5CTk4Po6Gi0adMG/fv3V9mutrYWL7zwAgRBwOrVq+vsLy4uDtHR0crHFRUV8PXlKnwiItKt69evY/ny5WrtgYEJiIiQoCAzJ2kIcnd3h6WlJUpKSlTaS0pK7nufJgsLC7Rr1w4AEBAQgIKCAiQmJqqEoHsB6OLFi9i7d+995wZtbW1ha2vbsJ0hIiK6D1780PBIeoq8jY0NevXqhZycHGWbQqFATk4O+vTpo3E/CoVCZU3PvQB05swZ7Nmzh6vriYhIUmIBaNasWQxAEpN8Oiw6OhpjxoxBUFAQgoODkZqaisrKSowdOxYAEBkZCR8fHyQmJgK4u34nKCgIbdu2RXV1NXbt2oX09HTldFdtbS2GDx+Oo0ePYufOnZDL5SguLgZw9/R6GxsbaXaUiIjMzm+//Ya1a9eqtTP8GAbJQ9CIESNQVlaG+Ph4FBcXIyAgAFlZWcrF0pcuXYKFxd8DVpWVlZg4cSIuX74Me3t7dOrUCRs2bMCIESMAAFeuXMGOHTsA3J0q+6fc3Fy1dUNERET6wOkvwyf5dYIMEa8TREREDSEWgOLj4yGTySSoxnwY1XWCiIiITMnRo0fx3//+V62doz+GiSGIiIhIB+qa/qqpYQAyVAxBREREDSQWgDj6Y/gYgoiIiOopOzsbBw8eVGtnADIODEFERET1wLO/jB9DEBERkZbEAhBvfWF8GIKIiIg09Mknn+Dy5ctq7Rz9MU4MQURERBoQG/1xcHDA22+/LUE1pAsMQURERA/As79ME0MQERFRHRYtWoTa2lq1dl77xzQwBBEREYkQG/0pKemMgQNf4AJoE8EQRERE9C+c/jIPDEFERET/j9f+MS8MQURERBAPQE888QT69u0rQTXUGBiCiIjI7HH6yzwxBBERkdni9Jd5YwgiIiKzJBaATpwYhq++6iZBNSQFC6kLICIiakyCIIgGoOzsBIwZwwBkTjgSREREZuN+01+cATM/DEFERGQWxALQ+PHj0bJlSwmqIUPAEERERCatpqYGiYmJau2BgQlg/jFvDEFERGSy6pr+CgxM4K0viCGIiIhMk1gAmjp1KpydnRu/GDJIDEFERGRSysvLkZqaqtYeGJgA5h/6J4YgIiIyGbz4IWmDIYiIiEyCWACKjY2Fra2tBNWQMWAIIiIio/b7779jzZo1au0c/aEHYQgiIiKjxekvagiGICIiMkrit76YjQMHeEco0gxDEBERGZXCwkJkZGSotWdnJyA2VoKCyGgxBBERkdG438UPOQNG2mIIIiIioyAWgLj2hxqCIYiIiAxafn4+du/erdbOAEQNxRBEREQGi2d/kT4xBBERkUESC0AZGQkoKJCgGDJJDEFERGRQtm/fjmPHjqm1Z2cnIDm58esh08UQREREBkNs9Mfe3h7vvPMOz/4inWMIIiIig8Czv6ixMQQREZGk0tLSUFJSotYeGMgARPrFEERERJIRG/1p164dRo0aJUE1ZG4YgoiISBKc/iKpGcRd5latWgU/Pz/Y2dkhJCQEhw8frnPbzMxMBAUFwdnZGQ4ODggICEB6errKNoIgID4+Hi1atIC9vT1CQ0Nx5swZfe8GERFpYO7cuQxAZBAkD0GbN29GdHQ0EhIScPToUfTo0QNhYWEoLS0V3d7V1RWzZs1Cfn4+Tpw4gbFjx2Ls2LHIzs5WbrN48WIsX74caWlpOHToEBwcHBAWFobbt2831m4REZEIsfDz2GOPMQCRJGSCIAhSFhASEoLevXtj5cqVAACFQgFfX19MnjwZsRreDrhnz54IDw/H/PnzIQgCvL29MX36dLz99tsAgPLycnh6emL9+vV48cUXH9hfRUUFnJycUF5ejmbNmtV/54iISImjP6Rv2n5/SzoSVFNTgyNHjiA0NFTZZmFhgdDQUOTn5z/w9YIgICcnB4WFhejbty8AoKioCMXFxSp9Ojk5ISQkpM4+q6urUVFRofJDRES6Udf0F8/+IqlJujD62rVrkMvl8PT0VGn39PTEqVOn6nxdeXk5fHx8UF1dDUtLS3zwwQd46qmnAADFxcXKPv7d573n/i0xMbHO+9MQEVH9iX22Dh06FD169JCgGiJVRnl2WNOmTXHs2DHcunULOTk5iI6ORps2bdC/f/969RcXF4fo6Gjl44qKCvj6+uqoWiIi8yMIAubNm6fWzukvMiSShiB3d3dYWlqqXSSrpKQEXl5edb7OwsIC7dq1AwAEBASgoKAAiYmJ6N+/v/J1JSUlaNGihUqfAQEBov3Z2trC1ta2gXtDRERA3Xd+5/QXGRpJ1wTZ2NigV69eyMnJUbYpFArk5OSgT58+GvejUChQXV0NAPD394eXl5dKnxUVFTh06JBWfRIRkfbEAlBtbRQSEhIQESFBQUT3Ifl0WHR0NMaMGYOgoCAEBwcjNTUVlZWVGDt2LAAgMjISPj4+SExMBHB3/U5QUBDatm2L6upq7Nq1C+np6Vi9ejUAQCaTYdq0aViwYAHat28Pf39/zJ49G97e3hg6dKhUu0lEZNLkcjkWLFig1s7pLzJkkoegESNGoKysDPHx8SguLkZAQACysrKUC5svXboEC4u/B6wqKysxceJEXL58Gfb29ujUqRM2bNiAESNGKLd55513UFlZiddeew03btzAY489hqysLNjZ2TX6/hERmbq6pr8YgMjQSX6dIEPE6wQREWlGLAB9//0UTJ3qwukvanTafn9LPhJERETG56+//sLixYvV2gMDE8ABIDIWDEFERKQVTn+RqWAIIiIijYkFoJiYGK65JKPEEERERA/0559/YsWKFWrtHP0hY8YQRERE98XpLzJVDEFERFQnsQAUEPAuhgyxlKAaIt1iCCIiIjUXL17E+vXr1do5+kOmhCGIiIhUcPqLzAVDEBERKYlPf8VjyBCZBNUQ6RdDEBER4fjx49i2bZtaO0d/yJQxBBERmTlOf5G5YggiIjJjYgGI4YfMBUMQEZEZ2rt3L/bt26fWzgBE5oQhiIjIzIiN/lhbW2PmzJkSVEMkHYYgIiIzwukvor8xBBERmYFNmzbh9OnTau0MQGTOGIKIiEyc2OiPn58fxowZI0E1RIZD6xBkaWmJq1evwsPDQ6X9jz/+gIeHB+Ryuc6KIyKihuH0F1HdtA5BgiCItldXV8PGxqbBBRERUcMtWbIEN2/eVGtnACL6m8YhaPny5QAAmUyGjz/+GI6Ojsrn5HI5vv/+e3Tq1En3FRIRkVbERn9CQkIwcOBACaohMlwah6ClS5cCuDsSlJaWBktLS+VzNjY28PPzQ1pamu4rJCIijXH6i0hzGoegoqIiAMATTzyBzMxMuLi46K0oIiLSDm99QaQ9rdcE5ebm6qMOIiKqJ7EA9Ouv4diyJUiCaoiMh9YhaNy4cfd9fu3atfUuhoiItCMWgLKzExAbK0ExREZG6xB0/fp1lce1tbX45ZdfcOPGDTz55JM6K4yIiOp2v+kvzoARaUbrELR161a1NoVCgTfeeANt27bVSVFERFQ3sQA0cuRIdOjQQYJqiIyXTKjrwj9aKiwsRP/+/XH16lVddCepiooKODk5oby8HM2aNZO6HCIiAHf/wTl//ny1di5+JrpL2+9vnd0249y5c7hz546uuiMion/g2V9Euqd1CIqOjlZ5LAgCrl69iq+//pr3oSEi0gOxADRhwgR4enpKUA2R6dA6BP38888qjy0sLNC8eXO8//77DzxzjIiINFdTU4PExES1do7+EOkGrxNERGSAOP1FpH/1XhNUWlqKwsJCAEDHjh3V7ipPRET1IxaApk+frnLPRiJqOAttX1BRUYHRo0fD29sb/fr1Q79+/eDj44OXX34Z5eXl+qiRiMgs3Lx5UzQABQYmMAAR6YHWI0Gvvvoqfv75Z3z99dfo06cPACA/Px9Tp07F66+/joyMDJ0XSURk6jj9RdT4tA5BO3fuRHZ2Nh577DFlW1hYGNasWYOBAwfqtDgiInMgFoC+/XYW3nlHZ1cxISIRWv8Nc3Nzg5OTk1q7k5MT7yxPRKSFq1ev4qOPPlJr560viBqH1iHo3XffRXR0NNLT0+Hl5QUAKC4uxowZMzB79mydF0hEZIrqmv4KDGT6IWosWt82IzAwEGfPnkV1dTVatWoFALh06RJsbW3Rvn17lW2PHj2qu0obEW+bQUT6JH7n93gcOCCToBoi06H322YMGTIEMhn/ohIRaevUqVPYvHmzWvumTQlYvFiCgojMnM5uoGpKOBJERLrGs7+I9E/vI0Ft2rTBjz/+CDc3N5X2GzduoGfPnjh//ry2XRIRmTSxAMTwQyQ9rS+WeOHCBcjlcrX26upqXL58WesCVq1aBT8/P9jZ2SEkJASHDx+uc9s1a9bg8ccfh4uLC1xcXBAaGqq2/a1btzBp0iS0bNkS9vb26NKlC9LS0rSui4iooQ4cOMAARGTANB4J2rFjh/L/s7OzVU6Tl8vlyMnJgb+/v1ZvvnnzZkRHRyMtLQ0hISFITU1FWFgYCgsLRW/DkZeXh5EjR+KRRx6BnZ0dkpOTMWDAAPz666/w8fEBcPcu93v37sWGDRvg5+eH3bt3Y+LEifD29kZERIRW9RER1Renv4gMn8Zrgiws7g4ayWQy/Psl1tbW8PPzw/vvv49BgwZp/OYhISHo3bs3Vq5cCQBQKBTw9fXF5MmTERsb+8DXy+VyuLi4YOXKlYiMjAQAPPTQQxgxYoTK6fq9evXC008/jQULFmhUF9cEEVFDcPSHSBrafn9rPB2mUCigUCjQqlUrlJaWKh8rFApUV1ejsLBQqwBUU1ODI0eOIDQ09O9iLCwQGhqK/Px8jfqoqqpCbW0tXF1dlW2PPPIIduzYgStXrkAQBOTm5uL06dMYMGBAnf1UV1ejoqJC5YeISFvbtm1jACIyIlovjC4qKtLJG1+7dg1yuRyenp4q7Z6enjh16pRGfcTExMDb21slSK1YsQKvvfYaWrZsCSsrK1hYWGDNmjXo27dvnf0kJibWOXRNRKQJsc8QDw8PvPHGGxJUQ0Sa0DoEzZs3777Px8fH17sYbSQlJSEjIwN5eXmws7NTtq9YsQIHDx7Ejh070Lp1a3z//fd488031cLSP8XFxSE6Olr5uKKiAr6+vnrfByIyDRz9ITJOWoegrVu3qjyura1FUVERrKys0LZtW41DkLu7OywtLVFSUqLSXlJSorwdR11SUlKQlJSEPXv2oHv37sr2v/76CzNnzsTWrVsRHh4OAOjevTuOHTuGlJSUOkOQra0tbG1tNaqbiOielJQUVFZWqrXX1DAAERkDrUPQzz//rNZWUVGBqKgoPPvssxr3Y2Njg169eiEnJwdDhw4FcHfdUU5ODiZNmlTn6xYvXoyFCxciOzsbQUFBKs/V1taitrZWuYj7HktLSygUCo1rIyJ6ELHRn3bt2mHUqFESVENE9aF1CBLTrFkzzJ07F4MHD8bo0aM1fl10dDTGjBmDoKAgBAcHIzU1FZWVlRg7diwAIDIyEj4+PkhMTAQAJCcnIz4+Hhs3boSfnx+Ki4sBAI6OjnB0dESzZs3Qr18/zJgxA/b29mjdujW+++47fPbZZ1iyZIkudpWIiNNfRCZCJyEIAMrLy1FeXq7Va0aMGIGysjLEx8ejuLgYAQEByMrKUi6WvnTpksqozurVq1FTU4Phw4er9JOQkIA5c+YAADIyMhAXF4dRo0bhzz//ROvWrbFw4UJMmDChYTtIRGaP1/4hMi1a3zts+fLlKo8FQcDVq1eRnp6Ofv36YePGjTotUAq8ThAR/ZtYADpzpj9eeKEfeB1WIsOg93uHLV26VOWxhYUFmjdvjjFjxiAuLk7b7oiIDB6nv4hMk2TXCSIiMnSc/iIybfVaE3Tjxg2cPXsWwN2zIZydnXVZExGR5MQC0LBhw9CtWzcJqiEifdDqLvIXLlxAeHg43N3dERISgpCQELi7u2PQoEG4cOGCnkokImo8giDUOf3FAERkWjQeCfrtt9/w8MMPw9raGvPnz0fnzp0BACdPnsTq1avRp08f/Pjjj2jZsqXeiiUi0idOfxGZF43PDhs/fjzOnj2L7OxsldtUAHev1Dxw4EC0b98eH3/8sV4KbUw8O4zI/IgFoA4dxmPkSP7DjshY6O3ssKysLGzevFktAAGAvb095s+fjxdffFG7aomIJHbnzh0sXLhQrZ2jP0SmT+MQdO3aNfj5+dX5fJs2bfDnn3/qoiYiokbB6S8i86ZxCGrRogVOnjxZ55qfX3755YE3PiUiMhRiAWjatGlwcnKSoBoikoLGZ4cNHToUb7/9NsrKytSeKy0tRUxMjPJGqEREhqqqqqrOs78YgIjMi8YLo69fv46QkBAUFxfj5ZdfRqdOnSAIAgoKCrBx40Z4eXnh4MGDcHV11XfNeseF0USmidNfRKZNbwujXVxccOjQIcycORMZGRm4ceMGAMDZ2RkvvfQSFi1aZBIBiIhMk1gAio2Nha2trQTVEJEh0PoGqsDdi4ndmxZr3rw5ZDKZzguTEkeCiEzHtWvXsGrVKrV2jv4QmR6930AVAGQyGTw8POrzUiKiRsPpLyK6n3qFICIiQycWgGbPng0LC63uFkREJowhiIhMyvnz55Genq7WztEfIvo3hiAiMhmc/iIibTAEEZFJqOvaP0REddEoBC1fvlzjDqdMmVLvYoiItHX06FH897//VWtnACKiB9HoFHl/f3/NOpPJcP78+QYXJTWeIk9kHDj9RUT/pJdT5IuKihpcGBGRLnH6i4gaqt5rgmpqalBUVIS2bdvCyopLi4iocezduxf79u1Taw8MZAAiIu1onV6qqqowefJkfPrppwCA06dPo02bNpg8eTJ8fHwQGxur8yKJiADx0R9XV1dMnjxZgmqIyNhpfdWwuLg4HD9+HHl5ebCzs1O2h4aGYvPmzTotjojonrqmvxiAiKi+tB4J2rZtGzZv3oyHH35Y5Z5hXbt2xblz53RaHBHRli1bUFBQoNbO9T9E1FBah6CysjLR+4ZVVlaa3I1UiUhaYqM/Xbp0wfPPPy9BNURkarSeDgsKCsLXX3+tfHwv+Hz88cfo06eP7iojIrNW1/QXAxAR6YrWI0GLFi3C008/jZMnT+LOnTtYtmwZTp48iQMHDuC7777TR41EZEbS0tJQUlKi1s6zv4hI17QOQY899hiOHTuGpKQkdOvWDbt370bPnj2Rn5+Pbt266aNGIjITYqM///nPf/DYY49JUA0RmTqNrhhtbnjFaKLGx4sfElFD6eWK0RUVFRoXwNBARNqo69YXnP4iIn3TKAQ5OztrfOaXXC5vUEFEZD7EAtDw4cPRtWtXCaohInOjUQjKzc1V/v+FCxcQGxuLqKgo5dlg+fn5+PTTT5GYmKifKonIpAiCgHnz5qm1c/qLiBqT1muC/vOf/+CVV17ByJEjVdo3btyIjz76CHl5ebqsTxJcE0SkP/eb/oqIaORiiMikaPv9rXUIatKkCY4fP4727durtJ8+fRoBAQGoqqrSrmIDxBBEpB9iASg//xVkZflIUA0RmRptv7+1vliir68v1qxZo9b+8ccfw9fXV9vuiMgMKBQK0QCUkZGAiRMZgIhIGlpfJ2jp0qV47rnn8M033yAkJAQAcPjwYZw5cwZfffWVzgskIuNW1/RXQkICuASIiKSk9UjQM888gzNnzmDw4MH4888/8eeff2Lw4ME4ffo0nnnmGX3USERGSiwA5eVF8/R3IjIIvFiiCK4JImqY2tpaLFq0SK2dZ38RkT7p5WKJ/3bjxg188sknKCgoAAB07doV48aNg5OTU326IyITcr/pLyIiQ6L1SNBPP/2EsLAw2NvbIzg4GADw448/4q+//lLeR8zYcSSIqH7EAtCePbHYt89WgmqIyNzo/eywt956CxEREbhw4QIyMzORmZmJoqIiDBo0CNOmTdO64FWrVsHPzw92dnYICQnB4cOH69x2zZo1ePzxx+Hi4gIXFxeEhoaKbl9QUICIiAg4OTnBwcEBvXv3xqVLl7SujYg0U1VVVefZXzNmMAARkWHSeiTI3t4eP//8Mzp16qTSfvLkSQQFBWl1naDNmzcjMjISaWlpCAkJQWpqKr744gsUFhbCw8NDbftRo0bh0UcfxSOPPAI7OzskJydj69at+PXXX+Hjc/c023PnziE4OBjjx4/HyJEj0axZM/z66694+OGHRfsUw5EgIs1x+ouIDIXeL5bo6emJ9PR0DBgwQKU9OzsbkZGRKCkp0bivkJAQ9O7dGytXrgRw91oivr6+mDx5MmJjYx/4erlcDhcXF6xcuRKRkZEAgBdffBHW1tZIT0/XYq9UMQQRaUYsAM2ePRsWFloPMhMRNZjep8NGjBiB8ePHY/Pmzfjtt9/w22+/ISMjQ/RWGvdTU1ODI0eOIDQ09O9iLCwQGhqK/Px8jfqoqqpCbW0tXF1dAdwNUV9//TU6dOiAsLAweHh4ICQkBNu2bbtvP9XV1aioqFD5IaK6/fnnn6IBKCEhgQGIiIyG1meHpaSkQCaTITIyEnfu3AEAWFtb44033kBSUpLG/Vy7dg1yuRyenp4q7Z6enjh16pRGfcTExMDb21sZpEpLS3Hr1i0kJSVhwYIFSE5ORlZWFoYNG4bc3Fz069dPtJ/ExMQ6h/SJSJXY3xUbGxvExcVJUA0RUf1pHYJsbGywbNkyJCYm4ty5cwCAtm3bokmTJjov7n6SkpKQkZGBvLw82NnZAbg7EgQAQ4YMwVtvvQUACAgIwIEDB5CWllZnCIqLi0N0dLTycUVFBW8BQiRCLADFx8dDJpNJUA0RUcPU6zpBwN0bqXbr1q3eb+zu7g5LS0u1NUQlJSXw8vK672tTUlKQlJSEPXv2oHv37ip9WllZoUuXLirbd+7cGfv376+zP1tbW9ja8gwWorpcuXIFH3/8sVo7Fz8TkTHTOASNGzdOo+3Wrl2r0XY2Njbo1asXcnJyMHToUAB3R3JycnIwadKkOl+3ePFiLFy4ENnZ2QgKClLrs3fv3igsLFRpP336NFq3bq1RXUSkSmz0p2XLlhg/frwE1RAR6Y7GIWj9+vVo3bo1AgMDoas7bURHR2PMmDEICgpCcHAwUlNTUVlZibFjxwIAIiMj4ePjg8TERABAcnIy4uPjsXHjRvj5+aG4uBgA4OjoCEdHRwDAjBkzMGLECPTt2xdPPPEEsrKy8N///hd5eXk6qZnInNS1+JmIyBRoHILeeOMNbNq0CUVFRRg7dixefvll5VlZ9TVixAiUlZUhPj4excXFCAgIQFZWlnKx9KVLl1TONFm9ejVqamowfPhwlX4SEhIwZ84cAMCzzz6LtLQ0JCYmYsqUKejYsSO++uorPPbYYw2qlcicnD59Gps2bVJrZwAiIlOi1XWCqqurkZmZibVr1+LAgQMIDw/H+PHjMWDAAJNaGMnrBJE5Exv96dGjh3LamojIUOn9Yon3XLx4EevXr8dnn32GO3fu4Ndff1VOSRk7hiAyV5z+IiJj1ih3kQfuXthQJpNBEATI5fL6dkNEBuCnn37C119/rdbOAEREpkyrEPTP6bD9+/dj0KBBWLlyJQYOHMirxBIZKbHRn/79+9d5XS0iIlOhcQiaOHEiMjIy4Ovri3HjxmHTpk1wd3fXZ21EpGec/iIic6bxmiALCwu0atUKgYGB910EnZmZqbPipMI1QWTq9uzZgx9++EGtnQGIiIyZ3tYERUZGmtQZYETmSmz0JyIiAoGBgRJUQ0QkHa0ulkhExo3TX0REf6v32WFEZDy2bNmCgoICtXYGICIyZwxBRCZObPTn5ZdfRtu2bSWohojIcDAEEZkwTn8REdWNIYjIBH3wwQcoKytTa2cAIiL6G0MQkYkRG/15/fXX4eXlJUE1RESGiyGIyEQIgoB58+aptXP0h4hIHEMQkQkQG/0BGICIiO6HIYjIyIkFoGnTpsHJyUmCaoiIjAdDEJGRksvlWLBggVo7R3+IiDTDEERkhDj9RUTUcAxBREZGLADFxMTAzs5OgmqIiIwXQxCRkbh9+zaSk5PV2jn6Q0RUPwxBREaA019ERLrHEERk4MQC0KxZs2Blxb++REQNwU9RIgNVXl6O1NRUtXaO/hAR6QZDEJEB4vQXEZH+MQQRGRixABQfHw+ZTCZBNUREposhiMhAlJSUIC0tTa2doz9ERPrBEERkAMRGf9zc3DBp0iQJqiEiMg8MQUQSEwtAHP0hItI/hiAiiVy6dAnr1q1Ta2cAIiJqHAxBRBIQG/3p2LEjXnzxRQmqISIyTwxBRI1MLAAFBiYgIkKCYoiIzBhDEFEjOXnyJL744gu1dk5/ERFJgyGIqBGIjf7069cP/fv3b/xiiIgIAEMQkd7x7C8iIsPEEESkJ4cOHUJWVpZaOwMQEZFhYAgi0gOx0Z+IiAgEBgZKUA0REYlhCCLSMU5/EREZB4YgIh3Jzs7GwYMH1doZgIiIDBNDEJEOiI3+jBo1Cu3atZOgGiIi0gRDEFEDcfqLiMg4MQQR1dOOHTvw888/q7UzABERGQeGIKJ6EBv9+eGHCZg0yVOCaoiIqD4spC4AAFatWgU/Pz/Y2dkhJCQEhw8frnPbNWvW4PHHH4eLiwtcXFwQGhp63+0nTJgAmUyG1NRUPVRO5kYQhDqnv3bv9uT9v4iIjIjkIWjz5s2Ijo5GQkICjh49ih49eiAsLAylpaWi2+fl5WHkyJHIzc1Ffn4+fH19MWDAAFy5ckVt261bt+LgwYPw9vbW926QGfjss88wb948tXZOfxERGSeZIAiClAWEhISgd+/eWLlyJQBAoVDA19cXkydPRmxs7ANfL5fL4eLigpUrVyIyMlLZfuXKFYSEhCA7Oxvh4eGYNm0apk2bplFNFRUVcHJyQnl5OZo1a1av/SLTIjb6M23aNDg5OUlQDRERidH2+1vSkaCamhocOXIEoaGhyjYLCwuEhoYiPz9foz6qqqpQW1sLV1dXZZtCocDo0aMxY8YMdO3a9YF9VFdXo6KiQuWHCLj7u1TX9BcDEBGRcZN0YfS1a9cgl8vh6am6mNTT0xOnTp3SqI+YmBh4e3urBKnk5GRYWVlhypQpGvWRmJgo+kVH5i01NRXl5eVq7Zz+IiIyDUZ9dlhSUhIyMjKQl5cHOzs7AMCRI0ewbNkyHD16FDKZTKN+4uLiEB0drXxcUVEBX19fvdRMxkEsFL/zzjuwt7eXoBoiItIHSafD3N3dYWlpiZKSEpX2kpISeHl53fe1KSkpSEpKwu7du9G9e3dl+759+1BaWopWrVrBysoKVlZWuHjxIqZPnw4/Pz/RvmxtbdGsWTOVHzJPd+7cqXP6iwGIiMi0SDoSZGNjg169eiEnJwdDhw4FcHcNRk5ODiZNmlTn6xYvXoyFCxciOzsbQUFBKs+NHj1aZWoMAMLCwjB69GiMHTtW5/tApuO9995DVVWVWjunv4iITJPk02HR0dEYM2YMgoKCEBwcjNTUVFRWVioDS2RkJHx8fJCYmAjg7nqf+Ph4bNy4EX5+figuLgYAODo6wtHREW5ubnBzc1N5D2tra3h5eaFjx46Nu3NkNMRGf779dib277eWoBoiImoMkoegESNGoKysDPHx8SguLkZAQACysrKUi6UvXboEC4u/Z+1Wr16NmpoaDB8+XKWfhIQEzJkzpzFLJxNw+/ZtJCcnq7VnZydAgys0EBGREZP8OkGGiNcJMg9ioz++vr4YN26cBNUQEVFDafv9LflIEJEUxALQ7NmzVUYdiYjItDEEkVmpqKjA0qVL1dq5+JmIyPwwBJHZEBv96datG4YNGyZBNUREJDWGIDILYgEoPj5e4wtqEhGR6WEIIpN27do1rFq1Sq2d019ERMQQRCZLbPTn0UcfVbuYJhERmSeGIDJJdd36goiI6B6GIDIpV69exUcffaTWHhjIAERERKoYgshkiI3+DB06FD169JCgGiIiMnQMQWQSOP1FRETaYggio1ZUVITPPvtMrZ0BiIiIHoQhiIyW2OjPqFGj0K5dOwmqISIiY8MQREaJ019ERNRQDEFkVH799Vd8+eWXau0MQEREpC2GIDIaYqM/48ePR8uWLSWohoiIjB1DEBkFTn8REZGuMQSRQTt8+DC++eYbtXYGICIiaiiGIDJYYqM/b775Jtzd3SWohoiITA1DEBkkTn8REZG+MQSRQdm7dy/27dun1s4AREREusYQRAZDbPTnrbfeQrNmzSSohoiITB1DEElOEATMmzdPrZ2jP0REpE8MQSSp7du349ixYypt1tbWmDlzpjQFERGR2WAIIsmITX+98847sLe3l6AaIiIyNwxB1OjkcjkWLFig1s7pLyIiakwMQdSo0tPTcf78eZU2Dw8PvPHGGxJVRERE5oohiBqN2PTXzJkzYW1tLUE1RERk7hiCSO9qa2uxaNEitXZOfxERkZQYgkivPv/8c5w9e1alrbS0PVatekmiioiIiO5iCCK9EZv+ys6ejdhYCwmqISIiUsUQRDp3+/ZtJCcnq7UnJCSAM2BERGQoGIJIpz744AOUlZWptPXv3x/9+vWTqCIiIiJxDEGkM2LTX/Hx8ZDJZBJUQ0REdH8MQdRgN2/exJIlS9TaefYXEREZMoYgapDExETU1NSotD3zzDPo3bu3RBURERFphiGI6k1s+oujP0REZCwYgkhrlZWVSElJUWtnACIiImPCEERayczMxP/+9z+VtuHDh6Nr164SVURERFQ/DEGkMbHpr5qaBDD/EBGRMWIIogcqLy9HamqqSlvz5s0xceJEaQoiIiLSAYYguq/09HScP39epe3NN9+Eu7u7RBURERHphkHcxGnVqlXw8/ODnZ0dQkJCcPjw4Tq3XbNmDR5//HG4uLjAxcUFoaGhKtvX1tYiJiYG3bp1g4ODA7y9vREZGYnff/+9MXbFpMydO1ctACUkJDAAERGRSZA8BG3evBnR0dFISEjA0aNH0aNHD4SFhaG0tFR0+7y8PIwcORK5ubnIz8+Hr68vBgwYgCtXrgAAqqqqcPToUcyePRtHjx5FZmYmCgsLERER0Zi7ZdSuXbumtv7Hz8+PZ38REZFJkQmCIEhZQEhICHr37o2VK1cCABQKBXx9fTF58mTExsY+8PVyuRwuLi5YuXIlIiMjRbf58ccfERwcjIsXL6JVq1YP7LOiogJOTk4oLy9Hs2bNtNshI5eWloaSkhKVtqlTp8LZ2VmagoiIiDSk7fe3pGuCampqcOTIEcTFxSnbLCwsEBoaivz8fI36qKqqQm1tLVxdXevcpry8HDKZrM4v8urqalRXVysfV1RUaLYDJoYXPyQiInMi6XTYtWvXIJfL4enpqdLu6emJ4uJijfqIiYmBt7c3QkNDRZ+/ffs2YmJiMHLkyDpTYWJiIpycnJQ/vr6+2u2Ikbt69apaAOratSsDEBERmTSjPjssKSkJGRkZyMvLg52dndrztbW1eOGFFyAIAlavXl1nP3FxcYiOjlY+rqioMJsglJKSgsrKSpW26dOnw9HRUaKKiIiIGoekIcjd3R2WlpZqa1BKSkrg5eV139empKQgKSkJe/bsQffu3dWevxeALl68iL179953btDW1ha2trb12wkjxukvIiIyZ5JOh9nY2KBXr17IyclRtikUCuTk5KBPnz51vm7x4sWYP38+srKyEBQUpPb8vQB05swZ7NmzB25ubnqp31hdvHhRLQAFBQUxABERkVmRfDosOjoaY8aMQVBQEIKDg5GamorKykqMHTsWABAZGQkfHx8kJiYCAJKTkxEfH4+NGzfCz89PuXbI0dERjo6OqK2txfDhw3H06FHs3LkTcrlcuY2rqytsbGyk2VEDITb6ExMTIzqdSEREZMokD0EjRoxAWVkZ4uPjUVxcjICAAGRlZSkXS1+6dAkWFn8PWK1evRo1NTUYPny4Sj8JCQmYM2cOrly5gh07dgAAAgICVLbJzc1F//799bo/hkoQBMybN0+tnaM/RERkriS/TpAhMrXrBF29ehUfffSRSlvfvn3xxBNPSFQRERGR7hnVdYJI/z777DMUFRWptH377SwkJPCPnoiIzBu/CU2U2PSXpaU9du16BxpciJuIiMjkMQSZoEuXLmHdunUqbSNHjkSHDh3w7rsSFUVERGRgGIJMzIcffqh2te3Zs2erLC4nIiIihiCToVAoMH/+fJU2Nzc3TJo0SaKKiIiIDBtDkAk4d+4cNmzYoNIWGRkJf39/iSoiIiIyfAxBRm7p0qVqd72Pj4+HTCaTqCIiIiLjwBBkpORyORYsWKDS5uPjg1deeUWiioiIiIwLQ5ARKigowJYtW1Taxo8fj5YtW0pUERERkfFhCDIy33//PXJzc1XaOP1FRESkPYYgIyGXy5GUlIQ7d+4o20pL22PVqpckrIqIiMh4MQQZgZKSEqSlpam05eZOR3S0o0QVERERGT+GIAOXk5OD/fv3Kx/7+flhzJgx4M3fiYiIGoYhyEDduXMHCxcuVGl7/vnn0aVLF4kqIiIiMi0MQQboypUr+Pjjj1XaZsyYgSZNmkhUERERkelhCDIwWVlZOHTokPJxhw4dMHLkSAkrIiIiMk0MQQaitrYWixYtUml76aWX0L59e4kqIiIiMm0MQQbg0qVLWLdunUpbTEwM7OzsJKqIiIjI9DEESWzHjh34+eeflY8feughPPfccxJWREREZB4YgiRSU1ODxMRElbbRo0ejTZs2ElVERERkXhiCJHD+/Hmkp6ertMXFxcHGxkaiioiIiMwPQ1Aj++qrr/DLL78oHwcGBiIiIkLCioiIiMwTQ1AjOnv2rEoAGjt2LFq1aiVhRURERObLQuoCzEmTJk1w587dKa9vv53JAERERCQhjgQ1Im9vb/TuHYekJCA2VupqiIiIzBtDUCOLiLj7Q0RERNLidBgRERGZJYYgIiIiMksMQURERGSWGIKIiIjILDEEERERkVliCCIiIiKzxBBEREREZokhiIiIiMwSQxARERGZJYYgIiIiMksMQURERGSWGIKIiIjILDEEERERkVniXeRFCIIAAKioqJC4EiIiItLUve/te9/jD8IQJOLmzZsAAF9fX4krISIiIm3dvHkTTk5OD9xOJmgal8yIQqHA77//jqZNm0Imk0ldTqOqqKiAr68vfvvtNzRr1kzqcgwGj4s6HhNxPC7ieFzE8biIq+9xEQQBN2/ehLe3NywsHrzihyNBIiwsLNCyZUupy5BUs2bN+BdSBI+LOh4TcTwu4nhcxPG4iKvPcdFkBOgeLowmIiIis8QQRERERGaJIYhU2NraIiEhAba2tlKXYlB4XNTxmIjjcRHH4yKOx0VcYx0XLowmIiIis8SRICIiIjJLDEFERERklhiCiIiIyCwxBBEREZFZYggycatWrYKfnx/s7OwQEhKCw4cP17ntmjVr8Pjjj8PFxQUuLi4IDQ1V2b62thYxMTHo1q0bHBwc4O3tjcjISPz++++NsSs6pcvj8m8TJkyATCZDamqqHirXL30cl4KCAkRERMDJyQkODg7o3bs3Ll26pM/d0DldH5dbt25h0qRJaNmyJezt7dGlSxekpaXpezd0TpvjkpmZiaCgIDg7O8PBwQEBAQFIT09X2UYQBMTHx6NFixawt7dHaGgozpw5o+/d0DldHhdT+dzV9e/KPzXoM1cgk5WRkSHY2NgIa9euFX799Vfh1VdfFZydnYWSkhLR7V966SVh1apVws8//ywUFBQIUVFRgpOTk3D58mVBEAThxo0bQmhoqLB582bh1KlTQn5+vhAcHCz06tWrMXerwXR9XP4pMzNT6NGjh+Dt7S0sXbpUz3uiW/o4LmfPnhVcXV2FGTNmCEePHhXOnj0rbN++vc4+DZE+jsurr74qtG3bVsjNzRWKioqEDz/8ULC0tBS2b9/eWLvVYNoel9zcXCEzM1M4efKkcPbsWSE1NVWwtLQUsrKylNskJSUJTk5OwrZt24Tjx48LERERgr+/v/DXX3811m41mK6Piyl87urjd+Wehn7mMgSZsODgYOHNN99UPpbL5YK3t7eQmJio0evv3LkjNG3aVPj000/r3Obw4cMCAOHixYsNrrex6Ou4XL58WfDx8RF++eUXoXXr1kYXgvRxXEaMGCG8/PLLOq+1MenjuHTt2lWYN2+eynY9e/YUZs2apZuiG0FDj4sgCEJgYKDw7rvvCoIgCAqFQvDy8hLee+895fM3btwQbG1thU2bNumucD3T9XERY2yfu/o6Jrr4zOV0mImqqanBkSNHEBoaqmyzsLBAaGgo8vPzNeqjqqoKtbW1cHV1rXOb8vJyyGQyODs7N7TkRqGv46JQKDB69GjMmDEDXbt21Xnd+qaP46JQKPD111+jQ4cOCAsLg4eHB0JCQrBt2zZ97IJe6Ov35ZFHHsGOHTtw5coVCIKA3NxcnD59GgMGDND5PuhDQ4+LIAjIyclBYWEh+vbtCwAoKipCcXGxSp9OTk4ICQnR+FhLTR/HRYwxfe7q65jo6jOXIchEXbt2DXK5HJ6enirtnp6eKC4u1qiPmJgYeHt7q/zy/tPt27cRExODkSNHGs2N//R1XJKTk2FlZYUpU6botN7Goo/jUlpailu3biEpKQkDBw7E7t278eyzz2LYsGH47rvvdL4P+qCv35cVK1agS5cuaNmyJWxsbDBw4ECsWrXqvl98hqS+x6W8vByOjo6wsbFBeHg4VqxYgaeeegoAlK9ryLGWmj6Oy78Z2+euvo6Jrj5zeRd5EpWUlISMjAzk5eXBzs5O7fna2lq88MILEAQBq1evlqBCaYgdlyNHjmDZsmU4evQoZDKZxBVKQ+y4KBQKAMCQIUPw1ltvAQACAgJw4MABpKWloV+/fpLV21jq+nu0YsUKHDx4EDt27EDr1q3x/fff480337zvPzpMQdOmTXHs2DHcunULOTk5iI6ORps2bdC/f3+pS5OUpsfFnD5373dMdPmZyxBkotzd3WFpaYmSkhKV9pKSEnh5ed33tSkpKUhKSsKePXvQvXt3tefv/UW8ePEi9u7daxT/GrlHH8dl3759KC0tRatWrZRtcrkc06dPR2pqKi5cuKDTfdAHfRwXd3d3WFlZoUuXLirbd+7cGfv379dd8Xqkj+Py119/YebMmdi6dSvCw8MBAN27d8exY8eQkpJiFCGovsfFwsIC7dq1A3A3EBcUFCAxMRH9+/dXvq6kpAQtWrRQ6TMgIED3O6EH+jgu9xjr564+jokuP3M5HWaibGxs0KtXL+Tk5CjbFAoFcnJy0KdPnzpft3jxYsyfPx9ZWVkICgpSe/7eX8QzZ85gz549cHNz00v9+qKP4zJ69GicOHECx44dU/54e3tjxowZyM7O1tu+6JI+jouNjQ169+6NwsJClfbTp0+jdevWut0BPdHHcamtrUVtbS0sLFQ/fi0tLZWjZ4auvsfl3xQKBaqrqwEA/v7+8PLyUumzoqIChw4d0qpPKenjuADG/bmrj2Oi089crZdSk9HIyMgQbG1thfXr1wsnT54UXnvtNcHZ2VkoLi4WBEEQRo8eLcTGxiq3T0pKEmxsbIQvv/xSuHr1qvLn5s2bgiAIQk1NjRARESG0bNlSOHbsmMo21dXVkuxjfej6uIgxxrPD9HFcMjMzBWtra+Gjjz4Szpw5I6xYsUKwtLQU9u3b1+j7V1/6OC79+vUTunbtKuTm5grnz58X1q1bJ9jZ2QkffPBBo+9ffWl7XBYtWiTs3r1bOHfunHDy5EkhJSVFsLKyEtasWaPcJikpSXB2dha2b98unDhxQhgyZIhRniKvy+NiCp+7+vhd+bf6fuYyBJm4FStWCK1atRJsbGyE4OBg4eDBg8rn+vXrJ4wZM0b5uHXr1gIAtZ+EhARBEAShqKhI9HkAQm5ubuPuWAPp8riIMcYQJAj6OS6ffPKJ0K5dO8HOzk7o0aOHsG3btkbaG93R9XG5evWqEBUVJXh7ewt2dnZCx44dhffff19QKBSNuFcNp81xmTVrlvL3wMXFRejTp4+QkZGh0p9CoRBmz54teHp6Cra2tsJ//vMfobCwsLF2R2d0eVxM5XNX178r/1bfz1yZIAiCdmNHRERERMaPa4KIiIjILDEEERERkVliCCIiIiKzxBBEREREZokhiIiIiMwSQxARERGZJYYgIiIiMksMQURERGSWGIKIyORERUVh6NChau15eXmQyWS4ceMG8vLyMGTIELRo0QIODg4ICAjA559/3vjFEpFkGIKIyCwdOHAA3bt3x1dffYUTJ05g7NixiIyMxM6dO6UujYgaiZXUBRARSWHmzJkqj6dOnYrdu3cjMzMTgwYNkqgqImpMHAkiIvp/5eXlcHV1lboMImokHAkiIpO0c+dOODo6qrTJ5fI6t9+yZQt+/PFHfPjhh/oujYgMBEMQEZmkJ554AqtXr1ZpO3ToEF5++WW1bXNzczF27FisWbMGXbt2bawSiUhiDEFEZJIcHBzQrl07lbbLly+rbffdd99h8ODBWLp0KSIjIxurPCIyAFwTRERmKy8vD+Hh4UhOTsZrr70mdTlE1Mg4EkREZik3NxeDBg3C1KlT8dxzz6G4uBgAYGNjw8XRRGaCI0FEZJY+/fRTVFVVITExES1atFD+DBs2TOrSiKiRyARBEKQugoiIiKixcSSIiIiIzBJDEBEREZklhiAiIiIySwxBREREZJYYgoiIiMgsMQQRERGRWWIIIiIiIrPEEERERERmiSGIiIiIzBJDEBEREZklhiAiIiIySwxBREREZJb+D0ADw6dQPKYjAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAHHCAYAAABN+wdFAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAULFJREFUeJzt3XlcVNX/P/DXzMCAgrKogCAILrmlgiCkfXLpQ2GpaH4s0hJBs8UtJU0xBddAM0WFtCyz1MQWXL5WYCCUC2bqR83cDVxKEFNAQAFn7u8Pf86naQYYYGbuLK/n4zGPmjN3Du97s+HlOWfOlQiCIICIiIiIaiQVuwAiIiIiU8fARERERFQHBiYiIiKiOjAwEREREdWBgYmIiIioDgxMRERERHVgYCIiIiKqAwMTERERUR0YmIiIiIjqwMBERGZLIpFg/vz5YpehEhUVBV9fX7HLICIDYGAiIr3auHEjJBKJ6mFvb49HHnkEkydPRmFhoUF/9sGDBzF//nwUFxfrtd8BAwaonZOrqyt69+6NDRs2QKlU6uVnvPvuu9ixY4de+iIi/bMRuwAiskwLFy6En58f7t27h/3792Pt2rX47rvvcOrUKTRt2lQvP+Pu3buwsfnfx9jBgwexYMECREVFwdnZWS8/46E2bdogISEBAFBUVITPP/8c48ePx/nz55GYmNjo/t99912MHDkSw4cPb3RfRKR/DExEZBDPPPMMgoKCAACvvPIKWrRogRUrVmDnzp0YNWpUg/tVKpWoqqqCvb097O3t9VVunZycnPDyyy+rnr/22mvo1KkTkpOTsWjRItja2hqtFiIyPk7JEZFRPPnkkwCAvLw8AMDy5cvRt29ftGjRAk2aNEFgYCC+/vprjfdJJBJMnjwZW7ZsQbdu3WBnZ4f09HTVaw/XMM2fPx8zZ84EAPj5+ammz/Lz89G/f3/07NlTa12dOnVCWFhYvc+nadOmeOyxx1BeXo6ioqIajysvL8dbb70Fb29v2NnZoVOnTli+fDkEQVA7x/Lycnz22WequqOioupdExEZDkeYiMgoLl26BABo0aIFAGDVqlUIDw/HSy+9hKqqKqSmpuL555/H7t27MXjwYLX37t27F19++SUmT56Mli1bal1YPWLECJw/fx5bt27FypUr0bJlSwBAq1atMGbMGEyYMAGnTp3Co48+qnrPL7/8gvPnz2Pu3LkNOqfff/8dMpmsxuk/QRAQHh6O7OxsjB8/Hv7+/sjIyMDMmTPxxx9/YOXKlQCATZs24ZVXXkFwcDBeffVVAED79u0bVBMRGYhARKRHn376qQBAyMzMFIqKioSrV68KqampQosWLYQmTZoI165dEwRBECoqKtTeV1VVJTz66KPCk08+qdYOQJBKpcJvv/2m8bMACPHx8arn7733ngBAyMvLUzuuuLhYsLe3F2bNmqXWPnXqVMHBwUEoKyur9Zz69+8vdO7cWSgqKhKKioqEM2fOCFOnThUACEOHDlUdN3bsWKFt27aq5zt27BAACIsXL1brb+TIkYJEIhEuXryoanNwcBDGjh1bax1EJB5OyRGRQYSGhqJVq1bw9vbGiy++CEdHR2zfvh1eXl4AgCZNmqiOvX37NkpKSvDEE0/g2LFjGn31798fXbt2bXAtTk5OGDZsGLZu3aqaClMoFNi2bRuGDx8OBweHOvs4e/YsWrVqhVatWqFLly5Ys2YNBg8ejA0bNtT4nu+++w4ymQxTp05Va3/rrbcgCAK+//77Bp8TERkXp+SIyCBSUlLwyCOPwMbGBu7u7ujUqROk0v/9HW337t1YvHgxjh8/jsrKSlW7RCLR6MvPz6/R9URGRmLbtm3Yt28f+vXrh8zMTBQWFmLMmDE6vd/X1xfr169XbZXQsWNHuLm51fqey5cvw9PTE82aNVNr79Kli+p1IjIPDExEZBDBwcGqb8n90759+xAeHo5+/frhgw8+QOvWrWFra4tPP/0UX3zxhcbxfx+NaqiwsDC4u7tj8+bN6NevHzZv3gwPDw+Ehobq9H4HBwedjyUiy8MpOSIyum+++Qb29vbIyMjAuHHj8Mwzz+gljGgbnXpIJpNh9OjR+Prrr3H79m3s2LEDo0aNgkwma/TPrUnbtm3x559/4s6dO2rtZ8+eVb3+UG21E5H4GJiIyOhkMhkkEgkUCoWqLT8/v9E7XT9ci1TTTt9jxozB7du38dprr6GsrExtXyVDePbZZ6FQKJCcnKzWvnLlSkgkEjzzzDOqNgcHB73vUE5E+sMpOSIyusGDB2PFihUYNGgQRo8ejRs3biAlJQUdOnTAyZMnG9xvYGAgAOCdd97Biy++CFtbWwwdOlQVpAICAvDoo4/iq6++QpcuXdCrVy+9nE9Nhg4dioEDB+Kdd95Bfn4+evbsiT179mDnzp2YNm2a2tYBgYGByMzMxIoVK+Dp6Qk/Pz+EhIQYtD4i0h1HmIjI6J588kl88sknKCgowLRp07B161YsXboUzz33XKP67d27NxYtWoQTJ04gKioKo0aN0thUMjIyEgB0XuzdGFKpFLt27cK0adOwe/duTJs2DadPn8Z7772HFStWqB27YsUKBAYGYu7cuRg1ahTWrl1r8PqISHcSQfjbdrNERBZu1apVmD59OvLz8+Hj4yN2OURkJhiYiMhqCIKAnj17okWLFsjOzha7HCIyI1zDREQWr7y8HLt27UJ2djZ+/fVX7Ny5U+ySiMjMcISJiCxefn4+/Pz84OzsjIkTJ2LJkiVil0REZoaBiYiIiKgO/JYcERERUR1MIjClpKTA19cX9vb2CAkJweHDh2s8Ni0tDUFBQXB2doaDgwP8/f2xadOmGo9//fXXIZFIkJSUZIDKiYiIyBqIvuh727ZtiImJwbp16xASEoKkpCSEhYXh3LlzWm9s6erqinfeeQedO3eGXC7H7t27ER0dDTc3N4SFhakdu337dhw6dAienp71qkmpVOLPP/9Es2bNeLsCIiIiMyEIAu7cuQNPT0+1m33rq3NRBQcHC5MmTVI9VygUgqenp5CQkKBzHwEBAcLcuXPV2q5duyZ4eXkJp06dEtq2bSusXLlS5/6uXr0qAOCDDz744IMPPszwcfXqVZ1/5+tK1BGmqqoqHD16FLGxsao2qVSK0NBQ5Obm1vl+QRCwd+9enDt3DkuXLlW1K5VKjBkzBjNnzkS3bt3qXVezZs0AAFevXkXz5s3r/X4iIiIyvtLSUnh7e6t+j+uTqIHp5s2bUCgUcHd3V2t3d3dX3c1bm5KSEnh5eaGyshIymQwffPABnnrqKdXrS5cuhY2NDaZOnapTHZWVlaisrFQ9f3hn8ebNmzMwERERmRlDLKcRfQ1TQzRr1gzHjx9HWVkZsrKyEBMTg3bt2mHAgAE4evQoVq1ahWPHjul8wRISErBgwQIDV01ERETmStRvybVs2RIymQyFhYVq7YWFhfDw8KjxfVKpFB06dIC/vz/eeustjBw5EgkJCQCAffv24caNG/Dx8YGNjQ1sbGxw+fJlvPXWW/D19dXaX2xsLEpKSlSPq1ev6u0ciYiIyPyJGpjkcjkCAwORlZWlalMqlcjKykKfPn107kepVKqm1MaMGYOTJ0/i+PHjqoenpydmzpyJjIwMre+3s7NTTb9xGo6IiIj+SfQpuZiYGIwdOxZBQUEIDg5GUlISysvLER0dDQCIjIyEl5eXagQpISEBQUFBaN++PSorK/Hdd99h06ZNWLt2LQCgRYsWaNGihdrPsLW1hYeHBzp16qTX2hUKBaqrq/XaJ5keW1tbyGQyscsgIiIRiR6YIiIiUFRUhLi4OBQUFMDf3x/p6emqheBXrlxR20uhvLwcEydOxLVr19CkSRN07twZmzdvRkREhNFqFgQBBQUFKC4uNtrPJHE5OzvDw8OD+3IREVkp3ktOi9LSUjg5OaGkpETr9Nz169dRXFwMNzc3NG3alL9ELZggCKioqMCNGzfg7OyM1q1bi10SERHVoK7f340h+giTuVEoFKqw9M+pP7JMTZo0AQDcuHEDbm5unJ4jIrJCJnEvOXPycM1S06ZNRa6EjOnhf2+uWSMisk4MTA3EaTjrwv/eRETWjYGJiIiIqA4MTERERER1YGCyIlFRUZBIJJBIJLC1tYW7uzueeuopbNiwAUqlUud+Nm7cCGdnZ8MVSkREZGIYmKzMoEGDcP36deTn5+P777/HwIED8eabb2LIkCG4f/++2OURERGZJAYmK2NnZwcPDw94eXmhV69emDNnDnbu3Invv/8eGzduBACsWLEC3bt3h4ODA7y9vTFx4kSUlZUBAHJychAdHY2SkhLVaNX8+fMBAJs2bUJQUBCaNWsGDw8PjB49Gjdu3BDpTImIyBRt3nwJL7/8I775plzsUuqFgUkPBEFAVVWV0R/62nP0ySefRM+ePZGWlgbgwc2NV69ejd9++w2fffYZ9u7di7fffhsA0LdvXyQlJaF58+a4fv06rl+/jhkzZgB48JX7RYsW4cSJE9ixYwfy8/MRFRWllxqJiMi87doFTJ36OS5d2oyOHXPw1Ve/iV1SvXDjSj2orq5W3evOmGJjYyGXy/XSV+fOnXHy5EkAwLRp01Ttvr6+WLx4MV5//XV88MEHkMvlcHJygkQigYeHh1of48aNU/17u3btsHr1avTu3RtlZWVwdHTUS51ERGR+ioqK8N//foC/7/f8wguPildQAzAwEYAHo2QP9xrKzMxEQkICzp49i9LSUty/fx/37t1DRUVFrRt2Hj16FPPnz8eJEydw+/Zt1ULyK1euoGvXrkY5DyIiMi0LFizQaJs7d67Z3TWBgUkPbG1tERsbK8rP1ZczZ87Az88P+fn5GDJkCN544w0sWbIErq6u2L9/P8aPH4+qqqoaA1N5eTnCwsIQFhaGLVu2oFWrVrhy5QrCwsJQVVWltzqJiMg8CIKAhQsX/qNNgvnz40SqqHEYmPRAIpHobWpMDHv37sWvv/6K6dOn4+jRo1AqlXj//fchlT5Y4vbll1+qHS+Xy6FQKNTazp49i7/++guJiYnw9vYGABw5csQ4J0BERCYlMzMTBw4cUGvbv38gpkzpJ1JFjcfAZGUqKytRUFAAhUKBwsJCpKenIyEhAUOGDEFkZCROnTqF6upqrFmzBkOHDsWBAwewbt06tT58fX1RVlaGrKws9OzZE02bNoWPjw/kcjnWrFmD119/HadOncKiRYtEOksiIhKLtim4zMxYzJwpR3i4CAXpCb8lZ2XS09PRunVr+Pr6YtCgQcjOzsbq1auxc+dOyGQy9OzZEytWrMDSpUvx6KOPYsuWLRoL2vv27YvXX38dERERaNWqFZYtW4ZWrVph48aN+Oqrr9C1a1ckJiZi+fLlIp0lEREZm0Kh0BqWAgLisW+feYclAJAI+vpuugUpLS2Fk5MTSkpK0Lx5c7XX7t27h7y8PPj5+cHe3l6kCsnY+N+diKhmX3/9NX77TX2bgK5du+L55583ah21/f5uLE7JERERUYNZyrfg6sLARERERPVWWVmJxMREjfb4+HgRqjE8BiYiIiKql48++gjXr19Xa3v88ccRGhoqUkWGx8BEREREOtM2BRcXF6fa/NhSMTARERFRnW7duoU1a9ZotFvqFNw/MTARERFRrbSNKmVn90dV1QBYSV7iPkxERERUM21hKTExHlVVAzB7tggFiYQjTERERKQhPz8fn332mUZ7YmI8YmKAJUtEKEpEDExERESkRtuoUr9+/TBw4ECrmYL7J07Jkd5FRUVh+PDhqucDBgzAtGnTGtWnPvogIqK6aQtL8fHxGDhwoAjVmA6OMFmRqKgo1fCqra0tfHx8EBkZiTlz5sDGxnB/FNLS0mBra6vTsTk5ORg4cCBu374NZ2fnBvVBRET1l5ubiz179mi0W8u34OrCwGRlBg0ahE8//RSVlZX47rvvMGnSJNja2iI2NlbtuKqqKsjlcr38TFdXV5Pog4iItNM2qvTDD4PRv3+QCNWYJk7JWRk7Ozt4eHigbdu2eOONNxAaGopdu3apptGWLFkCT09PdOrUCQBw9epVvPDCC3B2doarqyuGDRuG/Px8VX8KhQIxMTFwdnZGixYt8Pbbb+Of93P+53RaZWUlZs2aBW9vb9jZ2aFDhw745JNPkJ+frxrydXFxgUQiQVRUlNY+bt++jcjISLi4uKBp06Z45plncOHCBdXrGzduhLOzMzIyMtClSxc4Ojpi0KBBajvT5uTkIDg4GA4ODnB2dsbjjz+Oy5cv6+lKExGZB21hKSMjHvv3B1ndwu7aMDBZuSZNmqCqqgoAkJWVhXPnzuGHH37A7t27UV1djbCwMDRr1gz79u3DgQMHVMHj4Xvef/99bNy4ERs2bMD+/ftx69YtbN++vdafGRkZia1bt2L16tU4c+YMPvzwQzg6OsLb2xvffPMNAODcuXO4fv06Vq1apbWPqKgoHDlyBLt27UJubi4EQcCzzz6L6upq1TEVFRVYvnw5Nm3ahJ9++glXrlzBjBkzAAD379/H8OHD0b9/f5w8eRK5ubl49dVXLX6nWiKih1JTU2sMS9a0XYCuOCVnpQRBQFZWFjIyMjBlyhQUFRXBwcEBH3/8sWoqbvPmzVAqlfj4449VQeLTTz+Fs7MzcnJy8PTTTyMpKQmxsbEYMWIEAGDdunXIyMio8eeeP38eX375JX744QfVPYfatWunev3h1Jubm5vaGqa/u3DhAnbt2oUDBw6gb9++AIAtW7bA29sbO3bswPPPPw8AqK6uxrp169C+fXsAwOTJk7Fw4UIAQGlpKUpKSjBkyBDV6126dKn/hSQiMkPaglJERAQ6d+5std+CqwtHmES0axfQt++DfxrL7t274ejoCHt7ezzzzDOIiIjA/PnzAQDdu3dXW7d04sQJXLx4Ec2aNYOjoyMcHR3h6uqKe/fu4dKlSygpKcH169cREhKieo+NjQ2Cgmqe8z5+/DhkMhn69+/f4HM4c+YMbGxs1H5uixYt0KlTJ5w5c0bV1rRpU1UYAoDWrVvjxo0bAB4Es6ioKISFhWHo0KFYtWqVxo0kiYgskbawFBAQj86dO4tQjfngCJOIEhOB3NwH/wwPN87PHDhwINauXQu5XA5PT0+1b8c5ODioHVtWVobAwEBs2bJFo59WrVo16Oc3adKkQe9riH9+q04ikaitr/r0008xdepUpKenY9u2bZg7dy5++OEHPPbYY0arkYjIWJYtW4a7d+9qtKemxnNUSQccYRLR7NlAnz4w6lyxg4MDOnToAB8fnzq3EujVqxcuXLgANzc3dOjQQe3h5OQEJycntG7dGj///LPqPffv38fRo0dr7LN79+5QKpX48ccftb7+cIRLoVDU2EeXLl1w//59tZ/7119/4dy5c+jatWut5/RPAQEBiI2NxcGDB/Hoo4/iiy++qNf7iYjMwYIFCzTCUlraq0hNjcfSpSIVZWYYmEQUHg4cPGi80aX6eumll9CyZUsMGzYM+/btQ15eHnJycjB16lRcu3YNAPDmm28iMTERO3bswNmzZzFx4kQUFxfX2Kevry/Gjh2LcePGYceOHao+v/zySwBA27ZtIZFIsHv3bhQVFaGsrEyjj44dO2LYsGGYMGEC9u/fjxMnTuDll1+Gl5cXhg0bptO55eXlITY2Frm5ubh8+TL27NmDCxcucB0TEVkUpVJZ48LuEyda48wZ0/0dZGoYmKhGTZs2xU8//QQfHx+MGDECXbp0wfjx43Hv3j00b94cAPDWW29hzJgxGDt2LPr06YNmzZrhueeeq7XftWvXYuTIkZg4cSI6d+6MCRMmoLy8HADg5eWFBQsWYPbs2XB3d8fkyZO19vHpp58iMDAQQ4YMQZ8+fSAIAr777judN7ds2rQpzp49i//85z945JFH8Oqrr2LSpEl47bXX6nGFiIhM14IFC7Bo0SKNdn4LrmEkwj83zSGUlpbCyckJJSUlqmDw0L1795CXlwc/Pz/Y29uLVCEZG/+7E5E50Taq9OOP07B3r5MI1RhPbb+/G4uLvomIiCxEZWUlEhMTNdq3bo3HsmUiFGRBGJiIiIgsgLZRJeDBveD4LbjGY2AiIiIyc9rC0uzZs2FnZydCNZaJgYmIiMhM3bx5EykpKRrt8RxS0jsGpgbiWnnrwv/eRGRqapuCI/0ziW0FUlJS4OvrC3t7e4SEhODw4cM1HpuWloagoCA4OzvDwcEB/v7+2LRpk+r16upqzJo1C927d4eDgwM8PT0RGRmJP//8Uy+1PvzaekVFhV76I/Pw8L+3rtsWEBEZkrawtHx5HAICGJYMRfQRpm3btiEmJgbr1q1DSEgIkpKSEBYWhnPnzsHNzU3jeFdXV7zzzjvo3Lkz5HI5du/ejejoaLi5uSEsLAwVFRU4duwY5s2bh549e+L27dt48803ER4ejiNHjjS6XplMBmdnZ9U9yZo2bco73FswQRBQUVGBGzduwNnZGTKZTOySiMiKnT9/Hlu3btVoz8iIx5Yt3ITSkETfhykkJAS9e/dGcnIygAe7knp7e2PKlCmYrePOWr169cLgwYO1btAFAL/88guCg4Nx+fJl+Pj41NlfXfs4CIKAgoKCWne0Jsvi7OwMDw8PhmMiEk1NU3ABAfEMSv+fxe7DVFVVhaNHjyI2NlbVJpVKERoaitzc3DrfLwgC9u7di3PnzmFpLTfDKSkpgUQigbOzsz7KhkQiQevWreHm5obq6mq99Emmy9bWliNLRCQqbWGJa5WMS9TAdPPmTSgUCri7u6u1u7u74+zZszW+r6SkBF5eXqisrIRMJsMHH3yAp556Suux9+7dw6xZszBq1Kga02ZlZSUqKytVz0tLS3WqXyaT8RcpEREZzA8//ICDBw9qtDMsGZ/oa5gaolmzZjh+/DjKysqQlZWFmJgYtGvXDgMGDFA7rrq6Gi+88AIEQcDatWtr7C8hIaHGoU4iIiIx1PR7qaqKYUkMogamli1bQiaTobCwUK29sLAQHh4eNb5PKpWiQ4cOAAB/f3+cOXMGCQkJaoHpYVi6fPky9u7dW+tcZmxsLGJiYlTPS0tL4e3t3cCzIiIiahxtYenhTXO5XkkcogYmuVyOwMBAZGVlYfjw4QAeLPrOysqq8S712iiVSrUptYdh6cKFC8jOzkaLFi1qfb+dnR13QyUiItGtX79e6zY4vL2J+ESfkouJicHYsWMRFBSE4OBgJCUloby8HNHR0QCAyMhIeHl5ISEhAcCD6bOgoCC0b98elZWV+O6777Bp0ybVlFt1dTVGjhyJY8eOYffu3VAoFCgoKADwYEsCuVwuzokSERHVQtuoko+Pj+r3IYlL9MAUERGBoqIixMXFoaCgAP7+/khPT1ctBL9y5Qqk0v/tr1leXo6JEyfi2rVraNKkCTp37ozNmzcjIiICAPDHH39g165dAB5M1/1ddna2xjonIiIisfFbcKZP9H2YTJEh93EgIiJ6iHsr6Zchf3+bxK1RiIiIrI22sHTlShDDkokSfUqOiIjI2nAKzvwwMBERERlJbVNwZNoYmIiIiIxAW1hq2/Y5REX1EKEaqi8GJiIiIgNSKBRYvHixRjun4MwLAxMREZGB1DQFx7BkfhiYiIiIDEBbWMrNnYD0dE8RqqHGYmAiIiLSo7KyMrz//vsa7Q/vBUfmiYGJiIhIT2qbguMsnHljYCIiItIDbWFpxowZcHBwEKEa0jcGJiIioka4cuUKPv30U412Luy2LAxMREREDcRvwVkPBiYiIqIG0BaW5s2bB6mUt2m1RAxMRERE9XDkyBF8++23Gu0cVbJsDExEREQ64r3grBfHDYmIiHSgLSxt3RqPgIB4hIeLUBAZFUeYiIiIapGWloZff/1Voz0ggHsrWRMGJiIiohrUNgXHUSXrwsBERESkhbawxIXd1ouBiYiI6G8WLlwIQRA02hmWrBsDExER0f+nbVTJ1rY55syZLkI1ZEoYmIiIiMApOKodAxMREVk13t6EdMHAREREVktbWOrZsyeGDx9u/GLIpDEwERGRVeIUHNUHAxMREVkVTsFRQzAwERGR1dAWloYOHYpevXqJUA2ZEwYmIiKyeAqFAosXL9Zo56gS6YqBiYiILBqn4EgfGJiIiMhiaQtLjzzyCkaN8hKhGjJnDExERGRx7ty5gxUrVmi0c1SJGoqBiYiILAqn4MgQGJiIiMhiaAtLM2bMgIODgwjVkCVhYCIiIrOXn5+Pzz77TKOdo0qkLwxMRERk1jgFR8bAwERERGZLW1iaN28epFKpCNWQJeOfKCIiMjsHDx7UGpYyMuIZlsggOMJERERmpaYpuIyMeMyebeRiyGowMBERkdnQFpYerlXikiUyJAYmIiIyeVu2bMHFixc12rmwm4yFgYmIiEwavwVHpoCBiYiITJa2sBQQEI/wcBGKIavGwERERCaHo0pkakziu5cpKSnw9fWFvb09QkJCcPjw4RqPTUtLQ1BQEJydneHg4AB/f39s2rRJ7RhBEBAXF4fWrVujSZMmCA0NxYULFwx9GkREpAfawpJMJmNYIlGJHpi2bduGmJgYxMfH49ixY+jZsyfCwsJw48YNrce7urrinXfeQW5uLk6ePIno6GhER0cjIyNDdcyyZcuwevVqrFu3Dj///DMcHBwQFhaGe/fuGeu0iIioAWr6FtzcuXNFqIbofySCIAhiFhASEoLevXsjOTkZAKBUKuHt7Y0pU6Zgto4bavTq1QuDBw/GokWLIAgCPD098dZbb2HGjBkAgJKSEri7u2Pjxo148cUX6+yvtLQUTk5OKCkpQfPmzRt+ckREpBNOwZE+GPL3t6gjTFVVVTh69ChCQ0NVbVKpFKGhocjNza3z/YIgICsrC+fOnUO/fv0AAHl5eSgoKFDr08nJCSEhITX2WVlZidLSUrUHEREZh7awdPlyN4YlMimiBqabN29CoVDA3d1drd3d3R0FBQU1vq+kpASOjo6Qy+UYPHgw1qxZg6eeegoAVO+rT58JCQlwcnJSPby9vRtzWkREpKOabm8yfPhIEaohqplZfkuuWbNmOH78OMrKypCVlYWYmBi0a9cOAwYMaFB/sbGxiImJUT0vLS1laCIiMqDapuA4sESmSNTA1LJlS8hkMhQWFqq1FxYWwsPDo8b3SaVSdOjQAQDg7++PM2fOICEhAQMGDFC9r7CwEK1bt1br09/fX2t/dnZ2sLOza+TZEBGRLrSFpTNnBmH06BARqiHSjahTcnK5HIGBgcjKylK1KZVKZGVloU+fPjr3o1QqUVlZCQDw8/ODh4eHWp+lpaX4+eef69UnERHpl0KhqPFbcKmpIdyMkkya6FNyMTExGDt2LIKCghAcHIykpCSUl5cjOjoaABAZGQkvLy8kJCQAeLDeKCgoCO3bt0dlZSW+++47bNq0CWvXrgUASCQSTJs2DYsXL0bHjh3h5+eHefPmwdPTE8OHDxfrNImIrBq/BUfmTvTAFBERgaKiIsTFxaGgoAD+/v5IT09XLdq+cuUKpNL/DYSVl5dj4sSJuHbtGpo0aYLOnTtj8+bNiIiIUB3z9ttvo7y8HK+++iqKi4vxr3/9C+np6bC3tzf6+RERWTttYWncuHFcK0pmRfR9mEwR92EiImq8O3fuYMWKFRrtvBccGYohf3+LPsJERESWh1NwZGkYmIiISK+0haXu3WdixIimIlRDpB8MTEREpBf5+fn47LPPNNo5qkSWgIGJiIgajVNwZOkYmIiIqFG0haV58+apfcOZyNwxMBERUYPk5uZiz549Gu0cVSJLxMBERET1xik4sjYMTEREVC813d6EyJIxMBERkU62bNmCixcvarQzLJE1YGAiIqI6cQqOrB2/wkBERLXSFpYyMuIREMCwRNaDI0xERKRVbaNKHFgia8MRJiIi0qAtLFVWyjmqRFaLgYmIiNTUNAX32GOxCA8XoSAiE8ApOSIiAlDzFFxAAKfgiDjCREREWsPS1au9EBAQz1ElInCEiYjI6nEjSqK6MTAREVkp7q1EpDtOyRERWSFtYenEiRH8FhxRDTjCRERkRRQKBRYvXqzRzoXdRLVjYCIishKcgiNqOAYmIiIroC0svfHGG3BzcxOhGiLzw8BERGTBysrK8P7772u0c1SJqH7qHZhkMhmuX7+u8beSv/76C25ublAoFHorjoiIGo5TcET6U+/AJAiC1vbKykrI5fJGF0RERI2nLSy9/fbbaNKkiQjVEJk/nQPT6tWrAQASiQQff/wxHB0dVa8pFAr89NNP6Ny5s/4rJCIinV27dg2ffPKJRjtHlYgaR+fAtHLlSgAPRpjWrVsHmUymek0ul8PX1xfr1q3Tf4VERKQTTsERGY7OgSkvLw8AMHDgQKSlpcHFxcVgRRERUf1oC0vz5s2DVMr9iYn0od5rmLKzsw1RBxERNcCxY8fwf//3fxrtHFUi0q96B6Zx48bV+vqGDRsaXAwREemOU3BExlPvwHT79m2159XV1Th16hSKi4vx5JNP6q0wIiKqmbawxKBEZDj1Dkzbt2/XaFMqlXjjjTfQvn17vRRFRETa7d69G0ePHtVoZ1giMiy9rAaUSqWIiYlRfZOOiIj0b8GCBVrDUkAAwxKRoent1iiXLl3C/fv39dUdERH9DafgiMRV78AUExOj9lwQBFy/fh3ffvstxo4dq7fCiIgIWLNmDW7duqXRzrBEZFz1Dkz//e9/1Z5LpVK0atUK77//fp3foCMiIt1pG1Xy8fFBdHS0CNUQWTfuw0REZIK0haWMjHgcPChCMUTU8DVMN27cwLlz5wAAnTp1gpubm96KIiKyVjXtrZSREY/Zs41cDBGp1DswlZaWYtKkSdi6dSuUSiUAQCaTISIiAikpKXByctJ7kURE1kBbWPr11374+uuB4JIlInHVe1uBCRMm4Oeff8a3336L4uJiFBcXY/fu3Thy5Ahee+01Q9RIRGTxapqCi4wcKEI1RPRPEkEQhPq8wcHBARkZGfjXv/6l1r5v3z4MGjQI5eXlei1QDKWlpXByckJJSQmaN28udjlEZMF4exMi/THk7+96T8m1aNFC67Sbk5MTXFxc9FIUEZE10BaWRo8ejY4dO4pQDRHVpt5TcnPnzkVMTAwKCgpUbQUFBZg5cybmzZtX7wJSUlLg6+sLe3t7hISE4PDhwzUeu379ejzxxBNwcXGBi4sLQkNDNY4vKyvD5MmT0aZNGzRp0gRdu3bFunXr6l0XEZGhKBSKGjeiZFgiMk31HmFau3YtLl68CB8fH/j4+AAArly5Ajs7OxQVFeHDDz9UHXvs2LFa+9q2bRtiYmKwbt06hISEICkpCWFhYTh37pzWb93l5ORg1KhR6Nu3L+zt7bF06VI8/fTT+O233+Dl5QXgwcaae/fuxebNm+Hr64s9e/Zg4sSJ8PT0RHh4eH1Pl4hIrzgFR2Se6r2Gaf78+ZBIJDodW9cHQEhICHr37o3k5GQAD27i6+3tjSlTpmC2Dt+fVSgUcHFxQXJyMiIjIwEAjz76KCIiItRGuwIDA/HMM89g8eLFOtXNNUxEZAjawtLkyZPRokULEaohsjwmtYZp/vz5evnBVVVVOHr0KGJjY1VtUqkUoaGhyM3N1amPiooKVFdXw9XVVdXWt29f7Nq1C+PGjYOnpydycnJw/vz5Wm8MXFlZicrKStXz0tLSBpwREZF25eXlWL58uUY7R5WIzEe91zC1a9cOf/31l0Z7cXEx2rVrp3M/N2/ehEKhgLu7u1q7u7u72vqo2syaNQuenp4IDQ1Vta1ZswZdu3ZFmzZtIJfLMWjQIKSkpKBfv3419pOQkAAnJyfVw9vbW+fzICKqzYIFCxiWiCxAvUeY8vPzoVAoNNorKytx7do1vRSli8TERKSmpiInJwf29vaq9jVr1uDQoUPYtWsX2rZti59++gmTJk3SCFZ/Fxsbq3ZT4dLSUoYmImo0bVNws2fPhp2dnQjVEFFj6ByYdu3apfr3jIwMta0FFAoFsrKy4Ofnp/MPbtmyJWQyGQoLC9XaCwsL4eHhUet7ly9fjsTERGRmZqJHjx6q9rt372LOnDnYvn07Bg8eDADo0aMHjh8/juXLl9cYmOzs7PgBRkR6c/36dXz00Uca7RxVIjJfOgem4cOHAwAkEgnGjh2r9pqtrS18fX3x/vvv6/yD5XI5AgMDkZWVpepbqVQiKysLkydPrvF9y5Ytw5IlS5CRkYGgoCC116qrq1FdXQ2pVH2mUSaTqW7jQkRkSPwWHJFl0jkwPQwcfn5++OWXX9CyZctG//CYmBiMHTsWQUFBCA4ORlJSEsrLyxEdHQ0AiIyMhJeXFxISEgAAS5cuRVxcHL744gv4+vqq1jo5OjrC0dERzZs3R//+/TFz5kw0adIEbdu2xY8//ojPP/8cK1asaHS9RES10RaW/P3jMGyYbt8sJiLTVe81THl5eXr74RERESgqKkJcXBwKCgrg7++P9PR01ULwK1euqI0WrV27FlVVVRg5cqRaP/Hx8apv76WmpiI2NhYvvfQSbt26hbZt22LJkiV4/fXX9VY3EdHfnT59Gl999ZVGO0eViCxHvfdhWrhwYa2vx8XFNaogU8B9mIhIV5yCIzIdJrUP0/bt29WeV1dXIy8vDzY2Nmjfvr1FBCYiIl3UdHsTIrI89Q5M//3vfzXaSktLERUVheeee04vRRERmbIDBw4gMzNToz0ggGGJyFLVe0quJr/++iuGDh2K/Px8fXQnKk7JEVFNtI0qVVQ4Y+nSN0Wohoj+zpC/v+u903dNSkpKUFJSoq/uiIhMjrawlJoaj8cfZ1gisnT1npJbvXq12nNBEHD9+nVs2rQJzzzzjN4KIyIyFV999RVOnz6t0R4fHw8uWSKyDvUOTP+8ia1UKkWrVq0wduxYtRvpEhFZAm2jSr1798azzz4rQjVEJBZR92EiIjJl/BYcET1U78AEAMXFxbh48SIAoEOHDnB2dtZnTUREokpOTsZff/2l0c6wRGS96hWY8vPzMWnSJGRkZODhl+skEgkGDRqE5ORk+Pr6GqJGIiKj0TaqdOrUUHz1VS8RqiEiU6FzYLp69Soee+wx2NraYtGiRejSpQuAB7cEWLt2Lfr06YNffvkFbdq0MVixRESGpC0sZWTEY/ZsEYohIpOi8z5M48ePx8WLF5GRkQF7e3u11+7evYtBgwahY8eO+Pjjjw1SqDFxHyYi68LbmxBZBpO4NUp6ejq2bdumEZYAoEmTJli0aBFefPFFvRZHRGRo2sLS+PHjOVpORGp0Dkw3b96sdY1Su3btcOvWLX3URERkcEqlEosWLdJo56gSEWmjc2Bq3bo1Tp8+XePfuk6dOgUPDw+9FUZEZCicgiOi+tI5MA0fPhwzZsxAVlYWWrVqpfbajRs3MGvWLAwfPlzf9RER6ZW2sDR9+nSuVySiWum86Pv27dsICQlBQUEBXn75ZXTu3BmCIODMmTP44osv4OHhgUOHDsHV1dXQNRscF30TWZ67d+9i2bJlGu0cVSKyHCax6NvFxQU///wz5syZg9TUVBQXFwMAnJ2dMXr0aLz77rsWEZaIyPJwCo6IGkvnEaa/EwQBRUVFAIBWrVpBIpHovTAxcYSJyHJoC0tz5syBra2tCNUQkSGZxAjT30kkEri5uem1ECIifbp58yZSUlI02jmqREQN0aDARERkymqaggsIYFgiooZhYCIii6ItLMXFxVnc0gEiMi4GJiKyCJcuXcLmzZs12jkFR0T6wMBERGZP26iSVCrFvHnzRKiGiCyRToFp9erVOnc4derUBhdDRFRf2sISR5WISN902lbAz89Pt84kEvz++++NLkps3FaAyPT9/PPPSE9P12hnWCKyXqJvK5CXl6fXH0pE1BjaRpX8/PwQGRkpQjVEZA0avIapqqoKeXl5aN++PWxsuBSKiIyDU3BEJAZpfd9QUVGB8ePHo2nTpujWrRuuXLkCAJgyZQoSExP1XiAREQDs3LmTYYmIRFPvwBQbG4sTJ04gJycH9vb2qvbQ0FBs27ZNr8UREQEPRpWOHz+u1vb4448zLBGR0dR7Lm3Hjh3Ytm0bHnvsMbWN4Lp164ZLly7ptTgiIo4qEZEpqHdgKioq0nofufLycu6kS0R6k5ycjL/++kujnWGJiMRQ7ym5oKAgfPvtt6rnD0PSxx9/jD59+uivMiKyWgsWLNAIS8899xzDEhGJpt4jTO+++y6eeeYZnD59Gvfv38eqVatw+vRpHDx4ED/++KMhaiQiK8IpOCIyRfUeYfrXv/6F48eP4/79++jevTv27NkDNzc35ObmIjAw0BA1EpEVWLBgAcMSEZksnXb6tjbc6ZvIuLQFpVdeeQVeXl4iVENE5kr0nb5LS0t17pABg4h0pVAosHjxYo12jioRkanRKTA5Ozvr/A04hULRqIKIyDpoG1UCGJaIyDTpFJiys7NV/56fn4/Zs2cjKipK9a243NxcfPbZZ0hISDBMlURkUbSFpenTp3OEmohMVr3XMP373//GK6+8glGjRqm1f/HFF/joo4+Qk5Ojz/pEwTVMRIZx9+5dLFu2TKOdo0pEpA+G/P1d78DUtGlTnDhxAh07dlRrP3/+PPz9/VFRUaHXAsXAwESkf5yCIyJDE33R9995e3tj/fr1Gn9L/Pjjj+Ht7a23wojIcmgLS3PmzIGtra0I1RAR1V+9A9PKlSvxn//8B99//z1CQkIAAIcPH8aFCxfwzTff6L1AIjJfN2/eREpKikY7R5WIyNzUe+PKZ599FhcuXMDQoUNx69Yt3Lp1C0OHDsX58+fx7LPP1ruAlJQU+Pr6wt7eHiEhITh8+HCNx65fvx5PPPEEXFxc4OLigtDQUK3HnzlzBuHh4XBycoKDgwN69+6NK1eu1Ls2Imq4BQsWMCwRkcUQdePKbdu2ITIyEuvWrUNISAiSkpLw1Vdf4dy5c1pv8PvSSy/h8ccfR9++fWFvb4+lS5di+/bt+O2331Qb3F26dAnBwcEYP348Ro0ahebNm+O3337DY489prVPbbiGiahxtE3BxcXF8QbdRGRQJrXoGwCKi4vxySef4MyZMwCAbt26Ydy4cXBycqpXPyEhIejduzeSk5MBAEqlEt7e3pgyZQpmz55d5/sVCgVcXFyQnJyMyMhIAMCLL74IW1tbbNq0qZ5n9T8MTEQNc+nSJWzevFmjnaNKRGQMhvz9Xe8puSNHjqB9+/ZYuXKlakpuxYoVaN++PY4dO6ZzP1VVVTh69ChCQ0P/V4xUitDQUOTm5urUR0VFBaqrq+Hq6grgQeD69ttv8cgjjyAsLAxubm4ICQnBjh07au2nsrISpaWlag8iqp8FCxZohCWpVMqwREQWod6Bafr06QgPD0d+fj7S0tKQlpaGvLw8DBkyBNOmTdO5n5s3b0KhUMDd3V2t3d3dHQUFBTr1MWvWLHh6eqpC140bN1BWVobExEQMGjQIe/bswXPPPYcRI0bgxx9/rLGfhIQEODk5qR78th9R/dR009x58+aJUA0Rkf7V+1tyR44cwfr162Fj87+32tjY4O2330ZQUJBei6tNYmIiUlNTkZOTA3t7ewAPRpgAYNiwYZg+fToAwN/fHwcPHsS6devQv39/rX3FxsYiJiZG9by0tJShiUgHhw4dQkZGhkY7R5WIyNLUOzA1b94cV65cQefOndXar169imbNmuncT8uWLSGTyVBYWKjWXlhYCA8Pj1rfu3z5ciQmJiIzMxM9evRQ69PGxgZdu3ZVO75Lly7Yv39/jf3Z2dnBzs5O59qJSPuokp+fn2o9IRGRJan3lFxERATGjx+Pbdu24erVq7h69SpSU1O13i6lNnK5HIGBgcjKylK1KZVKZGVlqe5Rp82yZcuwaNEipKena4xoyeVy9O7dG+fOnVNrP3/+PNq2batzbURUu5qm4BiWiMhS1XuEafny5ZBIJIiMjMT9+/cBALa2tnjjjTeQmJhYr75iYmIwduxYBAUFITg4GElJSSgvL0d0dDQAIDIyEl5eXqqb+i5duhRxcXH44osv4Ovrq1rr5OjoCEdHRwDAzJkzERERgX79+mHgwIFIT0/H//3f/1nEPe6IxLZz504cP35co51TcERk6Rq8D1NFRQUuXboEAGjfvj2aNm3aoAKSk5Px3nvvoaCgAP7+/li9erVqB/EBAwbA19cXGzduBAD4+vri8uXLGn3Ex8dj/vz5qucbNmxAQkICrl27hk6dOmHBggUYNmyYzjVxWwEiTdpGlf71r3/h3//+twjVEBFpMrl9mCwdAxORupqm4IiITIlJ3Hx33LhxOh23YcOGBhdDRKZlzZo1uHXrlkY7wxIRWRudA9PGjRvRtm1bBAQEgINSRJZP26jSiBEj0L17dxGqISISl86B6Y033sDWrVuRl5eH6OhovPzyy6odtonIsnAKjohIXb3WMFVWViItLQ0bNmzAwYMHMXjwYIwfPx5PP/20Rd1Uk2uYyFppC0oAwxIRmQeTXPR9+fJlbNy4EZ9//jnu37+P3377TfXVfnPHwETWSFtYeuWVV+Dl5SVCNURE9WcSi77/SSqVQiKRQBAEKBQKfdZEREakUCiwePFijXaOKhER/U+9AtPfp+T279+PIUOGIDk5GYMGDYJUWu9Nw4lIZJyCIyLSjc6BaeLEiUhNTYW3tzfGjRuHrVu3omXLloasjYgMSFtYmj59OqehiYi00HkNk1QqhY+PDwICAmpd4J2Wlqa34sTCNUxkye7evYtly5ZptHNUiYjMnUmsYYqMjLSob8IRWaOapuACAhiWiIhqU6+NK4nIfGkLS3PmzIGtra0I1RARmZcGf0uOiMzDX3/9heTkZI12TsEREemOgYnIgvFbcERE+sHARGShtIWluLg4rkUkImoABiYiC5OXl4fPP/9co52jSkREDcfARGRBtI0qNW/eHNOnTxehGiIiy8HARGQhtIUljioREekHAxORmTty5Ai+/fZbjXaGJSIi/WFgIjJj2kaVunbtiueff16EaoiILBcDE5GZ4hQcEZHxMDARmZnMzEwcOHBAo51hiYjIcBiYiMyItlGlH398EtOmPSFCNURE1oOBichMaAtLGRnxmD0bCA8XoSAiIivCwERk4rZs2YKLFy9qtMfHx4OzcERExsHARGTCtI0qjR49Gh07dhShGiIi68XARGSCBEHAwoULNdq5sJuISBwMTEQmZvXq1bh9+7ZGe0AAwxIRkVgYmIhMiLYpuEmTJqFly5YiVENERA8xMBGZAKVSiUWLFmm0cwqOiMg0MDARiey9995DRUWFRjun4IiITAcDE5GItE3BzZw5E02bNhWhGiIiqgkDE5EIqqqqkJCQoNEeEBAPZiUiItPDwERkZNpGlQCuVyIiMmUMTERGpC0szZ07FzKZTIRqiIhIVwxMREZw584drFixQqOdo0pEROaBgYnIwLSNKnl6emLChAkiVENERA3BwERkQNrCUlxcHCQSiQjVEBFRQzEwERlAYWEh1q1bp9HOKTgiIvPEwESkZ9pGlfz9/TFs2DARqiEiIn1gYCLSI21hiaNKRETmj4GJSA8uXryILVu2aLQzLBERWQYGJqJG0jaqFBoaiscff1yEaoiIyBCkYhcAACkpKfD19YW9vT1CQkJw+PDhGo9dv349nnjiCbi4uMDFxQWhoaG1Hv/6669DIpEgKSnJAJWTtatpCo5hiYjIsogemLZt24aYmBjEx8fj2LFj6NmzJ8LCwnDjxg2tx+fk5GDUqFHIzs5Gbm4uvL298fTTT+OPP/7QOHb79u04dOgQPD09DX0aZGWOHDnC9UpERFZEIgiCIGYBISEh6N27N5KTkwEASqUS3t7emDJlCmbPnl3n+xUKBVxcXJCcnIzIyEhV+x9//IGQkBBkZGRg8ODBmDZtGqZNm6ZTTaWlpXByckJJSQmaN2/eoPMiy6UtKD3//PPo2rWrCNUQEdFDhvz9LeoapqqqKhw9ehSxsbGqNqlUitDQUOTm5urUR0VFBaqrq+Hq6qpqUyqVGDNmDGbOnIlu3brV2UdlZSUqKytVz0tLS+txFmRNOKpERGSdRA1MN2/ehEKhgLu7u1q7u7s7zp49q1Mfs2bNgqenJ0JDQ1VtS5cuhY2NDaZOnapTHwkJCTXeQZ4IADIyMnDo0CGNdoYlIiLrYNbfkktMTERqaipycnJgb28PADh69ChWrVqFY8eO6Xz7idjYWMTExKiel5aWwtvb2yA1k/nRFqbHjx+PNm3aiFANERGJQdTA1LJlS8hkMhQWFqq1FxYWwsPDo9b3Ll++HImJicjMzESPHj1U7fv27cONGzfg4+OjalMoFHjrrbeQlJSE/Px8jb7s7OxgZ2fXuJMhiyMIAhYuXKjRzlElIiLrI2pgksvlCAwMRFZWFoYPHw7gwfqjrKwsTJ48ucb3LVu2DEuWLEFGRgaCgoLUXhszZoza9BwAhIWFYcyYMYiOjtb7OZBl2r59O06ePKnRHhDAsEREZI1En5KLiYnB2LFjERQUhODgYCQlJaG8vFwVbiIjI+Hl5YWEhAQAD9YnxcXF4YsvvoCvry8KCgoAAI6OjnB0dESLFi3QokULtZ9ha2sLDw8PdOrUybgnR2ZJ2xTctGnT4OTkJEI1RERkCkQPTBERESgqKkJcXBwKCgrg7++P9PR01ULwK1euQCr933ZRa9euRVVVFUaOHKnWT3x8PObPn2/M0snCKJVKLFq0SKOdU3BERCT6PkymiPswWZ8PP/xQNVr5dwxLRETmw2L3YSIyBdqm4GbNmqX65iUREREDE1mtqqoq1dq4v+OoEhER/RMDE1klbaNKLi4uOm92SkRE1oWBiayOtrA0d+5cyGQyEaohIiJzwMBEVqOiogLvvfeeRjun4IiIqC4MTGQVVq1aheLiYrU2J6dOmDbtRXEKIiIis8LARBZP2xRcXFyczvcaJCIiktZ9CJF5Kikp0RqWMjLiGZaIiKheOMJEFklbUPLxGYr163th9mwRCiIiIrPGwEQWp6ZRpYMHAd5/mYiIGoKBiSxGYWEh1q1bp9GekRHPUSUiImoUBiayCNpGlUaPHo2OHTuCuwYQEVFjMTCR2dMWlri3EhER6RMDE5mtvLw8fP755xrtDEtERKRvDExklrSNKr3yyivw8vISoRoiIrJ0DExkdjgFR0RExsbARGbj119/RVpamkY7wxIRERkaAxOZBW2jSlOmTIGrq6sI1RARkbVhYCKTJggCFi5cqNHOUSUiIjImBiYyWQcOHEBmZqZam4ODA2bMmCFSRUREZK0YmMgkaZuCmzFjBhwcHESohoiIrB0DE5kUpVKJRYsWabRzCo6IiMTEwEQm47vvvsMvv/yi1ubj44No3jGXiIhExsBEJkHbFFxsbCzkcrkI1RAREaljYCJR3b9/H0uWLNFo5xQcERGZEgYmEs2WLVtw8eJFtTZ/f38MGzZMpIqIiIi0Y2AiUWibgps3bx6kUqkI1RAREdWOgYmM6u7du1i2bJlGO6fgiIjIlDEwkdGsWbMGt27dUmvr378/BgwYIE5BREREOmJgIqPQNgUXFxcHiUQiQjVERET1w8BEBlVSUoKkpCSNdk7BERGROWFgIoPRNqoUHh6OgIAAEaohIiJqOAYmMghtYYmjSkREZK4YmEivCgoK8OGHH2q0MywREZE5Y2AivdE2qvTSSy+hQ4cOIlRDRESkPwxMpBecgiMiIkvGwESN8vvvv2PTpk0a7QxLRERkSRiYqMG0jSpNmDABnp6eIlRDRERkOAxM1CCcgiMiImvCwET1cvHiRWzZskWtTRAk6NUrTqSKiIiIDI+BiXSmbVRp+vTpaN68uQjVEBERGQ8DE9VJEAQsXLhQo51TcEREZC2kYhcAACkpKfD19YW9vT1CQkJw+PDhGo9dv349nnjiCbi4uMDFxQWhoaFqx1dXV2PWrFno3r07HBwc4OnpicjISPz555/GOBWLc+LECY2w1K5dO4YlIiKyKqIHpm3btiEmJgbx8fE4duwYevbsibCwMNy4cUPr8Tk5ORg1ahSys7ORm5sLb29vPP300/jjjz8AABUVFTh27BjmzZuHY8eOIS0tDefOnUN4eLgxT8siLFiwADt27FBre/vttzFmzBhxCiIiIhKJRBAEQcwCQkJC0Lt3byQnJwMAlEolvL29MWXKFMyePbvO9ysUCri4uCA5ORmRkZFaj/nll18QHByMy5cvw8fHp84+S0tL4eTkhJKSEqtcn8MpOCIiMkeG/P0t6hqmqqoqHD16FLGxsao2qVSK0NBQ5Obm6tRHRUUFqqur4erqWuMxJSUlkEgkcHZ21vp6ZWUlKisrVc9LS0t1OwELtH//fmRlZam1BQQEcISOiIismqiB6ebNm1AoFHB3d1drd3d3x9mzZ3XqY9asWfD09ERoaKjW1+/du4dZs2Zh1KhRNabNhIQErd8AszbarsGcOXNga2srQjVERESmQ/Q1TI2RmJiI1NRUbN++Hfb29hqvV1dX44UXXoAgCFi7dm2N/cTGxqKkpET1uHr1qiHLNjn379+vcSNKhiUiIiKRR5hatmwJmUyGwsJCtfbCwkJ4eHjU+t7ly5cjMTERmZmZ6NGjh8brD8PS5cuXsXfv3lrnMu3s7GBnZ9ewkzBz33//vca3EgcMGID+/fuLVBEREZHpEXWESS6XIzAwUG3NjFKpRFZWFvr06VPj+5YtW4ZFixYhPT0dQUFBGq8/DEsXLlxAZmYmWrRoYZD6zd2CBQs0wtK8efMYloiIiP5B9I0rY2JiMHbsWAQFBSE4OBhJSUkoLy9HdHQ0ACAyMhJeXl5ISEgAACxduhRxcXH44osv4Ovri4KCAgCAo6MjHB0dUV1djZEjR+LYsWPYvXs3FAqF6hhXV1fI5XJxTtSEVFVVqa7n3/FbcERERNqJHpgiIiJQVFSEuLg4FBQUwN/fH+np6aqF4FeuXIFU+r+BsLVr16KqqgojR45U6yc+Ph7z58/HH3/8gV27dgEA/P391Y7Jzs7GgAEDDHo+pi4zMxMHDhxQaztx4j+IinpUpIqIiIhMn+j7MJkiS92HSdvC7ri4OEgkEhGqISIi0i+L3YeJjKOiogLvvfeeWptEIkFcXJxIFREREZkXBiYLt3PnThw/flytbdy4cfD29hanICIiIjPEwGTBatpbiYiIiOqHgckClZSUICkpSa3NxcUFU6dOFacgIiIiM8fAZGE2bdqE33//Xa3tjTfegJubm0gVERERmT8GJgvCKTgiIiLDYGCyAEVFRfjggw/U2tq2bYuoqChxCiIiIrIwDExmLiUlBTdv3lRre/PNN+Hs7CxOQURERBaIgcmMcQqOiIjIOBiYzNC1a9fwySefqLV1794dI0aMEKkiIiIiy8bAZGaWLFmC+/fvq7XNmDEDDg4OIlVERERk+RiYzIQgCFi4cKFGO6fgiIiIDI+ByQxcvHgRW7ZsUWvr06cPnn76aZEqIiIisi4MTCZO28Lu2NhYyOVyEaohIiKyTgxMJopTcERERKaDgckEnTx5Etu3b1dre/rpp9GnTx+RKiIiIrJuDEwmRtsU3Ny5cyGTyUSohoiIiAAGJpOhUCiwePFijXZOwREREYmPgckEHDp0CBkZGWptw4cPR8+ePUWqiIiIiP6OgUlk2qbg4uLiIJFIRKiGiIiItGFgEklVVRUSEhI02jkFR0REZHoYmESQmZmJAwcOqLWNGjUKjzzyiEgVERERUW0YmIyMU3BERETmh4HJiPLz89WeSyQSxMXFiVMMERER6YyByYikUqnq3y9dGofPP/cWsRoiIiLSFQOTEfn4+CAjIw65uRJw024iIiLzIa37ENKn2bMfhKXZs8WuhIiIiHTFESYjCw9/8CAiIiLzwREmIiIiojowMBERERHVgYGJiIiIqA4MTERERER1YGAiIiIiqgMDExEREVEdGJiIiIiI6sDARERERFQHBiYiIiKiOjAwEREREdWBgYmIiIioDgxMRERERHVgYCIiIiKqg43YBZgiQRAAAKWlpSJXQkRERLp6+Hv74e9xfWJg0uLOnTsAAG9vb5ErISIiovq6c+cOnJyc9NqnRDBEDDNzSqUSf/75J5o1awaJRCJ2OUZXWloKb29vXL16Fc2bNxe7HJPD61MzXpva8frUjNemdrw+Nfv7tWnWrBnu3LkDT09PSKX6XXXEESYtpFIp2rRpI3YZomvevDn/x6wFr0/NeG1qx+tTM16b2vH61OzhtdH3yNJDXPRNREREVAcGJiIiIqI6MDCRBjs7O8THx8POzk7sUkwSr0/NeG1qx+tTM16b2vH61MxY14aLvomIiIjqwBEmIiIiojowMBERERHVgYGJiIiIqA4MTERERER1YGCyEikpKfD19YW9vT1CQkJw+PDhGo9dv349nnjiCbi4uMDFxQWhoaFqx1dXV2PWrFno3r07HBwc4OnpicjISPz555/GOBW90+e1+afXX38dEokESUlJBqjcOAxxfc6cOYPw8HA4OTnBwcEBvXv3xpUrVwx5Ggah72tTVlaGyZMno02bNmjSpAm6du2KdevWGfo0DKY+1yctLQ1BQUFwdnaGg4MD/P39sWnTJrVjBEFAXFwcWrdujSZNmiA0NBQXLlww9GkYhD6vjaV9JgP6/7Pzdw3+XBbI4qWmpgpyuVzYsGGD8NtvvwkTJkwQnJ2dhcLCQq3Hjx49WkhJSRH++9//CmfOnBGioqIEJycn4dq1a4IgCEJxcbEQGhoqbNu2TTh79qyQm5srBAcHC4GBgcY8Lb3Q97X5u7S0NKFnz56Cp6ensHLlSgOfiWEY4vpcvHhRcHV1FWbOnCkcO3ZMuHjxorBz584a+zRVhrg2EyZMENq3by9kZ2cLeXl5wocffijIZDJh586dxjotvanv9cnOzhbS0tKE06dPCxcvXhSSkpIEmUwmpKenq45JTEwUnJychB07dggnTpwQwsPDBT8/P+Hu3bvGOi290Pe1saTPZEEwzJ+dhxrzuczAZAWCg4OFSZMmqZ4rFArB09NTSEhI0On99+/fF5o1ayZ89tlnNR5z+PBhAYBw+fLlRtdrTIa6NteuXRO8vLyEU6dOCW3btjXbwGSI6xMRESG8/PLLeq/V2Axxbbp16yYsXLhQ7bhevXoJ77zzjn6KNqLGXh9BEISAgABh7ty5giAIglKpFDw8PIT33ntP9XpxcbFgZ2cnbN26VX+FG4G+r4025vqZLAiGuz6N/VzmlJyFq6qqwtGjRxEaGqpqk0qlCA0NRW5urk59VFRUoLq6Gq6urjUeU1JSAolEAmdn58aWbDSGujZKpRJjxozBzJkz0a1bN73XbSyGuD5KpRLffvstHnnkEYSFhcHNzQ0hISHYsWOHIU7BYAz1Z6dv377YtWsX/vjjDwiCgOzsbJw/fx5PP/203s/BkBp7fQRBQFZWFs6dO4d+/foBAPLy8lBQUKDWp5OTE0JCQnS+5qbAENdGG3P8TAYMd3308bnMwGThbt68CYVCAXd3d7V2d3d3FBQU6NTHrFmz4OnpqfYH+O/u3buHWbNmYdSoUWZ1U0hDXZulS5fCxsYGU6dO1Wu9xmaI63Pjxg2UlZUhMTERgwYNwp49e/Dcc89hxIgR+PHHH/V+DoZiqD87a9asQdeuXdGmTRvI5XIMGjQIKSkptf5iNEUNvT4lJSVwdHSEXC7H4MGDsWbNGjz11FMAoHpfY665KTDEtfknc/1MBgx3ffTxuWzT4HeSVUhMTERqaipycnJgb2+v8Xp1dTVeeOEFCIKAtWvXilCheLRdm6NHj2LVqlU4duwYJBKJyBWKS9v1USqVAIBhw4Zh+vTpAAB/f38cPHgQ69atQ//+/UWr15hq+v9qzZo1OHToEHbt2oW2bdvip59+wqRJk2r9C4sladasGY4fP46ysjJkZWUhJiYG7dq1w4ABA8QuTXS6Xhtr/Uyu7fro63OZgcnCtWzZEjKZDIWFhWrthYWF8PDwqPW9y5cvR2JiIjIzM9GjRw+N1x/+j3n58mXs3bvX7P4mY4hrs2/fPty4cQM+Pj6qNoVCgbfeegtJSUnIz8/X6zkYkiGuT8uWLWFjY4OuXbuqHd+lSxfs379ff8UbmCGuzd27dzFnzhxs374dgwcPBgD06NEDx48fx/Lly80qMDX0+kilUnTo0AHAgyB95swZJCQkYMCAAar3FRYWonXr1mp9+vv76/8kDMQQ1+Yhc/9MBgxzffT1ucwpOQsnl8sRGBiIrKwsVZtSqURWVhb69OlT4/uWLVuGRYsWIT09HUFBQRqvP/wf88KFC8jMzESLFi0MUr8hGeLajBkzBidPnsTx48dVD09PT8ycORMZGRkGOxdDMMT1kcvl6N27N86dO6fWfv78ebRt21a/J2BAhrg21dXVqK6uhlSq/rEsk8lUI3PmoqHX55+USiUqKysBAH5+fvDw8FDrs7S0FD///HO9+hSbIa4NYBmfyYBhro/ePpfrtUSczFJqaqpgZ2cnbNy4UTh9+rTw6quvCs7OzkJBQYEgCIIwZswYYfbs2arjExMTBblcLnz99dfC9evXVY87d+4IgiAIVVVVQnh4uNCmTRvh+PHjasdUVlaKco4Npe9ro405f0vOENcnLS1NsLW1FT766CPhwoULwpo1awSZTCbs27fP6OfXGIa4Nv379xe6desmZGdnC7///rvw6aefCvb29sIHH3xg9PNrrPpen3fffVfYs2ePcOnSJeH06dPC8uXLBRsbG2H9+vWqYxITEwVnZ2dh586dwsmTJ4Vhw4aZ7bYC+rw2lvSZLAiG+bPzTw35XGZgshJr1qwRfHx8BLlcLgQHBwuHDh1Svda/f39h7Nixqudt27YVAGg84uPjBUEQhLy8PK2vAxCys7ONe2J6oM9ro405ByZBMMz1+eSTT4QOHToI9vb2Qs+ePYUdO3YY6Wz0S9/X5vr160JUVJTg6ekp2NvbC506dRLef/99QalUGvGs9Kc+1+edd95R/ZlwcXER+vTpI6Smpqr1p1QqhXnz5gnu7u6CnZ2d8O9//1s4d+6csU5Hr/R5bSztM1kQ9P9n558a8rksEQRB0H08ioiIiMj6cA0TERERUR0YmIiIiIjqwMBEREREVAcGJiIiIqI6MDARERER1YGBiYiIiKgODExEREREdWBgIiIiIqoDAxMRWZyoqCgMHz5coz0nJwcSiQTFxcXIycnBsGHD0Lp1azg4OMDf3x9btmwxfrFEZBYYmIjIKh08eBA9evTAN998g5MnTyI6OhqRkZHYvXu32KURkQmyEbsAIiIxzJkzR+35m2++iT179iAtLQ1DhgwRqSoiMlUcYSIi+v9KSkrg6uoqdhlEZII4wkREFmn37t1wdHRUa1MoFDUe/+WXX+KXX37Bhx9+aOjSiMgMMTARkUUaOHAg1q5dq9b2888/4+WXX9Y4Njs7G9HR0Vi/fj26detmrBKJyIwwMBGRRXJwcECHDh3U2q5du6Zx3I8//oihQ4di5cqViIyMNFZ5RGRmuIaJiKxWTk4OBg8ejKVLl+LVV18VuxwiMmEcYSIiq5SdnY0hQ4bgzTffxH/+8x8UFBQAAORyORd+E5EGjjARkVX67LPPUFFRgYSEBLRu3Vr1GDFihNilEZEJkgiCIIhdBBEREZEp4wgTERERUR0YmIiIiIjqwMBEREREVAcGJiIiIqI6MDARERER1YGBiYiIiKgODExEREREdWBgIiIiIqoDAxMRERFRHRiYiIiIiOrAwERERERUBwYmIiIiojr8PwFQqzwpl+bpAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_35.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABS70lEQVR4nO3deVxU1f8/8NeALLKnIAgCI5K7IoIifj5FGoVmKmVlZrKoZSYqH6xPYCYuGZSouODyqZQ2BVtUvpaQEUgm5gblvmK4sGkCCgbC3N8f/pyaZlAGZuYOM6/n4zEPmTN3zrxPLvPqnHPvlQiCIICIiIjIiJiIXQARERGRrjEAERERkdFhACIiIiKjwwBERERERocBiIiIiIwOAxAREREZHQYgIiIiMjoMQERERGR0GICIiIjI6DAAEVGbJZFIsGDBArHLkIuIiIBUKhW7DCJqBgYgItKo1NRUSCQS+cPS0hLdu3dHVFQUysrKtPrZ+/btw4IFC1BZWanRfh977DGFMXXo0AGDBg3Cxo0bIZPJNPIZ7733HrZv366RvojowdqJXQARGaZFixaha9eu+PPPP7F3716sW7cO3333HY4dOwYrKyuNfMbt27fRrt1f/4zt27cPCxcuREREBBwcHDTyGfd06dIFCQkJAICKigp8+umnmDJlCs6cOYPExMRW9//ee+/hueeeQ2hoaKv7IqIHYwAiIq0YOXIk/P39AQBTp05Fx44dsXz5cuzYsQMTJkxocb8ymQz19fWwtLSEpaWlpsp9IHt7e7z88svy59OmTUOPHj2wZs0aLF68GGZmZjqrhYhaj0tgRKQTw4cPBwAUFRUBAJKSkjB06FB07NgR7du3h5+fH7766iul90kkEkRFReGLL75Anz59YGFhgczMTPlr9/YALViwAG+++SYAoGvXrvLlqosXLyIoKAg+Pj4q6+rRowdCQkLUHo+VlRWGDBmCmpoaVFRUNHlcTU0N5syZA3d3d1hYWKBHjx5ISkqCIAgKY6ypqcEnn3wirzsiIkLtmoio+TgDREQ6cf78eQBAx44dAQArV67EmDFjMHHiRNTX1yMtLQ3PP/88du7ciVGjRim898cff8TWrVsRFRUFR0dHlRuNn332WZw5cwZbtmzBihUr4OjoCABwcnLCpEmT8Morr+DYsWPo27ev/D0HDx7EmTNnMG/evBaN6cKFCzA1NW1yuU0QBIwZMwY5OTmYMmUKBgwYgKysLLz55pu4cuUKVqxYAQD47LPPMHXqVAwePBivvvoqAKBbt24tqomImkkgItKgTZs2CQCEH374QaioqBAuXbokpKWlCR07dhTat28vXL58WRAEQaitrVV4X319vdC3b19h+PDhCu0ABBMTE+H48eNKnwVAiI+Plz9funSpAEAoKipSOK6yslKwtLQU3nrrLYX2WbNmCdbW1sKtW7fuO6agoCChZ8+eQkVFhVBRUSGcPHlSmDVrlgBAGD16tPy48PBwwdPTU/58+/btAgDh3XffVejvueeeEyQSiXDu3Dl5m7W1tRAeHn7fOohIc7gERkRaERwcDCcnJ7i7u+PFF1+EjY0Ntm3bBjc3NwBA+/bt5cfeuHEDVVVVeOSRR3DkyBGlvoKCgtC7d+8W12Jvb4+xY8diy5Yt8qWnxsZGpKenIzQ0FNbW1g/s49SpU3BycoKTkxN69eqF1atXY9SoUdi4cWOT7/nuu+9gamqKWbNmKbTPmTMHgiBg165dLR4TEbUOl8CISCtSUlLQvXt3tGvXDs7OzujRowdMTP76f66dO3fi3XffRWFhIerq6uTtEolEqa+uXbu2up6wsDCkp6fjp59+wqOPPooffvgBZWVlmDRpUrPeL5VK8eGHH8pP7X/44YfRqVOn+77n999/h6urK2xtbRXae/XqJX+diMTBAEREWjF48GD5WWD/9NNPP2HMmDF49NFHsXbtWnTu3BlmZmbYtGkTNm/erHT832eLWiokJATOzs74/PPP8eijj+Lzzz+Hi4sLgoODm/V+a2vrZh9LRPqPS2BEpHNff/01LC0tkZWVhcmTJ2PkyJEaCReqZo/uMTU1xUsvvYSvvvoKN27cwPbt2zFhwgSYmpq2+nOb4unpiatXr+LmzZsK7adOnZK/fs/9aicizWMAIiKdMzU1hUQiQWNjo7zt4sWLrb4S8r29PE1dCXrSpEm4ceMGpk2bhlu3bilc10cbnnrqKTQ2NmLNmjUK7StWrIBEIsHIkSPlbdbW1hq/gjURNY1LYESkc6NGjcLy5csxYsQIvPTSSygvL0dKSgq8vb3x22+/tbhfPz8/AMDbb7+NF198EWZmZhg9erQ8GPn6+qJv37748ssv0atXLwwcOFAj42nK6NGjMWzYMLz99tu4ePEifHx88P3332PHjh2Ijo5WONXdz88PP/zwA5YvXw5XV1d07doVAQEBWq2PyJhxBoiIdG748OH4+OOPUVpaiujoaGzZsgXvv/8+nnnmmVb1O2jQICxevBi//vorIiIiMGHCBKWLFIaFhQFAszc/t4aJiQkyMjIQHR2NnTt3Ijo6GidOnMDSpUuxfPlyhWOXL18OPz8/zJs3DxMmTMC6deu0Xh+RMZMIwt8uR0pEZOBWrlyJ//znP7h48SI8PDzELoeIRMIARERGQxAE+Pj4oGPHjsjJyRG7HCISEfcAEZHBq6mpQUZGBnJycnD06FHs2LFD7JKISGScASIig3fx4kV07doVDg4OeP3117FkyRKxSyIikTEAERERkdHhWWBERERkdBiAiIiIyOhwE7QKMpkMV69eha2tLS9PT0RE1EYIgoCbN2/C1dVV4ebLqjAAqXD16lW4u7uLXQYRERG1wKVLl9ClS5f7HsMApIKtrS2Au/8B7ezsRK6GiIiImqO6uhru7u7y7/H7YQBS4d6yl52dHQMQERFRG9Oc7SvcBE1ERERGhwGIiIiIjA4DEBERERkd7gFqhcbGRty5c0fsMkgHzM3NH3hKJRERtR0MQC0gCAJKS0tRWVkpdimkIyYmJujatSvMzc3FLoWIiDSAAagF7oWfTp06wcrKihdLNHD3LoxZUlICDw8P/n4TERkABiA1NTY2ysNPx44dxS6HdMTJyQlXr15FQ0MDzMzMxC6HiIhaiZsa1HRvz4+VlZXIlZAu3Vv6amxsFLkSIiLSBAagFuIyiHHh7zcRkWFhACIiIiKjwwBERERERocByIhERERAIpFAIpHAzMwMzs7OeOKJJ7Bx40bIZLJm95OamgoHBwftFUpERKRlDEBGZsSIESgpKcHFixexa9cuDBs2DLNnz8bTTz+NhoYGscsjIiLSCQYgI2NhYQEXFxe4ublh4MCBmDt3Lnbs2IFdu3YhNTUVALB8+XL069cP1tbWcHd3x+uvv45bt24BAHJzcxEZGYmqqir5bNKCBQsAAJ999hn8/f1ha2sLFxcXvPTSSygvLxdppEREpK8yMoChQ+/+KhYGIA0QBAH19fU6fwiCoJH6hw8fDh8fH3zzzTcA7l71eNWqVTh+/Dg++eQT/Pjjj/jvf/8LABg6dCiSk5NhZ2eHkpISlJSU4I033gBw9xIBixcvxq+//ort27fj4sWLiIiI0EiNRERkGPbs2YO8vHW4evUiEhPFq4MXQtSAO3fuICEhQeefGxcXp7FbM/Ts2RO//fYbACA6OlreLpVK8e677+K1117D2rVrYW5uDnt7e0gkEri4uCj0MXnyZPnPXl5eWLVqFQYNGoRbt27BxsZGI3USEVHb1NDQgCVLlgAAbG2BoKBzGDdOKlo9DEAE4O4s1r1r3fzwww9ISEjAqVOnUF1djYaGBvz555+ora297wUgDx8+jAULFuDXX3/FjRs35Buri4uL0bt3b52Mg4iI9M/ly5fx8ccfK7StWzcUYl5TmAFIA8zMzBAXFyfK52rKyZMn0bVrV1y8eBFPP/00pk+fjiVLlqBDhw7Yu3cvpkyZgvr6+iYDUE1NDUJCQhASEoIvvvgCTk5OKC4uRkhICOrr6zVWJxERtS3/93//hyNHjsifd+/eHRMmTBCxorv0Yg9QSkoKpFIpLC0tERAQgAMHDjR57PHjxzFu3DhIpVJIJBIkJycrHbNgwQL5Bt17j549e2qtfolEAnNzc50/NHV14h9//BFHjx7FuHHjcPjwYchkMixbtgxDhgxB9+7dcfXqVYXjzc3NlW4JcerUKVy/fh2JiYl45JFH0LNnT26AJiIyYnV1dVi4cKFC+Jk4caJehB9ADwJQeno6YmJiEB8fjyNHjsDHxwchISFNfnnW1tbCy8sLiYmJSntQ/q5Pnz7yTbolJSXYu3evtobQptTV1aG0tBRXrlzBkSNH8N5772Hs2LF4+umnERYWBm9vb9y5cwerV6/GhQsX8Nlnn2H9+vUKfUilUty6dQvZ2dm4du0aamtr4eHhAXNzc/n7MjIysHjxYpFGSUREYjp79iwS/7HDOS4uDt7e3iJVpEz0ALR8+XK88soriIyMRO/evbF+/XpYWVlh48aNKo8fNGgQli5dihdffBEWFhZN9tuuXTu4uLjIH46OjtoaQpuSmZmJzp07QyqVYsSIEcjJycGqVauwY8cOmJqawsfHB8uXL8f777+Pvn374osvvlDa4D106FC89tprGD9+PJycnPDBBx/AyckJqamp+PLLL9G7d28kJiYiKSlJpFESEZFYPv/8c2zevFn+3N/fH/Hx8Ro7aUdTJIKmzqVugXt7Sr766iuEhobK28PDw1FZWYkdO3bc9/1SqRTR0dEKZy0Bd5fAli5dCnt7e1haWiIwMBAJCQnw8PBoVl3V1dWwt7dHVVUV7OzsFF77888/UVRUhK5du8LS0rJZ/VHbx993IqL7u3XrFpYtW6bQNnXqVLi5uemshvt9f/+TqJugr127hsbGRjg7Oyu0Ozs749SpUy3uNyAgAKmpqejRowdKSkqwcOFCPPLIIzh27BhsbW2Vjq+rq0NdXZ38eXV1dYs/m4iIyNgUFhYqTFqYmJhg7ty5MDU1FbGq+zPIs8BGjhwp/7l///4ICAiAp6cntm7diilTpigdn5CQgIULF+qyRCIiojZPEASkpKTg+vXr8rbhw4fjkUceEbGq5hF1D5CjoyNMTU1RVlam0F5WVnbfDc7qcnBwQPfu3XHu3DmVr8fFxaGqqkr+uHTpksY+m4iIyBD98ccfWLRokUL4iYqKahPhBxA5AJmbm8PPzw/Z2dnyNplMhuzsbAQGBmrsc27duoXz58+jc+fOKl+3sLCAnZ2dwoOIiIhU27t3L1avXi1/3qFDB8yfPx8dO3YUsSr1iL4EFhMTg/DwcPj7+2Pw4MFITk5GTU0NIiMjAQBhYWFwc3OTn4lUX1+PEydOyH++cuUKCgsLYWNjIz+97o033sDo0aPh6emJq1evIj4+Hqampnpz7QEiIqK2qLGxEQkJCQrXghszZgx8fX1FrKplRA9A48ePR0VFBebPn4/S0lIMGDAAmZmZ8o3RxcXFMDH5a6Lq6tWrCv+hk5KSkJSUhKCgIOTm5gK4e8ntCRMm4Pr163BycsK///1v7N+/H05OTjodGxERkaE4fPgwdu7cqdAWExOj8uSitkDU0+D1FU+Dp3/i7zsRGbN/nihka+uFmJhJIlXTNHVOgxf9QohERESkn27duqUUfvLzA/DVV/oXftQl+hIYERER6Z/vv/8e+fn5Cm19+kQjK8sesbEiFaVBDECkcREREaisrMT27dsBAI899hgGDBig8sa1zaWJPoiIqHlUXRsvPj4eAPDcc7quRjsYgIxIREQEPvnkEwCAmZkZPDw8EBYWhrlz56JdO+39Ufjmm29gZmbWrGNzc3MxbNgw3LhxAw4ODi3qg4iIWub3339HamqqQpur6xN45ZWh4hSkRQxARmbEiBHYtGkT6urq8N1332HGjBkwMzNDXFycwnH19fUau3Fdhw4d9KIPIiJqmqpZnw8+eAM+PtZ45RURCtIyboI2MhYWFnBxcYGnpyemT5+O4OBgZGRkICIiAqGhoViyZAlcXV3Ro0cPAMClS5fwwgsvwMHBAR06dMDYsWNx8eJFeX+NjY2IiYmBg4MDOnbsiP/+97/454mFjz32mMINa+vq6vDWW2/B3d0dFhYW8Pb2xscff4yLFy9i2LBhAICHHnoIEokEERERKvu4ceMGwsLC8NBDD8HKygojR47E2bNn5a+npqbCwcEBWVlZ6NWrF2xsbDBixAiUlJTIj8nNzcXgwYNhbW0NBwcH/Otf/8Lvv/+uof/SRERtg0wmUxl+fH3j4eNjbRD7fVRhADJy7du3R319PQAgOzsbp0+fxu7du7Fz507cuXMHISEhsLW1xU8//YSff/5ZHiTuvWfZsmVITU3Fxo0bsXfvXvzxxx/Ytm3bfT8zLCwMW7ZswapVq3Dy5Els2LABNjY2cHd3x9dffw0AOH36NEpKSrBy5UqVfURERODQoUPIyMhAfn4+BEHAU089hTt37siPqa2tRVJSEj777DPk5eWhuLgYb7zxBgCgoaEBoaGhCAoKwm+//Yb8/Hy8+uqrkEgkrf5vSkTUVuTk5GDx4sUKbS4uQYiPj8eYMcC+fcCYMSIVp2VcAjNSgiAgOzsbWVlZmDlzJioqKmBtbY2PPvpIvvT1+eefQyaT4aOPPpIHg02bNsHBwQG5ubl48sknkZycjLi4ODz77LMAgPXr1yMrK6vJzz1z5gy2bt2K3bt3Izg4GADg5eUlf/3eUlenTp0U9gD93dmzZ5GRkYGff/4ZQ4feXZf+4osv4O7uju3bt+P5558HANy5cwfr169Ht27dANy9R82iRYsA3L1WRFVVFZ5++mn567169VL/PyQRURuTkQEkJgIhIcqzPnPnzjWa/ZacARJZRgYwdOjdX3Vh586dsLGxgaWlJUaOHInx48djwYIFAIB+/fop7Pv59ddfce7cOdja2sLGxgY2Njbo0KED/vzzT5w/fx5VVVUoKSlBQECA/D3t2rWDv79/k59fWFgIU1NTBAUFtXgMJ0+eRLt27RQ+t2PHjujRowdOnjwpb7OyspKHGwDo3LkzysvLAdwNWhEREQgJCcHo0aOxcuVKheUxIiJDlZT0p8rwEx8fbzThB+AMkOgSE4H8/Lu/6mKacdiwYVi3bh3Mzc3h6uqqcPaXtbW1wrG3bt2Cn58fvvjiC6V+Wnpbkfbt27fofS3xz7/IEolEYX/Spk2bMGvWLGRmZiI9PR3z5s3D7t27MWTIEJ3VSESkSx988AEef/y2QtuIESMU/ofSWHAGSGSxsUBgIHS2ycza2hre3t7w8PB44KnvAwcOxNmzZ9GpUyd4e3srPOzt7WFvb4/OnTvjl19+kb+noaEBhw8fbrLPfv36QSaTYc+ePSpfvzcD9fcb7f1Tr1690NDQoPC5169fx+nTp9G7d+/7jumffH19ERcXh3379qFv377YvHmzWu8nImorFi5ciNu3FcPP/PnzjTL8AAxAotPnTWYTJ06Eo6Mjxo4di59++glFRUXIzc3FrFmzcPnyZQDA7NmzkZiYiO3bt+PUqVN4/fXXUVlZ2WSfUqkU4eHhmDx5MrZv3y7vc+vWrQAAT09PSCQS7Ny5ExUVFbh165ZSHw8//DDGjh2LV155BXv37sWvv/6Kl19+GW5ubhg7dmyzxlZUVIS4uDjk5+fj999/x/fff4+zZ89yHxARGZzS0tImL2xozCd+MABRk6ysrJCXlwcPDw88++yz6NWrF6ZMmYI///xTfpO5OXPmYNKkSQgPD0dgYCBsbW3xzDPP3LffdevW4bnnnsPrr7+Onj174pVXXkFNTQ0AwM3NDQsXLkRsbCycnZ0RFRWlso9NmzbBz88PTz/9NAIDAyEIAr777rtmr19bWVnh1KlTGDduHLp3745XX30VM2bMwLRp09T4L0REpN8WLlyIDRs2KLQ9//zz8qs6GzPeDV4F3g2e/om/70TU1tzvdhaGSp27wXMTNBERkQE5cOAAdu3apdRu6OFHXQxAREREBkLVrM8rr7wCV1dXEarRbwxAREREbZwgCPILvf4dZ32axgBERETUhqWlpeH06dNK7Qw/98cA1ELcO25c+PtNRPpI1ZLXm2++CSsrKxGqaVsYgNR07zTr2tpanV7VmMR17+avpqamIldCRHT3zNT3339fqZ2zPs3HAKQmU1NTODg4yO8pZWVlZdQXkjIGMpkMFRUVsLKyeuDVs4mItE3VrE+3bt3w8ssvi1BN28V/zVvAxcUFAOQhiAyfiYkJPDw8GHaJSFSqws8777wDExNe11hdDEAtIJFI0LlzZ3Tq1Al37twRuxzSAXNzc/4DQ0SiuXLlCj766COldi55tRwDUCuYmppyTwgREWmVqlmfCxf+jXHjHhehGsPBAERERKSnjPF2FrrCAERERKRnfvnlF2RmZiq1M/xoDgMQERGRHlE16/PSSy/h4YcfFqEaw8UAREREpAd4OwvdYgAiIiIS2RdffIFz584ptTP8aA8DEBERkYhULXlFR0fD3t5ehGqMBwMQERGRCOrq6pCYmKjUzlkf3WAAIiIi0jFVsz6WlpZ46623RKjGODEAERER6ZCq8DNv3jxeWFfHGICIiIh0oKSkBP/73/+U2rnkJQ4GICIiIi1TNevTseNAREWNFqEaAgC9uLtjSkoKpFIpLC0tERAQgAMHDjR57PHjxzFu3DhIpVJIJBIkJyfft+/ExERIJBJER0drtmgiIqJmUBV+FiyIx+bNDD9iEj0ApaenIyYmBvHx8Thy5Ah8fHwQEhKC8vJylcfX1tbCy8sLiYmJcHFxuW/fBw8exIYNG9C/f39tlE5ERNSkAwcOqAw/vr7xCAwEYmNFKIrkJIIgCGIWEBAQgEGDBmHNmjUAAJlMBnd3d8ycOROxD/jTIZVKER0drXJ259atWxg4cCDWrl2Ld999FwMGDHjgbNE91dXVsLe3R1VVFezs7NQdEhERGTlVwWfMmDHw9fUVoRrjoc73t6gzQPX19Th8+DCCg4PlbSYmJggODkZ+fn6r+p4xYwZGjRql0DcREZG2NXUHd4Yf/SLqJuhr166hsbERzs7OCu3Ozs44depUi/tNS0vDkSNHcPDgwWYdX1dXh7q6Ovnz6urqFn82EREZp/Xr16OsrEypnWd56SeDOwvs0qVLmD17Nnbv3g1LS8tmvSchIUFlYiciImoOVd8h06dPR6dOnUSohppD1CUwR0dHmJqaKiXmsrKyB25wbsrhw4dRXl6OgQMHol27dmjXrh327NmDVatWoV27dmhsbFR6T1xcHKqqquSPS5cuteiziYjIuNy5c6fJjc4MP/pN1Bkgc3Nz+Pn5ITs7G6GhoQDuboLOzs5GVFRUi/p8/PHHcfToUYW2yMhI9OzZE2+99ZbKK21aWFjAwsKiRZ9HRETGqamVgwUL7p7lNWaMjgsitYi+BBYTE4Pw8HD4+/tj8ODBSE5ORk1NDSIjIwEAYWFhcHNzQ0JCAoC7G6dPnDgh//nKlSsoLCyEjY0NvL29YWtri759+yp8hrW1NTp27KjUTkRE1BKqwk9sbCyysix4insbIXoAGj9+PCoqKjB//nyUlpZiwIAByMzMlG+MLi4uhonJXyt1V69eVdhJn5SUhKSkJAQFBSE3N1fX5RMRkREpLy/HunXrlNrvbXQeM4YzP22F6NcB0ke8DhAREf2TqlkfBwcHzJ49W4RqSBV1vr9FnwEiIiLSd01d24faLtFvhUFERKSv9u/frzL8bNnC8NPWcQaIiIhIBVXB5/TpwdiyZSR69hShINIoBiAiIqJ/aGrJKyMDuHiRZ3kZAm6CVoGboImIjNPKlStRWVmp1J6VFY99+3RfD6mHm6CJiIjUpGrWx8vrRaxb14MzPgaIAYiIiIxaY2Mj3n33XaX2e2d5TZqk64pIFxiAiIjIaDV1Owue4m74eBo8EREZJVXhJydnDnx9GX6MAWeAiIjIqFRUVGDt2rVK7fHx8eDEj/FgACIiIqPR1JIXZ32MDwMQEREZBVXhZ8CA+Rg7ViJCNSQ2BiAiIjJov/zyCzIzM5XaudHZuDEAERGRwVI16+Ph4YHIyEgRqiF9wgBEREQGiXdwp/thACIiIoPS1O0suNGZ/o4BiIiIDIaqWZ+RI0di8ODBIlRD+owBiIiI2jyZTIbFixcrtXPJi5rCAERERG0ab2dBLcEAREREbZaq8DNjxgw4OjqKUA21JQxARETU5lRWVmLlypVK7Zz1oeZiACIiojaFS16kCQxARETUZqgKP/PmzYOpqakI1VBbZiJ2AURERA/y66+/qgw/WVnxDD/UIpwBIiIivaYq+JiYmGPXrjjExopQEBkEBiAiItJbqsKPr288xowB3nlHhILIYDAAERGR3vnkk09w8eJFpXZudCZNYQAiIiK9omrW55FHHsHw4cNFqIYMFQMQERHpBUEQsGjRIqV2zvqQNjAAERGR6HhtH9I1BiAiIhKVqvAzdepUuLm5iVANGQsGICIiEkVNTQ2SkpKU2jnrQ7rAAERERDrHJS8SGwMQERHplKrw88MPcfjpJ3MRqiFjxQBEREQ6cebMGWzZskWpPSsrnld0Jp3Ti3uBpaSkQCqVwtLSEgEBAThw4ECTxx4/fhzjxo2DVCqFRCJBcnKy0jHr1q1D//79YWdnBzs7OwQGBmLXrl1aHAEREd3PwoULVYaftLR47NsHjBkjQlFk1EQPQOnp6YiJiUF8fDyOHDkCHx8fhISEoLy8XOXxtbW18PLyQmJiIlxcXFQe06VLFyQmJuLw4cM4dOgQhg8fjrFjx+L48ePaHAoREanQ1O0ssrLi8f77IhREBEAiCIIgZgEBAQEYNGgQ1qxZAwCQyWRwd3fHzJkzEfuAOVGpVIro6GhER0c/8HM6dOiApUuXYsqUKQ88trq6Gvb29qiqqoKdnV2zxkFERIqaup1FVtbdWR8iTVPn+1vUPUD19fU4fPgw4uLi5G0mJiYIDg5Gfn6+Rj6jsbERX375JWpqahAYGKiRPomI6P5Uzfo0Nvrihx/GcL8P6QVRA9C1a9fQ2NgIZ2dnhXZnZ2ecOnWqVX0fPXoUgYGB+PPPP2FjY4Nt27ahd+/eKo+tq6tDXV2d/Hl1dXWrPpuIyJipCj8LFsQjMBCc+SG9YbBngfXo0QOFhYWoqqrCV199hfDwcOzZs0dlCEpISGjymhRERNQ8Tf076ut7N/xw5of0iagByNHREaampigrK1NoLysra3KDc3OZm5vD29sbAODn54eDBw9i5cqV2LBhg9KxcXFxiImJkT+vrq6Gu7t7qz6fiMiYqAo/L7zwAnr16gWAZ3mR/hH1LDBzc3P4+fkhOztb3iaTyZCdna3x/ToymUxhmevvLCws5KfM33sQEdGD/fnnn02e5XUv/BDpI9GXwGJiYhAeHg5/f38MHjwYycnJqKmpQWRkJAAgLCwMbm5uSEhIAHB34/SJEyfkP1+5cgWFhYWwsbGRz/jExcVh5MiR8PDwwM2bN7F582bk5uYiKytLnEESERmgppa87u334awP6TPRA9D48eNRUVGB+fPno7S0FAMGDEBmZqZ8Y3RxcTFMTP6aqLp69Sp8fX3lz5OSkpCUlISgoCDk5uYCAMrLyxEWFoaSkhLY29ujf//+yMrKwhNPPKHTsRERGSpV4adv3zdgZmbN/T7UJoh+HSB9xOsAERGpdvr0aaSlpSm189o+pA/azHWAiIio7WhqyYv38qK2iAGIiIgeSFX4ycqaj9hYCeLjRSiIqJUYgIiIqEmfffYZLly4oNQeHx/P4ENtGgMQERGppGrWx8LC4oH3aSRqCxiAiIhISVPX9uGp7WQoGICIiEiuqY3O8VzvIgPDAERERABUh5/HH38c//73v0Wohki7GICIiIxcQ0MDlixZotTOWR8yZAxARERGjEteZKxEvRkqERGJR1X4+emnKPj6MvyQ4eMMEBGRkSkuLsamTZuU2jnrQ8aEAYiIyIhwyYvoLgYgIiIjoSr8DBgwH2PHSkSohkhcDEBERAYuIyMDBQUFSu28sCEZMwYgIiIDxiUvItXUDkCmpqYoKSlBp06dFNqvX7+OTp06obGxUWPFERFRy6kKPww+RHepHYAEQVDZXldXB3Nz81YXRERErcNZH6IHa3YAWrVqFQBAIpHgo48+go2Njfy1xsZG5OXloWfPnpqvkIiImk1V+PH398eoUaNEqIZIfzU7AK1YsQLA3Rmg9evXw9TUVP6aubk5pFIp1q9fr/kKiYjogWQyGRYvXqzUzlkfItWaHYCKiooAAMOGDcM333yDhx56SGtFERFR83HJi0h9au8BysnJ0UYdRETUAqrCz9SpU+Hm5iZCNURth9oBaPLkyfd9fePGjS0uhoiImqe8vBzr1q1Tavf1jQezD9GDqR2Abty4ofD8zp07OHbsGCorKzF8+HCNFUZERKo1teS1YEE8AgPBixsSNYPaAWjbtm1KbTKZDNOnT0e3bt00UhQREammKvy8/fbb+O67dggMBGJjRSiKqA2SCE1d2EdNp0+fxmOPPYaSkhJNdCeq6upq2Nvbo6qqCnZ2dmKXQ0SErKws7N+/X6mdG52J/qLO97fGboVx/vx5NDQ0aKo7IiL6/5pa8vL1Zfghaim1A1BMTIzCc0EQUFJSgm+//Rbh4eEaK4yIiHg7CyJtUTsA/fOOwiYmJnBycsKyZcseeIYYERE1D6/tQ6RdvA4QEZGeURV+3NzcMHXqVBGqITJMLd4DVF5ejtOnTwMAevTooXR3eCIiUo8gCFi0aJFSO2d9iDRP7QBUXV2NGTNmYMuWLZDJZAAAU1NTjB8/HikpKbC3t9d4kUREho5LXkS6ZaLuG1555RX88ssv+Pbbb1FZWYnKykrs3LkThw4dwrRp07RRIxGRQVMVfl544QWGHyItUvs6QNbW1sjKysK///1vhfaffvoJI0aMQE1NjUYLFAOvA0REulBdXY0VK1YotTP4ELWMVq8D1LFjR5XLXPb29rxDPBFRMzW15JWWFg/mHyLtU3sJbN68eYiJiUFpaam8rbS0FG+++SbeeecdjRZHRGSIVIWffv3eQlZWPN5/X4SCiIyQ2gFo3bp12L9/Pzw8PODt7Q1vb294eHhg37592LBhAwYOHCh/NFdKSgqkUiksLS0REBCAAwcONHns8ePHMW7cOEilUkgkEiQnJysdk5CQgEGDBsHW1hadOnVCaGio/Iw1IiKxHDhwoMkLGz77rCX27eONTIl0Re0lsLFjx0IikWisgPT0dMTExGD9+vUICAhAcnIyQkJCcPr0aZWn1tfW1sLLywvPP/88/vOf/6jsc8+ePZgxYwYGDRqEhoYGzJ07F08++SROnDgBa2trjdVORNRcPMuLSL9o7GaoLRUQEIBBgwZhzZo1AO7eWd7d3R0zZ85E7ANuayyVShEdHY3o6Oj7HldRUYFOnTphz549ePTRRx9YEzdBE5EmqQo/aWnxOHlShGKIDJg6399qL4F5eXnh+vXrSu2VlZXw8vJSq6/6+nocPnwYwcHBfxVkYoLg4GDk5+erW1qTqqqqAAAdOnTQWJ9ERA+SlJSkMvwsWBAPcf/Xk4jUXgK7ePEiGhsbldrr6upw+fJltfq6du0aGhsb4ezsrNDu7OyMU6dOqVuaSjKZDNHR0fjXv/6Fvn37qjymrq4OdXV18ufV1dUa+WwiMl6qgo+trS28vWMQGAg8YIKbiLSs2QEoIyND/nNWVpbCqfCNjY3Izs5G165dNVudBsyYMQPHjh3D3r17mzwmISGhyfV5IiJ1PegO7tzoTCS+Zgeg0NBQAIBEIkF4eLjCa2ZmZpBKpVi2bJlaH+7o6AhTU1OUlZUptJeVlcHFxUWtvlSJiorCzp07kZeXhy5dujR5XFxcHGJiYuTPq6ur4e7u3urPJyLjwo3ORG1HswPQvft+de3aFQcPHoSjo2OrP9zc3Bx+fn7Izs6WByyZTIbs7GxERUW1uF9BEDBz5kxs27YNubm5D5yZsrCwgIWFRYs/j4hIVfgZNWoU/P39RaiGiB5E7T1ARUVFGi0gJiYG4eHh8Pf3x+DBg5GcnIyamhpERkYCAMLCwuDm5oaEhAQAdzdOnzhxQv7zlStXUFhYCBsbG3h7ewO4u+y1efNm7NixA7a2tvKLNtrb26N9+/YarZ+IjNvt27fxwQcfKLVz1odIv6l9GvyiRYvu+/r8+fPVLmLNmjVYunQpSktLMWDAAKxatQoBAQEAgMceewxSqRSpqakA7m7CVjWjExQUhNzcXABo8jpFmzZtQkRExAPr4WnwRNQcTS15ZWXFY98+HRdDRGp9f6sdgHx9fRWe37lzB0VFRWjXrh26deuGI0eOqF+xnmEAIqIHURV++vT5D5Yvt0NsLDc6E4lBqzdDLSgoUPmBEREReOaZZ9TtjoioTTl+/Di++uorpXZf33iMGQM895wIRRGR2jR2JeijR49i9OjRuHjxoia6ExVngIhIFZ7lRaTftDoD1JSqqir5FZeJiAyNqvAzf/58jd4bkYh0R+0AtGrVKoXngiCgpKQEn332GUaOHKmxwoiI9MGmTZtQXFys1O7rGw9mH6K2S+0AtGLFCoXnJiYmcHJyQnh4OOLi4jRWGBGR2LjkRWS4RL8OEBGRPnrQ7SyIqG1r0R6gyspKnDt3DgDg7e0NBwcHTdZERCSapmZ9fH0ZfogMiVoB6OLFi5gxYwaysrJw7+QxiUSCESNGYM2aNZBKpdqokYhIJ1SFn0cffRTDhg0ToRoi0qZmB6BLly5hyJAhMDMzw+LFi9GrVy8AwIkTJ7Bu3ToEBgbi4MGD973pKBGRPmpoaMCSJUuU2rnkRWS4mn0doClTpuDcuXPIysqCpaWlwmu3b9/GiBEj8PDDD+Ojjz7SSqG6xOsAERkPbnQmMhxauQ5QZmYm0tPTlcIPALRv3x6LFy/Giy++qH61REQiURV+9u59HTNnOolQDRHpUrMD0LVr1+67x8fLywt//PGHJmoiItKq4uJibNq0Samdsz5ExqPZAahz5844ceJEk3t8jh07BhcXF40VRkSkDVzyIiJAjQAUGhqKN954A9nZ2XByUpweLi8vx1tvvYXQ0FBN10dEpDGqws8777wDExMTEaohIjE1exP0jRs3EBAQgNLSUrz88svo2bMnBEHAyZMnsXnzZri4uGD//v3o0KGDtmvWOm6CJjIs27Ztw2+//abUfu8O7kRkGLSyCfqhhx7CL7/8grlz5yItLQ2VlZUAAAcHB7z00kt47733DCL8EJFhaWrJa8GCeAQGggGIyEg1ewbo7wRBQEVFBQDAycnJ4O6GzBkgIsPQ1O0sMjKAxEQgNpYBiMiQqPP93aIAZOgYgIjaNm50JjJOWlkCIyJqC1SFHx8fH56kQUQKGICIyCDIZDIsXrxYqZ2zPkSkCgMQEbV5XPIiInUxABFRm6Yq/ERGRsLDw0OEaoiorWhWAFq1alWzO5w1a1aLiyEiaq709AqcOrVWqZ2zPkTUHM06C6xr167N60wiwYULF1pdlNh4FhiRfuOSFxGpovGzwIqKijRSGBFRa6kKP2+//TbateOKPhE1X4v/xaivr0dRURG6devGf3iISOtycnKQl5en1M5ZHyJqCbXvAFhbW4spU6bAysoKffr0QXFxMQBg5syZSExM1HiBREQLFy5k+CEijVI7AMXFxeHXX39Fbm4uLC0t5e3BwcFIT0/XaHFERE3dzoLhh4haQ+21q+3btyM9PR1DhgxRuAdYnz59cP78eY0WR0TGixudiUib1A5AFRUV6NSpk1J7TU2Nwd0UlYjEoSr8eHp6IiIiQvfFEJFBUnsJzN/fH99++638+b3Q89FHHyEwMFBzlRGR0REEQWX4ycqKZ/ghIo1Sewbovffew8iRI3HixAk0NDRg5cqVOHHiBPbt24c9e/Zoo0YiMgJNLXllZcUjNlbHxRCRwVN7Bujf//43CgsL0dDQgH79+uH7779Hp06dkJ+fDz8/P23USEQGTlX4efHFFxEfH499+4AxY0QoiogMWrOuBG1seCVoIt24efMmli9frtTOjc5E1BIavxJ0dXV1sz+cgYGImoNneRGRmJq1BObg4ICHHnqoWQ91paSkQCqVwtLSEgEBAThw4ECTxx4/fhzjxo2DVCqFRCJBcnKy0jF5eXkYPXo0XF1dIZFIsH37drVrIiLtUhV+3nrrLYYfItKZZs0A5eTkyH++ePEiYmNjERERIT/rKz8/H5988gkSEhLU+vD09HTExMRg/fr1CAgIQHJyMkJCQnD69GmVp9rX1tbCy8sLzz//PP7zn/+o7LOmpgY+Pj6YPHkynn32WbXqISLtKigoQEZGhlI7gw8R6Zrae4Aef/xxTJ06FRMmTFBo37x5M/73v/8hNze32X0FBARg0KBBWLNmDQBAJpPB3d0dM2fOROwDTvuQSqWIjo5GdHR0k8dIJBJs27YNoaGhza4J4B4gIm3gkhcRaZs6399qnwWWn58Pf39/pXZ/f//7Ll/9U319PQ4fPozg4OC/ijExQXBwMPLz89Uti4j0TEYGMHTo3V95Owsi0jdqByB3d3d8+OGHSu0fffQR3N3dm93PtWvX0NjYCGdnZ4V2Z2dnlJaWqltWq9TV1aG6ulrhQUStk5gI9O37IQoKVIcfIiIxqX0hxBUrVmDcuHHYtWsXAgICAAAHDhzA2bNn8fXXX2u8QF1ISEhocnqeiFomJET571RpaWd06PCqCNUQESlSOwA99dRTOHv2LNauXYtTp04BAEaPHo3XXntNrRkgR0dHmJqaoqysTKG9rKwMLi4u6pbVKnFxcYiJiZE/r66uVmssRKSoqSUvIiJ9oXYAAoAuXbrgvffea9UHm5ubw8/PD9nZ2fJNyjKZDNnZ2YiKimpV3+qysLCAhYWFTj+TyBBxozMRtRUtCkCVlZX4+OOPcfLkSQBAnz59MHnyZNjb26vVT0xMDMLDw+Hv74/BgwcjOTkZNTU1iIyMBACEhYXBzc1Nfnp9fX09Tpw4If/5ypUrKCwshI2NDby9vQEAt27dwrlz5+SfUVRUhMLCQnTo0AEeHh4tGS4RNYOq8DNu3Dj07dtXhGqIiO5P7dPgDx06hJCQELRv3x6DBw8GABw8eBC3b9/G999/j4EDB6pVwJo1a7B06VKUlpZiwIABWLVqlXxv0WOPPQapVIrU1FQAd69B1LVrV6U+goKC5Kff5+bmYtiwYUrHhIeHy/t5EJ4GT9Q8GRnA0qV1CA5OVHqNsz5EpGvqfH+rHYAeeeQReHt748MPP0S7dncnkBoaGjB16lRcuHABeXl5La9cTzAAETUPl7yISJ9oNQC1b98eBQUF6Nmzp0L7iRMn4O/vj9raWvUr1jMMQEQPpir8zJkzBzY2NiJUQ0SkhZuh/p2dnR2Ki4uVAtClS5dga2urbndE1Mb8/vvvKpeTOetDRG2J2gFo/PjxmDJlCpKSkjB06FAAwM8//4w333xT6fYYRGRYuORFRIZC7QCUlJQEiUSCsLAwNDQ0AADMzMwwffp0JCYqb4QkIsOgKvxkZc1HbKxEhGqIiFpH7T1A99TW1uL8+fMAgG7dusHKykqjhYmJe4CI/pKS8i2uXTuk1M5ZHyLSN1rdA3SPlZUV+vXr19K3E1EboGrWp1OnTpg+fboI1RARaU6zA9DkyZObddzGjRtbXAwR6Q/ezoKIDFmzA1Bqaio8PT3h6+uLFq6aEVEbwI3ORGQMmh2Apk+fji1btqCoqAiRkZF4+eWX0aFDB23WRkQ6pir8jBo1Cv7+/iJUQ0SkPSbNPTAlJQUlJSX473//i//7v/+Du7s7XnjhBWRlZXFGiKiNa2xsbHLJi+GHiAxRi88Cu3cxtE8//RQNDQ04fvy4wVwBlmeBkTHhkhcRGQqdnAVmYmICiUQCQRDQ2NjY0m6ISESqws+sWbPw0EMPiVANEZHuNHsJDADq6uqwZcsWPPHEE+jevTuOHj2KNWvWoLi42GBmf4iMQVlZmcrw4+sbz/BDREah2TNAr7/+OtLS0uDu7o7Jkydjy5YtcHR01GZtRKQFXPIiIlJjD5CJiQk8PDzg6+sLiaTpS99/8803GitOLNwDRIZKVfh55513YGKi1mQwEZFe0soeoLCwsPsGHyLSX3l5ecjJyVFq56wPERkrtS6ESERtj6pZHzMzM8ydO1eEaoiI9EOLzwIjIv2WkQEUFPB2FkREqjAAERmgDz74ALdv31ZqZ/ghIrqLAYjIgDQ16xMUFITHHntM9wUREekpBiAiAyEIAgoKFim1c9aHiEgZAxCRAeC1fYiI1MOLfxC1ERkZwNChd3/9O1XhZ9q0aQw/RET3wRkgojYiMRHIz7/765gxwFdfVeL48ZVKxzH4EBE9GAMQURsRG3s3/MTGcsmLiKi1GICI2ogxY+4+VIWft99+G+3a8a8zEVFz8V9MojbiyJEj+L//+z+lds76EBGpjwGIqA3gkhcRkWYxABHpOVXhh8GHiKh1GICI9FRqaip+//13pXaGHyKi1mMAItJDqmZ9AgICMGLECBGqISIyPAxARHpEEAQsWsTbWRARaRsDEJGe4EZnIiLdYQAi0gOqwk9kZCQ8PDxEqIaIyPAxABGJqLa2FkuXLlVq56wPEZF26cXNUFNSUiCVSmFpaYmAgAAcOHCgyWOPHz+OcePGQSqVQiKRIDk5udV9Eolh4cKFDD9ERCIRPQClp6cjJiYG8fHxOHLkCHx8fBASEoLy8nKVx9fW1sLLywuJiYlwcXHRSJ9EuqZqySs2Npbhh4hIRySCIAhiFhAQEIBBgwZhzZo1AACZTAZ3d3fMnDkTsbGx932vVCpFdHQ0oqOjNdYnAFRXV8Pe3h5VVVWws7Nr2cCIVDh37hy++OILpXYGHyKi1lPn+1vUGaD6+nocPnwYwcHB8jYTExMEBwcjPz9fb/okaqmMDGDo0Lu/Lly4kOGHiEhPiLoJ+tq1a2hsbISzs7NCu7OzM06dOqWzPuvq6lBXVyd/Xl1d3aLPJvqnxEQgPx8oKODtLIiI9AnPAgOQkJDQ5DVYiFpj4sRvERJySKnd15fhh4hITKIGIEdHR5iamqKsrEyhvaysrMkNztroMy4uDjExMfLn1dXVcHd3b9HnE92jKlT7+vpizJgxIlRDRER/J+oeIHNzc/j5+SE7O1veJpPJkJ2djcDAQJ31aWFhATs7O4UHUWs0dQd3hh8iIv0g+hJYTEwMwsPD4e/vj8GDByM5ORk1NTWIjIwEAISFhcHNzQ0JCQkA7m5yPnHihPznK1euoLCwEDY2NvD29m5Wn0TasnhxAmSyeqV27vchItIvogeg8ePHo6KiAvPnz0dpaSkGDBiAzMxM+Sbm4uJimJj8NVF19epV+Pr6yp8nJSUhKSkJQUFByM3NbVafRNqgatYnLCwMXbt2FaEaIiK6H9GvA6SPeB0gUkdDQwOWLFmi1M5ZHyIi3VLn+1v0GSCitox3cCciapsYgIhaSFX4eeutt2BpaSlCNUREpA4GICI1Xb9+XX6blb/jrA8RUdvBAESkBlWzPnV1NhgyZI4I1RARUUsxABE1k6rwM3/+fEgkEhGqISKi1mAAInqAwsJC7NixQ6mdS15ERG0XAxDRfaia9Rk6dCieeOIJEaohIiJNYQAiakJTt7MgIqK2jwGI6B/S09Nx6tQppXaGHyIiw8EARPQ3qmZ9Jk2aBC8vLxGqISIibWEAIgIgk8mwePFipXbO+hARGSYGIDJ6Td3OwteX4YeIyFAxAJFRUxV+5syZAxsbGxGqISIiXWEAIqN08+ZNLF++XKmdS15ERMaBAYiMDu/gTkREDEBkVFSFnwED5mPsWN7OgojImDAAkVEoLi7Gpk2blNo560NEZJwYgMjgqZr1uXhxCDZtChGhGiIi0gcmYhdApE2qwk9WVjyeeYbhh4jImHEGiAzSzz//jB9++EGpPT4+Hlz1IiIiBiAyOKpmfcLDwyGVSnVfDBER6SUGIDIYgiBg0aJFSu3c6ExERP/EAEQGYdOmTSguLlZqZ/ghIiJVGICozVO15BUTEwNbW1sRqiEioraAAYjarD///BPvv/++UjtnfYiI6EEYgKhNUjXrY29vj+joaN0XQ0REbQ4DELU5qsLPO++8AxMTXtaKiIiahwGI2oySkhL873//U2rnkhcREamLAYjaBFWzPkOGDEFICK/oTERE6mMAIr2nKvxw1oeIiFqDAYj01qlTp5Cenq7UzvBDREStxQBEeknVrM+LL76IHj16iFANEREZGgYg0juqwk99fTyYfYiISFMYgEhv5OXlIScnR6mdS15ERKRpDECkF1TN+syZMwc2NjYiVENERIZOL64cl5KSAqlUCktLSwQEBODAgQP3Pf7LL79Ez549YWlpiX79+uG7775TeL2srAwRERFwdXWFlZUVRowYgbNnz2pzCNRCDQ0NTZ7lxfBDRETaInoASk9PR0xMDOLj43HkyBH4+PggJCQE5eXlKo/ft28fJkyYgClTpqCgoAChoaEIDQ3FsWPHAACCICA0NBQXLlzAjh07UFBQAE9PTwQHB6OmpkaXQ6MH+PTTT7FkyRKFtu7du3PJi4iItE4iCIIgZgEBAQEYNGgQ1qxZAwCQyWRwd3fHzJkzERsbq3T8+PHjUVNTg507d8rbhgwZggEDBmD9+vU4c+YMevTogWPHjqFPnz7yPl1cXPDee+9h6tSpD6ypuroa9vb2qKqqgp2dnYZGSn+natZn3rx5MDU1FaEaIiIyBOp8f4s6A1RfX4/Dhw8jODhY3mZiYoLg4GDk5+erfE9+fr7C8QAQEhIiP76urg4AYGlpqdCnhYUF9u7dq+khkJqqq6ubXPJi+CEiIl0RdRP0tWvX0NjYCGdnZ4V2Z2dnnDp1SuV7SktLVR5fWloKAOjZsyc8PDwQFxeHDRs2wNraGitWrMDly5dRUlKiss+6ujp5cALufkmT5qkKPk888QSGDh0qQjVERGTMRN8DpGlmZmb45ptvcObMGXTo0AFWVlbIycnByJEjm7xbeEJCAuzt7eUPd3d3HVdt+Jqa9WH4ISIiMYgagBwdHWFqaoqysjKF9rKyMri4uKh8j4uLywOP9/PzQ2FhISorK1FSUoLMzExcv34dXl5eKvuMi4tDVVWV/HHp0qVWjozu+f3333kvLyIi0juiBiBzc3P4+fkhOztb3iaTyZCdnY3AwECV7wkMDFQ4HgB2796t8nh7e3s4OTnh7NmzOHToEMaOHauyTwsLC9jZ2Sk8qPUWLlyI1NRUhbZJkyYx/BARkehEvxBiTEwMwsPD4e/vj8GDByM5ORk1NTWIjIwEAISFhcHNzQ0JCQkAgNmzZyMoKAjLli3DqFGjkJaWhkOHDuF///ufvM8vv/wSTk5O8PDwwNGjRzF79myEhobiySefFGWMxoizPkREpM9ED0Djx49HRUUF5s+fj9LSUgwYMACZmZnyjc7FxcUKe3eGDh2KzZs3Y968eZg7dy4efvhhbN++HX379pUfU1JSgpiYGJSVlaFz584ICwvDO++8o/OxGaNjx47h66+/Vmpn+CEiIn0i+nWA9BGvA9QyqmZ99uyJxo8/2otQDRERGRt1vr9FnwGitk8mk2Hx4sVK7VlZ8VBxLUsiIiLRMQBRq/zwww/4+eefFdoGDBiAsWPHgqteRESkrxiAqMVULXm9/fbbaNeOf6yIiEi/8ZuK1Hb79m188MEHSu3c6ExERG0FAxCp5eOPP8bly5cV2p566ikMGjRIpIqIiIjUxwBEzaZqyWv+/PmQSCQiVENERNRyDED0QBUVFVi7dq1SO5e8iIiorWIAovtSNesTHh4OqVSq+2KIiIg0hAGImsTbWRARkaFiACIlp0+fRlpamkKbpaUl3nrrLZEqIiIi0iwGIFKgatZn9uzZcHBw0H0xREREWsIARAAAQRCwaNEipXYueRERkSFiACLk5eUhJydHoa1Xr1544YUXRKqIiIhIuxiAjJyqJa+4uDiYm5uLUA0REZFuMAAZqbq6OiQmJiq1c8mLiIiMAQOQEdq8eTPOnj2r0BYcHIx//etfIlVERESkWwxARoa3syAiImIAMhq8gzsREdFfGICMQH5+Pr7//nuFtsOHJyIjw1ukioiIiMTFAGTgvvnmGxw9elShLS0tHu+/L1JBREREeoAByECpWvI6f/5RfPbZMAQGAmPGiFQYERGRHmAAMkAnT57E1q1bFdp2756LoCAzBAYCsbEiFUZERKQnGIAMiCAISE1NRXFxsbxtyJAhWLgwBPn5gEwG7NsnYoFERER6ggHIQFRXV2PFihUKbdOmTYOLiwvq6oDERM78EBER3cMAZAAOHTqEb7/9Vv7cwsIC//3vf2FiYgLg7n4f7vkhIiL6CwNQGyaTybBy5UpUV1fL25544gkMHTpUxKqIiIj0HwNQG1VRUYG1a9cqtM2aNQsPPfSQSBURERG1HQxAbVBOTg7y8vLkz52dnTFt2jTezoKIiKiZGIDakIaGBixZskSh7ZlnnkH//v1FqoiIiKhtYgBqIy5duoSNGzcqtL3xxhuwtrYWqSIiIqK2iwGoDcjIyEBBQYH8effu3TFhwgQRKyIiImrbGID0WF1dHRITExXaJk6cCG9v3sSUiIioNRiA9NSZM2ewZcsWhba4uDiYm5uLVBEREZHhYADSQ59++imKiorkzwcNGoSnnnpKxIqIiIgMCwOQHrl16xaWLVum0DZ16lS4ubmJVBEREZFhYgDSEwUFBcjIyJA/NzU1RVxcHExNTUWsioiIyDCZiF0AAKSkpEAqlcLS0hIBAQE4cODAfY//8ssv0bNnT1haWqJfv3747rvvFF6/desWoqKi0KVLF7Rv3x69e/fG+vXrtTmEFhMEAatXr1YIP8OHD8e8efMYfoiIiLRE9ACUnp6OmJgYxMfH48iRI/Dx8UFISAjKy8tVHr9v3z5MmDABU6ZMQUFBAUJDQxEaGopjx47Jj4mJiUFmZiY+//xznDx5EtHR0YiKilIIGfrg+vXrWLRoEf744w95W1RUFB555BERqyIiIjJ8EkEQBDELCAgIwKBBg7BmzRoAd2/w6e7ujpkzZyI2Nlbp+PHjx6OmpgY7d+6Utw0ZMgQDBgyQz/L07dsX48ePxzvvvCM/xs/PDyNHjsS77777wJqqq6thb2+Pqqoq2NnZtXaIKuXl5SEnJ0f+vEOHDoiKiuLtLIiIiFpIne9vUWeA6uvrcfjwYQQHB8vbTExMEBwcjPz8fJXvyc/PVzgeAEJCQhSOHzp0KDIyMnDlyhUIgoCcnBycOXMGTz75pMo+6+rqUF1drfDQlsbGRixevFgh/IwZMwYzZ85k+CEiItIRUQPQtWvX0NjYCGdnZ4V2Z2dnlJaWqnxPaWnpA49fvXo1evfujS5dusDc3BwjRoxASkoKHn30UZV9JiQkwN7eXv5wd3dv5chUa2howLvvvguZTCZvmzNnDnx9fbXyeURERKSaQZ4Ftnr1auzfvx8ZGRnw9PREXl4eZsyYAVdXV6XZI+DuBQZjYmLkz6urq7USgi5fviz/2cvLC5MmTdL4ZxAREdGDiRqAHB0dYWpqirKyMoX2srIyuLi4qHyPi4vLfY+/ffs25s6di23btmHUqFEAgP79+6OwsBBJSUkqA5CFhQUsLCw0MaT78vT0xPjx4+Hg4NDk+IiIiEj7RF0CMzc3h5+fH7Kzs+VtMpkM2dnZCAwMVPmewMBAheMBYPfu3fLj79y5gzt37sDERHFopqamCktPYpBIJOjZsyfDDxERkchEPw0+JiYGH374IT755BOcPHkS06dPR01NDSIjIwEAYWFhiIuLkx8/e/ZsZGZmYtmyZTh16hQWLFiAQ4cOISoqCgBgZ2eHoKAgvPnmm8jNzUVRURFSU1Px6aef4plnnhFljH+XkQEMHXr3VyIiIhKH6HuAxo8fj4qKCsyfPx+lpaUYMGAAMjMz5Rudi4uLFWZzhg4dis2bN2PevHmYO3cuHn74YWzfvh19+/aVH5OWloa4uDhMnDgRf/zxBzw9PbFkyRK89tprOh/fPyUmAvn5d38dM0bsaoiIiIyT6NcB0kfavA5QRsbd8BMbywBERESkSep8f4s+A2Rsxoxh8CEiIhKb6HuAiIiIiHSNAYiIiIiMDgMQERERGR0GICIiIjI6DEBERERkdBiAiIiIyOgwABEREZHRYQAiIiIio8MAREREREaHAYiIiIiMDgMQERERGR0GICIiIjI6DEBERERkdHg3eBUEQQAAVFdXi1wJERERNde97+173+P3wwCkws2bNwEA7u7uIldCRERE6rp58ybs7e3ve4xEaE5MMjIymQxXr16Fra0tJBKJVj6juroa7u7uuHTpEuzs7LTyGfrKWMdurOMGOHZjHLuxjhsw3rHrw7gFQcDNmzfh6uoKE5P77/LhDJAKJiYm6NKli04+y87Ozqj+gvydsY7dWMcNcOzGOHZjHTdgvGMXe9wPmvm5h5ugiYiIyOgwABEREZHRYQASiYWFBeLj42FhYSF2KTpnrGM31nEDHLsxjt1Yxw0Y79jb2ri5CZqIiIiMDmeAiIiIyOgwABEREZHRYQAiIiIio8MAREREREaHAUhDUlJSIJVKYWlpiYCAABw4cOC+x3/55Zfo2bMnLC0t0a9fP3z33XcKr9+6dQtRUVHo0qUL2rdvj969e2P9+vXaHEKLaXrsZWVliIiIgKurK6ysrDBixAicPXtWm0NoMXXGfvz4cYwbNw5SqRQSiQTJycmt7lMsmh53Xl4eRo8eDVdXV0gkEmzfvl17xbeSpseekJCAQYMGwdbWFp06dUJoaChOnz6txRG0nKbHvm7dOvTv319+4bzAwEDs2rVLiyNoGW38Pb8nMTEREokE0dHRmi1aQzQ99gULFkAikSg8evbsqcURNI0BSAPS09MRExOD+Ph4HDlyBD4+PggJCUF5ebnK4/ft24cJEyZgypQpKCgoQGhoKEJDQ3Hs2DH5MTExMcjMzMTnn3+OkydPIjo6GlFRUcjIyNDVsJpF02MXBAGhoaG4cOECduzYgYKCAnh6eiI4OBg1NTW6HNoDqTv22tpaeHl5ITExES4uLhrpUwzaGHdNTQ18fHyQkpKizdJbTRtj37NnD2bMmIH9+/dj9+7duHPnDp588kmj+PPepUsXJCYm4vDhwzh06BCGDx+OsWPH4vjx49ocilq0Me57Dh48iA0bNqB///7aKL3VtDX2Pn36oKSkRP7Yu3evtoZwfwK12uDBg4UZM2bInzc2Ngqurq5CQkKCyuNfeOEFYdSoUQptAQEBwrRp0+TP+/TpIyxatEjhmIEDBwpvv/22BitvPU2P/fTp0wIA4dixYwp9Ojk5CR9++KEWRtBy6o797zw9PYUVK1ZotE9d0ca4/w6AsG3btlZWqR3aHrsgCEJ5ebkAQNizZ09rStU4XYxdEAThoYceEj766KOWlqlx2hr3zZs3hYcffljYvXu3EBQUJMyePVtDFWuONsYeHx8v+Pj4aLDKluMMUCvV19fj8OHDCA4OlreZmJggODgY+fn5Kt+Tn5+vcDwAhISEKBw/dOhQZGRk4MqVKxAEATk5OThz5gyefPJJ7QykBbQx9rq6OgCApaWlQp8WFhbi/V+CCi0Zuxh9alpbqFFbdDX2qqoqAECHDh001mdr6WLsjY2NSEtLQ01NDQIDAzXSZ2tpc9wzZszAqFGjlP491BfaHPvZs2fh6uoKLy8vTJw4EcXFxa0tt0UYgFrp2rVraGxshLOzs0K7s7MzSktLVb6ntLT0gcevXr0avXv3RpcuXWBubo4RI0YgJSUFjz76qOYH0ULaGHvPnj3h4eGBuLg43LhxA/X19Xj//fdx+fJllJSUaGcgLdCSsYvRp6a1hRq1RRdjl8lkiI6Oxr/+9S/07dtXI31qgjbHfvToUdjY2MDCwgKvvfYatm3bht69e7eqT03R1rjT0tJw5MgRJCQktLZErdHW2AMCApCamorMzEysW7cORUVFeOSRR3Dz5s3Wlqw23g1eT61evRr79+9HRkYGPD09kZeXhxkzZsDV1VVv/49BE8zMzPDNN99gypQp6NChA0xNTREcHIyRI0dC4EXLycDNmDEDx44d06vZTm3r0aMHCgsLUVVVha+++grh4eHYs2eP3oQgTbt06RJmz56N3bt3K8x0G4uRI0fKf+7fvz8CAgLg6emJrVu3YsqUKTqthQGolRwdHWFqaoqysjKF9rKysiY3gbm4uNz3+Nu3b2Pu3LnYtm0bRo0aBeDuH5TCwkIkJSXpTQDSxtgBwM/PT/4PYn19PZycnBAQEAB/f3/ND6KFWjJ2MfrUtLZQo7Zoe+xRUVHYuXMn8vLy0KVLl1b3p0naHLu5uTm8vb0B3P27f/DgQaxcuRIbNmxoVb+aoI1xHz58GOXl5Rg4cKC8rbGxEXl5eVizZg3q6upgamraqro1QVd/1x0cHNC9e3ecO3dOY302F5fAWsnc3Bx+fn7Izs6Wt8lkMmRnZze5jh0YGKhwPADs3r1bfvydO3dw584dmJgo/vaYmppCJpNpeAQtp42x/529vT2cnJxw9uxZHDp0CGPHjtXsAFqhJWMXo09Naws1aou2xi4IAqKiorBt2zb8+OOP6Nq1qybK1Shd/r7LZDL5XkCxaWPcjz/+OI4ePYrCwkL5w9/fHxMnTkRhYaFehB9Ad7/nt27dwvnz59G5c2eN9dlsIm/CNghpaWmChYWFkJqaKpw4cUJ49dVXBQcHB6G0tFQQBEGYNGmSEBsbKz/+559/Ftq1ayckJSUJJ0+eFOLj4wUzMzPh6NGj8mOCgoKEPn36CDk5OcKFCxeETZs2CZaWlsLatWt1Pr770cbYt27dKuTk5Ajnz58Xtm/fLnh6egrPPvuszsf2IOqOva6uTigoKBAKCgqEzp07C2+88YZQUFAgnD17ttl96gNtjPvmzZvyYwAIy5cvFwoKCoTff/9d5+O7H22Mffr06YK9vb2Qm5srlJSUyB+1tbU6H9/9aGPssbGxwp49e4SioiLht99+E2JjYwWJRCJ8//33Oh9fU7Qx7n/S17PAtDH2OXPmCLm5uUJRUZHw888/C8HBwYKjo6NQXl6u8/ExAGnI6tWrBQ8PD8Hc3FwYPHiwsH//fvlrQUFBQnh4uMLxW7duFbp37y6Ym5sLffr0Eb799luF10tKSoSIiAjB1dVVsLS0FHr06CEsW7ZMkMlkuhiOWjQ99pUrVwpdunQRzMzMBA8PD2HevHlCXV2dLoaiNnXGXlRUJABQegQFBTW7T32h6XHn5OSoPOaff3b0gabHrup1AMKmTZt0N6hm0vTYJ0+eLHh6egrm5uaCk5OT8Pjjj+tV+LlHG3/P/05fA5AgaH7s48ePFzp37iyYm5sLbm5uwvjx44Vz587pcER/kQgCd5YSERGRceEeICIiIjI6DEBERERkdBiAiIiIyOgwABEREZHRYQAiIiIio8MAREREREaHAYiIiIiMDgMQERERGR0GICJq0yIiIhAaGqrUnpubC4lEgsrKSuTm5mLs2LHo3LkzrK2tMWDAAHzxxRdK7/njjz8QHR0NT09PmJubw9XVFZMnT0ZxcbEORkJEusQAREQGb9++fejfvz++/vpr/Pbbb4iMjERYWBh27twpP+aPP/7AkCFD8MMPP2D9+vU4d+4c0tLScO7cOQwaNAgXLlwQcQREpGm8FQYRtWkRERGorKzE9u3bFdpzc3MxbNgw3LhxAw4ODkrvGzVqFJydnbFx40YAwPTp0/HZZ5/h3LlzcHFxkR93+/ZtPPzww+jXrx927dqlzaEQkQ5xBoiIjFJVVRU6dOgAAJDJZEhLS8PEiRMVwg8AtG/fHq+//jqysrLwxx9/iFEqEWlBO7ELICJqrZ07d8LGxkahrbGxscnjt27dioMHD2LDhg0AgIqKClRWVqJXr14qj+/VqxcEQcC5c+cwePBgzRVORKJhACKiNm/YsGFYt26dQtsvv/yCl19+WenYnJwcREZG4sMPP0SfPn0UXuOOACLjwQBERG2etbU1vL29FdouX76sdNyePXswevRorFixAmFhYfJ2JycnODg44OTJkyr7P3nyJCQSidJnEFHbxT1ARGQUcnNzMWrUKLz//vt49dVXFV4zMTHBCy+8gM2bN6O0tFThtdu3b2Pt2rUICQmR7xkioraPAYiIDF5OTg5GjRqFWbNmYdy4cSgtLUVpaanCpub33nsPLi4ueOKJJ7Br1y5cunQJeXl5CAkJwZ07d5CSkiLiCIhI0xiAiMjgffLJJ6itrUVCQgI6d+4sfzz77LPyYzp27Ij9+/dj2LBhmDZtGrp164YXXngB3bp1w8GDB+Hl5SXiCIhI03gdICIiIjI6nAEiIiIio8MAREREREaHAYiIiIiMDgMQERERGR0GICIiIjI6DEBERERkdBiAiIiIyOgwABEREZHRYQAiIiIio8MAREREREaHAYiIiIiMDgMQERERGZ3/B7FbpoEpuCxsAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASgtJREFUeJzt3XlclOX+//H3gAKukCsuCC7lWoob6jllGif0WOrJyjqWoraZmmR1xOqIaIYd11zSjqaWuVcaX0vJPC6VWOZSue9pKWpHhZQChPv3hz/nNM1gDM7MPcy8no8HD53P3HPP5wqVd9d1zX1bDMMwBAAA4EcCzG4AAADA0whAAADA7xCAAACA3yEAAQAAv0MAAgAAfocABAAA/A4BCAAA+B0CEAAA8DsEIAAA4HcIQABKLIvFotGjR5vdhlV8fLyioqLMbgNAERCAALjUggULZLFYrF8hISG65ZZbNGTIEJ05c8at771lyxaNHj1aFy9edOl577zzTpsxVapUSW3atNG8efNUUFDgkvd49dVXtWrVKpecC8AfK2V2AwB805gxY1S3bl39+uuv+vzzzzVr1ix9/PHH2r17t8qWLeuS9/jll19UqtT//hnbsmWLkpOTFR8fr7CwMJe8xzW1a9dWSkqKJOncuXN65513NHDgQB08eFDjx4+/4fO/+uqruv/++9WzZ88bPheAP0YAAuAWXbt2VevWrSVJjz32mCpXrqzJkyfrww8/1MMPP1zs8xYUFCg3N1chISEKCQlxVbt/KDQ0VI888oj18ZNPPqmGDRtqxowZGjt2rEqXLu2xXgDcOJbAAHhE586dJUnHjh2TJE2cOFEdOnRQ5cqVVaZMGbVq1Urvvfee3essFouGDBmiRYsWqWnTpgoODtbatWutz13bAzR69Gi98MILkqS6detal6uOHz+ujh07qnnz5g77atiwoeLi4pweT9myZdWuXTtdvnxZ586dK/S4y5cv67nnnlNERISCg4PVsGFDTZw4UYZh2Izx8uXLevvtt619x8fHO90TgKJjBgiARxw5ckSSVLlyZUnS66+/ru7du6tPnz7Kzc3V0qVL9cADD2j16tXq1q2bzWv/85//aPny5RoyZIiqVKnicKPxfffdp4MHD2rJkiWaMmWKqlSpIkmqWrWqHn30UT3++OPavXu3mjVrZn3Ntm3bdPDgQb388svFGtPRo0cVGBhY6HKbYRjq3r27NmzYoIEDB6pFixZKS0vTCy+8oB9//FFTpkyRJC1cuFCPPfaY2rZtqyeeeEKSVL9+/WL1BKCIDABwofnz5xuSjE8//dQ4d+6ccfLkSWPp0qVG5cqVjTJlyhg//PCDYRiGkZ2dbfO63Nxco1mzZkbnzp1t6pKMgIAAY8+ePXbvJclISkqyPp4wYYIhyTh27JjNcRcvXjRCQkKMESNG2NSfeeYZo1y5csalS5euO6aOHTsajRo1Ms6dO2ecO3fO2Ldvn/HMM88Ykox7773Xely/fv2MyMhI6+NVq1YZkoxXXnnF5nz333+/YbFYjMOHD1tr5cqVM/r163fdPgC4DktgANwiNjZWVatWVUREhB566CGVL19eK1euVK1atSRJZcqUsR574cIFZWZm6vbbb9eOHTvsztWxY0c1adKk2L2EhoaqR48eWrJkiXXpKT8/X8uWLVPPnj1Vrly5PzzH/v37VbVqVVWtWlWNGzfW9OnT1a1bN82bN6/Q13z88ccKDAzUM888Y1N/7rnnZBiG1qxZU+wxAbgxLIEBcIuZM2fqlltuUalSpVS9enU1bNhQAQH/+3+u1atX65VXXtGuXbuUk5NjrVssFrtz1a1b94b76du3r5YtW6bPPvtMd9xxhz799FOdOXNGjz76aJFeHxUVpTlz5lg/2n/zzTerWrVq133N999/r5o1a6pChQo29caNG1ufB2AOAhAAt2jbtq31U2C/99lnn6l79+6644479MYbb6hGjRoqXbq05s+fr8WLF9sd/9vZouKKi4tT9erV9e677+qOO+7Qu+++q/DwcMXGxhbp9eXKlSvysQC8H0tgADzu/fffV0hIiNLS0jRgwAB17drVJeHC0ezRNYGBgfr73/+u9957TxcuXNCqVav08MMPKzAw8IbftzCRkZE6deqUfv75Z5v6/v37rc9fc73eAbgeAQiAxwUGBspisSg/P99aO378+A1fCfnaXp7CrgT96KOP6sKFC3ryySd16dIlm+v6uMNf//pX5efna8aMGTb1KVOmyGKxqGvXrtZauXLlXH4FawCFYwkMgMd169ZNkydPVpcuXfT3v/9dZ8+e1cyZM9WgQQN9++23xT5vq1atJEkvvfSSHnroIZUuXVr33nuvNRhFR0erWbNmWrFihRo3bqyWLVu6ZDyFuffee9WpUye99NJLOn78uJo3b65PPvlEH374oRISEmw+6t6qVSt9+umnmjx5smrWrKm6desqJibGrf0B/owZIAAe17lzZ7311lvKyMhQQkKClixZotdee01/+9vfbui8bdq00dixY/XNN98oPj5eDz/8sN1FCvv27StJRd78fCMCAgKUmpqqhIQErV69WgkJCdq7d68mTJigyZMn2xw7efJktWrVSi+//LIefvhhzZo1y+39Af7MYhi/uRwpAPi4119/Xc8++6yOHz+uOnXqmN0OAJMQgAD4DcMw1Lx5c1WuXFkbNmwwux0AJmIPEACfd/nyZaWmpmrDhg367rvv9OGHH5rdEgCTMQMEwOcdP35cdevWVVhYmJ5++mmNGzfO7JYAmIwABAAA/A6fAgMAAH6HAAQAAPwOm6AdKCgo0KlTp1ShQgUuTw8AQAlhGIZ+/vln1axZ0+bmy44QgBw4deqUIiIizG4DAAAUw8mTJ1W7du3rHkMAcqBChQqSrv4HrFixosndAACAosjKylJERIT15/j1EIAcuLbsVbFiRQIQAAAlTFG2r7AJGgAA+B0CEAAA8DsEIAAA4HfYA3QD8vPzlZeXZ3YbcLPSpUsrMDDQ7DYAAC5EACoGwzCUkZGhixcvmt0KPCQsLEzh4eFcFwoAfAQBqBiuhZ9q1aqpbNmy/FD0YYZhKDs7W2fPnpUk1ahRw+SOAACuQAByUn5+vjX8VK5c2ex24AFlypSRJJ09e1bVqlVjOQwAfACboJ10bc9P2bJlTe4EnnTt+82eLwDwDQSgYmLZy7/w/QYA30IAAgAAfocABAAA/A4ByI/Ex8fLYrHIYrGodOnSql69uv7yl79o3rx5KigoKPJ5FixYoLCwMPc1CgCAmxGA/EyXLl10+vRpHT9+XGvWrFGnTp00bNgw3XPPPbpy5YrZ7QEA4BEEID8THBys8PBw1apVSy1bttSLL76oDz/8UGvWrNGCBQskSZMnT9att96qcuXKKSIiQk8//bQuXbokSdq4caP69++vzMxM62zS6NGjJUkLFy5U69atVaFCBYWHh+vvf/+79fo5AABIUmqq1KHD1V/NRAByAcMwlJub6/EvwzBc0n/nzp3VvHlzffDBB5KkgIAATZs2TXv27NHbb7+t//znP/rHP/4hSerQoYOmTp2qihUr6vTp0zp9+rSef/55SVc/Ij527Fh98803WrVqlY4fP674+HiX9AgA8A0zZpzVr7/u0IQJOab2wYUQXSAvL08pKSkef9+RI0cqKCjIJedq1KiRvv32W0lSQkKCtR4VFaVXXnlFTz31lN544w0FBQUpNDRUFotF4eHhNucYMGCA9ff16tXTtGnT1KZNG126dEnly5d3SZ8AgJJrzZo1+tOfvpIk1a6dJynGtF4IQJB0dRbr2rVuPv30U6WkpGj//v3KysrSlStX9Ouvvyo7O/u6F4Dcvn27Ro8erW+++UYXLlywbqw+ceKEmjRp4pFxAAC8S2qqNGFCrmJjbScKHnzQ3J8LBCAXKF26tEaOHGnK+7rKvn37VLduXR0/flz33HOPBg0apHHjxqlSpUr6/PPPNXDgQOXm5hYagC5fvqy4uDjFxcVp0aJFqlq1qk6cOKG4uDjl5ua6rE8AQMkyd+5hxcYusqmNGDFCISEhJnV0FQHIBSwWi8uWoszwn//8R999952effZZbd++XQUFBZo0aZICAq5uEVu+fLnN8UFBQcrPz7ep7d+/X//97381fvx4RURESJK+/vprzwwAAOCVkpOT1arV/x43b95cPXv2NK2f3yIA+ZmcnBxlZGQoPz9fZ86c0dq1a5WSkqJ77rlHffv21e7du5WXl6fp06fr3nvv1RdffKHZs2fbnCMqKkqXLl3S+vXr1bx5c5UtW1Z16tRRUFCQpk+frqeeekq7d+/W2LFjTRolAMBMP/30k2bOnGlT69+/v+rUqWNSR/b4FJifWbt2rWrUqKGoqCh16dJFGzZs0LRp0/Thhx8qMDBQzZs31+TJk/Xaa6+pWbNmWrRokd0G7w4dOuipp55S7969VbVqVf3rX/9S1apVtWDBAq1YsUJNmjTR+PHjNXHiRJNGCQAwy9KlS+3Cz4gRI7wq/EiSxXDVZ6l9SFZWlkJDQ5WZmamKFSvaPPfrr7/q2LFjqlu3runrl/Acvu8AcH2GYWjMmDF29aSkJI/1cL2f37/HEhgAALghx48f19tvv21Te+CBB7z6E8AEIAAAUGyvv/66Ll68aFN7+eWXFRgYaE5DRUQAAgAATrty5YrGjRtnU6tWrZoGDRpkUkfOIQABAACnfPvtt1q5cqVNbcCAAdbLoJQEBCAAAFBkycnJdrVRo0ZZ7yZQUhCAAADAH/rll1/0r3/9y6bWrFkz9erVy6SObgwBCAAAFCo1VVqxYpMaNNhoUx86dKgqVapkTlMuQAACAAAOpaZKO3cmq0ED27onr+3jLgQgAABg58iRI9q5812b2p133qmOHTua1JFrEYDgcvHx8bp48aJWrVol6epfmBYtWmjq1KnFPqcrzgEAKBpHG53/8Y9/qEyZMiZ04x7cC8yPxMfHy2KxWO9e36BBA40ZM0ZXrlxx6/t+8MEHRb4x6saNG2WxWOwuquXMOQAAxWMYhsPwk5SU5FPhR2IGyO906dJF8+fPV05Ojj7++GMNHjxYpUuX1siRI22Oy83NVVBQkEve0xWb5EryRjsAKAnS09P1ySef2NTq16+vRx55xKSO3IsZID8THBys8PBwRUZGatCgQYqNjVVqaqri4+PVs2dPjRs3TjVr1lTDhg0lSSdPntSDDz6osLAwVapUST169NDx48et58vPz9fw4cMVFhamypUr6x//+Id+f3/dO++8UwkJCdbHOTk5GjFihCIiIhQcHKwGDRrorbfe0vHjx9WpUydJ0k033SSLxaL4+HiH57hw4YL69u2rm266SWXLllXXrl116NAh6/MLFixQWFiY0tLS1LhxY5UvX15dunTR6dOnrcds3LhRbdu2Vbly5RQWFqY//elP+v777130XxoASo7k5GS78JOYmOiz4UciAPm9MmXKKDc3V5K0fv16HThwQOvWrdPq1auVl5enuLg4VahQQZ999pm++OILa5C49ppJkyZpwYIFmjdvnj7//HOdP3/e7uqgv9e3b18tWbJE06ZN0759+/Tmm2+qfPnyioiI0Pvvvy9JOnDggE6fPq3XX3/d4Tni4+P19ddfKzU1Venp6TIMQ3/961+Vl5dnPSY7O1sTJ07UwoULtXnzZp04cULPP/+8pKuXcO/Zs6c6duyob7/9Vunp6XriiSdK3IW8AOBG5OXlFbrkFRwcbEJHnsMSmJ8yDEPr169XWlqahg4dqnPnzqlcuXKaO3eudenr3XffVUFBgebOnWsNBvPnz1dYWJg2btyou+++W1OnTtXIkSN13333SZJmz56ttLS0Qt/34MGDWr58udatW6fY2FhJUr169azPX1vqqlatmsLCwhye49ChQ0pNTdUXX3yhDh06SJIWLVqkiIgIrVq1Sg888ICkq3+xZ8+erfr160uShgwZojFjxkiSsrKylJmZqXvuucf6fOPGjZ3/DwkAJdT777+v3bt329Q6duyoO++805yGPIwZIBOlpkodOlz91VNWr16t8uXLKyQkRF27dlXv3r01evRoSdKtt95qs+/nm2++0eHDh1WhQgWVL19e5cuXV6VKlfTrr7/qyJEjyszM1OnTpxUTE2N9TalSpdS6detC33/Xrl0KDAy8oY9R7tu3T6VKlbJ538qVK6thw4bat2+ftVa2bFlruJGkGjVq6OzZs5KuBq34+HjFxcXp3nvv1euvv26zPAYAviw5Odku/IwaNcpvwo/EDJCpxo+X0tOv/tq9u2fes1OnTpo1a5aCgoJUs2ZNlSr1vz8C5cqVszn20qVLatWqlRYtWmR3nqpVqxbr/T35KYLSpUvbPLZYLDb7k+bPn69nnnlGa9eu1bJly/Tyyy9r3bp1ateuncd6BABPyszMdHg5EV+4sKGzmAEyUWKi1L791V89pVy5cmrQoIHq1KljE34cadmypQ4dOqRq1aqpQYMGNl+hoaEKDQ1VjRo19OWXX1pfc+XKFW3fvr3Qc956660qKCjQpk2bHD5/bQYqPz+/0HM0btxYV65csXnf//73vzpw4ICaNGly3TH9XnR0tEaOHKktW7aoWbNmWrx4sVOvB4CSYuLEiXbhp3fv3n4ZfiQCkKm6d5e2bPHc7I+z+vTpoypVqqhHjx767LPPdOzYMW3cuFHPPPOMfvjhB0nSsGHDNH78eK1atUr79+/X008/bXcNn9+KiopSv379NGDAAK1atcp6zuXLl0uSIiMjZbFYtHr1ap07d06XLl2yO8fNN9+sHj166PHHH9fnn3+ub775Ro888ohq1aqlHj16FGlsx44d08iRI5Wenq7vv/9en3zyiQ4dOsQ+IAA+KTk5WZcvX7apJSUlqVGjRiZ1ZD4CEApVtmxZbd68WXXq1NF9992nxo0ba+DAgfr1119VsWJFSdJzzz2nRx99VP369VP79u1VoUIF/e1vf7vueWfNmqX7779fTz/9tBo1aqTHH3/c+hezVq1aSk5OVmJioqpXr64hQ4Y4PMf8+fPVqlUr3XPPPWrfvr0Mw9DHH39st+x1vbHt379fvXr10i233KInnnhCgwcP1pNPPunEfyEA8G4nTpwo9FNe/s5i/P6iLVBWVpZCQ0OVmZlp/UF/za+//qpjx46pbt26CgkJMalDeBrfdwAljaPgM2jQIFWrVs2Ebjzjej+/f49N0AAA+Bhmff4YAQgAAB+xY8cO/d///Z9NrWbNmnr88cdN6sh7EYAAAPABjmZ9XnjhBZUtW9aEbrwfAQgAgBIsPz9fr7zyil2dJa/rIwAVE3vH/QvfbwDeaPXq1XbXXmvXrp3i4uJM6qjkIAA56drHrLOzsz16VWOYKzs7W5L91aUBwCyOlrz++c9/KiCAK9wUBQHISYGBgQoLC7PeU6ps2bLcQdyHGYah7OxsnT17VmFhYQoMDDS7JQB+LisrS1OmTLGrs+TlHAJQMYSHh0uSNQTB94WFhVm/7wBgFkezPmlpd0tqL/KPcwhAxWCxWFSjRg1Vq1ZNeXl5ZrcDNytdujQzPwBM5yj8REcnKS3Ns/eU9BUEoBsQGBjID0YAgFt9//33WrBggV392pKXt95P0tsRgAAA8FKOZn369u2runXrmtCNbyEAAQDghbidhXsRgAAA8CJffvml1q5da1cn/LgWAQgAAC/haNYnISFBoaGhJnTj2whAAACYrKCgQGPHjrWrM+vjPgQgAABMtGLFCu3du9emVqdOHfXv39+kjvwDAQgAAJM4WvJ68cUXue2OBxCAAADwsMuXL2vixIl2dZa8PIcABACABzma9bnjjjvUqVMnE7rxXwQgAAA8xFH4GTVqFDfVNgEBCAAANzt06JAWL15sV2fJyzwEIAAA3MjRrM/HH3dVVlZb7uBuogCzG5g5c6aioqIUEhKimJgYffXVV4Ueu2fPHvXq1UtRUVGyWCyaOnXqdc89fvx4WSwWJSQkuLZpAACKoLA7uAcGttVrr5nQEKxMnQFatmyZhg8frtmzZysmJkZTp05VXFycDhw4oGrVqtkdn52drXr16umBBx7Qs88+e91zb9u2TW+++aZuu+02d7UPAIBDy5Yt0/79++3q3MHde5g6AzR58mQ9/vjj6t+/v5o0aaLZs2erbNmymjdvnsPj27RpowkTJuihhx5ScHBwoee9dOmS+vTpozlz5uimm25yV/sAANhJTk62Cz9ffhmv6GjWu7yJaQEoNzdX27dvV2xs7P+aCQhQbGys0tPTb+jcgwcPVrdu3WzOfT05OTnKysqy+QIAwBkFBQWFLnl9/HEksz5exrQlsJ9++kn5+fmqXr26Tb169eoOpw2LaunSpdqxY4e2bdtW5NekpKQ4/EMLAEBRFPYzZPToJLVvz5KXNzJ9E7QrnTx5UsOGDdOiRYsUEhJS5NeNHDlSmZmZ1q+TJ0+6sUsAgC9xFH6ee+45RUdfDT+JiSY0hT9k2gxQlSpVFBgYqDNnztjUz5w5o/Dw8GKdc/v27Tp79qxatmxpreXn52vz5s2aMWOGcnJyFBgYaPe64ODg6+4pAgDg97KysjRlyhS7+m83OjPz471MC0BBQUFq1aqV1q9fr549e0q6un66fv16DRkypFjnvOuuu/Tdd9/Z1Pr3769GjRppxIgRDsMPAADOKmzJiwsblhymfgx++PDh6tevn1q3bq22bdtq6tSpunz5svr37y9J6tu3r2rVqqWUlBRJVzdO79271/r7H3/8Ubt27VL58uXVoEEDVahQQc2aNbN5j3Llyqly5cp2dQAAisNR+ElLG6XERG5nUZKYGoB69+6tc+fOadSoUcrIyFCLFi20du1a68boEydOKCDgf9uUTp06pejoaOvjiRMnauLEierYsaM2btzo6fYBAH7k4MGDWrJkiV09KSmJKzqXQBbDMAyzm/A2WVlZCg0NVWZmpipWrGh2OwAAkzma9WnevLl1Cwe8gzM/v7kXGAAA1+Eo/LDXp+QjAAEA4MBHH32kr7/+2q5O+PENBCAAAH7H0azPAw88oCZNmpjQDdyBAAQAwP9nGIbGjBljV2fWx/cQgAAAkDRu3DhduXLFrk748U0EIACA33O05DVs2DCFhYV5vhl4BAEIAOC3Ll26pEmTJtnVmfXxfQQgAIBf4nYW/s2n7gYPAEBROAo/y5a9rOhowo+/IAABAPzGvn37CrmXV5L27QvU+PEmNAVTsAQGAPALjoLPlSul1abNi4qOlsaPlxITTWgMpiAAAQB8XlFuZ9G9u6e6gTcgAAEAfNa7776rI0eO2NXT0riDu78jAAEAfJKjWZ8qVdpo0aK/stQFAhAAwPdcb8lr8GBPdwNvRAACAPgMru2DouJj8AAAn+Ao/Gzb9ijX9oFDzAABAEq07OxsTZgwwa6elpak9HTp/Hk+4QV7BCAAQIlV2JJXdHQS1/bBdRGAAAAlkqPwM2LECIWEhFgfM/ODwhCAAAAlyt69e7VixQq7Ohud4QwCEACgxLjekhfgDAIQAKBEKMrtLICiIgABALzanDlzdOrUKbs64Qc3ggAEAPBajmZ9goMrKTFxqAndwJcQgAAAXoklL7gTAQgA4FW4nQU8gQAEAPAajsLPX//6V7Vp08aEbuDLCEAAANPl5uYqJSXFrs6sD9yFAAQAMBVLXjADd4MHAJjGUfjZtCmBCxvC7ZgBAgB43NGjR7Vw4UK7OrM+8BQCEADAowpb8srNJfzAcwhAAACPcRR+0tJGKTHRwp3b4VEEIACA2y1ZskQHDx60qyclJYlVL5iBAAQAcCs+5QVvRAACALiNo/CTm5ukceNMaAb4DQIQAMDlmPWBtyMAAQBcylH4adeuneLi4kzoBnCMCyECAFwiPz+/kE95JSknh/AD78IMEADghhW25JWWlqT0dGn8ePExd3gVAhAA4IY4Cj9PPPGEatSooejoq+EnMdGExoDrIAABAIrlxx9/1Ny5c+3q0dFJqlHj6u+7d2fmB96JAAQAcFphS16jRyepfXtCD7wfAQgA4BRH4efll1/WRx8Fqn17lrtQMhCAAABFsmrVKn3zzTd29WvX9mG5CyUJAQgA8IcKW/KKjubChiiZCEAAgOtyFH64ojNKOgIQAMAhbmcBX8aVoAEAdhyFn8zMmix5wWcQgAAAVoZhFHo7izvvfJxNzvAZLIEBACRxOwv4FwIQAMBh+Fm+/AGFhjZRYiK3s4DvIQABgB87e/asZs2aZVfPzU1SaOjV0MP1feCLCEAA4Kf+6HYWW7Z4uCHAgwhAAOCHHIWf9etH6PbbQ7idBfwCAQgA/Mj69ev1+eef29WTkpLE5X3gT/gYPAD4ieTkZIfhJy2N5AP/wwwQAPgBR0teo0cnqXx5adEiExoCTEYAAgAfVthG5zlzkqx7ffiEF/yR00tggYGBOnv2rF39v//9rwIDA13SFADgxjkKP1eulNbo0UmqUOHqp7wIP/BXTs8AGYbhsJ6Tk6OgoKAbbggAcOMchZ9r9/HiU16AEwFo2rRpkiSLxaK5c+eqfPny1ufy8/O1efNmNWrUyPUdAgCKrCjX9mHWB3AiAE2ZMkXS1Rmg2bNn2yx3BQUFKSoqSrNnz3Z9hwCAInEUfv7617/q9Ok2zPoAv1PkAHTs2DFJUqdOnfTBBx/opptucltTAICiu3TpkiZNmmRXT/rNhX2Y9QFsOb0HaMOGDe7oAwBQDIUteV3b7wPAMacD0IABA677/Lx584rdDACg6ByFn+HDh6tChQomdAOULE4HoAsXLtg8zsvL0+7du3Xx4kV17tzZZY0BABzbsWOH/u///s+unpbG7SyAonI6AK1cudKuVlBQoEGDBql+/fouaQoA4FhhS15paUlscgacYDEKu7CPkw4cOKA777xTp0+fdsXpTJWVlaXQ0FBlZmaqYsWKZrcDAJIch5+0tCRt2WJCM4AXcubnt8tuhnrkyBFduXLF6dfNnDlTUVFRCgkJUUxMjL766qtCj92zZ4969eqlqKgoWSwWTZ061e6YlJQUtWnTRhUqVFC1atXUs2dPHThwwOm+AMBbTJo0qdDww6wPUDxOL4ENHz7c5rFhGDp9+rQ++ugj9evXz6lzLVu2TMOHD9fs2bMVExOjqVOnKi4uTgcOHFC1atXsjs/Ozla9evX0wAMP6Nlnn3V4zk2bNmnw4MFq06aNrly5ohdffFF333239u7dq3LlyjnVHwCYrbAlr6Qk9vsAN8LpJbBOnTrZPA4ICFDVqlXVuXNnDRgwQKVKFT1TxcTEqE2bNpoxY4akq3uJIiIiNHToUCX+wf/WREVFKSEhQQkJCdc97ty5c6pWrZo2bdqkO+64o0h9sQQGwBuw5AU4x5mf36ZdByg3N1fbt2/XyJEjrbWAgADFxsYqPT3dJe8hSZmZmZKkSpUqFXpMTk6OcnJyrI+zsrJc9v4A4Cw2OgPu53QAuubs2bPWvTUNGzZ0uGR1PT/99JPy8/NVvXp1m3r16tW1f//+4rZlo6CgQAkJCfrTn/6kZs2aFXpcSkpKof/gAIAnOfq36Pbbb1fnzp1Z8gJcyOlN0FlZWXr00UdVs2ZNdezYUR07dlStWrX0yCOPWGdbvMXgwYO1e/duLV269LrHjRw5UpmZmdavkydPeqhDALgqNze30Du4c401wPWcngF6/PHHtXPnTn300Udq3769JCk9PV3Dhg3Tk08++Ydh45oqVaooMDBQZ86csamfOXNG4eHhzrZlZ8iQIVq9erU2b96s2rVrX/fY4OBgBQcH3/B7AkBxXG+jMwD3cDoArV69Wmlpafrzn/9srcXFxWnOnDnq0qVLkc8TFBSkVq1aaf369erZs6ekq0tW69ev15AhQ5xty8owDA0dOlQrV67Uxo0bVbdu3WKfCwDczVH4GTx4sKpUqWJCN4D/cDoAVa5cWaGhoXb10NBQp+8QP3z4cPXr10+tW7dW27ZtNXXqVF2+fFn9+/eXJPXt21e1atVSSkqKpKtTxHv37rX+/scff9SuXbtUvnx5NWjQQNLVfzgWL16sDz/8UBUqVFBGRoa1vzJlyjg7XABwiyNHjujdd9+1q+fmJonsA7if0x+D//e//60VK1Zo4cKF1qWqjIwM9evXT/fdd5+efPJJpxqYMWOGJkyYoIyMDLVo0ULTpk1TTEyMJOnOO+9UVFSUFixYIEk6fvy4wxmdjh07auPGjVcHZLE4fJ/58+crPj6+SD3xMXgA7sSSF+Aezvz8djoARUdH6/Dhw8rJyVGdOnUkSSdOnFBwcLBuvvlmm2N37NjhZOvegQAEwF0chZ8WLUapRw/H//MGoOjceh2gHj16FDrLAgBw7P3339fu3bvt6tHRSere3YSGAD/nspuh+hJmgAC4EktegGe4dQaoXr162rZtmypXrmxTv3jxolq2bKmjR486e0oA8FmOwg/BBzCf0wHo+PHjys/Pt6vn5OTohx9+cElTAFDSMesDeLciB6DU1FTr79PS0mw+Cp+fn6/169dzzR0AkOPwk54eo6ysLtzOAvASRQ5A1y5WaLFY1K9fP5vnSpcuraioKE2aNMmlzQFASVJQUKCxY8fa1aOjk5SWJm5kCniRIgeggoICSVLdunW1bds2rlIKAL/xR0tefNIL8C5O7wE6duyYO/oAgBLLUfh5/PHHVbNmTRO6AVAUTgegMWPGXPf5UaNGFbsZAChJTp8+rX//+9929ejoJJF9AO/mdABauXKlzeO8vDwdO3ZMpUqVUv369QlAAPwCn/ICSjanA9DOnTvtallZWYqPj9ff/vY3lzQFAN7MUfj55JOX9cUXgSZ0A6A4nA5AjlSsWFHJycm699579eijj7rilADgddauXasvv/zSrp6WlsQnvIASxiUBSJIyMzOVmZnpqtMBgFe53pIXq15AyeN0AJo2bZrNY8MwdPr0aS1cuFBdu3Z1WWMA4C24nQXge5wOQFOmTLF5HBAQoKpVq6pfv34aOXKkyxoDALOx0RnwXVwHCAAccBR+6tatq759+5rQDQBXK9YeoIsXL+rw4cOSpAYNGigsLMyVPQGAaQzDcHi9M2Z9AN/iVAA6fvy4Bg8erLS0NBmGIenqvcG6dOmiGTNmKCoqyh09AoBHsOQF+I8iB6CTJ0+qXbt2Kl26tMaOHavGjRtLkvbu3atZs2apffv22rZtm2rXru22ZgHAXRyFn6+/fkSPP17fhG4AuJvFuDaV8wcGDhyow4cPKy0tTSEhITbP/fLLL+rSpYtuvvlmzZ071y2NelJWVpZCQ0OVmZmpihUrmt0OADfKzMzU1KlT7erM+gAljzM/v4s8A7R27VotW7bMLvxIUpkyZTR27Fg99NBDzncLACZhyQvwXwFFPfCnn3667h6fevXq6fz5867oCQDczlH4+fTTkYqOJvwA/qDIM0A1atTQ3r17C93js3v3boWHh7usMQBwh+3bt2v16tV2da7oDPiXIgegnj176vnnn9f69etVtWpVm+fOnj2rESNGqGfPnq7uDwBchiUvANcUeRP0hQsXFBMTo4yMDD3yyCNq1KiRDMPQvn37tHjxYoWHh2vr1q2qVKmSu3t2OzZBA76H21kAvs8tm6Bvuukmffnll3rxxRe1dOlSXbx4UZIUFhamv//973r11Vd9IvwA8C3Tp093uD+R8AP4tyLPAP2WYRg6d+6cJKlq1aqyWCwub8xMzAABvsHRrE+tWrX02GOPmdANAHdzywzQb1ksFlWrVq1YzQGAJzgKP9HRSere3YRmAHidYgUgAPBWbHQGUBQEIAAlXmqqNH68FBdnH3569uyp5s2bm9AVAG9GAAJQ4k2a9Ivi4v5lV2fWB0BhCEAASrTk5GR17mxfJ/wAuJ4iBaBp06YV+YTPPPNMsZsBAGc42u/z3HPPqXz58iZ0A6AkKdLH4OvWrVu0k1ksOnr06A03ZTY+Bg94t71792rFihV2dWZ9AP/m8o/BHzt2zCWNAcCN4lNeAFyh2HuAcnNzdezYMdWvX1+lSrGVCID7cTsLAK4S4OwLsrOzNXDgQJUtW1ZNmzbViRMnJElDhw7V+PHjXd4gACxatIjwA8ClnA5AI0eO1DfffKONGzcqJCTEWo+NjdWyZctc2hwAJCcn6/Dhwza1oKAgwg+AG+L02tWqVau0bNkytWvXzuYeYE2bNtWRI0dc2hwA/8asDwB3cToAnTt3zuF9wC5fvuxzN0UFYA42OgNwN6eXwFq3bq2PPvrI+vha6Jk7d67at2/vus4A+CVH4efuu+8m/ABwKadngF599VV17dpVe/fu1ZUrV/T6669r79692rJlizZt2uSOHgH4gVWrruibb8bZ1Qk+ANzB6RmgP//5z9q1a5euXLmiW2+9VZ988omqVaum9PR0tWrVyh09AvBxycnJhB8AHlWkK0H7G64EDXhGaqq0c6f9ktfQoUNVqVIlEzoCUJK5/ErQWVlZRX5zAgOAovjhhx+0c+dbdnVmfQB4QpECUFhYWJE/4ZWfn39DDQHwfXzKC4DZihSANmzYYP398ePHlZiYqPj4eOunvtLT0/X2228rJSXFPV0C8BmOws+oUaO4jAYAj3J6D9Bdd92lxx57TA8//LBNffHixfr3v/+tjRs3urI/U7AHCHC9tWvX6ssvv7SrM+sDwFWc+fnt9KfA0tPT1bp1a7t669at9dVXXzl7OgB+IDk5mfADwKs4fR2giIgIzZkzR//6179s6nPnzlVERITLGgPgG7idBQBv5HQAmjJlinr16qU1a9YoJiZGkvTVV1/p0KFDev/9913eIICSiY3OALxZsa4D9MMPP+iNN97Q/v37JUmNGzfWU0895TMzQOwBAoqvsGv7/PnPf9Zdd91lQkcA/IXLrwP0e7Vr19arr75arOYA+K6CggLt3DnWrs6sDwBvU6wAdPHiRb311lvat2+fJKlp06YaMGCAQkNDXdocgJKDJS8AJYnTS2Bff/214uLiVKZMGbVt21aStG3bNv3yyy/65JNP1LJlS7c06kksgQHOcRR+nnjiCdWoUcOEbgD4K2d+fjsdgG6//XY1aNBAc+bMUalSVyeQrly5oscee0xHjx7V5s2bi9+5lyAAAUVz/vx5TZ8+3a7OrA8AM7g1AJUpU0Y7d+5Uo0aNbOp79+5V69atlZ2d7XzHXoYABPwxlrwAeBu3boKuWLGiTpw4YReATp48qQoVKjh7OgAlTGGf8nr55ZcVGBhoQkcA4DynA1Dv3r01cOBATZw4UR06dJAkffHFF3rhhRfsbo8BwLfs2LFDO3f+n12dWR8AJY3TAWjixImyWCzq27evrly5IkkqXbq0Bg0apPHjx7u8QQDegSUvAL6kWBdClKTs7GwdOXJEklS/fn2VLVvWpY2ZiT1AwFWpqdL48VJcHLezAOD93H4hREkqW7asbr311uK+HEAJsHHjHMXFnbKrE34AlHRFDkADBgwo0nHz5s0rdjMAvEdycrJ+f23Tdu3aKS4uzpyGAMCFihyAFixYoMjISEVHR6uYq2YASgDDMDRmzBi7OrM+AHxJkQPQoEGDtGTJEh07dkz9+/fXI488okqVKrmzNwAexkZnAP7CqU3QOTk5+uCDDzRv3jxt2bJF3bp108CBA3X33XfLYrG4s0+PYhM0/JGj8PPYY4+pVq1aJnQDAM5z65Wgr/n++++1YMECvfPOO7py5Yr27Nmj8uXLF6thb0MAgj/Jzs7WhAkT7OrM+gAoaTzyKbCAgABZLBYZhqH8/PzingaAiVjyAuCvnApAv10C+/zzz3XPPfdoxowZ6tKliwICAtzVIwA3cBR+Ro4cqaCgIBO6AQDPKnIAevrpp7V06VJFRERowIABWrJkiapUqeLO3gC4waFDh7R48WK7OrM+APxJkadtZs+erYoVK6pevXratGmTnnjiCd133312X86aOXOmoqKiFBISopiYGH311VeFHrtnzx716tVLUVFRslgsmjp16g2fE/AnycnJhB8AkBMzQH379nX5J72WLVum4cOHa/bs2YqJidHUqVMVFxenAwcOqFq1anbHZ2dnq169enrggQf07LPPuuScgK/jdhYAYK/YnwJzhZiYGLVp00YzZsyQJBUUFCgiIkJDhw5VYmLidV8bFRWlhIQEJSQkuOyc1/ApMPiSJ55YpVq1vrGrE34A+Bpnfn6btnM5NzdX27dvV2xs7P+aCQhQbGys0tPTPXrOnJwcZWVl2XwBviA5Odku/LRo0YLwA8DvmRaAfvrpJ+Xn56t69eo29erVqysjI8Oj50xJSVFoaKj1KyIioljvD3gTR5/ySkpKUo8ePUzoBgC8S7GvA+RLRo4cqeHDh1sfZ2VlEYJQYnFtHwD4Y6YFoCpVqigwMFBnzpyxqZ85c0bh4eEePWdwcLCCg4OL9Z6AN3EUfvr27au6deua0A0AeC/TlsCCgoLUqlUrrV+/3lorKCjQ+vXr1b59e685J1AS5ObmFrrkRfgBAHumLoENHz5c/fr1U+vWrdW2bVtNnTpVly9fVv/+/SVd/T/XWrVqKSUlRdLVf+T37t1r/f2PP/6oXbt2qXz58mrQoEGRzgn4Gpa8AMB5pgag3r1769y5cxo1apQyMjLUokULrV271rqJ+cSJEza32Dh16pSio6OtjydOnKiJEyeqY8eO2rhxY5HOCfgSR+HnH//4h8qUKWNCNwBQcph6HSBvxXWA4O1OnTqlOXPm2NWZ9QHgzzxyN3gA5mDJCwBuHAEIKEEchZ9Ro0a5/DY1AODrCECAl0tNld56K10tW35i9xyzPgBQPAQgwMvt3Jmsli1ta02aNNEDDzxgTkMA4AMIQIAXc7TkFR2dpO7dTWgGAHwIAQjwQu+//752795tV2fJCwBcgwAEeBlHsz7x8fGKjIw0oRsA8E0EIMBLFBQUaOzYsXZ1Zn0AwPUIQIAX4No+AOBZBCDAZI7CzwsvvKCyZcua0A0A+AcCEGCSrKwsTZkyxa7OrA8AuB8BCDCBo1mf4OBgJSYmmtANAPgfAhDgYdzOAgDMRwACPOTgwYNasmSJXT06OklkHwDwLAIQ4AGOZn3atm2rrl27mtANAIAABLiZo/DDRmcAMBcBCHCTNWvW6KuvvrKrE34AwHwEIMANHM36PPTQQ2rYsKEJ3QAAfo8ABLiQYRgaM2aMXZ1ZHwDwLgFmNwCURKmpUocOV3+95rXXXiP8AEAJwQwQUAzjx0vp6Vd/7d7d8ZJX06YJuv/+UBO6AwD8EQIQUAyJiVfDz/PPZys5eYLd88z6AIB3IwABxdC9u7RzZ7K++87+OcIPAHg/AhBQDI6WvP75z38qIIBtdQBQEhCAACf8+OOPmjt3rl2dWR8AKFkIQEAROd7o3FT333+/Cd0AAG4EAQgoAm5nAQC+hQAEXMfWrVuVlpZmVyf8AEDJRgACCuFo1ufBBx9U48aNTegGAOBKBCDgd7idBQD4PgIQ8BvLly/Xvn377OqEHwDwLQQg4P9ztOQ1dOhQVapUyYRuAADuxFXb4Pfy8vIchp+0tCTCDwD4KGaA4NdeffVV5eXl2dRKl66g1auHKzHRpKYAAG5HAILfcjTr89JLL6lUqVJ68UUTGgIAeAwBCH7n/Pnzmj59ul2djc4A4D8IQPArjmZ9WrdurW7dupnQDQDALAQg+A1uZwEAuIYABJ939OhRLVy40K4eHU34AQB/RQCCT3M069OnTx81aNDAhG4AAN6CAASfxZIXAKAwBCD4nM8//1zr16+3qxN+AADXEIDgUxzN+jzzzDO66aabTOgGAOCtCEDwCfn5+XrllVfs6sz6AAAcIQChxFu4cKGOHj1qU6tSpYoGDx5sUkcAAG9HAEKJ5mjJ68UXX1Tp0qVN6AYAUFIQgFAiXbp0SZMmTbKrs+QFACgKAhBKHEezPu3atVNcXJwJ3QAASiICEEoUR+Fn1KhRslgsJnQDACipCEAoETIyMvTmm2/a1VnyAgAUBwEIXs/RrM/999+vpk2bmtANAMAXEIDg1RyFn+joJJF9AAA3ggAEr7Rnzx699957dnWWvAAArkAAgtfhdhYAAHcjAMFrGIahMWPG2NWZ9QEAuBoBCF5h8+bN2rBhg00tMjJS8fHx5jQEAPBpBCCYztGS16efjtRnnwWZ0A0AwB8QgGCa3NxcpaSk2NXT0pKUmGhCQwAAv0EAgimWLFmigwcP2tT+8pe/qEOHDmLLDwDA3QhA8DhuZwEAMBsBCB5z4cIFTZs2za7Op7wAAJ5GAIJHjBs3TleuXLGp9enTRw0aNDCpIwCAPyMAwe0cLXkx6wMAMBMBCG5z7NgxvfPOO3Z1wg8AwGwEILiFo1mfIUOGqHLlyiZ0AwCALQIQXIrbWQAASgICEFzmm2++0apVq2xqdevWVd++fc1pCACAQhCA4BKOlrxGjBihkJAQE7oBAOD6CEC4IVeuXNG4cePs6tHRSSL7AAC8FQEIxeboDu7ffddd778frfbtpe7dTWoMAIA/EGB2AzNnzlRUVJRCQkIUExOjr7766rrHr1ixQo0aNVJISIhuvfVWffzxxzbPX7p0SUOGDFHt2rVVpkwZNWnSRLNnz3bnEPxScnKyXfgZNWqU+va9Gn64mSkAwJuZGoCWLVum4cOHKykpSTt27FDz5s0VFxens2fPOjx+y5YtevjhhzVw4EDt3LlTPXv2VM+ePbV7927rMcOHD9fatWv17rvvat++fUpISNCQIUOUmprqqWH5tMuXLxd6YUOLxaLu3aUtW5j9AQB4N4thGIZZbx4TE6M2bdpoxowZkqSCggJFRERo6NChSnQwhdC7d29dvnxZq1evttbatWunFi1aWGd5mjVrpt69e+uf//yn9ZhWrVqpa9eueuWVV4rUV1ZWlkJDQ5WZmamKFSveyBB9yooVK7R3716bWnx8vCIjI03qCACA/3Hm57dpM0C5ubnavn27YmNj/9dMQIBiY2OVnp7u8DXp6ek2x0tSXFyczfEdOnRQamqqfvzxRxmGoQ0bNujgwYO6++67C+0lJydHWVlZNl+wlZycbBd+kpKSCD8AgBLJtAD0008/KT8/X9WrV7epV69eXRkZGQ5fk5GR8YfHT58+XU2aNFHt2rUVFBSkLl26aObMmbrjjjsK7SUlJUWhoaHWr4iIiBsYmW85d+6c3ZJX9erVubAhAKBE87lPgU2fPl1bt25VamqqIiMjtXnzZg0ePFg1a9a0mz26ZuTIkRo+fLj1cVZWFiFI0pQpU+xmw5555hnddNNNJnUEAIBrmBaAqlSposDAQJ05c8amfubMGYWHhzt8TXh4+HWP/+WXX/Tiiy9q5cqV6tatmyTptttu065duzRx4sRCA1BwcLCCg4NvdEg+hTu4AwB8mWlLYEFBQWrVqpXWr19vrRUUFGj9+vVq3769w9e0b9/e5nhJWrdunfX4vLw85eXlKSDAdliBgYEqKChw8Qh806FDh+zCT8uWLQk/AACfYuoS2PDhw9WvXz+1bt1abdu21dSpU3X58mX1799fktS3b1/VqlVLKSkpkqRhw4apY8eOmjRpkrp166alS5fq66+/1r///W9JUsWKFdWxY0e98MILKlOmjCIjI7Vp0ya98847mjx5smnjLCm4nQUAwF+YGoB69+6tc+fOadSoUcrIyFCLFi20du1a60bnEydO2MzmdOjQQYsXL9bLL7+sF198UTfffLNWrVqlZs2aWY9ZunSpRo4cqT59+uj8+fOKjIzUuHHj9NRTT3l8fCVFQUGBxo4da1dn1gcA4KtMvQ6Qt/Kn6wBt3bpVaWlpNrWuXbuqbdu2JnUEAEDxOPPz2+c+BYaic7Tk9c9//tNuDxUAAL6GAOSHfv31V7322mt2dZa8AAD+ggDkZz788EPt2rXLpvbII4+ofv365jQEAIAJCEB+hGv7AABwFQHID5w/f17Tp0+3qYWGhiohIcGchgAAMBkByMfNmzdPJ0+etKk9/fTTqlq1qkkdAQBgPgKQD2PJCwAAxwhAPujy5cuaOHGiTS0srJmGDetlUkcAAHgXApCP+fbbb7Vy5Uqb2quvJqpVq2ANG2ZSUwAAeBkCkI8wDEOzZ8/W2bNnrbXw8I6aOvVO1a0rJSaa2BwAAF6GAOQDLly4oGnTptnUBg8erO7dq2j/fql9e6l7d5OaAwDACxGASrgtW7Zo3bp11sehoaEaNmyYLBaLEhOl8eOZ/QEA4PcIQCVUQUGBXnvtNeXm5lpr99xzj1q1amV93L07Mz8AADhCACqBMjIy9Oabb9rUnn32WZ+/cz0AAK5CACph0tLStHXrVuvjyMhI9evXTxaLxcSuAAAoWQhAJUReXp5effVVm1rv3r3VqFEjkzoCAKDkIgCVAMeOHdM777xjUxsxYoRCQkJM6ggAgJKNAOTlVqxYob1791of33bbbfrb3/5mYkcAAJR8BCAvlZ2drQkTJtjU4uPjFRkZaVJHAAD4DgKQF9qzZ4/ee+89m9pLL72kUqX4dgEA4Ar8RPUihmFo7ty5OnXqlLX25z//WXfddZeJXQEA4HsIQF4iMzNTU6dOtakNGjRI1apVM6chAAB8GAHIC3z55Zdau3at9XG5cuU0fPhwBQQEmNgVAAC+iwBkooKCAk2aNEnZ2dnWWteuXdW2bVsTuwIAwPcRgExy9uxZzZo1y6aWkJCg0NBQkzoCAMB/EIBM8Omnn+qLL76wPq5Vq5YGDhzI7SwAAPAQApAHFRQUaOzYsTa1+++/X02bNjWpIwAA/BMByIN+e0VnSXrhhRdUtmxZk7oBAMB/EYA8qHbt2mrYsKHKlCmjHj16mN0OAAB+iwDkQWFhYXrooYfMbgMAAL/HhWY8LDVV6tDh6q8AAMAcBCAPGz9eSk+/+isAADAHAcjDEhOl9u2v/goAAMzBHiAP69796hcAADAPM0AAAMDvEIAAAIDfIQABAAC/QwACAAB+hwAEAAD8DgEIAAD4HQIQAADwOwQgAADgdwhAAADA7xCAAACA3yEAAQAAv0MAAgAAfocABAAA/A53g3fAMAxJUlZWlsmdAACAorr2c/vaz/HrIQA58PPPP0uSIiIiTO4EAAA46+eff1ZoaOh1j7EYRYlJfqagoECnTp1ShQoVZLFYivy6rKwsRURE6OTJk6pYsaIbO/Q8Xx6b5NvjY2wlky+PTfLt8TE28xiGoZ9//lk1a9ZUQMD1d/kwA+RAQECAateuXezXV6xY0Sv/YLiCL49N8u3xMbaSyZfHJvn2+BibOf5o5ucaNkEDAAC/QwACAAB+hwDkQsHBwUpKSlJwcLDZrbicL49N8u3xMbaSyZfHJvn2+BhbycAmaAAA4HeYAQIAAH6HAAQAAPwOAQgAAPgdAhAAAPA7BKA/MHPmTEVFRSkkJEQxMTH66quvrnv8ihUr1KhRI4WEhOjWW2/Vxx9/bPO8xWJx+DVhwgR3DsMhV4/t0qVLGjJkiGrXrq0yZcqoSZMmmj17tjuHUChXj+3MmTOKj49XzZo1VbZsWXXp0kWHDh1y5xAK5czY9uzZo169eikqKkoWi0VTp0694XO6m6vHt3nzZt17772qWbOmLBaLVq1a5b7m/4Crx5aSkqI2bdqoQoUKqlatmnr27KkDBw64cQSFc/XYZs2apdtuu816wb327dtrzZo1bhxB4dzxd+6a8ePHy2KxKCEhwbVNO8HV4xs9erTdz7hGjRq5cQTFQwC6jmXLlmn48OFKSkrSjh071Lx5c8XFxens2bMOj9+yZYsefvhhDRw4UDt37lTPnj3Vs2dP7d6923rM6dOnbb7mzZsni8WiXr16eWpYktwztuHDh2vt2rV69913tW/fPiUkJGjIkCFKTU311LAkuX5shmGoZ8+eOnr0qD788EPt3LlTkZGRio2N1eXLlz05NKfHlp2drXr16mn8+PEKDw93yTndyR3ju3z5spo3b66ZM2e6s/U/5I6xbdq0SYMHD9bWrVu1bt065eXl6e677/aJP5e1a9fW+PHjtX37dn399dfq3LmzevTooT179rhzKHbcMbZrtm3bpjfffFO33XabO1ovEneNr2nTpjY/6z7//HN3DaH4DBSqbdu2xuDBg62P8/PzjZo1axopKSkOj3/wwQeNbt262dRiYmKMJ598stD36NGjh9G5c2fXNOwEd4ytadOmxpgxY2yOadmypfHSSy+5sPM/5uqxHThwwJBk7N692+acVatWNebMmeOGERTO2bH9VmRkpDFlyhSXntPV3DG+35JkrFy58ga7LB53j80wDOPs2bOGJGPTpk030qrTPDE2wzCMm266yZg7d25x2ywWd43t559/Nm6++WZj3bp1RseOHY1hw4a5qGPnuGN8SUlJRvPmzV3YpXswA1SI3Nxcbd++XbGxsdZaQECAYmNjlZ6e7vA16enpNsdLUlxcXKHHnzlzRh999JEGDhzousaLwF1j69Chg1JTU/Xjjz/KMAxt2LBBBw8e1N133+2egTjgjrHl5ORIkkJCQmzOGRwc7NH/qynO2Mw4Z3F5Uy+u5qmxZWZmSpIqVarksnP+EU+MLT8/X0uXLtXly5fVvn17l5yzKNw5tsGDB6tbt252//Z4kjvHd+jQIdWsWVP16tVTnz59dOLEiRtt1+UIQIX46aeflJ+fr+rVq9vUq1evroyMDIevycjIcOr4t99+WxUqVNB9993nmqaLyF1jmz59upo0aaLatWsrKChIXbp00cyZM3XHHXe4fhCFcMfYGjVqpDp16mjkyJG6cOGCcnNz9dprr+mHH37Q6dOn3TMQB4ozNjPOWVze1IureWJsBQUFSkhI0J/+9Cc1a9bMJecsCneO7bvvvlP58uUVHBysp556SitXrlSTJk1u6JzOcNfYli5dqh07diglJeVGW7wh7hpfTEyMFixYoLVr12rWrFk6duyYbr/9dv3888832rJLcTd4E82bN099+vSxmVkoyaZPn66tW7cqNTVVkZGR2rx5swYPHqyaNWua+n85N6p06dL64IMPNHDgQFWqVEmBgYGKjY1V165dZXAhdXiJwYMHa/fu3d6516KYGjZsqF27dikzM1Pvvfee+vXrp02bNnk0BLnayZMnNWzYMK1bt85n/u3/va5du1p/f9tttykmJkaRkZFavny5x1c8rocAVIgqVaooMDBQZ86csamfOXOm0I1f4eHhRT7+s88+04EDB7Rs2TLXNV1E7hjbL7/8ohdffFErV65Ut27dJF39g79r1y5NnDjRYwHIXd+3Vq1aWf8hzs3NVdWqVRUTE6PWrVu7fhCFKM7YzDhncXlTL67m7rENGTJEq1ev1ubNm1W7du0bPp8z3Dm2oKAgNWjQQNLVv4Pbtm3T66+/rjfffPOGzltU7hjb9u3bdfbsWbVs2dJay8/P1+bNmzVjxgzl5OQoMDDwhvouKk/9nQsLC9Mtt9yiw4cPu+ycrsASWCGCgoLUqlUrrV+/3lorKCjQ+vXrC12Dbt++vc3xkrRu3TqHx7/11ltq1aqVmjdv7trGi8AdY8vLy1NeXp4CAmz/SAUGBqqgoMDFIyicu79voaGhqlq1qg4dOqSvv/5aPXr0cO0ArqM4YzPjnMXlTb24mrvGZhiGhgwZopUrV+o///mP6tat64p2neLJ71tBQYF1T54nuGNsd911l7777jvt2rXL+tW6dWv16dNHu3bt8lj4kTz3vbt06ZKOHDmiGjVquOycLmHyJmyvtnTpUiM4ONhYsGCBsXfvXuOJJ54wwsLCjIyMDMMwDOPRRx81EhMTrcd/8cUXRqlSpYyJEyca+/btM5KSkozSpUsb3333nc15MzMzjbJlyxqzZs3y6Hh+yx1j69ixo9G0aVNjw4YNxtGjR4358+cbISEhxhtvvFHix7Z8+XJjw4YNxpEjR4xVq1YZkZGRxn333efRcRVnbDk5OcbOnTuNnTt3GjVq1DCef/55Y+fOncahQ4eKfM6SPr6ff/7ZeowkY/LkycbOnTuN77//vsSPbdCgQUZoaKixceNG4/Tp09av7OzsEj+2xMREY9OmTcaxY8eMb7/91khMTDQsFovxySeflPix/Z6ZnwJzx/iee+45Y+PGjcaxY8eML774woiNjTWqVKlinD171uPjux4C0B+YPn26UadOHSMoKMho27atsXXrVutzHTt2NPr162dz/PLly41bbrnFCAoKMpo2bWp89NFHdud88803jTJlyhgXL150d/vX5eqxnT592oiPjzdq1qxphISEGA0bNjQmTZpkFBQUeGI4Nlw9ttdff92oXbu2Ubp0aaNOnTrGyy+/bOTk5HhiKHacGduxY8cMSXZfHTt2LPI5Pc3V49uwYYPDY37/Z8ATXD02R89LMubPn++5Qf1/rh7bgAEDjMjISCMoKMioWrWqcdddd3k8/Fzjjr9zv2VmADIM14+vd+/eRo0aNYygoCCjVq1aRu/evY3Dhw97cERFYzEMdnECAAD/wh4gAADgdwhAAADA7xCAAACA3yEAAQAAv0MAAgAAfocABAAA/A4BCAAA+B0CEAAA8DsEIAAlVnx8vHr27GlX37hxoywWiy5evKiNGzeqR48eqlGjhsqVK6cWLVpo0aJFdq85f/68EhISFBkZqaCgINWsWVMDBgzQiRMnPDASAJ5GAALg07Zs2aLbbrtN77//vr799lv1799fffv21erVq63HnD9/Xu3atdOnn36q2bNn6/Dhw1q6dKkOHz6sNm3a6OjRoyaOAIA7cCsMACVWfHy8Ll68qFWrVtnUN27cqE6dOunChQsKCwuze123bt1UvXp1zZs3T5I0aNAgLVy4UIcPH1Z4eLj1uF9++UU333yzbr31Vq1Zs8adQwHgYcwAAfA7mZmZqlSpkiSpoKBAS5cuVZ8+fWzCjySVKVNGTz/9tNLS0nT+/HkzWgXgJqXMbgAAbsTq1atVvnx5m1p+fn6hxy9fvlzbtm3Tm2++KUk6d+6cLl68qMaNGzs8vnHjxjIMQ4cPH1bbtm1d1zgAUxGAAJRonTp10qxZs2xqX375pR555BG7Yzds2KD+/ftrzpw5atq0qc1z7AYA/AsBCECJVq5cOTVo0MCm9sMPP9gdt2nTJt17772aMmWK+vbta61XrVpVYWFh2rdvn8Pz79u3TxaLxe49AJRs7AEC4PM2btyobt266bXXXtMTTzxh81xAQIAefPBBLV68WBkZGTbP/fLLL3rjjTcUFxdn3TMEwDcQgAD4tA0bNqhbt2565pln1KtXL2VkZCgjI8NmU/Orr76q8PBw/eUvf9GaNWt08uRJbd68WXFxccrLy9PMmTNNHAEAdyAAAfBpb7/9trKzs5WSkqIaNWpYv+677z7rMZUrV9bWrVvVqVMnPfnkk6pfv74efPBB1a9fX9u2bVO9evVMHAEAd+A6QAAAwO8wAwQAAPwOAQgAAPgdAhAAAPA7BCAAAOB3CEAAAMDvEIAAAIDfIQABAAC/QwACAAB+hwAEAAD8DgEIAAD4HQIQAADwOwQgAADgd/4fYAHj6gYnBJUAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_36.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVIElEQVR4nO3deVxU9f4/8NcwsgnIpoAgikuumSBbmltdCs3d6zeykiWra6Zew0xwARUTNFJSTEpzSU3sltu1AhOhNClLQ6+JuARuCWgpJOSAM+f3hz/HphlwBmbmzPJ6Ph487p3PnPPhfY468+rzOedzJIIgCCAiIiKyYjZiF0BEREQkNgYiIiIisnoMRERERGT1GIiIiIjI6jEQERERkdVjICIiIiKrx0BEREREVo+BiIiIiKweAxERERFZPQYiIjJbEokECxYsELsMpdjYWAQEBIhdBhE1AQMREenVxo0bIZFIlD8ODg7o2rUrpk6dioqKCoP+7sOHD2PBggW4efOmXvsdMmSIyjF5eHggNDQU69evh0Kh0MvvWLJkCXbt2qWXvohIdy3ELoCILNOiRYvQsWNH3L59G4cOHcKaNWvwxRdf4OTJk2jZsqVefseff/6JFi3uf4wdPnwYCxcuRGxsLNzc3PTyO+5p164dUlNTAQDXrl3DRx99hEmTJuHMmTNIS0trdv9LlizB+PHjMWbMmGb3RUS6YyAiIoMYNmwYQkJCAAAvvfQSPD09sXz5cuzevRsTJkxocr8KhQJ1dXVwcHCAg4ODvsp9IFdXV7zwwgvK1//617/QrVs3ZGZmIiUlBba2tkarhYj0j1NmRGQUTzzxBACgtLQUAJCeno7+/fvD09MTjo6OCA4Oxqeffqq2n0QiwdSpU7F161b06tUL9vb2yMnJUb537xqiBQsWYNasWQCAjh07Kqe3ysrKMHjwYPTp00djXd26dUNkZKTOx9OyZUs8+uijqKmpwbVr1xrcrqamBjNnzoS/vz/s7e3RrVs3pKenQxAElWOsqanBpk2blHXHxsbqXBMRNR1HiIjIKM6fPw8A8PT0BAC8++67GDVqFJ5//nnU1dUhOzsb//d//4e9e/di+PDhKvseOHAAn3zyCaZOnYrWrVtrvHB53LhxOHPmDLZt24YVK1agdevWAIA2bdpg4sSJePnll3Hy5Ek8/PDDyn1++OEHnDlzBvPmzWvSMf3yyy+QSqUNTs8JgoBRo0YhPz8fkyZNQmBgIHJzczFr1ixcuXIFK1asAABs3rwZL730EsLCwvDKK68AADp37tykmoioiQQiIj3asGGDAEDYv3+/cO3aNeHSpUtCdna24OnpKTg6OgqXL18WBEEQamtrVfarq6sTHn74YeGJJ55QaQcg2NjYCD///LPa7wIgJCcnK1+//fbbAgChtLRUZbubN28KDg4OwuzZs1Xap0+fLjg5OQm3bt1q9JgGDx4sdO/eXbh27Zpw7do1obi4WJg+fboAQBg5cqRyu5iYGKFDhw7K17t27RIACIsXL1bpb/z48YJEIhHOnTunbHNychJiYmIarYOIDIdTZkRkEBEREWjTpg38/f3x7LPPwtnZGTt37oSfnx8AwNHRUbntjRs3UFVVhYEDB+LYsWNqfQ0ePBg9e/Zsci2urq4YPXo0tm3bppyqksvl2L59O8aMGQMnJ6cH9nH69Gm0adMGbdq0QY8ePbBq1SoMHz4c69evb3CfL774AlKpFNOnT1dpnzlzJgRBwJdfftnkYyIi/eKUGREZxOrVq9G1a1e0aNEC3t7e6NatG2xs7v832N69e7F48WIUFRVBJpMp2yUSiVpfHTt2bHY90dHR2L59Ow4ePIhBgwZh//79qKiowMSJE7XaPyAgAGvXrlUuJfDQQw/By8ur0X0uXLgAX19fuLi4qLT36NFD+T4RmQYGIiIyiLCwMOVdZn938OBBjBo1CoMGDcJ7772Htm3bwtbWFhs2bMDHH3+stv1fR5OaKjIyEt7e3tiyZQsGDRqELVu2wMfHBxEREVrt7+TkpPW2RGR+OGVGREb32WefwcHBAbm5uXjxxRcxbNgwvYQNTaNL90ilUjz33HP49NNPcePGDezatQsTJkyAVCpt9u9tSIcOHfDrr7/ijz/+UGk/ffq08v17GqudiAyPgYiIjE4qlUIikUAulyvbysrKmr1S871rgRpaqXrixIm4ceMG/vWvf+HWrVsq6woZwtNPPw25XI7MzEyV9hUrVkAikWDYsGHKNicnJ72vsE1E2uOUGREZ3fDhw7F8+XIMHToUzz33HCorK7F69Wp06dIFJ06caHK/wcHBAIC5c+fi2Wefha2tLUaOHKkMSkFBQXj44Yfxn//8Bz169EDfvn31cjwNGTlyJB5//HHMnTsXZWVl6NOnD/bt24fdu3djxowZKrfWBwcHY//+/Vi+fDl8fX3RsWNHhIeHG7Q+IrqPI0REZHRPPPEEPvzwQ5SXl2PGjBnYtm0bli5dirFjxzar39DQUKSkpOD48eOIjY3FhAkT1BZNjI6OBgCtL6ZuDhsbG+zZswczZszA3r17MWPGDJw6dQpvv/02li9frrLt8uXLERwcjHnz5mHChAlYs2aNwesjovskgvCX5VKJiCzcu+++i9dffx1lZWVo37692OUQkYlgICIiqyEIAvr06QNPT0/k5+eLXQ4RmRBeQ0REFq+mpgZ79uxBfn4+/ve//2H37t1il0REJoYjRERk8crKytCxY0e4ublhypQpeOutt8QuiYhMDAMRERERWT3eZUZERERWj4GIiIiIrB4vqtZAoVDg119/hYuLC5fTJyIiMhOCIOCPP/6Ar6+vysOktcFApMGvv/4Kf39/scsgIiKiJrh06RLatWun0z4MRBq4uLgAuHtCW7VqJXI1REREpI3q6mr4+/srv8d1wUCkwb1pslatWjEQERERmZmmXO7Ci6qJiIjI6jEQERERkdUTPRCtXr0aAQEBcHBwQHh4OI4cOdLgtjt27EBISAjc3Nzg5OSEwMBAbN68WW274uJijBo1Cq6urnByckJoaCguXrxoyMMgIiIiMybqNUTbt29HfHw8srKyEB4ejoyMDERGRqKkpAReXl5q23t4eGDu3Lno3r077OzssHfvXsTFxcHLywuRkZEAgPPnz2PAgAGYNGkSFi5ciFatWuHnn3+Gg4OD3uuXy+Wor6/Xe79kWmxtbSGVSsUug4iIDEjUR3eEh4cjNDQUmZmZAO6u/+Pv749p06YhISFBqz769u2L4cOHIyUlBQDw7LPPwtbWVuPIkbaqq6vh6uqKqqoqjRdVC4KA8vJy3Lx5s8m/g8yLm5sbfHx8uC4VEZEJe9D3d2NEGyGqq6vD0aNHkZiYqGyzsbFBREQECgsLH7i/IAg4cOAASkpKsHTpUgB3A9Xnn3+ON998E5GRkfjpp5/QsWNHJCYmYsyYMQ32JZPJIJPJlK+rq6sb/d33wpCXlxdatmzJL0kLJggCamtrUVlZCQBo27atyBUREZEhiBaIrl+/DrlcDm9vb5V2b29vnD59usH9qqqq4OfnB5lMBqlUivfeew9PPvkkAKCyshK3bt1CWloaFi9ejKVLlyInJwfjxo1Dfn4+Bg8erLHP1NRULFy4UKu65XK5Mgx5enpqebRkzhwdHQHc/fvl5eXF6TMiIgtkdusQubi4oKioCLdu3UJeXh7i4+PRqVMnDBkyBAqFAgAwevRovP766wCAwMBAHD58GFlZWQ0GosTERMTHxytf31vYSZN71wy1bNlSn4dFJu7en3d9fT0DERGRBRItELVu3RpSqRQVFRUq7RUVFfDx8WlwPxsbG3Tp0gXA3bBTXFyM1NRUDBkyBK1bt0aLFi3Qs2dPlX169OiBQ4cONdinvb097O3tdaqf02TWhX/eRESWTbTb7u3s7BAcHIy8vDxlm0KhQF5eHvr166d1PwqFQnn9j52dHUJDQ1FSUqKyzZkzZ9ChQwf9FE5EREQWR9Qps/j4eMTExCAkJARhYWHIyMhATU0N4uLiAADR0dHw8/NDamoqgLvX+oSEhKBz586QyWT44osvsHnzZqxZs0bZ56xZsxAVFYVBgwbh8ccfR05ODv773/+ioKBAjEMkIiIiMyDqwoxRUVFIT09HUlISAgMDUVRUhJycHOWF1hcvXsTVq1eV29fU1GDKlCno1asXHnvsMXz22WfYsmULXnrpJeU2Y8eORVZWFpYtW4bevXtj3bp1+OyzzzBgwACjH5+piY2NhUQigUQiga2tLby9vfHkk09i/fr1yuuvtLFx40a4ubkZrlAiIiIjE3UdIlPV2DoGt2/fRmlpKTp27GiQxR4NKTY2FhUVFdiwYQPkcjkqKiqQk5OD1NRUDBw4EHv27EGLFg8eNNy4cSNmzJhhVeswmfOfOxGRtWjOOkSiP7qDjMve3h4+Pj7w8/ND3759MWfOHOzevRtffvklNm7cCABYvnw5evfuDScnJ/j7+2PKlCm4desWAKCgoABxcXGoqqpSjjYtWLAAALB582aEhITAxcUFPj4+eO6555Tr9xAREQHA7t0CnniiCnv2iF2JKgYiPRAEAXV1dUb/0dfg3hNPPIE+ffpgx44dAO7eybdy5Ur8/PPP2LRpEw4cOIA333wTANC/f39kZGSgVatWuHr1Kq5evYo33ngDwN1b0lNSUnD8+HHs2rULZWVliI2N1UuNRERk/q5evYqiokUYPDgDH310XOxyVJjdOkSmqL6+XnnhtzElJibCzs5OL311794dJ06cAADMmDFD2R4QEIDFixdj8uTJeO+992BnZwdXV1dIJBK15RFefPFF5f/v1KkTVq5cidDQUNy6dQvOzs56qZOIiMzTV199hcOHDytf//OfprW4MQMRAbg7ynVvrZ39+/cjNTUVp0+fRnV1Ne7cuYPbt2+jtra20QUpjx49igULFuD48eO4ceOG8kLtixcvqq0NRURE1uHOnTt46623VNqioqLQvXs7kSrSjIFID2xtbVWeyWbM36svxcXF6NixI8rKyjBixAi8+uqreOutt+Dh4YFDhw5h0qRJqKurazAQ1dTUIDIyEpGRkdi6dSvatGmDixcvIjIyEnV1dXqrk4iIzMfly5fx4YcfqrS9+eabykcimRIGIj2QSCR6m7oSw4EDB/C///0Pr7/+Oo4ePQqFQoF33nkHNjZ3LzH75JNPVLa3s7ODXC5XaTt9+jR+++03pKWlKR978uOPPxrnAIiIyOR8/vnnKt8DPXr0wDPPPCNiRY1jILIyMpkM5eXlarfdjxgxAtHR0Th58iTq6+uxatUqjBw5Et9++y2ysrJU+ggICFA+S65Pnz5o2bIl2rdvDzs7O6xatQqTJ0/GyZMnkZKSItJREhGRWOrq6tSuq33++eeVj90yVbzLzMrk5OSgbdu2CAgIwNChQ5Gfn4+VK1di9+7dkEql6NOnD5YvX46lS5fi4YcfxtatW9X+Yvfv3x+TJ09GVFQU2rRpg2XLlqFNmzbYuHEj/vOf/6Bnz55IS0tDenq6SEdJRERiKCsrU/vOSEhIMPkwBHBhRo0sdWFGajr+uRMRNW7nzp3Ku5UBoE+fPhgzZoxRa2jOwoycMiMiIqImu337NpYuXarSFhMTg4CAAHEKaiIGIiIiImqSc+fOYevWrSptc+bM0etd0MbCQEREREQ6y87ORklJifJ1aGgonn76aRErah4GIiIiItLa77//jlWrVqm0TZo0Ce3amdZCi7piICIiIiKtpKVlQib7TaVt7ty5aNHC/OMEb7snIiKiB1q4cKFKGKqudkFubrJFhCGAI0RERETUiJMnT+Kzzz5TabtzZwQKC4ORkCBSUQbAQEREREQaLVy4UK0tISEB9vb2sLSHEXDKjIiIiFQIgqAxDOXmJsPe3l6EigyPgYj0LjY2VmV10iFDhmDGjBnN6lMffRAR0YN9//33WLRokUqbh0cf5OYmW9QU2d9xysyKxMbGYtOmTQAAW1tbtG/fHtHR0ZgzZ45BL4rbsWOH1ot0FRQU4PHHH8eNGzfg5ubWpD6IiKhpNI0K3Vtocdo0EQoyIgYiKzN06FBs2LABMpkMX3zxBV577TXY2toiMTFRZbu6ujrY2dnp5Xd6eHiYRB9ERKSZQqFAioaLgpKTk0WoRhycMrMy9vb28PHxQYcOHfDqq68iIiICe/bsUU5zvfXWW/D19UW3bt0AAJcuXcIzzzwDNzc3eHh4YPTo0SgrK1P2J5fLER8fDzc3N3h6euLNN9/E358X/PfpLplMhtmzZ8Pf3x/29vbo0qULPvzwQ5SVleHxxx8HALi7u0MikSA2NlZjHzdu3EB0dDTc3d3RsmVLDBs2DGfPnlW+v3HjRri5uSE3Nxc9evSAs7Mzhg4diqtXryq3KSgoQFhYGJycnODm5obHHnsMFy5c0NOZJiIyDwcOHFALQ4899phVhSGAgcjqOTo6oq6uDgCQl5eHkpISfPXVV9i7dy/q6+sRGRkJFxcXHDx4EN9++60yWNzb55133sHGjRuxfv16HDp0CL///jt27tzZ6O+Mjo7Gtm3bsHLlShQXF+P999+Hs7Mz/P39lbd2lpSU4OrVq3j33Xc19hEbG4sff/wRe/bsQWFhIQRBwNNPP436+nrlNrW1tUhPT8fmzZvxzTff4OLFi3jjjTcAAHfu3MGYMWMwePBgnDhxAoWFhXjllVcgkUiafU6JiMzFwoULcfDgQZW2efPmISIiQqSKxMMpMyslCALy8vKQm5uLadOm4dq1a3BycsK6deuUU2VbtmyBQqHAunXrlEFhw4YNcHNzQ0FBAZ566ilkZGQgMTER48aNAwBkZWUhNze3wd975swZfPLJJ/jqq6+U/+A6deqkfP/e1JiXl5fKNUR/dfbsWezZswfffvst+vfvDwDYunUr/P39sWvXLvzf//0fAKC+vh5ZWVno3LkzAGDq1KnKCwWrq6tRVVWFESNGKN/v0aOH7ieSiMgMyWQypKWlqbVb26jQX3GESER79gD9+9/9X2PZu3cvnJ2d4eDggGHDhiEqKgoLFiwAAPTu3VvluqHjx4/j3LlzcHFxgbOzM5ydneHh4YHbt2/j/PnzqKqqwtWrVxEeHq7cp0WLFggJCWnw9xcVFUEqlWLw4MFNPobi4mK0aNFC5fd6enqiW7duKC4uVra1bNlSGXYAoG3btqisrARwN3jFxsYiMjISI0eOxLvvvqsynUZEZKmWLVumFoZ+/PFRBAVZbxgCOEIkqrQ0oLDw7v+OGmWc3/n4449jzZo1sLOzg6+vr8rdZU5OTirb3rp1C8HBwdi6dataP23atGnS73d0dGzSfk3x97vSJBKJyvVNGzZswPTp05GTk4Pt27dj3rx5+Oqrr/Doo48arUYiImPSvLZQEhISJEb7HjJVHCESUUIC0K8fjLqug5OTE7p06YL27ds/8Fb7vn374uzZs/Dy8kKXLl1UflxdXeHq6oq2bdvi+++/V+5z584dHD16tME+e/fuDYVCga+//lrj+/dGqORyeYN99OjRA3fu3FH5vb/99htKSkrQs2fPRo/p74KCgpCYmIjDhw/j4Ycfxscff6zT/kRE5qCqqkpjGEpOTsbhwwxDAAORqEaNAg4fNt7okK6ef/55tG7dGqNHj8bBgwdRWlqKgoICTJ8+HZcvXwYA/Pvf/0ZaWhp27dqF06dPY8qUKbh582aDfQYEBCAmJgYvvvgidu3apezzk08+AQB06NABEokEe/fuxbVr13Dr1i21Ph566CGMHj0aL7/8Mg4dOoTjx4/jhRdegJ+fH0aPHq3VsZWWliIxMRGFhYW4cOEC9u3bh7Nnz/I6IiKyOAsXLkRGRoZKW2lpP6u+XkgTBiJqUMuWLfHNN9+gffv2GDduHHr06IFJkybh9u3baNWqFQBg5syZmDhxImJiYtCvXz+4uLhg7Nixjfa7Zs0ajB8/HlOmTEH37t3x8ssvo6amBgDg5+eHhQsXIiEhAd7e3pg6darGPjZs2IDg4GCMGDEC/fr1gyAI+OKLL7RevLFly5Y4ffo0/vnPf6Jr16545ZVX8Nprr+Ff//qXDmeIiMi0NTRFNm7cUyJUY9okwt8XjSFUV1fD1dUVVVVVyi/+e27fvo3S0lJ07NgRDg4OIlVIxsY/dyIyJxUVFcjKylJrt/RRoca+vx+EF1UTERFZEE2jQgMHDsQTTzwhQjXmg4GIiIjIQjR04TQ9GK8hIiIiMnPFxcUNXC/EMKQtjhARERGZMU1B6KefnkRlZX+jLuti7hiImojXolsX/nkTkSlqaFQoIcF0l3QxVQxEOrp3W3dtba1RV10mcdXW1gJQX/2aiEgMX331FQ4fPqzWHhSUDF4y1DQMRDqSSqVwc3NTPhOrZcuWfEK6BRMEAbW1taisrISbmxukUqnYJRGRldM0KlRcPBTZ2eEatiZtMRA1gY+PDwAoQxFZPjc3N+WfOxGRWBqbIqPm4cKMGmi7sJNcLkd9fb0RKyMx2NracmSIiES1YcMGXLx4Ua2dt9SrMvuFGVevXo23334b5eXl6NOnD1atWoWwsDCN2+7YsQNLlizBuXPnUF9fj4ceekj5+AhNJk+ejPfffx8rVqzAjBkz9Fq3VCrlFyURERmUplGhMWPGoE+fPiJUY7lED0Tbt29HfHw8srKyEB4ejoyMDERGRqKkpAReXl5q23t4eGDu3Lno3r077OzssHfvXsTFxcHLywuRkZEq2+7cuRPfffcdfH19jXU4REREesOFFo1H9Cmz8PBwhIaGIjMzEwCgUCjg7++PadOmIUHLSdG+ffti+PDhSElJUbZduXIF4eHhyM3NxfDhwzFjxgytR4iaM+RGRETUXJqCEHD3LjLeTt+w5nx/i7pSdV1dHY4ePYqIiAhlm42NDSIiIlBYWPjA/QVBQF5eHkpKSjBo0CBlu0KhwMSJEzFr1iz06tXrgf3IZDJUV1er/BAREYlBUxg6evQ5hiEDE3XK7Pr165DL5fD29lZp9/b2xunTpxvcr6qqCn5+fpDJZJBKpXjvvffw5JNPKt9funQpWrRogenTp2tVR2pqaoNpnIiIyBgEQcCiRYvU2jlFZhyiX0PUFC4uLigqKsKtW7eQl5eH+Ph4dOrUCUOGDMHRo0fx7rvv4tixY1qvD5SYmIj4+Hjl6+rqavj7+xuqfCIiIhUN/Uc5w5DxiBqIWrduDalUioqKCpX2ioqKRtd8sbGxQZcuXQAAgYGBKC4uRmpqKoYMGYKDBw+isrIS7du3V24vl8sxc+ZMZGRkoKysTK0/e3t72Nvb6+egiIiIdKApDL333mR07uzNVaeNSNRriOzs7BAcHIy8vDxlm0KhQF5eHvr166d1PwqFAjKZDAAwceJEnDhxAkVFRcofX19fzJo1C7m5uXo/BiIioqaor6/XGIbq6pLRubM3F1s0MtGnzOLj4xETE4OQkBCEhYUhIyMDNTU1iIuLAwBER0fDz88PqampAO5e7xMSEoLOnTtDJpPhiy++wObNm7FmzRoAgKenJzw9PVV+h62tLXx8fNCtWzfjHhwREZEGvIvM9IgeiKKionDt2jUkJSWhvLwcgYGByMnJUV5offHiRdjY3B/IqqmpwZQpU3D58mU4Ojqie/fu2LJlC6KiosQ6BCIiIq1pCkPx8fFwcXERoRq6R/R1iEwR1yEiIiJ9++OPP7B8+XK1dl44rT9m/+gOIiIiS8a7yEwfAxEREZEBaQpDc+bMga2trQjVUEMYiIiIiAygvLwc77//vlp7UFAymIVMDwMRERGRnnGKzPwwEBEREemRpjCUlJSk9dMTSBwMRERERHpw7tw5bN26Va09KCgZzEKmj4GIiIiombjQovljICIiImoGTWGI1wqZHwYiIiKiJjh48CAOHDig1s4wZJ4YiIiIiHSkaVRIJnPCo4++IUI1pA8MRERERDrQFIZyc5Nx+LAIxZDeMBARERFpYevWrTh37pxae25uMhISRCiI9IqBiIiI6AE0jQpVVfliyJCXwUuGLAMDERERUSN4F5l1YCAiIiLSIC0tDTKZTK2dYcgyMRARERH9jaZRoQsXwrB+/TARqiFjYCAiIiL6C01hKD09GRqeykEWhIGIiIgIDT9+Izv7bhjiIzgsm43YBRAREYlNUxj6+ecRCApKRnExw5A14AgRERFZLUEQsGjRIrX2oKBk3k5vZRiIiIjIKjU0Rca7yKwTAxEREVkdTWFo4sSJ6NSpkwjVkClgICIiIqshl8uxePFitXaOChEDERERWQVOkVFjGIiIiMjiaQpDU6dOhaenpwjVkCliICIiIotVU1OD9PR0tXaOCtHfMRAREZFF4hQZ6YILMxIRkcXRFIbS0t7Etm0MQ6QZR4iIiMhiXL16FR988IFae1BQMoKCgIQEEYois8BAREREFuFBU2R8/AY1hlNmRERk9jSFoX375iMoiFNkpB2OEBERkdk6c+YMtm3bptaenMxnkZFuGIiIiMgs8S4y0icGIiIiMjuawlBdXTLeekuEYsgiMBAREZHZ+Oabb5Cfn6/WvmBBMvr1E6EgshgMREREZBYamiILCrobhnhLPTUHAxEREZk8TWEoPT0Z06ffvZ2et9RTczEQERGRydq8eTN++eUXtfagoGT88YcIBZHFMol1iFavXo2AgAA4ODggPDwcR44caXDbHTt2ICQkBG5ubnByckJgYCA2b96sfL++vh6zZ89G79694eTkBF9fX0RHR+PXX381xqEQEZGeLFy4sMEwxBEh0jfRR4i2b9+O+Ph4ZGVlITw8HBkZGYiMjERJSQm8vLzUtvfw8MDcuXPRvXt32NnZYe/evYiLi4OXlxciIyNRW1uLY8eOYf78+ejTpw9u3LiBf//73xg1ahR+/PFHEY6QiIh0pWmKLDc3GYcPi1AMWQWJIAiCmAWEh4cjNDQUmZmZAACFQgF/f39MmzYNCVpeIde3b18MHz4cKSkpGt//4YcfEBYWhgsXLqB9+/YP7K+6uhqurq6oqqpCq1attD8YIiJqlsWLF0Mul6u15+YmIyGB1wpR45rz/S3qlFldXR2OHj2KiIgIZZuNjQ0iIiJQWFj4wP0FQUBeXh5KSkowaNCgBrerqqqCRCKBm5ubPsomIiIDWLhwoVoY6tChA5KT744MMQyRIYk6ZXb9+nXI5XJ4e3urtHt7e+P06dMN7ldVVQU/Pz/IZDJIpVK89957ePLJJzVue/v2bcyePRsTJkxoMC3KZDLIZDLl6+rq6iYcDRERNZWmKTKuOE3GJPo1RE3h4uKCoqIi3Lp1C3l5eYiPj0enTp0wZMgQle3q6+vxzDPPQBAErFmzpsH+UlNTG1zfgoiIDIeP3yBTIWogat26NaRSKSoqKlTaKyoq4OPj0+B+NjY26NKlCwAgMDAQxcXFSE1NVQlE98LQhQsXcODAgUbnEhMTExEfH698XV1dDX9//yYeFRERaUNTGPLy6o9XX9U84k9kSKIGIjs7OwQHByMvLw9jxowBcPei6ry8PEydOlXrfhQKhcqU170wdPbsWeTn58PT07PR/e3t7WFvb9+kYyAiIt1xioxMjehTZvHx8YiJiUFISAjCwsKQkZGBmpoaxMXFAQCio6Ph5+eH1NRUAHent0JCQtC5c2fIZDJ88cUX2Lx5s3JKrL6+HuPHj8exY8ewd+9eyOVylJeXA7h7y76dnZ04B0pERJwiI5MleiCKiorCtWvXkJSUhPLycgQGBiInJ0d5ofXFixdhY3P/ZriamhpMmTIFly9fhqOjI7p3744tW7YgKioKAHDlyhXs2bMHwN3ptL/Kz89Xu86IiIiMQ1MY6tBhHGJje4tQDZEq0dchMkVch4iISH8UCoXGdeI4KkT61pzvb9FHiIiIyHJxiozMBQMREREZhKYw9NJLL8HPz0+Eaogax0BERER6JZPJkJaWptYeFJQMZiEyVQxERESkN5wiI3PFQERERHqhKQzNnDkTzs7OIlRDpBsGIiIiapbff/8dq1atUmvnqBCZEwYiIiJqMk6RkaVgICIioibRFIbmzp2LFi341ULmh39riYhIJ6Wlpfjoo4/U2jkqROaMgYiIiLTW0BRZbm4ymIfInDEQERGRVjSFocDAJCxdKkFCgggFEekRAxERETXqxx9/xOeff67Wfm+KbPRoY1dEpH8MRERE1CDeRUbWgoGIiIg00hSGGITIUjEQERGRii+//BJHjhxRaw8KYhgiy8VARERESpwiI2tlI3YBRERkGjSFodzcZI4MkVXgCBERkZX78MMPcfnyZbX25GSuLUTWg4GIiMiKaRoVat++PeLi4kSohkg8DERERFaKd5ER3cdARERkZXjhNJE6BiIiIiuiKQw9+uijiIyMFKEaItPBQEREZCU0haGgoGQwCxExEBERWTxOkRE9mM6BSCqV4urVq/Dy8lJp/+233+Dl5QW5XK634oiIqHk0haHRo0cjMDDQ+MUQmTCdA5EgCBrbZTIZ7Ozsml0QERE1nyAIWLRokVp7UFAymIWI1GkdiFauXAkAkEgkWLduHZydnZXvyeVyfPPNN+jevbv+KyQiIp00NEUWFJSMUaOMXAyRmdA6EK1YsQLA3f/qyMrKglQqVb5nZ2eHgIAAZGVl6b9CIiLSmqYw9NBDcXjuufYiVENkPrQORKWlpQCAxx9/HDt27IC7u7vBiiIiIt3cuXMHb731llo7L5wm0o7O1xDl5+cbog4iImoi3kVG1Hw6B6IXX3yx0ffXr1/f5GKIiEg3msLQjBkz4OrqKkI1ROZL50B048YNldf19fU4efIkbt68iSeeeEJvhRERUcM+++wPnDy5XK2do0JETaNzINq5c6dam0KhwKuvvorOnTvrpSgiImoYp8iI9M9GL53Y2CA+Pl55JxoRERmGpjC0f38igoIYhoiaQ2+P7jh//jzu3Lmjr+6IiOgvrl69ig8++ECtPTk5GRwYImo+nQNRfHy8ymtBEHD16lV8/vnniImJ0VthRER0F6fIiAxP50D0008/qby2sbFBmzZt8M477zzwDjQiItKNpjCUlJQEiUQiQjVElovrEBERmaCSkhJkZ2ertXNUiMgwmnwNUWVlJUpKSgAA3bp1g5eXl96KIiKyZo09i4yIDEPnu8yqq6sxceJE+Pr6YvDgwRg8eDD8/PzwwgsvoKqqqklFrF69GgEBAXBwcEB4eDiOHDnS4LY7duxASEgI3Nzc4OTkhMDAQGzevFllG0EQkJSUhLZt28LR0RERERE4e/Zsk2ojIjImTWEoNzcZycl8MCuRIekciF5++WV8//33+Pzzz3Hz5k3cvHkTe/fuxY8//oh//etfOhewfft2xMfHIzk5GceOHUOfPn0QGRmJyspKjdt7eHhg7ty5KCwsxIkTJxAXF4e4uDjk5uYqt1m2bBlWrlyJrKwsfP/993ByckJkZCRu376tc31ERMZw6NChBsNQQoIIBRFZGYkgCIIuOzg5OSE3NxcDBgxQaT948CCGDh2KmpoanQoIDw9HaGgoMjMzAdxd5NHf3x/Tpk1DgpafAn379sXw4cORkpICQRDg6+uLmTNn4o033gAAVFVVwdvbGxs3bsSzzz77wP6qq6vh6uqKqqoqtGrVSqfjISLSFe8iI9KP5nx/6zxC5OnpqfEZOa6urnB3d9epr7q6Ohw9ehQRERH3C7KxQUREBAoLCx+4vyAIyMvLQ0lJCQYNGgQAKC0tRXl5uUqfrq6uCA8Pb7BPmUyG6upqlR8iImPQFIburi3EMERkTDoHonnz5iE+Ph7l5eXKtvLycsyaNQvz58/Xqa/r169DLpfD29tbpd3b21ul/7+rqqqCs7Mz7OzsMHz4cKxatQpPPvmkspZ7fWjbZ2pqKlxdXZU//v7+Oh0HEZGutm/f3mAYIiLj0/kuszVr1uDcuXNo37492rdvDwC4ePEi7O3tce3aNbz//vvKbY8dO6a/Sv/CxcUFRUVFuHXrFvLy8hAfH49OnTphyJAhTeovMTFRZcHJ6upqhiIiMhhNQaiqqi2WL39FhGqICGhCIBo9erTeFgRr3bo1pFIpKioqVNorKirg4+PT4H42Njbo0qULACAwMBDFxcVITU3FkCFDlPtVVFSgbdu2Kn0GBgZq7M/e3h729vbNPBoiogfTFIbS05OxdasIxRCRks6BaMGCBXr75XZ2dggODkZeXh7GjBkD4O5F1Xl5eZg6darW/SgUCshkMgBAx44d4ePjg7y8PGUAqq6uxvfff49XX31Vb7UTEekiJSUFCoVCrT03924Y4i31ROLSORB16tQJP/zwAzw9PVXab968ib59++KXX37Rqb/4+HjExMQgJCQEYWFhyMjIQE1NDeLi4gAA0dHR8PPzQ2pqKoC71/uEhISgc+fOkMlk+OKLL7B582asWbMGACCRSDBjxgwsXrwYDz30EDp27Ij58+fD19dXGbqIiIxJ06hQnz59MGbMGD6YlchE6ByIysrKIJfL1dplMhkuX76scwFRUVG4du0akpKSUF5ejsDAQOTk5Cgvir548SJsbO5f+11TU4MpU6bg8uXLcHR0RPfu3bFlyxZERUUpt3nzzTdRU1ODV155BTdv3sSAAQOQk5MDBwcHnesjImoOTWEoO5tPqCcyNVqvQ7Rnzx4AwJgxY7Bp0yaVW+/lcjny8vLw1VdfKR/nYc64DhERNVdDawvdW2iRU2RE+tec72+tA9G9URqJRIK/72Jra4uAgAC88847GDFihE4FmCIGIiJqDk1hKCIiAo899pgI1RBZj+Z8f2s9ZXbvYsCOHTvihx9+QOvWrXWrkojICnBtISLzpPM1RKWlpYaog4jIrPHxG0TmTedAtGjRokbfT0pKanIxRETmSFMYmjBhArp27SpCNUTUFDoHop07d6q8rq+vR2lpKVq0aIHOnTszEBGR1ZDL5Vi8eLFaO0eFiMyPzoHop59+Umurrq5GbGwsxo4dq5eiiIhMHafIiCyL1neZPcj//vc/jBw5EmVlZfroTlS8y4yIGqMpDL366qvw8vISoRoiuscod5k9SFVVFaqqqvTVHRGRyfnzzz+xbNkytfagoGQwCxGZN50D0cqVK1VeC4KAq1evYvPmzRg2bJjeCiMiMiWcIiOybDoHohUrVqi8trGxQZs2bRATE4PExES9FUZEZCo0haFZs2ahZcuWIlRDRIbAdYiIiBpw/fp1rF69Wq2do0JElqdJ1xDdvHkT586dAwB06dIFbm5u+qyJiEh0nCIjsi46BaKysjK89tpryM3NVT7PTCKRYOjQocjMzERAQIAhaiQiMipNYWjevHmQSqUiVENExqB1ILp06RIeffRR2NraIiUlBT169AAAnDp1CmvWrEG/fv3www8/oF27dgYrlojIkM6fP48tW7aotXNUiMjyab0O0aRJk3Du3Dnk5ubCwcFB5b0///wTQ4cOxUMPPYR169YZpFBj4jpERNaHU2RE5s8o6xDl5ORg+/btamEIABwdHZGSkoJnn31Wp19ORGQKNIWh7OxkLF0qQjFEJAqtA9H169cbvUaoU6dO+P333/VRExGRURw5cgRffvmlWntycjI4MERkXbQORG3btsWpU6cavEbo5MmT8PHx0VthRESGxCkyIvorrQPRmDFj8MYbbyAvLw9t2rRRea+yshKzZ8/GmDFj9F0fEZHeaQpDDEJE1k3ri6pv3LiB8PBwlJeX44UXXkD37t0hCAKKi4vx8ccfw8fHB9999x08PDwMXbPB8aJqIsu0Z88e/PTTT2rtDENElsEoF1W7u7vj+++/x5w5c5CdnY2bN28CANzc3PDcc89hyZIlFhGGiMgyaRoVsrOz4yOHiAiADiNEfyUIAq5duwYAaNOmDSQSid4LExNHiIgsC6fIiKyDUUaI/koikcDLy6spuxIRGc26detw5coVtXaGISL6uyYFIiIiU6dpVKiiohuGDuV6aUSkjoGIiCwOp8iISFcMRERkMbi2EBE1FQMREVkETWHoiSeewMCBA0WohojMjVaBaOXKlVp3OH369CYXQ0TUFJwiI6Lm0uq2+44dO2rXmUSCX375pdlFiY233ROZB06REdFfGfy2+9LS0iYVRkRkKJrC0DPPPIMePXqIUA0RmbsmX0NUV1eH0tJSdO7cGS1a8FIkIjIOQRCwaNEitXaOChFRc+icZGprazFt2jRs2rQJAHDmzBl06tQJ06ZNg5+fHxISEvReJBER0PAUWVAQwxARNY+NrjskJibi+PHjKCgogIODg7I9IiIC27dv12txRET3aApDkydPRnJyMkaNEqEgIrIoOgeiXbt2ITMzEwMGDFB5hlmvXr1w/vx5vRZHRFRfX68xDOXmJsPb21uEiojIEuk8ZXbt2jWNzzGrqamxuIe8EpG4Gpoiy81NBmfniUifdA5EISEh+PzzzzFt2jQAUIagdevWoV+/fvqtjoislqYw9MYbb8DJyQm8fpqI9E3nQLRkyRIMGzYMp06dwp07d/Duu+/i1KlTOHz4ML7++mtD1EhEVuTWrVt455131Np5FxkRGZLO1xANGDAARUVFuHPnDnr37o19+/bBy8sLhYWFCA4ONkSNRGQlFi5cyDBERKLQaqVqa8OVqomMT9MU2dy5c7nOGRFprTnf31qNEFVXV2v9o6vVq1cjICAADg4OCA8Px5EjRxrcdu3atRg4cCDc3d3h7u6OiIgIte1v3bqFqVOnol27dnB0dETPnj2RlZWlc11EZByVlZUNPouMYYiIjEWrTxs3Nzet7yCTy+Va//Lt27cjPj4eWVlZCA8PR0ZGBiIjI1FSUqLxTraCggJMmDAB/fv3h4ODA5YuXYqnnnoKP//8M/z8/AAA8fHxOHDgALZs2YKAgADs27cPU6ZMga+vL0ZxsRIik8JnkRGRqdBqyuyvF0uXlZUhISEBsbGxyrvKCgsLsWnTJqSmpiImJkbrXx4eHo7Q0FBkZmYCABQKBfz9/TFt2jStVryWy+Vwd3dHZmYmoqOjAQAPP/wwoqKiMH/+fOV2wcHBGDZsGBYvXqxVXZwyIzI8TWEoKSmJy3cQUZMZ/OGugwcPVv7/RYsWYfny5ZgwYYKybdSoUejduzc++OADrQNRXV0djh49isTERGWbjY0NIiIiUFhYqFUftbW1qK+vh4eHh7Ktf//+2LNnD1588UX4+vqioKAAZ86cwYoVKxrsRyaTQSaTKV83ZeqPiLRTWlqKjz76SK2do0JEJCad7zIrLCxESEiIWntISEij1//83fXr1yGXy9VWmvX29kZ5eblWfcyePRu+vr6IiIhQtq1atQo9e/ZEu3btYGdnh6FDh2L16tUYNGhQg/2kpqbC1dVV+ePv76/1cRCR9hYuXMgwREQmSedA5O/vj7Vr16q1r1u3zqhBIi0tDdnZ2di5c6fKM9VWrVqF7777Dnv27MHRo0fxzjvv4LXXXsP+/fsb7CsxMRFVVVXKn0uXLhnjEIisSkOP3+CDWYnIFOh8C8eKFSvwz3/+E19++SXCw8MBAEeOHMHZs2fx2Wefad1P69atIZVKUVFRodJeUVEBHx+fRvdNT09HWloa9u/fj0ceeUTZ/ueff2LOnDnYuXMnhg8fDgB45JFHUFRUhPT0dJWRpL+yt7eHvb291rUTkfaKioqwe/dutfagoGSuOE1EJkPnEaKnn34aZ8+exciRI/H777/j999/x8iRI3HmzBk8/fTTWvdjZ2eH4OBg5OXlKdsUCgXy8vIafQTIsmXLkJKSgpycHLWpu/r6etTX18PGRvWwpFIpFAqF1rURkX4sXLhQLQz9/nsAgoL4hHoiMi1NWuSjXbt2WLJkSbN/eXx8PGJiYhASEoKwsDBkZGSgpqYGcXFxAIDo6Gj4+fkhNTUVALB06VIkJSXh448/RkBAgPJaI2dnZzg7O6NVq1YYPHgwZs2aBUdHR3To0AFff/01PvroIyxfvrzZ9RKR9hpaW4iIyBQ1KRDdvHkTH374IYqLiwEAvXr1wosvvghXV1ed+omKisK1a9eQlJSE8vJyBAYGIicnR3mh9cWLF1VGe9asWYO6ujqMHz9epZ/k5GQsWLAAAJCdnY3ExEQ8//zz+P3339GhQwe89dZbmDx5clMOlYh0tH//fnz77bdq7bxWiIhMmc6P7vjxxx8RGRkJR0dHhIWFAQB++OEH/Pnnn9i3bx/69u1rkEKNiesQETWNplGhsLAwDBs2TIRqiMjaNOf7W+dANHDgQHTp0gVr165VLqt/584dvPTSS/jll1/wzTff6FSAKWIgItIdp8iISGxGDUSOjo746aef0L17d5X2U6dOISQkBLW1tToVYIoYiIi0t23bNpw5c0atnWGIiIzN4CtV/1WrVq1w8eJFtUB06dIluLi46NodEZkxTaNCTz/9NEJDQ0Wohoio6XQORFFRUZg0aRLS09PRv39/AMC3336LWbNmqTzOg4gsG6fIiMiS6ByI0tPTIZFIEB0djTt37gAAbG1t8eqrryItLU3vBRKRacnKylJbUBXgXWREZN50vobontraWpw/fx4A0LlzZ7Rs2VKvhYmJ1xARaaZpVGjixIno1KmTCNUQEaky6jVE97Rs2RK9e/du6u5EZEYEQcCiRYvU2jlFRkSWQutA9OKLL2q13fr165tcDBGZHk2jQgDDEBFZFq0D0caNG9GhQwcEBQWhibNsRGRmNIWhKVOmoE2bNiJUQ0RkOFoHoldffRXbtm1DaWkp4uLi8MILL8DDw8OQtRGRSORyORYvXqzWzlEhIrJUOl1ULZPJsGPHDqxfvx6HDx/G8OHDMWnSJDz11FOQSCSGrNOoeFE1WTNOkRGRuTLqStX3XLhwARs3bsRHH32EO3fu4Oeff4azs3NTujI5DERkrTSFoZkzZ1rMv20ismyi3GVmY2MDiUQCQRAgl8ub2g0RmQCZTKZxHTGOChGRtdApEP11yuzQoUMYMWIEMjMzMXToUNjY2BiqRiIyIE6RERHpEIimTJmC7Oxs+Pv748UXX8S2bdvQunVrQ9ZGRAamKQzNmTMHtra2IlRDRCQera8hsrGxQfv27REUFNToBdQ7duzQW3Fi4TVEZOmqqqqQkZGh1s5RISIyZ0a5hig6Otqi7iQjslacIiMiUqfTwoxEZN40haGkpCT+xw4RWb0m32VGROajoqICWVlZau0cFSIiuouBiMjCaRoVsrGxx/z5CSJUQ0RkmhiIiCyYpjDEUSEiInUMREQW6Pz589iyZYtaO8MQEZFmDEREFkbTqFD37t0RFRUlQjVEROaBgYjIgnCKjIioaRiIiCzAsWPH8N///letnWGIiEg7DEREZk7TqNCAAQPwj3/8Q4RqiIjMEwMRkRnjFBkRkX4wEBGZoby8PBw6dEitnWGIiKhpGIiIzIymUaGRI0eib9++IlRDRGQZGIiIzAinyIiIDIOBiMgMbN++HadPn1ZrZxgiItIPBiIiE6dpVOj5559Hly5dRKiGiMgyMRARmTBOkRERGQcDEZEJyszMxG+//abWzjBERGQYDEREJkbTqNDkyZPh7e0tQjVERNaBgYjIRAiCgEWLFqm1c1SIiMjwGIiITEBqairq6urU2hmGiIiMg4GISGSapsji4+Ph4uIiQjVERNaJgYhIJHfu3MFbb72l1s5RISIi47MRu4DVq1cjICAADg4OCA8Px5EjRxrcdu3atRg4cCDc3d3h7u6OiIgIjdsXFxdj1KhRcHV1hZOTE0JDQ3Hx4kVDHgaRThYuXMgwRERkQkQNRNu3b0d8fDySk5Nx7Ngx9OnTB5GRkaisrNS4fUFBASZMmID8/HwUFhbC398fTz31FK5cuaLc5vz58xgwYAC6d++OgoICnDhxAvPnz4eDg4OxDouoUZqmyBITExmGiIhEJBEEQRDrl4eHhyM0NBSZmZkAAIVCAX9/f0ybNg0JCQkP3F8ul8Pd3R2ZmZmIjo4GADz77LOwtbXF5s2bm1xXdXU1XF1dUVVVhVatWjW5H6K/qq2txdtvv63WziBERKQfzfn+Fm2EqK6uDkePHkVERMT9YmxsEBERgcLCQq36qK2tRX19PTw8PADcDVSff/45unbtisjISHh5eSE8PBy7du1qtB+ZTIbq6mqVHyJ9WrhwIcMQEZEJEy0QXb9+HXK5XG2xOW9vb5SXl2vVx+zZs+Hr66sMVZWVlbh16xbS0tIwdOhQ7Nu3D2PHjsW4cePw9ddfN9hPamoqXF1dlT/+/v5NPzCiv9E0RTZ//nyGISIiE2K2d5mlpaUhOzsbBQUFyuuDFAoFAGD06NF4/fXXAQCBgYE4fPgwsrKyMHjwYI19JSYmIj4+Xvm6urqaoYia7caNG1i5cqVaO4MQEZHpES0QtW7dGlKpFBUVFSrtFRUV8PHxaXTf9PR0pKWlYf/+/XjkkUdU+mzRogV69uypsn2PHj1w6NChBvuzt7eHvb19E46CSDNNo0KtW7fGa6+9JkI1RET0IKJNmdnZ2SE4OBh5eXnKNoVCgby8PPTr16/B/ZYtW4aUlBTk5OQgJCRErc/Q0FCUlJSotJ85cwYdOnTQ7wEQNUBTGEpKSmIYIiIyYaJOmcXHxyMmJgYhISEICwtDRkYGampqEBcXBwCIjo6Gn58fUlNTAQBLly5FUlISPv74YwQEBCivNXJ2doazszMAYNasWYiKisKgQYPw+OOPIycnB//9739RUFAgyjGS9bhy5QrWrVun1s4pMiIi0ydqIIqKisK1a9eQlJSE8vJyBAYGIicnR3mh9cWLF2Fjc38Qa82aNairq8P48eNV+klOTsaCBQsAAGPHjkVWVhZSU1Mxffp0dOvWDZ999hkGDBhgtOMi66NpVKhHjx545plnRKiGiIh0Jeo6RKaK6xCRLjSFIY4KEREZX3O+v832LjMisZ0+fRrbt29Xa2cYIiIyPwxERE2gaVToscceU1lolIiIzAcDEZGOOEVGRGR5GIiItFRUVITdu3ertTMMERGZPwYiIi1oGhUaMWIEgoODRaiGiIj0TbSFGYnMhaYwlJubzDBERGRBOEJE1ICCggKNDwXOzU1GQoIIBRERkcEwEBFpoGlUKDo6Gh07dgQvGSIisjwMRER/w7vIiIisDwMR0f+3a9cuHD9+XK2dYYiIyPIxEBFB86jQ5MmTlc/VIyIiy8ZARFZNEAQsWrRIrZ2jQkRE1oWBiKzWunXrcOXKFbV2hiEiIuvDQERWSdMU2euvv67z05GJiMgyMBCRVVEoFEhJSVFr56gQEZF1YyAiq7FmzRpUVlaqtTMMERERAxFZBU1TZPv3J2DWLHsRqiEiIlPDQEQWra6uDqmpqWrtycnJXHGaiIiUGIjIYi1atAiCIKi0eXh4YNq0aSJVREREpoqBiCySpimyefPmQSqVilANERGZOgYisig1NTVIT09Xa+eF00RE1BgGIrIYmkaFunbtigkTJohQDRERmRMGIrIImsJQUlISJBKJCNUQEZG5sRG7AKLmuHnzpsYwlJubzDBERERa4wgRmS1NQaht2yHYuHEwEhJEKIiIiMwWAxGZJU1h6N6F06+8YuxqiIjI3DEQkVmpqKhAVlaWWjvvIiMiouZgICKzoWlUaOTIkejbt68I1RARkSVhICKz0NgUGRERUXMxEJFJKysrw6ZNm9TaGYaIiEifGIjIZGkaFZowYQK6du0qQjVERGTJGIjIJHGKjIiIjImBiEzKzz//jE8//VStnWGIiIgMiYGITIamUaFJkyahXbt2IlRDRETWhIGITAKnyIiISEwMRCSq77//Hjk5OWrtDENERGRMDEQkGk2jQlOnToWnp6cI1RARkTVjICJRcIqMiIhMCQMRGdVXX32Fw4cPq7UzDBERkZhsxC4AAFavXo2AgAA4ODggPDwcR44caXDbtWvXYuDAgXB3d4e7uzsiIiIa3X7y5MmQSCTIyMgwQOWki4ULF6qFofj4eIYhIiISneiBaPv27covxWPHjqFPnz6IjIxEZWWlxu0LCgowYcIE5Ofno7CwEP7+/njqqadw5coVtW137tyJ7777Dr6+voY+DGqEIAgNTpG5uLiIUBEREZEqiSAIgpgFhIeHIzQ0FJmZmQAAhUIBf39/TJs2DQkJCQ/cXy6Xw93dHZmZmYiOjla2X7lyBeHh4cjNzcXw4cMxY8YMzJgxQ6uaqqur4erqiqqqKrRq1apJx0XAnj3AF198irZtf1Zpd3R0xJtvvilSVUREZKma8/0t6jVEdXV1OHr0KBITE5VtNjY2iIiIQGFhoVZ91NbWor6+Hh4eHso2hUKBiRMnYtasWejVq9cD+5DJZJDJZMrX1dXVOhwFNeSnnxaibVvVtoSEBNjb24tTEBERUQNEnTK7fv065HI5vL29Vdq9vb1RXl6uVR+zZ8+Gr68vIiIilG1Lly5FixYtMH36dK36SE1Nhaurq/LH399f+4MgNXK5vMEpMoYhIiIyRWZ9l1laWhqys7NRUFAABwcHAMDRo0fx7rvv4tixY5BIJFr1k5iYiPj4eOXr6upqhqIm+vTTT/Hzz6pTZH5+fnjppZdEqoiIiOjBRA1ErVu3hlQqRUVFhUp7RUUFfHx8Gt03PT0daWlp2L9/Px555BFl+8GDB1FZWYn27dsr2+RyOWbOnImMjAyUlZWp9WVvb8+RCz3QNCo0b948SKVSEaohIiLSnqhTZnZ2dggODkZeXp6yTaFQIC8vD/369Wtwv2XLliElJQU5OTkICQlReW/ixIk4ceIEioqKlD++vr6YNWsWcnNzDXYs1qy+vr7BKTKGISIiMgeiT5nFx8cjJiYGISEhCAsLQ0ZGBmpqahAXFwcAiI6Ohp+fH1JTUwHcvT4oKSkJH3/8MQICApTXGjk7O8PZ2Rmenp5qj36wtbWFj48PunXrZtyDswKHDh1SCbQA0L9/fzz55JMiVURERKQ70QNRVFQUrl27hqSkJJSXlyMwMBA5OTnKC60vXrwIG5v7A1lr1qxBXV0dxo8fr9JPcnIyFixYYMzSrZ6mUaHAwCQ8+aR2124RERGZCtHXITJFXIeocTKZDGlpaWrtubnJ0PBUDiIiIqMw23WIyPzs27dPbY2ozp1fwHvvdYYW62gSERGZJAYi0lpjT6h/4QVjV0NERKQ/DET0QLW1tXj77bdV2mxtbTFnzhyRKiIiItIvBiJq1K5du3D8+HGVtpdeegl+fn4iVURERKR/DETUoMamyIiIiCwJAxGpqa6uxooVK1TaPD09MXXqVJEqIiIiMiwGIlKxZcsWnD9/XqVtypQpaNOmjUgVERERGR4DESlxioyIiKwVAxHht99+Q2Zmpkpbhw4dEBsbK05BRERERsZAZOWysrJQUVGh0vbvf/8bbm5u4hREREQkAgYiK8YpMiIiorsYiKzQ1atX8cEHH6i09erVS+2BuURERNaCgcjKvP3226itrVVpmzlzJpydnUWqiIiISHwMRFaEU2RERESaMRBZgbKyMmzatEmlLTQ0FE8//bRIFREREZkWBiILp2lUaPbs2XBwcBChGiIiItPEQGShBEHAokWL1No5RUZERKSOgcgClZSUIDs7W6VtyJAhGDx4sEgVERERmTYGIgujaYpszpw5sLW1FaEaIiIi88BAZCEUCgVSUlLU2jlFRkRE9GAMRBbg+PHj2LVrl0rbsGHDEBYWJk5BREREZoaByMxpmiKbN28epFKpCNUQERGZJwYiMyWXy7F48WK1dk6RERER6Y6ByAydOXMG27ZtU2kbN24cevfuLVJFRERE5o2ByMx8++232L9/v0pbYGASeveWiFQRERGR+WMgMhMKhQJLly5FXV2dsi0gIAAxMTEiVkVERGQZbMQugB6ssrISKSkpKmEoPz8e7u4MQ0RERPrAESITl5+fj2+++Ub5un379li7NhaFhRLU1QGjRolYHBERkYVgIDJRmu4iGz9+PHr16gVPTyAtDUhIEKk4IiIiC8NAZIJ+/fVXrF27VqVt1qxZaNmyJYC7o0IcGSIiItIfBiITk5ubi++++075ukuXLnj++edFrIiIiMjyMRCZiPr6eixZskSlbcKECejatatIFREREVkPBiITcOnSJaxfv16lbfbs2XBwcBCpIiIiIuvCQCSy//73vzh27Jjyda9evTB+/HgRKyIiIrI+DEQiqaurQ2pqqkrbxIkT0alTJ5EqIiIisl4MRCIoLS3FRx99pNKWmJgIOzs7kSoiIiKybgxERvbZZ5/h5MmTytdBQUEYxXvoiYiIRMVAZET79u1TCUNxcXFo3769iBURERERYCLPMlu9ejUCAgLg4OCA8PBwHDlypMFt165di4EDB8Ld3R3u7u6IiIhQ2b6+vh6zZ89G79694eTkBF9fX0RHR+PXX381xqE0ysPDQ/n/v/pqDsMQERGRiRA9EG3fvh3x8fFITk7GsWPH0KdPH0RGRqKyslLj9gUFBZgwYQLy8/NRWFgIf39/PPXUU7hy5QoAoLa2FseOHcP8+fNx7Ngx7NixAyUlJSYxLRUSEoKgoGTk5ibjzTdtxS6HiIiI/j+JIAiCmAWEh4cjNDQUmZmZAACFQgF/f39MmzYNCVo8rEsul8Pd3R2ZmZmIjo7WuM0PP/yAsLAwXLhwQatRmerqari6uqKqqgqtWrXS7YCIiIhIFM35/hZ1hKiurg5Hjx5FRESEss3GxgYREREoLCzUqo/a2lrU19erTEf9XVVVFSQSCdzc3JpbMhEREVkgUS+qvn79OuRyOby9vVXavb29cfr0aa36mD17Nnx9fVVC1V/dvn0bs2fPxoQJExpMizKZDDKZTPm6urpayyMgIiIiSyD6NUTNkZaWhuzsbOzcuVPjYy7q6+vxzDPPQBAErFmzpsF+UlNT4erqqvzx9/c3ZNlERERkYkQNRK1bt4ZUKkVFRYVKe0VFBXx8fBrdNz09HWlpadi3bx8eeeQRtffvhaELFy7gq6++anQuMTExEVVVVcqfS5cuNe2AiIiIyCyJGojs7OwQHByMvLw8ZZtCoUBeXh769evX4H7Lli1DSkoKcnJyEBISovb+vTB09uxZ7N+/H56eno3WYW9vj1atWqn8EBERkfUQfWHG+Ph4xMTEICQkBGFhYcjIyEBNTQ3i4uIAANHR0fDz81M+92vp0qVISkrCxx9/jICAAJSXlwMAnJ2d4ezsjPr6eowfPx7Hjh3D3r17IZfLldt4eHjw8RhERESkRvRAFBUVhWvXriEpKQnl5eUIDAxETk6O8kLrixcvwsbm/kDWmjVrUFdXp/ZE+OTkZCxYsABXrlzBnj17AACBgYEq2+Tn52PIkCEGPR4iIiIyP6KvQ2SKuA4RERGR+THbdYiIiIiITAEDEREREVk9BiIiIiKyegxEREREZPUYiIiIiMjqiX7bvSm6d+Mdn2lGRERkPu59bzflBnoGIg3++OMPAOAzzYiIiMzQH3/8AVdXV5324TpEGigUCvz6669wcXGBRCLRef/q6mr4+/vj0qVLVr+OEc/FfTwX9/Fc3MdzcR/PxX08F/fpci4EQcAff/wBX19flUWdtcERIg1sbGzQrl27ZvfD56Ldx3NxH8/FfTwX9/Fc3MdzcR/PxX3angtdR4bu4UXVREREZPUYiIiIiMjqMRAZgL29PZKTk2Fvby92KaLjubiP5+I+nov7eC7u47m4j+fiPmOdC15UTURERFaPI0RERERk9RiIiIiIyOoxEBEREZHVYyAiIiIiq8dApKXVq1cjICAADg4OCA8Px5EjRxrcdu3atRg4cCDc3d3h7u6OiIgIle3r6+sxe/Zs9O7dG05OTvD19UV0dDR+/fVXYxxKs+nzXPzd5MmTIZFIkJGRYYDK9c8Q56K4uBijRo2Cq6srnJycEBoaiosXLxryMPRC3+fi1q1bmDp1Ktq1awdHR0f07NkTWVlZhj4MvdDlXOzYsQMhISFwc3ODk5MTAgMDsXnzZpVtBEFAUlIS2rZtC0dHR0RERODs2bOGPgy90Oe5sKbPTm3+XvyVJX92ansumv3ZKdADZWdnC3Z2dsL69euFn3/+WXj55ZcFNzc3oaKiQuP2zz33nLB69Wrhp59+EoqLi4XY2FjB1dVVuHz5siAIgnDz5k0hIiJC2L59u3D69GmhsLBQCAsLE4KDg415WE2i73PxVzt27BD69Okj+Pr6CitWrDDwkTSfIc7FuXPnBA8PD2HWrFnCsWPHhHPnzgm7d+9usE9TYYhz8fLLLwudO3cW8vPzhdLSUuH9998XpFKpsHv3bmMdVpPoei7y8/OFHTt2CKdOnRLOnTsnZGRkCFKpVMjJyVFuk5aWJri6ugq7du0Sjh8/LowaNUro2LGj8OeffxrrsJpE3+fCmj47tfl7cY+lf3Zqcy708dnJQKSFsLAw4bXXXlO+lsvlgq+vr5CamqrV/nfu3BFcXFyETZs2NbjNkSNHBADChQsXml2vIRnqXFy+fFnw8/MTTp48KXTo0MEs/lEb4lxERUUJL7zwgt5rNTRDnItevXoJixYtUtmub9++wty5c/VTtIE091wIgiAEBQUJ8+bNEwRBEBQKheDj4yO8/fbbyvdv3rwp2NvbC9u2bdNf4Qag73OhibV8dgqC5nNhjZ+dgqB+LvTx2ckpsweoq6vD0aNHERERoWyzsbFBREQECgsLteqjtrYW9fX18PDwaHCbqqoqSCQSuLm5NbdkgzHUuVAoFJg4cSJmzZqFXr166b1uQzDEuVAoFPj888/RtWtXREZGwsvLC+Hh4di1a5chDkFvDPX3on///tizZw+uXLkCQRCQn5+PM2fO4KmnntL7MehLc8+FIAjIy8tDSUkJBg0aBAAoLS1FeXm5Sp+urq4IDw/X+vyKwRDnQhNr+Oxs6FxY42enpnOhr89OBqIHuH79OuRyOby9vVXavb29UV5erlUfs2fPhq+vr8pfgL+6ffs2Zs+ejQkTJpj0Q/wMdS6WLl2KFi1aYPr06Xqt15AMcS4qKytx69YtpKWlYejQodi3bx/Gjh2LcePG4euvv9b7MeiLof5erFq1Cj179kS7du1gZ2eHoUOHYvXq1Y1+OYqtqeeiqqoKzs7OsLOzw/Dhw7Fq1So8+eSTAKDcrznnVwyGOBd/Z+mfnQ86F9b02dnYudDXZyefdm9gaWlpyM7ORkFBARwcHNTer6+vxzPPPANBELBmzRoRKjQeTefi6NGjePfdd3Hs2DFIJBKRKzQeTedCoVAAAEaPHo3XX38dABAYGIjDhw8jKysLgwcPFq1eQ2ro38iqVavw3XffYc+ePejQoQO++eYbvPbaa43+x4W5cnFxQVFREW7duoW8vDzEx8ejU6dOGDJkiNilGZ2258IaPjsbOxfW9tnZ2LnQ12cnA9EDtG7dGlKpFBUVFSrtFRUV8PHxaXTf9PR0pKWlYf/+/XjkkUfU3r/3D/rChQs4cOCASf8XDmCYc3Hw4EFUVlaiffv2yja5XI6ZM2ciIyMDZWVlej0GfTHEuWjdujVatGiBnj17qmzfo0cPHDp0SH/F65khzsWff/6JOXPmYOfOnRg+fDgA4JFHHkFRURHS09NNNhA19VzY2NigS5cuAO5+kBcXFyM1NRVDhgxR7ldRUYG2bduq9BkYGKj/g9ATQ5yLe6zls7Oxc2Ftn52NnQt9fXZyyuwB7OzsEBwcjLy8PGWbQqFAXl4e+vXr1+B+y5YtQ0pKCnJychASEqL2/r1/0GfPnsX+/fvh6elpkPr1yRDnYuLEiThx4gSKioqUP76+vpg1axZyc3MNdizNZYhzYWdnh9DQUJSUlKi0nzlzBh06dNDvAeiRIc5FfX096uvrYWOj+hEllUqV/zVoipp6Lv5OoVBAJpMBADp27AgfHx+VPqurq/H999/r1KexGeJcANb12fl3fz0X1vbZ+Xd/PRd6++xs1iXZViI7O1uwt7cXNm7cKJw6dUp45ZVXBDc3N6G8vFwQBEGYOHGikJCQoNw+LS1NsLOzEz799FPh6tWryp8//vhDEARBqKurE0aNGiW0a9dOKCoqUtlGJpOJcoza0ve50MRc7pQwxLnYsWOHYGtrK3zwwQfC2bNnhVWrVglSqVQ4ePCg0Y9PF4Y4F4MHDxZ69eol5OfnC7/88ouwYcMGwcHBQXjvvfeMfny60PVcLFmyRNi3b59w/vx54dSpU0J6errQokULYe3atcpt0tLSBDc3N2H37t3CiRMnhNGjR5vNbff6PBfW9Nmpzd+Lv7PUz05tzoU+PjsZiLS0atUqoX379oKdnZ0QFhYmfPfdd8r3Bg8eLMTExChfd+jQQQCg9pOcnCwIgiCUlpZqfB+AkJ+fb9wDawJ9ngtNzOUftSAY5lx8+OGHQpcuXQQHBwehT58+wq5du4x0NM2j73Nx9epVITY2VvD19RUcHByEbt26Ce+8846gUCiMeFRNo8u5mDt3rvLP293dXejXr5+QnZ2t0p9CoRDmz58veHt7C/b29sI//vEPoaSkxFiH0yz6PBfW9Nmpzd+Lv7PUz05tz0VzPzslgiAI2o8nEREREVkeXkNEREREVo+BiIiIiKweAxERERFZPQYiIiIisnoMRERERGT1GIiIiIjI6jEQERERkdVjICIiIiKrx0BERBYnNjYWEokEaWlpKu27du1SPhm8oKAAo0ePRtu2beHk5ITAwEBs3bpVjHKJyAQwEBGRRXJwcMDSpUtx48YNje8fPnwYjzzyCD777DOcOHECcXFxiI6Oxt69e41cKRGZAj66g4gsTmxsLH777TecO3cOI0eOxLJlywDcHSEaO3YsGvrYGz58OLy9vbF+/XpjlktEJoAjRERkkaRSKZYsWYJVq1bh8uXLWu1TVVUFDw8PA1dGRKaIgYiILNbYsWMRGBiI5OTkB277ySef4IcffkBcXJwRKiMiU8NAREQWbenSpdi0aROKi4sb3CY/Px9xcXFYu3YtevXqZcTqiMhUMBARkUUbNGgQIiMjkZiYqPH9r7/+GiNHjsSKFSsQHR1t5OqIyFS0ELsAIiJDS0tLQ2BgILp166bSXlBQgBEjRmDp0qV45ZVXRKqOiEwBAxERWbzevXvj+eefx8qVK5Vt+fn5GDFiBP7973/jn//8J8rLywEAdnZ2vLCayApxyoyIrMKiRYugUCiUrzdt2oTa2lqkpqaibdu2yp9x48aJWCURiYXrEBEREZHV4wgRERERWT0GIiIiIrJ6DERERERk9RiIiIiIyOoxEBEREZHVYyAiIiIiq8dARERERFaPgYiIiIisHgMRERERWT0GIiIiIrJ6DERERERk9RiIiIiIyOr9Pzx191DJV91RAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUWVJREFUeJzt3XlcVPX+P/DXMLIJyqaCIAouuaWiIKSVWl8S96W8kZUIWWaaXsMUyQSVFDBUXEi6lmnu3VL0Whe8IrgkaUlqpuISuCWLJRCQLDPn94c/J6cZcAZm5szyej4ePO7lM2c+vM9Jh5efz+d8jkQQBAFEREREFsRK7AKIiIiIDI0BiIiIiCwOAxARERFZHAYgIiIisjgMQERERGRxGICIiIjI4jAAERERkcVhACIiIiKLwwBEREREFocBiIhMlkQiwaJFi8QuQyE8PBw+Pj5il0FEGmAAIiKd2rRpEyQSieLLzs4Ojz32GN5++20UFRXp9WcfP34cixYtQmlpqU77HTJkiNI5ubq6on///ti4cSPkcrlOfsayZcuQlpamk76I6NGaiV0AEZmnJUuWwNfXF/fu3cOxY8ewfv16fPPNNzh37hyaN2+uk5/x559/olmzvz7Gjh8/jsWLFyM8PBzOzs46+RkPtGvXDvHx8QCAkpISfP7555gyZQouXbqEhISEJve/bNkyTJgwAePGjWtyX0T0aAxARKQXw4cPR0BAAADg9ddfh5ubG1auXIm9e/di4sSJje5XLpejpqYGdnZ2sLOz01W5j+Tk5IRXX31V8f2bb76Jrl27Yt26dYiLi4O1tbXBaiGipuMUGBEZxLPPPgsAyM/PBwAkJSVh4MCBcHNzg729Pfz9/fHll1+qvE8ikeDtt9/Gtm3b0LNnT9ja2iI9PV3x2oM1QIsWLcLcuXMBAL6+vorpqoKCAgwePBh9+vRRW1fXrl0REhKi9fk0b94cTzzxBCorK1FSUlLvcZWVlZgzZw68vb1ha2uLrl27IikpCYIgKJ1jZWUlNm/erKg7PDxc65qISHMcASIig7h69SoAwM3NDQCwevVqjBkzBq+88gpqamqwc+dO/OMf/8D+/fsxcuRIpfceOnQIX3zxBd5++220atVK7ULj559/HpcuXcKOHTuwatUqtGrVCgDQunVrTJo0CW+88QbOnTuHxx9/XPGe77//HpcuXcL777/fqHP65ZdfIJVK651uEwQBY8aMQVZWFqZMmQI/Pz9kZGRg7ty5uHXrFlatWgUA2LJlC15//XUEBgZi6tSpAIBOnTo1qiYi0pBARKRDn332mQBAOHjwoFBSUiLcuHFD2Llzp+Dm5ibY29sLN2/eFARBEKqqqpTeV1NTIzz++OPCs88+q9QOQLCyshJ+/vlnlZ8FQIiNjVV8/+GHHwoAhPz8fKXjSktLBTs7OyEqKkqpfdasWYKDg4NQUVHR4DkNHjxY6Natm1BSUiKUlJQIFy5cEGbNmiUAEEaPHq04bvLkyUKHDh0U36elpQkAhA8++ECpvwkTJggSiUS4cuWKos3BwUGYPHlyg3UQke5wCoyI9CI4OBitW7eGt7c3XnrpJTg6OmLPnj3w8vICANjb2yuOvXv3LsrKyvD0008jNzdXpa/BgwejR48eja7FyckJY8eOxY4dOxRTTzKZDLt27cK4cePg4ODwyD4uXryI1q1bo3Xr1ujevTvWrl2LkSNHYuPGjfW+55tvvoFUKsWsWbOU2ufMmQNBEPDf//630edERE3DKTAi0ouUlBQ89thjaNasGdzd3dG1a1dYWf31b679+/fjgw8+wOnTp1FdXa1ol0gkKn35+vo2uZ6wsDDs2rULR48exaBBg3Dw4EEUFRVh0qRJGr3fx8cHGzZsUNza36VLF7Rp06bB91y7dg2enp5o0aKFUnv37t0VrxOROBiAiEgvAgMDFXeB/d3Ro0cxZswYDBo0CB999BHatm0La2trfPbZZ9i+fbvK8Q+PFjVWSEgI3N3dsXXrVgwaNAhbt26Fh4cHgoODNXq/g4ODxscSkfHjFBgRGdxXX30FOzs7ZGRk4LXXXsPw4cN1Ei7UjR49IJVK8fLLL+PLL7/E3bt3kZaWhokTJ0IqlTb559anQ4cO+PXXX/HHH38otV+8eFHx+gMN1U5EuscAREQGJ5VKIZFIIJPJFG0FBQVN3gn5wVqe+naCnjRpEu7evYs333wTFRUVSvv66MOIESMgk8mwbt06pfZVq1ZBIpFg+PDhijYHBwed72BNRPXjFBgRGdzIkSOxcuVKDBs2DC+//DKKi4uRkpKCzp074+zZs43u19/fHwCwYMECvPTSS7C2tsbo0aMVwahv3754/PHH8e9//xvdu3dHv379dHI+9Rk9ejSeeeYZLFiwAAUFBejTpw8OHDiAvXv3Yvbs2Uq3uvv7++PgwYNYuXIlPD094evri6CgIL3WR2TJOAJERAb37LPP4tNPP0VhYSFmz56NHTt2IDExEePHj29Sv/3790dcXBzOnDmD8PBwTJw4UWWTwrCwMADQePFzU1hZWWHfvn2YPXs29u/fj9mzZ+P8+fP48MMPsXLlSqVjV65cCX9/f7z//vuYOHEi1q9fr/f6iCyZRBAe2o6UiMjMrV69Gu+88w4KCgrQvn17scshIpEwABGRxRAEAX369IGbmxuysrLELoeIRMQ1QERk9iorK7Fv3z5kZWXhp59+wt69e8UuiYhExhEgIjJ7BQUF8PX1hbOzM6ZPn46lS5eKXRIRiYwBiIiIiCwO7wIjIiIii8MARERERBaHi6DVkMvl+PXXX9GiRQtuT09ERGQiBEHAH3/8AU9PT6WHL6vDAKTGr7/+Cm9vb7HLICIioka4ceMG2rVr1+AxDEBqtGjRAsD9C9iyZUuRqyEiIiJNlJeXw9vbW/F7vCEMQGo8mPZq2bIlAxAREZGJ0WT5ChdBExERkcVhACIiIiKLwwBEREREFodrgJpAJpOhtrZW7DJIz6ytrSGVSsUug4iIdIgBqBEEQUBhYSFKS0vFLoUMxNnZGR4eHtwXiojITDAANcKD8NOmTRs0b96cvxTNmCAIqKqqQnFxMQCgbdu2IldERES6wACkJZlMpgg/bm5uYpdDBmBvbw8AKC4uRps2bTgdRkRkBrgIWksP1vw0b95c5ErIkB789+aaLyIi88AA1Eic9rIs/O9NRGReGICIiIjI4jAAERERkcVhALIg4eHhkEgkkEgksLa2hru7O5577jls3LgRcrlc4342bdoEZ2dn/RVKRESkZwxAFmbYsGG4ffs2CgoK8N///hfPPPMM/vnPf2LUqFGoq6sTuzwiIiKDYACyMLa2tvDw8ICXlxf69euH9957D3v37sV///tfbNq0CQCwcuVK9OrVCw4ODvD29sb06dNRUVEBAMjOzkZERATKysoUo0mLFi0CAGzZsgUBAQFo0aIFPDw88PLLLyv2zyEiIgKAvXsFPPtsKfbtE7cOBiAdEAQBNTU1Bv8SBEEn9T/77LPo06cPdu/eDQCwsrLCmjVr8PPPP2Pz5s04dOgQ5s2bBwAYOHAgkpOT0bJlS9y+fRu3b9/Gu+++C+D+LeJxcXE4c+YM0tLSUFBQgPDwcJ3USEREpu/27ds4fXoJBg9ejc8/PyNqLdwIUQdqa2sRHx9v8J8bHR0NGxsbnfTVrVs3nD17FgAwe/ZsRbuPjw8++OADTJs2DR999BFsbGzg5OQEiUQCDw8PpT5ee+01xf/v2LEj1qxZg/79+6OiogKOjo46qZOIiExTfHwyamrKFN+/8IK4mwkzABGA+6NYD/a6OXjwIOLj43Hx4kWUl5ejrq4O9+7dQ1VVVYMbQJ46dQqLFi3CmTNncPfuXcXC6uvXr6NHjx4GOQ8iIjIuVVVV+PDDD5XaXnrpJXTt2k6kiu5jANIBa2trREdHi/JzdeXChQvw9fVFQUEBRo0ahbfeegtLly6Fq6srjh07hilTpqCmpqbeAFRZWYmQkBCEhIRg27ZtaN26Na5fv46QkBDU1NTorE4iIjIdqamHUFR0VKmtV68odO1qJ1JFf2EA0gGJRKKzqSgxHDp0CD/99BPeeecdnDp1CnK5HCtWrICV1f0lYl988YXS8TY2NpDJZEptFy9exG+//YaEhAR4e3sDAH744QfDnAARERmdxYsXq7TFxsaKUIl6DEAWprq6GoWFhZDJZCgqKkJ6ejri4+MxatQohIWF4dy5c6itrcXatWsxevRofPvtt0hNTVXqw8fHBxUVFcjMzESfPn3QvHlztG/fHjY2Nli7di2mTZuGc+fOIS4uTqSzJCIisVy6dAk7duxQavPwGIw33xwiTkH14F1gFiY9PR1t27aFj48Phg0bhqysLKxZswZ79+6FVCpFnz59sHLlSiQmJuLxxx/Htm3bVBZ4Dxw4ENOmTUNoaChat26N5cuXo3Xr1ti0aRP+/e9/o0ePHkhISEBSUpJIZ0lERGJYvHixSvjZt2+20YUfAJAIurqX2oyUl5fDyckJZWVlaNmypdJr9+7dQ35+Pnx9fWFnJ/4cJhkG/7sTETVM3ZRXRkYs5s8HxowxTA0N/f7+O06BERERUaOdOHEC6enpKu2xsbEwoiU/KhiAiIiIqFHUjfq88847jxx9MQYMQERERKQVuVyu9kYXY7rL61EYgIiIiEhj+/fvx6lTp5TavLy88Prrr4tUUeMwABEREZFG1E156fKxTIbEAEREREQNqq6uRkJCgkq7KU15/R0DEBEREdUrISEB1dXVSm1ubv54++1RIlWkGwxAREREpJa6Ka+FCxcqHpVkyhiAiIiISMlvv/2GdevWqbSb8pTX3zEAkc6Fh4ejtLQUaWlpAIAhQ4bAz88PycnJje5TF30QEdGjqRv1uXr1aXz++bMiVKM/pj+GRRoLDw+HRCJRPL2+c+fOWLJkCerq6vT6c3fv3q3xg1Gzs7MhkUhQWlra6D6IiKhx6nucxYQJ5hV+AI4AWZxhw4bhs88+Q3V1Nb755hvMmDED1tbWiI6OVjqupqZGZ7c1urq6GkUfRESk3i+//IItW7aotBv74yyagiNAFsbW1hYeHh7o0KED3nrrLQQHB2Pfvn0IDw/HuHHjsHTpUnh6eqJr164AgBs3buDFF1+Es7MzXF1dMXbsWBQUFCj6k8lkiIyMhLOzM9zc3DBv3jz8/fm6Q4YMwezZsxXfV1dXIyoqCt7e3rC1tUXnzp3x6aefoqCgAM888wwAwMXFBRKJBOHh4Wr7uHv3LsLCwuDi4oLmzZtj+PDhuHz5suL1TZs2wdnZGRkZGejevTscHR0xbNgw3L59W3FMdnY2AgMD4eDgAGdnZzz55JO4du2ajq40EZFpWLx4sUr4GTFihFmt91GHAcjC2dvbo6amBgCQmZmJvLw8/O9//8P+/ftRW1uLkJAQtGjRAkePHsW3336rCBIP3rNixQps2rQJGzduxLFjx/D7779jz549Df7MsLAw7NixA2vWrMGFCxfw8ccfw9HREd7e3vjqq68AAHl5ebh9+zZWr16tto/w8HD88MMP2LdvH3JyciAIAkaMGIHa2lrFMVVVVUhKSsKWLVtw5MgRXL9+He+++y4AoK6uDuPGjcPgwYNx9uxZ5OTkYOrUqZBIJE2+pkREpkLdlFffvrHo37+/CNUYFqfALJQgCMjMzERGRgZmzpyJkpISODg44JNPPlFMfW3duhVyuRyffPKJIhh89tlncHZ2RnZ2NoYOHYrk5GRER0fj+eefBwCkpqYiIyOj3p976dIlfPHFF/jf//6H4OBgAEDHjh0Vrz+Y6mrTpg2cnZ3V9nH58mXs27cP3377LQYOHAgA2LZtG7y9vZGWloZ//OMfAIDa2lqkpqaiU6dOAIC3334bS5YsAQCUl5ejrKwMo0aNUrzevXt37S8kEZEJOnLkCLKyslTazX3U52FGMQKUkpICHx8f2NnZISgoCCdPnqz32N27dyMgIADOzs5wcHCAn5+f2nnLB6ZNmwaJRGKUdw/t2wcMHHj/fw1l//79cHR0hJ2dHYYPH47Q0FAsWrQIANCrVy+ldT9nzpzBlStX0KJFCzg6OsLR0RGurq64d+8erl69irKyMty+fRtBQUGK9zRr1gwBAQH1/vzTp09DKpVi8ODBjT6HCxcuoFmzZko/183NDV27dsWFCxcUbc2bN1eEGwBo27YtiouLAdwPWuHh4QgJCcHo0aOxevVqpekxIiJztXjxYpXw06nTqxYVfgAjGAHatWsXIiMjkZqaiqCgICQnJyMkJAR5eXlo06aNyvGurq5YsGABunXrBhsbG+zfvx8RERFo06YNQkJClI7ds2cPvvvuO3h6ehrqdLSSkADk5Nz/3zFjDPMzn3nmGaxfvx42Njbw9PREs2Z//RFwcHBQOraiogL+/v7Ytm2bSj+tW7du1M+3t7dv1Psaw9raWul7iUSitD7ps88+w6xZs5Ceno5du3bh/fffx//+9z888cQTBquRiMiQ1E15WVrweUD0EaCVK1fijTfeQEREBHr06IHU1FQ0b94cGzduVHv8kCFDMH78eHTv3h2dOnXCP//5T/Tu3RvHjh1TOu7WrVuYOXMmtm3bpvKL0FjMnw8MGHD/fw3FwcEBnTt3Rvv27ZXCjzr9+vXD5cuX0aZNG3Tu3Fnpy8nJCU5OTmjbti1OnDiheE9dXZ3KU4If1qtXL8jlchw+fFjt6w9GoGQyWb19dO/eHXV1dUo/97fffkNeXh569OjR4Dn9Xd++fREdHY3jx4/j8ccfx/bt27V6PxGRKdi2bRvDz9+IGoBqampw6tQpxVoQALCyskJwcDBycnIe+f4H61jy8vIwaNAgRbtcLsekSZMwd+5c9OzZ85H9VFdXo7y8XOnLEMaMAY4fN9zoj7ZeeeUVtGrVCmPHjsXRo0eRn5+P7OxszJo1Czdv3gQA/POf/0RCQgLS0tJw8eJFTJ8+XWUPn4f5+Phg8uTJeO2115CWlqbo84svvgAAdOjQARKJBPv370dJSQkqKipU+ujSpQvGjh2LN954A8eOHcOZM2fw6quvwsvLC2PHjtXo3PLz8xEdHY2cnBxcu3YNBw4cwOXLl7kOiIjMzuLFi3HlyhWlthkzZlh0+AFEDkB37tyBTCaDu7u7Uru7uzsKCwvrfV9ZWRkcHR1hY2ODkSNHYu3atXjuuecUrycmJqJZs2aYNWuWRnXEx8crRjScnJzg7e3duBMyM82bN8eRI0fQvn17PP/88+jevTumTJmCe/fuoWXLlgCAOXPmYNKkSZg8eTIGDBiAFi1aYPz48Q32u379ekyYMAHTp09Ht27d8MYbb6CyshIA4OXlhcWLF2P+/Plwd3fH22+/rbaPzz77DP7+/hg1ahQGDBgAQRDwzTffaDza17x5c1y8eBEvvPACHnvsMUydOhUzZszAm2++qcUVIiIyXjKZrN5Rn1atWolQkXGRCH/ftMWAfv31V3h5eeH48eMYMGCAon3evHk4fPiw0hTHw+RyOX755RdUVFQgMzMTcXFxSEtLw5AhQ3Dq1CmMHDkSubm5irU/Pj4+mD17ttI+Mg+rrq5WetJteXk5vL29UVZWpvhF/8C9e/eQn58PX19f2NnZNfEKkKngf3ciMiXqgg9g/lNe5eXlcHJyUvv7++9EXQTdqlUrSKVSFBUVKbUXFRXBw8Oj3vdZWVmhc+fOAAA/Pz9cuHAB8fHxGDJkCI4ePYri4mK0b99ecbxMJsOcOXOQnJystInfA7a2trC1tdXNSREREYlIXfg5dGge5swx3E0opkDUKTAbGxv4+/sjMzNT0SaXy5GZmak0IvQocrlcMYIzadIknD17FqdPn1Z8eXp6Yu7cuQ3uT0NERGTKysvL653yOnzY3mjXm4pF9NvgIyMjMXnyZAQEBCAwMBDJycmorKxEREQEgPu7Bnt5eSE+Ph7A/fU6AQEB6NSpk+J5Vlu2bMH69esB3N8Pxs3NTelnWFtbw8PDQ/F4ByIiInNS35RX377mPeXVFKIHoNDQUJSUlCAmJgaFhYXw8/NDenq6YmH09evXYWX110BVZWUlpk+fjps3b8Le3h7dunXD1q1bERoaKtYpEBERiUZd+FmxYiHKy0Xf6caoiboI2lg1tIjqwWJYHx8fg27qR+L6888/UVBQwEXQRGQ06nuCe1JSLGbNApYuFaEokZnMImhT9OA266qqKgYgC1JVVQVAdXdpIiIxqBv1kcslWLw4BmZ+o5fOMABpSSqVwtnZWfFMqebNm/MJ4mZMEARUVVWhuLgYzs7OkEqlYpdERBZOXfhJSoqFmqcWUQMYgBrhwS36D0IQmT9nZ+cGt2YgItK3zMxMlcc+AcDOnffDD+/y0g7XAKmh6RyiTCZDbW2tASsjMVhbW3Pkh4hEpW7Up1OnTnj11VdFqMZ4cQ2QgUilUv5iJCIiveJDTPWDAYiIiMgIrVy5En/88YdKO/f20Q0GICIiIiOjbtTn559H4tVXA7jWR0cYgIiIiIyIuvCTkBCLP/8UoRgzxgBERERkBOp7nEVCQiwiIw1cjAVgACIiIhKZuvATFhYGX19fbmyoJwxAREREIqmpqVE87PthvMtL/xiAiIiIRFDflBfDj2EwABERERmYuvCTlRWJ7OwWIlRjmRiAiIiIDOT27dv417/+pdLOZ3kZHgMQERGRAdQ35ZWRwWd5iYEBiIiISM/UhZ9duxYiIcGKd3mJhAGIiIhIT7799lscPHhQpT02NpbBR2QMQERERHpQ35QXn+VlHKzELoCIiMjcqAs/GRmx6Ns3lmt9jARHgIiIiHQkNTUVRUVFKu0ZGbE4flyEgqheDEBEREQ60NBdXvPnG7gYeiQGICIioiZSF34e7OjMxc7GiQGIiIiokfg4C9PFAERERNQI6sJPv379MHr0aBGqIW0xABEREWlBEAQsWbJEpZ2jPqaFAYiIiEhD3NvHfDAAERERaUBd+HnxxRfRvXt3EaqhpmIAIiIiasCff/6J5cuXq7Rzysu0MQARERHVg3d5mS8GICIiIjXUhZ+amtlYutRJhGpI1xiAiIiIHlJQUIDNmzertHPUx7wwABEREf1/nPKyHHwaPBEREep7gvtC3uJupjgCREREFu1///sfjqt5VHvfvrF8jpcZYwAiIiKLxSkvy8UAREREFqmhJ7iT+WMAIiIii5KQkIDq6mqVdoYfy8IAREREFoNTXvQAAxAREVkETnnRwxiAiIjIrHHUh9Qxin2AUlJS4OPjAzs7OwQFBeHkyZP1Hrt7924EBATA2dkZDg4O8PPzw5YtWxSv19bWIioqCr169YKDgwM8PT0RFhaGX3/91RCnQkRERkRd+HF19WP4IfED0K5duxAZGYnY2Fjk5uaiT58+CAkJQXFxsdrjXV1dsWDBAuTk5ODs2bOIiIhAREQEMjIyAABVVVXIzc3FwoULkZubi927dyMvLw9jxowx5GkREZGIBEFQG34WLYrFjh1jRaiIjI1EEARBzAKCgoLQv39/rFu3DgAgl8vh7e2NmTNnYv78+Rr10a9fP4wcORJxcXFqX//+++8RGBiIa9euoX379o/sr7y8HE5OTigrK0PLli01PxkiIhJdfVNeffvGIiEBmD8f4L+JzZM2v79FXQNUU1ODU6dOITo6WtFmZWWF4OBg5OTkPPL9giDg0KFDyMvLQ2JiYr3HlZWVQSKRwNnZWe3r1dXVSrdElpeXa34SRERkNNSFH1/fFxEW1h0Agw/9RdQAdOfOHchkMri7uyu1u7u74+LFi/W+r6ysDF5eXqiuroZUKsVHH32E5557Tu2x9+7dQ1RUFCZOnFhvGoyPj6/3XwxERGT8KisrkZSUpNLOtT5UH5O8C6xFixY4ffo0KioqkJmZicjISHTs2BFDhgxROq62thYvvvgiBEHA+vXr6+0vOjoakZGRiu/Ly8vh7e2tr/KJiEiHeJcXNYaoAahVq1aQSqUoKipSai8qKoKHh0e977OyskLnzp0BAH5+frhw4QLi4+OVAtCD8HPt2jUcOnSowblAW1tb2NraNu1kiIjI4NSFn8jISLRo0UKEasiUiHoXmI2NDfz9/ZGZmalok8vlyMzMxIABAzTuRy6XK63heRB+Ll++jIMHD8LNzU2ndRMRkbguXbpU78aGDD+kCdGnwCIjIzF58mQEBAQgMDAQycnJqKysREREBAAgLCwMXl5eiI+PB3B/vU5AQAA6deqE6upqfPPNN9iyZYtiiqu2thYTJkxAbm4u9u/fD5lMhsLCQgD3b6G3sbER50SJiEgnGrrLi0hTogeg0NBQlJSUICYmBoWFhfDz80N6erpiYfT169dhZfXXQFVlZSWmT5+Omzdvwt7eHt26dcPWrVsRGhoKALh16xb27dsH4P702MOysrJU1gkREZHpUBd+YmJiIJFIRKiGTJno+wAZI+4DRERkXPbt24cff/xRpZ0LnelhJrMPEBER0aPwLi/SBwYgIiIyWnyCO+kLAxARERkdjvqQvon+MFQiIqKHMfyQIXAEiIiIjIa68JOREYvjx0UohswaAxAREYmuvlGfjIxYzJ9v4GLIIjAAERGRqNSFn379+mH06NHgrBfpCwMQERGJQhAELFmyRKWda33IEBiAiIjI4LjQmcTGAERERAalLvy8/PLL6NKliwjVkKViACIiIoMoLy/HqlWrVNo56kNiYAAiIiK945QXGRtuhEhERHqlLvxkZc1B374MPyQejgAREZFenD9/Hv/+979V2mNjY3l7O4mOAYiIiHSuvikvjvqQsWAAIiIinVIXfmJiYiCRSESohkg9BiAiItKJPXv24OzZsyrtXOhMxoiLoImIqMkWL16sNvzs2MHwQ8aJI0BERNQk6qa8+vaNRUICsHy5CAURaYABiIiIGuVRe/uMGWPIaoi0wwBERERaUxd+mjVrhgULFohQDZH2GICIiEgr6sIPFzqTqWEAIiIijfBxFmROGICIiOiR1IWfJ598EsHBwSJUQ9R0DEBERFQvuVyOuLg4lXaO+pCpYwAiIiK1OOVF5owBiIiIVKgLP2FhYfD19RWhGiLd407QRESkUFZWpjb8ZGTEMvyQWeEIEBERAah/yisjIxbz5xu4GCI9YwAiIiK14WfevHmwt7cHl/yQOWIAIiKyYD///DO+/PJLlXYudCZzxwBERGSh6pvy6tuX4YfMHwMQEZEFUhd+YmJiIJFIRKiGyPAYgIiILMiXX36Jn3/+WaWdU15kaRiAiIgsBDc2JPoLAxARkQXgE9yJlDEAERGZsYb29mH+IUum9U7QUqkUxcXFKu2//fYbpFKpTooiIqKmUxd+bGycubEhERoxAiQIgtr26upq2NjYNLkgIiJquoamvKKjDV0NkfHROACtWbMGACCRSPDJJ5/A0dFR8ZpMJsORI0fQrVs33VdIREQa40JnIs1oHIBWrVoF4P4IUGpqqtJ0l42NDXx8fJCamtqoIlJSUvDhhx+isLAQffr0wdq1axEYGKj22N27d2PZsmW4cuUKamtr0aVLF8yZMweTJk1SHCMIAmJjY7FhwwaUlpbiySefxPr169GlS5dG1UdEZArUhZ8hQ4Zg8ODBIlRDZNw0DkD5+fkAgGeeeQa7d++Gi4uLTgrYtWsXIiMjkZqaiqCgICQnJyMkJAR5eXlo06aNyvGurq5YsGABunXrBhsbG+zfvx8RERFo06YNQkJCAADLly/HmjVrsHnzZvj6+mLhwoUICQnB+fPnYWdnp5O6iYiMhVwuR1xcnEo7R32I6icR6lvUYyBBQUHo378/1q1bB+D+X2Rvb2/MnDkT8zVcpdevXz+MHDkScXFxEAQBnp6emDNnDt59910AQFlZGdzd3bFp0ya89NJLj+yvvLwcTk5OKCsrQ8uWLRt/ckREetbQ4yzGjDFwMUQi0+b3t9aLoF977bUGX9+4caPGfdXU1ODUqVOIfmhFnpWVFYKDg5GTk/PI9wuCgEOHDiEvLw+JiYkA7o9UFRYWIjg4WHGck5MTgoKCkJOTozYAVVdXo7q6WvF9eXm5xudARCQWdeGna9c38NJLniJUQ2RatA5Ad+/eVfq+trYW586dQ2lpKZ599lmt+rpz5w5kMhnc3d2V2t3d3XHx4sV631dWVgYvLy9UV1dDKpXio48+wnPPPQcAKCwsVPTx9z4fvPZ38fHx9f4riojI2JSVlSE5OVmlnVNeRJrTOgDt2bNHpU0ul+Ott95Cp06ddFLUo7Ro0QKnT59GRUUFMjMzERkZiY4dO2LIkCGN6i86OhqRkZGK78vLy+Ht7a2jaomIdId3eRHphk52grayskJkZCSGDBmCefPmafy+Vq1aQSqVoqioSKm9qKgIHh4eDf68zp07AwD8/Pxw4cIFxMfHY8iQIYr3FRUVoW3btkp9+vn5qe3P1tYWtra2GtdNRCQGdeEnOjqae7ARNYLWO0HX5+rVq6irq9PqPTY2NvD390dmZqaiTS6XIzMzEwMGDNC4H7lcrljD4+vrCw8PD6U+y8vLceLECa36JCIyFpcvX653Y0OGH6LG0XoE6OGpIuD+QuTbt2/j66+/xuTJk7UuIDIyEpMnT0ZAQAACAwORnJyMyspKREREAADCwsLg5eWF+Ph4APfX6wQEBKBTp06orq7GN998gy1btmD9+vUA7m/UOHv2bHzwwQfo0qWL4jZ4T09PjBs3Tuv6iIjExGd5EemH1gHoxx9/VPreysoKrVu3xooVKx55h5g6oaGhKCkpQUxMDAoLC+Hn54f09HTFIubr16/DyuqvgarKykpMnz4dN2/ehL29Pbp164atW7ciNDRUccy8efNQWVmJqVOnorS0FE899RTS09O5BxARmRR14adv31gkJIDP8iJqItH3ATJG3AeIiMSUnp6OEydOqLRzoTNRw/S6D9ADxcXFyMvLAwB07dpV7a7NRESkHd7lRWQYWgeg8vJyzJgxAzt27IBcLgcASKVShIaGIiUlBU5OTjovkojIEjT0BHci0i2t7wJ74403cOLECXz99dcoLS1FaWkp9u/fjx9++AFvvvmmPmokIjJrH374IcMPkYFpvQbIwcEBGRkZeOqpp5Tajx49imHDhqGyslKnBYqBa4CIyFDUBZ/bt3siNXWCCNUQmTZtfn9rPQLk5uamdprLyclJZ0+IJyKyBOrCT0ZGLEaMYPgh0jet1wC9//77iIyMxJYtWxS7LhcWFmLu3LlYuHChzgskIjI3DS105qwXkWFoPQXWt29fXLlyBdXV1Wjfvj2A+3v12NraokuXLkrH5ubm6q5SA+IUGBHpi7rwM27cOPTp00eEaojMi15vgx87diwkEkmjiyMiskQymQwffPCBSjt3dCYSh9YBaNGiRXoog4jIfDX0OAvu6EwkDq0XQXfs2BG//fabSntpaSk6duyok6KIiMyFuvBz9Ojb6Ns3FsePA2PGiFAUEWk/AlRQUACZTKbSXl1djZs3b+qkKCIiU1daWorVq1ertHNvHyLjoHEA2rdvn+L/Z2RkKN0KL5PJkJmZCV9fX91WR0Rkgvg4CyLjp3EAGjduHABAIpFg8uTJSq9ZW1vDx8cHK1as0GlxRESmRl34WbBgAZo1a/SjF4lIDzT+G/nguV++vr74/vvv0apVK70VRURkaq5cuYJt27aptHPUh8g4af1Pkvz8fH3UQURksjjlRWR6tA5AS5YsafD1mJiYRhdDRGRq6nucBW9vJzJujdoJ+mG1tbXIz89Hs2bN0KlTJ5Pd/flh3AmaiB4lMzMTx44dU2nnqA+RePS6E/SPP/6o9geGh4dj/Pjx2nZHRGRy1I36ODk5Yfbs2YYvhogaResRoPr89NNPGD16NAoKCnTRnag4AkRE9VEXfjjqQ2Qc9DoCVJ+ysjKUlZXpqjsiIqOydu1a/P777yrtDD9EpknrALRmzRql7wVBwO3bt7FlyxYMHz5cZ4URERkLdaM+AwYMwNChQ0Wohoh0QesAtGrVKqXvrays0Lp1a0yePBnR0dE6K4yIyBhwyovIPHEfICIiNbi3D5F5a9QaoNLSUly5cgUA0LlzZzg7O+uyJiIiUakLPx07TsSkSY+JUA0R6YNWAaigoAAzZsxARkYGHtw8JpFIMGzYMKxbtw4+Pj76qJGIyCDq6uqwdOlSlXaO+hCZH40D0I0bN/DEE0/A2toacXFx6N69OwDg/PnzWL9+PQYMGIDvv/8e7dq101uxRET6wikvIsui8T5AU6ZMwZUrV5CRkQE7Ozul1/78808MGzYMXbp0wSeffKKXQg2J+wARWRZ14Wf27NlwcnISoRoiaiy97AOUnp6OXbt2qYQfALC3t0dcXBxeeukl7aslIhJJWVkZkpOTVdo56kNk/jQOQHfu3GlwjU/Hjh3VbhJGRGSMOOVFZNk0DkBt27bF+fPn613jc+7cOXh4eOisMCIifVEXft5//31IpVIRqiEiMVhpeuC4cePw7rvvoqSkROW14uJiREVFYdy4cbqsjYhIp65cuVLvxoYMP0SWReNF0Hfv3kVQUBAKCwvx6quvolu3bhAEARcuXMD27dvh4eGB7777Dq6urvquWe+4CJrI/HDKi8j86WURtIuLC06cOIH33nsPO3fuRGlpKQDA2dkZL7/8MpYtW2YW4YeIzA8fZ0FEf6fxCNDDBEFQTIW1bt0aEolE54WJiSNARObh6NGjOHTokEo7ww+RedLLCNDDJBIJ2rRp06jiiIgMQd2oT7t27TBlyhQRqiEiY9OoAEREZMzUhZ++fWMxZowIxRCRUWIAIiKzsXHjRty4cUOlnVNeRPR3DEBEZBbUjfoMHToUAwYMEKEaIjJ2DEBEZPJ4lxcRaUujALRmzRqNO5w1a1ajiyEi0gb39iGixtLoNnhfX1/NOpNI8Msvv2hVQEpKCj788EMUFhaiT58+WLt2LQIDA9Ueu2HDBnz++ec4d+4cAMDf3x/Lli1TOr6iogLz589HWloafvvtN/j6+mLWrFmYNm2axjXxNngi46cu/HTpEoGXX24vQjVEZAx0fht8fn6+Tgr7u127diEyMhKpqakICgpCcnIyQkJCkJeXp/Y2++zsbEycOBEDBw6EnZ0dEhMTMXToUPz888/w8vICAERGRuLQoUPYunUrfHx8cODAAUyfPh2enp4Yw1tAiExeXV0dli5dqtLOUR8i0kajNkIEgJqaGuTn56NTp05o1qxxS4mCgoLQv39/rFu3DgAgl8vh7e2NmTNnYv78+Y98v0wmg4uLC9atW4ewsDAAwOOPP47Q0FAsXLhQcZy/vz+GDx+ODz74QKO6OAJEZJw45UVEDdHm97fGD0N9oKqqClOmTEHz5s3Rs2dPXL9+HQAwc+ZMJCQkaNxPTU0NTp06heDg4L+KsbJCcHAwcnJyNK6ltrZW6REcAwcOxL59+3Dr1i0IgoCsrCxcunQJQ4cOrbef6upqlJeXK30RkXFRF37mzJnD8ENEjaJ1AIqOjsaZM2eQnZ0NOzs7RXtwcDB27dqlcT937tyBTCaDu7u7Uru7uzsKCws16iMqKgqenp5KIWrt2rXo0aMH2rVrBxsbGwwbNgwpKSkYNGhQvf3Ex8fDyclJ8eXt7a3xeRCRfpWWltZ7l5ejo6MIFRGROdB67iotLQ27du3CE088ofQMsJ49e+Lq1as6La4hCQkJ2Llzp0oQW7t2Lb777jvs27cPHTp0wJEjRzBjxgyVoPSw6OhoREZGKr4vLy9nCCIyApzyIiJ90ToAlZSUqF2gXFlZqdVDUVu1agWpVIqioiKl9qKiInh4eDT43qSkJCQkJODgwYPo3bu3ov3PP//Ee++9hz179mDkyJEAgN69e+P06dNISkqqNwDZ2trC1tZW49qJSP/UhZ+FCxfCykrrgWsiIhVaf5IEBATg66+/Vnz/IPR88sknWu24amNjA39/f2RmZira5HI5MjMzG+xn+fLliIuLQ3p6OgICApReq62tRW1trcoHpFQqhVwu17g2IhLP5cuX653yYvghIl3RegRo2bJlGD58OM6fP4+6ujqsXr0a58+fx/Hjx3H48GGt+oqMjMTkyZMREBCAwMBAJCcno7KyEhEREQCAsLAweHl5IT4+HgCQmJiImJgYbN++HT4+Poq1Qo6OjnB0dETLli0xePBgzJ07F/b29ujQoQMOHz6Mzz//HCtXrtT2VInIwDjlRUSGonUAeuqpp3D69GkkJCSgV69eOHDgAPr164ecnBz06tVLq75CQ0NRUlKCmJgYFBYWws/PD+np6YqF0devX1f6F9/69etRU1ODCRMmKPUTGxuLRYsWAQB27tyJ6OhovPLKK/j999/RoUMHLF26VKuNEInI8Pg4CyIypEbvA2TOuA8QkeEcOnQIR48eVWln+CEibel8J2ht9sVhYCAiTakb9enWrRtCQ0NFqIaILIlGAcjZ2VnjO7xkMlmTCiIiy8ApLyISk0YBKCsrS/H/CwoKMH/+fISHhyvu1srJycHmzZsVi5WJiOrz8ccfq93slOGHiAxJ6zVA//d//4fXX38dEydOVGrfvn07/vWvfyE7O1uX9YmCa4CI9EPdqM+IESPQv39/EaohInOj12eB5eTkqOy/A9zfH+jkyZPadkdEFkAQhHqnvBh+iEgMWt8G7+3tjQ0bNmD58uVK7Z988gkfH0FEKri3DxEZI60D0KpVq/DCCy/gv//9L4KCggAAJ0+exOXLl/HVV1/pvEAiMl3qws/rr78OLy8vEaohIvqL1lNgI0aMwOXLlzF69Gj8/vvv+P333zF69GhcunQJI0aM0EeNRGRiamtr653yYvghImPAjRDV4CJoosbjlBcRiUXnGyH+XWlpKT799FNcuHABANCzZ0+89tprcHJyakx3RGQm1IWfuXPnonnz5iJUQ0RUP62nwH744Qd06tQJq1atUkyBrVy5Ep06dUJubq4+aiQiI/f777/XO+XF8ENExkjrKbCnn34anTt3xoYNG9Cs2f0BpLq6Orz++uv45ZdfcOTIEb0UakicAiPSHKe8iMhYaPP7W+sAZG9vjx9//BHdunVTaj9//jwCAgJQVVWlfcVGhgGISDPqws/ChQthZaX14DIRUZPpdQ1Qy5Ytcf36dZUAdOPGDbRo0ULb7ojIBOXl5WHnzp0q7Rz1ISJToXUACg0NxZQpU5CUlISBAwcCAL799lvMnTtX5fEYRGR+1I36SKVSvP/++yJUQ0TUOFoHoKSkJEgkEoSFhaGurg4AYG1tjbfeegsJCQk6L5CIjAef4E5E5qLR+wBVVVXh6tWrAIBOnTqZ1Z0eXANEpOzAgQPIyclRaWf4ISJjovd9gACgefPm6NWrV2PfTkQmQt2oz+OPP44XXnhBhGqIiHRD4wD02muvaXTcxo0bG10MERkXTnkRkbnSOABt2rQJHTp0QN++fcGnZxCZt5SUFNy5c0elneGHiMyFxgHorbfewo4dO5Cfn4+IiAi8+uqrcHV11WdtRCQCdaM+o0ePRr9+/USohohIPzTerSwlJQW3b9/GvHnz8J///Afe3t548cUXkZGRwREhIjMgCEK9U14MP0Rkbhp9F9i1a9ewadMmfP7556irq8PPP/8MR0dHXdcnCt4FRpaGj7MgInNgkLvArKysIJFIIAgCZDJZY7shIpGpCz9Tp05F27ZtRaiGiMgwtHpgT3V1NXbs2IHnnnsOjz32GH766SesW7cO169fN5vRHyJLUVNTU++UF8MPEZk7jUeApk+fjp07d8Lb2xuvvfYaduzYgVatWumzNiLSE055EZGl03gNkJWVFdq3b4++fftCIpHUe9zu3bt1VpxYuAaIzJm68DNv3jzY29uLUA0Rke7oZQ1QWFhYg8GHiIzbnTt3kJKSotLOUR8iskRabYRIRKapvimvvn0ZfojIMjX6LjAiMg3qwk9MTAxHdInIojEAEZmpvLw87Ny5U6WdU15ERAxARGZJ3aiPnZ0doqKiRKiGiMj4MAARmRl14adv31iMGSNCMURERooBiMhMfPvttzh48KBKe00Nww8R0d8xABGZAXWjPleuDME//jGY4YeISA0GICITV9/jLIiIqH4MQEQmavv27bh8+bJKO8MPEdGjMQARmSB1oz4vv/wyunTpIkI1RESmhwGIyIQIgoAlS5aotHPUh4hIOwxARCaCT3AnItIdK7ELSElJgY+PD+zs7BAUFISTJ0/We+yGDRvw9NNPw8XFBS4uLggODlZ7/IULFzBmzBg4OTnBwcEB/fv3x/Xr1/V5GkR6pS78zJw5k+GHiKiRRA1Au3btQmRkJGJjY5Gbm4s+ffogJCQExcXFao/Pzs7GxIkTkZWVhZycHHh7e2Po0KG4deuW4pirV6/iqaeeQrdu3ZCdnY2zZ89i4cKFsLOzM9RpEelMTU1NvXd5ubq6ilAREZF5kAiCIIj1w4OCgtC/f3+sW7cOACCXy+Ht7Y2ZM2di/vz5j3y/TCaDi4sL1q1bh7CwMADASy+9BGtra2zZsqXRdZWXl8PJyQllZWVo2bJlo/shagpOeRERaUeb39+ijQDV1NTg1KlTCA4O/qsYKysEBwcjJydHoz6qqqpQW1ur+JewXC7H119/jcceewwhISFo06YNgoKCkJaW1mA/1dXVKC8vV/oiEpO68BMdHc3wQ0SkI6IFoDt37kAmk8Hd3V2p3d3dHYWFhRr1ERUVBU9PT0WIKi4uRkVFBRISEjBs2DAcOHAA48ePx/PPP4/Dhw/X2098fDycnJwUX97e3o0/MaImKC0trXfKy8bGRoSKiIjMk8neBZaQkICdO3ciOztbsb5HLpcDAMaOHYt33nkHAODn54fjx48jNTUVgwcPVttXdHQ0IiMjFd+Xl5czBJHBccqLiMhwRAtArVq1glQqRVFRkVJ7UVERPDw8GnxvUlISEhIScPDgQfTu3Vupz2bNmqFHjx5Kx3fv3h3Hjh2rtz9bW1vY2to24iyIdENd+MnIiMH8+RIRqiEiMn+iTYHZ2NjA398fmZmZija5XI7MzEwMGDCg3vctX74ccXFxSE9PR0BAgEqf/fv3R15enlL7pUuX0KFDB92eAJEO5Ofn1zvldfy4hA8yJSLSE1GnwCIjIzF58mQEBAQgMDAQycnJqKysREREBAAgLCwMXl5eiI+PBwAkJiYiJiYG27dvh4+Pj2KtkKOjIxwdHQEAc+fORWhoKAYNGoRnnnkG6enp+M9//oPs7GxRzpGoPuqCz+OPP44XXnhBhGqIiCyLqAEoNDQUJSUliImJQWFhIfz8/JCenq5YGH39+nVYWf01SLV+/XrU1NRgwoQJSv3ExsZi0aJFAIDx48cjNTUV8fHxmDVrFrp27YqvvvoKTz31lMHOi+hR+AR3IiJxiboPkLHiPkCkL7m5ufjPf/6j0s7wQ0TUdNr8/jbZu8CITI26UZ/z54dj165AEaohIrJsoj8LjMgSqL/LKxavvMLwQ0QkBo4AEenR/v37cerUKZX22NhYcNaLiEg8DEBEeqJu1GfKlClo166dCNUQEdHDGICIdEwQBCxZskSlnQudiYiMBwMQkQ6lpKTgzp07Ku0MP0RExoUBiEhH1E15RUZGokWLFiJUQ0REDWEAImqi2tpaLFu2TKWdoz5ERMaLAYioCeLi4iCXy1XaGX6IiIwb9wEiaqTFixerhJ8DBxagb1+GHyIiY8cRICItVVRUYMWKFSrt3NuHiMh0MAARaUHdQmcnp26YPTtUhGqIiKixGICINKQu/MTExEAikYhQDRERNQUDENEjFBYW4uOPP1Zp50JnIiLTxQBE1AB1oz4jRoxA//79RaiGiIh0hQGIqB7qwg9HfYiIzAMDENHf5OXlYefOnSrtDD9EROaDAYjoIepGfSZNmoSOHTuKUA0REekLAxDR/8cpLyIiy8EARBbv22+/xcGDB1XaGX6IiMwXAxBZNHWjPm+//Tbc3NxEqIaIiAyFAYgskiAIWLJkiUo7R32IiCwDAxBZnK+++grnzp1TaWf4ISKyHAxAZFHUTXnNmzcP9vb2IlRDRERiYQAii1BXV4elS5eqtHPUh4jIMjEAkdnbunUrrl69qtR29247JCdPEakiIiISGwMQmTV1U14HDixEVJSVCNUQEZGxYAAis1RZWYmkpCSV9tjYWHDWi4iIGIDI7CQkJKC6ulqp7dlnn8XTTz8tUkVERGRsGIDIrKib8oqJiYFEIhGhGiIiMlYMQGQWSkpK8NFHH6m08y4vIiJShwGITJ66UZ9//OMf6NGjhwjVEBGRKWAAIpPGJ7gTEVFjMACRSbp69Sq2bt2q0s7wQ0REmmAAIpOjbtTn9ddfh5eXlwjVEBGRKWIAIpPCKS8iItIFBiAyCT/88AO+/vprlXaGHyIiagwGIDJ66kZ9Vq2ajR49nLirMxERNQoDEBktQRCwZMkSlfa+fWPRowcwf74IRRERkVlgACKjlJ6ejhMnTii1ubu7Y9q0aQCAMWPEqIqIiMyFUTwSOyUlBT4+PrCzs0NQUBBOnjxZ77EbNmzA008/DRcXF7i4uCA4OLjB46dNmwaJRILk5GQ9VE76sHjxYpXwM3/+fEX4ISIiairRA9CuXbsQGRmJ2NhY5Obmok+fPggJCUFxcbHa47OzszFx4kRkZWUhJycH3t7eGDp0KG7duqVy7J49e/Ddd9/B09NT36dBOlBbW1vvXV62trYiVEREROZKIgiCIGYBQUFB6N+/P9atWwcAkMvl8Pb2xsyZMzFfg0UeMpkMLi4uWLduHcLCwhTtt27dQlBQEDIyMjBy5EjMnj0bs2fP1qim8vJyODk5oaysDC1btmzUeZF2Nm3ahGvXrim1+fn5YezYsSJVREREpkab39+irgGqqanBqVOnEB0drWizsrJCcHAwcnJyNOqjqqoKtbW1cHV1VbTJ5XJMmjQJc+fORc+ePR/ZR3V1NaqrqxXfl5eXa3EW1FTqRn0WLlwIKyvRByiJiMhMifob5s6dO5DJZHB3d1dqd3d3R2FhoUZ9REVFwdPTE8HBwYq2xMRENGvWDLNmzdKoj/j4eDg5OSm+vL29NT8JarSKiop6p7wYfoiISJ9M+i6whIQE7Ny5E9nZ2bCzswMAnDp1CqtXr0Zubi4kEolG/URHRyMyMlLxfXl5OUOQni1duhR1dXVKbcHBwXjyySdFqoiIiCyJqAGoVatWkEqlKCoqUmovKiqCh4dHg+9NSkpCQkICDh48iN69eyvajx49iuLiYrRv317RJpPJMGfOHCQnJ6OgoEClL1tbWy6yNSA+zoKIiMQm6jyDjY0N/P39kZmZqWiTy+XIzMzEgAED6n3f8uXLERcXh/T0dAQEBCi9NmnSJJw9exanT59WfHl6emLu3LnIyMjQ27nQoxUXFzP8EBGRURB9CiwyMhKTJ09GQEAAAgMDkZycjMrKSkRERAAAwsLC4OXlhfj4eAD31/fExMRg+/bt8PHxUawVcnR0hKOjI9zc3ODm5qb0M6ytreHh4YGuXbsa9uRIQV3wCQ0NRbdu3USohoiILJ3oASg0NBQlJSWIiYlBYWEh/Pz8kJ6erlgYff36daUFsevXr0dNTQ0mTJig1E9sbCwWLVpkyNJJQxz1ISIiYyP6PkDGiPsA6caNGzewceNGlXaGHyIi0geT2QeIzJe6UZ/jx6ciI6OtCNUQEREp42YrpHPqwk9GRixmzGD4ISIi48ARINKZzZt/RkHBl0ptD57gzlkvIiIyJgxApBPqRn3mzJkDR0dHEaohIiJqGAMQNYkgCFiyZIlKOxc6ExGRMWMAokb76aefsHv3bqW2gIAAjBw5UqSKiIiINMMARI2ibsprwYIFaNaMf6SIiMj48bcVaaWurg5Lly5VaeeUFxERmRIGINLYsWPHlJ7bBgDjxo1Dnz59RKqIiIiocRiASCPqprxiYmIgkUhEqIaIiKhpGICoQffu3UNiYqJKO6e8iIjIlDEAUb3279+PU6dOKbVNmjQJHTt2FKkiIiIi3WAAIrX4BHciIjJnDECkpKysDMnJyUptjo6OmDNnjjgFERER6QEDECl8/vnnyM/PV2qbNm0a3N3dRaqIiIhIPxiACACnvIiIyLIwAFm4oqIipKamKrX5+Phg8uTJIlVERESkfwxAFmzFihWoqKhQaps9ezacnJxEqoiIiMgwGIAsFKe8iIjIkjEAWZhffvkFW7ZsUWrz9/fHqFGjRKqIiIjI8BiALIi6UZ+oqCjY2dmJUA0REZF4GIAsgCAIWLJkiUo7p7yIiMhSMQCZuTNnziAtLU2pLTg4GE8++aQ4BRERERkBBiAzpm7K6/3334dUKhWhGiIiIuPBAGSG6urqsHTpUpV2TnkRERHdxwBkZo4cOYKsrCyltueffx69evUSqSIiIiLjwwBkJvbtA378UXXKKyYmBhKJRISKiIiIjBcDkBmoqanBjz/Gq7RzyouIiEg9BiAT98MPP+Drr79WagsLC4Ovr69IFRERERk/BiATxsdZEBERNQ4DkAmqqqrChx9+qNTGx1kQERFpjgHIxHz8cRYKC48otfEJ7kRERNphADIhX331FQoLzym1ccqLiIhIewxAJuDevXtITExUamvb9hlMnTpIpIqIiIhMGwOQkbt48SJ27dql1Pbee+/B2tpapIqIiIhMHwOQEfv888+Rn5+v+P6JJ55ASEiIiBURERGZBwYgI1RRUYEVK1YotU2dOhVt27YVqSIiIiLzwgBkZM6cOYO0tDTF91KpFNHR0XyCOxERkQ4xABkJQRCQmpqK4uJiRdszzzyDQYO40JmIiEjXGICMQGlpKVavXq3UNmPGDLRq1UqkioiIiMybldgFAEBKSgp8fHxgZ2eHoKAgnDx5st5jN2zYgKeffhouLi5wcXFBcHCw0vG1tbWIiopCr1694ODgAE9PT4SFheHXX381xKlo7cSJE0rhx8nJCTExMQw/REREeiR6ANq1axciIyMRGxuL3Nxc9OnTByEhIUpTQQ/Lzs7GxIkTkZWVhZycHHh7e2Po0KG4desWgPuPicjNzcXChQuRm5uL3bt3Iy8vD2PGjDHkaT2SXC5HUlIS0tPTFW0jRozA7NmzIZFIRKyMiIjI/EkEQRDELCAoKAj9+/fHunXrANwPBt7e3pg5cybmz5//yPfLZDK4uLhg3bp1CAsLU3vM999/j8DAQFy7dg3t27d/ZJ/l5eVwcnJCWVkZWrZsqd0JaaCkpAQfffSRUhsfZ0FERNQ02vz+FnUNUE1NDU6dOoXo6GhFm5WVFYKDg5GTk6NRH1VVVaitrYWrq2u9x5SVlUEikcDZ2Vnt69XV1aiurlZ8X15ertkJNEJ2djYOHz6s+N7T0xOvv/46R32IiIgMSNQpsDt37kAmk8Hd3V2p3d3dHYWFhRr1ERUVBU9PTwQHB6t9/d69e4iKisLEiRPrTYPx8fFwcnJSfHl7e2t3Ihq6du2aUvh5/vnn8cYbbzD8EBERGZjoa4CaIiEhATt37sSePXtgZ2en8nptbS1efPFFCIKA9evX19tPdHQ0ysrKFF83btzQZ9kAgHfffRe9evXS+88hIiIiVaJOgbVq1QpSqRRFRUVK7UVFRfDw8GjwvUlJSUhISMDBgwfRu3dvldcfhJ9r167h0KFDDc4F2trawtbWtnEnoYUOHTrAzy8GiYkS9O0LGNm6bCIiIosh6giQjY0N/P39kZmZqWiTy+XIzMzEgAED6n3f8uXLERcXh/T0dAQEBKi8/iD8XL58GQcPHoSbm5te6m+MxEQJcnKAhASxKyEiIrJcom+EGBkZicmTJyMgIACBgYFITk5GZWUlIiIiAABhYWHw8vJCfHw8ACAxMRExMTHYvn07fHx8FGuFHB0d4ejoiNraWkyYMAG5ubnYv38/ZDKZ4hhXV1fY2NiIc6L/3/z598OPBje4ERERkZ6IHoBCQ0NRUlKCmJgYFBYWws/PD+np6YqF0devX4eV1V8DVevXr0dNTQ0mTJig1E9sbCwWLVqEW7duYd++fQAAPz8/pWOysrIwZMgQvZ7Po4wZw6kvIiIisYm+D5Ax0vc+QERERKR72vz+Num7wIiIiIgagwGIiIiILA4DEBEREVkcBiAiIiKyOAxAREREZHEYgIiIiMjiMAARERGRxWEAIiIiIovDAEREREQWhwGIiIiILA4DEBEREVkcBiAiIiKyOKI/Dd4YPXg+bHl5uciVEBERkaYe/N7W5DnvDEBq/PHHHwAAb29vkSshIiIibf3xxx9wcnJq8BiJoElMsjByuRy//vorWrRoAYlEovP+y8vL4e3tjRs3bqBly5Y6798U8Zqo4jVRxWuiitdEFa+JKku5JoIg4I8//oCnpyesrBpe5cMRIDWsrKzQrl07vf+cli1bmvUfxMbgNVHFa6KK10QVr4kqXhNVlnBNHjXy8wAXQRMREZHFYQAiIiIii8MAJAJbW1vExsbC1tZW7FKMBq+JKl4TVbwmqnhNVPGaqOI1UcVF0ERERGRxOAJEREREFocBiIiIiCwOAxARERFZHAYgIiIisjgMQDqQkpICHx8f2NnZISgoCCdPnqz32A0bNuDpp5+Gi4sLXFxcEBwcrHR8bW0toqKi0KtXLzg4OMDT0xNhYWH49ddfDXEqOqPLa/J306ZNg0QiQXJysh4q1x99XJMLFy5gzJgxcHJygoODA/r374/r16/r8zR0StfXpKKiAm+//TbatWsHe3t79OjRA6mpqfo+DZ3S5prs3r0bAQEBcHZ2hoODA/z8/LBlyxalYwRBQExMDNq2bQt7e3sEBwfj8uXL+j4NndLlNbHEz1hN/pw8zFQ/Y7UmUJPs3LlTsLGxETZu3Cj8/PPPwhtvvCE4OzsLRUVFao9/+eWXhZSUFOHHH38ULly4IISHhwtOTk7CzZs3BUEQhNLSUiE4OFjYtWuXcPHiRSEnJ0cIDAwU/P39DXlaTaLra/Kw3bt3C3369BE8PT2FVatW6flMdEcf1+TKlSuCq6urMHfuXCE3N1e4cuWKsHfv3nr7NDb6uCZvvPGG0KlTJyErK0vIz88XPv74Y0EqlQp79+411Gk1ibbXJCsrS9i9e7dw/vx54cqVK0JycrIglUqF9PR0xTEJCQmCk5OTkJaWJpw5c0YYM2aM4OvrK/z555+GOq0m0fU1scTPWE3+nDxgqp+xjcEA1ESBgYHCjBkzFN/LZDLB09NTiI+P1+j9dXV1QosWLYTNmzfXe8zJkycFAMK1a9eaXK8h6Oua3Lx5U/Dy8hLOnTsndOjQwaT+curjmoSGhgqvvvqqzms1FH1ck549ewpLlixROq5fv37CggULdFO0njX1mgiCIPTt21d4//33BUEQBLlcLnh4eAgffvih4vXS0lLB1tZW2LFjh+4K1yNdXxN1LO0zVhDUXxNT/oxtDE6BNUFNTQ1OnTqF4OBgRZuVlRWCg4ORk5OjUR9VVVWora2Fq6trvceUlZVBIpHA2dm5qSXrnb6uiVwux6RJkzB37lz07NlT53Xrkz6uiVwux9dff43HHnsMISEhaNOmDYKCgpCWlqaPU9A5ff05GThwIPbt24dbt25BEARkZWXh0qVLGDp0qM7PQdeaek0EQUBmZiby8vIwaNAgAEB+fj4KCwuV+nRyckJQUJDG11lM+rgm6ljSZ2x918SUP2MbiwGoCe7cuQOZTAZ3d3eldnd3dxQWFmrUR1RUFDw9PZX+MD/s3r17iIqKwsSJE03iAXb6uiaJiYlo1qwZZs2apdN6DUEf16S4uBgVFRVISEjAsGHDcODAAYwfPx7PP/88Dh8+rPNz0DV9/TlZu3YtevTogXbt2sHGxgbDhg1DSkpKg7/8jEVjr0lZWRkcHR1hY2ODkSNHYu3atXjuuecAQPG+plxnMenjmvydpXzGPuqamPJnbGPxafAiSkhIwM6dO5GdnQ07OzuV12tra/Hiiy9CEASsX79ehAoNT901OXXqFFavXo3c3FxIJBKRKzQ8dddELpcDAMaOHYt33nkHAODn54fjx48jNTUVgwcPFq1eQ6jv787atWvx3XffYd++fejQoQOOHDmCGTNmNPiPDFPXokULnD59GhUVFcjMzERkZCQ6duyIIUOGiF2aaDS9Jpb0GdvQNbHUz1gGoCZo1aoVpFIpioqKlNqLiorg4eHR4HuTkpKQkJCAgwcPonfv3iqvP/iLee3aNRw6dMgk/mUC6OeaHD16FMXFxWjfvr2iTSaTYc6cOUhOTkZBQYFOz0HX9HFNWrVqhWbNmqFHjx5Kx3fv3h3Hjh3TXfF6oo9r8ueff+K9997Dnj17MHLkSABA7969cfr0aSQlJRl9AGrsNbGyskLnzp0B3A/BFy5cQHx8PIYMGaJ4X1FREdq2bavUp5+fn+5PQsf0cU0esLTP2Iauial/xjYWp8CawMbGBv7+/sjMzFS0yeVyZGZmYsCAAfW+b/ny5YiLi0N6ejoCAgJUXn/wF/Py5cs4ePAg3Nzc9FK/PujjmkyaNAlnz57F6dOnFV+enp6YO3cuMjIy9HYuuqKPa2JjY4P+/fsjLy9Pqf3SpUvo0KGDbk9AD/RxTWpra1FbWwsrK+WPNalUqhgxM2aNvSZ/J5fLUV1dDQDw9fWFh4eHUp/l5eU4ceKEVn2KRR/XBLDMz9i/e/iamPpnbKOJuQLbHOzcuVOwtbUVNm3aJJw/f16YOnWq4OzsLBQWFgqCIAiTJk0S5s+frzg+ISFBsLGxEb788kvh9u3biq8//vhDEARBqKmpEcaMGSO0a9dOOH36tNIx1dXVopyjtnR9TdQxtTsU9HFNdu/eLVhbWwv/+te/hMuXLwtr164VpFKpcPToUYOfX2Po45oMHjxY6Nmzp5CVlSX88ssvwmeffSbY2dkJH330kcHPrzG0vSbLli0TDhw4IFy9elU4f/68kJSUJDRr1kzYsGGD4piEhATB2dlZ2Lt3r3D27Flh7NixJncbvC6viSV+xmry5+TvTO0ztjEYgHRg7dq1Qvv27QUbGxshMDBQ+O677xSvDR48WJg8ebLi+w4dOggAVL5iY2MFQRCE/Px8ta8DELKysgx7Yk2gy2uijin+5dTHNfn000+Fzp07C3Z2dkKfPn2EtLQ0A52Nbuj6mty+fVsIDw8XPD09BTs7O6Fr167CihUrBLlcbsCzahptrsmCBQsU//1dXFyEAQMGCDt37lTqTy6XCwsXLhTc3d0FW1tb4f/+7/+EvLw8Q52OTujymljiZ6wmf07+zhQ/Y7UlEQRB0P84ExEREZHx4BogIiIisjgMQERERGRxGICIiIjI4jAAERERkcVhACIiIiKLwwBEREREFocBiIiIiCwOAxARERFZHAYgIjI74eHhkEgkSEhIUGpPS0tTPO06OzsbY8eORdu2beHg4AA/Pz9s27ZNjHKJSAQMQERkluzs7JCYmIi7d++qff348ePo3bs3vvrqK5w9exYREREICwvD/v37DVwpEYmBj8IgIrMTHh6O3377DVeuXMHo0aOxfPlyAPdHgMaPH4/6PvZGjhwJd3d3bNy40ZDlEpEIOAJERGZJKpVi2bJlWLt2LW7evKnRe8rKyuDq6qrnyojIGDAAEZHZGj9+PPz8/BAbG/vIY7/44gt8//33iIiIMEBlRCQ2BiAiMmuJiYnYvHkzLly4UO8xWVlZiIiIwIYNG9CzZ08DVkdEYmEAIiKzNmjQIISEhCA6Olrt64cPH8bo0aOxatUqhIWFGbg6IhJLM7ELICLSt4SEBPj5+aFr165K7dnZ2Rg1ahQSExMxdepUkaojIjEwABGR2evVqxdeeeUVrFmzRtGWlZWFUaNG4Z///CdeeOEFFBYWAgBsbGy4EJrIAnAKjIgswpIlSyCXyxXfb968GVVVVYiPj0fbtm0VX88//7yIVRKRoXAfICIiIrI4HAEiIiIii8MARERERBaHAYiIiIgsDgMQERERWRwGICIiIrI4DEBERERkcRiAiIiIyOIwABEREZHFYQAiIiIii8MARERERBaHAYiIiIgsDgMQERERWZz/B9F7LLIw7m3dAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_37.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJYklEQVR4nO3deVyVdd7/8fcBBdyAVFZFccktTQ2ToBqtLDRzy2bMLJfUGpdKbYM2LctlynV0dCZTm8qlpjRuM81cKylTx1IDXAlLQUwBwQSE6/cHP8+ELB7wHM72ej4e58Gc61zL53juc5933+u7mAzDMAQAAOCGPOxdAAAAgL0QhAAAgNsiCAEAALdFEAIAAG6LIAQAANwWQQgAALgtghAAAHBbBCEAAOC2CEIAAMBtEYQAuASTyaQpU6bYuwyz4cOHKzw83N5lALgKghAAm1m+fLlMJpP54ePjo1atWmn8+PFKT0+36bV37typKVOmKDMz06rn7d69e4n3VL9+fd18881aunSpioqKrHKNadOmae3atVY5F4CK1bB3AQBc32uvvaZmzZrp4sWL+vrrr7Vo0SKtX79eBw4cUO3ata1yjd9//101avzv/6Xt3LlTr776qoYPHy5/f3+rXOOyxo0ba/r06ZKkjIwM/fvf/9bIkSN16NAhzZgx45rPP23aND3wwAPq37//NZ8LQMUIQgBsrlevXurSpYskadSoUWrQoIFmz56tTz/9VIMHD67yeYuKipSfny8fHx/5+PhYq9yr8vPz08MPP2x+/vjjj6t169ZasGCBpk6dqpo1a1ZbLQCuDbfGAFS7O++8U5J0/PhxSdJbb72l6OhoNWjQQLVq1VJERIT+85//lDrOZDJp/Pjx+uCDD3TDDTfI29tbGzZsML92uY/QlClT9Oyzz0qSmjVrZr6NlZKSom7duqljx45l1tW6dWvFxMRU+v3Url1bt9xyi3Jzc5WRkVHufrm5uXr66acVFhYmb29vtW7dWm+99ZYMwyjxHnNzc/Xuu++a6x4+fHilawJgGVqEAFS7o0ePSpIaNGggSZo3b5769u2rIUOGKD8/X6tWrdKf//xnrVu3Tr179y5x7JYtW/Thhx9q/PjxatiwYZkdku+//34dOnRIK1eu1Jw5c9SwYUNJUkBAgB555BGNHj1aBw4cUPv27c3HfP/99zp06JBeeumlKr2nY8eOydPTs9zbcIZhqG/fvtq6datGjhypTp06aePGjXr22Wf166+/as6cOZKk9957T6NGjVLXrl312GOPSZJatGhRpZoAWMAAABtZtmyZIcn48ssvjYyMDOPEiRPGqlWrjAYNGhi1atUyfvnlF8MwDOPChQsljsvPzzfat29v3HnnnSW2SzI8PDyMgwcPlrqWJGPy5Mnm52+++aYhyTh+/HiJ/TIzMw0fHx/j+eefL7H9ySefNOrUqWPk5ORU+J66detmtGnTxsjIyDAyMjKMxMRE48knnzQkGX369DHvN2zYMKNp06bm52vXrjUkGa+//nqJ8z3wwAOGyWQyjhw5Yt5Wp04dY9iwYRXWAcA6uDUGwOZ69OihgIAAhYWF6cEHH1TdunW1Zs0aNWrUSJJUq1Yt877nzp1TVlaWbr/9du3du7fUubp166Z27dpVuRY/Pz/169dPK1euNN+SKiws1OrVq9W/f3/VqVPnqudISkpSQECAAgIC1LZtW/39739X7969tXTp0nKPWb9+vTw9PfXkk0+W2P7000/LMAx9/vnnVX5PAKqOIGShHTt2qE+fPgoNDZXJZLL50FZLrjd8+PASw3hNJpN69uxp07qAqli4cKE2bdqkrVu36qefftKxY8dK9MVZt26dbrnlFvn4+Kh+/foKCAjQokWLlJWVVepczZo1u+Z6hg4dqtTUVH311VeSpC+//FLp6el65JFHLDo+PDxcmzZt0pdffqmvv/5aaWlpWrdunfkWXFl+/vlnhYaGql69eiW2t23b1vw6gOpHHyEL5ebmqmPHjnr00Ud1//33O8z1evbsqWXLlpmfe3t727w2oLK6du1qHjV2pa+++kp9+/bVn/70J/3jH/9QSEiIatasqWXLlmnFihWl9v9j61FVxcTEKCgoSO+//77+9Kc/6f3331dwcLB69Ohh0fF16tSxeF8Ajo0gZKFevXqpV69e5b6el5enF198UStXrlRmZqbat2+vmTNnqnv37ja53mXe3t4KDg6u0jUAR/Dxxx/Lx8dHGzduLBHk/xjwq8JkMpX7mqenpx566CEtX75cM2fO1Nq1azV69Gh5enpe0zUr0rRpU3355Zc6f/58iVahpKQk8+uW1A7Aurg1ZiXjx49XQkKCVq1apR9//FF//vOf1bNnTx0+fNim1922bZsCAwPVunVrjRkzRr/99ptNrwdYm6enp0wmkwoLC83bUlJSrvn28+W+PuXNLP3II4/o3Llzevzxx5WTk1NiXiBbuPfee1VYWKgFCxaU2D5nzhyZTKYS/+FTp04dq8+IDaBstAhZQWpqqpYtW6bU1FSFhoZKkp555hlt2LBBy5Yt07Rp02xy3Z49e+r+++9Xs2bNdPToUb3wwgvq1auXEhISbPpftoA19e7dW7Nnz1bPnj310EMP6fTp01q4cKFatmypH3/8scrnjYiIkCS9+OKLevDBB1WzZk316dPHHJA6d+6s9u3b66OPPlLbtm110003WeX9lKdPnz6644479OKLLyolJUUdO3bUF198oU8//VQTJkwoMUQ+IiJCX375pWbPnq3Q0FA1a9ZMkZGRNq0PcFe0CFnB/v37VVhYqFatWqlu3brmx/bt283zpSQlJZXq2HzlIzY2tlLXffDBB9W3b1916NBB/fv317p16/T9999r27ZtNniXgG3ceeedeuedd5SWlqYJEyZo5cqVmjlzpgYMGHBN57355ps1depU/fDDDxo+fLgGDx5carLDoUOHSpLFnaSvhYeHh+Lj4zVhwgStW7dOEyZM0E8//aQ333xTs2fPLrHv7NmzFRERoZdeekmDBw/WokWLbF4f4K5MhvGHKU1hEZPJpDVr1pjXAVq9erWGDBmigwcPlmqJqVu3roKDg5Wfn69jx45VeN4GDRooICDgqterSEBAgF5//XU9/vjjFr8fwF3NmzdPEydOVEpKipo0aWLvcgDYAbfGrKBz584qLCzU6dOndfvtt5e5j5eXl9q0aWPTOn755Rf99ttvCgkJsel1AFdgGIbeeecddevWjRAEuDGCkIVycnJ05MgR8/Pjx49r3759ql+/vlq1aqUhQ4Zo6NChmjVrljp37qyMjAxt3rxZN954Y6klAq71ek2aNFFOTo5effVVDRw4UMHBwTp69Kiee+45tWzZskprJQHuIjc3V/Hx8dq6dav279+vTz/91N4lAbAnu85r7US2bt1qSCr1uDwNfn5+vvHKK68Y4eHhRs2aNY2QkBBjwIABxo8//miT6124cMG45557jICAAKNmzZpG06ZNjdGjRxtpaWlWeseAazp+/LghyfD39zdeeOEFe5cDwM7oIwQAANyWU40aq8oyF9u2bdNNN90kb29vtWzZUsuXL7d5nQAAwDk4VRC6vOzEwoULLdr/+PHj6t27t+644w7t27dPEyZM0KhRo7Rx40YbVwoAAJyB094as2RI+fPPP6/PPvtMBw4cMG978MEHlZmZqQ0bNlh0naKiIp08eVL16tVj2nsAAJyEYRg6f/68QkND5eFRfruPS48aS0hIKLUwYkxMjCZMmGDxOU6ePKmwsDArVwYAAKrDiRMn1Lhx43Jfd+kglJaWpqCgoBLbgoKClJ2drd9//73MVazz8vKUl5dnfn65wezEiRPy9fW1bcEAAMAqsrOzFRYWVmKR47K4dBCqiunTp+vVV18ttd3X15cgBACAk7latxan6ixdWcHBwUpPTy+xLT09Xb6+vmW2BklSXFycsrKyzI8TJ05UR6kAAMAOXLpFKCoqSuvXry+xbdOmTYqKiir3GG9vb3l7e9u6NAAA4ACcqkUoJydH+/bt0759+yT9b9mJ1NRUScWtOZdXk5akv/71rzp27Jiee+45JSUl6R//+Ic+/PBDTZw40R7lAwAAB+NULUK7d+/WHXfcYX4+adIkSdKwYcO0fPlynTp1yhyKJKlZs2b67LPPNHHiRM2bN0+NGzfWkiVLbLIWV2FhoQoKCqx+XjiWmjVrytPT095lAACsxGnnEaou2dnZ8vPzU1ZWVpmdpQ3DUFpamjIzM6u/ONiFv7+/goODmVcKABzY1X6/L3OqFiFHdDkEBQYGqnbt2vw4ujDDMHThwgWdPn1akhQSEmLnigAA14ogdA0KCwvNIahBgwb2LgfV4PJow9OnTyswMJDbZADg5Jyqs7SjudwnqHbt2nauBNXp8udNnzAAcH4EISvgdph74fMGANdBEAIAAG6LIAQAANwWQchNDR8+XCaTSSaTSTVr1lRQUJDuvvtuLV26VEVFRRafZ/ny5fL397ddoQAA2BBByI317NlTp06dUkpKij7//HPdcccdeuqpp3Tffffp0qVL9i4PAACbIwi5MW9vbwUHB6tRo0a66aab9MILL+jTTz/V559/ruXLl0uSZs+erQ4dOqhOnToKCwvT2LFjlZOTI0natm2bRowYoaysLHPr0pQpUyRJ7733nrp06aJ69eopODhYDz30kHn+HQAAJCk+XoqOLv5rLwQhKzIMQ/n5+XZ5WGuC8DvvvFMdO3bUJ598Ikny8PDQ/PnzdfDgQb377rvasmWLnnvuOUlSdHS05s6dK19fX506dUqnTp3SM888I6l4aPnUqVP1ww8/aO3atUpJSdHw4cOtUiMAwDXMmCElJBT/tRcmVLSigoICTZ8+3S7XjouLk5eXl1XO1aZNG/3444+SpAkTJpi3h4eH6/XXX9df//pX/eMf/5CXl5f8/PxkMpkUHBxc4hyPPvqo+X83b95c8+fP180336ycnBzVrVvXKnUCAJxbbGxxCIqNtV8NBCGUYhiGea6cL7/8UtOnT1dSUpKys7N16dIlXbx4URcuXKhwIsk9e/ZoypQp+uGHH3Tu3DlzB+zU1FS1a9euWt4HAMCx9e1b/LAngpAV1axZU3FxcXa7trUkJiaqWbNmSklJ0X333acxY8bojTfeUP369fX1119r5MiRys/PLzcI5ebmKiYmRjExMfrggw8UEBCg1NRUxcTEKD8/32p1AgBwrQhCVmQymax2e8petmzZov3792vixInas2ePioqKNGvWLHl4FHcn+/DDD0vs7+XlpcLCwhLbkpKS9Ntvv2nGjBkKCwuTJO3evbt63gAAAJVAZ2k3lpeXp7S0NP3666/au3evpk2bpn79+um+++7T0KFD1bJlSxUUFOjvf/+7jh07pvfee0+LFy8ucY7w8HDl5ORo8+bNOnPmjC5cuKAmTZrIy8vLfFx8fLymTp1qp3cJAED5CEJubMOGDQoJCVF4eLh69uyprVu3av78+fr000/l6empjh07avbs2Zo5c6bat2+vDz74oFRn8OjoaP31r3/VoEGDFBAQoL/97W8KCAjQ8uXL9dFHH6ldu3aaMWOG3nrrLTu9SwAAymcyrDXu2kVlZ2fLz89PWVlZ8vX1LfHaxYsXdfz4cTVr1kw+Pj52qhDVjc8dABxfRb/ff0SLEAAAcFsEIQAA4LYIQgAAwG0RhAAAgNsiCAEAALdFEAIAAG6LIAQAANwWQQgAALgtghAAAHBbBCHY1PDhw9W/f3/z8+7du2vChAnXdE5rnAMAAIkg5LaGDx8uk8kkk8kkLy8vtWzZUq+99pouXbpk0+t+8sknFi/Aum3bNplMJmVmZlb5HAAAVKSGvQuA/fTs2VPLli1TXl6e1q9fr3HjxqlmzZqKi4srsV9+fr68vLyscs369es7xDkAAJBoEXJr3t7eCg4OVtOmTTVmzBj16NFD8fHx5ttZb7zxhkJDQ9W6dWtJ0okTJ/SXv/xF/v7+ql+/vvr166eUlBTz+QoLCzVp0iT5+/urQYMGeu6553Tlmr5X3tbKy8vT888/r7CwMHl7e6tly5Z65513lJKSojvuuEOSdN1118lkMmn48OFlnuPcuXMaOnSorrvuOtWuXVu9evXS4cOHza8vX75c/v7+2rhxo9q2bau6deuqZ8+eOnXqlHmfbdu2qWvXrqpTp478/f1166236ueff7bSvzQAwFERhGBWq1Yt5efnS5I2b96s5ORkbdq0SevWrVNBQYFiYmJUr149ffXVV/rmm2/MgeLyMbNmzdLy5cu1dOlSff311zp79qzWrFlT4TWHDh2qlStXav78+UpMTNQ///lP1a1bV2FhYfr4448lScnJyTp16pTmzZtX5jmGDx+u3bt3Kz4+XgkJCTIMQ/fee68KCgrM+1y4cEFvvfWW3nvvPe3YsUOpqal65plnJEmXLl1S//791a1bN/34449KSEjQY489JpPJdM3/pgAAx8atMcgwDG3evFkbN27UE088oYyMDNWpU0dLliwx3xJ7//33VVRUpCVLlpgDwrJly+Tv769t27bpnnvu0dy5cxUXF6f7779fkrR48WJt3Lix3OseOnRIH374oTZt2qQePXpIkpo3b25+/fItsMDAQPn7+5d5jsOHDys+Pl7ffPONoqOjJUkffPCBwsLCtHbtWv35z3+WJBUUFGjx4sVq0aKFJGn8+PF67bXXJEnZ2dnKysrSfffdZ369bdu2lf+HBAA4HadrEVq4cKHCw8Pl4+OjyMhI7dq1q8L9586dq9atW6tWrVoKCwvTxIkTdfHixWqq1nLx8VJ0dPHf6rJu3TrVrVtXPj4+6tWrlwYNGqQpU6ZIkjp06FCiX9APP/ygI0eOqF69eqpbt67q1q2r+vXr6+LFizp69KiysrJ06tQpRUZGmo+pUaOGunTpUu719+3bJ09PT3Xr1q3K7yExMVE1atQocd0GDRqodevWSkxMNG+rXbu2OeRIUkhIiE6fPi2pOHANHz5cMTEx6tOnj+bNm1fithkAwHU5VRBavXq1Jk2apMmTJ2vv3r3q2LGjYmJizD9oV1qxYoViY2M1efJkJSYm6p133tHq1av1wgsvVHPlVzdjhpSQUPy3utxxxx3at2+fDh8+rN9//13vvvuu6tSpI0nmv5fl5OQoIiJC+/btK/E4dOiQHnrooSpdv1atWtf8HixVs2bNEs9NJlOJ/kvLli1TQkKCoqOjtXr1arVq1UrffvtttdUHALAPpwpCs2fP1ujRozVixAi1a9dOixcvVu3atbV06dIy99+5c6duvfVWPfTQQwoPD9c999yjwYMHX7UVyR5iY6WoqOK/1aVOnTpq2bKlmjRpoho1Kr5LetNNN+nw4cMKDAxUy5YtSzz8/Pzk5+enkJAQfffdd+ZjLl26pD179pR7zg4dOqioqEjbt28v8/XLLVKFhYXlnqNt27a6dOlSiev+9ttvSk5OVrt27Sp8T1fq3Lmz4uLitHPnTrVv314rVqyo1PEAAOfjNEEoPz9fe/bsMfclkSQPDw/16NFDCQkJZR4THR2tPXv2mIPPsWPHtH79et17773VUnNl9O0r7dxZ/NcRDRkyRA0bNlS/fv301Vdf6fjx49q2bZuefPJJ/fLLL5Kkp556SjNmzNDatWuVlJSksWPHlpoD6I/Cw8M1bNgwPfroo1q7dq35nB9++KEkqWnTpjKZTFq3bp0yMjKUk5NT6hzXX3+9+vXrp9GjR+vrr7/WDz/8oIcffliNGjVSv379LHpvx48fV1xcnBISEvTzzz/riy++0OHDh+knBABuwGmC0JkzZ1RYWKigoKAS24OCgpSWllbmMQ899JBee+013XbbbapZs6ZatGih7t27V3hrLC8vT9nZ2SUeKO5js2PHDjVp0kT333+/2rZtq5EjR+rixYvy9fWVJD399NN65JFHNGzYMEVFRalevXoaMGBAheddtGiRHnjgAY0dO1Zt2rTR6NGjlZubK0lq1KiRXn31VcXGxiooKEjjx48v8xzLli1TRESE7rvvPkVFRckwDK1fv77U7bCK3ltSUpIGDhyoVq1a6bHHHtO4ceP0+OOPV+JfCADgjEzGlRO9OKiTJ0+qUaNG2rlzp6Kioszbn3vuOW3fvr3ErZHLtm3bpgcffFCvv/66IiMjdeTIET311FMaPXq0Xn755TKvM2XKFL366qultmdlZZl/8C+7ePGijh8/rmbNmsnHx+ca3yGcBZ87ADi+7Oxs+fn5lfn7/UdO0yLUsGFDeXp6Kj09vcT29PR0BQcHl3nMyy+/rEceeUSjRo1Shw4dNGDAAE2bNk3Tp09XUVFRmcfExcUpKyvL/Dhx4oTV3wsAAO7AHiOiK8tpgpCXl5ciIiK0efNm87aioiJt3ry5RAvRH124cEEeHiXfoqenpySVmvH4Mm9vb/n6+pZ4AACAyrPHiOjKcpogJEmTJk3S22+/rXfffVeJiYkaM2aMcnNzNWLECEnFsxT/cZ2sPn36aNGiRVq1apWOHz+uTZs26eWXX1afPn3MgQgAAFfgiK0v9hgRXVlONbP0oEGDlJGRoVdeeUVpaWnq1KmTNmzYYO5AnZqaWqIF6KWXXpLJZNJLL72kX3/9VQEBAerTp4/eeOMNe70FAICbi48vbiGJjbXuSOE/tr44ygjkvn0dp5byOE1naXupqLPV5U6z4eHh1To5IOzr999/V0pKCp2lAVRJdHRxYImKKp42xVpsFbCclct1lnZEl4dnX7hwwc6VoDpd/rwtHZ4PAH9kq9tFjj4fnaNyqltjjsbT01P+/v7mJT5q167NiuUuzDAMXbhwQadPn5a/vz/9zABUiTPcLnInBKFrdHnofnnrncH1+Pv7lztlAwDAuRCErpHJZFJISIgCAwNVUFBg73JgYzVr1qQlCAAqyZH7LxGErMTT05MfSAAAyuCII9ouo7M0AACwKUeeT4gWIQAAYFOO3EGcFiEAAOC2CEIAAMBtEYQAALADR1wbzB0RhAAAsANnWJndHRCEAACwA0ceSeVOGDUGAIAdOPJIKndCixAAAHBbBCEAAOC2CEIAAMBtEYQAAIDbIggBAAC3RRACAABuiyAEAADcFkEIAAAnxBId1kEQAgDACbFEh3UQhAAAcEIs0WEdBCEAAK6RPW5T9e0r7dzJMh3XiiAEAMA14jaV8yIIAQBwjbhN5bxYfR4AgGvESvLOixYhAADgtghCAADAbRGEAACA2yIIAQAAt0UQAgAAbsvpgtDChQsVHh4uHx8fRUZGateuXRXun5mZqXHjxikkJETe3t5q1aqV1q9fX03VAgAAR+ZUw+dXr16tSZMmafHixYqMjNTcuXMVExOj5ORkBQYGlto/Pz9fd999twIDA/Wf//xHjRo10s8//yx/f//qLx4AADgck2EYhr2LsFRkZKRuvvlmLViwQJJUVFSksLAwPfHEE4otYxarxYsX680331RSUpJq1qxZpWtmZ2fLz89PWVlZ8vX1vab6AQBA9bD099tpbo3l5+drz5496tGjh3mbh4eHevTooYSEhDKPiY+PV1RUlMaNG6egoCC1b99e06ZNU2FhYXWVDQAAHJjT3Bo7c+aMCgsLFRQUVGJ7UFCQkpKSyjzm2LFj2rJli4YMGaL169fryJEjGjt2rAoKCjR58uQyj8nLy1NeXp75eXZ2tvXeBAAAcChO0yJUFUVFRQoMDNS//vUvRUREaNCgQXrxxRe1ePHico+ZPn26/Pz8zI+wsLBqrBgAAFQnpwlCDRs2lKenp9LT00tsT09PV3BwcJnHhISEqFWrVvL09DRva9u2rdLS0pSfn1/mMXFxccrKyjI/Tpw4Yb03AQAAHIrTBCEvLy9FRERo8+bN5m1FRUXavHmzoqKiyjzm1ltv1ZEjR1RUVGTedujQIYWEhMjLy6vMY7y9veXr61viAQAAXJPTBCFJmjRpkt5++229++67SkxM1JgxY5Sbm6sRI0ZIkoYOHaq4uDjz/mPGjNHZs2f11FNP6dChQ/rss880bdo0jRs3zl5vAQAAOBCn6SwtSYMGDVJGRoZeeeUVpaWlqVOnTtqwYYO5A3Vqaqo8PP6X7cLCwrRx40ZNnDhRN954oxo1aqSnnnpKzz//vL3eAgAAcCBONY+QPTCPEAAAzsfl5hECAACwNoIQAABwWwQhAADgtghCAADAbRGEAACA2yIIAQAAt0UQAgDAgcXHS9HRxX9hfQQhAAAc2IwZUkJC8V9YH0EIAAAHFhsrRUUV/4X1OdUSGwAAuJu+fYsfsA1ahAAAgNsiCAEAALdFEAIAAG6LIAQAANwWQQgAAAfE/EHVgyAEAIADYv6g6kEQAgDAATF/UPVgHiEAABwQ8wdVD1qEAACA2yIIAQAAt0UQAgAAbosgBAAA3BZBCADgkJhHB9WBIAQAcEjOOo8OAc65EIQAAA7JWefRcdYA564IQgAAh9S3r7Rzp/PNpeOsAc5dMaEiAABWxESIzoUWIQAArhH9gpwXQQgAgGtEvyDnRRACAOAa0S/IeRGEAMANcSvHupy1YzcIQgDglriVAxRzuiC0cOFChYeHy8fHR5GRkdq1a5dFx61atUomk0n9+/e3bYEA4ATseSuH1ig4EqcKQqtXr9akSZM0efJk7d27Vx07dlRMTIxOnz5d4XEpKSl65plndPvtt1dTpQDgeqwVYGiNgiNxqiA0e/ZsjR49WiNGjFC7du20ePFi1a5dW0uXLi33mMLCQg0ZMkSvvvqqmjdvXo3VAoDjqkoYsVaAoWMxHInTBKH8/Hzt2bNHPXr0MG/z8PBQjx49lJCQUO5xr732mgIDAzVy5MjqKBMAnEJVwoi1Agwdi+FInGZm6TNnzqiwsFBBQUEltgcFBSkpKanMY77++mu988472rdvn8XXycvLU15envl5dnZ2leoFAEdWldmPmTEZrshpWoQq6/z583rkkUf09ttvq2HDhhYfN336dPn5+ZkfYWFhNqwSAADYk9O0CDVs2FCenp5KT08vsT09PV3BwcGl9j969KhSUlLUp08f87aioiJJUo0aNZScnKwWLVqUOi4uLk6TJk0yP8/OziYMAQDgopwmCHl5eSkiIkKbN282D4EvKirS5s2bNX78+FL7t2nTRvv37y+x7aWXXtL58+c1b968csONt7e3vL29rV4/AABwPE4ThCRp0qRJGjZsmLp06aKuXbtq7ty5ys3N1YgRIyRJQ4cOVaNGjTR9+nT5+Pioffv2JY739/eXpFLbAQCAe3KqIDRo0CBlZGTolVdeUVpamjp16qQNGzaYO1CnpqbKw8Nluz0BAAArMxmGYdi7CEeWnZ0tPz8/ZWVlydfX197lAAAAC1j6+03zCQCgWrC0BhwRQQgAUC1YWgOOqNJByNPTs8y1vX777Td5enpapSgAgOthaQ04okp3li6vS1FeXp68vLyuuSAAgGtiZmo4IouD0Pz58yVJJpNJS5YsUd26dc2vFRYWaseOHWrTpo31KwQAALARi4PQnDlzJBW3CC1evLjEbTAvLy+Fh4dr8eLF1q8QAADARiwOQsePH5ck3XHHHfrkk0903XXX2awoAACA6lDpPkJbt261RR0AAADVrtJB6NFHH63w9aVLl1a5GAAAgOpU6SB07ty5Es8LCgp04MABZWZm6s4777RaYQAAALZW6SC0Zs2aUtuKioo0ZswYtWjRwipFAQAAVAerzCzt4eGhSZMmmUeWAQBsi+UqAOuw2hIbR48e1aVLl6x1OgBwK5UNNixXAVhHpW+NTZo0qcRzwzB06tQpffbZZxo2bJjVCgMAd/LHYGPJ7MuxscX7slwFcG0qHYT++9//lnju4eGhgIAAzZo166ojygAAZatssGG5CsA6TEZ5i4dBkpSdnS0/Pz9lZWXJ19fX3uUAAAALWPr7XekWoctOnz6t5ORkSVLr1q0VGBhY1VMBAADYRaU7S2dnZ+uRRx5RaGiounXrpm7duqlRo0Z6+OGHlZWVZYsaAQAAbKLSQWj06NH67rvv9NlnnykzM1OZmZlat26ddu/erccff9wWNQIAANhEpfsI1alTRxs3btRtt91WYvtXX32lnj17Kjc316oF2ht9hAAAcD6W/n5XukWoQYMG8vPzK7Xdz8+PFekBAIBTqXQQeumllzRp0iSlpaWZt6WlpenZZ5/Vyy+/bNXiAAAAbKnSt8Y6d+6sI0eOKC8vT02aNJEkpaamytvbW9dff32Jfffu3Wu9Su2EW2MAADgfmw2f79evn0wm0zUVBwAA4AiYUPEqaBECAMD52KyzdPPmzfXbb7+V2p6ZmanmzZtX9nQAAAB2U+kglJKSosLCwlLb8/Ly9Msvv1ilKAAAgOpgcR+h+Ph48//euHFjiSH0hYWF2rx5s5o1a2bd6gDARcTH/29RVRZLLca/CRyBxX2EPDyKG49MJpOuPKRmzZoKDw/XrFmzdN9991m/SjuijxAAa4iOlhISpKgoaedO+9VRUfi41mBS2eMd5d8ErsnqfYSKiopUVFSkJk2a6PTp0+bnRUVFysvLU3JyssuFIACwltjY4h/82Fj71jFjRnH4mDGjcq9d67nL4ij/JnBvjBq7ClqEALgSR2oRAmzJ0t/vSgeh1157rcLXX3nllcqczuERhAAAcD42m1BxzZo1JZ4XFBTo+PHjqlGjhlq0aGHzILRw4UK9+eabSktLU8eOHfX3v/9dXbt2LXPft99+W//+97914MABSVJERISmTZtW7v4AAMC9VDoI/fe//y21LTs7W8OHD9eAAQOsUlR5Vq9erUmTJmnx4sWKjIzU3LlzFRMTo+TkZAUGBpbaf9u2bRo8eLCio6Pl4+OjmTNn6p577tHBgwfVqFEjm9YKAAAcn9X6CO3fv199+vRRSkqKNU5XpsjISN18881asGCBpOIO3GFhYXriiScUa0Fvu8LCQl133XVasGCBhg4datE1uTUGwJroRwNUD5vNLF2erKwsZWVlWet0peTn52vPnj3q0aOHeZuHh4d69OihhIQEi85x4cIFFRQUqH79+rYqEwAqdK0js9xBfHzx0Po/TF8H2Eylb43Nnz+/xHPDMHTq1Cm999576tWrl9UKu9KZM2dUWFiooKCgEtuDgoKUlJRk0Tmef/55hYaGlghTV8rLy1NeXp75eXZ2dtUKBoAyxMb+r0VIooWoLH8Mi/ybwNYqHYTmzJlT4rmHh4cCAgI0bNgwxcXFWa0wa5sxY4ZWrVqlbdu2ycfHp9z9pk+frldffbUaKwPgTvr2Lfnjzo9+aVeGRcCWKh2Ejh8/bos6rqphw4by9PRUenp6ie3p6ekKDg6u8Ni33npLM2bM0Jdffqkbb7yxwn3j4uI0adIk8/Ps7GyFhYVVvXAAqAA/+qVdGRYBW6pSH6HMzEzt3r1bu3fvVmZmppVLKpuXl5ciIiK0efNm87aioiJt3rxZUVFR5R73t7/9TVOnTtWGDRvUpUuXq17H29tbvr6+JR4AYCt9+xYvL8EPP2AflQpCKSkp6t27txo2bKjIyEhFRkaqYcOGuu+++2w6WuyySZMm6e2339a7776rxMREjRkzRrm5uRoxYoQkaejQoSVuz82cOVMvv/yyli5dqvDwcKWlpSktLU05OTk2rxUAADg+i2+NnThxQrfccotq1qypqVOnqm3btpKkn376SYsWLVJUVJS+//57NW7c2GbFDho0SBkZGXrllVeUlpamTp06acOGDeYO1KmpqebFYSVp0aJFys/P1wMPPFDiPJMnT9aUKVNsVicAAHAOFs8jNHLkSB05ckQbN24s1dn4999/V8+ePXX99ddryZIlNinUXphHCAAA52P1JTY2bNig1atXlzniqlatWpo6daoefPDBqlULAABgBxb3ETpz5ozCw8PLfb158+Y6e/asNWoCAJfDJIGAY7I4CIWEhOinn34q9/UDBw5cdRg7ALgrZpQGHJPFQah///565plnlJGRUeq106dP6/nnn1f//v2tWRsAOLTKtPLExkpRUcwXBDgaiztLnzt3TpGRkUpLS9PDDz+sNm3ayDAMJSYmasWKFQoODta3337rcut40VkaQHmio4tbeaKiiucCAuA4rN5Z+rrrrtN3332nF154QatWrTJPpOjv76+HHnpI06ZNc7kQBMA12Go9L2aFBpyfxS1Cf2QYhvkWWUBAgEwmk9ULcxS0CAHOj5YbwP1Y+vtdpSU2TCaTAgMDFRgY6NIhCIBroH8OgPJUKQgBgDOp7vW8GCoPOA+CEABYGUPlAedBEAIAK+NWHOA8LB41BgCwTN++1XcbDsC1sSgIzZ8/3+ITPvnkk1UuBgAAoDpZNHy+WbNmlp3MZNKxY8euuShHwvB5AACcj1UnVDx+/LjVCgMAAHAUVe4snZ+fr+TkZF26dMma9QAAAFSbSgehCxcuaOTIkapdu7ZuuOEGpaamSpKeeOIJzWCsKAAAcCKVDkJxcXH64YcftG3bNvn4+Ji39+jRQ6tXr7ZqcQDA5IQAbKnSQWjt2rVasGCBbrvtthLLa9xwww06evSoVYsDACYnBGBLlQ5CGRkZCgwMLLU9NzeXdccAWJ0jTk5IKxXgOiodhLp06aLPPvvM/Pxy+FmyZImioqKsVxkAqPrXCbMErVSA66j0zNLTpk1Tr1699NNPP+nSpUuaN2+efvrpJ+3cuVPbt2+3RY0A4FBiY4tDkCO1UgGomkq3CN12223at2+fLl26pA4dOuiLL75QYGCgEhISFBERYYsaAcChOGIrFYCqsWhmaXfGzNIAADgfq84snZ2dbfGFCQsAKiM+/n+3mWhhAVDdLApC/v7+Fo8IKywsvKaCALiXP3Y8JggBqG4WBaGtW7ea/3dKSopiY2M1fPhw8yixhIQEvfvuu5o+fbptqgTgslyh4zGtWoDzqnQfobvuukujRo3S4MGDS2xfsWKF/vWvf2nbtm3WrM/u6CME4Gqio4tbtaKiijtRA7A/S3+/Kz1qLCEhQV26dCm1vUuXLtq1a1dlTwcATs8RJ30EYJlKB6GwsDC9/fbbpbYvWbJEYWFhVikKAJwJw+kB51XpCRXnzJmjgQMH6vPPP1dkZKQkadeuXTp8+LA+/vhjqxcIAABgK5VuEbr33nt1+PBh9enTR2fPntXZs2fVp08fHTp0SPfee68tagQAALCJSgchSWrcuLGmTZumTz75RJ988oneeOONarsttnDhQoWHh8vHx0eRkZFX7Zf00UcfqU2bNvLx8VGHDh20fv36aqkTgONhsVQAV6pSEMrMzNSsWbM0atQojRo1SnPmzFFWVpa1aytl9erVmjRpkiZPnqy9e/eqY8eOiomJ0enTp8vcf+fOnRo8eLBGjhyp//73v+rfv7/69++vAwcO2LxWAI6HxVIBXKnSw+d3796tmJgY1apVS127dpUkff/99/r999/1xRdf6KabbrJJoZIUGRmpm2++WQsWLJAkFRUVKSwsTE888YRiyxiuMWjQIOXm5mrdunXmbbfccos6deqkxYsXW3RNhs8DroP5fgD3YdUlNv5o4sSJ6tu3r95++23VqFF8+KVLlzRq1ChNmDBBO3bsqHrVFcjPz9eePXsUFxdn3ubh4aEePXooISGhzGMSEhI0adKkEttiYmK0du1am9RYGZcuXdI333yjtLQ0e5eiixcvKiUlxd5lANUiJkb673+LHwCqj6enp1q2bFlqe+vWrdWpUyeLV7CwtkoHod27d5cIQZJUo0YNPffcc2XOL2QtZ86cUWFhoYKCgkpsDwoKUlJSUpnHpKWllbl/ReEjLy9PeXl55ueVWWetMhISElxu8kkAAMpTWFio5OTkUtuTk5NVr169MkNSdah0HyFfX1+lpqaW2n7ixAnVq1fPKkXZ0/Tp0+Xn52d+2KoT+PXXX2+T8wIA4Exq166tkJAQu12/0i1CgwYN0siRI/XWW28pOjpakvTNN9/o2WefLbXshjU1bNhQnp6eSk9PL7E9PT1dwcHBZR4THBxcqf0lKS4ursTttOzsbJuEoeDgYE2ePNnq5wUAAJardIvQW2+9pfvvv19Dhw5VeHi4wsPDNXz4cD3wwAOaOXOmLWqUJHl5eSkiIkKbN282bysqKtLmzZvNi79eKSoqqsT+krRp06Zy95ckb29v+fr6lngAcA0MnwdwpUqPGrvswoULOnr0qCSpRYsWql27tlULK8vq1as1bNgw/fOf/1TXrl01d+5cffjhh0pKSlJQUJCGDh2qRo0aafr06ZKKh89369ZNM2bMUO/evbVq1SpNmzZNe/fuVfv27S26JqPGANfB4qiA+7DZqLHLateurQ4dOlT18CoZNGiQMjIy9MorrygtLU2dOnXShg0bzB2iU1NT5eHxv0au6OhorVixQi+99JJeeOEFXX/99Vq7dq3FIQiAa4mN/d/weQCQKtEi9Oijj1p0wqVLl15TQY6GFiEAAJyP1VuEli9frqZNm6pz586q4t00AAAAh2JxEBozZoxWrlyp48ePa8SIEXr44YdVv359W9YGAABgUxaPGlu4cKFOnTql5557Tv/3f/+nsLAw/eUvf9HGjRtpIQIAAE6pUsPnvb29NXjwYG3atEk//fSTbrjhBo0dO1bh4eHKycmxVY0AUCkMkwdgqSqtPi8Vr/NlMplkGIYKCwutWRMAXBNWmQdgqUoFoby8PK1cuVJ33323WrVqpf3792vBggVKTU1V3bp1bVUjAFRKbGzxXEEMkwdwNRZ3lh47dqxWrVqlsLAwPfroo1q5cqUaNmxoy9oAoEr69i1+AMDVWDyPkIeHh5o0aaLOnTvLZDKVu98nn3xiteIcAfMIAQDgfKw+j9DQoUMrDEAA4Cji4/83gzQtQwAqUuW1xtwFLUKA82FNMQCW/n5XedQYADgqOksDsFSVF10FAEdFZ2kAlqJFCIBFmKQQgCsiCAGwCJMUAnBFBCEAFqHfDQBXRB8hABah3w0AV0SLEAC7oM8RAEdAEAJQIVsFFvocAXAEBCEAFbJVYKHPEQBHQBACUCFbBZa+fYtnfabfEQB7orM0gArRSRqAK6NFCAAAuC2CEOAGGKEFAGUjCAFugBFaAFA2ghDgBhihBQBlo7M04Abo8AwAZaNFCAAAuC2CEAAAcFsEIQAA4LYIQgCs4sUXpXr1iv8CgLMgCAEuxJ7zBc2fL+XkFP8FAGdBEAJcyJXzBVVnMHrySalu3eK/AOAsnCYInT17VkOGDJGvr6/8/f01cuRI5eTkVLj/E088odatW6tWrVpq0qSJnnzySWVlZVVj1UD1unK+oOqcSPGNN6Tz54v/AoCzcJogNGTIEB08eFCbNm3SunXrtGPHDj322GPl7n/y5EmdPHlSb731lg4cOKDly5drw4YNGjlyZDVWDVSvK1d0t3QiRZbgAOCuTIZhGPYu4moSExPVrl07ff/99+rSpYskacOGDbr33nv1yy+/KDQ01KLzfPTRR3r44YeVm5urGjUsm0syOztbfn5+ysrKkq+vb5XfA+DIoqOLW46iooqDFAA4O0t/v52iRSghIUH+/v7mECRJPXr0kIeHh7777juLz3P5H8PSEAS4mvJafliCA4C7copEkJaWpsDAwBLbatSoofr16ystLc2ic5w5c0ZTp06t8HaaJOXl5SkvL8/8PDs7u/IFAw7qj32G/rjkBktwAHBXdm0Rio2NlclkqvCRlJR0zdfJzs5W79691a5dO02ZMqXCfadPny4/Pz/zIyws7JqvDziKyrT80G8IgDuwax+hjIwM/fbbbxXu07x5c73//vt6+umnde7cOfP2S5cuycfHRx999JEGDBhQ7vHnz59XTEyMateurXXr1snHx6fC65XVIhQWFkYfITi0+PjiVp7YWOu17NBvCIAzs7SPkF1vjQUEBCggIOCq+0VFRSkzM1N79uxRRESEJGnLli0qKipSZGRkucdlZ2crJiZG3t7eio+Pv2oIkiRvb295e3tb/iYAB1DeLa9rERv7v3AFAK7KKTpLt23bVj179tTo0aO1a9cuffPNNxo/frwefPBB84ixX3/9VW3atNGuXbskFYege+65R7m5uXrnnXeUnZ2ttLQ0paWlqbCw0J5vB7A6W3R2vnIoPgC4IqfoLC1JH3zwgcaPH6+77rpLHh4eGjhwoOb/YS7/goICJScn68KFC5KkvXv3mkeUtWzZssS5jh8/rvDw8GqrHbA1OjsDQNU4xTxC9sQ8QnBFtuhTBACOxKXmEQJgXdW59AYAODKCEOCGmEARAIo5TR8hANZDnyIAKEaLEAAAcFsEIQAA4LYIQgAAwG0RhAAAgNsiCAEAALdFEAIAAG6LIAQAANwWQQhwIPHxUnR08V8AgO0RhAAHwtIXAFC9CEKAA2HpCwCoXiyxATgQlr4AgOpFixAAAHBbBCHAjugcDQD2RRACrtG1hBk6RwOAfRGEgGtkaZgpKzDRORoA7MtkGIZh7yIcWXZ2tvz8/JSVlSVfX197lwMHFB9fHIJiYyvu6BwdXRyYoqKknTurrz4AcEeW/n7TIgRco759i4PN1UZ70foDAI6HIARUk7ICE52lAcC+CEKAHdFZGgDsiyAEVJI1W3G4XQYA9kVn6augszSuRKdnAHB8dJYGbIRWHABwHaw1BlQS64EBgOugRQgAALgtghBgZS++KNWrV/wXAODY6Cx9FXSWRmXVqyfl5Eh160rnz9u7GgBwT3SWBqrJlcPpn3yyOAQ9+aR96wIAXB0tQldBixCuhuH0AOB4aBECqgnD6QHAeTlNEDp79qyGDBkiX19f+fv7a+TIkcrJybHoWMMw1KtXL5lMJq1du9a2hcLlXXkrzNJFVwEAjsdpgtCQIUN08OBBbdq0SevWrdOOHTv02GOPWXTs3LlzZTKZbFwh3AXrgwGA63CKIJSYmKgNGzZoyZIlioyM1G233aa///3vWrVqlU6ePFnhsfv27dOsWbO0dOnSaqoWro5bYQDgOpwiCCUkJMjf319dunQxb+vRo4c8PDz03XfflXvchQsX9NBDD2nhwoUKDg6ujlLhBrgVBgCuwymW2EhLS1NgYGCJbTVq1FD9+vWVlpZW7nETJ05UdHS0+vXrZ/G18vLylJeXZ36enZ1d+YIBAIBTsGuLUGxsrEwmU4WPpKSkKp07Pj5eW7Zs0dy5cyt13PTp0+Xn52d+hIWFVen6sMyVHY8BAKhOdg1CTz/9tBITEyt8NG/eXMHBwTp9+nSJYy9duqSzZ8+We8try5YtOnr0qPz9/VWjRg3VqFHc+DVw4EB179693Jri4uKUlZVlfpw4ccJq7xelOULHY8IYALgvp5hQMTExUe3atdPu3bsVEREhSfriiy/Us2dP/fLLLwoNDS11TFpams6cOVNiW4cOHTRv3jz16dNHzZo1s+jaTKhoW/HxxSEoNtZ+fW6YEBEAXI+lv99OEYQkqVevXkpPT9fixYtVUFCgESNGqEuXLlqxYoUk6ddff9Vdd92lf//73+ratWuZ5zCZTFqzZo369+9v8XUJQq7PEcIYAMC6LP39dorO0pL0wQcfaPz48brrrrvk4eGhgQMHav78+ebXCwoKlJycrAsXLtixSjijvn0JQADgrpymRcheaBECAMD5sNYYUA46RwMALiMIweVdGXwcYaQaAMAxEITg8q4MPiyRAQC4jCAEm3Ck209XBh+WyAAAXEYQgk1U9+0nRwpeAADnQRCCTVT37aeKghd9ggAA5SEIwSaq+/ZTRcGLPkEAgPIwj9BVMI8QAADOh3mEAAAAroIgBAAA3BZBCAAAuC2CEAAAcFsEIQAA4LYIQgAAwG0RhAAAgNsiCAEAALdFEAIAAG6LIASnwKKqAABbIAjBoV0OQM89x8KpAADrIwjBzBFbXS6vHG8ysXAqAMD6CEIwuxw6HKnV5fLK8TNnVu9q9gAA90AQgtnl0OFIrS59+xKAAAC2QxCCmS1ChyPebgMA4DKCEGzKEW+3AQBwGUEINuWIt9sAALishr0LgGvr25f+PQAAx0WLEAAAcFsEIQAA4LYIQgAAwG0RhGDGUHcAgLshCMGMoe4AAHdDEIIZQ90BAO7GaYLQ2bNnNWTIEPn6+srf318jR45UTk7OVY9LSEjQnXfeqTp16sjX11d/+tOf9Pvvv1dDxc6H5SwAAO7GaYLQkCFDdPDgQW3atEnr1q3Tjh079Nhjj1V4TEJCgnr27Kl77rlHu3bt0vfff6/x48fLw8Np3jYAALAhk2EYhr2LuJrExES1a9dO33//vbp06SJJ2rBhg+6991798ssvCg0NLfO4W265RXfffbemTp1a5WtnZ2fLz89PWVlZ8vX1rfJ5AABA9bH099spmkYSEhLk7+9vDkGS1KNHD3l4eOi7774r85jTp0/ru+++U2BgoKKjoxUUFKRu3brp66+/rq6ynQ6jxgAA7sYpglBaWpoCAwNLbKtRo4bq16+vtLS0Mo85duyYJGnKlCkaPXq0NmzYoJtuukl33XWXDh8+XO618vLylJ2dXeLhLhg1BgBwN3YNQrGxsTKZTBU+kpKSqnTuoqIiSdLjjz+uESNGqHPnzpozZ45at26tpUuXlnvc9OnT5efnZ36EhYVV6frOiFFjAAB3Y9cg9PTTTysxMbHCR/PmzRUcHKzTp0+XOPbSpUs6e/asgoODyzx3SEiIJKldu3Yltrdt21apqanl1hQXF6esrCzz48SJE9f4Lh3f5VtiUtmjxrhlBgBwVXZdfT4gIEABAQFX3S8qKkqZmZnas2ePIiIiJElbtmxRUVGRIiMjyzwmPDxcoaGhSk5OLrH90KFD6tWrV7nX8vb2lre3dyXehfP74y2xsobOX+11AACclVP0EWrbtq169uyp0aNHa9euXfrmm280fvx4Pfjgg+YRY7/++qvatGmjXbt2SZJMJpOeffZZzZ8/X//5z3905MgRvfzyy0pKStLIkSPt+XYczpW3xK5sAeKWGQDAVTnF8HmpeELF8ePH6//+7//k4eGhgQMHav78+apbt64kKSUlRc2aNdPWrVvVvXt383EzZszQwoULdfbsWXXs2FF/+9vfdNttt1l8XXccPh8dXdwCFBVVfKsMAABnY+nvt9MEIXtxxyAUH198Gyw2llthAADn5FLzCLkiR+6AzFIbAAB3QRCyE+bsAQDA/ghCdkIHZAAA7M+uw+fdWd++3HoCAMDeaBECAABuiyAEAADcFkEIAAC4LYIQAABwWwQhAADgtghCAADAbRGEAACA2yIIAQAAt0UQAgAAbosgBAAA3BZBCAAAuC2CEAAAcFsEIQAA4LZYff4qDMOQJGVnZ9u5EgAAYKnLv9uXf8fLQxC6ivPnz0uSwsLC7FwJAACorPPnz8vPz6/c103G1aKSmysqKtLJkydVr149mUwme5dTQnZ2tsLCwnTixAn5+vrauxz8f3wujovPxjHxuTguZ/5sDMPQ+fPnFRoaKg+P8nsC0SJ0FR4eHmrcuLG9y6iQr6+v0/0fqDvgc3FcfDaOic/FcTnrZ1NRS9BldJYGAABuiyAEAADcFkHIiXl7e2vy5Mny9va2dyn4Az4Xx8Vn45j4XByXO3w2dJYGAABuixYhAADgtghCAADAbRGEAACA2yIIAQAAt0UQclA7duxQnz59FBoaKpPJpLVr11a4/7Zt22QymUo90tLSqqdgNzF9+nTdfPPNqlevngIDA9W/f38lJydf9biPPvpIbdq0kY+Pjzp06KD169dXQ7XupSqfzfLly0t9Z3x8fKqpYvewaNEi3XjjjeYJ+aKiovT5559XeAzfl+pR2c/GVb8vBCEHlZubq44dO2rhwoWVOi45OVmnTp0yPwIDA21UoXvavn27xo0bp2+//VabNm1SQUGB7rnnHuXm5pZ7zM6dOzV48GCNHDlS//3vf9W/f3/1799fBw4cqMbKXV9VPhupeMbcP35nfv7552qq2D00btxYM2bM0J49e7R7927deeed6tevnw4ePFjm/nxfqk9lPxvJRb8vBhyeJGPNmjUV7rN161ZDknHu3LlqqQnFTp8+bUgytm/fXu4+f/nLX4zevXuX2BYZGWk8/vjjti7PrVny2Sxbtszw8/OrvqJgGIZhXHfddcaSJUvKfI3vi31V9Nm46veFFiEX06lTJ4WEhOjuu+/WN998Y+9yXF5WVpYkqX79+uXuk5CQoB49epTYFhMTo4SEBJvW5u4s+WwkKScnR02bNlVYWNhV/2sY16awsFCrVq1Sbm6uoqKiytyH74t9WPLZSK75fSEIuYiQkBAtXrxYH3/8sT7++GOFhYWpe/fu2rt3r71Lc1lFRUWaMGGCbr31VrVv377c/dLS0hQUFFRiW1BQEP23bMjSz6Z169ZaunSpPv30U73//vsqKipSdHS0fvnll2qs1vXt379fdevWlbe3t/76179qzZo1ateuXZn78n2pXpX5bFz1+8Lq8y6idevWat26tfl5dHS0jh49qjlz5ui9996zY2Wua9y4cTpw4IC+/vpre5eCK1j62URFRZX4r9/o6Gi1bdtW//znPzV16lRbl+k2WrdurX379ikrK0v/+c9/NGzYMG3fvr3cH1xUn8p8Nq76fSEIubCuXbvyI20j48eP17p167Rjxw41bty4wn2Dg4OVnp5eYlt6erqCg4NtWaLbqsxnc6WaNWuqc+fOOnLkiI2qc09eXl5q2bKlJCkiIkLff/+95s2bp3/+85+l9uX7Ur0q89lcyVW+L9wac2H79u1TSEiIvctwKYZhaPz48VqzZo22bNmiZs2aXfWYqKgobd68ucS2TZs2VXgfHpVXlc/mSoWFhdq/fz/fGxsrKipSXl5ema/xfbGvij6bK7nK94UWIQeVk5NTImUfP35c+/btU/369dWkSRPFxcXp119/1b///W9J0ty5c9WsWTPdcMMNunjxopYsWaItW7boiy++sNdbcEnjxo3TihUr9Omnn6pevXrmfgt+fn6qVauWJGno0KFq1KiRpk+fLkl66qmn1K1bN82aNUu9e/fWqlWrtHv3bv3rX/+y2/twRVX5bF577TXdcsstatmypTIzM/Xmm2/q559/1qhRo+z2PlxNXFycevXqpSZNmuj8+fNasWKFtm3bpo0bN0ri+2JPlf1sXPb7Yu9hayjb5eHwVz6GDRtmGIZhDBs2zOjWrZt5/5kzZxotWrQwfHx8jPr16xvdu3c3tmzZYp/iXVhZn4kkY9myZeZ9unXrZv6cLvvwww+NVq1aGV5eXsYNN9xgfPbZZ9VbuBuoymczYcIEo0mTJoaXl5cRFBRk3HvvvcbevXurv3gX9uijjxpNmzY1vLy8jICAAOOuu+4yvvjiC/PrfF/sp7Kfjat+X0yGYRjVnr4AAAAcAH2EAACA2yIIAQAAt0UQAgAAbosgBAAA3BZBCAAAuC2CEAAAcFsEIQAA4LYIQgAA4Kp27NihPn36KDQ0VCaTSWvXrrXp9aZPn66bb75Z9erVU2BgoPr376/k5OQS+1y8eFHjxo1TgwYNVLduXQ0cOLDUWnVXQxAC4PJOnDihRx99VKGhofLy8lLTpk311FNP6bfffpMkFRQU6Pnnn1eHDh1Up04dhYaGaujQoTp58qSdKwccR25urjp27KiFCxdWy/W2b9+ucePG6dtvv9WmTZtUUFCge+65R7m5ueZ9Jk6cqP/7v//TRx99pO3bt+vkyZO6//77K3UdZpYG4NKOHTumqKgotWrVSq+//rqaNWumgwcP6tlnn1V+fr6+/fZbeXp66oEHHtDo0aPVsWNHnTt3Tk899ZQKCwu1e/due78FwOGYTCatWbNG/fv3N2/Ly8vTiy++qJUrVyozM1Pt27fXzJkz1b17d6tcMyMjQ4GBgdq+fbv+9Kc/KSsrSwEBAVqxYoUeeOABSVJSUpLatm2rhIQE3XLLLRadl0VXAbi0cePGycvLS1988YV58dUmTZqoc+fOatGihV588UUtWrRImzZtKnHcggUL1LVrV6WmpqpJkyb2KB1wKuPHj9dPP/2kVatWKTQ0VGvWrFHPnj21f/9+XX/99dd8/qysLElS/fr1JUl79uxRQUGBevToYd6nTZs2atKkSaWCELfGALiss2fPauPGjRo7dqw5BF0WHBysIUOGaPXq1SqrYTwrK0smk0n+/v7VVC3gvFJTU7Vs2TJ99NFHuv3229WiRQs988wzuu2227Rs2bJrPn9RUZEmTJigW2+9Ve3bt5ckpaWlycvLq9R3NCgoSGlpaRafmyAEwGUdPnxYhmGobdu2Zb7etm1bnTt3ThkZGSW2X7x4Uc8//7wGDx4sX1/f6igVcGr79+9XYWGhWrVqpbp165of27dv19GjRyUV37YymUwVPmJjY8s8/7hx43TgwAGtWrXK6rVzawyAy6tMV8iCggL95S9/kWEYWrRokQ2rAlxHTk6OPD09tWfPHnl6epZ4rW7dupKk5s2bKzExscLzNGjQoNS28ePHa926ddqxY4caN25s3h4cHKz8/HxlZmaWaBVKT09XcHCwxbUThAC4rJYtW8pkMikxMVEDBgwo9XpiYqKuu+46BQQESPpfCPr555+1ZcsWWoMAC3Xu3FmFhYU6ffq0br/99jL38fLyUps2bSw+p2EYeuKJJ7RmzRpt27ZNzZo1K/F6RESEatasqc2bN2vgwIGSpOTkZKWmpioqKsri6zBqDIBLi4mJ0cGDB3X48OES/YTS0tLUokULDR06VIsWLTKHoMOHD2vr1q3mcASgWE5Ojo4cOSKpOPjMnj1bd9xxh+rXr68mTZro4Ycf1jfffKNZs2apc+fOysjI0ObNm3XjjTeqd+/elb7e2LFjtWLFCn366adq3bq1ebufn5/5uzxmzBitX79ey5cvl6+vr5544glJ0s6dOy2/kAEALuzQoUNGw4YNjdtvv93Yvn27kZqaanz++edG+/btjeuvv9747bffjPz8fKNv375G48aNjX379hmnTp0yP/Ly8uz9FgCHsHXrVkNSqcewYcMMwzCM/Px845VXXjHCw8ONmjVrGiEhIcaAAQOMH3/8sUrXK+takoxly5aZ9/n999+NsWPHGtddd51Ru3ZtY8CAAcapU6cqdR1ahAC4vJ9//lmTJ0/Whg0bdPbsWQUHB6t///6aPHmyGjRooJSUlFLN7pdt3brVavOgAHA8BCEAAOC2GD4PAADcFkEIAAC4LYIQAABwWwQhAADgtghCAADAbRGEAACA2yIIAQAAt0UQAgAAbosgBAAA3BZBCAAAuC2CEAAAcFsEIQAA4Lb+H4PwciR3FpDoAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPGdJREFUeJzt3XtclGX+//H3gBxUBEVRNFE85CFtzdQMtlJbSy1F7LhuHljNNQ+l2UGsvqvllriablarfddEv5aH3FLJMvNsKu2upzyfQSxRWQ8gmKBw//7g5xSCOAMzzMw9r+fjcT+mueee+/7M7di8ve7rvi6LYRiGAAAAPJyPqwsAAABwBEINAAAwBUINAAAwBUINAAAwBUINAAAwBUINAAAwBUINAAAwBUINAAAwBUINAAAwBUINALdjsVg0YcIEV5dhFRcXp8jISFeXAeAWCDUAbDJ37lxZLBbrEhgYqGbNmmnkyJE6c+aMU4+9detWTZgwQRcvXnTofjt37lzkM4WGhqpDhw6aM2eOCgoKHHKMd955R8uWLXPIvgCUrpKrCwDgWd566y01atRIV65c0ebNmzVz5kx9/fXX2rt3r6pUqeKQY/z888+qVOmX/z1t3bpVb775puLi4lS9enWHHOO6+vXra9KkSZKkjIwM/d///Z8GDx6sw4cPKyEhodz7f+edd/TEE08oNja23PsCUDpCDQC79OjRQ+3bt5ckPfvss6pZs6amTZum5cuXq2/fvmXeb0FBgfLy8hQYGKjAwEBHlXtLISEh6tevn/X50KFD1bx5c33wwQeaOHGi/Pz8KqwWAOXD5ScA5fLggw9KklJSUiRJU6dOVXR0tGrWrKnKlSurXbt2+uc//1nsfRaLRSNHjtSnn36qVq1aKSAgQN988431tet9aiZMmKBXXnlFktSoUSPrpaLU1FR16tRJbdq0KbGu5s2bq1u3bnZ/nipVqujee+9VTk6OMjIybrpdTk6OXnrpJUVERCggIEDNmzfX1KlTZRhGkc+Yk5OjefPmWeuOi4uzuyYAtqGlBkC5HDt2TJJUs2ZNSdJ7772nmJgYPfPMM8rLy9OiRYv05JNPasWKFXr00UeLvHfdunX67LPPNHLkSNWqVavEzriPPfaYDh8+rIULF2r69OmqVauWJCksLEz9+/fXkCFDtHfvXrVu3dr6nv/85z86fPiw3njjjTJ9puPHj8vX1/eml7oMw1BMTIzWr1+vwYMH66677tKqVav0yiuv6KefftL06dMlSfPnz9ezzz6re+65R3/6058kSU2aNClTTQBsYACADRITEw1Jxpo1a4yMjAzj5MmTxqJFi4yaNWsalStXNn788UfDMAzj8uXLRd6Xl5dntG7d2njwwQeLrJdk+Pj4GPv27St2LEnG+PHjrc+nTJliSDJSUlKKbHfx4kUjMDDQGDt2bJH1L7zwglG1alUjOzu71M/UqVMno0WLFkZGRoaRkZFhHDhwwHjhhRcMSUavXr2s2w0cONBo2LCh9fmyZcsMScZf/vKXIvt74oknDIvFYhw9etS6rmrVqsbAgQNLrQOAY3D5CYBdunbtqrCwMEVEROj3v/+9goKCtHTpUt12222SpMqVK1u3vXDhgjIzM3X//fdrx44dxfbVqVMn3XHHHWWuJSQkRL1799bChQutl33y8/O1ePFixcbGqmrVqrfcx8GDBxUWFqawsDC1bNlS77//vh599FHNmTPnpu/5+uuv5evrqxdeeKHI+pdeekmGYWjlypVl/kwAys4rQ82mTZvUq1cv1atXTxaLxem3W9p6vAMHDigmJkYhISGqWrWqOnTooLS0NKfWBtjrww8/1OrVq7V+/Xrt379fx48fL9J3ZcWKFbr33nsVGBio0NBQhYWFaebMmcrMzCy2r0aNGpW7ngEDBigtLU3fffedJGnNmjU6c+aM+vfvb9P7IyMjtXr1aq1Zs0abN2/W6dOntWLFCutlrpKcOHFC9erVU7Vq1Yqsb9mypfV1ABXPK/vU5OTkqE2bNho0aJAee+wxtzjesWPHdN9992nw4MF68803FRwcrH379lXoXSCALe655x7r3U83+u677xQTE6MHHnhAf//731W3bl35+fkpMTFRCxYsKLb9r1t1yqpbt26qU6eOPvnkEz3wwAP65JNPFB4erq5du9r0/qpVq9q8LQD35pWhpkePHurRo8dNX8/NzdXrr7+uhQsX6uLFi2rdurUmT56szp07O+V4kvT666/rkUce0V//+lfrOjoUwtN8/vnnCgwM1KpVqxQQEGBdn5iYWK79WiyWm77m6+urP/zhD5o7d64mT56sZcuWaciQIfL19S3XMUvTsGFDrVmzRpcuXSrSWnPw4EHr67bUDsCxvPLy062MHDlSycnJWrRokXbv3q0nn3xS3bt315EjR5xyvIKCAn311Vdq1qyZunXrptq1a6tjx46MQgqP4+vrK4vFovz8fOu61NTUcn+Xr/eNudmIwv3799eFCxc0dOhQZWdnFxl3xhkeeeQR5efn64MPPiiyfvr06bJYLEX+EVO1alWHj4QMoGSEmhukpaUpMTFRS5Ys0f33368mTZro5Zdf1n333Vfuf23ezNmzZ5Wdna2EhAR1795d3377rfr06aPHHntMGzdudMoxAWd49NFHdfnyZXXv3l2zZs3SW2+9pY4dO6pp06bl2m+7du0kFbZozp8/X4sWLVJOTo719bZt26p169ZasmSJWrZsqbvvvrtcx7uVXr16qUuXLnr99dc1dOhQ/f3vf1dsbKwWL16sUaNGFWllbdeundasWaNp06Zp0aJF+te//uXU2gBvRqi5wZ49e5Sfn69mzZopKCjIumzcuNE6HsfBgweLzBdT0hIfH2/zMa/PMdO7d2+9+OKLuuuuuxQfH6+ePXtq1qxZTvmcgDM8+OCD+vjjj3X69GmNHj1aCxcu1OTJk9WnT59y7bdDhw6aOHGifvjhB8XFxalv377FBsYbMGCAJNncQbg8fHx8lJSUpNGjR2vFihUaPXq09u/frylTpmjatGlFtp02bZratWunN954Q3379tXMmTOdXh/grSyG8avhL72QxWLR0qVLrfOyLF68WM8884z27dtX7Jp8UFCQwsPDlZeXp+PHj5e635o1ayosLOyWx5OkvLw8Va1aVePHjy8yWNjYsWO1efNmbdmypewfEPAS7733nl588UWlpqaqQYMGri4HgAt4ZUfh0rRt21b5+fk6e/as7r///hK38ff3V4sWLRx2TH9/f3Xo0EGHDh0qsv7w4cNFOhwCKJlhGPr444/VqVMnAg3gxbwy1GRnZ+vo0aPW5ykpKdq1a5dCQ0PVrFkzPfPMMxowYIDeffddtW3bVhkZGVq7dq1+85vfFBvmvbzHu/4/4FdeeUVPP/20HnjgAXXp0kXffPONvvzyS23YsKHcnxcwq5ycHCUlJWn9+vXas2ePli9f7uqSALiSS8czdpH169cbkoot14cyz8vLM/785z8bkZGRhp+fn1G3bl2jT58+xu7du51yvOs+/vhjo2nTpkZgYKDRpk0bY9myZeX8pIC5paSkGJKM6tWrG6+99pqrywHgYl7fpwYAAJgDdz8BAABTINQAAABT8KqOwgUFBTp16pSqVavG0OUAAHgIwzB06dIl1atXTz4+N2+P8apQc+rUKUVERLi6DAAAUAYnT55U/fr1b/q6V4Wa6xPPnTx5UsHBwS6uBgAA2CIrK0sRERFFJpAtiVeFmuuXnIKDgwk1AAB4mFt1HaGjMAAAMAVCDQAAMAVCDQAAMAWv6lMDAPAcBQUFysvLc3UZqAB+fn7y9fUt934INQAAt5OXl6eUlBQVFBS4uhRUkOrVqys8PLxc48gRagAAbsUwDKWnp8vX11cRERGlDrYGz2cYhi5fvqyzZ89KkurWrVvmfRFqAABu5dq1a7p8+bLq1aunKlWquLocVIDKlStLks6ePavatWuX+VIU8RcA4Fby8/MlSf7+/i6uBBXpeoC9evVqmfdBqAEAuCXm6PMujvjzJtQAAABTINQAAABTINQAAOAAcXFxslgsslgs8vPzU506dfTQQw9pzpw5dt2aPnfuXFWvXt15hZoYoQYAAAfp3r270tPTlZqaqpUrV6pLly4aNWqUevbsqWvXrrm6PNMj1ABlkJQkRUcXPgLAdQEBAQoPD9dtt92mu+++W6+99pqWL1+ulStXau7cuZKkadOm6c4771TVqlUVERGh4cOHKzs7W5K0YcMG/fGPf1RmZqa11WfChAmSpPnz56t9+/aqVq2awsPD9Yc//ME6tgsKEWqAMkhIkJKTCx8BOJdhGMrLy3PJYhhGuet/8MEH1aZNG33xxReSJB8fH82YMUP79u3TvHnztG7dOr366quSpOjoaP3tb39TcHCw0tPTlZ6erpdffllS4a3OEydO1A8//KBly5YpNTVVcXFx5a7PTBh8DyiD+PjCQBMf7+pKAPO7evWqJk2a5JJjjxs3ziHj5bRo0UK7d++WJI0ePdq6PjIyUn/5y1/03HPP6e9//7v8/f0VEhIii8Wi8PDwIvsYNGiQ9b8bN26sGTNmqEOHDsrOzlZQUFC5azQDQg1QBjExhQsA2MIwDOs4LGvWrNGkSZN08OBBZWVl6dq1a7py5YouX75c6gjK27dv14QJE/TDDz/owoUL1s7HaWlpuuOOOyrkc7g7Qg0AwK35+flp3LhxLju2Ixw4cECNGjVSamqqevbsqWHDhuntt99WaGioNm/erMGDBysvL++moSYnJ0fdunVTt27d9OmnnyosLExpaWnq1q0bM5n/CqEGAODWLBaLR0+ZsG7dOu3Zs0cvvviitm/froKCAr377rvWiTo/++yzItv7+/tbp4q47uDBgzp37pwSEhIUEREhSdq2bVvFfAAPQkdhAAAcJDc3V6dPn9ZPP/2kHTt26J133lHv3r3Vs2dPDRgwQE2bNtXVq1f1/vvv6/jx45o/f75mzZpVZB+RkZHKzs7W2rVr9d///leXL19WgwYN5O/vb31fUlKSJk6c6KJP6b4INQAAOMg333yjunXrKjIyUt27d9f69es1Y8YMLV++XL6+vmrTpo2mTZumyZMnq3Xr1vr000+LdYKOjo7Wc889p6efflphYWH661//qrCwMM2dO1dLlizRHXfcoYSEBE2dOtVFn9J9WQxH3K/mIbKyshQSEqLMzEwFBwe7uhwAQAmuXLmilJQUNWrUSIGBga4uBxWktD93W3+/aakBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAMCDxMXFKTY21vq8c+fOGj16dLn26Yh9uANCDQAADhAXFyeLxWKdVbxp06Z66623dO3aNace94svvrB5cssNGzbIYrHo4sWLZd6HOyPUAE6QlCRFRxc+AvAe3bt3V3p6uo4cOaKXXnpJEyZM0JQpU4ptl5eX57BjhoaGqlq1ai7fhzsg1ABOkJAgJScXPgLwHgEBAQoPD1fDhg01bNgwde3aVUlJSdZLRm+//bbq1aun5s2bS5JOnjypp556StWrV1doaKh69+6t1NRU6/7y8/M1ZswYVa9eXTVr1tSrr76qG+ehvvHSUW5ursaOHauIiAgFBASoadOm+vjjj5WamqouXbpIkmrUqCGLxaK4uLgS93HhwgUNGDBANWrUUJUqVdSjRw8dOXLE+vrcuXNVvXp1rVq1Si1btlRQUJA10F23YcMG3XPPPapataqqV6+u3/72tzpx4oSDznTJCDWAE8THS1FRhY8AvFflypWtrTJr167VoUOHtHr1aq1YsUJXr15Vt27dVK1aNX333XfasmWLNRxcf8+7776ruXPnas6cOdq8ebPOnz+vpUuXlnrMAQMGaOHChZoxY4YOHDigjz76SEFBQYqIiNDnn38uSTp06JDS09P13nvvlbiPuLg4bdu2TUlJSUpOTpZhGHrkkUd09epV6zaXL1/W1KlTNX/+fG3atElpaWl6+eWXJUnXrl1TbGysOnXqpN27dys5OVl/+tOfZLFYyn1OS1PJqXsHvFRMTOECwDsZhqG1a9dq1apVev7555WRkaGqVatq9uzZ8vf3lyR98sknKigo0OzZs60/9omJiapevbo2bNighx9+WH/72980btw4PfbYY5KkWbNmadWqVTc97uHDh/XZZ59p9erV6tq1qySpcePG1tdDQ0MlSbVr11b16tVL3MeRI0eUlJSkLVu2KDo6WpL06aefKiIiQsuWLdOTTz4pSbp69apmzZqlJk2aSJJGjhypt956S5KUlZWlzMxM9ezZ0/p6y5Yt7T+RdqKlBgBgWhXdv23FihUKCgpSYGCgevTooaeffloTJkyQJN15553WQCNJP/zwg44ePapq1aopKChIQUFBCg0N1ZUrV3Ts2DFlZmYqPT1dHTt2tL6nUqVKat++/U2Pv2vXLvn6+qpTp05l/gwHDhxQpUqVihy3Zs2aat68uQ4cOGBdV6VKFWtgkaS6devq7NmzkgrDU1xcnLp166ZevXrpvffeK3JpylkINQAA06ro/m1dunTRrl27dOTIEf3888+aN2+eqlatKknWx+uys7PVrl077dq1q8hy+PBh/eEPfyjT8StXrlzuz2ArPz+/Is8tFkuR/j6JiYlKTk5WdHS0Fi9erGbNmun77793ak2EGgCAaVV0/7aqVauqadOmatCggSpVKr2Hx913360jR46odu3aatq0aZElJCREISEhqlu3rv71r39Z33Pt2jVt3779pvu88847VVBQoI0bN5b4+vWWovz8/Jvuo2XLlrp27VqR4547d06HDh3SHXfcUepnulHbtm01btw4bd26Va1bt9aCBQvser+9CDUAANOKiZG2bnXPPm7PPPOMatWqpd69e+u7775TSkqKNmzYoBdeeEE//vijJGnUqFFKSEjQsmXLdPDgQQ0fPrzYGDO/FhkZqYEDB2rQoEFatmyZdZ+fffaZJKlhw4ayWCxasWKFMjIylJ2dXWwft99+u3r37q0hQ4Zo8+bN+uGHH9SvXz/ddttt6t27t02fLSUlRePGjVNycrJOnDihb7/9VkeOHHF6vxpCDQAALlClShVt2rRJDRo00GOPPaaWLVtq8ODBunLlioKDgyVJL730kvr376+BAwcqKipK1apVU58+fUrd78yZM/XEE09o+PDhatGihYYMGaKcnBxJ0m233aY333xT8fHxqlOnjkaOHFniPhITE9WuXTv17NlTUVFRMgxDX3/9dbFLTqV9toMHD+rxxx9Xs2bN9Kc//UkjRozQ0KFD7ThD9rMYN97wbmJZWVkKCQlRZmam9QsDAHAvV65cUUpKiho1aqTAwEBXl4MKUtqfu62/37TUAA7ACMIA4HqEGsABGEEYAFyPUAM4gKtHEKalCAA8KNRMmjRJHTp0ULVq1VS7dm3Fxsbq0KFDri4LkOT6OyxoKQIADwo1Gzdu1IgRI/T9999r9erVunr1qh5++GFrj27AFmZt0XB1SxHgDF50HwvkmD9vjwk133zzjeLi4tSqVSu1adNGc+fOVVpaWqmDEMH73Cq0mK1F4/rnldx3LA7AXr6+vpJkndQR3uHy5cuSio9UbA+PndAyMzNT0i+Tc5UkNzdXubm51udZWVlOrwvOk5RUGEbi42/+4/3r0FLSNvHxv+yjompyplt9XsATVapUSVWqVFFGRob8/Pzk4+Mx//5GGRiGocuXL+vs2bOqXr26NdSWhUeOU1NQUKCYmBhdvHhRmzdvvul2EyZM0JtvvllsPePUeKbo6MIf8KiowlaJklR0yLClJmdydagCnCUvL08pKSkqKChwdSmoINWrV1d4eLh1xvJfs3WcGo8MNcOGDdPKlSu1efNm1a9f/6bbldRSExER4dWhxpN/BN2xdnesCTCLgoICLkF5CT8/v1JbaEwbakaOHKnly5dr06ZNatSokV3vZURh17csAABgL9ONKGwYhkaOHKmlS5dq3bp1dgcab1JaZ1nukgEAmJXHtNQMHz5cCxYs0PLly9W8eXPr+pCQEFWuXNmmfXhLS02LFtKhQ1Lz5tLBg66uBgCA8jFdS83MmTOVmZmpzp07q27dutZl8eLFri7Nqcoyrsr1PlYl9LWqMGYdDwYA4L48JtQYhlHiEhcX5+rSnPoDXpZxVSZPLrzENHmy4+uxVXnGgyEQAQDKwmNCjTtz5oBuZekD4+oh+6Xy9d0x2wB5AICK4TF9ahzBWX1quK3XsTifAIBfM+0t3eXhLR2FvQHBBwC8h+k6CgO/xiUqAMCNCDXwSLfqs0NnYwDwPlx+gikxcjIAmAeXn+DVynL3Fa07AODZaKkB/j9adwDAPdFSA9jJnefFohUJAG6NUAP8fxU1aGFZAgp3ewHArRFqACe5Mbxcf/7qq/YHFHduRQIAd0GfGsBJrvfRadFCqlFDOn++cPb0688ZOBAAbEOfGsDFrreuGEZhuLFYfplo1NVzcwGAGRFqACe53kfnr3913zBDB2QAZsLlJ8CLcRs7AE/A5ScAt0QHZABmUsnVBQBwnZgY97ocBgDlQUsNAAAwBUINAFQwOmgDzkGoAYAKxgjRgHMQagCggtFBG3AOOgoDQAWjgzbgHLTUALAZfUEAuDNCDQCb0RcEgDsj1ACwGX1BALgz+tQAsBl9QQC4M1pqAACAKRBqAACAKRBqAACAKRBqAACAKRBqAACAKRBqAACAKRBqAACAKRBqAMCFmHoCcBxCDYAKww94cUw9ATgOoQZAhTHDD7ijgxlTTwCOYzEMw3B1ERUlKytLISEhyszMVHBwsKvLAbxOUlJhoImP99zpFqKjC4NZVJS0daurqwG8g62/37TUAKgwMTGFQcBTA41EywrgzpjQEgDswKSegPuipQYAAJgCoQYAAJgCoQZAheGWbgDORKgBUGHMcEs3APdFqAFQYbhzCIAzcfcTgArDnUMAnImWGgAAYAqEGgBejw7MgDkQagB4NEcEEjowA+ZAqAHgtmwJLI4IJHRgBsyBCS0BuC1bJo80wySZAErHhJYAPJ4tLShmmCQTgGMQagC4rZICC516AdwMoQaAR7geZsaOpVMvgJIRagB4hOsdgi9dkoKCpC5dXF0RAHdDqAHgEa73rwkKkrKzpfXrS9+ey1SA9yHUAPAI1/vX/PWvtt1+zdgzgPch1ADwKLbe7cTYM4D3IdQA8Gg3u8zErd6A9yHUAPBoXGYCcB2hBoBH4zITgOsquboAACiPmBguMQEoREsNAAAwBY8LNR9++KEiIyMVGBiojh076t///rerSwIAAG7Ao0LN4sWLNWbMGI0fP147duxQmzZt1K1bN509e9bVpQFAMQwACFQsi2EYhquLsFXHjh3VoUMHffDBB5KkgoICRURE6Pnnn1e8Db0EbZ26HAAcITq68M6sqKjC28sBlI2tv98e01E4Ly9P27dv17hx46zrfHx81LVrVyUnJ5f4ntzcXOXm5lqfZ2VlOaW2tLQ0JSYmOmXfADxXt26FiyS9+aZrawEqQmRkpPr16ydfX1+XHN9jLj/997//VX5+vurUqVNkfZ06dXT69OkS3zNp0iSFhIRYl4iICKfUtmvXLqfsFwAAT5Kamqrz58+77Pge01JTFuPGjdOYMWOsz7OyspwSbB566CEVFBQ4/A/SMAz9+OOPDt0nAADOEBERoXvuuUdhYWEuq8FjQk2tWrXk6+urM2fOFFl/5swZhYeHl/iegIAABQQEOL22ypUrKzY21unHAVA2r78uzZghvfCC9Pbbrq7GNZKSCkddjo9nXB+Yl8dcfvL391e7du20du1a67qCggKtXbtWUVFRLqwMgLtbv17Kzi589FZMJwFv4DGhRpLGjBmjf/zjH5o3b54OHDigYcOGKScnR3/84x9dXRoAN8ZUCpwDeAePuqVbkj744ANNmTJFp0+f1l133aUZM2aoY8eONr2XW7oBAPA8tv5+e1yoKQ9CDQAAnsfW32+PuvwEAJ7IHUYWdocaAGcj1ADwWo76ob9xPzc+d4dOumWpgSAET0OoAeC1HBU2btzPjc/t6aTrrCBRlo7C7hDGAHsQagB4LUfdEXTjfm58HhNTOPeTLePDOCtI2FPDddwxBU9DR2EAcCMMkgcUZ7oJLQHAG8TEEGaAsrL78pOvr6/Onj1bbP25c+dcNisnAACA3aHmZlercnNz5e/vX+6CAACOwd1L8DY2X36aMWOGJMlisWj27NkKCgqyvpafn69NmzapRYsWjq8QAFAmv+50zCUteAObQ8306dMlFbbUzJo1q8ilJn9/f0VGRmrWrFmOrxAAUCbx8b90Oga8gd13P3Xp0kVffPGFatSo4ayanIa7nwAA8DxOmyZh/fr1HhloAADug/4+cAa7b+keNGhQqa/PmTOnzMUAALwD/X3gDHa31Fy4cKHIcvbsWa1bt05ffPGFLl686IQSAcBcaKVgtGI4h0NGFC4oKNCwYcPUpEkTvfrqq46oyynoUwPAHURHF7ZSREUVTl0AoHRO61NT4k58fDRmzBjrHVIAgJujlQJwDodNk3Ds2DFdu3bNUbsDANNiKgTAOewONWPGjCny3DAMpaen66uvvtLAgQMdVhgAAIA97A41O3fuLPLcx8dHYWFhevfdd295ZxQAAICz2B1q1q9f74w6AAAAyqXMfWrOnj2rQ4cOSZKaN2+u2rVrO6woAAAAe9l991NWVpb69++vevXqqVOnTurUqZNuu+029evXT5mZmc6oEQDcGuPOAO7B7lAzZMgQ/etf/9JXX32lixcv6uLFi1qxYoW2bdumoUOHOqNGAHBrvx4d1xaEIMA57B58r2rVqlq1apXuu+++Iuu/++47de/eXTk5OQ4t0JEYfA+AMyQl/TIbti23ajP4HmAfpw2+V7NmTYWEhBRbHxISwkSXALxSTExhOLF17BlbBt+jNQewn92h5o033tCYMWN0+vRp67rTp0/rlVde0f/8z/84tDgAMCNbQpC9l7QAlOHyU9u2bXX06FHl5uaqQYMGkqS0tDQFBATo9ttvL7Ltjh07HFepA3D5CYC7udmlK3svaQFmZuvvt923dPfu3VsWi6VcxQEACv26RebX4YWpFAD72R1qJkyY4IQyAMA7xcf/0iIDoHzs7lPTuHFjnTt3rtj6ixcvqnHjxg4pCgC8hb2djAHcnN2hJjU1Vfn5+cXW5+bm6scff3RIUQAAAPay+fJT0q/uK1y1alWR27rz8/O1du1aNWrUyLHVAYCXoGMwUH423/3k41PYqGOxWHTjW/z8/BQZGal3331XPXv2dHyVDsLdTwDclSMG5CMYwawcPvheQUGBCgoK1KBBA509e9b6vKCgQLm5uTp06JBbBxoAcGe2DMh3K4xtA29n991PKSkpzqgDALyaI27h5k4qeDu7Q81bb71V6ut//vOfy1wMAKDsGNsG3s7uULN06dIiz69evaqUlBRVqlRJTZo0IdQAAACXsDvU7Ny5s9i6rKwsxcXFqU+fPg4pCgAAwF52j1NTkuDgYL355ptMaAkAAFzGIaFGkjIzM5WZmemo3QEAANjF7stPM2bMKPLcMAylp6dr/vz56tGjh8MKAwAAsIfdoWb69OlFnvv4+CgsLEwDBw7UuHHjHFYYAMA2DLoHFLJ5RGEzYERhAGbkiNGIAXfm8BGFf+3ixYvatm2btm3bposXL5a1RgCAAzhiNGLADOwKNampqXr00UdVq1YtdezYUR07dlStWrXUs2dPpaamOqlEAEBpYmIKW2i49ARvZ3OfmpMnT+ree++Vn5+fJk6cqJYtW0qS9u/fr5kzZyoqKkr/+c9/VL9+facVCwAAcDM296kZPHiwjh49qlWrVikwMLDIaz///LO6d++u22+/XbNnz3ZKoY5AnxoA8E50pvZsDu9T88033+jtt98uFmgkqXLlypo4caK+/vrrslULAIATMYO5d7A51Pz3v/9VZGTkTV9v3Lixzp8/74iaAABOlpRUeNdUUpKrK6kYdKb2DjaHmrp162r//v03fX3v3r0KDw93SFEAAPvZE1S8reWCztTeweZQExsbq5dfflkZGRnFXjt79qzGjh2r2NhYR9YGALCDPUGFlguYkc0dhS9cuKCOHTvq9OnT6tevn1q0aCHDMHTgwAEtWLBA4eHh+v777xUaGursmsuMjsIAzIzOsDArW3+/7RpR+MKFC3rttde0ePFi66B71atX11NPPaV33nnHrQONRKgBAFsRkOBOnBJqrjMMw3oZKiwsTBaLpeyVViBCDQDYhqkX4E6cOk2CxWJR7dq1Vbt2bY8JNAAA29HnpmTedteYp2FCSwAAbEQLlms4taUGAABvRAuWe7N57icAALxdTAwdp90ZLTUAAMAUbGqpmTFjhs07fOGFF8pcDACg7LgNG97Opo7CjRo1sm1nFouOHz9e7qKchY7CAMyMTqwwK1t/v21qqUlJSXFYYQAA54iP/6Wlxl608sAMytynJi8vT4cOHdK1a9ccWU+JUlNTNXjwYDVq1EiVK1dWkyZNNH78eOXl5Tn92ADgKcozaaO3TXAJc7I71Fy+fFmDBw9WlSpV1KpVK6WlpUmSnn/+eSU46W/DwYMHVVBQoI8++kj79u3T9OnTNWvWLL322mtOOR4AeBtuVYYZ2D343qhRo7Rlyxb97W9/U/fu3bV79241btxYy5cv14QJE7Rz505n1VrElClTNHPmTLv68NCnBgAAz+PQPjW/tmzZMi1evFj33ntvkSkSWrVqpWPHjpWt2jLIzMx0+wk0AQBAxbH78lNGRoZq165dbH1OTk6FzQN19OhRvf/++xo6dGip2+Xm5iorK6vIAgBwDOZBgruxO9S0b99eX331lfX59SAze/ZsRUVF2bWv+Ph4WSyWUpeDBw8Wec9PP/2k7t2768knn9SQIUNK3f+kSZMUEhJiXSIiIuyqDwBwc3Quhruxu0/N5s2b1aNHD/Xr109z587V0KFDtX//fm3dulUbN25Uu3btbN5XRkaGzp07V+o2jRs3lr+/vyTp1KlT6ty5s+69917NnTtXPj6lZ7Lc3Fzl5uZan2dlZSkiIoI+NQDgANwGjopia5+aMs3SfezYMSUkJOiHH35Qdna27r77bo0dO1Z33nlnuYouzU8//aQuXbqoXbt2+uSTT+Tr62v3PugoDABlR4iBqzg11FS0n376SZ07d1bDhg01b968IoEmPDzc5v0QagCg7BixGK7i0Luf7Olg64ywsHr1ah09elRHjx5V/fr1i7zmAZkMAEyhPCMWAxXBppYaHx8fm+9sys/PL3dRzkJLDQAAnsehLTXr16+3/ndqaqri4+MVFxdnvdspOTlZ8+bN06RJk8pZNgAAQNnY3afmd7/7nZ599ln17du3yPoFCxbof//3f7VhwwZH1udQtNQAAOB5bP39tnucmuTkZLVv377Y+vbt2+vf//63vbsDAABwCLtDTUREhP7xj38UWz979mwGtwMAAC5j99xP06dP1+OPP66VK1eqY8eOkqR///vfOnLkiD7//HOHFwgAAGALu1tqHnnkER05ckS9evXS+fPndf78efXq1UuHDx/WI4884owaAQAAbskjBt9zFDoKAwDgeRx6S/eNLl68qI8//lgHDhyQJLVq1UqDBg1SSEhI2aoFAAAoJ7svP23btk1NmjTR9OnTrZefpk2bpiZNmmjHjh3OqBEAAOCW7L78dP/996tp06b6xz/+oUqVCht6rl27pmeffVbHjx/Xpk2bnFKoI3D5CQAAz+O0CS0rV66snTt3qkWLFkXW79+/X+3bt9fly5fLVnEFINQAAOB5nDb4XnBwsNLS0oqtP3nypKpVq2bv7gAAABzC7lDz9NNPa/DgwVq8eLFOnjypkydPatGiRSVOnQAAAFBR7L77aerUqbJYLBowYICuXbsmSfLz89OwYcOUkJDg8AIBAABsUeZxai5fvqxjx45Jkpo0aaIqVao4tDBnoE8NAMCTJCVJCQlSfLwUE+PqalzHaR2FPRmhBgDgSaKjpeRkKSpK2rrV1dW4jsMH3xs0aJBN282ZM8fWXQIAgFLEx//SUoNbsznUzJ07Vw0bNlTbtm3lRY07AAC4TEyMd192spfNoWbYsGFauHChUlJS9Mc//lH9+vVTaGioM2sDAJiEJ/QN8YQaUTqbb+n+8MMPlZ6erldffVVffvmlIiIi9NRTT2nVqlW03AAASpWQUNg3xJ1vkvWEGlE6u8apCQgIUN++fbV69Wrt379frVq10vDhwxUZGans7Gxn1QgA8HDx8YWdXd25b4gn1IjSlWmWbkny8fGRxWKRYRjKz893ZE0AAJPxhL4hnlAjSmdXS01ubq4WLlyohx56SM2aNdOePXv0wQcfKC0tTUFBQc6qEQAA4JZsbqkZPny4Fi1apIiICA0aNEgLFy5UrVq1nFkbAACAzWwefM/Hx0cNGjRQ27ZtZbFYbrrdF1984bDiHI3B9wAA8DwOH3xvwIABpYYZAAAAV7Jr8D0AAAB3ZVdHYQAAAHdFqAEAAKZAqAEAeISkpMJZq5OSXF0J3BWhBgDgEZw9jQGhyfMRagAAHsHZ0xgw95PnI9QAADxCTIy0davzpjJg7ifPV+a5nwAAMBPmfvJ8tNQAAABTINQAAABTINQAAABTINQAAABTINQAAABTINQAAABTINQAAABTINQAAABTINQAAABTINQAAABTINQAAABTINQAAABTINQAAABTINQAAABTINQAAOAhkpKk6OjCRxRHqAEAwEMkJEjJyYWPKI5QAwCAh4iPl6KiCh9RXCVXFwAAAGwTE1O4oGS01AAAAFMg1AAAAFMg1AAAAFMg1AAAAFMg1AAAAFMg1AAAAFMg1AAAUApG8fUchBoAAErBKL6eg1ADAEApGMXXczCiMAAApWAUX89BSw0AADAFjws1ubm5uuuuu2SxWLRr1y5XlwMAANyEx4WaV199VfXq1XN1GQAAwM14VKhZuXKlvv32W02dOtXVpQAAADfjMR2Fz5w5oyFDhmjZsmWqUqWKTe/Jzc1Vbm6u9XlWVpazygMAAC7mES01hmEoLi5Ozz33nNq3b2/z+yZNmqSQkBDrEhER4cQqAQCAK7k01MTHx8tisZS6HDx4UO+//74uXbqkcePG2bX/cePGKTMz07qcPHnSSZ8EAAC4msUwDMNVB8/IyNC5c+dK3aZx48Z66qmn9OWXX8pisVjX5+fny9fXV88884zmzZtn0/GysrIUEhKizMxMBQcHl6t2AABQMWz9/XZpqLFVWlpakf4wp06dUrdu3fTPf/5THTt2VP369W3aD6EGAADPY+vvt0d0FG7QoEGR50FBQZKkJk2a2BxoAACAuXlER2EAAIBb8YiWmhtFRkbKA66aAQCACkRLDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAJpKUJEVHFz56G0INAAAmkpAgJScXPnobQg0AAB6qpFaZ+HgpKqrw0dtYDMMwXF1ERcnKylJISIgyMzMVHBzs6nIAACiX6OjCVpmoKGnrVldX4zy2/n7TUgMAgIfy5laZklRydQEAAKBsYmIKFxSipQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJRbUpIUHV346CqEGgAAUG4JCVJycuGjqxBqAABAucXHS1FRhY+uUsl1hwYAAGYRE1O4uBItNQAAwBQINQAAwBQINQAAwBQINQAAwBQ8KtR89dVX6tixoypXrqwaNWooNjbW1SUBAAA34TF3P33++ecaMmSI3nnnHT344IO6du2a9u7d6+qyAACAm/CIUHPt2jWNGjVKU6ZM0eDBg63r77jjDhdWBQAA3IlHXH7asWOHfvrpJ/n4+Kht27aqW7euevToccuWmtzcXGVlZRVZAACAOXlEqDl+/LgkacKECXrjjTe0YsUK1ahRQ507d9b58+dv+r5JkyYpJCTEukRERFRUyQAAoIK5NNTEx8fLYrGUuhw8eFAFBQWSpNdff12PP/642rVrp8TERFksFi1ZsuSm+x83bpwyMzOty8mTJyvqowEAgArm0j41L730kuLi4krdpnHjxkpPT5dUtA9NQECAGjdurLS0tJu+NyAgQAEBAQ6pFQAAuDeXhpqwsDCFhYXdcrt27dopICBAhw4d0n333SdJunr1qlJTU9WwYUNnlwkAADyAR9z9FBwcrOeee07jx49XRESEGjZsqClTpkiSnnzySRdXBwAA3IFHhBpJmjJliipVqqT+/fvr559/VseOHbVu3TrVqFHD1aUBAAA3YDEMw3B1ERUlKytLISEhyszMVHBwsKvLAQDA4yUlSQkJUny8FBPjnGPY+vvtEbd0AwAA95SQICUnFz66GqEGAACUWXy8FBVV+OhqHtOnBgAAuJ+YGOdddrIXLTUAAMAUCDUAAMAUCDUAAMAUCDUAAMAUCDUAAMAUCDUAAMAUCDUAAMAUCDUAAMAUCDUAAMAUCDUAAMAUCDUAAMAUCDUAAMAUCDUAAMAUvGqWbsMwJElZWVkurgQAANjq+u/29d/xm/GqUHPp0iVJUkREhIsrAQAA9rp06ZJCQkJu+rrFuFXsMZGCggKdOnVK1apVk8VicXU5bisrK0sRERE6efKkgoODXV2O1+C8VzzOecXjnFc8M5xzwzB06dIl1atXTz4+N+8541UtNT4+Pqpfv76ry/AYwcHBHvsXwJNx3ise57zicc4rnqef89JaaK6jozAAADAFQg0AADAFQg2KCQgI0Pjx4xUQEODqUrwK573icc4rHue84nnTOfeqjsIAAMC8aKkBAACmQKgBAACmQKgBAACmQKgBAACmQKjxQps2bVKvXr1Ur149WSwWLVu2rNTtN2zYIIvFUmw5ffp0xRRsApMmTVKHDh1UrVo11a5dW7GxsTp06NAt37dkyRK1aNFCgYGBuvPOO/X1119XQLXmUJZzPnfu3GLf88DAwAqq2PPNnDlTv/nNb6yDvEVFRWnlypWlvofvePnYe87N/h0n1HihnJwctWnTRh9++KFd7zt06JDS09OtS+3atZ1Uofls3LhRI0aM0Pfff6/Vq1fr6tWrevjhh5WTk3PT92zdulV9+/bV4MGDtXPnTsXGxio2NlZ79+6twMo9V1nOuVQ46uqvv+cnTpyooIo9X/369ZWQkKDt27dr27ZtevDBB9W7d2/t27evxO35jpefvedcMvl33IBXk2QsXbq01G3Wr19vSDIuXLhQITV5g7NnzxqSjI0bN950m6eeesp49NFHi6zr2LGjMXToUGeXZ0q2nPPExEQjJCSk4oryAjVq1DBmz55d4mt8x52jtHNu9u84LTWw2V133aW6devqoYce0pYtW1xdjkfLzMyUJIWGht50m+TkZHXt2rXIum7duik5OdmptZmVLedckrKzs9WwYUNFRETc8l+8uLn8/HwtWrRIOTk5ioqKKnEbvuOOZcs5l8z9HSfU4Jbq1q2rWbNm6fPPP9fnn3+uiIgIde7cWTt27HB1aR6poKBAo0eP1m9/+1u1bt36ptudPn1aderUKbKuTp069GUqA1vPefPmzTVnzhwtX75cn3zyiQoKChQdHa0ff/yxAqv1bHv27FFQUJACAgL03HPPaenSpbrjjjtK3JbvuGPYc87N/h33qlm6UTbNmzdX8+bNrc+jo6N17NgxTZ8+XfPnz3dhZZ5pxIgR2rt3rzZv3uzqUryGrec8KiqqyL9wo6Oj1bJlS3300UeaOHGis8s0hebNm2vXrl3KzMzUP//5Tw0cOFAbN2686Y8sys+ec2727zihBmVyzz338KNcBiNHjtSKFSu0adMm1a9fv9Rtw8PDdebMmSLrzpw5o/DwcGeWaDr2nPMb+fn5qW3btjp69KiTqjMff39/NW3aVJLUrl07/ec//9F7772njz76qNi2fMcdw55zfiOzfce5/IQy2bVrl+rWrevqMjyGYRgaOXKkli5dqnXr1qlRo0a3fE9UVJTWrl1bZN3q1atLvVaOX5TlnN8oPz9fe/bs4bteDgUFBcrNzS3xNb7jzlHaOb+R6b7jru6pjIp36dIlY+fOncbOnTsNSca0adOMnTt3GidOnDAMwzDi4+ON/v37W7efPn26sWzZMuPIkSPGnj17jFGjRhk+Pj7GmjVrXPURPM6wYcOMkJAQY8OGDUZ6erp1uXz5snWb/v37G/Hx8dbnW7ZsMSpVqmRMnTrVOHDggDF+/HjDz8/P2LNnjys+gscpyzl/8803jVWrVhnHjh0ztm/fbvz+9783AgMDjX379rniI3ic+Ph4Y+PGjUZKSoqxe/duIz4+3rBYLMa3335rGAbfcWew95yb/TtOqPFC12/RvnEZOHCgYRiGMXDgQKNTp07W7SdPnmw0adLECAwMNEJDQ43OnTsb69atc03xHqqk8y3JSExMtG7TqVMn65/BdZ999pnRrFkzw9/f32jVqpXx1VdfVWzhHqws53z06NFGgwYNDH9/f6NOnTrGI488YuzYsaPii/dQgwYNMho2bGj4+/sbYWFhxu9+9zvrj6th8B13BnvPudm/4xbDMIyKbh0CAABwNPrUAAAAUyDUAAAAUyDUAAAAUyDUAAAAUyDUAAAAUyDUAAAAUyDUAAAAUyDUAADgZTZt2qRevXqpXr16slgsWrZsmVOPN2nSJHXo0EHVqlVT7dq1FRsbq0OHDhXZ5sqVKxoxYoRq1qypoKAgPf7448XmBrsVQg0Aj3Ly5EkNGjRI9erVk7+/vxo2bKhRo0bp3LlzkqSrV69q7NixuvPOO1W1alXVq1dPAwYM0KlTp1xcOeA+cnJy1KZNG3344YcVcryNGzdqxIgR+v7777V69WpdvXpVDz/8sHJycqzbvPjii/ryyy+1ZMkSbdy4UadOndJjjz1m13EYURiAxzh+/LiioqLUrFkz/eUvf1GjRo20b98+vfLKK8rLy9P3338vX19fPfHEExoyZIjatGmjCxcuaNSoUcrPz9e2bdtc/REAt2OxWLR06VLFxsZa1+Xm5ur111/XwoULdfHiRbVu3VqTJ09W586dHXLMjIwM1a5dWxs3btQDDzygzMxMhYWFacGCBXriiSckSQcPHlTLli2VnJyse++916b9VnJIdQBQAUaMGCF/f399++23qly5siSpQYMGatu2rZo0aaLXX39dM2fO1OrVq4u874MPPtA999yjtLQ0NWjQwBWlAx5l5MiR2r9/vxYtWqR69epp6dKl6t69u/bs2aPbb7+93PvPzMyUJIWGhkqStm/frqtXr6pr167WbVq0aKEGDRrYFWq4/ATAI5w/f16rVq3S8OHDrYHmuvDwcD3zzDNavHixSmp8zszMlMViUfXq1SuoWsBzpaWlKTExUUuWLNH999+vJk2a6OWXX9Z9992nxMTEcu+/oKBAo0eP1m9/+1u1bt1aknT69Gn5+/sX+ztap04dnT592uZ9E2oAeIQjR47IMAy1bNmyxNdbtmypCxcuKCMjo8j6K1euaOzYserbt6+Cg4MrolTAo+3Zs0f5+flq1qyZgoKCrMvGjRt17NgxSYWXhiwWS6lLfHx8ifsfMWKE9u7dq0WLFjm8di4/AfAo9nQDvHr1qp566ikZhqGZM2c6sSrAPLKzs+Xr66vt27fL19e3yGtBQUGSpMaNG+vAgQOl7qdmzZrF1o0cOVIrVqzQpk2bVL9+fev68PBw5eXl6eLFi0Vaa86cOaPw8HCbayfUAPAITZs2lcVi0YEDB9SnT59irx84cEA1atRQWFiYpF8CzYkTJ7Ru3TpaaQAbtW3bVvn5+Tp79qzuv//+Erfx9/dXixYtbN6nYRh6/vnntXTpUm3YsEGNGjUq8nq7du3k5+entWvX6vHHH5ckHTp0SGlpaYqKirL5ONz9BMBjdOvWTfv27dORI0eK9Ks5ffq0mjRpogEDBmjmzJnWQHPkyBGtX7/eGnQAFMrOztbRo0clFYaYadOmqUuXLgoNDVWDBg3Ur18/bdmyRe+++67atm2rjIwMrV27Vr/5zW/06KOP2n284cOHa8GCBVq+fLmaN29uXR8SEmL9uzxs2DB9/fXXmjt3roKDg/X8889LkrZu3Wr7gQwA8BCHDx82atWqZdx///3Gxo0bjbS0NGPlypVG69atjdtvv904d+6ckZeXZ8TExBj169c3du3aZaSnp1uX3NxcV38EwC2sX7/ekFRsGThwoGEYhpGXl2f8+c9/NiIjIw0/Pz+jbt26Rp8+fYzdu3eX6XglHUuSkZiYaN3m559/NoYPH27UqFHDqFKlitGnTx8jPT3druPQUgPAo5w4cULjx4/XN998o/Pnzys8PFyxsbEaP368atasqdTU1GJN29etX7/eYeNsAHA/hBoAAGAK3NINAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABM4f8B1QElJNFGClwAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_38.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPa0lEQVR4nO3de1xUdf4/8NdwR5AR5So7ioKmrnhXRIxLYqTlZtZGWt427VeZl+wiul4yU9RWZUtTo7yUpqRZmbmaolSkuxJKqamtCmEKKJqDXAJkPr8//DLbyHWGmTkz57yej8c8Hs6ZM2fenyNzzns+V5UQQoCIiIhIJhykDoCIiIjInJjcEBERkawwuSEiIiJZYXJDREREssLkhoiIiGSFyQ0RERHJCpMbIiIikhUmN0RERCQrTG6IiIhIVpjcEJEkXnvtNahUqibtq1Kp8Nprr1k0npiYGMTExNjs8Yio6ZjcECncpk2boFKp9A8nJycEBQVhwoQJuHz5stTh2Zzg4GCD8+Xn54d7770Xn376qVmOX1ZWhtdeew3p6elmOR6REjG5ISIAwOuvv44PP/wQ69atw7Bhw7BlyxZER0fj999/t8jnzZ07F+Xl5RY5tqX16tULH374IT788EO8/PLLuHLlCkaNGoV169Y1+9hlZWVYuHAhkxuiZnCSOgAisg3Dhg1Dv379AACTJk2Cj48Pli1bht27d+Pxxx83++c5OTnByck+L0FBQUF46qmn9M/HjRuH0NBQrFq1Cs8++6yEkRERwJobIqrHvffeCwC4cOGCwfazZ8/iscceQ+vWreHm5oZ+/fph9+7dBvtUVVVh4cKF6NSpE9zc3NCmTRsMHjwYBw4c0O9TV5+biooKvPjii/D19UXLli3xl7/8Bb/++mut2CZMmIDg4OBa2+s65saNG3HffffBz88Prq6u6NatG9auXWvUuWhMQEAAunbtipycnAb3u3r1Kp5++mn4+/vDzc0NPXv2xObNm/Wv5+bmwtfXFwCwcOFCfdOXpfsbEcmNff5sIiKLy83NBQB4e3vrt50+fRqRkZEICgpCYmIiPDw88PHHH2PkyJH45JNP8MgjjwC4k2QkJSVh0qRJGDBgAIqLi/H999/j+PHjGDp0aL2fOWnSJGzZsgVjxozBoEGDcOjQITz44IPNKsfatWvx5z//GX/5y1/g5OSEL774As8//zx0Oh2mTJnSrGPXqKqqwqVLl9CmTZt69ykvL0dMTAzOnz+PF154AR06dMCOHTswYcIE3Lx5E9OnT4evry/Wrl2L5557Do888ghGjRoFAOjRo4dZ4iRSDEFEirZx40YBQBw8eFBcu3ZNXLp0SezcuVP4+voKV1dXcenSJf2+Q4YMEWFhYeL333/Xb9PpdGLQoEGiU6dO+m09e/YUDz74YIOfu2DBAvHHS1B2drYAIJ5//nmD/caMGSMAiAULFui3jR8/XrRv377RYwohRFlZWa394uPjRceOHQ22RUdHi+jo6AZjFkKI9u3bi/vvv19cu3ZNXLt2Tfzwww/iiSeeEADE1KlT6z1ecnKyACC2bNmi31ZZWSkiIiKEp6enKC4uFkIIce3atVrlJSLjsFmKiAAAcXFx8PX1hUajwWOPPQYPDw/s3r0bf/rTnwAAN27cwKFDh/D444/j1q1bKCoqQlFREa5fv474+Hj897//1Y+uatWqFU6fPo3//ve/Tf78vXv3AgCmTZtmsH3GjBnNKpe7u7v+31qtFkVFRYiOjsbFixeh1WpNOuZXX30FX19f+Pr6omfPntixYwfGjh2LZcuW1fuevXv3IiAgAKNHj9Zvc3Z2xrRp01BSUoKvv/7apFiIqDZFJzfffPMNRowYgbZt20KlUuGzzz6z6OfdunULM2bMQPv27eHu7o5BgwYhMzPTop9J1FRr1qzBgQMHsHPnTgwfPhxFRUVwdXXVv37+/HkIITBv3jz9jb3msWDBAgB3+pQAd0Ze3bx5E507d0ZYWBheeeUV/Pjjjw1+/i+//AIHBweEhIQYbL/nnnuaVa7vvvsOcXFx8PDwQKtWreDr64s5c+YAgMnJTXh4OA4cOICDBw/iyJEjKCoqwgcffGCQSN3tl19+QadOneDgYHjZ7dq1q/51IjIPRfe5KS0tRc+ePfG3v/1N37ZtSZMmTcKpU6fw4Ycfom3bttiyZQvi4uLw008/ISgoyOKfT9SQAQMG6EdLjRw5EoMHD8aYMWNw7tw5eHp6QqfTAQBefvllxMfH13mM0NBQAEBUVBQuXLiAzz//HF999RXee+89rFq1CuvWrcOkSZOaHWt9k/9VV1cbPL9w4QKGDBmCLl26YOXKldBoNHBxccHevXuxatUqfZmM5ePjg7i4OJPeS0SWp+jkZtiwYRg2bFi9r1dUVODvf/87tm3bhps3b6J79+5YtmyZSbOOlpeX45NPPsHnn3+OqKgoAHc6XX7xxRdYu3Yt3njjDVOLQWR2jo6OSEpKQmxsLFavXo3ExER07NgRwJ2mlKbc2Fu3bo2JEydi4sSJKCkpQVRUFF577bV6k5v27dtDp9PhwoULBrU1586dq7Wvt7c3bt68WWv73bUfX3zxBSoqKrB79260a9dOv/3w4cONxm9u7du3x48//gidTmdQe3P27Fn960D9iRsRNZ2im6Ua88ILL+Do0aPYvn07fvzxR/z1r3/FAw88YFQ/ghq3b99GdXU13NzcDLa7u7sjIyPDXCETmU1MTAwGDBiA5ORk/P777/Dz80NMTAzWr1+P/Pz8Wvtfu3ZN/+/r168bvObp6YnQ0FBUVFTU+3k1PzTeeustg+3Jycm19g0JCYFWqzVo6srPz681S7CjoyMAQAih36bVarFx48Z647CU4cOHo6CgAKmpqfptt2/fxttvvw1PT09ER0cDAFq0aAEAdSZvRNQ0iq65aUheXh42btyIvLw8tG3bFsCd6vh9+/Zh48aNWLJkiVHHa9myJSIiIrBo0SJ07doV/v7+2LZtG44ePaqvyieyNa+88gr++te/YtOmTXj22WexZs0aDB48GGFhYZg8eTI6duyIwsJCHD16FL/++it++OEHAEC3bt0QExODvn37onXr1vj++++xc+dOvPDCC/V+Vq9evTB69Gi888470Gq1GDRoENLS0nD+/Pla+z7xxBOYNWsWHnnkEUybNg1lZWVYu3YtOnfujOPHj+v3u//+++Hi4oIRI0bg//2//4eSkhKkpKTAz8+vzgTNkp555hmsX78eEyZMQFZWFoKDg7Fz50589913SE5ORsuWLQHc+cHTrVs3pKamonPnzmjdujW6d++O7t27WzVeIrsm9XAtWwFAfPrpp/rne/bsEQCEh4eHwcPJyUk8/vjjQgghzpw5IwA0+Jg1a5b+mOfPnxdRUVECgHB0dBT9+/cXTz75pOjSpYu1i0ukVzMUPDMzs9Zr1dXVIiQkRISEhIjbt28LIYS4cOGCGDdunAgICBDOzs4iKChIPPTQQ2Lnzp36973xxhtiwIABolWrVsLd3V106dJFLF68WFRWVur3qWvYdnl5uZg2bZpo06aN8PDwECNGjBCXLl2qc2j0V199Jbp37y5cXFzEPffcI7Zs2VLnMXfv3i169Ogh3NzcRHBwsFi2bJnYsGGDACBycnL0+xkzFLyxYe71Ha+wsFBMnDhR+Pj4CBcXFxEWFiY2btxY671HjhwRffv2FS4uLhwWTmQClRB/qK9VMJVKhU8//RQjR44EAKSmpuLJJ5/E6dOn9VXbNTw9PREQEIDKykpcvHixweO2adNGP+NojdLSUhQXFyMwMBAJCQkoKSnBl19+adbyEBERKRWbperRu3dvVFdX4+rVq/pp6O/m4uKCLl26GH1sDw8PeHh44LfffsP+/fuxfPny5oZLRERE/0fRyU1JSYlBe35OTg6ys7PRunVrdO7cGU8++STGjRuHFStWoHfv3rh27RrS0tLQo0cPk6aE379/P4QQuOeee3D+/Hm88sor6NKlCyZOnGjOYhERESmaopul0tPTERsbW2v7+PHjsWnTJlRVVeGNN97ABx98gMuXL8PHxwcDBw7EwoULERYWZvTnffzxx5g9ezZ+/fVXtG7dGo8++igWL14MtVptjuIQERERFJ7cEBERkfxwnhsiIiKSFSY3REREJCuK61Cs0+lw5coVtGzZktOcExER2QkhBG7duoW2bdvWWoD2bopLbq5cuQKNRiN1GERERGSCS5cu4U9/+lOD+yguuamZ4vzSpUvw8vKSOBoiIiJqiuLiYmg0Gv19vCGKS25qmqK8vLyY3BAREdmZpnQpYYdiIiIikhUmN0RERCQrTG6IiIhIVhTX54ZIznQ6HSorK6UOgyTm7OwMR0dHqcMgkgyTGyKZqKysRE5ODnQ6ndShkA1o1aoVAgICOJ8XKRKTGyIZEEIgPz8fjo6O0Gg0jU5wRfIlhEBZWRmuXr0KAAgMDJQ4IiLrY3JDJAO3b99GWVkZ2rZtixYtWkgdDknM3d0dAHD16lX4+fmxiYoUhz/viGSguroaAODi4iJxJGQrapLcqqoqiSMhsj4mN0Qywv4VVIN/C6RkTG6IiIhIVpjcEBFZSXBwMJKTk6UOg0j2mNwQkaSuXbuG5557Du3atYOrqysCAgIQHx+P7777DsCd5pXPPvtM2iCbKCYmBiqVqtbj9u3bUocmG/nachy5UIR8bbnUoZAN42gpIhuXry1HTlEpOvh4IFDtLnU4Zvfoo4+isrISmzdvRseOHVFYWIi0tDRcv35d6tBMMnnyZLz++usG25yceKk1h9TMPMzedRI6ATiogKRRYUjo307qsMgGseaGyIalZuYhcukhjEn5DyKXHkJqZp7UIZnVzZs38e2332LZsmWIjY1F+/btMWDAAMyePRt/+ctfEBwcDAB45JFHoFKp9M8B4PPPP0efPn3g5uaGjh07YuHChQY1JCtXrkRYWBg8PDyg0Wjw/PPPo6SkRP/6pk2b0KpVK+zZswf33HMPWrRogcceewxlZWXYvHkzgoOD4e3tjWnTpulHozVFixYtEBAQYPCoT15eHh5++GF4enrCy8sLjz/+OAoLCwEAWq0Wjo6O+P777wHcmX26devWGDhwoP79W7ZsgUajaXJs9ixfW65PbABAJ4A5u06xBofqxOSGyEZJdTG3ZrW/p6cnPD098dlnn6GioqLW65mZmQCAjRs3Ij8/X//822+/xbhx4zB9+nT89NNPWL9+PTZt2oTFixfr3+vg4IC33noLp0+fxubNm3Ho0CG8+uqrBscvKyvDW2+9he3bt2Pfvn1IT0/HI488gr1792Lv3r348MMPsX79euzcudPsZdfpdHj44Ydx48YNfP311zhw4AAuXryIhIQEAIBarUavXr2Qnp4OADh58iRUKhVOnDihT9K+/vprREdHmz02W5RTVKr/LtSoFgK5RWXSBEQ2jckN1Ytt29KS4mJu7ZoiJycnbNq0CZs3b0arVq0QGRmJOXPm4McffwQA+Pr6AvjfUgI1zxcuXIjExESMHz8eHTt2xNChQ7Fo0SKsX79ef+wZM2YgNjYWwcHBuO+++/DGG2/g448/Nvj8qqoqrF27Fr1790ZUVBQee+wxZGRk4P3330e3bt3w0EMPITY2FocPH25ymd555x190ubp6YmXXnqpzv3S0tJw8uRJfPTRR+jbty/Cw8PxwQcf4Ouvv9YncTExMfrkJj09HUOHDkXXrl2RkZGh36aU5KaDjwcc7hrd7qhSIdiHk1ZSbUxuqE5ybw6xB9a+mEtVU/Too4/iypUr2L17Nx544AGkp6ejT58+2LRpU73v+eGHH/D6668bJBGTJ09Gfn4+ysruJH8HDx7EkCFDEBQUhJYtW2Ls2LG4fv26/nXgThNSSEiI/rm/vz+Cg4Ph6elpsK1mKYOmePLJJ5Gdna1/zJ49u879zpw5A41GY9Cs1K1bN7Rq1QpnzpwBAERHRyMjIwPV1dX4+uuvERMTo094rly5gvPnzyMmJqbJsdmzQLU7kkaFwfH/5u9xVKmwZFR3WfZDo+ZjLzeqpb6bXFRnX15IrKjmYj5n1ylUC2Hxi3lDNUWW/n93c3PD0KFDMXToUMybNw+TJk3CggULMGHChDr3LykpwcKFCzFq1Kg6j5Wbm4uHHnoIzz33HBYvXozWrVsjIyMDTz/9NCorK/Wz9zo7Oxu8V6VS1bnNmMVI1Wo1QkNDm7x/Q6KionDr1i0cP34c33zzDZYsWYKAgAAsXboUPXv2RNu2bdGpUyezfJY9SOjfDlGdfZFbVIZgnxa8HlG9mNxQLVLe5MiQNS/mNTVFf/y/l6rav1u3bvrh387OzrU69Pbp0wfnzp2rN4nIysqCTqfDihUr9IuI3t0kJbWuXbvi0qVLuHTpkr725qeffsLNmzfRrVs3AHea43r06IHVq1fD2dkZXbp0gZ+fHxISErBnzx7FNEn9UaDandchahSbpagWtm3blkC1OyJC2lj8gi5Ftf/169dx3333YcuWLfjxxx+Rk5ODHTt2YPny5Xj44YcB3Jn4Li0tDQUFBfjtt98AAPPnz8cHH3yAhQsX4vTp0zhz5gy2b9+OuXPnAgBCQ0NRVVWFt99+GxcvXsSHH36IdevWWawcpoiLi0NYWBiefPJJHD9+HMeOHcO4ceMQHR2Nfv366feLiYnB1q1b9YlM69at0bVrV6SmpioyuSFqCiY3VAvbtpUroX87ZCTGYtvkgchIjLX4HCKenp4IDw/HqlWrEBUVhe7du2PevHmYPHkyVq9eDQBYsWIFDhw4AI1Gg969ewMA4uPjsWfPHnz11Vfo378/Bg4ciFWrVqF9+/YAgJ49e2LlypVYtmwZunfvjq1btyIpKcmiZTGWSqXC559/Dm9vb0RFRSEuLg4dO3ZEamqqwX7R0dGorq426FsTExNTaxsR/Y9KCCEa300+iouLoVarodVq4eXlJXU4Ni1fW862bTvx+++/IycnBx06dICbm5vU4ZAN4N8EyY0x92/2uaF6sW2biIjsEZuliIia4NtvvzUYen73g4hsB2tuiIiaoF+/fsjOzpY6DCJqAiY3RERN4O7ubrb5a4jIstgsRYoi9yUlFDY+gBrAvwVSMtbckGKkZubpZ152UAFJo8IsPtTZWhwdHQEAlZWVcHdnJ3CCfpmJu2dcJlICJjekCHJfUsLJyQktWrTAtWvX4OzsrJ+Vl5RHCIGysjJcvXoVrVq10ie+RErC5IYUQe5LSqhUKgQGBiInJwe//PKL1OGQDahZSZ1IiZjckCLY0rpJluLi4oJOnTqhsrJS6lBIYs7OzqyxIUVjckOKYO0VtqXi4ODA2WiJSPGY3JBiWHOFbSIikg6TG1IULilBRCR/HFJBREREssLkhoiIiGSFyQ0RERHJCpMbIiIikhUmN0RERCQrkiY333zzDUaMGIG2bdtCpVLhs88+a/Q96enp6NOnD1xdXREaGopNmzZZPE4iIiKyH5ImN6WlpejZsyfWrFnTpP1zcnLw4IMPIjY2FtnZ2ZgxYwYmTZqE/fv3WzhSIiIisheSznMzbNgwDBs2rMn7r1u3Dh06dMCKFSsAAF27dkVGRgZWrVqF+Ph4S4VJREREdsSu+twcPXoUcXFxBtvi4+Nx9OjRet9TUVGB4uJigwcRERHJl10lNwUFBfD39zfY5u/vj+LiYpSXl9f5nqSkJKjVav1Do9FYI1QiIiKSiF0lN6aYPXs2tFqt/nHp0iWpQyIiIiILsqu1pQICAlBYWGiwrbCwEF5eXnB3r3u9IFdXV7i6ulojPCIiIrIBdlVzExERgbS0NINtBw4cQEREhEQRERERka2RNLkpKSlBdnY2srOzAdwZ6p2dnY28vDwAd5qUxo0bp9//2WefxcWLF/Hqq6/i7NmzeOedd/Dxxx/jxRdflCJ8IiIiskGSJjfff/89evfujd69ewMAZs6cid69e2P+/PkAgPz8fH2iAwAdOnTAl19+iQMHDqBnz55YsWIF3nvvPQ4DJyIiIj2VEEJIHYQ1FRcXQ61WQ6vVwsvLS+pwiIiIqAmMuX/bVZ8bIiIiosYwuSEiIiJZYXJDREREssLkhoiIiGSFyQ0RERHJCpMbIiIikhUmN0RERCQrTG6IiIhIVpjcEBERkawwuSEiIiJZYXJDREREssLkhoiIiGSFyQ0RERHJCpMbIiIikhUmN0RERCQrTG6IiIhIVpjcEBERkawwuSGzyteW48iFIuRry6UOhYiIFMpJ6gBIPlIz8zB710noBOCgApJGhSGhfzupwyIiIoVhzQ2ZRb62XJ/YAIBOAHN2nWINDhERWR2TGzKLnKJSfWJTo1oI5BaVSRMQEREpFpMbMosOPh5wUBluc1SpEOzTQpqAiIhIsZjckFkEqt2RNCoMjqo7GY6jSoUlo7ojUO0ucWRERKQ07FBMZpPQvx2iOvsit6gMwT4tmNgQEZEkmNyQWQWq3ZnUEBGRpNgsRURERLLC5IaIiIhkhckNERERyQqTGyIiIpIVJjdEREQkK0xuiIiISFaY3BAREZGsMLkhIiIiWWFyQ0RERLLC5IaIiIhkhckNERERyQqTGyIiIpIVJjdEREQkK0xuiIiISFaY3BAREZGsMLkhIiIiWWFyQ0RERLLC5IaIiIhkhckNEdmFfG05jlwoQr62XOpQiMjGOUkdgNLla8uRU1SKDj4eCFS7Sx0OkU1KzczD7F0noROAgwpIGhWGhP7tpA6LiGwUkxsJ8YJN1Lh8bbn+ewIAOgHM2XUKUZ19+YOAiOrEZimJ1HfBZpU7kaGcolL996RGtRDILSqTJiAisnlMbiTCCzZR03Tw8YCDynCbo0qFYJ8W0gRERDaPyY1EeMEmappAtTuSRoXBUXXnC+OoUmHJqO5skiKierHPjURqLthzdp1CtRC8YBM1IKF/O0R19kVuURmCfVrwe0JEDbKJmps1a9YgODgYbm5uCA8Px7FjxxrcPzk5Gffccw/c3d2h0Wjw4osv4vfff7dStOaT0L8dMhJjsW3yQGQkxrIzMVEDAtXuiAhpw8SGiBolec1NamoqZs6ciXXr1iE8PBzJycmIj4/HuXPn4OfnV2v/jz76CImJidiwYQMGDRqEn3/+GRMmTIBKpcLKlSslKEHzBKrdebEmIiIyI8lrblauXInJkydj4sSJ6NatG9atW4cWLVpgw4YNde5/5MgRREZGYsyYMQgODsb999+P0aNHN1rbQ0RERMogaXJTWVmJrKwsxMXF6bc5ODggLi4OR48erfM9gwYNQlZWlj6ZuXjxIvbu3Yvhw4dbJWYiIiKybZI2SxUVFaG6uhr+/v4G2/39/XH27Nk63zNmzBgUFRVh8ODBEELg9u3bePbZZzFnzpw696+oqEBFRYX+eXFxsfkKQERERDZH8mYpY6Wnp2PJkiV45513cPz4cezatQtffvklFi1aVOf+SUlJUKvV+odGo7FyxET2j+s6EZE9UQkhROO7WUZlZSVatGiBnTt3YuTIkfrt48ePx82bN/H555/Xes+9996LgQMH4s0339Rv27JlC5555hmUlJTAwcEwX6ur5kaj0UCr1cLLy8v8hSKSGS4TQkS2oLi4GGq1ukn3b0lrblxcXNC3b1+kpaXpt+l0OqSlpSEiIqLO95SVldVKYBwdHQEAdeVprq6u8PLyMngQUdNwmRAiskeSDwWfOXMmxo8fj379+mHAgAFITk5GaWkpJk6cCAAYN24cgoKCkJSUBAAYMWIEVq5cid69eyM8PBznz5/HvHnzMGLECH2SQ0Tm0dAyIZzCgIhsleTJTUJCAq5du4b58+ejoKAAvXr1wr59+/SdjPPy8gxqaubOnQuVSoW5c+fi8uXL8PX1xYgRI7B48WKpikAkWzXLhPwxweEyIURk6yTtcyMFY9rsiOhOn5u7lwlhnxsisjZj7t+S19wQkW3juk5EZG+Y3BBRo7hMCBHZE7ub54aIiIioIUxuiIiISFaY3BA1grPzEhEZsvXrIvvcEDWAs/MSERmyh+sia26I6sHZeYmIDNnLdZHJDVE9Gpqdl4hIiezlusjkhqgeNbPz/hFn5yUiJbOX6yKTG6J6BKrdkTQqDI6qO9/kmtl5Od8LESmVvVwXufwCUSPyteWcnZeI6A+kuC5y+QUiM+LsvEREhmz9ushmKSIiIpIVJjdEREQkK0xuiIiISFaY3BAREZGsMLkhIiIiWWFyQ0RERLLC5IaIiIhkhckNERERyQqTGyIiIpIVJjdEREQkK0xuiIiISFaY3BAREZGsMLkhIiIiWWFyQ0RERLLC5IaIiIhkhckNEVET5GvLceRCEfK15VKHQkSNcJI6ACIiW5eamYfZu05CJwAHFZA0KgwJ/dtJHRYR1YM1N0RWxF//9idfW65PbABAJ4A5u07x/5DIhrHmhshK+OvfPuUUleoTmxrVQiC3qAyBandpgiKiBrHmhkzCGgjj8Ne//erg4wEHleE2R5UKwT4tpAmIiBplUnLTrl07jBs3Du+//z4uXLhg7pjIxqVm5iFy6SGMSfkPIpceQmpmntQh2byGfv2TbQtUuyNpVBgcVXcyHEeVCktGdWetDZENUwkhROO7GdqyZQu++eYbpKen4/z58wgKCkJ0dDSio6MRExODTp06WSJWsyguLoZarYZWq4WXl5fU4didfG05IpceMrhRO6pUyEiM5cW+ATxv9i9fW47cojIE+7Tg/xmRBIy5f5vU5+app57CU089BQDIz8/H119/jT179uD555+HTqdDdXW1KYclO8D+B6ap+fU/Z9cpVAvBX/92KFDtzv8vIjthcofisrIyZGRkID09HYcPH8aJEyfQvXt3xMTEmDE8sjU1/Q/uroFg/4PGJfRvh6jOvvz1T0RkYSYlN4MGDcKJEyfQtWtXxMTEIDExEVFRUfD29jZ3fGRjWAPRPPz1T0RkeSYlN2fPnoWHhwe6dOmCLl26oGvXrkxsFIQ1EEREZMtMGi11/fp1HDp0CAMHDsT+/fsRGRmJoKAgjBkzBikpKeaOkWxQoNodESFtmNgQEZHNMWm01B8JIZCVlYXVq1dj69atNt+hmKOliIiI7I/FR0sdP34c6enpSE9PR0ZGBm7duoWwsDBMnToV0dHRJgVNREREZA4mJTcDBgxA7969ER0djcmTJyMqKgpqtdrcsREREREZzaTk5saNG2zSISIiIptkUnJTk9hkZWXhzJkzAIBu3bqhT58+5ouMiIiIyAQmJTdXr15FQkICvv76a7Rq1QoAcPPmTcTGxmL79u3w9fU1Z4xERERETWbSUPCpU6eipKQEp0+fxo0bN3Djxg2cOnUKxcXFmDZtmrljJCIiImoyk4aCq9VqHDx4EP379zfYfuzYMdx///24efOmueIzOw4FJyIisj/G3L9NqrnR6XRwdnautd3Z2Rk6nc6UQxIRERGZhUnJzX333Yfp06fjypUr+m2XL1/Giy++iCFDhpgtOCIiIiJjmZTcrF69GsXFxQgODkZISAhCQkLQoUMHFBcX4+233zZ3jEREVpOvLceRC0XI15ZLHQoRmcik0VIajQbHjx/HwYMHcfbsWQBA165dERcXZ9bgiIisKTUzD7N3nYROAA4qIGlUGBL6t5M6LCIykkk1NwCgUqkwdOhQTJ06FVOnTm1WYrNmzRoEBwfDzc0N4eHhOHbsWIP737x5E1OmTEFgYCBcXV3RuXNn7N271+TPJyLK15brExsA0Algzq5TrMEhskNNrrl56623mnxQY4aDp6amYubMmVi3bh3Cw8ORnJyM+Ph4nDt3Dn5+frX2r6ysxNChQ+Hn54edO3ciKCgIv/zyi36+HSIiU+QUleoTmxrVQiC3qAyBandpgiIikzR5KHiHDh2adkCVChcvXmxyAOHh4ejfvz9Wr14N4M5ILI1Gg6lTpyIxMbHW/uvWrcObb76Js2fP1jliqzEcCk5EdcnXliNy6SGDBMdRpUJGYiyTGyIbYJFVwXNycpod2N0qKyuRlZWF2bNn67c5ODggLi4OR48erfM9u3fvRkREBKZMmYLPP/8cvr6+GDNmDGbNmgVHR8da+1dUVKCiokL/vLi42OzlICL7F6h2R9KoMMzZdQrVQsBRpcKSUd2Z2BDZIaM6FOt0Ojg4mNxNp5aioiJUV1fD39/fYLu/v7++o/LdLl68iEOHDuHJJ5/E3r17cf78eTz//POoqqrCggULau2flJSEhQsXmi1mJcnXliOnqBQdfDwUfYHneVCOhP7tENXZF7lFZQj2acH/byI7ZVRy4+zsjPz8fH1fmFdeeQWzZ89G69atLRJcXXQ6Hfz8/PDuu+/C0dERffv2xeXLl/Hmm2/WmdzMnj0bM2fO1D8vLi6GRqOxWrz2iqNG7uB5UJ5AtTuTGiI7Z1Q1zN3dc9avX9+spRZ8fHzg6OiIwsJCg+2FhYUICAio8z2BgYHo3LmzQRNU165dUVBQgMrKylr7u7q6wsvLy+BBDeOokTt4HoiI7FOz2phMWJbKgIuLC/r27Yu0tDT9Np1Oh7S0NERERNT5nsjISJw/f95gmYeff/4ZgYGBcHFxaVY8dEdDo0aUhOeBiMg+ma8DjYlmzpyJlJQUbN68GWfOnMFzzz2H0tJSTJw4EQAwbtw4gw7Hzz33HG7cuIHp06fj559/xpdffoklS5ZgypQpUhVBdjr4eMBBZbjNUaVCsE8LaQKSCM8DEZF9MnqG4vnz56NFizsX98rKSixevBhqtdpgn5UrVzb5eAkJCbh27Rrmz5+PgoIC9OrVC/v27dN3Ms7LyzPoxKzRaLB//368+OKL6NGjB4KCgjB9+nTMmjXL2KJQPThq5A6eByIi+9TkeW4AICYmBiqVqsF9VCoVDh061OzALIXz3DRdvraco0bA80BEZAuMuX8bldzIAZMbIiIi+2PM/duifW68vLyMmq2YiIiIqLksmtworFKIiIiIbIDko6WIiIiIzInJDRHZtXxtOY5cKOLkikSkZ/RQcCIiW8HlMYioLhatuWls2DgRkam4PAYR1Ycdim0Yq9uJ6sflMehuvGZSDYs2S/3rX/9CUFCQJT9CtljdTtSwmuUx/pjgcHkM5eI1k/7IpEn8hBDYuXMnDh8+jKtXrxosYgkAu3btMluA5mYPk/jla8sRufRQrYt2RmIsZ8hVoHxtOXKKStHBx4P//3dJzcyrtTwGb2jKw2umMhhz/zap5mbGjBlYv349YmNj4e/vz741ZtZQdTu/qMrCX6MNS+jfDlGdfbk8hsLxmkl3Mym5+fDDD7Fr1y4MHz7c3PEQWN1Od9TXYTaqsy8v2H8QqHbn+VA4XjPpbiZ1KFar1ejYsaO5Y6H/U7MateP/1YhxNWplYodZoqbhNZPuZlLNzWuvvYaFCxdiw4YNcHfnH48lsLqd+GuUqOl4zaQ/Mim5efzxx7Ft2zb4+fkhODgYzs7OBq8fP37cLMEpHavbla3m1+jdHWb5N0FUN14zqYZJyc348eORlZWFp556ih2KiSyIv0aJiIxnUnLz5ZdfYv/+/Rg8eLC54yGiu/DXKBGRcUzqUKzRaGx2jhgiIiJSNpOSmxUrVuDVV19Fbm6umcMhIiIiah6TmqWeeuoplJWVISQkBC1atKjVofjGjRtmCY6IiIjIWCYlN8nJyWYOg4iIiMg8TB4tRUREto9rk5ESNXtV8N9//x2VlZUG29jZmIzBiy9R0xj7XeHaZKRUJiU3paWlmDVrFj7++GNcv3691uvV1dXNDoyUgRdfoqYx9rvCtclIyUwaLfXqq6/i0KFDWLt2LVxdXfHee+9h4cKFaNu2LT744ANzx0gyVd/FN19bLm1gRDbGlO8K1yYjJTMpufniiy/wzjvv4NFHH4WTkxPuvfdezJ07F0uWLMHWrVvNHSPJFC++RE1jynelZm2yP+LaZKQUJiU3N27c0K8K7uXlpR/6PXjwYHzzzTfmi45kTYqLb762HEcuFLF2iOyKKd8VrpRNSmZSn5uOHTsiJycH7dq1Q5cuXfDxxx9jwIAB+OKLL9CqVSszh0hSsXRHX2svDMn+PWSvTP2ucG0yUiqVEEI0vpuhVatWwdHREdOmTcPBgwcxYsQICCFQVVWFlStXYvr06ZaI1SyKi4uhVquh1Wo5qqsB1kwE8rXlFr/45mvLEbn0kEHVvqNKhYzEWF7wyW5Y47tCZKuMuX+blNzc7ZdffkFWVhZCQ0PRo0eP5h7OopjcNE6OicCRC0UYk/KfWtu3TR6IiJA2EkREUuL0A0T2x5j7t1nmuWnfvj3at2/f3EORjWio86K93ghq+izcnbCxc6XysHmS5IAJesNM6lBcXV2NRYsWISgoCJ6enrh48SIAYN68eXj//ffNGiBZX1M6L9pbx1x2riSA0w+QPKRm5iFy6SGMSfkPIpceQmpmntQh2RyTkpvFixdj06ZNWL58OVxcXPTbu3fvjvfee89swZE0GksE7PWLldC/HTISY7Ft8kBkJMby17oCcfoBsndM0JvGpGapDz74AO+++y6GDBmCZ599Vr+9Z8+eOHv2rNmCI+nUN8rC3mc9DVS720WcZBlsniR7J8duA5ZgUs3N5cuXERoaWmu7TqdDVVVVs4Mi2xCodkdESBuDLwx/+ZI9Y/Mk2TtOztg0JtXcdOvWDd9++22tTsQ7d+5E7969zRIY2Sb+8iV7x7lfyJ5Ze34we2VScjN//nyMHz8ely9fhk6nw65du3Du3Dl88MEH2LNnj7ljtHty6tXOLxbJAZsnyZ4xQW+cyfPcfPvtt3j99dfxww8/oKSkBH369MH8+fNx//33mztGs7L2PDdyHXbKycSIiMiarD6Jnz2xZnIjx8nwiIhslZxqyak2Y+7fJnUo7tixI65fv15r+82bN/ULahI73xIRWYu9TlFBlmFScpObm4vq6upa2ysqKnD58uVmByUX7NVORGR5nPuF7mZUh+Ldu3fr/71//36o1Wr98+rqaqSlpSE4ONhswdk7dr4lIrI8zv1CdzMquRk5ciQAQKVSYfz48QavOTs7Izg4GCtWrDBbcHLAXu1ERJbFKSrobkYlNzqdDgDQoUMHZGZmwsfHxyJByQ2HnRIRWQ5ryeluRiU3R48exfXr15GTk6Pf9sEHH2DBggUoLS3FyJEj8fbbb8PV1dXsgRJJhSMwiGwfa8npj4zqULxw4UKcPn1a//zkyZN4+umnERcXh8TERHzxxRdISkoye5BEUuEIDCL7UdeSMaRMRiU3P/zwA4YMGaJ/vn37doSHhyMlJQUzZ87EW2+9hY8//tjsQRJJgSMwiIjsk1HJzW+//QZ/f3/986+//hrDhg3TP+/fvz8uXbpkvuiIJMR5ioiI7JNRyY2/v7++v01lZSWOHz+OgQMH6l+/desWnJ2dzRshkUQ4TxERkX0yKrkZPnw4EhMT8e2332L27Nlo0aIF7r33Xv3rP/74I0JCQsweJJEUakZgOKruZDgcgUFEZB+MSm4WLVoEJycnREdHIyUlBSkpKXBxcdG/vmHDBpMWzlyzZg2Cg4Ph5uaG8PBwHDt2rEnv2759O1QqlX7+HbKefG05jlwokn3/k4T+7ZCRGIttkwciIzFWFoueEhHJnUkLZ2q1Wnh6esLR0dFg+40bN+Dp6WmQ8DQmNTUV48aNw7p16xAeHo7k5GTs2LED586dg5+fX73vy83NxeDBg9GxY0e0bt0an332WZM+z9qrgsuRXFc6J7J1nJaAlMyuVgUPDw9H//79sXr1agB3JgrUaDSYOnUqEhMT63xPdXU1oqKi8Le//Q3ffvstbt68yeTGSrjSOZE0LPGjgskS2ROLrwpuLpWVlcjKykJcXJx+m4ODA+Li4nD06NF63/f666/Dz88PTz/9dKOfUVFRgeLiYoMHmY4jiIiszxLTEqRm5mFQ0p05nAYlcQ4nkhdJk5uioiJUV1cbDC8H7ozKKigoqPM9GRkZeP/995GSktKkz0hKSoJardY/NBpNs+NWMo4gIrI+c/+oyNeWI/GTk6g5pACQ+MlJ2fehI+WQNLkx1q1btzB27FikpKQ0eV2r2bNnQ6vV6h+ch6d5OIKIyPrM/aPi+9wbuLs/ggCQlfubSccjsjVGrS1lbj4+PnB0dERhYaHB9sLCQgQEBNTa/8KFC8jNzcWIESP022oW83RycsK5c+dqDUV3dXXlWldmxjVciKyrOQtD1tWvRqVS1blvPZuJ7I6kyY2Liwv69u2LtLQ0/XBunU6HtLQ0vPDCC7X279KlC06ePGmwbe7cubh16xb++c9/ssnJirjSubKw46n0TPlRUV8n5L7tvaECDGpvVCqgT3tvi8VPZE2SJjcAMHPmTIwfPx79+vXDgAEDkJycjNLSUkycOBEAMG7cOAQFBSEpKQlubm7o3r27wftbtWoFALW2E5F5mDpKhwmR+Rnzo6K+TshRnX0RqHbH0kfDav2/8v+J5ELy5CYhIQHXrl3D/PnzUVBQgF69emHfvn36TsZ5eXlwcLCrrkFEstHYDbI+nAtJeg11Qg5Uu7N5mWRN8nlurI3z3BA13ZELRRiT8p9a27dNHoiIkDZ1vodzIdkG/j+Q3NjNPDdEZNtMGaXDuZBsA0c2kpJJ3ixFRLbLlFE6NQnR3TUGnAvJ+tj0RErF5IaIGmTsDbI5w5bJ/DiykWooqZM/kxsiapSxN0jWGBDZFqV18mefGyJqVL62HEcuFBk1PX+g2h0RIW2Y2BBJzBJrk9k61twQUYOU9ouP7JeSml2M0di0AHLE5MaM+MUiuTF1nhsia2MSXj8ldvJns5SZpGbmIXLpIYxJ+Q8ilx5Camae1CERNRuHdZM9UGKzizGUOC0Aa27MgL9uSa6U+IuP7I89NLtIXbOvtE7+TG7MwB6+WNQwqS88torDuske2HoSbitNZkqaFoDJjRnY+heLGmYrFx5bZeovPiaMZC22nISzZl8aTG7MwJa/WNQwXniaxthffEwYydpstdmFNfvSYHJjJrb6xaKG8cJjfkwYSSq22OzCmn1pcLSUGXHSMvtjysKQ1DCOsCL6HyWOVLIFrLkhRWOTovnxlyqRIdbsWx+TG1I8pV14LN3RlwkjUW222GQmZ0xuiKCcC4+1OvoqLWEkItvCPjdECmHtWVzZB42IpMLkhkgh2NGXiJSCyY0V5GvLceRCEdc5IUlxZBgRKQWTGwvjgppkKzgklYiUQiWEEI3vJh/FxcVQq9XQarXw8vKy6Gfla8sRufRQrSGxGYmxvKGQZPK15ezoS0R2x5j7N0dLWRBnv7UcrltkOqWMDCMi5WJyY0GczMwyuG4RERE1hH1uLIh9HMzP2sOZiYjI/rDmxsI4mZl5samPiIgaw+TGCtjHwXzY1EdERI1hsxTZFTb1ERFRY1hzQ3aHTX3Wx9FpRGRPmNyQXbKFpj5buOFbIwaOTiMie8PkhsgEtnDDt0YM9Y1Oi+rsK3lySURUH/a5ITKSLQxHt1YM9rDYJtduI3vHv2HzY80NkZFsYTi6tWKw9dFptlCDRtQc/Bu2DNbcEBnJFlbXtlYMtjw6zRZq0MhylFCbwb9hy2HNDZGRam74c3adQrUQktzwrRmDrY5Os4UaNLIMpdRm8G/Ycpjc2CFbGKWjdLZww7dmDLYwOu1utt5kRqZRUid2/g1bDpul7ExqZh4ilx7CmJT/IHLpIaRm5kkdkmIFqt0REdJG0guuLcQgFVtuMiPT2UMndnPh37DlsObGjijpFw1RU9hCDRqZl9JqM/g3bBmsubEjSvpFQ9RUSq69kiMl1mbwb9j8WHNjR5T2i4aUh/3JCGBthr2zhe8xkxs7YgujdIgsRSkjZKhpbLETOzXOVr7HKiGEaHw3+SguLoZarYZWq4WXl5fU4ZgkX1vOXzQkK/nackQuPVSrVjIjMZZ/40R2wtLfY2Pu3+xzY4fYPktyYw/9yZQwqRxRc9jS95jNUkQkOVvvT2YrVe1EtsyWvsesuSEiydnyCBlOkU/UNLb0PWbNDRHZBFsdIcMp8knuzDm6yVa+x0xuiMhm2OIIGVuqarcFtjDMl8zHEk2utvA9ZrMU2SV27iRrsaWqdqlx+Rd5kXOTK2tuyO6wcydZW0L/dugS0BKZub+hf7A3emq8pQ7J6rj8i/zIucmVyQ3ZFV5gSQpMqOV9I1SqpjS52mszJJulyK7Y0jwKpAxyrro3Rs2N8I+U3PdIDhprcrXnZkibSG7WrFmD4OBguLm5ITw8HMeOHat335SUFNx7773w9vaGt7c34uLiGtyf5IUXWLI2JtR3sO+RPCX0b4eMxFhsmzwQGYmx+hpJe0/qJU9uUlNTMXPmTCxYsADHjx9Hz549ER8fj6tXr9a5f3p6OkaPHo3Dhw/j6NGj0Gg0uP/++3H58mUrR05S4AWWrI0J9f/UdyMk+1bXrPf2ntRLvrZUeHg4+vfvj9WrVwMAdDodNBoNpk6disTExEbfX11dDW9vb6xevRrjxo1rdH85rC1FXF+LrCs1M6/WgrW8sZOc2eJ6b8bcvyXtUFxZWYmsrCzMnj1bv83BwQFxcXE4evRok45RVlaGqqoqtG7dus7XKyoqUFFRoX9eXFzcvKDNzF47a0nNFuZRIOWwlYnJiKylppb87qTeXv72JU1uioqKUF1dDX9/f4Pt/v7+OHv2bJOOMWvWLLRt2xZxcXF1vp6UlISFCxc2O1ZL4AgMIvvBhNr28ceiedlzUm/XQ8GXLl2K7du3Iz09HW5ubnXuM3v2bMycOVP/vLi4GBqNxloh1otDmomIzIc/Fi3DXpN6STsU+/j4wNHREYWFhQbbCwsLERAQ0OB7//GPf2Dp0qX46quv0KNHj3r3c3V1hZeXl8HDFth7Zy0iIlth7yN7yPwkTW5cXFzQt29fpKWl6bfpdDqkpaUhIiKi3vctX74cixYtwr59+9CvXz9rhGp2HIFBRGQe/LFId5N8KPjMmTORkpKCzZs348yZM3juuedQWlqKiRMnAgDGjRtn0OF42bJlmDdvHjZs2IDg4GAUFBSgoKAAJSUlUhXBJBzSTERkHvyxSHeTvM9NQkICrl27hvnz56OgoAC9evXCvn379J2M8/Ly4ODwvxxs7dq1qKysxGOPPWZwnAULFuC1116zZujNZs+dtYiIbIW9j+wh85N8nhtr4zw3RETyxPmv5M1u5rkhIiIyF3sd2UPmJ3mfGyIiIiJzYnJDREREssLkhoiIiGSFyQ0REZGC5WvLceRCkawmPWSHYiIiIoWS67IVrLkhIiJSIDkvW8HkhohIoczZHCHHpg25k/OyFWyWIiJSIHM2R8i1aUPuapat+GOCI5dlK1hzQ0SkMOZsjpBz04bcyXmNQ9bcEBEpTEPNEcbe2Mx5LLI+ua5xyOSGiEhhzNkcIeemDaWQ47IVbJYiIlIYczZHyLlpg+wXVwUnIlIoc66izRW5ydK4KjgRETXKnM0RcmzaIPvFZikiIiKSFSY3REREJCtMboiIiEhWmNwQERGRrDC5ISIiWeO6V8rD0VJERCRbXPdKmVhzQ0REssR1r5SLyQ0REclSQ+tekbwxuSHZYfs6EQH/W/fqj7julTIwuSFZSc3MQ+TSQxiT8h9ELj2E1Mw8qUMiIolw3Svl4tpSJBv52nJELj1Ua3XijMRYXsyIFIzrXskD15YiRWqofZ0XNCLl4rpXysNmKZINtq8TWR77tJE9YHJDssH2dSLLYp82shfsc0Oyw/Z1ZcnXliOnqBQdfDz4/21B7NNGUmOfG1I0tq8rB2eftR72aSN7wmYpIrJLnH3WutinjewJkxsiskucfda62KeN7AmbpYjILtXUJNzdB4Q1CZaT0L8dojr7sk8b2TzW3BCRXWJNgjQC1e6ICGnD80w2jTU3RGS3WJNARHVhckNEdo2j44jobmyWIiIiIllhckNERESywuRGYg2t08I1XIhICrz2kL1jnxsJNTS7KmdeJSIp8NpjO7i0iOlYcyORhmZX5cyrRCQFXntsBxcpbR4mNxJpaHZVzrxKRFLgtcc2MMlsPjZLSaSx2VU58yoRWRtnfbYNXKS0+VhzI5GGZle1h5lX2eGQSH547bENXKS0+VRCCNH4bvJRXFwMtVoNrVYLLy8vqcNBvra83tlVG3pNSuxwSCRvvPZILzUzD3N2nUK1EPokU65lbSpj7t9Mbsgo+dpyRC49VKvaOiMx1qYugkQkL0q89thqkikVY+7f7HNDRmFbMBFJQYnXHi4tYjr2uSGjsC2YiKTAaw8Zg8kNGcUeOhwSkfzw2kPGsIk+N2vWrMGbb76JgoIC9OzZE2+//TYGDBhQ7/47duzAvHnzkJubi06dOmHZsmUYPnx4kz6LfW7Mg23BRCSFxgZhcEZf+TLm/i15zU1qaipmzpyJBQsW4Pjx4+jZsyfi4+Nx9erVOvc/cuQIRo8ejaeffhonTpzAyJEjMXLkSJw6dcrKkStboNodESFteAEhm6aEYcNKU9+1hzP60h9JXnMTHh6O/v37Y/Xq1QAAnU4HjUaDqVOnIjExsdb+CQkJKC0txZ49e/TbBg4ciF69emHdunWNfh5rboiUQUnDhpVOiSOplMhuam4qKyuRlZWFuLg4/TYHBwfExcXh6NGjdb7n6NGjBvsDQHx8fL37V1RUoLi42OBBRPLG6euVhctG0N0kTW6KiopQXV0Nf39/g+3+/v4oKCio8z0FBQVG7Z+UlAS1Wq1/aDQa8wRPRDaLNztl4UgqupvkfW4sbfbs2dBqtfrHpUuXpA6JiCyMNztl4Ugqupukk/j5+PjA0dERhYWFBtsLCwsREBBQ53sCAgKM2t/V1RWurq7mCZiI7ELNze7u6et5s5OvhP7tENXZl6M4CYDENTcuLi7o27cv0tLS9Nt0Oh3S0tIQERFR53siIiIM9geAAwcO1Ls/ESlTQv92yEiMxbbJA5GRGMvOxArAUZxUQ/LlF2bOnInx48ejX79+GDBgAJKTk1FaWoqJEycCAMaNG4egoCAkJSUBAKZPn47o6GisWLECDz74ILZv347vv/8e7777rpTFICIbxOnriZRJ8uQmISEB165dw/z581FQUIBevXph3759+k7DeXl5cHD4XwXToEGD8NFHH2Hu3LmYM2cOOnXqhM8++wzdu3eXqghERERkQySf58baOM8NERGR/bGbeW6IiIiIzI3JDREREckKkxsiIiKSFSY3REREJCtMboiIiEhWmNwQERGRrDC5ISIiIllhckNERESywuSGiIiIZEXy5ResrWZC5uLiYokjISIioqaquW83ZWEFxSU3t27dAgBoNBqJIyEiIiJj3bp1C2q1usF9FLe2lE6nw5UrV9CyZUuoVCqzHru4uBgajQaXLl1S5LpVSi8/wHOg9PIDPAcsv7LLD1juHAghcOvWLbRt29ZgQe26KK7mxsHBAX/6058s+hleXl6K/aMGWH6A50Dp5Qd4Dlh+ZZcfsMw5aKzGpgY7FBMREZGsMLkhIiIiWWFyY0aurq5YsGABXF1dpQ5FEkovP8BzoPTyAzwHLL+yyw/YxjlQXIdiIiIikjfW3BAREZGsMLkhIiIiWWFyQ0RERLLC5IaIiIhkhcmNkdasWYPg4GC4ubkhPDwcx44dq3ff06dP49FHH0VwcDBUKhWSk5OtF6iFGFP+lJQU3HvvvfD29oa3tzfi4uIa3N9eGHMOdu3ahX79+qFVq1bw8PBAr1698OGHH1oxWvMzpvx/tH37dqhUKowcOdKyAVqBMedg06ZNUKlUBg83NzcrRmt+xv4N3Lx5E1OmTEFgYCBcXV3RuXNn7N2710rRmp8x5Y+Jian1/69SqfDggw9aMWLzM/ZvIDk5Gffccw/c3d2h0Wjw4osv4vfff7dcgIKabPv27cLFxUVs2LBBnD59WkyePFm0atVKFBYW1rn/sWPHxMsvvyy2bdsmAgICxKpVq6wbsJkZW/4xY8aINWvWiBMnTogzZ86ICRMmCLVaLX799VcrR24+xp6Dw4cPi127domffvpJnD9/XiQnJwtHR0exb98+K0duHsaWv0ZOTo4ICgoS9957r3j44YetE6yFGHsONm7cKLy8vER+fr7+UVBQYOWozcfY8ldUVIh+/fqJ4cOHi4yMDJGTkyPS09NFdna2lSM3D2PLf/36dYP/+1OnTglHR0exceNG6wZuRsaeg61btwpXV1exdetWkZOTI/bv3y8CAwPFiy++aLEYmdwYYcCAAWLKlCn659XV1aJt27YiKSmp0fe2b9/e7pOb5pRfCCFu374tWrZsKTZv3mypEC2uuedACCF69+4t5s6da4nwLM6U8t++fVsMGjRIvPfee2L8+PF2n9wYew42btwo1Gq1laKzPGPLv3btWtGxY0dRWVlprRAtqrnXgFWrVomWLVuKkpISS4VoccaegylTpoj77rvPYNvMmTNFZGSkxWJks1QTVVZWIisrC3FxcfptDg4OiIuLw9GjRyWMzDrMUf6ysjJUVVWhdevWlgrTopp7DoQQSEtLw7lz5xAVFWXJUC3C1PK//vrr8PPzw9NPP22NMC3K1HNQUlKC9u3bQ6PR4OGHH8bp06etEa7ZmVL+3bt3IyIiAlOmTIG/vz+6d++OJUuWoLq62lphm405roPvv/8+nnjiCXh4eFgqTIsy5RwMGjQIWVlZ+qarixcvYu/evRg+fLjF4lTcwpmmKioqQnV1Nfz9/Q22+/v74+zZsxJFZT3mKP+sWbPQtm1bgy+FPTH1HGi1WgQFBaGiogKOjo545513MHToUEuHa3amlD8jIwPvv/8+srOzrRCh5ZlyDu655x5s2LABPXr0gFarxT/+8Q8MGjQIp0+ftvgivuZmSvkvXryIQ4cO4cknn8TevXtx/vx5PP/886iqqsKCBQusEbbZNPc6eOzYMZw6dQrvv/++pUK0OFPOwZgxY1BUVITBgwdDCIHbt2/j2WefxZw5cywWJ5MbsoqlS5di+/btSE9Pt/vOlMZq2bIlsrOzUVJSgrS0NMycORMdO3ZETEyM1KFZ1K1btzB27FikpKTAx8dH6nAkExERgYiICP3zQYMGoWvXrli/fj0WLVokYWTWodPp4Ofnh3fffReOjo7o27cvLl++jDfffNPukpvmev/99xEWFoYBAwZIHYpVpaenY8mSJXjnnXcQHh6O8+fPY/r06Vi0aBHmzZtnkc9kctNEPj4+cHR0RGFhocH2wsJCBAQESBSV9TSn/P/4xz+wdOlSHDx4ED169LBkmBZl6jlwcHBAaGgoAKBXr144c+YMkpKS7C65Mbb8Fy5cQG5uLkaMGKHfptPpAABOTk44d+4cQkJCLBu0mZnjOuDs7IzevXvj/PnzlgjRokwpf2BgIJydneHo6Kjf1rVrVxQUFKCyshIuLi4WjdmcmvP/X1paiu3bt+P111+3ZIgWZ8o5mDdvHsaOHYtJkyYBAMLCwlBaWopnnnkGf//73+HgYP4eMuxz00QuLi7o27cv0tLS9Nt0Oh3S0tIMfpXJlanlX758ORYtWoR9+/ahX79+1gjVYsz1N6DT6VBRUWGJEC3K2PJ36dIFJ0+eRHZ2tv7xl7/8BbGxscjOzoZGo7Fm+GZhjr+B6upqnDx5EoGBgZYK02JMKX9kZCTOnz+vT2wB4Oeff0ZgYKBdJTZA8/7/d+zYgYqKCjz11FOWDtOiTDkHZWVltRKYmmRXWGp5S4t1VZah7du3C1dXV7Fp0ybx008/iWeeeUa0atVKP6xz7NixIjExUb9/RUWFOHHihDhx4oQIDAwUL7/8sjhx4oT473//K1URmsXY8i9dulS4uLiInTt3GgyFvHXrllRFaDZjz8GSJUvEV199JS5cuCB++ukn8Y9//EM4OTmJlJQUqYrQLMaW/25yGC1l7DlYuHCh2L9/v7hw4YLIysoSTzzxhHBzcxOnT5+WqgjNYmz58/LyRMuWLcULL7wgzp07J/bs2SP8/PzEG2+8IVURmsXU78DgwYNFQkKCtcO1CGPPwYIFC0TLli3Ftm3bxMWLF8VXX30lQkJCxOOPP26xGJncGOntt98W7dq1Ey4uLmLAgAHi3//+t/616OhoMX78eP3znJwcAaDWIzo62vqBm4kx5W/fvn2d5V+wYIH1AzcjY87B3//+dxEaGirc3NyEt7e3iIiIENu3b5cgavMxpvx3k0NyI4Rx52DGjBn6ff39/cXw4cPF8ePHJYjafIz9Gzhy5IgIDw8Xrq6uomPHjmLx4sXi9u3bVo7afIwt/9mzZwUA8dVXX1k5Ussx5hxUVVWJ1157TYSEhAg3Nzeh0WjE888/L3777TeLxacSwlJ1QkRERETWxz43REREJCtMboiIiEhWmNwQERGRrDC5ISIiIllhckNERESywuSGiIiIZIXJDREREckKkxsiIguaMGECRo4cKXUYRIrC5IZIoSZMmACVSqV/tGnTBg888AB+/PFHqUMziz+WreYxePBgi31ebm4uVCoVsrOzDbb/85//xKZNmyz2uURUG5MbIgV74IEHkJ+fj/z8fKSlpcHJyQkPPfSQ1GGZzcaNG/Xly8/Px+7du+vcr6qqymIxqNVqtGrVymLHJ6LamNwQKZirqysCAgIQEBCAXr16ITExEZcuXcK1a9dw33334YUXXjDY/9q1a3BxcdGvCBwcHIxFixZh9OjR8PDwQFBQENasWWPwnpUrVyIsLAweHh7QaDR4/vnnUVJSon/9l19+wYgRI+Dt7Q0PDw/8+c9/xt69ewEAv/32G5588kn4+vrC3d0dnTp1wsaNG5tcvlatWunLFxAQgNatW+trWFJTUxEdHQ03Nzds3boV169fx+jRoxEUFIQWLVogLCwM27ZtMzieTqfD8uXLERoaCldXV7Rr1w6LFy8GAHTo0AEA0Lt3b6hUKsTExACo3SxVUVGBadOmwc/PD25ubhg8eDAyMzP1r6enp0OlUiEtLQ39+vVDixYtMGjQIJw7d67J5SZSOiY3RAQAKCkpwZYtWxAaGoo2bdpg0qRJ+Oijj1BRUaHfZ8uWLQgKCsJ9992n3/bmm2+iZ8+eOHHiBBITEzF9+nQcOHBA/7qDgwPeeustnD59Gps3b8ahQ4fw6quv6l+fMmUKKioq8M033+DkyZNYtmwZPD09AQDz5s3DTz/9hH/96184c+YM1q5dCx8fH7OUtybWM2fOID4+Hr///jv69u2LL7/8EqdOncIzzzyDsWPH4tixY/r3zJ49G0uXLtXH9dFHH8Hf3x8A9PsdPHgQ+fn52LVrV52f++qrr+KTTz7B5s2bcfz4cYSGhiI+Ph43btww2O/vf/87VqxYge+//x5OTk7429/+ZpZyEymCxZbkJCKbNn78eOHo6Cg8PDyEh4eHACACAwNFVlaWEEKI8vJy4e3tLVJTU/Xv6dGjh3jttdf0z9u3by8eeOABg+MmJCSIYcOG1fu5O3bsEG3atNE/DwsLMzjmH40YMUJMnDjRpPIBEG5ubvryeXh4iE8//VTk5OQIACI5ObnRYzz44IPipZdeEkIIUVxcLFxdXUVKSkqd+9Yc98SJEwbb/7gSeklJiXB2dhZbt27Vv15ZWSnatm0rli9fLoQQ4vDhwwKAOHjwoH6fL7/8UgAQ5eXlxpwCIsVizQ2RgsXGxiI7OxvZ2dk4duwY4uPjMWzYMPzyyy9wc3PD2LFjsWHDBgDA8ePHcerUKUyYMMHgGBEREbWenzlzRv/84MGDGDJkCIKCgtCyZUuMHTsW169fR1lZGQBg2rRpeOONNxAZGYkFCxYYdGh+7rnnsH37dvTq1Quvvvoqjhw5YlT5Vq1apS9fdnY2hg4dqn+tX79+BvtWV1dj0aJFCAsLQ+vWreHp6Yn9+/cjLy8PAHDmzBlUVFRgyJAhRsXwRxcuXEBVVRUiIyP125ydnTFgwACDcwYAPXr00P87MDAQAHD16lWTP5tISZjcECmYh4cHQkNDERoaiv79++O9995DaWkpUlJSAACTJk3CgQMH8Ouvv2Ljxo2477770L59+yYfPzc3Fw899BB69OiBTz75BFlZWfo+OZWVlfrPuHjxIsaOHYuTJ0+iX79+ePvttwFAn2i9+OKLuHLlCoYMGYKXX365yZ8fEBCgL19oaCg8PDwMyv5Hb775Jv75z39i1qxZOHz4MLKzsxEfH6+P093dvcmfaw7Ozs76f6tUKgB3+vwQUeOY3BCRnkqlgoODA8rLywEAYWFh6NevH1JSUvDRRx/V2e/j3//+d63nXbt2BQBkZWVBp9NhxYoVGDhwIDp37owrV67UOoZGo8Gzzz6LXbt24aWXXtInVwDg6+uL8ePHY8uWLUhOTsa7775rziLrfffdd3j44Yfx1FNPoWfPnujYsSN+/vln/eudOnWCu7u7vjP13VxcXADcqQGqT0hICFxcXPDdd9/pt1VVVSEzMxPdunUzU0mIyEnqAIhIOhUVFSgoKABwZ2TS6tWrUVJSghEjRuj3mTRpEl544QV4eHjgkUceqXWM7777DsuXL8fIkSNx4MAB7NixA19++SUAIDQ0FFVVVXj77bcxYsQIfPfdd1i3bp3B+2fMmIFhw4ahc+fO+O2333D48GF9cjR//nz07dsXf/7zn1FRUYE9e/boXzO3Tp06YefOnThy5Ai8vb2xcuVKFBYW6pMONzc3zJo1C6+++ipcXFwQGRmJa9eu4fTp03j66afh5+cHd3d37Nu3D3/605/g5uYGtVpt8BkeHh547rnn8Morr6B169Zo164dli9fjrKyMjz99NMWKReRErHmhkjB9u3bh8DAQAQGBiI8PByZmZnYsWOHfhgzAIwePRpOTk4YPXo03Nzcah3jpZdewvfff4/evXvjjTfewMqVKxEfHw8A6NmzJ1auXIlly5ahe/fu2Lp1K5KSkgzeX11djSlTpqBr16544IEH0LlzZ7zzzjsA7tSGzJ49Gz169EBUVBQcHR2xfft2i5yLuXPnok+fPoiPj0dMTAwCAgJqzSw8b948vPTSS5g/fz66du2KhIQEfT8YJycnvPXWW1i/fj3atm2Lhx9+uM7PWbp0KR599FGMHTsWffr0wfnz57F//354e3tbpFxESqQSQgipgyAi25Wbm4uQkBBkZmaiT58+Bq8FBwdjxowZmDFjhjTBERHVgc1SRFSnqqoqXL9+HXPnzsXAgQNrJTZERLaKzVJEVKfvvvsOgYGByMzMrNVPRmpLliyBp6dnnY9hw4ZJHR4RSYzNUkRkd27cuFFrRt8a7u7uCAoKsnJERGRLmNwQERGRrLBZioiIiGSFyQ0RERHJCpMbIiIikhUmN0RERCQrTG6IiIhIVpjcEBERkawwuSEiIiJZYXJDREREsvL/Abyrq0qOYOf3AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT4JJREFUeJzt3XlcVPX+P/DXgOzKiLJKoyho4hVxQRA1FsNIy1LrRmpuN+3XYqVWhuaaC2qp3NLUzNTSkjQrM6+mKBbqvRpIqak3FcIUUFwGWQRkPr8/vMzXERBmmJkzc+b1fDzm8XDOnHPmfT6MM+/zWRVCCAEiIiIimbCTOgAiIiIiY2JyQ0RERLLC5IaIiIhkhckNERERyQqTGyIiIpIVJjdEREQkK0xuiIiISFaY3BAREZGsMLkhIiIiWWFyQ0SSmD17NhQKRYP2VSgUmD17tknjiYmJQUxMjMWej4gajskNkY1bv349FAqF9tGkSRP4+/tjzJgxuHjxotThWZyAgACd8vL29sZDDz2Eb775xijnLy0txezZs5GWlmaU8xHZIiY3RAQAePfdd/H5559j1apVGDBgADZu3Ijo6GjcunXLJO83ffp0lJWVmeTcpta1a1d8/vnn+Pzzz/Hmm2/i0qVLGDp0KFatWtXoc5eWlmLOnDlMbogaoYnUARCRZRgwYADCwsIAAOPGjYOnpycWLVqE7du345lnnjH6+zVp0gRNmljnV5C/vz+ee+457fNRo0YhKCgIy5Ytw4svvihhZEQEsOaGiOrw0EMPAQDOnTuns/306dN4+umn0aJFCzg7OyMsLAzbt2/X2aeyshJz5sxB+/bt4ezsjJYtW6Jv377Ys2ePdp/a+tyUl5dj0qRJ8PLyQrNmzfDEE0/gr7/+qhHbmDFjEBAQUGN7bedct24d+vXrB29vbzg5OaFTp05YuXKlXmVRH19fXwQHByM7O/u++12+fBnPP/88fHx84OzsjNDQUGzYsEH7ek5ODry8vAAAc+bM0TZ9mbq/EZHcWOdtExGZXE5ODgDAw8NDu+3kyZPo06cP/P39kZiYCDc3N3z11VcYPHgwvv76awwZMgTAnSQjKSkJ48aNQ3h4OIqKivDLL78gMzMT/fv3r/M9x40bh40bN2L48OHo3bs39u3bh8cee6xR17Fy5Ur87W9/wxNPPIEmTZrg+++/x8svvwyNRoNXXnmlUeeuVllZiQsXLqBly5Z17lNWVoaYmBicPXsWEyZMQNu2bbFlyxaMGTMGN27cwOuvvw4vLy+sXLkSL730EoYMGYKhQ4cCALp06WKUOIlshiAim7Zu3ToBQOzdu1dcuXJFXLhwQWzdulV4eXkJJycnceHCBe2+Dz/8sAgJCRG3bt3SbtNoNKJ3796iffv22m2hoaHiscceu+/7zpo1S9z9FZSVlSUAiJdffllnv+HDhwsAYtasWdpto0ePFm3atKn3nEIIUVpaWmO/+Ph40a5dO51t0dHRIjo6+r4xCyFEmzZtxCOPPCKuXLkirly5In799Vfx7LPPCgDi1VdfrfN8ycnJAoDYuHGjdltFRYWIjIwUTZs2FUVFRUIIIa5cuVLjeolIP2yWIiIAQFxcHLy8vKBSqfD000/Dzc0N27dvxwMPPAAAuHbtGvbt24dnnnkGN2/eRGFhIQoLC3H16lXEx8fjjz/+0I6uat68OU6ePIk//vijwe+/c+dOAMBrr72ms33ixImNui4XFxftv9VqNQoLCxEdHY3z589DrVYbdM4ff/wRXl5e8PLyQmhoKLZs2YKRI0di0aJFdR6zc+dO+Pr6YtiwYdptDg4OeO2111BcXIwDBw4YFAsR1WTTyc1PP/2EQYMGoVWrVlAoFPj2229N+n43b97ExIkT0aZNG7i4uKB37944evSoSd+TqKFWrFiBPXv2YOvWrRg4cCAKCwvh5OSkff3s2bMQQmDGjBnaH/bqx6xZswDc6VMC3Bl5dePGDXTo0AEhISF466238Ntvv933/f/880/Y2dkhMDBQZ/uDDz7YqOs6ePAg4uLi4ObmhubNm8PLywvTpk0DAIOTm4iICOzZswd79+7FoUOHUFhYiM8++0wnkbrXn3/+ifbt28POTvdrNzg4WPs6ERmHTfe5KSkpQWhoKP7xj39o27ZNady4cThx4gQ+//xztGrVChs3bkRcXBx+//13+Pv7m/z9ie4nPDxcO1pq8ODB6Nu3L4YPH44zZ86gadOm0Gg0AIA333wT8fHxtZ4jKCgIABAVFYVz587hu+++w48//ohPPvkEy5Ytw6pVqzBu3LhGx1rX5H9VVVU6z8+dO4eHH34YHTt2xNKlS6FSqeDo6IidO3di2bJl2mvSl6enJ+Li4gw6lohMz6aTmwEDBmDAgAF1vl5eXo533nkHX375JW7cuIHOnTtj0aJFBs06WlZWhq+//hrfffcdoqKiANzpdPn9999j5cqVmDdvnqGXQWR09vb2SEpKQmxsLJYvX47ExES0a9cOwJ2mlIb8sLdo0QJjx47F2LFjUVxcjKioKMyePbvO5KZNmzbQaDQ4d+6cTm3NmTNnauzr4eGBGzdu1Nh+b+3H999/j/Lycmzfvh2tW7fWbt+/f3+98RtbmzZt8Ntvv0Gj0ejU3pw+fVr7OlB34kZEDWfTzVL1mTBhAg4fPozNmzfjt99+w9///nc8+uijevUjqHb79m1UVVXB2dlZZ7uLiwvS09ONFTKR0cTExCA8PBzJycm4desWvL29ERMTg9WrVyMvL6/G/leuXNH+++rVqzqvNW3aFEFBQSgvL6/z/apvND744AOd7cnJyTX2DQwMhFqt1mnqysvLqzFLsL29PQBACKHdplarsW7dujrjMJWBAwciPz8fKSkp2m23b9/Ghx9+iKZNmyI6OhoA4OrqCgC1Jm9E1DA2XXNzP7m5uVi3bh1yc3PRqlUrAHeq43ft2oV169ZhwYIFep2vWbNmiIyMxNy5cxEcHAwfHx98+eWXOHz4sLYqn8jSvPXWW/j73/+O9evX48UXX8SKFSvQt29fhISEYPz48WjXrh0KCgpw+PBh/PXXX/j1118BAJ06dUJMTAx69OiBFi1a4JdffsHWrVsxYcKEOt+ra9euGDZsGD766COo1Wr07t0bqampOHv2bI19n332Wbz99tsYMmQIXnvtNZSWlmLlypXo0KEDMjMztfs98sgjcHR0xKBBg/D//t//Q3FxMdasWQNvb+9aEzRTeuGFF7B69WqMGTMGGRkZCAgIwNatW3Hw4EEkJyejWbNmAO7c8HTq1AkpKSno0KEDWrRogc6dO6Nz585mjZfIqkk9XMtSABDffPON9vmOHTsEAOHm5qbzaNKkiXjmmWeEEEKcOnVKALjv4+2339ae8+zZsyIqKkoAEPb29qJnz55ixIgRomPHjua+XCKt6qHgR48erfFaVVWVCAwMFIGBgeL27dtCCCHOnTsnRo0aJXx9fYWDg4Pw9/cXjz/+uNi6dav2uHnz5onw8HDRvHlz4eLiIjp27Cjmz58vKioqtPvUNmy7rKxMvPbaa6Jly5bCzc1NDBo0SFy4cKHWodE//vij6Ny5s3B0dBQPPvig2LhxY63n3L59u+jSpYtwdnYWAQEBYtGiReLTTz8VAER2drZ2P32Ggtc3zL2u8xUUFIixY8cKT09P4ejoKEJCQsS6detqHHvo0CHRo0cP4ejoyGHhRAZQCHFXfa0NUygU+OabbzB48GAAQEpKCkaMGIGTJ09qq7arNW3aFL6+vqioqMD58+fve96WLVtqZxytVlJSgqKiIvj5+SEhIQHFxcX44YcfjHo9REREtorNUnXo1q0bqqqqcPnyZe009PdydHREx44d9T63m5sb3NzccP36dezevRuLFy9ubLhERET0Pzad3BQXF+u052dnZyMrKwstWrRAhw4dMGLECIwaNQpLlixBt27dcOXKFaSmpqJLly4GTQm/e/duCCHw4IMP4uzZs3jrrbfQsWNHjB071piXRUREZNNsulkqLS0NsbGxNbaPHj0a69evR2VlJebNm4fPPvsMFy9ehKenJ3r16oU5c+YgJCRE7/f76quvMHXqVPz1119o0aIFnnrqKcyfPx9KpdIYl0NERESw8eSGiIiI5Ifz3BAREZGsMLkhIiIiWbG5DsUajQaXLl1Cs2bNOM05ERGRlRBC4ObNm2jVqlWNBWjvZXPJzaVLl6BSqaQOg4iIiAxw4cIFPPDAA/fdx+aSm+opzi9cuAB3d3eJoyEiIqKGKCoqgkql0v6O34/NJTfVTVHu7u5MboiIiKxMQ7qUsEMxERERyQqTGyIiIpIVJjdEREQkKzbX54aIiCxPVVUVKisrpQ6DJObo6FjvMO+GYHJDRESSEUIgPz8fN27ckDoUsgB2dnZo27YtHB0dG3UeJjdERCSZ6sTG29sbrq6unFzVhlVPspuXl4fWrVs36rPA5IaIiCRRVVWlTWxatmwpdThkAby8vHDp0iXcvn0bDg4OBp+HHYqJiEgS1X1sXF1dJY6ELEV1c1RVVVWjzsPkhoiIJMWmKKpmrM8CkxsiIiKSFSY3REREVKeAgAAkJydLHYZemNwQyUCeugyHzhUiT10mdShENuHKlSt46aWX0Lp1azg5OcHX1xfx8fE4ePAggDvNK99++620QTZQTEwMFApFjcft27elDs1gHC1FZOVSjuZi6rbj0AjATgEkDQ1BQs/WUodFJGtPPfUUKioqsGHDBrRr1w4FBQVITU3F1atXpQ7NIOPHj8e7776rs61JE+tNEVhzQ2TF8tRl2sQGADQCmLbtBGtwiEzoxo0b+Pnnn7Fo0SLExsaiTZs2CA8Px9SpU/HEE08gICAAADBkyBAoFArtcwD47rvv0L17dzg7O6Ndu3aYM2eOTg3J0qVLERISAjc3N6hUKrz88ssoLi7Wvr5+/Xo0b94cO3bswIMPPghXV1c8/fTTKC0txYYNGxAQEAAPDw+89tpreo04cnV1ha+vr86jLrm5uXjyySfRtGlTuLu745lnnkFBQQEAQK1Ww97eHr/88guAO3PXtGjRAr169dIev3HjRqhUqgbHZggmN0RWLLuwRJvYVKsSAjmFpdIERCQRczbNNm3aFE2bNsW3336L8vLyGq8fPXoUALBu3Trk5eVpn//8888YNWoUXn/9dfz+++9YvXo11q9fj/nz52uPtbOzwwcffICTJ09iw4YN2LdvH6ZMmaJz/tLSUnzwwQfYvHkzdu3ahbS0NAwZMgQ7d+7Ezp078fnnn2P16tXYunWr0a9do9HgySefxLVr13DgwAHs2bMH58+fR0JCAgBAqVSia9euSEtLAwAcP34cCoUCx44d0yZpBw4cQHR0tNFjuxuTGyIr1tbTDXb3jJy0VygQ4Ml5Q8h2pBzNRZ+F+zB8zX/QZ+E+pBzNNen7NWnSBOvXr8eGDRvQvHlz9OnTB9OmTcNvv/0G4M5EdADQvHlz+Pr6ap/PmTMHiYmJGD16NNq1a4f+/ftj7ty5WL16tfbcEydORGxsLAICAtCvXz/MmzcPX331lc77V1ZWYuXKlejWrRuioqLw9NNPIz09HWvXrkWnTp3w+OOPIzY2Fvv372/wNX300UfapK1p06Z44403at0vNTUVx48fxxdffIEePXogIiICn332GQ4cOKBN4mJiYrTJTVpaGvr374/g4GCkp6drtzG5IaI6+SldkDQ0BPb/mxvCXqHAgqGd4ad0kTgyIvOQqmn2qaeewqVLl7B9+3Y8+uijSEtLQ/fu3bF+/fo6j/n111/x7rvv6iQR48ePR15eHkpL79S27t27Fw8//DD8/f3RrFkzjBw5ElevXtW+DtxpQgoMDNQ+9/HxQUBAAJo2baqz7fLlyw2+nhEjRiArK0v7mDp1aq37nTp1CiqVSqdZqVOnTmjevDlOnToFAIiOjkZ6ejqqqqpw4MABxMTEaBOeS5cu4ezZs4iJiWlwbIaw3t5CRAQASOjZGlEdvJBTWIoAT1cmNmRT7tc0a+r/C87Ozujfvz/69++PGTNmYNy4cZg1axbGjBlT6/7FxcWYM2cOhg4dWuu5cnJy8Pjjj+Oll17C/Pnz0aJFC6Snp+P5559HRUWFdibne5clUCgUtW7TaDQNvhalUomgoKAG738/UVFRuHnzJjIzM/HTTz9hwYIF8PX1xcKFCxEaGopWrVqhffv2RnmvujC5IZIBP6ULkxqySdVNs3cnOFI1zXbq1Ek7/NvBwaFGh97u3bvjzJkzdSYRGRkZ0Gg0WLJkCezs7jSs3NskJbXg4GBcuHABFy5c0Nbe/P7777hx4wY6deoE4E5zXJcuXbB8+XI4ODigY8eO8Pb2RkJCAnbs2GHyJimAzVJERGTFpGiavXr1Kvr164eNGzfit99+Q3Z2NrZs2YLFixfjySefBHBn4rvU1FTk5+fj+vXrAICZM2fis88+w5w5c3Dy5EmcOnUKmzdvxvTp0wEAQUFBqKysxIcffojz58/j888/x6pVq0x2HYaIi4tDSEgIRowYgczMTBw5cgSjRo1CdHQ0wsLCtPvFxMRg06ZN2kSmRYsWCA4ORkpKCpMbIiKi+iT0bI30xFh8Ob4X0hNjTT7PU9OmTREREYFly5YhKioKnTt3xowZMzB+/HgsX74cALBkyRLs2bMHKpUK3bp1AwDEx8djx44d+PHHH9GzZ0/06tULy5YtQ5s2bQAAoaGhWLp0KRYtWoTOnTtj06ZNSEpKMum16EuhUOC7776Dh4cHoqKiEBcXh3bt2iElJUVnv+joaFRVVen0rYmJiamxzWRxCiFE/bvJR1FREZRKJdRqNdzd3aUOh4jIZt26dQvZ2dlo27YtnJ2dpQ6HLMD9PhP6/H6z5oaIiIhkhckNERGRTP388886Q8/vfcgVR0sRERHJVFhYGLKysqQOw+yY3BAREcmUi4uL0eavsSZsliIiIknZ2LgWug9jfRaY3BARkSSqZ9W9e2kBsm0VFRUAAHt7+0adh81SREQkCXt7ezRv3ly7BpKrqysUCkU9R5FcaTQaXLlyBa6urmjSpHHpCZMbIiKSjK+vLwDotcgjyZednR1at27d6CSXyQ0REUlGoVDAz88P3t7eqKyslDockpijo6N2Xa3GYHJDRESSs7e3b3Q/C6Jq7FBMRGQB8tRlOHSuEHnqMqlDIbJ6rLkhIpJYytFcTN12HBoB2CmApKEhJl/8kUjOWHNDRCShPHWZNrEBAI0Apm07wRocokZgckNEJKHswhJtYlOtSgjkFHLuFyJDMbkhIpJQW0832N0z6tVeoUCAp6s0ARHJAJMbIiIJ+SldkDQ0BPb/m9fDXqHAgqGd4ad0kTgyIuvFDsVERBJL6NkaUR28kFNYigBPVyY2RI3E5IaIyAL4KV2Y1BAZCZuliIiISFYkTW5++uknDBo0CK1atYJCocC3335b7zFpaWno3r07nJycEBQUhPXr15s8TiIiIrIekiY3JSUlCA0NxYoVKxq0f3Z2Nh577DHExsYiKysLEydOxLhx47B7924TR0pERETWQtI+NwMGDMCAAQMavP+qVavQtm1bLFmyBAAQHByM9PR0LFu2DPHx8aYKk4iIiKyIVfW5OXz4MOLi4nS2xcfH4/DhwxJFRERERJbGqkZL5efnw8fHR2ebj48PioqKUFZWBheXmiMNysvLUV5ern1eVFRk8jiJiIhIOlZVc2OIpKQkKJVK7UOlUkkdEhEREZmQVSU3vr6+KCgo0NlWUFAAd3f3WmttAGDq1KlQq9Xax4ULF8wRKhEREUnEqpqlIiMjsXPnTp1te/bsQWRkZJ3HODk5wcnJydShERERkYWQtOamuLgYWVlZyMrKAnBnqHdWVhZyc3MB3Kl1GTVqlHb/F198EefPn8eUKVNw+vRpfPTRR/jqq68wadIkKcInIiIiCyRpcvPLL7+gW7du6NatGwBg8uTJ6NatG2bOnAkAyMvL0yY6ANC2bVv88MMP2LNnD0JDQ7FkyRJ88sknHAZOREREWgohhJA6CHMqKiqCUqmEWq2Gu7u71OEQERFRA+jz+21VHYqJbEGeugyHzhUiT10mdShERFbJqjoUE8ldytFcTN12HBoB2CmApKEhSOjZWuqwiIisCmtuiCxEnrpMm9gAgEYA07adYA0OEZGemNwQWYjswhJtYlOtSgjkFJZKExARkZVickNkIdp6usFOobvNXqFAgKerNAEREVkpJjdEFsJP6YKkoSGwV9zJcOwVCiwY2hl+ytpn3yYiotqxQzGRBUno2RpRHbyQU1iKAE9XncQmT12G7MIStPV0Y8JDRHQfTG6ILIyf0qVG8sJRVEREDcdmKSILx1FURET6YXJDZOE4ioqISD9MbogsHEdRERHph8kNcbp/C8dRVERE+mGHYhvHjqrW4X6jqIiISBdrbmwYO6paFz+lCyIDWzKxISKqB5MbG8aOqraNzZFEJFdslrJh1R1V705w2FHVNrA5kojkjDU3NowdVW0TmyOJSO5Yc2Pj2FFVly0scXC/5ki5XjMR2RYmN1TrdP+2yFaaatgcSURyx2YpIthWUw2bI4lI7lhzQwTba6phcyQRyRmTGyLYZlMNmyOJSK7YLEUENtUQEckJa26I/odNNURE8sDkhiyGJQzDZlMNEZH1Y3JDFsFWhmETEZHpsc8NSc6WhmETEZHpMbkhyXEBTyIiMiYmNyS56mHYd5P7MGwiIjIdJjckOQ7DJiIiY2KHYrIIHIZNRETGwuSGLAaHYRMRkTGwWYqIiIhkhckNERERyQqTGyIiIpIVJjdEREQkK0xuiIiISFaY3BAREZGsMLkhIiIiWWFyQ0RERLLC5IaIiIhkhckNERERyQqTGyIiqleeugyHzhUiT10mdShE9eLaUkREdF8pR3MxddtxaARgpwCShoYgoWdrqcMiqhNrboiIqE556jJtYgMAGgFM23aCNThk0ZjcEBFRnbILS7SJTbUqIZBTWCpNQEQNwOSGiIjq1NbTDXYK3W32CgUCPF2lCYioAZjcEBFRnfyULkgaGgJ7xZ0Mx16hwIKhneGndJE4MqK6sUMxERHdV0LP1ojq4IWcwlIEeLoysSGLx+SGiIjq5ad0YVJDVsMimqVWrFiBgIAAODs7IyIiAkeOHLnv/snJyXjwwQfh4uIClUqFSZMm4datW2aKloiIiCyZ5MlNSkoKJk+ejFmzZiEzMxOhoaGIj4/H5cuXa93/iy++QGJiImbNmoVTp05h7dq1SElJwbRp08wcOREREVkiyZObpUuXYvz48Rg7diw6deqEVatWwdXVFZ9++mmt+x86dAh9+vTB8OHDERAQgEceeQTDhg2rt7aHiIiIbIOkyU1FRQUyMjIQFxen3WZnZ4e4uDgcPny41mN69+6NjIwMbTJz/vx57Ny5EwMHDqx1//LychQVFek8iIiISL4k7VBcWFiIqqoq+Pj46Gz38fHB6dOnaz1m+PDhKCwsRN++fSGEwO3bt/Hiiy/W2SyVlJSEOXPmGD12IiIiskySN0vpKy0tDQsWLMBHH32EzMxMbNu2DT/88APmzp1b6/5Tp06FWq3WPi5cuGDmiImIiMicJK258fT0hL29PQoKCnS2FxQUwNfXt9ZjZsyYgZEjR2LcuHEAgJCQEJSUlOCFF17AO++8Azs73XzNyckJTk5OprkAIiIisjiS1tw4OjqiR48eSE1N1W7TaDRITU1FZGRkrceUlpbWSGDs7e0BAEKI2g4hIiIiGyL5JH6TJ0/G6NGjERYWhvDwcCQnJ6OkpARjx44FAIwaNQr+/v5ISkoCAAwaNAhLly5Ft27dEBERgbNnz2LGjBkYNGiQNskhIiIi2yV5cpOQkIArV65g5syZyM/PR9euXbFr1y5tJ+Pc3Fydmprp06dDoVBg+vTpuHjxIry8vDBo0CDMnz9fqksgIiIiC6IQNtaWU1RUBKVSCbVaDXd3d6nDISIiogbQ5/fb6kZLEREREd0PkxsiIiKSFSY3REREJCtMboiIiEhWmNwQERGRrDC5ISIiIllhckNENiFPXYZD5wqRpy6TOhQiMjHJJ/EjMoU8dRmyC0vQ1tMNfkoXqcMhiaUczcXUbcehEYCdAkgaGoKEnq2lDouITITJDckOf8jobnnqMu3nAQA0Api27QSiOngx8SWSKTZLkazU9UPGpgjblV1Yov08VKsSAjmFpdIEREQmx+SGZIU/ZHSvtp5usFPobrNXKBDg6SpNQERkckxuSFb4Q0b38lO6IGloCOwVdz4Y9goFFgztzCYpIhljnxuSleofsmnbTqBKCP6QEQAgoWdrRHXwQk5hKQI8Xfl5IJI5JjckO/who9r4KV34WSCyEUxuSJb4Q0ZEZLvY54aIiIhkhckNERERyQqTGyIiIgvD5UIah31uiMjmyXG5Djlek63gLOuNx+SGiGyaHH9I5HhNtoLLhRgHm6WIyGbJcbkOOV6TLeEs68bB5IaIbJYcf0jkeE22hLOsGweTGyKyWXL8IZHjNdkSLhdiHOxzQ0Q2S47LdcjxmmwNZ1lvPIUQQtS/m3wUFRVBqVRCrVbD3d1d6nCIyALkqctk90Mix2si26bP7zdrbmSGwz+J9CfH5TrkeE1EDcXkRkY4/JOIiIgdimWDwz+JiIjuYHIjExz+SUREdAeTG5loyPBPrlVCRES2wKDkpnXr1hg1ahTWrl2Lc+fOGTsmMkB9cyOkHM1Fn4X7MHzNf9Bn4T6kHM2VMlwisnG82SJTMmgo+MaNG/HTTz8hLS0NZ8+ehb+/P6KjoxEdHY2YmBi0b9/eFLEahdyHgtc2/DNPXYY+C/fpNFvZKxRIT4zlaAoiMjsOfiBDmHwo+HPPPYfnnnsOAJCXl4cDBw5gx44dePnll6HRaFBVVWXIackIahv+eb/+OExuiMicuDAkmYPBQ8FLS0uRnp6OtLQ07N+/H8eOHUPnzp0RExNjxPDIGKr749xbc8Pp2InI3HizReZgUHLTu3dvHDt2DMHBwYiJiUFiYiKioqLg4eFh7PjICDgdOxFZCt5skTkYlNycPn0abm5u6NixIzp27Ijg4GAmNhaOa5UQkSXgzRaZg0EdioUQOH78ONLS0nDgwAH89NNPcHR0RHR0NGJjYzF+/HhTxGoUcu9QTERkDbj2FelLn9/vRi+cKYRARkYGli9fjk2bNll8h2ImN0RERNbH5KOlMjMzkZaWhrS0NKSnp+PmzZsICQnBq6++iujoaIOCJiIiIjIGg5Kb8PBwdOvWDdHR0Rg/fjyioqKgVCqNHRsRERGR3gxKbq5du8YmHSIiIrJIBiU31YlNRkYGTp06BQDo1KkTunfvbrzIiIiIiAxgUHJz+fJlJCQk4MCBA2jevDkA4MaNG4iNjcXmzZvh5eVlzBiJiIiIGsyghTNfffVVFBcX4+TJk7h27RquXbuGEydOoKioCK+99pqxYyQiIiJqMIOGgiuVSuzduxc9e/bU2X7kyBE88sgjuHHjhrHiMzoOBSciIrI++vx+G1Rzo9Fo4ODgUGO7g4MDNBqNIackIiIiMgqDkpt+/frh9ddfx6VLl7TbLl68iEmTJuHhhx82WnBERERE+jIouVm+fDmKiooQEBCAwMBABAYGom3btigqKsKHH35o7BiJiIiIGsyg0VIqlQqZmZnYu3cvTp8+DQAIDg5GXFycUYMjIiIi0lej15ayNuxQTEREZH1MsrbUBx980OAA9B0OvmLFCrz33nvIz89HaGgoPvzwQ4SHh9e5/40bN/DOO+9g27ZtuHbtGtq0aYPk5GQMHDhQr/clIiIi+WlwcrNs2bIG7adQKPRKblJSUjB58mSsWrUKERERSE5ORnx8PM6cOQNvb+8a+1dUVKB///7w9vbG1q1b4e/vjz///FM7mSARERHZNsmbpSIiItCzZ08sX74cwJ1h5iqVCq+++ioSExNr7L9q1Sq89957OH36dK3D0evDZikiIiLrY7J5bow9h01FRQUyMjJ0OiLb2dkhLi4Ohw8frvWY7du3IzIyEq+88gp8fHzQuXNnLFiwAFVVVbXuX15ejqKiIp0HERERyZdeyY2DgwMuX76sff7WW2/h2rVrBr95YWEhqqqq4OPjo7Pdx8cH+fn5tR5z/vx5bN26FVVVVdi5cydmzJiBJUuWYN68ebXun5SUBKVSqX2oVCqD4yUiIiLLp1dyc28L1urVq82+1IJGo4G3tzc+/vhj9OjRAwkJCXjnnXewatWqWvefOnUq1Gq19nHhwgWzxktERETmZdA8N9Ua213H09MT9vb2KCgo0NleUFAAX1/fWo/x8/ODg4MD7O3ttduCg4ORn5+PiooKODo66uzv5OQEJyenRsVJRERE1sOgGYqNxdHRET169EBqaqp2m0ajQWpqKiIjI2s9pk+fPjh79qxO/5///ve/8PPzq5HYEBERke3Ru+Zm5syZcHV1BXCnQ/D8+fOhVCp19lm6dGmDzzd58mSMHj0aYWFhCA8PR3JyMkpKSjB27FgAwKhRo+Dv74+kpCQAwEsvvYTly5fj9ddfx6uvvoo//vgDCxYs0HtuHbI8eeoyZBeWoK2nG/yULlKHQ0REVkqv5CYqKgpnzpzRPu/duzfOnz+vs49CodArgISEBFy5cgUzZ85Efn4+unbtil27dmk7Gefm5sLO7v8qmFQqFXbv3o1JkyahS5cu8Pf3x+uvv463335br/cly5JyNBdTtx2HRgB2CiBpaAgSeraWOiwiIrJCks9zY26c58by5KnL0GfhPmju+iTaKxRIT4xlDQ4REQEw4Tw3+nJ3d69Rs0N0r+zCEp3EBgCqhEBOYak0ARERkVUzaXJjY5VCZKC2nm6wu6c1016hQICnqzQBERGRVZN0tBQRAPgpXZA0NAT2/+uvZa9QYMHQzmySsjJ56jIcOleIPHWZ1KEQkY1r1Dw3RMaS0LM1ojp4IaewFAGerkxsrAw7hJOccOSm9WNyQxbDT+ki+RcJv9T0l6cu0yY2AKARwLRtJxDVwYtlSFaHibo8mDS50XdYOJGU+KVmmPt1CGdyQ9aEibp8sEMxEer+UmP/kfqxQzjJBUduyodJk5t//etf8Pf3N+VbkI0zVidWfqkZjh3CSS6YqMuHQc1SQghs3boV+/fvx+XLl3XWeQKAbdu2AQD69u3b+AhJVozZp8WYzUjVX2r3TiTIL7WGYYdwkoPqRH3athOoEoKJuhUzKLmZOHEiVq9ejdjYWPj4+LBvDTWIMZMRY7eN80ut8SyhQzhRYzFRlweDkpvPP/8c27Ztw8CBA40dD8mUsZMRU3Ri5ZcaEQFM1OXAoORGqVSiXbt2xo6FZMzYyYipmpH4pUZEZP0M6lA8e/ZszJkzB2VlHElCDWPsjnrsxEpERHUxaFXwsrIyDBkyBAcPHkRAQAAcHBx0Xs/MzDRagMbGVcGlk3I0t0aflsbOI5OnLmMzElEtOCElyY0+v98GNUuNHj0aGRkZeO6559ihmBrMFH1a2IxEVBMnpCRbZ1DNjZubG3bv3m2VQ71Zc0NEcpanLkOfhftq9EdLT4zljQBZNX1+vw3qc6NSqZgYEBFZIE5ISWRgcrNkyRJMmTIFOTk5Rg6HpGCsWX6JSHqcZZfIwD43zz33HEpLSxEYGAhXV9caHYqvXbtmlODI9Ng2TyQvnJCSyMDkJjk52chhkBS4Ai6RPN2v8z5HUZEtMHi0FFk/U8zyS0SWobaRhKypJVvR6FXBb926haKiIp0HWQe2zRPZjrpqatnXjuTIoOSmpKQEEyZMgLe3N9zc3ODh4aHzIOvAWX6JbAdHUZEtMahZasqUKdi/fz9WrlyJkSNHYsWKFbh48SJWr16NhQsXGjtGMiEuFklkG0y1HhuRJTKo5ub777/HRx99hKeeegpNmjTBQw89hOnTp2PBggXYtGmTsWMkE/NTuiAysCUTGyIZY00t2RKDam6uXbumXRXc3d1dO/S7b9++eOmll4wXHRERGQ1rak2LI9Esh0HJTbt27ZCdnY3WrVujY8eO+OqrrxAeHo7vv/8ezZs3N3KIRERkLFyPzTQ4Es2yGNQsNXbsWPz6668AgMTERKxYsQLOzs6YNGkS3nrrLaMGSEREZMk4Es3yGFRzM2nSJO2/4+LicPr0aWRkZCAoKAhdunQxWnAkP6y2JSK54Zxhlseg5OZut27dQps2bdCmTRtjxEMyxmpbIpIjjkSzPAY1S1VVVWHu3Lnw9/dH06ZNcf78eQDAjBkzsHbtWqMGSPLAalsikiuORLM8BiU38+fPx/r167F48WI4Ojpqt3fu3BmffPKJ0YIj+eAEYkQkZwk9WyM9MRZfju+F9MRY1kpLzKDk5rPPPsPHH3+MESNGwN7eXrs9NDQUp0+fNlpwJB9c6oGI5I5zhlkOg5KbixcvIigoqMZ2jUaDysrKRgdF8sNqWyIiMheDOhR36tQJP//8c41OxFu3bkW3bt2MEhjJDycQIyIiczAouZk5cyZGjx6NixcvQqPRYNu2bThz5gw+++wz7Nixw9gxkoxwAjEiIjI1g5qlnnzySXz//ffYu3cv3NzcMHPmTJw6dQrff/89+vfvb+wYiYiIiBpMIYQQ9e8mH0VFRVAqlVCr1XB3d5c6HCIiImoAfX6/Daq5adeuHa5evVpj+40bN7QLahLJSZ66DIfOFXJeHpni35dIXgzqc5OTk4Oqqqoa28vLy3Hx4sVGB0VkSTizsrzx70skP3olN9u3b9f+e/fu3VAqldrnVVVVSE1NRUBAgNGCI5JaXTMrR3XwYsdoGeDfl0ie9EpuBg8eDABQKBQYPXq0zmsODg4ICAjAkiVLjBYckSnos3gnF8STN/59G4+L4ZIl0iu50Wg0AIC2bdvi6NGj8PT0NElQRKaibxMEF8STN3P/feWWCLBJjyyVXh2KDx8+jB07diA7O1ub2Hz22Wdo27YtvL298cILL6C8vNwkgRI1liGLd3JmZXkz59835Wgu+izch+Fr/oM+C/ch5Wiu0d/DnLgYLlkyvWpu5syZg9jYWDz++OMAgOPHj+P555/HmDFjEBwcjPfeew+tWrXC7NmzTRErUaMY2gTBmZXlzRx/Xzn27WGTHlkyvZKbX3/9FfPmzdM+37x5MyIiIrBmzRoAgEqlwqxZs5jckEVqTBMEZ1aWN1P/feWYCLDJliyZXs1S169fh4+Pj/b5gQMHMGDAAO3znj174sKFC8aLjsiI2MREUqlOBO5m7YkA/z+RJdOr5sbHxwfZ2dlQqVSoqKhAZmYm5syZo3395s2bcHBwMHqQZJmssXMkm5hICtWJwLRtJ1AlhGwSAf5/IkulV3IzcOBAJCYmYtGiRfj222/h6uqKhx56SPv6b7/9hsDAQKMHSZbHnKMkjJ1EsYmJpCDXRID/n6yfNd6o1kev5Gbu3LkYOnQooqOj0bRpU2zYsAGOjo7a1z/99FM88sgjRg+SLIs5O0dyqCnJCRMBsjRy/Y7Vq8+Np6cnfvrpJ1y/fh3Xr1/HkCFDdF7fsmULZs2apXcQK1asQEBAAJydnREREYEjR4406LjNmzdDoVBoJxck87hf50hj4lBTIiLTkfN3rEELZyqVStjb29fY3qJFC52anIZISUnB5MmTMWvWLGRmZiI0NBTx8fG4fPnyfY/LycnBm2++qdMsRuZhrs6R5kqiiIhskZy/Yw1Kboxp6dKlGD9+PMaOHYtOnTph1apVcHV1xaefflrnMVVVVRgxYgTmzJnDVcglYK5REnIcYUJEZCnk/B0raXJTUVGBjIwMxMXFabfZ2dkhLi4Ohw8frvO4d999F97e3nj++efrfY/y8nIUFRXpPKjxEnq2RnpiLL4c3wvpibEmaaPlUFMiItOR83esXh2Kja2wsBBVVVU6c+cAd4acnz59utZj0tPTsXbtWmRlZTXoPZKSknSGq5PxmKNzpFxHmBARWQK5fsdK3iylj5s3b2LkyJFYs2ZNgxftnDp1KtRqtfbBSQatj5/SBZGBLWXzn46IyJLI8TtW0pobT09P2Nvbo6CgQGd7QUEBfH19a+x/7tw55OTkYNCgQdpt1SuVN2nSBGfOnKkxz46TkxOcnJxMED0RERFZIklrbhwdHdGjRw+kpqZqt2k0GqSmpiIyMrLG/h07dsTx48eRlZWlfTzxxBOIjY1FVlYWVCqVOcM3ijx1GQ6dK5TF0DsiIiJLIGnNDQBMnjwZo0ePRlhYGMLDw5GcnIySkhKMHTsWADBq1Cj4+/sjKSkJzs7O6Ny5s87xzZs3B4Aa262BXCdPIrIFcpzVlUguJE9uEhIScOXKFcycORP5+fno2rUrdu3ape1knJubCzs7q+oa1CDmnOWXiIyLNyZElk0hhBD17yYfRUVFUCqVUKvVcHd3lyyOQ+cKMXzNf2ps/3J8L0QGtjTJe/JOk6jx8tRl6LNwn87kZ/YKBdITY/n/isiE9Pn9lrzmxlZVT5507xekqSZP4p0mkXHcb1ZXJjdElkF+7T1WwpyTJ8l5/RAic5PzrK5EcsGaGwmZa/Ik3mkSGU/1jcm0bSdQJYSsZnUlkgsmNxIzxyy/5m4CI5I7uc7qSiQXbJayAXJeP4RIKnKc1ZVILlhzYyN4p0lERLaCyY0NMUcTGBERkdTYLEVERESywuTGTLiGFBERkXmwWcoMOIEeERGR+bDmxsQ4gR7VhjV5RESmw5obE+MEenQv1uQREZkWa25MjFO1091Yk0dEZHpMbkyME+jR3e5Xk0dERMbBZikz4AR6VI1LYRhHnroM2YUlaOvpxv9PRFQDkxsz4QR6BHDRRWNgnyUiy2YJNx8KIYSofzf5KCoqglKphFqthru7u9ThkI3KU5exJs8Aeeoy9Fm4r0bNV3piLMuRyAKY8uZDn99v9rkhkgAXXTQM+ywRWS5LGjDB5IaIrAZHHxJZLku6+WByQ0RWg6MPiSyXJd18sEMxEVkVjj4kskyWNGCCyQ0RWR2OPiSyTJZy88Hkhu7LEob0ERGR9bCEmw8mN1QnzidCRGTbrPUGl8kN1aquIX1RHbys6gNORESGseYbXI6WolpZ0pA+IjKPPHUZDp0r5EKuZFFz1hiCNTdUK66BRGRbrPkunYzvfje41lB7z5obqhXnEyGyHdZ+l07GZ0lz1hiCNTdUJ0sZ0kdEpmXtd+lkfJY0Z40hmNzQfVnCkD4iMi02Q1NtrPkGl81SREQWzBydfNkMTXWx1kV+WXNDRGShzNnJ15rv0onuxZobIiIjM0ZtixSdfK31Lp3oXqy5ISIyImPVtrCTL5HhWHNDRDVwMjfDGLO2pbFDcfk3JFvGmhsi0sHJ3AxnzNqWxgzF5d+QbB2TGyLS4ppijWPsIdWGdPLl35CIzVJEdBeuKdY4phhSrW8nX/4NiVhzQ0R34WRujSf1kGr+DYlYc0NEd+Fkbg13vw67Ug6p5t+QCFAIIUT9u8lHUVERlEol1Go13N3dpQ6HyCLlqcs4mdt9WEOHXf4NSW70+f1msxQR1cA1xepmLR12+TckW8ZmKSIiPbDDLpHlY3JDRKSHxk6uR0Smx+SGiEgP7LBLZPnY54aISE9SD/cmovtjckNEZAB22CWyXGyWIiIiIllhckNERESywuSGiIiIZMUikpsVK1YgICAAzs7OiIiIwJEjR+rcd82aNXjooYfg4eEBDw8PxMXF3Xd/IiIiMp/7LU1iLpInNykpKZg8eTJmzZqFzMxMhIaGIj4+HpcvX651/7S0NAwbNgz79+/H4cOHoVKp8Mgjj+DixYtmjpyIiIjulnI0F30W7sPwNf9Bn4X7kHI0V5I4JF9bKiIiAj179sTy5csBABqNBiqVCq+++ioSExPrPb6qqgoeHh5Yvnw5Ro0aVe/+XFuKiIjI+PLUZeizcF+NFenTE2ONMrJQn99vSWtuKioqkJGRgbi4OO02Ozs7xMXF4fDhww06R2lpKSorK9GiRYtaXy8vL0dRUZHOg4iIiIzLkpYmkTS5KSwsRFVVFXx8fHS2+/j4ID8/v0HnePvtt9GqVSudBOluSUlJUCqV2odKpWp03ERERKTLkpYmkbzPTWMsXLgQmzdvxjfffANnZ+da95k6dSrUarX2ceHCBTNHaThL6JRFRETUEJa0NImkMxR7enrC3t4eBQUFOtsLCgrg6+t732Pff/99LFy4EHv37kWXLl3q3M/JyQlOTk5GidecUo7mYuq249AIwE4BJA0NQULP1lKHJXt56jJkF5agracbZ58lItKTpSxNImnNjaOjI3r06IHU1FTtNo1Gg9TUVERGRtZ53OLFizF37lzs2rULYWFh5gjVrPLUZdrEBgA0Api27QRrcEzMUnr5ExFZMz+lCyIDW0p6gyh5s9TkyZOxZs0abNiwAadOncJLL72EkpISjB07FgAwatQoTJ06Vbv/okWLMGPGDHz66acICAhAfn4+8vPzUVxcLNUlGJ0ldcqyFUwoiYjkQ/KFMxMSEnDlyhXMnDkT+fn56Nq1K3bt2qXtZJybmws7u//LwVauXImKigo8/fTTOueZNWsWZs+ebc7QTaa6U9a9w+mk6JRlK+6XULJ5iojIukie3ADAhAkTMGHChFpfS0tL03mek5Nj+oAk5qd0wZBu/vg68/8mJhzcrRV/ZE2ICSURkXxI3ixFNeWpy/DNMd0Zl789dolNJCZkSb38iYiocSyi5oZ0sYlEGpbSy5+IiBqHyY0FYhOJdPyULkxqiIisHJulLBCbSIiIrM+vF65jzc/n8OuF61KHYvNYc2Oh2ERCRGQ93vgqS2cQyFPd/bHkma7SBWTjWHNjwSxhIiQiIrq/Xy9c10lsAODrzIvaGhwupWN+rLkhIiJqhCM512rd/kvOdZzOv8mldCTAmhsiIqJGCA9oUev2AE9XznwuESY3RsSqRyIi2xOq8sBT3f11tj3V3R8ujk24lI5E2CxlJFzFm4jIdi15pitGRbbBLznXERbggVCVB/LUZZzWQyKsuTECLrpIREShKg88/1A7hKo8AHBaDymx5sYIOKMwERHVhtN6SIPJjRFwRmGqS566DNmFJWjr6cYvNSIbxZnPzY/NUkbAqkeqTcrRXPRZuA/D1/wHfRbuQ8rRXKlDIiKyCQohhKh/N/koKiqCUqmEWq2Gu7u7Uc+dpy5j1SMBuPNZ6LNwX43avPTEWH42iIgMoM/vN5uljOh+VY9snrAt7IdFRCQdJjdmwGHitof9sMhW8MaNLBH73JgYh4nbJvbDIlvAfmVkqVhzY2K22DzBO7k7OASU5KyuG7eoDl78rJPkmNyYmK01T7AJTheHgJJc2eKNW314Y2c52CxlYrbUPMEmOCLbUX3jdjc537jVh010loU1N2ZgK80TvJMjsh3VN27Ttp1AlRCyvnGrD5voLA+TGzOxheYJW2uCI7J1tnLjVh/e2FkeNkuR0dhSExwR3eGndEFkYEub/n/OJjrLw5obMireyRGRrWETneVhckNGZwtNcEREdzPnjR1HZdWPyQ1RI/GLhogA89zYcbqNhmFyQ9QI/KIhInPhqKyGY4diIgNxXh/SV566DIfOFfIzQga536gs0sWaGyIDcfgn6YO1fNRYnG6j4VhzQ2QgDv+khmItHxkDp9toONbcEBmIwz+poVjLR8bC6TYahskNUSPwi4Yags0JZEyWPt2GJYwgZXJD1EiW/kVjrSzhC9JYWMtHtsJS+pYphBCi/t3ko6ioCEqlEmq1Gu7u7lKHQ0S1sJQvSGPLU5exlo9kK09dhj4L99WooUxPjDXK512f3292KCYiiyLnzrdch4nkzJKGqjO5ISKLYklfkFQ/zt1TP1spI0saQco+N0SNJKe+IZaAnW+th1ybD43JlsrIkvqWsc8NUSPY0heXOaUcza3xBclytSym7l8hB7ZaRqbqW6bP7zdrbogMxHVeTIdD7C0f5+6pn62WkSWMIGVyQ2QgW/3iMpf7fUGyKVB6bD6sH8tIOuxQTGQgS+o8Z0tSjuaiz8J9GL7mP+izcB9SjuZKHZJN4lIA9WMZSYd9bogagX1DzMtW+zBYMs7dUz+WkXGwzw2RmVhz3xBrbNphU6DlsYT+FZaOZWR+TG6IGska+4ZY6ygv9mEgooZgnxsiE7HUviHWPANwfX0YbGWyNFNh+ZFcsOaGyAQseZi4tTft1NUUaK21UZaC5UdywpobIhOw5CUE5DDK6941mqy5NsoSsPxIbpjcEJmAJScQchyeasnJpDVg+VkXNh/Wj81SRCZgSWus1MaaR3nVRoqOxpbaWdwQ7KhtPdh82DAWUXOzYsUKBAQEwNnZGREREThy5Mh999+yZQs6duwIZ2dnhISEYOfOnWaKlKjhEnq2RnpiLL4c3wvpibEW9wV0b9OONTN3bZSldhY3lBxr8+SIzYcNJ3nNTUpKCiZPnoxVq1YhIiICycnJiI+Px5kzZ+Dt7V1j/0OHDmHYsGFISkrC448/ji+++AKDBw9GZmYmOnfuLMEVENWN81uYj7lqoyy5s3hjyK02T46sfTCAOUk+Q3FERAR69uyJ5cuXAwA0Gg1UKhVeffVVJCYm1tg/ISEBJSUl2LFjh3Zbr1690LVrV6xatare9+MMxUTUGIfOFWL4mv/U2P7l+F6IDGwpQURkK/LUZeidtA93/2grABya2s8mkht9fr8lbZaqqKhARkYG4uLitNvs7OwQFxeHw4cP13rM4cOHdfYHgPj4+Dr3Ly8vR1FRkc6DiMhQltxZnGyQov5dbJGkyU1hYSGqqqrg4+Ojs93Hxwf5+fm1HpOfn6/X/klJSVAqldqHSqUyTvBEZJPYP4Wkkl1YgnubWoQAR7XVQvI+N6Y2depUTJ48Wfu8qKiICQ4RNQr7p5AUOKqt4SRNbjw9PWFvb4+CggKd7QUFBfD19a31GF9fX732d3JygpOTk3ECJiL6H3YWJ3Oz9CkmLImkzVKOjo7o0aMHUlNTtds0Gg1SU1MRGRlZ6zGRkZE6+wPAnj176tyfiIhILix9iglLIXmz1OTJkzF69GiEhYUhPDwcycnJKCkpwdixYwEAo0aNgr+/P5KSkgAAr7/+OqKjo7FkyRI89thj2Lx5M3755Rd8/PHHUl4GERGRWbDWsH6SJzcJCQm4cuUKZs6cifz8fHTt2hW7du3SdhrOzc2Fnd3/VTD17t0bX3zxBaZPn45p06ahffv2+PbbbznHDREREQGwgHluzI3z3BAREVkfq5nnhoiIiMjYmNwQERGRrDC5ISIiIllhckNERESywuSGiIiIZIXJDREREckKkxsiIiKSFSY3REREJCtMboiIiEhWJF9+wdyqJ2QuKiqSOBIiIiJqqOrf7YYsrGBzyc3NmzcBACqVSuJIiIiISF83b96EUqm87z42t7aURqPBpUuX0KxZMygUCr2PLyoqgkqlwoULF2x6bSqWA8sAYBlUYzmwDKqxHExXBkII3Lx5E61atdJZULs2NldzY2dnhwceeKDR53F3d7fZD+7dWA4sA4BlUI3lwDKoxnIwTRnUV2NTjR2KiYiISFaY3BAREZGsMLnRk5OTE2bNmgUnJyepQ5EUy4FlALAMqrEcWAbVWA6WUQY216GYiIiI5I01N0RERCQrTG6IiIhIVpjcEBERkawwuSEiIiJZYXJTixUrViAgIADOzs6IiIjAkSNH6tz35MmTeOqppxAQEACFQoHk5GTzBWpi+pTDmjVr8NBDD8HDwwMeHh6Ii4u77/7WQp8y2LZtG8LCwtC8eXO4ubmha9eu+Pzzz80YrWnoUwZ327x5MxQKBQYPHmzaAM1En3JYv349FAqFzsPZ2dmM0ZqGvp+FGzdu4JVXXoGfnx+cnJzQoUMH7Ny500zRmoY+ZRATE1Pjc6BQKPDYY4+ZMWLT0PezkJycjAcffBAuLi5QqVSYNGkSbt26ZboABenYvHmzcHR0FJ9++qk4efKkGD9+vGjevLkoKCiodf8jR46IN998U3z55ZfC19dXLFu2zLwBm4i+5TB8+HCxYsUKcezYMXHq1CkxZswYoVQqxV9//WXmyI1H3zLYv3+/2LZtm/j999/F2bNnRXJysrC3txe7du0yc+TGo28ZVMvOzhb+/v7ioYceEk8++aR5gjUhfcth3bp1wt3dXeTl5Wkf+fn5Zo7auPQtg/LychEWFiYGDhwo0tPTRXZ2tkhLSxNZWVlmjtx49C2Dq1ev6nwGTpw4Iezt7cW6devMG7iR6VsOmzZtEk5OTmLTpk0iOztb7N69W/j5+YlJkyaZLEYmN/cIDw8Xr7zyivZ5VVWVaNWqlUhKSqr32DZt2sgmuWlMOQghxO3bt0WzZs3Ehg0bTBWiyTW2DIQQolu3bmL69OmmCM8sDCmD27dvi969e4tPPvlEjB49WhbJjb7lsG7dOqFUKs0UnXnoWwYrV64U7dq1ExUVFeYK0eQa+52wbNky0axZM1FcXGyqEM1C33J45ZVXRL9+/XS2TZ48WfTp08dkMbJZ6i4VFRXIyMhAXFycdpudnR3i4uJw+PBhCSMzL2OUQ2lpKSorK9GiRQtThWlSjS0DIQRSU1Nx5swZREVFmTJUkzG0DN599114e3vj+eefN0eYJmdoORQXF6NNmzZQqVR48skncfLkSXOEaxKGlMH27dsRGRmJV155BT4+PujcuTMWLFiAqqoqc4VtVMb4Xly7di2effZZuLm5mSpMkzOkHHr37o2MjAxt09X58+exc+dODBw40GRx2tzCmfdTWFiIqqoq+Pj46Gz38fHB6dOnJYrK/IxRDm+//TZatWql8x/AmhhaBmq1Gv7+/igvL4e9vT0++ugj9O/f39ThmoQhZZCeno61a9ciKyvLDBGahyHl8OCDD+LTTz9Fly5doFar8f7776N37944efKkURbuNTdDyuD8+fPYt28fRowYgZ07d+Ls2bN4+eWXUVlZiVmzZpkjbKNq7PfikSNHcOLECaxdu9ZUIZqFIeUwfPhwFBYWom/fvhBC4Pbt23jxxRcxbdo0k8XJ5IaMbuHChdi8eTPS0tJk0YlSH82aNUNWVhaKi4uRmpqKyZMno127doiJiZE6NJO7efMmRo4ciTVr1sDT01PqcCQVGRmJyMhI7fPevXsjODgYq1evxty5cyWMzHw0Gg28vb3x8ccfw97eHj169MDFixfx3nvvWWVy01hr165FSEgIwsPDpQ7F7NLS0rBgwQJ89NFHiIiIwNmzZ/H6669j7ty5mDFjhknek8nNXTw9PWFvb4+CggKd7QUFBfD19ZUoKvNrTDm8//77WLhwIfbu3YsuXbqYMkyTMrQM7OzsEBQUBADo2rUrTp06haSkJKtMbvQtg3PnziEnJweDBg3SbtNoNACAJk2a4MyZMwgMDDRt0CZgjO8FBwcHdOvWDWfPnjVFiCZnSBn4+fnBwcEB9vb22m3BwcHIz89HRUUFHB0dTRqzsTXmc1BSUoLNmzfj3XffNWWIZmFIOcyYMQMjR47EuHHjAAAhISEoKSnBCy+8gHfeeQd2dsbvIcM+N3dxdHREjx49kJqaqt2m0WiQmpqqcxcmd4aWw+LFizF37lzs2rULYWFh5gjVZIz1WdBoNCgvLzdFiCanbxl07NgRx48fR1ZWlvbxxBNPIDY2FllZWVCpVOYM32iM8VmoqqrC8ePH4efnZ6owTcqQMujTpw/Onj2rTXAB4L///S/8/PysLrEBGvc52LJlC8rLy/Hcc8+ZOkyTM6QcSktLayQw1UmvMNXylibrqmylNm/eLJycnMT69evF77//Ll544QXRvHlz7TDOkSNHisTERO3+5eXl4tixY+LYsWPCz89PvPnmm+LYsWPijz/+kOoSjELfcli4cKFwdHQUW7du1Rn6ePPmTakuodH0LYMFCxaIH3/8UZw7d078/vvv4v333xdNmjQRa9askeoSGk3fMriXXEZL6VsOc+bMEbt37xbnzp0TGRkZ4tlnnxXOzs7i5MmTUl1Co+lbBrm5uaJZs2ZiwoQJ4syZM2LHjh3C29tbzJs3T6pLaDRD/z/07dtXJCQkmDtck9G3HGbNmiWaNWsmvvzyS3H+/Hnx448/isDAQPHMM8+YLEYmN7X48MMPRevWrYWjo6MIDw8X//73v7WvRUdHi9GjR2ufZ2dnCwA1HtHR0eYP3Mj0KYc2bdrUWg6zZs0yf+BGpE8ZvPPOOyIoKEg4OzsLDw8PERkZKTZv3ixB1MalTxncSy7JjRD6lcPEiRO1+/r4+IiBAweKzMxMCaI2Ln0/C4cOHRIRERHCyclJtGvXTsyfP1/cvn3bzFEbl75lcPr0aQFA/Pjjj2aO1LT0KYfKykoxe/ZsERgYKJydnYVKpRIvv/yyuH79usniUwhhqjohIiIiIvNjnxsiIiKSFSY3REREJCtMboiIiEhWmNwQERGRrDC5ISIiIllhckNERESywuSGiIiIZIXJDRGRCY0ZMwaDBw+WOgwim8LkhshGjRkzBgqFQvto2bIlHn30Ufz2229Sh2YUd19b9aNv374me7+cnBwoFApkZWXpbP/nP/+J9evXm+x9iagmJjdENuzRRx9FXl4e8vLykJqaiiZNmuDxxx+XOiyjWbdunfb68vLysH379lr3q6ysNFkMSqUSzZs3N9n5iagmJjdENszJyQm+vr7w9fVF165dkZiYiAsXLuDKlSvo168fJkyYoLP/lStX4OjoqF0ROCAgAHPnzsWwYcPg5uYGf39/rFixQueYpUuXIiQkBG5ublCpVHj55ZdRXFysff3PP//EoEGD4OHhATc3N/ztb3/Dzp07AQDXr1/HiBEj4OXlBRcXF7Rv3x7r1q1r8PU1b95ce32+vr5o0aKFtoYlJSUF0dHRcHZ2xqZNm3D16lUMGzYM/v7+cHV1RUhICL788kud82k0GixevBhBQUFwcnJC69atMX/+fABA27ZtAQDdunWDQqFATEwMgJrNUuXl5Xjttdfg7e0NZ2dn9O3bF0ePHtW+npaWBoVCgdTUVISFhcHV1RW9e/fGmTNnGnzdRLaOyQ0RAQCKi4uxceNGBAUFoWXLlhg3bhy++OILlJeXa/fZuHEj/P390a9fP+229957D6GhoTh27BgSExPx+uuvY8+ePdrX7ezs8MEHH+DkyZPYsGED9u3bhylTpmhff+WVV1BeXo6ffvoJx48fx6JFi9C0aVMAwIwZM/D777/jX//6F06dOoWVK1fC09PTKNdbHeupU6cQHx+PW7duoUePHvjhhx9w4sQJvPDCCxg5ciSOHDmiPWbq1KlYuHChNq4vvvgCPj4+AKDdb+/evcjLy8O2bdtqfd8pU6bg66+/xoYNG5CZmYmgoCDEx8fj2rVrOvu98847WLJkCX755Rc0adIE//jHP4xy3UQ2wWRLchKRRRs9erSwt7cXbm5uws3NTQAQfn5+IiMjQwghRFlZmfDw8BApKSnaY7p06SJmz56tfd6mTRvx6KOP6pw3ISFBDBgwoM733bJli2jZsqX2eUhIiM457zZo0CAxduxYg64PgHB2dtZen5ubm/jmm29Edna2ACCSk5PrPcdjjz0m3njjDSGEEEVFRcLJyUmsWbOm1n2rz3vs2DGd7XevjF5cXCwcHBzEpk2btK9XVFSIVq1aicWLFwshhNi/f78AIPbu3avd54cffhAARFlZmT5FQGSzWHNDZMNiY2ORlZWFrKwsHDlyBPHx8RgwYAD+/PNPODs7Y+TIkfj0008BAJmZmThx4gTGjBmjc47IyMgaz0+dOqV9vnfvXjz88MPw9/dHs2bNMHLkSFy9ehWlpaUAgNdeew3z5s1Dnz59MGvWLJ0OzS+99BI2b96Mrl27YsqUKTh06JBe17ds2TLt9WVlZaF///7a18LCwnT2raqqwty5cxESEoIWLVqgadOm2L17N3JzcwEAp06dQnl5OR5++GG9YrjbuXPnUFlZiT59+mi3OTg4IDw8XKfMAKBLly7af/v5+QEALl++bPB7E9kSJjdENszNzQ1BQUEICgpCz5498cknn6CkpARr1qwBAIwbNw579uzBX3/9hXXr1qFfv35o06ZNg8+fk5ODxx9/HF26dMHXX3+NjIwMbZ+ciooK7XucP38eI0eOxPHjxxEWFoYPP/wQALSJ1qRJk3Dp0iU8/PDDePPNNxv8/r6+vtrrCwoKgpubm8613+29997DP//5T7z99tvYv38/srKyEB8fr43TxcWlwe9rDA4ODtp/KxQKAHf6/BBR/ZjcEJGWQqGAnZ0dysrKAAAhISEICwvDmjVr8MUXX9Ta7+Pf//53jefBwcEAgIyMDGg0GixZsgS9evVChw4dcOnSpRrnUKlUePHFF7Ft2za88cYb2uQKALy8vDB69Ghs3LgRycnJ+Pjjj415yVoHDx7Ek08+ieeeew6hoaFo164d/vvf/2pfb9++PVxcXLSdqe/l6OgI4E4NUF0CAwPh6OiIgwcPardVVlbi6NGj6NSpk5GuhIiaSB0AEUmnvLwc+fn5AO6MTFq+fDmKi4sxaNAg7T7jxo3DhAkT4ObmhiFDhtQ4x8GDB7F48WIMHjwYe/bswZYtW/DDDz8AAIKCglBZWYkPP/wQgwYNwsGDB7Fq1Sqd4ydOnIgBAwagQ4cOuH79Ovbv369NjmbOnIkePXrgb3/7G8rLy7Fjxw7ta8bWvn17bN26FYcOHYKHhweWLl2KgoICbdLh7OyMt99+G1OmTIGjoyP69OmDK1eu4OTJk3j++efh7e0NFxcX7Nq1Cw888ACcnZ2hVCp13sPNzQ0vvfQS3nrrLbRo0QKtW7fG4sWLUVpaiueff94k10Vki1hzQ2TDdu3aBT8/P/j5+SEiIgJHjx7Fli1btMOYAWDYsGFo0qQJhg0bBmdn5xrneOONN/DLL7+gW7dumDdvHpYuXYr4+HgAQGhoKJYuXYpFixahc+fO2LRpE5KSknSOr6qqwiuvvILg4GA8+uij6NChAz766CMAd2pDpk6dii5duiAqKgr29vbYvHmzScpi+vTp6N69O+Lj4xETEwNfX98aMwvPmDEDb7zxBmbOnIng4GAkJCRo+8E0adIEH3zwAVavXo1WrVrhySefrPV9Fi5ciKeeegojR45E9+7dcfbsWezevRseHh4muS4iW6QQQgipgyAiy5WTk4PAwEAcPXoU3bt313ktICAAEydOxMSJE6UJjoioFmyWIqJaVVZW4urVq5g+fTp69epVI7EhIrJUbJYiolodPHgQfn5+OHr0aI1+MlJbsGABmjZtWutjwIABUodHRBJjsxQRWZ1r167VmNG3mouLC/z9/c0cERFZEiY3REREJCtsliIiIiJZYXJDREREssLkhoiIiGSFyQ0RERHJCpMbIiIikhUmN0RERCQrTG6IiIhIVpjcEBERkaz8f7kCwJZQjvFsAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_39.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTp0lEQVR4nO3deVxU9f4/8NdhGxBlUNkJQdwXxEIlwFxSQytLbTEqRVP7VloZWYq3ck3UbmalqderaLlmWXnTaylqXUVzIW5iZkEgmqBiOSOLiPD5/eGPuY4sMsMs58x5PR+PeTycs837jGc47/NZJSGEABEREZGKONk7ACIiIiJbYwJEREREqsMEiIiIiFSHCRARERGpDhMgIiIiUh0mQERERKQ6TICIiIhIdZgAERERkeowASIiIiLVYQJERLI1c+ZMSJLUoG0lScLMmTOtGk+/fv3Qr18/2R6PiBqOCRAR3daaNWsgSZLh5eLiguDgYIwZMwZ//PGHvcOTnbCwMKPvy8/PD/fccw+++OILixy/tLQUM2fOxL59+yxyPCI1YgJERA02e/ZsfPLJJ1i+fDmGDBmCdevWoW/fvrh69apVPu+NN95AWVmZVY5tbd27d8cnn3yCTz75BFOmTMG5c+cwYsQILF++vNHHLi0txaxZs5gAETWCi70DICLlGDJkCHr06AEAGD9+PHx8fLBgwQJs27YNjz/+uMU/z8XFBS4uyvwzFRwcjKefftrwfvTo0Wjbti3ee+89PPfcc3aMjIgAlgARUSPcc889AICcnByj5b/88gseffRRtGjRAu7u7ujRowe2bdtmtE1FRQVmzZqFdu3awd3dHS1btkTv3r2xa9cuwza1tQEqLy/HK6+8Al9fXzRr1gwPPfQQzp49WyO2MWPGICwsrMby2o6ZmpqKe++9F35+ftBoNOjcuTOWLVtm0ndxOwEBAejUqRNyc3Pr3e7ChQsYN24c/P394e7ujsjISKxdu9awPi8vD76+vgCAWbNmGarZrN3+icjRKPPRiohkIS8vDwDQvHlzw7ITJ04gLi4OwcHBmDZtGjw9PfHpp59i2LBh+PzzzzF8+HAANxKRlJQUjB8/Hr169YJer8fRo0eRkZGBQYMG1fmZ48ePx7p16/Dkk08iNjYWe/bswQMPPNCo81i2bBm6dOmChx56CC4uLvjXv/6FF154AVVVVZg4cWKjjl2toqICZ86cQcuWLevcpqysDP369UN2djYmTZqE1q1bY8uWLRgzZgwuX76Ml19+Gb6+vli2bBmef/55DB8+HCNGjAAAdOvWzSJxEqmGICK6jdTUVAFA7N69W1y8eFGcOXNGfPbZZ8LX11doNBpx5swZw7YDBgwQERER4urVq4ZlVVVVIjY2VrRr186wLDIyUjzwwAP1fu6MGTPEzX+mMjMzBQDxwgsvGG335JNPCgBixowZhmWJiYkiNDT0tscUQojS0tIa28XHx4vw8HCjZX379hV9+/atN2YhhAgNDRX33XefuHjxorh48aL473//K5544gkBQLz44ot1Hm/x4sUCgFi3bp1h2bVr10RMTIxo2rSp0Ov1QgghLl68WON8icg0rAIjogYbOHAgfH19ERISgkcffRSenp7Ytm0b7rjjDgDAn3/+iT179uDxxx/HlStXUFRUhKKiIly6dAnx8fH47bffDL3GvL29ceLECfz2228N/vwdO3YAAF566SWj5ZMnT27UeXl4eBj+rdPpUFRUhL59++L333+HTqcz65jffvstfH194evri8jISGzZsgWjRo3CggUL6txnx44dCAgIQEJCgmGZq6srXnrpJRQXF+O7774zKxYiqolVYETUYEuXLkX79u2h0+mwevVqfP/999BoNIb12dnZEELgzTffxJtvvlnrMS5cuIDg4GDMnj0bDz/8MNq3b4+uXbti8ODBGDVqVL1VOadPn4aTkxPatGljtLxDhw6NOq8DBw5gxowZOHjwIEpLS43W6XQ6aLVak48ZHR2NuXPnQpIkNGnSBJ06dYK3t3e9+5w+fRrt2rWDk5Pxs2mnTp0M64nIMpgAEVGD9erVy9ALbNiwYejduzeefPJJnDp1Ck2bNkVVVRUAYMqUKYiPj6/1GG3btgUA9OnTBzk5Ofjqq6/w7bff4p///Cfee+89LF++HOPHj290rHUNoFhZWWn0PicnBwMGDEDHjh2xaNEihISEwM3NDTt27MB7771nOCdT+fj4YODAgWbtS0TWxwSIiMzi7OyMlJQU9O/fH0uWLMG0adMQHh4O4Ea1TUNu/i1atMDYsWMxduxYFBcXo0+fPpg5c2adCVBoaCiqqqqQk5NjVOpz6tSpGts2b94cly9frrH81lKUf/3rXygvL8e2bdvQqlUrw/K9e/feNn5LCw0NxU8//YSqqiqjUqBffvnFsB6oO7kjooZjGyAiMlu/fv3Qq1cvLF68GFevXoWfnx/69euHFStWoKCgoMb2Fy9eNPz70qVLRuuaNm2Ktm3bory8vM7PGzJkCADggw8+MFq+ePHiGtu2adMGOp0OP/30k2FZQUFBjdGYnZ2dAQBCCMMynU6H1NTUOuOwlvvvvx+FhYXYvHmzYdn169fx4YcfomnTpujbty8AoEmTJgBQa4JHRA3DEiAiapTXXnsNjz32GNasWYPnnnsOS5cuRe/evREREYEJEyYgPDwc58+fx8GDB3H27Fn897//BQB07twZ/fr1Q1RUFFq0aIGjR4/is88+w6RJk+r8rO7duyMhIQEfffQRdDodYmNjkZaWhuzs7BrbPvHEE5g6dSqGDx+Ol156CaWlpVi2bBnat2+PjIwMw3b33Xcf3NzcMHToUPzf//0fiouLsXLlSvj5+dWaxFnTs88+ixUrVmDMmDE4duwYwsLC8Nlnn+HAgQNYvHgxmjVrBuBGo+3OnTtj8+bNaN++PVq0aIGuXbuia9euNo2XSNHs3Q2NiOSvuhv8kSNHaqyrrKwUbdq0EW3atBHXr18XQgiRk5MjRo8eLQICAoSrq6sIDg4WDz74oPjss88M+82dO1f06tVLeHt7Cw8PD9GxY0fx9ttvi2vXrhm2qa3LellZmXjppZdEy5Ythaenpxg6dKg4c+ZMrd3Cv/32W9G1a1fh5uYmOnToINatW1frMbdt2ya6desm3N3dRVhYmFiwYIFYvXq1ACByc3MN25nSDf52XfzrOt758+fF2LFjhY+Pj3BzcxMREREiNTW1xr7p6ekiKipKuLm5sUs8kRkkIW4q9yUiIiJSAbYBIiIiItVhAkRERESqwwSIiIiIVIcJEBEREakOEyAiIiJSHSZAREREpDocCLEWVVVVOHfuHJo1a8Yh54mIiBRCCIErV64gKCioxqTCt2ICVItz584hJCTE3mEQERGRGc6cOYM77rij3m2YANWierj5M2fOwMvLy87REBERUUPo9XqEhIQY7uP1sWsC9P333+Odd97BsWPHDJMUDhs2zLC+ruqnhQsX4rXXXqt13cyZMzFr1iyjZR06dDDMptwQ1Z/r5eXFBIiIiEhhGtJ8xa6NoEtKShAZGYmlS5fWur6goMDotXr1akiShEceeaTe43bp0sVov/3791sjfCIiIlIou5YADRkyBEOGDKlzfUBAgNH7r776Cv3790d4eHi9x3VxcamxLxEREVE1xXSDP3/+PLZv345x48bddtvffvsNQUFBCA8Px1NPPYX8/Px6ty8vL4derzd6ERERkeNSTCPotWvXolmzZhgxYkS920VHR2PNmjXo0KEDCgoKMGvWLNxzzz3Iysqqs1FUSkpKjXZDRERkvsrKSlRUVNg7DHIwrq6ucHZ2tsixJCGEsMiRGkmSpBqNoG/WsWNHDBo0CB9++KFJx718+TJCQ0OxaNGiOkuPysvLUV5ebnhf3Ypcp9OxETQRkQmEECgsLMTly5ftHQo5KG9vbwQEBNTa0Fmv10Or1Tbo/q2IEqD//Oc/OHXqFDZv3mzyvt7e3mjfvj2ys7Pr3Eaj0UCj0TQmRCIiAgzJj5+fH5o0acLBZMlihBAoLS3FhQsXAACBgYGNOp4iEqBVq1YhKioKkZGRJu9bXFyMnJwcjBo1ygqRERFRtcrKSkPy07JlS3uHQw7Iw8MDAHDhwgX4+fk1qjrMro2gi4uLkZmZiczMTABAbm4uMjMzjRot6/V6bNmyBePHj6/1GAMGDMCSJUsM76dMmYLvvvsOeXl5SE9Px/Dhw+Hs7IyEhASrngsRkdpVt/lp0qSJnSMhR1Z9fTW2jZldS4COHj2K/v37G94nJSUBABITE7FmzRoAwKZNmyCEqDOBycnJQVFRkeH92bNnkZCQgEuXLsHX1xe9e/fGoUOH4Ovra70TISIiA1Z7kTVZ6vqSTSNoOTGlERUREd1w9epV5ObmonXr1nB3d7d3OOSg6rvOTLl/K2YcICIiIjk7cOAAIiIi4OrqWmePZpIPJkAyUaArQ3pOEQp0ZfYOhYhIdcaMGQNJkiBJElxdXdG6dWu8/vrruHr1aoOPkZSUhO7duyM3N9fQjEPp1qxZY/henJ2d0bx5c0RHR2P27NnQ6XQmH0+SJHz55ZeWD9QMiugF5ug2H8lH8tbjqBKAkwSkjIjAyJ6t7B0WEZGqDB48GKmpqaioqMCxY8eQmJgISZKwYMGCBu2fk5OD5557DnfccYfZMVy7dg1ubm5m728KIQQqKyvh4lJ/KuDl5YVTp05BCIHLly8jPT0dKSkpSE1NxYEDBxAUFGSTeC2NJUB2VqArMyQ/AFAlgOlbs1gSRERkYxqNBgEBAQgJCcGwYcMwcOBA7Nq1CwBQVVWFlJQUtG7dGh4eHoiMjMRnn30GAMjLy4MkSbh06RKeeeYZSJJkKAH67rvv0KtXL2g0GgQGBmLatGm4fv264TP79euHSZMmYfLkyfDx8UF8fDz27dsHSZLwzTff4M4774SHhwfuvfdeXLhwAf/+97/RqVMneHl54cknn0RpaanhWPXFCMBw3H//+9+IioqCRqNp0GThkiQhICAAgYGB6NSpE8aNG4f09HQUFxfj9ddfN2wXFhaGxYsXG+3bvXt3zJw507AeAIYPHw5JkhAWFoa8vDw4OTnh6NGjRvstXrwYoaGhqKqqum185mICZGe5RSWG5KdapRDIKyqtfQciIhWwd7OArKwspKenG0pjUlJS8PHHH2P58uU4ceIEXnnlFTz99NP47rvvEBISgoKCAnh5eWHx4sUoKCjAyJEj8ccff+D+++9Hz5498d///hfLli3DqlWrMHfuXKPPWrt2Ldzc3HDgwAEsX77csHzmzJlYsmQJ0tPTcebMGTz++ONYvHgxNmzYgO3bt+Pbb781mh2hvhhvNm3aNMyfPx8nT55Et27dzPp+/Pz88NRTT2Hbtm2orKxs0D5HjhwBAKSmpqKgoABHjhxBWFgYBg4ciNTUVKNtU1NTMWbMGDg5WS9NYRWYnbX28YSTBKMkyFmSEObDcTSISJ3s1Szg66+/RtOmTXH9+nWUl5fDyckJS5YsQXl5OebNm4fdu3cjJiYGABAeHo79+/djxYoV6Nu3r2FqBq1Wi4CAAADARx99hJCQECxZsgSSJKFjx444d+4cpk6dirfeestwc2/Xrh0WLlxoiKOgoAAAMHfuXMTFxQEAxo0bh+TkZOTk5CA8PBwA8Oijj2Lv3r2YOnVqg2KsNnv2bAwaNKjR31fHjh1x5coVXLp0CX5+frfdvno4muqpLKqNHz8ezz33HBYtWgSNRoOMjAwcP34cX331VaNjrA9LgOwsUOuBlBERcP7/4xo4SxLmjeiKQK2HnSMjIrI9ezYL6N+/PzIzM/HDDz8gMTERY8eOxSOPPILs7GyUlpZi0KBBaNq0qeH18ccfIycnp87jnTx5EjExMUbj1sTFxaG4uBhnz541LIuKiqp1/5tLZ/z9/dGkSRND8lO9rHpaCFNi7NGjh2lfTB2qR9Fp7Lg8w4YNg7OzM7744gsANxpe9+/f31BlZi0sAZKBkT1boU97X+QVlSLMpwmTHyJSrfqaBVj7b6Onpyfatm0LAFi9ejUiIyOxatUqdO3aFQCwfft2BAcHG+1jiXkkPT09a13u6upq+Hd177SbSZJkaCNTXFzc4Bjr+jxTnTx5El5eXoZpT5ycnHDr0IINGa3Zzc0No0ePRmpqKkaMGIENGzbg/ffft0iM9WECJBOBWg8mPkSkenJpFuDk5ITp06cjKSkJv/76KzQaDfLz842qkm6nU6dO+PzzzyGEMJSSHDhwAM2aNWtUT7HadO7c2awYzXXhwgVs2LABw4YNM1Tl+fr6GqrvgBuDEubm5hrt5+rqWmubofHjx6Nr16746KOPcP36dYwYMcK6JwBWgRERkYzIqVnAY489BmdnZ6xYsQJTpkzBK6+8grVr1yInJwcZGRn48MMPsXbt2jr3f+GFF3DmzBm8+OKL+OWXX/DVV19hxowZSEpKsnjj3mbNmpkVY0MIIVBYWIiCggKcPHkSq1evRmxsLLRaLebPn2/Y7t5778Unn3yC//znPzh+/DgSExNrTFYaFhaGtLQ0FBYW4q+//jIs79SpE+6++25MnToVCQkJhklPrYklQEREJCtyaRbg4uKCSZMmYeHChcjNzYWvry9SUlLw+++/w9vbG3fddRemT59e5/7BwcHYsWMHXnvtNURGRqJFixYYN24c3njjDavEO2fOHJNjbAi9Xo/AwEBIkgQvLy906NABiYmJePnll42mm0hOTkZubi4efPBBaLVazJkzp0YJ0LvvvoukpCSsXLkSwcHByMvLM6yr7l7/zDPPNCrehuJcYLXgXGBERKbjXGDUGHPmzMGWLVvw008/1bsd5wIjIiIixSsuLkZWVhaWLFmCF1980WafywSIiIhIpbp06WLUbf7m1/r1620Sw6RJkxAVFYV+/frZrPoLYBsgIiIi1dqxY0edXdX9/f1tEsOaNWvsMnksEyAiIiKVCg0NtXcIdsMqMCIisij2rSFrstT1xQSIiIgsonqk4ptnKCeytOrr69aRsU3FKjAiIrIIZ2dneHt7G+anatKkSaPniSKqJoRAaWkpLly4AG9v7xqDLJqKCRAREVlM9Szf1UkQkaXdOpu8uZgAERGRxUiShMDAQPj5+TVoIkwiU7i6uja65KcaEyAiIrI4Z2dni92oiKyBjaCJiIhIdZgAERERkeowASIiIiLVYQJEREREqsMEiIiIiFSHCRARERGpDhMgIiIiUh0mQERERKQ6TICIiIhIdZgAERERkeowASIiIiLVYQJEREREqsMEiIiIiFSHCRARERGpDhMgIiIiUh0mQERERKQ6TICIiIhIdeyaAH3//fcYOnQogoKCIEkSvvzyS6P1Y8aMgSRJRq/Bgwff9rhLly5FWFgY3N3dER0djcOHD1vpDIiIiEiJ7JoAlZSUIDIyEkuXLq1zm8GDB6OgoMDw2rhxY73H3Lx5M5KSkjBjxgxkZGQgMjIS8fHxuHDhgqXDJyIiIoVyseeHDxkyBEOGDKl3G41Gg4CAgAYfc9GiRZgwYQLGjh0LAFi+fDm2b9+O1atXY9q0aY2Kl4iIiByD7NsA7du3D35+fujQoQOef/55XLp0qc5tr127hmPHjmHgwIGGZU5OThg4cCAOHjxY537l5eXQ6/VGLyIiInJcsk6ABg8ejI8//hhpaWlYsGABvvvuOwwZMgSVlZW1bl9UVITKykr4+/sbLff390dhYWGdn5OSkgKtVmt4hYSEWPQ8iIiISF7sWgV2O0888YTh3xEREejWrRvatGmDffv2YcCAARb7nOTkZCQlJRne6/V6JkFEREQOTNYlQLcKDw+Hj48PsrOza13v4+MDZ2dnnD9/3mj5+fPn621HpNFo4OXlZfQiIiIix6WoBOjs2bO4dOkSAgMDa13v5uaGqKgopKWlGZZVVVUhLS0NMTExtgqTiIiIZM6uCVBxcTEyMzORmZkJAMjNzUVmZiby8/NRXFyM1157DYcOHUJeXh7S0tLw8MMPo23btoiPjzccY8CAAViyZInhfVJSElauXIm1a9fi5MmTeP7551FSUmLoFUZERERk1zZAR48eRf/+/Q3vq9vhJCYmYtmyZfjpp5+wdu1aXL58GUFBQbjvvvswZ84caDQawz45OTkoKioyvB85ciQuXryIt956C4WFhejevTt27txZo2E0ERERqZckhBD2DkJu9Ho9tFotdDod2wORIhToypBbVILWPp4I1HrYOxwiIrsw5f4t615gRHR7m4/kI3nrcVQJwEkCUkZEYGTPVvYOi4hI1hTVCJqIjBXoygzJDwBUCWD61iwU6MrsGxgRkcwxASJSsNyiEkPyU61SCOQVldonICIihWACRKRgrX084SQZL3OWJIT5NLFPQERECsEEiEjBArUeSBkRAWfpRhbkLEmYN6IrG0ITEd0GG0ETKdzInq3Qp70v8opKEebThMkPEVEDMAEicgCBWg8mPkREJmAVGBEREakOEyAiIiJSHSZAREREZLYCXRnSc4oUN/4Y2wARERGRWZQ8Ej1LgIiIiMhkSh+JngkQERERmUzpI9EzASIiIiKTKX0keiZAREREZDKlj0TPRtBERERkFiWPRM8EiIiIiMym1JHoWQVGREREqsMEiIiIiFSHCRARERGpDhMgIiIiUh0mQERERKQ6TICIiIhIdZgAERERkeowASIiIiLVYQJEREREqsMEiIiIiFSHCRARERGpDhMgIiIiUh0mQERERKQ6TICIiIhIdZgAERERkeowASIiIiLVYQJEREREqsMEiIiIiFSHCRARERGpDhMgIiIiUh0mQERERKQ6dk2Avv/+ewwdOhRBQUGQJAlffvmlYV1FRQWmTp2KiIgIeHp6IigoCKNHj8a5c+fqPebMmTMhSZLRq2PHjlY+EyIiIlISuyZAJSUliIyMxNKlS2usKy0tRUZGBt58801kZGRg69atOHXqFB566KHbHrdLly4oKCgwvPbv32+N8ImIiEihXOz54UOGDMGQIUNqXafVarFr1y6jZUuWLEGvXr2Qn5+PVq1a1XlcFxcXBAQEWDRWIiIichyKagOk0+kgSRK8vb3r3e63335DUFAQwsPD8dRTTyE/P982ARIREZEi2LUEyBRXr17F1KlTkZCQAC8vrzq3i46Oxpo1a9ChQwcUFBRg1qxZuOeee5CVlYVmzZrVuk95eTnKy8sN7/V6vcXjJyIiIvlQRAJUUVGBxx9/HEIILFu2rN5tb65S69atG6KjoxEaGopPP/0U48aNq3WflJQUzJo1y6IxExERkXzJvgqsOvk5ffo0du3aVW/pT228vb3Rvn17ZGdn17lNcnIydDqd4XXmzJnGhk1EREQyJusEqDr5+e2337B79260bNnS5GMUFxcjJycHgYGBdW6j0Wjg5eVl9CIiIiLHZdcEqLi4GJmZmcjMzAQA5ObmIjMzE/n5+aioqMCjjz6Ko0ePYv369aisrERhYSEKCwtx7do1wzEGDBiAJUuWGN5PmTIF3333HfLy8pCeno7hw4fD2dkZCQkJtj49IiIikim7tgE6evQo+vfvb3iflJQEAEhMTMTMmTOxbds2AED37t2N9tu7dy/69esHAMjJyUFRUZFh3dmzZ5GQkIBLly7B19cXvXv3xqFDh+Dr62vdkyEiIiLFkIQQwt5ByI1er4dWq4VOp2N1GBERkUKYcv+WdRsgIiIiImtgAkRERESqwwSIiIiIVIcJEBEREakOEyAiIiJSHSZAREREpDpMgIiIiEh1mAARERGR6jABIiIiItVhAkRERESqwwSIiIiIVIcJEBEREakOEyAiIiJSHSZAREREpDpMgBSgQFeG9JwiFOjK7B0KERGRQ3CxdwBUv81H8pG89TiqBOAkASkjIjCyZyt7h0VERKRoLAGSsQJdmSH5AYAqAUzfmsWSICIiokZiAiRjuUUlhuSnWqUQyCsqtU9AREREDoIJkIy19vGEk2S8zFmSEObTxD4BEREROQgmQDIWqPVAyogIOEs3siBnScK8EV0RqPWwc2RERETKxkbQMjeyZyv0ae+LvKJShPk0YfJDRERkAUyAFCBQ68HEh4iIyIJYBUZERESqwwSIiIiIVMfsBCgsLAyzZ89Gfn6+JeMhIiIisjqzE6DJkydj69atCA8Px6BBg7Bp0yaUl5dbMjYiIiIiq2hUApSZmYnDhw+jU6dOePHFFxEYGIhJkyYhIyPDkjESERERWZQkhBC33+z2Kioq8NFHH2Hq1KmoqKhAREQEXnrpJYwdOxaSJN3+ADKi1+uh1Wqh0+ng5eVl73CIiIioAUy5fze6G3xFRQW++OILpKamYteuXbj77rsxbtw4nD17FtOnT8fu3buxYcOGxn4MERGAG3Pk5RaVoLWPJ4eHICKzmZ0AZWRkIDU1FRs3boSTkxNGjx6N9957Dx07djRsM3z4cPTs2dMigRIRbT6Sb5gg2EkCUkZEYGTPVvYOi4gUyOwEqGfPnhg0aBCWLVuGYcOGwdXVtcY2rVu3xhNPPNGoAImIgBslP9XJDwBUCWD61iz0ae/LkiAiMpnZCdDvv/+O0NDQerfx9PREamqquR9BRGSQW1RiSH6qVQqBvKJSJkBEZDKze4H1798fly5dqrH88uXLCA8Pb1RQRES3au3jCadb+lM4SxLCfJrYJyAiUjSzE6C8vDxUVlbWWF5eXo4//vijUUEREd0qUOuBlBERcP7/vUqdJQnzRnRl6Q8RmcXkKrBt27YZ/v3NN99Aq9Ua3ldWViItLQ1hYWEWCY6I7EOuPa1G9myFPu19kVdUijCfJrKKjYiUxeRxgJycbhQaSZKEW3d1dXVFWFgY3n33XTz44IOWi9LGOA4QqRl7WhGRUll1HKCqqioAN3p4HTlyBD4+PuZFSUSyw55WRKQWZvcCy83NtWQcRCQD7GlFRGphdgI0e/bsete/9dZb5h6aiOykuqfVzUkQe1oRkSMyuxfYF198YfT69NNPsWDBArz77rv48ssvG3SM77//HkOHDkVQUBAkSaqxnxACb731FgIDA+Hh4YGBAwfit99+u+1xly5dirCwMLi7uyM6OhqHDx824wyJ1Ic9rYhILcwuAfrxxx9rLNPr9RgzZgyGDx/eoGOUlJQgMjISzzzzDEaMGFFj/cKFC/HBBx9g7dq1aN26Nd58803Ex8fj559/hru7e63H3Lx5M5KSkrB8+XJER0dj8eLFiI+Px6lTp+Dn52faSRKpEHtaEZEaWGw2+GrHjx/H0KFDkZeXZ1ogkoQvvvgCw4YNA3Cj9CcoKAivvvoqpkyZAgDQ6XTw9/fHmjVr6pxiIzo6Gj179sSSJUsA3Gi0HRISghdffBHTpk1rUCzsBUZERKQ8pty/za4Cq4tOp4NOp2v0cXJzc1FYWIiBAwcalmm1WkRHR+PgwYO17nPt2jUcO3bMaB8nJycMHDiwzn2AG4M36vV6oxcRETmeAl0Z0nOKUKArs3coZGdmV4F98MEHRu+FECgoKMAnn3yCIUOGNDqwwsJCAIC/v7/Rcn9/f8O6WxUVFaGysrLWfX755Zc6PyslJQWzZs1qZMRERCRnHOOKbmZ2AvTee+8ZvXdycoKvry8SExORnJzc6MBsKTk5GUlJSYb3er0eISEhdoyIiIgsiWNc0a1kOw5QQEAAAOD8+fMIDAw0LD9//jy6d+9e6z4+Pj5wdnbG+fPnjZafP3/ecLzaaDQaaDSaxgdNRESyxDGu6FaNagMkhEBRUVGts8I3VuvWrREQEIC0tDTDMr1ejx9++AExMTG17uPm5oaoqCijfaqqqpCWllbnPkRE5Piqx7i6Gce4UjezEqDCwkKMHj0azZs3h7+/P/z8/NC8eXM888wzNUpf6lNcXIzMzExkZmYCuFGqlJmZifz8fEiShMmTJ2Pu3LnYtm0bjh8/jtGjRyMoKMjQUwwABgwYYOjxBQBJSUlYuXIl1q5di5MnT+L5559HSUkJxo4da86pEhGRA+AYV3Qrk6vA9Ho9YmNjUVxcjLFjx6Jjx44QQuDnn3/Gxo0bsX//fmRkZKBp06a3PdbRo0fRv39/w/vqdjiJiYlYs2YNXn/9dZSUlODZZ5/F5cuX0bt3b+zcudNoDKCcnBwUFRUZ3o8cORIXL17EW2+9hcLCQnTv3h07d+6s0TCaiIjUhWNcma9AV4bcohK09vF0mO/N5HGA5syZg48//hjp6enw9fU1WnfhwgXExcVh7NixmD59ukUDtSWOA0RERHSDknrPWXUcoO3bt2P69Ok1kh8A8PPzQ3JyMv71r3+ZelgiIiKSmbp6zznCOEomJ0C//vorYmNj61wfGxuLU6dONSooIiIisr/6es8pnckJkF6vh7e3d53rvb29OZIyERGRA3Dk3nMmJ0BCCDg51b2bJEmw8PRiRKQAnGKAyPE4cu85k3uBCSHQvn17SJJU53oiUhclNZIkItM4au85kxOg1NRUa8RBRArFKQaIHF+g1sPhfs8mJ0CJiYkmbb9x40Y89NBD8PT0NPWjiEgBOMUAESlRo6bCaIj/+7//M2l0aCJSFkduJElEjsvqCRDbBBE5NiU0kmQDbSK6ldmzwRMRVZNzI0k20Cai2li9BIhIzdRU8hCo9UBMm5aySn4ceRRbImoclgARWQlLHuyPDbSJqC4sASKyApY8yAMbaBNRXcxKgCorK/H999/j8uXLt902NDQUrq6u5nwMkWI58vw5SqKEBtpESuCI1flmVYE5Ozvjvvvuw8mTJ+udFwwAsrKyzPkIIkWrLnm4OQliyYN9yLmBNpESOGp1vtlVYF27dsXvv/9uyViIHAZLHuRFjg20iZTAkavzzW4EPXfuXEyZMgVz5sxBVFRUjZGevby8Gh0ckZKx5IGIlM6ROxKYnQDdf//9AICHHnrIaGJUIQQkSUJlZWXjoyNSOEecP4eI1MORq/PNToD27t1ryTiIiIhIZqqr86dvzUKlEA5VnS8JzlVRg16vh1arhU6nY1UeERGpXoGuTBHV+abcvxs1DtB//vMfPP3004iNjcUff/wBAPjkk0+wf//+xhyWiIiIZMQROxKYnQB9/vnniI+Ph4eHBzIyMlBeXg4A0Ol0mDdvnsUCJCIiIrI0sxOguXPnYvny5Vi5cqXRQIdxcXHIyMiwSHBERNbkiIO7EVHDmN0I+tSpU+jTp0+N5VqttkEjRBMR2ZOjDu5GRA1jdglQQEAAsrOzayzfv38/wsPDGxUUEZE1OfLgbkTUMGYnQBMmTMDLL7+MH374AZIk4dy5c1i/fj2mTJmC559/3pIxEhFZFOdqIyKzq8CmTZuGqqoqDBgwAKWlpejTpw80Gg2mTJmCF1980ZIxEhFZlCMP7kZEDdPocYCuXbuG7OxsFBcXo3PnzmjatKmlYrMbjgNE5Pg2H8mvMbgb2wARKZsp928OhFgLJkBE6qCUwd2IqGFMuX+bXQV29epVfPjhh9i7dy8uXLiAqqoqo/XsCk9Ecse52ojUy+wEaNy4cfj222/x6KOPolevXkYTohIRERHJmdkJ0Ndff40dO3YgLi7OkvEQERERWZ3Z3eCDg4PRrFkzS8ZCREREZBNmJ0Dvvvsupk6ditOnT1syHiIiIiKrM7sKrEePHrh69SrCw8PRpEkTo/nAAODPP/9sdHBERERE1mB2ApSQkIA//vgD8+bNg7+/PxtBExERkWKYnQClp6fj4MGDiIyMtGQ8RERERFZndhugjh07oqyMEwcSERGR8pidAM2fPx+vvvoq9u3bh0uXLkGv1xu9iIiIiOTK7ARo8ODBOHjwIAYMGAA/Pz80b94czZs3h7e3N5o3b26xAMPCwiBJUo3XxIkTa91+zZo1NbZ1d3e3WDxERESkfGa3Adq7d68l46jTkSNHUFlZaXiflZWFQYMG4bHHHqtzHy8vL5w6dcrwng20iYiI6GZmJUAVFRWYPXs2li9fjnbt2lk6JiO+vr5G7+fPn482bdqgb9++de4jSRICAgKsGhcRkZoV6MqQW1SC1j6enE+NFMmsBMjV1RU//fSTpWO5rWvXrmHdunVISkqqt1SnuLgYoaGhqKqqwl133YV58+ahS5cudW5fXl6O8vJyw3u2YSIiqtvmI/lI3nocVQJwkoCUEREY2bOVvcMiMonZbYCefvpprFq1ypKx3NaXX36Jy5cvY8yYMXVu06FDB6xevRpfffUV1q1bh6qqKsTGxuLs2bN17pOSkgKtVmt4hYSEWCF6IiLlK9CVGZIfAKgSwPStWSjQsVcwKYskhBDm7Pjiiy/i448/Rrt27RAVFQVPT0+j9YsWLbJIgDeLj4+Hm5sb/vWvfzV4n4qKCnTq1AkJCQmYM2dOrdvUVgIUEhICnU4HLy+vRsdNROQo0nOK8OTKH2os3zjhbsS0aWmHiIj+R6/XQ6vVNuj+bXYj6KysLNx1110AgF9//dVonTUaHZ8+fRq7d+/G1q1bTdrP1dUVd955J7Kzs+vcRqPRQKPRNDZEIiKH19rHE04SDCVAAOAsSQjzaWK/oIjMIPteYNVSU1Ph5+eHBx54wKT9Kisrcfz4cdx///1WioyISD0CtR5IGRGB6VuzUCkEnCUJ80Z0ZUNoUhyzE6CbVbevueOOOyxxuBqqqqqQmpqKxMREuLgYhzx69GgEBwcjJSUFADB79mzcfffdaNu2LS5fvox33nkHp0+fxvjx460SGxGR2ozs2Qp92vsir6gUYT5NmPyQIpndCLqqqgqzZ8+GVqtFaGgoQkND4e3tjTlz5qCqqsqSMWL37t3Iz8/HM888U2Ndfn4+CgoKDO//+usvTJgwAZ06dcL9998PvV6P9PR0dO7c2aIxERGpWaDWAzFtWjL5IcUyuxF0cnIyVq1ahVmzZiEuLg4AsH//fsycORMTJkzA22+/bdFAbcmURlREREQkD6bcv81OgIKCgrB8+XI89NBDRsu/+uorvPDCC/jjjz/MOawsMAEiIiJSHlPu32ZXgf3555/o2LFjjeUdO3bEn3/+ae5hiYgUq0BXhvScIo6JQ6QAZidAkZGRWLJkSY3lS5YsQWRkZKOCIiJSms1H8hE3fw+eXPkD4ubvweYj+fYOiYjqYXYvsIULF+KBBx7A7t27ERMTAwA4ePAgzpw5gx07dlgsQCIiuatrdOQ+7X3ZSJhIpswuAerbty9+/fVXDB8+HJcvX8bly5cxYsQInDp1Cvfcc48lYyQikrXcohKjgQEBoFII5BWV2icgIrotk0qARowYgTVr1sDLywsff/wxRo4cqejeXkSkDtaeuZyjIxMpj0klQF9//TVKSkoAAGPHjoVOp7NKUERElmKLtjnVoyM7//9pgDg6MpH8mVQC1LFjRyQnJ6N///4QQuDTTz+ts5vZ6NGjLRIgEZG5bNk2h6MjEymLSQnQ8uXLkZSUhO3bt0OSJLzxxhu1TnwqSRITICKyu/ra5lgjQQnUejDxIVIIkxKg2NhYHDp0CADg5OSEX3/9FX5+flYJjIiosdg2h4jqYnYvsNzcXPj6+loyFiIii2LbHCKqi9njAIWGhuI///kPVqxYgZycHHz22WcIDg7GJ598gtatW6N3796WjJOIyCxsm0NEtTG7BOjzzz9HfHw8PDw88OOPP6K8vBwAoNPpMG/ePIsFSETUWJy5nIhuZXYCNHfuXCxfvhwrV66Eq6urYXlcXBwyMjIsEhwRERGRNZidAJ06dQp9+vSpsVyr1eLy5cuNiYmISJE4GSqRcpjdBiggIADZ2dkICwszWr5//36Eh4c3Ni4iIkXZfCTfMOaQkwSkjIjAyJ6t7B0WEdXB7BKgCRMm4OWXX8YPP/wASZJw7tw5rF+/Hq+++iqef/55S8ZIRCRrdQ24yJIgIvkyuwRo2rRpqKqqwoABA1BaWoo+ffpAo9Hgtddew/jx4y0ZIxGRrNl6wEUiajyzS4AkScLf/vY3/Pnnn8jKysKhQ4dw8eJFaLVatG7d2pIxEhHJWvWAizfjgItE8mZyAlReXo7k5GT06NEDcXFx2LFjBzp37owTJ06gQ4cOeP/99/HKK69YI1YiIlnigItEyiMJIcTtN/ufqVOnYsWKFRg4cCDS09Nx8eJFjB07FocOHcL06dPx2GOPwdnZ2Vrx2oRer4dWq4VOp6tzslciolsV6Mo44CKRHZly/za5DdCWLVvw8ccf46GHHkJWVha6deuG69ev47///W+tE6MSEakFJ0MlUg6Tq8DOnj2LqKgoAEDXrl2h0WjwyiuvMPkhIiIixTA5AaqsrISbm5vhvYuLC5o2bWrRoIiIiIisyeQqMCEExowZA41GAwC4evUqnnvuOXh6ehptt3XrVstESERERGRhJidAiYmJRu+ffvppiwVDREREZAsmJ0CpqanWiIOIiIjIZsweCJGIiIhIqZgAERERkeowASIiIiLVYQJEREREqsMEiKymQFeG9JwiFOjK7B0KERGREZN7gZHtFejKkFtUgtY+nooZZn/zkXwkbz2OKgE4SUDKiAiM7NnK3mEREREBYAIke0pMJAp0ZYaYAaBKANO3ZqFPe1/FJHBEROTYWAUmY3UlEnKvUsotKjHEXK1SCOQVldonICIiolswAZIxpSYSrX084XTL3LjOkoQwnyb2CYiIiOgWTIBkTKmJRKDWAykjIuAs3QjeWZIwb0RXVn8REZFssA2QjFUnEtO3ZqFSCJMSCXs3nB7ZsxX6tPdFXlEpwnyaMPkhIiJZkX0J0MyZMyFJktGrY8eO9e6zZcsWdOzYEe7u7oiIiMCOHTtsFK3ljezZCvun9cfGCXdj/7T+DWoAvflIPuLm78GTK39A3Pw92Hwk3waR1hSo9UBMm5ZMfohsiMNPEDWMIkqAunTpgt27dxveu7jUHXZ6ejoSEhKQkpKCBx98EBs2bMCwYcOQkZGBrl272iJciwvUejQ4iWAPLCL1UmKvUSJ7kX0JEHAj4QkICDC8fHx86tz2/fffx+DBg/Haa6+hU6dOmDNnDu666y4sWbLEhhHbj1IbThNR4yi11yiRvSgiAfrtt98QFBSE8PBwPPXUU8jPr7tK5+DBgxg4cKDRsvj4eBw8eLDOfcrLy6HX641eSqXUhtNE1Dh8+CEyjewToOjoaKxZswY7d+7EsmXLkJubi3vuuQdXrlypdfvCwkL4+/sbLfP390dhYWGdn5GSkgKtVmt4hYSEWPQcbIk9sIjUiQ8/RKaRfRugIUOGGP7drVs3REdHIzQ0FJ9++inGjRtnkc9ITk5GUlKS4b1er1d0EsQeWETq05heo0RqJPsE6Fbe3t5o3749srOza10fEBCA8+fPGy07f/48AgIC6jymRqOBRqOxaJz2ZkrDaSKyDA4/QaQcsq8Cu1VxcTFycnIQGBhY6/qYmBikpaUZLdu1axdiYmJsEZ5NsbsrkXxw+AkiZZF9AjRlyhR89913yMvLQ3p6OoYPHw5nZ2ckJCQAAEaPHo3k5GTD9i+//DJ27tyJd999F7/88gtmzpyJo0ePYtKkSfY6BauQyx9bImIPLHIManuoln0V2NmzZ5GQkIBLly7B19cXvXv3xqFDh+Dr6wsAyM/Ph5PT//K42NhYbNiwAW+88QamT5+Odu3a4csvv1TsGEC14Vg/RPJSXw8s/iZJCdQ4hpTsE6BNmzbVu37fvn01lj322GN47LHHrBSR/fGPLZG8VPfAuvl3yR5YpBRqfaiWfRUY1cTurkTywuEnSMnUOoaU7EuAqCZ2dyWSH/bAuj1795Kj2tmjBFMO1wITIIXiH1si+eHwE3VTYxsTpbD1Q7VcrgVJCCFuv5m66PV6aLVa6HQ6eHl52TscIkWQwxMdyVOBrgxx8/fUKGHYP60/rxUZKdCVWf2h2trXgin3b5YAKQBvLCR3cnmiI3lixw1lsEUJppyuBSZAMscbC8mdWnuQUMOxlxxVk9O1wF5gMsbB1UgJ1NqDhBqOveSompyuBZYAyZicigqJ6iKnJzqSL3bcoGpyuRZYAiRjHO+HlEBOT3Qkb5ynjKrJ4VpgCZCMKWG8HzbQJkA+T3Rkf/ybQErBBEjm5HxjYQNtuhnHwCH+TSAlYRWYAsihqPBWbKBNRDfj3wRSGiZAZJaG9Pwp0JUhPaeIfwCJVIC9AUlpWAVGZrldzx8WhROpC3sDktKwBIjMUl/PHxaFE6kPewOS0rAEiMxWVwNtjl9EpE5y7rRBdCsmQNQotfX8YVE4kXqxNyApBavAyOJYFE5ERHLHEiCyChaFExGRnDEBIqthUTgRkX1wRO7bYwJERETkQDgMScOwDRAREZGD4DAkDccEiIiIyEFwRO6GYwJERETkIKqHIbkZhyGpHRMgIiIiB8FhSBqOjaCJiIgcCIchaRgmQERERA6Gw5DcHqvAiIiISHWYABEREZHFFejKkJ5TJNsu+KwCIyIiIotSwmCMLAEiIqqF3J9eyTz8f7U+pQzGyBIgIqJbKOHplUzH/1fbqG8wRjk1zGYJEBHRTZTy9Eqm4f+r7ShlMEYmQEREN+FUAo6J/6+2o5TBGFkFRkR0k+qn15tvlnJ8eiXTtPbxhATg5hxIksD/VytRwmCMLAEiIotwlMalSnl6pbo1+FoU9a+mxgnUeiCmTUvZ/nZYAkREjeZojUuV8PRKtavrWswtKqmR7whAdg1zyXZYAkREjeKojUvl/vRKNdV3LSqlYS7ZDhMgUgRHqV6xB2t/d2xcSnJxu+7XrNqkm8m+CiwlJQVbt27FL7/8Ag8PD8TGxmLBggXo0KFDnfusWbMGY8eONVqm0Whw9epVa4dLVuBo1Su2ZIvvTgmNhgt0ZcgtKkFrH0/e8BzY7a5FVm3SzWRfAvTdd99h4sSJOHToEHbt2oWKigrcd999KCkpqXc/Ly8vFBQUGF6nT5+2UcRkSY5avWILtvru5P5kvflIPuLm78GTK39A3Pw92Hwk394hkZU05Fpk1SZVk30J0M6dO43er1mzBn5+fjh27Bj69OlT536SJCEgIMDa4ZGV2XpE0fpKCpRWimDL706uT9Z1JYF92vvKJkayrNtdi0r7HZP1yD4BupVOpwMAtGjRot7tiouLERoaiqqqKtx1112YN28eunTpUuu25eXlKC8vN7zX6/WWC5gaxZbVK/VVFymxGs7WVVOBWg/Z3VCUMiQ/WVZd16ISf8dkPbKvArtZVVUVJk+ejLi4OHTt2rXO7Tp06IDVq1fjq6++wrp161BVVYXY2FicPXu21u1TUlKg1WoNr5CQEGudApnIVtUr9VUXKbUaTu5VU7bAnj9UTam/Y7IeRZUATZw4EVlZWdi/f3+928XExCAmJsbwPjY2Fp06dcKKFSswZ86cGtsnJycjKSnJ8F6v1zMJkhFbVK/UV1IgIOotRZBzkbpcq6ZspToJnL41C5VCqDIJpBtYGki3UkwCNGnSJHz99df4/vvvcccdd5i0r6urK+68805kZ2fXul6j0UCj0VgiTLISa1ev3K66qK51SihSl2PVlC2pPQmkG5TQW5FsS/ZVYEIITJo0CV988QX27NmD1q1bm3yMyspKHD9+HIGBgVaIkBxBfdVFda0DwCJ1hWDPH7pdlTDHGlMf2ZcATZw4ERs2bMBXX32FZs2aobCwEACg1Wrh4XHjwh09ejSCg4ORkpICAJg9ezbuvvtutG3bFpcvX8Y777yD06dPY/z48XY7D5K/+koKaluXnlPEInVyCHKuxrWkun7jSijJJcuTfQK0bNkyAEC/fv2MlqempmLMmDEAgPz8fDg5/a8w66+//sKECRNQWFiI5s2bIyoqCunp6ejcubOtwiaFqq+66NZ1LFInR6C2m/+tv2MOlaBekhCC8+HeQq/XQ6vVQqfTwcvLy97hkJls8VS7+Uh+jQa2jnzzIMdSoCtD3Pw9NZL4/dP6q+bmn55ThCdX/lBj+cYJdyOmTUs7RESNYcr9W/YlQI5GLUXN9marp1o2sCUlY88oluSqmewbQTsSSw/Jz0Z7tSvQlWHa58ZF2tO2Hrfa98QGtqRUHCeJ42WpGUuAbMTS9cxqq7c3xbHTf+HWel0hgIzTf+GBbvyjRlRN6eMkWapEXS4luawhsC0mQDZiyaJmNtqrX13N2tjajagmudz8TWXph0B7j5fFh1rbYxWYjViyqLm+ZIqAHmEtcMtXDQlAVFhze4RDNsIqYfMprRq3MdNayPE64TQd9sEEyEYsWc/Mevv6BWo9MP+RCMPF7QRg/iMRivnjTqazdPs6kjdzHwLlep3wodY+WAVmQ5YqalZ6vb0tKLVYn0zHKmH1MafnlpyvE/ZEsw8mQDZmqXpm3uBvz951+mQb7MqtPuY8BMr5OuFDrX0wAVIw3uCJ+PSsVqY+BMr9OuFDre2xDRAR2Y0lGqRyHBf1MqXxthKuE6U1Rlc6ToVRC06FQWR9lu72W6Ar49OzhTniuDS8Thwbp8IgIlmzRoNUVglblqOOS8PrhKqxCoyIbI7dfuWN49KQGjABIiKb41hW8sYEldSACRAR2ZwSGqTWR46jCVsSE1RSA7YBIpIZR2x4Whuldvt11LYxN+O4NKQG7AVWC/YCI3tRw81VyQp0ZYibv6fGWDL7p/V3yORAqT2m1PIQQTWxFxjJAv8ImUbOQ/XTDXIeTdgalNhjig8R1FBMgMgqNh/Jx7TPj0Pgxkzs8x/53x8hJka1U9vNFVDetSD30YTVzlEfIpT2O1EKJkBkcQW6MkPyAwACwLTPj6NPe198/+tFPp3VQW03VyU+qbNtjLw54kOEEn8nSsFeYGRxR/P+xK0NywSA3T+f59gi9VB6zyhTKHmcmZE9W2H/tP7YOOFu7J/WnzcjGXG03mtK/p0oAUuAyOIkSap1eVFxucM9nVmaUntGmUrpT+pKbBujBo5WQqf034ncMQEii4sKbQ4JMCoFkiTg3o5++HBPtmqqeMylhpur2qr7yHYc6SGCvxPrYhUYWVyg1gPzH4kwFEU7ScD8ERGIDGku+yoeRx/gTi7UVN1Htucos6rzd2JdHAeoFhwHyDLqGkNErmOLsLGh7cn1WiDzsceS5fF30nCm3L+ZANWCCZD6qG2AOyJr4EME2Zsp929WgRGBkz8SNRZ7LJHSMAEiguN1nyUyhSXavvEhgpSGCRCp0q1/8BvT2JANp0nJNh/JR9z8PXhy5Q+Im78Hm4/km3UcPkSQ0rANUC3YBsix1ddOwdTGhvVN+UEkd7dr+2Zqg+bNR/JrjMHD3wPZEidDJarD7eYKMmUMnvqm/GDDaVKC+qqtzJm2xpHG4FEK9rozHxMgUhVLjqxa15Qfx/L+woOR/ENE8lfXQHtN3JzMnlRUDQN5ygV73TUO2wBRoyit/Ysl2ynUNeVHHYuJbMKU32Rdbd9KrlWyQbPMsddd47EEiMymxKcPS84VVNeUH3eFNrdYvESmMOc3WVu1VYGujFMwyBznCWs8lgCRWarbv9z89DFt63FFPH1Yajbvuqb84B8fsofGlAjcOnUEp2CQP/a6azyWAJFZjp3+q2b7FwFknP4LD3ST/x9JS7VTYKNPkgtLlwjw2pY3S5ZmqxUTIDJLXaMnqHFQBTb6JDmwxszhvLbljUlq47AKjMzSI6wFbm3rKwGICmP7FyJ7YLWVOt1afUkNp4gEaOnSpQgLC4O7uzuio6Nx+PDherffsmULOnbsCHd3d0RERGDHjh02itR8SutNZWj/8v/fO+HGIID8EdqH0q4fsg5LtW+rxuuKHJnsq8A2b96MpKQkLF++HNHR0Vi8eDHi4+Nx6tQp+Pn51dg+PT0dCQkJSElJwYMPPogNGzZg2LBhyMjIQNeuXe1wBrenxN5UAItf5UIu1w8HZJMHS1VbyeW6IrIW2U+FER0djZ49e2LJkiUAgKqqKoSEhODFF1/EtGnTamw/cuRIlJSU4OuvvzYsu/vuu9G9e3csX768QZ9py6kwbjcUPVF95HL98GbpWORyXRGZypT7t6yrwK5du4Zjx45h4MCBhmVOTk4YOHAgDh48WOs+Bw8eNNoeAOLj4+vc3t44gzI1hhyuHw7I5njkcF0RWZusE6CioiJUVlbC39/faLm/vz8KCwtr3aewsNCk7QGgvLwcer3e6GUrHMuBGkMO1w9vlo5HDtcVkbXJOgGylZSUFGi1WsMrJCTEZp/NnhvUGHK4fnizdDxyuK6IrE3WjaB9fHzg7OyM8+fPGy0/f/48AgICat0nICDApO0BIDk5GUlJSYb3er3epkkQGxNTY9j7+uGAbI7J3tcVkbXJOgFyc3NDVFQU0tLSMGzYMAA3GkGnpaVh0qRJte4TExODtLQ0TJ482bBs165diImJqfNzNBoNNBqNJUM3GQcco8aw9/XDm6Vjsvd1RWRNsk6AACApKQmJiYno0aMHevXqhcWLF6OkpARjx44FAIwePRrBwcFISUkBALz88svo27cv3n33XTzwwAPYtGkTjh49in/84x/2PA0ih8ebJREpiewToJEjR+LixYt46623UFhYiO7du2Pnzp2Ghs75+flwcvpfU6bY2Fhs2LABb7zxBqZPn4527drhyy+/lO0YQERERGR7sh8HyB5sOQ4QERERWYbDjANEREREZA1MgIiIiEh1mAARERGR6jABIiIiItVhAkRERESqwwSIiIiIVIcJEBEREakOEyAiIiJSHSZAREREpDqynwrDHqoHx9br9XaOhIiIiBqq+r7dkEkumADV4sqVKwCAkJAQO0dCREREprpy5Qq0Wm2923AusFpUVVXh3LlzaNasGSRJsuix9Xo9QkJCcObMGVXOM6b28wf4HfD81X3+AL8DtZ8/YL3vQAiBK1euICgoyGii9NqwBKgWTk5OuOOOO6z6GV5eXqq98AGeP8DvgOev7vMH+B2o/fwB63wHtyv5qcZG0ERERKQ6TICIiIhIdZgA2ZhGo8GMGTOg0WjsHYpdqP38AX4HPH91nz/A70Dt5w/I4ztgI2giIiJSHZYAERERkeowASIiIiLVYQJEREREqsMEiIiIiFSHCZAVLF26FGFhYXB3d0d0dDQOHz5c57YnTpzAI488grCwMEiShMWLF9suUCsx5fxXrlyJe+65B82bN0fz5s0xcODAerdXAlPOf+vWrejRowe8vb3h6emJ7t2745NPPrFhtNZhyndws02bNkGSJAwbNsy6AVqZKee/Zs0aSJJk9HJ3d7dhtNZh6jVw+fJlTJw4EYGBgdBoNGjfvj127Nhho2gtz5Tz79evX41rQJIkPPDAAzaM2LJM/f9fvHgxOnToAA8PD4SEhOCVV17B1atXrRukIIvatGmTcHNzE6tXrxYnTpwQEyZMEN7e3uL8+fO1bn/48GExZcoUsXHjRhEQECDee+892wZsYaae/5NPPimWLl0qfvzxR3Hy5EkxZswYodVqxdmzZ20cuWWYev579+4VW7duFT///LPIzs4WixcvFs7OzmLnzp02jtxyTP0OquXm5org4GBxzz33iIcfftg2wVqBqeefmpoqvLy8REFBgeFVWFho46gty9TvoLy8XPTo0UPcf//9Yv/+/SI3N1fs27dPZGZm2jhyyzD1/C9dumT0/5+VlSWcnZ1FamqqbQO3EFPPf/369UKj0Yj169eL3Nxc8c0334jAwEDxyiuvWDVOJkAW1qtXLzFx4kTD+8rKShEUFCRSUlJuu29oaKjiE6DGnL8QQly/fl00a9ZMrF271lohWlVjz18IIe68807xxhtvWCM8mzDnO7h+/bqIjY0V//znP0ViYqKiEyBTzz81NVVotVobRWcbpn4Hy5YtE+Hh4eLatWu2CtGqGvt34L333hPNmjUTxcXF1grRqkw9/4kTJ4p7773XaFlSUpKIi4uzapysArOga9eu4dixYxg4cKBhmZOTEwYOHIiDBw/aMTLbsMT5l5aWoqKiAi1atLBWmFbT2PMXQiAtLQ2nTp1Cnz59rBmq1Zj7HcyePRt+fn4YN26cLcK0GnPPv7i4GKGhoQgJCcHDDz+MEydO2CJcqzDnO9i2bRtiYmIwceJE+Pv7o2vXrpg3bx4qKyttFbbFWOLv4KpVq/DEE0/A09PTWmFajTnnHxsbi2PHjhmqyX7//Xfs2LED999/v1Vj5WSoFlRUVITKykr4+/sbLff398cvv/xip6hsxxLnP3XqVAQFBRn9eJTC3PPX6XQIDg5GeXk5nJ2d8dFHH2HQoEHWDtcqzPkO9u/fj1WrViEzM9MGEVqXOeffoUMHrF69Gt26dYNOp8Pf//53xMbG4sSJE1aflNkazPkOfv/9d+zZswdPPfUUduzYgezsbLzwwguoqKjAjBkzbBG2xTT27+Dhw4eRlZWFVatWWStEqzLn/J988kkUFRWhd+/eEELg+vXreO655zB9+nSrxsoEiGRj/vz52LRpE/bt2+cQjUAbqlmzZsjMzERxcTHS0tKQlJSE8PBw9OvXz96hWd2VK1cwatQorFy5Ej4+PvYOxy5iYmIQExNjeB8bG4tOnTphxYoVmDNnjh0js52qqir4+fnhH//4B5ydnREVFYU//vgD77zzjuISoMZatWoVIiIi0KtXL3uHYjP79u3DvHnz8NFHHyE6OhrZ2dl4+eWXMWfOHLz55ptW+1wmQBbk4+MDZ2dnnD9/3mj5+fPnERAQYKeobKcx5//3v/8d8+fPx+7du9GtWzdrhmk15p6/k5MT2rZtCwDo3r07Tp48iZSUFEUmQKZ+Bzk5OcjLy8PQoUMNy6qqqgAALi4uOHXqFNq0aWPdoC3IEn8DXF1dceeddyI7O9saIVqdOd9BYGAgXF1d4ezsbFjWqVMnFBYW4tq1a3Bzc7NqzJbUmGugpKQEmzZtwuzZs60ZolWZc/5vvvkmRo0ahfHjxwMAIiIiUFJSgmeffRZ/+9vf4ORkndY6bANkQW5uboiKikJaWpphWVVVFdLS0oye8ByVuee/cOFCzJkzBzt37kSPHj1sEapVWOr/v6qqCuXl5dYI0epM/Q46duyI48ePIzMz0/B66KGH0L9/f2RmZiIkJMSW4TeaJa6ByspKHD9+HIGBgdYK06rM+Q7i4uKQnZ1tSH4B4Ndff0VgYKCikh+gcdfAli1bUF5ejqefftraYVqNOedfWlpaI8mpToaFNacrtWoTaxXatGmT0Gg0Ys2aNeLnn38Wzz77rPD29jZ0ax01apSYNm2aYfvy8nLx448/ih9//FEEBgaKKVOmiB9//FH89ttv9jqFRjH1/OfPny/c3NzEZ599ZtQN9MqVK/Y6hUYx9fznzZsnvv32W5GTkyN+/vln8fe//124uLiIlStX2usUGs3U7+BWSu8FZur5z5o1S3zzzTciJydHHDt2TDzxxBPC3d1dnDhxwl6n0Gimfgf5+fmiWbNmYtKkSeLUqVPi66+/Fn5+fmLu3Ln2OoVGMfc30Lt3bzFy5Ehbh2txpp7/jBkzRLNmzcTGjRvF77//Lr799lvRpk0b8fjjj1s1TiZAVvDhhx+KVq1aCTc3N9GrVy9x6NAhw7q+ffuKxMREw/vc3FwBoMarb9++tg/cQkw5/9DQ0FrPf8aMGbYP3EJMOf+//e1vom3btsLd3V00b95cxMTEiE2bNtkhassy5Tu4ldITICFMO//JkycbtvX39xf333+/yMjIsEPUlmXqNZCeni6io6OFRqMR4eHh4u233xbXr1+3cdSWY+r5//LLLwKA+Pbbb20cqXWYcv4VFRVi5syZok2bNsLd3V2EhISIF154Qfz1119WjVESwprlS0RERETywzZAREREpDpMgIiIiEh1mAARERGR6jABIiIiItVhAkRERESqwwSIiIiIVIcJEBEREakOEyAiIjsaM2YMhg0bZu8wiFSHCRAR1WrMmDGQJMnwatmyJQYPHoyffvrJ3qFZxM3nVv3q3bu31T4vLy8PkiQhMzPTaPn777+PNWvWWO1ziah2TICIqE6DBw9GQUEBCgoKkJaWBhcXFzz44IP2DstiUlNTDedXUFCAbdu21bpdRUWF1WLQarXw9va22vGJqHZMgIioThqNBgEBAQgICED37t0xbdo0nDlzBhcvXsS9996LSZMmGW1/8eJFuLm5GWaCDgsLw5w5c5CQkABPT08EBwdj6dKlRvssWrQIERER8PT0REhICF544QUUFxcb1p8+fRpDhw5F8+bN4enpiS5dumDHjh0AgL/++gtPPfUUfH194eHhgXbt2iE1NbXB5+ft7W04v4CAALRo0cJQUrN582b07dsX7u7uWL9+PS5duoSEhAQEBwejSZMmiIiIwMaNG42OV1VVhYULF6Jt27bQaDRo1aoV3n77bQBA69atAQB33nknJElCv379ANSsAisvL8dLL70EPz8/uLu7o3fv3jhy5Ihh/b59+yBJEtLS0tCjRw80adIEsbGxOHXqVIPPm4iYABFRAxUXF2PdunVo27YtWrZsifHjx2PDhg0oLy83bLNu3ToEBwfj3nvvNSx75513EBkZiR9//BHTpk3Dyy+/jF27dhnWOzk54YMPPsCJEyewdu1a7NmzB6+//rph/cSJE1FeXo7vv/8ex48fx4IFC9C0aVMAwJtvvomff/4Z//73v3Hy5EksW7YMPj4+Fjnf6lhPnjyJ+Ph4XL16FVFRUdi+fTuysrLw7LPPYtSoUTh8+LBhn+TkZMyfP98Q14YNG+Dv7w8Ahu12796NgoICbN26tdbPff311/H5559j7dq1yMjIQNu2bREfH48///zTaLu//e1vePfdd3H06FG4uLjgmWeesch5E6mGVadaJSLFSkxMFM7OzsLT01N4enoKACIwMFAcO3ZMCCFEWVmZaN68udi8ebNhn27duomZM2ca3oeGhorBgwcbHXfkyJFiyJAhdX7uli1bRMuWLQ3vIyIijI55s6FDh4qxY8eadX4AhLu7u+H8PD09xRdffCFyc3MFALF48eLbHuOBBx4Qr776qhBCCL1eLzQajVi5cmWt21Yf98cffzRanpiYKB5++GEhhBDFxcXC1dVVrF+/3rD+2rVrIigoSCxcuFAIIcTevXsFALF7927DNtu3bxcARFlZmSlfAZGqsQSIiOrUv39/ZGZmIjMzE4cPH0Z8fDyGDBmC06dPw93dHaNGjcLq1asBABkZGcjKysKYMWOMjhETE1Pj/cmTJw3vd+/ejQEDBiA4OBjNmjXDqFGjcOnSJZSWlgIAXnrpJcydOxdxcXGYMWOGUSPs559/Hps2bUL37t3x+uuvIz093aTze++99wznl5mZiUGDBhnW9ejRw2jbyspKzJkzBxEREWjRogWaNm2Kb775Bvn5+QCAkydPory8HAMGDDAphpvl5OSgoqICcXFxhmWurq7o1auX0XcGAN26dTP8OzAwEABw4cIFsz+bSG2YABFRnTw9PdG2bVu0bdsWPXv2xD//+U+UlJRg5cqVAIDx48dj165dOHv2LFJTU3HvvfciNDS0wcfPy8vDgw8+iG7duuHzzz/HsWPHDG2Erl27ZviM33//HaNGjcLx48fRo0cPfPjhhwBgSMZeeeUVnDt3DgMGDMCUKVMa/PkBAQGG82vbti08PT2Nzv1m77zzDt5//31MnToVe/fuRWZmJuLj4w1xenh4NPhzLcHV1dXwb0mSANxog0REDcMEiIgaTJIkODk5oaysDAAQERGBHj16YOXKldiwYUOt7VAOHTpU432nTp0AAMeOHUNVVRXeffdd3H333Wjfvj3OnTtX4xghISF47rnnsHXrVrz66quGBAwAfH19kZiYiHXr1mHx4sX4xz/+YclTNjhw4AAefvhhPP3004iMjER4eDh+/fVXw/p27drBw8PD0AD8Vm5ubgBulCTVpU2bNnBzc8OBAwcMyyoqKnDkyBF07tzZQmdCRADgYu8AiEi+ysvLUVhYCOBGj6slS5aguLgYQ4cONWwzfvx4TJo0CZ6enhg+fHiNYxw4cAALFy7EsGHDsGvXLmzZsgXbt28HALRt2xYVFRX48MMPMXToUBw4cADLly832n/y5MkYMmQI2rdvj7/++gt79+41JFBvvfUWoqKi0KVLF5SXl+Prr782rLO0du3a4bPPPkN6ejqaN2+ORYsW4fz584bExN3dHVOnTsXrr78ONzc3xMXF4eLFizhx4gTGjRsHPz8/eHh4YOfOnbjjjjvg7u4OrVZr9Bmenp54/vnn8dprr6FFixZo1aoVFi5ciNLSUowbN84q50WkViwBIqI67dy5E4GBgQgMDER0dDSOHDmCLVu2GLpwA0BCQgJcXFyQkJAAd3f3Gsd49dVXcfToUdx5552YO3cuFi1ahPj4eABAZGQkFi1ahAULFqBr165Yv349UlJSjPavrKzExIkT0alTJwwePBjt27fHRx99BOBGqUpycjK6deuGPn36wNnZGZs2bbLKd/HGG2/grrvuQnx8PPr164eAgIAaIzi/+eabePXVV/HWW2+hU6dOGDlypKFdjouLCz744AOsWLECQUFBePjhh2v9nPnz5+ORRx7BqFGjcNdddyE7OxvffPMNmjdvbpXzIlIrSQgh7B0EESlXXl4e2rRpgyNHjuCuu+4yWhcWFobJkydj8uTJ9gmOiKgOrAIjIrNUVFTg0qVLeOONN3D33XfXSH6IiOSMVWBEZJYDBw4gMDAQR44cqdFux97mzZuHpk2b1voaMmSIvcMjIhlgFRgROZw///yzxsjJ1Tw8PBAcHGzjiIhIbpgAERERkeqwCoyIiIhUhwkQERERqQ4TICIiIlIdJkBERESkOkyAiIiISHWYABEREZHqMAEiIiIi1WECRERERKrz/wBcoISMWe6xgQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATytJREFUeJzt3Xl4TPf+B/D3yR6RTJBElkZiF0SorRJF0KJK0UUpDaW9Laq2Ilq1VsJtVYuiLqH2a2u1VTtVohUiLWppIiGIJdREJEYk398fbuZnZJ3JLOfMvF/PM89jzpw55zNfkzmf810lIYQAERERkULZWToAIiIioopgMkNERESKxmSGiIiIFI3JDBERESkakxkiIiJSNCYzREREpGhMZoiIiEjRmMwQERGRojGZISIiIkVjMkNEZjF16lRIklSufSVJwtSpU00aT4cOHdChQwfZHo+Iyo/JDJGNWbFiBSRJ0j4cHBwQEBCAQYMG4cqVK5YOT3aCg4N1ysvHxwfPPvsstm7dapTj5+TkYOrUqThw4IBRjkdki5jMENmo6dOnY9WqVVi8eDG6deuG1atXo3379rh//75Jzvfxxx8jNzfXJMc2taZNm2LVqlVYtWoVxo0bh6tXr6JPnz5YvHhxhY+dk5ODadOmMZkhqgAHSwdARJbRrVs3tGjRAgAwdOhQeHl5Yfbs2di2bRtee+01o5/PwcEBDg7K/MkJCAjAgAEDtM/ffPNN1KlTB1988QXeffddC0ZGRABrZojof5599lkAQEpKis72s2fP4pVXXkHVqlXh4uKCFi1aYNu2bTr75OXlYdq0aahbty5cXFxQrVo1tG3bFrt379buU1yfGY1Gg9GjR8Pb2xvu7u7o2bMnLl++XCS2QYMGITg4uMj24o4ZFxeHjh07wsfHB87OzmjYsCEWLVqkV1mUxdfXFyEhIUhNTS11vxs3bmDIkCGoXr06XFxcEBYWhpUrV2pfT0tLg7e3NwBg2rRp2qYsU/cXIrI2yrxNIiKjS0tLAwBUqVJFu+306dOIiIhAQEAAJk6cCDc3N/z3v/9Fr169sHnzZvTu3RvAo6QiJiYGQ4cORatWrZCVlYVjx44hMTERzz33XInnHDp0KFavXo3+/fsjPDwc+/btQ/fu3Sv0ORYtWoRGjRqhZ8+ecHBwwA8//IBhw4ahoKAAw4cPr9CxC+Xl5SE9PR3VqlUrcZ/c3Fx06NABycnJGDFiBGrWrImNGzdi0KBBuHPnDj744AN4e3tj0aJFeO+999C7d2/06dMHANCkSROjxElkMwQR2ZS4uDgBQOzZs0fcvHlTpKeni02bNglvb2/h7Ows0tPTtft26tRJhIaGivv372u3FRQUiPDwcFG3bl3ttrCwMNG9e/dSzztlyhTx+E9OUlKSACCGDRums1///v0FADFlyhTttqioKBEUFFTmMYUQIicnp8h+Xbp0EbVq1dLZ1r59e9G+fftSYxZCiKCgIPH888+Lmzdvips3b4o//vhDvP766wKAeP/990s83rx58wQAsXr1au22Bw8eiDZt2ojKlSuLrKwsIYQQN2/eLPJ5iUg/bGYislGdO3eGt7c3AgMD8corr8DNzQ3btm3DU089BQC4ffs29u3bh9deew13795FZmYmMjMzcevWLXTp0gV///23dvSTp6cnTp8+jb///rvc59++fTsAYOTIkTrbR40aVaHP5erqqv23Wq1GZmYm2rdvjwsXLkCtVht0zF27dsHb2xve3t4ICwvDxo0bMXDgQMyePbvE92zfvh2+vr7o16+fdpujoyNGjhyJ7Oxs/PLLLwbFQkRFsZmJyEYtXLgQ9erVg1qtxvLly3Hw4EE4OztrX09OToYQApMnT8bkyZOLPcaNGzcQEBCA6dOn46WXXkK9evXQuHFjdO3aFQMHDiy1ueTixYuws7ND7dq1dbbXr1+/Qp/r8OHDmDJlCo4cOYKcnByd19RqNVQqld7HbN26NWbOnAlJklCpUiWEhITA09Oz1PdcvHgRdevWhZ2d7j1jSEiI9nUiMg4mM0Q2qlWrVtrRTL169ULbtm3Rv39/nDt3DpUrV0ZBQQEAYNy4cejSpUuxx6hTpw4AoF27dkhJScH333+PXbt24T//+Q+++OILLF68GEOHDq1wrCVNtpefn6/zPCUlBZ06dUKDBg0wd+5cBAYGwsnJCdu3b8cXX3yh/Uz68vLyQufOnQ16LxGZHpMZIoK9vT1iYmIQGRmJBQsWYOLEiahVqxaAR00j5bmQV61aFYMHD8bgwYORnZ2Ndu3aYerUqSUmM0FBQSgoKEBKSopObcy5c+eK7FulShXcuXOnyPYnazd++OEHaDQabNu2DTVq1NBu379/f5nxG1tQUBD+/PNPFBQU6NTOnD17Vvs6UHKiRkTlxz4zRATg0XT8rVq1wrx583D//n34+PigQ4cOWLJkCTIyMorsf/PmTe2/b926pfNa5cqVUadOHWg0mhLP161bNwDAV199pbN93rx5RfatXbs21Go1/vzzT+22jIyMIrPw2tvbAwCEENptarUacXFxJcZhKi+88AKuXbuGDRs2aLc9fPgQ8+fPR+XKldG+fXsAQKVKlQCg2GSNiMqHNTNEpPXhhx/i1VdfxYoVK/Duu+9i4cKFaNu2LUJDQ/H222+jVq1auH79Oo4cOYLLly/jjz/+AAA0bNgQHTp0QPPmzVG1alUcO3YMmzZtwogRI0o8V9OmTdGvXz98/fXXUKvVCA8Px969e5GcnFxk39dffx0TJkxA7969MXLkSOTk5GDRokWoV68eEhMTtfs9//zzcHJyQo8ePfCvf/0L2dnZWLp0KXx8fIpNyEzpnXfewZIlSzBo0CAcP34cwcHB2LRpEw4fPox58+bB3d0dwKMOyw0bNsSGDRtQr149VK1aFY0bN0bjxo3NGi+Roll6OBURmVfh0OyEhIQir+Xn54vatWuL2rVri4cPHwohhEhJSRFvvvmm8PX1FY6OjiIgIEC8+OKLYtOmTdr3zZw5U7Rq1Up4enoKV1dX0aBBA/Hpp5+KBw8eaPcpbhh1bm6uGDlypKhWrZpwc3MTPXr0EOnp6cUOVd61a5do3LixcHJyEvXr1xerV68u9pjbtm0TTZo0ES4uLiI4OFjMnj1bLF++XAAQqamp2v30GZpd1rDzko53/fp1MXjwYOHl5SWcnJxEaGioiIuLK/Le+Ph40bx5c+Hk5MRh2kQGkIR4rD6WiIiISGHYZ4aIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiWf2keQUFBbh69Src3d05bTgREZFCCCFw9+5d+Pv7F1mw9UlWn8xcvXoVgYGBlg6DiIiIDJCeno6nnnqq1H2sPpkpnDI8PT0dHh4eFo6GiIiIyiMrKwuBgYHa63hprD6ZKWxa8vDwYDJDRESkMOXpIsIOwERERKRoTGaIiIhI0ZjMEBERkaJZfZ+Z8srPz0deXp6lwyAr5OjoCHt7e0uHQURktWw+mRFC4Nq1a7hz546lQyEr5unpCV9fX851RERkAjafzBQmMj4+PqhUqRIvNmRUQgjk5OTgxo0bAAA/Pz8LR0REZH1sOpnJz8/XJjLVqlWzdDhkpVxdXQEAN27cgI+PD5uciIiMzKY7ABf2kalUqZKFIyFrV/gdY78sIiLjs+lkphCblsjU+B0jIjIdJjNERESkaExmbNjhw4cRGhoKR0dH9OrVy9LhEBERGYTJjEINGjQIkiRBkiQ4OjqiZs2aGD9+PO7fv1/uY4wZMwZNmzZFamoqVqxYYbpgzWjFihXacrG3t0eVKlXQunVrTJ8+HWq1Wu/jSZKE7777zviBEpGiZahzEZ+SiQx1rqVDIdj4aCal69q1K+Li4pCXl4fjx48jKioKkiRh9uzZ5Xp/SkoK3n333TKXVi/NgwcP4OTkZPD79SGEQH5+PhwcSv/aenh44Ny5cxBC4M6dO4iPj0dMTAzi4uJw+PBh+Pv7myVeIrJOGxIuIXrLSRQIwE4CYvqEom/LGpYOy6ZZtGbm4MGD6NGjB/z9/Uu8Az5z5gx69uwJlUoFNzc3tGzZEpcuXTJ/sDLk7OwMX19fBAYGolevXujcuTN2794NACgoKEBMTAxq1qwJV1dXhIWFYdOmTQCAtLQ0SJKEW7du4a233oIkSdqamV9++QWtWrWCs7Mz/Pz8MHHiRDx8+FB7zg4dOmDEiBEYNWoUvLy80KVLFxw4cACSJGHnzp1o1qwZXF1d0bFjR9y4cQM///wzQkJC4OHhgf79+yMnJ0d7rNJiBKA97s8//4zmzZvD2dkZhw4dKrNcJEmCr68v/Pz8EBISgiFDhiA+Ph7Z2dkYP368dr/g4GDMmzdP571NmzbF1KlTta8DQO/evSFJEoKDg5GWlgY7OzscO3ZM533z5s1DUFAQCgoKyoyPiJQrQ52rTWQAoEAAk7acYg2NhVk0mbl37x7CwsKwcOHCYl9PSUlB27Zt0aBBAxw4cAB//vknJk+eDBcXFzNHWj6WrHY8deoU4uPjtbUkMTEx+Pbbb7F48WKcPn0ao0ePxoABA/DLL78gMDAQGRkZ8PDwwLx585CRkYG+ffviypUreOGFF9CyZUv88ccfWLRoEZYtW4aZM2fqnGvlypVwcnLC4cOHsXjxYu32qVOnYsGCBYiPj0d6ejpee+01zJs3D2vXrsVPP/2EXbt2Yf78+dr9S4vxcRMnTkRsbCzOnDmDJk2aGFQ+Pj4+eOONN7Bt2zbk5+eX6z0JCQkAgLi4OGRkZCAhIQHBwcHo3Lkz4uLidPaNi4vDoEGDYGfHllsia5aaeU+byBTKFwJpmTnFv8EGyKHJzaLNTN26dUO3bt1KfP2jjz7CCy+8gDlz5mi31a5d2xyh6c0S1Y4//vgjKleujIcPH0Kj0cDOzg4LFiyARqPBrFmzsGfPHrRp0wYAUKtWLRw6dAhLlixB+/bttVPrq1Qq+Pr6AgC+/vprBAYGYsGCBZAkCQ0aNMDVq1cxYcIEfPLJJ9oLdd26dXX+TzIyMgAAM2fOREREBABgyJAhiI6ORkpKCmrVqgUAeOWVV7B//35MmDChXDEWmj59Op577rkKl1eDBg1w9+5d3Lp1Cz4+PmXu7+3tDeD/lyIoNHToULz77ruYO3cunJ2dkZiYiJMnT+L777+vcIxEJG81vdxgJ0EnobGXJAR72eZ8ZXJpcpPtbWRBQQF++ukn1KtXD126dIGPjw9at25dZmdMjUaDrKwsnYepWaraMTIyEklJSfj9998RFRWFwYMH4+WXX0ZycjJycnLw3HPPoXLlytrHt99+i5SUlBKPd+bMGbRp00ZnTpSIiAhkZ2fj8uXL2m3Nmzcv9v2P15pUr14dlSpV0iYyhdsKp/XXJ8YWLVroVzAlEOLRf1BF53zp1asX7O3tsXXrVgCPOh1HRkZqm6WIyHr5qVwR0ycU9v/7HbGXJMzq0xh+KlcLR2Z+cmpyk20H4Bs3biA7OxuxsbGYOXMmZs+ejR07dqBPnz7Yv3+/zp3742JiYjBt2jSzxlpataMpv+Bubm6oU6cOAGD58uUICwvDsmXL0LhxYwDATz/9hICAAJ33ODs7G+W8xXF0dNT+u3CU1eMkSdL2KcnOzi53jCWdT19nzpyBh4eHdukKOzs7bYJTqDwz9Do5OeHNN99EXFwc+vTpg7Vr1+LLL780SoxEJH99W9ZAu3reSMvMQbBXJZtMZADLXfuKI9tkpvCi99JLL2H06NEAHnXOjI+Px+LFi0tMZqKjozFmzBjt86ysLAQGBpo0VjlUO9rZ2WHSpEkYM2YMzp8/D2dnZ1y6dKnEcipOSEgINm/eDCGEtvbi8OHDcHd3r9CIp+I0bNjQoBgNdePGDaxduxa9evXSNpd5e3trm8iAR9+V1NRUnfc5OjoW28dm6NChaNy4Mb7++ms8fPgQffr0Me0HICJZ8VO52mwSU0gO175Csm1m8vLygoODAxo2bKizPSQkpNTRTM7OzvDw8NB5mJpcqh1fffVV2NvbY8mSJRg3bhxGjx6NlStXIiUlBYmJiZg/fz5WrlxZ4vuHDRuG9PR0vP/++zh79iy+//57TJkyBWPGjDF6x1Z3d3eDYiwPIQSuXbuGjIwMnDlzBsuXL0d4eDhUKhViY2O1+3Xs2BGrVq3Cr7/+ipMnTyIqKqrIIpDBwcHYu3cvrl27hn/++Ue7PSQkBM888wwmTJiAfv36aReTJCKyFXK59gEyrplxcnJCy5Ytce7cOZ3t58+fR1BQkIWiKpkcqh0dHBwwYsQIzJkzB6mpqfD29kZMTAwuXLgAT09PPP3005g0aVKJ7w8ICMD27dvx4YcfIiwsDFWrVsWQIUPw8ccfmyTeGTNm6B1jeWRlZcHPzw+SJMHDwwP169dHVFQUPvjgA53kNjo6GqmpqXjxxRehUqkwY8aMIjUzn3/+OcaMGYOlS5ciICAAaWlp2tcKh3y/9dZbFYqXiEip5HDtAwBJPNlpwIyys7ORnJwMAGjWrBnmzp2LyMhIVK1aFTVq1MDWrVvRt29fLFy4EJGRkdixYwdGjRqFAwcOoG3btuU6R1ZWFlQqFdRqdZFamvv37yM1NRU1a9aU7XBvkq8ZM2Zg48aN+PPPP8vcl981IiL9lHb9fpJFa2aOHTuGyMhI7fPCvi5RUVFYsWIFevfujcWLFyMmJgYjR45E/fr1sXnz5nInMkSmkJ2djbS0NCxYsKDIHDxERGR+Fk1mOnToUGQ0yZPeeustVuOTVqNGjXDx4sViX1uyZAneeOMNk8cwYsQIrFu3Dr169eJ3k4hIBmTbZ4aoONu3by9x+HT16tXNEsOKFSusZmFOIiJrwGSGFEWOnb+JiMiyZDs025ws2AeabAS/Y0REpmPTyUzhDLWPr+RMZAqF37EnZ0UmIqKKs+lmJnt7e3h6emrXC6pUqVKF1+0hepwQAjk5Obhx4wY8PT2LTMpHREQVZ9PJDADtasiFCQ2RKTy58jYRERmPzSczkiTBz88PPj4+5VpkkEhfjo6OrJEhIjIhm09mCtnb2/OCQ0REpEA23QGYiIiIlI/JDBERESkakxkiIiIZy1DnIj4lExnqXEuHIlvsM0NERCRTGxIuIXrLSRQIwE4CYvqEom/LGpYOS3ZYM0NERCRDGepcbSIDAAUCmLTlFGtoisFkhoiISIZSM+9pE5lC+UIgLZOz1j+JyQwREZEM1fRyg90Tk9LbSxKCvSpZJiAZYzJDREQkQ34qV8T0CYX9/5bZsZckzOrTGH4qVwtHJj/sAExERCRTfVvWQLt63kjLzEGwVyUmMiVgMkNERCRjfipXJjFlYDMTERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiWTSZOXjwIHr06AF/f39IkoTvvvuuxH3fffddSJKEefPmmS0+IiIikj+LJjP37t1DWFgYFi5cWOp+W7duxW+//QZ/f38zRUZERERK4WDJk3fr1g3dunUrdZ8rV67g/fffx86dO9G9e3czRUZERERKYdFkpiwFBQUYOHAgPvzwQzRq1Khc79FoNNBoNNrnWVlZpgqPiIiIZEDWHYBnz54NBwcHjBw5stzviYmJgUql0j4CAwNNGCERERFZmmyTmePHj+PLL7/EihUrIElSud8XHR0NtVqtfaSnp5swSiIiIrI02SYzv/76K27cuIEaNWrAwcEBDg4OuHjxIsaOHYvg4OAS3+fs7AwPDw+dBxEREVkv2faZGThwIDp37qyzrUuXLhg4cCAGDx5soaiIiIhIbiyazGRnZyM5OVn7PDU1FUlJSahatSpq1KiBatWq6ezv6OgIX19f1K9f39yhEhERkUxZNJk5duwYIiMjtc/HjBkDAIiKisKKFSssFBUREREpiUWTmQ4dOkAIUe7909LSTBcMERERKZJsOwATERERlQeTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiEj2MtS5iE/JRIY619KhEJEMOVg6ACKi0mxIuIToLSdRIAA7CYjpE4q+LWtYOiwixcpQ5yI18x5qernBT+Vq6XCMgskMEclWhjpXm8gAQIEAJm05hXb1vK3mR5jInKz15oDNTEQkW6mZ97SJTKF8IZCWmWOZgIgUrKSbA2tovmUyQ0SyVdPLDXaS7jZ7SUKwVyXLBESkYNZ8c8Bkhohky0/lipg+obCXHmU09pKEWX0as4mJyADWfHPAPjNEJGt9W9ZAu3reSMvMQbBXJSYyRAYqvDmYtOUU8oWwqpsDJjNEJHt+Kler+MElsjRrvTlgMkNERGRDrPHmgH1miIiISNGYzBAREZGiWTSZOXjwIHr06AF/f39IkoTvvvtO+1peXh4mTJiA0NBQuLm5wd/fH2+++SauXr1quYCJiIhIdiyazNy7dw9hYWFYuHBhkddycnKQmJiIyZMnIzExEVu2bMG5c+fQs2dPC0RKREREciUJIUTZu5meJEnYunUrevXqVeI+CQkJaNWqFS5evIgaNco3/XJWVhZUKhXUajU8PDyMFC0RERGZkj7Xb0X1mVGr1ZAkCZ6enpYOhYiIiGRCMUOz79+/jwkTJqBfv36lZmgajQYajUb7PCsryxzhERERkYUoomYmLy8Pr732GoQQWLRoUan7xsTEQKVSaR+BgYFmipKIiIgsQfbJTGEic/HiRezevbvMdrPo6Gio1WrtIz093UyREhGREmWocxGfkmkVq0fbKlk3MxUmMn///Tf279+PatWqlfkeZ2dnODs7myE6IiJSug0JlxC95SQKBGAnATF9QtG3ZfkGmJB8WDSZyc7ORnJysvZ5amoqkpKSULVqVfj5+eGVV15BYmIifvzxR+Tn5+PatWsAgKpVq8LJyclSYRMRkRXIUOdqExkAKBDApC2n0K6et9VN92/tLJrMHDt2DJGRkdrnY8aMAQBERUVh6tSp2LZtGwCgadOmOu/bv38/OnToYK4wiYjICqVm3tMmMoXyhUBaZg6TGYWxaDLToUMHlDbNjUymwCEiIitU08sNdhJ0Ehp7SUKwVyXLBUUGkX0HYCIiIlPwU7kipk8o7CUJwKNEZlafxqyVUSBZdwAmIiIypb4ta6BdPW+kZeYg2KsSExmFYjJDREQ2zU/lyiRG4djMRERERIrGZIaIiIgUjckMERERKRqTGSIiIlI0JjNExLVpiEjROJqJyMZxbRoiUjrWzBDZsJLWpmENDREpCZMZIhtW2to0RERKwWSGyIYVrk3zOK5NQyQv7NNWNiYzRDaMa9MQyduGhEuIiN2H/kt/R0TsPmxIuGTpkGRJEla+NHVWVhZUKhXUajU8PDwsHQ6RLGWoc7k2DZHMZKhzERG7r8iq3ocmRtrE36k+12+OZiIirk1DJEOl9Wnj36suNjMRERHJEPu0lR+TGSIiIhlin7byYzMTERGRTPVtWQPt6nmzT1sZmMwQERHJGPu0lY3NTERERKRoTGaIiIhI0ZjMEBERkaIxmSEiIiJFYzJDREREisZkhoiIiBSNyQwREREpmsHJTHBwMKZPn45Ll7iCJxEREVmOwcnMqFGjsGXLFtSqVQvPPfcc1q9fD41GY8zYiIiIiMpUoWQmKSkJR48eRUhICN5//334+flhxIgRSExMNGaMRERERCWShBCi7N3KlpeXh6+//hoTJkxAXl4eQkNDMXLkSAwePBiSJJV9ABPJysqCSqWCWq2Gh4eHxeIgIiKi8tPn+l3htZny8vKwdetWxMXFYffu3XjmmWcwZMgQXL58GZMmTcKePXuwdu3aip6GiIiIqFgGNzMlJibqNC01atQIp06dwqFDhzB48GBMnjwZe/bswdatW0s8xsGDB9GjRw/4+/tDkiR89913Oq8LIfDJJ5/Az88Prq6u6Ny5M/7++29DQyYiIiIrZHAy07JlS/z9999YtGgRrly5gs8++wwNGjTQ2admzZp4/fXXSzzGvXv3EBYWhoULFxb7+pw5c/DVV19h8eLF+P333+Hm5oYuXbrg/v37hoZNREREVsbgPjMXL15EUFCQ8QKRJGzduhW9evUC8KhWxt/fH2PHjsW4ceMAAGq1GtWrV8eKFStKTZIexz4zREREyqPP9dvgmpnIyEjcunWryPY7d+6gVq1ahh5WKzU1FdeuXUPnzp2121QqFVq3bo0jR46U+D6NRoOsrCydBxEREVkvg5OZtLQ05OfnF9mu0Whw5cqVCgUFANeuXQMAVK9eXWd79erVta8VJyYmBiqVSvsIDAyscCxEREQkX3qPZtq2bZv23zt37oRKpdI+z8/Px969exEcHGyU4AwRHR2NMWPGaJ9nZWUxoSEiIrJieiczhX1aJElCVFSUzmuOjo4IDg7G559/XuHAfH19AQDXr1+Hn5+fdvv169fRtGnTEt/n7OwMZ2fnCp+fiOhxGepcpGbeQ00vN/ipXC0dDhE9Ru9kpqCgAMCjkUoJCQnw8vIyelCFx/f19cXevXu1yUtWVhZ+//13vPfeeyY5JxFRcTYkXEL0lpMoEICdBMT0CUXfljUsHRYR/Y/Bk+alpqZW+OTZ2dlITk7WOWZSUhKqVq2KGjVqYNSoUZg5cybq1q2LmjVrYvLkyfD399fWDhERmVqGOlebyABAgQAmbTmFdvW8WUNDJBMGJzPTp08v9fVPPvmkzGMcO3YMkZGR2ueFfV2ioqKwYsUKjB8/Hvfu3cM777yDO3fuoG3bttixYwdcXFwMDZuISC+pmfe0iUyhfCGQlpnDZIZIJgyeZ6ZZs2Y6z/Py8pCamgoHBwfUrl1bNotNcp4ZIqqIDHUuImL36SQ09pKEQxMjmcwQmZBZ1mY6ceJEsSceNGgQevfubehhiYhkxU/lipg+oZi05RTyhYC9JGFWn8ZMZIhkxGirZhc6efIkevTogbS0NGMe1mC2WjPDkRdExpWhzkVaZg6CvSrxb4rIDMy6avaT1Go11Gq1sQ9LeuDICyLj81O5MokhkimDk5mvvvpK57kQAhkZGVi1ahW6detW4cDIMBx5QUREtsbgZOaLL77QeW5nZwdvb29ERUUhOjq6woGRYTjygoiIbI1F55kh46vp5QY7CUVGXgR7VbJcUERERCZk8EKTwKOmpczMzGJXzybLKBx5YS9JAMCRF0REZPUMqpm5du0axo8fj23btuHu3bsAAA8PD/Tu3RsxMTFFVrom8+rbsgba1fPmyAsiIrIJeiczWVlZCA8PR3Z2NgYPHowGDRpACIG//voL69atw6FDh5CYmIjKlSubIl4qJ468ICIiW6F3MvPll1/C3t4ep0+fhre3t85rH3/8MSIiIvDVV19h0qRJRguSiIiIqCR695n56aefMGnSpCKJDAD4+PggOjoaP/zwg1GCIyIiIvPIUOciPiUTGepcS4eiN71rZs6fP4/w8PASXw8PD8e4ceMqFBQRERGZj9InW9W7ZiYrKwuenp4lvu7p6YmsrKyKxERERERmUtJkq0qqodE7mRFCwM6u5LdJkgQjL/dEREREJlLaZKtKoXczkxAC9erVg/S/eUyKe52IiIiUwRomW9U7mYmLizNFHERERGQBhZOtTtpyCvlCKHKyVUmYuCpl3bp16NmzJ9zc3Ex5mhLps4Q4ERGRrcpQ58pqslV9rt8VWs6gPP71r3/h+vXrpj4NERERVYCfyhVtaleTRSKjL5MnM+xDQ0RERKZk8mSGiIiIyJSYzBAREZGiMZkhIiIiRWMyQ0RERIpmUDKTn5+PgwcP4s6dO2XuGxQUBEdHR0NOQ0RGpORF5IiISqP3pHkAYG9vj+effx5nzpwpdZ0mADh16pQhpyAiI1L6InJERKUxuJmpcePGuHDhgjFjISITsIZF5IiISmNwMjNz5kyMGzcOP/74IzIyMpCVlaXzICJ5sIZF5IiISmNQMxMAvPDCCwCAnj176iw6KYSAJEnIz8+veHREVGHWsIgcEVFpDE5m9u/fb8w4iMhErGEROSKi0ph8oUlL40KTRI/IbRE5IqLSmG2hyV9//RUDBgxAeHg4rly5AgBYtWoVDh06VJHDEpEJKHkROSKi0hiczGzevBldunSBq6srEhMTodFoAABqtRqzZs0yWoD5+fmYPHkyatasCVdXV9SuXRszZszgApZEREQEoIKjmRYvXoylS5fqTIoXERGBxMREowQHALNnz8aiRYuwYMECnDlzBrNnz8acOXMwf/58o52DiIiIlMvgDsDnzp1Du3btimxXqVTlmhm4vOLj4/HSSy+he/fuAIDg4GCsW7cOR48eNdo5iIiISLkMrpnx9fVFcnJyke2HDh1CrVq1KhTU48LDw7F3716cP38eAPDHH3/g0KFD6NatW7H7azQaznlDRERkQwyumXn77bfxwQcfYPny5ZAkCVevXsWRI0cwbtw4TJ482WgBTpw4EVlZWWjQoAHs7e2Rn5+PTz/9FG+88Uax+8fExGDatGlGOz8RERHJm8HJzMSJE1FQUIBOnTohJycH7dq1g7OzM8aNG4f333/faAH+97//xZo1a7B27Vo0atQISUlJGDVqFPz9/REVFVVk/+joaIwZM0b7PCsrC4GBgUaLh4iIiOSlwvPMPHjwAMnJycjOzkbDhg1RuXJlY8UGAAgMDMTEiRMxfPhw7baZM2di9erVOHv2bJnv5zwzREREyqPP9dvgmplCTk5OaNiwYUUPU6KcnBzY2el27bG3t0dBQYHJzklERETKYXAyc//+fcyfPx/79+/HjRs3iiQXxhqe3aNHD3z66aeoUaMGGjVqhBMnTmDu3Ll46623jHJ8IiIiUjaDk5khQ4Zg165deOWVV9CqVSudxSaNaf78+Zg8eTKGDRuGGzduwN/fH//617/wySefmOR8REREpCwG95lRqVTYvn07IiIijB2TUbHPDBEZQ4Y6F6mZ91DTy41LQhCZgVn6zAQEBMDd3d3QtxMRKcaGhEuI3nISBQKwk4CYPqHo27KGpcMiov8xeNK8zz//HBMmTMDFixeNGQ8R2agMdS7iUzKRoc61dCg6MtS52kQGAAoEMGnLKdnFSWTLDK6ZadGiBe7fv49atWqhUqVKOuszAcDt27crHBwR2QY513ykZt7TJjKF8oVAWmZOmc1NbJoiMg+Dk5l+/frhypUrmDVrFqpXr26yDsBEZN1KqvloV89bmwBYMimo6eUGOwk6CY29JCHYq1Kp75NzgkZkbQxOZuLj43HkyBGEhYUZMx4isjFl1XxYOinwU7kipk8oJm05hXwhYC9JmNWncalJVXkSNCIyHoOTmQYNGiA3l23GRFQxpdV8yCUp6NuyBtrV80ZaZg6CvSqVee6KNE0Rkf4M7gAcGxuLsWPH4sCBA7h16xZXqiYigxTWfNj/r6n68ZqP0pICS8TZpna1ciUjhQna48rTNEVEhjG4ZqZr164AgE6dOulsF0JAkiTk5+dXLDIishkl1XwY2l/F0gxpmiIiwxmczOzfv9+YcRCRjfNTuRa52Cs5KdC3aYqIDGfQDMB5eXno2rUrFi9ejLp165oiLqPhDMBEypehzmVSQGRjTD4DsKOjI/7880+DgiMi0ldxtTZERIUM7gA8YMAALFu2zJixEBEREenN4D4zDx8+xPLly7Fnzx40b94cbm5uOq/PnTu3wsERERERlcXgZObUqVN4+umnAQDnz5/XeY2zARMREZG5cDQTERERKZrBfWYed/nyZVy+fNkYhyIiIiLSi8HJTEFBAaZPnw6VSoWgoCAEBQXB09MTM2bMQEFBgTFjJCIiIiqRwc1MH330EZYtW4bY2FhEREQAAA4dOoSpU6fi/v37+PTTT40WJBEREVFJDJo0DwD8/f2xePFi9OzZU2f7999/j2HDhuHKlStGCbCiOGkeERGR8uhz/Ta4men27dto0KBBke0NGjTA7du3DT0sERERkV4MTmbCwsKwYMGCItsXLFiAsLCwCgVFZEsy1LmIT8lEhjrX0qEQESmSwX1m5syZg+7du2PPnj1o06YNAODIkSNIT0/H9u3bjRYglS5DnYvUzHuo6eXG6d4VaEPCJURvOYkCAdhJQEyfUPRtWcPSYRERKYrBfWYA4OrVq1i4cCHOnj0LAAgJCcGwYcPg7+9vtAArypr7zPBCqGwZ6lxExO5DwWN/gfaShEMTI5mYEpHNM9lCk3369MGKFSvg4eGBb7/9Fn379uWoJQvJUOdqExkAKBDApC2n0K6eNy+ECpGaeU8nkQGAfCGQlpnD/0MyC9bskrXQq8/Mjz/+iHv37gEABg8eDLVabZKgqGylXQhJGWp6ucHuiZU/7CUJwV6VLBMQ2ZQNCZcQEbsP/Zf+jojYfdiQcMnSIREZTK+amQYNGiA6OhqRkZEQQuC///1viVU/b775plECtDbGuhMqvBA+2UTBC6Fy+KlcEdMnFJO2nEK+ELCXJMzq05h3yGRyrNkla6NXn5n4+HiMGTMGKSkpuH37Ntzd3YtdVFKSJNkMz5ZTnxlj93HZkHCpyIWQfWaUJ0Odi7TMHAR7VeKFhMwiPiUT/Zf+XmT7urefQZva1SwQEVFR+ly/De4AbGdnh2vXrsHHx8egIM1FLsmMqTp78kJIRPpi53NSArNMmpeamgpvb29D325zTNXHxU/lija1q/EHiIjKrbCJ0/5/Nets4iSlM3iemaCgIPz6669YsmQJUlJSsGnTJgQEBGDVqlWoWbMm2rZta8w4FY99XIhITvq2rIF29bxZs0tWweCamc2bN6NLly5wdXXFiRMnoNFoAABqtRqzZs0yWoAAcOXKFQwYMADVqlWDq6srQkNDcezYMaOew9R4J0REcsOaXbIWBtfMzJw5E4sXL8abb76J9evXa7dHRERg5syZRgkOAP755x9EREQgMjISP//8M7y9vfH333+jSpUqRjuHufBOiIiIyPgMTmbOnTuHdu3aFdmuUqlw586disSkY/bs2QgMDERcXJx2W82aNY12fHPzU7kyiSEiIjIig5uZfH19kZycXGT7oUOHUKtWrQoF9bht27ahRYsWePXVV+Hj44NmzZph6dKlJe6v0WiQlZWl8yAiIiLrZXAy8/bbb+ODDz7A77//DkmScPXqVaxZswZjx47Fe++9Z7QAL1y4gEWLFqFu3brYuXMn3nvvPYwcORIrV64sdv+YmBioVCrtIzAw0GixEBERkfwYPM+MEAKzZs1CTEwMcnIeDS92dnbGhx9+iOjoaLi6GqcpxcnJCS1atEB8fLx228iRI5GQkIAjR44U2V+j0Wg7IwOPxqkHBgZafJ4ZIjIvW1p3yJY+K9kOs8wzI0kSPvroI9y+fRunTp3Cb7/9hps3b0KlUhm1T4ufnx8aNmyosy0kJASXLhW/joizszM8PDx0HkRkW5Sw7lCGOhfxKZnIUOdW6DhK+KxEpqZ3MqPRaBAdHY0WLVogIiIC27dvR8OGDXH69GnUr18fX375JUaPHm20ACMiInDu3DmdbefPn0dQUJDRzkGmY6wfbKLyKmndITl9B42VgCjhsxKZg96jmT755BMsWbIEnTt3Rnx8PF599VUMHjwYv/32Gz7//HO8+uqrsLe3N1qAo0ePRnh4OGbNmoXXXnsNR48exTfffINvvvnGaOcg0zD2WlRE5VHabNtyaIIx5iKPcv+sROaid83Mxo0b8e2332LTpk3YtWsX8vPz8fDhQ/zxxx94/fXXjZrIAEDLli2xdetWrFu3Do0bN8aMGTMwb948vPHGG0Y9DxkX7xjJUgpn236cnGbbNubSJnL/rETmoncyc/nyZTRv3hwA0LhxYzg7O2P06NHFrp5tLC+++CJOnjyJ+/fv48yZM3j77bdNdi4yDlOtRUVUFrnPtm3MBETun5XIXPRuZsrPz4eTk9P/H8DBAZUrVzZqUKR8XIuKLEnOs20XJiCTtpxCvhAVTkDk/FmJzEXvodl2dnbo1q0bnJ2dAQA//PADOnbsCDc3N539tmzZYrwoK0CfoV1kXBsSLhX5wWafGaJHMtS5xSYgHGZN9Ig+12+9a2aioqJ0ng8YMEDfQ5CN4B0jUcmKW9qEneaJDGPwpHlKwZoZIlKCDHUuImL3FWmaPTQxkjcCZJPMMmkeEREZDzvNExmOyQwRkQxwmDWR4ZjMEBHJAIdZExlO7w7ARERkGuw0T2QYJjNERDJS3Cgnsn6lDcmX+3B9OcTHZMYE5PAfS0REylDakHy5D9eXS3zsM2NkxloNl4iIrF9p69jJfY07OcXHZMaI5PQfS0RE8lfakHy5D9eXU3xMZoxITv+xhspQ5yI+JZMJGJGC8O9WuUobki/34fpyio/JjBHJ6T/WEGwiI1Ie/t0qW2lD8uU+XF9O8XE5AyNTwuKKxXVQ5lTqRMrDv1vrUdLCo2W9Jgemis+kC01S6eQ+T0RJPc9LayKT22cgokf4d2s9ShuSL/fh+nKIj8mMCcjhP7Y4JXVQblfPW9tE9uQdnlKayIhsEf9uiR5hnxkbUtZdnFzaPomofPh3S/QIa2ZsSFl3cXJvIiOiovh3S8SaGZtSnrs4P5Ur2tSuxh9EIgUx9O+WQ7rJWrBmxsbwLo6IAPlMQ09kDKyZsUGsfSGybZytnKwNkxkiIhtjDbOVEz2OyQwRkY1R+mzlRE9iMkNEBmHnUeXikG6yNuwATER6Y+dR5eNgALImrJkhIr2w82j5yb32ioMByFqwZoaI9ML1gMqHtVdE5sOaGSLSCzuPlo21V0TmxWSGiPTCzqNl49BnIvNiMxMR6Y2dR0vH1ayJzEtRNTOxsbGQJAmjRo2ydChENo+dR0um9NoruXdcJnqSYmpmEhISsGTJEjRp0sTSoRARlUmptVfsuExKpIiamezsbLzxxhtYunQpqlSpYulwiIjKRWm1V+y4TEqliGRm+PDh6N69Ozp37lzmvhqNBllZWToPIiIqGzsuk1LJvplp/fr1SExMREJCQrn2j4mJwbRp00wcFREpVYY6F6mZ91DTy00xNSbmwo7LpFSyrplJT0/HBx98gDVr1sDFxaVc74mOjoZardY+0tPTTRwlESnFhoRLiIjdh/5Lf0dE7D5sSLhk6ZBkRekdl8l2SUIIUfZulvHdd9+hd+/esLe3127Lz8+HJEmws7ODRqPRea04WVlZUKlUUKvV8PDwMHXIRCRTGepcRMTuK1LrcGhiJC/WT8hQ5yqu4zJZH32u37JuZurUqRNOnjyps23w4MFo0KABJkyYUGYiQ0RUiMswlJ+fypVlQooi62TG3d0djRs31tnm5uaGatWqFdlORFQa9gchsl6y7jNjazhRFZHpsD8IkfWSdZ8ZY1BKnxlOVEVkHtbYH4QjtMgaWU2fGVtR0kRV7ep584eJyMisrT8Ib4SI2MwkC5yoiogMwRl7iR5hMiMDhR0TH8eOiURUFt4IET3CZEYG2DGRiAzBGyGiR9hnRiaUusIuEVlO4Y3QpC2nkC8Eb4TIZjGZkRFr65hIRKbHGyHL4AgyeWEyQ2Qk/HEjS+GNkHlxBJn8MJmhcuGFunT8cSOyDZxKQ56YzFCZ5HShlmNSxR83IttRnjW+5Pg7Ze2YzFSALXxh5XShllNS9TilLGBoC99XIlMra40vuf5OmZIcfluYzBjIVr6wcrlQyympepISFjC0le8rkamVNoJMzr9TpiKX3xbOM2MAW5p1Uy7zWMh5cjC5zxNkS99XInPo27IGDk2MxLq3n8GhiZHai7ecf6dMQU6/LayZMYBcaivMQS7zWMi99kPOw2Nt6ftKZC7FjSCT+++Uscnpt4XJjAGU/oXVt31TDhdquSRVpZHr8Filf1+JlEIJv1PGJKffFkkIIcreTbn0WUJcHxsSLhX5wiqhD4K52zeN3TEsQ50ry9oPuVPq95VIiWzpd8qUvy36XL+ZzFSA0r6wGepcRMTuK5JFH5oYaZL45dIxjB5R2veViJTBVL8t+ly/2cxUAXJtViiJOds3bbFXvzkZUuOltO8rESmDHH5bmMzYEHO2b8qpY5i1YY0XEZEuDs22IeYcQiyXId3WRk5DIYmI5II1MzbGXCOTbK1Xv7mwxov0JYfZWYlMjcmMDTJX+6YchnQbSq4XADkNhST5Y5Mk2Qo2M5FJ+alc0aZ2NVklBGXZkHAJEbH70H/p74iI3YcNCZcsHZKW3GcbJvlgkyTZEtbMED1GCaOwlFzjRebDJkmyJUxmiB6jlAuAHIZCkryxSZJsCZuZiB7DUVhkLUzVJJmhzkV8Siabq0hWWDND9BiOwiJrYuwmSXYoJrnicgZExeDU/8pgzlFnch3hZi7mXg6FiMsZEFUQ+6TInzlrCVgjoZz+ZGSb2GfGSrFdm6yZOYcdc4jzI+xPRnLGZMYKyXmeFCJjKK2WQMnnkjPOcURyJvtmppiYGGzZsgVnz56Fq6srwsPDMXv2bNSvX9/SocmSEuZJMTdb7+tgjcw57JhDnP8f5zgiuZJ9zcwvv/yC4cOH47fffsPu3buRl5eH559/Hvfu3bN0aLLEu0hdrKWyTuasJWCNhC4lzupN1k9xo5lu3rwJHx8f/PLLL2jXrl2Z+9vaaCaOOPh/LAvrZ85RZxzhRmReVj2aSa1WAwCqVq1a7OsajQYajUb7PCsryyxxyQXnSfl/HH1h/cw56owj3IjkS1HJTEFBAUaNGoWIiAg0bty42H1iYmIwbdo0M0emy9J9NNiu/Qj7OhAR2QZFNTO99957+Pnnn3Ho0CE89dRTxe5TXM1MYGCg2ZqZOB+FvGxIuFSklor/H0RE8qdPM5NikpkRI0bg+++/x8GDB1GzZs1yv8+cfWbYR0OeSurr8Ef6PziadhutgqsiLLCKBSMkIqInWVWfGSEE3n//fWzduhUHDhzQK5ExN/bRsJzSmvaK6+sw9r9J2Jx4Rfv85acD8PlrTc0RKpGiWboZnag4sk9mhg8fjrVr1+L777+Hu7s7rl27BgBQqVRwdZXXHxL7aFiGvk17f6T/o5PIAMDmxCt4s00Qa2iISsFmdJIr2c8zs2jRIqjVanTo0AF+fn7ax4YNGywdWhGcj8L8DJlq/mja7WK3H0v7xxQhElkFLutAcib7mhmFdOnR4kgi8zKkaa9VcPHD+lsEs1aGqCRsRic5k33NjBJxhkzzMWTxu7DAKnj56QCdbS8/HcAmJqJScKFJkjPZ18wQlcbQSQI/f60p3mwThGNp/6BFcBUmMkRl4IScJGeKGZptKFtbzsBWcap5IvPg3xqZi1UNzSYqD041T2Q+AlZ9D0wKxGSGiIjKhUOzSa7YAZiIiMpUkaHZGepcxKdkchg3mQxrZoiIqEyGDs1mbQ6ZA2tmyGbxbpGo/AwZms2J9shcmMyQTdqQcAkRsfvQf+nviIjdhw0JlywdUhFMtkhODJnhvLTaHCJjYjMT2ZyS7hbb1fOWzYgoVs2THOk7wznXqyNzYc0M2Ry53y2yap7kTJ8ZzrleHZkLa2bIIjLUuUjNvIeaXm5m/2GT+90i18BRFkt+l5WA69WROTCZIbOzdBOK3Kdll3uyRf/P0t9lpeCklmRqXM5ARmzhDi9DnYuI2H1FLtSHJkaa/TPLeVr2DQmXiiRbvEjKi5y+y2R+tvB7bWlczkCBbOUOT05NKHK+W2TVvPzJ6btM5mUrv9dKwg7AMmBLHT5rernhiakqIAFsQimGPh0tyfwMmXeFlM+Wfq+VhMmMDMh9dI3JPZndECkAR+rYJpv/vZYpNjPJgC11+EzNvFdkvV0hwKp5UiQ2B9oeW/q9VhLWzMiALd3hsWqerA2bA22LLf1eKwlHM8mInEfXGBNH6hCR0tnK77Ul6XP9ZjJDFsEfAiIiKg2HZpPsyXlYtKE47wQRkWUwmSEyAs47QUSFeGNjfkxmqMJs/Q9XCatwE5F58MbGMpjMUIXwD5czwRLZouJu4nhjYzlMZshg/MN9hPNOENmWkm7ieGNjOZxnhgzGmTAf4bwTRLajtOUMOI+W5bBmhgzGGon/x5lgiWxDaTdxbWpXQ0yf0CLzaPH3wPSYzJDBCmsk+If7iDUONyciXWXdxPHGxjKYzFCFmOIP19ZHRxGRfJXnJo43NubHZIYqzJh/uEoYHcVki8i2sfZFfhTTAXjhwoUIDg6Gi4sLWrdujaNHj1o6JDKy0jrWycWGhEsIj9mH/kt/R3jMPmxIuFSu92WocxGfkimrz0JEhuMCo/KiiGRmw4YNGDNmDKZMmYLExESEhYWhS5cuuHHjhqVDIyOS++ioDHUuJm4+icIQBYCJm0+WmaBsSLiEiNhHCVBEbPkTIDINJpZE1kcRyczcuXPx9ttvY/DgwWjYsCEWL16MSpUqYfny5ZYOjYxI7sMaj6XdxpOrsgoAx9P+KfE9SqhtsiVMLImsk+yTmQcPHuD48ePo3LmzdpudnR06d+6MI0eOFNlfo9EgKytL50HKIPf5WiRJKmF7ye+Re22TLWFiSWS9ZN8BODMzE/n5+ahevbrO9urVq+Ps2bNF9o+JicG0adPMFR4ZmZw71jUPqgIJ0KmdkSTg6aAqJb6Hc/HIB2dnJbJesq+Z0Vd0dDTUarX2kZ6ebumQSE9y7Vjnp3JF7Muh2qYwOwmI7RNaapxyr22yJXJvxiQiw8m+ZsbLywv29va4fv26zvbr16/D19e3yP7Ozs5wdnY2V3hkYwypOZJzbZMt4SSPRNZL9smMk5MTmjdvjr1796JXr14AgIKCAuzduxcjRoywbHBkkwyZV4eTaMkDE0si6yT7ZAYAxowZg6ioKLRo0QKtWrXCvHnzcO/ePQwePNjSoRGRwjCxJLI+ikhm+vbti5s3b+KTTz7BtWvX0LRpU+zYsaNIp2AiIiKyPZIQ4smpM6xKVlYWVCoV1Go1PDw8LB0OERERlYM+12+rG81EREREtoXJDBERESkakxkiIiJSNCYzREREpGhMZoiIiEjRmMwQERGRojGZISIiIkVjMkNERESKxmSGiIiIFE0RyxlUROEEx1lZWRaOhIiIiMqr8LpdnoUKrD6ZuXv3LgAgMDDQwpEQERGRvu7evQuVSlXqPla/NlNBQQGuXr0Kd3d3SJKk9/uzsrIQGBiI9PR0m13biWXwCMuBZVCI5cAyAFgGhUxVDkII3L17F/7+/rCzK71XjNXXzNjZ2eGpp56q8HE8PDxs+ssKsAwKsRxYBoVYDiwDgGVQyBTlUFaNTCF2ACYiIiJFYzJDREREisZkpgzOzs6YMmUKnJ2dLR2KxbAMHmE5sAwKsRxYBgDLoJAcysHqOwATERGRdWPNDBERESkakxkiIiJSNCYzREREpGhMZoiIiEjRmMwAWLhwIYKDg+Hi4oLWrVvj6NGjJe57+vRpvPzyywgODoYkSZg3b575AjUhfcpg6dKlePbZZ1GlShVUqVIFnTt3LnV/JdGnHLZs2YIWLVrA09MTbm5uaNq0KVatWmXGaE1DnzJ43Pr16yFJEnr16mXaAM1AnzJYsWIFJEnSebi4uJgxWtPR97tw584dDB8+HH5+fnB2dka9evWwfft2M0VrGvqUQYcOHYp8FyRJQvfu3c0YsfHp+z2YN28e6tevD1dXVwQGBmL06NG4f/++aYMUNm79+vXCyclJLF++XJw+fVq8/fbbwtPTU1y/fr3Y/Y8ePSrGjRsn1q1bJ3x9fcUXX3xh3oBNQN8y6N+/v1i4cKE4ceKEOHPmjBg0aJBQqVTi8uXLZo7cuPQth/3794stW7aIv/76SyQnJ4t58+YJe3t7sWPHDjNHbjz6lkGh1NRUERAQIJ599lnx0ksvmSdYE9G3DOLi4oSHh4fIyMjQPq5du2bmqI1P33LQaDSiRYsW4oUXXhCHDh0Sqamp4sCBAyIpKcnMkRuPvmVw69Ytne/BqVOnhL29vYiLizNv4EakbxmsWbNGODs7izVr1ojU1FSxc+dO4efnJ0aPHm3SOG0+mWnVqpUYPny49nl+fr7w9/cXMTExZb43KCjIKpKZipSBEEI8fPhQuLu7i5UrV5oqRLOoaDkIIUSzZs3Exx9/bIrwzMKQMnj48KEIDw8X//nPf0RUVJTikxl9yyAuLk6oVCozRWc++pbDokWLRK1atcSDBw/MFaLJVfQ34YsvvhDu7u4iOzvbVCGanL5lMHz4cNGxY0edbWPGjBEREREmjdOmm5kePHiA48ePo3PnztptdnZ26Ny5M44cOWLByMzHGGWQk5ODvLw8VK1a1VRhmlxFy0EIgb179+LcuXNo166dKUM1GUPLYPr06fDx8cGQIUPMEaZJGVoG2dnZCAoKQmBgIF566SWcPn3aHOGajCHlsG3bNrRp0wbDhw9H9erV0bhxY8yaNQv5+fnmCtuojPHbuGzZMrz++utwc3MzVZgmZUgZhIeH4/jx49qmqAsXLmD79u144YUXTBqr1S80WZrMzEzk5+ejevXqOturV6+Os2fPWigq8zJGGUyYMAH+/v46X3ilMbQc1Go1AgICoNFoYG9vj6+//hrPPfecqcM1CUPK4NChQ1i2bBmSkpLMEKHpGVIG9evXx/Lly9GkSROo1Wp89tlnCA8Px+nTp42yyK0lGFIOFy5cwL59+/DGG29g+/btSE5OxrBhw5CXl4cpU6aYI2yjquhv49GjR3Hq1CksW7bMVCGanCFl0L9/f2RmZqJt27YQQuDhw4d49913MWnSJJPGatPJDFVcbGws1q9fjwMHDlhNp0d9uLu7IykpCdnZ2di7dy/GjBmDWrVqoUOHDpYOzeTu3r2LgQMHYunSpfDy8rJ0OBbTpk0btGnTRvs8PDwcISEhWLJkCWbMmGHByMyroKAAPj4++Oabb2Bvb4/mzZvjypUr+Pe//63IZKaili1bhtDQULRq1crSoZjVgQMHMGvWLHz99ddo3bo1kpOT8cEHH2DGjBmYPHmyyc5r08mMl5cX7O3tcf36dZ3t169fh6+vr4WiMq+KlMFnn32G2NhY7NmzB02aNDFlmCZnaDnY2dmhTp06AICmTZvizJkziImJUWQyo28ZpKSkIC0tDT169NBuKygoAAA4ODjg3LlzqF27tmmDNjJj/CY4OjqiWbNmSE5ONkWIZmFIOfj5+cHR0RH29vbabSEhIbh27RoePHgAJycnk8ZsbBX5Lty7dw/r16/H9OnTTRmiyRlSBpMnT8bAgQMxdOhQAEBoaCju3buHd955Bx999BHs7EzTu8Wm+8w4OTmhefPm2Lt3r3ZbQUEB9u7dq3OnZc0MLYM5c+ZgxowZ2LFjB1q0aGGOUE3KWN+FgoICaDQaU4RocvqWQYMGDXDy5EkkJSVpHz179kRkZCSSkpIQGBhozvCNwhjfg/z8fJw8eRJ+fn6mCtPkDCmHiIgIJCcnaxNaADh//jz8/PwUl8gAFfsubNy4ERqNBgMGDDB1mCZlSBnk5OQUSVgKE1xhyqUgTdq9WAHWr18vnJ2dxYoVK8Rff/0l3nnnHeHp6akdWjlw4EAxceJE7f4ajUacOHFCnDhxQvj5+Ylx48aJEydOiL///ttSH6HC9C2D2NhY4eTkJDZt2qQzDPHu3buW+ghGoW85zJo1S+zatUukpKSIv/76S3z22WfCwcFBLF261FIfocL0LYMnWcNoJn3LYNq0aWLnzp0iJSVFHD9+XLz++uvCxcVFnD592lIfwSj0LYdLly4Jd3d3MWLECHHu3Dnx448/Ch8fHzFz5kxLfYQKM/TvoW3btqJv377mDtck9C2DKVOmCHd3d7Fu3Tpx4cIFsWvXLlG7dm3x2muvmTROm09mhBBi/vz5okaNGsLJyUm0atVK/Pbbb9rX2rdvL6KiorTPU1NTBYAij/bt25s/cCPSpwyCgoKKLYMpU6aYP3Aj06ccPvroI1GnTh3h4uIiqlSpItq0aSPWr19vgaiNS58yeJI1JDNC6FcGo0aN0u5bvXp18cILL4jExEQLRG18+n4X4uPjRevWrYWzs7OoVauW+PTTT8XDhw/NHLVx6VsGZ8+eFQDErl27zByp6ehTBnl5eWLq1Kmidu3awsXFRQQGBophw4aJf/75x6QxSkKYst6HiIiIyLRsus8MERERKR+TGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIrGZIaIyEgGDRqEXr16WToMIpvDZIbIBgwaNAiSJGkf1apVQ9euXfHnn39aOjSjePyzFT7atm1rsvOlpaVBkiQkJSXpbP/yyy+xYsUKk52XiIrHZIbIRnTt2hUZGRnIyMjA3r174eDggBdffNHSYRlNXFyc9vNlZGRg27Ztxe6Xl5dnshhUKhU8PT1NdnwiKh6TGSIb4ezsDF9fX/j6+qJp06aYOHEi0tPTcfPmTXTs2BEjRozQ2f/mzZtwcnLSrpgbHByMGTNmoF+/fnBzc0NAQAAWLlyo8565c+ciNDQUbm5uCAwMxLBhw5Cdna19/eLFi+jRoweqVKkCNzc3NGrUCNu3bwcA/PPPP3jjjTfg7e0NV1dX1K1bF3FxceX+fJ6entrP5+vri6pVq2prUDZs2ID27dvDxcUFa9aswa1bt9CvXz8EBASgUqVKCA0Nxbp163SOV1BQgDlz5qBOnTpwdnZGjRo18OmnnwIAatasCQBo1qwZJElChw4dABRtZtJoNBg5ciR8fHzg4uKCtm3bIiEhQfv6gQMHIEkS9u7dixYtWqBSpUoIDw/HuXPnyv25iYjJDJFNys7OxurVq1GnTh1Uq1YNQ4cOxdq1a6HRaLT7rF69GgEBAejYsaN227///W+EhYXhxIkTmDhxIj744APs3r1b+7qdnR2++uornD59GitXrsS+ffswfvx47evDhw+HRqPBwYMHcfLkScyePRuVK1cGAEyePBl//fUXfv75Z5w5cwaLFi2Cl5eXUT5vYaxnzpxBly5dcP/+fTRv3hw//fQTTp06hXfeeQcDBw7E0aNHte+Jjo5GbGysNq61a9eievXqAKDdb8+ePcjIyMCWLVuKPe/48eOxefNmrFy5EomJiahTpw66dOmC27dv6+z30Ucf4fPPP8exY8fg4OCAt956yyifm8hmmHQZSyKShaioKGFvby/c3NyEm5ubACD8/PzE8ePHhRBC5ObmiipVqogNGzZo39OkSRMxdepU7fOgoCDRtWtXneP27dtXdOvWrcTzbty4UVSrVk37PDQ0VOeYj+vRo4cYPHiwQZ8PgHBxcdF+Pjc3N7F161btKvfz5s0r8xjdu3cXY8eOFUIIkZWVJZydncXSpUuL3bfwuCdOnNDZ/viq4dnZ2cLR0VGsWbNG+/qDBw+Ev7+/mDNnjhBCiP379wsAYs+ePdp9fvrpJwFA5Obm6lMERDaNNTNENiIyMhJJSUlISkrC0aNH0aVLF3Tr1g0XL16Ei4sLBg4ciOXLlwMAEhMTcerUKQwaNEjnGG3atCny/MyZM9rne/bsQadOnRAQEAB3d3cMHDgQt27dQk5ODgBg5MiRmDlzJiIiIjBlyhSdDsjvvfce1q9fj6ZNm2L8+PGIj4/X6/N98cUX2s+XlJSE5557TvtaixYtdPbNz8/HjBkzEBoaiqpVq6Jy5crYuXMnLl26BAA4c+YMNBoNOnXqpFcMj0tJSUFeXh4iIiK02xwdHdGqVSudMgOAJk2aaP/t5+cHALhx44bB5yayNUxmiGyEm5sb6tSpgzp16qBly5b4z3/+g3v37mHp0qUAgKFDh2L37t24fPky4uLi0LFjRwQFBZX7+GlpaXjxxRfRpEkTbN68GcePH9f2qXnw4IH2HBcuXMDAgQNx8uRJtGjRAvPnzwcAbWI1evRoXL16FZ06dcK4cePKfX5fX1/t56tTpw7c3Nx0Pvvj/v3vf+PLL7/EhAkTsH//fiQlJaFLly7aOF1dXct9XmNwdHTU/luSJACP+uwQUfkwmSGyUZIkwc7ODrm5uQCA0NBQtGjRAkuXLsXatWuL7bfx22+/FXkeEhICADh+/DgKCgrw+eef45lnnkG9evVw9erVIscIDAzEu+++iy1btmDs2LHaZAoAvL29ERUVhdWrV2PevHn45ptvjPmRtQ4fPoyXXnoJAwYMQFhYGGrVqoXz589rX69bty5cXV21nZ+f5OTkBOBRDU9JateuDScnJxw+fFi7LS8vDwkJCWjYsKGRPgkRAYCDpQMgIvPQaDS4du0agEcjhxYsWIDs7Gz06NFDu8/QoUMxYsQIuLm5oXfv3kWOcfjwYcyZMwe9evXC7t27sXHjRvz0008AgDp16iAvLw/z589Hjx49cPjwYSxevFjn/aNGjUK3bt1Qr149/PPPP9i/f782Gfrkk0/QvHlzNGrUCBqNBj/++KP2NWOrW7cuNm3ahPj4eFSpUgVz587F9evXtUmGi4sLJkyYgPHjx8PJyQkRERG4efMmTp8+jSFDhsDHxweurq7YsWMHnnrqKbi4uEClUumcw83NDe+99x4+/PBDVK1aFTVq1MCcOXOQk5ODIUOGmORzEdkq1swQ2YgdO3bAz88Pfn5+aN26NRISErBx40btsGIA6NevHxwcHNCvXz+4uLgUOcbYsWNx7NgxNGvWDDNnzsTcuXPRpUsXAEBYWBjmzp2L2bNno3HjxlizZg1iYmJ03p+fn4/hw4cjJCQEXbt2Rb169fD1118DeFTbER0djSZNmqBdu3awt7fH+vXrTVIWH3/8MZ5++ml06dIFHTp0gK+vb5GZeydPnoyxY8fik08+QUhICPr27avtx+Lg4ICvvvoKS5Ysgb+/P1566aVizxMbG4uXX34ZAwcOxNNPP43k5GTs3LkTVapUMcnnIrJVkhBCWDoIIpKHtLQ01K5dGwkJCXj66ad1XgsODsaoUaMwatQoywRHRFQCNjMREfLy8nDr1i18/PHHeOaZZ4okMkREcsZmJiLC4cOH4efnh4SEhCL9XCxt1qxZqFy5crGPbt26WTo8IpIBNjMRkazdvn27yIy5hVxdXREQEGDmiIhIbpjMEBERkaKxmYmIiIgUjckMERERKRqTGSIiIlI0JjNERESkaExmiIiISNGYzBAREZGiMZkhIiIiRWMyQ0RERIr2fy33W/6VoiahAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_40.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFW0lEQVR4nO3de1xVdb7/8fcG5CIpXlBAQvGeDajlhVBLLRoyc8YuJ9PydrJOpd2sKTXN7CJ2d6YsZ8y06aJMZnOc8liKeTqmM95iSlMbb2EJBGXghUDh+/vDH3skQNiw9157r/16Ph778ZDFWnt/1mK71nt913d9l8MYYwQAAGATQVYXAAAA4E6EGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwCWeOyxx+RwOOo1r8Ph0GOPPebReoYMGaIhQ4b47PsBqD/CDRDgli5dKofD4XyFhIQoPj5eEyZM0HfffWd1eT4nMTGxyvZq27atLr30Ur3//vtuef+TJ0/qscce04YNG9zyfkAgItwAkCQ9/vjjevPNN7Vw4UINGzZMb731lgYPHqyff/7ZI583c+ZMlZSUeOS9Pa13795688039eabb+rBBx/UkSNHdN1112nhwoWNfu+TJ09qzpw5hBugEUKsLgCAbxg2bJj69u0rSZo0aZKio6P19NNPa9WqVbrxxhvd/nkhISEKCfHPXVB8fLxuueUW58/jxo1Tly5d9OKLL+qOO+6wsDIAEi03AGpx6aWXSpL2799fZfqePXt0ww03qFWrVgoPD1ffvn21atWqKvOcOnVKc+bMUdeuXRUeHq7WrVtr0KBBWrt2rXOemvrclJaW6v7771ebNm3UrFkz/eY3v9G3335brbYJEyYoMTGx2vSa3nPJkiW6/PLL1bZtW4WFhenCCy/Uq6++6tK2qEtsbKx69OihgwcPnnO+77//XrfeeqtiYmIUHh6uXr166Y033nD+/tChQ2rTpo0kac6cOc5LX57ubwTYjX+eNgHwuEOHDkmSWrZs6Zy2a9cuDRw4UPHx8Zo2bZoiIyP1l7/8RSNHjtR7772na6+9VtKZkJGRkaFJkyapf//+Ki4u1rZt27Rjxw5deeWVtX7mpEmT9NZbb2nMmDEaMGCA1q9fr+HDhzdqPV599VX96le/0m9+8xuFhITob3/7m+666y5VVFRo8uTJjXrvSqdOndLhw4fVunXrWucpKSnRkCFDtG/fPk2ZMkUdO3bUu+++qwkTJuinn37SvffeqzZt2ujVV1/VnXfeqWuvvVbXXXedJKlnz55uqRMIGAZAQFuyZImRZNatW2cKCgrM4cOHzYoVK0ybNm1MWFiYOXz4sHPeK664wiQnJ5uff/7ZOa2iosIMGDDAdO3a1TmtV69eZvjw4ef83NmzZ5uzd0HZ2dlGkrnrrruqzDdmzBgjycyePds5bfz48aZDhw51vqcxxpw8ebLafOnp6aZTp05Vpg0ePNgMHjz4nDUbY0yHDh3Mr3/9a1NQUGAKCgrMP//5T3PTTTcZSebuu++u9f3mz59vJJm33nrLOa2srMykpqaa8847zxQXFxtjjCkoKKi2vgBcw2UpAJKktLQ0tWnTRgkJCbrhhhsUGRmpVatW6fzzz5ck/fjjj1q/fr1uvPFGHTt2TIWFhSosLNQPP/yg9PR0/etf/3LeXdWiRQvt2rVL//rXv+r9+atXr5Yk3XPPPVWm33fffY1ar4iICOe/i4qKVFhYqMGDB+vAgQMqKipq0Ht+/PHHatOmjdq0aaNevXrp3Xff1dixY/X000/Xuszq1asVGxur0aNHO6c1adJE99xzj44fP67//d//bVAtAKoL6HDz6aefasSIEWrXrp0cDof++te/evTzKvsDnP264IILPPqZQH0tWLBAa9eu1YoVK3T11VersLBQYWFhzt/v27dPxhjNmjXLeWCvfM2ePVvSmT4l0pk7r3766Sd169ZNycnJ+t3vfqcvvvjinJ//zTffKCgoSJ07d64yvXv37o1ar88++0xpaWmKjIxUixYt1KZNG82YMUOSGhxuUlJStHbtWq1bt06bNm1SYWGh/vznP1cJUr/0zTffqGvXrgoKqrrb7dGjh/P3ANwjoPvcnDhxQr169dJ//ud/Oq9te9qvfvUrrVu3zvmzv94tAvvp37+/826pkSNHatCgQRozZoz27t2r8847TxUVFZKkBx98UOnp6TW+R5cuXSRJl112mfbv36///u//1scff6zXXntNL774ohYuXKhJkyY1utbaBv8rLy+v8vP+/ft1xRVX6IILLtALL7yghIQEhYaGavXq1XrxxRed6+Sq6OhopaWlNWhZAJ4X0EfWYcOGadiwYbX+vrS0VI888oiWLVumn376SUlJSXr66acbNepoSEiIYmNjG7w84A3BwcHKyMjQ0KFD9fLLL2vatGnq1KmTpDOXUupzYG/VqpUmTpyoiRMn6vjx47rsssv02GOP1RpuOnTooIqKCu3fv79Ka83evXurzduyZUv99NNP1ab/svXjb3/7m0pLS7Vq1Sq1b9/eOf2TTz6ps35369Chg7744gtVVFRUab3Zs2eP8/dS7cENQP0F9GWpukyZMkWbN2/W8uXL9cUXX+g//uM/dNVVV7nUj+CX/vWvf6ldu3bq1KmTbr75ZuXk5LixYsB9hgwZov79+2v+/Pn6+eef1bZtWw0ZMkR//OMflZubW23+goIC579/+OGHKr8777zz1KVLF5WWltb6eZUnGn/4wx+qTJ8/f361eTt37qyioqIql7pyc3OrjRIcHBwsSTLGOKcVFRVpyZIltdbhKVdffbXy8vKUmZnpnHb69Gm99NJLOu+88zR48GBJUtOmTSWpxvAGoH4CuuXmXHJycrRkyRLl5OSoXbt2ks40x69Zs0ZLlizR3LlzXX7PlJQULV26VN27d1dubq7mzJmjSy+9VDt37lSzZs3cvQpAo/3ud7/Tf/zHf2jp0qW64447tGDBAg0aNEjJycm67bbb1KlTJ+Xn52vz5s369ttv9c9//lOSdOGFF2rIkCHq06ePWrVqpW3btmnFihWaMmVKrZ/Vu3dvjR49Wq+88oqKioo0YMAAZWVlad++fdXmvemmm/Twww/r2muv1T333KOTJ0/q1VdfVbdu3bRjxw7nfL/+9a8VGhqqESNG6L/+6790/PhxLVq0SG3btq0xoHnS7bffrj/+8Y+aMGGCtm/frsTERK1YsUKfffaZ5s+f79wHRERE6MILL1RmZqa6deumVq1aKSkpSUlJSV6tF/BrVt+u5Sskmffff9/58wcffGAkmcjIyCqvkJAQc+ONNxpjjNm9e7eRdM7Xww8/XOtnHj161DRv3ty89tprnl49oFaVt4Jv3bq12u/Ky8tN586dTefOnc3p06eNMcbs37/fjBs3zsTGxpomTZqY+Ph4c80115gVK1Y4l3vyySdN//79TYsWLUxERIS54IILzFNPPWXKysqc89R023ZJSYm55557TOvWrU1kZKQZMWKEOXz4cI23Rn/88ccmKSnJhIaGmu7du5u33nqrxvdctWqV6dmzpwkPDzeJiYnm6aefNq+//rqRZA4ePOicz5Vbweu6zb2298vPzzcTJ0400dHRJjQ01CQnJ5slS5ZUW3bTpk2mT58+JjQ0lNvCgQZwGHNWe20Aczgcev/99zVy5EhJUmZmpm6++Wbt2rXL2bRd6bzzzlNsbKzKysp04MCBc75v69atnSOO1qRfv35KS0tTRkZGo9cBAABwWapWF110kcrLy/X99987h6H/pdDQ0Ebdyn38+HHt379fY8eObfB7AACAqgI63Bw/frzK9fyDBw8qOztbrVq1Urdu3XTzzTdr3Lhxev7553XRRRepoKBAWVlZ6tmzZ4OGhH/wwQc1YsQIdejQQUeOHNHs2bMVHBxcZVAvAADQOAF9WWrDhg0aOnRotenjx4/X0qVLderUKT355JP685//rO+++07R0dG65JJLNGfOHCUnJ7v8eTfddJM+/fRT/fDDD2rTpo0GDRqkp556qtqgZQAAoOECOtwAAAD7YZwbAABgK4QbAABgKwHXobiiokJHjhxRs2bNGOYcAAA/YYzRsWPH1K5du2oPoP2lgAs3R44cUUJCgtVlAACABjh8+LDOP//8c84TcOGmcojzw4cPq3nz5hZXAwAA6qO4uFgJCQn1elxRwIWbyktRzZs3J9wAAOBn6tOlhA7FAADAVgg3AADAVgg3AADAVgKuz019lZeX69SpU1aXYbnQ0NA6b7kDAMCXEG5+wRijvLw8/fTTT1aX4hOCgoLUsWNHhYaGWl0KAAD1Qrj5hcpg07ZtWzVt2jSgB/qrHPAwNzdX7du3D+htAQDwH5aGm08//VTPPvustm/frtzcXL3//vsaOXLkOZfZsGGDpk6dql27dikhIUEzZ87UhAkT3FJPeXm5M9i0bt3aLe/p79q0aaMjR47o9OnTatKkidXlAABQJ0s7U5w4cUK9evXSggUL6jX/wYMHNXz4cA0dOlTZ2dm67777NGnSJH300Uduqaeyj03Tpk3d8n52UHk5qry83OJKAACoH0tbboYNG6Zhw4bVe/6FCxeqY8eOev755yVJPXr00MaNG/Xiiy8qPT3dbXVx+eXf2BYAAH/jV7fBbN68WWlpaVWmpaena/PmzbUuU1paquLi4iovAABgX34VbvLy8hQTE1NlWkxMjIqLi1VSUlLjMhkZGYqKinK+eGgmAAD25lfhpiGmT5+uoqIi5+vw4cNWl+RRmzdvVnBwsIYPH15l+qFDh+RwOJyvVq1aafDgwfq///s/iyoFAPi63KISbdpfqNyimhsQfJVfhZvY2Fjl5+dXmZafn6/mzZsrIiKixmXCwsKcD8kMhIdlLl68WHfffbc+/fRTHTlypNrv161bp9zcXH366adq166drrnmmmrbFACAzK05GjhvvcYs+ocGzluvzK05VpdUb34VblJTU5WVlVVl2tq1a5WammpRRb7l+PHjyszM1J133qnhw4dr6dKl1eZp3bq1YmNjlZSUpBkzZqi4uFj/+Mc/vF8sAMBn5RaVaPrKL1VhzvxcYaQZK3f6TQuOpeHm+PHjys7OVnZ2tqQzt3pnZ2crJ+dMOpw+fbrGjRvnnP+OO+7QgQMH9NBDD2nPnj165ZVX9Je//EX333+/FeXXydvNeX/5y190wQUXqHv37rrlllv0+uuvyxhT47wlJSX685//LEmMPgwAqOJg4QlnsKlUbowOFZ60piAXWXor+LZt2zR06FDnz1OnTpUkjR8/XkuXLlVubq4z6EhSx44d9eGHH+r+++/X73//e51//vl67bXX3HobuLtkbs1xpt4gh5RxXbJG9Wvv0c9cvHixbrnlFknSVVddpaKiIv3v//6vhgwZ4pxnwIABCgoK0smTJ2WMUZ8+fXTFFVd4tC4AgH/pGB2pIIeqBJxgh0OJ0f4xDpzD1HZqb1PFxcWKiopSUVFRtf43P//8sw4ePKiOHTsqPDy8wZ+RW1SigfPWV/tSbJw2VHFRNfcNaqy9e/cqKSlJ3333ndq2bStJmjJlioqKivTmm2/q0KFD6tixo1atWqULLrhAO3fu1EMPPaT3339fSUlJtb6vu7YJAMC/ZG7N0YyVO1VujIIdDs29LsnjJ+nncq7j9y/xbCkPOFdznqfCzeLFi3X69Gm1a9fOOc0Yo7CwML388svOaQkJCeratau6du2q06dP69prr9XOnTsVFhbmkboAAP5pVL/2uqxbGx0qPKnE6KYeO355gl91KPYXlc15Z/Nkc97p06f15z//Wc8//7yzD1N2drb++c9/ql27dlq2bFmNy91www0KCQnRK6+84pG6AAD+LS4qQqmdW/tVsJEINx4RFxWhjOuSFfz/H11Q2ZznqS/HBx98oKNHj+rWW29VUlJSldf111+vxYsX17icw+HQPffco3nz5unkSf/oJAYAQF0INx4yql97bZw2VMtuu0Qbpw316HXKxYsXKy0tTVFRUdV+d/3112vbtm21PnZi/PjxOnXqVJVLVwAA+DP63HhQXFSEV5ry/va3v9X6u/79+ztvB6+p73jTpk31448/eqw2AAC8jZYbAABgK4QbAABgK4QbAABgK4QbAABgK4SbGgTYoM3nxLYAAPgbws1ZmjRpIkmM+XKWsrIySVJwcLDFlQAAUD/cCn6W4OBgtWjRQt9//72kM7dJOxyOOpayr4qKChUUFKhp06YKCeGrAgDwDxyxfiE2NlaSnAEn0AUFBal9+/YBHfIAAP6FcPMLDodDcXFxatu2rU6dOmV1OZYLDQ1VUBBXLwEA/oNwU4vg4GD6mQAA4Ic4JQcAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZiebhZsGCBEhMTFR4erpSUFG3ZsuWc88+fP1/du3dXRESEEhISdP/99+vnn3/2UrUAAMDXWRpuMjMzNXXqVM2ePVs7duxQr169lJ6eru+//77G+d955x1NmzZNs2fP1u7du7V48WJlZmZqxowZXq4cAAD4KkvDzQsvvKDbbrtNEydO1IUXXqiFCxeqadOmev3112ucf9OmTRo4cKDGjBmjxMRE/frXv9bo0aPrbO0BAACBw7JwU1ZWpu3btystLe3fxQQFKS0tTZs3b65xmQEDBmj79u3OMHPgwAGtXr1aV199da2fU1paquLi4iovAABgXyFWfXBhYaHKy8sVExNTZXpMTIz27NlT4zJjxoxRYWGhBg0aJGOMTp8+rTvuuOOcl6UyMjI0Z84ct9YOAAB8l+Udil2xYcMGzZ07V6+88op27NihlStX6sMPP9QTTzxR6zLTp09XUVGR83X48GEvVgwAALzNspab6OhoBQcHKz8/v8r0/Px8xcbG1rjMrFmzNHbsWE2aNEmSlJycrBMnTuj222/XI488oqCg6lktLCxMYWFh7l8BAADgkyxruQkNDVWfPn2UlZXlnFZRUaGsrCylpqbWuMzJkyerBZjg4GBJkjHGc8UCAAC/YVnLjSRNnTpV48ePV9++fdW/f3/Nnz9fJ06c0MSJEyVJ48aNU3x8vDIyMiRJI0aM0AsvvKCLLrpIKSkp2rdvn2bNmqURI0Y4Qw4AAAhsloabUaNGqaCgQI8++qjy8vLUu3dvrVmzxtnJOCcnp0pLzcyZM+VwODRz5kx99913atOmjUaMGKGnnnrKqlUAAAA+xmEC7HpOcXGxoqKiVFRUpObNm1tdDgAAqAdXjt9+dbcUAABAXQg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AAAEsNyiEm3aX6jcohKrS3GbEKsLAAAA1sjcmqPpK79UhZGCHFLGdcka1a+91WU1Gi03AAAEoNyiEmewkaQKI81YudMWLTiEGwAAAtDBwhPOYFOp3BgdKjxpTUFuRLgBACAAdYyOVJCj6rRgh0OJ0U2tKciNCDcAAASguKgIZVyXrGDHmYQT7HBo7nVJiouKsLiyxqNDMQAAAWpUv/a6rFsbHSo8qcToprYINhLhBgCAgBYXFWGbUFOJy1IAAMBWLA83CxYsUGJiosLDw5WSkqItW7acc/6ffvpJkydPVlxcnMLCwtStWzetXr3aS9UCAABfZ+llqczMTE2dOlULFy5USkqK5s+fr/T0dO3du1dt27atNn9ZWZmuvPJKtW3bVitWrFB8fLy++eYbtWjRwvvFAwAAn+Qwxpi6Z/OMlJQU9evXTy+//LIkqaKiQgkJCbr77rs1bdq0avMvXLhQzz77rPbs2aMmTZo06DOLi4sVFRWloqIiNW/evFH1AwAA73Dl+G3ZZamysjJt375daWlp/y4mKEhpaWnavHlzjcusWrVKqampmjx5smJiYpSUlKS5c+eqvLy81s8pLS1VcXFxlRcAALAvy8JNYWGhysvLFRMTU2V6TEyM8vLyalzmwIEDWrFihcrLy7V69WrNmjVLzz//vJ588slaPycjI0NRUVHOV0JCglvXAwAA+BbLOxS7oqKiQm3bttWf/vQn9enTR6NGjdIjjzyihQsX1rrM9OnTVVRU5HwdPnzYixUDAABvs6xDcXR0tIKDg5Wfn19len5+vmJjY2tcJi4uTk2aNFFwcLBzWo8ePZSXl6eysjKFhoZWWyYsLExhYWHuLR4AAPgsy1puQkND1adPH2VlZTmnVVRUKCsrS6mpqTUuM3DgQO3bt08VFRXOaV9//bXi4uJqDDYAACDwWHpZaurUqVq0aJHeeOMN7d69W3feeadOnDihiRMnSpLGjRun6dOnO+e/88479eOPP+ree+/V119/rQ8//FBz587V5MmTrVoFAADgYywd52bUqFEqKCjQo48+qry8PPXu3Vtr1qxxdjLOyclRUNC/81dCQoI++ugj3X///erZs6fi4+N177336uGHH7ZqFQAAgI+xdJwbKzDODQAA/scvxrkBAADwBMINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAAABILeoRJv2Fyq3qMTqUjzObeHm559/1nPPPeeutwMAAG6SuTVHA+et15hF/9DAeeuVuTXH6pI8yqVwU1BQoA8++EAff/yxysvLJUmnTp3S73//eyUmJmrevHkeKdLOAilJAwC8L7eoRNNXfqkKc+bnCiPNWLnT1sedkPrOuHHjRl1zzTUqLi6Ww+FQ3759tWTJEo0cOVIhISF67LHHNH78eE/WajuZW3OcX7ggh5RxXbJG9WtvdVkAABs5WHjCGWwqlRujQ4UnFRcVYU1RHlbvlpuZM2fq6quv1hdffKGpU6dq69atuvbaazV37lx99dVXuuOOOxQRYc+N5AmBmKQBAN7XMTpSQY6q04IdDiVGN7WmIC+od7j58ssvNXPmTCUlJenxxx+Xw+HQM888oxtuuMGT9dnWuZI0AADuEhcVoYzrkhXsOJNwgh0Ozb0uybatNpILl6WOHj2q6OhoSVJERISaNm2qpKQkjxVmd5VJ+uyAY/ckDQCwxqh+7XVZtzY6VHhSidFNbR1sJBfCjSR99dVXysvLkyQZY7R3716dOHGiyjw9e/Z0X3U2VpmkZ6zcqXJjAiJJAwCsExcVETDHGIcxxtQ9mxQUFCSHw6Fzze5wOJx3Ufmq4uJiRUVFqaioSM2bN7e6HOUWlQRMkgYAoKFcOX7Xu+Xm4MGDdc5z7Nix+r4d/r9AStIAAHhDvcNNhw4dapx+7NgxLVu2TIsXL9a2bdt8vuUGAADYW4NHKP700081fvx4xcXF6bnnntPQoUP197//3Z21AQAAuMylDsV5eXlaunSpFi9erOLiYt14440qLS3VX//6V1144YWeqhEAAKDe6t1yM2LECHXv3l1ffPGF5s+fryNHjuill17yZG0AAAAuq3fLzf/8z//onnvu0Z133qmuXbt6siYAAIAGq3fLzcaNG3Xs2DH16dNHKSkpevnll1VYWOjJ2gAAAFxW73BzySWXaNGiRcrNzdV//dd/afny5WrXrp0qKiq0du1abgMHAAA+od6D+NVk7969Wrx4sd5880399NNPuvLKK7Vq1Sp31ud2vjaIHwAAqJsrx+8G3wouSd27d9czzzyjb7/9VsuWLWvMWwEAALhFo1pu/BEtNwAA+B+vtdwAAAD4GsINAACwFcKNF+QWlWjT/kLlFpVYXQoAALbn0uMX4LrMrTmavvJLVRgpyCFlXJesUf3aW10WAAC2RcuNB+UWlTiDjSRVGGnGyp204AAA4EGEGw86WHjCGWwqlRujQ4UnrSkIAIAAQLjxoI7RkQpyVJ0W7HAoMbqpNQUBABAACDceFBcVoYzrkhXsOJNwgh0Ozb0uSXFRERZXBgCAfdGh2MNG9Wuvy7q10aHCk0qMbkqwAQDAwwg3XhAXFUGoAQDAS7gsBQAAbIVwAwAAbIVwAwAAbIVwA8Bn8KgSAO5Ah2IAPoFHlQBwF1puAFiOR5UAcCefCDcLFixQYmKiwsPDlZKSoi1bttRrueXLl8vhcGjkyJGeLRCAR/GoEgDuZHm4yczM1NSpUzV79mzt2LFDvXr1Unp6ur7//vtzLnfo0CE9+OCDuvTSS71UKQBP4VElANzJ8nDzwgsv6LbbbtPEiRN14YUXauHChWratKlef/31WpcpLy/XzTffrDlz5qhTp05erBaAJ/CoEgDuZGmH4rKyMm3fvl3Tp093TgsKClJaWpo2b95c63KPP/642rZtq1tvvVX/93//d87PKC0tVWlpqfPn4uLixhcOwO14VAkAd7E03BQWFqq8vFwxMTFVpsfExGjPnj01LrNx40YtXrxY2dnZ9fqMjIwMzZkzp7GlAvACHlUCwB0svyzlimPHjmns2LFatGiRoqOj67XM9OnTVVRU5HwdPnzYw1UCAAArWdpyEx0dreDgYOXn51eZnp+fr9jY2Grz79+/X4cOHdKIESOc0yoqKiRJISEh2rt3rzp37lxlmbCwMIWFhXmgegAA4IssbbkJDQ1Vnz59lJWV5ZxWUVGhrKwspaamVpv/ggsu0Jdffqns7Gzn6ze/+Y2GDh2q7OxsJSQkeLN8AADggywfoXjq1KkaP368+vbtq/79+2v+/Pk6ceKEJk6cKEkaN26c4uPjlZGRofDwcCUlJVVZvkWLFpJUbToAAAhMloebUaNGqaCgQI8++qjy8vLUu3dvrVmzxtnJOCcnR0FBftU1CAAAWMhhjDF1z2YfxcXFioqKUlFRkZo3b251OQAAoB5cOX7TJAIAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMEmNyiEm3aX6jcohKrSwEAj7D8wZkAvCdza46mr/xSFUYKckgZ1yVrVL/2VpcFAG5Fyw0QIHKLSpzBRpIqjDRj5U5acADYDuEGCBAHC084g02lcmN0qPCkNQUBgIcQboAA0TE6UkGOqtOCHQ4lRje1piAA8BDCDRAg4qIilHFdsoIdZxJOsMOhudclKS4qwuLKAMC96FAMBJBR/drrsm5tdKjwpBKjm9oi2Pzz8FFtOfSj+ie2Uq+EllaXA8AHEG6AABMXFWGLUCNJD/wlW+/t+M758/UXx+v5G3s7f84tKtHBwhPqGB1pm3UGUDfCDQC/9M/DR6sEG0l6b8d3GpfaQb0SWnLbO1BPdjwJINwA8EtbDv1Y4/Rth46qbfPwGm97v6xbG9vsvAF3sOtJAB2KAfil/omtapzeN7GlR257Z2Rn2I2dx76i5QaAX+qV0FLXXxxfrc9Nr4SWyi0qUZBDVQJOY257t+vZLQLbuU4C/L2Fk3CDBrHjNVr4n+dv7K1xqR207dBR9U1s6bxbqvK29xkrd6rcmEbd9l7b2S2XuODvKse+ctdJgC8h3MBlnMXCl/RKaFnjLeDuuu3dzme3CGzuPAnwNYQbuISzWPgTd9z2buezW8COY19JdCiGi3g+EQINIzvD7uKiIpTaubWtvtO03MAlnMUiENn17BawK1pu4BLOYhGofOHsltvRgfqh5QYu4ywW8D468gP1R8sNGsQXzmKBQGHnwdYATyDcAD6OSxG+wcq/Ax35AddwWQrwYVyK8A1W/x3oyA+4hpYbwEdxKcI3+MLfgY78gGtoufFDPPogMDAyrm/wlb8DHfmB+iPc+Bmrm8fhPVyK8A2+9Hdwx4jLQCDgspQf8YXmcXgPlyJ8A38HwP/QcuNHfKV5HN7DpQjfwN8B8C+EGz/iS83j8B4uRfgGf/070EcPgYjLUn6E5nEArsjcmqOB89ZrzKJ/aOC89crcmmN1SYBXOIwxpu7Z7KO4uFhRUVEqKipS8+bNrS6nQXKLSmgeB3BOuUUlGjhvfbWW3o3ThrLfgF9y5fjNZSk/5K/N4wC8hz56CGRclgIAG6rso3c2u/fR41ElqES4AeDXOKDVLND66NG/CGejzw0Av8WglnULhD569C8KDK4cv2m5AeCXGNSyfuKiIpTaubWtD/I8NR2/RLgB4Jc4oKFSIPYvwrkRbgD4JQ5oqBRo/YtQN24FB+Dzahplt/KANmPlTpUbwwEtwPGIDJyNcAPAp52r0zAHNJyNMcBQictSAHxWfToNB0KHWQCuIdwAqJNVY8nQaRhAQ3BZCsA5WTmWTGWn4V+OX0KnYQDnQssNgFpZPZYMd8EAaAhabgDUyhcevkinYc+o6Q40wC4IN2gQdoyBwVcuC3EXjHvx2ArYHZel4DIeUBc4uCxkP1ZfakT98VDYhqPlBi6pbcd4Wbc2HPBsistC9uILlxpRN1rXGscnWm4WLFigxMREhYeHKyUlRVu2bKl13kWLFunSSy9Vy5Yt1bJlS6WlpZ1zfrgXt+YGJsaSsQ8eW+H7aF1rPMvDTWZmpqZOnarZs2drx44d6tWrl9LT0/X999/XOP+GDRs0evRoffLJJ9q8ebMSEhL061//Wt99952XKw9M7BgB/8alRt/HSWTjOYwxpu7ZPCclJUX9+vXTyy+/LEmqqKhQQkKC7r77bk2bNq3O5cvLy9WyZUu9/PLLGjduXJ3zFxcXKyoqSkVFRWrevHmj6w9ED/wlW+/t+HeYvP7ieD1/Y2/rCgLgstyiEi41+qjcohINnLe+Wkf+jdOGBvTfypXjt6UtN2VlZdq+fbvS0tKc04KCgpSWlqbNmzfX6z1OnjypU6dOqVWrVjX+vrS0VMXFxVVeaLjcohK9/3nVVrK/fn6E5lJUQ2dI38alRt9F61rjWdqhuLCwUOXl5YqJiakyPSYmRnv27KnXezz88MNq165dlYB0toyMDM2ZM6fRteIMOiOiPugMCTQOHfkbx/I+N40xb948LV++XO+//77Cw8NrnGf69OkqKipyvg4fPuzlKu2FPjeoC50hPYfWsMBC61rDWdpyEx0dreDgYOXn51eZnp+fr9jY2HMu+9xzz2nevHlat26devbsWet8YWFhCgsLc0u9+Hdz6YyVO1VuDM2lqIbWPc+gNQyoP0vDTWhoqPr06aOsrCyNHDlS0pkOxVlZWZoyZUqtyz3zzDN66qmn9NFHH6lv375eqhaVaC7FufjKqMZ2wvhSgGssvyw1depULVq0SG+88YZ2796tO++8UydOnNDEiRMlSePGjdP06dOd8z/99NOaNWuWXn/9dSUmJiovL095eXk6fvy4VasQkGguRW3oDOl+3BoMuMbyEYpHjRqlgoICPfroo8rLy1Pv3r21Zs0aZyfjnJwcBQX9O4O9+uqrKisr0w033FDlfWbPnq3HHnvMm6UDqAWte+5Faxh8ja8/X9DycW68jXFuAPijzK051fq60ecGVrCq/5crx2/CDQD4CQbeQyWrWk6sHGDQleO35ZelAp2vN+0B8B1xURHsJ2DpnXP+cjck4cZC3NoJAHCF1XfO+Uv/L8vvlgpUDHQGAHCV1XfO+cvdkLTcWMRfmvYAAL7DF1pO/OFuSFpuLMJjDAAArvKVlhNfH+uMlhuL8BgDAEBD+EPLidUINxbiCwoAga2hd8xy59y5EW4sxhcUAAITd8x6Dn1uAADwMu6Y9SzCDQAAXmb1Ld12R7hBrXKLSrRpfyFnEgDgZtwx61mEG9Qoc2uOBs5brzGL/qGB89Yrc2uO1SUBgG34yi3ddsWDM1FNblGJBmSs19lfDIdD2jTtco/8x+P5WvbE3xWoGw9DrT8enGkDVh4Ytn9zVL9MvMZIO745quE93VsLdwvYE39XoH64Y9YzuCzlg6y+JFRbY5672/i4W8Ce+LsCsBrhxsf4woGhb2Ir/aKfmxyS+iS2dOvncLeAPfF39Q/cMOBdbG/v4rKUj/GFB2rGRUVo3vXJmv7el6rQmQSccX2y2z/fFx4AVxf6jbjOH/6ugY7Lht7F9vY+wo2P8ZUDgzceDeHrz9dih9Qwvv53DXS1tQ5f1q0NfyMPYHtbg3DjY3zpwOCNjm6++nwtdkiN46t/V/hG63AgYXtbg3DjgwLtwOCLdwuwQ2o8X/y7NoZdLlHWp3XYLuvqC3ylNT7QEG58lN0ODP6GHRLO5s+XKH8ZVOpqHfbndfVFvtQaH0gYxA+1CvSzt8ytOdV2SOzkA09uUYkGzltfLehunDbU5/9fnCuo1DR4nD+sq7/ulxisr/EYxA+Nxtlb4F0eRM389RJlXf3Gamod9vV19ef9Eq3x3sU4N6jGF8ba8RVxURFK7dyanVIA89cHHDZkvCFfXlf2S3AF4QbVMAgb8G/++oDDhgQVX15X9ktwBZelUA2daYGq/PESZUM7svrqurJfgivoUIwa0ZkWsAc7dWRlvxTYXDl+E25QKzvtFNE4/nqHCuyH/VLg4m4puAW9+yH59x0qsB/2S6gPOhT7KJ4gC1/AHSoA/BEtNz6IM2WczcpLQr4+7gkA1IRw42N4YCPOZnXQ7RgdKYeks/ONQ+IOFQC18oU+eoQbH+MvZ8q+8OW1O58Nuo66ZwEQmKw+IatEnxuL/bJvjS+PEFopc2uOBs5brzGL/qGB89Yrc2uO1SXZki8MWnaw8IR+eTulMWLgNHgc/Q79jy/10aPlxkK1JVxffoKsz7Ym2JAvDFrmCzXAd3irxdZXzv7hGl+68kC4sci5QoKvjhAq+daX1xusvPzW0BFm7VYDfIO3AgcnUP7Ll06GCDcWqSsk+OpYDr705fU0Xzh79IWg6ws1wFreDByBdgJlJ750MkS4sYi/hgRf+vJ6ki+dPfpC0PWFGryFzvLVeTNw+Ou+EWf4yskQ4cYi/hwSfOHL25ADkCvLcPYYmHyhtc4XeTNw+PO+EWf4wskQ4cZCvhASGsrKL29DDkB1LfPL4MPZY+DxpdY6X+PtwOHP+0b4BsKNxXwh4fqThhyA6lrGH+9ag/vRWndu3g4c7BvRGIQb+JWGHIDqGi/GH+9ag/vRWlc3Agf8BYP4wa80ZJDDcy1TV/CJi4pQaufWPrtDZ6Az96m89BLsOPNlobUO8F+03HhBIN194el1bci1/7qW8dezdTq/uh+tdf4tkPa1ODeHMeaXo6vbWnFxsaKiolRUVKTmzZu79b1r+o8VSAcgb65rblGJyweg2pbJ3JpTLfjUp24rd6S5RSUaOG99tVC2cdpQj9TCQQO+LpD2tYHKleM3LTduUtN/rMu6tQmYuy+8fadJQ67917ZMQ87Wrd6RerPzq9XrCtSFO93wS/S5cYPa/mNtO/Sj5Q8+9BZfeMhjY7jSt8YXHg7nrQes+sK6AnXx9/0P3I9w4wa1/ccKcjh8/gnf7uLtp5lb2ZG2MTtSd9Xtrc6vHDTgD7y9/4Hv47KUG9R2C+nFHVoGzFgp3hzky+rLJA29ZdjddXuj8yu3R6O+fOEhs2f//7Lrvhb1Q7hxg3Md2APp7gtvrGt9rq374h1bnuoT4OlxRxgKH/Vh9QlHpcrbYwLrNhnUhHDjJuc6sAfSwFeeXte6OtKeayfrztDjapDz59FvAymgw3W+0Jm3sobK/2JGdCgOdIQbNwqkEGOVc10mOddO9tOvC9x+ZunK39vfL+/w3UZtfCG4+0IN8C10KIZfOVdH2tp2cNsPHbX8jh9Gv4Ud1NQh3hc680aGBtc4vWkoh7hARcsN/E5tl0lqax3RL6ZJ1pzVcXkH/qy2S76+0C/r8NGaT1S+PVqiXgktvVYHfAfhBn6ppsskte1k+3Ro6TOXhLi8A39UV78abwb3mvrO1TbQPh2LAxfhBrZS207W6jNL+BYeJ+HaNqhPnxZvBPfaWo/6JraSQ9LZJTok9Umk1SZQ+cQFyQULFigxMVHh4eFKSUnRli1bzjn/u+++qwsuuEDh4eFKTk7W6tWrvVQp/EFNow2P6tdeG6cN1bLbLtHGaUN5fEAAy9yao4Hz1mvMon9o4Lz1ytyaY3VJXufqNvCFfjXnGi07LipC865Pdh7QgiTNuz45YIMrfCDcZGZmaurUqZo9e7Z27NihXr16KT09Xd9//32N82/atEmjR4/Wrbfeqs8//1wjR47UyJEjtXPnTi9XDn/jyiMWKlk5EjLcj8dJNGwb+EKH+LpGyx7Vr70+m365lt12iT6bfnmVExj+Hwcey58KnpKSon79+unll1+WJFVUVCghIUF33323pk2bVm3+UaNG6cSJE/rggw+c0y655BL17t1bCxcurPPzPPlUcNiLrwxMBvfZtL9QYxb9o9r0ZbddotTOrS2oyPsasw1yi0os6xCfW1SigfPWV+s7t3Ha0HPWwv9j+3Dl+G1py01ZWZm2b9+utLQ057SgoCClpaVp8+bNNS6zefPmKvNLUnp6eq3zl5aWqri4uMoLqAtn+PbkC5dXrNaYbdCQ1k93aUjrEf+PA5el4aawsFDl5eWKiYmpMj0mJkZ5eXk1LpOXl+fS/BkZGYqKinK+EhIS3FM8bI0HRtqTL1xesZo/bwNX+87x/zhw2f5uqenTp2vq1KnOn4uLiwk4qJO/jyiM2jHekH9vg0AaGRwNZ2nLTXR0tIKDg5Wfn19len5+vmJjY2tcJjY21qX5w8LC1Lx58yovoC7+fHaLull5ecVXBMI24P9x4LK05SY0NFR9+vRRVlaWRo4cKelMh+KsrCxNmTKlxmVSU1OVlZWl++67zzlt7dq1Sk1N9ULFCCT+fHYL4Az+Hwcmyy9LTZ06VePHj1ffvn3Vv39/zZ8/XydOnNDEiRMlSePGjVN8fLwyMjIkSffee68GDx6s559/XsOHD9fy5cu1bds2/elPf7JyNWBTjCgM+D/+Hwcey8PNqFGjVFBQoEcffVR5eXnq3bu31qxZ4+w0nJOTo6Cgf189GzBggN555x3NnDlTM2bMUNeuXfXXv/5VSUlJVq0CAADwIZaPc+NtjHMDAID/8ZtxbgAAANyNcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGzF8scveFvlgMzFxcUWVwIAAOqr8rhdnwcrBFy4OXbsmCQpISHB4koAAICrjh07pqioqHPOE3DPlqqoqNCRI0fUrFkzORwOt753cXGxEhISdPjw4YB8blWgr7/ENmD9A3v9JbZBoK+/5LltYIzRsWPH1K5duyoP1K5JwLXcBAUF6fzzz/foZzRv3jxgv9QS6y+xDVj/wF5/iW0Q6OsveWYb1NViU4kOxQAAwFYINwAAwFYIN24UFham2bNnKywszOpSLBHo6y+xDVj/wF5/iW0Q6Osv+cY2CLgOxQAAwN5ouQEAALZCuAEAALZCuAEAALZCuAEAALZCuHHRggULlJiYqPDwcKWkpGjLli21zrtr1y5df/31SkxMlMPh0Pz5871XqIe4sv6LFi3SpZdeqpYtW6ply5ZKS0s75/z+wpVtsHLlSvXt21ctWrRQZGSkevfurTfffNOL1bqfK+t/tuXLl8vhcGjkyJGeLdDDXFn/pUuXyuFwVHmFh4d7sVrPcPU78NNPP2ny5MmKi4tTWFiYunXrptWrV3upWvdzZf2HDBlS7TvgcDg0fPhwL1bsfq5+B+bPn6/u3bsrIiJCCQkJuv/++/Xzzz97rkCDelu+fLkJDQ01r7/+utm1a5e57bbbTIsWLUx+fn6N82/ZssU8+OCDZtmyZSY2Nta8+OKL3i3YzVxd/zFjxpgFCxaYzz//3OzevdtMmDDBREVFmW+//dbLlbuPq9vgk08+MStXrjRfffWV2bdvn5k/f74JDg42a9as8XLl7uHq+lc6ePCgiY+PN5deeqn57W9/651iPcDV9V+yZIlp3ry5yc3Ndb7y8vK8XLV7uboNSktLTd++fc3VV19tNm7caA4ePGg2bNhgsrOzvVy5e7i6/j/88EOVv//OnTtNcHCwWbJkiXcLdyNXt8Hbb79twsLCzNtvv20OHjxoPvroIxMXF2fuv/9+j9VIuHFB//79zeTJk50/l5eXm3bt2pmMjIw6l+3QoYPfh5vGrL8xxpw+fdo0a9bMvPHGG54q0eMauw2MMeaiiy4yM2fO9ER5HteQ9T99+rQZMGCAee2118z48eP9Oty4uv5LliwxUVFRXqrOO1zdBq+++qrp1KmTKSsr81aJHtXYfcCLL75omjVrZo4fP+6pEj3O1W0wefJkc/nll1eZNnXqVDNw4ECP1chlqXoqKyvT9u3blZaW5pwWFBSktLQ0bd682cLKvMMd63/y5EmdOnVKrVq18lSZHtXYbWCMUVZWlvbu3avLLrvMk6V6REPX//HHH1fbtm116623eqNMj2no+h8/flwdOnRQQkKCfvvb32rXrl3eKNcjGrINVq1apdTUVE2ePFkxMTFKSkrS3LlzVV5e7q2y3cYd+8HFixfrpptuUmRkpKfK9KiGbIMBAwZo+/btzktXBw4c0OrVq3X11Vd7rM6Ae3BmQxUWFqq8vFwxMTFVpsfExGjPnj0WVeU97lj/hx9+WO3atavyn8KfNHQbFBUVKT4+XqWlpQoODtYrr7yiK6+80tPlul1D1n/jxo1avHixsrOzvVChZzVk/bt3767XX39dPXv2VFFRkZ577jkNGDBAu3bt8vgDfD2hIdvgwIEDWr9+vW6++WatXr1a+/bt01133aVTp05p9uzZ3ijbbRq7H9yyZYt27typxYsXe6pEj2vINhgzZowKCws1aNAgGWN0+vRp3XHHHZoxY4bH6iTcwCvmzZun5cuXa8OGDbboUOmKZs2aKTs7W8ePH1dWVpamTp2qTp06aciQIVaX5lHHjh3T2LFjtWjRIkVHR1tdjiVSU1OVmprq/HnAgAHq0aOH/vjHP+qJJ56wsDLvqaioUNu2bfWnP/1JwcHB6tOnj7777js9++yzfhduGmvx4sVKTk5W//79rS7FqzZs2KC5c+fqlVdeUUpKivbt26d7771XTzzxhGbNmuWRzyTc1FN0dLSCg4OVn59fZXp+fr5iY2Mtqsp7GrP+zz33nObNm6d169apZ8+enizToxq6DYKCgtSlSxdJUu/evbV7925lZGT4Xbhxdf3379+vQ4cOacSIEc5pFRUVkqSQkBDt3btXnTt39mzRbuSOfUCTJk100UUXad++fZ4o0eMasg3i4uLUpEkTBQcHO6f16NFDeXl5KisrU2hoqEdrdqfGfAdOnDih5cuX6/HHH/dkiR7XkG0wa9YsjR07VpMmTZIkJScn68SJE7r99tv1yCOPKCjI/T1k6HNTT6GhoerTp4+ysrKc0yoqKpSVlVXlzMyuGrr+zzzzjJ544gmtWbNGffv29UapHuOu70BFRYVKS0s9UaJHubr+F1xwgb788ktlZ2c7X7/5zW80dOhQZWdnKyEhwZvlN5o7/v7l5eX68ssvFRcX56kyPaoh22DgwIHat2+fM9hK0tdff624uDi/CjZS474D7777rkpLS3XLLbd4ukyPasg2OHnyZLUAUxl2jaceb+mxrso2tHz5chMWFmaWLl1qvvrqK3P77bebFi1aOG/tHDt2rJk2bZpz/tLSUvP555+bzz//3MTFxZkHH3zQfP755+Zf//qXVavQKK6u/7x580xoaKhZsWJFlVshjx07ZtUqNJqr22Du3Lnm448/Nvv37zdfffWVee6550xISIhZtGiRVavQKK6u/y/5+91Srq7/nDlzzEcffWT2799vtm/fbm666SYTHh5udu3aZdUqNJqr2yAnJ8c0a9bMTJkyxezdu9d88MEHpm3btubJJ5+0ahUapaH/BwYNGmRGjRrl7XI9wtVtMHv2bNOsWTOzbNkyc+DAAfPxxx+bzp07mxtvvNFjNRJuXPTSSy+Z9u3bm9DQUNO/f3/z97//3fm7wYMHm/Hjxzt/PnjwoJFU7TV48GDvF+4mrqx/hw4dalz/2bNne79wN3JlGzzyyCOmS5cuJjw83LRs2dKkpqaa5cuXW1C1+7iy/r/k7+HGGNfW/7777nPOGxMTY66++mqzY8cOC6p2L1e/A5s2bTIpKSkmLCzMdOrUyTz11FPm9OnTXq7afVxd/z179hhJ5uOPP/ZypZ7jyjY4deqUeeyxx0znzp1NeHi4SUhIMHfddZc5evSox+pzGOOpNiEAAADvo88NAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAHjQhAkTNHLkSKvLAAIK4QYIUBMmTJDD4XC+WrdurauuukpffPGF1aW5xdnrVvkaNGiQxz7v0KFDcjgcys7OrjL997//vZYuXeqxzwVQHeEGCGBXXXWVcnNzlZubq6ysLIWEhOiaa66xuiy3WbJkiXP9cnNztWrVqhrnO3XqlMdqiIqKUosWLTz2/gCqI9wAASwsLEyxsbGKjY1V7969NW3aNB0+fFgFBQW6/PLLNWXKlCrzFxQUKDQ01PlE4MTERD3xxBMaPXq0IiMjFR8frwULFlRZ5oUXXlBycrIiIyOVkJCgu+66S8ePH3f+/ptvvtGIESPUsmVLRUZG6le/+pVWr14tSTp69KhuvvlmtWnTRhEREeratauWLFlS7/Vr0aKFc/1iY2PVqlUrZwtLZmamBg8erPDwcL399tv64YcfNHr0aMXHx6tp06ZKTk7WsmXLqrxfRUWFnnnmGXXp0kVhYWFq3769nnrqKUlSx44dJUkXXXSRHA6HhgwZIqn6ZanS0lLdc889atu2rcLDwzVo0CBt3brV+fsNGzbI4XAoKytLffv2VdOmTTVgwADt3bu33usNBDrCDQBJ0vHjx/XWW2+pS5cuat26tSZNmqR33nlHpaWlznneeustxcfH6/LLL3dOe/bZZ9WrVy99/vnnmjZtmu69916tXbvW+fugoCD94Q9/0K5du/TGG29o/fr1euihh5y/nzx5skpLS/Xpp5/qyy+/1NNPP63zzjtPkjRr1ix99dVX+p//+R/t3r1br776qqKjo92yvpW17t69W+np6fr555/Vp08fffjhh9q5c6duv/12jR07Vlu2bHEuM336dM2bN89Z1zvvvKOYmBhJcs63bt065ebmauXKlTV+7kMPPaT33ntPb7zxhnbs2KEuXbooPT1dP/74Y5X5HnnkET3//PPatm2bQkJC9J//+Z9uWW8gIHjskZwAfNr48eNNcHCwiYyMNJGRkUaSiYuLM9u3bzfGGFNSUmJatmxpMjMzncv07NnTPPbYY86fO3ToYK666qoq7ztq1CgzbNiwWj/33XffNa1bt3b+nJycXOU9zzZixAgzceLEBq2fJBMeHu5cv8jISPP++++bgwcPGklm/vz5db7H8OHDzQMPPGCMMaa4uNiEhYWZRYsW1Thv5ft+/vnnVaaf/ST048ePmyZNmpi3337b+fuysjLTrl0788wzzxhjjPnkk0+MJLNu3TrnPB9++KGRZEpKSlzZBEDAouUGCGBDhw5Vdna2srOztWXLFqWnp2vYsGH65ptvFB4errFjx+r111+XJO3YsUM7d+7UhAkTqrxHampqtZ93797t/HndunW64oorFB8fr2bNmmns2LH64YcfdPLkSUnSPffcoyeffFIDBw7U7Nmzq3RovvPOO7V8+XL17t1bDz30kDZt2uTS+r344ovO9cvOztaVV17p/F3fvn2rzFteXq4nnnhCycnJatWqlc477zx99NFHysnJkSTt3r1bpaWluuKKK1yq4Wz79+/XqVOnNHDgQOe0Jk2aqH///lW2mST17NnT+e+4uDhJ0vfff9/gzwYCCeEGCGCRkZHq0qWLunTpon79+um1117TiRMntGjRIknSpEmTtHbtWn377bdasmSJLr/8cnXo0KHe73/o0CFdc8016tmzp9577z1t377d2SenrKzM+RkHDhzQ2LFj9eWXX6pv37566aWXJMkZtO6//34dOXJEV1xxhR588MF6f35sbKxz/bp06aLIyMgq6362Z599Vr///e/18MMP65NPPlF2drbS09OddUZERNT7c92hSZMmzn87HA5JZ/r8AKgb4QaAk8PhUFBQkEpKSiRJycnJ6tu3rxYtWqR33nmnxn4ff//736v93KNHD0nS9u3bVVFRoeeff16XXHKJunXrpiNHjlR7j4SEBN1xxx1auXKlHnjgAWe4kqQ2bdpo/PjxeuuttzR//nz96U9/cucqO3322Wf67W9/q1tuuUW9evVSp06d9PXXXzt/37VrV0VERDg7U/9SaGiopDMtQLXp3LmzQkND9dlnnzmnnTp1Slu3btWFF17opjUBEGJ1AQCsU1paqry8PEln7kx6+eWXdfz4cY0YMcI5z6RJkzRlyhRFRkbq2muvrfYen332mZ555hmNHDlSa9eu1bvvvqsPP/xQktSlSxedOnVKL730kkaMGKHPPvtMCxcurLL8fffdp2HDhqlbt246evSoPvnkE2c4evTRR9WnTx/96le/UmlpqT744APn79yta9euWrFihTZt2qSWLVvqhRdeUH5+vjN0hIeH6+GHH9ZDDz2k0NBQDRw4UAUFBdq1a5duvfVWtW3bVhEREVqzZo3OP/98hYeHKyoqqspnREZG6s4779Tvfvc7tWrVSu3bt9czzzyjkydP6tZbb/XIegGBiJYbIICtWbNGcXFxiouLU0pKirZu3ap3333XeRuzJI0ePVohISEaPXq0wsPDq73HAw88oG3btumiiy7Sk08+qRdeeEHp6emSpF69eumFF17Q008/raSkJL399tvKyMiosnx5ebkmT56sHj166KqrrlK3bt30yiuvSDrTGjJ9+nT17NlTl112mYKDg7V8+XKPbIuZM2fq4osvVnp6uoYMGaLY2NhqIwvPmjVLDzzwgB599FH16NFDo0aNcvaDCQkJ0R/+8Af98Y9/VLt27fTb3/62xs+ZN2+err/+eo0dO1YXX3yx9u3bp48++kgtW7b0yHoBgchhjDFWFwHAdx06dEidO3fW1q1bdfHFF1f5XWJiou677z7dd9991hQHADXgshSAGp06dUo//PCDZs6cqUsuuaRasAEAX8VlKQA1+uyzzxQXF6etW7dW6ydjtblz5+q8886r8TVs2DCrywNgMS5LAfA7P/74Y7URfStFREQoPj7eyxUB8CWEGwAAYCtclgIAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALby/wCefz+H3x/XagAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPwlJREFUeJzt3XtclGX+//H3AHIQFZWDoKGYh9LEQ5KllIeyNTPLasvMXK2srSw7bmknbSvBju52sDJDy1I62K7bdjLNdc1a8UCpleUprfBA2aBCiHD9/vDL/CJAmWFm7ntuXs/HYx7FcDPzmRtm7ref67qv22WMMQIAALChMKsLAAAAqA1BBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBUC9TZ06VS6Xq07bulwuTZ06NaD1DBw4UAMHDrTt4wGoO4IK4CBz5syRy+Xy3CIiItSmTRuNGzdOP/zwg9Xl2U5aWlqV/ZWUlKQzzjhDb7/9tl8ev7i4WFOnTtWyZcv88nhAQ0RQARzor3/9q1555RU999xzGjp0qObNm6cBAwbo119/Dcjz3XvvvSopKQnIYwdaz5499corr+iVV17RHXfcoR9//FEXXXSRnnvuuXo/dnFxsR544AGCClAPEVYXAMD/hg4dqoyMDEnS+PHjlZCQoOnTp2vRokW69NJL/f58ERERiogIzY+TNm3a6IorrvB8/ac//UkdO3bUk08+qeuuu87CygBIdFSABuGMM86QJG3ZsqXK/V9//bX++Mc/qmXLloqOjlZGRoYWLVpUZZuysjI98MAD6tSpk6KjoxUfH6/TTz9dixcv9mxT0xyV0tJS3XrrrUpMTFTTpk11/vnn6/vvv69W27hx45SWllbt/poeMycnR2eeeaaSkpIUFRWlrl27aubMmV7ti2NJTk5Wly5dtG3btqNut2fPHl199dVq1aqVoqOj1aNHD82dO9fz/e3btysxMVGS9MADD3iGlwI9PwdwmtD8JxAAr2zfvl2S1KJFC899GzduVGZmptq0aaNJkyYpNjZWr7/+ukaMGKG33npLF154oaQjgSErK0vjx49Xnz59VFRUpNWrV2vt2rU6++yza33O8ePHa968ebr88svVr18/LV26VMOGDavX65g5c6ZOOukknX/++YqIiNC//vUv3XDDDaqoqNCECRPq9diVysrKtHPnTsXHx9e6TUlJiQYOHKjNmzfrxhtvVPv27fXGG29o3Lhx+uWXX3TzzTcrMTFRM2fO1PXXX68LL7xQF110kSSpe/fufqkTaDAMAMfIyckxksxHH31k9u7da3bu3GnefPNNk5iYaKKioszOnTs925511lkmPT3d/Prrr577KioqTL9+/UynTp089/Xo0cMMGzbsqM87ZcoU89uPk/z8fCPJ3HDDDVW2u/zyy40kM2XKFM99Y8eONe3atTvmYxpjTHFxcbXthgwZYo4//vgq9w0YMMAMGDDgqDUbY0y7du3MH/7wB7N3716zd+9e8/nnn5vLLrvMSDI33XRTrY83Y8YMI8nMmzfPc9+hQ4dM3759TZMmTUxRUZExxpi9e/dWe70AvMPQD+BAgwcPVmJiolJTU/XHP/5RsbGxWrRokY477jhJ0s8//6ylS5fq0ksv1f79+1VYWKjCwkL99NNPGjJkiL799lvPWULNmzfXxo0b9e2339b5+d99911J0sSJE6vcf8stt9TrdcXExHj+3+12q7CwUAMGDNDWrVvldrt9eswPP/xQiYmJSkxMVI8ePfTGG29ozJgxmj59eq0/8+677yo5OVmjRo3y3NeoUSNNnDhRBw4c0H/+8x+fagFQnWOCyvLlyzV8+HC1bt1aLpdL//jHPwL+nD/88IOuuOIKxcfHKyYmRunp6Vq9enXAnxc4lmeeeUaLFy/Wm2++qXPPPVeFhYWKioryfH/z5s0yxui+++7zHKQrb1OmTJF0ZA6GdOQMol9++UWdO3dWenq6/vKXv+iLL7446vN/9913CgsLU4cOHarcf8IJJ9TrdX3yyScaPHiwYmNj1bx5cyUmJuruu++WJJ+DyqmnnqrFixfro48+0sqVK1VYWKiXX365Sij6ve+++06dOnVSWFjVj9AuXbp4vg/APxwzR+XgwYPq0aOHrrrqKs9YcCDt27dPmZmZGjRokN577z0lJibq22+/rTIHALBKnz59PGf9jBgxQqeffrouv/xybdq0SU2aNFFFRYUk6Y477tCQIUNqfIyOHTtKkvr3768tW7bon//8pz788EO9+OKLevLJJ/Xcc89p/Pjx9a61toXiysvLq3y9ZcsWnXXWWTrxxBP1xBNPKDU1VZGRkXr33Xf15JNPel6TtxISEjR48GCffhZA4DkmqAwdOlRDhw6t9fulpaW65557NH/+fP3yyy/q1q2bpk+f7vNqk9OnT1dqaqpycnI897Vv396nxwICKTw8XFlZWRo0aJCefvppTZo0Sccff7ykI8MVdTlIt2zZUldeeaWuvPJKHThwQP3799fUqVNrDSrt2rVTRUWFtmzZUqWLsmnTpmrbtmjRQr/88ku1+3/flfjXv/6l0tJSLVq0SG3btvXc//HHHx+zfn9r166dvvjiC1VUVFTpqnz99dee70u1hzAAdeeYoZ9jufHGG/Xpp59qwYIF+uKLL3TJJZfonHPO8Wrc/bcWLVqkjIwMXXLJJUpKSlKvXr00a9YsP1cN+MfAgQPVp08fzZgxQ7/++quSkpI0cOBAPf/88yooKKi2/d69ez3//9NPP1X5XpMmTdSxY0eVlpbW+nyV/2j4+9//XuX+GTNmVNu2Q4cOcrvdVYaTCgoKqq0OGx4eLkkyxnjuc7vdVf6xECznnnuudu3apdzcXM99hw8f1lNPPaUmTZpowIABkqTGjRtLUo1BDEDdOKajcjQ7duxQTk6OduzYodatW0s60vJ+//33lZOTo2nTpnn9mFu3btXMmTN122236e6771ZeXp4mTpyoyMhIjR071t8vAai3v/zlL7rkkks0Z84cXXfddXrmmWd0+umnKz09Xddcc42OP/547d69W59++qm+//57ff7555Kkrl27auDAgerdu7datmyp1atX680339SNN95Y63P17NlTo0aN0rPPPiu3261+/fppyZIl2rx5c7VtL7vsMt1111268MILNXHiRBUXF2vmzJnq3Lmz1q5d69nuD3/4gyIjIzV8+HD9+c9/1oEDBzRr1iwlJSXVGLYC6dprr9Xzzz+vcePGac2aNUpLS9Obb76pTz75RDNmzFDTpk0lHZn827VrV+Xm5qpz585q2bKlunXrpm7dugW1XiCkWX3aUSBIMm+//bbn63feecdIMrGxsVVuERER5tJLLzXGGPPVV18ZSUe93XXXXZ7HbNSokenbt2+V573pppvMaaedFpTXCNSk8vTkvLy8at8rLy83HTp0MB06dDCHDx82xhizZcsW86c//ckkJyebRo0amTZt2pjzzjvPvPnmm56fe+ihh0yfPn1M8+bNTUxMjDnxxBPNww8/bA4dOuTZpqZTiUtKSszEiRNNfHy8iY2NNcOHDzc7d+6s8XTdDz/80HTr1s1ERkaaE044wcybN6/Gx1y0aJHp3r27iY6ONmlpaWb69OnmpZdeMpLMtm3bPNt5c3rysU69ru3xdu/eba688kqTkJBgIiMjTXp6usnJyan2sytXrjS9e/c2kZGRnKoM+MBlzG/6qA7hcrn09ttva8SIEZKk3NxcjR49Whs3bvS0jys1adJEycnJOnTokLZu3XrUx42Pj/esNNmuXTudffbZevHFFz3fnzlzph566CEu/gYAgJ80iKGfXr16qby8XHv27PEsJf57kZGROvHEE+v8mJmZmdUmBn7zzTeeSXQAAKD+HBNUDhw4UGX8e9u2bcrPz1fLli3VuXNnjR49Wn/605/0+OOPq1evXtq7d6+WLFmi7t27+7Ss96233qp+/fpp2rRpuvTSS7Vq1Sq98MILeuGFF/z5sgAAaNAcM/SzbNkyDRo0qNr9Y8eO1Zw5c1RWVqaHHnpIL7/8sn744QclJCTotNNO0wMPPKD09HSfnvOdd97R5MmT9e2336p9+/a67bbbdM0119T3pQAAgP/jmKACAACcp8GsowIAAEIPQQUAANhWSE+mraio0I8//qimTZuyVDUAACHCGKP9+/erdevW1S7u+XshHVR+/PFHpaamWl0GAADwwc6dO3XccccddZuQDiqVy1Tv3LlTzZo1s7gaAABQF0VFRUpNTfUcx48mpINK5XBPs2bNCCoAAISYukzbYDItAACwLYIKAACwLYIKAACwrZCeo1JX5eXlKisrs7oMSzVq1KjalaMBALA7RwcVY4x27dqlX375xepSbKF58+ZKTk5mzRkAQMhwdFCpDClJSUlq3Lhxgz1AG2NUXFysPXv2SJJSUlIsrggAgLpxbFApLy/3hJT4+Hiry7FcTEyMJGnPnj1KSkpiGAgAEBIcO5m2ck5K48aNLa7EPir3RUOfrwMACB2ODSqVGupwT03YFwCAUOP4oAIAAEIXQQUAANgWQcXGPv30U4WHh2vYsGFV7t++fbtcLpfn1rJlSw0YMED//e9/LaoUAOBEBe4SrdxSqAJ3iWU1EFRsbPbs2brpppu0fPly/fjjj9W+/9FHH6mgoEDLly9X69atdd5552n37t0WVAoAcJrcvB3KzF6qy2f9T5nZS5Wbt8OSOggqNnXgwAHl5ubq+uuv17BhwzRnzpxq28THxys5OVndunXT3XffraKiIv3vf/8LfrEAAEcpcJdo8sL1qjBHvq4w0t0LN1jSWSGo1FGw21+vv/66TjzxRJ1wwgm64oor9NJLL8kYU+O2JSUlevnllyVJkZGRQakPAOBc2woPekJKpXJjtL2wOOi1OHbBN3/KzdvhSZZhLinronSNPKVtQJ9z9uzZuuKKKyRJ55xzjtxut/7zn/9o4MCBnm369eunsLAwFRcXyxij3r1766yzzgpoXQAA52ufEKswl6qElXCXS2kJwV+bjI7KMVjR/tq0aZNWrVqlUaNGSZIiIiI0cuRIzZ49u8p2ubm5Wrdund566y117NhRc+bMUaNGjQJWFwCgYUiJi1HWRekK/7/1t8JdLk27qJtS4mKCXgsdlWM4WvsrUL+w2bNn6/Dhw2rdurXnPmOMoqKi9PTTT3vuS01NVadOndSpUycdPnxYF154oTZs2KCoqKiA1AUAaDhGntJW/TsnanthsdISGlsSUiQ6KsdU2f76rUC2vw4fPqyXX35Zjz/+uPLz8z23zz//XK1bt9b8+fNr/Lk//vGPioiI0LPPPhuQugAADU9KXIz6doi3LKRIBJVjCnb765133tG+fft09dVXq1u3blVuF198cbXhn0oul0sTJ05Udna2iouDP9kJAIBAIKjUwchT2mrFpEGaf81pWjFpUEAn0s6ePVuDBw9WXFxcte9dfPHFWr16tYqKimr82bFjx6qsrKzK8BAAAKGMOSp1lBIXE5TW17/+9a9av9enTx/PKco1narcuHFj/fzzzwGrDQCAYKOjAgAAbIugAgAAbIugAgAAbIugAgAAbMvxQaW26+M0ROwLAECocWxQqVxKnjVF/r/KfcEy+wCAUOHY05PDw8PVvHlz7dmzR9KRU3ddLtcxfsqZjDEqLi7Wnj171Lx5c4WHh1tdEgAAdeLYoCJJycnJkuQJKw1d8+bNPfsEAIBQ4Oig4nK5lJKSoqSkJJWVlVldjqUaNWpEJwUAEHIcHVQqhYeHc5AGACAEOXYyLQAACH0EFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFuWBpXy8nLdd999at++vWJiYtShQwc9+OCDMsZYWRYAALCJCCuffPr06Zo5c6bmzp2rk046SatXr9aVV16puLg4TZw40crSAACADVgaVFauXKkLLrhAw4YNkySlpaVp/vz5WrVqlZVlAQAAm7B06Kdfv35asmSJvvnmG0nS559/rhUrVmjo0KE1bl9aWqqioqIqNwAA4FyWdlQmTZqkoqIinXjiiQoPD1d5ebkefvhhjR49usbts7Ky9MADDwS5SgAAYBVLOyqvv/66Xn31Vb322mtau3at5s6dq8cee0xz586tcfvJkyfL7XZ7bjt37gxyxQAAIJhcxsJTbFJTUzVp0iRNmDDBc99DDz2kefPm6euvvz7mzxcVFSkuLk5ut1vNmjULZKkAAMBPvDl+W9pRKS4uVlhY1RLCw8NVUVFhUUUAAMBOLJ2jMnz4cD388MNq27atTjrpJK1bt05PPPGErrrqKivLAgAANmHp0M/+/ft133336e2339aePXvUunVrjRo1Svfff78iIyOP+fMM/QAAEHq8OX5bGlTqi6ACAEDoCZk5KgAAAEdDUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAADUqcJdo5ZZCFbhLLKshwrJnBgAAtpWbt0OTF65XhZHCXFLWRekaeUrboNdBRwUAAFRR4C7xhBRJqjDS3Qs3WNJZIagAAIAqthUe9ISUSuXGaHthcdBrIagAAIAq2ifEKsxV9b5wl0tpCY2DXgtBBQAAVJESF6Osi9IV7jqSVsJdLk27qJtS4mKCXguTaQEAQDUjT2mr/p0Ttb2wWGkJjS0JKRJBBQAA1CIlLsaygFKJoR8AAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBblgeVH374QVdccYXi4+MVExOj9PR0rV692uqyAACADURY+eT79u1TZmamBg0apPfee0+JiYn69ttv1aJFCyvLAgAANmFpUJk+fbpSU1OVk5Pjua99+/YWVgQAAOzE0qGfRYsWKSMjQ5dccomSkpLUq1cvzZo1q9btS0tLVVRUVOUGAACcy9KgsnXrVs2cOVOdOnXSBx98oOuvv14TJ07U3Llza9w+KytLcXFxnltqamqQKwYAAMHkMsYYq548MjJSGRkZWrlypee+iRMnKi8vT59++mm17UtLS1VaWur5uqioSKmpqXK73WrWrFlQagYAAPVTVFSkuLi4Oh2/Le2opKSkqGvXrlXu69Kli3bs2FHj9lFRUWrWrFmVGwAAcC5Lg0pmZqY2bdpU5b5vvvlG7dq1s6giAABgJ5YGlVtvvVWfffaZpk2bps2bN+u1117TCy+8oAkTJlhZFgAAsAlLg8opp5yit99+W/Pnz1e3bt304IMPasaMGRo9erSVZQEAAJuwdDJtfXkzGQcAANhDyEymBQAAOBqCCgAAsC2CCgAAsC2CCgAADlfgLtHKLYUqcJdYXYrXLL0oIQAACKzcvB2avHC9KowU5pKyLkrXyFPaWl1WndFRAQDAoQrcJZ6QIkkVRrp74YaQ6qwQVAAAcKhthQc9IaVSuTHaXlhsTUE+IKgAAOBQ7RNiFeaqel+4y6W0hMbWFOQDggoAAA6VEhejrIvSFe46klbCXS5Nu6ibUuJiLK6s7phMCwCAg408pa36d07U9sJipSU0DqmQIhFUAABwvJS4mJALKJUY+gEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAHxS4S7RyS6EK3CVWlwI4WoTVBQBAqMnN26HJC9erwkhhLinronSNPKWt1WUBjkRHBQC8UOAu8YQUSaow0t0LN9BZAQKEoBIktIkBZ9hWeNATUiqVG6PthcXWFAQ4HEM/QUCbGHCO9gmxCnOpSlgJd7mUltDYuqIAB6OjEmC0iQFnSYmLUdZF6Qp3uSQdCSnTLuqmlLgYiysDnImOipcK3CXaVnhQ7RNi6/TBdLQ2MR9sQGgaeUpb9e+cqO2FxUpLaMx7GQgggooXfBnCoU0MOFNKXAwBBQgChn7qyNchHNrEAAD4jo5KHdVnCIc2MQAAviGo1FF9h3BoEwMA4D2GfuqIIRwAAIKPjooXGMIBACC4/NZR+fXXX/XYY4/56+FsKyUuRn07xBNSAAAIAq+Cyt69e/XOO+/oww8/VHl5uSSprKxMf/vb35SWlqbs7OyAFAkAABqmOg/9rFixQuedd56KiorkcrmUkZGhnJwcjRgxQhEREZo6darGjh0byFoBAEADU+eOyr333qtzzz1XX3zxhW677Tbl5eXpwgsv1LRp0/Tll1/quuuuU0wMwyEAAMB/XMYYc+zNpPj4eP33v/9V165dVVJSoiZNmmjhwoW64IILAl1jrYqKihQXFye3261mzZpZVgcAAKg7b47fde6o7Nu3TwkJCZKkmJgYNW7cWN26datfpQAAAEfh1enJX375pXbt2iVJMsZo06ZNOnjwYJVtunfv7r/qAABwMG8vdNsQ1XnoJywsTC6XS0fb3OVyec4GCgaGfgAAocqXC906hTfH7zp3VLZt23bMbfbv31/XhwMAoMGq7UK3/Tsn0ln5nToHlXbt2tV4//79+zV//nzNnj1bq1evDmpHBQCAUFSfC902ND6vTLt8+XKNHTtWKSkpeuyxxzRo0CB99tln/qwNAABHqrzQ7W95c6HbhsSrybS7du3SnDlzNHv2bBUVFenSSy9VaWmp/vGPf6hr166BqhEAAEepvNDt3Qs3qNwYLnR7FHUOKsOHD9fy5cs1bNgwzZgxQ+ecc47Cw8P13HPPBbI+AAAciQvd1k2dg8p7772niRMn6vrrr1enTp0CWROOgdPZAMAZUuJi+Bw/hjrPUVmxYoX279+v3r1769RTT9XTTz+twsLCQNaGGuTm7VBm9lJdPut/ysxeqty8HVaXBABAwNQ5qJx22mmaNWuWCgoK9Oc//1kLFixQ69atVVFRocWLF3NqchAUuEs06a2qp7NNWrheBe4SawsDACBAvD7rJzY2VldddZVWrFih9evX6/bbb1d2draSkpJ0/vnnB6JG/J813+3T75fbM0Za+90+S+oBACDQfD49WZJOOOEEPfLII/r+++81f/58f9WEWtS2KnDd1hYGrFPgLtHKLYV0/wB4zavTk2sTHh6uESNGaMSIEf54ONQiI62lXFKVropLUu+0FhZVBBxbQ14m3B+YPI+Grl4dFQRXSlyMsi9O9/zSwiRlX5zOhxdsq7Zlwn/bWbFDt8UONdSEyfOwmh3eG37pqCB4OO8eoeRYy4TbodtihxpqwrVgYDW7vDfoqISglLgY9e0Qz4cVbO9oy4TXpdsSaHaooTZHC3lAoNnpvUFQARAwlcuEh7uOpJXfLhNuhwOxHWqoDdeCgZXs9N5g6AdAQNU2XFl5IP7th2GwD8R2qKE2XAsGVrLTe4OOCoCAq2m48mjdlmDWZXUNRzPylLZaMWmQ5l9zmlZMGmSLuTNoGOz03nCZ2hbnCLLs7GxNnjxZN998s2bMmFGnnykqKlJcXJzcbreaNWsW2AIBBESBu8TyyeF2qAGwo0C9N7w5ftti6CcvL0/PP/+8unfvbnUpAILMDhdls0MNgB3Z4b1h+dDPgQMHNHr0aM2aNUstWjh34TI7nIsOAECosTyoTJgwQcOGDdPgwYOPuW1paamKioqq3EIBizYBAOAbS4PKggULtHbtWmVlZdVp+6ysLMXFxXluqampAa6w/ux0LjoAAKHGsqCyc+dO3XzzzXr11VcVHR1dp5+ZPHmy3G6357Zz584AV1l/djoXHQCAUGPZZNo1a9Zoz549Ovnkkz33lZeXa/ny5Xr66adVWlqq8PDwKj8TFRWlqKioYJdaL3Y6Fx0AgFBjWUflrLPO0vr165Wfn++5ZWRkaPTo0crPz68WUkKVnc5FBwAg1FjWUWnatKm6detW5b7Y2FjFx8dXuz/UcSFBAAB8Y4t1VBoCO5yLDgBAqLFVUFm2bJnVJQAAABuxfB0Vu7LDAm12qAEAACvZqqNiF7l5Ozxrn4S5pKyL0oN+MTA71AAAgNXoqPyOHRZos0MNAADYAUHld+ywQJsdaoBzMIQIIJQx9PM7dligzQ41wBkYQgQQ6uio/I4dFmizQw0IfQwhAnACOio1sMMCbXaoAaHtaEOI/D05X4G7RNsKD6p9Qiy/b4Q0gkot7LBAmx1qQOhiCLHhYsgPTsLQD+BQDCE2TAz5wWnoqAAOxhBiw8OQH5yGoAI4HEOIDQtDfnAahn4AwEEY8oPT0FEBAIdhyA9OQlABAAdiyA9OwdAPAPgZly0A/IeOCoAGz5+Lo7GGCeBfBBUADZo/g0Vta5j075zIMAzgI4Z+ADRY/l4cjSufA/5HUAHQYPk7WFSuYfJbrGEC1A9BBUCD5e9gwRomgP8xRwU+4+qsCHWVweLuhRtUboxfggVrmAD+RVCBTzizAU4RiGDBGiaA/zD0A69xdVY4TUpcjPp2iCdcADZEUIHXOLMBABAsBBUvHW3FyYayGiVnNgAAgoU5Kl442ryMhjRnIxATEAEAqInLGGOOvZk9FRUVKS4uTm63W82aNQvocxW4S5SZvbTKkEe4y6UVkwZJUq3fc/LBu8BdwpkNQIjhbD3YgTfHbzoqdXS0eRlGptbvOfmDgDMbgNDSkDq/cA7mqNTR0eZlMGcDgN1xth5CFUGljo624iSrUQKwO87WQ6hi6McLR1sYitUoAdhZZef393Pp6PzC7uioeOloC0OxaBQAu6Lzi1BFRwUAGgg6vwhFBBUAaEA4Ww+hhqEfAAAs0lBWNK8POioAAEnS5zv3adX2n9UnraV6pLawuhzHY12buiGoAAB0++v5emvtD56vLz65jR6/tKd1BTlcbeva9O+cyNDc7zD0AwAN3Oc791UJKZL01tof9PnOfRZV5Hysa1N3BBUAcCBv5j6s2v5zjfev3k5QCRRWNK87ggoAOExu3g5lZi/V5bP+p8zspcrN23HU7fuktazx/ow05qkECuva1B1zVADAQXyZ+9AjtYUuPrlNtTkqTKgNLNa1qRuCCgA4yNHmPhztQPj4pT31p77ttHr7PmWktSCkBAnr2hwbQQUAQlSBu0TbCg+qfUKs52BXn2v69EgloMB+mKMCACGotnkozH2A07iMMebYm9lTUVGR4uLi5Ha71axZM6vLAYCgKHCXKDN7abWuyYpJgzyBpMBdwtwH2JY3x2+GfgAgxNRlHgpzH+AUDP0AQIhhDQ40JAQVAAgxzENBQ8LQDwCEINbgQENBUAGAEMU8FDQEDP0AAADbIqgAAADbIqgAAADbIqgAAADbIqgAv1HgLtHKLYUqcJdYXQoAQJz1A3jk5u3Q5IXrVWGkMJeUdVG6Rp7S1uqyAKBBo6MC6EgnpTKkSEeuPHv3wg10VuBXdOwA79FRAVS3a6cA9UHHDvANHRVAXDsl1IRaZ4KOHeA7ggogrp0SSnLzdigze6kun/U/ZWYvVW7eDqtLOqajdewAHB1DP8D/4dop9ldbZ6J/50Rb/74qO3a/DSt07CAd+ZveVnhQ7RNibf03bCWCCvAbXDvF3kJ1LlFlx+7uhRtUbgwdO0hi3lJdWRpUsrKytHDhQn399deKiYlRv379NH36dJ1wwglWlgXApkK5M0HHLnQEo8sRqt1BK1g6R+U///mPJkyYoM8++0yLFy9WWVmZ/vCHP+jgwYNWlgUgiLyZGBvqc4lS4mLUt0N8yNTbEAVrDhTzlurO0o7K+++/X+XrOXPmKCkpSWvWrFH//v0tqgpAsPjS+qYzgUAJZpcjlLuDwWars37cbrckqWXLlhZXAiDQ6nPKLp0JBEIwuxyh3h0MJttMpq2oqNAtt9yizMxMdevWrcZtSktLVVpa6vm6qKgoWOUB8LNQnRgL5wp2l4PuYN3YpqMyYcIEbdiwQQsWLKh1m6ysLMXFxXluqampQawQgD+xyB7sxoouB93BY3MZY8yxNwusG2+8Uf/85z+1fPlytW/fvtbtauqopKamyu12q1mzZsEoFYAf5ebtqHbKLqdnwmoF7hK6HAFWVFSkuLi4Oh2/LQ0qxhjddNNNevvtt7Vs2TJ16tTJq5/35oUCsCcOCkDD483x29I5KhMmTNBrr72mf/7zn2ratKl27dolSYqLi1NMDB9YQEPAInv24cv6IaysikCztKPicrlqvD8nJ0fjxo075s/TUQHwWxw0fefLqeKsrApfhUxHxQbTY4CA4sAZPBw0fefL+iGsrIpgsc1ZPwg8b1YARf2F4lV+Q1V91mSBb+uHsLIqgsU266ggsPjXZnDxr83gYk2W+vFl/RBWVkWw0FFpAPjXZvDxr83gYk2W+vFl/RBWVkWw0FFpAPjXZvDxr83gqjxo/n5NFv6+686XVVJZWRXBQFBpADhoBh8HzuBz6kEzmBOyfTlVnNPLEWgElQaAg6Y1jnbg5GygwHDaQZO5ZYBNltD3FeuoeIcVQO2Bgw/qosBdoszspdU6oSsmDeL9i5DnzfGbybQNCBe/sh4Tm1FXTMgGjiCoAEHEwQd1xZlMwBEEFfiMBeS8x8EHdcXpv8ARTKaFT5hn4RsmNsMbTj2TCfAGk2nhNSb51Z+/JzZzFhGAUBIyFyVEaGIBufrz52m0dLcAOBlzVOA15lnYB2cRWYc5WkBwEFTgNSb52QdnEVmDK2MDwcPQD3zCJD974PIIwceVsYHgoqMCn7GAnPXobgUfXSwguOioACGO7lZw0cUCgouOCuAAdLeChy4WEFx0VADAS3SxgOAhqAD1xGJrDZM/18IBUDuCClAPLLYGAIHFHBXARyy2BgCBR1ABfMRpqgAQeAQVwEdcSgAAAo+gAviI01QBIPCYTAvUg11OU+XMIwBORVAB6uBoQcDq01Q58whAJSf+o4WgAtuw6xvMzkGAC+QBqGTnz6r6YI4KbCE3b4cys5fq8ln/U2b2UuXm7bC6JEn2PwWZM48ASPb/rKoPggosZ+c3mN2DAGceAZDs/1lVHwQVWM7ObzC7BwHOPAqsAneJVm4ptEVoBo7G7p9V9cEcFViu8g3227BilzdYZRC4e+EGlRtjyyBglzOPnMap4/1wplD4rPKVyxhjjr2ZPRUVFSkuLk5ut1vNmjWzuhzUQ27ejmpvMDsdFArcJQSBBqTAXaLM7KXVwvOKSYP4/cPWQuWzypvjNx0V2ILduwJWn4KM4DracCR/B7AzJ35WEVRgG058gyE02Xk4EmhomEwLAL/DJGXUhgnWwUdHBQBqYPfhSAQfE6ytQUcFAGqREhejvh3iCSmw9XpPTkdQQUijDQt/4O8Ix2Ln9Z6cjqEfhCxf27C+XFPIrtchQv3Rznc2f73fmWBtHYIKQvIg7OvF+Hw5KHEgcy4u6uhs/ny/O3lBNbsjqDiMt6EjVA/Cvqxz4ctBiQOZs7FeinMF4v3OBGtrEFQcxNvQEcoHYV/asL4clKw4kIVihytU0c53rkC931nvKfiYTOsQvsxID+XJYcda56KmyZG+XLQr2Bf6ys3boczspbp81v+Umb1UuXk7AvI8OIL1UpwrFN7vqBs6Kg7hy78eQv1fk7W1Yf05xhzMcelQ7nCFMtr5zmT39zvqjqDiEL6EDie8KX/fhg3EGHOwDmTMl7AO7XxnsvP7HXVHUHEIX0OH096UgRpjDsaBLNQ7XIAd2fX9jrojqDiIr6HDSW/KUD7YO6HDBQD+RlBxGCeFDl+E+sHeaR0uAKgvggocZ+QpbXViclPlbd+nU9JaqEdqC6tL8kpDD5uA1VgiwF4IKnCcUF3EDoD1+PywH9ZRgaNwhVMAvuLzw54IKnCUUF7EDvXHVZBRH3x+2BNDPw7T0MdWQ/msH9QPLXvUF58f9kRHxUFYfp0l0f0l1DoTtOzhD3x+2BMdFYdg+fX/j1N86ycUOxOs6gt/4fPDfuioOISdxlbt8q9xI3PsjX7HLrVbJVQ7E1xMDv7my+cHAoOOikPYZWw1N2+HJr21XkaSS1L2xfX/17i382587QiEYifB30K1MxHqC/3BPvgcsB+CikPY4YO6wF3iCSmSZCRNemt9vYafvP3Q8HUIjKGzI+wSeH1Byx71xeeAPRFUHMTqD+rV23+u1iw1ktZs36fzehypxZvuiC8fGr52BEK1k+Bvdgi89eHEVX0b+pl8wVSXzwFffh/8DuuHoOIw/v6g9uYN5nK5arn/yH+97Y74Eh587QiEcifB36wOvPj/GIYIrmN9Dvjy++B3WH9MpkWtvD3duXe7Fvp9VHG5pJPbtfBpkqYvEyR9Pb2Q0xKrSomLUd8O8Q329dtBqE5sDmVH+xzw5ffB79A/bNFReeaZZ/Too49q165d6tGjh5566in16dPH6rIaNF+GXVLiYpR9cXq1fz2kxMVo5ZZCr7sjvg5D+NoRoJNgLw29Xc5wpDVq+xzw5ffB79A/LA8qubm5uu222/Tcc8/p1FNP1YwZMzRkyBBt2rRJSUlJVpfXYPn6BqvtTe7r0Iqv4cHXITAnznEIRbTLGY60Uk2fA778Pvgd+oflQz9PPPGErrnmGl155ZXq2rWrnnvuOTVu3FgvvfSS1aU1aPVZl6KmYYP6DK0wDNGw0C4/guFIe/Hl98Hv0D8s7agcOnRIa9as0eTJkz33hYWFafDgwfr000+rbV9aWqrS0lLP10VFRUGpsyEKxNkfDK2gLmiX/3+8Z+zFl98Hv8P6szSoFBYWqry8XK1atapyf6tWrfT1119X2z4rK0sPPPBAsMpr8ALxBmNoBcdCu7wq3jP24svvg99h/Vg+9OONyZMny+12e247d+60uiTHY9gFwUa7HMBvWdpRSUhIUHh4uHbv3l3l/t27dys5Obna9lFRUYqKigpWeQAsQrscQCVLOyqRkZHq3bu3lixZ4rmvoqJCS5YsUd++fS2sDIDV6OYBkGxwevJtt92msWPHKiMjQ3369NGMGTN08OBBXXnllVaXBgAALGZ5UBk5cqT27t2r+++/X7t27VLPnj31/vvvV5tgCwAAGh6XMeb315ELGUVFRYqLi5Pb7VazZs2sLgcAANSBN8fvkDrrBwAANCwEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFuWr0xbH5Vr1RUVFVlcCQAAqKvK43Zd1pwN6aCyf/9+SVJqaqrFlQAAAG/t379fcXFxR90mpJfQr6io0I8//qimTZvK5XJ5/fNFRUVKTU3Vzp07G+wS/OyDI9gP7INK7Af2gcQ+qBSo/WCM0f79+9W6dWuFhR19FkpId1TCwsJ03HHH1ftxmjVr1qD/ECX2QSX2A/ugEvuBfSCxDyoFYj8cq5NSicm0AADAtggqAADAthp0UImKitKUKVMUFRVldSmWYR8cwX5gH1RiP7APJPZBJTvsh5CeTAsAAJytQXdUAACAvRFUAACAbRFUAACAbRFUAACAbTk+qDzzzDNKS0tTdHS0Tj31VK1atarWbTdu3KiLL75YaWlpcrlcmjFjRvAKDSBv9sGsWbN0xhlnqEWLFmrRooUGDx581O1DiTf7YeHChcrIyFDz5s0VGxurnj176pVXXglitYHhzT74rQULFsjlcmnEiBGBLTAIvNkHc+bMkcvlqnKLjo4OYrWB4+3fwi+//KIJEyYoJSVFUVFR6ty5s959990gVRsY3uyDgQMHVvtbcLlcGjZsWBAr9j9v/w5mzJihE044QTExMUpNTdWtt96qX3/9NbBFGgdbsGCBiYyMNC+99JLZuHGjueaaa0zz5s3N7t27a9x+1apV5o477jDz5883ycnJ5sknnwxuwQHg7T64/PLLzTPPPGPWrVtnvvrqKzNu3DgTFxdnvv/++yBX7l/e7oePP/7YLFy40Hz55Zdm8+bNZsaMGSY8PNy8//77Qa7cf7zdB5W2bdtm2rRpY8444wxzwQUXBKfYAPF2H+Tk5JhmzZqZgoICz23Xrl1Brtr/vN0PpaWlJiMjw5x77rlmxYoVZtu2bWbZsmUmPz8/yJX7j7f74Keffqryd7BhwwYTHh5ucnJyglu4H3m7D1599VUTFRVlXn31VbNt2zbzwQcfmJSUFHPrrbcGtE5HB5U+ffqYCRMmeL4uLy83rVu3NllZWcf82Xbt2jkiqNRnHxhjzOHDh03Tpk3N3LlzA1ViUNR3PxhjTK9evcy9994biPKCwpd9cPjwYdOvXz/z4osvmrFjx4Z8UPF2H+Tk5Ji4uLggVRc83u6HmTNnmuOPP94cOnQoWCUGXH0/E5588knTtGlTc+DAgUCVGHDe7oMJEyaYM888s8p9t912m8nMzAxonY4d+jl06JDWrFmjwYMHe+4LCwvT4MGD9emnn1pYWfD4Yx8UFxerrKxMLVu2DFSZAVff/WCM0ZIlS7Rp0yb1798/kKUGjK/74K9//auSkpJ09dVXB6PMgPJ1Hxw4cEDt2rVTamqqLrjgAm3cuDEY5QaML/th0aJF6tu3ryZMmKBWrVqpW7dumjZtmsrLy4NVtl/547Nx9uzZuuyyyxQbGxuoMgPKl33Qr18/rVmzxjM8tHXrVr377rs699xzA1prSF+U8GgKCwtVXl6uVq1aVbm/VatW+vrrry2qKrj8sQ/uuusutW7dusofc6jxdT+43W61adNGpaWlCg8P17PPPquzzz470OUGhC/7YMWKFZo9e7by8/ODUGHg+bIPTjjhBL300kvq3r273G63HnvsMfXr108bN270ywVRreDLfti6dauWLl2q0aNH691339XmzZt1ww03qKysTFOmTAlG2X5V38/GVatWacOGDZo9e3agSgw4X/bB5ZdfrsLCQp1++ukyxujw4cO67rrrdPfddwe0VscGFdRfdna2FixYoGXLljlmAqE3mjZtqvz8fB04cEBLlizRbbfdpuOPP14DBw60urSA279/v8aMGaNZs2YpISHB6nIs07dvX/Xt29fzdb9+/dSlSxc9//zzevDBBy2sLLgqKiqUlJSkF154QeHh4erdu7d++OEHPfrooyEZVOpr9uzZSk9PV58+fawuJaiWLVumadOm6dlnn9Wpp56qzZs36+abb9aDDz6o++67L2DP69igkpCQoPDwcO3evbvK/bt371ZycrJFVQVXffbBY489puzsbH300Ufq3r17IMsMOF/3Q1hYmDp27ChJ6tmzp7766itlZWWFZFDxdh9s2bJF27dv1/Dhwz33VVRUSJIiIiK0adMmdejQIbBF+5k/PhMaNWqkXr16afPmzYEoMSh82Q8pKSlq1KiRwsPDPfd16dJFu3bt0qFDhxQZGRnQmv2tPn8LBw8e1IIFC/TXv/41kCUGnC/74L777tOYMWM0fvx4SVJ6eroOHjyoa6+9Vvfcc4/CwgIzm8Sxc1QiIyPVu3dvLVmyxHNfRUWFlixZUuVfSE7m6z545JFH9OCDD+r9999XRkZGMEoNKH/9LVRUVKi0tDQQJQact/vgxBNP1Pr165Wfn++5nX/++Ro0aJDy8/OVmpoazPL9wh9/B+Xl5Vq/fr1SUlICVWbA+bIfMjMztXnzZk9YlaRvvvlGKSkpIRdSpPr9LbzxxhsqLS3VFVdcEegyA8qXfVBcXFwtjFSGVxPIywYGdKquxRYsWGCioqLMnDlzzJdffmmuvfZa07x5c8/phWPGjDGTJk3ybF9aWmrWrVtn1q1bZ1JSUswdd9xh1q1bZ7799lurXkK9ebsPsrOzTWRkpHnzzTernIq3f/9+q16CX3i7H6ZNm2Y+/PBDs2XLFvPll1+axx57zERERJhZs2ZZ9RLqzdt98HtOOOvH233wwAMPmA8++MBs2bLFrFmzxlx22WUmOjrabNy40aqX4Bfe7ocdO3aYpk2bmhtvvNFs2rTJvPPOOyYpKck89NBDVr2EevP1/XD66aebkSNHBrvcgPB2H0yZMsU0bdrUzJ8/32zdutV8+OGHpkOHDubSSy8NaJ2ODirGGPPUU0+Ztm3bmsjISNOnTx/z2Wefeb43YMAAM3bsWM/X27ZtM5Kq3QYMGBD8wv3Im33Qrl27GvfBlClTgl+4n3mzH+655x7TsWNHEx0dbVq0aGH69u1rFixYYEHV/uXNPvg9JwQVY7zbB7fccotn21atWplzzz3XrF271oKq/c/bv4WVK1eaU0891URFRZnjjz/ePPzww+bw4cNBrtq/vN0HX3/9tZFkPvzwwyBXGjje7IOysjIzdepU06FDBxMdHW1SU1PNDTfcYPbt2xfQGl3GBLJfAwAA4DvHzlEBAAChj6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAHUwbtw4jRgxwuoygAaHoAKEuHHjxsnlcnlu8fHxOuecc/TFF19YXZpf/Pa1Vd5OP/30gD3f9u3b5XK5lJ+fX+X+v/3tb5ozZ07AnhdAzQgqgAOcc845KigoUEFBgZYsWaKIiAidd955VpflNzk5OZ7XV1BQoEWLFtW4XVlZWcBqiIuLU/PmzQP2+ABqRlABHCAqKkrJyclKTk5Wz549NWnSJO3cuVN79+7VmWeeqRtvvLHK9nv37lVkZKTnyqlpaWl68MEHNWrUKMXGxqpNmzZ65plnqvzME088ofT0dMXGxio1NVU33HCDDhw44Pn+d999p+HDh6tFixaKjY3VSSedpHfffVeStG/fPo0ePVqJiYmKiYlRp06dlJOTU+fX17x5c8/rS05OVsuWLT2dj9zcXA0YMEDR0dF69dVX9dNPP2nUqFFq06aNGjdurPT0dM2fP7/K41VUVOiRRx5Rx44dFRUVpbZt2+rhhx+WJLVv316S1KtXL7lcLg0cOFBS9aGf0tJSTZw4UUlJSYqOjtbpp5+uvLw8z/eXLVsml8ulJUuWKCMjQ40bN1a/fv20adOmOr9uAAQVwHEOHDigefPmqWPHjoqPj9f48eP12muvqbS01LPNvHnz1KZNG5155pme+x599FH16NFD69at06RJk3TzzTdr8eLFnu+HhYXp73//uzZu3Ki5c+dq6dKluvPOOz3fnzBhgkpLS7V8+XKtX79e06dPV5MmTSRJ9913n7788ku99957+uqrrzRz5kwlJCT45fVW1vrVV19pyJAh+vXXX9W7d2/9+9//1oYNG3TttddqzJgxWrVqlednJk+erOzsbE9dr732mlq1aiVJnu0++ugjFRQUaOHChTU+75133qm33npLc+fO1dq1a9WxY0cNGTJEP//8c5Xt7rnnHj3++ONavXq1IiIidNVVV/nldQMNRkAveQgg4MaOHWvCw8NNbGysiY2NNZJMSkqKWbNmjTHGmJKSEtOiRQuTm5vr+Znu3bubqVOner5u166dOeecc6o87siRI83QoUNrfd433njDxMfHe75OT0+v8pi/NXz4cHPllVf69PokmejoaM/ri42NNW+//bbnauczZsw45mMMGzbM3H777cYYY4qKikxUVJSZNWtWjdtWPu66deuq3P/bq0cfOHDANGrUyLz66que7x86dMi0bt3aPPLII8YYYz7++GMjyXz00Ueebf79738bSaakpMSbXQA0aHRUAAcYNGiQ8vPzlZ+fr1WrVmnIkCEaOnSovvvuO0VHR2vMmDF66aWXJElr167Vhg0bNG7cuCqP0bdv32pff/XVV56vP/roI5111llq06aNmjZtqjFjxuinn35ScXGxJGnixIl66KGHlJmZqSlTplSZzHv99ddrwYIF6tmzp+68806tXLnSq9f35JNPel5ffn6+zj77bM/3MjIyqmxbXl6uBx98UOnp6WrZsqWaNGmiDz74QDt27JAkffXVVyotLdVZZ53lVQ2/tWXLFpWVlSkzM9NzX6NGjdSnT58q+0ySunfv7vn/lJQUSdKePXt8fm6goSGoAA4QGxurjh07qmPHjjrllFP04osv6uDBg5o1a5Ykafz48Vq8eLG+//575eTk6Mwzz1S7du3q/Pjbt2/Xeeedp+7du+utt97SmjVrPHNYDh065HmOrVu3asyYMVq/fr0yMjL01FNPSZInNN1666368ccfddZZZ+mOO+6o8/MnJyd7Xl/Hjh0VGxtb5bX/1qOPPqq//e1vuuuuu/Txxx8rPz9fQ4YM8dQZExNT5+f1h0aNGnn+3+VySToyRwZA3RBUAAdyuVwKCwtTSUmJJCk9PV0ZGRmaNWuWXnvttRrnSXz22WfVvu7SpYskac2aNaqoqNDjjz+u0047TZ07d9aPP/5Y7TFSU1N13XXXaeHChbr99ts9QUmSEhMTNXbsWM2bN08zZszQCy+84M+X7PHJJ5/oggsu0BVXXKEePXro+OOP1zfffOP5fqdOnRQTE+OZSPx7kZGRko50ZmrToUMHRUZG6pNPPvHcV1ZWpry8PHXt2tVPrwSAJEVYXQCA+istLdWuXbskHTnD5umnn9aBAwc0fPhwzzbjx4/XjTfeqNjYWF144YXVHuOTTz7RI488ohEjRmjx4sV644039O9//1uS1LFjR5WVlempp57S8OHD9cknn+i5556r8vO33HKLhg4dqs6dO2vfvn36+OOPPUHn/vvvV+/evXXSSSeptLRU77zzjud7/tapUye9+eabWrlypVq0aKEnnnhCu3fv9gSI6Oho3XXXXbrzzjsVGRmpzMxM7d27Vxs3btTVV1+tpKQkxcTE6P3339dxxx2n6OhoxcXFVXmO2NhYXX/99frLX/6ili1bqm3btnrkkUdUXFysq6++OiCvC2io6KgADvD+++8rJSVFKSkpOvXUU5WXl6c33njDc2qtJI0aNUoREREaNWqUoqOjqz3G7bffrtWrV6tXr1566KGH9MQTT2jIkCGSpB49euiJJ57Q9OnT1a1bN7366qvKysqq8vPl5eWaMGGCunTponPOOUedO3fWs88+K+lIl2Ly5Mnq3r27+vfvr/DwcC1YsCAg++Lee+/VySefrCFDhmjgwIFKTk6utqLsfffdp9tvv13333+/unTpopEjR3rmjUREROjvf/+7nn/+ebVu3VoXXHBBjc+TnZ2tiy++WGPGjNHJJ5+szZs364MPPlCLFi0C8rqAhspljDFWFwEg8LZv364OHTooLy9PJ598cpXvpaWl6ZZbbtEtt9xiTXEAUAuGfgCHKysr008//aR7771Xp512WrWQAgB2xtAP4HCffPKJUlJSlJeXV21eidWmTZumJk2a1HgbOnSo1eUBsAGGfgBY5ueff662kmulmJgYtWnTJsgVAbAbggoAALAthn4AAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBt/T8kzZZRsFZzawAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_41.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMSUlEQVR4nO3deVxU9f4/8NcAMiDKJqtcFPc0UUmEENeiCI1S62ZqbmVdUzOlRck9S9BKuSVJWWplKtc1b/pzQ71el5srNzW1QAxKQLAcZHFA5vP7wy9zHVlkYGbOnDOv5+MxD50z58y8z4GZefH5fM7nqIQQAkREREQKYSd1AURERESmxHBDREREisJwQ0RERIrCcENERESKwnBDREREisJwQ0RERIrCcENERESKwnBDREREisJwQ0RERIrCcENEkpg/fz5UKlW91lWpVJg/f75Z6xkwYAAGDBhgtc9HRPXHcENk49asWQOVSqW/OTg4ICAgAOPGjcPvv/8udXlWJygoyOB4+fj4oG/fvti6datJnr+0tBTz58/HwYMHTfJ8RLaI4YaIAADvvvsuvvnmG6SkpCAmJgZr165F//79cevWLbO83uzZs1FWVmaW5za3Hj164JtvvsE333yDN998E1evXsWwYcOQkpLS6OcuLS3FggULGG6IGsFB6gKIyDrExMQgNDQUADBhwgR4eXlh8eLF2L59O5577jmTv56DgwMcHOT5ERQQEIAXXnhBf3/MmDFo3749li1bhokTJ0pYGREBbLkholr07dsXAJCZmWmw/OLFi3j22Wfh6ekJJycnhIaGYvv27QbrVFRUYMGCBejQoQOcnJzQokUL9OnTB3v37tWvU9OYG61Wi+nTp8Pb2xvNmzfHU089hd9++61abePGjUNQUFC15TU95+rVq/HII4/Ax8cHarUaXbp0wYoVK4w6Fvfj5+eHzp07Iysrq871rl27hpdeegm+vr5wcnJC9+7d8dVXX+kfv3LlCry9vQEACxYs0Hd9mXu8EZHSyPPPJiIyuytXrgAAPDw89MvOnz+PyMhIBAQEYObMmXBxccE//vEPDBkyBJs3b8bQoUMB3AkZCQkJmDBhAsLCwlBUVISTJ0/i9OnTeOyxx2p9zQkTJmDt2rUYOXIkevfujf3792Pw4MGN2o8VK1bgwQcfxFNPPQUHBwf885//xKRJk6DT6TB58uRGPXeViooK5OTkoEWLFrWuU1ZWhgEDBiAjIwNTpkxBmzZtsHHjRowbNw43btzA66+/Dm9vb6xYsQKvvvoqhg4dimHDhgEAunXrZpI6iWyGICKbtnr1agFA7Nu3TxQUFIicnByxadMm4e3tLdRqtcjJydGv++ijj4rg4GBx69Yt/TKdTid69+4tOnTooF/WvXt3MXjw4Dpfd968eeLuj6D09HQBQEyaNMlgvZEjRwoAYt68efplY8eOFa1bt77vcwohRGlpabX1oqOjRdu2bQ2W9e/fX/Tv37/OmoUQonXr1uLxxx8XBQUFoqCgQPz3v/8Vzz//vAAgXnvttVqfLykpSQAQa9eu1S8rLy8XERERolmzZqKoqEgIIURBQUG1/SUi47BbiogAAFFRUfD29kZgYCCeffZZuLi4YPv27fjLX/4CAPjjjz+wf/9+PPfcc7h58yYKCwtRWFiI69evIzo6Gr/88ov+7Cp3d3ecP38ev/zyS71ff+fOnQCAqVOnGiyfNm1ao/bL2dlZ/3+NRoPCwkL0798fly9fhkajadBz7tmzB97e3vD29kb37t2xceNGjB49GosXL651m507d8LPzw8jRozQL2vSpAmmTp2K4uJi/Otf/2pQLURUnU2Hm0OHDiE2NhYtW7aESqXCtm3bzPp6VeMB7r498MADZn1NovpKTk7G3r17sWnTJgwaNAiFhYVQq9X6xzMyMiCEwJw5c/Rf7FW3efPmAbgzpgS4c+bVjRs30LFjRwQHB+Ott97Cjz/+WOfr//rrr7Czs0O7du0Mlnfq1KlR+3XkyBFERUXBxcUF7u7u8Pb2xjvvvAMADQ434eHh2Lt3L/bt24ejR4+isLAQX3/9tUGQutevv/6KDh06wM7O8GO3c+fO+seJyDRsesxNSUkJunfvjhdffFHft21uDz74IPbt26e/L9ezRUh5wsLC9GdLDRkyBH369MHIkSNx6dIlNGvWDDqdDgDw5ptvIjo6usbnaN++PQCgX79+yMzMxHfffYc9e/bgiy++wLJly5CSkoIJEyY0utbaJv+rrKw0uJ+ZmYlHH30UDzzwAJYuXYrAwEA4Ojpi586dWLZsmX6fjOXl5YWoqKgGbUtE5mfT36wxMTGIiYmp9XGtVotZs2Zh/fr1uHHjBrp27YrFixc3atZRBwcH+Pn5NXh7Ikuwt7dHQkICBg4ciOXLl2PmzJlo27YtgDtdKfX5Yvf09MT48eMxfvx4FBcXo1+/fpg/f36t4aZ169bQ6XTIzMw0aK25dOlStXU9PDxw48aNasvvbf345z//Ca1Wi+3bt6NVq1b65QcOHLhv/abWunVr/Pjjj9DpdAatNxcvXtQ/DtQe3Iio/my6W+p+pkyZgmPHjmHDhg348ccf8de//hVPPPGEUeMI7vXLL7+gZcuWaNu2LUaNGoXs7GwTVkxkOgMGDEBYWBiSkpJw69Yt+Pj4YMCAAfjss8+Qm5tbbf2CggL9/69fv27wWLNmzdC+fXtotdpaX6/qD42PP/7YYHlSUlK1ddu1aweNRmPQ1ZWbm1ttlmB7e3sAgBBCv0yj0WD16tW11mEugwYNQl5eHlJTU/XLbt++jU8++QTNmjVD//79AQBNmzYFgBrDGxHVj0233NQlOzsbq1evRnZ2Nlq2bAngTnP8rl27sHr1aixatMjo5wwPD8eaNWvQqVMn5ObmYsGCBejbty/OnTuH5s2bm3oXiBrtrbfewl//+lesWbMGEydORHJyMvr06YPg4GC8/PLLaNu2LfLz83Hs2DH89ttv+O9//wsA6NKlCwYMGICePXvC09MTJ0+exKZNmzBlypRaX6tHjx4YMWIEPv30U2g0GvTu3RtpaWnIyMiotu7zzz+PGTNmYOjQoZg6dSpKS0uxYsUKdOzYEadPn9av9/jjj8PR0RGxsbH429/+huLiYqxcuRI+Pj41BjRzeuWVV/DZZ59h3LhxOHXqFIKCgrBp0yYcOXIESUlJ+s8AZ2dndOnSBampqejYsSM8PT3RtWtXdO3a1aL1Esma1KdrWQsAYuvWrfr733//vQAgXFxcDG4ODg7iueeeE0IIceHCBQGgztuMGTNqfc0///xTuLq6ii+++MLcu0dUq6pTwU+cOFHtscrKStGuXTvRrl07cfv2bSGEEJmZmWLMmDHCz89PNGnSRAQEBIgnn3xSbNq0Sb/de++9J8LCwoS7u7twdnYWDzzwgHj//fdFeXm5fp2aTtsuKysTU6dOFS1atBAuLi4iNjZW5OTk1Hhq9J49e0TXrl2Fo6Oj6NSpk1i7dm2Nz7l9+3bRrVs34eTkJIKCgsTixYvFqlWrBACRlZWlX8+YU8Hvd5p7bc+Xn58vxo8fL7y8vISjo6MIDg4Wq1evrrbt0aNHRc+ePYWjoyNPCydqAJUQd7XX2jCVSoWtW7diyJAhAIDU1FSMGjUK58+f1zdtV2nWrBn8/PxQXl6Oy5cv1/m8LVq00M84WpNevXohKioKCQkJjd4HIiIiYrdUrUJCQlBZWYlr167pp6G/l6OjY6NO5S4uLkZmZiZGjx7d4OcgIiIiQzYdboqLiw3687OyspCeng5PT0907NgRo0aNwpgxY/DRRx8hJCQEBQUFSEtLQ7du3Ro0Jfybb76J2NhYtG7dGlevXsW8efNgb29vMKkXERERNY5Nd0sdPHgQAwcOrLZ87NixWLNmDSoqKvDee+/h66+/xu+//w4vLy88/PDDWLBgAYKDg41+veeffx6HDh3C9evX4e3tjT59+uD999+vNmkZERERNZxNhxsiIiJSHs5zQ0RERIrCcENERESKYnMDinU6Ha5evYrmzZtzmnMiIiKZEELg5s2baNmyZbUL0N7L5sLN1atXERgYKHUZRERE1AA5OTn4y1/+Uuc6NhduqqY4z8nJgaurq8TVEBERUX0UFRUhMDCwXpcrsrlwU9UV5erqynBDREQkM/UZUsIBxURERKQoDDdERESkKJKGm0OHDiE2NhYtW7aESqXCtm3b7ruNVqvFrFmz0Lp1a6jVagQFBWHVqlXmL5aIiIhkQdIxNyUlJejevTtefPFFDBs2rF7bPPfcc8jPz8eXX36J9u3bIzc3FzqdzuS1VVZWoqKiwuTPa6uaNGlS7erqRERE5iBpuImJiUFMTEy919+1axf+9a9/4fLly/D09AQABAUFmbQmIQTy8vJw48YNkz4vAe7u7vDz8+P8QkREZFayOltq+/btCA0NxZIlS/DNN9/AxcUFTz31FBYuXAhnZ+cat9FqtdBqtfr7RUVFdb5GVbDx8fFB06ZN+UVsAkIIlJaW4tq1awAAf39/iSsiIiIlk1W4uXz5Mg4fPgwnJyds3boVhYWFmDRpEq5fv47Vq1fXuE1CQgIWLFhQr+evrKzUB5sWLVqYsnSbVxU+r127Bh8fH3ZRERGR2cjqbCmdTgeVSoVvv/0WYWFhGDRoEJYuXYqvvvoKZWVlNW4THx8PjUajv+Xk5NT6/FVjbJo2bWqW+m1d1XHlWCYiIjInWbXc+Pv7IyAgAG5ubvplnTt3hhACv/32Gzp06FBtG7VaDbVabdTrsCvKPHhciYjIEmTVchMZGYmrV6+iuLhYv+znn3+GnZ3dfa8zQURERLZB0nBTXFyM9PR0pKenAwCysrKQnp6O7OxsAHe6lMaMGaNff+TIkWjRogXGjx+Pn376CYcOHcJbb72FF198sdYBxURERGRbJA03J0+eREhICEJCQgAAcXFxCAkJwdy5cwEAubm5+qADAM2aNcPevXtx48YNhIaGYtSoUYiNjcXHH38sSf3WKC8vD6+99hratm0LtVqNwMBAxMbGIi0tDX/88Qdee+01dOrUCc7OzmjVqhWmTp0KjUaj3/7KlStQqVT6wHm3AQMGYNq0aQbLLly4gKeeegpubm5wcXFBr169DH5mREQkX7maMhzNLESupuZxrdZK0jE3AwYMgBCi1sfXrFlTbdkDDzyAvXv3mrEq+bpy5QoiIyPh7u6ODz74AMHBwaioqMDu3bsxefJkbNq0CVevXsWHH36ILl264Ndff8XEiRNx9epVbNq0yejXy8zMRJ8+ffDSSy9hwYIFcHV1xfnz5+Hk5GSGvSMiIktKPZGN+C1noROAnQpIGBaM4b1aSV1WvchqQDHVbdKkSVCpVDh+/DhcXFz0yx988EG8+OKLcHd3x+bNm/XL27Vrh/fffx8vvPACbt++DQcH434dZs2ahUGDBmHJkiUGz0lERPKWqynTBxsA0AngnS3n0K+jN/zdrH8YiKwGFMuNJZvz/vjjD+zatQuTJ082CDZV3N3da9xOo9HA1dXV6GCj0+mwY8cOdOzYEdHR0fDx8UF4eHi9rg9GRETWLauwRB9sqlQKgSuFpdIUZCSGGzNJPZGNyMT9GLnyB0Qm7kfqCfOOQ8nIyIAQAg888EC9tyksLMTChQvxyiuvVHusd+/eaNasmcHt3//+t/7xa9euobi4GImJiXjiiSewZ88eDB06FMOGDcO//vUvk+wTERFJo42XC+zumb3DXqVCkJc85oFjt5QZSNGcV9fYpZoUFRVh8ODB6NKlC+bPn1/t8dTUVHTu3Nlg2ahRo/T/r7pY6dNPP43p06cDAHr06IGjR48iJSUF/fv3N3IPiIjIWvi7OSNhWDDe2XIOlULAXqXComFdZdElBTDcmEVdzXnm+sXo0KEDVCoVLl68eN91b968iSeeeALNmzfH1q1b0aRJk2rrBAYGon379gbL7j7d3svLCw4ODujSpYvBOp07d8bhw4cbuBdERGQthvdqhX4dvXGlsBRBXk1lE2wAdkuZhRTNeZ6enoiOjkZycjJKSkqqPV51lfOioiI8/vjjcHR0xPbt2xt8ZpOjoyN69eqFS5cuGSz/+eef0bp16wY9JxERWRd/N2dEtGshq2ADMNyYRVVznv3/XW7AUs15ycnJqKysRFhYGDZv3oxffvkFFy5cwMcff4yIiAh9sCkpKcGXX36JoqIi5OXlIS8vD5WVlUa/3ltvvYXU1FSsXLkSGRkZWL58Of75z39i0qRJZtg7IiKi+mG3lJlI0ZzXtm1bnD59Gu+//z7eeOMN5ObmwtvbGz179sSKFStw+vRp/PDDDwBQrcspKysLQUFBRr3e0KFDkZKSgoSEBEydOhWdOnXC5s2b0adPH1PtEhERkdFUwtiRqDJXVFQENzc3/SnQd7t16xaysrLQpk0bTkRnBjy+RETUUHV9f9+L3VJERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3NbCxMdYWw+NKRESWwHBzl6qZektL5XFhMLmpOq41zYhMRERkKpzn5i729vZwd3fHtWvXAABNmzaFSqW6z1Z0P0IIlJaW4tq1a3B3d4e9vb3UJRERkYIx3NzDz88PAPQBh0zH3d1df3yJiIjMheHmHiqVCv7+/vDx8UFFRYXU5ShGkyZN2GJDREQWwXBTC3t7e34ZExERyRAHFBMREZGiMNwQERGRojDcEBERkaIw3BAREZGiMNwQERGRojDcEBERkaIw3BAREZGiMNwQERGRojDcEBERkaIw3BAREZGiMNwQERGRojDcEBERkaIw3BAREZGiSBpuDh06hNjYWLRs2RIqlQrbtm2r97ZHjhyBg4MDevToYbb6iIiISH4kDTclJSXo3r07kpOTjdruxo0bGDNmDB599FEzVUZERERy5SDli8fExCAmJsbo7SZOnIiRI0fC3t7eqNYeIiIiUj7ZjblZvXo1Ll++jHnz5tVrfa1Wi6KiIoMbERERKZesws0vv/yCmTNnYu3atXBwqF+jU0JCAtzc3PS3wMBAM1dJREREUpJNuKmsrMTIkSOxYMECdOzYsd7bxcfHQ6PR6G85OTlmrJKIiIikJumYG2PcvHkTJ0+exJkzZzBlyhQAgE6ngxACDg4O2LNnDx555JFq26nVaqjVakuXS0RERBKRTbhxdXXF2bNnDZZ9+umn2L9/PzZt2oQ2bdpIVBkRERFZE0nDTXFxMTIyMvT3s7KykJ6eDk9PT7Rq1Qrx8fH4/fff8fXXX8POzg5du3Y12N7HxwdOTk7VlhMREZHtkjTcnDx5EgMHDtTfj4uLAwCMHTsWa9asQW5uLrKzs6Uqj4iIiGRIJYQQUhdhSUVFRXBzc4NGo4Grq6vU5RAREVE9GPP9LZuzpYiIiIjqg+GGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFEXScHPo0CHExsaiZcuWUKlU2LZtW53rb9myBY899hi8vb3h6uqKiIgI7N692zLFEhERkSxIGm5KSkrQvXt3JCcn12v9Q4cO4bHHHsPOnTtx6tQpDBw4ELGxsThz5oyZKyUiIiK5UAkhhNRFAIBKpcLWrVsxZMgQo7Z78MEHMXz4cMydO7de6xcVFcHNzQ0ajQaurq4NqJSIiIgszZjvbwcL1WQWOp0ON2/ehKenZ63raLVaaLVa/f2ioiJLlEZEREQSkfWA4g8//BDFxcV47rnnal0nISEBbm5u+ltgYKAFKyQiIiJLk224WbduHRYsWIB//OMf8PHxqXW9+Ph4aDQa/S0nJ8eCVRIREZGlybJbasOGDZgwYQI2btyIqKioOtdVq9VQq9UWqoyIiIikJruWm/Xr12P8+PFYv349Bg8eLHU5REREZGUkbbkpLi5GRkaG/n5WVhbS09Ph6emJVq1aIT4+Hr///ju+/vprAHe6osaOHYu///3vCA8PR15eHgDA2dkZbm5ukuwDERERWRdJW25OnjyJkJAQhISEAADi4uIQEhKiP607NzcX2dnZ+vU///xz3L59G5MnT4a/v7/+9vrrr0tSPxEREVkfq5nnxlI4zw0REZH8GPP9LbsxN0RERER1YbghIiIiRWG4ISIiIkVhuCEiIiJFYbghIiIiRWG4ISIiIkVhuCEiIiJFYbghIiIiRWG4ISIiIkVhuCEiIiJFYbghIiIiRWG4ISIiIkVhuCEiIiJFYbghIiIiRWG4ISIiIkVhuCEiIiJFYbghIiIiRWG4ISIiIkVhuCEiIiJFYbghIiIiRWG4ISIiIkVhuCEiIiJFYbghIiIiRWG4ISIiIkVhuCEiIiJFYbghIiIiRWG4ISIiIkVhuCEiIiJFYbghIiIiRWG4ISIiIkVhuCEiIiJFYbghIiIiRZE03Bw6dAixsbFo2bIlVCoVtm3bdt9tDh48iIceeghqtRrt27fHmjVrzF4nERERyYek4aakpATdu3dHcnJyvdbPysrC4MGDMXDgQKSnp2PatGmYMGECdu/ebeZKiYiISC4cpHzxmJgYxMTE1Hv9lJQUtGnTBh999BEAoHPnzjh8+DCWLVuG6Ohoc5VJREREMiKrMTfHjh1DVFSUwbLo6GgcO3as1m20Wi2KiooMbkRERKRcsgo3eXl58PX1NVjm6+uLoqIilJWV1bhNQkIC3Nzc9LfAwEBLlEpEREQSkVW4aYj4+HhoNBr9LScnR+qSiIiIyIwkHXNjLD8/P+Tn5xssy8/Ph6urK5ydnWvcRq1WQ61WW6I8IiIisgKyarmJiIhAWlqawbK9e/ciIiJCooqIiIjI2kgaboqLi5Geno709HQAd071Tk9PR3Z2NoA7XUpjxozRrz9x4kRcvnwZb7/9Ni5evIhPP/0U//jHPzB9+nQpyiciIiIrJGm4OXnyJEJCQhASEgIAiIuLQ0hICObOnQsAyM3N1QcdAGjTpg127NiBvXv3onv37vjoo4/wxRdfyPo08FxNGY5mFiJXU/OAaCIiIjKOSgghpC7CkoqKiuDm5gaNRgNXV1dJa0k9kY34LWehE4CdCkgYFozhvVpJWhMREZE1Mub7W1ZjbpQkV1OmDzYAoBPAO1vOsQWHiIiokRhuJJJVWKIPNlUqhcCVwlJpCiIiIlIIhhuJtPFygZ3KcJm9SoUgr6bSFERERKQQDDcS8XdzRsKwYNir7iQce5UKi4Z1hb9bzfP1EBERUf3IahI/pRneqxX6dfTGlcJSBHk1ZbAhIiIyAYYbifm7OTPUEBERmRC7pYiIiEhRGG6IiIhIURhuiIiISFEYboiIiEhRGG6IiIhIURhuiIiISFEYboiIiEhRGG6IiIhIURhuiIiISFEYboiIiEhRGG6IiIhIURhuiIiISFEYboiIiEhRGG6IiIhIURhuiIiISFEYboiIiGxArqYMRzMLkaspk7oUs3OQugAiIiIyr9QT2YjfchY6AdipgIRhwRjeq5XUZZkNW26IiIgULFdTpg82AKATwDtbzim6BceocPPbb7+hsLBQf//f//43Ro0ahb59++KFF17AsWPHTF4gERERNVxWYYk+2FSpFAJXCkulKcgCjAo3zzzzDP7zn/8AAL777jsMGDAAxcXFiIyMRGlpKfr374/vv//eLIUSERGR8dp4ucBOZbjMXqVCkFdTaQqyAJUQQtx/tTuaNWuGs2fPok2bNnj44YcxdOhQzJgxQ//48uXLsWrVKpw+fdosxZpCUVER3NzcoNFo4OrqKnU5REREZpd6IhvvbDmHSiFgr1Jh0bCushtzY8z3t1EDih0cHHDz5k0AQFZWFmJiYgwej4mJMQg7REREJL3hvVqhX0dvXCksRZBXU/i7OUtdklkZ1S3Vv39/rF+/HgAQEhKCgwcPGjx+4MABBAQEmKw4IiIiMg1/N2dEtGuh+GADGNlyk5iYiL59++Lq1avo06cPZs2ahRMnTqBz5864dOkSUlNTkZKSYq5aiYiIiO7LqDE3AJCZmYnZs2djx44dKC4uBnCnu6pXr1546623MGTIEHPUaTIcc0NERCQ/xnx/Gx1uqgghcO3aNeh0Onh5eaFJkyYNKtbSGG6IiIjkx5jv7wZP4qdSqeDr6wt/f/9GB5vk5GQEBQXByckJ4eHhOH78eJ3rJyUloVOnTnB2dkZgYCCmT5+OW7duNaoGIiIiUgajxtzExcXVa72lS5fW+zlTU1MRFxeHlJQUhIeHIykpCdHR0bh06RJ8fHyqrb9u3TrMnDkTq1atQu/evfHzzz9j3LhxUKlURr0uERERKZNR4ebMmTMG9w8fPoyePXvC2fl/I69VKtW9m9Vp6dKlePnllzF+/HgAQEpKCnbs2IFVq1Zh5syZ1dY/evQoIiMjMXLkSABAUFAQRowYgR9++MGo1yUiIiJlMircHDhwwOB+8+bNsW7dOrRt27ZBL15eXo5Tp04hPj5ev8zOzg5RUVG1Xsqhd+/eWLt2LY4fP46wsDBcvnwZO3fuxOjRo2tcX6vVQqvV6u8XFRU1qNbGyNWUIauwBG28XGziFDwiIiIpSXpV8MLCQlRWVsLX19dgua+vLy5evFjjNiNHjkRhYSH69OkDIQRu376NiRMn4p133qlx/YSEBCxYsMDktdeXrV2JlYiISGqyuyr4wYMHsWjRInz66ac4ffo0tmzZgh07dmDhwoU1rh8fHw+NRqO/5eTkWKxWW7wSKxERkdQkbbnx8vKCvb098vPzDZbn5+fDz8+vxm3mzJmD0aNHY8KECQCA4OBglJSU4JVXXsGsWbNgZ2eY19RqNdRqtXl24D7quhIru6eIiIjMw6hw8+OPPxrcF0Lg4sWL+sn8qnTr1q1ez+fo6IiePXsiLS1NP/mfTqdDWloapkyZUuM2paWl1QKMvb29vh5rUnUl1rsDjtKvxEpERCQ1o8JNjx49oFKpDELEk08+CQD65SqVCpWVlfV+zri4OIwdOxahoaEICwtDUlISSkpK9GdPjRkzBgEBAUhISAAAxMbGYunSpQgJCUF4eDgyMjIwZ84cxMbG6kOOtfB3c0bCsOBqV2Jlqw0REZH5GBVusrKyTF7A8OHDUVBQgLlz5yIvLw89evTArl279IOMs7OzDVpqZs+eDZVKhdmzZ+P333+Ht7c3YmNj8f7775u8NlOwtSuxEhERSa3Bl1+QK15+gYiISH7MfvkFnU5X6/Ls7OyGPCURERGRSRgVboqKivDcc8/BxcUFvr6+mDt3rsH4moKCArRp08bkRRKRbcjVlOFoZiGnSyCiRjFqzM2cOXPw3//+F9988w1u3LiB9957Tz/XjKOjIwDrO2OJiOSBE14SkakY1XKzbds2fPbZZ3j22WcxYcIEnDx5EgUFBYiNjdVf4sDYa0sREXHCSyIyJaPCTUFBAVq3bq2/7+XlhX379uHmzZsYNGgQSktLTV4gESlfXRNeEpF5KbE72Khw06pVK1y4cMFgWfPmzbFnzx6UlZVh6NChJi2OiGxD1YSXd+OEl0Tml3oiG5GJ+zFy5Q+ITNyP1BPKOCnIqHDz2GOPYfXq1dWWN2vWDLt374aTk5PJCiMi21E14aX9/3Vrc8JLIvNTcnewUQOK3333XeTm5tb4WPPmzbF3716cPn3aJIURkW3hhJdElqXk6x8a1XJz5swZPPvssygqKqr2mEajwcMPP8wBxUTUYP5uzoho10L2H6xEcqDk7mCjwk1SUhJefvnlGmcGdHNzw9/+9jcsW7bMZMURERGReSi5O9ioyy+0bt0au3btQufOnWt8/OLFi3j88cetepZiXn6BiIjof3I1ZbLoDjbm+9uoMTf5+flo0qRJ7U/m4ICCggJjnpKIiIgk5O/mbNWhpiGM6pYKCAjAuXPnan38xx9/hL+/f6OLIiIiImooo8LNoEGDMGfOHNy6davaY2VlZZg3bx6efPJJkxVHREREZCyjxtzk5+fjoYcegr29PaZMmYJOnToBuDPWJjk5GZWVlTh9+jR8fX3NVnBjccwNERGR/JhtzI2vry+OHj2KV199FfHx8fqLZKpUKkRHRyM5Odmqgw0REREpn1HhBrhzxtTOnTvx559/IiMjA0IIdOjQAR4eHuaoj4iIiMgoRoebKh4eHujVq5cpayEZydWUIauwBG28XBQ3yt7a8FgTERmnweGGbFfqiWz99UjsVEDCsGAM79VK6rIUiceaiMh4Rp0tRaTkC61ZGx7r+snVlOFoZmGNx6Wux4hIudhyI0NSdlMo+UJr1obH+v7qatliqxeR7WK4kRmpP7CrLrR295euUi60Zm14rOtWW8tWv47eAFDrYwyGRMrHbikZsYZuCiVfaM3a8FjXra6WrboeIyLlY8uNjFhLN8XwXq3Qr6O3LC60Jnc81rW7X8sWW72IbBdbbmSk6sP8blJ9YPu7OSOiXQt+2VoAj3XN6mrZYqsXkW0z6vILSiD3yy+knsjGO1vOoVII/Qc2B0mSLcvVlNXaslXXY0QkL8Z8fzPcyBA/sImIyNaY7dpSZB2qmt2JiIioOo65ISIiIkVhuCGyMZy1l4iUjt1SRDZE6kkgiYgsgS03RDbCGiaBJCKyBKsIN8nJyQgKCoKTkxPCw8Nx/PjxOte/ceMGJk+eDH9/f6jVanTs2BE7d+60ULVE8sRZe4nIVkjeLZWamoq4uDikpKQgPDwcSUlJiI6OxqVLl+Dj41Nt/fLycjz22GPw8fHBpk2bEBAQgF9//RXu7u6WL55IRnitKiKyFZLPcxMeHo5evXph+fLlAACdTofAwEC89tprmDlzZrX1U1JS8MEHH+DixYto0qSJ0a+nhHluiBqKk0ASkVzJZhK/8vJyNG3aFJs2bcKQIUP0y8eOHYsbN27gu+++q7bNoEGD4OnpiaZNm+K7776Dt7c3Ro4ciRkzZsDe3r7a+lqtFlqtVn+/qKgIgYGBDDdks5Q2CWSupgxZhSVo4+WiiP0hoprJZhK/wsJCVFZWwtfX12C5r68vLl68WOM2ly9fxv79+zFq1Cjs3LkTGRkZmDRpEioqKjBv3rxq6yckJGDBggVmqZ9IjpQ0CSTP/iKimljFgGJj6HQ6+Pj44PPPP0fPnj0xfPhwzJo1CykpKTWuHx8fD41Go7/l5ORYuGIiMgdLn/3F+YGI5EPSlhsvLy/Y29sjPz/fYHl+fj78/Pxq3Mbf3x9NmjQx6ILq3Lkz8vLyUF5eDkdHR4P11Wo11Gq16YsnIknVdfaXqVum2EJEJC+Sttw4OjqiZ8+eSEtL0y/T6XRIS0tDREREjdtERkYiIyMDOp1Ov+znn3+Gv79/tWBDRMpVdfbX3cxx9hfnByKSH8m7peLi4rBy5Up89dVXuHDhAl599VWUlJRg/PjxAIAxY8YgPj5ev/6rr76KP/74A6+//jp+/vln7NixA4sWLcLkyZOl2gUikoC/mzMShgXDXnUn4VSd/WXqVhvOD0QkP5LPczN8+HAUFBRg7ty5yMvLQ48ePbBr1y79IOPs7GzY2f0vgwUGBmL37t2YPn06unXrhoCAALz++uuYMWOGVLtARBIZ3qsV+nX0NuvZX5wfiEh+JJ/nxtI4zw0RGYvzAxFJTzanghMRyYElWoiIyHQYboiI6kFJ8wMRKZ3kA4qJiIiITInhhoiIiBSF4YaIqB44QzGRfHDMDRHRfXCGYiJ5YcsNEVEdOEMxkfww3BAR1YEzFBPJD8MNEVEdLHUNK3PhWCGyRQw3RER1sNQ1rMwh9UQ2IhP3Y+TKHxCZuB+pJ7KlLonIInj5BSKiesjVlMlqhuJcTRkiE/dXuybW4ZkDZVE/0b14+QUiIhOT2wzFdY0VktN+EDUEu6WIiBRI7mOFiBqD4YaISIHkPFaIqLHYLUVEpFC8mjnZKoYbIiIFk9tYISJTYLcUERERKQrDDRERESkKww0RyRpn4CWie3HMDRHJQq6mDFmFJWjj5aIfQ8KrdRNRTRhuiMjq1RRi+nX0rvFq3f06enMALZGNY7cUEVm1XE1ZjSHm1K9/8mrdRFQjhhsismq1XUYA/9eKczfOwEtEAMMNEVm52i4j0DPIgzPwElGNOOaGiKxa1WUE3tlyDpVCGIQYzsBLRDVhuCEiq1dXiOEMvER0L4YbIjKLmk7dbgyGGCKqL4YbIjK51BPZmLn5LAQAFYDEZzj/DBFZDgcUE5FJ5WrK9MEGAASAmZvPcgZhIrIYhhsiMqmTV/7APWduQwA4deVPKcohIhvEcENEJqVSqWpZbuFCiMhmMdwQkUn1bO2Be3OMSgU81NpDknqIyPZYRbhJTk5GUFAQnJycEB4ejuPHj9druw0bNkClUmHIkCHmLZCq4ZWYqTb+bs5IfCZYP/GenQpIHBbMM52sEN/HpFSSny2VmpqKuLg4pKSkIDw8HElJSYiOjsalS5fg4+NT63ZXrlzBm2++ib59+1qwWgJ4JWa6P06uZ/34PiYlk7zlZunSpXj55Zcxfvx4dOnSBSkpKWjatClWrVpV6zaVlZUYNWoUFixYgLZt21qwWqrtIob8y4/u5e/mjIh2LRhsrBDfx6R0koab8vJynDp1ClFRUfpldnZ2iIqKwrFjx2rd7t1334WPjw9eeuml+76GVqtFUVGRwY0arraLGPJKzETywfcxKZ2k4aawsBCVlZXw9fU1WO7r64u8vLwatzl8+DC+/PJLrFy5sl6vkZCQADc3N/0tMDCw0XXbstouYsgrMRPJB9/H8mCpMVFKHHslebeUMW7evInRo0dj5cqV8PLyqtc28fHx0Gg0+ltOTo6Zq1S2qosY3j1YlFdiJpKXqvcxr6huvVJPZCMycT9GrvwBkYn7kXoiW9avY2mSDij28vKCvb098vPzDZbn5+fDz8+v2vqZmZm4cuUKYmNj9ct0Oh0AwMHBAZcuXUK7du0MtlGr1VCr1Wao3rYJYfgvEckLB31br9rGRPXr6G3Sn5OlXkcKkrbcODo6omfPnkhLS9Mv0+l0SEtLQ0RERLX1H3jgAZw9exbp6en621NPPYWBAwciPT2dXU4WUPVmuHtqfQ5EJLIMU3cfcNC3dbLUmCglj72S/FTwuLg4jB07FqGhoQgLC0NSUhJKSkowfvx4AMCYMWMQEBCAhIQEODk5oWvXrgbbu7u7A0C15WQedb0Z+AFJZD48ddt2VI2Juvuz1hxjoiz1OlKQfMzN8OHD8eGHH2Lu3Lno0aMH0tPTsWvXLv0g4+zsbOTm5kpcJVXhQEQiy+Op2/JnTKubpcZEKXnslUoI2xo1UVRUBDc3N2g0Gri6ukpdTp1yNWXIKixBGy8Xq/plSz2RjXe2nEOlEPo3A/+CJDKfo5mFGLnyh2rL17/8MCLatZCgIjJGQ1vdcjVlFhkTZerXMdd3lzHf35J3S1HNrLkJmgMRiSxLyd0HSteYQbv+bs61rmPKAFHX6xjLWr67JO+Wourk0ATNgYhElqPk7gOlM8egXWs9fduavrvYcmOFOGiXiO7FFlN5MnWrmzWfvm1N311subFCHLRLRDVhi6n8mLrVzZpP37am7y623FihqjfDvYN2+YFGRCQ/pmx1s+bxV9b03cWzpSRW16AwS42UJ7ofaz1zj8gWWfsZq+b67jLm+5vhRkLWMqqc6mbrX+z8PSWyPrb4xy9PBZcBax4URv9j61/s/D21LrYetOl/THn6thIx3EjEmkaVU834xc7fU2ti60GbyBg8W0oi1jSqnGpmzWclWEobLxfc82sKlQr8PbUwa5o/hEgOGG4kwkm5rB8DaC1sapSedWDQJjIOu6UkxEm5rJs1ndYolazCkmpZRgDslrIwaz79l8gaMdxIjIPCrJs1BFApB5HyS9U6MGgTGYfhhug+pAygUg8i5Zeq9bCGoE0kF5znhshK5WrKEJm4v1qryeGZAy3+xWaLc2oQkXXhPDdkEpxTQ1rWdBo2u0+JSE4YbqhGUneHEMe7EBE1FE8Fp2o4p4Z14HQBREQNw5YbqsaaukNsHQeREhEZj+GGqmF3iHXheBciZZPj+EZrr5nhhqrh6b9ERJYhx/GNcqiZp4JTrXj6LxGR+VjTdA/1JWXNPBWcTILdIURE5iPH8Y1yqZlnSxEREUlAjhfnlUvNDDdERDYqV1OGo5mFnOZBInKc7kEuNXPMDRGRgtV2VoscBoXaCjmOb5SiZo65ISKiWgNMbRN19uvoLZsvVyWR4/hGa6+Z3VJERApU10zjdQ0KJVIChhsiIgWqK8DIZVAoUUMx3FCtONiQSL7qCjByGRRK1FAcc0M14mBDInm730zjvG4ZKRnPlqJq5DhrJhHVTI5n4hDVxJjvb6volkpOTkZQUBCcnJwQHh6O48eP17ruypUr0bdvX3h4eMDDwwNRUVF1rk/Gs/RgQ3Z/EZmPv5szItq1YLAhmyJ5uElNTUVcXBzmzZuH06dPo3v37oiOjsa1a9dqXP/gwYMYMWIEDhw4gGPHjiEwMBCPP/44fv/9dwtXrlyWHGyYeiIbkYn7MXLlD4hM3I/UE9kmfw0iIrItkndLhYeHo1evXli+fDkAQKfTITAwEK+99hpmzpx53+0rKyvh4eGB5cuXY8yYMfdd35zdUtZ+CXhjpJ7IrtZXb+oxN+z+IiKi+pLNJH7l5eU4deoU4uPj9cvs7OwQFRWFY8eO1es5SktLUVFRAU9Pzxof12q10Gq1+vtFRUWNK7oWShuAa4nBhnK5ABsREcmLpN1ShYWFqKyshK+vr8FyX19f5OXl1es5ZsyYgZYtWyIqKqrGxxMSEuDm5qa/BQYGNrrue9U1WZbcCZivYY9zbRARkTlIPuamMRITE7FhwwZs3boVTk5ONa4THx8PjUajv+Xk5Ji8DiXO9mmJsTCca4PkhAPfrR9/RlRF0m4pLy8v2NvbIz8/32B5fn4+/Pz86tz2ww8/RGJiIvbt24du3brVup5arYZarTZJvbWpaoG4d+yIXFsgLHndGc61QXKgtG5nJeLPiO4macuNo6MjevbsibS0NP0ynU6HtLQ0RERE1LrdkiVLsHDhQuzatQuhoaGWKLVOSmuBsHRLFE9VJWum5G5npeDPiO4l+QzFcXFxGDt2LEJDQxEWFoakpCSUlJRg/PjxAIAxY8YgICAACQkJAIDFixdj7ty5WLduHYKCgvRjc5o1a4ZmzZpJth9KaoGoT0uUks4MI6oLB75bP/6M6F6Sh5vhw4ejoKAAc+fORV5eHnr06IFdu3bpBxlnZ2fDzu5/DUwrVqxAeXk5nn32WYPnmTdvHubPn2/J0qux9kvA19f9pm1n8y/ZEqV1OzeWNf5hw58R3UvyeW4sjZdfqL+apm3n3DRkiywx75McWPMfNm/8Ix2bT/9vMtdnHgrAR8/1kK4gMjnZzHND1q2mlig2/5ItUlK3c0NZ8kSDhtS29YzhLPXbzlzFm9Gd4O/mbJWtTWReDDdkFDb/kq1SSrdzQ1nzHzZ11Xbo5wKrbW0i85H1PDdkeUo7M6w+OHcGkXVPullbbU0d7XgWlY1iyw0ZzZaa6K15jAGRJd3vRANrrK2kvNJqW5vIvBhuJCbXvmBbaKK35jEGZD5yfU9agjX/YVNTbbmaMnaj2yiGGwmxVcC6WfMYAzIPvifvz5r/sLm3NmtubSLzYriRCFsFrB8HT9sWvieVyZpbm8h8OKBYIkq82KYc1DY4uKbltjh42pbxPVk/chxgz0u82B623EiErQKWV1uXQ11dEfyrz3bwPXl/7LYjuWDLjUTq0yogx7+QrFVtXQ7/zfnzvqeK8q8+28CWurrJ4eKU/MykKmy5kVBdrQL8C8m0autyOHHlTw4aJj221NXO2gfY8zOT7saWG4nV1Cogh7+Q5Ka2Sb56BXlY7cRkJA221NXMmifxy9WUYeZmw8/MmVvO8jPThjHcWCEObDS92rocugd6sCuCqB6sudvu1K9/4t4rQAsBnP71T0nqIemxW8oKcWCjedTW5cCuCKL6sdb3ihD3Rpuq5RYuhKwGw40V4sRT5lPbBGTWPDEZkTWxxvdKaJAnVIBB640KQM8gD4kqIqkx3FhAQ6Zzt9a/kIiIrI2/mzMSnwlG/Oaz0OHOeIuEZ4L5uWnDGG7MrDEj+K3xLySyTbzeElk7/kFId2O4MSNO564Mpvxil2NI4Cm2JBf8g5CqMNyYkbXPC0H3Z8ovdjmGBAZ0IpIjngpuRtY8LwTdnynnG5Lr3EWcloDqi7MDkzVhuDEja54XwlYZ8wFsyi92uYYEBnTbZGxQST2RjcjE/Ri58gdEJu5H6olsM1dIVDd2S5kZB7lZD2O7he4335Ax42fkOncRpyWwPca+T9h1SdaI4cYCOMhNeg35AK7ri93YLwA5hwQGdNvRkPcJxxaSNWK4IVky9qyjhn4A1/TF3tC/VOUcEhjQbUND3ieWbpWs670vx7MRyTwYbkh2GnLWUWM+gO/9Ym/MX6qmDgn8MCdTasj7xJKtknW99+V4NiKZD8MNyUpDW01M+QFsLeNn+GFOptbQ94klWiXreu8D4LgfMsBwQyZl7paE+rSa1FaDqT6ArWH8DAdxkrk09H1i7q7Lut77AoLjfsgAww2ZjCVaEu7XanK/Gkz1ASz1+BkO4iRzssYxVvd771tDaypZD85zQyZhqUnq6po7yNIT5fm7OSOiXQtJvgQ4/wzZmrre+5xTjO7FlhsyCUu2JNTWamJLrRnW0DVGZGnDe7XCA37NceLKn+gV5IHugR4Gj8n1bEQyPYYbMglLD7KtqdncWgb6Wgo/zMnWWKrbmeSP3VJkEtbQLGwNNViapbrGeN0gkppcr89G0rCKlpvk5GR88MEHyMvLQ/fu3fHJJ58gLCys1vU3btyIOXPm4MqVK+jQoQMWL16MQYMGWbBiqoklWxLMfUYU/Y8STznn/EDW796fkS11O1PjSR5uUlNTERcXh5SUFISHhyMpKQnR0dG4dOkSfHx8qq1/9OhRjBgxAgkJCXjyySexbt06DBkyBKdPn0bXrl0l2AO6myWahdk0bTlKPOVciWGtoaw15NX0M+rX0dumup2pcVRCCHH/1cwnPDwcvXr1wvLlywEAOp0OgYGBeO211zBz5sxq6w8fPhwlJSX4/vvv9csefvhh9OjRAykpKfd9vaKiIri5uUGj0cDV1dV0O0IWkaspQ2Ti/mofcIdnDrSqD2elOJpZiJErf6i2fP3LDyOiXQsJKmoc/v78j7WGvLp+Rod+Lqg2iN4aaibLMOb7W9KWm/Lycpw6dQrx8fH6ZXZ2doiKisKxY8dq3ObYsWOIi4szWBYdHY1t27bVuL5Wq4VWq9XfLyoqanzhJBk2TVuW0gZp8/fnDmtukavrZ8RuZ6ovSQcUFxYWorKyEr6+vgbLfX19kZeXV+M2eXl5Rq2fkJAANzc3/S0wMNA0xZMkOL+LZSltkDZ/f+6oK0BI7X4/IynnlyL5UPzZUvHx8dBoNPpbTk6O1CVRIyjty1YOhvdqhcMzB2L9yw/j8MyBsu4G4O/PHdYc8vgzIlOQtFvKy8sL9vb2yM/PN1ien58PPz+/Grfx8/Mzan21Wg21Wm2agskqsGna8pQ0SJu/P9Y/CSR/RtRYkoYbR0dH9OzZE2lpaRgyZAiAOwOK09LSMGXKlBq3iYiIQFpaGqZNm6ZftnfvXkRERFigYrIWSvqyJcvj74/1Bwj+jKgxJD8VPC4uDmPHjkVoaCjCwsKQlJSEkpISjB8/HgAwZswYBAQEICEhAQDw+uuvo3///vjoo48wePBgbNiwASdPnsTnn38u5W4QEckOAwQpleThZvjw4SgoKMDcuXORl5eHHj16YNeuXfpBw9nZ2bCz+9/QoN69e2PdunWYPXs23nnnHXTo0AHbtm3jHDdEREQEwArmubE0znNDREQkP8Z8fyv+bCkiIiKyLQw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQokl9+wdKqJmQuKiqSuBIiIiKqr6rv7fpcWMHmws3NmzcBAIGBgRJXQkRERMa6efMm3Nzc6lzH5q4tpdPpcPXqVTRv3hwqlcqkz11UVITAwEDk5OTY5HWrbH3/AR4DW99/gMeA+2/b+w+Y7xgIIXDz5k20bNnS4ILaNbG5lhs7Ozv85S9/MetruLq62uwvNcD9B3gMbH3/AR4D7r9t7z9gnmNwvxabKhxQTERERIrCcENERESKwnBjQmq1GvPmzYNarZa6FEnY+v4DPAa2vv8AjwH337b3H7COY2BzA4qJiIhI2dhyQ0RERIrCcENERESKwnBDREREisJwQ0RERIrCcGOk5ORkBAUFwcnJCeHh4Th+/Hit654/fx7PPPMMgoKCoFKpkJSUZLlCzcSY/V+5ciX69u0LDw8PeHh4ICoqqs715cKYY7BlyxaEhobC3d0dLi4u6NGjB7755hsLVmt6xuz/3TZs2ACVSoUhQ4aYt0ALMOYYrFmzBiqVyuDm5ORkwWpNz9jfgRs3bmDy5Mnw9/eHWq1Gx44dsXPnTgtVa3rG7P+AAQOq/fxVKhUGDx5swYpNz9jfgaSkJHTq1AnOzs4IDAzE9OnTcevWLfMVKKjeNmzYIBwdHcWqVavE+fPnxcsvvyzc3d1Ffn5+jesfP35cvPnmm2L9+vXCz89PLFu2zLIFm5ix+z9y5EiRnJwszpw5Iy5cuCDGjRsn3NzcxG+//Wbhyk3H2GNw4MABsWXLFvHTTz+JjIwMkZSUJOzt7cWuXbssXLlpGLv/VbKyskRAQIDo27evePrppy1TrJkYewxWr14tXF1dRW5urv6Wl5dn4apNx9j912q1IjQ0VAwaNEgcPnxYZGVliYMHD4r09HQLV24axu7/9evXDX72586dE/b29mL16tWWLdyEjD0G3377rVCr1eLbb78VWVlZYvfu3cLf319Mnz7dbDUy3BghLCxMTJ48WX+/srJStGzZUiQkJNx329atW8s+3DRm/4UQ4vbt26J58+biq6++MleJZtfYYyCEECEhIWL27NnmKM/sGrL/t2/fFr179xZffPGFGDt2rOzDjbHHYPXq1cLNzc1C1Zmfsfu/YsUK0bZtW1FeXm6pEs2qsZ8By5YtE82bNxfFxcXmKtHsjD0GkydPFo888ojBsri4OBEZGWm2GtktVU/l5eU4deoUoqKi9Mvs7OwQFRWFY8eOSViZZZhi/0tLS1FRUQFPT09zlWlWjT0GQgikpaXh0qVL6NevnzlLNYuG7v+7774LHx8fvPTSS5Yo06waegyKi4vRunVrBAYG4umnn8b58+ctUa7JNWT/t2/fjoiICEyePBm+vr7o2rUrFi1ahMrKSkuVbTKm+Bz88ssv8fzzz8PFxcVcZZpVQ45B7969cerUKX3X1eXLl7Fz504MGjTIbHXa3IUzG6qwsBCVlZXw9fU1WO7r64uLFy9KVJXlmGL/Z8yYgZYtWxq8KeSkocdAo9EgICAAWq0W9vb2+PTTT/HYY4+Zu1yTa8j+Hz58GF9++SXS09MtUKH5NeQYdOrUCatWrUK3bt2g0Wjw4Ycfonfv3jh//rzZL+Jrag3Z/8uXL2P//v0YNWoUdu7ciYyMDEyaNAkVFRWYN2+eJco2mcZ+Dh4/fhznzp3Dl19+aa4Sza4hx2DkyJEoLCxEnz59IITA7du3MXHiRLzzzjtmq5PhhiwiMTERGzZswMGDB2U/mNJYzZs3R3p6OoqLi5GWloa4uDi0bdsWAwYMkLo0s7p58yZGjx6NlStXwsvLS+pyJBMREYGIiAj9/d69e6Nz58747LPPsHDhQgkrswydTgcfHx98/vnnsLe3R8+ePfH777/jgw8+kF24aawvv/wSwcHBCAsLk7oUizp48CAWLVqETz/9FOHh4cjIyMDrr7+OhQsXYs6cOWZ5TYabevLy8oK9vT3y8/MNlufn58PPz0+iqiynMfv/4YcfIjExEfv27UO3bt3MWaZZNfQY2NnZoX379gCAHj164MKFC0hISJBduDF2/zMzM3HlyhXExsbql+l0OgCAg4MDLl26hHbt2pm3aBMzxedAkyZNEBISgoyMDHOUaFYN2X9/f380adIE9vb2+mWdO3dGXl4eysvL4ejoaNaaTakxP/+SkhJs2LAB7777rjlLNLuGHIM5c+Zg9OjRmDBhAgAgODgYJSUleOWVVzBr1izY2Zl+hAzH3NSTo6MjevbsibS0NP0ynU6HtLQ0g7/KlKqh+79kyRIsXLgQu3btQmhoqCVKNRtT/Q7odDpotVpzlGhWxu7/Aw88gLNnzyI9PV1/e+qppzBw4ECkp6cjMDDQkuWbhCl+ByorK3H27Fn4+/ubq0yzacj+R0ZGIiMjQx9sAeDnn3+Gv7+/rIIN0Lif/8aNG6HVavHCCy+Yu0yzasgxKC0trRZgqsKuMNflLc02VFmBNmzYINRqtVizZo346aefxCuvvCLc3d31p3WOHj1azJw5U7++VqsVZ86cEWfOnBH+/v7izTffFGfOnBG//PKLVLvQKMbuf2JionB0dBSbNm0yOBXy5s2bUu1Coxl7DBYtWiT27NkjMjMzxU8//SQ+/PBD4eDgIFauXCnVLjSKsft/LyWcLWXsMViwYIHYvXu3yMzMFKdOnRLPP/+8cHJyEufPn5dqFxrF2P3Pzs4WzZs3F1OmTBGXLl0S33//vfDx8RHvvfeeVLvQKA19D/Tp00cMHz7c0uWahbHHYN68eaJ58+Zi/fr14vLly2LPnj2iXbt24rnnnjNbjQw3Rvrkk09Eq1athKOjowgLCxP/+c9/9I/1799fjB07Vn8/KytLAKh269+/v+ULNxFj9r9169Y17v+8efMsX7gJGXMMZs2aJdq3by+cnJyEh4eHiIiIEBs2bJCgatMxZv/vpYRwI4Rxx2DatGn6dX19fcWgQYPE6dOnJajadIz9HTh69KgIDw8XarVatG3bVrz//vvi9u3bFq7adIzd/4sXLwoAYs+ePRau1HyMOQYVFRVi/vz5ol27dsLJyUkEBgaKSZMmiT///NNs9amEMFebEBEREZHlccwNERERKQrDDRERESkKww0REREpCsMNERERKQrDDRERESkKww0REREpCsMNERERKQrDDRGRGY0bNw5DhgyRugwim8JwQ2Sjxo0bB5VKpb+1aNECTzzxBH788UepSzOJu/et6tanTx+zvd6VK1egUqmQnp5usPzvf/871qxZY7bXJaLqGG6IbNgTTzyB3Nxc5ObmIi0tDQ4ODnjyySelLstkVq9erd+/3NxcbN++vcb1KioqzFaDm5sb3N3dzfb8RFQdww2RDVOr1fDz84Ofnx969OiBmTNnIicnBwUFBXjkkUcwZcoUg/ULCgrg6OiovyJwUFAQFi5ciBEjRsDFxQUBAQFITk422Gbp0qUIDg6Gi4sLAgMDMWnSJBQXF+sf//XXXxEbGwsPDw+4uLjgwQcfxM6dOwEAf/75J0aNGgVvb284OzujQ4cOWL16db33z93dXb9/fn5+8PT01LewpKamon///nBycsK3336L69evY8SIEQgICEDTpk0RHByM9evXGzyfTqfDkiVL0L59e6jVarRq1Qrvv/8+AKBNmzYAgJCQEKhUKgwYMABA9W4prVaLqVOnwsfHB05OTujTpw9OnDihf/zgwYNQqVRIS0tDaGgomjZtit69e+PSpUv13m8iW8dwQ0QAgOLiYqxduxbt27dHixYtMGHCBKxbtw5arVa/ztq1axEQEIBHHnlEv+yDDz5A9+7dcebMGcycOROvv/469u7dq3/czs4OH3/8Mc6fP4+vvvoK+/fvx9tvv61/fPLkydBqtTh06BDOnj2LxYsXo1mzZgCAOXPm4KeffsL/+3//DxcuXMCKFSvg5eVlkv2tqvXChQuIjo7GrVu30LNnT+zYsQPnzp3DK6+8gtGjR+P48eP6beLj45GYmKiva926dfD19QUA/Xr79u1Dbm4utmzZUuPrvv3229i8eTO++uornD59Gu3bt0d0dDT++OMPg/VmzZqFjz76CCdPnoSDgwNefPFFk+w3kU0w2yU5iciqjR07Vtjb2wsXFxfh4uIiAAh/f39x6tQpIYQQZWVlwsPDQ6Smpuq36datm5g/f77+fuvWrcUTTzxh8LzDhw8XMTExtb7uxo0bRYsWLfT3g4ODDZ7zbrGxsWL8+PEN2j8AwsnJSb9/Li4uYuvWrSIrK0sAEElJSfd9jsGDB4s33nhDCCFEUVGRUKvVYuXKlTWuW/W8Z86cMVh+95XQi4uLRZMmTcS3336rf7y8vFy0bNlSLFmyRAghxIEDBwQAsW/fPv06O3bsEABEWVmZMYeAyGax5YbIhg0cOBDp6elIT0/H8ePHER0djZiYGPz6669wcnLC6NGjsWrVKgDA6dOnce7cOYwbN87gOSIiIqrdv3Dhgv7+vn378OijjyIgIADNmzfH6NGjcf36dZSWlgIApk6divfeew+RkZGYN2+ewYDmV199FRs2bECPHj3w9ttv4+jRo0bt37Jly/T7l56ejscee0z/WGhoqMG6lZWVWLhwIYKDg+Hp6YlmzZph9+7dyM7OBgBcuHABWq0Wjz76qFE13C0zMxMVFRWIjIzUL2vSpAnCwsIMjhkAdOvWTf9/f39/AMC1a9ca/NpEtoThhsiGubi4oH379mjfvj169eqFL774AiUlJVi5ciUAYMKECdi7dy9+++03rF69Go888ghat25d7+e/cuUKnnzySXTr1g2bN2/GqVOn9GNyysvL9a9x+fJljB49GmfPnkVoaCg++eQTANAHrenTp+Pq1at49NFH8eabb9b79f38/PT71759e7i4uBjs+90++OAD/P3vf8eMGTNw4MABpKenIzo6Wl+ns7NzvV/XFJo0aaL/v0qlAnBnzA8R3R/DDRHpqVQq2NnZoaysDAAQHByM0NBQrFy5EuvWratx3Md//vOfavc7d+4MADh16hR0Oh0++ugjPPzww+jYsSOuXr1a7TkCAwMxceJEbNmyBW+88YY+XAGAt7c3xo4di7Vr1yIpKQmff/65KXdZ78iRI3j66afxwgsvoHv37mjbti1+/vln/eMdOnSAs7OzfjD1vRwdHQHcaQGqTbt27eDo6IgjR47ol1VUVODEiRPo0qWLifaEiBykLoCIpKPVapGXlwfgzplJy5cvR3FxMWJjY/XrTJgwAVOmTIGLiwuGDh1a7TmOHDmCJUuWYMiQIdi7dy82btyIHTt2AADat2+PiooKfPLJJ4iNjcWRI0eQkpJisP20adMQExODjh074s8//8SBAwf04Wju3Lno2bMnHnzwQWi1Wnz//ff6x0ytQ4cO2LRpE44ePQoPDw8sXboU+fn5+tDh5OSEGTNm4O2334ajoyMiIyNRUFCA8+fP46WXXoKPjw+cnZ2xa9cu/OUvf4GTkxPc3NwMXsPFxQWvvvoq3nrrLXh6eqJVq1ZYsmQJSktL8dJLL5llv4hsEVtuiGzYrl274O/vD39/f4SHh+PEiRPYuHGj/jRmABgxYgQcHBwwYsQIODk5VXuON954AydPnkRISAjee+89LF26FNHR0QCA7t27Y+nSpVi8eDG6du2Kb7/9FgkJCQbbV1ZWYvLkyejcuTOeeOIJdOzYEZ9++imAO60h8fHx6NatG/r16wd7e3ts2LDBLMdi9uzZeOihhxAdHY0BAwbAz8+v2szCc+bMwRtvvIG5c+eic+fOGD58uH4cjIODAz7++GN89tlnaNmyJZ5++ukaXycxMRHPPPMMRo8ejYceeggZGRnYvXs3PDw8zLJfRLZIJYQQUhdBRNbrypUraNeuHU6cOIGHHnrI4LGgoCBMmzYN06ZNk6Y4IqIasFuKiGpUUVGB69evY/bs2Xj44YerBRsiImvFbikiqtGRI0fg7++PEydOVBsnI7VFixahWbNmNd5iYmKkLo+IJMZuKSKSnT/++KPajL5VnJ2dERAQYOGKiMiaMNwQERGRorBbioiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgU5f8D9lFCoFkDfksAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASNhJREFUeJzt3XtclGX+//H3AHIQBVQQkFA8p3lqPYV4LIq0LGv3m6l5Kutb2ZHa0spTpdjJ3N0sdy217SSb2Xfd9Gcp5ne/pZumsqWrFoZhCQiVIAdB4f790TIrAerAzNz3zLyejwePnHvue+YzdzNzf+a6Ptd12QzDMAQAAOAl/MwOAAAAwJlIbgAAgFchuQEAAF6F5AYAAHgVkhsAAOBVSG4AAIBXIbkBAABeheQGAAB4FZIbAADgVUhuAJhi/vz5stlsF7SvzWbT/PnzXRrPyJEjNXLkSMs+HoALR3ID+LjVq1fLZrPZ/wICAhQXF6dp06bp+++/Nzs8y0lISKh1vtq2bathw4bp/fffd8rjl5WVaf78+dq2bZtTHg/wRSQ3ACRJTz75pN544w0tX75co0eP1ptvvqkRI0bo1KlTLnm+J554QuXl5S55bFfr16+f3njjDb3xxht6+OGHdezYMd14441avnx5kx+7rKxMCxYsILkBmiDA7AAAWMPo0aM1YMAASdKMGTMUGRmpZ555RuvXr9dNN93k9OcLCAhQQIBnfgXFxcXplltusd+eMmWKunTpohdffFF33nmniZEBkGi5AdCAYcOGSZIOHz5ca/vBgwf1m9/8Rq1bt1ZwcLAGDBig9evX19rn9OnTWrBggbp27arg4GC1adNGQ4cO1ebNm+371FdzU1FRoQcffFBRUVFq2bKlrrvuOn333Xd1Yps2bZoSEhLqbK/vMVetWqXLL79cbdu2VVBQkHr27KlXXnnFoXNxPjExMerRo4eys7PPud/x48d12223KTo6WsHBwerbt69ef/11+/1HjhxRVFSUJGnBggX2ri9X1xsB3sYzfzYBcLkjR45Iklq1amXftn//fiUlJSkuLk6zZs1SaGio/vKXv2jcuHF67733dMMNN0j6OclIS0vTjBkzNGjQIBUXF+vzzz/Xnj17dOWVVzb4nDNmzNCbb76piRMnasiQIdq6dauuueaaJr2OV155RZdccomuu+46BQQE6G9/+5vuvvtuVVdXa+bMmU167BqnT5/W0aNH1aZNmwb3KS8v18iRI5WVlaV77rlHHTt21Lvvvqtp06bpxIkTuv/++xUVFaVXXnlFd911l2644QbdeOONkqQ+ffo4JU7AZxgAfNqqVasMScaWLVuMgoIC4+jRo8batWuNqKgoIygoyDh69Kh93yuuuMLo3bu3cerUKfu26upqY8iQIUbXrl3t2/r27Wtcc80153zeefPmGWd/BWVmZhqSjLvvvrvWfhMnTjQkGfPmzbNvmzp1qtGhQ4fzPqZhGEZZWVmd/VJSUoxOnTrV2jZixAhjxIgR54zZMAyjQ4cOxlVXXWUUFBQYBQUFxj//+U/j5ptvNiQZ9957b4OPt3TpUkOS8eabb9q3VVZWGomJiUaLFi2M4uJiwzAMo6CgoM7rBeAYuqUASJKSk5MVFRWl+Ph4/eY3v1FoaKjWr1+viy66SJL0448/auvWrbrpppt08uRJFRYWqrCwUD/88INSUlL09ddf20dXRUREaP/+/fr6668v+Pk3btwoSbrvvvtqbX/ggQea9LpCQkLs/y4qKlJhYaFGjBihb775RkVFRY16zI8++khRUVGKiopS37599e6772ry5Ml65plnGjxm48aNiomJ0YQJE+zbmjVrpvvuu08lJSX63//930bFAqAun05u/v73v2vs2LFq166dbDab/ud//selz1dTD3D238UXX+zS5wQu1LJly7R582atXbtWY8aMUWFhoYKCguz3Z2VlyTAMzZkzx35hr/mbN2+epJ9rSqSfR16dOHFC3bp1U+/evfXb3/5WX3zxxTmf/9tvv5Wfn586d+5ca3v37t2b9Lo+/fRTJScnKzQ0VBEREYqKitJjjz0mSY1ObgYPHqzNmzdry5Yt2r59uwoLC/XnP/+5ViL1S99++626du0qP7/aX7s9evSw3w/AOXy65qa0tFR9+/bVrbfeau/bdrVLLrlEW7Zssd/21NEi8D6DBg2yj5YaN26chg4dqokTJ+rQoUNq0aKFqqurJUkPP/ywUlJS6n2MLl26SJKGDx+uw4cP669//as++ugjvfrqq3rxxRe1fPlyzZgxo8mxNjT5X1VVVa3bhw8f1hVXXKGLL75YS5YsUXx8vAIDA7Vx40a9+OKL9tfkqMjISCUnJzfqWACu59NX1tGjR2v06NEN3l9RUaHHH39c77zzjk6cOKFevXrpmWeeadKsowEBAYqJiWn08YA7+Pv7Ky0tTaNGjdJLL72kWbNmqVOnTpJ+7kq5kAt769atNX36dE2fPl0lJSUaPny45s+f32By06FDB1VXV+vw4cO1WmsOHTpUZ99WrVrpxIkTdbb/svXjb3/7myoqKrR+/Xq1b9/evv3jjz8+b/zO1qFDB33xxReqrq6u1Xpz8OBB+/1Sw4kbgAvn091S53PPPfdox44dWrNmjb744gv913/9l66++mqH6gh+6euvv1a7du3UqVMnTZo0STk5OU6MGHCekSNHatCgQVq6dKlOnTqltm3bauTIkfrjH/+o3NzcOvsXFBTY//3DDz/Uuq9Fixbq0qWLKioqGny+mh8av//972ttX7p0aZ19O3furKKiolpdXbm5uXVmCfb395ckGYZh31ZUVKRVq1Y1GIerjBkzRnl5eUpPT7dvO3PmjP7whz+oRYsWGjFihCSpefPmklRv8gbgwvh0y8255OTkaNWqVcrJyVG7du0k/dwcv2nTJq1atUqLFi1y+DEHDx6s1atXq3v37srNzdWCBQs0bNgw7du3Ty1btnT2SwCa7Le//a3+67/+S6tXr9add96pZcuWaejQoerdu7duv/12derUSfn5+dqxY4e+++47/fOf/5Qk9ezZUyNHjlT//v3VunVrff7551q7dq3uueeeBp+rX79+mjBhgl5++WUVFRVpyJAhysjIUFZWVp19b775Zj366KO64YYbdN9996msrEyvvPKKunXrpj179tj3u+qqqxQYGKixY8fqv//7v1VSUqIVK1aobdu29SZornTHHXfoj3/8o6ZNm6bdu3crISFBa9eu1aeffqqlS5favwNCQkLUs2dPpaenq1u3bmrdurV69eqlXr16uTVewKOZPVzLKiQZ77//vv32Bx98YEgyQkNDa/0FBAQYN910k2EYhnHgwAFD0jn/Hn300Qaf86effjLCwsKMV1991dUvD2hQzVDwXbt21bmvqqrK6Ny5s9G5c2fjzJkzhmEYxuHDh40pU6YYMTExRrNmzYy4uDjj2muvNdauXWs/7umnnzYGDRpkREREGCEhIcbFF19sLFy40KisrLTvU9+w7fLycuO+++4z2rRpY4SGhhpjx441jh49Wu/Q6I8++sjo1auXERgYaHTv3t148803633M9evXG3369DGCg4ONhIQE45lnnjFWrlxpSDKys7Pt+zkyFPx8w9wberz8/Hxj+vTpRmRkpBEYGGj07t3bWLVqVZ1jt2/fbvTv398IDAxkWDjQCDbDOKu91ofZbDa9//77GjdunCQpPT1dkyZN0v79++1N2zVatGihmJgYVVZW6ptvvjnn47Zp08Y+42h9Bg4cqOTkZKWlpTX5NQAAALqlGnTppZeqqqpKx48ft09D/0uBgYFNGspdUlKiw4cPa/LkyY1+DAAAUJtPJzclJSW1+vOzs7OVmZmp1q1bq1u3bpo0aZKmTJmiF154QZdeeqkKCgqUkZGhPn36NGpK+Icfflhjx45Vhw4ddOzYMc2bN0/+/v61JvUCAABN49PdUtu2bdOoUaPqbJ86dapWr16t06dP6+mnn9af//xnff/994qMjNRll12mBQsWqHfv3g4/380336y///3v+uGHHxQVFaWhQ4dq4cKFdSYtAwAAjefTyQ0AAPA+zHMDAAC8CskNAADwKj5XUFxdXa1jx46pZcuWTHMOAICHMAxDJ0+eVLt27eosQPtLPpfcHDt2TPHx8WaHAQAAGuHo0aO66KKLzrmPzyU3NVOcHz16VGFhYSZHAwAALkRxcbHi4+MvaLkin0tuarqiwsLCSG4AAPAwF1JSQkExAADwKiQ3AADAq5DcAAAAr+JzNTcXqqqqSqdPnzY7DK/RrFmzOqurAwDgCqYmN3//+9/13HPPaffu3crNzdX777+vcePGnfOYbdu2KTU1Vfv371d8fLyeeOIJTZs2zWkxGYahvLw8nThxwmmPiZ9FREQoJiaG+YUAAC5lanJTWlqqvn376tZbb9WNN9543v2zs7N1zTXX6M4779Rbb72ljIwMzZgxQ7GxsUpJSXFKTDWJTdu2bdW8eXMuxE5gGIbKysp0/PhxSVJsbKzJEQEAvJmpyc3o0aM1evToC95/+fLl6tixo1544QVJUo8ePfTJJ5/oxRdfdEpyU1VVZU9s2rRp0+THw3+EhIRIko4fP662bdvSRQUAcBmPKijesWOHkpOTa21LSUnRjh07GjymoqJCxcXFtf4aUlNj07x5c+cEjFpqziu1TAAAV/Ko5CYvL0/R0dG1tkVHR6u4uFjl5eX1HpOWlqbw8HD734UsvUBXlGtwXgEA7uBRyU1jzJ49W0VFRfa/o0ePmh0SAABwIY8aCh4TE6P8/Pxa2/Lz8xUWFmav6filoKAgBQUFuSM8AABgAR7VcpOYmKiMjIxa2zZv3qzExESTIrKWvLw83XvvverUqZOCgoIUHx+vsWPHKiMjQz/++KPuvfdede/eXSEhIWrfvr3uu+8+FRUV2Y8/cuSIbDabMjMz6zz2yJEj9cADD9TaduDAAV133XUKDw9XaGioBg4cqJycHBe/SgDwbblF5dp+uFC5RfWXY8DklpuSkhJlZWXZb2dnZyszM1OtW7dW+/btNXv2bH3//ff685//LEm688479dJLL+mRRx7Rrbfeqq1bt+ovf/mLNmzYYNZLsIwjR44oKSlJEREReu6559S7d2+dPn1aH374oWbOnKm1a9fq2LFjev7559WzZ099++23uvPOO3Xs2DGtXbvW4ec7fPiwhg4dqttuu00LFixQWFiY9u/fr+DgYBe8OgCAJKXvytHsdV+q2pD8bFLajb01fmB7s8OyHFOTm88//1yjRo2y305NTZUkTZ06VatXr1Zubm6tloCOHTtqw4YNevDBB/W73/1OF110kV599VWnzXHjye6++27ZbDbt3LlToaGh9u2XXHKJbr31VkVEROi9996zb+/cubMWLlyoW265RWfOnFFAgGNvhccff1xjxozRs88+W+sxAQCukVtUbk9sJKnakB5bt0/Du0UpNrz+0gxfZWpyM3LkSBmG0eD9q1evrveYvXv3ujAq58ktKld2Yak6Roa69I33448/atOmTVq4cGGtxKZGREREvccVFRUpLCzM4cSmurpaGzZs0COPPKKUlBTt3btXHTt21OzZs887wzQAoHGyC0vtiU2NKsPQkcIykptf8KiaG0+SvitHSYu3auKKz5S0eKvSd7muFiUrK0uGYejiiy++4GMKCwv11FNP6Y477qhz35AhQ9SiRYtaf//3f/9nv//48eMqKSnR4sWLdfXVV+ujjz7SDTfcoBtvvFH/+7//65TXBACorWNkqPx+MaOGv82mhEjmZvsljxot5Snc3XR4rtav+hQXF+uaa65Rz549NX/+/Dr3p6enq0ePHrW2TZo0yf7v6upqSdL111+vBx98UJLUr18/bd++XcuXL9eIESMcfAUAgPOJDQ9R2o299di6faoyDPnbbFp0Yy9abepBcuMC7m467Nq1q2w2mw4ePHjefU+ePKmrr75aLVu21Pvvv69mzZrV2Sc+Pl5dunSpte3sofaRkZEKCAhQz549a+1TsxwGAMA1xg9sr+HdonSksEwJkc1JbBpAt5QLuLvpsHXr1kpJSdGyZctUWlpa5/6aFc6Li4t11VVXKTAwUOvXr2/0yKbAwEANHDhQhw4dqrX9q6++UocOHRr1mACACxMbHqLEzm1IbM6B5MYFapoO/f+93IA7mg6XLVumqqoqDRo0SO+9956+/vprHThwQL///e+VmJhoT2xKS0v12muvqbi4WHl5ecrLy1NVVZXDz/fb3/5W6enpWrFihbKysvTSSy/pb3/7m+6++24XvDoAAC4c3VIu4u6mw06dOmnPnj1auHChHnroIeXm5ioqKkr9+/fXK6+8oj179uizzz6TpDpdTtnZ2UpISHDo+W644QYtX75caWlpuu+++9S9e3e99957Gjp0qLNeEgAAjWIzHK1G9XDFxcUKDw+3D4M+26lTp5Sdna2OHTsyGZ0LcH4BAI11ruv3L9EtBQAAvArJDQAA8CokNwAAwKuQ3AAAAK9CclMPq9RYV56pVsmp06o8U212KE5hlfMKAPBuDAU/S81svWVlZbVm5DXDj6UV+v6nchmSbJLiWoWodWiQqTE1VVlZmSTVOysyAADOQnJzFn9/f0VEROj48eOSpObNm8tms53nKOerPFOt7wpLVNPOYUj6ruC0AoxQBQZ4XmObYRgqKyvT8ePHFRERIX9/f7NDAgB4MZKbX4iJiZEke4JjhorTVSooqayzvbo4UEHNPDcxiIiIsJ9fAABcheTmF2w2m2JjY9W2bVudPn3alBiOnzyle1b8Q2eXqPjZbHrr9sFq29IzJ79r1qwZLTYAALcguWmAv7+/aRfj9sHBuvfKnnWWtW8fFWFKPAAAXKjconJlF5aqY2SoaYt7ktxYFMvaAwA8TfquHM1e96WqDcnPJqXd2FvjB7Z3exyeV53qQ1jWHgDgKXKLyu2JjSRVG9Jj6/Ypt6jc7bGQ3AAAgCbLLiy1JzY1qgxDRwrL3B4LyQ0AAGiyjpGh8vvF7Cn+NpsSIpu7PRaSGwAA0GSx4SFKu7G3/P89P1zNYBgzSisoKHYDK1SOA56Gzw3geawyGIbkxsWsUjkOeBI+N4Dnig0PMf0HCd1SLmSlynHAU/C5AdBUJDcuZKXKccBT8LkB0FQkNy5kpcpxwFPwuQHQVCQ3LmSlynHAU/C5AdBUNsMwjPPv5j2Ki4sVHh6uoqIihYWFueU5c4vKTa8cBzwNnxsAZ3Pk+s1oKTewQuU44Gn43ABoLLqlAACAVyG5AQAAXoXkBgAAeBWSGwAA4DS5ReXafrjQ1Ik3KSgGAABOYZWlU2i5AQAATWalpVNIbgAAQJNZaekUkhsAANBkVlo6heQGAAA0mZWWTqGgGAAAOMX4ge01vFuU6UunkNwAAACnscLSKXRLAYCbWGH+D8AX0HIDAG5glfk/AF9Ayw0AuJiV5v8AfAHJDQC4mJXm/wB8AckNALiYleb/AHwByQ0AuJiV5v8AfAEFxT4kt6hc2YWl6hgZypcq4GZWmf8D8AUkNz6CkRqA+aww/wfgC+iW8gGM1AAA+BKSGx/ASA0AgC8hufEBjNQAAPgSkhsfwEgNAIAvoaDYRzBSAwDgK0hufAgjNQAAvoBuKSdixV8AAMxHy42TMI8MAADWYHrLzbJly5SQkKDg4GANHjxYO3fuPOf+S5cuVffu3RUSEqL4+Hg9+OCDOnXqlJuirR/zyAAAYB2mJjfp6elKTU3VvHnztGfPHvXt21cpKSk6fvx4vfu//fbbmjVrlubNm6cDBw7otddeU3p6uh577DE3R14b88gAAGAdpiY3S5Ys0e23367p06erZ8+eWr58uZo3b66VK1fWu//27duVlJSkiRMnKiEhQVdddZUmTJhw3tYeV2MeGQAArMO05KayslK7d+9WcnLyf4Lx81NycrJ27NhR7zFDhgzR7t277cnMN998o40bN2rMmDFuibkhzCMDAIB1mFZQXFhYqKqqKkVHR9faHh0drYMHD9Z7zMSJE1VYWKihQ4fKMAydOXNGd9555zm7pSoqKlRRUWG/XVxc7JwX8AvMIwMAgDWYXlDsiG3btmnRokV6+eWXtWfPHq1bt04bNmzQU0891eAxaWlpCg8Pt//Fx8e7LL7Y8BAldm5DYgMAgIlshmEY59/N+SorK9W8eXOtXbtW48aNs2+fOnWqTpw4ob/+9a91jhk2bJguu+wyPffcc/Ztb775pu644w6VlJTIz69urlZfy018fLyKiooUFhbm3BcFAABcori4WOHh4Rd0/Tat5SYwMFD9+/dXRkaGfVt1dbUyMjKUmJhY7zFlZWV1Ehh/f39JUkM5WlBQkMLCwmr9AfBsTJgJ4FxMncQvNTVVU6dO1YABAzRo0CAtXbpUpaWlmj59uiRpypQpiouLU1pamiRp7NixWrJkiS699FINHjxYWVlZmjNnjsaOHWtPcgB4NybMBHA+piY348ePV0FBgebOnau8vDz169dPmzZtshcZ5+Tk1GqpeeKJJ2Sz2fTEE0/o+++/V1RUlMaOHauFCxea9RIAuFFDE2YO7xZFrRsAO9NqbsziSJ8dAGvZfrhQE1d8Vmf7O7dfpsTObUyICIC7eETNDc6PugKgNibMBHAhSG4sKn1XjpIWb9XEFZ8pafFWpe/KMTskwHRMmAngQtAtZUG5ReVKWry11npV/jabPpk1ii9xQD9/RpgwE/Atjly/TS0oRv3OtRAnX+TAzy04fBYANIRuKQuirgAAgMYjubEg6goAAGg8uqUsioU4AQBoHJIbC6OuAAAAx9EtBQCNwDxUgHXRcgMADmJ9K8DaaLkBAAc0tL4VLTiAdZDcAIADzjUPFQBrILkBAAcwDxVgfSQ3AOAA5qECrI+CYgBwEPNQAdZGcgMAjcA8VIB10S0FAAC8CskNAADwKiQ3AADAq5DcAAAAr0JyAwAAvArJDQAA8CokNwAAwKuQ3AAAAK9CcgMAALwKyQ0AAPAqJDcAAMCrkNwAAACvQnIDAAC8CskNAADwKiQ3AADAq5DcAAAAr0JyA6CO3KJybT9cqNyicrNDAQCHBZgdAABrSd+Vo9nrvlS1IfnZpLQbe2v8wPZmhwUAF4yWGwB2uUXl9sRGkqoN6bF1+2jBAeBRSG4A2GUXltoTmxpVhqEjhWXmBAQAjUByA8CuY2So/Gy1t/nbbEqIbG5OQADQCCQ3AOxiw0OUdmNv+dt+znD8bTYturGXYsNDTI4MAC4cBcU+JLeoXNmFpeoYGcrFCg0aP7C9hneL0pHCMiVENue9AsDjkNz4CEbAwBGx4SEkNQA8Ft1SPoARMAAAX0Jy4wMYAQMA8CUkNz6AETAAAF9CcuMDGAEDAPAlFBT7CEbAAAAc4ckjbElufAgjYADr8uQLCbyPp4+wJbkBAJN5+oUE3qWhEbbDu0V5TOJNzQ0AmIipGrxDblG5th8u9Ir/b94wwpaWGwAw0bkuJJ7yK9nXeVvLW80I27Pfl542wpaWGwAwEVM1eDZvbHnzhhG2tNwAgIlqLiSPrdunKsPwyAuJL/PWljdPH2FLcgMAJvP0C4kv84YunIZ48ghbuqUAwAJiw0OU2LmNx15MfJU3dOF4I1puAABoAlrerIfkBgCAJvLkLhxvRLcUAADwKiQ3AADAaawwoSHdUl6G9WkAAGaxyoSGprfcLFu2TAkJCQoODtbgwYO1c+fOc+5/4sQJzZw5U7GxsQoKClK3bt20ceNGN0Vrbem7cpS0eKsmrvhMSYu3Kn1XjtkhAQB8hJUmNDQ1uUlPT1dqaqrmzZunPXv2qG/fvkpJSdHx48fr3b+yslJXXnmljhw5orVr1+rQoUNasWKF4uLi3By59VjpTQUA8D1WWpPK1G6pJUuW6Pbbb9f06dMlScuXL9eGDRu0cuVKzZo1q87+K1eu1I8//qjt27erWbNmkqSEhAR3hmxZ3jpLJgDAM1hpQkPTWm4qKyu1e/duJScn/ycYPz8lJydrx44d9R6zfv16JSYmaubMmYqOjlavXr20aNEiVVVVNfg8FRUVKi4urvXnjVifBsDZrFDUCd9ipQkNTWu5KSwsVFVVlaKjo2ttj46O1sGDB+s95ptvvtHWrVs1adIkbdy4UVlZWbr77rt1+vRpzZs3r95j0tLStGDBAqfHbzWsTwOghlWKOuF7rDKhoUeNlqqurlbbtm31pz/9Sf7+/urfv7++//57Pffccw0mN7Nnz1Zqaqr9dnFxseLj490VsiT3jWCyypsKgHkaqr8b3i2K7wS4hRUmNDQtuYmMjJS/v7/y8/Nrbc/Pz1dMTEy9x8TGxqpZs2by9/e3b+vRo4fy8vJUWVmpwMDAOscEBQUpKCjIucE7wN2/oKzwpgJgHurvABNrbgIDA9W/f39lZGTYt1VXVysjI0OJiYn1HpOUlKSsrCxVV1fbt3311VeKjY2tN7ExGyOYALgb9XeAyUPBU1NTtWLFCr3++us6cOCA7rrrLpWWltpHT02ZMkWzZ8+273/XXXfpxx9/1P3336+vvvpKGzZs0KJFizRz5kyzXsI5XciwOIr+ADiTlYo6AbOYWnMzfvx4FRQUaO7cucrLy1O/fv20adMme5FxTk6O/Pz+k3/Fx8frww8/1IMPPqg+ffooLi5O999/vx599FGzXsI5nW9YHEV/AFyB+jv4OpthGMb5d/MexcXFCg8PV1FRkcLCwlz+fOm7cuqMYBo/sL1yi8qVtHhrncTnk1mjvPqLiOUhAACN4cj126NGS3mihn5B+WLRHy1VAAB3MH1tKV8QGx6ixM5taiUtvlb0R3E1vA31coB1kdyYxNeK/qy05gjQVCxSC1gb3VIm8qWiPyutOQI0BZPkAdZHy43J6uuy8ka+1lIF70UrJGB9tNzAbXyppQrei1ZIwPpouYFb+UpLFbwXrZCA9dFyAwAOohUSsDaSGwBoBBapBayLbikAAOBVSG4AAIBXIbkBAABeheQGsBim9QeApqGgGLAQFhcFgKZzqOXmu+++U2Fhof32//3f/2nSpEkaNmyYbrnlFu3YscPpAQK+gsVFAcA5HEpufv3rX+sf//iHJOmvf/2rRo4cqZKSEiUlJamsrEwjRozQBx984JJAAW/HtP4ALgRd1+fnULfU/v37dckll0iS0tLStGjRIj366KP2+1966SXNnTtX1157rXOjBHwA0/oDOB+6ri+MQy03AQEBOnnypCQpOztbo0ePrnX/6NGjdejQIedFB/gQpvWH2WgRsDa6ri+cQy03I0aM0DvvvKM+ffro0ksv1bZt29SnTx/7/R9//LHi4uKcHiTgK5jWH2ahRcD6ztV1zXdFbQ4lN4sXL9awYcN07NgxDR06VI8//rh27dqlHj166NChQ0pPT9fy5ctdFSvgE5jWH+7WUIvA8G5RvBcthK7rC+dQt1SPHj302WefqbKyUs8++6xKS0v11ltvaf78+crKytKaNWs0bdo0F4UKAHAFitk9A13XF87heW46d+6sd955R4Zh6Pjx46qurlZkZKSaNWvmivgAAC5Gi4DnoOv6wjR6hmKbzabo6GjFxsaS2ACAB6NFwLPEhocosXMb/v+cg0MtN6mpqRe035IlSxoVDADAHLQIwJs4lNzs3bu31u1PPvlE/fv3V0jIfz4Etn9n/gAAz0IxO7yFQ8nNxx9/XOt2y5Yt9fbbb6tTp05ODQoAAKCxWBUcAAB4FZIbAADgVUhuAACAV3Go5uaLL76oddswDB08eFAlJSW1tp+9JAMAAIA72QzDMM6/28/8/Pxks9lU3yE12202m6qqqpwapDMVFxcrPDxcRUVFCgsLMzsceIHconJlF5aqY2QoI00AwEUcuX471HKTnZ3dpMAAb8NigwBgPQ4lNx06dHBVHIDHYbFBALCmRhUUV1dXN7g9JyenSQEBnoLFBgHAmhxKboqLi3XTTTcpNDRU0dHRmjt3bq36moKCAnXs2NHpQQJWVLPY4NlYbBAAzOdQcjNnzhz985//1BtvvKGFCxfqz3/+s66//npVVlba93GgPhnwaCw2CADW5NBoqQ4dOuj111/XyJEjJUmFhYW65pprFBERofXr1+vEiRNq164do6XgU3KLyllsEABczJHrt0MtNwUFBbWKiiMjI7VlyxadPHlSY8aMUVkZtQbwPbHhIUrs3IbEBgAswqHkpn379jpw4ECtbS1bttRHH32k8vJy3XDDDU4NDgAAwFEOJTdXXnmlVq1aVWd7ixYt9OGHHyo4ONhpgQEAADSGQ/PcPPnkk8rNza33vpYtW2rz5s3as2ePUwIDAABoDIdabvbu3avf/OY3Ki4urnNfUVGRLrvsMtlstnqOBAAAcA+HkpulS5fq9ttvr7dKOTw8XP/93/+tF1980WnBAQAAOMqh5Oaf//ynrr766gbvv+qqq7R79+4mBwUAANBYDiU3+fn5atasWYP3BwQEqKCgoMlBAQAANJZDyU1cXJz27dvX4P1ffPGFYmNjmxwUAABAYzmU3IwZM0Zz5szRqVOn6txXXl6uefPm6dprr3VacAAAAI5yaPmF/Px8/epXv5K/v7/uuecede/eXZJ08OBBLVu2TFVVVdqzZ4+io6NdFnBTsfwCAACex5Hrt0Pz3ERHR2v79u266667NHv2bPsimTabTSkpKVq2bJmlExsAAOD9HEpupJ8Xz9y4caN++uknZWVlyTAMde3aVa1atXJFfAAA4Cy5ReXKLixVx8hQ1rRrgMPJTY1WrVpp4MCBzowFAACcQ/quHM1e96WqDcnPJqXd2FvjB7Y3OyzLcaigGAAAmCO3qNye2EhStSE9tm6fcovKzQ3MgkhuAMCH5BaVa/vhQi6IHii7sNSe2NSoMgwdKSwzJyALa3S3FADAs9Cl4dk6RobKz6ZaCY6/zaaEyObmBWVRtNwAgA+gS8PzxYaHKO3G3vL/9wLV/jabFt3Yi6LietByAwA+4FxdGlwcPcf4ge01vFuUjhSWKSGyOf/vGkByAwA+gC4N7xEbHkJScx6W6JZatmyZEhISFBwcrMGDB2vnzp0XdNyaNWtks9k0btw41wYIAB6OLg34EtNbbtLT05Wamqrly5dr8ODBWrp0qVJSUnTo0CG1bdu2weOOHDmihx9+WMOGDXNjtADguejSgK8wveVmyZIluv322zV9+nT17NlTy5cvV/PmzbVy5coGj6mqqtKkSZO0YMECderUyY3RAoBniw0PUWLnNg4lNgwfh6cxNbmprKzU7t27lZycbN/m5+en5ORk7dixo8HjnnzySbVt21a33XabO8IEAJ+VvitHSYu3auKKz5S0eKvSd+WYHRJwXqZ2SxUWFqqqqqrOYpvR0dE6ePBgvcd88skneu2115SZmXlBz1FRUaGKigr77eLi4kbHCwC+pKHh48O7RdGlBUszvVvKESdPntTkyZO1YsUKRUZGXtAxaWlpCg8Pt//Fx8e7OErANegagLsxIy48laktN5GRkfL391d+fn6t7fn5+YqJiamz/+HDh3XkyBGNHTvWvq26ulqSFBAQoEOHDqlz5861jpk9e7ZSU1Ptt4uLi0lw4HGYWRZmYPg4PJWpLTeBgYHq37+/MjIy7Nuqq6uVkZGhxMTEOvtffPHF+vLLL5WZmWn/u+666zRq1ChlZmbWm7QEBQUpLCys1h/gSZhZFmZh+Dg8lelDwVNTUzV16lQNGDBAgwYN0tKlS1VaWqrp06dLkqZMmaK4uDilpaUpODhYvXr1qnV8RESEJNXZDngLZpZ1jtyicmUXlqpjZCjnzQEMH4cnMj25GT9+vAoKCjR37lzl5eWpX79+2rRpk73IOCcnR35+HlUaBDgVXQNNR7de0zAjbtOQWLufzTAM4/y7eY/i4mKFh4erqKiILip4jPRdOXps3T5VGYa9a4CL84XJLSpX0uKtdZLDT2aN4kIDlyOxdh5Hrt+mt9wAOD+6BhqPbj2YhaH05iG5ATwEXQONQ7cezEJibR6KWQB4NUb8wCw1ifXZSKzdg5YbAF6Pbj2YoSax/mW9HO8/1yO5AeAT6NaDGUiszUFyAwBoNIY5nx+JtfuR3AAAGoVhzrAqCooBAA5jWRBYGckNAMBhrBgOKyO5AQA4jGHOsDKSGwCAw5g/yHvkFpVr++FCr+pSpKAYgMdhhI41MMzZ83lrUTjJDQCP4q1fxp6KYc6ey5vXvqJbCoDHYIQO4DzeXBROcgPAY3jzlzHgbt5cFE5yg3PyxkIzeC5v/jIG3M2bi8KpuUGDqG2A1bAQIeBc3loUbjMMwzj/bt6juLhY4eHhKioqUlhYmNnhWFZuUbmSFm+t1QXgb7Ppk1mjvObND8+VW1TudV/GAM7Nkes3LTeo17lqG7iYwGyM0HENhtjDW5DcoF41tQ2/bLmhtgHeiIs63dDwLhQUo17eXGgGnC19V46SFm/VxBWfKWnxVqXvyjE7JLdjiD28DS03aJC3FpoBNbx5EjNH0A0Nb0Nyg3OitgHejIv6z+iGhrehWwqAz2LenJ/RDQ1vQ8sNAJ/FvDn/QTc0vAnJDQCfxkX9P+iGhrcguQHg87ioA96FmhsAgFuxZh1cjZYbAIDbMFkg3IGWGwCAWzBZINyF5AYA4BbnmlcIcCaSGwCAWzCvENyF5AYA4BZMFgh3oaAYAOA2zCsEdyC5AQC4FfMKwdXolgIAAF6F5AYAAHgVkhsAAOBVSG4AAIBXIbkBAABeheQGAIAmYjFQa2EoOAAATcBioNZDyw3go/ilCTQdi4FaEy03gA/ilybgHOdaDJSJCs1Dyw3gY/ilCTgPi4FaE8kNYAIzu4TO9UsTgGNqFgOtuZj6SSwGagF0SwFuZnaXUM0vzbMTHH5pAk1kk2T8+78wHS03gBtZoUuo5pemv+3nb2F/m41fmkAjWeEzjbpouQHcyCrFh+MHttfwblE6UlimhMjmJDZAI1nlM43aSG4AN7JSl1BseAhfvh4gt6hc2YWl6hgZyv8vC7LSZxr/QbcU4EZW6hJinhvrS9+Vo6TFWzVxxWdKWrxV6btyzA4Jv2ClzzT+w2YYhnH+3bxHcXGxwsPDVVRUpLCwMLPDgY/KLSo3tUvI7KJmnF9uUbmSFm+t0yLwyaxRXDgtyOzPtC9w5PpNtxRgAjO7hBoqgBzeLYovZQuhlsOz0M1rLXRLAT6GeW48A5PDAY1HcgP4GC6anoFaDqDx6JYCfEzNRfOxdftUZRhcNC2MIftA45DcAD6Ii6bnoJYDcBzJDeAiVp+fhIsmAG9liZqbZcuWKSEhQcHBwRo8eLB27tzZ4L4rVqzQsGHD1KpVK7Vq1UrJycnn3B8wA/OTAIB5TE9u0tPTlZqaqnnz5mnPnj3q27evUlJSdPz48Xr337ZtmyZMmKCPP/5YO3bsUHx8vK666ip9//33bo4cqB9rzQCAuUyfxG/w4MEaOHCgXnrpJUlSdXW14uPjde+992rWrFnnPb6qqkqtWrXSSy+9pClTppx3fybxg6ttP1yoiSs+q7P9ndsvU2LnNiZEBLiO1btf4T08ZhK/yspK7d69W7Nnz7Zv8/PzU3Jysnbs2HFBj1FWVqbTp0+rdevW9d5fUVGhiooK++3i4uKmBQ2cB2vNwFcw0zWsytRuqcLCQlVVVSk6OrrW9ujoaOXl5V3QYzz66KNq166dkpOT670/LS1N4eHh9r/4+Pgmxw2cC/OTwBfQ/Qor8+jRUosXL9aaNWu0bds2BQcH17vP7NmzlZqaar9dXFxMgoMGOauJnaHW8HYsDwErMzW5iYyMlL+/v/Lz82ttz8/PV0xMzDmPff7557V48WJt2bJFffr0aXC/oKAgBQUFOSVeeDdnN7Ez1BreLDTQv97tzQNNH6cCmNstFRgYqP79+ysjI8O+rbq6WhkZGUpMTGzwuGeffVZPPfWUNm3apAEDBrgjVHg5mtgBx5RWVtW7vayy2s2RAHWZnmKnpqZqxYoVev3113XgwAHdddddKi0t1fTp0yVJU6ZMqVVw/Mwzz2jOnDlauXKlEhISlJeXp7y8PJWUlJj1EuAFWEwSzpJbVK7thwu9PjFmjTJYmek1N+PHj1dBQYHmzp2rvLw89evXT5s2bbIXGefk5MjP7z852CuvvKLKykr95je/qfU48+bN0/z5890ZutdgKCcjnOAcVho95OrPNWuUwcpMn+fG3ZjnpjYrfRmbLX1XTp0vak85FySo5sstKlfS4q11EuRPZo1y+/8Td36uc4vKKZyHW3jMPDcwV0N1JsO7Rfnkl5SnjnAiQbUGq4wecvfnmsJ5WJHpNTcwD3UmdcWGhyixcxuP+bKmENo6rFKDwucaILnxaVb5MkbjcSGzDqtM3sjnGqBbyqdREOj5KIS2Fit0bfK5BigoNjscS6Ag0LN5ciE0XIfPNbyNI9dvkhvAC3AhA+DtGC0F+BhGrADAf1BQDAAAvArJDQAATeQry254CrqlgAvADMAAGsJEmtZDcoNG85ULPl9cABrCTO/WRHKDRmnsBd/TEiK+uACci1WW3UBtJDdwWGMv+J7YAsIXF5zJ05J7nB8TaVoTBcVwWGOm/PfUNZCYyh7Okr4rR0mLt2riis+UtHir0nflmB0SnMAqy26gNlpu4LDG/FLx1BaQpkxlz6901KB707tZYdkN1EZyA4c15oLvyU23jfni8sQuOLiOpyb3uHBMpGktJDdoFEcv+J6+mJ8jX1z8SscveXJyD3gikhs0mqO/VHyl6ZZf6fglT0/uAU9DcgO38oWmW36loz6+ktwDVsBoKcDJGD2BhsSGhyixcxveC4CL0XIDuIAv/kpndBgAqyC5AVzEF7rgajA6DICV0C0FoEk8dYJGAN6L5AY+J7eoXNsPF9Z78T3XfahfY2asBgBXolsKPuVc3Sd0rTQOo8MAWA0tN/AZ5+o+oWul8RgdBsBqaLmBzzhX94khg4n3msAXR4cBsC6SG/iM83Wf0LXSNL40OgyAtdEtBZ9xru4TulYAwHvYDMMwzr+b9yguLlZ4eLiKiooUFhZmdjgwQW5ReYPdJ+e6DwBgHkeu33RLweecq/uErhUA8Hx0S8HymHsGAOAIWm5gacw9AwBwFC03sCzmngEANAbJDSyLaf0BAI1BcgPLqpmX5mzMPQMAOB+SG1gWc88AABqDgmJYmidM659bVK7swlJ1jAy1ZHwA4GtIbmB5Vp57htFcvoukFrAukhugkRoazTW8WxQXOy9HUgtYGzU3QCMxmss3MUUBYH0kN0AjMZrLN5HUAtZHcgM0EqO5fBNJLWB91NwAZ3G0SNQTRnPBuWqS2sfW7VOVYZDUAhZEcgP8W2OLRK08mguuQVILWBvdUnA6T1zFmyJROCo2PESJnduQ2AAWRMsNnMpTh8ieq0iUixcAeBZabuA0ntz6QZEoAHgPkhs4rRvJk4fIMvIJALwH3VI+zpndSDWtH2cnOGa1fjRmanyKRH0XSykA3oXkxoc5e/mApgyRdebFpSkJGyOffI+n1onBu5FwNw3JjQ9zRRFtY1o/nHlxYb0nOMKb3y9cHD0XCXfTkdz4MFd1IznS+uHsiwujnuAIb32/cHH0XN6ccLsTBcU+zApFtM4uQmbUExzhje8XTx61aBVmztXlyQMzrISWGx9ndhGts1uPmBofjvDG94u3tka5i9mtXlYamOHJSG5gahFtzcVl9ntfqlo/NyU6cnGpr67A7IQNnsXb3i9cHBvPCl1C3phwm4HkBtZgk2T8+78X6Fy/sBj1BEd40/uFi2PjWaXVy9sSbjNYouZm2bJlSkhIUHBwsAYPHqydO3eec/93331XF198sYKDg9W7d29t3LjRTZHC2RpbH0BdAerjieuaucL4ge31yaxReuf2y/TJrFEUE18gK9VgsXZZ05ie3KSnpys1NVXz5s3Tnj171LdvX6WkpOj48eP17r99+3ZNmDBBt912m/bu3atx48Zp3Lhx2rdvn5sjhzM0tniOojv8UvquHCUt3qqJKz5T0uKtSt+VY3ZIpuLi6DhXDbIg6XY/m2EYxvl3c53Bgwdr4MCBeumllyRJ1dXVio+P17333qtZs2bV2X/8+PEqLS3VBx98YN922WWXqV+/flq+fPl5n6+4uFjh4eEqKipSWFiY814IGiW3qFxJi7fWqQ/4ZNaoc36hNPY4eCfeD3Cm3KJyp3UJmV2g7E0cuX6b2nJTWVmp3bt3Kzk52b7Nz89PycnJ2rFjR73H7Nixo9b+kpSSktLg/rC2xv5SssIwdlgHLXlwJme1etF9bh5TC4oLCwtVVVWl6OjoWtujo6N18ODBeo/Jy8urd/+8vLx696+oqFBFRYX9dnFxcROjhrM1tniOojvUYIQQrMgqBcq+yPSaG1dLS0tTeHi4/S8+Pt7skFCPxv5Soq4AEi15sCYrFSj7GlNbbiIjI+Xv76/8/Pxa2/Pz8xUTE1PvMTExMQ7tP3v2bKWmptpvFxcXk+AAXoiWPFgNw/LNY2pyExgYqP79+ysjI0Pjxo2T9HNBcUZGhu655556j0lMTFRGRoYeeOAB+7bNmzcrMTGx3v2DgoIUFBTk7NABWJA3zVcD70DSbQ7TJ/FLTU3V1KlTNWDAAA0aNEhLly5VaWmppk+fLkmaMmWK4uLilJaWJkm6//77NWLECL3wwgu65pprtGbNGn3++ef605/+ZObLAACgXiTd7md6cjN+/HgVFBRo7ty5ysvLU79+/bRp0yZ70XBOTo78/P5TGjRkyBC9/fbbeuKJJ/TYY4+pa9eu+p//+R/16tXLrJcAAAAsxPR5btyNeW4AAPA8HjPPDQAAgLOR3AAAAK9CcgMAALwKyQ0AAPAqJDcAAMCrkNwAAACvQnIDAAC8CskNAADwKiQ3AADAq5i+/IK71UzIXFxcbHIkAADgQtVcty9kYQWfS25OnjwpSYqPjzc5EgAA4KiTJ08qPDz8nPv43NpS1dXVOnbsmFq2bCmbzebw8cXFxYqPj9fRo0d9em0qzgPnQOIc1OA8cA4kzkENV50HwzB08uRJtWvXrtaC2vXxuZYbPz8/XXTRRU1+nLCwMJ9+89bgPHAOJM5BDc4D50DiHNRwxXk4X4tNDQqKAQCAVyG5AQAAXoXkxkFBQUGaN2+egoKCzA7FVJwHzoHEOajBeeAcSJyDGlY4Dz5XUAwAALwbLTcAAMCrkNwAAACvQnIDAAC8CskNAADwKiQ39Vi2bJkSEhIUHByswYMHa+fOnQ3uu3//fv36179WQkKCbDabli5d6r5AXciRc7BixQoNGzZMrVq1UqtWrZScnHzO/T2JI+dh3bp1GjBggCIiIhQaGqp+/frpjTfecGO0ruHIOTjbmjVrZLPZNG7cONcG6CaOnIfVq1fLZrPV+gsODnZjtK7h6HvhxIkTmjlzpmJjYxUUFKRu3bpp48aNborWNRw5ByNHjqzzPrDZbLrmmmvcGLFrOPpeWLp0qbp3766QkBDFx8frwQcf1KlTp1wXoIFa1qxZYwQGBhorV6409u/fb9x+++1GRESEkZ+fX+/+O3fuNB5++GHjnXfeMWJiYowXX3zRvQG7gKPnYOLEicayZcuMvXv3GgcOHDCmTZtmhIeHG999952bI3cuR8/Dxx9/bKxbt87417/+ZWRlZRlLly41/P39jU2bNrk5cudx9BzUyM7ONuLi4oxhw4YZ119/vXuCdSFHz8OqVauMsLAwIzc31/6Xl5fn5qidy9FzUFFRYQwYMMAYM2aM8cknnxjZ2dnGtm3bjMzMTDdH7jyOnoMffvih1ntg3759hr+/v7Fq1Sr3Bu5kjp6Ht956ywgKCjLeeustIzs72/jwww+N2NhY48EHH3RZjCQ3vzBo0CBj5syZ9ttVVVVGu3btjLS0tPMe26FDB69IbppyDgzDMM6cOWO0bNnSeP31110Vols09TwYhmFceumlxhNPPOGK8NyiMefgzJkzxpAhQ4xXX33VmDp1qlckN46eh1WrVhnh4eFuis49HD0Hr7zyitGpUyejsrLSXSG6XFO/E1588UWjZcuWRklJiatCdAtHz8PMmTONyy+/vNa21NRUIykpyWUx0i11lsrKSu3evVvJycn2bX5+fkpOTtaOHTtMjMx9nHEOysrKdPr0abVu3dpVYbpcU8+DYRjKyMjQoUOHNHz4cFeG6jKNPQdPPvmk2rZtq9tuu80dYbpcY89DSUmJOnTooPj4eF1//fXav3+/O8J1icacg/Xr1ysxMVEzZ85UdHS0evXqpUWLFqmqqspdYTuVM74bX3vtNd18880KDQ11VZgu15jzMGTIEO3evdvedfXNN99o48aNGjNmjMvi9LmFM8+lsLBQVVVVio6OrrU9OjpaBw8eNCkq93LGOXj00UfVrl27Wm9+T9PY81BUVKS4uDhVVFTI399fL7/8sq688kpXh+sSjTkHn3zyiV577TVlZma6IUL3aMx56N69u1auXKk+ffqoqKhIzz//vIYMGaL9+/c7ZeFed2vMOfjmm2+0detWTZo0SRs3blRWVpbuvvtunT59WvPmzXNH2E7V1O/GnTt3at++fXrttddcFaJbNOY8TJw4UYWFhRo6dKgMw9CZM2d055136rHHHnNZnCQ3cKrFixdrzZo12rZtm1cUUDqqZcuWyszMVElJiTIyMpSamqpOnTpp5MiRZofmcidPntTkyZO1YsUKRUZGmh2OqRITE5WYmGi/PWTIEPXo0UN//OMf9dRTT5kYmftUV1erbdu2+tOf/iR/f3/1799f33//vZ577jmPTG6a6rXXXlPv3r01aNAgs0Nxu23btmnRokV6+eWXNXjwYGVlZen+++/XU089pTlz5rjkOUluzhIZGSl/f3/l5+fX2p6fn6+YmBiTonKvppyD559/XosXL9aWLVvUp08fV4bpco09D35+furSpYskqV+/fjpw4IDS0tI8Mrlx9BwcPnxYR44c0dixY+3bqqurJUkBAQE6dOiQOnfu7NqgXcAZ3wvNmjXTpZdeqqysLFeE6HKNOQexsbFq1qyZ/P397dt69OihvLw8VVZWKjAw0KUxO1tT3gelpaVas2aNnnzySVeG6BaNOQ9z5szR5MmTNWPGDElS7969VVpaqjvuuEOPP/64/PycXyFDzc1ZAgMD1b9/f2VkZNi3VVdXKyMjo9avMG/W2HPw7LPP6qmnntKmTZs0YMAAd4TqUs56L1RXV6uiosIVIbqco+fg4osv1pdffqnMzEz733XXXadRo0YpMzNT8fHx7gzfaZzxXqiqqtKXX36p2NhYV4XpUo05B0lJScrKyrInuJL01VdfKTY21uMSG6lp74N3331XFRUVuuWWW1wdpss15jyUlZXVSWBqkl7DVctbuqxU2UOtWbPGCAoKMlavXm3861//Mu644w4jIiLCPoxz8uTJxqxZs+z7V1RUGHv37jX27t1rxMbGGg8//LCxd+9e4+uvvzbrJTSZo+dg8eLFRmBgoLF27dpawx5Pnjxp1ktwCkfPw6JFi4yPPvrIOHz4sPGvf/3LeP75542AgABjxYoVZr2EJnP0HPySt4yWcvQ8LFiwwPjwww+Nw4cPG7t37zZuvvlmIzg42Ni/f79ZL6HJHD0HOTk5RsuWLY177rnHOHTokPHBBx8Ybdu2NZ5++mmzXkKTNfbzMHToUGP8+PHuDtdlHD0P8+bNM1q2bGm88847xjfffGN89NFHRufOnY2bbrrJZTGS3NTjD3/4g9G+fXsjMDDQGDRokPGPf/zDft+IESOMqVOn2m9nZ2cbkur8jRgxwv2BO5Ej56BDhw71noN58+a5P3Anc+Q8PP7440aXLl2M4OBgo1WrVkZiYqKxZs0aE6J2LkfOwS95S3JjGI6dhwceeMC+b3R0tDFmzBhjz549JkTtXI6+F7Zv324MHjzYCAoKMjp16mQsXLjQOHPmjJujdi5Hz8HBgwcNScZHH33k5khdy5HzcPr0aWP+/PlG586djeDgYCM+Pt64++67jZ9++sll8dkMw1VtQgAAAO5HzQ0AAPAqJDcAAMCrkNwAAACvQnIDAAC8CskNAADwKiQ3AADAq5DcAAAAr0JyAwAuNG3aNI0bN87sMACfQnID+Khp06bJZrPZ/9q0aaOrr75aX3zxhdmhOcXZr63mb+jQoS57viNHjshmsykzM7PW9t/97ndavXq1y54XQF0kN4APu/rqq5Wbm6vc3FxlZGQoICBA1157rdlhOc2qVavsry83N1fr16+vd7/Tp0+7LIbw8HBFRES47PEB1EVyA/iwoKAgxcTEKCYmRv369dOsWbN09OhRFRQU6PLLL9c999xTa/+CggIFBgbaVwROSEjQU089pQkTJig0NFRxcXFatmxZrWOWLFmi3r17KzQ0VPHx8br77rtVUlJiv//bb7/V2LFj1apVK4WGhuqSSy7Rxo0bJUk//fSTJk2apKioKIWEhKhr165atWrVBb++iIgI++uLiYlR69at7S0s6enpGjFihIKDg/XWW2/phx9+0IQJExQXF6fmzZurd+/eeuedd2o9XnV1tZ599ll16dJFQUFBat++vRYuXChJ6tixoyTp0ksvlc1m08iRIyXV7ZaqqKjQfffdp7Zt2yo4OFhDhw7Vrl277Pdv27ZNNptNGRkZGjBggJo3b64hQ4bo0KFDF/y6AV9HcgNAklRSUqI333xTXbp0UZs2bTRjxgy9/fbbqqiosO/z5ptvKi4uTpdffrl923PPPae+fftq7969mjVrlu6//35t3rzZfr+fn59+//vfa//+/Xr99de1detWPfLII/b7Z86cqYqKCv3973/Xl19+qWeeeUYtWrSQJM2ZM0f/+te/9P/+3//TgQMH9MorrygyMtIpr7cm1gMHDiglJUWnTp1S//79tWHDBu3bt0933HGHJk+erJ07d9qPmT17thYvXmyP6+2331Z0dLQk2ffbsmWLcnNztW7dunqf95FHHtF7772n119/XXv27FGXLl2UkpKiH3/8sdZ+jz/+uF544QV9/vnnCggI0K233uqU1w34BJctyQnA0qZOnWr4+/sboaGhRmhoqCHJiI2NNXbv3m0YhmGUl5cbrVq1MtLT0+3H9OnTx5g/f779docOHYyrr7661uOOHz/eGD16dIPP++677xpt2rSx3+7du3etxzzb2LFjjenTpzfq9UkygoOD7a8vNDTUeP/9943s7GxDkrF06dLzPsY111xjPPTQQ4ZhGEZxcbERFBRkrFixot59ax537969tbafvTJ6SUmJ0axZM+Ott96y319ZWWm0a9fOePbZZw3DMIyPP/7YkGRs2bLFvs+GDRsMSUZ5ebkjpwDwWbTcAD5s1KhRyszMVGZmpnbu3KmUlBSNHj1a3377rYKDgzV58mStXLlSkrRnzx7t27dP06ZNq/UYiYmJdW4fOHDAfnvLli264oorFBcXp5YtW2ry5Mn64YcfVFZWJkm677779PTTTyspKUnz5s2rVdB81113ac2aNerXr58eeeQRbd++3aHX9+KLL9pfX2Zmpq688kr7fQMGDKi1b1VVlZ566in17t1brVu3VosWLfThhx8qJydHknTgwAFVVFToiiuucCiGsx0+fFinT59WUlKSfVuzZs00aNCgWudMkvr06WP/d2xsrCTp+PHjjX5uwJeQ3AA+LDQ0VF26dFGXLl00cOBAvfrqqyotLdWKFSskSTNmzNDmzZv13XffadWqVbr88svVoUOHC378I0eO6Nprr1WfPn303nvvaffu3faanMrKSvtzfPPNN5o8ebK+/PJLDRgwQH/4wx8kyZ5oPfjggzp27JiuuOIKPfzwwxf8/DExMfbX16VLF4WGhtZ67Wd77rnn9Lvf/U6PPvqoPv74Y2VmZiolJcUeZ0hIyAU/rzM0a9bM/m+bzSbp55ofAOdHcgPAzmazyc/PT+Xl5ZKk3r17a8CAAVqxYoXefvvteus+/vGPf9S53aNHD0nS7t27VV1drRdeeEGXXXaZunXrpmPHjtV5jPj4eN15551at26dHnroIXtyJUlRUVGaOnWq3nzzTS1dulR/+tOfnPmS7T799FNdf/31uuWWW9S3b1916tRJX331lf3+rl27KiQkxF5M/UuBgYGSfm4Bakjnzp0VGBioTz/91L7t9OnT2rVrl3r27OmkVwIgwOwAAJinoqJCeXl5kn4emfTSSy+ppKREY8eOte8zY8YM3XPPPQoNDdUNN9xQ5zE+/fRTPfvssxo3bpw2b96sd999Vxs2bJAkdenSRadPn9Yf/vAHjR07Vp9++qmWL19e6/gHHnhAo0ePVrdu3fTTTz/p448/tidHc+fOVf/+/XXJJZeooqJCH3zwgf0+Z+vatavWrl2r7du3q1WrVlqyZIny8/PtSUdwcLAeffRRPfLIIwoMDFRSUpIKCgq0f/9+3XbbbWrbtq1CQkK0adMmXXTRRQoODlZ4eHit5wgNDdVdd92l3/72t2rdurXat2+vZ599VmVlZbrttttc8roAX0TLDeDDNm3apNjYWMXGxmrw4MHatWuX3n33XfswZkmaMGGCAgICNGHCBAUHB9d5jIceekiff/65Lr30Uj399NNasmSJUlJSJEl9+/bVkiVL9Mwzz6hXr1566623lJaWVuv4qqoqzZw5Uz169NDVV1+tbt266eWXX5b0c2vI7Nmz1adPHw0fPlz+/v5as2aNS87FE088oV/96ldKSUnRyJEjFRMTU2dm4Tlz5uihhx7S3Llz1aNHD40fP95eBxMQEKDf//73+uMf/6h27drp+uuvr/d5Fi9erF//+teaPHmyfvWrXykrK0sffvihWrVq5ZLXBfgim2EYhtlBALCuI0eOqHPnztq1a5d+9atf1bovISFBDzzwgB544AFzggOAetAtBaBep0+f1g8//KAnnnhCl112WZ3EBgCsim4pAPX69NNPFRsbq127dtWpkzHbokWL1KJFi3r/Ro8ebXZ4AExGtxQAj/Pjjz/WmdG3RkhIiOLi4twcEQArIbkBAABehW4pAADgVUhuAACAVyG5AQAAXoXkBgAAeBWSGwAA4FVIbgAAgFchuQEAAF6F5AYAAHiV/w/VuHs3lUyrUAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_42.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKvUlEQVR4nO3deVxU9f4/8NeAMCDCAMomjqDimoCGG2CKRZKaSd5bZuVSajfFyqxMbFHTRCuX6ppramUGV9Pymrmh1q+wxIWbmlooiiWgpA6COCJ8fn/4ZXKEAQZm5pw583o+HvN4OGfOnHl/jsw57/msKiGEABEREZFCOEkdABEREZElMbkhIiIiRWFyQ0RERIrC5IaIiIgUhckNERERKQqTGyIiIlIUJjdERESkKExuiIiISFGY3BAREZGiMLkhIknMmDEDKpWqTvuqVCrMmDHDqvHExcUhLi5OtscjorpjckPk4NasWQOVSmV4NGrUCMHBwRg9ejT+/PNPqcOTndDQUKPz5e/vj3vuuQebNm2yyPGvXbuGGTNmYO/evRY5HpEjYnJDRACAt956C5999hmWLl2KAQMGYO3atejbty+uX79ulc97/fXXUVpaapVjW1uXLl3w2Wef4bPPPsPLL7+M8+fPY+jQoVi6dGmDj33t2jXMnDmTyQ1RAzSSOgAikocBAwagW7duAICxY8eiWbNmmDdvHjZv3oxHH33U4p/XqFEjNGpkn5eg4OBgPPnkk4bnI0eORFhYGBYuXIhnn31WwsiICGDNDRGZcM899wAATp06ZbT9xIkT+Oc//wlfX1+4ubmhW7du2Lx5s9E+ZWVlmDlzJtq2bQs3Nzc0bdoUvXv3xs6dOw37VNfnRq/X48UXX4Sfnx88PT3x0EMP4Y8//qgS2+jRoxEaGlple3XHXL16Ne699174+/tDrVajU6dOWLJkiVnnojaBgYHo2LEjcnJyatzvwoULGDNmDAICAuDm5obIyEh88sknhtfPnDkDPz8/AMDMmTMNTV/W7m9EpDT2+bOJiKzuzJkzAAAfHx/DtmPHjiE2NhbBwcGYOnUqPDw88J///AeJiYn48ssv8fDDDwO4lWSkpKRg7Nix6NGjB4qKinDgwAEcOnQI999/v8nPHDt2LNauXYvHH38cMTEx2L17NwYNGtSgcixZsgR33XUXHnroITRq1Aj//e9/MWHCBFRUVCApKalBx65UVlaGc+fOoWnTpib3KS0tRVxcHLKzszFx4kS0atUK69evx+jRo3HlyhW88MIL8PPzw5IlSzB+/Hg8/PDDGDp0KAAgIiLCInESOQxBRA5t9erVAoDYtWuXuHjxojh37pzYsGGD8PPzE2q1Wpw7d86w73333SfCw8PF9evXDdsqKipETEyMaNu2rWFbZGSkGDRoUI2fO336dHH7JSgrK0sAEBMmTDDa7/HHHxcAxPTp0w3bRo0aJUJCQmo9phBCXLt2rcp+CQkJonXr1kbb+vbtK/r27VtjzEIIERISIvr37y8uXrwoLl68KP73v/+Jxx57TAAQzz33nMnjLVq0SAAQa9euNWy7ceOGiI6OFk2aNBFFRUVCCCEuXrxYpbxEZB42SxERACA+Ph5+fn7QarX45z//CQ8PD2zevBktWrQAAFy6dAm7d+/Go48+iqtXr6KwsBCFhYX466+/kJCQgN9//90wusrb2xvHjh3D77//XufP37p1KwDg+eefN9o+adKkBpXL3d3d8G+dTofCwkL07dsXp0+fhk6nq9cxd+zYAT8/P/j5+SEyMhLr16/HiBEjMG/ePJPv2bp1KwIDAzF8+HDDNhcXFzz//PMoLi7Gd999V69YiKgqh05uvv/+ewwePBjNmzeHSqXCV199ZfXP/PPPP/Hkk0+iadOmcHd3R3h4OA4cOGD1zyWqzeLFi7Fz505s2LABAwcORGFhIdRqteH17OxsCCHwxhtvGG7slY/p06cDuNWnBLg18urKlSto164dwsPD8corr+CXX36p8fPPnj0LJycntGnTxmh7+/btG1SuH3/8EfHx8fDw8IC3tzf8/Pwwbdo0AKh3ctOzZ0/s3LkTu3btQkZGBgoLC/Hpp58aJVJ3Onv2LNq2bQsnJ+PLbseOHQ2vE5FlOHSfm5KSEkRGRuLpp582tG1b0+XLlxEbG4t+/frh22+/hZ+fH37//XejPg1EUunRo4dhtFRiYiJ69+6Nxx9/HCdPnkSTJk1QUVEBAHj55ZeRkJBQ7THCwsIAAH369MGpU6fw9ddfY8eOHVi5ciUWLlyIpUuXYuzYsQ2O1dTkf+Xl5UbPT506hfvuuw8dOnTAggULoNVq4erqiq1bt2LhwoWGMpmrWbNmiI+Pr9d7icj6HDq5GTBgAAYMGGDydb1ej9deew1ffPEFrly5gs6dO2PevHn1nnV03rx50Gq1WL16tWFbq1at6nUsImtydnZGSkoK+vXrh3//+9+YOnUqWrduDeBWU0pdbuy+vr546qmn8NRTT6G4uBh9+vTBjBkzTCY3ISEhqKiowKlTp4xqa06ePFllXx8fH1y5cqXK9jtrP/773/9Cr9dj8+bNaNmypWH7nj17ao3f0kJCQvDLL7+goqLCqPbmxIkThtcB04kbEdWdQzdL1WbixInYt28fUlNT8csvv+CRRx7BAw88YFY/gttt3rwZ3bp1wyOPPAJ/f3907doVK1assHDURJYRFxeHHj16YNGiRbh+/Tr8/f0RFxeHZcuWIS8vr8r+Fy9eNPz7r7/+MnqtSZMmCAsLg16vN/l5lT80PvjgA6PtixYtqrJvmzZtoNPpjJq68vLyqswS7OzsDAAQQhi26XQ6ox8YtjJw4EDk5+cjLS3NsO3mzZv48MMP0aRJE/Tt2xcA0LhxYwCoNnkjorpx6JqbmuTm5mL16tXIzc1F8+bNAdyqjt+2bRtWr16NOXPmmH3M06dPY8mSJZg8eTKmTZuGzMxMPP/883B1dcWoUaMsXQSiBnvllVfwyCOPYM2aNXj22WexePFi9O7dG+Hh4Rg3bhxat26NgoIC7Nu3D3/88Qf+97//AQA6deqEuLg4REVFwdfXFwcOHMCGDRswceJEk5/VpUsXDB8+HB999BF0Oh1iYmKQnp6O7OzsKvs+9thjePXVV/Hwww/j+eefx7Vr17BkyRK0a9cOhw4dMuzXv39/uLq6YvDgwfjXv/6F4uJirFixAv7+/tUmaNb0zDPPYNmyZRg9ejQOHjyI0NBQbNiwAT/++CMWLVoET09PALc6QHfq1AlpaWlo164dfH190blzZ3Tu3Nmm8RLZNamHa8kFALFp0ybD8y1btggAwsPDw+jRqFEj8eijjwohhDh+/LgAUOPj1VdfNRzTxcVFREdHG33uc889J3r16mWTMhJVp3IoeGZmZpXXysvLRZs2bUSbNm3EzZs3hRBCnDp1SowcOVIEBgYKFxcXERwcLB588EGxYcMGw/tmz54tevToIby9vYW7u7vo0KGDePvtt8WNGzcM+1Q3bLu0tFQ8//zzomnTpsLDw0MMHjxYnDt3rtqh0Tt27BCdO3cWrq6uon379mLt2rXVHnPz5s0iIiJCuLm5idDQUDFv3jyxatUqAUDk5OQY9jNnKHhtw9xNHa+goEA89dRTolmzZsLV1VWEh4eL1atXV3lvRkaGiIqKEq6urhwWTlQPKiFuq691YCqVCps2bUJiYiIAIC0tDU888QSOHTtmqNqu1KRJEwQGBuLGjRs4ffp0jcdt2rSpYcbRkJAQ3H///Vi5cqXh9SVLlmD27NlcoJCIiMhC2CxlQteuXVFeXo4LFy4YpqG/k6urKzp06FDnY8bGxlbpHPnbb78ZOhISERFRwzl0clNcXGzUnp+Tk4OsrCz4+vqiXbt2eOKJJzBy5EjMnz8fXbt2xcWLF5Geno6IiIh6TQn/4osvIiYmBnPmzMGjjz6K/fv3Y/ny5Vi+fLkli0VEROTQHLpZau/evejXr1+V7aNGjcKaNWtQVlaG2bNn49NPP8Wff/6JZs2aoVevXpg5cybCw8Pr9ZlbtmxBcnIyfv/9d7Rq1QqTJ0/GuHHjGloUIiIi+j8OndwQERGR8nCeGyIiIlIUJjdERESkKA7XobiiogLnz5+Hp6cnpzknIiKyE0IIXL16Fc2bN6+yAO2dHC65OX/+PLRardRhEBERUT2cO3cOLVq0qHEfh0tuKqc4P3fuHLy8vCSOhoiIiOqiqKgIWq3WcB+vicMlN5VNUV5eXkxuiIiI7ExdupSwQzEREREpCpMbIiIiUhRJk5slS5YgIiLC0EQUHR2Nb7/91uT+a9asgUqlMnq4ubnZMGIiIiKSO0n73LRo0QJz585F27ZtIYTAJ598giFDhuDw4cO46667qn2Pl5eX0eKT1hrOXV5ejrKyMqsc2xG5uLhUWV2diIjIGiRNbgYPHmz0/O2338aSJUvw008/mUxuVCoVAgMDrRaTEAL5+fm4cuWK1T7DUXl7eyMwMJDzCxERkVXJZrRUeXk51q9fj5KSEkRHR5vcr7i4GCEhIaioqMDdd9+NOXPmmEyEAECv10Ov1xueFxUV1RhHZWLj7++Pxo0b80ZsAUIIXLt2DRcuXAAABAUFSRwREREpmeTJzZEjRxAdHY3r16+jSZMm2LRpEzp16lTtvu3bt8eqVasQEREBnU6H9957DzExMTh27JjJCX1SUlIwc+bMOsVSXl5uSGyaNm1a7zJRVe7u7gCACxcuwN/fn01URERkNZKvCn7jxg3k5uZCp9Nhw4YNWLlyJb777juTCc7tysrK0LFjRwwfPhyzZs2qdp/qam60Wi10Ol2VeW6uX7+OnJwchIaGGm7GZDmlpaU4c+YMWrVqxY7gRERklqKiImg0mmrv33eSvObG1dUVYWFhAICoqChkZmbi/fffx7Jly2p9r4uLC7p27Yrs7GyT+6jVaqjVarNiYlOUdfC8EhGRLchunpuKigqjmpaalJeX48iRI+zDQURERAaS1twkJydjwIABaNmyJa5evYp169Zh79692L59OwBg5MiRCA4ORkpKCgDgrbfeQq9evRAWFoYrV67g3XffxdmzZzF27Fgpi0FEREQyImnNzYULFzBy5Ei0b98e9913HzIzM7F9+3bcf//9AIDc3Fzk5eUZ9r98+TLGjRuHjh07YuDAgSgqKkJGRkad+uc4gvz8fDz33HNo3bo11Go1tFotBg8ejPT0dADAv/71L7Rp0wbu7u7w8/PDkCFDcOLECcP7z5w5A5VKhaysrCrHjouLw6RJkwzPi4uLMXHiRLRo0QLu7u7o1KkTli5dau0iEhGRDeXpSpFxqhB5ulKpQzGLpDU3H3/8cY2v79271+j5woULsXDhQitGZL/OnDmD2NhYeHt7491330V4eDjKysqwfft2JCUl4cSJE4iKisITTzyBli1b4tKlS5gxYwb69++PnJwcs0cvTZ48Gbt378batWsRGhqKHTt2YMKECWjevDkeeughK5WSiIhsJS0zF8kbj6BCAE4qIGVoOIZ1byl1WHUieYdisowJEyZApVJh//798PDwMGy/66678PTTTwMAnnnmGcP20NBQzJ49G5GRkThz5gzatGlj1udlZGRg1KhRiIuLMxx72bJl2L9/P5MbIiI7l6crNSQ2AFAhgGkbj6JPOz8EaeQ/mlh2HYqVxFbVeZcuXcK2bduQlJRklNhU8vb2rrKtpKQEq1evRqtWraDVas3+zJiYGGzevBl//vknhBDYs2cPfvvtN/Tv378+RSAiIhnJKSwxJDaVyoXAmcJr0gRkJtbcWIktq/Oys7MhhECHDh1q3fejjz7ClClTUFJSgvbt22Pnzp1wdXU12icmJgZOTsZ5b2lpKbp06WJ4/uGHH+KZZ55BixYt0KhRIzg5OWHFihXo06ePRcpERETSadXMA04qGCU4zioVQps1li4oM7DmxgpMVedZqwbHnHkYn3jiCRw+fBjfffcd2rVrh0cffRTXr1832ictLQ1ZWVlGj27duhnt8+GHH+Knn37C5s2bcfDgQcyfPx9JSUnYtWuXRcpERETSCdK4I2VoOJz/b34yZ5UKc4Z2tosmKYA1N1ZRU3WeNf4w2rZtC5VKZTTyyRSNRgONRoO2bduiV69e8PHxwaZNmzB8+HDDPlqt1jCxYqXbZ2wuLS3FtGnTsGnTJgwaNAgAEBERgaysLLz33nuIj4+3UMmIiEgqw7q3RJ92fjhTeA2hzRrbTWIDsObGKiqr825nzeo8X19fJCQkYPHixSgpKanyuqkVzoUQEELUedLESmVlZSgrK6vSdOXs7IyKigqzjkVERPIVpHFHdJumdpXYAExurEKK6rzFixejvLwcPXr0wJdffonff/8dx48fxwcffIDo6GicPn0aKSkpOHjwIHJzc5GRkYFHHnkE7u7uGDhwoFmf5eXlhb59++KVV17B3r17kZOTgzVr1uDTTz/Fww8/bKUSEhER1Q2bpazE1tV5rVu3xqFDh/D222/jpZdeQl5eHvz8/BAVFYUlS5bAzc0N/+///T8sWrQIly9fRkBAAPr06YOMjAz4+/ub/XmpqalITk7GE088gUuXLiEkJARvv/02nn32WSuUjoiIqO4kXxXc1mpaVbRyVXCuWm0dPL9ERFRf5qwKzmYpIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuamGg/WxthmeVyIisgUmN7dxcXEBAFy7Zh8Lg9mbyvNaeZ6JiIisgfPc3MbZ2Rne3t64cOECAKBx48ZQqVS1vItqI4TAtWvXcOHCBXh7e8PZ2VnqkIiISMGY3NwhMDAQAAwJDlmOt7e34fwSERFZC5ObO6hUKgQFBcHf3x9lZWVSh6MYLi4urLEhIiKbYHJjgrOzM2/GREREdogdiomIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkWRNLlZsmQJIiIi4OXlBS8vL0RHR+Pbb7+t8T3r169Hhw4d4ObmhvDwcGzdutVG0RIREZE9kDS5adGiBebOnYuDBw/iwIEDuPfeezFkyBAcO3as2v0zMjIwfPhwjBkzBocPH0ZiYiISExNx9OhRG0dOREREcqUSQgipg7idr68v3n33XYwZM6bKa8OGDUNJSQm2bNli2NarVy906dIFS5curdPxi4qKoNFooNPp4OXlZbG4iYiIyHrMuX/Lps9NeXk5UlNTUVJSgujo6Gr32bdvH+Lj4422JSQkYN++fSaPq9frUVRUZPQgIiIi5ZI8uTly5AiaNGkCtVqNZ599Fps2bUKnTp2q3Tc/Px8BAQFG2wICApCfn2/y+CkpKdBoNIaHVqu1aPxEREQkL5InN+3bt0dWVhZ+/vlnjB8/HqNGjcKvv/5qseMnJydDp9MZHufOnbPYsYmIiEh+GkkdgKurK8LCwgAAUVFRyMzMxPvvv49ly5ZV2TcwMBAFBQVG2woKChAYGGjy+Gq1Gmq12rJBExERkWxJXnNzp4qKCuj1+mpfi46ORnp6utG2nTt3muyjQ0RERI5H0pqb5ORkDBgwAC1btsTVq1exbt067N27F9u3bwcAjBw5EsHBwUhJSQEAvPDCC+jbty/mz5+PQYMGITU1FQcOHMDy5culLAYRERHJiKTJzYULFzBy5Ejk5eVBo9EgIiIC27dvx/333w8AyM3NhZPT35VLMTExWLduHV5//XVMmzYNbdu2xVdffYXOnTtLVQQiIiKSGdnNc2NtnOeGiIjI/tjlPDdERERElsDkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUSRNblJSUtC9e3d4enrC398fiYmJOHnyZI3vWbNmDVQqldHDzc3NRhETERGR3Ema3Hz33XdISkrCTz/9hJ07d6KsrAz9+/dHSUlJje/z8vJCXl6e4XH27FkbRUxERERy10jKD9+2bZvR8zVr1sDf3x8HDx5Enz59TL5PpVIhMDDQ2uERERGRHZJVnxudTgcA8PX1rXG/4uJihISEQKvVYsiQITh27JjJffV6PYqKioweREREpFyySW4qKiowadIkxMbGonPnzib3a9++PVatWoWvv/4aa9euRUVFBWJiYvDHH39Uu39KSgo0Go3hodVqrVUEIiIikgGVEEJIHQQAjB8/Ht9++y1++OEHtGjRos7vKysrQ8eOHTF8+HDMmjWryut6vR56vd7wvKioCFqtFjqdDl5eXhaJnYiIiKyrqKgIGo2mTvdvSfvcVJo4cSK2bNmC77//3qzEBgBcXFzQtWtXZGdnV/u6Wq2GWq22RJhERERkByRtlhJCYOLEidi0aRN2796NVq1amX2M8vJyHDlyBEFBQVaIkIiIiOyNpDU3SUlJWLduHb7++mt4enoiPz8fAKDRaODu7g4AGDlyJIKDg5GSkgIAeOutt9CrVy+EhYXhypUrePfdd3H27FmMHTtWsnIQERGRfEia3CxZsgQAEBcXZ7R99erVGD16NAAgNzcXTk5/VzBdvnwZ48aNQ35+Pnx8fBAVFYWMjAx06tTJVmETERGRjMmmQ7GtmNMhiYiIiOTBnPu3bIaCExEREVkCkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhciOxPF0pMk4VIk9XKnUoREREitBI6gAcWVpmLpI3HkGFAJxUQMrQcAzr3lLqsIiIiOwaa24kkqcrNSQ2AFAhgGkbj7IGh4iIqIGY3Egkp7DEkNhUKhcCZwqvSRMQERGRQjC5kUirZh5wUhlvc1apENqssTQBERERKQSTG4kEadyRMjQczqpbGY6zSoU5QzsjSOMucWRERET2jR2KJTSse0v0aeeHM4XXENqsMRMbIiIiC2ByI7EgjTuTGiIiIguStFkqJSUF3bt3h6enJ/z9/ZGYmIiTJ0/W+r7169ejQ4cOcHNzQ3h4OLZu3WqDaImIiMgeSJrcfPfdd0hKSsJPP/2EnTt3oqysDP3790dJSYnJ92RkZGD48OEYM2YMDh8+jMTERCQmJuLo0aM2jJyIiIjkSiWEELXvZhsXL16Ev78/vvvuO/Tp06fafYYNG4aSkhJs2bLFsK1Xr17o0qULli5dWutnFBUVQaPRQKfTwcvLy2KxExERkfWYc/+W1WgpnU4HAPD19TW5z759+xAfH2+0LSEhAfv27at2f71ej6KiIqMHERERKZdskpuKigpMmjQJsbGx6Ny5s8n98vPzERAQYLQtICAA+fn51e6fkpICjUZjeGi1WovGTURERPIim+QmKSkJR48eRWpqqkWPm5ycDJ1OZ3icO3fOoscnIiIieZHFUPCJEydiy5Yt+P7779GiRYsa9w0MDERBQYHRtoKCAgQGBla7v1qthlqttlisREREJG+S1twIITBx4kRs2rQJu3fvRqtWrWp9T3R0NNLT04227dy5E9HR0dYKk4iIiOyIpDU3SUlJWLduHb7++mt4enoa+s1oNBq4u9+a2G7kyJEIDg5GSkoKAOCFF15A3759MX/+fAwaNAipqak4cOAAli9fLlk5iIiISD4krblZsmQJdDod4uLiEBQUZHikpaUZ9snNzUVeXp7heUxMDNatW4fly5cjMjISGzZswFdffVVjJ2QiIiJyHLKa58YWOM8NERGR/bHbeW6IiIiIGorJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERE5gDxdKTJOFSJPVyp1KFZn9iR+W7Zswf79+5GQkIDY2Fjs3r0b7733HioqKjB06FA888wz1oiTiIiI6iktMxfJG4+gQgBOKiBlaDiGdW8pdVhWY1bNzbJly/Dwww9j69atGDhwINauXYvExEQEBwcjNDQUkyZNwvvvv2+tWImIiMhMebpSQ2IDABUCmLbxqKJrcMyqufnggw/w0UcfYdy4cdizZw8GDhyI+fPnY8KECQCAXr164Z133sELL7xglWCJiIjIPDmFJYbEplK5EDhTeA1BGndpgrIys2pucnJykJCQAADo168fysvL0adPH8PrcXFxOHv2rGUjJCIionpr1cwDTirjbc4qFUKbNZYmIBswK7lp2rSpIXk5f/48bt68idzcXMPrZ8+eha+vr2UjJCIionoL0rgjZWg4nFW3MhxnlQpzhnZWbK0NYGaz1JAhQzBmzBiMGjUKmzdvxsiRI/HSSy/ByckJKpUKr7zyCvr372+tWImIiKgehnVviT7t/HCm8BpCmzVWdGIDmJnczJs3Dzdu3EBqaipiYmLw4Ycf4oMPPsCQIUNQVlaGvn37IiUlxVqxEhERUT0FadwVn9RUssiq4NevX0dZWRk8PT0tEZNVcVVwIiIi+2PO/dvseW6q4+bmBjc3N0scioiIiKhBzEpuJk+eXKf9FixYUK9giIiIiBrKrOTm8OHDRs9/+OEHREVFwd397zY8lUp159uIiIiIbMas5GbPnj1Gzz09PbFu3Tq0bt3aokEpTZ6uFDmFJWjVzMNhOnMRERFJxSJ9bsg0R1vPg4iISGpcFdyKHHE9DyIiIqkxubGimtbzICIiIuswq1nql19+MXouhMCJEydQXFxstD0iIqLhkSlA5Xoetyc4Sl/Pg4iISGpmTeJXucxCdW+p3K5SqVBeXm7RIC3J1pP4pWXmYtrGoygXwrCeB/vcEBERmcdqk/jl5OQ0KDBH5GjreRAREUnNrOQmJCTEWnEomiOt50FERCQ1szsUCyGQk5ODmzdvAgBu3LiBtLQ0fPrppygsLLR4gETkOPJ0pcg4VcgRhUTUIGbV3Jw8eRIJCQk4d+4cWrdujR07duCRRx7BiRMnIIRA48aNkZGRgbZt21orXiJSKM4JRUSWYlbNzauvvorIyEhkZWXhwQcfxKBBg9CiRQtcvnwZly5dQnR0NN566y1rxUpECsU5oYjIksxKbjIyMjBz5kyEh4dj9uzZOHHiBF5++WW4uLhArVZj6tSp+P77760VKxEpFOeEIiJLMiu5KS4uhq+vLwDAw8MDHh4eCAoKMryu1WpRUFBg2QiJSPEq54S6HeeEIqL6Miu5ad68OXJzcw3P33nnHfj7+xueX7x4ET4+PpaLjogcQpDGHSlDw+GsupXhVM4JxVGGRNanxI78ZnUojo+Px4kTJ9C7d28AwPjx441e37FjB+6++27LRUdEDoNzQhHZnlI78ps1Q3Ftzpw5A7VabdRUJTe2nqGYiIhIjvJ0pYidu7vKEkE/TO0nyx8X5ty/zWqW2r17Nzp16oSioqIqr+l0OgwaNAjZ2dnmRUtEREQ2p+SO/GYlN4sWLcK4ceOqzZg0Gg3+9a9/YcGCBRYLjoiIiKxDyR35zUpu/ve//+GBBx4w+Xr//v1x8ODBBgdFRERE1qXkjvxmdSguKCiAi4uL6YM1aoSLFy82OCgiIiKyPqV25DcruQkODsbRo0cRFhZW7eu//PKLrDsTExERkTElLu5sVrPUwIED8cYbb+D69etVXistLcX06dPx4IMP1vl433//PQYPHozmzZtDpVLhq6++qnH/vXv3QqVSVXnk5+ebUwwiIiJSMLNqbl5//XVs3LgR7dq1w8SJE9G+fXsAwIkTJ7B48WKUl5fjtddeq/PxSkpKEBkZiaeffhpDhw6t8/tOnjxp1Kn59okEiYiIyLGZldwEBAQgIyMD48ePR3JyMiqnyFGpVEhISMDixYsREBBQ5+MNGDAAAwYMMC9i3EpmvL29zX4fkT3K05Uip7AErZp5KK7qmIjIGsxKbgAgJCQEW7duxeXLl5GdnQ0hBNq2bWvTZRe6dOkCvV6Pzp07Y8aMGYiNjbXZZ9MtvOHahlJnDyUisiazk5tKPj4+6N69uyVjqVVQUBCWLl2Kbt26Qa/XY+XKlYiLi8PPP/9sctkHvV4PvV5veF7dBIRkHt5wbSNPV2o4zwBQIYBpG4+iTzs/JpRERDWod3Ijhfbt2xv6+QBATEwMTp06hYULF+Kzzz6r9j0pKSmYOXOmrUJUPN5wbaem2UN5romITDNrtJQc9ejRo8YlH5KTk6HT6QyPc+fO2TA65VHydN1yo+TZQy1JiSsaE1HD2FXNTXWysrJqnFtHrVZDrVbbMCLrk7K/S+UN986F1njDtbzK2UOnbTyKciEUNXuopdTWRMq+YUSOSdLkpri42KjWJScnB1lZWfD19UXLli2RnJyMP//8E59++imAW2tbtWrVCnfddReuX7+OlStXYvfu3dixY4dURbA5qfu78IZrW0qdPdQSamsilfq7QkTSkTS5OXDgAPr162d4PnnyZADAqFGjsGbNGuTl5SE3N9fw+o0bN/DSSy/hzz//ROPGjREREYFdu3YZHUPJ5NLfhTdc21Li7KGWUFsTqRy+K0QkDUmTm7i4OMNcOdVZs2aN0fMpU6ZgypQpVo5KvuTUwZQ3XJJaTU2kcvquEJHt2X2HYkfCDqZEf6tpRWN+V4gcm913KHYk7O9CZMxUEym/K0SOTSVqahdSoKKiImg0Guh0OqP1qexJnq6U/V2I6oDfFSLlMOf+zZobO8T+LkR1w+8KkWNinxsiB8NJ74hI6VhzQ+RAOPcLETkC1twQOQhT8ySxBoeIlIbJDZGD4LpgROQomNwQOQjO/UJEjoLJDZGDqGnSOyIiJWGHYiIHwnXBiMgRMLkhcjCc+4WIlI7NUkRERKQoTG6IyK7ZalJCTn5IZD/YLEVEdstWkxJy8kMi+8KaGyKyS7aalJCTHxLZHyY3RGSXbDUpISc/JLI/TG6IyC7ZalJCTn5IZH+Y3BCRXbLVpISc/JDI/qiEEKL23ZSjqKgIGo0GOp0OXl5eUodDRA2Upyu1yaSEtvocIqqeOfdvjpYiIrtmq0kJOfkhkf1gsxQRUR1wnhsi+8GaGyKiWnCeGyL7wpobIqIacJ4bIvvD5IaIqAac54bI/jC5ISKqAee5IbI/TG6IiGpg7/PcsCM0OSJ2KCYiqsWw7i3Rp52f3c1zw47Q5KhYc0NEVAdBGndEt2lqN4kNO0KTI2NyQ0SkQOwITY6MyQ0RkQKxIzQ5MiY3REQKZO8doYkagh2KiYgUyl47QhM1FJMbIiIF44Kf5IjYLEVERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3RGTXuHYSEd1J0uTm+++/x+DBg9G8eXOoVCp89dVXtb5n7969uPvuu6FWqxEWFoY1a9ZYPU4ikpapBCYtMxexc3fj8RU/I3bubqRl5koUIRHJiaTJTUlJCSIjI7F48eI67Z+Tk4NBgwahX79+yMrKwqRJkzB27Fhs377dypESkVRMJTBcO4mITJF0npsBAwZgwIABdd5/6dKlaNWqFebPnw8A6NixI3744QcsXLgQCQkJ1gqTiCRiKoHp086vxrWTOK8LkWOzqz43+/btQ3x8vNG2hIQE7Nu3z+R79Ho9ioqKjB5EZB9qSmC4dhIRmWJXyU1+fj4CAgKMtgUEBKCoqAilpdVXRaekpECj0RgeWq3WFqESkQXUlMBw7SQiMkXxyy8kJydj8uTJhudFRUVMcIhsIE9XipzCErRq5lHvhKMygZm28SjKhaiSwHDtJCKqjl0lN4GBgSgoKDDaVlBQAC8vL7i7V39RU6vVUKvVtgiPiP5PWmauoa+MkwpIGRqOYd1b1utYtSUwXDuJiO5kV81S0dHRSE9PN9q2c+dOREdHSxQREd3JGqOYgjTuiG7TlEkMEdWJpMlNcXExsrKykJWVBeDWUO+srCzk5t4a6pmcnIyRI0ca9n/22Wdx+vRpTJkyBSdOnMBHH32E//znP3jxxRelCJ+IqlFTJ2AiIluQNLk5cOAAunbtiq5duwIAJk+ejK5du+LNN98EAOTl5RkSHQBo1aoVvvnmG+zcuRORkZGYP38+Vq5cyWHgRDLi4epc7fbGrnZVUUxEdkzSPjdxcXEQQph8vbrZh+Pi4nD48GErRkVEDVFyo7za7dduVNg4EiJyVPwpRUQWxflniEhqTG6oXrhYIZnC+WfsA7/DpGR2NRSc5MGSw3xJmTj/jLzxO0xKx5obMgsXK6S64vBteeJ3mO6kxFo81tyQWbhYIZF943eYbqfUWjzW3JBZ2FmUyL7xO2w/rF2jouRaPCY3ZJbKzqKVF0cnFdhZlMiOsMO3fUjLzEXs3N14fMXPiJ27G2mZubW/yUxKnnCTzVJUL5XTE9UwTRERyRQ7fMubqRqVPu38LPp/VVmLd3uCo5RaPNbckFkqv3SV3wUB5VRjEjkSdviWL1vVqCi5Fo81N2QWdkYkkk6erhQ5hSVo1cyD3zcFs2WNilJr8ZjcyJRcL2JKrsYkkjOljmpxFOZc0ytrVKZtPIpyIaxeoxKkcZfVfcYSVKKmxZ0UqKioCBqNBjqdDl5eXlKHUy25X8TSMnOrfOnkFB+R0uTpShE7d3eVHxU/TO2nuJuSEtX3mp6nKzVZoyLXH8DWZM79mzU3MmOrjmQNodRqTCK5YnOw/WrINd1UjYrcfwDLIfFiciMz9nIRU2I1JpFcsTnYfln6mi73H8BySbw4WkpmOMEWEd1JyaNalM7S13Q5z00jp0kBWXMjM7buSEZUF3KoZnZ0bA62T5a+psu5Fk9OLQ9MbiRW3U2DFzGSE7lUMxObg+2VJa/pcv4BLKfEi6OlJMSbBskdR+kQyVNNI6mkZM3RtBwtZQfk3imMbnH05hg5VTMT0d/kWosnl5YHJjcS4U1D/lizJq9qZmKyTfZBDokXR0tJhKOi5E1Ovf6lxFE68mGLVaKJlII1NxKRc6cwYs3a7YZ1b4kOgZ7IPHMZ3UN9EKn1kTokh8NmbCLzMLmRkFzaJqkqNsf8jc1z0mOyTWQeNktJLEjjjug2TXmBkhk5Ncfk6UqRcapQkiYxNs/JA5uxiczDmhsiE+RQsyZ1rQlrDOSBzdhE5mFyQ1QDKXv9y6GfBZvn5EMOyTaRvWCzFJFMyWENGTk1zxGbsYnqijU3ZBLn1JCWXGpNWGNARPaGyQ1VS+q+HiSvfhZymJSLiKiuuLYUVcH1hORFrmvIEBHZEteWogbhCBl5Ya0JEZF52KGYquCcGkREtiHlPFYNIfe4WXNDVciprwcRkVLZa99Ge4ibfW7IJPb1ICKyDnvt2yhl3OxzQxbBvh5ERNZhr30b7SVu9rkhIiKyMXvt22gvcTO5ISIisjF7nf3bXuJmnxsiIgUzNdM4ZyCXB3vt2yhF3Obcv2VRc7N48WKEhobCzc0NPXv2xP79+03uu2bNGqhUKqOHm5ubDaMlIrIPaZm5iJ27G4+v+Bmxc3cjLTO3xu1ke/a6Xpjc45Y8uUlLS8PkyZMxffp0HDp0CJGRkUhISMCFCxdMvsfLywt5eXmGx9mzZ20YMRGR/JlaVf5/5y5Xu12u85UQ1Yfkyc2CBQswbtw4PPXUU+jUqROWLl2Kxo0bY9WqVSbfo1KpEBgYaHgEBATYMGIiIvkzNaol88xlyVebJ7I2SZObGzdu4ODBg4iPjzdsc3JyQnx8PPbt22fyfcXFxQgJCYFWq8WQIUNw7Ngxk/vq9XoUFRUZPahu5D4DJRGZZmpUS/dQH7sY7ULUEJImN4WFhSgvL69S8xIQEID8/Pxq39O+fXusWrUKX3/9NdauXYuKigrExMTgjz/+qHb/lJQUaDQaw0Or1Vq8HErENnki+2ZqVEuk1scuRrsQNYSko6XOnz+P4OBgZGRkIDo62rB9ypQp+O677/Dzzz/XeoyysjJ07NgRw4cPx6xZs6q8rtfrodfrDc+Lioqg1Wo5WqoGtp6BkqM2iKzH1KgWex2lQ47LbmYobtasGZydnVFQUGC0vaCgAIGBgXU6houLC7p27Yrs7OxqX1er1VCr1Q2O1ZHYcgZKe1ijhMiemZppnDOQk5JJ2izl6uqKqKgopKenG7ZVVFQgPT3dqCanJuXl5Thy5AiCgoKsFabDsdUMlKZGc7CPDxERNYTko6UmT56MFStW4JNPPsHx48cxfvx4lJSU4KmnngIAjBw5EsnJyYb933rrLezYsQOnT5/GoUOH8OSTT+Ls2bMYO3asVEUwUEoHXFvNQFlTDREREVF9Sb5w5rBhw3Dx4kW8+eabyM/PR5cuXbBt2zZDJ+Pc3Fw4Of2dg12+fBnjxo1Dfn4+fHx8EBUVhYyMDHTq1EmqIgBQXvPKsO4t0aedn1Xb5CtriO7s28NRG0RE1BBcfsEC7HXpejlIy8zFtI1HUS6EoYbInpNCUi52fCeSlt10KFYKe1kC3ly2uJjbooaIqKGUVjNLpHRMbixAic0rtryYc9QGyZmpju992vnx71ZmWLtGlSTvUKwE9rIEfF1xFBPR39jx/W9yHjSRlpmLmJRbE4/GpHDiUUfHmhsLUVLzSl2a2fgLiRyFEmtm60POTXN5ulJM/fIIKv+LBICpXx5h7ZoDY82NBcl9Cfi6qm2eGy7NQI5EaTWz9SH32twDZy7hzpExAsDBM5elCIdkgDU3VEXlxfzOUUxBGnf2PyCHpKSa2fqQ+6AJlUplYruNAyHZYHJD1TJ1MZf7RY7IWhy547vcm+aiQnygAoxqb1Qq4O4QH6lCIomxWYpMqq6ZzVZLM8iFnDtQEtmK3JvmgjTumPuPcMO1yUkFzB0abtRHkN9jx8JJ/MhsjjLxnpw7UBJJQe4riVcXH7/HymHO/ZvJjcTsddSR3C9yDcVZp4nsH7/HysIZiu2EPf+iUHr/A/Ytclz2+oODquL32HExuZEIRx3Znjk3Lbl3oCTrsOcfHFQVv8eOix2KJcJZT22rtrl57uxwKPcOlGR5cp/LRQ7srWMuv8eOizU3EuEvCtuprZbM1K91R5/bxNGwCaNm9lqrxe+xY2LNjURq+0Vhb7+Q5Kymm1Ztv9aVMus01c7Rpjkwh73Uapm6bvJ77HhYcyMhU78o7PUXklzVVEvGX+tUqaaZuR2dPXxPeN2k2zG5kdido47Y0djyartpsXmQKrEJo3pyb0a/c+HMCgFM3ciFMx0ZkxuZsYdfSPbI1E2Lv9bpTkqf5qA+5P49OXj2ctWFMwVw6OxlDIqQR4xkW0xuZEbuv5DsmambFn+tE9VOzt8TU3PROtYUtXQ7diiWGQ5dlAY7HBLVTq7fk26hvrhzAXAVgKhQLpzpqFhzYwPmzngq519IRERyU7lwZvKXR1CBW7/aU/4RzmunA2NyY2X17cHPdn8iorrjj0K6HZulrMhe5oYg0yw935C9zl9kr3GTY5FrsxnZHmturIgjn+ybpefNsNd5OOw1biJyXKy5sSLOeGq/LF3rZq+1ePYaN9kea/dITpjcWBFHPsmLORdfSy9saq8Lpdpr3GRbtS1MS2RrbJayMnZykwdzm1YsPd+Qvc5fZK9xU8OYM8KTs6qTHLHmxgbYyU1a9WlasXStm73W4tlr3FR/5tbC2Lp2j81fVBesuSHFq2/H7tpq3Rxl/iJ7jZvMV59aGFvW7tVWA2vud5KUi8kN2SVzLmINufiamm9ILvMX2epiznmXHEN9fgjYat2p2hIvjuqj2zG5Ibtj7kXM0hdfufQx4MWcLK2+PwRsUbtXW/OXHL6TJB9Mbsiu1DexsOTFVw7zF8klwSJlacgPAWvX7tWUeMnhO0nywuSG7EpdLmKmmmosdfGVwwgiXszJWuTax6q2xEvq7yTJC5Mbsiu1JRa2aKqxVR+DmsghwSLlkmsfK1OJlxy+kyQvKiGEqH035SgqKoJGo4FOp4OXl5fU4SiOLTq4pmXmVrmIDeveEnm6UsTO3V3lhv/D1H5WiSVPVyrpr1tT54FIyWq6xkj9nSTrMuf+zZobshhbdXA19evN1k01Uv+6lWvzAZG11HaNkfo7SfLBSfzIImy9BlF1EyM64lpenCCS6sveJsPjOmdkDiY3ZBFyWIOIs+laj73dCKlm9rAW1J1/c3K4xpD9kEVys3jxYoSGhsLNzQ09e/bE/v37a9x//fr16NChA9zc3BAeHo6tW7faKFIyRS61JsO6t8QPU/vhi3G98MPUfuyDYgH2cCM0lyMna/ZQA1Ld35xcrjFkHyRPbtLS0jB58mRMnz4dhw4dQmRkJBISEnDhwoVq98/IyMDw4cMxZswYHD58GImJiUhMTMTRo0dtHDndzta1JjXdnNhUYzn2cCM0lxKTNXPIvQbE1N8cANbMUp1JPlqqZ8+e6N69O/79738DACoqKqDVavHcc89h6tSpVfYfNmwYSkpKsGXLFsO2Xr16oUuXLli6dGmtn8fRUtZli9EKnJnXdjJOFeLxFT9X2f7FuF6IbtNUgogaxtYj6uRI7uegtr85johyXObcvyWtublx4wYOHjyI+Ph4wzYnJyfEx8dj37591b5n3759RvsDQEJCgsn99Xo9ioqKjB5kPdauNVFiTYKcKa0pQO61FrYg975ptf3NsWaW6kLS5KawsBDl5eUICAgw2h4QEID8/Pxq35Ofn2/W/ikpKdBoNIaHVqu1TPAkCd6cbEvuN0JzKS1Zqy85901T2t8cSUPx89wkJydj8uTJhudFRUVMcOwYZ+a1PSXNp8OZbP8m5zlhlPQ3R9KQNLlp1qwZnJ2dUVBQYLS9oKAAgYGB1b4nMDDQrP3VajXUarVlAibJ8eYkDTnfCM3FG6d9UNLfHNmepM1Srq6uiIqKQnp6umFbRUUF0tPTER0dXe17oqOjjfYHgJ07d5rcn5RHzlXqZB/Yb4NI2SRvlpo8eTJGjRqFbt26oUePHli0aBFKSkrw1FNPAQBGjhyJ4OBgpKSkAABeeOEF9O3bF/Pnz8egQYOQmpqKAwcOYPny5VIWg2yMv+qIiMgUyZObYcOG4eLFi3jzzTeRn5+PLl26YNu2bYZOw7m5uXBy+ruCKSYmBuvWrcPrr7+OadOmoW3btvjqq6/QuXNnqYpAREREMiL5PDe2xnluiIiI7I/dzHNDREREZGlMboiIiEhRmNwQERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpCiSL79ga5UTMhcVFUkcCREREdVV5X27LgsrOFxyc/XqVQCAVquVOBIiIiIy19WrV6HRaGrcx+HWlqqoqMD58+fh6ekJlUpl0WMXFRVBq9Xi3LlzDrlulaOXH+A5YPkdu/wAz4Gjlx+w3jkQQuDq1ato3ry50YLa1XG4mhsnJye0aNHCqp/h5eXlsH/UAMsP8Byw/I5dfoDnwNHLD1jnHNRWY1OJHYqJiIhIUZjcEBERkaIwubEgtVqN6dOnQ61WSx2KJBy9/ADPAcvv2OUHeA4cvfyAPM6Bw3UoJiIiImVjzQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcmGnx4sUIDQ2Fm5sbevbsif3795vc99ixY/jHP/6B0NBQqFQqLFq0yHaBWok55V+xYgXuuece+Pj4wMfHB/Hx8TXuby/MOQcbN25Et27d4O3tDQ8PD3Tp0gWfffaZDaO1PHPKf7vU1FSoVCokJiZaN0ArM6f8a9asgUqlMnq4ubnZMFrrMPdv4MqVK0hKSkJQUBDUajXatWuHrVu32ihayzOn/HFxcVX+BlQqFQYNGmTDiC3P3L+BRYsWoX379nB3d4dWq8WLL76I69evWy9AQXWWmpoqXF1dxapVq8SxY8fEuHHjhLe3tygoKKh2//3794uXX35ZfPHFFyIwMFAsXLjQtgFbmLnlf/zxx8XixYvF4cOHxfHjx8Xo0aOFRqMRf/zxh40jtxxzz8GePXvExo0bxa+//iqys7PFokWLhLOzs9i2bZuNI7cMc8tfKScnRwQHB4t77rlHDBkyxDbBWoG55V+9erXw8vISeXl5hkd+fr6No7Ysc8+BXq8X3bp1EwMHDhQ//PCDyMnJEXv37hVZWVk2jtwyzC3/X3/9ZfT/f/ToUeHs7CxWr15t28AtyNxz8Pnnnwu1Wi0+//xzkZOTI7Zv3y6CgoLEiy++aLUYmdyYoUePHiIpKcnwvLy8XDRv3lykpKTU+t6QkBC7T24aUn4hhLh586bw9PQUn3zyibVCtLqGngMhhOjatat4/fXXrRGe1dWn/Ddv3hQxMTFi5cqVYtSoUXad3Jhb/tWrVwuNRmOj6GzD3HOwZMkS0bp1a3Hjxg1bhWhVDb0GLFy4UHh6eori4mJrhWh15p6DpKQkce+99xptmzx5soiNjbVajGyWqqMbN27g4MGDiI+PN2xzcnJCfHw89u3bJ2FktmGJ8l+7dg1lZWXw9fW1VphW1dBzIIRAeno6Tp48iT59+lgzVKuob/nfeust+Pv7Y8yYMbYI02rqW/7i4mKEhIRAq9ViyJAhOHbsmC3CtYr6nIPNmzcjOjoaSUlJCAgIQOfOnTFnzhyUl5fbKmyLscR18OOPP8Zjjz0GDw8Pa4VpVfU5BzExMTh48KCh6er06dPYunUrBg4caLU4HW7hzPoqLCxEeXk5AgICjLYHBATgxIkTEkVlO5Yo/6uvvormzZsbfSnsSX3PgU6nQ3BwMPR6PZydnfHRRx/h/vvvt3a4Flef8v/www/4+OOPkZWVZYMIras+5W/fvj1WrVqFiIgI6HQ6vPfee4iJicGxY8esvoCvNdTnHJw+fRq7d+/GE088ga1btyI7OxsTJkxAWVkZpk+fbouwLaah18H9+/fj6NGj+Pjjj60VotXV5xw8/vjjKCwsRO/evSGEwM2bN/Hss89i2rRpVouTyQ3ZxNy5c5Gamoq9e/cqokOlOTw9PZGVlYXi4mKkp6dj8uTJaN26NeLi4qQOzaquXr2KESNGYMWKFWjWrJnU4UgiOjoa0dHRhucxMTHo2LEjli1bhlmzZkkYme1UVFTA398fy5cvh7OzM6KiovDnn3/i3XfftbvkpqE+/vhjhIeHo0ePHlKHYlN79+7FnDlz8NFHH6Fnz57Izs7GCy+8gFmzZuGNN96wymcyuamjZs2awdnZGQUFBUbbCwoKEBgYKFFUttOQ8r/33nuYO3cudu3ahYiICGuGaVX1PQdOTk4ICwsDAHTp0gXHjx9HSkqK3SU35pb/1KlTOHPmDAYPHmzYVlFRAQBo1KgRTp48iTZt2lg3aAuyxDXAxcUFXbt2RXZ2tjVCtLr6nIOgoCC4uLjA2dnZsK1jx47Iz8/HjRs34OrqatWYLakhfwMlJSVITU3FW2+9Zc0Qra4+5+CNN97AiBEjMHbsWABAeHg4SkpK8Mwzz+C1116Dk5Ple8iwz00dubq6IioqCunp6YZtFRUVSE9PN/plplT1Lf8777yDWbNmYdu2bejWrZstQrUaS/0NVFRUQK/XWyNEqzK3/B06dMCRI0eQlZVleDz00EPo168fsrKyoNVqbRl+g1ni/7+8vBxHjhxBUFCQtcK0qvqcg9jYWGRnZxsSWwD47bffEBQUZFeJDdCwv4H169dDr9fjySeftHaYVlWfc3Dt2rUqCUxlsiustbyl1boqK1BqaqpQq9VizZo14tdffxXPPPOM8Pb2NgztHDFihJg6daphf71eLw4fPiwOHz4sgoKCxMsvvywOHz4sfv/9d6mK0CDmln/u3LnC1dVVbNiwwWgo5NWrV6UqQoOZew7mzJkjduzYIU6dOiV+/fVX8d5774lGjRqJFStWSFWEBjG3/Hey99FS5pZ/5syZYvv27eLUqVPi4MGD4rHHHhNubm7i2LFjUhWhwcw9B7m5ucLT01NMnDhRnDx5UmzZskX4+/uL2bNnS1WEBqnvd6B3795i2LBhtg7XKsw9B9OnTxeenp7iiy++EKdPnxY7duwQbdq0EY8++qjVYmRyY6YPP/xQtGzZUri6uooePXqIn376yfBa3759xahRowzPc3JyBIAqj759+9o+cAsxp/whISHVln/69Om2D9yCzDkHr732mggLCxNubm7Cx8dHREdHi9TUVAmithxzyn8ne09uhDCv/JMmTTLsGxAQIAYOHCgOHTokQdSWZe7fQEZGhujZs6dQq9WidevW4u233xY3b960cdSWY275T5w4IQCIHTt22DhS6zHnHJSVlYkZM2aINm3aCDc3N6HVasWECRPE5cuXrRafSghr1QkRERER2R773BAREZGiMLkhIiIiRWFyQ0RERIrC5IaIiIgUhckNERERKQqTGyIiIlIUJjdERESkKExuiIisaPTo0UhMTJQ6DCKHwuSGyEGNHj0aKpXK8GjatCkeeOAB/PLLL1KHZhG3l63y0bt3b6t93pkzZ6BSqZCVlWW0/f3338eaNWus9rlEVBWTGyIH9sADDyAvLw95eXlIT09Ho0aN8OCDD0odlsWsXr3aUL68vDxs3ry52v3KysqsFoNGo4G3t7fVjk9EVTG5IXJgarUagYGBCAwMRJcuXTB16lScO3cOFy9exL333ouJEyca7X/x4kW4uroaVgQODQ3FrFmzMHz4cHh4eCA4OBiLFy82es+CBQsQHh4ODw8PaLVaTJgwAcXFxYbXz549i8GDB8PHxwceHh646667sHXrVgDA5cuX8cQTT8DPzw/u7u5o27YtVq9eXefyeXt7G8oXGBgIX19fQw1LWloa+vbtCzc3N3z++ef466+/MHz4cAQHB6Nx48YIDw/HF198YXS8iooKvPPOOwgLC4NarUbLli3x9ttvAwBatWoFAOjatStUKhXi4uIAVG2W0uv1eP755+Hv7w83Nzf07t0bmZmZhtf37t0LlUqF9PR0dOvWDY0bN0ZMTAxOnjxZ53ITOTomN0QEACguLsbatWsRFhaGpk2bYuzYsVi3bh30er1hn7Vr1yI4OBj33nuvYdu7776LyMhIHD58GFOnTsULL7yAnTt3Gl53cnLCBx98gGPHjuGTTz7B7t27MWXKFMPrSUlJ0Ov1+P7773HkyBHMmzcPTZo0AQC88cYb+PXXX/Htt9/i+PHjWLJkCZo1a2aR8lbGevz4cSQkJOD69euIiorCN998g6NHj+KZZ57BiBEjsH//fsN7kpOTMXfuXENc69atQ0BAAAAY9tu1axfy8vKwcePGaj93ypQp+PLLL/HJJ5/g0KFDCAsLQ0JCAi5dumS032uvvYb58+fjwIEDaNSoEZ5++mmLlJvIIVhtSU4ikrVRo0YJZ2dn4eHhITw8PAQAERQUJA4ePCiEEKK0tFT4+PiItLQ0w3siIiLEjBkzDM9DQkLEAw88YHTcYcOGiQEDBpj83PXr14umTZsanoeHhxsd83aDBw8WTz31VL3KB0C4ubkZyufh4SE2bdokcnJyBACxaNGiWo8xaNAg8dJLLwkhhCgqKhJqtVqsWLGi2n0rj3v48GGj7bevhF5cXCxcXFzE559/bnj9xo0bonnz5uKdd94RQgixZ88eAUDs2rXLsM8333wjAIjS0lJzTgGRw2LNDZED69evH7KyspCVlYX9+/cjISEBAwYMwNmzZ+Hm5oYRI0Zg1apVAIBDhw7h6NGjGD16tNExoqOjqzw/fvy44fmuXbtw3333ITg4GJ6enhgxYgT++usvXLt2DQDw/PPPY/bs2YiNjcX06dONOjSPHz8eqamp6NKlC6ZMmYKMjAyzyrdw4UJD+bKysnD//fcbXuvWrZvRvuXl5Zg1axbCw8Ph6+uLJk2aYPv27cjNzQUAHD9+HHq9Hvfdd59ZMdzu1KlTKCsrQ2xsrGGbi4sLevToYXTOACAiIsLw76CgIADAhQsX6v3ZRI6EyQ2RA/Pw8EBYWBjCwsLQvXt3rFy5EiUlJVixYgUAYOzYsdi5cyf++OMPrF69Gvfeey9CQkLqfPwzZ87gwQcfREREBL788kscPHjQ0Cfnxo0bhs84ffo0RowYgSNHjqBbt2748MMPAcCQaL344os4f/487rvvPrz88st1/vzAwEBD+cLCwuDh4WFU9tu9++67eP/99/Hqq69iz549yMrKQkJCgiFOd3f3On+uJbi4uBj+rVKpANzq80NEtWNyQ0QGKpUKTk5OKC0tBQCEh4ejW7duWLFiBdatW1dtv4+ffvqpyvOOHTsCAA4ePIiKigrMnz8fvXr1Qrt27XD+/Pkqx9BqtXj22WexceNGvPTSS4bkCgD8/PwwatQorF27FosWLcLy5cstWWSDH3/8EUOGDMGTTz6JyMhItG7dGr/99pvh9bZt28Ld3d3QmfpOrq6uAG7VAJnSpk0buLq64scffzRsKysrQ2ZmJjp16mShkhBRI6kDICLp6PV65OfnA7g1Munf//43iouLMXjwYMM+Y8eOxcSJE+Hh4YGHH364yjF+/PFHvPPOO0hMTMTOnTuxfv16fPPNNwCAsLAwlJWV4cMPP8TgwYPx448/YunSpUbvnzRpEgYMGIB27drh8uXL2LNnjyE5evPNNxEVFYW77roLer0eW7ZsMbxmaW3btsWGDRuQkZEBHx8fLFiwAAUFBYakw83NDa+++iqmTJkCV1dXxMbG4uLFizh27BjGjBkDf39/uLu7Y9u2bWjRogXc3Nyg0WiMPsPDwwPjx4/HK6+8Al9fX7Rs2RLvvPMOrl27hjFjxlilXESOiDU3RA5s27ZtCAoKQlBQEHr27InMzEysX7/eMIwZAIYPH45GjRph+PDhcHNzq3KMl156CQcOHEDXrl0xe/ZsLFiwAAkJCQCAyMhILFiwAPPmzUPnzp3x+eefIyUlxej95eXlSEpKQseOHfHAAw+gXbt2+OijjwDcqg1JTk5GREQE+vTpA2dnZ6SmplrlXLz++uu4++67kZCQgLi4OAQGBlaZWfiNN97ASy+9hDfffBMdO3bEsGHDDP1gGjVqhA8++ADLli1D8+bNMWTIkGo/Z+7cufjHP/6BESNG4O6770Z2dja2b98OHx8fq5SLyBGphBBC6iCISL7OnDmDNm3aIDMzE3fffbfRa6GhoZg0aRImTZokTXBERNVgsxQRVausrAx//fUXXn/9dfTq1atKYkNEJFdsliKiav34448ICgpCZmZmlX4yUpszZw6aNGlS7WPAgAFSh0dEEmOzFBHZnUuXLlWZ0beSu7s7goODbRwREckJkxsiIiJSFDZLERERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUf4/Q63nHis4fFgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAART9JREFUeJzt3XtclGX+//H3gHIQFU8gqAieO4hamoqUYlmkZlm7ZVYe2qytNDM7aYc1O6Ed3VrTstLKStdW+7rlmqZZv7RWU9nS0lLxUAJJ2RBIiHD9/nCZlQBlYA733PN6Ph7z0Lnnnns+98XM3J+5jg5jjBEAAIBNhPg7AAAAAE8iuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGArJDcAAMBWSG4AAICtkNwAAABbIbkB4BcPPfSQHA5HjfZ1OBx66KGHvBpPWlqa0tLSLHs8ADVHcgMEuQULFsjhcLhu9erVU+vWrTV27Fj98MMP/g7PcpKSkiqUV2xsrM477zwtW7bMI8c/cuSIHnroIa1bt84jxwOCEckNAEnSww8/rDfeeENz587V4MGDtXDhQg0YMEC//fabV17vgQceUFFRkVeO7W09evTQG2+8oTfeeEN33XWXDh48qCuuuEJz586t87GPHDmi6dOnk9wAdVDP3wEAsIbBgwerV69ekqRx48apRYsWmjlzppYvX66rrrrK469Xr1491asXmF9BrVu31nXXXee6P3r0aHXs2FHPPvusbr75Zj9GBkCi5gZANc477zxJ0u7duyts37Fjh/74xz+qWbNmioiIUK9evbR8+fIK+5SUlGj69Onq1KmTIiIi1Lx5c5177rlavXq1a5+q+twUFxfrjjvuUExMjBo1aqRLL71U33//faXYxo4dq6SkpErbqzrm/Pnzdf755ys2Nlbh4eE644wzNGfOHLfK4lTi4uJ0+umnKysr66T7/fjjj7rhhhvUsmVLRUREqHv37nrttddcj+/du1cxMTGSpOnTp7uavrzd3wiwm8D82QTA6/bu3StJatq0qWvb9u3blZqaqtatW2vKlCmKiorS3//+dw0fPlz/+Mc/dPnll0s6nmRkZGRo3Lhx6t27t/Lz8/XFF19oy5YtuvDCC6t9zXHjxmnhwoW65ppr1K9fP61du1ZDhw6t03nMmTNHZ555pi699FLVq1dP//znP3XrrbeqrKxM48ePr9Oxy5WUlOjAgQNq3rx5tfsUFRUpLS1Nu3bt0oQJE9SuXTstWbJEY8eO1S+//KLbb79dMTExmjNnjm655RZdfvnluuKKKyRJ3bp180icQNAwAILa/PnzjSTz4YcfmkOHDpkDBw6Yd955x8TExJjw8HBz4MAB174XXHCBSU5ONr/99ptrW1lZmenXr5/p1KmTa1v37t3N0KFDT/q606ZNMyd+BWVmZhpJ5tZbb62w3zXXXGMkmWnTprm2jRkzxiQmJp7ymMYYc+TIkUr7paenm/bt21fYNmDAADNgwICTxmyMMYmJieaiiy4yhw4dMocOHTL/+c9/zNVXX20kmdtuu63a482aNctIMgsXLnRtO3r0qElJSTENGzY0+fn5xhhjDh06VOl8AbiHZikAkqRBgwYpJiZGCQkJ+uMf/6ioqCgtX75cbdq0kST9/PPPWrt2ra666ir9+uuvysvLU15enn766Selp6fru+++c42uatKkibZv367vvvuuxq+/YsUKSdLEiRMrbJ80aVKdzisyMtL1f6fTqby8PA0YMEB79uyR0+ms1TFXrVqlmJgYxcTEqHv37lqyZIlGjRqlmTNnVvucFStWKC4uTiNHjnRtq1+/viZOnKiCggJ9/PHHtYoFQGVBndx88sknGjZsmFq1aiWHw6F3333X66/5ww8/6LrrrlPz5s0VGRmp5ORkffHFF15/XeBUZs+erdWrV+udd97RkCFDlJeXp/DwcNfju3btkjFGDz74oOvCXn6bNm2apON9SqTjI69++eUXde7cWcnJybr77rv15ZdfnvT19+3bp5CQEHXo0KHC9i5dutTpvNavX69BgwYpKipKTZo0UUxMjO677z5JqnVy06dPH61evVoffvihNmzYoLy8PL3++usVEqnf27dvnzp16qSQkIpfu6effrrrcQCeEdR9bgoLC9W9e3f96U9/crVte9Phw4eVmpqqgQMH6l//+pdiYmL03XffVejTAPhL7969XaOlhg8frnPPPVfXXHONdu7cqYYNG6qsrEySdNdddyk9Pb3KY3Ts2FGS1L9/f+3evVv/93//p1WrVunll1/Ws88+q7lz52rcuHF1jrW6yf9KS0sr3N+9e7cuuOACnXbaaXrmmWeUkJCgsLAwrVixQs8++6zrnNzVokULDRo0qFbPBeB9QZ3cDB48WIMHD6728eLiYt1///16++239csvv6hr166aOXNmrWcdnTlzphISEjR//nzXtnbt2tXqWIA3hYaGKiMjQwMHDtTf/vY3TZkyRe3bt5d0vCmlJhf2Zs2a6frrr9f111+vgoIC9e/fXw899FC1yU1iYqLKysq0e/fuCrU1O3furLRv06ZN9csvv1Ta/vvaj3/+858qLi7W8uXL1bZtW9f2jz766JTxe1piYqK+/PJLlZWVVai92bFjh+txqfrEDUDNBXWz1KlMmDBBn332mRYtWqQvv/xSV155pS6++GK3+hGcaPny5erVq5euvPJKxcbG6qyzztK8efM8HDXgGWlpaerdu7dmzZql3377TbGxsUpLS9OLL76o7OzsSvsfOnTI9f+ffvqpwmMNGzZUx44dVVxcXO3rlf/QeO655ypsnzVrVqV9O3ToIKfTWaGpKzs7u9IswaGhoZIkY4xrm9PprPADw1eGDBminJwcLV682LXt2LFjev7559WwYUMNGDBAktSgQQNJqjJ5A1AzQV1zczL79+/X/PnztX//frVq1UrS8er4lStXav78+Xr88cfdPuaePXs0Z84cTZ48Wffdd582bdqkiRMnKiwsTGPGjPH0KQB1dvfdd+vKK6/UggULdPPNN2v27Nk699xzlZycrBtvvFHt27dXbm6uPvvsM33//ff6z3/+I0k644wzlJaWpp49e6pZs2b64osv9M4772jChAnVvlaPHj00cuRIvfDCC3I6nerXr5/WrFmjXbt2Vdr36quv1r333qvLL79cEydO1JEjRzRnzhx17txZW7Zsce130UUXKSwsTMOGDdOf//xnFRQUaN68eYqNja0yQfOmm266SS+++KLGjh2rzZs3KykpSe+8847Wr1+vWbNmqVGjRpKOd4A+44wztHjxYnXu3FnNmjVT165d1bVrV5/GCwQ0fw/XsgpJZtmyZa777733npFkoqKiKtzq1atnrrrqKmOMMd98842RdNLbvffe6zpm/fr1TUpKSoXXve2220zfvn19co5AVcqHgm/atKnSY6WlpaZDhw6mQ4cO5tixY8YYY3bv3m1Gjx5t4uLiTP369U3r1q3NJZdcYt555x3X8x599FHTu3dv06RJExMZGWlOO+0089hjj5mjR4+69qlq2HZRUZGZOHGiad68uYmKijLDhg0zBw4cqHJo9KpVq0zXrl1NWFiY6dKli1m4cGGVx1y+fLnp1q2biYiIMElJSWbmzJnm1VdfNZJMVlaWaz93hoKfaph7dcfLzc01119/vWnRooUJCwszycnJZv78+ZWeu2HDBtOzZ08TFhbGsHCgFhzGnFBfG8QcDoeWLVum4cOHS5IWL16sa6+9Vtu3b3dVbZdr2LCh4uLidPToUe3Zs+ekx23evLlrxtHExERdeOGFevnll12Pz5kzR48++igLFAIA4CE0S1XjrLPOUmlpqX788UfXNPS/FxYWptNOO63Gx0xNTa3UOfLbb791dSQEAAB1F9TJTUFBQYX2/KysLGVmZqpZs2bq3Lmzrr32Wo0ePVpPP/20zjrrLB06dEhr1qxRt27dajUl/B133KF+/frp8ccf11VXXaWNGzfqpZde0ksvveTJ0wIAIKgFdbPUunXrNHDgwErbx4wZowULFqikpESPPvqoXn/9df3www9q0aKF+vbtq+nTpys5OblWr/nee+9p6tSp+u6779SuXTtNnjxZN954Y11PBQAA/FdQJzcAAMB+mOcGAADYCskNAACwlaDrUFxWVqaDBw+qUaNGTHMOAECAMMbo119/VatWrSotQPt7QZfcHDx4UAkJCf4OAwAA1MKBAwfUpk2bk+4TdMlN+RTnBw4cUOPGjf0cDQAAqIn8/HwlJCS4ruMnE3TJTXlTVOPGjUluAAAIMDXpUkKHYgAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGArJDcAAMBWSG4AAICtkNwAABBAsp1F2rA7T9nOIn+HYllBt3AmAACBavGm/Zq69CuVGSnEIWVckawR57T1d1iWQ80NAAABINtZ5EpsJKnMSPct3UYNThVIbgAACABZeYWuxKZcqTHam3fEPwFZGMkNAAABoF2LKIU4Km4LdTiU1KKBfwKyMJIbAAACQHx0pDKuSFao43iGE+pw6PEruio+OtLPkVkPHYoBAAgQI85pq/6dY7Q374iSWjQgsakGyQ0AAAEkPjqSpOYUaJYCAAC2QnIDAABsheQGAADYCskNAACwFZIbAABgKyQ3AADAVkhuAACArZDcWBjL2gMA4D4m8bMolrUHAKB2qLmxIJa1BwCg9khuLIhl7QEAqD2SGwtiWXsAQKCyQn9RkhsLYll7AEAgWrxpv1JnrNU18/6t1BlrtXjTfr/E4TDGmFPvZh/5+fmKjo6W0+lU48aN/R3OSWU7i1jWHgAQELKdRUqdsbZCt4pQh0OfThnokWuYO9dvv9bcZGRk6JxzzlGjRo0UGxur4cOHa+fOnad83pIlS3TaaacpIiJCycnJWrFihQ+i9b346EildGhOYgMAsDwr9Rf1a3Lz8ccfa/z48fr888+1evVqlZSU6KKLLlJhYWG1z9mwYYNGjhypG264QVu3btXw4cM1fPhwbdu2zYeRAwCAE1mpv6ilmqUOHTqk2NhYffzxx+rfv3+V+4wYMUKFhYV67733XNv69u2rHj16aO7cuad8jUBqlgIAIJAs3rRf9y3dplJjXP1FPTVHmzvXb0tN4ud0OiVJzZo1q3afzz77TJMnT66wLT09Xe+++26V+xcXF6u4uNh1Pz8/v+6BuinbWaSsvEK1axFFExNQQ3xugMAz4py26t85xu/9RS2T3JSVlWnSpElKTU1V165dq90vJydHLVu2rLCtZcuWysnJqXL/jIwMTZ8+3aOxuoOZhgH38bkBAld8dKTff5BYZij4+PHjtW3bNi1atMijx506daqcTqfrduDAAY8e/2SYaRhwH58bAHVliZqbCRMm6L333tMnn3yiNm3anHTfuLg45ebmVtiWm5uruLi4KvcPDw9XeHi4x2J1x8l6jvs7qwWsis8NgLrya82NMUYTJkzQsmXLtHbtWrVr1+6Uz0lJSdGaNWsqbFu9erVSUlK8FWatWannOBAo+NwAqCu/Jjfjx4/XwoUL9dZbb6lRo0bKyclRTk6Oior+V/08evRoTZ061XX/9ttv18qVK/X0009rx44deuihh/TFF19owoQJ/jiFk2KmYcB9fG4A1JVfh4I7HI4qt8+fP19jx46VJKWlpSkpKUkLFixwPb5kyRI98MAD2rt3rzp16qQnnnhCQ4YMqdFr+mMoODMNA+7jcwPgRO5cvy01z40vMM8NAACBJ2CWXwAAAPA0khsAAGArJDcAAMBWSG4AAICtkNwAAACPyXYWacPuPL/OKm6JGYoBAEDgs8q6cNTcAACAOrPSunAkNwAAoM5Oti6cr5HcAACAOrPSunAkNwAAoM6stC4cHYoBAIBHjDinrfp3jvH7unAkNwAAwGPioyP9vtgtzVIA4CNWmP8DCAbU3ACAD1hl/g8gGFBzAwBeZqX5P4BgQHIDAF5mpfk/gGBAcgMAXmal+T+AYEByAwBeZqX5P4BgQIdiAPABq8z/AQQDkpsgku0sUlZeodq1iOKLFfADK8z/AQQDkpsgwTBUAECwoM9NEGAYKgAgmJDcBAGGoQIAggnJTRBgGCoAIJiQ3AQBhqECAIIJHYqDBMNQAQDBguTGg6w+1JphqACAYEBy4yEMtQYAwBroc+MBDLUGAMA6SG48gKHWAABYB8mNBzDUGgAA6yC58QCGWgMAYB10KPYQhloDAGANJDcexFBrAAD8j2YpAABgKyQ3AAJOtrNIG3bnMd0CgCrRLAUgoDBhJoBToeYGQMBgwkwANUFyAyBgMGEmgJogubEw+hUAFTFhJoCaILmxqMWb9it1xlpdM+/fSp2xVos37fd3SIDfMWEmgJpwGGPMqXezj/z8fEVHR8vpdKpx48b+DqdK2c4ipc5YW6H6PdTh0KdTBvIlDuj4Z4QJM4Hg4s71m9FSFnSyfgV8kQNMmAng5GiWsiD6FQAAUHskNxZEvwIAAGqPZimLYiFOAABqh+TGwuhXAACA+2iWAoBaYB4qwLqouQEAN7G+FWBt1NwAgBtY3wqwPpIbAHAD61sB1kdyAwBuYB4qwPpIbgDADcxDBVgfHYoBwE3MQwVYG8kNANQC81AB1kWzFAAAsBWSGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGArJDcAAMBWSG4AAICt+DW5+eSTTzRs2DC1atVKDodD77777kn3X7dunRwOR6VbTk6ObwIGAACW59fkprCwUN27d9fs2bPdet7OnTuVnZ3tusXGxnopQgAAEGjq+fPFBw8erMGDB7v9vNjYWDVp0sTzAQEAgIAXkH1uevToofj4eF144YVav369v8MBAAAW4teaG3fFx8dr7ty56tWrl4qLi/Xyyy8rLS1N//73v3X22WdX+Zzi4mIVFxe77ufn5/sqXCBgZTuLlJVXqHYtohQfHenvcADALQGV3HTp0kVdunRx3e/Xr592796tZ599Vm+88UaVz8nIyND06dN9FSIQ8BZv2q+pS79SmZFCHFLGFckacU5bf4cFADUWkM1SJ+rdu7d27dpV7eNTp06V0+l03Q4cOODD6IDAku0sciU2klRmpPuWblO2s8i/gQGAGwKq5qYqmZmZio+Pr/bx8PBwhYeH+zAiIHBl5RW6EptypcZob94RmqcABAy/JjcFBQUVal2ysrKUmZmpZs2aqW3btpo6dap++OEHvf7665KkWbNmqV27djrzzDP122+/6eWXX9batWu1atUqf50CYCvtWkQpxKEKCU6ow6GkFg38FxQAuMmvyc0XX3yhgQMHuu5PnjxZkjRmzBgtWLBA2dnZ2r9/v+vxo0eP6s4779QPP/ygBg0aqFu3bvrwww8rHANA7cVHRyrjimTdt3SbSo1RqMOhx6/oSq0NgIDiMMaYU+9mH/n5+YqOjpbT6VTjxo39HY5PMQIGNZXtLNLevCNKatGA9woAS3Dn+h3wfW5QM4yAgTvioyNJagAErIAfLYVTYwQMACCYkNwEgZONgAEAwG5IboJA+QiYEzECBgBgVyQ3QaB8BEyo43iGwwgYAICd0aE4SIw4p636d45hBAwAoEYCeYQtyU0QYQQMYF2BfCGB/QT6CFuSGwDws0C/kMBeqhth279zTMAk3vS5AQA/YqoGe8h2FmnD7jxb/N3sMMKWmhsA8CMWKw18dqt5s8Mac9TcAIAfMVVDYLNjzZsdRthScwMAfsRipYHNrjVvgT7CluQGAPws0C8kwcwOTTjVCeQRtjRLAYAFxEdHKqVD84C9mAQrOzTh2BE1NwAA1AE1b9ZDcgMAQB0FchOOHdEsBQAAPMYKc/5QcwMAADzCKnP+UHNjM1bImAEAwcdKc/5Qc2MjVsmYAQDBx0pz/lBzYxNWypgBAMHHSrNtk9zYhB0WOgMABC4rzflDs5RN2HmWTADuy3YWKSuvUO1aRDFEGT5jlTl/SG5sgvVpAJSj/x38yQpz/jiMMebUu9lHfn6+oqOj5XQ61bhxY5+8pi9/QWU7i/yeMQPwn2xnkVJnrK1Ui/vplIF8JyCguXP9pubGy3z9C8oKGTMA/7HSiBXAX+hQ7EU1GcHEvDQAPMlKI1YAfyG58aJTjWBavGm/Umes1TXz/q3UGWu1eNN+P0QJwE6sNGIF8BeapbzoZCOYqqvV6d85hi8hAHVilRErgL9Qc+NFJ/sFxbw0ALwpPjpSKR2ak9ggKFFz42XV/YIK1nlpmHsDAOBtJDc+UNUIpmCcl4a5N2AnJOqAdTHPjZ8Fy7w0zL0BOyFRB3zPnes3fW78LFjaxeljBLtgkVrA+khu4BPMvQG7IFEHrI/kBj7B3BuwCxJ1wProUAyfYe4N2EEwDgYAAg3JDXyKta9gByTqgLWR3ABALZCoA9ZFnxsAAGArJDcAAMBWSG4AAICtkNwAAABbIbkBLCbbWaQNu/OY8RYAasnt0VLvvfeeNm7cqPT0dKWmpmrt2rV66qmnVFZWpiuuuEI33XSTN+IEggJrFgFA3blVc/Piiy/q8ssv14oVKzRkyBAtXLhQw4cPV+vWrZWUlKRJkybpr3/9q7diBWyNNYsA1AS1u6fmVs3Nc889pxdeeEE33nijPvroIw0ZMkRPP/20br31VklS37599cQTT+j222/3SrC+VFpaqpKSEn+HYRv169dXaGiov8OwtJOtWcR8KgAkandryq3kJisrS+np6ZKkgQMHqrS0VP3793c9npaWpvHjx3s2Qh8zxignJ0e//PKLv0OxnSZNmiguLk4Oh+PUOweh8jWLTkxwWLMIQLnqanf7d47hB9DvuJXcNG/eXPv27VPbtm118OBBHTt2TPv371fXrl0lSfv27VOzZs28EqivlCc2sbGxatCgARdiDzDG6MiRI/rxxx8lSfHx8X6OyJpYswj+lu0sUlZeodq1iOJ9Z0HU7tacW8nNZZddphtuuEFjxozR8uXLNXr0aN15550KCQmRw+HQ3XffrYsuushbsXpdaWmpK7Fp3ry5v8OxlcjI4x+8H3/8UbGxsTRRVYM1i+AvNHdYH7W7NedWh+KZM2cqLS1NixYtUo8ePfTSSy/phhtu0GWXXabBgwerefPmysjI8FasXlfex6ZBA94o3lBervRlOrn46EildGhOYgOfoTN7YCiv3Q39b4sCtbvVc6vmJioqSi+99FKFbXfddZcmTJigkpISNWrUyKPB+QtNUd5BuQLWRHNH4KB2t2Y8sip4RESEIiIiPHEoAICP0dwRWFiR/tTcSm4mT55co/2eeeaZWgUDAPA9OrPDbtzqc7N169YKt+eff14bNmyosC0zM9NLoeJUcnJydNttt6l9+/YKDw9XQkKChg0bpjVr1kiS/vznP6tDhw6KjIxUTEyMLrvsMu3YscP1/L1798rhcFT5N0xLS9OkSZNc9wsKCjRhwgS1adNGkZGROuOMMzR37lxvnyIALxlxTlt9OmWg3r6xrz6dMpDOxAhobtXcfPTRRxXuN2rUSG+99Zbat2/v0aDgvr179yo1NVVNmjTRk08+qeTkZJWUlOiDDz7Q+PHjtWPHDvXs2VPXXnut2rZtq59//lkPPfSQLrroImVlZbk9emny5Mlau3atFi5cqKSkJK1atUq33nqrWrVqpUsvvdRLZwnAm2jugF14pM8N/O/WW2+Vw+HQxo0bFRUV5dp+5pln6k9/+pMkVVj3KykpSY8++qi6d++uvXv3qkOHDm693oYNGzRmzBilpaW5jv3iiy9q48aNJDcAAL9iVXAv8tX6Hz///LNWrlyp8ePHV0hsyjVp0qTStsLCQs2fP1/t2rVTQkKC26/Zr18/LV++XD/88IOMMfroo4/07bffBvQ8RwAAe6Dmxkt8OSHWrl27ZIzRaaeddsp9X3jhBd1zzz0qLCxUly5dtHr1aoWFhVXYp1+/fgoJqZj3FhUVqUePHq77zz//vG666Sa1adNG9erVU0hIiObNm1dhOQ4AAPzBreTmyy+/rHDfGKMdO3aooKCgwvZu3brVPbIA5uv1P4wxp97pv6699lpdeOGFys7O1lNPPaWrrrpK69evrzCUf/HixTr99NMrPe9Ezz//vD7//HMtX75ciYmJ+uSTTzR+/Hi1atVKgwYNqtsJAQBQB24lNz169JDD4ahwMb3kkkskybXd4XCotLTUs1EGGF9PiNWpUyc5HI4KI5+qEx0drejoaHXq1El9+/ZV06ZNtWzZMo0cOdK1T0JCgjp27FjheeXLJ0jHa3Huu+8+LVu2TEOHDpV0PKHNzMzUU089FXTJDevxAIC1uL0qOE7N1xNiNWvWTOnp6Zo9e7YmTpxYqd/NL7/8UmW/G2OMjDEqLi526/VKSkpUUlJSqekqNDRUZWVlbscfyFiPBwCsx63kJjEx0Vtx2Io/JsSaPXu2UlNT1bt3bz388MPq1q2bjh07ptWrV2vOnDl6//33tXjxYl100UWKiYnR999/rxkzZigyMlJDhgxx67UaN26sAQMG6O6771ZkZKQSExP18ccf6/XXXw+qCRx93fwIAKgZtzsUG2O0d+9eJSQkqF69ejp69KiWLVum4uJiDRkyRC1atPBGnAHH1+t/tG/fXlu2bNFjjz2mO++8U9nZ2YqJiVHPnj01Z84cRURE6P/9v/+nWbNm6fDhw2rZsqX69++vDRs2KDY21u3XW7RokaZOnaprr71WP//8sxITE/XYY4/p5ptv9sLZWRPr8QCANTmMG71Rd+7cqfT0dB04cEDt27fXqlWrdOWVV2rHjh0yxqhBgwbasGGDOnXq5M2Y6yQ/P1/R0dFyOp1q3Lhxhcd+++03ZWVlqV27dqyV5QV2K99sZ5FSZ6yt1Pz46ZSBJDcA4GEnu37/nlvz3Nx7773q3r27MjMzdckll2jo0KFq06aNDh8+rJ9//lkpKSl6+OGH6xQ8ECjKmx9D/7vaOevxAIA1uFVzExsbq1WrVqlHjx4qLCxUo0aN9Mknn+jcc8+VdHzW2pEjR2rfvn1eC7iuqLnxH7uWb7azyGfNjwAQrNypuXGrz01BQYGaNWsmSYqKilJUVJTi4+NdjyckJCg3N7cWIQOBi/V4AMBa3GqWatWqlfbv3++6/8QTT1TojHro0CE1bdq0xsf75JNPNGzYMLVq1UoOh0PvvvvuKZ+zbt06nX322QoPD1fHjh21YMECd04BAADYnFvJzaBBgypMFHfLLbeoUaNGrvurVq3S2WefXePjFRYWqnv37po9e3aN9s/KytLQoUM1cOBAZWZmatKkSRo3bpw++OCDmp8EAACwNbf63JzK3r17FR4eXqGpqsaBOBxatmyZhg8fXu0+9957r95//31t27bNte3qq6/WL7/8opUrV9bodWrS5yYxMVENGnhnwr1gduTIEe3bt892fW4AAN7ntT43a9eu1YQJE/T5559XOrDT6dTQoUM1d+7cWiU3NfHZZ59Vmto/PT1dkyZNqvY5xcXFFWbgzc/Pr3bfsLAwhYSE6ODBg4qJiVFYWJgc/x0Jg9ozxujo0aM6dOiQQkJCKi3UCQCAJ7mV3MyaNUs33nhjlRlTdHS0/vznP+uZZ57Reeed57EAT5STk6OWLVtW2NayZUvl5+erqKiowvpH5TIyMjR9+vQaHT8kJETt2rVTdna2Dh486JGY8T8NGjRQ27ZtKy3bAACAJ7mV3PznP//RzJkzq338oosu0lNPPVXnoDxp6tSpmjx5sut+fn6+EhISqt0/LCxMbdu21bFjx4J+AVBPCg0NVb169agJAwB4nVvJTW5ururXr1/9werV06FDh+ocVHXi4uIqDTXPzc1V48aNq6y1kaTw8HCFh4e79ToOh0P169c/6bkCAABrcqt9oHXr1hU68/7el19+6bX+NpKUkpKiNWvWVNi2evVqpaSkeO01AQBAYHEruRkyZIgefPBB/fbbb5UeKyoq0rRp03TJJZfU+HgFBQXKzMxUZmampONDvTMzM11z6UydOlWjR4927X/zzTdrz549uueee7Rjxw698MIL+vvf/6477rjDndMAAAA25tZQ8NzcXJ199tkKDQ3VhAkT1KVLF0nSjh07NHv2bJWWlmrLli2VOv1WZ926dRo4cGCl7WPGjNGCBQs0duxY7d27V+vWravwnDvuuENff/212rRpowcffFBjx46t6Sm4NZQMAABYgzvXb7fnudm3b59uueUWffDBByp/qsPhUHp6umbPnq127drVPnIfILkBACDweG2eG0lKTEzUihUrdPjwYe3atUvGGHXq1MmtZRcAAEDtZDuLlJVXqHYtoljXrhpuJzflmjZtqnPOOceTsQAAgJNYvGm/pi79SmVGCnFIGVcka8Q5bf0dluUwmxoAAAEg21nkSmwkqcxI9y3dpmxnkX8DsyCSGwAIItnOIm3YnccFMQBl5RW6EptypcZob94R/wRkYbVulgIABBaaNAJbuxZRCnGoQoIT6nAoqQULPf8eNTcAEARo0gh88dGRyrgiWaH/XcYm1OHQ41d0pVNxFai5AYAgcLImDS6OgWPEOW3Vv3OM9uYdUVKLBvztqkFyAwBBgCYN+4iPjiSpOQWapQAgCNCkgWBCzQ0ABAmaNBAsSG4AIIjUpkmDGXERaEhuAADVYvg4AhF9bgAAVWL4OAIVyQ0QIJhZFr7GjLgIVDRLAQGApgH4A8PHEaiouQEsjqYB+AvDxxGoqLkBLI6ZZT2DET+1w/BxBCKSG8DiaBqoO5r16oYZceuGxNr3aJYCLI6mgbqhWQ/+tHjTfqXOWKtr5v1bqTPWavGm/f4OKShQcwMEAJoGao9mPfhLdYl1/84xvPe8jOQGCBA0DdQOzXrwFxJr/6FZCoCt0awHfylPrE9EYu0b1NwAsD2a9eAP5Yn1fUu3qdQYEmsfIrkBEBRo1oM/kFj7B8kNAKDWGOZ8aiTWvkdyAwCoFeYPglXRoRgA4DbmD4KVkdwAANzGiuGwMpIbAIDbGOYMKyO5AQC4jfmD7CPbWaQNu/Ns1aRIh2IAAYcROtbAMOfAZ9dO4SQ3AAKKXb+MAxXDnAOXnde+olkKQMBghA7gOXbuFE5yAyBg2PnLGPA1O3cKJ7kBEDDs/GUM+JqdO4XT5wYnRcdNWAkLEQKeZddO4SQ3qBYdN2FFdv0yBvzFjp3CaZZClei4CSuLj45USofmtvtC9jc7zneC4ETNDap0so6bXFBgNzS/UlMLeyG5QZXKO26emODQcRN2xEXd3vOdIDjRLIUq2bkXPVCO5tfjGGIPu6HmBtWi4ybsjubX46iphd1Qc4OTouMm7Ix5c46jphZ2Q80NgKDFvDn/Q00t7ITkBkBQ46L+P3ac7wTBieQGQNDjog7YC31uAAA+xWSB8DZqbgAAPsO8QvAFam4AAD7BvELwFZIbAIBPMFkgfIXkBgDgE8wrBF8huQEA+ASTBcJX6FAMAPAZ5hWCL5DcAAB8inmF4G00SwEAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAOqIxUCthaHgAADUAYuBWg81N0CQ4pcmUHcsBmpN1NwAQYhfmoBnnGwxUCYq9B9qboAgwy9NwHNYDNSaSG4AP/Bnk9DJfmkCcE/5YqDlF9MQicVALYBmKcDH/N0kVP5L88QEh1+aQB05JJn//gu/o+YG8CErNAmV/9IMdRz/Fg51OPilCdSSFT7TqMwSyc3s2bOVlJSkiIgI9enTRxs3bqx23wULFsjhcFS4RURE+DBaoPas0iQ04py2+nTKQL19Y199OmUgnYktjFFt1maVzzQq8nuz1OLFizV58mTNnTtXffr00axZs5Senq6dO3cqNja2yuc0btxYO3fudN13OKgHRGCwUpNQfHQktTUW5+8mTJyalT7T+B+/19w888wzuvHGG3X99dfrjDPO0Ny5c9WgQQO9+uqr1T7H4XAoLi7OdWvZsqUPIwZqjyYh1BTNHYGBz7Q1+bXm5ujRo9q8ebOmTp3q2hYSEqJBgwbps88+q/Z5BQUFSkxMVFlZmc4++2w9/vjjOvPMM6vct7i4WMXFxa77+fn5njsBoBZGnNNW/TvHaG/eESW1aOC3L8FsZ5Gy8grVrkUUX8QWxPwpgcMqn2n8j1+Tm7y8PJWWllaqeWnZsqV27NhR5XO6dOmiV199Vd26dZPT6dRTTz2lfv36afv27WrTpk2l/TMyMjR9+nSvxA/Ulr+bhGjusD6aOwKLvz/TqMjvzVLuSklJ0ejRo9WjRw8NGDBAS5cuVUxMjF588cUq9586daqcTqfrduDAAR9HDFgLzR2BgeYOoPb8WnPTokULhYaGKjc3t8L23NxcxcXF1egY9evX11lnnaVdu3ZV+Xh4eLjCw8PrHCtgFzR3BA6aO4Da8WvNTVhYmHr27Kk1a9a4tpWVlWnNmjVKSUmp0TFKS0v11VdfKT4+3lthArbCdPGBJT46UikdmpPYAG7we7PU5MmTNW/ePL322mv65ptvdMstt6iwsFDXX3+9JGn06NEVOhw//PDDWrVqlfbs2aMtW7bouuuu0759+zRu3Dh/nQIQUGjuAGB3fp/nZsSIETp06JD+8pe/KCcnRz169NDKlStdnYz379+vkJD/5WCHDx/WjTfeqJycHDVt2lQ9e/bUhg0bdMYZZ/jrFIAqWXk0Es0dAOzMYYwxp97NPvLz8xUdHS2n06nGjRv7OxzYFKORAMCz3Ll++71ZCrAbRiMBgH+R3AAexlozCCasfQUr8nufG8BumHwNwYLmV1gVNTeAhzEaCcGA5ldYGTU3wAk8NcKJ0UiwOyaDhJWR3AD/5ekqdtaagZ1FhYVWub1BGA0C8D/ehYCoYgfcVXi0tMrtR46W+TgSoDKSG0CMcILnBMvoIZbxgJWR3ADiixqesXjTfqXOWKtr5v1bqTPWavGm/X6LxdtJFh3nYWXMUAxLLxPgS4s37dd9S7ep1BjXF3WgDGvlb+h/2c4ipc5YW2kKgE+nDPT538SXQ7SznUV0nIdPuHP9pkNxkGOeiv8J1BFO/A2twSqjh6rrP9a/c4xX4qDjPKyIZqkgRifayuKjI5XSoXnAfFnzN7QOqzRt0n8MILkJanwJBj7+htZhlT4oVkmyAH+iWSqIsUxA4ONvaC1WaNosT7J+338sUGojAU+gQ3GQC+ROtDiOvyGqQkdf2I0712+SG/AlaAP8DQHYHaOl4BZGOwQ+/oYA8D90KAYAALZCcgMAQB0Fy7IbgYJmKaAGmAEYQHWYSNN6SG5Qa8FyweeLC0B1fD0jNGqG5Aa1UtsLfqAlRHxxATgZqyy7gYpIbuC22l7wA7EGhC8ueFKgJfc4NSbStCY6FMNttZnyP1DXQGIqe3jK4k37lTpjra6Z92+lzlirxZv2+zskeIBVlt1ARdTcwG21+aUSqDUgdZnKnl/pKEfzpr1ZYdkNVERyA7fV5oIfyFW3tfniCsQmOHhPoCb3qDkm0rQWkhvUirsX/EBfzM+dLy5+peP3Ajm5BwIRyQ1qzd1fKsFSdcuvdPxeoCf3QKAhuYFPBUPVLb/SUZVgSe4BK2C0FOBhjJ5AdeKjI5XSoTnvBcDLqLkBvCAYf6UzOgyAVZDcAF4SDE1w5RgdBsBKaJYCUCeBOkEjAPsiuUHQyXYWacPuvCovvid7DFWrzYzVAOBNNEshqJys+YSmldphdBgAq6HmBkHjZM0nNK3UHqPDAFgNNTcIGidrPjEyTLxXB8E4OgyAdZHcIGicqvmEppW6CabRYQCsjWYpBI2TNZ/QtAIA9uEwxphT72Yf+fn5io6OltPpVOPGjf0dDvwg21lUbfPJyR4DAPiPO9dvmqUQdE7WfELTCgAEPpqlYHnMPQMAcAc1N7A05p4BALiLmhtYFnPPAABqg+QGlsW0/gCA2iC5gWWVz0tzIuaeAQCcCskNLIu5ZwAAtUGHYlhaIEzrn+0sUlZeodq1iLJkfAAQbEhuYHlWnnuG0VzBi6QWsC6SG6CWqhvN1b9zDBc7myOpBayNPjdALTGaKzgxRQFgfSQ3QC0xmis4kdQC1kdyA9QSo7mCE0ktYH30uQFO4G4n0UAYzQXPKk9q71u6TaXGkNQCFkRyA/xXbTuJWnk0F7yDpBawNpql4HGBuIo3nUThrvjoSKV0aE5iA1gQNTfwqEAdInuyTqJcvAAgsFBzA48J5NoPOokCgH2Q3MBjzUiBPESWkU8AYB80SwU5TzYjldd+nJjgBFLtB51EgxdLKcBqeE/WDclNEPP08gF1GSLr6Q9ybY/HyKfgE6j9xE6Fi2Pgsut70pdIboKYNzrR1qb2w9MfZL4YUFN2XR+Mz0Dgsut70tfocxPEvNWJ1p0hsp7uhBzInZrhe4HcT6w6fAYCmx3fk/5AchPErNCJ1tMfZL4Y4A47jpLjM1B3/pyry47vSX+gWSrI+bsTrac7IQd6p2b4lh2XUuAzUDf+btKz43vSHxzGGHPq3ewjPz9f0dHRcjqdaty4sb/Dgf77ZfKPr1Sm41WJGX+o+ZdJVZ0mF2/aX+mLgf4GOJlsZ5GtRsnxGaidbGeRUmesrZQYfjploM/fF3Z7T3qCO9dvam5gDQ5J5r//1lB1v7D8XRuFwGO3UXJ8BmrHSjOV2+096Wv0uYFf1bbz46mex7o/CHZ8BtxHfxf7sERyM3v2bCUlJSkiIkJ9+vTRxo0bT7r/kiVLdNpppykiIkLJyclasWKFjyKFp9W28yOdJlGVQFy0FdbhrUEWvC99z+/NUosXL9bkyZM1d+5c9enTR7NmzVJ6erp27typ2NjYSvtv2LBBI0eOVEZGhi655BK99dZbGj58uLZs2aKuXbv64QxQF7Xt/EinSfyevzuCwh483aTH+9I//N6huE+fPjrnnHP0t7/9TZJUVlamhIQE3XbbbZoyZUql/UeMGKHCwkK99957rm19+/ZVjx49NHfu3FO+Hh2Krae2nR/pNIlyVuoICpTjfelZAdOh+OjRo9q8ebOmTp3q2hYSEqJBgwbps88+q/I5n332mSZPnlxhW3p6ut59990q9y8uLlZxcbHrfn5+ft0Dh0fV9pcSnSZRzkodQYFyvC/9x6/JTV5enkpLS9WyZcsK21u2bKkdO3ZU+ZycnJwq98/Jyaly/4yMDE2fPt0zAcNrajsygBEFkGimhDXxvvQfS3Qo9qapU6fK6XS6bgcOHPB3SAA8zAqzbQO/x/vSf/xac9OiRQuFhoYqNze3wvbc3FzFxcVV+Zy4uDi39g8PD1d4eLhnAgZgWTRTwop4X/qHX2tuwsLC1LNnT61Zs8a1raysTGvWrFFKSkqVz0lJSamwvyStXr262v0BBA/mdoEV8b70Pb8PBZ88ebLGjBmjXr16qXfv3po1a5YKCwt1/fXXS5JGjx6t1q1bKyMjQ5J0++23a8CAAXr66ac1dOhQLVq0SF988YVeeuklf54GAACwCL8nNyNGjNChQ4f0l7/8RTk5OerRo4dWrlzp6jS8f/9+hYT8r4KpX79+euutt/TAAw/ovvvuU6dOnfTuu+8yxw0AAJBkgXlufI15bgAACDzuXL9tP1oKAAAEF5IbAABgKyQ3AADAVkhuAACArZDcAAAAWyG5AQAAtkJyAwAAbIXkBgAA2IrfZyj2tfI5C/Pz8/0cCQAAqKny63ZN5h4OuuTm119/lSQlJCT4ORIAAOCuX3/9VdHR0SfdJ+iWXygrK9PBgwfVqFEjORwOt5+fn5+vhIQEHThwIKiXb6AcKAOJMihHOVAGEmVQzlvlYIzRr7/+qlatWlVYc7IqQVdzExISojZt2tT5OI0bNw7qN285yoEykCiDcpQDZSBRBuW8UQ6nqrEpR4diAABgKyQ3AADAVkhu3BQeHq5p06YpPDzc36H4FeVAGUiUQTnKgTKQKINyViiHoOtQDAAA7I2aGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuanC7NmzlZSUpIiICPXp00cbN26sdt/t27frD3/4g5KSkuRwODRr1izfBepF7pTBvHnzdN5556lp06Zq2rSpBg0adNL9A4k75bB06VL16tVLTZo0UVRUlHr06KE33njDh9F6hztlcKJFixbJ4XBo+PDh3g3QR9wphwULFsjhcFS4RURE+DBa73D3vfDLL79o/Pjxio+PV3h4uDp37qwVK1b4KFrvcKcM0tLSKr0PHA6Hhg4d6sOIvcPd98KsWbPUpUsXRUZGKiEhQXfccYd+++037wVoUMGiRYtMWFiYefXVV8327dvNjTfeaJo0aWJyc3Or3H/jxo3mrrvuMm+//baJi4szzz77rG8D9gJ3y+Caa64xs2fPNlu3bjXffPONGTt2rImOjjbff/+9jyP3LHfL4aOPPjJLly41X3/9tdm1a5eZNWuWCQ0NNStXrvRx5J7jbhmUy8rKMq1btzbnnXeeueyyy3wTrBe5Ww7z5883jRs3NtnZ2a5bTk6Oj6P2LHfLoLi42PTq1csMGTLEfPrppyYrK8usW7fOZGZm+jhyz3G3DH766acK74Ft27aZ0NBQM3/+fN8G7mHulsObb75pwsPDzZtvvmmysrLMBx98YOLj480dd9zhtRhJbn6nd+/eZvz48a77paWlplWrViYjI+OUz01MTLRFclOXMjDGmGPHjplGjRqZ1157zVsh+kRdy8EYY8466yzzwAMPeCM8n6hNGRw7dsz069fPvPzyy2bMmDG2SG7cLYf58+eb6OhoH0XnG+6WwZw5c0z79u3N0aNHfRWi19X1O+HZZ581jRo1MgUFBd4K0SfcLYfx48eb888/v8K2yZMnm9TUVK/FSLPUCY4eParNmzdr0KBBrm0hISEaNGiQPvvsMz9G5jueKIMjR46opKREzZo181aYXlfXcjDGaM2aNdq5c6f69+/vzVC9prZl8PDDDys2NlY33HCDL8L0utqWQ0FBgRITE5WQkKDLLrtM27dv90W4XlGbMli+fLlSUlI0fvx4tWzZUl27dtXjjz+u0tJSX4XtUZ74bnzllVd09dVXKyoqylthel1tyqFfv37avHmzq+lqz549WrFihYYMGeK1OINu4cyTycvLU2lpqVq2bFlhe8uWLbVjxw4/ReVbniiDe++9V61atarw5g80tS0Hp9Op1q1bq7i4WKGhoXrhhRd04YUXejtcr6hNGXz66ad65ZVXlJmZ6YMIfaM25dClSxe9+uqr6tatm5xOp5566in169dP27dv98jCvb5WmzLYs2eP1q5dq2uvvVYrVqzQrl27dOutt6qkpETTpk3zRdgeVdfvxo0bN2rbtm165ZVXvBWiT9SmHK655hrl5eXp3HPPlTFGx44d080336z77rvPa3GS3MCjZsyYoUWLFmndunW26EDprkaNGikzM1MFBQVas2aNJk+erPbt2ystLc3foXndr7/+qlGjRmnevHlq0aKFv8Pxq5SUFKWkpLju9+vXT6effrpefPFFPfLII36MzHfKysoUGxurl156SaGhoerZs6d++OEHPfnkkwGZ3NTVK6+8ouTkZPXu3dvfofjcunXr9Pjjj+uFF15Qnz59tGvXLt1+++165JFH9OCDD3rlNUluTtCiRQuFhoYqNze3wvbc3FzFxcX5KSrfqksZPPXUU5oxY4Y+/PBDdevWzZthel1tyyEkJEQdO3aUJPXo0UPffPONMjIyAjK5cbcMdu/erb1792rYsGGubWVlZZKkevXqaefOnerQoYN3g/YCT3wv1K9fX2eddZZ27drljRC9rjZlEB8fr/r16ys0NNS17fTTT1dOTo6OHj2qsLAwr8bsaXV5HxQWFmrRokV6+OGHvRmiT9SmHB588EGNGjVK48aNkyQlJyersLBQN910k+6//36FhHi+hwx9bk4QFhamnj17as2aNa5tZWVlWrNmTYVfYXZW2zJ44okn9Mgjj2jlypXq1auXL0L1Kk+9F8rKylRcXOyNEL3O3TI47bTT9NVXXykzM9N1u/TSSzVw4EBlZmYqISHBl+F7jCfeC6Wlpfrqq68UHx/vrTC9qjZlkJqaql27drkSXEn69ttvFR8fH3CJjVS398GSJUtUXFys6667ztthel1tyuHIkSOVEpjypNd4a3lLr3VVDlCLFi0y4eHhZsGCBebrr782N910k2nSpIlrGOeoUaPMlClTXPsXFxebrVu3mq1bt5r4+Hhz1113ma1bt5rvvvvOX6dQZ+6WwYwZM0xYWJh55513Kgx7/PXXX/11Ch7hbjk8/vjjZtWqVWb37t3m66+/Nk899ZSpV6+emTdvnr9Ooc7cLYPfs8toKXfLYfr06eaDDz4wu3fvNps3bzZXX321iYiIMNu3b/fXKdSZu2Wwf/9+06hRIzNhwgSzc+dO895775nY2Fjz6KOP+usU6qy2n4dzzz3XjBgxwtfheo275TBt2jTTqFEj8/bbb5s9e/aYVatWmQ4dOpirrrrKazGS3FTh+eefN23btjVhYWGmd+/e5vPPP3c9NmDAADNmzBjX/aysLCOp0m3AgAG+D9yD3CmDxMTEKstg2rRpvg/cw9wph/vvv9907NjRREREmKZNm5qUlBSzaNEiP0TtWe6Uwe/ZJbkxxr1ymDRpkmvfli1bmiFDhpgtW7b4IWrPcve9sGHDBtOnTx8THh5u2rdvbx577DFz7NgxH0ftWe6WwY4dO4wks2rVKh9H6l3ulENJSYl56KGHTIcOHUxERIRJSEgwt956qzl8+LDX4nMY4606IQAAAN+jzw0AALAVkhsAAGArJDcAAMBWSG4AAICtkNwAAABbIbkBAAC2QnIDAABsheQGALxo7NixGj58uL/DAIIKyQ0QpMaOHSuHw+G6NW/eXBdffLG+/PJLf4fmESeeW/nt3HPP9drr7d27Vw6HQ5mZmRW2//Wvf9WCBQu89roAKiO5AYLYxRdfrOzsbGVnZ2vNmjWqV6+eLrnkEn+H5THz5893nV92draWL19e5X4lJSVeiyE6OlpNmjTx2vEBVEZyAwSx8PBwxcXFKS4uTj169NCUKVN04MABHTp0SOeff74mTJhQYf9Dhw4pLCzMtSJwUlKSHnnkEY0cOVJRUVFq3bq1Zs+eXeE5zzzzjJKTkxUVFaWEhATdeuutKigocD2+b98+DRs2TE2bNlVUVJTOPPNMrVixQpJ0+PBhXXvttYqJiVFkZKQ6deqk+fPn1/j8mjRp4jq/uLg4NWvWzFXDsnjxYg0YMEARERF688039dNPP2nkyJFq3bq1GjRooOTkZL399tsVjldWVqYnnnhCHTt2VHh4uNq2bavHHntMktSuXTtJ0llnnSWHw6G0tDRJlZuliouLNXHiRMXGxioiIkLnnnuuNm3a5Hp83bp1cjgcWrNmjXr16qUGDRqoX79+2rlzZ43PGwh2JDcAJEkFBQVauHChOnbsqObNm2vcuHF66623VFxc7Npn4cKFat26tc4//3zXtieffFLdu3fX1q1bNWXKFN1+++1avXq16/GQkBA999xz2r59u1577TWtXbtW99xzj+vx8ePHq7i4WJ988om++uorzZw5Uw0bNpQkPfjgg/r666/1r3/9S998843mzJmjFi1aeOR8y2P95ptvlJ6ert9++009e/bU+++/r23btummm27SqFGjtHHjRtdzpk6dqhkzZrjieuutt9SyZUtJcu334YcfKjs7W0uXLq3yde+55x794x//0GuvvaYtW7aoY8eOSk9P188//1xhv/vvv19PP/20vvjiC9WrV09/+tOfPHLeQFDw2pKcACxtzJgxJjQ01ERFRZmoqCgjycTHx5vNmzcbY4wpKioyTZs2NYsXL3Y9p1u3buahhx5y3U9MTDQXX3xxheOOGDHCDB48uNrXXbJkiWnevLnrfnJycoVjnmjYsGHm+uuvr9X5STIRERGu84uKijLLli0zWVlZRpKZNWvWKY8xdOhQc+eddxpjjMnPzzfh4eFm3rx5Ve5bftytW7dW2H7iyugFBQWmfv365s0333Q9fvToUdOqVSvzxBNPGGOM+eijj4wk8+GHH7r2ef/9940kU1RU5E4RAEGLmhsgiA0cOFCZmZnKzMzUxo0blZ6ersGDB2vfvn2KiIjQqFGj9Oqrr0qStmzZom3btmns2LEVjpGSklLp/jfffOO6/+GHH+qCCy5Q69at1ahRI40aNUo//fSTjhw5IkmaOHGiHn30UaWmpmratGkVOjTfcsstWrRokXr06KF77rlHGzZscOv8nn32Wdf5ZWZm6sILL3Q91qtXrwr7lpaW6pFHHlFycrKaNWumhg0b6oMPPtD+/fslSd98842Ki4t1wQUXuBXDiXbv3q2SkhKlpqa6ttWvX1+9e/euUGaS1K1bN9f/4+PjJUk//vhjrV8bCCYkN0AQi4qKUseOHdWxY0edc845evnll1VYWKh58+ZJksaNG6fVq1fr+++/1/z583X++ecrMTGxxsffu3evLrnkEnXr1k3/+Mc/tHnzZlefnKNHj7peY8+ePRo1apS++uor9erVS88//7wkuRKtO+64QwcPHtQFF1ygu+66q8avHxcX5zq/jh07KioqqsK5n+jJJ5/UX//6V91777366KOPlJmZqfT0dFeckZGRNX5dT6hfv77r/w6HQ9LxPj8ATo3kBoCLw+FQSEiIioqKJEnJycnq1auX5s2bp7feeqvKfh+ff/55pfunn366JGnz5s0qKyvT008/rb59+6pz5846ePBgpWMkJCTo5ptv1tKlS3XnnXe6kitJiomJ0ZgxY7Rw4ULNmjVLL730kidP2WX9+vW67LLLdN1116l79+5q3769vv32W9fjnTp1UmRkpKsz9e+FhYVJOl4DVJ0OHTooLCxM69evd20rKSnRpk2bdMYZZ3joTADU83cAAPynuLhYOTk5ko6PTPrb3/6mgoICDRs2zLXPuHHjNGHCBEVFRenyyy+vdIz169friSee0PDhw7V69WotWbJE77//viSpY8eOKikp0fPPP69hw4Zp/fr1mjt3boXnT5o0SYMHD1bnzp11+PBhffTRR67k6C9/+Yt69uypM888U8XFxXrvvfdcj3lap06d9M4772jDhg1q2rSpnnnmGeXm5rqSjoiICN1777265557FBYWptTUVB06dEjbt2/XDTfcoNjYWEVGRmrlypVq06aNIiIiFB0dXeE1oqKidMstt+juu+9Ws2bN1LZtWz3xxBM6cuSIbrjhBq+cFxCMqLkBgtjKlSsVHx+v+Ph49enTR5s2bdKSJUtcw5glaeTIkapXr55GjhypiIiISse488479cUXX+iss87So48+qmeeeUbp6emSpO7du+uZZ57RzJkz1bVrV7355pvKyMio8PzS0lKNHz9ep59+ui6++GJ17txZL7zwgqTjtSFTp05Vt27d1L9/f4WGhmrRokVeKYsHHnhAZ599ttLT05WWlqa4uLhKMws/+OCDuvPOO/WXv/xFp59+ukaMGOHqB1OvXj0999xzevHFF9WqVStddtllVb7OjBkz9Ic//EGjRo3S2WefrV27dumDDz5Q06ZNvXJeQDByGGOMv4MAYF179+5Vhw4dtGnTJp199tkVHktKStKkSZM0adIk/wQHAFWgWQpAlUpKSvTTTz/pgQceUN++fSslNgBgVTRLAajS+vXrFR8fr02bNlXqJ+Nvjz/+uBo2bFjlbfDgwf4OD4Cf0SwFIOD8/PPPlWb0LRcZGanWrVv7OCIAVkJyAwAAbIVmKQAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALCV/w+d4M8Yl2RMlAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_43.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTEElEQVR4nO3de1hU1f4/8PcAMiAqcr8YCoq3FMEgEDBvUUhmWp3yUoqmdkqtFK3Ek7f0iFYqdQ5JmbcuJsdS85iHNMj8qeQFJdPUIwThBRBMZgQRFNbvD7/s08h1YO77/XqeeWr2XrP3Wltm5jNrfdbaCiGEABEREZGMWBm7AkRERESGxgCIiIiIZIcBEBEREckOAyAiIiKSHQZAREREJDsMgIiIiEh2GAARERGR7DAAIiIiItlhAERERESywwCIiEzW4sWLoVAomlVWoVBg8eLFeq3PkCFDMGTIEJM9HhE1HwMgImrSpk2boFAopIeNjQ06deqESZMm4fLly8aunsnx9fXVuF7u7u546KGHsGPHDp0c/+bNm1i8eDH279+vk+MRyREDICJqtrfffhufffYZkpOTERMTg88//xyDBw/GrVu39HK+t956CxUVFXo5tr4FBQXhs88+w2effYa5c+fiypUreOqpp5CcnNzqY9+8eRNLlixhAETUCjbGrgARmY+YmBiEhIQAAKZOnQpXV1esXLkSu3btwrPPPqvz89nY2MDGxjw/pjp16oTnn39eej5x4kT4+/tjzZo1eOmll4xYMyIC2ANERK3w0EMPAQBycnI0tp87dw5/+ctf4OzsDDs7O4SEhGDXrl0aZW7fvo0lS5age/fusLOzg4uLCwYOHIh9+/ZJZerLAaqsrMTs2bPh5uaG9u3b44knnsClS5fq1G3SpEnw9fWts72+Y27cuBHDhg2Du7s7lEol7r//fqxdu1ara9EUT09P9O7dG7m5uY2Wu3r1KqZMmQIPDw/Y2dkhMDAQmzdvlvbn5eXBzc0NALBkyRJpmE3f+U9ElsY8f1oRkUnIy8sDADg5OUnbzpw5g8jISHTq1Anz5s2Dg4MD/vWvf2H06NH4+uuv8eSTTwK4G4gkJCRg6tSpCA0NhVqtxvHjx3HixAk88sgjDZ5z6tSp+PzzzzF+/HhEREQgPT0dI0aMaFU71q5diz59+uCJJ56AjY0N/v3vf2P69OmoqanBjBkzWnXsWrdv38bFixfh4uLSYJmKigoMGTIE2dnZmDlzJvz8/LBt2zZMmjQJpaWleO211+Dm5oa1a9fi5ZdfxpNPPomnnnoKANCvXz+d1JNINgQRURM2btwoAIjvv/9eFBcXi4sXL4qvvvpKuLm5CaVSKS5evCiVffjhh0VAQIC4deuWtK2mpkZERESI7t27S9sCAwPFiBEjGj3vokWLxJ8/prKysgQAMX36dI1y48ePFwDEokWLpG2xsbGiS5cuTR5TCCFu3rxZp1x0dLTo2rWrxrbBgweLwYMHN1pnIYTo0qWLePTRR0VxcbEoLi4WP//8sxg7dqwAIF555ZUGj5eYmCgAiM8//1zaVlVVJcLDw0W7du2EWq0WQghRXFxcp71EpB0OgRFRs0VFRcHNzQ0+Pj74y1/+AgcHB+zatQv33XcfAOCPP/5Aeno6nn32Wdy4cQMlJSUoKSnBtWvXEB0djQsXLkizxjp27IgzZ87gwoULzT7/nj17AACvvvqqxvZZs2a1ql329vbS/6tUKpSUlGDw4MH47bffoFKpWnTMvXv3ws3NDW5ubggMDMS2bdswYcIErFy5ssHX7NmzB56enhg3bpy0rU2bNnj11VdRVlaGH3/8sUV1IaK6GAA14cCBAxg5ciS8vb2hUCiwc+dOvZ/z8uXLeP755+Hi4gJ7e3sEBATg+PHjej8vUVOSkpKwb98+fPXVV3jsscdQUlICpVIp7c/OzoYQAgsWLJC+/GsfixYtAnA3xwW4O6OstLQUPXr0QEBAAF5//XWcOnWq0fP//vvvsLKyQrdu3TS29+zZs1XtOnToEKKiouDg4ICOHTvCzc0N8+fPB4AWB0BhYWHYt28fvv/+exw+fBglJSX49NNPNYKte/3+++/o3r07rKw0P5p79+4t7Sci3WAOUBPKy8sRGBiIF154QRpr16fr168jMjISQ4cOxX/+8x+4ubnhwoULGjkWRMYSGhoqzQIbPXo0Bg4ciPHjx+P8+fNo164dampqAABz585FdHR0vcfw9/cHAAwaNAg5OTn45ptvsHfvXnzyySdYs2YNkpOTMXXq1FbXtaEFFKurqzWe5+Tk4OGHH0avXr2wevVq+Pj4wNbWFnv27MGaNWukNmnL1dUVUVFRLXotEekfA6AmxMTEICYmpsH9lZWV+Nvf/oYvv/wSpaWl6Nu3L1auXNni1V1XrlwJHx8fbNy4Udrm5+fXomMR6ZO1tTUSEhIwdOhQ/POf/8S8efPQtWtXAHeHbZrz5e/s7IzJkydj8uTJKCsrw6BBg7B48eIGA6AuXbqgpqYGOTk5Gr0+58+fr1PWyckJpaWldbbf24vy73//G5WVldi1axc6d+4sbf/hhx+arL+udenSBadOnUJNTY1GL9C5c+ek/UDDwR0RNR+HwFpp5syZyMjIwNatW3Hq1Ck888wzGD58uFZ5DX+2a9cuhISE4JlnnoG7uzv69++PdevW6bjWRLoxZMgQhIaGIjExEbdu3YK7uzuGDBmCjz76CAUFBXXKFxcXS/9/7do1jX3t2rWDv78/KisrGzxf7Y+RDz74QGN7YmJinbLdunWDSqXSGFYrKCiosxqztbU1AEAIIW1TqVQaP0IM5bHHHkNhYSFSUlKkbXfu3ME//vEPtGvXDoMHDwYAtG3bFgDqDfCIqHnYA9QK+fn52LhxI/Lz8+Ht7Q3gbtd/amoqNm7ciOXLl2t9zN9++w1r165FXFwc5s+fj2PHjuHVV1+Fra0tYmNjdd0EolZ7/fXX8cwzz2DTpk146aWXkJSUhIEDByIgIADTpk1D165dUVRUhIyMDFy6dAk///wzAOD+++/HkCFDEBwcDGdnZxw/fhxfffUVZs6c2eC5goKCMG7cOHz44YdQqVSIiIhAWloasrOz65QdO3Ys3nzzTTz55JN49dVXcfPmTaxduxY9evTAiRMnpHKPPvoobG1tMXLkSPz1r39FWVkZ1q1bB3d393qDOH168cUX8dFHH2HSpEnIzMyEr68vvvrqKxw6dAiJiYlo3749gLtJ2/fffz9SUlLQo0cPODs7o2/fvujbt69B60tk1ow9Dc2cABA7duyQnu/evVsAEA4ODhoPGxsb8eyzzwohhDh79qwA0OjjzTfflI7Zpk0bER4ernHeV155RQwYMMAgbSSqT+00+GPHjtXZV11dLbp16ya6desm7ty5I4QQIicnR0ycOFF4enqKNm3aiE6dOonHH39cfPXVV9Lrli1bJkJDQ0XHjh2Fvb296NWrl/j73/8uqqqqpDL1TVmvqKgQr776qnBxcREODg5i5MiR4uLFi/VOC9+7d6/o27evsLW1FT179hSff/55vcfctWuX6Nevn7CzsxO+vr5i5cqVYsOGDQKAyM3NlcppMw2+qSn+DR2vqKhITJ48Wbi6ugpbW1sREBAgNm7cWOe1hw8fFsHBwcLW1pZT4olaQCHEn/p9qVEKhQI7duzA6NGjAQApKSl47rnncObMGakbvVa7du3g6emJqqoq/Pbbb40e18XFRVrZtUuXLnjkkUfwySefSPvXrl2LZcuW8aaTREREOsIhsFbo378/qqurcfXqVemWAPeytbVFr169mn3MyMjIOgmd//3vf6XkRyIiImo9BkBNKCsr08gvyM3NRVZWFpydndGjRw8899xzmDhxIlatWoX+/fujuLgYaWlp6NevX4uW5589ezYiIiKwfPlyPPvsszh69Cg+/vhjfPzxx7psFhERkaxxCKwJ+/fvx9ChQ+tsj42NxaZNm3D79m0sW7YMn376KS5fvgxXV1cMGDAAS5YsQUBAQIvOuXv3bsTHx+PChQvw8/NDXFwcpk2b1tqmEBER0f9hAERERESyw3WAiIiISHYYABEREZHsMAm6HjU1Nbhy5Qrat2/PJeeJiIjMhBACN27cgLe3d52bCt+LAVA9rly5Ah8fH2NXg4iIiFrg4sWLuO+++xotwwCoHrXLzV+8eBEdOnQwcm2IiIioOdRqNXx8fKTv8cYwAKpH7bBXhw4dGAARERGZmeakrxg1CTohIQEPPvgg2rdvD3d3d4wePbrOKsj12bZtG3r16gU7OzsEBARgz549GvuFEFi4cCG8vLxgb2+PqKioFt+dnYiIiCyPUQOgH3/8ETNmzMBPP/2Effv24fbt23j00UdRXl7e4GsOHz6McePGYcqUKTh58iRGjx6N0aNH4/Tp01KZd955Bx988AGSk5Nx5MgRODg4IDo6Grdu3TJEs4iIiMjEmdRCiMXFxXB3d8ePP/6IQYMG1VtmzJgxKC8vx+7du6VtAwYMQFBQEJKTkyGEgLe3N+bMmYO5c+cCAFQqFTw8PLBp0yaMHTu2yXqo1Wo4OjpCpVJxCIyIiMhMaPP9bVI5QCqVCgDg7OzcYJmMjAzExcVpbIuOjsbOnTsB3L1XV2FhIaKioqT9jo6OCAsLQ0ZGRrMCoOaqrq7G7du3dXY8apqtrW2TUxuJiIiaYjIBUE1NDWbNmoXIyEj07du3wXKFhYXw8PDQ2Obh4YHCwkJpf+22hsrcq7KyEpWVldJztVrdaF2FECgsLERpaWmj5Uj3rKys4OfnB1tbW2NXhYiIzJjJBEAzZszA6dOncfDgQYOfOyEhAUuWLGl2+drgx93dHW3btuViiQZSu0BlQUEBOnfuzOtOREQtZhIB0MyZM7F7924cOHCgyYWLPD09UVRUpLGtqKgInp6e0v7abV5eXhplgoKC6j1mfHy8xrBa7ToC9amurpaCHxcXlybbRrrl5uaGK1eu4M6dO2jTpo2xq0NERGbKqMkUQgjMnDkTO3bsQHp6Ovz8/Jp8TXh4ONLS0jS27du3D+Hh4QAAPz8/eHp6apRRq9U4cuSIVOZeSqVSWvOnqbV/anN+2rZt22RdSfdqh76qq6uNXBMiIjJnRu0BmjFjBrZs2YJvvvkG7du3l3J0HB0dYW9vDwCYOHEiOnXqhISEBADAa6+9hsGDB2PVqlUYMWIEtm7diuPHj+Pjjz8GcHfxo1mzZmHZsmXo3r07/Pz8sGDBAnh7e2P06NE6qzuHX4yD152IiHTBqAHQ2rVrAQBDhgzR2L5x40ZMmjQJAJCfn68x6yciIgJbtmzBW2+9hfnz56N79+7YuXOnRuL0G2+8gfLycrz44osoLS3FwIEDkZqaCjs7O723iYiIiEyfSa0DZCoaW0fg1q1byM3NhZ+fHwMqI+D1JyKihmizDhAXVJGZwsJCvPLKK+jatSuUSiV8fHwwcuTIOnlVQgjExMRAoVBIaywBQF5eHhQKBbKysuoce8iQIZg1a5b0fPv27Xj00Ufh4uLS4Gtu3bqFGTNmwMXFBe3atcPTTz9dJ8mdiIhMU4GqAodzSlCgqjB2VbTGAEhG8vLyEBwcjPT0dLz77rv45ZdfkJqaiqFDh2LGjBkaZRMTE1udb1NeXo6BAwdi5cqVDZaZPXs2/v3vf2Pbtm348ccfceXKFTz11FOtOi8REelfyrF8RK5Ix/h1RxC5Ih0px/KNXSWtmMQ0eDKM6dOnQ6FQ4OjRo3BwcJC29+nTBy+88IL0PCsrC6tWrcLx48c1lhLQ1oQJEwDcDbzqo1KpsH79emzZsgXDhg0DcDf/q3fv3vjpp58wYMCAFp+biIj0p0BVgfjtv6Dm/5JoagQwf/tpDOrhBi9He+NWrpnYA2REhuw6/OOPP5CamooZM2ZoBD+1OnbsCAC4efMmxo8fj6SkJGlNJX3JzMzE7du3NW5b0qtXL3Tu3BkZGRl6PTcREbVcbkm5FPzUqhYCeSU3jVOhFmAPkJGkHMuXomcrBZDwVADGPNhZb+fLzs6GEAK9evVqtNzs2bMRERGBUaNGNVouIiKizj25KioqGlxssj6FhYWwtbWVgq9ajd22hIiIjM/P1QFWCmgEQdYKBXxdzWeNPAZARmCMrsPmTPbbtWsX0tPTcfLkySbLpqSkoHfv3hrbnnvuuRbXj4iIzIeXoz0SngrA/O2nUS0ErBUKLH+qr9kMfwEMgIyisa5Dff3xdO/eHQqFAufOnWuwTHp6OnJycur0yDz99NN46KGHsH//fmmbj48P/P39NcrVLl7ZXJ6enqiqqkJpaanGOf98axMiIjJNYx7sjEE93JBXchO+rm3NKvgBmANkFLVdh3+m765DZ2dnREdHIykpCeXl5XX2l5aWYt68eTh16hSysrKkBwCsWbMGGzdu1HmdgoOD0aZNG40p+OfPn0d+fn6Dty0hIiLT4eVoj/BuLmYX/ADsATIKY3UdJiUlITIyEqGhoXj77bfRr18/3LlzB/v27cPatWtx9uzZenteOnfu3Kz7tN3rjz/+QH5+Pq5cuQLgbnAD3O358fT0hKOjI6ZMmYK4uDg4OzujQ4cOeOWVVxAeHs4ZYEREpFcMgIzEGF2HXbt2xYkTJ/D3v/8dc+bMQUFBAdzc3BAcHCzdlkSXdu3ahcmTJ0vPx44dCwBYtGgRFi9eDOBu75KVlRWefvppVFZWIjo6Gh9++KHO60JERPRnvBVGPXgrDNPF609ERA3hrTCIiIiIGsEAiIiIiGSHARARERHJDgMgIiIikh0GQC3E3HHj4HUnIiJdYACkpTZt2gC4e9NQMryqqioAgLW1tZFrQkRE5ozrAGnJ2toaHTt2xNWrVwEAbdu2hUKhaOJVpAs1NTUoLi5G27ZtYWPDP10iImo5fou0QO1qybVBEBmOlZUVOnfuzKCTiIhahQFQCygUCnh5ecHd3R23b982dnVkxdbWFlZWHLklIqLWYQDUCtbW1sxFISIiMkP8KU1ERESywwCIiIiIZIcBEBEREckOAyAiIiKSHQZAREREJDsMgIiIiEh2GAARERGR7DAAIiIiItlhAERERESywwCIiIiIZIcBEBEREckOAyAiIiKSHaMGQAcOHMDIkSPh7e0NhUKBnTt3Nlp+0qRJUCgUdR59+vSRyixevLjO/l69eum5JURERGROjBoAlZeXIzAwEElJSc0q//7776OgoEB6XLx4Ec7OznjmmWc0yvXp00ej3MGDB/VRfSIiIjJTNsY8eUxMDGJiYppd3tHREY6OjtLznTt34vr165g8ebJGORsbG3h6euqsnkRERGRZzDoHaP369YiKikKXLl00tl+4cAHe3t7o2rUrnnvuOeTn5zd6nMrKSqjVao0HERERWS6zDYCuXLmC//znP5g6darG9rCwMGzatAmpqalYu3YtcnNz8dBDD+HGjRsNHishIUHqXXJ0dISPj4++q09ERERGpBBCCGNXAgAUCgV27NiB0aNHN6t8QkICVq1ahStXrsDW1rbBcqWlpejSpQtWr16NKVOm1FumsrISlZWV0nO1Wg0fHx+oVCp06NBBq3YQERGRcajVajg6Ojbr+9uoOUAtJYTAhg0bMGHChEaDHwDo2LEjevTogezs7AbLKJVKKJVKXVeTiIiITJRZDoH9+OOPyM7ObrBH58/KysqQk5MDLy8vA9SMiIiIzIFRA6CysjJkZWUhKysLAJCbm4usrCwpaTk+Ph4TJ06s87r169cjLCwMffv2rbNv7ty5+PHHH5GXl4fDhw/jySefhLW1NcaNG6fXthAREZH5MOoQ2PHjxzF06FDpeVxcHAAgNjYWmzZtQkFBQZ0ZXCqVCl9//TXef//9eo956dIljBs3DteuXYObmxsGDhyIn376CW5ubvprCBEREZkVk0mCNiXaJFERERGRadDm+9ssc4CIiIiIWoMBEBEREckOAyAiIiKSHQZAREREJDsMgIiIiEh2GAARERGR7DAAIiIiItlhAERERESywwCIiIiIZIcBEBEREckOAyAiIiKSHQZAREREJDsMgIiIiEh2GAARERGR7DAAIiIiItlhAERERESywwCIiIiIZIcBEBEREckOAyAiIiKSHQZAREREJDsMgIiIiEh2GAARERGR7DAAIiIiItlhAERERESywwCIiIiIZIcBEBEREckOAyAiIiKSHQZAREREJDsMgIiIiEh2GAARERGR7DAAIiIiItlhAERERESyY9QA6MCBAxg5ciS8vb2hUCiwc+fORsvv378fCoWizqOwsFCjXFJSEnx9fWFnZ4ewsDAcPXpUj60gIiIic2PUAKi8vByBgYFISkrS6nXnz59HQUGB9HB3d5f2paSkIC4uDosWLcKJEycQGBiI6OhoXL16VdfVJyIiIjNlY8yTx8TEICYmRuvXubu7o2PHjvXuW716NaZNm4bJkycDAJKTk/Htt99iw4YNmDdvXmuqS0RERBbCLHOAgoKC4OXlhUceeQSHDh2StldVVSEzMxNRUVHSNisrK0RFRSEjI6PB41VWVkKtVms8iIiIyHKZVQDk5eWF5ORkfP311/j666/h4+ODIUOG4MSJEwCAkpISVFdXw8PDQ+N1Hh4edfKE/iwhIQGOjo7Sw8fHR6/tICIiIuMy6hCYtnr27ImePXtKzyMiIpCTk4M1a9bgs88+a/Fx4+PjERcXJz1Xq9UMgoiIiCyYWQVA9QkNDcXBgwcBAK6urrC2tkZRUZFGmaKiInh6ejZ4DKVSCaVSqdd6EhERkekwqyGw+mRlZcHLywsAYGtri+DgYKSlpUn7a2pqkJaWhvDwcGNVkYiIiEyMUXuAysrKkJ2dLT3Pzc1FVlYWnJ2d0blzZ8THx+Py5cv49NNPAQCJiYnw8/NDnz59cOvWLXzyySdIT0/H3r17pWPExcUhNjYWISEhCA0NRWJiIsrLy6VZYURERERGDYCOHz+OoUOHSs9r83BiY2OxadMmFBQUID8/X9pfVVWFOXPm4PLly2jbti369euH77//XuMYY8aMQXFxMRYuXIjCwkIEBQUhNTW1TmI0ERERyZdCCCGMXQlTo1ar4ejoCJVKhQ4dOhi7OkRERNQM2nx/m30OEBEREZG2GAARERGR7DAAIiIiItlhAERERESywwCIiIiIZIcBEBEREckOAyAiIiKSHQZAREREJDsMgIiIiEh2GAARERGR7DAAIiIiItlhAERERESywwCIiIiIZIcBEBEREckOAyAiIiKSHQZAREREJDsMgIiIiEh2GAARERGR7DAAIiIiItlhAERERESywwCIiIiIZIcBEBEREckOAyAiIiKSHQZAREREJDsMgIiIiEh2GAARERGR7DAAIiIiItlhAERERESywwCIiIiIZIcBEBEREckOAyAiIiKSHQZAREREJDtGDYAOHDiAkSNHwtvbGwqFAjt37my0/Pbt2/HII4/Azc0NHTp0QHh4OL777juNMosXL4ZCodB49OrVS4+tICIiInNj1ACovLwcgYGBSEpKalb5AwcO4JFHHsGePXuQmZmJoUOHYuTIkTh58qRGuT59+qCgoEB6HDx4UB/VJyIiIjNlY8yTx8TEICYmptnlExMTNZ4vX74c33zzDf7973+jf//+0nYbGxt4enrqqppERERkYcw6B6impgY3btyAs7OzxvYLFy7A29sbXbt2xXPPPYf8/PxGj1NZWQm1Wq3xICIiIstl1gHQe++9h7KyMjz77LPStrCwMGzatAmpqalYu3YtcnNz8dBDD+HGjRsNHichIQGOjo7Sw8fHxxDVJyIiIiNRCCGEsSsBAAqFAjt27MDo0aObVX7Lli2YNm0avvnmG0RFRTVYrrS0FF26dMHq1asxZcqUestUVlaisrJSeq5Wq+Hj4wOVSoUOHTpo1Q4iIiIyDrVaDUdHx2Z9fxs1B6iltm7diqlTp2Lbtm2NBj8A0LFjR/To0QPZ2dkNllEqlVAqlbqups4UqCqQW1IOP1cHeDnaG7s6REREZs/sAqAvv/wSL7zwArZu3YoRI0Y0Wb6srAw5OTmYMGGCAWqneynH8hG//RfUCMBKASQ8FYAxD3Y2drWIiIjMmlFzgMrKypCVlYWsrCwAQG5uLrKysqSk5fj4eEycOFEqv2XLFkycOBGrVq1CWFgYCgsLUVhYCJVKJZWZO3cufvzxR+Tl5eHw4cN48sknYW1tjXHjxhm0bbpQoKqQgh8AqBHA/O2nUaCqMG7FiIiIzJxRA6Djx4+jf//+0hT2uLg49O/fHwsXLgQAFBQUaMzg+vjjj3Hnzh3MmDEDXl5e0uO1116Tyly6dAnjxo1Dz5498eyzz8LFxQU//fQT3NzcDNs4HcgtKZeCn1rVQiCv5KZxKkRERGQhTCYJ2pRok0SlTwWqCkSuSNcIgqwVChycN5S5QERERPfQ5vvbrKfBWzovR3skPBUAa4UCwN3gZ/lTfRn8EBERtZLZJUHLzZgHO2NQDzfkldyEr2tbBj9EREQ6wADIDHg52jPwISIi0iEOgREREZHsMAAiIiIi2WEARERERLLDAIiIiIhkhwEQERERyQ4DICIiIpIdBkBEREQkOwyAiIiISHYYABEREZHsMAAiIiIi2WEARERERLLDAIiIiIhkhwEQERERyQ4DICIiIpIdBkBEREQkOwyAiIiISHYYABEREZHs2LTkRUePHkVGRgYKCwsBAJ6enggPD0doaKhOK0dERESkD1oFQFevXsXTTz+NQ4cOoXPnzvDw8AAAFBUVYfbs2YiMjMTXX38Nd3d3vVSWiIiISBe0GgKbPn06qqurcfbsWeTl5eHIkSM4cuQI8vLycPbsWdTU1GDGjBn6qisRERGRTiiEEKK5hdu3b48DBw6gf//+9e7PzMzEkCFDcOPGDZ1V0BjUajUcHR2hUqnQoUMHY1eHiIiImkGb72+teoCUSiXUanWD+2/cuAGlUqnNIYmIiMgEFKgqcDinBAWqCmNXxSC0CoDGjBmD2NhY7NixQyMQUqvV2LFjByZPnoxx48bpvJJERESkPynH8hG5Ih3j1x1B5Ip0pBzLN3aV9E6rJOjVq1ejpqYGY8eOxZ07d2BrawsAqKqqgo2NDaZMmYL33ntPLxUlIiIi3StQVSB++y+o+b+EmBoBzN9+GoN6uMHL0d64ldMjrQIgpVKJtWvXYuXKlcjMzNSYBh8cHMx8GSIiIjOTW1IuBT+1qoVAXslNBkD36tChA4YOHarruhAREZGB+bk6wEoBjSDIWqGAr2tb41XKAHS6EnRRURHefvttXR6SiIiI9MjL0R4JTwXAWqEAcDf4Wf5UX4vu/QG0nAbflJ9//hkPPPAAqqurdXVIo+A0eCIikpsCVQXySm7C17Wt2QY/2nx/azUEdurUqUb3nz9/XpvDERERkYnwcrQ328CnJbQaAgsKCkL//v0RFBRU59G/f3+MHTtWq5MfOHAAI0eOhLe3NxQKBXbu3Nnka/bv348HHngASqUS/v7+2LRpU50ySUlJ8PX1hZ2dHcLCwnD06FGt6kVERESWTasAyNnZGevWrUNubm6dx2+//Ybdu3drdfLy8nIEBgYiKSmpWeVzc3MxYsQIDB06FFlZWZg1axamTp2K7777TiqTkpKCuLg4LFq0CCdOnEBgYCCio6Nx9epVrepGRERElkurIbDg4GBcuXIFXbp0qXd/aWkptEkpiomJQUxMTLPLJycnw8/PD6tWrQIA9O7dGwcPHsSaNWsQHR0N4O5aRdOmTcPkyZOl13z77bfYsGED5s2b1+xzERERkeXSqgfopZdegq+vb4P7O3fujI0bN7a2Tg3KyMhAVFSUxrbo6GhkZGQAuLsgY2ZmpkYZKysrREVFSWXqU1lZCbVarfEgIiIiy6VVD9CTTz7Z6H4nJyfExsa2qkKNKSwshIeHh8Y2Dw8PqNVqVFRU4Pr166iurq63zLlz5xo8bkJCApYsWaKXOhMREZHp0ek6QOYqPj4eKpVKely8eNHYVSIiIiI90qoHKC4urlnlVq9e3aLKNMXT0xNFRUUa24qKitChQwfY29vD2toa1tbW9Zbx9PRs8LhKpZJ3sSciIpIRrQKgkydPajw/ePAggoODYW//v3UDFP+3kqQ+hIeHY8+ePRrb9u3bh/DwcACAra0tgoODkZaWhtGjRwMAampqkJaWhpkzZ+qtXrpQoKpAbkk5/FwdZLUOAxERkTFoFQD98MMPGs/bt2+PLVu2oGvXri06eVlZGbKzs6Xnubm5yMrKgrOzMzp37oz4+HhcvnwZn376KYC7Sdj//Oc/8cYbb+CFF15Aeno6/vWvf+Hbb7+VjhEXF4fY2FiEhIQgNDQUiYmJKC8vl2aFmaKUY/nSnXitFEDCUwEY82BnY1eLiIjIYrXoZqi6cvz4cY2bqtYOscXGxmLTpk0oKChAfn6+tN/Pzw/ffvstZs+ejffffx/33XcfPvnkE2kKPACMGTMGxcXFWLhwIQoLCxEUFITU1NQ6idGmokBVIQU/wN2b0c3ffhqDerixJ4iIiEhPWnUvsPbt2+Pnn39ucQ+QqTLkvcAO55Rg/LojdbZ/OW0Awru56PXcRERElkSb72/OAjMyP1cHWN2TNmWtUMDXta1xKkRERCQDrboZqhAC586dQ1lZmcb2fv36tb5mMuHlaI+EpwIwf/tpVAsBa4UCy5/qy+EvogZwwgAR6YJWQ2BWVlZQKBT13u6idrtCoUB1dbVOK2lohhwCq1WgqkBeyU34urblhzpRAzhhgIgao833t1Y9QLm5ua2qGDXMy9GegQ9RIzhhgIh0SasAqKGboBIR6VtuSbkU/NSqFgJ5JTcZABGR1nSSBD1s2DD8/vvvujgUEVG9OGGAyHgKVBU4nFOCAlWFsauiM1r1AO3atave7QcOHMDu3bvh4+MDAHjiiSdaXzMioj/hhAEi47DU3DudJUFLB2QSNBHpEScMEBlOgaoCkSvSNYafrRUKHJw31CTff3pbByg6OhoxMTEoLCxETU2N9LC2tsbp06dRU1Nj9sEPEZk2L0d7hHdzMckPXyJL01junbnTKgD6z3/+g4cffhghISHYvXu3vupEREREJsCSc++0ToKePXs2du3ahTfffBN//etfcfOm+UeBREREVFdt7p214m4UZEm5dy26GWpQUBCOHz+O2bNnIygoqNGcICIiIjJfYx7sjEE93Cwu967Fd4O3t7dHcnIydu3ahR9++AGurq66rBcRERGZCEtcrFerIbD09HTcf//9UKvV0rYnnngCa9asgVKpRJ8+ffD//t//03kliYiIiHRJqwAoMTER06ZNq3dqmaOjI/76179i9erVOqscERERkT5oFQD9/PPPGD58eIP7H330UWRmZra6UkRERET6pFUAVFRUhDZt2jS438bGBsXFxa2uFBEREZE+aRUAderUCadPn25w/6lTp+Dl5dXqSpH5s8T7xhARkeXQahbYY489hgULFmD48OGws7PT2FdRUYFFixbh8ccf12kFyfxY6n1jTFmBqgK5JeXwc3WwuJkaRET6oNW9wIqKivDAAw/A2toaM2fORM+ePQEA586dQ1JSEqqrq3HixAl4eHjorcKGwHuBtZy53TfGEjDgJCK6S5vvb616gDw8PHD48GG8/PLLiI+PlxZAVCgUiI6ORlJSktkHP9Q6jd03hgGQ7hWoKqTgBwBqBDB/+2kM6uHG601E1AitF0Ls0qUL9uzZg+vXryM7OxtCCHTv3h1OTk76qB+Zmdr7xtzbA2QJ940xRQw4m6ehIUIOHRLJV4tXgnZycsKDDz6oy7qQBai9b8z87adRLYRF3TfGFDHgbFpDQ4QcOiSSN61ygOSCOUCtV6CqsLj7xpiqlGP5dQJOfpHf1VBO2vbp4Xjyw8PMVSOyMHrLASJqLku8b4ypstQbFepCQ0OEx/Kuc+iQSOYYABFZAAac9WtoiPBBXycOHRLJnFYLIZL54EKERP/LSbNWKABAGiIM9HGqdzuDSCL5YA5QPcw9B4jJnUSaGspJY64akWVhDpCMcV0YoroaGiLk0CGRfHEIzMI0ti4MUXNw+JSI5IA9QBaG68JQa3D4lIjkgj1AFqahpE9281NTGho+ZU8QEVkikwiAkpKS4OvrCzs7O4SFheHo0aMNlh0yZAgUCkWdx4gRI6QykyZNqrN/+PDhhmiKSRjzYGccnDcUX04bgIPzhvIXPDULh0+JSE6MPgSWkpKCuLg4JCcnIywsDImJiYiOjsb58+fh7u5ep/z27dtRVVUlPb927RoCAwPxzDPPaJQbPnw4Nm7cKD1XKpX6a4QJYnInaYvDp0QkJ0bvAVq9ejWmTZuGyZMn4/7770dycjLatm2LDRs21Fve2dkZnp6e0mPfvn1o27ZtnQBIqVRqlOPNWokax+FTIpITo/YAVVVVITMzE/Hx8dI2KysrREVFISMjo1nHWL9+PcaOHQsHBweN7fv374e7uzucnJwwbNgwLFu2DC4uLvUeo7KyEpWVldJztVrdgtYQmT/eVoOI5MKoPUAlJSWorq6Gh4eHxnYPDw8UFhY2+fqjR4/i9OnTmDp1qsb24cOH49NPP0VaWhpWrlyJH3/8ETExMaiurq73OAkJCXB0dJQePj4+LW8UkZnzcrRHeDcXiwp+OLWfiO5l9Byg1li/fj0CAgIQGhqqsX3s2LHS/wcEBKBfv37o1q0b9u/fj4cffrjOceLj4xEXFyc9V6vVDIKILASn9hNRfYzaA+Tq6gpra2sUFRVpbC8qKoKnp2ejry0vL8fWrVsxZcqUJs/TtWtXuLq6Ijs7u979SqUSHTp00HgQkfkz9NR+9jQRmQ+jBkC2trYIDg5GWlqatK2mpgZpaWkIDw9v9LXbtm1DZWUlnn/++SbPc+nSJVy7dg1eXl6trjMRmQ9DTu1POZaPyBXpGL/uCCJXpCPlWL7Oz0FEumP0WWBxcXFYt24dNm/ejLNnz+Lll19GeXk5Jk+eDACYOHGiRpJ0rfXr12P06NF1EpvLysrw+uuv46effkJeXh7S0tIwatQo+Pv7Izo62iBtIiLTUDu1/8/0MbWfi0gSmR+j5wCNGTMGxcXFWLhwIQoLCxEUFITU1FQpMTo/Px9WVppx2vnz53Hw4EHs3bu3zvGsra1x6tQpbN68GaWlpfD29sajjz6KpUuXym4tICK5q53aP3/7aVQLobep/Y31NFlSMjmRJVEIIUTTxeRFrVbD0dERKpWK+UBEFqBAVaHXqf0FqgpErkivs4jkwXlDGQARGZA2399GHwIjItI3fU/t5yKSRObH6ENgRESWgItIEpkXBkBERDrCe/ARmQ8OgRER6QjXASIyH+wBIiLSAa44TWRe2ANERNRKXAeIyPwwACIiaiVDrjhNRLrBAIiIqJUMteI0EekOAyAiolbiOkBE5odJ0EREOmDO6wAVqCqQW1IOP1cHs6o3UWswACIi0hFzXAeIs9dIrjgERkQkU5y9RnLGAIiISKY4e43kjAEQEZFMcfYayRkDICIimeLsNZIzJkETEcmYOc9eI2oNBkBERDJnjrPXiFqLQ2BEREQkOwyAiIiISHYYABGRxStQVeBwTgnXtyEiCXOAiMgiNHQ7B650TET1YQBERGavoSCnoZWOB/VwY9IvkcxxCIyIzFpjt3PgSsdE1BAGQERk1hoLcrjSMRE1hAEQEZm1xoIcrnRMRA1hDhARmbXaIGf+9tOoFqJOkMOVjomoPgyAiMjsNRXkcKVjIroXAyAiMpqfL17H0bw/EOrrjEAfp1Ydi0EOEWmDARARGcWcf2Xh6xOXpedPP9AJq54NMl6FiEhWmARNRAb388XrGsEPAHx94jJ+vnjdSDUiIrlhAEREBnc07496tx/PYwBERIbBAIj0gvdeosaE+jrXuz3Et3V5QEREzWUSAVBSUhJ8fX1hZ2eHsLAwHD16tMGymzZtgkKh0HjY2dlplBFCYOHChfDy8oK9vT2ioqJw4cIFfTeD/k/KsXxErkjH+HVHELkiHSnH8o1dJTIxgT5OePqBThrbnn6gU6sToYmImsvoAVBKSgri4uKwaNEinDhxAoGBgYiOjsbVq1cbfE2HDh1QUFAgPX7//XeN/e+88w4++OADJCcn48iRI3BwcEB0dDRu3bql7+bIXmO3JSD6s1XPBuGbGRFYMKI3vpkRwQRoE8SeXLJkRp8Ftnr1akybNg2TJ08GACQnJ+Pbb7/Fhg0bMG/evHpfo1Ao4OnpWe8+IQQSExPx1ltvYdSoUQCATz/9FB4eHti5cyfGjh2rn4YQgMZvS8ApynSvQB8n9vqYqIZuMEtkKYzaA1RVVYXMzExERUVJ26ysrBAVFYWMjIwGX1dWVoYuXbrAx8cHo0aNwpkzZ6R9ubm5KCws1Dimo6MjwsLCGj0m6QbvvURk/tiTS3Jg1ACopKQE1dXV8PDw0Nju4eGBwsLCel/Ts2dPbNiwAd988w0+//xz1NTUICIiApcuXQIA6XXaHLOyshJqtVrjQS3Dey8Rmb/GenLJtBhqmNISh0ONPgSmrfDwcISHh0vPIyIi0Lt3b3z00UdYunRpi46ZkJCAJUuW6KqKssd7LxGZt9qe3D8HQezJNT2GGqa01OFQo/YAubq6wtraGkVFRRrbi4qKGszxuVebNm3Qv39/ZGdnA4D0Om2OGR8fD5VKJT0uXryobVOoHgKi6UJEZHLYk2v6DDVMacnDoUbtAbK1tUVwcDDS0tIwevRoAEBNTQ3S0tIwc+bMZh2juroav/zyCx577DEAgJ+fHzw9PZGWloagoCAAgFqtxpEjR/Dyyy/XewylUgmlUtnq9tBdlvprgUhO2JNr2gw14cSSJ7YYfQgsLi4OsbGxCAkJQWhoKBITE1FeXi7NCps4cSI6deqEhIQEAMDbb7+NAQMGwN/fH6WlpXj33Xfx+++/Y+rUqQDuzhCbNWsWli1bhu7du8PPzw8LFiyAt7e3FGSR/jT0a2FQDzezf7MQmYMCVQVyS8rh5+rQ6vccbzBrugw1TGnJw6FGD4DGjBmD4uJiLFy4EIWFhQgKCkJqaqqUxJyfnw8rq/+N1F2/fh3Tpk1DYWEhnJycEBwcjMOHD+P++++XyrzxxhsoLy/Hiy++iNLSUgwcOBCpqal1Fkw0d7r8oNMVS/61QGTq2Ptq3rT5TK8dppy//TSqhdDbMKWhzmMMCiEEEzXuoVar4ejoCJVKhQ4dOhi7OvUy1Q+6AlUFIlek1/m1cHDeUIt4wxCZKr73zFtLP9MLVBUGGaY01HlaS5vvb6OvBE3aM+WkNCZPEhkHp66br9Z8pns52iO8m0udz1hdT1tv6DwtYSpT6o0+BEbaM/VhJiZPEhmeJedqWDpdf6ab6ggBYFp1Yw+QGTKH1ZZ1+WuBiJrG3lfzpcvPdFMeITC1urEHyAxZclIaEbUce1/Nky4/0015hMDU6sYAyEzxg46I6sOp6+ZJV5/ppjwUamp14xCYGWgoYYzDTGRKTCWxkchc6eIz3ZSHQk2tbpwGXw9TmgZvSgljRA3h3ymRaTHlaev6rJs2398MgOphKgEQ1/Ugc8C/U9NiigukEhmKNt/fzAEyYaaWMEb1k/sXDv9OTQd74oiajwGQCTO1hDGqi184d/9OFQD+HAMpFODfqYHxPnxE2mEStAkztYQx0mRqa1qYFA6sGxxXgibSDnuATBynu5suDv3clVtSXifeEYDsroOxsceYSDvsATIDnO5umkxpRW5jTkE3pesgZ+wxJtIOe4CIWshUVuQ2dh6SqVwHYo8xkTY4Db4epjINnsyDMdfbMKUp6Ka87ggRyQOnwRMZkDFvPWBKeUi8BQMRmRPmAFGr8PYHxsX8GyKilmEARC2WciwfkSvSMX7dEUSuSEfKsXxjV0l2mPhKRNQyzAGqB3OAmmZKuSfE/BsiIoA5QGQAppR7Qsy/IbJkcr/djr4wAKIW4aJrRET6Z+xlLlrD1AM35gBRizD3hIhIv8z5djvmkCPKHiBqMS66RkSkP+aaamAuN+ZlAEStwtwTIiL9MNdUA3MJ3DgERkRE9eI6X8ZlrqkG5rI+GXuAiIhkrr5kVXNOvrUk5phqYC73B+Q6QPXgOkBEJBf1BTqDerhxnS9qNWOsT6bN9zeHwIiIZKqhZNXM3683mMNB1FxejvYI7+ZiskEzAyAiIplqKFkV/9cb9GemmMNB1BoMgIiIZKqhZNVgXyezTL4l0gaToKlVTH2lTyJqWGPJquaYfEukDQZA1GKGnCXCQItIPxoLdLjOF1kyBkDUIoZc6ZPTcYn0i4EOyZFJ5AAlJSXB19cXdnZ2CAsLw9GjRxssu27dOjz00ENwcnKCk5MToqKi6pSfNGkSFAqFxmP48OH6boasNLbSpy6Z871wiIjIdBk9AEpJSUFcXBwWLVqEEydOIDAwENHR0bh69Wq95ffv349x48bhhx9+QEZGBnx8fPDoo4/i8uXLGuWGDx+OgoIC6fHll18aojmyYaiVPg0VaBERkbwYPQBavXo1pk2bhsmTJ+P+++9HcnIy2rZtiw0bNtRb/osvvsD06dMRFBSEXr164ZNPPkFNTQ3S0tI0yimVSnh6ekoPJycnQzRHNgy1RLu5LKlORETmxag5QFVVVcjMzER8fLy0zcrKClFRUcjIyGjWMW7evInbt2/D2dlZY/v+/fvh7u4OJycnDBs2DMuWLYOLi0u9x6isrERlZaX0XK1Wt6A1zWNJybyGmCViLkuqExGReTFqAFRSUoLq6mp4eHhobPfw8MC5c+eadYw333wT3t7eiIqKkrYNHz4cTz31FPz8/JCTk4P58+cjJiYGGRkZsLa2rnOMhIQELFmypHWNaQZLTeYV0O/dVDgdl8yFJf3AsUT896E/M+tZYCtWrMDWrVuxf/9+2NnZSdvHjh0r/X9AQAD69euHbt26Yf/+/Xj44YfrHCc+Ph5xcXHSc7VaDR8fH53W1ZCzpgzFkAEdZ6mQqbPUHziWgv8+dC+j5gC5urrC2toaRUVFGtuLiorg6enZ6Gvfe+89rFixAnv37kW/fv0aLdu1a1e4uroiOzu73v1KpRIdOnTQeOiapSXzcnYW0f/w/WDa+O9D9TFqAGRra4vg4GCNBObahObw8PAGX/fOO+9g6dKlSE1NRUhISJPnuXTpEq5duwYvLy+d1LslLC2Z19ICOqLW4PvhfwpUFTicU2JSwQX/fag+Rp8FFhcXh3Xr1mHz5s04e/YsXn75ZZSXl2Py5MkAgIkTJ2okSa9cuRILFizAhg0b4Ovri8LCQhQWFqKsrAwAUFZWhtdffx0//fQT8vLykJaWhlGjRsHf3x/R0dFGaSNguFlThtJUQGeKH4JE+mJpP3BaKuVYPiJXpGP8uiOIXJGOlGP5xq4SAP77UP2MngM0ZswYFBcXY+HChSgsLERQUBBSU1OlxOj8/HxYWf0vTlu7di2qqqrwl7/8ReM4ixYtwuLFi2FtbY1Tp05h8+bNKC0thbe3Nx599FEsXboUSqXSoG27lyUl8zY2O4tj7SQ3nK1o2nmOXo72eLJ/J3x94n/rxY3u7230epFxKYQQ+p3CY4bUajUcHR2hUqn0kg9kSQpUFRoBXYGqApEr0jW6m60VChycN5QfNmTx7n0/yMnhnBKMX3ekzvYvpw1AeLf6lyAxlOZ8LnGGmGXQ5vvb6D1AZN7unZ3V2Fg7P1TI0sl5tmLtMNO9QYYpDDM19bnEXmt5MnoOEFkWOY61M9+JyLTzHBv7XOIMMfliDxDplNxyIfjLkeh/TDXPsbHPpcM5Jey1likGQGbA3MamTfVDUNdMOemT9Mfc3o+GZqrDgA19Lpny0B3pFwMgE2euPQym+iGoS8x3kh9zfT/SXfV9Lsmt15r+hwGQCWMPg+Fp8+uevxzlhe/H5jHHHjK59FqTJgZAJow9DIbV1K/7ez/Y+ctRXvh+bJo595DJodeaNDEAMmHsYTCcpn7dN/TBzl+O8sH3Y+PYQ0bmhtPgTZgpTyu1NI39um9qmqyXoz3Cu7nw38XC8f3YON5vi8wNe4BMHHsYDKOxX/cc+qBafD82zBx6yMwxP4n0hwGQiWjsjcmxaf1rKp/H1D/YyXD4fqyfqefEmXN+EukH7wVWD0PfC4xvTNPR0L2cUo7l1/lg578RUV2meD+0AlUFIhLS8ecvO4UCODxvmMnUkXSD9wIzI0wcNC0N/brn0AdR85hiD1nm79dx7y99IYATv1/HiH6mVVcyHAZARtaa/BKOZxuWKX6wE1HTGhro4PiHvDEAMrKWJg5y2IyIqHlCfJ2hADSHwAAE+zoZqUZkCjgN3shaMrWWdy8mU1SgqsDhnBL+HZLJ8XK0x4qnA6QvPCsAK54OYI+uzLEHyARom1/CadmmRddDkeY4tMkeSTJ1zOOjezEAMhHa5JeYw3obcqHrL35zDCSYyE/mgnl89GccAjNDXJFWf7QZxtH1UKS5Dm1yBWBqLg6TkilhD5CZYneu7mnb+6LroUhzHdpkjyQ1hzn2bpJlYw+QGeM9qHSnJb0vtV/8f9aaL35dH89Q2CMpT8bsLSXSBfYAEaFlvS+6Xvrf1G8l0Bj2SMqLsXtLiXSBARARWj6M09QXv7Yzusw5kGCCqTy0JOnd0MOkDb3vzHGGJekPAyAitK73paEv/pbmPOgykOAHPumaKfSWNqah9x1zkOhevBlqPQx9M1TSj5Z8+evqRo4FqgpErkiv84v34LyhBgtE+IFP+tCav2193yi1obptnx6OJz88bNT3IxmGNt/fTIImi5RyLB+RK9Ixft0RRK5IR8qx/Ga9TleJ5caeGs6kU9KX1iS963viRkPvu2N517lUA9XBITCyOM3JUdD30JCxp4Yz6ZT0yVRz1Rp63z3o68SlGqgO9gCRwel7MbSmel9a2jukDWNPDTfXKfVkPkxxGY6G3neBPk5cqoHqYA5QPZgDpD+GyEtpLEcBgEFzc/Sd89CYlGP5dZJOmQNEcvDzxes4lncdD/o6IdDnf3d8N+b7kQxDm+9vDoGRwRjqnlGNzTg5nFNi0KEhY04NN9VhCiJ9auxHFpdqoD9jAEQGY8i8lIa+/I2dm2No/MAnOeGNeUkbzAEigzF0Xkp9OQrGzs0hMifmdvNSY8++JPNiEgFQUlISfH19YWdnh7CwMBw9erTR8tu2bUOvXr1gZ2eHgIAA7NmzR2O/EAILFy6El5cX7O3tERUVhQsXLuizCdQMphJ8jHmwMw7OG4ovpw3AwXlDmRejI+b2ZdkUS2uPtgwxWaA16vv3YfI/acPoSdApKSmYOHEikpOTERYWhsTERGzbtg3nz5+Hu7t7nfKHDx/GoEGDkJCQgMcffxxbtmzBypUrceLECfTt2xcAsHLlSiQkJGDz5s3w8/PDggUL8Msvv+DXX3+FnZ1dk3ViErR+GSoRkasgG46lLbpoae3Rliks5NmYxv59mPwvb9p8fxs9AAoLC8ODDz6If/7znwCAmpoa+Pj44JVXXsG8efPqlB8zZgzKy8uxe/duaduAAQMQFBSE5ORkCCHg7e2NOXPmYO7cuQAAlUoFDw8PbNq0CWPHjm2yTgyAzJ/cv8AMydS/LLVlae1picM5JRi/7kid7V9OG4Dwbi5GqNH/NOffh7O95MtsVoKuqqpCZmYmoqKipG1WVlaIiopCRkZGva/JyMjQKA8A0dHRUvnc3FwUFhZqlHF0dERYWFiDx6ysrIRardZ4kPniKsiGZWl5F5bWnpYw5aGk5vz7mOIaRWR6jBoAlZSUoLq6Gh4eHhrbPTw8UFhYWO9rCgsLGy1f+19tjpmQkABHR0fp4ePj06L2kGngF5hhmfKXZUtYWntawlTy9erDfx/SFZNIgja2+Ph4qFQq6XHx4kVjV4lagR+QhmXKX5YtYWntaSlTnSzAfx/SFaOuA+Tq6gpra2sUFRVpbC8qKoKnp2e9r/H09Gy0fO1/i4qK4OXlpVEmKCio3mMqlUoolcqWNoNMTGMLIZJ+WNqii5bWnpYy1XWk+O9DumDUHiBbW1sEBwcjLS1N2lZTU4O0tDSEh4fX+5rw8HCN8gCwb98+qbyfnx88PT01yqjVahw5cqTBY5LlMdVfr5bM0vIuLK09lob/PtRaRl8JOi4uDrGxsQgJCUFoaCgSExNRXl6OyZMnAwAmTpyITp06ISEhAQDw2muvYfDgwVi1ahVGjBiBrVu34vjx4/j4448BAAqFArNmzcKyZcvQvXt3aRq8t7c3Ro8ebaxmkhGY6q9XIiIyPqMHQGPGjEFxcTEWLlyIwsJCBAUFITU1VUpizs/Ph5XV/zqqIiIisGXLFrz11luYP38+unfvjp07d0prAAHAG2+8gfLycrz44osoLS3FwIEDkZqa2qw1gIiIiMjyGX0dIFPEdYCIiIjMj9msA0RERERkDAyAiIiISHYYABEREZHsMAAiIiIi2WEARERERLLDAIiIiIhkhwEQERERyQ4DICIiIpIdBkBEREQkO0a/FYYpql0cW61WG7kmRERE1Fy139vNuckFA6B63LhxAwDg4+Nj5JoQERGRtm7cuAFHR8dGy/BeYPWoqanBlStX0L59eygUCp0eW61Ww8fHBxcvXpTlfcbYfnm3H+A1kHv7AV4Dtl9/7RdC4MaNG/D29ta4kXp92ANUDysrK9x33316PUeHDh1k+Ydfi+2Xd/sBXgO5tx/gNWD79dP+pnp+ajEJmoiIiGSHARARERHJDgMgA1MqlVi0aBGUSqWxq2IUbL+82w/wGsi9/QCvAdtvGu1nEjQRERHJDnuAiIiISHYYABEREZHsMAAiIiIi2WEARERERLLDAEjHkpKS4OvrCzs7O4SFheHo0aMNlj1z5gyefvpp+Pr6QqFQIDEx0XAV1SNtrsG6devw0EMPwcnJCU5OToiKimq0vDnQpv3bt29HSEgIOnbsCAcHBwQFBeGzzz4zYG31Q5tr8Gdbt26FQqHA6NGj9VtBPdOm/Zs2bYJCodB42NnZGbC2+qHt30BpaSlmzJgBLy8vKJVK9OjRA3v27DFQbXVPm/YPGTKkzt+AQqHAiBEjDFhj3dL23z8xMRE9e/aEvb09fHx8MHv2bNy6dUu/lRSkM1u3bhW2trZiw4YN4syZM2LatGmiY8eOoqioqN7yR48eFXPnzhVffvml8PT0FGvWrDFshfVA22swfvx4kZSUJE6ePCnOnj0rJk2aJBwdHcWlS5cMXHPd0Lb9P/zwg9i+fbv49ddfRXZ2tkhMTBTW1tYiNTXVwDXXHW2vQa3c3FzRqVMn8dBDD4lRo0YZprJ6oG37N27cKDp06CAKCgqkR2FhoYFrrVvaXoPKykoREhIiHnvsMXHw4EGRm5sr9u/fL7Kysgxcc93Qtv3Xrl3T+Pc/ffq0sLa2Fhs3bjRsxXVE2/Z/8cUXQqlUii+++ELk5uaK7777Tnh5eYnZs2frtZ4MgHQoNDRUzJgxQ3peXV0tvL29RUJCQpOv7dKli0UEQK25BkIIcefOHdG+fXuxefNmfVVRr1rbfiGE6N+/v3jrrbf0UT2DaMk1uHPnjoiIiBCffPKJiI2NNesASNv2b9y4UTg6Ohqodoah7TVYu3at6Nq1q6iqqjJUFfWqtZ8Da9asEe3btxdlZWX6qqJeadv+GTNmiGHDhmlsi4uLE5GRkXqtJ4fAdKSqqgqZmZmIioqStllZWSEqKgoZGRlGrJnh6OIa3Lx5E7dv34azs7O+qqk3rW2/EAJpaWk4f/48Bg0apM+q6k1Lr8Hbb78Nd3d3TJkyxRDV1JuWtr+srAxdunSBj48PRo0ahTNnzhiiunrRkmuwa9cuhIeHY8aMGfDw8EDfvn2xfPlyVFdXG6raOqOLz8H169dj7NixcHBw0Fc19aYl7Y+IiEBmZqY0TPbbb79hz549eOyxx/RaV94MVUdKSkpQXV0NDw8Pje0eHh44d+6ckWplWLq4Bm+++Sa8vb013jzmoqXtV6lU6NSpEyorK2FtbY0PP/wQjzzyiL6rqxctuQYHDx7E+vXrkZWVZYAa6ldL2t+zZ09s2LAB/fr1g0qlwnvvvYeIiAicOXNG7zdl1oeWXIPffvsN6enpeO6557Bnzx5kZ2dj+vTpuH37NhYtWmSIautMaz8Hjx49itOnT2P9+vX6qqJetaT948ePR0lJCQYOHAghBO7cuYOXXnoJ8+fP12tdGQCRyVixYgW2bt2K/fv3W0QSaHO1b98eWVlZKCsrQ1paGuLi4tC1a1cMGTLE2FXTuxs3bmDChAlYt24dXF1djV0dowgPD0d4eLj0PCIiAr1798ZHH32EpUuXGrFmhlNTUwN3d3d8/PHHsLa2RnBwMC5fvox3333X7AKg1lq/fj0CAgIQGhpq7KoYzP79+7F8+XJ8+OGHCAsLQ3Z2Nl577TUsXboUCxYs0Nt5GQDpiKurK6ytrVFUVKSxvaioCJ6enkaqlWG15hq89957WLFiBb7//nv069dPn9XUm5a238rKCv7+/gCAoKAgnD17FgkJCWYZAGl7DXJycpCXl4eRI0dK22pqagAANjY2OH/+PLp166bfSuuQLj4H2rRpg/79+yM7O1sfVdS7llwDLy8vtGnTBtbW1tK23r17o7CwEFVVVbC1tdVrnXWpNX8D5eXl2Lp1K95++219VlGvWtL+BQsWYMKECZg6dSoAICAgAOXl5XjxxRfxt7/9DVZW+snWYQ6Qjtja2iI4OBhpaWnStpqaGqSlpWn8urNkLb0G77zzDpYuXYrU1FSEhIQYoqp6oau/gZqaGlRWVuqjinqn7TXo1asXfvnlF2RlZUmPJ554AkOHDkVWVhZ8fHwMWf1W08XfQHV1NX755Rd4eXnpq5p61ZJrEBkZiezsbCn4BYD//ve/8PLyMqvgB2jd38C2bdtQWVmJ559/Xt/V1JuWtP/mzZt1gpzaYFjo83alek2xlpmtW7cKpVIpNm3aJH799Vfx4osvio4dO0pTWidMmCDmzZsnla+srBQnT54UJ0+eFF5eXmLu3Lni5MmT4sKFC8ZqQqtpew1WrFghbG1txVdffaUxDfTGjRvGakKraNv+5cuXi71794qcnBzx66+/ivfee0/Y2NiIdevWGasJrabtNbiXuc8C07b9S5YsEd99953IyckRmZmZYuzYscLOzk6cOXPGWE1oNW2vQX5+vmjfvr2YOXOmOH/+vNi9e7dwd3cXy5YtM1YTWqWl74GBAweKMWPGGLq6Oqdt+xctWiTat28vvvzyS/Hbb7+JvXv3im7duolnn31Wr/VkAKRj//jHP0Tnzp2Fra2tCA0NFT/99JO0b/DgwSI2NlZ6npubKwDUeQwePNjwFdchba5Bly5d6r0GixYtMnzFdUSb9v/tb38T/v7+ws7OTjg5OYnw8HCxdetWI9Rat7S5Bvcy9wBICO3aP2vWLKmsh4eHeOyxx8SJEyeMUGvd0vZv4PDhwyIsLEwolUrRtWtX8fe//13cuXPHwLXWHW3bf+7cOQFA7N2718A11Q9t2n/79m2xePFi0a1bN2FnZyd8fHzE9OnTxfXr1/VaR4UQ+uxfIiIiIjI9zAEiIiIi2WEARERERLLDAIiIiIhkhwEQERERyQ4DICIiIpIdBkBEREQkOwyAiIiISHYYABERGdGkSZMwevRoY1eDSHYYABFRvSZNmgSFQiE9XFxcMHz4cJw6dcrYVdOJP7et9jFw4EC9nS8vLw8KhQJZWVka299//31s2rRJb+clovoxACKiBg0fPhwFBQUoKChAWloabGxs8Pjjjxu7WjqzceNGqX0FBQXYtWtXveVu376ttzo4OjqiY8eOejs+EdWPARARNUipVMLT0xOenp4ICgrCvHnzcPHiRRQXF2PYsGGYOXOmRvni4mLY2tpKd4L29fXF0qVLMW7cODg4OKBTp05ISkrSeM3q1asREBAABwcH+Pj4YPr06SgrK5P2//777xg5ciScnJzg4OCAPn36YM+ePQCA69ev47nnnoObmxvs7e3RvXt3bNy4sdnt69ixo9Q+T09PODs7Sz01KSkpGDx4MOzs7PDFF1/g2rVrGDduHDp16oS2bdsiICAAX375pcbxampq8M4778Df3x9KpRKdO3fG3//+dwCAn58fAKB///5QKBQYMmQIgLpDYJWVlXj11Vfh7u4OOzs7DBw4EMeOHZP279+/HwqFAmlpaQgJCUHbtm0RERGB8+fPN7vdRMQAiIiaqaysDJ9//jn8/f3h4uKCqVOnYsuWLaisrJTKfP755+jUqROGDRsmbXv33XcRGBiIkydPYt68eXjttdewb98+ab+VlRU++OADnDlzBps3b0Z6ejreeOMNaf+MGTNQWVmJAwcO4JdffsHKlSvRrl07AMCCBQvw66+/4j//+Q/Onj2LtWvXwtXVVSftra3r2bNnER0djVu3biE4OBjffvstTp8+jRdffBETJkzA0aNHpdfEx8djxYoVUr22bNkCDw8PAJDKff/99ygoKMD27dvrPe8bb7yBr7/+Gps3b8aJEyfg7++P6Oho/PHHHxrl/va3v2HVqlU4fvw4bGxs8MILL+ik3USyoddbrRKR2YqNjRXW1tbCwcFBODg4CADCy8tLZGZmCiGEqKioEE5OTiIlJUV6Tb9+/cTixYul5126dBHDhw/XOO6YMWNETExMg+fdtm2bcHFxkZ4HBARoHPPPRo4cKSZPntyi9gEQdnZ2UvscHBzEjh07RG5urgAgEhMTmzzGiBEjxJw5c4QQQqjVaqFUKsW6devqLVt73JMnT2psj42NFaNGjRJCCFFWVibatGkjvvjiC2l/VVWV8Pb2Fu+8844QQogffvhBABDff/+9VObbb78VAERFRYU2l4BI1tgDREQNGjp0KLKyspCVlYWjR48iOjoaMTEx+P3332FnZ4cJEyZgw4YNAIATJ07g9OnTmDRpksYxwsPD6zw/e/as9Pz777/Hww8/jE6dOqF9+/aYMGECrl27hps3bwIAXn31VSxbtgyRkZFYtGiRRhL2yy+/jK1btyIoKAhvvPEGDh8+rFX71qxZI7UvKysLjzzyiLQvJCREo2x1dTWWLl2KgIAAODs7o127dvjuu++Qn58PADh79iwqKyvx8MMPa1WHP8vJycHt27cRGRkpbWvTpg1CQ0M1rhkA9OvXT/p/Ly8vAMDVq1dbfG4iuWEAREQNcnBwgL+/P/z9/fHggw/ik08+QXl5OdatWwcAmDp1Kvbt24dLly5h48aNGDZsGLp06dLs4+fl5eHxxx9Hv3798PXXXyMzM1PKEaqqqpLO8dtvv2HChAn45ZdfEBISgn/84x8AIAVjs2fPxpUrV/Dwww9j7ty5zT6/p6en1D5/f384ODhotP3P3n33Xbz//vt488038cMPPyArKwvR0dFSPe3t7Zt9Xl1o06aN9P8KhQLA3RwkImoeBkBE1GwKhQJWVlaoqKgAAAQEBCAkJATr1q3Dli1b6s1D+emnn+o87927NwAgMzMTNTU1WLVqFQYMGIAePXrgypUrdY7h4+ODl156Cdu3b8ecOXOkAAwA3NzcEBsbi88//xyJiYn4+OOPddlkyaFDhzBq1Cg8//zzCAwMRNeuXfHf//5X2t+9e3fY29tLCeD3srW1BXC3J6kh3bp1g62tLQ4dOiRtu337No4dO4b7779fRy0hIgCwMXYFiMh0VVZWorCwEMDdGVf//Oc/UVZWhpEjR0plpk6dipkzZ8LBwQFPPvlknWMcOnQI77zzDkaPHo19+/Zh27Zt+PbbbwEA/v7+uH37Nv7xj39g5MiROHToEJKTkzVeP2vWLMTExKBHjx64fv06fvjhBymAWrhwIYKDg9GnTx9UVlZi9+7d0j5d6969O7766iscPnwYTk5OWL16NYqKiqTAxM7ODm+++SbeeOMN2NraIjIyEsXFxThz5gymTJkCd3d32NvbIzU1Fffddx/s7Ozg6OiocQ4HBwe8/PLLeP311+Hs7IzOnTvjnXfewc2bNzFlyhS9tItIrtgDREQNSk1NhZeXF7y8vBAWFoZjx45h27Zt0hRuABg3bhxsbGwwbtw42NnZ1TnGnDlzcPz4cfTv3x/Lli3D6tWrER0dDQAIDAzE6tWrsXLlSvTt2xdffPEFEhISNF5fXV2NGTNmoHfv3hg+fDh69OiBDz/8EMDdXpX4+Hj069cPgwYNgrW1NbZu3aqXa/HWW2/hgQceQHR0NIYMGQJPT886KzgvWLAAc+bMwcKFC9G7d2+MGTNGysuxsbHBBx98gI8++gje3t4YNWpUvedZsWIFnn76aUyYMAEPPPAAsrOz8d1338HJyUkv7SKSK4UQQhi7EkRkvvLy8tCtWzccO3YMDzzwgMY+X19fzJo1C7NmzTJO5YiIGsAhMCJqkdu3b+PatWt46623MGDAgDrBDxGRKeMQGBG1yKFDh+Dl5YVjx47VydsxtuXLl6Ndu3b1PmJiYoxdPSIyARwCIyKL88cff9RZObmWvb09OnXqZOAaEZGpYQBEREREssMhMCIiIpIdBkBEREQkOwyAiIiISHYYABEREZHsMAAiIiIi2WEARERERLLDAIiIiIhkhwEQERERyc7/B8bU0O0L0FXBAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASkdJREFUeJzt3XlcVOX+B/DPgGyigMgqF8VdSxQCRcRciiItyuzeTMsttVtqi9RNMRVtEWxRWkiLCttUrqZdK69moLfrchNRSk0tFMIUECpnZBGQeX5/+GNyZJEZZuacOefzfr3m9XLOnHPmew7jnO88z/N9jkYIIUBERESkEA5SB0BERERkSUxuiIiISFGY3BAREZGiMLkhIiIiRWFyQ0RERIrC5IaIiIgUhckNERERKQqTGyIiIlIUJjdERESkKExuiEgSS5cuhUajadW6Go0GS5cutWo8o0aNwqhRo2S7PyJqPSY3RCq3du1aaDQaw6Ndu3YICgrCtGnTcPbsWanDk52QkBCj8+Xn54ebb74ZW7Zsscj+q6qqsHTpUuzevdsi+yNSIyY3RAQAeP755/Hxxx9jzZo1GDNmDD755BOMHDkSly5dssr7LVq0CNXV1VbZt7WFhYXh448/xscff4xnnnkG586dw/jx47FmzZo277uqqgrLli1jckPUBu2kDoCI5GHMmDGIjIwEAMycORM+Pj5YsWIFtm7divvvv9/i79euXTu0a2efX0FBQUF46KGHDM+nTJmCXr16YdWqVXj00UcljIyIALbcEFEzbr75ZgDAqVOnjJafOHECf/3rX+Ht7Q1XV1dERkZi69atRuvU1dVh2bJl6N27N1xdXdG5c2cMHz4cO3fuNKzT1JibmpoazJs3D76+vujYsSPuvvtu/Prrr41imzZtGkJCQhotb2qfGRkZuOWWW+Dn5wcXFxfccMMNWL16tUnn4noCAgLQv39/FBQUtLje+fPnMWPGDPj7+8PV1RWDBg3Chx9+aHi9sLAQvr6+AIBly5YZur6sPd6ISGns82cTEVldYWEhAKBTp06GZceOHUNMTAyCgoKwYMECuLu745///CfGjRuHzz77DPfeey+AK0lGcnIyZs6ciSFDhkCn0+HgwYM4dOgQbrvttmbfc+bMmfjkk08wadIkDBs2DNnZ2bjzzjvbdByrV6/GjTfeiLvvvhvt2rXDF198gdmzZ0Ov12POnDlt2neDuro6nDlzBp07d252nerqaowaNQr5+fmYO3cuunfvjo0bN2LatGm4cOECnnzySfj6+mL16tV47LHHcO+992L8+PEAgIEDB1okTiLVEESkahkZGQKA+Oabb0RZWZk4c+aM2LRpk/D19RUuLi7izJkzhnVvvfVWERoaKi5dumRYptfrxbBhw0Tv3r0NywYNGiTuvPPOFt83KSlJXP0VlJeXJwCI2bNnG603adIkAUAkJSUZlk2dOlV069btuvsUQoiqqqpG68XFxYkePXoYLRs5cqQYOXJkizELIUS3bt3E7bffLsrKykRZWZn4/vvvxQMPPCAAiMcff7zZ/aWmpgoA4pNPPjEsq62tFdHR0aJDhw5Cp9MJIYQoKytrdLxEZBp2SxERACA2Nha+vr4IDg7GX//6V7i7u2Pr1q34y1/+AgD4/fffkZ2djfvvvx8XL15EeXk5ysvL8dtvvyEuLg4///yzobrKy8sLx44dw88//9zq99+2bRsA4IknnjBa/tRTT7XpuNzc3Az/1mq1KC8vx8iRI3H69GlotVqz9vn111/D19cXvr6+GDRoEDZu3IjJkydjxYoVzW6zbds2BAQEYOLEiYZlTk5OeOKJJ1BRUYH//Oc/ZsVCRI2pOrn59ttvER8fjy5dukCj0eDzzz+3+nuePXsWDz30EDp37gw3NzeEhobi4MGDVn9foutJS0vDzp07sWnTJowdOxbl5eVwcXExvJ6fnw8hBBYvXmy4sDc8kpKSAFwZUwJcqby6cOEC+vTpg9DQUPzjH//ADz/80OL7//LLL3BwcEDPnj2Nlvft27dNx7V3717ExsbC3d0dXl5e8PX1xcKFCwHA7OQmKioKO3fuxDfffIN9+/ahvLwcH330kVEida1ffvkFvXv3hoOD8ddu//79Da8TkWWoesxNZWUlBg0ahIcfftjQt21Nf/zxB2JiYjB69Gj8+9//hq+vL37++WejMQ1EUhkyZIihWmrcuHEYPnw4Jk2ahJMnT6JDhw7Q6/UAgGeeeQZxcXFN7qNXr14AgBEjRuDUqVP417/+ha+//hrvvfceVq1ahTVr1mDmzJltjrW5yf/q6+uNnp86dQq33nor+vXrh5UrVyI4OBjOzs7Ytm0bVq1aZTgmU/n4+CA2NtasbYnI+lSd3IwZMwZjxoxp9vWamho899xzWL9+PS5cuIABAwZgxYoVZs86umLFCgQHByMjI8OwrHv37mbti8iaHB0dkZycjNGjR+Ott97CggUL0KNHDwBXulJac2H39vbG9OnTMX36dFRUVGDEiBFYunRps8lNt27doNfrcerUKaPWmpMnTzZat1OnTrhw4UKj5de2fnzxxReoqanB1q1b0bVrV8PyXbt2XTd+S+vWrRt++OEH6PV6o9abEydOGF4Hmk/ciKj1VN0tdT1z587F/v37sWHDBvzwww/429/+hjvuuMOkcQRX27p1KyIjI/G3v/0Nfn5+CA8PR3p6uoWjJrKMUaNGYciQIUhNTcWlS5fg5+eHUaNG4Z133kFxcXGj9cvKygz//u2334xe69ChA3r16oWamppm36/hh8Ybb7xhtDw1NbXRuj179oRWqzXq6iouLm40S7CjoyMAQAhhWKbVao1+YNjK2LFjUVJSgszMTMOyy5cv480330SHDh0wcuRIAED79u0BoMnkjYhaR9UtNy0pKipCRkYGioqK0KVLFwBXmuO3b9+OjIwMLF++3OR9nj59GqtXr0ZCQgIWLlyInJwcPPHEE3B2dsbUqVMtfQhEbfaPf/wDf/vb37B27Vo8+uijSEtLw/DhwxEaGopZs2ahR48eKC0txf79+/Hrr7/i+++/BwDccMMNGDVqFCIiIuDt7Y2DBw9i06ZNmDt3brPvFRYWhokTJ+Ltt9+GVqvFsGHDkJWVhfz8/EbrPvDAA5g/fz7uvfdePPHEE6iqqsLq1avRp08fHDp0yLDe7bffDmdnZ8THx+Pvf/87KioqkJ6eDj8/vyYTNGt65JFH8M4772DatGnIzc1FSEgINm3ahL179yI1NRUdO3YEcGUA9A033IDMzEz06dMH3t7eGDBgAAYMGGDTeInsmtTlWnIBQGzZssXw/MsvvxQAhLu7u9GjXbt24v777xdCCHH8+HEBoMXH/PnzDft0cnIS0dHRRu/7+OOPi6FDh9rkGIma0lAKnpOT0+i1+vp60bNnT9GzZ09x+fJlIYQQp06dElOmTBEBAQHCyclJBAUFibvuukts2rTJsN2LL74ohgwZIry8vISbm5vo16+feOmll0Rtba1hnabKtqurq8UTTzwhOnfuLNzd3UV8fLw4c+ZMk6XRX3/9tRgwYIBwdnYWffv2FZ988kmT+9y6dasYOHCgcHV1FSEhIWLFihXigw8+EABEQUGBYT1TSsGvV+be3P5KS0vF9OnThY+Pj3B2dhahoaEiIyOj0bb79u0TERERwtnZmWXhRGbQCHFVe62KaTQabNmyBePGjQMAZGZm4sEHH8SxY8cMTdsNOnTogICAANTW1uL06dMt7rdz586GGUe7deuG2267De+9957h9dWrV+PFF1/kDQqJiIgshN1SzQgPD0d9fT3Onz9vmIb+Ws7OzujXr1+r9xkTE9NocORPP/1kGEhIREREbafq5KaiosKoP7+goAB5eXnw9vZGnz598OCDD2LKlCl47bXXEB4ejrKyMmRlZWHgwIFmTQk/b948DBs2DMuXL8f999+PAwcO4N1338W7775rycMiIiJSNVV3S+3evRujR49utHzq1KlYu3Yt6urq8OKLL+Kjjz7C2bNn4ePjg6FDh2LZsmUIDQ016z2//PJLJCYm4ueff0b37t2RkJCAWbNmtfVQiIiI6P+pOrkhIiIi5eE8N0RERKQoTG6IiIhIUVQ3oFiv1+PcuXPo2LEjpzknIiKyE0IIXLx4EV26dGl0A9prqS65OXfuHIKDg6UOg4iIiMxw5swZ/OUvf2lxHdUlNw1TnJ85cwYeHh4SR0NEREStodPpEBwcbLiOt0R1yU1DV5SHhweTGyIiIjvTmiElHFBMREREisLkhoiIiBSFyQ0REREpiurG3LRWfX096urqpA5DVZycnBrdgZ2IiMhUTG6uIYRASUkJLly4IHUoquTl5YWAgADOQURERGZjcnONhsTGz88P7du350XWRoQQqKqqwvnz5wEAgYGBEkdERET2isnNVerr6w2JTefOnaUOR3Xc3NwAAOfPn4efnx+7qIiIyCwcUHyVhjE27du3lzgS9Wo49xzvRERE5mJy0wR2RUmH556IiNqKyQ0REREpCpMbIiIiUhQmNwpSUlKCxx9/HD169ICLiwuCg4MRHx+PrKwso/WEEBgzZgw0Gg0+//xzw/LCwkJoNBrk5eU12veoUaPw1FNPGZ5v3rwZt99+Ozp37tzsNpcuXcKcOXPQuXNndOjQAffddx9KS0stdLREROpUrK3GvlPlKNZWSx2KbDG5UYjCwkJEREQgOzsbr7zyCo4cOYLt27dj9OjRmDNnjtG6qampbR7bUllZieHDh2PFihXNrjNv3jx88cUX2LhxI/7zn//g3LlzGD9+fJvel4hIzTJzihCTko1J6d8hJiUbmTlFUockSywFV4jZs2dDo9HgwIEDcHd3Nyy/8cYb8fDDDxue5+Xl4bXXXsPBgwfbNJfM5MmTAVxJqpqi1Wrx/vvvY926dbjlllsAABkZGejfvz/+97//YejQoWa/NxGRGhVrq5G4+Qj04spzvQAWbj6KEX18EejpJm1wMsOWGyuyVdPh77//ju3bt2POnDlGiU0DLy8vAEBVVRUmTZqEtLQ0BAQEWDWm3Nxc1NXVITY21rCsX79+6Nq1K/bv32/V9yYiUqKC8kpDYtOgXggUlldJE5CMSZrcfPvtt4iPj0eXLl0ajf9oyubNm3HbbbfB19cXHh4eiI6Oxo4dO2wTrIls2XSYn58PIQT69evX4nrz5s3DsGHDcM8997S43rBhw9ChQwejx3//+1+TYiopKYGzs7MhsWrg7++PkpISk/ZFRERAdx93OFwzosBRo0GID+dmu5akyU1lZSUGDRqEtLS0Vq3/7bff4rbbbsO2bduQm5uL0aNHIz4+HocPH7ZypKZprunQWi04QojrrrN161ZkZ2cjNTX1uutmZmYiLy/P6BEZGWmBSImIyFyBnm5IHh8Kx/8fM+mo0WD5+AHskmqCpGNuxowZgzFjxrR6/WsvzMuXL8e//vUvfPHFFwgPD7dwdOZrqenQGh/C3r17Q6PR4MSJE82uk52djVOnTjVqSbnvvvtw8803Y/fu3YZlwcHB6NWrl9F6DbdGaK2AgADU1tbiwoULRu9ZWlpq9S4xIiKlmjC4K0b08UVheRVCfNozsWmGXY+50ev1uHjxIry9vZtdp6amBjqdzuhhbbZuOvT29kZcXBzS0tJQWVnZ6PULFy5gwYIF+OGHH4xaYwBg1apVyMjIsHhMERERcHJyMipDP3nyJIqKihAdHW3x9yMiUotATzdE9+zMxKYFdl0t9eqrr6KiogL3339/s+skJydj2bJlNozqz6bDhZuPol4ImzQdpqWlISYmBkOGDMHzzz+PgQMH4vLly9i5cydWr16N48ePN9li0rVrV3Tv3t3k9/v9999RVFSEc+fOAbiSuABXWmwCAgLg6emJGTNmICEhAd7e3vDw8MDjjz+O6OhoVkoREZFV2W1ys27dOixbtgz/+te/4Ofn1+x6iYmJSEhIMDzX6XQIDg62eny2bjrs0aMHDh06hJdeeglPP/00iouL4evri4iICKxevdri77d161ZMnz7d8PyBBx4AACQlJWHp0qUArrQKOTg44L777kNNTQ3i4uLw9ttvWzwWIiKiq2lEa0aj2oBGo8GWLVswbty46667YcMGPPzww9i4cSPuvPNOk95Hp9PB09MTWq0WHh4eRq9dunQJBQUF6N69O1xdXU3aL1kG/wZERNSUlq7f17K7MTfr16/H9OnTsX79epMTGyIiIlI+SbulKioqkJ+fb3heUFCAvLw8eHt7o2vXrkhMTMTZs2fx0UcfAbjSFTV16lS8/vrriIqKMsyX4ubmBk9PT0mOgYiIiORF0pabgwcPIjw83FDGnZCQgPDwcCxZsgQAUFxcjKKiPye/e/fdd3H58mXMmTMHgYGBhseTTz4pSfxEREQkP5K23IwaNarFCejWrl1r9PzquViIiIiImmJ3Y25sQSZjrFWJ556IiNqKyc1VnJycAFy5wSRJo+HcN/wtiIiITGW389xYg6OjI7y8vHD+/HkAQPv27aHRaK6zFVmCEAJVVVU4f/48vLy84OjoKHVIRERkp5jcXKNhFt+GBIdsy8vLi/eeIiKyY8XaahSUV6K7j7tkt4hgcnMNjUaDwMBA+Pn5oa6uTupwVMXJyYktNkREdiwzpwiJm49ALwAHDZA8PhQTBne1eRxMbprh6OjICy0REVErFWurDYkNAOgFsHDzUYzo42vzFhwOKJaxYm019p0qR7G2WupQiGyOn38i+1JQXmlIbBrUC4HCctsX6bDlRqbk0rRHJAV+/onsT3cfdzhoYJTgOGo0CPFpb/NY2HIjQ8017fEXLKkBP/9E9inQ0w3J40Ph+P9Vxo4aDZaPHyDJoGK23MhQS017Uo08J7IVfv6J7NeEwV0xoo8vCsurEOLTntVS9Cc5Ne0R2Ro//0T2LdDTTfIfIuyWsgFTB0bKqWmPyNb4+SeittIIld3MR6fTwdPTE1qtFh4eHlZ/v7YMjCzWVkvetEckFX7+iehqply/2S1lRW2t+ZdD0x6RVPj5JyJzsVvKiuRU809ERKQWTG6sqGFg5NU4MJKIiMi6mNxYEQdGEhER2R7H3FiZXGr+iYiI1ILJjQ1wYCQREZHtsFuKiIiIFIXJDREREVmMqRPXWgO7pYiIiMgi2jJxrSWx5YaIiIjarLmJa6VowWFyQ0RERG0mp4lrmdwQERFRm8lp4lomN0RERNRmcpq4lgOKiYiIyCLkMnEtkxsiIhsp1lajoLwS3X3cObEnKZYcJq5lckNEZANyKZElUgOOuSEisjI5lcgSqQGTGyIiK5NTiSyRGjC5ISKyMjmVyBKpAZMbIiIrk1OJLJEacECxirBSg0g6cimRJVIDJjcqwUoNIunJoUSWSA3YLaUCrNQgIiI1YXKjAqzUICIiNWFyowKs1CAiIjVhcqMCrNQgIiI14YBilWClBhERqQWTGxVhpQYREakBu6WIiIhIUZjcEBERkaIwubGgYm019p0q5/wxREREEpI0ufn2228RHx+PLl26QKPR4PPPP7/uNrt378ZNN90EFxcX9OrVC2vXrrV6nK2RmVOEmJRsTEr/DjEp2cjMKZI6JCIiIlWSNLmprKzEoEGDkJaW1qr1CwoKcOedd2L06NHIy8vDU089hZkzZ2LHjh1WjrRlnAGYiIhIPiStlhozZgzGjBnT6vXXrFmD7t2747XXXgMA9O/fH3v27MGqVasQFxdnrTCvq6UZgFmdREREZFt2NeZm//79iI2NNVoWFxeH/fv3N7tNTU0NdDqd0cPSOAMwERGRfNhVclNSUgJ/f3+jZf7+/tDpdKiubroLKDk5GZ6enoZHcHCwxePiDMBERETyofhJ/BITE5GQkGB4rtPprJLgcAZgIiIiebCr5CYgIAClpaVGy0pLS+Hh4QE3t6aTCRcXF7i4uNgiPM4ATEREJAN21S0VHR2NrKwso2U7d+5EdHS0RBERkRQ4pxQRtUTSlpuKigrk5+cbnhcUFCAvLw/e3t7o2rUrEhMTcfbsWXz00UcAgEcffRRvvfUWnn32WTz88MPIzs7GP//5T3z11VdSHQIR2VhmTpFh6gUHDZA8PhQTBneVOiwikhFJW24OHjyI8PBwhIeHAwASEhIQHh6OJUuWAACKi4tRVPTnZHjdu3fHV199hZ07d2LQoEF47bXX8N5770laBk5EtsM5pYioNSRtuRk1ahSEEM2+3tTsw6NGjcLhw4etGBURyRXnlCKi1rCrMTdEpG6cU4qIWoPJDRHZDc4pRUStYVel4GpTrK1GQXkluvu488ub6P9xTikiuh4mNzLFihCi5nFOKSJqCbulZIgVIUREROZjciNDLVWEEBERUcuY3MgQK0KIiIjMx+RGhlgRQkREZD4OKJYpVoQQERGZh8mNjLEihEi+OFUDkXwxuSEiMhGnaiCSN465ISIyAadqIJI/JjdERCbgVA1E8sfkhojIBJyqgUj+mNwQEZmAUzUQyR8HFBMRmYhTNRDJG5MbIiIzcKoGIvlitxQREREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREisLkhogaKdZWY9+pchRrq6UOhYjIZO2kDoCI5CUzpwiJm49ALwAHDZA8PhQTBneVOiwiolZjyw0RGRRrqw2JDQDoBbBw81G24BCRXWFyQ0QGBeWVhsSmQb0QKCyvkiYgIiIzMLkhIoPuPu5w0Bgvc9RoEOLTXpqAiIjMwORGRThIlK4n0NMNyeND4ai5kuE4ajRYPn4AAj3dJI6MiKj1OKBYJThIlFprwuCuGNHHF4XlVQjxac/EhojsDltuVICDRMlUgZ5uiO7ZmYkNEdklJjcqwEGiRESkJkxuVICDRImISE2Y3KgAB4kSEZGacECxSnCQKBERqQWTGxUJ9HRjUkNERIonebdUWloaQkJC4OrqiqioKBw4cKDF9VNTU9G3b1+4ubkhODgY8+bNw6VLl2wULREREcmdpMlNZmYmEhISkJSUhEOHDmHQoEGIi4vD+fPnm1x/3bp1WLBgAZKSknD8+HG8//77yMzMxMKFC20cOREREcmVpMnNypUrMWvWLEyfPh033HAD1qxZg/bt2+ODDz5ocv19+/YhJiYGkyZNQkhICG6//XZMnDjxuq09REREZBp7ntVesuSmtrYWubm5iI2N/TMYBwfExsZi//79TW4zbNgw5ObmGpKZ06dPY9u2bRg7dmyz71NTUwOdTmf0ICKSG3u+kJDy/n6ZOUWIScnGpPTvEJOSjcycIqlDMolkA4rLy8tRX18Pf39/o+X+/v44ceJEk9tMmjQJ5eXlGD58OIQQuHz5Mh599NEWu6WSk5OxbNkyi8ZORGRJvD2KfVPa36+5We1H9PG1m6IUyQcUm2L37t1Yvnw53n77bRw6dAibN2/GV199hRdeeKHZbRITE6HVag2PM2fO2DBiIqKW8fYo9k2Jfz8lzGovWcuNj48PHB0dUVpaarS8tLQUAQEBTW6zePFiTJ48GTNnzgQAhIaGorKyEo888giee+45ODg0ztVcXFzg4uJi+QMgIrKAli4k9vIrWc2U+PdrmNX+6uOyt1ntJWu5cXZ2RkREBLKysgzL9Ho9srKyEB0d3eQ2VVVVjRIYR0dHAIAQoqlNiIhkjbdHsW9K/PspYVZ7SSfxS0hIwNSpUxEZGYkhQ4YgNTUVlZWVmD59OgBgypQpCAoKQnJyMgAgPj4eK1euRHh4OKKiopCfn4/FixcjPj7ekOQQEdmThgvJws1HUS+EXV5I1Eypfz97n9Ve0uRmwoQJKCsrw5IlS1BSUoKwsDBs377dMMi4qKjIqKVm0aJF0Gg0WLRoEc6ePQtfX1/Ex8fjpZdekuoQiIjazN4vJGqn1L+fPc9qrxEq68/R6XTw9PSEVquFh4eH1OFYXLG2GgXlleju4263H0oiIrJf1roOmXL95r2lFERp5YhERGRf5HIdsqtScGqeEssRiYjIfsjpOsTkRiGUMC8BERHZLzldh5jcKIQSyxGJiMh+yOk6xORGIZQwLwERWY7S7nVE8ien6xCrpRSmWFutuHJEIjKNXAZ1kjpZ6zrEaikVs+d5CYio7ZRw00Oyb3K4DrFbiohIQeQ0qJNIKkxuiIgURE6DOomkwuSGiEhB5DSok0gqHHNDRKQwSr3XEVFrMbmxAd7viYhsTQ6DOomkwuTGyliSSUREZFscc2NFcrrPBhERkVowubEilmQSERHZHpMbK2JJJhERke0xubEilmQSERHZHgcUWxlLMo2xcoyUgp9lIvlicmMDLMm8gpVjpBT8LBPJG7ulyCZYOUZKwc8ykfwxuSGbYOUYKQU/y0Tyx+SGbIKVY6QU/CwTyR+TG4kVa6ux71S54pu0WTlGSsHPMpH8aYQQ4vqrKYdOp4Onpye0Wi08PDwkjUWNgxKLtdWsHCNF4GeZyLZMuX6bVS114MAB7N+/HyUlJQCAgIAAREdHY8iQIebsTpWaG5Q4oo+vor8oWTlGSsHPMpF8mZTcnD9/Hvfddx/27t2Lrl27wt/fHwBQWlqKefPmISYmBp999hn8/PysEqyStDQokV+YRERE5jNpzM3s2bNRX1+P48ePo7CwEN999x2+++47FBYW4vjx49Dr9ZgzZ461YlUUDkokIiKyDpOSmx07diAtLQ19+/Zt9Frfvn3xxhtvYPv27RYLTsk4KJGIiMg6TOqWcnFxgU6na/b1ixcvwsXFpc1BqQVvzUBERGR5JrXcTJgwAVOnTsWWLVuMkhydToctW7Zg+vTpmDhxosWDVLJATzdE9+zMxIYM1DI9ABGRtZjUcrNy5Uro9Xo88MADuHz5MpydnQEAtbW1aNeuHWbMmIFXX33VKoESqYEapwcgIrI0s+a50el0yM3NNSoFj4iIkHzemNaQ0zw3RFcr1lYjJiXbqIrOUaPBngWj2bJHRAZqvSO91ee58fDwwOjRo80KjoiaxukBiOh62LrbOha9/UJpaSmef/55S+6SSDU4PQBJjeO95I13pG89iyY3JSUlWLZsmSV3SaQanB6ApJSZU4SYlGxMSv8OMSnZyMwpkjokugbvSN96JnVL/fDDDy2+fvLkyTYFQ6R2nB6ApKDW28HYm4bW3WvH5bF1tzGTkpuwsDBoNBo0NQa5YblGo2liSyJqLd6ziGyN473sQ0Pr7sLNR1EvBFt3W2BScuPt7Y2XX34Zt956a5OvHzt2DPHx8RYJjIiIbIMtAvaDrbutY1JyExERgXPnzqFbt25Nvn7hwoUmW3WIiEi+2CJgX9i6e30mJTePPvooKisrm329a9euyMjIaHNQRERkW2wRICUxaxI/e8ZJ/IiIiOyPKddvi5aCExEREUnNpG6phISEVq23cuVKs4IhIiIiaiuTkpvDhw8bPd+zZw8iIiLg5vZn3yxLwYmIiEhKJiU3u3btMnresWNHrFu3Dj169DA7gLS0NLzyyisoKSnBoEGD8Oabb2LIkCHNrn/hwgU899xz2Lx5M37//Xd069YNqampGDt2rNkxELWFWm9iR0QkV2bdONNSMjMzkZCQgDVr1iAqKgqpqamIi4vDyZMn4efn12j92tpa3HbbbfDz88OmTZsQFBSEX375BV5eXrYPngi8iR0RkRy1qVqqY8eO+P77781uuYmKisLgwYPx1ltvAQD0ej2Cg4Px+OOPY8GCBY3WX7NmDV555RWcOHECTk5OZr0nq6XIUoq11YhJyW408dmeBaPZgkNEZGF2US1VW1uL3NxcxMbG/hmMgwNiY2Oxf//+JrfZunUroqOjMWfOHPj7+2PAgAFYvnw56uvrm32fmpoa6HQ6oweRJfAmdkRE8tSmG2cKIXDixAlUVFQYLR84cOB191VeXo76+nr4+/sbLff398eJEyea3Ob06dPIzs7Ggw8+iG3btiE/Px+zZ89GXV0dkpKSmtwmOTmZdyonq+CU9URE8tTmG2feddddAIxvnNlSS0pb6PV6+Pn54d1334WjoyMiIiJw9uxZvPLKK80mN4mJiUYl7DqdDsHBwVaJj9SFU9YTEcmTSclNQUGBxd7Yx8cHjo6OKC0tNVpeWlqKgICAJrcJDAyEk5MTHB0dDcv69++PkpIS1NbWwtnZudE2Li4ucHFxsVjcRFfjlPVERPJjUnLT3A0zzeHs7IyIiAhkZWVh3LhxAK60zGRlZWHu3LlNbhMTE4N169ZBr9fDweHKcKGffvoJgYGBTSY2RLbAm9gREcmLRQYU33LLLfjll19M3i4hIQHp6en48MMPcfz4cTz22GOorKzE9OnTAQBTpkxBYmKiYf3HHnsMv//+O5588kn89NNP+Oqrr7B8+XLMmTPHEodBRERECmBSy83WrVubXP7tt9/iyy+/NIxlufvuu1u1vwkTJqCsrAxLlixBSUkJwsLCsH37dsMg46KiIkMLDQAEBwdjx44dmDdvHgYOHIigoCA8+eSTmD9/vimHQURERApm0jw3Dg4OjQYUN9qhFQcUWwLnuSEiIrI/VpvnJi4uDmPGjEFJSQn0er3h4ejoiKNHj0Kv18s6sSEiIiLlMym5+fe//41bb70VkZGR+PLLL60VExEREZHZTB5QPG/ePGzduhXz58/H3//+d1RVcTZWIiIikg+zqqXCwsJw8OBBaDQahIWFtTgGh4iIiMiWzL4ruJubG9asWYOtW7di165d8PHxsWRcRERERGYxqeUmOzsbN9xwg9HNJ++++26sWrUKLi4uuPHGG/Hf//7X4kESERERtZZJyU1qaipmzZrVZAmWp6cn/v73v2PlypUWC46IiIjIVCYlN99//z3uuOOOZl+//fbbkZub2+agiIiIqGnF2mrsO1WOYm211KHIlkljbkpLS+Hk5NT8ztq1Q1lZWZuDIiIiosYyc4qQuPkI9AJw0ADJ40MxYXBXqcOSHZNaboKCgnD06NFmX//hhx8QGBjY5qCIiIjIWLG22pDYAIBeAAs3H2ULThNMSm7Gjh2LxYsX49KlS41eq66uRlJSEu666y6LBUdERERXFJRXGhKbBvVCoLCc881dy6RuqUWLFmHz5s3o06cP5s6di759+wIATpw4gbS0NNTX1+O5556zSqBERERq1t3HHQ4aGCU4jhoNQnzaSxeUTJmU3Pj7+2Pfvn147LHHkJiYaJi8T6PRIC4uDmlpaYY7ehMREZHlBHq6IXl8KBZuPop6IeCo0WD5+AEI9HSTOjTZMemu4Ff7448/kJ+fDyEEevfujU6dOlk6NqvgXcGJSM2KtdUoKK9Edx93XhTtVLG2GoXlVQjxaa+qv6Ep12+zZyju1KkTBg8ebO7mRERkY6y0UYZATzdVJTXmMOveUkREZF9YaUNqwuSGiEgFWGlDasLkhohIBRoqba7GShtSKiY3REQq0FBp46i5kuGw0oaUzOwBxUREZF8mDO6KEX18Ta60YYUV2RsmN0REKmJqpQ0rrMgesVuKiIiaxAorsldMbojsRLG2GvtOlfPCQjbDCiuyV+yWIrID7BogKfBeRmSv2HJDJHPsGiCpsMKK7BVbbohkrqWuAV5kWo8VP+Yxt8KKSEpMbohkjl0DbcduvbbhvYzahom17bFbikjm2DXQNuzWIyll5hQhJiUbk9K/Q0xKNjJziqQOSRXYckNkB9g1YD5265FUmkusR/Tx5WfPypjcENkJdg2Yh916JBUm1tJhtxQRKRq79UgqvFmpdNhyQ0SKx249kkJDYr1w81HUC8HE2oaY3BCRKrBbzzpYCdQyJtbSYHJDRERmYYl96zCxtj2OuSEiIpOxxJ7kjMkNERGZjDfVJDljckNERCZjJRDJGZMbIiIyGUvsSc44oJiIiMzCSiBlUGLFG5MbIrI7SvwytlesBLJvSq14Y3JDRHZFqV/GRLam5HtfccwNEdkNlh8TWY6SK96Y3BCR3VDylzGRrSm54o3JDbWoWFuNfafK+cuYZEHJX8ZEtqbkijdZJDdpaWkICQmBq6sroqKicODAgVZtt2HDBmg0GowbN866AapUZk4RYlKyMSn9O8SkZCMzp0jqkEjllPxlTCSFCYO7Ys+C0Vg/ayj2LBitmPFrGiGEuP5q1pOZmYkpU6ZgzZo1iIqKQmpqKjZu3IiTJ0/Cz8+v2e0KCwsxfPhw9OjRA97e3vj8889b9X46nQ6enp7QarXw8PCw0FEoT7G2GjEp2UZdAI4aDfYsGM0LCUmuWFvN8mMrYBUayZkp12/JW25WrlyJWbNmYfr06bjhhhuwZs0atG/fHh988EGz29TX1+PBBx/EsmXL0KNHDxtGqx4c20ByFujphuienS12AWb3K1tqSVkkTW5qa2uRm5uL2NhYwzIHBwfExsZi//79zW73/PPPw8/PDzNmzLjue9TU1ECn0xk96Po4toHUghd1VqGR8kia3JSXl6O+vh7+/v5Gy/39/VFSUtLkNnv27MH777+P9PT0Vr1HcnIyPD09DY/g4OA2x60GHNtAasCL+hVsqSWlsatJ/C5evIjJkycjPT0dPj4+rdomMTERCQkJhuc6nY4JTitxanVSupYu6mr6vDe01F47xo4ttWSvJE1ufHx84OjoiNLSUqPlpaWlCAgIaLT+qVOnUFhYiPj4eMMyvV4PAGjXrh1OnjyJnj17Gm3j4uICFxcXK0SvDpxanZSMF/UrGlpqF24+inoh2FJLdk/S5MbZ2RkRERHIysoylHPr9XpkZWVh7ty5jdbv168fjhw5YrRs0aJFuHjxIl5//XW2yBCRSXhR/xNbaklJJO+WSkhIwNSpUxEZGYkhQ4YgNTUVlZWVmD59OgBgypQpCAoKQnJyMlxdXTFgwACj7b28vACg0XIiotbgRf1PbKklpZA8uZkwYQLKysqwZMkSlJSUICwsDNu3bzcMMi4qKoKDg+QV60SkYLyoEymL5JP42Ron8SMikhYnCyRzmHL9lrzlhoiI1CMzp8hQfu+gAZLHhypmyn+SD/b3EBGRTXBeIbIVJjdERGQTnCyQbIXJDRER2QRv60K2wuSGiIhsgrd1IVvhgGIiIrIZzitEtsDkhoiIbIrzCpG1sVuKiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiNqoWFuNfafKOduyTLBaioiIqA14vyz5YcsNERGRmXi/LHlickNERGQm3i9LnpjcEKkUxwgQtR3vlyVPHHNDpEIcI0BkGYGebrg3PAifHTprWDYuvAtnYJYYW26IJCBlqwnHCBBZTrG2GlsOnzVa9vnhc/z/JDG23BDZmNStJi2NEeCvTSLT8P+TPLHlhsiG5NBqwjECRJbD/0/yxOSGyIbkUFkR6OmG5PGhcNRc+UZ21GiwfPwA/sqUKQ78ljf+f5IndksR2VDDr7yrExwpfuVNGNwVI/r4orC8CiE+7flFLFNSd2FS6/D/k/yw5YbIhuT0Ky/Q0w3RPTvzi1im5NCFSa3H/0/ywpYbIhvjrzxqDQ5UJTIfkxsiCQR6ukl+gSrWVqOgvBLdfdwlj4Uak0sXJpE9YrcUkQpl5hQhJiUbk9K/Q0xKNjJziqQOia4hpy5MInujEUKI66+mHDqdDp6entBqtfDw8JA6HCKbK9ZWIyYlu1GLwJ4Fo3nhlKFibTW7MIlg2vWb3VJEKsOxHPZFDl2YRPaG3VJEKsNJx4hI6ZjcEKkMx3IQkdKxW4pIhViOTkRKxuSGyErkXmrNsRxEpFRMboisgNPmExFJh2NuiCyM0+aTmvDGniRHbLkhsjCWWpNasIWS5IotN0QWxlJrUgO2UJKcMbkhsjCWWpMatNRCSSQ1dksRXcVSFU4stSalc3d2bHJ5e2f+ZibpMbkh+n+WHj/AUmt1kvsUAJZSWVvf5PKqWr2NIyFqjMkNEZofPzCij6+iL1BkWXIaYGvtJKthbNm1N2Dl2DKSA7YfEks5wfED1HZyGmCbmVOEmJRsTEr/DjEp2cjMKbL4e3BsGckZW25UTk6/NKVk779C1dIVImdymQLAlq2QHFtGcsWWGxWT0y9Nqdnzr1Bb/Eqn65PLFAC2boUM9HRDdM/OdvF/hdSDLTcqJpdfmnJhj79COVZIPhoS5IWbj6JeCMkSZHtvhSSyBFm03KSlpSEkJASurq6IiorCgQMHml03PT0dN998Mzp16oROnTohNja2xfWpeXL5pSkn9vYrlGOF5GXC4K7Ys2A01s8aij0LRkvSxWvPrZBEliJ5cpOZmYmEhAQkJSXh0KFDGDRoEOLi4nD+/Pkm19+9ezcmTpyIXbt2Yf/+/QgODsbtt9+Os2fP2jhy+8cvQfvHBFV+5JAgyyHJIpKSRgghrr+a9URFRWHw4MF46623AAB6vR7BwcF4/PHHsWDBgutuX19fj06dOuGtt97ClClTrru+TqeDp6cntFotPDw82hy/EhRrq+2qK4aMZeYUNeoK4cWMiJTGlOu3pGNuamtrkZubi8TERMMyBwcHxMbGYv/+/a3aR1VVFerq6uDt7W2tMBWPk83ZN3scK0REZE2SJjfl5eWor6+Hv7+/0XJ/f3+cOHGiVfuYP38+unTpgtjY2CZfr6mpQU1NjeG5TqczP2AimWKCSkT0J8nH3LRFSkoKNmzYgC1btsDV1bXJdZKTk+Hp6Wl4BAcH2zhKIiJSOk6GKi+SJjc+Pj5wdHREaWmp0fLS0lIEBAS0uO2rr76KlJQUfP311xg4cGCz6yUmJkKr1RoeZ86csUjsZB5+ARCR0nCuKfmRNLlxdnZGREQEsrKyDMv0ej2ysrIQHR3d7HYvv/wyXnjhBWzfvh2RkZEtvoeLiws8PDyMHiQNfgEQkdJwMlR5krxbKiEhAenp6fjwww9x/PhxPPbYY6isrMT06dMBAFOmTDEacLxixQosXrwYH3zwAUJCQlBSUoKSkhJUVFRIdQiqZUorjL1/AbDFiYiawrmm5EnyGYonTJiAsrIyLFmyBCUlJQgLC8P27dsNg4yLiorg4PBnDrZ69WrU1tbir3/9q9F+kpKSsHTpUluGrmqm3pPKnmdD5v23yFJ4DzDl4YzQ8iT5PDe2xnlu2q5YW42YlOxG/5n3LBjd7Be2OdvIgb3GTfLDJFm5ONeUbdjNPDdkn8xphZHLfXdMZc8tTiQfvAeYsnGuKflhckMmM7cZ1h6/ANrS5MwuCGrAJFn5ONeUvEg+oJjsT1vuSSWH++6YwtxjZWUYXY33ACOyLY65IbOp6Z5Uphwrx+lQUzgug6htOOaGbEJNzbCmHCu7IKgp9tgtS2SvmNwQWRhLQ6k5avpBQCQljrkhsrC2jEkiIqK2Y8sNkRWosQuC1WFEJBdMboisRE1dEJygjojkhN1SRNQm9n7fMCJSHiY3pDq8CaZl8caBRCQ37JYiVble9wnHjZiO1WFEJDdsuSHVuF73CWcVNg+rw4hIbthyQ6pxve4T3tjQfGqsDiMi+WJyQ6rRUvcJZxVuOzVVhxGRvLFbilSjpe4T3tiQiEg52HJDqtJc90lD4nPtjQ3ZEkFEZH+Y3JDqNNd9wnEjRETKwOSGZM+W5dkcN0JEZP+Y3JCscVp/IiIyFQcUk2xxWn8iIjIHkxuSLU7rT0RE5mByQ7LF8mwiIjIHkxuSLU7rT0RE5uCAYpI1lmcTEZGpmNyQ7Mm9PJt3Elcn/t2J5IvJDVEbsFRdnfh3J5I3jrkhMhNL1dWJf3ci+WNyQ2QmlqqrE//uRPLH5IbITCxVVyf+3Ynkj8kNkZlYqq5O/LsTyZ9GCCGuv5py6HQ6eHp6QqvVwsPDQ+pwSAGKtdUsVVch/t2JbMuU6zerpYiuYk55r9xL1ck6+Hcnki8mN2Rx9jr/B8t7iYiUgckNWZS9JgjNlfeO6ONrVwkaERFxQDHhyoV936nyNs/TYc/zf7C8l4jkxFLfy2rFlhuVs2RLS0sJgtxbPxrKe6+On+W96mGvXamkTPbaAi4nbLlRMUu3tNjz/B8s71WvzJwixKRkY1L6d4hJyUZmTpHUIVkEf/nbJ3tuAZcTttyomKVbWhoShIWbj6JeCEkTBHN+ifMO5Oqj1LFW/OVvv+y5BVxOmNyomDW6YsxNECzZLdCWL3aW96qLEi8kSk3Y1IJd5JbBbikVs1ZXTKCnG6J7dm71fizZLcAmXTKFPXelNoeD49tOyi49dpFbBltuVE7qrpi2/sq8tsVHib/EyXrk1JVqKfzl3zZy6NKT+ntZCZjckKRdMW1JRpr6EhrRx5df7GQSpV1IlJiw2YqcuvTYRd42TG5IUub+ymzuS2jPgtH8YieTKe1CorSEzVbY8qscTG5IUoGebrg3PAifHTprWDYuvMt1v0ha+hLiFzuR8hI2W7BWlx7nUbI9WQwoTktLQ0hICFxdXREVFYUDBw60uP7GjRvRr18/uLq6IjQ0FNu2bbNRpGRpxdpqbDl81mjZ54fPXXcg3/UGgpo6qJmUgXO7UFtYYzCvUudRkjvJk5vMzEwkJCQgKSkJhw4dwqBBgxAXF4fz5883uf6+ffswceJEzJgxA4cPH8a4ceMwbtw4HD161MaRkyWYW9nBigK6Fi8iZAkTBnfFngWjsX7WUOxZMLpNg4lZvSkdjRBCXH8164mKisLgwYPx1ltvAQD0ej2Cg4Px+OOPY8GCBY3WnzBhAiorK/Hll18alg0dOhRhYWFYs2bNdd9Pp9PB09MTWq0WHh4eljsQMkuxthoxKdmNmoH3LBjd6mopdj9RWz9HRNaw71Q5JqV/12j5+llDEd2zswQR2TdTrt+SttzU1tYiNzcXsbGxhmUODg6IjY3F/v37m9xm//79RusDQFxcXLPr19TUQKfTGT1IPtraAsPuJwI4twvJkxLnUbIXkg4oLi8vR319Pfz9/Y2W+/v748SJE01uU1JS0uT6JSUlTa6fnJyMZcuWWSZgsgoOAKa24twuJEcsy5eO4qulEhMTkZCQYHiu0+kQHBwsYUTUFFZ2UFvwIkJyxR9v0pA0ufHx8YGjoyNKS0uNlpeWliIgIKDJbQICAkxa38XFBS4uLpYJmIhkixcRkiv+eLM9ScfcODs7IyIiAllZWYZler0eWVlZiI6ObnKb6Ohoo/UBYOfOnc2uT0TqwTFYRATIoFsqISEBU6dORWRkJIYMGYLU1FRUVlZi+vTpAIApU6YgKCgIycnJAIAnn3wSI0eOxGuvvYY777wTGzZswMGDB/Huu+9KeRhEREQkE5InNxMmTEBZWRmWLFmCkpIShIWFYfv27YZBw0VFRXBw+LOBadiwYVi3bh0WLVqEhQsXonfv3vj8888xYMAAqQ6BiIiIZETyeW5sjfPcEBER2R+7meeGiIiIyNKY3BAREZGiMLkhIiIiRWFyQ0RERIrC5IaIiIgUhckNERERKQqTGyIiIlIUJjdERESkKJLPUGxrDXMW6nQ6iSMhIiKi1mq4brdm7mHVJTcXL14EAAQHB0scCREREZnq4sWL8PT0bHEd1d1+Qa/X49y5c+jYsSM0Go3J2+t0OgQHB+PMmTOqvn0DzwPPAcBz0IDngecA4DloYK3zIITAxYsX0aVLF6N7TjZFdS03Dg4O+Mtf/tLm/Xh4eKj6w9uA54HnAOA5aMDzwHMA8Bw0sMZ5uF6LTQMOKCYiIiJFYXJDREREisLkxkQuLi5ISkqCi4uL1KFIiueB5wDgOWjA88BzAPAcNJDDeVDdgGIiIiJSNrbcEBERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyU0T0tLSEBISAldXV0RFReHAgQPNrnvs2DHcd999CAkJgUajQWpqqu0CtSJTzkF6ejpuvvlmdOrUCZ06dUJsbGyL69sTU87D5s2bERkZCS8vL7i7uyMsLAwff/yxDaO1DlPOwdU2bNgAjUaDcePGWTdAGzHlPKxduxYajcbo4erqasNorcPUz8KFCxcwZ84cBAYGwsXFBX369MG2bdtsFK11mHIORo0a1ehzoNFocOedd9owYusw9bOQmpqKvn37ws3NDcHBwZg3bx4uXbpkvQAFGdmwYYNwdnYWH3zwgTh27JiYNWuW8PLyEqWlpU2uf+DAAfHMM8+I9evXi4CAALFq1SrbBmwFpp6DSZMmibS0NHH48GFx/PhxMW3aNOHp6Sl+/fVXG0duWaaeh127donNmzeLH3/8UeTn54vU1FTh6Ogotm/fbuPILcfUc9CgoKBABAUFiZtvvlncc889tgnWikw9DxkZGcLDw0MUFxcbHiUlJTaO2rJMPQc1NTUiMjJSjB07VuzZs0cUFBSI3bt3i7y8PBtHbjmmnoPffvvN6DNw9OhR4ejoKDIyMmwbuIWZeh4+/fRT4eLiIj799FNRUFAgduzYIQIDA8W8efOsFiOTm2sMGTJEzJkzx/C8vr5edOnSRSQnJ193227duikiuWnLORBCiMuXL4uOHTuKDz/80Foh2kRbz4MQQoSHh4tFixZZIzybMOccXL58WQwbNky89957YurUqYpIbkw9DxkZGcLT09NG0dmGqedg9erVokePHqK2ttZWIVpdW78TVq1aJTp27CgqKiqsFaJNmHoe5syZI2655RajZQkJCSImJsZqMbJb6iq1tbXIzc1FbGysYZmDgwNiY2Oxf/9+CSOzHUucg6qqKtTV1cHb29taYVpdW8+DEAJZWVk4efIkRowYYc1Qrcbcc/D888/Dz88PM2bMsEWYVmfueaioqEC3bt0QHByMe+65B8eOHbNFuFZhzjnYunUroqOjMWfOHPj7+2PAgAFYvnw56uvrbRW2RVniu/H999/HAw88AHd3d2uFaXXmnIdhw4YhNzfX0HV1+vRpbNu2DWPHjrVanKq7cWZLysvLUV9fD39/f6Pl/v7+OHHihERR2ZYlzsH8+fPRpUsXow+/vTH3PGi1WgQFBaGmpgaOjo54++23cdttt1k7XKsw5xzs2bMH77//PvLy8mwQoW2Ycx769u2LDz74AAMHDoRWq8Wrr76KYcOG4dixYxa5ca+tmXMOTp8+jezsbDz44IPYtm0b8vPzMXv2bNTV1SEpKckWYVtUW78bDxw4gKNHj+L999+3Vog2Yc55mDRpEsrLyzF8+HAIIXD58mU8+uijWLhwodXiZHJDFpWSkoINGzZg9+7dihhAaaqOHTsiLy8PFRUVyMrKQkJCAnr06IFRo0ZJHZrVXbx4EZMnT0Z6ejp8fHykDkdS0dHRiI6ONjwfNmwY+vfvj3feeQcvvPCChJHZjl6vh5+fH9599104OjoiIiICZ8+exSuvvGKXyU1bvf/++wgNDcWQIUOkDsXmdu/ejeXLl+Ptt99GVFQU8vPz8eSTT+KFF17A4sWLrfKeTG6u4uPjA0dHR5SWlhotLy0tRUBAgERR2VZbzsGrr76KlJQUfPPNNxg4cKA1w7Q6c8+Dg4MDevXqBQAICwvD8ePHkZycbJfJjann4NSpUygsLER8fLxhmV6vBwC0a9cOJ0+eRM+ePa0btBVY4nvByckJ4eHhyM/Pt0aIVmfOOQgMDISTkxMcHR0Ny/r374+SkhLU1tbC2dnZqjFbWls+B5WVldiwYQOef/55a4ZoE+ach8WLF2Py5MmYOXMmACA0NBSVlZV45JFH8Nxzz8HBwfIjZDjm5irOzs6IiIhAVlaWYZler0dWVpbRrzAlM/ccvPzyy3jhhRewfft2REZG2iJUq7LUZ0Gv16OmpsYaIVqdqeegX79+OHLkCPLy8gyPu+++G6NHj0ZeXh6Cg4NtGb7FWOKzUF9fjyNHjiAwMNBaYVqVOecgJiYG+fn5hgQXAH766ScEBgbaXWIDtO1zsHHjRtTU1OChhx6ydphWZ855qKqqapTANCS9wlq3t7TaUGU7tWHDBuHi4iLWrl0rfvzxR/HII48ILy8vQxnn5MmTxYIFCwzr19TUiMOHD4vDhw+LwMBA8cwzz4jDhw+Ln3/+WapDaDNTz0FKSopwdnYWmzZtMip7vHjxolSHYBGmnofly5eLr7/+Wpw6dUr8+OOP4tVXXxXt2rUT6enpUh1Cm5l6Dq6llGopU8/DsmXLxI4dO8SpU6dEbm6ueOCBB4Srq6s4duyYVIfQZqaeg6KiItGxY0cxd+5ccfLkSfHll18KPz8/8eKLL0p1CG1m7v+H4cOHiwkTJtg6XKsx9TwkJSWJjh07ivXr14vTp0+Lr7/+WvTs2VPcf//9VouRyU0T3nzzTdG1a1fh7OwshgwZIv73v/8ZXhs5cqSYOnWq4XlBQYEA0OgxcuRI2wduQaacg27dujV5DpKSkmwfuIWZch6ee+450atXL+Hq6io6deokoqOjxYYNGySI2rJMOQfXUkpyI4Rp5+Gpp54yrOvv7y/Gjh0rDh06JEHUlmXqZ2Hfvn0iKipKuLi4iB49eoiXXnpJXL582cZRW5ap5+DEiRMCgPj6669tHKl1mXIe6urqxNKlS0XPnj2Fq6urCA4OFrNnzxZ//PGH1eLTCGGtNiEiIiIi2+OYGyIiIlIUJjdERESkKExuiIiISFGY3BAREZGiMLkhIiIiRWFyQ0RERIrC5IaIiIgUhckNEZEVTZs2DePGjZM6DCJVYXJDpFLTpk2DRqMxPDp37ow77rgDP/zwg9ShWcTVx9bwGD58uNXer7CwEBqNBnl5eUbLX3/9daxdu9Zq70tEjTG5IVKxO+64A8XFxSguLkZWVhbatWuHu+66S+qwLCYjI8NwfMXFxdi6dWuT69XV1VktBk9PT3h5eVlt/0TUGJMbIhVzcXFBQEAAAgICEBYWhgULFuDMmTMoKyvDLbfcgrlz5xqtX1ZWBmdnZ8MdgUNCQvDCCy9g4sSJcHd3R1BQENLS0oy2WblyJUJDQ+Hu7o7g4GDMnj0bFRUVhtd/+eUXxMfHo1OnTnB3d8eNN96Ibdu2AQD++OMPPPjgg/D19YWbmxt69+6NjIyMVh+fl5eX4fgCAgLg7e1taGHJzMzEyJEj4erqik8//RS//fYbJk6ciKCgILRv3x6hoaFYv3690f70ej1efvll9OrVCy4uLujatSteeuklAED37t0BAOHh4dBoNBg1ahSAxt1SNTU1eOKJJ+Dn5wdXV1cMHz4cOTk5htd3794NjUaDrKwsREZGon379hg2bBhOnjzZ6uMmUjsmN0QEAKioqMAnn3yCXr16oXPnzpg5cybWrVuHmpoawzqffPIJgoKCcMsttxiWvfLKKxg0aBAOHz6MBQsW4Mknn8TOnTsNrzs4OOCNN97AsWPH8OGHHyI7OxvPPvus4fU5c+agpqYG3377LY4cOYIVK1agQ4cOAIDFixfjxx9/xL///W8cP34cq1evho+Pj0WOtyHW48ePIy4uDpcuXUJERAS++uorHD16FI888ggmT56MAwcOGLZJTExESkqKIa5169bB398fAAzrffPNNyguLsbmzZubfN9nn30Wn332GT788EMcOnQIvXr1QlxcHH7//Xej9Z577jm89tprOHjwINq1a4eHH37YIsdNpApWuyUnEcna1KlThaOjo3B3dxfu7u4CgAgMDBS5ublCCCGqq6tFp06dRGZmpmGbgQMHiqVLlxqed+vWTdxxxx1G+50wYYIYM2ZMs++7ceNG0blzZ8Pz0NBQo31eLT4+XkyfPt2s4wMgXF1dDcfn7u4utmzZIgoKCgQAkZqaet193HnnneLpp58WQgih0+mEi4uLSE9Pb3Ldhv0ePnzYaPnVd0avqKgQTk5O4tNPPzW8XltbK7p06SJefvllIYQQu3btEgDEN998Y1jnq6++EgBEdXW1KaeASLXYckOkYqNHj0ZeXh7y8vJw4MABxMXFYcyYMfjll1/g6uqKyZMn44MPPgAAHDp0CEePHsW0adOM9hEdHd3o+fHjxw3Pv/nmG9x6660ICgpCx44dMXnyZPz222+oqqoCADzxxBN48cUXERMTg6SkJKMBzY899hg2bNiAsLAwPPvss9i3b59Jx7dq1SrD8eXl5eG2224zvBYZGWm0bn19PV544QWEhobC29sbHTp0wI4dO1BUVAQAOH78OGpqanDrrbeaFMPVTp06hbq6OsTExBiWOTk5YciQIUbnDAAGDhxo+HdgYCAA4Pz582a/N5GaMLkhUjF3d3f06tULvXr1wuDBg/Hee++hsrIS6enpAICZM2di586d+PXXX5GRkYFbbrkF3bp1a/X+CwsLcdddd2HgwIH47LPPkJubaxiTU1tba3iP06dPY/LkyThy5AgiIyPx5ptvAoAh0Zo3bx7OnTuHW2+9Fc8880yr3z8gIMBwfL169YK7u7vRsV/tlVdeweuvv4758+dj165dyMvLQ1xcnCFONze3Vr+vJTg5ORn+rdFoAFwZ80NE18fkhogMNBoNHBwcUF1dDQAIDQ1FZGQk0tPTsW7duibHffzvf/9r9Lx///4AgNzcXOj1erz22msYOnQo+vTpg3PnzjXaR3BwMB599FFs3rwZTz/9tCG5AgBfX19MnToVn3zyCVJTU/Huu+9a8pAN9u7di3vuuQcPPfQQBg0ahB49euCnn34yvN67d2+4ubkZBlNfy9nZGcCVFqDm9OzZE87Ozti7d69hWV1dHXJycnDDDTdY6EiIqJ3UARCRdGpqalBSUgLgSmXSW2+9hYqKCsTHxxvWmTlzJubOnQt3d3fce++9jfaxd+9evPzyyxg3bhx27tyJjRs34quvvgIA9OrVC3V1dXjzzTcRHx+PvXv3Ys2aNUbbP/XUUxgzZgz69OmDP/74A7t27TIkR0uWLEFERARuvPFG1NTU4MsvvzS8Zmm9e/fGpk2bsG/fPnTq1AkrV65EaWmpIelwdXXF/Pnz8eyzz8LZ2RkxMTEoKyvDsWPHMGPGDPj5+cHNzQ3bt2/HX/7yF7i6usLT09PoPdzd3fHYY4/hH//4B7y9vdG1a1e8/PLLqKqqwowZM6xyXERqxJYbIhXbvn07AgMDERgYiKioKOTk5GDjxo2GMmYAmDhxItq1a4eJEyfC1dW10T6efvppHDx4EOHh4XjxxRexcuVKxMXFAQAGDRqElStXYsWKFRgwYAA+/fRTJCcnG21fX1+POXPmoH///rjjjjvQp08fvP322wCutIYkJiZi4MCBGDFiBBwdHbFhwwarnItFixbhpptuQlxcHEaNGoWAgIBGMwsvXrwYTz/9NJYsWYL+/ftjwoQJhnEw7dq1wxtvvIF33nkHXbp0wT333NPk+6SkpOC+++7D5MmTcdNNNyE/Px87duxAp06drHJcRGqkEUIIqYMgIvkqLCxEz549kZOTg5tuusnotZCQEDz11FN46qmnpAmOiKgJ7JYioibV1dXht99+w6JFizB06NBGiQ0RkVyxW4qImrR3714EBgYiJyen0TgZqS1fvhwdOnRo8jFmzBipwyMiibFbiojszu+//95oRt8Gbm5uCAoKsnFERCQnTG6IiIhIUdgtRURERIrC5IaIiIgUhckNERERKQqTGyIiIlIUJjdERESkKExuiIiISFGY3BAREZGiMLkhIiIiRfk/dIQulDj8e5YAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_44.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMFElEQVR4nO3deXyU1aH/8e8kIQuBJEAgCw0kbAISiLLEAAJK2iCWGvXeAlK2i3Kt4AZUwQq4VRA3LkpFqUJfFQVRr/UiPxRBLxXSsIsgUkAQrElkkQkECCFzfn94M3XIQvJk9nzer1demOc5M3POY2ae75xznvPYjDFGAAAAqJMQX1cAAAAgEBGiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAEtUceeUQ2m61WZW02mx555BGP1mfQoEEaNGiQ3z4fgNojRAHwiqVLl8pmszl/wsLC1Lp1a40bN07//Oc/fV09v5OamupyvFq1aqVrr71W//3f/+2W5z979qweeeQRffrpp255PqAhIkQB8KrHHntMf/nLX7Ro0SLdcMMNev311zVw4ECdP3/eI6/38MMP69y5cx55bk/LyMjQX/7yF/3lL3/RtGnT9N133+mWW27RokWL6v3cZ8+e1aOPPkqIAuohzNcVANCw3HDDDerVq5ck6fbbb1d8fLyeeuopvf/++/r1r3/t9tcLCwtTWFhgftS1bt1av/nNb5y/jxkzRh06dNDzzz+vO++804c1AyDREwXAx6699lpJ0sGDB122f/XVV/q3f/s3NW/eXJGRkerVq5fef/99lzJlZWV69NFH1bFjR0VGRqpFixbq37+/1q5d6yxT1Zyo0tJS3X///WrZsqWaNm2qX/3qV/r2228r1W3cuHFKTU2ttL2q51yyZImuv/56tWrVShEREeratateeumlOh2Ly0lMTFSXLl106NChGst9//33mjBhghISEhQZGakePXroz3/+s3P/4cOH1bJlS0nSo48+6hwy9PR8MCDYBObXMwBB4/Dhw5KkZs2aObft2bNH/fr1U+vWrTV9+nRFR0frrbfeUm5urt555x3dfPPNkn4MM3PmzNHtt9+uPn36qLi4WFu3btX27dv185//vNrXvP322/X666/rtttuU9++fbV+/XrdeOON9WrHSy+9pCuvvFK/+tWvFBYWpv/5n//RXXfdJYfDoUmTJtXruSuUlZXp6NGjatGiRbVlzp07p0GDBunAgQOaPHmy0tLStHLlSo0bN06nTp3Svffeq5YtW+qll17Sb3/7W91888265ZZbJEndu3d3Sz2BBsMAgBcsWbLESDIff/yxOXbsmDl69Kh5++23TcuWLU1ERIQ5evSos+zgwYNNenq6OX/+vHObw+Ewffv2NR07dnRu69Gjh7nxxhtrfN3Zs2ebn37U7dy500gyd911l0u52267zUgys2fPdm4bO3asadu27WWf0xhjzp49W6lcTk6Oadeuncu2gQMHmoEDB9ZYZ2OMadu2rfnFL35hjh07Zo4dO2Y+//xzM2LECCPJ3H333dU+3/z5840k8/rrrzu3XbhwwWRlZZkmTZqY4uJiY4wxx44dq9ReAHXDcB4Ar8rOzlbLli2VkpKif/u3f1N0dLTef/99/exnP5MknTx5UuvXr9evf/1rnT59WsePH9fx48d14sQJ5eTkaP/+/c6r+eLi4rRnzx7t37+/1q+/evVqSdI999zjsv2+++6rV7uioqKc/22323X8+HENHDhQX3/9tex2u6Xn/Oijj9SyZUu1bNlSPXr00MqVKzV69Gg99dRT1T5m9erVSkxM1MiRI53bGjVqpHvuuUdnzpzR//7v/1qqC4DKGM4D4FULFy5Up06dZLfb9dprr2nDhg2KiIhw7j9w4ICMMZo5c6ZmzpxZ5XN8//33at26tR577DHddNNN6tSpk7p166YhQ4Zo9OjRNQ5LffPNNwoJCVH79u1dtl9xxRX1atfGjRs1e/Zs5eXl6ezZsy777Ha7YmNj6/ycmZmZeuKJJ2Sz2dS4cWN16dJFcXFxNT7mm2++UceOHRUS4voduUuXLs79ANyDEAXAq/r06eO8Oi83N1f9+/fXbbfdpn379qlJkyZyOBySpGnTpiknJ6fK5+jQoYMkacCAATp48KD++te/6qOPPtKf/vQnPf/881q0aJFuv/32ete1ukU6y8vLXX4/ePCgBg8erM6dO+u5555TSkqKwsPDtXr1aj3//PPONtVVfHy8srOzLT0WgOcRogD4TGhoqObMmaPrrrtOL774oqZPn6527dpJ+nEIqjYBonnz5ho/frzGjx+vM2fOaMCAAXrkkUeqDVFt27aVw+HQwYMHXXqf9u3bV6lss2bNdOrUqUrbL+3N+Z//+R+Vlpbq/fffV5s2bZzbP/nkk8vW393atm2rXbt2yeFwuPRGffXVV879UvUBEUDtMScKgE8NGjRIffr00fz583X+/Hm1atVKgwYN0ssvv6yCgoJK5Y8dO+b87xMnTrjsa9KkiTp06KDS0tJqX++GG26QJC1YsMBl+/z58yuVbd++vex2u3bt2uXcVlBQUGnV8NDQUEmSMca5zW63a8mSJdXWw1OGDh2qwsJCrVixwrnt4sWLeuGFF9SkSRMNHDhQktS4cWNJqjIkAqgdeqIA+Nzvfvc7/fu//7uWLl2qO++8UwsXLlT//v2Vnp6uO+64Q+3atVNRUZHy8vL07bff6vPPP5ckde3aVYMGDVLPnj3VvHlzbd26VW+//bYmT55c7WtlZGRo5MiR+uMf/yi73a6+fftq3bp1OnDgQKWyI0aM0IMPPqibb75Z99xzj86ePauXXnpJnTp10vbt253lfvGLXyg8PFzDhg3Tf/7nf+rMmTNavHixWrVqVWUQ9KSJEyfq5Zdf1rhx47Rt2zalpqbq7bff1saNGzV//nw1bdpU0o8T4bt27aoVK1aoU6dOat68ubp166Zu3bp5tb5AQPP15YEAGoaKJQ62bNlSaV95eblp3769ad++vbl48aIxxpiDBw+aMWPGmMTERNOoUSPTunVr88tf/tK8/fbbzsc98cQTpk+fPiYuLs5ERUWZzp07mz/84Q/mwoULzjJVLUdw7tw5c88995gWLVqY6OhoM2zYMHP06NEqL/n/6KOPTLdu3Ux4eLi54oorzOuvv17lc77//vume/fuJjIy0qSmppqnnnrKvPbaa0aSOXTokLNcXZY4uNzyDdU9X1FRkRk/fryJj4834eHhJj093SxZsqTSYzdt2mR69uxpwsPDWe4AsMBmzE/6nwEAAFArzIkCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFrDYpgc5HA599913atq0KbdYAAAgQBhjdPr0aSUnJ1e6mfdPEaI86LvvvlNKSoqvqwEAACw4evSofvazn1W7nxDlQRW3Vzh69KhiYmJ8XBsAAFAbxcXFSklJcZ7Hq0OI8qCKIbyYmBhCFAAAAeZyU3GYWA4AAGABIQoAAMACQhQAAIAFzInysfLycpWVlfm6GgEjPDy8xstNAQDwFkKUjxhjVFhYqFOnTvm6KgElJCREaWlpCg8P93VVAAANHCHKRyoCVKtWrdS4cWMW46yFisVLCwoK1KZNG44ZAMCnCFE+UF5e7gxQLVq08HV1AkrLli313Xff6eLFi2rUqJGvqwMAaMCYXOIDFXOgGjdu7OOaBJ6KYbzy8nIf1wQA0NARonyI4ai645gBAPwFIQoAAMACQhQAAIAFhChYUlhYqLvvvlvt2rVTRESEUlJSNGzYMK1bt06SlJqaqvnz51d63COPPKKMjIwqn3P58uWy2WzKzc31XMUBAH6nwH5Omw4eV4H9nK+rUidcnYc6O3z4sPr166e4uDg9/fTTSk9PV1lZmT788ENNmjRJX331laXnnDZtmq699loP1BgA4K9WbDmiGe9+IYeRQmzSnFvSNbx3G19Xq1YIUaizu+66SzabTZs3b1Z0dLRz+5VXXqn/+I//qPPzlZeXa9SoUXr00Uf1t7/9jQVIAaCBKLCfcwYoSXIY6aF3d2tAp5ZKio3ybeVqgeG8IODNbtCTJ09qzZo1mjRpkkuAqhAXF1fn53zsscfUqlUrTZgwwQ01BAAEikPHS5wBqkK5MTp8/KxvKlRH9EQFOG93gx44cEDGGHXu3PmyZR988EE9/PDDLtsuXLigrl27On//7LPP9Oqrr2rnzp3urioAwM+lxUcrxCaXIBVqsyk1PjDWUaQnKoBV1w3qyR4pY8zlC/2f3/3ud9q5c6fLz5133uncf/r0aY0ePVqLFy9WfHy8J6oLAPBjSbFRmnNLukL/bw3AUJtNT97SLSCG8iR6ogJaTd2gnvoD7Nixo2w2W60mj8fHx6tDhw4u25o3b+7874MHD+rw4cMaNmyYc5vD4ZAkhYWFad++fWrfvr2bag4A8EfDe7fRgE4tdfj4WaXGNw6YACXRExXQKrpBf8rT3aDNmzdXTk6OFi5cqJKSkkr76zIpvHPnzvriiy9ceqp+9atf6brrrtPOnTuVkpLixpoDAPxVUmyUstq3CKgAJRGiApqvukEXLlyo8vJy9enTR++8847279+vvXv3asGCBcrKyqr180RGRqpbt24uP3FxcWratKm6devmvE8eAAD+iOG8AOeLbtB27dpp+/bt+sMf/qCpU6eqoKBALVu2VM+ePfXSSy95/PUBAPAHNlOXmcKok+LiYsXGxsputysmJsa5/fz58zp06JDS0tIUGRnpwxoGHo4dAMDTqjt/X4rhPAAAAAsIUQAAABYQogAAACwgRAEAAFhAiPIh5vTXHccMAOAvCFE+0KhRI0nS2bOBcYNFf3LhwgVJUmhoqI9rAgBo6FgnygdCQ0MVFxen77//XpLUuHFj2Wy2yzwKDodDx44dU+PGjRUWxp8uAMC3OBP5SGJioiQ5gxRqJyQkRG3atCF0AgB8jhDlIzabTUlJSWrVqpXKysp8XZ2AER4erpAQRqEBAL5HiPKx0NBQ5vcAABCA+EoPAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAAC/wiRC1cuFCpqamKjIxUZmamNm/eXGP5lStXqnPnzoqMjFR6erpWr17tst8Yo1mzZikpKUlRUVHKzs7W/v37XcqcPHlSo0aNUkxMjOLi4jRhwgSdOXOmytc7cOCAmjZtqri4uHq1EwAABA+fh6gVK1ZoypQpmj17trZv364ePXooJydH33//fZXlN23apJEjR2rChAnasWOHcnNzlZubq927dzvLzJs3TwsWLNCiRYuUn5+v6Oho5eTk6Pz5884yo0aN0p49e7R27VqtWrVKGzZs0MSJEyu9XllZmUaOHKlrr73W/Y0HAAABy2aMMb6sQGZmpnr37q0XX3xRkuRwOJSSkqK7775b06dPr1R++PDhKikp0apVq5zbrrnmGmVkZGjRokUyxig5OVlTp07VtGnTJEl2u10JCQlaunSpRowYob1796pr167asmWLevXqJUlas2aNhg4dqm+//VbJycnO537wwQf13XffafDgwbrvvvt06tSpWretuLhYsbGxstvtiomJsXJ4AACAl9X2/O3TnqgLFy5o27Ztys7Odm4LCQlRdna28vLyqnxMXl6eS3lJysnJcZY/dOiQCgsLXcrExsYqMzPTWSYvL09xcXHOACVJ2dnZCgkJUX5+vnPb+vXrtXLlSi1cuLBW7SktLVVxcbHLDwAACE4+DVHHjx9XeXm5EhISXLYnJCSosLCwyscUFhbWWL7i38uVadWqlcv+sLAwNW/e3FnmxIkTGjdunJYuXVrrXqQ5c+YoNjbW+ZOSklKrxwEAgMDj8zlR/uqOO+7QbbfdpgEDBtT6MTNmzJDdbnf+HD161IM1BAAAvuTTEBUfH6/Q0FAVFRW5bC8qKlJiYmKVj0lMTKyxfMW/lytz6cT1ixcv6uTJk84y69ev1zPPPKOwsDCFhYVpwoQJstvtCgsL02uvvVZl3SIiIhQTE+PyAwAAgpNPQ1R4eLh69uypdevWObc5HA6tW7dOWVlZVT4mKyvLpbwkrV271lk+LS1NiYmJLmWKi4uVn5/vLJOVlaVTp05p27ZtzjLr16+Xw+FQZmampB/nTe3cudP589hjj6lp06bauXOnbr75ZvccAAAAELDCfF2BKVOmaOzYserVq5f69Omj+fPnq6SkROPHj5ckjRkzRq1bt9acOXMkSffee68GDhyoZ599VjfeeKOWL1+urVu36pVXXpEk2Ww23XfffXriiSfUsWNHpaWlaebMmUpOTlZubq4kqUuXLhoyZIjuuOMOLVq0SGVlZZo8ebJGjBjhvDKvS5cuLvXcunWrQkJC1K1bNy8dGQAA4M98HqKGDx+uY8eOadasWSosLFRGRobWrFnjnBh+5MgRhYT8q8Osb9++euONN/Twww/roYceUseOHfXee++5hJsHHnhAJSUlmjhxok6dOqX+/ftrzZo1ioyMdJZZtmyZJk+erMGDByskJES33nqrFixY4L2GAwCAgObzdaKCGetEAQAQeAJinSgAAIBARYgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAV+EaIWLlyo1NRURUZGKjMzU5s3b66x/MqVK9W5c2dFRkYqPT1dq1evdtlvjNGsWbOUlJSkqKgoZWdna//+/S5lTp48qVGjRikmJkZxcXGaMGGCzpw549y/b98+XXfddUpISFBkZKTatWunhx9+WGVlZe5rOAAACFg+D1ErVqzQlClTNHv2bG3fvl09evRQTk6Ovv/++yrLb9q0SSNHjtSECRO0Y8cO5ebmKjc3V7t373aWmTdvnhYsWKBFixYpPz9f0dHRysnJ0fnz551lRo0apT179mjt2rVatWqVNmzYoIkTJzr3N2rUSGPGjNFHH32kffv2af78+Vq8eLFmz57tuYMBAAAChs0YY3xZgczMTPXu3VsvvviiJMnhcCglJUV33323pk+fXqn88OHDVVJSolWrVjm3XXPNNcrIyNCiRYtkjFFycrKmTp2qadOmSZLsdrsSEhK0dOlSjRgxQnv37lXXrl21ZcsW9erVS5K0Zs0aDR06VN9++62Sk5OrrOuUKVO0ZcsW/e1vf6tV24qLixUbGyu73a6YmJg6HRcAAOAbtT1/+7Qn6sKFC9q2bZuys7Od20JCQpSdna28vLwqH5OXl+dSXpJycnKc5Q8dOqTCwkKXMrGxscrMzHSWycvLU1xcnDNASVJ2drZCQkKUn59f5eseOHBAa9as0cCBA6ttT2lpqYqLi11+AABAcPJpiDp+/LjKy8uVkJDgsj0hIUGFhYVVPqawsLDG8hX/Xq5Mq1atXPaHhYWpefPmlV63b9++ioyMVMeOHXXttdfqscceq7Y9c+bMUWxsrPMnJSWl2rIAACCw+XxOlL9bsWKFtm/frjfeeEMffPCBnnnmmWrLzpgxQ3a73flz9OhRL9YUAAB4U5gvXzw+Pl6hoaEqKipy2V5UVKTExMQqH5OYmFhj+Yp/i4qKlJSU5FImIyPDWebSiesXL17UyZMnK71uRW9S165dVV5erokTJ2rq1KkKDQ2tVLeIiAhFRERcrtkAACAI+LQnKjw8XD179tS6deuc2xwOh9atW6esrKwqH5OVleVSXpLWrl3rLJ+WlqbExESXMsXFxcrPz3eWycrK0qlTp7Rt2zZnmfXr18vhcCgzM7Pa+jocDpWVlcnhcNS9sQAAIKj4tCdK+vGKt7Fjx6pXr17q06eP5s+fr5KSEo0fP16SNGbMGLVu3Vpz5syRJN17770aOHCgnn32Wd14441avny5tm7dqldeeUWSZLPZdN999+mJJ55Qx44dlZaWppkzZyo5OVm5ubmSpC5dumjIkCG64447tGjRIpWVlWny5MkaMWKE88q8ZcuWqVGjRkpPT1dERIS2bt2qGTNmaPjw4WrUqJH3DxQAAPArPg9Rw4cP17FjxzRr1iwVFhYqIyNDa9ascU4MP3LkiEJC/tVh1rdvX73xxht6+OGH9dBDD6ljx45677331K1bN2eZBx54QCUlJZo4caJOnTql/v37a82aNYqMjHSWWbZsmSZPnqzBgwcrJCREt956qxYsWODcHxYWpqeeekr/+Mc/ZIxR27ZtNXnyZN1///1eOCoAAMDf+XydqGDmT+tEFdjP6dDxEqXFRyspNsqndQEAwJ/V9vzt854oeN6KLUc0490v5DBSiE2ac0u6hvdu4+tqAQAQ0FjiIMgV2M85A5QkOYz00Lu7VWA/59uKAQAQ4AhRQe7Q8RJngKpQbowOHz/rmwoBABAkCFFBLi0+WiE2122hNptS4xv7pkIAAAQJQlSQS4qN0pxb0hVq+zFJhdpsevKWbkwuBwCgnphY3gAM791GAzq11OHjZ5Ua35gABQCAGxCiGoik2CjCEwAAbsRwHgAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAADgNgX2c9p08LgK7Od8XRWPC/N1BQAAQHBYseWIZrz7hRxGCrFJc25J1/DebXxdLY+hJwoAANRbgf2cM0BJksNID727O6h7pNwSog4dOqSLFy+646kAAEAAOnS8xBmgKpQbo8PHz/qmQl7glhB1xRVXaP/+/e54KgAAEIDS4qMVYnPdFmqzKTW+sW8q5AV1mhN1yy23VLm9vLxc99xzj5o2bSpJevfdd+tfMwAAEDCSYqM055Z0PfTubpUbo1CbTU/e0k1JsVG+rprH1ClEvffeexowYIDS0tIq7WvSpIliY2PdVjEAABBYhvduowGdWurw8bNKjW8c1AFKkmzGGHP5Yj9avny5fve73+mxxx7T+PHjndsbNWqkzz//XF27dvVIJQNVcXGxYmNjZbfbFRMT4+vqAACAWqjt+btOc6JGjBihv/3tb3r11Vd166236ocffqh3RQEAAAJRnSeWp6amasOGDerWrZt69OihDz/8UDab7fIPBAAACCKWFtsMCQnRo48+qp///OcaM2aMysvL3V0vWFRgP6dDx0uUFh8d9GPRAAD4Ur1WLO/fv7927dqlgwcPqn379u6qEyxqaCvFAgDgS/VeJ6pJkybq0aOHIiIi3FEfWNQQV4oFAMCX6tQTddVVV9Vq/tP27dstVwjW1LRSLMN6AAC4X51CVG5urvO/jTGaM2eO7rzzTjVv3tzd9UIdVawU+9MgFewrxQIA4Et1WifqUk2bNtXnn3+udu3aubNOQcPb60St2HKk0kqxzIkCAKBuanv+rtfEcviXhrZSLAAAvkSICjJJsVGEJwAAvKDeV+cBQKApsJ/TpoPHuXoVQL3UqSdqwYIFLr9fvHhRS5cuVXx8vMv2e+65p/41AwAPYD01AO5Sp4nlaWlpl39Cm01ff/11vSoVLLgBMeBfCuzn1G/u+kpXsX42/TqGwQE4eWRi+aFDh+pdMQDwFdZTA+BOdZoTtX79enXt2lXFxcWV9tntdl155ZX629/+5rbKAYA7Vayn9lOspwbAqjqFqPnz5+uOO+6osmsrNjZW//mf/6nnnnvObZUDAHdKio3SnFvSFfp/d16oWE+NXigAVtRpTlTbtm21Zs0adenSpcr9X331lX7xi1/oyJEjbqtgIGNOFOCfCuznWE8NQLU8MieqqKhIjRo1qv7JwsJ07NixujwlAHgd66kBcIc6Dee1bt1au3fvrnb/rl27lJSUVO9KAQCA4BKM67PVqSdq6NChmjlzpoYMGaLIyEiXfefOndPs2bP1y1/+0q0VBAAAgS1Y12er05yooqIiXX311QoNDdXkyZN1xRVXSPpxLtTChQtVXl6u7du3KyEhwWMVDiTMiQIANHSBuD6bR+ZEJSQkaNOmTfrtb3+rGTNmqCJ/2Ww25eTkaOHChQQoAADgFMzrs9X5BsRt27bV6tWr9cMPP+jAgQMyxqhjx45q1qyZJ+oHAAACWMX6bJf2RAXD+myWb0DcrFkz9e7dW3369CFAAQCAKgXz+mx17okCEJwK7Od06HiJ0uKjg+LDDYD/GN67jQZ0ahl067MRogAE7ZUzAPxHMK7PZnk4D0BwKLCfcwYo6cd5Cw+9uzuo1nIBAE8gRMGvBePibP6mpitnAADV84sQtXDhQqWmpioyMlKZmZnavHlzjeVXrlypzp07KzIyUunp6Vq9erXLfmOMZs2apaSkJEVFRSk7O1v79+93KXPy5EmNGjVKMTExiouL04QJE3TmzBnn/k8//VQ33XSTkpKSFB0drYyMDC1btsx9jcZlrdhyRP3mrtdti/PVb+56rdjCPRk9oeLKmZ8KlitnAMCTfB6iVqxYoSlTpmj27Nnavn27evTooZycHH3//fdVlt+0aZNGjhypCRMmaMeOHcrNzVVubq7L7WjmzZunBQsWaNGiRcrPz1d0dLRycnJ0/vx5Z5lRo0Zpz549Wrt2rVatWqUNGzZo4sSJLq/TvXt3vfPOO9q1a5fGjx+vMWPGaNWqVZ47GHBiiMl7gvnKGQDwpDqtWO4JmZmZ6t27t1588UVJksPhUEpKiu6++25Nnz69Uvnhw4erpKTEJcxcc801ysjI0KJFi2SMUXJysqZOnapp06ZJkux2uxISErR06VKNGDFCe/fuVdeuXbVlyxb16tVLkrRmzRoNHTpU3377rZKTk6us64033qiEhAS99tprtWpboK9Y7surtTYdPK7bFudX2v7mHdcoq30Lr9aloSiwnwu6K2fcqab3A1c2AsGltudvn/ZEXbhwQdu2bVN2drZzW0hIiLKzs5WXl1flY/Ly8lzKS1JOTo6z/KFDh1RYWOhSJjY2VpmZmc4yeXl5iouLcwYoScrOzlZISIjy8yufuCvY7XY1b9682v2lpaUqLi52+QlUvh5KY4jJ+5Jio5TVvgUhoAo1vR98/V4B4Ds+DVHHjx9XeXl5pVvFJCQkqLCwsMrHFBYW1li+4t/LlWnVqpXL/rCwMDVv3rza133rrbe0ZcsWjR8/vtr2zJkzR7Gxsc6flJSUasv6M38YSmOICf6ipveDP7xXAPgO60TVwieffKLx48dr8eLFuvLKK6stN2PGDE2ZMsX5e3FxcUAGKX+5z1GwLs6GwFLT+8HI+MV7BYBv+DRExcfHKzQ0VEVFRS7bi4qKlJiYWOVjEhMTayxf8W9RUZGSkpJcymRkZDjLXDpx/eLFizp58mSl1/3f//1fDRs2TM8//7zGjBlTY3siIiIUERFRY5lA4E/3OQrGxdkQWC73fvCX9woA7/PpcF54eLh69uypdevWObc5HA6tW7dOWVlZVT4mKyvLpbwkrV271lk+LS1NiYmJLmWKi4uVn5/vLJOVlaVTp05p27ZtzjLr16+Xw+FQZmamc9unn36qG2+8UU899ZTLlXvBjqE04F9qej/wXgEaOONjy5cvNxEREWbp0qXmyy+/NBMnTjRxcXGmsLDQGGPM6NGjzfTp053lN27caMLCwswzzzxj9u7da2bPnm0aNWpkvvjiC2eZuXPnmri4OPPXv/7V7Nq1y9x0000mLS3NnDt3zllmyJAh5qqrrjL5+fnms88+Mx07djQjR4507l+/fr1p3LixmTFjhikoKHD+nDhxotZts9vtRpKx2+31OUQ+892ps2bTgePmu1NnfV0VwOdqej/wXgGCS23P3z4PUcYY88ILL5g2bdqY8PBw06dPH/P3v//duW/gwIFm7NixLuXfeust06lTJxMeHm6uvPJK88EHH7jsdzgcZubMmSYhIcFERESYwYMHm3379rmUOXHihBk5cqRp0qSJiYmJMePHjzenT5927h87dqyRVOln4MCBtW5XoIcoAAAaotqev32+TlQwC/R1ogAAaIgCYp0oAMGL+x4CCHYscQDA7VZsOeJcPynEJs25JV3De7fxdbUAwK3oiQLgVixACaChIEQBcKuaFqcEgGBCiALgVtz3EEBDQYgC4FYsQAmgoWBiOQC3476HABoCQhQAj+C+hwCCHcN5AFALrHsF4FL0RAHAZXhz3asC+zkdOl6itPhoevIAP0eIAoAaVLfu1YBOLd0eclikFAgsDOcBQA28te4Vi5QCgYcQBQA18Na6VyxSCgQeQhQA1MBb616xSCkQeJgTBQCX4Y11ryrC2kPv7la5MSxSCgQAQhQA1II31r1ikVIgsDCcBwB+xshcvhAAn6MnCgD8BEscAIGFnigA8AMscQAEHkIUAPgBljgAAg8hCgD8AEscAIGHEAUAfsBb61F5CjdoRkPExHIA8BOBusQBE+LRUNETBQB+JCk2SlntWwRMgGJCPBoyQhQAwDImxKMhI0QBACxjQjwaMkIUAMCyQJ8QD9QHE8sBAPUSqBPigfoiRAEA6s0bN2gG/A3DeQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAfqK6G+lyg10Al2KJAwD4P9XdSJcb7AKoCj1RAKDqb6T7+dEfuMEugCoRogBA1d9Id8vhH7jBLoAqEaIAQNXfSLd3ajNusAugSoQoAAHNXRO+q7uRbo+UZtxgF0CVbMYYc/lisKK4uFixsbGy2+2KiYnxdXWAoOOJCd8F9nNV3ki3uu0Agk9tz99cnQcgIFU3EXxAp5b1CjnV3UiXG+wCuBTDeQACUnUTwZnwDcBbCFEAAlJ0eGiV2xuH87EGwDv4tAEQkEoulFe5/ewFh5drAqChIkQBCEjVLUnA0gMAvIUQBb/G/cpQneqWJGDyt//hfYxgxdV58FvcrwyXM7x3Gw3o1JKlB/wY72MEM3qi4Jequ3ydb7K4VFJslLLatyBA+SHex/ipYOyRpCcKfqmmy9c5WQKBgfcxKgRrjyQ9UfBLTBoGAh/vY0jB3SNJiIJfqpg0XPEBHGITk4aBAMPk/8Dg6WG2YF4Yl+E8+LWKOztyh0cgMDH53795Y5itokfyp0EqWHok6YmCX6ro/q14zxkFT/cv0NAw+d8/eWuYLZh7JOmJgl9iQirgOwX2czp0vERp8dG834KYNz9ng7VHkhAFv/zADObuX8CfBetVVA1FXT7Pvf05mxQb5TfnGHdhOK+BW7HliPrNXa/bFuer39z1WrHliK+rJCm4u38BfxXMV1E1BHX9PA/0z1l/WHeKnqgGrLoPzAGdWvrFmyhYu38Bf8UweuCy+nkeqJ+z/tJjSk9UAxYIl50yIRXwHtZ1Clz1+Tyv6XPWH3p7LuVPPaaEqAaMD0wAPxXowzsNmSc+z/11uoc/dQAQohowPjDhb/zxW29DM7x3G302/Tq9ecc1+mz6dUwqDxDu/jz3p96eS/lTB4DPQ9TChQuVmpqqyMhIZWZmavPmzTWWX7lypTp37qzIyEilp6dr9erVLvuNMZo1a5aSkpIUFRWl7Oxs7d+/36XMyZMnNWrUKMXExCguLk4TJkzQmTNnnPvPnz+vcePGKT09XWFhYcrNzXVbe32lupMTH5jwF/76rbchYhg9MLnz89yfensu5U8dAD4NUStWrNCUKVM0e/Zsbd++XT169FBOTo6+//77Kstv2rRJI0eO1IQJE7Rjxw7l5uYqNzdXu3fvdpaZN2+eFixYoEWLFik/P1/R0dHKycnR+fPnnWVGjRqlPXv2aO3atVq1apU2bNigiRMnOveXl5crKipK99xzj7Kzsz13ALzkcicnPjDha/78rRcIJO76PPen3p6q+EsHgM0Y391QIzMzU71799aLL74oSXI4HEpJSdHdd9+t6dOnVyo/fPhwlZSUaNWqVc5t11xzjTIyMrRo0SIZY5ScnKypU6dq2rRpkiS73a6EhAQtXbpUI0aM0N69e9W1a1dt2bJFvXr1kiStWbNGQ4cO1bfffqvk5GSX1xw3bpxOnTql9957r87tKy4uVmxsrOx2u2JiYur8eHcosJ9Tv7nrK60D8tn06whNfsYf1+vylk0Hj+u2xfmVtr95xzXKat/CBzUCsGLLET307m6VG+Ps7WkooxW1PX/7bImDCxcuaNu2bZoxY4ZzW0hIiLKzs5WXl1flY/Ly8jRlyhSXbTk5Oc6Ac+jQIRUWFrr0HsXGxiozM1N5eXkaMWKE8vLyFBcX5wxQkpSdna2QkBDl5+fr5ptvttym0tJSlZaWOn8vLi62/FzuwiXLgcFfLtf1FRZXBfxPoC5/4E0+G847fvy4ysvLlZCQ4LI9ISFBhYWFVT6msLCwxvIV/16uTKtWrVz2h4WFqXnz5tW+bm3NmTNHsbGxzp+UlJR6PZ87+HuXLBjKkvxrjgOAf2G6R81YbNONZsyY4dJTVlxc7PMgVXFyurRLljeE/6C38Ed86/UfDXloGagLn4Wo+Ph4hYaGqqioyGV7UVGREhMTq3xMYmJijeUr/i0qKlJSUpJLmYyMDGeZSyeuX7x4USdPnqz2dWsrIiJCERER9XoOT+Dk5N8YynJl5LNpmhBDy0Bd+Gw4Lzw8XD179tS6deuc2xwOh9atW6esrKwqH5OVleVSXpLWrl3rLJ+WlqbExESXMsXFxcrPz3eWycrK0qlTp7Rt2zZnmfXr18vhcCgzM9Nt7fM3dMn6L38ZyvL1Gk0sceB7DC0DdePT4bwpU6Zo7Nix6tWrl/r06aP58+erpKRE48ePlySNGTNGrVu31pw5cyRJ9957rwYOHKhnn31WN954o5YvX66tW7fqlVdekSTZbDbdd999euKJJ9SxY0elpaVp5syZSk5Odq711KVLFw0ZMkR33HGHFi1apLKyMk2ePFkjRoxwuTLvyy+/1IULF3Ty5EmdPn1aO3fulCRnjxbgTr7uLfR174O/38exoWBoGagbn4ao4cOH69ixY5o1a5YKCwuVkZGhNWvWOCeGHzlyRCEh/+os69u3r9544w09/PDDeuihh9SxY0e999576tatm7PMAw88oJKSEk2cOFGnTp1S//79tWbNGkVGRjrLLFu2TJMnT9bgwYMVEhKiW2+9VQsWLHCp29ChQ/XNN984f7/qqqsk/biYJ+AJSbFRPjlR+UOA4eTtHxhaBurGp+tEBTt/WCcKuBx/WKOJ9cz8R0NeGwio4PfrRAHwD/7Q+8BVpP7D10PLQCAhRMHnuJzat/wlwHDy9h++GloGAg0hCj7l6wnN+JG/BBhO3gACiU9vQIyGjcup/QvLYABA3RCi4DM1XZEFAICv16+7HIbz4DP+MKEZABqKQJt/GgjTPeiJgs/4y0rdABDsAu2OAIEy3YOeKPiUv0xoBoBg5Q8L6tZVoCzAS4iCz3FFFgB4TqAEkp8KlOkeDOcBABDEKgLJT/ljIPmpQJnuQU8UAMCjAm1Cc7DxlwV16yoQpnsQogAA9VZdUAqEK6wagkAIJFXx9+kehCgAQL1UF5QCcUJzMPP3QBKImBMFALCspkvRWVAXwY4QBQCwrKagFIgTmoG6IETB5/x9WX8A1aspKAXKFVaAVcyJgk95c9IpVwgB7ne5K78CdUIzUBs2Y4y5fDFYUVxcrNjYWNntdsXExPi6On6nwH5O/eaur7SY2mfTr3P7By1XCAGeVWA/R1BC0Kjt+ZvhPPiMtyadBso9mIBAlhQbpaz2LQhQaFAIUQEoWOYQeWvSKVcIAQA8gRAVYALtTtw18dakU64QAgB4AnOiPMjdc6K8OYfIm7wxl2LFliOVJr4yJwoAUJXanr+5Oi+ABOKduGvDG6vocoUQAgVXkQKBgxAVQCqGpS7tiQr0YSlvnTS45QH8HVeRAoGFOVEBJBgXrgumOV5AfXAVqSt/voDGn+sG76InKsAE07AUNycF/iVYh+ut8OceOX+uG7yPnqgAFCzrsdRm6QG+8aGh4CrSH/lzj5w/1w2+QYiCz1zupMFQHxqSYByut8Kf13Xz57rBNxjOg8/UdM8thvrQEAXTcL1V/nwBTXR4aJXbG4fTH9FQEaLgU9WdNBri/BAubYfEVaSXu6GxL5VcKK9y+9kLDi/XBP6CEAWfq+qk4c/fRj2ByarAv/hrj9zlPpf4ItTw0AfZQATaBO2GND+EyapAZf54AU1Nn0vM4WyY6IlqAAK1l8Nfv426W0McugS9FoGqqs8l5nA2XISoIBfob+5AnR9SlxNkQxu6ROB+scGPLv1c4otQw8VwXpDjklzvq2u3fkMaugTDt7UVSFMQWOOr4aInKsjRy+Fdl+v5q66HqqEMXYJei9oItJ46f76iEJ5FiApytXlzMzfDfWo6QW74x7EaTwyBOnSJuuGLTc0CYQrC50d/0ObDJ9Untbl6pDSTxBehhooQ1QDU9OYOtG98/q66E2Tj8BC/PzHAO+i1qJm/99RNfWun3tn+T+fvt17dWs/+OkMSX4QaIkJUA1HVmzsQvvEFmupOkCUXyv36xADvoteiev7cU/f50R9cApQkvbP9nxqT1dbZI4WGhRDVgPn7N75AVd0l0P56YoBv0GtRNX/uqdt8+GSV27ce/oEQ1UARohowf/7GF+guPUH684kB8Df+2lPXJ7V5ldt7pRKgGipCVAPGid27/PXEAPgjf+yp65HSTLde3brSnCh6oRoumzHGXL4YrCguLlZsbKzsdrtiYmJ8XZ1qFdjPcWIHgFr6/OgP2nr4B/VKbUaAClK1PX/TExVkrCxX4I/f+ADAX/VIITzhR4SoIMJyBYHNnet1BeraX4FabwANEyEqSLBcQWBzZwAO1DAdqPUG0HBx77wgwT3yApc776UWqPdlC9R6w/sC6Z56CH70RAUJlivwL3UZlnLnel2BuvZXoNYb3kVvJfwNPVFBomK5glDbj7cSZ7kC31mx5Yj6zV2v2xbnq9/c9Vqx5UiN5d15B/hAvZt8oNYb3kNvJfwRISqIDO/dRp9Nv05v3nGNPpt+Hd/QfMDKB/3lAnBdhi8CNUwHar1RP3X52/b2lAWGDVEbDOcFGZYr8C2rw1LVLcRpZfgiUBf1DNR6w5q6/m17c8rC5erGVaSoQE8UcBl1+UZan2GppNgoZbVv4dIDZXX44tLnChSBWm/UjSd6bL1Vt7oO1yO40RMF1KCu35bdeSsdf5pszTdvuJO7e2y9VTdJLCUDF4QooBpW195y1we9v1xxyRVRcLf6/G17espCTXXzpy828A8M5wHVqM9EVncMS/nDZGuuiIIn+MPfdnVqqhtXkeJS9EQB1bjct2VvDHH5erI137zhKb7+265JdXVz53A9ggMhCqhGTR+Y3hzi8uUVl/4ypIjg5M9XE1dXN38Of/A+mzHGXL4YrCguLlZsbKzsdrtiYmJ8XZ2g4s2JzgX2cy4fmAX2c+o3d32lYPHZ9OuC8gN1xZYjlYIkc6IQ7LiYomGr7fmbnigEHG9PdL70G2lDG+LimzcaGi6mQG0xsRwBxR8mOjfEyaWs34T68OfVvy+tmz98xiBw+EWIWrhwoVJTUxUZGanMzExt3ry5xvIrV65U586dFRkZqfT0dK1evdplvzFGs2bNUlJSkqKiopSdna39+/e7lDl58qRGjRqlmJgYxcXFacKECTpz5oxLmV27dunaa69VZGSkUlJSNG/ePPc0GJZ5+9YPVfHnK4sCnT+fbK0ItvZY4c+LU1ZVN3/4jEHg8HmIWrFihaZMmaLZs2dr+/bt6tGjh3JycvT9999XWX7Tpk0aOXKkJkyYoB07dig3N1e5ubnavXu3s8y8efO0YMECLVq0SPn5+YqOjlZOTo7Onz/vLDNq1Cjt2bNHa9eu1apVq7RhwwZNnDjRub+4uFi/+MUv1LZtW23btk1PP/20HnnkEb3yyiueOxi4LF/0AlV1IuQ+he7nzydbK4KtPVb4c69OdXWLDg9tcD3NsM7nE8szMzPVu3dvvfjii5Ikh8OhlJQU3X333Zo+fXql8sOHD1dJSYlWrVrl3HbNNdcoIyNDixYtkjFGycnJmjp1qqZNmyZJstvtSkhI0NKlSzVixAjt3btXXbt21ZYtW9SrVy9J0po1azR06FB9++23Sk5O1ksvvaTf//73KiwsVHh4uCRp+vTpeu+99/TVV1/Vqm1MLPcMb050Zm6EdwTbZP1ga49Vmw4e122L8yttf/OOa5TVvoUPavQvNdXtyMkSLqZo4Gp7/vZpT9SFCxe0bds2ZWdnO7eFhIQoOztbeXl5VT4mLy/Ppbwk5eTkOMsfOnRIhYWFLmViY2OVmZnpLJOXl6e4uDhngJKk7OxshYSEKD8/31lmwIABzgBV8Tr79u3TDz/8UGXdSktLVVxc7PID9/NWL5A/f4sONsE2hBJs7bHKn+cP1lQ3eppRWz4NUcePH1d5ebkSEhJctickJKiwsLDKxxQWFtZYvuLfy5Vp1aqVy/6wsDA1b97cpUxVz/HT17jUnDlzFBsb6/xJSUmpuuGoN29MdOZE6D3+fLK1ItjaY5U/zx+8XN24mAK1wRIHbjRjxgxNmTLF+XtxcTFBKoCx0KT3BNtK0MHWnvrw5yUy/LluCAw+DVHx8fEKDQ1VUVGRy/aioiIlJiZW+ZjExMQay1f8W1RUpKSkJJcyGRkZzjKXTly/ePGiTp486fI8Vb3OT1/jUhEREYqIiKi2vQgsnAi9K9hOaMHWnvoIxJXJgdrw6XBeeHi4evbsqXXr1jm3ORwOrVu3TllZWVU+Jisry6W8JK1du9ZZPi0tTYmJiS5liouLlZ+f7yyTlZWlU6dOadu2bc4y69evl8PhUGZmprPMhg0bVFZW5vI6V1xxhZo1a1bPliNQMDfCu4JtCCXY2gPgEsbHli9fbiIiIszSpUvNl19+aSZOnGji4uJMYWGhMcaY0aNHm+nTpzvLb9y40YSFhZlnnnnG7N2718yePds0atTIfPHFF84yc+fONXFxceavf/2r2bVrl7nppptMWlqaOXfunLPMkCFDzFVXXWXy8/PNZ599Zjp27GhGjhzp3H/q1CmTkJBgRo8ebXbv3m2WL19uGjdubF5++eVat81utxtJxm631+cQAQAAL6rt+dvnIcoYY1544QXTpk0bEx4ebvr06WP+/ve/O/cNHDjQjB071qX8W2+9ZTp16mTCw8PNlVdeaT744AOX/Q6Hw8ycOdMkJCSYiIgIM3jwYLNv3z6XMidOnDAjR440TZo0MTExMWb8+PHm9OnTLmU+//xz079/fxMREWFat25t5s6dW6d2EaIAAAg8tT1/+3ydqGDGOlEAAASegFgnCgAAIFARogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWhPm6AsGsYjH44uJiH9cEAADUVsV5+3I3dSFEedDp06clSSkpKT6uCQAAqKvTp08rNja22v3cO8+DHA6HvvvuOzVt2lQ2m81tz1tcXKyUlBQdPXq0Qd6Tr6G3X+IYNPT2SxyDht5+iWPgyfYbY3T69GklJycrJKT6mU/0RHlQSEiIfvazn3ns+WNiYhrkG6dCQ2+/xDFo6O2XOAYNvf0Sx8BT7a+pB6oCE8sBAAAsIEQBAABYQIgKQBEREZo9e7YiIiJ8XRWfaOjtlzgGDb39Esegobdf4hj4Q/uZWA4AAGABPVEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBDlpxYuXKjU1FRFRkYqMzNTmzdvrrbsnj17dOuttyo1NVU2m03z58/3XkU9pC7tX7x4sa699lo1a9ZMzZo1U3Z2do3lA0VdjsG7776rXr16KS4uTtHR0crIyNBf/vIXL9bW/erS/p9avny5bDabcnNzPVtBL6jLMVi6dKlsNpvLT2RkpBdr6351/Rs4deqUJk2apKSkJEVERKhTp05avXq1l2rrGXU5BoMGDar0N2Cz2XTjjTd6scbuVde/gfnz5+uKK65QVFSUUlJSdP/99+v8+fOeq6CB31m+fLkJDw83r732mtmzZ4+54447TFxcnCkqKqqy/ObNm820adPMm2++aRITE83zzz/v3Qq7WV3bf9ttt5mFCxeaHTt2mL1795px48aZ2NhY8+2333q55u5T12PwySefmHfffdd8+eWX5sCBA2b+/PkmNDTUrFmzxss1d4+6tr/CoUOHTOvWrc21115rbrrpJu9U1kPqegyWLFliYmJiTEFBgfOnsLDQy7V2n7q2v7S01PTq1csMHTrUfPbZZ+bQoUPm008/NTt37vRyzd2nrsfgxIkTLv//d+/ebUJDQ82SJUu8W3E3qWv7ly1bZiIiIsyyZcvMoUOHzIcffmiSkpLM/fff77E6EqL8UJ8+fcykSZOcv5eXl5vk5GQzZ86cyz62bdu2AR+i6tN+Y4y5ePGiadq0qfnzn//sqSp6XH2PgTHGXHXVVebhhx/2RPU8zkr7L168aPr27Wv+9Kc/mbFjxwZ8iKrrMViyZImJjY31Uu08r67tf+mll0y7du3MhQsXvFVFj6vv58Dzzz9vmjZtas6cOeOpKnpUXds/adIkc/3117tsmzJliunXr5/H6shwnp+5cOGCtm3bpuzsbOe2kJAQZWdnKy8vz4c18w53tP/s2bMqKytT8+bNPVVNj6rvMTDGaN26ddq3b58GDBjgyap6hNX2P/bYY2rVqpUmTJjgjWp6lNVjcObMGbVt21YpKSm66aabtGfPHm9U1+2stP/9999XVlaWJk2apISEBHXr1k1PPvmkysvLvVVtt3LHZ+Grr76qESNGKDo62lPV9Bgr7e/bt6+2bdvmHPL7+uuvtXr1ag0dOtRj9eQGxH7m+PHjKi8vV0JCgsv2hIQEffXVVz6qlfe4o/0PPvigkpOTXd58gcTqMbDb7WrdurVKS0sVGhqqP/7xj/r5z3/u6eq6nZX2f/bZZ3r11Ve1c+dOL9TQ86wcgyuuuEKvvfaaunfvLrvdrmeeeUZ9+/bVnj17PHojdE+w0v6vv/5a69ev16hRo7R69WodOHBAd911l8rKyjR79mxvVNut6vtZuHnzZu3evVuvvvqqp6roUVbaf9ttt+n48ePq37+/jDG6ePGi7rzzTj300EMeqychCkFl7ty5Wr58uT799NOAn1RbV02bNtXOnTt15swZrVu3TlOmTFG7du00aNAgX1fNo06fPq3Ro0dr8eLFio+P93V1fCYrK0tZWVnO3/v27asuXbro5Zdf1uOPP+7DmnmHw+FQq1at9Morryg0NFQ9e/bUP//5Tz399NMBGaLq69VXX1V6err69Onj66p4zaeffqonn3xSf/zjH5WZmakDBw7o3nvv1eOPP66ZM2d65DUJUX4mPj5eoaGhKioqctleVFSkxMREH9XKe+rT/meeeUZz587Vxx9/rO7du3uymh5l9RiEhISoQ4cOkqSMjAzt3btXc+bMCbgQVdf2Hzx4UIcPH9awYcOc2xwOhyQpLCxM+/btU/v27T1baTdzx+dAo0aNdNVVV+nAgQOeqKJHWWl/UlKSGjVqpNDQUOe2Ll26qLCwUBcuXFB4eLhH6+xu9fkbKCkp0fLly/XYY495sooeZaX9M2fO1OjRo3X77bdLktLT01VSUqKJEyfq97//vUJC3D+DiTlRfiY8PFw9e/bUunXrnNscDofWrVvn8i0zWFlt/7x58/T4449rzZo16tWrlzeq6jHu+htwOBwqLS31RBU9qq7t79y5s7744gvt3LnT+fOrX/1K1113nXbu3KmUlBRvVt8t3PE3UF5eri+++EJJSUmeqqbHWGl/v379dODAAWeAlqR//OMfSkpKCrgAJdXvb2DlypUqLS3Vb37zG09X02OstP/s2bOVglJFqDaeuk2wx6asw7Lly5ebiIgIs3TpUvPll1+aiRMnmri4OOflyqNHjzbTp093li8tLTU7duwwO3bsMElJSWbatGlmx44dZv/+/b5qQr3Utf1z58414eHh5u2333a5vPf06dO+akK91fUYPPnkk+ajjz4yBw8eNF9++aV55plnTFhYmFm8eLGvmlAvdW3/pYLh6ry6HoNHH33UfPjhh+bgwYNm27ZtZsSIESYyMtLs2bPHV02ol7q2/8iRI6Zp06Zm8uTJZt++fWbVqlWmVatW5oknnvBVE+rN6vugf//+Zvjw4d6urtvVtf2zZ882TZs2NW+++ab5+uuvzUcffWTat29vfv3rX3usjoQoP/XCCy+YNm3amPDwcNOnTx/z97//3blv4MCBZuzYsc7fDx06ZCRV+hk4cKD3K+4mdWl/27Ztq2z/7NmzvV9xN6rLMfj9739vOnToYCIjI02zZs1MVlaWWb58uQ9q7T51af+lgiFEGVO3Y3Dfffc5yyYkJJihQ4ea7du3+6DW7lPXv4FNmzaZzMxMExERYdq1a2f+8Ic/mIsXL3q51u5V12Pw1VdfGUnmo48+8nJNPaMu7S8rKzOPPPKIad++vYmMjDQpKSnmrrvuMj/88IPH6mczxlN9XAAAAMGLOVEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAgC48aNU25urq+rATQohCgAHjVu3DjZbDbnT4sWLTRkyBDt2rXL11Vzi5+2reKnf//+Hnu9w4cPy2azaefOnS7b/+u//ktLly712OsCqIwQBcDjhgwZooKCAhUUFGjdunUKCwvTL3/5S19Xy22WLFnibF9BQYHef//9KsuVlZV5rA6xsbGKi4vz2PMDqIwQBcDjIiIilJiYqMTERGVkZGj69Ok6evSojh07puuvv16TJ092KX/s2DGFh4c77+Cempqqxx9/XCNHjlR0dLRat26thQsXujzmueeeU3p6uqKjo5WSkqK77rpLZ86cce7/5ptvNGzYMDVr1kzR0dG68sortXr1aknSDz/8oFGjRqlly5aKiopSx44dtWTJklq3Ly4uztm+xMRENW/e3NljtGLFCg0cOFCRkZFatmyZTpw4oZEjR6p169Zq3Lix0tPT9eabb7o8n8Ph0Lx589ShQwdFRESoTZs2+sMf/iBJSktLkyRdddVVstlsGjRokKTKw3mlpaW655571KpVK0VGRqp///7asmWLc/+nn34qm82mdevWqVevXmrcuLH69u2rffv21brdQENHiALgVWfOnNHrr7+uDh06qEWLFrr99tv1xhtvqLS01Fnm9ddfV+vWrXX99dc7tz399NPq0aOHduzYoenTp+vee+/V2rVrnftDQkK0YMEC7dmzR3/+85+1fv16PfDAA879kyZNUmlpqTZs2KAvvvhCTz31lJo0aSJJmjlzpr788kv9v//3/7R371699NJLio+Pd0t7K+q6d+9e5eTk6Pz58+rZs6c++OAD7d69WxMnTtTo0aO1efNm52NmzJihuXPnOuv1xhtvKCEhQZKc5T7++GMVFBTo3XffrfJ1H3jgAb3zzjv685//rO3bt6tDhw7KycnRyZMnXcr9/ve/17PPPqutW7cqLCxM//Ef/+GWdgMNgsdubQwAxpixY8ea0NBQEx0dbaKjo40kk5SUZLZt22aMMebcuXOmWbNmZsWKFc7HdO/e3TzyyCPO39u2bWuGDBni8rzDhw83N9xwQ7Wvu3LlStOiRQvn7+np6S7P+VPDhg0z48ePt9Q+SSYyMtLZvujoaPPf//3f5tChQ0aSmT9//mWf48YbbzRTp041xhhTXFxsIiIizOLFi6ssW/G8O3bscNk+duxYc9NNNxljjDlz5oxp1KiRWbZsmXP/hQsXTHJyspk3b54xxphPPvnESDIff/yxs8wHH3xgJJlz587V5RAADRY9UQA87rrrrtPOnTu1c+dObd68WTk5Obrhhhv0zTffKDIyUqNHj9Zrr70mSdq+fbt2796tcePGuTxHVlZWpd/37t3r/P3jjz/W4MGD1bp1azVt2lSjR4/WiRMndPbsWUnSPffcoyeeeEL9+vXT7NmzXSa2//a3v9Xy5cuVkZGhBx54QJs2bapT+55//nln+3bu3Kmf//znzn29evVyKVteXq7HH39c6enpat68uZo0aaIPP/xQR44ckSTt3btXpaWlGjx4cJ3q8FMHDx5UWVmZ+vXr59zWqFEj9enTx+WYSVL37t2d/52UlCRJ+v777y2/NtCQEKIAeFx0dLQ6dOigDh06qHfv3vrTn/6kkpISLV68WJJ0++23a+3atfr222+1ZMkSXX/99Wrbtm2tn//w4cP65S9/qe7du+udd97Rtm3bnHOmLly44HyNr7/+WqNHj9YXX3yhXr166YUXXpAkZ6C7//779d1332nw4MGaNm1arV8/MTHR2b4OHTooOjrape0/9fTTT+u//uu/9OCDD+qTTz7Rzp07lZOT46xnVFRUrV/XHRo1auT8b5vNJunHOVkALo8QBcDrbDabQkJCdO7cOUlSenq6evXqpcWLF+uNN96ocl7O3//+90q/d+nSRZK0bds2ORwOPfvss7rmmmvUqVMnfffdd5WeIyUlRXfeeafeffddTZ061RniJKlly5YaO3asXn/9dc2fP1+vvPKKO5vstHHjRt100036zW9+ox49eqhdu3b6xz/+4dzfsWNHRUVFOSfVXyo8PFzSjz1a1Wnfvr3Cw8O1ceNG57aysjJt2bJFXbt2dVNLAIT5ugIAgl9paakKCwsl/Xgl3IsvvqgzZ85o2LBhzjK33367Jk+erOjoaN18882VnmPjxo2aN2+ecnNztXbtWq1cuVIffPCBJKlDhw4qKyvTCy+8oGHDhmnjxo1atGiRy+Pvu+8+3XDDDerUqZN++OEHffLJJ84QNmvWLPXs2VNXXnmlSktLtWrVKuc+d+vYsaPefvttbdq0Sc2aNdNzzz2noqIiZ7iJjIzUgw8+qAceeEDh4eHq16+fjh07pj179mjChAlq1aqVoqKitGbNGv3sZz9TZGSkYmNjXV4jOjpav/3tb/W73/1OzZs3V5s2bTRv3jydPXtWEyZM8Ei7gIaInigAHrdmzRolJSUpKSlJmZmZ2rJli1auXOm8PF+SRo4cqbCwMI0cOVKRkZGVnmPq1KnaunWrrrrqKj3xxBN67rnnlJOTI0nq0aOHnnvuOT311FPq1q2bli1bpjlz5rg8vry8XJMmTVKXLl00ZMgQderUSX/84x8l/di7M2PGDHXv3l0DBgxQaGioli9f7pFj8fDDD+vqq69WTk6OBg0apMTExEorjc+cOVNTp07VrFmz1KVLFw0fPtw5TyksLEwLFizQyy+/rOTkZN10001Vvs7cuXN16623avTo0br66qt14MABffjhh2rWrJlH2gU0RDZjjPF1JQDg8OHDat++vbZs2aKrr77aZV9qaqruu+8+3Xfffb6pHABUgeE8AD5VVlamEydO6OGHH9Y111xTKUABgL9iOA+AT23cuFFJSUnasmVLpXlMvvbkk0+qSZMmVf7ccMMNvq4eAB9jOA8AqnHy5MlKK3xXiIqKUuvWrb1cIwD+hBAFAABgAcN5AAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAv+P954bCRQ5cHEAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWQ9JREFUeJzt3XtcVHX+P/DXcJtBlEFEYDAUVLyjmCii5iXZMF1Xqv2F5Hpbkq00M3ULTUW7YXZzLTfKSvdRmmS51lddyiDXVQgJJRUvq4apxaCIzAgiKvP5/eFyagSBgRnOmZnX8/GYh8457znzng8D857P53M+RyWEECAiIiIiq3OROwEiIiIiR8VCi4iIiMhGWGgRERER2QgLLSIiIiIbYaFFREREZCMstIiIiIhshIUWERERkY2w0CIiIiKyERZaRERERDbCQouInN7y5cuhUqmaFKtSqbB8+XKb5jN69GiMHj1asccjoqZjoUVEirFhwwaoVCrp5ubmhk6dOmHGjBn4+eef5U5PcUJCQszay9/fH/fccw/++c9/WuX4V69exfLly7F7926rHI/IGbHQIiLFef755/HRRx8hLS0N999/Pz7++GOMGjUK165ds8nzLVmyBFVVVTY5tq1FRETgo48+wkcffYSFCxfil19+wYMPPoi0tLQWH/vq1atYsWIFCy2iFnCTOwEiotvdf//9iIyMBAA8+uij8PPzwyuvvIIvv/wSDz/8sNWfz83NDW5u9vnnsFOnTvjTn/4k3Z82bRq6d++ON998E4899piMmRERwB4tIrID99xzDwDg9OnTZtuPHz+OP/7xj/D19YVGo0FkZCS+/PJLs5gbN25gxYoVCAsLg0ajQYcOHTBixAjs2rVLiqlvjlZ1dTWefvppdOzYEe3atcMf/vAHnD9/vk5uM2bMQEhISJ3t9R1z/fr1uPfee+Hv7w+1Wo0+ffrgnXfesagtGhMYGIjevXujqKiowbgLFy4gMTERAQEB0Gg0GDBgAP7xj39I+8+cOYOOHTsCAFasWCENT9p6fhqRo7HPr3BE5FTOnDkDAGjfvr20rbCwEMOHD0enTp2QnJwMLy8vfPrpp4iLi8Pnn3+OBx54AMCtgic1NRWPPvoohgwZAqPRiO+//x4HDhzA7373uzs+56OPPoqPP/4YjzzyCIYNG4asrCxMmDChRa/jnXfeQd++ffGHP/wBbm5u+L//+z888cQTMJlMmD17douOXevGjRs4d+4cOnTocMeYqqoqjB49GqdOncKcOXMQGhqKLVu2YMaMGSgvL8dTTz2Fjh074p133sHjjz+OBx54AA8++CAAoH///lbJk8hpCCIihVi/fr0AIL755htx8eJFce7cOfHZZ5+Jjh07CrVaLc6dOyfFjh07VoSHh4tr165J20wmkxg2bJgICwuTtg0YMEBMmDChwedNSUkRv/1zWFBQIACIJ554wizukUceEQBESkqKtG369OmiS5cujR5TCCGuXr1aJy42NlZ07drVbNuoUaPEqFGjGsxZCCG6dOki7rvvPnHx4kVx8eJF8cMPP4jJkycLAOLJJ5+84/FWr14tAIiPP/5Y2nb9+nURHR0t2rZtK4xGoxBCiIsXL9Z5vURkGQ4dEpHixMTEoGPHjggODsYf//hHeHl54csvv8Rdd90FACgrK0NWVhYefvhhXLlyBaWlpSgtLcWlS5cQGxuLkydPSmcp+vj4oLCwECdPnmzy8+/cuRMAMHfuXLPt8+bNa9Hr8vT0lP5vMBhQWlqKUaNG4ccff4TBYGjWMb/++mt07NgRHTt2xIABA7BlyxZMnToVr7zyyh0fs3PnTgQGBiIhIUHa5u7ujrlz56KiogL//ve/m5ULEdXFoUMiUpy1a9eiR48eMBgM+PDDD7Fnzx6o1Wpp/6lTpyCEwNKlS7F06dJ6j3HhwgV06tQJzz//PCZNmoQePXqgX79+GDduHKZOndrgENhPP/0EFxcXdOvWzWx7z549W/S69u3bh5SUFOTk5ODq1atm+wwGA7RarcXHjIqKwosvvgiVSoU2bdqgd+/e8PHxafAxP/30E8LCwuDiYv5du3fv3tJ+IrIOFlpEpDhDhgyRzjqMi4vDiBEj8Mgjj+DEiRNo27YtTCYTAGDhwoWIjY2t9xjdu3cHAIwcORKnT5/GF198ga+//hrvv/8+3nzzTaSlpeHRRx9tca53Wui0pqbG7P7p06cxduxY9OrVC2+88QaCg4Ph4eGBnTt34s0335Rek6X8/PwQExPTrMcSke2x0CIiRXN1dUVqairGjBmDt99+G8nJyejatSuAW8NdTSkyfH19MXPmTMycORMVFRUYOXIkli9ffsdCq0uXLjCZTDh9+rRZL9aJEyfqxLZv3x7l5eV1tt/eK/R///d/qK6uxpdffonOnTtL27/99ttG87e2Ll264NChQzCZTGa9WsePH5f2A3cuIomo6ThHi4gUb/To0RgyZAhWr16Na9euwd/fH6NHj8a7776L4uLiOvEXL16U/n/p0iWzfW3btkX37t1RXV19x+e7//77AQBr1qwx27569eo6sd26dYPBYMChQ4ekbcXFxXVWZ3d1dQUACCGkbQaDAevXr79jHrYyfvx46PV6pKenS9tu3ryJt956C23btsWoUaMAAG3atAGAegtJImoa9mgRkV3461//iv/3//4fNmzYgMceewxr167FiBEjEB4ejlmzZqFr164oKSlBTk4Ozp8/jx9++AEA0KdPH4wePRqDBg2Cr68vvv/+e3z22WeYM2fOHZ8rIiICCQkJ+Pvf/w6DwYBhw4YhMzMTp06dqhM7efJkPPvss3jggQcwd+5cXL16Fe+88w569OiBAwcOSHH33XcfPDw8MHHiRPzlL39BRUUF1q1bB39//3qLRVtKSkrCu+++ixkzZiA/Px8hISH47LPPsG/fPqxevRrt2rUDcGvyfp8+fZCeno4ePXrA19cX/fr1Q79+/Vo1XyK7Jvdpj0REtWqXd8jLy6uzr6amRnTr1k1069ZN3Lx5UwghxOnTp8W0adNEYGCgcHd3F506dRK///3vxWeffSY97sUXXxRDhgwRPj4+wtPTU/Tq1Uu89NJL4vr161JMfUsxVFVViblz54oOHToILy8vMXHiRHHu3Ll6lzv4+uuvRb9+/YSHh4fo2bOn+Pjjj+s95pdffin69+8vNBqNCAkJEa+88or48MMPBQBRVFQkxVmyvENjS1fc6XglJSVi5syZws/PT3h4eIjw8HCxfv36Oo/Nzs4WgwYNEh4eHlzqgagZVEL8ph+biIiIiKyGc7SIiIiIbISFFhEREZGNsNAiIiIishEWWkREREQ2wkKLiIiIyEZYaBERERHZCBcslZHJZMIvv/yCdu3a8VIXREREdkIIgStXriAoKKjOxdlvx0JLRr/88guCg4PlToOIiIia4dy5c7jrrrsajGGhJaPay1ycO3cO3t7eMmdDRERETWE0GhEcHCx9jjeEhZaMaocLvb29WWgRERHZmaZM++FkeCIiIiIbYaFFREREZCMstIiIiIhshHO07EBNTQ1u3Lghdxp2wd3dHa6urnKnQUREBICFlqIJIaDX61FeXi53KnbFx8cHgYGBXJuMiIhkx0JLwWqLLH9/f7Rp04aFQyOEELh69SouXLgAANDpdDJnREREzo6FlkLV1NRIRVaHDh3kTsdueHp6AgAuXLgAf39/DiMSEZGsFDEZfu3atQgJCYFGo0FUVBT279/fYPyWLVvQq1cvaDQahIeHY+fOnWb7hRBYtmwZdDodPD09ERMTg5MnT5rFlJWVYcqUKfD29oaPjw8SExNRUVEh7T9x4gTGjBmDgIAAaDQadO3aFUuWLKkzV6qxXJqr9nnatGljleM5k9o247w2IiKSm+yFVnp6OubPn4+UlBQcOHAAAwYMQGxsrDT8c7vs7GwkJCQgMTERBw8eRFxcHOLi4nDkyBEpZtWqVVizZg3S0tKQm5sLLy8vxMbG4tq1a1LMlClTUFhYiF27dmH79u3Ys2cPkpKSpP3u7u6YNm0avv76a5w4cQKrV6/GunXrkJKSYlEuLcXhQsuxzYiISDGEzIYMGSJmz54t3a+pqRFBQUEiNTW13viHH35YTJgwwWxbVFSU+Mtf/iKEEMJkMonAwEDx6quvSvvLy8uFWq0Wn3zyiRBCiKNHjwoAIi8vT4r517/+JVQqlfj555/vmOvTTz8tRowY0eRcGmMwGAQAYTAY6uyrqqoSR48eFVVVVU06Fv2KbUdERLbU0Of37WTt0bp+/Try8/MRExMjbXNxcUFMTAxycnLqfUxOTo5ZPADExsZK8UVFRdDr9WYxWq0WUVFRUkxOTg58fHwQGRkpxcTExMDFxQW5ubn1Pu+pU6eQkZGBUaNGNTmX21VXV8NoNJrdiIiIyHHJWmiVlpaipqYGAQEBZtsDAgKg1+vrfYxer28wvvbfxmL8/f3N9ru5ucHX17fO8w4bNgwajQZhYWG455578Pzzzzc5l9ulpqZCq9VKt+Dg4HrjHIFer8eTTz6Jrl27Qq1WIzg4GBMnTkRmZiYAICQkBKtXr67zuOXLlyMiIqLeY27evBkqlQpxcXG2S5yIiJqs2FCF7NOlKDZUyZ2KYsk+R0vp0tPTceDAAWzatAk7duzAa6+91uxjLVq0CAaDQbqdO3fOipkqx5kzZzBo0CBkZWXh1VdfxeHDh5GRkYExY8Zg9uzZzT7mwoULcc8991g5WyIiao70vLMYvjILj6zLxfCVWUjPOyt3Sook6/IOfn5+cHV1RUlJidn2kpISBAYG1vuYwMDABuNr/y0pKTFbR6mkpETqKQkMDKwz2f7mzZsoKyur87y1vU59+vRBTU0NkpKSsGDBAri6ujaay+3UajXUanW9+xzJE088AZVKhf3798PLy0va3rdvX/z5z3+2+Hg1NTWYMmUKVqxYgf/85z9cwJWISGbFhios2noYJnHrvkkAi7cewcgeHaHTesqbnMLI2qPl4eGBQYMGScNJAGAymZCZmYno6Oh6HxMdHW0WDwC7du2S4kNDQxEYGGgWYzQakZubK8VER0ejvLwc+fn5UkxWVhZMJhOioqLumK/JZMKNGzdgMpmalIuStFb3bllZGTIyMjB79myzIquWj4+Pxcd8/vnn4e/vj8TERCtkSERELVVUWikVWbVqhMCZ0qvyJKRgsi9YOn/+fEyfPh2RkZEYMmQIVq9ejcrKSsycORMAMG3aNHTq1AmpqakAgKeeegqjRo3C66+/jgkTJmDz5s34/vvv8d577wG4dWr/vHnz8OKLLyIsLAyhoaFYunQpgoKCpLk9vXv3xrhx4zBr1iykpaXhxo0bmDNnDiZPnoygoCAAwMaNG+Hu7o7w8HCo1Wp8//33WLRoEeLj4+Hu7t6kXJQiPe+s9M3DRQWkPhiO+MGdbfJcp06dghACvXr1ajT22WefxZIlS8y2Xb9+HX369JHu7927Fx988AEKCgqsnSoRETVTqJ8XXFQwK7ZcVSqE+HHtx9vJXmjFx8fj4sWLWLZsGfR6PSIiIpCRkSFNMj979ixcXH7teBs2bBg2bdqEJUuWYPHixQgLC8O2bdvQr18/KeaZZ55BZWUlkpKSUF5ejhEjRiAjIwMajUaK2bhxI+bMmYOxY8fCxcUFDz30ENasWSPtd3NzwyuvvIL//ve/EEKgS5cumDNnDp5++mmLcpFba3fvCiEaD/qfv/71r5gxY4bZtjVr1mDPnj0AgCtXrmDq1KlYt24d/Pz8rJkmERG1gE7ridQHw7F46xHUCAFXlQovP9iPw4b1UAlLPhnJqoxGI7RaLQwGA7y9vc32Xbt2DUVFRQgNDTUrEC2VfboUj6yru2TFJ7OGIrqb9S/tU1ZWBj8/P7z00ktYtGjRHeNCQkIwb948zJs3z2z78uXLsW3bNhQUFKCgoAADBw40u4xO7bCti4sLTpw4gW7dutU5trXajoiIGlZsqMKZ0qsI8WvjVEVWQ5/ft+NZhw6utnv3t2zZvevr64vY2FisXbsWlZWVdfZbMpG9V69eOHz4sFR0FRQU4A9/+APGjBmDgoICh14eg4jIHui0noju1sGpiixLsdBycLXdu67/uyxNa3Tvrl27FjU1NRgyZAg+//xznDx5EseOHcOaNWssOlFAo9GgX79+ZjcfHx+0a9cO/fr1g4eHh81eAxERkTXIPkeLbC9+cGeM7NGx1bp3u3btigMHDuCll17CggULUFxcjI4dO2LQoEF45513bPrcRERESsI5WjJqjTlazohtR0REtsQ5WkREREQKwEKLiIiIyEZYaBERERHZCAstIiIiIhthoaVwPFfBcmwzIiJSChZaClV7PcWrV3mBTkvVtlltGxIREcmF62gplKurK3x8fHDhwgUAQJs2baBSqRp5lHMTQuDq1au4cOECfHx8zC7dQ0REJAcWWgoWGBgIAFKxRU3j4+MjtR0REZGcWGgpmEqlgk6ng7+/P27cuCFrLheuXMPPl6vQqb0n/NspdxFQd3d39mQREZFisNCyA66urrIWD+l5Z7Fo62GYBOCiAlIfDEf84M6y5UNERGQvOBmeGlRsqJKKLAAwCWDx1iMoNlTJmxgREZEdYKFFDSoqrZSKrFo1QuBMKc+GJCIiagwLLWpQqJ8XXG472dFVpUKIXxt5EiIiIrIjLLSoQTqtJ1IfDIfr/5aWcFWp8PKD/aDTesqcGRERkfJxMjw1Kn5wZ4zs0RFnSq8ixK8NiywiIqImYqFFTaLTerLAIiIishCHDomIiIhshIUWEVEjig1VyD5dymVNiOyMEn53OXRIRNQALthLZJ+U8rvLHi0no4TqnshecMFeIvukpN9d9mg5EaVU90T2oqEFe3lyCJFyKel3lz1aTkJJ1T2RveCCvUT2SUm/uyy0nAQvpUNkOS7YS2SflPS7y6FDJ1Fb3f+22OI3c6LGccFeIvuklN9d9mg5CSVV90T2Rqf1RHS3Dvx9IbIzSvjdZY+WE1FKdU9EROQsWGg5GV5Kh4iIqPVw6JCIiIjIRlhoEREREdkICy0iIiIiG2GhRURERGQjLLSIiIiIbISFFhEREZGNsNAiIiIih1RsqEL26VJZr+vLdbSIiIjI4aTnncWirYdhEoCLCkh9MBzxgzu3eh7s0SIiIiKHUmyokoos4NZ1fhdvPSJLzxYLLSIiInIoRaWVUpFVq0YInCm92uq5sNAiIiIihxLq5wUXlfk2V5UKIX5tWj0XFlpERE5ICZOEiWxFp/VE6oPhcFXdqrZcVSq8/GA/Wa71y8nwRERORimThIlsKX5wZ4zs0RFnSq8ixK+NLEUWwB4tIiKnoqRJwkS2ptN6IrpbB9mKLICFFsmEwxZE8lDSJGEiZ6CIQmvt2rUICQmBRqNBVFQU9u/f32D8li1b0KtXL2g0GoSHh2Pnzp1m+4UQWLZsGXQ6HTw9PRETE4OTJ0+axZSVlWHKlCnw9vaGj48PEhMTUVFRIe3fvXs3Jk2aBJ1OBy8vL0RERGDjxo1mx9iwYQNUKpXZTaPRtLA1HF963lkMX5mFR9blYvjKLKTnnZU7JSKnoaRJwkTOQPZCKz09HfPnz0dKSgoOHDiAAQMGIDY2FhcuXKg3Pjs7GwkJCUhMTMTBgwcRFxeHuLg4HDlyRIpZtWoV1qxZg7S0NOTm5sLLywuxsbG4du2aFDNlyhQUFhZi165d2L59O/bs2YOkpCSz5+nfvz8+//xzHDp0CDNnzsS0adOwfft2s3y8vb1RXFws3X766Scrt5Bj4bAFkbyUNEmYyBmohBCi8TDbiYqKwuDBg/H2228DAEwmE4KDg/Hkk08iOTm5Tnx8fDwqKyvNCp6hQ4ciIiICaWlpEEIgKCgICxYswMKFCwEABoMBAQEB2LBhAyZPnoxjx46hT58+yMvLQ2RkJAAgIyMD48ePx/nz5xEUFFRvrhMmTEBAQAA+/PBDALd6tObNm4fy8vJmvXaj0QitVguDwQBvb+9mHcPeZJ8uxSPrcuts/2TWUER36yBDRkTOqdhQJfskYSJ7Zcnnt6w9WtevX0d+fj5iYmKkbS4uLoiJiUFOTk69j8nJyTGLB4DY2FgpvqioCHq93ixGq9UiKipKisnJyYGPj49UZAFATEwMXFxckJtbtwioZTAY4Ovra7atoqICXbp0QXBwMCZNmoTCwsI7Pr66uhpGo9Hs5mw4bEGkDEqYJEzkDGQttEpLS1FTU4OAgACz7QEBAdDr9fU+Rq/XNxhf+29jMf7+/mb73dzc4Ovre8fn/fTTT5GXl4eZM2dK23r27IkPP/wQX3zxBT7++GOYTCYMGzYM58+fr/cYqamp0Gq10i04OLjeOEfGYQsiInImXEerCb799lvMnDkT69atQ9++faXt0dHRiI6Olu4PGzYMvXv3xrvvvosXXnihznEWLVqE+fPnS/eNRqNTFltKWduEiIjI1mQttPz8/ODq6oqSkhKz7SUlJQgMDKz3MYGBgQ3G1/5bUlICnU5nFhMRESHF3D7Z/ubNmygrK6vzvP/+978xceJEvPnmm5g2bVqDr8fd3R0DBw7EqVOn6t2vVquhVqsbPIaz0Gk9WWAREZHDk3Xo0MPDA4MGDUJmZqa0zWQyITMz06yn6Leio6PN4gFg165dUnxoaCgCAwPNYoxGI3Jzc6WY6OholJeXIz8/X4rJysqCyWRCVFSUtG337t2YMGECXnnlFbMzEu+kpqYGhw8fNivwiIiIyIkJmW3evFmo1WqxYcMGcfToUZGUlCR8fHyEXq8XQggxdepUkZycLMXv27dPuLm5iddee00cO3ZMpKSkCHd3d3H48GEpZuXKlcLHx0d88cUX4tChQ2LSpEkiNDRUVFVVSTHjxo0TAwcOFLm5uWLv3r0iLCxMJCQkSPuzsrJEmzZtxKJFi0RxcbF0u3TpkhSzYsUK8dVXX4nTp0+L/Px8MXnyZKHRaERhYWGTXrvBYBAAhMFgaHb7ERERUeuy5PNb9kJLCCHeeust0blzZ+Hh4SGGDBkivvvuO2nfqFGjxPTp083iP/30U9GjRw/h4eEh+vbtK3bs2GG232QyiaVLl4qAgAChVqvF2LFjxYkTJ8xiLl26JBISEkTbtm2Ft7e3mDlzprhy5Yq0f/r06QJAnduoUaOkmHnz5kl5BwQEiPHjx4sDBw40+XXbstD6pfyq2Hfqovil/KrVj01EROTMLPn8ln0dLWdmq3W0eMFYIiIi27GbdbTI+rjyOhERkXKw0HIwvGAsERGRcrDQcjBceZ2IiEg5WGg5GK68TkREpBxcGd4BceV1IiIiZWCh5aC48joREZH8OHRIREREZCMstIiIWqDYUIXs06VcQoWI6sWhQyKiZuLiwETUGPZoERE1AxcHJqKmYKFFRNQMXByYiJqChRYRUTNwcWAiagoWWtQknPBLZI6LAxNRU3AyPDWKE36J6sfFgYmoMezRogZxwi9Rw3RaT0R368Aii4jqxUKLGsQJv0RERM3HQosaxAm/REREzcdCixrECb9ERETNx8nw1ChO+CUiImoeFlrUJDqtJwssIoUqNlShqLQSoX5e/D0lUhgWWkREdozLrxApG+doERHZKS6/QqR8LLSIiOwUl18hUj4WWkREdorLrxApHwstIiI7xeVXiJSPk+GJiOwYl18hUjYWWkREdo7LrxApF4cOiYiIiGyEhRYRERGRjbDQIiIiIrIRFlpERERENsJCi4iIiMhGWGgRERER2QgLLSIiIiIbYaFFREREZCMstIiIiIhshIUWERERkY2w0CIiIiKyERZaRERERDbCQouIiIjIRlhoEREREdkICy0iIiIiG2GhRURERGQjLLSISNGKDVXIPl2KYkOV3KkQEVnMTe4EiIjuJD3vLBZtPQyTAFxUQOqD4Ygf3FnutIiImkwRPVpr165FSEgINBoNoqKisH///gbjt2zZgl69ekGj0SA8PBw7d+402y+EwLJly6DT6eDp6YmYmBicPHnSLKasrAxTpkyBt7c3fHx8kJiYiIqKCmn/7t27MWnSJOh0Onh5eSEiIgIbN260OBciap5iQ5VUZAGASQCLtx5hzxYR2RXZC6309HTMnz8fKSkpOHDgAAYMGIDY2FhcuHCh3vjs7GwkJCQgMTERBw8eRFxcHOLi4nDkyBEpZtWqVVizZg3S0tKQm5sLLy8vxMbG4tq1a1LMlClTUFhYiF27dmH79u3Ys2cPkpKSzJ6nf//++Pzzz3Ho0CHMnDkT06ZNw/bt2y3KhYiap6i0UiqyatUIgTOlV+VJiIioGVRCCNF4mO1ERUVh8ODBePvttwEAJpMJwcHBePLJJ5GcnFwnPj4+HpWVlWYFz9ChQxEREYG0tDQIIRAUFIQFCxZg4cKFAACDwYCAgABs2LABkydPxrFjx9CnTx/k5eUhMjISAJCRkYHx48fj/PnzCAoKqjfXCRMmICAgAB9++GGTcmmM0WiEVquFwWCAt7d3E1uMyDkUG6owfGWWWbHlqlJhb/IY6LSe8iVGRE7Pks9vWXu0rl+/jvz8fMTExEjbXFxcEBMTg5ycnHofk5OTYxYPALGxsVJ8UVER9Hq9WYxWq0VUVJQUk5OTAx8fH6nIAoCYmBi4uLggNzf3jvkaDAb4+vo2ORciaj6d1hOpD4bDVaUCcKvIevnBfiyyiMiuyDoZvrS0FDU1NQgICDDbHhAQgOPHj9f7GL1eX2+8Xq+X9tduayjG39/fbL+bmxt8fX2lmNt9+umnyMvLw7vvvtvkXG5XXV2N6upq6b7RaKw3johuiR/cGSN7dMSZ0qsI8WvDIouI7I7sc7TswbfffouZM2di3bp16Nu3b7OPk5qaCq1WK92Cg4OtmCWRY9JpPRHdrQOLLCKyS7IWWn5+fnB1dUVJSYnZ9pKSEgQGBtb7mMDAwAbja/9tLOb2yfY3b95EWVlZnef997//jYkTJ+LNN9/EtGnTLMrldosWLYLBYJBu586dqzfOGXBtJCIicgayFloeHh4YNGgQMjMzpW0mkwmZmZmIjo6u9zHR0dFm8QCwa9cuKT40NBSBgYFmMUajEbm5uVJMdHQ0ysvLkZ+fL8VkZWXBZDIhKipK2rZ7925MmDABr7zyitkZiU3N5XZqtRre3t5mN2eUnncWw1dm4ZF1uRi+MgvpeWflTomIiMg2hMw2b94s1Gq12LBhgzh69KhISkoSPj4+Qq/XCyGEmDp1qkhOTpbi9+3bJ9zc3MRrr70mjh07JlJSUoS7u7s4fPiwFLNy5Urh4+MjvvjiC3Ho0CExadIkERoaKqqqqqSYcePGiYEDB4rc3Fyxd+9eERYWJhISEqT9WVlZok2bNmLRokWiuLhYul26dMmiXBpiMBgEAGEwGJrdfvbml/KrIjR5u+jy7K+3rsk7xC/lV+VOjYiIqEks+fyWvdASQoi33npLdO7cWXh4eIghQ4aI7777Tto3atQoMX36dLP4Tz/9VPTo0UN4eHiIvn37ih07dpjtN5lMYunSpSIgIECo1WoxduxYceLECbOYS5cuiYSEBNG2bVvh7e0tZs6cKa5cuSLtnz59ugBQ5zZq1CiLcmmIMxZa+05dNCuyam/Zp0rlTo2I/ueX8qti36mL/AJEdAeWfH7Lvo6WM3PGdbS4NhKRsvGyR0SNs5t1tMj5cG0kIuXiZY8cA082UhZeVJpaHddGIlKmhi57xN9T++CoPZLFhioUlVYi1M/L7t6LLLRIFjqtp939shA5ulA/L7ioUGdoP8SvjXxJUZPdqUdyZI+Odv331t6LRw4dEhERAA7t2ztHvBC7Iwxns0eLiIgkHNq3X47YI+kIw9ns0SIiIjO87JF9csQeydri8bfsrXhkjxYREZGDcLQeydricfHWI6gRwi6LRxZaREREDsTRTjay9+KRhRYREREpmj0Xj5yjRURERA5JCYu3skeLiIiIHI5S1t9ijxYRERE5FCWtv8VCi2xGCV22RETkfJS0eCuHDskmlNJlS0REzkdJi7eyR4usTkldtkRE5HyUtHgre7TI6hzhkglERGTflLL+FgstsjolddkSEZHzUsL6Wxw6dDKtMUFdSV22RCQ/nhhDzow9Wk6kNSeoK6XLlojkxRNjyNmxR8tJNGWCurW/deq0noju1oFFFpGT4okxROzRchqNTVDnt04isjaeGEPEHi2nUTtB/bdqJ6jzWycR2UJDf3eInAULLSfR0AR1Ja2gS0SOgyfGEHHo0KncaYK6sy7HUGyoQlFpJUL9vPiHn8hGeGIMOTsWWk6mvjVFar91Lt56BDVCOMW3Ts5JI0ei9C8NSljLiEguKiGEaDyMbMFoNEKr1cJgMMDb21vudFBsqHKKb53FhioMX5lVpwdvb/IYh37d5Jj4pYGo9Vny+c05WiRxluUYOCeNHAVPZCFSPhZa5HR4JhQ5Cn5pIFI+FlrkdHgmFDkKfmkgUj5OhienxDOhyBE444ksRPaGhRY5LZ4JRY6AXxqIlI2FFhGRneOXBiLl4hwtIiIiIhthoUVEd1RsqEL26VIuF0BE1EwcOiSienEhTCKilmOPFhHVwYUwiYisg4UWEdXBhTCJiKyDhRYR1cGFMImIrIOFFhHVwdXziYiswyqT4YuKihAcHAw3N86tJ3IUXAiTiBpTbKhCUWklQv28+DfiDqxSGfXs2RM//PADevfubY3DEZFCcCFMIroTnpncNBYVWg8++GC922tqajB37ly0a9cOALB169aWZ0ZERE6LPSXKdqczk0f26Mif120sKrS2bduGkSNHIjQ0tM6+tm3bQqvVWi0xIiJyTuwpUb6GzkxmoWXOokJr06ZN+Otf/4rp06dj5syZ0vaPP/4YL730Evr06WP1BImIyHmwp8Q+1J6Z/Ntii2cm18+isw4nT56M//znP/jggw/w0EMP4fLly7bKi4iInBDXcLMPPDO56SyeDB8SEoI9e/ZgxYoVGDBgANatWweVStX4A4mIiBrBnhL7wTOTm6ZZ62i5uLhgxYoV2LRpEx5//HHU1NQ0O4G1a9ciJCQEGo0GUVFR2L9/f4PxW7ZsQa9evaDRaBAeHo6dO3ea7RdCYNmyZdDpdPD09ERMTAxOnjxpFlNWVoYpU6bA29sbPj4+SExMREVFhbT/2rVrmDFjBsLDw+Hm5oa4uLg6eezevRsqlarOTa/XN7stiIicHXtK7ItO64nobh3482lAixYsHTFiBA4dOoQDBw6gW7duFj8+PT0d8+fPR0pKCg4cOIABAwYgNjYWFy5cqDc+OzsbCQkJSExMxMGDBxEXF4e4uDgcOXJEilm1ahXWrFmDtLQ05ObmwsvLC7Gxsbh27ZoUM2XKFBQWFmLXrl3Yvn079uzZg6SkJGl/TU0NPD09MXfuXMTExDT4Gk6cOIHi4mLp5u/vb3E7EBHRr+IHd8be5DH4ZNZQ7E0ew4nwZN+EjIYMGSJmz54t3a+pqRFBQUEiNTW13viHH35YTJgwwWxbVFSU+Mtf/iKEEMJkMonAwEDx6quvSvvLy8uFWq0Wn3zyiRBCiKNHjwoAIi8vT4r517/+JVQqlfj555/rPOf06dPFpEmT6mz/9ttvBQBx+fLlJr/e2xkMBgFAGAyGZh+DiIiIWpcln98WzdEaOHBgk+ZjHThwoNGY69evIz8/H4sWLZK2ubi4ICYmBjk5OfU+JicnB/PnzzfbFhsbi23btgG4tUK9Xq8364XSarWIiopCTk4OJk+ejJycHPj4+CAyMlKKiYmJgYuLC3Jzc/HAAw80mvtvRUREoLq6Gv369cPy5csxfPjwO8ZWV1ejurpaum80Gi16LiIiIrIvFhVav52rJIRAamoqHnvsMfj6+lr8xKWlpaipqUFAQIDZ9oCAABw/frzex+j1+nrja+dF1f7bWMztw3tubm7w9fW1aH6VTqdDWloaIiMjUV1djffffx+jR49Gbm4u7r777nofk5qaihUrVjT5OYiIiMi+WVRopaSkmN1//fXX8dRTT6Fr165WTcoe9OzZEz179pTuDxs2DKdPn8abb76Jjz76qN7HLFq0yKxHzmg0Ijg42Oa5EhERkTxaNBm+Jfz8/ODq6oqSkhKz7SUlJQgMDKz3MYGBgQ3G1/7bWMztk+1v3ryJsrKyOz5vUw0ZMgSnTp264361Wg1vb2+zGxERETku2QotDw8PDBo0CJmZmdI2k8mEzMxMREdH1/uY6Ohos3gA2LVrlxQfGhqKwMBAsxij0Yjc3FwpJjo6GuXl5cjPz5disrKyYDKZEBUV1aLXVFBQAJ1O16JjEBERkeOweMFSa5o/fz6mT5+OyMhIDBkyBKtXr0ZlZaV0eZ9p06ahU6dOSE1NBQA89dRTGDVqFF5//XVMmDABmzdvxvfff4/33nsPAKBSqTBv3jy8+OKLCAsLQ2hoKJYuXYqgoCBpflnv3r0xbtw4zJo1C2lpabhx4wbmzJmDyZMnIygoSMrt6NGjuH79OsrKynDlyhUUFBQAuDX5HQBWr16N0NBQ9O3bF9euXcP777+PrKwsfP31163TeERERKR4FhVaa9asMbt/8+ZNbNiwAX5+fmbb586d26TjxcfH4+LFi1i2bBn0ej0iIiKQkZEhTWY/e/YsXFx+7XQbNmwYNm3ahCVLlmDx4sUICwvDtm3b0K9fPynmmWeeQWVlJZKSklBeXo4RI0YgIyMDGo1Gitm4cSPmzJmDsWPHwsXFBQ899FCd1zZ+/Hj89NNP0v2BAwcCuHUSAHDrrMkFCxbg559/Rps2bdC/f3988803GDNmTJNeO5EtFBuqUFRaiVA/Ly4gSESkACpRWzk0QWhoaOMHVKnw448/tigpZ2E0GqHVamEwGDhfi1osPe+sdDFeFxWQ+mA4F3okIrIBSz6/LerRKioqalFiRGQbxYYqqcgCbl0nbvHWIxjZoyN7toiIZGTRZPisrCz06dOn3oU2DQYD+vbti//85z9WS46ImqaotNLsIrwAUCMEzpRelSchIiICYGGhtXr1asyaNavebjKtVou//OUveOONN6yWHBE1TaifF1xuu2iDq0qFEL828iREREQALCy0fvjhB4wbN+6O+++77z6zZROIqHXotJ5IfTAcrv+7RJarSoWXH+zHYUMiIplZNEerpKQE7u7udz6YmxsuXrzY4qSIyHLxgztjZI+OOFN6FSF+bVhkEREpgEWFVqdOnXDkyBF079693v2HDh3igp1EMtJpPVlgEREpiEVDh+PHj8fSpUtx7dq1OvuqqqqQkpKC3//+91ZLjoiIiMieWbSOVklJCe6++264urpizpw50kWVjx8/jrVr16KmpgYHDhyQFhylhnEdLSIiIvtjs3W0AgICkJ2djccffxyLFi2SVklXqVSIjY3F2rVrWWQRERER/Y/F1zrs0qULdu7cicuXL+PUqVMQQiAsLAzt27e3RX5EREREdqvZF5Vu3749Bg8ebM1ciIiIiByKRZPhiYiIiKjpWGgRERER2QgLLSIiIiIbYaFFREREZCMstIiIiIhshIUWERERkY2w0CIiIlkUG6qQfboUxYYquVOhZuLPsHHNXkeLiIioudLzzmLR1sMwCcBFBaQ+GI74wZ3lTosswJ9h07BHi4iIWlWxoUr6gAYAkwAWbz3CXhE7wp9h07HQIiKiVlVUWil9QNeqEQJnSq/KkxBZjD/DpmOhRURErSrUzwsuKvNtrioVQvzayJMQWYw/w6ZjoUVERK1Kp/VE6oPhcFXd+qR2Vanw8oP9oNN6ypwZNRV/hk2nEkKIxsPIFoxGI7RaLQwGA7y9veVOh4ioVRUbqnCm9CpC/NrwA9pOOevP0JLPb551SEREstBpPZ3qw9kR8WfYOA4dEhGR3eC6TWRv2KNFRER2ges2kT1ijxYRESke120ie8VCi4gsxuEbam1ct4nsFYcOicgiHL4hOdSu2/TbYovrNpE9YI8WETUZh29ILly3iewVe7SIqMkaGr7hB17TFRuqUFRaiVA/L7abBeIHd8bIHh2dct0ma+F7r/Wx0CKiJuPwTctx6LVluG5T8/G9Jw8OHRJRk3H4pmU49Epy4XtPPuzRIiKLcPim+Tj0SnLhe08+LLSIyGIcvmkeDr2SXPjekw+HDomIWgmHXkkufO/JRyWEEI2HkS1YcvVvInIcxYYqDr2SLPjesw5LPr85dEhE1Mo49Epy4Xuv9XHokIiIHAIvDUVKxB4tIiKye1wjipSKPVpERGTXuEYUKRkLLSIismsNrRFFJDcWWkREZNdq14j6La4RRUrBQouIqAU4AVt+XCOKlIyT4YmImokTsJWDl4ZyDMWGKhSVViLUz8thfoay92itXbsWISEh0Gg0iIqKwv79+xuM37JlC3r16gWNRoPw8HDs3LnTbL8QAsuWLYNOp4OnpydiYmJw8uRJs5iysjJMmTIF3t7e8PHxQWJiIioqKqT9165dw4wZMxAeHg43NzfExcXVm8vu3btx9913Q61Wo3v37tiwYUOz2oCI7A8nYCuPTuuJ6G4dHOYD2tmk553F8JVZeGRdLoavzEJ63lm5U7IKWQut9PR0zJ8/HykpKThw4AAGDBiA2NhYXLhwod747OxsJCQkIDExEQcPHkRcXBzi4uJw5MgRKWbVqlVYs2YN0tLSkJubCy8vL8TGxuLatWtSzJQpU1BYWIhdu3Zh+/bt2LNnD5KSkqT9NTU18PT0xNy5cxETE1NvLkVFRZgwYQLGjBmDgoICzJs3D48++ii++uorK7UOESkZJ2ATWY8jf3GR9RI8UVFRGDx4MN5++20AgMlkQnBwMJ588kkkJyfXiY+Pj0dlZSW2b98ubRs6dCgiIiKQlpYGIQSCgoKwYMECLFy4EABgMBgQEBCADRs2YPLkyTh27Bj69OmDvLw8REZGAgAyMjIwfvx4nD9/HkFBQWbPOWPGDJSXl2Pbtm1m25999lns2LHDrMibPHkyysvLkZGR0aTXz0vwWMYRu5TJfhUbqjB8ZVadi/TuTR7D9yeRhbJPl+KRdbl1tn8yayiiu3WQIaOGWfL5LVuP1vXr15Gfn2/WY+Ti4oKYmBjk5OTU+5icnJw6PUyxsbFSfFFREfR6vVmMVqtFVFSUFJOTkwMfHx+pyAKAmJgYuLi4IDe37g/5ThrLpT7V1dUwGo1mN2oaR+1SJvvFCdhE1uPIZ47KNhm+tLQUNTU1CAgIMNseEBCA48eP1/sYvV5fb7xer5f2125rKMbf399sv5ubG3x9faWYprhTLkajEVVVVfD0rPvHNjU1FStWrGjyc9Atd+pSHtmjIz/USFacgE1kHbVfXBZvPYIaIRzqiwvPOmxFixYtwvz586X7RqMRwcHBMmZkHxqaC+MIv4Rk33iRXiLrcNQvLrIVWn5+fnB1dUVJSYnZ9pKSEgQGBtb7mMDAwAbja/8tKSmBTqczi4mIiJBibp9sf/PmTZSVld3xeS3Jxdvbu97eLABQq9VQq9VNfg66pbZL+fa5MI7QpUx0O85FJGfmiF9cZJuj5eHhgUGDBiEzM1PaZjKZkJmZiejo6HofEx0dbRYPALt27ZLiQ0NDERgYaBZjNBqRm5srxURHR6O8vBz5+flSTFZWFkwmE6Kiopqcf2O5kPVwLgw5C85F/BUXgiVHIevQ4fz58zF9+nRERkZiyJAhWL16NSorKzFz5kwAwLRp09CpUyekpqYCAJ566imMGjUKr7/+OiZMmIDNmzfj+++/x3vvvQcAUKlUmDdvHl588UWEhYUhNDQUS5cuRVBQkLQWVu/evTFu3DjMmjULaWlpuHHjBubMmYPJkyebnXF49OhRXL9+HWVlZbhy5QoKCgoAQOoZe+yxx/D222/jmWeewZ///GdkZWXh008/xY4dO1qn8ZyMo3YpE9XiXMRfcSFYciSyFlrx8fG4ePEili1bBr1ej4iICGRkZEiTzM+ePQsXl1873YYNG4ZNmzZhyZIlWLx4McLCwrBt2zb069dPinnmmWdQWVmJpKQklJeXY8SIEcjIyIBGo5FiNm7ciDlz5mDs2LFwcXHBQw89hDVr1pjlNn78ePz000/S/YEDBwK4tSAqcKv3bMeOHXj66afxt7/9DXfddRfef/99xMbGWr+hCIBjdikT1eJcxFtYcJKjkXUdLWfHdbSIqBbX5brF3tZTIudkF+toERHRrzgX8RZHXk+JnBOXdyAiUgjORXTs9ZTIObHQIiJSEM5FZMFJjoWFFhERKU5rFZxct4xsjYUWERE5JS4jQa2Bk+GJiMjp3GkZCS6QStbGQouIiJxOQ+uWEVkTCy0iInI6XEaCWgsLLSIicjpct4xaCyfDExGRU+IyEtQaWGgREZHT4rplZGscOiQiIiKyERZaRERERDbCQouIiIjIRlhoEREREdkICy0iIiIiG2GhRURE5ECKDVXIPl3KywkpBJd3ICIichC8ULbysEeLiGTHb+BELccLZSsTe7SISFb8Bk5kHQ1dKJuLssqHPVpEJBt+AyeyHl4oW5lYaBE5OTmH7Rr6Bk5Elqm9UHbtB7sLwAtlKwCHDomcmNzDdrXfwH9bbPEbOFELqQCI//1LsmOPFpGTUsKwXe03cFfVrU8EV5WK38CJmkkJv9NUF3u0iJyUUibOxg/ujJE9OuJM6VWE+LVhkUXUTEr5nSZzLLSInJSShu10Wk9+EBC1kJJ+p+lXHDokclJKGrbjOlpELaek32n6lUoIIRoPI1swGo3QarUwGAzw9vaWOx1yUsWGKlmH7eSekE9NV2yoQlFpJUL9vPjhrWBy/047A0s+vzl0SOTk5By2u9Pk3ZE9OvIDQmFYENsPDsUrC4cOiUg2XEfLPvBsNqLmY6FFRLLhStb2gQUxUfOx0CIi2XDyrn1gQUzUfJyjRUSy4jpayldbEC/eegQ1QrAgJrIACy0iJ6D0s8U4eVf5WBATNQ8LLSIHx7PFyFpYEBNZjnO0iBwYzxYjIpIXCy0iB8azxciZ8AoDpEQcOiRSKGvMq+K1z8hZcIiclIo9WkQKlJ53FsNXZuGRdbkYvjIL6Xlnm3UcLp9AzoBD5KRk7NEiUhhrX5aGZ4uRo2toiJzvd5IbCy0ihbHFhwbPFiNHxiFyUjIOHRIpDFfhJrJM7RB57e+NiwocIifFYKFFpDCcV0XW4mxn4Qlh/i+REqiE4FtSLkajEVqtFgaDAd7e3nKnowhKX8G8NRUbquxyXhV/hsrgTGfhFRuqMHxlVp2hw73JY/geJJuw5PObc7RIMZzpg6Ep7HFeFX+GymDtEyqskY8ti29OhiclU8TQ4dq1axESEgKNRoOoqCjs37+/wfgtW7agV69e0Gg0CA8Px86dO832CyGwbNky6HQ6eHp6IiYmBidPnjSLKSsrw5QpU+Dt7Q0fHx8kJiaioqLCLObQoUO45557oNFoEBwcjFWrVpnt37BhA1QqldlNo9G0oCWcF0/Ptn/8GSqHkhaqtdZSJQ3hvEZSMtkLrfT0dMyfPx8pKSk4cOAABgwYgNjYWFy4cKHe+OzsbCQkJCAxMREHDx5EXFwc4uLicOTIESlm1apVWLNmDdLS0pCbmwsvLy/Exsbi2rVrUsyUKVNQWFiIXbt2Yfv27dizZw+SkpKk/UajEffddx+6dOmC/Px8vPrqq1i+fDnee+89s3y8vb1RXFws3X766Scrt5BzUNIHAzUPf4bKoZTCo7WKb85rJCWTfY5WVFQUBg8ejLfffhsAYDKZEBwcjCeffBLJycl14uPj41FZWYnt27dL24YOHYqIiAikpaVBCIGgoCAsWLAACxcuBAAYDAYEBARgw4YNmDx5Mo4dO4Y+ffogLy8PkZGRAICMjAyMHz8e58+fR1BQEN555x0899xz0Ov18PDwAAAkJydj27ZtOH78OIBbPVrz5s1DeXl5s14752j9inMs7B9/hsqSnncWi7ceQY0QUuHR2sO42adL8ci63DrbP5k1FNHdOlj9+ex1XiPZH0s+v2Xt0bp+/Try8/MRExMjbXNxcUFMTAxycnLqfUxOTo5ZPADExsZK8UVFRdDr9WYxWq0WUVFRUkxOTg58fHykIgsAYmJi4OLigtzcXClm5MiRUpFV+zwnTpzA5cuXpW0VFRXo0qULgoODMWnSJBQWFt7x9VZXV8NoNJrd6BZ+I7V//BkqS/zgztibPAafzBqKvcljZJkr19o9azqtJ6K7deB7jhRF1snwpaWlqKmpQUBAgNn2gIAAqdfodnq9vt54vV4v7a/d1lCMv7+/2X43Nzf4+vqaxYSGhtY5Ru2+9u3bo2fPnvjwww/Rv39/GAwGvPbaaxg2bBgKCwtx11131ck9NTUVK1asuHODODmuYG7/+DNUFrlPqKgtvm/vWeP7gpwJzzpsgejoaERHR0v3hw0bht69e+Pdd9/FCy+8UCd+0aJFmD9/vnTfaDQiODi4VXK1F3J/MFDL8WdIv8Xim5ydrIWWn58fXF1dUVJSYra9pKQEgYGB9T4mMDCwwfjaf0tKSqDT6cxiIiIipJjbJ9vfvHkTZWVlZsep73l++xy3c3d3x8CBA3Hq1Kl696vVaqjV6nr3ERE5KhbfrYtr2SmLrHO0PDw8MGjQIGRmZkrbTCYTMjMzzXqKfis6OtosHgB27dolxYeGhiIwMNAsxmg0Ijc3V4qJjo5GeXk58vPzpZisrCyYTCZERUVJMXv27MGNGzfMnqdnz55o3759vbnV1NTg8OHDZgUeERFRa2mN5TTIQkJmmzdvFmq1WmzYsEEcPXpUJCUlCR8fH6HX64UQQkydOlUkJydL8fv27RNubm7itddeE8eOHRMpKSnC3d1dHD58WIpZuXKl8PHxEV988YU4dOiQmDRpkggNDRVVVVVSzLhx48TAgQNFbm6u2Lt3rwgLCxMJCQnS/vLychEQECCmTp0qjhw5IjZv3izatGkj3n33XSlmxYoV4quvvhKnT58W+fn5YvLkyUKj0YjCwsImvXaDwSAACIPB0Oz2IyIiEkKIX8qvitDk7aLLs7/euibvEL+UX5U7NYdjyee37HO04uPjcfHiRSxbtgx6vR4RERHIyMiQJp6fPXsWLi6/drwNGzYMmzZtwpIlS7B48WKEhYVh27Zt6NevnxTzzDPPoLKyEklJSSgvL8eIESOQkZFhtpjoxo0bMWfOHIwdOxYuLi546KGHsGbNGmm/VqvF119/jdmzZ2PQoEHw8/PDsmXLzNbaunz5MmbNmiVNjh80aBCys7PRp08fWzYZ1YNd5UTk7LhCvjLJvo6WM+M6WtbhbJd9YVFJRPXhWnatx27W0SJqKWe77AvnXxDRnXAtO2WSfeiQqCVa0lVubz1DSrtQMBEpD5fTUB4WWmTXaleevr2rvLGVp+1xuJHzL4ioKbichrJw6JDsWnO6yu11uLEllzMpNlQh+3Sp4l8jtR6+J4haB3u0yO5Z2lVurz1Dzb2ciT323pFt8T1B1HpYaJFDsKSrvLnDjUpgaVHJeV10O74niFoXhw7J6dj7mTk6rSeiu3VoUr4N9d6Rc+J7gqh1sUeLnJKznJljz713ZBt8TxC1LvZokdOypGfIXtl7711zcaL3nTnre4JILlwZXkZcGZ5aS7GhyuF772pxonfTONN7gsjaLPn85tAhkRNwlnV1ONG76ZzlPUEkNw4dEpHD4ERvIlIaFlpEMmpoLhHnGVmuJYu6EhHZAocOiWTS0FwizjNqnuYu6kpEZCucDC8jToZ3XsWGKgxfmVXnFPu9yWMA4I77WDA0DSd6E5EtcTI8kcI1NJdIQNjlJYKUhBO9iUgpWGgRyaCxRSO5oCQRkWPgZHgiGTS0aCQXlCQichycoyUjztGihuYScZ4REZEycY4WkY0UG6pQVFqJUD8vqxQ/Dc0l4jwjIiL7x0KLqIm45AIREVmKc7SImuBOl3bhYqJERNQQFlpETcBLuxARUXOw0CJqAl7ahYiImoOFFlETcMkFIiJqDk6GJ2qi+MGdMbJHR0UvuWDtsyKJiKhlWGgRWUDJSy7wrEgiIuXh0CGRA+BZkUREysRCi8gB8KxI51ZsqEL26VIW1kQKxKFDIgfQ2EWqyXFxyJhI2dijReQAeFakc+KQMZHysUeLSKEsPYPQHs6KJOtqaMiYP38iZWChRaRAzR0OUvJZkWR9HDImUj4OHZJDs8dJwhwOoqbikDGR8rFHixyWvU4S5nAQWYJDxkTKxh4tckj23CvE6yqSpXRaT0R368Aii0iBWGiRolhrqM+e15XicBARkePg0CEphjWH+pQ0Sbg51x/kcBARkWNgjxYpgrWH+pTSK5SedxbDV2bhkXW5GL4yC+l5Z5v8WA4HOSd7PIGDHBvfky3DHi1SBFtMAG9ur1BzeqDudJz6iseRPTqyeKJ62esJHOS4+J5sORZapAi2GuqzdF0pa/5R4dmDZAlHLsyt9eWFWpcjvydbE4cOSRGUMNRn7eFLnj1IlrDnEzga0pLhc5KXo74nWxt7tEgx5J4Abu0eqNricfHWI6gRgmcPUoOUdAKHtbBHxL454ntSDiy0SFHkvISMLf6oyF08kv1wxMKcw+ctJ+ewqyO+J+XAQovof3RaTzwwsBM+P/CztC1uYFCL/6jw+oPUVI5WmLNHpGWUMBHd0d6TcuAcLaL/KTZU4Z8Hfzbbtu3gL02eo8VToMkaHGlZDyXMvbRXtrq6RXP+TjnSe1IOiii01q5di5CQEGg0GkRFRWH//v0Nxm/ZsgW9evWCRqNBeHg4du7cabZfCIFly5ZBp9PB09MTMTExOHnypFlMWVkZpkyZAm9vb/j4+CAxMREVFRVmMYcOHcI999wDjUaD4OBgrFq1yuJcyH60ZOInJ/zS7Vh43xI/uDP2Jo/BJ7OGYm/yGC4N0ES2mIjOv1PykL3QSk9Px/z585GSkoIDBw5gwIABiI2NxYULF+qNz87ORkJCAhITE3Hw4EHExcUhLi4OR44ckWJWrVqFNWvWIC0tDbm5ufDy8kJsbCyuXbsmxUyZMgWFhYXYtWsXtm/fjj179iApKUnabzQacd9996FLly7Iz8/Hq6++iuXLl+O9996zKBeyH809S9Cer6tItsEPNHPsEbGctc9a5t8p+aiEEKLxMNuJiorC4MGD8fbbbwMATCYTgoOD8eSTTyI5OblOfHx8PCorK7F9+3Zp29ChQxEREYG0tDQIIRAUFIQFCxZg4cKFAACDwYCAgABs2LABkydPxrFjx9CnTx/k5eUhMjISAJCRkYHx48fj/PnzCAoKwjvvvIPnnnsOer0eHh4eAIDk5GRs27YNx48fb1IujTEajdBqtTAYDPD29m5mC5I1peedrTPxs7Fv4NmnS/HIutw62z+ZNRTR3TrYKlVSqGJDFYavzKozL2lv8hgWGmSR5vw9uhP+nbIuSz6/Ze3Run79OvLz8xETEyNtc3FxQUxMDHJycup9TE5Ojlk8AMTGxkrxRUVF0Ov1ZjFarRZRUVFSTE5ODnx8fKQiCwBiYmLg4uKC3NxcKWbkyJFSkVX7PCdOnMDly5eblMvtqqurYTQazW6kLM0Z5uB6WfRbXHuIrMWaw678OyUfWQut0tJS1NTUICAgwGx7QEAA9Hp9vY/R6/UNxtf+21iMv7+/2X43Nzf4+vqaxdR3jN8+R2O53C41NRVarVa6BQcH1xtH8rJ0mIMTfum3+IFG1mStYVf+nZIPl3doRYsWLcL8+fOl+0ajkcWWg+Ap0FSLaw+RUvHvlDxkLbT8/Pzg6uqKkpISs+0lJSUIDAys9zGBgYENxtf+W1JSAp1OZxYTEREhxdw+2f7mzZsoKyszO059z/Pb52gsl9up1Wqo1ep695H943pZVIsfaKRU/DvV+mQdOvTw8MCgQYOQmZkpbTOZTMjMzER0dHS9j4mOjjaLB4Bdu3ZJ8aGhoQgMDDSLMRqNyM3NlWKio6NRXl6O/Px8KSYrKwsmkwlRUVFSzJ49e3Djxg2z5+nZsyfat2/fpFyIyHnxTDsiAgAImW3evFmo1WqxYcMGcfToUZGUlCR8fHyEXq8XQggxdepUkZycLMXv27dPuLm5iddee00cO3ZMpKSkCHd3d3H48GEpZuXKlcLHx0d88cUX4tChQ2LSpEkiNDRUVFVVSTHjxo0TAwcOFLm5uWLv3r0iLCxMJCQkSPvLy8tFQECAmDp1qjhy5IjYvHmzaNOmjXj33XctyqUhBoNBABAGg6HZ7UdERESty5LPb9kLLSGEeOutt0Tnzp2Fh4eHGDJkiPjuu++kfaNGjRLTp083i//0009Fjx49hIeHh+jbt6/YsWOH2X6TySSWLl0qAgIChFqtFmPHjhUnTpwwi7l06ZJISEgQbdu2Fd7e3mLmzJniypUrZjE//PCDGDFihFCr1aJTp05i5cqVdXJvLJeGsNAiIiKyP5Z8fsu+jpYz4zpaRERE9sdu1tEiIiIicmQstIiIiIhshIUWERERkY2w0CIiIiKyERZaRERERDbCQouIiIjIRlhoEREREdkICy0iIiIiG5H1otLOrnatWKPRKHMmRERE1FS1n9tNWfOdhZaMrly5AgAIDg6WORMiIiKy1JUrV6DVahuM4SV4ZGQymfDLL7+gXbt2UKlUFj/eaDQiODgY586dc+pL+LAd2AYA26AW24FtALANatmqHYQQuHLlCoKCguDi0vAsLPZoycjFxQV33XVXi4/j7e3t1L9ItdgObAOAbVCL7cA2ANgGtWzRDo31ZNXiZHgiIiIiG2GhRURERGQjLLTsmFqtRkpKCtRqtdypyIrtwDYA2Aa12A5sA4BtUEsJ7cDJ8EREREQ2wh4tIiIiIhthoUVERERkIyy0iIiIiGyEhRYRERGRjbDQUri1a9ciJCQEGo0GUVFR2L9//x1jCwsL8dBDDyEkJAQqlQqrV69uvURtyJI2WLduHe655x60b98e7du3R0xMTIPx9sSSdti6dSsiIyPh4+MDLy8vRERE4KOPPmrFbG3Dkjb4rc2bN0OlUiEuLs62CbYSS9phw4YNUKlUZjeNRtOK2dqGpe+F8vJyzJ49GzqdDmq1Gj169MDOnTtbKVvbsKQNRo8eXed9oFKpMGHChFbM2DYsfS+sXr0aPXv2hKenJ4KDg/H000/j2rVrtktQkGJt3rxZeHh4iA8//FAUFhaKWbNmCR8fH1FSUlJv/P79+8XChQvFJ598IgIDA8Wbb77ZugnbgKVt8Mgjj4i1a9eKgwcPimPHjokZM2YIrVYrzp8/38qZW5el7fDtt9+KrVu3iqNHj4pTp06J1atXC1dXV5GRkdHKmVuPpW1Qq6ioSHTq1Encc889YtKkSa2TrA1Z2g7r168X3t7eori4WLrp9fpWztq6LG2D6upqERkZKcaPHy/27t0rioqKxO7du0VBQUErZ249lrbBpUuXzN4DR44cEa6urmL9+vWtm7iVWdoOGzduFGq1WmzcuFEUFRWJr776Suh0OvH000/bLEcWWgo2ZMgQMXv2bOl+TU2NCAoKEqmpqY0+tkuXLg5RaLWkDYQQ4ubNm6Jdu3biH//4h61SbBUtbQchhBg4cKBYsmSJLdJrFc1pg5s3b4phw4aJ999/X0yfPt0hCi1L22H9+vVCq9W2Unatw9I2eOedd0TXrl3F9evXWytFm2vp34Q333xTtGvXTlRUVNgqxVZhaTvMnj1b3HvvvWbb5s+fL4YPH26zHDl0qFDXr19Hfn4+YmJipG0uLi6IiYlBTk6OjJm1Hmu0wdWrV3Hjxg34+vraKk2ba2k7CCGQmZmJEydOYOTIkbZM1Waa2wbPP/88/P39kZiY2Bpp2lxz26GiogJdunRBcHAwJk2ahMLCwtZI1yaa0wZffvkloqOjMXv2bAQEBKBfv354+eWXUVNT01ppW5U1/jZ+8MEHmDx5Mry8vGyVps01px2GDRuG/Px8aXjxxx9/xM6dOzF+/Hib5cmLSitUaWkpampqEBAQYLY9ICAAx48flymr1mWNNnj22WcRFBRk9otob5rbDgaDAZ06dUJ1dTVcXV3x97//Hb/73e9sna5NNKcN9u7diw8++AAFBQWtkGHraE479OzZEx9++CH69+8Pg8GA1157DcOGDUNhYaFVLmrf2prTBj/++COysrIwZcoU7Ny5E6dOncITTzyBGzduICUlpTXStqqW/m3cv38/jhw5gg8++MBWKbaK5rTDI488gtLSUowYMQJCCNy8eROPPfYYFi9ebLM8WWiRw1q5ciU2b96M3bt3O8TkX0u1a9cOBQUFqKioQGZmJubPn4+uXbti9OjRcqdmc1euXMHUqVOxbt06+Pn5yZ2OrKKjoxEdHS3dHzZsGHr37o13330XL7zwgoyZtR6TyQR/f3+89957cHV1xaBBg/Dzzz/j1VdftctCq6U++OADhIeHY8iQIXKn0up2796Nl19+GX//+98RFRWFU6dO4amnnsILL7yApUuX2uQ5WWgplJ+fH1xdXVFSUmK2vaSkBIGBgTJl1bpa0gavvfYaVq5ciW+++Qb9+/e3ZZo219x2cHFxQffu3QEAEREROHbsGFJTU+2y0LK0DU6fPo0zZ85g4sSJ0jaTyQQAcHNzw4kTJ9CtWzfbJm0D1vi74O7ujoEDB+LUqVO2SNHmmtMGOp0O7u7ucHV1lbb17t0ber0e169fh4eHh01ztraWvA8qKyuxefNmPP/887ZMsVU0px2WLl2KqVOn4tFHHwUAhIeHo7KyEklJSXjuuefg4mL9GVWco6VQHh4eGDRoEDIzM6VtJpMJmZmZZt9OHVlz22DVqlV44YUXkJGRgcjIyNZI1aas9V4wmUyorq62RYo2Z2kb9OrVC4cPH0ZBQYF0+8Mf/oAxY8agoKAAwcHBrZm+1VjjvVBTU4PDhw9Dp9PZKk2bak4bDB8+HKdOnZKKbQD473//C51OZ3dFFtCy98GWLVtQXV2NP/3pT7ZO0+aa0w5Xr16tU0zVFuDCVpd+ttk0e2qxzZs3C7VaLTZs2CCOHj0qkpKShI+Pj3Rq9tSpU0VycrIUX11dLQ4ePCgOHjwodDqdWLhwoTh48KA4efKkXC+hxSxtg5UrVwoPDw/x2WefmZ3KfOXKFbleglVY2g4vv/yy+Prrr8Xp06fF0aNHxWuvvSbc3NzEunXr5HoJLWZpG9zOUc46tLQdVqxYIb766itx+vRpkZ+fLyZPniw0Go0oLCyU6yW0mKVtcPbsWdGuXTsxZ84cceLECbF9+3bh7+8vXnzxRbleQos19/dhxIgRIj4+vrXTtRlL2yElJUW0a9dOfPLJJ+LHH38UX3/9tejWrZt4+OGHbZYjCy2Fe+utt0Tnzp2Fh4eHGDJkiPjuu++kfaNGjRLTp0+X7hcVFQkAdW6jRo1q/cStyJI26NKlS71tkJKS0vqJW5kl7fDcc8+J7t27C41GI9q3by+io6PF5s2bZcjauixpg9s5SqElhGXtMG/ePCk2ICBAjB8/Xhw4cECGrK3L0vdCdna2iIqKEmq1WnTt2lW89NJL4ubNm62ctXVZ2gbHjx8XAMTXX3/dypnaliXtcOPGDbF8+XLRrVs3odFoRHBwsHjiiSfE5cuXbZafSghb9ZUREREROTfO0SIiIiKyERZaRERERDbCQouIiIjIRlhoEREREdkICy0iIiIiG2GhRURERGQjLLSIiIiIbISFFhGRk5gxYwbi4uLkToPIqbDQIiLZzZgxAyqVSrp16NAB48aNw6FDh+ROzSp++9pqbyNGjLDZ8505cwYqlQoFBQVm2//2t79hw4YNNnteIqqLhRYRKcK4ceNQXFyM4uJiZGZmws3NDb///e/lTstq1q9fL72+4uJifPnll/XG3bhxw2Y5aLVa+Pj42Oz4RFQXCy0iUgS1Wo3AwEAEBgYiIiICycnJOHfuHC5evIh7770Xc+bMMYu/ePEiPDw8kJmZCQAICQnBCy+8gISEBHh5eaFTp05Yu3at2WPeeOMNhIeHw8vLC8HBwXjiiSdQUVEh7f/pp58wceJEtG/fHl5eXujbty927twJALh8+TKmTJmCjh07wtPTE2FhYVi/fn2TX5+Pj4/0+gIDA+Hr6yv1PKWnp2PUqFHQaDTYuHEjLl26hISEBHTq1Alt2rRBeHg4PvnkE7PjmUwmrFq1Ct27d4darUbnzp3x0ksvAQBCQ0MBAAMHDoRKpcLo0aMB1B06rK6uxty5c+Hv7w+NRoMRI0YgLy9P2r97926oVCpkZmYiMjISbdq0wbBhw3DixIkmv24iZ8dCi4gUp6KiAh9//DG6d++ODh064NFHH8WmTZtQXV0txXz88cfo1KkT7r33Xmnbq6++igEDBuDgwYNITk7GU089hV27dkn7XVxcsGbNGhQWFuIf//gHsrKy8Mwzz0j7Z8+ejerqauzZsweHDx/GK6+8grZt2wIAli5diqNHj+Jf//oXjh07hnfeeQd+fn5Web21uR47dgyxsbG4du0aBg0ahB07duDIkSNISkrC1KlTsX//fukxixYtwsqVK6W8Nm3ahICAAACQ4r755hsUFxdj69at9T7vM888g88//xz/+Mc/cODAAXTv3h2xsbEoKyszi3vuuefw+uuv4/vvv4ebmxv+/Oc/W+V1EzkFm12umoioiaZPny5cXV2Fl5eX8PLyEgCETqcT+fn5QgghqqqqRPv27UV6err0mP79+4vly5dL97t06SLGjRtndtz4+Hhx//333/F5t2zZIjp06CDdDw8PNzvmb02cOFHMnDmzWa8PgNBoNNLr8/LyEv/85z9FUVGRACBWr17d6DEmTJggFixYIIQQwmg0CrVaLdatW1dvbO1xDx48aLZ9+vTpYtKkSUIIISoqKoS7u7vYuHGjtP/69esiKChIrFq1SgghxLfffisAiG+++UaK2bFjhwAgqqqqLGkCIqfFHi0iUoQxY8agoKAABQUF2L9/P2JjY3H//ffjp59+gkajwdSpU/Hhhx8CAA4cOIAjR45gxowZZseIjo6uc//YsWPS/W+++QZjx45Fp06d0K5dO0ydOhWXLl3C1atXAQBz587Fiy++iOHDhyMlJcVsMv7jjz+OzZs3IyIiAs888wyys7Mten1vvvmm9PoKCgrwu9/9TtoXGRlpFltTU4MXXngB4eHh8PX1Rdu2bfHVV1/h7NmzAIBjx46huroaY8eOtSiH3zp9+jRu3LiB4cOHS9vc3d0xZMgQszYDgP79+0v/1+l0AIALFy40+7mJnAkLLSJSBC8vL3Tv3h3du3fH4MGD8f7776OyshLr1q0DADz66KPYtWsXzp8/j/Xr1+Pee+9Fly5dmnz8M2fO4Pe//z369++Pzz//HPn5+dIcruvXr0vP8eOPP2Lq1Kk4fPgwIiMj8dZbbwGAVPQ9/fTT+OWXXzB27FgsXLiwyc8fGBgovb7u3bvDy8vL7LX/1quvvoq//e1vePbZZ/Htt9+ioKAAsbGxUp6enp5Nfl5rcHd3l/6vUqkA3JojRkSNY6FFRIqkUqng4uKCqqoqAEB4eDgiIyOxbt06bNq0qd55Qt99912d+7179wYA5Ofnw2Qy4fXXX8fQoUPRo0cP/PLLL3WOERwcjMceewxbt27FggULpEIPADp27Ijp06fj448/xurVq/Hee+9Z8yVL9u3bh0mTJuFPf/oTBgwYgK5du+K///2vtD8sLAyenp7SiQC38/DwAHCrZ+xOunXrBg8PD+zbt0/aduPGDeTl5aFPnz5WeiVE5CZ3AkREwK0z4PR6PYBbZ/i9/fbbqKiowMSJE6WYRx99FHPmzIGXlxceeOCBOsfYt28fVq1ahbi4OOzatQtbtmzBjh07AADdu3fHjRs38NZbb2HixInYt28f0tLSzB4/b9483H///ejRowcuX76Mb7/9VirUli1bhkGDBqFv376orq7G9u3bpX3WFhYWhs8++wzZ2dlo37493njjDZSUlEgFkEajwbPPPotnnnkGHh4eGD58OC5evIjCwkIkJibC398fnp6eyMjIwF133QWNRgOtVmv2HF5eXnj88cfx17/+Fb6+vujcuTNWrVqFq1evIjEx0Savi8gZsUeLiBQhIyMDOp0OOp0OUVFRyMvLw5YtW6SlCQAgISEBbm5uSEhIgEajqXOMBQsW4Pvvv8fAgQPx4osv4o033kBsbCwAYMCAAXjjjTfwyiuvoF+/fti4cSNSU1PNHl9TU4PZs2ejd+/eGDduHHr06IG///3vAG71Ei1atAj9+/fHyJEj4erqis2bN9ukLZYsWYK7774bsbGxGD16NAIDA+us6L506VIsWLAAy5YtQ+/evREfHy/Nm3Jzc8OaNWvw7rvvIigoCJMmTar3eVauXImHHnoIU6dOxd13341Tp07hq6++Qvv27W3yuoickUoIIeROgoioKc6cOYNu3bohLy8Pd999t9m+kJAQzJs3D/PmzZMnOSKienDokIgU78aNG7h06RKWLFmCoUOH1imyiIiUikOHRKR4+/btg06nQ15eXp15VXJ7+eWX0bZt23pv999/v9zpEZHMOHRIRNQCZWVldVZSr+Xp6YlOnTq1ckZEpCQstIiIiIhshEOHRERERDbCQouIiIjIRlhoEREREdkICy0iIiIiG2GhRURERGQjLLSIiIiIbISFFhEREZGNsNAiIiIispH/D9TbgXdAQbdmAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_45.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQMklEQVR4nO3dfVhU1aI/8O8MCIMoICKvBwUVUhOlRBDfsOSEaSa93BA9vl2Sc05aetBjWCq9WJhleS2S8qT2nEzI9HQ85qUM7HpLQkTNNDU1TD0CisSggIDM+v3hj30beRE2M7P3zHw/zzOPsveambU2M8x31lp7bY0QQoCIiIiIOkSrdAWIiIiIrBFDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQR2bQXXngBGo2mXWU1Gg1eeOEFs9Zn3LhxGDdunGofj4jajyGKiCxi8+bN0Gg00s3R0REBAQGYPXs2/v3vfytdPdUJCgoyOl7e3t4YM2YM/vGPf5jk8WtqavDCCy/g66+/NsnjEdkjhigisqiXXnoJf//735GZmYkHH3wQH330EWJiYnDjxg2zPN+yZctQW1trlsc2t/DwcPz973/H3//+dyxevBiXLl3Co48+iszMzE4/dk1NDV588UWGKKJOcFS6AkRkXx588EFEREQAAJ588kl4eXnhtddew86dO/HEE0+Y/PkcHR3h6Gidf+oCAgLwhz/8Qfp55syZ6N+/P9566y386U9/UrBmRASwJ4qIFDZmzBgAwNmzZ422nzx5Eo8//jg8PT2h0+kQERGBnTt3GpVpaGjAiy++iJCQEOh0OvTs2ROjR4/Gnj17pDItzYmqq6vDX/7yF/Tq1Qvdu3fHww8/jIsXLzar2+zZsxEUFNRse0uPuWnTJtx///3w9vaGs7MzBg0ahPXr13foWNyJr68vBg4ciOLi4jbLXb58GUlJSfDx8YFOp8PQoUPx4YcfSvvPnTuHXr16AQBefPFFacjQ3PPBiGyNdX49IyKbce7cOQBAjx49pG3Hjx/HqFGjEBAQgNTUVLi6uuKTTz5BfHw8tm/fjkceeQTArTCTnp6OJ598EpGRkaiqqsLBgwdx6NAh/P73v2/1OZ988kl89NFHmDZtGkaOHIm8vDxMmjSpU+1Yv3497r77bjz88MNwdHTEv/71Lzz11FMwGAyYN29epx67SUNDAy5cuICePXu2Wqa2thbjxo3DmTNnMH/+fAQHB2Pbtm2YPXs2KisrsWDBAvTq1Qvr16/Hn//8ZzzyyCN49NFHAQBDhgwxST2J7IYgIrKATZs2CQDiq6++EleuXBEXLlwQn376qejVq5dwdnYWFy5ckMqOHz9ehIWFiRs3bkjbDAaDGDlypAgJCZG2DR06VEyaNKnN501LSxO//VN35MgRAUA89dRTRuWmTZsmAIi0tDRp26xZs0SfPn3u+JhCCFFTU9OsXFxcnOjbt6/RtpiYGBETE9NmnYUQok+fPuKBBx4QV65cEVeuXBHff/+9mDp1qgAgnn766VYfb+3atQKA+Oijj6Rt9fX1Ijo6WnTr1k1UVVUJIYS4cuVKs/YSUcdwOI+ILCo2Nha9evVCYGAgHn/8cbi6umLnzp343e9+BwCoqKhAXl4ennjiCVy7dg3l5eUoLy/H1atXERcXh9OnT0tn83l4eOD48eM4ffp0u59/9+7dAIBnnnnGaPvChQs71S4XFxfp/3q9HuXl5YiJicHPP/8MvV4v6zG//PJL9OrVC7169cLQoUOxbds2zJgxA6+99lqr99m9ezd8fX2RmJgobevSpQueeeYZXL9+Hf/zP/8jqy5E1ByH84jIojIyMhAaGgq9Xo+NGzdi3759cHZ2lvafOXMGQggsX74cy5cvb/ExLl++jICAALz00kuYMmUKQkNDMXjwYEyYMAEzZsxoc1jql19+gVarRb9+/Yy233XXXZ1q17fffou0tDTk5+ejpqbGaJ9er4e7u3uHHzMqKgorV66ERqNB165dMXDgQHh4eLR5n19++QUhISHQao2/Iw8cOFDaT0SmwRBFRBYVGRkpnZ0XHx+P0aNHY9q0aTh16hS6desGg8EAAFi8eDHi4uJafIz+/fsDAMaOHYuzZ8/in//8J7788kv87W9/w1tvvYXMzEw8+eSTna5ra4t0NjY2Gv189uxZjB8/HgMGDMCbb76JwMBAODk5Yffu3XjrrbekNnWUl5cXYmNjZd2XiMyPIYqIFOPg4ID09HTcd999eOedd5Camoq+ffsCuDUE1Z4A4enpiTlz5mDOnDm4fv06xo4dixdeeKHVENWnTx8YDAacPXvWqPfp1KlTzcr26NEDlZWVzbbf3pvzr3/9C3V1ddi5cyd69+4tbd+7d+8d629qffr0wdGjR2EwGIx6o06ePCntB1oPiETUfpwTRUSKGjduHCIjI7F27VrcuHED3t7eGDduHN577z2UlJQ0K3/lyhXp/1evXjXa161bN/Tv3x91dXWtPt+DDz4IAFi3bp3R9rVr1zYr269fP+j1ehw9elTaVlJS0mzVcAcHBwCAEELaptfrsWnTplbrYS4TJ05EaWkpsrOzpW03b97E22+/jW7duiEmJgYA0LVrVwBoMSQSUfuwJ4qIFPfXv/4V//Ef/4HNmzfjT3/6EzIyMjB69GiEhYVh7ty56Nu3L8rKypCfn4+LFy/i+++/BwAMGjQI48aNw7Bhw+Dp6YmDBw/i008/xfz581t9rvDwcCQmJuLdd9+FXq/HyJEjkZubizNnzjQrO3XqVDz77LN45JFH8Mwzz6Cmpgbr169HaGgoDh06JJV74IEH4OTkhMmTJ+OPf/wjrl+/jg0bNsDb27vFIGhOycnJeO+99zB79mwUFRUhKCgIn376Kb799lusXbsW3bt3B3BrIvygQYOQnZ2N0NBQeHp6YvDgwRg8eLBF60tk1ZQ+PZCI7EPTEgeFhYXN9jU2Nop+/fqJfv36iZs3bwohhDh79qyYOXOm8PX1FV26dBEBAQHioYceEp9++ql0v5UrV4rIyEjh4eEhXFxcxIABA8Qrr7wi6uvrpTItLUdQW1srnnnmGdGzZ0/h6uoqJk+eLC5cuNDiKf9ffvmlGDx4sHBychJ33XWX+Oijj1p8zJ07d4ohQ4YInU4ngoKCxGuvvSY2btwoAIji4mKpXEeWOLjT8g2tPV5ZWZmYM2eO8PLyEk5OTiIsLExs2rSp2X33798vhg0bJpycnLjcAZEMGiF+0/9MRERERO3COVFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycDFNs3IYDDg0qVL6N69Oy+xQEREZCWEELh27Rr8/f2bXcz7txiizOjSpUsIDAxUuhpEREQkw4ULF/C73/2u1f0MUWbUdHmFCxcuwM3NTeHaEBERUXtUVVUhMDBQ+hxvDUOUGTUN4bm5uTFEERERWZk7TcXhxHIiIiIiGRiiiIiIiGRgiCIiIiKSgXOiFNbY2IiGhgalq6EKXbp0gYODg9LVICIiaheGKIUIIVBaWorKykqlq6IqHh4e8PX15bpaRESkegxRCmkKUN7e3ujatavdhwYhBGpqanD58mUAgJ+fn8I1IiIiahtDlAIaGxulANWzZ0+lq6MaLi4uAIDLly/D29ubQ3tERKRqnFiugKY5UF27dlW4JurTdEw4T4yIiNSOIUpB9j6E1xIeEyIishYMUUREREQyMEQRERERycAQRbKUlpbi6aefRt++feHs7IzAwEBMnjwZubm5Upn9+/dj4sSJ6NGjB3Q6HcLCwvDmm2+isbFRwZoTEZHalOhrsf9sOUr0tUpXpUN4dh512Llz5zBq1Ch4eHjg9ddfR1hYGBoaGvDFF19g3rx5OHnyJP7xj3/giSeewJw5c7B37154eHjgq6++wpIlS5Cfn49PPvmE85+IiAjZheexdMcPMAhAqwHSHw1DwvDeSlerXTRCCKF0JWxVVVUV3N3dodfr4ebmJm2/ceMGiouLERwcDJ1Op2AN5Zk4cSKOHj2KU6dOwdXV1WhfZWUlunTpgj59+iAmJgbbt2832v+vf/0LDz/8MLKyspCQkNDssa392BARUfuV6GsxalUeDL9JIg4aDb5JvQ9+7i6K1au1z+/bcTjPBliyG7SiogI5OTmYN29eswAF3Fpx/Msvv8TVq1exePHiZvsnT56M0NBQbN261ex1JSIidSsurzYKUADQKATOldcoU6EO4nCelbN0N+iZM2cghMCAAQNaLfPTTz8BAAYOHNji/gEDBkhliIjIfgV7uUKrQbOeqCAv61hHkT1RVqxEXysFKODWi/C5HcfM2iPVkdFfjhQTEVFb/NxdkP5oGBz+/xxZB40Grz46WNGhvI5gT5QVa6sb1FwvwJCQEGg0Gpw8ebLVMqGhoQCAEydOYOTIkc32nzhxAoMGDTJL/YiIyLokDO+NsaG9cK68BkFeXa0mQAHsibJqTd2gv2XublBPT0/ExcUhIyMD1dXVzfZXVlbigQcegKenJ9asWdNs/86dO3H69GkkJiaarY5ERGRd/NxdEN2vp1UFKIAhyqop1Q2akZGBxsZGREZGYvv27Th9+jROnDiBdevWITo6Gq6urnjvvffwz3/+E8nJyTh69CjOnTuHDz74ALNnz8bjjz+OJ554wqx1JCIiMjcO51k5JbpB+/bti0OHDuGVV17BokWLUFJSgl69emHYsGFYv349AODxxx/H3r178corr2DMmDG4ceMGQkJC8Pzzz2PhwoVcI4qIiKwe14kyI1tdJ8qceGyIiEhpXCeKiIiIyIwYooiIiIhkYIgiIiIikoEhioiIiEgGhigFcU5/czwmRERkLRiiFNClSxcAQE2NdVxg0ZKajknTMSIiIlIrrhOlAAcHB3h4eODy5csAgK5du9r9uklCCNTU1ODy5cvw8PCAg4OD0lUiIiJqE0OUQnx9fQFAClJ0i4eHh3RsiIiI1IwhSiEajQZ+fn7w9vZGQ0OD0tVRhS5durAHioiIrAZDlMIcHBwYHIiIiKwQJ5YTERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERyaCKEJWRkYGgoCDodDpERUXhwIEDbZbftm0bBgwYAJ1Oh7CwMOzevdtovxACK1asgJ+fH1xcXBAbG4vTp08blamoqMD06dPh5uYGDw8PJCUl4fr169L+c+fOQaPRNLt99913pms4ERERWS3FQ1R2djZSUlKQlpaGQ4cOYejQoYiLi8Ply5dbLL9//34kJiYiKSkJhw8fRnx8POLj43Hs2DGpzOrVq7Fu3TpkZmaioKAArq6uiIuLw40bN6Qy06dPx/Hjx7Fnzx7s2rUL+/btQ3JycrPn++qrr1BSUiLdhg0bZvqDQERERNZHKCwyMlLMmzdP+rmxsVH4+/uL9PT0Fss/8cQTYtKkSUbboqKixB//+EchhBAGg0H4+vqK119/XdpfWVkpnJ2dxdatW4UQQvz4448CgCgsLJTK/Pd//7fQaDTi3//+txBCiOLiYgFAHD58WHbb9Hq9ACD0er3sxyAiIiLLau/nt6I9UfX19SgqKkJsbKy0TavVIjY2Fvn5+S3eJz8/36g8AMTFxUnli4uLUVpaalTG3d0dUVFRUpn8/Hx4eHggIiJCKhMbGwutVouCggKjx3744Yfh7e2N0aNHY+fOnZ1rMBEREdkMRyWfvLy8HI2NjfDx8THa7uPjg5MnT7Z4n9LS0hbLl5aWSvubtrVVxtvb22i/o6MjPD09pTLdunXDmjVrMGrUKGi1Wmzfvh3x8fH47LPP8PDDD7dYt7q6OtTV1Uk/V1VVtdl+IiIisl6Khig18/LyQkpKivTz8OHDcenSJbz++uuthqj09HS8+OKLlqoiERERKUjR4TwvLy84ODigrKzMaHtZWRl8fX1bvI+vr2+b5Zv+vVOZ2yeu37x5ExUVFa0+LwBERUXhzJkzre5funQp9Hq9dLtw4UKrZYmIiMi6KRqinJycMGzYMOTm5krbDAYDcnNzER0d3eJ9oqOjjcoDwJ49e6TywcHB8PX1NSpTVVWFgoICqUx0dDQqKytRVFQklcnLy4PBYEBUVFSr9T1y5Aj8/Pxa3e/s7Aw3NzejGxEREdkmxYfzUlJSMGvWLERERCAyMhJr165FdXU15syZAwCYOXMmAgICkJ6eDgBYsGABYmJisGbNGkyaNAlZWVk4ePAg3n//fQCARqPBwoULsXLlSoSEhCA4OBjLly+Hv78/4uPjAQADBw7EhAkTMHfuXGRmZqKhoQHz58/H1KlT4e/vDwD48MMP4eTkhHvuuQcAsGPHDmzcuBF/+9vfLHyEiIiISI0UD1EJCQm4cuUKVqxYgdLSUoSHhyMnJ0eaGH7+/Hlotf/XYTZy5Eh8/PHHWLZsGZ577jmEhITgs88+w+DBg6UyS5YsQXV1NZKTk1FZWYnRo0cjJycHOp1OKrNlyxbMnz8f48ePh1arxWOPPYZ169YZ1e3ll1/GL7/8AkdHRwwYMADZ2dl4/PHHzXxEiIiIyBpohBBC6UrYqqqqKri7u0Ov13Noj4iIyEq09/Nb8RXLiYiIiKwRQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUURERGR2Jfpa7D9bjhJ9rdJVMRlHpStAREREti278DyW7vgBBgFoNUD6o2FIGN5b6Wp1GnuiiIiIyGxK9LVSgAIAgwCe23HMJnqkGKKIiIjIbIrLq6UA1aRRCJwrr1GmQiakihCVkZGBoKAg6HQ6REVF4cCBA22W37ZtGwYMGACdToewsDDs3r3baL8QAitWrICfnx9cXFwQGxuL06dPG5WpqKjA9OnT4ebmBg8PDyQlJeH69estPt+ZM2fQvXt3eHh4dKqdRERE9ibYyxVajfE2B40GQV5dlamQCSkeorKzs5GSkoK0tDQcOnQIQ4cORVxcHC5fvtxi+f379yMxMRFJSUk4fPgw4uPjER8fj2PHjkllVq9ejXXr1iEzMxMFBQVwdXVFXFwcbty4IZWZPn06jh8/jj179mDXrl3Yt28fkpOTmz1fQ0MDEhMTMWbMGNM3noiIyMb5ubsg/dEwOGhuJSkHjQavPjoYfu4uCtes8zRCCHHnYuYTFRWF4cOH45133gEAGAwGBAYG4umnn0Zqamqz8gkJCaiursauXbukbSNGjEB4eDgyMzMhhIC/vz8WLVqExYsXAwD0ej18fHywefNmTJ06FSdOnMCgQYNQWFiIiIgIAEBOTg4mTpyIixcvwt/fX3rsZ599FpcuXcL48eOxcOFCVFZWtrttVVVVcHd3h16vh5ubm5zDQ0REZBNK9LU4V16DIK+uqg9Q7f38VrQnqr6+HkVFRYiNjZW2abVaxMbGIj8/v8X75OfnG5UHgLi4OKl8cXExSktLjcq4u7sjKipKKpOfnw8PDw8pQAFAbGwstFotCgoKpG15eXnYtm0bMjIy2tWeuro6VFVVGd2IiIjoVo9UdL+eqg9QHaFoiCovL0djYyN8fHyMtvv4+KC0tLTF+5SWlrZZvunfO5Xx9vY22u/o6AhPT0+pzNWrVzF79mxs3ry53b1I6enpcHd3l26BgYHtuh8RERFZH8XnRKnV3LlzMW3aNIwdO7bd91m6dCn0er10u3DhghlrSEREREpSNER5eXnBwcEBZWVlRtvLysrg6+vb4n18fX3bLN/0753K3D5x/ebNm6ioqJDK5OXl4Y033oCjoyMcHR2RlJQEvV4PR0dHbNy4scW6OTs7w83NzehGREREtknREOXk5IRhw4YhNzdX2mYwGJCbm4vo6OgW7xMdHW1UHgD27NkjlQ8ODoavr69RmaqqKhQUFEhloqOjUVlZiaKiIqlMXl4eDAYDoqKiANyaN3XkyBHp9tJLL6F79+44cuQIHnnkEdMcACIiIrJail/2JSUlBbNmzUJERAQiIyOxdu1aVFdXY86cOQCAmTNnIiAgAOnp6QCABQsWICYmBmvWrMGkSZOQlZWFgwcP4v333wcAaDQaLFy4ECtXrkRISAiCg4OxfPly+Pv7Iz4+HgAwcOBATJgwAXPnzkVmZiYaGhowf/58TJ06VTozb+DAgUb1PHjwILRaLQYPHmyhI0NERERqpniISkhIwJUrV7BixQqUlpYiPDwcOTk50sTw8+fPQ6v9vw6zkSNH4uOPP8ayZcvw3HPPISQkBJ999plRuFmyZAmqq6uRnJyMyspKjB49Gjk5OdDpdFKZLVu2YP78+Rg/fjy0Wi0ee+wxrFu3znINJyIiIqum+DpRtozrRBEREVkfq1gnioiIiMhaMUQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUURERGQyJfpa7D9bjhJ9rdJVMTtVhKiMjAwEBQVBp9MhKioKBw4caLP8tm3bMGDAAOh0OoSFhWH37t1G+4UQWLFiBfz8/ODi4oLY2FicPn3aqExFRQWmT58ONzc3eHh4ICkpCdevX5f2nzp1Cvfddx98fHyg0+nQt29fLFu2DA0NDaZrOBERkQ3JLjyPUavyMG1DAUatykN24Xmlq2RWioeo7OxspKSkIC0tDYcOHcLQoUMRFxeHy5cvt1h+//79SExMRFJSEg4fPoz4+HjEx8fj2LFjUpnVq1dj3bp1yMzMREFBAVxdXREXF4cbN25IZaZPn47jx49jz5492LVrF/bt24fk5GRpf5cuXTBz5kx8+eWXOHXqFNauXYsNGzYgLS3NfAeDiIjISpXoa7F0xw8wiFs/GwTw3I5jNt0jpRFCCCUrEBUVheHDh+Odd94BABgMBgQGBuLpp59Gampqs/IJCQmorq7Grl27pG0jRoxAeHg4MjMzIYSAv78/Fi1ahMWLFwMA9Ho9fHx8sHnzZkydOhUnTpzAoEGDUFhYiIiICABATk4OJk6ciIsXL8Lf37/FuqakpKCwsBD/+7//2662VVVVwd3dHXq9Hm5ubh06LkRERNZk/9lyTNtQ0Gz71rkjEN2vpwI1kq+9n9+K9kTV19ejqKgIsbGx0jatVovY2Fjk5+e3eJ/8/Hyj8gAQFxcnlS8uLkZpaalRGXd3d0RFRUll8vPz4eHhIQUoAIiNjYVWq0VBQfMXAACcOXMGOTk5iImJabU9dXV1qKqqMroRERHZg2AvV2g1xtscNBoEeXVVpkIWoGiIKi8vR2NjI3x8fIy2+/j4oLS0tMX7lJaWtlm+6d87lfH29jba7+joCE9Pz2bPO3LkSOh0OoSEhGDMmDF46aWXWm1Peno63N3dpVtgYGCrZYmIiGyJn7sL0h8Ng4PmVpJy0Gjw6qOD4efuonDNzMdR6QqoXXZ2Nq5du4bvv/8ef/3rX/HGG29gyZIlLZZdunQpUlJSpJ+rqqoYpIiIyG4kDO+NsaG9cK68BkFeXW06QAEKhygvLy84ODigrKzMaHtZWRl8fX1bvI+vr2+b5Zv+LSsrg5+fn1GZ8PBwqcztE9dv3ryJioqKZs/bFIIGDRqExsZGJCcnY9GiRXBwcGhWN2dnZzg7O9+p2URERDbLz93F5sNTE0WH85ycnDBs2DDk5uZK2wwGA3JzcxEdHd3ifaKjo43KA8CePXuk8sHBwfD19TUqU1VVhYKCAqlMdHQ0KisrUVRUJJXJy8uDwWBAVFRUq/U1GAxoaGiAwWDoeGOJiIjIpsjqidq2bRu2bt2Kn376CQAQGhqKadOm4fHHH+/wY6WkpGDWrFmIiIhAZGQk1q5di+rqasyZMwcAMHPmTAQEBCA9PR0AsGDBAsTExGDNmjWYNGkSsrKycPDgQbz//vsAAI1Gg4ULF2LlypUICQlBcHAwli9fDn9/f8THxwMABg4ciAkTJmDu3LnIzMxEQ0MD5s+fj6lTp0pn5m3ZsgVdunRBWFgYnJ2dcfDgQSxduhQJCQno0qWLnMOmqBJ9LYrLqxHs5Wo33xCIiIjMSnRAY2OjeOKJJ4RGoxF33XWXmDJlipgyZYoIDQ0VWq1WJCQkCIPB0JGHFEII8fbbb4vevXsLJycnERkZKb777jtpX0xMjJg1a5ZR+U8++USEhoYKJycncffdd4vPP//caL/BYBDLly8XPj4+wtnZWYwfP16cOnXKqMzVq1dFYmKi6Natm3BzcxNz5swR165dk/ZnZWWJe++9V3Tr1k24urqKQYMGiVdffVXU1ta2u116vV4AEHq9vgNHw/SyDvwiglN3iT7P7hLBqbtE1oFfFK0PERGRmrX387tD60S99dZbWLlyJT788EM89NBDRvt27tyJOXPmYPny5Vi4cKFpk56VUsM6USX6WoxalSctfgbcOmPim9T72CNFRETUArOsE7Vp0ya8/vrrzQIUADz88MNYvXo1Nm7c2PHaktkUl1cbBSgAaBQC58prlKkQERGRjehQiDp9+nSzhS5/q6Vr1JGy7HHxMyIiIkvoUIhycXFBZWVlq/urqqqg0+k6WycyIXtc/IyIiMgSOnR2XnR0NNavX4/169e3uD8jI6PVpQlIOfa2+BkREZEldChEPf/88xg3bhyuXr2KxYsXY8CAARBC4MSJE1izZg3++c9/Yu/eveaqK3WCPS1+RkREZAkdClEjR45EdnY2kpOTsX37dqN9PXr0wNatWzFq1CiTVpCIiIhIjTq0xEGTmpoafPHFF9Ik8tDQUDzwwAPo2pWTlX9LDUscEBERUce09/O7Qz1ReXl5mD9/Pr777js88sgjRvv0ej3uvvtuZGZmYsyYMfJqTURERGQlOnR23tq1azF37twWU5m7uzv++Mc/4s033zRZ5YiIiIjUqkMh6vvvv8eECRNa3f/AAw8YXdSXiIiIyFZ1KESVlZW1efFdR0dHXLlypdOVIiIiIlK7DoWogIAAHDt2rNX9R48ehZ+fX6crRURERKR2HQpREydOxPLly3Hjxo1m+2pra5GWltbidfWIiIiIbE2HljgoKyvDvffeCwcHB8yfPx933XUXAODkyZPIyMhAY2MjDh06BB8fH7NV2JpwiQMiIiLrY5YlDnx8fLB//378+c9/xtKlS9GUvzQaDeLi4pCRkcEARURERHahQyEKAPr06YPdu3fj119/xZkzZyCEQEhICHr06GGO+hERERGpUodDVJMePXpg+PDhpqwLERERkdXo0MRyIiIiIrqFIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiMjulOhrsf9sOUr0tUpXhYismOzFNomIrFF24Xks3fEDDALQaoD0R8OQMLy30tUiIivEnigishsl+lopQAGAQQDP7TjGHikikoUhysZwmIKodcXl1VKAatIoBM6V1yhTISKyahzOsyEcpiBqW7CXK7QaGAUpB40GQV5dlasUEVkt9kTZCA5TEN2Zn7sL0h8Ng4NGA+BWgHr10cHwc3dRuGZEZI3YE2Uj2hqm4AcE0f9JGN4bY0N74Vx5DYK8uvL9QUSyMUTZCA5TELWfn7sLwxMRdRqH82wEhymIiIgsiz1RNoTDFERERJbDEGVjOExBRERkGRzOIyIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBlWEqIyMDAQFBUGn0yEqKgoHDhxos/y2bdswYMAA6HQ6hIWFYffu3Ub7hRBYsWIF/Pz84OLigtjYWJw+fdqoTEVFBaZPnw43Nzd4eHggKSkJ169fl/Z//fXXmDJlCvz8/ODq6orw8HBs2bLFdI0msnEl+lrsP1uOEn2t0lUhIjILxUNUdnY2UlJSkJaWhkOHDmHo0KGIi4vD5cuXWyy/f/9+JCYmIikpCYcPH0Z8fDzi4+Nx7Ngxqczq1auxbt06ZGZmoqCgAK6uroiLi8ONGzekMtOnT8fx48exZ88e7Nq1C/v27UNycrLR8wwZMgTbt2/H0aNHMWfOHMycORO7du0y38EgshHZhecxalUepm0owKhVecguPK90lYiITE4jhBBKViAqKgrDhw/HO++8AwAwGAwIDAzE008/jdTU1GblExISUF1dbRRmRowYgfDwcGRmZkIIAX9/fyxatAiLFy8GAOj1evj4+GDz5s2YOnUqTpw4gUGDBqGwsBAREREAgJycHEycOBEXL16Ev79/i3WdNGkSfHx8sHHjxna1raqqCu7u7tDr9XBzc+vQcSGyViX6WoxalQfDb/6yOGg0+Cb1Pvi5uyhXMSKidmrv57eiPVH19fUoKipCbGystE2r1SI2Nhb5+fkt3ic/P9+oPADExcVJ5YuLi1FaWmpUxt3dHVFRUVKZ/Px8eHh4SAEKAGJjY6HValFQUNBqffV6PTw9PVvdX1dXh6qqKqMbkb0pLq82ClAA0CgEzpXXKFMhIiIzUTRElZeXo7GxET4+PkbbfXx8UFpa2uJ9SktL2yzf9O+dynh7exvtd3R0hKenZ6vP+8knn6CwsBBz5sxptT3p6elwd3eXboGBga2WJbJVwV6u0GqMtzloNAjy6qpMhYiIzETxOVHWYO/evZgzZw42bNiAu+++u9VyS5cuhV6vl24XLlywYC2J1MHP3QXpj4bBQXMrSTloNHj10cEcyiOyc7Z4somjkk/u5eUFBwcHlJWVGW0vKyuDr69vi/fx9fVts3zTv2VlZfDz8zMqEx4eLpW5feL6zZs3UVFR0ex5/+d//geTJ0/GW2+9hZkzZ7bZHmdnZzg7O7dZhsgeJAzvjbGhvXCuvAZBXl0ZoIjsXHbheSzd8QMMAtBqgPRHw5AwvLfS1eo0RXuinJycMGzYMOTm5krbDAYDcnNzER0d3eJ9oqOjjcoDwJ49e6TywcHB8PX1NSpTVVWFgoICqUx0dDQqKytRVFQklcnLy4PBYEBUVJS07euvv8akSZPw2muvGZ25R0R35ufuguh+PRmgiOxcib5WClAAYBDAczuO2USPlKI9UQCQkpKCWbNmISIiApGRkVi7di2qq6uluUczZ85EQEAA0tPTAQALFixATEwM1qxZg0mTJiErKwsHDx7E+++/DwDQaDRYuHAhVq5ciZCQEAQHB2P58uXw9/dHfHw8AGDgwIGYMGEC5s6di8zMTDQ0NGD+/PmYOnWqdGbe3r178dBDD2HBggV47LHHpLlSTk5ObU4uJ9Mq0deiuLwawV6u/DAmRfG1SCRPWyebWPt7SfEQlZCQgCtXrmDFihUoLS1FeHg4cnJypInh58+fh1b7fx1mI0eOxMcff4xly5bhueeeQ0hICD777DMMHjxYKrNkyRJUV1cjOTkZlZWVGD16NHJycqDT6aQyW7Zswfz58zF+/HhotVo89thjWLdunbT/ww8/RE1NDdLT06UABwAxMTH4+uuvzXhEqImtdv+S9bG31yIDI5lS08kmty97Ygsnmyi+TpQt4zpR8nGtIVKL9rwWbSl02FtgJMvILjyP53YcQ6MQ0skman5dtffzW/GeKKKW2HL3L1mXO70WbSl0tDZ3ZWxoL77vqFNs9WQTLnFAqsS1hkgtXJ0cWtze1UlrlgmzSp4GzoVSyZxs8WQThihSJa41RGpRXd/Y4vaaeoPJQ4fS1xzklxeijuFwHqmWrXb/knW506RYU02YVcNQWtOXl9vnrvC9R9QyhihSNT93F/4BJ0XdKViYKnSoZR4gv7wQtR9DFBHRHbQVLEwVOtR0Gji/vBC1D+dEERG1Q1uTYk0xYZbzAImsD3uiiIhUgkNpRNaFIYqISEU4lEZkPTicR0RE1AFKruVF6sKeKCIiFbGlS8jYIltaoZ46jyGKiEgl+AGtbmpYy4vUhcN5REQqYI5LyJBp8bI4dDuGKCIiFeAHtPrxsjh0O4YoIiIV4Ae0+nEtL7od50QREakAr1tnHbiWF/0WQxQRkUrwA9o6cC0vasIQRUSkIvyAJrIenBNFREREJANDFBEREZEMDFFERNRpvBQK2SPOiSIiok7hSutkr9gTRUREsnGldbJnDFFERO3A4aqWcaV1smccziMiugMOV7WuaaX13wYprrRO9oI9UdQqfvMm4nDVnfBSKGTP2BNFLeI3b6Jb2hquYlC4hSutk71iTxQ1w2/e9ok9jy3jhYHbx8/dBdH9ejJAWSG+9+VjTxQ1w2/e9oc9j63jhYHJlvG93zkMUdQMJ4ral9Z6HseG9mJQ+P84XEW2iO/9zuNwHjXDiaL2haeotw+Hq8jW8L3feeyJohbxm7f9UFPPY4m+FsXl1Qj2clXsNaeGOhBZgpre+9aKIYpa5efuwg8RO6CWOT9qmJuhhjoQWYpa3vvWTCOEEHcuRnJUVVXB3d0der0ebm5uSleHqE0l+lrFeh5L9LUYtSqv2Tfib1Lvs1hd1FAHIiUo+d5Xq/Z+frMniogAKNvzqIYzQtVQByIlcNRBPk4sJyLFqWEtJjXUgYisC0MUESlODWeEqqEOtoqLOZKt4pwoM+KcKKKOUcPcDDXUwZZwsj5ZI86JIpvA083tixrmZqihDraCizmSrWOIItXiN1gi68bJ+mTrOCeKVIkXQSayfpysT7aOIYpUiZcjILJ+nKxPto7DeaRKwV6u0AD4bY7SAPwGS2RleAkp68Z5qW1jiCLroblzESJSH07Wt06cl3pnHM4jVSour8bta28IAQ7nERFZAOeltg9DFKkSJ6QSESmH81LbhyGKVIkTUomUwxXGiV9k24dzoki1OCGV2oMTX02L82BsV0feK01fZJ/bcQyNQvCLbCt42Rcz4mVfiMyLH/imVaKvxahVeUbDOA4aDb5JvY8fnlZO7nvFXi+D1N7Pb8WH8zIyMhAUFASdToeoqCgcOHCgzfLbtm3DgAEDoNPpEBYWht27dxvtF0JgxYoV8PPzg4uLC2JjY3H69GmjMhUVFZg+fTrc3Nzg4eGBpKQkXL9+Xdp/48YNzJ49G2FhYXB0dER8fLzJ2ktEpsGJr6bHeTC2qTPvFT93F0T362lXAaojFA1R2dnZSElJQVpaGg4dOoShQ4ciLi4Oly9fbrH8/v37kZiYiKSkJBw+fBjx8fGIj4/HsWPHpDKrV6/GunXrkJmZiYKCAri6uiIuLg43btyQykyfPh3Hjx/Hnj17sGvXLuzbtw/JycnS/sbGRri4uOCZZ55BbGys+Q4AEcnGD3zT4zwY28T3ivkoOpwXFRWF4cOH45133gEAGAwGBAYG4umnn0Zqamqz8gkJCaiursauXbukbSNGjEB4eDgyMzMhhIC/vz8WLVqExYsXAwD0ej18fHywefNmTJ06FSdOnMCgQYNQWFiIiIgIAEBOTg4mTpyIixcvwt/f3+g5Z8+ejcrKSnz22Wcdbh+H84jMh0NP5pFdeL7ZPBgOkVo3vlc6TvXDefX19SgqKjLq6dFqtYiNjUV+fn6L98nPz2/WMxQXFyeVLy4uRmlpqVEZd3d3REVFSWXy8/Ph4eEhBSgAiI2NhVarRUFBgcnaR0TmxTM4zSNheG98k3ofts4dgW9S72OAsgF8r5iPYmfnlZeXo7GxET4+PkbbfXx8cPLkyRbvU1pa2mL50tJSaX/TtrbKeHt7G+13dHSEp6enVEauuro61NXVST9XVVV16vGIqG08g9M8uMK47bHW94raz77lEgcmlJ6ejhdffFHpahDZFX7gE7WPtb1XrOHsW8WG87y8vODg4ICysjKj7WVlZfD19W3xPr6+vm2Wb/r3TmVun7h+8+ZNVFRUtPq87bV06VLo9XrpduHChU49HhERkT2ylrNvFQtRTk5OGDZsGHJzc6VtBoMBubm5iI6ObvE+0dHRRuUBYM+ePVL54OBg+Pr6GpWpqqpCQUGBVCY6OhqVlZUoKiqSyuTl5cFgMCAqKqpTbXJ2doabm5vRTS24AjEREVkLazmjUNHhvJSUFMyaNQsRERGIjIzE2rVrUV1djTlz5gAAZs6ciYCAAKSnpwMAFixYgJiYGKxZswaTJk1CVlYWDh48iPfffx8AoNFosHDhQqxcuRIhISEIDg7G8uXL4e/vL631NHDgQEyYMAFz585FZmYmGhoaMH/+fEydOtXozLwff/wR9fX1qKiowLVr13DkyBEAQHh4uMWOj6lYQ5coERFRk6blNm4/o1Bty20oGqISEhJw5coVrFixAqWlpQgPD0dOTo40Mfz8+fPQav+vs2zkyJH4+OOPsWzZMjz33HMICQnBZ599hsGDB0tllixZgurqaiQnJ6OyshKjR49GTk4OdDqdVGbLli2YP38+xo8fD61Wi8ceewzr1q0zqtvEiRPxyy+/SD/fc889AG4t5mlNWusSHRvay6rGxomIyH5Yy2VneNkXM1LDOlH7z5Zj2obmSzdsnTsC0f16KlCj5tR+9gURESlDqcvOtPfzm2fn2Ti1d4lyqJGIiFqj9jMKFb92HpmXmhdZs5azL4iIiFrCnig7oNZF1to6+0ItdSQiImoNQ5SdUGOXqKuTQ4vbuzqZp4OUc6+IiMiUGKJIMdX1jS1ur6k3mPy5OPeKiIhMjXOiSDFNk95/yxyT3jn3ioiIzIEhihRbzdxSk96tZeVbIiKyLhzOs3NKD3NZYtK72pd5ILJ1nI9Itoo9UXZMLcNcfu4uiO7X02x/XNW8zAORrcsuPI9Rq/IwbUMBRq3KQ3bheaWrRGQy7ImyY/a0xIBal3mgzmMvh3rd6bJTav7dqblubbHWelsrhig7Zm/DXGpc5oE6R+nhaHOwpQ/Btr6o7fvpimp/d9b6urLWelszDufZMbUMcyk1sV1teBw6Ri3D0aZka0NfrZ2B29VJq9rfnbW+rqy13taOPVF2TulhLn5zuoXHoeNsbTj6TkNf1qjpi9pzO46hUQjpi1p1faNqf3fW+rqy1npbO4YoUmyYyxY/NOTgcZDH1oajrf1DsLVhyJa+qJXoa1X7u7PW15W11tvacTiPFMP1m27hcZBHLcPRpmKpxWfN4U7DkLefgavm352a69YWa623tWNPFCmG35xu4XGQT+nhaFNqbehL7W2S25Oq5t+dmuvWFmuttzVjiCLFWOuHhqnxOHSOLZ11aY0fgp0ZhlTz707NdWuLtdbbWjFEkaKs8UPDHHgcqIm1fQiyJ5XsGedEkeLMvWK5teBxIGvEuThkz9gTRUREncKeVLJXDFFERNRp1jYM2cSWVogny2OIIiIi1bFEuOEit9RZDFGkavyWaF/4+ybAMuGGi9ySKTBEkWo/uPgt0b7w902A5cKNta8QT+rAs/PsnFoveKqmi2nywsDmp6bfNynLUiv4W/MK8aQeDFF2TM0fXGq5FIpaQ6Y5KBkW1fL7JuVZKtxwaQYyBQ7n2TE1d2erYQE/e5ozofRQmquTQ4vbuzrxe569seQK/lyagTqLIcqOqSGotEYNl0JRc8g0JTWExer6xha319QbLPL8pC6WDDfWujQDqQNDlB1TQ1Bpi9LfEi0dMpWa4K+GsKjmQE/KUHO4UevJOGR5DFF2TumgcidK/iHtTMhs7Y9sa9uVHE5TQ4BRe6AnaqL00Depi0YIIe5cjOSoqqqCu7s79Ho93NzcFK0LvznJV6Kv7VDIbO2PbGvbS/S1GLUqr1mI+Sb1Pov9rrILzzcLMEp8MHT0WBNZkhreq2QZ7f38Zk+UHeA3p87pSG9Ya/OLBvh2b3XekRqG09TSI6nmIRxT4xcb66OG9yqpC0OUjVPDpGF70tof2cJzv7b6x1cNw2mAfQUYpfGLjXVSy3uV1IPnD9s4rr9jWa2tcTM8qEera99wvRr7oub12ahtTe/VpveyVgO+V+0ce6JszO1DBPzmZFmtTZAeGtijzYnTahlOI/PjkJD1a5pJzBnFxBBlQ1obIrDFs57UPJ+ktUB0p6DE4TT7wC821qupF7HpVyfA6RH2jiHKRrQ198nWejmsZT6JQPOvqQxKbVNzODYVLudgvdiLSLdjiLIRd3pz28qHtzVMlLeWkNcRlgg3tnjcWmNrX2zsBXsR6XacWG4j7OWK5GqfKG+Lk4YtcRFmWzxud+Ln7oLofj0ZoKwIJ5bT7RiibIS9nOGlRFgs0ddi/9nyZh/oLW1Xe8jrKEuFG1s7bmTbOLFcHVr722xJHM6zIfYwRGDp+SQdXX3c1rr7LTUHxNaOG9kmTixXD7UM/7MnysbYwxBBwvDe+Cb1PmydOwLfpN5ntjdOa70w31/4tdXeGVvrEbRUz5+tHTcyHyV7H9hjqg5qGv5nTxRZJUtMlJez+rifu4tN9QhasufPlo4bGTPViQlK9z6wx1Qd1HSWJEOUFbKH08DVoLU/mE2rj7f1h9RWzoYELBtubOm40S2mCj5qODPXz90Fj9wTgO2H/i1ti7/Hn69ZC1NTmOVwnpWxxJlSdEtrQ0xNq4+reejJ1EMe9jBMTKZnymEXNQyllehr8Y/D/zba9tnhSzZ9FqkaqWn4nz1RVkQN38TsjdzVx5Wk9JAHURNTDruoofdBTcNI9k4tf4PZE2VF1PBNzB611gtj6t6Zjiyl0NZjqGXCJVFnTky4/XWvht4He1mPz1qooYecPVFWRA3fxMg8OrqUQmv4TVld7H3+otwTE1p73Svd+8BL9tDtNEJwuTBzqaqqgru7O/R6Pdzc3EzymNmF55u9gTlUY91K9LUYtSqvWTje8VQ0Hnl3f7Pt36Te1+of7dYeq637kHlwWPX/lOhr2x18rOE13JH2kHVq7+c3e6KsjNLfxMj05C6l0BJ+U1YHzl801pGzLq2hN7W19th7z6M9UsWcqIyMDAQFBUGn0yEqKgoHDhxos/y2bdswYMAA6HQ6hIWFYffu3Ub7hRBYsWIF/Pz84OLigtjYWJw+fdqoTEVFBaZPnw43Nzd4eHggKSkJ169fNypz9OhRjBkzBjqdDoGBgVi9erVpGtxJahgHJtNpbZ5F01IKt2+/0/CtpRYjpdZx/qJ8apl31NEzXHnmtH1SPERlZ2cjJSUFaWlpOHToEIYOHYq4uDhcvny5xfL79+9HYmIikpKScPjwYcTHxyM+Ph7Hjh2TyqxevRrr1q1DZmYmCgoK4Orqiri4ONy4cUMqM336dBw/fhx79uzBrl27sG/fPiQnJ0v7q6qq8MADD6BPnz4oKirC66+/jhdeeAHvv/+++Q4G2SVzLKXAoK0stQQBa6SGCeQdDUQ8ocN+KT4nKioqCsOHD8c777wDADAYDAgMDMTTTz+N1NTUZuUTEhJQXV2NXbt2SdtGjBiB8PBwZGZmQggBf39/LFq0CIsXLwYA6PV6+Pj4YPPmzZg6dSpOnDiBQYMGobCwEBEREQCAnJwcTJw4ERcvXoS/vz/Wr1+P559/HqWlpXBycgIApKam4rPPPsPJkyfb1TZzzIki29XaPAvOv7BOnL/YOUq97uXMydp/thzTNhQ027517ghE9+tprqqSGbX381vRnqj6+noUFRUhNjZW2qbVahEbG4v8/PwW75Ofn29UHgDi4uKk8sXFxSgtLTUq4+7ujqioKKlMfn4+PDw8pAAFALGxsdBqtSgoKJDKjB07VgpQTc9z6tQp/Prrry3Wra6uDlVVVUY3ovay1FIKZBkcVu0cpV73coZi2fNovxQNUeXl5WhsbISPj4/Rdh8fH5SWlrZ4n9LS0jbLN/17pzLe3t5G+x0dHeHp6WlUpqXH+O1z3C49PR3u7u7SLTAwsOWGE5FdYAC2PnICkRqGIEkZPDvPhJYuXYqUlBTp56qqKgYpIiIrIvcMV545bZ8UDVFeXl5wcHBAWVmZ0faysjL4+vq2eB9fX982yzf9W1ZWBj8/P6My4eHhUpnbJ67fvHkTFRUVRo/T0vP89jlu5+zsDGdn51bbS0RE6ic3EPEC2vZH0eE8JycnDBs2DLm5udI2g8GA3NxcREdHt3if6Ohoo/IAsGfPHql8cHAwfH19jcpUVVWhoKBAKhMdHY3KykoUFRVJZfLy8mAwGBAVFSWV2bdvHxoaGoye56677kKPHj062XIiIlIzDsVSuwiFZWVlCWdnZ7F582bx448/iuTkZOHh4SFKS0uFEELMmDFDpKamSuW//fZb4ejoKN544w1x4sQJkZaWJrp06SJ++OEHqcyqVauEh4eH+Oc//ymOHj0qpkyZIoKDg0Vtba1UZsKECeKee+4RBQUF4ptvvhEhISEiMTFR2l9ZWSl8fHzEjBkzxLFjx0RWVpbo2rWreO+999rdNr1eLwAIvV7fmUNEREREFtTez2/FQ5QQQrz99tuid+/ewsnJSURGRorvvvtO2hcTEyNmzZplVP6TTz4RoaGhwsnJSdx9993i888/N9pvMBjE8uXLhY+Pj3B2dhbjx48Xp06dMipz9epVkZiYKLp16ybc3NzEnDlzxLVr14zKfP/992L06NHC2dlZBAQEiFWrVnWoXQxRRERE1qe9n9+KrxNly7hOFBERkfWxinWiiIiIiKwVQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcmg6AWIbV3TOqZVVVUK14SIiIjaq+lz+07rkTNEmdG1a9cAAIGBgQrXhIiIiDrq2rVrcHd3b3U/L/tiRgaDAZcuXUL37t2h0WhM9rhVVVUIDAzEhQsX7PJyMvbefoDHwN7bD/AY2Hv7AR4Dc7ZfCIFr167B398fWm3rM5/YE2VGWq0Wv/vd78z2+G5ubnb5xmli7+0HeAzsvf0Aj4G9tx/gMTBX+9vqgWrCieVEREREMjBEEREREcnAEGWFnJ2dkZaWBmdnZ6Wrogh7bz/AY2Dv7Qd4DOy9/QCPgRraz4nlRERERDKwJ4qIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhSqUyMjIQFBQEnU6HqKgoHDhwoNWyx48fx2OPPYagoCBoNBqsXbvWchU1k460f8OGDRgzZgx69OiBHj16IDY2ts3y1qIjx2DHjh2IiIiAh4cHXF1dER4ejr///e8WrK3pdaT9v5WVlQWNRoP4+HjzVtACOnIMNm/eDI1GY3TT6XQWrK3pdfQ1UFlZiXnz5sHPzw/Ozs4IDQ3F7t27LVRb8+jIMRg3blyz14BGo8GkSZMsWGPT6uhrYO3atbjrrrvg4uKCwMBA/OUvf8GNGzfMV0FBqpOVlSWcnJzExo0bxfHjx8XcuXOFh4eHKCsra7H8gQMHxOLFi8XWrVuFr6+veOuttyxbYRPraPunTZsmMjIyxOHDh8WJEyfE7Nmzhbu7u7h48aKFa246HT0Ge/fuFTt27BA//vijOHPmjFi7dq1wcHAQOTk5Fq65aXS0/U2Ki4tFQECAGDNmjJgyZYplKmsmHT0GmzZtEm5ubqKkpES6lZaWWrjWptPR9tfV1YmIiAgxceJE8c0334ji4mLx9ddfiyNHjli45qbT0WNw9epVo9//sWPHhIODg9i0aZNlK24iHW3/li1bhLOzs9iyZYsoLi4WX3zxhfDz8xN/+ctfzFZHhigVioyMFPPmzZN+bmxsFP7+/iI9Pf2O9+3Tp4/Vh6jOtF8IIW7evCm6d+8uPvzwQ3NV0ew6ewyEEOKee+4Ry5YtM0f1zE5O+2/evClGjhwp/va3v4lZs2ZZfYjq6DHYtGmTcHd3t1DtzK+j7V+/fr3o27evqK+vt1QVza6zfwfeeust0b17d3H9+nVzVdGsOtr+efPmifvvv99oW0pKihg1apTZ6sjhPJWpr69HUVERYmNjpW1arRaxsbHIz89XsGaWYYr219TUoKGhAZ6enuaqpll19hgIIZCbm4tTp05h7Nix5qyqWcht/0svvQRvb28kJSVZoppmJfcYXL9+HX369EFgYCCmTJmC48ePW6K6Jien/Tt37kR0dDTmzZsHHx8fDB48GK+++ioaGxstVW2TMsXfwg8++ABTp06Fq6uruappNnLaP3LkSBQVFUlDfj///DN2796NiRMnmq2evACxypSXl6OxsRE+Pj5G2318fHDy5EmFamU5pmj/s88+C39/f6M3nzWRewz0ej0CAgJQV1cHBwcHvPvuu/j9739v7uqanJz2f/PNN/jggw9w5MgRC9TQ/OQcg7vuugsbN27EkCFDoNfr8cYbb2DkyJE4fvy4WS+Ebg5y2v/zzz8jLy8P06dPx+7du3HmzBk89dRTaGhoQFpamiWqbVKd/Vt44MABHDt2DB988IG5qmhWcto/bdo0lJeXY/To0RBC4ObNm/jTn/6E5557zmz1ZIgim7Jq1SpkZWXh66+/tvpJtR3VvXt3HDlyBNevX0dubi5SUlLQt29fjBs3TumqmdW1a9cwY8YMbNiwAV5eXkpXRzHR0dGIjo6Wfh45ciQGDhyI9957Dy+//LKCNbMMg8EAb29vvP/++3BwcMCwYcPw73//G6+//rpVhqjO+uCDDxAWFobIyEilq2IxX3/9NV599VW8++67iIqKwpkzZ7BgwQK8/PLLWL58uVmekyFKZby8vODg4ICysjKj7WVlZfD19VWoVpbTmfa/8cYbWLVqFb766isMGTLEnNU0K7nHQKvVon///gCA8PBwnDhxAunp6VYXojra/rNnz+LcuXOYPHmytM1gMAAAHB0dcerUKfTr18+8lTYxU/wd6NKlC+655x6cOXPGHFU0Kznt9/PzQ5cuXeDg4CBtGzhwIEpLS1FfXw8nJyez1tnUOvMaqK6uRlZWFl566SVzVtGs5LR/+fLlmDFjBp588kkAQFhYGKqrq5GcnIznn38eWq3pZzBxTpTKODk5YdiwYcjNzZW2GQwG5ObmGn3LtFVy27969Wq8/PLLyMnJQUREhCWqajameg0YDAbU1dWZo4pm1dH2DxgwAD/88AOOHDki3R5++GHcd999OHLkCAIDAy1ZfZMwxWugsbERP/zwA/z8/MxVTbOR0/5Ro0bhzJkzUoAGgJ9++gl+fn5WF6CAzr0Gtm3bhrq6OvzhD38wdzXNRk77a2pqmgWlplAtzHWZYLNNWSfZsrKyhLOzs9i8ebP48ccfRXJysvDw8JBOV54xY4ZITU2VytfV1YnDhw+Lw4cPCz8/P7F48WJx+PBhcfr0aaWa0Ckdbf+qVauEk5OT+PTTT41O77127ZpSTei0jh6DV199VXz55Zfi7Nmz4scffxRvvPGGcHR0FBs2bFCqCZ3S0fbfzhbOzuvoMXjxxRfFF198Ic6ePSuKiorE1KlThU6nE8ePH1eqCZ3S0fafP39edO/eXcyfP1+cOnVK7Nq1S3h7e4uVK1cq1YROk/s+GD16tEhISLB0dU2uo+1PS0sT3bt3F1u3bhU///yz+PLLL0W/fv3EE088YbY6MkSp1Ntvvy169+4tnJycRGRkpPjuu++kfTExMWLWrFnSz8XFxQJAs1tMTIzlK24iHWl/nz59Wmx/Wlqa5StuQh05Bs8//7zo37+/0Ol0okePHiI6OlpkZWUpUGvT6Uj7b2cLIUqIjh2DhQsXSmV9fHzExIkTxaFDhxSotel09DWwf/9+ERUVJZydnUXfvn3FK6+8Im7evGnhWptWR4/ByZMnBQDx5ZdfWrim5tGR9jc0NIgXXnhB9OvXT+h0OhEYGCieeuop8euvv5qtfhohzNXHRURERGS7OCeKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIrIBs2fPRnx8vNLVILIrDFFEZFazZ8+GRqORbj179sSECRNw9OhRpatmEr9tW9Nt9OjRZnu+c+fOQaPR4MiRI0bb/+u//gubN2822/MSUXMMUURkdhMmTEBJSQlKSkqQm5sLR0dHPPTQQ0pXy2Q2bdokta+kpAQ7d+5ssVxDQ4PZ6uDu7g4PDw+zPT4RNccQRURm5+zsDF9fX/j6+iI8PBypqam4cOECrly5gvvvvx/z5883Kn/lyhU4OTlJV3APCgrCyy+/jMTERLi6uiIgIAAZGRlG93nzzTcRFhYGV1dXBAYG4qmnnsL169el/b/88gsmT56MHj16wNXVFXfffTd2794NAPj1118xffp09OrVCy4uLggJCcGmTZva3T4PDw+pfb6+vvD09JR6jLKzsxETEwOdToctW7bg6tWrSExMREBAALp27YqwsDBs3brV6PEMBgNWr16N/v37w9nZGb1798Yrr7wCAAgODgYA3HPPPdBoNBg3bhyA5sN5dXV1eOaZZ+Dt7Q2dTofRo0ejsLBQ2v/1119Do9EgNzcXERER6Nq1K0aOHIlTp061u91E9o4hiogs6vr16/joo4/Qv39/9OzZE08++SQ+/vhj1NXVSWU++ugjBAQE4P7775e2vf766xg6dCgOHz6M1NRULFiwAHv27JH2a7VarFu3DsePH8eHH36IvLw8LFmyRNo/b9481NXVYd++ffjhhx/w2muvoVu3bgCA5cuX48cff8R///d/48SJE1i/fj28vLxM0t6mup44cQJxcXG4ceMGhg0bhs8//xzHjh1DcnIyZsyYgQMHDkj3Wbp0KVatWiXV6+OPP4aPjw8ASOW++uorlJSUYMeOHS0+75IlS7B9+3Z8+OGHOHToEPr374+4uDhUVFQYlXv++eexZs0aHDx4EI6OjvjP//xPk7SbyC6Y7dLGRERCiFmzZgkHBwfh6uoqXF1dBQDh5+cnioqKhBBC1NbWih49eojs7GzpPkOGDBEvvPCC9HOfPn3EhAkTjB43ISFBPPjgg60+77Zt20TPnj2ln8PCwowe87cmT54s5syZI6t9AIROp5Pa5+rqKv7xj3+I4uJiAUCsXbv2jo8xadIksWjRIiGEEFVVVcLZ2Vls2LChxbJNj3v48GGj7bNmzRJTpkwRQghx/fp10aVLF7FlyxZpf319vfD39xerV68WQgixd+9eAUB89dVXUpnPP/9cABC1tbUdOQREdos9UURkdvfddx+OHDmCI0eO4MCBA4iLi8ODDz6IX375BTqdDjNmzMDGjRsBAIcOHcKxY8cwe/Zso8eIjo5u9vOJEyekn7/66iuMHz8eAQEB6N69O2bMmIGrV6+ipqYGAPDMM89g5cqVGDVqFNLS0owmtv/5z39GVlYWwsPDsWTJEuzfv79D7Xvrrbek9h05cgS///3vpX0RERFGZRsbG/Hyyy8jLCwMnp6e6NatG7744gucP38eAHDixAnU1dVh/PjxHarDb509exYNDQ0YNWqUtK1Lly6IjIw0OmYAMGTIEOn/fn5+AIDLly/Lfm4ie8IQRURm5+rqiv79+6N///4YPnw4/va3v6G6uhobNmwAADz55JPYs2cPLl68iE2bNuH+++9Hnz592v34586dw0MPPYQhQ4Zg+/btKCoqkuZM1dfXS8/x888/Y8aMGfjhhx8QERGBt99+GwCkQPeXv/wFly5dwvjx47F48eJ2P7+vr6/Uvv79+8PV1dWo7b/1+uuv47/+67/w7LPPYu/evThy5Aji4uKkerq4uLT7eU2hS5cu0v81Gg2AW3OyiOjOGKKIyOI0Gg20Wi1qa2sBAGFhYYiIiMCGDRvw8ccftzgv57vvvmv288CBAwEARUVFMBgMWLNmDUaMGIHQ0FBcunSp2WMEBgbiT3/6E3bs2IFFixZJIQ4AevXqhVmzZuGjjz7C2rVr8f7775uyyZJvv/0WU6ZMwR/+8AcMHToUffv2xU8//STtDwkJgYuLizSp/nZOTk4AbvVotaZfv35wcnLCt99+K21raGhAYWEhBg0aZKKWEJGj0hUgIttXV1eH0tJSALfOhHvnnXdw/fp1TJ48WSrz5JNPYv78+XB1dcUjjzzS7DG+/fZbrF69GvHx8dizZw+2bduGzz//HADQv39/NDQ04O2338bkyZPx7bffIjMz0+j+CxcuxIMPPojQ0FD8+uuv2Lt3rxTCVqxYgWHDhuHuu+9GXV0ddu3aJe0ztZCQEHz66afYv38/evTogTfffBNlZWVSuNHpdHj22WexZMkSODk5YdSoUbhy5QqOHz+OpKQkeHt7w8XFBTk5Ofjd734HnU4Hd3d3o+dwdXXFn//8Z/z1r3+Fp6cnevfujdWrV6OmpgZJSUlmaReRPWJPFBGZXU5ODvz8/ODn54eoqCgUFhZi27Zt0un5AJCYmAhHR0ckJiZCp9M1e4xFixbh4MGDuOeee7By5Uq8+eabiIuLAwAMHToUb775Jl577TUMHjwYW7ZsQXp6utH9GxsbMW/ePAwcOBATJkxAaGgo3n33XQC3eneWLl2KIUOGYOzYsXBwcEBWVpZZjsWyZctw7733Ii4uDuPGjYOvr2+zlcaXL1+ORYsWYcWKFRg4cCASEhKkeUqOjo5Yt24d3nvvPfj7+2PKlCktPs+qVavw2GOPYcaMGbj33ntx5swZfPHFF+jRo4dZ2kVkjzRCCKF0JYiIzp07h379+qGwsBD33nuv0b6goCAsXLgQCxcuVKZyREQt4HAeESmqoaEBV69exbJlyzBixIhmAYqISK04nEdEivr222/h5+eHwsLCZvOYlPbqq6+iW7duLd4efPBBpatHRArjcB4RUSsqKiqarfDdxMXFBQEBARauERGpCUMUERERkQwcziMiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhk+H8LScFG1UzL4wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVQJJREFUeJzt3X1cVGX+P/7XAMIgCogIAywKKoQmSoEgamrJhmkmWZ8QXe8WZbfUdNE1rJRuLMybMouVtNQ+mwlhZq65FIF9/KaEiLrm7arh3QooEoPciMhcvz/8cbaRG+HAzJkZXs/HYx7IOe9z5jqXw8x7rrujEkIIEBEREVGrWCldACIiIiJzxCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqILNprr70GlUrVoliVSoXXXnvNoOUZNWoURo0aZbLnI6KWYxJFREaxZcsWqFQq6WFjYwMvLy/MmDED//nPf5Qunsnx8fHRqy83Nzc88sgj+Oqrr9rl/FVVVXjttdfwww8/tMv5iDoiJlFEZFRvvPEG/v73vyMlJQVPPPEEPvvsM4wcORK3bt0yyPO9+uqrqK6uNsi5DS0oKAh///vf8fe//x2LFi3C1atXMXHiRKSkpLT53FVVVXj99deZRBG1gY3SBSCijuWJJ55ASEgIAGDWrFlwdXXFO++8g127duG5555r9+ezsbGBjY15vtV5eXnhD3/4g/T7tGnT0LdvX7z33nv485//rGDJiAhgSxQRKeyRRx4BAJw/f15v++nTp/Hss8/CxcUFarUaISEh2LVrl15MbW0tXn/9dfj5+UGtVqN79+4YPnw4MjMzpZjGxkTV1NTgL3/5C3r06IGuXbviqaeewpUrVxqUbcaMGfDx8WmwvbFzbt68GY899hjc3NxgZ2eH/v37Y/369a2qi/vRaDTo168fCgoKmo27du0aYmNj4e7uDrVajUGDBuHTTz+V9l+4cAE9evQAALz++utSl6Ghx4MRWRrz/HpGRBbjwoULAIBu3bpJ206cOIFhw4bBy8sLCQkJcHBwwBdffIGoqCh8+eWXePrppwHcTWaSkpIwa9YshIaGory8HIcOHcLhw4fx+9//vsnnnDVrFj777DNMnjwZQ4cORXZ2NsaNG9em61i/fj0efPBBPPXUU7CxscE//vEPvPDCC9DpdJgzZ06bzl2vtrYWly9fRvfu3ZuMqa6uxqhRo3Du3DnMnTsXvr6+SE9Px4wZM1BWVob58+ejR48eWL9+PZ5//nk8/fTTmDhxIgBg4MCB7VJOog5DEBEZwebNmwUA8f3334vr16+Ly5cvi+3bt4sePXoIOzs7cfnyZSl29OjRIjAwUNy6dUvaptPpxNChQ4Wfn5+0bdCgQWLcuHHNPm9iYqL47Vvd0aNHBQDxwgsv6MVNnjxZABCJiYnStunTp4tevXrd95xCCFFVVdUgLjIyUvTu3Vtv28iRI8XIkSObLbMQQvTq1Us8/vjj4vr16+L69eviX//6l5g0aZIAIObNm9fk+dauXSsAiM8++0zadvv2bREeHi66dOkiysvLhRBCXL9+vcH1ElHrsDuPiIwqIiICPXr0gLe3N5599lk4ODhg165d+N3vfgcAKC0tRXZ2Np577jncvHkTJSUlKCkpwY0bNxAZGYmzZ89Ks/mcnZ1x4sQJnD17tsXPv2fPHgDAiy++qLd9wYIFbboue3t76d9arRYlJSUYOXIkfvnlF2i1Wlnn/O6779CjRw/06NEDgwYNQnp6OqZOnYp33nmnyWP27NkDjUaDmJgYaVunTp3w4osvoqKiAv/3f/8nqyxE1BC784jIqJKTk+Hv7w+tVotNmzZh3759sLOzk/afO3cOQggsXboUS5cubfQc165dg5eXF9544w1MmDAB/v7+GDBgAMaMGYOpU6c22y118eJFWFlZoU+fPnrbH3jggTZd1/79+5GYmIicnBxUVVXp7dNqtXBycmr1OcPCwrB8+XKoVCp07twZ/fr1g7Ozc7PHXLx4EX5+frCy0v+O3K9fP2k/EbUPJlFEZFShoaHS7LyoqCgMHz4ckydPxpkzZ9ClSxfodDoAwKJFixAZGdnoOfr27QsAGDFiBM6fP4+vv/4a3333HT7++GO89957SElJwaxZs9pc1qYW6ayrq9P7/fz58xg9ejQCAgLw7rvvwtvbG7a2ttizZw/ee+896Zpay9XVFREREbKOJSLDYxJFRIqxtrZGUlISHn30UXz44YdISEhA7969AdztgmpJAuHi4oKZM2di5syZqKiowIgRI/Daa681mUT16tULOp0O58+f12t9OnPmTIPYbt26oaysrMH2e1tz/vGPf6Cmpga7du1Cz549pe179+69b/nbW69evXDs2DHodDq91qjTp09L+4GmE0QiajmOiSIiRY0aNQqhoaFYu3Ytbt26BTc3N4waNQofffQRCgsLG8Rfv35d+veNGzf09nXp0gV9+/ZFTU1Nk8/3xBNPAADWrVunt33t2rUNYvv06QOtVotjx45J2woLCxusGm5tbQ0AEEJI27RaLTZv3txkOQxl7NixKCoqQlpamrTtzp07+OCDD9ClSxeMHDkSANC5c2cAaDRJJKKWYUsUESnur3/9K/7nf/4HW7ZswZ///GckJydj+PDhCAwMxOzZs9G7d28UFxcjJycHV65cwb/+9S8AQP/+/TFq1CgEBwfDxcUFhw4dwvbt2zF37twmnysoKAgxMTH429/+Bq1Wi6FDhyIrKwvnzp1rEDtp0iS89NJLePrpp/Hiiy+iqqoK69evh7+/Pw4fPizFPf7447C1tcX48ePxpz/9CRUVFdi4cSPc3NwaTQQNKS4uDh999BFmzJiB/Px8+Pj4YPv27di/fz/Wrl2Lrl27Arg7EL5///5IS0uDv78/XFxcMGDAAAwYMMCo5SUya0pPDySijqF+iYO8vLwG++rq6kSfPn1Enz59xJ07d4QQQpw/f15MmzZNaDQa0alTJ+Hl5SWefPJJsX37dum45cuXi9DQUOHs7Czs7e1FQECAeOutt8Tt27elmMaWI6iurhYvvvii6N69u3BwcBDjx48Xly9fbnTK/3fffScGDBggbG1txQMPPCA+++yzRs+5a9cuMXDgQKFWq4WPj4945513xKZNmwQAUVBQIMW1ZomD+y3f0NT5iouLxcyZM4Wrq6uwtbUVgYGBYvPmzQ2OPXDggAgODha2trZc7oBIBpUQv2l/JiIiIqIW4ZgoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMXGzTgHQ6Ha5evYquXbvyFgtERERmQgiBmzdvwtPTs8HNvH+LSZQBXb16Fd7e3koXg4iIiGS4fPkyfve73zW5n0mUAdXfXuHy5ctwdHRUuDRERETUEuXl5fD29pY+x5vCJMqA6rvwHB0dmUQRERGZmfsNxeHAciIiIiIZmEQRERERycAkioiIiEgGjolSWF1dHWpra5Uuhkno1KkTrK2tlS4GERFRizCJUogQAkVFRSgrK1O6KCbF2dkZGo2G62oREZHJYxKlkPoEys3NDZ07d+7wSYMQAlVVVbh27RoAwMPDQ+ESERERNY9JlALq6uqkBKp79+5KF8dk2NvbAwCuXbsGNzc3du0REZFJU3xgeXJyMnx8fKBWqxEWFoaDBw82G5+eno6AgACo1WoEBgZiz549evuFEFi2bBk8PDxgb2+PiIgInD17Vi+mtLQUU6ZMgaOjI5ydnREbG4uKiooG51m9ejX8/f1hZ2cHLy8vvPXWW+1yzfVjoDp37twu57Mk9XXCcWJERGTqFE2i0tLSEB8fj8TERBw+fBiDBg1CZGSk1KVzrwMHDiAmJgaxsbE4cuQIoqKiEBUVhePHj0sxK1euxLp165CSkoLc3Fw4ODggMjISt27dkmKmTJmCEydOIDMzE7t378a+ffsQFxen91zz58/Hxx9/jNWrV+P06dPYtWsXQkND2/X6O3oXXmNYJ0REZDaEgkJDQ8WcOXOk3+vq6oSnp6dISkpqNP65554T48aN09sWFhYm/vSnPwkhhNDpdEKj0YhVq1ZJ+8vKyoSdnZ3Ytm2bEEKIkydPCgAiLy9PivnnP/8pVCqV+M9//iPF2NjYiNOnT7fp+rRarQAgtFqt3vbq6mpx8uRJUV1d3abzWyLWDRERKa2pz+97KdYSdfv2beTn5yMiIkLaZmVlhYiICOTk5DR6TE5Ojl48AERGRkrxBQUFKCoq0otxcnJCWFiYFJOTkwNnZ2eEhIRIMREREbCyskJubi4A4B//+Ad69+6N3bt3w9fXFz4+Ppg1axZKS0ubvaaamhqUl5frPYiIiMgyKZZElZSUoK6uDu7u7nrb3d3dUVRU1OgxRUVFzcbX/7xfjJubm95+GxsbuLi4SDG//PILLl68iPT0dPzv//4vtmzZgvz8fDz77LPNXlNSUhKcnJykh7e3d7Px5qyoqAjz5s1D7969YWdnB29vb4wfPx5ZWVlSzIEDBzB27Fh069ZNGsP27rvvoq6uTsGSExGRJSjUVuPA+RIUaqsVKwNn5zVCp9OhpqYG//u//wt/f38AwCeffILg4GCcOXMGDzzwQKPHLVmyBPHx8dLv9XeBtjQXLlzAsGHD4OzsjFWrViEwMBC1tbX49ttvMWfOHJw+fRpfffUVnnvuOcycORN79+6Fs7Mzvv/+eyxevBg5OTn44osvOP6JiIhkScu7hCU7foZOAFYqIGliIKIH9zR6ORRLolxdXWFtbY3i4mK97cXFxdBoNI0eo9Fomo2v/1lcXKy3zlBxcTGCgoKkmHsHrt+5cwelpaXS8R4eHrCxsZESKADo168fAODSpUtNJlF2dnaws7Nr9rotwQsvvACVSoWDBw/CwcFB2v7ggw/ij3/8IyorKzF79mw89dRT2LBhg7R/1qxZcHd3x1NPPYUvvvgC0dHRShSfiIjMWKG2WkqgAEAngJd3HMcI/x7wcLI3alkU686ztbVFcHCwXvePTqdDVlYWwsPDGz0mPDxcLx4AMjMzpXhfX19oNBq9mPLycuTm5kox4eHhKCsrQ35+vhSTnZ0NnU6HsLAwAMCwYcNw584dnD9/Xor597//DQDo1atXWy7bIIzZpFlaWoqMjAzMmTNHL4Gq5+zsjO+++w43btzAokWLGuwfP348/P39sW3bNoOXlYiILE9BSaWUQNWrEwIXSqqMXhZFu/Pi4+Mxffp0hISEIDQ0FGvXrkVlZSVmzpwJAJg2bRq8vLyQlJQE4O6yAyNHjsSaNWswbtw4pKam4tChQ1Jrh0qlwoIFC7B8+XL4+fnB19cXS5cuhaenJ6KiogDcbVEaM2YMZs+ejZSUFNTW1mLu3LmYNGkSPD09AdwdaP7www/jj3/8I9auXQudToc5c+bg97//vV7rlCkwdpPmuXPnIIRAQEBAkzH1CWd96929AgICpBgiIqLW8HV1gJUKeomUtUoFH1fjr72o6DpR0dHRWL16NZYtW4agoCAcPXoUGRkZ0sDwS5cuobCwUIofOnQoPv/8c2zYsAGDBg3C9u3bsXPnTgwYMECKWbx4MebNm4e4uDgMHjwYFRUVyMjIgFqtlmK2bt2KgIAAjB49GmPHjsXw4cP1up2srKzwj3/8A66urhgxYgTGjRuHfv36ITU11Qi10nJNNWkaskVKCHH/IBmxRERELeHhZI+kiYGw/v/H1VqrVHh74gCjd+UBgErwk85gysvL4eTkBK1WC0dHR2n7rVu3UFBQAF9fX73krrUOnC/B5I25DbZvmz0E4X0MczuZ0tJSuLq64q233sKSJUsajfnqq68wceJE7N+/H0OHDm2w39/fH/3798fOnTsb7GuvuiEiIstWqK3GhZIq+Lh2bvcEqqnP73spftsXkq++SfO3DN2k6eLigsjISCQnJ6OysrLB/rKyMjz++ONwcXHBmjVrGuzftWsXzp49i5iYGIOVkYiILJ+Hkz3C+3RXpAWqHpMoM6ZUk2ZycjLq6uoQGhqKL7/8EmfPnsWpU6ewbt06hIeHw8HBAR999BG+/vprxMXF4dixY7hw4QI++eQTzJgxA88++yyee+45g5aRiIjI0LhOlJmLHtwTI/x7GKxJszG9e/fG4cOH8dZbb2HhwoUoLCxEjx49EBwcjPXr1wMAnn32WezduxdvvfUWHnnkEdy6dQt+fn545ZVXsGDBAq4RRUREZo9jogzI0GOiLBHrhoiIlMYxUUREREQGxCSKiIiISAYmUUREREQyMIkiIiIikoFJlII4pr8h1gkREZkLJlEK6NSpEwCgqsr4N0s0dfV1Ul9HREREporrRCnA2toazs7OuHbtGgCgc+fOHX7dJCEEqqqqcO3aNTg7O8Pa2lrpIhERETWLSZRCNBoNAEiJFN3l7Ows1Q0REZEpYxKlEJVKBQ8PD7i5uaG2tlbp4piETp06sQWKiIjMBpMohVlbWzNxICIiMkMcWE5EREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMJpFEJScnw8fHB2q1GmFhYTh48GCz8enp6QgICIBarUZgYCD27Nmjt18IgWXLlsHDwwP29vaIiIjA2bNn9WJKS0sxZcoUODo6wtnZGbGxsaioqJD2X7hwASqVqsHjp59+ar8LJyIiIrOleBKVlpaG+Ph4JCYm4vDhwxg0aBAiIyNx7dq1RuMPHDiAmJgYxMbG4siRI4iKikJUVBSOHz8uxaxcuRLr1q1DSkoKcnNz4eDggMjISNy6dUuKmTJlCk6cOIHMzEzs3r0b+/btQ1xcXIPn+/7771FYWCg9goOD278SiIiIyPwIhYWGhoo5c+ZIv9fV1QlPT0+RlJTUaPxzzz0nxo0bp7ctLCxM/OlPfxJCCKHT6YRGoxGrVq2S9peVlQk7Ozuxbds2IYQQJ0+eFABEXl6eFPPPf/5TqFQq8Z///EcIIURBQYEAII4cOSL72rRarQAgtFqt7HMQERGRcbX081vRlqjbt28jPz8fERER0jYrKytEREQgJyen0WNycnL04gEgMjJSii8oKEBRUZFejJOTE8LCwqSYnJwcODs7IyQkRIqJiIiAlZUVcnNz9c791FNPwc3NDcOHD8euXbuavZ6amhqUl5frPYiIiMgyKZpElZSUoK6uDu7u7nrb3d3dUVRU1OgxRUVFzcbX/7xfjJubm95+GxsbuLi4SDFdunTBmjVrkJ6ejm+++QbDhw9HVFRUs4lUUlISnJycpIe3t/f9qoCIiIjMlI3SBTBVrq6uiI+Pl34fPHgwrl69ilWrVuGpp55q9JglS5boHVNeXs5EioiIyEIp2hLl6uoKa2trFBcX620vLi6GRqNp9BiNRtNsfP3P+8XcO3D9zp07KC0tbfJ5ASAsLAznzp1rcr+dnR0cHR31HkRERGSZFE2ibG1tERwcjKysLGmbTqdDVlYWwsPDGz0mPDxcLx4AMjMzpXhfX19oNBq9mPLycuTm5kox4eHhKCsrQ35+vhSTnZ0NnU6HsLCwJst79OhReHh4tP5CiYiIyOIo3p0XHx+P6dOnIyQkBKGhoVi7di0qKysxc+ZMAMC0adPg5eWFpKQkAMD8+fMxcuRIrFmzBuPGjUNqaioOHTqEDRs2AABUKhUWLFiA5cuXw8/PD76+vli6dCk8PT0RFRUFAOjXrx/GjBmD2bNnIyUlBbW1tZg7dy4mTZoET09PAMCnn34KW1tbPPTQQwCAHTt2YNOmTfj444+NXENERERkihRPoqKjo3H9+nUsW7YMRUVFCAoKQkZGhjQw/NKlS7Cy+m+D2dChQ/H555/j1Vdfxcsvvww/Pz/s3LkTAwYMkGIWL16MyspKxMXFoaysDMOHD0dGRgbUarUUs3XrVsydOxejR4+GlZUVnnnmGaxbt06vbG+++SYuXrwIGxsbBAQEIC0tDc8++6yBa4SIiIjMgUoIIZQuhKUqLy+Hk5MTtFotx0cRERGZiZZ+fiu+YjkRERGROWISRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUURERGR2CrXVOHC+BIXaasXKYKPYMxMRERHJkJZ3CUt2/AydAKxUQNLEQEQP7mn0crAlioiIiMxGobZaSqAAQCeAl3ccV6RFikkUERERmY2CkkopgapXJwQulFQZvSxMooiIiMhs+Lo6wEqlv81apYKPa2ejl4VJFBEREZkNDyd7JE0MhLXqbiZlrVLh7YkD4OFkb/SycGA5ERERmZXowT0xwr8HLpRUwce1syIJFMAkioiIiMyQh5O9YslTPXbnEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJYBJJVHJyMnx8fKBWqxEWFoaDBw82G5+eno6AgACo1WoEBgZiz549evuFEFi2bBk8PDxgb2+PiIgInD17Vi+mtLQUU6ZMgaOjI5ydnREbG4uKiopGn+/cuXPo2rUrnJ2d23SdREREZDkUT6LS0tIQHx+PxMREHD58GIMGDUJkZCSuXbvWaPyBAwcQExOD2NhYHDlyBFFRUYiKisLx48elmJUrV2LdunVISUlBbm4uHBwcEBkZiVu3bkkxU6ZMwYkTJ5CZmYndu3dj3759iIuLa/B8tbW1iImJwSOPPNL+F09ERERmSyWEEEoWICwsDIMHD8aHH34IANDpdPD29sa8efOQkJDQID46OhqVlZXYvXu3tG3IkCEICgpCSkoKhBDw9PTEwoULsWjRIgCAVquFu7s7tmzZgkmTJuHUqVPo378/8vLyEBISAgDIyMjA2LFjceXKFXh6ekrnfumll3D16lWMHj0aCxYsQFlZWYuvrby8HE5OTtBqtXB0dJRTPURERGRkLf38VrQl6vbt28jPz0dERIS0zcrKChEREcjJyWn0mJycHL14AIiMjJTiCwoKUFRUpBfj5OSEsLAwKSYnJwfOzs5SAgUAERERsLKyQm5urrQtOzsb6enpSE5ObtH11NTUoLy8XO9BRERElknRJKqkpAR1dXVwd3fX2+7u7o6ioqJGjykqKmo2vv7n/WLc3Nz09tvY2MDFxUWKuXHjBmbMmIEtW7a0uBUpKSkJTk5O0sPb27tFxxEREZH5UXxMlKmaPXs2Jk+ejBEjRrT4mCVLlkCr1UqPy5cvG7CEREREpCRFkyhXV1dYW1ujuLhYb3txcTE0Gk2jx2g0mmbj63/eL+beget37txBaWmpFJOdnY3Vq1fDxsYGNjY2iI2NhVarhY2NDTZt2tRo2ezs7ODo6Kj3ICIiIsukaBJla2uL4OBgZGVlSdt0Oh2ysrIQHh7e6DHh4eF68QCQmZkpxfv6+kKj0ejFlJeXIzc3V4oJDw9HWVkZ8vPzpZjs7GzodDqEhYUBuDtu6ujRo9LjjTfeQNeuXXH06FE8/fTT7VMBREREZLZslC5AfHw8pk+fjpCQEISGhmLt2rWorKzEzJkzAQDTpk2Dl5cXkpKSAADz58/HyJEjsWbNGowbNw6pqak4dOgQNmzYAABQqVRYsGABli9fDj8/P/j6+mLp0qXw9PREVFQUAKBfv34YM2YMZs+ejZSUFNTW1mLu3LmYNGmSNDOvX79+euU8dOgQrKysMGDAACPVDBEREZkyxZOo6OhoXL9+HcuWLUNRURGCgoKQkZEhDQy/dOkSrKz+22A2dOhQfP7553j11Vfx8ssvw8/PDzt37tRLbhYvXozKykrExcWhrKwMw4cPR0ZGBtRqtRSzdetWzJ07F6NHj4aVlRWeeeYZrFu3zngXTkRERGZN8XWiLBnXiSIiIjI/ZrFOFBEREZG5YhJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIiRRVqq3HgfAkKtdVKF6VVbJQuABEREXVcaXmXsGTHz9AJwEoFJE0MRPTgnkoXq0XYEkVERESKKNRWSwkUAOgE8PKO42bTIsUkioiIiBRRUFIpJVD16oTAhZIqZQrUSkyiiIiISBG+rg6wUulvs1ap4OPaWZkCtRKTKCIiIlKEh5M9kiYGwlp1N5OyVqnw9sQB8HCyV7hkLcOB5URERKSY6ME9McK/By6UVMHHtbPZJFAAkygiIiJSmIeTvVklT/XYnUdEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMshKotLT0zFx4kQMGDAAAwYMwMSJE7F9+/b2LhsREclQqK3GgfMlKNRWK10UIotm05pgnU6HmJgYpKenw9/fHwEBAQCAEydOIDo6Gv/zP/+Dbdu2QaVSGaSwZBiF2moUlFTC19UBHk72SheHiNogLe8Sluz4GToBWKmApImBiB7cU+liEVmkVrVEvf/++/j++++xa9cunD59Gjt37sTOnTtx5swZfPXVV8jMzMT777/f6kIkJyfDx8cHarUaYWFhOHjwYLPx6enpCAgIgFqtRmBgIPbs2aO3XwiBZcuWwcPDA/b29oiIiMDZs2f1YkpLSzFlyhQ4OjrC2dkZsbGxqKiokPafOXMGjz76KNzd3aFWq9G7d2+8+uqrqK2tbfX1mbK0vEsYtiIbkzfmYtiKbKTlXVK6SEQkU6G2WkqgAEAngJd3HGeLFJGBtCqJ2rx5M1atWoUnn3yywb6nnnoKK1euxKZNm1pVgLS0NMTHxyMxMRGHDx/GoEGDEBkZiWvXrjUaf+DAAcTExCA2NhZHjhxBVFQUoqKicPz4cSlm5cqVWLduHVJSUpCbmwsHBwdERkbi1q1bUsyUKVNw4sQJZGZmYvfu3di3bx/i4uKk/Z06dcK0adPw3Xff4cyZM1i7di02btyIxMTEVl2fKeMbLpFlKSiplP6e69UJgQslVcoUiMjCqYQQ4v5hd9nb2+PMmTPo2bPxpuGLFy8iICAA1dUt/xAOCwvD4MGD8eGHHwK422Xo7e2NefPmISEhoUF8dHQ0KisrsXv3bmnbkCFDEBQUhJSUFAgh4OnpiYULF2LRokUAAK1WC3d3d2zZsgWTJk3CqVOn0L9/f+Tl5SEkJAQAkJGRgbFjx+LKlSvw9PRstKzx8fHIy8vD//t//69F11ZeXg4nJydotVo4Ojq2uE6M5cD5EkzemNtg+7bZQxDep7sCJSKitijUVmPYimy9RMpapcKPCY+yq56oFVr6+d2qlih7e3uUlZU1+6RqtbrF57t9+zby8/MRERHx3wJZWSEiIgI5OTmNHpOTk6MXDwCRkZFSfEFBAYqKivRinJycEBYWJsXk5OTA2dlZSqAAICIiAlZWVsjNbZhUAMC5c+eQkZGBkSNHNnk9NTU1KC8v13sYW2sGlPq6OsDqnuFr1ioVfFw7G6h0RGRIHk72SJoYCOv/f1yqtUqFtycOYAJFZCCtSqLCw8Oxfv36JvcnJycjPDy8xecrKSlBXV0d3N3d9ba7u7ujqKio0WOKioqaja//eb8YNzc3vf02NjZwcXFp8LxDhw6FWq2Gn58fHnnkEbzxxhtNXk9SUhKcnJykh7e3d5OxhtDa8U18wyWyPNGDe+LHhEexbfYQ/JjwKAeVExlQq2bnvfLKKxg1ahRu3LiBRYsWISAgAEIInDp1CmvWrMHXX3+NvXv3GqqsikhLS8PNmzfxr3/9C3/961+xevVqLF68uNHYJUuWID4+Xvq9vLzcaIlUU+ObRvj3aDYpih7cEyP8e+BCSRV8XDszgSKyAB5O9vxbJjKCViVRQ4cORVpaGuLi4vDll1/q7evWrRu2bduGYcOGtfh8rq6usLa2RnFxsd724uJiaDSaRo/RaDTNxtf/LC4uhoeHh15MUFCQFHPvwPU7d+6gtLS0wfPWJ0H9+/dHXV0d4uLisHDhQlhbWzcom52dHezs7O532QbR3IDS+72Z8g2XiIio9Vq92ObTTz+NixcvYvv27UhKSkJSUhK+/PJLXLp0Cc8880yrzmVra4vg4GBkZWVJ23Q6HbKysprsFgwPD9eLB4DMzEwp3tfXFxqNRi+mvLwcubm5Ukx4eDjKysqQn58vxWRnZ0On0yEsLKzJ8up0OtTW1kKn07XqOo2B45uIiIiMTLRCVlaW6Nevn9BqtQ32lZWVif79+4t9+/a15pQiNTVV2NnZiS1btoiTJ0+KuLg44ezsLIqKioQQQkydOlUkJCRI8fv37xc2NjZi9erV4tSpUyIxMVF06tRJ/Pzzz1LMihUrhLOzs/j666/FsWPHxIQJE4Svr6+orq6WYsaMGSMeeughkZubK3788Ufh5+cnYmJipP2fffaZSEtLEydPnhTnz58XaWlpwtPTU0yZMqXF16bVagWARuvLEFIPXhS9E74RvV7aLXonfCNSD140yvMSERFZkpZ+frcqiRo/frx49913m9z//vvvi6ioqNacUgghxAcffCB69uwpbG1tRWhoqPjpp5+kfSNHjhTTp0/Xi//iiy+Ev7+/sLW1FQ8++KD45ptv9PbrdDqxdOlS4e7uLuzs7MTo0aPFmTNn9GJu3LghYmJiRJcuXYSjo6OYOXOmuHnzprQ/NTVVPPzww6JLly7CwcFB9O/fX7z99tt6idj9GDuJEkKIq2VV4sC5EnG1rMpoz0lERGRJWvr53ap1onr16oWMjAz069ev0f2nT5/G448/jkuXuOo1YPrrRBEREVFDBlknqri4GJ06dWpyv42NDa5fv96aUxIRERGZpVYlUV5eXnq3V7nXsWPH9GbEEREREVmqViVRY8eOxdKlS/XuQVevuroaiYmJjd5Xj4iIiMjStGpMVHFxMR5++GFYW1tj7ty5eOCBBwDcHQuVnJyMuro6HD58uMFq4R0Vx0QRERGZn5Z+frdqsU13d3ccOHAAzz//PJYsWYL6/EulUiEyMhLJyclMoAiF2moUlFTC19WBi3gSEZHFalUSBdydobdnzx78+uuvOHfuHIQQ8PPzQ7du3QxRPjIzaXmXpNvPWKmApImBvHcXERFZpFYnUfW6deuGwYMHt2dZyMzJvX8fERGROWr1bV+ImtLc/fuIiIgsDZMoaje8fx8REXUkTKKo3Xg42SNpYiCsVXczKWuVCm9PHMCuPCILVqitxoHzJSjUVitdFCKjkz0miqgx0YN7YoR/D1woqYKPa2cmUEQWjBNJqKNjSxS1Ow8ne4T36c4EisiCNTWRhC1S1JEwiSIiolbjRBIiJlFERCQDJ5IQMYkiIiIZOJGEiAPLiYhIJk4koY6OSRQREcnm4WTP5Ik6LHbnEREREcnAJIqIiIhIBiZRRERERDIwiSLetoE6NL7+iUguDizv4HjbBurIzOH1X6itRkFJJXxdHTiAm8jEsCWqA+NtG6gja8nrX+lWqrS8Sxi2IhuTN+Zi2IpspOVdUqQcRNQ4tkR1YM3dtoHfeMnS3e/1r3QrVVNJ3gj/Hvz7JDIRbInqwHjbBurImnv9m0IrLe9NR2T6mER1YLxtA3Vkzb3+TSGB4ZccItPH7rwOzhC3beBAWDIXTb3+6xOY3yZSxk5g6pO8l3ccR50Q/JJDZIJUQghx/zCSo7y8HE5OTtBqtXB0dFS6OEah9DgSovaSlnepQQKjxGu5UFvNe9MRGVlLP7+ZRBlQR0uiCrXVGLYiu8G39x8THuWbP5klJjBEpsuQvR4t/fxmdx61G872I0vDm+sSmSZT6fXgwHIzpPTaNU3hQFgiIsthqp81pjB7th5bosyMqWTfjeFAWCIiy2DKnzWm1OvBJMqMmMPie4aY7UdERMZj6p81pjB7th6788yIKaxdU6+5Zl4PJ3uE9+luEn9sRETUOqb0WdMYU1rjkC1RZsRUsm9TbuYlIqK2MZXPmuaYSq8HW6LMiClk36Y0oI+IiNqfKXzWtIQp9HqwJcrMKJ19m9KAPjJ/XN2eyDQp/VljLphEmSEl164xh2ZeMg/sFiYybVwn7f7YnUetYi7NvGTa2C1MRJaALVHUamzmpbZitzARWQImUSQLm3mpLdgtTESWgN15RGR07BYmIkvAligiUgS7hTsuzsokS8EkiogUw27hjoezMsmSsDuPiIiMgrMyydIwiSIiIqMw9XuyEbWWSSRRycnJ8PHxgVqtRlhYGA4ePNhsfHp6OgICAqBWqxEYGIg9e/bo7RdCYNmyZfDw8IC9vT0iIiJw9uxZvZjS0lJMmTIFjo6OcHZ2RmxsLCoqKqT9P/zwAyZMmAAPDw84ODggKCgIW7dubb+LJiLqYOpnZf4WZ2WSOVM8iUpLS0N8fDwSExNx+PBhDBo0CJGRkbh27Vqj8QcOHEBMTAxiY2Nx5MgRREVFISoqCsePH5diVq5ciXXr1iElJQW5ublwcHBAZGQkbt26JcVMmTIFJ06cQGZmJnbv3o19+/YhLi5O73kGDhyIL7/8EseOHcPMmTMxbdo07N6923CVQURkwTgrkyyNSggh7h9mOGFhYRg8eDA+/PBDAIBOp4O3tzfmzZuHhISEBvHR0dGorKzUS2aGDBmCoKAgpKSkQAgBT09PLFy4EIsWLQIAaLVauLu7Y8uWLZg0aRJOnTqF/v37Iy8vDyEhIQCAjIwMjB07FleuXIGnp2ejZR03bhzc3d2xadOmFl1beXk5nJycoNVq4ejo2Kp6ISICLHMmW6G2mrMyyaS19PNb0Zao27dvIz8/HxEREdI2KysrREREICcnp9FjcnJy9OIBIDIyUoovKChAUVGRXoyTkxPCwsKkmJycHDg7O0sJFABERETAysoKubm5TZZXq9XCxcWlyf01NTUoLy/XexARyZWWdwnDVmRj8sZcDFuRjbS8S0oXqV14ONkjvE93JlBk9hRNokpKSlBXVwd3d3e97e7u7igqKmr0mKKiombj63/eL8bNzU1vv42NDVxcXJp83i+++AJ5eXmYOXNmk9eTlJQEJycn6eHt7d1kLBFRcziTTV+hthoHzpd02Osn06T4mChzsHfvXsycORMbN27Egw8+2GTckiVLoNVqpcfly5eNWEoisiScyfZfltoiR+ZP0STK1dUV1tbWKC4u1tteXFwMjUbT6DEajabZ+Pqf94u5d+D6nTt3UFpa2uB5/+///g/jx4/He++9h2nTpjV7PXZ2dnB0dNR7kDL4rZXMHWey3cUWOTJliiZRtra2CA4ORlZWlrRNp9MhKysL4eHhjR4THh6uFw8AmZmZUryvry80Go1eTHl5OXJzc6WY8PBwlJWVIT8/X4rJzs6GTqdDWFiYtO2HH37AuHHj8M477+jN3CPTxm+tZAk4k+0utsiRKVP8ti/x8fGYPn06QkJCEBoairVr16KyslIaezRt2jR4eXkhKSkJADB//nyMHDkSa9aswbhx45CamopDhw5hw4YNAACVSoUFCxZg+fLl8PPzg6+vL5YuXQpPT09ERUUBAPr164cxY8Zg9uzZSElJQW1tLebOnYtJkyZJM/P27t2LJ598EvPnz8czzzwjjZWytbVtdnA5Kaupb60j/Ht0uA8fMn+8v+B/W+R+m0h1xBY5Mk2Kj4mKjo7G6tWrsWzZMgQFBeHo0aPIyMiQBoZfunQJhYWFUvzQoUPx+eefY8OGDRg0aBC2b9+OnTt3YsCAAVLM4sWLMW/ePMTFxWHw4MGoqKhARkYG1Gq1FLN161YEBARg9OjRGDt2LIYPHy4lYgDw6aefoqqqCklJSfDw8JAeEydONEKtkFz81kqWpqPPZGOLHJkyxdeJsmRcJ8r4CrXVGLYiu8G31h8THuWbLhFMf92ppsrHtaXImFr6+a14dx5Re6r/1vryjuOoE4LfWol+Iy3vktTdbaUCkiYGInpwT6WLJWmufB5O9vw7JpPDligDYkuUcvitlUifqbfSmnr5qGMxixXLqf1xav9dHX0cCdG9TH28oKmXj6gx7M6zIKbeVE9EyjH1WW6mXj6ixrAlykJwQToiao6pz3Iz9fJ1ROzZuD+2RFmI5prCPZzsTX5GDhEZnqmvO2Xq5etI2LPRMkyiLERzTeH8YyCieqYwy625L3VNlY9fBI2Hixa3HJMoC9HU1H4A/GMgIpMh50sdvwga1/16Nui/mERZkMaawg+cL+EfAxGZBDktHGwVMT4O8m85Diy3MPdO7eed4InIVMhZxoBLHxgfB/m3HFuiLBxX8CYiUyGnhYOtIsrgIP+W4YrlBmRKK5ZzBW8iMgVpeZcafKlryZio1h5D1BYt/fxmEmVAppREERGZCjlf6vhFkIyJNyAmIiKTJGeZBVNYmoHoXhxYTkRERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRGaCd1QnQ2vP1xhfr9QRcHYekRngvcPI0NrzNcbXK3UUbIkiMnFN3TuM3/CpvbTna4yvV+pImEQRmTjeO4wMrT1fY3y9UkfCJIrIxPEm0mRo7fka4+vVcnBc2/0xiSIycbyjOhlae77G+Hq1DGl5lzBsRTYmb8zFsBXZSMu7pHSRTBLvnWdAvHcetSfeO4wMrT1fY3y9mq9CbTWGrcjW65a1VqnwY8KjHeb/kvfOI7IwvHcYGVp7vsb4ejVfzY1r4/+pPnbnERERkYTj2lqOSRQRERFJOK6t5didR0RERHqiB/fECP8eHNd2H0yiiIiIqAGOa7s/ducRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRUTvi/caIOg7OziMiaidpeZewZMfP0AnASgUkTQxE9OCeSheLiAyELVFERO2gUFstJVAAoBPAyzuOs0WKyIIxiSIiagfN3W+M2o7dpGSK2J1HRNQO6u839ttEivcbax/sJiVTxZYoIqImtKb1g/cbMwx2k5IpY0sUEVEj5LR+8H5j7a+5blLWLymNLVFERPdoS+uHh5M9wvt05wd8O6nvJv0tdpOSqWASRUR0Dw4SNx3sJiVTxu48IqJ7cJC4aWE3KZkqtkQREd3DUK0fnKYvH7tJyRQpnkQlJyfDx8cHarUaYWFhOHjwYLPx6enpCAgIgFqtRmBgIPbs2aO3XwiBZcuWwcPDA/b29oiIiMDZs2f1YkpLSzFlyhQ4OjrC2dkZsbGxqKiokPbfunULM2bMQGBgIGxsbBAVFdVu10tE5iF6cE/8mPAots0egh8THm3zlPq0vEsYtiIbkzfmYtiKbKTlXWqnkiqLiSF1ZIomUWlpaYiPj0diYiIOHz6MQYMGITIyEteuXWs0/sCBA4iJiUFsbCyOHDmCqKgoREVF4fjx41LMypUrsW7dOqSkpCA3NxcODg6IjIzErVu3pJgpU6bgxIkTyMzMxO7du7Fv3z7ExcVJ++vq6mBvb48XX3wRERERhqsAIjJp7dX6YanT9C01MTR1TFxNh0oIIe4fZhhhYWEYPHgwPvzwQwCATqeDt7c35s2bh4SEhAbx0dHRqKysxO7du6VtQ4YMQVBQEFJSUiCEgKenJxYuXIhFixYBALRaLdzd3bFlyxZMmjQJp06dQv/+/ZGXl4eQkBAAQEZGBsaOHYsrV67A09NT7zlnzJiBsrIy7Ny5s9XXV15eDicnJ2i1Wjg6Orb6eCKyDAfOl2DyxtwG27fNHoLwPt0VKFHbFWqrMWxFdoNxYz8mPGpSXW6F2moUlFTC19XBpMolFxceNY6Wfn4r1hJ1+/Zt5Ofn67X0WFlZISIiAjk5OY0ek5OT06BlKDIyUoovKChAUVGRXoyTkxPCwsKkmJycHDg7O0sJFABERETAysoKubkN3+Rao6amBuXl5XoPUga/qbUN6699WeI0fXOYwWhpLWWW2qJpzhRLokpKSlBXVwd3d3e97e7u7igqKmr0mKKiombj63/eL8bNzU1vv42NDVxcXJp83pZKSkqCk5OT9PD29m7T+UgeS3vjNDbWX/sz9jR9YyTBpp4YWmLCYQ6Ja0fDJQ7a0ZIlSxAfHy/9Xl5ezkTKyJp64xzh38MimvINjfVnOMaapm+s7p76xPDlHcdRJ4TJrd9kiSudc+kN06NYEuXq6gpra2sUFxfrbS8uLoZGo2n0GI1G02x8/c/i4mJ4eHjoxQQFBUkx9w5cv3PnDkpLS5t83pays7ODnZ1dm85BbWOJb5zGxPozLA8ne4PWo7GTYFNev8kSEw5TT1w7IsW682xtbREcHIysrCxpm06nQ1ZWFsLDwxs9Jjw8XC8eADIzM6V4X19faDQavZjy8nLk5uZKMeHh4SgrK0N+fr4Uk52dDZ1Oh7CwsHa7PlKGqXcxmDrWn3lTorvHVNdvstSVztt76Q1qG0W78+Lj4zF9+nSEhIQgNDQUa9euRWVlJWbOnAkAmDZtGry8vJCUlAQAmD9/PkaOHIk1a9Zg3LhxSE1NxaFDh7BhwwYAgEqlwoIFC7B8+XL4+fnB19cXS5cuhaenp7TWU79+/TBmzBjMnj0bKSkpqK2txdy5czFp0iS9mXknT57E7du3UVpaips3b+Lo0aMAILVoUftqrxk0/KbWNqw/82aJrS9tYcotZW1h6BZNagWhsA8++ED07NlT2NraitDQUPHTTz9J+0aOHCmmT5+uF//FF18If39/YWtrKx588EHxzTff6O3X6XRi6dKlwt3dXdjZ2YnRo0eLM2fO6MXcuHFDxMTEiC5dughHR0cxc+ZMcfPmTb2YXr16CQANHq2h1WoFAKHValt1XEeTevCi8E3YLXq9tFv4JuwWqQcvtvmcV8uqxIFzJeJqWVU7lLDjYf2Zr9SDF0XvhG9Er5d2i94J37TL3xNRR9PSz29F14mydFwn6v7MZa0ZInNSqK22uNYXImNq6ec3Z+eRojiQmaj9sbuHyDgUv3cedWwcyGz5uHAnEVkqJlGkKEudQUN3ceFOIrJkHBNlQBwT1XIcw2F8hr6nGMe7EZG54pgoMiscw2FcxljVmuPdiIzL0m62bA6YRBF1MMZa1ZprFhEZj7Fu90P6OCaKqIMx1qrWHO9GZByWeLNlc8GWKCIL1ljzvjFbiCx1xWgiU8Kuc+UwiSKyUE017xv71i4c70ZkWOw6Vw5n5xkQZ+eRUloyM44zIoksR1repQZfjExtTJQ5DXzn7DyiDqwlzftsISKyHKbedW6pA985sJyoBcxt1W1TWgne3OqOyFx5ONkjvE93k0ugLHngO1uiiO7DHL9BGXvcU1PMse6IqH1Z8sB3JlFEzTDWmkqGoHTzvjnXHRG1H0se+M7uPKJmGGtNJUNRsnnf3OvOHLCrlMyBJa8Zx5YoomaYyzcoU5z1Yi51Z67YVUrmROmWcUNhSxRRM8zhG1Ra3iUMW5GNyRtzMWxFNtLyLildJADmUXfmypIH6pLlMtWB723Bliii+zDlb1CmPu7IlOvOnFnyQF0ic8IkiqgFTHVNJXP4MDXVujNn7ColMg3sziMyY6a0HhQZD7tKLQMnBpg/tkQRmTFTWQ+KDKepSQPsKjVvnBhgGXjvPAPivfPIWHgfPMvED1rL1JJ7W5KyWvr5ze48IgtgibNeOjrOwLNcXEPNcjCJIjIQOeMdOEaC6vGD1nJxLKPl4JgoIgOQ0w3Tlq4bU1xsk9qGM/AsF8cyWg6OiTIgjonqmOSMd2jLGAmOm7FcaXmXGnzQ8v/WcnAso+lq6ec3W6KI2pmctZvkrvdk6ottUttwBp5l4xpq5o9JFBlNR+lyktMNI7frxhwW26S24QctkeniwHIyClO9v5shyFkIUe7iiRygSkSkHI6JMiCOibqro66JIme8g5xjOG6GiKh9cUwUmYyO2uUkpxtGzjEcN0PUsXSUoRHmgEkUGRynahuescbN8M2bSFmcjWtaOCaKDK6tN0vlApSmoSONayMyRYXaaiR8qT8bN2HHz3xvVBBbosgo5HY58VuXaeBSCkTKy7/4K+4dxCwEcPjirxg3kH+HSmBLFBlNa+/vZsn3DjO31jXegqR9mNv/O5mWpuaBcXqYctgSRSbLUgekm2PrGse1tZ05/r+3BMfJGU+IjwtUgF5rlApAsE83hUpEbIkik2WJayCZa+taW8e1dXTm+v9+PxwnZ1weTvZY8Uyg9MFtBWDFM4H8O1QQW6LIZFniTTrNuXWNSynIZ87/703hODll8O/QtDCJIpNmaW8Y5t4tZgq3IDHH7iNz/39vjCUmhubCFP4O6S5255HJa+2AdFPGbrG2MdfuI0v8f7fE7nai1uJtXwyIt32hpsi5vUtHZwm3D7K0/3feckgZ5tgaa2542xeiJpjKG5BosOILNccSuo8srRvG0rrbzYGlzvI0V0yiyGhMIXkxhTcgUyiDObLEcUWWwNISQ1PGwfymh2OiyChMYSyLKUwzN4UymCtLHFdE1Bpc9Nb0sCWKDM5Uvj2ZQneQKZTBnLH7iDqy+7XGym3tN4VeAnPFJIoMzlQSBwdb60a3d7a92yBrjDcSdkm1HbuPqKNqbu08ucMEOLygbUyiOy85ORk+Pj5Qq9UICwvDwYMHm41PT09HQEAA1Go1AgMDsWfPHr39QggsW7YMHh4esLe3R0REBM6ePasXU1paiilTpsDR0RHOzs6IjY1FRUWFXsyxY8fwyCOPQK1Ww9vbGytXrmyfC+5gTGUqdOXtuka3V93WGa27sf5N8LcrDre0S4r3XSOi6ME98WPCo9g2ewh+THgU0YN7yh4mwOEFbad4EpWWlob4+HgkJibi8OHDGDRoECIjI3Ht2rVG4w8cOICYmBjExsbiyJEjiIqKQlRUFI4fPy7FrFy5EuvWrUNKSgpyc3Ph4OCAyMhI3Lp1S4qZMmUKTpw4gczMTOzevRv79u1DXFyctL+8vByPP/44evXqhfz8fKxatQqvvfYaNmzYYLjKsFCGGsvS2qSiqWSus61Vm95IZCU3qnt+3ocpjCkjfUxqSSn3rp0nd6wUx1i1neLrRIWFhWHw4MH48MMPAQA6nQ7e3t6YN28eEhISGsRHR0ejsrISu3fvlrYNGTIEQUFBSElJgRACnp6eWLhwIRYtWgQA0Gq1cHd3x5YtWzBp0iScOnUK/fv3R15eHkJCQgAAGRkZGDt2LK5cuQJPT0+sX78er7zyCoqKimBrawsASEhIwM6dO3H69OkWXRvXidLXnmvktKXp+t6mcG+Xzpi8MbdB7LbZQxDep3u7lkPOWkeWsD6SpWEXCJkSue8RfG9pWks/vxVtibp9+zby8/MREREhbbOyskJERARycnIaPSYnJ0cvHgAiIyOl+IKCAhQVFenFODk5ISwsTIrJycmBs7OzlEABQEREBKysrJCbmyvFjBgxQkqg6p/nzJkz+PXXXxstW01NDcrLy/Ue9F/ttfJ4W5qgG2sKl9vdKKcccr758duiaWEXCJkaua39nPHadooOLC8pKUFdXR3c3d31tru7uzfZ2lNUVNRofFFRkbS/fltzMW5ubnr7bWxs4OLiohfj6+vb4Bz1+7p169agbElJSXj99debvmBqF20dqH7vwGS5NzqWUw45A8s5GN20mMpECaLfkjtzlTNe24az89rRkiVLEB8fL/1eXl4Ob29vBUtkmQyRVMh5I5FTDjkJm9wkjwyDSS2ZKrkzVznjVT5FkyhXV1dYW1ujuLhYb3txcTE0Gk2jx2g0mmbj638WFxfDw8NDLyYoKEiKuXfg+p07d1BaWqp3nsae57fPcS87OzvY2dk1eb3UPgyVVLT2jURuOeQkbPy2aDqY1BJRPUWTKFtbWwQHByMrKwtRUVEA7g4sz8rKwty5cxs9Jjw8HFlZWViwYIG0LTMzE+Hh4QAAX19faDQaZGVlSUlTeXk5cnNz8fzzz0vnKCsrQ35+PoKDgwEA2dnZ0Ol0CAsLk2JeeeUV1NbWolOnTtLzPPDAA4125ZFxmUpSIbcccr758dui6TCV1x8RKUwoLDU1VdjZ2YktW7aIkydPiri4OOHs7CyKioqEEEJMnTpVJCQkSPH79+8XNjY2YvXq1eLUqVMiMTFRdOrUSfz8889SzIoVK4Szs7P4+uuvxbFjx8SECROEr6+vqK6ulmLGjBkjHnroIZGbmyt+/PFH4efnJ2JiYqT9ZWVlwt3dXUydOlUcP35cpKamis6dO4uPPvqoxdem1WoFAKHVattSRURERGRELf38VjyJEkKIDz74QPTs2VPY2tqK0NBQ8dNPP0n7Ro4cKaZPn64X/8UXXwh/f39ha2srHnzwQfHNN9/o7dfpdGLp0qXC3d1d2NnZidGjR4szZ87oxdy4cUPExMSILl26CEdHRzFz5kxx8+ZNvZh//etfYvjw4cLOzk54eXmJFStWtOq6mEQRERGZn5Z+fiu+TpQl4zpRRERE5scs1okiIiIiMldMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDIregNjS1S8GX15ernBJiIiIqKXqP7fvd1MXJlEGdPPmTQCAt7e3wiUhIiKi1rp58yacnJya3M975xmQTqfD1atX0bVrV6hUqlYdW15eDm9vb1y+fLlD33eP9cA6qMd6YB0ArIN6rAfD1oEQAjdv3oSnpyesrJoe+cSWKAOysrLC7373uzadw9HRscP+gfwW64F1UI/1wDoAWAf1WA+Gq4PmWqDqcWA5ERERkQxMooiIiIhkYBJlouzs7JCYmAg7Ozuli6Io1gProB7rgXUAsA7qsR5Mow44sJyIiIhIBrZEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUmUgpKTk+Hj4wO1Wo2wsDAcPHiwydgTJ07gmWeegY+PD1QqFdauXWu8ghpYa+ph48aNeOSRR9CtWzd069YNERERzcabi9bUwY4dOxASEgJnZ2c4ODggKCgIf//7341YWsNoTR38VmpqKlQqFaKiogxbQCNpTT1s2bIFKpVK76FWq41YWsNo7WuhrKwMc+bMgYeHB+zs7ODv7489e/YYqbSG05p6GDVqVIPXgkqlwrhx44xY4vbX2tfC2rVr8cADD8De3h7e3t74y1/+glu3bhmugIIUkZqaKmxtbcWmTZvEiRMnxOzZs4Wzs7MoLi5uNP7gwYNi0aJFYtu2bUKj0Yj33nvPuAU2kNbWw+TJk0VycrI4cuSIOHXqlJgxY4ZwcnISV65cMXLJ209r62Dv3r1ix44d4uTJk+LcuXNi7dq1wtraWmRkZBi55O2ntXVQr6CgQHh5eYlHHnlETJgwwTiFNaDW1sPmzZuFo6OjKCwslB5FRUVGLnX7am0d1NTUiJCQEDF27Fjx448/ioKCAvHDDz+Io0ePGrnk7au19XDjxg2918Hx48eFtbW12Lx5s3EL3o5aWwdbt24VdnZ2YuvWraKgoEB8++23wsPDQ/zlL38xWBmZRCkkNDRUzJkzR/q9rq5OeHp6iqSkpPse26tXL4tJotpSD0IIcefOHdG1a1fx6aefGqqIBtfWOhBCiIceeki8+uqrhiieUcipgzt37oihQ4eKjz/+WEyfPt0ikqjW1sPmzZuFk5OTkUpnHK2tg/Xr14vevXuL27dvG6uIRtHW94X33ntPdO3aVVRUVBiqiAbX2jqYM2eOeOyxx/S2xcfHi2HDhhmsjOzOU8Dt27eRn5+PiIgIaZuVlRUiIiKQk5OjYMmMqz3qoaqqCrW1tXBxcTFUMQ2qrXUghEBWVhbOnDmDESNGGLKoBiO3Dt544w24ubkhNjbWGMU0OLn1UFFRgV69esHb2xsTJkzAiRMnjFFcg5BTB7t27UJ4eDjmzJkDd3d3DBgwAG+//Tbq6uqMVex21x7vjZ988gkmTZoEBwcHQxXToOTUwdChQ5Gfny91+f3yyy/Ys2cPxo4da7By8gbECigpKUFdXR3c3d31tru7u+P06dMKlcr42qMeXnrpJXh6eur9oZkTuXWg1Wrh5eWFmpoaWFtb429/+xt+//vfG7q4BiGnDn788Ud88sknOHr0qBFKaBxy6uGBBx7Apk2bMHDgQGi1WqxevRpDhw7FiRMn2nzzcyXIqYNffvkF2dnZmDJlCvbs2YNz587hhRdeQG1tLRITE41R7HbX1vfGgwcP4vjx4/jkk08MVUSDk1MHkydPRklJCYYPHw4hBO7cuYM///nPePnllw1WTiZRZLZWrFiB1NRU/PDDDxYxmLY1unbtiqNHj6KiogJZWVmIj49H7969MWrUKKWLZnA3b97E1KlTsXHjRri6uipdHEWFh4cjPDxc+n3o0KHo168fPvroI7z55psKlsx4dDod3NzcsGHDBlhbWyM4OBj/+c9/sGrVKrNNotrqk08+QWBgIEJDQ5UuilH98MMPePvtt/G3v/0NYWFhOHfuHObPn48333wTS5cuNchzMolSgKurK6ytrVFcXKy3vbi4GBqNRqFSGV9b6mH16tVYsWIFvv/+ewwcONCQxTQouXVgZWWFvn37AgCCgoJw6tQpJCUlmWUS1do6OH/+PC5cuIDx48dL23Q6HQDAxsYGZ86cQZ8+fQxbaANoj/eFTp064aGHHsK5c+cMUUSDk1MHHh4e6NSpE6ytraVt/fr1Q1FREW7fvg1bW1uDltkQ2vJaqKysRGpqKt544w1DFtHg5NTB0qVLMXXqVMyaNQsAEBgYiMrKSsTFxeGVV16BlVX7j2DimCgF2NraIjg4GFlZWdI2nU6HrKwsvW+Vlk5uPaxcuRJvvvkmMjIyEBISYoyiGkx7vRZ0Oh1qamoMUUSDa20dBAQE4Oeff8bRo0elx1NPPYVHH30UR48ehbe3tzGL327a47VQV1eHn3/+GR4eHoYqpkHJqYNhw4bh3LlzUiINAP/+97/h4eFhlgkU0LbXQnp6OmpqavCHP/zB0MU0KDl1UFVV1SBRqk+uhaFuE2ywIevUrNTUVGFnZye2bNkiTp48KeLi4oSzs7M0PXnq1KkiISFBiq+pqRFHjhwRR44cER4eHmLRokXiyJEj4uzZs0pdQrtobT2sWLFC2Nraiu3bt+tN571586ZSl9Bmra2Dt99+W3z33Xfi/Pnz4uTJk2L16tXCxsZGbNy4UalLaLPW1sG9LGV2Xmvr4fXXXxfffvutOH/+vMjPzxeTJk0SarVanDhxQqlLaLPW1sGlS5dE165dxdy5c8WZM2fE7t27hZubm1i+fLlSl9Au5P5NDB8+XERHRxu7uAbR2jpITEwUXbt2Fdu2bRO//PKL+O6770SfPn3Ec889Z7AyMolS0AcffCB69uwpbG1tRWhoqPjpp5+kfSNHjhTTp0+Xfi8oKBAAGjxGjhxp/IK3s9bUQ69evRqth8TEROMXvB21pg5eeeUV0bdvX6FWq0W3bt1EeHi4SE1NVaDU7as1dXAvS0mihGhdPSxYsECKdXd3F2PHjhWHDx9WoNTtq7WvhQMHDoiwsDBhZ2cnevfuLd566y1x584dI5e6/bW2Hk6fPi0AiO+++87IJTWc1tRBbW2teO2110SfPn2EWq0W3t7e4oUXXhC//vqrwcqnEsJQbVxERERElotjooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRkQWYMWMGoqKilC4GUYfCJIqIDGrGjBlQqVTSo3v37hgzZgyOHTumdNHaxW+vrf4xfPhwgz3fhQsXoFKpcPToUb3t77//PrZs2WKw5yWihphEEZHBjRkzBoWFhSgsLERWVhZsbGzw5JNPKl2sdrN582bp+goLC7Fr165G42praw1WBicnJzg7Oxvs/ETUEJMoIjI4Ozs7aDQaaDQaBAUFISEhAZcvX8b169fx2GOPYe7cuXrx169fh62trXQHdx8fH7z55puIiYmBg4MDvLy8kJycrHfMu+++i8DAQDg4OMDb2xsvvPACKioqpP0XL17E+PHj0a1bNzg4OODBBx/Enj17AAC//vorpkyZgh49esDe3h5+fn7YvHlzi6/P2dlZuj6NRgMXFxepxSgtLQ0jR46EWq3G1q1bcePGDcTExMDLywudO3dGYGAgtm3bpnc+nU6HlStXom/fvrCzs0PPnj3x1ltvAQB8fX0BAA899BBUKhVGjRoFoGF3Xk1NDV588UW4ublBrVZj+PDhyMvLk/b/8MMPUKlUyMrKQkhICDp37oyhQ4fizJkzLb5uoo6OSRQRGVVFRQU+++wz9O3bF927d8esWbPw+eefo6amRor57LPP4OXlhccee0zatmrVKgwaNAhHjhxBQkIC5s+fj8zMTGm/lZUV1q1bhxMnTuDTTz9FdnY2Fi9eLO2fM2cOampqsG/fPvz8889455130KVLFwDA0qVLcfLkSfzzn//EqVOnsH79eri6urbL9daX9dSpU4iMjMStW7cQHByMb775BsePH0dcXBymTp2KgwcPSscsWbIEK1askMr1+eefw93dHQCkuO+//x6FhYXYsWNHo8+7ePFifPnll/j0009x+PBh9O3bF5GRkSgtLdWLe+WVV7BmzRocOnQINjY2+OMf/9gu103UIRjs1sZEREKI6dOnC2tra+Hg4CAcHBwEAOHh4SHy8/OFEEJUV1eLbt26ibS0NOmYgQMHitdee036vVevXmLMmDF6542OjhZPPPFEk8+bnp4uunfvLv0eGBiod87fGj9+vJg5c6as6wMg1Gq1dH0ODg7iq6++EgUFBQKAWLt27X3PMW7cOLFw4UIhhBDl5eXCzs5ObNy4sdHY+vMeOXJEb/v06dPFhAkThBBCVFRUiE6dOomtW7dK+2/fvi08PT3FypUrhRBC7N27VwAQ33//vRTzzTffCACiurq6NVVA1GGxJYqIDO7RRx/F0aNHcfToURw8eBCRkZF44okncPHiRajVakydOhWbNm0CABw+fBjHjx/HjBkz9M4RHh7e4PdTp05Jv3///fcYPXo0vLy80LVrV0ydOhU3btxAVVUVAODFF1/E8uXLMWzYMCQmJuoNbH/++eeRmpqKoKAgLF68GAcOHGjV9b333nvS9R09ehS///3vpX0hISF6sXV1dXjzzTcRGBgIFxcXdOnSBd9++y0uXboEADh16hRqamowevToVpXht86fP4/a2loMGzZM2tapUyeEhobq1RkADBw4UPq3h4cHAODatWuyn5uoI2ESRUQG5+DggL59+6Jv374YPHgwPv74Y1RWVmLjxo0AgFmzZiEzMxNXrlzB5s2b8dhjj6FXr14tPv+FCxfw5JNPYuDAgfjyyy+Rn58vjZm6ffu29By//PILpk6dip9//hkhISH44IMPAEBK6P7yl7/g6tWrGD16NBYtWtTi59doNNL19e3bFw4ODnrX/lurVq3C+++/j5deegl79+7F0aNHERkZKZXT3t6+xc/bHjp16iT9W6VSAbg7JouI7o9JFBEZnUqlgpWVFaqrqwEAgYGBCAkJwcaNG/H55583Oi7np59+avB7v379AAD5+fnQ6XRYs2YNhgwZAn9/f1y9erXBOby9vfHnP/8ZO3bswMKFC6UkDgB69OiB6dOn47PPPsPatWuxYcOG9rxkyf79+zFhwgT84Q9/wKBBg9C7d2/8+9//lvb7+fnB3t5eGlR/L1tbWwB3W7Sa0qdPH9ja2mL//v3SttraWuTl5aF///7tdCVEZKN0AYjI8tXU1KCoqAjA3ZlwH374ISoqKjB+/HgpZtasWZg7dy4cHBzw9NNPNzjH/v37sXLlSkRFRSEzMxPp6en45ptvAAB9+/ZFbW0tPvjgA4wfPx779+9HSkqK3vELFizAE088AX9/f/z666/Yu3evlIQtW7YMwcHBePDBB1FTU4Pdu3dL+9qbn58ftm/fjgMHDqBbt2549913UVxcLCU3arUaL730EhYvXgxbW1sMGzYM169fx4kTJxAbGws3NzfY29sjIyMDv/vd76BWq+Hk5KT3HA4ODnj++efx17/+FS4uLujZsydWrlyJqqoqxMbGGuS6iDoitkQRkcFlZGTAw8MDHh4eCAsLQ15eHtLT06Xp+QAQExMDGxsbxMTEQK1WNzjHwoULcejQITz00ENYvnw53n33XURGRgIABg0ahHfffRfvvPMOBgwYgK1btyIpKUnv+Lq6OsyZMwf9+vXDmDFj4O/vj7/97W8A7rbuLFmyBAMHDsSIESNgbW2N1NRUg9TFq6++iocffhiRkZEYNWoUNBpNg5XGly5dioULF2LZsmXo168foqOjpXFKNjY2WLduHT766CN4enpiwoQJjT7PihUr8Mwzz2Dq1Kl4+OGHce7cOXz77bfo1q2bQa6LqCNSCSGE0oUgIrpw4QL69OmDvLw8PPzww3r7fHx8sGDBAixYsECZwhERNYLdeUSkqNraWty4cQOvvvoqhgwZ0iCBIiIyVezOIyJF7d+/Hx4eHsjLy2swjklpb7/9Nrp06dLo44knnlC6eESkMHbnERE1obS0tMEK3/Xs7e3h5eVl5BIRkSlhEkVEREQkA7vziIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEM/x/CWNYIsZRs3wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_46.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHHCAYAAADzrV8YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgHUlEQVR4nO3de1xU5do//s8ADoMoA4gcQ0QRNUUtiAnP5iSomXQS0Tw9qB00c5O7tFKsLDxVppmm29NTqWS6y8pMgtw+KqKhpuJhi2GaMnhABvEAyNy/P/qxvo4cZIBhzeHzfr3mhax1zVrXvRxmrrnXve6lEEIIEBEREZEsHOROgIiIiMiesRgjIiIikhGLMSIiIiIZsRgjIiIikhGLMSIiIiIZsRgjIiIikhGLMSIiIiIZsRgjIiIikhGLMSIiIiIZsRgjIqqF2bNnQ6FQ1CpWoVBg9uzZZs2nb9++6Nu3r8Vuj4hqj8UYEVmVtWvXQqFQSA8nJycEBARg7NixuHDhgtzpWZzWrVsbHS9vb2/06tUL//73vxtk+zdv3sTs2bOxc+fOBtkekT1iMUZEVundd9/FF198geXLl2PgwIH48ssv0adPH9y+fdss+3v77bdx69Yts2zb3Lp164YvvvgCX3zxBaZNm4aLFy/i6aefxvLly+u97Zs3b+Kdd95hMUZUD05yJ0BEVBcDBw5EREQEAGD8+PHw8vLCvHnzsHXrVgwbNqzB9+fk5AQnJ+t8ywwICMDzzz8v/T569GiEhITg448/xosvvihjZkQEsGeMiGxEr169AABnzpwxWn7y5Ek8++yz8PT0hEqlQkREBLZu3WoUU1ZWhnfeeQft2rWDSqVCixYt0LNnT6SmpkoxVY0ZKykpwT/+8Q+0bNkSzZs3x5NPPom//vqrUm5jx45F69atKy2vaptr1qzBY489Bm9vbzg7O+PBBx/EsmXLTDoW9+Pr64uOHTsiNze3xrhLly4hISEBPj4+UKlU6Nq1K9atWyetP3v2LFq2bAkAeOedd6RToeYeL0dka6zzax4R0T3Onj0LAPDw8JCWZWdno0ePHggICMD06dPh6uqKr7/+GrGxsdi8eTOeeuopAH8XRcnJyRg/fjwiIyNRVFSE3377DQcPHsTjjz9e7T7Hjx+PL7/8EiNGjED37t2Rnp6OwYMH16sdy5YtQ6dOnfDkk0/CyckJ33//PV5++WUYDAZMmjSpXtuuUFZWhvPnz6NFixbVxty6dQt9+/ZFTk4OJk+ejODgYGzatAljx45FYWEhXn31VbRs2RLLli3DSy+9hKeeegpPP/00AKBLly4NkieR3RBERFZkzZo1AoD45ZdfxOXLl8X58+fFN998I1q2bCmcnZ3F+fPnpdj+/fuLsLAwcfv2bWmZwWAQ3bt3F+3atZOWde3aVQwePLjG/SYlJYm73zIPHz4sAIiXX37ZKG7EiBECgEhKSpKWjRkzRgQFBd13m0IIcfPmzUpx0dHRok2bNkbL+vTpI/r06VNjzkIIERQUJAYMGCAuX74sLl++LH7//XcxfPhwAUC88sor1W5v0aJFAoD48ssvpWWlpaUiKipKNGvWTBQVFQkhhLh8+XKl9hKRaXiakoisklarRcuWLREYGIhnn30Wrq6u2Lp1Kx544AEAQEFBAdLT0zFs2DBcv34dV65cwZUrV3D16lVER0fj9OnT0tWX7u7uyM7OxunTp2u9/23btgEApkyZYrR86tSp9WqXi4uL9G+9Xo8rV66gT58++OOPP6DX6+u0zR07dqBly5Zo2bIlunbtik2bNmHUqFGYN29etc/Ztm0bfH19ER8fLy1r0qQJpkyZguLiYvznP/+pUy5EVBlPUxKRVVq6dClCQ0Oh1+uxevVq7Nq1C87OztL6nJwcCCEwc+ZMzJw5s8ptXLp0CQEBAXj33XcxdOhQhIaGonPnzoiJicGoUaNqPN32559/wsHBAW3btjVa3r59+3q1a8+ePUhKSkJGRgZu3rxptE6v10OtVpu8TY1Ggzlz5kChUKBp06bo2LEj3N3da3zOn3/+iXbt2sHBwfg7e8eOHaX1RNQwWIwRkVWKjIyUrqaMjY1Fz549MWLECJw6dQrNmjWDwWAAAEybNg3R0dFVbiMkJAQA0Lt3b5w5cwbfffcdduzYgX/961/4+OOPsXz5cowfP77euVY3WWx5ebnR72fOnEH//v3RoUMHfPTRRwgMDIRSqcS2bdvw8ccfS20ylZeXF7RabZ2eS0Tmx2KMiKyeo6MjkpOT0a9fP3z66aeYPn062rRpA+DvU2u1KUQ8PT0xbtw4jBs3DsXFxejduzdmz55dbTEWFBQEg8GAM2fOGPWGnTp1qlKsh4cHCgsLKy2/t3fp+++/R0lJCbZu3YpWrVpJy3/99df75t/QgoKCcOTIERgMBqPesZMnT0rrgeoLTSKqPY4ZIyKb0LdvX0RGRmLRokW4ffs2vL290bdvX3z++efIy8urFH/58mXp31evXjVa16xZM4SEhKCkpKTa/Q0cOBAAsHjxYqPlixYtqhTbtm1b6PV6HDlyRFqWl5dXaRZ8R0dHAIAQQlqm1+uxZs2aavMwl0GDBkGn0yElJUVadufOHSxZsgTNmjVDnz59AABNmzYFgCqLTSKqHfaMEZHN+Oc//4nnnnsOa9euxYsvvoilS5eiZ8+eCAsLw4QJE9CmTRvk5+cjIyMDf/31F37//XcAwIMPPoi+ffsiPDwcnp6e+O233/DNN99g8uTJ1e6rW7duiI+Px2effQa9Xo/u3bsjLS0NOTk5lWKHDx+ON954A0899RSmTJmCmzdvYtmyZQgNDcXBgweluAEDBkCpVGLIkCF44YUXUFxcjJUrV8Lb27vKgtKcJk6ciM8//xxjx45FVlYWWrdujW+++QZ79uzBokWL0Lx5cwB/X3Dw4IMPIiUlBaGhofD09ETnzp3RuXPnRs2XyKrJfTknEZEpKqa2OHDgQKV15eXlom3btqJt27bizp07Qgghzpw5I0aPHi18fX1FkyZNREBAgHjiiSfEN998Iz1vzpw5IjIyUri7uwsXFxfRoUMH8f7774vS0lIppqppKG7duiWmTJkiWrRoIVxdXcWQIUPE+fPnq5zqYceOHaJz585CqVSK9u3biy+//LLKbW7dulV06dJFqFQq0bp1azFv3jyxevVqAUDk5uZKcaZMbXG/aTuq215+fr4YN26c8PLyEkqlUoSFhYk1a9ZUeu7evXtFeHi4UCqVnOaCqA4UQtzVH05EREREjYpjxoiIiIhkxGKMiIiISEYsxoiIiIhkxGKMiIiISEYsxoiIiIhkxGKMiIiISEac9NXCGQwGXLx4Ec2bN+dtR4iIiKyEEALXr1+Hv7+/0S3FqsJizMJdvHgRgYGBcqdBREREdXD+/Hk88MADNcawGLNwFbccOX/+PNzc3GTOhoiIiGqjqKgIgYGB0ud4TViMWbiKU5Nubm4sxoiIiKxMbYYYcQA/ERERkYxYjBERERHJiMUYERERkYw4ZsxGlJeXo6ysTO40rIZSqbzvpcZERESNgcWYlRNCQKfTobCwUO5UrIqDgwOCg4OhVCrlToWIiOwcizErV1GIeXt7o2nTppwYthYqJtLNy8tDq1ateMyIiEhWLMasWHl5uVSItWjRQu50rErLli1x8eJF3LlzB02aNJE7HSIismMcNGPFKsaINW3aVOZMrE/F6cny8nKZMyEiInvHYswG8DSb6XjMiIjIUrAYIyIiIpIRizEiIiIiGbEYI9nodDq88soraNOmDZydnREYGIghQ4YgLS1Nitm7dy8GDRoEDw8PqFQqhIWF4aOPPjIa63X27FkkJCQgODgYLi4uaNu2LZKSklBaWipHs4iIyIzy9Lew98wV5OlvyZ1Kg+HVlCSLs2fPokePHnB3d8eCBQsQFhaGsrIy/Pzzz5g0aRJOnjyJf//73xg2bBjGjRuHX3/9Fe7u7vjll1/w+uuvIyMjA19//TUUCgVOnjwJg8GAzz//HCEhITh27BgmTJiAGzduYOHChXI3lYiIGkjKgXOYseUoDAJwUADJT4ch7pFWAP4u0nKv3ECwlyv81C4yZ2oahRBCyJ0EVa+oqAhqtRp6vR5ubm5G627fvo3c3FwEBwdDpVLJlGHdDBo0CEeOHMGpU6fg6upqtK6wsBBNmjRBUFAQ+vTpg82bNxut//777/Hkk09i48aNiIuLq3L7CxYswLJly/DHH39Uud6ajx0RkT3K099Cj7npMNxVtTgqFNg9vR92/fdytUWaXGr6/L4XT1MSgMbt9i0oKMD27dsxadKkSoUYALi7u2PHjh24evUqpk2bVmn9kCFDEBoaig0bNlS7D71eD09PzwbNm4iI5JN75YZRIQYA5UIg6+w1qRADAIMA3txyzKpOY/I0JdXY7WsOOTk5EEKgQ4cO1cb897//BQB07NixyvUdOnSQYqra/pIlS3iKkojIhgR7ucJBgUo9Y7hnGfB3kXb2yk2rOV3JnjE7l6e/1ejfKEw5M27qWfQLFy4gJiYGzz33HCZMmGBqakREZKH81C5Ifjrs7wIMfxdiHzzdGeFBHnC4Z+pIR4UCrb2sZ0J09ozZueq6fc35jaJdu3bSwPvqhIaGAgBOnDiB7t27V1p/4sQJPPjgg0bLLl68iH79+qF79+5YsWJFwyZNRESyi3ukFXqHtsTZKzfR2qup9DmV/HQY3txyDOVCSEWatfSKASzG7F513b7m/Ebh6emJ6OhoLF26FFOmTKlyAP+AAQPg6emJDz/8sFIxtnXrVpw+fRrvvfeetOzChQvo168fwsPDsWbNGjg4sNOXiMgW+aldKhVa1RVp1oKfWHauum5fc7+Qly5divLyckRGRmLz5s04ffo0Tpw4gcWLFyMqKgqurq74/PPP8d1332HixIk4cuQIzp49i1WrVmHs2LF49tlnMWzYMAB/F2J9+/ZFq1atsHDhQly+fBk6nQ46nc6sbSAiIsvhp3ZBVNsWVleIAewZI8jzjaJNmzY4ePAg3n//fbz22mvIy8tDy5YtER4ejmXLlgEAnn32Wfz66694//330atXL9y+fRvt2rXDW2+9halTp0r3l0xNTUVOTg5ycnLwwAMPGO2HM7cQEZGl4zxjFs5W5xmTG48dERGZE+cZIyIiIrISLMaIiIiIZMRijIiIiEhGLMaIiIiIZMRizAbwGgzT8ZgREZGlYDFmxZo0aQIAuHnzpsyZWJ/S0lIAgKOjo8yZEBGRveM8Y1bM0dER7u7uuHTpEgCgadOm0txbVD2DwYDLly+jadOmcHLinwAREclL9k+ipUuXYsGCBdDpdOjatSuWLFmCyMjIauM3bdqEmTNn4uzZs2jXrh3mzZuHQYMGSeuFEEhKSsLKlStRWFiIHj16YNmyZWjXrp0UU1BQgFdeeQXff/89HBwc8Mwzz+CTTz5Bs2bNAPw9B9WLL76IrKwsnDhxAk888QS+/fZbozzGjh2LdevWVcrvwQcfRHZ2NgBg9uzZeOedd4zWt2/fvsZ7MprK19cXAKSCjGrHwcEBrVq1YvFKRESyk7UYS0lJQWJiIpYvXw6NRoNFixYhOjoap06dgre3d6X4vXv3Ij4+HsnJyXjiiSewfv16xMbG4uDBg+jcuTMAYP78+Vi8eDHWrVuH4OBgzJw5E9HR0Th+/Lg0uefIkSORl5eH1NRUlJWVYdy4cZg4cSLWr18PACgvL4eLiwumTJmCzZs3V5n7J598grlz50q/37lzB127dsVzzz1nFNepUyf88ssv0u8N3ROjUCjg5+cHb29vlJWVNei2bZlSqeT9K4mIyDIIGUVGRopJkyZJv5eXlwt/f3+RnJxcZfywYcPE4MGDjZZpNBrxwgsvCCGEMBgMwtfXVyxYsEBaX1hYKJydncWGDRuEEEIcP35cABAHDhyQYn766SehUCjEhQsXKu1zzJgxYujQofdty7///W+hUCjE2bNnpWVJSUmia9eu931uTfR6vQAg9Hp9vbZDREREjceUz2/ZugZKS0uRlZUFrVYrLXNwcIBWq0VGRkaVz8nIyDCKB4Do6GgpPjc3FzqdzihGrVZDo9FIMRkZGXB3d0dERIQUo9Vq4eDggMzMzDq3Z9WqVdBqtQgKCjJafvr0afj7+6NNmzYYOXIkzp07V+N2SkpKUFRUZPQgIiIi2yVbMXblyhWUl5fDx8fHaLmPjw90Ol2Vz9HpdDXGV/y8X8y9p0CdnJzg6elZ7X7v5+LFi/jpp58wfvx4o+UajQZr167F9u3bsWzZMuTm5qJXr164fv16tdtKTk6GWq2WHoGBgXXKiYiIiKwDB800gHXr1sHd3R2xsbFGywcOHIjnnnsOXbp0QXR0NLZt24bCwkJ8/fXX1W5rxowZ0Ov10uP8+fNmzp6IiIjkJFsx5uXlBUdHR+Tn5xstz8/Pl64QvJevr2+N8RU/7xdz75WHd+7cQUFBQbX7rYkQAqtXr8aoUaOgVCprjHV3d0doaChycnKqjXF2doabm5vRg4iIiGyXbMWYUqlEeHg40tLSpGUGgwFpaWmIioqq8jlRUVFG8QCQmpoqxQcHB8PX19copqioCJmZmVJMVFQUCgsLkZWVJcWkp6fDYDBAo9GY3I7//Oc/yMnJQUJCwn1ji4uLcebMGfj5+Zm8HyIiIrJNsk5tkZiYiDFjxiAiIgKRkZFYtGgRbty4gXHjxgEARo8ejYCAACQnJwMAXn31VfTp0wcffvghBg8ejI0bN+K3337DihUrAPw9zcPUqVMxZ84ctGvXTprawt/fXzqF2LFjR8TExGDChAlYvnw5ysrKMHnyZAwfPhz+/v5SbsePH0dpaSkKCgpw/fp1HD58GADQrVs3ozasWrUKGo1GmlrjbtOmTcOQIUMQFBSEixcvIikpCY6OjoiPj2/gI0lERERWy/wXd9ZsyZIlolWrVkKpVIrIyEixb98+aV2fPn3EmDFjjOK//vprERoaKpRKpejUqZP48ccfjdYbDAYxc+ZM4ePjI5ydnUX//v3FqVOnjGKuXr0q4uPjRbNmzYSbm5sYN26cuH79ulFMUFCQAFDpcbfCwkLh4uIiVqxYUWXb4uLihJ+fn1AqlSIgIEDExcWJnJwck44Pp7YgIiKyPqZ8fiuE4B2TLVlRURHUajX0ej3HjxEREVkJUz6/eTUlERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJSPZibOnSpWjdujVUKhU0Gg32799fY/ymTZvQoUMHqFQqhIWFYdu2bUbrhRCYNWsW/Pz84OLiAq1Wi9OnTxvFFBQUYOTIkXBzc4O7uzsSEhJQXFwsrb99+zbGjh2LsLAwODk5ITY2tlIeO3fuhEKhqPTQ6XT1ah8RERHZF1mLsZSUFCQmJiIpKQkHDx5E165dER0djUuXLlUZv3fvXsTHxyMhIQGHDh1CbGwsYmNjcezYMSlm/vz5WLx4MZYvX47MzEy4uroiOjoat2/flmJGjhyJ7OxspKam4ocffsCuXbswceJEaX15eTlcXFwwZcoUaLXaGttw6tQp5OXlSQ9vb+86t4+IiIjskJBRZGSkmDRpkvR7eXm58Pf3F8nJyVXGDxs2TAwePNhomUajES+88IIQQgiDwSB8fX3FggULpPWFhYXC2dlZbNiwQQghxPHjxwUAceDAASnmp59+EgqFQly4cKHSPseMGSOGDh1aafmvv/4qAIhr1641WPuqotfrBQCh1+tr/RwiIiKSlymf37L1jJWWliIrK8uo58nBwQFarRYZGRlVPicjI6NST1V0dLQUn5ubC51OZxSjVquh0WikmIyMDLi7uyMiIkKK0Wq1cHBwQGZmpsnt6NatG/z8/PD4449jz5499WofAJSUlKCoqMjoQURERLZLtmLsypUrKC8vh4+Pj9FyHx+fSuOuKuh0uhrjK37eL+buU4kA4OTkBE9Pz2r3WxU/Pz8sX74cmzdvxubNmxEYGIi+ffvi4MGDdW4fACQnJ0OtVkuPwMDAWudERERE1sdJ7gSsVfv27dG+fXvp9+7du+PMmTP4+OOP8cUXX9R5uzNmzEBiYqL0e1FREQsyIiIiGyZbz5iXlxccHR2Rn59vtDw/Px++vr5VPsfX17fG+Iqf94u5dwD9nTt3UFBQUO1+aysyMhI5OTkA6tY+AHB2doabm5vRg4iIiGyXbMWYUqlEeHg40tLSpGUGgwFpaWmIioqq8jlRUVFG8QCQmpoqxQcHB8PX19copqioCJmZmVJMVFQUCgsLkZWVJcWkp6fDYDBAo9HUq02HDx+Gn59fndtHRERE9kfW05SJiYkYM2YMIiIiEBkZiUWLFuHGjRsYN24cAGD06NEICAhAcnIyAODVV19Fnz598OGHH2Lw4MHYuHEjfvvtN6xYsQIAoFAoMHXqVMyZMwft2rVDcHAwZs6cCX9/f2musI4dOyImJgYTJkzA8uXLUVZWhsmTJ2P48OHw9/eXcjt+/DhKS0tRUFCA69ev4/DhwwD+HrAPAIsWLUJwcDA6deqE27dv41//+hfS09OxY8eOWrePiIiISNapLYQQYsmSJaJVq1ZCqVSKyMhIsW/fPmldnz59xJgxY4ziv/76axEaGiqUSqXo1KmT+PHHH43WGwwGMXPmTOHj4yOcnZ1F//79xalTp4xirl69KuLj40WzZs2Em5ubGDdunLh+/bpRTFBQkABQ6VFh3rx5om3btkKlUglPT0/Rt29fkZ6eblL7aoNTWxAREVkfUz6/FUIIIWMtSPdRVFQEtVoNvV7P8WNERERWwpTPb9lvh0RERERkz1iMEREREcmIxRgRERGRjFiMEREREcmIxRgRERGRjFiMEREREcmIxRgRERGRjFiMEREREcmIxRgRERGRjFiMEREREcmIxRgRERGRjFiMEREREcmIxRgRERGRjFiMEREREcmIxRgRERGRjFiMEREREcmIxRgRERGRjFiMEREREcmIxRgRERGRjFiMEREREcmIxRgRERGRjFiMEREREcmIxRgRERGRjFiMEREREcmIxRgRERGRjFiMEREREcmIxRgRERGRjFiMEREREcmIxRgRERGRjFiMEREREcmIxRgRERGRjFiMEREREcmIxRgRERGRjFiMEREREclI9mJs6dKlaN26NVQqFTQaDfbv319j/KZNm9ChQweoVCqEhYVh27ZtRuuFEJg1axb8/Pzg4uICrVaL06dPG8UUFBRg5MiRcHNzg7u7OxISElBcXCytv337NsaOHYuwsDA4OTkhNja2Uh5btmzB448/jpYtW8LNzQ1RUVH4+eefjWJmz54NhUJh9OjQoYOJR4iIiIhsmazFWEpKChITE5GUlISDBw+ia9euiI6OxqVLl6qM37t3L+Lj45GQkIBDhw4hNjYWsbGxOHbsmBQzf/58LF68GMuXL0dmZiZcXV0RHR2N27dvSzEjR45EdnY2UlNT8cMPP2DXrl2YOHGitL68vBwuLi6YMmUKtFptlbns2rULjz/+OLZt24asrCz069cPQ4YMwaFDh4ziOnXqhLy8POmxe/fu+hwyIiIisjVCRpGRkWLSpEnS7+Xl5cLf318kJydXGT9s2DAxePBgo2UajUa88MILQgghDAaD8PX1FQsWLJDWFxYWCmdnZ7FhwwYhhBDHjx8XAMSBAwekmJ9++kkoFApx4cKFSvscM2aMGDp0aK3a8+CDD4p33nlH+j0pKUl07dq1Vs+tjl6vFwCEXq+v13aIiIio8Zjy+S1bz1hpaSmysrKMep4cHByg1WqRkZFR5XMyMjIq9VRFR0dL8bm5udDpdEYxarUaGo1GisnIyIC7uzsiIiKkGK1WCwcHB2RmZta5PQaDAdevX4enp6fR8tOnT8Pf3x9t2rTByJEjce7cuRq3U1JSgqKiIqMHERER2S7ZirErV66gvLwcPj4+Rst9fHyg0+mqfI5Op6sxvuLn/WK8vb2N1js5OcHT07Pa/dbGwoULUVxcjGHDhknLNBoN1q5di+3bt2PZsmXIzc1Fr169cP369Wq3k5ycDLVaLT0CAwPrnBMRERFZPtkH8NuC9evX45133sHXX39tVOgNHDgQzz33HLp06YLo6Ghs27YNhYWF+Prrr6vd1owZM6DX66XH+fPnG6MJREREJBMnuXbs5eUFR0dH5OfnGy3Pz8+Hr69vlc/x9fWtMb7iZ35+Pvz8/IxiunXrJsXce4HAnTt3UFBQUO1+a7Jx40aMHz8emzZtqnawfwV3d3eEhoYiJyen2hhnZ2c4OzubnAcRERFZJ9l6xpRKJcLDw5GWliYtMxgMSEtLQ1RUVJXPiYqKMooHgNTUVCk+ODgYvr6+RjFFRUXIzMyUYqKiolBYWIisrCwpJj09HQaDARqNxqQ2bNiwAePGjcOGDRswePDg+8YXFxfjzJkzRoUiERER2TfZesYAIDExEWPGjEFERAQiIyOxaNEi3LhxA+PGjQMAjB49GgEBAUhOTgYAvPrqq+jTpw8+/PBDDB48GBs3bsRvv/2GFStWAAAUCgWmTp2KOXPmoF27dggODsbMmTPh7+8vzRXWsWNHxMTEYMKECVi+fDnKysowefJkDB8+HP7+/lJux48fR2lpKQoKCnD9+nUcPnwYAKQetvXr12PMmDH45JNPoNFopPFmLi4uUKvVAIBp06ZhyJAhCAoKwsWLF5GUlARHR0fEx8eb+9ASERGRtWiEqztrtGTJEtGqVSuhVCpFZGSk2Ldvn7SuT58+YsyYMUbxX3/9tQgNDRVKpVJ06tRJ/Pjjj0brDQaDmDlzpvDx8RHOzs6if//+4tSpU0YxV69eFfHx8aJZs2bCzc1NjBs3Tly/ft0oJigoSACo9Lg7t6rW351vXFyc8PPzE0qlUgQEBIi4uDiRk5Nj0vHh1BZERETWx5TPb4UQQshTBlJtFBUVQa1WQ6/Xw83NTe50iIiIqBZM+fzm1ZREREREMmIxRkRERCQjFmNERERkUfL0t7D3zBXk6W/JnUqjkPVqSiIiIqK7pRw4hxlbjsIgAAcFkPx0GOIeaSV3WmbFnjEiIiKyCHn6W1IhBgAGAby55ZjN95CxGCMiIiKLkHvlhlSIVSgXAmev3JQnoUbCYoyIiIgsQrCXKxwUxsscFQq09moqT0KNhMUYERERWQQ/tQuSnw6Do+LvisxRocAHT3eGn9pF5szMiwP4iYiIyGLEPdIKvUNb4uyVm2jt1dTmCzGAxRgRERFZGD+1i10UYRV4mpKIiIhIRizGiIiIiGTEYoxMYm+zIhMREZkbx4xRrdnjrMhERETmxp4xqhV7nRWZiIjI3FiMUa3Y66zIRERE5sZijGrFXmdFJiIiMjcWY1Qr9jorMhERkblxAD/Vmj3OikxERGRuLMbIJPY2KzIREZG58TQlERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxYjBERERHJiMUYERERkYxkL8aWLl2K1q1bQ6VSQaPRYP/+/TXGb9q0CR06dIBKpUJYWBi2bdtmtF4IgVmzZsHPzw8uLi7QarU4ffq0UUxBQQFGjhwJNzc3uLu7IyEhAcXFxdL627dvY+zYsQgLC4OTkxNiY2OrzGXnzp14+OGH4ezsjJCQEKxdu7be7SMiIiL7ImsxlpKSgsTERCQlJeHgwYPo2rUroqOjcenSpSrj9+7di/j4eCQkJODQoUOIjY1FbGwsjh07JsXMnz8fixcvxvLly5GZmQlXV1dER0fj9u3bUszIkSORnZ2N1NRU/PDDD9i1axcmTpworS8vL4eLiwumTJkCrVZbZS65ubkYPHgw+vXrh8OHD2Pq1KkYP348fv755zq3j4iIiOyQkFFkZKSYNGmS9Ht5ebnw9/cXycnJVcYPGzZMDB482GiZRqMRL7zwghBCCIPBIHx9fcWCBQuk9YWFhcLZ2Vls2LBBCCHE8ePHBQBx4MABKeann34SCoVCXLhwodI+x4wZI4YOHVpp+euvvy46depktCwuLk5ER0fXuX1V0ev1AoDQ6/W1fg4RERHJy5TPb9l6xkpLS5GVlWXU8+Tg4ACtVouMjIwqn5ORkVGppyo6OlqKz83NhU6nM4pRq9XQaDRSTEZGBtzd3RERESHFaLVaODg4IDMzs9b53y+XurQPAEpKSlBUVGT0ICIiItslWzF25coVlJeXw8fHx2i5j48PdDpdlc/R6XQ1xlf8vF+Mt7e30XonJyd4enpWu19TcikqKsKtW7fq1D4ASE5Ohlqtlh6BgYG1zomIiIisj+wD+MnYjBkzoNfrpcf58+flTomIiIjMyKRirKysDK+//jpCQkIQGRmJ1atXG63Pz8+Ho6Njrbbl5eUFR0dH5OfnV9qGr69vlc/x9fWtMb7i5/1i7h1Af+fOHRQUFFS7X1NycXNzg4uLS53aBwDOzs5wc3MzehAREZHtMqkYe//99/G///u/ePHFFzFgwAAkJibihRdeMIoRQtRqW0qlEuHh4UhLS5OWGQwGpKWlISoqqsrnREVFGcUDQGpqqhQfHBwMX19fo5iioiJkZmZKMVFRUSgsLERWVpYUk56eDoPBAI1GU6vca5NLXdpHREREdsiUKwNCQkLE999/L/1++vRpERISIsaOHSsMBoPQ6XTCwcGh1tvbuHGjcHZ2FmvXrhXHjx8XEydOFO7u7kKn0wkhhBg1apSYPn26FL9nzx7h5OQkFi5cKE6cOCGSkpJEkyZNxNGjR6WYuXPnCnd3d/Hdd9+JI0eOiKFDh4rg4GBx69YtKSYmJkY89NBDIjMzU+zevVu0a9dOxMfHG+WWnZ0tDh06JIYMGSL69u0rDh06JA4dOiSt/+OPP0TTpk3FP//5T3HixAmxdOlS4ejoKLZv317r9tUGr6YkIiKyPqZ8fptUjLm4uIjc3FyjZX/99ZcIDQ0VI0eOFBcuXDCpGBNCiCVLlohWrVoJpVIpIiMjxb59+6R1ffr0EWPGjDGK//rrr0VoaKhQKpWiU6dO4scffzRabzAYxMyZM4WPj49wdnYW/fv3F6dOnTKKuXr1qoiPjxfNmjUTbm5uYty4ceL69etGMUFBQQJApcfdfv31V9GtWzehVCpFmzZtxJo1a0xqX22wGCMiIrI+pnx+K4So5XlFAG3atMHKlSvRv39/o+UXL15Ev379EBQUhLS0NJSXlzdUx53dKyoqglqthl6v5/gxIiIiK2HK57dJY8Yee+wxrF+/vtJyf39/pKenIzc317RMiYiIiOyckynBM2fOxMmTJ6tcFxAQgP/85z9ITU1tkMSIiIiI7IFJpymp8fE0JRERkfUx22nKCps2bcLTTz+Nzp07o3Pnznj66afxzTff1ClZIiIiIntmUjFmMBgQFxeHuLg4HD9+HCEhIQgJCUF2djbi4uIwfPjwWs8zRkREREQmjhn75JNP8Msvv2Dr1q144oknjNZt3boV48aNwyeffIKpU6c2ZI5ERERENsuknrE1a9ZgwYIFlQoxAHjyyScxf/78SrdIIiIiIqLqmVSMnT59Glqtttr1Wq0Wp0+frndSRERERPbCpGLMxcUFhYWF1a4vKiqCSqWqb05EREREdsOkYiwqKgrLli2rdv3SpUt5E2wiIiIiE5g0gP+tt95C3759cfXqVUybNg0dOnSAEAInTpzAhx9+iO+++w6//vqruXIlIiIisjkmFWPdu3dHSkoKJk6ciM2bNxut8/DwwIYNG9CjR48GTZCIiIjIltVpBv6bN2/i559/lgbrh4aGYsCAAWjatGmDJ2jvOAM/ERGR9THl89uknrH09HRMnjwZ+/btw1NPPWW0Tq/Xo1OnTli+fDl69epletZEREREdsikAfyLFi3ChAkTqqzw1Go1XnjhBXz00UcNlhwRERGRrTOpGPv9998RExNT7foBAwYgKyur3kkRERER2QuTirH8/Hw0adKk2vVOTk64fPlyvZMiIiIishcmFWMBAQE4duxYteuPHDkCPz+/eidFREREZC9MKsYGDRqEmTNn4vbt25XW3bp1C0lJSVXet5KIiIiIqmbS1Bb5+fl4+OGH4ejoiMmTJ6N9+/YAgJMnT2Lp0qUoLy/HwYMH4ePjY7aE7Q2ntiAiIrI+ZpvawsfHB3v37sVLL72EGTNmoKKOUygUiI6OxtKlS1mIEREREZnApGIMAIKCgrBt2zZcu3YNOTk5EEKgXbt28PDwMEd+RERERDbN5GKsgoeHBx555JGGzIWIiIjI7pg0gJ+IiIiIGhaLMSIiIiIZsRgjIiIikhGLMSIiIiIZsRgjImpEefpb2HvmCvL0t+ROhYgsRJ2vpiQiItOkHDiHGVuOwiAABwWQ/HQY4h5pJXdaRCQz9owRETWCPP0tqRADAIMA3txyjD1kRMRijIioMeReuSEVYhXKhcDZKzflSYiILAaLMSKiOjJl/FewlyscFMbLHBUKtPZqaqbsiMhasBgjIqqDlAPn0GNuOkaszESPuelIOXCuxng/tQuSnw6Do+LvisxRocAHT3eGn9qlMdIlIgumEBV3+yaLZMpd34moceTpb6HH3HSj046OCgV2T+933+IqT38LZ6/cRGuvpizEiGyYKZ/fFtEztnTpUrRu3RoqlQoajQb79++vMX7Tpk3o0KEDVCoVwsLCsG3bNqP1QgjMmjULfn5+cHFxgVarxenTp41iCgoKMHLkSLi5ucHd3R0JCQkoLi42ijly5Ah69eoFlUqFwMBAzJ8/32h93759oVAoKj0GDx4sxYwdO7bS+piYmLocJiKyEPUZ/+WndkFU2xYsxIhIInsxlpKSgsTERCQlJeHgwYPo2rUroqOjcenSpSrj9+7di/j4eCQkJODQoUOIjY1FbGwsjh07JsXMnz8fixcvxvLly5GZmQlXV1dER0fj9u3bUszIkSORnZ2N1NRU/PDDD9i1axcmTpworS8qKsKAAQMQFBSErKwsLFiwALNnz8aKFSukmC1btiAvL096HDt2DI6OjnjuueeMco6JiTGK27BhQ0MdPiKSAcd/EVGDEjKLjIwUkyZNkn4vLy8X/v7+Ijk5ucr4YcOGicGDBxst02g04oUXXhBCCGEwGISvr69YsGCBtL6wsFA4OzuLDRs2CCGEOH78uAAgDhw4IMX89NNPQqFQiAsXLgghhPjss8+Eh4eHKCkpkWLeeOMN0b59+2rb8vHHH4vmzZuL4uJiadmYMWPE0KFD73cYqqXX6wUAodfr67wNImp4G/f/KdpM/1EEvfGDaDP9R7Fx/59yp0REFsSUz29Ze8ZKS0uRlZUFrVYrLXNwcIBWq0VGRkaVz8nIyDCKB4Do6GgpPjc3FzqdzihGrVZDo9FIMRkZGXB3d0dERIQUo9Vq4eDggMzMTCmmd+/eUCqVRvs5deoUrl27VmVuq1atwvDhw+Hq6mq0fOfOnfD29kb79u3x0ksv4erVq9Uek5KSEhQVFRk9iMjyxD3SCrun98OGCY9i9/R+nLyViOpM1mLsypUrKC8vh4+Pj9FyHx8f6HS6Kp+j0+lqjK/4eb8Yb29vo/VOTk7w9PQ0iqlqG3fv42779+/HsWPHMH78eKPlMTEx+N///V+kpaVh3rx5+M9//oOBAweivLy8yvYlJydDrVZLj8DAwCrjiEh+HP9VM976iczBFl9XvB1SA1m1ahXCwsIQGRlptHz48OHSv8PCwtClSxe0bdsWO3fuRP/+/SttZ8aMGUhMTJR+LyoqYkFGditPfwu5V24g2MuVBY+V4a2fyBxs9XUla8+Yl5cXHB0dkZ+fb7Q8Pz8fvr6+VT7H19e3xviKn/eLufcCgTt37qCgoMAopqpt3L2PCjdu3MDGjRuRkJBQc4MBtGnTBl5eXsjJyalyvbOzM9zc3IweRPbI1Hm8yHLw1k9kDrb8upK1GFMqlQgPD0daWpq0zGAwIC0tDVFRUVU+JyoqyigeAFJTU6X44OBg+Pr6GsUUFRUhMzNTiomKikJhYSGysrKkmPT0dBgMBmg0Gilm165dKCsrM9pP+/bt4eHhYbT/TZs2oaSkBM8///x92/zXX3/h6tWr8PPzu28skb2y5Tdde8BbP5E52PLrSvapLRITE7Fy5UqsW7cOJ06cwEsvvYQbN25g3LhxAIDRo0djxowZUvyrr76K7du348MPP8TJkycxe/Zs/Pbbb5g8eTIAQKFQYOrUqZgzZw62bt2Ko0ePYvTo0fD390dsbCwAoGPHjoiJicGECROwf/9+7NmzB5MnT8bw4cPh7+8PABgxYgSUSiUSEhKQnZ2NlJQUfPLJJ0anECusWrUKsbGxaNGihdHy4uJi/POf/8S+fftw9uxZpKWlYejQoQgJCUF0dLQ5DieRTbDlN117wKk/yBxs+XUl+5ixuLg4XL58GbNmzYJOp0O3bt2wfft2abD8uXPn4ODw/2rG7t27Y/369Xj77bfx5ptvol27dvj222/RuXNnKeb111/HjRs3MHHiRBQWFqJnz57Yvn07VCqVFPPVV19h8uTJ6N+/PxwcHPDMM89g8eLF0nq1Wo0dO3Zg0qRJCA8Ph5eXF2bNmmU0FxkAnDp1Crt378aOHTsqtc3R0RFHjhzBunXrUFhYCH9/fwwYMADvvfcenJ2dG+wYEtmaijfde2e4t4U3XXtQceunN7ccQ7kQvPUTNQhbfl3xdkgWjrdDInuVcuBcpTddWxioa0946ycyB2t5XZny+c1izMKxGCN7Zi1vukRE9zLl81v205RERNXxU7uwCCMimyf7AH4iIiIie8ZijIiIiEhGLMaoElu81QQREZGl4pgxMmKrt5ogIiKyVOwZIwlnPSciImp8LMZIwlnPiYiIGh+LMZLY8q0miIiILBWLMZJU3GrCUfF3RWZLt5ogIiKyVBzAT0biHmmF3qEtOes5ERFRI2ExRpVw1nMi88nT30LulRsI9nLl3xkRAWAxRkTUaDh1DBFVhWPGyOZxEluyBJw6hu7G9yW6G3vGyKaxJ4IsRU1Tx/B0pX3h+xLdiz1jZLPYE0GWhFPHEMD3JaoaizGyWZzElixJxdQxFW+6DgCnjrFDfF+iqrAYI5vFngiySIp7fpJd4fsSVYXFGNksTmJLlqSxT09xgLhl4vsSVYUD+MmmcRJbshSNOYCfA8QtG9+X6F4sxsjmcRJbsgQVp6fuLsjuPj3VUJPBVtcD1zu0Jf8OLAjfl+huPE1JRNTAqjpFWNPpqZQD59BjbjpGrMxEj7npSDlwrs775gBxIuvDnjEiogZU0ynCqk5PNXRP1v164IjI8rBnjIiogdRmkL6f2gVRbVtIhVZD92RxgDiR9WHPGBFRA6nLIH1z9GRxgDiRdWHPGBFRA6nLHFLm6sm6tweOiCwXe8aIiBpIRWH15pZjKBei1oUVe7KI7BuLMSKiBlTXwopTHRDZLxZjREQNzBIKq4aat4yIzI/FGBGRjeEM/ETWhQP4yex4jzxqbPb8mmvse2ASUf2xZ4zMit/QqbHZ+2uuMe+BSUQNgz1jZDb8hk6Nja+5uk2vQUTyYjFGZsN75FFj42uOM/ATWSOepiSz4T3yqLHxNfc3a563jFeBkj2yiJ6xpUuXonXr1lCpVNBoNNi/f3+N8Zs2bUKHDh2gUqkQFhaGbdu2Ga0XQmDWrFnw8/ODi4sLtFotTp8+bRRTUFCAkSNHws3NDe7u7khISEBxcbFRzJEjR9CrVy+oVCoEBgZi/vz5RuvXrl0LhUJh9FCpVCbnYqv4DZ0aG19z/481zsCfcuAcesxNx4iVmegxNx0pB87JnRJR4xAy27hxo1AqlWL16tUiOztbTJgwQbi7u4v8/Pwq4/fs2SMcHR3F/PnzxfHjx8Xbb78tmjRpIo4ePSrFzJ07V6jVavHtt9+K33//XTz55JMiODhY3Lp1S4qJiYkRXbt2Ffv27RP/93//J0JCQkR8fLy0Xq/XCx8fHzFy5Ehx7NgxsWHDBuHi4iI+//xzKWbNmjXCzc1N5OXlSQ+dTmeUb21yqYlerxcAhF6vr1W8JbpYeFPszbkiLhbelDsVshN8zVmfi4U3RfD0H0TQG//v0Wb6j/w/JKtlyue37MVYZGSkmDRpkvR7eXm58Pf3F8nJyVXGDxs2TAwePNhomUajES+88IIQQgiDwSB8fX3FggULpPWFhYXC2dlZbNiwQQghxPHjxwUAceDAASnmp59+EgqFQly4cEEIIcRnn30mPDw8RElJiRTzxhtviPbt20u/r1mzRqjV6mrbVptc7scWijEiovvZk3PZqBCreOzNuSJ3akR1Ysrnt6ynKUtLS5GVlQWtVistc3BwgFarRUZGRpXPycjIMIoHgOjoaCk+NzcXOp3OKEatVkOj0UgxGRkZcHd3R0REhBSj1Wrh4OCAzMxMKaZ3795QKpVG+zl16hSuXbsmLSsuLkZQUBACAwMxdOhQZGdnS+tqk8u9SkpKUFRUZPQgIrJ1vAqU7JmsxdiVK1dQXl4OHx8fo+U+Pj7Q6XRVPken09UYX/HzfjHe3t5G652cnODp6WkUU9U27t5H+/btsXr1anz33Xf48ssvYTAY0L17d/z111+1zuVeycnJUKvV0iMwMLDKOCIiW8LxftbPnidbri9eTVkPUVFRiIqKkn7v3r07OnbsiM8//xzvvfdenbY5Y8YMJCYmSr8XFRWxICMiu2DNV4HaO3ufbLm+ZO0Z8/LygqOjI/Lz842W5+fnw9fXt8rn+Pr61hhf8fN+MZcuXTJaf+fOHRQUFBjFVLWNu/dxryZNmuChhx5CTk5OrXO5l7OzM9zc3IweRET2orqrQNnrYrk42XL9yVqMKZVKhIeHIy0tTVpmMBiQlpZm1ON0t6ioKKN4AEhNTZXig4OD4evraxRTVFSEzMxMKSYqKgqFhYXIysqSYtLT02EwGKDRaKSYXbt2oayszGg/7du3h4eHR5W5lZeX4+jRo/Dz86t1LkREVDNOeWHZONly/ck+z1hiYiJWrlyJdevW4cSJE3jppZdw48YNjBs3DgAwevRozJgxQ4p/9dVXsX37dnz44Yc4efIkZs+ejd9++w2TJ08GACgUCkydOhVz5szB1q1bcfToUYwePRr+/v6IjY0FAHTs2BExMTGYMGEC9u/fjz179mDy5MkYPnw4/P39AQAjRoyAUqlEQkICsrOzkZKSgk8++cToFOK7776LHTt24I8//sDBgwfx/PPP488//8T48eNrnQs1HH5zJrI97HWxfLz4ov5kHzMWFxeHy5cvY9asWdDpdOjWrRu2b98uDXo/d+4cHBz+X83YvXt3rF+/Hm+//TbefPNNtGvXDt9++y06d+4sxbz++uu4ceMGJk6ciMLCQvTs2RPbt283mpD1q6++wuTJk9G/f384ODjgmWeeweLFi6X1arUaO3bswKRJkxAeHg4vLy/MmjULEydOlGKuXbuGCRMmQKfTwcPDA+Hh4di7dy8efPBBk3Kh+uN4BSLbxBufW76Kiy/e3HIM5ULw4os6UAghxP3DSC5FRUVQq9XQ6/UcP1aNPP0t9JibXukWOLun94Of2oW3V6Fa4evEMt3v75ssR57+Fi++uIspn9+y94wR1VdN35x3/fcypm8+CgFAAWDuM+wxo8rYs2q52OtiPfzULvx/qSMWY2T1qrs5dFOlg1SIAYAAMH3zUfQObck3DJJUNyaJrxPLwSkvyNbJPoCfqL6qmyzyXMFN3HsOXgDIOnut0jbIfvFKMOtgjTc+J6ot9oyRTajqm/MPRy5WGatQVLmY7FR1Pau8EoyIGgt7xshm3PvNOTzIA/fWXQoF8HBQ1fPEkX3ibXiISG7sGSOb5ad2wdxnwioNzOaHLN2LY5LMg1eoEtUOizGyafyQpdrilWANi1eoEtUeT1OSzePAX6LGxVnziUzDYoyIiBoUr1AlMg2LMSIialC8VyGRaViMkc3gjcKJLAOvUCUyDQfwk03gYGEiy8KLZ4hqjz1jZPU4WJjIMvHiGaLaYTFGVo+DhYmIyJqxGCOrF+zlWnmmfYCDhYmIyCqwGCPbxPtPEhGRlWAxRlYv98oN3HOWEkKApymJiBpYXa5a55Xu98erKcnqVcxpdPe4Mc5pRETUsOpy1TqvdK8d9oyR1eOcRkS2z5J7Vyw5t4ZSl6vWeaV77bFnjGwC5zQisl2W3Ltiybk1pJquWq/u/bYuz7FX7Bkjm8E5jYhsjyX3rlhybvV1b29fXW5xxdti1R6LMSIisliWPI+gJedWHykHzqHH3HSMWJmJHnPTkXLgXJ2Gg3AISe3xNCUREVksS75Ax5Jzq6vqevt6h7as03AQDiGpHfaMUYOwhwGsRNT4LLl3xZJzq6v79fbVZTgIh5DcH3vGqN7sZQCrNcjT30LulRsI9nLlG5+ds6XXgiX3rlhybnVhi7191oDFGNVLTV3a1v6mZG1YFFMFW3wt+KldLPY9xZJzM1VFb9+bW46hXAib6O2zBizGqF546bJlYFFMFfhasA6W3HNpa7191oDFGNULu7QtA4tiqsDXguWzhp5LW+rtswYcwE/1YosDWK0R5/OhCnwtWDZbnpuM6o49Y1Rv7NKWH8d5UAVrfy1Y8um7hsCeS6oKizFqEOzSlh+LYqpgra8Fazh9V1/BXq5QALi7HlMowJ5LO8dijMiGsCimCtb2WrDrCw/E/UPItnHMGBERyc5Wby10r9wrNyrVXgKwuXZaC0uZsJw9Y0REJDt7uTLbXtppDSzptLhF9IwtXboUrVu3hkqlgkajwf79+2uM37RpEzp06ACVSoWwsDBs27bNaL0QArNmzYKfnx9cXFyg1Wpx+vRpo5iCggKMHDkSbm5ucHd3R0JCAoqLi41ijhw5gl69ekGlUiEwMBDz5883Wr9y5Ur06tULHh4e8PDwgFarrZT72LFjoVAojB4xMTGmHiIiIptmq1dm39vzYqvttDaWdlWr7D1jKSkpSExMxPLly6HRaLBo0SJER0fj1KlT8Pb2rhS/d+9exMfHIzk5GU888QTWr1+P2NhYHDx4EJ07dwYAzJ8/H4sXL8a6desQHByMmTNnIjo6GsePH4dKpQIAjBw5Enl5eUhNTUVZWRnGjRuHiRMnYv369QCAoqIiDBgwAFqtFsuXL8fRo0fxP//zP3B3d8fEiRMBADt37kR8fDy6d+8OlUqFefPmYcCAAcjOzkZAQICUc0xMDNasWSP97uzsbLbjSURkraz1woPqVNfzYmvttEaWdlWrQggh69BBjUaDRx55BJ9++ikAwGAwIDAwEK+88gqmT59eKT4uLg43btzADz/8IC179NFH0a1bNyxfvhxCCPj7++O1117DtGnTAAB6vR4+Pj5Yu3Ythg8fjhMnTuDBBx/EgQMHEBERAQDYvn07Bg0ahL/++gv+/v5YtmwZ3nrrLeh0OiiVSgDA9OnT8e233+LkyZNVtqW8vBweHh749NNPMXr0aAB/94wVFhbi22+/rdPxKSoqglqthl6vh5ubW522QUREjStPfws95qZXOh25e3o/Fl8WoDH+f0z5/Jb1NGVpaSmysrKg1WqlZQ4ODtBqtcjIyKjyORkZGUbxABAdHS3F5+bmQqfTGcWo1WpoNBopJiMjA+7u7lIhBgBarRYODg7IzMyUYnr37i0VYhX7OXXqFK5du1Zlbjdv3kRZWRk8PT2Nlu/cuRPe3t5o3749XnrpJVy9erXaY1JSUoKioiKjB9WPpQzQJCL7YS8XJFgrSztdLOtpyitXrqC8vBw+Pj5Gy318fKrtfdLpdFXG63Q6aX3Fsppi7j0F6uTkBE9PT6OY4ODgStuoWOfh4VEptzfeeAP+/v5GhWBMTAyefvppBAcH48yZM3jzzTcxcOBAZGRkwNHRsdI2kpOT8c4771TZdjKdOQZo1mVSysaayNLWJ8wkshYcqG/5LOl0sexjxmzF3LlzsXHjRuzcuVMalwYAw4cPl/4dFhaGLl26oG3btti5cyf69+9faTszZsxAYmKi9HtRURECAwPNm7yNMse8RXUp7hrrih1LujKIyN5Z+50Q7IWlzMcn62lKLy8vODo6Ij8/32h5fn4+fH19q3yOr69vjfEVP+8Xc+nSJaP1d+7cQUFBgVFMVdu4ex8VFi5ciLlz52LHjh3o0qVLjW1u06YNvLy8kJOTU+V6Z2dnuLm5GT2obhr6NEFdrr5prCt2LO3KIKLGZKlDEeIeaYXd0/thw4RHsXt6P345kpGlvkYqyFqMKZVKhIeHIy0tTVpmMBiQlpaGqKioKp8TFRVlFA8AqampUnxwcDB8fX2NYoqKipCZmSnFREVFobCwEFlZWVJMeno6DAYDNBqNFLNr1y6UlZUZ7ad9+/ZGpyjnz5+P9957D9u3bzcag1adv/76C1evXoWfn999Y6l+anPDZFP+QOtS3DXWuBGOTyF7lXLgHHrMTceIlZnoMTcdKQfOyZ2SET+1C6LatrCI3hd7ZemvEcAC5hlLTEzEypUrsW7dOpw4cQIvvfQSbty4gXHjxgEARo8ejRkzZkjxr776KrZv344PP/wQJ0+exOzZs/Hbb79h8uTJAACFQoGpU6dizpw52Lp1K44ePYrRo0fD398fsbGxAICOHTsiJiYGEyZMwP79+7Fnzx5MnjwZw4cPh7+/PwBgxIgRUCqVSEhIQHZ2NlJSUvDJJ58YnUKcN28eZs6cidWrV6N169bQ6XTQ6XTSfGXFxcX45z//iX379uHs2bNIS0vD0KFDERISgujo6MY4vHbtfgM0Tf0DrU1x1xDPqYvG2g+RJWGPMN2PtbxGZC/G4uLisHDhQsyaNQvdunXD4cOHsX37dmmw/Llz55CXlyfFd+/eHevXr8eKFSvQtWtXfPPNN/j222+lOcYA4PXXX8crr7yCiRMn4pFHHkFxcTG2b99uNJbrq6++QocOHdC/f38MGjQIPXv2xIoVK6T1arUaO3bsQG5uLsLDw/Haa69h1qxZ0hxjALBs2TKUlpbi2WefhZ+fn/RYuHAhAMDR0RFHjhzBk08+idDQUCQkJCA8PBz/93//x7nGGkl1pwnq8gdal6tvGuuKHUu7MoioMbBHmO7HWl4jss8zRjWztHnGbOVqvb1nrmDEysxKyzdMeBRRbVvU+Nw8/S2Tr76py3PqorH2Q2QJOJcX3Y+crxFTPr95NSXVmi1drVefy87rcvVNY12xYylXBhE1Bl6xSPdjLa8R9oxZOEvpGbPFb6ApB85V+gO11uKSyJ6xR5juR47XCHvGqMFZ2n28GoIlTfhHRHXHHmG6H0t/jbAYo1qx1dmkLf0PlIiIbJ/sV1OSfEyZY4tX6xEREZkHe8bsVF0G4/O0HhERUcNjz5gdqs8keJxNmoiIqGGxGLND1jIJHlknS78HHBGRpeFpSjtkq4PxSX7WPBedJU9obMm5EVH9sRizQ9YyCR5Zl+pOf/cObWnxry1LLiItOTeqOxbYdDcWY3aKg/GpoVnrXHSWXERacm5Udyyw6V4cM2bHOBjfsjX02Ctzj+WqOP19N2s4/W3JYygtOTeqm/pcQEW2iz1jRBaoob85N8Y3cWs9/W3JYygtOTeqG2vtQSbzYs8YkYVp6G/OjflNPO6RVtg9vR82THgUu6f3s4pTL5Y8obEl50Z1Y609yGRe7BkjsjAN/c25sb+JW+Mtpix5DKUl50amqyiwZ2w+CgP+7hFhgU0sxogsTEOfmuKprtqx5CLSknOjOlIAEP//T7J7PE1JZGEa+tQUT3URWQ4O4KeqsGeMyAI19KkpezvVxTmcyFJxAD9VhcUYkYVq6FNT9nKqi3M4kSXjsAGqCk9TEpHN4CkgsnQcNkBVYc8YEdkMngIia2Bvwwbo/liMEZHN4CkgsjTVjV+0l2EDVDs8TUlENqPiFFDFpJoOCs7hZCvMfTsvc0g5cA495qZjxMpM9JibjpQD5+ROiSwUe8aIyOYIYfyTrJs1XpRRn5u882pg+8OeMSKyGRUfgBU1mAAH8Fs7a70oo643eWdvmn1iMUZkoazxtExNGqM9df0AJMtlrf+ndbkHpbUWnlR/PE1JZIHqelrGUk9vNNZpJg7gtz3m+j81999KxfjFN7ccQ7kQtZrCglcD2y8WY0QWpq5jTSxlXM29H3L1GTtjqrp8AJJlM8f/aWP9rZg6hQW/TNgvFmNEFqYu344bs+CpSVUfcoGeTRv12z7ncLI9Dfl/2th/K6ZMYcEvE/aLxRhVYqmnuuxFXb4dW8Lpjeo+5La8HNXo3/Y5h5Ptqcv/aVXvZZbwt1ITfpmwTyzGyIilnOqyZ7X5dnzvh4wlnN6o7kPuZqmB3/ap0VX3XmYJfyv3wy8T9ofFGEks5VSXLTK1t7Gmb8fVfciYo+AxJe+aPuSi2rZo1G/77N21b3n6W5i++f9NcWIQwPQtR6X3Mn45IEvDYowk9em+54df9era21jVt+OaCuaGPr1hat73+5BrrG/77N2lrD+v4Z63MggBHPzzGgZ3ceGpQLI4LMZIUtfue374Va+hexvvVzA3VMFT17zl/pBj7y4BgKjm1gt3L+apQLIkFjHp69KlS9G6dWuoVCpoNBrs37+/xvhNmzahQ4cOUKlUCAsLw7Zt24zWCyEwa9Ys+Pn5wcXFBVqtFqdPnzaKKSgowMiRI+Hm5gZ3d3ckJCSguLjYKObIkSPo1asXVCoVAgMDMX/+fLPkYikqejYcFX/PVFjdWKW7J+7kJIU1q82ElaZMhlqXiSTroj4TbfqpXRDVtoUsH3TWOkEoNayI1p64588ECgDhrT3kSIfovmQvxlJSUpCYmIikpCQcPHgQXbt2RXR0NC5dulRl/N69exEfH4+EhAQcOnQIsbGxiI2NxbFjx6SY+fPnY/HixVi+fDkyMzPh6uqK6Oho3L59W4oZOXIksrOzkZqaih9++AG7du3CxIkTpfVFRUUYMGAAgoKCkJWVhQULFmD27NlYsWJFg+diSeIeaYXd0/thw4RHsXt6P6Merqpu08EPv5rdr3gy9dYntSmYGyNvS2WtedeVrd2loaH4qV0w95kw6QPOAcDcZ8LYE0YWSyGq689tJBqNBo888gg+/fRTAIDBYEBgYCBeeeUVTJ8+vVJ8XFwcbty4gR9++EFa9uijj6Jbt25Yvnw5hBDw9/fHa6+9hmnTpgEA9Ho9fHx8sHbtWgwfPhwnTpzAgw8+iAMHDiAiIgIAsH37dgwaNAh//fUX/P39sWzZMrz11lvQ6XRQKpUAgOnTp+Pbb7/FyZMnGyyX+ykqKoJarYZer4ebm1tdDnGDyNPfQo+56ZVOYW55OQpPfba30vLd0/vxje//l3LgXKVxVHGPtKr2mNbm2OXpb5n9VGB1eVs6a83bVBwecH+N8XdCVB1TPr9lHTNWWlqKrKwszJgxQ1rm4OAArVaLjIyMKp+TkZGBxMREo2XR0dH49ttvAQC5ubnQ6XTQarXSerVaDY1Gg4yMDAwfPhwZGRlwd3eXCjEA0Gq1cHBwQGZmJp566ilkZGSgd+/eUiFWsZ958+bh2rVr8PDwaJBcrAWnLai76sZR1eeCicYY7yL3+K+6sta8TcGxcbXDcWFkLWQtxq5cuYLy8nL4+PgYLffx8ZF6n+6l0+mqjNfpdNL6imU1xXh7exutd3Jygqenp1FMcHBwpW1UrPPw8GiQXO5VUlKCkpIS6feioqIq4xqbJU1bYI2q+lDgfEfmY61515alT1xKRKaRfcwYGUtOToZarZYegYGBcqcE4P5jleQctG2tGmv8F9keexsbR2TrZO0Z8/LygqOjI/Lz842W5+fnw9fXt8rn+Pr61hhf8TM/Px9+fn5GMd26dZNi7r1A4M6dOygoKDDaTlX7uXsfDZHLvWbMmGF06rOoqMhiCjJ7OP3T2HhMqS44cSmRbZG1Z0ypVCI8PBxpaWnSMoPBgLS0NERFRVX5nKioKKN4AEhNTZXig4OD4evraxRTVFSEzMxMKSYqKgqFhYXIysqSYtLT02EwGKDRaKSYXbt2oayszGg/7du3h4eHR4Plci9nZ2e4ubkZPSwJe8AaHo8p1UVNVz4TkZURMtu4caNwdnYWa9euFcePHxcTJ04U7u7uQqfTCSGEGDVqlJg+fboUv2fPHuHk5CQWLlwoTpw4IZKSkkSTJk3E0aNHpZi5c+cKd3d38d1334kjR46IoUOHiuDgYHHr1i0pJiYmRjz00EMiMzNT7N69W7Rr107Ex8dL6wsLC4WPj48YNWqUOHbsmNi4caNo2rSp+Pzzzxs8l5ro9XoBQOj1etMPLhEREcnClM9v2YsxIYRYsmSJaNWqlVAqlSIyMlLs27dPWtenTx8xZswYo/ivv/5ahIaGCqVSKTp16iR+/PFHo/UGg0HMnDlT+Pj4CGdnZ9G/f39x6tQpo5irV6+K+Ph40axZM+Hm5ibGjRsnrl+/bhTz+++/i549ewpnZ2cREBAg5s6dWyn3hsilJizGiIiIrI8pn9+yzzNGNbOUecaIiIio9kz5/ObVlEREREQyYjFGREREJCMWY0REREQyYjFGREREJCMWY0REREQyYjFGREREJCMWY0REREQyYjFGREREJCMWY0REREQycpI7AapZxQ0SioqKZM6EiIiIaqvic7s2NzpiMWbhrl+/DgAIDAyUORMiIiIy1fXr16FWq2uM4b0pLZzBYMDFixfRvHlzKBSKBt12UVERAgMDcf78ebu87yXbb9/tB3gM7L39AI8B22++9gshcP36dfj7+8PBoeZRYewZs3AODg544IEHzLoPNzc3u/wjrMD223f7AR4De28/wGPA9pun/ffrEavAAfxEREREMmIxRkRERCQjFmN2zNnZGUlJSXB2dpY7FVmw/fbdfoDHwN7bD/AYsP2W0X4O4CciIiKSEXvGiIiIiGTEYoyIiIhIRizGiIiIiGTEYoyIiIhIRizGbNjSpUvRunVrqFQqaDQa7N+/v9rY7OxsPPPMM2jdujUUCgUWLVrUeImakSnHYOXKlejVqxc8PDzg4eEBrVZbY7w1MKX9W7ZsQUREBNzd3eHq6opu3brhiy++aMRszcOUY3C3jRs3QqFQIDY21rwJmpkp7V+7di0UCoXRQ6VSNWK25mHqa6CwsBCTJk2Cn58fnJ2dERoaim3btjVStg3PlPb37du30mtAoVBg8ODBjZhxwzL1/3/RokVo3749XFxcEBgYiH/84x+4ffu2eZMUZJM2btwolEqlWL16tcjOzhYTJkwQ7u7uIj8/v8r4/fv3i2nTpokNGzYIX19f8fHHHzduwmZg6jEYMWKEWLp0qTh06JA4ceKEGDt2rFCr1eKvv/5q5Mwbhqnt//XXX8WWLVvE8ePHRU5Ojli0aJFwdHQU27dvb+TMG46px6BCbm6uCAgIEL169RJDhw5tnGTNwNT2r1mzRri5uYm8vDzpodPpGjnrhmXqMSgpKRERERFi0KBBYvfu3SI3N1fs3LlTHD58uJEzbximtv/q1atG///Hjh0Tjo6OYs2aNY2beAMxtf1fffWVcHZ2Fl999ZXIzc0VP//8s/Dz8xP/+Mc/zJonizEbFRkZKSZNmiT9Xl5eLvz9/UVycvJ9nxsUFGQTxVh9joEQQty5c0c0b95crFu3zlwpmlV92y+EEA899JB4++23zZFeo6jLMbhz547o3r27+Ne//iXGjBlj1cWYqe1fs2aNUKvVjZRd4zD1GCxbtky0adNGlJaWNlaKZlXf94GPP/5YNG/eXBQXF5srRbMytf2TJk0Sjz32mNGyxMRE0aNHD7PmydOUNqi0tBRZWVnQarXSMgcHB2i1WmRkZMiYWeNpiGNw8+ZNlJWVwdPT01xpmk192y+EQFpaGk6dOoXevXubM1WzqesxePfdd+Ht7Y2EhITGSNNs6tr+4uJiBAUFITAwEEOHDkV2dnZjpGsWdTkGW7duRVRUFCZNmgQfHx907twZH3zwAcrLyxsr7QbTEO+Dq1atwvDhw+Hq6mquNM2mLu3v3r07srKypFOZf/zxB7Zt24ZBgwaZNVfeKNwGXblyBeXl5fDx8TFa7uPjg5MnT8qUVeNqiGPwxhtvwN/f3+gP2VrUtf16vR4BAQEoKSmBo6MjPvvsMzz++OPmTtcs6nIMdu/ejVWrVuHw4cONkKF51aX97du3x+rVq9GlSxfo9XosXLgQ3bt3R3Z2Nh544IHGSLtB1eUY/PHHH0hPT8fIkSOxbds25OTk4OWXX0ZZWRmSkpIaI+0GU9/3wf379+PYsWNYtWqVuVI0q7q0f8SIEbhy5Qp69uwJIQTu3LmDF198EW+++aZZc2UxRlSFuXPnYuPGjdi5c6dNDGCurebNm+Pw4cMoLi5GWloaEhMT0aZNG/Tt21fu1Mzu+vXrGDVqFFauXAkvLy+505FFVFQUoqKipN+7d++Ojh074vPPP8d7770nY2aNx2AwwNvbGytWrICjoyPCw8Nx4cIFLFiwwOqKsfpatWoVwsLCEBkZKXcqjWbnzp344IMP8Nlnn0Gj0SAnJwevvvoq3nvvPcycOdNs+2UxZoO8vLzg6OiI/Px8o+X5+fnw9fWVKavGVZ9jsHDhQsydOxe//PILunTpYs40zaau7XdwcEBISAgAoFu3bjhx4gSSk5Otshgz9RicOXMGZ8+exZAhQ6RlBoMBAODk5IRTp06hbdu25k26ATXE+0CTJk3w0EMPIScnxxwpml1djoGfnx+aNGkCR0dHaVnHjh2h0+lQWloKpVJp1pwbUn1eAzdu3MDGjRvx7rvvmjNFs6pL+2fOnIlRo0Zh/PjxAICwsDDcuHEDEydOxFtvvQUHB/OM7uKYMRukVCoRHh6OtLQ0aZnBYEBaWprRt15bVtdjMH/+fLz33nvYvn07IiIiGiNVs2io14DBYEBJSYk5UjQ7U49Bhw4dcPToURw+fFh6PPnkk+jXrx8OHz6MwMDAxky/3hriNVBeXo6jR4/Cz8/PXGmaVV2OQY8ePZCTkyMV4gDw3//+F35+flZViAH1ew1s2rQJJSUleP75582dptnUpf03b96sVHBVFObCnLfyNuvlASSbjRs3CmdnZ7F27Vpx/PhxMXHiROHu7i5dpj5q1Cgxffp0Kb6kpEQcOnRIHDp0SPj5+Ylp06aJQ4cOidOnT8vVhHoz9RjMnTtXKJVK8c033xhd2n39+nW5mlAvprb/gw8+EDt27BBnzpwRx48fFwsXLhROTk5i5cqVcjWh3kw9Bvey9qspTW3/O++8I37++Wdx5swZkZWVJYYPHy5UKpXIzs6Wqwn1ZuoxOHfunGjevLmYPHmyOHXqlPjhhx+Et7e3mDNnjlxNqJe6/g307NlTxMXFNXa6Dc7U9iclJYnmzZuLDRs2iD/++EPs2LFDtG3bVgwbNsysebIYs2FLliwRrVq1EkqlUkRGRop9+/ZJ6/r06SPGjBkj/Z6bmysAVHr06dOn8RNvQKYcg6CgoCqPQVJSUuMn3kBMaf9bb70lQkJChEqlEh4eHiIqKkps3LhRhqwblinH4F7WXowJYVr7p06dKsX6+PiIQYMGiYMHD8qQdcMy9TWwd+9eodFohLOzs2jTpo14//33xZ07dxo564ZjavtPnjwpAIgdO3Y0cqbmYUr7y8rKxOzZs0Xbtm2FSqUSgYGB4uWXXxbXrl0za44KIczZ70ZERERENeGYMSIiIiIZsRgjIiIikhGLMSIiIiIZsRgjIiIikhGLMSIiIiIZsRgjIiIikhGLMSIiIiIZsRgjIiIAwNixYxEbGyt3GkR2h8UYEVm8sWPHQqFQSI8WLVogJiYGR44ckTu1BnF32yoePXv2NNv+zp49C4VCgcOHDxst/+STT7B27Vqz7ZeIqsZijIisQkxMDPLy8pCXl4e0tDQ4OTnhiSeekDutBrNmzRqpfXl5edi6dWuVcWVlZWbLQa1Ww93d3WzbJ6KqsRgjIqvg7OwMX19f+Pr6olu3bpg+fTrOnz+Py5cv47HHHsPkyZON4i9fvgylUom0tDQAQOvWrfHee+8hPj4erq6uCAgIwNKlS42e89FHHyEsLAyurq4IDAzEyy+/jOLiYmn9n3/+iSFDhsDDwwOurq7o1KkTtm3bBgC4du0aRo4ciZYtW8LFxQXt2rXDmjVrat0+d3d3qX2+vr7w9PSUerBSUlLQp08fqFQqfPXVV7h69Sri4+MREBCApk2bIiwsDBs2bDDansFgwPz58xESEgJnZ2e0atUK77//PgAgODgYAPDQQw9BoVCgb9++ACqfpiwpKcGUKVPg7e0NlUqFnj174sCBA9L6nTt3QqFQIC0tDREREWjatCm6d++OU6dO1brdRMRijIisUHFxMb788kuEhISgRYsWGD9+PNavX4+SkhIp5ssvv0RAQAAee+wxadmCBQvQtWtXHDp0CNOnT8err76K1NRUab2DgwMWL16M7OxsrFu3Dunp6Xj99del9ZMmTUJJSQl27dqFo0ePYt68eWjWrBkAYObMmTh+/Dh++uknnDhxAsuWLYOXl1eDtLci1xMnTiA6Ohq3b99GeHg4fvzxRxw7dgwTJ07EqFGjsH//fuk5M2bMwNy5c6W81q9fDx8fHwCQ4n755Rfk5eVhy5YtVe739ddfx+bNm7Fu3TocPHgQISEhiI6ORkFBgVHcW2+9hQ8//BC//fYbnJyc8D//8z8N0m4iu2HW25ATETWAMWPGCEdHR+Hq6ipcXV0FAOHn5yeysrKEEELcunVLeHh4iJSUFOk5Xbp0EbNnz5Z+DwoKEjExMUbbjYuLEwMHDqx2v5s2bRItWrSQfg8LCzPa5t2GDBkixo0bV6f2ARAqlUpqn6urq/j3v/8tcnNzBQCxaNGi+25j8ODB4rXXXhNCCFFUVCScnZ3FypUrq4yt2O6hQ4eMlo8ZM0YMHTpUCCFEcXGxaNKkifjqq6+k9aWlpcLf31/Mnz9fCCHEr7/+KgCIX375RYr58ccfBQBx69YtUw4BkV1jzxgRWYV+/frh8OHDOHz4MPbv34/o6GgMHDgQf/75J1QqFUaNGoXVq1cDAA4ePIhjx45h7NixRtuIioqq9PuJEyek33/55Rf0798fAQEBaN68OUaNGoWrV6/i5s2bAIApU6Zgzpw56NGjB5KSkowuIHjppZewceNGdOvWDa+//jr27t1rUvs+/vhjqX2HDx/G448/Lq2LiIgwii0vL8d7772HsLAweHp6olmzZvj5559x7tw5AMCJEydQUlKC/v37m5TD3c6cOYOysjL06NFDWtakSRNERkYaHTMA6NKli/RvPz8/AMClS5fqvG8ie8NijIisgqurK0JCQhASEoJHHnkE//rXv3Djxg2sXLkSADB+/Hikpqbir7/+wpo1a/DYY48hKCio1ts/e/YsnnjiCXTp0gWbN29GVlaWNKastLRU2scff/yBUaNG4ejRo4iIiMCSJUsAQCoM//GPf+DixYvo378/pk2bVuv9+/r6Su0LCQmBq6urUdvvtmDBAnzyySd444038Ouvv+Lw4cOIjo6W8nRxcan1fhtCkyZNpH8rFAoAf49ZI6LaYTFGRFZJoVDAwcEBt27dAgCEhYUhIiICK1euxPr166sct7Rv375Kv3fs2BEAkJWVBYPBgA8//BCPPvooQkNDcfHixUrbCAwMxIsvvogtW7bgtddek4pBAGjZsiXGjBmDL7/8EosWLcKKFSsassmSPXv2YOjQoXj++efRtWtXtGnTBv/973+l9e3atYOLi4t08cK9lEolgL972KrTtm1bKJVK7NmzR1pWVlaGAwcO4MEHH2yglhARADjJnQARUW2UlJRAp9MB+PvKxU8//RTFxcUYMmSIFDN+/HhMnjwZrq6ueOqppyptY8+ePZg/fz5iY2ORmpqKTZs24ccffwQAhISEoKysDEuWLMGQIUOwZ88eLF++3Oj5U6dOxcCBAxEaGopr167h119/lYq5WbNmITw8HJ06dUJJSQl++OEHaV1Da9euHb755hvs3bsXHh4e+Oijj5Cfny8VSSqVCm+88QZef/11KJVK9OjRA5cvX0Z2djYSEhLg7e0NFxcXbN++HQ888ABUKhXUarXRPlxdXfHSSy/hn//8Jzw9PdGqVSvMnz8fN2/eREJCglnaRWSv2DNGRFZh+/bt8PPzg5+fHzQaDQ4cOIBNmzZJ0zIAQHx8PJycnBAfHw+VSlVpG6+99hp+++03PPTQQ5gzZw4++ugjREdHAwC6du2Kjz76CPPmzUPnzp3x1VdfITk52ej55eXlmDRpEjp27IiYmBiEhobis88+A/B3b9OMGTPQpUsX9O7dG46Ojti4caNZjsXbb7+Nhx9+GNHR0ejbty98fX0rzZw/c+ZMvPbaa5g1axY6duyIuLg4aRyXk5MTFi9ejM8//xz+/v4YOnRolfuZO3cunnnmGYwaNQoPP/wwcnJy8PPPP8PDw8Ms7SKyVwohhJA7CSKihnD27Fm0bdsWBw4cwMMPP2y0rnXr1pg6dSqmTp0qT3JERNXgaUoisnplZWW4evUq3n77bTz66KOVCjEiIkvG05REZPX27NkDPz8/HDhwoNI4L7l98MEHaNasWZWPgQMHyp0eEVkAnqYkIjKjgoKCSjPWV3BxcUFAQEAjZ0RElobFGBEREZGMeJqSiIiISEYsxoiIiIhkxGKMiIiISEYsxoiIiIhkxGKMiIiISEYsxoiIiIhkxGKMiIiISEYsxoiIiIhk9P8BePwUewHSIxEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVLdJREFUeJzt3XtcVNXeP/DPcJkZRBlEBAZCQRE1xUsihJpocsI0k+w8Knm88HjpoqfMfAwrxa6QVnr0mJqV9qQpmp6Tx0wj0ONLJSTUVLwcNbxkgCIxiCAis35/+GM/jVwH2LNnhs/79ZoXsfd3Zn9nhbO/s9baa6uEEAJERERE1OwclE6AiIiIyF6x0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CKiFm/RokVQqVQNilWpVFi0aJGs+QwZMgRDhgyx2tcjooZjoUVEVmP9+vVQqVTSw8nJCX5+fpgyZQquXr2qdHpWJyAgwKS9vLy88Mgjj+Af//hHs7x+aWkpFi1ahH379jXL6xG1RCy0iMjqvPXWW/jyyy+xevVqPP7449iwYQMiIyNx+/ZtWY73xhtvoKysTJbXllufPn3w5Zdf4ssvv8TcuXPx22+/YcyYMVi9enWTX7u0tBRvvvkmCy2iJnBSOgEiovs9/vjjCA0NBQBMmzYNnp6eeP/997Fjxw6MHTu22Y/n5OQEJyfb/Dj08/PDX/7yF+n3SZMmISgoCEuXLsVzzz2nYGZEBLBHi4hswCOPPAIAuHDhgsn2M2fO4M9//jM8PDyg1WoRGhqKHTt2mMRUVFTgzTffRJcuXaDVatGuXTsMGjQIKSkpUkxNc7TKy8vx8ssvo3379mjTpg2efPJJ/Prrr9VymzJlCgICAqptr+k1161bh0cffRReXl7QaDR48MEHsWrVKrPaoj4+Pj7o3r07cnJy6oy7du0apk6dCm9vb2i1WvTu3RtffPGFtP/ixYto3749AODNN9+Uhiflnp9GZG9s8yscEbUoFy9eBAC0bdtW2padnY2BAwfCz88P8fHxcHV1xZYtWxATE4Nt27bhqaeeAnCv4ElMTMS0adMQFhaG4uJi/PTTTzhy5Aj+9Kc/1XrMadOmYcOGDXjmmWcwYMAApKWlYeTIkU16H6tWrUKPHj3w5JNPwsnJCf/617/wwgsvwGg0YubMmU167SoVFRW4cuUK2rVrV2tMWVkZhgwZgvPnz2PWrFkIDAzE1q1bMWXKFBQVFeGll15C+/btsWrVKjz//PN46qmnMGbMGABAr169miVPohZDEBFZiXXr1gkA4ocffhDXr18XV65cEV9//bVo37690Gg04sqVK1LssGHDREhIiLh9+7a0zWg0igEDBoguXbpI23r37i1GjhxZ53ETEhLEHz8Ojx07JgCIF154wSTumWeeEQBEQkKCtG3y5MmiY8eO9b6mEEKUlpZWi4uOjhadOnUy2RYZGSkiIyPrzFkIITp27Cgee+wxcf36dXH9+nXx888/i/HjxwsA4q9//Wutr7ds2TIBQGzYsEHadufOHRERESFat24tiouLhRBCXL9+vdr7JSLzcOiQiKxOVFQU2rdvD39/f/z5z3+Gq6srduzYgQceeAAAUFhYiLS0NIwdOxY3b95EQUEBCgoKcOPGDURHR+PcuXPSVYru7u7Izs7GuXPnGnz8Xbt2AQBefPFFk+2zZ89u0vtycXGR/ttgMKCgoACRkZH45ZdfYDAYGvWa33//Pdq3b4/27dujd+/e2Lp1KyZOnIj333+/1ufs2rULPj4+iI2NlbY5OzvjxRdfRElJCf797383Khciqo5Dh0RkdVauXIng4GAYDAZ8/vnn2L9/PzQajbT//PnzEEJgwYIFWLBgQY2vce3aNfj5+eGtt97C6NGjERwcjJ49e2L48OGYOHFinUNgly5dgoODAzp37myyvWvXrk16XwcPHkRCQgLS09NRWlpqss9gMECn05n9muHh4XjnnXegUqnQqlUrdO/eHe7u7nU+59KlS+jSpQscHEy/a3fv3l3aT0TNg4UWEVmdsLAw6arDmJgYDBo0CM888wzOnj2L1q1bw2g0AgDmzp2L6OjoGl8jKCgIADB48GBcuHAB33zzDb7//nt8+umnWLp0KVavXo1p06Y1OdfaFjqtrKw0+f3ChQsYNmwYunXrho8++gj+/v5Qq9XYtWsXli5dKr0nc3l6eiIqKqpRzyUi+bHQIiKr5ujoiMTERAwdOhR///vfER8fj06dOgG4N9zVkCLDw8MDcXFxiIuLQ0lJCQYPHoxFixbVWmh17NgRRqMRFy5cMOnFOnv2bLXYtm3boqioqNr2+3uF/vWvf6G8vBw7duxAhw4dpO179+6tN//m1rFjRxw/fhxGo9GkV+vMmTPSfqD2IpKIGo5ztIjI6g0ZMgRhYWFYtmwZbt++DS8vLwwZMgRr1qxBbm5utfjr169L/33jxg2Tfa1bt0ZQUBDKy8trPd7jjz8OAFi+fLnJ9mXLllWL7dy5MwwGA44fPy5ty83NrbY6u6OjIwBACCFtMxgMWLduXa15yGXEiBHIy8tDcnKytO3u3btYsWIFWrdujcjISABAq1atAKDGQpKIGoY9WkRkE/7nf/4H//Vf/4X169fjueeew8qVKzFo0CCEhIRg+vTp6NSpE/Lz85Geno5ff/0VP//8MwDgwQcfxJAhQ9CvXz94eHjgp59+wtdff41Zs2bVeqw+ffogNjYWH3/8MQwGAwYMGIDU1FScP3++Wuz48ePx6quv4qmnnsKLL76I0tJSrFq1CsHBwThy5IgU99hjj0GtVmPUqFF49tlnUVJSgrVr18LLy6vGYlFOM2bMwJo1azBlyhRkZWUhICAAX3/9NQ4ePIhly5ahTZs2AO5N3n/wwQeRnJyM4OBgeHh4oGfPnujZs6dF8yWyaUpf9khEVKVqeYfMzMxq+yorK0Xnzp1F586dxd27d4UQQly4cEFMmjRJ+Pj4CGdnZ+Hn5yeeeOIJ8fXXX0vPe+edd0RYWJhwd3cXLi4uolu3buLdd98Vd+7ckWJqWoqhrKxMvPjii6Jdu3bC1dVVjBo1Sly5cqXG5Q6+//570bNnT6FWq0XXrl3Fhg0banzNHTt2iF69egmtVisCAgLE+++/Lz7//HMBQOTk5Ehx5izvUN/SFbW9Xn5+voiLixOenp5CrVaLkJAQsW7dumrPPXTokOjXr59Qq9Vc6oGoEVRC/KEfm4iIiIiaDedoEREREcmEhRYRERGRTFhoEREREcmEhRYRERGRTFhoEREREcmEhRYRERGRTLhgqYKMRiN+++03tGnThre6ICIishFCCNy8eRO+vr7Vbs5+PxZaCvrtt9/g7++vdBpERETUCFeuXMEDDzxQZwwLLQVV3ebiypUrcHNzUzgbIiIiaoji4mL4+/tL5/G6sNBSUNVwoZubGwstIiIiG9OQaT+cDE9EREQkExZaRERERDJhoUVEREQkE87RsgGVlZWoqKhQOg2b4ezsDEdHR6XTICIiYqFlzYQQyMvLQ1FRkdKp2Bx3d3f4+PhwfTIiIlIUCy0rVlVkeXl5oVWrViwaGkAIgdLSUly7dg0AoNfrFc6IiIhaMhZaVqqyslIqstq1a6d0OjbFxcUFAHDt2jV4eXlxGJGIiBTDyfBWqmpOVqtWrRTOxDZVtRvnthERkZJYaFk5Dhc2DtuNiIisAQstIiIiIpmw0CIiIiKSCQstkkVeXh7++te/olOnTtBoNPD398eoUaOQmpoqxRw6dAgjRoxA27ZtodVqERISgo8++giVlZVSzMWLFzF16lQEBgbCxcUFnTt3RkJCAu7cuaPE2yIiIhuSayjDoQsFyDWUKZYDrzqkZnfx4kUMHDgQ7u7uWLJkCUJCQlBRUYE9e/Zg5syZOHPmDP7xj39g7NixiIuLw969e+Hu7o4ffvgB8+bNQ3p6OrZs2QKVSoUzZ87AaDRizZo1CAoKwsmTJzF9+nTcunULH3zwgdJvlYiIrFRy5mXM334CRgE4qIDEMSEY17+DxfNQCSGExY9KAIDi4mLodDoYDAa4ubmZ7Lt9+zZycnIQGBgIrVarUIaNM2LECBw/fhxnz56Fq6uryb6ioiI4OzujY8eOiIyMxLZt20z2/+tf/8KTTz6JzZs3Y9y4cTW+/pIlS7Bq1Sr88ssvteZgy+1HRERNk2sow8CkNBj/UOE4qlQ4ED8Uep1Lk1+/rvP3/Th02EJYqvu0sLAQu3fvxsyZM6sVWcC9Fdu///573LhxA3Pnzq22f9SoUQgODsamTZtqPYbBYICHh0ez5k1ERPYjp+CWSZEFAJVC4GJBqcVz4dBhC2DJ7tPz589DCIFu3brVGvOf//wHANC9e/ca93fr1k2Kqen1V6xYwWFDIiKqVaCnKxxUqNajFeBp+bUp2aNl53INZVKRBdz7o3tt+0nZerbMGYk2d9T66tWrGD58OP7rv/4L06dPNzc1IiJqIfQ6FySOCYHj/19T0VGlwntjejbLsKG52KNl5+rqPpXjD65Lly7SJPbaBAcHAwBOnz6NAQMGVNt/+vRpPPjggybbfvvtNwwdOhQDBgzAJ5980rxJExGR3RnXvwMGB7fHxYJSBHi2UqTIAtijZfequk//SM7uUw8PD0RHR2PlypW4detWtf1FRUV47LHH4OHhgQ8//LDa/h07duDcuXOIjY2Vtl29ehVDhgxBv379sG7dOjg48M+WiIjqp9e5IKJzO8WKLICFlt1Tovt05cqVqKysRFhYGLZt24Zz587h9OnTWL58OSIiIuDq6oo1a9bgm2++wYwZM3D8+HFcvHgRn332GaZMmYI///nPGDt2LID/K7I6dOiADz74ANevX0deXh7y8vJky5+IiKi5cOiwBbB092mnTp1w5MgRvPvuu3jllVeQm5uL9u3bo1+/fli1ahUA4M9//jP27t2Ld999F4888ghu376NLl264PXXX8fs2bOlexWmpKTg/PnzOH/+PB544AGT43BlEiIisnZcR0tB9rqOljVg+xERkVxsbh2tlStXIiAgAFqtFuHh4Th8+HCd8Vu3bkW3bt2k27bs2rXLZL8QAgsXLoRer4eLiwuioqJw7tw5k5jCwkJMmDABbm5ucHd3x9SpU1FSUiLt37dvH0aPHg29Xg9XV1f06dMHGzduNHmN9evXQ6VSmTx4UiciIqIqihdaycnJmDNnDhISEnDkyBH07t0b0dHRuHbtWo3xhw4dQmxsLKZOnYqjR48iJiYGMTExOHnypBSzePFiLF++HKtXr0ZGRgZcXV0RHR2N27dvSzETJkxAdnY2UlJSsHPnTuzfvx8zZswwOU6vXr2wbds2HD9+HHFxcZg0aRJ27txpko+bmxtyc3Olx6VLl5q5hYiIiMhmCYWFhYWJmTNnSr9XVlYKX19fkZiYWGP82LFjxciRI022hYeHi2effVYIIYTRaBQ+Pj5iyZIl0v6ioiKh0WjEpk2bhBBCnDp1SgAQmZmZUsx3330nVCqVuHr1aq25jhgxQsTFxUm/r1u3Tuh0uoa/2fsYDAYBQBgMhmr7ysrKxKlTp0RZWVmjX78lY/sREZFc6jp/30/RHq07d+4gKysLUVFR0jYHBwdERUUhPT29xuekp6ebxANAdHS0FJ+Tk4O8vDyTGJ1Oh/DwcCkmPT0d7u7uCA0NlWKioqLg4OCAjIyMWvOt6dYvJSUl6NixI/z9/TF69GhkZ2fX+vzy8nIUFxebPIiIiMh+KVpoFRQUoLKyEt7e3ibbvb29a718Py8vr874qp/1xXh5eZnsd3JygoeHR63H3bJlCzIzMxEXFydt69q1Kz7//HN888032LBhA4xGIwYMGIBff/21xtdITEyETqeTHv7+/jXG/ZHgtQqNwnYjIiJroPgcLVuwd+9exMXFYe3atejRo4e0PSIiApMmTUKfPn0QGRmJ7du3o3379lizZk2NrzN//nwYDAbpceXKlVqP6ezsDAAoLbX8DTDtQVW7VbUjERGREhRdR8vT0xOOjo7Iz8832Z6fnw8fH58an+Pj41NnfNXP/Px86PV6k5g+ffpIMfdPtr979y4KCwurHfff//43Ro0ahaVLl2LSpEl1vh9nZ2f07dsX58+fr3G/RqOBRqOp8zWqODo6wt3dXcqzVatW0tpSVDshBEpLS3Ht2jW4u7vD0dFR6ZSIiKgFU7TQUqvV6NevH1JTUxETEwMAMBqNSE1NxaxZs2p8TkREBFJTUzF79mxpW0pKCiIiIgAAgYGB8PHxQWpqqlRYFRcXIyMjA88//7z0GkVFRcjKykK/fv0AAGlpaTAajQgPD5ded9++fXjiiSfw/vvvm1yRWJvKykqcOHECI0aMMLcpalRV9NV2BSbVzt3dvdZinYiIyFIUXxl+zpw5mDx5MkJDQxEWFoZly5bh1q1b0lyoSZMmwc/PD4mJiQCAl156CZGRkfjwww8xcuRIbN68GT/99JN0o2GVSoXZs2fjnXfeQZcuXRAYGIgFCxbA19dXKua6d++O4cOHY/r06Vi9ejUqKiowa9YsjB8/Hr6+vgDuDRc+8cQTeOmll/D0009Lc7fUarU0If6tt97Cww8/jKCgIBQVFWHJkiW4dOkSpk2b1ixto1KpoNfr4eXlhYqKimZ5zZbA2dmZPVlERGQd5L4EsiFWrFghOnToINRqtQgLCxM//vijtC8yMlJMnjzZJH7Lli0iODhYqNVq0aNHD/Htt9+a7DcajWLBggXC29tbaDQaMWzYMHH27FmTmBs3bojY2FjRunVr4ebmJuLi4sTNmzel/ZMnTxYAqj0iIyOlmNmzZ0t5e3t7ixEjRogjR440+H2bc3koERERWQdzzt+8BY+CzFnCn4iIiKyDzd2Ch4iIiMgesdAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikolVFForV65EQEAAtFotwsPDcfjw4Trjt27dim7dukGr1SIkJAS7du0y2S+EwMKFC6HX6+Hi4oKoqCicO3fOJKawsBATJkyAm5sb3N3dMXXqVJSUlEj79+3bh9GjR0Ov18PV1RV9+vTBxo0bzc6FiIiIWi7FC63k5GTMmTMHCQkJOHLkCHr37o3o6Ghcu3atxvhDhw4hNjYWU6dOxdGjRxETE4OYmBicPHlSilm8eDGWL1+O1atXIyMjA66uroiOjsbt27elmAkTJiA7OxspKSnYuXMn9u/fjxkzZpgcp1evXti2bRuOHz+OuLg4TJo0CTt37jQrFyIiImrBhMLCwsLEzJkzpd8rKyuFr6+vSExMrDF+7NixYuTIkSbbwsPDxbPPPiuEEMJoNAofHx+xZMkSaX9RUZHQaDRi06ZNQgghTp06JQCIzMxMKea7774TKpVKXL16tdZcR4wYIeLi4hqcS30MBoMAIAwGQ4PiiYiISHnmnL8V7dG6c+cOsrKyEBUVJW1zcHBAVFQU0tPTa3xOenq6STwAREdHS/E5OTnIy8szidHpdAgPD5di0tPT4e7ujtDQUCkmKioKDg4OyMjIqDVfg8EADw+PBudyv/LychQXF5s8iIiIyH4pWmgVFBSgsrIS3t7eJtu9vb2Rl5dX43Py8vLqjK/6WV+Ml5eXyX4nJyd4eHjUetwtW7YgMzMTcXFxDc7lfomJidDpdNLD39+/xjgiIiKyD4rP0bIFe/fuRVxcHNauXYsePXo0+nXmz58Pg8EgPa5cudKMWRIREZG1UbTQ8vT0hKOjI/Lz80225+fnw8fHp8bn+Pj41Blf9bO+mPsn29+9exeFhYXVjvvvf/8bo0aNwtKlSzFp0iSzcrmfRqOBm5ubyYOIiIjsl6KFllqtRr9+/ZCamiptMxqNSE1NRURERI3PiYiIMIkHgJSUFCk+MDAQPj4+JjHFxcXIyMiQYiIiIlBUVISsrCwpJi0tDUajEeHh4dK2ffv2YeTIkXj//fdNrkhsaC5ERETUwllgcn6dNm/eLDQajVi/fr04deqUmDFjhnB3dxd5eXlCCCEmTpwo4uPjpfiDBw8KJycn8cEHH4jTp0+LhIQE4ezsLE6cOCHFJCUlCXd3d/HNN9+I48ePi9GjR4vAwEBRVlYmxQwfPlz07dtXZGRkiAMHDoguXbqI2NhYaX9aWppo1aqVmD9/vsjNzZUeN27cMCuXuvCqQyIiIttjzvlb8UJLCCFWrFghOnToINRqtQgLCxM//vijtC8yMlJMnjzZJH7Lli0iODhYqNVq0aNHD/Htt9+a7DcajWLBggXC29tbaDQaMWzYMHH27FmTmBs3bojY2FjRunVr4ebmJuLi4sTNmzel/ZMnTxYAqj0iIyPNyqUuLLSIiIhsjznnb5UQQijWndbCFRcXQ6fTwWAwcL4WERGRjTDn/M2rDomIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiI7FKuoQyHLhQg11CmWA5Oih2ZiIiISCbJmZcxf/sJGAXgoAISx4RgXP8OFs+DPVpERERkV3INZVKRBQBGAby2/aQiPVsstIiIiMiu5BTckoqsKpVC4GJBqcVzYaFFREREdiXQ0xUOKtNtjioVAjxbWTwXFlpERERkV/Q6FySOCYGj6l615ahS4b0xPaHXuVg8F06GJyIiIrszrn8HDA5uj4sFpQjwbKVIkQWw0CIiIiI7pde5KFZgVeHQIREREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERGRVcs1lOHQhQLkGsqUTsVsTkonQERERFSb5MzLmL/9BIwCcFABiWNCMK5/B6XTajD2aBEREZFVyjWUSUUWABgF8Nr2kzbVs6V4obVy5UoEBARAq9UiPDwchw8frjN+69at6NatG7RaLUJCQrBr1y6T/UIILFy4EHq9Hi4uLoiKisK5c+dMYgoLCzFhwgS4ubnB3d0dU6dORUlJibT/9u3bmDJlCkJCQuDk5ISYmJhqeezbtw8qlaraIy8vr/GNQURERJKcgltSkVWlUghcLChVJqFGULTQSk5Oxpw5c5CQkIAjR46gd+/eiI6OxrVr12qMP3ToEGJjYzF16lQcPXoUMTExiImJwcmTJ6WYxYsXY/ny5Vi9ejUyMjLg6uqK6Oho3L59W4qZMGECsrOzkZKSgp07d2L//v2YMWOGtL+yshIuLi548cUXERUVVed7OHv2LHJzc6WHl5dXE1uFiIiIACDQ0xUOKtNtjioVAjxbKZNQI6iEEKL+MHmEh4ejf//++Pvf/w4AMBqN8Pf3x1//+lfEx8dXix83bhxu3bqFnTt3Stsefvhh9OnTB6tXr4YQAr6+vnjllVcwd+5cAIDBYIC3tzfWr1+P8ePH4/Tp03jwwQeRmZmJ0NBQAMDu3bsxYsQI/Prrr/D19TU55pQpU1BUVIR//vOfJtv37duHoUOH4vfff4e7u3uj3n9xcTF0Oh0MBgPc3Nwa9RpERET2LDnzMl7bfhKVQsBRpcJ7Y3oqPkfLnPO3Yj1ad+7cQVZWlkmPkYODA6KiopCenl7jc9LT06v1MEVHR0vxOTk5yMvLM4nR6XQIDw+XYtLT0+Hu7i4VWQAQFRUFBwcHZGRkmP0++vTpA71ejz/96U84ePCg2c8nIiKi2o3r3wEH4odi0/SHcSB+qOJFlrkUu+qwoKAAlZWV8Pb2Ntnu7e2NM2fO1PicvLy8GuOr5kVV/awv5v7hPScnJ3h4eJg1v0qv12P16tUIDQ1FeXk5Pv30UwwZMgQZGRl46KGHanxOeXk5ysvLpd+Li4sbfDwiIqKWSq9zgV7nonQajcLlHRqpa9eu6Nq1q/T7gAEDcOHCBSxduhRffvlljc9JTEzEm2++aakUiYiISGGKDR16enrC0dER+fn5Jtvz8/Ph4+NT43N8fHzqjK/6WV/M/ZPt7969i8LCwlqP21BhYWE4f/58rfvnz58Pg8EgPa5cudKk4xEREZF1U6zQUqvV6NevH1JTU6VtRqMRqampiIiIqPE5ERERJvEAkJKSIsUHBgbCx8fHJKa4uBgZGRlSTEREBIqKipCVlSXFpKWlwWg0Ijw8vEnv6dixY9Dr9bXu12g0cHNzM3kQERGR/VJ06HDOnDmYPHkyQkNDERYWhmXLluHWrVuIi4sDAEyaNAl+fn5ITEwEALz00kuIjIzEhx9+iJEjR2Lz5s346aef8MknnwAAVCoVZs+ejXfeeQddunRBYGAgFixYAF9fX2ktrO7du2P48OGYPn06Vq9ejYqKCsyaNQvjx483ueLw1KlTuHPnDgoLC3Hz5k0cO3YMwL3J7wCwbNkyBAYGokePHrh9+zY+/fRTpKWl4fvvv7dM4xEREZHVU7TQGjduHK5fv46FCxciLy8Pffr0we7du6XJ7JcvX4aDw/91ug0YMABfffUV3njjDbz22mvo0qUL/vnPf6Jnz55SzLx583Dr1i3MmDEDRUVFGDRoEHbv3g2tVivFbNy4EbNmzcKwYcPg4OCAp59+GsuXLzfJbcSIEbh06ZL0e9++fQHcWxAVuHfV5CuvvIKrV6+iVatW6NWrF3744QcMHTq0+RuKiIiIbJKi62i1dFxHi4iIyPbYxDpaRERERPaOhRYRERGRTFhoEREREcmEhRYRERGRTFhoEREREcmEhRYRERGRTFhoEREREcmEhRYRERGRTFhoEREREcnErEKroqIC8+bNQ1BQEMLCwvD555+b7M/Pz4ejo2OzJkhERERkq8wqtN5991387//+L5577jk89thjmDNnDp599lmTGN7Rh4iIiOges24qvXHjRnz66ad44oknAABTpkzB448/jri4OKl3S6VSNX+WRERERDbIrB6tq1evomfPntLvQUFB2LdvHw4dOoSJEyeisrKy2RMkIiIislVmFVo+Pj64cOGCyTY/Pz/s3bsXmZmZmDJlSnPmRkRERGTTzCq0Hn30UXz11VfVtvv6+iItLQ05OTnNlhgRERGRrTNrjtaCBQtw5syZGvf5+fnh3//+N1JSUpolMSIiIiJbpxK8TFAxxcXF0Ol0MBgMcHNzUzodIiIiagBzzt+NWrB069atGDNmDHr27ImePXtizJgx+PrrrxuVLBEREZG9MqvQMhqNGDduHMaNG4dTp04hKCgIQUFByM7Oxrhx4zB+/Hiuo0VERET0/5k1R+tvf/sbfvjhB+zYsUNaS6vKjh07EBcXh7/97W+YPXt2c+ZIREREZJPM6tFat24dlixZUq3IAoAnn3wSixcvrnZbHiIiIqKWyqxC69y5c4iKiqp1f1RUFM6dO9fkpIiIiIjsgVmFlouLC4qKimrdX1xcDK1W29SciIiIiOyCWYVWREQEVq1aVev+lStXIiIioslJEREREdkDsybDv/766xgyZAhu3LiBuXPnolu3bhBC4PTp0/jwww/xzTffYO/evXLlSkRERGRTzCq0BgwYgOTkZMyYMQPbtm0z2de2bVts2rQJAwcObNYEiYiIiGxVo1aGLy0txZ49e6SJ78HBwXjsscfQqlWrZk/QnnFleCIiIttjzvnbrB6ttLQ0zJo1Cz/++COeeuopk30GgwE9evTA6tWr8cgjj5ifNREREZGdMWsy/LJlyzB9+vQaqzedTodnn30WH330UbMlR0RERGTLzCq0fv75ZwwfPrzW/Y899hiysrKanBQRERGRPTCr0MrPz4ezs3Ot+52cnHD9+vUmJ0VERERkD8wqtPz8/HDy5Mla9x8/fhx6vb7JSRERERHZA7MKrREjRmDBggW4fft2tX1lZWVISEio8T6IZPtyDWU4dKEAuYYypVMhIiKyGWYt75Cfn4+HHnoIjo6OmDVrFrp27QoAOHPmDFauXInKykocOXIE3t7esiVsT2xleYfkzMuYv/0EjAJwUAGJY0Iwrn8HpdMiIiJShDnnb7PX0bp06RKef/557NmzB1VPValUiI6OxsqVKxEYGNj4zFsYWyi0cg1lGJiUBuMf/kocVSociB8Kvc5FucSIiIgUIts6WgDQsWNH7Nq1C7///jvOnz8PIQS6dOmCtm3bNjphsl45BbdMiiwAqBQCFwtKWWgRERHVw+xCq0rbtm3Rv3//5syFrFCgpyscVKjWoxXgybsAEBER1cesyfDU8uh1LkgcEwJHlQrAvSLrvTE92ZtFRETUAI3u0aKWY1z/Dhgc3B4XC0oR4NmKRRYREVEDsdCiBtHrXJq1wMo1lCGn4BYCPV1ZuBERkd1ioUUWx+UiiJTHLztElsFCiywq11AmFVnAvUn2r20/icHB7flhT2Qh/LJDZDmcDE8WVddyEUQkv9q+7PCuD0TyYKFFFlW1XMQfcbkIIstR4ssOb+FFLRkLLbIoLhdBpCxLf9lJzryMgUlpeGZtBgYmpSE587IsxyGyVmbfgoeajy3cgkcuuYYyLhdBpJDkzMt4bftJVAohfdmRY44Wb+FF9krWW/AQNYfmXi6CiBrOUmvj8RZeRCy0Whxe0k1EgGW+7PAWXkSco9WicK4EEVkS52QScY6WouSco3V/zxXnShCRUjgnk+wN52i1cDUtRujv0YpzJYhIEZyTSS0Zhw7tTG2LEbqqHbl+FRERkYWx0LIztV3lU3rHyLkSREREFsahQztT11U+EZ3bWeSSbiIiIrpH8R6tlStXIiAgAFqtFuHh4Th8+HCd8Vu3bkW3bt2g1WoREhKCXbt2mewXQmDhwoXQ6/VwcXFBVFQUzp07ZxJTWFiICRMmwM3NDe7u7pg6dSpKSkqk/bdv38aUKVMQEhICJycnxMTE1JjLvn378NBDD0Gj0SAoKAjr169vVBs0p/qu8tHrXBDRuR2LLCIiIgtQtNBKTk7GnDlzkJCQgCNHjqB3796Ijo7GtWvXaow/dOgQYmNjMXXqVBw9ehQxMTGIiYnByZMnpZjFixdj+fLlWL16NTIyMuDq6oro6Gjcvn1bipkwYQKys7ORkpKCnTt3Yv/+/ZgxY4a0v7KyEi4uLnjxxRcRFRVVYy45OTkYOXIkhg4dimPHjmH27NmYNm0a9uzZ00yt03jj+nfAgfih2DT9YRyIHyrLis9ERETUAEJBYWFhYubMmdLvlZWVwtfXVyQmJtYYP3bsWDFy5EiTbeHh4eLZZ58VQghhNBqFj4+PWLJkibS/qKhIaDQasWnTJiGEEKdOnRIARGZmphTz3XffCZVKJa5evVrtmJMnTxajR4+utn3evHmiR48eJtvGjRsnoqOj63nX/8dgMAgAwmAwNPg5REREpCxzzt+K9WjduXMHWVlZJj1GDg4OiIqKQnp6eo3PSU9Pr9bDFB0dLcXn5OQgLy/PJEan0yE8PFyKSU9Ph7u7O0JDQ6WYqKgoODg4ICMjo8H515eLvck1lOHQhQLkGsqUToWIiMhmKDYZvqCgAJWVlfD29jbZ7u3tjTNnztT4nLy8vBrj8/LypP1V2+qK8fLyMtnv5OQEDw8PKaYhasuluLgYZWVlcHGpPgeqvLwc5eXl0u/FxcUNPp6SalqXi8ORRERE9VN8MnxLkpiYCJ1OJz38/f2VTqleta3LxZ4tIiKi+ilWaHl6esLR0RH5+fkm2/Pz8+Hj41Pjc3x8fOqMr/pZX8z9k+3v3r2LwsLCWo9rTi5ubm419mYBwPz582EwGKTHlStXGnw8pdS2LtfFglJlEiIiIrIhihVaarUa/fr1Q2pqqrTNaDQiNTUVERERNT4nIiLCJB4AUlJSpPjAwED4+PiYxBQXFyMjI0OKiYiIQFFREbKysqSYtLQ0GI1GhIeHNzj/+nKpiUajgZubm8nD2lWty/VHXFGeiIioYRQdOpwzZw7Wrl2LL774AqdPn8bzzz+PW7duIS4uDgAwadIkzJ8/X4p/6aWXsHv3bnz44Yc4c+YMFi1ahJ9++gmzZs0CAKhUKsyePRvvvPMOduzYgRMnTmDSpEnw9fWV1sLq3r07hg8fjunTp+Pw4cM4ePAgZs2ahfHjx8PX11c61qlTp3Ds2DEUFhbCYDDg2LFjOHbsmLT/ueeewy+//IJ58+bhzJkz+Pjjj7Flyxa8/PLL8jecBdW3LhcRkbXgRTtklSxwFWSdVqxYITp06CDUarUICwsTP/74o7QvMjJSTJ482SR+y5YtIjg4WKjVatGjRw/x7bffmuw3Go1iwYIFwtvbW2g0GjFs2DBx9uxZk5gbN26I2NhY0bp1a+Hm5ibi4uLEzZs3TWI6duwoAFR7/NHevXtFnz59hFqtFp06dRLr1q0z673b0vIOvxWVikPnC8RvRaVKp0JEVM3mw5dEYPxO0fHVnSIwfqfYfPiS0imRHTPn/K0SQog66jCSUXFxMXQ6HQwGg00MIxIRWaNcQxkGJqVVu/XYgfih7H0nWZhz/uZVh0REZNN40Q5ZMxZaREQ2rqXPTeJFO2TNWGgREdmw5MzLGJiUhmfWZmBgUhqSMy8rnZLF8aIdsmaco6UgztEioqbg3CRTuYYyXCwoRYBnqxb5/slyzDl/K3YLHiIiapq65ia1xEJDr3Npke+brBuHDomIbBTnJhFZPxZapIiWPnmXqDlwbhKR9ePQIVlccuZl6UbVDiogcUwIxvXvoHRaRDZpXP8OGBzcnnOTiKwUe7TIonINZVKRBQBGAby2/SR7toiaSIDXNRFZI/ZokUVx8i5R82IPMZF1Y48WWRQn7xI1H/YQE1k/FlpkUZy8S9R8eOsZIuvHoUOyOE7eJWoeVT3E9y9Yyh5iIuvBHi1ShF7ngojO7VhkETUBe4hJaVyqp37s0aIWK9dQhpyCWwj0dOWJiWwWe4hJKbwQo2FYaFGLxA8Isie89QxZWm0XYgwObs+/xftw6JBaHF6pRUTUNLwQo+FYaFGLww8IIqKm4VI9DcdCi1ocfkAQWT9OsrZuvBCj4ThHi1qcqg+I17afRKUQ/ICgetV14QQvqmh+nENpG3ghRsOohBC8QZZCiouLodPpYDAY4ObmpnQ6LU6uoYwfEFSvuk76LAiaX66hDAOT0qqtDXYgfij/nZLVMOf8zaFDarG4lpdtUHIIqa4LJ3hRhTw4h5LsDYcOichqKd1jVNdJX0DwBuky4Gr3ZG/Yo0VEVskaeozqunCCF1XIg5Osyd6wR4uIrFJdvUmWOunWd+EEL6qQBydZkz1hoUWy4dVY1BTWMoRU10mfBYF8uNo92QsWWiQLpefWkO2zpmU46jrpsyAgorpweQcF2evyDrw8m5oTl+EgImtjzvmbPVrU7Kxhbg3ZD/YYEZEt41WH1Ox4NRYRyYW35iFbw0KLmh0vzyYiOSRnXsbApDQ8szYDA5PSkJx5WemUiOrFOVoKstc5WlU4t4aImgvnfpI14RwtsgqcW0NEzYVzP8lWceiQiIgUYc58K879JFvFQouIiExYYsK5ufOtOPeTbBXnaCnI3udokeVxNX5qKkssNtyU+Vac+0nWgHO0iFogrsZPTVXbjbwHB7dv1qKmIfOtavvSwLmfZGtYaBHZAUudIMm+WWrCeX33sWzslwb26JI14hwtIjtQ1wmSqKEsNeG8rvlWtX1pqG++GNfYUoa1LyBrDfmxR4vIDtTXQ0DUEJa8kfe4/h0wOLh9tflWjelVyzWUIX7bCVQ9zSiA+O0n2KMrM2ufrmAt+bHQamHYtW6fLHmCJPtWWwEENP/nR03zrRrzpSHr0u+4/6ouIYAjl37HyF78NyAHa5+uYE35sdBqQayluid51HWCJDJHTQWQpT4/GvOlobaL53lNvXysfQFZa8qPhVYLYU3VPcmHV2SRHCz9+WHul4bQAA+oAJNeLRWAfgFtmz03usfapytYU36cDN9CcLI0ETWWEp8fep0LIjq3a1Ahp9e5IOnpEOmE5gAg6ekQfumQkbUvIGtN+bFHq4WwpuqeiGyLLXx+cOjc8qy9za0lP/ZotRANqe6t4TJYIrI+1tQ7UBdzesGoeVh7m1tDfrwFj4KUuAVPbbev4ER5IqoPb39DdA9vwUO1qmmyNCfKE1FD8GILuh+XDKofCy2yqstgiYjINnAkpGE4R4ssdtsNIiKyD429VVJLxEKLbGaiKxERWQcuGdRwHDokANZzGSwREVk/W1jyw1qwR4sk1nAZLBERWT+OhDQce7SIiIjIbBwJaRir6NFauXIlAgICoNVqER4ejsOHD9cZv3XrVnTr1g1arRYhISHYtWuXyX4hBBYuXAi9Xg8XFxdERUXh3LlzJjGFhYWYMGEC3Nzc4O7ujqlTp6KkpMQk5vjx43jkkUeg1Wrh7++PxYsXm+xfv349VCqVyUOr1TahJYiIiGwHR0Lqp3ihlZycjDlz5iAhIQFHjhxB7969ER0djWvXrtUYf+jQIcTGxmLq1Kk4evQoYmJiEBMTg5MnT0oxixcvxvLly7F69WpkZGTA1dUV0dHRuH37thQzYcIEZGdnIyUlBTt37sT+/fsxY8YMaX9xcTEee+wxdOzYEVlZWViyZAkWLVqETz75xCQfNzc35ObmSo9Lly41cwsRERGRzRIKCwsLEzNnzpR+r6ysFL6+viIxMbHG+LFjx4qRI0eabAsPDxfPPvusEEIIo9EofHx8xJIlS6T9RUVFQqPRiE2bNgkhhDh16pQAIDIzM6WY7777TqhUKnH16lUhhBAff/yxaNu2rSgvL5diXn31VdG1a1fp93Xr1gmdTtfIdy6EwWAQAITBYGj0axAREZFlmXP+VrRH686dO8jKykJUVJS0zcHBAVFRUUhPT6/xOenp6SbxABAdHS3F5+TkIC8vzyRGp9MhPDxciklPT4e7uztCQ0OlmKioKDg4OCAjI0OKGTx4MNRqtclxzp49i99//13aVlJSgo4dO8Lf3x+jR49GdnZ2re+3vLwcxcXFJg8iIiKyX4oWWgUFBaisrIS3t7fJdm9vb+Tl5dX4nLy8vDrjq37WF+Pl5WWy38nJCR4eHiYxNb3GH4/RtWtXfP755/jmm2+wYcMGGI1GDBgwAL/++muNuScmJkKn00kPf3//GuOIiIjIPig+R8uWRUREYNKkSejTpw8iIyOxfft2tG/fHmvWrKkxfv78+TAYDNLjypUrFs6YiIiILEnRQsvT0xOOjo7Iz8832Z6fnw8fH58an+Pj41NnfNXP+mLun2x/9+5dFBYWmsTU9Bp/PMb9nJ2d0bdvX5w/f77G/RqNBm5ubiYPIiIisl+KFlpqtRr9+vVDamqqtM1oNCI1NRURERE1PiciIsIkHgBSUlKk+MDAQPj4+JjEFBcXIyMjQ4qJiIhAUVERsrKypJi0tDQYjUaEh4dLMfv370dFRYXJcbp27Yq2bdvWmFtlZSVOnDgBvV5vTjMQERGRvbLA5Pw6bd68WWg0GrF+/Xpx6tQpMWPGDOHu7i7y8vKEEEJMnDhRxMfHS/EHDx4UTk5O4oMPPhCnT58WCQkJwtnZWZw4cUKKSUpKEu7u7uKbb74Rx48fF6NHjxaBgYGirKxMihk+fLjo27evyMjIEAcOHBBdunQRsbGx0v6ioiLh7e0tJk6cKE6ePCk2b94sWrVqJdasWSPFvPnmm2LPnj3iwoULIisrS4wfP15otVqRnZ3doPfOqw6JiIhsjznnb8ULLSGEWLFihejQoYNQq9UiLCxM/Pjjj9K+yMhIMXnyZJP4LVu2iODgYKFWq0WPHj3Et99+a7LfaDSKBQsWCG9vb6HRaMSwYcPE2bNnTWJu3LghYmNjRevWrYWbm5uIi4sTN2/eNIn5+eefxaBBg4RGoxF+fn4iKSnJZP/s2bOlvL29vcWIESPEkSNHGvy+WWgRERHZHnPO3yohhKi7z4vkUlxcDJ1OB4PBwPlaRERENsKc8zevOiQiImohcg1lOHShALmGMqVTaTF4U2kiIqIWIDnzMuZvPwGjABxUQOKYEIzr30HptOwee7SIiIjsXK6hTCqyAMAogNe2n2TPlgWw0CIiaoE4hNSy5BTckoqsKpVC4GJBqTIJtSAcOqQWK9dQhpyCWwj0dIVe56J0OkQWwyGklifQ0xUOKpgUW44qFQI8WymXVAvBHi1qkZIzL2NgUhqeWZuBgUlpSM68rHRKRBbBIaSWSa9zQeKYEDiqVADuFVnvjenJL5kWwB4tanFqO9EMDm7PDx2ye3UNIfHv376N698Bg4Pb42JBKQI8W/H/t4Ww0KIWhyeapuOwq+3iEFLLpte58N+shXHokFqcqhPNH/FE03AcdrVtHEIisiyuDK8grgyvnOTMy3ht+0lUCiGdaDgZuH65hjIMTEqr1htyIH4oT9Q2JtdQxiEkokYy5/zNoUNqkThXoXE47Go/OIREZBkstKjF4onGfJzf0zw4x42o5eAcLSJqMM7vaTrOcSNqWThHS0Gco0W2ivN7GqelznFjDx7ZG87RIiJZcdi1cVriHDeuQk8tHYcOiYgspKUtLcJV6IlYaBERNYk5N2duaXPceCNjIg4dEhE1WmOGxepbWsSe5jPxKlUi9mgRETVKU4bF9DoXRHRuV62QsrcrEltaDx5RTdijRUTUCM09sd1eb3bOxYGppWOhRUTUCM09LGbPVyTyKlVqyTh0SETUCM09LNbSrkgk+ZhzgQbJjz1aRESN1JzDYlWF2/03O2dPEJnD1tcts6eLQapwZXgFcWV4onvs8cO1sbjqPjVWrqEMAxLT8MeTukoFHIp/1Cb+lmypSOTK8ERkM2zpw9USOJ+JGivr0u+4v+dECODIpd8xspd1/03Z68UgAOdoEZGCcg1liN9m+uEav/0E55aYiXNyCABqG6CyhXEre17clj1aZFU4hNSy2PI3cGvBHkGqEhrgARVgOnQIoF9AW4Uyajh7XtyWPVpkNepbrNHav7Vbe37WyJa/gVsD3kvQ/pl7i6ekp0OkE7sDgKSnQ2ziS6s9L27LHi2yCvWNz1v7t3Zrz68uSvYi2vI3cGtgz2tvkTy3eLJmtpx7XdijRVahrhOGtX9rt/b86qL0LV9s+Ru4NeDaW/ZLjls82QJbzr027NEiq1DX+Ly1f2u39vxqYy1X+djrt1hLsJW1tzj30ny2+rlC1bHQIqtQ3wnDmidJ2uokTmv6IOeSBo1XV6FqDQWOLQ+rK8lWP1eoOhZaZDVqO2FY+7d2a8+vNvwgtx81FarWUOBYS69pXayhGK2JrX6uUHVcGV5BXBnePNa+YrY151fbySQ583K1D3L2Nti+XEMZBialVSuiD8QPtejf5qELBXhmbUa17ZumP4yIzu0slkdtrKEYrY81f660ZFwZnuyStQ8vWWt+dZ1MOD/K+jRHD4u1DAtbc6+pLfS2Adb7uUINx6sOiexYQ65csserfGxVc10Fai1XI1rz2kj2vBI5WRf2aBHZMWvp2aD6NWcPizXN77HWXlNr7m0j+8JCi8iONfVkYq0The1RcxfF1lTgWOPwlzUVo2TfWGgR2TG9zgVP9fXDtiNXpW0xfX0bdDKxhYnC9kSOHhZrLHCsiTUVo2S/OEeLyI7lGsrwj6NXTbb98+hv9a4ubcur3dsqa57PZM84R5Hkxh4tIhtjznBeY4ejbH1ul60OebKHhcj+sNAisiHmDuc1djjKlicK2/qQJ4f7iOwLhw6JbERjhvMaOxxlq8NYHPIkImvDHi0iG9HY4bzGDkfZ4jCWrQ95EjUHWx06t1cstIgUZM4HYlOG8xo7HNWY5yn5IW9NQ5482ZESbH3o3B6x0CJSiLkfiLaw7o/SH/LW0kZKtwO1TLZyW6GWhoUWkQIa+4FozcN51vIhr3QbWUs7UMvDoXPrxEKLSAEN+UCsbejJWq9Ks6YPeSXbyJragVqWQE9XqAD88c9PBdjE1cL2jIUWkcxqKpjqm0vU2KEnzo9SHtuBrIqq/hCSF5d3IKuSayjDoQsFdnM5fnLmZQxMSsMzazMwMCkNyZmXAdS9fEJjlyio7ViWYqtLQjQ3tgMpJafgFu7rTIUQwMWCUkXyoXvYo0VWw94mENc3V6e2uUSNGXqylnlBSs+PshZsB1ICe1OtE3u0yCo0daFJa+wJq6tgqlLTfdaq5ln8kUpV9zyLhhzLUnjvuHvYDmRp7E21TuzRIqvQlAnE1toT1qzfLu8fD5DzWERks9iban3Yo0VWoapQ+KOGFAr19YQ1pqeruXrHGvvtssZ5Fqh7ngW/yRJRlbp6U62x99/eWUWhtXLlSgQEBECr1SI8PByHDx+uM37r1q3o1q0btFotQkJCsGvXLpP9QggsXLgQer0eLi4uiIqKwrlz50xiCgsLMWHCBLi5ucHd3R1Tp05FSUmJSczx48fxyCOPQKvVwt/fH4sXLzY7F2qYphQltfWENWZyeHNPKB/XvwMOxA/FpukP40D80Ab1tDW26GzMsYio5VD6gpmWSvFCKzk5GXPmzEFCQgKOHDmC3r17Izo6GteuXasx/tChQ4iNjcXUqVNx9OhRxMTEICYmBidPnpRiFi9ejOXLl2P16tXIyMiAq6sroqOjcfv2bSlmwoQJyM7ORkpKCnbu3In9+/djxowZ0v7i4mI89thj6NixI7KysrBkyRIsWrQIn3zyiVm5UMM1Z1HSSu1g9pyvXEMZ4reZPid++wmT5zTm26C5c3Wqis6q9+WgQoN7pzgviIhq0pR5sOwFaxqVEKKe2R/yCg8PR//+/fH3v/8dAGA0GuHv74+//vWviI+PrxY/btw43Lp1Czt37pS2Pfzww+jTpw9Wr14NIQR8fX3xyiuvYO7cuQAAg8EAb29vrF+/HuPHj8fp06fx4IMPIjMzE6GhoQCA3bt3Y8SIEfj111/h6+uLVatW4fXXX0deXh7UajUAID4+Hv/85z9x5syZBuVSn+LiYuh0OhgMBri5uTWyBSk583K1W674e7TCM2szqsVumv4wIjq3q/F1dh7/DbO+Olpt+8pn+mJkL1+LzgVLzryM+G0nIHBvGZykp61j3hkR2aZDFwrM/kwErHcOrNLMOX8r2qN1584dZGVlISoqStrm4OCAqKgopKen1/ic9PR0k3gAiI6OluJzcnKQl5dnEqPT6RAeHi7FpKenw93dXSqyACAqKgoODg7IyMiQYgYPHiwVWVXHOXv2LH7//fcG5XK/8vJyFBcXmzyo6WrqCWvM8Ftt3zmEaPpVkeaoOlZVNgLyHYuIWobGfCZa8nPPnilaaBUUFKCyshLe3t4m2729vZGXl1fjc/Ly8uqMr/pZX4yXl5fJficnJ3h4eJjE1PQafzxGfbncLzExETqdTnr4+/vXGEfmu3/IrDFzvkIDPKovqwCgX0Bbiy6fYE1LNRCRfWjMZyI/i5oHl3ewoPnz52POnDnS78XFxSy2ZGTuZc56nQuSng7B/G0nYMS9byGJT4dIz7PU8glcqoGI5GDuZyI/i5qHooWWp6cnHB0dkZ+fb7I9Pz8fPj4+NT7Hx8enzviqn/n5+dDr9SYxffr0kWLun2x/9+5dFBYWmrxOTcf54zHqy+V+Go0GGo2mxn0kD3NvLlzbB1HVt8H754LJMencksciopbFnM9EfhY1D0ULLbVajX79+iE1NRUxMTEA7k2GT01NxaxZs2p8TkREBFJTUzF79mxpW0pKCiIiIgAAgYGB8PHxQWpqqlRYFRcXIyMjA88//7z0GkVFRcjKykK/fv0AAGlpaTAajQgPD5diXn/9dVRUVMDZ2Vk6TteuXdG2bdsG5UK2qbYPIksuBMhFB4nIGvCzqBkIhW3evFloNBqxfv16cerUKTFjxgzh7u4u8vLyhBBCTJw4UcTHx0vxBw8eFE5OTuKDDz4Qp0+fFgkJCcLZ2VmcOHFCiklKShLu7u7im2++EcePHxejR48WgYGBoqysTIoZPny46Nu3r8jIyBAHDhwQXbp0EbGxsdL+oqIi4e3tLSZOnChOnjwpNm/eLFq1aiXWrFljVi51MRgMAoAwGAyNbj8iIiKyLHPO34oXWkIIsWLFCtGhQwehVqtFWFiY+PHHH6V9kZGRYvLkySbxW7ZsEcHBwUKtVosePXqIb7/91mS/0WgUCxYsEN7e3kKj0Yhhw4aJs2fPmsTcuHFDxMbGitatWws3NzcRFxcnbt68aRLz888/i0GDBgmNRiP8/PxEUlJStdzry6UuLLSIiIhsjznnb8XX0WrJuI4WERGR7bGZdbSIiIiI7BkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikomiN5Vu6aoW5S8uLlY4EyIiImqoqvN2Q26uw0JLQTdv3gQA+Pv7K5wJERERmevmzZvQ6XR1xvBehwoyGo347bff0KZNG6hUKrOfX1xcDH9/f1y5cqVF3yuR7cA2ANgGVdgObAOAbVBFrnYQQuDmzZvw9fWFg0Pds7DYo6UgBwcHPPDAA01+HTc3txb9D6kK24FtALANqrAd2AYA26CKHO1QX09WFU6GJyIiIpIJCy0iIiIimbDQsmEajQYJCQnQaDRKp6IotgPbAGAbVGE7sA0AtkEVa2gHToYnIiIikgl7tIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstKzcypUrERAQAK1Wi/DwcBw+fLjW2OzsbDz99NMICAiASqXCsmXLLJeojMxpg7Vr1+KRRx5B27Zt0bZtW0RFRdUZb0vMaYft27cjNDQU7u7ucHV1RZ8+ffDll19aMFt5mNMGf7R582aoVCrExMTIm6CFmNMO69evh0qlMnlotVoLZisPc/8WioqKMHPmTOj1emg0GgQHB2PXrl0WylYe5rTBkCFDqv0dqFQqjBw50oIZy8Pcv4Vly5aha9eucHFxgb+/P15++WXcvn1bvgQFWa3NmzcLtVotPv/8c5GdnS2mT58u3N3dRX5+fo3xhw8fFnPnzhWbNm0SPj4+YunSpZZNWAbmtsEzzzwjVq5cKY4ePSpOnz4tpkyZInQ6nfj1118tnHnzMrcd9u7dK7Zv3y5OnTolzp8/L5YtWyYcHR3F7t27LZx58zG3Dark5OQIPz8/8cgjj4jRo0dbJlkZmdsO69atE25ubiI3N1d65OXlWTjr5mVuG5SXl4vQ0FAxYsQIceDAAZGTkyP27dsnjh07ZuHMm4+5bXDjxg2Tv4GTJ08KR0dHsW7dOssm3szMbYeNGzcKjUYjNm7cKHJycsSePXuEXq8XL7/8smw5stCyYmFhYWLmzJnS75WVlcLX11ckJibW+9yOHTvaRaHVlDYQQoi7d++KNm3aiC+++EKuFC2iqe0ghBB9+/YVb7zxhhzpWURj2uDu3btiwIAB4tNPPxWTJ0+2i0LL3HZYt26d0Ol0FsrOMsxtg1WrVolOnTqJO3fuWCpF2TX1M2Hp0qWiTZs2oqSkRK4ULcLcdpg5c6Z49NFHTbbNmTNHDBw4ULYcOXRope7cuYOsrCxERUVJ2xwcHBAVFYX09HQFM7Oc5miD0tJSVFRUwMPDQ640ZdfUdhBCIDU1FWfPnsXgwYPlTFU2jW2Dt956C15eXpg6daol0pRdY9uhpKQEHTt2hL+/P0aPHo3s7GxLpCuLxrTBjh07EBERgZkzZ8Lb2xs9e/bEe++9h8rKSkul3aya47Pxs88+w/jx4+Hq6ipXmrJrTDsMGDAAWVlZ0vDiL7/8gl27dmHEiBGy5cmbSlupgoICVFZWwtvb22S7t7c3zpw5o1BWltUcbfDqq6/C19fX5B+irWlsOxgMBvj5+aG8vByOjo74+OOP8ac//UnudGXRmDY4cOAAPvvsMxw7dswCGVpGY9qha9eu+Pzzz9GrVy8YDAZ88MEHGDBgALKzs5vlpvaW1pg2+OWXX5CWloYJEyZg165dOH/+PF544QVUVFQgISHBEmk3q6Z+Nh4+fBgnT57EZ599JleKFtGYdnjmmWdQUFCAQYMGQQiBu3fv4rnnnsNrr70mW54stMhuJSUlYfPmzdi3b59dTP41V5s2bXDs2DGUlJQgNTUVc+bMQadOnTBkyBClU5PdzZs3MXHiRKxduxaenp5Kp6OoiIgIRERESL8PGDAA3bt3x5o1a/D2228rmJnlGI1GeHl54ZNPPoGjoyP69euHq1evYsmSJTZZaDXVZ599hpCQEISFhSmdisXt27cP7733Hj7++GOEh4fj/PnzeOmll/D2229jwYIFshyThZaV8vT0hKOjI/Lz80225+fnw8fHR6GsLKspbfDBBx8gKSkJP/zwA3r16iVnmrJrbDs4ODggKCgIANCnTx+cPn0aiYmJNllomdsGFy5cwMWLFzFq1Chpm9FoBAA4OTnh7Nmz6Ny5s7xJy6A5PhecnZ3Rt29fnD9/Xo4UZdeYNtDr9XB2doajo6O0rXv37sjLy8OdO3egVqtlzbm5NeXv4NatW9i8eTPeeustOVO0iMa0w4IFCzBx4kRMmzYNABASEoJbt25hxowZeP311+Hg0PwzqjhHy0qp1Wr069cPqamp0jaj0YjU1FSTb6f2rLFtsHjxYrz99tvYvXs3QkNDLZGqrJrrb8FoNKK8vFyOFGVnbht069YNJ06cwLFjx6THk08+iaFDh+LYsWPw9/e3ZPrNpjn+FiorK3HixAno9Xq50pRVY9pg4MCBOH/+vFRsA8B//vMf6PV6myuygKb9HWzduhXl5eX4y1/+IneasmtMO5SWllYrpqoKcCHXrZ9lm2ZPTbZ582ah0WjE+vXrxalTp8SMGTOEu7u7dGn2xIkTRXx8vBRfXl4ujh49Ko4ePSr0er2YO3euOHr0qDh37pxSb6HJzG2DpKQkoVarxddff21yKfPNmzeVegvNwtx2eO+998T3338vLly4IE6dOiU++OAD4eTkJNauXavUW2gyc9vgfvZy1aG57fDmm2+KPXv2iAsXLoisrCwxfvx4odVqRXZ2tlJvocnMbYPLly+LNm3aiFmzZomzZ8+KnTt3Ci8vL/HOO+8o9RaarLH/HgYNGiTGjRtn6XRlY247JCQkiDZt2ohNmzaJX375RXz//feic+fOYuzYsbLlyELLyq1YsUJ06NBBqNVqERYWJn788UdpX2RkpJg8ebL0e05OjgBQ7REZGWn5xJuROW3QsWPHGtsgISHB8ok3M3Pa4fXXXxdBQUFCq9WKtm3bioiICLF582YFsm5e5rTB/eyl0BLCvHaYPXu2FOvt7S1GjBghjhw5okDWzcvcv4VDhw6J8PBwodFoRKdOncS7774r7t69a+Gsm5e5bXDmzBkBQHz//fcWzlRe5rRDRUWFWLRokejcubPQarXC399fvPDCC+L333+XLT+VEHL1lRERERG1bJyjRURERCQTFlpEREREMmGhRURERCQTFlpEREREMmGhRURERCQTFlpEREREMmGhRURERCQTFlpERC3ElClTEBMTo3QaRC0KCy0iUtyUKVOgUqmkR7t27TB8+HAcP35c6dSaxR/fW9Vj0KBBsh3v4sWLUKlUOHbsmMn2v/3tb1i/fr1sxyWi6lhoEZFVGD58OHJzc5Gbm4vU1FQ4OTnhiSeeUDqtZrNu3Trp/eXm5mLHjh01xlVUVMiWg06ng7u7u2yvT0TVsdAiIqug0Wjg4+MDHx8f9OnTB/Hx8bhy5QquX7+ORx99FLNmzTKJv379OtRqNVJTUwEAAQEBePvttxEbGwtXV1f4+flh5cqVJs/56KOPEBISAldXV/j7++OFF15ASUmJtP/SpUsYNWoU2rZtC1dXV/To0QO7du0CAPz++++YMGEC2rdvDxcXF3Tp0gXr1q1r8Ptzd3eX3p+Pjw88PDyknqfk5GRERkZCq9Vi48aNuHHjBmJjY+Hn54dWrVohJCQEmzZtMnk9o9GIxYsXIygoCBqNBh06dMC7774LAAgMDAQA9O3bFyqVCkOGDAFQfeiwvLwcL774Iry8vKDVajFo0CBkZmZK+/ft2weVSoXU1FSEhoaiVatWGDBgAM6ePdvg903U0rHQIiKrU1JSgg0bNiAoKAjt2rXDtGnT8NVXX6G8vFyK2bBhA/z8/PDoo49K25YsWYLevXvj6NGjiI+Px0svvYSUlBRpv4ODA5YvX47s7Gx88cUXSEtLw7x586T9M2fORHl5Ofbv348TJ07g/fffR+vWrQEACxYswKlTp/Ddd9/h9OnTWLVqFTw9PZvl/Vblevr0aURHR+P27dvo168fvv32W5w8eRIzZszAxIkTcfjwYek58+fPR1JSkpTXV199BW9vbwCQ4n744Qfk5uZi+/btNR533rx52LZtG7744gscOXIEQUFBiI6ORmFhoUnc66+/jg8//BA//fQTnJyc8N///d/N8r6JWgTZbldNRNRAkydPFo6OjsLV1VW4uroKAEKv14usrCwhhBBlZWWibdu2Ijk5WXpOr169xKJFi6TfO3bsKIYPH27yuuPGjROPP/54rcfdunWraNeunfR7SEiIyWv+0ahRo0RcXFyj3h8AodVqpffn6uoq/vGPf4icnBwBQCxbtqze1xg5cqR45ZVXhBBCFBcXC41GI9auXVtjbNXrHj161GT75MmTxejRo4UQQpSUlAhnZ2exceNGaf+dO3eEr6+vWLx4sRBCiL179woA4ocffpBivv32WwFAlJWVmdMERC0We7SIyCoMHToUx44dw7Fjx3D48GFER0fj8ccfx6VLl6DVajFx4kR8/vnnAIAjR47g5MmTmDJlislrREREVPv99OnT0u8//PADhg0bBj8/P7Rp0wYTJ07EjRs3UFpaCgB48cUX8c4772DgwIFISEgwmYz//PPPY/PmzejTpw/mzZuHQ4cOmfX+li5dKr2/Y8eO4U9/+pO0LzQ01CS2srISb7/9NkJCQuDh4YHWrVtjz549uHz5MgDg9OnTKC8vx7Bhw8zK4Y8uXLiAiooKDBw4UNrm7OyMsLAwkzYDgF69ekn/rdfrAQDXrl1r9LGJWhIWWkRkFVxdXREUFISgoCD0798fn376KW7duoW1a9cCAKZNm4aUlBT8+uuvWLduHR599FF07Nixwa9/8eJFPPHEE+jVqxe2bduGrKwsaQ7XnTt3pGP88ssvmDhxIk6cOIHQ0FCsWLECAKSi7+WXX8Zvv/2GYcOGYe7cuQ0+vo+Pj/T+goKC4OrqavLe/2jJkiX429/+hldffRV79+7FsWPHEB0dLeXp4uLS4OM2B2dnZ+m/VSoVgHtzxIiofiy0iMgqqVQqODg4oKysDAAQEhKC0NBQrF27Fl999VWN84R+/PHHar93794dAJCVlQWj0YgPP/wQDz/8MIKDg/Hbb79Vew1/f38899xz2L59O1555RWp0AOA9u3bY/LkydiwYQOWLVuGTz75pDnfsuTgwYMYPXo0/vKXv6B3797o1KkT/vOf/0j7u3TpAhcXF+lCgPup1WoA93rGatO5c2eo1WocPHhQ2lZRUYHMzEw8+OCDzfROiMhJ6QSIiIB7V8Dl5eUBuHeF39///neUlJRg1KhRUsy0adMwa9YsuLq64qmnnqr2GgcPHsTixYsRExODlJQUbN26Fd9++y0AICgoCBUVFVixYgVGjRqFgwcPYvXq1SbPnz17Nh5//HEEBwfj999/x969e6VCbeHChejXrx969OiB8vJy7Ny5U9rX3Lp06YKvv/4ahw4dQtu2bfHRRx8hPz9fKoC0Wi1effVVzJs3D2q1GgMHDsT169eRnZ2NqVOnwsvLCy4uLti9ezceeOABaLVa6HQ6k2O4urri+eefx//8z//Aw8MDHTp0wOLFi1FaWoqpU6fK8r6IWiL2aBGRVdi9ezf0ej30ej3Cw8ORmZmJrVu3SksTAEBsbCycnJwQGxsLrVZb7TVeeeUV/PTTT+jbty/eeecdfPTRR4iOjgYA9O7dGx999BHef/999OzZExs3bkRiYqLJ8ysrKzFz5kx0794dw4cPR3BwMD7++GMA93qJ5s+fj169emHw4MFwdHTE5s2bZWmLN954Aw899BCio6MxZMgQ+Pj4VFvRfcGCBXjllVewcOFCdO/eHePGjZPmTTk5OWH58uVYs2YNfH19MXr06BqPk5SUhKeffhoTJ07EQw89hPPnz2PPnj1o27atLO+LqCVSCSGE0kkQETXExYsX0blzZ2RmZuKhhx4y2RcQEIDZs2dj9uzZyiRHRFQDDh0SkdWrqKjAjRs38MYbb+Dhhx+uVmQREVkrDh0SkdU7ePAg9Ho9MjMzq82rUtp7772H1q1b1/h4/PHHlU6PiBTGoUMioiYoLCystpJ6FRcXF/j5+Vk4IyKyJiy0iIiIiGTCoUMiIiIimbDQIiIiIpIJCy0iIiIimbDQIiIiIpIJCy0iIiIimbDQIiIiIpIJCy0iIiIimbDQIiIiIpLJ/wPuKYb3syPV8QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_47.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJ2ElEQVR4nO3deXyU1aH/8W8WshBIwpqFhh0UJBBKIASQoKQNgkjUewWkbBfkZxURgatgBdxqEDcuSkWxgq+KBVGutcilIku9QhpCgCqIFBAEKgmbTFhDSM7vDy9ThySQPJl9Pu/Xa16Q5zkzc84zycx3zjnPeYKMMUYAAACokWBPVwAAAMAXEaIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAPi1J598UkFBQdUqGxQUpCeffNKl9enXr5/69evntY8HoPoIUQDcYsmSJQoKCrLfQkND1axZM40ZM0b//Oc/PV09r9OyZUuH49W0aVPdfPPN+u///m+nPP758+f15JNPauPGjU55PCAQEaIAuNXTTz+tP/zhD1q4cKFuu+02vfvuu8rIyNDFixdd8nxPPPGELly44JLHdrWUlBT94Q9/0B/+8AdNmzZN33//ve666y4tXLiw1o99/vx5PfXUU4QooBZCPV0BAIHltttuU2pqqiRp/Pjxaty4sZ5//nl9/PHHuueee5z+fKGhoQoN9c23umbNmulXv/qV/edRo0apbdu2euWVV3T//fd7sGYAJHqiAHjYzTffLEnav3+/w/ZvvvlG//Zv/6aGDRsqIiJCqamp+vjjjx3KlJaW6qmnnlK7du0UERGhRo0aqU+fPlq7dq29TGVzokpKSvTII4+oSZMmql+/vu644w4dOXKkQt3GjBmjli1bVthe2WMuXrxYt956q5o2barw8HB17NhRr7/+eo2OxfXEx8erQ4cOOnDgwDXLHTt2TOPGjVNcXJwiIiLUpUsXvfPOO/b9Bw8eVJMmTSRJTz31lH3I0NXzwQB/45tfzwD4jYMHD0qSGjRoYN+2a9cu9e7dW82aNdP06dMVFRWl999/X9nZ2frwww915513SvoxzOTk5Gj8+PHq0aOHiouLtXXrVm3btk2/+MUvqnzO8ePH691339W9996rXr16af369Ro0aFCt2vH666/rpptu0h133KHQ0FD9+c9/1gMPPKDy8nI9+OCDtXrsK0pLS3X48GE1atSoyjIXLlxQv379tG/fPk2cOFGtWrXSihUrNGbMGJ0+fVoPP/ywmjRpotdff12//vWvdeedd+quu+6SJHXu3Nkp9QQChgEAN1i8eLGRZD777DNz/Phxc/jwYfPBBx+YJk2amPDwcHP48GF72f79+5vk5GRz8eJF+7by8nLTq1cv065dO/u2Ll26mEGDBl3zeWfPnm1++la3Y8cOI8k88MADDuXuvfdeI8nMnj3bvm306NGmRYsW131MY4w5f/58hXJZWVmmdevWDtsyMjJMRkbGNetsjDEtWrQwv/zlL83x48fN8ePHzd///nczbNgwI8k89NBDVT7evHnzjCTz7rvv2rddunTJpKenm3r16pni4mJjjDHHjx+v0F4ANcNwHgC3yszMVJMmTZSUlKR/+7d/U1RUlD7++GP97Gc/kySdOnVK69ev1z333KMzZ87oxIkTOnHihE6ePKmsrCzt3bvXfjZfbGysdu3apb1791b7+VevXi1JmjRpksP2yZMn16pdkZGR9v/bbDadOHFCGRkZ+vbbb2Wz2Sw95qeffqomTZqoSZMm6tKli1asWKGRI0fq+eefr/I+q1evVnx8vIYPH27fVqdOHU2aNElnz57VX//6V0t1AVARw3kA3GrBggVq3769bDab3n77bX3++ecKDw+379+3b5+MMZo5c6ZmzpxZ6WMcO3ZMzZo109NPP60hQ4aoffv26tSpkwYMGKCRI0dec1jqu+++U3BwsNq0aeOw/YYbbqhVuzZt2qTZs2crNzdX58+fd9hns9kUExNT48dMS0vTs88+q6CgINWtW1cdOnRQbGzsNe/z3XffqV27dgoOdvyO3KFDB/t+AM5BiALgVj169LCfnZedna0+ffro3nvv1Z49e1SvXj2Vl5dLkqZNm6asrKxKH6Nt27aSpL59+2r//v3605/+pE8//VRvvfWWXnnlFS1cuFDjx4+vdV2rWqSzrKzM4ef9+/erf//+uvHGG/Xyyy8rKSlJYWFhWr16tV555RV7m2qqcePGyszMtHRfAK5HiALgMSEhIcrJydEtt9yi1157TdOnT1fr1q0l/TgEVZ0A0bBhQ40dO1Zjx47V2bNn1bdvXz355JNVhqgWLVqovLxc+/fvd+h92rNnT4WyDRo00OnTpytsv7o3589//rNKSkr08ccfq3nz5vbtGzZsuG79na1Fixb68ssvVV5e7tAb9c0339j3S1UHRADVx5woAB7Vr18/9ejRQ/PmzdPFixfVtGlT9evXT2+88YaOHj1aofzx48ft/z958qTDvnr16qlt27YqKSmp8vluu+02SdL8+fMdts+bN69C2TZt2shms+nLL7+0bzt69GiFVcNDQkIkScYY+zabzabFixdXWQ9XGThwoAoLC7V8+XL7tsuXL+vVV19VvXr1lJGRIUmqW7euJFUaEgFUDz1RADzuP//zP/Xv//7vWrJkie6//34tWLBAffr0UXJysu677z61bt1aRUVFys3N1ZEjR/T3v/9dktSxY0f169dP3bp1U8OGDbV161Z98MEHmjhxYpXPlZKSouHDh+t3v/udbDabevXqpXXr1mnfvn0Vyg4bNkyPPfaY7rzzTk2aNEnnz5/X66+/rvbt22vbtm32cr/85S8VFhamwYMH6//9v/+ns2fPatGiRWratGmlQdCVJkyYoDfeeENjxoxRQUGBWrZsqQ8++ECbNm3SvHnzVL9+fUk/ToTv2LGjli9frvbt26thw4bq1KmTOnXq5Nb6Aj7N06cHAggMV5Y4yM/Pr7CvrKzMtGnTxrRp08ZcvnzZGGPM/v37zahRo0x8fLypU6eOadasmbn99tvNBx98YL/fs88+a3r06GFiY2NNZGSkufHGG81vf/tbc+nSJXuZypYjuHDhgpk0aZJp1KiRiYqKMoMHDzaHDx+u9JT/Tz/91HTq1MmEhYWZG264wbz77ruVPubHH39sOnfubCIiIkzLli3N888/b95++20jyRw4cMBeriZLHFxv+YaqHq+oqMiMHTvWNG7c2ISFhZnk5GSzePHiCvfdvHmz6datmwkLC2O5A8CCIGN+0v8MAACAamFOFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAxTZdqLy8XN9//73q16/PJRYAAPARxhidOXNGiYmJFS7m/VOEKBf6/vvvlZSU5OlqAAAACw4fPqyf/exnVe4nRLnQlcsrHD58WNHR0R6uDQAAqI7i4mIlJSXZP8erQohyoStDeNHR0YQoAAB8zPWm4jCxHAAAwAJCFAAAgAWEKAAAAAuYE+VhZWVlKi0t9XQ1PK5OnToKCQnxdDUAAKg2QpSHGGNUWFio06dPe7oqXiM2Nlbx8fGsqQUA8AmEKA+5EqCaNm2qunXrBnRwMMbo/PnzOnbsmCQpISHBwzUCAOD6CFEeUFZWZg9QjRo18nR1vEJkZKQk6dixY2ratClDewAAr8fEcg+4Mgeqbt26Hq6Jd7lyPJgjBgDwBYQoDwrkIbzKcDwAAL6EEAUAAGABIQoAAMACQhRqZMyYMcrOzq6wfePGjQoKCtLp06e1ceNGDRkyRAkJCYqKilJKSoqWLl3q/soCAHzCUdsFbd5/QkdtFzxdlRrh7Dw43ebNm9W5c2c99thjiouL06pVqzRq1CjFxMTo9ttv93T1AABeZHn+Ic1Y+ZXKjRQcJOXclayh3Zt7ulrVQoiC0z3++OMOPz/88MP69NNPtXLlSkIUAMDuqO2CPUBJUrmRHl+5U33bN1FCTKRnK1cNDOf5AV/oBrXZbGrYsKGnqwEA8CIHTpyzB6gryozRwRPnPVOhGqInysd5oht01apVqlevnsO2srKyKsu///77ys/P1xtvvOHSegEAfEurxlEKDpJDkAoJClLLxr6xjiI9UT6sqm5QV/dI3XLLLdqxY4fD7a233qq07IYNGzR27FgtWrRIN910k0vrBQDwLQkxkcq5K1kh/7dOYEhQkJ67q5NPDOVJ9ET5tGt1g7ryFzAqKkpt27Z12HbkyJEK5f76179q8ODBeuWVVzRq1CiX1QcA4LuGdm+uvu2b6OCJ82rZuK7PBCiJEOXTvLkbdOPGjbr99tv1/PPPa8KECZ6uDgDAiyXERPpUeLqC4Twf5q3doBs2bNCgQYM0adIk3X333SosLFRhYaFOnTrl0XoBAOBM9ET5OG/sBn3nnXd0/vx55eTkKCcnx749IyNDGzdu9FzFAABwoiBjjLl+MVhRXFysmJgY2Ww2RUdH27dfvHhRBw4cUKtWrRQREeHBGnoXjgsAwBtU9fl9NYbzAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhyoOY0++I4wEA8CWEKA+oU6eOJOn8ed+4wKK7XDkeV44PAADejHWiPCAkJESxsbE6duyYJKlu3boK+r8FMwORMUbnz5/XsWPHFBsbq5CQEE9XCQCA6yJEeUh8fLwk2YMUpNjYWPtxAQDA2xGiPCQoKEgJCQlq2rSpSktLPV0dj6tTpw49UAAAn0KI8rCQkBDCAwAAPoiJ5QAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFXhGiFixYoJYtWyoiIkJpaWnasmXLNcuvWLFCN954oyIiIpScnKzVq1c77DfGaNasWUpISFBkZKQyMzO1d+9ehzKnTp3SiBEjFB0drdjYWI0bN05nz56t9Pn27dun+vXrKzY2tlbtBAAA/sPjIWr58uWaMmWKZs+erW3btqlLly7KysrSsWPHKi2/efNmDR8+XOPGjdP27duVnZ2t7Oxs7dy5015m7ty5mj9/vhYuXKi8vDxFRUUpKytLFy9etJcZMWKEdu3apbVr12rVqlX6/PPPNWHChArPV1paquHDh+vmm292fuMBAIDPCjLGGE9WIC0tTd27d9drr70mSSovL1dSUpIeeughTZ8+vUL5oUOH6ty5c1q1apV9W8+ePZWSkqKFCxfKGKPExERNnTpV06ZNkyTZbDbFxcVpyZIlGjZsmHbv3q2OHTsqPz9fqampkqQ1a9Zo4MCBOnLkiBITE+2P/dhjj+n7779X//79NXnyZJ0+fbrabSsuLlZMTIxsNpuio6OtHB4AAOBm1f389mhP1KVLl1RQUKDMzEz7tuDgYGVmZio3N7fS++Tm5jqUl6SsrCx7+QMHDqiwsNChTExMjNLS0uxlcnNzFRsbaw9QkpSZmang4GDl5eXZt61fv14rVqzQggULqtWekpISFRcXO9wAAIB/8miIOnHihMrKyhQXF+ewPS4uToWFhZXep7Cw8Jrlr/x7vTJNmzZ12B8aGqqGDRvay5w8eVJjxozRkiVLqt2LlJOTo5iYGPstKSmpWvcDAAC+x+NzorzVfffdp3vvvVd9+/at9n1mzJghm81mvx0+fNiFNQQAAJ7k0RDVuHFjhYSEqKioyGF7UVGR4uPjK71PfHz8Nctf+fd6Za6euH758mWdOnXKXmb9+vV68cUXFRoaqtDQUI0bN042m02hoaF6++23K61beHi4oqOjHW4AAMA/eTREhYWFqVu3blq3bp19W3l5udatW6f09PRK75Oenu5QXpLWrl1rL9+qVSvFx8c7lCkuLlZeXp69THp6uk6fPq2CggJ7mfXr16u8vFxpaWmSfpw3tWPHDvvt6aefVv369bVjxw7deeedzjkAAADAZ4V6ugJTpkzR6NGjlZqaqh49emjevHk6d+6cxo4dK0kaNWqUmjVrppycHEnSww8/rIyMDL300ksaNGiQli1bpq1bt+rNN9+UJAUFBWny5Ml69tln1a5dO7Vq1UozZ85UYmKisrOzJUkdOnTQgAEDdN9992nhwoUqLS3VxIkTNWzYMPuZeR06dHCo59atWxUcHKxOnTq56cgAAABv5vEQNXToUB0/flyzZs1SYWGhUlJStGbNGvvE8EOHDik4+F8dZr169dJ7772nJ554Qo8//rjatWunjz76yCHcPProozp37pwmTJig06dPq0+fPlqzZo0iIiLsZZYuXaqJEyeqf//+Cg4O1t1336358+e7r+EAAMCneXydKH/GOlEAAPgen1gnCgAAwFcRogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwwCtC1IIFC9SyZUtFREQoLS1NW7ZsuWb5FStW6MYbb1RERISSk5O1evVqh/3GGM2aNUsJCQmKjIxUZmam9u7d61Dm1KlTGjFihKKjoxUbG6tx48bp7Nmz9v179uzRLbfcori4OEVERKh169Z64oknVFpa6ryGAwAAn+XxELV8+XJNmTJFs2fP1rZt29SlSxdlZWXp2LFjlZbfvHmzhg8frnHjxmn79u3Kzs5Wdna2du7caS8zd+5czZ8/XwsXLlReXp6ioqKUlZWlixcv2suMGDFCu3bt0tq1a7Vq1Sp9/vnnmjBhgn1/nTp1NGrUKH366afas2eP5s2bp0WLFmn27NmuOxgAAMBnBBljjCcrkJaWpu7du+u1116TJJWXlyspKUkPPfSQpk+fXqH80KFDde7cOa1atcq+rWfPnkpJSdHChQtljFFiYqKmTp2qadOmSZJsNpvi4uK0ZMkSDRs2TLt371bHjh2Vn5+v1NRUSdKaNWs0cOBAHTlyRImJiZXWdcqUKcrPz9f//u//VqttxcXFiomJkc1mU3R0dI2OCwAA8Izqfn57tCfq0qVLKigoUGZmpn1bcHCwMjMzlZubW+l9cnNzHcpLUlZWlr38gQMHVFhY6FAmJiZGaWlp9jK5ubmKjY21ByhJyszMVHBwsPLy8ip93n379mnNmjXKyMiosj0lJSUqLi52uAEAAP/k0RB14sQJlZWVKS4uzmF7XFycCgsLK71PYWHhNctf+fd6ZZo2beqwPzQ0VA0bNqzwvL169VJERITatWunm2++WU8//XSV7cnJyVFMTIz9lpSUVGVZAADg2zw+J8rbLV++XNu2bdN7772nTz75RC+++GKVZWfMmCGbzWa/HT582I01BQAA7hTqySdv3LixQkJCVFRU5LC9qKhI8fHxld4nPj7+muWv/FtUVKSEhASHMikpKfYyV09cv3z5sk6dOlXhea/0JnXs2FFlZWWaMGGCpk6dqpCQkAp1Cw8PV3h4+PWaDQAA/IBHe6LCwsLUrVs3rVu3zr6tvLxc69atU3p6eqX3SU9PdygvSWvXrrWXb9WqleLj4x3KFBcXKy8vz14mPT1dp0+fVkFBgb3M+vXrVV5errS0tCrrW15ertLSUpWXl9e8sQAAwK94tCdK+vGMt9GjRys1NVU9evTQvHnzdO7cOY0dO1aSNGrUKDVr1kw5OTmSpIcfflgZGRl66aWXNGjQIC1btkxbt27Vm2++KUkKCgrS5MmT9eyzz6pdu3Zq1aqVZs6cqcTERGVnZ0uSOnTooAEDBui+++7TwoULVVpaqokTJ2rYsGH2M/OWLl2qOnXqKDk5WeHh4dq6datmzJihoUOHqk6dOu4/UAAAwKt4PEQNHTpUx48f16xZs1RYWKiUlBStWbPGPjH80KFDCg7+V4dZr1699N577+mJJ57Q448/rnbt2umjjz5Sp06d7GUeffRRnTt3ThMmTNDp06fVp08frVmzRhEREfYyS5cu1cSJE9W/f38FBwfr7rvv1vz58+37Q0ND9fzzz+sf//iHjDFq0aKFJk6cqEceecQNRwUAAHg7j68T5c9YJwoAAN/jE+tEAQAA+CpCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGBBjUPU6tWrNX78eD366KP65ptvHPb98MMPuvXWW51WOQAAAG9VoxD13nvv6Y477lBhYaFyc3PVtWtXLV261L7/0qVL+utf/+r0SgIAAHib0JoUfuGFF/Tyyy9r0qRJkqT3339f//Ef/6GLFy9q3LhxLqkgAACAN6pRiNq7d68GDx5s//mee+5RkyZNdMcdd6i0tFR33nmn0ysIAAB831HbBR04cU6tGkcpISbS09VxihqFqOjoaBUVFalVq1b2bbfccotWrVql22+/XUeOHHF6BQEAgG9bnn9IM1Z+pXIjBQdJOXcla2j35p6uVq3VaE5Ujx499D//8z8VtmdkZOjPf/6z5s2b56x6AQAAP3DUdsEeoCSp3EiPr9ypo7YLnq2YE9QoRD3yyCOKiIiodF+/fv305z//WaNGjXJKxQAAgO87cOKcPUBdUWaMDp4475kKOVGNhvO6du2qrl27qri4uNL93bp1U7du3ZxSMTiXP45FAwC8X6vGUQoOkkOQCgkKUsvGdT1XKSepUYiKjY1VUFDQdcuVlZVZrhCcz1/HogEA3i8hJlI5dyXr8ZU7VWaMQoKC9NxdnfziC32NQtSGDRvs/zfGaODAgXrrrbfUrFkzp1cM1lzd41TVWHTf9k384hcYAOD9hnZvrr7tm+jgifNq2biu33z+1ChEZWRkOPwcEhKinj17qnXr1k6tFKyprMcpqWHdKsei/eWXGADg/RJiIv3uc4dr5/mJqnqcosJCFHzVCKy/jEUDAOBJhCg/UdXZD+cvlSvnrmSF/N9cNn8aiwYAwJNqNJxXmepMNIfrXevsh/Q2jfxyLBoA4H0C6WzwGoWou+66y+Hnixcv6v7771dUVJTD9pUrV9a+ZqiR65394I9j0QAA7xJoZ4PXKETFxMQ4/PyrX/3KqZVB7fjr2Q8AAO8XiGeD1yhELV682FX1gJPQ4wQA8IRrrUzur59LTCwHAAC1dmVu7k/5+9nghCgAAFBrV+bmBtLZ4LU+Ow8AAEAKvLm5hCgAAOA0gTQ3l+E8AAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAKvCFELFixQy5YtFRERobS0NG3ZsuWa5VesWKEbb7xRERERSk5O1urVqx32G2M0a9YsJSQkKDIyUpmZmdq7d69DmVOnTmnEiBGKjo5WbGysxo0bp7Nnz9r3b9y4UUOGDFFCQoKioqKUkpKipUuXOq/RAADAp3k8RC1fvlxTpkzR7NmztW3bNnXp0kVZWVk6duxYpeU3b96s4cOHa9y4cdq+fbuys7OVnZ2tnTt32svMnTtX8+fP18KFC5WXl6eoqChlZWXp4sWL9jIjRozQrl27tHbtWq1atUqff/65JkyY4PA8nTt31ocffqgvv/xSY8eO1ahRo7Rq1SrXHQwAAOAzgowx5vrFXCctLU3du3fXa6+9JkkqLy9XUlKSHnroIU2fPr1C+aFDh+rcuXMOYaZnz55KSUnRwoULZYxRYmKipk6dqmnTpkmSbDab4uLitGTJEg0bNky7d+9Wx44dlZ+fr9TUVEnSmjVrNHDgQB05ckSJiYmV1nXQoEGKi4vT22+/Xa22FRcXKyYmRjabTdHR0TU6LgAAwDOq+/nt0Z6oS5cuqaCgQJmZmfZtwcHByszMVG5ubqX3yc3NdSgvSVlZWfbyBw4cUGFhoUOZmJgYpaWl2cvk5uYqNjbWHqAkKTMzU8HBwcrLy6uyvjabTQ0bNqxyf0lJiYqLix1uAADAP3k0RJ04cUJlZWWKi4tz2B4XF6fCwsJK71NYWHjN8lf+vV6Zpk2bOuwPDQ1Vw4YNq3ze999/X/n5+Ro7dmyV7cnJyVFMTIz9lpSUVGVZAADg2zw+J8oXbNiwQWPHjtWiRYt00003VVluxowZstls9tvhw4fdWEsAAOBOHg1RjRs3VkhIiIqKihy2FxUVKT4+vtL7xMfHX7P8lX+vV+bqieuXL1/WqVOnKjzvX//6Vw0ePFivvPKKRo0adc32hIeHKzo62uEGAAD8k0dDVFhYmLp166Z169bZt5WXl2vdunVKT0+v9D7p6ekO5SVp7dq19vKtWrVSfHy8Q5ni4mLl5eXZy6Snp+v06dMqKCiwl1m/fr3Ky8uVlpZm37Zx40YNGjRIzz//vMOZewAAADIetmzZMhMeHm6WLFlivv76azNhwgQTGxtrCgsLjTHGjBw50kyfPt1eftOmTSY0NNS8+OKLZvfu3Wb27NmmTp065quvvrKXmTNnjomNjTV/+tOfzJdffmmGDBliWrVqZS5cuGAvM2DAANO1a1eTl5dnvvjiC9OuXTszfPhw+/7169ebunXrmhkzZpijR4/abydPnqx222w2m5FkbDZbbQ4RAABwo+p+fns8RBljzKuvvmqaN29uwsLCTI8ePczf/vY3+76MjAwzevRoh/Lvv/++ad++vQkLCzM33XST+eSTTxz2l5eXm5kzZ5q4uDgTHh5u+vfvb/bs2eNQ5uTJk2b48OGmXr16Jjo62owdO9acOXPGvn/06NFGUoVbRkZGtdtFiAIAwPdU9/Pb4+tE+TPWiQIAwPf4xDpRAAAAvooQBQAAYAEhCkDAOWq7oM37T+io7YKnqwLAh4V6ugIA4E7L8w9pxsqvVG6k4CAp565kDe3e3NPVAuCD6IkCEDCO2i7YA5QklRvp8ZU76ZECYAkhCkDAOHDinD1AXVFmjA6eOO+ZCgHwaYQoAAGjVeMoBQc5bgsJClLLxnU9UyEAPo0QBSBgJMREKueuZIUE/ZikQoKC9NxdnZQQE+nhmgHwRUwsBxBQhnZvrr7tm+jgifNq2bguAQqAZYQoAAEnISaS8ASg1hjOAwAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAGQ9OPFeTfvP8HFeAGgmlhsE4CW5x/SjJVfqdxIwUFSzl3JGtq9uaerBQBejZ4oIMAdtV2wByhJKjfS4yt30iMFANdBiAIC3IET5+wB6ooyY3TwxHnPVAgAfAQhCghwrRpHKTjIcVtIUJBaNq7rmQoBgI8gRAEBLiEmUjl3JSsk6MckFRIUpOfu6sQFegHgOphYDkBDuzdX3/ZNdPDEebVsXJcABQDVQIgCIOnHHinCEwBUH8N5AFzC39ad8rf2AKg9eqIAOJ2/rTvlb+0B4Bz0RAFwKn9bd8rf2gPAeQhRAJzK39adqk57GOoDAhPDeajSUdsFHThxTq0aRzHhGNV2Zd2pnwYPX153qlXjKAVJ+mmOCpLs7WGoDwhc9EShUsvzD6n3nPW6d1Gees9Zr+X5hzxdJfiIgFh36v8WJ2WoDwhs9EShgqo+GPq2b+JfH4RwGX9ad+rAiXO6ajRPxkgHT5yXkalyqM9qm+kBBnwHIQoVXGsOCG/qqC5/WXfqesOTzhy6ZGgQ8C0M56ECrqUG/Mu1hiedOXTJ0CDge+iJQgVXPhgeX7lTZcb455wWoAauNTzprKFLeoDh7/xxqJoQhUr505wWwBmuNTzpjKFLfzurEfgpfx2qZjgPVUqIiVR6m0YEKMANAuKsRgQkfx6qpicKALwEPcDwR/48VE2IAgAv4i9nNQJX+PNQNcN5AADAZfx5qJqeKAAA4FL+OlRNiAIAL+KPp4EDkn8OVROi4NX4QEEg8dfTwAF/RYiC1+IDBYGEa1YCvoeJ5fBK/ryuCFCZa50GDsA7EaLglfhAQaDhmpWA7yFEwSvxgYJA4+ungR+1XdDm/SfoLUZAYU4UvBIXQUYg8tXTwJm/iEAVZIwx1y8GK4qLixUTEyObzabo6GhPV8cnHbVd8LkPFCCQHLVdUO856yusRv3F9Fv4m4XPqu7nNz1R8Gr+uK4I4E/8+bpowPUwJwoAYBnzFxHICFEAAAc1mSTu6xPigdpgOA8AqiFQVs+3MkncVyfEA7VFiAKA6wiUs89qs2o68xcRiBjOA4BrCKTV81nkFqgZQhQAXEMgBQsmiQM1Q4iCV2MVZLjb1b9zgRQsmCQO1AxzouC1AmUeCrxHVb9zgbR6PpPEgepjxXIXYsVy61gFGe52vd85Vs8HAgcrlsOnsQoy3O16v3OcfQbgah6fE7VgwQK1bNlSERERSktL05YtW65ZfsWKFbrxxhsVERGh5ORkrV692mG/MUazZs1SQkKCIiMjlZmZqb179zqUOXXqlEaMGKHo6GjFxsZq3LhxOnv2rH3/xYsXNWbMGCUnJys0NFTZ2dlOay+qJ5DmocA78DsHoKY8GqKWL1+uKVOmaPbs2dq2bZu6dOmirKwsHTt2rNLymzdv1vDhwzVu3Dht375d2dnZys7O1s6dO+1l5s6dq/nz52vhwoXKy8tTVFSUsrKydPHiRXuZESNGaNeuXVq7dq1WrVqlzz//XBMmTLDvLysrU2RkpCZNmqTMzEzXHQBUiQmucDd+5wDUlEfnRKWlpal79+567bXXJEnl5eVKSkrSQw89pOnTp1coP3ToUJ07d06rVq2yb+vZs6dSUlK0cOFCGWOUmJioqVOnatq0aZIkm82muLg4LVmyRMOGDdPu3bvVsWNH5efnKzU1VZK0Zs0aDRw4UEeOHFFiYqLDc44ZM0anT5/WRx99VOP2MSeq9piHEli8YVVwfueczxteV6Amqvv57bGeqEuXLqmgoMChpyc4OFiZmZnKzc2t9D65ubkVeoaysrLs5Q8cOKDCwkKHMjExMUpLS7OXyc3NVWxsrD1ASVJmZqaCg4OVl5dXqzaVlJSouLjY4YbaSYiJVHqbRrzxBoDl+YfUe8563bsoT73nrNfy/EMeqQe/c87lLa8r4AoeC1EnTpxQWVmZ4uLiHLbHxcWpsLCw0vsUFhZes/yVf69XpmnTpg77Q0ND1bBhwyqft7pycnIUExNjvyUlJdXq8YBAUZtVwVlLzHsF0mrvCEwen1juT2bMmCGbzWa/HT582NNVAnyC1VXB6eXwboG02jsCk8dCVOPGjRUSEqKioiKH7UVFRYqPj6/0PvHx8dcsf+Xf65W5euL65cuXderUqSqft7rCw8MVHR3tcANwfVbOjKOXw/txxiP8ncdCVFhYmLp166Z169bZt5WXl2vdunVKT0+v9D7p6ekO5SVp7dq19vKtWrVSfHy8Q5ni4mLl5eXZy6Snp+v06dMqKCiwl1m/fr3Ky8uVlpbmtPYBqD4rZ8bRy+H9OOMRteXtw/UeXWxzypQpGj16tFJTU9WjRw/NmzdP586d09ixYyVJo0aNUrNmzZSTkyNJevjhh5WRkaGXXnpJgwYN0rJly7R161a9+eabkqSgoCBNnjxZzz77rNq1a6dWrVpp5syZSkxMtK/11KFDBw0YMED33XefFi5cqNLSUk2cOFHDhg1zODPv66+/1qVLl3Tq1CmdOXNGO3bskCSlpKS47fgAgaSmlxu50stx9Qrj9HJ4Fy4jA6t84dJfHg1RQ4cO1fHjxzVr1iwVFhYqJSVFa9assU8MP3TokIKD/9VZ1qtXL7333nt64okn9Pjjj6tdu3b66KOP1KlTJ3uZRx99VOfOndOECRN0+vRp9enTR2vWrFFERIS9zNKlSzVx4kT1799fwcHBuvvuuzV//nyHug0cOFDfffed/eeuXbtK+nExT7gPp0YHlpqsCn6llyNQrmnny/xttXfel1yvquH6vu2beNUx59p5LsQ6UbXjC99C4Hms6+R8hISq8b7kHpv3n9C9iyouO/TH+3oqvU0jlz8/186DA197U/SVbyHwPH/r5fA0QkLVeF9yH18ZrmeJgwDgi6eBM2kYcD/OeLw23pfcx1dOSqAnys/56jcnX/kWAviTa4UEb36/cBfel9zLF05KoCfKz/nqNydf+RYC+BPWdbo23pfcz9svw0RPlJ/z5W9OvvAtBPAnnPF4fbwv4ac4O8+FvOXsvOX5hyq8KTJRFEBVOOMRgY6z82DHNycANcEZj0D1EKICBG+KAAA4FxPLAQAIYN5+fTpvRk8UAAABisVVa4eeKAAAAhCLq9YeIQoAgADkq+sIehNCFACfxnwOwBoWV609QhQAn+WL14UEvAUrsNcei226kLcstgn4o6O2C+o9Z32F1fi/mH4LHwJADbC4akUstgnAr3GxXMA5WEfQOobzAPgk5nMAgc0b5kMSogD4JOZzAIHLW+ZDMifKhXxlTtRR2wUdOHFOrRpH8QEEn8N8DuBfAuH93B3zIZkThWphtVr4OuZzAD9yxfu5N4Yyb5oPyXBeAPOW1WrdNa7tDePn1+Lt9QPgvVzxfu4tQ2ZX86b5kPREBTBvSPPu6gnz9h43b68fUBve2Jvhb5z9fl5VKOvbvonHX8Mr8yEfX7lTZcZ4dD4kISqAXUnzV48ruyvNH7Vd0PQPv9KVpy830vSVXzn9j9Sb3wwk768fUBt8QXAPZ7+fe8OX7GsZ2r25+rZv4vH5kAznBTBPn91U8N0PuvqsBmOkbd/94NTn8fbrQ3l7/QCrvGXKQCBw9vu5Nw2ZVSUhJlLpbRp5NNTRExXgPJnmqzox1Nnni3q6x+16vL1+gFXe3pvhb5z5fu5NQ2bejBAFj53dlNqyoYIkh96oIEndWjZw6vN4+5uBt9cP7uWr84cqqzdfENzPme/n3jJk5s1YJ8qFfGWdKE9ann9IMz78SuX6cWw5527XzZfw9vWEvL1+cD1fnT90rXovzz9U4QuCL7QJga26n9+EKBciRFUP4QFX+GovjDP46gWVq1Pvqv7GA/n19gSOd/Wx2CZ8BoslQvLdXhhn8dX5Q9Wpd2V/44H+ersbx9s1ODsPgMdxFpdvnA1VGSv15vV2L4636xCiwErZ8DiWefD8kiNWWak3r7d7cbxdh+G8AFHVWLg3dPEyTu8dPPk6cBbXj3z1bKia1tsXXm9/el/yhePtqwhRAaCqoOQNK2V7Q4iD518Hlnn4F1+dI1iTenv76+3pvwdn8/bj7cs4O8+FvOHsvGudOXPgxDnduyivwn3+eF9Ppbdp5NG68cftPt70OnCmZmDxxtfbm/4enM0bj7e34uw8SLr2WLinu3h99Wwkf+Ntr4OpcDEg+Ctv7HXztr8HZ/LG4+3rmFju56515oynJ7L66tlI/sZbXofl+YfUe8563bsoT73nrNfy/ENufX5A8p6/B/gGQpSfu15QGtq9ub6Yfov+eF9PfTH9Fo/Mg/G1s5HczdVnT3rD68Ap2PAW3vD3AN/BnCgX8oY5UVd481i4N9fN09w5wdWTr8Pm/Sc8Oj8PuBrvS4GNOVFw4M1j4d5cN09y99mTnnwdPD0/D7ga70uoDobzfFAgLY4ZSG29WiAtkMcQCgBfRE+Uj/G39UuuJZDaWplA653x1YUmrfKnxRyBQEVPlA8JpMm3gdTWK67udQvE3pmEmEilt2nk122UOBMR8Bf0RPkQf16/5GqB1Fap6l63QOudCQTecKUAAM5BT5QPCaT1SwKprdfrdQuU3plAEUhz3QB/R4jyIYE0vBNIbfWFD9VAnuDvbIH0BQHwdwzn+ZhAGt7x5bbWZNKwKyaQO3PScqBP8Hc2LgYL+A8W23Qhb1psE+5zrdBRVbhZnn+owoeq1aDizNDjzxdj9TQWc/QOnCWJyrDYJuAB15o0/Pk/jlcZbpzV6+bsScuBNsHfnVjM8drcEW7oZUVtEaIAJ6oqdBQc/OG64cYZH6rODj2BtlYVvIM7wg1nScIZmFgOn+StE52rmjSsq4KI5JrJ486etOzuCf7e+rrCfdy1RpwvnNAB70dPFHyON3fBVzVpuFuLBm7p0XHFpGV3TfD35tcV7uOuIWR6WeEMhCg/4++TJH2hC76q0OGuM7JcEXpcPX/HF15XuIe7ws31vnD4+3spnIMQ5UcC4Zu8r0x0rix0XC/cOPNN29cmLfvK6wrXc2e4qepvMhDeS+EchCg/ESjf5D3RBf/3wz9oy8FT6tGyobokNajVY1UVbgL9TZuhFfyUO8PN1X+TgfJeCudgYrmfCJRJku6e6Dz1/R0asmCzfvvJNxqyYLOmvr/D6c8RiBdbvlogrVCP6rn6ckdMOIc3oifKTwTSN3l3TXT+++Ef9OG2fzps+3DbPzUqvUWte6R+iqGsH/nyCvW4NmcMwTHhHN6Inig/EWjf5N1xUd4tB09Vun3rwR+c+jxcS+1fuNiy/1mef0i956zXvYvy1HvOei3PP1St+1293IW7/k4C7b0UtUNPlB/hm7xz9WjZsNLtqS1/7IVy1gRXrqUGf2V1flFVc598+QxX+CdClJ/xtbOyvFmXpAa6++fNHIb07v55M3VJanDdCa41DVi8acMfWRmCu1bwcuffybXeS515sgl8GyEKuIaX7knRqPQW2nrwB6W2bKAuSQ2u++3a6hlEBGD4Gyvzi64XvDz9dzL1/R0Vvli9dE+Kx+oDz/KKOVELFixQy5YtFRERobS0NG3ZsuWa5VesWKEbb7xRERERSk5O1urVqx32G2M0a9YsJSQkKDIyUpmZmdq7d69DmVOnTmnEiBGKjo5WbGysxo0bp7NnzzqU+fLLL3XzzTcrIiJCSUlJmjt3rnMaDJ/SJamBxt3c2v6N81pv8pxph58K9MvYWJlf5M1zBKs62eTvh3+cJxnor3cg8niIWr58uaZMmaLZs2dr27Zt6tKli7KysnTs2LFKy2/evFnDhw/XuHHjtH37dmVnZys7O1s7d+60l5k7d67mz5+vhQsXKi8vT1FRUcrKytLFixftZUaMGKFdu3Zp7dq1WrVqlT7//HNNmDDBvr+4uFi//OUv1aJFCxUUFOiFF17Qk08+qTfffNN1BwM+4Vpv8pwejSusTqj2N0O7N9cX02/RH+/rqS+m33LdXllvntj90fZ/Vrr9T9u/5/UOUEHGGHP9Yq6Tlpam7t2767XXXpMklZeXKykpSQ899JCmT59eofzQoUN17tw5rVq1yr6tZ8+eSklJ0cKFC2WMUWJioqZOnapp06ZJkmw2m+Li4rRkyRINGzZMu3fvVseOHZWfn6/U1FRJ0po1azRw4EAdOXJEiYmJev311/Wb3/xGhYWFCgsLkyRNnz5dH330kb755ptqta24uFgxMTGy2WyKjo6u1XGCd1mef6jCBNeh3ZvrqO2Ces9ZX2H44ovpt3jFhwDcg9+D2jtqu+B1cwSf+niXFm8+WGH70NSfaUXBEV5vP1Ldz2+P9kRdunRJBQUFyszMtG8LDg5WZmamcnNzK71Pbm6uQ3lJysrKspc/cOCACgsLHcrExMQoLS3NXiY3N1exsbH2ACVJmZmZCg4OVl5enr1M37597QHqyvPs2bNHP/xQ+SnuJSUlKi4udrjBP1X17dqbv0XDfeiRrD1vXO4iu2tipds7NYvh9Q5QHp1YfuLECZWVlSkuLs5he1xcXJW9PYWFhZWWLywstO+/su1aZZo2beqwPzQ0VA0bNnQo06pVqwqPcWVfgwYVz8jIycnRU089VXWD4VeqmuDKmXZgwUb/VNUZu5kd4zT741283gHI43Oi/MmMGTNks9nst8OHD3u6SvAQb/wWDfehR9J/vXRPiv70YC/NHNRBf3qwl166J4XXO4B5tCeqcePGCgkJUVFRkcP2oqIixcfHV3qf+Pj4a5a/8m9RUZESEhIcyqSkpNjLXD1x/fLlyzp16pTD41T2PD99jquFh4crPDy8yvYCCBz0SPqvLkkNKqwPxesdmDzaExUWFqZu3bpp3bp19m3l5eVat26d0tPTK71Penq6Q3lJWrt2rb18q1atFB8f71CmuLhYeXl59jLp6ek6ffq0CgoK7GXWr1+v8vJypaWl2ct8/vnnKi0tdXieG264odKhPAC4Gj2SgYXXOwAZD1u2bJkJDw83S5YsMV9//bWZMGGCiY2NNYWFhcYYY0aOHGmmT59uL79p0yYTGhpqXnzxRbN7924ze/ZsU6dOHfPVV1/Zy8yZM8fExsaaP/3pT+bLL780Q4YMMa1atTIXLlywlxkwYIDp2rWrycvLM1988YVp166dGT58uH3/6dOnTVxcnBk5cqTZuXOnWbZsmalbt6554403qt02m81mJBmbzVabQwQAANyoup/fHg9Rxhjz6quvmubNm5uwsDDTo0cP87e//c2+LyMjw4wePdqh/Pvvv2/at29vwsLCzE033WQ++eQTh/3l5eVm5syZJi4uzoSHh5v+/fubPXv2OJQ5efKkGT58uKlXr56Jjo42Y8eONWfOnHEo8/e//9306dPHhIeHm2bNmpk5c+bUqF2EKAAAfE91P789vk6UP2OdKAAAfI9PrBMFAADgqwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAUevQCxv7uyjmlxcbGHawIAAKrryuf29dYjJ0S50JkzZyRJSUlJHq4JAACoqTNnzigmJqbK/Vz2xYXKy8v1/fffq379+goKCnLa4xYXFyspKUmHDx8OyMvJBHr7JY5BoLdf4hgEevsljoEr22+M0ZkzZ5SYmKjg4KpnPtET5ULBwcH62c9+5rLHj46ODsg/nCsCvf0SxyDQ2y9xDAK9/RLHwFXtv1YP1BVMLAcAALCAEAUAAGABIcoHhYeHa/bs2QoPD/d0VTwi0NsvcQwCvf0SxyDQ2y9xDLyh/UwsBwAAsICeKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiPJSCxYsUMuWLRUREaG0tDRt2bKlyrK7du3S3XffrZYtWyooKEjz5s1zX0VdpCbtX7RokW6++WY1aNBADRo0UGZm5jXL+4qaHIOVK1cqNTVVsbGxioqKUkpKiv7whz+4sbbOV5P2/9SyZcsUFBSk7Oxs11bQDWpyDJYsWaKgoCCHW0REhBtr63w1/R04ffq0HnzwQSUkJCg8PFzt27fX6tWr3VRb16jJMejXr1+F34GgoCANGjTIjTV2rpr+DsybN0833HCDIiMjlZSUpEceeUQXL150XQUNvM6yZctMWFiYefvtt82uXbvMfffdZ2JjY01RUVGl5bds2WKmTZtm/vjHP5r4+HjzyiuvuLfCTlbT9t97771mwYIFZvv27Wb37t1mzJgxJiYmxhw5csTNNXeemh6DDRs2mJUrV5qvv/7a7Nu3z8ybN8+EhISYNWvWuLnmzlHT9l9x4MAB06xZM3PzzTebIUOGuKeyLlLTY7B48WITHR1tjh49ar8VFha6udbOU9P2l5SUmNTUVDNw4EDzxRdfmAMHDpiNGzeaHTt2uLnmzlPTY3Dy5EmH13/nzp0mJCTELF682L0Vd5Katn/p0qUmPDzcLF261Bw4cMD85S9/MQkJCeaRRx5xWR0JUV6oR48e5sEHH7T/XFZWZhITE01OTs5179uiRQufD1G1ab8xxly+fNnUr1/fvPPOO66qosvV9hgYY0zXrl3NE0884YrquZyV9l++fNn06tXLvPXWW2b06NE+H6JqegwWL15sYmJi3FQ716tp+19//XXTunVrc+nSJXdV0eVq+z7wyiuvmPr165uzZ8+6qoouVdP2P/jgg+bWW2912DZlyhTTu3dvl9WR4Twvc+nSJRUUFCgzM9O+LTg4WJmZmcrNzfVgzdzDGe0/f/68SktL1bBhQ1dV06VqewyMMVq3bp327Nmjvn37urKqLmG1/U8//bSaNm2qcePGuaOaLmX1GJw9e1YtWrRQUlKShgwZol27drmjuk5npf0ff/yx0tPT9eCDDyouLk6dOnXSc889p7KyMndV26mc8V74+9//XsOGDVNUVJSrqukyVtrfq1cvFRQU2If8vv32W61evVoDBw50WT25ALGXOXHihMrKyhQXF+ewPS4uTt98842HauU+zmj/Y489psTERIc/Pl9i9RjYbDY1a9ZMJSUlCgkJ0e9+9zv94he/cHV1nc5K+7/44gv9/ve/144dO9xQQ9ezcgxuuOEGvf322+rcubNsNptefPFF9erVS7t27XLphdBdwUr7v/32W61fv14jRozQ6tWrtW/fPj3wwAMqLS3V7Nmz3VFtp6rte+GWLVu0c+dO/f73v3dVFV3KSvvvvfdenThxQn369JExRpcvX9b999+vxx9/3GX1JETBr8yZM0fLli3Txo0bfX5SbU3Vr19fO3bs0NmzZ7Vu3TpNmTJFrVu3Vr9+/TxdNZc6c+aMRo4cqUWLFqlx48aero7HpKenKz093f5zr1691KFDB73xxht65plnPFgz9ygvL1fTpk315ptvKiQkRN26ddM///lPvfDCCz4Zomrr97//vZKTk9WjRw9PV8VtNm7cqOeee06/+93vlJaWpn379unhhx/WM888o5kzZ7rkOQlRXqZx48YKCQlRUVGRw/aioiLFx8d7qFbuU5v2v/jii5ozZ44+++wzde7c2ZXVdCmrxyA4OFht27aVJKWkpGj37t3KycnxuRBV0/bv379fBw8e1ODBg+3bysvLJUmhoaHas2eP2rRp49pKO5kz3gfq1Kmjrl27at++fa6ooktZaX9CQoLq1KmjkJAQ+7YOHTqosLBQly5dUlhYmEvr7Gy1+R04d+6cli1bpqefftqVVXQpK+2fOXOmRo4cqfHjx0uSkpOTde7cOU2YMEG/+c1vFBzs/BlMzInyMmFhYerWrZvWrVtn31ZeXq5169Y5fMv0V1bbP3fuXD3zzDNas2aNUlNT3VFVl3HW70B5eblKSkpcUUWXqmn7b7zxRn311VfasWOH/XbHHXfolltu0Y4dO5SUlOTO6juFM34HysrK9NVXXykhIcFV1XQZK+3v3bu39u3bZw/QkvSPf/xDCQkJPhegpNr9DqxYsUIlJSX61a9+5epquoyV9p8/f75CULoSqo2rLhPssinrsGzZsmUmPDzcLFmyxHz99ddmwoQJJjY21n668siRI8306dPt5UtKSsz27dvN9u3bTUJCgpk2bZrZvn272bt3r6eaUCs1bf+cOXNMWFiY+eCDDxxO7z1z5oynmlBrNT0Gzz33nPn000/N/v37zddff21efPFFExoaahYtWuSpJtRKTdt/NX84O6+mx+Cpp54yf/nLX8z+/ftNQUGBGTZsmImIiDC7du3yVBNqpabtP3TokKlfv76ZOHGi2bNnj1m1apVp2rSpefbZZz3VhFqz+nfQp08fM3ToUHdX1+lq2v7Zs2eb+vXrmz/+8Y/m22+/NZ9++qlp06aNueeee1xWR0KUl3r11VdN8+bNTVhYmOnRo4f529/+Zt+XkZFhRo8ebf/5wIEDRlKFW0ZGhvsr7iQ1aX+LFi0qbf/s2bPdX3Enqskx+M1vfmPatm1rIiIiTIMGDUx6erpZtmyZB2rtPDVp/9X8IUQZU7NjMHnyZHvZuLg4M3DgQLNt2zYP1Np5avo7sHnzZpOWlmbCw8NN69atzW9/+1tz+fJlN9fauWp6DL755hsjyXz66adurqlr1KT9paWl5sknnzRt2rQxERERJikpyTzwwAPmhx9+cFn9goxxVR8XAACA/2JOFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoA/MCYMWOUnZ3t6WoAAYUQBcClxowZo6CgIPutUaNGGjBggL788ktPV80pftq2K7c+ffq47PkOHjyooKAg7dixw2H7f/3Xf2nJkiUue14AFRGiALjcgAEDdPToUR09elTr1q1TaGiobr/9dk9Xy2kWL15sb9/Ro0f18ccfV1qutLTUZXWIiYlRbGysyx4fQEWEKAAuFx4ervj4eMXHxyslJUXTp0/X4cOHdfz4cd16662aOHGiQ/njx48rLCzMfgX3li1b6plnntHw4cMVFRWlZs2aacGCBQ73efnll5WcnKyoqCglJSXpgQce0NmzZ+37v/vuOw0ePFgNGjRQVFSUbrrpJq1evVqS9MMPP2jEiBFq0qSJIiMj1a5dOy1evLja7YuNjbW3Lz4+Xg0bNrT3GC1fvlwZGRmKiIjQ0qVLdfLkSQ0fPlzNmjVT3bp1lZycrD/+8Y8Oj1deXq65c+eqbdu2Cg8PV/PmzfXb3/5WktSqVStJUteuXRUUFKR+/fpJqjicV1JSokmTJqlp06aKiIhQnz59lJ+fb9+/ceNGBQUFad26dUpNTVXdunXVq1cv7dmzp9rtBgIdIQqAW509e1bvvvuu2rZtq0aNGmn8+PF67733VFJSYi/z7rvvqlmzZrr11lvt21544QV16dJF27dv1/Tp0/Xwww9r7dq19v3BwcGaP3++du3apXfeeUfr16/Xo48+at//4IMPqqSkRJ9//rm++uorPf/886pXr54kaebMmfr666/1P//zP9q9e7def/11NW7c2CntvVLX3bt3KysrSxcvXlS3bt30ySefaOfOnZowYYJGjhypLVu22O8zY8YMzZkzx16v9957T3FxcZJkL/fZZ5/p6NGjWrlyZaXP++ijj+rDDz/UO++8o23btqlt27bKysrSqVOnHMr95je/0UsvvaStW7cqNDRU//Ef/+GUdgMBwWWXNgYAY8zo0aNNSEiIiYqKMlFRUUaSSUhIMAUFBcYYYy5cuGAaNGhgli9fbr9P586dzZNPPmn/uUWLFmbAgAEOjzt06FBz2223Vfm8K1asMI0aNbL/nJyc7PCYPzV48GAzduxYS+2TZCIiIuzti4qKMv/93/9tDhw4YCSZefPmXfcxBg0aZKZOnWqMMaa4uNiEh4ebRYsWVVr2yuNu377dYfvo0aPNkCFDjDHGnD171tSpU8csXbrUvv/SpUsmMTHRzJ071xhjzIYNG4wk89lnn9nLfPLJJ0aSuXDhQk0OARCw6IkC4HK33HKLduzYoR07dmjLli3KysrSbbfdpu+++04REREaOXKk3n77bUnStm3btHPnTo0ZM8bhMdLT0yv8vHv3bvvPn332mfr3769mzZqpfv36GjlypE6ePKnz589LkiZNmqRnn31WvXv31uzZsx0mtv/617/WsmXLlJKSokcffVSbN2+uUfteeeUVe/t27NihX/ziF/Z9qampDmXLysr0zDPPKDk5WQ0bNlS9evX0l7/8RYcOHZIk7d69WyUlJerfv3+N6vBT+/fvV2lpqXr37m3fVqdOHfXo0cPhmElS586d7f9PSEiQJB07dszycwOBhBAFwOWioqLUtm1btW3bVt27d9dbb72lc+fOadGiRZKk8ePHa+3atTpy5IgWL16sW2+9VS1atKj24x88eFC33367OnfurA8//FAFBQX2OVOXLl2yP8e3336rkSNH6quvvlJqaqpeffVVSbIHukceeUTff/+9+vfvr2nTplX7+ePj4+3ta9u2raKiohza/lMvvPCC/uu//kuPPfaYNmzYoB07digrK8tez8jIyGo/rzPUqVPH/v+goCBJP87JAnB9hCgAbhcUFKTg4GBduHBBkpScnKzU1FQtWrRI7733XqXzcv72t79V+LlDhw6SpIKCApWXl+ull15Sz5491b59e33//fcVHiMpKUn333+/Vq5cqalTp9pDnCQ1adJEo0eP1rvvvqt58+bpzTffdGaT7TZt2qQhQ4boV7/6lbp06aLWrVvrH//4h31/u3btFBkZaZ9Uf7WwsDBJP/ZoVaVNmzYKCwvTpk2b7NtKS0uVn5+vjh07OqklAEI9XQEA/q+kpESFhYWSfjwT7rXXXtPZs2c1ePBge5nx48dr4sSJioqK0p133lnhMTZt2qS5c+cqOztba9eu1YoVK/TJJ59Iktq2bavS0lK9+uqrGjx4sDZt2qSFCxc63H/y5Mm67bbb1L59e/3www/asGGDPYTNmjVL3bp100033aSSkhKtWrXKvs/Z2rVrpw8++ECbN29WgwYN9PLLL6uoqMgebiIiIvTYY4/p0UcfVVhYmHr37q3jx49r165dGjdunJo2barIyEitWbNGP/vZzxQREaGYmBiH54iKitKvf/1r/ed//qcaNmyo5s2ba+7cuTp//rzGjRvnknYBgYieKAAut2bNGiUkJCghIUFpaWnKz8/XihUr7KfnS9Lw4cMVGhqq4cOHKyIiosJjTJ06VVu3blXXrl317LPP6uWXX1ZWVpYkqUuXLnr55Zf1/PPPq1OnTlq6dKlycnIc7l9WVqYHH3xQHTp00IABA9S+fXv97ne/k/Rj786MGTPUuXNn9e3bVyEhIVq2bJlLjsUTTzyhn//858rKylK/fv0UHx9fYaXxmTNnaurUqZo1a5Y6dOigoUOH2ucphYaGav78+XrjjTeUmJioIUOGVPo8c+bM0d13362RI0fq5z//ufbt26e//OUvatCggUvaBQSiIGOM8XQlAODgwYNq06aN8vPz9fOf/9xhX8uWLTV58mRNnjzZM5UDgEownAfAo0pLS3Xy5Ek98cQT6tmzZ4UABQDeiuE8AB61adMmJSQkKD8/v8I8Jk977rnnVK9evUpvt912m6erB8DDGM4DgCqcOnWqwgrfV0RGRqpZs2ZurhEAb0KIAgAAsIDhPAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAF/x/GIErhetdYjgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWv9JREFUeJzt3XtcVHX+P/DXAM4MogwqygyGgvcbiqkgaqLJLqaZVPtLybzwRalNM9O2sE3ptuGtdC03yzbtkTc0/VarZhJoPlRCQl0VzVXDWzEoIoMoIjKf3x9+OdvIRQbmzJnL6/l4zAPnnPfMvOeDzLzP5/M5n6MSQggQERERkc15KJ0AERERkatioUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEbu+NN96ASqWqV6xKpcIbb7whaz7Dhg3DsGHDHPb5iKj+WGgRkcNYs2YNVCqVdPPy8kLbtm0xZcoU/Prrr0qn53CCg4Mt2qtNmzZ46KGH8L//+782ef6bN2/ijTfewJ49e2zyfETuiIUWETmct956C1988QVWrlyJRx55BGvXrkVUVBRu3boly+u9/vrrKCsrk+W55RYWFoYvvvgCX3zxBV5++WX89ttveOKJJ7By5cpGP/fNmzfx5ptvstAiagQvpRMgIrrXI488gv79+wMApk6dCn9/fyxcuBDffPMNnnrqKZu/npeXF7y8nPPjsG3btnjmmWek+5MmTUKnTp2wdOlSPPfccwpmRkQAe7SIyAk89NBDAICzZ89abP/555/xpz/9CS1btoRWq0X//v3xzTffWMRUVFTgzTffROfOnaHVatGqVSsMGTIEaWlpUkxNc7TKy8vx0ksvoXXr1mjevDkee+wxXLp0qVpuU6ZMQXBwcLXtNT3n6tWr8fDDD6NNmzbQaDTo0aMHPvroI6va4n70ej26d++OvLy8OuMuX76MhIQEBAQEQKvVok+fPvj888+l/efOnUPr1q0BAG+++aY0PCn3/DQiV+Och3BE5FbOnTsHAGjRooW0LTc3F4MHD0bbtm2RlJQEHx8fbNq0CbGxsdiyZQsef/xxAHcLnpSUFEydOhXh4eEoKSnBTz/9hEOHDuEPf/hDra85depUrF27Fk8//TQGDRqEjIwMjB49ulHv46OPPkLPnj3x2GOPwcvLC//617/w/PPPw2w2Y/r06Y167ioVFRW4ePEiWrVqVWtMWVkZhg0bhjNnzmDGjBkICQnB5s2bMWXKFBQXF+PFF19E69at8dFHH+HPf/4zHn/8cTzxxBMAgN69e9skTyK3IYiIHMTq1asFAPH999+LK1euiIsXL4ovv/xStG7dWmg0GnHx4kUpdsSIESI0NFTcunVL2mY2m8WgQYNE586dpW19+vQRo0ePrvN1k5OTxe8/Do8cOSIAiOeff94i7umnnxYARHJysrRt8uTJon379vd9TiGEuHnzZrW4mJgY0aFDB4ttUVFRIioqqs6chRCiffv24o9//KO4cuWKuHLlivj3v/8txo8fLwCIF154odbnW7ZsmQAg1q5dK227ffu2iIyMFM2aNRMlJSVCCCGuXLlS7f0SkXU4dEhEDic6OhqtW7dGUFAQ/vSnP8HHxwfffPMNHnjgAQBAUVERMjIy8NRTT+H69esoLCxEYWEhrl69ipiYGJw+fVo6S9HPzw+5ubk4ffp0vV9/x44dAICZM2dabJ81a1aj3pe3t7f0b5PJhMLCQkRFReGXX36ByWRq0HPu2rULrVu3RuvWrdGnTx9s3rwZEydOxMKFC2t9zI4dO6DX6xEXFydta9KkCWbOnInS0lL88MMPDcqFiKrj0CEROZwVK1agS5cuMJlM+Oyzz7B3715oNBpp/5kzZyCEwLx58zBv3rwan+Py5cto27Yt3nrrLYwdOxZdunRBr169MHLkSEycOLHOIbDz58/Dw8MDHTt2tNjetWvXRr2v/fv3Izk5GZmZmbh586bFPpPJBJ1OZ/VzRkRE4J133oFKpULTpk3RvXt3+Pn51fmY8+fPo3PnzvDwsDzW7t69u7SfiGyDhRYROZzw8HDprMPY2FgMGTIETz/9NE6dOoVmzZrBbDYDAF5++WXExMTU+BydOnUCAAwdOhRnz57F119/jV27duHTTz/F0qVLsXLlSkydOrXRuda20GllZaXF/bNnz2LEiBHo1q0b3n//fQQFBUGtVmPHjh1YunSp9J6s5e/vj+jo6AY9lojkx0KLiByap6cnUlJSMHz4cHz44YdISkpChw4dANwd7qpPkdGyZUvEx8cjPj4epaWlGDp0KN54441aC6327dvDbDbj7NmzFr1Yp06dqhbbokULFBcXV9t+b6/Qv/71L5SXl+Obb75Bu3btpO27d+++b/621r59exw9ehRms9miV+vnn3+W9gO1F5FEVH+co0VEDm/YsGEIDw/HsmXLcOvWLbRp0wbDhg3Dxx9/jPz8/GrxV65ckf599epVi33NmjVDp06dUF5eXuvrPfLIIwCA5cuXW2xftmxZtdiOHTvCZDLh6NGj0rb8/Pxqq7N7enoCAIQQ0jaTyYTVq1fXmodcRo0aBaPRiNTUVGnbnTt38MEHH6BZs2aIiooCADRt2hQAaiwkiah+2KNFRE7hL3/5C/7f//t/WLNmDZ577jmsWLECQ4YMQWhoKKZNm4YOHTqgoKAAmZmZuHTpEv79738DAHr06IFhw4ahX79+aNmyJX766Sd8+eWXmDFjRq2vFRYWhri4OPzjH/+AyWTCoEGDkJ6ejjNnzlSLHT9+PF599VU8/vjjmDlzJm7evImPPvoIXbp0waFDh6S4P/7xj1Cr1RgzZgyeffZZlJaWYtWqVWjTpk2NxaKcEhMT8fHHH2PKlCnIyclBcHAwvvzyS+zfvx/Lli1D8+bNAdydvN+jRw+kpqaiS5cuaNmyJXr16oVevXrZNV8ip6b0aY9ERFWqlnfIzs6utq+yslJ07NhRdOzYUdy5c0cIIcTZs2fFpEmThF6vF02aNBFt27YVjz76qPjyyy+lx73zzjsiPDxc+Pn5CW9vb9GtWzfxt7/9Tdy+fVuKqWkphrKyMjFz5kzRqlUr4ePjI8aMGSMuXrxY43IHu3btEr169RJqtVp07dpVrF27tsbn/Oabb0Tv3r2FVqsVwcHBYuHCheKzzz4TAEReXp4UZ83yDvdbuqK25ysoKBDx8fHC399fqNVqERoaKlavXl3tsQcOHBD9+vUTarWaSz0QNYBKiN/1YxMRERGRzXCOFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYQLlirIbDbjt99+Q/PmzXmpCyIiIichhMD169cRGBhY7eLs92KhpaDffvsNQUFBSqdBREREDXDx4kU88MADdcaw0FJQ1WUuLl68CF9fX4WzISIiovooKSlBUFCQ9D1eFxZaCqoaLvT19WWhRURE5GTqM+2Hk+GJiIiIZMJCi4iIiEgmLLSIiIiIZMI5Wk6gsrISFRUVSqehOLVafd/TaImIiBwJCy0HJoSA0WhEcXGx0qk4BA8PD4SEhECtViudChERUb2w0HJgVUVWmzZt0LRpU7de1LRqcdf8/Hy0a9fOrduCiIicBwstB1VZWSkVWa1atVI6HYfQunVr/Pbbb7hz5w6aNGmidDpERET3xQkvDqpqTlbTpk0VzsRxVA0ZVlZWKpwJERFR/ThEobVixQoEBwdDq9UiIiICBw8erDN+8+bN6NatG7RaLUJDQ7Fjxw6L/UIIzJ8/HwaDAd7e3oiOjsbp06ctYoqKijBhwgT4+vrCz88PCQkJKC0tlfafOnUKw4cPR0BAALRaLTp06IDXX3/dYlL6mjVroFKpLG5ardYGLfJfHCL7L7YFERE5G8ULrdTUVMyePRvJyck4dOgQ+vTpg5iYGFy+fLnG+AMHDiAuLg4JCQk4fPgwYmNjERsbi+PHj0sxixYtwvLly7Fy5UpkZWXBx8cHMTExuHXrlhQzYcIE5ObmIi0tDdu2bcPevXuRmJgo7W/SpAkmTZqEXbt24dSpU1i2bBlWrVqF5ORki3x8fX2Rn58v3c6fP2/jFiIiIiKnJRQWHh4upk+fLt2vrKwUgYGBIiUlpcb4p556SowePdpiW0REhHj22WeFEEKYzWah1+vF4sWLpf3FxcVCo9GIDRs2CCGEOHHihAAgsrOzpZhvv/1WqFQq8euvv9aa60svvSSGDBki3V+9erXQ6XT1f7P3MJlMAoAwmUzV9pWVlYkTJ06IsrKyBj+/q2GbEBGRI6jr+/teivZo3b59Gzk5OYiOjpa2eXh4IDo6GpmZmTU+JjMz0yIeAGJiYqT4vLw8GI1GixidToeIiAgpJjMzE35+fujfv78UEx0dDQ8PD2RlZdX4umfOnMHOnTsRFRVlsb20tBTt27dHUFAQxo4di9zc3Frfb3l5OUpKSixurmjKlCmIjY2ttn3Pnj1QqVQoLi7Gnj17MHbsWBgMBvj4+CAsLAzr1q2zf7JEROSy8k1lOHC2EPmmMsVyULTQKiwsRGVlJQICAiy2BwQEwGg01vgYo9FYZ3zVz/vFtGnTxmK/l5cXWrZsWe11Bw0aBK1Wi86dO+Ohhx7CW2+9Je3r2rUrPvvsM3z99ddYu3YtzGYzBg0ahEuXLtWYe0pKCnQ6nXQLCgqqMc4dHDhwAL1798aWLVtw9OhRxMfHY9KkSdi2bZvSqRERkQtIzb6AwQsy8PSqLAxekIHU7AuK5KH4HC1Hl5qaikOHDmH9+vXYvn07lixZIu2LjIzEpEmTEBYWhqioKGzduhWtW7fGxx9/XONzzZ07FyaTSbpdvHjRXm/D4bz22mt4++23MWjQIHTs2BEvvvgiRo4cia1btyqdGhERObl8Uxnmbj0Gs7h73yyA17YeV6RnS9F1tPz9/eHp6YmCggKL7QUFBdDr9TU+Rq/X1xlf9bOgoAAGg8EiJiwsTIq5d7L9nTt3UFRUVO11q3qdevTogcrKSiQmJmLOnDnw9PSslluTJk3Qt29fnDlzpsbcNRoNNBpNjfvklm8qQ17hDYT4+8Cg81Ykh/sxmUzo3r270mkQEZGTyyu8IRVZVSqFwLnCm3b/DlS0R0utVqNfv35IT0+XtpnNZqSnpyMyMrLGx0RGRlrEA0BaWpoUHxISAr1ebxFTUlKCrKwsKSYyMhLFxcXIycmRYjIyMmA2mxEREVFrvmazGRUVFTCbzTXur6ysxLFjxywKPEegRPfptm3b0KxZM4vbI488Umv8pk2bkJ2djfj4eNlzIyIi1xbi7wOPe1YE8lSpEOxv/7UpFV8Zfvbs2Zg8eTL69++P8PBwLFu2DDdu3JC+cCdNmoS2bdsiJSUFAPDiiy8iKioK7733HkaPHo2NGzfip59+wieffALg7lpLs2bNwjvvvIPOnTsjJCQE8+bNQ2BgoDRBu3v37hg5ciSmTZuGlStXoqKiAjNmzMD48eMRGBgIAFi3bh2aNGmC0NBQaDQa/PTTT5g7dy7GjRsnrUr+1ltvYeDAgejUqROKi4uxePFinD9/HlOnTrVzK9autu7ToV1ay1rVDx8+HB999JHFtqysLDzzzDPVYnfv3o34+HisWrUKPXv2lC0nIiJyDwadN1KeCMVrW4+jUgh4qlR494leiozoKF5ojRs3DleuXMH8+fNhNBoRFhaGnTt3SpPZL1y4AA+P/3a8DRo0COvXr8frr7+O1157DZ07d8ZXX32FXr16STGvvPIKbty4gcTERBQXF2PIkCHYuXOnxWKi69atw4wZMzBixAh4eHjgySefxPLly6X9Xl5eWLhwIf7zn/9ACIH27dtjxowZeOmll6SYa9euYdq0aTAajWjRogX69euHAwcOoEePHnI2mVWU6j718fFBp06dLLbVdJLADz/8gDFjxmDp0qWYNGmSbPkQEZF7GTegHYZ2aY1zhTcR7N9UsWkzKiGEuH8YyaGkpAQ6nQ4mkwm+vr4W+27duoW8vDyEhIQ0arX5fFMZBi/IsCi2PFUq7EsaLtt/uilTpqC4uBhfffWVxfY9e/Zg+PDhuHbtGvz8/LBnzx48+uijWLhwIaZPn37f57VVmxARETVGXd/f9+JZhy6uqvvU8/8uX6Nk9+nv7d69G6NHj8bMmTPx5JNPwmg0wmg0oqioSNG8iIiIbEnxoUOSn6N0n/7e559/jps3byIlJUWafwcAUVFR2LNnj3KJERER2RCHDhVkj6FDV8I2ISIiR8ChQyIiIiIHwEKLiIiISCYstIiIiIhkwkKLiIiISCYstBwcz1X4L7YFERE5GxZaDqrqMj83b95UOBPHcfv2bQCo8YLeREREjojraDkoT09P+Pn54fLlywCApk2bQqVS3edRrstsNuPKlSto2rQpvLz435aIiJwDv7EcmF6vBwCp2HJ3Hh4eaNeunVsXnERE5FxYaDkwlUoFg8GANm3aoKKiQul0FKdWqy0uME5EROToWGg5AU9PT85LIiIickLsHiAiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpk4RKG1YsUKBAcHQ6vVIiIiAgcPHqwzfvPmzejWrRu0Wi1CQ0OxY8cOi/1CCMyfPx8GgwHe3t6Ijo7G6dOnLWKKioowYcIE+Pr6ws/PDwkJCSgtLZX2nzp1CsOHD0dAQAC0Wi06dOiA119/HRUVFVblQkRERO5L8UIrNTUVs2fPRnJyMg4dOoQ+ffogJiYGly9frjH+wIEDiIuLQ0JCAg4fPozY2FjExsbi+PHjUsyiRYuwfPlyrFy5EllZWfDx8UFMTAxu3bolxUyYMAG5ublIS0vDtm3bsHfvXiQmJkr7mzRpgkmTJmHXrl04deoUli1bhlWrViE5OdmqXIiIiMiNCYWFh4eL6dOnS/crKytFYGCgSElJqTH+qaeeEqNHj7bYFhERIZ599lkhhBBms1no9XqxePFiaX9xcbHQaDRiw4YNQgghTpw4IQCI7OxsKebbb78VKpVK/Prrr7Xm+tJLL4khQ4bUO5f7MZlMAoAwmUz1iiciIiLlWfP9rWiP1u3bt5GTk4Po6Ghpm4eHB6Kjo5GZmVnjYzIzMy3iASAmJkaKz8vLg9FotIjR6XSIiIiQYjIzM+Hn54f+/ftLMdHR0fDw8EBWVlaNr3vmzBns3LkTUVFR9c7lXuXl5SgpKbG4ERERketStNAqLCxEZWUlAgICLLYHBATAaDTW+Bij0VhnfNXP+8W0adPGYr+XlxdatmxZ7XUHDRoErVaLzp0746GHHsJbb71V71zulZKSAp1OJ92CgoJqjCMiIiLXoPgcLUeXmpqKQ4cOYf369di+fTuWLFnS4OeaO3cuTCaTdLt48aINMyUiIiJH46Xki/v7+8PT0xMFBQUW2wsKCqDX62t8jF6vrzO+6mdBQQEMBoNFTFhYmBRz72T7O3fuoKioqNrrVvU69ejRA5WVlUhMTMScOXPg6el531zupdFooNFoatxHRERErkfRHi21Wo1+/fohPT1d2mY2m5Geno7IyMgaHxMZGWkRDwBpaWlSfEhICPR6vUVMSUkJsrKypJjIyEgUFxcjJydHisnIyIDZbEZERESt+ZrNZlRUVMBsNtcrFyIiInJzdpicX6eNGzcKjUYj1qxZI06cOCESExOFn5+fMBqNQgghJk6cKJKSkqT4/fv3Cy8vL7FkyRJx8uRJkZycLJo0aSKOHTsmxSxYsED4+fmJr7/+Whw9elSMHTtWhISEiLKyMilm5MiRom/fviIrK0vs27dPdO7cWcTFxUn7165dK1JTU8WJEyfE2bNnRWpqqggMDBQTJkywKpe68KxDIiIi52PN97fihZYQQnzwwQeiXbt2Qq1Wi/DwcPHjjz9K+6KiosTkyZMt4jdt2iS6dOki1Gq16Nmzp9i+fbvFfrPZLObNmycCAgKERqMRI0aMEKdOnbKIuXr1qoiLixPNmjUTvr6+Ij4+Xly/fl3av3HjRvHggw+KZs2aCR8fH9GjRw/x7rvvWhRr9cmlLiy0iIiInI81398qIYRQtk/NfZWUlECn08FkMsHX11fpdIiIiKgerPn+5lmHRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERE5JLyTWU4cLYQ+aYyxXLwUuyViYiIiGSSmn0Bc7ceg1kAHiog5YlQjBvQzu55sEeLiIiIXEq+qUwqsgDALIDXth5XpGeLhRYRERG5lLzCG1KRVaVSCJwrvGn3XFhoERERkUsJ8feBh8pym6dKhWD/pnbPhYUWERERuRSDzhspT4TCU3W32vJUqfDuE71g0HnbPRdOhiciIiKXM25AOwzt0hrnCm8i2L+pIkUWwEKLiIiIXJRB561YgVWFQ4dEREREMmGhRURERCQTFlpEREREMmGhRURERCQTFlpEREREMmGhRURERCQThyi0VqxYgeDgYGi1WkRERODgwYN1xm/evBndunWDVqtFaGgoduzYYbFfCIH58+fDYDDA29sb0dHROH36tEVMUVERJkyYAF9fX/j5+SEhIQGlpaXS/j179mDs2LEwGAzw8fFBWFgY1q1bZ/Eca9asgUqlsrhptdpGtgYRERG5CsULrdTUVMyePRvJyck4dOgQ+vTpg5iYGFy+fLnG+AMHDiAuLg4JCQk4fPgwYmNjERsbi+PHj0sxixYtwvLly7Fy5UpkZWXBx8cHMTExuHXrlhQzYcIE5ObmIi0tDdu2bcPevXuRmJho8Tq9e/fGli1bcPToUcTHx2PSpEnYtm2bRT6+vr7Iz8+XbufPn7dxCxEREZHTEgoLDw8X06dPl+5XVlaKwMBAkZKSUmP8U089JUaPHm2xLSIiQjz77LNCCCHMZrPQ6/Vi8eLF0v7i4mKh0WjEhg0bhBBCnDhxQgAQ2dnZUsy3334rVCqV+PXXX2vNddSoUSI+Pl66v3r1aqHT6er/Zu9hMpkEAGEymRr8HERERGRf1nx/K9qjdfv2beTk5CA6Olra5uHhgejoaGRmZtb4mMzMTIt4AIiJiZHi8/LyYDQaLWJ0Oh0iIiKkmMzMTPj5+aF///5STHR0NDw8PJCVlVVrviaTCS1btrTYVlpaivbt2yMoKAhjx45Fbm5urY8vLy9HSUmJxY2IiIhcl6KFVmFhISorKxEQEGCxPSAgAEajscbHGI3GOuOrft4vpk2bNhb7vby80LJly1pfd9OmTcjOzkZ8fLy0rWvXrvjss8/w9ddfY+3atTCbzRg0aBAuXbpU43OkpKRAp9NJt6CgoBrjiIiIyDUoPkfLGezevRvx8fFYtWoVevbsKW2PjIzEpEmTEBYWhqioKGzduhWtW7fGxx9/XOPzzJ07FyaTSbpdvHjRXm+BiIiIFKBooeXv7w9PT08UFBRYbC8oKIBer6/xMXq9vs74qp/3i7l3sv2dO3dQVFRU7XV/+OEHjBkzBkuXLsWkSZPqfD9NmjRB3759cebMmRr3azQa+Pr6WtyIiIjIdSlaaKnVavTr1w/p6enSNrPZjPT0dERGRtb4mMjISIt4AEhLS5PiQ0JCoNfrLWJKSkqQlZUlxURGRqK4uBg5OTlSTEZGBsxmMyIiIqRte/bswejRo7Fw4UKLMxJrU1lZiWPHjsFgMNTj3RMREZHLs8Pk/Dpt3LhRaDQasWbNGnHixAmRmJgo/Pz8hNFoFEIIMXHiRJGUlCTF79+/X3h5eYklS5aIkydPiuTkZNGkSRNx7NgxKWbBggXCz89PfP311+Lo0aNi7NixIiQkRJSVlUkxI0eOFH379hVZWVli3759onPnziIuLk7an5GRIZo2bSrmzp0r8vPzpdvVq1elmDfffFN899134uzZsyInJ0eMHz9eaLVakZubW6/3zrMOiYiInI8139+KF1pCCPHBBx+Idu3aCbVaLcLDw8WPP/4o7YuKihKTJ0+2iN+0aZPo0qWLUKvVomfPnmL79u0W+81ms5g3b54ICAgQGo1GjBgxQpw6dcoi5urVqyIuLk40a9ZM+Pr6ivj4eHH9+nVp/+TJkwWAareoqCgpZtasWVLeAQEBYtSoUeLQoUP1ft8stIiIiJyPNd/fKiGEUKw7zc2VlJRAp9PBZDJxvhYRETmdfFMZ8gpvIMTfBwadt9Lp2I01399edsqJiIiIXEhq9gXM3XoMZgF4qICUJ0IxbkA7pdNyOFzegYiIiKySbyqTiiwAMAvgta3HkW8qUzYxB8RCi4iIiKySV3hDKrKqVAqBc4U3lUnIgbHQIiIiIquE+PvAQ2W5zVOlQrB/U2UScmAstIiIiMgqBp03Up4IhafqbrXlqVLh3Sd6udWE+PriZHgiIiKy2rgB7TC0S2ucK7yJYP+mLLJqwUKLiIiIGsSg82aBdR8cOiQiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKSCQstIiIiIpmw0CIiIiKHlm8qw4Gzhcg3lSmditV4rUMiIiJyWKnZFzB36zGYBeChAlKeCMW4Ae2UTqve2KNFREREDinfVCYVWQBgFsBrW487Vc8WCy0iIjfkzEMx5D7yCm9IRVaVSiFwrvCmMgk1AIcOiYjcjLMPxZD7CPH3gYcKFsWWp0qFYP+myiVlJfZoERG5EVcYiiH3YdB5I+WJUHiqVADuFlnvPtELBp23wpnVH3u0qF7yTWXIK7yBEH8fp/oPTkSW6hqK4d82OaJxA9phaJfWOFd4E8H+TZ3u/ykLLbovDjMQuQ5XGIoh92PQeTtdgVWFQ4dUJw4zELkWVxiKIXIm7NGiOnGYgcj1OPtQDJEzYaFFdZJrmIFzvoiU5cxDMUTOhEOHVCc5hhlSsy9g8IIMPL0qC4MXZCA1+4Kt0iUiInIoKiGEuH8YyaGkpAQ6nQ4mkwm+vr5Kp1OnfFOZTYYZ8k1lGLwgo1oP2b6k4Ty6JiIip2DN9zeHDqlebDXMwDlfRETkTjh0SHZVNefr93hqOTk6Xq6GiBqKhRbZFU8tJ2fDOYVE1Bico6UgJeZoOcrZfraa80UkJ84pJKKacI4W1ciRVnjnqeXkDDinkIgai0OHboIrvBNZj3MKiaixWGi5ibqOzImoZpxTSESN5RCF1ooVKxAcHAytVouIiAgcPHiwzvjNmzejW7du0Gq1CA0NxY4dOyz2CyEwf/58GAwGeHt7Izo6GqdPn7aIKSoqwoQJE+Dr6ws/Pz8kJCSgtLRU2r9nzx6MHTsWBoMBPj4+CAsLw7p166zOxVHwyJyoYcYNaId9ScOxYdpA7EsazguqEzkRRzhjWPFCKzU1FbNnz0ZycjIOHTqEPn36ICYmBpcvX64x/sCBA4iLi0NCQgIOHz6M2NhYxMbG4vjx41LMokWLsHz5cqxcuRJZWVnw8fFBTEwMbt26JcVMmDABubm5SEtLw7Zt27B3714kJiZavE7v3r2xZcsWHD16FPHx8Zg0aRK2bdtmVS6OgkfmRA1n0HkjsmMr/r0QORFHOWNY8bMOIyIiMGDAAHz44YcAALPZjKCgILzwwgtISkqqFj9u3DjcuHHDouAZOHAgwsLCsHLlSgghEBgYiDlz5uDll18GAJhMJgQEBGDNmjUYP348Tp48iR49eiA7Oxv9+/cHAOzcuROjRo3CpUuXEBgYWGOuo0ePRkBAAD777LN65XI/Sp11yLP9iIjIlcl9xrA139+K9mjdvn0bOTk5iI6OlrZ5eHggOjoamZmZNT4mMzPTIh4AYmJipPi8vDwYjUaLGJ1Oh4iICCkmMzMTfn5+UpEFANHR0fDw8EBWVlat+ZpMJrRs2bLeudyrvLwcJSUlFjd745E5ERG5Okeal6xooVVYWIjKykoEBARYbA8ICIDRaKzxMUajsc74qp/3i2nTpo3Ffi8vL7Rs2bLW1920aROys7MRHx9f71zulZKSAp1OJ92CgoJqjCMiIqKGc6R5yYrP0XIGu3fvRnx8PFatWoWePXs2+Hnmzp0Lk8kk3S5evGjDLImIiAhwrHnJii5Y6u/vD09PTxQUFFhsLygogF6vr/Exer2+zviqnwUFBTAYDBYxYWFhUsy9k+3v3LmDoqKiaq/7ww8/YMyYMVi6dCkmTZpkVS730mg00Gg0Ne4jIiIi2xk3oB2Gdmmt+LxkRXu01Go1+vXrh/T0dGmb2WxGeno6IiMja3xMZGSkRTwApKWlSfEhISHQ6/UWMSUlJcjKypJiIiMjUVxcjJycHCkmIyMDZrMZERER0rY9e/Zg9OjRWLhwocUZifXNhYiIiJTjEPOShcI2btwoNBqNWLNmjThx4oRITEwUfn5+wmg0CiGEmDhxokhKSpLi9+/fL7y8vMSSJUvEyZMnRXJysmjSpIk4duyYFLNgwQLh5+cnvv76a3H06FExduxYERISIsrKyqSYkSNHir59+4qsrCyxb98+0blzZxEXFyftz8jIEE2bNhVz584V+fn50u3q1atW5VIXk8kkAAiTydTg9iMiIiL7sub7W/FCSwghPvjgA9GuXTuhVqtFeHi4+PHHH6V9UVFRYvLkyRbxmzZtEl26dBFqtVr07NlTbN++3WK/2WwW8+bNEwEBAUKj0YgRI0aIU6dOWcRcvXpVxMXFiWbNmglfX18RHx8vrl+/Lu2fPHmyAFDtFhUVZVUudWGhRURE5Hys+f5WfB0td6bEOlpERETUOE6zjhYRERGRK2OhRURERCQTFlpERE7OES6cS0Q1U3QdLSIiZ5dvKkNe4Q2E+Psocgp5avYFzN16DGYBeKiAlCdCMW5AO7vnQUQ1Y6FFRNRAShc5+aYy6fUBwCyA17Yex9AurXk9UyIHwaFDIqIGqK3IsefwnSNdOJeIasZCi4ioARyhyHGkC+cSUc1YaBERNYAjFDmOdOFcIqoZ52gRETVAVZHz2tbjqBRCsSLHUS6cS0Q1Y6FFRNRAjlLkGHTeLLCIHBQLLSKiRmCRQ0R14RwtIiIiIpmw0CIiIiKSidWF1o4dOzB16lS88sor+Pnnny32Xbt2DQ8//LDNkiMiIiJyZlYVWuvXr8djjz0Go9GIzMxM9O3bF+vWrZP23759Gz/88IPNkyQiIiJyRlZNhl+8eDHef/99zJw5EwCwadMm/M///A9u3bqFhIQEWRIkIiLnpvT1IImUZFWhdfr0aYwZM0a6/9RTT6F169Z47LHHUFFRgccff9zmCRIRkfNS+nqQREqzqtDy9fVFQUEBQkJCpG3Dhw/Htm3b8Oijj+LSpUs2T5CIiJwTL3pNZOUcrfDwcHz77bfVtkdFReFf//oXli1bZqu8iIjIyTnC9SCJlGZVofXSSy9Bq9XWuG/YsGH417/+hUmTJtkkMSIicm6OcD1IIqWphBDi/mF3lZSU1CvO19e3wQm5k5KSEuh0OphMJrYZEbmk1OwL1a4HyTla5Oys+f62ao6Wn58fVCrVfeMqKyuteVoiInJRjnI9SCKlWFVo7d69W/q3EAKjRo3Cp59+irZt29o8MXIsPD2biBqK14Mkd2ZVoRUVFWVx39PTEwMHDkSHDh1smhQ5FjlOz2bhRkRE7sCqQovcjxynZ3NdHSIiche8qDTVydanZ9dWuOWbyhqZKRERkeNpdKFVn8nx5LxsfXo219UhIiJ3YtXQ4RNPPGFx/9atW3juuefg4+NjsX3r1q2Nz4wcgkHnjZQnQqudnt3QYcOqwu33xRbX1SEiIldlVaGl0+ks7j/zzDM2TYYcky1Pz7Z14UZEROTIrFqwlGxLzgVLHf2svnxTGdfVISIipyTbgqXkHBzlrL66ij2uq0NERO6AhZaLkWM5hoZwlGKPiIhISVzewcU4wll9XMKBiIjoLhZaLsbWyzE0hCMUe+Q68k1lOHC2kIW6HbHNiWyHQ4cuxhHO6uMSDmQrHIK2P7Y5kW3xrEMFyX3WoZJn9aVmX6hW7PHDmqyRbyrD4AUZ1Qr2fUnDeSKFTNjmRPXDsw5J8bP6bLn2Frmnuoag+f9JHmxzIttjoUWyUbrYI+fGIWj7Y5sT2Z7ik+FXrFiB4OBgaLVaRERE4ODBg3XGb968Gd26dYNWq0VoaCh27NhhsV8Igfnz58NgMMDb2xvR0dE4ffq0RUxRUREmTJgAX19f+Pn5ISEhAaWlpdL+W7duYcqUKQgNDYWXlxdiY2Or5bFnzx6oVKpqN6PR2PDGICJJ1XxDz/+7niqvIiA/tjmR7Snao5WamorZs2dj5cqViIiIwLJlyxATE4NTp06hTZs21eIPHDiAuLg4pKSk4NFHH8X69esRGxuLQ4cOoVevXgCARYsWYfny5fj8888REhKCefPmISYmBidOnIBWqwUATJgwAfn5+UhLS0NFRQXi4+ORmJiI9evXAwAqKyvh7e2NmTNnYsuWLXW+h1OnTlmMz9aUNxE1DIeg7Y9tTmRjQkHh4eFi+vTp0v3KykoRGBgoUlJSaox/6qmnxOjRoy22RUREiGeffVYIIYTZbBZ6vV4sXrxY2l9cXCw0Go3YsGGDEEKIEydOCAAiOztbivn222+FSqUSv/76a7XXnDx5shg7dmy17bt37xYAxLVr1+r9fu9lMpkEAGEymRr8HERERGRf1nx/KzZ0ePv2beTk5CA6Olra5uHhgejoaGRmZtb4mMzMTIt4AIiJiZHi8/LyYDQaLWJ0Oh0iIiKkmMzMTPj5+aF///5STHR0NDw8PJCVlWX1+wgLC4PBYMAf/vAH7N+/v87Y8vJylJSUWNyIiIjIdSlWaBUWFqKyshIBAQEW2wMCAmqd52Q0GuuMr/p5v5h7h/e8vLzQsmVLq+ZXGQwGrFy5Elu2bMGWLVsQFBSEYcOG4dChQ7U+JiUlBTqdTroFBQXV+/WIiNwJF00lV8GzDhuoa9eu6Nq1q3R/0KBBOHv2LJYuXYovvviixsfMnTsXs2fPlu6XlJSw2CIiugcXTSVXoliPlr+/Pzw9PVFQUGCxvaCgAHq9vsbH6PX6OuOrft4v5vLlyxb779y5g6Kiolpft77Cw8Nx5syZWvdrNBr4+vpa3IiI6L94rVRyNYoVWmq1Gv369UN6erq0zWw2Iz09HZGRkTU+JjIy0iIeANLS0qT4kJAQ6PV6i5iSkhJkZWVJMZGRkSguLkZOTo4Uk5GRAbPZjIiIiEa9pyNHjsBgMDTqOYiI3BmvlUquRtGhw9mzZ2Py5Mno378/wsPDsWzZMty4cQPx8fEAgEmTJqFt27ZISUkBALz44ouIiorCe++9h9GjR2Pjxo346aef8MknnwAAVCoVZs2ahXfeeQedO3eWlncIDAyU1sLq3r07Ro4ciWnTpmHlypWoqKjAjBkzMH78eAQGBkq5nThxArdv30ZRURGuX7+OI0eOALg7+R0Ali1bhpCQEPTs2RO3bt3Cp59+ioyMDOzatcs+jUdE9H/yTWXIK7yBEH8fp1+OgYumkqtRtNAaN24crly5gvnz58NoNCIsLAw7d+6UJrNfuHABHh7/7XQbNGgQ1q9fj9dffx2vvfYaOnfujK+++kpaQwsAXnnlFdy4cQOJiYkoLi7GkCFDsHPnTmkNLQBYt24dZsyYgREjRsDDwwNPPvkkli9fbpHbqFGjcP78eel+3759AdxdEBW4e9bknDlz8Ouvv6Jp06bo3bs3vv/+ewwfPtz2DUVEVAtXm89UtWjqvddKdfYCktwXLyqtIDkvKk1Ers+VLwKdbyrjoqnksHhRaWoQVxp+IHIHrnwRaF4rlVwFCy0C4HrDD0TugPOZiByf4heVJuXxdGoi58SLQBM5PvZokUsPPxC5Ol4EmsixsdAiDj8QOTnOZyJyXBw6JA4/EBERyYQ9WgSAww9ERERyYKFFEg4/EBER2RaHDomIiIhkwkKLiIiISCYstNxMvqkMB84Wco0sIiIiO+AcLTfC1d+JiIjsiz1aboKrvxMREdkfCy03Udfq70RERCQPFlpuomr199/j6u9ERETyYqHlJrj6OxERkf1xMrwb4ervRERE9sVCy81w9XciIiL74dAhERERkUxYaJHb4uKtRM6Hf7fkbDh0SG6Ji7cSOR/+3ZIzYo8WuR0u3krkfPh3S86KhRa5HS7eSuR8+HdLzoqFFrkdLt5K5Hz4d0vOioUWuR0u3krkfPh3S85KJYQQ9w8jOZSUlECn08FkMsHX11fpdNxOvqmMi7cSKSjfVIa8whsI8fep998g/27JEVjz/c2zDsltcfFWIuU09AxC/t2Ss+HQIRER2ZVcZxByjS37Y5vfH3u0iIjIruo6g7ChvVVcY8v+2Ob1wx4tIiKyK1ufQcg1tuyPbV5/LLSIiMiubH0GIdfYsmSP4Ty2ef1x6JCIiOxu3IB2GNqltU3OIKzqIfv9F7+7rrFlr+E8tnn9sUeLiIgUYdB5I7JjqxqLLGt6ZbjG1l32HM5jm9cfe7SIiMihNKRXxpY9ZM5KjpMM6sI2rx8WWkRE5DBq65UZ2qX1fb/I3X2NLSWG89y9zeuDQ4dEROQwOMm64Tic55jYo0VEtWrIJVKIGoOTrBuHw3mOR/EerRUrViA4OBharRYRERE4ePBgnfGbN29Gt27doNVqERoaih07dljsF0Jg/vz5MBgM8Pb2RnR0NE6fPm0RU1RUhAkTJsDX1xd+fn5ISEhAaWmptP/WrVuYMmUKQkND4eXlhdjY2Bpz2bNnDx588EFoNBp06tQJa9asaVAbEDmi1OwLGLwgA0+vysLgBRlIzb6gdErkBhrTK8NVyu+q6yQDsj9FC63U1FTMnj0bycnJOHToEPr06YOYmBhcvny5xvgDBw4gLi4OCQkJOHz4MGJjYxEbG4vjx49LMYsWLcLy5cuxcuVKZGVlwcfHBzExMbh165YUM2HCBOTm5iItLQ3btm3D3r17kZiYKO2vrKyEt7c3Zs6ciejo6BpzycvLw+jRozF8+HAcOXIEs2bNwtSpU/Hdd9/ZqHWIlMPFCOXFgqBu4wa0w76k4dgwbSD2JQ2v1/IEPDAgR6USQoj7h8kjIiICAwYMwIcffggAMJvNCAoKwgsvvICkpKRq8ePGjcONGzewbds2advAgQMRFhaGlStXQgiBwMBAzJkzBy+//DIAwGQyISAgAGvWrMH48eNx8uRJ9OjRA9nZ2ejfvz8AYOfOnRg1ahQuXbqEwMBAi9ecMmUKiouL8dVXX1lsf/XVV7F9+3aLIm/8+PEoLi7Gzp076/X+rbn6N5E9HThbiKdXZVXbvmHaQER2bKVARq6Dly2xvXxTGQYvyKg23LgvaTh7dUgW1nx/K9ajdfv2beTk5Fj0GHl4eCA6OhqZmZk1PiYzM7NaD1NMTIwUn5eXB6PRaBGj0+kQEREhxWRmZsLPz08qsgAgOjoaHh4eyMqq/sVSm/vlUpPy8nKUlJRY3Igcka0vkUJ3sadQHpxAT45MsUKrsLAQlZWVCAgIsNgeEBAAo9FY42OMRmOd8VU/7xfTpk0bi/1eXl5o2bJlra9rTS4lJSUoK6v5QzMlJQU6nU66BQUF1fv1iOyJZy/JgwWBPHhgQI6MZx3a0dy5czF79mzpfklJCYstclg8e8n2eEadPKoODF7behyVQvDAgByKYoWWv78/PD09UVBQYLG9oKAAer2+xsfo9fo646t+FhQUwGAwWMSEhYVJMfdOtr9z5w6KiopqfV1rcvH19YW3d81/3BqNBhqNpt6vQaQ0LkZoWywI5MMDA3JUig0dqtVq9OvXD+np6dI2s9mM9PR0REZG1viYyMhIi3gASEtLk+JDQkKg1+stYkpKSpCVlSXFREZGori4GDk5OVJMRkYGzGYzIiIi6p3//XIhIvdg7RmEDTmjjuqHyxqQQxIK2rhxo9BoNGLNmjXixIkTIjExUfj5+Qmj0SiEEGLixIkiKSlJit+/f7/w8vISS5YsESdPnhTJycmiSZMm4tixY1LMggULhJ+fn/j666/F0aNHxdixY0VISIgoKyuTYkaOHCn69u0rsrKyxL59+0Tnzp1FXFycRW65ubni8OHDYsyYMWLYsGHi8OHD4vDhw9L+X375RTRt2lT85S9/ESdPnhQrVqwQnp6eYufOnfV+/yaTSQAQJpPJ2qYjIgew8eB5EZK0TbR/dZsISdomNh48r3RKRGQH1nx/K1poCSHEBx98INq1ayfUarUIDw8XP/74o7QvKipKTJ482SJ+06ZNokuXLkKtVouePXuK7du3W+w3m81i3rx5IiAgQGg0GjFixAhx6tQpi5irV6+KuLg40axZM+Hr6yvi4+PF9evXLWLat28vAFS7/d7u3btFWFiYUKvVokOHDmL16tVWvXcWWkTO67fim1KRVXXrkLRd/FZ8U+nUiEhm1nx/K7qOlrvjOlpEzotrjRG5L6dYR4uIyJlxSQHXwFX6SW4stIiIGoBrjTk/XraH7IFDhwri0CHZWr6pDHmFNxDi78MvfDvJN5VxSQEnxMv2UGNY8/3NBUuJXASvoacMrjXmnOpapZ+/T7IlDh0SuQBeQ4/IOpxjR/bCQovIBfAaemQPrjRxnHPsyF44dEjkAngNPZKbKw5N87I9ZA/s0SKn4UpH07bGo3OSkysPTfOyPSQ39miRU3DFo2lb49G5a3DEM0c5cZyo4VhokcOr7Wh6aJfW/JC/B8+Ac26OekDBoWmihuPQITk8TvQmd+DIw3McmiZqOPZokcPj0TS5A0cfnuPQNFHDsEeLHB6PpskdOMO6Tpw4TmQ99miRU+DRNLm6qgOK17YeR6UQPKAgchEstMhpcKK343DEM+NcAQ8oiFwPCy0isoqjnhnnKnhAQeRaOEeLiOrNkc+MIyJyRCy0iKjeuNQGEZF1WGgRUb05w5lx5L54mS5yRCy0iKje5Fpqg1+Qrs0ev9/U7AsYvCADT6/KwuAFGUjNviDbaxFZQyWEEPcPIzmUlJRAp9PBZDLB19dX6XSI6i3fVGazM+M4ud612eP3m28qw+AFGdUWNd6XNJwnFsjMXc9Atub7m2cdEpHVbHVmHK9j6drs9ft19FX1XRUPkuqHQ4dEpBhOrndt9vr9cu6g/fEM5PpjoUVEiuEXpGuz1++Xl+myPx4k1R+HDolIMbzsjGuz5++Xq+rbV1URfe+8OB4kVcfJ8AriZHiiu2w5uZ4cD3+/rik1+0K1Itpd5mhZ8/3NQktBLLSIiMiZuWsRzbMOiYiISHa8Nuf9cTI8ERERkUxYaBERERHJhIUWERERkUxYaBERERHJhIUWuS1eyJiIiOTGsw7JLfEaXeTu3PViwET2xkKL3A4vZEzujgcaRPbDoUNyO7xGF7kzXgyYyL5YaJHb4YWMLXGumnvhgQaRfbHQIrdTdaFbT9XdasudL2Scmn0Bgxdk4OlVWRi8IAOp2ReUTolkxgMN18eDJ8fiEIXWihUrEBwcDK1Wi4iICBw8eLDO+M2bN6Nbt27QarUIDQ3Fjh07LPYLITB//nwYDAZ4e3sjOjoap0+ftogpKirChAkT4OvrCz8/PyQkJKC0tNQi5ujRo3jooYeg1WoRFBSERYsWWexfs2YNVCqVxU2r1TaiJchexg1oh31Jw7Fh2kDsSxrulvNTOITknnig4dp48OR4FC+0UlNTMXv2bCQnJ+PQoUPo06cPYmJicPny5RrjDxw4gLi4OCQkJODw4cOIjY1FbGwsjh8/LsUsWrQIy5cvx8qVK5GVlQUfHx/ExMTg1q1bUsyECROQm5uLtLQ0bNu2DXv37kViYqK0v6SkBH/84x/Rvn175OTkYPHixXjjjTfwySefWOTj6+uL/Px86Xb+/HkbtxDJxaDzRmTHVm77BcMhJPfFAw3XxIMnx6QSQoj7h8knIiICAwYMwIcffggAMJvNCAoKwgsvvICkpKRq8ePGjcONGzewbds2advAgQMRFhaGlStXQgiBwMBAzJkzBy+//DIAwGQyISAgAGvWrMH48eNx8uRJ9OjRA9nZ2ejfvz8AYOfOnRg1ahQuXbqEwMBAfPTRR/jrX/8Ko9EItVoNAEhKSsJXX32Fn3/+GcDdHq1Zs2ahuLi4Qe/dmqt/E9lavqkMgxdkWBRbnioV9iUNd9vik8iZHThbiKdXZVXbvmHaQER2bKVARq7Lmu9vRXu0bt++jZycHERHR0vbPDw8EB0djczMzBofk5mZaREPADExMVJ8Xl4ejEajRYxOp0NERIQUk5mZCT8/P6nIAoDo6Gh4eHggKytLihk6dKhUZFW9zqlTp3Dt2jVpW2lpKdq3b4+goCCMHTsWubm5tb7f8vJylJSUWNyIlOJIQ0icU0LUeJx/55gUXUersLAQlZWVCAgIsNgeEBAg9Rrdy2g01hhvNBql/VXb6opp06aNxX4vLy+0bNnSIiYkJKTac1Tta9GiBbp27YrPPvsMvXv3hslkwpIlSzBo0CDk5ubigQceqJZ7SkoK3nzzzdobhMjOxg1oh6FdWuNc4U0E+zdVpMjimk5EtlF18PTa1uOoFILz7xwEFyxthMjISERGRkr3Bw0ahO7du+Pjjz/G22+/XS1+7ty5mD17tnS/pKQEQUFBdsmVqDYGnbdiH8RcPJbIthzh4IksKVpo+fv7w9PTEwUFBRbbCwoKoNfra3yMXq+vM77qZ0FBAQwGg0VMWFiYFHPvZPs7d+6gqKjI4nlqep3fv8a9mjRpgr59++LMmTM17tdoNNBoNDXuI5KTo15upa4J+Y6UJ5EzUfLgiapTdI6WWq1Gv379kJ6eLm0zm81IT0+36Cn6vcjISIt4AEhLS5PiQ0JCoNfrLWJKSkqQlZUlxURGRqK4uBg5OTlSTEZGBsxmMyIiIqSYvXv3oqKiwuJ1unbtihYtWtSYW2VlJY4dO2ZR4BEpzZFP9+acEiJydYov7zB79mysWrUKn3/+OU6ePIk///nPuHHjBuLj4wEAkyZNwty5c6X4F198ETt37sR7772Hn3/+GW+88QZ++uknzJgxAwCgUqkwa9YsvPPOO/jmm29w7NgxTJo0CYGBgYiNjQUAdO/eHSNHjsS0adNw8OBB7N+/HzNmzMD48eMRGBgIAHj66aehVquRkJCA3NxcpKam4u9//7vF0N9bb72FXbt24ZdffsGhQ4fwzDPP4Pz585g6daqdWo+obo5+urcjTcgnIpKD4nO0xo0bhytXrmD+/PkwGo0ICwvDzp07pYnnFy5cgIfHf+vBQYMGYf369Xj99dfx2muvoXPnzvjqq6/Qq1cvKeaVV17BjRs3kJiYiOLiYgwZMgQ7d+60WEx03bp1mDFjBkaMGAEPDw88+eSTWL58ubRfp9Nh165dmD59Ovr16wd/f3/Mnz/fYq2ta9euYdq0adLk+H79+uHAgQPo0aOHnE1GVG/OMDTHOSVE5MoUX0fLnXEdLZIb18oiIrI9p1lHi4jkxaE598b1yYiUp/jQIRHJi0Nz7onrkxE5BvZoEbkJAc4ScBeOfhIEkTthjxaRi2PPhvtxhpMgSD6Oum6eu2KhRS7BET5YHCGHe3HldfdUtT7ZvSdBcH0y18cDK8fDQoucniN8sDhCDjVhz4Z74jXv3BMPrBwTCy1yao7wweIIOdSGPRvuiydBuB8eWDkmToYnp1bXB4uz52CLU/O5vIN7M+i8EdmxFX/fboKXtHJM7NEip+YIPTZy5GDLoUj2bBC5Bw4ZOyauDK8grgxvG6nZF6p9sCgxR8tWOdxvNXdHnHRPRI4j31TGAyuZWfP9zR4tcnqO0GNjyxzqGorc+58rDjnpnogch0Hn7bQFliseSLLQIpfgCB8sDcmhpg+V2oYim6o9HHbS/e+54gelo2Obkytw1LO3G4uFFpFCavtQqW2exY3blQ5/RpGrflA6MrY5uQJHPnu7sVhoESngfh8qNQ1F5pvKFJ/4XxdX/qB0VGxzchWuvDQFl3cgUkB9loS499R8R1+qwRGW2nA3bHNyFa68NAV7tIgU0NAlIRxh4n9tHGGpDXfDNidX4cpLU7BHi0gB9emdqm3BUkddhNLRe9xcEducXMm4Ae2wL2k4NkwbiH1Jw11mriHX0VIQ19Gi2ta7ceYJzlzDx/7Y5kT2Zc33NwstBbHQqo6nqd9/wVIiIlIWFywlp+TMvTi25Mpn3xCRdXjw6fxYaJFD4Gnq/8UJzkQE8ODTVXAyPDkEZzlNvbYJ6rbECc5EVNvBp5yfPSQP9miRQwjx94EKwO9rLRXgUL049jy6dORlHIhIfo40hYDDl43DQoscl+r+IfaixNCmI1y/kYiU4ShTCDh82XgcOiSHkFd4A/ee/ioEHGbo0FmGNonINTRmCoGtpjhw+NI22KNFDsFRjt5q4+j5kSUOdZAraMgUAlv2QDnS8KUzY48WOQRHnwDu6PnRf6VmX8DgBRl4elUWBi/IQGr2BaVTImowa64EYeseKFe+/qA9sUeLHIajTwB39PzINZYJYW8cNZSte6Bc+fqD9sRCixyKo08Ad/T83J2zD3Vw4jE1Rn2mOFhbyPMAs/E4dEhELsOZhzo48Zga635THBo6rO6oF7J3FuzRInIh7j7s5MxDHc7eG0eOobYeKFcYVndWLLSIHJS1RROHne5y1qEOntlKtlLTFAcW8srh0CGRA7K2i5/DTpaccaiDZ7aSnJx5WN3ZsUeL6B5KD781pIufR6uuwVl748jxOfOwurNjoUX0O6nZF5C05RgE7l4BaMGTjR9+s7Zwa0jRxGEn1+GKZ7YqffBCd40b0A7d9M2Rfe4aBgS3QJ+gFkqn5BZYaBH9n3xTmVRkAXcvcJ205VijJos2ZN5UQ4omHq2So+LcQcfB34UyOEeL6P/8dK6o+vUWAeScu9ag52vovKmGztUZN6Ad9iUNx4ZpA7EvaTg/QBVmq+vNOTPOHXQc/F0oxyEKrRUrViA4OBharRYRERE4ePBgnfGbN29Gt27doNVqERoaih07dljsF0Jg/vz5MBgM8Pb2RnR0NE6fPm0RU1RUhAkTJsDX1xd+fn5ISEhAaWmpRczRo0fx0EMPQavVIigoCIsWLbI6F1KWNV92KpWqlu0Ne+3GXIi6oUWTM04Cd0W8DNBdvBi74+DvQjmKF1qpqamYPXs2kpOTcejQIfTp0wcxMTG4fPlyjfEHDhxAXFwcEhIScPjwYcTGxiI2NhbHjx+XYhYtWoTly5dj5cqVyMrKgo+PD2JiYnDr1i0pZsKECcjNzUVaWhq2bduGvXv3IjExUdpfUlKCP/7xj2jfvj1ycnKwePFivPHGG/jkk0+syoWUY+2XXb/2LXBvTaVSAQ+2b9g8hsae5cOiyTmx5+C/eKab4+DvQjkqIcS9oyV2FRERgQEDBuDDDz8EAJjNZgQFBeGFF15AUlJStfhx48bhxo0b2LZtm7Rt4MCBCAsLw8qVKyGEQGBgIObMmYOXX34ZAGAymRAQEIA1a9Zg/PjxOHnyJHr06IHs7Gz0798fALBz506MGjUKly5dQmBgID766CP89a9/hdFohFqtBgAkJSXhq6++ws8//1yvXO6npKQEOp0OJpMJvr6+DWxBqkm+qQyDF2RUm+e0L2l4nYWLrecwpGZfqDZvikN6ru3A2UI8vSqr2vYN0wYismMrBTJSFv8GHAd/F7Zjzfe3opPhb9++jZycHMydO1fa5uHhgejoaGRmZtb4mMzMTMyePdtiW0xMDL766isAQF5eHoxGI6Kjo6X9Op0OERERyMzMxPjx45GZmQk/Pz+pyAKA6OhoeHh4ICsrC48//jgyMzMxdOhQqciqep2FCxfi2rVraNGixX1zuVd5eTnKy8ul+yUlJXU3EDVYQ5c7sPXp9Txd3/3wDFBL/BtwHPxdKEPRocPCwkJUVlYiICDAYntAQACMRmONjzEajXXGV/28X0ybNm0s9nt5eaFly5YWMTU9x+9f43653CslJQU6nU66BQUF1RhHjdeYbnJbD9lxCNC9cOHR6vg34Dj4u7A/Lu9gR3PnzrXoASspKWGxJRMud0BKYs8BEVVRtNDy9/eHp6cnCgoKLLYXFBRAr9fX+Bi9Xl9nfNXPgoICGAwGi5iwsDAp5t7J9nfu3EFRUZHF89T0Or9/jfvlci+NRgONRlPjPrI9ftmRklxx4VEisp6iQ4dqtRr9+vVDenq6tM1sNiM9PR2RkZE1PiYyMtIiHgDS0tKk+JCQEOj1eouYkpISZGVlSTGRkZEoLi5GTk6OFJORkQGz2YyIiAgpZu/evaioqLB4na5du6JFixb1yoWUx25yIiJSlFDYxo0bhUajEWvWrBEnTpwQiYmJws/PTxiNRiGEEBMnThRJSUlS/P79+4WXl5dYsmSJOHnypEhOThZNmjQRx44dk2IWLFgg/Pz8xNdffy2OHj0qxo4dK0JCQkRZWZkUM3LkSNG3b1+RlZUl9u3bJzp37izi4uKk/cXFxSIgIEBMnDhRHD9+XGzcuFE0bdpUfPzxx1blUheTySQACJPJ1OD2IyIiIvuy5vtb8UJLCCE++OAD0a5dO6FWq0V4eLj48ccfpX1RUVFi8uTJFvGbNm0SXbp0EWq1WvTs2VNs377dYr/ZbBbz5s0TAQEBQqPRiBEjRohTp05ZxFy9elXExcWJZs2aCV9fXxEfHy+uX79uEfPvf/9bDBkyRGg0GtG2bVuxYMGCarnfL5e6sNAiIiJyPtZ8fyu+jpY74zpaREREzsea72/FV4YnIiIiclUstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkouhFpd1d1VqxJSUlCmdCRERE9VX1vV2fNd9ZaCno+vXrAICgoCCFMyEiIiJrXb9+HTqdrs4YXoJHQWazGb/99huaN28OlUpl9eNLSkoQFBSEixcvuvUlfNgObAOAbVCF7cA2ANgGVeRqByEErl+/jsDAQHh41D0Liz1aCvLw8MADDzzQ6Ofx9fV16z+kKmwHtgHANqjCdmAbAGyDKnK0w/16sqpwMjwRERGRTFhoEREREcmEhZYT02g0SE5OhkajUToVRbEd2AYA26AK24FtALANqjhCO3AyPBEREZFM2KNFREREJBMWWkREREQyYaFFREREJBMWWkREREQyYaHl4FasWIHg4GBotVpERETg4MGDtcbm5ubiySefRHBwMFQqFZYtW2a/RGVkTRusWrUKDz30EFq0aIEWLVogOjq6znhnYk07bN26Ff3794efnx98fHwQFhaGL774wo7ZysOaNvi9jRs3QqVSITY2Vt4E7cSadlizZg1UKpXFTavV2jFbeVj7f6G4uBjTp0+HwWCARqNBly5dsGPHDjtlKw9r2mDYsGHV/h+oVCqMHj3ajhnLw9r/C8uWLUPXrl3h7e2NoKAgvPTSS7h165Z8CQpyWBs3bhRqtVp89tlnIjc3V0ybNk34+fmJgoKCGuMPHjwoXn75ZbFhwwah1+vF0qVL7ZuwDKxtg6efflqsWLFCHD58WJw8eVJMmTJF6HQ6cenSJTtnblvWtsPu3bvF1q1bxYkTJ8SZM2fEsmXLhKenp9i5c6edM7cda9ugSl5enmjbtq146KGHxNixY+2TrIysbYfVq1cLX19fkZ+fL92MRqOds7Yta9ugvLxc9O/fX4waNUrs27dP5OXliT179ogjR47YOXPbsbYNrl69avF/4Pjx48LT01OsXr3avonbmLXtsG7dOqHRaMS6detEXl6e+O6774TBYBAvvfSSbDmy0HJg4eHhYvr06dL9yspKERgYKFJSUu772Pbt27tEodWYNhBCiDt37ojmzZuLzz//XK4U7aKx7SCEEH379hWvv/66HOnZRUPa4M6dO2LQoEHi008/FZMnT3aJQsvadli9erXQ6XR2ys4+rG2Djz76SHTo0EHcvn3bXinKrrGfCUuXLhXNmzcXpaWlcqVoF9a2w/Tp08XDDz9ssW327Nli8ODBsuXIoUMHdfv2beTk5CA6Olra5uHhgejoaGRmZiqYmf3Yog1u3ryJiooKtGzZUq40ZdfYdhBCID09HadOncLQoUPlTFU2DW2Dt956C23atEFCQoI90pRdQ9uhtLQU7du3R1BQEMaOHYvc3Fx7pCuLhrTBN998g8jISEyfPh0BAQHo1asX3n33XVRWVtorbZuyxWfjP//5T4wfPx4+Pj5ypSm7hrTDoEGDkJOTIw0v/vLLL9ixYwdGjRolW568qLSDKiwsRGVlJQICAiy2BwQE4Oeff1YoK/uyRRu8+uqrCAwMtPhDdDYNbQeTyYS2bduivLwcnp6e+Mc//oE//OEPcqcri4a0wb59+/DPf/4TR44csUOG9tGQdujatSs+++wz9O7dGyaTCUuWLMGgQYOQm5trk4va21tD2uCXX35BRkYGJkyYgB07duDMmTN4/vnnUVFRgeTkZHukbVON/Ww8ePAgjh8/jn/+859ypWgXDWmHp59+GoWFhRgyZAiEELhz5w6ee+45vPbaa7LlyUKLXNaCBQuwceNG7NmzxyUm/1qrefPmOHLkCEpLS5Geno7Zs2ejQ4cOGDZsmNKpye769euYOHEiVq1aBX9/f6XTUVRkZCQiIyOl+4MGDUL37t3x8ccf4+2331YwM/sxm81o06YNPvnkE3h6eqJfv3749ddfsXjxYqcstBrrn//8J0JDQxEeHq50Kna3Z88evPvuu/jHP/6BiIgInDlzBi+++CLefvttzJs3T5bXZKHloPz9/eHp6YmCggKL7QUFBdDr9QplZV+NaYMlS5ZgwYIF+P7779G7d28505RdQ9vBw8MDnTp1AgCEhYXh5MmTSElJccpCy9o2OHv2LM6dO4cxY8ZI28xmMwDAy8sLp06dQseOHeVNWga2+Fxo0qQJ+vbtizNnzsiRouwa0gYGgwFNmjSBp6entK179+4wGo24ffs21Gq1rDnbWmP+H9y4cQMbN27EW2+9JWeKdtGQdpg3bx4mTpyIqVOnAgBCQ0Nx48YNJCYm4q9//Ss8PGw/o4pztByUWq1Gv379kJ6eLm0zm81IT0+3ODp1ZQ1tg0WLFuHtt9/Gzp070b9/f3ukKitb/V8wm80oLy+XI0XZWdsG3bp1w7Fjx3DkyBHp9thjj2H48OE4cuQIgoKC7Jm+zdji/0JlZSWOHTsGg8EgV5qyakgbDB48GGfOnJGKbQD4z3/+A4PB4HRFFtC4/webN29GeXk5nnnmGbnTlF1D2uHmzZvViqmqAlzIdeln2abZU6Nt3LhRaDQasWbNGnHixAmRmJgo/Pz8pFOzJ06cKJKSkqT48vJycfjwYXH48GFhMBjEyy+/LA4fPixOnz6t1FtoNGvbYMGCBUKtVosvv/zS4lTm69evK/UWbMLadnj33XfFrl27xNmzZ8WJEyfEkiVLhJeXl1i1apVSb6HRrG2De7nKWYfWtsObb74pvvvuO3H27FmRk5Mjxo8fL7RarcjNzVXqLTSatW1w4cIF0bx5czFjxgxx6tQpsW3bNtGmTRvxzjvvKPUWGq2hfw9DhgwR48aNs3e6srG2HZKTk0Xz5s3Fhg0bxC+//CJ27dolOnbsKJ566inZcmSh5eA++OAD0a5dO6FWq0V4eLj48ccfpX1RUVFi8uTJ0v28vDwBoNotKirK/onbkDVt0L59+xrbIDk52f6J25g17fDXv/5VdOrUSWi1WtGiRQsRGRkpNm7cqEDWtmVNG9zLVQotIaxrh1mzZkmxAQEBYtSoUeLQoUMKZG1b1v5fOHDggIiIiBAajUZ06NBB/O1vfxN37tyxc9a2ZW0b/PzzzwKA2LVrl50zlZc17VBRUSHeeOMN0bFjR6HVakVQUJB4/vnnxbVr12TLTyWEXH1lRERERO6Nc7SIiIiIZMJCi4iIiEgmLLSIiIiIZMJCi4iIiEgmLLSIiIiIZMJCi4iIiEgmLLSIiIiIZMJCi4jITUyZMgWxsbFKp0HkVlhoEZHipkyZApVKJd1atWqFkSNH4ujRo0qnZhO/f29VtyFDhsj2eufOnYNKpcKRI0cstv/973/HmjVrZHtdIqqOhRYROYSRI0ciPz8f+fn5SE9Ph5eXFx599FGl07KZ1atXS+8vPz8f33zzTY1xFRUVsuWg0+ng5+cn2/MTUXUstIjIIWg0Guj1euj1eoSFhSEpKQkXL17ElStX8PDDD2PGjBkW8VeuXIFarUZ6ejoAIDg4GG+//Tbi4uLg4+ODtm3bYsWKFRaPef/99xEaGgofHx8EBQXh+eefR2lpqbT//PnzGDNmDFq0aAEfHx/07NkTO3bsAABcu3YNEyZMQOvWreHt7Y3OnTtj9erV9X5/fn5+0vvT6/Vo2bKl1POUmpqKqKgoaLVarFu3DlevXkVcXBzatm2Lpk2bIjQ0FBs2bLB4PrPZjEWLFqFTp07QaDRo164d/va3vwEAQkJCAAB9+/aFSqXCsGHDAFQfOiwvL8fMmTPRpk0baLVaDBkyBNnZ2dL+PXv2QKVSIT09Hf3790fTpk0xaNAgnDp1qt7vm8jdsdAiIodTWlqKtWvXolOnTmjVqhWmTp2K9evXo7y8XIpZu3Yt2rZti4cffljatnjxYvTp0weHDx9GUlISXnzxRaSlpUn7PTw8sHz5cuTm5uLzzz9HRkYGXnnlFWn/9OnTUV5ejr179+LYsWNYuHAhmjVrBgCYN28eTpw4gW+//RYnT57ERx99BH9/f5u836pcT548iZiYGNy6dQv9+vXD9u3bcfz4cSQmJmLixIk4ePCg9Ji5c+diwYIFUl7r169HQEAAAEhx33//PfLz87F169YaX/eVV17Bli1b8Pnnn+PQoUPo1KkTYmJiUFRUZBH317/+Fe+99x5++ukneHl54X/+539s8r6J3IJsl6smIqqnyZMnC09PT+Hj4yN8fHwEAGEwGEROTo4QQoiysjLRokULkZqaKj2md+/e4o033pDut2/fXowcOdLieceNGyceeeSRWl938+bNolWrVtL90NBQi+f8vTFjxoj4+PgGvT8AQqvVSu/Px8dH/O///q/Iy8sTAMSyZcvu+xyjR48Wc+bMEUIIUVJSIjQajVi1alWNsVXPe/jwYYvtkydPFmPHjhVCCFFaWiqaNGki1q1bJ+2/ffu2CAwMFIsWLRJCCLF7924BQHz//fdSzPbt2wUAUVZWZk0TELkt9mgRkUMYPnw4jhw5giNHjuDgwYOIiYnBI488gvPnz0Or1WLixIn47LPPAACHDh3C8ePHMWXKFIvniIyMrHb/5MmT0v3vv/8eI0aMQNu2bdG8eXNMnDgRV69exc2bNwEAM2fOxDvvvIPBgwcjOTnZYjL+n//8Z2zcuBFhYWF45ZVXcODAAave39KlS6X3d+TIEfzhD3+Q9vXv398itrKyEm+//TZCQ0PRsmVLNGvWDN999x0uXLgAADh58iTKy8sxYsQIq3L4vbNnz6KiogKDBw+WtjVp0gTh4eEWbQYAvXv3lv5tMBgAAJcvX27waxO5ExZaROQQfHx80KlTJ3Tq1AkDBgzAp59+ihs3bmDVqlUAgKlTpyItLQ2XLl3C6tWr8fDDD6N9+/b1fv5z587h0UcfRe/evbFlyxbk5ORIc7hu374tvcYvv/yCiRMn4tixY+jfvz8++OADAJCKvpdeegm//fYbRowYgZdffrner6/X66X316lTJ/j4+Fi8999bvHgx/v73v+PVV1/F7t27ceTIEcTExEh5ent71/t1baFJkybSv1UqFYC7c8SI6P5YaBGRQ1KpVPDw8EBZWRkAIDQ0FP3798eqVauwfv36GucJ/fjjj9Xud+/eHQCQk5MDs9mM9957DwMHDkSXLl3w22+/VXuOoKAgPPfcc9i6dSvmzJkjFXoA0Lp1a0yePBlr167FsmXL8Mknn9jyLUv279+PsWPH4plnnkGfPn3QoUMH/Oc//5H2d+7cGd7e3tKJAPdSq9UA7vaM1aZjx45Qq9XYv3+/tK2iogLZ2dno0aOHjd4JEXkpnQAREXD3DDij0Qjg7hl+H374IUpLSzFmzBgpZurUqZgxYwZ8fHzw+OOPV3uO/fv3Y9GiRYiNjUVaWho2b96M7du3AwA6deqEiooKfPDBBxgzZgz279+PlStXWjx+1qxZeOSRR9ClSxdcu3YNu3fvlgq1+fPno1+/fujZsyfKy8uxbds2aZ+tde7cGV9++SUOHDiAFi1a4P3330dBQYFUAGm1Wrz66qt45ZVXoFarMXjwYFy5cgW5ublISEhAmzZt4O3tjZ07d+KBBx6AVquFTqezeA0fHx/8+c9/xl/+8he0bNkS7dq1w6JFi3Dz5k0kJCTI8r6I3BF7tIjIIezcuRMGgwEGgwERERHIzs7G5s2bpaUJACAuLg5eXl6Ii4uDVqut9hxz5szBTz/9hL59++Kdd97B+++/j5iYGABAnz598P7772PhwoXo1asX1q1bh5SUFIvHV1ZWYvr06ejevTtGjhyJLl264B//+AeAu71Ec+fORe/evTF06FB4enpi48aNsrTF66+/jgcffBAxMTEYNmwY9Hp9tRXd582bhzlz5mD+/Pno3r07xo0bJ82b8vLywvLly/Hxxx8jMDAQY8eOrfF1FixYgCeffBITJ07Egw8+iDNnzuC7775DixYtZHlfRO5IJYQQSidBRFQf586dQ8eOHZGdnY0HH3zQYl9wcDBmzZqFWbNmKZMcEVENOHRIRA6voqICV69exeuvv46BAwdWK7KIiBwVhw6JyOHt378fBoMB2dnZ1eZVKe3dd99Fs2bNarw98sgjSqdHRArj0CERUSMUFRVVW0m9ire3N9q2bWvnjIjIkbDQIiIiIpIJhw6JiIiIZMJCi4iIiEgmLLSIiIiIZMJCi4iIiEgmLLSIiIiIZMJCi4iIiEgmLLSIiIiIZMJCi4iIiEgm/x/PjL46lVpGbQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_48.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU30lEQVR4nO3de1wU9f4/8NcuuLuIsqgIC4aCt7yhmAqi5iUpNDLJzknJ4+1odNGjRp3SjoqVhZmVaaaleTlpSZbfjplZBnp8qISIUl7Q1DA0WRSJxQuCsp/fH/6c48pFdmB39vJ6Ph770J15z8znM8vuvOczn/mMSgghQERERERWUStdACIiIiJnxCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIXNrcuXOhUqlqFatSqTB37lyblmfgwIEYOHCgw66PiGqPSRQR2cWaNWugUqmkl6enJ1q0aIHx48fjjz/+ULp4DickJMRif/n7++P+++/H//3f/9XL+q9evYq5c+di586d9bI+InfEJIqI7Oq1117Dp59+iuXLl2Po0KFYt24dBgwYgGvXrtlke7NmzUJpaalN1m1r4eHh+PTTT/Hpp5/ixRdfxLlz5zBixAgsX768zuu+evUqXn31VSZRRHXgqXQBiMi9DB06FD179gQATJo0CX5+fnjrrbewefNmPPHEE/W+PU9PT3h6OudPXYsWLfC3v/1Nej927Fi0bdsW7733Hp555hkFS0ZEAFuiiEhh999/PwDg1KlTFtOPHTuGv/zlL2jatCl0Oh169uyJzZs3W8Rcv34dr776Ktq1awedTodmzZqhX79+2L59uxRTVZ+osrIyPP/882jevDkaN26MRx99FGfPnq1UtvHjxyMkJKTS9KrWuXr1ajzwwAPw9/eHVqtFp06dsGzZMqv2xd0YDAZ07NgRubm5NcadP38eEydOREBAAHQ6Hbp164a1a9dK80+fPo3mzZsDAF599VXpkqGt+4MRuRrnPD0jIpdx+vRpAECTJk2kaUeOHEHfvn3RokULzJgxA97e3vjiiy8QFxeHr776Co899hiAm8lMcnIyJk2ahIiICJSUlGD//v04cOAAHnzwwWq3OWnSJKxbtw5PPvkk+vTpg7S0NMTGxtapHsuWLUPnzp3x6KOPwtPTE9988w2ee+45mM1mTJ48uU7rvuX69es4c+YMmjVrVm1MaWkpBg4ciJMnT2LKlCkIDQ3Fxo0bMX78eBQXF2PatGlo3rw5li1bhmeffRaPPfYYRowYAQDo2rVrvZSTyG0IIiI7WL16tQAgfvzxR3HhwgVx5swZ8eWXX4rmzZsLrVYrzpw5I8UOHjxYhIWFiWvXrknTzGaz6NOnj2jXrp00rVu3biI2NrbG7SYlJYnbf+qys7MFAPHcc89ZxD355JMCgEhKSpKmjRs3TrRq1equ6xRCiKtXr1aKi4mJEa1bt7aYNmDAADFgwIAayyyEEK1atRIPPfSQuHDhgrhw4YL4+eefxahRowQA8Y9//KPa9S1atEgAEOvWrZOmlZeXi6ioKNGoUSNRUlIihBDiwoULlepLRNbh5Twisqvo6Gg0b94cwcHB+Mtf/gJvb29s3rwZ99xzDwCgqKgIaWlpeOKJJ3Dp0iUUFhaisLAQFy9eRExMDE6cOCHdzefr64sjR47gxIkTtd7+1q1bAQBTp061mD59+vQ61cvLy0v6v8lkQmFhIQYMGIDffvsNJpNJ1jp/+OEHNG/eHM2bN0e3bt2wceNGjBkzBm+99Va1y2zduhUGgwHx8fHStAYNGmDq1Km4fPky/vvf/8oqCxFVxst5RGRXS5cuRfv27WEymbBq1Srs2rULWq1Wmn/y5EkIITB79mzMnj27ynWcP38eLVq0wGuvvYbhw4ejffv26NKlC4YMGYIxY8bUeFnq999/h1qtRps2bSym33vvvXWq1549e5CUlIT09HRcvXrVYp7JZIJer7d6nZGRkZg3bx5UKhUaNmyIjh07wtfXt8Zlfv/9d7Rr1w5qteU5cseOHaX5RFQ/mEQRkV1FRERId+fFxcWhX79+ePLJJ3H8+HE0atQIZrMZAPDiiy8iJiamynW0bdsWANC/f3+cOnUK//nPf/DDDz9g5cqVeO+997B8+XJMmjSpzmWtbpDOiooKi/enTp3C4MGD0aFDB7z77rsIDg6GRqPB1q1b8d5770l1spafnx+io6NlLUtEtsckiogU4+HhgeTkZAwaNAgffPABZsyYgdatWwO4eQmqNglE06ZNMWHCBEyYMAGXL19G//79MXfu3GqTqFatWsFsNuPUqVMWrU/Hjx+vFNukSRMUFxdXmn5na84333yDsrIybN68GS1btpSm79ix467lr2+tWrXCL7/8ArPZbNEadezYMWk+UH2CSES1xz5RRKSogQMHIiIiAosWLcK1a9fg7++PgQMH4qOPPkJ+fn6l+AsXLkj/v3jxosW8Ro0aoW3btigrK6t2e0OHDgUALF682GL6okWLKsW2adMGJpMJv/zyizQtPz+/0qjhHh4eAAAhhDTNZDJh9erV1ZbDVh5++GEYjUakpKRI027cuIElS5agUaNGGDBgAACgYcOGAFBlkkhEtcOWKCJS3D//+U/89a9/xZo1a/DMM89g6dKl6NevH8LCwvDUU0+hdevWKCgoQHp6Os6ePYuff/4ZANCpUycMHDgQPXr0QNOmTbF//358+eWXmDJlSrXbCg8PR3x8PD788EOYTCb06dMHqampOHnyZKXYUaNG4eWXX8Zjjz2GqVOn4urVq1i2bBnat2+PAwcOSHEPPfQQNBoNhg0bhqeffhqXL1/GihUr4O/vX2UiaEsJCQn46KOPMH78eGRlZSEkJARffvkl9uzZg0WLFqFx48YAbnaE79SpE1JSUtC+fXs0bdoUXbp0QZcuXexaXiKnpvTtgUTkHm4NcZCZmVlpXkVFhWjTpo1o06aNuHHjhhBCiFOnTomxY8cKg8EgGjRoIFq0aCEeeeQR8eWXX0rLzZs3T0RERAhfX1/h5eUlOnToIN544w1RXl4uxVQ1HEFpaamYOnWqaNasmfD29hbDhg0TZ86cqfKW/x9++EF06dJFaDQace+994p169ZVuc7NmzeLrl27Cp1OJ0JCQsRbb70lVq1aJQCI3NxcKc6aIQ7uNnxDdesrKCgQEyZMEH5+fkKj0YiwsDCxevXqSsvu3btX9OjRQ2g0Gg53QCSDSojb2p+JiIiIqFbYJ4qIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAMH27Qhs9mMc+fOoXHjxnzEAhERkZMQQuDSpUsICgqq9DDv2zGJsqFz584hODhY6WIQERGRDGfOnME999xT7XwmUTZ06/EKZ86cgY+Pj8KlISIiotooKSlBcHCwdByvDpMoG7p1Cc/Hx4dJFBERkZO5W1ccdiwnIiIikoFJFBEREZEMTKKIiIiIZFA8iVq6dClCQkKg0+kQGRmJffv21Ri/ceNGdOjQATqdDmFhYdi6davFfCEE5syZg8DAQHh5eSE6OhonTpywiHnjjTfQp08fNGzYEL6+vpW28fPPPyM+Ph7BwcHw8vJCx44d8f7779e5rlWpqKjAtWvX+LLiZTabbfJZEBERWUPRjuUpKSlITEzE8uXLERkZiUWLFiEmJgbHjx+Hv79/pfi9e/ciPj4eycnJeOSRR/DZZ58hLi4OBw4cQJcuXQAACxYswOLFi7F27VqEhoZi9uzZiImJwdGjR6HT6QAA5eXl+Otf/4qoqCh88sknlbaTlZUFf39/rFu3DsHBwdi7dy8SEhLg4eGBKVOm1EvdhRAwGo0oLi6ul/W5E7VajdDQUGg0GqWLQkREbkwlhBBKbTwyMhK9evXCBx98AODm4JTBwcH4xz/+gRkzZlSKHzlyJK5cuYItW7ZI03r37o3w8HAsX74cQggEBQXhhRdewIsvvggAMJlMCAgIwJo1azBq1CiL9a1ZswbTp0+vVSIzefJk5OTkIC0trdb1KykpgV6vh8lkqnR3Xn5+PoqLi+Hv74+GDRtyMM5aujWAaYMGDdCyZUvuNyIiqnc1Hb9vp1hLVHl5ObKysjBz5kxpmlqtRnR0NNLT06tcJj09HYmJiRbTYmJi8PXXXwMAcnNzYTQaER0dLc3X6/WIjIxEenp6pSTKGiaTCU2bNq0xpqysDGVlZdL7kpKSKuMqKiqkBKpZs2ayy+SumjdvjnPnzuHGjRto0KCB0sUhIiI3pVifqMLCQlRUVCAgIMBiekBAAIxGY5XLGI3GGuNv/WvNOmtj7969SElJQUJCQo1xycnJ0Ov10qu60cqvX78OAGjYsKHsMrmzW5fxKioqFC4JERG5M8U7lju6w4cPY/jw4UhKSsJDDz1UY+zMmTNhMpmk15kzZ2qM56UoebjfiIjIESiWRPn5+cHDwwMFBQUW0wsKCmAwGKpcxmAw1Bh/619r1lmTo0ePYvDgwUhISMCsWbPuGq/VaqXRyTlKORERkWtTLInSaDTo0aMHUlNTpWlmsxmpqamIioqqcpmoqCiLeADYvn27FB8aGgqDwWARU1JSgoyMjGrXWZ0jR45g0KBBGDduHN544w2rliUiIiLXp+jlvMTERKxYsQJr165FTk4Onn32WVy5cgUTJkwAAIwdO9ai4/m0adOwbds2vPPOOzh27Bjmzp2L/fv3S8MOqFQqTJ8+HfPmzcPmzZtx6NAhjB07FkFBQYiLi5PWk5eXh+zsbOTl5aGiogLZ2dnIzs7G5cuXAdy8hDdo0CA89NBDSExMhNFohNFoxIULF+y3cxzU+PHjLfblLTt37oRKpUJxcTF27tyJ4cOHIzAwEN7e3ggPD8f69esrLVNUVITp06ejVatW0Gg0CAoKwt///nfk5eXZoSZEROQo8k2l2HuqEPmmUqWLYhVFx4kaOXIkLly4gDlz5sBoNCI8PBzbtm2TOobn5eVBrf5fntenTx989tlnmDVrFl555RW0a9cOX3/9tTRGFAC89NJLuHLlChISElBcXIx+/fph27Zt0hhRADBnzhysXbtWet+9e3cAwI4dOzBw4EB8+eWXuHDhAtatW4d169ZJca1atcLp06dttTtcxt69e9G1a1e8/PLLCAgIwJYtWzB27Fjo9Xo88sgjAG4mUL1794ZGo8Hy5cvRuXNnnD59GrNmzUKvXr2Qnp6O1q1bK1wTIiKytZTMPMzcdAhmAahVQPKIMIzs1VLpYtWKouNEubrqxpm4du0acnNzERoaapHcOYPx48ejuLhYGlbilp07d2LQoEH4888/qxwFPjY2FgEBAVi1ahUA4Nlnn8Wnn36KkydPWvRXKy0tRbt27RAWFobvvvuuyjI48/4jIqL/yTeVou/8NJhvy0Q8VCrsnjEIgXovxcpV23GieHeeC3CGZtDbx9kym83YsGEDRo8eXanDv5eXF5577jl8//33KCoqUqKoRERkJ7mFVywSKACoEAKnC68qUyArKXo5j+pOiWbQLVu2oFGjRhbTahqz6YsvvkBmZiY++ugjAMCFCxdQXFyMjh07VhnfsWNHCCFw8uRJRERE1F/BiYjIoYT6eUOtQqWWqBA/5xhHkS1RTizfVColUMDNP8JXNh22eYvUoEGDpM74t14rV66sMnbHjh2YMGECVqxYgc6dO1vM45VkIiL3Fqj3QvKIMHj8//H/PFQqvDmii6KX8qzBlignVlMzqC3/AL29vdG2bVuLaWfPnq0U99///hfDhg3De++9h7Fjx0rTmzdvDl9fX+Tk5FS5/pycHKhUqkrbICIi1zOyV0v0b98cpwuvIsSvodMkUABbopzarWbQ2zlKM+jOnTsRGxuLt956q9LjctRqNZ544gl89tlnlR7HU1paig8//BAxMTF3fVYhERG5hkC9F6LaNHOqBApgEuXUHLUZdMeOHYiNjcXUqVPx+OOPS+Ns3d5R/M0334TBYMCDDz6I7777DmfOnMGuXbsQExOD69evY+nSpQrWgIiI6O54Oc/JOWIz6Nq1a3H16lUkJycjOTlZmj5gwADs3LkTANCsWTP89NNPeO211/D000/DaDSiadOmGDp0KNatW4eWLZ1jjBAiInJfHCfKhlxxnChHwP1HRES2xHGiiIiIiGyISRQRERGRDEyiiIiIiGRgEkVEREQkA5MoBbFPvzzcb0RE5AiYRCmgQYMGAICrV53jAYuOpry8HADg4eGhcEmIiMidcZwoBXh4eMDX1xfnz58HADRs2BAqleouSxEAmM1mXLhwAQ0bNoSnJ/98iYhIOTwKKcRgMACAlEhR7anVarRs2ZKJJxERKYpJlEJUKhUCAwPh7++P69evK10cp6LRaKBW80o0EREpi0mUwjw8PNi3h4iIyAnxdJ6IiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQyKJ1FLly5FSEgIdDodIiMjsW/fvhrjN27ciA4dOkCn0yEsLAxbt261mC+EwJw5cxAYGAgvLy9ER0fjxIkTFjFvvPEG+vTpg4YNG8LX17fK7eTl5SE2NhYNGzaEv78//vnPf+LGjRt1qisRERG5DkWTqJSUFCQmJiIpKQkHDhxAt27dEBMTg/Pnz1cZv3fvXsTHx2PixIk4ePAg4uLiEBcXh8OHD0sxCxYswOLFi7F8+XJkZGTA29sbMTExuHbtmhRTXl6Ov/71r3j22Wer3E5FRQViY2NRXl6OvXv3Yu3atVizZg3mzJlTvzuAiIiInJdQUEREhJg8ebL0vqKiQgQFBYnk5OQq45944gkRGxtrMS0yMlI8/fTTQgghzGazMBgM4u2335bmFxcXC61WKz7//PNK61u9erXQ6/WVpm/dulWo1WphNBqlacuWLRM+Pj6irKys1vUzmUwCgDCZTLVehoiIiJRV2+O3Yi1R5eXlyMrKQnR0tDRNrVYjOjoa6enpVS6Tnp5uEQ8AMTExUnxubi6MRqNFjF6vR2RkZLXrrG47YWFhCAgIsNhOSUkJjhw5Uu1yZWVlKCkpsXgRERGRa1IsiSosLERFRYVFogIAAQEBMBqNVS5jNBprjL/1rzXrtGY7t2+jKsnJydDr9dIrODi41tskIiIi56J4x3JXMnPmTJhMJul15swZpYtERERENqJYEuXn5wcPDw8UFBRYTC8oKIDBYKhyGYPBUGP8rX+tWac127l9G1XRarXw8fGxeBEREZFrUiyJ0mg06NGjB1JTU6VpZrMZqampiIqKqnKZqKgoi3gA2L59uxQfGhoKg8FgEVNSUoKMjIxq11nddg4dOmRxl+D27dvh4+ODTp061Xo9RERE5Lo8ldx4YmIixo0bh549eyIiIgKLFi3ClStXMGHCBADA2LFj0aJFCyQnJwMApk2bhgEDBuCdd95BbGwsNmzYgP379+Pjjz8GAKhUKkyfPh3z5s1Du3btEBoaitmzZyMoKAhxcXHSdvPy8lBUVIS8vDxUVFQgOzsbANC2bVs0atQIDz30EDp16oQxY8ZgwYIFMBqNmDVrFiZPngytVmvXfUREREQOyk53C1ZryZIlomXLlkKj0YiIiAjx008/SfMGDBggxo0bZxH/xRdfiPbt2wuNRiM6d+4svv32W4v5ZrNZzJ49WwQEBAitVisGDx4sjh8/bhEzbtw4AaDSa8eOHVLM6dOnxdChQ4WXl5fw8/MTL7zwgrh+/bpVdeMQB0RERM6ntsdvlRBCKJjDubSSkhLo9XqYTCb2jyIiInIStT1+8+48IiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRQPIlaunQpQkJCoNPpEBkZiX379tUYv3HjRnTo0AE6nQ5hYWHYunWrxXwhBObMmYPAwEB4eXkhOjoaJ06csIgpKirC6NGj4ePjA19fX0ycOBGXL1+2iPn+++/Ru3dvNG7cGM2bN8fjjz+O06dP10udiYiIyPkpmkSlpKQgMTERSUlJOHDgALp164aYmBicP3++yvi9e/ciPj4eEydOxMGDBxEXF4e4uDgcPnxYilmwYAEWL16M5cuXIyMjA97e3oiJicG1a9ekmNGjR+PIkSPYvn07tmzZgl27diEhIUGan5ubi+HDh+OBBx5AdnY2vv/+exQWFmLEiBG22xlERETkXISCIiIixOTJk6X3FRUVIigoSCQnJ1cZ/8QTT4jY2FiLaZGRkeLpp58WQghhNpuFwWAQb7/9tjS/uLhYaLVa8fnnnwshhDh69KgAIDIzM6WY7777TqhUKvHHH38IIYTYuHGj8PT0FBUVFVLM5s2bhUqlEuXl5bWun8lkEgCEyWSq9TJERESkrNoevxVriSovL0dWVhaio6OlaWq1GtHR0UhPT69ymfT0dIt4AIiJiZHic3NzYTQaLWL0ej0iIyOlmPT0dPj6+qJnz55STHR0NNRqNTIyMgAAPXr0gFqtxurVq1FRUQGTyYRPP/0U0dHRaNCgQbV1KisrQ0lJicWLiIiIXJNiSVRhYSEqKioQEBBgMT0gIABGo7HKZYxGY43xt/69W4y/v7/FfE9PTzRt2lSKCQ0NxQ8//IBXXnkFWq0Wvr6+OHv2LL744osa65ScnAy9Xi+9goODa4wnIiIi56V4x3JHZDQa8dRTT2HcuHHIzMzEf//7X2g0GvzlL3+BEKLa5WbOnAmTySS9zpw5Y8dSExERkT15KrVhPz8/eHh4oKCgwGJ6QUEBDAZDlcsYDIYa42/9W1BQgMDAQIuY8PBwKebOjus3btxAUVGRtPzSpUuh1+uxYMECKWbdunUIDg5GRkYGevfuXWX5tFottFrt3apORERELkCxliiNRoMePXogNTVVmmY2m5GamoqoqKgql4mKirKIB4Dt27dL8aGhoTAYDBYxJSUlyMjIkGKioqJQXFyMrKwsKSYtLQ1msxmRkZEAgKtXr0Ktttw1Hh4eUhmJiIiIFL07b8OGDUKr1Yo1a9aIo0ePioSEBOHr6yuMRqMQQogxY8aIGTNmSPF79uwRnp6eYuHChSInJ0ckJSWJBg0aiEOHDkkx8+fPF76+vuI///mP+OWXX8Tw4cNFaGioKC0tlWKGDBkiunfvLjIyMsTu3btFu3btRHx8vDQ/NTVVqFQq8eqrr4pff/1VZGVliZiYGNGqVStx9erVWtePd+cRERE5n9oevxVNooQQYsmSJaJly5ZCo9GIiIgI8dNPP0nzBgwYIMaNG2cR/8UXX4j27dsLjUYjOnfuLL799luL+WazWcyePVsEBAQIrVYrBg8eLI4fP24Rc/HiRREfHy8aNWokfHx8xIQJE8SlS5csYj7//HPRvXt34e3tLZo3by4effRRkZOTY1XdmEQRERE5n9oev1VC1NBTmuqkpKQEer0eJpMJPj4+SheHiIhIMfmmUuQWXkGonzcC9V5KF6dGtT1+K9axnIiIiNxDSmYeZm46BLMA1CogeUQYRvZqqXSx6oxDHBAREZHN5JtKpQQKAMwCeGXTYeSbSpUtWD1gEkVEREQ2k1t4RUqgbqkQAqcLrypToHrEJIqIiIhsJtTPG2qV5TQPlQohfg2VKVA9YhJFRERENhOo90LyiDB4qG5mUh4qFd4c0cXhO5fXBjuWExERkU2N7NUS/ds3x+nCqwjxa+gSCRTAJIqIiIjsIFDv5TLJ0y28nEdEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGTzlLlhcXIyTJ08CANq2bQtfX9/6KhMRERGRw7O6Jer06dOIjY2Fn58fIiMjERkZCT8/PzzyyCM4ffq0DYpIRERE5Hisaok6c+YMevfujQYNGuD1119Hx44dAQBHjx7FsmXLEBUVhczMTNxzzz02KSwRERGRo1AJIURtgydOnIiTJ0/i+++/h06ns5hXWlqKIUOGoF27dli5cmW9F9QZlZSUQK/Xw2QywcfHR+niEBERUS3U9vhtVUvUtm3bkJKSUimBAgAvLy+8/vrrGDVqlPWlJSIiInIyVvWJKiwsREhISLXzW7dujaKiIqsKsHTpUoSEhECn0yEyMhL79u2rMX7jxo3o0KEDdDodwsLCsHXrVov5QgjMmTMHgYGB8PLyQnR0NE6cOGERU1RUhNGjR8PHxwe+vr6YOHEiLl++XGk9CxcuRPv27aHVatGiRQu88cYbVtWNiIiIXJdVSVRgYCCOHj1a7fzDhw/DYDDUen0pKSlITExEUlISDhw4gG7duiEmJgbnz5+vMn7v3r2Ij4/HxIkTcfDgQcTFxSEuLg6HDx+WYhYsWIDFixdj+fLlyMjIgLe3N2JiYnDt2jUpZvTo0Thy5Ai2b9+OLVu2YNeuXUhISLDY1rRp07By5UosXLgQx44dw+bNmxEREVHruhEREZGLE1aYNm2aCAsLE+fPn680r6CgQHTt2lVMmzat1uuLiIgQkydPlt5XVFSIoKAgkZycXGX8E088IWJjYy2mRUZGiqeffloIIYTZbBYGg0G8/fbb0vzi4mKh1WrF559/LoQQ4ujRowKAyMzMlGK+++47oVKpxB9//CHFeHp6imPHjtW6LlUxmUwCgDCZTHVaDxEREdlPbY/fVrVEJSUl4dq1a2jTpg2ee+45LF68GO+//z6eeeYZtG3bFqWlpZgzZ06t1lVeXo6srCxER0dL09RqNaKjo5Genl7lMunp6RbxABATEyPF5+bmwmg0WsTo9XpERkZKMenp6fD19UXPnj2lmOjoaKjVamRkZAAAvvnmG7Ru3RpbtmxBaGgoQkJCMGnSpLteqiwrK0NJSYnFi4iIiFyTVR3LmzRpgoyMDLzyyivYsGEDiouLAQC+vr548skn8eabb6Jp06a1WldhYSEqKioQEBBgMT0gIADHjh2rchmj0VhlvNFolObfmlZTjL+/v8V8T09PNG3aVIr57bff8Pvvv2Pjxo3497//jYqKCjz//PP4y1/+grS0tGrrlJycjFdfffVuVSciIiIXYPWI5U2aNMGyZcvw4Ycf4sKFCwCA5s2bQ6VS1XvhlGI2m1FWVoZ///vfaN++PQDgk08+QY8ePXD8+HHce++9VS43c+ZMJCYmSu9LSkoQHBxslzITERGRfcl+dp5KpYK/vz/8/f1lJVB+fn7w8PBAQUGBxfSCgoJqO6cbDIYa42/9e7eYOzuu37hxA0VFRVJMYGAgPD09pQQKgDSwaF5eXrV10mq18PHxsXgRERGRa7I6idq6dSsmTZqEl156CTk5ORbz/vzzTzzwwAO1Wo9Go0GPHj2QmpoqTTObzUhNTUVUVFSVy0RFRVnEA8D27dul+NDQUBgMBouYkpISZGRkSDFRUVEoLi5GVlaWFJOWlgaz2YzIyEgAQN++fXHjxg2cOnVKivn1118BAK1atapV/YiIiMjFWdNbff369cLDw0PExsaKfv36CZ1OJ9atWyfNNxqNQq1W13p9GzZsEFqtVqxZs0YcPXpUJCQkCF9fX2E0GoUQQowZM0bMmDFDit+zZ4/w9PQUCxcuFDk5OSIpKUk0aNBAHDp0SIqZP3++8PX1Ff/5z3/EL7/8IoYPHy5CQ0NFaWmpFDNkyBDRvXt3kZGRIXbv3i3atWsn4uPjpfkVFRXivvvuE/379xcHDhwQ+/fvF5GRkeLBBx+0Znfx7jwiIiInVNvjt1VJVHh4uHj//fel9ykpKcLb21usXLlSCGF9EiWEEEuWLBEtW7YUGo1GREREiJ9++kmaN2DAADFu3DiL+C+++EK0b99eaDQa0blzZ/Htt99azDebzWL27NkiICBAaLVaMXjwYHH8+HGLmIsXL4r4+HjRqFEj4ePjIyZMmCAuXbpkEfPHH3+IESNGiEaNGomAgAAxfvx4cfHiRavqxiSKiIjI+dT2+G3Vs/MaNWqEQ4cOITQ0VJq2Y8cOPProo3j77bfx2GOPISgoCBUVFfXeYuaM+Ow8IiIi52OTZ+f5+PigoKDAIokaNGgQtmzZgkceeQRnz56VX2IiIiIiJ2JVx/KIiAh89913laYPGDAA33zzDRYtWlRf5SIiIiJyaFYlUc8//zx0Ol2V8wYOHIhvvvkGY8eOrZeCERERkfPJN5Vi76lC5JtKlS6KzVnVJ6q2jzFh/5+b2CeKiIjcSUpmHmZuOgSzANQqIHlEGEb2aql0saxmkz5Rvr6+tRpYkx3LiYiI3Eu+qVRKoADALIBXNh1G//bNEaj3UrZwNmJVErVjxw7p/0IIPPzww1i5ciVatGhR7wUjIiIi55FbeEVKoG6pEAKnC68yiQJudiC/nYeHB3r37o3WrVvXa6GIiIjIuYT6eUOtgkUi5aFSIcSvoXKFsjHZz84jIiIiuiVQ74XkEWHw+P/dfjxUKrw5oovLtkIBVrZEEREREVVnZK+W6N++OU4XXkWIX0OXTqCAekiiatPRnIiIiNxDoN7L5ZOnW6xKokaMGGHx/tq1a3jmmWfg7e1tMX3Tpk11LxnVq3xTKXILryDUz9tt/riJiIhsyaokSq/XW7z/29/+Vq+FIdtwlXE7iIiIHIlVg22SdRxhsM18Uyn6zk+rdLfE7hmD2CJFRERUhdoev3l3nouradwOIiIiko9JlIu7NW7H7Vx93A4iIiJ7YBLlYu588KM7jttBRERkDxwnyoVU14Hc3cbtICIisge2RLmI6h78eHuLVFSbZkygiIiI6gmTKBfBDuRERET2xSTKRbADORERkX0xiXIR7EBORERkX+xY7kLYgZyIiMh+mES5GHd68CMREZGSeDmPiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUEbmdfFMp9p4qRL6pVOmiEJET4wOIicitpGTmYeamQzALQK0CkkeEYWSvlkoXi4icEFuiiMht5JtKpQQKAMwCeGXTYbZIEZEsTKKIyG3kFl6REqhbKoTA6cKryhSIiJwakygichuhft5QqyyneahUCPFrqEyBiMipMYkiIrcRqPdC8ogweKhuZlIeKhXeHNEFgXovhUtGRM6IHcuJyK2M7NUS/ds3x+nCqwjxa8gEiohkYxJFRG4nUO/F5ImI6oyX84iIiIhkYBJFREREJAOTKCIiIiIZmEQRERERyeAQSdTSpUsREhICnU6HyMhI7Nu3r8b4jRs3okOHDtDpdAgLC8PWrVst5gshMGfOHAQGBsLLywvR0dE4ceKERUxRURFGjx4NHx8f+Pr6YuLEibh8+XKV2zt58iQaN24MX1/fOtWTiIjIXbniMysVT6JSUlKQmJiIpKQkHDhwAN26dUNMTAzOnz9fZfzevXsRHx+PiRMn4uDBg4iLi0NcXBwOHz4sxSxYsACLFy/G8uXLkZGRAW9vb8TExODatWtSzOjRo3HkyBFs374dW7Zswa5du5CQkFBpe9evX0d8fDzuv//++q88ERGRG0jJzEPf+Wl4ckUG+s5PQ0pmntJFqhcqIYS4e5jtREZGolevXvjggw8AAGazGcHBwfjHP/6BGTNmVIofOXIkrly5gi1btkjTevfujfDwcCxfvhxCCAQFBeGFF17Aiy++CAAwmUwICAjAmjVrMGrUKOTk5KBTp07IzMxEz549AQDbtm3Dww8/jLNnzyIoKEha98svv4xz585h8ODBmD59OoqLi2tdt5KSEuj1ephMJvj4+MjZPURERE4t31SKvvPTLB655KFSYfeMQQ471Ehtj9+KtkSVl5cjKysL0dHR0jS1Wo3o6Gikp6dXuUx6erpFPADExMRI8bm5uTAajRYxer0ekZGRUkx6ejp8fX2lBAoAoqOjoVarkZGRIU1LS0vDxo0bsXTp0rpXloiIyA258jMrFR1ss7CwEBUVFQgICLCYHhAQgGPHjlW5jNForDLeaDRK829NqynG39/fYr6npyeaNm0qxVy8eBHjx4/HunXrat2KVFZWhrKyMul9SUlJrZYjIiJyVbeeWXlnS5QrPLNS8T5Rjuqpp57Ck08+if79+9d6meTkZOj1eukVHBxswxISERE5Pld+ZqWiLVF+fn7w8PBAQUGBxfSCggIYDIYqlzEYDDXG3/q3oKAAgYGBFjHh4eFSzJ0d12/cuIGioiJp+bS0NGzevBkLFy4EcPOOP7PZDE9PT3z88cf4+9//XqlsM2fORGJiovS+pKSEiRQREbk9V31mpaItURqNBj169EBqaqo0zWw2IzU1FVFRUVUuExUVZREPANu3b5fiQ0NDYTAYLGJKSkqQkZEhxURFRaG4uBhZWVlSTFpaGsxmMyIjIwHc7DeVnZ0tvV577TU0btwY2dnZeOyxx6osm1arhY+Pj8WLiIiIbrZIRbVp5jIJFOAADyBOTEzEuHHj0LNnT0RERGDRokW4cuUKJkyYAAAYO3YsWrRogeTkZADAtGnTMGDAALzzzjuIjY3Fhg0bsH//fnz88ccAAJVKhenTp2PevHlo164dQkNDMXv2bAQFBSEuLg4A0LFjRwwZMgRPPfUUli9fjuvXr2PKlCkYNWqUdGdex44dLcq5f/9+qNVqdOnSxU57hoiIiByZ4knUyJEjceHCBcyZMwdGoxHh4eHYtm2b1DE8Ly8PavX/Gsz69OmDzz77DLNmzcIrr7yCdu3a4euvv7ZIbl566SVcuXIFCQkJKC4uRr9+/bBt2zbodDopZv369ZgyZQoGDx4MtVqNxx9/HIsXL7ZfxYmIiMipKT5OlCvjOFFERETOxynGiSIi1+WKj3hwF/zsiGpH8ct5ROR6UjLzMHPTIZgFoFYBySPCMLJXS6WLRbXAz46o9tgSRUT1Kt9UKh2EgZsD7L2y6TBbNZwAPzsi6zCJIqJ65cqPeHB1/OyIrMMkiojq1a1HPNzOFR7x4A79hFz1syOyFSZRRFSvXPERDymZeeg7Pw1PrshA3/lpSMnMU7pINuGKnx2RLXGIAxviEAfkzvJNpS7xiId8Uyn6zk+r9PDU3TMGOXW9auIqnx2RXLU9fvPuPCKyiUC9l0scgGvqJ+QK9auKq3x2tpJvKkVu4RWE+nlzP7k5JlFERDW41U/ozpYo9hNyTxwCgm7HPlFERDWwdz8hd+jA7qw4BATdiS1RRER3MbJXS/Rv39zm/YTYyuHY3PHSLtWMLVFERLUkYLv7cNjK4fg4BATdiUkUEdFd2GOIAw506fg4BATdiZfziIhqUF0LUf/2zaWDZ33crcUO7M7BXpd2yTkwiSIiqsHd+sHUVz+mW60cr2w6jAoh2MrhwDgEBN3CJIqIqAY1tRDVppXKGmzlIHIu7BNFRFSDmvrB2KIfU6DeC1FtmjGBInICbIkiIrqL6lqI2I+JyL2xJYqIqBaqaiGyxd1aHGyTyHmwJYqIqA7qsx8TB9skci5siSIiqqP66MfEwTaJnA+TKCIiB8DBNomcD5MoIgLAvjhK4yNFiJwPkyhyaDyw24c9HmtCNeMjRYicj0oIYbsnarq5kpIS6PV6mEwm+Pj4KF0cp8NOtvaRbypF3/lplW7T3z1jEA/gCsg3lXKwTSKF1fb4zZYockjsZGs/7IvjWDjYJpHzYBJFDokHdvthXxyqD7z0Tu6ISRQ5JB7Y7Yd9caiu2KeO3BX7RNkQ+0TVTUpmXqUn2rNPlO2wLw7JwT515Ipqe/zmiOVUrXxTKXILryDUz1uRH0M+0d6+AvVeiu9jpf/myHo1XXrnZ0iujkkUVclR7oxzhAM72Yej/M1Vhwle1fgQZnJn7BNFlfDOOLI3R/+bY5+f6rFPHbkztkRRJWyeJ3tz5L+56hK8/u2bK142R8FL7+SumERRJWyeJ3tz5L85R07wHAkvvZM74uU8qoTN82Rvjvw3x+E2iKg6HOLAhpx9iAPe8k725qh/cxxug8i91Pb4zSTKhpw9iSKi/3HUBI+I6h/HiSIikqG6oQzY54eI7sQkihwax+Yhe3L0saqIyLEwiSKHxQMa2ROHMrAdngyRq2ISRQ6JBzSyNw5lYBs8GSJXxiEOyCHVdEAjsgUOZVD/HH0kenJ8+aZS7D1V6LB/M0yiyCHxgEb25shjVTkrngxRXTjD45Z4OY8c0q0D2p1j8/CARrbEx5fUL0ceiZ4cm7N06WASRQ6LBzRSAocyqD88GSK5nKWPIpMocngCHA+WyFnxZIjkcJZWTCZR5LB4Vw+Ra2DrnmNzxCEonKUV0yE6li9duhQhISHQ6XSIjIzEvn37aozfuHEjOnToAJ1Oh7CwMGzdutVivhACc+bMQWBgILy8vBAdHY0TJ05YxBQVFWH06NHw8fGBr68vJk6ciMuXL0vzd+7cieHDhyMwMBDe3t4IDw/H+vXr66/SVCPe1UNEZHuO3Hl7ZK+W2D1jED5/qjd2zxjkkCfRiidRKSkpSExMRFJSEg4cOIBu3bohJiYG58+frzJ+7969iI+Px8SJE3Hw4EHExcUhLi4Ohw8flmIWLFiAxYsXY/ny5cjIyIC3tzdiYmJw7do1KWb06NE4cuQItm/fji1btmDXrl1ISEiw2E7Xrl3x1Vdf4ZdffsGECRMwduxYbNmyxXY7gyS8q4eIyLac4WQ1UO+FqDbNHK4F6hbFH0AcGRmJXr164YMPPgAAmM1mBAcH4x//+AdmzJhRKX7kyJG4cuWKRTLTu3dvhIeHY/ny5RBCICgoCC+88AJefPFFAIDJZEJAQADWrFmDUaNGIScnB506dUJmZiZ69uwJANi2bRsefvhhnD17FkFBQVWWNTY2FgEBAVi1alWt6sYHEMuXbypF3/lpla6H754xyGG/TEREzmTvqUI8uSKj0vTPn+qNqDbNFCiR46jt8VvRlqjy8nJkZWUhOjpamqZWqxEdHY309PQql0lPT7eIB4CYmBgpPjc3F0aj0SJGr9cjMjJSiklPT4evr6+UQAFAdHQ01Go1MjIq/0HdYjKZ0LRp02rnl5WVoaSkxOJF8nDMHiLlOPoAh1Q/OB5f3SnasbywsBAVFRUICAiwmB4QEIBjx45VuYzRaKwy3mg0SvNvTaspxt/f32K+p6cnmjZtKsXc6YsvvkBmZiY++uijauuTnJyMV199tdr5ZB3e1UO14YidYp0Zb+hwH87SeduR8e68WtixYwcmTJiAFStWoHPnztXGzZw5E4mJidL7kpISBAcH26OId+WsBxre1UM14QG/fjnLAIdUf3iyWjeKJlF+fn7w8PBAQUGBxfSCggIYDIYqlzEYDDXG3/q3oKAAgYGBFjHh4eFSzJ0d12/cuIGioqJK2/3vf/+LYcOG4b333sPYsWNrrI9Wq4VWq60xRgk80JAr4gG//jnLAIdUv3iyKp+ifaI0Gg169OiB1NRUaZrZbEZqaiqioqKqXCYqKsoiHgC2b98uxYeGhsJgMFjElJSUICMjQ4qJiopCcXExsrKypJi0tDSYzWZERkZK03bu3InY2Fi89dZbFnfuORNnuPuCSA7ewVn/2EeGyDqKD3GQmJiIFStWYO3atcjJycGzzz6LK1euYMKECQCAsWPHYubMmVL8tGnTsG3bNrzzzjs4duwY5s6di/3792PKlCkAAJVKhenTp2PevHnYvHkzDh06hLFjxyIoKAhxcXEAgI4dO2LIkCF46qmnsG/fPuzZswdTpkzBqFGjpDvzduzYgdjYWEydOhWPP/44jEYjjEYjioqK7LuD6ogHGnJVPODXP97QQWQdxftEjRw5EhcuXMCcOXNgNBoRHh6Obdu2SR3D8/LyoFb/L9fr06cPPvvsM8yaNQuvvPIK2rVrh6+//hpdunSRYl566SVcuXIFCQkJKC4uRr9+/bBt2zbodDopZv369ZgyZQoGDx4MtVqNxx9/HIsXL5bmr127FlevXkVycjKSk5Ol6QMGDMDOnTttuEfql7MMnU9kLXaKtQ32kSGqPcXHiXJljjJOVEpmXqUDDftEkavIN5XygE9E9aq2x2/FW6LI9nhmSa6MnWKdl7PeNUx0C5MoN8EDDRE5Eke/a5gJHtUGkyhSHH+siNyLow9P4egJHjkOJlGkKHv+WDFZI3IMjjwelaMnePbG382aMYkixdjzx4pnlkSOw5HvGnbkBM/e+Lt5d4qPE0Xuy15jWHHAUSLH4sjjUbny+GPWPFiav5u1w5YoUoy9zkZ5ZknkeBz1rmFXHX/M2lYl/m7WDpMoUoy9fqwc+dIBkTtz1LuGHTXBk0tO1wn+btYOkyhSlD1+rFz1zJKIbMdREzw55LQq8XezdphEkUMQsO3A+a52ZklEVFtyW5X4u3l3TKJIUfa8+8OVzizJdbniLeWuWCdnUpdWJf5u1ozPzrMhR3l2nqPKN5Wi7/y0SmdHu2cM4peW3JIr3lLuinVyVnzOZO3V9vjNIQ5IMfYa4oDIGbjiLeWuWCdnFqj3QlSbZkyg6hGTKFKMK4/HQmQtVzypcMU6Ed2OSRQpxpEH3COyN1c8qXDFOhHdjh3LSVG8+4Nu584dkF3xlnJXrBPR7dix3IacpWO5Ox+4yHGwA/JNrtj515HrxN8/qkptj99siXJzKZl5mPHVIQgAKgDzH3fPAxcpy54Po3Z0znpLeU3JiKPWiYk71RX7RLmxfFOplEABgAAw46tDvHOG7I4dkJ1bSmYe+s5Pw5MrMtB3fhpSMvOULtJd8c5Bqg9MotzY/tNFlcYJFwCyTv9p13JY82RxV+bO+4EdkJ2XsyYjTNypPvBynhtTqVTVTLdfGdicfpO774e6dEBmnxZlyXkumyNw1Qfs8vtgX0yi3FiPVk2gAixao1Qq4L5WTeyyffaDuYn74SY5d2q6e/LpCJw1GXHFOwf5fbA/Xs5zE1VdKgrUe2H+42HSZRS1Cpg/IsxuPyJsTr+J++F/rBlR2VkvI7kaZx7vbWSvltg9YxA+f6o3ds8YVOuEwxEvvfP7oAy2RLmBms5OlBynyVnPYOsb94M8znoZyRU583hv1t456KitPfw+KIMtUS6uNmcnSj1PyZnPYOsT94M87IzuWNzhuWyO3NrD74My2BLl4hz97MQZzmDt0VHTGfaDo3HFPi3k2Bz595TfB2UwiXJxznCpyFEH4gPs23TvyPvBUTH5JHty9N9Tfh/sj5fzXJyzXypSsgOnIzfduyo5n7c7XEYix+AMv6f8PtgXW6LcgLOenSjdgdORm+5dkdKfNzkHpcdBctbfU7INJlFuwtkuFTnC2EmO3nRvT7Y+cDnC502Oz5ESbVHpeQ/kjphEkUNyhFagQL0XHuveAl8d+EOaFtc9yGbbry5RUfrM2x4HLkf4vO1N6c/V2ThKol3T94GfqfthEkUO6W6tQPb4sco3leL/Dv5hMe3rg+fwYsy99b7N6n6YlT7ztteBy91a/ZT+XJ2RIyTaNX0fdv16gZ+pG2LHcnJINXXgtNcT4+syknh1HaSrml7dD/PPZ/5UvGO7vUZTd4YOu/WFNyzUzp3fFUcYB6m670PWaeW/q6QMtkSRw6qqA6c9m/TltoZZ26pU3Q9z5uk/FT/ztmcL0cheLdHB0BiZp/9Er5Am6BZsn2c42psjtKg4uuq+K0qPg1Td9wF3TAP4mboLJlHk0O7sEG/PA1BNg9dV9yNfXZLXwdC42uSvuh/mXiFN7HqJq6qk0J4D+LnLJS53u3RprZpOlJS+M66670OPVvb9rpLjYBJFTsXeByBrW8PktCpFtWlW5Q9zt+AmDpHA2OPA5Sidhu2BI0vX7G4nSkrfaVzd94GfqXtiEuViXP3uECUOQNa0hsltVaruh9lREhhbH7jc7RKX0i0qjswZWuqq+j7wM7U/RzjeMYlyIe5yOUTpH6uafuSrGxahNq1K1SUqchIYa35cHCGBcYYDZ31TukXFUTlzSx0/U/txlOOdSgjBEcNspKSkBHq9HiaTCT4+PjbdVr6pFH3np1U6CO2eMYhfahtIycyr9CN/q09UTZ9DvqnU5smftT8ujvK3U90+Jfdkj+/K3bZf3YmII7SAuDN7/GbV9vjNligX4QitCe6kutYwpftzyOlb5Chn/kq3MJJjUbJVp6YTEUdpAXFnjnS8YxLlItzxcojSqvqRV/pzkPvj4igJDC+HkNJqOhEB4DY3QDgypX9nb8fBNl2EOw1W6MiU/hzqMiAhn/5OVPOJiL0Gn6WaKf07ezu2RLkQR2lNcHdKfg6OcmmOyFndrZXDUVpA3J2jHO/YsdyGbNWxnJ0a6W6U7pRL5MxqusmBN0C4h9oev5lE2ZAtkih2aiQid6D0yWJNJyI8SXF9vDvPBbnTqM7uSOmDBtU/fqbyOMLJYk03OfAGCLrFITqWL126FCEhIdDpdIiMjMS+fftqjN+4cSM6dOgAnU6HsLAwbN261WK+EAJz5sxBYGAgvLy8EB0djRMnTljEFBUVYfTo0fDx8YGvry8mTpyIy5cvW8T88ssvuP/++6HT6RAcHIwFCxbUT4VlYqdG15WSmYe+89Pw5IoM9J2fhpTMPKWLRHXEz/R/8k2l2HuqEPmm0lrFVnWyWJtl7cWa+pBrUzyJSklJQWJiIpKSknDgwAF069YNMTExOH/+fJXxe/fuRXx8PCZOnIiDBw8iLi4OcXFxOHz4sBSzYMECLF68GMuXL0dGRga8vb0RExODa9euSTGjR4/GkSNHsH37dmzZsgW7du1CQkKCNL+kpAQPPfQQWrVqhaysLLz99tuYO3cuPv74Y9vtjLuoy51X5Lic4aBB1uFn+j/WJpOOfrLI5Jhup3gS9e677+Kpp57ChAkT0KlTJyxfvhwNGzbEqlWrqox///33MWTIEPzzn/9Ex44d8frrr+O+++7DBx98AOBmK9SiRYswa9YsDB8+HF27dsW///1vnDt3Dl9//TUAICcnB9u2bcPKlSsRGRmJfv36YcmSJdiwYQPOnTsHAFi/fj3Ky8uxatUqdO7cGaNGjcLUqVPx7rvv2mW/VMWRbuuk+uPoBw2yHj/Tm+Qkk458ssjkmO6kaBJVXl6OrKwsREdHS9PUajWio6ORnp5e5TLp6ekW8QAQExMjxefm5sJoNFrE6PV6REZGSjHp6enw9fVFz549pZjo6Gio1WpkZGRIMf3794dGo7HYzvHjx/Hnn39WWbaysjKUlJRYvOrbyF4tsXvGIHz+VG/snjGIncpdgCMfNEgefqY3yUkmHflkkckx3UnRJKqwsBAVFRUICAiwmB4QEACj0VjlMkajscb4W//eLcbf399ivqenJ5o2bWoRU9U6bt/GnZKTk6HX66VXcHBw1RWvIw6K6Foc+aBB8vAzvUluMumoJ4tMjulOvDuvHs2cOROJiYnS+5KSEpslUuRaHGXgOKo//EzrNvirI94Bx8Fs6U6KJlF+fn7w8PBAQUGBxfSCggIYDIYqlzEYDDXG3/q3oKAAgYGBFjHh4eFSzJ0d12/cuIGioiKL9VS1ndu3cSetVgutVlttfYlq4ogHDaobfqaul0y6Wn2obhS9nKfRaNCjRw+kpqZK08xmM1JTUxEVFVXlMlFRURbxALB9+3YpPjQ0FAaDwSKmpKQEGRkZUkxUVBSKi4uRlZUlxaSlpcFsNiMyMlKK2bVrF65fv26xnXvvvRdNmjSpY82JiNyHq3VBcLX6UB0IhW3YsEFotVqxZs0acfToUZGQkCB8fX2F0WgUQggxZswYMWPGDCl+z549wtPTUyxcuFDk5OSIpKQk0aBBA3Ho0CEpZv78+cLX11f85z//Eb/88osYPny4CA0NFaWlpVLMkCFDRPfu3UVGRobYvXu3aNeunYiPj5fmFxcXi4CAADFmzBhx+PBhsWHDBtGwYUPx0Ucf1bpuJpNJABAmk6kuu4iIiIjsqLbHb8WTKCGEWLJkiWjZsqXQaDQiIiJC/PTTT9K8AQMGiHHjxlnEf/HFF6J9+/ZCo9GIzp07i2+//dZivtlsFrNnzxYBAQFCq9WKwYMHi+PHj1vEXLx4UcTHx4tGjRoJHx8fMWHCBHHp0iWLmJ9//ln069dPaLVa0aJFCzF//nyr6sUkioiIyPnU9vjNZ+fZkK0eQExERES2U9vjt+KDbRIRERE5IyZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERyaDoA4hd3a1xTEtKShQuCREREdXWreP23cYjZxJlQ5cuXQIABAcHK1wSIiIistalS5eg1+urnc/HvtiQ2WzGuXPn0LhxY6hUqnpbb0lJCYKDg3HmzBm3fJyMu9cf4D5w9/oD3AfuXn+A+8CW9RdC4NKlSwgKCoJaXX3PJ7ZE2ZBarcY999xjs/X7+Pi45RfnFnevP8B94O71B7gP3L3+APeBrepfUwvULexYTkRERCQDkygiIiIiGZhEOSGtVoukpCRotVqli6IId68/wH3g7vUHuA/cvf4A94Ej1J8dy4mIiIhkYEsUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQ5qKVLlyIkJAQ6nQ6RkZHYt29ftbFHjhzB448/jpCQEKhUKixatMh+BbURa+q/YsUK3H///WjSpAmaNGmC6OjoGuOdhTX7YNOmTejZsyd8fX3h7e2N8PBwfPrpp3Ysbf2zpv6327BhA1QqFeLi4mxbQDuwZh+sWbMGKpXK4qXT6exY2vpn7d9AcXExJk+ejMDAQGi1WrRv3x5bt261U2ltw5p9MHDgwEp/AyqVCrGxsXYscf2y9m9g0aJFuPfee+Hl5YXg4GA8//zzuHbtmu0KKMjhbNiwQWg0GrFq1Spx5MgR8dRTTwlfX19RUFBQZfy+ffvEiy++KD7//HNhMBjEe++9Z98C1zNr6//kk0+KpUuXioMHD4qcnBwxfvx4odfrxdmzZ+1c8vpj7T7YsWOH2LRpkzh69Kg4efKkWLRokfDw8BDbtm2zc8nrh7X1vyU3N1e0aNFC3H///WL48OH2KayNWLsPVq9eLXx8fER+fr70MhqNdi51/bG2/mVlZaJnz57i4YcfFrt37xa5ubli586dIjs7284lrz/W7oOLFy9afP6HDx8WHh4eYvXq1fYteD2xtv7r168XWq1WrF+/XuTm5orvv/9eBAYGiueff95mZWQS5YAiIiLE5MmTpfcVFRUiKChIJCcn33XZVq1aOX0SVZf6CyHEjRs3ROPGjcXatWttVUSbq+s+EEKI7t27i1mzZtmieDYnp/43btwQffr0EStXrhTjxo1z+iTK2n2wevVqodfr7VQ627O2/suWLROtW7cW5eXl9iqizdX1d+C9994TjRs3FpcvX7ZVEW3K2vpPnjxZPPDAAxbTEhMTRd++fW1WRl7OczDl5eXIyspCdHS0NE2tViM6Ohrp6ekKlsw+6qP+V69exfXr19G0aVNbFdOm6roPhBBITU3F8ePH0b9/f1sW1Sbk1v+1116Dv78/Jk6caI9i2pTcfXD58mW0atUKwcHBGD58OI4cOWKP4tY7OfXfvHkzoqKiMHnyZAQEBKBLly548803UVFRYa9i16v6+C385JNPMGrUKHh7e9uqmDYjp/59+vRBVlaWdMnvt99+w9atW/Hwww/brJx8ALGDKSwsREVFBQICAiymBwQE4NixYwqVyn7qo/4vv/wygoKCLL58zkTuPjCZTGjRogXKysrg4eGBDz/8EA8++KCti1vv5NR/9+7d+OSTT5CdnW2HEtqenH1w7733YtWqVejatStMJhMWLlyIPn364MiRIzZ9ELotyKn/b7/9hrS0NIwePRpbt27FyZMn8dxzz+H69etISkqyR7HrVV1/C/ft24fDhw/jk08+sVURbUpO/Z988kkUFhaiX79+EELgxo0beOaZZ/DKK6/YrJxMosilzJ8/Hxs2bMDOnTudvlOttRo3bozs7GxcvnwZqampSExMROvWrTFw4ECli2ZTly5dwpgxY7BixQr4+fkpXRzFREVFISoqSnrfp08fdOzYER999BFef/11BUtmH2azGf7+/vj444/h4eGBHj164I8//sDbb7/tlElUXX3yyScICwtDRESE0kWxm507d+LNN9/Ehx9+iMjISJw8eRLTpk3D66+/jtmzZ9tkm0yiHIyfnx88PDxQUFBgMb2goAAGg0GhUtlPXeq/cOFCzJ8/Hz/++CO6du1qy2LalNx9oFar0bZtWwBAeHg4cnJykJyc7HRJlLX1P3XqFE6fPo1hw4ZJ08xmMwDA09MTx48fR5s2bWxb6HpWH78DDRo0QPfu3XHy5ElbFNGm5NQ/MDAQDRo0gIeHhzStY8eOMBqNKC8vh0ajsWmZ61td/gauXLmCDRs24LXXXrNlEW1KTv1nz56NMWPGYNKkSQCAsLAwXLlyBQkJCfjXv/4Ftbr+ezCxT5SD0Wg06NGjB1JTU6VpZrMZqampFmeZrkpu/RcsWIDXX38d27ZtQ8+ePe1RVJupr78Bs9mMsrIyWxTRpqytf4cOHXDo0CFkZ2dLr0cffRSDBg1CdnY2goOD7Vn8elEffwMVFRU4dOgQAgMDbVVMm5FT/759++LkyZNSAg0Av/76KwIDA50ugQLq9jewceNGlJWV4W9/+5uti2kzcup/9erVSonSraRa2OoxwTbrsk6ybdiwQWi1WrFmzRpx9OhRkZCQIHx9faXblceMGSNmzJghxZeVlYmDBw+KgwcPisDAQPHiiy+KgwcPihMnTihVhTqxtv7z588XGo1GfPnllxa39166dEmpKtSZtfvgzTffFD/88IM4deqUOHr0qFi4cKHw9PQUK1asUKoKdWJt/e/kCnfnWbsPXn31VfH999+LU6dOiaysLDFq1Cih0+nEkSNHlKpCnVhb/7y8PNG4cWMxZcoUcfz4cbFlyxbh7+8v5s2bp1QV6kzu96Bfv35i5MiR9i5uvbO2/klJSaJx48bi888/F7/99pv44YcfRJs2bcQTTzxhszIyiXJQS5YsES1bthQajUZERESIn376SZo3YMAAMW7cOOl9bm6uAFDpNWDAAPsXvJ5YU/9WrVpVWf+kpCT7F7weWbMP/vWvf4m2bdsKnU4nmjRpIqKiosSGDRsUKHX9sab+d3KFJEoI6/bB9OnTpdiAgADx8MMPiwMHDihQ6vpj7d/A3r17RWRkpNBqtaJ169bijTfeEDdu3LBzqeuXtfvg2LFjAoD44Ycf7FxS27Cm/tevXxdz584Vbdq0ETqdTgQHB4vnnntO/PnnnzYrn0oIW7VxEREREbku9okiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRREQuYPz48YiLi1O6GERuhUkUEdnU+PHjoVKppFezZs0wZMgQ/PLLL0oXrV7cXrdbr379+tlse6dPn4ZKpUJ2drbF9Pfffx9r1qyx2XaJqDImUURkc0OGDEF+fj7y8/ORmpoKT09PPPLII0oXq96sXr1aql9+fj42b95cZdz169dtVga9Xg9fX1+brZ+IKmMSRUQ2p9VqYTAYYDAYEB4ejhkzZuDMmTO4cOECHnjgAUyZMsUi/sKFC9BoNNIT3ENCQvD6668jPj4e3t7eaNGiBZYuXWqxzLvvvouwsDB4e3sjODgYzz33HC5fvizN//333zFs2DA0adIE3t7e6Ny5M7Zu3QoA+PPPPzF69Gg0b94cXl5eaNeuHVavXl3r+vn6+kr1MxgMaNq0qdRilJKSggEDBkCn02H9+vW4ePEi4uPj0aJFCzRs2BBhYWH4/PPPLdZnNpuxYMECtG3bFlqtFi1btsQbb7wBAAgNDQUAdO/eHSqVCgMHDgRQ+XJeWVkZpk6dCn9/f+h0OvTr1w+ZmZnS/J07d0KlUiE1NRU9e/ZEw4YN0adPHxw/frzW9SZyd0yiiMiuLl++jHXr1qFt27Zo1qwZJk2ahM8++wxlZWVSzLp169CiRQs88MAD0rS3334b3bp1w8GDBzFjxgxMmzYN27dvl+ar1WosXrwYR44cwdq1a5GWloaXXnpJmj958mSUlZVh165dOHToEN566y00atQIADB79mwcPXoU3333HXJycrBs2TL4+fnVS31vlTUnJwcxMTG4du0aevTogW+//RaHDx9GQkICxowZg3379knLzJw5E/Pnz5fK9dlnnyEgIAAApLgff/wR+fn52LRpU5Xbfemll/DVV19h7dq1OHDgANq2bYuYmBgUFRVZxP3rX//CO++8g/3798PT0xN///vf66XeRG7BZo82JiISQowbN054eHgIb29v4e3tLQCIwMBAkZWVJYQQorS0VDRp0kSkpKRIy3Tt2lXMnTtXet+qVSsxZMgQi/WOHDlSDB06tNrtbty4UTRr1kx6HxYWZrHO2w0bNkxMmDBBVv0ACJ1OJ9XP29tb/N///Z/Izc0VAMSiRYvuuo7Y2FjxwgsvCCGEKCkpEVqtVqxYsaLK2FvrPXjwoMX0cePGieHDhwshhLh8+bJo0KCBWL9+vTS/vLxcBAUFiQULFgghhNixY4cAIH788Ucp5ttvvxUARGlpqTW7gMhtsSWKiGxu0KBByM7ORnZ2Nvbt24eYmBgMHToUv//+O3Q6HcaMGYNVq1YBAA4cOIDDhw9j/PjxFuuIioqq9D4nJ0d6/+OPP2Lw4MFo0aIFGjdujDFjxuDixYu4evUqAGDq1KmYN28e+vbti6SkJIuO7c8++yw2bNiA8PBwvPTSS9i7d69V9Xvvvfek+mVnZ+PBBx+U5vXs2dMitqKiAq+//jrCwsLQtGlTNGrUCN9//z3y8vIAADk5OSgrK8PgwYOtKsPtTp06hevXr6Nv377StAYNGiAiIsJinwFA165dpf8HBgYCAM6fPy9720TuhEkUEdmct7c32rZti7Zt26JXr15YuXIlrly5ghUrVgAAJk2ahO3bt+Ps2bNYvXo1HnjgAbRq1arW6z99+jQeeeQRdO3aFV999RWysrKkPlPl5eXSNn777TeMGTMGhw4dQs+ePbFkyRIAkBK6559/HufOncPgwYPx4osv1nr7BoNBql/btm3h7e1tUffbvf3223j//ffx8ssvY8eOHcjOzkZMTIxUTi8vr1pvtz40aNBA+r9KpQJws08WEd0dkygisjuVSgW1Wo3S0lIAQFhYGHr27IkVK1bgs88+q7Jfzk8//VTpfceOHQEAWVlZMJvNeOedd9C7d2+0b98e586dq7SO4OBgPPPMM9i0aRNeeOEFKYkDgObNm2PcuHFYt24dFi1ahI8//rg+qyzZs2cPhg8fjr/97W/o1q0bWrdujV9//VWa365dO3h5eUmd6u+k0WgA3GzRqk6bNm2g0WiwZ88eadr169eRmZmJTp061VNNiMhT6QIQkesrKyuD0WgEcPNOuA8++ACXL1/GsGHDpJhJkyZhypQp8Pb2xmOPPVZpHXv27MGCBQsQFxeH7du3Y+PGjfj2228BAG3btsX169exZMkSDBs2DHv27MHy5cstlp8+fTqGDh2K9u3b488//8SOHTukJGzOnDno0aMHOnfujLKyMmzZskWaV9/atWuHL7/8Env37kWTJk3w7rvvoqCgQEpudDodXn75Zbz00kvQaDTo27cvLly4gCNHjmDixInw9/eHl5cXtm3bhnvuuQc6nQ56vd5iG97e3nj22Wfxz3/+E02bNkXLli2xYMECXL16FRMnTrRJvYjcEVuiiMjmtm3bhsDAQAQGBiIyMhKZmZnYuHGjdHs+AMTHx8PT0xPx8fHQ6XSV1vHCCy9g//796N69O+bNm4d3330XMTExAIBu3brh3XffxVtvvYUuXbpg/fr1SE5Otli+oqICkydPRseOHTFkyBC0b98eH374IYCbrTszZ85E165d0b9/f3h4eGDDhg022RezZs3Cfffdh5iYGAwcOBAGg6HSSOOzZ8/GCy+8gDlz5qBjx44YOXKk1E/J09MTixcvxkcffYSgoCAMHz68yu3Mnz8fjz/+OMaMGYP77rsPJ0+exPfff48mTZrYpF5E7kglhBBKF4KI6PTp02jTpg0yMzNx3333WcwLCQnB9OnTMX36dGUKR0RUBV7OIyJFXb9+HRcvXsSsWbPQu3fvSgkUEZGj4uU8IlLUnj17EBgYiMzMzEr9mJT25ptvolGjRlW+hg4dqnTxiEhhvJxHRFSNoqKiSiN83+Ll5YUWLVrYuURE5EiYRBERERHJwMt5RERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEiG/wf8XCWWtmCl4wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVbNJREFUeJzt3XtcFPX+P/DXAi4gyqKC3ELBC3lDMRBETTQpTDPJzjdFU/R46aKVqafQvHSxMLt5NNOyUk9aqOXpGJlmoPVLERG1RNGjhqnJokgsigjKfn5/+GW+rVxkx92d2eX1fDz24WHmPTOf+Zxt972f22iEEAJEREREZBYnpQtAREREZI+YRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEZFDe/nll6HRaBoUq9Fo8PLLL1u1PAMGDMCAAQNUez4iajgmUURkE2vWrIFGo5FeLi4uCAwMxPjx4/HHH38oXTzVCQ4ONqmv1q1b495778W///1vi5z/6tWrePnll7Fr1y6LnI+oMWISRUQ29eqrr+Kzzz7DypUr8eCDD2LdunWIjY3FtWvXrHK9uXPnory83Crntrbw8HB89tln+OyzzzBr1iycP38eI0aMwMqVK+/43FevXsUrr7zCJIroDrgoXQAialwefPBBREZGAgAmTZoEb29vvPnmm9iyZQsee+wxi1/PxcUFLi72+VEXGBiIxx9/XPp73Lhx6NChA9577z08+eSTCpaMiAC2RBGRwu69914AwKlTp0y2Hzt2DH/729/QsmVLuLm5ITIyElu2bDGJuX79Ol555RV07NgRbm5uaNWqFfr164cdO3ZIMbWNiaqoqMDzzz8PHx8fNG/eHA8//DDOnTtXo2zjx49HcHBwje21nXP16tW477770Lp1a7i6uqJLly5YsWKFWXVxO35+fujcuTPy8/Prjbtw4QImTpwIX19fuLm5oUePHli7dq20//Tp0/Dx8QEAvPLKK1KXobXHgxE5Gvv8eUZEDuP06dMAgBYtWkjbjhw5gr59+yIwMBDJycnw8PDAxo0bkZCQgK+++gqPPPIIgJvJTEpKCiZNmoSoqCiUlpZi//79OHDgAO6///46rzlp0iSsW7cOo0ePRp8+fZCRkYGhQ4fe0X2sWLECXbt2xcMPPwwXFxd88803ePrpp2E0GjF16tQ7One169ev4+zZs2jVqlWdMeXl5RgwYABOnjyJadOmISQkBJs2bcL48eNRUlKC5557Dj4+PlixYgWeeuopPPLIIxgxYgQAoHv37hYpJ1GjIYiIbGD16tUCgPjhhx/ExYsXxdmzZ8WXX34pfHx8hKurqzh79qwUO2jQIBEWFiauXbsmbTMajaJPnz6iY8eO0rYePXqIoUOH1nvdBQsWiL9+1B06dEgAEE8//bRJ3OjRowUAsWDBAmlbUlKSaNu27W3PKYQQV69erREXHx8v2rVrZ7ItNjZWxMbG1ltmIYRo27ateOCBB8TFixfFxYsXxS+//CJGjRolAIhnnnmmzvMtWbJEABDr1q2TtlVWVoqYmBjRrFkzUVpaKoQQ4uLFizXul4jMw+48IrKpuLg4+Pj4ICgoCH/729/g4eGBLVu24K677gIAFBcXIyMjA4899hguX76MoqIiFBUV4dKlS4iPj8eJEyek2XxeXl44cuQITpw40eDrb926FQDw7LPPmmyfPn36Hd2Xu7u79L8NBgOKiooQGxuL3377DQaDQdY5v//+e/j4+MDHxwc9evTApk2bMHbsWLz55pt1HrN161b4+fkhMTFR2takSRM8++yzuHLlCn788UdZZSGimtidR0Q2tXz5coSGhsJgMODTTz/FTz/9BFdXV2n/yZMnIYTAvHnzMG/evFrPceHCBQQGBuLVV1/F8OHDERoaim7dumHw4MEYO3Zsvd1Sv//+O5ycnNC+fXuT7Xffffcd3dfu3buxYMECZGZm4urVqyb7DAYDdDqd2eeMjo7GwoULodFo0LRpU3Tu3BleXl71HvP777+jY8eOcHIy/Y3cuXNnaT8RWQaTKCKyqaioKGl2XkJCAvr164fRo0fj+PHjaNasGYxGIwBg1qxZiI+Pr/UcHTp0AAD0798fp06dwn/+8x98//33+Pjjj/Hee+9h5cqVmDRp0h2Xta5FOquqqkz+PnXqFAYNGoROnTrh3XffRVBQELRaLbZu3Yr33ntPuidzeXt7Iy4uTtaxRGR9TKKISDHOzs5ISUnBwIED8f777yM5ORnt2rUDcLMLqiEJRMuWLTFhwgRMmDABV65cQf/+/fHyyy/XmUS1bdsWRqMRp06dMml9On78eI3YFi1aoKSkpMb2W1tzvvnmG1RUVGDLli1o06aNtH3nzp23Lb+ltW3bFr/++iuMRqNJa9SxY8ek/UDdCSIRNRzHRBGRogYMGICoqCgsWbIE165dQ+vWrTFgwAB8+OGHKCgoqBF/8eJF6X9funTJZF+zZs3QoUMHVFRU1Hm9Bx98EACwdOlSk+1LliypEdu+fXsYDAb8+uuv0raCgoIaq4Y7OzsDAIQQ0jaDwYDVq1fXWQ5rGTJkCPR6PTZs2CBtu3HjBpYtW4ZmzZohNjYWANC0aVMAqDVJJKKGYUsUESnuH//4B/7nf/4Ha9aswZNPPonly5ejX79+CAsLw+TJk9GuXTsUFhYiMzMT586dwy+//AIA6NKlCwYMGICIiAi0bNkS+/fvx5dffolp06bVea3w8HAkJibigw8+gMFgQJ8+fZCeno6TJ0/WiB01ahRefPFFPPLII3j22Wdx9epVrFixAqGhoThw4IAU98ADD0Cr1WLYsGF44okncOXKFaxatQqtW7euNRG0pilTpuDDDz/E+PHjkZOTg+DgYHz55ZfYvXs3lixZgubNmwO4ORC+S5cu2LBhA0JDQ9GyZUt069YN3bp1s2l5ieya0tMDiahxqF7iIDs7u8a+qqoq0b59e9G+fXtx48YNIYQQp06dEuPGjRN+fn6iSZMmIjAwUDz00EPiyy+/lI5buHChiIqKEl5eXsLd3V106tRJvP7666KyslKKqW05gvLycvHss8+KVq1aCQ8PDzFs2DBx9uzZWqf8f//996Jbt25Cq9WKu+++W6xbt67Wc27ZskV0795duLm5ieDgYPHmm2+KTz/9VAAQ+fn5Upw5SxzcbvmGus5XWFgoJkyYILy9vYVWqxVhYWFi9erVNY7ds2ePiIiIEFqtlssdEMmgEeIv7c9ERERE1CAcE0VEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoGLbVqR0WjE+fPn0bx5cz5igYiIyE4IIXD58mUEBATUeJj3XzGJsqLz588jKChI6WIQERGRDGfPnsVdd91V534mUVZU/XiFs2fPwtPTU+HSEBERUUOUlpYiKChI+h6vC5MoK6ruwvP09GQSRUREZGduNxSHA8uJiIiIZGASRURERCQDkygiIiIiGTgmSmFVVVW4fv260sWwK1qttt4pp0RERLbAJEohQgjo9XqUlJQoXRS74+TkhJCQEGi1WqWLQkREjRiTKIVUJ1CtW7dG06ZNuRhnA1UvYFpQUIA2bdqw3oiISDFMohRQVVUlJVCtWrVSujh2x8fHB+fPn8eNGzfQpEkTpYtDRESNFAeWKKB6DFTTpk0VLol9qu7Gq6qqUrgkRETUmDGJUhC7ouRhvRERkRowiSIiIiKSgUkUERERkQxMosgs48ePR0JCQo3tu3btgkajQUlJCXbt2oXhw4fD398fHh4eCA8Px/r162scU1xcjOnTp6Nt27bQarUICAjA3//+d5w5c8YGd0JERPaswFCOPaeKUGAoV6wMnJ1HFrdnzx50794dL774Inx9fZGWloZx48ZBp9PhoYceAnAzgerduze0Wi1WrlyJrl274vTp05g7dy569eqFzMxMtGvXTuE7ISIiNdqQfQazNx+GUQBOGiBlRBhG9mpj83IwiSKLmzNnjsnfzz33HL7//nts3rxZSqJeeuklnD9/HidPnoSfnx8AoE2bNti+fTs6duyIqVOn4rvvvrN52YmISN0KDOVSAgUARgHM2ZyL/qE+8Ne527Qs7M5zAGpo0rwdg8GAli1bAri5YGZqairGjBkjJVDV3N3d8fTTT2P79u0oLi5WoqhERKRi+UVlUgJVrUoInC66avOysCXKzinRpJmWloZmzZqZbKtvzaaNGzciOzsbH374IQDg4sWLKCkpQefOnWuN79y5M4QQOHnyJKKioixXcCIisnsh3h5w0sAkkXLWaBDsbfu1F9kSZcfqatK0dovUwIEDcejQIZPXxx9/XGvszp07MWHCBKxatQpdu3Y12SeEqPUYIiKiuvjr3JEyIgzO/7tmoLNGgzdGdLN5Vx7Alii7Vl+TpjXfTB4eHujQoYPJtnPnztWI+/HHHzFs2DC89957GDdunLTdx8cHXl5eyMvLq/X8eXl50Gg0Na5BREQEACN7tUH/UB+cLrqKYO+miiRQAFui7Fp1k+ZfKdWkeatdu3Zh6NChePPNNzFlyhSTfU5OTnjsscfw+eefQ6/Xm+wrLy/HBx98gPj4eGkMFRER0a38de6Iad9KsQQKYBJl19TUpPlXO3fuxNChQ/Hss8/i0UcfhV6vh16vNxko/sYbb8DPzw/3338/vvvuO5w9exY//fQT4uPjcf36dSxfvlzBOyAiIro9xZOo5cuXIzg4GG5uboiOjsa+ffvqjd+0aRM6deoENzc3hIWFYevWrSb7hRCYP38+/P394e7ujri4OJw4ccIk5vXXX0efPn3QtGlTeHl51bjGL7/8gsTERAQFBcHd3R2dO3fGP//5zzu+V2sY2asNfk4eiC8m98bPyQMVWSfjVmvXrsXVq1eRkpICf39/6TVixAgpplWrVti7dy8GDhyIJ554Au3bt8djjz2G9u3bIzs7m2tEERGR+gkFpaamCq1WKz799FNx5MgRMXnyZOHl5SUKCwtrjd+9e7dwdnYWixcvFkePHhVz584VTZo0EYcPH5ZiFi1aJHQ6nfj666/FL7/8Ih5++GEREhIiysvLpZj58+eLd999V8yYMUPodLoa1/nkk0/Es88+K3bt2iVOnTolPvvsM+Hu7i6WLVtm1v0ZDAYBQBgMBpPt5eXl4ujRoyZlooZj/RERkTXV9f19K40Qyk2Rio6ORq9evfD+++8DuLl+UFBQEJ555hkkJyfXiB85ciTKysqQlpYmbevduzfCw8OxcuVKCCEQEBCAmTNnYtasWQBurk/k6+uLNWvWYNSoUSbnW7NmDaZPn46SkpLblnXq1KnIy8tDRkZGg++vtLQUOp0OBoMBnp6e0vZr164hPz8fISEhcHNza/D56CbWHxERWVNd39+3Uqw7r7KyEjk5OYiLi/u/wjg5IS4uDpmZmbUek5mZaRIPAPHx8VJ8fn4+9Hq9SYxOp0N0dHSd52yovy4WWZeKigqUlpaavIiIiMgxKZZEFRUVoaqqCr6+vibbfX19a8zYqqbX6+uNr/7XnHM2xJ49e7Bhw4Yas8xulZKSAp1OJ72CgoJkX5OIiIjUTfGB5WqXm5uL4cOHY8GCBXjggQfqjZ09ezYMBoP0Onv2rI1KSURERLamWBLl7e0NZ2dnFBYWmmwvLCys8Ty1an5+fvXGV/9rzjnrc/ToUQwaNAhTpkzB3Llzbxvv6uoKT09Pk1d9FByOZtdYb0REpAaKJVFarRYRERFIT0+XthmNRqSnpyMmJqbWY2JiYkziAWDHjh1SfEhICPz8/ExiSktLkZWVVec563LkyBEMHDgQSUlJeP3118069naaNGkCALh61fYPS3QElZWVAABnZ2eFS0JERI2Zoo99mTFjBpKSkhAZGYmoqCgsWbIEZWVlmDBhAgBg3LhxCAwMREpKCgDgueeeQ2xsLN555x0MHToUqamp2L9/Pz766CMAgEajwfTp07Fw4UJ07NgRISEhmDdvHgICApCQkCBd98yZMyguLsaZM2dQVVWFQ4cOAQA6dOiAZs2aITc3F/fddx/i4+MxY8YMaTyVs7MzfHx87vi+nZ2d4eXlhQsXLgAAmjZtCo1Gc5ujCLiZaF+8eBFNmzaFiwufWkRERMpR9Fto5MiRuHjxIubPnw+9Xo/w8HBs27ZNGhh+5swZODn9X2NZnz598Pnnn2Pu3LmYM2cOOnbsiK+//hrdunWTYl544QWUlZVhypQpKCkpQb9+/bBt2zaTqfDz58/H2rVrpb979uwJ4OZK2wMGDMCXX36JixcvYt26dVi3bp0U17ZtW5w+fdoi917dvVidSFHDOTk5oU2bNkw8iYhIUYquE+XoGrLORFVVFa5fv27jktk3rVZrklwTERFZUkPXiWJ/iMKcnZ05toeIiMgO8ec8ERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZFA8iVq+fDmCg4Ph5uaG6Oho7Nu3r974TZs2oVOnTnBzc0NYWBi2bt1qsl8Igfnz58Pf3x/u7u6Ii4vDiRMnTGJef/119OnTB02bNoWXl1et1zlz5gyGDh2Kpk2bonXr1vjHP/6BGzdu3NG9EhERkeNQNInasGEDZsyYgQULFuDAgQPo0aMH4uPjceHChVrj9+zZg8TEREycOBEHDx5EQkICEhISkJubK8UsXrwYS5cuxcqVK5GVlQUPDw/Ex8fj2rVrUkxlZSX+53/+B0899VSt16mqqsLQoUNRWVmJPXv2YO3atVizZg3mz59v2QogIiIi+yUUFBUVJaZOnSr9XVVVJQICAkRKSkqt8Y899pgYOnSoybbo6GjxxBNPCCGEMBqNws/PT7z11lvS/pKSEuHq6iq++OKLGudbvXq10Ol0NbZv3bpVODk5Cb1eL21bsWKF8PT0FBUVFQ2+P4PBIAAIg8HQ4GOIiIhIWQ39/lasJaqyshI5OTmIi4uTtjk5OSEuLg6ZmZm1HpOZmWkSDwDx8fFSfH5+PvR6vUmMTqdDdHR0nees6zphYWHw9fU1uU5paSmOHDlS53EVFRUoLS01eREREZFjUiyJKioqQlVVlUmiAgC+vr7Q6/W1HqPX6+uNr/7XnHOac52/XqM2KSkp0Ol00isoKKjB1yQiIiL7ovjAckcye/ZsGAwG6XX27Fmli0RERERWolgS5e3tDWdnZxQWFppsLywshJ+fX63H+Pn51Rtf/a855zTnOn+9Rm1cXV3h6elp8iIiIiLHpFgSpdVqERERgfT0dGmb0WhEeno6YmJiaj0mJibGJB4AduzYIcWHhITAz8/PJKa0tBRZWVl1nrOu6xw+fNhkluCOHTvg6emJLl26NPg8RERE5LhclLz4jBkzkJSUhMjISERFRWHJkiUoKyvDhAkTAADjxo1DYGAgUlJSAADPPfccYmNj8c4772Do0KFITU3F/v378dFHHwEANBoNpk+fjoULF6Jjx44ICQnBvHnzEBAQgISEBOm6Z86cQXFxMc6cOYOqqiocOnQIANChQwc0a9YMDzzwALp06YKxY8di8eLF0Ov1mDt3LqZOnQpXV1eb1hERERGplI1mC9Zp2bJlok2bNkKr1YqoqCixd+9eaV9sbKxISkoyid+4caMIDQ0VWq1WdO3aVXz77bcm+41Go5g3b57w9fUVrq6uYtCgQeL48eMmMUlJSQJAjdfOnTulmNOnT4sHH3xQuLu7C29vbzFz5kxx/fp1s+6NSxwQERHZn4Z+f2uEEELBHM6hlZaWQqfTwWAwcHwUERGRnWjo9zdn5xERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMiieRC1fvhzBwcFwc3NDdHQ09u3bV2/8pk2b0KlTJ7i5uSEsLAxbt2412S+EwPz58+Hv7w93d3fExcXhxIkTJjHFxcUYM2YMPD094eXlhYkTJ+LKlSsmMdu3b0fv3r3RvHlz+Pj44NFHH8Xp06ctcs9ERERk/xRNojZs2IAZM2ZgwYIFOHDgAHr06IH4+HhcuHCh1vg9e/YgMTEREydOxMGDB5GQkICEhATk5uZKMYsXL8bSpUuxcuVKZGVlwcPDA/Hx8bh27ZoUM2bMGBw5cgQ7duxAWloafvrpJ0yZMkXan5+fj+HDh+O+++7DoUOHsH37dhQVFWHEiBHWqwwiIiKyL0JBUVFRYurUqdLfVVVVIiAgQKSkpNQa/9hjj4mhQ4eabIuOjhZPPPGEEEIIo9Eo/Pz8xFtvvSXtLykpEa6uruKLL74QQghx9OhRAUBkZ2dLMd99953QaDTijz/+EEIIsWnTJuHi4iKqqqqkmC1btgiNRiMqKysbfH8Gg0EAEAaDocHHEBERkbIa+v2tWEtUZWUlcnJyEBcXJ21zcnJCXFwcMjMzaz0mMzPTJB4A4uPjpfj8/Hzo9XqTGJ1Oh+joaCkmMzMTXl5eiIyMlGLi4uLg5OSErKwsAEBERAScnJywevVqVFVVwWAw4LPPPkNcXByaNGlS5z1VVFSgtLTU5EVERESOSbEkqqioCFVVVfD19TXZ7uvrC71eX+sxer2+3vjqf28X07p1a5P9Li4uaNmypRQTEhKC77//HnPmzIGrqyu8vLxw7tw5bNy4sd57SklJgU6nk15BQUH1xhMREZE8BYZy7DlVhAJDuWJlUHxguRrp9XpMnjwZSUlJyM7Oxo8//gitVou//e1vEELUedzs2bNhMBik19mzZ21YaiIiosZhQ/YZ9F2UgdGrstB3UQY2ZJ9RpBwuilwVgLe3N5ydnVFYWGiyvbCwEH5+frUe4+fnV2989b+FhYXw9/c3iQkPD5dibh24fuPGDRQXF0vHL1++HDqdDosXL5Zi1q1bh6CgIGRlZaF37961ls/V1RWurq63u3UiIiKSqcBQjtmbD8P4v20aRgHM2ZyL/qE+8Ne527QsirVEabVaREREID09XdpmNBqRnp6OmJiYWo+JiYkxiQeAHTt2SPEhISHw8/MziSktLUVWVpYUExMTg5KSEuTk5EgxGRkZMBqNiI6OBgBcvXoVTk6mVePs7CyVkYiIiJSRX1QmJVDVqoTA6aKrNi+Lot15M2bMwKpVq7B27Vrk5eXhqaeeQllZGSZMmAAAGDduHGbPni3FP/fcc9i2bRveeecdHDt2DC+//DL279+PadOmAQA0Gg2mT5+OhQsXYsuWLTh8+DDGjRuHgIAAJCQkAAA6d+6MwYMHY/Lkydi3bx92796NadOmYdSoUQgICAAADB06FNnZ2Xj11Vdx4sQJHDhwABMmTEDbtm3Rs2dP21YSERERSUK8PeCkMd3mrNEg2Lup7Qtjm8mCdVu2bJlo06aN0Gq1IioqSuzdu1faFxsbK5KSkkziN27cKEJDQ4VWqxVdu3YV3377rcl+o9Eo5s2bJ3x9fYWrq6sYNGiQOH78uEnMpUuXRGJiomjWrJnw9PQUEyZMEJcvXzaJ+eKLL0TPnj2Fh4eH8PHxEQ8//LDIy8sz6964xAEREZHlpe77XbRL/la0fTFNtEv+VqTu+92i52/o97dGiHpGStMdKS0thU6ng8FggKenp9LFISIichgFhnKcLrqKYO+mFh8L1dDvb8UGlhMRERHJ5a9zt/lA8ltxiQMiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQwucg8sKSnByZMnAQAdOnSAl5eXpcpEREREpHpmt0SdPn0aQ4cOhbe3N6KjoxEdHQ1vb2889NBDOH36tBWKSERERKQ+ZrVEnT17Fr1790aTJk3w2muvoXPnzgCAo0ePYsWKFYiJiUF2djbuuusuqxSWiIiIHE+BoRz5RWUI8faAv85d6eI0mEYIIRoaPHHiRJw8eRLbt2+Hm5ubyb7y8nIMHjwYHTt2xMcff2zxgtqj0tJS6HQ6GAwGeHp6Kl0cIiIi1dmQfQazNx+GUQBOGiBlRBhG9mqjaJka+v1tVnfetm3b8Prrr9dIoADA3d0dr732GrZu3Wp+aYmIiKjRKTCUSwkUABgFMGdzLgoM5coWrIHMSqKKiooQHBxc5/527dqhuLj4TstEREREjUB+UZmUQFWrEgKni64qUyAzmZVE+fv74+jRo3Xuz83NhZ+f3x0XioiIiBxfiLcHnDSm25w1GgR7N1WmQGYyK4lKSEjArFmzcPHixRr7Lly4gBdffBEJCQmWKhsRERE5MH+dO1JGhMFZczOTctZo8MaIbnYzuNysgeV//vknoqOjodfr8fjjj6NTp04QQiAvLw+ff/45/Pz8sHfvXrRs2dKaZbYbHFhORER0ewWGcpwuuopg76aqSKAa+v1t1hIHLVq0QFZWFubMmYPU1FSUlJQAALy8vDB69Gi88cYbTKCIiIjILP46d1UkT+YyqyXqr4QQUreej48PNBrNbY5ofNgSRUREZH+s0hL1VxqNBq1bt5Z7OBERWYm9LlxIZG/MTqK2bt2KzZs3o2XLlpgwYYK0ajlwc8zUo48+ioyMDIsWkoiIGsbWCxcyYaPGzKzZeZ9//jkefvhh6PV6ZGZm4p577sH69eul/ZWVlfjxxx/NKsDy5csRHBwMNzc3REdHY9++ffXGb9q0CZ06dYKbmxvCwsJqLO4phMD8+fPh7+8Pd3d3xMXF4cSJEyYxxcXFGDNmDDw9PeHl5YWJEyfiypUrNc7z9ttvIzQ0FK6urggMDMTrr79u1r0REdmSrRcu3JB9Bn0XZWD0qiz0XZSBDdlnrHIdIrUyK4l666238O677yItLQ3/7//9P6xduxZPPPEEPvnkE1kX37BhA2bMmIEFCxbgwIED6NGjB+Lj43HhwoVa4/fs2YPExERMnDgRBw8eREJCAhISEpCbmyvFLF68GEuXLsXKlSuRlZUFDw8PxMfH49q1a1LMmDFjcOTIEezYsQNpaWn46aefMGXKFJNrPffcc/j444/x9ttv49ixY9iyZQuioqJk3ScRkS3YcuFCe19pmsgSzBpY3qxZMxw+fBghISHStp07d+Lhhx/GW2+9hUceeQQBAQGoqqpq0Pmio6PRq1cvvP/++wAAo9GIoKAgPPPMM0hOTq4RP3LkSJSVlSEtLU3a1rt3b4SHh2PlypUQQiAgIAAzZ87ErFmzAAAGgwG+vr5Ys2YNRo0ahby8PHTp0gXZ2dmIjIwEcPNxNkOGDMG5c+cQEBCAvLw8dO/eHbm5ubj77rsbWj01cGA5EdlSgaEcfRdlmCRSzhoNfk4eaPGutj2nijB6VVaN7V9M7o2Y9q0sei0iW7PKs/M8PT1RWFhosm3gwIFIS0vDP/7xDyxbtqzB56qsrEROTg7i4uL+rzBOToiLi0NmZmatx2RmZprEA0B8fLwUn5+fD71ebxKj0+kQHR0txWRmZsLLy0tKoAAgLi4OTk5OyMq6+YHwzTffoF27dkhLS0NISAiCg4MxadKk2z7SpqKiAqWlpSYvIiJbseXChfa+0jSRJZiVREVFReG7776rsT02NhbffPMNlixZ0uBzFRUVoaqqCr6+vibbfX19odfraz1Gr9fXG1/97+1ibp1V6OLigpYtW0oxv/32G37//Xds2rQJ//rXv7BmzRrk5OTgb3/7W733lJKSAp1OJ72CgoLqjScisrSRvdrg5+SB+GJyb/ycPNBqg8rtfaVpIkswa3be888/jz179tS6b8CAAfjmm2/wr3/9yyIFU5LRaERFRQX+9a9/ITQ0FADwySefICIiAsePH6+zi2/27NmYMWOG9HdpaSkTKSKyOVstXDiyVxv0D/VR1UrTRLZkVhLVs2dP9OzZs85uqoiICERERDToXN7e3nB2dq7RPVhYWFjnQ4z9/Pzqja/+t7CwEP7+/iYx4eHhUsytA9dv3LiB4uJi6Xh/f3+4uLhICRQAaSmHM2fO1JlEubq6wtXVtd77JiJyJPa60jSRJZjVnefl5YUWLVrc9tUQWq0WERERSE9Pl7YZjUakp6cjJiam1mNiYmJM4gFgx44dUnxISAj8/PxMYkpLS5GVlSXFxMTEoKSkBDk5OVJMRkYGjEYjoqOjAQB9+/bFjRs3cOrUKSnmv//9LwCgbdu2Dbo/IiIicmxmtUTt3LlT+t9CCAwZMgQff/wxAgMDZV18xowZSEpKQmRkJKKiorBkyRKUlZVhwoQJAIBx48YhMDAQKSkpAG4uOxAbG4t33nkHQ4cORWpqKvbv34+PPvoIwM1V1KdPn46FCxeiY8eOCAkJwbx58xAQEICEhAQAN1uUBg8ejMmTJ2PlypW4fv06pk2bhlGjRiEgIADAzYHm99xzD/7+979jyZIlMBqNmDp1Ku6//36T1ikiIiJqxMQdaNasmTh16tSdnEIsW7ZMtGnTRmi1WhEVFSX27t0r7YuNjRVJSUkm8Rs3bhShoaFCq9WKrl27im+//dZkv9FoFPPmzRO+vr7C1dVVDBo0SBw/ftwk5tKlSyIxMVE0a9ZMeHp6igkTJojLly+bxPzxxx9ixIgRolmzZsLX11eMHz9eXLp0yax7MxgMAoAwGAxmHUdERKS08yVXxe6TF8X5kqtKF8XmGvr9LfsBxADQvHlz/PLLL2jXrp3lsjoHwnWiiIjIHtn68UFqY5V1ooiIiMixcTX6hrvjJEqj0dw+iIiIiOyCLR8fZO/MGlg+YsQIk7+vXbuGJ598Eh4eHibbN2/efOclIyIiIpurXo3+1scHcTX6msxKonQ6ncnfjz/+uEULQ8ooMJQjv6gMId4eXO+FiKiRq16Nfs7mXFQJwdXo63FHA8upfvYwsLyxDx4kIqLaFRjKG+1q9BxYTrfFwYNERFQXf507Ytq3anQJlDmYRDmYAkM59pwqalAixMGDRERE8pk1JorUzdyuOQ4eJCJ7wbGbpEZsiXIQcrrmqgcPOv/vMhUcPEhEarQh+wz6LsrA6FVZ6LsoAxuyzyhdJCIAbIlyGPV1zdWXFI3s1Qb9Q30sOniQvxiJyFLq+oHYP9SHny+kOCZRDuJOuub8de4W+zDibD8isiS5PxCJbIHdeQ5CDV1znO1HRJZW/QPxrzh2k9SCLVEOxBpdc+bgL0YisjQu/EhqxiTKwViya85cnO1HRNag9A9EorqwO48sRg1dikTkmLjwI6kRW6LIoviLkYiIGgsmUWRxSnYpEhER2Qq784iIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiJSsQJDOfacKuIzKIlUiOtEERGp1IbsM9JDvZ00QMqIMIzs1UbpYhHR/2JLFPGXLpEKFRjKpQQKuPlMyjmbc/nfKZGKsCWqkeMvXSJ1yi8qM3mYNwBUCYHTRVf5RAAilWBLVCPGX7pE6hXi7QEnjek2Z40Gwd5NlSkQEdXAJKoRq++XLhEpy1/njpQRYXDW3MyknDUavDGiG1uhiFSE3XmNWPUv3b8mUvylS6QeI3u1Qf9QH5wuuopg76ZMoIhUhi1RjRh/6RKpn7/OHTHtW/G/SyIVYktUI8dfukTqVmAoR35RGUK8PfjfJ5HKMIki+Ovc+eFMpEKcPUukbuzOIyJSIc6eJVI/JlFERHVQciFazp4lUj925xER1ULprjTOniVSP7ZEERHdQg1daZw9S6R+bIkiIrqFWh65wtmzROrGJIqI6BZq6krj7Fki9WJ3HhHRLdiVRkQNwZYoIqJasCuNiG6HSRQRUR3YlWYdXIWdHAWTKCIishmll44gsiRVjIlavnw5goOD4ebmhujoaOzbt6/e+E2bNqFTp05wc3NDWFgYtm7darJfCIH58+fD398f7u7uiIuLw4kTJ0xiiouLMWbMGHh6esLLywsTJ07ElStXar3eyZMn0bx5c3h5ed3RfVqKkgsAEhHJpYalI4gsSfEkasOGDZgxYwYWLFiAAwcOoEePHoiPj8eFCxdqjd+zZw8SExMxceJEHDx4EAkJCUhISEBubq4Us3jxYixduhQrV65EVlYWPDw8EB8fj2vXrkkxY8aMwZEjR7Bjxw6kpaXhp59+wpQpU2pc7/r160hMTMS9995r+ZuXYUP2GfRdlIHRq7LQd1EGNmSfUbpINTDJI6LacBV2cjQaIYS4fZj1REdHo1evXnj//fcBAEajEUFBQXjmmWeQnJxcI37kyJEoKytDWlqatK13794IDw/HypUrIYRAQEAAZs6ciVmzZgEADAYDfH19sWbNGowaNQp5eXno0qULsrOzERkZCQDYtm0bhgwZgnPnziEgIEA694svvojz589j0KBBmD59OkpKShp8b6WlpdDpdDAYDPD09JRTPSYKDOXouyijxrTrn5MHqmZcAZvqiagu9vAZRgQ0/Ptb0ZaoyspK5OTkIC4uTtrm5OSEuLg4ZGZm1npMZmamSTwAxMfHS/H5+fnQ6/UmMTqdDtHR0VJMZmYmvLy8pAQKAOLi4uDk5ISsrCxpW0ZGBjZt2oTly5c36H4qKipQWlpq8rIktf+KY1M9EdWHS0eQo1F0YHlRURGqqqrg6+trst3X1xfHjh2r9Ri9Xl9rvF6vl/ZXb6svpnXr1ib7XVxc0LJlSynm0qVLGD9+PNatW9fgVqSUlBS88sorDYqVQ00LANZGLas8E5F6cekIciSKj4lSq8mTJ2P06NHo379/g4+ZPXs2DAaD9Dp79qxFy6T2X3HVSd5fqSnJIyJ18Ne5I6Z9K9V8dhHJpWhLlLe3N5ydnVFYWGiyvbCwEH5+frUe4+fnV2989b+FhYXw9/c3iQkPD5dibh24fuPGDRQXF0vHZ2RkYMuWLXj77bcB3JzxZzQa4eLigo8++gh///vfa5TN1dUVrq6uDb19WdT8K646yZuzORdVQqguySMiIrIkRVuitFotIiIikJ6eLm0zGo1IT09HTExMrcfExMSYxAPAjh07pPiQkBD4+fmZxJSWliIrK0uKiYmJQUlJCXJycqSYjIwMGI1GREdHA7g5burQoUPS69VXX0Xz5s1x6NAhPPLII5apAJnU/CtuZK82+Dl5IL6Y3Bs/Jw/koHIiInJYii+2OWPGDCQlJSEyMhJRUVFYsmQJysrKMGHCBADAuHHjEBgYiJSUFADAc889h9jYWLzzzjsYOnQoUlNTsX//fnz00UcAAI1Gg+nTp2PhwoXo2LEjQkJCMG/ePAQEBCAhIQEA0LlzZwwePBiTJ0/GypUrcf36dUybNg2jRo2SZuZ17tzZpJz79++Hk5MTunXrZqOasV9c5ZmI5OJq5tRQanivKJ5EjRw5EhcvXsT8+fOh1+sRHh6Obdu2SQPDz5w5Ayen/2sw69OnDz7//HPMnTsXc+bMQceOHfH111+bJDcvvPACysrKMGXKFJSUlKBfv37Ytm0b3NzcpJj169dj2rRpGDRoEJycnPDoo49i6dKltrtxIlLFhyCpB5dIoYZSy3tF8XWiHJml14kiciRq+RAkdeAaUtRQtniv2MU6UUTUOHFNMeWo9YkCal8Hj9RDTe8VxbvziKjxUdOaYo2pS1HNrX9qXweP1ENN7xW2RBGRzallTTF7eBalpai99U/t6+CReqjpvcKWKCKyOTWsKVZXUtE/1Mchv7jV1PpXFzWvg0fqopb3CpMoIlKE0h+C9pBUWJKaukDqwyVSqKHU8F5hdx4RKUbJhWPV0qVoK2rqAiFyFGyJIqJGSQ1diramdOsfkaNhEkVEjVZjTCps1QXSmGY9UuPFJIqIGjU1jKtwNNZYSoFJGakRkygiIrKYhsx6NDchUvP6VtS4MYkiIiKLud2sR3MTosa2FIWasPXv9phEERGRxdS3lIKchKixLUWhFmz9axgucUBERBZT31IKcp551tiWolADta9uryZsiSJZ2MxLRHWpa9ajnAU/G+NSFEpj61/DMYkis7GZl4hup7ZZj3ITosa4FIWS7GV1ezXQCCHE7cNIjtLSUuh0OhgMBnh6eipdHIsoMJSj76KMGv9x/Zw8kB9sRNQgBYZyJkQqtyH7TI1ktzH9WG7o9zdbosgsbOYlojvFtbnUj61/DcMkiszCZl4iosaBye7tcXYemYUPMSUiIrqJLVFkNjbzEhERMYkimdjMS0REjR2784iICMDNWXN7ThWpclFFNZeNGi+2RBERkarXf1Nz2ahxY0sUEVEjp+bHfKi5bERMooiIGjk5z7SzFTWXjYhJFBFRI6fmh/yquWxETKKIiBo5Na//puayEfHZeVbkiM/OIyLHpeZn2qm5bOR4+Oy8RqrAUI78ojKEeHvwg4aIzKLm9d/UXDZqvJhEORBOAyZLYTJORHR7TKIcRF3TgPuH+vBLkMzCZJyIqGE4sNxBcBowWQLX5CEiajgmUQ6C04DJEpiMExE1HJMoB8FpwGQJTMaJiBqOY6IcyMhebdA/1IfTgB2ULQZ7VyfjczbnokoIJuNERPVgEuVg6poGzNlW9s2Wg72ZjBMRNQyTqEaAs63smxIzL7kmDxHR7XFMlIPjbCv7x8HeRETqxCTKwfEL2P5xsDcRkToxiXJw/AK2f5x5SUSkThwT5eA428oxcLA3EZH6MIlqBPgF7Bg42JuISF2YRDUS/AImIiKyLFWMiVq+fDmCg4Ph5uaG6Oho7Nu3r974TZs2oVOnTnBzc0NYWBi2bt1qsl8Igfnz58Pf3x/u7u6Ii4vDiRMnTGKKi4sxZswYeHp6wsvLCxMnTsSVK1ek/bt27cLw4cPh7+8PDw8PhIeHY/369Za7aSIiIrJriidRGzZswIwZM7BgwQIcOHAAPXr0QHx8PC5cuFBr/J49e5CYmIiJEyfi4MGDSEhIQEJCAnJzc6WYxYsXY+nSpVi5ciWysrLg4eGB+Ph4XLt2TYoZM2YMjhw5gh07diAtLQ0//fQTpkyZYnKd7t2746uvvsKvv/6KCRMmYNy4cUhLS7NeZRAREZHd0AghxO3DrCc6Ohq9evXC+++/DwAwGo0ICgrCM888g+Tk5BrxI0eORFlZmUky07t3b4SHh2PlypUQQiAgIAAzZ87ErFmzAAAGgwG+vr5Ys2YNRo0ahby8PHTp0gXZ2dmIjIwEAGzbtg1DhgzBuXPnEBAQUGtZhw4dCl9fX3z66acNurfS0lLodDoYDAZ4enqaVS9ERESkjIZ+fyvaElVZWYmcnBzExcVJ25ycnBAXF4fMzMxaj8nMzDSJB4D4+HgpPj8/H3q93iRGp9MhOjpaisnMzISXl5eUQAFAXFwcnJyckJWVVWd5DQYDWrZsaf6NEhERkcNRdGB5UVERqqqq4Ovra7Ld19cXx44dq/UYvV5fa7xer5f2V2+rL6Z169Ym+11cXNCyZUsp5lYbN25EdnY2Pvzwwzrvp6KiAhUVFdLfpaWldcYSERGRfVN8TJQ92LlzJyZMmIBVq1aha9eudcalpKRAp9NJr6CgIBuWkoiIiGxJ0STK29sbzs7OKCwsNNleWFgIPz+/Wo/x8/OrN77639vF3Dpw/caNGyguLq5x3R9//BHDhg3De++9h3HjxtV7P7Nnz4bBYJBeZ8+erTeeiIiI7JeiSZRWq0VERATS09OlbUajEenp6YiJian1mJiYGJN4ANixY4cUHxISAj8/P5OY0tJSZGVlSTExMTEoKSlBTk6OFJORkQGj0Yjo6Ghp265duzB06FC8+eabJjP36uLq6gpPT0+TFxERETkoobDU1FTh6uoq1qxZI44ePSqmTJkivLy8hF6vF0IIMXbsWJGcnCzF7969W7i4uIi3335b5OXliQULFogmTZqIw4cPSzGLFi0SXl5e4j//+Y/49ddfxfDhw0VISIgoLy+XYgYPHix69uwpsrKyxM8//yw6duwoEhMTpf0ZGRmiadOmYvbs2aKgoEB6Xbp0qcH3ZjAYBABhMBjupIqIrOJ8yVWx++RFcb7kqtJFISJSlYZ+fyueRAkhxLJly0SbNm2EVqsVUVFRYu/evdK+2NhYkZSUZBK/ceNGERoaKrRarejatav49ttvTfYbjUYxb9484evrK1xdXcWgQYPE8ePHTWIuXbokEhMTRbNmzYSnp6eYMGGCuHz5srQ/KSlJAKjxio2NbfB9MYkitUrd97sISU4TbV9MEyHJaSJ13+9KF4mIVKYx/9Bq6Pe34utEOTKuE0VqVGAoR99FGTD+5b98Z40GPycP5KOBiAgAsCH7DGZvPgyjAJw0QMqIMIzs1UbpYtmMXawTRUS2l19UZpJAAUCVEDhddFWZAhGRqhQYyqUECgCMApizORcFhnJlC6ZCTKKIGpkQbw84aUy3OWs0CPZuqkyByOIKDOXYc6qIX3okC39oNRyTKKJGxl/njpQRYXDW3MyknDUavDGiG7vyHMSG7DPouygDo1dloe+iDGzIPqN0kcjO8IdWw3FMlBVxTBSpWYGhHKeLriLYuykTKAfB8W5kKRuyz2DO5lxUCSH90OKYqJoUfewLUbUCQznyi8oQ4u1hkQ97S5/PEfnr3Fk3Dqa+bhj+f03mGNmrDfqH+vCH1m0wiSLFWXoWSGOfVUKNV3U3zK0tUeyGITn4Q+v2OCaKFGXpWSCcVUKNGce7EdkWW6JIUZbufmB3BjV27IYhsh0mUaQoS3c/sDuDiN0wRLbC7jxSlKW7H9idQUrjGk1EjQeXOLAiLnHQcJaebs/p+6SExjipgTNh5WPdqReXOCC7YunuB3ZnkK3VNamhf6iPw74XG2PSaCmsO8fA7jwiIgtobI/K4ExY+dRWd+yClo8tUUREFtCQSQ2O1H3DmbDyqanu2CJ2Z9gSRURkAbeb1OBoz7Tj89XkU0vdqa1FzB4xiSLVY1MzKcXc997IXm3wc/JAfDG5N35OHij9onfELyvOhJVPLXXX2LqgrYHdeaRqcpuaHanbhJQh971X26QGNXXfWBIX9pRPDXXHdfXuHFuiSLXk/nq3524Ttrqpg6VbjtTSfWMN/jp3xLRvxQRKBqXrTi0tYvaMLVGkWnJ+vdvzNHNHHeBpj62Clm45qv6ymrM5F1VC8MuKVEMNLWL2jEkUqZacpmZ77Tax5+SvPvaaGFqjm4NfVqRWXFdPPnbnkc2Y21Ulp6nZXrtNHHGApz0PprZWN4fS3TdEZFlsiSKbkNsiYe6vd3vtNnHEAZ722ipYjS1HRHQ7TKLI6u60q8rcpmZ7/PKz1+SvPo6QGKqhm6O+MWVqGG+mhjIQKYVJFFmdEi0S9X35/XL2T+w7XYyo4JboEdTCKteXwx6Tv/o4YmJoa/W14KphvJkaynA7TPLImphEkdWpqUVi5sZD+OrAH9Lfj94TiHceC7d5OeqihpYPS3K0xNCW6mvBBaD4RAR7mAxhD0ke2TcOLCerU8taJL+c/dMkgQKArw78gV/O/mnTcjQ2HEwtT30tuGqYiKCGMtTHnic2kP1gSxTZxMhebdDJrzmyT/+JXsEtLNKNZm4z/b7TxbVu33/6z9uWx167BNRQbjWUwR7drgVX6dZdNbUw18beJzaQfWASRTZh6WZ1OeeLCm5Z6/bI4PoTKHvtElBDudVQBnt1uzFlSo83U/uYN7UneeQYNEIIcfswkqO0tBQ6nQ4GgwGenp5KF0cxBYZy9F2UUePD7OfkgbI+cO/kfOaOibJ02W1FDeVWQxkcQYGhvM4xZfXtU0P5lLYh+0yNJI9JPDVEQ7+/2RJFVmfpZvU7Od87j4VjXExb7D/9JyIb0K3YkGupsbtKDV0ZaiiDI6hvsoEaJiKooQx1cdSJDWr8zGkIey13fZhEkdVZuln9Ts/XI6jhY7Judy21dlepoStDDWVQG0f8ElE7NSd5ctT3maPm95daPyvvFGfnkdVZenaeLWf71XctNc/+UcOMSDWUQU02ZJ9B30UZGL0qC30XZWBD9hmli0R2pr7PHDW/v9T8WXmn2BJFNmHpZnVbNtPXda076a6y9C/G2s6nhq4MNZRBDexhTSVSv7o+c3JO/6nq95cjd+0ziSKbsXSzui2b6Wu7ltzuKlvOVFRDV4aly6DmLou6OPKXCNlOXZ85uGUboK73lyN37bM7j0gmOd1Vlm7WduRm8tqoucuiPtVfIn/lKF8iZDt1feZEtG2h6veXI3ftsyWK6A6Y211l6S7AxtTCYc9dYmpfU4nsR12fOWp/fzlq1z6TKKI7ZE53VYi3BzQA/pr3aDSQ3QXoyM3kt7L3hNFRv0RIGQKm/zHYw/tLDcMLLI1JFJHSbrPc7e1aYB7pGWiygGhCzwCrfVApOR5JbQmjnLpwxC8Rsi21j4FsbDgmisiG8ovKauRMAqj3oa31tcAUGMrx74OmD1X++uB5q4yJUno8kprGVShdF9Q4NbYxkPaALVFENiSnNaW+Y2zVxaWW8Uhq6LJQS11Q42PvXdqOiC1RRFZSYCjHnlNFJr8S5bSm1HeMrWZ91ffhbWv+OnfEtG+l2JeGmuqCGhfO8lQftkQRWUF94xbktKbUdYytZn2pbTySklgXpBTO8lQfjRDiNsNaSa6GPgWaHEuBoRx9F2XU+JL9OXmgVQd8W7uLa0P2mRof3o7w7Cs5WBekpF/O/ons03+iVwMeok7yNPT7my1RRBamxLgFW8zKUcN4JLVgXZBSHPVBvvZKFWOili9fjuDgYLi5uSE6Ohr79u2rN37Tpk3o1KkT3NzcEBYWhq1bt5rsF0Jg/vz58Pf3h7u7O+Li4nDixAmTmOLiYowZMwaenp7w8vLCxIkTceXKFZOYX3/9Fffeey/c3NwQFBSExYsXW+aGyaE1ZNxCbeOl7IHS45HUhHVBtsbZeeqjeBK1YcMGzJgxAwsWLMCBAwfQo0cPxMfH48KFC7XG79mzB4mJiZg4cSIOHjyIhIQEJCQkIDc3V4pZvHgxli5dipUrVyIrKwseHh6Ij4/HtWvXpJgxY8bgyJEj2LFjB9LS0vDTTz9hypQp0v7S0lI88MADaNu2LXJycvDWW2/h5ZdfxkcffWS9yiBFWSqxud3gcU6PJyI5bjepwV5/nNkzxcdERUdHo1evXnj//fcBAEajEUFBQXjmmWeQnJxcI37kyJEoKytDWlqatK13794IDw/HypUrIYRAQEAAZs6ciVmzZgEADAYDfH19sWbNGowaNQp5eXno0qULsrOzERkZCQDYtm0bhgwZgnPnziEgIAArVqzASy+9BL1eD61WCwBITk7G119/jWPHjjXo3jgmyn5Yo4m8tnFKSoyXIiLH8MvZPzF8+Z4a2/8ztQ+O6S+zm8+CGvr9rWhLVGVlJXJychAXFydtc3JyQlxcHDIzM2s9JjMz0yQeAOLj46X4/Px86PV6kxidTofo6GgpJjMzE15eXlICBQBxcXFwcnJCVlaWFNO/f38pgaq+zvHjx/Hnn3/WWraKigqUlpaavEj9rNVEXlt3D6fHE5FcZZVVtW4/W8xuPqUomkQVFRWhqqoKvr6+Jtt9fX2h1+trPUav19cbX/3v7WJat25tst/FxQUtW7Y0iantHH+9xq1SUlKg0+mkV1BQUO03Tqpiy8SG67wQkVx1fX7gliU3AP44sxXFx0Q5ktmzZ8NgMEivs2fPKl0kagBbJjZqenQJEdmXuj4/Itq24I8zhSi6xIG3tzecnZ1RWFhosr2wsBB+fn61HuPn51dvfPW/hYWF8Pf3N4kJDw+XYm4duH7jxg0UFxebnKe26/z1GrdydXWFq6trnfdL6mTrBew4PZ6I5Krr84OLcCpD0SRKq9UiIiIC6enpSEhIAHBzYHl6ejqmTZtW6zExMTFIT0/H9OnTpW07duxATEwMACAkJAR+fn5IT0+XkqbS0lJkZWXhqaeeks5RUlKCnJwcREREAAAyMjJgNBoRHR0txbz00ku4fv06mjRpIl3n7rvvRosWXNzM0dg6seHT1olIrto+P/jjTCFCYampqcLV1VWsWbNGHD16VEyZMkV4eXkJvV4vhBBi7NixIjk5WYrfvXu3cHFxEW+//bbIy8sTCxYsEE2aNBGHDx+WYhYtWiS8vLzEf/7zH/Hrr7+K4cOHi5CQEFFeXi7FDB48WPTs2VNkZWWJn3/+WXTs2FEkJiZK+0tKSoSvr68YO3asyM3NFampqaJp06biww8/bPC9GQwGAUAYDIY7qSIiIiKyoYZ+fyueRAkhxLJly0SbNm2EVqsVUVFRYu/evdK+2NhYkZSUZBK/ceNGERoaKrRarejatav49ttvTfYbjUYxb9484evrK1xdXcWgQYPE8ePHTWIuXbokEhMTRbNmzYSnp6eYMGGCuHz5sknML7/8Ivr16ydcXV1FYGCgWLRokVn3xSSKiIjI/jT0+1vxdaIcGdeJIiIisj92sU4UERERkb1iEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZFD0AcSOrnox+NLSUoVLQkRERA1V/b19u4e6MImyosuXLwMAgoKCFC4JERERmevy5cvQ6XR17uez86zIaDTi/PnzaN68OTQajVnHlpaWIigoCGfPnm3Uz91jPbAOqrEeWAcA66Aa68G6dSCEwOXLlxEQEAAnp7pHPrElyoqcnJxw11133dE5PD09G+1/IH/FemAdVGM9sA4A1kE11oP16qC+FqhqHFhOREREJAOTKCIiIiIZmESplKurKxYsWABXV1eli6Io1gProBrrgXUAsA6qsR7UUQccWE5EREQkA1uiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCRKQcuXL0dwcDDc3NwQHR2Nffv21Rl75MgRPProowgODoZGo8GSJUtsV1ArM6ceVq1ahXvvvRctWrRAixYtEBcXV2+8vTCnDjZv3ozIyEh4eXnBw8MD4eHh+Oyzz2xYWuswpw7+KjU1FRqNBgkJCdYtoI2YUw9r1qyBRqMxebm5udmwtNZh7nuhpKQEU6dOhb+/P1xdXREaGoqtW7faqLTWY049DBgwoMZ7QaPRYOjQoTYsseWZ+15YsmQJ7r77bri7uyMoKAjPP/88rl27Zr0CClJEamqq0Gq14tNPPxVHjhwRkydPFl5eXqKwsLDW+H379olZs2aJL774Qvj5+Yn33nvPtgW2EnPrYfTo0WL58uXi4MGDIi8vT4wfP17odDpx7tw5G5fccsytg507d4rNmzeLo0ePipMnT4olS5YIZ2dnsW3bNhuX3HLMrYNq+fn5IjAwUNx7771i+PDhtimsFZlbD6tXrxaenp6ioKBAeun1ehuX2rLMrYOKigoRGRkphgwZIn7++WeRn58vdu3aJQ4dOmTjkluWufVw6dIlk/dBbm6ucHZ2FqtXr7ZtwS3I3DpYv369cHV1FevXrxf5+fli+/btwt/fXzz//PNWKyOTKIVERUWJqVOnSn9XVVWJgIAAkZKScttj27Zt6zBJ1J3UgxBC3LhxQzRv3lysXbvWWkW0ujutAyGE6Nmzp5g7d641imcTcurgxo0bok+fPuLjjz8WSUlJDpFEmVsPq1evFjqdzkalsw1z62DFihWiXbt2orKy0lZFtIk7/Vx47733RPPmzcWVK1esVUSrM7cOpk6dKu677z6TbTNmzBB9+/a1WhnZnaeAyspK5OTkIC4uTtrm5OSEuLg4ZGZmKlgy27JEPVy9ehXXr19Hy5YtrVVMq7rTOhBCID09HcePH0f//v2tWVSrkVsHr776Klq3bo2JEyfaophWJ7cerly5grZt2yIoKAjDhw/HkSNHbFFcq5BTB1u2bEFMTAymTp0KX19fdOvWDW+88QaqqqpsVWyLs8Rn4yeffIJRo0bBw8PDWsW0Kjl10KdPH+Tk5Ehdfr/99hu2bt2KIUOGWK2cfACxAoqKilBVVQVfX1+T7b6+vjh27JhCpbI9S9TDiy++iICAAJP/0OyJ3DowGAwIDAxERUUFnJ2d8cEHH+D++++3dnGtQk4d/Pzzz/jkk09w6NAhG5TQNuTUw913341PP/0U3bt3h8FgwNtvv40+ffrgyJEjd/zwcyXIqYPffvsNGRkZGDNmDLZu3YqTJ0/i6aefxvXr17FgwQJbFNvi7vSzcd++fcjNzcUnn3xirSJanZw6GD16NIqKitCvXz8IIXDjxg08+eSTmDNnjtXKySSK7NaiRYuQmpqKXbt2OcRgWnM0b94chw4dwpUrV5Ceno4ZM2agXbt2GDBggNJFs7rLly9j7NixWLVqFby9vZUujqJiYmIQExMj/d2nTx907twZH374IV577TUFS2Y7RqMRrVu3xkcffQRnZ2dERETgjz/+wFtvvWW3SdSd+uSTTxAWFoaoqCili2JTu3btwhtvvIEPPvgA0dHROHnyJJ577jm89tprmDdvnlWuySRKAd7e3nB2dkZhYaHJ9sLCQvj5+SlUKtu7k3p4++23sWjRIvzwww/o3r27NYtpVXLrwMnJCR06dAAAhIeHIy8vDykpKXaZRJlbB6dOncLp06cxbNgwaZvRaAQAuLi44Pjx42jfvr11C20FlvhcaNKkCXr27ImTJ09ao4hWJ6cO/P390aRJEzg7O0vbOnfuDL1ej8rKSmi1WquW2Rru5L1QVlaG1NRUvPrqq9YsotXJqYN58+Zh7NixmDRpEgAgLCwMZWVlmDJlCl566SU4OVl+BBPHRClAq9UiIiIC6enp0jaj0Yj09HSTX5WOTm49LF68GK+99hq2bduGyMhIWxTVaiz1XjAajaioqLBGEa3O3Dro1KkTDh8+jEOHDkmvhx9+GAMHDsShQ4cQFBRky+JbjCXeC1VVVTh8+DD8/f2tVUyrklMHffv2xcmTJ6VEGgD++9//wt/f3y4TKODO3gubNm1CRUUFHn/8cWsX06rk1MHVq1drJErVybWw1mOCrTZkneqVmpoqXF1dxZo1a8TRo0fFlClThJeXlzQ9eezYsSI5OVmKr6ioEAcPHhQHDx4U/v7+YtasWeLgwYPixIkTSt2CRZhbD4sWLRJarVZ8+eWXJtN5L1++rNQt3DFz6+CNN94Q33//vTh16pQ4evSoePvtt4WLi4tYtWqVUrdwx8ytg1s5yuw8c+vhlVdeEdu3bxenTp0SOTk5YtSoUcLNzU0cOXJEqVu4Y+bWwZkzZ0Tz5s3FtGnTxPHjx0VaWppo3bq1WLhwoVK3YBFy/5vo16+fGDlypK2LaxXm1sGCBQtE8+bNxRdffCF+++038f3334v27duLxx57zGplZBKloGXLlok2bdoIrVYroqKixN69e6V9sbGxIikpSfo7Pz9fAKjxio2NtX3BLcycemjbtm2t9bBgwQLbF9yCzKmDl156SXTo0EG4ubmJFi1aiJiYGJGamqpAqS3LnDq4laMkUUKYVw/Tp0+XYn19fcWQIUPEgQMHFCi1ZZn7XtizZ4+Ijo4Wrq6uol27duL1118XN27csHGpLc/cejh27JgAIL7//nsbl9R6zKmD69evi5dfflm0b99euLm5iaCgIPH000+LP//802rl0whhrTYuIiIiIsfFMVFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiMgBjB8/HgkJCUoXg6hRYRJFRFY1fvx4aDQa6dWqVSsMHjwYv/76q9JFs4i/3lv1q1+/fla73unTp6HRaHDo0CGT7f/85z+xZs0aq12XiGpiEkVEVjd48GAUFBSgoKAA6enpcHFxwUMPPaR0sSxm9erV0v0VFBRgy5YttcZdv37damXQ6XTw8vKy2vmJqCYmUURkda6urvDz84Ofnx/Cw8ORnJyMs2fP4uLFi7jvvvswbdo0k/iLFy9Cq9VKT3APDg7Ga6+9hsTERHh4eCAwMBDLly83Oebdd99FWFgYPDw8EBQUhKeffhpXrlyR9v/+++8YNmwYWrRoAQ8PD3Tt2hVbt24FAPz5558YM2YMfHx84O7ujo4dO2L16tUNvj8vLy/p/vz8/NCyZUupxWjDhg2IjY2Fm5sb1q9fj0uXLiExMRGBgYFo2rQpwsLC8MUXX5icz2g0YvHixejQoQNcXV3Rpk0bvP766wCAkJAQAEDPnj2h0WgwYMAAADW78yoqKvDss8+idevWcHNzQ79+/ZCdnS3t37VrFzQaDdLT0xEZGYmmTZuiT58+OH78eIPvm6ixYxJFRDZ15coVrFu3Dh06dECrVq0wadIkfP7556ioqJBi1q1bh8DAQNx3333Strfeegs9evTAwYMHkZycjOeeew47duyQ9js5OWHp0qU4cuQI1q5di4yMDLzwwgvS/qlTp6KiogI//fQTDh8+jDfffBPNmjUDAMybNw9Hjx7Fd999h7y8PKxYsQLe3t4Wud/qsubl5SE+Ph7Xrl1DREQEvv32W+Tm5mLKlCkYO3Ys9u3bJx0ze/ZsLFq0SCrX559/Dl9fXwCQ4n744QcUFBRg8+bNtV73hRdewFdffYW1a9fiwIED6NChA+Lj41FcXGwS99JLL+Gdd97B/v374eLigr///e8WuW+iRsFqjzYmIhJCJCUlCWdnZ+Hh4SE8PDwEAOHv7y9ycnKEEEKUl5eLFi1aiA0bNkjHdO/eXbz88svS323bthWDBw82Oe/IkSPFgw8+WOd1N23aJFq1aiX9HRYWZnLOvxo2bJiYMGGCrPsDINzc3KT78/DwEP/+979Ffn6+ACCWLFly23MMHTpUzJw5UwghRGlpqXB1dRWrVq2qNbb6vAcPHjTZnpSUJIYPHy6EEOLKlSuiSZMmYv369dL+yspKERAQIBYvXiyEEGLnzp0CgPjhhx+kmG+//VYAEOXl5eZUAVGjxZYoIrK6gQMH4tChQzh06BD27duH+Ph4PPjgg/j999/h5uaGsWPH4tNPPwUAHDhwALm5uRg/frzJOWJiYmr8nZeXJ/39ww8/YNCgQQgMDETz5s0xduxYXLp0CVevXgUAPPvss1i4cCH69u2LBQsWmAxsf+qpp5Camorw8HC88MIL2LNnj1n3995770n3d+jQIdx///3SvsjISJPYqqoqvPbaawgLC0PLli3RrFkzbN++HWfOnAEA5OXloaKiAoMGDTKrDH916tQpXL9+HX379pW2NWnSBFFRUSZ1BgDdu3eX/re/vz8A4MKFC7KvTdSYMIkiIqvz8PBAhw4d0KFDB/Tq1Qsff/wxysrKsGrVKgDApEmTsGPHDpw7dw6rV6/Gfffdh7Zt2zb4/KdPn8ZDDz2E7t2746uvvkJOTo40ZqqyslK6xm+//YaxY8fi8OHDiIyMxLJlywBASuief/55nD9/HoMGDcKsWbMafH0/Pz/p/jp06AAPDw+Te/+rt956C//85z/x4osvYufOnTh06BDi4+Olcrq7uzf4upbQpEkT6X9rNBoAN8dkEdHtMYkiIpvTaDRwcnJCeXk5ACAsLAyRkZFYtWoVPv/881rH5ezdu7fG3507dwYA5OTkwGg04p133kHv3r0RGhqK8+fP1zhHUFAQnnzySWzevBkzZ86UkjgA8PHxQVJSEtatW4clS5bgo48+suQtS3bv3o3hw4fj8ccfR48ePdCuXTv897//lfZ37NgR7u7u0qD6W2m1WgA3W7Tq0r59e2i1WuzevVvadv36dWRnZ6NLly4WuhMiclG6AETk+CoqKqDX6wHcnAn3/vvv48qVKxg2bJgUM2nSJEybNg0eHh545JFHapxj9+7dWLx4MRISErBjxw5s2rQJ3377LQCgQ4cOuH79OpYtW4Zhw4Zh9+7dWLlypcnx06dPx4MPPojQ0FD8+eef2Llzp5SEzZ8/HxEREejatSsqKiqQlpYm7bO0jh074ssvv8SePXvQokULvPvuuygsLJSSGzc3N7z44ot44YUXoNVq0bdvX1y8eBFHjhzBxIkT0bp1a7i7u2Pbtm2466674ObmBp1OZ3INDw8PPPXUU/jHP/6Bli1bok2bNli8eDGuXr2KiRMnWuW+iBojtkQRkdVt27YN/v7+8Pf3R3R0NLKzs7Fp0yZpej4AJCYmwsXFBYmJiXBzc6txjpkzZ2L//v3o2bMnFi5ciHfffRfx8fEAgB49euDdd9/Fm2++iW7dumH9+vVISUkxOb6qqgpTp05F586dMXjwYISGhuKDDz4AcLN1Z/bs2ejevTv69+8PZ2dnpKamWqUu5s6di3vuuQfx8fEYMGAA/Pz8aqw0Pm/ePMycORPz589H586dMXLkSGmckouLC5YuXYoPP/wQAQEBGD58eK3XWbRoER599FGMHTsW99xzD06ePInt27ejRYsWVrkvosZII4QQSheCiOj06dNo3749srOzcc8995jsCw4OxvTp0zF9+nRlCkdEVAt25xGRoq5fv45Lly5h7ty56N27d40EiohIrdidR0SK2r17N/z9/ZGdnV1jHJPS3njjDTRr1qzW14MPPqh08YhIYezOIyKqQ3FxcY0Vvqu5u7sjMDDQxiUiIjVhEkVEREQkA7vziIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEM/x8pab2+L5F6TwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_49.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABb9UlEQVR4nO3dfVxUZf4//tcMCIMoICEMsCikmJooJjKiJpqzi2kmZZ+QWO8Wpd2kNHQNXZVu3PCu8kO5UVbapzTJMjMzikDzqxIi6ub9qmFqOSgSgyIiMtfvj36cbeRGODKcuXk9H4956JzzPmeu68ww5z3XdZ3rqIQQAkRERETUImqlC0BERERki5hEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRkV17/vnnoVKpmhWrUqnw/PPPW7Q8w4cPx/Dhw612f0TUfEyiiKhNrF27FiqVSno4OzsjMDAQU6ZMwc8//6x08axOcHCw2fHy9fXF/fffj88++6xV9n/t2jU8//zz2LFjR6vsj8gRMYkiojb14osv4oMPPkBmZiYefPBBfPjhh4iOjsb169ct8noLFixAVVWVRfZtaeHh4fjggw/wwQcfYM6cOfjll1/w6KOPIjMz8473fe3aNbzwwgtMoojugLPSBSAix/Lggw8iIiICADBt2jT4+Phg6dKl2LJlCx5//PFWfz1nZ2c4O9vmV11gYCD+/Oc/S88nTZqE7t2747XXXsNf//pXBUtGRABboohIYffffz8A4PTp02bLjx8/jsceewze3t7QaDSIiIjAli1bzGJqamrwwgsvIDQ0FBqNBnfddReGDh2KnJwcKaahMVHV1dV49tln0blzZ3Ts2BEPP/wwzp8/X69sU6ZMQXBwcL3lDe1zzZo1eOCBB+Dr6wtXV1f07t0bb775ZouOxe1otVr06tULxcXFTcZdvHgRiYmJ8PPzg0ajQb9+/fD+++9L68+cOYPOnTsDAF544QWpy9DS48GI7I1t/jwjIrtx5swZAECnTp2kZUeOHMGQIUMQGBiI1NRUuLu74+OPP0ZsbCw+/fRTPPLIIwB+S2bS09Mxbdo0REZGoqKiAvv27cP+/fvxxz/+sdHXnDZtGj788EM88cQTGDx4MPLy8jBmzJg7qsebb76Je++9Fw8//DCcnZ3xxRdf4KmnnoLJZMKMGTPuaN91ampqcO7cOdx1112NxlRVVWH48OE4deoUkpOTERISgo0bN2LKlCkoLy/HzJkz0blzZ7z55pv429/+hkceeQSPPvooAKBv376tUk4ihyGIiNrAmjVrBADx7bffikuXLolz586JTz75RHTu3Fm4urqKc+fOSbEjR44UYWFh4vr169Iyk8kkBg8eLEJDQ6Vl/fr1E2PGjGnyddPS0sTvv+oOHjwoAIinnnrKLO6JJ54QAERaWpq0bPLkyaJr16633acQQly7dq1eXExMjLj77rvNlkVHR4vo6OgmyyyEEF27dhV/+tOfxKVLl8SlS5fEv//9bzFhwgQBQDz99NON7m/lypUCgPjwww+lZTdu3BBRUVGiQ4cOoqKiQgghxKVLl+rVl4haht15RNSm9Ho9OnfujKCgIDz22GNwd3fHli1b8Ic//AEAUFZWhry8PDz++OO4cuUKSktLUVpaisuXLyMmJgYnT56Urubz8vLCkSNHcPLkyWa//rZt2wAAzzzzjNnyWbNm3VG93NzcpP8bjUaUlpYiOjoaP/74I4xGo6x9fvPNN+jcuTM6d+6Mfv36YePGjZg4cSKWLl3a6Dbbtm2DVqtFfHy8tKxdu3Z45plncPXqVXz33XeyykJE9bE7j4ja1KpVq9CjRw8YjUa899572LlzJ1xdXaX1p06dghACCxcuxMKFCxvcx8WLFxEYGIgXX3wR48aNQ48ePdCnTx+MGjUKEydObLJb6qeffoJarUa3bt3Mlt9zzz13VK/du3cjLS0N+fn5uHbtmtk6o9EIT0/PFu9Tp9Nh8eLFUKlUaN++PXr16gUvL68mt/npp58QGhoKtdr8N3KvXr2k9UTUOphEEVGbioyMlK7Oi42NxdChQ/HEE0/gxIkT6NChA0wmEwBgzpw5iImJaXAf3bt3BwAMGzYMp0+fxueff45vvvkG77zzDl577TVkZmZi2rRpd1zWxibprK2tNXt++vRpjBw5Ej179sSrr76KoKAguLi4YNu2bXjttdekOrWUj48P9Hq9rG2JyPKYRBGRYpycnJCeno4RI0bgjTfeQGpqKu6++24Av3VBNSeB8Pb2xtSpUzF16lRcvXoVw4YNw/PPP99oEtW1a1eYTCacPn3arPXpxIkT9WI7deqE8vLyestvbc354osvUF1djS1btqBLly7S8u3bt9+2/K2ta9eu+OGHH2Aymcxao44fPy6tBxpPEImo+TgmiogUNXz4cERGRmLlypW4fv06fH19MXz4cLz11lu4cOFCvfhLly5J/798+bLZug4dOqB79+6orq5u9PUefPBBAEBGRobZ8pUrV9aL7datG4xGI3744Qdp2YULF+rNGu7k5AQAEEJIy4xGI9asWdNoOSxl9OjRMBgMyMrKkpbdvHkTr7/+Ojp06IDo6GgAQPv27QGgwSSRiJqHLVFEpLi///3v+J//+R+sXbsWf/3rX7Fq1SoMHToUYWFhmD59Ou6++26UlJQgPz8f58+fx7///W8AQO/evTF8+HAMGDAA3t7e2LdvHz755BMkJyc3+lrh4eGIj4/Hv/71LxiNRgwePBi5ubk4depUvdgJEybgueeewyOPPIJnnnkG165dw5tvvokePXpg//79Utyf/vQnuLi4YOzYsXjyySdx9epVrF69Gr6+vg0mgpaUlJSEt956C1OmTEFRURGCg4PxySefYPfu3Vi5ciU6duwI4LeB8L1790ZWVhZ69OgBb29v9OnTB3369GnT8hLZNKUvDyQix1A3xUFhYWG9dbW1taJbt26iW7du4ubNm0IIIU6fPi0mTZoktFqtaNeunQgMDBQPPfSQ+OSTT6TtFi9eLCIjI4WXl5dwc3MTPXv2FP/85z/FjRs3pJiGpiOoqqoSzzzzjLjrrruEu7u7GDt2rDh37lyDl/x/8803ok+fPsLFxUXcc8894sMPP2xwn1u2bBF9+/YVGo1GBAcHi6VLl4r33ntPABDFxcVSXEumOLjd9A2N7a+kpERMnTpV+Pj4CBcXFxEWFibWrFlTb9s9e/aIAQMGCBcXF053QCSDSojftT8TERERUbNwTBQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAZOtmlBJpMJv/zyCzp27MhbLBAREdkIIQSuXLmCgICAejfz/j0mURb0yy+/ICgoSOliEBERkQznzp3DH/7wh0bXM4myoLrbK5w7dw4eHh4Kl4aIiIiao6KiAkFBQdJ5vDFMoiyorgvPw8ODSRQREZGNud1QHA4sJyIiIpKBSRQRERGRDEyiiIiIiGTgmCiF1dbWoqamRuliKK5du3ZwcnJSuhhERETNxiRKIUIIGAwGlJeXK10Uq+Hl5QWtVss5tYiIyCYwiVJIXQLl6+uL9u3bO3TiIITAtWvXcPHiRQCAv7+/wiUiIiK6PSZRCqitrZUSqLvuukvp4lgFNzc3AMDFixfh6+vLrj0iIrJ6HFiugLoxUO3bt1e4JNal7nhwjBgREdkCJlEKcuQuvIbweBARkS1hEkVEREQkA5MoIiIiIhmYRFGLTJkyBSqVCkuWLDFbvnnzZqk7bseOHRg3bhz8/f3h7u6O8PBwrFu3ToniEhGRDbhgrMKe06W4YKxSuigtwiSKWkyj0WDp0qX49ddfG1y/Z88e9O3bF59++il++OEHTJ06FZMmTcLWrVvbuKRERGTtsgrPYsiSPDyxugBDluQhq/Cs0kVqNiZR1GJ6vR5arRbp6ekNrp8/fz5eeuklDB48GN26dcPMmTMxatQobNq0qY1LSkRE1uyCsQrzNh2CSfz23CSA+ZsO20yLlOJJ1KpVqxAcHAyNRgOdToe9e/c2Gb9x40b07NkTGo0GYWFh2LZtm9l6IQQWLVoEf39/uLm5Qa/X4+TJk2YxZWVlSEhIgIeHB7y8vJCYmIirV6+axXz99dcYNGgQOnbsiM6dO2P8+PE4c+ZMq9S5tbV1M6iTkxNefvllvP766zh//nyztjEajfD29rZwyYiIyJYUl1ZKCVSdWiFwpvSaMgVqIUWTqKysLKSkpCAtLQ379+9Hv379EBMTI81cfas9e/YgPj4eiYmJOHDgAGJjYxEbG4vDhw9LMcuWLUNGRgYyMzNRUFAAd3d3xMTE4Pr161JMQkICjhw5gpycHGzduhU7d+5EUlKStL64uBjjxo3DAw88gIMHD+Lrr79GaWkpHn30UcsdDJmUagZ95JFHEB4ejrS0tNvGfvzxxygsLMTUqVPboGRERGQrQnzcob5ldhsnlQrBPjYyj6JQUGRkpJgxY4b0vLa2VgQEBIj09PQG4x9//HExZswYs2U6nU48+eSTQgghTCaT0Gq1Yvny5dL68vJy4erqKj766CMhhBBHjx4VAERhYaEU89VXXwmVSiV+/vlnIYQQGzduFM7OzqK2tlaK2bJli1CpVOLGjRvNrp/RaBQAhNFoNFteVVUljh49Kqqqqpq9r4b8Un5NhKRuFV2f++/j7tQvxS/l1+5ov02ZPHmyGDdunBBCiO+++044OTmJo0ePis8++0w09HHKy8sT7du3F++///5t991ax4WIiGzHhr0/ibtTv5TOYRv2/qR0kRo9f99KsZaoGzduoKioCHq9XlqmVquh1+uRn5/f4Db5+flm8QAQExMjxRcXF8NgMJjFeHp6QqfTSTH5+fnw8vJCRESEFKPX66FWq1FQUAAAGDBgANRqNdasWYPa2loYjUZ88MEH0Ov1aNeuXaN1qq6uRkVFhdnDkpRuBh02bBhiYmIwb968Btd/9913GDt2LF577TVMmjSpTcpERES2JW5gF+xKHYGPpg/CrtQRiBvYRekiNZtiSVRpaSlqa2vh5+dnttzPzw8Gg6HBbQwGQ5Pxdf/eLsbX19dsvbOzM7y9vaWYkJAQfPPNN5g/fz5cXV3h5eWF8+fP4+OPP26yTunp6fD09JQeQUFBTcbfKWtoBl2yZAm++OKLeonvjh07MGbMGCxdutSsq5SIiOhW/p5uiOp2F/w93ZQuSosoPrDcGhkMBkyfPh2TJ09GYWEhvvvuO7i4uOCxxx6DEKLR7ebNmwej0Sg9zp07Z9Fy+nu6If3RMDj9//MzOalUePnRPm36IQwLC0NCQgIyMjKkZdu3b8eYMWPwzDPPYPz48TAYDDAYDCgrK2uzchEREVmas1Iv7OPjAycnJ5SUlJgtLykpgVarbXAbrVbbZHzdvyUlJfD39zeLCQ8Pl2JuHbh+8+ZNlJWVSduvWrUKnp6eWLZsmRTz4YcfIigoCAUFBRg0aFCD5XN1dYWrq+vtqt6q4gZ2wbAenXGm9BqCfdorksW/+OKLyMrKkp6///77uHbtGtLT082mQYiOjsaOHTvavHxERESWoFhLlIuLCwYMGIDc3FxpmclkQm5uLqKiohrcJioqyiweAHJycqT4kJAQaLVas5iKigoUFBRIMVFRUSgvL0dRUZEUk5eXB5PJBJ1OBwC4du0a1GrzQ+Pk5CSV0dq0ZTPo2rVrsXnzZrNlwcHBqK6ullrp1q5dCyFEvQcTKCIisieKduelpKRg9erVeP/993Hs2DH87W9/Q2VlpXQp/KRJk8wGLc+cORPZ2dl45ZVXcPz4cTz//PPYt28fkpOTAQAqlQqzZs3C4sWLsWXLFhw6dAiTJk1CQEAAYmNjAQC9evXCqFGjMH36dOzduxe7d+9GcnIyJkyYgICAAADAmDFjUFhYiBdffBEnT57E/v37MXXqVHTt2hX9+/dv24NEREREVkmx7jwAiIuLw6VLl7Bo0SIYDAaEh4cjOztbGhh+9uxZsxahwYMHY/369ViwYAHmz5+P0NBQbN68GX369JFi5s6di8rKSiQlJaG8vBxDhw5FdnY2NBqNFLNu3TokJydj5MiRUKvVGD9+vNmYngceeADr16/HsmXLsGzZMrRv3x5RUVHIzs6Gm5ttDXojIiIiy1CJpkZK0x2pqKiAp6cnjEYjPDw8pOXXr19HcXExQkJCzJI7R8fjQkRE1qCx8/eteHUeERERkQxMohTERkBzPB5ERGRLmEQpoG7W82vXbOMGi22l7ng0NSs8ERGRtVB0YLmjcnJygpeXlzRfVfv27aFSqW6zlf0SQuDatWu4ePEivLy8pOkkiIiIrBmTKIXUTex568SfjszLy6vRiVaJiIisDZMohahUKvj7+8PX1xc1NTVKF0dx7dq1YwsUERHZFCZRCnNycmLyQEREZIM4sJyIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREclgFUnUqlWrEBwcDI1GA51Oh7179zYZv3HjRvTs2RMajQZhYWHYtm2b2XohBBYtWgR/f3+4ublBr9fj5MmTZjFlZWVISEiAh4cHvLy8kJiYiKtXr0rrn3/+eahUqnoPd3f31qs4ERER2SzFk6isrCykpKQgLS0N+/fvR79+/RATE4OLFy82GL9nzx7Ex8cjMTERBw4cQGxsLGJjY3H48GEpZtmyZcjIyEBmZiYKCgrg7u6OmJgYXL9+XYpJSEjAkSNHkJOTg61bt2Lnzp1ISkqS1s+ZMwcXLlwwe/Tu3Rv/8z//Y7mDQURERLZDKCwyMlLMmDFDel5bWysCAgJEenp6g/GPP/64GDNmjNkynU4nnnzySSGEECaTSWi1WrF8+XJpfXl5uXB1dRUfffSREEKIo0ePCgCisLBQivnqq6+ESqUSP//8c4Ove/DgQQFA7Ny5s9l1MxqNAoAwGo3N3oaIiIiU1dzzt6ItUTdu3EBRURH0er20TK1WQ6/XIz8/v8Ft8vPzzeIBICYmRoovLi6GwWAwi/H09IROp5Ni8vPz4eXlhYiICClGr9dDrVajoKCgwdd955130KNHD9x///2N1qe6uhoVFRVmDyIiIrJPiiZRpaWlqK2thZ+fn9lyPz8/GAyGBrcxGAxNxtf9e7sYX19fs/XOzs7w9vZu8HWvX7+OdevWITExscn6pKenw9PTU3oEBQU1GU9ERES2S/ExUbbgs88+w5UrVzB58uQm4+bNmwej0Sg9zp0710YlJCIioramaBLl4+MDJycnlJSUmC0vKSmBVqttcButVttkfN2/t4u5deD6zZs3UVZW1uDrvvPOO3jooYfqtW7dytXVFR4eHmYPIiIisk+KJlEuLi4YMGAAcnNzpWUmkwm5ubmIiopqcJuoqCizeADIycmR4kNCQqDVas1iKioqUFBQIMVERUWhvLwcRUVFUkxeXh5MJhN0Op3ZvouLi7F9+/bbduURERGRY3FWugApKSmYPHkyIiIiEBkZiZUrV6KyshJTp04FAEyaNAmBgYFIT08HAMycORPR0dF45ZVXMGbMGGzYsAH79u3D22+/DQBQqVSYNWsWFi9ejNDQUISEhGDhwoUICAhAbGwsAKBXr14YNWoUpk+fjszMTNTU1CA5ORkTJkxAQECAWfnee+89+Pv748EHH2y7g0JERERWT/EkKi4uDpcuXcKiRYtgMBgQHh6O7Oxsqevs7NmzUKv/22A2ePBgrF+/HgsWLMD8+fMRGhqKzZs3o0+fPlLM3LlzUVlZiaSkJJSXl2Po0KHIzs6GRqORYtatW4fk5GSMHDkSarUa48ePR0ZGhlnZTCYT1q5diylTpsDJycnCR4KIiIhsiUoIIZQuhL2qqKiAp6cnjEYjx0cRERHZiOaev3l1HhEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBsWTqFWrViE4OBgajQY6nQ579+5tMn7jxo3o2bMnNBoNwsLCsG3bNrP1QggsWrQI/v7+cHNzg16vx8mTJ81iysrKkJCQAA8PD3h5eSExMRFXr16tt58VK1agR48ecHV1RWBgIP75z3+2TqWJiIjI5imaRGVlZSElJQVpaWnYv38/+vXrh5iYGFy8eLHB+D179iA+Ph6JiYk4cOAAYmNjERsbi8OHD0sxy5YtQ0ZGBjIzM1FQUAB3d3fExMTg+vXrUkxCQgKOHDmCnJwcbN26FTt37kRSUpLZa82cORPvvPMOVqxYgePHj2PLli2IjIy0zIEgIiIi2yMUFBkZKWbMmCE9r62tFQEBASI9Pb3B+Mcff1yMGTPGbJlOpxNPPvmkEEIIk8kktFqtWL58ubS+vLxcuLq6io8++kgIIcTRo0cFAFFYWCjFfPXVV0KlUomff/5ZinF2dhbHjx+/o/oZjUYBQBiNxjvaDxEREbWd5p6/FWuJunHjBoqKiqDX66VlarUaer0e+fn5DW6Tn59vFg8AMTExUnxxcTEMBoNZjKenJ3Q6nRSTn58PLy8vRERESDF6vR5qtRoFBQUAgC+++AJ33303tm7dipCQEAQHB2PatGkoKytrsk7V1dWoqKgwexAREZF9UiyJKi0tRW1tLfz8/MyW+/n5wWAwNLiNwWBoMr7u39vF+Pr6mq13dnaGt7e3FPPjjz/ip59+wsaNG/F///d/WLt2LYqKivDYY481Waf09HR4enpKj6CgoCbjiYiIyHYpPrDcGplMJlRXV+P//u//cP/992P48OF49913sX37dpw4caLR7ebNmwej0Sg9zp0714alJiIiorakWBLl4+MDJycnlJSUmC0vKSmBVqttcButVttkfN2/t4u5deD6zZs3UVZWJsX4+/vD2dkZPXr0kGJ69eoFADh79myjdXJ1dYWHh4fZg4iIiOyTYkmUi4sLBgwYgNzcXGmZyWRCbm4uoqKiGtwmKirKLB4AcnJypPiQkBBotVqzmIqKChQUFEgxUVFRKC8vR1FRkRSTl5cHk8kEnU4HABgyZAhu3ryJ06dPSzH/+c9/AABdu3a9k2oTERGRvWijge4N2rBhg3B1dRVr164VR48eFUlJScLLy0sYDAYhhBATJ04UqampUvzu3buFs7OzWLFihTh27JhIS0sT7dq1E4cOHZJilixZIry8vMTnn38ufvjhBzFu3DgREhIiqqqqpJhRo0aJ/v37i4KCArFr1y4RGhoq4uPjpfW1tbXivvvuE8OGDRP79+8X+/btEzqdTvzxj39sUf14dR4REZHtae75W9EkSgghXn/9ddGlSxfh4uIiIiMjxffffy+ti46OFpMnTzaL//jjj0WPHj2Ei4uLuPfee8WXX35ptt5kMomFCxcKPz8/4erqKkaOHClOnDhhFnP58mURHx8vOnToIDw8PMTUqVPFlStXzGJ+/vln8eijj4oOHToIPz8/MWXKFHH58uUW1Y1JFBERke1p7vlbJYQQyraF2a+Kigp4enrCaDRyfBQREZGNaO75m1fnEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIgs7oKxCntOl+KCsUrporQaZ6ULQERERPYtq/As5m06BJMA1Cog/dEwxA3sonSx7hhbooiIiMhiLhirpAQKAEwCmL/psF20SDGJIiIiIospLq2UEqg6tULgTOk1ZQrUiphEERERkcWE+LhDrTJf5qRSIdinvTIFakVMooiIiMhi/D3dkP5oGJxUv2VSTioVXn60D/w93RQu2Z2ziiRq1apVCA4OhkajgU6nw969e5uM37hxI3r27AmNRoOwsDBs27bNbL0QAosWLYK/vz/c3Nyg1+tx8uRJs5iysjIkJCTAw8MDXl5eSExMxNWrV6X1Z86cgUqlqvf4/vvvW6/iREREDiBuYBfsSh2Bj6YPwq7UEXYxqBywgiQqKysLKSkpSEtLw/79+9GvXz/ExMTg4sWLDcbv2bMH8fHxSExMxIEDBxAbG4vY2FgcPnxYilm2bBkyMjKQmZmJgoICuLu7IyYmBtevX5diEhIScOTIEeTk5GDr1q3YuXMnkpKS6r3et99+iwsXLkiPAQMGtP5BICIisnP+nm6I6naXXbRASYTCIiMjxYwZM6TntbW1IiAgQKSnpzcY//jjj4sxY8aYLdPpdOLJJ58UQghhMpmEVqsVy5cvl9aXl5cLV1dX8dFHHwkhhDh69KgAIAoLC6WYr776SqhUKvHzzz8LIYQoLi4WAMSBAwdk181oNAoAwmg0yt4HERERta3mnr8VbYm6ceMGioqKoNfrpWVqtRp6vR75+fkNbpOfn28WDwAxMTFSfHFxMQwGg1mMp6cndDqdFJOfnw8vLy9ERERIMXq9Hmq1GgUFBWb7fvjhh+Hr64uhQ4diy5YtTdanuroaFRUVZg8iIiKyT4omUaWlpaitrYWfn5/Zcj8/PxgMhga3MRgMTcbX/Xu7GF9fX7P1zs7O8Pb2lmI6dOiAV155BRs3bsSXX36JoUOHIjY2tslEKj09HZ6entIjKCjodoeAiIiIbBRnLG+Ej48PUlJSpOcDBw7EL7/8guXLl+Phhx9ucJt58+aZbVNRUcFEioiIyE4p2hLl4+MDJycnlJSUmC0vKSmBVqttcButVttkfN2/t4u5deD6zZs3UVZW1ujrAoBOp8OpU6caXe/q6goPDw+zBxEREdknRZMoFxcXDBgwALm5udIyk8mE3NxcREVFNbhNVFSUWTwA5OTkSPEhISHQarVmMRUVFSgoKJBioqKiUF5ejqKiIikmLy8PJpMJOp2u0fIePHgQ/v7+La8oERER2R3Fu/NSUlIwefJkREREIDIyEitXrkRlZSWmTp0KAJg0aRICAwORnp4OAJg5cyaio6PxyiuvYMyYMdiwYQP27duHt99+GwCgUqkwa9YsLF68GKGhoQgJCcHChQsREBCA2NhYAECvXr0watQoTJ8+HZmZmaipqUFycjImTJiAgIAAAMD7778PFxcX9O/fHwCwadMmvPfee3jnnXfa+AgRERGRNVI8iYqLi8OlS5ewaNEiGAwGhIeHIzs7WxoYfvbsWajV/20wGzx4MNavX48FCxZg/vz5CA0NxebNm9GnTx8pZu7cuaisrERSUhLKy8sxdOhQZGdnQ6PRSDHr1q1DcnIyRo4cCbVajfHjxyMjI8OsbC+99BJ++uknODs7o2fPnsjKysJjjz1m4SNCREREtkAlhBC3DyM5Kioq4OnpCaPRyPFRRERENqK552/FZywnIiIiskVMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJEOLk6ht27Zh2rRpmDt3Lo4fP2627tdff8UDDzzQaoUjIiIi23LBWIU9p0txwVildFEsrkVJ1Pr16/Hwww/DYDAgPz8f/fv3x7p166T1N27cwHfffdfqhaQ750gfaiIiUkZW4VkMWZKHJ1YXYMiSPGQVnlW6SBbl3JLg5cuX49VXX8UzzzwDAPj444/xl7/8BdevX0diYqJFCkh3LqvwLOZtOgSTANQqIP3RMMQN7KJ0sYiIyI5cMFZJ5xoAMAlg/qbDGNajM/w93ZQtnIW0qCXq5MmTGDt2rPT88ccfxxdffIFZs2YhMzNTdiFWrVqF4OBgaDQa6HQ67N27t8n4jRs3omfPntBoNAgLC8O2bdvM1gshsGjRIvj7+8PNzQ16vR4nT540iykrK0NCQgI8PDzg5eWFxMREXL16tcHXO3XqFDp27AgvLy/ZdVRKYx9qtkgREVFrKi6tlM41dWqFwJnSa8oUqA20KIny8PBASUmJ2bIRI0Zg69at+Pvf/47XX3+9xQXIyspCSkoK0tLSsH//fvTr1w8xMTG4ePFig/F79uxBfHw8EhMTceDAAcTGxiI2NhaHDx+WYpYtW4aMjAxkZmaioKAA7u7uiImJwfXr16WYhIQEHDlyBDk5Odi6dSt27tyJpKSkeq9XU1OD+Ph43H///S2umzVwxA81ERG1vRAfd6hV5sucVCoE+7RXpkBtQCWEELcP+01sbCz69euHF154od66HTt24KGHHkJVVRVqa2ubXQCdToeBAwfijTfeAACYTCYEBQXh6aefRmpqar34uLg4VFZWYuvWrdKyQYMGITw8HJmZmRBCICAgALNnz8acOXMAAEajEX5+fli7di0mTJiAY8eOoXfv3igsLERERAQAIDs7G6NHj8b58+cREBAg7fu5557DL7/8gpEjR2LWrFkoLy9vdt0qKirg6ekJo9EIDw+PZm/Xmi4YqzBkSZ5ZIuWkUmFX6gi7bV4lIiJlZBWexfxNh1ErBJxUKrz8aB+bHD7S3PN3i1qinn32WWg0mgbXDR8+HF988QUmTZrU7P3duHEDRUVF0Ov1/y2QWg29Xo/8/PwGt8nPzzeLB4CYmBgpvri4GAaDwSzG09MTOp1OisnPz4eXl5eUQAGAXq+HWq1GQUGBtCwvLw8bN27EqlWrml0na+Pv6Yb0R8PgpPrt50Hdh5oJFBERtba4gV2wK3UEPpo+CLtSR9hkAtUSLRpYHh0djejo6EbXjxgxAiNGjGj2/kpLS1FbWws/Pz+z5X5+fvWmT6hjMBgajDcYDNL6umVNxfj6+pqtd3Z2hre3txRz+fJlTJkyBR9++GGzW5Gqq6tRXV0tPa+oqGjWdpYWN7ALhvXojDOl1xDs054JFBERWYy/p5vDnGdalESp1WqoVKomY1QqFW7evHlHhbIG06dPxxNPPIFhw4Y1e5v09PQGuzqtgSN9qImIiNpCi5Kozz77rNF1+fn5yMjIgMlkavb+fHx84OTkVG+weklJCbRabYPbaLXaJuPr/i0pKYG/v79ZTHh4uBRz68D1mzdvoqysTNo+Ly8PW7ZswYoVKwD8dsWfyWSCs7Mz3n77bfzlL3+pV7Z58+YhJSVFel5RUYGgoKDbHgciIiKyPS1KosaNG1dv2YkTJ5CamoovvvgCCQkJePHFF5u9PxcXFwwYMAC5ubmIjY0F8NvA8tzcXCQnJze4TVRUFHJzczFr1ixpWU5ODqKiogAAISEh0Gq1yM3NlZKmiooKFBQU4G9/+5u0j/LychQVFWHAgAEAfkuaTCYTdDodgN+Swt8PkP/888+xdOlS7NmzB4GBgQ2WzdXVFa6urs2uPxEREdkwIdPPP/8spk2bJtq1ayceeughcejQIVn72bBhg3B1dRVr164VR48eFUlJScLLy0sYDAYhhBATJ04UqampUvzu3buFs7OzWLFihTh27JhIS0sT7dq1M3v9JUuWCC8vL/H555+LH374QYwbN06EhISIqqoqKWbUqFGif//+oqCgQOzatUuEhoaK+Pj4Rsu5Zs0a4enp2aK6GY1GAUAYjcYWbUdERETKae75u0UtUcBv0wW8/PLLeP311xEeHo7c3Nw7mkMpLi4Oly5dwqJFi2AwGBAeHo7s7GxpYPjZs2ehVv/3IsLBgwdj/fr1WLBgAebPn4/Q0FBs3rwZffr0kWLmzp2LyspKJCUloby8HEOHDkV2drbZlYXr1q1DcnIyRo4cCbVajfHjxyMjI0N2PYiIiMixtGieqGXLlmHp0qXQarV4+eWXG+zeo/+yhnmiiIiIqGWae/5uURKlVqul26g4OTk1Grdp06aWldZOMYkiIiKyPc09f7eoO2/SpEm3neKAiIiIyBG0KIlau3athYpBREREZFtadNsXIiIiIvoNkygiIiIiGZhEEREREcnAJMrOXDBWYc/pUlwwVildFCIiIrvW4sk2yXplFZ7FvE2HYBKAWgWkPxqGuIFdlC4WERGRXWJLlJ24YKySEigAMAlg/qbDbJEiIiKyECZRdqK4tFJKoOrUCoEzpdeUKRAREZGdYxJlJ0J83KG+ZR5UJ5UKwT7tlSkQERGRnWMSZSf8Pd2Q/mgYnP7/GeWdVCq8/Ggf+Hu6KVwyIiIi+8SB5XYkbmAXDOvRGWdKryHYpz0TKCIiIgtiEmVn/D3dmDwRERG1AXbnEREREcnAJIqIiIhIBiZRRORwOLM/EbUGjokiIofCmf2JqLWwJYqIHAZn9iei1sQkiogcBmf2J6LWxCSKiBwGZ/YnotbEJIqIHAZn9iei1sSB5UTkUDizPxG1FiZRRORwOLM/EbUGducRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkg1UkUatWrUJwcDA0Gg10Oh327t3bZPzGjRvRs2dPaDQahIWFYdu2bWbrhRBYtGgR/P394ebmBr1ej5MnT5rFlJWVISEhAR4eHvDy8kJiYiKuXr0qrT9x4gRGjBgBPz8/aDQa3H333ViwYAFqampar+JERERksxRPorKyspCSkoK0tDTs378f/fr1Q0xMDC5evNhg/J49exAfH4/ExEQcOHAAsbGxiI2NxeHDh6WYZcuWISMjA5mZmSgoKIC7uztiYmJw/fp1KSYhIQFHjhxBTk4Otm7dip07dyIpKUla365dO0yaNAnffPMNTpw4gZUrV2L16tVIS0uz3MEgIiIim6ESQojbh1mOTqfDwIED8cYbbwAATCYTgoKC8PTTTyM1NbVefFxcHCorK7F161Zp2aBBgxAeHo7MzEwIIRAQEIDZs2djzpw5AACj0Qg/Pz+sXbsWEyZMwLFjx9C7d28UFhYiIiICAJCdnY3Ro0fj/PnzCAgIaLCsKSkpKCwsxP/7f/+vWXWrqKiAp6cnjEYjPDw8WnRciIiISBnNPX8r2hJ148YNFBUVQa/XS8vUajX0ej3y8/Mb3CY/P98sHgBiYmKk+OLiYhgMBrMYT09P6HQ6KSY/Px9eXl5SAgUAer0earUaBQUFDb7uqVOnkJ2djejo6EbrU11djYqKCrMHERER2SdFk6jS0lLU1tbCz8/PbLmfnx8MBkOD2xgMhibj6/69XYyvr6/ZemdnZ3h7e9d73cGDB0Oj0SA0NBT3338/XnzxxUbrk56eDk9PT+kRFBTUaCwRERHZNsXHRFm7rKws7N+/H+vXr8eXX36JFStWNBo7b948GI1G6XHu3Lk2LCkRERG1JWclX9zHxwdOTk4oKSkxW15SUgKtVtvgNlqttsn4un9LSkrg7+9vFhMeHi7F3Dpw/ebNmygrK6v3unWtSb1790ZtbS2SkpIwe/ZsODk51Subq6srXF1db1dtIiIisgOKtkS5uLhgwIAByM3NlZaZTCbk5uYiKiqqwW2ioqLM4gEgJydHig8JCYFWqzWLqaioQEFBgRQTFRWF8vJyFBUVSTF5eXkwmUzQ6XSNltdkMqGmpgYmk6nllSUiIiK7omhLFPDbFW+TJ09GREQEIiMjsXLlSlRWVmLq1KkAgEmTJiEwMBDp6ekAgJkzZyI6OhqvvPIKxowZgw0bNmDfvn14++23AQAqlQqzZs3C4sWLERoaipCQECxcuBABAQGIjY0FAPTq1QujRo3C9OnTkZmZiZqaGiQnJ2PChAnSlXnr1q1Du3btEBYWBldXV+zbtw/z5s1DXFwc2rVr1/YHioiIiKyK4klUXFwcLl26hEWLFsFgMCA8PBzZ2dnSwPCzZ89Crf5vg9ngwYOxfv16LFiwAPPnz0doaCg2b96MPn36SDFz585FZWUlkpKSUF5ejqFDhyI7OxsajUaKWbduHZKTkzFy5Eio1WqMHz8eGRkZ0npnZ2csXboU//nPfyCEQNeuXZGcnIxnn322DY4KERERWTvF54myZ5wnihzZBWMViksrEeLjDn9PN6WLQ0TUbM09fyveEkVE9ier8CzmbToEkwDUKiD90TDEDeyidLGIiFoVpzggolZ1wVglJVAAYBLA/E2HccFYpWzBiIhaGZMoImpVxaWVUgJVp1YInCm9pkyBiIgshEkUEbWqEB93qFXmy5xUKgT7tFemQEREFsIkiohalb+nG9IfDYOT6rdMykmlwsuP9uHgciKyOxxYTkStLm5gFwzr0RlnSq8h2Ke9XSRQ/z73K/aeKUNksDf6BXVSujhENscer9hlEkVEFuHv6WY3X5SzPz6IT/f/LD0ff18gXnk8XHpujycHotZkr1fssjuPiKgJ/z73q1kCBQCf7v8Z/z73K4DfTg5DluThidUFGLIkD1mFZ5UoJpHVsucrdplEERE1Ye+ZsgaX7zvzq0VODheMVdhzutQuTjBEgH1fscvuPLJq7CYhpUUGeze4PCK4U5MnBzmfV3vt8iDHVnfF7u//Vuzlil22RJHVYjcJWYN+QZ0w/r5As2Xj7wtEv6BOrTqdgz13eZBjs+crdtkSRVapsRPKsB6d7eIPj2zLK4+HY1JUV+w78ysigjtJV+fVnRzmbzqMWiHu6OTQ2q1aRNbEHq/YBZhEkZXiCYWsTb+gTg1ObdBaJwd77vIgAuzrit067M4jq8RZr8mW+Hu6IarbXXd0grDnLg8ie8WWKLJKrdlNQmQr7LXLg8heMYkiq8UTCjkia+jy4FWxRM3DJIqsmjWcUIgcCadZIGo+jokiIrIiSk62yWkWiFqGLVFEBIBdONZA6VYgXhVL1DJMoohI8ZM3WcfcaJxmgahl2J1H5ODYhWMdrOH+Ypxmgahl2BJF5ODYhWMdrKUViFfFEjUfW6KoUbybvGPgxKbWwZpagVpj8lAiR8CWKGoQx8g4Dk5saj3YCkRkW1RCCHH7MJKjoqICnp6eMBqN8PDwULo4zXbBWIUhS/LqdSvsSh3BL3U7dsFYxZM3ERGaf/5mSxTVwzEyjokTm9Kd4BQZ5IiYRFE91jLAlYhsA7v/yVFxYDnVY00DXInIunGKDHJkbImiBnGAKxE1hyN2/7PrkuowiaJGcYwMEd2Oo3X/s+uSfo/deUREJJsjdf+z65JuZRVJ1KpVqxAcHAyNRgOdToe9e/c2Gb9x40b07NkTGo0GYWFh2LZtm9l6IQQWLVoEf39/uLm5Qa/X4+TJk2YxZWVlSEhIgIeHB7y8vJCYmIirV69K63fs2IFx48bB398f7u7uCA8Px7p161qv0kRkUzj5bOPiBnbBrtQR+Gj6IOxKHWG3LTPWcGsesi6KJ1FZWVlISUlBWloa9u/fj379+iEmJgYXL15sMH7Pnj2Ij49HYmIiDhw4gNjYWMTGxuLw4cNSzLJly5CRkYHMzEwUFBTA3d0dMTExuH79uhSTkJCAI0eOICcnB1u3bsXOnTuRlJRk9jp9+/bFp59+ih9++AFTp07FpEmTsHXrVssdDCKySlmFZzFkSR6eWF2AIUvykFV4VukiWR1HmOWcs/vTrRSfbFOn02HgwIF44403AAAmkwlBQUF4+umnkZqaWi8+Li4OlZWVZsnMoEGDEB4ejszMTAghEBAQgNmzZ2POnDkAAKPRCD8/P6xduxYTJkzAsWPH0Lt3bxQWFiIiIgIAkJ2djdGjR+P8+fMICAhosKxjxoyBn58f3nvvvWbVzVYn2ySi/+Lks/R7WYVn683ub68tb46suedvRVuibty4gaKiIuj1emmZWq2GXq9Hfn5+g9vk5+ebxQNATEyMFF9cXAyDwWAW4+npCZ1OJ8Xk5+fDy8tLSqAAQK/XQ61Wo6CgoNHyGo1GeHt7N7q+uroaFRUVZg8ism3swqHfc5SuS2oeRZOo0tJS1NbWws/Pz2y5n58fDAZDg9sYDIYm4+v+vV2Mr6+v2XpnZ2d4e3s3+roff/wxCgsLMXXq1Ebrk56eDk9PT+kRFBTUaCwR2QZ24dCtHKHrkppH8TFRtmD79u2YOnUqVq9ejXvvvbfRuHnz5sFoNEqPc+fOtWEpicgSHOnqMyJqGUXnifLx8YGTkxNKSkrMlpeUlECr1Ta4jVarbTK+7t+SkhL4+/ubxYSHh0sxtw5cv3nzJsrKyuq97nfffYexY8fitddew6RJk5qsj6urK1xdXZuMISLr1tBEipx8logaomhLlIuLCwYMGIDc3FxpmclkQm5uLqKiohrcJioqyiweAHJycqT4kJAQaLVas5iKigoUFBRIMVFRUSgvL0dRUZEUk5eXB5PJBJ1OJy3bsWMHxowZg6VLl5pduUdE9qmpq/DYhUNEt1J8xvKUlBRMnjwZERERiIyMxMqVK1FZWSmNPZo0aRICAwORnp4OAJg5cyaio6PxyiuvYMyYMdiwYQP27duHt99+GwCgUqkwa9YsLF68GKGhoQgJCcHChQsREBCA2NhYAECvXr0watQoTJ8+HZmZmaipqUFycjImTJggXZm3fft2PPTQQ5g5cybGjx8vjZVycXFpcnA5EdmmxiZSHNajMxMnImqQ4klUXFwcLl26hEWLFsFgMCA8PBzZ2dnSwPCzZ89Crf5vg9ngwYOxfv16LFiwAPPnz0doaCg2b96MPn36SDFz585FZWUlkpKSUF5ejqFDhyI7OxsajUaKWbduHZKTkzFy5Eio1WqMHz8eGRkZ0vr3338f165dQ3p6upTAAUB0dDR27NhhwSNC5LiUvCeZI94DjojujOLzRNkzzhNF1HxK35OM80ERUR2bmCeKiAiwjnuS8So8y+Etc8heKd6dR9QUJbt3qO1YS1car8JrfUq3MNLt8XtWPiZRZLX45es46ia0vLUrTYkJLf093XgiaSUcrG/9+D17Z9idR1bJGrp3qO2wK80+8ZY51o3fs3eOLVFklayle4faDrvS7I81tTBSffyevXNsiSKrFOLjjltuVwaVCvzytXOc0NK+sIXRuvG+kHeOLVFkOzgZB5HNYQuj9apLcudvOoxaIZjkysAkiqxScWllvZxJAGxmJrJBHKxvvZjk3hkmUWSVOJaCmouXZxPdGSa58nFMFFkljqWg5mjqhsFERJbG275YEG/7cucuGKvYzEwN4m1aLIete+Tomnv+ZnceWTU2M1NjeHm2ZXDyRaLmY3ceEdkkXp7d+jj5Ilkba7/vIpMoIrJJHDfX+jjDOFkTWxjzyO48IrJZvDy7dfGqWLqVUuPjbOW+i0yiHAQHipK94ri51sPJF+n3lBwfZytjHplEOQAOFCWi5mLrHgHKtwTZSqsox0TZOQ4UJaKW4j0MSenxcbYy5pEtUXbOVppEiYjIelhDS5AttIqyJcrO8TJwIiJqKWtpCbL2VlG2RNk5DhQlIiI5bKElSGlMohwA/xCIiEjOVdq8+rVpTKIcBP8QiIgcF6/StgyOiSIiIrJjvErbcphEERER2TGlpyuwZ0yiiIiI7Biv0rYcJlGkOGu/SzcRkS2zlukK7BEHlpOi2nKwI+8faJ/4vhLdHq/StgwmUaToXbpTPz2Euq56kwBSNx2yyL2ZeGWKfeL7StR8vEq79bE7z8FlFZ7FkCV5eGJ1AYYsyUNW4dk2e+2in37FLWMdIQSw/6dfW/V1eGWKfeL7SkRKUzyJWrVqFYKDg6HRaKDT6bB3794m4zdu3IiePXtCo9EgLCwM27ZtM1svhMCiRYvg7+8PNzc36PV6nDx50iymrKwMCQkJ8PDwgJeXFxITE3H16lVp/fXr1zFlyhSEhYXB2dkZsbGxrVZfa6L0SUiIW1OouuWt+zq8MsU+8X0lIqUpmkRlZWUhJSUFaWlp2L9/P/r164eYmBhcvHixwfg9e/YgPj4eiYmJOHDgAGJjYxEbG4vDhw9LMcuWLUNGRgYyMzNRUFAAd3d3xMTE4Pr161JMQkICjhw5gpycHGzduhU7d+5EUlKStL62thZubm545plnoNfrLXcAFKb0SSgi2Bu3XDACFYABwZ1a9XV4ZYp94vtqO3jxSNvhsW5bKtFYc0Ab0Ol0GDhwIN544w0AgMlkQlBQEJ5++mmkpqbWi4+Li0NlZSW2bt0qLRs0aBDCw8ORmZkJIQQCAgIwe/ZszJkzBwBgNBrh5+eHtWvXYsKECTh27Bh69+6NwsJCREREAACys7MxevRonD9/HgEBAWavOWXKFJSXl2Pz5s0trl9FRQU8PT1hNBrh4eHR4u0t7YKxCkOW5NW7S/eu1BFt1m+eVXgW8z49BBN+y+jTx1tmTEtW4dl69w+0trEzHCDdcrbwvjo6jltrOzzWrae552/FBpbfuHEDRUVFmDdvnrRMrVZDr9cjPz+/wW3y8/ORkpJitiwmJkZKcIqLi2EwGMxajzw9PaHT6ZCfn48JEyYgPz8fXl5eUgIFAHq9Hmq1GgUFBXjkkUdk16m6uhrV1dXS84qKCtn7agvWcHPitrpixNqvTOGXnzzW/r46usaGDFji4hFHx2OtDMWSqNLSUtTW1sLPz89suZ+fH44fP97gNgaDocF4g8Egra9b1lSMr6+v2XpnZ2d4e3tLMXKlp6fjhRdeuKN9tDVrOAm11RUj1nplCr/87oy1vq9y2VOLZFNDBmy9btaGx1oZnOKgFc2bN8+spayiogJBQUEKlqh57O0kZGv45Ud17K1Fsm7c2q1DBurGrVlzwmjNZWvI7Y41WYZiA8t9fHzg5OSEkpISs+UlJSXQarUNbqPVapuMr/v3djG3Dly/efMmysrKGn3d5nJ1dYWHh4fZg+h2OECaAOWvlr1TDQ1obmqmbCWnV7kday5bYzgruTIUS6JcXFwwYMAA5ObmSstMJhNyc3MRFRXV4DZRUVFm8QCQk5MjxYeEhECr1ZrFVFRUoKCgQIqJiopCeXk5ioqKpJi8vDyYTCbodLpWqx81n6NfTcIvPwKUv1r2TjSVdMQN7IJdqSPw0fRB2JU6AnEDu1h1wmjNZbudho41WZai3XkpKSmYPHkyIiIiEBkZiZUrV6KyshJTp04FAEyaNAmBgYFIT08HAMycORPR0dF45ZVXMGbMGGzYsAH79u3D22+/DQBQqVSYNWsWFi9ejNDQUISEhGDhwoUICAiQ5nrq1asXRo0ahenTpyMzMxM1NTVITk7GhAkTzK7MO3r0KG7cuIGysjJcuXIFBw8eBACEh4e32fFxBPbWfSGXNYxNI2XZandMc8b03TpkwJq7sK25bM3B4RltS9EkKi4uDpcuXcKiRYtgMBgQHh6O7OxsaWD42bNnoVb/t7Fs8ODBWL9+PRYsWID58+cjNDQUmzdvRp8+faSYuXPnorKyEklJSSgvL8fQoUORnZ0NjUYjxaxbtw7JyckYOXIk1Go1xo8fj4yMDLOyjR49Gj/99JP0vH///gAanyCSWo4Dqs3xy8+xWcPVsnLISTqsOWG05rKR9VF0nih7Z+3zRCltz+lSPLG6oN7yj6YPQlS3uxQoEZHyLhirbKpFUu58c9Y8x5c1l43ahtXPE0XEX3xE9dlai6TcFjRr7sK25rKRdWFLlAWxJer2+IuPfs/WLiun/7K1FjSiprAlimwCf/FRHV5kYNtsrQWNqDUoegNisg5KTzHg7+mGqG538QtYYUp+Dmz5snIiclxsiXJw/PVPgPKfA1u/rJyIHBNbohwYf/0TYB2fgxAfd9wyaTtUAC8yICKrxiTKgdnCDMlKdzU6Aqv9HNyaVRERWRl25zmIhq56svYpBpTuYnIU1vA5KC6txK2XCQsBduc5MF6pSbdjDZ8RJlEOoLFkxJpnSOZs5m3HGj4H1pDIkfVoyx9Q1nAippazlh/ZTKLs3O2SEWudYsARBxor+WWu9OfAGhI5sg5t+QPKWk7E1DLW9CObSZSda04yYo3zuzhay4Q1fJkr/TlQOpEj69BWP6Cs6URMLWNNP7I5sNzO1SUjv2cLyUhdy4ST6rfC23PLhDVcHWctOGcYtdV3ltVeUEG3ZU3nNSZRds6Wk5G4gV2wK3UEPpo+CLtSR9hUM3tjVxU2tJxf5o6JV542rK2+s6zpREwtY03nNd47z4Ks6d55vK+VfC0dq9RY11xjyy8YqzBkSV69rstdqSP4Xtkpa+i+tXZt8Z3Fe3faNkt+Rpp7/mYSZUHWlESRPC092TWWEG16KgqP/GtPo4kSv8wdB5Nm68IfmNQQ3oCY6A7JGXjaWNdc4ZlfmxwIyUHVjsOaBsWS8hdUkG1jEkXUCDknu8auKhwY3Om2Vxta85c559JpPY525SmRPePAcjvDwaqtR87A08YGPPYL6mQ1AyFbKqvwLIYsycMTqwswZEkesgrPKl0km2ZNg2KJ6M5wTJQFtfWYKEcarNpWLSNyxyo1Ns7C1sZftPX4HUdq8bK1zwL9lyN9Th0Vx0TZsYb+gB1p4ri2TBbljlVqrGtOTpedkl/YbTl+x5F+BADW3X1LjXO0zyk1jUmUjWnsD9hRBqsqkSwqebJT+gu7rcbvONKPALJd/JzSrTgmyoY0NbO1o0wc50gTU97JTOatNTaurcbvONL7SraLn1O6FVuibEhTf8BR3e5yiBu4KnFlU2PdaZbuZpPbutjarVdtMf0Cr1gjW8DPKd2KSZQNud0fsCPMNVTXMtJWyWJLZx9vTXK+sC3V3WDpLs22fl/Jdik5RrDuc/r7v31+Th0bkygb0pwTjSMMVm2rZLGxhKSntmObjIuQk1jY8tg4R/gRQHdG6TGCdequaee17cQkysbwRPObtkgW5c4+DrTer+WWvt+23t3gCD8CSB5rGNR9wViF1E8Poe7PSwBI3XSIA8sdGJMoG8QTTduQO/t4a/9absn7zW4xslfW0Mpa9NOvuLXxSQhg/0+/Ykxf/o05Il6dR9QIObOP38kVda0lbmAX7EodgY+mD8Ku1BGcw4YUJ+dq0Vu3sYYrkBubm5rdeo6LLVFETWisO62x5dbwaxlgayVZDzkts41to3QraxfvhhO2IG/+rTkqJlFEt9GS2cdtfUwStS5Hvz2InHFMTW3TlmNCG3rvKm/UNhh77Yap0W3IvjGJImpFHJNEdazlSjIlyWmZvd02bdHK2th719SPJL7fjskqxkStWrUKwcHB0Gg00Ol02Lt3b5PxGzduRM+ePaHRaBAWFoZt27aZrRdCYNGiRfD394ebmxv0ej1OnjxpFlNWVoaEhAR4eHjAy8sLiYmJuHr1qlnMDz/8gPvvvx8ajQZBQUFYtmxZ61SY7JrcMUmtNcs4Kc8axsZZAznjmJQe+9TUe9fYOEkAfL8dlOJJVFZWFlJSUpCWlob9+/ejX79+iImJwcWLFxuM37NnD+Lj45GYmIgDBw4gNjYWsbGxOHz4sBSzbNkyZGRkIDMzEwUFBXB3d0dMTAyuX78uxSQkJODIkSPIycnB1q1bsXPnTiQlJUnrKyoq8Kc//Qldu3ZFUVERli9fjueffx5vv/225Q4G2Q1/TzdEdbur2b+YswrPYsiSPDyxugBDluQhq/CshUtIlsTbg/xGzm2D2upWQ4253XvX0I8kvt+OSyUau9ygjeh0OgwcOBBvvPEGAMBkMiEoKAhPP/00UlNT68XHxcWhsrISW7dulZYNGjQI4eHhyMzMhBACAQEBmD17NubMmQMAMBqN8PPzw9q1azFhwgQcO3YMvXv3RmFhISIiIgAA2dnZGD16NM6fP4+AgAC8+eab+Mc//gGDwQAXFxcAQGpqKjZv3ozjx483q24VFRXw9PSE0WiEh4fHHR0nsl8XjFUYsiSvXhfBrtQR7Aa0UXxPzV0wVrV4HJOcbVqDnPeO77f9ae75W9GWqBs3bqCoqAh6vV5aplarodfrkZ+f3+A2+fn5ZvEAEBMTI8UXFxfDYDCYxXh6ekKn00kx+fn58PLykhIoANDr9VCr1SgoKJBihg0bJiVQda9z4sQJ/Prrrw2Wrbq6GhUVFWYPotvhr1j7o3RrirVpacus3G1agy22npFyFB1YXlpaitraWvj5+Zkt9/Pza7S1x2AwNBhvMBik9XXLmorx9fU1W+/s7Axvb2+zmJCQkHr7qFvXqVOnemVLT0/HCy+80HiFiRrAK/rsE+8uYLvkvHd8vx2T4mOi7Mm8efNgNBqlx7lz55QuEtkA/oq1X0q1ptCds6XWM1KOoi1RPj4+cHJyQklJidnykpISaLXaBrfRarVNxtf9W1JSAn9/f7OY8PBwKebWges3b95EWVmZ2X4aep3fv8atXF1d4erq2mh9iRrDX7FERLZH0ZYoFxcXDBgwALm5udIyk8mE3NxcREVFNbhNVFSUWTwA5OTkSPEhISHQarVmMRUVFSgoKJBioqKiUF5ejqKiIikmLy8PJpMJOp1Oitm5cydqamrMXueee+5psCuP6E7xVywRkY0RCtuwYYNwdXUVa9euFUePHhVJSUnCy8tLGAwGIYQQEydOFKmpqVL87t27hbOzs1ixYoU4duyYSEtLE+3atROHDh2SYpYsWSK8vLzE559/Ln744Qcxbtw4ERISIqqqqqSYUaNGif79+4uCggKxa9cuERoaKuLj46X15eXlws/PT0ycOFEcPnxYbNiwQbRv31689dZbza6b0WgUAITRaLyTQ0RERERtqLnnb8WTKCGEeP3110WXLl2Ei4uLiIyMFN9//720Ljo6WkyePNks/uOPPxY9evQQLi4u4t577xVffvml2XqTySQWLlwo/Pz8hKurqxg5cqQ4ceKEWczly5dFfHy86NChg/Dw8BBTp04VV65cMYv597//LYYOHSpcXV1FYGCgWLJkSYvqxSSKiIjI9jT3/K34PFH2jPNEERER2R6bmCeKiIiIyFYxiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGRW9AbO/q5jGtqKhQuCRERETUXHXn7dvNR84kyoKuXLkCAAgKClK4JERERNRSV65cgaenZ6PredsXCzKZTPjll1/QsWNHqFSqVttvRUUFgoKCcO7cOYe8nYyj1x/gMXD0+gM8Bo5ef4DHwJL1F0LgypUrCAgIgFrd+MgntkRZkFqtxh/+8AeL7d/Dw8Mh/3DqOHr9AR4DR68/wGPg6PUHeAwsVf+mWqDqcGA5ERERkQxMooiIiIhkYBJlg1xdXZGWlgZXV1eli6IIR68/wGPg6PUHeAwcvf4Aj4E11J8Dy4mIiIhkYEsUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmERZqVWrViE4OBgajQY6nQ579+5tNPbIkSMYP348goODoVKpsHLlyrYrqIW0pP6rV6/G/fffj06dOqFTp07Q6/VNxtuKlhyDTZs2ISIiAl5eXnB3d0d4eDg++OCDNixt62tJ/X9vw4YNUKlUiI2NtWwB20BLjsHatWuhUqnMHhqNpg1L2/pa+hkoLy/HjBkz4O/vD1dXV/To0QPbtm1ro9JaRkuOwfDhw+t9BlQqFcaMGdOGJW5dLf0MrFy5Evfccw/c3NwQFBSEZ599FtevX7dcAQVZnQ0bNggXFxfx3nvviSNHjojp06cLLy8vUVJS0mD83r17xZw5c8RHH30ktFqteO2119q2wK2spfV/4oknxKpVq8SBAwfEsWPHxJQpU4Snp6c4f/58G5e89bT0GGzfvl1s2rRJHD16VJw6dUqsXLlSODk5iezs7DYueetoaf3rFBcXi8DAQHH//feLcePGtU1hLaSlx2DNmjXCw8NDXLhwQXoYDIY2LnXraWn9q6urRUREhBg9erTYtWuXKC4uFjt27BAHDx5s45K3npYeg8uXL5u9/4cPHxZOTk5izZo1bVvwVtLS+q9bt064urqKdevWieLiYvH1118Lf39/8eyzz1qsjEyirFBkZKSYMWOG9Ly2tlYEBASI9PT0227btWtXm0+i7qT+Qghx8+ZN0bFjR/H+++9bqogWd6fHQAgh+vfvLxYsWGCJ4lmcnPrfvHlTDB48WLzzzjti8uTJNp9EtfQYrFmzRnh6erZR6SyvpfV/8803xd133y1u3LjRVkW0uDv9HnjttddEx44dxdWrVy1VRItqaf1nzJghHnjgAbNlKSkpYsiQIRYrI7vzrMyNGzdQVFQEvV4vLVOr1dDr9cjPz1ewZG2jNep/7do11NTUwNvb21LFtKg7PQZCCOTm5uLEiRMYNmyYJYtqEXLr/+KLL8LX1xeJiYltUUyLknsMrl69iq5duyIoKAjjxo3DkSNH2qK4rU5O/bds2YKoqCjMmDEDfn5+6NOnD15++WXU1ta2VbFbVWt8F7777ruYMGEC3N3dLVVMi5FT/8GDB6OoqEjq8vvxxx+xbds2jB492mLl5A2IrUxpaSlqa2vh5+dnttzPzw/Hjx9XqFRtpzXq/9xzzyEgIMDsj8+WyD0GRqMRgYGBqK6uhpOTE/71r3/hj3/8o6WL2+rk1H/Xrl149913cfDgwTYooeXJOQb33HMP3nvvPfTt2xdGoxErVqzA4MGDceTIEYveCN0S5NT/xx9/RF5eHhISErBt2zacOnUKTz31FGpqapCWltYWxW5Vd/pduHfvXhw+fBjvvvuupYpoUXLq/8QTT6C0tBRDhw6FEAI3b97EX//6V8yfP99i5WQSRXZlyZIl2LBhA3bs2GHzg2pbqmPHjjh48CCuXr2K3NxcpKSk4O6778bw4cOVLppFXblyBRMnTsTq1avh4+OjdHEUExUVhaioKOn54MGD0atXL7z11lt46aWXFCxZ2zCZTPD19cXbb78NJycnDBgwAD///DOWL19uk0nUnXr33XcRFhaGyMhIpYvSZnbs2IGXX34Z//rXv6DT6XDq1CnMnDkTL730EhYuXGiR12QSZWV8fHzg5OSEkpISs+UlJSXQarUKlart3En9V6xYgSVLluDbb79F3759LVlMi5J7DNRqNbp37w4ACA8Px7Fjx5Cenm5zSVRL63/69GmcOXMGY8eOlZaZTCYAgLOzM06cOIFu3bpZttCtrDW+B9q1a4f+/fvj1KlTliiiRcmpv7+/P9q1awcnJydpWa9evWAwGHDjxg24uLhYtMyt7U4+A5WVldiwYQNefPFFSxbRouTUf+HChZg4cSKmTZsGAAgLC0NlZSWSkpLwj3/8A2p1649g4pgoK+Pi4oIBAwYgNzdXWmYymZCbm2v2K9Neya3/smXL8NJLLyE7OxsRERFtUVSLaa3PgMlkQnV1tSWKaFEtrX/Pnj1x6NAhHDx4UHo8/PDDGDFiBA4ePIigoKC2LH6raI3PQG1tLQ4dOgR/f39LFdNi5NR/yJAhOHXqlJRAA8B//vMf+Pv721wCBdzZZ2Djxo2orq7Gn//8Z0sX02Lk1P/atWv1EqW6pFpY6jbBFhuyTrJt2LBBuLq6irVr14qjR4+KpKQk4eXlJV2uPHHiRJGamirFV1dXiwMHDogDBw4If39/MWfOHHHgwAFx8uRJpapwR1pa/yVLlggXFxfxySefmF3ee+XKFaWqcMdaegxefvll8c0334jTp0+Lo0ePihUrVghnZ2exevVqpapwR1pa/1vZw9V5LT0GL7zwgvj666/F6dOnRVFRkZgwYYLQaDTiyJEjSlXhjrS0/mfPnhUdO3YUycnJ4sSJE2Lr1q3C19dXLF68WKkq3DG5fwdDhw4VcXFxbV3cVtfS+qelpYmOHTuKjz76SPz444/im2++Ed26dROPP/64xcrIJMpKvf7666JLly7CxcVFREZGiu+//15aFx0dLSZPniw9Ly4uFgDqPaKjo9u+4K2kJfXv2rVrg/VPS0tr+4K3opYcg3/84x+ie/fuQqPRiE6dOomoqCixYcMGBUrdelpS/1vZQxIlRMuOwaxZs6RYPz8/MXr0aLF//34FSt16WvoZ2LNnj9DpdMLV1VXcfffd4p///Ke4efNmG5e6dbX0GBw/flwAEN98800bl9QyWlL/mpoa8fzzz4tu3boJjUYjgoKCxFNPPSV+/fVXi5VPJYSl2riIiIiI7BfHRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIjswZcoUxMbGKl0MIofCJIqILGrKlClQqVTS46677sKoUaPwww8/KF20VvH7utU9hg4darHXO3PmDFQqFQ4ePGi2/H//93+xdu1ai70uEdXHJIqILG7UqFG4cOECLly4gNzcXDg7O+Ohhx5SulitZs2aNVL9Lly4gC1btjQYV1NTY7EyeHp6wsvLy2L7J6L6mEQRkcW5urpCq9VCq9UiPDwcqampOHfuHC5duoQHHngAycnJZvGXLl2Ci4uLdAf34OBgvPTSS4iPj4e7uzsCAwOxatUqs21effVVhIWFwd3dHUFBQXjqqadw9epVaf1PP/2EsWPHolOnTnB3d8e9996Lbdu2AQB+/fVXJCQkoHPnznBzc0NoaCjWrFnT7Pp5eXlJ9dNqtfD29pZajLKyshAdHQ2NRoN169bh8uXLiI+PR2BgINq3b4+wsDB89NFHZvszmUxYtmwZunfvDldXV3Tp0gX//Oc/AQAhISEAgP79+0OlUmH48OEA6nfnVVdX45lnnoGvry80Gg2GDh2KwsJCaf2OHTugUqmQm5uLiIgItG/fHoMHD8aJEyeaXW8iR8ckioja1NWrV/Hhhx+ie/fuuOuuuzBt2jSsX78e1dXVUsyHH36IwMBAPPDAA9Ky5cuXo1+/fjhw4ABSU1Mxc+ZM5OTkSOvVajUyMjJw5MgRvP/++8jLy8PcuXOl9TNmzEB1dTV27tyJQ4cOYenSpejQoQMAYOHChTh69Ci++uorHDt2DG+++SZ8fHxapb51ZT127BhiYmJw/fp1DBgwAF9++SUOHz6MpKQkTJw4EXv37pW2mTdvHpYsWSKVa/369fDz8wMAKe7bb7/FhQsXsGnTpgZfd+7cufj000/x/vvvY//+/ejevTtiYmJQVlZmFvePf/wDr7zyCvbt2wdnZ2f85S9/aZV6EzkEi93amIhICDF58mTh5OQk3N3dhbu7uwAg/P39RVFRkRBCiKqqKtGpUyeRlZUlbdO3b1/x/PPPS8+7du0qRo0aZbbfuLg48eCDDzb6uhs3bhR33XWX9DwsLMxsn783duxYMXXqVFn1AyA0Go1UP3d3d/HZZ5+J4uJiAUCsXLnytvsYM2aMmD17thBCiIqKCuHq6ipWr17dYGzdfg8cOGC2fPLkyWLcuHFCCCGuXr0q2rVrJ9atWyetv3HjhggICBDLli0TQgixfft2AUB8++23UsyXX34pAIiqqqqWHAIih8WWKCKyuBEjRuDgwYM4ePAg9u7di5iYGDz44IP46aefoNFoMHHiRLz33nsAgP379+Pw4cOYMmWK2T6ioqLqPT927Jj0/Ntvv8XIkSMRGBiIjh07YuLEibh8+TKuXbsGAHjmmWewePFiDBkyBGlpaWYD2//2t79hw4YNCA8Px9y5c7Fnz54W1e+1116T6nfw4EH88Y9/lNZFRESYxdbW1uKll15CWFgYvL290aFDB3z99dc4e/YsAODYsWOorq7GyJEjW1SG3zt9+jRqamowZMgQaVm7du0QGRlpdswAoG/fvtL//f39AQAXL16U/dpEjoRJFBFZnLu7O7p3747u3btj4MCBeOedd1BZWYnVq1cDAKZNm4acnBycP38ea9aswQMPPICuXbs2e/9nzpzBQw89hL59++LTTz9FUVGRNGbqxo0b0mv8+OOPmDhxIg4dOoSIiAi8/vrrACAldM8++yx++eUXjBw5EnPmzGn262u1Wql+3bt3h7u7u1ndf2/58uX43//9Xzz33HPYvn07Dh48iJiYGKmcbm5uzX7d1tCuXTvp/yqVCsBvY7KI6PaYRBFRm1OpVFCr1aiqqgIAhIWFISIiAqtXr8b69esbHJfz/fff13veq1cvAEBRURFMJhNeeeUVDBo0CD169MAvv/xSbx9BQUH461//ik2bNmH27NlSEgcAnTt3xuTJk/Hhhx9i5cqVePvtt1uzypLdu3dj3Lhx+POf/4x+/frh7rvvxn/+8x9pfWhoKNzc3KRB9bdycXEB8FuLVmO6desGFxcX7N69W1pWU1ODwsJC9O7du5VqQkTOSheAiOxfdXU1DAYDgN+uhHvjjTdw9epVjB07VoqZNm0akpOT4e7ujkceeaTePnbv3o1ly5YhNjYWOTk52LhxI7788ksAQPfu3VFTU4PXX38dY8eOxe7du5GZmWm2/axZs/Dggw+iR48e+PXXX7F9+3YpCVu0aBEGDBiAe++9F9XV1di6dau0rrWFhobik08+wZ49e9CpUye8+uqrKCkpkZIbjUaD5557DnPnzoWLiwuGDBmCS5cu4ciRI0hMTISvry/c3NyQnZ2NP/zhD9BoNPD09DR7DXd3d/ztb3/D3//+d3h7e6NLly5YtmwZrl27hsTERIvUi8gRsSWKiCwuOzsb/v7+8Pf3h06nQ2FhITZu3Chdng8A8fHxcHZ2Rnx8PDQaTb19zJ49G/v27UP//v2xePFivPrqq4iJiQEA9OvXD6+++iqWLl2KPn36YN26dUhPTzfbvra2FjNmzECvXr0watQo9OjRA//6178A/Na6M2/ePPTt2xfDhg2Dk5MTNmzYYJFjsWDBAtx3332IiYnB8OHDodVq6800vnDhQsyePRuLFi1Cr169EBcXJ41TcnZ2RkZGBt566y0EBARg3LhxDb7OkiVLMH78eEycOBH33XcfTp06ha+//hqdOnWySL2IHJFKCCGULgQR0ZkzZ9CtWzcUFhbivvvuM1sXHByMWbNmYdasWcoUjoioAezOIyJF1dTU4PLly1iwYAEGDRpUL4EiIrJW7M4jIkXt3r0b/v7+KCwsrDeOSWkvv/wyOnTo0ODjwQcfVLp4RKQwducRETWirKys3gzfddzc3BAYGNjGJSIia8IkioiIiEgGducRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhn+P/bvrNRTwpxTAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWHFJREFUeJzt3X1cVGX+P/7XDAiDKIOEMMCikGJqopTIiHdozi6mmZT7CYn1bkl2Ny0NXUNXpRs30Kz8WG6UlfbZLMly2yJjI9D1qxIianmXq4apyaBIDIqIyFy/P/pxtpEb4cDMmRlez8djHsh13mfmOtcwc95e13WuoxJCCBARERFRm6iVrgARERGRI2ISRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFRE7tmWeegUqlalWsSqXCM888Y9X6jB07FmPHjrXb5yOi1mMSRUQ2sWnTJqhUKunh6uqKoKAgzJo1Cz/++KPS1bM7ISEhFu3l5+eH0aNH4x//+EeHPP+1a9fwzDPPYOfOnR3yfESdEZMoIrKp5557Dn//+9+RmZmJ+++/H++99x5iYmJw/fp1q7zesmXLUFNTY5XntraIiAj8/e9/x9///ncsWrQIFy5cwMMPP4zMzMx2P/e1a9fw7LPPMokiagdXpStARJ3L/fffj8jISADAY489Bl9fX6xatQqffvopHnnkkQ5/PVdXV7i6OuZXXVBQEH73u99Jv8+YMQN9+/bFK6+8gj/+8Y8K1oyIAPZEEZHCRo8eDQA4ffq0Rfl3332H3/72t/Dx8YFGo0FkZCQ+/fRTi5i6ujo8++yzCAsLg0ajwR133IFRo0YhNzdXimlqTlRtbS2eeuop9OzZE927d8eDDz6I8+fPN6rbrFmzEBIS0qi8qefcuHEj7rvvPvj5+cHd3R0DBw7E66+/3qa2uB2dTocBAwagpKSkxbiLFy8iKSkJ/v7+0Gg0GDJkCN59911p+5kzZ9CzZ08AwLPPPisNGVp7PhiRs3HM/54RkdM4c+YMAKBHjx5S2dGjRzFy5EgEBQUhNTUVnp6e+PDDDxEXF4ePP/4YDz30EICfk5n09HQ89thjiIqKQlVVFfbv348DBw7g17/+dbOv+dhjj+G9997Do48+ihEjRiA/Px+TJk1q13G8/vrruPvuu/Hggw/C1dUVn332GR5//HGYzWbMnTu3Xc/doK6uDufOncMdd9zRbExNTQ3Gjh2LU6dOYd68eQgNDcXWrVsxa9YsVFZWYv78+ejZsydef/11/OlPf8JDDz2Ehx9+GAAwePDgDqknUachiIhsYOPGjQKA+Oqrr8SlS5fEuXPnxEcffSR69uwp3N3dxblz56TY8ePHi/DwcHH9+nWpzGw2ixEjRoiwsDCpbMiQIWLSpEktvm5aWpr45VfdoUOHBADx+OOPW8Q9+uijAoBIS0uTymbOnCl69+592+cUQohr1641iouNjRV33nmnRVlMTIyIiYlpsc5CCNG7d2/xm9/8Rly6dElcunRJfPPNN2LatGkCgHjiiSeafb61a9cKAOK9996Tym7cuCGio6NFt27dRFVVlRBCiEuXLjU6XiJqGw7nEZFNGQwG9OzZE8HBwfjtb38LT09PfPrpp/jVr34FAKioqEB+fj4eeeQRXLlyBeXl5SgvL8fly5cRGxuLkydPSlfzeXt74+jRozh58mSrX3/79u0AgCeffNKifMGCBe06Lg8PD+nfJpMJ5eXliImJwffffw+TySTrOb/88kv07NkTPXv2xJAhQ7B161ZMnz4dq1atanaf7du3Q6fTISEhQSrr0qULnnzySVy9ehX//ve/ZdWFiBrjcB4R2dT69evRr18/mEwmvPPOO9i1axfc3d2l7adOnYIQAsuXL8fy5cubfI6LFy8iKCgIzz33HKZMmYJ+/fph0KBBmDBhAqZPn97isNQPP/wAtVqNPn36WJTfdddd7TquPXv2IC0tDQUFBbh27ZrFNpPJBK1W2+bn1Ov1WLlyJVQqFbp27YoBAwbA29u7xX1++OEHhIWFQa22/D/ygAEDpO1E1DGYRBGRTUVFRUlX58XFxWHUqFF49NFHceLECXTr1g1msxkAsGjRIsTGxjb5HH379gUAjBkzBqdPn8Y///lPfPnll3jrrbfwyiuvIDMzE4899li769rcIp319fUWv58+fRrjx49H//798fLLLyM4OBhubm7Yvn07XnnlFemY2srX1xcGg0HWvkRkfUyiiEgxLi4uSE9Px7hx4/Daa68hNTUVd955J4Cfh6Bak0D4+Phg9uzZmD17Nq5evYoxY8bgmWeeaTaJ6t27N8xmM06fPm3R+3TixIlGsT169EBlZWWj8lt7cz777DPU1tbi008/Ra9evaTyHTt23Lb+Ha1379749ttvYTabLXqjvvvuO2k70HyCSEStxzlRRKSosWPHIioqCmvXrsX169fh5+eHsWPH4o033kBpaWmj+EuXLkn/vnz5ssW2bt26oW/fvqitrW329e6//34AwLp16yzK165d2yi2T58+MJlM+Pbbb6Wy0tLSRquGu7i4AACEEFKZyWTCxo0bm62HtUycOBFGoxFZWVlS2c2bN/Hqq6+iW7duiImJAQB07doVAJpMEomoddgTRUSK+/Of/4z/+Z//waZNm/DHP/4R69evx6hRoxAeHo45c+bgzjvvRFlZGQoKCnD+/Hl88803AICBAwdi7NixGDp0KHx8fLB//3589NFHmDdvXrOvFRERgYSEBPztb3+DyWTCiBEjkJeXh1OnTjWKnTZtGp5++mk89NBDePLJJ3Ht2jW8/vrr6NevHw4cOCDF/eY3v4GbmxsmT56MP/zhD7h69So2bNgAPz+/JhNBa0pOTsYbb7yBWbNmobi4GCEhIfjoo4+wZ88erF27Ft27dwfw80T4gQMHIisrC/369YOPjw8GDRqEQYMG2bS+RA5N6csDiahzaFjioKioqNG2+vp60adPH9GnTx9x8+ZNIYQQp0+fFjNmzBA6nU506dJFBAUFiQceeEB89NFH0n4rV64UUVFRwtvbW3h4eIj+/fuLv/71r+LGjRtSTFPLEdTU1Ignn3xS3HHHHcLT01NMnjxZnDt3rslL/r/88ksxaNAg4ebmJu666y7x3nvvNfmcn376qRg8eLDQaDQiJCRErFq1SrzzzjsCgCgpKZHi2rLEwe2Wb2ju+crKysTs2bOFr6+vcHNzE+Hh4WLjxo2N9t27d68YOnSocHNz43IHRDKohPhF/zMRERERtQrnRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZOBim1ZkNptx4cIFdO/enbdYICIichBCCFy5cgWBgYGNbub9S0yirOjChQsIDg5WuhpEREQkw7lz5/CrX/2q2e1Moqyo4fYK586dg5eXl8K1ISIiotaoqqpCcHCwdB5vDpMoK2oYwvPy8mISRURE5GBuNxWHE8uJiIiIZGASRURERCQDkygiIiIiGTgnSmH19fWoq6tTuhqK69KlC1xcXJSuBhERUasxiVKIEAJGoxGVlZVKV8VueHt7Q6fTcU0tIiJyCEyiFNKQQPn5+aFr166dOnEQQuDatWu4ePEiACAgIEDhGhEREd0ekygF1NfXSwnUHXfcoXR17IKHhwcA4OLFi/Dz8+PQHhER2T1OLFdAwxyorl27KlwT+9LQHpwjRkREjoBJlII68xBeU9geRETkSJhEEREREcnAJIqIiIhIBiZR1CazZs2CSqVCRkaGRfknn3wiDcft3LkTU6ZMQUBAADw9PREREYHNmzcrUV0iInJSpaYa7D1djlJTjWJ1YBJFbabRaLBq1Sr89NNPTW7fu3cvBg8ejI8//hjffvstZs+ejRkzZiA7O9vGNSUiImeUVXQWIzPy8eiGQozMyEdW0VlF6sEkitrMYDBAp9MhPT29ye1Lly7F888/jxEjRqBPnz6YP38+JkyYgG3bttm4pkRE5GxKTTVYsu0wzOLn380CWLrtiCI9UkyinICtuzRdXFzwwgsv4NVXX8X58+dbtY/JZIKPj4+Va0ZERM6upLxaSqAa1AuBM+XXbF4XJlEOTqkuzYceeggRERFIS0u7beyHH36IoqIizJ492wY1IyIiZxbq6wn1LSviuKhUCPG1/dqLTKIcmNJdmqtWrcK7776L48ePNxuzY8cOzJ49Gxs2bMDdd99tk3oREZHzCtB6IP3hcLj8/xczuahUeOHhQQjQeti8LrztiwNrqUvTFn9MY8aMQWxsLJYsWYJZs2Y12v7vf/8bkydPxiuvvIIZM2ZYvT5ERNQ5xA/rhTH9euJM+TWE+HZVJIECmEQ5tIYuzV8mUrbu0szIyEBERATuuusui/KdO3figQcewKpVq5CcnGyz+hARUecQoPVQLHlqwOE8B2YPXZrh4eFITEzEunXrpLIdO3Zg0qRJePLJJzF16lQYjUYYjUZUVFTYrF5ERETWxp4oB2cPXZrPPfccsrKypN/fffddXLt2Denp6RbLIMTExGDnzp02rx8REZE1qIQQ4vZhJEdVVRW0Wi1MJhO8vLyk8uvXr6OkpAShoaHQaDQK1tC+sF2IiMgeNHf+vhWH84iIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkSkGc02+J7UFERI6ESZQCunTpAgC4ds32N0u0Zw3t0dA+RERE9ozrRCnAxcUF3t7euHjxIgCga9euUKlUt9nLeQkhcO3aNVy8eBHe3t5wcXFRukpERES3xSRKITqdDgCkRIoAb29vqV2IiIjsHZMohahUKgQEBMDPzw91dXVKV0dxXbp0YQ8UERE5FCZRCnNxcWHyQERE5IA4sZyIiIhIBrtIotavX4+QkBBoNBro9Xrs27evxfitW7eif//+0Gg0CA8Px/bt2y22CyGwYsUKBAQEwMPDAwaDASdPnrSIqaioQGJiIry8vODt7Y2kpCRcvXpV2v7MM89ApVI1enh6enbcgRMREZHDUjyJysrKQkpKCtLS0nDgwAEMGTIEsbGxzU643rt3LxISEpCUlISDBw8iLi4OcXFxOHLkiBSzevVqrFu3DpmZmSgsLISnpydiY2Nx/fp1KSYxMRFHjx5Fbm4usrOzsWvXLiQnJ0vbFy1ahNLSUovHwIED8T//8z/WawwiIiJyHEJhUVFRYu7cudLv9fX1IjAwUKSnpzcZ/8gjj4hJkyZZlOn1evGHP/xBCCGE2WwWOp1OvPjii9L2yspK4e7uLj744AMhhBDHjh0TAERRUZEU88UXXwiVSiV+/PHHJl/30KFDAoDYtWtXq4/NZDIJAMJkMrV6HyIiIlJWa8/fivZE3bhxA8XFxTAYDFKZWq2GwWBAQUFBk/sUFBRYxANAbGysFF9SUgKj0WgRo9VqodfrpZiCggJ4e3sjMjJSijEYDFCr1SgsLGzydd966y3069cPo0ePbvZ4amtrUVVVZfEgIiIi56RoElVeXo76+nr4+/tblPv7+8NoNDa5j9FobDG+4eftYvz8/Cy2u7q6wsfHp8nXvX79OjZv3oykpKQWjyc9PR1arVZ6BAcHtxhPREREjkvxOVGO4B//+AeuXLmCmTNnthi3ZMkSmEwm6XHu3Dkb1ZCIiIhsTdEkytfXFy4uLigrK7MoLysra3blap1O12J8w8/bxdw6cf3mzZuoqKho8nXfeustPPDAA416t27l7u4OLy8viwcRERE5J0WTKDc3NwwdOhR5eXlSmdlsRl5eHqKjo5vcJzo62iIeAHJzc6X40NBQ6HQ6i5iqqioUFhZKMdHR0aisrERxcbEUk5+fD7PZDL1eb/HcJSUl2LFjx22H8oiIiKhzUXzF8pSUFMycORORkZGIiorC2rVrUV1djdmzZwMAZsyYgaCgIKSnpwMA5s+fj5iYGLz00kuYNGkStmzZgv379+PNN98E8PPtVBYsWICVK1ciLCwMoaGhWL58OQIDAxEXFwcAGDBgACZMmIA5c+YgMzMTdXV1mDdvHqZNm4bAwECL+r3zzjsICAjA/fffb7tGISIiIruneBIVHx+PS5cuYcWKFTAajYiIiEBOTo40dHb27Fmo1f/tMBsxYgTef/99LFu2DEuXLkVYWBg++eQTDBo0SIpZvHgxqqurkZycjMrKSowaNQo5OTnQaDRSzObNmzFv3jyMHz8earUaU6dOxbp16yzqZjabsWnTJsyaNYu3ZiEiIiILKiGEULoSzqqqqgparRYmk4nzo4iIiBxEa8/fvDqPiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIonkStX78eISEh0Gg00Ov12LdvX4vxW7duRf/+/aHRaBAeHo7t27dbbBdCYMWKFQgICICHhwcMBgNOnjxpEVNRUYHExER4eXnB29sbSUlJuHr1aqPnWbNmDfr16wd3d3cEBQXhr3/9a8ccNBERETk8RZOorKwspKSkIC0tDQcOHMCQIUMQGxuLixcvNhm/d+9eJCQkICkpCQcPHkRcXBzi4uJw5MgRKWb16tVYt24dMjMzUVhYCE9PT8TGxuL69etSTGJiIo4ePYrc3FxkZ2dj165dSE5Otnit+fPn46233sKaNWvw3Xff4dNPP0VUVJR1GoKIiIgcj1BQVFSUmDt3rvR7fX29CAwMFOnp6U3GP/LII2LSpEkWZXq9XvzhD38QQghhNpuFTqcTL774orS9srJSuLu7iw8++EAIIcSxY8cEAFFUVCTFfPHFF0KlUokff/xRinF1dRXfffddu47PZDIJAMJkMrXreYiIiMh2Wnv+Vqwn6saNGyguLobBYJDK1Go1DAYDCgoKmtynoKDAIh4AYmNjpfiSkhIYjUaLGK1WC71eL8UUFBTA29sbkZGRUozBYIBarUZhYSEA4LPPPsOdd96J7OxshIaGIiQkBI899hgqKipaPKba2lpUVVVZPIiIiMg5KZZElZeXo76+Hv7+/hbl/v7+MBqNTe5jNBpbjG/4ebsYPz8/i+2urq7w8fGRYr7//nv88MMP2Lp1K/7v//4PmzZtQnFxMX7729+2eEzp6enQarXSIzg4uMV4IiIiclyKTyy3R2azGbW1tfi///s/jB49GmPHjsXbb7+NHTt24MSJE83ut2TJEphMJulx7tw5G9aaiIiIbEmxJMrX1xcuLi4oKyuzKC8rK4NOp2tyH51O12J8w8/bxdw6cf3mzZuoqKiQYgICAuDq6op+/fpJMQMGDAAAnD17ttljcnd3h5eXl8WDiIiInJNiSZSbmxuGDh2KvLw8qcxsNiMvLw/R0dFN7hMdHW0RDwC5ublSfGhoKHQ6nUVMVVUVCgsLpZjo6GhUVlaiuLhYisnPz4fZbIZerwcAjBw5Ejdv3sTp06elmP/85z8AgN69e7fnsImIiMhZ2Giie5O2bNki3N3dxaZNm8SxY8dEcnKy8Pb2FkajUQghxPTp00VqaqoUv2fPHuHq6irWrFkjjh8/LtLS0kSXLl3E4cOHpZiMjAzh7e0t/vnPf4pvv/1WTJkyRYSGhoqamhopZsKECeKee+4RhYWFYvfu3SIsLEwkJCRI2+vr68W9994rxowZIw4cOCD2798v9Hq9+PWvf92m4+PVeURERI6ntedvRZMoIYR49dVXRa9evYSbm5uIiooSX3/9tbQtJiZGzJw50yL+ww8/FP369RNubm7i7rvvFp9//rnFdrPZLJYvXy78/f2Fu7u7GD9+vDhx4oRFzOXLl0VCQoLo1q2b8PLyErNnzxZXrlyxiPnxxx/Fww8/LLp16yb8/f3FrFmzxOXLl9t0bEyiiIiIHE9rz98qIYRQti/MeVVVVUGr1cJkMnF+FBERkYNo7fmbV+cRERERycAkioiIiEgGJlFERETkcEpNNdh7uhylphrF6uCq2CsTERERyZBVdBZLth2GWQBqFZD+cDjih/WyeT3YE0VEREQOo9RUIyVQAGAWwNJtRxTpkWISRURERA6jpLxaSqAa1AuBM+XXbF4XJlFERETkMEJ9PaFWWZa5qFQI8e1q87owiSIiIiKHEaD1QPrD4XBR/ZxJuahUeOHhQQjQeti8LpxYTkRERA4lflgvjOnXE2fKryHEt6siCRTAJIqIiIgcUIDWQ7HkqQGH84iIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQx2kUStX78eISEh0Gg00Ov12LdvX4vxW7duRf/+/aHRaBAeHo7t27dbbBdCYMWKFQgICICHhwcMBgNOnjxpEVNRUYHExER4eXnB29sbSUlJuHr1qrT9zJkzUKlUjR5ff/11xx04EREROSzFk6isrCykpKQgLS0NBw4cwJAhQxAbG4uLFy82Gb93714kJCQgKSkJBw8eRFxcHOLi4nDkyBEpZvXq1Vi3bh0yMzNRWFgIT09PxMbG4vr161JMYmIijh49itzcXGRnZ2PXrl1ITk5u9HpfffUVSktLpcfQoUM7vhGIiIjI8QiFRUVFiblz50q/19fXi8DAQJGent5k/COPPCImTZpkUabX68Uf/vAHIYQQZrNZ6HQ68eKLL0rbKysrhbu7u/jggw+EEEIcO3ZMABBFRUVSzBdffCFUKpX48ccfhRBClJSUCADi4MGDso/NZDIJAMJkMsl+DiIiIrKt1p6/Fe2JunHjBoqLi2EwGKQytVoNg8GAgoKCJvcpKCiwiAeA2NhYKb6kpARGo9EiRqvVQq/XSzEFBQXw9vZGZGSkFGMwGKBWq1FYWGjx3A8++CD8/PwwatQofPrppy0eT21tLaqqqiweRERE5JwUTaLKy8tRX18Pf39/i3J/f38YjcYm9zEajS3GN/y8XYyfn5/FdldXV/j4+Egx3bp1w0svvYStW7fi888/x6hRoxAXF9diIpWeng6tVis9goODb9cERERE5KBcla6AvfL19UVKSor0+7Bhw3DhwgW8+OKLePDBB5vcZ8mSJRb7VFVVMZEiIiJyUor2RPn6+sLFxQVlZWUW5WVlZdDpdE3uo9PpWoxv+Hm7mFsnrt+8eRMVFRXNvi4A6PV6nDp1qtnt7u7u8PLysngQERGRc1I0iXJzc8PQoUORl5cnlZnNZuTl5SE6OrrJfaKjoy3iASA3N1eKDw0NhU6ns4ipqqpCYWGhFBMdHY3KykoUFxdLMfn5+TCbzdDr9c3W99ChQwgICGj7gRIREZHTUXw4LyUlBTNnzkRkZCSioqKwdu1aVFdXY/bs2QCAGTNmICgoCOnp6QCA+fPnIyYmBi+99BImTZqELVu2YP/+/XjzzTcBACqVCgsWLMDKlSsRFhaG0NBQLF++HIGBgYiLiwMADBgwABMmTMCcOXOQmZmJuro6zJs3D9OmTUNgYCAA4N1334WbmxvuueceAMC2bdvwzjvv4K233rJxCxEREZE9UjyJio+Px6VLl7BixQoYjUZEREQgJydHmhh+9uxZqNX/7TAbMWIE3n//fSxbtgxLly5FWFgYPvnkEwwaNEiKWbx4Maqrq5GcnIzKykqMGjUKOTk50Gg0UszmzZsxb948jB8/Hmq1GlOnTsW6dess6vb888/jhx9+gKurK/r374+srCz89re/tXKLEBERkSNQCSGE0pVwVlVVVdBqtTCZTJwfRURE5CBae/5WfMVyIiIiIkfEJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREiio11WDv6XKUmmqUrkqbKL7YJhEREXVeWUVnsWTbYZgFoFYB6Q+HI35YL6Wr1SrsiSIiIiJFlJpqpAQKAMwCWLrtiMP0SDGJIiIiIkWUlFdLCVSDeiFwpvyaMhVqIyZRREREpIhQX0+oVZZlLioVQny7KlOhNmISRURERIoI0Hog/eFwuKh+zqRcVCq88PAgBGg9FK5Z63BiORERESkmflgvjOnXE2fKryHEt6vDJFAAkygiIiJSWIDWw6GSpwYcziMiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiMjJlJpqsPd0OUpNNUpXhcipuSpdASIi6jhZRWexZNthmAWgVgHpD4cjflgvpatF5JTYE0VE5CRKTTVSAgUAZgEs3XaEPVJEVsIkiojISZSUV0sJVIN6IXCm/JoyFSJyckyiiPMniJxEqK8n1CrLMheVCiG+XZWpEJGTYxLVyWUVncXIjHw8uqEQIzPykVV0VukqEZFMAVoPpD8cDhfVz5mUi0qFFx4ehACth8I1I3JOdpFErV+/HiEhIdBoNNDr9di3b1+L8Vu3bkX//v2h0WgQHh6O7du3W2wXQmDFihUICAiAh4cHDAYDTp48aRFTUVGBxMREeHl5wdvbG0lJSbh69WqTr3fq1Cl0794d3t7e7TpOe8P5E0TOJ35YL+xOHYcP5gzH7tRxnFROZEWKJ1FZWVlISUlBWloaDhw4gCFDhiA2NhYXL15sMn7v3r1ISEhAUlISDh48iLi4OMTFxeHIkSNSzOrVq7Fu3TpkZmaisLAQnp6eiI2NxfXr16WYxMREHD16FLm5ucjOzsauXbuQnJzc6PXq6uqQkJCA0aNHd/zBW0FbhuY4f4LIOQVoPRDd5w72QBFZmUoIIW4fZj16vR7Dhg3Da6+9BgAwm80IDg7GE088gdTU1Ebx8fHxqK6uRnZ2tlQ2fPhwREREIDMzE0IIBAYGYuHChVi0aBEAwGQywd/fH5s2bcK0adNw/PhxDBw4EEVFRYiMjAQA5OTkYOLEiTh//jwCAwOl53766adx4cIFjB8/HgsWLEBlZWWrj62qqgparRYmkwleXl5ymqdN2nppc6mpBiMz8i0SKReVCrtTx/HLl4iIOq3Wnr8V7Ym6ceMGiouLYTAYpDK1Wg2DwYCCgoIm9ykoKLCIB4DY2FgpvqSkBEaj0SJGq9VCr9dLMQUFBfD29pYSKAAwGAxQq9UoLCyUyvLz87F161asX7++VcdTW1uLqqoqi4etyBma4/wJIiIi+RRdbLO8vBz19fXw9/e3KPf398d3333X5D5Go7HJeKPRKG1vKGspxs/Pz2K7q6srfHx8pJjLly9j1qxZeO+991rdi5Seno5nn322VbEdraWhuZaSovhhvTCmX0+cKb+GEN+uTKCIiIhaSfE5UfZqzpw5ePTRRzFmzJhW77NkyRKYTCbpce7cOSvW0FJ7Lm3m/AkiIqK2UzSJ8vX1hYuLC8rKyizKy8rKoNPpmtxHp9O1GN/w83Yxt05cv3nzJioqKqSY/Px8rFmzBq6urnB1dUVSUhJMJhNcXV3xzjvvNFk3d3d3eHl5WTxshUNzREREtqVoEuXm5oahQ4ciLy9PKjObzcjLy0N0dHST+0RHR1vEA0Bubq4UHxoaCp1OZxFTVVWFwsJCKSY6OhqVlZUoLi6WYvLz82E2m6HX6wH8PG/q0KFD0uO5555D9+7dcejQITz00EMd0wAdjJc2ExER2Y7iNyBOSUnBzJkzERkZiaioKKxduxbV1dWYPXs2AGDGjBkICgpCeno6AGD+/PmIiYnBSy+9hEmTJmHLli3Yv38/3nzzTQCASqXCggULsHLlSoSFhSE0NBTLly9HYGAg4uLiAAADBgzAhAkTMGfOHGRmZqKurg7z5s3DtGnTpCvzBgwYYFHP/fv3Q61WY9CgQTZqGXkCtB7sfSIiIrKBNidR27dvx7Zt2+Dj44Pf//736N+/v7Ttp59+wtSpU5Gfn9/q54uPj8elS5ewYsUKGI1GREREICcnR5oYfvbsWajV/+0wGzFiBN5//30sW7YMS5cuRVhYGD755BOL5Gbx4sWorq5GcnIyKisrMWrUKOTk5ECj0Ugxmzdvxrx58zB+/Hio1WpMnToV69ata2tzEBERUSfVpnWi3n//fcyYMQMTJkyAyWTC/v378dZbbyExMRHAz/OOAgMDUV9fb7UKOxJbrxNFRERE7dfa83ebeqJefPFFvPzyy3jyyScBAB9++CF+//vf4/r160hKSmpfjYmIiIgcSJuSqJMnT2Ly5MnS74888gh69uyJBx98EHV1dXY74ZqIiIioo7UpifLy8kJZWRlCQ0OlsnHjxiE7OxsPPPAAzp8/3+EVJCIiIrJHbVriICoqCl988UWj8piYGHz22WdYu3ZtR9WLiIiIyK61KYl66qmnLK5w+6WxY8fis88+w4wZMzqkYkRERKScUlMN9p4ub/EerJ1dm67Oo7bh1XlEROSIsorOSje1V6uA9IfDO9UCzq09f7epJ0qtVsPFxaXFh6ur4ut3EhERkUylphopgQIAswCWbjvCHqkmtCnj+cc//tHstoKCAqxbtw5ms7ndlSIiIiJllJRXSwlUg3ohcKb8Gu+IcYs2JVFTpkxpVHbixAmkpqbis88+Q2JiIp577rkOqxwRERHZVqivJ9QqWCRSLioVQny7KlcpOyX7BsQXLlzAnDlzEB4ejps3b+LQoUN499130bt3746sHxEREdlQgNYD6Q+Hw0WlAvBzAvXCw4PYC9WENk9gMplMeOGFF/Dqq68iIiICeXl5GD16tDXqRg6q1FSDkvJqhPp68kNHROSA4of1wph+PXGm/BpCfLvyu7wZbUqiVq9ejVWrVkGn0+GDDz5ocniPOresorNI/fgwBAAVgIypneuKDiIiZxGg9WDydBttWuJArVbDw8MDBoMBLi4uzcZt27atQyrn6DrbEgelphqMSM/HL/+gVAD2LrmPH0QiInIYVrkB8YwZM6D6/8dIiW61/0wFbs3IBYDiMz/hgSFMosg+cfiZiORqUxK1adMmK1WDnEFzCTbzbrJXnX1BwY7AJJQ6M66MSR1maO8eUAGWw3kq4N7ePZSqElGzmltQcEy/nlIywAShZUxCqbOTvcQB0a0CtB7ImBoO9f/f86RWARkPh/PkQ3appQUFgZ8ThJEZ+Xh0QyFGZuQjq+isArW03/uXcVVrUpo9fDbYE0UdipfFkqNoaUHB1vRS2YI99/RwVWtSkr18NtgTRR0uQOuB6D538IuU7FpLCwrerpfKFuy9p6chCf0lrmpNtmBPnw32RBFRp9Vcz6k93PbC3nt6GpLQpduOoF4IrmpNNmNPnw0mUUTUqTW1oKA9JAj2kMjdDofvSQn29Nlo02Kb1DadbbFNImdTaqpRNEHIKjrbKJGzlzlRREqy9mejtedvJlFWxCSKiNpL6USOyF5Z87NhlRXLyTlxLRwi+8X7lxE1zR4+G0yiOjl7uUyUiIjI0XCJg07Mni4TJSIicjRMojoxe1gLh4iIyFExierEuFgeERGRfEyiOrGWVmwmIiKilnFieSfHxfKIiIjkYRJFdnGZKBERkaPhcB4RERGRDEyiSJZSUw32ni7ncghERNRpcTjPASm9wjgX6CQiIrKTnqj169cjJCQEGo0Ger0e+/btazF+69at6N+/PzQaDcLDw7F9+3aL7UIIrFixAgEBAfDw8IDBYMDJkyctYioqKpCYmAgvLy94e3sjKSkJV69elbafOHEC48aNg7+/PzQaDe68804sW7YMdXV1HXfgMmQVncXIjHw8uqEQIzPykVV01qavzwU6iYiIfqZ4EpWVlYWUlBSkpaXhwIEDGDJkCGJjY3Hx4sUm4/fu3YuEhAQkJSXh4MGDiIuLQ1xcHI4cOSLFrF69GuvWrUNmZiYKCwvh6emJ2NhYXL9+XYpJTEzE0aNHkZubi+zsbOzatQvJycnS9i5dumDGjBn48ssvceLECaxduxYbNmxAWlqa9RrjNuwhgeECnURERD9TCSHE7cOsR6/XY9iwYXjttdcAAGazGcHBwXjiiSeQmpraKD4+Ph7V1dXIzs6WyoYPH46IiAhkZmZCCIHAwEAsXLgQixYtAgCYTCb4+/tj06ZNmDZtGo4fP46BAweiqKgIkZGRAICcnBxMnDgR58+fR2BgYJN1TUlJQVFREf7f//t/rTq21t4FurX2ni7HoxsKG5V/MGc4ovvc0e7nb41SUw1GZuRbJFIuKhV2p47jFX7UZkoPTRMRNaW1529Fe6Ju3LiB4uJiGAwGqUytVsNgMKCgoKDJfQoKCiziASA2NlaKLykpgdFotIjRarXQ6/VSTEFBAby9vaUECgAMBgPUajUKCxsnKQBw6tQp5OTkICYmptnjqa2tRVVVlcWjI9nDCuNcoJM6itJD00RE7aVoElVeXo76+nr4+/tblPv7+8NoNDa5j9FobDG+4eftYvz8/Cy2u7q6wsfHp9HrjhgxAhqNBmFhYRg9ejSee+65Zo8nPT0dWq1WegQHBzcbK4e9JDDxw3phd+o4fDBnOHanjuOkcmozexiaJiJqL16ddxtZWVm4cuUKvvnmG/z5z3/GmjVrsHjx4iZjlyxZgpSUFOn3qqqqDk+k7GWFcS7QSe3R0tw6/l05Pw7jkrNQNIny9fWFi4sLysrKLMrLysqg0+ma3Een07UY3/CzrKwMAQEBFjERERFSzK0T12/evImKiopGr9uQBA0cOBD19fVITk7GwoUL4eLi0qhu7u7ucHd3v91htxsTGHJ0DUPTt86t482vnR+XSCFnouhwnpubG4YOHYq8vDypzGw2Iy8vD9HR0U3uEx0dbREPALm5uVJ8aGgodDqdRUxVVRUKCwulmOjoaFRWVqK4uFiKyc/Ph9lshl6vb7a+ZrMZdXV1MJvNbT9YIpLYy9A02RaHccnZKD6cl5KSgpkzZyIyMhJRUVFYu3YtqqurMXv2bADAjBkzEBQUhPT0dADA/PnzERMTg5deegmTJk3Cli1bsH//frz55psAAJVKhQULFmDlypUICwtDaGgoli9fjsDAQMTFxQEABgwYgAkTJmDOnDnIzMxEXV0d5s2bh2nTpklX5m3evBldunRBeHg43N3dsX//fixZsgTx8fHo0qWL7RuKyMnYy9A02Q6HccnZKJ5ExcfH49KlS1ixYgWMRiMiIiKQk5MjTQw/e/Ys1Or/dpiNGDEC77//PpYtW4alS5ciLCwMn3zyCQYNGiTFLF68GNXV1UhOTkZlZSVGjRqFnJwcaDQaKWbz5s2YN28exo8fD7VajalTp2LdunXSdldXV6xatQr/+c9/IIRA7969MW/ePDz11FM2aBWizoFD050Lh3HJ2Si+TpQz6+h1ooiIHF1W0Vks3XYE9UJIw7icE0X2prXnb8V7ooiIqPPgMC45EyZRRERkUxzGJWeh+L3ziIjIdkpNNdh7upxXxBF1APZEERHZsY5cmJJrNBF1LCZRRER2qiOTnubWaBrTryeH1ohk4nAeEZEd6uiFKVtao4mI5GESRURkhzo66WlYo+mXuEYTUfswiSIiskMdnfTwVjtEHY9zosgp8S7x5Ogakp5bF6Zsz98z12gi6lhMosjp8AokchbWSHq4RhNRx+FwHjkV3iWenE2A1gPRfe5g4kNkh5hEkVPhFUhERGQrTKKcTHOrEXeWVYp5BRIREdkK50Q5kebmAnWmOULWmIxLRETUFJUQQtw+jOSoqqqCVquFyWSCl5eXVV+r1FSDkRn5FkNZLioVtj0ejYf+trdR+e7UcU6dWJSaangFEpED4pW1ZA9ae/5mT5STaG4uUNGZn5qdI+TMX1C8AonI8XSmXnNyDpwT5SSamws0LKQH5wgRkd3jlbXkiJhEOYnmViMeEtyDqxQTkd3jlbXkiDic50SaW5iPqxQTkb1r6E2/df4me83JnrEnysk0tzAfF+wjInvGe/uRI2JPFBER2QX2mpOjYRJFRER2g1fWkiPhcB4REdm9b879hA3/7zS+OfeT0lXpNDrLnS7agz1RRERk1xZ+eAgfH/hR+n3qvUF46ZEI5SrUCXDNrtZhTxQREdmtb879ZJFAAcDHB35kj5QVcc2u1mMSRURENtWWYaJ9ZyqaLN9/hkmUtXDNrtbjcB4REdlMW4eJokJ8miyPDOlhrSp2elyzq/XYE0VERDYhZ5hoSHAPTL03yKJs6r1BGBLMJMpauGZX67EnioiIbKKlYaKWTtAvPRKBGdG9sf/MT4gM6cEEyga4ZlfrMIkiIiKbaM8w0ZBgJk+2xjW7bo/DeURE1OGamjzOYSJyNuyJIiKiDtXS5HEOE5EzYU8UERF1mNZMHucN0clZ2EUStX79eoSEhECj0UCv12Pfvn0txm/duhX9+/eHRqNBeHg4tm/fbrFdCIEVK1YgICAAHh4eMBgMOHnypEVMRUUFEhMT4eXlBW9vbyQlJeHq1avS9p07d2LKlCkICAiAp6cnIiIisHnz5o47aCIiJ8Q1hqgzUTyJysrKQkpKCtLS0nDgwAEMGTIEsbGxuHjxYpPxe/fuRUJCApKSknDw4EHExcUhLi4OR44ckWJWr16NdevWITMzE4WFhfD09ERsbCyuX78uxSQmJuLo0aPIzc1FdnY2du3aheTkZIvXGTx4MD7++GN8++23mD17NmbMmIHs7GzrNQYRkYNrmDz+S1xjiJyVSgghbh9mPXq9HsOGDcNrr70GADCbzQgODsYTTzyB1NTURvHx8fGorq62SGaGDx+OiIgIZGZmQgiBwMBALFy4EIsWLQIAmEwm+Pv7Y9OmTZg2bRqOHz+OgQMHoqioCJGRkQCAnJwcTJw4EefPn0dgYGCTdZ00aRL8/f3xzjvvtOrYqqqqoNVqYTKZ4OXl1aZ2ISJyVFlFZ7F02xHUCyFNHud918iRtPb8rWhP1I0bN1BcXAyDwSCVqdVqGAwGFBQUNLlPQUGBRTwAxMbGSvElJSUwGo0WMVqtFnq9XoopKCiAt7e3lEABgMFggFqtRmFhYbP1NZlM8PFpevVcIiL6WfywXtidOg4fzBmO3anjmECR01L06rzy8nLU19fD39/fotzf3x/fffddk/sYjcYm441Go7S9oaylGD8/P4vtrq6u8PHxkWJu9eGHH6KoqAhvvPFGs8dTW1uL2tpa6feqqqpmY4mInBnXGKLOQPE5UY5gx44dmD17NjZs2IC777672bj09HRotVrpERwcbMNaEhERkS0pmkT5+vrCxcUFZWVlFuVlZWXQ6XRN7qPT6VqMb/h5u5hbJ67fvHkTFRUVjV733//+NyZPnoxXXnkFM2bMaPF4lixZApPJJD3OnTvXYjwRERE5LkWTKDc3NwwdOhR5eXlSmdlsRl5eHqKjo5vcJzo62iIeAHJzc6X40NBQ6HQ6i5iqqioUFhZKMdHR0aisrERxcbEUk5+fD7PZDL1eL5Xt3LkTkyZNwqpVqyyu3GuOu7s7vLy8LB5ERETkpITCtmzZItzd3cWmTZvEsWPHRHJysvD29hZGo1EIIcT06dNFamqqFL9nzx7h6uoq1qxZI44fPy7S0tJEly5dxOHDh6WYjIwM4e3tLf75z3+Kb7/9VkyZMkWEhoaKmpoaKWbChAninnvuEYWFhWL37t0iLCxMJCQkSNvz8/NF165dxZIlS0Rpaan0uHz5cquPzWQyCQDCZDK1p4mIhBBCXKi8JvacuiQuVF5TuipERE6ttedvxZMoIYR49dVXRa9evYSbm5uIiooSX3/9tbQtJiZGzJw50yL+ww8/FP369RNubm7i7rvvFp9//rnFdrPZLJYvXy78/f2Fu7u7GD9+vDhx4oRFzOXLl0VCQoLo1q2b8PLyErNnzxZXrlyRts+cOVMAaPSIiYlp9XExiaKOsmXfDyI0NVv0fjpbhKZmiy37flC6SkRETqu152/F14lyZlwnijpCqakGIzPyLVaBdlGpsDt1HK9+og5VaqpBSXk1Qn09+bdFnVprz9+8ATGRnWvpNho80VFHaemmwUTUNC5xQGTneBsNx1JqqsHe0+UWN9y1d625aTARNcYkisjOBWg9kP5wOFxUP2dSDbfRYC+U/ckqOouRGfl4dEMhRmbkI6vorNJVahXeNJhIHg7nETmA+GG9MKZfT5wpv4YQ365MoOxQc705Y/r1tPv3q6G389Z5d+zt7Nw4R+72mEQROQjeRsO+OfLctYbezltvGmzv9Sbr4Ry51mESRUTUARy9N4e9ndTAkXtVbY1zooiImtGWSeLOMHctQOuB6D53OFSdqeNxjlzrsSeKiKgJcoYz2JtDtmDtuUqO3qtqS+yJIiK6RXsu+WdvDlmTLa4AdYZeVVthTxQR0S0ceZI4OS9bzlVir2rrMIkiIroFhzPIHtk6uecVwbfH4TwioltwOIPsEe9eYH/YE0VE1AQOZ5C94Xpe9odJFBFRMzicYT/kXpHmbKtuM7m3L0yiiIhsxNlO6LYid/VsZ111m8m9/eCcKCIiG3DUmxMrTe5yE+1ZpoKotZhEEXVSbVmNm9qHJ3T55K6ezVW3yRY4nEd2gcMctuWswxz2iutOySd3uQkuU0G2wJ4oUhyHOWyLvSK2x0vT5ZO73ASXqSBbYE8UKYp3C7c99orYHi9Nbx+5V6TxSjayNiZRpCie0G2PwxzKcNYTuq2G4uVekcYr2ciamESRonhCt73W9Ipwjpp1ONsJnXPrqLNTCSHE7cNIjqqqKmi1WphMJnh5eSldHbuVVXS20QmdX8TWV2qqabJXhCdGao1SUw1GZuQ3+g/Q7tRxTpUoUufU2vM3e6JIcc46zGHvmuoV4Rw1ai0OxRMxiSI74WzDHI6KJ0ZqLQ7FE3GJA3JSXEhSHl6KT63FJQSI2BNFTohzeuTjpfjUFhyKp86OE8utiBPLbY+TXTtGc5PO5T4Xr/QjIkfCieXUKXFOT8foqDlq7BUkImfGOVHkVDinx37w9jLK4ZxAIttgEkVOhZNd7UdLvYJkPbwXJZHtcDiPnA4nu9oHXgJve1zni8i22BNFTilA64HoPnfwxKEg9graHnv/iGyLPVFEZDXsFbQt9v4R2ZbiPVHr169HSEgINBoN9Ho99u3b12L81q1b0b9/f2g0GoSHh2P79u0W24UQWLFiBQICAuDh4QGDwYCTJ09axFRUVCAxMRFeXl7w9vZGUlISrl69Km2/fv06Zs2ahfDwcLi6uiIuLq7Djpeos2GvoO2w94/IthRNorKyspCSkoK0tDQcOHAAQ4YMQWxsLC5evNhk/N69e5GQkICkpCQcPHgQcXFxiIuLw5EjR6SY1atXY926dcjMzERhYSE8PT0RGxuL69evSzGJiYk4evQocnNzkZ2djV27diE5OVnaXl9fDw8PDzz55JMwGAzWawAiog4WP6wXdqeOwwdzhmN36jguKUFkRYoutqnX6zFs2DC89tprAACz2Yzg4GA88cQTSE1NbRQfHx+P6upqZGdnS2XDhw9HREQEMjMzIYRAYGAgFi5ciEWLFgEATCYT/P39sWnTJkybNg3Hjx/HwIEDUVRUhMjISABATk4OJk6ciPPnzyMwMNDiNWfNmoXKykp88sknbT4+LrZJSuNCl0REbdfa87diPVE3btxAcXGxRU+PWq2GwWBAQUFBk/sUFBQ06hmKjY2V4ktKSmA0Gi1itFot9Hq9FFNQUABvb28pgQIAg8EAtVqNwsLCDjs+IqXxUnciIutSLIkqLy9HfX09/P39Lcr9/f1hNBqb3MdoNLYY3/DzdjF+fn4W211dXeHj49Ps67ZWbW0tqqqqLB5ESuBCl0RE1qf4xHJnkp6eDq1WKz2Cg4OVrhJ1UrzUnYjI+hRLonx9feHi4oKysjKL8rKyMuh0uib30el0LcY3/LxdzK0T12/evImKiopmX7e1lixZApPJJD3OnTvXrucjkou3vyEisj7Fkig3NzcMHToUeXl5UpnZbEZeXh6io6Ob3Cc6OtoiHgByc3Ol+NDQUOh0OouYqqoqFBYWSjHR0dGorKxEcXGxFJOfnw+z2Qy9Xt+uY3J3d4eXl5fFg0gJvNSdiMj6FF1sMyUlBTNnzkRkZCSioqKwdu1aVFdXY/bs2QCAGTNmICgoCOnp6QCA+fPnIyYmBi+99BImTZqELVu2YP/+/XjzzTcBACqVCgsWLMDKlSsRFhaG0NBQLF++HIGBgdJaTwMGDMCECRMwZ84cZGZmoq6uDvPmzcO0adMsrsw7duwYbty4gYqKCly5cgWHDh0CAERERNisfYjaw14WuuQVgkTkrBRNouLj43Hp0iWsWLECRqMRERERyMnJkSaGnz17Fmr1fzvLRowYgffffx/Lli3D0qVLERYWhk8++QSDBg2SYhYvXozq6mokJyejsrISo0aNQk5ODjQajRSzefNmzJs3D+PHj4darcbUqVOxbt06i7pNnDgRP/zwg/T7PffcA+DnxTyJHEWA1kPRxCWr6Kw0wV2tAtIfDue6RUSdlDP+h0rRdaKcHdeJch72/uG3x/qVmmowMiO/0S1IdqeOs5s6EpFtONp/qFp7/ua984huw94//PZav5auEGQSRdR5NLfkyph+PR3+u4BLHBC1wN7XW7Ln+vEKQSICnHvJFSZRRC2w9w+/PdePVwhaX6mpBntPl9tF0kzUHGf+DxWH84ha0PDhv3Vej718+O29fvZyhaAzstdhXKJbNfyHaum2I6gXwqn+Q8WJ5VbEieXOIavobKMPvz2drOy9ftTxOGmfHFGpqcZh/kPFieVEHcTee1PsvX7U8ThpnxyR0kuuWAOTKKJWsPcPv73XjzqWvQ/jkjLscakTZ8eJ5UREDoaT9ulWWUVnMTIjH49uKMTIjHxkFZ1VukqdAudEWRHnRBGRNTnSHBOyHs6R63icE0VE5OQ4jEsA58gpicN5RFbCNXyoI/DvyHl11HvrzOsw2Tv2RBFZgdw1fORODOWEUufEtaCcV3ve21s/7868DpO945woK+KcqI7haAmC3PkJcr9UeaJ1Tpzn4rza89629HnnHLmO09rzN4fzyK454hUncm7FIvceePZ87zxqH3u+pQ+1j9z39naf9wCtB6L73MEEyoaYRJHNtHX831ETBDnzE+R+qdr6RMv5ObbDeS7OS+57y8Ta/jCJIpuQ06PkqF8YctbwkfulassTrSP2CjoyrgXlvOS+t0ys7Q/nRFkR50T9TO74v6PPCWlpfkJT87zk3gPPFvfOc/T3wpFxnovzkvPe8l6ZtsF1oshuyF3DxNGvOGluDZ/mJobKvQeeLe6dx3VolMO1oJyXnPeW98q0L0yiyOrac58vZ/vCaG6e15h+PaUvVDnHaO0TLe/VRmQ/mFjbD86JIqtr79wOZ7ripDPN8yIicnbsiSKbcLYeJbkcuUeH7yERkSX2RJHNOFOPklyO3qPD95BIeVxqxH6wJ4rIxuKH9UJ/XXcUnfkJw0J6YEhwD6WrREQOgncosC9MoohsjF+CRCTH7S5MIdvjcB6RDTnqKuzUMTgMQ+3hqBemODP2RJHNONqNhK2B6y11XuyBpPZy5AtTnBV7osgmeMuQn/G2De3niL057IGkjuDoF6Y4I/ZEkdVxHP+/HH0VdqU5am8OeyCpo3CpEfvCJIqszt5OIEoPK8q9Ok/peivNkZNxDsNQRxPgbW/tAZMosjp7OoFkFZ1F6seHIQCoAGRMtX1PhpzeFEftgelI9paMtwV7IKmj8LvAvnBOFFmdvYzjl5pqpAQKAASA1I8Pt3teSlvm6MiZG8P5ND9z9Plk8cN6YXfqOHwwZzh2p47jiY/ajN8F9oc9UWQT9jCOv/9MRaMOcAGg+MxPeGCIh6zhsrb+r1BOb4oj98B0JGfozXHGG8d29mFmW7rdd4Hc94LvoXxMoshmOvoE0tYPvkqlaqZcXhe5nDk6coY27Wk4VGn2kIzTf3FoybZa+i6Q+17wPWwfDueRQ5KzZMLQ3j1waxqlUgG/6uEhq4tczsJ3coY27WU41F7w/n32gUNLttfcdwEAWe8F38P2s4skav369QgJCYFGo4Fer8e+fftajN+6dSv69+8PjUaD8PBwbN++3WK7EAIrVqxAQEAAPDw8YDAYcPLkSYuYiooKJCYmwsvLC97e3khKSsLVq1ctYr799luMHj0aGo0GwcHBWL16dcccMLWL3A9+gNYDGVPDpXk1ahWQ8XA4qm/Uy1oFWO4cHTlzYzifxv444npVHYmrZyujqe8Cue8F38P2UzyJysrKQkpKCtLS0nDgwAEMGTIEsbGxuHjxYpPxe/fuRUJCApKSknDw4EHExcUhLi4OR44ckWJWr16NdevWITMzE4WFhfD09ERsbCyuX78uxSQmJuLo0aPIzc1FdnY2du3aheTkZGl7VVUVfvOb36B3794oLi7Giy++iGeeeQZvvvmm9RqDWqU9H/z4Yb2wJ/U+fDBnOPak3of4Yb1kJ0Pt6SGS05vCHhj7wcVjHX+ivyO79btA7nvB97D9VEIIRReb0Ov1GDZsGF577TUAgNlsRnBwMJ544gmkpqY2io+Pj0d1dTWys7OlsuHDhyMiIgKZmZkQQiAwMBALFy7EokWLAAAmkwn+/v7YtGkTpk2bhuPHj2PgwIEoKipCZGQkACAnJwcTJ07E+fPnERgYiNdffx1/+ctfYDQa4ebmBgBITU3FJ598gu+++65Vx1ZVVQWtVguTyQQvL692tRP9V6mpBiMz8hvNC9idOk52gpFVdLbRhOXW9vaUmmo4R6cTscbfn6Nqz+eGOpbc94LvYdNae/5WdGL5jRs3UFxcjCVLlkhlarUaBoMBBQUFTe5TUFCAlJQUi7LY2Fh88sknAICSkhIYjUYYDAZpu1arhV6vR0FBAaZNm4aCggJ4e3tLCRQAGAwGqNVqFBYW4qGHHkJBQQHGjBkjJVANr7Nq1Sr89NNP6NGj8QKJtbW1qK2tlX6vqqpqW4NQq1jjKq32TFh2xiuuqHm8WvK/ONHffsh9L/geto+iSVR5eTnq6+vh7+9vUe7v799sb4/RaGwy3mg0StsbylqK8fPzs9ju6uoKHx8fi5jQ0NBGz9GwrakkKj09Hc8++2zzB0wdxhoffCZD1Bq8WtISPzf2Q+57wfdQPsXnRDmTJUuWwGQySY9z584pXSWnxjlCpAReLUlEDRTtifL19YWLiwvKysosysvKyqDT6ZrcR6fTtRjf8LOsrAwBAQEWMREREVLMrRPXb968iYqKCovnaep1fvkat3J3d4e7u3uzx0tEzoFDIEQEKNwT5ebmhqFDhyIvL08qM5vNyMvLQ3R0dJP7REdHW8QDQG5urhQfGhoKnU5nEVNVVYXCwkIpJjo6GpWVlSguLpZi8vPzYTabodfrpZhdu3ahrq7O4nXuuuuuJofyiKhzYU8oEUEobMuWLcLd3V1s2rRJHDt2TCQnJwtvb29hNBqFEEJMnz5dpKamSvF79uwRrq6uYs2aNeL48eMiLS1NdOnSRRw+fFiKycjIEN7e3uKf//yn+Pbbb8WUKVNEaGioqKmpkWImTJgg7rnnHlFYWCh2794twsLCREJCgrS9srJS+Pv7i+nTp4sjR46ILVu2iK5du4o33nij1cdmMpkEAGEymdrTRERERGRDrT1/K55ECSHEq6++Knr16iXc3NxEVFSU+Prrr6VtMTExYubMmRbxH374oejXr59wc3MTd999t/j8888ttpvNZrF8+XLh7+8v3N3dxfjx48WJEycsYi5fviwSEhJEt27dhJeXl5g9e7a4cuWKRcw333wjRo0aJdzd3UVQUJDIyMho03ExiSIiInI8rT1/K75OlDPjOlFERESOp7Xnb16dR0RERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkUPQGxM6uYR3TqqoqhWtCRERErdVw3r7deuRMoqzoypUrAIDg4GCFa0JERERtdeXKFWi12ma387YvVmQ2m3HhwgV0794dKpWqTftWVVUhODgY586d69S3jGE7sA0asB3YBgDboAHbwbptIITAlStXEBgYCLW6+ZlP7ImyIrVajV/96lfteg4vL69O+wH5JbYD26AB24FtALANGrAdrNcGLfVANeDEciIiIiIZmEQRERERycAkyk65u7sjLS0N7u7uSldFUWwHtkEDtgPbAGAbNGA72EcbcGI5ERERkQzsiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKAWtX78eISEh0Gg00Ov12LdvX7OxR48exdSpUxESEgKVSoW1a9farqJW1pZ22LBhA0aPHo0ePXqgR48eMBgMLcY7ira0wbZt2xAZGQlvb294enoiIiICf//7321YW+toSxv80pYtW6BSqRAXF2fdCtpIW9ph06ZNUKlUFg+NRmPD2lpHW/8WKisrMXfuXAQEBMDd3R39+vXD9u3bbVRb62lLO4wdO7bR34JKpcKkSZNsWOOO19a/hbVr1+Kuu+6Ch4cHgoOD8dRTT+H69evWq6AgRWzZskW4ubmJd955Rxw9elTMmTNHeHt7i7Kysibj9+3bJxYtWiQ++OADodPpxCuvvGLbCltJW9vh0UcfFevXrxcHDx4Ux48fF7NmzRJarVacP3/exjXvOG1tgx07doht27aJY8eOiVOnTom1a9cKFxcXkZOTY+Oad5y2tkGDkpISERQUJEaPHi2mTJlim8paUVvbYePGjcLLy0uUlpZKD6PRaONad6y2tkFtba2IjIwUEydOFLt37xYlJSVi586d4tChQzauecdqaztcvnzZ4u/gyJEjwsXFRWzcuNG2Fe9AbW2DzZs3C3d3d7F582ZRUlIi/vWvf4mAgADx1FNPWa2OTKIUEhUVJebOnSv9Xl9fLwIDA0V6evpt9+3du7fTJFHtaQchhLh586bo3r27ePfdd61VRatrbxsIIcQ999wjli1bZo3q2YScNrh586YYMWKEeOutt8TMmTOdIolqazts3LhRaLVaG9XONtraBq+//rq48847xY0bN2xVRZto7/fCK6+8Irp37y6uXr1qrSpaXVvbYO7cueK+++6zKEtJSREjR460Wh05nKeAGzduoLi4GAaDQSpTq9UwGAwoKChQsGa21RHtcO3aNdTV1cHHx8da1bSq9raBEAJ5eXk4ceIExowZY82qWo3cNnjuuefg5+eHpKQkW1TT6uS2w9WrV9G7d28EBwdjypQpOHr0qC2qaxVy2uDTTz9FdHQ05s6dC39/fwwaNAgvvPAC6uvrbVXtDtcR341vv/02pk2bBk9PT2tV06rktMGIESNQXFwsDfl9//332L59OyZOnGi1evIGxAooLy9HfX09/P39Lcr9/f3x3XffKVQr2+uIdnj66acRGBho8UFzJHLbwGQyISgoCLW1tXBxccHf/vY3/PrXv7Z2da1CThvs3r0bb7/9Ng4dOmSDGtqGnHa466678M4772Dw4MEwmUxYs2YNRowYgaNHj7b75udKkNMG33//PfLz85GYmIjt27fj1KlTePzxx1FXV4e0tDRbVLvDtfe7cd++fThy5Ajefvtta1XR6uS0waOPPory8nKMGjUKQgjcvHkTf/zjH7F06VKr1ZNJFDmsjIwMbNmyBTt37nSKybRt0b17dxw6dAhXr15FXl4eUlJScOedd2Ls2LFKV83qrly5gunTp2PDhg3w9fVVujqKio6ORnR0tPT7iBEjMGDAALzxxht4/vnnFayZ7ZjNZvj5+eHNN9+Ei4sLhg4dih9//BEvvviiwyZR7fX2228jPDwcUVFRSlfFpnbu3IkXXngBf/vb36DX63Hq1CnMnz8fzz//PJYvX26V12QSpQBfX1+4uLigrKzMorysrAw6nU6hWtlee9phzZo1yMjIwFdffYXBgwdbs5pWJbcN1Go1+vbtCwCIiIjA8ePHkZ6e7pBJVFvb4PTp0zhz5gwmT54slZnNZgCAq6srTpw4gT59+li30lbQEd8LXbp0wT333INTp05Zo4pWJ6cNAgIC0KVLF7i4uEhlAwYMgNFoxI0bN+Dm5mbVOltDe/4WqqursWXLFjz33HPWrKLVyWmD5cuXY/r06XjssccAAOHh4aiurkZycjL+8pe/QK3u+BlMnBOlADc3NwwdOhR5eXlSmdlsRl5ensX/Kp2d3HZYvXo1nn/+eeTk5CAyMtIWVbWajvpbMJvNqK2ttUYVra6tbdC/f38cPnwYhw4dkh4PPvggxo0bh0OHDiE4ONiW1e8wHfG3UF9fj8OHDyMgIMBa1bQqOW0wcuRInDp1SkqkAeA///kPAgICHDKBAtr3t7B161bU1tbid7/7nbWraVVy2uDatWuNEqWG5FpY6zbBVpuyTi3asmWLcHd3F5s2bRLHjh0TycnJwtvbW7o8efr06SI1NVWKr62tFQcPHhQHDx4UAQEBYtGiReLgwYPi5MmTSh1Ch2hrO2RkZAg3Nzfx0UcfWVzOe+XKFaUOod3a2gYvvPCC+PLLL8Xp06fFsWPHxJo1a4Srq6vYsGGDUofQbm1tg1s5y9V5bW2HZ599VvzrX/8Sp0+fFsXFxWLatGlCo9GIo0ePKnUI7dbWNjh79qzo3r27mDdvnjhx4oTIzs4Wfn5+YuXKlUodQoeQ+5kYNWqUiI+Pt3V1raKtbZCWlia6d+8uPvjgA/H999+LL7/8UvTp00c88sgjVqsjkygFvfrqq6JXr17Czc1NREVFia+//lraFhMTI2bOnCn9XlJSIgA0esTExNi+4h2sLe3Qu3fvJtshLS3N9hXvQG1pg7/85S+ib9++QqPRiB49eojo6GixZcsWBWrdsdrSBrdyliRKiLa1w4IFC6RYf39/MXHiRHHgwAEFat2x2vq3sHfvXqHX64W7u7u48847xV//+ldx8+ZNG9e647W1Hb777jsBQHz55Zc2rqn1tKUN6urqxDPPPCP69OkjNBqNCA4OFo8//rj46aefrFY/lRDW6uMiIiIicl6cE0VEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiJzArFmzEBcXp3Q1iDoVJlFEZFWzZs2CSqWSHnfccQcmTJiAb7/9VumqdYhfHlvDY9SoUVZ7vTNnzkClUuHQoUMW5f/7v/+LTZs2We11iagxJlFEZHUTJkxAaWkpSktLkZeXB1dXVzzwwANKV6vDbNy4UTq+0tJSfPrpp03G1dXVWa0OWq0W3t7eVnt+ImqMSRQRWZ27uzt0Oh10Oh0iIiKQmpqKc+fO4dKlS7jvvvswb948i/hLly7Bzc1NuoN7SEgInn/+eSQkJMDT0xNBQUFYv369xT4vv/wywsPD4enpieDgYDz++OO4evWqtP2HH37A5MmT0aNHD3h6euLuu+/G9u3bAQA//fQTEhMT0bNnT3h4eCAsLAwbN25s9fF5e3tLx6fT6eDj4yP1GGVlZSEmJgYajQabN2/G5cuXkZCQgKCgIHTt2hXh4eH44IMPLJ7PbDZj9erV6Nu3L9zd3dGrVy/89a9/BQCEhoYCAO655x6oVCqMHTsWQOPhvNraWjz55JPw8/ODRqPBqFGjUFRUJG3fuXMnVCoV8vLyEBkZia5du2LEiBE4ceJEq4+bqLNjEkVENnX16lW899576Nu3L+644w489thjeP/991FbWyvFvPfeewgKCsJ9990nlb344osYMmQIDh48iNTUVMyfPx+5ubnSdrVajXXr1uHo0aN49913kZ+fj8WLF0vb586di9raWuzatQuHDx/GqlWr0K1bNwDA8uXLcezYMXzxxRc4fvw4Xn/9dfj6+nbI8TbU9fjx44iNjcX169cxdOhQfP755zhy5AiSk5Mxffp07Nu3T9pnyZIlyMjIkOr1/vvvw9/fHwCkuK+++gqlpaXYtm1bk6+7ePFifPzxx3j33Xdx4MAB9O3bF7GxsaioqLCI+8tf/oKXXnoJ+/fvh6urK37/+993yHETdQpWu7UxEZEQYubMmcLFxUV4enoKT09PAUAEBASI4uJiIYQQNTU1okePHiIrK0vaZ/DgweKZZ56Rfu/du7eYMGGCxfPGx8eL+++/v9nX3bp1q7jjjjuk38PDwy2e85cmT54sZs+eLev4AAiNRiMdn6enp/jHP/4hSkpKBACxdu3a2z7HpEmTxMKFC4UQQlRVVQl3d3exYcOGJmMbnvfgwYMW5TNnzhRTpkwRQghx9epV0aVLF7F582Zp+40bN0RgYKBYvXq1EEKIHTt2CADiq6++kmI+//xzAUDU1NS0pQmIOi32RBGR1Y0bNw6HDh3CoUOHsG/fPsTGxuL+++/HDz/8AI1Gg+nTp+Odd94BABw4cABHjhzBrFmzLJ4jOjq60e/Hjx+Xfv/qq68wfvx4BAUFoXv37pg+fTouX76Ma9euAQCefPJJrFy5EiNHjkRaWprFxPY//elP2LJlCyIiIrB48WLs3bu3Tcf3yiuvSMd36NAh/PrXv5a2RUZGWsTW19fj+eefR3h4OHx8fNCtWzf861//wtmzZwEAx48fR21tLcaPH9+mOvzS6dOnUVdXh5EjR0plXbp0QVRUlEWbAcDgwYOlfwcEBAAALl68KPu1iToTJlFEZHWenp7o27cv+vbti2HDhuGtt95CdXU1NmzYAAB47LHHkJubi/Pnz2Pjxo2477770Lt371Y//5kzZ/DAAw9g8ODB+Pjjj1FcXCzNmbpx44b0Gt9//z2mT5+Ow4cPIzIyEq+++ioASAndU089hQsXLmD8+PFYtGhRq19fp9NJx9e3b194enpaHPsvvfjii/jf//1fPP3009ixYwcOHTqE2NhYqZ4eHh6tft2O0KVLF+nfKpUKwM9zsojo9phEEZHNqVQqqNVq1NTUAADCw8MRGRmJDRs24P33329yXs7XX3/d6PcBAwYAAIqLi2E2m/HSSy9h+PDh6NevHy5cuNDoOYKDg/HHP/4R27Ztw8KFC6UkDgB69uyJmTNn4r333sPatWvx5ptvduQhS/bs2YMpU6bgd7/7HYYMGYI777wT//nPf6TtYWFh8PDwkCbV38rNzQ3Azz1azenTpw/c3NywZ88eqayurg5FRUUYOHBgBx0JEbkqXQEicn61tbUwGo0Afr4S7rXXXsPVq1cxefJkKeaxxx7DvHnz4OnpiYceeqjRc+zZswerV69GXFwccnNzsXXrVnz++ecAgL59+6Kurg6vvvoqJk+ejD179iAzM9Ni/wULFuD+++9Hv3798NNPP2HHjh1SErZixQoMHToUd999N2pra5GdnS1t62hhYWH46KOPsHfvXvTo0QMvv/wyysrKpORGo9Hg6aefxuLFi+Hm5oaRI0fi0qVLOHr0KJKSkuDn5wcPDw/k5OTgV7/6FTQaDbRarcVreHp64k9/+hP+/Oc/w8fHB7169cLq1atx7do1JCUlWeW4iDoj9kQRkdXl5OQgICAAAQEB0Ov1KCoqwtatW6XL8wEgISEBrq6uSEhIgEajafQcCxcuxP79+3HPPfdg5cqVePnllxEbGwsAGDJkCF5++WWsWrUKgwYNwubNm5Genm6xf319PebOnYsBAwZgwoQJ6NevH/72t78B+Ll3Z8mSJRg8eDDGjBkDFxcXbNmyxSptsWzZMtx7772IjY3F2LFjodPpGq00vnz5cixcuBArVqzAgAEDEB8fL81TcnV1xbp16/DGG28gMDAQU6ZMafJ1MjIyMHXqVEyfPh333nsvTp06hX/961/o0aOHVY6LqDNSCSGE0pUgIjpz5gz69OmDoqIi3HvvvRbbQkJCsGDBAixYsECZyhERNYHDeUSkqLq6Oly+fBnLli3D8OHDGyVQRET2isN5RKSoPXv2ICAgAEVFRY3mMSnthRdeQLdu3Zp83H///UpXj4gUxuE8IqJmVFRUNFrhu4GHhweCgoJsXCMisidMooiIiIhk4HAeERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpLh/wOjFG54hHs1ggAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_50.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/o0lEQVR4nO3de1yUZf7/8fcAcggVFVDQEBS0LFFbUVcxD2WZlWXtbqZmWbltqWvn1MrsLLYd3E5WbqnftGQra91qLU9t37RN1NzSzDyGFR5IG0JoRLh+f/hjviEHGZiZ+56Z1/Px4LHLPTczn2tC7s98Ptd13Q5jjBEAAIANhVkdAAAAQG1IVAAAgG2RqAAAANsiUQEAALZFogIAAGyLRAUAANgWiQoAALAtEhUAAGBbJCoAAMC2SFQANNr9998vh8NRr3MdDofuv/9+n8YzaNAgDRo0yLbPB6D+SFSAIDJ//nw5HA73V0REhNq1a6dx48bp+++/tzo820lLS6vyfrVu3Vpnn3223n77ba88f0lJie6//3599NFHXnk+IBSRqABB6MEHH9Srr76qF154QcOGDdPChQs1cOBA/fLLLz55vXvvvVelpaU+eW5f69Gjh1599VW9+uqruuOOO/TDDz/o8ssv1wsvvNDo5y4pKdEDDzxAogI0QoTVAQDwvmHDhikrK0uSNH78eCUkJGjWrFlaunSprrjiCq+/XkREhCIiAvPPSbt27XTVVVe5v7/66quVkZGhp556SjfeeKOFkQGQqKgAIeHss8+WJO3cubPK8a+//lq///3v1apVK0VHRysrK0tLly6tck5ZWZkeeOABderUSdHR0YqPj1f//v21fPly9zk1zVFxuVy69dZblZiYqGbNmumSSy7Rd999Vy22cePGKS0trdrxmp5z3rx5Ouecc9S6dWtFRUXpjDPO0Jw5czx6L04mKSlJXbp00e7du+s878CBA7r++uvVpk0bRUdHq3v37lqwYIH78T179igxMVGS9MADD7jbS76enwMEm8D8CATAI3v27JEktWzZ0n1sy5Ytys7OVrt27TR16lTFxsbq73//u0aMGKG33npLl112maTjCcPMmTM1fvx49e7dW0VFRVq/fr02btyo8847r9bXHD9+vBYuXKjRo0erX79+WrVqlS666KJGjWPOnDk688wzdckllygiIkL//Oc/NWHCBFVUVGjixImNeu5KZWVl2rt3r+Lj42s9p7S0VIMGDdKOHTs0adIkdejQQW+88YbGjRunn376STfffLMSExM1Z84c3XTTTbrssst0+eWXS5K6devmlTiBkGEABI158+YZSWbFihXm4MGDZu/evebNN980iYmJJioqyuzdu9d97rnnnmsyMzPNL7/84j5WUVFh+vXrZzp16uQ+1r17d3PRRRfV+bozZswwv/5zsmnTJiPJTJgwocp5o0ePNpLMjBkz3MeuueYak5qaetLnNMaYkpKSaucNHTrUdOzYscqxgQMHmoEDB9YZszHGpKammvPPP98cPHjQHDx40Pz3v/81V155pZFk/vznP9f6fLNnzzaSzMKFC93Hjh49avr27WuaNm1qioqKjDHGHDx4sNp4AXiG1g8QhIYMGaLExESlpKTo97//vWJjY7V06VKdeuqpkqRDhw5p1apVuuKKK/Tzzz+rsLBQhYWF+vHHHzV06FBt377dvUqoRYsW2rJli7Zv317v13///fclSZMnT65y/JZbbmnUuGJiYtz/3+l0qrCwUAMHDtSuXbvkdDob9JwffvihEhMTlZiYqO7du+uNN97Q2LFjNWvWrFp/5v3331dSUpJGjRrlPtakSRNNnjxZxcXF+ve//92gWABUFzSJyscff6zhw4erbdu2cjgceuedd2zxelu3btUll1yiuLg4xcbGqlevXsrPz/dpbMBzzz2n5cuX680339SFF16owsJCRUVFuR/fsWOHjDGaPn26+yJd+TVjxgxJx+dgSMdXEP3000/q3LmzMjMzdeedd+qLL76o8/W//fZbhYWFKT09vcrx0047rVHjWrNmjYYMGaLY2Fi1aNFCiYmJuvvuuyWpwYlKnz59tHz5cq1YsUJr165VYWGh/ud//qdKUnSib7/9Vp06dVJYWNU/oV26dHE/DsA7gmaOypEjR9S9e3ddd9117l6w1a+3c+dO9e/fX9dff70eeOABNW/eXFu2bFF0dLTP40No6927t3vVz4gRI9S/f3+NHj1a27ZtU9OmTVVRUSFJuuOOOzR06NAanyMjI0OSNGDAAO3cuVP/+Mc/9OGHH+pvf/ubnnrqKb3wwgsaP358o2OtbaO48vLyKt/v3LlT5557rk4//XQ9+eSTSklJUWRkpN5//3099dRT7jF5KiEhQUOGDGnQzwLwvaBJVIYNG6Zhw4bV+rjL5dI999yj119/XT/99JO6du2qWbNmNXi3yZO9niTdc889uvDCC/XYY4+5j534CRPwtfDwcM2cOVODBw/Ws88+q6lTp6pjx46Sjrcr6nORbtWqla699lpde+21Ki4u1oABA3T//ffXmqikpqaqoqJCO3furFJF2bZtW7VzW7ZsqZ9++qna8ROrEv/85z/lcrm0dOlStW/f3n189erVJ43f21JTU/XFF1+ooqKiSlXl66+/dj8u1Z6EAai/oGn9nMykSZP06aefavHixfriiy/0hz/8QRdccIFHfXdPVFRU6L333lPnzp01dOhQtW7dWn369PF5SwqoyaBBg9S7d2/Nnj1bv/zyi1q3bq1BgwbpxRdfVEFBQbXzDx486P7/P/74Y5XHmjZtqoyMDLlcrlpfrzKJf/rpp6scnz17drVz09PT5XQ6q7STCgoKqu0OGx4eLkkyxriPOZ1OzZs3r9Y4fOXCCy/Uvn37lJub6z527NgxPfPMM2ratKkGDhwoSTrllFMkqcZEDED9BE1FpS75+fmaN2+e8vPz1bZtW0nHS97Lli3TvHnz9Oijj3r9NQ8cOKDi4mLl5OTo4Ycf1qxZs7Rs2TJdfvnlWr16tfsPGeAvd955p/7whz9o/vz5uvHGG/Xcc8+pf//+yszM1B//+Ed17NhR+/fv16effqrvvvtO//3vfyVJZ5xxhgYNGqSePXuqVatWWr9+vd58801NmjSp1tfq0aOHRo0apeeff15Op1P9+vXTypUrtWPHjmrnXnnllZoyZYouu+wyTZ48WSUlJZozZ446d+6sjRs3us87//zzFRkZqeHDh+tPf/qTiouLNXfuXLVu3brGZMuXbrjhBr344osaN26cNmzYoLS0NL355ptas2aNZs+erWbNmkk6Pvn3jDPOUG5urjp37qxWrVqpa9eu6tq1q1/jBQKa1cuOfEGSefvtt93fv/vuu0aSiY2NrfIVERFhrrjiCmOMMVu3bjWS6vyaMmVKvV7PGGO+//57I8mMGjWqyvHhw4ebK6+80qvjBSpVLk/Oy8ur9lh5eblJT0836enp5tixY8YYY3bu3Gmuvvpqk5SUZJo0aWLatWtnLr74YvPmm2+6f+7hhx82vXv3Ni1atDAxMTHm9NNPN4888og5evSo+5yalhKXlpaayZMnm/j4eBMbG2uGDx9u9u7dW+Ny3Q8//NB07drVREZGmtNOO80sXLiwxudcunSp6datm4mOjjZpaWlm1qxZ5pVXXjGSzO7du93nebI8+WRLr2t7vv3795trr73WJCQkmMjISJOZmWnmzZtX7WfXrl1revbsaSIjI1mqDDSAw5hf1VGDhMPh0Ntvv60RI0ZIknJzczVmzBht2bLFXT6u1LRpUyUlJeno0aPatWtXnc8bHx/v3mmyrteTpKNHjyo2NlYzZszQvffe6z4+ZcoUffLJJ1qzZk3DBwgAQIgIidbPWWedpfLych04cMC9lfiJIiMjdfrpp3vtNSMjI9WrV69qkwe/+eYb90Q7AABQt6BJVIqLi6v0v3fv3q1NmzapVatW6ty5s8aMGaOrr75aTzzxhM466ywdPHhQK1euVLdu3Rq0rXddr1e5IuHOO+/UyJEjNWDAAA0ePFjLli3TP//5T+6kCgBAfVnde/KW1atX1ziv5JprrjHGHN/e+r777jNpaWmmSZMmJjk52Vx22WXmiy++8MnrVXr55ZdNRkaGiY6ONt27dzfvvPNOI0cKAEDoCMo5KgAAIDiEzD4qAAAg8JCoAAAA2wroybQVFRX64Ycf1KxZM7aqBgAgQBhj9PPPP6tt27bVbu55ooBOVH744QelpKRYHQYAAGiAvXv36tRTT63znIBOVCq3qd67d6+aN29ucTQAAKA+ioqKlJKS4r6O1yWgE5XKdk/z5s1JVAAACDD1mbbBZFoAAGBbJCoAAMC2SFQAAIBtBfQcFQAA7KSiokJHjx61OgzLNWnSROHh4V55LhIVAAC84OjRo9q9e7cqKiqsDsUWWrRooaSkpEbvc0aiAgBAIxljVFBQoPDwcKWkpJx0E7NgZoxRSUmJDhw4IElKTk5u1PORqAAA0EjHjh1TSUmJ2rZtq1NOOcXqcCwXExMjSTpw4IBat27dqDZQ6KZ8AAB4SXl5uSQpMjLS4kjsozJhKysra9TzkKgAAOAl3Hfu/3jrvSBRAQAAtkWiAgAAbItEBSpwlmrtzkIVOEutDgUAYIG9e/fquuuuU9u2bRUZGanU1FTdfPPN+vHHHyUdn2cyZcoUZWZmKjY2Vm3bttXVV1+tH374weexkaiEuNy8fGXnrNLouZ8pO2eVcvPyrQ4JAOBHu3btUlZWlrZv367XX39dO3bs0AsvvKCVK1eqb9++OnTokEpKSrRx40ZNnz5dGzdu1JIlS7Rt2zZdcsklPo+P5ckhrMBZqmlLvlSFOf59hZHuXrJZAzonKjkuxtrgAAB+MXHiREVGRurDDz90Lytu3769zjrrLKWnp+uee+7RnDlztHz58io/9+yzz6p3797Kz89X+/btfRYfFZUQtrvwiDtJqVRujPYUllgTEADAr+34Q4cO6YMPPtCECRPcSUqlpKQkjRkzRrm5uTLGVPtZp9Mph8OhFi1a+DRGKiohrENCrMIcqpKshDscSktgsyIAsEJuXr670h3mkGZenqmRvXxXrdi+fbuMMerSpUuNj3fp0kWHDx/WwYMH1bp1a/fxX375RVOmTNGoUaPUvHlzn8UnUVEJaclxMZp5eabC//9a93CHQ49e3pW2DwBYoLZ2vD8qKzVVTGpTVlamK664QsYYzZkzx4dRHUdFJcSN7NVeAzonak9hidISTiFJAQCL1NWO99Xf5oyMDDkcDm3dulWXXXZZtce3bt2qli1bKjExUdL/JSnffvutVq1a5fNqikRFBTpeWembHk+SAgAWqmzH/5qv2/Hx8fE677zz9Pzzz6u0tGrlZt++fVq0aJFGjhwph8PhTlK2b9+uFStWKD4+3mdx/RqJCgAANmBVO/7ZZ5+Vy+XS0KFD9fHHH2vv3r1atmyZzjvvPLVr106PPPKIysrK9Pvf/17r16/XokWLVF5ern379mnfvn06evSoT+Oj9QMAgE1Y0Y7v1KmT1q9frxkzZuiKK67QoUOHlJSUpBEjRmjGjBlq1aqV9uzZo6VLl0qSevToUeXnV69erUGDBvksPhIVAABsJDkuxu+t+NTUVM2fP7/Wx9PS0jyacOtNtH4AAIBtkagAAADbIlEBAAC2RaICAABsi0QFAAAvsWrCqR15670gUQEAoJHCw8Mlyed7igSSkpLjN7ht0qRJo56H5ckAADRSRESETjnlFB08eFBNmjRRWFjo1gGMMSopKdGBAwfUokULdxLXUCQqAAA0ksPhUHJysnbv3q1vv/3W6nBsoUWLFkpKSmr085CoAADgBZGRkerUqRPtHx1v9zS2klKJRAUAAC8JCwtTdHS01WEEldBtogEAANsjUQEAALZFogIAAGyLRAUAANgWiQoAALAtEhUAAGBbJCoAAMC2SFQAAIBtkagAAADbIlEBAAC2RaICAABsi0QFAADYFokKAACwLRIVAABgWyQqAADAtkhUAACAbZGoAAAA2yJRAQAAtkWiAgAAbItEBQAA2BaJCgAAsC0SFQAAYFskKgAAwLZIVAAAgG2RqAAAANuyNFEpLy/X9OnT1aFDB8XExCg9PV0PPfSQjDFWhgUAAGwiwsoXnzVrlubMmaMFCxbozDPP1Pr163XttdcqLi5OkydPtjI0AABgA5YmKmvXrtWll16qiy66SJKUlpam119/XevWrbMyLAAAYBOWtn769eunlStX6ptvvpEk/fe//9Unn3yiYcOG1Xi+y+VSUVFRlS8AABC8LK2oTJ06VUVFRTr99NMVHh6u8vJyPfLIIxozZkyN58+cOVMPPPCAn6MEAABWsbSi8ve//12LFi3Sa6+9po0bN2rBggV6/PHHtWDBghrPnzZtmpxOp/tr7969fo4YwarAWaq1OwtV4Cy1OhQAwK84jIVLbFJSUjR16lRNnDjRfezhhx/WwoUL9fXXX5/054uKihQXFyen06nmzZv7MlQEsdy8fE1b8qUqjBTmkGZenqmRvdpbHRYABC1Prt+WVlRKSkoUFlY1hPDwcFVUVFgUEUJNgbPUnaRIUoWR7l6ymcoKANiEpXNUhg8frkceeUTt27fXmWeeqc8//1xPPvmkrrvuOivDCjkFzlLtLjyiDgmxSo6LsTocv9pdeMSdpFQqN0Z7CktC7r0AADuyNFF55plnNH36dE2YMEEHDhxQ27Zt9ac//Un33XeflWGFlFBve3RIiFWYQ1WSlXCHQ2kJp1gXFADAzdI5Ko1ltzkqgVaZKHCWKjtnVbWL9CdTBwdE/N6Sm5evu5dsVrkxCnc49OjlXUMqWQMAf/Pk+m1pRSWYBGJlgrbHcSN7tdeAzonaU1iitIRTQmrsAGB33JTQCwJ1QmZl2+PXQrXtkRwXo77p8SQpAGAzJCpeUFdlws6S42I08/JMhTuOZyuVbQ8u1gAAu6D14wWBPCGTtgcAwM6oqHhBoFcmaHsAAOyKioqXUJkAAMD7SFS8KDkuhgQFAAAvovUD+BE3PwQAz1BRAfwkEPfaAQCrUVEB/CBQ99oBAKuRqAB+EKh77QCA1UhUAD9gF2AAaBgSFcAPAn2vHQCwCpNpAT9hrx0A8ByJCuBH7LUDAJ6h9QMAAGyLRAUAANgWiQoAALAtEpUQwdbtAIBAxGTaEMDW7QCAQEVFJcixdTsAIJCRqAQ5tm4HAAQyEpUgx9btAIBARqIS5Ni6HQAQyJhMGwLYuh0AEKhIVEIEW7cDAAIRrR8AAGBbJCoAAMC2SFQAAIBtkagAAADbIlEBAAC2RaICAABsi0QFAADYFokKAACwLRIVAABgWyQqAADAtkhUAACAbZGoIGQUOEu1dmehCpylVocCAKgnbkqIkJCbl69pS75UhZHCHNLMyzM1sld7q8MCAJwEFRUEvQJnqTtJkaQKI929ZDOVFQAIACQqCHq7C4+4k5RK5cZoT2GJNQEBAOqNRAVBr0NCrMIcVY+FOxxKSzjFmoAAAPVGooKglxwXo5mXZyrccTxbCXc49OjlXZUcF2NxZACAk2EyLWpV4CzV7sIj6pAQG/AX9ZG92mtA50TtKSxRWsIpAT8eAAgVJCqoUTCukkmOiyFBAYAAQ+sH1bBKBgBgFyQqqIZVMgAAuyBRQTWskgEA2AWJCqphlQwAwC6YTIsasUoGAGAHJCqoFatkAABWo/UDAECQCMa7xFNRAQAgCATj/lcSFRUAAAJeMO9/RaICAECAC+b9r0hUAAAIcMG8/xWJCgCEoGCcdBnKgnn/KybTAkCICdZJl6EuWPe/oqICACEkmCdd4nhlpW96fNAkKRKJCgCElECZdElrCpVo/QBAgCtwlmp34RF1SIg96SfpykmXv05W7DbpktYUfo2KCgAEsNy8fGXnrNLouZ8pO2eVcvPy6zzf7pMuaU3hRFRUACBA1XZRH9A5sc7Ew86TLutqTdkpTviP5RWV77//XldddZXi4+MVExOjzMxMrV+/3uqwAMD2GjPfxK6TLoN5PxA0jKWJyuHDh5Wdna0mTZroX//6l7766is98cQTatmypZVhAUBACMaLut1bU/A/hzHGnPw035g6darWrFmj//3f/23QzxcVFSkuLk5Op1PNmzf3cnQAYH+5efm6e8lmlRvjvqgHw8TTAmdpja0pTyYOw748uX5bmqicccYZGjp0qL777jv9+9//Vrt27TRhwgT98Y9/rPF8l8sll8vl/r6oqEgpKSkkKgBCWm0X9WDDaqDg4UmiYmnrZ9euXZozZ446deqkDz74QDfddJMmT56sBQsW1Hj+zJkzFRcX5/5KSUnxc8QAYD92nW/iTawGCl2WVlQiIyOVlZWltWvXuo9NnjxZeXl5+vTTT6udT0UFAELT2p2FGj33s2rHX//jb9U3Pd6CiNAYAVNRSU5O1hlnnFHlWJcuXZSfX/M+AFFRUWrevHmVLwBA8AvGicOoH0sTlezsbG3btq3KsW+++UapqakWRQQAsCNWA4UuSzd8u/XWW9WvXz89+uijuuKKK7Ru3Tq99NJLeumll6wMCwBgQ3beqA6+Y+kcFUl69913NW3aNG3fvl0dOnTQbbfdVuuqnxOxPBkAgMATMMuTG4tEBQCAwBMwk2kBAADqQqICAIAHCpylWruzkD1c/IS7JwMAUE/sjut/VFQAAKgHdse1BokKAAD1sLvwiDtJqVRujPYUllgTUIggUQEAoB7YHdcaJCoAANQDu+Nag8m0AADUE7vj+h+JCgAAHkiOiyFB8SNaPwAAwLZIVAAAgG2RqAAAANsiUQFwUmwZDsAqTKYFUCe2DIevFDhLtbvwiDokxDI5FbUiUQFQq9q2DB/QOZELCxqFBBj1ResHQK3YMhy+wD1z4AkSFQC1Ystw+AIJMDxBogKgVmwZDl8gAYYnmKMCoE5sGQ5vq0yA716yWeXGkACjTiQqAE6KLcPhbSTAvhGMK6lIVADYXjD+8QUJsLcF60oqEhUAthasf3wBbwrmrQSYTAvANk7cAZdlrED9BPNKKioqAGyhpspJSqtTav3jG+ifEgFvqlxJ9et/L8GykoqKCgDL1VY5iY0MZxkrUA/BvJUAFRUAlqutbF1ytIJlrEA9BetKKhIVAJarq2zdNz0+KP/4Ar4QjCupaP0AsFxl2bqyzRPmUJXKSXJcjPqmxwfdH2AAJ0eiAsA2jKn6vwBAogLAcpWTaSvzEyOWIQM4jkQFgOWCeQ8IAI1DogLActxNF0BtSFQAWC6Y94AA0DgNWp783XffqUWLFmratGmV42VlZfr00081YMAArwQHIHQE6x4QABrHo4pKQUGBevfurdTUVLVo0UJXX321iouL3Y8fOnRIgwcP9nqQAEIDy5ABnMijRGXq1KkKCwvTZ599pmXLlumrr77S4MGDdfjwYfc5hnWFAADASzxKVFasWKGnn35aWVlZGjJkiNasWaPk5GSdc845OnTokCTJ4XCc5FkAAADqx6NExel0qmXLlu7vo6KitGTJEqWlpWnw4ME6cOCA1wMEAAChy6NEpWPHjvriiy+qHIuIiNAbb7yhjh076uKLL/ZqcAAAILR5lKgMGzZML730UrXjlclKjx49vBUXAACAHMaD2a/Hjh1TSUmJmjdvLkkqLCyUJCUkJLgf//7775WamuqDUKsrKipSXFycnE6nOyaEhgJnqXYXHlGHhFhWiABAgPHk+u1RRSUiIkIVFRWaOHGiEhIS1KZNG7Vp00YJCQmaNGmSiouL/ZakIHTl5uUrO2eVRs/9TNk5q5Sbl291SAAAH/Fow7dDhw6pb9+++v777zVmzBh16dJFkvTVV19p/vz5WrlypdauXVtlwi3gTZU3r6u8L0yFOX7zugGdE6msBAiqYQA84VGi8uCDDyoyMlI7d+5UmzZtqj12/vnn68EHH9RTTz3l1SCBSnXdvI6Lnv3l5uW7E80whzTz8kyN7NXe6rBgQyS0qORR6+edd97R448/Xi1JkaSkpCQ99thjevvtt70WHHAibl4XuGqrhhU4S60NLIAUOEu1dmdh0L9ntHfxax5voX/mmWfW+njXrl21b9++RgcF1Iab1wWuuqphOLlQuXiT0OJEHrV+EhIStGfPHp166qk1Pr579261atXKK4EBteHmdYGpshr262SFalj9hNLcLNq7/mf3NptHFZWhQ4fqnnvu0dGjR6s95nK5NH36dF1wwQVeCw6oDTevCzxUwxoulKpRtHf9KxAqdR5Pps3KylKnTp00ceJEnX766TLGaOvWrXr++eflcrn06quv+ipWAAHuZNUwu3+ys0ooVaMqE9q7l2xWuTEktD4UKJU6jxKVU089VZ9++qkmTJigadOmue+U7HA4dN555+nZZ59VSkqKTwIFEByS42Jq/CPIiqDahdrFm/aufwRKm82jREWSOnTooH/96186fPiwtm/fLknKyMhgbgqABguUT3ZWCuSLd0MqZbUltPCeQKnUeZyoVGrZsqV69+7tzVgAhKhA+WRntdou3nZumVEps69AqdQ1OFEBAG8JlE92dmTnRIBKmf0FQqXOo1U/AOALrAhqGLvvORJKq5UCmd1XUVJR8SI7l18BuwuET3Z2Y/eWGZUyeAOJipfYufwKBAomUHrG7olAoMyBgL05TOUa4wBUVFSkuLg4OZ1ONW/e3LI4Cpylys5ZVe2PxSdTB/MPEoBP5eblV0sE7PYhqcBZSqUMVXhy/aai4gV2L78CCF6B0DKjUobGIFHxgpOVX+0+d8Xu8Xkq2MYDnAyJAIIZiYoX1NWHtfvcFbvH56lgGw8AhDrmqHjRiX1Yu89dsXt8ngq28QChjMpocGOOikVOLL/afe6K3ePzVLCNBwhVVEbtww4Jo202fMvJyZHD4dAtt9xidSheY/fblds9Pk8F23iAUGT3TexCSW5evrJzVmn03M+UnbNKuXn5lsRhi0QlLy9PL774orp162Z1KF5l99027R6fp4JtPEAoYjdbe7BTwmh566e4uFhjxozR3Llz9fDDD1sdjtfZfemg3ePzVLCNBwg1dt/ELlTYqZVueUVl4sSJuuiiizRkyJCTnutyuVRUVFTlKxDY/T4Kdo/PU8E2HiCUUBm1Bzu10i2tqCxevFgbN25UXl5evc6fOXOmHnjgAR9HBQCwEpVR69np9geWLU/eu3evsrKytHz5cvfclEGDBqlHjx6aPXt2jT/jcrnkcrnc3xcVFSklJcU2y5MBAAgmvrr9gSfLky1LVN555x1ddtllCg8Pdx8rLy+Xw+FQWFiYXC5XlcdqYrd9VAAAwMkFxD4q5557rr788ssqx6699lqdfvrpmjJlykmTFAAAEPwsS1SaNWumrl27VjkWGxur+Pj4ascBBB47bBQFIPBZvjwZQPBhZ1EA3mKrROWjjz6yOgQAjVTbRlEDOidSWQHgMcv3UQEQXNhZFIA3kagA8Co7bRRVmwJnqdbuLOT+MUAAIFEB4FV231nULjdaA1A/lu2j4g3so4JAE0orYXy1UVRjFDhLlZ2zqtp9ZD6ZOtg2MQKhICD2UQFCTaithEmOi7Hdxd9ON1oDUD+0fgA/sNMt00NZIMyfaQjm3CCYkagAfsBKGHuw0/wZbyUXzLlBsKP1A/hB5Sf5E+dGBPon+UBkhzvzeqsNyJ41CAVUVAA/sNMneRz/79E3Pd6ySoq32oBU6hAKqKgAfmKHT/Kwnjcn9FKpQyigogL4kZWf5GEP3pzQS6UOoYCKCgD4UWVycfeSzSo3ptHJBZU6BDsSFQDwM28nF3bcswbwFhIVALAAyQVQP8xRAQDAImzWd3JUVAAAsECo3VajoaioAADgZ9xWo/5IVAAA8DM266s/EhUACBDMZwgewXqDTF8gUQGAAMDNB4MLm/XVn8MYY05+mj0VFRUpLi5OTqdTzZs3tzocAPCJAmepsnNWVdsq/5Opg7mwBbgCZ2lIbtbnyfWbVT8hosBZqt2FR9QhITak/jEAwcCb9weCvbCfzsmRqIQAlsABgY2bDyKUMUclyLEEDgh8zGcIDEx29g0qKh6qq4Vix/YKJWMgOHDzQXujcu07JCoeqOsX0a6/pJSMg5sdk2P4DvMZ7Km2yvWAzon89/ICWj/1VFcLxc7tFUrGwYvlqoA9sHmbb1FRqae6fhGNjK3bK5SMgw+f4AD7oHLtW1RU6qmuXQQDYYfB5LgY9U2P5yIWJPgEB9gHlWvfoqJST5W/iHcv2axyY6r9Itb1GOBtfIID7IXKte+wM62H6tpFMFR3GIQ1cvPyqyXHdpjADQAn48n1m0QFCGAkxwACEVvoAyGC5aoAgh2TaQEA8DF2rW04KioAAPiQXTcEDRRUVAAA8BE7bwgaKEhUAADwEfY8ajwSFQAAfCQQNgS1OxIVAAB8hF1rG4/JtAAA+BC71jYOiQoAAD7GnkcNR+sHAADYFokKAACwLRIVAABgWyQqAADAtkhUAACAbZGoAAAA2yJRAQAAtkWiEiK4xTgAIBCx4VsI4BbjgP0UOEu1u/CIOiTEshEYUAcSlSBX2y3GB3RO5I8j6i3YLqpWj4cPD0D9kagEubpuMR4MFxx4ztOLdLBdVK0eDx8eAM8wRyXIcYtx/FpuXr6yc1Zp9NzPlJ2zSrl5+XWeX9tFNVDnOtlhPHV9eABQHYlKkOMW46jUkIt0sF1U7TAeu3x4YII9AgWtnxDALcYhNawNWHlR/fXPBXJFzg7jqfzwcPeSzSo3xpIPD1a3vwBPkKiECG4xjoZcpO1wUfUmu4zHyg8PzJFBoCFRAUJEQy/SwVaRs8t4rPrwwAR7BBoSFSCENPQiHWwVuWAbjyfs0P4CPMFkWiDEJMfFqG96fMheqEMdE+wRaKioAECIsUv7C6gPEhVYzl+7hFq9GylgJ6Hc/kJgIVGBpfy1TJLlmAAQmJijAsv4a5dQO+xGCsAzbEiHSpYmKjNnzlSvXr3UrFkztW7dWiNGjNC2bdusDAl+5K9dQu2wGymA+svNy1e/mcdv9dBv5slv9YDgZmmi8u9//1sTJ07Uf/7zHy1fvlxlZWU6//zzdeTIESvDgp/4aytxu2xZDuDkCpylmvrWl6r8bGEkTX3rSyorIczSRGXZsmUaN26czjzzTHXv3l3z589Xfn6+NmzYYGVY8BN/LZOsfJ3KZCXMoZBejklJHXa2fs8hnVAAlZG0Yc9hK8KBDdhqMq3T6ZQktWrVqsbHXS6XXC6X+/uioiK/xAXf8ecySWOq/m8oYlIx7M7hcNRy3M+BwDZsM5m2oqJCt9xyi7Kzs9W1a9caz5k5c6bi4uLcXykpKX6OEr7g6w3IKifT/rqUHIqTaZlUjEDQM7WlTsxJHA7pN6ktLYkH1rNNojJx4kRt3rxZixcvrvWcadOmyel0ur/27t3rxwgRqJhMexzvAwJBclyMcn5XtVWbc3lmyLZqYZPWz6RJk/Tuu+/q448/1qmnnlrreVFRUYqKivJjZAgG3NvkON4HBAp2zq1bqG1eaWlFxRijSZMm6e2339aqVavUoUMHK8NBkOLeJsfxPiCQcE+qmuXm5Ss75/jS7eyc0Fi67TDGuqmFEyZM0GuvvaZ//OMfOu2009zH4+LiFBNz8l/OoqIixcXFyel0qnnz5r4MFUGgwFnKJzTxPgCBqsBZquycVdWqop9MHRxw/5Y9uX5b2vqZM2eOJGnQoEFVjs+bN0/jxo3zf0CwhL/KmNzb5DjeByAw1TXPLJj/TVuaqFhYzIFNsFwWAOonVOeZ2WbVD6xj1QZgLJcFgPoL1Xlmtlj1A+tYWdEI1TImYHf+aseG2uoVbwjFFVEkKiGstorGgM6JfvnlD9UyJmBn/vrwQtu34UJtnhmtnxBm9QZgoVrGBOzKX+1Y2r7wBBWVEGaHikYglzEpWyPY+KsdS9sXniBRCWGVFY27l2xWuTGWVTQCsYxJ2RrByF8fXuzwIQmBw9IN3xqLDd+8gw3APBNMmy4BJ8rNy6/24cVXc1T88Tqwp4DZ8A32EIgVDSvbLpStEcz81Y4N5LYv/ItEBQHH6rYLZWsEO399eAnED0nwP1b9IKDYYbUAq5UAwH+oqPgBq0O8xy5tF8rWAOAfJCo+ZnWbItjYqe1C2RoAfI/Wjw/ZoU0RbGi7AEBooaLiQ3ZpUwQb2i4AEDpIVHyoPm0K5q80DG0XAAgNtH586GRtity8fGXnrNLouZ8pO2eVcvPyrQwXAADbYWdaP6hp51d2NwUAhCp2prWZmtoUzF/BiWgDAkB1JCoWsdMyW1iPZewAUDPmqFiEZbaoxDJ2AKgdFRULscwWEm1AAKgLiYrFWGZbt1CYt0EbEABqR+sHthUqy7dpAwJA7VieDFsKxeXbNS1jR8OFQjUOCFQsT0bAC8V5G7QBvYdVVEDwoPUDW6qct/FrzNtAfbCKCgguJCqwJeZtoKHqqsYBCDy0fmBbLN9GQ7CKCgguVFRga8lxMeqbHk+SgnqjGgcEFyoqAIIO1TggeJCoAAhKrKICggOtH3hVgbNUa3cWssICAOAVVFQ8xCZStWPvCgCAt5GoeIALce1q27tiQOdEEjoAQIPR+qknNpGqG3tXBA7acwACCRWVegrFLd09wd4VgYGqIIBAQ0WlntjSvW7sXWF/VAUBBCIqKvVUeSG+e8lmlRvDhbgG7F1hb1QFQxMLABDoSFQ8wIX45Ni7wr5oz4UeWn0IBrR+PMSW7ghUtOdCC60+BAsqKkAIoSoYOmj1IViQqAAhhvZcaKDVh2BB6wcAghCtPgQLKiq1YKY8gEBHqw/BgESlBsyUBxAsaPUh0NH6OQEz5QEAwShQb59BReUEzJQHAASbQO4UUFE5AVvlA8EvUD9ZAg0R6J0CEpUTMFMeCG65efnKzlml0XM/U3bOKuXm5VsdEuBTgX53e1o/NWCmPBCcavtkOaBzIv/OEbQCfU8dKiq1YKt8IPgE+idLoCECvVNARQVAyAj0T5ZAQwVyp4CKCoCQEeifLIHGCNROARUVACElkD9ZAqGIRAVAyGG3ViBw0PoBAAC2RaICAABsi0QFCDHsygogkDBHBQghgXy/j9oUOEu1u/CIOiTEMu8ECEIkKkCICMZdWYMx8QJQFa0fIEQE266sgX6jNQD1Q6IChIhguzN4sCVeAGpmi0TlueeeU1pamqKjo9WnTx+tW7fO6pCAoBNsu7IGW+IFoGaWz1HJzc3VbbfdphdeeEF9+vTR7NmzNXToUG3btk2tW7e2OjwgqATTrqyVidfdSzar3JiAT7wA1MxhjDEnP813+vTpo169eunZZ5+VJFVUVCglJUV//vOfNXXq1Dp/tqioSHFxcXI6nWrevLk/wgVgMwXO0qBIvIBQ4sn129KKytGjR7VhwwZNmzbNfSwsLExDhgzRp59+Wu18l8sll8vl/r6oqMgvcQKwL7bDB4KbpXNUCgsLVV5erjZt2lQ53qZNG+3bt6/a+TNnzlRcXJz7KyUlxV+hAgAAC9hiMm19TZs2TU6n0/21d+9eq0MCAAA+ZGnrJyEhQeHh4dq/f3+V4/v371dSUlK186OiohQVFeWv8AAAgMUsrahERkaqZ8+eWrlypftYRUWFVq5cqb59+1oYGQAAsAPLlyffdtttuuaaa5SVlaXevXtr9uzZOnLkiK699lqrQwMAABazPFEZOXKkDh48qPvuu0/79u1Tjx49tGzZsmoTbAEAQOixfB+VxmAfFQAAAo8n1++AWvUDAABCC4kKAACwLRIVAABgWyQqAADAtixf9dMYlfOAuecPAACBo/K6XZ/1PAGdqPz888+SxD1/AAAIQD///LPi4uLqPCeglydXVFTohx9+ULNmzeRwOLz63EVFRUpJSdHevXtDculzqI9f4j1g/KE9fon3INTHL/nuPTDG6Oeff1bbtm0VFlb3LJSArqiEhYXp1FNP9elrNG/ePGR/QSXGL/EeMP7QHr/EexDq45d88x6crJJSicm0AADAtkhUAACAbZGo1CIqKkozZsxQVFSU1aFYItTHL/EeMP7QHr/EexDq45fs8R4E9GRaAAAQ3KioAAAA2yJRAQAAtkWiAgAAbItEBQAA2FZIJyrPPfec0tLSFB0drT59+mjdunW1nrtlyxb97ne/U1pamhwOh2bPnu2/QH3Ek/HPnTtXZ599tlq2bKmWLVtqyJAhdZ4fCDwZ/5IlS5SVlaUWLVooNjZWPXr00KuvvurHaH3Dk/fg1xYvXiyHw6ERI0b4NkAf82T88+fPl8PhqPIVHR3tx2h9w9PfgZ9++kkTJ05UcnKyoqKi1LlzZ73//vt+itb7PBn/oEGDqv0OOBwOXXTRRX6M2Ls8/e8/e/ZsnXbaaYqJiVFKSopuvfVW/fLLL74N0oSoxYsXm8jISPPKK6+YLVu2mD/+8Y+mRYsWZv/+/TWev27dOnPHHXeY119/3SQlJZmnnnrKvwF7mafjHz16tHnuuefM559/brZu3WrGjRtn4uLizHfffefnyL3D0/GvXr3aLFmyxHz11Vdmx44dZvbs2SY8PNwsW7bMz5F7j6fvQaXdu3ebdu3ambPPPttceuml/gnWBzwd/7x580zz5s1NQUGB+2vfvn1+jtq7PH0PXC6XycrKMhdeeKH55JNPzO7du81HH31kNm3a5OfIvcPT8f/4449V/vtv3rzZhIeHm3nz5vk3cC/xdPyLFi0yUVFRZtGiRWb37t3mgw8+MMnJyebWW2/1aZwhm6j07t3bTJw40f19eXm5adu2rZk5c+ZJfzY1NTXgE5XGjN8YY44dO2aaNWtmFixY4KsQfaqx4zfGmLPOOsvce++9vgjPLxryHhw7dsz069fP/O1vfzPXXHNNQCcqno5/3rx5Ji4uzk/R+Yen78GcOXNMx44dzdGjR/0Vok819u/AU089ZZo1a2aKi4t9FaJPeTr+iRMnmnPOOafKsdtuu81kZ2f7NM6QbP0cPXpUGzZs0JAhQ9zHwsLCNGTIEH366acWRuYf3hh/SUmJysrK1KpVK1+F6TONHb8xRitXrtS2bds0YMAAX4bqMw19Dx588EG1bt1a119/vT/C9JmGjr+4uFipqalKSUnRpZdeqi1btvgjXJ9oyHuwdOlS9e3bVxMnTlSbNm3UtWtXPfrooyovL/dX2F7jjb+DL7/8sq688krFxsb6Kkyfacj4+/Xrpw0bNrjbQ7t27dL777+vCy+80KexBvRNCRuqsLBQ5eXlatOmTZXjbdq00ddff21RVP7jjfFPmTJFbdu2rfJLHigaOn6n06l27drJ5XIpPDxczz//vM477zxfh+sTDXkPPvnkE7388svatGmTHyL0rYaM/7TTTtMrr7yibt26yel06vHHH1e/fv20ZcsWn98c1Rca8h7s2rVLq1at0pgxY/T+++9rx44dmjBhgsrKyjRjxgx/hO01jf07uG7dOm3evFkvv/yyr0L0qYaMf/To0SosLFT//v1ljNGxY8d044036u677/ZprCGZqKBxcnJytHjxYn300UdBMZmwvpo1a6ZNmzapuLhYK1eu1G233aaOHTtq0KBBVofmcz///LPGjh2ruXPnKiEhwepwLNG3b1/17dvX/X2/fv3UpUsXvfjii3rooYcsjMx/Kioq1Lp1a7300ksKDw9Xz5499f333+svf/lLwCUqjfXyyy8rMzNTvXv3tjoUv/noo4/06KOP6vnnn1efPn20Y8cO3XzzzXrooYc0ffp0n71uSCYqCQkJCg8P1/79+6sc379/v5KSkiyKyn8aM/7HH39cOTk5WrFihbp16+bLMH2moeMPCwtTRkaGJKlHjx7aunWrZs6cGZCJiqfvwc6dO7Vnzx4NHz7cfayiokKSFBERoW3btik9Pd23QXuRN/4GNGnSRGeddZZ27NjhixB9riHvQXJyspo0aaLw8HD3sS5dumjfvn06evSoIiMjfRqzNzXmd+DIkSNavHixHnzwQV+G6FMNGf/06dM1duxYjR8/XpKUmZmpI0eO6IYbbtA999yjsDDfzCYJyTkqkZGR6tmzp1auXOk+VlFRoZUrV1b5xBSsGjr+xx57TA899JCWLVumrKwsf4TqE976719RUSGXy+WLEH3O0/fg9NNP15dffqlNmza5vy655BINHjxYmzZtUkpKij/DbzRv/A6Ul5fryy+/VHJysq/C9KmGvAfZ2dnasWOHO0mVpG+++UbJyckBlaRIjfsdeOONN+RyuXTVVVf5Okyfacj4S0pKqiUjlUmr8eVtA306VdfGFi9ebKKiosz8+fPNV199ZW644QbTokUL93LDsWPHmqlTp7rPd7lc5vPPPzeff/65SU5ONnfccYf5/PPPzfbt260aQqN4Ov6cnBwTGRlp3nzzzSrL837++WerhtAono7/0UcfNR9++KHZuXOn+eqrr8zjjz9uIiIizNy5c60aQqN5+h6cKNBX/Xg6/gceeMB88MEHZufOnWbDhg3myiuvNNHR0WbLli1WDaHRPH0P8vPzTbNmzcykSZPMtm3bzLvvvmtat25tHn74YauG0CgN/TfQv39/M3LkSH+H63Wejn/GjBmmWbNm5vXXXze7du0yH374oUlPTzdXXHGFT+MM2UTFGGOeeeYZ0759exMZGWl69+5t/vOf/7gfGzhwoLnmmmvc3+/evdtIqvY1cOBA/wfuJZ6MPzU1tcbxz5gxw/+Be4kn47/nnntMRkaGiY6ONi1btjR9+/Y1ixcvtiBq7/LkPThRoCcqxng2/ltuucV9bps2bcyFF15oNm7caEHU3uXp78DatWtNnz59TFRUlOnYsaN55JFHzLFjx/wctfd4Ov6vv/7aSDIffvihnyP1DU/GX1ZWZu6//36Tnp5uoqOjTUpKipkwYYI5fPiwT2N0GOPLeg0AAEDDheQcFQAAEBhIVAAAgG2RqAAAANsiUQEAALZFogIAAGyLRAUAANgWiQoAALAtEhUAqIdx48ZpxIgRVocBhBwSFSDAjRs3Tg6Hw/0VHx+vCy64QF988YXVoXnFr8dW+dW/f3+fvd6ePXvkcDi0adOmKsf/+te/av78+T57XQA1I1EBgsAFF1yggoICFRQUaOXKlYqIiNDFF19sdVheM2/ePPf4CgoKtHTp0hrPKysr81kMcXFxatGihc+eH0DNSFSAIBAVFaWkpCQlJSWpR48emjp1qvbu3auDBw/qnHPO0aRJk6qcf/DgQUVGRrrvnJqWlqaHHnpIo0aNUmxsrNq1a6fnnnuuys88+eSTyszMVGxsrFJSUjRhwgQVFxe7H//22281fPhwtWzZUrGxsTrzzDP1/vvvS5IOHz6sMWPGKDExUTExMerUqZPmzZtX7/G1aNHCPb6kpCS1atXKXfnIzc3VwIEDFR0drUWLFunHH3/UqFGj1K5dO51yyinKzMzU66+/XuX5Kioq9NhjjykjI0NRUVFq3769HnnkEUlShw4dJElnnXWWHA6HBg0aJKl668flcmny5Mlq3bq1oqOj1b9/f+Xl5bkf/+ijj+RwOLRy5UplZWXplFNOUb9+/bRt27Z6jxsAiQoQdIqLi7Vw4UJlZGQoPj5e48eP12uvvSaXy+U+Z+HChWrXrp3OOecc97G//OUv6t69uz7//HNNnTpVN998s5YvX+5+PCwsTE8//bS2bNmiBQsWaNWqVbrrrrvcj0+cOFEul0sff/yxvvzyS82aNUtNmzaVJE2fPl1fffWV/vWvf2nr1q2aM2eOEhISvDLeyli3bt2qoUOH6pdfflHPnj313nvvafPmzbrhhhs0duxYrVu3zv0z06ZNU05Ojjuu1157TW3atJEk93krVqxQQUGBlixZUuPr3nXXXXrrrbe0YMECbdy4URkZGRo6dKgOHTpU5bx77rlHTzzxhNavX6+IiAhdd911Xhk3EDJ8estDAD53zTXXmPDwcBMbG2tiY2ONJJOcnGw2bNhgjDGmtLTUtGzZ0uTm5rp/plu3bub+++93f5+ammouuOCCKs87cuRIM2zYsFpf94033jDx8fHu7zMzM6s8568NHz7cXHvttQ0anyQTHR3tHl9sbKx5++233Xc0nz179kmf46KLLjK33367McaYoqIiExUVZebOnVvjuZXP+/nnn1c5/uu7RRcXF5smTZqYRYsWuR8/evSoadu2rXnssceMMcasXr3aSDIrVqxwn/Pee+8ZSaa0tNSTtwAIaVRUgCAwePBgbdq0SZs2bdK6des0dOhQDRs2TN9++62io6M1duxYvfLKK5KkjRs3avPmzRo3blyV5+jbt2+177du3er+fsWKFTr33HPVrl07NWvWTGPHjtWPP/6okpISSdLkyZP18MMPKzs7WzNmzKgymfemm27S4sWL1aNHD911111au3atR+N76qmn3OPbtGmTzjvvPPdjWVlZVc4tLy/XQw89pMzMTLVq1UpNmzbVBx98oPz8fEnS1q1b5XK5dO6553oUw6/t3LlTZWVlys7Odh9r0qSJevfuXeU9k6Ru3bq5/39ycrIk6cCBAw1+bSDUkKgAQSA2NlYZGRnKyMhQr1699Le//U1HjhzR3LlzJUnjx4/X8uXL9d1332nevHk655xzlJqaWu/n37Nnjy6++GJ169ZNb731ljZs2OCew3L06FH3a+zatUtjx47Vl19+qaysLD3zzDOS5E6abr31Vv3www8699xzdccdd9T79ZOSktzjy8jIUGxsbJWx/9pf/vIX/fWvf9WUKVO0evVqbdq0SUOHDnXHGRMTU+/X9YYmTZq4/7/D4ZB0fI4MgPohUQGCkMPhUFhYmEpLSyVJmZmZysrK0ty5c/Xaa6/VOE/iP//5T7Xvu3TpIknasGGDKioq9MQTT+i3v/2tOnfurB9++KHac6SkpOjGG2/UkiVLdPvtt7sTJUlKTEzUNddco4ULF2r27Nl66aWXvDlktzVr1ujSSy/VVVddpe7du6tjx4765ptv3I936tRJMTEx7onEJ4qMjJR0vDJTm/T0dEVGRmrNmjXuY2VlZcrLy9MZZ5zhpZEAkKQIqwMA0Hgul0v79u2TdHyFzbPPPqvi4mINHz7cfc748eM1adIkxcbG6rLLLqv2HGvWrNFjjz2mESNGaPny5XrjjTf03nvvSZIyMjJUVlamZ555RsOHD9eaNWv0wgsvVPn5W265RcOGDVPnzp11+PBhrV692p3o3HffferZs6fOPPNMuVwuvfvuu+7HvK1Tp0568803tXbtWrVs2VJPPvmk9u/f704goqOjNWXKFN11112KjIxUdna2Dh48qC1btuj6669X69atFRMTo2XLlunUU09VdHS04uLiqrxGbGysbrrpJt15551q1aqV2rdvr8cee0wlJSW6/vrrfTIuIFRRUQGCwLJly5ScnKzk5GT16dNHeXl5euONN9xLayVp1KhRioiI0KhRoxQdHV3tOW6//XatX79eZ511lh5++GE9+eSTGjp0qCSpe/fuevLJJzVr1ix17dpVixYt0syZM6v8fHl5uSZOnKguXbroggsuUOfOnfX8889LOl6lmDZtmrp166YBAwYoPDxcixcv9sl7ce+99+o3v/mNhg4dqkGDBikpKanajrLTp0/X7bffrvvuu09dunTRyJEj3fNGIiIi9PTTT+vFF19U27Ztdemll9b4Ojk5Ofrd736nsWPH6je/+Y127NihDz74QC1btvTJuIBQ5TDGGKuDAOB7e/bsUXp6uvLy8vSb3/ymymNpaWm65ZZbdMstt1gTHADUgtYPEOTKysr0448/6t5779Vvf/vbakkKANgZrR8gyK1Zs0bJycnKy8urNq/Eao8++qiaNm1a49ewYcOsDg+ADdD6AWCZQ4cOVdvJtVJMTIzatWvn54gA2A2JCgAAsC1aPwAAwLZIVAAAgG2RqAAAANsiUQEAALZFogIAAGyLRAUAANgWiQoAALAtEhUAAGBb/w+CVoeCH68ZHAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQUJJREFUeJzt3Xl0FFXe//FPJyELAcKShAQMCauihGVkGRZZFEVUFJgZERVBRX8qPIgr4IYrAXWUcUNlFHwUJY8OOIwLyDoewdGwjWwihCCIYQloh5DYQHJ/fzDpISRAOunqqu68X+f0OXR1pftbRVL16Vv33nIZY4wAAAAcKMzuAgAAAE6HoAIAAByLoAIAAByLoAIAAByLoAIAAByLoAIAAByLoAIAAByLoAIAAByLoAIAAByLoAKg2h5//HG5XK5KretyufT4449bWk/fvn3Vt29fx74fgMojqAAhZPbs2XK5XN5HRESEmjZtqlGjRmnPnj12l+c4aWlpZfZXYmKiLrroIs2fP98v719YWKjHH39cK1as8Mv7ATURQQUIQU8++aTeffddvf766xo4cKDee+899enTR7/99psln/fII4+oqKjIkve2WseOHfXuu+/q3Xff1f3336+ff/5ZQ4cO1euvv17t9y4sLNQTTzxBUAGqIcLuAgD438CBA9W5c2dJ0ujRoxUfH69p06ZpwYIFuvbaa/3+eREREYqICM7DSdOmTXXjjTd6n990001q1aqVXnzxRd1xxx02VgZAokUFqBEuuugiSVJ2dnaZ5d9//73++Mc/qmHDhoqOjlbnzp21YMGCMuscO3ZMTzzxhFq3bq3o6Gg1atRIvXr10uLFi73rVNRHxePx6J577lFCQoLq1q2rq6++Wj/99FO52kaNGqW0tLRyyyt6z1mzZuniiy9WYmKioqKidP7552vGjBk+7YuzSUpKUtu2bZWTk3PG9fbv369bb71VjRs3VnR0tDp06KB33nnH+/rOnTuVkJAgSXriiSe8l5es7p8DhJrg/AoEwCc7d+6UJDVo0MC7bNOmTerZs6eaNm2qiRMnKjY2Vv/3f/+nwYMH629/+5uGDBki6URgyMjI0OjRo9W1a1fl5+dr9erVWrt2rS699NLTfubo0aP13nvv6frrr1ePHj20bNkyXXnlldXajhkzZuiCCy7Q1VdfrYiICP3jH//QXXfdpZKSEo0ZM6Za713q2LFj2r17txo1anTadYqKitS3b19t375dY8eOVfPmzfXhhx9q1KhR+vXXX3X33XcrISFBM2bM0J133qkhQ4Zo6NChkqT27dv7pU6gxjAAQsasWbOMJLNkyRJz4MABs3v3bvPRRx+ZhIQEExUVZXbv3u1d95JLLjHp6enmt99+8y4rKSkxPXr0MK1bt/Yu69Chg7nyyivP+LmTJ082Jx9O1q9fbySZu+66q8x6119/vZFkJk+e7F02cuRIk5qaetb3NMaYwsLCcusNGDDAtGjRosyyPn36mD59+pyxZmOMSU1NNZdddpk5cOCAOXDggPn3v/9trrvuOiPJ/M///M9p32/69OlGknnvvfe8y44ePWq6d+9u6tSpY/Lz840xxhw4cKDc9gLwDZd+gBDUv39/JSQkKCUlRX/84x8VGxurBQsW6JxzzpEkHTp0SMuWLdO1116rw4cPKy8vT3l5eTp48KAGDBigbdu2eUcJ1a9fX5s2bdK2bdsq/fmfffaZJGncuHFllo8fP75a2xUTE+P9t9vtVl5envr06aMdO3bI7XZX6T2/+OILJSQkKCEhQR06dNCHH36oESNGaNq0aaf9mc8++0xJSUkaPny4d1mtWrU0btw4FRQU6J///GeVagFQXsgElS+//FKDBg1SkyZN5HK59PHHHzvi87Zs2aKrr75acXFxio2NVZcuXbRr1y5LawNeffVVLV68WB999JGuuOIK5eXlKSoqyvv69u3bZYzRo48+6j1Jlz4mT54s6UQfDOnECKJff/1Vbdq0UXp6uh544AF99913Z/z8H3/8UWFhYWrZsmWZ5eeee261tmvlypXq37+/YmNjVb9+fSUkJOihhx6SpCoHlW7dumnx4sVasmSJVq1apby8PP3v//5vmVB0qh9//FGtW7dWWFjZQ2jbtm29rwPwj5Dpo3LkyBF16NBBt9xyi/dasN2fl52drV69eunWW2/VE088oXr16mnTpk2Kjo62vD7UbF27dvWO+hk8eLB69eql66+/Xlu3blWdOnVUUlIiSbr//vs1YMCACt+jVatWkqTevXsrOztbf//73/XFF1/or3/9q1588UW9/vrrGj16dLVrPd1EccXFxWWeZ2dn65JLLtF5552nF154QSkpKYqMjNRnn32mF1980btNvoqPj1f//v2r9LMArBcyQWXgwIEaOHDgaV/3eDx6+OGH9cEHH+jXX39Vu3btNG3atCrPNnm2z5Okhx9+WFdccYWeffZZ77JTv2ECVgsPD1dGRob69eunV155RRMnTlSLFi0knbhcUZmTdMOGDXXzzTfr5ptvVkFBgXr37q3HH3/8tEElNTVVJSUlys7OLtOKsnXr1nLrNmjQQL/++mu55ae2SvzjH/+Qx+PRggUL1KxZM+/y5cuXn7V+f0tNTdV3332nkpKSMq0q33//vfd16fQhDEDlhcyln7MZO3asvv76a82dO1ffffed/vSnP+nyyy/36bq7L0pKSvTpp5+qTZs2GjBggBITE9WtWzfLL0kBFenbt6+6du2q6dOn67ffflNiYqL69u2rN954Q7m5ueXWP3DggPffBw8eLPNanTp11KpVK3k8ntN+XmmIf+mll8osnz59erl1W7ZsKbfbXeZyUm5ubrnZYcPDwyVJxhjvMrfbrVmzZp22DqtcccUV2rt3rzIzM73Ljh8/rpdffll16tRRnz59JEm1a9eWpAqDGIDKCZkWlTPZtWuXZs2apV27dqlJkyaSTjR5L1y4ULNmzdKUKVP8/pn79+9XQUGBpk6dqqefflrTpk3TwoULNXToUC1fvtx7IAMC5YEHHtCf/vQnzZ49W3fccYdeffVV9erVS+np6brtttvUokUL7du3T19//bV++ukn/fvf/5YknX/++erbt68uvPBCNWzYUKtXr9ZHH32ksWPHnvazOnbsqOHDh+u1116T2+1Wjx49tHTpUm3fvr3cutddd50mTJigIUOGaNy4cSosLNSMGTPUpk0brV271rveZZddpsjISA0aNEj/7//9PxUUFGjmzJlKTEysMGxZ6fbbb9cbb7yhUaNGac2aNUpLS9NHH32klStXavr06apbt66kE51/zz//fGVmZqpNmzZq2LCh2rVrp3bt2gW0XiCo2T3syAqSzPz5873PP/nkEyPJxMbGlnlERESYa6+91hhjzJYtW4ykMz4mTJhQqc8zxpg9e/YYSWb48OFllg8aNMhcd911ft1eoFTp8OSsrKxyrxUXF5uWLVuali1bmuPHjxtjjMnOzjY33XSTSUpKMrVq1TJNmzY1V111lfnoo4+8P/f000+brl27mvr165uYmBhz3nnnmWeeecYcPXrUu05FQ4mLiorMuHHjTKNGjUxsbKwZNGiQ2b17d4XDdb/44gvTrl07ExkZac4991zz3nvvVfieCxYsMO3btzfR0dEmLS3NTJs2zbz99ttGksnJyfGu58vw5LMNvT7d++3bt8/cfPPNJj4+3kRGRpr09HQza9ascj+7atUqc+GFF5rIyEiGKgNV4DLmpHbUEOFyuTR//nwNHjxYkpSZmakbbrhBmzZt8jYfl6pTp46SkpJ09OhR7dix44zv26hRI+9Mk2f6PEk6evSoYmNjNXnyZD3yyCPe5RMmTNBXX32llStXVn0DAQCoIWrEpZ9OnTqpuLhY+/fv904lfqrIyEidd955fvvMyMhIdenSpVznwR9++MHb0Q4AAJxZyASVgoKCMte/c3JytH79ejVs2FBt2rTRDTfcoJtuukl//vOf1alTJx04cEBLly5V+/btqzSt95k+r3REwgMPPKBhw4apd+/e6tevnxYuXKh//OMf3EkVAIDKsvvak78sX768wn4lI0eONMacmN76scceM2lpaaZWrVomOTnZDBkyxHz33XeWfF6pt956y7Rq1cpER0ebDh06mI8//riaWwoAQM0Rkn1UAABAaKgx86gAAIDgQ1ABAACOFdSdaUtKSvTzzz+rbt26TFUNAECQMMbo8OHDatKkSbmbe54qqIPKzz//rJSUFLvLAAAAVbB7926dc845Z1wnqINK6TTVu3fvVr169WyuBgAAVEZ+fr5SUlK85/EzCeqgUnq5p169egQVAACCTGW6bdCZFgAAOBZBBQAAOBZBBQAAOFZQ91EBAMBJSkpKdPToUbvLsF2tWrUUHh7ul/ciqAAA4AdHjx5VTk6OSkpK7C7FEerXr6+kpKRqz3NGUAEAoJqMMcrNzVV4eLhSUlLOOolZKDPGqLCwUPv375ckJScnV+v9CCoAAFTT8ePHVVhYqCZNmqh27dp2l2O7mJgYSdL+/fuVmJhYrctANTfyAQDgJ8XFxZKkyMhImytxjtLAduzYsWq9D0EFAAA/4b5z/+WvfUFQAQAAjkVQAQAAjkVQOY1cd5FWZecp111kdykAAFhq9+7duuWWW9SkSRNFRkYqNTVVd999tw4ePCjpRD+TCRMmKD09XbGxsWrSpIluuukm/fzzz5bXRlCpQGbWLvWcukzXz/xGPacuU2bWLrtLAgDAEjt27FDnzp21bds2ffDBB9q+fbtef/11LV26VN27d9ehQ4dUWFiotWvX6tFHH9XatWs1b948bd26VVdffbXl9TE8+RS57iJNmrdBJebE8xIjPTRvo3q3SVByXIy9xQEA4GdjxoxRZGSkvvjiC++w4mbNmqlTp05q2bKlHn74Yc2YMUOLFy8u83OvvPKKunbtql27dqlZs2aW1UeLyily8o54Q0qpYmO0M6/QnoIAADVKILseHDp0SIsWLdJdd93lDSmlkpKSdMMNNygzM1PGmHI/63a75XK5VL9+fUtrpEXlFM3jYxXmUpmwEu5yKS2eCXwAANbKzNrlbdUPc0kZQ9M1rIt1rRXbtm2TMUZt27at8PW2bdvql19+0YEDB5SYmOhd/ttvv2nChAkaPny46tWrZ1l9Ei0q5STHxShjaLrC/zP+O9zl0pSh7bjsAwCw1Om6HgSiZaWiFpPTOXbsmK699loZYzRjxgwLqzqBFpUKDOvSTL3bJGhnXqHS4msTUgAAljtT1wOrzkOtWrWSy+XSli1bNGTIkHKvb9myRQ0aNFBCQoKk/4aUH3/8UcuWLbO8NUWiReW0kuNi1L1lI0IKACAgSrsenMzqrgeNGjXSpZdeqtdee01FRWVbbvbu3as5c+Zo2LBhcrlc3pCybds2LVmyRI0aNbKsrpMRVAAAcAC7uh688sor8ng8GjBggL788kvt3r1bCxcu1KWXXqqmTZvqmWee0bFjx/THP/5Rq1ev1pw5c1RcXKy9e/dq7969Onr0qKX12R5U9uzZoxtvvFGNGjVSTEyM0tPTtXr1arvLAgAg4IZ1aaavJvbTB7f9Xl9N7GdpR9pSrVu31urVq9WiRQtde+21atmypW6//Xb169dPX3/9tRo2bKg9e/ZowYIF+umnn9SxY0clJyd7H6tWrbK0Plv7qPzyyy/q2bOn+vXrp88//1wJCQnatm2bGjRoYGdZAADYJjkuJuDdDlJTUzV79uzTvp6WluZTh1t/sjWoTJs2TSkpKZo1a5Z3WfPmzW2sCAAAOImtl34WLFigzp07609/+pMSExPVqVMnzZw587Trezwe5efnl3kAAIDQZWtQ2bFjh2bMmKHWrVtr0aJFuvPOOzVu3Di98847Fa6fkZGhuLg47yMlJSXAFQMAgEByGbsuOkmKjIxU586dy3TEGTdunLKysvT111+XW9/j8cjj8Xif5+fnKyUlRW63OyBjuQEAqMhvv/2mnJwcNW/eXNHR0XaX4whn2if5+fmKi4ur1Pnb1haV5ORknX/++WWWtW3bVrt2VXy34qioKNWrV6/MAwAAp7Dxu7/j+Gtf2BpUevbsqa1bt5ZZ9sMPPyg1NdWmigAA8F14eLgkWT6nSDApLDxxM99atWpV631sHfVzzz33qEePHpoyZYquvfZaffvtt3rzzTf15ptv2lkWAAA+iYiIUO3atXXgwAHVqlVLYWG2T1NmG2OMCgsLtX//ftWvX98b4qrK1j4qkvTJJ59o0qRJ2rZtm5o3b657771Xt912W6V+1pdrXAAAWOno0aPKyclRSUmJ3aU4Qv369ZWUlCSXy1XuNV/O37YHleogqAAAnKSkpITLPzpxuedMLSm+nL+5ezIAAH4SFhbGqB8/q7kX0QAAgOMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVIJQrrtIq7LzlOsusrsUAAAsxfDkIJOZtUuT5m1QiZHCXFLG0HQN69LM7rIAALAELSpBJNdd5A0pklRipIfmbaRlBQAQsggqQSQn74g3pJQqNkY78wrtKQgAAIsRVIJI8/hYhZ1yy4Rwl0tp8bXtKQgAAIsRVIJIclyMMoamK/w/N3gKd7k0ZWg7JcfF2FwZAADWoDNtkBnWpZl6t0nQzrxCpcXXJqQAAEIaQSUIJcfFEFAAADUCl34AAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVT8KNddpFXZecp1F9ldCgAAISHC7gJCRWbWLk2at0ElRgpzSRlD0zWsSzO7ywIAIKjRouIHue4ib0iRpBIjPTRvIy0rAABUE0HFD3LyjnhDSqliY7Qzr9CeggAACBEEFT9oHh+rMFfZZeEul9Lia1frfenzAgCo6QgqfpAcF6OMoekKd51IK+Eul6YMbafkuJgqv2dm1i71nLpM18/8Rj2nLlNm1i5/lQsAQNBwGWPM2Vdzpvz8fMXFxcntdqtevXp2l6Ncd5F25hUqLb52tUJKrrtIPacuK3M5Kdzl0lcT+1XrfQEAcAJfzt+2tqg8/vjjcrlcZR7nnXeenSVVS3JcjLq3bFTtMEGfFwAATrB9ePIFF1ygJUuWeJ9HRNheku1K+7yc2qJS3T4vAAAEG9v7qERERCgpKcn7iI+Pt7sk21nR5wUAgGBke/PFtm3b1KRJE0VHR6t79+7KyMhQs2YVT5Tm8Xjk8Xi8z/Pz8wNVZsAN69JMvdsk+KXPCwAAwcrWFpVu3bpp9uzZWrhwoWbMmKGcnBxddNFFOnz4cIXrZ2RkKC4uzvtISUkJcMWB5a8+LwAABCtHjfr59ddflZqaqhdeeEG33nprudcralFJSUlxzKgfAABwdr6M+rH90s/J6tevrzZt2mj79u0Vvh4VFaWoqKgAVwUAAOxie2fakxUUFCg7O1vJycl2lwIAABzA1qBy//3365///Kd27typVatWaciQIQoPD9fw4cPtLAsAADiErZd+fvrpJw0fPlwHDx5UQkKCevXqpX/9619KSEiwsywAAOAQtgaVuXPn2vnxAADA4RzVRwUAAOBkBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYjgkqU6dOlcvl0vjx4+0uBQAAOIQjgkpWVpbeeOMNtW/f3u5SAACAg9geVAoKCnTDDTdo5syZatCggd3lAAAAB7E9qIwZM0ZXXnml+vfvb3cpAADAYSLs/PC5c+dq7dq1ysrKqtT6Ho9HHo/H+zw/P9+q0gAAgAPY1qKye/du3X333ZozZ46io6Mr9TMZGRmKi4vzPlJSUiyuEgAA2MlljDF2fPDHH3+sIUOGKDw83LusuLhYLpdLYWFh8ng8ZV6TKm5RSUlJkdvtVr169QJWOwAAqLr8/HzFxcVV6vxt26WfSy65RBs2bCiz7Oabb9Z5552nCRMmlAspkhQVFaWoqKhAlQgAAGxmW1CpW7eu2rVrV2ZZbGysGjVqVG45AAComWwf9QMAAHA6to76OdWKFSvsLgEAADgILSoAAMCxCCoAAMCxCCo1SK67SKuy85TrLrK7FAAAKsVRfVRgncysXZo0b4NKjBTmkjKGpmtYl2Z2lwUAwBnRolID5LqLvCFFkkqM9NC8jbSsAAAcj6BSA+TkHfGGlFLFxmhnXqE9BQEAUEkElRqgeXyswlxll4W7XEqLr21PQQAAVBJBpQZIjotRxtB0hbtOpJVwl0tThrZTclyMzZUBAHBmdKatIYZ1aabebRK0M69QafG1CSkAgKBAUKlBkuNiCCgAgKDCpR8AAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBUAAOBYBBXAQrnuIq3KzuMGkABQRUz4BlgkM2uX967VYS4pY2i6hnVpZndZABBUaFEBLJDrLvKGFEkqMdJD8zbSsgIAPiKoABbIyTviDSmlio3RzrxCewoCgCBFUAEs0Dw+VmGussvCXS6lxde2pyAACFIEFcACyXExyhiarnDXibQS7nJpytB23BQSAHxEZ1rAIsO6NFPvNgnamVeotPjahBQAqAKCCmCh5LgYAgoAVAOXfgAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGNVKaj89NNPKigoKLf82LFj+vLLL6tdFAAAgORjUMnNzVXXrl2Vmpqq+vXr66abbioTWA4dOqR+/fr5vUgAAFAz+RRUJk6cqLCwMH3zzTdauHChNm/erH79+umXX37xrmOM8XuRAACgZvIpqCxZskQvvfSSOnfurP79+2vlypVKTk7WxRdfrEOHDkmSXC6XJYUCAICax6eg4na71aBBA+/zqKgozZs3T2lpaerXr5/279/v9wIBAEDN5VNQadGihb777rsyyyIiIvThhx+qRYsWuuqqq/xaHAAAqNl8CioDBw7Um2++WW55aVjp2LGjv+oCAACQy/jQ+/X48eMqLCxUvXr1JEl5eXmSpPj4eO/re/bsUWpqqgWllpefn6+4uDi53W5vTQAAwNl8OX/71KISERGhkpISjRkzRvHx8WrcuLEaN26s+Ph4jR07VgUFBT6FlBkzZqh9+/aqV6+e6tWrp+7du+vzzz/3pSTAZ7nuIq3KzlOuu8juUgAAZxHhy8qHDh1S9+7dtWfPHt1www1q27atJGnz5s2aPXu2li5dqlWrVpXpcHsm55xzjqZOnarWrVvLGKN33nlH11xzjdatW6cLLrjA961BleS6i5STd0TN42OVHBdjdzmWyszapUnzNqjESGEuKWNouoZ1aWZ3WQCA0/Dp0s/48eO1dOlSLVmyRI0bNy7z2t69e3XZZZfpkksu0Ysvvljlgho2bKjnnntOt95661nX5dJP9VXnxB1sASfXXaSeU5ep5KTf+HCXS19N7BcU9QNAqLDs0s/HH3+s559/vlxIkaSkpCQ9++yzmj9/vm/V/kdxcbHmzp2rI0eOqHv37hWu4/F4lJ+fX+aBqst1F3lDiiSVGOmheRsrdUkkM2uXek5dputnfqOeU5cpM2uXxdVWX07ekTIhRZKKjdHOvEJ7CgIAnJXPU+if6ZJMu3bttHfvXp8K2LBhg+rUqaOoqCjdcccdmj9/vs4///wK183IyFBcXJz3kZKS4tNnoayqnrirE3Ds1Dw+VmGnzEcY7nIpLb62PQUBAM7Kp6ASHx+vnTt3nvb1nJwcNWzY0KcCzj33XK1fv17ffPON7rzzTo0cOVKbN2+ucN1JkybJ7XZ7H7t37/bps1BWVU/cwdoykRwXo4yh6Qr/z+zJ4S6Xpgxtx2UfAHAwn/qo3HLLLcrOztbixYsVGRlZ5jWPx6MBAwaoRYsWevvtt6tcUP/+/dWyZUu98cYbZ12XPirVl5m1Sw/N26hiY7wn7rP1UQn2vh657iLtzCtUWnztoKgXAEKNL+dvn0b9PPnkk+rcubNat26tMWPG6LzzzpMxRlu2bNFrr70mj8ejd999t1rFl5SUyOPxVOs9UHnDujRT7zYJPp24S1smTg04wXLST46LCZpaAaCm8ymonHPOOfr666911113adKkSd47JbtcLl166aV65ZVXfOo3MmnSJA0cOFDNmjXT4cOH9f7772vFihVatGiRb1uBaqnKibsqAQcAAF/5FFQkqXnz5vr888/1yy+/aNu2bZKkVq1a+dw3RZL279+vm266Sbm5uYqLi1P79u21aNEiXXrppT6/FwKPlgkAgNV86qPiNPRRAQAg+Fg2jwoAAEAgEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVQAAIBjEVRCTK67SKuy8xx/J+Oajv8nAKgcn2emhXNlZu3SpHkbVGKkMJeUMTT9rDcYRODx/wQAlUeLSojIdRd5T36SVGKkh+Zt5Bu7w/D/BAC+IaiEiJy8I96TX6liY7Qzr9CeglAh/p8AwDcElRDRPD5WYa6yy8JdLqXF17anIFSI/ycA8A1BJUQkx8UoY2i6wl0nzoLhLpemDG3H3Y0dhv8nAPANd08OMbnuIu3MK1RafG1Ofg5W0/6fct1Fysk7oubxsTViewGcmS/nb0b9hJjkuBhOBEGgJv0/McoJQHVw6QeAZRjlBKC6CCoALMMoJwDVRVABYBlGOQGoLoIKAMswyglAddGZFoClhnVppt5tEmrUKCcA/kNQAWC5mjTKCYB/cekHOAl3NQYAZ6FFBfgP5vsAAOehRQUQ830AgFMRVAAx3wcAOBVBBRDzfQCAUxFUADHfBwA4FZ1pgf9gvg8AcB6CCnAS5vsAAGfh0g8AAHAsggoAAHAsggoAAHAsggoAAHAsggoAAHAsggoAAHAsggoQ4rgjNIBgxjwqQAjjjtAAgh0tKkCI4o7QAEIBQSUI0ZSPyuCO0ABCAZd+ggxN+ais0jtCnxxWuCM0gGBDi0oQCZamfFp8nIE7QgMIBbSoBJEzNeU75eRDi4+zcEdo6+S6i5STd0TN42PZr4CFCCpBxOlN+adr8endJoEDuY24I7T/EciBwLH10k9GRoa6dOmiunXrKjExUYMHD9bWrVvtLMnRnN6UT+dN1ASBvgTLpVTUdLa2qPzzn//UmDFj1KVLFx0/flwPPfSQLrvsMm3evFmxsbF2luZYTm7Kt6PFh+Z3BFogL8HScgO7OeEYa2tQWbhwYZnns2fPVmJiotasWaPevXvbVJXzObUpv7TF56F5G1VsjOUtPhzEQ4MTDoS+CFQgt+NSarD9X8BaTjnGOqqPitvtliQ1bNjQ5kpQVYFq8aE/TGhwyoHQF4EK5IHuPB+M/xewjpOOsY4JKiUlJRo/frx69uypdu3aVbiOx+ORx+PxPs/Pzw9UefBBIFp8gmEEFM7MSQdCXwUikAfyUmow/18EWk1pdXLSMdYx86iMGTNGGzdu1Ny5c0+7TkZGhuLi4ryPlJSUAFYIJyk9iJ/MSSOgcHbB3vk6OS5G3Vs2suygHcjO88H+fxEomVm71HPqMl0/8xv1nLpMmVm77C7JMk46xjoiqIwdO1affPKJli9frnPOOee0602aNElut9v72L17dwCrhJM4fQQUzs5JB0KnGtalmb6a2E8f3PZ7fTWxn2WXYvi/OLtgmXDTX5x0jLX10o8xRv/zP/+j+fPna8WKFWrevPkZ14+KilJUVFSAqoPTOXkEFM4u0J2vg1UgLqXyf3F2TroUEihOOcbaGlTGjBmj999/X3//+99Vt25d7d27V5IUFxenmJjQ/I+Hfzl1BBQqxykHQvB/cTZW9Rlyep8XJxxjXcYYc/bVLPpwl6vC5bNmzdKoUaPO+vP5+fmKi4uT2+1WvXr1/Fwdqsrpf3gAUBWZWbvKtTpV53JcMIy0sup47sv529agUl0EFecJhj88ADiTM52cc91Ffml1ynUXqefUZeVaaL6a2M+SL3hVCRxWHs99OX87ZnhysKC14PQY4ggg2J3t5OyvSyFOn+HYScdzR4z6CRY1aWhaVTDEEUAwC+TIHqtGWp16b6iqbpOTjucElUqqaUPTqoIhjgCCWSBPzlYM/63oy3RVt6l5fKxO7UXqkmw5nnPpp5Jq4tA0XzHEEUAwC/SNVf050up0X6bn3dXdf9tU8fgXyxFUKsmOOwMHI4Y4AghWdnzZsrrPS+HRkiptU07eEZ060sYY2fLlnKBSSbQWVJ4Txt0DQFUE65etM32Z7t6ykc/b5KQv5wxP9pG/hqYBAGqGQI0WtWKeF3++38mYRwUAfMC0A7BKoOeW8veXaau+nDOPCgBUEpMU4lT+Cq52zEXi70vvTriUT1ABUGM5aVIrOIM/gyujRf2DeVQA1FhOmtQK9vP3fFnMLeUfBBWgmk6dCRLBgxMJTubv4GrFpG41EZd+gGqgf0NwY9oBnMyKIbnBOtzZSQgqQBXRvyE0cCJBqeS4GA3p1FR/W7vHu2xwpybV/p1wQofUYMalH6CK6N8QOpLjYtS9ZSNOJjVcrrtI89ftKbPs43U/W3pZl0vHZ0eLCs6I+SVOz0kzN8JZ+LsJToEepcOl48ohqOC0+CM6M/o3oCL83QSvQH754NJx5RFUUCH+iMo63Tdk+jfgZIH+u6Hlxr8q8+XDX/ucOVYqj6CCCvFH9F9n+4ZMRzmUCuTfDS031jjTlw9/7nMuHVcenWlRIeaXOMHfE0AhtAXq78aq30s6dp5QUedqf+9z5lipPFpUUCH6X5xAy1LN4K/m/ED93Vjxe0kLzZlZsc+5dFw5BBWcVqD/iJx4vZ3m2dDn7xN0IP5u/P17SZ+0s7PqWMCl47Pj0g/OKFDzS2Rm7VLPqct0/cxv1HPqMmVm7bL08yqL5tnQZtUlFKv/bvz9e8mcQGfHscA+tKjAdk7/NkfzbOgK5kt7/vy9pOWwcjgW2IOgAtsFw8mC5tnQFOwnaH/9XtInrfI4FgQeQQW2C/aTBYIXJ+j/orUATkVQge04WcBOnKD/i9YCOBFBBY7g75OFE0cQwbk4QQPORVCBY/jrZMF8EACCBV+qzo6ggpDi9BFEAFCKL1WVwzwqCCnMBwEgGHB7jsojqCCkcI8iAMGAL1WVR1BBSGH2SADBgC9VlUcfFYQchpsCcDqmZag8ggqqzMm91RluCsDp+FJVOQQVVAm91QGg+vhSdXb0UYHP6K0OAAgUggp8Rm91AECgEFTgM3qrAwAChaACnzEEGAAQKHSmRZXQWx0AEAgEFVQZvdWdw8lDxQGgOggqQJBjqDiAUEYfFTherrtIq7LzGP5cAYaKAwh1tgaVL7/8UoMGDVKTJk3kcrn08ccf21kOHCgza5d6Tl2m62d+o55Tlykza5fdJTkKQ8UBhDpbg8qRI0fUoUMHvfrqq3aWAYeiteDsGCoOINTZ2kdl4MCBGjhwoJ0lwMHO1FpAh9ETuLEZgFAXVJ1pPR6PPB6P93l+fr6N1cBqpa0FJ4cVWgvKY6g4gFAWVJ1pMzIyFBcX532kpKTYXRIsxMRylZccF6PuLRuxbwCEHJcxxpx9Neu5XC7Nnz9fgwcPPu06FbWopKSkyO12q169egGoEnbIdRf53FrAvCIA4Fz5+fmKi4ur1Pk7qC79REVFKSoqyu4yEGC+TizHvCIAEDqC6tIPcDaMFAJQXczd5Cy2tqgUFBRo+/bt3uc5OTlav369GjZsqGbN+AYM34XCSCEuWwH2oUXWeWwNKqtXr1a/fv28z++9915J0siRIzV79mybqrIGJ5/ACPaRQhwkAfucrkW2d5sEjts2sjWo9O3bVw7py2spTj6BE8zzinCQBOwVCi2yoSioOtMGI04+gVedeUXsbPniIAn4ny9/08HeIhuqCCoW4+RjD19HCkn2t3xxkAT8y9e/6WBukQ1lBBWLBfrkQ1+YqnFCyxcHScB/qvo3zUzPzkNQsVggTz52twgEM6e0fHGQBPyjOn/TVWmRhXUIKgEQiJOPE1oEgpmTLrtwkASqz0l/06geJnwLEKvvxXKmbw84O+4rBIQW/qZDBy0qIYJvD9XHZRcgtPA3HRpoUQkRfHvwD+5CDIQW/qaDHy0qIYRvD//F6CcACA0ElRBDR0xGPwFAKOHSD0IKd08GgNBCUEFIYfQTAIQWggpCSunop5Mx+gkAghdBBSGF0U8AEFroTIuQw+in6mPUFACnIKggJDH6qeoYNQVfEGphNYIKAC/uGRU6AhEgCLUIBIIKAC+n3EUa/1WVwBGIAEGoRaAQVAB4cc8oZ6lK4AhUgCDUIlAY9QPAK1hGTeW6i7QqOy+kJ/Kr6uSFgZpLiKkAECi0qAAow+mjpmpKv4iqtlgEqlWsNNQ+NG+jio1xbKhF8COoACjHqaOmalK/iKoGjkAGCKeHWoQGggqAoBHs/SJ86RhbncARyADh1FCL0EFQARA0ztbK4OQ5Papyyao6gYMAgVBBZ1oAtvKlY+yZOvtmZu1Sz6nLdP3Mb9Rz6jJlZu2yuvRKq85dvZPjYtS9ZSNCB2osWlQA2MZfrQxO77sS7JesADvRohIgNWE4JeALf7YyBGpIblUxlBeoOoJKADi5SRqwiz/DhdODQLDMTwM4EZd+LOb0JmnALv6c78OqIbn+7JzLUF6gaggqFuPaNFAxf4cLfwcBKyaWYyQO4DuCisW4dwpwev4OF/4KApVpCXXyUGgglBBUfOTrwYlppoEzc2Irw9laQoN5Gn8CFoINQcUHVT04cW0aVgvFk09Vtslf++FMLaHB3O8smAMWai6CSiVV9+DkxG+NCA2hePKpyjZVZz+cGnDO1BK6KjsvKPudBXPAQs1GUKkkOsXCiULx5FOVbarOfjhdwDldS2iw9Ds7NXxxDEOwYh6VSnL6PA2omZw+0VlVVGWbqrofzjbpXEXT1wfDnCgVzd3EMQzBiqBSScFwcELNE4onn6psU1X3Q1UDzrAuzfTVxH764Lbf66uJ/Rx1qe104UsSxzAEJS79+IBOsXCaUBxVVpVtqup+qM5lHKf2OztT+OIYhmDkMsaYs6/mTPn5+YqLi5Pb7Va9evXsLgewTa67KOROPlXZpqr8TGbWrnIBx0ktJL7KdRep59Rl5cLXVxP7hczvBoKfL+dvggqAGi/Ugl6ohS+EHl/O31z6QUCF4nwfCH5OvYxTVVziQSghqCBgQnG+D8CpqhK++CIBJyKoICBCcb4PIBACFR74IgGncsTw5FdffVVpaWmKjo5Wt27d9O2339pdEvwsFOf7AKxW0XwoVjjbfDKAnWwPKpmZmbr33ns1efJkrV27Vh06dNCAAQO0f/9+u0uDHwX7fB+57iKtys7jwI2ACWR44IsEnMz2oPLCCy/otttu080336zzzz9fr7/+umrXrq23337b7tLgR8E8YV6gvtUCJwtkeAj2LxIIbbb2UTl69KjWrFmjSZMmeZeFhYWpf//++vrrr8ut7/F45PF4vM/z8/MDUif8IxhHItC3BnYJ5D2FQnHiQIQOW4NKXl6eiouL1bhx4zLLGzdurO+//77c+hkZGXriiScCVR4sEGzDQLmRG+wS6PAQjF8kUDME1aifSZMm6d577/U+z8/PV0pKio0VIdQFy51yEZoCHR6C7YsEagZbg0p8fLzCw8O1b9++Msv37dunpKSkcutHRUUpKioqUOUBNInDdoQH1HS2BpXIyEhdeOGFWrp0qQYPHixJKikp0dKlSzV27Fg7SwO8aBIHAPvYfunn3nvv1ciRI9W5c2d17dpV06dP15EjR3TzzTfbXRrgxbdaALCH7UFl2LBhOnDggB577DHt3btXHTt21MKFC8t1sAUAADUPd08GAAAB5cv52/YJ3wAAAE6HoAIAAByLoAIAAByLoAIAAByLoAIAAByLoAIAAByLoAIAAByLoAIAAByLoAIAABzL9in0q6N0Ut38/HybKwEAAJVVet6uzOT4QR1UDh8+LElKSUmxuRIAAOCrw4cPKy4u7ozrBPW9fkpKSvTzzz+rbt26crlcPv98fn6+UlJStHv37hp7ryD2wQnsB/ZBKfYD+0BiH5Syaj8YY3T48GE1adJEYWFn7oUS1C0qYWFhOuecc6r9PvXq1avRv4gS+6AU+4F9UIr9wD6Q2AelrNgPZ2tJKUVnWgAA4FgEFQAA4Fg1OqhERUVp8uTJioqKsrsU27APTmA/sA9KsR/YBxL7oJQT9kNQd6YFAAChrUa3qAAAAGcjqAAAAMciqAAAAMciqAAAAMcK+aDy6quvKi0tTdHR0erWrZu+/fbb0667adMm/eEPf1BaWppcLpemT58euEIt5Ms+mDlzpi666CI1aNBADRo0UP/+/c+4fjDxZT/MmzdPnTt3Vv369RUbG6uOHTvq3XffDWC11vBlH5xs7ty5crlcGjx4sLUFBoAv+2D27NlyuVxlHtHR0QGs1jq+/i78+uuvGjNmjJKTkxUVFaU2bdros88+C1C11vBlH/Tt27fc74LL5dKVV14ZwIr9z9ffg+nTp+vcc89VTEyMUlJSdM899+i3336ztkgTwubOnWsiIyPN22+/bTZt2mRuu+02U79+fbNv374K1//222/N/fffbz744AOTlJRkXnzxxcAWbAFf98H1119vXn31VbNu3TqzZcsWM2rUKBMXF2d++umnAFfuX77uh+XLl5t58+aZzZs3m+3bt5vp06eb8PBws3DhwgBX7j++7oNSOTk5pmnTpuaiiy4y11xzTWCKtYiv+2DWrFmmXr16Jjc31/vYu3dvgKv2P1/3g8fjMZ07dzZXXHGF+eqrr0xOTo5ZsWKFWb9+fYAr9x9f98HBgwfL/B5s3LjRhIeHm1mzZgW2cD/ydR/MmTPHREVFmTlz5picnByzaNEik5ycbO655x5L6wzpoNK1a1czZswY7/Pi4mLTpEkTk5GRcdafTU1NDYmgUp19YIwxx48fN3Xr1jXvvPOOVSUGRHX3gzHGdOrUyTzyyCNWlBcQVdkHx48fNz169DB//etfzciRI4M+qPi6D2bNmmXi4uICVF3g+LofZsyYYVq0aGGOHj0aqBItV91jwosvvmjq1q1rCgoKrCrRcr7ugzFjxpiLL764zLJ7773X9OzZ09I6Q/bSz9GjR7VmzRr179/fuywsLEz9+/fX119/bWNlgeOPfVBYWKhjx46pYcOGVpVpueruB2OMli5dqq1bt6p3795WlmqZqu6DJ598UomJibr11lsDUaalqroPCgoKlJqaqpSUFF1zzTXatGlTIMq1TFX2w4IFC9S9e3eNGTNGjRs3Vrt27TRlyhQVFxcHqmy/8sex8a233tJ1112n2NhYq8q0VFX2QY8ePbRmzRrv5aEdO3bos88+0xVXXGFprUF9U8IzycvLU3FxsRo3blxmeePGjfX999/bVFVg+WMfTJgwQU2aNCnzyxxsqrof3G63mjZtKo/Ho/DwcL322mu69NJLrS7XElXZB1999ZXeeustrV+/PgAVWq8q++Dcc8/V22+/rfbt28vtduv5559Xjx49tGnTJr/cENUOVdkPO3bs0LJly3TDDTfos88+0/bt23XXXXfp2LFjmjx5ciDK9qvqHhu//fZbbdy4UW+99ZZVJVquKvvg+uuvV15ennr16iVjjI4fP6477rhDDz30kKW1hmxQQfVNnTpVc+fO1YoVK0KmA6Ev6tatq/Xr16ugoEBLly7VvffeqxYtWqhv3752l2a5w4cPa8SIEZo5c6bi4+PtLsc23bt3V/fu3b3Pe/ToobZt2+qNN97QU089ZWNlgVVSUqLExES9+eabCg8P14UXXqg9e/boueeeC8qgUl1vvfWW0tPT1bVrV7tLCagVK1ZoypQpeu2119StWzdt375dd999t5566ik9+uijln1uyAaV+Ph4hYeHa9++fWWW79u3T0lJSTZVFVjV2QfPP/+8pk6dqiVLlqh9+/ZWlmm5qu6HsLAwtWrVSpLUsWNHbdmyRRkZGUEZVHzdB9nZ2dq5c6cGDRrkXVZSUiJJioiI0NatW9WyZUtri/YzfxwTatWqpU6dOmn79u1WlBgQVdkPycnJqlWrlsLDw73L2rZtq7179+ro0aOKjIy0tGZ/q87vwpEjRzR37lw9+eSTVpZouarsg0cffVQjRozQ6NGjJUnp6ek6cuSIbr/9dj388MMKC7OmN0nI9lGJjIzUhRdeqKVLl3qXlZSUaOnSpWW+IYWyqu6DZ599Vk899ZQWLlyozp07B6JUS/nrd6GkpEQej8eKEi3n6z4477zztGHDBq1fv977uPrqq9WvXz+tX79eKSkpgSzfL/zxe1BcXKwNGzYoOTnZqjItV5X90LNnT23fvt0bViXphx9+UHJyctCFFKl6vwsffvihPB6PbrzxRqvLtFRV9kFhYWG5MFIaXo2Vtw20tKuuzebOnWuioqLM7NmzzebNm83tt99u6tev7x1eOGLECDNx4kTv+h6Px6xbt86sW7fOJCcnm/vvv9+sW7fObNu2za5NqDZf98HUqVNNZGSk+eijj8oMxTt8+LBdm+AXvu6HKVOmmC+++MJkZ2ebzZs3m+eff95ERESYmTNn2rUJ1ebrPjhVKIz68XUfPPHEE2bRokUmOzvbrFmzxlx33XUmOjrabNq0ya5N8Atf98OuXbtM3bp1zdixY83WrVvNJ598YhITE83TTz9t1yZUW1X/Hnr16mWGDRsW6HIt4es+mDx5sqlbt6754IMPzI4dO8wXX3xhWrZsaa699lpL6wzpoGKMMS+//LJp1qyZiYyMNF27djX/+te/vK/16dPHjBw50vs8JyfHSCr36NOnT+AL9yNf9kFqamqF+2Dy5MmBL9zPfNkPDz/8sGnVqpWJjo42DRo0MN27dzdz5861oWr/8mUfnCoUgooxvu2D8ePHe9dt3LixueKKK8zatWttqNr/fP1dWLVqlenWrZuJiooyLVq0MM8884w5fvx4gKv2L1/3wffff28kmS+++CLAlVrHl31w7Ngx8/jjj5uWLVua6Ohok5KSYu666y7zyy+/WFqjyxgr22sAAACqLmT7qAAAgOBHUAEAAI5FUAEAAI5FUAEAAI5FUAEAAI5FUAEAAI5FUAEAAI5FUAGAShg1apQGDx5sdxlAjUNQAYLcqFGj5HK5vI9GjRrp8ssv13fffWd3aX5x8raVPnr16mXZ5+3cuVMul0vr168vs/wvf/mLZs+ebdnnAqgYQQUIAZdffrlyc3OVm5urpUuXKiIiQldddZXdZfnNrFmzvNuXm5urBQsWVLjesWPHLKshLi5O9evXt+z9AVSMoAKEgKioKCUlJSkpKUkdO3bUxIkTtXv3bh04cEAXX3yxxo4dW2b9AwcOKDIy0nvn1LS0ND311FMaPny4YmNj1bRpU7366qtlfuaFF15Qenq6YmNjlZKSorvuuksFBQXe13/88UcNGjRIDRo0UGxsrC644AJ99tlnkqRffvlFN9xwgxISEhQTE6PWrVtr1qxZld6++vXre7cvKSlJDRs29LZ8ZGZmqk+fPoqOjtacOXN08OBBDR8+XE2bNlXt2rWVnp6uDz74oMz7lZSU6Nlnn1WrVq0UFRWlZs2a6ZlnnpEkNW/eXJLUqVMnuVwu9e3bV1L5Sz8ej0fjxo1TYmKioqOj1atXL2VlZXlfX7FihVwul5YuXarOnTurdu3a6tGjh7Zu3Vrp7QZAUAFCTkFBgd577z21atVKjRo10ujRo/X+++/L4/F413nvvffUtGlTXXzxxd5lzz33nDp06KB169Zp4sSJuvvuu7V48WLv62FhYXrppZe0adMmvfPOO1q2bJkefPBB7+tjxoyRx+PRl19+qQ0bNmjatGmqU6eOJOnRRx/V5s2b9fnnn2vLli2aMWOG4uPj/bK9pbVu2bJFAwYM0G+//aYLL7xQn376qTZu3Kjbb79dI0aM0Lfffuv9mUmTJmnq1Kneut5//301btxYkrzrLVmyRLm5uZo3b16Fn/vggw/qb3/7m9555x2tXbtWrVq10oABA3To0KEy6z388MP685//rNWrVysiIkK33HKLX7YbqDEsveUhAMuNHDnShIeHm9jYWBMbG2skmeTkZLNmzRpjjDFFRUWmQYMGJjMz0/sz7du3N48//rj3eWpqqrn88svLvO+wYcPMwIEDT/u5H374oWnUqJH3eXp6epn3PNmgQYPMzTffXKXtk2Sio6O92xcbG2vmz5/vvdv59OnTz/oeV155pbnvvvuMMcbk5+ebqKgoM3PmzArXLX3fdevWlVl+8t2jCwoKTK1atcycOXO8rx89etQ0adLEPPvss8YYY5YvX24kmSVLlnjX+fTTT40kU1RU5MsuAGo0WlSAENCvXz+tX79e69ev17fffqsBAwZo4MCB+vHHHxUdHa0RI0bo7bffliStXbtWGzdu1KhRo8q8R/fu3cs937Jli/f5kiVLdMkll6hp06aqW7euRowYoYMHD6qwsFCSNG7cOD399NPq2bOnJk+eXKYz75133qm5c+eqY8eOevDBB7Vq1Sqftu/FF1/0bt/69et16aWXel/r3LlzmXWLi4v11FNPKT09XQ0bNlSdOnW0aNEi7dq1S5K0ZcsWeTweXXLJJT7VcLLs7GwdO3ZMPXv29C6rVauWunbtWmafSVL79u29/05OTpYk7d+/v8qfDdQ0BBUgBMTGxqpVq1Zq1aqVunTpor/+9a86cuSIZs6cKUkaPXq0Fi9erJ9++kmzZs3SxRdfrNTU1Eq//86dO3XVVVepffv2+tvf/qY1a9Z4+7AcPXrU+xk7duzQiBEjtGHDBnXu3Fkvv/yyJHlD0z333KOff/5Zl1xyie6///5Kf35SUpJ3+1q1aqXY2Ngy236y5557Tn/5y180YcIELV++XOvXr9eAAQO8dcbExFT6c/2hVq1a3n+7XC5JJ/rIAKgcggoQglwul8LCwlRUVCRJSk9PV+fOnTVz5ky9//77FfaT+Ne//lXuedu2bSVJa9asUUlJif785z/r97//vdq0aaOff/653HukpKTojjvu0Lx583Tfffd5g5IkJSQkaOTIkXrvvfc0ffp0vfnmm/7cZK+VK1fqmmuu0Y033qgOHTqoRYsW+uGHH7yvt27dWjExMd6OxKeKjIyUdKJl5nRatmypyMhIrVy50rvs2LFjysrK0vnnn++nLQEgSRF2FwCg+jwej/bu3SvpxAibV155RQUFBRo0aJB3ndGjR2vs2LGKjY3VkCFDyr3HypUr9eyzz2rw4MFavHixPvzwQ3366aeSpFatWunYsWN6+eWXNWjQIK1cuVKvv/56mZ8fP368Bg4cqDZt2uiXX37R8uXLvUHnscce04UXXqgLLrhAHo9Hn3zyifc1f2vdurU++ugjrVq1Sg0aNNALL7ygffv2eQNEdHS0JkyYoAcffFCRkZHq2bOnDhw4oE2bNunWW29VYmKiYmJitHDhQp1zzjmKjo5WXFxcmc+IjY3VnXfeqQceeEANGzZUs2bN9Oyzz6qwsFC33nqrJdsF1FS0qAAhYOHChUpOTlZycrK6deumrKwsffjhh96htZI0fPhwRUREaPjw4YqOji73Hvfdd59Wr16tTp066emnn9YLL7ygAQMGSJI6dOigF154QdOmTVO7du00Z84cZWRklPn54uJijRkzRm3bttXll1+uNm3a6LXXXpN0opVi0qRJat++vXr37q3w8HDNnTvXkn3xyCOP6He/+50GDBigvn37KikpqdyMso8++qjuu+8+PfbYY2rbtq2GDRvm7TcSERGhl156SW+88YaaNGmia665psLPmTp1qv7whz9oxIgR+t3vfqft27dr0aJFatCggSXbBdRULmOMsbsIANbbuXOnWrZsqaysLP3ud78r81paWprGjx+v8ePH21McAJwGl36AEHfs2DEdPHhQjzzyiH7/+9+XCykA4GRc+gFC3MqVK5WcnKysrKxy/UrsNmXKFNWpU6fCx8CBA+0uD4ADcOkHgG0OHTpUbibXUjExMWratGmAKwLgNAQVAADgWFz6AQAAjkVQAQAAjkVQAQAAjkVQAQAAjkVQAQAAjkVQAQAAjkVQAQAAjkVQAQAAjvX/AUGKPkmfkGgOAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_51.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQaElEQVR4nO3deVxU9f4/8NeA7Mi4sEooiiuJuCMuLIVxs0zTrpSW5k1b3bJFNDe0RLul3NTU603RLMWM1NKfSxgm6jcNl9TUEiHMAEVzkEUx5vP7w8tcR9YZZubMOfN6Ph7zeDCfOefM+8Ms5z2f81lUQggBIiIiIoWwkzoAIiIiIlNickNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhRmNwQERGRojC5ISIiIkVhckNEkpg7dy5UKlW9tlWpVJg7d65Z44mKikJUVJTVHo+I6o/JDZGNS05Ohkql0t0aNWoEf39/PP/887h8+bLU4VmdwMBAvf+Xt7c3BgwYgK+++sokxy8tLcXcuXORnp5ukuMR2SImN0QEAJg3bx4+/fRTrFy5Eo8++ig2bNiAyMhI3Lp1yyzPN3PmTJSVlZnl2ObWtWtXfPrpp/j000/x5ptv4o8//sCwYcOwcuXKBh+7tLQUCQkJTG6IGqCR1AEQkXV49NFH0bNnTwDAuHHj4OnpiUWLFmH79u0YMWKEyZ+vUaNGaNRInl9B/v7+ePbZZ3X3R48ejbZt22LJkiV4+eWXJYyMiAC23BBRDQYMGAAAyMrK0is/d+4cnnrqKTRr1gzOzs7o2bMntm/frrfNnTt3kJCQgHbt2sHZ2RnNmzdH//79sXfvXt021fW5uX37Nl5//XV4eXmhcePGeOKJJ/D7779Xie35559HYGBglfLqjrl27Vo89NBD8Pb2hpOTE4KDg7FixQqD/hd18fX1RadOnZCdnV3rdleuXMELL7wAHx8fODs7IzQ0FOvWrdM9npOTAy8vLwBAQkKC7tKXufsbESmNPH82EZHZ5eTkAACaNm2qKztz5gz69esHf39/xMfHw83NDZs3b8bQoUPx5Zdf4sknnwRwN8lITEzEuHHj0Lt3bxQVFeHHH3/EsWPHMHDgwBqfc9y4cdiwYQNGjhyJvn37Yt++fXjssccaVI8VK1bgwQcfxBNPPIFGjRrh66+/xquvvgqtVovXXnutQceudOfOHVy6dAnNmzevcZuysjJERUXhwoULmDBhAlq3bo0vvvgCzz//PG7cuIHJkyfDy8sLK1aswCuvvIInn3wSw4YNAwB06dLFJHES2QxBRDZt7dq1AoD49ttvxdWrV8WlS5fEli1bhJeXl3BychKXLl3Sbfvwww+LkJAQcevWLV2ZVqsVffv2Fe3atdOVhYaGiscee6zW550zZ4649yvoxIkTAoB49dVX9bYbOXKkACDmzJmjKxszZoxo1apVnccUQojS0tIq28XGxoo2bdrolUVGRorIyMhaYxZCiFatWolHHnlEXL16VVy9elWcPHlSPP300wKAmDhxYo3HS0pKEgDEhg0bdGXl5eUiPDxcuLu7i6KiIiGEEFevXq1SXyIyDC9LEREAICYmBl5eXggICMBTTz0FNzc3bN++HQ888AAA4Pr169i3bx9GjBiBmzdvorCwEIWFhbh27RpiY2Px66+/6kZXNWnSBGfOnMGvv/5a7+ffuXMnAGDSpEl65VOmTGlQvVxcXHR/azQaFBYWIjIyEhcvXoRGozHqmHv27IGXlxe8vLwQGhqKL774As899xwWLVpU4z47d+6Er68vnnnmGV2Zg4MDJk2ahOLiYuzfv9+oWIioKptObr7//nsMHjwYLVq0gEqlwtatW836fDdv3sSUKVPQqlUruLi4oG/fvjh69KhZn5OovpYvX469e/diy5YtGDRoEAoLC+Hk5KR7/MKFCxBCYNasWboTe+Vtzpw5AO72KQHujry6ceMG2rdvj5CQELz11lv46aefan3+3377DXZ2dggKCtIr79ChQ4PqdfDgQcTExMDNzQ1NmjSBl5cXZsyYAQBGJzdhYWHYu3cvvv32Wxw6dAiFhYVYv369XiJ1v99++w3t2rWDnZ3+126nTp10jxORadh0n5uSkhKEhobiH//4h+7atjmNGzcOp0+fxqeffooWLVpgw4YNiImJwc8//wx/f3+zPz9RbXr37q0bLTV06FD0798fI0eOxPnz5+Hu7g6tVgsAePPNNxEbG1vtMdq2bQsAiIiIQFZWFrZt24Y9e/bgP//5D5YsWYKVK1di3LhxDY61psn/Kioq9O5nZWXh4YcfRseOHbF48WIEBATA0dERO3fuxJIlS3R1MpSnpydiYmKM2peIzM+mk5tHH30Ujz76aI2P3759G++88w42btyIGzduoHPnzli0aJFRs46WlZXhyy+/xLZt2xAREQHgbqfLr7/+GitWrMC7775rbDWITM7e3h6JiYmIjo7GsmXLEB8fjzZt2gC4eymlPif2Zs2aYezYsRg7diyKi4sRERGBuXPn1pjctGrVClqtFllZWXqtNefPn6+ybdOmTXHjxo0q5fe3fnz99de4ffs2tm/fjpYtW+rKv/vuuzrjN7VWrVrhp59+glar1Wu9OXfunO5xoObEjYjqz6YvS9VlwoQJOHz4MDZt2oSffvoJf//73/G3v/3NoH4Elf766y9UVFTA2dlZr9zFxQUZGRmmCpnIZKKiotC7d28kJSXh1q1b8Pb2RlRUFFatWoW8vLwq21+9elX397Vr1/Qec3d3R9u2bXH79u0an6/yh8ZHH32kV56UlFRl26CgIGg0Gr1LXXl5eVVmCba3twcACCF0ZRqNBmvXrq0xDnMZNGgQ8vPzkZKSoiv766+/sHTpUri7uyMyMhIA4OrqCgDVJm9EVD823XJTm9zcXKxduxa5ublo0aIFgLvN8bt27cLatWuxYMECg47XuHFjhIeHY/78+ejUqRN8fHywceNGHD58WNeUT2Rt3nrrLfz9739HcnIyXn75ZSxfvhz9+/dHSEgIxo8fjzZt2qCgoACHDx/G77//jpMnTwIAgoODERUVhR49eqBZs2b48ccfsWXLFkyYMKHG5+ratSueeeYZfPzxx9BoNOjbty/S0tJw4cKFKts+/fTTmDZtGp588klMmjQJpaWlWLFiBdq3b49jx47ptnvkkUfg6OiIwYMH46WXXkJxcTFWr14Nb2/vahM0c3rxxRexatUqPP/888jMzERgYCC2bNmCgwcPIikpCY0bNwZw9wdPcHAwUlJS0L59ezRr1gydO3dG586dLRovkaxJPVzLWgAQX331le7+N998IwAINzc3vVujRo3EiBEjhBBCnD17VgCo9TZt2jTdMS9cuCAiIiIEAGFvby969eolRo0aJTp27Gjp6hLpVA4FP3r0aJXHKioqRFBQkAgKChJ//fWXEEKIrKwsMXr0aOHr6yscHByEv7+/ePzxx8WWLVt0+7377ruid+/eokmTJsLFxUV07NhRvPfee6K8vFy3TXXDtsvKysSkSZNE8+bNhZubmxg8eLC4dOlStUOj9+zZIzp37iwcHR1Fhw4dxIYNG6o95vbt20WXLl2Es7OzCAwMFIsWLRJr1qwRAER2drZuO0OGgtc1zL2m4xUUFIixY8cKT09P4ejoKEJCQsTatWur7Hvo0CHRo0cP4ejoyGHhREZQCXFPe60NU6lU+OqrrzB06FAAQEpKCkaNGoUzZ87omrYrubu7w9fXF+Xl5bh48WKtx23evLluxtFKJSUlKCoqgp+fH+Li4lBcXIwdO3aYtD5ERES2ipelatCtWzdUVFTgypUrumno7+fo6IiOHTsafGw3Nze4ubnhzz//xO7du/H+++83NFwiIiL6L5tOboqLi/Wu52dnZ+PEiRNo1qwZ2rdvj1GjRmH06NH48MMP0a1bN1y9ehVpaWno0qWLUVPC7969G0IIdOjQARcuXMBbb72Fjh07YuzYsaasFhERkU2z6ctS6enpiI6OrlI+ZswYJCcn486dO3j33Xexfv16XL58GZ6enujTpw8SEhIQEhJi8PNt3rwZ06dPx++//45mzZph+PDheO+996BWq01RHSIiIoKNJzdERESkPJznhoiIiBSFyQ0REREpis11KNZqtfjjjz/QuHFjTnNOREQkE0II3Lx5Ey1atKiyAO39bC65+eOPPxAQECB1GERERGSES5cu4YEHHqh1G5tLbiqnOL906RI8PDwkjoaIiIjqo6ioCAEBAbrzeG1sLrmpvBTl4eHB5IaIiEhm6tOlhB2KiYiISFGY3BAREZGiMLkhIiIiRbG5Pjf1VVFRgTt37kgdBknMwcGhyqrwRERk3Zjc3EcIgfz8fNy4cUPqUMhKNGnSBL6+vpwXiYhIJpjc3KcysfH29oarqytPaDZMCIHS0lJcuXIFAODn5ydxREREVB9Mbu5RUVGhS2yaN28udThkBVxcXAAAV65cgbe3Ny9RERHJADsU36Oyj42rq6vEkZA1qXw/sA8WEZE8MLmpBi9F0b34fiAikhcmN0RERKQoTG5IlgIDA5GUlCR1GEREZIWY3CjI1atX8corr6Bly5ZwcnKCr68vYmNjcfDgQQB3L69s3bpV2iDrKSoqCiqVqsrtr7/+kjo0smF5mjIcyipEnqZM6lCIqBYcLaUgw4cPR3l5OdatW4c2bdqgoKAAaWlpuHbtmtShGWX8+PGYN2+eXlmjRnzLkjRSjuZieuopaAVgpwISh4UgrldLqcMymzxNGbILS9Da0w1+ahepwyEyCFtuFOLGjRs4cOAAFi1ahOjoaLRq1Qq9e/fG9OnT8cQTTyAwMBAA8OSTT0KlUunuA8C2bdvQvXt3ODs7o02bNkhISNBrIVm8eDFCQkLg5uaGgIAAvPrqqyguLtY9npycjCZNmuCbb75Bhw4d4OrqiqeeegqlpaVYt24dAgMD0bRpU0yaNAkVFRX1rpOrqyt8fX31bjXJzc3FkCFD4O7uDg8PD4wYMQIFBQUAAI1GA3t7e/z4448AAK1Wi2bNmqFPnz66/Tds2ICAgIB6x0a2JU9TpktsAEArgBmppxXbgpNyNBf9Fu7DyNU/oN/CfUg5mit1SEQGYXJjRpZswnZ3d4e7uzu2bt2K27dvV3n86NGjAIC1a9ciLy9Pd//AgQMYPXo0Jk+ejJ9//hmrVq1CcnIy3nvvPd2+dnZ2+Oijj3DmzBmsW7cO+/btw9tvv613/NLSUnz00UfYtGkTdu3ahfT0dDz55JPYuXMndu7ciU8//RSrVq3Cli1bTF53rVaLIUOG4Pr169i/fz/27t2LixcvIi4uDgCgVqvRtWtXpKenAwBOnToFlUqF48eP65K0/fv3IzIy0uSxkTJkF5boEptKFUIgp7BUmoDMyNYSOVImJjdmYulfPo0aNUJycjLWrVuHJk2aoF+/fpgxYwZ++uknAICXlxeA/y0lUHk/ISEB8fHxGDNmDNq0aYOBAwdi/vz5WLVqle7YU6ZMQXR0NAIDA/HQQw/h3XffxebNm/We/86dO1ixYgW6deuGiIgIPPXUU8jIyMAnn3yC4OBgPP7444iOjsZ3331X7zp9/PHHuqTN3d0db7zxRrXbpaWl4dSpU/j888/Ro0cPhIWFYf369di/f78uiYuKitIlN+np6Rg4cCA6deqEjIwMXRmTG6pJa0832N03I4C9SoVAT+XNiaWURI79o2wbkxszkOqXz/Dhw/HHH39g+/bt+Nvf/ob09HR0794dycnJNe5z8uRJzJs3Ty+JGD9+PPLy8lBaevfL7Ntvv8XDDz8Mf39/NG7cGM899xyuXbumexy4ewkpKChId9/HxweBgYFwd3fXK6tcyqA+Ro0ahRMnTuhu06dPr3a7s2fPIiAgQO+yUnBwMJo0aYKzZ88CACIjI5GRkYGKigrs378fUVFRuoTnjz/+wIULFxAVFVXv2Mi2+KldkDgsBPb/nfPIXqXCgmGdFdkXRQmJHC+rEXtnmkFtv3zM/WXo7OyMgQMHYuDAgZg1axbGjRuHOXPm4Pnnn692++LiYiQkJGDYsGHVHisnJwePP/44XnnlFbz33nto1qwZMjIy8MILL6C8vFw3e6+Dg4PeviqVqtoyrVZb77qo1Wq0bdu23tvXJiIiAjdv3sSxY8fw/fffY8GCBfD19cXChQsRGhqKFi1aoF27diZ5LlKmuF4tEdHeCzmFpQj0dFVkYgP8L5GbkXoaFULILpGr6cdlRHsv2dSBGo7JjRlU/vK5N8GR6pdPcHCwbvi3g4NDlQ693bt3x/nz52tMIjIzM6HVavHhhx/Czu5uQ9/9l6Sk1qlTJ1y6dAmXLl3Std78/PPPuHHjBoKDgwHcvRzXpUsXLFu2DA4ODujYsSO8vb0RFxeHb775hpekqF781C42cYKUcyIn5Y9Lsh68LGUGUjRhX7t2DQ899BA2bNiAn376CdnZ2fjiiy/w/vvvY8iQIQDuTnyXlpaG/Px8/PnnnwCA2bNnY/369UhISMCZM2dw9uxZbNq0CTNnzgQAtG3bFnfu3MHSpUtx8eJFfPrpp1i5cqXZ6mGMmJgYhISEYNSoUTh27BiOHDmC0aNHIzIyEj179tRtFxUVhc8++0yXyDRr1gydOnVCSkoKkxui+/ipXRAe1Fx2CYESLqtRwzG5MZO4Xi2RER+NjeP7ICM+2uzzYbi7uyMsLAxLlixBREQEOnfujFmzZmH8+PFYtmwZAODDDz/E3r17ERAQgG7dugEAYmNj8c0332DPnj3o1asX+vTpgyVLlqBVq1YAgNDQUCxevBiLFi1C586d8dlnnyExMdGsdTGUSqXCtm3b0LRpU0RERCAmJgZt2rRBSkqK3naRkZGoqKjQ61sTFRVVpYyI5MuW+kdRzVRCCFH3ZspRVFQEtVoNjUYDDw8Pvcdu3bqF7OxstG7dGs7OzhJFSNaG7wsi+cnTlMnyshrVrLbz9/3Y54aIiBTHVvpHUfV4WYos7sCBA3pDz++/ERERNQRbbsjievbsiRMnTkgdBhERKRSTG7I4FxcXk81fQ0REdD9elqqGjfWxpjrw/WBanBafiMyNLTf3qJxRt7S0FC4u7IhGd1UuM3H/jMtkuJSjubrZY+1UQOKwELNPk0BEtofJzT3s7e3RpEkT3fpHrq6uUKlUdexFSiWEQGlpKa5cuYImTZrA3t5e6pBkjdPiE5GlMLm5j6+vLwAYtMAjKVvlSurUMJwWn4gshcnNfVQqFfz8/ODt7Y07d+5IHQ5JzMHBgS02JmJNa64RkbIxuamBvb09T2pEJiT31aaJSD6Y3BCRxch5tWkikg8mN0RkUZwWn4jMjfPcEBERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyQ0REREpiqTJzffff4/BgwejRYsWUKlU2Lp1a537pKeno3v37nByckLbtm2RnJxs9jiJiIhIPiRNbkpKShAaGorly5fXa/vs7Gw89thjiI6OxokTJzBlyhSMGzcOu3fvNnOkREREJBeSznPz6KOP4tFHH6339itXrkTr1q3x4YcfAgA6deqEjIwMLFmyBLGxseYKk4iIiGREVn1uDh8+jJiYGL2y2NhYHD58uMZ9bt++jaKiIr0bERERKZeskpv8/Hz4+Pjolfn4+KCoqAhlZWXV7pOYmAi1Wq27BQQEWCJUIiIikoiskhtjTJ8+HRqNRne7dOmS1CERERGRGclqbSlfX18UFBTolRUUFMDDwwMuLtWvVePk5AQnJydLhEdERERWQFYtN+Hh4UhLS9Mr27t3L8LDwyWKiIiIiKyNpMlNcXExTpw4gRMnTgC4O9T7xIkTyM3NBXD3ktLo0aN127/88su4ePEi3n77bZw7dw4ff/wxNm/ejNdff12K8ImIiMgKSZrc/Pjjj+jWrRu6desGAJg6dSq6deuG2bNnAwDy8vJ0iQ4AtG7dGjt27MDevXsRGhqKDz/8EP/5z384DJyIiIh0VEIIIXUQllRUVAS1Wg2NRgMPDw+pwyEiIqJ6MOT8Las+N0RERER1YXJDREREisLkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDRERWL09ThkNZhcjTlEkdCslAI6kDICIiqk3K0VxMTz0FrQDsVEDisBDE9WopdVhkxdhyQ0REVitPU6ZLbABAK4AZqafZgkO1YnJDRERWK7uwRJfYVKoQAjmFpdIERLLA5IaIiKxWa0832Kn0y+xVKgR6ukoTEMkCkxsiIrJafmoXJA4Lgb3qboZjr1JhwbDO8FO7SBwZWTN2KCYiIqsW16slItp7IaewFIGerkxsqE5MboiIyOr5qV2Y1FC98bIUERERKQqTGyIiIlIUJjdERESkKExuiIiISFGY3BAREZGiMLkhIiIiRWFyQ0RERIrC5IaIiIgUhckNERERKQqTGyIiIlIUJjdERESkKExuiIiISFGY3BAREZGiMLkhIiIiRWFyQ0RERIrC5IaIiIgUhckNERERKQqTGyIiIlIUJjdERERWJE9ThkNZhcjTlEkdimw1kjoAIiKp5GnKkF1YgtaebvBTu0gdDhFSjuZieuopaAVgpwISh4UgrldLqcOSHSY3RGSTeBIha5OnKdO9JwFAK4AZqacR0d6LybeBeFmKiGxOTScRXgYgKWUXlujek5UqhEBOYak0AckYkxsisjk8iZA1au3pBjuVfpm9SoVAT1dpApIxJjdEZHN4EiFr5Kd2QeKwENir7r457VUqLBjWmZekjMA+N0RkcypPIjNST6NCCJ5EyGrE9WqJiPZeyCksRaCnK9+TRrKKlpvly5cjMDAQzs7OCAsLw5EjR2rdPikpCR06dICLiwsCAgLw+uuv49atWxaKloiUIK5XS2TER2Pj+D7IiI9mZ2KyGn5qF4QHNWdi0wCSt9ykpKRg6tSpWLlyJcLCwpCUlITY2FicP38e3t7eVbb//PPPER8fjzVr1qBv37745Zdf8Pzzz0OlUmHx4sUS1ICI5MpP7cITCJECSd5ys3jxYowfPx5jx45FcHAwVq5cCVdXV6xZs6ba7Q8dOoR+/fph5MiRCAwMxCOPPIJnnnmmztYeIiIisg2SJjfl5eXIzMxETEyMrszOzg4xMTE4fPhwtfv07dsXmZmZumTm4sWL2LlzJwYNGmSRmImIiMi6SXpZqrCwEBUVFfDx8dEr9/Hxwblz56rdZ+TIkSgsLET//v0hhMBff/2Fl19+GTNmzKh2+9u3b+P27du6+0VFRaarABEREVkdyS9LGSo9PR0LFizAxx9/jGPHjiE1NRU7duzA/Pnzq90+MTERarVadwsICLBwxER0L66bQ0TmphJCiLo3M4/y8nK4urpiy5YtGDp0qK58zJgxuHHjBrZt21ZlnwEDBqBPnz745z//qSvbsGEDXnzxRRQXF8POTj9fq67lJiAgABqNBh4eHqavFBHViEseEJGxioqKoFar63X+lrTlxtHRET169EBaWpquTKvVIi0tDeHh4dXuU1paWiWBsbe3BwBUl6c5OTnBw8ND70ZElsclD4jIUiQfCj516lSMGTMGPXv2RO/evZGUlISSkhKMHTsWADB69Gj4+/sjMTERADB48GAsXrwY3bp1Q1hYGC5cuIBZs2Zh8ODBuiSHiKxPbUsecDg2EZmS5MlNXFwcrl69itmzZyM/Px9du3bFrl27dJ2Mc3Nz9VpqZs6cCZVKhZkzZ+Ly5cvw8vLC4MGD8d5770lVBSKqh8olD+5NcLjkARGZg6R9bqRgyDU7IjKtlKO5VZY8YJ8bIqoPQ87fkrfcEJHt4Lo5RGQJTG6IyKK45AERmZvs5rkhIiIiqg2TGyIiIlIUJjdE1CCccZiobvycWBb73BCR0TjjMFHd+DmxPLbcEJFROOMwUd34OZEGkxsiMkptMw4T0V38nEiDyQ0RGaVyxuF7ccZhIn38nEiDyQ0RGcVP7YLEYSGwV9395q6ccZhz2BD9Dz8n0uDyC0TUIHmaMs44TFQHfk4ajssvEJHFcMZhorrxc2JZvCxFREREisLkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyQ0REREpCpMbIiIiUhQmN0RERKQoTG6IiIhIUZjcEBERkaIwuSGrlKcpw6GsQuRpyqQOhYiIZKaR1AEQ3S/laC6mp56CVgB2KiBxWAjierWUOiwiIpIJttyQVcnTlOkSGwDQCmBG6mm24FC9sMWPiAC23JCVyS4s0SU2lSqEQE5hKfzULtIERbLAFj8iqsSWG7IqrT3dYKfSL7NXqRDo6SpNQCQLbPEjqj9baOE0Krlp2bIlRo8ejU8++QRZWVmmjolsmJ/aBYnDQmCvupvh2KtUWDCsM1ttqFa1tfgR0f+kHM1Fv4X7MHL1D+i3cB9SjuZKHZJZqIQQou7N9G3YsAHff/890tPTceHCBfj7+yMyMhKRkZGIiopCu3btzBGrSRQVFUGtVkOj0cDDw0PqcKgGeZoy5BSWItDTlYkN1SlPU4Z+C/fpJTj2KhUy4qP5/iH6L7l/Tgw5fxvV5+bZZ5/Fs88+CwDIy8vD/v378c033+DVV1+FVqtFRUWFMYcl0vFTu8jiw0bWobLFb0bqaVQIwRY/omrYUp9GozsUl5aWIiMjA+np6fjuu+9w/PhxdO7cGVFRUSYMj4iofuJ6tUREey+2+BHVoLJP4/0tN0rs02hUctO3b18cP34cnTp1QlRUFOLj4xEREYGmTZuaOj4ionpjix9RzWyphdOo5ObcuXNwc3NDx44d0bFjR3Tq1ImJDRERkZWzlRZOo0ZLXbt2Dfv27UOfPn2we/du9OvXD/7+/hg5ciRWr15t6hiJiIjIRPzULggPaq7YxAYwcrTUvYQQyMzMxLJly/DZZ59ZfYdijpYiIiKSH7OPljp27BjS09ORnp6OjIwM3Lx5EyEhIZg4cSIiIyONCpqIiIjIFIxKbnr37o1u3bohMjIS48ePR0REBNRqtaljIyIiIjKYUcnN9evXeUmHiIiIrJJRyU1lYpOZmYmzZ88CAIKDg9G9e3fTRUZERERkBKOSmytXriAuLg779+9HkyZNAAA3btxAdHQ0Nm3aBC8vL1PGSERERFRvRg0FnzhxIoqLi3HmzBlcv34d169fx+nTp1FUVIRJkyaZOkYiIiKiejNqKLharca3336LXr166ZUfOXIEjzzyCG7cuGGq+EyOQ8GJiIjkx5Dzt1EtN1qtFg4ODlXKHRwcoNVqjTkkERERkUkYldw89NBDmDx5Mv744w9d2eXLl/H666/j4YcfNllwRERERIYyKrlZtmwZioqKEBgYiKCgIAQFBaF169YoKirC0qVLTR0jEVmxPE0ZDmUVIk9TJnUoREQAjBwtFRAQgGPHjuHbb7/FuXPnAACdOnVCTEyMSYMjIuuWcjQX01NPQSsAOxWQOCwEcb1aSh0WEdk4o1puAEClUmHgwIGYOHEiJk6c2KDEZvny5QgMDISzszPCwsJw5MiRWre/ceMGXnvtNfj5+cHJyQnt27fHzp07jX5+IjJcnqZMl9gAgFYAM1JPswWHiCRX75abjz76qN4HNWQ4eEpKCqZOnYqVK1ciLCwMSUlJiI2Nxfnz5+Ht7V1l+/LycgwcOBDe3t7YsmUL/P398dtvv+nm2yEiy8guLNElNpUqhEBOYamiVxsmIutX76HgrVu3rt8BVSpcvHix3gGEhYWhV69eWLZsGYC7I7ECAgIwceJExMfHV9l+5cqV+Oc//4lz585VO2KrLhwKTmQaeZoy9Fu4Ty/BsVepkBEfzeSGiEzOLKuCZ2dnNziw+5WXlyMzMxPTp0/XldnZ2SEmJgaHDx+udp/t27cjPDwcr732GrZt2wYvLy+MHDkS06ZNg729fZXtb9++jdu3b+vuFxUVmbweRLbIT+2CxGEhmJF6GhVCwF6lwoJhnZnYEJHkDOpQrNVqYWdndDedKgoLC1FRUQEfHx+9ch8fH11H5ftdvHgR+/btw6hRo7Bz505cuHABr776Ku7cuYM5c+ZU2T4xMREJCQkmi5mI/ieuV0tEtPdCTmEpAj1dJU9sTl76E0dyrqN3YDOEBjSVNBYiko5BmYqDgwOuXLmiu//WW2/h+vXrJg+qNlqtFt7e3vj3v/+NHj16IC4uDu+88w5WrlxZ7fbTp0+HRqPR3S5dumTReImUzk/tgvCg5pInNm9sPoEhyw/hvR3nMGT5Ibyx+YSk8RCRdAxKbu7vnrNq1aoGLbXg6ekJe3t7FBQU6JUXFBTA19e32n38/PzQvn17vUtQnTp1Qn5+PsrLy6ts7+TkBA8PD70bESnLyUt/4stjl/XKvjx2GScv/SlRREQkpQZdYzJiWSo9jo6O6NGjB9LS0nRlWq0WaWlpCA8Pr3affv364cKFC3rLPPzyyy/w8/ODo6Njg+IhInk6klN9C/KPOUxuiGyR6TrQGGnq1KlYvXo11q1bh7Nnz+KVV15BSUkJxo4dCwAYPXq0XofjV155BdevX8fkyZPxyy+/YMeOHViwYAFee+01qapARBLrHdis2vKegex3Q2SLDJ6hePbs2XB1dQVwd7TTe++9B7VarbfN4sWL6328uLg4XL16FbNnz0Z+fj66du2KXbt26ToZ5+bm6nViDggIwO7du/H666+jS5cu8Pf3x+TJkzFt2jRDq0JEChEa0BTDu/vrXZoa3t2fnYqJbFS957kBgKioKKhUqtoPqFJh3759DQ7MXDjPDZFynbz0J37M+RM9A5sysSFSGEPO3wYlN0rA5IaIiEh+DDl/m7XPjYeHh0GzFRMRERE1lFmTGxtrFCIiIiIrIPloKSIiIiJTYnJDRERkRfI0ZTiUVYg8TZnUociWwUPBiYiIyDxSjuZieuopaAVgpwISh4UgrldLqcOSHbO23NQ1bJyIiIjuytOU6RIbANAKYEbqabbgGIEdiolkhk3WRMqUXViiS2wqVQiBnMJSaQIykjV8R5n1stT/+3//D/7+/uZ8CiKbwiZrIuVq7ekGOxX0Ehx7lQqBnq7SBWUga/mOMmoSPyEEtmzZgu+++w5XrlzRW8QSAFJTU00WoKlxEj+SqzxNGfot3Ffliy8jPhp+ahfpAiMik0k5mosZqadRIQTsVSosGNZZNj9gzP0dZcj526iWmylTpmDVqlWIjo6Gj48P+9YQWUBtTdZMboiUIa5XS0S090JOYSkCPV1l9dm2pu8oo5KbTz/9FKmpqRg0aJCp4yGiGiihyZqI6uandpFVUlPJzdG+2nJXR8vPOmPUM6rVarRp08bUsRBRLfzULkgcFgL7/7aUVjZZy/FLkIiUp6S8otry0nJtteXmZFTLzdy5c5GQkIA1a9bAxYVfrESWIucmayJSNmtqXTYquRkxYgQ2btwIb29vBAYGwsHBQe/xY8eOmSQ4IqpKrk3WRKRsla3L93eIluL7yqjkZsyYMcjMzMSzzz7LDsVEREQEwHpal41Kbnbs2IHdu3ejf//+po6HiIiIZMwaWpeN6lAcEBDAOWKIiIjIKhmV3Hz44Yd4++23kZOTY+JwiIiIiBrGqMtSzz77LEpLSxEUFARXV9cqHYqvX79ukuCIiIiIDGVUcpOUlGTiMIiIiIhMw+jRUkSGyNOUIbuwBK093STvaEZERMrW4FXBb926hfLycr0ydjame1nLKrH3YrJFRA3B7xDrZlRyU1JSgmnTpmHz5s24du1alccrKqqfgplsT56mTJfYAHdnrpyRehoR7b0k+0KwxmSLiOSD3yHWz6jRUm+//Tb27duHFStWwMnJCf/5z3+QkJCAFi1aYP369aaOkWSstlVipVBTspWnKZMkHiKSF36HyINRyc3XX3+Njz/+GMOHD0ejRo0wYMAAzJw5EwsWLMBnn31m6hhJxirXGrmXlCtZW1uyRUTywu8QeTAqubl+/bpuVXAPDw/d0O/+/fvj+++/N110JHvWtpK1tSVbRNYqT1OGQ1mFbJG4D79D5MGoPjdt2rRBdnY2WrZsiY4dO2Lz5s3o3bs3vv76azRp0sTEIZLcWctaI4B1Lexmq9gR0/qxT0nN+B0iDyohhKh7M31LliyBvb09Jk2ahG+//RaDBw+GEAJ37tzB4sWLMXnyZHPEahJFRUVQq9XQaDQc1WXD8jRlVpFs2RqeNK1fnqYM/Rbu07v0Yq9SISM+mp+Ve/A7xPIMOX8bldzc77fffkNmZibatm2LLl26NPRwZsXkhkgaljhpslWo4Q5lFWLk6h+qlG8c3wfhQc0liIjoLkPO3yaZ56ZVq1Zo1apVQw9FRApWW0dMUyQiKUdzEf/lKQgAKgALh7NVyBiVfUruT0LZp4TkxKgOxRUVFZg/fz78/f3h7u6OixcvAgBmzZqFTz75xKQBEpEymLMjZp6mTJfYAIAAEP/lKXaGNYK1DQKwVuxwbd2MSm7ee+89JCcn4/3334ejo6OuvHPnzvjPf/5jsuCISDnMedL8Mec67r++LgBk5vzZ4GPborheLZERH42N4/sgIz6aLWD3STmai34L92Hk6h/Qb+E+pBzNlTokuo9Rl6XWr1+Pf//733j44Yfx8ssv68pDQ0Nx7tw5kwVHRMpirpFzKpWqhnKTHN4m+ald2FpTDWucdZ2qMiq5uXz5Mtq2bVulXKvV4s6dOw0OioiUyxwnzR6tmkIF6LXeqFRA91ZNTfo8RObuO0amYdRlqeDgYBw4cKBK+ZYtW9CtW7cGB0VEZAg/tQsWDg/R9emxUwELh4XwZEMmx0n85MGolpvZs2djzJgxuHz5MrRaLVJTU3H+/HmsX78e33zzjaljJJIVDkeWhjVNFknKxUn85MHoeW4OHDiAefPm4eTJkyguLkb37t0xe/ZsPPLII6aO0aQ4zw2ZEyepI7INnMTP8iw+iZ+cMLkhwDytK5zZlYjIfAw5fxvV56ZNmza4du1alfIbN27oFtQkslbmGsbJ1YKJiKyDUclNTk4OKioqqpTfvn0bly9fbnBQROZS0zBOU0zExY6GRETWwaAOxdu3b9f9vXv3bqjVat39iooKpKWlITAw0GTBEZmaOYdxsqMhEZF1MCi5GTp0KIC7E2aNGTNG7zEHBwcEBgbiww8/NFlwRKZm7nVzOGKHiEh6BiU3Wq0WANC6dWscPXoUnp6eZgmKyFws0brCmV2JiKRlUHJz+PBhXLt2DdnZ2bqy9evXY86cOSgpKcHQoUOxdOlSODk5mTxQsi3mnCuGrStERMpmUIfihIQEnDlzRnf/1KlTeOGFFxATE4P4+Hh8/fXXSExMNHmQZFsssSidn9oF4UHNmdgQESmQQcnNyZMn8fDDD+vub9q0CWFhYVi9ejWmTp2Kjz76CJs3bzZ5kGQ7zDmaiYiIbINByc2ff/4JHx8f3f39+/fj0Ucf1d3v1asXLl26ZLroyOZwrhgiImoog5IbHx8fXX+b8vJyHDt2DH369NE9fvPmTTg4OJg2QrIpnCuGiIgayqDkZtCgQYiPj8eBAwcwffp0uLq6YsCAAbrHf/rpJwQFBZk8SLIdlaOZ7FV3MxzOFUNERIYyKLmZP38+GjVqhMjISKxevRqrV6+Go6Oj7vE1a9YYtXDm8uXLERgYCGdnZ4SFheHIkSP12m/Tpk1QqVS6+XdIGeJ6tURGfDQ2ju+DjPhoLjxJspWnKcOhrEL2GSOyMKMWztRoNHB3d4e9vb1e+fXr1+Hu7q6X8NQlJSUFo0ePxsqVKxEWFoakpCR88cUXOH/+PLy9vWvcLycnB/3790ebNm3QrFkzbN26tV7Px4UzCTDvUHMigCvEE5marFYFDwsLQ69evbBs2TIAdycKDAgIwMSJExEfH1/tPhUVFYiIiMA//vEPHDhwADdu3LCK5IYnTHngSYfMjSvEE5me2VcFN5Xy8nJkZmYiJiZGV2ZnZ4eYmBgcPny4xv3mzZsHb29vvPDCC3U+x+3bt1FUVKR3MwdLzM1CDWfsUHNeXiBDcNQfkbQMmqHY1AoLC1FRUaE3vBy4Oyrr3Llz1e6TkZGBTz75BCdOnKjXcyQmJiIhIaGhodaqphNmRHsv/kqzMsYsnMmWHjKUudcwI6LaSdpyY6ibN2/iueeew+rVq+u9rtX06dOh0Wh0N3PMw8NfafJh6FBzTipIxuCoPyJpSdpy4+npCXt7exQUFOiVFxQUwNfXt8r2WVlZyMnJweDBg3VllYt5NmrUCOfPn68yFN3Jycnsa13xV5p8GLpwpjEtPex7RQDXMCOSkqTJjaOjI3r06IG0tDTdcG6tVou0tDRMmDChyvYdO3bEqVOn9MpmzpyJmzdv4l//+hcCAgIsEXYVllhpmkzHkJOOoYkrL2HRvbhCPJE0JE1uAGDq1KkYM2YMevbsid69eyMpKQklJSUYO3YsAGD06NHw9/dHYmIinJ2d0blzZ739mzRpAgBVyi2Nv9Lkpb4nHT+1C57s5o8vj13WlQ3t1qLafdn3ioikwNbiqiRPbuLi4nD16lXMnj0b+fn56Nq1K3bt2qXrZJybmws7O3l0DeKvNOXJ05Thq+OX9cq2Hv8Db8Z2qPJaG3MJi4ioIdhaXD3JkxsAmDBhQrWXoQAgPT291n2Tk5NNHxDRfxmSsLDvFRFZEluLayaPJhEiiRgyuoojZIjIkjhSt2ZW0XJDZK0M7SzOvldEZClsLa4ZkxuiOhiasLDvFVHd2Am24ThSt2ZMbojqgQkLkemwE6zpsLW4euxzQ0QkU3Jc84yzfpuen9oF4UHNmdjcgy03MsJmXCKqJNfWD06ZQJbA5EYm5PpFphRMLMmayHkIMDvBkiXwspQMsBlXWilHc9Fv4T6MXP0D+i3ch5SjuVKHRDZOzkOAOWUCWQJbbmRACc24cm35kPMvZFIuubd+sBMsmRuTGxmQ+xeZnC+pKSGxJOUxdgiwNf3I4AhEMicmNzIg57kM5N7yIffEkpTL0NaPlKO5iP/yFAQAFYCFw+XzI4PIUExuZEKuzbhyb/mQc2JJylff1o88TZkusQEAASD+y1Oy+ZFBZCgmNzIix2ZcJbR8yDWxJKr0Y8513PcbAwJAZs6feDyU72dSHo6WIrNSysgITpJFcqZSqWoot3AgRBbClhsyO7Z8EEmrR6umUAF6rTcqFdC9VVOpQiIyK7bckMWIKg3jRGQJfmoXLBweArv/ttTYqYCFw0L4Q4MUiy03ZHZyHgpOpBRsQSVbwpYbMivOrkxkPdh3jGwFkxsyKzlPE09ERPLE5EZCeZoyHMoqVHQrRuVQ8HvJbSg4ERHJC5MbidjKYoxKGQpORETyoRJC2NQQlqKiIqjVamg0Gnh4eEgSQ56mDP0W7qsysV1GfLRiT/p5mjJ2ZCQiIqMZcv7maCkJyH1JAmPIcXZlsg7WtNgjEckDkxsJKGFJAiJL4DQCRGQM9rmRAPuhENWN0wgQkbHYciMRTqhFVDtbvHxLRKbB5EZC7IdCVDNeviUiY/GyFBFZJV6+JSJjseWGiKyWoZdvObKKiAAmN0Rk5ep7+TblaC7ivzwFAUAFYOFwjqwiMgU5/mhgckNEspenKdMlNgAgAMR/eQoR7b1k82VMZI3kOh0D+9wQkez9mHMd90+1LgBk5vwpRThEVq2+6xrKeToGttwQkeypVKoayi0cCJGVM6QlRs7TMbDlhmySLazIbksCmlb/RftADeVEtsjQlpjK6RjuJZfpGJjckM2xlRXZbUlJeUW15aXlWgtHQmS9amuJqY6cp2PgZSmyCGvpbV/TLxd2PJU3TvhHVDdjPidynU2fLTdkdtbUUmLoLxeSBzn/wiSyFGM/J35qF4QHNZfV54ktN2RW1tZSwl/4yiXXX5hElmQrnxO23JBZWVtLCX/hK5scf2ESWZotfE7YckNGqW8fGmtsKbGVXy62yFr6dhGRtJjckMEMmSehsqVkRuppVAhhNS0lXJFdeeQ6kyoRmZ5KCHH/xJ6KVlRUBLVaDY1GAw8PD6nDkZ08TRn6LdxXpSUmIz661mQhT1PGlhIyG2Pfl0QkH4acv9nnhgxibB8aW7jGS9Kxtr5dlThZJJE0eFmKDGKNfWiIrPF9yctkRNJhyw0ZhKONyBpZ2/tSzgsOEikBW27IYHG9WqKjb2MczfkTvQKbIjSgqdQhEVnVKDg5LzhIpARMbshgbG6ne1nT8GtrGQVnjZfJiGwJL0uRQSzV3M6OmPJgTUtrWBNru0xGZGvYckMGsURzO1uG5MHaltawNtZ0mUwJrKmFkKwfkxsyiLmb23nClA/2K6mbtVwmkzv+4JGWHBNLXpYig5i7ud1a5yuhqioT3XuxXwmZGkeeSUuul56tIrlZvnw5AgMD4ezsjLCwMBw5cqTGbVevXo0BAwagadOmaNq0KWJiYmrdnkwvrldLZMRHY+P4PsiIjzbpLyieMOWD/UrIEviDRzpyTiwlT25SUlIwdepUzJkzB8eOHUNoaChiY2Nx5cqVardPT0/HM888g++++w6HDx9GQEAAHnnkEVy+fNnCkds2c804zBOmvJgz0SUC+INHSnJOLCVfWyosLAy9evXCsmXLAABarRYBAQGYOHEi4uPj69y/oqICTZs2xbJlyzB69Og6t+faUvLAtaiIqFLK0dwqi+8ykTY/a1uzzZDzt6QdisvLy5GZmYnp06fryuzs7BATE4PDhw/X6xilpaW4c+cOmjVrVu3jt2/fxu3bt3X3i4qKGhY0WQQ7YhJRJU4cKo3KlvT7E0s5fDdLmtwUFhaioqICPj4+euU+Pj44d+5cvY4xbdo0tGjRAjExMdU+npiYiISEhAbHSlRfchxZQGTNOFpKOnKd0kDWQ8EXLlyITZs2IT09Hc7OztVuM336dEydOlV3v6ioCAEBAZYKkWwMv4SJTIvTQ0hPji3pknYo9vT0hL29PQoKCvTKCwoK4OvrW+u+H3zwARYuXIg9e/agS5cuNW7n5OQEDw8PvRuROch5ZAGRtZJzp1aSjqTJjaOjI3r06IG0tDRdmVarRVpaGsLDw2vc7/3338f8+fOxa9cu9OzZ0xKhEtWJX8JEpsfRUmQMyYeCT506FatXr8a6detw9uxZvPLKKygpKcHYsWMBAKNHj9brcLxo0SLMmjULa9asQWBgIPLz85Gfn4/i4mKpqkAEgF/CRObA6SHIGJL3uYmLi8PVq1cxe/Zs5Ofno2vXrti1a5euk3Fubi7s7P6Xg61YsQLl5eV46qmn9I4zZ84czJ0715KhE+mR88gCImsm106tJB3J57mxNM5zQ+bGOXqIiExPNvPcECmRHEcWEBEpieR9boiIiIhMickNERERKQqTGyIiIlIUJjdEJpanKcOhrEJO3kdEJBF2KCYyIS6/QEQkPbbcEJkIl18gIrIOTG7IKsnx0g6XX5CeHN83RGR6vCxFVkeul3Yql1+4N8Hh8guWI9f3DRGZHltuyKrI+dIO18CRjpzfN0Rkemy5IatS26UdOSQJXANHGnJ/3xCRaTG5IauihEs7XH7B8pTwviEi0+FlKbIqvLRDxuD7hojuxVXBySpxZW0yBt83RMrFVcFJ9nhph4zB9w0RAbwsRURERArD5IaIiIgUhckNERERKQqTGyIiIlIUJjcKxnV2iIjIFnG0lEJxnR0iIrJVbLlRIK6zQ0REtozJjQLVts4OERGR0jG5UaDKdXbuxXV29LE/EhGRcjG5USCus1O7lKO56LdwH0au/gH9Fu5DytFcqUMiIiIT4tpSCsZ1dqrK05Sh38J9VVaPzoiP5v+IiMiKcW0pAsB1dqpTW38k/q+IiJSBl6VMiP04rB/7IxERKR+TGxNhPw55YH8kIiLlY58bEzC2H0eepgzZhSVo7enGk6uFsT8SEZG8sM+NhRnTj4MzCEuL/ZGIiJSLl6VMwNB+HJxBmIiIyHyY3JiAof04OIMwERGR+fCylInE9WqJiPZe9erHUdnSc38fHY7YISIiaji23JiQn9oF4UHN6+zLwRE7RERE5sOWG4kY0tJDRERE9cfkRkIcsUNERGR6vCxFREREisLkhoiIiBSFyQ0RWZQ1rcFm7lisqa5EtoR9bojIYqxpZm5jYjFkyRRrqiuRrWHLDRFZhDXNzG1MLIYsjmtNdSWyRUxuiMgirGlmbkNjMTRZsaa6EtkiJjdEZBGGrsFmTbEYmqxYU12JbBGTGzKKoR0l2bGSrGlmbkNjMTRZsaa6EtkilRBC1L2ZchQVFUGtVkOj0cDDw0PqcGTJ0I6S7FhJ98rTlFnNzNyGxJJyNBczUk+jQghdslKfDsjWUlciuTPk/M3khgySpylDv4X7qiz6mREfXe2Xt6HbE1kzJitE0jHk/M2h4GSQ2voeVPdlb+j2RNaMS6YQyQP73JBBDO17wI6VRERkaUxuyCCGdpRkx0oiIrI0q+hzs3z5cvzzn/9Efn4+QkNDsXTpUvTu3bvG7b/44gvMmjULOTk5aNeuHRYtWoRBgwbV67nY58Y0DO17wL4KZI0MmXGYiKRlyPlb8pablJQUTJ06FXPmzMGxY8cQGhqK2NhYXLlypdrtDx06hGeeeQYvvPACjh8/jqFDh2Lo0KE4ffq0hSNvODkPj/ZTuyA8qHm9TwiGbk9kbobMOExE8iJ5y01YWBh69eqFZcuWAQC0Wi0CAgIwceJExMfHV9k+Li4OJSUl+Oabb3Rlffr0QdeuXbFy5co6n89aWm44PJpIOhzFRyQ/smm5KS8vR2ZmJmJiYnRldnZ2iImJweHDh6vd5/Dhw3rbA0BsbGyN29++fRtFRUV6N6lx3RkiaXF5BCJlkzS5KSwsREVFBXx8fPTKfXx8kJ+fX+0++fn5Bm2fmJgItVqtuwUEBJgm+AbgFyuRtDiKj0jZJO9zY27Tp0+HRqPR3S5duiR1SPxiJZIYR/ERKZukk/h5enrC3t4eBQUFeuUFBQXw9fWtdh9fX1+DtndycoKTk5NpAjaRyi/W+6dy5xcrkeXE9WqJiPZeHMVHpECSttw4OjqiR48eSEtL05VptVqkpaUhPDy82n3Cw8P1tgeAvXv31ri9tYrr1RIZ8dHYOL4PMuKj2ZmYSAIcxUekTJIvvzB16lSMGTMGPXv2RO/evZGUlISSkhKMHTsWADB69Gj4+/sjMTERADB58mRERkbiww8/xGOPPYZNmzbhxx9/xL///W8pq2EUTuVORERkepInN3Fxcbh69Spmz56N/Px8dO3aFbt27dJ1Gs7NzYWd3f8amPr27YvPP/8cM2fOxIwZM9CuXTts3boVnTt3lqoKREREZEUkn+fG0qxlnhsiIiKqP9nMc0NERERkakxuiIiISFGY3BAREZGiMLkhIiIiRWFyQ0RERIrC5IaIiIgUhckNERERKQqTGyIiIlIUJjdERESkKJIvv2BplRMyFxUVSRwJERER1Vflebs+CyvYXHJz8+ZNAEBAQIDEkRAREZGhbt68CbVaXes2Nre2lFarxR9//IHGjRtDpVKZ9NhFRUUICAjApUuXFLluldLrByi/jqyf/Cm9jkqvH6D8OpqrfkII3Lx5Ey1atNBbULs6NtdyY2dnhwceeMCsz+Hh4aHIN2wlpdcPUH4dWT/5U3odlV4/QPl1NEf96mqxqcQOxURERKQoTG6IiIhIUZjcmJCTkxPmzJkDJycnqUMxC6XXD1B+HVk/+VN6HZVeP0D5dbSG+tlch2IiIiJSNrbcEBERkaIwuSEiIiJFYXJDREREisLkhoiIiBSFyU0tli9fjsDAQDg7OyMsLAxHjhypdfukpCR06NABLi4uCAgIwOuvv45bt2416JjmZuo6zp07FyqVSu/WsWNHc1ejRobU786dO5g3bx6CgoLg7OyM0NBQ7Nq1q0HHtART19GaXsPvv/8egwcPRosWLaBSqbB169Y690lPT0f37t3h5OSEtm3bIjk5uco21vIamqN+cn798vLyMHLkSLRv3x52dnaYMmVKtdt98cUX6NixI5ydnRESEoKdO3eaPvh6Mkcdk5OTq7yGzs7O5qlAHQytX2pqKgYOHAgvLy94eHggPDwcu3fvrrKd2T+Dgqq1adMm4ejoKNasWSPOnDkjxo8fL5o0aSIKCgqq3f6zzz4TTk5O4rPPPhPZ2dli9+7dws/PT7z++utGH9PczFHHOXPmiAcffFDk5eXpblevXrVUlfQYWr+3335btGjRQuzYsUNkZWWJjz/+WDg7O4tjx44ZfUxzM0cdrek13Llzp3jnnXdEamqqACC++uqrWre/ePGicHV1FVOnThU///yzWLp0qbC3txe7du3SbWNNr6E56ifn1y87O1tMmjRJrFu3TnTt2lVMnjy5yjYHDx4U9vb24v333xc///yzmDlzpnBwcBCnTp0yTyXqYI46rl27Vnh4eOi9hvn5+eapQB0Mrd/kyZPFokWLxJEjR8Qvv/wipk+fLhwcHCz+Pcrkpga9e/cWr732mu5+RUWFaNGihUhMTKx2+9dee0089NBDemVTp04V/fr1M/qY5maOOs6ZM0eEhoaaJV5DGVo/Pz8/sWzZMr2yYcOGiVGjRhl9THMzRx2t6TW8V32+WN9++23x4IMP6pXFxcWJ2NhY3X1rew0rmap+cn797hUZGVntiX/EiBHiscce0ysLCwsTL730UgMjbDhT1XHt2rVCrVabLC5TMbR+lYKDg0VCQoLuviU+g7wsVY3y8nJkZmYiJiZGV2ZnZ4eYmBgcPny42n369u2LzMxMXdPaxYsXsXPnTgwaNMjoY5qTOepY6ddff0WLFi3Qpk0bjBo1Crm5uearSA2Mqd/t27erNP26uLggIyPD6GOakznqWMkaXkNjHD58WO//AQCxsbG6/4e1vYaGqqt+leT6+tVHff8HcldcXIxWrVohICAAQ4YMwZkzZ6QOySharRY3b95Es2bNAFjuM8jkphqFhYWoqKiAj4+PXrmPjw/y8/Or3WfkyJGYN28e+vfvDwcHBwQFBSEqKgozZsww+pjmZI46AkBYWBiSk5Oxa9curFixAtnZ2RgwYABu3rxp1vrcz5j6xcbGYvHixfj111+h1Wqxd+9epKamIi8vz+hjmpM56ghYz2tojPz8/Gr/H0VFRSgrK7O619BQddUPkPfrVx81/Q/k8PrVV4cOHbBmzRps27YNGzZsgFarRd++ffH7779LHZrBPvjgAxQXF2PEiBEALPc9yuTGRNLT07FgwQJ8/PHHOHbsGFJTU7Fjxw7Mnz9f6tBMpj51fPTRR/H3v/8dXbp0QWxsLHbu3IkbN25g8+bNEkZeP//617/Qrl07dOzYEY6OjpgwYQLGjh0LOzvlfEzqU0c5v4bE108JwsPDMXr0aHTt2hWRkZFITU2Fl5cXVq1aJXVoBvn888+RkJCAzZs3w9vb26LP3ciizyYTnp6esLe3R0FBgV55QUEBfH19q91n1qxZeO655zBu3DgAQEhICEpKSvDiiy/inXfeMeqY5mSOOlaXBDRp0gTt27fHhQsXTF+JWhhTPy8vL2zduhW3bt3CtWvX0KJFC8THx6NNmzZGH9OczFHH6kj1GhrD19e32v+Hh4cHXFxcYG9vb1WvoaHqql915PT61UdN/wM5vH7GcnBwQLdu3WT1Gm7atAnjxo3DF198oXcJylLfo8r5SWpCjo6O6NGjB9LS0nRlWq0WaWlpCA8Pr3af0tLSKid3e3t7AIAQwqhjmpM56lid4uJiZGVlwc/Pz0SR109D/t/Ozs7w9/fHX3/9hS+//BJDhgxp8DHNwRx1rI5Ur6ExwsPD9f4fALB3717d/8PaXkND1VW/6sjp9asPY/4HcldRUYFTp07J5jXcuHEjxo4di40bN+Kxxx7Te8xin0GTdU1WmE2bNgknJyeRnJwsfv75Z/Hiiy+KJk2a6IbjPffccyI+Pl63/Zw5c0Tjxo3Fxo0bxcWLF8WePXtEUFCQGDFiRL2PaWnmqOMbb7wh0tPTRXZ2tjh48KCIiYkRnp6e4sqVK1Zfv//7v/8TX375pcjKyhLff/+9eOihh0Tr1q3Fn3/+We9jWpo56mhNr+HNmzfF8ePHxfHjxwUAsXjxYnH8+HHx22+/CSGEiI+PF88995xu+8qh0m+99ZY4e/asWL58ebVDwa3lNTRH/eT8+gkhdNv36NFDjBw5Uhw/flycOXNG9/jBgwdFo0aNxAcffCDOnj0r5syZI+lQcHPUMSEhQezevVtkZWWJzMxM8fTTTwtnZ2e9bSzF0Pp99tlnolGjRmL58uV6Q9lv3Lih28YSn0EmN7VYunSpaNmypXB0dBS9e/cW//d//6d7LDIyUowZM0Z3/86dO2Lu3LkiKChIODs7i4CAAPHqq6/qnTTqOqYUTF3HuLg44efnJxwdHYW/v7+Ii4sTFy5csGCN9BlSv/T0dNGpUyfh5OQkmjdvLp577jlx+fJlg44pBVPX0Zpew++++04AqHKrrNOYMWNEZGRklX26du0qHB0dRZs2bcTatWurHNdaXkNz1E/ur19127dq1Upvm82bN4v27dsLR0dH8eCDD4odO3ZYpkLVMEcdp0yZont/+vj4iEGDBunNE2NJhtYvMjKy1u0rmfszqBKihusJRERERDLEPjdERESkKExuiIiISFGY3BAREZGiMLkhIiIiRWFyQ0RERIrC5IaIiIgUhckNERERKQqTGyIiK5Ceng6VSoUbN25IHQqR7DG5IbIxzz//PFQqFRYuXKhXvnXrVqhUKt19IQRWr16N8PBweHh4wN3dHQ8++CAmT55c7wX8SktLMX36dAQFBcHZ2RleXl6IjIzEtm3bdNsEBgYiKSnJJHUzt8r/nUqlgoODA1q3bo23334bt27dMug4UVFRmDJlil5Z3759kZeXB7VabcKIiWwTkxsiG+Ts7IxFixbhzz//rPZxIQRGjhyJSZMmYdCgQdizZw9+/vlnfPLJJ3B2dsa7775br+d5+eWXkZqaiqVLl+LcuXPYtWsXnnrqKVy7ds2U1bGov/3tb8jLy8PFixexZMkSrFq1CnPmzGnwcR0dHeHr66uXYBKRkUy6mAMRWb0xY8aIxx9/XHTs2FG89dZbuvKvvvpKVH4lbNy4UQAQ27Ztq/YYWq22Xs+lVqtFcnJyjY9Xtw5NpQMHDoj+/fsLZ2dn8cADD4iJEyeK4uJi3ePr168XPXr0EO7u7sLHx0c888wzoqCgQPd45Zo4u3btEl27dhXOzs4iOjpaFBQUiJ07d4qOHTuKxo0bi2eeeUaUlJTUqz5jxowRQ4YM0SsbNmyY6Natm+5+YWGhePrpp0WLFi2Ei4uL6Ny5s/j888/1jnF/nbOzs3Xx3rtW25YtW0RwcLBwdHQUrVq1Eh988EG94iSydWy5IbJB9vb2WLBgAZYuXYrff/+9yuMbN25Ehw4d8MQTT1S7f31bF3x9fbFz507cvHmz2sdTU1PxwAMPYN68ecjLy0NeXh4AICsrC3/7298wfPhw/PTTT0hJSUFGRgYmTJig2/fOnTuYP38+Tp48ia1btyInJwfPP/98leeYO3culi1bhkOHDuHSpUsYMWIEkpKS8Pnnn2PHjh3Ys2cPli5dWq/63O/06dM4dOgQHB0ddWW3bt1Cjx49sGPHDpw+fRovvvginnvuORw5cgQA8K9//Qvh4eEYP368rs4BAQFVjp2ZmYkRI0bg6aefxqlTpzB37lzMmjULycnJRsVKZFOkzq6IyLLubX3o06eP+Mc//iGE0G+56dixo3jiiSf09ps8ebJwc3MTbm5uwt/fv17PtX//fvHAAw8IBwcH0bNnTzFlyhSRkZGht02rVq3EkiVL9MpeeOEF8eKLL+qVHThwQNjZ2YmysrJqn+vo0aMCgLh586YQ4n8tN99++61um8TERAFAZGVl6cpeeuklERsbW6/6jBkzRtjb2ws3Nzfh5OQkAAg7OzuxZcuWWvd77LHHxBtvvKG7HxkZKSZPnqy3zf0tNyNHjhQDBw7U2+att94SwcHB9YqVyJax5YbIhi1atAjr1q3D2bNn69z2nXfewYkTJzB79mwUFxfX6/gRERG4ePEi0tLS8NRTT+HMmTMYMGAA5s+fX+t+J0+eRHJyMtzd3XW32NhYaLVaZGdnA7jbsjF48GC0bNkSjRs3RmRkJAAgNzdX71hdunTR/e3j4wNXV1e0adNGr+zKlSv1qg8AREdH48SJE/jhhx8wZswYjB07FsOHD9c9XlFRgfnz5yMkJATNmjWDu7s7du/eXSWuupw9exb9+vXTK+vXrx9+/fVXVFRUGHQsIlvD5IbIhkVERCA2NhbTp0/XK2/Xrh3Onz+vV+bl5YW2bdvC29vboOdwcHDAgAEDMG3aNOzZswfz5s3D/PnzUV5eXuM+xcXFeOmll3DixAnd7eTJk/j1118RFBSEkpISxMbGwsPDA5999hmOHj2Kr776CgCqHNfBwUH3d+Uop3upVCpotdp618fNzQ1t27ZFaGgo1qxZgx9++AGffPKJ7vF//vOf+Ne//oVp06bhu+++w4kTJxAbG1trfYnItBpJHQARSWvhwoXo2rUrOnTooCt75plnMHLkSGzbtg1Dhgwx6fMFBwfjr7/+wq1bt+Do6AhHR8cqLRHdu3fHzz//jLZt21Z7jFOnTuHatWtYuHChrr/Kjz/+aNI468POzg4zZszA1KlTMXLkSLi4uODgwYMYMmQInn32WQCAVqvFL7/8guDgYN1+1dX5fp06dcLBgwf1yg4ePIj27dvD3t7e9JUhUhC23BDZuJCQEIwaNQofffSRruzpp5/GU089haeffhrz5s3DDz/8gJycHOzfvx8pKSn1PrlGRUVh1apVyMzMRE5ODnbu3IkZM2YgOjoaHh4eAO7Oc/P999/j8uXLKCwsBABMmzYNhw4dwoQJE3DixAn8+uuv2LZtm65DccuWLeHo6IilS5fi4sWL2L59e52Xuszl73//O+zt7bF8+XIAd1u99u7di0OHDuHs2bN46aWXUFBQoLdPYGCg7n9aWFhYbcvRG2+8gbS0NMyfPx+//PIL1q1bh2XLluHNN9+0SL2I5IzJDRFh3rx5eidYlUqFlJQUJCUlYefOnXj44YfRoUMH/OMf/0BAQAAyMjLqddzY2FisW7cOjzzyCDp16oSJEyciNjYWmzdv1nvunJwcBAUFwcvLC8DdfjL79+/HL7/8ggEDBqBbt26YPXs2WrRoAeDuJbLk5GR88cUXCA4OxsKFC/HBBx+Y8D9Sf40aNcKECRPw/vvvo6SkBDNnzkT37t0RGxuLqKgo+Pr6YujQoXr7vPnmm7C3t0dwcDC8vLyq7Y/TvXt3bN68GZs2bULnzp0xe/ZszJs3r9oRYUSkTyWEEFIHQURERGQqbLkhIiIiRWFyQ0RGu3eo9v23AwcOSB2eQXJzc2utj6FDuYlIOrwsRURGq20BTX9/f7i4uFgwmob566+/kJOTU+PjgYGBaNSIA0yJ5IDJDRERESkKL0sRERGRojC5ISIiIkVhckNERESKwuSGiIiIFIXJDRERESkKkxsiIiJSFCY3REREpChMboiIiEhR/j+L1by5nQf9swAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHHCAYAAAC7soLdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT91JREFUeJzt3XlYlOX+P/D3MLIj4wICEopiiiTiTmiyFEZZZplJamqetO1kLm1oKaIlWqmc1NTjSdE0RY3UlJ9LGBrqScMwNbVECDNAcRkUUJS5f3/4ZU4j6wwz88w8835d11wXc8/9PPO5GZj5zL09CiGEABEREZGM2UkdABEREZGpMeEhIiIi2WPCQ0RERLLHhIeIiIhkjwkPERERyR4THiIiIpI9JjxEREQke0x4iIiISPaY8BAREZHsMeEhIknMnDkTCoWiQXUVCgVmzpxp0ngiIyMRGRlpsecjosZhwkNk45KTk6FQKLS3Jk2awNfXFy+++CIuXLggdXgWx9/fX+f31apVK/Tv3x/ffPONUc5fVlaGmTNnIiMjwyjnI6K7mPAQEQBg1qxZ+PLLL7Fs2TI8/vjjWLt2LSIiInDz5k2TPN8HH3yA8vJyk5zb1Lp164Yvv/wSX375Jd5++2389ddfGDJkCJYtW9boc5eVlSEhIYEJD5GRNZE6ACKyDI8//jh69eoFABg3bhw8PDwwb948bNu2DcOGDTP68zVp0gRNmljnW5Cvry9eeOEF7f3Ro0ejQ4cOWLhwIV599VUJIyOi2rCHh4hq1L9/fwBATk6OTvnp06cxdOhQtGjRAk5OTujVqxe2bdumU+f27dtISEjA/fffDycnJ7Rs2RIPPfQQ9uzZo61T0xyeW7duYfLkyfD09ETTpk3x1FNP4c8//6wW24svvgh/f/9q5TWdc9WqVXj44YfRqlUrODo6IigoCEuXLtXrd1Efb29vdO7cGbm5uXXWu3jxIl566SV4eXnByckJISEhWL16tfbxvLw8eHp6AgASEhK0w2amnr9EZAus8+sVEZlcXl4eAKB58+baspMnT6Jfv37w9fVFXFwcXF1dsXHjRjz99NP4+uuv8cwzzwC4m3gkJiZi3Lhx6NOnD0pKSvDTTz/h6NGjGDBgQK3POW7cOKxduxYjRoxA3759sXfvXjzxxBONasfSpUvxwAMP4KmnnkKTJk3w7bff4vXXX4dGo8E///nPRp27yu3bt3H+/Hm0bNmy1jrl5eWIjIzE2bNn8cYbb6Bdu3bYtGkTXnzxRVy7dg0TJ06Ep6cnli5ditdeew3PPPMMhgwZAgDo2rWrUeIksmmCiGzaqlWrBADx3XffiUuXLonz58+LzZs3C09PT+Ho6CjOnz+vrfvII4+I4OBgcfPmTW2ZRqMRffv2Fffff7+2LCQkRDzxxBN1Pm98fLz4+1tQdna2ACBef/11nXojRowQAER8fLy2bMyYMaJt27b1nlMIIcrKyqrVi4mJEe3bt9cpi4iIEBEREXXGLIQQbdu2FY8++qi4dOmSuHTpkjh27Jh4/vnnBQAxYcKEWs+XlJQkAIi1a9dqyyoqKkRYWJhwc3MTJSUlQgghLl26VK29RNR4HNIiIgBAdHQ0PD094efnh6FDh8LV1RXbtm3DfffdBwC4cuUK9u7di2HDhuH69esoLi5GcXExLl++jJiYGPz+++/aVV3NmjXDyZMn8fvvvzf4+dPS0gAAb775pk75pEmTGtUuZ2dn7c9qtRrFxcWIiIjAuXPnoFarDTrn7t274enpCU9PT4SEhGDTpk0YNWoU5s2bV+sxaWlp8Pb2xvDhw7Vl9vb2ePPNN3Hjxg3s27fPoFiIqGFsOuHZv38/Bg0ahNatW0OhUGDLli0mfb7r169j0qRJaNu2LZydndG3b18cOXLEpM9J1FBLlizBnj17sHnzZgwcOBDFxcVwdHTUPn727FkIITB9+nTth33VLT4+HsDdOSrA3RVf165dQ8eOHREcHIx33nkHv/zyS53P/8cff8DOzg4BAQE65Z06dWpUuw4cOIDo6Gi4urqiWbNm8PT0xLRp0wDA4IQnNDQUe/bswXfffYeDBw+iuLgYa9as0Umu7vXHH3/g/vvvh52d7ttu586dtY8TkenY9Bye0tJShISE4B//+Id2rNyUxo0bhxMnTuDLL79E69atsXbtWkRHR+PXX3+Fr6+vyZ+fqC59+vTRrtJ6+umn8dBDD2HEiBE4c+YM3NzcoNFoAABvv/02YmJiajxHhw4dAADh4eHIycnB1q1bsXv3bvznP//BwoULsWzZMowbN67Rsda2YWFlZaXO/ZycHDzyyCMIDAzEggUL4OfnBwcHB6SlpWHhwoXaNunLw8MD0dHRBh1LRNKw6YTn8ccfx+OPP17r47du3cL777+P9evX49q1a+jSpQvmzZtn0O6p5eXl+Prrr7F161aEh4cDuDux89tvv8XSpUvx4YcfGtoMIqNTKpVITExEVFQUFi9ejLi4OLRv3x7A3WGYhnzYt2jRAmPHjsXYsWNx48YNhIeHY+bMmbUmPG3btoVGo0FOTo5Or86ZM2eq1W3evDmuXbtWrfzeXpJvv/0Wt27dwrZt29CmTRtt+ffff19v/MbWtm1b/PLLL9BoNDq9PKdPn9Y+DtSezBFR49j0kFZ93njjDRw6dAgbNmzAL7/8gueeew6PPfaYXvMSqty5cweVlZVwcnLSKXd2dkZmZqaxQiYymsjISPTp0wdJSUm4efMmWrVqhcjISCxfvhwFBQXV6l+6dEn78+XLl3Uec3NzQ4cOHXDr1q1an6/qy8dnn32mU56UlFStbkBAANRqtc4wWUFBQbXdjpVKJQBACKEtU6vVWLVqVa1xmMrAgQNRWFiIlJQUbdmdO3ewaNEiuLm5ISIiAgDg4uICADUmdERkOJvu4alLfn4+Vq1ahfz8fLRu3RrA3a78nTt3YtWqVZgzZ45e52vatCnCwsIwe/ZsdO7cGV5eXli/fj0OHTqkHQYgsjTvvPMOnnvuOSQnJ+PVV1/FkiVL8NBDDyE4OBjjx49H+/btUVRUhEOHDuHPP//EsWPHAABBQUGIjIxEz5490aJFC/z000/YvHkz3njjjVqfq1u3bhg+fDg+//xzqNVq9O3bF+np6Th79my1us8//zzee+89PPPMM3jzzTdRVlaGpUuXomPHjjh69Ki23qOPPgoHBwcMGjQIr7zyCm7cuIEVK1agVatWNSZtpvTyyy9j+fLlePHFF5GVlQV/f39s3rwZBw4cQFJSEpo2bQrg7pegoKAgpKSkoGPHjmjRogW6dOmCLl26mDVeItmRepmYpQAgvvnmG+397du3CwDC1dVV59akSRMxbNgwIYQQp06dEgDqvL333nvac549e1aEh4cLAEKpVIrevXuLkSNHisDAQHM3l0iraln6kSNHqj1WWVkpAgICREBAgLhz544QQoicnBwxevRo4e3tLezt7YWvr6948sknxebNm7XHffjhh6JPnz6iWbNmwtnZWQQGBoqPPvpIVFRUaOvUtIS8vLxcvPnmm6Jly5bC1dVVDBo0SJw/f77GZdq7d+8WXbp0EQ4ODqJTp05i7dq1NZ5z27ZtomvXrsLJyUn4+/uLefPmiZUrVwoAIjc3V1tPn2Xp9S25r+18RUVFYuzYscLDw0M4ODiI4OBgsWrVqmrHHjx4UPTs2VM4ODhwiTqRkSiE+Ftfrw1TKBT45ptv8PTTTwMAUlJSMHLkSJw8eVLbLV7Fzc0N3t7eqKiowLlz5+o8b8uWLbU7p1YpLS1FSUkJfHx8EBsbixs3bmDHjh1GbQ8RERH9D4e0atG9e3dUVlbi4sWL2i327+Xg4IDAwEC9z+3q6gpXV1dcvXoVu3btwscff9zYcImIiKgONp3w3LhxQ2d+QG5uLrKzs9GiRQt07NgRI0eOxOjRozF//nx0794dly5dQnp6Orp27WrQdve7du2CEAKdOnXC2bNn8c477yAwMBBjx441ZrOIiIjoHjY9pJWRkYGoqKhq5WPGjEFycjJu376NDz/8EGvWrMGFCxfg4eGBBx98EAkJCQgODtb7+TZu3IipU6fizz//RIsWLfDss8/io48+gkqlMkZziIiIqBY2nfAQERGRbeA+PERERCR7THiIiIhI9mxu0rJGo8Fff/2Fpk2bcgt3IiIiKyGEwPXr19G6detqF+FtCJtLeP766y/4+flJHQYREREZ4Pz587jvvvv0Ps7mEp6q7dvPnz8Pd3d3iaMhIiKihigpKYGfn5/2c1xfNpfwVA1jubu7M+EhIiKyMoZOR+GkZSIiIpI9JjxEREQke0x4iIiISPZsbg4PERFZnsrKSty+fVvqMEhiDg4OBi05bwgmPEREJBkhBAoLC3Ht2jWpQyELYGdnh3bt2sHBwcHo52bCQ0REkqlKdlq1agUXFxduCGvDqjYGLigoQJs2bYz+t8CEh4iIJFFZWalNdlq2bCl1OGQBPD098ddff+HOnTuwt7c36rk5aZmIiCRRNWfHxcVF4kjIUlQNZVVWVhr93Ex4iIhIUhzGoiqm/FtgwkNERESyx4SHiIiIauXv74+kpCSpw2g0JjxEREZQoC7HwZxiFKjLpQ6FzODSpUt47bXX0KZNGzg6OsLb2xsxMTE4cOAAgLtDM1u2bJE2yAaKjIyEQqGodrtz547UoRkVV2kRETVSypF8TE09Do0A7BRA4pBgxPZuI3VYZELPPvssKioqsHr1arRv3x5FRUVIT0/H5cuXpQ7NIOPHj8esWbN0ypo0kVeKwB4eIqJGKFCXa5MdANAIYFrqCfb0yNi1a9fwww8/YN68eYiKikLbtm3Rp08fTJ06FU899RT8/f0BAM888wwUCoX2PgBs3boVPXr0gJOTE9q3b4+EhASdnpQFCxYgODgYrq6u8PPzw+uvv44bN25oH09OTkazZs2wfft2dOrUCS4uLhg6dCjKysqwevVq+Pv7o3nz5njzzTf1Wunk4uICb29vnVtt8vPzMXjwYLi5ucHd3R3Dhg1DUVERAECtVkOpVOKnn34CcHdvnRYtWuDBBx/UHr927Vr4+fk1ODZjYcJDRNQIucWl2mSnSqUQyCsukyYgG2XOIUU3Nze4ublhy5YtuHXrVrXHjxw5AgBYtWoVCgoKtPd/+OEHjB49GhMnTsSvv/6K5cuXIzk5GR999JH2WDs7O3z22Wc4efIkVq9ejb179+Ldd9/VOX9ZWRk+++wzbNiwATt37kRGRgaeeeYZpKWlIS0tDV9++SWWL1+OzZs3G73tGo0GgwcPxpUrV7Bv3z7s2bMH586dQ2xsLABApVKhW7duyMjIAAAcP34cCoUCP//8szZx27dvHyIiIoweW32Y8BARNUI7D1fY3bOSVqlQwN+De8uYS8qRfPSbuxcjVvyIfnP3IuVIvkmfr0mTJkhOTsbq1avRrFkz9OvXD9OmTcMvv/wC4O7meQDQrFkzeHt7a+8nJCQgLi4OY8aMQfv27TFgwADMnj0by5cv15570qRJiIqKgr+/Px5++GF8+OGH2Lhxo87z3759G0uXLkX37t0RHh6OoUOHIjMzE1988QWCgoLw5JNPIioqCt9//32D2/T5559rEzk3Nze89dZbNdZLT0/H8ePH8dVXX6Fnz54IDQ3FmjVrsG/fPm1iFxkZqU14MjIyMGDAAHTu3BmZmZnaMiY8RERWxkfljMQhwVD+3/4hSoUCc4Z0gY/KWeLIbINUQ4rPPvss/vrrL2zbtg2PPfYYMjIy0KNHDyQnJ9d6zLFjxzBr1iydxGL8+PEoKChAWdndHsHvvvsOjzzyCHx9fdG0aVOMGjUKly9f1j4O3B1+CggI0N738vKCv78/3NzcdMouXrzY4PaMHDkS2dnZ2tvUqVNrrHfq1Cn4+fnpDEkFBQWhWbNmOHXqFAAgIiICmZmZqKysxL59+xAZGalNgv766y+cPXsWkZGRDY7NWOQ1I4mISAKxvdsgvKMn8orL4O/hwmTHjOoaUjT16+Dk5IQBAwZgwIABmD59OsaNG4f4+Hi8+OKLNda/ceMGEhISMGTIkBrPlZeXhyeffBKvvfYaPvroI7Ro0QKZmZl46aWXUFFRod2R+t5LLigUihrLNBpNg9uiUqnQoUOHBtevS3h4OK5fv46jR49i//79mDNnDry9vTF37lyEhISgdevWuP/++43yXPpgwkNEZAQ+KmcmOhKoGlL8e9Ij1ZBiUFCQdim6vb19tUnDPXr0wJkzZ2pNLLKysqDRaDB//nzY2d0dgLl3OEtqnTt3xvnz53H+/HltL8+vv/6Ka9euISgoCMDdobyuXbti8eLFsLe3R2BgIFq1aoXY2Fhs375dkuEsgENaRERkxaQYUrx8+TIefvhhrF27Fr/88gtyc3OxadMmfPzxxxg8eDCAu5v1paeno7CwEFevXgUAzJgxA2vWrEFCQgJOnjyJU6dOYcOGDfjggw8AAB06dMDt27exaNEinDt3Dl9++SWWLVtmsnYYIjo6GsHBwRg5ciSOHj2Kw4cPY/To0YiIiECvXr209SIjI7Fu3TptctOiRQt07twZKSkpTHiIiIgMEdu7DTLjorB+/IPIjIsy+R5Ibm5uCA0NxcKFCxEeHo4uXbpg+vTpGD9+PBYvXgwAmD9/Pvbs2QM/Pz90794dABATE4Pt27dj9+7d6N27Nx588EEsXLgQbdu2BQCEhIRgwYIFmDdvHrp06YJ169YhMTHRpG3Rl0KhwNatW9G8eXOEh4cjOjoa7du3R0pKik69iIgIVFZW6szViYyMrFZmTgohhKi/mnyUlJRApVJBrVbD3d1d6nCIiGzWzZs3kZubi3bt2sHJyUnqcMgC1PU30djPb/bwEBERkewx4SEiIpKpH374QWcZ/L03W8JVWkRERDLVq1cvZGdnSx2GRWDCQ0REJFPOzs5G21/H2nFIi4iIJGVja2eoDqb8W2DCQ0REkqjaHfjvl00g21ZRUQEAUCqVRj83h7SIiEgSSqUSzZo1017zycXFBQqFop6jSK40Gg0uXboEFxcXNGli/PSECQ8REUnG29sbAPS60CXJl52dHdq0aWOSxJcJDxERSUahUMDHxwetWrXC7du3pQ6HJObg4KC9jpixMeEhIiLJKZVKk8zbIKrCScskKwXqchzMKUaBulzqUIiIyIKwh4dkI+VIPqamHodGAHYKIHFIsMkvIkhERNaBPTwkCwXqcm2yAwAaAUxLPcGeHiIiAsCEh2Qit7hUm+xUqRQCecXc34OIiJjwkEy083CF3T2rGJUKBfw9XKQJiIiILAoTHpIFH5UzEocEQ/l/ezcoFQrMGdIFPipniSMjIiJLwEnLJBuxvdsgvKMn8orL4O/hwmSHiIi0mPCQrPionJnoEBFRNRzSIiIiItmTNOHZv38/Bg0ahNatW0OhUGDLli31HpORkYEePXrA0dERHTp0QHJyssnjJCIiIusmacJTWlqKkJAQLFmypEH1c3Nz8cQTTyAqKgrZ2dmYNGkSxo0bh127dpk4UiIiIrJmks7hefzxx/H44483uP6yZcvQrl07zJ8/HwDQuXNnZGZmYuHChYiJiTFVmERERGTlrGoOz6FDhxAdHa1TFhMTg0OHDkkUEREREVkDq1qlVVhYCC8vL50yLy8vlJSUoLy8HM7O1Vfn3Lp1C7du3dLeLykpMXmcREREZFmsqofHEImJiVCpVNqbn5+f1CERERGRmVlVwuPt7Y2ioiKdsqKiIri7u9fYuwMAU6dOhVqt1t7Onz9vjlCJiIjIgljVkFZYWBjS0tJ0yvbs2YOwsLBaj3F0dISjo6OpQyMiIiILJmkPz40bN5CdnY3s7GwAd5edZ2dnIz8/H8Dd3pnRo0dr67/66qs4d+4c3n33XZw+fRqff/45Nm7ciMmTJ0sRPhEREVkJSROen376Cd27d0f37t0BAFOmTEH37t0xY8YMAEBBQYE2+QGAdu3aYceOHdizZw9CQkIwf/58/Oc//+GSdCIiIqqTQgghpA7CnEpKSqBSqaBWq+Hu7i51OERERNQAjf38tqpJy0RERGS4AnU5DuYUo0BdLnUoZmdVk5aJiIjIMClH8jE19Tg0ArBTAIlDghHbu43UYZkNe3iIiIhkrkBdrk12AEAjgGmpJ2yqp4cJDxERkczlFpdqk50qlUIgr7hMmoAkwISHiIhI5tp5uMJOoVumVCjg7+EiTUASYMJDREQkcz4qZyQOCYZScTfrUSoUmDOkC3xUNV+lQI44aZmIiKiBCtTlyC0uRTsPV6tLFmJ7t0F4R0/kFZfB38PF6uJvLCY8REREDSCHVU4+KmebS3SqcEiLiIioHlzlZP2Y8BAREdWDq5ysHxMeIiKienCVk/VjwkNERmfL29eTPHGVk/XjpGUiMio5TOwkqomtr3KyduzhISKj4cROkjsflTPCAloy2bFCTHiIqF4NHaLixE4islQc0iKiOukzRFU1sfPvSQ8ndhKRJWAPDxHVSt8hKk7sJCJLxR4eIqpVXUNUtSUxljqx05ovCUBEjceEh4hqZegQlaVtX8+VY0TEIS0iqpUchqi4coyIAPbwEFE9LHWIqqEMGZYjIvlhwkNE9bK0ISp9cOUYEQEc0iIimZPDsBwRNR57eIhI9qx9WI6IGo8JDxHZBEsbluMyeSLzYsJDRGRmXCZPZH6cw0NEZEZcJk8kDSY8RERmxAusEkmDCQ8RkRlVLZP/Oy6TJzI9JjxERGbEZfJE0uCkZSIiM+MyeSLzY8JDRCQBS1smTyR3HNIiIiIi2WPCQ0RERLLHhIeIiIhkjwkPERERyR4THiIiIpI9JjxEREQke0x4iIiISPaY8BAREZHsMeEhIiIi2WPCQ0RERLLHhIeIiMhECtTlOJhTjAJ1udSh2DxeS4uIiMgEUo7kY2rqcWgEYKcAEocEI7Z3G6nDslns4SEiIjKyAnW5NtkBAI0ApqWeYE+PhJjwEBERGVlucak22alSKQTyisukCYiY8BARERlbOw9X2Cl0y5QKBfw9XKQJiJjwEBERGZuPyhmJQ4KhVNzNepQKBeYM6QIflbPEkdkuTlomIiIygdjebRDe0RN5xWXw93BhsiMxJjxEREQm4qNyZqJjISxiSGvJkiXw9/eHk5MTQkNDcfjw4TrrJyUloVOnTnB2doafnx8mT56MmzdvmilaIiIisjaSJzwpKSmYMmUK4uPjcfToUYSEhCAmJgYXL16ssf5XX32FuLg4xMfH49SpU/jiiy+QkpKCadOmmTlyIiIishaSJzwLFizA+PHjMXbsWAQFBWHZsmVwcXHBypUra6x/8OBB9OvXDyNGjIC/vz8effRRDB8+vN5eISIiIrJdkiY8FRUVyMrKQnR0tLbMzs4O0dHROHToUI3H9O3bF1lZWdoE59y5c0hLS8PAgQNrrH/r1i2UlJTo3IiIiMi2SDppubi4GJWVlfDy8tIp9/LywunTp2s8ZsSIESguLsZDDz0EIQTu3LmDV199tdYhrcTERCQkJBg9diIiIrIekg9p6SsjIwNz5szB559/jqNHjyI1NRU7duzA7Nmza6w/depUqNVq7e38+fNmjpiIiIikJmkPj4eHB5RKJYqKinTKi4qK4O3tXeMx06dPx6hRozBu3DgAQHBwMEpLS/Hyyy/j/fffh52dbg7n6OgIR0dH0zSAiIiIrIKkPTwODg7o2bMn0tPTtWUajQbp6ekICwur8ZiysrJqSY1SqQQACCFqOoSIiIhsnOQbD06ZMgVjxoxBr1690KdPHyQlJaG0tBRjx44FAIwePRq+vr5ITEwEAAwaNAgLFixA9+7dERoairNnz2L69OkYNGiQNvEhIiIi+jvJE57Y2FhcunQJM2bMQGFhIbp164adO3dqJzLn5+fr9Oh88MEHUCgU+OCDD3DhwgV4enpi0KBB+Oijj6RqAhEREVk4hbCxcaCSkhKoVCqo1Wq4u7tLHQ4RERE1QGM/v61ulRYRERGRvpjwEBERkewx4SEiIiLZY8JDREREsseEh4iIiGSPCQ8RERHJHhMeIjK6AnU5DuYUo0BdLnUoREQALGDjQSKSl5Qj+ZiaehwaAdgpgMQhwYjt3UbqsFCgLkducSnaebjCR+UsdThEZGZMeIjIaArU5dpkBwA0ApiWegLhHT0lTTIsNQkjIvPhkBYRGU1ucak22alSKQTyisukCQi1J2EcbiOyLUx4iMho2nm4wk6hW6ZUKODv4SJNQLDMJIyIzI8JDxEZjY/KGYlDgqFU3M16lAoF5gzpIulwliUmYURkfpzDQ0RGFdu7DcI7eiKvuAz+Hi6STxCuSsKmpZ5ApRAWkYQRkfkx4SEio/NROVtUQmFpSRgRmR8THiKyCZaWhBGReXEODxEREckeEx4iIiKSPSY8RCbGyywQEUmPc3iITIg7/FovU1+Kgpe6IDIvJjxEJmKpl1mg+pk6UWUiTGR+HNIiMhHu8GudTH0pCl7qgkgaTHiITIQ7/FonUyeqTISJpMGEh8hELPEyC1Q/UyeqTISJpME5PEQmxB1+rY+pL0XBS10QSUMhhBD1V5OPkpISqFQqqNVquLu7Sx0OEVmoAnW5SRNVU5+fSG4a+/nNHh4iohqY+lIUvNQF1YTbFZgOEx4iIiILwO0KTIuTlomIiCTG7QpMjwkPERGRxLhdgekx4SEdvO4TEZH5cbsC0zMo4WnTpg1Gjx6NL774Ajk5OcaOiSSSciQf/ebuxYgVP6Lf3L1IOZIvdUhEZEb8wiMd7ttlegYtS1+7di3279+PjIwMnD17Fr6+voiIiEBERAQiIyNx//33myJWo+Cy9JoVqMvRb+5enS5VpUKBzLgo/sMR2QBOmLUM3K6gdpIsS3/hhRfwwgsvAAAKCgqwb98+bN++Ha+//jo0Gg0qKysNOS1JqK7xY/7TEckbL3RrObhdgekYvCy9rKwMmZmZyMjIwPfff4+ff/4ZXbp0QWRkpBHDI3OpGj++t4eH48dE8scvPGQLDEp4+vbti59//hmdO3dGZGQk4uLiEB4ejubNmxs7PjITbndPZLv4hYdsgUEJz+nTp+Hq6orAwEAEBgaic+fOTHZkgNd9IrJN/MJDtsCgSctCCBw/fhwZGRnYt28f9u/fDwcHB0RERCAqKgrjx483RaxGwUnLREQ144RZsmSN/fxu9MVDhRDIysrC4sWLsW7dOouftMyEh4iIyPpIskrr6NGjyMjIQEZGBjIzM3H9+nUEBwdjwoQJiIiIMOSURERERCZjUMLTp08fdO/eHRERERg/fjzCw8OhUqmMHRsRERGRURiU8Fy5coXDQURERGQ1DEp4qpKdrKwsnDp1CgAQFBSEHj16GC8yIiIiIiMxKOG5ePEiYmNjsW/fPjRr1gwAcO3aNURFRWHDhg3w9PQ0ZoxEREREjWLQxUMnTJiAGzdu4OTJk7hy5QquXLmCEydOoKSkBG+++aaxYyQiIiJqFIOWpatUKnz33Xfo3bu3Tvnhw4fx6KOP4tq1a8aKz+i4LJ2IiMj6NPbz26AeHo1GA3t7+2rl9vb20Gg0hpySiIiIyGQMSngefvhhTJw4EX/99Ze27MKFC5g8eTIeeeQRowVHREREZAwGJTyLFy9GSUkJ/P39ERAQgICAALRr1w4lJSVYtGiRsWMkIiIiahSDVmn5+fnh6NGj+O6773D69GkAQOfOnREdHW3U4IiIiIiModHX0rI2nLRMRERkfcx2La3PPvuswSfVd2n6kiVL8Mknn6CwsBAhISFYtGgR+vTpU2v9a9eu4f3330dqaiquXLmCtm3bIikpCQMHDtTreYmIiMg2NDjhWbhwYYPqKRQKvRKelJQUTJkyBcuWLUNoaCiSkpIQExODM2fOoFWrVtXqV1RUYMCAAWjVqhU2b94MX19f/PHHH9oNEImIiIjuJfmQVmhoKHr37o3FixcDuLvk3c/PDxMmTEBcXFy1+suWLcMnn3yC06dP17g0vj4c0iIiIrI+Zt2Hx9h77FRUVCArK0tnsrOdnR2io6Nx6NChGo/Ztm0bwsLC8M9//hNeXl7o0qUL5syZg8rKyhrr37p1CyUlJTo3IiIisi16JTz29va4ePGi9v4777yDK1euGPzkxcXFqKyshJeXl065l5cXCgsLazzm3Llz2Lx5MyorK5GWlobp06dj/vz5+PDDD2usn5iYCJVKpb35+fkZHC8RERFZJ70SnntHv5YvX272y0hoNBq0atUK//73v9GzZ0/Exsbi/fffx7Jly2qsP3XqVKjVau3t/PnzZo2XiIiIpGfQPjxVGjv9x8PDA0qlEkVFRTrlRUVF8Pb2rvEYHx8f2NvbQ6lUass6d+6MwsJCVFRUwMHBQae+o6MjHB0dGxUnERERWTeDdlo2FgcHB/Ts2RPp6enaMo1Gg/T0dISFhdV4TL9+/XD27Fmd+US//fYbfHx8qiU7RERERIABPTwzZsyAi4sLgLuTjj/66COoVCqdOgsWLGjw+aZMmYIxY8agV69e6NOnD5KSklBaWoqxY8cCAEaPHg1fX18kJiYCAF577TUsXrwYEydOxIQJE/D7779jzpw5eu/9Q0RkTQrU5cgtLkU7D1f4qJylDofI6uiV8ISHh+PMmTPa+3379sW5c+d06igUCr0CiI2NxaVLlzBjxgwUFhaiW7du2Llzp3Yic35+Puzs/tcR5efnh127dmHy5Mno2rUrfH19MXHiRLz33nt6PS8RkbVIOZKPqanHoRGAnQJIHBKM2N5tpA6LyKpIvg+PuXEfHiKyJgXqcvSbuxeav71TKxUKZMZFsaeHbIpZ9+HRl7u7e7UeICIiarjc4lKdZAcAKoVAXnGZNAERWSmTJjw21nlERGR07TxcYXfPTAGlQgF/DxdpAiKyUpKu0iIikosCdTkO5hSjQF1u1PP6qJyROCQYyv+bH6lUKDBnSBcOZxHpqVH78BARkeknFcf2boPwjp7IKy6Dv4cLkx0j4uo328GEh8jE+IYqbwXqcm2yAwAaAUxLPYHwjp5Gfb19VM78+zEyrn6zLSZNePRdok4kN3xDlb+6JhUzQbFc5kpUyXJw0jKRidT2hmrsOR4kLU4qtk5c/WZ7TJrw/L//9//g6+tryqcgmTPVRFBz4BuqbeCkYuvERNX2GDSkJYTA5s2b8f333+PixYs617UCgNTUVADAQw891PgIyWYZMhxkSfNlqt5Q790wjm+o8sNJxdanKlGdlnoClUIwUbUBBiU8kyZNwvLlyxEVFQUvLy/O1SGjM2R83dLmy/AN1bZwUrH1YaJqWwxKeL788kukpqZi4MCBxo6HCID+E0EtdQIi31CJLBsTVdthUMKjUqnQvn17Y8dCpKXvcJAlr5ThGyoRkfQMmrQ8c+ZMJCQkoLzc+iaSknXQdyIoJyASEVFdDLpaenl5OZ555hkcOHAA/v7+sLe313n86NGjRgvQ2Hi1dOtSoC5v8HBQypH8avNluOcNUcNZ0qR/ons19vPboCGtMWPGICsrCy+88AInLZNJ6TMcxPkyRIaztEn/RMZmUA+Pq6srdu3aZZXLztnDQ0Skq0Bdjn5z91abM5cZF8UvDmQxGvv5bdAcHj8/PyYLREQywU0yyRYYlPDMnz8f7777LvLy8owcDhERGYM+u5Rz0j/ZAoPm8LzwwgsoKytDQEAAXFxcqk1avnLlilGCIyIi/ek7H4ebZJItMCjhSUpKMnIYRNLhyhSSE0M34eSkf5I7g1dpEckBV6aQ3DRmE05ukkly1uirpd+8eRMlJSU6NyJrUNs3YWu8MjtRFc7HIaqZQQlPaWkp3njjDbRq1Qqurq5o3ry5zo3IGnBlCsmRvruUE9kKg4a03n33XXz//fdYunQpRo0ahSVLluDChQtYvnw55s6da+wYiUxC3+t1EVkLzschqs6gHp5vv/0Wn3/+OZ599lk0adIE/fv3xwcffIA5c+Zg3bp1xo6RyCT4TZjkzEfljLCAlvx7Jvo/BvXwXLlyRXu1dHd3d+0y9Iceegivvfaa8aIjMjFDvglzVRcRkfUxKOFp3749cnNz0aZNGwQGBmLjxo3o06cPvv32WzRr1szIIRKZlj4rU7iqi4jIOhk0pDV27FgcO3YMABAXF4clS5bAyckJkydPxjvvvGPUAIksBVd1ERFZL4N6eCZPnqz9OTo6GqdPn0ZWVhY6dOiArl27Gi04a8OhDnlrzP4mREQkLYMSnr+7efMm2rZti7Zt2xojHqvFoQ7546ouIiLrZdCQVmVlJWbPng1fX1+4ubnh3LlzAIDp06fjiy++MGqA1oBDHbaBq7qIiKyXQQnPRx99hOTkZHz88cdwcHDQlnfp0gX/+c9/jBacteAGdrYjtncbZMZFYf34B5EZF8VePCIiK2FQwrNmzRr8+9//xsiRI6FUKrXlISEhOH36tNGCsxbcyt22cH8TIiLrY1DCc+HCBXTo0KFauUajwe3btxsdlLXhUAcREZFlM2jSclBQEH744YdqE5U3b96M7t27GyUwa8Ot3ImIiCyXQQnPjBkzMGbMGFy4cAEajQapqak4c+YM1qxZg+3btxs7RquhzwZ2REREZD4GDWkNHjwY3377Lb777ju4urpixowZOHXqFL799lsMGDDA2DESERERNYpCCCHqryYfJSUlUKlUUKvVcHd3lzocIiIiaoDGfn4b1MPTvn17XL58uVr5tWvXtBcVJSJqqAJ1OQ7mFHPvKjI7/u3ZDoPm8OTl5aGysrJa+a1bt3DhwoVGB0VEtoO7lJNU+LdnW/RKeLZt26b9edeuXVCpVNr7lZWVSE9Ph7+/v9GCIyJ5q22X8vCOnlwAQCbFvz3bo1fC8/TTTwMAFAoFxowZo/OYvb09/P39MX/+fKMFR43HC5qSJeMFWU2H//t149+e7dEr4dFoNACAdu3a4ciRI/Dw8DBJUGQc7K4lS8cLspqGof/7tpQk8W/P9ug1afnQoUPYvn07cnNztcnOmjVr0K5dO7Rq1Qovv/wybt26ZZJAST+8oClZA+5SbnyG/u+nHMlHv7l7MWLFj+g3dy9SjuSbIVrp8G/P9ujVw5OQkICoqCg8+eSTAIDjx4/jpZdewosvvojOnTvjk08+QevWrTFz5kxTxEp6YHctWQvuUm5chvzv2+p8Fv7t2Ra9Ep5jx47hww8/1N7fsGEDQkNDsWLFCgCAn58f4uPjmfBYAHbXkjXhLuXGY8j/vi1/QeLfnu3Qa0jr6tWr8PLy0t7ft28fHn/8ce393r174/z588aLjgzG7loi22TI/35VkvR3/IJEcqNXD4+Xlxdyc3Ph5+eHiooKHD16FAkJCdrHr1+/Dnt7e6MHSYZhdy2RbdL3f78qSZqWegKVQjT4C5ItTXIm66dXwjNw4EDExcVh3rx52LJlC1xcXNC/f3/t47/88gsCAgKMHiQZjt218mfIhw4/qORP3/99fZMkrgIla6NXwjN79mwMGTIEERERcHNzw+rVq+Hg4KB9fOXKlXj00UeNHiQR1cyQDx1+UFFtGpok2eokZ7Jues3h8fDwwP79+3H16lVcvXoVzzzzjM7jmzZtQnx8vN5BLFmyBP7+/nByckJoaCgOHz7coOM2bNgAhUKh3RCRyJYYsvyY2xWQMdQ1yZnIUhl08VCVSgWlUlmtvEWLFjo9Pg2RkpKCKVOmID4+HkePHkVISAhiYmJw8eLFOo/Ly8vD22+/rTOkRmRLDPnQ4QcVGQMnOZM1MijhMaYFCxZg/PjxGDt2LIKCgrBs2TK4uLhg5cqVtR5TWVmJkSNHIiEhgVdnJ5tlyIcOP6jIGLgKlKyRpAlPRUUFsrKyEB0drS2zs7NDdHQ0Dh06VOtxs2bNQqtWrfDSSy/V+xy3bt1CSUmJzo1IDgz50OEHFRlLbO82yIyLwvrxDyIzLorzwMji6TVp2diKi4tRWVmps7cPcHf5++nTp2s8JjMzE1988QWys7Mb9ByJiYk6S+eJ5MSQrQe4XQEZC1eBkjWRfEhLH9evX8eoUaOwYsWKBl+4dOrUqVCr1dobN0YkufFROSMsoKVeHzyGHENEZM0k7eHx8PCAUqlEUVGRTnlRURG8vb2r1c/JyUFeXh4GDRqkLau6gnuTJk1w5syZavsAOTo6wtHR0QTRExERkbWQtIfHwcEBPXv2RHp6urZMo9EgPT0dYWFh1eoHBgbi+PHjyM7O1t6eeuopREVFITs7G35+fuYMn4iIqE4F6nIczCnm1g8WQNIeHgCYMmUKxowZg169eqFPnz5ISkpCaWkpxo4dCwAYPXo0fH19kZiYCCcnJ3Tp0kXn+GbNmgFAtXIiIjnh7tjWh5t8WhbJE57Y2FhcunQJM2bMQGFhIbp164adO3dqJzLn5+fDzs6qphoRERkVPzitD3ejtjwKIYSov5p8lJSUQKVSQa1Ww93dXepwiIjqVKAuR7+5e3U2jFQqFMiMi+IHpwU7mFOMESt+rFa+fvyDCAtoKUFEhrOU3sXGfn5L3sNDRES1q2t3bCY8lqtqk897E1Vr2+RTTr2LHCsiIrJg3B3bOslhk0+5XXuPPTxERBas6oNzWuoJVAphlR+ctsraN/mUW+8iEx4iIgtn7R+ctsyad6OWy7BcFQ5pERFZAe6OTeYmh2G5v2MPDxEREdVITr2LTHiIiIioVtY8LPd3HNIiIiIi2WPCQ0Q2gdc0IrJtHNIiItmT0+ZpRGQY9vAQkazJbfO0hmKPFpEu9vAQkazJbfO0hmCPFlF17OEhIlmztUsz2GqPFlF9mPAQkazJbfO0+tTVo0VkyzikRToK1OXILS5FOw9X2X4gkO2R0+Zp9ZHb5QCIjIUJD2nJYdyfCRvVRi6bp9WHFxslqplCCCHqryYfJSUlUKlUUKvVcHd3lzoci1GgLke/uXurfSvMjIuymjdKOSRsRMZSoC63iR4tsh2N/fzmHB4CYP3j/pyoSaSLFxsl0sWEhwBY/0oWa0/YiIjItJjwEADrX8li7QkbERGZFictk5Y1r2ThRE0iIqoLEx7SYc0rWaw5YSMiItNiwkOyYs0JGxE1DreloLow4ZE5vgEQkS3gthRUHyY8MsY3ACKyBbVtSxHe0ZNf9EiLq7RkivvSEJGtsOVtKQrU5TiYU8z39gZgD49M1fUGwG88RCQntnr9MPbi64c9PDLFfWmIyFZY+z5ihmAvvv7YwyNT3JeGiGyJrW1LwV58/THhkTFbewMgIttmS9tS2OowXmNwSEvmeAFBIrJWnJBbO1scxmss9vAQEZHF4YTc+rEXXz/s4SEim8DeAuvBCbkNx178hmMPDxHJHnsLrAsn5JIpsIdH5o6dv4oVP+Tg2PmrUodCJAn2FlgfbqtBpsAeHhl7a2M2vj56QXv/2R6+mD+sm3QBEUmAvQXWh9tqkCkw4ZGpY+ev6iQ7APD10QsYHdYWIX7NJYqKyPy4fNc6cUIuGRuHtGTqcN6VGst/yuPQFtkWLt+1XpyQS8bEHh6Z6uPfosbyXv7s3SHbw94CImIPj0yF+DXHsz18dcqe7eHL4SyyWewtIDnidgsNxx4eGZs/rBtGh7XFT3lX0cu/OZMdIiIZ4XYL+mHCI3Mhfkx0iIjkprbtFsI7erIXsxYc0iIiIrIydW23QDVjwkNERGRluDmj/pjwEBERWRlut6A/zuEhIiKyQtxuQT9MeIiIiKyUj8qZiU4DcUiLiIiIZI8JDxEREckeEx4iIiKSPYtIeJYsWQJ/f384OTkhNDQUhw8frrXuihUr0L9/fzRv3hzNmzdHdHR0nfUtGbcEJyIiMg/JE56UlBRMmTIF8fHxOHr0KEJCQhATE4OLFy/WWD8jIwPDhw/H999/j0OHDsHPzw+PPvooLly4YObIGyflSD76zd2LESt+RL+5e5FyJF/qkIiIiGRLIYQQ9VczndDQUPTu3RuLFy8GAGg0Gvj5+WHChAmIi4ur9/jKyko0b94cixcvxujRo+utX1JSApVKBbVaDXd390bHb4gCdTn6zd2rs0umUqFAZlwUZ9sTERHVoLGf35L28FRUVCArKwvR0dHaMjs7O0RHR+PQoUMNOkdZWRlu376NFi1a1Pj4rVu3UFJSonOTGrcEJyIiMi9JE57i4mJUVlbCy8tLp9zLywuFhYUNOsd7772H1q1b6yRNf5eYmAiVSqW9+fn5NTruxuKW4EREROYl+Ryexpg7dy42bNiAb775Bk5OTjXWmTp1KtRqtfZ2/vx5M0dZHbcEty2cnE5EJD1Jd1r28PCAUqlEUVGRTnlRURG8vb3rPPbTTz/F3Llz8d1336Fr16611nN0dISjo6NR4jUmbgluG1KO5GNq6nFoBGCnABKHBCO2dxupwyITKFCXI7e4FO08XPn/TGSBJO3hcXBwQM+ePZGenq4t02g0SE9PR1hYWK3Hffzxx5g9ezZ27tyJXr16mSNUk/BROSMsoCXfHGWqQF2uTXYAQCOAaakn2NMjQ1x1SWT5JB/SmjJlClasWIHVq1fj1KlTeO2111BaWoqxY8cCAEaPHo2pU6dq68+bNw/Tp0/HypUr4e/vj8LCQhQWFuLGjRtSNYGoRpycbhuY2BJZB8kvHhobG4tLly5hxowZKCwsRLdu3bBz507tROb8/HzY2f0vL1u6dCkqKiowdOhQnfPEx8dj5syZ5gydZMJUQxFVk9Pv3X6Ak9Plpa7Elr23RJZD8n14zM0S9uEhy2HqOTYpR/IxLfUEKoXQTk7nHB554b5aRObR2M9vJjxks8z1QVWgLufkdJljYktkeo39/JZ8SItIKuYaivBROTPRkTmuuiSyfEx4yGZxjg0ZExNbIssm+SotIqlY6gaQ3KiQiBqK7xcNxx4esmmWNhTBjQqJqKH4fqEf9vCQzbOUDSDltJ8Lv3USmZac3i/MhT08RBZCLvu58FsnkenJ5f3CnNjDQ2QhqiZR/521TaLmt04i85DD+4W5MeEhshCWOolaH7ycBpF5GPp+YcvDzRzSIrIgljaJWl9c6k9kPvq+X9j6cDN7eIgsjKVMojaEHHqpiKxJQ98vONzMHh4iMjJr76UikiNOcmbCQ0QNoO8V5bnrMJFl4XAzh7SIqB4pR/LRb+5ejFjxI/rN3YuUI/lSh0REeuJwM6+WLnU4RBbNXFeUJyLzKFCXW+1wM6+WTmTj9B1u0gfH/YnkxZaHm5nwEOnJlAmGvky9zJTj/kQkF5zDQ6QHS5rPYo5lphz3JyK5YA8PUQPVlmCEd/SUJAEw13CTrS4zt6SePCJqPCY81Ci29KFgafNZzDncZGvj/ra+Iy2RHHFIiwxmScM75mBpF+vjcJNpcEdaInliDw8ZxNKGd8yhKsGYlnoClUJYRIJhq8NNpmRpPXlEZBxMeMggtvqhYIkJhq0NN5kaV6YRyROHtMgglja8Y07WfHFPqh+HConkiT08ZBBLHN4hMhZL7MkjosZhwmNFLG1FFD8USM44VEgkL0x4rISlLpPlhwJZC0v7wkBE5sWExwrY4oooImOy1C8MRGQ+nLRsBepaEVWfAnU5DuYUcw8RslncV4eIAPbwWAVDl8nyWy2R7W6hQES62MNjBQxZJstvtUR32fIWCkT0P+zhsRL6rojit1qiu7iFAhEBTHisij4rorhbLNH/cAsF28CVeFQXJjwyxW+1RLq4hYK8cc6i5bDUxFMhhBD1V5OPkpISqFQqqNVquLu7Sx2OyRWoy/mtlohkrUBdjn5z91br0c6Mi+L7npmZMvFs7Oc3Jy3LHK/7RERy15itO8h4LH2xDBMeCXGPHCKixjPnSjy+b9fO0hNPzuGRiCHdfpY6LkpEJCVzzVnkPKG6WfpiGc7hkYAh4838RyMiqpsp5yxynlDDpBzJr5Z4WsocHvbwSEDfPXJ4LS0iovqZciUe9zZrGEveAoIJjwT07fbjPxpZGw6/ktxY+nCNJbHULSA4aVkC+l4qglvjkzVJOZKPfnP3YsSKH9Fv7l6kHMmXOiSiRjPkEj9kWTiHR0L6jDebclyUyFg4z4HkjnubSYdzeKyYPt1+ljwuSlSFw6+mw2FCy2CpwzVUPyY8VoT/aGTpOM/BNLhKk6jxOIeHiIzGluc5mGpDugJ1OeK+1l2lGZd6nBvfGQk3ErQd7OEhIqOyxeFXU/bAZP1xFfdOtBQCOPrHVTzRVf6/W1Niz5ltYQ8PERmdLV3DzdTXD6ptXYltLTcxPku/7hMZHxMeIqJGMPX1g3r5t8A9u1JAAaCnf3OjnN9WWfp1n6yZpQ4TMuEhImoEU++T5aNyxtxng7Vv1nYA5j4bbBO9Z6bE/c0aTp8ExpL34bKIhGfJkiXw9/eHk5MTQkNDcfjw4Trrb9q0CYGBgXByckJwcDDS0tLMFCkRkS5zTNSO7d0GB6Y+jPXjH8SBqQ9znokR2PIEe33ok8BY+jCh5JOWU1JSMGXKFCxbtgyhoaFISkpCTEwMzpw5g1atWlWrf/DgQQwfPhyJiYl48skn8dVXX+Hpp5/G0aNH0aVLFwlaQES2LrZ3GwR6N8WRvKvo7d8cIX7GH27ithTGZ4sT7PWh73UcLX0fLsl3Wg4NDUXv3r2xePFiAIBGo4Gfnx8mTJiAuLi4avVjY2NRWlqK7du3a8sefPBBdOvWDcuWLav3+Sxpp2Uikgeu9iE5OphTjBErfqxWvn78gwgLaFmt3NQ7rTf281vSIa2KigpkZWUhOjpaW2ZnZ4fo6GgcOnSoxmMOHTqkUx8AYmJiaq1/69YtlJSU6NyIiIzF0rvxiQyl7zwnSx8mlHRIq7i4GJWVlfDy8tIp9/LywunTp2s8prCwsMb6hYWFNdZPTExEQkKCcQImIrqHpXfjExmqKoG59zqOdf1dW/IwoeRzeExt6tSpmDJlivZ+SUkJ/Pz8JIyIiOSEl9MgOTMkgbHU+WaSJjweHh5QKpUoKirSKS8qKoK3t3eNx3h7e+tV39HREY6OjsYJmIjoHoZ8CyayJpaawOhL0jk8Dg4O6NmzJ9LT07VlGo0G6enpCAsLq/GYsLAwnfoAsGfPnlrrExGZWmzvNsiMi8L68Q8iMy6KE5aJLJDkQ1pTpkzBmDFj0KtXL/Tp0wdJSUkoLS3F2LFjAQCjR4+Gr68vEhMTAQATJ05EREQE5s+fjyeeeAIbNmzATz/9hH//+99SNoOIbJxcvgUTyZXkCU9sbCwuXbqEGTNmoLCwEN26dcPOnTu1E5Pz8/NhZ/e/jqi+ffviq6++wgcffIBp06bh/vvvx5YtW7gHDxEREdVK8n14zI378BAREVkfq96Hh4iIiMgcmPAQERGR7DHhISIiItljwkNERESyx4SHiIiIZI8JDxEREckeEx4iIiKSPSY8REREJHtMeIiIiEj2JL+0hLlVbSxdUlIicSRERETUUFWf24ZeIMLmEp7r168DAPz8/CSOhIiIiPR1/fp1qFQqvY+zuWtpaTQa/PXXX2jatCkUCoVRz11SUgI/Pz+cP39e1tfpYjvlhe2UD1toI8B2yk1D2ymEwPXr19G6dWudi4o3lM318NjZ2eG+++4z6XO4u7vL+o+zCtspL2ynfNhCGwG2U24a0k5DenaqcNIyERERyR4THiIiIpI9JjxG5OjoiPj4eDg6OkodikmxnfLCdsqHLbQRYDvlxlzttLlJy0RERGR72MNDREREsseEh4iIiGSPCQ8RERHJHhMeIiIikj0mPHVYsmQJ/P394eTkhNDQUBw+fLjO+klJSejUqROcnZ3h5+eHyZMn4+bNm406pzkYu50zZ86EQqHQuQUGBpq6GfXSp523b9/GrFmzEBAQACcnJ4SEhGDnzp2NOqe5GLudlvh67t+/H4MGDULr1q2hUCiwZcuWeo/JyMhAjx494OjoiA4dOiA5OblaHUt7PU3RTkt7PfVtY0FBAUaMGIGOHTvCzs4OkyZNqrHepk2bEBgYCCcnJwQHByMtLc34wevBFO1MTk6u9lo6OTmZpgENpG87U1NTMWDAAHh6esLd3R1hYWHYtWtXtXpG+d8UVKMNGzYIBwcHsXLlSnHy5Ekxfvx40axZM1FUVFRj/XXr1glHR0exbt06kZubK3bt2iV8fHzE5MmTDT6nOZiinfHx8eKBBx4QBQUF2tulS5fM1aQa6dvOd999V7Ru3Vrs2LFD5OTkiM8//1w4OTmJo0ePGnxOczBFOy3x9UxLSxPvv/++SE1NFQDEN998U2f9c+fOCRcXFzFlyhTx66+/ikWLFgmlUil27typrWOJr6cp2mlpr6e+bczNzRVvvvmmWL16tejWrZuYOHFitToHDhwQSqVSfPzxx+LXX38VH3zwgbC3txfHjx83TSMawBTtXLVqlXB3d9d5LQsLC03TgAbSt50TJ04U8+bNE4cPHxa//fabmDp1qrC3tzfJey0Tnlr06dNH/POf/9Ter6ysFK1btxaJiYk11v/nP/8pHn74YZ2yKVOmiH79+hl8TnMwRTvj4+NFSEiISeI1lL7t9PHxEYsXL9YpGzJkiBg5cqTB5zQHU7TTEl/Pv2vIm+q7774rHnjgAZ2y2NhYERMTo71via/n3xmrnZb8ejakjX8XERFRYyIwbNgw8cQTT+iUhYaGildeeaWRERqHsdq5atUqoVKpjBaXsenbzipBQUEiISFBe99Y/5sc0qpBRUUFsrKyEB0drS2zs7NDdHQ0Dh06VOMxffv2RVZWlrab7dy5c0hLS8PAgQMNPqepmaKdVX7//Xe0bt0a7du3x8iRI5Gfn2+6htTDkHbeunWrWtews7MzMjMzDT6nqZminVUs6fU0xKFDh3R+LwAQExOj/b1Y4utpiPraWcXaX8/6NPT3IAc3btxA27Zt4efnh8GDB+PkyZNSh9QoGo0G169fR4sWLQAY93+TCU8NiouLUVlZCS8vL51yLy8vFBYW1njMiBEjMGvWLDz00EOwt7dHQEAAIiMjMW3aNIPPaWqmaCcAhIaGIjk5GTt37sTSpUuRm5uL/v374/r16yZtT20MaWdMTAwWLFiA33//HRqNBnv27EFqaioKCgoMPqepmaKdgOW9noYoLCys8fdSUlKC8vJyi3w9DVFfOwF5vJ71qe33YE2vZUN06tQJK1euxNatW7F27VpoNBr07dsXf/75p9ShGezTTz/FjRs3MGzYMADGfa9lwmMkGRkZmDNnDj7//HMcPXoUqamp2LFjB2bPni11aEbVkHY+/vjjeO6559C1a1fExMQgLS0N165dw8aNGyWMXD//+te/cP/99yMwMBAODg544403MHbsWNjZyetfpiHtlMPrSf/D11M+wsLCMHr0aHTr1g0RERFITU2Fp6cnli9fLnVoBvnqq6+QkJCAjRs3olWrVkY/fxOjn1EGPDw8oFQqUVRUpFNeVFQEb2/vGo+ZPn06Ro0ahXHjxgEAgoODUVpaipdffhnvv/++Qec0NVO0s6aEoFmzZujYsSPOnj1r/EY0gCHt9PT0xJYtW3Dz5k1cvnwZrVu3RlxcHNq3b2/wOU3NFO2sidSvpyG8vb1r/L24u7vD2dkZSqXS4l5PQ9TXzppY4+tZn9p+D9b0WhrC3t4e3bt3t8rXcsOGDRg3bhw2bdqkM3xlzPdaeX1dNRIHBwf07NkT6enp2jKNRoP09HSEhYXVeExZWVm1D3ulUgkAEEIYdE5TM0U7a3Ljxg3k5OTAx8fHSJHrpzG/eycnJ/j6+uLOnTv4+uuvMXjw4Eaf01RM0c6aSP16GiIsLEzn9wIAe/bs0f5eLPH1NER97ayJNb6e9THk9yAHlZWVOH78uNW9luvXr8fYsWOxfv16PPHEEzqPGfV/U+/p0zZiw4YNwtHRUSQnJ4tff/1VvPzyy6JZs2baJX+jRo0ScXFx2vrx8fGiadOmYv369eLcuXNi9+7dIiAgQAwbNqzB55SCKdr51ltviYyMDJGbmysOHDggoqOjhYeHh7h48aLZ21dF33b+97//FV9//bXIyckR+/fvFw8//LBo166duHr1aoPPKQVTtNMSX8/r16+Ln3/+Wfz8888CgFiwYIH4+eefxR9//CGEECIuLk6MGjVKW79qufY777wjTp06JZYsWVLjsnRLez1N0U5Lez31baMQQlu/Z8+eYsSIEeLnn38WJ0+e1D5+4MAB0aRJE/Hpp5+KU6dOifj4eMmXpZuinQkJCWLXrl0iJydHZGVlieeff144OTnp1DE3fdu5bt060aRJE7FkyRKd5fXXrl3T1jHW/yYTnjosWrRItGnTRjg4OIg+ffqI//73v9rHIiIixJgxY7T3b9++LWbOnCkCAgKEk5OT8PPzE6+//rrOB0d955SKsdsZGxsrfHx8hIODg/D19RWxsbHi7NmzZmxRzfRpZ0ZGhujcubNwdHQULVu2FKNGjRIXLlzQ65xSMXY7LfH1/P777wWAareqto0ZM0ZERERUO6Zbt27CwcFBtG/fXqxataraeS3t9TRFOy3t9TSkjTXVb9u2rU6djRs3io4dOwoHBwfxwAMPiB07dpinQbUwRTsnTZqk/Xv18vISAwcO1Nm/Rgr6tjMiIqLO+lWM8b+pEKKWcQgiIiIimeAcHiIiIpI9JjxEREQke0x4iIiISPaY8BAREZHsMeEhIiIi2WPCQ0RERLLHhIeIiIhkjwkPEZEFyMjIgEKhwLVr16QOhUiWmPAQ2ZgXX3wRCoUCc+fO1SnfsmULFAqF9r4QAitWrEBYWBjc3d3h5uaGBx54ABMnTmzwxQnLysowdepUBAQEwMnJCZ6enoiIiMDWrVu1dfz9/ZGUlGSUtpla1e9OoVDA3t4e7dq1w7vvvoubN2/qdZ7IyEhMmjRJp6xv374oKCiASqUyYsREVIUJD5ENcnJywrx583D16tUaHxdCYMSIEXjzzTcxcOBA7N69G7/++iu++OILODk54cMPP2zQ87z66qtITU3FokWLcPr0aezcuRNDhw7F5cuXjdkcs3rsscdQUFCAc+fOYeHChVi+fDni4+MbfV4HBwd4e3vrJJ1EZEQGXi6DiKzUmDFjxJNPPikCAwPFO++8oy3/5ptvRNVbwvr16wUAsXXr1hrPodFoGvRcKpVKJCcn1/p4TdfRqfLDDz+Ihx56SDg5OYn77rtPTJgwQdy4cUP7+Jo1a0TPnj2Fm5ub8PLyEsOHDxdFRUXax6uu6bNz507RrVs34eTkJKKiokRRUZFIS0sTgYGBomnTpmL48OGitLS0Qe0ZM2aMGDx4sE7ZkCFDRPfu3bX3i4uLxfPPPy9at24tnJ2dRZcuXcRXX32lc45725ybm6uN9+/Xpdu8ebMICgoSDg4Oom3btuLTTz9tUJxEVB17eIhskFKpxJw5c7Bo0SL8+eef1R5fv349OnXqhKeeeqrG4xvaC+Ht7Y20tDRcv369xsdTU1Nx3333YdasWSgoKEBBQQEAICcnB4899hieffZZ/PLLL0hJSUFmZibeeOMN7bG3b9/G7NmzcezYMWzZsgV5eXl48cUXqz3HzJkzsXjxYhw8eBDnz5/HsGHDkJSUhK+++go7duzA7t27sWjRoga1514nTpzAwYMH4eDgoC27efMmevbsiR07duDEiRN4+eWXMWrUKBw+fBgA8K9//QthYWEYP368ts1+fn7Vzp2VlYVhw4bh+eefx/HjxzFz5kxMnz4dycnJBsVKZPOkzriIyLz+3kvx4IMPin/84x9CCN0ensDAQPHUU0/pHDdx4kTh6uoqXF1dha+vb4Oea9++feK+++4T9vb2olevXmLSpEkiMzNTp07btm3FwoULdcpeeukl8fLLL+uU/fDDD8LOzk6Ul5fX+FxHjhwRAMT169eFEP/r4fnuu++0dRITEwUAkZOToy175ZVXRExMTIPaM2bMGKFUKoWrq6twdHQUAISdnZ3YvHlzncc98cQT4q233tLej4iIEBMnTtSpc28Pz4gRI8SAAQN06rzzzjsiKCioQbESkS728BDZsHnz5mH16tU4depUvXXff/99ZGdnY8aMGbhx40aDzh8eHo5z584hPT0dQ4cOxcmTJ9G/f3/Mnj27zuOOHTuG5ORkuLm5aW8xMTHQaDTIzc0FcLcHZNCgQWjTpg2aNm2KiIgIAEB+fr7Oubp27ar92cvLCy4uLmjfvr1O2cWLFxvUHgCIiopCdnY2fvzxR4wZMwZjx47Fs88+q328srISs2fPRnBwMFq0aAE3Nzfs2rWrWlz1OXXqFPr166dT1q9fP/z++++orKzU61xExEnLRDYtPDwcMTExmDp1qk75/fffjzNnzuiUeXp6okOHDmjVqpVez2Fvb4/+/fvjvffew+7duzFr1izMnj0bFRUVtR5z48YNvPLKK8jOztbejh07ht9//x0BAQEoLS1FTEwM3N3dsW7dOhw5cgTffPMNAFQ7r729vfbnqtVVf6dQKKDRaBrcHldXV3To0AEhISFYuXIlfvzxR3zxxRfaxz/55BP861//wnvvvYfvv/8e2dnZiImJqbO9RGR6TaQOgIikNXfuXHTr1g2dOnXSlg0fPhwjRozA1q1bMXjwYKM+X1BQEO7cuYObN2/CwcEBDg4O1XosevTogV9//RUdOnSo8RzHjx/H5cuXMXfuXO38l59++smocTaEnZ0dpk2bhilTpmDEiBFwdnbGgQMHMHjwYLzwwgsAAI1Gg99++w1BQUHa42pq8706d+6MAwcO6JQdOHAAHTt2hFKpNH5jiGSOPTxENi44OBgjR47EZ599pi17/vnnMXToUDz//POYNWsWfvzxR+Tl5WHfvn1ISUlp8AduZGQkli9fjqysLOTl5SEtLQ3Tpk1DVFQU3N3dAdzdh2f//v24cOECiouLAQDvvfceDh48iDfeeAPZ2dn4/fffsXXrVu2k5TZt2sDBwQGLFi3CuXPnsG3btnqHyUzlueeeg1KpxJIlSwDc7R3bs2cPDh48iFOnTuGVV15BUVGRzjH+/v7a32lxcXGNPUxvvfUW0tPTMXv2bPz2229YvXo1Fi9ejLffftss7SKSGyY8RIRZs2bpfOgqFAqkpKQgKSkJaWlpeOSRR9CpUyf84x//gJ+fHzIzMxt03piYGKxevRqPPvooOnfujAkTJiAmJgYbN27Uee68vDwEBATA09MTwN15N/v27cNvv/2G/v37o3v37pgxYwZat24N4O7wWnJyMjZt2oSgoCDMnTsXn376qRF/Iw3XpEkTvPHGG/j4449RWlqKDz74AD169EBMTAwiIyPh7e2Np59+WueYt99+G0qlEkFBQfD09Kxxfk+PHj2wceNGbNiwAV26dMGMGTMwa9asGleiEVH9FEIIIXUQRERERKbEHh4iIiKSPSY8RGSwvy8bv/f2ww8/SB2eXvLz8+tsj77LyonIsnBIi4gMVtdFRH19feHs7GzGaBrnzp07yMvLq/Vxf39/NGnCha1E1ooJDxEREckeh7SIiIhI9pjwEBERkewx4SEiIiLZY8JDREREsseEh4iIiGSPCQ8RERHJHhMeIiIikj0mPERERCR7/x8tmMeyeOa4MQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_52.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTZElEQVR4nO3deXxMZ98/8M9JJJMImSB7RCK2WCIqJU0soWjoomhraysUXSlNKXG3lvAIve+2eqN4/CrRhaK13ZVHkRYlKNK0tGqJRNAkRJsZSQgy1+8PT+YxsshMZjmT83m/XvNq58w5Z77XnDHnm2uVhBACRERERAriYOsAiIiIiKyNCRAREREpDhMgIiIiUhwmQERERKQ4TICIiIhIcZgAERERkeIwASIiIiLFYQJEREREisMEiIiIiBSHCRARydbcuXMhSVKt9pUkCXPnzrVoPH369EGfPn1kez4iqj0mQET0QCkpKZAkSf9o0KABAgICMHbsWFy+fNnW4clOcHCwwefl7e2NXr16YcuWLWY5f2lpKebOnYu9e/ea5XxESsQEiIhqLTExEZ9//jlWrlyJQYMG4YsvvkBMTAxu3rxpkfd79913cePGDYuc29K6dOmCzz//HJ9//jmmTZuGP//8E8OGDcPKlSvrfO7S0lLMmzePCRBRHTSwdQBEZD8GDRqEhx9+GAAwYcIEeHp6YvHixdi+fTuGDx9u9vdr0KABGjSwz5+pgIAAvPDCC/rnY8aMQevWrfHRRx/h1VdftWFkRASwBoiI6qBXr14AgKysLIPtf/zxB5599lk0bdoULi4uePjhh7F9+3aDfW7fvo158+ahTZs2cHFxQbNmzdCzZ0/s3r1bv09VfYDKysrw1ltvwcvLC40bN8bgwYNx6dKlSrGNHTsWwcHBlbZXdc7k5GQ8+uij8Pb2hkqlQocOHbBixQqjPosH8fX1Rfv27ZGdnV3jfleuXMH48ePh4+MDFxcXhIeHY+3atfrXc3Jy4OXlBQCYN2+evpnN0v2fiOob+/zTiohkIScnBwDQpEkT/bbffvsNPXr0QEBAAGbOnAk3Nzds3LgRQ4YMwTfffIOhQ4cCuJuIJCUlYcKECejevTu0Wi2OHTuGjIwMDBgwoNr3nDBhAr744guMHj0a0dHR+P777/HEE0/UqRwrVqxAx44dMXjwYDRo0AD/+c9/8Prrr0On0+GNN96o07kr3L59GxcvXkSzZs2q3efGjRvo06cPzp07h0mTJqFly5bYtGkTxo4di6KiIkyZMgVeXl5YsWIFXnvtNQwdOhTDhg0DAHTu3NkscRIphiAieoDk5GQBQOzZs0dcvXpVXLx4UXz99dfCy8tLqFQqcfHiRf2+/fr1E2FhYeLmzZv6bTqdTkRHR4s2bdrot4WHh4snnniixvedM2eOuPdnKjMzUwAQr7/+usF+o0ePFgDEnDlz9Nvi4uJEUFDQA88phBClpaWV9ouNjRUhISEG22JiYkRMTEyNMQshRFBQkHjsscfE1atXxdWrV8Uvv/wiRo4cKQCIyZMnV3u+JUuWCADiiy++0G+7deuWiIqKEo0aNRJarVYIIcTVq1crlZeIjMMmMCKqtf79+8PLywuBgYF49tln4ebmhu3bt6N58+YAgL/++gvff/89hg8fjuvXr6OwsBCFhYW4du0aYmNjcfbsWf2oMQ8PD/z22284e/Zsrd8/NTUVAPDmm28abJ86dWqdyuXq6qr/f41Gg8LCQsTExOD8+fPQaDQmnXPXrl3w8vKCl5cXwsPDsWnTJrz44otYvHhxtcekpqbC19cXo0aN0m9zcnLCm2++ieLiYuzbt8+kWIioMjaBEVGtLV++HG3btoVGo8GaNWuwf/9+qFQq/evnzp2DEALvvfce3nvvvSrPceXKFQQEBCAxMRFPP/002rZti06dOmHgwIF48cUXa2zKuXDhAhwcHNCqVSuD7e3atatTuQ4ePIg5c+bg0KFDKC0tNXhNo9FArVYbfc7IyEgsWLAAkiShYcOGaN++PTw8PGo85sKFC2jTpg0cHAz/Nm3fvr3+dSIyDyZARFRr3bt3148CGzJkCHr27InRo0fj9OnTaNSoEXQ6HQBg2rRpiI2NrfIcrVu3BgD07t0bWVlZ2LZtG3bt2oX/9//+Hz766COsXLkSEyZMqHOs1U2gWF5ebvA8KysL/fr1Q2hoKD788EMEBgbC2dkZqamp+Oijj/RlMpanpyf69+9v0rFEZHlMgIjIJI6OjkhKSkLfvn2xbNkyzJw5EyEhIQDuNtvU5ubftGlTjBs3DuPGjUNxcTF69+6NuXPnVpsABQUFQafTISsry6DW5/Tp05X2bdKkCYqKiiptv78W5T//+Q/Kysqwfft2tGjRQr/9hx9+eGD85hYUFIRff/0VOp3OoBbojz/+0L8OVJ/cEVHtsQ8QEZmsT58+6N69O5YsWYKbN2/C29sbffr0wapVq5CXl1dp/6tXr+r//9q1awavNWrUCK1bt0ZZWVm17zdo0CAAwL///W+D7UuWLKm0b6tWraDRaPDrr7/qt+Xl5VWajdnR0REAIITQb9NoNEhOTq42Dkt5/PHHkZ+fjw0bNui33blzB0uXLkWjRo0QExMDAGjYsCEAVJngEVHtsAaIiOpk+vTpeO6555CSkoJXX30Vy5cvR8+ePREWFoaJEyciJCQEBQUFOHToEC5duoRffvkFANChQwf06dMHERERaNq0KY4dO4avv/4akyZNqva9unTpglGjRuGTTz6BRqNBdHQ00tLScO7cuUr7jhw5EjNmzMDQoUPx5ptvorS0FCtWrEDbtm2RkZGh3++xxx6Ds7MznnrqKbzyyisoLi7G6tWr4e3tXWUSZ0kvv/wyVq1ahbFjx+L48eMIDg7G119/jYMHD2LJkiVo3LgxgLudtjt06IANGzagbdu2aNq0KTp16oROnTpZNV4iu2brYWhEJH8Vw+CPHj1a6bXy8nLRqlUr0apVK3Hnzh0hhBBZWVlizJgxwtfXVzg5OYmAgADx5JNPiq+//lp/3IIFC0T37t2Fh4eHcHV1FaGhoeK//uu/xK1bt/T7VDVk/caNG+LNN98UzZo1E25ubuKpp54SFy9erHJY+K5du0SnTp2Es7OzaNeunfjiiy+qPOf27dtF586dhYuLiwgODhaLFy8Wa9asEQBEdna2fj9jhsE/aIh/decrKCgQ48aNE56ensLZ2VmEhYWJ5OTkSsemp6eLiIgI4ezszCHxRCaQhLin3peIiIhIAdgHiIiIiBSHCRAREREpDhMgIiIiUhwmQERERKQ4TICIiIhIcZgAERERkeJwIsQq6HQ6/Pnnn2jcuDGnnCciIrITQghcv34d/v7+lRYVvh8ToCr8+eefCAwMtHUYREREZIKLFy+iefPmNe7DBKgKFdPNX7x4Ee7u7jaOhoiIiGpDq9UiMDBQfx+viU0ToP379+Of//wnjh8/rl+kcMiQIfrXq2t+ev/99zF9+vQqX5s7dy7mzZtnsK1du3b61ZRro+J93d3dmQARERHZmdp0X7FpJ+iSkhKEh4dj+fLlVb6el5dn8FizZg0kScIzzzxT43k7duxocNyBAwcsET4RERHZKZvWAA0aNAiDBg2q9nVfX1+D59u2bUPfvn0REhJS43kbNGhQ6VgiIiKiCnYzDL6goAA7duzA+PHjH7jv2bNn4e/vj5CQEDz//PPIzc2tcf+ysjJotVqDBxEREdVfdtMJeu3atWjcuDGGDRtW436RkZFISUlBu3btkJeXh3nz5qFXr144efJktZ2ikpKSKvUbIiIi05WXl+P27du2DoPqGScnJzg6OprlXJIQQpjlTHUkSVKlTtD3Cg0NxYABA7B06VKjzltUVISgoCB8+OGH1dYelZWVoaysTP+8ohe5RqNhJ2giIiMIIZCfn4+ioiJbh0L1lIeHB3x9favs6KzVaqFWq2t1/7aLGqAff/wRp0+fxoYNG4w+1sPDA23btsW5c+eq3UelUkGlUtUlRCIiAvTJj7e3Nxo2bMjJZMlshBAoLS3FlStXAAB+fn51Op9dJECffvopIiIiEB4ebvSxxcXFyMrKwosvvmiByIiIqEJ5ebk++WnWrJmtw6F6yNXVFQBw5coVeHt716k5zKadoIuLi5GZmYnMzEwAQHZ2NjIzMw06LWu1WmzatAkTJkyo8hz9+vXDsmXL9M+nTZuGffv2IScnB+np6Rg6dCgcHR0xatQoi5aFiEjpKvr8NGzY0MaRUH1W8f2qax8zm9YAHTt2DH379tU/j4+PBwDExcUhJSUFAPDVV19BCFFtApOVlYXCwkL980uXLmHUqFG4du0avLy80LNnTxw+fBheXl6WKwgREemx2YssyVzfL9l0gpYTYzpRERHRXTdv3kR2djZatmwJFxcXW4dD9VRN3zNj7t92Mw8QERGRnB08eBBhYWFwcnKqdkQzyQcTIJnL09xAelYh8jQ3bB0KEVG9NXbsWEiSBEmS4OTkhJYtW+Kdd97BzZs3a32O+Ph4dOnSBdnZ2fpuHPYuJSVF/7k4OjqiSZMmiIyMRGJiIjQajdHnkyQJW7duNX+gJrCLUWBKteFoLhI2n4BOAA4SkDQsDCO6tbB1WERE9dLAgQORnJyM27dv4/jx44iLi4MkSVi8eHGtjs/KysKrr76K5s2bmxzDrVu34OzsbPLxxhBCoLy8HA0a1JwKuLu74/Tp0xBCoKioCOnp6UhKSkJycjIOHjwIf39/q8RrbqwBkqk8zQ198gMAOgHM2nySNUFERBaiUqng6+uLwMBADBkyBP3798fu3bsBADqdDklJSWjZsiVcXV0RHh6Or7/+GgCQk5MDSZJw7do1vPTSS5AkSV8DtG/fPnTv3h0qlQp+fn6YOXMm7ty5o3/PPn36YNKkSZg6dSo8PT0RGxuLvXv3QpIkfPfdd3jooYfg6uqKRx99FFeuXMH//M//oH379nB3d8fo0aNRWlqqP1dNMQLQn/d//ud/EBERAZVKVavFwiVJgq+vL/z8/NC+fXuMHz8e6enpKC4uxjvvvKPfLzg4GEuWLDE4tkuXLpg7d67+dQAYOnQoJElCcHAwcnJy4ODggGPHjhkct2TJEgQFBUGn0z0wPlMxAZKp7MISffJToVwI5BSWVn0AEVE9Yuvm/5MnTyI9PV1fG5OUlITPPvsMK1euxG+//Ya33noLL7zwAvbt24fAwEDk5eXB3d0dS5YsQV5eHkaMGIHLly/j8ccfR7du3fDLL79gxYoV+PTTT7FgwQKD91q7di2cnZ1x8OBBrFy5Ur997ty5WLZsGdLT03Hx4kUMHz4cS5Yswbp167Bjxw7s2rXLYHWEmmK818yZM7Fo0SKcOnUKnTt3Nunz8fb2xvPPP4/t27ejvLy8VsccPXoUAJCcnIy8vDwcPXoUwcHB6N+/P5KTkw32TU5OxtixY+HgYLk0hU1gMtXS0w0OEgySIEdJQrAn59cgovrNVs3/3377LRo1aoQ7d+6grKwMDg4OWLZsGcrKyrBw4ULs2bMHUVFRAICQkBAcOHAAq1atQkxMjH5pBrVaDV9fXwDAJ598gsDAQCxbtgySJCE0NBR//vknZsyYgdmzZ+tv7m3atMH777+vjyMvLw8AsGDBAvTo0QMAMH78eCQkJCArKwshISEAgGeffRY//PADZsyYUasYKyQmJmLAgAF1/rxCQ0Nx/fp1XLt2Dd7e3g/cv2I6moqlLCpMmDABr776Kj788EOoVCpkZGTgxIkT2LZtW51jrAlrgGTKT+2KpGFhcPzf+Q4cJQkLh3WCn9rVxpEREVmOLZv/+/bti8zMTBw5cgRxcXEYN24cnnnmGZw7dw6lpaUYMGAAGjVqpH989tlnyMrKqvZ8p06dQlRUlMG8NT169EBxcTEuXbqk3xYREVHl8ffWzvj4+KBhw4b65KdiW8WyEMbE+PDDDxv3wVSjYhadus7LM2TIEDg6OmLLli0A7na87tu3r77JzFJYAyRjI7q1QO+2XsgpLEWwZ0MmP0RU79XU/G/p30A3Nze0bt0aALBmzRqEh4fj008/RadOnQAAO3bsQEBAgMEx5lhH0s3NrcrtTk5O+v+vGJ12L0mS9H1kiouLax1jde9nrFOnTsHd3V2/7ImDgwPun1qwNrM1Ozs7Y8yYMUhOTsawYcOwbt06fPzxx2aJsSZMgGTOT+3KxIeIFEMuzf8ODg6YNWsW4uPjcebMGahUKuTm5ho0JT1I+/bt8c0330AIoa8lOXjwIBo3blynkWJV6dChg0kxmurKlStYt24dhgwZom/K8/Ly0jffAXcnJczOzjY4zsnJqco+QxMmTECnTp3wySef4M6dOxg2bJhlCwA2gRERkYzIqfn/ueeeg6OjI1atWoVp06bhrbfewtq1a5GVlYWMjAwsXboUa9eurfb4119/HRcvXsTkyZPxxx9/YNu2bZgzZw7i4+PN3rm3cePGJsVYG0II5OfnIy8vD6dOncKaNWsQHR0NtVqNRYsW6fd79NFH8fnnn+PHH3/EiRMnEBcXV2mx0uDgYKSlpSE/Px9///23fnv79u3xyCOPYMaMGRg1apR+0VNLYg0QERHJilya/xs0aIBJkybh/fffR3Z2Nry8vJCUlITz58/Dw8MDXbt2xaxZs6o9PiAgAKmpqZg+fTrCw8PRtGlTjB8/Hu+++65F4p0/f77RMdaGVquFn58fJEmCu7s72rVrh7i4OEyZMsVguYmEhARkZ2fjySefhFqtxvz58yvVAH3wwQeIj4/H6tWrERAQgJycHP1rFcPrX3rppTrFW1tcC6wKXAuMiMh4XAuM6mL+/PnYtGkTfv311xr341pgREREZPeKi4tx8uRJLFu2DJMnT7ba+zIBIiIiUqiOHTsaDJu/9/Hll19aJYZJkyYhIiICffr0sVrzF8A+QERERIqVmppa7VB1Hx8fq8SQkpJik8VjmQAREREpVFBQkK1DsBk2gRERkVlxbA1Zkrm+X0yAiIjILCpmKr53hXIic6v4ft0/M7ax2ARGRERm4ejoCA8PD/36VA0bNqzzOlFEFYQQKC0txZUrV+Dh4VFpkkVjMQEiIiKzqVjluyIJIjK3+1eTNxUTICIiMhtJkuDn5wdvb+9aLYRJZAwnJ6c61/xUYAJERERm5+joaLYbFZElsBM0ERERKQ4TICIiIlIcJkBERESkOEyAiIiISHGYABEREZHiMAEiIiIixWECRERERIrDBIiIiIgUhwkQERERKQ4TICIiIlIcJkBERESkOEyAiIiISHGYABEREZHiMAEiIiIixWECRERERIrDBIiIiIgUhwkQERERKY5NE6D9+/fjqaeegr+/PyRJwtatWw1eHzt2LCRJMngMHDjwgeddvnw5goOD4eLigsjISPz0008WKgERERHZI5smQCUlJQgPD8fy5cur3WfgwIHIy8vTP9avX1/jOTds2ID4+HjMmTMHGRkZCA8PR2xsLK5cuWLu8ImIiMhONbDlmw8aNAiDBg2qcR+VSgVfX99an/PDDz/ExIkTMW7cOADAypUrsWPHDqxZswYzZ86sU7xERERUP8i+D9DevXvh7e2Ndu3a4bXXXsO1a9eq3ffWrVs4fvw4+vfvr9/m4OCA/v3749ChQ9UeV1ZWBq1Wa/AgIiKi+kvWCdDAgQPx2WefIS0tDYsXL8a+ffswaNAglJeXV7l/YWEhysvL4ePjY7Ddx8cH+fn51b5PUlIS1Gq1/hEYGGjWchAREZG82LQJ7EFGjhyp//+wsDB07twZrVq1wt69e9GvXz+zvU9CQgLi4+P1z7VaLZMgIiKiekzWNUD3CwkJgaenJ86dO1fl656ennB0dERBQYHB9oKCghr7EalUKri7uxs8iIiIqP6yqwTo0qVLuHbtGvz8/Kp83dnZGREREUhLS9Nv0+l0SEtLQ1RUlLXCJCIiIpmzaQJUXFyMzMxMZGZmAgCys7ORmZmJ3NxcFBcXY/r06Th8+DBycnKQlpaGp59+Gq1bt0ZsbKz+HP369cOyZcv0z+Pj47F69WqsXbsWp06dwmuvvYaSkhL9qDAiIiIim/YBOnbsGPr27at/XtEPJy4uDitWrMCvv/6KtWvXoqioCP7+/njssccwf/58qFQq/TFZWVkoLCzUPx8xYgSuXr2K2bNnIz8/H126dMHOnTsrdYwmIiIi5ZKEEMLWQciNVquFWq2GRqNhfyAiIiIzy9PcQHZhCVp6usFP7Wq28xpz/5b1KDAiIiKqXzYczUXC5hPQCcBBApKGhWFEtxZWj8OuOkETERGR/crT3NAnPwCgE8CszSeRp7lh9ViYABEREZFVZBeW6JOfCuVCIKew1OqxMAEiIiIiq2jp6QYHyXCboyQh2LOh1WNhAkRERERW4ad2RdKwMDhKd7MgR0nCwmGdzNoRurbYCZqIiIisZkS3Fujd1gs5haUI9mxok+QHYAJEREREVuandrVZ4lOBTWBERESkOEyAiIiISHGYABEREVGd5GluID2r0Cbz+ZiKfYCIiIjIZHKZ2dlYrAEiIiIik8hpZmdjMQEiIiIik8hpZmdjMQEiIiIik8hpZmdjMQEiIiIik8hpZmdjsRM0ERERmUwuMzsbiwkQERER1YkcZnY2FpvAiIiISHGYABEREZHiMAEiIiIixWECRERERIrDBIiIiIgUhwkQERERKQ4TICIiIlIcJkBERESkOEyAiIiISHGYABEREZHiMAEiIiIixWECRERERIrDBIiIiIgUhwkQERERKQ4TICIiIlIcJkBERESkOEyAiIiISHGYABEREZHiMAEiIiIixWECRERERIrDBIiIiIgUx6YJ0P79+/HUU0/B398fkiRh69at+tdu376NGTNmICwsDG5ubvD398eYMWPw559/1njOuXPnQpIkg0doaKiFS0JERET2xKYJUElJCcLDw7F8+fJKr5WWliIjIwPvvfceMjIysHnzZpw+fRqDBw9+4Hk7duyIvLw8/ePAgQOWCJ+IiIjsVANbvvmgQYMwaNCgKl9Tq9XYvXu3wbZly5ahe/fuyM3NRYsWLao9b4MGDeDr62vWWImIiKj+sKs+QBqNBpIkwcPDo8b9zp49C39/f4SEhOD5559Hbm6udQIkIiIiu2DTGiBj3Lx5EzNmzMCoUaPg7u5e7X6RkZFISUlBu3btkJeXh3nz5qFXr144efIkGjduXOUxZWVlKCsr0z/XarVmj5+IiIjkwy4SoNu3b2P48OEQQmDFihU17ntvk1rnzp0RGRmJoKAgbNy4EePHj6/ymKSkJMybN8+sMRMREZF8yb4JrCL5uXDhAnbv3l1j7U9VPDw80LZtW5w7d67afRISEqDRaPSPixcv1jVsIiIikjFZJ0AVyc/Zs2exZ88eNGvWzOhzFBcXIysrC35+ftXuo1Kp4O7ubvAgIiKi+sumCVBxcTEyMzORmZkJAMjOzkZmZiZyc3Nx+/ZtPPvsszh27Bi+/PJLlJeXIz8/H/n5+bh165b+HP369cOyZcv0z6dNm4Z9+/YhJycH6enpGDp0KBwdHTFq1ChrF4+IiIhkyqZ9gI4dO4a+ffvqn8fHxwMA4uLiMHfuXGzfvh0A0KVLF4PjfvjhB/Tp0wcAkJWVhcLCQv1rly5dwqhRo3Dt2jV4eXmhZ8+eOHz4MLy8vCxbGCIiIrIbkhBC2DoIudFqtVCr1dBoNGwOIyIishPG3L9l3QeIiIiIyBKYABEREZHiMAEiIiIixWECRERERIrDBIiIiIgUhwkQERERKQ4TICIiIlIcJkBERESkOEyAiIiISHGYABEREZHiMAEiIiIixWECRERERIrDBIiIiIgUhwkQERERKQ4TICIiqhfyNDeQnlWIPM0NW4dCdqCBrQMgIiKqqw1Hc5Gw+QR0AnCQgKRhYRjRrYWtwyIZYw0QERHZtTzNDX3yAwA6AczafJI1QVQjJkBERGTXsgtL9MlPhXIhkFNYapuAyC4wASIiIrvW0tMNDpLhNkdJQrBnQ9sERHaBCRAREdk1P7UrkoaFwVG6mwU5ShIWDusEP7WrjSMjOWMnaCIisnsjurVA77ZeyCksRbBnQyY/9EBMgIiIqF7wU7sy8aFaYxMYERERKQ4TICIiIlIckxOg4OBgJCYmIjc315zxEBEREVmcyQnQ1KlTsXnzZoSEhGDAgAH46quvUFZWZs7YiIiIiCyiTglQZmYmfvrpJ7Rv3x6TJ0+Gn58fJk2ahIyMDHPGSERERGRWkhBCPHi3B7t9+zY++eQTzJgxA7dv30ZYWBjefPNNjBs3DpIkPfgEMqLVaqFWq6HRaODu7m7rcIiIiKgWjLl/13kY/O3bt7FlyxYkJydj9+7deOSRRzB+/HhcunQJs2bNwp49e7Bu3bq6vg3ZoTzNDWQXlqClpxuHphIRkayYnABlZGQgOTkZ69evh4ODA8aMGYOPPvoIoaGh+n2GDh2Kbt26mSVQsi9cmZmIiOTM5ASoW7duGDBgAFasWIEhQ4bAycmp0j4tW7bEyJEj6xQg2Z/qVmbu3daLNUFERCQLJidA58+fR1BQUI37uLm5ITk52dS3IDtV08rMTICIiEgOTB4F1rdvX1y7dq3S9qKiIoSEhNQpKLJvXJmZiIjkzuQEKCcnB+Xl5ZW2l5WV4fLly3UKiuwbV2YmIiK5M7oJbPv27fr//+6776BWq/XPy8vLkZaWhuDgYLMER/bLlJWZOWqMiIisxeh5gBwc7lYaSZKE+w91cnJCcHAwPvjgAzz55JPmi9LKOA+Q9XHUGBER1ZVF5wHS6XQA7o7wOnr0KDw9PU2Lkuh/cdQYERFZm8mjwLKzs80ZBykYR40REZG1mZwAJSYm1vj67NmzTT01KUzFqLF7kyCOGiMiIksyeRTYli1bDB4bN27E4sWL8cEHH2Dr1q21Osf+/fvx1FNPwd/fH5IkVTpOCIHZs2fDz88Prq6u6N+/P86ePfvA8y5fvhzBwcFwcXFBZGQkfvrpJxNKSNbCUWNERGRtJtcA/fzzz5W2abVajB07FkOHDq3VOUpKShAeHo6XXnoJw4YNq/T6+++/j3//+99Yu3YtWrZsiffeew+xsbH4/fff4eLiUuU5N2zYgPj4eKxcuRKRkZFYsmQJYmNjcfr0aXh7extXSLIaU0aNERERmcpsq8FXOHHiBJ566ink5OQYF4gkYcuWLRgyZAiAu7U//v7+ePvttzFt2jQAgEajgY+PD1JSUqpdYiMyMhLdunXDsmXLANzttB0YGIjJkydj5syZtYqFo8CIiIjsjzH3b5ObwKqj0Wig0WjqfJ7s7Gzk5+ejf//++m1qtRqRkZE4dOhQlcfcunULx48fNzjGwcEB/fv3r/YY4O7kjVqt1uBBRERElpGnuYH0rELkaW7YLAaTm8D+/e9/GzwXQiAvLw+ff/45Bg0aVOfA8vPzAQA+Pj4G2318fPSv3a+wsBDl5eVVHvPHH39U+15JSUmYN29eHSMmIiKiB5HLvG8mJ0AfffSRwXMHBwd4eXkhLi4OCQkJdQ7MmhISEhAfH69/rtVqERgYaMOIiIiI6h85zfsm23mAfH19AQAFBQXw8/PTby8oKECXLl2qPMbT0xOOjo4oKCgw2F5QUKA/X1VUKhVUKlXdgyYiIqJqyWnetzr1ARJCoLCwsMpV4euqZcuW8PX1RVpamn6bVqvFkSNHEBUVVeUxzs7OiIiIMDhGp9MhLS2t2mOIiIjIOirmfbuXreZ9MykBys/Px5gxY9CkSRP4+PjA29sbTZo0wUsvvVSp9qUmxcXFyMzMRGZmJoC7tUqZmZnIzc2FJEmYOnUqFixYgO3bt+PEiRMYM2YM/P399SPFAKBfv376EV8AEB8fj9WrV2Pt2rU4deoUXnvtNZSUlGDcuHGmFJWIiIjMRE7zvhndBKbVahEdHY3i4mKMGzcOoaGhEELg999/x/r163HgwAFkZGSgUaNGDzzXsWPH0LdvX/3zin44cXFxSElJwTvvvIOSkhK8/PLLKCoqQs+ePbFz506DOYCysrJQWFiofz5ixAhcvXoVs2fPRn5+Prp06YKdO3dW6hhNZEt5Gq58T0TKJJd534yeB2j+/Pn47LPPkJ6eDi8vL4PXrly5gh49emDcuHGYNWuWWQO1Js4DRJYklxEQRET1jUXnAdqxYwdmzZpVKfkBAG9vbyQkJOA///mPsaclUoTqRkDYci4MIiIlMjoBOnPmDKKjo6t9PTo6GqdPn65TUET1VU0jIIiIyHqMToC0Wi08PDyqfd3Dw4MzKRNVQ04jIIiIlMzoBEgIAQeH6g+TJAlmXl6MSPZqO627nEZAEBEpmdGjwIQQaNu2LSRJqvZ1IiUxtlOzXEZAEBEpmdEJUHJysiXiILJLpk7r7qd2ZeJDRGRDRidAcXFxRu2/fv16DB48GG5ubsa+FZHsyWladyIiqr06LYVRG6+88opRs0MT2RN2aiYisk8WT4DYJ6huatu5lmyDnZqJiOyTyavBk+VxxmD7wE7NRET2x+I1QGQazhhsX/zUrohq1YzJDxEpkj22VrAGSKbYuZaIiOyBvbZWsAZIpti5loiI5M6eWytMSoDKy8uxf/9+FBUVPXDfoKAgODk5mfI2ilYfOtfaY5UoERHVnj2vb2hSE5ijoyMee+wxnDp1qsZ1wQDg5MmTprwFwb4719prlSgREdVeRWvFvUmQvbRWmNwE1qlTJ5w/f96csVAV7LFzrT1XiRIRUe3Zc2uFyZ2gFyxYgGnTpmH+/PmIiIioNNOzu7t7nYMj+8QO3EREymGvrRUmJ0CPP/44AGDw4MEGC6MKISBJEsrLy+seHdkle64SJSIi49nj+oYmJ0A//PCDOeOgeqSiSnTW5pMoF8KuqkSJiEgZJMG1KirRarVQq9XQaDRsyquDPM0Nu6sSJSIi+2XM/btO8wD9+OOPeOGFFxAdHY3Lly8DAD7//HMcOHCgLqelesIeO3ATEZEymJwAffPNN4iNjYWrqysyMjJQVlYGANBoNFi4cKHZAiQiIiIyN5MToAULFmDlypVYvXq1wUSHPXr0QEZGhlmCI04mSEREZAkmd4I+ffo0evfuXWm7Wq2u1QzR9GCcTJCIiMgyTK4B8vX1xblz5yptP3DgAEJCQuoUFHEyQSIiIksyOQGaOHEipkyZgiNHjkCSJPz555/48ssvMW3aNLz22mvmjFGR7Hl9FSIiIrkzuQls5syZ0Ol06NevH0pLS9G7d2+oVCpMmzYNkydPNmeMisTJBImIiCynzvMA3bp1C+fOnUNxcTE6dOiARo0amSs2m5HLPEAbjuZWmkyQfYCIiIiqZsz9mxMhVkEuCRDAyQSJiIhqy5j7t8lNYDdv3sTSpUvxww8/4MqVK9DpdAavcyi8edjj+ipERERyZ3ICNH78eOzatQvPPvssunfvbrAgKhEREZGcmZwAffvtt0hNTUWPHj3MGQ8RERGRxZk8DD4gIACNGzc2ZyxEREREVmFyAvTBBx9gxowZuHDhgjnjISIiIrI4k5vAHn74Ydy8eRMhISFo2LChwXpgAPDXX3/VOTgiIiIiSzA5ARo1ahQuX76MhQsXwsfHh52giYiIyG6YnAClp6fj0KFDCA8PN2c8RERERBZnch+g0NBQ3LjBhTmJiIjI/picAC1atAhvv/029u7di2vXrkGr1Ro8iIiIiOTK5ARo4MCBOHToEPr16wdvb280adIETZo0gYeHB5o0aWK2AIODgyFJUqXHG2+8UeX+KSkplfZ1cXExWzxERERk/0zuA/TDDz+YM45qHT16FOXl5frnJ0+exIABA/Dcc89Ve4y7uztOnz6tf84O2kRERHQvkxKg27dvIzExEStXrkSbNm3MHZMBLy8vg+eLFi1Cq1atEBMTU+0xkiTB19fXonEREZlDnuYGsgtL0NLTjev+EVmRSQmQk5MTfv31V3PH8kC3bt3CF198gfj4+BprdYqLixEUFASdToeuXbti4cKF6NixY7X7l5WVoaysTP+cfZiIyBo2HM1FwuYT0AnAQQKShoVhRLcWtg6LSBFM7gP0wgsv4NNPPzVnLA+0detWFBUVYezYsdXu065dO6xZswbbtm3DF198AZ1Oh+joaFy6dKnaY5KSkqBWq/WPwMBAC0RPRPR/8jQ39MkPAOgEMGvzSeRpOLqWyBokIYQw5cDJkyfjs88+Q5s2bRAREQE3NzeD1z/88EOzBHiv2NhYODs74z//+U+tj7l9+zbat2+PUaNGYf78+VXuU1UNUGBgIDQaDdzd3escNxHR/dKzCjF69ZFK29dPfARRrZrZICIi+6fVaqFWq2t1/za5E/TJkyfRtWtXAMCZM2cMXrNEp+MLFy5gz5492Lx5s1HHOTk54aGHHsK5c+eq3UelUkGlUtU1RCKiWmvp6QYHCfoaIABwlCQEeza0XVBECiL7UWAVkpOT4e3tjSeeeMKo48rLy3HixAk8/vjjFoqMiMh4fmpXJA0Lw6zNJ1EuBBwlCQuHdWJHaCIrMTkBuldF/5rmzZub43SV6HQ6JCcnIy4uDg0aGIY8ZswYBAQEICkpCQCQmJiIRx55BK1bt0ZRURH++c9/4sKFC5gwYYJFYiMiMtWIbi3Qu60XcgpLEezZkMkPkRWZ3Alap9MhMTERarUaQUFBCAoKgoeHB+bPnw+dTmfOGLFnzx7k5ubipZdeqvRabm4u8vLy9M///vtvTJw4Ee3bt8fjjz8OrVaL9PR0dOjQwawxERGZg5/aFVGtmjH5IbIykztBJyQk4NNPP8W8efPQo0cPAMCBAwcwd+5cTJw4Ef/1X/9l1kCtyZhOVERERCQPxty/TU6A/P39sXLlSgwePNhg+7Zt2/D666/j8uXLppxWFpgAERER2R9j7t8mN4H99ddfCA0NrbQ9NDQUf/31l6mnJSJSlDzNDaRnFXL+HyIrMzkBCg8Px7JlyyptX7ZsGcLDw+sUFBGREmw4mosei77H6NVH0GPR99hwNNfWIREphsmjwN5//3088cQT2LNnD6KiogAAhw4dwsWLF5Gammq2AImI6qPqZoLu3daLHaKJrMDkGqCYmBicOXMGQ4cORVFREYqKijBs2DCcPn0avXr1MmeMRET1TnZhicEkiABQLgRyCkttExCRwhhVAzRs2DCkpKTA3d0dn332GUaMGGHXo72IiGyFM0GTnOVpbiC7sAQtPd3qbY2kUTVA3377LUpKSgAA48aNg0ajsUhQRET1XcVM0I7/u3QQZ4ImuVBK3zSjaoBCQ0ORkJCAvn37QgiBjRs3VjvMbMyYMWYJkIiovuJM0CQ3SuqbZlQCtHLlSsTHx2PHjh2QJAnvvvtulQufSpLEBIiIqBb81K717sZC9qumvmn17XtqVAIUHR2Nw4cPAwAcHBxw5swZeHt7WyQwIiIisi4l9U0zeRRYdnY2vLy8zBkLERER2ZCS+qaZPA9QUFAQfvzxR6xatQpZWVn4+uuvERAQgM8//xwtW7ZEz549zRknERERWYFS+qaZXAP0zTffIDY2Fq6urvj5559RVlYGANBoNFi4cKHZAiQiIiLr8lO7IqpVs3qb/AB1SIAWLFiAlStXYvXq1XByctJv79GjBzIyMswSHBEREZElmJwAnT59Gr179660Xa1Wo6ioqC4xERERGY0Ly5IxTO4D5Ovri3PnziE4ONhg+4EDBxASElLXuIiIiGptw9Fc/fw1DhKQNCwMI7q1sHVYJGMm1wBNnDgRU6ZMwZEjRyBJEv788098+eWXePvtt/Haa6+ZM0YiIqJqVTd5H2uCqCYm1wDNnDkTOp0O/fr1Q2lpKXr37g2VSoXp06djwoQJ5oyRiIioWkqavI/Mx+QaIEmS8I9//AN//fUXTp48icOHD+Pq1atQq9Vo2bKlOWMkIiKqVsXkffeqr5P3kfkYnQCVlZUhISEBDz/8MHr06IHU1FR06NABv/32G9q1a4ePP/4Yb731liViJSIiqkRJk/eR+UhCCPHg3f7PjBkzsGrVKvTv3x/p6em4evUqxo0bh8OHD2PWrFl47rnn4OjoaKl4rUKr1UKtVkOj0VS72CsREclLnuZGvZ+8j2pmzP3b6D5AmzZtwmeffYbBgwfj5MmT6Ny5M+7cuYNffvmlyoVRiYiIrIELy5IxjG4Cu3TpEiIiIgAAnTp1gkqlwltvvcXkh4iIiOyG0QlQeXk5nJ2d9c8bNGiARo0amTUoIiIiIksyuglMCIGxY8dCpVIBAG7evIlXX30Vbm5uBvtt3rzZPBESERERmZnRCVBcXJzB8xdeeMFswRARERFZg9EJUHJysiXiICIiIrIakydCJCIiIrJXTICIiIhIcZgAERERkeIwASIiIiLFYQJEspGnuYH0rELkaW7YOhQiIqrnjB4FRmQJG47mImHzCegE4CABScPCMKJbC1uHRYQ8zQ1kF5agpacbl1kgqkeYAJHN5Wlu6JMfANAJYNbmk+jd1os3HLIpJuZE9RebwMjmsgtL9MlPhXIhkFNYapuAiFB9Ys4mWqL6gQkQ2VxLTzc43LeWrqMkIdizoW0CIgITc6L6jgkQ2Zyf2hVJw8LgKN3NghwlCQuHdWLzF9kUE3Oi+o19gEgWRnRrgVDfxjia8ze6BTdBeGATW4dECleRmM/afBLlQjAxJ6pnZF8DNHfuXEiSZPAIDQ2t8ZhNmzYhNDQULi4uCAsLQ2pqqpWiJVNtOJqLoZ+kY8GOUxj6STo2HM21dUhEGNGtBQ7M7Iv1Ex/BgZl92QGaao3TesifXdQAdezYEXv27NE/b9Cg+rDT09MxatQoJCUl4cknn8S6deswZMgQZGRkoFOnTtYIl4zEUWAkZ35qV34PySgcPWgfZF8DBNxNeHx9ffUPT0/Pavf9+OOPMXDgQEyfPh3t27fH/Pnz0bVrVyxbtsyKEZMx2NmUiOoLjh60H3aRAJ09exb+/v4ICQnB888/j9zc6ptHDh06hP79+xtsi42NxaFDh6o9pqysDFqt1uBB1sPOpkRUX/APOvsh+wQoMjISKSkp2LlzJ1asWIHs7Gz06tUL169fr3L//Px8+Pj4GGzz8fFBfn5+te+RlJQEtVqtfwQGBpq1DFQzjgIjovqCf9DZD9n3ARo0aJD+/zt37ozIyEgEBQVh48aNGD9+vFneIyEhAfHx8frnWq2WSZCVjejWAr3beiGnsBTBng2Z/BCRXeLoQfsh+wTofh4eHmjbti3OnTtX5eu+vr4oKCgw2FZQUABfX99qz6lSqaBSqcwaJxnP2M6mXKOJiOSIf9DZB9k3gd2vuLgYWVlZ8PPzq/L1qKgopKWlGWzbvXs3oqKirBEeWcmGo7noseh7jF59BD0Wfc9h82QxHM5MpvBTuyKqVTMmPzIm+wRo2rRp2LdvH3JycpCeno6hQ4fC0dERo0aNAgCMGTMGCQkJ+v2nTJmCnTt34oMPPsAff/yBuXPn4tixY5g0aZKtikBmxlEWZC1MtG2LySdZkuybwC5duoRRo0bh2rVr8PLyQs+ePXH48GF4eXkBAHJzc+Hg8H95XHR0NNatW4d3330Xs2bNQps2bbB161bOAVSP1DTKgn9tkblwfirb4lw6ZGmyT4C++uqrGl/fu3dvpW3PPfccnnvuOQtFRLZWMcri3iSIoyzI3Jho2w6TT7IG2TeBEd2Pw+bJGjic2XY4lw5Zg+xrgIiqwlEWZKpfLv6Nn3L+QvfgpjUuusvhzLbDWl6yBiZAZLe4RhMZ6+2Nmfgm47L++TNdA/DB8C7V7s9E2zaYfJI1SEII8eDdlEWr1UKtVkOj0cDd3d3W4RApiqXmd/rl4t94enl6pe3b3oiusSaIbCdPc4PJJxnFmPs3a4CISDYsOfLnp5y/qtx+LOdvJkAyxVpesiR2giYiWcjT3MDMbwxH/szcfMJsc8B0D25a5faHg5n8ECkREyAikoXjF/7G/e3xQgAZF/42y/nDA5vgma4BBtue6RrA2h8ihWITGBHJQnXdEc3ZS/GD4V0wJioIx3L+xsPBTZj8ECkYEyAikoWHg5tCAgxqgSQAEWZuogoPZOJDRGwCIyIrqM2aTn5qVyx6Jkz/o+QAYNEzYewESxbDtcaUjTVARGRRxozs4rw7ZC1ca4xYA0REFlPdmk4PqgmKatWMyQ9ZjCnfS6p/mAARkcVwTSeSI2t8L9m8Jn9sAiMii+GaTiRHlv5esnnNPrAGiIgspmJNJ0fp7rLqXNOJ5MCS30s2r9kP1gARkUWxYzPJkaW+lzU1r/G7Ly9MgIjI4rimE8mRJb6XbPa1H2wCIyIiMhM2+9oP1gARERGZEZt97QMTICJSlDzNDWQXlqClpxtvTGQxbPaVPyZARKQYHJ5MRBXYB4iIFIHDk4noXkyAiEgROCs1Ed2LCRARKULF8OR7cXgykXIxASIiReDwZCK6FztBE5FicHgyEVVgAkREisLhyUQEsAmMiIiIFIgJEBFZXJ7mBtKzCjnknIhkg01gRGRRnHyQiOSINUBE1WCtRd3JcfJBXlciAlgDRFQl1lqYR02TD9qiIzKvKxFVYA0Q0X3kWGthr+Q0+SCvKxHdiwkQ0X2ssWSCUpph5DT5IJfCIKJ7sQmM6D4VtRb33izNWWuhtGYYuUw+aOnrSkT2hTVAZDH2WsthyVoLpTbD+KldEdWqmU0nIKy4rhU/eg4Al8IgUjDWAJFF2Hsth6VqLeTWKViRJADif/9LRIrFGiAyu/pSy2GJWgs5dQpWmvryvSQi82ACRGZXXzqbWqIJT06dgpWmvnwvicg8ZN8ElpSUhM2bN+OPP/6Aq6sroqOjsXjxYrRr167aY1JSUjBu3DiDbSqVCjdv3rR0uIT60dnUkk14cukUrDQtPd30rV8VJMCuvpdEFfI0N5BdWIKWnm78DTGR7GuA9u3bhzfeeAOHDx/G7t27cfv2bTz22GMoKSmp8Th3d3fk5eXpHxcuXLBSxGTvtRzWaCqRQ6dgAvsBkV3acDQXPRZ9j9Grj6DHou+x4WiurUOyS7KvAdq5c6fB85SUFHh7e+P48ePo3bt3tcdJkgRfX19Lh0fVsOdaDnZUrp+yC0tw32WFEHjgdVXSX9rGllVJn41cVPcHWu+2XrwGRpJ9AnQ/jUYDAGjatGmN+xUXFyMoKAg6nQ5du3bFwoUL0bFjxyr3LSsrQ1lZmf65Vqs1X8AK5qd2tct/kPWhCY8qM+W62vtoRmMYW1YlfTZywj/QzEf2TWD30ul0mDp1Knr06IFOnTpVu1+7du2wZs0abNu2DV988QV0Oh2io6Nx6dKlKvdPSkqCWq3WPwIDAy1VBLID9t6ER1Uz9roqadSYsWVV0mcjNxxJaj52VQP0xhtv4OTJkzhw4ECN+0VFRSEqKkr/PDo6Gu3bt8eqVaswf/78SvsnJCQgPj5e/1yr1TIJsgOWrH635yY8qp4x11VJf2kbW1YlfTZyU5HIz9p8EuVC8A+0OrCbBGjSpEn49ttvsX//fjRv3tyoY52cnPDQQw/h3LlzVb6uUqmgUqnMESZZiTWq3+21CY9qVtvrqqSmUGPLqqTPRo74B5p5yL4JTAiBSZMmYcuWLfj+++/RsmVLo89RXl6OEydOwM/PzwIR2i97XaqC1e9kDUpqCjW2rEr6bOSKI0nrTvY1QG+88QbWrVuHbdu2oXHjxsjPzwcAqNVquLrevfBjxoxBQEAAkpKSAACJiYl45JFH0Lp1axQVFeGf//wnLly4gAkTJtisHHJjzx0Y60P1O0fP2Acl/aVtbFmV9NlQ/ST7BGjFihUAgD59+hhsT05OxtixYwEAubm5cHD4v8qsv//+GxMnTkR+fj6aNGmCiIgIpKeno0OHDtYKW9bsfRilvVe/23PyqURKago1tqxK+myo/pGEEPdPjaF4Wq0WarUaGo0G7u7utg7H7NKzCjF69ZFK29dPfARRrZrZICLjbTiai4RvTkCHu+24Sc/YRxKRp7mBHou+r5S8HZjZlzcSIqI6Mub+Lfs+QGR+9WYYpXTff22otv2puB6V+dlrXzYisi3ZN4GR+dn7MEq5NeEZ06RlreY7pfQxYnMiEZmKCZBCybEDY21v2tbqBF2beIxNxqyRfColKZBbIkxE9oUJkILJqQOj3GpRahuPKcmYJZNPJSUF9WE0IBHZDvsA1SP22hfC2Hl9LD0HiTHxmNqfylJzeCipj1G96ctGZAJ7/b2XE9YA1RP23Owht1oUY+KRW38qe58iwBhy++yJrMWef+/lhAlQPWDvzR6m3rQt1YRnbDxy6k+ltKRATp89kTXY+++9nDABqgfsvS+E3G7apsQjp/5USksK5PTZE1mavf/eywkToHqgPjR7yO2mLbd4jMWkgKh+qg+/93LBTtD1QH1ZmFBui/vJLR4iIlN/79lpujIuhVEFe10KI09zw25rLOydUiYeJCJ5MOb3Xkmdpo25f7MJrB5hs4dtKOnHhYjkoba/9+w0XT02gRHVgbFzGBERWZOS5gYzFhMgojrgjwsRyRknDK0eEyCiOuCPS+2wAyaRbdSXQTKWwD5ARHUgtzmM5EhufaTYYZ2Uxt6n9bAUjgKrgr2OAiPb4Qi8quVpbqDHou8rzVlyYGZfm3xO1kjGmGAR2Q5HgRFZGUfgVU1Os9ZaYzSMKQkWEyYi22ACREQWI6dZay2djJmSYLF50LzsPX45UcJnyQSIiCxGTn2kWnq6QQJwbw4kSTBbMmZsgiW3+VnklowZy97jlxOlfJZMgIjIomTdAdOMPSCNre1SWvOgJdl7/HKipM+Sw+CJyOLksK5admFJpXxHAGabs8nY4cZymkLB3uezsvf45URJnyVrgIhIEazRH8mY2i65NQ/Kpa+WKew9fjlR0mfJGiAikhVLTZporQnhjKntGtGtBQ7M7Iv1Ex/BgZl9bdbPwt4ny7P3+OVESZ8l5wGqgiXnAVJCz3oiU1lrnh5Z9keSAXv/bOw9fjmx18/SmPs3E6AqWCoBUkrPeiJTyG3SRCKyP8bcv9kEZiVcNZyoZkrqfElEtscEyEr44/5gXDBT2eQ0KoqI6j8mQFbCH/eabTiaix6Lvsfo1UfQY9H32HA019YhMSGzMmt1vuR1JSKAfYCqZNE+QN+cgA53M8+kZ9gHCJBn3w/217IdS3a+5HUlueIAGfPgYqhyVjEXv/SgHZVDTjPiAsqaCVWOLLWwrLWuK29kZCwm5rbBJjArYSfo6smteZD9teona1xXOTblkrzx3mA7TICshDfV6slt4i25JWRKY6k+Opa+rryRkSl4b7AdNoFZiZKmFzeFnBbM9FO7YuhDAfgm47J+25CH/NmcYQWWbAqoSLTv7YdnzkRbbk25ZB94b7Ad1gBZidxqOeRIDgtmAnf/kt/y82WDbVt//pN/yVuY1WpQpPv+ayasOSRT8N5gO6wBsiI51XJQ9fiXvG1Y+nO3dCdoOS1uSvaF9wbbYAJkZZYa4ULmwypp27D0526NxJY3MjIV7w3WxyYwovuwSto2LP25W6uJSi5NuURUM7tIgJYvX47g4GC4uLggMjISP/30U437b9q0CaGhoXBxcUFYWBhSU1OtFClZkyVn9B3RrQUOzOyL9RMfwYGZfS2yIjlnI67Mkp87E1vz4/eY7JnsZ4LesGEDxowZg5UrVyIyMhJLlizBpk2bcPr0aXh7e1faPz09Hb1790ZSUhKefPJJrFu3DosXL0ZGRgY6depUq/e01EzQZD72PHGYPcdeH1hypmm5seSkjPwekxwZc/+WfQIUGRmJbt26YdmyZQAAnU6HwMBATJ48GTNnzqy0/4gRI1BSUoJvv/1Wv+2RRx5Bly5dsHLlylq9JxMgeZPj0hm1Zc+xk32xZILC7zHJlTH3b1k3gd26dQvHjx9H//799dscHBzQv39/HDp0qMpjDh06ZLA/AMTGxla7P9kfe544zJ5jJ/th6SkF+D2m+kDWCVBhYSHKy8vh4+NjsN3Hxwf5+flVHpOfn2/U/gBQVlYGrVZr8CD5suf5Vuw5drIflk5Q+D2m+kDWCZC1JCUlQa1W6x+BgYG2DolqYM+dWe05drIflk5Q+D2m+kDW8wB5enrC0dERBQUFBtsLCgrg6+tb5TG+vr5G7Q8ACQkJiI+P1z/XarVMgmTOnudbsefYyT5YY1JGfo/J3sk6AXJ2dkZERATS0tIwZMgQAHc7QaelpWHSpElVHhMVFYW0tDRMnTpVv2337t2Iioqq9n1UKhVUKpU5QycrsOeJw+w5drIP1khQ+D0meybrBAgA4uPjERcXh4cffhjdu3fHkiVLUFJSgnHjxgEAxowZg4CAACQlJQEApkyZgpiYGHzwwQd44okn8NVXX+HYsWP47//+b1sWg4jI6pigEFVP9gnQiBEjcPXqVcyePRv5+fno0qULdu7cqe/onJubCweH/+vKFB0djXXr1uHdd9/FrFmz0KZNG2zdurXWcwARERFR/Sf7eYBsgfMAERER2Z96Mw8QERERkSUwASIiIiLFYQJEREREisMEiIiIiBSHCRAREREpDhMgIiIiUhwmQERERKQ4TICIiIhIcZgAERERkeLIfikMW6iYHFur1do4EiIiIqqtivt2bRa5YAJUhevXrwMAAgMDbRwJERERGev69etQq9U17sO1wKqg0+nw559/onHjxpAkyazn1mq1CAwMxMWLF+vlOmMsn/2r72Ws7+UD6n8ZWT77Z6kyCiFw/fp1+Pv7GyyUXhXWAFXBwcEBzZs3t+h7uLu719svNsDy1Qf1vYz1vXxA/S8jy2f/LFHGB9X8VGAnaCIiIlIcJkBERESkOEyArEylUmHOnDlQqVS2DsUiWD77V9/LWN/LB9T/MrJ89k8OZWQnaCIiIlIc1gARERGR4jABIiIiIsVhAkRERESKwwSIiIiIFIcJUB0tX74cwcHBcHFxQWRkJH766aca91+yZAnatWsHV1dXBAYG4q233sLNmzfrdE5LM3cZ586dC0mSDB6hoaGWLka1jCnf7du3kZiYiFatWsHFxQXh4eHYuXNnnc5paeYun5yu3/79+/HUU0/B398fkiRh69atDzxm79696Nq1K1QqFVq3bo2UlJRK+8jp+lmijPZ8DfPy8jB69Gi0bdsWDg4OmDp1apX7bdq0CaGhoXBxcUFYWBhSU1PNH3wtWKJ8KSkpla6fi4uLZQpQC8aWcfPmzRgwYAC8vLzg7u6OqKgofPfdd5X2s/i/Q0Em++qrr4Szs7NYs2aN+O2338TEiROFh4eHKCgoqHL/L7/8UqhUKvHll1+K7Oxs8d133wk/Pz/x1ltvmXxOS7NEGefMmSM6duwo8vLy9I+rV69aq0gGjC3fO++8I/z9/cWOHTtEVlaW+OSTT4SLi4vIyMgw+ZyWZInyyen6paamin/84x9i8+bNAoDYsmVLjfufP39eNGzYUMTHx4vff/9dLF26VDg6OoqdO3fq95HT9RPCMmW052uYnZ0t3nzzTbF27VrRpUsXMWXKlEr7HDx4UDg6Oor3339f/P777+Ldd98VTk5O4sSJE5YpRA0sUb7k5GTh7u5ucP3y8/MtU4BaMLaMU6ZMEYsXLxY//fSTOHPmjEhISBBOTk5W/x1lAlQH3bt3F2+88Yb+eXl5ufD39xdJSUlV7v/GG2+IRx991GBbfHy86NGjh8nntDRLlHHOnDkiPDzcIvEay9jy+fn5iWXLlhlsGzZsmHj++edNPqclWaJ8crp+96rND+8777wjOnbsaLBtxIgRIjY2Vv9cTtfvfuYqoz1fw3vFxMRUmSAMHz5cPPHEEwbbIiMjxSuvvFLHCOvGXOVLTk4WarXabHGZk7FlrNChQwcxb948/XNr/DtkE5iJbt26hePHj6N///76bQ4ODujfvz8OHTpU5THR0dE4fvy4vhrv/PnzSE1NxeOPP27yOS3JEmWscPbsWfj7+yMkJATPP/88cnNzLVeQaphSvrKyskpVza6urjhw4IDJ57QUS5SvghyunykOHTpk8HkAQGxsrP7zkNP1M9WDyljBXq9hbdT2M7BnxcXFCAoKQmBgIJ5++mn89ttvtg7JZDqdDtevX0fTpk0BWO/fIRMgExUWFqK8vBw+Pj4G2318fJCfn1/lMaNHj0ZiYiJ69uwJJycntGrVCn369MGsWbNMPqclWaKMABAZGYmUlBTs3LkTK1asQHZ2Nnr16oXr169btDz3M6V8sbGx+PDDD3H27FnodDrs3r0bmzdvRl5ensnntBRLlA+Qz/UzRX5+fpWfh1arxY0bN2R1/Uz1oDIC9n0Na6O6z8BeruGDtGvXDmvWrMG2bdvwxRdfQKfTITo6GpcuXbJ1aCb517/+heLiYgwfPhyA9X5HmQBZ0d69e7Fw4UJ88sknyMjIwObNm7Fjxw7Mnz/f1qGZTW3KOGjQIDz33HPo3LkzYmNjkZqaiqKiImzcuNGGkdfOxx9/jDZt2iA0NBTOzs6YNGkSxo0bBweH+vFPqTbls+frR3fxGtq3qKgojBkzBl26dEFMTAw2b94MLy8vrFq1ytahGW3dunWYN28eNm7cCG9vb6u+dwOrvls94unpCUdHRxQUFBhsLygogK+vb5XHvPfee3jxxRcxYcIEAEBYWBhKSkrw8ssv4x//+IdJ57QkS5SxqkTBw8MDbdu2xblz58xfiBqYUj4vLy9s3boVN2/exLVr1+Dv74+ZM2ciJCTE5HNaiiXKVxVbXT9T+Pr6Vvl5uLu7w9XVFY6OjrK5fqZ6UBmrYk/XsDaq+wzs5Roay8nJCQ899JDdXb+vvvoKEyZMwKZNmwyau6z1O1o//my1AWdnZ0RERCAtLU2/TafTIS0tDVFRUVUeU1paWikBcHR0BAAIIUw6pyVZooxVKS4uRlZWFvz8/MwUee3U5fN2cXFBQEAA7ty5g2+++QZPP/10nc9pbpYoX1Vsdf1MERUVZfB5AMDu3bv1n4ecrp+pHlTGqtjTNawNUz4De1ZeXo4TJ07Y1fVbv349xo0bh/Xr1+OJJ54weM1q/w7N1p1agb766iuhUqlESkqK+P3338XLL78sPDw89MMRX3zxRTFz5kz9/nPmzBGNGzcW69evF+fPnxe7du0SrVq1EsOHD6/1Oa3NEmV8++23xd69e0V2drY4ePCg6N+/v/D09BRXrlyRffkOHz4svvnmG5GVlSX2798vHn30UdGyZUvx999/1/qc1mSJ8snp+l2/fl38/PPP4ueffxYAxIcffih+/vlnceHCBSGEEDNnzhQvvviifv+KIeLTp08Xp06dEsuXL69yGLxcrp8QlimjPV9DIYR+/4iICDF69Gjx888/i99++03/+sGDB0WDBg3Ev/71L3Hq1CkxZ84cmw2Dt0T55s2bJ7777juRlZUljh8/LkaOHClcXFwM9rEmY8v45ZdfigYNGojly5cbDOUvKirS72ONf4dMgOpo6dKlokWLFsLZ2Vl0795dHD58WP9aTEyMiIuL0z+/ffu2mDt3rmjVqpVwcXERgYGB4vXXXze4uTzonLZg7jKOGDFC+Pn5CWdnZxEQECBGjBghzp07Z8USGTKmfHv37hXt27cXKpVKNGvWTLz44ovi8uXLRp3T2sxdPjldvx9++EEAqPSoKFNcXJyIiYmpdEyXLl2Es7OzCAkJEcnJyZXOK6frZ4ky2vs1rGr/oKAgg302btwo2rZtK5ydnUXHjh3Fjh07rFOg+1iifFOnTtV/P318fMTjjz9uMIeOtRlbxpiYmBr3r2Dpf4eSENW0SxARERHVU+wDRERERIrDBIiIiIgUhwkQERERKQ4TICIiIlIcJkBERESkOEyAiIiISHGYABEREZHiMAEiIrITe/fuhSRJKCoqsnUoRHaPCRARVTJ27FhIkoRFixYZbN+6dSskSdI/F0Jg9erViIqKgru7Oxo1aoSOHTtiypQptV6YsbS0FAkJCWjVqhVcXFzg5eWFmJgYbNu2Tb9PcHAwlixZYpayWVrFZydJEpycnNCyZUu88847uHnzplHn6dOnD6ZOnWqwLTo6Gnl5eVCr1WaMmEiZmAARUZVcXFywePFi/P3331W+LoTA6NGj8eabb+Lxxx/Hrl278Pvvv+PTTz+Fi4sLFixYUKv3efXVV7F582YsXboUf/zxB3bu3Ilnn30W165dM2dxrGrgwIHIy8vD+fPn8dFHH2HVqlWYM2dOnc/r7OwMX19fgySUiExk1oU1iKheiIuLE08++aQIDQ0V06dP12/fsmWLqPjZWL9+vQAgtm3bVuU5dDpdrd5LrVaLlJSUal+vat2gCj/++KPo2bOncHFxEc2bNxeTJ08WxcXF+tc/++wzERERIRo1aiR8fHzEqFGjREFBgf71ijWMdu7cKbp06SJcXFxE3759RUFBgUhNTRWhoaGicePGYtSoUaKkpKRW5YmLixNPP/20wbZhw4aJhx56SP+8sLBQjBw5Uvj7+wtXV1fRqVMnsW7dOoNz3F/m7Oxsfbz3rq339ddfiw4dOghnZ2cRFBQk/vWvf9UqTiKlYw0QEVXJ0dERCxcuxNKlS3Hp0qVKr69fvx7t2rXD4MGDqzy+trUUvr6+SE1NxfXr16t8ffPmzWjevDkSExORl5eHvLw8AEBWVhYGDhyIZ555Br/++is2bNiAAwcOYNKkSfpjb9++jfnz5+OXX37B1q1bkZOTg7Fjx1Z6j7lz52LZsmVIT0/HxYsXMXz4cCxZsgTr1q3Djh07sGvXLixdurRW5bnfyZMnkZ6eDmdnZ/22mzdvIiIiAjt27MDJkyfx8ssv48UXX8RPP/0EAPj4448RFRWFiRMn6sscGBhY6dzHjx/H8OHDMXLkSJw4cQJz587Fe++9h5SUFJNiJVIUW2dgRCQ/99ZiPPLII+Kll14SQhjWAIWGhorBgwcbHDdlyhTh5uYm3NzcREBAQK3ea9++faJ58+bCyclJPPzww2Lq1KniwIEDBvsEBQWJjz76yGDb+PHjxcsvv2yw7ccffxQODg7ixo0bVb7X0aNHBQBx/fp1IcT/1QDt2bNHv09SUpIAILKysvTbXnnlFREbG1ur8sTFxQlHR0fh5uYmVCqVACAcHBzE119/XeNxTzzxhHj77bf1z2NiYsSUKVMM9rm/Bmj06NFiwIABBvtMnz5ddOjQoVaxEikZa4CIqEaLFy/G2rVrcerUqQfu+49//AOZmZmYPXs2iouLa3X+3r174/z580hLS8Ozzz6L3377Db169cL8+fNrPO6XX35BSkoKGjVqpH/ExsZCp9MhOzsbwN0akqeeegotWrRA48aNERMTAwDIzc01OFfnzp31/+/j44OGDRsiJCTEYNuVK1dqVR4A6Nu3LzIzM3HkyBHExcVh3LhxeOaZZ/Svl5eXY/78+QgLC0PTpk3RqFEjfPfdd5XiepBTp06hR48eBtt69OiBs2fPory83KhzESkNEyAiqlHv3r0RGxuLhIQEg+1t2rTB6dOnDbZ5eXmhdevW8Pb2Nuo9nJyc0KtXL8yYMQO7du1CYmIi5s+fj1u3blV7THFxMV555RVkZmbqH7/88gvOnj2LVq1aoaSkBLGxsXB3d8eXX36Jo0ePYsuWLQBQ6bxOTk76/68YvXUvSZKg0+lqXR43Nze0bt0a4eHhWLNmDY4cOYJPP/1U//o///lPfPzxx5gxYwZ++OEHZGZmIjY2tsbyEpF5NbB1AEQkf4sWLUKXLl3Qrl07/bZRo0Zh9OjR2LZtG55++mmzvl+HDh1w584d3Lx5E87OznB2dq5Uo9G1a1f8/vvvaN26dZXnOHHiBK5du4ZFixbp+88cO3bMrHHWhoODA2bNmoX4+HiMHj0arq6uOHjwIJ5++mm88MILAACdToczZ86gQ4cO+uOqKvP92rdvj4MHDxpsO3jwINq2bQtHR0fzF4aoHmENEBE9UFhYGJ5//nn8+9//1m8bOXIknn32WYwcORKJiYk4cuQIcnJysG/fPmzYsKHWN+A+ffpg1apVOH78OHJycpCamopZs2ahb9++cHd3B3B3HqD9+/fj8uXLKCwsBADMmDED6enpmDRpEjIzM3H27Fls27ZN3wm6RYsWcHZ2xtKlS3H+/Hls3779gc1qlvLcc8/B0dERy5cvB3C39mz37t1IT0/HqVOn8Morr6CgoMDgmODgYP1nWlhYWGUN1Ntvv420tDTMnz8fZ86cwdq1a7Fs2TJMmzbNKuUismdMgIioVhITEw1uwpIkYcOGDViyZAlSU1PRr18/tGvXDi+99BICAwNx4MCBWp03NjYWa9euxWOPPYb27dtj8uTJiI2NxcaNGw3eOycnB61atYKXlxeAu/129u3bhzNnzqBXr1546KGHMHv2bPj7+wO42xyXkpKCTZs2oUOHDli0aBH+9a9/mfETqb0GDRpg0qRJeP/991FSUoJ3330XXbt2RWxsLPr06QNfX18MGTLE4Jhp06bB0dERHTp0gJeXV5X9g7p27YqNGzfiq6++QqdOnTB79mwkJiZWOdKNiAxJQghh6yCIiIiIrIk1QERERKQ4TICIyKLuHaZ+/+PHH3+0dXhGyc3NrbE8xg5jJyLbYRMYEVlUTYuiBgQEwNXV1YrR1M2dO3eQk5NT7evBwcFo0ICDa4nsARMgIiIiUhw2gREREZHiMAEiIiIixWECRERERIrDBIiIiIgUhwkQERERKQ4TICIiIlIcJkBERESkOEyAiIiISHH+P6YQ2x98xuwrAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHHCAYAAACyWSKnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT6pJREFUeJzt3XlYVOXfP/D3YVhFGVJAQBEQF9zCcksxkbLQzPVbrhlamS3uuYBlron2tFhq6uMvwRYNM1xKc8k1xAw1S80VwRUXLAdZU+b+/eHDfJ3YZmXOnHm/rmuuyzlzzpnPPWfkfOZeJSGEABEREZGCONk6ACIiIiJLY4JDREREisMEh4iIiBSHCQ4REREpDhMcIiIiUhwmOERERKQ4THCIiIhIcZjgEBERkeIwwSEiIiLFYYJDRNVi5syZkCTJoH0lScLMmTOtGk/Xrl3RtWtX2Z6PiMzDBIfIwSQlJUGSJN3D2dkZ9erVw/Dhw3HlyhVbhyc7ISEhep+Xn58fHn/8caxfv94i5y8oKMDMmTOxZ88ei5yPiO5jgkPkoGbPno0vv/wSy5YtQ48ePfDVV18hKioKRUVFVnm/d955B4WFhVY5t7W1bt0aX375Jb788ktMmjQJV69eRf/+/bFs2TKzz11QUIBZs2YxwSGyMGdbB0BEttGjRw+0bdsWAPDKK6/Ax8cHCxYswKZNmzBgwACLv5+zszOcne3zT069evXwwgsv6J6/+OKLaNSoET7++GO89tprNoyMiCrCGhwiAgA8/vjjAICMjAy97adOncJzzz2H2rVrw93dHW3btsWmTZv09rl79y5mzZqFxo0bw93dHXXq1EHnzp2xY8cO3T7l9cEpLi7GhAkT4Ovri1q1aqF37964fPlymdiGDx+OkJCQMtvLO2diYiKeeOIJ+Pn5wc3NDc2bN8fSpUuN+iyq4u/vj2bNmiEzM7PS/W7cuIGXX34ZdevWhbu7OyIiIrBq1Srd61lZWfD19QUAzJo1S9cMZu3+R0SOwD5/ThGRxWVlZQEAHnroId22EydOIDIyEvXq1UNcXBw8PT2xdu1a9O3bF9999x369esH4H6ikZCQgFdeeQXt27dHbm4uDh06hCNHjuCpp56q8D1feeUVfPXVVxgyZAg6deqEXbt2oWfPnmaVY+nSpWjRogV69+4NZ2dnfP/993jjjTeg1Wrx5ptvmnXuUnfv3sWlS5dQp06dCvcpLCxE165dce7cOYwePRqhoaH49ttvMXz4cNy+fRvjxo2Dr68vli5ditdffx39+vVD//79AQAPP/ywReIkcmiCiBxKYmKiACB++ukncfPmTXHp0iWxbt064evrK9zc3MSlS5d0+z755JOiVatWoqioSLdNq9WKTp06icaNG+u2RUREiJ49e1b6vjNmzBAP/sk5evSoACDeeOMNvf2GDBkiAIgZM2botsXGxorg4OAqzymEEAUFBWX2i4mJEQ0bNtTbFhUVJaKioiqNWQghgoODxdNPPy1u3rwpbt68KX7//XcxaNAgAUCMGTOmwvMtXLhQABBfffWVbts///wjOnbsKGrWrClyc3OFEELcvHmzTHmJyHxsoiJyUN26dYOvry+CgoLw3HPPwdPTE5s2bUL9+vUBAH/99Rd27dqFAQMG4M6dO8jJyUFOTg5u3bqFmJgYnD17VjfqytvbGydOnMDZs2cNfv8tW7YAAMaOHau3ffz48WaVy8PDQ/dvjUaDnJwcREVF4fz589BoNCadc/v27fD19YWvry8iIiLw7bffYtiwYViwYEGFx2zZsgX+/v4YPHiwbpuLiwvGjh2LvLw87N2716RYiMgwbKIiclBLlixBkyZNoNFosHLlSuzbtw9ubm6618+dOwchBKZPn47p06eXe44bN26gXr16mD17Nvr06YMmTZqgZcuW6N69O4YNG1ZpU8uFCxfg5OSEsLAwve1NmzY1q1z79+/HjBkzcODAARQUFOi9ptFooFarjT5nhw4dMHfuXEiShBo1aqBZs2bw9vau9JgLFy6gcePGcHLS/x3ZrFkz3etEZD1McIgcVPv27XWjqPr27YvOnTtjyJAhOH36NGrWrAmtVgsAmDRpEmJiYso9R6NGjQAAXbp0QUZGBjZu3Ijt27fj//2//4ePP/4Yy5YtwyuvvGJ2rBVNEFhSUqL3PCMjA08++STCw8Px0UcfISgoCK6urtiyZQs+/vhjXZmM5ePjg27dupl0LBHZBhMcIoJKpUJCQgKio6OxePFixMXFoWHDhgDuN6sYcnOvXbs2RowYgREjRiAvLw9dunTBzJkzK0xwgoODodVqkZGRoVdrc/r06TL7PvTQQ7h9+3aZ7f+uBfn+++9RXFyMTZs2oUGDBrrtu3fvrjJ+SwsODsYff/wBrVarV4tz6tQp3etAxckbEZmHfXCICMD9pQbat2+PhQsXoqioCH5+fujatSuWL1+O7OzsMvvfvHlT9+9bt27pvVazZk00atQIxcXFFb5fjx49AACffvqp3vaFCxeW2TcsLAwajQZ//PGHblt2dnaZ2YRVKhUAQAih26bRaJCYmFhhHNbyzDPP4Nq1a0hOTtZtu3fvHhYtWoSaNWsiKioKAFCjRg0AKDeBIyLTsQaHiHQmT56M559/HklJSXjttdewZMkSdO7cGa1atcLIkSPRsGFDXL9+HQcOHMDly5fx+++/AwCaN2+Orl27ok2bNqhduzYOHTqEdevWYfTo0RW+V+vWrTF48GB89tln0Gg06NSpE3bu3Ilz586V2XfQoEGYOnUq+vXrh7Fjx6KgoABLly5FkyZNcOTIEd1+Tz/9NFxdXdGrVy+MGjUKeXl5WLFiBfz8/MpN0qzp1VdfxfLlyzF8+HAcPnwYISEhWLduHfbv34+FCxeiVq1aAO53im7evDmSk5PRpEkT1K5dGy1btkTLli2rNV4ixbH1MC4iql6lw8TT09PLvFZSUiLCwsJEWFiYuHfvnhBCiIyMDPHiiy8Kf39/4eLiIurVqyeeffZZsW7dOt1xc+fOFe3btxfe3t7Cw8NDhIeHi/fee0/8888/un3KG9JdWFgoxo4dK+rUqSM8PT1Fr169xKVLl8odNr19+3bRsmVL4erqKpo2bSq++uqrcs+5adMm8fDDDwt3d3cREhIiFixYIFauXCkAiMzMTN1+xgwTr2oIfEXnu379uhgxYoTw8fERrq6uolWrViIxMbHMsWlpaaJNmzbC1dWVQ8aJLEQS4oG6XCIiIiIFYB8cIiIiUhwmOERERKQ4THCIiIhIcZjgEBERkeIwwSEiIiLFYYJDREREiqP4if60Wi2uXr2KWrVqcUp0IiIiOyGEwJ07dxAYGFhm0VpDKD7BuXr1KoKCgmwdBhEREZng0qVLqF+/vtHHKT7BKZ0O/dKlS/Dy8rJxNERERGSI3NxcBAUF6e7jxlJ8glPaLOXl5cUEh4iIyM6Y2r2EnYyJiIhIcZjgEBERkeIwwSEiIiLFYYJDREREisMEh4iIiBSHCQ4REREpDhMcIiIiUhwmOERERKQ4THCIiIhIcZjgEBERkeIwwSEiIiLFYYJDRERkJ7I1hUjLyEG2ptDWocie4hfbJCIiUoLk9IuITzkGrQCcJCChfysMbNfA1mHJlk1rcPbt24devXohMDAQkiRhw4YNZfY5efIkevfuDbVaDU9PT7Rr1w4XL16s/mCJiIhsJFtTqEtuAEArgGkpx1mTUwmbJjj5+fmIiIjAkiVLyn09IyMDnTt3Rnh4OPbs2YM//vgD06dPh7u7ezVHahmsWiQiIlNk5uTrkptSJUIgK6fANgHZAZs2UfXo0QM9evSo8PW3334bzzzzDN5//33dtrCwsOoIzeJYtUhERKYK9fGEkwS9JEclSQjxqWG7oGROtp2MtVotNm/ejCZNmiAmJgZ+fn7o0KFDuc1YDyouLkZubq7ew9ZYtUhEROYIUHsgoX8rqCQJwP3kZl7/lghQe9g4MvmSbYJz48YN5OXlYf78+ejevTu2b9+Ofv36oX///ti7d2+FxyUkJECtVuseQUFB1Rh1+Vi1SERE5hrYrgFS46KxZuRjSI2LZitAFWQ7ikqr1QIA+vTpgwkTJgAAWrdujbS0NCxbtgxRUVHlHhcfH4+JEyfqnufm5to8yWHVIhERWUKA2oO1NgaSbQ2Oj48PnJ2d0bx5c73tzZo1q3QUlZubG7y8vPQetsaqRSIiouol2xocV1dXtGvXDqdPn9bbfubMGQQHB9soKtMNbNcAXZr4IiunACE+NZjcEBERWZFNE5y8vDycO3dO9zwzMxNHjx5F7dq10aBBA0yePBkDBw5Ely5dEB0dja1bt+L777/Hnj17bBe0GVi1SEREVD0kIYSoejfr2LNnD6Kjo8tsj42NRVJSEgBg5cqVSEhIwOXLl9G0aVPMmjULffr0Mfg9cnNzoVarodFoZNFcRURERFUz9/5t0wSnOjDBISIisj/m3r9l28mYiIiIyFRMcIiIiEhxmOAQERGR4jDBISIiIsVhgkNERESKwwSHiIiIFIcJDhERESkOExwiIiJSHCY4REREpDhMcIiIiEhxmOAQERGRybI1hUjLyEG2ptDWoeix6WriREREZL+S0y8iPuUYtAJwkoCE/q0wsF0DW4cFgDU4REREZIJsTaEuuQEArQCmpRyXTU0OExwiIiIyWmZOvi65KVUiBLJyCmwT0L8wwSEiIiKjhfp4wknS36aSJIT41LBNQP/CBIeIiIiMFqD2QEL/VlBJ97MclSRhXv+WCFB72Diy+9jJmIiIiEwysF0DdGnii6ycAoT41JBNcgMwwSEiIiIzBKg9ZJXYlGITFRERESkOExwiIiJSHCY4REREpDhMcIiIiEhxmOAQERGR4jDBISIiIsVhgkNERESKwwSHiIiIFIcJDhERESkOExwiIiJSHCY4REREpDhMcIiIiEhxmOAQERGR4tg0wdm3bx969eqFwMBASJKEDRs2VLjva6+9BkmSsHDhwmqLj4iIiOyTTROc/Px8REREYMmSJZXut379evzyyy8IDAyspsiIiIjInjnb8s179OiBHj16VLrPlStXMGbMGGzbtg09e/aspsiIiIjIntk0wamKVqvFsGHDMHnyZLRo0cKgY4qLi1FcXKx7npuba63wiIiISKZk3cl4wYIFcHZ2xtixYw0+JiEhAWq1WvcICgqyYoREREQkR7JNcA4fPoxPPvkESUlJkCTJ4OPi4+Oh0Wh0j0uXLlkxSiIiIpIj2SY4P//8M27cuIEGDRrA2dkZzs7OuHDhAt566y2EhIRUeJybmxu8vLz0HkRERORYZNsHZ9iwYejWrZvetpiYGAwbNgwjRoywUVRERERkD2ya4OTl5eHcuXO655mZmTh69Chq166NBg0aoE6dOnr7u7i4wN/fH02bNq3uUImIiMiO2DTBOXToEKKjo3XPJ06cCACIjY1FUlKSjaIiIiIie2fTBKdr164QQhi8f1ZWlvWCISIiIsWQbSdjIiIiIlMxwSEiIiLFYYJDREREisMEh4iIiBSHCQ4REREpDhMcIiIiUhwmOERERKQ4THCIiIhIcZjgEBERkeIwwSEiIiLFYYJDREREisMEh4iIiBSHCQ4REREpDhMcIiIiUhwmOERERKQ4THCIiIhIcZjgEBERkeIwwSEiIiLFYYJDREREisMEx4FlawqRlpGDbE2hrUMhIiKyKGdbB0C2kZx+EfEpx6AVgJMEJPRvhYHtGtg6LDJAtqYQmTn5CPXxRIDaw9bhEBHJEhMcB5StKdQlNwCgFcC0lOPo0sSXN0yZY2JKRGQYNlE5oMycfF1yU6pECGTlFNgmIDJIRYkpmxiJiMpiguOAQn084STpb1NJEkJ8atgmIDIIE1MiIsMxwXFAAWoPJPRvBZV0P8tRSRLm9W/J5imZY2JKRGQ49sFxUAPbNUCXJr7IyilAiE8NJjd2oDQxnZZyHCVCMDElIqoEExwHFqD24M3RzjAxJSIyDBMcIjvDxJSIqGrsg0NERESKwwSHiIiIFMemCc6+ffvQq1cvBAYGQpIkbNiwQffa3bt3MXXqVLRq1Qqenp4IDAzEiy++iKtXr9ouYCIiIrILNk1w8vPzERERgSVLlpR5raCgAEeOHMH06dNx5MgRpKSk4PTp0+jdu7cNIiUiIiJ7IgkhRNW7WZ8kSVi/fj369u1b4T7p6elo3749Lly4gAYNDJuePjc3F2q1GhqNBl5eXhaKloiIiKzJ3Pu3XfXB0Wg0kCQJ3t7etg6FiIiIZMxuhokXFRVh6tSpGDx4cKWZXHFxMYqLi3XPc3NzqyM8IiIikhG7qMG5e/cuBgwYACEEli5dWum+CQkJUKvVukdQUFA1RUlERERyIfsEpzS5uXDhAnbs2FFlO1x8fDw0Go3ucenSpWqKlIiI5CxbU4i0jBxkawptHQpVA1k3UZUmN2fPnsXu3btRp06dKo9xc3ODm5tbNURHRET2Ijn9IuJTjkErACcJSOjfCgPbGTZYheyTTROcvLw8nDt3Tvc8MzMTR48eRe3atREQEIDnnnsOR44cwQ8//ICSkhJcu3YNAFC7dm24urraKmwiIrIj2ZpCXXIDAFoBTEs5ji5NfLnsiYLZNME5dOgQoqOjdc8nTpwIAIiNjcXMmTOxadMmAEDr1q31jtu9eze6du1aXWESEZEdy8zJ1yU3pUqEQFZOARMcBbNpgtO1a1dUNg2PTKboISIiOxbq4wknCXpJjkqSEOJTw3ZBkdXJvpMxERGROQLUHkjo3woqSQJwP7mZ178la28UTtadjImIiCxhYLsG6NLEF1k5BQjxqcHkxgEwwSEiIocQoPZgYuNA2ERFREREisMEh4iIiBSHCQ4REREpDhMcIiIiUhwmOArCdVaIiIju4ygqheA6K0RERP/FGhwFqGidFdbkEBGRo2KCowCVrbNCRETkiJjgyJihfWpK11l5ENdZISIiR8YER6aS0y8icv4uDFlxEJHzdyE5/WKF+3KdFSIiIn2SUPiS3bm5uVCr1dBoNPDy8rJ1OAbJ1hQicv6uMivfpsZFV5q0ZGsKuc4KEREpgrn3b46ikqHK+tRUlrhwnRUiIqL72EQlQ+xTQ0REZB4mODLEPjVERETmYROVTA1s1wBdmviyTw0REZEJmODIGPvUEBERmYZNVERERKQ4THCIiIhIcZjgEBERkeIwwSEiIiLFYYJDREREisMEh4iIiBSHCQ4REREpjskJTkhICGbPno2LFyte5ZqIiIjIFkxOcMaPH4+UlBQ0bNgQTz31FL755hsUFxdbMjYiIiIik5iV4Bw9ehS//vormjVrhjFjxiAgIACjR4/GkSNHLBkjERERkVEkIYSwxInu3r2Lzz77DFOnTsXdu3fRqlUrjB07FiNGjIAkSVWfwEpyc3OhVquh0Wjg5eVlsziIiIjIcObev81ei+ru3btYv349EhMTsWPHDjz22GN4+eWXcfnyZUybNg0//fQTVq9ebe7bEBERERnM5CaqI0eO6DVLtWjRAsePH0dqaipGjBiB6dOn46effsL69esrPMe+ffvQq1cvBAYGQpIkbNiwQe91IQTeffddBAQEwMPDA926dcPZs2dNDZmIiIgchMkJTrt27XD27FksXboUV65cwQcffIDw8HC9fUJDQzFo0KAKz5Gfn4+IiAgsWbKk3Nfff/99fPrpp1i2bBkOHjwIT09PxMTEoKioyNSwiYiIyAGY3AfnwoULCA4OtlwgkoT169ejb9++AO7X3gQGBuKtt97CpEmTAAAajQZ169ZFUlJSpYnTg9gHh4iIyP6Ye/82uQYnOjoat27dKrP99u3baNiwoamn1cnMzMS1a9fQrVs33Ta1Wo0OHTrgwIEDFR5XXFyM3NxcvQcRERE5FpMTnKysLJSUlJTZXlxcjCtXrpgVFABcu3YNAFC3bl297XXr1tW9Vp6EhASo1WrdIygoyOxYiIiIyL4YPYpq06ZNun9v27YNarVa97ykpAQ7d+5ESEiIRYIzRXx8PCZOnKh7npubyySHiIjIwRid4JT2kZEkCbGxsXqvubi4ICQkBB9++KHZgfn7+wMArl+/joCAAN3269evo3Xr1hUe5+bmBjc3N7Pfn4iIyNFkawqRmZOPUB9PBKg9bB2OWYxOcLRaLYD7I6TS09Ph4+Nj8aBKz+/v74+dO3fqEprc3FwcPHgQr7/+ulXek4iIyFElp19EfMoxaAXgJAEJ/VthYLsGtg7LZCZP9JeZmWn2m+fl5eHcuXN65zx69Chq166NBg0aYPz48Zg7dy4aN26M0NBQTJ8+HYGBgbpaJCIiIjJftqZQl9wAgFYA01KOo0sTX7utyTE5wZk9e3alr7/77rtVnuPQoUOIjo7WPS/tOxMbG4ukpCRMmTIF+fn5ePXVV3H79m107twZW7duhbu7u6lhExER0b9k5uTrkptSJUIgK6fAbhMck+fBeeSRR/Se3717F5mZmXB2dkZYWJhsFtzkPDhERESVy9YUInL+Lr0kRyVJSI2LtlmCY7O1qH777bdygxk+fDj69etn6mmJiIiomgWoPZDQvxWmpRxHiRBQSRLm9W9pt7U3gAVXEy917Ngx9OrVC1lZWZY8rclYg1MxJfWWJyIi82VrCpGVU4AQnxo2vy/YfDXxf9NoNNBoNJY+LVmY0nrLExGR+QLUHjZPbCzF5ATn008/1XsuhEB2dja+/PJL9OjRw+zAyHqU2FueiIjoQSYnOB9//LHecycnJ/j6+iI2Nhbx8fFmB0bWo8Te8kRERA+y6Tw4ZBuhPp5wklCmt3yITw3bBUVERGRBJi+2CdxvlsrJySl3VXGSr9Le8ipJAgBF9JYnIiJ6kEk1ONeuXcOUKVOwadMm3LlzBwDg5eWFfv36ISEhocwK4CQ/A9s1QJcmvrLpLU9ERGRJRic4ubm56NSpE/Ly8jBixAiEh4dDCIE///wTa9asQWpqKo4cOYKaNWtaI16yICX1liciInqQ0QnOJ598ApVKhRMnTsDX11fvtXfeeQeRkZH49NNPMW3aNIsFSURERGQMo/vgbN68GdOmTSuT3ACAn58f4uPj8f3331skODJOtqYQaRk5yNYU2joUIiIimzK6BufMmTPo1KlTha936tQJkyZNMisoMh4n7iMiIvovo2twcnNz4e3tXeHr3t7eyM3NNScmMlJFE/exJoeIiByV0QmOEAJOThUfJkkSLLy8FVWhson7iIiIHJHRTVRCCDRp0gTS/82hUt7rVL04cR8REZE+oxOcxMREa8RBZlDiMvdERETmkISVq1zWrFmD3r17w9PT05pvUyFzl1u3J3Ja5p6IiMgc5t6/zVqqwRCjRo3C9evXrf02hPs1OR3D6jC5ISIih2f1BId9coiIiKi6WT3BISIiIqpuTHCIiIhIcZjgEBERkeIwwSEiIiLFMSnBKSkpwb59+3D79u0q9w0ODoaLi4spb0NENsKFW4nI3hk90R8AqFQqPP300zh58mSl61IBwPHjx015CyKyES7cSkRKYHITVcuWLXH+/HlLxkJENsaFW4lIKUxOcObOnYtJkybhhx9+QHZ2NnJzc/UeRGR/uHArESmFSU1UAPDMM88AAHr37q238KYQApIkoaSkxPzoiKhaceFWIlIKkxOc3bt3WzIOIpIBLtxKREph9cU2bc2RFtskshQu3EpEtmbTxTZ//vlnvPDCC+jUqROuXLkCAPjyyy+RmppqzmmJyMa4cCsR2TuTE5zvvvsOMTEx8PDwwJEjR1BcXAwA0Gg0mDdvnsUCLCkpwfTp0xEaGgoPDw+EhYVhzpw5XMSTiIiIKmTWKKply5ZhxYoVehP5RUZG4siRIxYJDgAWLFiApUuXYvHixTh58iQWLFiA999/H4sWLbLYexAREZGymNzJ+PTp0+jSpUuZ7Wq12qAZjg2VlpaGPn36oGfPngCAkJAQrFmzBr/++qvF3oOIiIiUxeQaHH9/f5w7d67M9tTUVDRs2NCsoB7UqVMn7Ny5E2fOnAEA/P7770hNTUWPHj3K3b+4uJhz8hARETk4k2twRo4ciXHjxmHlypWQJAlXr17FgQMHMGnSJEyfPt1iAcbFxSE3Nxfh4eFQqVQoKSnBe++9h6FDh5a7f0JCAmbNmmWx9yciIiL7Y3KCExcXB61WiyeffBIFBQXo0qUL3NzcMGnSJIwZM8ZiAa5duxZff/01Vq9ejRYtWuDo0aMYP348AgMDERsbW2b/+Ph4TJw4Ufc8NzcXQUFBFouHiIiI5M/seXD++ecfnDt3Dnl5eWjevDlq1qxpqdgAAEFBQYiLi8Obb76p2zZ37lx89dVXOHXqVJXHcx4cIiIi+2Pu/dvkGpxSrq6uaN68ubmnqVBBQQGcnPS7CqlUKmi1Wqu9JxEREdk3kxOcoqIiLFq0CLt378aNGzfKJByWGireq1cvvPfee2jQoAFatGiB3377DR999BFeeukli5yfiIiIlMfkBOfll1/G9u3b8dxzz6F9+/Z6C25a0qJFizB9+nS88cYbuHHjBgIDAzFq1Ci8++67Vnk/IiIisn8m98FRq9XYsmULIiMjLR2TRbEPDhERKUW2phCZOfkI9fFU/FIqNuuDU69ePdSqVcvUw4mIiMgIyekXEZ9yDFoBOElAQv9WGNiuga3Dki2TJ/r78MMPMXXqVFy4cMGS8RAREdG/ZGsKdckNAGgFMC3lOLI1hbYNDPdjS8vIkUUsDzK5Bqdt27YoKipCw4YNUaNGDb31qADgr7/+Mjs4Mo4jVV0SETmSzJx8XXJTqkQIZOUU2PTvvZxrlUxOcAYPHowrV65g3rx5qFu3rtU6GZNh5PwlI+Vjck1kXaE+nnCSoJfkqCQJIT41bBZTRbVKXZr4yuLvgMkJTlpaGg4cOICIiAhLxkMmkPuXjJSNyTWR9QWoPZDQvxWmpRxHiRBQSRLm9W9p07/xcq1VKmVyghMeHo7CQnm1tzkquX/JSLmYXBNVn4HtGqBLE19k5RQgxKeGzf+PybFW6UEmdzKeP38+3nrrLezZswe3bt3iCt42VPole5CcvmSkXJUl10RkeQFqD3QMq2Pz5KY0loT+raD6vy4qcqhVepDJNTjdu3cHADz55JN624UQkCQJJSUl5kVGBpNj1SU5Brn/giMi65JbrdKDTE5wdu/ebck4yExy/pKRcjG5JqIAtYcs/8+bNJPx3bt30b17dyxbtgyNGze2RlwWw5mMiawvW1PI5JqILMomMxm7uLjgjz/+MOVQIlIguf6CIyLHZXIn4xdeeAGff/65JWMhIiIisgiT++Dcu3cPK1euxE8//YQ2bdrA09NT7/WPPvrI7OCIiIiITGFygnP8+HE8+uijAIAzZ87ovcZZjYmIiMiWOIqKiIiIFMfkPjgPunz5Mi5fvmyJUxERERGZzeQER6vVYvbs2VCr1QgODkZwcDC8vb0xZ84caLVaS8ZIREREZBSTm6jefvttfP7555g/fz4iIyMBAKmpqZg5cyaKiorw3nvvWSxIIiIiImOYNNEfAAQGBmLZsmXo3bu33vaNGzfijTfewJUrVywSoLk40R8REZH9Mff+bXIT1V9//YXw8PAy28PDw/HXX3+ZeloiIiIis5mc4ERERGDx4sVlti9evBgRERFmBUVERETmy9YUIi0jB9maQluHUu1M7oPz/vvvo2fPnvjpp5/QsWNHAMCBAwdw6dIlbNmyxWIBEhERKVW2phCZOfkI9fG0+HInyekXEZ9yDFoBOElAQv9WGNiugUXfQ85M7oMDAFevXsWSJUtw6tQpAECzZs3wxhtvIDAw0GIBmot9cIiISI6smYBkawoROX8XtA/c4VWShNS4aLtZN65aF9vs378/kpKS4OXlhS+++AIDBw7kaCkiIiIjZWsKdckNAGgFMC3lOLo08a00ATG0xiczJ18vuQGAEiGQlVNgNwmOuYzqg/PDDz8gPz8fADBixAhoNBqrBEVERKRklSUgFUlOv4jI+bswZMVBRM7fheT0ixXuG+rjCad/rZqkkiSE+NQwJ2y7YlQNTnh4OOLj4xEdHQ0hBNauXVthtdGLL75okQCJiIjshaE1LKUJyL+bkCpKQIyt8QlQeyChfytMSzmOEiGgkiTM69/SYWpvACP74KSlpWHixInIyMjAX3/9hVq1apW7sKYkSbIZKs4+OEREVB2M7VOTnH6xTAJS0f5pGTkYsuJgme1rRj6GjmF1KnyPbE0hsnIKEOJTw+6SG3Pv3yZ3MnZycsK1a9fg5+dnyuHVhgkOERFZm6mdeg1NQJTQadhYNpvoLzMzE76+vqYeTkREpBim9KkB7jcldQyrU2WSUtrkpPq/VhNHbHIylsnz4AQHB+Pnn3/G8uXLkZGRgXXr1qFevXr48ssvERoais6dO1syTiIiItkytk+NKQa2a4AuTXzttsmpuplcg/Pdd98hJiYGHh4e+O2331BcXAwA0Gg0mDdvnsUCBIArV67ghRdeQJ06deDh4YFWrVrh0KFDFn0PIiIiU1VXDYuhNT5kRg3O3LlzsWzZMrz44ov45ptvdNsjIyMxd+5ciwQHAH///TciIyMRHR2NH3/8Eb6+vjh79iweeughi70HERGRuVjDIi8mJzinT59Gly5dymxXq9W4ffu2OTHpWbBgAYKCgpCYmKjbFhoaarHzExERWUqA2oOJjUyY3ETl7++Pc+fOldmempqKhg0bmhXUgzZt2oS2bdvi+eefh5+fHx555BGsWLGiwv2Li4uRm5ur9yAiIiLHYnKCM3LkSIwbNw4HDx6EJEm4evUqvv76a7z11lt4/fXXLRbg+fPnsXTpUjRu3Bjbtm3D66+/jrFjx2LVqlXl7p+QkAC1Wq17BAUFWSwWIiIisg8mz4MjhMC8efOQkJCAgoL7w+Dc3NwwefJkxMfHw8PDMlV0rq6uaNu2LdLS0nTbxo4di/T0dBw4cKDM/sXFxboOz8D9cfRBQUGcB4fIiqy5IjJZB68ZyZ3N5sGRJAlvv/02/vrrLxw/fhy//PILbt68CbVabdE+MgEBAWjevLnetmbNmuHixfLX4HBzc4OXl5feg5QrW1OItIwcZGsKbR2KwzJmfRySB14zcgRGJzjFxcWIj49H27ZtERkZiS1btqB58+Y4ceIEmjZtik8++QQTJkywWICRkZE4ffq03rYzZ84gODjYYu9hKt5cbYt/pG2vovVx+H9CvnjNyFEYPYrq3XffxfLly9GtWzekpaXh+eefx4gRI/DLL7/gww8/xPPPPw+VSmWxACdMmIBOnTph3rx5GDBgAH799Vf87//+L/73f//XYu9hCmPXHCHLMnbhObKOymZv5XWQJ14zchRG1+B8++23+OKLL7Bu3Tps374dJSUluHfvHn7//XcMGjTIoskNALRr1w7r16/HmjVr0LJlS8yZMwcLFy7E0KFDLfo+xuAvINszdVp0sqzS2VsfZOnZW8myeM3IURid4Fy+fBlt2rQBALRs2RJubm6YMGFCuauKW8qzzz6LY8eOoaioCCdPnsTIkSOt9l6G4M3V9vhHWh64Po794TUjR2F0E1VJSQlcXV3/ewJnZ9SsWdOiQclddaw5QpUr/SM9LeU4SoTgH2kb4uyt9ofXjByB0cPEnZyc0KNHD7i5uQEAvv/+ezzxxBPw9PTU2y8lJcVyUZrB3GFmFUlOv1jm5so+ONUvW1PIP9JECsGh6/Qgc+/fRtfgxMbG6j1/4YUXjH5TJeAvIHngtOhEysCBG2RpJk/0Zy+sVYNDRESWka0pROT8XWWa/VPjovkDxoHZbKI/IiIiS+DADbIGJjhERGRTHBVJ1sAEh4iIbIpD18kajO5kTEREZGkcuEGWxgSH7Joch5XKMSayPF5ny+OoSLIkJjhkt+Q4rLQ6YuKN1fbk+N0jIn3sg0N2SY7rgVVHTFxB3fbk+N0jorKY4JBdkuOwUmvHxBurPMjxu0dEZTHBIbskx2Gl1o6JN1brydYUIi0jx6BkUY7fPUdlzHUjx8MEh+ySHIeVWjsm3litw9hmPzl+9xwRm2upKlyqgeyaHBfbtGZMXOTVssxZIkBu3z1H6nzOpR0cQ7UvtkkkJ3IcVmrNmDhXiGVV1uxX1Wcrp++eo43qMue6keNgExWRnQlQe6BjWB3+IbcAJTT7OWLncyVcN7I+JjhE5LCU0J/GETufK+G6kfWxiYqIHJq9N/uV1mb8uz+K0msz7P26kfWxBoeIHJ49N/s5cm2GsdeNw8odC2twiIjsHGszquZoHbGJNThERIpgz7VQ1uaIHbGJCQ4RESmcI3bEJiY4RESkcBxW7piY4BARmYAdVu2HI3fEdmTsZExEZCR2WLU/7IjteFiDQ0RkBKV0WHXEGih2xHYsrMEhIjKCEtZBYg0UOQLW4BARGcHeO6wqpQaKqCpMcIiIjGDvHVY5ZJocBZuoiIiMZM8dVh117SpyPHZVgzN//nxIkoTx48fbOhQicnD22mHV3mug5M4RO2/Lld3U4KSnp2P58uV4+OGHbR0KEZFds+caKDlj5215sYsanLy8PAwdOhQrVqzAQw89ZOtwiIjsnr3WQMkVO2/Lj10kOG+++SZ69uyJbt26VblvcXExcnNz9R5ERETWxM7b8iP7JqpvvvkGR44cQXp6ukH7JyQkYNasWVaOiojMka0pRGZOPkJ9PFmDQIrAztvyI+sanEuXLmHcuHH4+uuv4e7ubtAx8fHx0Gg0uselS5esHCURGSM5/SIi5+/CkBUHETl/F5LTL9o6JCKzsfO2/EhCCFH1braxYcMG9OvXDyqVSretpKQEkiTByckJxcXFeq+VJzc3F2q1GhqNBl5eXtYOmYgqka0pROT8XWV+5abGRfNGQIqQrSlk520LMff+LesmqieffBLHjh3T2zZixAiEh4dj6tSpVSY3RCQvSljmgKgyAWoPfpdlQtYJTq1atdCyZUu9bZ6enqhTp06Z7UQkf+ynQETVRdZ9cIgsjZNw2Rb7KRBRdZF1HxxLcKQ+OByZUjlOwiUf7KdARFVRdB8cMhxv3pWraBKuLk18eYO1AfZTICJrYxOVAnAGzapxEi4iIsfCBEcBePOuWmnn1gexcysRkXIxwVEA3ryrxs6tRESOhX1wFKD05j0t5ThKhODNuwJcQZmIyHEwwVGI6rp52/tILXZuJSJyDExwFMTaN2+O1HIc9p7IEhExwSGDcJi142AiSxVh4kv2hAlONbLnPw7VtYaQPX9GSsBElirCxJfsDROcamLvfxyqYw0he/+MlICLYcqHnJJ9uSa+cvqM5MqRPyMmONVArn8cjGHtkVpK+IyUgIthyoPckn05Jr5y+4zkyNE/I86DUw2UMhHfwHYNkBoXjTUjH0NqXLRF/6Mo5TOyd5wvyPbkODO53ObakuNnJDf8jFiDUy2U9KvYWiO1lPQZ2TvOF2RbcqwtkdtcW3L8jOSGnxETnGohtz8OcsTPSF6MTWQduZ3f0uSa7Msp8ZXrZyQn/IwASQghqt7Nfpm73LolZWsKZfHHQc6M/Yx4Y7U9R2/nt4bk9Itlkn1+pvr4GVXN3j8jc+/fTHDIbvHGanvZmkJEzt9V5ldialw0E04z8QdR1fgZVc2ePyNz799soiK7xFFX8uDI7fzWrj3ksiJV42dUNUf+jJjgkF1y5BurnDhqOz9rD4nkj8PEyS7Jbdiqo3LEYeUcfktkH1iDQ3bJ1FFX7JRseXIaXVMdWHtIZB+Y4JDdMvbGymYF63Gkdn5HbZZTAv7AcSxsoiK7FqD2QMewOgbV3LBZgSzBEZvllCA5/SIi5+/CkBUHETl/F5LTL9o6JLIy1uCQQ2CzAlmSozXL2TuOunRMTHDIIbBZgSzNkZrl7B1/4DgmNlGRQ2CzApHjMmfUZbamEGkZOWzOtkOswSGHwWYFIsdk6qhLDkywb1yqgYjIBNYekcMRP5ZnzLIFXIbE9rhUAxFRNbP2L3vWHFiHMf2m2G/H/rEPDhGREaw95QCnNJAHR50tXUl9jpjgEBEZobJf9vZwfjKMIw5MUNpcQbJvokpISEBKSgpOnToFDw8PdOrUCQsWLEDTpk1tHRoROSBrTzlg6vnZZ8fyHGlgghLnCpJ9Dc7evXvx5ptv4pdffsGOHTtw9+5dPP3008jPz7d1aETkgKz9y96U8yvtl7ecGDpbur1TYs2h3Y2iunnzJvz8/LB371506dKlyv05ioqIrMGYETnWPD9H+5AlyPF75HCjqDQaDQCgdu3a5b5eXFyM4uJi3fPc3NxqiYuIHIu1ZzI29Pwc7UOWYOpcQXJmVwmOVqvF+PHjERkZiZYtW5a7T0JCAmbNmlXNkRGRnDhSfxQuQ0KWorQ+R3bVRPX666/jxx9/RGpqKurXr1/uPuXV4AQFBbGJishBOOIcMsnpF8v88lZ6mUn5zG2ispsEZ/To0di4cSP27duH0NBQg49jHxyqbo5UeyA31dmPQG7X2dp9goiqm+L74AghMGbMGKxfvx579uwxKrkhsgRjbmSOWHsgJ9XVH0WO15mrmxPpk32C8+abb2L16tXYuHEjatWqhWvXrgEA1Go1PDz4n5msy5gbmRLnkbA3oT6ekAA8mONIgEX7o/A6E9kH2c+Ds3TpUmg0GnTt2hUBAQG6R3Jysq1DI4Uzdsp8Jc4joQhS1bsYg9eZyD7IvgbHTroIkQIZ29zB0Sy2l5mTj3//xRACFm2i4nUmsg+yr8EhshVjF9tzxLVr5KY6FkjkdSayD3YzispUHEVF5jBl+C1Hs9hWdQ2Z5nUmsi6HGSZuKiY4ZC7eyOwPrxmR/VP8MHEynNzm5VAKDr+1P7xmRMQERyHkOC8HERGRrbCTsQIYO5yZiChbU4i0jBz+nSDFYg2OAnA1YSIyBmt8yRGwBkcBqmNoLJE9Ye1ExVjjS46CCY4CcF4Oov9KTr+IyPm7MGTFQUTO34Xk9Iu2DklWOBOzcZgs2y82USnEwHYN0KWJL4fGkkPjOlFV40zMhmNTnn1jDY6CBKg90DGsDv+Qk8Ni7UTVWONrGDbl2T/W4BCRYsi5dkJO81SxxrdqHLxh/5jgEJFiBKg90O+RevjuyBXdtr6PBNr8hiTHpg5Ohlg5OSfLZBg2URFZmLGdEtmJ0XKyNYVY/9sVvW0bfrtq08+WTR32iU159o81OEQWZOwvdTn+srdncmxWMDUmOTVpOSo25dk3JjhEFmLsCB6O+LE8OTYrmBITE1/5YFOe/WITFZGFGDuChyN+LE+OzQrGxsQmLSLLYA0OkYUY+0tdjrUNSiDHZgVjYpJjMxuRPWKCQ2Qhpb/Up6UcR4kQVf5SN3Z/MpwcmxUMjUmOiW9JSQnu3r1rs/cnZXJxcYFKpbLa+SUhhKh6N/uVm5sLtVoNjUYDLy8vW4dDDiBbU2hU7YGx+5PyJadfLJP42qIPjhAC165dw+3bt6v9vckxeHt7w9/fH5IklXnN3Ps3ExwiIhmSQ+KbnZ2N27dvw8/PDzVq1Cj3JkRkCiEECgoKcOPGDXh7eyMgIKDMPubev9lERUQkUwK2+/1ZUlKiS27q1KljszhIuTw87ifuN27cgJ+fn8Wbq5jgEJHZOGeLZclhmHhpn5saNdjpnayn9Pt19+5dJjhEJC9yuBmbS04JmtzmR2KzFFmTNb9fTHCIqiCnm5/cyO1mbAq5JWgcJk5kGZzoj6gSyekXETl/F4asOIjI+buQnH7R1iHJir1PVijHSfVKh4k/yNbDxB3R/v370apVK7i4uKBv3762DodMwASHqAJyvPnJjb3fjOWYoMlxNmZ7M3z4cEiSBEmS4OLigtDQUEyZMgVFRUUGn2PixIlo3bo1MjMzkZSUZL1gq1FSUpLuc1GpVHjooYfQoUMHzJ49GxqNxujzSZKEDRs2WD5QC2ETFVEF2FRQNXufrFCOk+oB8pyN2d50794diYmJuHv3Lg4fPozY2FhIkoQFCxYYdHxGRgZee+011K9f3+QY/vnnH7i6upp8vDGEECgpKYGzc+W3dS8vL5w+fRpCCNy+fRtpaWlISEhAYmIi9u/fj8DAwGqJtzqwBoeoAvZeO1FdBrZrgNS4aKwZ+RhS46LtqoOxnGtLAtQe6BhWRxax2CM3Nzf4+/sjKCgIffv2Rbdu3bBjxw4AgFarRUJCAkJDQ+Hh4YGIiAisW7cOAJCVlQVJknDr1i289NJLkCRJV4Ozd+9etG/fHm5ubggICEBcXBzu3bune8+uXbti9OjRGD9+PHx8fBATE4M9e/ZAkiRs27YNjzzyCDw8PPDEE0/gxo0b+PHHH9GsWTN4eXlhyJAhKCj4b81hZTEC0J33xx9/RJs2beDm5obU1NQqPxdJkuDv74+AgAA0a9YML7/8MtLS0pCXl4cpU6bo9gsJCcHChQv1jm3dujVmzpypex0A+vXrB0mSEBISgqysLDg5OeHQoUN6xy1cuBDBwcHQarVVxmdJrMEhqoC9106Uqo5O0nJcGsFQrC2xPlt31D9+/DjS0tIQHBwMAEhISMBXX32FZcuWoXHjxti3bx9eeOEF+Pr6onPnzsjOzkbTpk0xe/ZsDBw4EGq1GleuXMEzzzyD4cOH44svvsCpU6cwcuRIuLu76276ALBq1Sq8/vrr2L9///2yZ2cDAGbOnInFixejRo0aGDBgAAYMGAA3NzesXr0aeXl56NevHxYtWoSpU6dWGWNUVJTu/eLi4vDBBx+gYcOGeOihh0z6fPz8/DB06FCsXLkSJSUlBg3XTk9Ph5+fHxITE9G9e3eoVCr4+vqiW7duSExMRNu2bXX7JiYmYvjw4XByquY6FaFwGo1GABAajcbWoRjt6u0Csf/cTXH1doGtQ3FoV28XiLRzOXZ5Hb759YIIjftBBE/9QYTG/SC++fWCrUMiO1FYWCj+/PNPUVhYaNZ5bPEdjI2NFSqVSnh6ego3NzcBQDg5OYl169aJoqIiUaNGDZGWlqZ3zMsvvywGDx6se65Wq0ViYqLu+bRp00TTpk2FVqvVbVuyZImoWbOmKCkpEUIIERUVJR555BG98+7evVsAED/99JNuW0JCggAgMjIydNtGjRolYmJihBDCoBhLz7thwwaDP5fExEShVqvLfW3p0qUCgLh+/boQQojg4GDx8ccf6+0TEREhZsyYoXsOQKxfv15vn+TkZPHQQw+JoqIiIYQQhw8fFpIkiczMzHLft7Lvmbn3b7tpolqyZAlCQkLg7u6ODh064Ndff7V1SFbF0TvyYa9NBY7cSTpbU4i0jByHKGspOZbZlt/B6OhoHD16FAcPHkRsbCxGjBiB//znPzh37hwKCgrw1FNPoWbNmrrHF198gYyMjArPd/LkSXTs2FFv3pbIyEjk5eXh8uXLum1t2rQp9/iHH35Y9++6deuiRo0aaNiwod62GzduAIBRMT5YU2IO8X+rNpk7L03fvn2hUqmwfv16APc7NkdHR+uatKqTXTRRJScnY+LEiVi2bBk6dOiAhQsXIiYmBqdPn4afn5+tw7M4JcwtQrbnqJ2k5TavTSlrNtPItcy2/A56enqiUaNGAICVK1ciIiICn3/+OVq2bAkA2Lx5M+rVq6d3jJubm0XetzwuLi66f5eO7nqQJEm6Pip5eXkGx1jR+xnr5MmT8PLy0i3L4eTkpEt6ShmyoryrqytefPFFJCYmon///li9ejU++eQTi8RoLLtIcD766COMHDkSI0aMAAAsW7YMmzdvxsqVKxEXF2fj6CzPUW9MZFlyHSFkTXL9cWDNBESuZQbk8x10cnLCtGnTMHHiRJw5cwZubm64ePGiXl+WqjRr1gzfffcdhBC6Wo79+/ejVq1aZo20Kk/z5s1NitFUN27cwOrVq9G3b19dPxlfX19d/yHg/sKXmZmZese5uLigpKSkzPleeeUVtGzZEp999hnu3buH/v37W7cAFZB9E9U///yDw4cPo1u3brptTk5O6NatGw4cOFBm/+LiYuTm5uo97A1H75AlyHmEkLXIcV4bazfTyLHMpeT0HXz++eehUqmwfPlyTJo0CRMmTMCqVauQkZGBI0eOYNGiRVi1alWFx7/xxhu4dOkSxowZg1OnTmHjxo2YMWMGJk6caPHOs7Vq1TIpRkMIIXDt2jVkZ2fj5MmTWLlyJTp16gS1Wo358+fr9nviiSfw5Zdf4ueff8axY8cQGxtbpvNxSEgIdu7ciWvXruHvv//WbW/WrBkee+wxTJ06FYMHD9YtqlndZF+Dk5OTg5KSEtStW1dve926dXHq1Kky+yckJGDWrFnVFZ5VKGX0Dtmeo40QkkuNwYOsXSMrxzI/SC7fQWdnZ4wePRrvv/8+MjMz4evri4SEBJw/fx7e3t549NFHMW3atAqPr1evHrZs2YLJkycjIiICtWvXxssvv4x33nnHKvHOmTPH6BgNkZubi4CAAEiSBC8vLzRt2hSxsbEYN24cvLy8dPvFx8cjMzMTzz77LNRqNebMmVOmBufDDz/ExIkTsWLFCtSrVw9ZWVm610qHn7/00ktmxWsOSfy7kU1mrl69inr16iEtLQ0dO3bUbZ8yZQr27t2LgwcP6u1fXFyM4uJi3fPc3FwEBQVBo9HoXTx7kK0ptPkfBSJ7k5x+scyPA1v2R8nWFCJy/q4yCUhqXLTF/l9bo8xFRUXIzMxEaGgo3N3dLRInOY45c+bg22+/xR9//FHpfpV9z3Jzc6FWq02+f8u+BsfHxwcqlQrXr1/X2379+nX4+/uX2d/Nzc0iHcXkwJ7nFiGyFbnUGJSqjhpZuZWZHFdeXh6ysrKwePFizJ0716axyD7BcXV1RZs2bbBz507dgmdarRY7d+7E6NGjbRscEcmS3H4cVEcCIrcyU/Vr0aIFLly4UO5ry5cvx9ChQ60ew+jRo7FmzRr07dvXps1TgB0kOMD9Rc9iY2PRtm1btG/fHgsXLkR+fr5uVBURkdwxASFr27JlS4VDuf/dj9VakpKSZLM4qV0kOAMHDsTNmzfx7rvv4tq1a2jdujW2bt1abReMiIhI7kqXoqD77CLBAe5Xe7FJioiIiAwh+3lwiIjIdmQ+0JbsnDW/X0xwiIiojNKlBAoKbD9hIClX6ffr30tXWILdNFEREVH1UalU8Pb21i0AWaNGDbMXYiQqJYRAQUEBbty4AW9v7zKzJFsCExwiIipX6VxjpUkOkaV5e3uXO6edJTDBISKickmShICAAPj5+Rm0kjSRMVxcXKxSc1OKCQ4REVVKpVJZ9UZEZA3sZExERESKwwSHiIiIFIcJDhERESmO4vvglE4ilJuba+NIiIiIyFCl921TJwNUfIJz584dAEBQUJCNIyEiIiJj3blzB2q12ujjJKHwebi1Wi2uXr2KWrVqWXySqtzcXAQFBeHSpUvw8vKy6LnlxBHK6QhlBFhOpWE5lYXl1CeEwJ07dxAYGAgnJ+N71Ci+BsfJyQn169e36nt4eXkp+stYyhHK6QhlBFhOpWE5lYXl/C9Tam5KsZMxERERKQ4THCIiIlIcJjhmcHNzw4wZM+Dm5mbrUKzKEcrpCGUEWE6lYTmVheW0LMV3MiYiIiLHwxocIiIiUhwmOERERKQ4THCIiIhIcZjgEBERkeIwwXnAkiVLEBISAnd3d3To0AG//vprpfsvXLgQTZs2hYeHB4KCgjBhwgQUFRWZdc7qYOlyzpw5E5Ik6T3Cw8OtXYwqGVPOu3fvYvbs2QgLC4O7uzsiIiKwdetWs85ZXSxdTrldz3379qFXr14IDAyEJEnYsGFDlcfs2bMHjz76KNzc3NCoUSMkJSWV2Udu19Ia5ZTbtQSML2d2djaGDBmCJk2awMnJCePHjy93v2+//Rbh4eFwd3dHq1atsGXLFssHbwRrlDMpKanM9XR3d7dOAQxkbDlTUlLw1FNPwdfXF15eXujYsSO2bdtWZj+L/P8UJIQQ4ptvvhGurq5i5cqV4sSJE2LkyJHC29tbXL9+vdz9v/76a+Hm5ia+/vprkZmZKbZt2yYCAgLEhAkTTD5ndbBGOWfMmCFatGghsrOzdY+bN29WV5HKZWw5p0yZIgIDA8XmzZtFRkaG+Oyzz4S7u7s4cuSIyeesDtYop9yu55YtW8Tbb78tUlJSBACxfv36Svc/f/68qFGjhpg4caL4888/xaJFi4RKpRJbt27V7SPHa2mNcsrtWgphfDkzMzPF2LFjxapVq0Tr1q3FuHHjyuyzf/9+oVKpxPvvvy/+/PNP8c477wgXFxdx7Ngx6xTCANYoZ2JiovDy8tK7nteuXbNOAQxkbDnHjRsnFixYIH799Vdx5swZER8fL1xcXKzyt5YJzv9p3769ePPNN3XPS0pKRGBgoEhISCh3/zfffFM88cQTetsmTpwoIiMjTT5ndbBGOWfMmCEiIiKsEq+pjC1nQECAWLx4sd62/v37i6FDh5p8zupgjXLK8XqWMuQP6JQpU0SLFi30tg0cOFDExMTonsvxWj7IUuWU87UUwrByPigqKqrcG/+AAQNEz5499bZ16NBBjBo1yswILcNS5UxMTBRqtdpicVmaseUs1bx5czFr1izdc0v9/2QTFYB//vkHhw8fRrdu3XTbnJyc0K1bNxw4cKDcYzp16oTDhw/rqs3Onz+PLVu24JlnnjH5nNZmjXKWOnv2LAIDA9GwYUMMHToUFy9etF5BqmBKOYuLi8tU9Xp4eCA1NdXkc1qbNcpZSk7X01gHDhzQ+0wAICYmRveZyPFamqKqcpay52tpKEM/CyXIy8tDcHAwgoKC0KdPH5w4ccLWIZlFq9Xizp07qF27NgDL/v9kggMgJycHJSUlqFu3rt72unXr4tq1a+UeM2TIEMyePRudO3eGi4sLwsLC0LVrV0ybNs3kc1qbNcoJAB06dEBSUhK2bt2KpUuXIjMzE48//jju3Llj1fJUxJRyxsTE4KOPPsLZs2eh1WqxY8cOpKSkIDs72+RzWps1ygnI73oa69q1a+V+Jrm5uSgsLJTltTRFVeUE7P9aGqqiz8KerqchmjZtipUrV2Ljxo346quvoNVq0alTJ1y+fNnWoZnsgw8+QF5eHgYMGADAsn9rmeCYaM+ePZg3bx4+++wzHDlyBCkpKdi8eTPmzJlj69AsypBy9ujRA88//zwefvhhxMTEYMuWLbh9+zbWrl1rw8iN88knn6Bx48YIDw+Hq6srRo8ejREjRsDJSVn/RQwppxKuJ93Ha6ksHTt2xIsvvojWrVsjKioKKSkp8PX1xfLly20dmklWr16NWbNmYe3atfDz87P4+Z0tfkY75OPjA5VKhevXr+ttv379Ovz9/cs9Zvr06Rg2bBheeeUVAECrVq2Qn5+PV199FW+//bZJ57Q2a5SzvATA29sbTZo0wblz5yxfCAOYUk5fX19s2LABRUVFuHXrFgIDAxEXF4eGDRuafE5rs0Y5y2Pr62ksf3//cj8TLy8veHh4QKVSye5amqKqcpbH3q6loSr6LOzpeprCxcUFjzzyiF1ez2+++QavvPIKvv32W73mKEv+rVXWz1MTubq6ok2bNti5c6dum1arxc6dO9GxY8dyjykoKChzc1epVAAAIYRJ57Q2a5SzPHl5ecjIyEBAQICFIjeOOZ+9u7s76tWrh3v37uG7775Dnz59zD6ntVijnOWx9fU0VseOHfU+EwDYsWOH7jOR47U0RVXlLI+9XUtDmfJZKEFJSQmOHTtmd9dzzZo1GDFiBNasWYOePXvqvWbR/59Gd3dWqG+++Ua4ubmJpKQk8eeff4pXX31VeHt764bgDRs2TMTFxen2nzFjhqhVq5ZYs2aNOH/+vNi+fbsICwsTAwYMMPictmCNcr711ltiz549IjMzU+zfv19069ZN+Pj4iBs3blR7+UoZW85ffvlFfPfddyIjI0Ps27dPPPHEEyI0NFT8/fffBp/TFqxRTrldzzt37ojffvtN/PbbbwKA+Oijj8Rvv/0mLly4IIQQIi4uTgwbNky3f+nw6cmTJ4uTJ0+KJUuWlDtMXG7X0hrllNu1FML4cgohdPu3adNGDBkyRPz222/ixIkTutf3798vnJ2dxQcffCBOnjwpZsyYYfNh4tYo56xZs8S2bdtERkaGOHz4sBg0aJBwd3fX26e6GVvOr7/+Wjg7O4slS5boDXe/ffu2bh9L/f9kgvOARYsWiQYNGghXV1fRvn178csvv+hei4qKErGxsbrnd+/eFTNnzhRhYWHC3d1dBAUFiTfeeEPvRlHVOW3F0uUcOHCgCAgIEK6urqJevXpi4MCB4ty5c9VYovIZU849e/aIZs2aCTc3N1GnTh0xbNgwceXKFaPOaSuWLqfcrufu3bsFgDKP0nLFxsaKqKioMse0bt1auLq6ioYNG4rExMQy55XbtbRGOeV2LYUwrZzl7R8cHKy3z9q1a0WTJk2Eq6uraNGihdi8eXP1FKgC1ijn+PHjdd/ZunXrimeeeUZv/hhbMLacUVFRle5fyhL/PyUhKmhnICIiIrJT7INDREREisMEh4iIiBSHCQ4REREpDhMcIiIiUhwmOERERKQ4THCIiIhIcZjgEBERkeIwwSEisoE9e/ZAkiTcvn3b1qEQKRITHCKFGz58OCRJwvz58/W2b9iwAZIk6Z4LIbBixQp07NgRXl5eqFmzJlq0aIFx48YZvJhfQUEB4uPjERYWBnd3d/j6+iIqKgobN27U7RMSEoKFCxdapGzWVvrZSZIEFxcXhIaGYsqUKSgqKjLqPF27dsX48eP1tnXq1AnZ2dlQq9UWjJiISjHBIXIA7u7uWLBgAf7+++9yXxdCYMiQIRg7diyeeeYZbN++HX/++Sc+//xzuLu7Y+7cuQa9z2uvvYaUlBQsWrQIp06dwtatW/Hcc8/h1q1blixOterevTuys7Nx/vx5fPzxx1i+fDlmzJhh9nldXV3h7++vl2QSkQWZuPwEEdmJ2NhY8eyzz4rw8HAxefJk3fb169eL0j8Ba9asEQDExo0byz2HVqs16L3UarVISkqq8PXy1qEp9fPPP4vOnTsLd3d3Ub9+fTFmzBiRl5ene/2LL74Qbdq0ETVr1hR169YVgwcPFtevX9e9XromztatW0Xr1q2Fu7u7iI6OFtevXxdbtmwR4eHholatWmLw4MEiPz/foPLExsaKPn366G3r37+/eOSRR3TPc3JyxKBBg0RgYKDw8PAQLVu2FKtXr9Y7x7/LnJmZqYv3wXXd1q1bJ5o3by5cXV1FcHCw+OCDDwyKk4jKYg0OkQNQqVSYN28eFi1ahMuXL5d5fc2aNWjatCl69+5d7vGG1jL4+/tjy5YtuHPnTrmvp6SkoH79+pg9ezays7ORnZ0NAMjIyED37t3xn//8B3/88QeSk5ORmpqK0aNH6469e/cu5syZg99//x0bNmxAVlYWhg8fXuY9Zs6cicWLFyMtLQ2XLl3CgAEDsHDhQqxevRqbN2/G9u3bsWjRIoPK82/Hjx9HWloaXF1ddduKiorQpk0bbN68GcePH8err76KYcOG4ddffwUAfPLJJ+jYsSNGjhypK3NQUFCZcx8+fBgDBgzAoEGDcOzYMcycORPTp09HUlKSSbESOTxbZ1hEZF0P1kI89thj4qWXXhJC6NfghIeHi969e+sdN27cOOHp6Sk8PT1FvXr1DHqvvXv3ivr16wsXFxfRtm1bMX78eJGamqq3T3BwsPj444/1tr388svi1Vdf1dv2888/CycnJ1FYWFjue6WnpwsA4s6dO0KI/9bg/PTTT7p9EhISBACRkZGh2zZq1CgRExNjUHliY2OFSqUSnp6ews3NTQAQTk5OYt26dZUe17NnT/HWW2/pnkdFRYlx48bp7fPvGpwhQ4aIp556Sm+fyZMni+bNmxsUKxHpYw0OkQNZsGABVq1ahZMnT1a579tvv42jR4/i3XffRV5enkHn79KlC86fP4+dO3fiueeew4kTJ/D4449jzpw5lR73+++/IykpCTVr1tQ9YmJioNVqkZmZCeB+DUevXr3QoEED1KpVC1FRUQCAixcv6p3r4Ycf1v27bt26qFGjBho2bKi37caNGwaVBwCio6Nx9OhRHDx4ELGxsRgxYgT+85//6F4vKSnBnDlz0KpVK9SuXRs1a9bEtm3bysRVlZMnTyIyMlJvW2RkJM6ePYuSkhKjzkVE7GRM5FC6dOmCmJgYxMfH621v3LgxTp8+rbfN19cXjRo1gp+fn1Hv4eLigscffxxTp07F9u3bMXv2bMyZMwf//PNPhcfk5eVh1KhROHr0qO7x+++/4+zZswgLC0N+fj5iYmLg5eWFr7/+Gunp6Vi/fj0AlDmvi4uL7t+lo58eJEkStFqtweXx9PREo0aNEBERgZUrV+LgwYP4/PPPda//z//8Dz755BNMnToVu3fvxtGjRxETE1NpeYnI+pxtHQARVa/58+ejdevWaNq0qW7b4MGDMWTIEGzcuBF9+vSx6Ps1b94c9+7dQ1FREVxdXeHq6lqmRuLRRx/Fn3/+iUaNGpV7jmPHjuHWrVuYP3++rv/KoUOHLBqnIZycnDBt2jRMnDgRQ4YMgYeHB/bv348+ffrghRdeAABotVqcOXMGzZs31x1XXpn/rVmzZti/f7/etv3796NJkyZQqVSWLwyRwrEGh8jBtGrVCkOHDsWnn36q2zZo0CA899xzGDRoEGbPno2DBw8iKysLe/fuRXJyssE32K5du2L58uU4fPgwsrKysGXLFkybNg3R0dHw8vICcH8enH379uHKlSvIyckBAEydOhVpaWkYPXo0jh49irNnz2Ljxo26TsYNGjSAq6srFi1ahPPnz2PTpk1VNntZy/PPPw+VSoUlS5YAuF/7tWPHDqSlpeHkyZMYNWoUrl+/rndMSEiI7jPNyckptwbprbfews6dOzFnzhycOXMGq1atwuLFizFp0qRqKReR0jDBIXJAs2fP1rvJSpKE5ORkLFy4EFu2bMGTTz6Jpk2b4qWXXkJQUBBSU1MNOm9MTAxWrVqFp59+Gs2aNcOYMWMQExODtWvX6r13VlYWwsLC4OvrC+B+v5m9e/fizJkzePzxx/HII4/g3XffRWBgIID7zWVJSUn49ttv0bx5c8yfPx8ffPCBBT8Rwzk7O2P06NF4//33kZ+fj3feeQePPvooYmJi0LVrV/j7+6Nv3756x0yaNAkqlQrNmzeHr69vuf1zHn30UaxduxbffPMNWrZsiXfffRezZ88ud6QYEVVNEkIIWwdBREREZEmswSEiIiLFYYJDRAZ7cBj3vx8///yzrcMzysWLFystj7HDvIlIXthERUQGq2zRzXr16sHDw6MaozHPvXv3kJWVVeHrISEhcHbmQFMie8UEh4iIiBSHTVRERESkOExwiIiISHGY4BAREZHiMMEhIiIixWGCQ0RERIrDBIeIiIgUhwkOERERKQ4THCIiIlKc/w/cOKAfHafwfwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_53.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFUklEQVR4nO3deXQUVeL+/6cTyAKYICRkwUAAWcSwKJsBERijGUUUUUFRQMZ9RNGMCyDKohJwXHAAxQ+D4ApBBGWUL4pxEBFGEURBwQWIQUkCcSSBELbk/v7glx6bJJAOvVRXv1/n9DlQXVV9b1en6+l7b91yGGOMAAAAbCLE3wUAAADwJMINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAL+YOHGiHA5HjdZ1OByaOHGiV8vTt29f9e3b17L7A1BzhBsgyM2fP18Oh8P5qFOnjpo2baqbb75Zv/76q7+LZznJycku71eTJk3Uu3dvLV261CP7P3jwoCZOnKhVq1Z5ZH9AMCLcAJAkTZ48Wa+99ppmz56tyy67TK+//rr69OmjQ4cOeeX1xo8fr9LSUq/s29s6d+6s1157Ta+99poeeOAB7d69W4MGDdLs2bNPe98HDx7UpEmTCDfAaajj7wIAsIbLLrtMXbt2lSTdeuutiomJ0bRp07Rs2TINHjzY469Xp04d1akTmF9BTZs21U033eT8//Dhw3X22Wfrueee05133unHkgGQaLkBUI3evXtLkrZv3+6yfNu2bbr22mvVqFEjRUREqGvXrlq2bJnLOkePHtWkSZPUunVrRUREqHHjxrrwwgu1cuVK5zpVjbk5fPiw7r//fsXGxuqMM87QlVdeqV9++aVS2W6++WYlJydXWl7VPufNm6c//elPatKkicLDw9W+fXu9+OKLbr0XpxIfH69zzjlHO3fuPOl6e/bs0S233KK4uDhFRESoU6dOeuWVV5zP5+TkKDY2VpI0adIkZ9eXt8cbAXYTmD+bAHhdTk6OJOnMM890Lvv222/Vq1cvNW3aVGPGjFH9+vW1aNEiDRw4UG+//bauvvpqScdDRmZmpm699VZ1795dxcXF+vLLL7Vx40Zdcskl1b7mrbfeqtdff11Dhw5Vz5499fHHH6t///6nVY8XX3xR5557rq688krVqVNH//rXv/TXv/5V5eXluvvuu09r3xWOHj2qXbt2qXHjxtWuU1paqr59++qnn37SqFGj1KJFC7311lu6+eabtW/fPo0ePVqxsbF68cUXddddd+nqq6/WoEGDJEkdO3b0SDmBoGEABLV58+YZSeajjz4ye/fuNbt27TKLFy82sbGxJjw83Ozatcu57sUXX2w6dOhgDh065FxWXl5uevbsaVq3bu1c1qlTJ9O/f/+Tvu6ECRPMH7+CNm3aZCSZv/71ry7rDR061EgyEyZMcC4bMWKEad68+Sn3aYwxBw8erLReenq6admypcuyPn36mD59+py0zMYY07x5c3PppZeavXv3mr1795qvv/7aXH/99UaSueeee6rd3/Tp040k8/rrrzuXHTlyxKSmppoGDRqY4uJiY4wxe/furVRfAO6hWwqAJCktLU2xsbFKSkrStddeq/r162vZsmU666yzJEn//e9/9fHHH2vw4MHav3+/CgsLVVhYqN9++03p6en68ccfnVdXNWzYUN9++61+/PHHGr/+8uXLJUn33nuvy/L77rvvtOoVGRnp/HdRUZEKCwvVp08f7dixQ0VFRbXa54cffqjY2FjFxsaqU6dOeuuttzRs2DBNmzat2m2WL1+u+Ph43XDDDc5ldevW1b333qsDBw7ok08+qVVZAFQW1OFm9erVGjBggBITE+VwOPTOO+949fUqxgP88dGuXTuvviZQU7NmzdLKlSu1ePFiXX755SosLFR4eLjz+Z9++knGGD366KPOE3vFY8KECZKOjymRjl95tW/fPrVp00YdOnTQgw8+qG+++eakr//zzz8rJCRErVq1clnetm3b06rXZ599prS0NNWvX18NGzZUbGysxo0bJ0m1Djc9evTQypUr9dFHH2nt2rUqLCzUq6++6hKkTvTzzz+rdevWCglx/do955xznM8D8IygHnNTUlKiTp066S9/+Yuzb9vbzj33XH300UfO/wfq1SKwn+7duzuvlho4cKAuvPBCDR06VN9//70aNGig8vJySdIDDzyg9PT0Kvdx9tlnS5Iuuugibd++Xe+++64+/PBD/fOf/9Rzzz2n2bNn69Zbbz3tslY3+V9ZWZnL/7dv366LL75Y7dq107PPPqukpCSFhYVp+fLleu6555x1cldMTIzS0tJqtS0A7wvqM+tll12myy67rNrnDx8+rEceeUQLFizQvn37lJKSomnTpp3WrKN16tRRfHx8rbcHfCE0NFSZmZnq16+fZs6cqTFjxqhly5aSjnel1OTE3qhRI40cOVIjR47UgQMHdNFFF2nixInVhpvmzZurvLxc27dvd2mt+f777yute+aZZ2rfvn2Vlp/Y+vGvf/1Lhw8f1rJly9SsWTPn8n//+9+nLL+nNW/eXN98843Ky8tdWm+2bdvmfF6qPrgBqLmg7pY6lVGjRmndunVauHChvvnmG1133XX685//7NY4ghP9+OOPSkxMVMuWLXXjjTcqNzfXgyUGPKdv377q3r27pk+frkOHDqlJkybq27evXnrpJeXl5VVaf+/evc5///bbby7PNWjQQGeffbYOHz5c7etV/ND4xz/+4bJ8+vTpldZt1aqVioqKXLq68vLyKs0SHBoaKkkyxjiXFRUVad68edWWw1suv/xy5efnKysry7ns2LFjmjFjhho0aKA+ffpIkurVqydJVYY3ADUT1C03J5Obm6t58+YpNzdXiYmJko43x69YsULz5s3TlClT3N5njx49NH/+fLVt21Z5eXmaNGmSevfurS1btuiMM87wdBWA0/bggw/quuuu0/z583XnnXdq1qxZuvDCC9WhQwfddtttatmypQoKCrRu3Tr98ssv+vrrryVJ7du3V9++fdWlSxc1atRIX375pRYvXqxRo0ZV+1qdO3fWDTfcoBdeeEFFRUXq2bOnsrOz9dNPP1Va9/rrr9fDDz+sq6++Wvfee68OHjyoF198UW3atNHGjRud61166aUKCwvTgAEDdMcdd+jAgQOaM2eOmjRpUmVA86bbb79dL730km6++WZt2LBBycnJWrx4sT777DNNnz7d+R0QGRmp9u3bKysrS23atFGjRo2UkpKilJQUn5YXCGj+vlzLKiSZpUuXOv//3nvvGUmmfv36Lo86deqYwYMHG2OM2bp1q5F00sfDDz9c7Wv+/vvvJioqyvzzn//0dvWAalVcCr5+/fpKz5WVlZlWrVqZVq1amWPHjhljjNm+fbsZPny4iY+PN3Xr1jVNmzY1V1xxhVm8eLFzuyeeeMJ0797dNGzY0ERGRpp27dqZJ5980hw5csS5TlWXbZeWlpp7773XNG7c2NSvX98MGDDA7Nq1q8pLoz/88EOTkpJiwsLCTNu2bc3rr79e5T6XLVtmOnbsaCIiIkxycrKZNm2aefnll40ks3PnTud67lwKfqrL3KvbX0FBgRk5cqSJiYkxYWFhpkOHDmbevHmVtl27dq3p0qWLCQsL47JwoBYcxvyhvTaIORwOLV26VAMHDpQkZWVl6cYbb9S3337rbNqu0KBBA8XHx+vIkSPasWPHSffbuHFj54yjVenWrZvS0tKUmZl52nUAAAB0S1XrvPPOU1lZmfbs2eOchv5EYWFhp3Up94EDB7R9+3YNGzas1vsAAACugjrcHDhwwKU/f+fOndq0aZMaNWqkNm3a6MYbb9Tw4cP1zDPP6LzzztPevXuVnZ2tjh071mpK+AceeEADBgxQ8+bNtXv3bk2YMEGhoaEuk3oBAIDTE9TdUqtWrVK/fv0qLR8xYoTmz5+vo0eP6oknntCrr76qX3/9VTExMbrgggs0adIkdejQwe3Xu/7667V69Wr99ttvio2N1YUXXqgnn3yy0qRlAACg9oI63AAAAPthnhsAAGArhBsAAGArQTeguLy8XLt379YZZ5zBNOcAAAQIY4z279+vxMTESjegPVHQhZvdu3crKSnJ38UAAAC1sGvXLp111lknXSfowk3FFOe7du1SVFSUn0sDAABqori4WElJSTW6XVHQhZuKrqioqCjCDQAAAaYmQ0oYUAwAAGyFcAMAAGyFcAMAAGwl6Mbc1FRZWZmOHj3q72L4XVhY2CkvuQMAwEoINycwxig/P1/79u3zd1EsISQkRC1atFBYWJi/iwIAQI0Qbk5QEWyaNGmievXqBfVEfxUTHubl5alZs2ZB/V4AAAKHX8PN6tWr9fe//10bNmxQXl6eli5dqoEDB550m1WrVikjI0PffvutkpKSNH78eN18880eKU9ZWZkz2DRu3Ngj+wx0sbGx2r17t44dO6a6dev6uzgAAJySXwdTlJSUqFOnTpo1a1aN1t+5c6f69++vfv36adOmTbrvvvt066236oMPPvBIeSrG2NSrV88j+7ODiu6osrIyP5cEAICa8WvLzWWXXabLLrusxuvPnj1bLVq00DPPPCNJOuecc7RmzRo999xzSk9P91i56H75H94LAECgCajLYNatW6e0tDSXZenp6Vq3bl212xw+fFjFxcUuDwAAYF8BFW7y8/MVFxfnsiwuLk7FxcUqLS2tcpvMzExFR0c7H9w0EwAAewuocFMbY8eOVVFRkfOxa9cufxfJq9atW6fQ0FD179/fZXlOTo4cDofz0ahRI/Xp00effvqpn0oKAAgEeUWlWru9UHlFVTciWFFAhZv4+HgVFBS4LCsoKFBUVJQiIyOr3CY8PNx5k8xguFnm3Llzdc8992j16tXavXt3pec/+ugj5eXlafXq1UpMTNQVV1xR6T0FAECSstbnqtfUjzV0zufqNfVjZa3P9XeRaiSgwk1qaqqys7Ndlq1cuVKpqal+KpG1HDhwQFlZWbrrrrvUv39/zZ8/v9I6jRs3Vnx8vFJSUjRu3DgVFxfr888/931hAQCWlldUqrFLNqvcHP9/uZHGLdkSEC04fg03Bw4c0KZNm7Rp0yZJxy/13rRpk3JzjyfDsWPHavjw4c7177zzTu3YsUMPPfSQtm3bphdeeEGLFi3S/fff74/in5Kvm/IWLVqkdu3aqW3btrrpppv08ssvyxhT5bqlpaV69dVXJYnZhwEAlewsLHEGmwplxiin8KB/CuQGv14K/uWXX6pfv37O/2dkZEiSRowYofnz5ysvL88ZdCSpRYsWev/993X//ffr+eef11lnnaV//vOfHr0M3FOy1uc6E2+IQ8oc1EFDujXz6mvOnTtXN910kyTpz3/+s4qKivTJJ5+ob9++znV69uypkJAQHTx4UMYYdenSRRdffLFXywUACDwtYuorxCGXgBPqcCg5xvpzwTlMdT/tbaq4uFjR0dEqKiqqNP7m0KFD2rlzp1q0aKGIiIhav0ZeUal6Tf240gdizZh+SoiuemzQ6fr++++VkpKiX3/9VU2aNJEkjRo1SkVFRXrttdeUk5OjFi1aaNmyZWrXrp22bNmihx56SEuXLlVKSkq1+/XUewIACDxZ63M1bskWlRmjUIdDUwaleP2HenVOdv4+EfeW8oKTNeV5K9zMnTtXx44dU2JionOZMUbh4eGaOXOmc1lSUpJat26t1q1b69ixY7r66qu1ZcsWhYeHe6VcAIDANaRbM13UJlY5hQeVHFPPa+cwTwuoAcWBoqIp74+82ZR37Ngxvfrqq3rmmWecY5g2bdqkr7/+WomJiVqwYEGV21177bWqU6eOXnjhBa+UCwAQ+BKiI5XaqnHABBuJcOMVCdGRyhzUQaH//60LKpryvPXBeO+99/T777/rlltuUUpKisvjmmuu0dy5c6vczuFw6N5779XUqVN18KD1B4gBAFAThBsvGdKtmdaM6acFt12gNWP6ebWPcu7cuUpLS1N0dHSl56655hp9+eWX1d52YsSIETp69KhL1xUAAIGMMTdelBAd6ZNmvH/961/VPte9e3fn5eBVjR2vV6+e/vvf/3qtbAAA+BotNwAAwFYINwAAwFYINwAAwFYINwAAwFYIN1UIskmbT4r3AgAQaAg3f1C3bl1JYs6XPzhy5IgkKTQ01M8lAQCgZrgU/A9CQ0PVsGFD7dmzR9Lxy6QdDscptrKv8vJy7d27V/Xq1VOdOnxUAACBgTPWCeLj4yXJGXCCXUhIiJo1axbUIQ8AEFgINydwOBxKSEhQkyZNdPToUX8Xx+/CwsIUEkLvJQAgcBBuqhEaGso4EwAAAhA/yQEAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK34PdzMmjVLycnJioiIUI8ePfTFF1+cdP3p06erbdu2ioyMVFJSku6//34dOnTIR6UFAABW59dwk5WVpYyMDE2YMEEbN25Up06dlJ6erj179lS5/ptvvqkxY8ZowoQJ2rp1q+bOnausrCyNGzfOxyUHAABW5ddw8+yzz+q2227TyJEj1b59e82ePVv16tXTyy+/XOX6a9euVa9evTR06FAlJyfr0ksv1Q033HDK1h4AABA8/BZujhw5og0bNigtLe1/hQkJUVpamtatW1flNj179tSGDRucYWbHjh1avny5Lr/88mpf5/DhwyouLnZ5AAAA+6rjrxcuLCxUWVmZ4uLiXJbHxcVp27ZtVW4zdOhQFRYW6sILL5QxRseOHdOdd9550m6pzMxMTZo0yaNlBwAA1uX3AcXuWLVqlaZMmaIXXnhBGzdu1JIlS/T+++/r8ccfr3absWPHqqioyPnYtWuXD0sMAAB8zW8tNzExMQoNDVVBQYHL8oKCAsXHx1e5zaOPPqphw4bp1ltvlSR16NBBJSUluv322/XII48oJKRyVgsPD1d4eLjnKwAAACzJby03YWFh6tKli7Kzs53LysvLlZ2drdTU1Cq3OXjwYKUAExoaKkkyxnivsAAAIGD4reVGkjIyMjRixAh17dpV3bt31/Tp01VSUqKRI0dKkoYPH66mTZsqMzNTkjRgwAA9++yzOu+889SjRw/99NNPevTRRzVgwABnyAEAAMHNr+FmyJAh2rt3rx577DHl5+erc+fOWrFihXOQcW5urktLzfjx4+VwODR+/Hj9+uuvio2N1YABA/Tkk0/6qwoAAMBiHCbI+nOKi4sVHR2toqIiRUVF+bs4AACgBtw5fwfU1VIAAACnQrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrhBreQVlWrt9kLlFZX6uygAALio4+8CIPBkrc/V2CWbVW6kEIeUOaiDhnRr5u9iAQAgiZYbuCmvqNQZbCSp3EjjlmyhBQcAYBmEG7hlZ2GJM9hUKDNGOYUH/VMgAABOQLiBW1rE1FeIw3VZqMOh5Jh6/ikQAAAnINzALQnRkcoc1EGhjuMJJ9Th0JRBKUqIjvRzyQAAOI4BxXDbkG7NdFGbWOUUHlRyTD2CDQDAUgg3qJWE6EhCDQDAkuiWAgAAtuL3cDNr1iwlJycrIiJCPXr00BdffHHS9fft26e7775bCQkJCg8PV5s2bbR8+XIflRYAAFidX7ulsrKylJGRodmzZ6tHjx6aPn260tPT9f3336tJkyaV1j9y5IguueQSNWnSRIsXL1bTpk31888/q2HDhr4vPAAAsCSHMcacejXv6NGjh7p166aZM2dKksrLy5WUlKR77rlHY8aMqbT+7Nmz9fe//13btm1T3bp1a/WaxcXFio6OVlFRkaKiok6r/AAAwDfcOX/7rVvqyJEj2rBhg9LS0v5XmJAQpaWlad26dVVus2zZMqWmpuruu+9WXFycUlJSNGXKFJWVlVX7OocPH1ZxcbHLAwAA2Jffwk1hYaHKysoUFxfnsjwuLk75+flVbrNjxw4tXrxYZWVlWr58uR599FE988wzeuKJJ6p9nczMTEVHRzsfSUlJHq0HAACwFr8PKHZHeXm5mjRpov/7v/9Tly5dNGTIED3yyCOaPXt2tduMHTtWRUVFzseuXbt8WGIAAOBrfhtQHBMTo9DQUBUUFLgsLygoUHx8fJXbJCQkqG7dugoNDXUuO+ecc5Sfn68jR44oLCys0jbh4eEKDw/3bOEBAIBl+a3lJiwsTF26dFF2drZzWXl5ubKzs5WamlrlNr169dJPP/2k8vJy57IffvhBCQkJVQYbAAAQfPzaLZWRkaE5c+bolVde0datW3XXXXeppKREI0eOlCQNHz5cY8eOda5/11136b///a9Gjx6tH374Qe+//76mTJmiu+++219VAAAAFuPXeW6GDBmivXv36rHHHlN+fr46d+6sFStWOAcZ5+bmKiTkf/krKSlJH3zwge6//3517NhRTZs21ejRo/Xwww/7qwoAAMBi/DrPjT8wzw0AAIEnIOa5AQAA8AbCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQDA5/KKSrV2e6Hyikr9XRTYkMfCzaFDh/T00097ancAAJvKWp+rXlM/1tA5n6vX1I+VtT7X30WCzbgVbvbu3av33ntPH374ocrKyiRJR48e1fPPP6/k5GRNnTrVK4UEANhDXlGpxi7ZrHJz/P/lRhq3ZMspW3Bo6YE76tR0xTVr1uiKK65QcXGxHA6Hunbtqnnz5mngwIGqU6eOJk6cqBEjRnizrACAALezsMQZbCqUGaOcwoNKiI6scpus9bnOQBTikDIHddCQbs18UFoEqhq33IwfP16XX365vvnmG2VkZGj9+vW6+uqrNWXKFH333Xe68847FRlZ9QcTAABJahFTXyEO12WhDoeSY+pVuX5tW3oQ3GocbjZv3qzx48crJSVFkydPlsPh0FNPPaVrr73Wm+UDANhIQnSkMgd1UKjjeMIJdTg0ZVBKta02J2vpAapT426p33//XTExMZKkyMhI1atXTykpKV4rGADAnoZ0a6aL2sQqp/CgkmPqVRtspP+19Pwx4JyspQeQ3Ag3kvTdd98pPz9fkmSM0ffff6+SkhKXdTp27Oi50gEAbCkhOvKkoeaP62UO6qBxS7aozJhTtvQAkuQwxphTryaFhITI4XDoZKs7HA7nVVRWVVxcrOjoaBUVFSkqKsrfxQEA1EBeUWmNWnpgX+6cv2vccrNz585TrrN///6a7g4AgBqraUsPILkRbpo3b17l8v3792vBggWaO3euvvzyS8u33AAAAHur9QzFq1ev1ogRI5SQkKCnn35a/fr103/+8x9Plg0AAMBtbg0ozs/P1/z58zV37lwVFxdr8ODBOnz4sN555x21b9/eW2UEAACosRq33AwYMEBt27bVN998o+nTp2v37t2aMWOGN8sGAADgthq33Py///f/dO+99+quu+5S69atvVkmAACAWqtxy82aNWu0f/9+denSRT169NDMmTNVWFjozbIBAAC4rcbh5oILLtCcOXOUl5enO+64QwsXLlRiYqLKy8u1cuVKLgMHAACWUONJ/Kry/fffa+7cuXrttde0b98+XXLJJVq2bJkny+dxTOIHAEDgcef8XetLwSWpbdu2euqpp/TLL79owYIFp7MrAAAAjzitlptARMsNAACBx2ctNwAAAFZDuAEAALZCuPGjvKJSrd1eqLyiUn8XBQAA23Dr9gvwnKz1uRq7ZLPKjRTikDIHddCQbs38XSwAAAIeLTd+kFdU6gw2klRupHFLttCCAwCABxBu/GBnYYkz2FQoM0Y5hQf9UyAAAGyEcOMHLWLqK8ThuizU4VByTD3/FAgAABsh3PhBQnSkMgd1UKjjeMIJdTg0ZVCKEqIj/VwyAAACHwOK/WRIt2a6qE2scgoPKjmmHsEGAAAPIdz4UUJ0JKEGAAAPo1sKAADYCuEGAADYCuEGAADYCuEGtcKtIwAAVsWAYriNW0cAAKyMlhu4hVtHAACszhLhZtasWUpOTlZERIR69OihL774okbbLVy4UA6HQwMHDvRuAeHErSMAAFbn93CTlZWljIwMTZgwQRs3blSnTp2Unp6uPXv2nHS7nJwcPfDAA+rdu7ePSgqJW0cAAKzP7+Hm2Wef1W233aaRI0eqffv2mj17turVq6eXX3652m3Kysp04403atKkSWrZsqUPSwtuHQEAsDq/Dig+cuSINmzYoLFjxzqXhYSEKC0tTevWrat2u8mTJ6tJkya65ZZb9Omnn570NQ4fPqzDhw87/19cXHz6BQ9y3DoCAGBlfg03hYWFKisrU1xcnMvyuLg4bdu2rcpt1qxZo7lz52rTpk01eo3MzExNmjTpdIuKE3DrCACAVfm9W8od+/fv17BhwzRnzhzFxMTUaJuxY8eqqKjI+di1a5eXSwkAAPzJry03MTExCg0NVUFBgcvygoICxcfHV1p/+/btysnJ0YABA5zLysvLJUl16tTR999/r1atWrlsEx4ervDwcC+UHgAAWJFfW27CwsLUpUsXZWdnO5eVl5crOztbqampldZv166dNm/erE2bNjkfV155pfr166dNmzYpKSnJl8UHAAAW5PcZijMyMjRixAh17dpV3bt31/Tp01VSUqKRI0dKkoYPH66mTZsqMzNTERERSklJcdm+YcOGklRpOQAACE5+DzdDhgzR3r179dhjjyk/P1+dO3fWihUrnIOMc3NzFRISUEODAACAHzmMMebUq9lHcXGxoqOjVVRUpKioKH8XBwAA1IA752+aRAAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbuATeUWlWru9UHlFpf4uCgDA5vx+40zYX9b6XI1dslnlRgpxSJmDOmhIt2b+LhYAwKZouYFX5RWVOoONJJUbadySLbTgAAC8hnADr9pZWOIMNhXKjFFO4UH/FAgAYHuEG3hVi5j6CnG4Lgt1OJQcU88/BQIA2B7hBl6VEB2pzEEdFOo4nnBCHQ5NGZSihOhIP5cMAGBXDCj2o7yiUu0sLFGLmPq2PtkP6dZMF7WJVU7hQSXH1LN1XQHA6oLh3EO48ZOs9bka8/ZmGUkOSVOvsfcVRAnRkbb9IwKAQBEsV6/SLeUHeUWlzmAjSUbSmLc3cwWRTTCnDwArCqarV2m58YMvc/6rEy4gkpG0Ied3XdGJ1o1AFiy/igAEnpNdvWq3lnVabvzA4XBUs9zHBbGwQGz9CKZfRQACTzBdvUq48YMuzc/UiTnG4ZDOb36mX8pjNVnrc9Vr6scaOudz9Zr6sbLW5/q7SDXCnD4ArCyYrl6lW8oPEqIjNfWaDpW6L+z4AXNXda0fF7WJtfz7U/Gr6I8Bx66/igAEpiHdmqld/Blan/O7uiWfqU5J9vxRTbjxEy6Prlog9wlX/Coat2SLyoyx9a8iAIEpWMYFEm78iMujKwv01g9CKwCrCuSWcXcx5gaWYoc+4YToSKW2ahxQZQZgf8E0LpCWG1gOrR8A4HmB3jLuDlpuYEm0fgCwskCcrsIOLeM1RcsNAABuCORBucHSMk7LDQAANWSHyTqDoWWccAMAsDyrdAMF06Dc2rLCsaJbCgBgaVbqBgqmQbm1YZVjRcsNAMCyrNYNFEyDct1lpWNFyw18Iq+oVDsLS9Qipj5fAgBqzIqzlgfLoFx3WelYEW7gdVZppgQQeKzaDcQM85VZ6VjRLQWvslIzJYDAQzdQ4LDSsaLlBl5lpWZKAIGJbqDAYZVjRbiBV1mpmRJA4KIbKHBY4VjRLQWvSoiO1NXnNXVZNvC8RL9/8AEA9kW4gVflFZVq6Ve/uix756vdjLkBAHgN4QZexWyeAABfI9zAqyrG3PwRY24AwL6scPsFwg28ykqXBgJAILBCOKitrPW56jX1Yw2d87l6Tf1YWetz/VIOhzHGnHo1+yguLlZ0dLSKiooUFRXl7+IEjbyiUr9fGggAVhfIk57mFZWq19SPK10du2ZMP49877tz/qblBj6REB2p1FaNCTYAUI1An/TUSmMsCTcAAFiAlcJBbVhpjCXhBgAAC7BSOKgNK42xZIZiAAAsoCIc/HHMTaBdgMHtFwAAQCUVl/kE6uU+3H4BAABI+t+A4opMYxRYA4qthHADnEIgzzkBIHAE+oBiK6FbCjiJQJ5zAkBgqRhQfOI8MYEyoNhKaLkBqhHoc04ACCxWutoo0NFyA0vKKyrVzsIStYip77c/7JM1EfNlA8AbrHK1UaAj3MAn3AkrVukKookYgD9Y4WqjQEe3FLzOnRupWakriCZinIjB5UBgoOUGXlVdWLmoTWyVIcFqXUE0EaOCVVoUAZyaJVpuZs2apeTkZEVERKhHjx764osvql13zpw56t27t84880ydeeaZSktLO+n68C93L2204vTj3PQTVmpRBHBqfg83WVlZysjI0IQJE7Rx40Z16tRJ6enp2rNnT5Xrr1q1SjfccIP+/e9/a926dUpKStKll16qX3/91cclR024G1boCoIVMf8ITkQXpbU5jPHvBM89evRQt27dNHPmTElSeXm5kpKSdM8992jMmDGn3L6srExnnnmmZs6cqeHDh59y/eLiYkVHR6uoqEhRUVGnXX6cWtb6XI1bskVlxjjDyqma8/OKSukKgmXkFZWq19SPKw0uXzOmH5/PIEQXpX+4c/7265ibI0eOaMOGDRo7dqxzWUhIiNLS0rRu3boa7ePgwYM6evSoGjVqVOXzhw8f1uHDh53/Ly4uPr1Cw221GbfC1QKwkooWxRNDOp/R4OPuOEJflcnfU2dYjV/DTWFhocrKyhQXF+eyPC4uTtu2bavRPh5++GElJiYqLS2tyuczMzM1adKk0y4rTg9hBYGOweWQrHfRA61IVfP7mJvTMXXqVC1cuFBLly5VREREleuMHTtWRUVFzseuXbt8XEpYEf3lqA0Gl8NKFz0w0L16fm25iYmJUWhoqAoKClyWFxQUKD4+/qTbPv3005o6dao++ugjdezYsdr1wsPDFR4e7pHywh74pQOgtqzURWm1ViQr8Wu4CQsLU5cuXZSdna2BAwdKOj6gODs7W6NGjap2u6eeekpPPvmkPvjgA3Xt2tVHpYUdWLG/HEBgsUoXJbOoV8/v3VIZGRmaM2eOXnnlFW3dulV33XWXSkpKNHLkSEnS8OHDXQYcT5s2TY8++qhefvllJScnKz8/X/n5+Tpw4IC/qoAAwiW9ADzBCl2UTJ1RPb/PUDxkyBDt3btXjz32mPLz89W5c2etWLHCOcg4NzdXISH/y2Avvviijhw5omuvvdZlPxMmTNDEiRN9WXQEIH7peB5XagD+Y5VWJKvx+zw3vsY8N6jNvDuoGuOXAPiKO+dvwg2CEpMEnj4rTmxHKxJgXwEziR/gL8y7c/qsdqVGbVqRCEOAPRFuANSKlcYv1eYqOLrUAPvy+9VSAAKTla7UcPcqOCY/A+yNlhsAtWaVKzXcbUWyWpcaAM+i5QbAaQnE+T6sNIU+AM+j5QaALbjTimSlKfQBeB7hBoCtGNVsdgurdKkB8DzCDQBbqM3VT0wJANgTY24ABDyufgLwR4QbAAGPG6IC+CPCDQCfyisq1drthR5tVeHqJwB/RLgB4DNZ63PVa+rHGjrnc/Wa+rGy1ud6ZL9WmlAQ1uCNEI3AwY0zEZS4p5Dv+eJGm9wQtXrB9Jnn1hr2xI0zgZMI9C++QD1J+WJWYK5+qlqgf+bdUZv7jMF+6JZCUAn0q2q81a3jC4yL8Y9A/8y7i8HlkAg38BGr9H/X5ovPKmUP9JMU42L8I9hO9oRoSHRLwQdq0yTura4Xd2+waKXmfDvc7JFZgX3P3c98oOPWGpAIN/Cy2vR/ezNQuPPFZ7W+e7ucpBgX41vBeLInRINwA69yt7XBF4Gipl98VmspCcaTFDwjGE/2hOjgRriBV7nb2uCrQFGTLz4rtpQE40kqkH2963d9kfNfdU9upE5JZ/q1LJzsEUwIN/Aqd1sbrBQoattS4u1LtTlJBYa/Ldqktzf+6vz/Nec31TODO/uvQEAQYRI/1Iq7J3B3JlfLWp9bKVD4c04Od8tulQHIwcgqcwB9vet3XTVrbaXl797d0+8tOECgYhI/eFVtTuDutDZYreulpmW32gDkYGOlYPlFzn+rXP5lzu+EG8AHmOcGbvHVXCsJ0ZFKbdU4oEJBsM0nYiVWmwOoe3KjKpd3TSbYAL5AuIFbOIFXj8nD/Mdqn8tOSWfqmvObuiy75vymtNoAPkK3FNxipQG/VsOl2v5jxc/lM4M7a3hqc32Z87u6Jp9JsAF8iAHFcJvVBvxaDXem9g8+l4C9uXP+JtygVjiBw4qC7XNplavDAF/gail4HXOtwIqC6XNppavDAKthQDGAoGWVO767y2pXhwFWQ8sNAJ+ySldKILd8+OI2JVY5TkBtEG4A+Iy3A0VNT8iBPuGit68OC+TgB0h0SwHwEW93pWStz1WvqR9r6JzP1Wvqx8pan1vtur6aF8db3V4V0w6EOo5PrOTJaQfo8oId0HKDoESTu+95syvF3ZYYX8yL4+3WD2/dpsQXXV6At9Fy40GBOjgx2LjzCx+e0yKmvk6YwFkOhzwSKNxtifFmy4cU2LcpYaZt2AEtNx5CH3VgCPSxFrbjoVm2atMS480btAZy6wczbXseLcW+R7jxAE6YgSOQTzqBbmdhSaUsYySPvPe1PSF7a14cK94Owh3eDH7Bhh++/kG48QBOmIEj0E86VlTTX6Xefu+tdEK2Q+tHME2I6C388PUfwo0HcMIMHHY46ViJO79Ka/Peu9ucb6UTspXCVm3QlXL6+OHrP4QbD+CEGVgC/aRjFbX5VerOe2+H5nwrhS13wood3nsr4Iev/xBuPIQTZmCx0kknUNX2V2lN3nua8z3LnbDCe+85/PD1H8KNB3HCRDDx5q9SmvM9x92wwnvvWfzw9Q/muQFQK96cK6a2c60w11Rl7s4BxDw3nueN+YhwcrTcICh5c7BkMA3E9Nav0to05zNOpGrutrBZtSslmP6ucPocxhgPTaMVGIqLixUdHa2ioiJFRUX5uzjwA3dPggzE9J+8otIaBae8olL1mvpxpRP4mjH9OBHq+OfyxLByqs9lTd97X+Dvyr+sEizdOX/TcoOg4u74AwZi+ldNx7ExTuTkatPCZpUxhPxd+VegBkvG3CCouDP+wN37A/nqTtOorH5YaJXL64XxFVchUMd98HflP4F8h3j+8mFJ3hoY6s5gSQZiBo6SI2VVLj94pNzHJYGn8XflP4EcLAk3sBxv3rXbnSt83P1Srdh3xTYhDlliIGYw8OYdx+Ff3r6DO6oXyMGSMTewFF/0rw/p1kzt4s/Q+pzf1S35THVKOrPK9Wp71UjFEP3gGqrvf5Vuysn7bxvMFeMfVr1yriYINwHEKiPWvckXA0PdGSDnzpdqRTCrKL4RAx+r4o3P8Yaff69y+caff1f/jrz3dmCVAc7BJlCDJeEmQATqiHV3efteLLVpGeKKHc/x1ue4uhktTtV6Eww/GIDTFYjBkjE3ASCQR6y7y9v9694cIBfI/dOno6aDv735Oe6a3KjymBtJXZKr7nKUvDu2C4B/0XITAIKtRcCbzaDebBkK5P7p2nKnJcabn+OE6EhNvaaDxr69WeU6/qst85oO1e6XuVMAeyPcBABvd9VYkbeaQb0dQAK1f7o23A0I3v4cu/Pe1zZo0Y0FBAbCjQd564svGFsEvMnbASQQ+6drw92A4KvPsal03VRltQlawTLuDbADS4SbWbNm6e9//7vy8/PVqVMnzZgxQ927d692/bfeekuPPvqocnJy1Lp1a02bNk2XX365D0tcmbe/+IKpRcAXgiWAeFNtAoI3P8fu/A26G7ToxgICi98HFGdlZSkjI0MTJkzQxo0b1alTJ6Wnp2vPnj1Vrr927VrdcMMNuuWWW/TVV19p4MCBGjhwoLZs2eLjkv+Prwb8ujN9urdm+AUq1HbwtzduA1Cbv8Eh3ZppzZh+WnDbBVozpt9Jf4wE8kytQDDy+13Be/TooW7dumnmzJmSpPLyciUlJemee+7RmDFjKq0/ZMgQlZSU6L333nMuu+CCC9S5c2fNnj37lK/njbuCr91eqKFzPq+0fMFtFyi1VWOPvIY7aD6HL1nh7tHe/hvkruOA/7lz/vZry82RI0e0YcMGpaWlOZeFhIQoLS1N69atq3KbdevWuawvSenp6dWuf/jwYRUXF7s8PM1KlwAH02XjsAYr3JDR2zfO5BYAQGDx65ibwsJClZWVKS4uzmV5XFyctm3bVuU2+fn5Va6fn59f5fqZmZmaNGmSZwpcDSsN+A22y8YByTc3zmTcGxA4LDGg2JvGjh2rjIwM5/+Li4uVlJTk8dexyhdfMF42Dvjqc89AdCAw+LVbKiYmRqGhoSooKHBZXlBQoPj4+Cq3iY+Pd2v98PBwRUVFuTy8xQrN8zSfIxjxuQfwR35tuQkLC1OXLl2UnZ2tgQMHSjo+oDg7O1ujRo2qcpvU1FRlZ2frvvvucy5buXKlUlNTfVDiwGCVViTAl/jcA6jg926pjIwMjRgxQl27dlX37t01ffp0lZSUaOTIkZKk4cOHq2nTpsrMzJQkjR49Wn369NEzzzyj/v37a+HChfryyy/1f//3f/6shuXQfI5gxOcegGSBcDNkyBDt3btXjz32mPLz89W5c2etWLHCOWg4NzdXISH/6z3r2bOn3nzzTY0fP17jxo1T69at9c477yglJcVfVQAAABbi93lufM0b89wAAADvCph5bgAAADyNcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGzF77df8LWKCZmLi4v9XBIAAFBTFeftmtxYIejCzf79+yVJSUlJfi4JAABw1/79+xUdHX3SdYLu3lLl5eXavXu3zjjjDDkcDo/uu7i4WElJSdq1a5ct71tl9/pJ9q8j9Qt8dq8j9Qt83qqjMUb79+9XYmKiyw21qxJ0LTchISE666yzvPoaUVFRtv3QSvavn2T/OlK/wGf3OlK/wOeNOp6qxaYCA4oBAICtEG4AAICtEG48KDw8XBMmTFB4eLi/i+IVdq+fZP86Ur/AZ/c6Ur/AZ4U6Bt2AYgAAYG+03AAAAFsh3AAAAFsh3AAAAFsh3AAAAFsh3JzErFmzlJycrIiICPXo0UNffPHFSdefPn262rZtq8jISCUlJen+++/XoUOHTmuf3ubpOk6cOFEOh8Pl0a5dO29Xo1ru1O/o0aOaPHmyWrVqpYiICHXq1EkrVqw4rX16m6frZ6Xjt3r1ag0YMECJiYlyOBx65513TrnNqlWrdP755ys8PFxnn3225s+fX2kdKx0/b9QxkI9hXl6ehg4dqjZt2igkJET33Xdfleu99dZbateunSIiItShQwctX77c84WvAW/Ub/78+ZWOX0REhHcqUAPu1nHJkiW65JJLFBsbq6ioKKWmpuqDDz6otJ7X/w4NqrRw4UITFhZmXn75ZfPtt9+a2267zTRs2NAUFBRUuf4bb7xhwsPDzRtvvGF27txpPvjgA5OQkGDuv//+Wu/T27xRxwkTJphzzz3X5OXlOR979+71VZVcuFu/hx56yCQmJpr333/fbN++3bzwwgsmIiLCbNy4sdb79CZv1M9Kx2/58uXmkUceMUuWLDGSzNKlS0+6/o4dO0y9evVMRkaG+e6778yMGTNMaGioWbFihXMdKx0/Y7xTx0A+hjt37jT33nuveeWVV0znzp3N6NGjK63z2WefmdDQUPPUU0+Z7777zowfP97UrVvXbN682TuVOAlv1G/evHkmKirK5fjl5+d7pwI14G4dR48ebaZNm2a++OIL88MPP5ixY8eaunXr+vx7lHBTje7du5u7777b+f+ysjKTmJhoMjMzq1z/7rvvNn/6059clmVkZJhevXrVep/e5o06TpgwwXTq1Mkr5XWXu/VLSEgwM2fOdFk2aNAgc+ONN9Z6n97kjfpZ6fj9UU2+VB966CFz7rnnuiwbMmSISU9Pd/7fSsfvRJ6qYyAfwz/q06dPlSf/wYMHm/79+7ss69Gjh7njjjtOs4Snx1P1mzdvnomOjvZYuTzJ3TpWaN++vZk0aZLz/774O6RbqgpHjhzRhg0blJaW5lwWEhKitLQ0rVu3rsptevbsqQ0bNjib1nbs2KHly5fr8ssvr/U+vckbdazw448/KjExUS1bttSNN96o3Nxc71WkGrWp3+HDhys1/0ZGRmrNmjW13qe3eKN+Faxw/Gpj3bp1Lu+HJKWnpzvfDysdv9o6VR0rBOoxrImavgeB7MCBA2revLmSkpJ01VVX6dtvv/V3kWqtvLxc+/fvV6NGjST57u+QcFOFwsJClZWVKS4uzmV5XFyc8vPzq9xm6NChmjx5si688ELVrVtXrVq1Ut++fTVu3Lha79ObvFFHSerRo4fmz5+vFStW6MUXX9TOnTvVu3dv7d+/36v1OVFt6peenq5nn31WP/74o8rLy7Vy5UotWbJEeXl5td6nt3ijfpJ1jl9t5OfnV/l+FBcXq7S01FLHr7ZOVUcpsI9hTVT3HgTKMTyVtm3b6uWXX9a7776r119/XeXl5erZs6d++eUXfxetVp5++mkdOHBAgwcPluS771HCjYesWrVKU6ZM0QsvvKCNGzdqyZIlev/99/X444/7u2geU5M6XnbZZbruuuvUsWNHpaena/ny5dq3b58WLVrkx5LXzPPPP6/WrVurXbt2CgsL06hRozRy5EiFhNjjz6Qm9Qvk44fjOIaBLTU1VcOHD1fnzp3Vp08fLVmyRLGxsXrppZf8XTS3vfnmm5o0aZIWLVqkJk2a+PS16/j01QJETEyMQkNDVVBQ4LK8oKBA8fHxVW7z6KOPatiwYbr11lslSR06dFBJSYluv/12PfLII7Xapzd5o45VhYCGDRuqTZs2+umnnzxfiZOoTf1iY2P1zjvv6NChQ/rtt9+UmJioMWPGqGXLlrXep7d4o35V8dfxq434+Pgq34+oqChFRkYqNDTUMsevtk5Vx6oE0jGsiereg0A5hu6qW7euzjvvvIA7fgsXLtStt96qt956y6ULylffo/b4SephYWFh6tKli7Kzs53LysvLlZ2drdTU1Cq3OXjwYKWTe2hoqCTJGFOrfXqTN+pYlQMHDmj79u1KSEjwUMlr5nTe74iICDVt2lTHjh3T22+/rauuuuq09+lp3qhfVfx1/GojNTXV5f2QpJUrVzrfDysdv9o6VR2rEkjHsCZq8x4EsrKyMm3evDmgjt+CBQs0cuRILViwQP3793d5zmd/hx4bmmwzCxcuNOHh4Wb+/Pnmu+++M7fffrtp2LCh85K8YcOGmTFjxjjXnzBhgjnjjDPMggULzI4dO8yHH35oWrVqZQYPHlzjffqaN+r4t7/9zaxatcrs3LnTfPbZZyYtLc3ExMSYPXv2WL5+//nPf8zbb79ttm/fblavXm3+9Kc/mRYtWpjff/+9xvv0JW/Uz0rHb//+/earr74yX331lZFknn32WfPVV1+Zn3/+2RhjzJgxY8ywYcOc61dcJv3ggw+arVu3mlmzZlV5KbhVjp8x3qljIB9DY4xz/S5dupihQ4ear776ynz77bfO5z/77DNTp04d8/TTT5utW7eaCRMm+O1ScG/Ub9KkSeaDDz4w27dvNxs2bDDXX3+9iYiIcFnHl9yt4xtvvGHq1KljZs2a5XI5+759+5zr+OLvkHBzEjNmzDDNmjUzYWFhpnv37uY///mP87k+ffqYESNGOP9/9OhRM3HiRNOqVSsTERFhkpKSzF//+leXE8ep9ukPnq7jkCFDTEJCggkLCzNNmzY1Q4YMMT/99JMPa+TKnfqtWrXKnHPOOSY8PNw0btzYDBs2zPz6669u7dPXPF0/Kx2/f//730ZSpUdFnUaMGGH69OlTaZvOnTubsLAw07JlSzNv3rxK+7XS8fNGHQP9GFa1fvPmzV3WWbRokWnTpo0JCwsz5557rnn//fd9U6ETeKN+9913n/PzGRcXZy6//HKXOWJ8zd069unT56TrV/D236HDmGr6EwAAAAIQY24AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AwAJWrVolh8Ohffv2+bsoQMAj3ABB5uabb5bD4dDUqVNdlr/zzjtyOBzO/xtjNGfOHKWmpioqKkoNGjTQueeeq9GjR9f4Jn4HDx7U2LFj1apVK0VERCg2NlZ9+vTRu+++61wnOTlZ06dP90jdvK3ivXM4HKpbt65atGihhx56SIcOHXJrP3379tV9993nsqxnz57Ky8tTdHS0B0sMBCfCDRCEIiIiNG3aNP3+++9VPm+M0dChQ3Xvvffq8ssv14cffqjvvvtOc+fOVUREhJ544okavc6dd96pJUuWaMaMGdq2bZtWrFiha6+9Vr/99psnq+NTf/7zn5WXl6cdO3boueee00svvaQJEyac9n7DwsIUHx/vEjAB1JJHb+YAwPJGjBhhrrjiCtOuXTvz4IMPOpcvXbrUVHwlLFiwwEgy7777bpX7KC8vr9FrRUdHm/nz51f7fFX3oanw6aefmgsvvNBERESYs846y9xzzz3mwIEDzudfffVV06VLF9OgQQMTFxdnbrjhBlNQUOB8vuKeOCtWrDCdO3c2ERERpl+/fqagoMAsX77ctGvXzpxxxhnmhhtuMCUlJTWqz4gRI8xVV13lsmzQoEHmvPPOc/6/sLDQXH/99SYxMdFERkaalJQU8+abb7rs48Q679y501neP96rbfHixaZ9+/YmLCzMNG/e3Dz99NM1KicQ7Gi5AYJQaGiopkyZohkzZuiXX36p9PyCBQvUtm1bXXnllVVuX9PWhfj4eC1fvlz79++v8vklS5borLPO0uTJk5WXl6e8vDxJ0vbt2/XnP/9Z11xzjb755htlZWVpzZo1GjVqlHPbo0eP6vHHH9fXX3+td955Rzk5Obr55psrvcbEiRM1c+ZMrV27Vrt27dLgwYM1ffp0vfnmm3r//ff14YcfasaMGTWqz4m2bNmitWvXKiwszLns0KFD6tKli95//31t2bJFt99+u4YNG6YvvvhCkvT8888rNTVVt912m7POSUlJlfa9YcMGDR48WNdff702b96siRMn6tFHH9X8+fNrVVYgqPg7XQHwrT+2PlxwwQXmL3/5izHGteWmXbt25sorr3TZbvTo0aZ+/fqmfv36pmnTpjV6rU8++cScddZZpm7duqZr167mvvvuM2vWrHFZp3nz5ua5555zWXbLLbeY22+/3WXZp59+akJCQkxpaWmVr7V+/Xojyezfv98Y87+Wm48++si5TmZmppFktm/f7lx2xx13mPT09BrVZ8SIESY0NNTUr1/fhIeHG0kmJCTELF68+KTb9e/f3/ztb39z/r9Pnz5m9OjRLuuc2HIzdOhQc8kll7is8+CDD5r27dvXqKxAMKPlBghi06ZN0yuvvKKtW7eect1HHnlEmzZt0mOPPaYDBw7UaP8XXXSRduzYoezsbF177bX69ttv1bt3bz3++OMn3e7rr7/W/Pnz1aBBA+cjPT1d5eXl2rlzp6TjLRsDBgxQs2bNdMYZZ6hPnz6SpNzcXJd9dezY0fnvuLg41atXTy1btnRZtmfPnhrVR5L69eunTZs26fPPP9eIESM0cuRIXXPNNc7ny8rK9Pjjj6tDhw5q1KiRGjRooA8++KBSuU5l69at6tWrl8uyXr166ccff1RZWZlb+wKCDeEGCGIXXXSR0tPTNXbsWJflrVu31vfff++yLDY2VmeffbaaNGni1mvUrVtXvXv31sMPP6wPP/xQkydP1uOPP64jR45Uu82BAwd0xx13aNOmTc7H119/rR9//FGtWrVSSUmJ0tPTFRUVpTfeeEPr16/X0qVLJanSfuvWrev8d8VVTn/kcDhUXl5e4/rUr19fZ599tjp16qSXX35Zn3/+uebOnet8/u9//7uef/55Pfzww/r3v/+tTZs2KT09/aT1BeBZdfxdAAD+NXXqVHXu3Flt27Z1Lrvhhhs0dOhQvfvuu7rqqqs8+nrt27fXsWPHdOjQIYWFhSksLKxSS8T555+v7777TmeffXaV+9i8ebN+++03TZ061Tle5csvv/RoOWsiJCRE48aNU0ZGhoYOHarIyEh99tlnuuqqq3TTTTdJksrLy/XDDz+offv2zu2qqvOJzjnnHH322Wcuyz777DO1adNGoaGhnq8MYCO03ABBrkOHDrrxxhv1j3/8w7ns+uuv17XXXqvrr79ekydP1ueff66cnBx98sknysrKqvHJtW/fvnrppZe0YcMG5eTkaPny5Ro3bpz69eunqKgoScfnuVm9erV+/fVXFRYWSpIefvhhrV27VqNGjdKmTZv0448/6t1333UOKG7WrJnCwsI0Y8YM7dixQ8uWLTtlV5e3XHfddQoNDdWsWbMkHW/1WrlypdauXautW7fqjjvuUEFBgcs2ycnJzve0sLCwypajv/3tb8rOztbjjz+uH374Qa+88opmzpypBx54wCf1AgIZ4QaAJk+e7HKCdTgcysrK0vTp07V8+XJdfPHFatu2rf7yl78oKSlJa9asqdF+09PT9corr+jSSy/VOeeco3vuuUfp6elatGiRy2vn5OSoVatWio2NlXR8nMwnn3yiH374Qb1799Z5552nxx57TImJiZKOd5HNnz9fb731ltq3b6+pU6fq6aef9uA7UnN16tTRqFGj9NRTT6mkpETjx4/X+eefr/T0dPXt21fx8fEaOHCgyzYPPPCAQkND1b59e8XGxlY5Huf888/XokWLtHDhQqWkpOixxx7T5MmTq7wiDIArhzHG+LsQAAAAnkLLDQAAsBXCDYBa++Ol2ic+Pv30U38Xzy25ubknrY+7l3ID8B+6pQDU2sluoNm0aVNFRkb6sDSn59ixY8rJyan2+eTkZNWpwwWmQCAg3AAAAFuhWwoAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANjK/wcxCRNPlCa/2wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAHHCAYAAAB3K7g2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP7dJREFUeJzt3Xl4FFXC9uGnE8jCkiAQIMFAkNVIWARRQFlGNCquqKCgIo7rgKCoI+DC5hCYz1EcF3R4keCoENQgjDII4iACKgEEwRVZBDUscaDDEiIk5/uDN/3aJCHdSXeqqvt3X1cuTaW6+pyupuvps5XLGGMEAADgEBFWFwAAAMAfhBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAAOAohBcAVTZhwgS5XC6f9nW5XJowYUJQy9OnTx/16dPHtscDUDWEFyCEZGZmyuVyeX5q1Kihpk2b6vbbb9fPP/9sdfFsJyUlxev1atSokS666CItWLAgIMc/evSoJkyYoBUrVgTkeABOIrwAIWjSpEn65z//qZdfflmXX365Xn/9dfXu3VvHjh0LyvM9/vjjKigoCMqxg61Tp0765z//qX/+8596+OGH9csvv2jAgAF6+eWXq3zso0ePauLEiYQXIMBqWF0AAIF3+eWXq2vXrpKkO++8Uw0bNtS0adO0aNEiDRw4MODPV6NGDdWo4cyPk6ZNm+qWW27x/H7bbbepVatWevbZZ3XvvfdaWDIA5aHlBQgDF110kSRp27ZtXtu//fZb3XDDDapfv75iYmLUtWtXLVq0yGuf48ePa+LEiWrdurViYmLUoEEDXXjhhVq2bJlnn7LGvBQWFurBBx9UQkKC6tatq6uvvlo//fRTqbLdfvvtSklJKbW9rGPOnj1bf/jDH9SoUSNFR0crNTVVM2bM8Ou1qEiTJk109tlna8eOHafdb9++ffrjH/+oxo0bKyYmRh07dtScOXM8f9+5c6cSEhIkSRMnTvR0TQV7vA8QDpz5VQmAX3bu3ClJOuOMMzzbvvrqK/Xs2VNNmzbVmDFjVLt2bc2fP1/XXnut3nnnHV133XWSToaIjIwM3XnnnerWrZvy8/O1bt06bdiwQZdcckm5z3nnnXfq9ddf1+DBg9WjRw999NFH6t+/f5XqMWPGDJ1zzjm6+uqrVaNGDf3rX//Sn/70JxUXF2v48OFVOnaJ48ePa/fu3WrQoEG5+xQUFKhPnz764YcfNGLECLVo0UJvvfWWbr/9dh08eFCjRo1SQkKCZsyYofvuu0/XXXedBgwYIEnq0KFDQMoJhDUDIGTMnj3bSDIffvih2b9/v9m9e7d5++23TUJCgomOjja7d+/27HvxxRebtLQ0c+zYMc+24uJi06NHD9O6dWvPto4dO5r+/fuf9nnHjx9vfv9xsnHjRiPJ/OlPf/Lab/DgwUaSGT9+vGfb0KFDTfPmzSs8pjHGHD16tNR+6enp5qyzzvLa1rt3b9O7d+/TltkYY5o3b24uvfRSs3//frN//36zadMmc9NNNxlJ5v777y/3eNOnTzeSzOuvv+7Z9ttvv5nu3bubOnXqmPz8fGOMMfv37y9VXwBVR7cREIL69eunhIQEJScn64YbblDt2rW1aNEinXnmmZKk//73v/roo480cOBAHTp0SHl5ecrLy9Ovv/6q9PR0bd261TM7qV69evrqq6+0detWn59/8eLFkqSRI0d6bX/ggQeqVK/Y2FjP/7vdbuXl5al3797avn273G53pY65dOlSJSQkKCEhQR07dtRbb72lW2+9VdOmTSv3MYsXL1aTJk108803e7bVrFlTI0eO1OHDh/Xxxx9XqiwAfBMy4WXlypW66qqrlJSUJJfLpXfffTfoz/nzzz/rlltuUYMGDRQbG6u0tDStW7cu6M8LVOTFF1/UsmXL9Pbbb+uKK65QXl6eoqOjPX//4YcfZIzRE0884blwl/yMHz9e0skxHdLJmUsHDx5UmzZtlJaWpkceeURffvnlaZ//xx9/VEREhFq2bOm1vW3btlWq1+rVq9WvXz/Vrl1b9erVU0JCgsaNGydJlQ4v559/vpYtW6YPP/xQa9asUV5enl577TWvoHSqH3/8Ua1bt1ZEhPdH6Nlnn+35O4DgCZkxL0eOHFHHjh11xx13ePqWg+nAgQPq2bOn+vbtq3//+99KSEjQ1q1bvcYUAFbp1q2bZ7bRtddeqwsvvFCDBw/Wd999pzp16qi4uFiS9PDDDys9Pb3MY7Rq1UqS1KtXL23btk0LFy7U0qVL9T//8z969tln9fLLL+vOO++sclnLW9yuqKjI6/dt27bp4osvVrt27fTMM88oOTlZUVFRWrx4sZ599llPnfzVsGFD9evXr1KPBWCNkAkvl19+uS6//PJy/15YWKjHHntMc+fO1cGDB9W+fXtNmzat0qtmTps2TcnJyZo9e7ZnW4sWLSp1LCCYIiMjlZGRob59++qFF17QmDFjdNZZZ0k62dXhy4W7fv36GjZsmIYNG6bDhw+rV69emjBhQrnhpXnz5iouLta2bdu8Wlu+++67UvueccYZOnjwYKntp7Ze/Otf/1JhYaEWLVqkZs2aebb/5z//qbD8gda8eXN9+eWXKi4u9mp9+fbbbz1/l8oPZgCqJmS6jSoyYsQIffrpp5o3b56+/PJL3Xjjjbrsssv86sf/vUWLFqlr16668cYb1ahRI3Xu3FkzZ84McKmBwOjTp4+6deum6dOn69ixY2rUqJH69OmjV155Rbm5uaX2379/v+f/f/31V6+/1alTR61atVJhYWG5z1fyReLvf/+71/bp06eX2rdly5Zyu91eXVG5ubmlVrmNjIyUJBljPNvcbrfXF4jqcsUVV2jPnj3KysrybDtx4oSef/551alTR71795Yk1apVS5LKDGcAKi9kWl5OZ9euXZo9e7Z27dqlpKQkSSeby5csWaLZs2drypQpfh9z+/btmjFjhkaPHq1x48YpJydHI0eOVFRUlIYOHRroKgBV9sgjj+jGG29UZmam7r33Xr344ou68MILlZaWprvuuktnnXWW9u7dq08//VQ//fSTNm3aJElKTU1Vnz591KVLF9WvX1/r1q3T22+/rREjRpT7XJ06ddLNN9+sl156SW63Wz169NDy5cv1ww8/lNr3pptu0qOPPqrrrrtOI0eO1NGjRzVjxgy1adNGGzZs8Ox36aWXKioqSldddZXuueceHT58WDNnzlSjRo3KDGDBdPfdd+uVV17R7bffrvXr1yslJUVvv/22Vq9erenTp6tu3bqSTg4wTk1NVVZWltq0aaP69eurffv2at++fbWWFwg5Vk93CgZJZsGCBZ7f33vvPSPJ1K5d2+unRo0aZuDAgcYYY7755hsj6bQ/jz76qOeYNWvWNN27d/d63vvvv99ccMEF1VJHoCwlU6VzcnJK/a2oqMi0bNnStGzZ0pw4ccIYY8y2bdvMbbfdZpo0aWJq1qxpmjZtaq688krz9ttvex731FNPmW7dupl69eqZ2NhY065dO/OXv/zF/Pbbb559yprWXFBQYEaOHGkaNGhgateuba666iqze/fuMqcOL1261LRv395ERUWZtm3bmtdff73MYy5atMh06NDBxMTEmJSUFDNt2jTz6quvGklmx44dnv38mSpd0TTw8o63d+9eM2zYMNOwYUMTFRVl0tLSzOzZs0s9ds2aNaZLly4mKiqKadNAgLiM+V0bbIhwuVxasGCBrr32WklSVlaWhgwZoq+++srT9FyiTp06atKkiX777Tdt3779tMdt0KCBZ8XM5s2b65JLLtH//M//eP4+Y8YMPfXUU9wADwCAIAqLbqPOnTurqKhI+/bt8yyTfqqoqCi1a9fO52P27Nmz1ODD77//3jNQDwAABEfIhJfDhw979afv2LFDGzduVP369dWmTRsNGTJEt912m/72t7+pc+fO2r9/v5YvX64OHTpUasnyBx98UD169NCUKVM0cOBArV27Vv/4xz/0j3/8I5DVAgAApwiZbqMVK1aob9++pbYPHTpUmZmZOn78uJ566im99tpr+vnnn9WwYUNdcMEFmjhxotLS0ir1nO+9957Gjh2rrVu3qkWLFho9erTuuuuuqlYFAACcRsiEFwAAEB7CZp0XAAAQGggvAADAURw9YLe4uFi//PKL6tatyzLcAAA4hDFGhw4dUlJSUqkbnPrC0eHll19+UXJystXFAAAAlbB7926deeaZfj/O0eGlZAnu3bt3Ky4uzuLSAAAAX+Tn5ys5OdlzHfeXo8NLSVdRXFwc4QUAAIep7JAPBuwCAABHIbwAAABHIbwAAABHcfSYFwAA7KaoqEjHjx+3uhiWqlmzpiIjI4N2fMILAAABYIzRnj17dPDgQauLYgv16tVTkyZNgrIOG+EFAIAAKAkujRo1Uq1atcJ28VRjjI4ePap9+/ZJkhITEwP+HIQXAACqqKioyBNcGjRoYHVxLBcbGytJ2rdvnxo1ahTwLiQG7AIAUEUlY1xq1aplcUnso+S1CMb4H8ILAAABEq5dRWUJ5mtBeAEAAI5CeAEAAI5CeAEA2E6uu0BrtuUp111gdVHCxqeffqrIyEj179/fa/vOnTvlcrk8P/Xr11fv3r31ySefWFRSwgsAwGaycnap59SPNHjm5+o59SNl5eyyukhhYdasWbr//vu1cuVK/fLLL6X+/uGHHyo3N1crV65UUlKSrrzySu3du9eCkhJeAAA2kusu0NjszSo2J38vNtK47C20wATZ4cOHlZWVpfvuu0/9+/dXZmZmqX0aNGigJk2aqH379ho3bpzy8/P1+eefV39hRXgBANjIjrwjnuBSosgY7cw7ak2BLFLd3Wbz589Xu3bt1LZtW91yyy169dVXZYwpc9+CggK99tprkqSoqKhqKd+pWKQOAGAbLRrWVoRLXgEm0uVSSsPwWT8lK2eXp/UpwiVlDEjToPOaBfU5Z82apVtuuUWSdNlll8ntduvjjz9Wnz59PPv06NFDEREROnr0qIwx6tKliy6++OKglqs8tLwAAGwjMT5WGQPSFPm/a4REulyaMqC9EuNjLS5Z9bCi2+y7777T2rVrdfPNN0uSatSooUGDBmnWrFle+2VlZemLL77QO++8o1atWikzM1M1a9YMWrlOh5YXAICtDDqvmXq1SdDOvKNKaVgrbIKLdPpus2C9DrNmzdKJEyeUlJTk2WaMUXR0tF544QXPtuTkZLVu3VqtW7fWiRMndN1112nLli2Kjo4OSrlOh5YXAIDtJMbHqnvLBmEVXKT/6zb7vWB2m504cUKvvfaa/va3v2njxo2en02bNikpKUlz584t83E33HCDatSooZdeeiko5aoI4QUAAJuo7m6z9957TwcOHNAf//hHtW/f3uvn+uuvL9V1VMLlcmnkyJGaOnWqjh6t/sHUhBcAAGxk0HnNtGpMX8296wKtGtM3qIN1Z82apX79+ik+Pr7U366//nqtW7dO+fn5ZT526NChOn78uFfXUnVhzAsAADaTGB9bLV1m//rXv8r9W7du3TzTpcuaNl2rVi3997//DVrZToeWFwAA4CiEFwAA4CiEFwAA4CiEFwAA4CiEFwAAAqS8+wGFo2C+FoQXAACqqGSZfCvWPLGrktciGLcQYKo0AABVFBkZqXr16mnfvn2STk4jdrlcFTwqNBljdPToUe3bt0/16tVTZGRkwJ+D8AIAQAA0adJEkjwBJtzVq1fP85oEGuEFAIAAcLlcSkxMVKNGjXT8+HGri2OpmjVrBqXFpQThBQCAAIqMjAzqhRsM2AUAAA5DeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5iaXgpKirSE088oRYtWig2NlYtW7bU5MmTZYyxslgAAMDGalj55NOmTdOMGTM0Z84cnXPOOVq3bp2GDRum+Ph4jRw50sqiAQAAm7I0vKxZs0bXXHON+vfvL0lKSUnR3LlztXbtWiuLBQAAbMzSbqMePXpo+fLl+v777yVJmzZt0qpVq3T55ZeXuX9hYaHy8/O9fgAAQHixtOVlzJgxys/PV7t27RQZGamioiL95S9/0ZAhQ8rcPyMjQxMnTqzmUgIAADuxtOVl/vz5euONN/Tmm29qw4YNmjNnjp5++mnNmTOnzP3Hjh0rt9vt+dm9e3c1lxgAAFjNZSyc2pOcnKwxY8Zo+PDhnm1PPfWUXn/9dX377bcVPj4/P1/x8fFyu92Ki4sLZlEBAECAVPX6bWnLy9GjRxUR4V2EyMhIFRcXW1QiAABgd5aOebnqqqv0l7/8Rc2aNdM555yjL774Qs8884zuuOMOK4sFAABszNJuo0OHDumJJ57QggULtG/fPiUlJenmm2/Wk08+qaioqAofT7cRAADOU9Xrt6XhpaoILwAAOI+jx7wAAAD4i/ACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfACAAAchfASILnuAq3Zlqdcd4HVRQEAIKTVsLoAoSArZ5fGZm9WsZEiXFLGgDQNOq+Z1cUCACAk0fJSRbnuAk9wkaRiI43L3kILDAAAQUJ4qaIdeUc8waVEkTHamXfUmgIBABDiCC9V1KJhbUW4vLdFulxKaVjLmgIBABDiCC9VlBgfq4wBaYp0nUwwkS6Xpgxor8T4WItLBgBAaGLAbgAMOq+ZerVJ0M68o0ppWIvgAgBAEBFeAiQxPpbQAgBANaDbCAAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOArhBQAAOIrl4eXnn3/WLbfcogYNGig2NlZpaWlat26d1cUCAAA2VcPKJz9w4IB69uypvn376t///rcSEhK0detWnXHGGVYWCwAA2Jil4WXatGlKTk7W7NmzPdtatGhhYYkAAIDdWdpttGjRInXt2lU33nijGjVqpM6dO2vmzJnl7l9YWKj8/HyvHwAAEF4sDS/bt2/XjBkz1Lp1a33wwQe67777NHLkSM2ZM6fM/TMyMhQfH+/5SU5OruYSAwAAq7mMMcaqJ4+KilLXrl21Zs0az7aRI0cqJydHn376aan9CwsLVVhY6Pk9Pz9fycnJcrvdiouLq5YyAwCAqsnPz1d8fHylr9+WtrwkJiYqNTXVa9vZZ5+tXbt2lbl/dHS04uLivH4AAEB4sTS89OzZU999953Xtu+//17Nmze3qEQAAMDuLA0vDz74oD777DNNmTJFP/zwg95880394x//0PDhw60sFgAAsDFLw8t5552nBQsWaO7cuWrfvr0mT56s6dOna8iQIVYWCwAA2JilA3arqqoDfgAAQPVz9IBdAAAAfxFeAACAoxBeAACAoxBeHCLXXaA12/KU6y6wuigAAFjK0hszwjdZObs0Nnuzio0U4ZIyBqRp0HnNrC4WAACWoOXF5nLdBZ7gIknFRhqXvYUWGABA2CK82NyOvCOe4FKiyBjtzDtqTYEAALAY4cXmWjSsrQiX97ZIl0spDWtZUyAAACxGeLG5xPhYZQxIU6TrZIKJdLk0ZUB7JcbHWlwyAACswYBdBxh0XjP1apOgnXlHldKwFsEFABDWCC8OkRgfS2gBAEB0GwEAAIchvAAAAEchvAAAAEchvAAAAEchvAAAAEchvAAAAEchvAAAAEchvAAAAEchvAAAAEchvAAAAEchvAAAAEchvAAAAEchvAAAAEchvAAAAEchvDhErrtAa7blKdddYHVRAACwVA2rC4CKZeXs0tjszSo2UoRLyhiQpkHnNbO6WAAAWIKWF5vLdRd4goskFRtpXPYWWmAAAGGL8GJzO/KOeIJLiSJjtDPvqDUFsjG61gAgPNBtZHMtGtZWhEteASbS5VJKw1rWFcqG6FoDgPBBy4vNJcbHKmNAmiJdLkkng8uUAe2VGB9rccnsg641AAgvtLw4wKDzmqlXmwTtzDuqlIa1CC6nOF3XmtNeq1x3gXbkHVGLhrUdV3YAqC6EF4dIjI/lYlaOUOlao+sLAHxDtxEcLxS61uj6AgDf0fKCkOD0rrVQ6voCgGAjvCBkOLlrLVS6vgCgOtBtBNhAKHR9AUB1oeUFsAmnd30BQHUJWMvLsWPH9PTTTwfqcEBYSoyPVfeWDQguAHAafoWX/fv367333tPSpUtVVFQkSTp+/Liee+45paSkaOrUqUEpJAAAQAmfu41WrVqlK6+8Uvn5+XK5XOratatmz56ta6+9VjVq1NCECRM0dOjQYJYVAADA95aXxx9/XFdccYW+/PJLjR49Wjk5Obruuus0ZcoUff3117r33nsVG0tTNwAACC6XMcZUvJvUoEEDffLJJ0pNTVVBQYHq1Kmj7OxsXXPNNcEuY7ny8/MVHx8vt9utuLg4y8oBAAB8V9Xrt88tLwcOHFDDhg0lSbGxsapVq5bat2/v9xMCAABUhV9Tpb/++mvt2bNHkmSM0XfffacjR4547dOhQ4fAlQ4AAFjGrjeL9bnbKCIiQi6XS6fb3eVyeWYhVQe6jQAACI5g3iy2qtdvn1teduzYUeE+hw4d8rsAAADAXsq7WWyvNgm2aIHxObw0b968zO2HDh3S3LlzNWvWLK1bt65aW14AAEDg2f1msZVeYXflypUaOnSoEhMT9fTTT6tv37767LPPAlk2AABggZKbxf6enW4W69eA3T179igzM1OzZs1Sfn6+Bg4cqMLCQr377rtKTU0NVhkBAEA1KrlZ7LjsLSoyxnY3i/U5vFx11VVauXKl+vfvr+nTp+uyyy5TZGSkXn755WCWDwAAWMDON4v1Obz8+9//1siRI3XfffepdevWwSwTAsCu09sAAM6RGB9ry2uIz2NeVq1apUOHDqlLly46//zz9cILLygvLy+YZUMlZeXsUs+pH2nwzM/Vc+pHysrZZXWRAAAWy3UXaM22POW6C6wuSpX5HF4uuOACzZw5U7m5ubrnnns0b948JSUlqbi4WMuWLWOatE2UN70tFN6sAIDKCbUvtX7PNqpdu7buuOMOrVq1Sps3b9ZDDz2kqVOnqlGjRrr66quDUUb44XTT2wAA4ScUv9RWeqq0JLVt21Z//etf9dNPP2nu3LmBKhOqwO7T2wAA1asqX2rt2tVUpfBSIjIyUtdee60WLVoUiMOhDL6+gUqmt0W6TiYYu01vAwBUr8p+qbVzV5Nf67zAGv7eX2LQec3Urkld5ew8oPNSzlDH5DOqsbSBw4wpAKi6ki+1Y9/ZrGKdbLWo6EttyNweANaozBsomDfTqi6hUAcAsBWXJPO//61AyN4eANXD377KUBiYFQp1AAC7qMxnqt3HTxJebM7fN1AozDYKhToAgF1U5jPV7uMn6TayOX/vL1ESdn7/RrVTWvZFKNQBAOyisp+pdr49AC0vDjDovGZaNaav5t51gVaN6XvasR92T8u+CIU6AIBdVOUzNTE+Vt1bNrDd56/LGGMq3i34pk6dqrFjx2rUqFGaPn26T4/Jz89XfHy83G634uLigltAh8l1F9gyLfsjFOoAAHZhp8/Uql6/bdFtlJOTo1deeUUdOnSwuighw6430/JHKNQBAOwilD5TLe82Onz4sIYMGaKZM2fqjDOcuR4JwoddV5sEgHBieXgZPny4+vfvr379+lW4b2FhofLz871+gOpi59UmASCcWBpe5s2bpw0bNigjI8On/TMyMhQfH+/5SU5ODnIJgZNYewYA7MOy8LJ7926NGjVKb7zxhmJiYnx6zNixY+V2uz0/u3fvDnIpgZNYewYA7MOyAbvr16/Xvn37dO6553q2FRUVaeXKlXrhhRdUWFioyMhIr8dER0crOjq6uosKsPYMANiIZS0vF198sTZv3qyNGzd6frp27aohQ4Zo48aNpYILYCXWngEA+7Cs5aVu3bpq376917batWurQYMGpbYDdmDn1SYBIJzYYp0XwClCaZ0EAHAqW4WXFStWWF0EAABgc5av8wIAQCgK9qKW4bxopq1aXgAACAVZObs8a0NFuKSMAWmnvamu3Y5vd7S8AAAQQMFe1JJFMwkvjhHOzYMA4CTBXtSSRTPpNnKEcG8eBAAnCfailiyaScuL7dE8CADOEuxFLVk0k5YX2ztd82A4vVEBwEkqs6hlrrtAO/KOqEXD2hXuH+6LZhJebI7mQQBwJn8WtazM8IBwXjSTbiObo3kQAEIbwwP8R8uLA4R78yAAhDKGB/iP8OIQ4dw8CAChjOEB/qPbCAAACzE8wH+0vAAAYDGGB/iH8AIAgA0wPMB3dBvBtrglAgCgLLS8wJa4JQKAcOPPInXhjvAC2ylvzYNebRL4Bw0gJPGFzT90G8F2uGMqgHDCInX+I7zAdkrWPPg91jwAEKr4wuY/wgtshzUPAIQTvrD5jzEv5WDglLVY8wBAuCj5wjYue4uKjOELmw8IL2Vg4JQ9sOYBgHDBFzb/0G10CgZOAQCskBgfq+4tGxBcfEB4OQUDpwAAsDfCyykYOAXYGysvwyq89+yDMS+nYOAUYF+MR4NVeO/Zi8sYYyrezZ7y8/MVHx8vt9utuLi4gB47113AwCnARnLdBeo59SOvbt1Il0urxvTl3yiCivde4FX1+k3LSzmY6QLYy+nGo/FvFcHEe89+GPMCwBEYjwar1I6KLHN7rSguoVbhlQfgCKy8DKsc+a2ozO1Hfyuu5pKgBN1GAByDhbxghZJWv1PHvNDqZx1aXgA4Cgt5obrR6mc/tLwAAFABWv3shfACAIAPmIVqH3QbWYSVGgEAqBxaXixQmZUac90F2pF3RC0a1ib5A0AV8ZnqbISXalbeXat7tUko9x8Qy1IDQODwmep8dBtVM3/vWl1e2KG7CQD8x2dqaCC8VDN/Vwn1N+wAQDjydRwhn6mhgfBSzfxdL4Al0QHg9LJydqnn1I80eObn6jn1I2Xl7Cp3Xz5TQwN3lbaIP3etzsrZpXHZW1RkjCfs0D8LAJW74zOfqdbjrtIO5c96ASyOBABlq8wdn/lMdT7Ci0OwOFLFmPoIhJ/K3neIz1RnY8wLQoI/fd4AQgf3HQpPjHmB41WmzxtAaPFnHCGsx5gXhL3K9HkDCC10A4UXuo3geEx9BIDwQniB49HnDQDhhW4jhASmPgJA+CC8IGTQ5w0A4YFuIwAA4CiEFwAA4CiEFwAA4CiEFwAA4CiEF4vkugu0Zluect0FVhcFAABHYbaRBbJydmls9mYVGynCJWUMSON27AAA+IiWl2qW6y7wBBfp5J1Qx2VvoQUGQEijtRmBRMtLNeM+PADCDa3NCDRaXqoZ9+GB0/CNGVVBazOCgfBSzbgPD5wkK2eXek79SINnfq6eUz9SVs4uq4sEhzldazNQWXQbWYD78MAJyvvG3KtNQsi/Z3PdBdqRd0QtGtYO+boGW0lr8+8DDK3NqCrCi0W4Dw/sLlzHZzE+I7BKWpvHZW9RkTG0NiMgLA0vGRkZys7O1rfffqvY2Fj16NFD06ZNU9u2ba0sVtji2yZ+Lxy/MYdza1Mw0dqMQLN0zMvHH3+s4cOH67PPPtOyZct0/PhxXXrppTpy5IiVxQpLjG3AqUq+MZd8SERIIf+NmfEZwZMYH6vuLRuE9PsH1cfSlpclS5Z4/Z6ZmalGjRpp/fr16tWrl0WlCj9828RpuSSZ//1viAvH1ibAiWw128jtdkuS6tevb3FJwgvfNlGWcJziymxAwBlsM2C3uLhYDzzwgHr27Kn27duXuU9hYaEKCws9v+fn51dX8UIa3zZRlnAdsMv4DMD+bNPyMnz4cG3ZskXz5s0rd5+MjAzFx8d7fpKTk6uxhKGLb5soSzgvqMj4DMDeXMYYU/FuwTVixAgtXLhQK1euVIsWLcrdr6yWl+TkZLndbsXFxVVHUUNarruAb5vwkpWzq9QUV6YNA6iq/Px8xcfHV/r6bWl4Mcbo/vvv14IFC7RixQq1bt3ar8dXtfIAKkaoBRBoVb1+WzrmZfjw4XrzzTe1cOFC1a1bV3v27JEkxcfHKzaWD0kEH2vbVIwFFZ2H9zVCnaUtLy5X2XMvZ8+erdtvv73Cx9PygqpgJdXg4MJpLd7XcAJHt7zYYLgNwhRr2wQHF05r8b4OL+H8RcE2s42A6sTaNoEXjuvC2E0ova9z3QVasy2P9085wn1VdNus8wJUJ9a2CbxwXRfGTkLlfU0L3unRwkbLC8IUa9sEXjivC2MXofC+pgWvYqHUwlZZtLwgbLGSamCVXDhPXReG17V6Of19TQtexUKlha0qCC8Ia0wDDiynXzhDiZEzJ0RwYa4YXxQILwACjEBoLaePF6muC7PTZ+qE+xcFW9weoLJY5wUA/k+uu0A9p35UqtVi1Zi+jru4BXNlZ6cHvFBQ1es3A3YBIESE0kDOYN0ckwHBoYHwAgAhghlfFQulgBfOCC+wLRapAvwTClOlg42AFxoYsAtbok8aqJxwH8hZEWbqhAYG7MJ2QmnQod04fYYFECjBHBCMijn6xoxAWVikKjhozQL+D1P6nY0xL7Ad+qQDjxkW4YXxYgh1hBfYDoMOA48ZFuEj3O82jPBAtxFsiUGHgcWS6+GBuw0jXNDyAtsK1iJV4YjWrPBACxvCBS0vQJigNSv00cKGcEHLCxBGaM0KbbSwIVzQ8gIAIYQWNoQDwgsA2Jy/iwuyhglCHeEFAGyMxQWB0hjzAgA2xeKCQNkILwBgU0x9BspGeAEAm+JWGUDZCC8AYFNMfQbKxoBdAKhm/sweYuozUBrhBbARf6fEwnkqM3uIqc+AN8ILqg0X5tNjSmzoy3UXaMw7m1UyBrfYSGOyN3PjRMBPjHlBtcjK2aWeUz/S4Jmfq+fUj5SVs8vqItkKU2LDw/ofD+iUyUMyRtrw4wFLygM4FeEFQceFuWJMiQ0PxpwaXUq2V3NBAIcjvCDouDBXjCmxvst1F2jNtjxHht+uKfV1ymmWS1KXlDOsKA7gWIQXBB0X5ooxJdY3Tu9+TIyP1dTr0zwfvBGSpl6fxnkG/OQy5bVjOkB+fr7i4+PldrsVFxdndXFwGlk5uzQue4uKjPFcmBmMWlquu4ApseXIdReo59SPvFrxIl0urRrT13GvFecZ4a6q129mG6FasFaFb5gSW77TdT867TXjPANVQ3hBteEDG1VR0v14assL3Y9A+GHMC4DTsssAWcYFAShBywuActlt4Ty6HwFItLwAKIdd1+dJjI9V95YNCC5AGCO8ACgT6/MEj79dcXbpugPsgm4jIIz4c38pBsgGh79dcXbrurOrTbsPaO3O/6pbSn11THbmon/c/813hBcgTPh7ESwZIHvq+jx8qFZeeV1x5d2Y0d/9q1o2p144H5q/Ue9s+Nnz+/XnNtXfBnayrkCVQEj1D+EFCAOVvQgOOq+Z2jWpq5ydB3ReyhmO/UZrF/6uVVNda9s4+cK5afcBr+AiSe9s+Fm3dW/umPdrdYbUUMGYFyAMVHb8SlbOLl330ho99f43uu6lNY5bjr+ygjXGxN9bZVTHrTXsOjDbV2t3/rfM7et2OudO3Ywv8x/hBQgDlbkIOv2iVlnBvH+Sv2vVVMfaNk6/cHZLqV/m9q4Outkl93/zH91GQBiozPiVUFqO31e57gKNeWezSqpdbKQx2ZsD2nzv71o1wV7bxukDszsmn6Hrz21aasyLU7qMJMaXVQbhBQgT/l4EnX5Rq4z1Px7QKXlNxkgbfjyg/h0CdyHx91YZwby1RihcOP82sJNu695c63YeUFeHjs1iAUb/EF6AMOLPRTAULmr+MubU6FKyvZoLUs1C4cLZMdmZoeX3uP+b7wgvAMoVChc1f3RNqS+X5NX64pLUxUHjJyqLCyechAG7AE4rnJbjT4yP1dTr0zwfjBGSpl6fFhZ1B5yElheENX8X5nLyQl7wTbi1NgFORHhB2GKZdpSHLhTA3ug2Qljydw2TcF3zBADsiPCCsOTvwlxOX8gLwcVdn4HqRbcRwpK/a5iE45on8E11dCcy1grwRssLwpIdl2mHffjaklId3YnBvF0B4FS0vCBs2W2ZdtiDPy0pwb6FAncbBspGeEFYC/Yy7TT3B96m3Qe0dud/1S2lfsBXVPU3LAS7OzEc7y8F+ILwAgQJU6sD76H5G0vdgO9vAzsF7Pj+hoXE+Fhd19n7poDXdk6qMFj4GmoZawWUjTEvQBAwtTrwNu0+4BUSJOmdDT9r0+4DAXuOkrDwe6cLC7nuAi34wrtM737xy2nPsz9jWBhrBZSN8BIgTJUMD76e5+qaWh1O77vl3+4rc/tH5Wwv4c9r5G9Y8Pc8VybUDjqvmVaN6au5d12gVWP60noHiG6jgKB7IDz4c56ro7k/3N53DetElbM9utzHZOXs0ph3Nsvo5A0Wp15f8Wvkz8Bsf89zZcewsOIv4I2WlyqieyA8+Hueg93cH47vu0tSm5S5vV9q4zK357oLPMFFOnmn6DHvbPa5BcaXm1H6e5797ZYCUDZbhJcXX3xRKSkpiomJ0fnnn6+1a9daXSSfsfJqeKjMeQ5mc384vu8S42M17fo0lVz7XZKmneaOz+t2/lenvEQyktbvrHiMjD9dTf6cZ8awAIFhebdRVlaWRo8erZdfflnnn3++pk+frvT0dH333Xdq1KiR1cWrELMBwkNlz3OwmvvD9X3nT5eOy+UqZ/vpn6My3XH+nGfWCwKqzvKWl2eeeUZ33XWXhg0bptTUVL388suqVauWXn31VauL5hO+SYUHu51nu5WnOvnapdOl+Rk6Nae4XNK5zctfG6a6uuN8rQOAslna8vLbb79p/fr1Gjt2rGdbRESE+vXrp08//bTU/oWFhSosLPT8np+fXy3lrAjfpMKD3c6z3cpjN4nxsZp6fVqpVpTTvU4sCgc4g6XhJS8vT0VFRWrc2HvAXePGjfXtt9+W2j8jI0MTJ06sruL5hdkA4cFu59lu5bEbfwNeuHbHAU5jebeRP8aOHSu32+352b17t9VFAmBz/nTRhHN3HOAklra8NGzYUJGRkdq7d6/X9r1796pJk9LTIqOjoxUdXf6aDgBQVXTHAfZnactLVFSUunTpouXLl3u2FRcXa/ny5erevbuFJQMQzhhQC9ib5VOlR48eraFDh6pr167q1q2bpk+friNHjmjYsGFWFw0AANiQ5eFl0KBB2r9/v5588knt2bNHnTp10pIlS0oN4gUAAJAklzHm1EUoHSM/P1/x8fFyu92Ki4uzujgAAMAHVb1+O2q2EQAAAOEFAAA4CuEFAAA4CuEFAAA4CuEFAAA4CuEFAAA4CuEFAAA4CuEFAAA4iuUr7FZFyfp6+fn5FpcEAAD4quS6Xdl1ch0dXg4dOiRJSk5OtrgkAADAX4cOHVJ8fLzfj3P07QGKi4v1yy+/qG7dunK5XAE9dn5+vpKTk7V79+6QvvVAONQzHOooUc9QQz1DC/X0ZozRoUOHlJSUpIgI/0ewOLrlJSIiQmeeeWZQnyMuLi6k32glwqGe4VBHiXqGGuoZWqjn/6lMi0sJBuwCAABHIbwAAABHIbyUIzo6WuPHj1d0dLTVRQmqcKhnONRRop6hhnqGFuoZWI4esAsAAMIPLS8AAMBRCC8AAMBRCC8AAMBRCC8AAMBRwia8vPjii0pJSVFMTIzOP/98rV279rT7T58+XW3btlVsbKySk5P14IMP6tixY1U6ZnUIdD0nTJggl8vl9dOuXbtgV6NC/tTz+PHjmjRpklq2bKmYmBh17NhRS5YsqdIxq0ug62m387ly5UpdddVVSkpKksvl0rvvvlvhY1asWKFzzz1X0dHRatWqlTIzM0vtY7dzGYx62u1cSv7XMzc3V4MHD1abNm0UERGhBx54oMz93nrrLbVr104xMTFKS0vT4sWLA194PwSjnpmZmaXOZ0xMTHAq4CN/65mdna1LLrlECQkJiouLU/fu3fXBBx+U2i8g/z5NGJg3b56Jiooyr776qvnqq6/MXXfdZerVq2f27t1b5v5vvPGGiY6ONm+88YbZsWOH+eCDD0xiYqJ58MEHK33M6hCMeo4fP96cc845Jjc31/Ozf//+6qpSmfyt55///GeTlJRk3n//fbNt2zbz0ksvmZiYGLNhw4ZKH7M6BKOedjufixcvNo899pjJzs42ksyCBQtOu//27dtNrVq1zOjRo83XX39tnn/+eRMZGWmWLFni2ceO5zIY9bTbuTTG/3ru2LHDjBw50syZM8d06tTJjBo1qtQ+q1evNpGRkeavf/2r+frrr83jjz9uatasaTZv3hycSvggGPWcPXu2iYuL8zqfe/bsCU4FfORvPUeNGmWmTZtm1q5da77//nszduxYU7NmzaB81oZFeOnWrZsZPny45/eioiKTlJRkMjIyytx/+PDh5g9/+IPXttGjR5uePXtW+pjVIRj1HD9+vOnYsWNQyltZ/tYzMTHRvPDCC17bBgwYYIYMGVLpY1aHYNTTjuezhC8fjn/+85/NOeec47Vt0KBBJj093fO7Hc/l7wWqnnY+l8b4Vs/f6927d5kX9YEDB5r+/ft7bTv//PPNPffcU8USBkag6jl79mwTHx8fsHIFmr/1LJGammomTpzo+T1Q/z5Dvtvot99+0/r169WvXz/PtoiICPXr10+ffvppmY/p0aOH1q9f72nK2r59uxYvXqwrrrii0scMtmDUs8TWrVuVlJSks846S0OGDNGuXbuCV5EKVKaehYWFpZpfY2NjtWrVqkofM9iCUc8Sdjqf/vr000+9XhNJSk9P97wmdjyXlVFRPUs4+Vz6ytfXIhQcPnxYzZs3V3Jysq655hp99dVXVhepSoqLi3Xo0CHVr19fUmD/fYZ8eMnLy1NRUZEaN27stb1x48bas2dPmY8ZPHiwJk2apAsvvFA1a9ZUy5Yt1adPH40bN67Sxwy2YNRTks4//3xlZmZqyZIlmjFjhnbs2KGLLrpIhw4dCmp9ylOZeqanp+uZZ57R1q1bVVxcrGXLlik7O1u5ubmVPmawBaOekv3Op7/27NlT5muSn5+vgoICW57LyqionpLzz6WvynstnHQ+fdG2bVu9+uqrWrhwoV5//XUVFxerR48e+umnn6wuWqU9/fTTOnz4sAYOHCgpsJ+1IR9eKmPFihWaMmWKXnrpJW3YsEHZ2dl6//33NXnyZKuLFlC+1PPyyy/XjTfeqA4dOig9PV2LFy/WwYMHNX/+fAtL7p/nnntOrVu3Vrt27RQVFaURI0Zo2LBhlboNu535Us9QOJ84iXMZWrp3767bbrtNnTp1Uu/evZWdna2EhAS98sorVhetUt58801NnDhR8+fPV6NGjQJ+/BoBP6LNNGzYUJGRkdq7d6/X9r1796pJkyZlPuaJJ57QrbfeqjvvvFOSlJaWpiNHjujuu+/WY489VqljBlsw6lnWxb1evXpq06aNfvjhh8BXwgeVqWdCQoLeffddHTt2TL/++quSkpI0ZswYnXXWWZU+ZrAFo55lsfp8+qtJkyZlviZxcXGKjY1VZGSk7c5lZVRUz7I47Vz6qrzXwknnszJq1qypzp07O/J8zps3T3feeafeeustry6iQH7WhtZXzzJERUWpS5cuWr58uWdbcXGxli9fru7du5f5mKNHj5a6cEdGRkqSjDGVOmawBaOeZTl8+LC2bdumxMTEAJXcP1V57WNiYtS0aVOdOHFC77zzjq655poqHzNYglHPslh9Pv3VvXt3r9dEkpYtW+Z5Tex4LiujonqWxWnn0leVeS1CQVFRkTZv3uy48zl37lwNGzZMc+fOVf/+/b3+FtB/n34PHXagefPmmejoaJOZmWm+/vprc/fdd5t69ep5pqHdeuutZsyYMZ79x48fb+rWrWvmzp1rtm/fbpYuXWpatmxpBg4c6PMxrRCMej700ENmxYoVZseOHWb16tWmX79+pmHDhmbfvn3VXr8S/tbzs88+M++8847Ztm2bWblypfnDH/5gWrRoYQ4cOODzMa0QjHra7XweOnTIfPHFF+aLL74wkswzzzxjvvjiC/Pjjz8aY4wZM2aMufXWWz37l0whfuSRR8w333xjXnzxxTKnStvtXAajnnY7l8b4X09jjGf/Ll26mMGDB5svvvjCfPXVV56/r1692tSoUcM8/fTT5ptvvjHjx4+3fKp0MOo5ceJE88EHH5ht27aZ9evXm5tuusnExMR47VPd/K3nG2+8YWrUqGFefPFFrynfBw8e9OwTqH+fYRFejDHm+eefN82aNTNRUVGmW7du5rPPPvP8rXfv3mbo0KGe348fP24mTJhgWrZsaWJiYkxycrL505/+5HURqOiYVgl0PQcNGmQSExNNVFSUadq0qRk0aJD54YcfqrFGZfOnnitWrDBnn322iY6ONg0aNDC33nqr+fnnn/06plUCXU+7nc///Oc/RlKpn5J6DR061PTu3bvUYzp16mSioqLMWWedZWbPnl3quHY7l8Gop93OpTGVq2dZ+zdv3txrn/nz55s2bdqYqKgoc84555j333+/eipUjmDU84EHHvC8Zxs3bmyuuOIKr/VRrOBvPXv37n3a/UsE4t+ny5hy+gcAAABsKOTHvAAAgNBCeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAEAAI5CeAGAAFuxYoVcLpcOHjxodVGAkER4ARzs9ttvl8vl0tSpU722v/vuu3K5XJ7fjTGaOXOmunfvrri4ONWpU0fnnHOORo0a5fON344ePaqxY8eqZcuWiomJUUJCgnr37q2FCxd69klJSdH06dMDUrdgK3ntXC6XatasqRYtWujPf/6zjh075tdx+vTpowceeMBrW48ePZSbm6v4+PgAlhhACcIL4HAxMTGaNm2aDhw4UObfjTEaPHiwRo4cqSuuuEJLly7V119/rVmzZikmJkZPPfWUT89z7733Kjs7W88//7y+/fZbLVmyRDfccIN+/fXXQFanWl122WXKzc3V9u3b9eyzz+qVV17R+PHjq3zcqKgoNWnSxCtAAgigSt7yAIANDB061Fx55ZWmXbt25pFHHvFsX7BggSn55z137lwjySxcuLDMYxQXF/v0XPHx8SYzM7Pcv5d1X5MSn3zyibnwwgtNTEyMOfPMM839999vDh8+7Pn7a6+9Zrp06WLq1KljGjdubG6++Wazd+9ez99L7rGyZMkS06lTJxMTE2P69u1r9u7daxYvXmzatWtn6tata26++WZz5MgRn+ozdOhQc80113htGzBggOncubPn97y8PHPTTTeZpKQkExsba9q3b2/efPNNr2OcWucdO3Z4yvv7+4S9/fbbJjU11URFRZnmzZubp59+2qdyAiiNlhfA4SIjIzVlyhQ9//zz+umnn0r9fe7cuWrbtq2uvvrqMh/va+tAkyZNtHjxYh06dKjMv2dnZ+vMM8/UpEmTlJubq9zcXEnStm3bdNlll+n666/Xl19+qaysLK1atUojRozwPPb48eOaPHmyNm3apHfffVc7d+7U7bffXuo5JkyYoBdeeEFr1qzR7t27NXDgQE2fPl1vvvmm3n//fS1dulTPP/+8T/U51ZYtW7RmzRpFRUV5th07dkxdunTR+++/ry1btujuu+/WrbfeqrVr10qSnnvuOXXv3l133XWXp87Jycmljr1+/XoNHDhQN910kzZv3qwJEyboiSeeUGZmZqXKCoQ9q9MTgMr7fevBBRdcYO644w5jjHfLS7t27czVV1/t9bhRo0aZ2rVrm9q1a5umTZv69Fwff/yxOfPMM03NmjVN165dzQMPPGBWrVrltU/z5s3Ns88+67Xtj3/8o7n77ru9tn3yyScmIiLCFBQUlPlcOTk5RpI5dOiQMeb/Wl4+/PBDzz4ZGRlGktm2bZtn2z333GPS09N9qs/QoUNNZGSkqV27tomOjjaSTEREhHn77bdP+7j+/fubhx56yPN77969zahRo7z2ObXlZfDgweaSSy7x2ueRRx4xqampPpUVgDdaXoAQMW3aNM2ZM0fffPNNhfs+9thj2rhxo5588kkdPnzYp+P36tVL27dv1/Lly3XDDTfoq6++0kUXXaTJkyef9nGbNm1SZmam6tSp4/lJT09XcXGxduzYIelky8RVV12lZs2aqW7duurdu7ckadeuXV7H6tChg+f/GzdurFq1aumss87y2rZv3z6f6iNJffv21caNG/X5559r6NChGjZsmK6//nrP34uKijR58mSlpaWpfv36qlOnjj744INS5arIN998o549e3pt69mzp7Zu3aqioiK/jgWAAbtAyOjVq5fS09M1duxYr+2tW7fWd99957UtISFBrVq1UqNGjfx6jpo1a+qiiy7So48+qqVLl2rSpEmaPHmyfvvtt3Ifc/jwYd1zzz3auHGj52fTpk3aunWrWrZsqSNHjig9PV1xcXF64403lJOTowULFkhSqePWrFnT8/8ls4R+z+Vyqbi42Of61K5dW61atVLHjh316quv6vPPP9esWbM8f/9//+//6bnnntOjjz6q//znP9q4caPS09NPW18AwVfD6gIACJypU6eqU6dOatu2rWfbzTffrMGDB2vhwoW65pprAvp8qampOnHihI4dO6aoqChFRUWVakk499xz9fXXX6tVq1ZlHmPz5s369ddfNXXqVM94kXXr1gW0nL6IiIjQuHHjNHr0aA0ePFixsbFavXq1rrnmGt1yyy2SpOLiYn3//fdKTU31PK6sOp/q7LPP1urVq722rV69Wm3atFFkZGTgKwOEOFpegBCSlpamIUOG6O9//7tn20033aQbbrhBN910kyZNmqTPP/9cO3fu1Mcff6ysrCyfL559+vTRK6+8ovXr12vnzp1avHixxo0bp759+youLk7SyXVeVq5cqZ9//ll5eXmSpEcffVRr1qzRiBEjtHHjRm3dulULFy70DNht1qyZoqKi9Pzzz2v79u1atGhRhV1RwXLjjTcqMjJSL774oqSTrVbLli3TmjVr9M033+iee+7R3r17vR6TkpLieU3z8vLKbPl56KGHtHz5ck2ePFnff/+95syZoxdeeEEPP/xwtdQLCDWEFyDETJo0yesC6nK5lJWVpenTp2vx4sW6+OKL1bZtW91xxx1KTk7WqlWrfDpuenq65syZo0svvVRnn3227r//fqWnp2v+/Plez71z5061bNlSCQkJkk6OU/n444/1/fff66KLLlLnzp315JNPKikpSdLJLqzMzEy99dZbSk1N1dSpU/X0008H8BXxXY0aNTRixAj99a9/1ZEjR/T444/r3HPPVXp6uvr06aMmTZro2muv9XrMww8/rMjISKWmpiohIaHM8TDnnnuu5s+fr3nz5ql9+/Z68sknNWnSpDJnVAGomMsYY6wuBAAAgK9oeQEAAI5CeAEgSV5TmU/9+eSTT6wunl927dp12vr4O9UZgL3QbQRAkk57g8amTZsqNja2GktTNSdOnNDOnTvL/XtKSopq1GCyJeBUhBcAAOAodBsBAABHIbwAAABHIbwAAABHIbwAAABHIbwAAABHIbwAAABHIbwAAABHIbwAAABH+f9c60ga9jVc1gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_54.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABM60lEQVR4nO3deVxU1f8/8NewDYiCCzuhuK8I5EK4hBZFapSauWBqlq2uUaZoikuFlhmllH38pLapmPvnIw+XMDOXT66YmitCkAJK6bCIqMz5/eGP+Toy4AzOnTtz5/V8POZRc+feO+fMlbnvOed9zlEJIQSIiIiIFMJB7gIQERERmRODGyIiIlIUBjdERESkKAxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyKSxaxZs6BSqYzaV6VSYdasWZKWp1evXujVq5fVno+IjMfghsjOrVixAiqVSvdwcnJCYGAgXnzxRVy8eFHu4lmd4OBgvc/Lx8cHPXv2xIYNG8xy/uvXr2PWrFnYtWuXWc5HZI8Y3BARAGDOnDn47rvvsGTJEvTp0wfff/89oqKicOPGDUne77333kNZWZkk55ZaWFgYvvvuO3z33Xd45513cOnSJQwcOBBLlix54HNfv34ds2fPZnBD9ACc5C4AEVmHPn36oHPnzgCAMWPGwMvLC/Pnz8fmzZsxePBgs7+fk5MTnJxs8ysoMDAQL7zwgu75yJEj0aJFC3z66ad4/fXXZSwZEQFsuSGiavTs2RMAkJmZqbf99OnTGDRoEBo2bAhXV1d07twZmzdv1tvn1q1bmD17Nlq2bAlXV1c0atQIPXr0wI4dO3T7GMq5KS8vx1tvvQVvb2/Uq1cPzzzzDP76668qZXvxxRcRHBxcZbuhcy5fvhyPPfYYfHx8oFar0a5dO3z55ZcmfRb34+fnh7Zt2yIrK6vG/S5fvoyXX34Zvr6+cHV1RWhoKL755hvd69nZ2fD29gYAzJ49W9f1JXW+EZHS2ObPJiKSXHZ2NgCgQYMGum0nT55E9+7dERgYiKlTp8Ld3R1r1qxB//79sW7dOgwYMADAnSAjKSkJY8aMQdeuXVFUVIRDhw7hyJEjeOKJJ6p9zzFjxuD7779HXFwcunXrhp07d6Jfv34PVI8vv/wS7du3xzPPPAMnJyf85z//wZtvvgmtVouxY8c+0Lkr3bp1C7m5uWjUqFG1+5SVlaFXr144f/48xo0bh6ZNm+LHH3/Eiy++iGvXrmHixInw9vbGl19+iTfeeAMDBgzAwIEDAQAdO3Y0SzmJ7IYgIru2fPlyAUD89NNP4sqVKyI3N1esXbtWeHt7C7VaLXJzc3X7Pv744yIkJETcuHFDt02r1Ypu3bqJli1b6raFhoaKfv361fi+iYmJ4u6voIyMDAFAvPnmm3r7xcXFCQAiMTFRt23UqFGiSZMm9z2nEEJcv369yn4xMTGiWbNmetuioqJEVFRUjWUWQogmTZqIJ598Uly5ckVcuXJFHDt2TAwdOlQAEOPHj6/2fMnJyQKA+P7773Xbbt68KSIjI0XdunVFUVGREEKIK1euVKkvEZmG3VJEBACIjo6Gt7c3goKCMGjQILi7u2Pz5s146KGHAAD//PMPdu7cicGDB6O4uBiFhYUoLCzE33//jZiYGJw7d043uqp+/fo4efIkzp07Z/T7p6WlAQAmTJigt33SpEkPVC83Nzfd/2s0GhQWFiIqKgoXLlyARqOp1Tm3b98Ob29veHt7IzQ0FD/++CNGjBiB+fPnV3tMWloa/Pz8MGzYMN02Z2dnTJgwASUlJfjll19qVRYiqsqug5vdu3cjNjYWAQEBUKlU2Lhxo6TvV5kPcPejTZs2kr4nkbFSUlKwY8cOrF27Fn379kVhYSHUarXu9fPnz0MIgRkzZuhu7JWPxMREAHdySoA7I6+uXbuGVq1aISQkBJMnT8bvv/9e4/v/+eefcHBwQPPmzfW2t27d+oHqtXfvXkRHR8Pd3R3169eHt7c3pk2bBgC1Dm4iIiKwY8cO/PTTT9i3bx8KCwvx7bff6gVS9/rzzz/RsmVLODjof+22bdtW9zoRmYdd59yUlpYiNDQUL730kq5vW2rt27fHTz/9pHtuq6NFSHm6du2qGy3Vv39/9OjRA3FxcThz5gzq1q0LrVYLAHjnnXcQExNj8BwtWrQAADz66KPIzMzEpk2bsH37dvz73//Gp59+iiVLlmDMmDEPXNbqJv+rqKjQe56ZmYnHH38cbdq0wcKFCxEUFAQXFxekpaXh008/1dXJVF5eXoiOjq7VsUQkPbu+s/bp0wd9+vSp9vXy8nJMnz4dq1atwrVr19ChQwfMnz//gWYddXJygp+fX62PJ7IER0dHJCUloXfv3li8eDGmTp2KZs2aAbjTlWLMjb1hw4YYPXo0Ro8ejZKSEjz66KOYNWtWtcFNkyZNoNVqkZmZqddac+bMmSr7NmjQANeuXauy/d7Wj//85z8oLy/H5s2b0bhxY932n3/++b7lN7cmTZrg999/h1ar1Wu9OX36tO51oPrAjYiMZ9fdUvczbtw47N+/H6tXr8bvv/+O559/Hk899ZRJeQT3OnfuHAICAtCsWTMMHz4cOTk5Ziwxkfn06tULXbt2RXJyMm7cuAEfHx/06tULX331FfLy8qrsf+XKFd3///3333qv1a1bFy1atEB5eXm171f5Q+Pzzz/X256cnFxl3+bNm0Oj0eh1deXl5VWZJdjR0REAIITQbdNoNFi+fHm15ZBK3759kZ+fj9TUVN2227dvY9GiRahbty6ioqIAAHXq1AEAg8EbERnHrltuapKTk4Ply5cjJycHAQEBAO40x2/duhXLly/Hhx9+aPI5IyIisGLFCrRu3Rp5eXmYPXs2evbsiRMnTqBevXrmrgLRA5s8eTKef/55rFixAq+//jpSUlLQo0cPhISE4JVXXkGzZs1QUFCA/fv346+//sKxY8cAAO3atUOvXr3QqVMnNGzYEIcOHcLatWsxbty4at8rLCwMw4YNwxdffAGNRoNu3bohPT0d58+fr7Lv0KFDMWXKFAwYMAATJkzA9evX8eWXX6JVq1Y4cuSIbr8nn3wSLi4uiI2NxWuvvYaSkhIsXboUPj4+BgM0Kb366qv46quv8OKLL+Lw4cMIDg7G2rVrsXfvXiQnJ+u+A9zc3NCuXTukpqaiVatWaNiwITp06IAOHTpYtLxENk3u4VrWAoDYsGGD7vl///tfAUC4u7vrPZycnMTgwYOFEEKcOnVKAKjxMWXKlGrf8+rVq8LDw0P8+9//lrp6RNWqHAp+8ODBKq9VVFSI5s2bi+bNm4vbt28LIYTIzMwUI0eOFH5+fsLZ2VkEBgaKp59+Wqxdu1Z33Pvvvy+6du0q6tevL9zc3ESbNm3EBx98IG7evKnbx9Cw7bKyMjFhwgTRqFEj4e7uLmJjY0Vubq7BodHbt28XHTp0EC4uLqJ169bi+++/N3jOzZs3i44dOwpXV1cRHBws5s+fL5YtWyYAiKysLN1+pgwFv98w9+rOV1BQIEaPHi28vLyEi4uLCAkJEcuXL69y7L59+0SnTp2Ei4sLh4UT1YJKiLvaa+2YSqXChg0b0L9/fwBAamoqhg8fjpMnT+qativVrVsXfn5+uHnzJi5cuFDjeRs1aqSbcdSQLl26IDo6GklJSQ9cByIiImK3VLXCw8NRUVGBy5cv66ahv5eLi8sDDeUuKSlBZmYmRowYUetzEBERkT67Dm5KSkr0+vOzsrKQkZGBhg0bolWrVhg+fDhGjhyJTz75BOHh4bhy5QrS09PRsWPHWk0J/8477yA2NhZNmjTBpUuXkJiYCEdHR71JvYiIiOjB2HW31K5du9C7d+8q20eNGoUVK1bg1q1beP/99/Htt9/i4sWL8PLywiOPPILZs2cjJCTE5PcbOnQodu/ejb///hve3t7o0aMHPvjggyqTlhEREVHt2XVwQ0RERMrDeW6IiIhIURjcEBERkaLYXUKxVqvFpUuXUK9ePU5zTkREZCOEECguLkZAQECVBWjvZXfBzaVLlxAUFCR3MYiIiKgWcnNz8dBDD9W4j90FN5VTnOfm5sLDw0Pm0hAREZExioqKEBQUZNRyRXYX3FR2RXl4eDC4ISIisjHGpJQwoZiIiIgUhcENERERKYqswc3u3bsRGxuLgIAAqFQqbNy48b7HlJeXY/r06WjSpAnUajWCg4OxbNky6QtLRERENkHWnJvS0lKEhobipZdewsCBA406ZvDgwSgoKMDXX3+NFi1aIC8vD1qt1uxlq6iowK1bt8x+Xnvl7OxcZXV1IiIiKcga3PTp0wd9+vQxev+tW7fil19+wYULF9CwYUMAQHBwsFnLJIRAfn4+rl27ZtbzElC/fn34+flxfiEiIpKUTY2W2rx5Mzp37oyPPvoI3333Hdzd3fHMM89g7ty5cHNzM3hMeXk5ysvLdc+LiopqfI/KwMbHxwd16tThjdgMhBC4fv06Ll++DADw9/eXuURERKRkNhXcXLhwAXv27IGrqys2bNiAwsJCvPnmm/j777+xfPlyg8ckJSVh9uzZRp2/oqJCF9g0atTInEW3e5XB5+XLl+Hj48MuKiIikoxNjZbSarVQqVT44Ycf0LVrV/Tt2xcLFy7EN998g7KyMoPHJCQkQKPR6B65ubnVnr8yx6ZOnTqSlN/eVX6uzGUiIiIp2VTLjb+/PwIDA+Hp6anb1rZtWwgh8Ndff6Fly5ZVjlGr1VCr1Sa9D7uipMHPlYiILMGmWm66d++OS5cuoaSkRLft7NmzcHBwuO86E0RERGQfZA1uSkpKkJGRgYyMDABAVlYWMjIykJOTA+BOl9LIkSN1+8fFxaFRo0YYPXo0/vjjD+zevRuTJ0/GSy+9VG1CMREREdkXWYObQ4cOITw8HOHh4QCA+Ph4hIeHY+bMmQCAvLw8XaADAHXr1sWOHTtw7do1dO7cGcOHD0dsbCw+//xzWcpvjfLz8zF+/Hg0a9YMarUaQUFBiI2NRXp6Ov755x+MHz8erVu3hpubGxo3bowJEyZAo9Hojs/OzoZKpdIFnHfr1asXJk2apLft1KlTeOaZZ+Dp6Ql3d3d06dJF75oREZFty9OUYV9mIfI0hnNbrZGsOTe9evWCEKLa11esWFFlW5s2bbBjxw4JS2W7srOz0b17d9SvXx8ff/wxQkJCcOvWLWzbtg1jx47F2rVrcenSJSxYsADt2rXDn3/+iddffx2XLl3C2rVrTX6/zMxM9OjRAy+//DJmz54NDw8PnDx5Eq6urhLUjoiILC31YA4S1h+HVgAOKiBpYAiGdGksd7Huy6YSiqlmb775JlQqFQ4cOAB3d3fd9vbt2+Oll15C/fr1sW7dOt325s2b44MPPsALL7yA27dvw8nJtH8O06dPR9++ffHRRx/pnZOIiGxfnqZMF9gAgFYA09afwKOtvOHvad2pIDaVUGxrLNmU988//2Dr1q0YO3asXmBTqX79+gaP02g08PDwMDmw0Wq12LJlC1q1aoWYmBj4+PggIiLCqPXBiIjI+mUVluoCm0oVQiC78Lo8BTIBgxuJpB7MQfd5OxG39Dd0n7cTqQelzUM5f/48hBBo06aN0ccUFhZi7ty5ePXVV6u81q1bN9StW1fv8euvv+pev3z5MkpKSjBv3jw89dRT2L59OwYMGICBAwfil19+MUudiIhIPk293OFwzwwejioVgr2sfy44dktJQI6mvJpylwwpKipCv3790K5dO8yaNavK66mpqWjbtq3etuHDh+v+v3Kx0meffRZvvfUWACAsLAz79u3DkiVLEBUVZWINiIjImvh7uiFpYAimrT+BCiHgqFLhw4EdrL5LCmBwI4mamvKk+kfRsmVLqFQqnD59+r77FhcX46mnnkK9evWwYcMGODs7V9knKCgILVq00Nt293B7Ly8vODk5oV27dnr7tG3bFnv27KllLYiIyJoM6dIYj7byRnbhdQR71bGJwAZgt5Qk5GjKa9iwIWJiYpCSkoLS0tIqr1eucl5UVIQnn3wSLi4u2Lx5c61HNrm4uKBLly44c+aM3vazZ8+iSZMmtTonERFZH39PN0Q2b2QzgQ3A4EYSlU15jv9/uQFLNeWlpKSgoqICXbt2xbp163Du3DmcOnUKn3/+OSIjI3WBTWlpKb7++msUFRUhPz8f+fn5qKioMPn9Jk+ejNTUVCxduhTnz5/H4sWL8Z///AdvvvmmBLUjIiIyDrulJCJHU16zZs1w5MgRfPDBB3j77beRl5cHb29vdOrUCV9++SWOHDmC3377DQCqdDllZWUhODjYpPcbMGAAlixZgqSkJEyYMAGtW7fGunXr0KNHD3NViYiIyGQqYWomqo0rKiqCp6enbgj03W7cuIGsrCw0bdqUE9FJgJ8vERHVVk3373uxW4qIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuDLCzHGuL4edKRESWwODmLpUz9V6/bv2Lgtmiys/V0IzIRERE5sJ5bu7i6OiI+vXr4/LlywCAOnXqQKVS3ecouh8hBK5fv47Lly+jfv36cHR0lLtIRESkYAxu7uHn5wcAugCHzKd+/fq6z5eIiEgqDG7uoVKp4O/vDx8fH9y6dUvu4iiGs7MzW2yIiMgiGNxUw9HRkTdjIiIiG8SEYiIiIlIUBjdERESkKAxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuiIiISFEY3BAREZGiMLghIiIiRZE1uNm9ezdiY2MREBAAlUqFjRs3Gn3s3r174eTkhLCwMMnKR0RERLZH1uCmtLQUoaGhSElJMem4a9euYeTIkXj88cclKhkRERHZKic537xPnz7o06ePyce9/vrriIuLg6Ojo0mtPURERKR8Npdzs3z5cly4cAGJiYlG7V9eXo6ioiK9BxERESmXTQU3586dw9SpU/H999/Dycm4RqekpCR4enrqHkFBQRKXkoiIiORkM8FNRUUF4uLiMHv2bLRq1cro4xISEqDRaHSP3NxcCUtJREREcpM158YUxcXFOHToEI4ePYpx48YBALRaLYQQcHJywvbt2/HYY49VOU6tVkOtVlu6uERERCQTmwluPDw8cPz4cb1tX3zxBXbu3Im1a9eiadOmMpWMiIiIrImswU1JSQnOnz+ve56VlYWMjAw0bNgQjRs3RkJCAi5evIhvv/0WDg4O6NChg97xPj4+cHV1rbKdiIiI7Jeswc2hQ4fQu3dv3fP4+HgAwKhRo7BixQrk5eUhJydHruIRERGRDVIJIYTchbCkoqIieHp6QqPRwMPDQ+7iEBERkRFMuX/bzGgpIiIiImMwuCEiIiJFYXBDREREisLghoiIiBSFwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBDREREisLghoiIiBSFwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBDREREisLghoiIiBSFwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBDREREisLghoiIiBSFwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIUWQNbnbv3o3Y2FgEBARApVJh48aNNe6/fv16PPHEE/D29oaHhwciIyOxbds2yxSWiIiIbIKswU1paSlCQ0ORkpJi1P67d+/GE088gbS0NBw+fBi9e/dGbGwsjh49KnFJiYiIyFaohBBC7kIAgEqlwoYNG9C/f3+Tjmvfvj2GDBmCmTNnGrV/UVERPD09odFo4OHhUYuSEhERkaWZcv92slCZJKHValFcXIyGDRtWu095eTnKy8t1z4uKiixRNCIiIpKJTScUL1iwACUlJRg8eHC1+yQlJcHT01P3CAoKsmAJiYiIyNJsNrhZuXIlZs+ejTVr1sDHx6fa/RISEqDRaHSP3NxcC5aSiIiILM0mu6VWr16NMWPG4Mcff0R0dHSN+6rVaqjVaguVjIiIiORmcy03q1atwujRo7Fq1Sr069dP7uIQERGRlZG15aakpATnz5/XPc/KykJGRgYaNmyIxo0bIyEhARcvXsS3334L4E5X1KhRo/DZZ58hIiIC+fn5AAA3Nzd4enrKUgciIiKyLrK23Bw6dAjh4eEIDw8HAMTHxyM8PFw3rDsvLw85OTm6/f/1r3/h9u3bGDt2LPz9/XWPiRMnylJ+IiIisj5WM8+NpXCeGyIiIttjyv3b5nJuiIiIiGrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuiIiISFEY3BAREZGiMLghIiIiRZE1uNm9ezdiY2MREBAAlUqFjRs33veYXbt24eGHH4ZarUaLFi2wYsUKyctJREREtkPW4Ka0tBShoaFISUkxav+srCz069cPvXv3RkZGBiZNmoQxY8Zg27ZtEpeUiIiIbIWTnG/ep08f9OnTx+j9lyxZgqZNm+KTTz4BALRt2xZ79uzBp59+ipiYGKmKSURERDbEpnJu9u/fj+joaL1tMTEx2L9/f7XHlJeXo6ioSO9BREREymVTwU1+fj58fX31tvn6+qKoqAhlZWUGj0lKSoKnp6fuERQUZImiEhERkUxsKripjYSEBGg0Gt0jNzdX7iIRERGRhGTNuTGVn58fCgoK9LYVFBTAw8MDbm5uBo9Rq9VQq9WWKB4RERFZAZtquYmMjER6erreth07diAyMlKmEhEREZG1kTW4KSkpQUZGBjIyMgDcGeqdkZGBnJwcAHe6lEaOHKnb//XXX8eFCxfw7rvv4vTp0/jiiy+wZs0avPXWW3IUn4iIiKyQrMHNoUOHEB4ejvDwcABAfHw8wsPDMXPmTABAXl6eLtABgKZNm2LLli3YsWMHQkND8cknn+Df//43h4ETESlcnqYM+zILkacxPHiE6G4qIYSQuxCWVFRUBE9PT2g0Gnh4eMhdHCIiuo/UgzlIWH8cWgE4qICkgSEY0qWx3MUiCzPl/m1TOTdERGRf8jRlusAGALQCmLb+BFtwqEYMboiIyGplFZbqAptKFUIgu/C6PAUim8DghoiIrFZTL3c4qPS3OapUCPaqI0+ByCYwuCEiIqvl7+mGpIEhcFTdiXAcVSp8OLAD/D0Nz21GBNjYJH5ERGR/hnRpjEdbeSO78DqCveowsKH7YnBDRERWz9/TjUENGY3dUkRERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBDREREisLghoiIiBSFwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBDREREisLghoiIiBSFwQ0REREpCoMbIiKyuDxNGfZlFiJPUyZ3UUiBnOQuABER2ZfUgzlIWH8cWgE4qICkgSEY0qWx3MUiBWHLDRERWUyepkwX2ACAVgDT1p9gCw6ZlUnBzV9//YXCwkLd819//RXDhw9Hz5498cILL2D//v1mLyARESlHVmGpLrCpVCEEsguvy1MgUiSTgpvnnnsO//vf/wAAmzZtQq9evVBSUoLu3bvj+vXriIqKwn//+19JCkpERLavqZc7HFT62xxVKgR71ZGnQKRIKiGEuP9ud9StWxfHjx9H06ZN8cgjj2DAgAGYMmWK7vXFixdj2bJlOHLkiCSFNYeioiJ4enpCo9HAw8ND7uIQEdmd1IM5mLb+BCqEgKNKhQ8HdmDODd2XKfdvkxKKnZycUFxcDADIyspCnz599F7v06ePXrBDRER0ryFdGuPRVt7ILryOYK868Pd0k7tIpDAmdUtFRUVh1apVAIDw8HDs2rVL7/Wff/4ZgYGBZiscEREpk7+nGyKbN2JgQ5IwqeVm3rx56NmzJy5duoQePXpg+vTpOHjwINq2bYszZ84gNTUVS5YskaqsRERERPdlUs4NAGRmZuK9997Dli1bUFJSAuBOd1WXLl0wefJk9O/fX4pymg1zboiIiGyPKfdvk4ObSkIIXL58GVqtFl5eXnB2dq5VYS2NwQ0REZHtMeX+XetJ/FQqFXx9feHv7//AgU1KSgqCg4Ph6uqKiIgIHDhwoMb9k5OT0bp1a7i5uSEoKAhvvfUWbty48UBlICIiImUwKecmPj7eqP0WLlxo9DlTU1MRHx+PJUuWICIiAsnJyYiJicGZM2fg4+NTZf+VK1di6tSpWLZsGbp164azZ8/ixRdfhEqlMul9iYiISJlMCm6OHj2q93zPnj3o1KkT3Nz+L9tdpVLde1iNFi5ciFdeeQWjR48GACxZsgRbtmzBsmXLMHXq1Cr779u3D927d0dcXBwAIDg4GMOGDcNvv/1m0vsSERGRMpkU3Pz88896z+vVq4eVK1eiWbNmtXrzmzdv4vDhw0hISNBtc3BwQHR0dLVLOXTr1g3ff/89Dhw4gK5du+LChQtIS0vDiBEjDO5fXl6O8vJy3fOioqJalVUKeZoyZBWWoqmXO4dDEhERmYmsq4IXFhaioqICvr6+ett9fX1x+vRpg8fExcWhsLAQPXr0gBACt2/fxuuvv45p06YZ3D8pKQmzZ882e9kfFFfFJSIikobNrQq+a9cufPjhh/jiiy9w5MgRrF+/Hlu2bMHcuXMN7p+QkACNRqN75ObmWrjEVXFVXCIiIunI2nLj5eUFR0dHFBQU6G0vKCiAn5+fwWNmzJiBESNGYMyYMQCAkJAQlJaW4tVXX8X06dPh4KAfr6nVaqjVamkqUEs1rYrL7ikiIqIHY1Jw8/vvv+s9F0Lg9OnTusn8KnXs2NGo87m4uKBTp05IT0/XTf6n1WqRnp6OcePGGTzm+vXrVQIYR0dHXXlsQeWquHcHOFwVl4iIyDxMCm7CwsKgUqn0goinn34aAHTbVSoVKioqjD5nfHw8Ro0ahc6dO6Nr165ITk5GaWmpbvTUyJEjERgYiKSkJABAbGwsFi5ciPDwcEREROD8+fOYMWMGYmNjdUGOtfP3dEPSwJAqq+Ky1YaIiOjBmRTcZGVlmb0AQ4YMwZUrVzBz5kzk5+cjLCwMW7du1SUZ5+Tk6LXUvPfee1CpVHjvvfdw8eJFeHt7IzY2Fh988IHZyyYlropLREQkjVovv2CruPwCERGR7ZF8+QWtVlvt9pycnNqckoiIiMgsTApuioqKMHjwYLi7u8PX1xczZ87Uy6+5cuUKmjZtavZCkvXJ05RhX2Yhh68TEZHVMSnnZsaMGTh27Bi+++47XLt2De+//75urhkXFxcAtjNiiWqPExASEZE1M6nlZuPGjfjqq68waNAgjBkzBocOHcKVK1cQGxurW+LA1LWlyLZwAkIiIrJ2JgU3V65cQZMmTXTPvby88NNPP6G4uBh9+/bF9evXzV5Asi41TUBIRERkDUwKbho3boxTp07pbatXrx62b9+OsrIyDBgwwKyFI+vT1Msd97bNqQBOQEhERFbDpODmiSeewPLly6tsr1u3LrZt2wZXV1ezFYxsCHsiiYjIipiUUDxnzhzk5eUZfK1evXrYsWMHjhw5YpaCkXXKKizFvSnjQoDrYhERkdUwqeXm6NGjGDRoEIqKiqq8ptFo8MgjjzChWOEq18W6G9fFIiIia2JScJOcnIxXXnnF4MyAnp6eeO211/Dpp5+arXBkfSrXxXL8/0Es18UiIiJrY9LyC02aNMHWrVvRtm1bg6+fPn0aTz75pFXPUszlF8wjT1PGdbGIiMhiTLl/m5RzU1BQAGdn5+pP5uSEK1eumHJKslH+nm4MaoiIyCqZ1C0VGBiIEydOVPv677//Dn9//wcuFBEREVFtmRTc9O3bFzNmzMCNGzeqvFZWVobExEQ8/fTTZiscERERkalMyrkpKCjAww8/DEdHR4wbNw6tW7cGcCfXJiUlBRUVFThy5Ah8fX0lK/CDYs4NERGR7ZEs58bX1xf79u3DG2+8gYSEBN0imSqVCjExMUhJSbHqwIaIiIiUz6TgBrgzYiotLQ1Xr17F+fPnIYRAy5Yt0aBBAynKR0RERGQSk4ObSg0aNECXLl3MWRYiIiKSWJ6mDFmFpWjq5S7JqFepz2+MWgc3REREZFtSD+YgYf1xaAXgoAKSBoZgSJfGNnN+Y5k0WorM61juVSz9NRPHcq/KXRQiIlK4PE2ZLvAAAK0Apq0/gTxNmU2c3xRsuZHJ22sysO7IRd3z5x4OxCeDw+QrkMSsoZmSiMieZRWW6gKPShVCmG3hY6nPbwoGNzI4lntVL7ABgHVHLmJkZBOEBikvMdtamimJiOxZ5cLHdwcg5lz4WOrzm4LdUjI4kP2Pwe2HspXXPWVNzZRERPZM6oWPrWlhZbbcyKBrcEOD2zsHK6/VxpqaKYmI7N2QLo3xaCtvyRY+lvr8xmJwI4PQoAZ47uHAKjk3SuySsqZmSiIikn7hY2tYWJnBjUw+GRyGkZFNcCj7KjoHN1BkYAP8XzPltPUnUCGErM2URERkH0xaW0oJuLaUPPI0ZbI3UxIRke2SbG0potqyhmZKIiKyDxwtRURERIrC4IYsIk9Thn2ZhRwCTkREkmO3FEmOk/gREZElseWGJMVJ/IiIyNKsIrhJSUlBcHAwXF1dERERgQMHDtS4/7Vr1zB27Fj4+/tDrVajVatWSEtLs1BpyRQ1TeJHREQkBdm7pVJTUxEfH48lS5YgIiICycnJiImJwZkzZ+Dj41Nl/5s3b+KJJ56Aj48P1q5di8DAQPz555+oX7++5QtP98VJ/IiIyNJkn+cmIiICXbp0weLFiwEAWq0WQUFBGD9+PKZOnVpl/yVLluDjjz/G6dOn4ezsbPL7cZ4by0s9mFNlEj/m3BARkSlMuX/LGtzcvHkTderUwdq1a9G/f3/d9lGjRuHatWvYtGlTlWP69u2Lhg0bok6dOti0aRO8vb0RFxeHKVOmwNHRscr+5eXlKC8v1z0vKipCUFAQgxsL4yR+RETWIU9ThqzCUjT1crep72ObmcSvsLAQFRUV8PX11dvu6+uL06dPGzzmwoUL2LlzJ4YPH460tDScP38eb775Jm7duoXExMQq+yclJWH27NmSlJ+Mx0n8iIjkZy+jV60iodgUWq0WPj4++Ne//oVOnTphyJAhmD59OpYsWWJw/4SEBGg0Gt0jNzfXwiWm2uC8OERE5mVPo1dlbbnx8vKCo6MjCgoK9LYXFBTAz8/P4DH+/v5wdnbW64Jq27Yt8vPzcfPmTbi4uOjtr1aroVarzV94koy9/LIgIrKkmkavKq1lXdaWGxcXF3Tq1Anp6em6bVqtFunp6YiMjDR4TPfu3XH+/HlotVrdtrNnz8Lf379KYEO2x55+WRARWVLl6NW7KXX0quzdUvHx8Vi6dCm++eYbnDp1Cm+88QZKS0sxevRoAMDIkSORkJCg2/+NN97AP//8g4kTJ+Ls2bPYsmULPvzwQ4wdO1auKpAZcV4cIiJp+Hu6IWlgCBxVdyKcytGrSmu1AaxgnpshQ4bgypUrmDlzJvLz8xEWFoatW7fqkoxzcnLg4PB/MVhQUBC2bduGt956Cx07dkRgYCAmTpyIKVOmyFUFMiPOi0NEJJ0hXRrj0Vbeih+9Kvs8N5bGeW6sH+fFISKie9nMUHAiQ+zllwUREUmDwQ1ZJc6LQ0REtSV7QjERERGROTG4ISIiIkVhcENERFaPs5aTKZhzQ0REVo2zlpOp2HJDRERWi7OWU20wuCEiIqvFWcupNhjckEWwv5yIasOe1kMi82FwQ5JLPZiD7vN2Im7pb+g+bydSD+bIXSQishH2tB4SmQ+XXyBJ5WnK0H3eziprRe2Z2ptfTkRktDxNGWctt3NcfoGsRk395fyCIiJjcdZyMgW7pUhS7C8nIiJLY3BDkmJ/ORERWRq7pUhyXOWbiIgsicENWQT7y4mIyFLYLUVERESKwuCGiIiIFIXBDRERkRXhjO4Pjjk3REREVoIroJsHW26IiIisQJ6mDFPX6a+APnX9cbbg1AKDGyIiIitw+M+ruHc9JCGAI39elaU8tozBDRERkRWobqlH+1oB0jwY3BAREVmBzsENcc9qNVAB6BTcQI7i2DQGN0RERFbA39MN854L0d2YHQDMey6EE6DWAkdLERERWQkuV2MeDG6IiIisiKnL1eRpypBVWIqmXu4Mhv4/BjdERHaCN0Hl4bw4hjG4ISKyA7wJKk+epkx3TYE78+JMW38Cj7bytvvglQnFREQKV91NkJPD2baswlLdNa1UIQSyC6/LUyArwuCGiEjheBNUpqZe7nC4Z+y4o0qFYK868hTIijC4ISJSON4Elcnf0w1JA0PgqLpzcR1VKnw4sIPdd0kBVhLcpKSkIDg4GK6uroiIiMCBAweMOm716tVQqVTo37+/tAWkB2bqKrdcFZfIfHgTVK4hXRpjz9TeWPXKI9gztTfzqP4/2ROKU1NTER8fjyVLliAiIgLJycmIiYnBmTNn4OPjU+1x2dnZeOedd9CzZ08LlpZqw9RERiY+Epkf509RLlOHjtsD2VtuFi5ciFdeeQWjR49Gu3btsGTJEtSpUwfLli2r9piKigoMHz4cs2fPRrNmzSxYWjKVqYmMTHwkko6/pxsimzfijZAUT9bg5ubNmzh8+DCio6N12xwcHBAdHY39+/dXe9ycOXPg4+ODl19++b7vUV5ejqKiIr0HWY6piYxMfCQiogcla3BTWFiIiooK+Pr66m339fVFfn6+wWP27NmDr7/+GkuXLjXqPZKSkuDp6al7BAUFPXC5yXimJjIqIfGR+ULKxWtLZBtk75YyRXFxMUaMGIGlS5fCy8vLqGMSEhKg0Wh0j9zcXIlLSXczNZHR1hMfUw/moPu8nYhb+hu6z9uJ1IM5cheJzITXlu7GQNe6yZpQ7OXlBUdHRxQUFOhtLygogJ+fX5X9MzMzkZ2djdjYWN02rVYLAHBycsKZM2fQvHlzvWPUajXUarUEpSdjmZrIaKuJj5wtVLl4beluHPRg/WRtuXFxcUGnTp2Qnp6u26bVapGeno7IyMgq+7dp0wbHjx9HRkaG7vHMM8+gd+/eyMjIYJeTFTM1kVHqxEcpfnUxX0i5eG2pEgc92AbZh4LHx8dj1KhR6Ny5M7p27Yrk5GSUlpZi9OjRAICRI0ciMDAQSUlJcHV1RYcOHfSOr1+/PgBU2U5UHal+dVXmC919E7S1fCEyjNeWKtUU6LIVz3rInnMzZMgQLFiwADNnzkRYWBgyMjKwdetWXZJxTk4O8vLyZC4lPShr6Z+W8leXrecLUfV4bamSEgY92AOVEELcfzflKCoqgqenJzQaDTw8POQujl2wpv7pfZmFiFv6W5Xtq155BJHNG5nlPfI0ZZLmC+VpypBVWIqmXu68ud5D6s9G6mtLtiH1YA6mrT+BCiF0gS5zbqRnyv1b9m4pUjZrS8S0RPeClLOFWlOgaG0s8dlwJlgCbHfQgz2RvVuKlM3aEjFtuXuBiYzVy9OUYeo6/c9m6vrj/GxIMpzt2bqx5YYkZY2JmLb6q4uJjNU7/OdV3Nu/LgRw5M+r6NfRvj8bInvElhuSlLW2lNjiry4mMlavutRB+8ooJKJKbLkhydlqS4m1qQwU701k5OcJdA5uCBWg13qjAtApuIFMJSIiOTG4IYtgIqZ5MFA0zN/TDfOeC0HCuuPQ4k6TdNJzIff9fGx95Jmtl59IKgxuyCrxS7t6DBQNMzXws/WRZ7ZefiIpMbghq8MvbaotYwM/a5uiwFS2Xn4l4A8w68aEYrIq1jrc2VpmWCbzsLYpCkxl6+W3dVwh3vqx5YasijUOd2ZLkvJY4xQFprD18tsytprZBrbckFWxtuHO1tqSRA/GWqcoMJatl9+WsdXMNrDlhqyKtQ13tsaWJDIPWx95Zuvlt1VsNbMNDG7I6ljTlza/yJTN1keeSVl+JswaZm0/wMgwBjdklazlpsMvMrJHzDOrmTX9ACPDVKK6ecsVypQl04kq5WnK+EVGdiFPU4bu83ZWaa3cM7U3/+2TrEy5f7PlhsgI1tKSpATs7rBuzDMjJWBwQ0QWw+4O68c8M1ICDgUnIovgsHrbwGHmpARsuSEii2B3h+1gwizZOgY3RPRAjM2hsUR3B/N5zId5ZmTLGNwQUa2ZkkMj9bB65vMQUSUOBSeiWqntkGEphtVz+DKR8nEoOBFJrrY5NFJ0dzCfh4juxtFSRFQr1rTIqTWVhYjkx+CGyAh5mjLsyyzksOW7WNOQYWsqCxHJjzk3RPdhaqKqvY3YsaalKaypLERkXsy5ITKT6iaee7SVt8Gbpz2O2LGmIcPWVBYikg+7pYhqUFOi6r04Ay8RkXVgcENUA1MSVU0JhIiISDoMbohqYEqiKkfsyI+J30QEMOeG6L6MXWdH6hl4qWb2mO9ERIZxtBSRmXHEjuVxhmIi5TPl/m0V3VIpKSkIDg6Gq6srIiIicODAgWr3Xbp0KXr27IkGDRqgQYMGiI6OrnF/IkOk7L7w93RDZPNGvKlaEPOdiOhusgc3qampiI+PR2JiIo4cOYLQ0FDExMTg8uXLBvfftWsXhg0bhp9//hn79+9HUFAQnnzySVy8eNHCJSdblXowB93n7UTc0t/Qfd5OpB7MkbtI9ICY70REd5O9WyoiIgJdunTB4sWLAQBarRZBQUEYP348pk6det/jKyoq0KBBAyxevBgjR4687/7slrJvD7LYoz1NzGeLUg/mVMl3Ys4NkXLYzCR+N2/exOHDh5GQkKDb5uDggOjoaOzfv9+oc1y/fh23bt1Cw4YNDb5eXl6O8vJy3fOioqIHKzTZtNossMhEVdtgbOI3ESmfrN1ShYWFqKiogK+vr952X19f5OfnG3WOKVOmICAgANHR0QZfT0pKgqenp+4RFBT0wOUm22Vq9wUn5rMtzHeiSpwWwL7JnnPzIObNm4fVq1djw4YNcHV1NbhPQkICNBqN7pGbm2vhUpoP/1gfnKkLLDJRlR4E/2blwbw6krVbysvLC46OjigoKNDbXlBQAD8/vxqPXbBgAebNm4effvoJHTt2rHY/tVoNtVptlvLKiV0j5mNK90VlS8+9OTpMVKX74d+sPExdD46USdaWGxcXF3Tq1Anp6em6bVqtFunp6YiMjKz2uI8++ghz587F1q1b0blzZ0sUVVbsGjE/Y7svTG3pIQL4NysntrYSYAUzFMfHx2PUqFHo3LkzunbtiuTkZJSWlmL06NEAgJEjRyIwMBBJSUkAgPnz52PmzJlYuXIlgoODdbk5devWRd26dWWrh5RqkwRL5sNEVTIV/2blw9ZWAqwguBkyZAiuXLmCmTNnIj8/H2FhYdi6dasuyTgnJwcODv/XwPTll1/i5s2bGDRokN55EhMTMWvWLEsWvQqphgvzj1V+/p5uvCmR0Zp6uUMF4O74RqUC/2YtgMugyM8aps6QfZ4bS5Nqnhup+9c5hweR7cjTlKFb0k794AbAvoTHeJO1EC6DIg8p74U2M8+NUlgiga02XSPWED0T2aOswlLc+6tRAOyWsiC2tlqeNSVzM7gxA0v1r5vyx8qRGkTyYVcy2SNryjWz6XlurIW1rWvDkRpE8uIoO7qXPcx5ZE33QrbcmIG1JbBZU/RMZK84yo4q2UtLujXdCxncmIk1fZGxSZwsydTcLnvKBWPeB1lTHoolWMu9kMGNGVnLF5k1Rc+kbKb+IrWXX7BEleyxJd0a7oUMbhTKWqJnUi5Tf5Ha2y9YIoAt6XJhQrGCcYVkkpKp09xzWnz5mZLUag8JsJbA5HJ5sOWGiGrF4Cy8qH4WXv6ClZcpXYLsPjQvtqRbHltuyC7xV6lEVNW/ZI2/YO3l34Ep00NwKglpsCXdsthyQ3ZH6l+l9jIayOAsvKLmWXit6ResPbVOmJLUao8JsKQ8DG7Irkid1GpPN8zadjNZw0gKe0tuNuVasfuQlIDdUmRXpExqtbfmfGvsZjKWvSU3m3KtbPm6ElViyw3ZFSl/ldpjc741dTOZwh5bJ0y5VrZ6XYkqseWG7IqUv0qtaV0VS7LFREl7bZ0w5VrZ4nUlqqQSQtybE6hoRUVF8PT0hEajgYeHh9zFIZnkacok+VWaejAHCeuOQ4s7vxySnlNuzo0SSPXvgIjMz5T7N7ulyC5JmtRaOflLDcOi7Zk1jSazhuRmIjI/BjdEZmJvI3BqQ+rRZMdyr+JA9j/oGtwQoUENzHZeIrItDG6IzMQeE4pNIXXw9/aaDKw7clH3/LmHA/HJ4LAHPi8R2R4mFBOZib0mFBtLyuHXx3Kv6gU2ALDuyEUcy736wOcmItvD4IbITOx1BI6xpAz+DmT/Y3D7oWx5gxt7Wd6ByNqwW4rIjDg/SPX8Pd0wIDxQr4Wlf3iAWT6jZl7uBrfL2WpmT7NVk7JZ0yAAY7HlhsjMOD+IYXmaMmw4qt91tPHoJbO0ari5GP6dVsfF+YHPXRv2Nls1KVfqwRx0n7cTcUt/Q/d5O5F6MEfuIhmFwQ3VitTN7WzOVx4pc25q2+Ul1b8ze1vegZTJloN0dkuRyaRubmdzvjJJueRBZb7T3RMo3i/fScp/Z/a4vAMpjy2PAGXLDZlE6kjeln8pUM0sknCtuue/1ZD63xmTy0kJbHkEKFtuyCRSR/KW+qVgiwlySiBVwrWpc+hY4t8Zk8vNi3+zllcZpE9bfwIVQthUkM7ghkwidXO7JZrz2e0lLymWPDA1WLFUtxGXdzAP/s3Kx1aDdHZLkUmkbm6X+vzs9lImU5vP2W1kO/g3Kz9bHAHKlhsymdSRvJTnt+UEOapebZrPa/PvjF0jlse/WaoNBjdUK1I3t0t1fo5iUa7aBCum/Dtj14g8+DdLtcFuKbIr7I5QPgFx/51MxK4R+fBvlmrDKlpuUlJS8PHHHyM/Px+hoaFYtGgRunbtWu3+P/74I2bMmIHs7Gy0bNkS8+fPR9++fS1YYrJlQ7o0Rhu/ejiYfRVdghsgNKiB3EWiGhjbFSRlywq7RuRlq0mtJB/ZW25SU1MRHx+PxMREHDlyBKGhoYiJicHly5cN7r9v3z4MGzYML7/8Mo4ePYr+/fujf//+OHHihIVLXhVn1bUNqQdzMOCLfXh/yykM+GKfzUwnbo+Mnfo9T1OGqev0W1amrj9utr9FW57vQylsMamV5KMSQpi/DdcEERER6NKlCxYvXgwA0Gq1CAoKwvjx4zF16tQq+w8ZMgSlpaX473//q9v2yCOPICwsDEuWLLnv+xUVFcHT0xMajQYeHh5mqwf7421DnqYM3eftrNJ/v2dqb35pWhlTrtV/f7+EcSuPVjlHSlw4+nUMMEt5Ug/mVElY5t84keWYcv+WtVvq5s2bOHz4MBISEnTbHBwcEB0djf379xs8Zv/+/YiPj9fbFhMTg40bNxrcv7y8HOXl5brnRUVFD17we5g6gRjJh90LtsOUa1XdbzRz/nRj1wiR7ZC1W6qwsBAVFRXw9fXV2+7r64v8/HyDx+Tn55u0f1JSEjw9PXWPoKAg8xT+Llwkz3awe8F2mHKtOgc3rLLiggpAp2Dz5lOxa4TINsiecyO1hIQEaDQa3SM3N9fs78Ebpu3gyAvbYcq18vd0w7znQnRfaA4A5j0XwutKZKdk7Zby8vKCo6MjCgoK9LYXFBTAz8/P4DF+fn4m7a9Wq6FWq81T4GrY8vob9ojdC7bDlGvF60pElWQNblxcXNCpUyekp6ejf//+AO4kFKenp2PcuHEGj4mMjER6ejomTZqk27Zjxw5ERkZaoMTV4xerbeGaP7bDlGvF60pEgBXMcxMfH49Ro0ahc+fO6Nq1K5KTk1FaWorRo0cDAEaOHInAwEAkJSUBACZOnIioqCh88skn6NevH1avXo1Dhw7hX//6l5zVAMAvViIiImsge3AzZMgQXLlyBTNnzkR+fj7CwsKwdetWXdJwTk4OHBz+LzWoW7duWLlyJd577z1MmzYNLVu2xMaNG9GhQwe5qkBERERWRPZ5bixNqnluiIiISDqm3L8VP1qKiIiI7AuDGyIiIlIUBjdERESkKAxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKYrsyy9YWuWEzEVFRTKXhIiIiIxVed82ZmEFuwtuiouLAQBBQUEyl4SIiIhMVVxcDE9Pzxr3sbu1pbRaLS5duoR69epBpVKZ9dxFRUUICgpCbm6uItetUnr9AOXXkfWzfUqvI+tn+6SqoxACxcXFCAgI0FtQ2xC7a7lxcHDAQw89JOl7eHh4KPYfLaD8+gHKryPrZ/uUXkfWz/ZJUcf7tdhUYkIxERERKQqDGyIiIlIUBjdmpFarkZiYCLVaLXdRJKH0+gHKryPrZ/uUXkfWz/ZZQx3tLqGYiIiIlI0tN0RERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBTg5SUFAQHB8PV1RURERE4cOBAjfsnJyejdevWcHNzQ1BQEN566y3cuHHjgc4pNXPXcdasWVCpVHqPNm3aSF2NaplSv1u3bmHOnDlo3rw5XF1dERoaiq1btz7QOS3B3HW0pmu4e/duxMbGIiAgACqVChs3brzvMbt27cLDDz8MtVqNFi1aYMWKFVX2sZZrKEX9bPn65eXlIS4uDq1atYKDgwMmTZpkcL8ff/wRbdq0gaurK0JCQpCWlmb+whtJijquWLGiyjV0dXWVpgL3YWr91q9fjyeeeALe3t7w8PBAZGQktm3bVmU/yf8GBRm0evVq4eLiIpYtWyZOnjwpXnnlFVG/fn1RUFBgcP8ffvhBqNVq8cMPP4isrCyxbds24e/vL956661an1NqUtQxMTFRtG/fXuTl5ekeV65csVSV9Jhav3fffVcEBASILVu2iMzMTPHFF18IV1dXceTIkVqfU2pS1NGarmFaWpqYPn26WL9+vQAgNmzYUOP+Fy5cEHXq1BHx8fHijz/+EIsWLRKOjo5i69atun2s6RpKUT9bvn5ZWVliwoQJ4ptvvhFhYWFi4sSJVfbZu3evcHR0FB999JH4448/xHvvvSecnZ3F8ePHpanEfUhRx+XLlwsPDw+9a5ifny9NBe7D1PpNnDhRzJ8/Xxw4cECcPXtWJCQkCGdnZ4t/jzK4qUbXrl3F2LFjdc8rKipEQECASEpKMrj/2LFjxWOPPaa3LT4+XnTv3r3W55SaFHVMTEwUoaGhkpTXVKbWz9/fXyxevFhv28CBA8Xw4cNrfU6pSVFHa7qGdzPmi/Xdd98V7du319s2ZMgQERMTo3tubdewkrnqZ8vX725RUVEGb/yDBw8W/fr109sWEREhXnvttQcs4YMzVx2XL18uPD09zVYuczG1fpXatWsnZs+erXtuib9BdksZcPPmTRw+fBjR0dG6bQ4ODoiOjsb+/fsNHtOtWzccPnxY17R24cIFpKWloW/fvrU+p5SkqGOlc+fOISAgAM2aNcPw4cORk5MjXUWqUZv6lZeXV2n6dXNzw549e2p9TilJUcdK1nANa2P//v16nwcAxMTE6D4Pa7uGprpf/SrZ6vUzhrGfga0rKSlBkyZNEBQUhGeffRYnT56Uu0i1otVqUVxcjIYNGwKw3N8ggxsDCgsLUVFRAV9fX73tvr6+yM/PN3hMXFwc5syZgx49esDZ2RnNmzdHr169MG3atFqfU0pS1BEAIiIisGLFCmzduhVffvklsrKy0LNnTxQXF0tan3vVpn4xMTFYuHAhzp07B61Wix07dmD9+vXIy8ur9TmlJEUdAeu5hrWRn59v8PMoKipCWVmZ1V1DU92vfoBtXz9jVPcZ2ML1M1br1q2xbNkybNq0Cd9//z20Wi26deuGv/76S+6imWzBggUoKSnB4MGDAVjue5TBjZns2rULH374Ib744gscOXIE69evx5YtWzB37ly5i2Y2xtSxT58+eP7559GxY0fExMQgLS0N165dw5o1a2QsuXE+++wztGzZEm3atIGLiwvGjRuH0aNHw8FBOX8mxtTRlq8h8fopQWRkJEaOHImwsDBERUVh/fr18Pb2xldffSV30UyycuVKzJ49G2vWrIGPj49F39vJou9mI7y8vODo6IiCggK97QUFBfDz8zN4zIwZMzBixAiMGTMGABASEoLS0lK8+uqrmD59eq3OKSUp6mgoCKhfvz5atWqF8+fPm78SNahN/by9vbFx40bcuHEDf//9NwICAjB16lQ0a9as1ueUkhR1NESua1gbfn5+Bj8PDw8PuLm5wdHR0aquoanuVz9DbOn6GaO6z8AWrl9tOTs7Izw83Kau4erVqzFmzBj8+OOPel1QlvoeVc5PUjNycXFBp06dkJ6ertum1WqRnp6OyMhIg8dcv369ys3d0dERACCEqNU5pSRFHQ0pKSlBZmYm/P39zVRy4zzI5+3q6orAwEDcvn0b69atw7PPPvvA55SCFHU0RK5rWBuRkZF6nwcA7NixQ/d5WNs1NNX96meILV0/Y9TmM7B1FRUVOH78uM1cw1WrVmH06NFYtWoV+vXrp/eaxf4GzZaarDCrV68WarVarFixQvzxxx/i1VdfFfXr19cNxxsxYoSYOnWqbv/ExERRr149sWrVKnHhwgWxfft20bx5czF48GCjz2lpUtTx7bffFrt27RJZWVli7969Ijo6Wnh5eYnLly9bff3+97//iXXr1onMzEyxe/du8dhjj4mmTZuKq1evGn1OS5OijtZ0DYuLi8XRo0fF0aNHBQCxcOFCcfToUfHnn38KIYSYOnWqGDFihG7/yqHSkydPFqdOnRIpKSkGh4JbyzWUon62fP2EELr9O3XqJOLi4sTRo0fFyZMnda/v3btXODk5iQULFohTp06JxMREWYeCS1HH2bNni23btonMzExx+PBhMXToUOHq6qq3j6WYWr8ffvhBODk5iZSUFL2h7NeuXdPtY4m/QQY3NVi0aJFo3LixcHFxEV27dhX/+9//dK9FRUWJUaNG6Z7funVLzJo1SzRv3ly4urqKoKAg8eabb+rdNO53TjmYu45DhgwR/v7+wsXFRQQGBoohQ4aI8+fPW7BG+kyp365du0Tbtm2FWq0WjRo1EiNGjBAXL1406ZxyMHcdreka/vzzzwJAlUdlnUaNGiWioqKqHBMWFiZcXFxEs2bNxPLly6uc11quoRT1s/XrZ2j/Jk2a6O2zZs0a0apVK+Hi4iLat28vtmzZYpkKGSBFHSdNmqT79+nr6yv69u2rN0+MJZlav6ioqBr3ryT136BKiGr6E4iIiIhsEHNuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERFZg165dUKlUuHbtmtxFIbJ5DG6I7MyLL74IlUqFefPm6W3fuHEjVCqV7rkQAkuXLkVkZCQ8PDxQt25dtG/fHhMnTjR6Ab/r168jISEBzZs3h6urK7y9vREVFYVNmzbp9gkODkZycrJZ6ia1ys9OpVLB2dkZTZs2xbvvvosbN26YdJ5evXph0qRJetu6deuGvLw8eHp6mrHERPaJwQ2RHXJ1dcX8+fNx9epVg68LIRAXF4cJEyagb9++2L59O/744w98/fXXcHV1xfvvv2/U+7z++utYv349Fi1ahNOnT2Pr1q0YNGgQ/v77b3NWx6Keeuop5OXl4cKFC/j000/x1VdfITEx8YHP6+LiAj8/P70Ak4hqyayLORCR1Rs1apR4+umnRZs2bcTkyZN12zds2CAqvxJWrVolAIhNmzYZPIdWqzXqvTw9PcWKFSuqfd3QOjSVfv31V9GjRw/h6uoqHnroITF+/HhRUlKie/3bb78VnTp1EnXr1hW+vr5i2LBhoqCgQPd65Zo4W7duFWFhYcLV1VX07t1bFBQUiLS0NNGmTRtRr149MWzYMFFaWmpUfUaNGiWeffZZvW0DBw4U4eHhuueFhYVi6NChIiAgQLi5uYkOHTqIlStX6p3j3jpnZWXpynv3Wm1r164V7dq1Ey4uLqJJkyZiwYIFRpWTyN6x5YbIDjk6OuLDDz/EokWL8Ndff1V5fdWqVWjdujWeeeYZg8cb27rg5+eHtLQ0FBcXG3x9/fr1eOihhzBnzhzk5eUhLy8PAJCZmYmnnnoKzz33HH7//XekpqZiz549GDdunO7YW7duYe7cuTh27Bg2btyI7OxsvPjii1XeY9asWVi8eDH27duH3NxcDB48GMnJyVi5ciW2bNmC7du3Y9GiRUbV514nTpzAvn374OLiott248YNdOrUCVu2bMGJEyfw6quvYsSIEThw4AAA4LPPPkNkZCReeeUVXZ2DgoKqnPvw4cMYPHgwhg4diuPHj2PWrFmYMWMGVqxYUauyEtkVuaMrIrKsu1sfHnnkEfHSSy8JIfRbbtq0aSOeeeYZveMmTpwo3N3dhbu7uwgMDDTqvX755Rfx0EMPCWdnZ9G5c2cxadIksWfPHr19mjRpIj799FO9bS+//LJ49dVX9bb9+uuvwsHBQZSVlRl8r4MHDwoAori4WAjxfy03P/30k26fpKQkAUBkZmbqtr322msiJibGqPqMGjVKODo6Cnd3d6FWqwUA4eDgINauXVvjcf369RNvv/227nlUVJSYOHGi3j73ttzExcWJJ554Qm+fyZMni3bt2hlVViJ7xpYbIjs2f/58fPPNNzh16tR9950+fToyMjIwc+ZMlJSUGHX+Rx99FBcuXEB6ejoGDRqEkydPomfPnpg7d26Nxx07dgwrVqxA3bp1dY+YmBhotVpkZWUBuNOyERsbi8aNG6NevXqIiooCAOTk5Oidq2PHjrr/9/X1RZ06ddCsWTO9bZcvXzaqPgDQu3dvZGRk4LfffsOoUaMwevRoPPfcc7rXKyoqMHfuXISEhKBhw4aoW7cutm3bVqVc93Pq1Cl0795db1v37t1x7tw5VFRUmHQuInvD4IbIjj366KOIiYlBQkKC3vaWLVvizJkzetu8vb3RokUL+Pj4mPQezs7O6NmzJ6ZMmYLt27djzpw5mDt3Lm7evFntMSUlJXjttdeQkZGhexw7dgznzp1D8+bNUVpaipiYGHh4eOCHH37AwYMHsWHDBgCocl5nZ2fd/1eOcrqbSqWCVqs1uj7u7u5o0aIFQkNDsWzZMvz222/4+uuvda9//PHH+OyzzzBlyhT8/PPPyMjIQExMTI31JSLzcpK7AEQkr3nz5iEsLAytW7fWbRs2bBji4uKwadMmPPvss2Z9v3bt2uH27du4ceMGXFxc4OLiUqUl4uGHH8Yff/yBFi1aGDzH8ePH8ffff2PevHm6fJVDhw6ZtZzGcHBwwLRp0xAfH4+4uDi4ublh7969ePbZZ/HCCy8AALRaLc6ePYt27drpjjNU53u1bdsWe/fu1du2d+9etGrVCo6OjuavDJGCsOWGyM6FhIRg+PDh+Pzzz3Xbhg4dikGDBmHo0KGYM2cOfvvtN2RnZ+OXX35Bamqq0TfXXr164auvvsLhw4eRnZ2NtLQ0TJs2Db1794aHhweAO/Pc7N69GxcvXkRhYSEAYMqUKdi3bx/GjRuHjIwMnDt3Dps2bdIlFDdu3BguLi5YtGgRLly4gM2bN9+3q0sqzz//PBwdHZGSkgLgTqvXjh07sG/fPpw6dQqvvfYaCgoK9I4JDg7WfaaFhYUGW47efvttpKenY+7cuTh79iy++eYbLF68GO+8845F6kVkyxjcEBHmzJmjd4NVqVRITU1FcnIy0tLS8Pjjj6N169Z46aWXEBQUhD179hh13piYGHzzzTd48skn0bZtW4wfPx4xMTFYs2aN3ntnZ2ejefPm8Pb2BnAnT+aXX37B2bNn0bNnT4SHh2PmzJkICAgAcKeLbMWKFfjxxx/Rrl07zJs3DwsWLDDjJ2I8JycnjBs3Dh999BFKS0vx3nvv4eGHH0ZMTAx69eoFPz8/9O/fX++Yd955B46OjmjXrh28vb0N5uM8/PDDWLNmDVavXo0OHTpg5syZmDNnjsERYUSkTyWEEHIXgoiIiMhc2HJDREREisLghohq7e6h2vc+fv31V7mLZ5KcnJwa62PqUG4ikg+7pYio1mpaQDMwMBBubm4WLM2DuX37NrKzs6t9PTg4GE5OHGBKZAsY3BAREZGisFuKiIiIFIXBDRERESkKgxsiIiJSFAY3REREpCgMboiIiEhRGNwQERGRojC4ISIiIkVhcENERESK8v8At3pWDohax00AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHHCAYAAAC7soLdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASMtJREFUeJzt3Xl4VNX9x/HPJGRjSRASkoCBQJRNNmUzLAbaaASKIrWgUEHcqyiaugAqYakGlypWUPxRBa0KUUSlhQfBICpCAVlcEBBCMKhJICoJhLCYnN8fNiNjFjLJTGbmzvv1PPM8zJ1775wzl8z9zjnfc47NGGMEAABgYQGeLgAAAIC7EfAAAADLI+ABAACWR8ADAAAsj4AHAABYHgEPAACwPAIeAABgeQQ8AADA8gh4AACA5RHwAPCI6dOny2az1Whfm82m6dOnu7U8gwYN0qBBg7z2fADqhoAH8HOLFi2SzWazPxo0aKBWrVrp+uuv13fffefp4nmd+Ph4h8+rRYsWGjhwoN5++22XnP/48eOaPn261q1b55LzAfgFAQ8ASdLMmTP1r3/9S/Pnz9eQIUP06quvKikpSSdOnHDL+z300EMqKSlxy7ndrUePHvrXv/6lf/3rX7r33nv1/fffa+TIkZo/f36dz338+HHNmDGDgAdwsQaeLgAA7zBkyBD16tVLknTTTTcpMjJSjz32mJYvX65Ro0a5/P0aNGigBg188yuoVatW+vOf/2x/Pm7cOJ133nl6+umnddttt3mwZACqQgsPgEoNHDhQkpSVleWwfffu3br66qvVrFkzhYaGqlevXlq+fLnDPqdPn9aMGTN0/vnnKzQ0VM2bN9eAAQO0Zs0a+z6V5fCcPHlS99xzj6KiotSkSRNdccUV+vbbbyuU7frrr1d8fHyF7ZWdc+HChfrd736nFi1aKCQkRJ07d9bzzz/v1GdxNjExMerUqZOys7Or3e/QoUO68cYbFR0drdDQUHXv3l0vv/yy/fUDBw4oKipKkjRjxgx7t5m785cAf+CbP68AuN2BAwckSeecc459286dO9W/f3+1atVKkydPVqNGjfTGG29oxIgReuutt3TVVVdJ+iXwSE9P10033aQ+ffqoqKhIn376qbZt26ZLL720yve86aab9Oqrr2rMmDHq16+f1q5dq2HDhtWpHs8//7wuuOACXXHFFWrQoIH+/e9/6/bbb1dZWZnuuOOOOp273OnTp3Xw4EE1b968yn1KSko0aNAg7du3TxMnTlTbtm315ptv6vrrr9eRI0c0adIkRUVF6fnnn9df/vIXXXXVVRo5cqQkqVu3bi4pJ+DXDAC/tnDhQiPJvP/+++bw4cPm4MGDZunSpSYqKsqEhISYgwcP2vf9/e9/b7p27WpOnDhh31ZWVmb69etnzj//fPu27t27m2HDhlX7vmlpaebMr6AdO3YYSeb222932G/MmDFGkklLS7NvGz9+vGnTps1Zz2mMMcePH6+wX0pKimnXrp3DtqSkJJOUlFRtmY0xpk2bNuayyy4zhw8fNocPHzafffaZueaaa4wkc+edd1Z5vjlz5hhJ5tVXX7VvO3XqlElMTDSNGzc2RUVFxhhjDh8+XKG+AOqOLi0AkqTk5GRFRUUpLi5OV199tRo1aqTly5fr3HPPlST9+OOPWrt2rUaNGqWjR4+qoKBABQUF+uGHH5SSkqK9e/faR3U1bdpUO3fu1N69e2v8/itXrpQk3XXXXQ7b77777jrVKywszP7vwsJCFRQUKCkpSfv371dhYWGtzrl69WpFRUUpKipK3bt315tvvqnrrrtOjz32WJXHrFy5UjExMbr22mvt24KCgnTXXXfp2LFj+vDDD2tVFgA149cBz0cffaThw4erZcuWstlseuedd9z6fuX5BWc+Onbs6Nb3BGpq3rx5WrNmjZYuXaqhQ4eqoKBAISEh9tf37dsnY4wefvhh+82+/JGWlibplxwV6ZcRX0eOHFH79u3VtWtX3Xffffr888+rff9vvvlGAQEBSkhIcNjeoUOHOtXrk08+UXJysho1aqSmTZsqKipKU6dOlaRaBzx9+/bVmjVr9P7772vDhg0qKCjQK6+84hBc/dY333yj888/XwEBjl+7nTp1sr8OwH38OoenuLhY3bt31w033GDvK3e3Cy64QO+//779ua+OUoH19OnTxz5Ka8SIERowYIDGjBmjPXv2qHHjxiorK5Mk3XvvvUpJSan0HOedd54k6ZJLLlFWVpbeffddrV69Wv/85z/19NNPa/78+brpppvqXNaqJiwsLS11eJ6VlaXf//736tixo5566inFxcUpODhYK1eu1NNPP22vk7MiIyOVnJxcq2MBeIZf322HDBmiIUOGVPn6yZMn9eCDD2rx4sU6cuSIunTposcee6xOs6c2aNBAMTExtT4eqA+BgYFKT0/X4MGDNXfuXE2ePFnt2rWT9Es3TE1u9s2aNdOECRM0YcIEHTt2TJdccommT59eZcDTpk0blZWVKSsry6FVZ8+ePRX2Peecc3TkyJEK23/bSvLvf/9bJ0+e1PLly9W6dWv79g8++OCs5Xe1Nm3a6PPPP1dZWZlDK8/u3bvtr0tVB3MA6savu7TOZuLEidq4caOWLFmizz//XH/60590+eWXO5WX8Ft79+5Vy5Yt1a5dO40dO1Y5OTkuLDHgOoMGDVKfPn00Z84cnThxQi1atNCgQYP0wgsvKDc3t8L+hw8ftv/7hx9+cHitcePGOu+883Ty5Mkq36/8x8c//vEPh+1z5sypsG9CQoIKCwsduslyc3MrzHYcGBgoSTLG2LcVFhZq4cKFVZbDXYYOHaq8vDxlZGTYt/3888969tln1bhxYyUlJUmSGjZsKEmVBnQAas+vW3iqk5OTo4ULFyonJ0ctW7aU9EtT/qpVq7Rw4UI9+uijTp+zb9++WrRokTp06KDc3FzNmDFDAwcO1JdffqkmTZq4ugpAnd13333605/+pEWLFum2227TvHnzNGDAAHXt2lU333yz2rVrp/z8fG3cuFHffvutPvvsM0lS586dNWjQIPXs2VPNmjXTp59+qqVLl2rixIlVvlePHj107bXX6rnnnlNhYaH69eunzMxM7du3r8K+11xzjR544AFdddVVuuuuu3T8+HE9//zzat++vbZt22bf77LLLlNwcLCGDx+uW2+9VceOHdOCBQvUokWLSoM2d7rlllv0wgsv6Prrr9fWrVsVHx+vpUuX6pNPPtGcOXPs3wFhYWHq3LmzMjIy1L59ezVr1kxdunRRly5d6rW8gOV4epiYt5Bk3n77bfvz//znP0aSadSokcOjQYMGZtSoUcYYY3bt2mUkVft44IEHqnzPn376yYSHh5t//vOf7q4eUKXyYelbtmyp8FppaalJSEgwCQkJ5ueffzbGGJOVlWXGjRtnYmJiTFBQkGnVqpX5wx/+YJYuXWo/7m9/+5vp06ePadq0qQkLCzMdO3Y0jzzyiDl16pR9n8qGkJeUlJi77rrLNG/e3DRq1MgMHz7cHDx4sNJh2qtXrzZdunQxwcHBpkOHDubVV1+t9JzLly833bp1M6GhoSY+Pt489thj5qWXXjKSTHZ2tn0/Z4aln23IfVXny8/PNxMmTDCRkZEmODjYdO3a1SxcuLDCsRs2bDA9e/Y0wcHBDFEHXMRmzBltvX7MZrPp7bff1ogRIyRJGRkZGjt2rHbu3GlvFi/XuHFjxcTE6NSpU9q/f3+1523evLl95tTK9O7dW8nJyUpPT69zHQAAQOXo0qrChRdeqNLSUh06dMg+xf5vBQcH12lY+bFjx5SVlaXrrruu1ucAAABn59cBz7FjxxzyA7Kzs7Vjxw41a9ZM7du319ixYzVu3Dj9/e9/14UXXqjDhw8rMzNT3bp1q9V09/fee6+GDx+uNm3a6Pvvv1daWpoCAwMdJiIDAACu59ddWuvWrdPgwYMrbB8/frwWLVqk06dP629/+5teeeUVfffdd4qMjNTFF1+sGTNmqGvXrk6/3zXXXKOPPvpIP/zwg6KiojRgwAA98sgjFSZaAwAAruXXAQ8AAPAPzMMDAAAsj4AHAABYnt8lLZeVlen7779XkyZNmMIdAAAfYYzR0aNH1bJlywqL8NaE3wU833//veLi4jxdDAAAUAsHDx7Uueee6/RxfhfwlE/ffvDgQYWHh3u4NAAAoCaKiooUFxdX66WY/C7gKe/GCg8PJ+ABAMDH1DYdhaRlAABgeQQ8AADA8gh4AACA5fldDk9NlZaW6vTp054uhmUEBQVVWHUeAID64tGA56OPPtITTzyhrVu3Kjc3V2+//bZGjBhR7THr1q1Tamqqdu7cqbi4OD300EO6/vrrXVYmY4zy8vJ05MgRl50Tv2jatKliYmKY/wgAUO88GvAUFxere/fuuuGGGzRy5Miz7p+dna1hw4bptttu02uvvabMzEzddNNNio2NVUpKikvKVB7stGjRQg0bNuTm7ALGGB0/flyHDh2SJMXGxnq4RAAAf+PRgGfIkCEaMmRIjfefP3++2rZtq7///e+SpE6dOmn9+vV6+umnXRLwlJaW2oOd5s2b1/l8+FVYWJgk6dChQ2rRogXdWwCAeuVTScsbN25UcnKyw7aUlBRt3LixymNOnjypoqIih0dVynN2GjZs6JoCw0H550puFACgvvlUwJOXl6fo6GiHbdHR0SoqKlJJSUmlx6SnpysiIsL+qMmyEnRjuQefKwDAU3wq4KmNKVOmqLCw0P44ePCgp4sEAADqmU8NS4+JiVF+fr7Dtvz8fIWHh9tzRH4rJCREISEh9VE8AADgpXyqhScxMVGZmZkO29asWaPExEQPlci75OXl6c4771S7du0UEhKiuLg4DR8+XJmZmfrxxx915513qkOHDgoLC1Pr1q111113qbCw0H78gQMHZLPZtGPHjgrnHjRokO6++26Hbbt27dIVV1yhiIgINWrUSL1791ZOTo6bawkA8Ga5hSXakFWg3MLKU008xaMtPMeOHdO+ffvsz7Ozs7Vjxw41a9ZMrVu31pQpU/Tdd9/plVdekSTddtttmjt3ru6//37dcMMNWrt2rd544w2tWLHCU1XwGgcOHFD//v3VtGlTPfHEE+ratatOnz6t9957T3fccYeWLl2q77//Xk8++aQ6d+6sb775Rrfddpu+//57LV261On3y8rK0oABA3TjjTdqxowZCg8P186dOxUaGuqG2gEAfEHGlhxNWfaFyowUYJPSR3bV6N6tPV0sSR4OeD799FMNHjzY/jw1NVWSNH78eC1atEi5ubkOLQZt27bVihUrdM899+iZZ57Rueeeq3/+858um4PHl91+++2y2WzavHmzGjVqZN9+wQUX6IYbblDTpk311ltv2bcnJCTokUce0Z///Gf9/PPPatDAuf8KDz74oIYOHarHH3/c4ZwAAP+UW1hiD3YkqcxIU5d9qUvaRyk2ovK0k/rk0YBn0KBBMsZU+fqiRYsqPWb79u1uLJXr5BaWKLugWG0jG7n1Yv/4449atWqVHnnkEYdgp1zTpk0rPa6wsFDh4eFOBztlZWVasWKF7r//fqWkpGj79u1q27atpkyZctaZsgEA1pRdUGwPdsqVGqMDBce9IuDxqRweX5KxJUf9Z6/VmAWb1H/2WmVscV9uy759+2SMUceOHWt8TEFBgWbNmqVbbrmlwmv9+vVT48aNHR4ff/yx/fVDhw7p2LFjmj17ti6//HKtXr1aV111lUaOHKkPP/zQJXUCAPiWtpGNFPCb2UcCbTbFR3rH3HY+NUrLV9R3s151rWSVKSoq0rBhw9S5c2dNnz69wusZGRnq1KmTw7axY8fa/11WViZJuvLKK3XPPfdIknr06KENGzZo/vz5SkpKcrIGAABfFxsRpvSRXTV12ZcqNUaBNpseHdnFK1p3JAIet6jvZr3zzz9fNptNu3fvPuu+R48e1eWXX64mTZro7bffVlBQUIV94uLidN555zlsO3PYf2RkpBo0aKDOnTs77FO+1AcAwD+N7t1al7SP0oGC44qPbOg1wY5El5Zb1HezXrNmzZSSkqJ58+apuLi4wuvlK78XFRXpsssuU3BwsJYvX17rEVXBwcHq3bu39uzZ47D966+/Vps2bWp1TgCANcRGhCkxoblXBTsSAY9blDfrBf5vKYX6aNabN2+eSktL1adPH7311lvau3evdu3apX/84x9KTEy0BzvFxcV68cUXVVRUpLy8POXl5am0tNTp97vvvvuUkZGhBQsWaN++fZo7d67+/e9/6/bbb3dD7QAAqBu6tNykvpv12rVrp23btumRRx7RX//6V+Xm5ioqKko9e/bU888/r23btmnTpk2SVKG7Kjs7W/Hx8U6931VXXaX58+crPT1dd911lzp06KC33npLAwYMcFWVAABwGZtxNuPVxxUVFSkiIsI+JPtMJ06cUHZ2ttq2bcsEem7A5wsAqK3q7t81QZcWAACwPAIeAABgeQQ8AADA8gh4AACA5RHwVMLP8rjrjbd+rrmFJdqQVaDcwhJPFwUA4CYMSz9D+azDx48fd5hZGK5x/PhxSap0dmdPydiSY18GJMAmpY/sqtG9W3u6WAAAFyPgOUNgYKCaNm2qQ4cOSZIaNmwom812lqNwNsYYHT9+XIcOHVLTpk0VGBjo6SJJqv81zwAAnkPA8xsxMTGSZA964DpNmza1f77eoL7XPAMAeA4Bz2/YbDbFxsaqRYsWOn36tKeLYxlBQUFe07JTrnzNszODHneueQYA8BwCnioEBgZ63Q0arlW+5tnUZV+q1Jh6WfMMgPvkFpYou6BYbSMb8XeMCgh44Nfqe80zAO7BAAScDcPS4fdiI8KUmNCcYAfwUVUNQGCqCZyJgAcA4NOqG4AAlCPgAQD4tPIBCGdiAAJ+i4AHAODTygcgBP5v3jQGIKAyJC0DPo6RKQADELyJt34nEfAAPoyRKcCvYiPCvOoG64+8+TuJLi3ARzEyBYA38fbvJAIewEcxMgWAN/H27yQCHsBHMTIFgDfx9u8kAh7ARzEyBYA38fbvJJsxxpx9N+soKipSRESECgsLFR4e7uniAHWWW1jCyBQAXsNd30l1vX8zSgvwcYxMAeBNvPU7iS4tAABgeQQ8AADA8gh4AACA5RHweFBuYYk2ZBV4zaRMAABYFUnLHuLN028DAGA1tPB4gLdPvw0AgNUQ8HiAt0+/DQCA1RDweIC3T78NAIDVEPB4gLdPvw0AgNWQtOwho3u31iXto1gSAACAekDA40HeOv02AABWQ5eWhTHPDwAAv6CFx6KY5wcAgF/RwmNBzPMDAIAjAh4LYp4fAAAcEfBYEPP8AADgiIDHgpjnBwAARyQtW1Rt5/nJLSxRdkGx2kY2IkACAFgGAY+FOTvPDyO7AABWRZcWJDGyCwBgbQQ8kMTILgCAtRHwQBIjuwAA1kbAA0mM7AIAWBtJy7BjBXcAgFUR8MABK7gDAKyILi0AAPxEbmGJNmQV+OUIXFp4AADwA/4+15rHW3jmzZun+Ph4hYaGqm/fvtq8eXO1+8+ZM0cdOnRQWFiY4uLidM899+jEiRP1VFoAAHwPc615OODJyMhQamqq0tLStG3bNnXv3l0pKSk6dOhQpfu//vrrmjx5stLS0rRr1y69+OKLysjI0NSpU+u55AAA+A7mWvNwwPPUU0/p5ptv1oQJE9S5c2fNnz9fDRs21EsvvVTp/hs2bFD//v01ZswYxcfH67LLLtO111571lYhAAD8GXOteTDgOXXqlLZu3ark5ORfCxMQoOTkZG3cuLHSY/r166etW7faA5z9+/dr5cqVGjp0aL2UGQAAX8Rcax5MWi4oKFBpaamio6MdtkdHR2v37t2VHjNmzBgVFBRowIABMsbo559/1m233VZtl9bJkyd18uRJ+/OioiLXVAAAAB/i73OteTxp2Rnr1q3To48+queee07btm3TsmXLtGLFCs2aNavKY9LT0xUREWF/xMXF1WOJAQDwHrERYUpMaO53wY4k2Ywx5uy7ud6pU6fUsGFDLV26VCNGjLBvHz9+vI4cOaJ33323wjEDBw7UxRdfrCeeeMK+7dVXX9Utt9yiY8eOKSCgYvxWWQtPXFycCgsLFR4e7tpKAQAAtygqKlJERESt798ea+EJDg5Wz549lZmZad9WVlamzMxMJSYmVnrM8ePHKwQ1gYGBkqSq4raQkBCFh4c7PFA1f56UCgBgXR6deDA1NVXjx49Xr1691KdPH82ZM0fFxcWaMGGCJGncuHFq1aqV0tPTJUnDhw/XU089pQsvvFB9+/bVvn379PDDD2v48OH2wAe15++TUgEArMujAc/o0aN1+PBhTZs2TXl5eerRo4dWrVplT2TOyclxaNF56KGHZLPZ9NBDD+m7775TVFSUhg8frkceecRTVbCMqialuqR9lF/29QIArMVjOTyeUtc+QKvakFWgMQs2Vdi++OaLlZjQ3AMlAgDgVz6bwwPvwqRU7kNeFAB4HgEPJDEplbtkbMlR/9lrNWbBJvWfvVYZW3I8XSQA8Et0acFBbmGJ305K5Wq5hSXqP3utw/o1gTab1k8ezGcLAE6q6/3bo0nL8D6xEWHcjF2kusX6+IwBoH7RpQW4CXlRAOA9CHgANyEvCgC8B11agBv5+2J9AOAtCHgANyMvCgA8jy4tAABQJavMJUYLDwAAqJSV1likhQcAAFRQ1RqLvtrSQ8ADAAAqqG4uMV9EwAMAACqw2lxiBDwAAKACq80lRtIyAAColJXmEiPgAQAAVbLKXGJ0aQEAAMsj4AEAAJZHwAMAACyPgAcAAFgeAQ8AALA8Ah4AAGB5BDwAAMDyCHgAAIDlEfAAAADLI+ABAACWR8ADAAAsj4AHAABYHgEPAACwPAIeAABgeQQ8AADA8gh4AACA5RHwWFhuYYk2ZBUot7DE00UBAMCjGni6AHCPjC05mrLsC5UZKcAmpY/sqtG9W3u6WAAAeAQtPBaUW1hiD3YkqcxIU5d9SUsPAMBvEfBYUHZBsT3YKVdqjA4UHPdMgQAA8DACHgtqG9lIATbHbYE2m+IjG3qmQAAAeBgBjwXFRoQpfWRXBdp+iXoCbTY9OrKLYiPCPFwyAAA8g6Rlixrdu7UuaR+lAwXHFR/ZkGAHAFAruYUlyi4oVtvIRj59LyHgsbDYiDCf/s8JAPAsK434pUsLAABUYLURvwQ8AACgAquN+CXgAQAAFVhtxC8BDwAAqMBqI35JWrYwq2TWAwA8w0ojfgl4LMpKmfXOIMgDANeyyohfAh4Lqiqz/pL2UZb4T1sVfw3yAABnRw6PBdVnZn1uYYk2ZBV4fJii1YZPAgBcixYeCyrPrD8z6HFHZr03tahUF+RZuVULAFAztPBYUH1k1ntbi4rVhk8CAFyLFh6Lcndmvbe1qJQHeVOXfalSY3x++CQAwLUIeCzMnZn19dVt5gwrDZ8EALgWXVqoFW+dkCo2IkyJCc09Xg4AgHehhQe1RosKAMBXEPCgTqwyIRUAwNro0gIAAJZHwANL8ZaJEAEA3oUuLViGN02ECAC1wXqA7uPxFp558+YpPj5eoaGh6tu3rzZv3lzt/keOHNEdd9yh2NhYhYSEqH379lq5cmU9lRbeytsmQgQAZ2VsyVH/2Ws1ZsEm9Z+9VhlbcjxdJEvxaMCTkZGh1NRUpaWladu2berevbtSUlJ06NChSvc/deqULr30Uh04cEBLly7Vnj17tGDBArVq1aqeSw5vU5/rhwGAq/Gjzf082qX11FNP6eabb9aECRMkSfPnz9eKFSv00ksvafLkyRX2f+mll/Tjjz9qw4YNCgoKkiTFx8fXZ5HhpbxxIkQAqClvm73eijzWwnPq1Clt3bpVycnJvxYmIEDJycnauHFjpccsX75ciYmJuuOOOxQdHa0uXbro0UcfVWlpaZXvc/LkSRUVFTk8/IU/JfB660SIAFATrAfofh5r4SkoKFBpaamio6MdtkdHR2v37t2VHrN//36tXbtWY8eO1cqVK7Vv3z7dfvvtOn36tNLS0io9Jj09XTNmzHB5+b2dPybwMhEiAF/FeoDu51OjtMrKytSiRQv93//9nwIDA9WzZ0999913euKJJ6oMeKZMmaLU1FT786KiIsXFxdVXkT2iqr7gS9pHWf6Ph4kQURlGvsAX8KPNvTwW8ERGRiowMFD5+fkO2/Pz8xUTE1PpMbGxsQoKClJgYKB9W6dOnZSXl6dTp04pODi4wjEhISEKCQlxbeG9HH3BwK/8sbUTvosfbe7jsRye4OBg9ezZU5mZmfZtZWVlyszMVGJiYqXH9O/fX/v27VNZWZl929dff63Y2NhKgx1/RV8w8AtGvgAo59Fh6ampqVqwYIFefvll7dq1S3/5y19UXFxsH7U1btw4TZkyxb7/X/7yF/3444+aNGmSvv76a61YsUKPPvqo7rjjDk9VwSuRwAv8gukK4Gn+NHjE23k0h2f06NE6fPiwpk2bpry8PPXo0UOrVq2yJzLn5OQoIODXmCwuLk7vvfee7rnnHnXr1k2tWrXSpEmT9MADD3iqCl6LvmCA6QrgWXSnehebMcacfTfrKCoqUkREhAoLCxUeHu7Sc5MYCXifjC05FUa+cNOBu+UWlqj/7LUVgu31kwdzf6ilut6/fWqUljcjkge8E62d8AQGj3gfj6+lZQUkRgLeLTYiTIkJzbnRoN7U1+ARcoRqjoDHBUiMBACcqT4Gj7DYqHPo0nIBEiMBAL/lzu5Uf55gtrZo4XEBhoEDACrjru5UehacRwuPi5AYCQCoL/QsOI8WHhciMRIAUB/oWXAeLTwAAPggehacQ8ADAICPYrHRmqNLCwAAWB4BDwAAsDwCHgAAYHkEPAAA+Al/XoqCpGUAAPyAvy9y7VQLz7fffquCggL7848//lhjx47VwIED9ec//1kbN250eQEBAEDdsMi1kwHPH//4R/33v/+VJL377rsaNGiQjh07pv79++v48eNKSkrSf/7zH7cUFP7dFAkAqD2WonCyS2vnzp264IILJEnp6el69NFH9cADD9hfnzt3rqZNm6Y//OEPri0l/L4pEgBQeyxF4WQLT4MGDXT06FFJUnZ2toYMGeLw+pAhQ7Rnzx7XlQ6SaIoEAFSupi3/LEXhZAtPUlKSFi9erG7duunCCy/UunXr1K1bN/vrH3zwgVq1auXyQvq76poi/ek/KwDgV862/Pv7UhROBTyzZ8/WwIED9f3332vAgAF68MEHtWXLFnXq1El79uxRRkaG5s+f766y+i2aIgEAZ6qq5f+S9lHVBjL+vBSFU11anTp10qZNm3Tq1Ck9/vjjKi4u1muvvabp06dr3759WrJkia6//no3FdV/0RQJADgTScjOc3oenoSEBC1evFjGGB06dEhlZWWKjIxUUFCQO8qH//H3pkgAwK9o+XderWdattlsio6OVmxsLMFOPYmNCFNiQnOCHQDwc7T8O8+pFp7U1NQa7ffUU0/VqjAAAKBmaPl3jlMBz/bt2x2er1+/Xj179lRY2K8fsu1/0SYAAHAvf05CdpZTAc8HH3zg8LxJkyZ6/fXX1a5dO5cWCgAAwJVYLR0AAFgeAQ8AALA8Ah4AAGB5TuXwfP755w7PjTHavXu3jh075rD9zOUmAAAAPM1mjDFn3+0XAQEBstlsquyQ8u02m02lpaUuLaQrFRUVKSIiQoWFhQoPD/d0cZySW1ii7IJitY1sRFY+AMCv1PX+7VQLT3Z2ttNvANdwdpE4AADwK6cCnjZt2rirHKhGbReJAwAAv6hV0nJZWVmV23NycupUIFTEInEAANSNUwFPUVGRRo0apUaNGik6OlrTpk1zyNc5fPiw2rZt6/JC+rvyReLOxCJxAADUnFMBz8MPP6zPPvtM//rXv/TII4/olVde0ZVXXqlTp07Z93EiBxo1xCJxAADUjVOjtNq0aaOXX35ZgwYNkiQVFBRo2LBhatq0qZYvX64jR46oZcuWjNJyk9zCEhaJAwD4pbrev51q4Tl8+LBD4nJkZKTef/99HT16VEOHDtXx4+SUuFNsRJgSE5oT7AAA4CSnAp7WrVtr165dDtuaNGmi1atXq6SkRFdddZVLCwcAAOAKTgU8l156qRYuXFhhe+PGjfXee+8pNDTUZQUDAABwFafm4Zk5c6Zyc3Mrfa1JkyZas2aNtm3b5pKCAQAAuIpTLTzbt2/X1VdfraKiogqvFRYW6uKLL5bNZqvkSAAAAM9xKuCZM2eObr755kqzoyMiInTrrbfq6aefdlnhAAAAXMGpgOezzz7T5ZdfXuXrl112mbZu3VrnQgEAALiSUwFPfn6+goKCqny9QYMGOnz4cJ0LBQAA4EpOBTytWrXSl19+WeXrn3/+uWJjY+tcKAAAAFdyKuAZOnSoHn74YZ04caLCayUlJUpLS9Mf/vAHlxUOAADAFZxaWiI/P18XXXSRAgMDNXHiRHXo0EGStHv3bs2bN0+lpaXatm2boqOj3VbguvLlpSUAAPBXdb1/OzUPT3R0tDZs2KC//OUvmjJlin2hUJvNppSUFM2bN8+rgx0AAOCfnAp4pF8WEF25cqV++ukn7du3T8YYnX/++TrnnHPcUT4A8Am5hSXKLihW28hGrHcHeCGnA55y55xzjnr37u3KsgCAT8rYkqMpy75QmZECbFL6yK4a3bu1p4sF4AxOJS0DABzlFpbYgx1JKjPS1GVfKrewxLMFA+CAgAd+L7ewRBuyCrhBoVayC4rtwU65UmN0oOC4ZwoEoFK17tICrICuCNRV28hGCrDJIegJtNkUH9nQc4UCUAEtPPBbdEXAFWIjwpQ+sqsC/7dwcqDNpkdHdiFxGfAytPDAb1XXFcHNCs4Y3bu1LmkfpQMFxxUf2ZD/P4AXIuCB36IrAq4UGxFGoAN4Ma/o0po3b57i4+MVGhqqvn37avPmzTU6bsmSJbLZbBoxYoR7CwhLoisCAPyHx1t4MjIylJqaqvnz56tv376aM2eOUlJStGfPHrVo0aLK4w4cOKB7771XAwcOrMfSwmroigAA/+DxFp6nnnpKN998syZMmKDOnTtr/vz5atiwoV566aUqjyktLdXYsWM1Y8YMtWvXrh5LCyuKjQhTYkJzgh0ALse0F97DowHPqVOntHXrViUnJ9u3BQQEKDk5WRs3bqzyuJkzZ6pFixa68cYb66OYAAA4LWNLjvrPXqsxCzap/+y1ytiS4+ki+TWPdmkVFBSotLS0woKj0dHR2r17d6XHrF+/Xi+++KJ27NhRo/c4efKkTp48aX9eVFRU6/ICAFATVU17cUn7KFqTPcTjXVrOOHr0qK677jotWLBAkZGRNTomPT1dERER9kdcXJybSwkAsKqadlExA7f38WgLT2RkpAIDA5Wfn++wPT8/XzExMRX2z8rK0oEDBzR8+HD7trKyMklSgwYNtGfPHiUkJDgcM2XKFKWmptqfFxUVEfQAAJzmzMzsTHvhfTzawhMcHKyePXsqMzPTvq2srEyZmZlKTEyssH/Hjh31xRdfaMeOHfbHFVdcocGDB2vHjh2VBjIhISEKDw93eAAA4AxnZ2Zn2gvv4/Fh6ampqRo/frx69eqlPn36aM6cOSouLtaECRMkSePGjVOrVq2Unp6u0NBQdenSxeH4pk2bSlKF7QA8J7ewRNkFxWob2YgveFhCbWZmZ9oL7+LxgGf06NE6fPiwpk2bpry8PPXo0UOrVq2yJzLn5OQoIMCnUo1qjJsCrIgFWWFFte2iYgZu72Ezxpiz72YdRUVFioiIUGFhoUe7t7gpwIpyC0vUf/baCjeF9ZMH86UPn5exJUdTl32pUmPsXVR8b9efut6/Pd7C448YrgirYkFWWBldVL6NgMcDuCnAqhiZAquji8p3WTM5xsuV3xTOxE0BVsDIFADeihYeDyi/Kfy2L5ibAqyAZn8A3oiAx0O4KcDKaPYH4G0IeDyImwIA+BamE/FdBDwAANQA04n4NpKWAQA4C2eXloD3IeABAOAsWP3c9xHwAABwFkwn4vsIeAAfl1tYog1ZBTStA27EHFO+j6RlwId5axIlI1lgRUwn4tsIeAAf5a1rsnlrEAa4AtOJ+C66tAAf5Y1JlIxkAeCtCHgAH+WNSZTeGIQBgETAA/gsb0yi9MYgDP6DBH5UhxwewId5WxIlC+PCU8gdw9nYjDHm7LtZR1FRkSIiIlRYWKjw8HBPFwewpNzCEq8JwmB9uYUl6j97rUN3aqDNpvWTB/P/z0Lqev+mhQeAyzGSBfWputyx6v4fMn2CfyHgAeBx3HhQF+W5Y79t4akud4wuMP9D0jIAj8rYkqP+s9dqzIJN6j97rTK25Hi6SPAxzibwM32Cf6KFB4DHeOvkifA9ziTw17YLDL6NgAeAx3DjgSvVNHesNl1g8H10aQHwGObtgSd44xxWcD9aeAB4DPP2wFO8bQ4ruB8BDwCP4sYDT2H6BP9CwAPA47jxAHA3cngAAKxDBcujhQcA/ByT8MEf0MIDAH6MSfjgLwh4AMCPVTcXEmAlBDwA4MeYCwn+goAHAPwYk/DBX5C0DAB+jrmQ4A8IeAAAzIUEy6NLCwAAWB4BDwAAsDwCHgAAYHkEPAAAwPIIeAAAgOUR8ABOYpFFAPA9DEsHnMAiiwDgm2jhAWqIRRbhSbQsAnVDCw9QQ9UtssiEbXAnWhaBuqOFB6ghFlmEJ9CyCLgGAQ9QQyyyCE+ormWxOnSB+Qeuc83RpQU4gUUWUd/KWxbPDHrO1rJIF5h/4Do7hxYewEmxEWFKTGhOsIN64WzLIl1g/oHr7DxaeADAyznTskhyvX/gOjuPgAcAfEBsRFiNbmS16QLzVrmFJcouKFbbyEbcxH/DSte5vtClBeCsSIz0HVZJrs/YkqP+s9dqzIJN6j97rTK25Hi6SF7FKte5PtmMMebsu1lHUVGRIiIiVFhYqPDwcE8XB/B6JEb6ptzCEp9Nrs8tLFH/2WsrtF6snzzY5+ribr58nZ1V1/s3XVoAqlRVYuQl7aMs/+Xq62raBeaNyE+pOV++zvWNLi0AVartHDBAXTDJJ9yBgAdAlbjxwBPIT4E70KUFoErlN56py75UqTHceFBvmOQTrkbAA6Ba3HjgKeSnwJUIeACcFTcez2NOGqBuvCKHZ968eYqPj1doaKj69u2rzZs3V7nvggULNHDgQJ1zzjk655xzlJycXO3+AODrmJMGqDuPBzwZGRlKTU1VWlqatm3bpu7duyslJUWHDh2qdP9169bp2muv1QcffKCNGzcqLi5Ol112mb777rt6LjkAuB9rJgGu4fGJB/v27avevXtr7ty5kqSysjLFxcXpzjvv1OTJk896fGlpqc455xzNnTtX48aNO+v+TDyIuqJrAfVpQ1aBxizYVGH74psvVmJCcw+UCPAMn5548NSpU9q6daumTJli3xYQEKDk5GRt3LixRuc4fvy4Tp8+rWbNmlX6+smTJ3Xy5En786KioroVGn6NWYdR31gzCXANj3ZpFRQUqLS0VNHR0Q7bo6OjlZeXV6NzPPDAA2rZsqWSk5MrfT09PV0RERH2R1xcXJ3L7StY/8i16FqAJzAnDeAaPj1Ka/bs2VqyZInWrVun0NDQSveZMmWKUlNT7c+Lior8IuihJcL1ajvdPV1gqCumBgDqzqMBT2RkpAIDA5Wfn++wPT8/XzExMdUe++STT2r27Nl6//331a1btyr3CwkJUUhIiEvK6ytY/8g9atO1QOAJV2FqAKBuPNqlFRwcrJ49eyozM9O+raysTJmZmUpMTKzyuMcff1yzZs3SqlWr1KtXr/ooqk9h/SP3cLZrgS4wAPAeHu/SSk1N1fjx49WrVy/16dNHc+bMUXFxsSZMmCBJGjdunFq1aqX09HRJ0mOPPaZp06bp9ddfV3x8vD3Xp3HjxmrcuLHH6uFNSHJ0H2e6Fljx2XvQrQjA4wHP6NGjdfjwYU2bNk15eXnq0aOHVq1aZU9kzsnJUUDArw1Rzz//vE6dOqWrr77a4TxpaWmaPn16fRbda7H+kXvVtGvBnwNPbwow6FasGW+6ZoA7eHwenvrmT/Pw5BaWkOToYRlbcioEnla/2XpTgJFbWKL+s9dWCDrXTx7s8r8JXw4YvOmaAVXx6Xl44F4kOXqev42u8baE+frqVvTlgMHbrhngLh5fWgKwutiIMCUmNPeLm4e3JcyXdyueydXdir6enO5t1wxwFwIeAC5THwGGM+pj0j5fDxi87ZoB7kKXFgCX8caEeXd3K/p6cro3XjPAHUhaBuBy/pYwb4XkdH+7ZvA9db1/E/AAgAsQMADuxSgtAPACjIoEvBtJywAAwPIIeAAvk1tYog1ZBT4zrBkAfAFdWoAX8eUJ7ABf48uzY8N5BDyAl2DGW/gaXw4Y+HHhfwh4YCm+/AXM6urwJb4cMPDjwj8R8MAyfPkLWPL9Cezg25z5seDrAQM/LvwTScuwBF9fz0iqn2UQgMpkbMlR/9lrNWbBJvWfvVYZW3Kq3Z/lNOCLaOGBJVjlF5u3rq7uy12FqF5tWmt8vTWS5TT8EwEPLMHXv4DP5G0T2Pl6VyGqV5sfC1YIGLz1xwXch4AHlmCFL2Bv5Ou5Gji72v5YsELA4G0/LuBeBDywDCt8AXsbq3QVomp1+bFAwABfQsADS+EL2LWs1FWIqvFjAf6AUVoAqsTIMf8RGxGmxITmXFtYFi08AKrFr/+aYSQb4N0IeACcFV2F1WMkG+D96NICgDqwwqSXgD8g4AGAOvDWWYdzC0u0IauAwAv4H7q0AKAO2kY2kk3SmTGPzSaPjmSjiw2oiBYeAHA1c/Zd3IUuNqByBDwAUAfZBcUV4hsjeaxLy1u72ABPI+ABgDrwtpW3va08gLcg4AGAOvC2yRm9rTyAt7AZYzzY21z/ioqKFBERocLCQoWHh3u6OAAsIrewxKsmZ/S28gB1Vdf7N6O0AMAFvG1yRm8rD+BpdGkBfob5WQD4I1p4AD/C/CwA/BUtPICfYH4WAP6MgAfwE8zPAsCfEfAAfoL5WQD4MwIewE8wPwsAf0bSMuBHRvdurUvaR/nd/Cy5hSXKLihW28hGflNnAI4IeAA/42/zs1hlZBpBG1A3BDwALKuqkWmXtI/yqaDBKkEb4Enk8ACwLCuMTGM6AcA1CHgAWJYVRqZZIWgDvAEBDwDLssLINCsEbYA3IIcHgKWN7t1aHWOaaMuBn9Q7/hx1jzvH00VySnnQNnXZlyo1xieDNsAbEPAAsDQrJPz663QCgCvRpQXAsuqS8Ottq8rHRoQpMaE5wQ5QS7TwALCs6hJ+qwscrNAqBMARLTwALKs2Cb8MAwesiYAHgGXVZpSWVYaBe1uXHOBpdGkBsDRnR2mVtwqdGfS4Yxi4O5eKoEsOqIiAB3Az1kDyLGdv/vUxDNydAYlVltMAXI2AB3Ajfml7Vm1v/u6cuye3sEST3/pC5Q1IZUaavOwLlwUktU3UBqyOHB7ATUh+9bza5uNkbMnRVc9t0N9W7NJVz21QxpYcl5Vp6zc/6TdFkjHStm9+csn5mZkZqBwBD+AmVkl+9WXeOErLmN+GO+XbXXJ6SyynUV9I7PYvdGkBblJfya+oWm3ycdzdJdQrvplskkMrj01Sz3jXdZsxM/PZ0d3sfwh44NV8OeGXNZC8g7M3f3cHqrERYZr9x66a8tYXKtMvzezpf+x61nI5+7cQGxHG/7UqkNjtnwh44LWs8AuMX9rewZmbf30Eqs7+v7DC34I3IbHbP3lFDs+8efMUHx+v0NBQ9e3bV5s3b652/zfffFMdO3ZUaGiounbtqpUrV9ZTSVFfrJTwyxpIvmd079ZaP3mwFt98sdZPHlyj4MLZfJCa/r+w0t+CtyCx2z95PODJyMhQamqq0tLStG3bNnXv3l0pKSk6dOhQpftv2LBB1157rW688UZt375dI0aM0IgRI/Tll1/Wc8nhTiT8+jYrJIM6E6hmbMlR/9lrNWbBJvWfvdalo7r4W3A9Erv9k81UNWSgnvTt21e9e/fW3LlzJUllZWWKi4vTnXfeqcmTJ1fYf/To0SouLtZ//vMf+7aLL75YPXr00Pz588/6fkVFRYqIiFBhYaHCw8NdVxG4VG5hifrPXlshj2L95MF8KXk5f+t+cff/Vf4W3Ce3sITuZh9S1/u3R1t4Tp06pa1btyo5Odm+LSAgQMnJydq4cWOlx2zcuNFhf0lKSUmpcn/4Jn6B+SZ/7H5xdwsMfwvuQ3ezf/Fo0nJBQYFKS0sVHR3tsD06Olq7d++u9Ji8vLxK98/Ly6t0/5MnT+rkyZP250VFRXUsNeoLCb++xx+TQetj+gH+FoC683gOj7ulp6crIiLC/oiLi/N0keAEfoH5Fn9MBq2vFhj+FoC68WgLT2RkpAIDA5Wfn++wPT8/XzExMZUeExMT49T+U6ZMUWpqqv15UVERQQ/gJv469xAtMID382jAExwcrJ49eyozM1MjRoyQ9EvScmZmpiZOnFjpMYmJicrMzNTdd99t37ZmzRolJiZWun9ISIhCQkJcXXQAVfDXmz8T/QHezeMTD6ampmr8+PHq1auX+vTpozlz5qi4uFgTJkyQJI0bN06tWrVSenq6JGnSpElKSkrS3//+dw0bNkxLlizRp59+qv/7v//zZDUAnIGbPwBv4/GAZ/To0Tp8+LCmTZumvLw89ejRQ6tWrbInJufk5Cgg4NdUo379+un111/XQw89pKlTp+r888/XO++8oy5duniqCgAAwMt5fB6e+sY8PAAA+B6fnocHAACgPhDwAAAAyyPgAQAAlkfAAwAALI+ABwAAWB4BDwAAsDwCHgAAYHkEPAAAwPIIeAAAgOV5fGmJ+lY+sXRRUZGHSwIAAGqq/L5d2wUi/C7gOXr0qCQpLi7OwyUBAADOOnr0qCIiIpw+zu/W0iorK9P333+vJk2ayGazufTcRUVFiouL08GDBy29Thf1tA5/qKNEPa2GelpLTetpjNHRo0fVsmVLh0XFa8rvWngCAgJ07rnnuvU9wsPDLf2fsxz1tA5/qKNEPa2GelpLTepZm5adciQtAwAAyyPgAQAAlkfA40IhISFKS0tTSEiIp4viVtTTOvyhjhL1tBrqaS31VU+/S1oGAAD+hxYeAABgeQQ8AADA8gh4AACA5RHwAAAAyyPgqca8efMUHx+v0NBQ9e3bV5s3b652/zlz5qhDhw4KCwtTXFyc7rnnHp04caJO56wPrq7n9OnTZbPZHB4dO3Z0dzXOypl6nj59WjNnzlRCQoJCQ0PVvXt3rVq1qk7nrC+urqc3Xs+PPvpIw4cPV8uWLWWz2fTOO++c9Zh169bpoosuUkhIiM477zwtWrSowj7edD3dUUcrXMvc3FyNGTNG7du3V0BAgO6+++5K93vzzTfVsWNHhYaGqmvXrlq5cqXrC+8Ed9Rz0aJFFa5naGioeypQQ87Wc9myZbr00ksVFRWl8PBwJSYm6r333quwn0v+Ng0qtWTJEhMcHGxeeukls3PnTnPzzTebpk2bmvz8/Er3f+2110xISIh57bXXTHZ2tnnvvfdMbGysueeee2p9zvrgjnqmpaWZCy64wOTm5tofhw8frq8qVcrZet5///2mZcuWZsWKFSYrK8s899xzJjQ01Gzbtq3W56wP7qinN17PlStXmgcffNAsW7bMSDJvv/12tfvv37/fNGzY0KSmppqvvvrKPPvssyYwMNCsWrXKvo+3XU931NEK1zI7O9vcdddd5uWXXzY9evQwkyZNqrDPJ598YgIDA83jjz9uvvrqK/PQQw+ZoKAg88UXX7inEjXgjnouXLjQhIeHO1zPvLw891Sghpyt56RJk8xjjz1mNm/ebL7++mszZcoUExQU5JbvWgKeKvTp08fccccd9uelpaWmZcuWJj09vdL977jjDvO73/3OYVtqaqrp379/rc9ZH9xRz7S0NNO9e3e3lLe2nK1nbGysmTt3rsO2kSNHmrFjx9b6nPXBHfX0xut5ppp8qd5///3mggsucNg2evRok5KSYn/ujdeznKvqaIVreaakpKRKA4FRo0aZYcOGOWzr27evufXWW+tYQtdwVT0XLlxoIiIiXFYuV3O2nuU6d+5sZsyYYX/uqr9NurQqcerUKW3dulXJycn2bQEBAUpOTtbGjRsrPaZfv37aunWrvZlt//79WrlypYYOHVrrc7qbO+pZbu/evWrZsqXatWunsWPHKicnx30VOYva1PPkyZMVmobDwsK0fv36Wp/T3dxRz3LedD1rY+PGjQ6fiySlpKTYPxdvvJ7OOlsdy/n6tayJmn4WVnDs2DG1adNGcXFxuvLKK7Vz505PF6lOysrKdPToUTVr1kySa/82CXgqUVBQoNLSUkVHRztsj46OVl5eXqXHjBkzRjNnztSAAQMUFBSkhIQEDRo0SFOnTq31Od3NHfWUpL59+2rRokVatWqVnn/+eWVnZ2vgwIE6evSoW+tTldrUMyUlRU899ZT27t2rsrIyrVmzRsuWLVNubm6tz+lu7qin5H3Xszby8vIq/VyKiopUUlLildfTWWero2SNa1kTVX0WvnIta6pDhw566aWX9O677+rVV19VWVmZ+vXrp2+//dbTRau1J598UseOHdOoUaMkufa7loDHRdatW6dHH31Uzz33nLZt26Zly5ZpxYoVmjVrlqeL5lI1qeeQIUP0pz/9Sd26dVNKSopWrlypI0eO6I033vBgyZ3zzDPP6Pzzz1fHjh0VHBysiRMnasKECQoIsNafTE3qaYXriV9wLa0lMTFR48aNU48ePZSUlKRly5YpKipKL7zwgqeLViuvv/66ZsyYoTfeeEMtWrRw+fkbuPyMFhAZGanAwEDl5+c7bM/Pz1dMTEylxzz88MO67rrrdNNNN0mSunbtquLiYt1yyy168MEHa3VOd3NHPSsLCJo2bar27dtr3759rq9EDdSmnlFRUXrnnXd04sQJ/fDDD2rZsqUmT56sdu3a1fqc7uaOelbG09ezNmJiYir9XMLDwxUWFqbAwECvu57OOlsdK+OL17ImqvosfOVa1lZQUJAuvPBCn7yeS5Ys0U033aQ333zTofvKld+11vq56iLBwcHq2bOnMjMz7dvKysqUmZmpxMTESo85fvx4hZt9YGCgJMkYU6tzups76lmZY8eOKSsrS7GxsS4quXPq8tmHhoaqVatW+vnnn/XWW2/pyiuvrPM53cUd9ayMp69nbSQmJjp8LpK0Zs0a++fijdfTWWerY2V88VrWRG0+CysoLS3VF1984XPXc/HixZowYYIWL16sYcOGObzm0r9Np9On/cSSJUtMSEiIWbRokfnqq6/MLbfcYpo2bWof8nfdddeZyZMn2/dPS0szTZo0MYsXLzb79+83q1evNgkJCWbUqFE1PqcnuKOef/3rX826detMdna2+eSTT0xycrKJjIw0hw4dqvf6lXO2nv/973/NW2+9ZbKyssxHH31kfve735m2bduan376qcbn9AR31NMbr+fRo0fN9u3bzfbt240k89RTT5nt27ebb775xhhjzOTJk811111n3798yPZ9991ndu3aZebNm1fpsHRvup7uqKMVrqUxxr5/z549zZgxY8z27dvNzp077a9/8sknpkGDBubJJ580u3btMmlpaR4flu6Oes6YMcO89957Jisry2zdutVcc801JjQ01GGf+uZsPV977TXToEEDM2/ePIfh9UeOHLHv46q/TQKeajz77LOmdevWJjg42PTp08f897//tb+WlJRkxo8fb39++vRpM336dJOQkGBCQ0NNXFycuf322x1uHGc7p6e4up6jR482sbGxJjg42LRq1cqMHj3a7Nu3rx5rVDln6rlu3TrTqVMnExISYpo3b26uu+4689133zl1Tk9xdT298Xp+8MEHRlKFR3ndxo8fb5KSkioc06NHDxMcHGzatWtnFi5cWOG83nQ93VFHq1zLyvZv06aNwz5vvPGGad++vQkODjYXXHCBWbFiRf1UqAruqOfdd99t//8aHR1thg4d6jB/jSc4W8+kpKRq9y/nir9NmzFV9EMAAABYBDk8AADA8gh4AACA5RHwAAAAyyPgAQAAlkfAAwAALI+ABwAAWB4BDwAAsDwCHgDwAuvWrZPNZtORI0c8XRTAkgh4AD9z/fXXy2azafbs2Q7b33nnHdlsNvtzY4wWLFigxMREhYeHq3Hjxrrgggs0adKkGi9OePz4cU2ZMkUJCQkKDQ1VVFSUkpKS9O6779r3iY+P15w5c1xSN3cr/+xsNpuCgoLUtm1b3X///Tpx4oRT5xk0aJDuvvtuh239+vVTbm6uIiIiXFhiAOUIeAA/FBoaqscee0w//fRTpa8bYzRmzBjdddddGjp0qFavXq2vvvpKL774okJDQ/W3v/2tRu9z2223admyZXr22We1e/durVq1SldffbV++OEHV1anXl1++eXKzc3V/v379fTTT+uFF15QWlpanc8bHBysmJgYh6ATgAvVcrkMAD5q/Pjx5g9/+IPp2LGjue++++zb3377bVP+lbB48WIjybz77ruVnqOsrKxG7xUREWEWLVpU5euVraNT7uOPPzYDBgwwoaGh5txzzzV33nmnOXbsmP31V155xfTs2dM0btzYREdHm2uvvdbk5+fbXy9f02fVqlWmR48eJjQ01AwePNjk5+eblStXmo4dO5omTZqYa6+91hQXF9eoPuPHjzdXXnmlw7aRI0eaCy+80P68oKDAXHPNNaZly5YmLCzMdOnSxbz++usO5/htnbOzs+3lPXNduqVLl5rOnTub4OBg06ZNG/Pkk0/WqJwAKqKFB/BDgYGBevTRR/Xss8/q22+/rfD64sWL1aFDB11xxRWVHl/TVoiYmBitXLlSR48erfT1ZcuW6dxzz9XMmTOVm5ur3NxcSVJWVpYuv/xy/fGPf9Tnn3+ujIwMrV+/XhMnTrQfe/r0ac2aNUufffaZ3nnnHR04cEDXX399hfeYPn265s6dqw0bNujgwYMaNWqU5syZo9dff10rVqzQ6tWr9eyzz9aoPr/15ZdfasOGDQoODrZvO3HihHr27KkVK1boyy+/1C233KLrrrtOmzdvliQ988wzSkxM1M0332yvc1xcXIVzb926VaNGjdI111yjL774QtOnT9fDDz+sRYsW1aqsgN/zdMQFoH6d2Upx8cUXmxtuuMEY49jC07FjR3PFFVc4HDdp0iTTqFEj06hRI9OqVasavdeHH35ozj33XBMUFGR69epl7r77brN+/XqHfdq0aWOefvpph2033nijueWWWxy2ffzxxyYgIMCUlJRU+l5btmwxkszRo0eNMb+28Lz//vv2fdLT040kk5WVZd926623mpSUlBrVZ/z48SYwMNA0atTIhISEGEkmICDALF26tNrjhg0bZv7617/anyclJZlJkyY57PPbFp4xY8aYSy+91GGf++67z3Tu3LlGZQXgiBYewI899thjevnll7Vr166z7vvggw9qx44dmjZtmo4dO1aj819yySXav3+/MjMzdfXVV2vnzp0aOHCgZs2aVe1xn332mRYtWqTGjRvbHykpKSorK1N2drakX1pAhg8frtatW6tJkyZKSkqSJOXk5Dicq1u3bvZ/R0dHq2HDhmrXrp3DtkOHDtWoPpI0ePBg7dixQ5s2bdL48eM1YcIE/fGPf7S/XlpaqlmzZqlr165q1qyZGjdurPfee69Cuc5m165d6t+/v8O2/v37a+/evSotLXXqXABIWgb82iWXXKKUlBRNmTLFYfv555+vPXv2OGyLiorSeeedpxYtWjj1HkFBQRo4cKAeeOABrV69WjNnztSsWbN06tSpKo85duyYbr31Vu3YscP++Oyzz7R3714lJCSouLhYKSkpCg8P12uvvaYtW7bo7bfflqQK5w0KCrL/u3x01ZlsNpvKyspqXJ9GjRrpvPPOU/fu3fXSSy9p06ZNevHFF+2vP/HEE3rmmWf0wAMP6IMPPtCOHTuUkpJSbX0BuF8DTxcAgGfNnj1bPXr0UIcOHezbrr32Wo0ZM0bvvvuurrzySpe+X+fOnfXzzz/rxIkTCg4OVnBwcIUWi4suukhfffWVzjvvvErP8cUXX+iHH37Q7Nmz7fkvn376qUvLWRMBAQGaOnWqUlNTNWbMGIWFhemTTz7RlVdeqT//+c+SpLKyMn399dfq3Lmz/bjK6vxbnTp10ieffOKw7ZNPPlH79u0VGBjo+soAFkcLD+DnunbtqrFjx+of//iHfds111yjq6++Wtdcc41mzpypTZs26cCBA/rwww+VkZFR4xvuoEGD9MILL2jr1q06cOCAVq5cqalTp2rw4MEKDw+X9Ms8PB999JG+++47FRQUSJIeeOABbdiwQRMnTtSOHTu0d+9evfvuu/ak5datWys4OFjPPvus9u/fr+XLl5+1m8xd/vSnPykwMFDz5s2T9Evr2Jo1a7Rhwwbt2rVLt956q/Lz8x2OiY+Pt3+mBQUFlbYw/fWvf1VmZqZmzZqlr7/+Wi+//LLmzp2re++9t17qBVgNAQ8AzZw50+Gma7PZlJGRoTlz5mjlypX6/e9/rw4dOuiGG25QXFyc1q9fX6PzpqSk6OWXX9Zll12mTp066c4771RKSoreeOMNh/c+cOCAEhISFBUVJemXvJsPP/xQX3/9tQYOHKgLL7xQ06ZNU8uWLSX90r22aNEivfnmm+rcubNmz56tJ5980oWfSM01aNBAEydO1OOPP67i4mI99NBDuuiii5SSkqJBgwYpJiZGI0aMcDjm3nvvVWBgoDp37qyoqKhK83suuugivfHGG1qyZIm6dOmiadOmaebMmZWORANwdjZjjPF0IQAAANyJFh4AAGB5BDwAau3MYeO/fXz88ceeLp5TcnJyqq2Ps8PKAXgXurQA1Fp1i4i2atVKYWFh9Viauvn555914MCBKl+Pj49XgwYMbAV8FQEPAACwPLq0AACA5RHwAAAAyyPgAQAAlkfAAwAALI+ABwAAWB4BDwAAsDwCHgAAYHkEPAAAwPL+H4L6O7TU0kPMAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_55.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLpElEQVR4nO3de1xT9f8H8NdAGIgyRbmLgKgoiqioCZZgkaRmmpWmlmapXbQ0KxO7eKvQyrTM1OqrVGai5u1r5CVNTTHvlJqWIogZoJQOQURin98f/tjXyUCGOztnZ6/n47GH7uxzzj6fHba99z6fi0YIIUBERESkEk5yV4CIiIjImhjcEBERkaowuCEiIiJVYXBDREREqsLghoiIiFSFwQ0RERGpCoMbIiIiUhUGN0RERKQqDG6IiIhIVRjcEJEspk6dCo1GU6OyGo0GU6dOlbQ+8fHxiI+PV+zxiKjmGNwQObiUlBRoNBrjrU6dOggMDMQTTzyBc+fOyV09xQkJCTF5vXx8fHDXXXdhzZo1Vjn+lStXMHXqVGzfvt0qxyNyRAxuiAgAMH36dHz11VdYuHAhevXqhaVLlyIuLg5Xr16V5Plef/11lJSUSHJsqbVv3x5fffUVvvrqK7z88sv466+/MGDAACxcuPC2j33lyhVMmzaNwQ3RbagjdwWISBl69eqFTp06AQBGjhyJxo0bY9asWVi/fj0GDhxo9eerU6cO6tSxz4+gwMBAPPbYY8b7w4YNQ/PmzTFnzhw888wzMtaMiABmboioCnfddRcAIDMz02T7iRMn8PDDD8PLywtubm7o1KkT1q9fb1KmrKwM06ZNQ4sWLeDm5oZGjRrhzjvvxJYtW4xlzPW5KS0txYsvvghvb2/Ur18fDzzwAP78889KdXviiScQEhJSabu5Yy5ZsgR33303fHx8oNVqERERgQULFlj0WtyKn58fWrdujaysrGrLnT9/Hk899RR8fX3h5uaGqKgofPHFF8bHs7Oz4e3tDQCYNm2a8dKX1P2NiNTGPn82EZHksrOzAQANGzY0bjt27Bi6deuGwMBATJo0CR4eHlixYgX69++Pb7/9Fg8++CCA60FGcnIyRo4ciS5duqCwsBAHDhzAoUOHcO+991b5nCNHjsTSpUsxZMgQxMbGYtu2bejTp89ttWPBggVo06YNHnjgAdSpUwf//e9/8dxzz8FgMGDMmDG3dewKZWVlOHv2LBo1alRlmZKSEsTHx+PUqVMYO3YsQkNDsXLlSjzxxBO4dOkSxo0bB29vbyxYsADPPvssHnzwQQwYMAAA0K5dO6vUk8hhCCJyaEuWLBEAxA8//CAuXLggzp49K1atWiW8vb2FVqsVZ8+eNZa95557RGRkpLh69apxm8FgELGxsaJFixbGbVFRUaJPnz7VPu+UKVPEjR9BGRkZAoB47rnnTMoNGTJEABBTpkwxbhs+fLgIDg6+5TGFEOLKlSuVyiUmJopmzZqZbIuLixNxcXHV1lkIIYKDg0XPnj3FhQsXxIULF8Qvv/wiHn30UQFAPP/881Ueb+7cuQKAWLp0qXHbtWvXRExMjKhXr54oLCwUQghx4cKFSu0lIsvwshQRAQASEhLg7e2NoKAgPPzww/Dw8MD69evRpEkTAMA///yDbdu2YeDAgbh8+TIKCgpQUFCAv//+G4mJiTh58qRxdFWDBg1w7NgxnDx5ssbPn5aWBgB44YUXTLaPHz/+ttrl7u5u/L9er0dBQQHi4uJw+vRp6PX6Wh1z8+bN8Pb2hre3N6KiorBy5Uo8/vjjmDVrVpX7pKWlwc/PD4MHDzZuc3FxwQsvvICioiLs2LGjVnUhosocOrjZuXMn+vbti4CAAGg0Gqxdu1by5zx37hwee+wxNGrUCO7u7oiMjMSBAwckf16iW5k/fz62bNmCVatWoXfv3igoKIBWqzU+furUKQgh8MYbbxi/2CtuU6ZMAXC9TwlwfeTVpUuX0LJlS0RGRuKVV17Br7/+Wu3znzlzBk5OTggLCzPZHh4eflvt2r17NxISEuDh4YEGDRrA29sbkydPBoBaBzd33HEHtmzZgh9++AHp6ekoKCjAl19+aRJI3ezMmTNo0aIFnJxMP3Zbt25tfJyIrMOh+9wUFxcjKioKTz75pPHatpQuXryIbt26oUePHvj+++/h7e2NkydPmvRpIJJLly5djKOl+vfvjzvvvBNDhgzB77//jnr16sFgMAAAXn75ZSQmJpo9RvPmzQEA3bt3R2ZmJtatW4fNmzfj888/x5w5c7Bw4UKMHDnytuta1eR/5eXlJvczMzNxzz33oFWrVvjggw8QFBQEV1dXpKWlYc6cOcY2Wapx48ZISEio1b5EJD2HDm569eqFXr16Vfl4aWkpXnvtNXzzzTe4dOkS2rZti1mzZtV61tFZs2YhKCgIS5YsMW4LDQ2t1bGIpOTs7Izk5GT06NEDH3/8MSZNmoRmzZoBuH4ppSZf7F5eXhgxYgRGjBiBoqIidO/eHVOnTq0yuAkODobBYEBmZqZJtub333+vVLZhw4a4dOlSpe03Zz/++9//orS0FOvXr0fTpk2N23/88cdb1t/agoOD8euvv8JgMJhkb06cOGF8HKg6cCOimnPoy1K3MnbsWOzZswfLly/Hr7/+ikceeQT33XefRf0IbrR+/Xp06tQJjzzyCHx8fNChQwd89tlnVq41kXXEx8ejS5cumDt3Lq5evQofHx/Ex8dj0aJFyM3NrVT+woULxv///fffJo/Vq1cPzZs3R2lpaZXPV/FD46OPPjLZPnfu3Eplw8LCoNfrTS515ebmVpol2NnZGQAghDBu0+v1Jj8wbKV3797Iy8tDamqqcdu///6LefPmoV69eoiLiwMA1K1bFwDMBm9EVDMOnbmpTk5ODpYsWYKcnBwEBAQAuJ6O37hxI5YsWYJ33nnH4mOePn0aCxYswIQJEzB58mTs378fL7zwAlxdXTF8+HBrN4Hotr3yyit45JFHkJKSgmeeeQbz58/HnXfeicjISIwaNQrNmjVDfn4+9uzZgz///BO//PILACAiIgLx8fGIjo6Gl5cXDhw4gFWrVmHs2LFVPlf79u0xePBgfPLJJ9Dr9YiNjcXWrVtx6tSpSmUfffRRvPrqq3jwwQfxwgsv4MqVK1iwYAFatmyJQ4cOGcv17NkTrq6u6Nu3L55++mkUFRXhs88+g4+Pj9kATUqjR4/GokWL8MQTT+DgwYMICQnBqlWrsHv3bsydOxf169cHcL0DdEREBFJTU9GyZUt4eXmhbdu2aNu2rU3rS2TX5B6upRQAxJo1a4z3N2zYIAAIDw8Pk1udOnXEwIEDhRBCHD9+XACo9vbqq68aj+ni4iJiYmJMnvf5558XXbt2tUkbicypGAq+f//+So+Vl5eLsLAwERYWJv79918hhBCZmZli2LBhws/PT7i4uIjAwEBx//33i1WrVhn3e+utt0SXLl1EgwYNhLu7u2jVqpV4++23xbVr14xlzA3bLikpES+88IJo1KiR8PDwEH379hVnz541OzR68+bNom3btsLV1VWEh4eLpUuXmj3m+vXrRbt27YSbm5sICQkRs2bNEosXLxYARFZWlrGcJUPBbzXMvarj5efnixEjRojGjRsLV1dXERkZKZYsWVJp3/T0dBEdHS1cXV05LJyoFjRC3JCvdWAajQZr1qxB//79AQCpqakYOnQojh07ZkxtV6hXrx78/Pxw7do1nD59utrjNmrUyDjjaHBwMO699158/vnnxscXLFiAt956iwsUEhERWQkvS1WhQ4cOKC8vx/nz543T0N/M1dUVrVq1qvExu3XrVqlz5B9//GHsSEhERES3z6GDm6KiIpPr+VlZWcjIyICXlxdatmyJoUOHYtiwYZg9ezY6dOiACxcuYOvWrWjXrl2tpoR/8cUXERsbi3feeQcDBw7Evn378Omnn+LTTz+1ZrOIiIgcmkNfltq+fTt69OhRafvw4cORkpKCsrIyvPXWW/jyyy9x7tw5NG7cGF27dsW0adMQGRlZq+fcsGEDkpKScPLkSYSGhmLChAkYNWrU7TaFiIiI/p9DBzdERESkPpznhoiIiFSFwQ0RERGpisN1KDYYDPjrr79Qv359TnNORERkJ4QQuHz5MgICAiotQHszhwtu/vrrLwQFBcldDSIiIqqFs2fPokmTJtWWcbjgpmKK87Nnz8LT01Pm2hAREVFNFBYWIigoyPg9Xh2HC24qLkV5enoyuCEiIrIzNelSwg7FREREpCoMboiIiEhVZA1uFixYgHbt2hkvEcXExOD777+vsnxKSgo0Go3Jzc3NzYY1JiIiIqWTtc9NkyZNMHPmTLRo0QJCCHzxxRfo168fDh8+jDZt2pjdx9PT02TxSamGc5eXl6OsrEySYzsiFxeXSqurExERSUHW4KZv374m999++20sWLAAP//8c5XBjUajgZ+fn2R1EkIgLy8Ply5dkuw5HFWDBg3g5+fH+YWIiEhSihktVV5ejpUrV6K4uBgxMTFVlisqKkJwcDAMBgM6duyId955p8pACABKS0tRWlpqvF9YWFhtPSoCGx8fH9StW5dfxFYghMCVK1dw/vx5AIC/v7/MNSIiIjWTPbg5cuQIYmJicPXqVdSrVw9r1qxBRESE2bLh4eFYvHgx2rVrB71ej/fffx+xsbE4duxYlRP6JCcnY9q0aTWqS3l5uTGwadSoUa3bRJW5u7sDAM6fPw8fHx9eoiIiIsnIvir4tWvXkJOTA71ej1WrVuHzzz/Hjh07qgxwblRWVobWrVtj8ODBmDFjhtky5jI3QUFB0Ov1lea5uXr1KrKyshASEmL8MibrKSkpQXZ2NkJDQ9kRnIiILFJYWAidTmf2+/tmsmduXF1d0bx5cwBAdHQ09u/fjw8//BCLFi265b4uLi7o0KEDTp06VWUZrVYLrVZrUZ14KUoafF2JiMgWFDfPjcFgMMm0VKe8vBxHjhxhHw4iIiIykjVzk5SUhF69eqFp06a4fPkyli1bhu3bt2PTpk0AgGHDhiEwMBDJyckAgOnTp6Nr165o3rw5Ll26hPfeew9nzpzByJEj5WwGERERKYismZvz589j2LBhCA8Pxz333IP9+/dj06ZNuPfeewEAOTk5yM3NNZa/ePEiRo0ahdatW6N3794oLCxEenp6jfrnOIK8vDw8//zzaNasGbRaLYKCgtC3b19s3boVAPD0008jLCwM7u7u8Pb2Rr9+/XDixAnj/tnZ2dBoNMjIyKh07Pj4eIwfP954v6ioCGPHjkWTJk3g7u6OiIgILFy4UOomEhGRjeXqS5CeWYBcfYncVakxWTM3//nPf6p9fPv27Sb358yZgzlz5khYI/uVnZ2Nbt26oUGDBnjvvfcQGRmJsrIybNq0CWPGjMGJEycQHR2NoUOHomnTpvjnn38wdepU9OzZE1lZWRaPXpowYQK2bduGpUuXIiQkBJs3b8Zzzz2HgIAAPPDAAxK1koiIbCl1fw6SVh+BQQBOGiB5QCQGdW4qd7VuSfYOxWQdzz33HDQaDfbt2wcPDw/j9jZt2uDJJ58EAIwePdq4PSQkBG+99RaioqKQnZ2NsLAwi54vPT0dw4cPR3x8vPHYixYtwr59+xjcEBGpQK6+xBjYAIBBAJNXH0X3lt7w1yl7RLHiOhSria1Sef/88w82btyIMWPGmAQ2FRo0aFBpW3FxMZYsWYLQ0FAEBQVZ/JyxsbFYv349zp07ByEEfvzxR/zxxx/o2bNnbZpAREQKk1VQbAxsKpQLgeyCK/JUyALM3EjElqm8U6dOQQiBVq1a3bLsJ598gokTJ6K4uBjh4eHYsmULXF1dTcrExsbCyck07i0pKUH79u2N9+fNm4fRo0ejSZMmqFOnDpycnPDZZ5+he/fuVmkTERHJK7SxB5w0MAlwnDUahDSuK1+laoiZGwlUlcqTKoNjyTyMQ4cOxeHDh7Fjxw60bNkSAwcOxNWrV03KpKamIiMjw+TWqVMnkzLz5s3Dzz//jPXr1+PgwYOYPXs2xowZgx9++MEqbSIiInn569yRPCASzv8/R5mzRoN3BrRV/CUpgJkbSVSXypPij6JFixbQaDQmI5+qotPpoNPp0KJFC3Tt2hUNGzbEmjVrMHjwYGOZoKAg48SKFW6csbmkpASTJ0/GmjVr0KdPHwBAu3btkJGRgffffx8JCQlWahkREclpUOem6N7SG9kFVxDSuK5dBDYAMzeSqEjl3UjKVJ6XlxcSExMxf/58FBcXV3q8qhXOhRAQQtR40sQKZWVlKCsrq3TpytnZGQaDwaJjERGRsvnr3BET1shuAhuAwY0k5EjlzZ8/H+Xl5ejSpQu+/fZbnDx5EsePH8dHH32EmJgYnD59GsnJyTh48CBycnKQnp6ORx55BO7u7ujdu7dFz+Xp6Ym4uDi88sor2L59O7KyspCSkoIvv/wSDz74oEQtJCIiqhlelpKIrVN5zZo1w6FDh/D222/jpZdeQm5uLry9vREdHY0FCxbAzc0NP/30E+bOnYuLFy/C19cX3bt3R3p6Onx8fCx+vuXLlyMpKQlDhw7FP//8g+DgYLz99tt45plnJGgdERFRzcm+KritVbeqaMWq4Fy1Whp8fYmIqLYsWRWcl6WIiIhIVRjcEBERkaowuCEiIiJVYXBDREREqsLgxgwH62NtM3xdiYjIFhjc3MDFxQUAcOWK8hcFs0cVr2vF60xERCQFznNzA2dnZzRo0ADnz58HANStWxcajeYWe9GtCCFw5coVnD9/Hg0aNICzs7PcVSIiIhVjcHMTPz8/ADAGOGQ9DRo0ML6+REREUmFwcxONRgN/f3/4+PigrKxM7uqohouLCzM2RERkEwxuquDs7MwvYyIiIjvEDsVERESkKgxuiIiISFUY3BAREZGqMLghIiIiVWFwQ0RERKrC4IaIiIhUhcENERERqQqDGyIiIlIVBjdERESkKgxuiIiISFUY3BAREZGqMLghIiIiVWFwQ0RERKrC4IaIiIhUhcENERERqQqDGyIiIlIVBjdERESkKgxuiIiISFUY3BAREZGqyBrcLFiwAO3atYOnpyc8PT0RExOD77//vtp9Vq5ciVatWsHNzQ2RkZFIS0uzUW2JiIjIHsga3DRp0gQzZ87EwYMHceDAAdx9993o168fjh07ZrZ8eno6Bg8ejKeeegqHDx9G//790b9/fxw9etTGNSciIiKl0gghhNyVuJGXlxfee+89PPXUU5UeGzRoEIqLi7Fhwwbjtq5du6J9+/ZYuHBhjY5fWFgInU4HvV4PT09Pq9WbiIiIpGPJ97di+tyUl5dj+fLlKC4uRkxMjNkye/bsQUJCgsm2xMRE7Nmzp8rjlpaWorCw0ORGRERE6iV7cHPkyBHUq1cPWq0WzzzzDNasWYOIiAizZfPy8uDr62uyzdfXF3l5eVUePzk5GTqdzngLCgqyav2JiIhIWWQPbsLDw5GRkYG9e/fi2WefxfDhw/Hbb79Z7fhJSUnQ6/XG29mzZ612bCIiIlKeOnJXwNXVFc2bNwcAREdHY//+/fjwww+xaNGiSmX9/PyQn59vsi0/Px9+fn5VHl+r1UKr1Vq30kRERKRYsmdubmYwGFBaWmr2sZiYGGzdutVk25YtW6rso0NERESOR9bMTVJSEnr16oWmTZvi8uXLWLZsGbZv345NmzYBAIYNG4bAwEAkJycDAMaNG4e4uDjMnj0bffr0wfLly3HgwAF8+umncjaDiIiIFETW4Ob8+fMYNmwYcnNzodPp0K5dO2zatAn33nsvACAnJwdOTv9LLsXGxmLZsmV4/fXXMXnyZLRo0QJr165F27Zt5WoCERERKYzi5rmRGue5ISIisj92Oc8NERERkTUwuCEiIiJVYXBDREREqsLghoiIiFSFwQ0RERGpCoMbIiIiUhUGN0RERKQqDG6IiIhIVRjcEBERkaowuCEiIiJVYXBDREREqsLghoiIiFSFwQ0RERGpCoMbIiIiUhUGN0RERKQqDG6IiIhIVRjcEBERkaowuCEiIiJVYXBDREREqsLghoiIiFSFwQ0RERGpCoMbIiIiUhUGN0RERKQqDG6IiIhIVRjcEBERkaowuCEiIiJVYXBDREREqsLghoiIiFSFwQ0RERGpCoMbIiIiUhUGN0RERKQqDG6IiIhIVRjcEBERkaowuCEiIiJVYXBDREREqsLghoiIiFSFwQ0RERGpCoMbIiIiUhVZg5vk5GR07twZ9evXh4+PD/r374/ff/+92n1SUlKg0WhMbm5ubjaqMRERESmdrMHNjh07MGbMGPz888/YsmULysrK0LNnTxQXF1e7n6enJ3Jzc423M2fO2KjGREREpHR15HzyjRs3mtxPSUmBj48PDh48iO7du1e5n0ajgZ+fn9TVIyIiIjukqD43er0eAODl5VVtuaKiIgQHByMoKAj9+vXDsWPHqixbWlqKwsJCkxsRERGpl2KCG4PBgPHjx6Nbt25o27ZtleXCw8OxePFirFu3DkuXLoXBYEBsbCz+/PNPs+WTk5Oh0+mMt6CgIKmaQERERAqgEUIIuSsBAM8++yy+//577Nq1C02aNKnxfmVlZWjdujUGDx6MGTNmVHq8tLQUpaWlxvuFhYUICgqCXq+Hp6enVepORERE0iosLIROp6vR97esfW4qjB07Fhs2bMDOnTstCmwAwMXFBR06dMCpU6fMPq7VaqHVaq1RTSIiIrIDsl6WEkJg7NixWLNmDbZt24bQ0FCLj1FeXo4jR47A399fghoSERGRvZE1czNmzBgsW7YM69atQ/369ZGXlwcA0Ol0cHd3BwAMGzYMgYGBSE5OBgBMnz4dXbt2RfPmzXHp0iW89957OHPmDEaOHClbO4iIiEg5ZA1uFixYAACIj4832b5kyRI88cQTAICcnBw4Of0vwXTx4kWMGjUKeXl5aNiwIaKjo5Geno6IiAhbVZuIiIgUTDEdim3Fkg5JREREpAyWfH8rZig4ERERkTUwuCEiIiJVYXBDREREqsLghoiIiFSFwQ0RERGpCoMbIiIiUhUGN0RERKQqDG6IiIhIVRjcEBERkaowuCEiIiJVYXBDREREqsLghoiIiFSFwQ0RERGpCoMbIiIiUhUGN0RERKQqDG6IiIhIVRjcEBERkaowuCEiIiJVYXBDREREqsLghoiIiFSFwQ0RERGpCoMbIiIiUhUGN0RERKQqDG6IiIhIVRjcEBERkaowuCEiIiJVYXBDREREqsLghoiIiFSFwQ0RERGpCoMbIiIiUhUGN0REpHi5+hKkZxYgV18id1XIDtSRuwJERETVSd2fg6TVR2AQgJMGSB4QiUGdm8pdLVIwZm6IiEixcvUlxsAGAAwCmLz6KDM4VC0GN0REpFhZBcXGwKZCuRDILrgiT4XILjC4ISIixQpt7AEnjek2Z40GIY3rylMhsgsMboiISLH8de5IHhAJZ831CMdZo8E7A9rCX+cuc81IydihmIiIFG1Q56bo3tIb2QVXENK4LgMbuiUGN0REpHj+OncGNVRjsl6WSk5ORufOnVG/fn34+Pigf//++P3332+538qVK9GqVSu4ubkhMjISaWlpNqgtERER2QNZg5sdO3ZgzJgx+Pnnn7FlyxaUlZWhZ8+eKC4urnKf9PR0DB48GE899RQOHz6M/v37o3///jh69KgNa05ERERKpRFCiFsXs40LFy7Ax8cHO3bsQPfu3c2WGTRoEIqLi7Fhwwbjtq5du6J9+/ZYuHDhLZ+jsLAQOp0Oer0enp6eVqs7ERERSceS729FjZbS6/UAAC8vryrL7NmzBwkJCSbbEhMTsWfPHrPlS0tLUVhYaHIjIiIi9VJMcGMwGDB+/Hh069YNbdu2rbJcXl4efH19Tbb5+voiLy/PbPnk5GTodDrjLSgoyKr1JiIiImVRTHAzZswYHD16FMuXL7fqcZOSkqDX6423s2fPWvX4REREpCyKGAo+duxYbNiwATt37kSTJk2qLevn54f8/HyTbfn5+fDz8zNbXqvVQqvVWq2uREREpGyyZm6EEBg7dizWrFmDbdu2ITQ09Jb7xMTEYOvWrSbbtmzZgpiYGKmqSURERHZE1szNmDFjsGzZMqxbtw7169c39pvR6XRwd78+WdOwYcMQGBiI5ORkAMC4ceMQFxeH2bNno0+fPli+fDkOHDiATz/9VLZ2EBERkXLImrlZsGAB9Ho94uPj4e/vb7ylpqYay+Tk5CA3N9d4PzY2FsuWLcOnn36KqKgorFq1CmvXrq22EzIRERE5DkXNc2MLnOeGiIjI/tjtPDdEREREt4vBDREREakKgxsiIiJSFQY3REREpCoMboiIiEhVGNwQEZHN5epLkJ5ZgFx9idxVIRWyeBK/DRs2YN++fUhMTES3bt2wbds2vP/++zAYDBgwYABGjx4tRT2JiEglUvfnIGn1ERgE4KQBkgdEYlDnpnJXi1TEoszNokWL8OCDDyItLQ29e/fG0qVL0b9/fwQGBiIkJATjx4/Hhx9+KFVdiYjIzuXqS4yBDQAYBDB59VFmcMiqLMrcfPTRR/jkk08watQo/Pjjj+jduzdmz56N5557DgDQtWtXvPvuuxg3bpwklSUiIvuWVVBsDGwqlAuB7IIr8Ne5y1MpUh2LMjdZWVlITEwEAPTo0QPl5eXo3r278fH4+HicOXPGujUkIiLVCG3sASeN6TZnjQYhjevKUyFSJYuCm0aNGhmDl7/++gv//vsvcnJyjI+fOXMGXl5e1q0hERGphr/OHckDIuGsuR7hOGs0eGdAW2ZtyKosuizVr18/PPXUUxg+fDjWr1+PYcOG4aWXXoKTkxM0Gg1eeeUV9OzZU6q6EhGRCgzq3BTdW3oju+AKQhrXZWBDVmdRcDNr1ixcu3YNy5cvR2xsLObNm4ePPvoI/fr1Q1lZGeLi4pCcnCxVXYmISCX8de4MakgyVlkV/OrVqygrK0P9+vWtUSdJcVVwIiIi+2PJ97fF89yY4+bmBjc3N2scioiIiOi2WBTcTJgwoUblPvjgg1pVhoiIiOh2WRTcHD582OT+rl27EB0dDXf3/1031Wg0N+9GREREZDMWBTc//vijyf369etj2bJlaNasmVUr5Shy9SXIKihGaGMPdqwjIiKyEqv0uSHLcW0VIiIiaXBVcBlwbRUiIiLpMLiRQXVrqxAREdHtseiy1K+//mpyXwiBEydOoKioyGR7u3btbr9mKlaxtsqNAQ7XViEiIrIOiybxq1hmwdwuFds1Gg3Ky8utWklrUsokfqn7czB59VGUC2FcW4V9boiIiMyTbBK/rKys26oY/Q/XViEiIpKGRcFNcHCwVPVwSFxbhYiIyPos7lAshEBWVhb+/fdfAMC1a9eQmpqKL7/8EgUFBVavIClTrr4E6ZkFHOFFRESKY1Hm5vfff0diYiLOnj2LZs2aYfPmzXjkkUdw4sQJCCFQt25dpKeno0WLFlLVlxSAc/QQEZGSWZS5efXVVxEVFYWMjAzcf//96NOnD5o0aYKLFy/in3/+QUxMDKZPny5VXUkBOEcPEREpnUXBTXp6OqZNm4bIyEi89dZbOHHiBF5++WW4uLhAq9Vi0qRJ2Llzp1R1JQXgHD1ERKR0FgU3RUVF8PLyAgB4eHjAw8MD/v7+xseDgoKQn59v3RqSolTM0XMjztFDRERKYlFwExAQgJycHOP9d999Fz4+Psb7Fy5cQMOGDa1XO1Icf507kgdEGv9wnAC8M6AtR30REZFiWBTcJCQk4MSJE8b7zz77LOrXr2+8v3nzZnTs2NF6tSPl0tz0LxERkUJYNEPxrWRnZ0Or1ZpcqlIapcxQbK9y9SXoNnNbpaUjdk3qwewNERFJxpLvb4syN9u2bUNERAQKCwsrPabX69GnTx+cOnXKstqSXWGHYiIiUjqLgpu5c+di1KhRZiMmnU6Hp59+Gh988IHVKkfKww7FRESkdBYFN7/88gvuu+++Kh/v2bMnDh48eNuVIuWq6FDsrLke4VQs+slLUkREpBQWzVCcn58PFxeXqg9Wpw4uXLhw25UiZeOin0REpGQWBTeBgYE4evQomjdvbvbxX3/9VdGdicl6uOgnEREplUWXpXr37o033ngDV69erfRYSUkJpkyZgvvvv7/Gx9u5cyf69u2LgIAAaDQarF27ttry27dvh0ajqXTLy8uzpBlERESkYhZlbl5//XWsXr0aLVu2xNixYxEeHg4AOHHiBObPn4/y8nK89tprNT5ecXExoqKi8OSTT2LAgAE13u/333836dR840SCRERE5NgsCm58fX2Rnp6OZ599FklJSaiYIkej0SAxMRHz58+Hr69vjY/Xq1cv9OrVy7Ia43ow06BBA4v3IyIiImnl6kuQVVCM0MYesnVfsCi4AYDg4GCkpaXh4sWLOHXqFIQQaNGihU2XXWjfvj1KS0vRtm1bTJ06Fd26dbPZcxMREdkzKYOP1P05SFp9BAYBOGmA5AGRGNS5qVWfoyYsDm4qNGzYEJ07d7ZmXW7J398fCxcuRKdOnVBaWorPP/8c8fHx2Lt3b5XLPpSWlqK0tNR439wEhERERI5AyuAjV19iPDYAGAQwefVRdG/pbfMMTq2DGzmEh4cb+/kAQGxsLDIzMzFnzhx89dVXZvdJTk7GtGnTbFVFIiIiRZI6+KhuBntbBzcWjZZSoi5dulS75ENSUhL0er3xdvbsWRvWrnq5+hKkZxYgV18id1WIiEjlpF4+R0kz2NtV5sacjIyMaufW0Wq10Gq1NqxRzaTuz8Gkb49A4PrC2jMfkue6pK0ooYMZEZEjqwg+bl742FrBR8UM9pNXH0W5ELLOYC9rcFNUVGSSdcnKykJGRga8vLzQtGlTJCUl4dy5c/jyyy8BXF/bKjQ0FG3atMHVq1fx+eefY9u2bdi8ebNcTaiVXH2JMbABAAFg0rdHZLkuaQtK6WBGROTIbBF8KGUGe1mDmwMHDqBHjx7G+xMmTAAADB8+HCkpKcjNzUVOTo7x8WvXruGll17CuXPnULduXbRr1w4//PCDyTHswYHsf3BTZhACwMHsi7g/Sl3BjZI6mBEROTpbBB9KmMFe1uAmPj7eOFeOOSkpKSb3J06ciIkTJ0pcK+lpNJoqttu4IjagpA5mRESkjOBDanbfodgeRQc3xM1xjEYDdAy23VxBtqKkDmZEROQYGNzIwF/njpkPRRq/9J00wMwBkaqMpCuu8Tr/f1pKzg5mRETkGDSiuutCKlRYWAidTge9Xm+yPpUccvUlsne6shVHaisREVmfJd/fdj8U3J45wnXPCo7UViIikhcvS5FNcMJCIiKyFWZuSHKc54aIiGyJmRuSVFXz3DCDQ0REUmFwQ5KSei0TIiKimzG4IUlxnhsiIrI1BjckKc5zQ0REtsYOxSQ5pSykRkREjoHBDdkE57khIiJb4WUpIiIiUhUGN6RInPSPiEgajvD5ystSpDic9I+ISBqO8vnKzA0pCif9IyKShiN9vjK4IUXhpH9ERNJwpM9XBjekKJz0j4hIGo70+crghhSFk/4REUnDkT5fNUIIceti6lFYWAidTge9Xg9PT0+5q0NVyNWXcNI/IiIJ2OvnqyXf3xwtRYrESf+IiKThCJ+vvCxFRESK5whzs5D1MHNDRESK5ihzs5D1MHNDRESK5Uhzs5D1MLghIiLFcqS5Wch6GNwQEZFiOdLcLGQ9DG7IJtgZkIhqw5HmZiHrYYdikhw7AxLR7RjUuSm6t/S2y7lZSB7M3JCk2BmQiKzBX+eOmLBGDGyoRhjckKTYGZCIiGyNwQ1Jip0BiYjI1hjckKTYGZCIiGyNHYpJcuwMSEREtsTghmzCERZqIyIiZeBlKSIiIlIVBjdERESkKgxuiIiISFUY3BAREZGqMLghIiJSEK7Fd/tkDW527tyJvn37IiAgABqNBmvXrr3lPtu3b0fHjh2h1WrRvHlzpKSkSF5PIiIiW0jdn4NuM7dhyGd70W3mNqTuz5G7SnZJ1uCmuLgYUVFRmD9/fo3KZ2VloU+fPujRowcyMjIwfvx4jBw5Eps2bZK4pkRERNLK1Zdg0rema/FNWn2EGZxakHWem169eqFXr141Lr9w4UKEhoZi9uzZAIDWrVtj165dmDNnDhITE6WqJhERkeQOnrmIm5bigxDAoTMX0acd5wmzhF31udmzZw8SEhJMtiUmJmLPnj1V7lNaWorCwkKTGxERkdIIcXNoU7HdxhVRAbsKbvLy8uDr62uyzdfXF4WFhSgpMZ+2S05Ohk6nM96CgoJsUVUiIiKLdArxwk3rDEMDIDqkoRzVsWt2FdzURlJSEvR6vfF29uxZuatERGRzHIGjfP46d8x8KNL4xewEYOZDkVy6phbsam0pPz8/5Ofnm2zLz8+Hp6cn3N3Nn3ytVgutVmuL6hERKVLq/hwkrb7eUdVJAyQPiMSgzk3lrhaZwYWGrcOuMjcxMTHYunWrybYtW7YgJiZGphoRESlbrr7EGNgA10fgTF59lBkcBfPXuSMmrFGNAxtm5SqTNXNTVFSEU6dOGe9nZWUhIyMDXl5eaNq0KZKSknDu3Dl8+eWXAIBnnnkGH3/8MSZOnIgnn3wS27Ztw4oVK/Ddd9/J1QQiIkXLKig2BjYVyoVAdsEVZgVUgFk582TN3Bw4cAAdOnRAhw4dAAATJkxAhw4d8OabbwIAcnNzkZPzvwmMQkND8d1332HLli2IiorC7Nmz8fnnn3MYOBFRFUIbe8Dppl6qzhoNQhrXladCZDXMylVN1sxNfHx8lUPfAJidfTg+Ph6HDx+WsFZEROrhr3NH8oBITF59FOVCwFmjwTsD2jJrowLMylXNrjoUExGR5dhJVZ0qsnI3BjjMyl1nVx2KyX5Z2uGNHeSIrMvSTqqkfBVZOWfN9euOzMr9DzM3JDlLO7yxgxwRUc0wK2ceMzckKUs7vKmhgxyzTkRkS8zKVcbMDUnK0g5v9t5BjlknIiL5MXNDkrJ0GKo9D1tVQ9aJqsesHJF9YHBDkrK0w5s9d5CrLutE9i91fw66zdyGIZ/tRbeZ25C6P+fWO5FqMdBVNl6WIslZ2uHNXjvIcVimelWVleve0ttu/j7Jenj5WfmYuSGbsLTDmz12kLPnrBNVj1k5qsDLz/aBmRtySLn6EmQVFCO0sYdVgw97zTpR9ZiVowr2PujBUTC4IZuQKpioDalTyv46d0nbqKTX0lFwCQOqwEDXPmhEdYs7qVBhYSF0Oh30ej08PT3lro5DUNL16Vx9CbrN3Fbpg2nXpB528UWlpNdSiaQO/HL1JczKEVL351QKdPk+lJ4l39/M3JCklNYR055Tykp7LZUmdX8OJn17BAKABsDMh6wf+EmdlSP7wMvPyscOxSQppXXEtOd5dJT2WipJrr7EGNgAgAAw6dsj7ORJkrHHQQ+OhMENSUppwYQ9j2hS2mupJAey/8HN19cFgIPZF+WoDhHJjJelSFJK7IhpryllJb6WSqHRaKrYbuOK2Bg7lxOZx+CGJKfEYMJe+04o8bVUgujghtAAJtkbjQboGNyw2v3sOThg53KiqjG4IZuw12BCifhaVuavc8fMhyIrfdlX9zrZc3DAzuVE1WNwQ4pkz7+oSR6WZLXsPTiw51F/RLbA4IYUx55/UZO8aprVsvfggBPJyY8/wJSNo6VIUbhuC9mCvY88s+dRf2rAFeKVj5kbUhQl/qLmLzT1UcPIM3Yul4e9X9J0FAxuSFGUlm7nJTL1UkNwwM7ltqfEH2BUGS9LkaIoKd3OS2Tqx1lmq5arL0F6ZgH/3m9i75c0HQUzN6Q4SvlFzV9o5KiYsayaGi5pOgIGN6RISki3K+0SGZEtsE/JrSnlBxhVjZeliKqgpEtkRLbCBVprhpc0lY2ZG6Jq8Bea9XH0mbIxY0lqwOCG6BaUcIlMLdiXQ/nYp4TUQCOEELcuph6FhYXQ6XTQ6/Xw9PSUuzpEDiNXX4JuM7dVygjsmtSDX5wKlKsvYcaSFMWS729mbojIJjj6zL4wY0n2jB2Kiei21HQ+FFvMD8K5WYgIYOaGiG6DJX1opO7Lwf48RFSBfW6IqFZq24dGir4c7M9DpH7sc0NEkqttHxop+nKwPw8R3Yh9boioVpS0xo6S6kJE8mNwQ0S1oqQZnJVUFyKSH/vcEN2CpTPqOtoMvEqaD0VJdSEi67Lk+1sRmZv58+cjJCQEbm5uuOOOO7Bv374qy6akpECj0Zjc3NzcbFhbciSp+3PQbeY2DPlsL7rN3IbU/TlWLa8GSlpjR0l1ISL5yB7cpKamYsKECZgyZQoOHTqEqKgoJCYm4vz581Xu4+npidzcXOPtzJkzNqwxOYqqVkeuag4VS8sTEZE0ZA9uPvjgA4waNQojRoxAREQEFi5ciLp162Lx4sVV7qPRaODn52e8+fr62rDG5CgsXR2ZqykTESmDrMHNtWvXcPDgQSQkJBi3OTk5ISEhAXv27Klyv6KiIgQHByMoKAj9+vXDsWPHqixbWlqKwsJCkxtRTVg6AocjduTHGYqJCJA5uCkoKEB5eXmlzIuvry/y8vLM7hMeHo7Fixdj3bp1WLp0KQwGA2JjY/Hnn3+aLZ+cnAydTme8BQUFWb0dpE6WjsDhiB15OWJ/JyIyT9bRUn/99RcCAwORnp6OmJgY4/aJEydix44d2Lt37y2PUVZWhtatW2Pw4MGYMWNGpcdLS0tRWlpqvF9YWIigoCCOlnJwloxosnQEDkfs2B5nKCZSP7uZobhx48ZwdnZGfn6+yfb8/Hz4+fnV6BguLi7o0KEDTp06ZfZxrVYLrVZ723Ul9bB0DSJLZ9Tlasq2xxmKiehGsl6WcnV1RXR0NLZu3WrcZjAYsHXrVpNMTnXKy8tx5MgR+Pv7S1VNUhGOaFIn9nciohvJPlpqwoQJ+Oyzz/DFF1/g+PHjePbZZ1FcXIwRI0YAAIYNG4akpCRj+enTp2Pz5s04ffo0Dh06hMceewxnzpzByJEj5WoC2ZHajGhiJ1XlY38nIrqR7AtnDho0CBcuXMCbb76JvLw8tG/fHhs3bjR2Ms7JyYGT0/9isIsXL2LUqFHIy8tDw4YNER0djfT0dERERMjVBLIjFb/wb+6bUdUvfEsvYZF8BnVuiu4tvdnfiYi4/AI5ntT9OZi8+ijKhTD+wjcXsLCTKt0uR1uKg0hKdtOhmEgONf2Fz06qdDuY9ZMXA0vHxuDGjvDNaj01GdFk6SUsogpVdVzv3tKb710bYGBJsncoVhMpO55ygjLbYydVqi0uxSEfjoiUnxIGYTBzYyVS/lLgr0D5sJMq1QazfvLh5WR5KSVrxsyNFUj9S4G/AuXlr3NHTFgjfjBSjfnr3PFgh0CTbf07BPBvyAY455F8lJQ1Y3BjBVIHH3yzEtmXXH0J1hw+Z7Jt7eG/eGnEBng5WT5K+iHOy1JWIHUKuuLNevPwZb5ZiZSJl0bkxcvJ8lDS5VgGN1Zgi+DD0jcrR1YRyUdJH/KOSklrvDnK57GSfohzEj8rUspq0Erp0EXkyGo6WSSpmyN+Hkv1XWjJ9zeDG5XhrLqkdI7yKxZQzg8ekgc/j62LMxQ7MF7rJ1uzJFhxtF+xSro0QrbHz2P5MLhRGV7rJ1uyJFjhfE32xZEybFLh57F8OBRcZTgMkmzF0jktlDRM1BFZMmssZ0S3Dn4ey4eZGxXiMEiyBUtT7vwVKx9m2OTDz2N5MHOjUpxVt3pKWPvE3nm4OpvdXtfV/MeKEn/FOsLfATNs8uPnse0xc0MOR+pOrY7SV6H4WrnZ7VeuGarcR0m/Yh2lczMzbOSImLkhhyL12ieO1FehtsuCKOFXrJLWwJGapedJiRk2IksxuCGHImXK3ZG+MAH7/hJ0pEsvtTlPgzo3xa5JPfDNqK7YNamHKjNapG68LEUORcqUuyPOaaGky0yWcLRLL7U5T5yjh+wZMzfkUKTMNjjq6u1KuMxkKXvOOtWWPZ4notri8gvkkKSaFj91fw6Svj0CA67/ckh+SJ2dVNWCyyMQ2Q8uv0B0C5Km3DUAxP//S4rGSy9E6sTLUkRW4mgdimtLyrllfjl7EZ/9lIlfzl60+rGJyH4wc0NkJY7YodhSUs4t89KKDHx76Jzx/kMdAzF7YHurHJuI7AszN0RW4qgdimtKyszWL2cvmgQ2APDtoXPM4BA5KAY3RFbiiCNwLCHl3DL7sv8xu/1ANoMbIkfEy1JEVmSv877YQmhjD2Nf6woaDayS2WrW2MPsdrmzZo6yFAeR0jC4oVrhh3bVOALHAlaaiMLd1fxHWV1XF+s8QS04ytpVRErE4IYsxg9tqo2sguJKsYwArNLhurYzDksVpFfVv6h7S28GvmR37PHHLIMbsoitPrTt8c1E1ZNyyYOK/k43TqB4q/5OUgbpHDlHamGvP2bZoZgsYosFBx1pZW1HYpMO15qb/q2C1HMSceQcqYE9z93FzA1ZROoFB5nOVzepOlxb+ncjdWalIpCbvPooyoXgyDmyS/acgWRwQxaR+kPbVm8mXvaSjxQdri39u7HFquAcOUf2zhbvE6kwuCGLSfmhbYs3k71eQ6aqWfp3Y6vMCkfOkT2z5wwkVwUnxUndn1PpzWSt4CNXX4JuM7dV+hLcNamHXbxhqWq1+buxdFVwZvzkw9dePpa+T6TCVcHJrkmZGbLna8hUvdr83ViSWWHGTz587eVljxlIjpayIilXO3Y0/jp3xIQ1svobiqNY1E2qvxt7HjVi7/jaU20wuLESDl+2DxXXkCv+8GsyHwrZD6l+YNhiCgQyj6891YYigpv58+cjJCQEbm5uuOOOO7Bv375qy69cuRKtWrWCm5sbIiMjkZaWZqOamsdfFnaohvOhkP2Q8gcGM37y4WtPtSF7cJOamooJEyZgypQpOHToEKKiopCYmIjz58+bLZ+eno7BgwfjqaeewuHDh9G/f3/0798fR48etXHN/4e/LOwHA1H7UtNMTK6+BJO+NT2vk1Yfsdp55Yrv8uFrT7Uh+2ipO+64A507d8bHH38MADAYDAgKCsLzzz+PSZMmVSo/aNAgFBcXY8OGDcZtXbt2Rfv27bFw4cJbPp8Uo6U4Asd+pGcWYMhneytt/2ZUV8SENZKhRlQVSzqRbvj1L4xddrjS9vlDOqBPuwCr1Ukpo0YcEV97suT7W9bMzbVr13Dw4EEkJCQYtzk5OSEhIQF79uwxu8+ePXtMygNAYmJileVLS0tRWFhocrM2/rKwH0xx2wdLM2xV/Uaz9k83qTos063xtSdLyDoUvKCgAOXl5fD19TXZ7uvrixMnTpjdJy8vz2z5vLw8s+WTk5Mxbdo061S4GpyN1D7Y86RUjsTSIfudQrygAUxWHdcAiA5pKGU1iUihVD/PTVJSEiZMmGC8X1hYiKCgIEmeyx7nAnBEDESVrzYzDs98yHRV8OSHInluiRyUrMFN48aN4ezsjPz8fJPt+fn58PPzM7uPn5+fReW1Wi20Wq11KkyqwUBU2WqTYWPQSkQVZO1z4+rqiujoaGzdutW4zWAwYOvWrYiJiTG7T0xMjEl5ANiyZUuV5YnIPg3q3BS7JvXAN6O6YtekHjWakZb9MogIUMBlqQkTJmD48OHo1KkTunTpgrlz56K4uBgjRowAAAwbNgyBgYFITk4GAIwbNw5xcXGYPXs2+vTpg+XLl+PAgQP49NNP5WwGEUmAGTYiqg3Zg5tBgwbhwoULePPNN5GXl4f27dtj48aNxk7DOTk5cHL6X4IpNjYWy5Ytw+uvv47JkyejRYsWWLt2Ldq2bStXE4iIiEhBZJ/nxta4KjgREZH9sZt5boiIiIisjcENERERqQqDGyIiIlIVBjdERESkKgxuiIiISFUY3BAREZGqMLghIiIiVWFwQ0RERKrC4IaIiIhURfblF2ytYkLmwsJCmWtCRERENVXxvV2ThRUcLri5fPkyACAoKEjmmhAREZGlLl++DJ1OV20Zh1tbymAw4K+//kL9+vWh0WiseuzCwkIEBQXh7Nmzqly3Su3tA9TfRrbP/qm9jWyf/ZOqjUIIXL58GQEBASYLapvjcJkbJycnNGnSRNLn8PT0VO0fLaD+9gHqbyPbZ//U3ka2z/5J0cZbZWwqsEMxERERqQqDGyIiIlIVBjdWpNVqMWXKFGi1WrmrIgm1tw9QfxvZPvun9jayffZPCW10uA7FREREpG7M3BAREZGqMLghIiIiVWFwQ0RERKrC4IaIiIhUhcFNNebPn4+QkBC4ubnhjjvuwL59+6otP3fuXISHh8Pd3R1BQUF48cUXcfXq1ds6ptSs3capU6dCo9GY3Fq1aiV1M6pkSfvKysowffp0hIWFwc3NDVFRUdi4ceNtHVNq1m6fks7fzp070bdvXwQEBECj0WDt2rW33Gf79u3o2LEjtFotmjdvjpSUlEpllHT+pGijPZ/D3NxcDBkyBC1btoSTkxPGjx9vttzKlSvRqlUruLm5ITIyEmlpadavfA1I0b6UlJRK58/NzU2aBtSApW1cvXo17r33Xnh7e8PT0xMxMTHYtGlTpXKSvw8FmbV8+XLh6uoqFi9eLI4dOyZGjRolGjRoIPLz882W//rrr4VWqxVff/21yMrKEps2bRL+/v7ixRdfrPUxpSZFG6dMmSLatGkjcnNzjbcLFy7YqkkmLG3fxIkTRUBAgPjuu+9EZmam+OSTT4Sbm5s4dOhQrY8pJSnap6Tzl5aWJl577TWxevVqAUCsWbOm2vKnT58WdevWFRMmTBC//fabmDdvnnB2dhYbN240llHS+RNCmjba8znMysoSL7zwgvjiiy9E+/btxbhx4yqV2b17t3B2dhbvvvuu+O2338Trr78uXFxcxJEjR6RpRDWkaN+SJUuEp6enyfnLy8uTpgE1YGkbx40bJ2bNmiX27dsn/vjjD5GUlCRcXFxs/jnK4KYKXbp0EWPGjDHeLy8vFwEBASI5Odls+TFjxoi7777bZNuECRNEt27dan1MqUnRxilTpoioqChJ6mspS9vn7+8vPv74Y5NtAwYMEEOHDq31MaUkRfuUdP5uVJMP1YkTJ4o2bdqYbBs0aJBITEw03lfS+buZtdpoz+fwRnFxcWa//AcOHCj69Oljsu2OO+4QTz/99G3W8PZYq31LliwROp3OavWyJkvbWCEiIkJMmzbNeN8W70NeljLj2rVrOHjwIBISEozbnJyckJCQgD179pjdJzY2FgcPHjSm1k6fPo20tDT07t271seUkhRtrHDy5EkEBASgWbNmGDp0KHJycqRrSBVq077S0tJK6V93d3fs2rWr1seUihTtq6CE81cbe/bsMXk9ACAxMdH4eijp/NXWrdpYwV7PYU3U9DWwZ0VFRQgODkZQUBD69euHY8eOyV2lWjMYDLh8+TK8vLwA2O59yODGjIKCApSXl8PX19dku6+vL/Ly8szuM2TIEEyfPh133nknXFxcEBYWhvj4eEyePLnWx5SSFG0EgDvuuAMpKSnYuHEjFixYgKysLNx11124fPmypO25WW3al5iYiA8++AAnT56EwWDAli1bsHr1auTm5tb6mFKRon2Acs5fbeTl5Zl9PQoLC1FSUqKo81dbt2ojYN/nsCaqeg3s5RzeSnh4OBYvXox169Zh6dKlMBgMiI2NxZ9//il31Wrl/fffR1FREQYOHAjAdp+jDG6sZPv27XjnnXfwySef4NChQ1i9ejW+++47zJgxQ+6qWU1N2tirVy888sgjaNeuHRITE5GWloZLly5hxYoVMta8Zj788EO0aNECrVq1gqurK8aOHYsRI0bAyUkdb5OatM+ezx9dx3No32JiYjBs2DC0b98ecXFxWL16Nby9vbFo0SK5q2axZcuWYdq0aVixYgV8fHxs+tx1bPpsdqJx48ZwdnZGfn6+yfb8/Hz4+fmZ3eeNN97A448/jpEjRwIAIiMjUVxcjNGjR+O1116r1TGlJEUbzQUBDRo0QMuWLXHq1CnrN6IatWmft7c31q5di6tXr+Lvv/9GQEAAJk2ahGbNmtX6mFKRon3myHX+asPPz8/s6+Hp6Ql3d3c4Ozsr5vzV1q3aaI49ncOaqOo1sJdzaCkXFxd06NDB7s7f8uXLMXLkSKxcudLkEpStPkfV8ZPUylxdXREdHY2tW7catxkMBmzduhUxMTFm97ly5UqlL3dnZ2cAgBCiVseUkhRtNKeoqAiZmZnw9/e3Us1r5nZebzc3NwQGBuLff//Ft99+i379+t32Ma1NivaZI9f5q42YmBiT1wMAtmzZYnw9lHT+autWbTTHns5hTdTmNbBn5eXlOHLkiF2dv2+++QYjRozAN998gz59+pg8ZrP3odW6JqvM8uXLhVarFSkpKeK3334To0ePFg0aNDAOyXv88cfFpEmTjOWnTJki6tevL7755htx+vRpsXnzZhEWFiYGDhxY42PamhRtfOmll8T27dtFVlaW2L17t0hISBCNGzcW58+fV3z7fv75Z/Htt9+KzMxMsXPnTnH33XeL0NBQcfHixRof05akaJ+Szt/ly5fF4cOHxeHDhwUA8cEHH4jDhw+LM2fOCCGEmDRpknj88ceN5SuGSb/yyivi+PHjYv78+WaHgivl/AkhTRvt+RwKIYzlo6OjxZAhQ8Thw4fFsWPHjI/v3r1b1KlTR7z//vvi+PHjYsqUKbINBZeifdOmTRObNm0SmZmZ4uDBg+LRRx8Vbm5uJmVsydI2fv3116JOnTpi/vz5JsPZL126ZCxji/chg5tqzJs3TzRt2lS4urqKLl26iJ9//tn4WFxcnBg+fLjxfllZmZg6daoICwsTbm5uIigoSDz33HMmXxy3OqYcrN3GQYMGCX9/f+Hq6ioCAwPFoEGDxKlTp2zYIlOWtG/79u2idevWQqvVikaNGonHH39cnDt3zqJj2pq126ek8/fjjz8KAJVuFW0aPny4iIuLq7RP+/bthaurq2jWrJlYsmRJpeMq6fxJ0UZ7P4fmygcHB5uUWbFihWjZsqVwdXUVbdq0Ed99951tGnQTKdo3fvx449+nr6+v6N27t8kcMbZmaRvj4uKqLV9B6vehRogqricQERER2SH2uSEiIiJVYXBDREREqsLghoiIiFSFwQ0RERGpCoMbIiIiUhUGN0RERKQqDG6IiIhIVRjcEBEpwPbt26HRaHDp0iW5q0Jk9xjcEDmYJ554AhqNBjNnzjTZvnbtWmg0GuN9IQQ+++wzxMTEwNPTE/Xq1UObNm0wbty4Gi/id+XKFSQlJSEsLAxubm7w9vZGXFwc1q1bZywTEhKCuXPnWqVtUqt47TQaDVxcXBAaGoqJEyfi6tWrFh0nPj4e48ePN9kWGxuL3Nxc6HQ6K9aYyDExuCFyQG5ubpg1axYuXrxo9nEhBIYMGYIXXngBvXv3xubNm/Hbb7/hP//5D9zc3PDWW2/V6HmeeeYZrF69GvPmzcOJEyewceNGPPzww/j777+t2Rybuu+++5Cbm4vTp09jzpw5WLRoEaZMmXLbx3V1dYWfn59JgElEtWTVxRyISPGGDx8u7r//ftGqVSvxyiuvGLevWbNGVHwkfPPNNwKAWLdundljGAyGGj2XTqcTKSkpVT5ubh2aCj/99JO48847hZubm2jSpIl4/vnnRVFRkfHxL7/8UkRHR4t69eoJX19fMXjwYJGfn298vGJNnI0bN4r27dsLNzc30aNHD5Gfny/S0tJEq1atRP369cXgwYNFcXFxjdozfPhw0a9fP5NtAwYMEB06dDDeLygoEI8++qgICAgQ7u7uom3btmLZsmUmx7i5zVlZWcb63rhW26pVq0RERIRwdXUVwcHB4v33369RPYkcHTM3RA7I2dkZ77zzDubNm4c///yz0uPffPMNwsPD8cADD5jdv6bZBT8/P6SlpeHy5ctmH1+9ejWaNGmC6dOnIzc3F7m5uQCAzMxM3HfffXjooYfw66+/IjU1Fbt27cLYsWON+5aVlWHGjBn45ZdfsHbtWmRnZ+OJJ56o9BxTp07Fxx9/jPT0dJw9exYDBw7E3LlzsWzZMnz33XfYvHkz5s2bV6P23Ozo0aNIT0+Hq6urcdvVq1cRHR2N7777DkePHsXo0aPx+OOPY9++fQCADz/8EDExMRg1apSxzUFBQZWOffDgQQwcOBCPPvoojhw5gqlTp+KNN95ASkpKrepK5FDkjq6IyLZuzD507dpVPPnkk0II08xNq1atxAMPPGCy37hx44SHh4fw8PAQgYGBNXquHTt2iCZNmggXFxfRqVMnMX78eLFr1y6TMsHBwWLOnDkm25566ikxevRok20//fSTcHJyEiUlJWafa//+/QKAuHz5shDif5mbH374wVgmOTlZABCZmZnGbU8//bRITEysUXuGDx8unJ2dhYeHh9BqtQKAcHJyEqtWrap2vz59+oiXXnrJeD8uLk6MGzfOpMzNmZshQ4aIe++916TMK6+8IiIiImpUVyJHxswNkQObNWsWvvjiCxw/fvyWZV977TVkZGTgzTffRFFRUY2O3717d5w+fRpbt27Fww8/jGPHjuGuu+7CjBkzqt3vl19+QUpKCurVq2e8JSYmwmAwICsrC8D1zEbfvn3RtGlT1K9fH3FxcQCAnJwck2O1a9fO+H9fX1/UrVsXzZo1M9l2/vz5GrUHAHr06IGMjAzs3bsXw4cPx4gRI/DQQw8ZHy8vL8eMGTMQGRkJLy8v1KtXD5s2bapUr1s5fvw4unXrZrKtW7duOHnyJMrLyy06FpGjYXBD5MC6d++OxMREJCUlmWxv0aIFfv/9d5Nt3t7eaN68OXx8fCx6DhcXF9x111149dVXsXnzZkyfPh0zZszAtWvXqtynqKgITz/9NDIyMoy3X375BSdPnkRYWBiKi4uRmJgIT09PfP3119i/fz/WrFkDAJWO6+LiYvx/xSinG2k0GhgMhhq3x8PDA82bN0dUVBQWL16MvXv34j//+Y/x8ffeew8ffvghXn31Vfz444/IyMhAYmJite0lIuuqI3cFiEheM2fORPv27REeHm7cNnjwYAwZMgTr1q1Dv379rPp8ERER+Pfff3H16lW4urrC1dW1UiaiY8eO+O2339C8eXOzxzhy5Aj+/vtvzJw509hf5cCBA1atZ004OTlh8uTJmDBhAoYMGQJ3d3fs3r0b/fr1w2OPPQYAMBgM+OOPPxAREWHcz1ybb9a6dWvs3r3bZNvu3bvRsmVLODs7W78xRCrCzA2Rg4uMjMTQoUPx0UcfGbc9+uijePjhh/Hoo49i+vTp2Lt3L7Kzs7Fjxw6kpqbW+Ms1Pj4eixYtwsGDB5GdnY20tDRMnjwZPXr0gKenJ4Dr89zs3LkT586dQ0FBAQDg1VdfRXp6OsaOHYuMjAycPHkS69atM3Yobtq0KVxdXTFv3jycPn0a69evv+WlLqk88sgjcHZ2xvz58wFcz3pt2bIF6enpOH78OJ5++mnk5+eb7BMSEmJ8TQsKCsxmjl566SVs3boVM2bMwB9//IEvvvgCH3/8MV5++WWbtIvInjG4ISJMnz7d5AtWo9EgNTUVc+fORVpaGu655x6Eh4fjySefRFBQEHbt2lWj4yYmJuKLL75Az5490bp1azz//PNITEzEihUrTJ47OzsbYWFh8Pb2BnC9n8yOHTvwxx9/4K677kKHDh3w5ptvIiAgAMD1S2QpKSlYuXIlIiIiMHPmTLz//vtWfEVqrk6dOhg7dizeffddFBcX4/XXX0fHjh2RmJiI+Ph4+Pn5oX///ib7vPzyy3B2dkZERAS8vb3N9sfp2LEjVqxYgeXLl6Nt27Z48803MX36dLMjwojIlEYIIeSuBBEREZG1MHNDREREqsLghohq7cah2jfffvrpJ7mrZ5GcnJxq22PpUG4ikg8vSxFRrVW3gGZgYCDc3d1tWJvb8++//yI7O7vKx0NCQlCnDgeYEtkDBjdERESkKrwsRURERKrC4IaIiIhUhcENERERqQqDGyIiIlIVBjdERESkKgxuiIiISFUY3BAREZGqMLghIiIiVfk/KVvyh1A6800AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHHCAYAAAC7soLdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARZZJREFUeJzt3Xd8k+X+//F3WuhgtAi0tEChUJZsQcGCMs5BquBAjzKVoeICBXEBDoYeCx4HiiiOI3WDA5Cj/BAEEaUoCNYNMgpFbQtVSKGUYXv9/vDbSOxMmzTJndfz8chDc+e+71xXbpr7k8+1bMYYIwAAAAsL8nYBAAAAPI2ABwAAWB4BDwAAsDwCHgAAYHkEPAAAwPIIeAAAgOUR8AAAAMsj4AEAAJZHwAMAACyPgAeAV8ycOVM2m61C+9psNs2cOdOj5enXr5/69evns+cDUDUEPECAS0lJkc1mczxq1KihJk2aaOzYsfrll1+8XTyfEx8f7/R5RUdH6/zzz9eyZcvccv5jx45p5syZWr9+vVvOB+BPBDwAJEmzZ8/Wq6++qoULF+qiiy7Sa6+9pr59++r48eMeeb/77rtP+fn5Hjm3p3Xt2lWvvvqqXn31Vd1555369ddfdcUVV2jhwoVVPvexY8c0a9YsAh7AzWp4uwAAfMNFF12ks88+W5J0/fXXq2HDhpo7d65WrFihoUOHuv39atSooRo1/PMrqEmTJrr66qsdz0ePHq1WrVrpiSee0E033eTFkgEoDRkeACU6//zzJUm7d+922r59+3ZdeeWVql+/vsLCwnT22WdrxYoVTvucOnVKs2bNUuvWrRUWFqYGDRrovPPO05o1axz7lNSH58SJE7r99tsVFRWlunXr6tJLL9XPP/9crGxjx45VfHx8se0lnXPRokX6xz/+oejoaIWGhqp9+/Z69tlnXfosyhMTE6MzzzxT6enpZe534MABXXfddWrUqJHCwsLUpUsXvfzyy47X9+7dq6ioKEnSrFmzHM1mnu6/BAQC//x5BcDj9u7dK0k644wzHNu+//579e7dW02aNNHUqVNVu3ZtvfXWWxoyZIjeffddXX755ZL+DDySk5N1/fXXq0ePHsrNzdWXX36pbdu26YILLij1Pa+//nq99tprGjlypHr16qV169Zp8ODBVarHs88+qw4dOujSSy9VjRo19L///U+33HKLCgsLNWHChCqdu8ipU6e0f/9+NWjQoNR98vPz1a9fP+3atUsTJ05UixYt9Pbbb2vs2LE6fPiwJk2apKioKD377LO6+eabdfnll+uKK66QJHXu3Nkt5QQCmgEQ0BYtWmQkmY8++sgcPHjQ7N+/37zzzjsmKirKhIaGmv379zv2/ec//2k6depkjh8/7thWWFhoevXqZVq3bu3Y1qVLFzN48OAy33fGjBnm9K+gtLQ0I8nccsstTvuNHDnSSDIzZsxwbBszZoxp3rx5uec0xphjx44V2y8pKcm0bNnSaVvfvn1N3759yyyzMcY0b97cDBw40Bw8eNAcPHjQfP3112b48OFGkrn11ltLPd+8efOMJPPaa685tp08edIkJiaaOnXqmNzcXGOMMQcPHixWXwBVR5MWAEnSgAEDFBUVpbi4OF155ZWqXbu2VqxYoaZNm0qSfv/9d61bt05Dhw7VkSNHlJOTo5ycHP32229KSkrSzp07HaO66tWrp++//147d+6s8PuvXLlSknTbbbc5bZ88eXKV6hUeHu74f7vdrpycHPXt21d79uyR3W6v1DlXr16tqKgoRUVFqUuXLnr77bd1zTXXaO7cuaUes3LlSsXExGjEiBGObTVr1tRtt92mo0eP6pNPPqlUWQBUTEAHPBs2bNAll1yixo0by2azafny5R5/z19++UVXX321GjRooPDwcHXq1Elffvmlx98XKM+CBQu0Zs0avfPOOxo0aJBycnIUGhrqeH3Xrl0yxuj+++933OyLHjNmzJD0Zx8V6c8RX4cPH1abNm3UqVMn3XXXXfrmm2/KfP99+/YpKChICQkJTtvbtm1bpXpt3LhRAwYMUO3atVWvXj1FRUVp+vTpklTpgKdnz55as2aNPvroI6WmpionJ0evvPKKU3D1d/v27VPr1q0VFOT8tXvmmWc6XgfgOQHdhycvL09dunTRtdde62gr96RDhw6pd+/e6t+/v/7f//t/ioqK0s6dO536SADe0qNHD8corSFDhui8887TyJEjtWPHDtWpU0eFhYWSpDvvvFNJSUklnqNVq1aSpD59+mj37t167733tHr1ar344ot64okntHDhQl1//fVVLmtpExYWFBQ4Pd+9e7f++c9/ql27dnr88ccVFxenkJAQrVy5Uk888YSjTq5q2LChBgwYUKljAXhHQAc8F110kS666KJSXz9x4oTuvfdevfnmmzp8+LA6duyouXPnVnr21Llz5youLk6LFi1ybGvRokWlzgV4UnBwsJKTk9W/f389/fTTmjp1qlq2bCnpz2aYitzs69evr3HjxmncuHE6evSo+vTpo5kzZ5Ya8DRv3lyFhYXavXu3U1Znx44dxfY944wzdPjw4WLb/54l+d///qcTJ05oxYoVatasmWP7xx9/XG753a158+b65ptvVFhY6JTl2b59u+N1qfRgDkDVBHSTVnkmTpyoTZs2afHixfrmm2901VVX6cILL3SpX8LpVqxYobPPPltXXXWVoqOjddZZZ+mFF15wc6kB9+jXr5969OihefPm6fjx44qOjla/fv303HPPKTMzs9j+Bw8edPz/b7/95vRanTp11KpVK504caLU9yv68fHUU085bZ83b16xfRMSEmS3252ayTIzM4vNdhwcHCxJMsY4ttntdqcfHdVl0KBBysrK0pIlSxzb/vjjD82fP1916tRR3759JUm1atWSpBIDOgCVF9AZnrJkZGRo0aJFysjIUOPGjSX9mcpftWqVFi1apIcfftjlc+7Zs0fPPvuspkyZounTp2vLli267bbbFBISojFjxri7CkCV3XXXXbrqqquUkpKim266SQsWLNB5552nTp06afz48WrZsqWys7O1adMm/fzzz/r6668lSe3bt1e/fv3UvXt31a9fX19++aXeeecdTZw4sdT36tq1q0aMGKFnnnlGdrtdvXr10tq1a7Vr165i+w4fPlz33HOPLr/8ct122206duyYnn32WbVp00bbtm1z7Ddw4ECFhITokksu0Y033qijR4/qhRdeUHR0dIlBmyfdcMMNeu655zR27Fht3bpV8fHxeuedd7Rx40bNmzdPdevWlfRnJ+v27dtryZIlatOmjerXr6+OHTuqY8eO1VpewHK8PUzMV0gyy5Ytczx///33jSRTu3Ztp0eNGjXM0KFDjTHG/Pjjj0ZSmY977rnHcc6aNWuaxMREp/e99dZbzbnnnlstdQRKUjQsfcuWLcVeKygoMAkJCSYhIcH88ccfxhhjdu/ebUaPHm1iYmJMzZo1TZMmTczFF19s3nnnHcdxDz30kOnRo4epV6+eCQ8PN+3atTP//ve/zcmTJx37lDSEPD8/39x2222mQYMGpnbt2uaSSy4x+/fvL3GY9urVq03Hjh1NSEiIadu2rXnttddKPOeKFStM586dTVhYmImPjzdz5841L730kpFk0tPTHfu5Miy9vCH3pZ0vOzvbjBs3zjRs2NCEhISYTp06mUWLFhU7NjU11XTv3t2EhIQwRB1wE5sxp+V6A5jNZtOyZcs0ZMgQSdKSJUs0atQoff/99460eJE6deooJiZGJ0+e1J49e8o8b4MGDRwzpzZv3lwXXHCBXnzxRcfrzz77rB566CEWaQQAwINo0irFWWedpYKCAh04cMAxxf7fhYSEqF27dhU+Z+/evYt1wPzpp58cnRUBAIBnBHTAc/ToUaf+Aenp6UpLS1P9+vXVpk0bjRo1SqNHj9Zjjz2ms846SwcPHtTatWvVuXPnSk13f/vtt6tXr156+OGHNXToUG3evFnPP/+8nn/+eXdWCwAA/E1AN2mtX79e/fv3L7Z9zJgxSklJ0alTp/TQQw/plVde0S+//KKGDRvq3HPP1axZs9SpU6dKvef777+vadOmaefOnWrRooWmTJmi8ePHV7UqAACgDAEd8AAAgMDAPDwAAMDyCHgAAIDlBVyn5cLCQv3666+qW7cuU7gDAOAnjDE6cuSIGjduXGwR3ooIuIDn119/VVxcnLeLAQAAKmH//v1q2rSpy8cFXMBTNH37/v37FRER4eXSAACAisjNzVVcXJzjPu6qgAt4ipqxIiIiCHgAAPAzle2OQqdlAABgeQQ8AADA8gh4AACA5QVcH56KKigo0KlTp7xdDMuoWbNmsVXnAQCoLgQ8f2OMUVZWlg4fPuztolhOvXr1FBMTw/xHAIBqR8DzN0XBTnR0tGrVqsXN2Q2MMTp27JgOHDggSYqNjfVyiQAAgYaA5zQFBQWOYKdBgwbeLo6lhIeHS5IOHDig6OhomrcAANWKTsunKeqzU6tWLS+XxJqKPlf6RgEAqhsBTwloxvIMPlcAgLcQ8AAAAMsj4AEAAJZHwGMhWVlZuvXWW9WyZUuFhoYqLi5Ol1xyidauXStJuvHGG5WQkKDw8HBFRUXpsssu0/bt2x3H7927VzabTWlpacXO3a9fP02ePNnx/OjRo5o4caKaNm2q8PBwtW/fXgsXLvR0FQEAPi7Tnq/U3TnKtOd7uyhOGKVlEXv37lXv3r1Vr149/ec//1GnTp106tQpffjhh5owYYK2b9+u7t27a9SoUWrWrJl+//13zZw5UwMHDlR6errLo6amTJmidevW6bXXXlN8fLxWr16tW265RY0bN9all17qoVoCAHzZki0Zmrb0WxUaKcgmJV/RScPOaebtYkki4LGMW265RTabTZs3b1bt2rUd2zt06KBrr71WknTDDTc4tsfHx+uhhx5Sly5dtHfvXiUkJLj0fqmpqRozZoz69evnOPdzzz2nzZs3E/AAQADKtOc7gh1JKjTS9KXfqU+bKMVGhnu3cKJJy6OqK633+++/a9WqVZowYYJTsFOkXr16xbbl5eVp0aJFatGiheLi4lx+z169emnFihX65ZdfZIzRxx9/rJ9++kkDBw6sTBUAAH4uPSfPEewUKTBGe3OOeadAf0OGx0OqM623a9cuGWPUrl27cvd95plndPfddysvL09t27bVmjVrFBIS4rRPr169FBTkHAvn5+era9eujufz58/XDTfcoKZNm6pGjRoKCgrSCy+8oD59+rilTgAA/9KiYW0F2eQU9ATbbIpv6Btz25Hh8YDS0nqeyvQYY8rf6f+MGjVKX331lT755BO1adNGQ4cO1fHjx532WbJkidLS0pweZ599ttM+8+fP1+eff64VK1Zo69ateuyxxzRhwgR99NFHbqkTAMC/xEaGK/mKTgr+vznXgm02PXxFR59ozpLI8HhEWWk9T1z41q1by2azOY24Kk1kZKQiIyPVunVrnXvuuTrjjDO0bNkyjRgxwrFPXFycWrVq5XRc0dIQ0p/ZnunTp2vZsmUaPHiwJKlz585KS0vTo48+qgEDBripZgAAfzLsnGbq0yZKe3OOKb5hLZ8JdiQyPB5RlNY7nSfTevXr11dSUpIWLFigvLy8Yq+XtvK7MUbGGJ04ccKl9zt16pROnTpVrNkrODhYhYWFLp0LAGAtsZHhSkxo4FPBjkTA4xHeSOstWLBABQUF6tGjh959913t3LlTP/74o5566iklJiZqz549Sk5O1tatW5WRkaHU1FRdddVVCg8P16BBg1x6r4iICPXt21d33XWX1q9fr/T0dKWkpOiVV17R5Zdf7qEaAgBQeTRpeUh1p/Vatmypbdu26d///rfuuOMOZWZmKioqSt27d9ezzz6rsLAwffrpp5o3b54OHTqkRo0aqU+fPkpNTVV0dLTL77d48WJNmzZNo0aN0u+//67mzZvr3//+t2666SYP1A4AgKqxGVd6vFpAbm6uIiMjZbfbFRER4fTa8ePHlZ6erhYtWigsLMxLJbQuPl8AQGWVdf+uCJq0AACA5RHwAAAAyyPgAQAAlkfAAwAALI+ApwQB1o+72vjq51pda54BALyHYemnqVmzpiTp2LFjTjMLwz2OHftzAbmiz9kXVOeaZwAA7yHgOU1wcLDq1aunAwcOSJJq1aolm81WzlEojzFGx44d04EDB1SvXj0FBwd7u0iSSl/zrE+bKJ+bIRQAUDUEPH8TExMjSY6gB+5Tr149x+frC6p7zTMAgPcQ8PyNzWZTbGysoqOjderUKW8XxzJq1qzpM5mdIkVrnp0e9HhyzTMAnpVpz1d6Tp5aNKzNjxYUQ8BTiuDgYJ+7QcO9itY8m770OxUYUy1rngHwDPrjoTwsLYGAl2nPr7Y1zwC4X6Y9X73nrCuWrf1san/+pi3Er5eWSE5O1jnnnKO6desqOjpaQ4YM0Y4dO8o97u2331a7du0UFhamTp06aeXKldVQWlhVbGS4EhMa8MUI+Kmy+uMBRbwa8HzyySeaMGGCPv/8c61Zs0anTp3SwIEDlZeXV+oxqampGjFihK677jp99dVXGjJkiIYMGaLvvvuuGksOAPAVRf3xTkd/PPydTzVpHTx4UNHR0frkk0/Up0+fEvcZNmyY8vLy9P777zu2nXvuueratasWLlxY7nvQpAUA1rNkS0ax/nj04bGWqt6/farTst1ulyTVr1+/1H02bdqkKVOmOG1LSkrS8uXLS9z/xIkTOnHihON5bm5u1QsK+BBGpgDSsHOaqU+bKPrj+QBf/U7ymYCnsLBQkydPVu/evdWxY8dS98vKylKjRo2ctjVq1EhZWVkl7p+cnKxZs2a5tayAr2BkCvCX2Mhwn7rBBiJf/k7ymbW0JkyYoO+++06LFy9263mnTZsmu93ueOzfv9+t5we8pbSZolkTDIA3+Pp3kk9keCZOnKj3339fGzZsUNOmTcvcNyYmRtnZ2U7bsrOzS53BNzQ0VKGhoW4rK+ArmCkagC/x9e8kr2Z4jDGaOHGili1bpnXr1qlFixblHpOYmKi1a9c6bVuzZo0SExM9VUzAJzEyBYAv8fXvJK8GPBMmTNBrr72mN954Q3Xr1lVWVpaysrKUn/9X+mv06NGaNm2a4/mkSZO0atUqPfbYY9q+fbtmzpypL7/8UhMnTvRGFQCvKZopOvj/FrhlpmgA3uTr30leHZZe2krkixYt0tixYyVJ/fr1U3x8vFJSUhyvv/3227rvvvu0d+9etW7dWo888ogGDRpUofdkWDqshpmiAfgST30nVfX+7VPz8FQHAh4AAPyPXy8tAQAAUB0IeAAAgOUR8AAAAMsj4AEAAJZHwONFmfZ8pe7O8ZlZKAEAsCqfmGk5EPnyeiMAAFgNGR4v8PX1RgAAsBoCHi8oa70RAADgfgQ8XuDr640AAGA1BDxe4OvrjQAAYDV0WvaSYec0U582UayBBABANSDg8aLYyHACHQAAqgFNWhbGPD8AAPyJDI9FMc8PAAB/IcNjQczzAwCAMwIeC2KeHwAAnBHwWBDz/AAA4IyAx4KY5wcAAGd0WrYo5vkBAOAvBDwWVpl5fjLt+UrPyVOLhrUJkgAAlkHAAweGsgMArIo+PJDEUHYAgLUR8EASQ9kBANZGwANJDGUHAFgbAQ8kMZQdAGBtdFqGA0PZAQBWRcADJ5UZyg4A8A+BPPUIAQ8AAAEg0KceoQ8PAAAWx9QjBDwAAFgeU48Q8AAAYHlMPULAAwCA5TH1CJ2WAQAICIE+9QgBDwAAASKQpx6hSQsAAFgeAQ+cZNrzlbo7J6CGKgIArI8mLTgE+qRUAADrIsMDSUxKBQCwNgIeSGJSKgCAtRHwQBKTUnkS/aIAwPsIeCCJSak8ZcmWDPWes04jX/hCvees05ItGd4uEgAEJJsxxpS/m3Xk5uYqMjJSdrtdERER3i6Oz8m05wfspFTulmnPV+8565yaCoNtNn02tT+fLQC4qKr3b0ZpwUkgT0rlbmX1i+IzBoDqRZMW4CH0iwIA30HAA3gI/aIAwHfQpAV4UKAv1gcAvoKAB/Aw+kUBgPfRpAUAAEpllbnEyPAAAIASWWmNRTI8AACgGKutsUjAAwAAirHaGosEPAAAoBirzSVGwAMAAIqx2lxidFoGAAAlstJcYgQ8AACgVFaZS4wmLQAAYHkEPAAAwPIIeAAAgOUR8AAAAMsj4AEAAJZHwAMAACyPgAcAAFgeAQ8AALA8Ah4AAGB5BDwAAMDyCHgAAIDlEfAAAADL82rAs2HDBl1yySVq3LixbDabli9fXub+69evl81mK/bIysqqngIDAAC/5NWAJy8vT126dNGCBQtcOm7Hjh3KzMx0PKKjoz1UQgAAYAU1vPnmF110kS666CKXj4uOjla9evXcXyAAAGBJftmHp2vXroqNjdUFF1ygjRs3ers4AADAx3k1w+Oq2NhYLVy4UGeffbZOnDihF198Uf369dMXX3yhbt26lXjMiRMndOLECcfz3Nzc6iqu12Xa85Wek6cWDWsrNjLc28UBAMBr/Crgadu2rdq2bet43qtXL+3evVtPPPGEXn311RKPSU5O1qxZs6qriD5jyZYMTVv6rQqNFGSTkq/opGHnNPN2sQAA8Aq/bNI6XY8ePbRr165SX582bZrsdrvjsX///mosnXdk2vMdwY4kFRpp+tLvlGnP927BAADwEr/K8JQkLS1NsbGxpb4eGhqq0NDQaiyR96Xn5DmCnSIFxmhvzjGatgAAAcmrAc/Ro0edsjPp6elKS0tT/fr11axZM02bNk2//PKLXnnlFUnSvHnz1KJFC3Xo0EHHjx/Xiy++qHXr1mn16tXeqoJPatGwtoJscgp6gm02xTes5b1CAQDgRV4NeL788kv179/f8XzKlCmSpDFjxiglJUWZmZnKyMhwvH7y5Endcccd+uWXX1SrVi117txZH330kdM5IMVGhiv5ik6avvQ7FRijYJtND1/RkewOACBg2YwxpvzdrCM3N1eRkZGy2+2KiIjwdnE8KtOer705xxTfsBbBDgCgUnxlxG9V799+34cHpYuNDCfQAQBUmpVG/Pr9KC0AAOB+VhvxS8ADAACKKWvErz8i4AEAAMUUjfg9nT+P+CXgAQAAxRSN+A22/Rn1+PuIXzotW5iv9KwHAPinYec0U582UZYY8UvAY1FW6lnvCoI8AHAvq4z4JeCxoNJ61vdpE2WJf7SlCdQgDwBQPvrwWFB19qzPtOcrdXeO14cpWm34JADAvcjwWFB1raXlSxkVFkwFAJSFDI8FVUfPel/LqFht+CQAwL3I8FiUp3vW+1pGhQVTAQBlIeCxME/2rK+uZjNXWGn4JADAvWjSQqX46oRUsZHhSkxo4PVyAAB8CxkeVBoZFQCAvyDgQZVYZUIqAIC10aQFS/GVeYEAAL6FDA8sw5fmBQIA+BYyPLAEX5sXCAAqgyy155DhgSX42rxAAOAqstSeRYYHlsBMywD8GVlqzyPggSX46rxAAFAR1bnoc6CiScvCMu35Ss/JU4uGtQPixs+8QAD8lS/OXm81BDwWFahtwcwLBMAfsR6g59mMMab83awjNzdXkZGRstvtioiI8HZxPCLTnq/ec9YV+6Xw2dT+/PEgIAVathP+K9OeT5a6FFW9f5PhsSBGLAF/CdRsJ/wTWWrPodOyBTFiCfgTI1/gbcyr4zsIeCyIEUvAnxj5Am9asiVDvees08gXvlDvOeu0ZEuGt4sU0GjSsihGLAGMfIH3lJZd7NMmiu9jLyHDY2GxkeFKTGjAHxcCFtlOeAvZRd9DhseNGAkC+B6ynfAGsou+h4DHTRgJAvguRr6gulXXvDr80K445uFxA+a9AQCUxJPz6gTaD+2q3r/pw+MGtNUCAEriqb6UTLngOgIeN2DeGwBAdeKHtusIeNyAkSAAgOrED23X0WnZTRgJAgCoLiw26joCHjdiJAgAoLrwQ9s1BDwAAPgpfmhXHH14AACA5RHwAAAAyyPgAQAAlkfAAwAALI+ABwCAAJFpz1fq7pyAnJHZ5VFa77//vjZv3qykpCT17t1b69at06OPPqrCwkJdccUVuuGGGzxRTgAAUAWBtvbW37mU4Xnuued0+eWXa+XKlRo0aJBee+01DRkyRE2aNFF8fLwmT56sJ5980lNlDXiBHJkDACqPtbdczPA89dRTeuaZZzR+/Hh9/PHHGjRokB577DHdcsstkqRzzz1XjzzyiCZNmuSRwgayQI/MAQCVV9baW4Eyj49LGZ709HQlJSVJkvr376+CggL16dPH8Xq/fv20b98+95YQROYAgCph7S0XA54GDRo4Appff/1Vf/zxhzIyMhyv79u3T/Xr13dvCcGquACAElW0qwOLXLvYpHXZZZfpuuuu05gxY7RixQqNHj1ad9xxh4KCgmSz2XTXXXdp4MCBniprwCqKzE8PegItMgcAOHO1q0Ogr73lUoZn7ty56tevnxYvXqyuXbvq+eef13XXXafLLrtMF110kRo0aKDk5GRPlTVgEZkDAE5X2a4OsZHhSkxoEJD3D5sxxpS/W9mOHz+uU6dOqW7duu4ok0fl5uYqMjJSdrtdERER3i6OSzLt+QEbmQMA/pK6O0cjX/ii2PY3x5+rxIQGXiiR51X1/u2W1dLDwsIUFhbmjlOhDKyKCwCQ6OpQGS4FPFOmTKnQfo8//nilCgMAAMpX1NVh+tLvVGAMXR0qwKWA56uvvnJ6/tlnn6l79+4KD//rA7bZbH8/DAAAuFmgd0J2VZX68NStW1dff/21WrZs6c4yeZQ/9+EBACBQVfX+zeKhAADA8gh4AACA5RHwAAAAy3Op0/I333zj9NwYo+3bt+vo0aNO2zt37lz1kgEAALiJS52Wi5aQKOmQou02m00FBQVuLaQ7+XOn5Ux7vtJz8tSiYW164wMAAkq1TjyYnp7u8hvAPVxdMwUAAPzFpYCnefPmnioHylDamil92kSR6QEAoAJc7rRsjFF6err++OMPSdLJkye1ZMkSvfLKK8rJyXF7ASGl5+Q5TR8uSQXGaG/OMe8UCAAAP+NShmfHjh1KSkrS/v371bJlS61evVpXXXWVtm/fLmOMatWqpdTUVLVu3dpT5Q1IrJkCAEDVuJThueeee9SlSxelpaXp4osv1uDBg9W0aVMdOnRIv//+uxITEzV79mxPlTVgFa2ZEvx/y3awZgoAAK5xaZRWdHS0Vq9era5duyovL09169bVhg0bdN5550mSUlNTNWLECO3bt89jBa4qfx+lxZopAIBAVK2jtI4ePar69etLkmrXrq3atWsrNjbW8XpcXJyys7NdLgQqJjYynEAHAIBKcKlJq3HjxsrIyHA8f+SRRxQdHe14fvDgQZ1xxhkVPt+GDRt0ySWXqHHjxrLZbFq+fHm5x6xfv17dunVTaGioWrVqpZSUFFeqAAAAApBLAc+AAQO0fft2x/Obb75ZdevWdTxfvXq1unXrVuHz5eXlqUuXLlqwYEGF9k9PT9fgwYPVv39/paWlafLkybr++uv14YcfVrwSAAAg4LjUh6c8e/fuVWhoqFMzV4ULYrNp2bJlGjJkSKn73HPPPfrggw/03XffObYNHz5chw8f1qpVqyr0Pv7chwcAgEBV1fu3SxmedevWqX379srNzS32mt1u1+DBg7Vr1y6XC1FRmzZt0oABA5y2JSUladOmTaUec+LECeXm5jo9AABAYHEp4Jk3b57Gjx9fYmQVGRmpG2+8UY8//rjbCvd3WVlZatSokdO2Ro0aKTc3V/n5+SUek5ycrMjISMcjLi7OY+UDAAC+yaWA5+uvv9aFF15Y6usDBw7U1q1bq1wod5o2bZrsdrvjsX//fm8XCQAAVDOXhqVnZ2erZs2apZ+sRg0dPHiwyoUqTUxMTLFh79nZ2YqIiFB4eMnDtUNDQxUaGuqxMgEAAN/nUoanSZMmTh2G/+6bb76pVIflikpMTNTatWudtq1Zs0aJiYkee08AAOD/XAp4Bg0apPvvv1/Hjx8v9lp+fr5mzJihiy++uMLnO3r0qNLS0pSWlibpz2HnaWlpjrl+pk2bptGjRzv2v+mmm7Rnzx7dfffd2r59u5555hm99dZbuv32212pBgAACDAuDUvPzs5Wt27dFBwcrIkTJ6pt27aSpO3bt2vBggUqKCjQtm3binUsLs369evVv3//YtvHjBmjlJQUjR07Vnv37tX69eudjrn99tv1ww8/qGnTprr//vs1duzYilaBYekAAPihqt6/XZ6HZ9++fbr55pv14YcfquhQm82mpKQkLViwQC1atHC5ENWJgAcAAP9TrWtpSVLz5s21cuVKHTp0SLt27ZIxRq1bt3ZpSQkAsJpMe77Sc/LUomFt1rwDfJDLAU+RM844Q+ecc447ywIAfmnJlgxNW/qtCo0UZJOSr+ikYec083axAJzGpU7LAABnmfZ8R7AjSYVGmr70O2XaS54MFYB3EPAg4GXa85W6O4cbFColPSfPEewUKTBGe3OOeadAAEpU6SYtwApoikBVtWhYW0E2OQU9wTab4hvW8l6hABRDhgcBi6YIuENsZLiSr+ikYJtN0p/BzsNXdKTjMuBjyPAgYJXVFMHNCq4Ydk4z9WkTpb05xxTfsBb/fgAfRMCDgEVTBNwpNjKcQAfwYTRpIWDRFAEAgYMMDwIaTREAEBgIeBDwaIoA4CnMwO07CHgAAPAApr3wLfThAQDAzZj2wvcQ8AAAUEEVnZmdGbh9D01aAABUgCtNVEx74XvI8AAAUA5Xm6iY9sL3kOEB4HaMTIHVVGZmdqa98C0EPF7ETQFWxMgUWFFlm6iY9sJ30KTlJUu2ZKj3nHUa+cIX6j1nnZZsyfB2kYAqY2QKrIomKv9HhscLSrsp9GkTxR8P/BoLssLKaKLybwQ8XsBNAVbFyBRYHU1U/osmLS8ouimcjpsCrIC0PwBfRYbHC4puCtOXfqcCY7gpwFJI+wPwRQQ8XsJNAVZG2h+AryHg8SJuCgDgX5hOxH8R8AAAUAHMMeXf6LQMAEA5mGPK/xHwAABQDlY/938EPAAAlIPpRPwfAQ/g5zLt+UrdnUNqHfAg5pjyf3RaBvyYr3aiZCQLrIjpRPwbAQ/gp3x1TTZfDcIAd2A6Ef9Fkxbgp3yxEyUjWQD4KgIewE/5YidKXwzCAEAi4AH8li92ovTFIAwAJPrwAH7N1zpRsjAuvInO8igLAQ/g53ytE6WvBWEIDHSWR3lo0gLgdrGR4UpMaECwg2pR2c7yzGEVWMjwAPA6miJQFWV1li/t3xMZocBDwAPAq7jxoKqKOsufHvSU1VneV+ewgmfRpAXAa5i3B+7g6ohFpk8ITGR4AHhNZZoigJK40lne1YwQrIEMDwCvYd4euFNFO8v74hxW8DwyPAC8hnl74C1MnxB4CHgAeBU3HniLr81hBc8i4AHgddx4AHgafXgAAEzCB8sjwwMAAY65kBAIyPAAQABjLiQECgIeAAhgTMKHQEHAAwABjLmQECgIeAAggDEJHwIFnZYBIMAxFxICAQEPAIC5kGB5NGkBAADLI+ABAACWR8ADAAAsj4AHAABYHgEPAACwPAIewEUssggA/odh6YALWGQRAPwTGR6gglhkEd5EZhGoGjI8QAWVtcgiE7bBk8gsAlVHhgeoIBZZhDeQWQTcg4AHqCAWWYQ3lJVZLAtNYIGB61xxNGkBLmCRRVS3oszi6UFPeZlFmsACA9fZNWR4ABfFRoYrMaEBwQ6qhauZRZrAAgPX2XU+EfAsWLBA8fHxCgsLU8+ePbV58+ZS901JSZHNZnN6hIWFVWNpAaB6DTunmT6b2l9vjj9Xn03tX+av+Mo2gfkimmtKZ6XrXF283qS1ZMkSTZkyRQsXLlTPnj01b948JSUlaceOHYqOji7xmIiICO3YscPx3GazlbgfAFhFbGR4hbKKlWkC80U015TNKte5Onk9w/P4449r/PjxGjdunNq3b6+FCxeqVq1aeumll0o9xmazKSYmxvFo1KhRNZYYAHyXFTrX01xTPitc5+rm1QzPyZMntXXrVk2bNs2xLSgoSAMGDNCmTZtKPe7o0aNq3ry5CgsL1a1bNz388MPq0KFDifueOHFCJ06ccDzPzc11XwWAAJFpz1d6Tp5aNKzNF6of8PfO9cx5VTH+fp2rm1cDnpycHBUUFBTL0DRq1Ejbt28v8Zi2bdvqpZdeUufOnWW32/Xoo4+qV69e+v7779W0adNi+ycnJ2vWrFkeKT8QCGha8E8VbQLzRTTXVJw/X+fq5vUmLVclJiZq9OjR6tq1q/r27aulS5cqKipKzz33XIn7T5s2TXa73fHYv39/NZcY8F80LcAbaK6BJ3g1w9OwYUMFBwcrOzvbaXt2drZiYmIqdI6aNWvqrLPO0q5du0p8PTQ0VKGhoVUuKxCIaFqAt9BcA3fzaoYnJCRE3bt319q1ax3bCgsLtXbtWiUmJlboHAUFBfr2228VGxvrqWICAYvlNOBNzHkFd/J6k9aUKVP0wgsv6OWXX9aPP/6om2++WXl5eRo3bpwkafTo0U6dmmfPnq3Vq1drz5492rZtm66++mrt27dP119/vbeqAFgWTQsArMLr8/AMGzZMBw8e1AMPPKCsrCx17dpVq1atcnRkzsjIUFDQX3HZoUOHNH78eGVlZemMM85Q9+7dlZqaqvbt23urCoCl0bTgGxgpB1SNzRhjyt/NOnJzcxUZGSm73a6IiAhvFwcAysVIOaDq92+vN2kBAErHSDnAPQh4ABexvg+qE2smAe7h9T48gD+haQHVjUn4APcgw2NhZCLci6YFeAMj5QD3IMNjUWQi3K+yk/AxugZVxUg5oOoIeCyotExEnzZRfFFWQWWaFgg84S6smQRUDU1aFkQnR89wtWmBJjAA8B1keCyITo6e40rTAutQ+Q6aFQEQ8FhQUSZi+tLvVGAMnRzdrKJNCwSevoFmxYohKITVMdOyhWXa8+nk6GVLtmQUCzwD4WbrKzfPTHu+es9ZVyzo/Gxqf7eXy1fqXBkEhfAHVb1/k+GxMDo5el8gjq7xpZtndTUr+lKdXcUgBwQKOi0DHhYbGa7EhAYBcfPwtY7aRc2Kp3N3s6Kv1dlVDHJAoCDgAeA2vnbzrI5J+3ytzq6qjqAQ8AU0aQFwG1/sqO3pZkVfrLMrGOSAQEGnZQBuFYgdta1QZwY5wNdV9f5NwAPA7QLx5hmIdQaqE6O0APicQBwhGIh1BvwJnZYBAIDlEfAAPibTnq/U3Tl+M6wZAPwBTVqAD/HnCewAf+PPs2PDdQQ8gI9gxlv4G38OGPhxEXgIeGAp/vwFzOrq8Cf+HDDw4yIwEfDAMvz5C1jy/wns4N9c+bHg7wEDPy4CE52WYQn+vp6RVD3LIAAlWbIlQ73nrNPIF75Q7znrtGRLRpn7s5wG/BEZHliCVX6x+erq6v7cVIiyVSZb4+/ZSJbTCEwEPLAEf/8CPp2vTWDn702FKFtlfixYIWDw1R8X8BwCHliCFb6AfZG/99VA+Sr7Y8EKAYOv/biAZxHwwDKs8AXsa6zSVIjSVeXHAgED/AkBDyyFL2D3slJTIUrHjwUEAkZpASgVI8cCR2xkuBITGnBtYVlkeACUiV//FcNINsC3EfAAKBdNhWVjJBvg+2jSAoAqsMKkl0AgIOABgCrw1VmHM+35St2dQ+AF/B+atACgClo0rC2bpNNjHptNXh3JRhMbUBwZHgBwN1P+Lp5CExtQMgIeAKiC9Jy8YvGNkbzWpOWrTWyAtxHwAEAV+NrK275WHsBXEPAAQBX42uSMvlYewFfYjDFebG2ufrm5uYqMjJTdbldERIS3iwPAIjLt+T41OaOvlQeoqqrevxmlBQBu4GuTM/paeQBvo0kLCDDMzwIgEJHhAQII87MACFRkeIAAwfwsAAIZAQ8QIJifBUAgI+ABAgTzswAIZAQ8QIBgfhYAgYxOy0AAGXZOM/VpExVw87Nk2vOVnpOnFg1rB0ydATgj4AECTKDNz2KVkWkEbUDVEPAAsKzSRqb1aRPlV0GDVYI2wJvowwPAsqwwMo3pBAD3IOABYFlWGJlmhaAN8AUEPAAsywoj06wQtAG+gD48ACxt2DnN1C6mrrbsPaRz4s9Ql7gzvF0klxQFbdOXfqcCY/wyaAN8AQEPAEuzQoffQJ1OAHAnmrQAWFZVOvz62qrysZHhSkxoQLADVBIZHgCWVVaH37ICBytkhQA4I8MDwLIq0+GXYeCANRHwALCsyozSssowcF9rkgO8jSYtwMNYEsC7XO3wW5QVOj3o8cQwcE/+u6BJDiiOgAfwIG48vsPIlL+T/soKnX7d3D0M3JP/LqyynAbgbjRpAR5CXxDfsGRLhnrPWaeRL3yh3nPWacmWjAodZ4zzf90l056vqe86/7uYuvRbt/27sEqTHOBuBDyAh3Dj8b7KBJ1FxxRdOiP3Bqpb9x0qlmsyRtq275Bbzs/MzEDJCHgAD+HG432VCTo9HaiaUlJG7sokWWE5jepCx+7AQh8ewENYEsD7KtMB2dOdls+Ory+b5JTlsUnqHu++JS+Ymbl89K8LPGR44NP8/RfYsHOa6bOp/fXm+HP12dT+fKFWs8pkOzydIYmNDNecf3VyfPkGSZrzr07lnt/VvwVmZi4d/esCExke+Cyr/AKLjQznpuNFlcl2eDpD4ur5rfK34CsqOwM3/BsBD3wSQ2vhTpUJOj0dqFb0/PwtuF91zbUE3+ITTVoLFixQfHy8wsLC1LNnT23evLnM/d9++221a9dOYWFh6tSpk1auXFlNJUV1YYSTf/P3psjK8FSd+VtwPzp2ByavZ3iWLFmiKVOmaOHCherZs6fmzZunpKQk7dixQ9HR0cX2T01N1YgRI5ScnKyLL75Yb7zxhoYMGaJt27apY8eOXqgBPIFfYP4rEJtfPFln/hY8g47dgcdmShsjWU169uypc845R08//bQkqbCwUHFxcbr11ls1derUYvsPGzZMeXl5ev/99x3bzj33XHXt2lULFy4s9/1yc3MVGRkpu92uiIgI91UEbrdkS0axEU5Wv3H6u0x7vnrPWVfs5vzZ1P6WvaFUR535WwCqfv/2aobn5MmT2rp1q6ZNm+bYFhQUpAEDBmjTpk0lHrNp0yZNmTLFaVtSUpKWL19e4v4nTpzQiRMnHM9zc3OrXnBUC36B+Z9A7AxaHXXmbwGoOq8GPDk5OSooKFCjRo2ctjdq1Ejbt28v8ZisrKwS98/Kyipx/+TkZM2aNcs9BUa1Y4STfwnE5pfqqjN/C0DV+ESnZU+aNm2a7Ha747F//35vFwmwrEDsDBqIdQb8kVczPA0bNlRwcLCys7OdtmdnZysmJqbEY2JiYlzaPzQ0VKGhoe4pMIByBWLzSyDWGfA3Xs3whISEqHv37lq7dq1jW2FhodauXavExMQSj0lMTHTaX5LWrFlT6v4Aql8gzvIbiHUG/InXh6VPmTJFY8aM0dlnn60ePXpo3rx5ysvL07hx4yRJo0ePVpMmTZScnCxJmjRpkvr27avHHntMgwcP1uLFi/Xll1/q+eef92Y1AACAD/N6wDNs2DAdPHhQDzzwgLKystS1a1etWrXK0TE5IyNDQUF/JaJ69eqlN954Q/fdd5+mT5+u1q1ba/ny5czBAwAASuX1eXiqG/PwAADgf6p6/7b8KC0AAAACHgAAYHkEPAAAwPIIeAAAgOUR8AAAAMsj4AEAAJZHwAMAACyPgAcAAFie12darm5F8yzm5uZ6uSQAAKCiiu7blZ0vOeACniNHjkiS4uLivFwSAADgqiNHjigyMtLl4wJuaYnCwkL9+uuvqlu3rmw2m1vPnZubq7i4OO3fv9/Sy1ZQT+sIhDpK1NNqqKe1VLSexhgdOXJEjRs3dlpjs6ICLsMTFBSkpk2bevQ9IiIiLP2Pswj1tI5AqKNEPa2GelpLRepZmcxOETotAwAAyyPgAQAAlkfA40ahoaGaMWOGQkNDvV0Uj6Ke1hEIdZSop9VQT2uprnoGXKdlAAAQeMjwAAAAyyPgAQAAlkfAAwAALI+ABwAAWB4BTxkWLFig+Ph4hYWFqWfPntq8eXOZ+8+bN09t27ZVeHi44uLidPvtt+v48eNVOmd1cHc9Z86cKZvN5vRo166dp6tRLlfqeerUKc2ePVsJCQkKCwtTly5dtGrVqiqds7q4u56+eD03bNigSy65RI0bN5bNZtPy5cvLPWb9+vXq1q2bQkND1apVK6WkpBTbx5eupyfqaIVrmZmZqZEjR6pNmzYKCgrS5MmTS9zv7bffVrt27RQWFqZOnTpp5cqV7i+8CzxRz5SUlGLXMywszDMVqCBX67l06VJdcMEFioqKUkREhBITE/Xhhx8W288tf5sGJVq8eLEJCQkxL730kvn+++/N+PHjTb169Ux2dnaJ+7/++usmNDTUvP766yY9Pd18+OGHJjY21tx+++2VPmd18EQ9Z8yYYTp06GAyMzMdj4MHD1ZXlUrkaj3vvvtu07hxY/PBBx+Y3bt3m2eeecaEhYWZbdu2Vfqc1cET9fTF67ly5Upz7733mqVLlxpJZtmyZWXuv2fPHlOrVi0zZcoU88MPP5j58+eb4OBgs2rVKsc+vnY9PVFHK1zL9PR0c9ttt5mXX37ZdO3a1UyaNKnYPhs3bjTBwcHmkUceMT/88IO57777TM2aNc23337rmUpUgCfquWjRIhMREeF0PbOysjxTgQpytZ6TJk0yc+fONZs3bzY//fSTmTZtmqlZs6ZHvmsJeErRo0cPM2HCBMfzgoIC07hxY5OcnFzi/hMmTDD/+Mc/nLZNmTLF9O7du9LnrA6eqOeMGTNMly5dPFLeynK1nrGxsebpp5922nbFFVeYUaNGVfqc1cET9fTF63m6inyp3n333aZDhw5O24YNG2aSkpIcz33xehZxVx2tcC1P17dv3xIDgaFDh5rBgwc7bevZs6e58cYbq1hC93BXPRctWmQiIyPdVi53c7WeRdq3b29mzZrleO6uv02atEpw8uRJbd26VQMGDHBsCwoK0oABA7Rp06YSj+nVq5e2bt3qSLPt2bNHK1eu1KBBgyp9Tk/zRD2L7Ny5U40bN1bLli01atQoZWRkeK4i5ahMPU+cOFEsNRweHq7PPvus0uf0NE/Us4gvXc/K2LRpk9PnIklJSUmOz8UXr6eryqtjEX+/lhVR0c/CCo4eParmzZsrLi5Ol112mb7//ntvF6lKCgsLdeTIEdWvX1+Se/82CXhKkJOTo4KCAjVq1Mhpe6NGjZSVlVXiMSNHjtTs2bN13nnnqWbNmkpISFC/fv00ffr0Sp/T0zxRT0nq2bOnUlJStGrVKj377LNKT0/X+eefryNHjni0PqWpTD2TkpL0+OOPa+fOnSosLNSaNWu0dOlSZWZmVvqcnuaJekq+dz0rIysrq8TPJTc3V/n5+T55PV1VXh0la1zLiijts/CXa1lRbdu21UsvvaT33ntPr732mgoLC9WrVy/9/PPP3i5apT366KM6evSohg4dKsm937UEPG6yfv16Pfzww3rmmWe0bds2LV26VB988IEefPBBbxfNrSpSz4suukhXXXWVOnfurKSkJK1cuVKHDx/WW2+95cWSu+bJJ59U69at1a5dO4WEhGjixIkaN26cgoKs9SdTkXpa4XriT1xLa0lMTNTo0aPVtWtX9e3bV0uXLlVUVJSee+45bxetUt544w3NmjVLb731lqKjo91+/hpuP6MFNGzYUMHBwcrOznbanp2drZiYmBKPuf/++3XNNdfo+uuvlyR16tRJeXl5uuGGG3TvvfdW6pye5ol6lhQQ1KtXT23atNGuXbvcX4kKqEw9o6KitHz5ch0/fly//fabGjdurKlTp6ply5aVPqeneaKeJfH29ayMmJiYEj+XiIgIhYeHKzg42Oeup6vKq2NJ/PFaVkRpn4W/XMvKqlmzps466yy/vJ6LFy/W9ddfr7ffftup+cqd37XW+rnqJiEhIerevbvWrl3r2FZYWKi1a9cqMTGxxGOOHTtW7GYfHBwsSTLGVOqcnuaJepbk6NGj2r17t2JjY91UctdU5bMPCwtTkyZN9Mcff+jdd9/VZZddVuVzeoon6lkSb1/PykhMTHT6XCRpzZo1js/FF6+nq8qrY0n88VpWRGU+CysoKCjQt99+63fX880339S4ceP05ptvavDgwU6vufVv0+Xu0wFi8eLFJjQ01KSkpJgffvjB3HDDDaZevXqOIX/XXHONmTp1qmP/GTNmmLp165o333zT7Nmzx6xevdokJCSYoUOHVvic3uCJet5xxx1m/fr1Jj093WzcuNEMGDDANGzY0Bw4cKDa61fE1Xp+/vnn5t133zW7d+82GzZsMP/4xz9MixYtzKFDhyp8Tm/wRD198XoeOXLEfPXVV+arr74ykszjjz9uvvrqK7Nv3z5jjDFTp04111xzjWP/oiHbd911l/nxxx/NggULShyW7kvX0xN1tMK1NMY49u/evbsZOXKk+eqrr8z333/veH3jxo2mRo0a5tFHHzU//vijmTFjhteHpXuinrNmzTIffvih2b17t9m6dasZPny4CQsLc9qnurlaz9dff93UqFHDLFiwwGl4/eHDhx37uOtvk4CnDPPnzzfNmjUzISEhpkePHubzzz93vNa3b18zZswYx/NTp06ZmTNnmoSEBBMWFmbi4uLMLbfc4nTjKO+c3uLueg4bNszExsaakJAQ06RJEzNs2DCza9euaqxRyVyp5/r1682ZZ55pQkNDTYMGDcw111xjfvnlF5fO6S3urqcvXs+PP/7YSCr2KKrbmDFjTN++fYsd07VrVxMSEmJatmxpFi1aVOy8vnQ9PVFHq1zLkvZv3ry50z5vvfWWadOmjQkJCTEdOnQwH3zwQfVUqBSeqOfkyZMd/14bNWpkBg0a5DR/jTe4Ws++ffuWuX8Rd/xt2owppR0CAADAIujDAwAALI+ABwAAWB4BDwAAsDwCHgAAYHkEPAAAwPIIeAAAgOUR8AAAAMsj4AEAH7B+/XrZbDYdPnzY20UBLImABwgwY8eOlc1m05w5c5y2L1++XDabzfHcGKMXXnhBiYmJioiIUJ06ddShQwdNmjSpwosTHjt2TNOmTVNCQoLCwsIUFRWlvn376r333nPsEx8fr3nz5rmlbp5W9NnZbDbVrFlTLVq00N13363jx4+7dJ5+/fpp8uTJTtt69eqlzMxMRUZGurHEAIoQ8AABKCwsTHPnztWhQ4dKfN0Yo5EjR+q2227ToEGDtHr1av3www/673//q7CwMD300EMVep+bbrpJS5cu1fz587V9+3atWrVKV155pX777Td3VqdaXXjhhcrMzNSePXv0xBNP6LnnntOMGTOqfN6QkBDFxMQ4BZ0A3KiSy2UA8FNjxowxF198sWnXrp256667HNuXLVtmir4S3nzzTSPJvPfeeyWeo7CwsELvFRkZaVJSUkp9vaR1dIp8+umn5rzzzjNhYWGmadOm5tZbbzVHjx51vP7KK6+Y7t27mzp16phGjRqZESNGmOzsbMfrRWv6rFq1ynTt2tWEhYWZ/v37m+zsbLNy5UrTrl07U7duXTNixAiTl5dXofqMGTPGXHbZZU7brrjiCnPWWWc5nufk5Jjhw4ebxo0bm/DwcNOxY0fzxhtvOJ3j73VOT093lPf0deneeecd0759exMSEmKaN29uHn300QqVE0BxZHiAABQcHKyHH35Y8+fP188//1zs9TfffFNt27bVpZdeWuLxFc1CxMTEaOXKlTpy5EiJry9dulRNmzbV7NmzlZmZqczMTEnS7t27deGFF+pf//qXvvnmGy1ZskSfffaZJk6c6Dj21KlTevDBB/X1119r+fLl2rt3r8aOHVvsPWbOnKmnn35aqamp2r9/v4YOHap58+bpjTfe0AcffKDVq1dr/vz5FarP33333XdKTU1VSEiIY9vx48fVvXt3ffDBB/ruu+90ww036JprrtHmzZslSU8++aQSExM1fvx4R53j4uKKnXvr1q0aOnSohg8frm+//VYzZ87U/fffr5SUlEqVFQh43o64AFSv07MU5557rrn22muNMc4Znnbt2plLL73U6bhJkyaZ2rVrm9q1a5smTZpU6L0++eQT07RpU1OzZk1z9tlnm8mTJ5vPPvvMaZ/mzZubJ554wmnbddddZ2644QanbZ9++qkJCgoy+fn5Jb7Xli1bjCRz5MgRY8xfGZ6PPvrIsU9ycrKRZHbv3u3YduONN5qkpKQK1WfMmDEmODjY1K5d24SGhhpJJigoyLzzzjtlHjd48GBzxx13OJ737dvXTJo0yWmfv2d4Ro4caS644AKnfe666y7Tvn37CpUVgDMyPEAAmzt3rl5++WX9+OOP5e577733Ki0tTQ888ICOHj1aofP36dNHe/bs0dq1a3XllVfq+++/1/nnn68HH3ywzOO+/vprpaSkqE6dOo5HUlKSCgsLlZ6eLunPDMgll1yiZs2aqW7duurbt68kKSMjw+lcnTt3dvx/o0aNVKtWLbVs2dJp24EDBypUH0nq37+/0tLS9MUXX2jMmDEaN26c/vWvfzleLygo0IMPPqhOnTqpfv36qlOnjj788MNi5SrPjz/+qN69eztt6927t3bu3KmCggKXzgWATstAQOvTp4+SkpI0bdo0p+2tW7fWjh07nLZFRUWpVatWio6Oduk9atasqfPPP1/33HOPVq9erdmzZ+vBBx/UyZMnSz3m6NGjuvHGG5WWluZ4fP3119q5c6cSEhKUl5enpKQkRURE6PXXX9eWLVu0bNkySSp23po1azr+v2h01elsNpsKCwsrXJ/atWurVatW6tKli1566SV98cUX+u9//+t4/T//+Y+efPJJ3XPPPfr444+VlpampKSkMusLwPNqeLsAALxrzpw56tq1q9q2bevYNmLECI0cOVLvvfeeLrvsMre+X/v27fXHH3/o+PHjCgkJUUhISLGMRbdu3fTDDz+oVatWJZ7j22+/1W+//aY5c+Y4+r98+eWXbi1nRQQFBWn69OmaMmWKRo4cqfDwcG3cuFGXXXaZrr76aklSYWGhfvrpJ7Vv395xXEl1/rszzzxTGzdudNq2ceNGtWnTRsHBwe6vDGBxZHiAANepUyeNGjVKTz31lGPb8OHDdeWVV2r48OGaPXu2vvjiC+3du1effPKJlixZUuEbbr9+/fTcc89p69at2rt3r1auXKnp06erf//+ioiIkPTnPDwbNmzQL7/8opycHEnSPffco9TUVE2cOFFpaWnauXOn3nvvPUen5WbNmikkJETz58/Xnj17tGLFinKbyTzlqquuUnBwsBYsWCDpz+zYmjVrlJqaqh9//FE33nijsrOznY6Jj493fKY5OTklZpjuuOMOrV27Vg8++KB++uknvfzyy3r66ad15513Vku9AKsh4AGg2bNnO910bTablixZonnz5mnlypX65z//qbZt2+raa69VXFycPvvsswqdNykpSS+//LIGDhyoM888U7feequSkpL01ltvOb333r17lZCQoKioKEl/9rv55JNP9NNPP+n888/XWWedpQceeECNGzeW9GfzWkpKit5++221b99ec+bM0aOPPurGT6TiatSooYkTJ+qRRx5RXl6e7rvvPnXr1k1JSUnq16+fYmJiNGTIEKdj7rzzTgUHB6t9+/aKiooqsX9Pt27d9NZbb2nx4sXq2LGjHnjgAc2ePbvEkWgAymczxhhvFwIAAMCTyPAAAADLI+ABUGmnDxv/++PTTz/1dvFckpGRUWZ9XB1WDsC30KQFoNLKWkS0SZMmCg8Pr8bSVM0ff/yhvXv3lvp6fHy8atRgYCvgrwh4AACA5dGkBQAALI+ABwAAWB4BDwAAsDwCHgAAYHkEPAAAwPIIeAAAgOUR8AAAAMsj4AEAAJb3/wGGCJaIzXonwQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_56.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTrElEQVR4nO3deVzU1f4/8NcwyiIKiuyGgPuGoJiES2qRI3lN03LrKppat7RUbBFvud/QbiotpGUptqhorje9pBdTU8kFRbPMFCFcAMVkRhBR4fz+8Md8HRmWGWbmMzOf1/PxmIfO+Zw5c858gM97zucsCiGEABEREZGMOEhdASIiIiJLYwBEREREssMAiIiIiGSHARARERHJDgMgIiIikh0GQERERCQ7DICIiIhIdhgAERERkewwACIiIiLZYQBERFZr7ty5UCgUtcqrUCgwd+5cs9anb9++6Nu3r9WWR0S1xwCIiGqUlJQEhUKhfdSrVw/NmjXDuHHjcPnyZamrZ3WCgoJ0Pi9vb2/07t0bW7ZsMUn5t27dwty5c7F3716TlEckRwyAiKjW5s+fj6+//horVqxAdHQ0vvnmG/Tp0we3b982y/u98847KCkpMUvZ5hYWFoavv/4aX3/9Nd544w1cuXIFQ4cOxYoVK+pc9q1btzBv3jwGQER1UE/qChCR7YiOjka3bt0AABMnToSnpycWL16M7du3Y/jw4SZ/v3r16qFePdv8M9WsWTP8/e9/1z4fO3YsWrVqhWXLluEf//iHhDUjIoA9QERUB7179wYAZGZm6qT//vvveO655+Dh4QFnZ2d069YN27dv18lz9+5dzJs3D61bt4azszOaNm2KXr16Yffu3do8+sYAlZaWYvr06fDy8kKjRo3wzDPP4NKlS5XqNm7cOAQFBVVK11fm6tWr8cQTT8Db2xtOTk7o0KEDli9fbtBnURNfX1+0b98eWVlZ1ea7evUqJkyYAB8fHzg7OyM0NBRr1qzRHs/OzoaXlxcAYN68edrbbOYe/0Rkb2zzqxURWYXs7GwAQJMmTbRpv/76K3r27IlmzZph5syZcHV1xYYNGzBkyBBs2rQJzz77LID7gUh8fDwmTpyI7t27Q6PR4NixYzh+/DieeuqpKt9z4sSJ+OabbzB69Gj06NEDe/bswcCBA+vUjuXLl6Njx4545plnUK9ePfznP//Bq6++ivLyckyePLlOZVe4e/cuLl68iKZNm1aZp6SkBH379sX58+cxZcoUBAcHY+PGjRg3bhwKCwsxdepUeHl5Yfny5XjllVfw7LPPYujQoQCAzp07m6SeRLIhiIhqsHr1agFA/O9//xPXrl0TFy9eFN99953w8vISTk5O4uLFi9q8Tz75pAgJCRG3b9/WppWXl4sePXqI1q1ba9NCQ0PFwIEDq33fOXPmiAf/TGVkZAgA4tVXX9XJN3r0aAFAzJkzR5sWExMjAgMDayxTCCFu3bpVKZ9KpRItWrTQSevTp4/o06dPtXUWQojAwEDRv39/ce3aNXHt2jVx8uRJMXLkSAFAvPbaa1WWl5CQIACIb775Rpt2584dERkZKRo2bCg0Go0QQohr165Vai8RGYa3wIio1qKiouDl5YWAgAA899xzcHV1xfbt2/HII48AAP766y/s2bMHw4cPx82bN1FQUICCggJcv34dKpUK586d084aa9y4MX799VecO3eu1u+/c+dOAMDrr7+ukz5t2rQ6tcvFxUX7f7VajYKCAvTp0wcXLlyAWq02qsxdu3bBy8sLXl5eCA0NxcaNGzFmzBgsXry4ytfs3LkTvr6+GDVqlDatfv36eP3111FUVIR9+/YZVRciqowBUA3279+PQYMGwd/fHwqFAlu3bjX7e16+fBl///vf0bRpU7i4uCAkJATHjh0z+/sS1SQxMRG7d+/Gd999h6effhoFBQVwcnLSHj9//jyEEHj33Xe1F/+Kx5w5cwDcH+MC3J9RVlhYiDZt2iAkJARvvvkmTp06Ve37//nnn3BwcEDLli110tu2bVundh08eBBRUVFwdXVF48aN4eXlhVmzZgGA0QFQREQEdu/ejf/97384dOgQCgoK8NVXX+kEWw/7888/0bp1azg46P5pbt++vfY4EZkGxwDVoLi4GKGhoXjxxRe199rN6caNG+jZsyf69euH//73v/Dy8sK5c+d0xlgQSaV79+7aWWBDhgxBr169MHr0aJw9exYNGzZEeXk5AOCNN96ASqXSW0arVq0AAI8//jgyMzOxbds27Nq1C1988QWWLVuGFStWYOLEiXWua1ULKJaVlek8z8zMxJNPPol27dph6dKlCAgIgKOjI3bu3Illy5Zp22QoT09PREVFGfVaIjI/BkA1iI6ORnR0dJXHS0tL8c9//hPr1q1DYWEhOnXqhMWLFxu9uuvixYsREBCA1atXa9OCg4ONKovInJRKJeLj49GvXz988sknmDlzJlq0aAHg/m2b2lz8PTw8MH78eIwfPx5FRUV4/PHHMXfu3CoDoMDAQJSXlyMzM1On1+fs2bOV8jZp0gSFhYWV0h/uRfnPf/6D0tJSbN++Hc2bN9em//jjjzXW39QCAwNx6tQplJeX6/QC/f7779rjQNXBHRHVHm+B1dGUKVOQlpaG9evX49SpU3j++ecxYMAAg8Y1PGj79u3o1q0bnn/+eXh7e6NLly5YuXKliWtNZBp9+/ZF9+7dkZCQgNu3b8Pb2xt9+/bFZ599htzc3Er5r127pv3/9evXdY41bNgQrVq1QmlpaZXvV/Fl5KOPPtJJT0hIqJS3ZcuWUKvVOrfVcnNzK63GrFQqAQBCCG2aWq3W+RJiKU8//TTy8vKQnJysTbt37x4+/vhjNGzYEH369AEANGjQAAD0BnhEVDvsAaqDnJwcrF69Gjk5OfD39wdwv+s/JSUFq1evxnvvvWdwmRcuXMDy5csRGxuLWbNm4ejRo3j99dfh6OiImJgYUzeBqM7efPNNPP/880hKSsI//vEPJCYmolevXggJCcGkSZPQokUL5OfnIy0tDZcuXcLJkycBAB06dEDfvn0RHh4ODw8PHDt2DN999x2mTJlS5XuFhYVh1KhR+PTTT6FWq9GjRw+kpqbi/PnzlfKOHDkSb7/9Np599lm8/vrruHXrFpYvX442bdrg+PHj2nz9+/eHo6MjBg0ahJdffhlFRUVYuXIlvL299QZx5vTSSy/hs88+w7hx45Ceno6goCB89913OHjwIBISEtCoUSMA9wdtd+jQAcnJyWjTpg08PDzQqVMndOrUyaL1JbJpUk9DsyUAxJYtW7TPv//+ewFAuLq66jzq1asnhg8fLoQQ4syZMwJAtY+3335bW2b9+vVFZGSkzvu+9tpr4rHHHrNIG4n0qZgGf/To0UrHysrKRMuWLUXLli3FvXv3hBBCZGZmirFjxwpfX19Rv3590axZM/G3v/1NfPfdd9rXLVy4UHTv3l00btxYuLi4iHbt2ol//etf4s6dO9o8+qasl5SUiNdff100bdpUuLq6ikGDBomLFy/qnRa+a9cu0alTJ+Ho6Cjatm0rvvnmG71lbt++XXTu3Fk4OzuLoKAgsXjxYrFq1SoBQGRlZWnzGTINvqYp/lWVl5+fL8aPHy88PT2Fo6OjCAkJEatXr6702kOHDonw8HDh6OjIKfFERlAI8UC/L1VLoVBgy5YtGDJkCAAgOTkZL7zwAn799VdtN3qFhg0bwtfXF3fu3MGFCxeqLbdp06balV0DAwPx1FNP4YsvvtAeX758ORYuXMhNJ4mIiEyEt8DqoEuXLigrK8PVq1e1WwI8zNHREe3atat1mT179qw0oPOPP/7QDn4kIiKiumMAVIOioiKd8QVZWVnIyMiAh4cH2rRpgxdeeAFjx47FkiVL0KVLF1y7dg2pqano3LmzUcvzT58+HT169MB7772H4cOH48iRI/j888/x+eefm7JZREREssZbYDXYu3cv+vXrVyk9JiYGSUlJuHv3LhYuXIivvvoKly9fhqenJx577DHMmzcPISEhRr3n999/j7i4OJw7dw7BwcGIjY3FpEmT6toUIiIi+v8YABEREZHscB0gIiIikh0GQERERCQ7HAStR3l5Oa5cuYJGjRpxyXkiIiIbIYTAzZs34e/vX2lT4YcxANLjypUrCAgIkLoaREREZISLFy/ikUceqTYPAyA9Kpabv3jxItzc3CSuDREREdWGRqNBQECA9jpeHQZAelTc9nJzc2MAREREZGNqM3xF0kHQ8fHxePTRR9GoUSN4e3tjyJAhlVZB1mfjxo1o164dnJ2dERISgp07d+ocF0Jg9uzZ8PPzg4uLC6KioozenZ2IiIjsj6QB0L59+zB58mT8/PPP2L17N+7evYv+/fujuLi4ytccOnQIo0aNwoQJE3DixAkMGTIEQ4YMwenTp7V53n//fXz00UdYsWIFDh8+DFdXV6hUKty+fdsSzSIiIiIrZ1ULIV67dg3e3t7Yt28fHn/8cb15RowYgeLiYnz//ffatMceewxhYWFYsWIFhBDw9/fHjBkz8MYbbwAA1Go1fHx8kJSUhJEjR9ZYD41GA3d3d6jVat4CIyIishGGXL+tagyQWq0GAHh4eFSZJy0tDbGxsTppKpUKW7duBXB/r668vDxERUVpj7u7uyMiIgJpaWm1CoBqq6ysDHfv3jVZeVQzR0fHGqc2EhER1cRqAqDy8nJMmzYNPXv2RKdOnarMl5eXBx8fH500Hx8f5OXlaY9XpFWV52GlpaUoLS3VPtdoNNXWVQiBvLw8FBYWVpuPTM/BwQHBwcFwdHSUuipERGTDrCYAmjx5Mk6fPo0DBw5Y/L3j4+Mxb968WuevCH68vb3RoEEDLpZoIRULVObm5qJ58+b83ImIyGhWEQBNmTIF33//Pfbv31/jwkW+vr7Iz8/XScvPz4evr6/2eEWan5+fTp6wsDC9ZcbFxencVqtYR0CfsrIybfDTtGnTGttGpuXl5YUrV67g3r17qF+/vtTVISIiGyXpYAohBKZMmYItW7Zgz549CA4OrvE1kZGRSE1N1UnbvXs3IiMjAQDBwcHw9fXVyaPRaHD48GFtnoc5OTlp1/ypae2fijE/DRo0qLGuZHoVt77KysokrgkREdkySXuAJk+ejLVr12Lbtm1o1KiRdoyOu7s7XFxcAABjx45Fs2bNEB8fDwCYOnUq+vTpgyVLlmDgwIFYv349jh07hs8//xzA/cWPpk2bhoULF6J169YIDg7Gu+++C39/fwwZMsRkdeftF2nwcyciIlOQNABavnw5AKBv37466atXr8a4ceMAADk5OTqzfnr06IG1a9finXfewaxZs9C6dWts3bpVZ+D0W2+9heLiYrz00ksoLCxEr169kJKSAmdnZ7O3iYiIiKyfVa0DZC2qW0fg9u3byMrKQnBwMAMqCfDzJyKiqhiyDhAXVJGZvLw8vPbaa2jRogWcnJwQEBCAQYMGVRpXJYRAdHQ0FAqFdo0lAMjOzoZCoUBGRkalsvv27Ytp06Zpn2/evBn9+/dH06ZNq3zN7du3MXnyZDRt2hQNGzbEsGHDKg1yJyIi65arLsGhzALkqkukrkqtMQCSkezsbISHh2PPnj3497//jV9++QUpKSno168fJk+erJM3ISGhzuNtiouL0atXLyxevLjKPNOnT8d//vMfbNy4Efv27cOVK1cwdOjQOr0vERFZTvLRHPRctAejVx5Gz0V7kHw0R+oq1YpVTIMny3j11VehUChw5MgRuLq6atM7duyIF198Ufs8IyMDS5YswbFjx3SWEjDUmDFjANwPvPRRq9X48ssvsXbtWjzxxBMA7o//at++PX7++Wc89thjRr83ERGZX666BHGbf0H5/x9MUy6AWZtP4/E2XvBzd5G2cjVgD5CELNll+NdffyElJQWTJ0/WCX4qNG7cGABw69YtjB49GomJido1lcwlPT0dd+/e1dm2pF27dmjevDnS0tLM+t5ERFR3WQXF2uCnQpkQyC64JU2FDMAeIIkkH83RRs0OCiB+aAhGPNrcbO93/vx5CCHQrl27avNNnz4dPXr0wODBg6vN16NHj0p7cpWUlFS52KQ+eXl5cHR01AZfFarbtoSIiKxHsKcrHBTQCYKUCgWCPK1/rTwGQBKQosuwNpP9tm/fjj179uDEiRM15k1OTkb79u110l544QWj60dERLbHz90F8UNDMGvzaZQJAaVCgfeGdrL6218AAyBJVNdlaK4fmtatW0OhUOD333+vMs+ePXuQmZlZqUdm2LBh6N27N/bu3atNCwgIQKtWrXTyVSxeWVu+vr64c+cOCgsLdd7zwa1NiIjIuo14tDkeb+OF7IJbCPJsYBPBD8AxQJKo6DJ8kLm7DD08PKBSqZCYmIji4uJKxwsLCzFz5kycOnUKGRkZ2gcALFu2DKtXrzZ5ncLDw1G/fn2dKfhnz55FTk5OlduWEBGR9fFzd0Fky6Y2E/wA7AGShFRdhomJiejZsye6d++O+fPno3Pnzrh37x52796N5cuX48yZM3p7Xpo3b16rfdoe9tdffyEnJwdXrlwBcD+4Ae73/Pj6+sLd3R0TJkxAbGwsPDw84Obmhtdeew2RkZGcAUZERGbFAEgiUnQZtmjRAsePH8e//vUvzJgxA7m5ufDy8kJ4eLh2WxJT2r59O8aPH699PnLkSADAnDlzMHfuXAD3e5ccHBwwbNgwlJaWQqVS4dNPPzV5XYiIiB7ErTD04FYY1oufPxERVYVbYRARERFVgwEQERERyQ4DICIiIpIdBkBEREQkOwyAjMSx49Lg505ERKbAAMhA9evXB3B/01CyvDt37gAAlEqlxDUhIiJbxnWADKRUKtG4cWNcvXoVANCgQQMoFIoaXkWmUF5ejmvXrqFBgwaoV48/ukREZDxeRYxQsVpyRRBEluPg4IDmzZsz6CQiojphAGQEhUIBPz8/eHt74+7du1JXR1YcHR3h4MA7t0REVDcMgOpAqVRyLAoREZEN4ldpIiIikh0GQERERCQ7DICIiIhIdhgAERERkewwACIiIiLZYQBEREREssMAiIiIiGSHARARERHJDgMgIiIikh0GQERERCQ7DICIiIhIdhgAERERkexIGgDt378fgwYNgr+/PxQKBbZu3Vpt/nHjxkGhUFR6dOzYUZtn7ty5lY63a9fOzC0hIiIiWyJpAFRcXIzQ0FAkJibWKv+HH36I3Nxc7ePixYvw8PDA888/r5OvY8eOOvkOHDhgjuoTERGRjaon5ZtHR0cjOjq61vnd3d3h7u6ufb5161bcuHED48eP18lXr149+Pr6mqyeREREZF9segzQl19+iaioKAQGBuqknzt3Dv7+/mjRogVeeOEF5OTkVFtOaWkpNBqNzoOIiIjsl80GQFeuXMF///tfTJw4USc9IiICSUlJSElJwfLly5GVlYXevXvj5s2bVZYVHx+v7V1yd3dHQECAuatPREREElIIIYTUlQAAhUKBLVu2YMiQIbXKHx8fjyVLluDKlStwdHSsMl9hYSECAwOxdOlSTJgwQW+e0tJSlJaWap9rNBoEBARArVbDzc3NoHYQERGRNDQaDdzd3Wt1/ZZ0DJCxhBBYtWoVxowZU23wAwCNGzdGmzZtcP78+SrzODk5wcnJydTVJCIiIitlk7fA9u3bh/Pnz1fZo/OgoqIiZGZmws/PzwI1IyIiIlsgaQBUVFSEjIwMZGRkAACysrKQkZGhHbQcFxeHsWPHVnrdl19+iYiICHTq1KnSsTfeeAP79u1DdnY2Dh06hGeffRZKpRKjRo0ya1uIiIjIdkh6C+zYsWPo16+f9nlsbCwAICYmBklJScjNza00g0utVmPTpk348MMP9ZZ56dIljBo1CtevX4eXlxd69eqFn3/+GV5eXuZrCBEREdkUqxkEbU0MGURFRERE1sGQ67dNjgEiIiIiqgsGQERERCQ7DICIiIhIdhgAERERkewwACIiIiLZYQBEREREssMAiIiIiGSHARARERHJDgMgIiIikh0GQERERCQ7DICIiIhIdhgAERERkewwACIiIiLZYQBEREREssMAiIiIiGSHARARERHJDgMgIiIikh0GQERERCQ7DICIiIhIdhgAERERkewwACIiIiLZYQBEREREssMAiIiIiGSHARARERHJDgMgIiIikh0GQERERCQ7DICIiIhIdhgAERERkewwACIiIiLZYQBEREREssMAiIiIiGSHARARERHJjqQB0P79+zFo0CD4+/tDoVBg69at1ebfu3cvFApFpUdeXp5OvsTERAQFBcHZ2RkRERE4cuSIGVtBREREtkbSAKi4uBihoaFITEw06HVnz55Fbm6u9uHt7a09lpycjNjYWMyZMwfHjx9HaGgoVCoVrl69aurqExERkY2qJ+WbR0dHIzo62uDXeXt7o3HjxnqPLV26FJMmTcL48eMBACtWrMCOHTuwatUqzJw5sy7VJSIiIjthk2OAwsLC4Ofnh6eeegoHDx7Upt+5cwfp6emIiorSpjk4OCAqKgppaWlVlldaWgqNRqPzICIiIvtlUwGQn58fVqxYgU2bNmHTpk0ICAhA3759cfz4cQBAQUEBysrK4OPjo/M6Hx+fSuOEHhQfHw93d3ftIyAgwKztICIiImlJegvMUG3btkXbtm21z3v06IHMzEwsW7YMX3/9tdHlxsXFITY2Vvtco9EwCCIiIrJjNhUA6dO9e3ccOHAAAODp6QmlUon8/HydPPn5+fD19a2yDCcnJzg5OZm1nkRERGQ9bOoWmD4ZGRnw8/MDADg6OiI8PBypqana4+Xl5UhNTUVkZKRUVSQiIiIrI2kPUFFREc6fP699npWVhYyMDHh4eKB58+aIi4vD5cuX8dVXXwEAEhISEBwcjI4dO+L27dv44osvsGfPHuzatUtbRmxsLGJiYtCtWzd0794dCQkJKC4u1s4KIyIiIpI0ADp27Bj69eunfV4xDicmJgZJSUnIzc1FTk6O9vidO3cwY8YMXL58GQ0aNEDnzp3xv//9T6eMESNG4Nq1a5g9ezby8vIQFhaGlJSUSgOjiYiISL4UQgghdSWsjUajgbu7O9RqNdzc3KSuDhEREdWCIddvmx8DRERERGQoBkBEREQkOwyAiIiISHYYABEREZHsMAAiIiIi2WEARERERLLDAIiIiIhkhwEQERERyQ4DICIiIpIdBkBEREQkOwyAiIiISHYYABEREZHsMAAiIiIi2WEARERERLLDAIiIiIhkhwEQERERyQ4DICIiIpIdBkBEREQkOwyAiIiISHYYABEREZHsMAAiIiIi2WEARERERLLDAIiIiIhkhwEQERERyQ4DICIiIpIdBkBEREQkOwyAiIiISHYYABEREZHsMAAiIiIi2WEARERERLLDAIiIiIhkhwEQERERyY6kAdD+/fsxaNAg+Pv7Q6FQYOvWrdXm37x5M5566il4eXnBzc0NkZGR+OGHH3TyzJ07FwqFQufRrl07M7aCiIiIbI2kAVBxcTFCQ0ORmJhYq/z79+/HU089hZ07dyI9PR39+vXDoEGDcOLECZ18HTt2RG5urvZx4MABc1SfiIiIbFQ9Kd88Ojoa0dHRtc6fkJCg8/y9997Dtm3b8J///AddunTRpterVw++vr6mqiYRERHZGZseA1ReXo6bN2/Cw8NDJ/3cuXPw9/dHixYt8MILLyAnJ6fackpLS6HRaHQeREREZL9sOgD64IMPUFRUhOHDh2vTIiIikJSUhJSUFCxfvhxZWVno3bs3bt68WWU58fHxcHd31z4CAgIsUX0iIiKSiEIIIaSuBAAoFAps2bIFQ4YMqVX+tWvXYtKkSdi2bRuioqKqzFdYWIjAwEAsXboUEyZM0JuntLQUpaWl2ucajQYBAQFQq9Vwc3MzqB1EREQkDY1GA3d391pdvyUdA2Ss9evXY+LEidi4cWO1wQ8ANG7cGG3atMH58+erzOPk5AQnJydTV5OIiCwoV12CrIJiBHu6ws/dRerqkJWzuQBo3bp1ePHFF7F+/XoMHDiwxvxFRUXIzMzEmDFjLFA7IiKSQvLRHMRt/gXlAnBQAPFDQzDi0eZSV4usmKRjgIqKipCRkYGMjAwAQFZWFjIyMrSDluPi4jB27Fht/rVr12Ls2LFYsmQJIiIikJeXh7y8PKjVam2eN954A/v27UN2djYOHTqEZ599FkqlEqNGjbJo24iIyDJy1SXa4AcAygUwa/Np5KpLpK0YWTVJA6Bjx46hS5cu2inssbGx6NKlC2bPng0AyM3N1ZnB9fnnn+PevXuYPHky/Pz8tI+pU6dq81y6dAmjRo1C27ZtMXz4cDRt2hQ///wzvLy8LNs4IiKyiKyCYm3wU6FMCGQX3JKmQmQTrGYQtDUxZBAVERFJK1ddgp6L9ugEQUqFAgdm9uNYIJkx5Ppt09PgiYiI/NxdED80BEqFAsD94Oe9oZ0Y/FC1bG4QNBER0cNGPNocj7fxQnbBLQR5NmDwQzViAERERHbBz92FgQ/VGm+BERERkewwACIiIiLZYQBEREREssMAiIiIiGSHARARERHJDgMgIiIikh0GQERERCQ7DICIiIhIdhgAERERkewwACIiIiLZYQBEREREssMAiIiIiGSHARARERHJDgMgIiIikh0GQERERCQ7DICIiIhIdhgAERERkezUM+ZFR44cQVpaGvLy8gAAvr6+iIyMRPfu3U1aOSIiIiJzMCgAunr1KoYNG4aDBw+iefPm8PHxAQDk5+dj+vTp6NmzJzZt2gRvb2+zVJaIiIjIFAy6Bfbqq6+irKwMZ86cQXZ2Ng4fPozDhw8jOzsbZ86cQXl5OSZPnmyuuhIRERGZhEIIIWqbuVGjRti/fz+6dOmi93h6ejr69u2LmzdvmqyCUtBoNHB3d4darYabm5vU1SEiIqJaMOT6bVAPkJOTEzQaTZXHb968CScnJ0OKJCIi0itXXYJDmQXIVZdIXRWyQwYFQCNGjEBMTAy2bNmiEwhpNBps2bIF48ePx6hRo0xeSSIikpfkoznouWgPRq88jJ6L9iD5aI7UVSI7Y9Ag6KVLl6K8vBwjR47EvXv34OjoCAC4c+cO6tWrhwkTJuCDDz4wS0WJiEgectUliNv8C8r//wCNcgHM2nwaj7fxgp+7i7SVI7thUADk5OSE5cuXY/HixUhPT9eZBh8eHs7xMkREVGdZBcXa4KdCmRDILrjFAIhMxqh1gNzc3NCvXz9T14WIiAjBnq5wUEAnCFIqFAjybCBdpcjumHQl6Pz8fMyfP9+URRIRkcz4ubsgfmgIlAoFgPvBz3tDO7H3h0zKoGnwNTl58iS6du2KsrIyUxUpCU6DJyKSXq66BNkFtxDk2YDBD9WKIddvg26BnTp1qtrjZ8+eNaQ4IiKiKvm5uzDwIbMx6BZYWFgYunTpgrCwsEqPLl26YOTIkQa9+f79+zFo0CD4+/tDoVBg69atNb5m79696Nq1K5ycnNCqVSskJSVVypOYmIigoCA4OzsjIiICR44cMaheREREZN8MCoA8PDywcuVKZGVlVXpcuHAB33//vUFvXlxcjNDQUCQmJtYqf1ZWFgYOHIh+/fohIyMD06ZNw8SJE/HDDz9o8yQnJyM2NhZz5szB8ePHERoaCpVKhatXrxpUNyIiIrJfBt0CCw8Px5UrVxAYGKj3eGFhIQwZUhQdHY3o6Oha51+xYgWCg4OxZMkSAED79u1x4MABLFu2DCqVCsD9tYomTZqE8ePHa1+zY8cOrFq1CjNnzqz1exEREZH9MqgH6B//+AeCgoKqPN68eXOsXr26rnWqUlpaGqKionTSVCoV0tLSANxfkDE9PV0nj4ODA6KiorR59CktLYVGo9F5EBERkf0yqAfo2WefrfZ4kyZNEBMTU6cKVScvLw8+Pj46aT4+PtBoNCgpKcGNGzdQVlamN8/vv/9eZbnx8fGYN2+eWepMRERE1sek6wDZqri4OKjVau3j4sWLUleJiIiIzMigHqDY2Nha5Vu6dKlRlamJr68v8vPzddLy8/Ph5uYGFxcXKJVKKJVKvXl8fX2rLNfJyYm72BMREcmIQQHQiRMndJ4fOHAA4eHhcHH5v3UaFP9/5U5ziIyMxM6dO3XSdu/ejcjISACAo6MjwsPDkZqaiiFDhgAAysvLkZqaiilTppitXuaSqy5BVkExgj1duRYGERGRCRkUAP344486zxs1aoS1a9eiRYsWRr15UVERzp8/r32elZWFjIwMeHh4oHnz5oiLi8Ply5fx1VdfAbg/CPuTTz7BW2+9hRdffBF79uzBhg0bsGPHDm0ZsbGxiImJQbdu3dC9e3ckJCSguLhYOyvMViQfzdHuhuygAOKHhmDEo82lrhYREZFdMGozVFM5duyYzqaqFbfYYmJikJSUhNzcXOTk5GiPBwcHY8eOHZg+fTo+/PBDPPLII/jiiy+0U+ABYMSIEbh27Rpmz56NvLw8hIWFISUlpdLAaGuWqy7RBj/A/Q0BZ20+jcfbeLEniIiIyATqtBdYo0aNcPLkSaN7gKyV1HuBHcoswOiVhyulr5v0GCJbNrV4fYiIiGyBIddvzgKzQsGernB4aCiVUqFAkGcDaSpERERkZ+q0GaoQAr///juKiop00jt37lz3msmYn7sL4oeGYNbm0ygTAkqFAu8N7WRzt784iJuIiKyVQbfAHBwcoFAo9G53UZGuUChQVlZm0kpamtS3wCrkqkuQXXALQZ4NbC6A4CBuIiKyNEOu3wb1AGVlZdWpYmQYP3cXmwt8AA7iJiIi62dQAFTVJqhED8oqKNYGPxXKhEB2wS0GQEREZBVMMgj6iSeewJ9//mmKosgOcBA3ERFZO4N6gLZv3643ff/+/fj+++8REBAAAHjmmWfqXjOyWX7uLni2SzNsOn5Zmzakiz97f4iIyGqYbBC0tkAOgpa9XHUJei7ao3MbTKlQ4MDMfgyCiIjIbMy2DpBKpUJ0dDTy8vJQXl6ufSiVSpw+fRrl5eU2H/xQ3VU3BoiIiMgaGBQA/fe//8WTTz6Jbt264fvvvzdXncjGcQwQERFZO4MHQU+fPh3bt2/H22+/jZdffhm3bvFbPemqWMhRqbgfBdnqQo5ERGS/jNoMNSwsDMeOHcP06dMRFhZW7ZggkqcRjzbH4228bHYhRyIism9G7wbv4uKCFStWYPv27fjxxx/h6elpynqRHbDVhRyJiMj+GXQLbM+ePejQoQM0Go027ZlnnsGyZcvg5OSEjh074qeffjJ5JYmIiIhMyaAAKCEhAZMmTdI7tczd3R0vv/wyli5darLKEREREZmDQQHQyZMnMWDAgCqP9+/fH+np6XWuFBEREZE5GRQA5efno379+lUer1evHq5du1bnShERERGZk0EBULNmzXD69Okqj586dQp+fn51rhQRERFJJ1ddgkOZBchVl0hdFbMxaBbY008/jXfffRcDBgyAs7OzzrGSkhLMmTMHf/vb30xaQSIiIrKc5KM5iNv8C8oF4KAA4oeGYMSjzU1Wfq66BFkFxQj2dJV0prBBe4Hl5+eja9euUCqVmDJlCtq2bQsA+P3335GYmIiysjIcP34cPj4+ZquwJXAvMCIikiNz7+Vo7uDKkOu3QT1APj4+OHToEF555RXExcVpF0BUKBRQqVRITEy0+eCHiIhIrqrby7GuAVCuukQb/ABAuQBmbT6Nx9t4SdITZPBCiIGBgdi5cydu3LiB8+fPQwiB1q1bo0mTJuaon6ydvHgDR7L/QvcgD4QG8PMlIiLzqtjL8eEeIFPs5WjO4MoYRq8E3aRJEzz66KOmrAs9YMaGDGw6fln7fFjXZlgyPEy6ChERkd2r2Mtx1ubTKBPCpHs5mjO4MobRARCZz8mLN3SCHwDYdPwyxkYGsieIiIjMylx7OZozuDIGAyArdCT7L73px7JvMAAiIiKzM9dejta0UTYDICvUPchDb3q3IAY/RERk26xlo2yDFkIkywgNaIJhXZvppA3r2szue3/ksPAWERFZB/YAWaklw8MwNjIQx7JvoFtQE7sPfsy9NgQREdGDGABZsdAA+w98AOtbG4KIiOwfb4GR5KpbG4KIiMgcGACR5II9XaF4KE2hgGRrQxARkf1jAETWqdY71BERERnOKgKgxMREBAUFwdnZGREREThy5EiVefv27QuFQlHpMXDgQG2ecePGVTo+YMAASzSFjJBVUFwp3hEAb4EREZHZSD4IOjk5GbGxsVixYgUiIiKQkJAAlUqFs2fPwtvbu1L+zZs3486dO9rn169fR2hoKJ5//nmdfAMGDMDq1au1z52cnMzXCKoTa1senYiI7J/kPUBLly7FpEmTMH78eHTo0AErVqxAgwYNsGrVKr35PTw84Ovrq33s3r0bDRo0qBQAOTk56eTjZq3Wq2J5dKXi/kggqZdHJyIi+ydpD9CdO3eQnp6OuLg4bZqDgwOioqKQlpZWqzK+/PJLjBw5Eq6urjrpe/fuhbe3N5o0aYInnngCCxcuRNOmTfWWUVpaitLSUu1zjUZjRGuoLqxpeXQiIrJ/kvYAFRQUoKysDD4+PjrpPj4+yMvLq/H1R44cwenTpzFx4kSd9AEDBuCrr75CamoqFi9ejH379iE6OhplZWV6y4mPj4e7u7v2ERAQYHyjyGh+7i6IbNmUwQ8RkcTksDK/5GOA6uLLL79ESEgIunfvrpM+cuRI7f9DQkLQuXNntGzZEnv37sWTTz5ZqZy4uDjExsZqn2s0GgZBREQkS3JZmV/SHiBPT08olUrk5+frpOfn58PX17fa1xYXF2P9+vWYMGFCje/TokULeHp64vz583qPOzk5wc3NTedB1k8O31CIiCypqpX57fHvrKQBkKOjI8LDw5GamqpNKy8vR2pqKiIjI6t97caNG1FaWoq///3vNb7PpUuXcP36dfj5+dW5zmQdko/moOeiPRi98jB6LtqD5KM5UleJiMjmyWllfslngcXGxmLlypVYs2YNzpw5g1deeQXFxcUYP348AGDs2LE6g6QrfPnllxgyZEilgc1FRUV488038fPPPyM7OxupqakYPHgwWrVqBZVKZZE2kXnJ6RsKEZElVSxL8iB7XZZE8jFAI0aMwLVr1zB79mzk5eUhLCwMKSkp2oHROTk5cHDQjdPOnj2LAwcOYNeuXZXKUyqVOHXqFNasWYPCwkL4+/ujf//+WLBgAdcCshPVfUPhAGoiIuNVLEsya/NplAlh18uSKIQQ3HTgIRqNBu7u7lCr1RwPZIVy1SXouWhPpYUTD8zsZ5e/pERElparLrHJZUkMuX5LfguMyFBcOJGIyLzksCyJ5LfAiIzBhROJiKguGACRzfJzd2HgQ0RERuEtMCIisgtcG4wMwR4gIiKyeXJZvZhMhz1ARERk07g2GBmDARAREdk0Oa1eTKbDAIiIiGyanFYvJtNhAERERDaNa4ORMTgImqxGrroEWQXFCPZ05R8uIjII1wYjQzEAIqvAGRxEVFdcG4wMwVtgJDnO4CAiIktjAESS4wwOIiKyNAZAJDnO4CAiIktjAESS4wwOIiKyNA6CJqvAGRxERGRJDIDIanAGBxERWQpvgREREZHsMAAiIiIi2WEAREREZGNy1SU4lFnA9dLqgGOAiIiIbAhXzjcN9gARERHZiFx1CWZu0l05f+bmX9gTZAQGQERERDYi/c8beGjhfAgBHP/zhiT1sWUMgIiIiGyEEA+HPxXpFq6IHWAAREREZCO6BXngoZ2DoAAQHtREiurYNAZARERENsLP3QWLhoVoL94OABYNC+EiskbgLDAiIiIbwq2DTIMBEBERAbg/wyiroBjBnq68qFo5Q7cO4rmtjAEQERFxbRk7xnOrH8cAERHJXK66RHuBBO6vLTNr82muLWMHeG6rxgCIiEjmsgqKtRfICmVCILvgljQVIpPhua0aAyCyGtzbhkgawZ6ucHhobrVSoUCQZwNpKkQmw3NbNasIgBITExEUFARnZ2dERETgyJEjVeZNSkqCQqHQeTg7O+vkEUJg9uzZ8PPzg4uLC6KionDu3DlzN4PqIPloDnou2oPRKw+j56I9SD6aI3WViGTDz90F8UNDoFTcv1IqFQq8N7QTB8vaAZ7bqkk+CDo5ORmxsbFYsWIFIiIikJCQAJVKhbNnz8Lb21vva9zc3HD27Fntc4VCN7x9//338dFHH2HNmjUIDg7Gu+++C5VKhd9++61SsETSq+oe9eNtvKr9JeWsBiLT4dRq+8Vzq5/kAdDSpUsxadIkjB8/HgCwYsUK7NixA6tWrcLMmTP1vkahUMDX11fvMSEEEhIS8M4772Dw4MEAgK+++go+Pj7YunUrRo4caZ6GkNGqu0dd1S8qZzUQmZ6hU6vJdvDcVibpLbA7d+4gPT0dUVFR2jQHBwdERUUhLS2tytcVFRUhMDAQAQEBGDx4MH799VftsaysLOTl5emU6e7ujoiIiGrLJOkYeo+asxqIiKiuJA2ACgoKUFZWBh8fH510Hx8f5OXl6X1N27ZtsWrVKmzbtg3ffPMNysvL0aNHD1y6dAkAtK8zpMzS0lJoNBqdB1mOofeo7WFWAwd82y+eWyLbIPktMENFRkYiMjJS+7xHjx5o3749PvvsMyxYsMCoMuPj4zFv3jxTVZGMYMg96ooeoweDIFua1cDbd/aL55bIdkjaA+Tp6QmlUon8/Hyd9Pz8/CrH+Dysfv366NKlC86fPw8A2tcZUmZcXBzUarX2cfHiRUObQibg5+6CyJZNa7xPbcuzGnj7zn7x3NKD2BNo/STtAXJ0dER4eDhSU1MxZMgQAEB5eTlSU1MxZcqUWpVRVlaGX375BU8//TQAIDg4GL6+vkhNTUVYWBgAQKPR4PDhw3jllVf0luHk5AQnJ6c6t4csx1ZnNRgz4JtsA88tVWBPoG2Q/BZYbGwsYmJi0K1bN3Tv3h0JCQkoLi7WzgobO3YsmjVrhvj4eADA/Pnz8dhjj6FVq1YoLCzEv//9b/z555+YOHEigPszxKZNm4aFCxeidevW2mnw/v7+2iCL7IM5ZzWYa4q9rd++o6rx3BJg/LIeZHmSB0AjRozAtWvXMHv2bOTl5SEsLAwpKSnaQcw5OTlwcPi/O3U3btzApEmTkJeXhyZNmiA8PByHDh1Chw4dtHneeustFBcX46WXXkJhYSF69eqFlJQUrgFk5axlXR9zfnuruH03a/NplAlhttt31vJZyomlzi1ZN/YE2g6FEELUnE1eNBoN3N3doVar4ebmJnV1ZMFauoxz1SXouWhPpW/xB2b2M+kfr1x1idlu31nLZylX5jy3ZP0s9TeE9DPk+m0VW2GQvFnT4FFLTbGv7YBvQ1nTZ2mtTl68gZU/ZeLkxRtmKd9c55Zsgy1P0pAbyW+BEVlTl7Gtj+Owps/SGs3YkIFNxy9rnw/r2gxLhodJVyGyS7Y6SUNu2ANEkrOm3Ypt/dubNX2W1ubkxRs6wQ8AbDp+2Ww9QSRv7Am0fuwBIslZ2+BRW/72Zm2fpTU5kv2X3vRj2TcQGtDEwrUhIqkxACKrYG1Bhy1vHGhtn6W16B7koTe9WxCDHyI5YgBEVsOWgw5rw8+ystCAJhjWtVmlMUA19f7Y8pICtlx3InNjAEREsrFkeBjGRgbiWPYNdAtqUmPwY8tLCthy3YksgesA6cF1gIjIltdzseW62wv2vknDkOs3e4DIZlnTHxhrqguZhi0vKWDLdbcH7H2zDQyAyCZZ0x8Ya6oLmY4trwlly3W3ddwLzHZwHSCyOda02rE11YVMy5bXhLLluts6S60mT3XHHiCyOdbUvW9NdSHTs+UlBWy57raMvW+2gz1AZHOsabVja6oLmYctr+hr7rrnqktwKLOAPZ4PYO+b7WAPENkca1rt2JrqQmRJHPtWNfa+2QZOg9eD0+BtQ666xGr+wFhTXYjMjdPsyVpxGjzJgjWtdmxNdSEyN459I3vAMUBEZFU4rsT6cewb2QMGQERkNZKP5qDnoj0YvfIwei7ag+SjOVJXifTgQF+yBxwDpAfHABFZHseV2B6OfSNrwzFARGRzLDWuhNuWmA7HvpEtYwBERGZV24DDEgvIceo2EVXgGCAiMhtDxvSYe1wJty0hogexB4iIzMKYTSHNuYAcp24T0YMYABGRWRgbcJhrXAn3aCKiB/EWGJEJcO2ayqxtrRhO3SaiB7EHiKiOjBlYK4eZSNa4Txr3aCKiClwHSA+uA0S1ZczaNXKbicS1YojIUgy5fvMWGFEdVDfORR85zkTyc3dBZMumDH6IyKowACKqA0PHuRgaMBERkXkwACKqA0MH1lrbwGAiIrniIGiiOjJkYK01DgyWGzkMQCeimjEAItLD0IukIWvXcCaSdOQ2AJ2IqsYAiOghlrhIchNJyzNmZWoisl9WMQYoMTERQUFBcHZ2RkREBI4cOVJl3pUrV6J3795o0qQJmjRpgqioqEr5x40bB4VCofMYMGCAuZtBdkCOs7TkggPQiehBkgdAycnJiI2NxZw5c3D8+HGEhoZCpVLh6tWrevPv3bsXo0aNwo8//oi0tDQEBASgf//+uHz5sk6+AQMGIDc3V/tYt26dJZpDNo4XSfvFAehE9CDJA6ClS5di0qRJGD9+PDp06IAVK1agQYMGWLVqld783377LV599VWEhYWhXbt2+OKLL1BeXo7U1FSdfE5OTvD19dU+mjRpYonmkI3jRdJ+cSsMInqQpGOA7ty5g/T0dMTFxWnTHBwcEBUVhbS0tFqVcevWLdy9exceHh466Xv37oW3tzeaNGmCJ554AgsXLkTTpk31llFaWorS0lLtc41GY0RryB4YO0uLM4tsAwegE1EFSQOggoIClJWVwcfHRyfdx8cHv//+e63KePvtt+Hv74+oqCht2oABAzB06FAEBwcjMzMTs2bNQnR0NNLS0qBUKiuVER8fj3nz5tWtMVaAF2HTMPQiyZlFtsXaBqDz91Y6/OzlzaZngS1atAjr16/H3r174ezsrE0fOXKk9v8hISHo3LkzWrZsib179+LJJ5+sVE5cXBxiY2O1zzUaDQICAsxbeRPjRdi0anuR5Mwiqgv+3kqHnz1JOgbI09MTSqUS+fn5Oun5+fnw9fWt9rUffPABFi1ahF27dqFz587V5m3RogU8PT1x/vx5vcednJzg5uam87AlnLkkHQ6aJmPx91Y6/OwJkDgAcnR0RHh4uM4A5ooBzZGRkVW+7v3338eCBQuQkpKCbt261fg+ly5dwvXr1+Hn52eSetdFrroEhzILTPqLxouwdDhomozF31vp8LMnwApmgcXGxmLlypVYs2YNzpw5g1deeQXFxcUYP348AGDs2LE6g6QXL16Md999F6tWrUJQUBDy8vKQl5eHoqIiAEBRURHefPNN/Pzzz8jOzkZqaioGDx6MVq1aQaVSSdLGCslHc9Bz0R6MXnkYPRftQfLRHJOUy4uwdDiziIzF31vp8LOXljk6Aowh+RigESNG4Nq1a5g9ezby8vIQFhaGlJQU7cDonJwcODj8X5y2fPly3LlzB88995xOOXPmzMHcuXOhVCpx6tQprFmzBoWFhfD390f//v2xYMECODk5WbRtDzLnWBHuLyUtziwiY/i5u+DZLs2w6fj/rWE2pIs/f34sgH8zpWNNY68UQghRczZ50Wg0cHd3h1qtNtl4oEOZBRi98nCl9HWTHkNkS/3T8w2Vqy4x6CLMGRBE0slVl6Dnoj06t2KUCgUOzOzH30cLMfRvJtWNJX7mDbl+S94DJBcVXa4Pn3hTdrkaMr3XmqJwIjmqbhwKL8aWYW1LItg7a/uZl3wMkFxY01gRzoAgkh7HodCDrGVcjDlZ2888e4AsyFrGilhbFE4kRxyHQhXk0iNvbT/zDIAszBq6XC1xO46ogqFjzeQ0Ns1avhSRdOS2mKo1/cwzAJIha4vCyX4Z+s1WLt+EH2QNX4pIOnLskbeWn3kGQDJlTVE42SdDv9nK7ZuwPZBTb525sEdeOhwELWN+7i6IbNmUf7jILAxdbZer80rPkIG45lrYVW6saYKM3LAHiIjMwtVRqTe9gaP+7138JiwtQ24/srfOtNgjLw32ABGRWRTfKdObfutOud50fhOWjqFLY7C3zvTYI2957AEi0oNjG+rOmB4dfhOWhqEDcdlbR/aAPUBED7HE2IaTF29g5U+ZOHnxhsnLthbG9ujwm7DlGbpAHXvryB5wLzA9zLEXGNkGS+xVM2NDhs4GmMO6NsOS4WEmKdsacb8l25B8NKfS0hg1LUHAc0vWhnuBERnJ3GtynLx4Qyf4AYBNxy9jbGQgQgOa1Ll8a2Qta35Q9Yy5/chzS7aMt8CIHmDuvWqOZP+lN/1Ytv3eCrN1ctijqQJvP5KcMAAieoC5xzZ0D/LQm94tyD57f2wd17ohsl+8BUb0EHPORAoNaIJhXZtVGgNkr7e/jGEtM/C41g2RfWMARKSHOcc2LBkehrGRgTiWfQPdgpow+HmAJfYCO3nxBo5k/4XuQR7VfvZy3KOJSE4YABFJIDSAgc/DLNHjYsgMPK51Q2TfOAaIiKyCuVcXrmoGXlVrMXGtGyL7xh4gIrIKwZ6uUAB4MAZSKGCRGXhV9cZxZWoi+8UAiIislwmXaW3h6ao3vaYAy9xr3VjLoG8iuWEARERWIauguFK8IwCTDTp2cdT/566BY/06l20sSwz6JiL9OAaIzEZOC8hR3Zl7EUpjyzfXz7GhO7ATWTNb/HvPHiAyC36zJUNVDDp+eD8qU90Wqig/btMvKMf9b381lW/On2NOsyd7Yat/7xkAkclZagE5jp2wPxYZdFwx0lpRfTZz/xxzmj3ZA1teMJS3wMjkzD2dGeAWBfbMXPtRGXrLydw/x5xmT/bAEn/vzYU9QGRy5v5ma4lvHOxdsj+G3nKyRA8Np9mTrbPlnkz2AJHJmfubrbm/cbB3yT4ZOgjaUj003IHddGxxIK6ts+WeTIUQwoQrbdgHjUYDd3d3qNVquLm5SV0dm5WrLjHLN9tcdQl6LtpT6RvHgZn96vw+5iybpJd8NKfSIOuaBmsa+nPM3kNp2OpAXHthrr/3hjLk+s1bYGQ25lpAzpyzhTgzx74Zc8vJkJ9jXoSlYcsDce2FuRcMNQcGQGSTzDV2wpbvZ1PtmOsPNS/C0uEXFzIGxwBZGO9Rm445xk7Y8v1skpYtz4axdeZeRJPsk1UEQImJiQgKCoKzszMiIiJw5MiRavNv3LgR7dq1g7OzM0JCQrBz506d40IIzJ49G35+fnBxcUFUVBTOnTtnzibUCgfX2oYRjzbH5lcj8c7A9tj8aiRvYdiZkxdvYOVPmVXuAm8sXoSlwy8uZAzJA6Dk5GTExsZizpw5OH78OEJDQ6FSqXD16lW9+Q8dOoRRo0ZhwoQJOHHiBIYMGYIhQ4bg9OnT2jzvv/8+PvroI6xYsQKHDx+Gq6srVCoVbt++balmVcJl721H8tEcPPvpISzccQbPfnqIgaqVM6RXdcaGDAxOPIR/7fgdgxMPYcaGDJPVgxdhaY14tDkOzOyHdZMew4GZ/fjFhWok+SywiIgIPProo/jkk08AAOXl5QgICMBrr72GmTNnVso/YsQIFBcX4/vvv9emPfbYYwgLC8OKFSsghIC/vz9mzJiBN954AwCgVqvh4+ODpKQkjBw5ssY6mWMW2KHMAoxeebhS+rpJjyGyZVOTvAfVHWeB2RZDBh2fvHgDgxMPVUrfNrkHQgOamKxO1jIbhkiODLl+S9oDdOfOHaSnpyMqKkqb5uDggKioKKSlpel9TVpamk5+AFCpVNr8WVlZyMvL08nj7u6OiIiIKsssLS2FRqPReZgau8dtA8dx2A5De1WPZP+lN/1YtmlvhXFdHyLbIGkAVFBQgLKyMvj4+Oik+/j4IC8vT+9r8vLyqs1f8a8hZcbHx8Pd3V37CAgIMKo91WH3uG1goGo7DA1Wuwd56E3vFmS63h8ish2SjwGyBnFxcVCr1drHxYsXzfI+vEdt/Rio2g5Dg9XQgCYY1rWZTtqwrs1MevuLiGyHpOsAeXp6QqlUIj8/Xyc9Pz8fvr6+el/j6+tbbf6Kf/Pz8+Hn56eTJywsTG+ZTk5OcHJyMrYZBrHFxaLkhvsz2QZjFsRcMjwMYyMDcSz7BroFNWHwQyRjkvYAOTo6Ijw8HKmpqdq08vJypKamIjIyUu9rIiMjdfIDwO7du7X5g4OD4evrq5NHo9Hg8OHDVZZJ9DCO47ANxvSqhgY0wYTeLRj8EMmc5CtBx8bGIiYmBt26dUP37t2RkJCA4uJijB8/HgAwduxYNGvWDPHx8QCAqVOnok+fPliyZAkGDhyI9evX49ixY/j8888BAAqFAtOmTcPChQvRunVrBAcH491334W/vz+GDBkiVTOJyEzYq0pExpA8ABoxYgSuXbuG2bNnIy8vD2FhYUhJSdEOYs7JyYGDw/91VPXo0QNr167FO++8g1mzZqF169bYunUrOnXqpM3z1ltvobi4GC+99BIKCwvRq1cvpKSkwNnZ2eLtIyIiIusj+TpA1oi7wRMREdkem1kHiIiIiEgKDICIiIhIdhgAERERkewwACIiIiLZYQBEREREssMAiIiIiGSHARARERHJDgMgIiIikh0GQERERCQ7km+FYY0qFsfWaDQS14SIiIhqq+K6XZtNLhgA6XHz5k0AQEBAgMQ1ISIiIkPdvHkT7u7u1ebhXmB6lJeX48qVK2jUqBEUCoVJy9ZoNAgICMDFixftcp8xts/22Xsb2T7bZ+9tZPuMJ4TAzZs34e/vr7ORuj7sAdLDwcEBjzzyiFnfw83NzS5/sCuwfbbP3tvI9tk+e28j22ecmnp+KnAQNBEREckOAyAiIiKSHQZAFubk5IQ5c+bAyclJ6qqYBdtn++y9jWyf7bP3NrJ9lsFB0ERERCQ77AEiIiIi2WEARERERLLDAIiIiIhkhwEQERERyQ4DoDpKTExEUFAQnJ2dERERgSNHjlSbPyEhAW3btoWLiwsCAgIwffp03L59u05lmpOp2zd37lwoFAqdR7t27czdjGoZ0sa7d+9i/vz5aNmyJZydnREaGoqUlJQ6lWlupm6fNZ3D/fv3Y9CgQfD394dCocDWrVtrfM3evXvRtWtXODk5oVWrVkhKSqqUx5rOnznaaMvnMDc3F6NHj0abNm3g4OCAadOm6c23ceNGtGvXDs7OzggJCcHOnTtNX/laMEf7kpKSKp0/Z2dn8zSgFgxt4+bNm/HUU0/By8sLbm5uiIyMxA8//FApn9l/DwUZbf369cLR0VGsWrVK/Prrr2LSpEmicePGIj8/X2/+b7/9Vjg5OYlvv/1WZGVliR9++EH4+fmJ6dOnG12mOZmjfXPmzBEdO3YUubm52se1a9cs1aRKDG3jW2+9Jfz9/cWOHTtEZmam+PTTT4Wzs7M4fvy40WWakznaZ03ncOfOneKf//yn2Lx5swAgtmzZUm3+CxcuiAYNGojY2Fjx22+/iY8//lgolUqRkpKizWNN508I87TRls9hVlaWeP3118WaNWtEWFiYmDp1aqU8Bw8eFEqlUrz//vvit99+E++8846oX7+++OWXX8zTiGqYo32rV68Wbm5uOucvLy/PPA2oBUPbOHXqVLF48WJx5MgR8ccff4i4uDhRv359i/8dZQBUB927dxeTJ0/WPi8rKxP+/v4iPj5eb/7JkyeLJ554QictNjZW9OzZ0+gyzckc7ZszZ44IDQ01S32NYWgb/fz8xCeffKKTNnToUPHCCy8YXaY5maN91nYOK9TmD+9bb70lOnbsqJM2YsQIoVKptM+t6fw9zFRttOVz+KA+ffroDRCGDx8uBg4cqJMWEREhXn755TrWsG5M1b7Vq1cLd3d3k9XLlAxtY4UOHTqIefPmaZ9b4veQt8CMdOfOHaSnpyMqKkqb5uDggKioKKSlpel9TY8ePZCenq7txrtw4QJ27tyJp59+2ugyzcUc7atw7tw5+Pv7o0WLFnjhhReQk5NjvoZUw5g2lpaWVupqdnFxwYEDB4wu01zM0b4K1nIODZWWlqbzeQCASqXSfh7WdP6MVVMbK9jqOayN2n4GtqyoqAiBgYEICAjA4MGD8euvv0pdJaOVl5fj5s2b8PDwAGC530MGQEYqKChAWVkZfHx8dNJ9fHyQl5en9zWjR4/G/Pnz0atXL9SvXx8tW7ZE3759MWvWLKPLNBdztA8AIiIikJSUhJSUFCxfvhxZWVno3bs3bt68adb26GNMG1UqFZYuXYpz586hvLwcu3fvxubNm5Gbm2t0meZijvYB1nUODZWXl6f389BoNCgpKbGq82esmtoI2PY5rI2qPgNbOYc1adu2LVatWoVt27bhm2++QXl5OXr06IFLly5JXTWjfPDBBygqKsLw4cMBWO7vKAMgC9q7dy/ee+89fPrppzh+/Dg2b96MHTt2YMGCBVJXzSRq077o6Gg8//zz6Ny5M1QqFXbu3InCwkJs2LBBwprX3ocffojWrVujXbt2cHR0xJQpUzB+/Hg4ONjHr1Jt2mfr55B4Dm1dZGQkxo4di7CwMPTp0webN2+Gl5cXPvvsM6mrZrC1a9di3rx52LBhA7y9vS363vUs+m52xNPTE0qlEvn5+Trp+fn58PX11fuad999F2PGjMHEiRMBACEhISguLsZLL72Ef/7zn0aVaS7maJ++IKFx48Zo06YNzp8/b/pG1MCYNnp5eWHr1q24ffs2rl+/Dn9/f8ycORMtWrQwukxzMUf79JHyHBrK19dX7+fh5uYGFxcXKJVKqzl/xqqpjfrY0jmsjao+A1s5h4aqX78+unTpYnPnb/369Zg4cSI2btyoc7vLUn9H7eNrqwQcHR0RHh6O1NRUbVp5eTlSU1MRGRmp9zW3bt2qFAQolUoAgBDCqDLNxRzt06eoqAiZmZnw8/MzUc1rry6ft7OzM5o1a4Z79+5h06ZNGDx4cJ3LNDVztE8fKc+hoSIjI3U+DwDYvXu39vOwpvNnrJraqI8tncPaMOYzsGVlZWX45ZdfbOr8rVu3DuPHj8e6deswcOBAnWMW+z002XBqGVq/fr1wcnISSUlJ4rfffhMvvfSSaNy4sXY64pgxY8TMmTO1+efMmSMaNWok1q1bJy5cuCB27dolWrZsKYYPH17rMm29fTNmzBB79+4VWVlZ4uDBgyIqKkp4enqKq1evWrx9Qhjexp9//lls2rRJZGZmiv3794snnnhCBAcHixs3btS6TEsyR/us6RzevHlTnDhxQpw4cUIAEEuXLhUnTpwQf/75pxBCiJkzZ4oxY8Zo81dMEX/zzTfFmTNnRGJiot5p8NZy/oQwTxtt+RwKIbT5w8PDxejRo8WJEyfEr7/+qj1+8OBBUa9ePfHBBx+IM2fOiDlz5kg2Dd4c7Zs3b5744YcfRGZmpkhPTxcjR44Uzs7OOnksydA2fvvtt6JevXoiMTFRZyp/YWGhNo8lfg8ZANXRxx9/LJo3by4cHR1F9+7dxc8//6w91qdPHxETE6N9fvfuXTF37lzRsmVL4ezsLAICAsSrr76qc3GpqUxLM3X7RowYIfz8/ISjo6No1qyZGDFihDh//rwFW1SZIW3cu3evaN++vXBychJNmzYVY8aMEZcvXzaoTEszdfus6Rz++OOPAkClR0WbYmJiRJ8+fSq9JiwsTDg6OooWLVqI1atXVyrXms6fOdpo6+dQX/7AwECdPBs2bBBt2rQRjo6OomPHjmLHjh2WadBDzNG+adOmaX8+fXx8xNNPP62zho6lGdrGPn36VJu/grl/DxVCVHFvgoiIiMhOcQwQERERyQ4DICIiIpIdBkBEREQkOwyAiIiISHYYABEREZHsMAAiIiIi2WEARERERLLDAIiIyAbs3bsXCoUChYWFUleFyC4wACIiHePGjYNCocCiRYt00rdu3QqFQqF9LoTAypUrERkZCTc3NzRs2BAdO3bE1KlTa70p461btxAXF4eWLVvC2dkZXl5e6NOnD7Zt26bNExQUhISEBJO0zdwqPjuFQoH69esjODgYb731Fm7fvm1QOX379sW0adN00nr06IHc3Fy4u7ubsMZE8sUAiIgqcXZ2xuLFi3Hjxg29x4UQGD16NF5//XU8/fTT2LVrF3777Td8+eWXcHZ2xsKFC2v1Pv/4xz+wefNmfPzxx/j999+RkpKC5557DtevXzdlcyxqwIAByM3NxYULF7Bs2TJ89tlnmDNnTp3LdXR0hK+vr04QSkR1YNKNNYjI5sXExIi//e1vol27duLNN9/Upm/ZskVU/MlYt26dACC2bdumt4zy8vJavZe7u7tISkqq8ri+PYMq/PTTT6JXr17C2dlZPPLII+K1114TRUVF2uNfffWVCA8PFw0bNhQ+Pj5i1KhRIj8/X3u8Yv+ilJQUERYWJpydnUW/fv1Efn6+2Llzp2jXrp1o1KiRGDVqlCguLq5Ve2JiYsTgwYN10oYOHSq6dOmifV5QUCBGjhwp/P39hYuLi+jUqZNYu3atThkPtzkrK0tb3wf31vvuu+9Ehw4dhKOjowgMDBQffPBBrepJREKwB4iIKlEqlXjvvffw8ccf49KlS5WOr1u3Dm3btsUzzzyj9/W17aXw9fXFzp07cfPmTb3HN2/ejEceeQTz589Hbm4ucnNzAQCZmZkYMGAAhg0bhlOnTiE5ORkHDhzAlClTtK+9e/cuFixYgJMnT2Lr1q3Izs7GuHHjKr3H3Llz8cknn+DQoUO4ePEihg8fjoSEBKxduxY7duzArl278PHHH9eqPQ87ffo0Dh06BEdHR23a7du3ER4ejh07duD06dN46aWXMGbMGBw5cgQA8OGHHyIyMhKTJk3StjkgIKBS2enp6Rg+fDhGjhyJX375BXPnzsW7776LpKQko+pKJDtSR2BEZF0e7MV47LHHxIsvviiE0O0BateunXjmmWd0Xjd16lTh6uoqXF1dRbNmzWr1Xvv27ROPPPKIqF+/vujWrZuYNm2aOHDggE6ewMBAsWzZMp20CRMmiJdeekkn7aeffhIODg6ipKRE73sdPXpUABA3b94UQvxfD9D//vc/bZ74+HgBQGRmZmrTXn75ZaFSqWrVnpiYGKFUKoWrq6twcnISAISDg4P47rvvqn3dwIEDxYwZM7TP+/TpI6ZOnaqT5+EeoNGjR4unnnpKJ8+bb74pOnToUKu6Eskde4CIqEqLFy/GmjVrcObMmRrz/vOf/0RGRgZmz56NoqKiWpX/+OOP48KFC0hNTcVzzz2HX3/9Fb1798aCBQuqfd3JkyeRlJSEhg0bah8qlQrl5eXIysoCcL+HZNCgQWjevDkaNWqEPn36AABycnJ0yurcubP2/z4+PmjQoAFatGihk3b16tVatQcA+vXrh4yMDBw+fBgxMTEYP348hg0bpj1eVlaGBQsWICQkBB4eHmjYsCF++OGHSvWqyZkzZ9CzZ0+dtJ49e+LcuXMoKyszqCwiOWIARERVevzxx6FSqRAXF6eT3rp1a5w9e1YnzcvLC61atYK3t7dB71G/fn307t0bb7/9Nnbt2oX58+djwYIFuHPnTpWvKSoqwssvv4yMjAzt4+TJkzh37hxatmyJ4uJiqFQquLm54dtvv8XRo0exZcsWAKhUbv369bX/r5i99SCFQoHy8vJat8fV1RWtWrVCaGgoVq1ahcOHD+PLL7/UHv/3v/+NDz/8EG+//TZ+/PFHZGRkQKVSVdteIjK9elJXgIis26JFixAWFoa2bdtq00aNGoXRo0dj27ZtGDx4sEnfr0OHDrh37x5u374NR0dHODo6VurR6Nq1K3777Te0atVKbxm//PILrl+/jkWLFmnHzxw7dsyk9awNBwcHzJo1C7GxsRg9ejRcXFxw8OBBDB48GH//+98BAOXl5fjjjz/QoUMH7ev0tflh7du3x8GDB3XSDh48iDZt2kCpVJq+MUR2hj1ARFStkJAQvPDCC/joo4+0aSNHjsRzzz2HkSNHYv78+Th8+DCys7Oxb98+JCcn1/oC3LdvX3z22WdIT09HdnY2du7ciVmzZqFfv35wc3MDcH8doP379+Py5csoKCgAALz99ts4dOgQpkyZgoyMDJw7dw7btm3TDoJu3rw5HB0d8fHHH+PChQvYvn17jbfVzOX555+HUqlEYmIigPu9Z7t378ahQ4dw5swZvPzyy8jPz9d5TVBQkPYzLSgo0NsDNWPGDKSmpmLBggX4448/sGbNGnzyySd44403LNIuIlvHAIiIajR//nydi7BCoUBycjISEhKwc+dOPPnkk2jbti1efPFFBAQE4MCBA7UqV6VSYc2aNejfvz/at2+P1157DSqVChs2bNB57+zsbLRs2RJeXl4A7o/b2bdvH/744w/07t0bXbp0wezZs+Hv7w/g/u24pKQkbNy4ER06dMCiRYvwwQcfmPATqb169ephypQpeP/991FcXIx33nkHXbt2hUqlQt++feHr64shQ4bovOaNN96AUqlEhw4d4OXlpXd8UNeuXbFhwwasX78enTp1wuzZszF//ny9M92IqDKFEEJIXQkiIiIiS2IPEBEREckOAyAiMpsHp6k//Pjpp5+krp5BcnJyqm2PodPYiUhavAVGRGZT3aaozZo1g4uLiwVrUzf37t1DdnZ2lceDgoJQrx4n1hLZCgZAREREJDu8BUZERESywwCIiIiIZIcBEBEREckOAyAiIiKSHQZAREREJDsMgIiIiEh2GAARERGR7DAAIiIiItn5f1mUVSUnEI56AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHHCAYAAAC7soLdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASmhJREFUeJzt3Xl8VNX9//H3JJCFJUFISADDLiCyGhYDKqDRFC1KUdksIO4KiKS1AiqblqUqxkoEpQpaC0QsIBW+KA2islR2FQVlNRSTQLQkEMKWnN8f/DI6ZiEzmcnM3Hk9H495PJg75945JxPmfnLO+ZxjM8YYAQAAWFiQtysAAADgaQQ8AADA8gh4AACA5RHwAAAAyyPgAQAAlkfAAwAALI+ABwAAWB4BDwAAsDwCHgAAYHkEPAC8YsqUKbLZbBUqa7PZNGXKFI/Wp3fv3urdu7fPXg9A5RDwAAFu4cKFstls9ke1atXUqFEj3XPPPTp69Ki3q+dzmjZt6vDzql+/vq677jotX77cLdc/ffq0pkyZovXr17vlegAuIuABIEmaNm2a/v73v2vevHnq27ev3nnnHfXq1UtnzpzxyPs9/fTTKigo8Mi1Pa1Tp076+9//rr///e/64x//qB9++EEDBgzQvHnzKn3t06dPa+rUqQQ8gJtV83YFAPiGvn37qkuXLpKk+++/X1FRUZo1a5ZWrlypgQMHuv39qlWrpmrV/PMrqFGjRvr9739vfz58+HC1bNlSL730kh5++GEv1gxAWejhAVCq6667TpJ04MABh+N79+7VnXfeqbp16yosLExdunTRypUrHcqcP39eU6dO1RVXXKGwsDDVq1dP1157rdauXWsvU9ocnrNnz2rcuHGKjo5W7dq1ddttt+m///1vibrdc889atq0aYnjpV1zwYIFuuGGG1S/fn2Fhoaqbdu2mjt3rlM/i0uJjY3VlVdeqUOHDpVb7tixY7rvvvsUExOjsLAwdezYUW+99Zb99cOHDys6OlqSNHXqVPuwmafnLwGBwD//vALgcYcPH5YkXXbZZfZjX3/9tXr27KlGjRpp/Pjxqlmzpt599131799f//znP/W73/1O0sXAY8aMGbr//vvVrVs35eXladu2bdqxY4duuummMt/z/vvv1zvvvKOhQ4eqR48eWrdunW699dZKtWPu3Lm66qqrdNttt6latWr617/+pUcffVRFRUUaNWpUpa5d7Pz58zpy5Ijq1atXZpmCggL17t1b+/fv1+jRo9WsWTMtXbpU99xzj06cOKGxY8cqOjpac+fO1SOPPKLf/e53GjBggCSpQ4cObqknENAMgIC2YMECI8n8+9//NsePHzdHjhwx7733nomOjjahoaHmyJEj9rI33nijad++vTlz5oz9WFFRkenRo4e54oor7Mc6duxobr311nLfd/LkyeaXX0G7du0yksyjjz7qUG7o0KFGkpk8ebL92IgRI0yTJk0ueU1jjDl9+nSJcklJSaZ58+YOx3r16mV69epVbp2NMaZJkybm5ptvNsePHzfHjx83X3zxhRk8eLCRZMaMGVPm9VJSUowk884779iPnTt3ziQkJJhatWqZvLw8Y4wxx48fL9FeAJXHkBYASVJiYqKio6MVFxenO++8UzVr1tTKlSt1+eWXS5J++uknrVu3TgMHDtTJkyeVk5OjnJwc/fjjj0pKStK+ffvsWV116tTR119/rX379lX4/VevXi1JeuyxxxyOP/7445VqV3h4uP3fubm5ysnJUa9evXTw4EHl5ua6dM2PPvpI0dHRio6OVseOHbV06VINGzZMs2bNKvOc1atXKzY2VkOGDLEfq169uh577DGdOnVKn3zyiUt1AVAxAR3wfPrpp+rXr58aNmwom82mFStWePw9jx49qt///veqV6+ewsPD1b59e23bts3j7wtcSmpqqtauXav33ntPt9xyi3JychQaGmp/ff/+/TLG6JlnnrHf7IsfkydPlnRxjop0MePrxIkTatWqldq3b68nnnhCX375Zbnv//333ysoKEgtWrRwON66detKtWvjxo1KTExUzZo1VadOHUVHR2vixImS5HLA0717d61du1b//ve/tWnTJuXk5Ojtt992CK5+7fvvv9cVV1yhoCDHr90rr7zS/joAzwnoOTz5+fnq2LGj7r33XvtYuSf973//U8+ePdWnTx/93//9n6Kjo7Vv3z6HORKAt3Tr1s2epdW/f39de+21Gjp0qL799lvVqlVLRUVFkqQ//vGPSkpKKvUaLVu2lCRdf/31OnDggN5//3199NFH+tvf/qaXXnpJ8+bN0/3331/pupa1YGFhYaHD8wMHDujGG29UmzZtNHv2bMXFxSkkJESrV6/WSy+9ZG+Ts6KiopSYmOjSuQC8I6ADnr59+6pv375lvn727Fk99dRTWrx4sU6cOKF27dpp1qxZLq+eOmvWLMXFxWnBggX2Y82aNXPpWoAnBQcHa8aMGerTp4/mzJmj8ePHq3nz5pIuDsNU5GZft25djRw5UiNHjtSpU6d0/fXXa8qUKWUGPE2aNFFRUZEOHDjg0Kvz7bfflih72WWX6cSJEyWO/7qX5F//+pfOnj2rlStXqnHjxvbjH3/88SXr725NmjTRl19+qaKiIodenr1799pfl8oO5gBUTkAPaV3K6NGjtXnzZi1ZskRffvml7rrrLv3mN79xal7CL61cuVJdunTRXXfdpfr166tz586aP3++m2sNuEfv3r3VrVs3paSk6MyZM6pfv7569+6t1157TZmZmSXKHz9+3P7vH3/80eG1WrVqqWXLljp79myZ71f8x8df//pXh+MpKSklyrZo0UK5ubkOw2SZmZklVjsODg6WJBlj7Mdyc3Md/uioKrfccouysrKUlpZmP3bhwgW98sorqlWrlnr16iVJqlGjhiSVGtABcF1A9/CUJyMjQwsWLFBGRoYaNmwo6WJX/po1a7RgwQJNnz7d6WsePHhQc+fOVXJysiZOnKitW7fqscceU0hIiEaMGOHuJgCV9sQTT+iuu+7SwoUL9fDDDys1NVXXXnut2rdvrwceeEDNmzdXdna2Nm/erP/+97/64osvJElt27ZV7969FR8fr7p162rbtm167733NHr06DLfq1OnThoyZIheffVV5ebmqkePHkpPT9f+/ftLlB08eLCefPJJ/e53v9Njjz2m06dPa+7cuWrVqpV27NhhL3fzzTcrJCRE/fr100MPPaRTp05p/vz5ql+/fqlBmyc9+OCDeu2113TPPfdo+/btatq0qd577z1t3LhRKSkpql27tqSLk6zbtm2rtLQ0tWrVSnXr1lW7du3Url27Kq0vYDneThPzFZLM8uXL7c8/+OADI8nUrFnT4VGtWjUzcOBAY4wxe/bsMZLKfTz55JP2a1avXt0kJCQ4vO+YMWPMNddcUyVtBEpTnJa+devWEq8VFhaaFi1amBYtWpgLFy4YY4w5cOCAGT58uImNjTXVq1c3jRo1Mr/97W/Ne++9Zz/vueeeM926dTN16tQx4eHhpk2bNubPf/6zOXfunL1MaSnkBQUF5rHHHjP16tUzNWvWNP369TNHjhwpNU37o48+Mu3atTMhISGmdevW5p133in1mitXrjQdOnQwYWFhpmnTpmbWrFnmzTffNJLMoUOH7OWcSUu/VMp9WdfLzs42I0eONFFRUSYkJMS0b9/eLFiwoMS5mzZtMvHx8SYkJIQUdcBNbMb8oq83gNlsNi1fvlz9+/eXJKWlpenuu+/W119/be8WL1arVi3Fxsbq3LlzOnjwYLnXrVevnn3l1CZNmuimm27S3/72N/vrc+fO1XPPPccmjQAAeBBDWmXo3LmzCgsLdezYMfsS+78WEhKiNm3aVPiaPXv2LDEB87vvvrNPVgQAAJ4R0AHPqVOnHOYHHDp0SLt27VLdunXVqlUr3X333Ro+fLhefPFFde7cWcePH1d6ero6dOjg0nL348aNU48ePTR9+nQNHDhQW7Zs0euvv67XX3/dnc0CAAC/EtBDWuvXr1efPn1KHB8xYoQWLlyo8+fP67nnntPbb7+to0ePKioqStdcc42mTp2q9u3bu/SeH3zwgSZMmKB9+/apWbNmSk5O1gMPPFDZpgAAgHIEdMADAAACA+vwAAAAyyPgAQAAlhdwk5aLior0ww8/qHbt2izhDgCAnzDG6OTJk2rYsGGJTXgrIuACnh9++EFxcXHergYAAHDBkSNHdPnllzt9XsAFPMXLtx85ckQRERFerg0AAKiIvLw8xcXF2e/jzgq4gKd4GCsiIoKABwAAP+PqdBQmLQMAAMsj4AEAAJZHwAMAACwv4ObwVFRhYaHOnz/v7WoElOrVq5fYmR4AAHcg4PkVY4yysrJ04sQJb1clINWpU0exsbGskQQAcCsCnl8pDnbq16+vGjVqcOOtIsYYnT59WseOHZMkNWjQwMs1AgBYCQHPLxQWFtqDnXr16nm7OgEnPDxcknTs2DHVr1+f4S0AgNswafkXiufs1KhRw8s1CVzFP3vmTwEA3ImApxQMY3kPP3sAgCcQ8AAAAMsj4AEAAJZHwGMhWVlZGjNmjJo3b67Q0FDFxcWpX79+Sk9PdyhnjFHfvn1ls9m0YsUK+/HDhw/LZrNp165dJa7du3dvPf744/bny5Yt080336x69eqVec6ZM2c0atQo1atXT7Vq1dIdd9yh7OxsN7UWAOCLMnMLtOlAjjJzC7xdFQcEPBZx+PBhxcfHa926dXr++ef11Vdfac2aNerTp49GjRrlUDYlJaXSc2Xy8/N17bXXatasWWWWGTdunP71r39p6dKl+uSTT/TDDz9owIABlXpfAIDvStuaoZ4z12no/M/Vc+Y6pW3N8HaV7EhLt4hHH31UNptNW7ZsUc2aNe3Hr7rqKt17773257t27dKLL76obdu2VWqtm2HDhkm6GGiVJjc3V2+88YYWLVqkG264QZK0YMECXXnllfrPf/6ja665xuX3BgD4nszcAk1Y9pWKzMXnRUaauGy3rm8VrQaR4d6tnOjh8aiq6tb76aeftGbNGo0aNcoh2ClWp04dSdLp06c1dOhQpaamKjY21qN12r59u86fP6/ExET7sTZt2qhx48bavHmzR98bAFD1DuXk24OdYoXG6HDOae9U6Fe8GvB8+umn6tevnxo2bFhiPklpli1bpptuuknR0dGKiIhQQkKCPvzww6qprJOqsltv//79MsaoTZs25ZYbN26cevToodtvv73ccj169FCtWrUcHp999plTdcrKylJISIg92CoWExOjrKwsp64FAPB9zaJqKuhXsyWCbTY1jfKNte28GvDk5+erY8eOSk1NrVD5Tz/9VDfddJNWr16t7du3q0+fPurXr5927tzp4Zo6p6xuPU/19BhjLllm5cqVWrdunVJSUi5ZNi0tTbt27XJ4dOnSxQ01BQBYVYPIcM0Y0F7B/3+OaLDNpukD2vnEcJbk5Tk8ffv2Vd++fStc/tc36+nTp+v999/Xv/71L3Xu3NnNtXNded16nvjgr7jiCtlsNu3du7fMMuvWrdOBAwdK9Ljccccduu6667R+/Xr7sbi4OLVs2dKhXPG2DxUVGxurc+fO6cSJEw7vmZ2d7fHhNACAdwzq2ljXt4rW4ZzTahpVw2eCHcnP5/AUFRXp5MmTqlu3bpllzp49q7y8PIeHp1V1t17dunWVlJSk1NRU5efnl3j9xIkTGj9+vL788kuHXhtJeumll7RgwQK31yk+Pl7Vq1d3SIn/9ttvlZGRoYSEBLe/HwDANzSIDFdCi3o+FexIfp6l9cILL+jUqVMaOHBgmWVmzJihqVOnVmGtfu7Wm7hstwqNqZJuvdTUVPXs2VPdunXTtGnT1KFDB124cEFr167V3LlztWfPnlJ7Vho3bqxmzZo5/X4//fSTMjIy9MMPP0i6GMxIF3t2YmNjFRkZqfvuu0/JycmqW7euIiIiNGbMGCUkJJChBQCocn4b8CxatEhTp07V+++/r/r165dZbsKECUpOTrY/z8vLU1xcnMfrV9Xdes2bN9eOHTv05z//WX/4wx+UmZmp6OhoxcfHa+7cuW5/v5UrV2rkyJH254MHD5YkTZ48WVOmTJF0sfcoKChId9xxh86ePaukpCS9+uqrbq8LAACXYjMVmfFaBWw2m5YvX67+/ftfsuySJUt07733aunSpbr11ludep+8vDxFRkYqNzdXERERDq+dOXNGhw4dUrNmzRQWFubUdeEefAYAgNKUd/+uCL+bw7N48WKNHDlSixcvdjrYAQAAgcmrQ1qnTp3S/v377c8PHTqkXbt2qW7dumrcuLEmTJigo0eP6u2335Z0cRhrxIgRevnll9W9e3f7ei7h4eGKjIz0ShsAAIDv82oPz7Zt29S5c2d7SnlycrI6d+6sSZMmSZIyMzOVkfHzgn2vv/66Lly4oFGjRqlBgwb2x9ixY71SfwAA4B+82sPTu3fvchfNW7hwocPzX64VAwAAUFF+N4enKvjIPO6AxM8eAOAJBDy/UL16dUkXN9mEdxT/7Is/CwAA3MFv1+HxhODgYNWpU0fHjh2TJNWoUUM2m+0SZ8EdjDE6ffq0jh07pjp16ig4ONjbVQIAWAgBz68Ur0ZcHPSgatWpU4e9tgC4JDO3QIdy8tUsqqbPbWsA7yPg+RWbzaYGDRqofv36On/+vLerE1CqV69Ozw4Al6RtzdCEZV+pyEhBNmnGgPYa1LWxt6sFH0LAU4bg4GBuvgDgBzJzC+zBjiQVGWnist26vlU0PT2wY9IyAl5mboE2HchRZm6Bt6sCwAWHcvLtwU6xQmN0OIcEFG/w1e9UengQ0OgGB/xfs6iaCrLJIegJttnUNKqG9yoVoHz5O5UeHgSssrrBfe2vEgDlaxAZrhkD2iv4/2fVBttsmj6gHcNZVczXv1Pp4UHAKq8bnC9KwL8M6tpY17eK1uGc02oaVYP/w17g69+pBDwIWHSDA9bSIDLcJ26sgcrXv1MZ0kLAsko3uK9OEAQQWHz9O9VmAmzzory8PEVGRio3N1cRERHerg58QGZugd92g/vyBEEAgclT36mVvX8zpIWA56/d4Kw9AsAX+ep3KkNagJ9i7REAqDgCHsBPFU8Q/CVfmiAIAL6EgAfwU74+QRAAfAlzeAA/xtojAFAxBDyAn/PVCYIA4EsY0gIAAJZHwONFLBgHAEDVYEjLS1gwDgCAqkMPjxf4+o6yAABYDQGPF7BgHAAAVYuAxwtYMA4AgKpFwOMFLBgHAEDVYtKyl7BgHAAAVYeAx4s8vWBcZm6BDuXkq1lUTQIqAEBAI+CxKNLeAQD4GXN4LIi0dwAAHBHwWBBp7wAAOCLgsSDS3gEAcETAY0GkvQMA4IhJyxblato7mV0AACsi4LEwZ9PeyewCAFgVQ1qQRGYXAMDaCHggicwuAIC1EfBAEpldAABrI+CBJDK7AADWxqRl2LGhKQDAqgh44MDTG5oCAOANDGkBAADLI+ABAACWR8ADAECAyMwt0KYDOQG5xppXA55PP/1U/fr1U8OGDWWz2bRixYpLnrN+/XpdffXVCg0NVcuWLbVw4UKP1xMAAH+XtjVDPWeu09D5n6vnzHVK25rh7SpVKa8GPPn5+erYsaNSU1MrVP7QoUO69dZb1adPH+3atUuPP/647r//fn344YcerikAAP6L1fS9nKXVt29f9e3bt8Ll582bp2bNmunFF1+UJF155ZXasGGDXnrpJSUlJXmqmgAA+LXyVtMPlMxcv5rDs3nzZiUmJjocS0pK0ubNm8s85+zZs8rLy3N4AAAQSFhN388CnqysLMXExDgci4mJUV5engoKSu+WmzFjhiIjI+2PuLi4qqgqAAA+g9X0A2DhwQkTJig5Odn+PC8vj6AHABBwAn01fb8KeGJjY5Wdne1wLDs7WxEREQoPL/2DCw0NVWhoaFVUDwAAnxbIq+n71ZBWQkKC0tPTHY6tXbtWCQkJXqqR9QTyGg0AAOvyag/PqVOntH//fvvzQ4cOadeuXapbt64aN26sCRMm6OjRo3r77bclSQ8//LDmzJmjP/3pT7r33nu1bt06vfvuu1q1apW3mmApaVsz7GmLQTZpxoD2GtS1sberBQBApXm1h2fbtm3q3LmzOnfuLElKTk5W586dNWnSJElSZmamMjJ+XhipWbNmWrVqldauXauOHTvqxRdf1N/+9jdS0t2ANRoAAFbm1R6e3r17yxhT5uulraLcu3dv7dy504O1Ckys0QAAsDK/msMDz2GNBgCAlRHwQBJrNAAArM2v0tLhWYG+RoOnZOYW6FBOvppF1eRnCgBeQsADB4G8RoMnkPkGAL6BIS3AQ8h8AwDfQcADeEh5mW8AgKpFwAN4CJlvAOA7CHgADyHzDQB8B5OWAQ8i8w0AfAMBD+BhZL4B8GdWWVqDgAcAAJTKSktrMIcHAACUYLWlNQh4AABACVZbWoOABwAAlGC1pTUIeAAAQAlWW1qDScsAAKBUVlpag4AHAACUySpLazCkBQAALI+ABwAAWB4BDwAAsDwCHgAAYHkEPAAAwPIIeAAAgOUR8AAAAMsj4AEAAJZHwAMAACyPgAcAAFgeAQ8AALA8Ah4AAGB5BDwAAMDyCHgAAIDlEfAAAADLI+CxsMzcAm06kKPM3AJvVwUAAK+q5u0KwDPStmZowrKvVGSkIJs0Y0B7Dera2NvVAgDAK+jhsaDM3AJ7sCNJRUaauGw3PT0AgIBFwGNBh3Ly7cFOsUJjdDjntHcqBACAlxHwWFCzqJoKsjkeC7bZ1DSqhncqBACAlxHwWFCDyHDNGNBewbaLUU+wzabpA9qpQWS4l2sGAPA3VkmAYdKyRQ3q2ljXt4rW4ZzTahpVg2AHAOA0KyXA0MNjYQ0iw5XQoh7BDgDAaVZLgCHgAQAAJVgtAYaABwAAlGC1BBgCHgAAUILVEmCYtAwAAEplpQQYAh4AAFCmBpHhfh3oFPP6kFZqaqqaNm2qsLAwde/eXVu2bCm3fEpKilq3bq3w8HDFxcVp3LhxOnPmTBXVFgAA+COvBjxpaWlKTk7W5MmTtWPHDnXs2FFJSUk6duxYqeUXLVqk8ePHa/LkydqzZ4/eeOMNpaWlaeLEiVVccwAA4E+8GvDMnj1bDzzwgEaOHKm2bdtq3rx5qlGjht58881Sy2/atEk9e/bU0KFD1bRpU918880aMmTIJXuFApVVVscEAKCyvBbwnDt3Ttu3b1diYuLPlQkKUmJiojZv3lzqOT169ND27dvtAc7Bgwe1evVq3XLLLWW+z9mzZ5WXl+fwCARpWzPUc+Y6DZ3/uXrOXKe0rRkeeR9fC6p8rT4AAN/gtUnLOTk5KiwsVExMjMPxmJgY7d27t9Rzhg4dqpycHF177bUyxujChQt6+OGHyx3SmjFjhqZOnerWuvu6slbHvL5VtFsnnvnakuO+Vh8AgO/w+qRlZ6xfv17Tp0/Xq6++qh07dmjZsmVatWqVnn322TLPmTBhgnJzc+2PI0eOVGGNvaMqVsf0tSXHfa0+AADf4rUenqioKAUHBys7O9vheHZ2tmJjY0s955lnntGwYcN0//33S5Lat2+v/Px8Pfjgg3rqqacUFFQyfgsNDVVoaKj7G+DDilfH/GXQ4+7VMcsLqryRvuhr9QEA+Bav9fCEhIQoPj5e6enp9mNFRUVKT09XQkJCqeecPn26RFATHBwsSTLGlHZKQKqK1TF9bclxX6sPAMC3eHXhweTkZI0YMUJdunRRt27dlJKSovz8fI0cOVKSNHz4cDVq1EgzZsyQJPXr10+zZ89W586d1b17d+3fv1/PPPOM+vXrZw98cJGnV8csDqomLtutQmO8vuS4r9UHAOBbvBrwDBo0SMePH9ekSZOUlZWlTp06ac2aNfaJzBkZGQ49Ok8//bRsNpuefvppHT16VNHR0erXr5/+/Oc/e6sJPs3Tq2P62pLjvlYfAIDvsJkAGwvKy8tTZGSkcnNzFRER4e3qwM0ycwt0KCdfzaJqEvAA8Dt8h5Wtsvdv9tKCZZCWDsCf8R3mWX6Vlg6UhbR0AP6M7zDPI+CBJVTF2kMA4Cl8h3keAQ8sgbR0AP6M7zDPI+CxsEDaV6oq1h4CAE/hO8zzyNKyqECd/JaZW0BaOgC/xXdY2cjSQglVtXmoL/L02kMA4El8h3kOQ1oWxOQ3AAAcEfBYEJPfAABwRMBjQUx+AwDAEXN4LIp9pQAA+BkBj4Ux+Q24iP2JABDwALC0QF2iAYAj5vAAsCz2JwJQjIAHgGWxRAOAYgQ8ACyLJRoAFCPgAWBZLNEAoBiTlt2ITBDA97BEA6yM+07FEfC4CZkggO9iiQZYEfcd5zCk5QZkggAAqhL3HecR8LgBmSAAgKrEfcd5BDxuQCYIAKAqcd9xHgGPG5AJAgAoTWZugTYdyHH7UBP3HefZjDHm0sWsIy8vT5GRkcrNzVVERIRbr52ZW0AmCABAUtVMKg6k+05l798uZWlt2bJFmzdvVlZWliQpNjZWCQkJ6tatmyuXswwyQQAAUtmTiq9vFe3W+wT3nYpzKuA5duyY7rjjDm3cuFGNGzdWTEyMJCk7O1vjxo1Tz5499c9//lP169f3SGUBAPAH5U0qJkDxDqfm8Dz66KMqLCzUnj17dPjwYX3++ef6/PPPdfjwYe3Zs0dFRUUaNWqUp+oKAIBfYFKx73Eq4Pnwww+Vmpqq1q1bl3itdevW+utf/6o1a9a4rXIAAPgjJhX7HqeGtEJDQ5WXl1fm6ydPnlRoaGilKwUAgL9jWxPf4lQPz6BBgzRixAgtX77cIfDJy8vT8uXLNXLkSA0ZMsTtlQQAwB81iAxXQot6PhPseCpN3h841cMze/ZsFRUVafDgwbpw4YJCQkIkSefOnVO1atV033336YUXXvBIRQEAgOsCfe8tl9bhycvL0/bt2x3S0uPj492+ro0neHIdHk9jV1wAgCsycwvUc+Y6h8yxYJtNG8b38Zv7iVfW4YmIiFCfPn1cORUuCvTIHADgOtLk3by1RHZ2tqZNm+bOS0LsigsAKF1F5+SQJu/mgCcrK0tTp0515yUhdsUFAJSUtjVDPWeu09D5n6vnzHVK25pRZlnS5J0c0vryyy/Lff3bb7+tVGVQuuLI/Ndjr4EUmQMAfubK1hWBnibvVMDTqVMn2Ww2lTbPufi4zWYr5UxURnFkPnHZbhUaE5CROQDgZ67OyQnkvbecCnjq1q2rv/zlL7rxxhtLff3rr79Wv3793FIxOAr0yBwA8DN6/p3nVMATHx+vH374QU2aNCn19RMnTpTa+wP3COTIHADwM3r+nedUwPPwww8rPz+/zNcbN26sBQsWVLpSAACgfPT8O8elhQf9mT8vPAgAQKCq7P3brWnpAAAAvsipIa3k5OQKlZs9e7ZLlQEAAPAEpwKenTt3OjzfsGGD4uPjFR7+87ghaekAAMDXOBXwfPzxxw7Pa9eurUWLFql58+YuVyA1NVXPP/+8srKy1LFjR73yyivq1q1bmeVPnDihp556SsuWLdNPP/2kJk2aKCUlRbfccovLdfAXbB4KAIBrXNo81F3S0tKUnJysefPmqXv37kpJSVFSUpK+/fZb1a9fv0T5c+fO6aabblL9+vX13nvvqVGjRvr+++9Vp06dqq98FWPzUAAAXFepLK3atWvriy++cLmHp3v37uratavmzJkjSSoqKlJcXJzGjBmj8ePHlyg/b948Pf/889q7d6+qV6/u0nv6Y5ZWZm6Bes5cV2KBqQ3j+9DTAwAICH6bpXXu3Dlt375diYmJP1cmKEiJiYnavHlzqeesXLlSCQkJGjVqlGJiYtSuXTtNnz5dhYWFZb7P2bNnlZeX5/DwN2weCgBA5VRq81BjjPbu3atTp045HO/QocMlr5WTk6PCwkLFxMQ4HI+JidHevXtLPefgwYNat26d7r77bq1evVr79+/Xo48+qvPnz2vy5MmlnjNjxgy/38GdJcQBAKicSm8e+tvf/laS4+ah5fW4VEZRUZHq16+v119/XcHBwYqPj9fRo0f1/PPPlxnwTJgwwSGdPi8vT3FxcR6pn6ewhDgAAJXjVMBz6NAht71xVFSUgoODlZ2d7XA8OztbsbGxpZ7ToEEDVa9eXcHBwfZjV155pbKysnTu3DmFhISUOCc0NFShoaFuq7e3sIQ4AACucyrgKWvTUFeEhIQoPj5e6enp6t+/v6SLPTjp6ekaPXp0qef07NlTixYtUlFRkYKCLk4/+u6779SgQYNSgx2rYfNQAABc45ZJyzfccIO+//57p89LTk7W/Pnz9dZbb2nPnj165JFHlJ+fr5EjR0qShg8frgkTJtjLP/LII/rpp580duxYfffdd1q1apWmT5+uUaNGuaMZAADAopzq4Vm5cmWpxz/99FN98MEH9rkxt912W4WuN2jQIB0/flyTJk1SVlaWOnXqpDVr1tgnMmdkZNh7ciQpLi5OH374ocaNG6cOHTqoUaNGGjt2rJ588klnmgEAAAKMU+vwBAUFlZi0XOKCHpy07A7+uA4PAACBrkrX4UlKSlLfvn2VlZWloqIi+yM4OFi7d+9WUVGRTwc7AAAgMDkV8Pzf//2fbrzxRnXp0kUffPCBp+oEAADgVk5PWh43bpxWrlypJ598Ug899JBOn2a1XwAA4NtcytLq1KmTtm3bJpvNpk6dOpU7pwcAAMDbXN4tPTw8XPPmzdPKlSv18ccfKyoqyp31AgAAcBunenjWrVuntm3bOmzAedttt+mll15SaGiorrrqKn322WduryQAAEBlOBXwpKSk6IEHHig1HSwyMlIPPfSQZs+e7bbKAQAAuINTAc8XX3yh3/zmN2W+fvPNN2v79u2VrhQA+JvM3AJtOpCjzNwCb1cFQCmcmsOTnZ2t6tWrl32xatV0/PjxSlcKAPxJ2tYMTVj2lYqMFGSTZgxor0FdG3u7WgB+wakenkaNGmn37t1lvv7ll1+qQYMGla4UAPiLzNwCe7AjSUVGmrhsNz09gI9xKuC55ZZb9Mwzz+jMmTMlXisoKNDkyZP129/+1m2VAwBfdygn3x7sFCs0RodzWKMM8CVODWk9/fTTWrZsmVq1aqXRo0erdevWkqS9e/cqNTVVhYWFeuqppzxSUQDwRc2iairIJoegJ9hmU9OoGt6rFIASnAp4YmJitGnTJj3yyCOaMGGCfcFBm82mpKQkpaam2nc6B4BA0CAyXDMGtNfEZbtVaIyCbTZNH9BODSLDvV01AL/g1G7pv/S///1P+/fvlzFGV1xxhS677DJ3180j2C0dv5aZW6BDOflqFlWTmxRclplboMM5p9U0qga/R4AHVPb+7fJKy5dddpm6du3q6umATyC7Bu7SIDKcQAfwYS7tpQVYAdk1ABA4CHgQsMiuAYDAQcCDgFWcXfNLZNcAgDUR8CBgFWfXBNsuRj1k1wCAdbk8aRmwgkFdG+v6VtFk1wDwCLJAfQcBDwIe2TUAPIEsUN/CkBYAAG5GFqjvIeABAKCCMnMLtOlAziUDF7JAfQ9DWgAAVIAzQ1TsseZ76OEBAOASnB2iIgvU99DDA8DtyEyB1ZQ3RFXW7zhZoL6FgMeLuCnAishMgRW5OkRFFqjvYEjLS9K2ZqjnzHUaOv9z9Zy5TmlbM7xdJaDSyEyBVTFE5f/o4fGCsm4K17eK5j8P/Jor3f6Av2CIyr8R8HgBNwVYFZkpsDqGqPwXQ1pewKaVsCq6/QH4Knp4vKD4pjBx2W4VGsNNAZZCtz8AX0TA4yXcFGBldPvDqsiu9V8EPF7ETQEA/AdLLvg35vAAAHAJLLng/wh4AAC4BDYD9X8EPAAAXALZtf6PgAcAgEtgyQX/x6RlwM+RNQJUDbJr/RsBD+DHfDVrhCAMVkV2rf8i4AH8lK/uyearQRiAwMYcHsBP+WLWCKm7AHwVAQ/gp3wxa8QXgzAAkAh4AL/li1kjvhiEIXBk5hZo04EcehRRKp8IeFJTU9W0aVOFhYWpe/fu2rJlS4XOW7JkiWw2m/r37+/ZCgI+alDXxtowvo8WP3CNNozv4/W5Mr4YhCEwpG3NUM+Z6zR0/ufqOXOd0rZmeLtK8DE2Y4y5dDHPSUtL0/DhwzVv3jx1795dKSkpWrp0qb799lvVr1+/zPMOHz6sa6+9Vs2bN1fdunW1YsWKCr1fXl6eIiMjlZubq4iICDe1AsAvZeYWkLqLKpOZW6CeM9c5DKcG22zaML5Pub9/ZBP6l8rev73ewzN79mw98MADGjlypNq2bat58+apRo0aevPNN8s8p7CwUHfffbemTp2q5s2bV2FtAVREg8hwJbSoV+GbCEMRqAxX5o7RIxR4vBrwnDt3Ttu3b1diYqL9WFBQkBITE7V58+Yyz5s2bZrq16+v++6775LvcfbsWeXl5Tk8APgObjyoLGfnjpFNGJi8GvDk5OSosLBQMTExDsdjYmKUlZVV6jkbNmzQG2+8ofnz51foPWbMmKHIyEj7Iy4urtL1BuAe3HjgDs7OHSObMDD51cKDJ0+e1LBhwzR//nxFRUVV6JwJEyYoOTnZ/jwvL4+gB/AR5d14mFMBZziz7UNxj9Cv5/yQTWhtXg14oqKiFBwcrOzsbIfj2dnZio2NLVH+wIEDOnz4sPr162c/VlRUJEmqVq2avv32W7Vo0cLhnNDQUIWGhnqg9gAqixsP3Kmi2z4U9whNXLZbhcaQTRggvBrwhISEKD4+Xunp6fbU8qKiIqWnp2v06NElyrdp00ZfffWVw7Gnn35aJ0+e1Msvv0zPDeBnuPHAW9gINPB4fUgrOTlZI0aMUJcuXdStWzelpKQoPz9fI0eOlCQNHz5cjRo10owZMxQWFqZ27do5nF+nTh1JKnEcgH/gxgNvYSPQwOL1gGfQoEE6fvy4Jk2apKysLHXq1Elr1qyxT2TOyMhQUJDXs+cBeBA3HgCe5vWFB6saCw8CQEkswgdfV9n7t9d7eAAA3pW2NcO+PECQTZoxoL3XtykB3I2xIgAIYKyFhEBBwAMAAYxF+BAoCHgAIIA5uy0D4K8IeAAggDm7LQPgr5i0DAABjrWQEAgIeAAArIUEy2NICwAAWB4BDwAAsDwCHgAAYHkEPAAAwPIIeAAnZeYWaNOBHFaiBQA/QpYW4AT2HAIA/0QPD1BB7DkEAP6LgAeoIPYcAgD/RcADVBB7DsGbmDuG0vB7UXHM4QEqqHjPoYnLdqvQGPYcQpVh7hhKw++Fc2zGGHPpYtaRl5enyMhI5ebmKiIiwtvVgR/KzC1gzyFUmczcAvWcuc5hODXYZtOG8X3K/f3LzC3QoZx8NYuqye+pBbn6e+HPKnv/pocHcBJ7DqEqlTd3rKzfQ/7ytz5Xfi8CHXN4AMCHOTt3jGzCwMCcQucR8ACADyueOxZsu3h3u9TcMStlEzIht2zO/l6AIS0A8HmDujbW9a2iKzR3rPgv/1/P7fC3v/wZlrs0Z34vQA8PAPiFBpHhSmhR75I3NSv85c+wXMVV9PcC9PAAgOX4+1/+TMiFJxDwALgkUpz9jz9nE1plWA6+hSEtAOVK25qhnjPXaej8z9Vz5jqlbc3wdpVgcVYYloPvYeFBAGUKxMXN4DtY5BO/xMKDADyGuRTwJn8eloPvYUgLQJlY3AyAVRDwACgTcykAWAVDWgDK5e8pzgAgEfAAqADmUngfSwMAlUPAAwA+jm0WgMpjDo+FsfEe4P/YZgFwD3p4LIq/CAFrYGkAwD3o4bEg/iL0LHrOUJVYGgBwDwIeCyrvL0JUDtssoKqxNADgHgxpWRAb73lGWT1n17eKLvfmQ3YNKoulAYDKI+CxoOK/CCcu261CY/iL0E1cmUvBXCrfYIWgk6UBgMoh4LEo/iJ0P2d7zlztEYJ7EXRWjBWCQqA8zOGxsAaR4UpoUY8vLzdxdi5FIM+l8pWJ3UzgrxjmpiEQ0MMDOMGZnrNAnUvlSz0qVZnS7a89JPREIlDQwwM4qaI9Z4GYXeNrPSpVldLtzz0kgdwTicBCDw/gQYE2l8rXFsmrign8/t5DEqg9kQg8PtHDk5qaqqZNmyosLEzdu3fXli1byiw7f/58XXfddbrssst02WWXKTExsdzygLcF0lwqX1wkb1DXxtowvo8WP3CNNozv4/bhNX/vIQnEnkgEJq8HPGlpaUpOTtbkyZO1Y8cOdezYUUlJSTp27Fip5devX68hQ4bo448/1ubNmxUXF6ebb75ZR48ereKaA/g1X715ejLo9MUgz1meDgoBX2AzxphLF/Oc7t27q2vXrpozZ44kqaioSHFxcRozZozGjx9/yfMLCwt12WWXac6cORo+fPgly+fl5SkyMlK5ubmKiIiodP0BlJSZWxAww3jSxTk8vx42I2gA3Kuy92+vzuE5d+6ctm/frgkTJtiPBQUFKTExUZs3b67QNU6fPq3z58+rbt26nqomACcF2iJ5gTZXC/BHXg14cnJyVFhYqJiYGIfjMTEx2rt3b4Wu8eSTT6phw4ZKTEws9fWzZ8/q7Nmz9ud5eXmuVxgAyhBoQR7gb7w+h6cyZs6cqSVLlmj58uUKCwsrtcyMGTMUGRlpf8TFxVVxLQHn+MqifQBgJV4NeKKiohQcHKzs7GyH49nZ2YqNjS333BdeeEEzZ87URx99pA4dOpRZbsKECcrNzbU/jhw54pa6wzf5e7Dgz+u5AIAv82rAExISovj4eKWnp9uPFRUVKT09XQkJCWWe95e//EXPPvus1qxZoy5dupT7HqGhoYqIiHB4wJr8PVjwtUX7AMBKvD6klZycrPnz5+utt97Snj179Mgjjyg/P18jR46UJA0fPtxhUvOsWbP0zDPP6M0331TTpk2VlZWlrKwsnTp1yltNgA+wQrDg7+u5IPD4e4+qv9cfzvH6SsuDBg3S8ePHNWnSJGVlZalTp05as2aNfSJzRkaGgoJ+jsvmzp2rc+fO6c4773S4zuTJkzVlypSqrDp8iK+t8OsKVryFNzm7F5gv7ZnmCn+vP5zn9XV4qhrr8FhTZm6Bes5cVyJY2DC+j98EPBLrucA7nL35+/v/N3+vf6Dy63V4AHepij2TqgLruaCqubIXmL/3qPp7/eEaAh5YhlWCBV9cz8XZ4Q74D1du/v4+/Orv9YdrvD5pGXCnQNqos6r4e/YbyufKXmC+umdaRfl7/eEa5vAAKBNzHQKDq3PH/H3PNH+vf6BhDg8Aj2GuQ2BwdTjYF4dfneHv9YdzCHgAlIm5DoGDmz+sjjk8AMrEXAcAVkEPD4ByWSX7zdPIZAN8GwEPgEtiuKN8rNoL+D6GtACgEqywjxsQCAh4AKASfHXTVzbGBBwxpAUAleCLmWwMsQEl0cMDAJXQIDJcv+vcyOFY/84NvTbniSE2oHQEPABQCZm5BVq+86jDsRU7f/BagOGrQ2yAtxHwAEAl+FqA4creWEAgIOABgErwtQCDxSKB0jFpGQAqoTjA+PXmm94MMFgsEiiJgAcAKskXAwwWiwQcEfAAAYYtEDyDAAPwbQQ8QABhfRYAgYpJy0CAYH0WAIGMgAcIEL6WPg0AVYmABwgQvpY+DQBViYAHCBCszwIgkDFpGQggvpg+DQBVgYAHCDCBmD5thVR8K7QB8CYCHgCWZoVUfCu0AfA25vAAsCwrpOJboQ2ALyDgAWBZVkjFt0IbAF9AwAPAsqyQim+FNgC+gIAHgGVZIRXfCm0AfIHNGGMuXcw68vLyFBkZqdzcXEVERHi7OgCqQGZugd+n4luhDUBlVPb+TZYWgIBg5N9/2wXicgKAOxHwALA0V1O6WfcGsBYCHgCWVVZK9/WtossNYlj3BrAeJi0DHpaZW6BNB3JYN8ULXEnptsq6N/zeAY7o4QE8iJ4C7ypO6f5l0HOplO7ygiR3Dm15csiM3zugJHp4AA+xSk+BP3Mlpbsq1r1J25qhnjPXaej8z9Vz5jqlbc1w27X5vQNKRw8P4CFV1VOA8g3q2lhtYmtr6+H/qWvTy9Qx7rJyyzeIDNfvOjfSP3cctR/r37mh2z4zV+cVVRS/d0Dp6OEBPIQVcn1D2tYM/e7VTXpu1R797tVNl+xNycwt0PKdRx2Ordj5g9t6SDy9VQS/d0DpCHgAD2GFXO9zZXinKgKSX8UjstnktoCE37uKY2J3YGFICz7N39dCGdS1sa5vFc0KuV7iyvCOKxOdK83NayLye3dpTOwOPAQ88FlW+UJihVzvcSV4Ke4hmbhstwqNcXsPyaGc/BLxjZHcPseG37uyeXoeFXwTAQ98El9IcAdXgxdP9pC42oPk772dvoSJ3YGJgAc+iS8k/+ZLN2dXgxdP9ZC4EoRZpbfTV3hl2BJe5xOTllNTU9W0aVOFhYWpe/fu2rJlS7nlly5dqjZt2igsLEzt27fX6tWrq6imqCpkmvgvT64x46oGkeFKaFHPo8GXMxNgB3VtrA3j+2jxA9dow/g+5QYvrKvjfkzsDkxeD3jS0tKUnJysyZMna8eOHerYsaOSkpJ07NixUstv2rRJQ4YM0X333aedO3eqf//+6t+/v3bv3l3FNYcn8YXknwL15uxKkFfRIMzTWWOBypmgE9ZgM8a4OT/AOd27d1fXrl01Z84cSVJRUZHi4uI0ZswYjR8/vkT5QYMGKT8/Xx988IH92DXXXKNOnTpp3rx5l3y/vLw8RUZGKjc3VxEREe5rCDwiM7eATBM/sulAjobO/7zE8cUPXKOEFvW8UCPPy8wtUM+Z60oMj2wY38ctv7Oevj7gLyp7//ZqD8+5c+e0fft2JSYm2o8FBQUpMTFRmzdvLvWczZs3O5SXpKSkpDLLnz17Vnl5eQ4P+I+qGIqA+wTiUKSne2Do7QTcw6uTlnNyclRYWKiYmBiH4zExMdq7d2+p52RlZZVaPisrq9TyM2bM0NSpU91TYQDl8nRKty+qigmwrKsDVJ7ls7QmTJig5ORk+/O8vDzFxcV5sUaAtQXazbmqgjzW1QEqx6sBT1RUlIKDg5Wdne1wPDs7W7GxsaWeExsb61T50NBQhYaGuqfCACok0G7OgRbkAf7Iq3N4QkJCFB8fr/T0dPuxoqIipaenKyEhodRzEhISHMpL0tq1a8ssDwBVgflmgG/z+pBWcnKyRowYoS5duqhbt25KSUlRfn6+Ro4cKUkaPny4GjVqpBkzZkiSxo4dq169eunFF1/UrbfeqiVLlmjbtm16/fXXvdkMAADgw7we8AwaNEjHjx/XpEmTlJWVpU6dOmnNmjX2ickZGRkKCvq5I6pHjx5atGiRnn76aU2cOFFXXHGFVqxYoXbt2nmrCQAAwMd5fR2eqsY6PAAA+B+/XocHAACgKhDwAAAAyyPgAQAAlkfAAwAALI+ABwAAWB4BDwAAsDwCHgAAYHkEPAAAwPK8vtJyVSteZzEvL8/LNQEAABVVfN92db3kgAt4Tp48KUmKi4vzck0AAICzTp48qcjISKfPC7itJYqKivTDDz+odu3astlsbr12Xl6e4uLidOTIEUtvW0E7rSMQ2ijRTquhndZS0XYaY3Ty5Ek1bNjQYY/Nigq4Hp6goCBdfvnlHn2PiIgIS/9yFqOd1hEIbZRop9XQTmupSDtd6dkpxqRlAABgeQQ8AADA8gh43Cg0NFSTJ09WaGiot6viUbTTOgKhjRLttBraaS1V1c6Am7QMAAACDz08AADA8gh4AACA5RHwAAAAyyPgAQAAlkfAU47U1FQ1bdpUYWFh6t69u7Zs2VJu+ZSUFLVu3Vrh4eGKi4vTuHHjdObMmUpdsyq4u51TpkyRzWZzeLRp08bTzbgkZ9p5/vx5TZs2TS1atFBYWJg6duyoNWvWVOqaVcXd7fTFz/PTTz9Vv3791LBhQ9lsNq1YseKS56xfv15XX321QkND1bJlSy1cuLBEGV/6PD3RRit8lpmZmRo6dKhatWqloKAgPf7446WWW7p0qdq0aaOwsDC1b99eq1evdn/lneCJdi5cuLDE5xkWFuaZBlSQs+1ctmyZbrrpJkVHRysiIkIJCQn68MMPS5Rzy/9Ng1ItWbLEhISEmDfffNN8/fXX5oEHHjB16tQx2dnZpZb/xz/+YUJDQ80//vEPc+jQIfPhhx+aBg0amHHjxrl8zargiXZOnjzZXHXVVSYzM9P+OH78eFU1qVTOtvNPf/qTadiwoVm1apU5cOCAefXVV01YWJjZsWOHy9esCp5opy9+nqtXrzZPPfWUWbZsmZFkli9fXm75gwcPmho1apjk5GTzzTffmFdeecUEBwebNWvW2Mv42ufpiTZa4bM8dOiQeeyxx8xbb71lOnXqZMaOHVuizMaNG01wcLD5y1/+Yr755hvz9NNPm+rVq5uvvvrKM42oAE+0c8GCBSYiIsLh88zKyvJMAyrI2XaOHTvWzJo1y2zZssV89913ZsKECaZ69eoe+a4l4ClDt27dzKhRo+zPCwsLTcOGDc2MGTNKLT9q1Chzww03OBxLTk42PXv2dPmaVcET7Zw8ebLp2LGjR+rrKmfb2aBBAzNnzhyHYwMGDDB33323y9esCp5opy9+nr9UkS/VP/3pT+aqq65yODZo0CCTlJRkf+6Ln2cxd7XRCp/lL/Xq1avUQGDgwIHm1ltvdTjWvXt389BDD1Wyhu7hrnYuWLDAREZGuq1e7uZsO4u1bdvWTJ061f7cXf83GdIqxblz57R9+3YlJibajwUFBSkxMVGbN28u9ZwePXpo+/bt9m62gwcPavXq1brllltcvqaneaKdxfbt26eGDRuqefPmuvvuu5WRkeG5hlyCK+08e/Zsia7h8PBwbdiwweVrepon2lnMlz5PV2zevNnh5yJJSUlJ9p+LL36ezrpUG4v5+2dZERX9WVjBqVOn1KRJE8XFxen222/X119/7e0qVUpRUZFOnjypunXrSnLv/00CnlLk5OSosLBQMTExDsdjYmKUlZVV6jlDhw7VtGnTdO2116p69epq0aKFevfurYkTJ7p8TU/zRDslqXv37lq4cKHWrFmjuXPn6tChQ7ruuut08uRJj7anLK60MykpSbNnz9a+fftUVFSktWvXatmyZcrMzHT5mp7miXZKvvd5uiIrK6vUn0teXp4KCgp88vN01qXaKFnjs6yIsn4W/vJZVlTr1q315ptv6v3339c777yjoqIi9ejRQ//973+9XTWXvfDCCzp16pQGDhwoyb3ftQQ8brJ+/XpNnz5dr776qnbs2KFly5Zp1apVevbZZ71dNbeqSDv79u2ru+66Sx06dFBSUpJWr16tEydO6N133/VizZ3z8ssv64orrlCbNm0UEhKi0aNHa+TIkQoKstZ/mYq00wqfJy7is7SWhIQEDR8+XJ06dVKvXr20bNkyRUdH67XXXvN21VyyaNEiTZ06Ve+++67q16/v9utXc/sVLSAqKkrBwcHKzs52OJ6dna3Y2NhSz3nmmWc0bNgw3X///ZKk9u3bKz8/Xw8++KCeeuopl67paZ5oZ2kBQZ06ddSqVSvt37/f/Y2oAFfaGR0drRUrVujMmTP68ccf1bBhQ40fP17Nmzd3+Zqe5ol2lsbbn6crYmNjS/25REREKDw8XMHBwT73eTrrUm0sjT9+lhVR1s/CXz5LV1WvXl2dO3f2y89zyZIluv/++7V06VKH4St3ftda689VNwkJCVF8fLzS09Ptx4qKipSenq6EhIRSzzl9+nSJm31wcLAkyRjj0jU9zRPtLM2pU6d04MABNWjQwE01d05lfvZhYWFq1KiRLly4oH/+85+6/fbbK31NT/FEO0vj7c/TFQkJCQ4/F0lau3at/efii5+nsy7VxtL442dZEa78LKygsLBQX331ld99nosXL9bIkSO1ePFi3XrrrQ6vufX/ptPTpwPEkiVLTGhoqFm4cKH55ptvzIMPPmjq1KljT/kbNmyYGT9+vL385MmTTe3atc3ixYvNwYMHzUcffWRatGhhBg4cWOFreoMn2vmHP/zBrF+/3hw6dMhs3LjRJCYmmqioKHPs2LEqb18xZ9v5n//8x/zzn/80Bw4cMJ9++qm54YYbTLNmzcz//ve/Cl/TGzzRTl/8PE+ePGl27txpdu7caSSZ2bNnm507d5rvv//eGGPM+PHjzbBhw+zli1O2n3jiCbNnzx6Tmppaalq6L32enmijFT5LY4y9fHx8vBk6dKjZuXOn+frrr+2vb9y40VSrVs288MILZs+ePWby5MleT0v3RDunTp1qPvzwQ3PgwAGzfft2M3jwYBMWFuZQpqo5285//OMfplq1aiY1NdUhvf7EiRP2Mu76v0nAU45XXnnFNG7c2ISEhJhu3bqZ//znP/bXevXqZUaMGGF/fv78eTNlyhTTokULExYWZuLi4syjjz7qcOO41DW9xd3tHDRokGnQoIEJCQkxjRo1MoMGDTL79++vwhaVzpl2rl+/3lx55ZUmNDTU1KtXzwwbNswcPXrUqWt6i7vb6Yuf58cff2wklXgUt23EiBGmV69eJc7p1KmTCQkJMc2bNzcLFiwocV1f+jw90UarfJallW/SpIlDmXfffde0atXKhISEmKuuusqsWrWqahpUBk+08/HHH7f/vsbExJhbbrnFYf0ab3C2nb169Sq3fDF3/N+0GVPGOAQAAIBFMIcHAABYHgEPAACwPAIeAABgeQQ8AADA8gh4AACA5RHwAAAAyyPgAQAAlkfAAwA+YP369bLZbDpx4oS3qwJYEgEPEGDuuece2Ww2zZw50+H4ihUrZLPZ7M+NMZo/f74SEhIUERGhWrVq6aqrrtLYsWMrvDnh6dOnNWHCBLVo0UJhYWGKjo5Wr1699P7779vLNG3aVCkpKW5pm6cV/+xsNpuqV6+uZs2a6U9/+pPOnDnj1HV69+6txx9/3OFYjx49lJmZqcjISDfWGEAxAh4gAIWFhWnWrFn63//+V+rrxhgNHTpUjz32mG655RZ99NFH+uabb/TGG28oLCxMzz33XIXe5+GHH9ayZcv0yiuvaO/evVqzZo3uvPNO/fjjj+5sTpX6zW9+o8zMTB08eFAvvfSSXnvtNU2ePLnS1w0JCVFsbKxD0AnAjVzcLgOAnxoxYoT57W9/a9q0aWOeeOIJ+/Hly5eb4q+ExYsXG0nm/fffL/UaRUVFFXqvyMhIs3DhwjJfL20fnWKfffaZufbaa01YWJi5/PLLzZgxY8ypU6fsr7/99tsmPj7e1KpVy8TExJghQ4aY7Oxs++vFe/qsWbPGdOrUyYSFhZk+ffqY7Oxss3r1atOmTRtTu3ZtM2TIEJOfn1+h9owYMcLcfvvtDscGDBhgOnfubH+ek5NjBg8ebBo2bGjCw8NNu3btzKJFixyu8es2Hzp0yF7fX+5L995775m2bduakJAQ06RJE/PCCy9UqJ4ASqKHBwhAwcHBmj59ul555RX997//LfH64sWL1bp1a912222lnl/RXojY2FitXr1aJ0+eLPX1ZcuW6fLLL9e0adOUmZmpzMxMSdKBAwf0m9/8RnfccYe+/PJLpaWlacOGDRo9erT93PPnz+vZZ5/VF198oRUrVujw4cO65557SrzHlClTNGfOHG3atElHjhzRwIEDlZKSokWLFmnVqlX66KOP9Morr1SoPb+2e/dubdq0SSEhIfZjZ86cUXx8vFatWqXdu3frwQcf1LBhw7RlyxZJ0ssvv6yEhAQ98MAD9jbHxcWVuPb27ds1cOBADR48WF999ZWmTJmiZ555RgsXLnSprkDA83bEBaBq/bKX4pprrjH33nuvMcaxh6dNmzbmtttuczhv7NixpmbNmqZmzZqmUaNGFXqvTz75xFx++eWmevXqpkuXLubxxx83GzZscCjTpEkT89JLLzkcu++++8yDDz7ocOyzzz4zQUFBpqCgoNT32rp1q5FkTp48aYz5uYfn3//+t73MjBkzjCRz4MAB+7GHHnrIJCUlVag9I0aMMMHBwaZmzZomNDTUSDJBQUHmvffeK/e8W2+91fzhD3+wP+/Vq5cZO3asQ5lf9/AMHTrU3HTTTQ5lnnjiCdO2bdsK1RWAI3p4gAA2a9YsvfXWW9qzZ88lyz711FPatWuXJk2apFOnTlXo+tdff70OHjyo9PR03Xnnnfr666913XXX6dlnny33vC+++EILFy5UrVq17I+kpCQVFRXp0KFDki72gPTr10+NGzdW7dq11atXL0lSRkaGw7U6dOhg/3dMTIxq1Kih5s2bOxw7duxYhdojSX369NGuXbv0+eefa8SIERo5cqTuuOMO++uFhYV69tln1b59e9WtW1e1atXShx9+WKJel7Jnzx717NnT4VjPnj21b98+FRYWOnUtAExaBgLa9ddfr6SkJE2YMMHh+BVXXKFvv/3W4Vh0dLRatmyp+vXrO/Ue1atX13XXXacnn3xSH330kaZNm6Znn31W586dK/OcU6dO6aGHHtKuXbvsjy+++EL79u1TixYtlJ+fr6SkJEVEROgf//iHtm7dquXLl0tSietWr17d/u/i7KpfstlsKioqqnB7atasqZYtW6pjx45688039fnnn+uNN96wv/7888/r5Zdf1pNPPqmPP/5Yu3btUlJSUrntBeB51bxdAQDeNXPmTHXq1EmtW7e2HxsyZIiGDh2q999/X7fffrtb369t27a6cOGCzpw5o5CQEIWEhJTosbj66qv1zTffqGXLlqVe46uvvtKPP/6omTNn2ue/bNu2za31rIigoCBNnDhRycnJGjp0qMLDw7Vx40bdfvvt+v3vfy9JKioq0nfffae2bdvazyutzb925ZVXauPGjQ7HNm7cqFatWik4ONj9jQEsjh4eIMC1b99ed999t/7617/ajw0ePFh33nmnBg8erGnTpunzzz/X4cOH9cknnygtLa3CN9zevXvrtdde0/bt23X48GGtXr1aEydOVJ8+fRQRESHp4jo8n376qY4ePaqcnBxJ0pNPPqlNmzZp9OjR2rVrl/bt26f333/fPmm5cePGCgkJ0SuvvKKDBw9q5cqVlxwm85S77rpLwcHBSk1NlXSxd2zt2rXatGmT9uzZo4ceekjZ2dkO5zRt2tT+M83JySm1h+kPf/iD0tPT9eyzz+q7777TW2+9pTlz5uiPf/xjlbQLsBoCHgCaNm2aw03XZrMpLS1NKSkpWr16tW688Ua1bt1a9957r+Li4rRhw4YKXTcpKUlvvfWWbr75Zl155ZUaM2aMkpKS9O677zq89+HDh9WiRQtFR0dLujjv5pNPPtF3332n6667Tp07d9akSZPUsGFDSReH1xYuXKilS5eqbdu2mjlzpl544QU3/kQqrlq1aho9erT+8pe/KD8/X08//bSuvvpqJSUlqXfv3oqNjVX//v0dzvnjH/+o4OBgtW3bVtHR0aXO77n66qv17rvvasmSJWrXrp0mTZqkadOmlZqJBuDSbMYY4+1KAAAAeBI9PAAAwPIIeAC47Jdp479+fPbZZ96unlMyMjLKbY+zaeUAfAtDWgBcVt4moo0aNVJ4eHgV1qZyLly4oMOHD5f5etOmTVWtGomtgL8i4AEAAJbHkBYAALA8Ah4AAGB5BDwAAMDyCHgAAIDlEfAAAADLI+ABAACWR8ADAAAsj4AHAABY3v8Dfgob1hZ2+fQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_57.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABM+klEQVR4nO3deXhUVYL+8TcLWViSiAlZMJCAbAFMlCUGgUAbDQ2tRLRlG0AaQadFpcEFHCCIdoO2rTTIiO2o9LQLi9LoKE+UgVZE0mFHQbQBQVCTQAQqEPbU+f3hpH6WSSB1qUot+X6eJw/k3lO3zqlbSb0559xzg4wxRgAAAHBJsLcrAAAA4I8IUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAtqsWbMUFBRUp7JBQUGaNWuWR+vTr18/9evXz2ePB6DuCFEA6sXixYsVFBTk+AoNDVXLli1111136bvvvvN29XxOSkqK0+vVokUL9enTR3//+9/dcvxTp05p1qxZ+uijj9xyPKAhIkQBqFezZ8/W3/72Ny1atEi//OUv9dprryk7O1tnzpzxyPNNnz5dp0+f9sixPS0jI0N/+9vf9Le//U0PPfSQvv/+ew0ZMkSLFi267GOfOnVKjz/+OCEKuAyh3q4AgIbll7/8pbp37y5JuvvuuxUbG6unnnpK7777ru688063P19oaKhCQ/3zV13Lli31b//2b47vR48erauvvlrPPfec7r33Xi/WDIBETxQAL+vTp48kad++fU7bv/zyS91xxx1q3ry5IiIi1L17d7377rtOZc6fP6/HH39c7dq1U0REhK688kr17t1bq1evdpSpaU7U2bNn9bvf/U5xcXFq1qyZbr31Vn377bfV6nbXXXcpJSWl2vaajvnqq6/qF7/4hVq0aKHw8HClpaXphRdecOm1uJSEhAR16tRJ+/fvv2i5w4cPa9y4cYqPj1dERITS09P117/+1bH/wIEDiouLkyQ9/vjjjiFDT88HAwKNf/55BiBgHDhwQJJ0xRVXOLbt2rVLN9xwg1q2bKmpU6eqSZMmWrZsmfLy8vT222/rtttuk/RjmJkzZ47uvvtu9ezZU+Xl5dq8ebO2bt2qm266qdbnvPvuu/Xaa69pxIgR6tWrl9auXatBgwZdVjteeOEFde7cWbfeeqtCQ0P1P//zP/rtb38ru92u++6777KOXeX8+fM6dOiQrrzyylrLnD59Wv369dPevXs1ceJEpaamavny5brrrrt0/PhxPfjgg4qLi9MLL7ygf//3f9dtt92mIUOGSJKuueYat9QTaDAMANSDV1991Ugy//u//2uOHDliDh06ZN566y0TFxdnwsPDzaFDhxxlb7zxRtO1a1dz5swZxza73W569epl2rVr59iWnp5uBg0adNHnzc/PNz/9Vbd9+3Yjyfz2t791KjdixAgjyeTn5zu2jRkzxrRu3fqSxzTGmFOnTlUrl5uba9q0aeO0LTs722RnZ1+0zsYY07p1a3PzzTebI0eOmCNHjpgdO3aYYcOGGUnm/vvvr/V48+bNM5LMa6+95th27tw5k5WVZZo2bWrKy8uNMcYcOXKkWnsBuIbhPAD1KicnR3FxcUpOTtYdd9yhJk2a6N1339VVV10lSTp69KjWrl2rO++8UydOnFBZWZnKysr0ww8/KDc3V3v27HFczRcTE6Ndu3Zpz549dX7+VatWSZIeeOABp+2TJk26rHZFRkY6/m+z2VRWVqbs7Gx9/fXXstlslo754YcfKi4uTnFxcUpPT9fy5cs1atQoPfXUU7U+ZtWqVUpISNDw4cMd2xo1aqQHHnhAJ0+e1Mcff2ypLgCqYzgPQL1auHCh2rdvL5vNpldeeUXr1q1TeHi4Y//evXtljNGMGTM0Y8aMGo9x+PBhtWzZUrNnz9bgwYPVvn17denSRQMGDNCoUaMuOiz1zTffKDg4WG3btnXa3qFDh8tq16effqr8/HwVFhbq1KlTTvtsNpuio6NdPmZmZqaefPJJBQUFqXHjxurUqZNiYmIu+phvvvlG7dq1U3Cw89/InTp1cuwH4B6EKAD1qmfPno6r8/Ly8tS7d2+NGDFCX331lZo2bSq73S5Jeuihh5Sbm1vjMa6++mpJUt++fbVv3z698847+vDDD/Vf//Vfeu6557Ro0SLdfffdl13X2hbprKysdPp+3759uvHGG9WxY0c9++yzSk5OVlhYmFatWqXnnnvO0SZXxcbGKicnx9JjAXgeIQqA14SEhGjOnDnq37+/nn/+eU2dOlVt2rSR9OMQVF0CRPPmzTV27FiNHTtWJ0+eVN++fTVr1qxaQ1Tr1q1lt9u1b98+p96nr776qlrZK664QsePH6+2/ee9Of/zP/+js2fP6t1331WrVq0c2//xj39csv7u1rp1a3322Wey2+1OvVFffvmlY79Ue0AEUHfMiQLgVf369VPPnj01b948nTlzRi1atFC/fv304osvqri4uFr5I0eOOP7/ww8/OO1r2rSprr76ap09e7bW5/vlL38pSZo/f77T9nnz5lUr27ZtW9lsNn322WeObcXFxdVWDQ8JCZEkGWMc22w2m1599dVa6+EpAwcOVElJiZYuXerYduHCBS1YsEBNmzZVdna2JKlx48aSVGNIBFA39EQB8LqHH35Yv/71r7V48WLde++9WrhwoXr37q2uXbtq/PjxatOmjUpLS1VYWKhvv/1WO3bskCSlpaWpX79+6tatm5o3b67Nmzfrrbfe0sSJE2t9royMDA0fPlz/+Z//KZvNpl69emnNmjXau3dvtbLDhg3To48+qttuu00PPPCATp06pRdeeEHt27fX1q1bHeVuvvlmhYWF6ZZbbtE999yjkydP6qWXXlKLFi1qDIKeNGHCBL344ou66667tGXLFqWkpOitt97Sp59+qnnz5qlZs2aSfpwIn5aWpqVLl6p9+/Zq3ry5unTpoi5dutRrfQG/5u3LAwE0DFVLHGzatKnavsrKStO2bVvTtm1bc+HCBWOMMfv27TOjR482CQkJplGjRqZly5bmV7/6lXnrrbccj3vyySdNz549TUxMjImMjDQdO3Y0v//97825c+ccZWpajuD06dPmgQceMFdeeaVp0qSJueWWW8yhQ4dqvOT/ww8/NF26dDFhYWGmQ4cO5rXXXqvxmO+++6655pprTEREhElJSTFPPfWUeeWVV4wks3//fkc5V5Y4uNTyDbUdr7S01IwdO9bExsaasLAw07VrV/Pqq69We+yGDRtMt27dTFhYGMsdABYEGfOT/mcAAADUCXOiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAUstulBdrtd33//vZo1a8YtFgAA8BPGGJ04cUJJSUnVbub9U4QoD/r++++VnJzs7WoAAAALDh06pKuuuqrW/YQoD6q6vcKhQ4cUFRXl5doAAIC6KC8vV3JysuNzvDaEKA+qGsKLiooiRAEA4GcuNRWHieUAAAAWEKIAAAAsIEQBAABYwJwoL6usrNT58+e9XQ2/ERYWdtHLTQEAqC+EKC8xxqikpETHjx/3dlX8SnBwsFJTUxUWFubtqgAAGjhClJdUBagWLVqocePGLMZZB1WLlxYXF6tVq1a8ZgAAryJEeUFlZaUjQF155ZXero5fiYuL0/fff68LFy6oUaNG3q4OAKABY3KJF1TNgWrcuLGXa+J/qobxKisrvVwTAEBDR4jyIoajXMdrBgDwFYQoAAAACwhRAAAAFhCiYElJSYnuv/9+tWnTRuHh4UpOTtYtt9yiNWvWSJJSUlI0b968ao+bNWuWMjIyajzmkiVLFBQUpLy8PM9VHADgk4ptp7VhX5mKbae9XZU64+o8uOzAgQO64YYbFBMToz/+8Y/q2rWrzp8/rw8++ED33XefvvzyS0vHfOihh9SnTx8P1BgA4MuWbjqoaSs+l91IwUHSnCFdNbRHK29X65IIUXDZb3/7WwUFBWnjxo1q0qSJY3vnzp31m9/8xuXjVVZWauTIkXr88cf1ySefsAApADQgxbbTjgAlSXYjPbZip/q2j1NidKR3K3cJDOcFgPrsAj169KgKCgp03333OQWoKjExMS4fc/bs2WrRooXGjRvnhhoCAPzJ/rIKR4CqUmmMDpSd8k6FXEBPlJ+r7y7QvXv3yhijjh07XrLso48+qunTpzttO3funNLS0hzfr1+/Xi+//LK2b9/u7qoCAPxAamwTBQfJKUiFBAUpJdb311KkJ8qP1dYF6skeKWPMpQv9n4cffljbt293+rr33nsd+0+cOKFRo0bppZdeUmxsrCeqCwDwcYnRkZozpKtC/m8dwJCgIP1hSBefH8qT6InyaxfrAvXUm69du3YKCgqq0+Tx2NhYXX311U7bmjdv7vj/vn37dODAAd1yyy2ObXa7XZIUGhqqr776Sm3btnVTzQEAvmpoj1bq2z5OB8pOKSW2sV8EKImeKL9W1QX6U57uAm3evLlyc3O1cOFCVVRUVNvvyqTwjh076vPPP3fqqbr11lvVv39/bd++XcnJyW6sOQDAlyVGRyqr7ZV+E6AkQpRf81YX6MKFC1VZWamePXvq7bff1p49e7R7927Nnz9fWVlZdT5ORESEunTp4vQVExOjZs2aqUuXLo775AEA4IsYzvNz3ugCbdOmjbZu3arf//73mjJlioqLixUXF6du3brphRde8PjzAwDgC4KMKzOF4ZLy8nJFR0fLZrMpKirKsf3MmTPav3+/UlNTFRER4cUa+h9eOwCAp9X2+f1zDOcBAABYQIgCAACwgBAFAABgASEKAADAAkKUFzGn33W8ZgAAX0GI8oJGjRpJkk6d8v2bK/qac+fOSZJCQkK8XBMAQEPHOlFeEBISopiYGB0+fFiS1LhxYwUFBV3iUbDb7Tpy5IgaN26s0FDeugAA7+KTyEsSEhIkyRGkUDfBwcFq1aoVoRMA4HWEKC8JCgpSYmKiWrRoofPnz3u7On4jLCxMwcGMQgMAvI8Q5WUhISHM7wEAwA/xJz0AAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAs8IkQtXDhQqWkpCgiIkKZmZnauHHjRcsvX75cHTt2VEREhLp27apVq1Y57TfGaObMmUpMTFRkZKRycnK0Z88epzJHjx7VyJEjFRUVpZiYGI0bN04nT56s8fn27t2rZs2aKSYm5rLaCQAAAofXQ9TSpUs1efJk5efna+vWrUpPT1dubq4OHz5cY/kNGzZo+PDhGjdunLZt26a8vDzl5eVp586djjJPP/205s+fr0WLFqmoqEhNmjRRbm6uzpw54ygzcuRI7dq1S6tXr9Z7772ndevWacKECdWe7/z58xo+fLj69Onj/sYDAAC/FWSMMd6sQGZmpnr06KHnn39ekmS325WcnKz7779fU6dOrVZ+6NChqqio0HvvvefYdv311ysjI0OLFi2SMUZJSUmaMmWKHnroIUmSzWZTfHy8Fi9erGHDhmn37t1KS0vTpk2b1L17d0lSQUGBBg4cqG+//VZJSUmOYz/66KP6/vvvdeONN2rSpEk6fvx4ndtWXl6u6Oho2Ww2RUVFWXl5AABAPavr57dXe6LOnTunLVu2KCcnx7EtODhYOTk5KiwsrPExhYWFTuUlKTc311F+//79KikpcSoTHR2tzMxMR5nCwkLFxMQ4ApQk5eTkKDg4WEVFRY5ta9eu1fLly7Vw4cI6tefs2bMqLy93+gIAAIHJqyGqrKxMlZWVio+Pd9oeHx+vkpKSGh9TUlJy0fJV/16qTIsWLZz2h4aGqnnz5o4yP/zwg+666y4tXry4zr1Ic+bMUXR0tOMrOTm5To8DAAD+x+tzonzV+PHjNWLECPXt27fOj5k2bZpsNpvj69ChQx6sIQAA8CavhqjY2FiFhISotLTUaXtpaakSEhJqfExCQsJFy1f9e6kyP5+4fuHCBR09etRRZu3atXrmmWcUGhqq0NBQjRs3TjabTaGhoXrllVdqrFt4eLiioqKcvgAAQGDyaogKCwtTt27dtGbNGsc2u92uNWvWKCsrq8bHZGVlOZWXpNWrVzvKp6amKiEhwalMeXm5ioqKHGWysrJ0/PhxbdmyxVFm7dq1stvtyszMlPTjvKnt27c7vmbPnq1mzZpp+/btuu2229zzAgAAAL8V6u0KTJ48WWPGjFH37t3Vs2dPzZs3TxUVFRo7dqwkafTo0WrZsqXmzJkjSXrwwQeVnZ2tP/3pTxo0aJCWLFmizZs36y9/+YskKSgoSJMmTdKTTz6pdu3aKTU1VTNmzFBSUpLy8vIkSZ06ddKAAQM0fvx4LVq0SOfPn9fEiRM1bNgwx5V5nTp1cqrn5s2bFRwcrC5dutTTKwMAAHyZ10PU0KFDdeTIEc2cOVMlJSXKyMhQQUGBY2L4wYMHFRz8/zvMevXqpTfeeEPTp0/XY489pnbt2mnlypVO4eaRRx5RRUWFJkyYoOPHj6t3794qKChQRESEo8zrr7+uiRMn6sYbb1RwcLBuv/12zZ8/v/4aDgAA/JrX14kKZKwTBQCA//GLdaIAAAD8FSEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABb4RIhauHChUlJSFBERoczMTG3cuPGi5ZcvX66OHTsqIiJCXbt21apVq5z2G2M0c+ZMJSYmKjIyUjk5OdqzZ49TmaNHj2rkyJGKiopSTEyMxo0bp5MnTzr2f/XVV+rfv7/i4+MVERGhNm3aaPr06Tp//rz7Gg4AAPyW10PU0qVLNXnyZOXn52vr1q1KT09Xbm6uDh8+XGP5DRs2aPjw4Ro3bpy2bdumvLw85eXlaefOnY4yTz/9tObPn69FixapqKhITZo0UW5urs6cOeMoM3LkSO3atUurV6/We++9p3Xr1mnChAmO/Y0aNdLo0aP14Ycf6quvvtK8efP00ksvKT8/33MvBgAA8BtBxhjjzQpkZmaqR48eev755yVJdrtdycnJuv/++zV16tRq5YcOHaqKigq99957jm3XX3+9MjIytGjRIhljlJSUpClTpuihhx6SJNlsNsXHx2vx4sUaNmyYdu/erbS0NG3atEndu3eXJBUUFGjgwIH69ttvlZSUVGNdJ0+erE2bNumTTz6pU9vKy8sVHR0tm82mqKgol14XAADgHXX9/PZqT9S5c+e0ZcsW5eTkOLYFBwcrJydHhYWFNT6msLDQqbwk5ebmOsrv379fJSUlTmWio6OVmZnpKFNYWKiYmBhHgJKknJwcBQcHq6ioqMbn3bt3rwoKCpSdnV1re86ePavy8nKnLwAAEJi8GqLKyspUWVmp+Ph4p+3x8fEqKSmp8TElJSUXLV/176XKtGjRwml/aGiomjdvXu15e/XqpYiICLVr1059+vTR7Nmza23PnDlzFB0d7fhKTk6utSwAAPBvXp8T5euWLl2qrVu36o033tD777+vZ555ptay06ZNk81mc3wdOnSoHmsKAADqU6g3nzw2NlYhISEqLS112l5aWqqEhIQaH5OQkHDR8lX/lpaWKjEx0alMRkaGo8zPJ65fuHBBR48erfa8Vb1JaWlpqqys1IQJEzRlyhSFhIRUq1t4eLjCw8Mv1WwAABAAvNoTFRYWpm7dumnNmjWObXa7XWvWrFFWVlaNj8nKynIqL0mrV692lE9NTVVCQoJTmfLychUVFTnKZGVl6fjx49qyZYujzNq1a2W325WZmVlrfe12u86fPy+73e56YwEAQEDxak+U9OMVb2PGjFH37t3Vs2dPzZs3TxUVFRo7dqwkafTo0WrZsqXmzJkjSXrwwQeVnZ2tP/3pTxo0aJCWLFmizZs36y9/+YskKSgoSJMmTdKTTz6pdu3aKTU1VTNmzFBSUpLy8vIkSZ06ddKAAQM0fvx4LVq0SOfPn9fEiRM1bNgwx5V5r7/+uho1aqSuXbsqPDxcmzdv1rRp0zR06FA1atSo/l8oAADgU7weooYOHaojR45o5syZKikpUUZGhgoKChwTww8ePKjg4P/fYdarVy+98cYbmj59uh577DG1a9dOK1euVJcuXRxlHnnkEVVUVGjChAk6fvy4evfurYKCAkVERDjKvP7665o4caJuvPFGBQcH6/bbb9f8+fMd+0NDQ/XUU0/pX//6l4wxat26tSZOnKjf/e539fCqAAAAX+f1daICGetEAYB/Kbad1v6yCqXGNlFidKS3qwMvqevnt9d7ogAA8AVLNx3UtBWfy26k4CBpzpCuGtqjlberBR/GEgcAgAav2HbaEaAkyW6kx1bsVLHttHcrBp9GiAIANHj7yyocAapKpTE6UHbKOxWCXyBEAQAavNTYJgoOct4WEhSklNjG3qkQ/AIhCgDQ4CVGR2rOkK4KCfoxSYUEBekPQ7owuRwXxcRyAAAkDe3RSn3bx+lA2SmlxDYmQOGSCFEAAPyfxOhIwhPqjOE8AAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAgIBVbDutDfvKVGw77e2qIACFersCAAB4wtJNBzVtxeeyGyk4SJozpKuG9mjl7WohgNATBQAIOMW2044AJUl2Iz22Yic9UnArt4So/fv368KFC+44FAAAl21/WYUjQFWpNEYHyk55p0IISG4JUR06dNCePXvccSgAAC5bamwTBQc5bwsJClJKbGPvVAgByaU5UUOGDKlxe2VlpR544AE1a9ZMkrRixYrLrxkAABYlRkdqzpCuemzFTlUao5CgIP1hSBclRkd6u2oIIC6FqJUrV6pv375KTU2ttq9p06aKjo52W8UAALgcQ3u0Ut/2cTpQdkopsY0JUHC7IGOMuXSxHy1ZskQPP/ywZs+erbFjxzq2N2rUSDt27FBaWppHKumvysvLFR0dLZvNpqioKG9XBwAA1EFdP79dmhM1bNgwffLJJ3r55Zd1++2369ixY5ddUQAAAH/k8sTylJQUrVu3Tl26dFF6ero++OADBQUFXfqBAAAAAcTSYpvBwcF6/PHHddNNN2n06NGqrKx0d73gRsW209pfVqHU2CbMCQAAwE0ua8Xy3r1767PPPtO+ffvUtm1bd9UJbsSKvQAAeMZlrxPVtGlTpaenKzw83B31gRuxYi8AAJ7jUk/UtddeW6f5T1u3brVcIbjPxVbsZVgPAIDL41KIysvLc/zfGKM5c+bo3nvvVfPmzd1dL7hB1Yq9Pw1SrNgLAIB7uLRO1M81a9ZMO3bsUJs2bdxZp4DhC+tELd10sNqKvcyJAgCgdnX9/L6sieXwfazYCwCAZxCiGoDE6EjCEwAAbnbZV+cBnlRsO60N+8q4ohAA4HNc6omaP3++0/cXLlzQ4sWLFRsb67T9gQceuPyaocFjjSsAgC9zaWJ5amrqpQ8YFKSvv/76sioVKHxhYrm/Krad1g1z11a7snD91P4MTQIAPMojE8v3799/2RUD6oI1rgAAvs6lOVFr165VWlqaysvLq+2z2Wzq3LmzPvnkE7dVDg1X1RpXP8UaVwAAX+JSiJo3b57Gjx9fY9dWdHS07rnnHj377LNuqxwarsToSM0Z0lUh/7dCftUaV/RCAQB8hUtzolq3bq2CggJ16tSpxv1ffvmlbr75Zh08eNBtFfRnzIm6fMW206xxBQCoVx6ZE1VaWqpGjRrVfrDQUB05csSVQwIXxRpXAABf5dJwXsuWLbVz585a93/22WdKTEy87EoBVVgnCgDgq1zqiRo4cKBmzJihAQMGKCIiwmnf6dOnlZ+fr1/96ldurSAaLtaJAgD4MpfmRJWWluq6665TSEiIJk6cqA4dOkj6cS7UwoULVVlZqa1btyo+Pt5jFfYnzImyjnWiAADe4pE5UfHx8dqwYYP+/d//XdOmTVNV/goKClJubq4WLlxIgIJbsE4UAMDXuXwD4tatW2vVqlU6duyY9u7dK2OM2rVrpyuuuMIT9UMDVbVO1M97olgnCgDgKyzfgPiKK65Qjx491LNnTwIU3I51ogAAvs7lniigvgzt0Up928exThQAoJpi22ntL6tQamwTr30+EKLg01gnCgDwc75y9bbl4TwAAID6Vmw77QhQ0o9zZx9bsdMr6wkSogAAgNt5arHki129Xd98IkQtXLhQKSkpioiIUGZmpjZu3HjR8suXL1fHjh0VERGhrl27atWqVU77jTGaOXOmEhMTFRkZqZycHO3Zs8epzNGjRzVy5EhFRUUpJiZG48aN08mTJx37P/roIw0ePFiJiYlq0qSJMjIy9Prrr7uv0QAABKilmw7qhrlrNeKlIt0wd62WbnLfPXWrrt7+KW9dve31ELV06VJNnjxZ+fn52rp1q9LT05Wbm6vDhw/XWH7Dhg0aPny4xo0bp23btikvL095eXlOt6N5+umnNX/+fC1atEhFRUVq0qSJcnNzdebMGUeZkSNHateuXVq9erXee+89rVu3ThMmTHB6nmuuuUZvv/22PvvsM40dO1ajR4/We++957kXAwAAP+fp4TZfunrbpRXLPSEzM1M9evTQ888/L0my2+1KTk7W/fffr6lTp1YrP3ToUFVUVDiFmeuvv14ZGRlatGiRjDFKSkrSlClT9NBDD0mSbDab4uPjtXjxYg0bNky7d+9WWlqaNm3apO7du0uSCgoKNHDgQH377bdKSkqqsa6DBg1SfHy8XnnllTq1zVdWLN9x6Jg2HjiqninNlZ4c2MtR+MLVGgDQkG3YV6YRLxVV2/7m+OuV1fZKtz1Pse20x67eruvnt1d7os6dO6ctW7YoJyfHsS04OFg5OTkqLCys8TGFhYVO5SUpNzfXUX7//v0qKSlxKhMdHa3MzExHmcLCQsXExDgClCTl5OQoODhYRUXVT3wVm82m5s2b17r/7NmzKi8vd/rytinLtmvwwg36/ftfavDCDZqybLu3q+Qxnuw+BgDUTX0NtyVGRyqr7ZVe/YPZqyGqrKxMlZWV1W4VEx8fr5KSkhofU1JSctHyVf9eqkyLFi2c9oeGhqp58+a1Pu+yZcu0adMmjR07ttb2zJkzR9HR0Y6v5OTkWsvWhx2Hjuntrd85bXt763faceiYl2rkOb50tQYANGS+NNzmaawTVQf/+Mc/NHbsWL300kvq3LlzreWmTZumyZMnO74vLy/3apDaeOBojds3HzgWcMN63GsPAHxHQ1ks2ashKjY2ViEhISotLXXaXlpaqoSEhBofk5CQcNHyVf+WlpYqMTHRqUxGRoajzM8nrl+4cEFHjx6t9rwff/yxbrnlFj333HMaPXr0RdsTHh6u8PDwi5apTz1Tah567J4SWAFK4l57AOBrGsJiyV4dzgsLC1O3bt20Zs0axza73a41a9YoKyurxsdkZWU5lZek1atXO8qnpqYqISHBqUx5ebmKioocZbKysnT8+HFt2bLFUWbt2rWy2+3KzMx0bPvoo480aNAgPfXUU05X7vmL9OQrdPt1LZ223X5dy4DrhZIaVvcxAMBHGC9bsmSJCQ8PN4sXLzZffPGFmTBhgomJiTElJSXGGGNGjRplpk6d6ij/6aefmtDQUPPMM8+Y3bt3m/z8fNOoUSPz+eefO8rMnTvXxMTEmHfeecd89tlnZvDgwSY1NdWcPn3aUWbAgAHm2muvNUVFRWb9+vWmXbt2Zvjw4Y79a9euNY0bNzbTpk0zxcXFjq8ffvihzm2z2WxGkrHZbJfzEl227QePmv9at89sP3jUq/WoD98fP2U27C0z3x8/5e2qAAD8VF0/v70eoowxZsGCBaZVq1YmLCzM9OzZ0/zzn/907MvOzjZjxoxxKr9s2TLTvn17ExYWZjp37mzef/99p/12u93MmDHDxMfHm/DwcHPjjTear776yqnMDz/8YIYPH26aNm1qoqKizNixY82JEycc+8eMGWMkVfvKzs6uc7t8JUQBAIC6q+vnt9fXiQpkvrJOFAAAqDu/WCcKcDdP3asJAICfY4kDBIylmw461ooKDpLmDOmqoT1aebtaAIAARU8UAgKLbQIA6hshCgHhYottAgDgCYQoBIT6ulcTAABVCFEICCy2CQCob0wsR8BoKPdqAgD4BkIUAkpDuFcTAMA3MJwHAADcriGs20dPFBq0Yttp7S+rUGpsE3qwAMBNGsq6fYQoNFgN5YccAOpTbev29W0fF3B/rDKchwaJxTkBwDMa0rp9hCg0SA3phxwA6lNDWrePEIUGqSH9kANAfWpI6/YxJwoNUtUP+WMrdqrSmID+IQeA+tZQ1u0jRKHBaig/5ADgDQ1h3T5CFBq0hvBDDqDuWPYEriBEAQAglj2B65hYDgBo8Fj2BFYQogAADR7LnsAKQhQAoMFj2RNYQYhCQGkIN7wE4H4NaW0juA8TyxEwmBQK4HKw7AlcRU8UAgKTQgG4Q2J0pLLaXkmAQp0QohAQmBQKAKhvhCgEBCaFAgDqGyEKAYFJoQCA+sbEcgQMJoUCAOoTIQoBhXvhAQDqC8N5AAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgCABmrHoWN66ZN92nHomLer4pdY4gAAgAZoyrLtenvrd47vb7+upf50Z4b3KuSH6IkCAKCB2XHomFOAkqS3t35Hj5SLCFEAADQwGw8crXH75gOEKFcQogAAaGB6pjSvcXv3lCvquSb+jRAFAHCrYttpbdhXpmLbaW9XBbVIT75Ct1/X0mnb7de1VHoyIcoVTCwHALjN0k0HNW3F57IbKThImjOkq4b2aOXtaqEGf7ozQ6OzWmvzgWPqnnIFAcoCQhQAwC2KbacdAUqS7EZ6bMVO9W0fx43BfVR6ct3DU7HttPaXVSg1tgnn8/8QogAAbrG/rMIRoKpUGqMDZaf40PVz9DDWjDlRAAC3SI1touAg520hQUFKiW3snQrBLWrrYWTOGyEKAOAmidGRmjOkq0KCfkxSIUFB+sOQLvRC+bmL9TA2dAznAQDcZmiPVurbPk4Hyk4pJbYxASoAVPUw/jRI0cP4I3qiEFBcvbSaS7EB90uMjlRW2ysJUAGCHsba0ROFgOHqxEcmSgJA3dDDWDN6ohAQXJ34GCgTJelJA1Bf6GGsjp4oBARXL60OhEux6UkDAO+iJwoBwdVLq/39UuxA6UkDAH9GiEJAcHXio79PlOSS48DGMC2q8F7wbQznIWC4OvHRnydKcslx4GKYFlV4L/g+eqIQUFyd+OivEyX9vScNNWOYFlV4L/gHeqIAD/LkDTv9uScNNQuECx7gHrwX/AMhCgHFl+4yXh9d8YnRkR5rpy+9lg0Fw7SownvBPzCch4CxdNNB3TB3rUa8VKQb5q7V0k0HvVYXf++K96XX0ld5YsIvw7SownvBP9AThYBQW2jp2z7OK790/Lkr3tdeS1/kyV5GhmlRhfeC76MnCgHB1y759+d1qHzttfQ19dHL6K8XPMD9eC/4NkIUAoKvhRZ/7or3tdfS1xAyAVRhOA8BoSq0PLZipyqN8YnQ4q9d8b74WvqSJmEhNW5vHBa4f5NykQFQM6//1C9cuFApKSmKiIhQZmamNm7ceNHyy5cvV8eOHRUREaGuXbtq1apVTvuNMZo5c6YSExMVGRmpnJwc7dmzx6nM0aNHNXLkSEVFRSkmJkbjxo3TyZMnHfvPnDmju+66S127dlVoaKjy8vLc1l54ztAerbR+an+9Of56rZ/a3ycWpfPXrnhffC19RcW5yhq3nzpnr/Ux/rzqNBcZALXzaohaunSpJk+erPz8fG3dulXp6enKzc3V4cOHayy/YcMGDR8+XOPGjdO2bduUl5envLw87dy501Hm6aef1vz587Vo0SIVFRWpSZMmys3N1ZkzZxxlRo4cqV27dmn16tV67733tG7dOk2YMMGxv7KyUpGRkXrggQeUk5PjuRcAbuevocUX8VrWzNXhTn8OIf5+lSngaUHGGHPpYp6RmZmpHj166Pnnn5ck2e12JScn6/7779fUqVOrlR86dKgqKir03nvvObZdf/31ysjI0KJFi2SMUVJSkqZMmaKHHnpIkmSz2RQfH6/Fixdr2LBh2r17t9LS0rRp0yZ1795dklRQUKCBAwfq22+/VVJSktNz3nXXXTp+/LhWrlzpcvvKy8sVHR0tm82mqKgolx8Pz2OYAlYs3XSw2nBnTb11xbbTumHu2mpr/ayf2t8v3m8b9pVpxEtF1ba/Of56ZbW90gs1AupHXT+/vTYn6ty5c9qyZYumTZvm2BYcHKycnBwVFhbW+JjCwkJNnjzZaVtubq4j4Ozfv18lJSVOvUfR0dHKzMxUYWGhhg0bpsLCQsXExDgClCTl5OQoODhYRUVFuu222yy36ezZszp79qzj+/LycsvHgudxXypYVdf5bv681IXEgo/ApXhtOK+srEyVlZWKj4932h4fH6+SkpIaH1NSUnLR8lX/XqpMixYtnPaHhoaqefPmtT5vXc2ZM0fR0dGOr+Tk5Ms6HjyHYQpcrroMd/r7lY7+fJUpUB+4Os+Npk2b5tRTVl5eTpDyUf7eQwD/EAhXOvrrVaaBgikHvs1rISo2NlYhISEqLS112l5aWqqEhIQaH5OQkHDR8lX/lpaWKjEx0alMRkaGo8zPJ65fuHBBR48erfV56yo8PFzh4eGXdQzUD18dpuAXZuAJhBDiyXs0onZMOfB9XhvOCwsLU7du3bRmzRrHNrvdrjVr1igrK6vGx2RlZTmVl6TVq1c7yqempiohIcGpTHl5uYqKihxlsrKydPz4cW3ZssVRZu3atbLb7crMzHRb++DbfHGYwp+v4sLFcaXjxfnzEhCewpQD/+DV4bzJkydrzJgx6t69u3r27Kl58+apoqJCY8eOlSSNHj1aLVu21Jw5cyRJDz74oLKzs/WnP/1JgwYN0pIlS7R582b95S9/kSQFBQVp0qRJevLJJ9WuXTulpqZqxowZSkpKcqz11KlTJw0YMEDjx4/XokWLdP78eU2cOFHDhg1zujLviy++0Llz53T06FGdOHFC27dvlyRHjxb8ny/1EHC/OjRU9LbUjCkH/sGrIWro0KE6cuSIZs6cqZKSEmVkZKigoMAxMfzgwYMKDv7/nWW9evXSG2+8oenTp+uxxx5Tu3bttHLlSnXp0sVR5pFHHlFFRYUmTJig48ePq3fv3iooKFBERISjzOuvv66JEyfqxhtvVHBwsG6//XbNnz/fqW4DBw7UN9984/j+2muvlfTjYp4IHL4yTMEvTDRE/PFQO1+dcgBnXl0nKtCxThTqyt/XEwKsYB2qi6vremRwP59fJwrA/xcIV3EBrqK35eJ8acoBakaIAnwEvzDdiysdfR9/PFyar0w5QM0IUYAP4RemezBZ2X/wxwP8mVdvQAwA7sal4f6HJSDgrwhRAPxCXdcSutiVjgDgTgznAfB5rgzP1ddkZeZcAaAnCoBPc3V4rj5Wo2d1eQASPVEAfJyVhUg9OVmZBSIBVCFEAfBpVofnPHWlI6vLA6jCcB4An+ZrN4uuCnU/xQKRQMNETxTgQ5isXDNfWkuIBSIBVCFEAT7CygKRDSl0+dJCpL4U6gB4DyEK8AFWJiuzKrd3+VKoA+AdzIkCfICrC0SyKjcAeB8hCvABrk5WZlVuAPA+QhTgA1y9Ao0rxLyvrrehARC4mBMFeJArE79dmazMFWLexXw0AJIUZIwxly4GK8rLyxUdHS2bzaaoqChvVwf1rD4+aIttp7lCrJ4V207rhrlrqy3+uX5qf84BECDq+vnNcB7gAfU18TsxOlJZba/kw7seMR8NQBVCFOABVj9omWfj+5iPBqAKIQrwACsftEs3HdQNc9dqxEtFumHuWi3ddNDDtYQVvnYbGgDew5woD2JOVMO2dNPBahO/a5sTxTwb/8N8NCBw1fXzm6vzAA9x5Wq7iw3/8QHtm3xpxfKGdPsfwJcQogAPqusHbdXw3897ophng0thuQXvIsA2bMyJ8kOennzM5Ob6xzwbWMHtf7yLeYygJ8rPePqvTv6q9R5Xhv8AiWFgb7Jy03AEHnqi/Iin/+rkr1rvY90nuILlFryH9cK8zxdGTQhRfsTTP7T8UgD8S2J0pG67tqXTtrxrkwjh9YAA612+MpRKiPIjnv6h5ZcC4F+Kbaf1923fOW1bue17eo/rAfMYvceXRk2YE+VHPH3TWW5qC/gX5kR5ly/OY2wIVwv60vueEOVnPP1Da+X4DeGHFvBFLI3hfb60XlhDuTDIl973DOf5IU9PPnbl+L4yLg38nC9MOvU0hpRQxZeGuDzNl9739ETBMi7xRX1ypcezofxFLvnmkBLqny8NcdUHX3nfE6JgWUP7oYX3uBKKGmK496UhJSuYEnD5fGmIq774wvue4TxYxtV8qA+uDlOwVId/YUqAe/jSEFdDQk8ULONqPtQHV3s8G+Jf5L6mrj1LDbHX0JN8ZYirISFE4bLwQ3txnh6maAjDIE3CQmrc3jis5o50Xwz3DeE8VXFl6JUpAe7nC0NcDQkhCpeNH9qacZ9D96g4V1nj9lPn7LU+xpfCfUM5T5LrPUv0GsLfMScK8ADuc+g+Vufe+cJ9CBvSeZJcn4/GPB74O3qiAA/w9DBFQxoG8cXhubpqSOdJstaz5Eu9hoCrCFGAB3h6mKKhDYP46wdtQztPVgMvUwLgrxjOAzzA08MUDXEYxBeG51zVEM/T0B6ttH5qf705/nqtn9o/YOd/AZIUZIwxly4GK8rLyxUdHS2bzaaoqChvVwdeUGw77dHeE08fH+7BeQL8S10/vxnOAzyoPoYpjPg7yNcxXAUEJkIU4Kca0qXzVnh6baYdh45p44Gj6pnSXOnJV7j9+AB8HyEK8EOs9Hxxng6YU5Zt19tbv3N8f/t1LfWnOzPcdnwA/oGJ5YAf4v5wtfP02kw7Dh1zClCS9PbW77Tj0DG3HB+A/yBEAX6Imz/XztMBc+OBozVu33yAEAU0NIQowA81xEvn6yo1tol+li8VFCS3Bcw2sU1q3E6ABRoe5kTBpzWkG7e6yl8XoPQKN17AGBlW86/NxmGN3PckLuLnBIHAH9/HhCj4LK4+uzQuna9uf1lFtcxkJLfdasXKKuSe/HDg5wSBwF/fxwznwSfV141bi22ntWFfWcDeELYh8vR8MVeHUpduOqgb5q7ViJeKdMPctVq66aBb6iE1vBscIzD58/uYnij4pPq4cau//uWDi6uPGxYP7dFKHROaadOBY+qRckWt60R5eimKhnaDYwQmf34fE6Lgkzx941bWWQpsnp4vVtcA7ukPh4Z2g2MEJn9+HzOcB5/k6avPWGcp8HnqhsWuDD342tAi4Iv8+X1MTxR8lid7E+rrLx9/vNoEF+dK71J9DS1ylSb8nb++jwlR8GmeuvqsPj7cmHMVmFwN4PXx4cBVmggE/vg+DjLGcAt4DykvL1d0dLRsNpuioqK8XR3UoNh22iMfbsW207ph7tpqH7Trp/b3u18SqG7ppoPVArg7AzI9mN7Daw+p7p/f9EShQfPUXz7+fLUJLs2TvUv0YHoPrz1cxcRyP8TaRr6Pe9sFPk9MXPfn9XL8Ha89rPCJELVw4UKlpKQoIiJCmZmZ2rhx40XLL1++XB07dlRERIS6du2qVatWOe03xmjmzJlKTExUZGSkcnJytGfPHqcyR48e1ciRIxUVFaWYmBiNGzdOJ0+edCrz2WefqU+fPoqIiFBycrKefvpp9zT4Mnhy4T64T2J0pG67tqXTtrxrk+iFCiA7Dh3TS5/s045D7rvxMFeNeg+vPazweohaunSpJk+erPz8fG3dulXp6enKzc3V4cOHayy/YcMGDR8+XOPGjdO2bduUl5envLw87dy501Hm6aef1vz587Vo0SIVFRWpSZMmys3N1ZkzZxxlRo4cqV27dmn16tV67733tG7dOk2YMMGxv7y8XDfffLNat26tLVu26I9//KNmzZqlv/zlL557MS6Bv5T8R7HttP6+7TunbSu3fc+58mGu9PBOWbZdgxdu0O/f/1KDF27QlGXb3VIHejC9h9ceVng9RD377LMaP368xo4dq7S0NC1atEiNGzfWK6+8UmP5P//5zxowYIAefvhhderUSU888YSuu+46Pf/885J+7IWaN2+epk+frsGDB+uaa67Rf//3f+v777/XypUrJUm7d+9WQUGB/uu//kuZmZnq3bu3FixYoCVLluj777+XJL3++us6d+6cXnnlFXXu3FnDhg3TAw88oGeffbZeXpea8JeS/+Bc+RdXenh3HDqmt7c6B+S3t37nlh4pf14vx9/x2sMKr4aoc+fOacuWLcrJyXFsCw4OVk5OjgoLC2t8TGFhoVN5ScrNzXWU379/v0pKSpzKREdHKzMz01GmsLBQMTEx6t69u6NMTk6OgoODVVRU5CjTt29fhYWFOT3PV199pWPHav5lefbsWZWXlzt9uRN/KfkPzpX/cLWHd+OBozVu33zAPcN6Q3u00vqp/fXm+Ou1fmp/JjbXI157uMqrIaqsrEyVlZWKj4932h4fH6+SkpIaH1NSUnLR8lX/XqpMixYtnPaHhoaqefPmTmVqOsZPn+Pn5syZo+joaMdXcnJyzQ23iL+U/Afnyn+42mvYM6V5jdu7p9R8/zwrPLXaOi6N1x6uYIkDN5o2bZomT57s+L68vNztQcpfV3VtiDhX/sHVxTPTk6/Q7de1dBrSu/26lrXehBhA4PJqiIqNjVVISIhKS0udtpeWliohIaHGxyQkJFy0fNW/paWlSkxMdCqTkZHhKPPziesXLlzQ0aNHnY5T0/P89Dl+Ljw8XOHh4bW21138cVXXhopz5fusrF7/pzszNDqrtTYfOKbuKVcQoIAGyqvDeWFhYerWrZvWrFnj2Ga327VmzRplZWXV+JisrCyn8pK0evVqR/nU1FQlJCQ4lSkvL1dRUZGjTFZWlo4fP64tW7Y4yqxdu1Z2u12ZmZmOMuvWrdP58+ednqdDhw664gp+YQKBxMpcmPTkKzSuTxsCFNCQGS9bsmSJCQ8PN4sXLzZffPGFmTBhgomJiTElJSXGGGNGjRplpk6d6ij/6aefmtDQUPPMM8+Y3bt3m/z8fNOoUSPz+eefO8rMnTvXxMTEmHfeecd89tlnZvDgwSY1NdWcPn3aUWbAgAHm2muvNUVFRWb9+vWmXbt2Zvjw4Y79x48fN/Hx8WbUqFFm586dZsmSJaZx48bmxRdfrHPbbDabkWRsNtvlvEQAAKAe1fXz2+shyhhjFixYYFq1amXCwsJMz549zT//+U/HvuzsbDNmzBin8suWLTPt27c3YWFhpnPnzub999932m+3282MGTNMfHy8CQ8PNzfeeKP56quvnMr88MMPZvjw4aZp06YmKirKjB071pw4ccKpzI4dO0zv3r1NeHi4admypZk7d65L7SJEAQDgf+r6+c0NiD2IGxADAOB/6vr57fXFNgEAAPwRIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgQai3KxDIqhaDLy8v93JNAABAXVV9bl/qpi6EKA86ceKEJCk5OdnLNQEAAK46ceKEoqOja93PvfM8yG636/vvv1ezZs0UFBTktuOWl5crOTlZhw4dCsh78gV6+6TAb2Ogt08K/DbSPv8X6G30ZPuMMTpx4oSSkpIUHFz7zCd6ojwoODhYV111lceOHxUVFZA/GFUCvX1S4Lcx0NsnBX4baZ//C/Q2eqp9F+uBqsLEcgAAAAsIUQAAABYQovxQeHi48vPzFR4e7u2qeESgt08K/DYGevukwG8j7fN/gd5GX2gfE8sBAAAsoCcKAADAAkIUAACABYQoAAAACwhRAAAAFhCifMTChQuVkpKiiIgIZWZmauPGjRctP2/ePHXo0EGRkZFKTk7W7373O505c+ayjulJ7m7frFmzFBQU5PTVsWNHTzejVq607/z585o9e7batm2riIgIpaenq6Cg4LKOWR/c3UZfOofr1q3TLbfcoqSkJAUFBWnlypWXfMxHH32k6667TuHh4br66qu1ePHiamV85Rx6on3+fP6Ki4s1YsQItW/fXsHBwZo0aVKN5ZYvX66OHTsqIiJCXbt21apVq9xf+TryRBsXL15c7RxGRER4pgGX4Gr7VqxYoZtuuklxcXGKiopSVlaWPvjgg2rlPP0zSIjyAUuXLtXkyZOVn5+vrVu3Kj09Xbm5uTp8+HCN5d944w1NnTpV+fn52r17t15++WUtXbpUjz32mOVjepIn2idJnTt3VnFxseNr/fr19dGcalxt3/Tp0/Xiiy9qwYIF+uKLL3Tvvffqtttu07Zt2ywf09M80UbJd85hRUWF0tPTtXDhwjqV379/vwYNGqT+/ftr+/btmjRpku6++26nX+K+dA490T7Jf8/f2bNnFRcXp+nTpys9Pb3GMhs2bNDw4cM1btw4bdu2TXl5ecrLy9POnTvdWfU680QbpR9X+/7pOfzmm2/cVWWXuNq+devW6aabbtKqVau0ZcsW9e/fX7fcckv9/x418LqePXua++67z/F9ZWWlSUpKMnPmzKmx/H333Wd+8YtfOG2bPHmyueGGGywf05M80b78/HyTnp7ukfq6ytX2JSYmmueff95p25AhQ8zIkSMtH9PTPNFGXzqHPyXJ/P3vf79omUceecR07tzZadvQoUNNbm6u43tfO4dV3NU+fz5/P5WdnW0efPDBatvvvPNOM2jQIKdtmZmZ5p577rnMGl4+d7Xx1VdfNdHR0W6rl7u42r4qaWlp5vHHH3d8Xx8/g/REedm5c+e0ZcsW5eTkOLYFBwcrJydHhYWFNT6mV69e2rJli6Nb8uuvv9aqVas0cOBAy8f0FE+0r8qePXuUlJSkNm3aaOTIkTp48KDnGlILK+07e/ZstS7zyMhIx1/xvnT+rNbnUm2s4gvn0IrCwkKn10OScnNzHa+Hr51DV12qfVX89fzVRV1fA3938uRJtW7dWsnJyRo8eLB27drl7SpZYrfbdeLECTVv3lxS/f0MEqK8rKysTJWVlYqPj3faHh8fr5KSkhofM2LECM2ePVu9e/dWo0aN1LZtW/Xr188x3GXlmJ7iifZJUmZmphYvXqyCggK98MIL2r9/v/r06aMTJ054tD0/Z6V9ubm5evbZZ7Vnzx7Z7XatXr1aK1asUHFxseVjepIn2ij5zjm0oqSkpMbXo7y8XKdPn/a5c+iqS7VP8u/zVxe1vQb+cP7qqkOHDnrllVf0zjvv6LXXXpPdblevXr307bffertqLnvmmWd08uRJ3XnnnZLq7/coIcoPffTRR/rDH/6g//zP/9TWrVu1YsUKvf/++3riiSe8XTW3qEv7fvnLX+rXv/61rrnmGuXm5mrVqlU6fvy4li1b5sWa182f//xntWvXTh07dlRYWJgmTpyosWPHKjg4cH4c69JGfz6H4PwFgqysLI0ePVoZGRnKzs7WihUrFBcXpxdffNHbVXPJG2+8occff1zLli1TixYt6vW5Q+v12VBNbGysQkJCVFpa6rS9tLRUCQkJNT5mxowZGjVqlO6++25JUteuXVVRUaEJEyboP/7jPywd01M80b6awkZMTIzat2+vvXv3ur8RF2GlfXFxcVq5cqXOnDmjH374QUlJSZo6daratGlj+Zie5Ik21sRb59CKhISEGl+PqKgoRUZGKiQkxKfOoasu1b6a+NP5q4vaXgN/OH9WNWrUSNdee61fncMlS5bo7rvv1vLly52G7urr92jg/Onrp8LCwtStWzetWbPGsc1ut2vNmjXKysqq8TGnTp2qFiRCQkIkScYYS8f0FE+0ryYnT57Uvn37lJiY6Kaa183lvNYRERFq2bKlLly4oLfffluDBw++7GN6gifaWBNvnUMrsrKynF4PSVq9erXj9fC1c+iqS7WvJv50/urCymvg7yorK/X555/7zTl88803NXbsWL355psaNGiQ0756+xl02xR1WLZkyRITHh5uFi9ebL744gszYcIEExMTY0pKSowxxowaNcpMnTrVUT4/P980a9bMvPnmm+brr782H374oWnbtq25884763xMf2/flClTzEcffWT2799vPv30U5OTk2NiY2PN4cOHfb59//znP83bb79t9u3bZ9atW2d+8YtfmNTUVHPs2LE6H7O+eaKNvnQOT5w4YbZt22a2bdtmJJlnn33WbNu2zXzzzTfGGGOmTp1qRo0a5Sj/9ddfm8aNG5uHH37Y7N692yxcuNCEhISYgoICRxlfOoeeaJ8/nz9jjKN8t27dzIgRI8y2bdvMrl27HPs//fRTExoaap555hmze/duk5+fbxo1amQ+//zzem1bFU+08fHHHzcffPCB2bdvn9myZYsZNmyYiYiIcCpTX1xt3+uvv25CQ0PNwoULTXFxsePr+PHjjjL18TNIiPIRCxYsMK1atTJhYWGmZ8+e5p///KdjX3Z2thkzZozj+/Pnz5tZs2aZtm3bmoiICJOcnGx++9vfOn1AXeqY9c3d7Rs6dKhJTEw0YWFhpmXLlmbo0KFm79699dgiZ66076OPPjKdOnUy4eHh5sorrzSjRo0y3333nUvH9AZ3t9GXzuE//vEPI6naV1WbxowZY7Kzs6s9JiMjw4SFhZk2bdqYV199tdpxfeUceqJ9/n7+airfunVrpzLLli0z7du3N2FhYaZz587m/fffr58G1cATbZw0aZLj/RkfH28GDhxotm7dWn+N+glX25ednX3R8lU8/TMYZEwt4yMAAACoFXOiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQDQgHz00UcKCgrS8ePHvV0VwO8RogB4xF133aWgoCDNnTvXafvKlSsVFBTk+N4Yo5deeklZWVmKiopS06ZN1blzZz344IN1vhHqqVOnNG3aNLVt21YRERGKi4tTdna23nnnHUeZlJQUzZs3zy1t87Sq1y4oKEiNGjVSamqqHnnkEZ05c8al4/Tr10+TJk1y2tarVy8VFxcrOjrajTUGGiZCFACPiYiI0FNPPaVjx47VuN8YoxEjRuiBBx7QwIED9eGHH+qLL77Qyy+/rIiICD355JN1ep57771XK1as0IIFC/Tll1+qoKBAd9xxh3744Qd3NqdeDRgwQMXFxfr666/13HPP6cUXX1R+fv5lHzcsLEwJCQlOQRaARW69iQwA/J8xY8aYX/3qV6Zjx47m4Ycfdmz/+9//bqp+9bz55ptGknnnnXdqPIbdbq/Tc0VHR5vFixfXur+m+2xV+eSTT0zv3r1NRESEueqqq8z9999vTp486dj/3//936Zbt26madOmJj4+3gwfPtyUlpY69lfd86ugoMBkZGSYiIgI079/f1NaWmpWrVplOnbsaJo1a2aGDx9uKioq6tSeMWPGmMGDBzttGzJkiLn22msd35eVlZlhw4aZpKQkExkZabp06WLeeOMNp2P8vM379+931Pen96J86623TFpamgkLCzOtW7c2zzzzTJ3qCTR09EQB8JiQkBD94Q9/0IIFC/Ttt99W2//mm2+qQ4cOuvXWW2t8fF17SxISErRq1SqdOHGixv0rVqzQVVddpdmzZ6u4uFjFxcWSpH379mnAgAG6/fbb9dlnn2np0qVav369Jk6c6Hjs+fPn9cQTT2jHjh1auXKlDhw4oLvuuqvac8yaNUvPP/+8NmzYoEOHDunOO+/UvHnz9MYbb+j999/Xhx9+qAULFtSpPT+3c+dObdiwQWFhYY5tZ86cUbdu3fT+++9r586dmjBhgkaNGqWNGzdKkv785z8rKytL48ePd7Q5OTm52rG3bNmiO++8U8OGDdPnn3+uWbNmacaMGVq8eLGlugINirdTHIDA9NPelOuvv9785je/McY490R17NjR3HrrrU6Pe/DBB02TJk1MkyZNTMuWLev0XB9//LG56qqrTKNGjUz37t3NpEmTzPr1653KtG7d2jz33HNO28aNG2cmTJjgtO2TTz4xwcHB5vTp0zU+16ZNm4wkc+LECWPM/++J+t///V9HmTlz5hhJZt++fY5t99xzj8nNza1Te8aMGWNCQkJMkyZNTHh4uJFkgoODzVtvvXXRxw0aNMhMmTLF8X12drZ58MEHncr8vCdqxIgR5qabbnIq8/DDD5u0tLQ61RVoyOiJAuBxTz31lP76179q9+7dlyz7H//xH9q+fbtmzpypkydP1un4ffv21ddff601a9bojjvu0K5du9SnTx898cQTF33cjh07tHjxYjVt2tTxlZubK7vdrv3790v6safmlltuUatWrdSsWTNlZ2dLkg4ePOh0rGuuucbx//j4eDVu3Fht2rRx2nb48OE6tUeS+vfvr+3bt6uoqEhjxozR2LFjdfvttzv2V1ZW6oknnlDXrl3VvHlzNW3aVB988EG1el3K7t27dcMNNzhtu+GGG7Rnzx5VVla6dCygoSFEAfC4vn37Kjc3V9OmTXPa3q5dO3311VdO2+Li4nT11VerRYsWLj1Ho0aN1KdPHz366KP68MMPNXv2bD3xxBM6d+5crY85efKk7rnnHm3fvt3xtWPHDu3Zs0dt27ZVRUWFcnNzFRUVpddff12bNm3S3//+d0mqdtxGjRo5/l91Vd1PBQUFyW6317k9TZo00dVXX6309HS98sorKioq0ssvv+zY/8c//lF//vOf9eijj+of//iHtm/frtzc3Iu2F4B7hXq7AgAahrlz5yojI0MdOnRwbBs+fLhGjBihd955R4MHD3br86WlpenChQs6c+aMwsLCFBYWVq1n5brrrtMXX3yhq6++usZjfP755/rhhx80d+5cx3yizZs3u7WedREcHKzHHntMkydP1ogRIxQZGalPP/1UgwcP1r/9279Jkux2u/71r38pLS3N8bia2vxznTp10qeffuq07dNPP1X79u0VEhLi/sYAAYSeKAD1omvXrho5cqTmz5/v2DZs2DDdcccdGjZsmGbPnq2ioiIdOHBAH3/8sZYuXVrnD/F+/frpxRdf1JYtW3TgwAGtWrVKjz32mPr376+oqChJP64TtW7dOn333XcqKyuTJD366KPasGGDJk6cqO3bt2vPnj165513HBPLW7VqpbCwMC1YsEBff/213n333UsOEXrKr3/9a4WEhGjhwoWSfuzFW716tTZs2KDdu3frnnvuUWlpqdNjUlJSHK9pWVlZjT1hU6ZM0Zo1a/TEE0/oX//6l/7617/q+eef10MPPVQv7QL8GSEKQL2ZPXu20wd5UFCQli5dqnnz5mnVqlW68cYb1aFDB/3mN79RcnKy1q9fX6fj5ubm6q9//atuvvlmderUSffff79yc3O1bNkyp+c+cOCA2rZtq7i4OEk/zmP6+OOP9a9//Ut9+vTRtddeq5kzZyopKUnSj0OLixcv1vLly5WWlqa5c+fqmWeeceMrUnehoaGaOHGinn76aVVUVGj69Om67rrrlJubq379+ikhIUF5eXlOj3nooYcUEhKitLQ0xcXF1Thf6rrrrtOyZcu0ZMkSdenSRTNnztTs2bNrvAIRgLMgY4zxdiUAAAD8DT1RAAAAFhCiAPi8ny5B8POvTz75xNvVc8nBgwcv2h5XlygA4D0M5wHweRe7EXHLli0VGRlZj7W5PBcuXNCBAwdq3Z+SkqLQUC6cBvwBIQoAAMAChvMAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFvw/scKROcSWDS8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAHHCAYAAACBYj2uAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWQhJREFUeJzt3XtcVHX+P/DXcB1EGVKQi6EgXlES80J4Q1e2cXVLsjZAv97WpHbzllqhq6LWLmbu5nrZMLdif1sqWq62ypd0ITOFkEDz7qphajEoEjOK4IX5/P7wy8mRERiYy5mZ1/PxmIfOOe9z5vM5Z4Z5z+fzOZ+jEEIIEBEREZFVuNi6AERERETOhMkXERERkRUx+SIiIiKyIiZfRERERFbE5IuIiIjIiph8EREREVkRky8iIiIiK2LyRURERGRFTL6IiIiIrIjJFxE5vaVLl0KhUDQpVqFQYOnSpRYtz/DhwzF8+HDZ7o+IWobJFxHJRkZGBhQKhfRwc3NDhw4dMGXKFPzwww+2Lp7shIaGGhyv9u3bY+jQofjXv/5llv3fvHkTS5cuxb59+8yyPyK6h8kXEcnO8uXL8c9//hPp6en41a9+hY8++gixsbGoqamxyOstWrQI1dXVFtm3pUVFReGf//wn/vnPf2L+/Pn48ccfMW7cOKSnp7d43zdv3sSyZcuYfBGZmZutC0BE9KBf/epX6N+/PwDghRdegJ+fH9566y189tlneP75583+em5ubnBzs88/hx06dMD//M//SM8nTZqELl264J133sFLL71kw5IR0cOw5YuIZG/o0KEAgPPnzxssP336NJ577jm0bdsWSqUS/fv3x2effWYQc+fOHSxbtgxdu3aFUqlEu3btMGTIEOzdu1eKMTbm69atW3jllVfg7++PNm3a4Omnn8bly5frlW3KlCkIDQ2tt9zYPj/88EP84he/QPv27eHp6YmIiAi8++67Jh2LxgQGBqJnz54oKSlpMO7KlSuYNm0aAgICoFQq0adPH/zjH/+Q1l+4cAH+/v4AgGXLlkldm5Ye70bkDOzzpx4ROZULFy4AAB555BFp2YkTJzB48GB06NABKSkp8Pb2xtatWxEfH49PP/0UzzzzDIB7SVBaWhpeeOEFDBw4EDqdDt988w2Ki4vxy1/+8qGv+cILL+Cjjz7C+PHjMWjQIOTm5mLMmDEtqse7776LXr164emnn4abmxv+/e9/4/e//z30ej1efvnlFu27zp07d3Dp0iW0a9fuoTHV1dUYPnw4zp07hxkzZiAsLAzbtm3DlClTUFlZidmzZ8Pf3x/vvvsufve73+GZZ57BuHHjAACPPfaYWcpJ5NQEEZFMfPjhhwKA+M9//iOuXr0qLl26JD755BPh7+8vPD09xaVLl6TYkSNHisjISFFTUyMt0+v1YtCgQaJr167Ssj59+ogxY8Y0+Lqpqani/j+HR44cEQDE73//e4O48ePHCwAiNTVVWjZ58mTRqVOnRvcphBA3b96sF6dWq0Xnzp0NlsXGxorY2NgGyyyEEJ06dRJPPvmkuHr1qrh69ar49ttvRWJiogAgZs6c+dD9rV69WgAQH330kbTs9u3bIiYmRrRu3VrodDohhBBXr16tV18iajl2OxKR7MTFxcHf3x8hISF47rnn4O3tjc8++wyPPvooAKCiogK5ubl4/vnncf36dZSXl6O8vBzXrl2DWq3G2bNnpasjfX19ceLECZw9e7bJr5+VlQUAmDVrlsHyOXPmtKheXl5e0v+1Wi3Ky8sRGxuL7777Dlqttln73LNnD/z9/eHv748+ffpg27ZtmDhxIt56662HbpOVlYXAwEAkJSVJy9zd3TFr1izcuHEDX375ZbPKQkRNw25HIpKd9evXo1u3btBqtfjggw+wf/9+eHp6SuvPnTsHIQQWL16MxYsXG93HlStX0KFDByxfvhxjx45Ft27d0Lt3b4waNQoTJ05ssPvs+++/h4uLC8LDww2Wd+/evUX1OnjwIFJTU5Gfn4+bN28arNNqtVCpVCbvMzo6Gm+++SYUCgVatWqFnj17wtfXt8Ftvv/+e3Tt2hUuLoa/v3v27CmtJyLLYfJFRLIzcOBA6WrH+Ph4DBkyBOPHj8eZM2fQunVr6PV6AMD8+fOhVquN7qNLly4AgGHDhuH8+fPYuXMn9uzZg7///e945513kJ6ejhdeeKHFZX3Y5Ky1tbUGz8+fP4+RI0eiR48e+Mtf/oKQkBB4eHggKysL77zzjlQnU/n5+SEuLq5Z2xKRbTD5IiJZc3V1RVpaGkaMGIF169YhJSUFnTt3BnCvq6wpiUfbtm0xdepUTJ06FTdu3MCwYcOwdOnShyZfnTp1gl6vx/nz5w1au86cOVMv9pFHHkFlZWW95Q+2Hv373//GrVu38Nlnn6Fjx47S8i+++KLR8ptbp06dcPToUej1eoPWr9OnT0vrgYcnlkTUMhzzRUSyN3z4cAwcOBCrV69GTU0N2rdvj+HDh2PDhg0oLS2tF3/16lXp/9euXTNY17p1a3Tp0gW3bt166Ov96le/AgCsWbPGYPnq1avrxYaHh0Or1eLo0aPSstLS0nqzzLu6ugIAhBDSMq1Wiw8//PCh5bCU0aNHQ6PRIDMzU1p29+5drF27Fq1bt0ZsbCwAoFWrVgBgNLkkouZjyxcR2YVXX30Vv/nNb5CRkYGXXnoJ69evx5AhQxAZGYnp06ejc+fOKCsrQ35+Pi5fvoxvv/0WABAREYHhw4ejX79+aNu2Lb755ht88sknmDFjxkNfKyoqCklJSfjb3/4GrVaLQYMGIScnB+fOnasXm5iYiNdffx3PPPMMZs2ahZs3b+Ldd99Ft27dUFxcLMU9+eST8PDwwFNPPYUXX3wRN27cwMaNG9G+fXujCaQlJScnY8OGDZgyZQqKiooQGhqKTz75BAcPHsTq1avRpk0bAPcuEIiIiEBmZia6deuGtm3bonfv3ujdu7dVy0vkcGx9uSURUZ26qSYKCwvrrautrRXh4eEiPDxc3L17VwghxPnz58WkSZNEYGCgcHd3Fx06dBC//vWvxSeffCJt9+abb4qBAwcKX19f4eXlJXr06CH++Mc/itu3b0sxxqaFqK6uFrNmzRLt2rUT3t7e4qmnnhKXLl0yOvXCnj17RO/evYWHh4fo3r27+Oijj4zu87PPPhOPPfaYUCqVIjQ0VLz11lvigw8+EABESUmJFGfKVBONTaPxsP2VlZWJqVOnCj8/P+Hh4SEiIyPFhx9+WG/bvLw80a9fP+Hh4cFpJ4jMRCHEfW3gRERERGRRHPNFREREZEVMvoiIiIisiMkXERERkRUx+SIiIiKyIiZfRERERFbE5IuIiIjIijjJqg3p9Xr8+OOPaNOmDW/jQUREZCeEELh+/TqCg4Pr3aC+KZh82dCPP/6IkJAQWxeDiIiImuHSpUt49NFHTd6OyZcN1d3C49KlS/Dx8bFxaYiIiKgpdDodQkJCpO9xUzH5sqG6rkYfHx8mX0RERHamuUOGOOCeiIiIyIqYfBERERFZEZMvIiIiIivimC87UFtbizt37ti6GHbB3d0drq6uti4GERHRQzH5kjEhBDQaDSorK21dFLvi6+uLwMBAzp1GRESyxORLxuoSr/bt26NVq1ZMJhohhMDNmzdx5coVAEBQUJCNS0RERFQfky+Zqq2tlRKvdu3a2bo4dsPLywsAcOXKFbRv355dkEREJDuyGHC/fv16hIaGQqlUIjo6GocOHWowftu2bejRoweUSiUiIyORlZVlsF4IgSVLliAoKAheXl6Ii4vD2bNnDWIqKiowYcIE+Pj4wNfXF9OmTcONGzek9WfOnMGIESMQEBAApVKJzp07Y9GiRfXGXjVWluaqe51WrVqZZX/OpO6YcZwcERHJkc2Tr8zMTMydOxepqakoLi5Gnz59oFarpa6jB+Xl5SEpKQnTpk3D4cOHER8fj/j4eBw/flyKWblyJdasWYP09HQUFBTA29sbarUaNTU1UsyECRNw4sQJ7N27F7t27cL+/fuRnJwsrXd3d8ekSZOwZ88enDlzBqtXr8bGjRuRmppqUllail2NpuMxIyIiWRM2NnDgQPHyyy9Lz2tra0VwcLBIS0szGv/888+LMWPGGCyLjo4WL774ohBCCL1eLwIDA8Xbb78tra+srBSenp5i8+bNQgghTp48KQCIwsJCKeZ///d/hUKhED/88MNDy/rKK6+IIUOGNLksjdFqtQKA0Gq19dZVV1eLkydPiurq6ibti37GY0dERJbU0Pd3U9i05ev27dsoKipCXFyctMzFxQVxcXHIz883uk1+fr5BPACo1WopvqSkBBqNxiBGpVIhOjpaisnPz4evry/69+8vxcTFxcHFxQUFBQVGX/fcuXPIzs5GbGxsk8vyoFu3bkGn0xk8iIiIyLnYNPkqLy9HbW0tAgICDJYHBARAo9EY3Uaj0TQYX/dvYzHt27c3WO/m5oa2bdvWe91BgwZBqVSia9euGDp0KJYvX97ksjwoLS0NKpVKeoSEhBiNcwQajQYzZ85E586d4enpiZCQEDz11FPIyckBAISGhmL16tX1tlu6dCmioqKM7nPLli1QKBSIj4+3XMGJiMhhlGqrkXe+HKXaalsXxYDNx3zJXWZmJoqLi7Fp0ybs3r0bq1atava+FixYAK1WKz0uXbpkxpLKx4ULF9CvXz/k5ubi7bffxrFjx5CdnY0RI0bg5ZdfbvY+58+fj6FDh5q5tERE5IgyCy9i8IpcjN9YgMErcpFZeNHWRZLYdKoJPz8/uLq6oqyszGB5WVkZAgMDjW4TGBjYYHzdv2VlZQbzPJWVlUktKoGBgfUG9N+9excVFRX1XreudSoiIgK1tbVITk7GvHnz4Orq2mhZHuTp6QlPT0+j6xzJ73//eygUChw6dAje3t7S8l69euG3v/2tyfurra3FhAkTsGzZMnz11VecdJaIiBpUqq3Ggu3HoBf3nusFsHD7cQzr5o8glZdtCwcbt3x5eHigX79+UlcUAOj1euTk5CAmJsboNjExMQbxALB3714pPiwsDIGBgQYxOp0OBQUFUkxMTAwqKytRVFQkxeTm5kKv1yM6Ovqh5dXr9bhz5w70en2TyiIn1mp6raioQHZ2Nl5++WWDxKuOr6+vyftcvnw52rdvj2nTppmhhERE5OhKyqukxKtOrRC4UH7TNgV6gM0nWZ07dy4mT56M/v37Y+DAgVi9ejWqqqowdepUAMCkSZPQoUMHpKWlAQBmz56N2NhY/PnPf8aYMWOwZcsWfPPNN3jvvfcA3JtmYM6cOXjzzTfRtWtXhIWFYfHixQgODpbGCvXs2ROjRo3C9OnTkZ6ejjt37mDGjBlITExEcHAwAODjjz+Gu7s7IiMj4enpiW+++QYLFixAQkIC3N3dm1QWucgsvCj9AnBRAGnjIpEwoKNFXuvcuXMQQqBHjx6Nxr7++utYtGiRwbLbt28jIiJCen7gwAG8//77OHLkiLmLSkREDirMzxsuChgkYK4KBUL95DF3ps2Tr4SEBFy9ehVLliyBRqNBVFQUsrOzpYHsFy9ehIvLzw10gwYNwqZNm7Bo0SIsXLgQXbt2xY4dO9C7d28p5rXXXkNVVRWSk5NRWVmJIUOGIDs7G0qlUor5+OOPMWPGDIwcORIuLi549tlnsWbNGmm9m5sb3nrrLfz3v/+FEAKdOnXCjBkz8Morr5hUFluzdtOrEKLxoP/z6quvYsqUKQbL1qxZg/379wMArl+/jokTJ2Ljxo3w8/MzZzGJiMiBBam8kDYuEgu3H0etEHBVKPCncb1l0eUIAAphyrclmZVOp4NKpYJWq4WPj4/BupqaGpSUlCAsLMwgaTRV3vlyjN9Yf/qMzdOfQEy4+W9bVFFRAT8/P/zxj3/EggULHhoXGhqKOXPmYM6cOQbLly5dih07duDIkSM4cuQI+vbta3CLoLouXxcXF5w5cwbh4eH19m2uY0dERPatVFuNC+U3EerXyqyJV0Pf303Bqx0dXF3T6/0s2fTatm1bqNVqrF+/HlVVVfXWmzJYvkePHjh27JiUiB05cgRPP/00RowYgSNHjjj0VB1ERNRyQSovxIS3k02LVx0mXw6urunV9f9uuWONptf169ejtrYWAwcOxKeffoqzZ8/i1KlTWLNmjUkXIyiVSvTu3dvg4evrizZt2qB3797w8PCwWB2IiIgsxeZjvsjyEgZ0xLBu/hZpejWmc+fOKC4uxh//+EfMmzcPpaWl8Pf3R79+/fDuu+9a9LWJiIjkjmO+bMgaY76cEY8dERFZEsd8EREREdkRJl9EREREVsTki4iIiMiKmHwRERERWRGTL5nj9RCm4zEjIiI5Y/IlU3X3j7x5Ux43AbUndces7hgSERHJCef5kilXV1f4+vriypUrAIBWrVpBoVA0spVzE0Lg5s2buHLlCnx9fQ1uS0RERCQXTL5kLDAwEACkBIyaxtfXVzp2REREcsPkS8YUCgWCgoLQvn173Llzx9bFsQvu7u523eJVqq1GSXkVwvy8ZXcvMiIiMg8mX3bA1dXVrhMKaprMwotYsP0Y9AJwUQBp4yKRMKCjrYtFRERmxgH3RDJQqq2WEi8A0Atg4fbjKNVW27ZgRERkdky+iGSgpLxKSrzq1AqBC+W82pWIyNEw+SKSgTA/b7g8cDGrq0KBUL9WtikQERFZDJMvIhkIUnkhbVwkXP9vOhFXhQJ/Gtebg+6JiBwQB9wTyUTCgI4Y1s0fF8pvItSvFRMvIiIHxeSLSEaCVF5MuoiIHBy7HYmIiIisiMkXERGRmZVqq5F3vpzTxdiYXM8Dux2JiIjMiBMmy4OczwNbvojIbOT6K5PIWjhhsjzI/Tyw5YuIzELOvzKJrKWhCZN5MY31yP08sOWLiFpM7r8yiayFEybLg9zPA5MvImox3h6J6B5OmCwPcj8P7HYkohar+5V5fwImp1+ZRNbECZPlQc7ngS1fRNRicv+VSWRtQSovxIS342fAxuR6HtjyRURmIedfmUREcsLki4jMhrdHIiJqHLsdiYiIiKyIyRcRERGRFTH5IiIiIrIiJl9EREREVsTki4iIiMiKmHwRERERWRGTLwJw7958eefLeS8+IiIiC+M8X4TMwovSTZFdFEDauEgkDOho62IRERE5JLZ8OblSbbWUeAH37s23cPtxtoARERFZCJMvJ1dSXmVwM2QAqBUCF8pv2qZAREREDo7Jl5ML8/OGi8JwmatCgVC/VrYpEBERkYNj8uXkglReSBsXCVfFvQzMVaHAn8b1Nvv9+Tign4iI6B4OuCckDOiIYd38caH8JkL9Wpk98eKAfiIiop+x5YsA3GsBiwlvZ5EWLw7oJyIi+hmTL7KolgzoZ1clERE5IlkkX+vXr0doaCiUSiWio6Nx6NChBuO3bduGHj16QKlUIjIyEllZWQbrhRBYsmQJgoKC4OXlhbi4OJw9e9YgpqKiAhMmTICPjw98fX0xbdo03LhxQ1q/b98+jB07FkFBQfD29kZUVBQ+/vhjg31kZGRAoVAYPJRKZQuPhmNp7oD+zMKLGLwiF+M3FmDwilxkFl60YCmJiIisx+bJV2ZmJubOnYvU1FQUFxejT58+UKvVuHLlitH4vLw8JCUlYdq0aTh8+DDi4+MRHx+P48ePSzErV67EmjVrkJ6ejoKCAnh7e0OtVqOmpkaKmTBhAk6cOIG9e/di165d2L9/P5KTkw1e57HHHsOnn36Ko0ePYurUqZg0aRJ27dplUB4fHx+UlpZKj++//97MR8i+NWdAP7sqiYjIkSmEEKLxMMuJjo7GgAEDsG7dOgCAXq9HSEgIZs6ciZSUlHrxCQkJqKqqMkiCnnjiCURFRSE9PR1CCAQHB2PevHmYP38+AECr1SIgIAAZGRlITEzEqVOnEBERgcLCQvTv3x8AkJ2djdGjR+Py5csIDg42WtYxY8YgICAAH3zwAYB7LV9z5sxBZWVls+qu0+mgUqmg1Wrh4+PTrH3Yi1JtdZMH9OedL8f4jQX1lm+e/gRiwttZqohERERN0tLvb5u2fN2+fRtFRUWIi4uTlrm4uCAuLg75+flGt8nPzzeIBwC1Wi3Fl5SUQKPRGMSoVCpER0dLMfn5+fD19ZUSLwCIi4uDi4sLCgrqf+nX0Wq1aNu2rcGyGzduoFOnTggJCcHYsWNx4sSJh25/69Yt6HQ6g4ezMGVAP+ceIyIiR2bT5Ku8vBy1tbUICAgwWB4QEACNRmN0G41G02B83b+NxbRv395gvZubG9q2bfvQ1926dSsKCwsxdepUaVn37t3xwQcfYOfOnfjoo4+g1+sxaNAgXL582eg+0tLSoFKppEdISIjROGdnrbnHiIiIbIHzfDXBF198galTp2Ljxo3o1auXtDwmJgYxMTHS80GDBqFnz57YsGED3njjjXr7WbBgAebOnSs91+l0TMAewtJzjxEREdmKTZMvPz8/uLq6oqyszGB5WVkZAgMDjW4TGBjYYHzdv2VlZQgKCjKIiYqKkmIeHNB/9+5dVFRU1HvdL7/8Ek899RTeeecdTJo0qcH6uLu7o2/fvjh37pzR9Z6envD09GxwH/SzIJUXky4iInI4Nu129PDwQL9+/ZCTkyMt0+v1yMnJMWhRul9MTIxBPADs3btXig8LC0NgYKBBjE6nQ0FBgRQTExODyspKFBUVSTG5ubnQ6/WIjo6Wlu3btw9jxozBW2+9ZXAl5MPU1tbi2LFjBkkfERERkQFhY1u2bBGenp4iIyNDnDx5UiQnJwtfX1+h0WiEEEJMnDhRpKSkSPEHDx4Ubm5uYtWqVeLUqVMiNTVVuLu7i2PHjkkxK1asEL6+vmLnzp3i6NGjYuzYsSIsLExUV1dLMaNGjRJ9+/YVBQUF4sCBA6Jr164iKSlJWp+bmytatWolFixYIEpLS6XHtWvXpJhly5aJzz//XJw/f14UFRWJxMREoVQqxYkTJ5pUd61WKwAIrVbb7ONHRERE1tXS72+bJ19CCLF27VrRsWNH4eHhIQYOHCi+/vpraV1sbKyYPHmyQfzWrVtFt27dhIeHh+jVq5fYvXu3wXq9Xi8WL14sAgIChKenpxg5cqQ4c+aMQcy1a9dEUlKSaN26tfDx8RFTp04V169fl9ZPnjxZAKj3iI2NlWLmzJkjlTsgIECMHj1aFBcXN7neTL6IiMhZ/Vh5Uxw8d1X8WHnT1kUxWUu/v20+z5czc6Z5voiIiOpkFl6UJtN2UQBp4yKRMKCjrYvVZHY9zxcRERE5F97FhMkXERERWVFJeZWUeNWpFQIXym/apkA2wOSLiIiIrIZ3MWHyRURERFbEu5hwhnsiIiKyMme/iwmTLyIiIrI6Z76LCbsdiYiIiKyIyRfJVqm2Gnnny53q8mMiInJ87HYkWbL3CfiIiIgehi1fJDucgI+IiBwZky+SHU7AR0REjozJF8kOJ+AjIiJHxuSLZIcT8FkOL2IgIrI9DrgnWXL2CfgsgRcxEBHJA1u+SLaCVF6ICW/HxMsMeBEDEZF8MPkicgK8iIGISD6YfBE5AV7EQEQkH0y+iJwAL2IgIpIPDrgnchK8iIGISB6YfBE5kSCVF5MuIrJbpdpqlJRXIczP267/ljH5IiIiItlzpOlyOOaLiIiIZM3Rpsth8kVERESy5mjT5TD5IiIiIllztOlymHwRERGRrDnadDkccE9ERESy50jT5TD5IiIiIrvgKNPlsNuRiIiIyIqYfBERERFZEZMvIiIiIiti8kVERERkRUy+iIiIiKyIyRcRERGRFTH5IiIiIrIiJl9EREREVsTki4iIiMiKmHwRERERWRGTLyIiIiIrYvJFREREZEVMvoiIiIisiMkXERERkRUx+SIiIiKyIiZfRERERFbE5IusolRbjbzz5SjVVtu6KERERDblZusCkOPLLLyIBduPQS8AFwWQNi4SCQM62rpYRERENiGLlq/169cjNDQUSqUS0dHROHToUIPx27ZtQ48ePaBUKhEZGYmsrCyD9UIILFmyBEFBQfDy8kJcXBzOnj1rEFNRUYEJEybAx8cHvr6+mDZtGm7cuCGt37dvH8aOHYugoCB4e3sjKioKH3/8scllcXal2mop8QIAvQAWbj/OFjAiInJaNk++MjMzMXfuXKSmpqK4uBh9+vSBWq3GlStXjMbn5eUhKSkJ06ZNw+HDhxEfH4/4+HgcP35cilm5ciXWrFmD9PR0FBQUwNvbG2q1GjU1NVLMhAkTcOLECezduxe7du3C/v37kZycbPA6jz32GD799FMcPXoUU6dOxaRJk7Br1y6TyuLsSsqrpMSrTq0QuFB+0zYFIiIisjGFEEI0HmY50dHRGDBgANatWwcA0Ov1CAkJwcyZM5GSklIvPiEhAVVVVQZJ0BNPPIGoqCikp6dDCIHg4GDMmzcP8+fPBwBotVoEBAQgIyMDiYmJOHXqFCIiIlBYWIj+/fsDALKzszF69GhcvnwZwcHBRss6ZswYBAQE4IMPPmhSWRqj0+mgUqmg1Wrh4+PTxCNmX0q11Ri8ItcgAXNVKHAgZQSCVF62KxgREVEztfT726YtX7dv30ZRURHi4uKkZS4uLoiLi0N+fr7RbfLz8w3iAUCtVkvxJSUl0Gg0BjEqlQrR0dFSTH5+Pnx9faXECwDi4uLg4uKCgoKCh5ZXq9Wibdu2TS4LAUEqL6SNi4SrQgHgXuL1p3G9mXgREZHTsumA+/LyctTW1iIgIMBgeUBAAE6fPm10G41GYzReo9FI6+uWNRTTvn17g/Vubm5o27atFPOgrVu3orCwEBs2bGhyWR5069Yt3Lp1S3qu0+mMxjmahAEdMaybPy6U30SoXysmXkRE5NRsPubLHnzxxReYOnUqNm7ciF69ejV7P2lpaVCpVNIjJCTEjKWUtyCVF2LC2zHxIiIip2fT5MvPzw+urq4oKyszWF5WVobAwECj2wQGBjYYX/dvYzEPDui/e/cuKioq6r3ul19+iaeeegrvvPMOJk2aZFJZHrRgwQJotVrpcenSJaNxREREVJ+jzBlp0+TLw8MD/fr1Q05OjrRMr9cjJycHMTExRreJiYkxiAeAvXv3SvFhYWEIDAw0iNHpdCgoKJBiYmJiUFlZiaKiIikmNzcXer0e0dHR0rJ9+/ZhzJgxeOuttwyuhGxqWR7k6ekJHx8fgwcRERE1LrPwIgavyMX4jQUYvCIXmYUXbV2k5hM2tmXLFuHp6SkyMjLEyZMnRXJysvD19RUajUYIIcTEiRNFSkqKFH/w4EHh5uYmVq1aJU6dOiVSU1OFu7u7OHbsmBSzYsUK4evrK3bu3CmOHj0qxo4dK8LCwkR1dbUUM2rUKNG3b19RUFAgDhw4ILp27SqSkpKk9bm5uaJVq1ZiwYIForS0VHpcu3bNpLI0RKvVCgBCq9U2+/gRERE5uh8rb4qwlF2i0+s/Pzqn7BY/Vt60SXla+v1t8+RLCCHWrl0rOnbsKDw8PMTAgQPF119/La2LjY0VkydPNojfunWr6Natm/Dw8BC9evUSu3fvNliv1+vF4sWLRUBAgPD09BQjR44UZ86cMYi5du2aSEpKEq1btxY+Pj5i6tSp4vr169L6yZMnCwD1HrGxsSaVpSFMvhzbj5U3xcFzV232x4GIyFEcPHfVIPGqe+SdK7dJeVr6/W3zeb6cmTPM8+WseEslIiLzkduckXY9zxeROcllICZvqUREZF6ONmckb6xNVlGqrUZJeRXC/Lwt8mGRU0tTQ7dUstc/FEREtuZIc0Yy+SKLs3Ri9LCWpmHd/G3y4Qzz84aLAvWax0P9Wlm9LEREjiRI5WXXSVcddjuSRVmjC05uN+92tOZxIiIyL7Z8kUVZowtOji1NjtQ8TkRE5sWWL7KousTofuZOjOTa0sRbKhERkTFs+SKLqkuMFm4/jlohLJYYsaWJiIjsBZMvsjhrJUaOMhCTiIgcG5MvsgomRkRERPdwzBeRhchl0lciIpIXtnwRWYCcJn0lIiJ5YcsXkZnx9kJERNQQJl9EZia3SV+JiJqDQycsh92ORGYmx0lfiYhMwaETlsWWLyIzk+ukr0RETcGhE5bHli8iC+Ckr0Rkr6xxWzhnx+SLyEI4txkR2SMOnbA8djuSVXDgJtE9/CyQ3HHohOWx5YssjgM3ie7hZ4HsBYdOWBZbvsiiOHCT6B5+FsjWTG11DVJ5ISa8HRMvC2DLF1kUB24S3cPPAtkSW13lhS1fZFF1Azfvx4Gb5Iz4WSBbYaur/DD5IoviwE2ie/hZIFvhXTfkh92ODqpUW42S8iqE+Xnb/I87B24S3cPPAtkCp46QHyZfDkiOffuc84roHn4WyNrqWl0Xbj+OWiEs1uoqpx/9cqcQQojGw8gSdDodVCoVtFotfHx8zLLPUm01Bq/IrfcL50DKCH4YiIicWKm22mKtrnL80W9JLf3+5pgvB8O+fSIiMsZSU0dwQL/pmHw5GF5RRURE1sQf/aZj8uVgeEUVERFZE3/0m44D7h0Qr6giIiJrsdaAfkfC5MtB8YoqIiKyFv7oNw2TLyIiImox/uhvOo75IiIiIrIiJl9ERERkdaXaauSdL3fKKSnY7UhERERW5WyTsj6ILV9ERERkNZyUlckXERERWREnZWXyRURERFbESVmZfBEREZEV8U4sZhpwX1JSgpCQELi5cfy+syjVVqOkvAphft5O9YEhIqKWc/ZJWc2SLXXv3h3ffvstevbsaY7dkcw5+1UqRETUcs48KatJyde4ceOMLq+trcWsWbPQpk0bAMD27dtbXjKSpYddpTKsm7/TfoiIiIg9IqYwKfnasWMHhg0bhrCwsHrrWrduDZVKZbaCkTw1dJUKP2xERM6JPSKmMSn52rRpE1599VVMnjwZU6dOlZZ/9NFH+OMf/4iIiAizF5Dkpe4qlfsTMGe7SoWIiH7GHhHTmXS1Y2JiIr766iu8//77ePbZZ/HTTz9ZqlwkU7xKhYiI7sd5u0xn8oD70NBQ7N+/H8uWLUOfPn2wceNGKBSKxjckh+HsV6kQEdHP2CNiumbN8+Xi4oJly5Zh06ZN+N3vfofa2tpmF2D9+vUIDQ2FUqlEdHQ0Dh061GD8tm3b0KNHDyiVSkRGRiIrK8tgvRACS5YsQVBQELy8vBAXF4ezZ88axFRUVGDChAnw8fGBr68vpk2bhhs3bkjra2pqMGXKFERGRsLNzQ3x8fH1yrFv3z4oFIp6D41G0+xjYU+CVF6ICW/HxIuIyMmxR8R0LZpkdciQITh69CiKi4sRHh5u8vaZmZmYO3cuUlNTUVxcjD59+kCtVuPKlStG4/Py8pCUlIRp06bh8OHDiI+PR3x8PI4fPy7FrFy5EmvWrEF6ejoKCgrg7e0NtVqNmpoaKWbChAk4ceIE9u7di127dmH//v1ITk6W1tfW1sLLywuzZs1CXFxcg3U4c+YMSktLpUf79u1NPg5ERET2LGFARxxIGYHN05/AgZQRHGzfGGFDAwcOFC+//LL0vLa2VgQHB4u0tDSj8c8//7wYM2aMwbLo6Gjx4osvCiGE0Ov1IjAwULz99tvS+srKSuHp6Sk2b94shBDi5MmTAoAoLCyUYv73f/9XKBQK8cMPP9R7zcmTJ4uxY8fWW/7FF18IAOKnn35qcn0fpNVqBQCh1WqbvQ8iIiKyrpZ+f5s05qtv375NGt9VXFzcaMzt27dRVFSEBQsWSMtcXFwQFxeH/Px8o9vk5+dj7ty5BsvUajV27NgB4N5M+xqNxqC1SqVSITo6Gvn5+UhMTER+fj58fX3Rv39/KSYuLg4uLi4oKCjAM88802jZ7xcVFYVbt26hd+/eWLp0KQYPHvzQ2Fu3buHWrVvSc51OZ9JrERERkf0zKfm6f+yTEAJpaWl46aWX0LZtW5NfuLy8HLW1tQgICDBYHhAQgNOnTxvdRqPRGI2vG2dV929jMQ92Dbq5uaFt27YmjdcKCgpCeno6+vfvj1u3buHvf/87hg8fjoKCAjz++ONGt0lLS8OyZcua/BpERETkeExKvlJTUw2e//nPf8bs2bPRuXNnsxbKHnTv3h3du3eXng8aNAjnz5/HO++8g3/+859Gt1mwYIFBy51Op0NISIjFy0pERETy0aIB9y3h5+cHV1dXlJWVGSwvKytDYGCg0W0CAwMbjK/7t7GYBwf03717FxUVFQ993aYaOHAgzp0799D1np6e8PHxMXgQERGRc7FZ8uXh4YF+/fohJydHWqbX65GTk4OYmBij28TExBjEA8DevXul+LCwMAQGBhrE6HQ6FBQUSDExMTGorKxEUVGRFJObmwu9Xo/o6OgW1enIkSMICgpq0T6IiIjIsZk8yao5zZ07F5MnT0b//v0xcOBArF69GlVVVdKtiyZNmoQOHTogLS0NADB79mzExsbiz3/+M8aMGYMtW7bgm2++wXvvvQcAUCgUmDNnDt5880107doVYWFhWLx4MYKDg6Xxaj179sSoUaMwffp0pKen486dO5gxYwYSExMRHBwsle3kyZO4ffs2KioqcP36dRw5cgTAvQH2ALB69WqEhYWhV69eqKmpwd///nfk5uZiz5491jl4REREZJdMSr7WrFlj8Pzu3bvIyMiAn5+fwfJZs2Y1aX8JCQm4evUqlixZAo1Gg6ioKGRnZ0sD5i9evAgXl58b5wYNGoRNmzZh0aJFWLhwIbp27YodO3agd+/eUsxrr72GqqoqJCcno7KyEkOGDEF2djaUSqUU8/HHH2PGjBkYOXIkXFxc8Oyzz9ar2+jRo/H9999Lz/v27Qvg3oUGwL2rNefNm4cffvgBrVq1wmOPPYb//Oc/GDFiRJPqbu9493oiIqLmUYi6bKIJwsLCGt+hQoHvvvuuRYVyFjqdDiqVClqt1q7Gf/Hu9URE5Mxa+v1tUstXSUmJyS9AjoV3ryciImoZkwbc5+bmIiIiwujkoFqtFr169cJXX31ltsKR/PDu9URERC1jUvK1evVqTJ8+3WgTm0qlwosvvoi//OUvZiscyU/d3evvx7vXExERNZ1Jyde3336LUaNGPXT9k08+aTCFAzke3r2eiIioZUwa81VWVgZ3d/eH78zNDVevXm1xoUjeEgZ0xLBu/rhQfhOhfq2YeBEREZnApOSrQ4cOOH78OLp06WJ0/dGjRznJqJMIUnkx6SIiImoGk7odR48ejcWLF6OmpqbeuurqaqSmpuLXv/612QpHRERE5GhMmuerrKwMjz/+OFxdXTFjxgzpxtKnT5/G+vXrUVtbi+LiYmmSVGqYvc7zRURE5MysOs9XQEAA8vLy8Lvf/Q4LFiyQZntXKBRQq9VYv349Ey8iIiKiBph8b8dOnTohKysLP/30E86dOwchBLp27YpHHnnEEuUjIiIicijNvrH2I488ggEDBpizLEREREQOz6QB90RERETUMky+iIiIiKyIyRcRERGRFTH5IiIiIrIiJl9EREREVsTki4iIiMiKmHwRyUipthp558tRqq22dVHIjvF9RCRvzZ7ni4jMK7PwIhZsPwa9AFwUQNq4SCQM6GjrYpGd4fuISP7Y8kUkA6XaaukLEwD0Ali4/ThbLsgkfB8R2QcmX0QyUFJeJX1h1qkVAhfKb9qmQGSX+D4isg9MvohkIMzPGy4Kw2WuCgVC/VrZpkBkl/g+IrIPTL6IZCBI5YW0cZFwVdz75nRVKPCncb0RpPKyccnInvB9RGQfFEII0XgYWYJOp4NKpYJWq4WPj4+ti0MyUKqtxoXymwj1a8UvTGo2vo+ILKul39+82pFIRoJUXvyypBbj+4hI3tjtSERE5AQ4/5t8sOWLiIjIwXH+N3lhyxcREZED4/xv8sPki4iIyA41tRuR87/JD7sdiYiI7Iwp3Yh187/dn4Bx/jfbYssXERGRHTG1G5Hzv8kPW74IwL0Pc0l5FcL8vPmBJIfC9zY5moa6ER/2Hk8Y0BHDuvlz/jeZYPJFvAqGHBbf2+SImtuNyPnf5IPdjk6OV8GQo+J7mxwVuxHtH1u+nFxzmq+J7AHf2+TI2I1o35h8OTleBUOOiu9tcnTsRrRf7HZ0cmy+JkfF9zYRyZVCCCEaDyNLaOld0c2pVFvN5mtySHxvE5G5tfT7m92OBIDN1+S4+N4mIrlhtyMREZEdaurthUh+2PJFRERkZziHnX1jyxcREZEd4Rx29o/JFxERkR1paA47sg9MvoiIiOxI3Rx29+McdvaFyRcROTQOSiZHwzns7B8H3BOR2ZRqq1FSXoUwP29ZfBFwUDI5Kt5eyL7ZvOVr/fr1CA0NhVKpRHR0NA4dOtRg/LZt29CjRw8olUpERkYiKyvLYL0QAkuWLEFQUBC8vLwQFxeHs2fPGsRUVFRgwoQJ8PHxga+vL6ZNm4YbN25I62tqajBlyhRERkbCzc0N8fHxRsuyb98+PP744/D09ESXLl2QkZHRrGNA5AgyCy9i8IpcjN9YgMErcpFZeNGm5eGgZHJ0QSovxIS3Y+Jlh2yafGVmZmLu3LlITU1FcXEx+vTpA7VajStXrhiNz8vLQ1JSEqZNm4bDhw8jPj4e8fHxOH78uBSzcuVKrFmzBunp6SgoKIC3tzfUajVqamqkmAkTJuDEiRPYu3cvdu3ahf379yM5OVlaX1tbCy8vL8yaNQtxcXFGy1JSUoIxY8ZgxIgROHLkCObMmYMXXngBn3/+uZmODpH9kGOiw0HJRCRXNr29UHR0NAYMGIB169YBAPR6PUJCQjBz5kykpKTUi09ISEBVVRV27dolLXviiScQFRWF9PR0CCEQHByMefPmYf78+QAArVaLgIAAZGRkIDExEadOnUJERAQKCwvRv39/AEB2djZGjx6Ny5cvIzg42OA1p0yZgsrKSuzYscNg+euvv47du3cbJH6JiYmorKxEdnZ2k+ovp9sLEbVE3vlyjN9YUG/55ulPICa8nQ1KdC8hHLwit96NtQ+kjGBLAVmc3Lrgybxa+v1ts5av27dvo6ioyKBlycXFBXFxccjPzze6TX5+fr2WKLVaLcWXlJRAo9EYxKhUKkRHR0sx+fn58PX1lRIvAIiLi4OLiwsKCup/eTxMY2Ux5tatW9DpdAYPIkcgx6uvOCiZbEVuXfAkPzYbcF9eXo7a2loEBAQYLA8ICMDp06eNbqPRaIzGazQaaX3dsoZi2rdvb7Dezc0Nbdu2lWKa4mFl0el0qK6uhpdX/T/waWlpWLZsWZNfg8he1CU6C7cfR60Qskl0OCiZrO1hXfDDuvnz/UcSXu1oRQsWLMDcuXOl5zqdDiEhITYsEZH5yDXR4Y21yZoaGmvI9yHVsVny5efnB1dXV5SVlRksLysrQ2BgoNFtAgMDG4yv+7esrAxBQUEGMVFRUVLMgwP67969i4qKioe+rill8fHxMdrqBQCenp7w9PRs8msQ2RtHSHQ4Vodaoq4L/sGxhpwAle5nszFfHh4e6NevH3JycqRler0eOTk5iImJMbpNTEyMQTwA7N27V4oPCwtDYGCgQYxOp0NBQYEUExMTg8rKShQVFUkxubm50Ov1iI6ObnL5GysLEdkfjtWhlmruWENOBuxcbNrtOHfuXEyePBn9+/fHwIEDsXr1alRVVWHq1KkAgEmTJqFDhw5IS0sDAMyePRuxsbH485//jDFjxmDLli345ptv8N577wEAFAoF5syZgzfffBNdu3ZFWFgYFi9ejODgYGmurp49e2LUqFGYPn060tPTcefOHcyYMQOJiYkGVzqePHkSt2/fRkVFBa5fv44jR44AgNSC9tJLL2HdunV47bXX8Nvf/ha5ubnYunUrdu/ebZ2DR0RmxbE6ZC6mdsFzMmDnY9PkKyEhAVevXsWSJUug0WgQFRWF7OxsaSD7xYsX4eLyc+PcoEGDsGnTJixatAgLFy5E165dsWPHDvTu3VuKee2111BVVYXk5GRUVlZiyJAhyM7OhlKplGI+/vhjzJgxAyNHjoSLiwueffZZrFmzxqBso0ePxvfffy8979u3L4B7k7gC91rZdu/ejVdeeQV//etf8eijj+Lvf/871Gq1+Q8UEVkcx+qQOTW1C55Jv3Oy6Txfzo7zfBHJB+cFI1uQ4xx51Di7neeLiEhOOC8Y2YIc58gjy+NUE0RE/0eu02WQ45LrHHlkWUy+iIju4wjTZZB9YdLvfJh8ERGRrDjjXGtM+p0Lky8iIpINTrtAzoAD7omISBYeNu0CJx4lR8Pki4iIZKGhudaIHAmTLyIikgVOu0DOgskXERHJAudaI2fBAfdERCQbnHaBnAGTLyIikhVOu0COjt2ORERERFbE5IuIiIjIiph8EREREVkRky8iIiIiK2LyRURERGRFTL6I7Fipthp558t5+xUiIjvCqSaI7BRvQExEZJ/Y8kVkh3gDYrIltrgStQxbvojsUEM3IObklGRJbHElajm2fBHZId6AmGyBLa5E5sHki8gO8QbEZAsNtbg2hN2UzoHnuenY7Uhkp3gDYrK2uhbX+xOwxlpc2U3pHHieTcOWLyI7FqTyQkx4OyZeZBWmtriym9I58Dybji1fRETUZKa0uPLCEOfA82w6Jl9ERGSSIJVXk75Um9NNSfaH59l07HYkIrvCQb32gxeGOAeeZ9MphBCi8TCyBJ1OB5VKBa1WCx8fH1sXh0j2OKjXPpVqq+3+wpBSbTVKyqsQ5udtt3WwNEc4z03V0u9vdjsSkV142KDeYd38Hf4Pvb1rajelXDHpbxp7P8/WxG5HIrILzZ1jiqgleCUfWQKTLyKyC5zVn2yBST9ZApMvIrILHNRLtsCknyyBY76IyG5wVn+ytrqkf+H246gVgkk/mQWTLyKyKxzUa3vOduUfk34yNyZfRETUZM565R+TfjInjvkiIqIm4ZV/RObB5IvIjnG2d7ImXvlHZB7sdiSyU83p/nG2sTpkXryHH5F5sOWLyA41p/sns/AiBq/IxfiNBRi8IheZhRetVFpyFJzug8g82PJFZIca6v4x9kXIW/OQufDKP6KWY/JFZIdM7f4xNVkjagiv/CNqGXY7klVwYLh5mdr9w1m6iYjkgy1fZHHOOi+QpZnS/cNZuuWDFz0QkUIIIRoPI0vQ6XRQqVTQarXw8fGxdXEsolRbjcErcut1jx1IGcEvHhso1VY73VgdOSU71vohIqc6Ezmiln5/s+WLLIpjjeTF2cbqyKnV1VoXPcipzs3F5JEcnSzGfK1fvx6hoaFQKpWIjo7GoUOHGozftm0bevToAaVSicjISGRlZRmsF0JgyZIlCAoKgpeXF+Li4nD27FmDmIqKCkyYMAE+Pj7w9fXFtGnTcOPGDYOYo0ePYujQoVAqlQgJCcHKlSsN1mdkZEChUBg8lEplC46E4+FYI7IVuc3Gbo0JSuVW5+bglCjkDGyefGVmZmLu3LlITU1FcXEx+vTpA7VajStXrhiNz8vLQ1JSEqZNm4bDhw8jPj4e8fHxOH78uBSzcuVKrFmzBunp6SgoKIC3tzfUajVqamqkmAkTJuDEiRPYu3cvdu3ahf379yM5OVlar9Pp8OSTT6JTp04oKirC22+/jaVLl+K9994zKI+Pjw9KS0ulx/fff2/mI2TfOC8Q2YrcZmO3xg8RudXZVI6QPBI1hc3HfEVHR2PAgAFYt24dAECv1yMkJAQzZ85ESkpKvfiEhARUVVVh165d0rInnngCUVFRSE9PhxACwcHBmDdvHubPnw8A0Gq1CAgIQEZGBhITE3Hq1ClERESgsLAQ/fv3BwBkZ2dj9OjRuHz5MoKDg/Huu+/iD3/4AzQaDTw8PAAAKSkp2LFjB06fPg3gXsvXnDlzUFlZ2ay6O8OYrzrOONaIbEuO4w0zCy/Wu+jBnF2CcqyzKfLOl2P8xoJ6yzdPfwIx4e1sUCIi41r6/W3Tlq/bt2+jqKgIcXFx0jIXFxfExcUhPz/f6Db5+fkG8QCgVqul+JKSEmg0GoMYlUqF6OhoKSY/Px++vr5S4gUAcXFxcHFxQUFBgRQzbNgwKfGqe50zZ87gp59+kpbduHEDnTp1QkhICMaOHYsTJ048tL63bt2CTqczeDiLIJUXYsLb2cUXADkGOba6JgzoiAMpI7B5+hM4kDLC7GOx5FhnU3CYAjkLmw64Ly8vR21tLQICAgyWBwQESK1LD9JoNEbjNRqNtL5uWUMx7du3N1jv5uaGtm3bGsSEhYXV20fdukceeQTdu3fHBx98gMceewxarRarVq3CoEGDcOLECTz66KP1yp6WloZly5Y9/IAQkVnJcTZ2S1/0IMc6NxWnRCFnwasdWyAmJgYxMTHS80GDBqFnz57YsGED3njjjXrxCxYswNy5c6XnOp0OISEhVikrkbNytis8Afuusz0nj0RNZdPky8/PD66urigrKzNYXlZWhsDAQKPbBAYGNhhf929ZWRmCgoIMYqKioqSYBwf03717FxUVFQb7MfY697/Gg9zd3dG3b1+cO3fO6HpPT094enoaXUckR7zkn2zBnpNHoqaw6ZgvDw8P9OvXDzk5OdIyvV6PnJwcgxal+8XExBjEA8DevXul+LCwMAQGBhrE6HQ6FBQUSDExMTGorKxEUVGRFJObmwu9Xo/o6GgpZv/+/bhz547B63Tv3h2PPPKI0bLV1tbi2LFjBkkfkb3iJf9ERBYibGzLli3C09NTZGRkiJMnT4rk5GTh6+srNBqNEEKIiRMnipSUFCn+4MGDws3NTaxatUqcOnVKpKamCnd3d3Hs2DEpZsWKFcLX11fs3LlTHD16VIwdO1aEhYWJ6upqKWbUqFGib9++oqCgQBw4cEB07dpVJCUlSesrKytFQECAmDhxojh+/LjYsmWLaNWqldiwYYMUs2zZMvH555+L8+fPi6KiIpGYmCiUSqU4ceJEk+qu1WoFAKHVapt9/Igs4cfKmyIsZZfo9PrPj84pu8WPlTdtXTQiIptr6fe3zcd8JSQk4OrVq1iyZAk0Gg2ioqKQnZ0tDW6/ePEiXFx+bqAbNGgQNm3ahEWLFmHhwoXo2rUrduzYgd69e0sxr732GqqqqpCcnIzKykoMGTIE2dnZBhOgfvzxx5gxYwZGjhwJFxcXPPvss1izZo20XqVSYc+ePXj55ZfRr18/+Pn5YcmSJQZzgf3000+YPn26NAC/X79+yMvLQ0REhCUPGZHF8c4EZG/YRU72xObzfDkzZ5rni+yLvc8XRc6Ft1Qia7Preb6ISJ7sfb4och6OMCs+x1c6H5t3OxI5Knv/JctL/ske2HsXubVuuE7ywuSLyAIcoRsE4CX/JH91s+I/2EVuL7Pi23vySM3DbkciM3OEbhA5K9VWI+98OY+nAzPlHNt7FzlvqeSc2PJFZGb8JWs5jtKiSA/XnHNsz13kvKWSc2LyRWRm9t4NIlccG+P4WnKO7bmL3J6TR2oedjsSmZm9d4PIVUMtiuQYnPkcB6m8EBPejn8nnARbvogsgL9kzY8tio6P55icBVu+iCyEv2TNiy2KTWevFyXwHJOz4Az3NsQZ7olMV6qtZotiAxzhogSeY5K7ln5/s9uRiOyKPQ+stjRHuSiB55gcHbsdiYgchDMPWCeyJ0y+iIgchFwn7LTXMWhElsJuRyIiBxGk8sIzfTvg0+IfpGXxfYNt2oXnCGPQiMyNLV9ERA6iVFuNfx3+wWDZjsM/2qzFibfaIjKOyRcRkYOQ25gvuZWHSC6YfBEROQi5jfmSW3mI5ILJFxGRg5DbJKVyKw+RXHCSVRviJKtEZAlym6RUbuUhailOskpEdqtUW42S8iqE+XnzS9mM5DZJqdzKQ2RrTL6IyCY4BQEROSuO+SIiq+MUBETkzJh8EZHVcQoCInJmTL6IyOo4BQEROTMmX0RkdZyCgIicGQfcE5FNJAzoiGHd/J1uCgJe4UlETL6IyGacbQoCXuFJRAC7HYmIrIJXeBJRHSZfRERW4EhXeJZqq5F3vpyJI1EzsduRiMgK6q7wvD8Bs8crPNl1StRybPkiIrICR7jCk12nRObBli8iIitJGNARPQLboPDCTxgQ+gj6hDxi6yKZpKGuU3tKIolsjckXEZGV2HuXnaN0nRLZGrsdiYisoCVddnIZ4O4IXadEcsCWLyIiK2hul53cWsucdXJcInNiyxcRkRU0536Wch3gHqTyQkx4OyZeRM3E5IuIyAqa02XnKHODyaXblEgu2O1IRGQlpl7t6AgD3OXWbUokB2z5InIibIGwrczCi3jmb3l4c/cpPPO3PGQWXmww3loD3C31vpBrtymRrbHli8hJsAXCth6WiAzr5t9gMmXpAe6WfF9wXjAi49jyReQE2AJhey0dvyUgGg8yUam2GimfGr4vUrYfM9v7ojkXGRA5AyZfRE7AUQZu27PmJiKZhRcxeEUuxm8swOAVuY12VZqi6Puf6qV0QgDF3/9klv1zXjAi49jtSOQEHGHgtr2rS0QWbj+OWiGalIg0t6uyqYQw3pr2kMXNwnnBiOpj8kXkBJrzxU/mZ2oiYukxU/1D20IBGLR+KQD0C234KsxSbTVKyqsQ5ufdpHIEqbz4XmuEqceU7BuTLyInwRYIeTAlEbF0i2WQygsrno3Egk+PQY9741DSno20qxn3HQGPqfNRiIe1O5PF6XQ6qFQqaLVa+Pj42Lo41Aj+MrVP9n7eMgsv1muxNPcXc6m2uklJeam2GoNX5NZLBg+kjLDLYysHPKb2qaXf37IYcL9+/XqEhoZCqVQiOjoahw4dajB+27Zt6NGjB5RKJSIjI5GVlWWwXgiBJUuWICgoCF5eXoiLi8PZs2cNYioqKjBhwgT4+PjA19cX06ZNw40bNwxijh49iqFDh0KpVCIkJAQrV640uSzkGCw56JksxxHOW8KAjjiQMgKbpz+BAykjmpR4mTpvV1NvF8QLN8yPx9Q52Tz5yszMxNy5c5Gamori4mL06dMHarUaV65cMRqfl5eHpKQkTJs2DYcPH0Z8fDzi4+Nx/PhxKWblypVYs2YN0tPTUVBQAG9vb6jVatTU1EgxEyZMwIkTJ7B3717s2rUL+/fvR3JysrRep9PhySefRKdOnVBUVIS3334bS5cuxXvvvWdSWcj+cZoG++RI582UeylaMuHk1BHmx2PqnGze7RgdHY0BAwZg3bp1AAC9Xo+QkBDMnDkTKSkp9eITEhJQVVWFXbt2ScueeOIJREVFIT09HUIIBAcHY968eZg/fz4AQKvVIiAgABkZGUhMTMSpU6cQERGBwsJC9O/fHwCQnZ2N0aNH4/LlywgODsa7776LP/zhD9BoNPDw8AAApKSkYMeOHTh9+nSTytIYdjvah7zz5Ri/saDe8s3Tn0BMeDsblIiawhnPmzW6sKzRDepseEztj113O96+fRtFRUWIi4uTlrm4uCAuLg75+flGt8nPzzeIBwC1Wi3Fl5SUQKPRGMSoVCpER0dLMfn5+fD19ZUSLwCIi4uDi4sLCgoKpJhhw4ZJiVfd65w5cwY//fRTk8ryoFu3bkGn0xk8SP74y9Q+OeN5s0YXVnO6QalhPKbOx6bJV3l5OWpraxEQEGCwPCAgABqNxug2Go2mwfi6fxuLad++vcF6Nzc3tG3b1iDG2D7uf43GyvKgtLQ0qFQq6RESEmI0juSFE0XaJ2c8b9ZKOE3pBqWm4TF1LpxqwooWLFiAuXPnSs91Oh0TMDvBaRrsk7OdN87nRmQfbJp8+fn5wdXVFWVlZQbLy8rKEBgYaHSbwMDABuPr/i0rK0NQUJBBTFRUlBTz4ID+u3fvoqKiwmA/xl7n/tdorCwP8vT0hKenp9F1JH+cKNI+Odt5c7aEk8ge2bTb0cPDA/369UNOTo60TK/XIycnBzExMUa3iYmJMYgHgL1790rxYWFhCAwMNIjR6XQoKCiQYmJiYlBZWYmioiIpJjc3F3q9HtHR0VLM/v37cefOHYPX6d69Ox555JEmlYWIyBbYhUUkc8LGtmzZIjw9PUVGRoY4efKkSE5OFr6+vkKj0QghhJg4caJISUmR4g8ePCjc3NzEqlWrxKlTp0Rqaqpwd3cXx44dk2JWrFghfH19xc6dO8XRo0fF2LFjRVhYmKiurpZiRo0aJfr27SsKCgrEgQMHRNeuXUVSUpK0vrKyUgQEBIiJEyeK48ePiy1btohWrVqJDRs2mFSWhmi1WgFAaLXaZh8/IiIisq6Wfn/bPPkSQoi1a9eKjh07Cg8PDzFw4EDx9ddfS+tiY2PF5MmTDeK3bt0qunXrJjw8PESvXr3E7t27Ddbr9XqxePFiERAQIDw9PcXIkSPFmTNnDGKuXbsmkpKSROvWrYWPj4+YOnWquH79ukHMt99+K4YMGSI8PT1Fhw4dxIoVK+qVvbGyNITJFxERkf1p6fe3zef5cmac54uIiMj+2PU8X0RERETOhskXERERkRUx+SIiIiKyIiZfRERERFbE5IuIiIjIiph8EREREVkRky8iIiIiK2LyRURERGRFNr2xtrOrm99Wp9PZuCRERETUVHXf282dp57Jlw1dv34dABASEmLjkhAREZGprl+/DpVKZfJ2vL2QDen1evz4449o06YNFAqFWfet0+kQEhKCS5cuOfSti1hPx+EMdQRYT0fDejqWptZTCIHr168jODgYLi6mj+Biy5cNubi44NFHH7Xoa/j4+Dj0B6UO6+k4nKGOAOvpaFhPx9KUejanxasOB9wTERERWRGTLyIiIiIrYvLloDw9PZGamgpPT09bF8WiWE/H4Qx1BFhPR8N6OhZr1ZMD7omIiIisiC1fRERERFbE5IuIiIjIiph8EREREVkRky8iIiIiK2LyZSfWr1+P0NBQKJVKREdH49ChQw3Gr169Gt27d4eXlxdCQkLwyiuvoKampkX7tAZz13Pp0qVQKBQGjx49eli6Go0ypZ537tzB8uXLER4eDqVSiT59+iA7O7tF+7QWc9dTjudz//79eOqppxAcHAyFQoEdO3Y0us2+ffvw+OOPw9PTE126dEFGRka9GDmdT0vU0RHOZWlpKcaPH49u3brBxcUFc+bMMRq3bds29OjRA0qlEpGRkcjKyjJ/4U1giXpmZGTUO59KpdIyFWgiU+u5fft2/PKXv4S/vz98fHwQExODzz//vF6cOT6bTL7sQGZmJubOnYvU1FQUFxejT58+UKvVuHLlitH4TZs2ISUlBampqTh16hTef/99ZGZmYuHChc3epzVYop4A0KtXL5SWlkqPAwcOWKM6D2VqPRctWoQNGzZg7dq1OHnyJF566SU888wzOHz4cLP3aQ2WqCcgv/NZVVWFPn36YP369U2KLykpwZgxYzBixAgcOXIEc+bMwQsvvGDwR15u59MSdQTs/1zeunUL/v7+WLRoEfr06WM0Ji8vD0lJSZg2bRoOHz6M+Ph4xMfH4/jx4+YsukksUU/g3qzw95/P77//3lxFbhZT67l//3788pe/RFZWFoqKijBixAg89dRTlvlbK0j2Bg4cKF5++WXpeW1trQgODhZpaWlG419++WXxi1/8wmDZ3LlzxeDBg5u9T2uwRD1TU1NFnz59LFLe5jK1nkFBQWLdunUGy8aNGycmTJjQ7H1agyXqKcfzeT8A4l//+leDMa+99pro1auXwbKEhAShVqul53I8n3XMVUdHOJf3i42NFbNnz663/PnnnxdjxowxWBYdHS1efPHFFpbQPMxVzw8//FCoVCqzlcvcTK1nnYiICLFs2TLpubk+m2z5krnbt2+jqKgIcXFx0jIXFxfExcUhPz/f6DaDBg1CUVGR1BT63XffISsrC6NHj272Pi3NEvWsc/bsWQQHB6Nz586YMGECLl68aLmKNKI59bx161a95nsvLy+plcBRzmdj9awjp/PZHPn5+QbHBQDUarV0XOR4Pk3VWB3r2Pu5bIqmHgtHcOPGDXTq1AkhISEYO3YsTpw4YesitYher8f169fRtm1bAOb9bDL5krny8nLU1tYiICDAYHlAQAA0Go3RbcaPH4/ly5djyJAhcHd3R3h4OIYPHy51xzVnn5ZmiXoCQHR0NDIyMpCdnY13330XJSUlGDp0KK5fv27R+jxMc+qpVqvxl7/8BWfPnoVer8fevXuxfft2lJaWNnuflmaJegLyO5/NodFojB4XnU6H6upqWZ5PUzVWR8AxzmVTPOxY2Mu5bKru3bvjgw8+wM6dO/HRRx9Br9dj0KBBuHz5sq2L1myrVq3CjRs38PzzzwMw799aJl8OaN++ffjTn/6Ev/3tbyguLsb27duxe/duvPHGG7Yumlk1pZ6/+tWv8Jvf/AaPPfYY1Go1srKyUFlZia1bt9qw5Kb561//iq5du6JHjx7w8PDAjBkzMHXqVLi4ONbHtyn1dITzSffwXDqWmJgYTJo0CVFRUYiNjcX27dvh7++PDRs22LpozbJp0yYsW7YMW7duRfv27c2+fzez75HMys/PD66urigrKzNYXlZWhsDAQKPbLF68GBMnTsQLL7wAAIiMjERVVRWSk5Pxhz/8oVn7tDRL1NNYcuLr64tu3brh3Llz5q9EEzSnnv7+/tixYwdqampw7do1BAcHIyUlBZ07d272Pi3NEvU0xtbnszkCAwONHhcfHx94eXnB1dVVdufTVI3V0Rh7PJdN8bBjYS/nsrnc3d3Rt29fuzyfW7ZswQsvvIBt27YZdDGa82+tY/10dkAeHh7o168fcnJypGV6vR45OTmIiYkxus3NmzfrJR6urq4AACFEs/ZpaZaopzE3btzA+fPnERQUZKaSm6Ylx16pVKJDhw64e/cuPv30U4wdO7bF+7QUS9TTGFufz+aIiYkxOC4AsHfvXum4yPF8mqqxOhpjj+eyKZpzLBxBbW0tjh07Znfnc/PmzZg6dSo2b96MMWPGGKwz62fT5KH/ZHVbtmwRnp6eIiMjQ5w8eVIkJycLX19fodFohBBCTJw4UaSkpEjxqampok2bNmLz5s3iu+++E3v27BHh4eHi+eefb/I+bcES9Zw3b57Yt2+fKCkpEQcPHhRxcXHCz89PXLlyxer1q2NqPb/++mvx6aefivPnz4v9+/eLX/ziFyIsLEz89NNPTd6nLViinnI8n9evXxeHDx8Whw8fFgDEX/7yF3H48GHx/fffCyGESElJERMnTpTiv/vuO9GqVSvx6quvilOnTon169cLV1dXkZ2dLcXI7Xxaoo6OcC6FEFJ8v379xPjx48Xhw4fFiRMnpPUHDx4Ubm5uYtWqVeLUqVMiNTVVuLu7i2PHjlm1bvezRD2XLVsmPv/8c3H+/HlRVFQkEhMThVKpNIixNlPr+fHHHws3Nzexfv16UVpaKj0qKyulGHN9Npl82Ym1a9eKjh07Cg8PDzFw4EDx9ddfS+tiY2PF5MmTped37twRS5cuFeHh4UKpVIqQkBDx+9//3uBLrLF92oq565mQkCCCgoKEh4eH6NChg0hISBDnzp2zYo2MM6We+/btEz179hSenp6iXbt2YuLEieKHH34waZ+2Yu56yvF8fvHFFwJAvUdd3SZPnixiY2PrbRMVFSU8PDxE586dxYcfflhvv3I6n5aoo6OcS2PxnTp1MojZunWr6Natm/Dw8BC9evUSu3fvtk6FHsIS9ZwzZ470fg0ICBCjR48WxcXF1quUEabWMzY2tsH4Oub4bCqEeEj/DBERERGZHcd8EREREVkRky8iIiIiK2LyRURERGRFTL6IiIiIrIjJFxEREZEVMfkiIiIisiImX0RERERWxOSLiIgM7Nu3DwqFApWVlbYuCpFDYvJFRDYzZcoUKBQKrFixwmD5jh07oFAopOdCCGzcuBExMTHw8fFB69at0atXL8yePbvJN+69efMmFixYgPDwcCiVSvj7+yM2NhY7d+6UYkJDQ7F69Wqz1M3S6o6dQqGAu7s7wsLC8Nprr6Gmpsak/QwfPhxz5swxWDZo0CCUlpZCpVKZscREVIfJFxHZlFKpxFtvvYWffvrJ6HohBMaPH49Zs2Zh9OjR2LNnD06ePIn3338fSqUSb775ZpNe56WXXsL27duxdu1anD59GtnZ2Xjuuedw7do1c1bHqkaNGoXS0lJ89913eOedd7Bhwwakpqa2eL8eHh4IDAw0SICJyIyaecskIqIWmzx5svj1r38tevToIV599VVp+b/+9S9R9+dp8+bNAoDYuXOn0X3o9fomvZZKpRIZGRkPXW/svm51vvrqKzFkyBChVCrFo48+KmbOnClu3Lghrf9//+//iX79+onWrVuLgIAAkZSUJMrKyqT1dfeYy87OFlFRUUKpVIoRI0aIsrIykZWVJXr06CHatGkjkpKSRFVVVZPqM3nyZDF27FiDZePGjRN9+/aVnpeXl4vExEQRHBwsvLy8RO/evcWmTZsM9vFgnUtKSqTy3n+f1E8++UREREQIDw8P0alTJ7Fq1aomlZOI6mPLFxHZlKurK/70pz9h7dq1uHz5cr31mzdvRvfu3fH0008b3b6prTOBgYHIysrC9evXja7fvn07Hn30USxfvhylpaUoLS0FAJw/fx6jRo3Cs88+i6NHjyIzMxMHDhzAjBkzpG3v3LmDN954A99++y127NiBCxcuYMqUKfVeY+nSpVi3bh3y8vJw6dIlPP/881i9ejU2bdqE3bt3Y8+ePVi7dm2T6vOg48ePIy8vDx4eHtKympoa9OvXD7t378bx48eRnJyMiRMn4tChQwCAv/71r4iJicH06dOlOoeEhNTbd1FREZ5//nkkJibi2LFjWLp0KRYvXoyMjIxmlZXI6dk6+yMi53V/680TTzwhfvvb3wohDFu+evToIZ5++mmD7WbPni28vb2Ft7e36NChQ5Ne68svvxSPPvqocHd3F/379xdz5swRBw4cMIjp1KmTeOeddwyWTZs2TSQnJxss++qrr4SLi4uorq42+lqFhYUCgLh+/boQ4ueWr//85z9STFpamgAgzp8/Ly178cUXhVqtblJ9Jk+eLFxdXYW3t7fw9PQUAISLi4v45JNPGtxuzJgxYt68edLz2NhYMXv2bIOYB1u+xo8fL375y18axLz66qsiIiKiSWUlIkNs+SIiWXjrrbfwj3/8A6dOnWo09g9/+AOOHDmCJUuW4MaNG03a/7Bhw/Ddd98hJycHzz33HE6cOIGhQ4fijTfeaHC7b7/9FhkZGWjdurX0UKvV0Ov1KCkpAXCvZeipp55Cx44d0aZNG8TGxgIALl68aLCvxx57TPp/QEAAWrVqhc6dOxssu3LlSpPqAwAjRozAkSNHUFBQgMmTJ2Pq1Kl49tlnpfW1tbV44403EBkZibZt26J169b4/PPP65WrMadOncLgwYMNlg0ePBhnz55FbW2tSfsiIg64JyKZGDZsGNRqNRYsWGCwvGvXrjhz5ozBMn9/f3Tp0gXt27c36TXc3d0xdOhQvP7669izZw+WL1+ON954A7dv337oNjdu3MCLL76II0eOSI9vv/0WZ8+eRXh4OKqqqqBWq+Hj44OPP/4YhYWF+Ne//gUA9fbr7u4u/b/uKsX7KRQK6PX6JtfH29sbXbp0QZ8+ffDBBx+goKAA77//vrT+7bffxl//+le8/vrr+OKLL3DkyBGo1eoG60tEludm6wIQEdVZsWIFoqKi0L17d2lZUlISxo8fj507d2Ls2LFmfb2IiAjcvXsXNTU18PDwgIeHR72WnMcffxwnT55Ely5djO7j2LFjuHbtGlasWCGNl/rmm2/MWs6mcHFxwcKFCzF37lyMHz8eXl5eOHjwIMaOHYv/+Z//AQDo9Xr897//RUREhLSdsTo/qGfPnjh48KDBsoMHD6Jbt25wdXU1f2WIHBxbvohINiIjIzFhwgSsWbNGWpaYmIjnnnsOiYmJWL58OQoKCnDhwgV8+eWXyMzMbPKX//Dhw7FhwwYUFRXhwoULyMrKwsKFCzFixAj4+PgAuDfP1/79+/HDDz+gvLwcAPD6668jLy8PM2bMwJEjR3D27Fns3LlTGnDfsWNHeHh4YO3atfjuu+/w2WefNdqVaSm/+c1v4OrqivXr1wO412q4d+9e5OXl4dSpU3jxxRdRVlZmsE1oaKh0TMvLy422vM2bNw85OTl444038N///hf/+Mc/sG7dOsyfP98q9SJyNEy+iEhWli9fbpAAKBQKZGZmYvXq1cjKysLIkSPRvXt3/Pa3v0VISAgOHDjQpP2q1Wr84x//wJNPPomePXti5syZUKvV2Lp1q8FrX7hwAeHh4fD39wdwb5zWl19+if/+978YOnQo+vbtiyVLliA4OBjAvS7QjIwMbNu2DREREVixYgVWrVplxiPSdG5ubpgxYwZWrlyJqqoqLFq0CI8//jjUajWGDx+OwMBAxMfHG2wzf/58uLq6IiIiAv7+/kbHgz3++OPYunUrtmzZgt69e2PJkiVYvny50Ss6iahxCiGEsHUhiIiIiJwFW76IiIiIrIjJFxE5hPungnjw8dVXX9m6eCa5ePFig/UxdaoIIpIXdjsSkUNo6AbbHTp0gJeXlxVL0zJ3797FhQsXHro+NDQUbm68WJ3IXjH5IiIiIrIidjsSERERWRGTLyIiIiIrYvJFREREZEVMvoiIiIisiMkXERERkRUx+SIiIiKyIiZfRERERFbE5IuIiIjIiv4/GoYNii8cjdQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_58.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQXElEQVR4nO3dfVxU1b4/8M8MT4MooIE8hYIGIkpSPhA+hB45jUcrST0Cen3gmnTuCdOLVmgqZp4wy/KoXKnuKbqnUjRNPcaP9EDmSQgRNdPU1DC1AEViUARFZv3+8LKvIwMyW4bZM3zer9e8lL2/e89aex72d9Zae22VEEKAiIiIiEyitnQBiIiIiKwRkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCKyacuWLYNKpWpVrEqlwrJly8xanpEjR2LkyJGK3R8RtR6TKCJqF5mZmVCpVNLD3t4efn5+mDlzJn755RdLF09xAgICDI5X9+7dMWLECHz++edtsv/r169j2bJl2Lt3b5vsj6gjYhJFRO1q+fLl+Pvf/46MjAz84Q9/wMcff4yoqCjU1dWZ5fkWL16M2tpas+zb3MLDw/H3v/8df//737FgwQL8+uuvmDBhAjIyMu5739evX8err77KJIroPthbugBE1LH84Q9/wKBBgwAAzz77LDw8PPDGG29g586dmDx5cps/n729PeztrfOrzs/PD//2b/8m/T19+nQ89NBDeOedd/CnP/3JgiUjIoAtUURkYSNGjAAAnD171mD5yZMnMWnSJHTr1g0ajQaDBg3Czp07DWLq6+vx6quvIigoCBqNBg888ACGDx+OPXv2SDHGxkTduHED//mf/wlPT0906dIFTz/9NC5evNikbDNnzkRAQECT5cb2+eGHH+J3v/sdunfvDicnJ4SGhmLDhg0mHYt78fb2Rt++fVFSUtJi3KVLlzBr1ix4eXlBo9FgwIAB+Oijj6T1586dg6enJwDg1VdflboMzT0ejMjWWOfPMyKyGefOnQMAdO3aVVp2/PhxDBs2DH5+fkhJSYGLiws2b96MmJgYbN26Fc888wyA28lMWloann32WQwZMgTV1dU4ePAgDh06hN///vfNPuezzz6Ljz/+GFOmTMHQoUORl5eHcePG3Vc9NmzYgH79+uHpp5+Gvb09/vGPf+DPf/4z9Ho9nn/++fvad6P6+npcuHABDzzwQLMxtbW1GDlyJM6cOYOkpCQEBgZiy5YtmDlzJqqqqjB37lx4enpiw4YN+I//+A8888wzmDBhAgDg4YcfbpNyEnUYgoioHXz44YcCgPjnP/8pLl++LC5cuCA+++wz4enpKZycnMSFCxek2NGjR4uwsDBRV1cnLdPr9WLo0KEiKChIWjZgwAAxbty4Fp83NTVV3PlVd+TIEQFA/PnPfzaImzJligAgUlNTpWUzZswQPXv2vOc+hRDi+vXrTeK0Wq3o1auXwbKoqCgRFRXVYpmFEKJnz57iiSeeEJcvXxaXL18W3333nYiLixMAxJw5c5rd35o1awQA8fHHH0vLbt68KSIjI0Xnzp1FdXW1EEKIy5cvN6kvEZmG3XlE1K6io6Ph6ekJf39/TJo0CS4uLti5cycefPBBAEBlZSXy8vIwefJkXL16FRUVFaioqMCVK1eg1Wpx+vRp6Wo+d3d3HD9+HKdPn27182dnZwMAXnjhBYPl8+bNu696OTs7S//X6XSoqKhAVFQUfvrpJ+h0Oln73L17Nzw9PeHp6YkBAwZgy5YtmDZtGt54441mt8nOzoa3tzfi4+OlZQ4ODnjhhRdw7do1fP3117LKQkRNsTuPiNpVeno6goODodPp8MEHH2Dfvn1wcnKS1p85cwZCCCxZsgRLliwxuo9Lly7Bz88Py5cvx/jx4xEcHIz+/ftjzJgxmDZtWovdUj///DPUajV69+5tsLxPnz73Va/9+/cjNTUVBQUFuH79usE6nU4HNzc3k/cZERGBFStWQKVSoVOnTujbty/c3d1b3Obnn39GUFAQ1GrD38h9+/aV1hNR22ASRUTtasiQIdLVeTExMRg+fDimTJmCU6dOoXPnztDr9QCABQsWQKvVGt3HQw89BAB4/PHHcfbsWezYsQO7d+/Gf//3f+Odd95BRkYGnn322fsua3OTdDY0NBj8ffbsWYwePRohISF4++234e/vD0dHR2RnZ+Odd96R6mQqDw8PREdHy9qWiMyPSRQRWYydnR3S0tIwatQorF+/HikpKejVqxeA211QrUkgunXrhoSEBCQkJODatWt4/PHHsWzZsmaTqJ49e0Kv1+Ps2bMGrU+nTp1qEtu1a1dUVVU1WX53a84//vEP3LhxAzt37kSPHj2k5V999dU9y9/WevbsiaNHj0Kv1xu0Rp08eVJaDzSfIBJR63FMFBFZ1MiRIzFkyBCsWbMGdXV16N69O0aOHIl3330XpaWlTeIvX74s/f/KlSsG6zp37oyHHnoIN27caPb5/vCHPwAA1q5da7B8zZo1TWJ79+4NnU6Ho0ePSstKS0ubzBpuZ2cHABBCSMt0Oh0+/PDDZsthLmPHjkVZWRmysrKkZbdu3cK6devQuXNnREVFAQA6deoEAEaTRCJqHbZEEZHFvfjii/jjH/+IzMxM/OlPf0J6ejqGDx+OsLAwzJ49G7169UJ5eTkKCgpw8eJFfPfddwCA0NBQjBw5EgMHDkS3bt1w8OBBfPbZZ0hKSmr2ucLDwxEfH4//+q//gk6nw9ChQ5Gbm4szZ840iY2Li8PLL7+MZ555Bi+88AKuX7+ODRs2IDg4GIcOHZLinnjiCTg6OuKpp57Cc889h2vXruH9999H9+7djSaC5pSYmIh3330XM2fORHFxMQICAvDZZ59h//79WLNmDbp06QLg9kD40NBQZGVlITg4GN26dUP//v3Rv3//di0vkVWz9OWBRNQxNE5xUFRU1GRdQ0OD6N27t+jdu7e4deuWEEKIs2fPiunTpwtvb2/h4OAg/Pz8xJNPPik+++wzabsVK1aIIUOGCHd3d+Hs7CxCQkLEX/7yF3Hz5k0pxth0BLW1teKFF14QDzzwgHBxcRFPPfWUuHDhgtFL/nfv3i369+8vHB0dRZ8+fcTHH39sdJ87d+4UDz/8sNBoNCIgIEC88cYb4oMPPhAARElJiRRnyhQH95q+obn9lZeXi4SEBOHh4SEcHR1FWFiY+PDDD5tsm5+fLwYOHCgcHR053QGRDCoh7mh/JiIiIqJW4ZgoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMnGzTjPR6PX799Vd06dKFt1ggIiKyEkIIXL16Fb6+vk1u5n0nJlFm9Ouvv8Lf39/SxSAiIiIZLly4gAcffLDZ9UyizKjx9goXLlyAq6urhUtDRERErVFdXQ1/f3/pPN4cJlFm1NiF5+rqyiSKiIjIytxrKA4HlhMRERHJwCSKiIiISAYmUUREREQycEyUhTU0NKC+vt7SxVAEBwcH2NnZWboYRERErcIkykKEECgrK0NVVZWli6Io7u7u8Pb25rxaRESkeEyiLKQxgerevTs6derU4ZMGIQSuX7+OS5cuAQB8fHwsXCIiIqKWMYmygIaGBimBeuCBByxdHMVwdnYGAFy6dAndu3dn1x4RESkaB5ZbQOMYqE6dOlm4JMrTeEw4ToyIiJSOSZQFdfQuPGN4TIiIyFowiSIiIiKSgUkUERERkQxMokiWsrIyzJkzB7169YKTkxP8/f3x1FNPITc3V4rJz8/H2LFj0bVrV2g0GoSFheHtt99GQ0ODBUtORERKVKqrRf7ZCpTqai1dlFbj1XlksnPnzmHYsGFwd3fHm2++ibCwMNTX1+PLL7/E888/j5MnT+Lzzz/H5MmTkZCQgK+++gru7u745z//iZdeegkFBQXYvHkzxz8REREAIKvoPBZu+x56AahVQNqEMMQO7mHpYt2TSgghLF0IW1VdXQ03NzfodDq4urpKy+vq6lBSUoLAwEBoNBoLllCesWPH4ujRozh16hRcXFwM1lVVVcHBwQE9e/ZEVFQUtm7darD+H//4B55++mls2rQJsbGxTfZt7ceGiIhMU6qrxbCVedDfkY3YqVT4JmUUfNycLVKm5s7fd2N3ng1ozybQyspK5OTk4Pnnn2+SQAG3ZxzfvXs3rly5ggULFjRZ/9RTTyE4OBgbN240e1mJiEj5SipqDBIoAGgQAucqrlumQCZgd56Va+8m0DNnzkAIgZCQkGZjfvzxRwBA3759ja4PCQmRYoiIqGML9HCBWoUmLVEBHsqfS5EtUVasVFcrJVDA7Tfgom3HzNoiZUrvL3uKiYjoXnzcnJE2IQx2/ztO1k6lwusT+lusK88UbImyYi01gZrrzRcUFASVSoWTJ082GxMcHAwAOHHiBIYOHdpk/YkTJxAaGmqW8hERkfWJHdwDjwd74lzFdQR4dLKKBApgS5RVa2wCvZO5m0C7desGrVaL9PR01NTUNFlfVVWFJ554At26dcPq1aubrN+5cydOnz6N+Ph4s5WRiIisj4+bMyJ7P2A1CRTAJMqqWaoJND09HQ0NDRgyZAi2bt2K06dP48SJE1i7di0iIyPh4uKCd999Fzt27EBiYiKOHj2Kc+fO4W9/+xtmzpyJSZMmYfLkyWYtIxERkbmxO8/KWaIJtFevXjh06BD+8pe/YP78+SgtLYWnpycGDhyIDRs2AAAmTZqEr776Cn/5y18wYsQI1NXVISgoCK+88grmzZvHOaKIiMjqcZ4oM7LVeaLMiceGiIgsjfNEEREREZkRkygiIiIiGZhEEREREcnAJIqIiIhIBiZRFsQx/U3xmBARkbVgEmUBDg4OAIDr15V/c8X21nhMGo8RERGRUnGeKAuws7ODu7s7Ll26BADo1KlTh583SQiB69ev49KlS3B3d4ednZ2li0RERNQiJlEW4u3tDQBSIkW3ubu7S8eGiIhIyZhEWYhKpYKPjw+6d++O+vp6SxdHERwcHNgCRUREVoNJlIXZ2dkxcSAiIrJCHFhOREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyKCKJSk9PR0BAADQaDSIiInDgwIEW47ds2YKQkBBoNBqEhYUhOzvbYL0QAkuXLoWPjw+cnZ0RHR2N06dPG8RUVlZi6tSpcHV1hbu7O2bNmoVr165J68+dOweVStXk8e2337ZdxYmIiMhqWTyJysrKQnJyMlJTU3Ho0CEMGDAAWq0Wly5dMhqfn5+P+Ph4zJo1C4cPH0ZMTAxiYmJw7NgxKWbVqlVYu3YtMjIyUFhYCBcXF2i1WtTV1UkxU6dOxfHjx7Fnzx7s2rUL+/btQ2JiYpPn++c//4nS0lLpMXDgwLY/CERERGR9hIUNGTJEPP/889LfDQ0NwtfXV6SlpRmNnzx5shg3bpzBsoiICPHcc88JIYTQ6/XC29tbvPnmm9L6qqoq4eTkJDZu3CiEEOKHH34QAERRUZEU8//+3/8TKpVK/PLLL0IIIUpKSgQAcfjwYdl10+l0AoDQ6XSy90FERETtq7Xnb4u2RN28eRPFxcWIjo6WlqnVakRHR6OgoMDoNgUFBQbxAKDVaqX4kpISlJWVGcS4ubkhIiJCiikoKIC7uzsGDRokxURHR0OtVqOwsNBg308//TS6d++O4cOHY+fOnfdXYSIiIrIZ9pZ88oqKCjQ0NMDLy8tguZeXF06ePGl0m7KyMqPxZWVl0vrGZS3FdO/e3WC9vb09unXrJsV07twZq1evxrBhw6BWq7F161bExMRg+/btePrpp42W7caNG7hx44b0d3V1dYv1JyIiIutl0SRKyTw8PJCcnCz9PXjwYPz666948803m02i0tLS8Oqrr7ZXEYmIiMiCLNqd5+HhATs7O5SXlxssLy8vh7e3t9FtvL29W4xv/PdeMXcPXL916xYqKyubfV4AiIiIwJkzZ5pdv3DhQuh0Oulx4cKFZmOJiIjIulk0iXJ0dMTAgQORm5srLdPr9cjNzUVkZKTRbSIjIw3iAWDPnj1SfGBgILy9vQ1iqqurUVhYKMVERkaiqqoKxcXFUkxeXh70ej0iIiKaLe+RI0fg4+PT7HonJye4uroaPIiIiMg2Wbw7Lzk5GTNmzMCgQYMwZMgQrFmzBjU1NUhISAAATJ8+HX5+fkhLSwMAzJ07F1FRUVi9ejXGjRuHTZs24eDBg3jvvfcAACqVCvPmzcOKFSsQFBSEwMBALFmyBL6+voiJiQEA9O3bF2PGjMHs2bORkZGB+vp6JCUlIS4uDr6+vgCAjz76CI6OjnjkkUcAANu2bcMHH3yA//7v/27nI0RERERKZPEkKjY2FpcvX8bSpUtRVlaG8PBw5OTkSAPDz58/D7X6/xrMhg4dik8//RSLFy/GokWLEBQUhO3bt6N///5SzEsvvYSamhokJiaiqqoKw4cPR05ODjQajRTzySefICkpCaNHj4ZarcbEiROxdu1ag7K99tpr+Pnnn2Fvb4+QkBBkZWVh0qRJZj4iREREZA1UQghh6ULYqurqari5uUGn07Frj4iIyEq09vxt8RnLiYiIiKwRkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFClaqa4W+WcrUKqrtXRRiIiIDNhbugBEzckqOo+F276HXgBqFZA2IQyxg3tYulhEREQA2BJFClWqq5USKADQC2DRtmNskSIiIsVgEkWKVFJRIyVQjRqEwLmK65YpEBER0V0UkUSlp6cjICAAGo0GEREROHDgQIvxW7ZsQUhICDQaDcLCwpCdnW2wXgiBpUuXwsfHB87OzoiOjsbp06cNYiorKzF16lS4urrC3d0ds2bNwrVr14w+35kzZ9ClSxe4u7vfVz2p9QI9XKBWGS6zU6kQ4NHJMgUiIiK6i8WTqKysLCQnJyM1NRWHDh3CgAEDoNVqcenSJaPx+fn5iI+Px6xZs3D48GHExMQgJiYGx44dk2JWrVqFtWvXIiMjA4WFhXBxcYFWq0VdXZ0UM3XqVBw/fhx79uzBrl27sG/fPiQmJjZ5vvr6esTHx2PEiBFtX3lqlo+bM9ImhMFOdTuTslOp8PqE/vBxc7ZwyYiIiG5TCSHEvcPMJyIiAoMHD8b69esBAHq9Hv7+/pgzZw5SUlKaxMfGxqKmpga7du2Slj322GMIDw9HRkYGhBDw9fXF/PnzsWDBAgCATqeDl5cXMjMzERcXhxMnTiA0NBRFRUUYNGgQACAnJwdjx47FxYsX4evrK+375Zdfxq+//orRo0dj3rx5qKqqanXdqqur4ebmBp1OB1dXVzmHp8Mr1dXiXMV1BHh0YgJFRETtorXnb4u2RN28eRPFxcWIjo6WlqnVakRHR6OgoMDoNgUFBQbxAKDVaqX4kpISlJWVGcS4ubkhIiJCiikoKIC7u7uUQAFAdHQ01Go1CgsLpWV5eXnYsmUL0tPTW1WfGzduoLq62uBB98fHzRmRvR9gAkVERIpj0SSqoqICDQ0N8PLyMlju5eWFsrIyo9uUlZW1GN/4771iunfvbrDe3t4e3bp1k2KuXLmCmTNnIjMzs9WtSGlpaXBzc5Me/v7+rdqOiIiIrI/Fx0Qp1ezZszFlyhQ8/vjjrd5m4cKF0Ol00uPChQtmLCERERFZkkWTKA8PD9jZ2aG8vNxgeXl5Oby9vY1u4+3t3WJ847/3irl74PqtW7dQWVkpxeTl5eGtt96Cvb097O3tMWvWLOh0Otjb2+ODDz4wWjYnJye4uroaPIiIiMg2WTSJcnR0xMCBA5Gbmyst0+v1yM3NRWRkpNFtIiMjDeIBYM+ePVJ8YGAgvL29DWKqq6tRWFgoxURGRqKqqgrFxcVSTF5eHvR6PSIiIgDcHjd15MgR6bF8+XJ06dIFR44cwTPPPNM2B4CIiIislsVv+5KcnIwZM2Zg0KBBGDJkCNasWYOamhokJCQAAKZPnw4/Pz+kpaUBAObOnYuoqCisXr0a48aNw6ZNm3Dw4EG89957AACVSoV58+ZhxYoVCAoKQmBgIJYsWQJfX1/ExMQAAPr27YsxY8Zg9uzZyMjIQH19PZKSkhAXFyddmde3b1+Dch48eBBqtRr9+/dvpyNDRERESmbxJCo2NhaXL1/G0qVLUVZWhvDwcOTk5EgDw8+fPw+1+v8azIYOHYpPP/0UixcvxqJFixAUFITt27cbJDcvvfQSampqkJiYiKqqKgwfPhw5OTnQaDRSzCeffIKkpCSMHj0aarUaEydOxNq1a9uv4kRERGTVLD5PlC3jPFFERETWxyrmiSIiIiKyVkyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQREdmsUl0t8s9WoFRXa+mikA1SRBKVnp6OgIAAaDQaRERE4MCBAy3Gb9myBSEhIdBoNAgLC0N2drbBeiEEli5dCh8fHzg7OyM6OhqnT582iKmsrMTUqVPh6uoKd3d3zJo1C9euXZPWnzp1CqNGjYKXlxc0Gg169eqFxYsXo76+vu0qTkREZpNVdB7DVuZhyvuFGLYyD1lF5y1dJLIxFk+isrKykJycjNTUVBw6dAgDBgyAVqvFpUuXjMbn5+cjPj4es2bNwuHDhxETE4OYmBgcO3ZMilm1ahXWrl2LjIwMFBYWwsXFBVqtFnV1dVLM1KlTcfz4cezZswe7du3Cvn37kJiYKK13cHDA9OnTsXv3bpw6dQpr1qzB+++/j9TUVPMdDCIiahOlulos3PY99OL233oBLNp2jC1S1KZUQghhyQJERERg8ODBWL9+PQBAr9fD398fc+bMQUpKSpP42NhY1NTUYNeuXdKyxx57DOHh4cjIyIAQAr6+vpg/fz4WLFgAANDpdPDy8kJmZibi4uJw4sQJhIaGoqioCIMGDQIA5OTkYOzYsbh48SJ8fX2NljU5ORlFRUX417/+1aq6VVdXw83NDTqdDq6uriYdFyIiki//bAWmvF/YZPnG2Y8hsvcDFigRWZPWnr8t2hJ18+ZNFBcXIzo6WlqmVqsRHR2NgoICo9sUFBQYxAOAVquV4ktKSlBWVmYQ4+bmhoiICCmmoKAA7u7uUgIFANHR0VCr1SgsbPqhA4AzZ84gJycHUVFRzdbnxo0bqK6uNngQEVH7C/RwgVpluMxOpUKARyfLFIhskkWTqIqKCjQ0NMDLy8tguZeXF8rKyoxuU1ZW1mJ847/3iunevbvBent7e3Tr1q3J8w4dOhQajQZBQUEYMWIEli9f3mx90tLS4ObmJj38/f2bjSUiIvPxcXNG2oQw2KluZ1J2KhVen9AfPm7OFi4Z2RJ7SxdA6bKysnD16lV89913ePHFF/HWW2/hpZdeMhq7cOFCJCcnS39XV1czkSIispDYwT3weLAnzlVcR4BHJyZQ1OYsmkR5eHjAzs4O5eXlBsvLy8vh7e1tdBtvb+8W4xv/LS8vh4+Pj0FMeHi4FHP3wPVbt26hsrKyyfM2JkGhoaFoaGhAYmIi5s+fDzs7uyZlc3JygpOT072qTURE7cTHzZnJE5mNRbvzHB0dMXDgQOTm5krL9Ho9cnNzERkZaXSbyMhIg3gA2LNnjxQfGBgIb29vg5jq6moUFhZKMZGRkaiqqkJxcbEUk5eXB71ej4iIiGbLq9frUV9fD71eb3pliYiIyKbIaonasmULNm7ciB9//BEAEBwcjClTpmDSpEkm7ys5ORkzZszAoEGDMGTIEKxZswY1NTVISEgAAEyfPh1+fn5IS0sDAMydOxdRUVFYvXo1xo0bh02bNuHgwYN47733AAAqlQrz5s3DihUrEBQUhMDAQCxZsgS+vr6IiYkBAPTt2xdjxozB7NmzkZGRgfr6eiQlJSEuLk66Mu+TTz6Bg4MDwsLC4OTkhIMHD2LhwoWIjY2Fg4ODnMNGREQKV6qrRUlFDQI9XNiCRfcmTNDQ0CAmT54sVCqV6NOnjxg/frwYP368CA4OFmq1WsTGxgq9Xm/KLoUQQqxbt0706NFDODo6iiFDhohvv/1WWhcVFSVmzJhhEL9582YRHBwsHB0dRb9+/cQXX3xhsF6v14slS5YILy8v4eTkJEaPHi1OnTplEHPlyhURHx8vOnfuLFxdXUVCQoK4evWqtH7Tpk3i0UcfFZ07dxYuLi4iNDRUvP7666K2trbV9dLpdAKA0Ol0JhwNIiKyhE0HfhaBKbtEz5d3icCUXWLTgZ8tXSSykNaev02aJ+qdd97BihUr8NFHH+HJJ580WLdz504kJCRgyZIlmDdvXttmelaK80QREVmHUl0thq3MkybnBG5f0fdNyii2SHVAZpkn6sMPP8Sbb77ZJIECgKeffhqrVq3CBx98YHppiYiILKikosYggQKABiFwruK6ZQpEVsGkJOr06dNNJrq8k7F71BERESkdJ+ckOUxKopydnVFVVdXs+urqamg0mvstExERUbvi5Jwkh0lX50VGRmLDhg3YsGGD0fXp6enNTk1ARESkZJyck0xlUhL1yiuvYOTIkbhy5QoWLFiAkJAQCCFw4sQJrF69Gjt27MBXX31lrrISERGZFSfnJFOYlEQNHToUWVlZSExMxNatWw3Wde3aFRs3bsSwYcPatIBERERESmTSFAeNrl+/ji+//FIaRB4cHIwnnngCnTpxAN6dOMUBERGR9Wnt+duklqi8vDwkJSXh22+/xTPPPGOwTqfToV+/fsjIyMCIESPklZqIiIjISph0dd6aNWswe/Zso1mZm5sbnnvuObz99tttVjgiIiIipTIpifruu+8wZsyYZtc/8cQTBjf1JSIiIrJVJiVR5eXlLd58197eHpcvX77vQhEREREpnUlJlJ+fH44dO9bs+qNHj8LHx+e+C0VERESkdCYlUWPHjsWSJUtQV1fXZF1tbS1SU1ON3lePiIiIyNaYNMVBeXk5Hn30UdjZ2SEpKQl9+vQBAJw8eRLp6eloaGjAoUOH4OXlZbYCWxNOcUBERGR9zDLFgZeXF/Lz8/Ef//EfWLhwIRrzL5VKBa1Wi/T0dCZQRERE1CGYlEQBQM+ePZGdnY3ffvsNZ86cgRACQUFB6Nq1qznKR0RERKRIJidRjbp27YrBgwe3ZVmIiIiIrIZJA8uJiIiI6DYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEkaKV6mqRf7YCpbpaSxeFiIjIgOzJNonMLavoPBZu+x56AahVQNqEMMQO7mHpYhEREQFgSxQpVKmuVkqgAEAvgEXbjrFFioiIFINJVAdgjV1iJRU1UgLVqEEInKu4bpkCERER3YXdeTbOWrvEAj1coFbBIJGyU6kQ4NHJcoUiIiK6A1uibJg1d4n5uDkjbUIY7FQqALcTqNcn9IePm7OFS0ZERHQbW6JsWEtdYtaQjMQO7oHHgz1xruI6Ajw6WUWZiYio42ASZcNsoUvMx82ZyRMRESkSu/NsGLvEiIiIzIctUTaOXWJERETmwSSqA2CXGBERUdtjdx4RERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBkUkUenp6QgICIBGo0FERAQOHDjQYvyWLVsQEhICjUaDsLAwZGdnG6wXQmDp0qXw8fGBs7MzoqOjcfr0aYOYyspKTJ06Fa6urnB3d8esWbNw7do1af3evXsxfvx4+Pj4wMXFBeHh4fjkk0/artJkFqW6WuSfrUCprtbSRSEiIhtn8SQqKysLycnJSE1NxaFDhzBgwABotVpcunTJaHx+fj7i4+Mxa9YsHD58GDExMYiJicGxY8ekmFWrVmHt2rXIyMhAYWEhXFxcoNVqUVdXJ8VMnToVx48fx549e7Br1y7s27cPiYmJBs/z8MMPY+vWrTh69CgSEhIwffp07Nq1y3wHg+5LVtF5DFuZhynvF2LYyjxkFZ23dJGIiMiGqYQQwpIFiIiIwODBg7F+/XoAgF6vh7+/P+bMmYOUlJQm8bGxsaipqTFIZh577DGEh4cjIyMDQgj4+vpi/vz5WLBgAQBAp9PBy8sLmZmZiIuLw4kTJxAaGoqioiIMGjQIAJCTk4OxY8fi4sWL8PX1NVrWcePGwcvLCx988EGr6lZdXQ03NzfodDq4urqadFzINKW6WgxbmQf9He9mO5UK36SMgo+bs+UKRkREVqe152+LtkTdvHkTxcXFiI6Olpap1WpER0ejoKDA6DYFBQUG8QCg1Wql+JKSEpSVlRnEuLm5ISIiQoopKCiAu7u7lEABQHR0NNRqNQoLC5str06nQ7du3Zpdf+PGDVRXVxs8qH2UVNQYJFAA0CAEzlVct0yBiIjI5lk0iaqoqEBDQwO8vLwMlnt5eaGsrMzoNmVlZS3GN/57r5ju3bsbrLe3t0e3bt2afd7NmzejqKgICQkJzdYnLS0Nbm5u0sPf37/ZWGpbgR4uUKsMl9mpVAjw6GSZAhERkc2z+Jgoa/DVV18hISEB77//Pvr169ds3MKFC6HT6aTHhQsX2rGUHZuPmzPSJoTBTnU7k7JTqfD6hP4235XHgfRERJZjb8kn9/DwgJ2dHcrLyw2Wl5eXw9vb2+g23t7eLcY3/lteXg4fHx+DmPDwcCnm7oHrt27dQmVlZZPn/frrr/HUU0/hnXfewfTp01usj5OTE5ycnFqMIfOJHdwDjwd74lzFdQR4dLL5BCqr6DwWbvseegGoVUDahDDEDu5h6WIREXUYFm2JcnR0xMCBA5Gbmyst0+v1yM3NRWRkpNFtIiMjDeIBYM+ePVJ8YGAgvL29DWKqq6tRWFgoxURGRqKqqgrFxcVSTF5eHvR6PSIiIqRle/fuxbhx4/DGG28YXLlHyuXj5ozI3g/YfAJVqquVEigA0Atg0bZjbJEiImpHFm2JAoDk5GTMmDEDgwYNwpAhQ7BmzRrU1NRIY4+mT58OPz8/pKWlAQDmzp2LqKgorF69GuPGjcOmTZtw8OBBvPfeewAAlUqFefPmYcWKFQgKCkJgYCCWLFkCX19fxMTEAAD69u2LMWPGYPbs2cjIyEB9fT2SkpIQFxcnXZn31Vdf4cknn8TcuXMxceJEaayUo6Nji4PLlahUV4uSihoEerjYfHLRUbQ0kJ6vMREpQUc491g8iYqNjcXly5exdOlSlJWVITw8HDk5OdLA8PPnz0Ot/r8Gs6FDh+LTTz/F4sWLsWjRIgQFBWH79u3o37+/FPPSSy+hpqYGiYmJqKqqwvDhw5GTkwONRiPFfPLJJ0hKSsLo0aOhVqsxceJErF27Vlr/0Ucf4fr160hLS5MSOACIiorC3r17zXhE2ha7fGxT40D6u6d04EB6IttirYlIRzn3WHyeKFtm6XmiOHeSbcsqOo9F246hQQhpIL0tfkkRdVTWmojYwrmntedvi7dEkfmwy8e2dbSB9EQdSXPjHh8P9lT8Z70jnXuYRNkwF0c7o8s7OXJmi0bW2lTeyMfN2SrLTUQts+ZEpCOde5hE2bCamw1Gl1+/qW/nkiiTtTaVE5Hts+Zxjx3p3GN7aSFJOIt38zhFABEpmTVPINyRzj1sibJhjR/CuwcfW8OH0NysuamciDoGax332JHOPUyibJy1fgjNzZqbyomo47DWcY8d5dzD7rwOoKPM4m0Ka24qJyKyBh3h3MOWKOqwOsovJSIiMg8mUdShWWtTORERWR6784iIiMjqlOpqkX+2wqJXVbMlioiI6H9Z+wS8HYVS5vljEkVERATlnJipZUq6JQ6784iIqMPjBLzWo6V5/tobkygiIurwlHRippYpaUZ0JlFERNThKenETC1T0jx/HBNFREQdXke6VYktUMo8f0yiiIiIoJwTM7WOEub5YxJFRET0v5RwYibrwTFRRERERDIwiSIiIiKSgUkU2RQl3AaAiIg6Bo6JIpvB2YaJiKg9sSWKbAJnGyYiovbGJIpsAmcbJiIyHYdA3B9255FNaJxt+M5EirMNExE1j0Mg7h9bosgmNM423HjbBrUKnG2YiKgZHALRNphEkU0RwvBfIiJqikMg2gaTKLIJjb+qGr8TBPiriqwXx6mQudnCDZeV8DnhmCiyCS39qmKXHlkTjlOh9mDtN1xWyueESRTZBA4sJ1vQ3DiVx4M9rebkRtbDWm+4rKTPCbvzyCY0/qqyU91un7a2X1VEAMepUPvzcXNGZO8HrOq7UkmfE7ZEkc2w1l9VdyrV1aKkogaBHi5WWX66P2xRpfZmjd85SvqcMIkim+Lj5mw1XwR3U0ofP1mOtY9TIetird85SvqcqITgxeDmUl1dDTc3N+h0Ori6ulq6OKRgpbpaDFuZ1+SX1Tcpo3gC7YBKdbVW3aJKymcL3znm/Jy09vzNligiBeDVhXQna25RJetgC985SviccGA5kQLYwpwtRGQ9+J3TNphEUYemhMnaAF5dSETti985bYNjosyIY6KUTYmDKjkWhojaE79zjOOYKKIWKGmytjspoY+fiJTD3FMQ8Dvn/jCJog7JFgZVEpFtU2JrORnimCjqkDiokoiUrLnWckuP3yRDTKLIprR2oDgHVRKRkinp1ibUPHbnkc0wtenbFm4TQ5ZjjbfLIOuhpFubUPPYEkU2QW7TtzXefJMsL6voPIatzMOU9wsxbGUesorOW7pIZGPYWm4d2BJFNoEDxam9KPXKTrI9bC1XPiZRZBPY9E3thQk7tSdOQaBs7M4jm6DUpm+lzIhObYdXdhJRI7ZEkc1QWtM353ixTY0J+52vrRISdiJz48UUTTGJIpuilKZvjpuxfY03zOKNs6gj4I9C4yzenZeeno6AgABoNBpERETgwIEDLcZv2bIFISEh0Gg0CAsLQ3Z2tsF6IQSWLl0KHx8fODs7Izo6GqdPnzaIqaysxNSpU+Hq6gp3d3fMmjUL165dk9bX1dVh5syZCAsLg729PWJiYtqsvtQxcI4X29WYIDe+vAKcBJFsGyf+bJ5Fk6isrCwkJycjNTUVhw4dwoABA6DVanHp0iWj8fn5+YiPj8esWbNw+PBhxMTEICYmBseOHZNiVq1ahbVr1yIjIwOFhYVwcXGBVqtFXV2dFDN16lQcP34ce/bswa5du7Bv3z4kJiZK6xsaGuDs7IwXXngB0dHR5jsAZLM4bsZ2MUGmjobv+eaphLBcY3RERAQGDx6M9evXAwD0ej38/f0xZ84cpKSkNImPjY1FTU0Ndu3aJS177LHHEB4ejoyMDAgh4Ovri/nz52PBggUAAJ1OBy8vL2RmZiIuLg4nTpxAaGgoioqKMGjQIABATk4Oxo4di4sXL8LX19fgOWfOnImqqips377d5Pq19i7QZJuyis5j0bZjaBBCGujO5m/rV6qrxbCVeU2uBP0mZRS7askmdcT3fGvP3xZribp58yaKi4sNWnrUajWio6NRUFBgdJuCgoImLUNarVaKLykpQVlZmUGMm5sbIiIipJiCggK4u7tLCRQAREdHQ61Wo7CwsM3qRxQ7uAe+SRmFjbMfwzcpo5hA2QilXglKZC58zzfPYgPLKyoq0NDQAC8vL4PlXl5eOHnypNFtysrKjMaXlZVJ6xuXtRTTvXt3g/X29vbo1q2bFCPXjRs3cOPGDenv6urq+9ofWT+lDHS3BUq6MkhpV4ISmRvf88bx6rw2lJaWhldffdXSxSCyOUq8MogJMnU0fM83ZbHuPA8PD9jZ2aG8vNxgeXl5Oby9vY1u4+3t3WJ847/3irl74PqtW7dQWVnZ7PO21sKFC6HT6aTHhQsX7mt/RMQrg4hIuSyWRDk6OmLgwIHIzc2Vlun1euTm5iIyMtLoNpGRkQbxALBnzx4pPjAwEN7e3gYx1dXVKCwslGIiIyNRVVWF4uJiKSYvLw96vR4RERH3VScnJye4uroaPIjo/tjClUGcuZ7INlm0Oy85ORkzZszAoEGDMGTIEKxZswY1NTVISEgAAEyfPh1+fn5IS0sDAMydOxdRUVFYvXo1xo0bh02bNuHgwYN47733AAAqlQrz5s3DihUrEBQUhMDAQCxZsgS+vr7SXE99+/bFmDFjMHv2bGRkZKC+vh5JSUmIi4szuDLvhx9+wM2bN1FZWYmrV6/iyJEjAIDw8PB2Oz5EZP33RVRiVyQRtQ2LJlGxsbG4fPkyli5dirKyMoSHhyMnJ0caGH7+/Hmo1f/XWDZ06FB8+umnWLx4MRYtWoSgoCBs374d/fv3l2Jeeukl1NTUIDExEVVVVRg+fDhycnKg0WikmE8++QRJSUkYPXo01Go1Jk6ciLVr1xqUbezYsfj555+lvx955BEAtyfzJKL203hl0N3TRVjD2AzOXE9k2yw6T5St4zxRRG2nVFdr0pVBSriaL/9sBaa833TqlI2zH0Nk7wcsUCIiao3Wnr95dR4RWQVTrgxSSheatXdFElHLLH7vPCKitqSkq/k4SaHt40UDHRtboojIprR0NZ8lkhdOUmi7lNLiSZbDligiM+Kv1PanxJs/+7g5I7L3A0ygbIiSWjzJcphEEZlJVtF5DFuZhynvF2LYyjxkFZ23dJE6BHahUXuwhfnL6P6xO4/IDHhpu2WxC43MjRcNEMCWKCKzsIVfqdbeFckuNDIntngSwJYoIrOQ+ytVCXMbARwwS9QabPEktkQRmYGcX6lKGUPFAbNErccWz46NLVGkaKa2zCilJQcw7VeqksZQKW2KALo3Jb3vlVgeInNhEkWKZWqXkhK7oFo7y7aSEhcOmLUuWUXnkbL1ewgAKgArJ1r2fa/EzyGRubA7jxTJ1C4luV1QShk8raS5jThgtnWU8N4p1dVKCRQACAApW7+3WJnYFUwdDVuiSJFMbZmR05KjpF/MjYnLom3H0CCExRMXDphtmVLeOwfPVeKutz0EgOJzv+HJAe3/mimpRZWoPTCJIkUytUvJ1HgljUFqJCdxMefYE1Nu+NuRKOm9o1KpmlnersWQsCuYOhp255EimdqlZGq8UudxMuVKH6VczdfRKOm9M7BnV9ydL6lUwKM9u7Z7WQB2BVPHw5YoUixTW2ZMibf2X8xKag3paJT03vFxc8bKiWFNuhYt+R5gVzB1JEyiSNFM7VJqbbzSxiCZimNPLEdp7x0lJi3sCqaOgkkUdVhKPPm0lpJaQzoipb13mLQQWQbHRFGHZq2zDXPsieVZ63uHiNoOW6KIrJTSWkOIiDoaJlFEZmTu21+wG4eIyHKYRFkh3pfKOihlQkYiIjIPJlFWhidm68ApCCyvI/3Y6Eh1JVISJlFWhCdm68EpCCxLaT82zJnkKK2uRB0Jr86zIkqaKZlapqQbCnc0SrsZtTlnlm+vG/4q4WbLRErEJMqK8MRsPTgFgeXI+bFhrkTH3ElOe/ywao/bCzFJI2vF7jwrorSZkqllnILAMpR0M2pzd+uae9LV9hhCwO5IsmZMoqwMT8zWhVMQtD9Tf2yYM9Exd5Jj7h9W5k4COc6TrB2TKCvEE7P14FVTlqGUm1G3R+uxOX9YmTsJ5AUYbY/fOe2LSRSRmbCbwrKUcjPq9mg9NtcPK7nHprUnct4Dsm3xO6f9qYQQ4t5hJEd1dTXc3Nyg0+ng6upq6eJQOyrV1WLYyrwmJ4dvUkbx12E7MfUXeamult3kzTDl2Jh6Ip+/+Qi2HvpF+nvio35YPTm8rYreYfA7p2219vzNq/OIzIDTUbQ9U67gknNFGW8o3LzWHhtTr0Ys1dXi88O/GCzbfvhXXqUnA79zLIPdeURmwG6KtmVK6wYHK1uOqWOcOCaq7fA7xzLYEkVkBu01T1RHmF/H1NYN/iK3HFPnsuPcd22Hc9NZBluiiMzE3AOKs4rOI2Xr9xAAVABWTrTNQaSmtlbwF7nlmDoQnXPftS1OgdP+OLDcjDiwnMylVFeLoWl5uPPDqwKQv/B3NvfFKWfAbFbR+SYnZltMMJXK1EH6ShrUzykCCGj9+ZstUURW6OC5Stz960cAKD73G54cYFtf/HJaK2IH90CIdxcUnfsNgwO6YoB/1zYvF0+2zTN1ygWlzH3HKQLIVEyiiKyQSqVqZnk7F6SdmNpNYe6TYUfpSu1IeEECycGB5URWaGDPrrg7X1KpgEd7tn2Li1KY6zJ7U5XqaqUECrjdApiy9fsW998RLgCwdrwggeRgEkUdmrlPbubav4+bM1ZODJOubFKrgJUTwviLGeY/GbbUlWqMnDmrqP3xSkGSg9151GG1R5ePOffPK3GMM/fVeaZ0pbKLyHrwSkGSg0kUdUjmPrm118lTKQNylcTcJ0P/rsb386CR5ZxM0rrwhwmZikmUFTL3VUEd4aojc5/cePK0LHOeDGtuNhhdfv2mvskyzlllffjDhEzBJMrKWHsXlFKY++Qmd/8dIYFtL+Y6Gbo42hld3smx6RBTdhER2TYmUVbEVrqglMDcJzc5++8oCay1M6UlCmAXEZEtYxJlRdgF1bbMfXIzZf8dKYG1doEeLlABTWaLb6mVkV1ERLaJSZQVUWoXlDUz98mttfvvaAmsHIru6rTRSU6J2pOiP+PN4DxRVsTcd+nmXcAth3PUtExJcy2VVNQ0nSdKgJMyEt0HJX3GTcGWKCujpC4oajscgNw8pXV1mjKwnIjuTWmfcVMwibJCSumCamSNTbBKxATWOKV1dZ6vNN7idKGy1iw3OiaydUr7jJtCET+d0tPTERAQAI1Gg4iICBw4cKDF+C1btiAkJAQajQZhYWHIzs42WC+EwNKlS+Hj4wNnZ2dER0fj9OnTBjGVlZWYOnUqXF1d4e7ujlmzZuHatWsGMUePHsWIESOg0Wjg7++PVatWtU2FbYi1NsEqVWvvD9eRKK2rsz1u/sx77VFHorTPuCksnkRlZWUhOTkZqampOHToEAYMGACtVotLly4Zjc/Pz0d8fDxmzZqFw4cPIyYmBjExMTh27JgUs2rVKqxduxYZGRkoLCyEi4sLtFot6urqpJipU6fi+PHj2LNnD3bt2oV9+/YhMTFRWl9dXY0nnngCPXv2RHFxMd58800sW7YM7733nvkOhpUx941eiQDljdUz982f+cOEOhqlfcZNoRJC3D1Gsl1FRERg8ODBWL9+PQBAr9fD398fc+bMQUpKSpP42NhY1NTUYNeuXdKyxx57DOHh4cjIyIAQAr6+vpg/fz4WLFgAANDpdPDy8kJmZibi4uJw4sQJhIaGoqioCIMGDQIA5OTkYOzYsbh48SJ8fX2xYcMGvPLKKygrK4OjoyMAICUlBdu3b8fJkydbVbfq6mq4ublBp9PB1dX1vo6TEuWfrcCU9wubLN84+zFE9n7AAiUiW1aqq1VMV6e55vQq1dVi2Mq8JlfIfpMyyuJ1JjI3JX3GW3v+tmhL1M2bN1FcXIzo6GhpmVqtRnR0NAoKCoxuU1BQYBAPAFqtVoovKSlBWVmZQYybmxsiIiKkmIKCAri7u0sJFABER0dDrVajsLBQinn88celBKrxeU6dOoXffjN+t/YbN26gurra4GHLrLkJlqyPkro6Ywf3wP6U32Hj7MewP+V3bTYpaktjQ4hsnZI+461l0SSqoqICDQ0N8PLyMlju5eWFsrIyo9uUlZW1GN/4771iunfvbrDe3t4e3bp1M4gxto87n+NuaWlpcHNzkx7+/v7GK24jrLkJluh+meMLnz9MiKwLr85rQwsXLkRycrL0d3V1tc0nUryijKjtcKoLIuti0STKw8MDdnZ2KC8vN1heXl4Ob29vo9t4e3u3GN/4b3l5OXx8fAxiwsPDpZi7B67funULlZWVBvsx9jx3PsfdnJyc4OTk1Gx9bRVvaUHUdvjDhMh6WLQ7z9HREQMHDkRubq60TK/XIzc3F5GRkUa3iYyMNIgHgD179kjxgYGB8Pb2Noiprq5GYWGhFBMZGYmqqioUFxdLMXl5edDr9YiIiJBi9u3bh/r6eoPn6dOnD7p25VwwRGQ+1jg2hKhDEha2adMm4eTkJDIzM8UPP/wgEhMThbu7uygrKxNCCDFt2jSRkpIixe/fv1/Y29uLt956S5w4cUKkpqYKBwcH8f3330sxK1euFO7u7mLHjh3i6NGjYvz48SIwMFDU1tZKMWPGjBGPPPKIKCwsFN98840ICgoS8fHx0vqqqirh5eUlpk2bJo4dOyY2bdokOnXqJN59991W102n0wkAQqfT3c8hIiIionbU2vO3xZMoIYRYt26d6NGjh3B0dBRDhgwR3377rbQuKipKzJgxwyB+8+bNIjg4WDg6Oop+/fqJL774wmC9Xq8XS5YsEV5eXsLJyUmMHj1anDp1yiDmypUrIj4+XnTu3Fm4urqKhIQEcfXqVYOY7777TgwfPlw4OTkJPz8/sXLlSpPqxSSKiIjI+rT2/G3xeaJsma3PE0VERGSLrGKeKCIiIiJrxSSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGSx6A2Jb1ziPaXV1tYVLQkRERK3VeN6+13zkTKLM6OrVqwAAf39/C5eEiIiITHX16lW4ubk1u563fTEjvV6PX3/9FV26dIFKpWqz/VZXV8Pf3x8XLlywydvJ2Hr9ANuvo63XD7D9OrJ+1s/W62jO+gkhcPXqVfj6+kKtbn7kE1uizEitVuPBBx802/5dXV1t8oPRyNbrB9h+HW29foDt15H1s362Xkdz1a+lFqhGHFhOREREJAOTKCIiIiIZmERZIScnJ6SmpsLJycnSRTELW68fYPt1tPX6AbZfR9bP+tl6HZVQPw4sJyIiIpKBLVFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEqUQ6enpCAgIgEajQUREBA4cONBi/Jo1a9CnTx84OzvD398f//mf/4m6urr72qc5tXX9li1bBpVKZfAICQkxdzWaZUr96uvrsXz5cvTu3RsajQYDBgxATk7Ofe2zPbR1HZX0Gu7btw9PPfUUfH19oVKpsH379ntus3fvXjz66KNwcnLCQw89hMzMzCYxSnkNzVE/a379SktLMWXKFAQHB0OtVmPevHlG47Zs2YKQkBBoNBqEhYUhOzu77QvfSuaoY2ZmZpPXUKPRmKcC92Bq/bZt24bf//738PT0hKurKyIjI/Hll182iTP3Z5BJlAJkZWUhOTkZqampOHToEAYMGACtVotLly4Zjf/000+RkpKC1NRUnDhxAn/729+QlZWFRYsWyd6nOZmjfgDQr18/lJaWSo9vvvmmParThKn1W7x4Md59912sW7cOP/zwA/70pz/hmWeeweHDh2Xv09zMUUdAOa9hTU0NBgwYgPT09FbFl5SUYNy4cRg1ahSOHDmCefPm4dlnnzX4ElfSa2iO+gHW+/rduHEDnp6eWLx4MQYMGGA0Jj8/H/Hx8Zg1axYOHz6MmJgYxMTE4NixY21Z9FYzRx2B27N93/ka/vzzz21VZJOYWr99+/bh97//PbKzs1FcXIxRo0bhqaeeav/vUUEWN2TIEPH8889Lfzc0NAhfX1+RlpZmNP75558Xv/vd7wyWJScni2HDhsnepzmZo36pqaliwIABZimvqUytn4+Pj1i/fr3BsgkTJoipU6fK3qe5maOOSnoN7wRAfP755y3GvPTSS6Jfv34Gy2JjY4VWq5X+Vtpr2Kit6mfNr9+doqKixNy5c5ssnzx5shg3bpzBsoiICPHcc8/dZwnvX1vV8cMPPxRubm5tVq62Ymr9GoWGhopXX31V+rs9PoNsibKwmzdvori4GNHR0dIytVqN6OhoFBQUGN1m6NChKC4ulpolf/rpJ2RnZ2Ps2LGy92ku5qhfo9OnT8PX1xe9evXC1KlTcf78efNVpBly6nfjxo0mTebOzs7Sr3glvX5yy3OvOjZSwmsoR0FBgcHxAACtVisdD6W9hqa6V/0aWevr1xqtPQbW7tq1a+jZsyf8/f0xfvx4HD9+3NJFkkWv1+Pq1avo1q0bgPb7DDKJsrCKigo0NDTAy8vLYLmXlxfKysqMbjNlyhQsX74cw4cPh4ODA3r37o2RI0dK3V1y9mku5qgfAERERCAzMxM5OTnYsGEDSkpKMGLECFy9etWs9bmbnPpptVq8/fbbOH36NPR6Pfbs2YNt27ahtLRU9j7NyRx1BJTzGspRVlZm9HhUV1ejtrZWca+hqe5VP8C6X7/WaO4YWMPr11p9+vTBBx98gB07duDjjz+GXq/H0KFDcfHiRUsXzWRvvfUWrl27hsmTJwNov+9RJlFWaO/evXj99dfxX//1Xzh06BC2bduGL774Aq+99pqli9YmWlO/P/zhD/jjH/+Ihx9+GFqtFtnZ2aiqqsLmzZstWPLW+etf/4qgoCCEhITA0dERSUlJSEhIgFptOx/H1tTRml9D4utnCyIjIzF9+nSEh4cjKioK27Ztg6enJ959911LF80kn376KV599VVs3rwZ3bt3b9fntm/XZ6MmPDw8YGdnh/LycoPl5eXl8Pb2NrrNkiVLMG3aNDz77LMAgLCwMNTU1CAxMRGvvPKKrH2aiznqZyzZcHd3R3BwMM6cOdP2lWiBnPp5enpi+/btqKurw5UrV+Dr64uUlBT06tVL9j7NyRx1NMZSr6Ec3t7eRo+Hq6srnJ2dYWdnp6jX0FT3qp8x1vT6tUZzx8AaXj+5HBwc8Mgjj1jVa7hp0yY8++yz2LJli0HXXXt9j9rOT18r5ejoiIEDByI3N1daptfrkZubi8jISKPbXL9+vUkiYWdnBwAQQsjap7mYo37GXLt2DWfPnoWPj08blbx17udYazQa+Pn54datW9i6dSvGjx9/3/s0B3PU0RhLvYZyREZGGhwPANizZ490PJT2GprqXvUzxppev9aQcwysXUNDA77//nureQ03btyIhIQEbNy4EePGjTNY126fwTYbok6ybdq0STg5OYnMzEzxww8/iMTEROHu7i7KysqEEEJMmzZNpKSkSPGpqamiS5cuYuPGjeKnn34Su3fvFr179xaTJ09u9T6tvX7z588Xe/fuFSUlJWL//v0iOjpaeHh4iEuXLim+ft9++63YunWrOHv2rNi3b5/43e9+JwIDA8Vvv/3W6n22N3PUUUmv4dWrV8Xhw4fF4cOHBQDx9ttvi8OHD4uff/5ZCCFESkqKmDZtmhT/008/iU6dOokXX3xRnDhxQqSnpws7OzuRk5MjxSjpNTRH/az59RNCSPEDBw4UU6ZMEYcPHxbHjx+X1u/fv1/Y29uLt956S5w4cUKkpqYKBwcH8f3337dr3RqZo46vvvqq+PLLL8XZs2dFcXGxiIuLExqNxiCmvZhav08++UTY29uL9PR0UVpaKj2qqqqkmPb4DDKJUoh169aJHj16CEdHRzFkyBDx7bffSuuioqLEjBkzpL/r6+vFsmXLRO/evYVGoxH+/v7iz3/+s8EJ6l77bG9tXb/Y2Fjh4+MjHB0dhZ+fn4iNjRVnzpxpxxoZMqV+e/fuFX379hVOTk7igQceENOmTRO//PKLSfu0hLauo5Jew6+++koAaPJorNOMGTNEVFRUk23Cw8OFo6Oj6NWrl/jwww+b7Fcpr6E56mftr5+x+J49exrEbN68WQQHBwtHR0fRr18/8cUXX7RPhYwwRx3nzZsnvT+9vLzE2LFjxaFDh9qvUncwtX5RUVEtxjcy92dQJUQz/SNERERE1CyOiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFERB3I3r17oVKpUFVVZemiEFk9JlFEZBYzZ86ESqXCypUrDZZv374dKpVK+lsIgffffx+RkZFwdXVF586d0a9fP8ydO7fVN0K9fv06Fi5ciN69e0Oj0cDT0xNRUVHYsWOHFBMQEIA1a9a0Sd3MrfHYqVQqODg4IDAwEC+99BLq6upM2s/IkSMxb948g2VDhw5FaWkp3Nzc2rDERB0TkygiMhuNRoM33ngDv/32m9H1QghMmTIFL7zwAsaOHYvdu3fjhx9+wN/+9jdoNBqsWLGiVc/zpz/9Cdu2bcO6detw8uRJ5OTkYNKkSbhy5UpbVqddjRkzBqWlpfjpp5/wzjvv4N1330Vqaup979fR0RHe3t4GiSwRydSmN5EhIvpfM2bMEE8++aQICQkRL774orT8888/F41fPRs3bhQAxI4dO4zuQ6/Xt+q53NzcRGZmZrPrjd1nq9G//vUvMXz4cKHRaMSDDz4o5syZI65duyat/5//+R8xcOBA0blzZ+Hl5SXi4+NFeXm5tL7xnl85OTkiPDxcaDQaMWrUKFFeXi6ys7NFSEiI6NKli4iPjxc1NTWtqs+MGTPE+PHjDZZNmDBBPPLII9LfFRUVIi4uTvj6+gpnZ2fRv39/8emnnxrs4+46l5SUSOW9816Un332mQgNDRWOjo6iZ8+e4q233mpVOYk6OrZEEZHZ2NnZ4fXXX8e6detw8eLFJus3btyIPn364Omnnza6fWtbS7y9vZGdnY2rV68aXb9t2zY8+OCDWL58OUpLS1FaWgoAOHv2LMaMGYOJEyfi6NGjyMrKwjfffIOkpCRp2/r6erz22mv47rvvsH37dpw7dw4zZ85s8hzLli3D+vXrkZ+fjwsXLmDy5MlYs2YNPv30U3zxxRfYvXs31q1b16r63O3YsWPIz8+Ho6OjtKyurg4DBw7EF198gWPHjiExMRHTpk3DgQMHAAB//etfERkZidmzZ0t19vf3b7Lv4uJiTJ48GXFxcfj++++xbNkyLFmyBJmZmbLKStShWDqLIyLbdGdrymOPPSb+/d//XQhh2BIVEhIinn76aYPt5s6dK1xcXISLi4vw8/Nr1XN9/fXX4sEHHxQODg5i0KBBYt68eeKbb74xiOnZs6d45513DJbNmjVLJCYmGiz717/+JdRqtaitrTX6XEVFRQKAuHr1qhDi/1qi/vnPf0oxaWlpAoA4e/astOy5554TWq22VfWZMWOGsLOzEy4uLsLJyUkAEGq1Wnz22Wctbjdu3Dgxf/586e+oqCgxd+5cg5i7W6KmTJkifv/73xvEvPjiiyI0NLRVZSXqyNgSRURm98Ybb+Cjjz7CiRMn7hn7yiuv4MiRI1i6dCmuXbvWqv0//vjj+Omnn5Cbm4tJkybh+PHjGDFiBF577bUWt/vuu++QmZmJzp07Sw+tVgu9Xo+SkhIAt1tqnnrqKfTo0QNdunRBVFQUAOD8+fMG+3r44Yel/3t5eaFTp07o1auXwbJLly61qj4AMGrUKBw5cgSFhYWYMWMGEhISMHHiRGl9Q0MDXnvtNYSFhaFbt27o3LkzvvzyyyblupcTJ05g2LBhBsuGDRuG06dPo6GhwaR9EXU0TKKIyOwef/xxaLVaLFy40GB5UFAQTp06ZbDM09MTDz30ELp3727Sczg4OGDEiBF4+eWXsXv3bixfvhyvvfYabt682ew2165dw3PPPYcjR45Ij++++w6nT59G7969UVNTA61WC1dXV3zyyScoKirC559/DgBN9uvg4CD9v/GqujupVCro9fpW18fFxQUPPfQQBgwYgA8++ACFhYX429/+Jq1/88038de//hUvv/wyvvrqKxw5cgRarbbF+hJR27K3dAGIqGNYuXIlwsPD0adPH2lZfHw8pkyZgh07dmD8+PFt+nyhoaG4desW6urq4OjoCEdHxyYtK48++ih++OEHPPTQQ0b38f333+PKlStYuXKlNJ7o4MGDbVrO1lCr1Vi0aBGSk5MxZcoUODs7Y//+/Rg/fjz+7d/+DQCg1+vx448/IjQ0VNrOWJ3v1rdvX+zfv99g2f79+xEcHAw7O7u2rwyRDWFLFBG1i7CwMEydOhVr166VlsXFxWHSpEmIi4vD8uXLUVhYiHPnzuHrr79GVlZWq0/iI0eOxLvvvovi4mKcO3cO2dnZWLRoEUaNGgVXV1cAt+eJ2rdvH3755RdUVFQAAF5++WXk5+cjKSkJR44cwenTp7Fjxw5pYHmPHj3g6OiIdevW4aeffsLOnTvv2UVoLn/84x9hZ2eH9PR0ALdb8fbs2YP8/HycOHECzz33HMrLyw22CQgIkI5pRUWF0Zaw+fPnIzc3F6+99hp+/PFHfPTRR1i/fj0WLFjQLvUismZMooio3SxfvtzgRK5SqZCVlYU1a9YgOzsbo0ePRp8+ffDv//7v8Pf3xzfffNOq/Wq1Wnz00Ud44okn0LdvX8yZMwdarRabN282eO5z586hd+/e8PT0BHB7HNPXX3+NH3/8ESNGjMAjjzyCpUuXwtfXF8DtrsXMzExs2bIFoaGhWLlyJd566602PCKtZ29vj6SkJKxatQo1NTVYvHgxHn30UWi1WowcORLe3t6IiYkx2GbBggWws7NDaGgoPD09jY6XevTRR7F582Zs2rQJ/fv3x9KlS7F8+XKjVyASkSGVEEJYuhBERERE1oYtUUREREQyMIkiIsW7cwqCux//+te/LF08k5w/f77F+pg6RQERWQ6784hI8Vq6EbGfnx+cnZ3bsTT359atWzh37lyz6wMCAmBvzwuniawBkygiIiIiGdidR0RERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhk+P8XeRIO0Z57nAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHHCAYAAAB9dxZkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVZRJREFUeJzt3XtcVHX+P/DXAMIgypCBXAwFTUSUoLwQ3tCVGldXJXNF5OttUdrdNP2iFVaK2QUzK1PZKLei3UoRM3WVLytBZQohoubdVUPRAgyJQRC8MJ/fH/4428hwGTjDXHg9H495IOe8z5nP5xw5857P53M+RyGEECAiIiKiNrMxdQGIiIiIrAUTKyIiIiKZMLEiIiIikgkTKyIiIiKZMLEiIiIikgkTKyIiIiKZMLEiIiIikgkTKyIiIiKZMLEiIiIikgkTKyKyaitXroRCoWhRrEKhwMqVK41antGjR2P06NFmuz8iahsmVkTULlJSUqBQKKSXnZ0devTogTlz5uCnn34ydfHMjo+Pj87x6t69O0aOHIkvv/xSlv3fuHEDK1euxDfffCPL/ojoLiZWRNSuVq1ahX/+859ITk7G73//e3z66acICwtDbW2tUd7vpZdeQk1NjVH2bWzBwcH45z//iX/+859YunQpfv75Z0yZMgXJyclt3veNGzfw8ssvM7EikpmdqQtARB3L73//ewwePBgAMG/ePLi6uuKNN97Arl27MG3aNNnfz87ODnZ2lnmp69GjB/7nf/5H+n3WrFl48MEH8c477+DPf/6zCUtGRI1hixURmdTIkSMBABcuXNBZfubMGUydOhXdunWDUqnE4MGDsWvXLp2Y27dv4+WXX0bfvn2hVCpx//33Y8SIEcjMzJRi9I2xunnzJv73f/8Xbm5u6Nq1KyZNmoQrV640KNucOXPg4+PTYLm+fX788cf43e9+h+7du8PBwQEBAQF47733DDoWzfHw8ED//v1RWFjYZNzVq1cRExMDd3d3KJVKBAUF4ZNPPpHWX7x4EW5ubgCAl19+WepuNPb4MqKOwDK/xhGR1bh48SIA4L777pOWnTx5EsOHD0ePHj0QHx8PJycnbN26FREREfjiiy/wxBNPALib4CQmJmLevHkYOnQoKisrcejQIRw+fBiPPfZYo+85b948fPrpp5gxYwaGDRuG7OxsTJgwoU31eO+99zBgwABMmjQJdnZ2+Ne//oW//vWv0Gq1ePrpp9u073q3b9/G5cuXcf/99zcaU1NTg9GjR+P8+fNYsGABfH19kZaWhjlz5qCiogKLFi2Cm5sb3nvvPfzlL3/BE088gSlTpgAAHnroIVnKSdShCSKidvDxxx8LAOKrr74Sv/zyi7h8+bLYtm2bcHNzEw4ODuLy5ctS7NixY0VgYKCora2Vlmm1WjFs2DDRt29faVlQUJCYMGFCk++bkJAgfnupO3r0qAAg/vrXv+rEzZgxQwAQCQkJ0rLZs2eLXr16NbtPIYS4ceNGgzi1Wi169+6tsywsLEyEhYU1WWYhhOjVq5d4/PHHxS+//CJ++eUX8cMPP4jp06cLAGLhwoWN7m/dunUCgPj000+lZbdu3RKhoaGiS5cuorKyUgghxC+//NKgvkTUduwKJKJ2FR4eDjc3N3h7e2Pq1KlwcnLCrl278MADDwAAysvLkZ2djWnTpuH69esoKytDWVkZrl27BrVajXPnzkl3Ebq4uODkyZM4d+5ci98/PT0dAPDMM8/oLF+8eHGb6uXo6Cj9W6PRoKysDGFhYfjxxx+h0Whatc+9e/fCzc0Nbm5uCAoKQlpaGmbOnIk33nij0W3S09Ph4eGBqKgoaVmnTp3wzDPPoKqqCt9++22rykJELcOuQCJqV0lJSfDz84NGo8FHH32Effv2wcHBQVp//vx5CCGwfPlyLF++XO8+rl69ih49emDVqlWYPHky/Pz8MHDgQIwbNw4zZ85sskvr0qVLsLGxQZ8+fXSW9+vXr031OnDgABISEpCbm4sbN27orNNoNFCpVAbvMyQkBK+++ioUCgU6d+6M/v37w8XFpcltLl26hL59+8LGRvd7c//+/aX1RGQ8TKyIqF0NHTpUuiswIiICI0aMwIwZM3D27Fl06dIFWq0WALB06VKo1Wq9+3jwwQcBAKNGjcKFCxewc+dO7N27F3//+9/xzjvvIDk5GfPmzWtzWRubWLSurk7n9wsXLmDs2LHw9/fH22+/DW9vb9jb2yM9PR3vvPOOVCdDubq6Ijw8vFXbEpFpMLEiIpOxtbVFYmIixowZg40bNyI+Ph69e/cGcLf7qiVJRbdu3TB37lzMnTsXVVVVGDVqFFauXNloYtWrVy9otVpcuHBBp5Xq7NmzDWLvu+8+VFRUNFh+b6vPv/71L9y8eRO7du1Cz549peVff/11s+WXW69evXDs2DFotVqdVqszZ85I64HGk0YiahuOsSIikxo9ejSGDh2KdevWoba2Ft27d8fo0aPx/vvvo7i4uEH8L7/8Iv372rVrOuu6dOmCBx98EDdv3mz0/X7/+98DANavX6+zfN26dQ1i+/TpA41Gg2PHjknLiouLG8x+bmtrCwAQQkjLNBoNPv7440bLYSzjx49HSUkJUlNTpWV37tzBhg0b0KVLF4SFhQEAOnfuDAB6E0ciaj22WBGRyT377LP44x//iJSUFPz5z39GUlISRowYgcDAQMyfPx+9e/dGaWkpcnNzceXKFfzwww8AgICAAIwePRqDBg1Ct27dcOjQIWzbtg0LFixo9L2Cg4MRFRWFv/3tb9BoNBg2bBiysrJw/vz5BrHTp0/H888/jyeeeALPPPMMbty4gffeew9+fn44fPiwFPf444/D3t4eEydOxFNPPYWqqips2rQJ3bt315scGlNsbCzef/99zJkzBwUFBfDx8cG2bdtw4MABrFu3Dl27dgVwd7B9QEAAUlNT4efnh27dumHgwIEYOHBgu5aXyOqY+rZEIuoY6qdbyM/Pb7Curq5O9OnTR/Tp00fcuXNHCCHEhQsXxKxZs4SHh4fo1KmT6NGjh/jDH/4gtm3bJm336quviqFDhwoXFxfh6Ogo/P39xWuvvSZu3bolxeibGqGmpkY888wz4v777xdOTk5i4sSJ4vLly3qnH9i7d68YOHCgsLe3F/369ROffvqp3n3u2rVLPPTQQ0KpVAofHx/xxhtviI8++kgAEIWFhVKcIdMtNDeVRGP7Ky0tFXPnzhWurq7C3t5eBAYGio8//rjBtjk5OWLQoEHC3t6eUy8QyUQhxG/aromIiIio1TjGioiIiEgmTKyIiIiIZMLEioiIiEgmTKyIiIiIZMLEioiIiEgmTKyIiIiIZMIJQo1Iq9Xi559/RteuXfn4CCIiIgshhMD169fh5eXV4IHmzWFiZUQ///wzvL29TV0MIiIiaoXLly/jgQceMGgbJlZGVP/oiMuXL8PZ2dnEpSEiIqKWqKyshLe3t/Q5bggmVkZU3/3n7OzMxIqIiMjCtGYYDwevExEREcmEiRURERGRTJhYEREREcmEY6yIiIg6gLq6Oty+fdvUxTALnTp1gq2trVH2zcSKiIjIigkhUFJSgoqKClMXxay4uLjAw8ND9nkmmVgRERFZsfqkqnv37ujcuXOHn7BaCIEbN27g6tWrAABPT09Z98/EioiIyErV1dVJSdX9999v6uKYDUdHRwDA1atX0b17d1m7BU0+eD0pKQk+Pj5QKpUICQnBwYMHm4xPS0uDv78/lEolAgMDkZ6errNeCIEVK1bA09MTjo6OCA8Px7lz53RiysvLER0dDWdnZ7i4uCAmJgZVVVUN9rN27Vr4+fnBwcEBPXr0wGuvvSZPpYmIiNpB/Ziqzp07m7gk5qf+mMg97sykiVVqairi4uKQkJCAw4cPIygoCGq1Wmqeu1dOTg6ioqIQExODI0eOICIiAhEREThx4oQUs2bNGqxfvx7JycnIy8uDk5MT1Go1amtrpZjo6GicPHkSmZmZ2L17N/bt24fY2Fid91q0aBH+/ve/Y+3atThz5gx27dqFoUOHGudAEBERGVFH7/7Tx2jHRJjQ0KFDxdNPPy39XldXJ7y8vERiYqLe+GnTpokJEyboLAsJCRFPPfWUEEIIrVYrPDw8xJtvvimtr6ioEA4ODmLz5s1CCCFOnTolAIj8/Hwp5v/+7/+EQqEQP/30kxRjZ2cnzpw506b6aTQaAUBoNJo27YeIiKg1ampqxKlTp0RNTY2pi2J2mjo2bfn8NlmL1a1bt1BQUIDw8HBpmY2NDcLDw5Gbm6t3m9zcXJ14AFCr1VJ8YWEhSkpKdGJUKhVCQkKkmNzcXLi4uGDw4MFSTHh4OGxsbJCXlwcA+Ne//oXevXtj9+7d8PX1hY+PD+bNm4fy8vIm63Tz5k1UVlbqvIiIiKjjMFliVVZWhrq6Ori7u+ssd3d3R0lJid5tSkpKmoyv/9lcTPfu3XXW29nZoVu3blLMjz/+iEuXLiEtLQ3/+Mc/kJKSgoKCAkydOrXJOiUmJkKlUkkvb2/vJuOJiMjyFGtqkHOhDMWaGlMXxeqVlJRg4cKF6N27NxwcHODt7Y2JEyciKytLisnJycH48eNx3333SeOv3377bdTV1ZmkzLwrUA+tVoubN2/iH//4B/z8/AAAH374IQYNGoSzZ8+iX79+erdbtmwZ4uLipN/rn45NRETWITW/CMu2H4dWADYKIHFKICKH9DR1sazSxYsXMXz4cLi4uODNN99EYGAgbt++jX//+994+umncebMGXz55ZeYNm0a5s6di6+//houLi746quv8NxzzyE3Nxdbt25t9/FlJkusXF1dYWtri9LSUp3lpaWl8PDw0LuNh4dHk/H1P0tLS3XmpSgtLUVwcLAUc+/g+Dt37qC8vFza3tPTE3Z2dlJSBQD9+/cHABQVFTWaWDk4OMDBwaHJehMRkWUq1tRISRUAaAXwwvYTGOXnBk+Vo2kLZ4X++te/QqFQ4ODBg3BycpKWDxgwAH/6059QXV2N+fPnY9KkSfjggw+k9fPmzYO7uzsmTZqErVu3IjIysl3LbbKuQHt7ewwaNEinOU+r1SIrKwuhoaF6twkNDdWJB4DMzEwp3tfXFx4eHjoxlZWVyMvLk2JCQ0NRUVGBgoICKSY7OxtarRYhISEAgOHDh+POnTu4cOGCFPOf//wHANCrV6+2VJuIiCxUYVm1lFTVqxMCF8tumKZA7aw9u0DLy8uRkZGBp59+Wiepqufi4oK9e/fi2rVrWLp0aYP1EydOhJ+fHzZv3mz0st7LpF2BcXFxmD17NgYPHoyhQ4di3bp1qK6uxty5cwEAs2bNQo8ePZCYmAjg7hQIYWFheOuttzBhwgRs2bIFhw4dkjJVhUKBxYsX49VXX0Xfvn3h6+uL5cuXw8vLCxEREQDutjyNGzcO8+fPR3JyMm7fvo0FCxZg+vTp8PLyAnB3MPsjjzyCP/3pT1i3bh20Wi2efvppPPbYYzqtWERE1HH4ujrBRgGd5MpWoYCPq/XPEdXeXaDnz5+HEAL+/v6NxtQ3eNT3KN3L399fimlPJp3HKjIyEmvXrsWKFSsQHByMo0ePIiMjQxp8XlRUhOLiYil+2LBh+Pzzz/HBBx8gKCgI27Ztw44dOzBw4EAp5rnnnsPChQsRGxuLIUOGoKqqChkZGVAqlVLMZ599Bn9/f4wdOxbjx4/HiBEjdJoRbWxs8K9//Quurq4YNWoUJkyYgP79+2PLli3tcFSIiMgceaockTglELb/f8yOrUKB16cMtPpuwMa6QI3ZciWEaD6oFbHtQSHMrURWpLKyEiqVChqNBs7OzqYuDhERyaBYU4OLZTfg49rZ7JOq2tpaFBYWwtfXV6eBwRA5F8owY1Neg+Wb5z+K0D7GeUxOeXk5XF1d8dprr2HZsmV6Y7788ktMmTIFBw4cwLBhwxqs9/PzQ0BAAHbs2KF3+6aOTVs+v03+SBsiIiJL4qlyRGif+80+qZJLfRfobxm7C7Rbt25Qq9VISkpCdXV1g/UVFRV4/PHH0a1bN7z11lsN1u/atQvnzp1DVFSU0crYGCZWRERE1ChTdYEmJSWhrq4OQ4cOxRdffIFz587h9OnTWL9+PUJDQ+Hk5IT3338fO3fuRGxsLI4dO4aLFy/iww8/xJw5czB16lRMmzbNqGXUh/NYERERUZMih/TEKD+3du0C7d27Nw4fPozXXnsNS5YsQXFxMdzc3DBo0CC89957AICpU6fi66+/xmuvvYaRI0eitrYWffv2xYsvvojFixeb5BmJHGNlRBxjRUREpiTHGCtrxTFWRERERGaOiRURERGRTJhYEREREcmEiRURERGRTJhYERERWTnep9aQsY4JEysiIiIr1alTJwDAjRsd40HRhqg/JvXHSC6cx4qIiMhK2drawsXFBVevXgUAdO7c2SRzO5kTIQRu3LiBq1evwsXFBba2trLun4kVERGRFfPw8AAAKbmiu1xcXKRjIycmVkRERFZMoVDA09MT3bt3x+3bt01dHLPQqVMn2Vuq6jGxIiIi6gBsbW2NlkzQf3HwOhEREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMzCKxSkpKgo+PD5RKJUJCQnDw4MEm49PS0uDv7w+lUonAwECkp6frrBdCYMWKFfD09ISjoyPCw8Nx7tw5nZjy8nJER0fD2dkZLi4uiImJQVVVlbT+4sWLUCgUDV7ff/+9fBUnIiIiq2LyxCo1NRVxcXFISEjA4cOHERQUBLVajatXr+qNz8nJQVRUFGJiYnDkyBFEREQgIiICJ06ckGLWrFmD9evXIzk5GXl5eXBycoJarUZtba0UEx0djZMnTyIzMxO7d+/Gvn37EBsb2+D9vvrqKxQXF0uvQYMGyX8QiIiIyDoIExs6dKh4+umnpd/r6uqEl5eXSExM1Bs/bdo0MWHCBJ1lISEh4qmnnhJCCKHVaoWHh4d48803pfUVFRXCwcFBbN68WQghxKlTpwQAkZ+fL8X83//9n1AoFOKnn34SQghRWFgoAIgjR460um4ajUYAEBqNptX7ICIiovbVls9vk7ZY3bp1CwUFBQgPD5eW2djYIDw8HLm5uXq3yc3N1YkHALVaLcUXFhaipKREJ0alUiEkJESKyc3NhYuLCwYPHizFhIeHw8bGBnl5eTr7njRpErp3744RI0Zg165dTdbn5s2bqKys1HkRERFRx2HSxKqsrAx1dXVwd3fXWe7u7o6SkhK925SUlDQZX/+zuZju3bvrrLezs0O3bt2kmC5duuCtt95CWloa9uzZgxEjRiAiIqLJ5CoxMREqlUp6eXt7N3cIiIiIyIrYmboA5srV1RVxcXHS70OGDMHPP/+MN998E5MmTdK7zbJly3S2qaysZHJFRETUgZi0xcrV1RW2trYoLS3VWV5aWgoPDw+923h4eDQZX/+zuZh7B8ffuXMH5eXljb4vAISEhOD8+fONrndwcICzs7POi4iIiDoOkyZW9vb2GDRoELKysqRlWq0WWVlZCA0N1btNaGioTjwAZGZmSvG+vr7w8PDQiamsrEReXp4UExoaioqKChQUFEgx2dnZ0Gq1CAkJabS8R48ehaenp+EVJSIiog7B5F2BcXFxmD17NgYPHoyhQ4di3bp1qK6uxty5cwEAs2bNQo8ePZCYmAgAWLRoEcLCwvDWW29hwoQJ2LJlCw4dOoQPPvgAAKBQKLB48WK8+uqr6Nu3L3x9fbF8+XJ4eXkhIiICANC/f3+MGzcO8+fPR3JyMm7fvo0FCxZg+vTp8PLyAgB88sknsLe3x8MPPwwA2L59Oz766CP8/e9/b+cjRERERJbC5IlVZGQkfvnlF6xYsQIlJSUIDg5GRkaGNPi8qKgINjb/bVgbNmwYPv/8c7z00kt44YUX0LdvX+zYsQMDBw6UYp577jlUV1cjNjYWFRUVGDFiBDIyMqBUKqWYzz77DAsWLMDYsWNhY2ODJ598EuvXr9cp2yuvvIJLly7Bzs4O/v7+SE1NxdSpU418RIiIiMhSKYQQwtSFsFaVlZVQqVTQaDQcb0VERGQh2vL5bfKZ14mIiIisBRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCROrDqBYU4OcC2Uo1tSYuihERERWzc7UBSDjSs0vwrLtx6EVgI0CSJwSiMghPU1dLCIiIqvEFisrVqypkZIqANAK4IXtJ9hyRUREZCRMrKxYYVm1lFTVqxMCF8tumKZAREREVo6JlRXzdXWCjUJ3ma1CAR/XzqYpEBERkZVjYmXFPFWOSJwSCFvF3ezKVqHA61MGwlPlaOKSERERWScOXrdykUN6YpSfGy6W3YCPa2cmVUREREbExKoD8FQ5MqEiIiJqB+wKJCIiIpIJEysiIiIimTCxIiIiIpIJEysiIiIimTCxIiIiIpIJEysiIiIimTCxIiIiIpIJEysiIiIimTCxIiIiIpIJEysiIiIimTCxIiIiIpIJEysiIiIimTCxIiIiIpIJEysiIiIimTCxIiIiIpIJEysiIiIimTCxIiIiIpKJWSRWSUlJ8PHxgVKpREhICA4ePNhkfFpaGvz9/aFUKhEYGIj09HSd9UIIrFixAp6ennB0dER4eDjOnTunE1NeXo7o6Gg4OzvDxcUFMTExqKqq0vt+58+fR9euXeHi4tKmehIREZF1M3lilZqairi4OCQkJODw4cMICgqCWq3G1atX9cbn5OQgKioKMTExOHLkCCIiIhAREYETJ05IMWvWrMH69euRnJyMvLw8ODk5Qa1Wo7a2VoqJjo7GyZMnkZmZid27d2Pfvn2IjY1t8H63b99GVFQURo4cKX/liYiIyKoohBDClAUICQnBkCFDsHHjRgCAVquFt7c3Fi5ciPj4+AbxkZGRqK6uxu7du6Vljz76KIKDg5GcnAwhBLy8vLBkyRIsXboUAKDRaODu7o6UlBRMnz4dp0+fRkBAAPLz8zF48GAAQEZGBsaPH48rV67Ay8tL2vfzzz+Pn3/+GWPHjsXixYtRUVHR4rpVVlZCpVJBo9HA2dm5NYeHiIiI2llbPr9N2mJ169YtFBQUIDw8XFpmY2OD8PBw5Obm6t0mNzdXJx4A1Gq1FF9YWIiSkhKdGJVKhZCQECkmNzcXLi4uUlIFAOHh4bCxsUFeXp60LDs7G2lpaUhKSmpRfW7evInKykqdFxEREXUcJk2sysrKUFdXB3d3d53l7u7uKCkp0btNSUlJk/H1P5uL6d69u856Ozs7dOvWTYq5du0a5syZg5SUlBZnq4mJiVCpVNLL29u7RdsRERGRdTD5GCtzNX/+fMyYMQOjRo1q8TbLli2DRqORXpcvXzZiCYmIiMjcmDSxcnV1ha2tLUpLS3WWl5aWwsPDQ+82Hh4eTcbX/2wu5t7B8Xfu3EF5ebkUk52djbVr18LOzg52dnaIiYmBRqOBnZ0dPvroI71lc3BwgLOzs86LiIiIOg6TJlb29vYYNGgQsrKypGVarRZZWVkIDQ3Vu01oaKhOPABkZmZK8b6+vvDw8NCJqaysRF5enhQTGhqKiooKFBQUSDHZ2dnQarUICQkBcHcc1tGjR6XXqlWr0LVrVxw9ehRPPPGEPAeAiIiIrIqdqQsQFxeH2bNnY/DgwRg6dCjWrVuH6upqzJ07FwAwa9Ys9OjRA4mJiQCARYsWISwsDG+99RYmTJiALVu24NChQ/jggw8AAAqFAosXL8arr76Kvn37wtfXF8uXL4eXlxciIiIAAP3798e4ceMwf/58JCcn4/bt21iwYAGmT58u3RHYv39/nXIeOnQINjY2GDhwYDsdGSIiIrI0Jk+sIiMj8csvv2DFihUoKSlBcHAwMjIypMHnRUVFsLH5b8PasGHD8Pnnn+Oll17CCy+8gL59+2LHjh06Cc9zzz2H6upqxMbGoqKiAiNGjEBGRgaUSqUU89lnn2HBggUYO3YsbGxs8OSTT2L9+vXtV3EiIiKyOiafx8qacR4rIiIiy2Ox81gRERERWRMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFsijW1CDnQhmKNTWmLgoREZHJ2Jm6AGT5UvOLsGz7cWgFYKMAEqcEInJIT1MXi4iIqN2xxYrapFhTIyVVAKAVwAvbT7DlioiIOiQmVtQmhWXVUlJVr04IXCy7YZoCERERmRATK2oTX1cn2Ch0l9kqFPBx7WyaAhEREZkQEytqE0+VIxKnBMJWcTe7slUo8PqUgfBUOZq4ZERERO2Pg9epzSKH9MQoPzdcLLsBH9fOTKqIiKjDYmJFsvBUOTKhIiKiDo9dgUREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyaVVilZaWhilTpmDgwIEYOHAgpkyZgm3btsldNrIgxZoa5FwoQ7GmxtRFISIiMhk7Q4K1Wi2ioqKQlpYGPz8/+Pv7AwBOnjyJyMhI/PGPf8TmzZuhUCiMUlgyT6n5RVi2/Ti0ArBRAIlTAhE5pKepi2V2ijU1KCyrhq+rEzxVjqYuDhERGYFBLVbvvvsuvvrqK+zatQtnzpzBjh07sGPHDpw9exZffvklMjMz8e677xpciKSkJPj4+ECpVCIkJAQHDx5sMj4tLQ3+/v5QKpUIDAxEenq6znohBFasWAFPT084OjoiPDwc586d04kpLy9HdHQ0nJ2d4eLigpiYGFRVVUnrz549izFjxsDd3R1KpRK9e/fGSy+9hNu3bxtcP2tWrKmRkioA0Arghe0n2HJ1j9T8IgxfnY0Zm/IwfHU2UvOLTF0kIiIyAoMSq48//hhvvvkm/vCHPzRYN2nSJKxZswYfffSRQQVITU1FXFwcEhIScPjwYQQFBUGtVuPq1at643NychAVFYWYmBgcOXIEERERiIiIwIkTJ6SYNWvWYP369UhOTkZeXh6cnJygVqtRW1srxURHR+PkyZPIzMzE7t27sW/fPsTGxkrrO3XqhFmzZmHv3r04e/Ys1q1bh02bNiEhIcGg+lm7wrJqKamqVycELpbdME2BzBCTTyKijkMhhBDNh93l6OiIs2fPomdP/d08ly5dgr+/P2pqWv6BERISgiFDhmDjxo0A7nY3ent7Y+HChYiPj28QHxkZierqauzevVta9uijjyI4OBjJyckQQsDLywtLlizB0qVLAQAajQbu7u5ISUnB9OnTcfr0aQQEBCA/Px+DBw8GAGRkZGD8+PG4cuUKvLy89JY1Li4O+fn5+O6771pUt8rKSqhUKmg0Gjg7O7f4mFiSYk0Nhq/O1kmubBUK7I8fw+6u/y/nQhlmbMprsHzz/EcR2ud+E5SIiIia0pbPb4NarBwdHVFRUdFkQZRKZYv3d+vWLRQUFCA8PPy/BbKxQXh4OHJzc/Vuk5ubqxMPAGq1WoovLCxESUmJToxKpUJISIgUk5ubCxcXFympAoDw8HDY2NggL6/hByAAnD9/HhkZGQgLC2u0Pjdv3kRlZaXOy9p5qhyROCUQtv9/XJ2tQoHXpwxkUvUbvq5OsLln2KGtQgEf186mKVAb8CYFIqKmGZRYhYaG4r333mt0fVJSEkJDQ1u8v7KyMtTV1cHd3V1nubu7O0pKSvRuU1JS0mR8/c/mYrp3766z3s7ODt26dWvwvsOGDYNSqUTfvn0xcuRIrFq1qtH6JCYmQqVSSS9vb+9GY61J5JCe2B8/BpvnP4r98WM4cP0e1pJ8cpwYEVHzDLor8MUXX8To0aNx7do1LF26FP7+/hBC4PTp03jrrbewc+dOfP3118Yqq0mkpqbi+vXr+OGHH/Dss89i7dq1eO655/TGLlu2DHFxcdLvlZWVHSa58lQ5Wlyi0J4ih/TEKD83XCy7AR/XzhZ3rBobJzbKz83i6kJEZEwGJVbDhg1DamoqYmNj8cUXX+isu++++7B582YMHz68xftzdXWFra0tSktLdZaXlpbCw8ND7zYeHh5Nxtf/LC0thaenp05McHCwFHPv4Pg7d+6gvLy8wfvWJ0YBAQGoq6tDbGwslixZAltb2wZlc3BwgIODQ3PVpg7KkpPPpm5SsNQ6EREZg8EThD7xxBO4dOkStm3bhsTERCQmJuKLL75AUVERnnzySYP2ZW9vj0GDBiErK0taptVqkZWV1WiXYmhoqE48AGRmZkrxvr6+8PDw0ImprKxEXl6eFBMaGoqKigoUFBRIMdnZ2dBqtQgJCWm0vFqtFrdv34ZWqzWonkSWzprGiRERGZUwQFZWlujfv7/QaDQN1lVUVIiAgACxb98+Q3YptmzZIhwcHERKSoo4deqUiI2NFS4uLqKkpEQIIcTMmTNFfHy8FH/gwAFhZ2cn1q5dK06fPi0SEhJEp06dxPHjx6WY1atXCxcXF7Fz505x7NgxMXnyZOHr6ytqamqkmHHjxomHH35Y5OXlif3794u+ffuKqKgoaf2nn34qUlNTxalTp8SFCxdEamqq8PLyEtHR0S2um0ajEQD0Hi8iS7Pl4CXRO36P6PX8btE7fo/YcvCSqYtERGQUbfn8Niixmjhxonj77bcbXf/uu++KiIgIgwuxYcMG0bNnT2Fvby+GDh0qvv/+e2ldWFiYmD17tk781q1bhZ+fn7C3txcDBgwQe/bs0Vmv1WrF8uXLhbu7u3BwcBBjx44VZ8+e1Ym5du2aiIqKEl26dBHOzs5i7ty54vr169L6LVu2iEceeUR06dJFODk5iYCAAPH666/rJGfNYWJF1ubnihsi53yZ+LnihqmLQkRkNG35/DZoHqtevXohIyMD/fv317v+zJkzePzxx1FUxLuFgI4xjxUREZG1abd5rEpLS9GpU6dG19vZ2eGXX34xqABERERE1sKgxKpHjx46j46517Fjx3TuxCMiIiLqSAxKrMaPH4/ly5frPHOvXk1NDRISEvQ+R5CIiIioIzBojFVpaSkeeeQR2NraYsGCBejXrx+Au2OrkpKSUFdXh8OHDzeY9byj4hgrIiIiy9OWz2+DJgh1d3dHTk4O/vKXv2DZsmWoz8kUCgXUajWSkpKYVBEREZHBijU1KCyrhq+rk0VPPGxQYgXcvTMwPT0dv/76K86fPw8hBPr27Yv77rvPGOUjIiIiK5eaXyQ9NstGASROCbTY584anFjVu++++zBkyBA5y0JEREQdjLU9i9TgR9oQERERyaWpZ5FaIiZWREREZDLW9ixSJlYki2JNDXIulKFYU2PqohARkQXxVDkicUogbBV3sytbhQKvTxlokd2AQBvGWBHVs6ZBh0RE1P4ih/TEKD83XCy7AR/XzhabVAFssaI2amzQIVuuiIjIEJ4qR4T2ud+ikyqAiRW1kbUNOiQiImoLJlbUJtY26JCIiKgtmFhRm1jboEMiIqK24OB1ajNrGnRIRETUFkysSBaeKkcmVERE1OGxK5CIiIhIJkysiIiIiGTCxIqIiIhIJkysiKwEHytERB2JuV7zOHidyArwsUJEZOmKNTUoLKuGr6tTszdDmfM1jy1WZBLm+k3DEvGxQkRk6VLzizB8dTZmbMrD8NXZSM0vajTW3K95bLGidmfO3zQsUVOPFeIUGERk7hpLlEb5uem9hpn7NY8tVtSuzP2bhiXiY4WIyJIZ+sxZc7/mMbGidsWHNsuPjxUiIktmaKJk7tc8dgVSu6r/A/ptcmVO3zQsFR8rRESWqj5RemH7CdQJ0aJEyZyveUysqF15qhzxxMM98MXhn6RlEQ97mdUfhaXiY4WIyFK1JlEy12seuwKpXRVravDlkZ90lu048rNFjrHinY1ERPLxVDkitM/9ZpksGYItVtSuzP1ujpbinY1ERKQPW6yoXZn73RwtwTsbiYiaZ+xWfXPtNWCLFbWr1gxSNDfW0upGRGQsxm7VN+deAyZW1O7M+W6OluCdjUREjTN0wk9z239bsSuQTMKSByma+xwqRETNMWY3mrHnKzT3+RDZYkXUCpbe6kZEHZexu9GM3apv7r0GbLEiaiVLbnUjoo6pPW6+MXarvrn3GrDFimRRrKlBYVk1fF2dzOY/NxER6Wqvm2+M3apvzr0GTKyozcz57gwiIvqv9uxGM/bM6Jx5nawS53QiIrIc5t6NZg3YYkVtwjmdiIgsizl3o1kDJlbUJuZ+dwYRETVkrt1o1oBdgdQmbFYmIiL6L7ZYUZuxWZmIyLrxzu+WY2JFsmCzMhGRdeKd34ZhVyARERHpxTu/DcfEioiIiPQy9+fymSOzSKySkpLg4+MDpVKJkJAQHDx4sMn4tLQ0+Pv7Q6lUIjAwEOnp6TrrhRBYsWIFPD094ejoiPDwcJw7d04npry8HNHR0XB2doaLiwtiYmJQVVUlrf/mm28wefJkeHp6wsnJCcHBwfjss8/kqzQREZGZq7/z+7d453fTTJ5YpaamIi4uDgkJCTh8+DCCgoKgVqtx9epVvfE5OTmIiopCTEwMjhw5goiICERERODEiRNSzJo1a7B+/XokJycjLy8PTk5OUKvVqK2tlWKio6Nx8uRJZGZmYvfu3di3bx9iY2N13uehhx7CF198gWPHjmHu3LmYNWsWdu/ebbyDQUREZEZ457fhFEII0XyY8YSEhGDIkCHYuHEjAECr1cLb2xsLFy5EfHx8g/jIyEhUV1frJDiPPvoogoODkZycDCEEvLy8sGTJEixduhQAoNFo4O7ujpSUFEyfPh2nT59GQEAA8vPzMXjwYABARkYGxo8fjytXrsDLy0tvWSdMmAB3d3d89NFHLapbZWUlVCoVNBoNnJ2dDTouRERE5uKHy78i/+KvGOJzH4K87zN1cYyuLZ/fJm2xunXrFgoKChAeHi4ts7GxQXh4OHJzc/Vuk5ubqxMPAGq1WoovLCxESUmJToxKpUJISIgUk5ubCxcXFympAoDw8HDY2NggLy+v0fJqNBp069at0fU3b95EZWWlzouIiMiSpeYX4Ym/5eDVPafxxN9ykJpfZOoimTWTJlZlZWWoq6uDu7u7znJ3d3eUlJTo3aakpKTJ+PqfzcV0795dZ72dnR26devW6Ptu3boV+fn5mDt3bqP1SUxMhEqlkl7e3t6NxlqbYk0Nci6U8U4RIiIrwrsCDWfyMVaW4Ouvv8bcuXOxadMmDBgwoNG4ZcuWQaPRSK/Lly+3YylNJzW/CMNXZ2PGpjwMX53NbzNERFaCdwUazqSJlaurK2xtbVFaWqqzvLS0FB4eHnq38fDwaDK+/mdzMfcOjr9z5w7Ky8sbvO+3336LiRMn4p133sGsWbOarI+DgwOcnZ11XsZgTq1D/DZDRGS9eFeg4UyaWNnb22PQoEHIysqSlmm1WmRlZSE0NFTvNqGhoTrxAJCZmSnF+/r6wsPDQyemsrISeXl5UkxoaCgqKipQUFAgxWRnZ0Or1SIkJERa9s0332DChAl44403dO4YNCVzax3itxkiIuvFuwINZ/JH2sTFxWH27NkYPHgwhg4dinXr1qG6uloayzRr1iz06NEDiYmJAIBFixYhLCwMb731FiZMmIAtW7bg0KFD+OCDDwAACoUCixcvxquvvoq+ffvC19cXy5cvh5eXFyIiIgAA/fv3x7hx4zB//nwkJyfj9u3bWLBgAaZPny7dEfj111/jD3/4AxYtWoQnn3xSGntlb2/f5AB2Y2qsdWiUn5vJ/pPXf5v5bXLFbzNERNaDz4M1jMnHWEVGRmLt2rVYsWIFgoODcfToUWRkZEiDz4uKilBcXCzFDxs2DJ9//jk++OADBAUFYdu2bdixYwcGDhwoxTz33HNYuHAhYmNjMWTIEFRVVSEjIwNKpVKK+eyzz+Dv74+xY8di/PjxGDFihJScAcAnn3yCGzduIDExEZ6entJrypQp7XBU9DPH1iF+myEisn6eKkeE9rmf1/YWMPk8VtZM7nmsijU1GL46u0Hr0P74MSb/z16sqelw32b4tHciMhe8HsmrLZ/fJu8KpJarbx16YfsJ1AlhVq1DnipHsyhHe+HT3onIXPB6ZF7YYmVExpp5vSO2DpkTc245JKKOhdcj47DYmdepddjXbVrmONaNzIc5TYdC1o/XI/PDrkAiA/FOSGoMu2SovfF6ZH7YYkUN8Bt303gnJOnDyXLJFHg9Mj9ssSId/MbdMpzXhe7VVJcM/3+QMUUO6Ql/j67Iv/grhvjchyDv+0xdpA6NiRVJzHECUnPW0e6EpKaxS4aaYuh0CIbE8wuxeWFiRRJ+4yZqPXOeDoVMy9DEx5B4fiE2P0ysSMJv3ERtwy5iupehiY+h8fxCbH44eJ0kHARJ1HacDoV+y9DpEAyNr/9C/Fv8QmxabLEiHfzGTUQkH0N7AgyNZxe0+eHM60ZkrJnXiYjIcqTmFzVIfJobY2VIPMAncsitLZ/fTKyMiIkVEREBhic+TJRMiw9hJiIiMmOGTs/C6VwsFwevExEREcmEiRURERGRTJhYEREREcmEiRURERGRTJhYUQPFmhrkXChDsabG1EWxKjyuROaJf5skJ94VSDr4ME/j4HElMk/82yS5scWKJI09o4rf4tqGx5XIPPFvk4yBiRVJDH1GFbUMjyuReeLfJhkDEyuS8GGexsHjSnLieCD58G+TjIGJFUnqH+Zpq7h7peHDPOXB40pySc0vwvDV2ZixKQ/DV2cjNb/I1EWyaPzbJGPgswKNyFKfFchnVBkHjyu1RbGmBsNXZ+t0XdkqFNgfP4b/n9qIf5t0Lz4rkGTFZ1QZB48rtUVT44H4/6pt+LdJcmJXIBGRBeB4ICLLwMSKiMgCcDwQkWVgVyARkYWIHNITo/zcOB6IyIwxsSIisiAcD0Rk3tgVSERERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRUQWi8/NIyJzw7sCicgipeYXYdn249AKwEYBJE4JROSQnqYuFhF1cGyxIiKLU6ypkZIqANAK4IXtJ9hyRUQmx8SKyEyxm6txTT03j4jIlNgVSGSG2M3VtPrn5v02ueJz84jIHLDFisjMsJurefXPzau/gNkAfG4eEZkFJlZEZobdXAZQ3POTiMjEmFgRmZn6bq7fYjeXLrbqEZG5YmJFZGbqu7lsFXezK1uFgt1c92CrHhGZKw5eJzJDkUN6YpSfGy6W3YCPa2cmVffg4HUiMldssSIyU54qR4T2uZ9JlR6tbdXjFBZEZGwmT6ySkpLg4+MDpVKJkJAQHDx4sMn4tLQ0+Pv7Q6lUIjAwEOnp6TrrhRBYsWIFPD094ejoiPDwcJw7d04npry8HNHR0XB2doaLiwtiYmJQVVUlra+trcWcOXMQGBgIOzs7REREyFZfIpJH5JCe2B8/BpvnP4r98WOanY4iNb8Iw1dnY8amPAxfnY3U/KJ2KindiwkuWTOTJlapqamIi4tDQkICDh8+jKCgIKjValy9elVvfE5ODqKiohATE4MjR44gIiICEREROHHihBSzZs0arF+/HsnJycjLy4OTkxPUajVqa2ulmOjoaJw8eRKZmZnYvXs39u3bh9jYWGl9XV0dHB0d8cwzzyA8PNx4B4BajBdi0qelrXoc7G4+mOCStVMIIUTzYcYREhKCIUOGYOPGjQAArVYLb29vLFy4EPHx8Q3iIyMjUV1djd27d0vLHn30UQQHByM5ORlCCHh5eWHJkiVYunQpAECj0cDd3R0pKSmYPn06Tp8+jYCAAOTn52Pw4MEAgIyMDIwfPx5XrlyBl5eXznvOmTMHFRUV2LFjh8H1q6yshEqlgkajgbOzs8Hb012cLJPaKudCGWZsymuwfPP8RxHa534TlKhjKtbUYPjq7AZj4/bHj2GXN5mVtnx+m6zF6tatWygoKNBpEbKxsUF4eDhyc3P1bpObm9ugBUmtVkvxhYWFKCkp0YlRqVQICQmRYnJzc+Hi4iIlVQAQHh4OGxsb5OU1vPAa4ubNm6isrNR5UduYc0sDW9EsB6ewMA+8m7PleH2xXCZLrMrKylBXVwd3d3ed5e7u7igpKdG7TUlJSZPx9T+bi+nevbvOejs7O3Tr1q3R922pxMREqFQq6eXt7d2m/ZH5XojZnWFZOIWFeXCyt9W7vLO9yYf7mhVeXywbp1uQ0bJlyxAXFyf9XllZyeSqjczxtvrGWtFG+bnxg9qMcQoL06u+Vad3+Y1b2nYuifni9cXymexrgqurK2xtbVFaWqqzvLS0FB4eHnq38fDwaDK+/mdzMfcOjr9z5w7Ky8sbfd+WcnBwgLOzs86L2sYcWxrMtRWNmscpLEyLLVbN4/XF8pnsf7O9vT0GDRqErKwsaZlWq0VWVhZCQ0P1bhMaGqoTDwCZmZlSvK+vLzw8PHRiKisrkZeXJ8WEhoaioqICBQUFUkx2dja0Wi1CQkJkqx/Jx9Db6o2N43WIWoctVs3j9cXymfRrQlxcHDZt2oRPPvkEp0+fxl/+8hdUV1dj7ty5AIBZs2Zh2bJlUvyiRYuQkZGBt956C2fOnMHKlStx6NAhLFiwAACgUCiwePFivPrqq9i1axeOHz+OWbNmwcvLS5qLqn///hg3bhzmz5+PgwcP4sCBA1iwYAGmT5+uc0fgqVOncPToUZSXl0Oj0eDo0aM4evRoux0b0mVOLQ3m2IpGZAmsJWkw5sByXl+sgDCxDRs2iJ49ewp7e3sxdOhQ8f3330vrwsLCxOzZs3Xit27dKvz8/IS9vb0YMGCA2LNnj856rVYrli9fLtzd3YWDg4MYO3asOHv2rE7MtWvXRFRUlOjSpYtwdnYWc+fOFdevX9eJ6dWrlwDQ4GUIjUYjAAiNRmPQdmQZfq64IXLOl4mfK26YuihEFmPLwUuid/we0ev53aJ3/B6x5eAlUxfJIFsOXhK+8btFr+d3C9/43UYrP68vptWWz2+TzmNl7TiPFRFRQ8WaGou8iYDzcHUcbfn85l2BRETUrjxVjhaZiDQ1sNwS60PGwVsxiMhscFJEMmfWMkaMjIuJFRGZBU6KSOaOA8upJTjGyog4xoqoZTh2hSyJpY4Ra2/FmhoUllXD19XJ4o4Tx1gRkUVr7dgVS75wk+Wy1DFi7Sk1v0iaQd5GASROCTT5HITthYkVEZlcax5d1JEv3ETmrKM/lodjrIjI5Awdu9LYhZuD3olMr6M/loctVkRkFgx5SDJvezcv7JKl32pNC7Q1YWJFRGajpWNXOvqF25ywS5buVd8C/cL2E6gTosPdPcm7Ao2IdwWStTGnlonU/KIGF25+oLcv3s1JTbHkuyd5VyARGZ25tUwY0nVIxsEuWWpKR717koPXicAZv5tjroPFPVWOCO1zf4e8eBuLIX8LnImcqCG2WFGHZ24tMeaILRMdg6F/Cx19LA2RPkysqEPr6POttBQHi1u/1v4tsEuWSBe7AqlD6+jzrbQUn5HWcpbardyWvwV2yRL9F1usqENjS0zLsWWieZbcrcy/BSJ5sMWKOjS2xBiGLRONM9cB/i3lqXLEEw/30FkW8bAXzzWRgdhiRR0eW2JIDpY+wL9YU4Mvj/yks2zHkZ+xVN3PIspPZC6YWBGh4863QvKx9K40S08MicwFuwKJiGRg6d3KnJPKuCz1pgYyHFusiIhkYsndyvWJ4bIvjkOLu9+6LSkxNGeWfFMDGY4tVkREMrL4Af6Ke35Sm1j6TQ1kOCZWRETEBMBIOFdex8PEioiI2pQAcPxQ4zh2rePhGCsiMhvFmhoUllXD19XJcrvSLFRr72rk+KGm1c8P9sXh/05lwfnBrBtbrIjILKTmF2H46mzM2JSH4auzkZpfZOoidSituauR3YfNa2x+MB4j68UWKyIyOT4M2zwYelcj575qHo9Rx8PEiohMrrUfPuw6lJ8hk+Va+qSo7YHHqONhVyARmVxrBviy69D0LH1S1PbAY9TxKIQQovkwao3KykqoVCpoNBo4OzubujhEZi01vwgvbD+BOiGkD5/GBkEXa2owfHV2g1aA/fFj+IFlAsWaGoucFLU98RhZlrZ8frMrkIjMgiHjezhuxbzwWZvNs/RjxG73lmNiRdRBmeOFsqUfPh153Io5njeybpxSwzBMrIg6IEu/UNaPW7m369DaEw1LP2+txWTSdHjHruGYWBF1MNZyobTkBx63hrWcN0N11GTSXLDb3XC8K5Cog7GmZ5dZ/AOPDdDa82bJj5vhBKSmx0fyGI6JFVEHwwuleWlp4uPr6oR7ThsUClj1lBTW9CXAUnG6CMOxK5Cog+mo45PMUZu7uZqYLMcaug478k0K5qSjdbu3FRMrog6IF0rTMzTxKSyrbpBHCaDRsS7WMDaGXwLMh6VPF9GemFgRdVC8UJqWoYmPoa031tLawy8BZGk4xoqIyAQMHevmqXLEEw/30FkW8bBXo4mGNY2N6Ug3KZDlY4sVkZni3D3WzdBurmJNDb488pPOsh1HfsZSdb9Gt2FrD1H7Y2JFZIZaM6iZiZjlaY/H+Bja5cv/R0Rtw8SKyMy05m4uTqJouczpMT6t/X/EZIzovzjGisjMGDp3DydR7BhaO2aqpfNktfb/kaXPlUUkN7ZYdQD8NmlZDG2ZsIbb6qllDB0zZUgLVGv+H1nDXFlEcmOLlZXjt0nLY2jLRGtm5G4vlvw4FXPV0jvkDG2Bas2M/JwZnaghs0iskpKS4OPjA6VSiZCQEBw8eLDJ+LS0NPj7+0OpVCIwMBDp6ek664UQWLFiBTw9PeHo6Ijw8HCcO3dOJ6a8vBzR0dFwdnaGi4sLYmJiUFVVpRNz7NgxjBw5EkqlEt7e3lizZo08FW4n7CKyXJFDemJ//Bhsnv8o9sePMXy8VBMzcreXjprU/3D5V2z67gJ+uPyrScthaNLTmq5GPh6JqCGTJ1apqamIi4tDQkICDh8+jKCgIKjValy9elVvfE5ODqKiohATE4MjR44gIiICEREROHHihBSzZs0arF+/HsnJycjLy4OTkxPUajVqa2ulmOjoaJw8eRKZmZnYvXs39u3bh9jYWGl9ZWUlHn/8cfTq1QsFBQV48803sXLlSnzwwQfGOxgy47dJy9bSlommZuQ2lY6a1C/ZehSTk3Lw2p4zmJyUgyVbjza7jaGteoY8W9DQpMfQhN6a5soikotCCGHS77YhISEYMmQINm7cCADQarXw9vbGwoULER8f3yA+MjIS1dXV2L17t7Ts0UcfRXBwMJKTkyGEgJeXF5YsWYKlS5cCADQaDdzd3ZGSkoLp06fj9OnTCAgIQH5+PgYPHgwAyMjIwPjx43HlyhV4eXnhvffew4svvoiSkhLY29sDAOLj47Fjxw6cOXOmRXWrrKyESqWCRqOBs7Nzm45TaxRrajB8dXaDsTr748fwwmdFzPE851wow4xNeQ2Wb57/KEL73G+CEhnfD5d/xeSknAbLdz49DEHe9+ndxtC78FoTf+88Wca4W7RYU8O5ssiqtOXz26QtVrdu3UJBQQHCw8OlZTY2NggPD0dubq7ebXJzc3XiAUCtVkvxhYWFKCkp0YlRqVQICQmRYnJzc+Hi4iIlVQAQHh4OGxsb5OXlSTGjRo2Skqr69zl79ix+/VV/E//NmzdRWVmp8zIlfpvsGMzxPHfELqKsM/pb2bMbWW5oq15rWgHb3KXcQpwZnei/THpXYFlZGerq6uDu7q6z3N3dvdFWoZKSEr3xJSUl0vr6ZU3FdO/eXWe9nZ0dunXrphPj6+vbYB/16+67r+E30MTERLz88suNV9gEOPNyx2Bu57kjPjzXtYt9I8sd9C439C689poglIjahtMtyGjZsmWIi4uTfq+srIS3t7cJS3QXL6wdg7mdZ3NL9oztsQAPrNh5qsHy8AB3PdEd96HKRNbOpF2Brq6usLW1RWlpqc7y0tJSeHh46N3Gw8Ojyfj6n83F3Ds4/s6dOygvL9eJ0beP377HvRwcHODs7KzzIurIOlIXkafKEW88GShNfaEA8MaTgbI9JNkcu3yJqCGTtljZ29tj0KBByMrKQkREBIC7g9ezsrKwYMECvduEhoYiKysLixcvlpZlZmYiNDQUAODr6wsPDw9kZWUhODgYwN2Wo7y8PPzlL3+R9lFRUYGCggIMGjQIAJCdnQ2tVouQkBAp5sUXX8Tt27fRqVMn6X369euntxuQiMjQVjpjxxORCQgT27Jli3BwcBApKSni1KlTIjY2Vri4uIiSkhIhhBAzZ84U8fHxUvyBAweEnZ2dWLt2rTh9+rRISEgQnTp1EsePH5diVq9eLVxcXMTOnTvFsWPHxOTJk4Wvr6+oqamRYsaNGycefvhhkZeXJ/bv3y/69u0roqKipPUVFRXC3d1dzJw5U5w4cUJs2bJFdO7cWbz//vstrptGoxEAhEajacshIiIionbUls9vkydWQgixYcMG0bNnT2Fvby+GDh0qvv/+e2ldWFiYmD17tk781q1bhZ+fn7C3txcDBgwQe/bs0Vmv1WrF8uXLhbu7u3BwcBBjx44VZ8+e1Ym5du2aiIqKEl26dBHOzs5i7ty54vr16zoxP/zwgxgxYoRwcHAQPXr0EKtXrzaoXkysiIiILE9bPr9NPo+VNTP1PFZERERkOIudx4qIiIjImjCxIiIiIpIJEysiIiIimTCxIiIiIpIJEysiIiIimTCxIiIiIpIJEysiIiIimTCxIiIiIpIJEysiIiIimZj0IczWrn5S+8rKShOXhIiIiFqq/nO7NQ+nYWJlRNevXwcAeHt7m7gkREREZKjr169DpVIZtA2fFWhEWq0WP//8M7p27QqFQiHbfisrK+Ht7Y3Lly9b9TMIWU/rwnpal45Qz45QR4D11EcIgevXr8PLyws2NoaNmmKLlRHZ2NjggQceMNr+nZ2drfqPoB7raV1YT+vSEerZEeoIsJ73MrSlqh4HrxMRERHJhIkVERERkUyYWFkgBwcHJCQkwMHBwdRFMSrW07qwntalI9SzI9QRYD3lxsHrRERERDJhixURERGRTJhYEREREcmEiRURERGRTJhYEREREcmEiZWZSEpKgo+PD5RKJUJCQnDw4MEm49etW4d+/frB0dER3t7e+N///V/U1ta2aZ/GJncdV65cCYVCofPy9/c3djWaZUg9b9++jVWrVqFPnz5QKpUICgpCRkZGm/bZXuSupzmez3379mHixInw8vKCQqHAjh07mt3mm2++wSOPPAIHBwc8+OCDSElJaRBjbufTGPW0hvNZXFyMGTNmwM/PDzY2Nli8eLHeuLS0NPj7+0OpVCIwMBDp6enyF76FjFHHlJSUBudSqVQapwItZGg9t2/fjsceewxubm5wdnZGaGgo/v3vfzeIk+Nvk4mVGUhNTUVcXBwSEhJw+PBhBAUFQa1W4+rVq3rjP//8c8THxyMhIQGnT5/Ghx9+iNTUVLzwwgut3qexGaOOADBgwAAUFxdLr/3797dHdRplaD1feuklvP/++9iwYQNOnTqFP//5z3jiiSdw5MiRVu+zPRijnoD5nc/q6moEBQUhKSmpRfGFhYWYMGECxowZg6NHj2Lx4sWYN2+ezgXcHM+nMeoJWP75vHnzJtzc3PDSSy8hKChIb0xOTg6ioqIQExODI0eOICIiAhEREThx4oScRW8xY9QRuDtb+W/P5aVLl+QqcqsYWs99+/bhscceQ3p6OgoKCjBmzBhMnDjRONdaQSY3dOhQ8fTTT0u/19XVCS8vL5GYmKg3/umnnxa/+93vdJbFxcWJ4cOHt3qfxmaMOiYkJIigoCCjlLe1DK2np6en2Lhxo86yKVOmiOjo6Fbvsz0Yo57meD5/C4D48ssvm4x57rnnxIABA3SWRUZGCrVaLf1ujufzt+SqpzWcz98KCwsTixYtarB82rRpYsKECTrLQkJCxFNPPdXGEradXHX8+OOPhUqlkq1ccjO0nvUCAgLEyy+/LP0u198mW6xM7NatWygoKEB4eLi0zMbGBuHh4cjNzdW7zbBhw1BQUCA1Uf74449IT0/H+PHjW71PYzJGHeudO3cOXl5e6N27N6Kjo1FUVGS8ijSjNfW8efNmgyZ1R0dH6Zu9uZ3L1papuXrWM6fz2Rq5ubk6xwUA1Gq1dFzM8Xy2RnP1rGfp57MlWnosLF1VVRV69eoFb29vTJ48GSdPnjR1kdpEq9Xi+vXr6NatGwB5/zaZWJlYWVkZ6urq4O7urrPc3d0dJSUlereZMWMGVq1ahREjRqBTp07o06cPRo8eLXWTtWafxmSMOgJASEgIUlJSkJGRgffeew+FhYUYOXIkrl+/btT6NKY19VSr1Xj77bdx7tw5aLVaZGZmYvv27SguLm71Po3NGPUEzO98tkZJSYne41JZWYmamhqzPJ+t0Vw9Aes4ny3R2LGwpPPZnH79+uGjjz7Czp078emnn0Kr1WLYsGG4cuWKqYvWamvXrkVVVRWmTZsGQN5rLRMrC/TNN9/g9ddfx9/+9jccPnwY27dvx549e/DKK6+YumiyaUkdf//73+OPf/wjHnroIajVaqSnp6OiogJbt241YckN8+6776Jv377w9/eHvb09FixYgLlz58LGxrr+NFtST2s4n/RfPJ/WIzQ0FLNmzUJwcDDCwsKwfft2uLm54f333zd10Vrl888/x8svv4ytW7eie/fusu/fTvY9kkFcXV1ha2uL0tJSneWlpaXw8PDQu83y5csxc+ZMzJs3DwAQGBiI6upqxMbG4sUXX2zVPo3JGHXUl3i4uLjAz88P58+fl78SLdCaerq5uWHHjh2ora3FtWvX4OXlhfj4ePTu3bvV+zQ2Y9RTH1Ofz9bw8PDQe1ycnZ3h6OgIW1tbszufrdFcPfWxxPPZEo0dC0s6n4bq1KkTHn74YYs8l1u2bMG8efOQlpam0+0n57XWur4WWyB7e3sMGjQIWVlZ0jKtVousrCyEhobq3ebGjRsNEgtbW1sAgBCiVfs0JmPUUZ+qqipcuHABnp6eMpXcMG057kqlEj169MCdO3fwxRdfYPLkyW3ep7EYo576mPp8tkZoaKjOcQGAzMxM6biY4/lsjebqqY8lns+WaM2xsHR1dXU4fvy4xZ3LzZs3Y+7cudi8eTMmTJigs07Wv02Dh9GT7LZs2SIcHBxESkqKOHXqlIiNjRUuLi6ipKRECCHEzJkzRXx8vBSfkJAgunbtKjZv3ix+/PFHsXfvXtGnTx8xbdq0Fu+zvRmjjkuWLBHffPONKCwsFAcOHBDh4eHC1dVVXL16td3rV8/Qen7//ffiiy++EBcuXBD79u0Tv/vd74Svr6/49ddfW7xPUzBGPc3xfF6/fl0cOXJEHDlyRAAQb7/9tjhy5Ii4dOmSEEKI+Ph4MXPmTCn+xx9/FJ07dxbPPvusOH36tEhKShK2trYiIyNDijHH82mMelrD+RRCSPGDBg0SM2bMEEeOHBEnT56U1h84cEDY2dmJtWvXitOnT4uEhATRqVMncfz48XatWz1j1PHll18W//73v8WFCxdEQUGBmD59ulAqlTox7c3Qen722WfCzs5OJCUlieLiYulVUVEhxcj1t8nEykxs2LBB9OzZU9jb24uhQ4eK77//XloXFhYmZs+eLf1++/ZtsXLlStGnTx+hVCqFt7e3+Otf/6rzIdXcPk1B7jpGRkYKT09PYW9vL3r06CEiIyPF+fPn27FG+hlSz2+++Ub0799fODg4iPvvv1/MnDlT/PTTTwbt01Tkrqc5ns+vv/5aAGjwqq/b7NmzRVhYWINtgoODhb29vejdu7f4+OOPG+zX3M6nMeppLedTX3yvXr10YrZu3Sr8/PyEvb29GDBggNizZ0/7VEgPY9Rx8eLF0v9Xd3d3MX78eHH48OH2q5QehtYzLCysyfh6cvxtKoRopF+FiIiIiAzCMVZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRUTUgXzzzTdQKBSoqKgwdVGIrBITKyIyijlz5kChUGD16tU6y3fs2AGFQiH9LoTApk2bEBoaCmdnZ3Tp0gUDBgzAokWLWvyQ1xs3bmDZsmXo06cPlEol3NzcEBYWhp07d0oxPj4+WLdunSx1M7b6Y6dQKNCpUyf4+vriueeeQ21trUH7GT16NBYvXqyzbNiwYSguLoZKpZKxxERUj4kVERmNUqnEG2+8gV9//VXveiEEZsyYgWeeeQbjx4/H3r17cerUKXz44YdQKpV49dVXW/Q+f/7zn7F9+3Zs2LABZ86cQUZGBqZOnYpr167JWZ12NW7cOBQXF+PHH3/EO++8g/fffx8JCQlt3q+9vT08PDx0klsiklErH9NDRNSk2bNniz/84Q/C399fPPvss9LyL7/8UtRfejZv3iwAiJ07d+rdh1arbdF7qVQqkZKS0uh6fc8Jq/fdd9+JESNGCKVSKR544AGxcOFCUVVVJa3/xz/+IQYNGiS6dOki3N3dRVRUlCgtLZXW1z+zLCMjQwQHBwulUinGjBkjSktLRXp6uvD39xddu3YVUVFRorq6ukX1mT17tpg8ebLOsilTpoiHH35Y+r2srExMnz5deHl5CUdHRzFw4EDx+eef6+zj3joXFhZK5f3tcze3bdsmAgIChL29vejVq5dYu3Zti8pJRA2xxYqIjMbW1havv/46NmzYgCtXrjRYv3nzZvTr1w+TJk3Su31LW1U8PDyQnp6O69ev612/fft2PPDAA1i1ahWKi4tRXFwMALhw4QLGjRuHJ598EseOHUNqair279+PBQsWSNvevn0br7zyCn744Qfs2LEDFy9exJw5cxq8x8qVK7Fx40bk5OTg8uXLmDZtGtatW4fPP/8ce/bswd69e7Fhw4YW1edeJ06cQE5ODuzt7aVltbW1GDRoEPbs2YMTJ04gNjYWM2fOxMGDBwEA7777LkJDQzF//nypzt7e3g32XVBQgGnTpmH69Ok4fvw4Vq5cieXLlyMlJaVVZSXq8Eyd2RGRdfptq8ujjz4q/vSnPwkhdFus/P39xaRJk3S2W7RokXBychJOTk6iR48eLXqvb7/9VjzwwAOiU6dOYvDgwWLx4sVi//79OjG9evUS77zzjs6ymJgYERsbq7Psu+++EzY2NqKmpkbve+Xn5wsA4vr160KI/7ZYffXVV1JMYmKiACAuXLggLXvqqaeEWq1uUX1mz54tbG1thZOTk3BwcBAAhI2Njdi2bVuT202YMEEsWbJE+j0sLEwsWrRIJ+beFqsZM2aIxx57TCfm2WefFQEBAS0qKxHpYosVERndG2+8gU8++QSnT59uNvbFF1/E0aNHsWLFClRVVbVo/6NGjcKPP/6IrKwsTJ06FSdPnsTIkSPxyiuvNLndDz/8gJSUFHTp0kV6qdVqaLVaFBYWArjbojNx4kT07NkTXbt2RVhYGACgqKhIZ18PPfSQ9G93d3d07twZvXv31ll29erVFtUHAMaMGYOjR48iLy8Ps2fPxty5c/Hkk09K6+vq6vDKK68gMDAQ3bp1Q5cuXfDvf/+7Qbmac/r0aQwfPlxn2fDhw3Hu3DnU1dUZtC8i4uB1ImoHo0aNglqtxrJly3SW9+3bF2fPntVZ5ubmhgcffBDdu3c36D06deqEkSNH4vnnn8fevXuxatUqvPLKK7h161aj21RVVeGpp57C0aNHpdcPP/yAc+fOoU+fPqiuroZarYazszM+++wz5Ofn48svvwSABvvt1KmT9O/6u/l+S6FQQKvVtrg+Tk5OePDBBxEUFISPPvoIeXl5+PDDD6X1b775Jt599108//zz+Prrr3H06FGo1eom60tExmdn6gIQUcewevVqBAcHo1+/ftKyqKgozJgxAzt37sTkyZNlfb+AgADcuXMHtbW1sLe3h729fYMWmEceeQSnTp3Cgw8+qHcfx48fx7Vr17B69WppfNKhQ4dkLWdL2NjY4IUXXkBcXBxmzJgBR0dHHDhwAJMnT8b//M//AAC0Wi3+85//ICAgQNpOX53v1b9/fxw4cEBn2YEDB+Dn5wdbW1v5K0Nk5dhiRUTtIjAwENHR0Vi/fr20bPr06Zg6dSqmT5+OVatWIS8vDxcvXsS3336L1NTUFn+wjx49Gu+//z4KCgpw8eJFpKen44UXXsCYMWPg7OwM4O48Vvv27cNPP/2EsrIyAMDzzz+PnJwcLFiwAEePHsW5c+ewc+dOafB6z549YW9vjw0bNuDHH3/Erl27mu1eNJY//vGPsLW1RVJSEoC7rX2ZmZnIycnB6dOn8dRTT6G0tFRnGx8fH+mYlpWV6W0xW7JkCbKysvDKK6/gP//5Dz755BNs3LgRS5cubZd6EVkbJlZE1G5WrVql8+GuUCiQmpqKdevWIT09HWPHjkW/fv3wpz/9Cd7e3ti/f3+L9qtWq/HJJ5/g8ccfR//+/bFw4UKo1Wps3bpV570vXryIPn36wM3NDcDdcVHffvst/vOf/2DkyJF4+OGHsWLFCnh5eQG42y2ZkpKCtLQ0BAQEYPXq1Vi7dq2MR6Tl7OzssGDBAqxZswbV1dV46aWX8Mgjj0CtVmP06NHw8PBARESEzjZLly6Fra0tAgIC4Obmpnf81SOPPIKtW7diy5YtGDhwIFasWIFVq1bpvfORiJqnEEIIUxeCiIiIyBqwxYqIiIhIJkysiMjs/XY6hHtf3333namLZ5CioqIm62PodAlEZF7YFUhEZq+phzH36NEDjo6O7Viatrlz5w4uXrzY6HofHx/Y2fGGbSJLxcSKiIiISCbsCiQiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpn8P/FPxrCPnC//AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_59.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHHCAYAAADzrV8YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfzUlEQVR4nO3de1hU1f4/8PcADoMYoIFcDAEviBfCwiA0RY+TY3lMuonIUfSLl9PR0h/dtFLUOgdTK9M4Wn0rO6dStEw9RiQHM49KaKh596BhXgIUkRlAEWXW748e9tctw2Vwhj0zvF/PM4/O2p+991p7mJnPrL322iohhAARERERKcJJ6QoQERERtWVMxoiIiIgUxGSMiIiISEFMxoiIiIgUxGSMiIiISEFMxoiIiIgUxGSMiIiISEFMxoiIiIgUxGSMiIiISEFMxoiImmHBggVQqVTNilWpVFiwYIFV6zN06FAMHTrUZrdHRM3HZIyI7MqaNWugUqmkh4uLC7p06YJJkybhwoULSlfP5gQHB8uOV+fOnTF48GB8/fXXFtn+1atXsWDBAuzYscMi2yNqi5iMEZFdWrRoEf75z39i9erVeOSRR/DZZ58hNjYW1dXVVtnfa6+9hmvXrlll29bWv39//POf/8Q///lPvPDCC/jtt9/wxBNPYPXq1Xe87atXr2LhwoVMxojugIvSFSAiaolHHnkEAwYMAABMmTIF3t7eePPNN7FlyxaMHTvW4vtzcXGBi4t9fmR26dIFf/rTn6TnEydORI8ePfDOO+/gz3/+s4I1IyKAPWNE5CAGDx4MADh9+rSs/MSJE3jqqafQqVMnaDQaDBgwAFu2bJHF3LhxAwsXLkTPnj2h0Whw991346GHHkJ2drYUY2rM2PXr1/H//t//g4+PD+666y489thjOH/+fL26TZo0CcHBwfXKTW3zk08+wR/+8Ad07twZrq6u6NOnD1atWmXWsWiKn58fevfujcLCwkbjLl68iOTkZPj6+kKj0SAiIgKffvqptPzMmTPw8fEBACxcuFA6FWrt8XJEjsY+f+YREd3mzJkzAICOHTtKZUePHsWgQYPQpUsXzJkzB+7u7li/fj3i4uLw1Vdf4fHHHwfwe1KUlpaGKVOmICoqCgaDAT/99BP279+Phx9+uMF9TpkyBZ999hnGjx+PgQMHYvv27Rg1atQdtWPVqlXo27cvHnvsMbi4uOBf//oX/vKXv8BoNGLGjBl3tO06N27cwLlz53D33Xc3GHPt2jUMHToUp06dwsyZMxESEoINGzZg0qRJKC8vx6xZs+Dj44NVq1bhmWeeweOPP44nnngCAHDvvfdapJ5EbYYgIrIjn3zyiQAg/v3vf4tLly6Jc+fOiS+//FL4+PgIV1dXce7cOSl2+PDhIjw8XFRXV0tlRqNRDBw4UPTs2VMqi4iIEKNGjWp0v6mpqeLWj8yDBw8KAOIvf/mLLG78+PECgEhNTZXKkpKSRFBQUJPbFEKIq1ev1ovT6XSiW7dusrLY2FgRGxvbaJ2FECIoKEiMGDFCXLp0SVy6dEn8/PPPYty4cQKAePbZZxvc3vLlywUA8dlnn0llNTU1IiYmRnTo0EEYDAYhhBCXLl2q114iMg9PUxKRXdJqtfDx8UFgYCCeeuopuLu7Y8uWLbjnnnsAAGVlZdi+fTvGjh2LiooKlJaWorS0FJcvX4ZOp0NBQYF09aWXlxeOHj2KgoKCZu8/MzMTAPDcc8/JymfPnn1H7XJzc5P+r9frUVpaitjYWPzyyy/Q6/Ut2ua2bdvg4+MDHx8fREREYMOGDZgwYQLefPPNBtfJzMyEn58fEhISpLJ27drhueeeQ2VlJX744YcW1YWI6uNpSiKyS+np6QgNDYVer8fHH3+MnTt3wtXVVVp+6tQpCCEwb948zJs3z+Q2Ll68iC5dumDRokUYM2YMQkND0a9fP4wcORITJkxo9HTbr7/+CicnJ3Tv3l1W3qtXrztq1+7du5Gamorc3FxcvXpVtkyv18PT09PsbUZHR+ONN96ASqVC+/bt0bt3b3h5eTW6zq+//oqePXvCyUn+m713797SciKyDCZjRGSXoqKipKsp4+Li8NBDD2H8+PE4efIkOnToAKPRCAB44YUXoNPpTG6jR48eAIAhQ4bg9OnT2Lx5M7Zt24b//d//xTvvvIPVq1djypQpd1zXhiaLra2tlT0/ffo0hg8fjrCwMLz99tsIDAyEWq1GZmYm3nnnHalN5vL29oZWq23RukRkfUzGiMjuOTs7Iy0tDcOGDcN7772HOXPmoFu3bgB+P7XWnESkU6dOmDx5MiZPnozKykoMGTIECxYsaDAZCwoKgtFoxOnTp2W9YSdPnqwX27FjR5SXl9crv7136V//+heuX7+OLVu2oGvXrlL5999/32T9LS0oKAiHDh2C0WiU9Y6dOHFCWg40nGgSUfNxzBgROYShQ4ciKioKy5cvR3V1NTp37oyhQ4fi/fffR1FRUb34S5cuSf+/fPmybFmHDh3Qo0cPXL9+vcH9PfLIIwCAFStWyMqXL19eL7Z79+7Q6/U4dOiQVFZUVFRvFnxnZ2cAgBBCKtPr9fjkk08arIe1PProoyguLkZGRoZUdvPmTaxcuRIdOnRAbGwsAKB9+/YAYDLZJKLmYc8YETmMF198EU8//TTWrFmDP//5z0hPT8dDDz2E8PBwTJ06Fd26dUNJSQlyc3Nx/vx5/PzzzwCAPn36YOjQoYiMjESnTp3w008/4csvv8TMmTMb3Ff//v2RkJCAv//979Dr9Rg4cCBycnJw6tSperHjxo3Dyy+/jMcffxzPPfccrl69ilWrViE0NBT79++X4kaMGAG1Wo3Ro0dj+vTpqKysxIcffojOnTubTCitadq0aXj//fcxadIk5OfnIzg4GF9++SV2796N5cuX46677gLw+wUHffr0QUZGBkJDQ9GpUyf069cP/fr1a9X6Etk1pS/nJCIyR93UFvv27au3rLa2VnTv3l10795d3Lx5UwghxOnTp8XEiROFn5+faNeunejSpYv44x//KL788ktpvTfeeENERUUJLy8v4ebmJsLCwsRf//pXUVNTI8WYmobi2rVr4rnnnhN33323cHd3F6NHjxbnzp0zOdXDtm3bRL9+/YRarRa9evUSn332mcltbtmyRdx7771Co9GI4OBg8eabb4qPP/5YABCFhYVSnDlTWzQ1bUdD2yspKRGTJ08W3t7eQq1Wi/DwcPHJJ5/UW3fPnj0iMjJSqNVqTnNB1AIqIW7pDyciIiKiVsUxY0REREQKYjJGREREpCAmY0REREQKYjJGREREpCAmY0REREQKYjJGREREpCBO+mrjjEYjfvvtN9x111287QgREZGdEEKgoqICAQEBsluKmcJkzMb99ttvCAwMVLoaRERE1ALnzp3DPffc02gMkzEbV3fLkXPnzsHDw0Ph2hAREVFzGAwGBAYGSt/jjWEyZuPqTk16eHgwGSMiIrIzzRlixAH8RERERApiMkZERESkICZjRERERApiMkZERESkICZjRERERApiMkZERESkICZjRERERApiMkZERESkICZjRERERApiMkZERESkICZjRERERApiMkZtQpH+GvacLkWR/prSVSEiIpLhjcLJ4WXsO4u5Gw/DKAAnFZD2RDjiH+iqdLWIiMgKivTXUFhahRBvd/h7uildnWZhMkYOrUh/TUrEAMAogFc2HsGQUB+7eZMSEVHz2OuPb56mJIdWWFolJWJ1aoXAmdKrylSIiIisoqEf3/YwPIXJGDm0EG93OKnkZc4qFYK92ytTISIisgp7/vHNZIwcmr+nG9KeCIez6veMzFmlwt+e6MdTlEREDsaef3xzzBg5vPgHumJIqA/OlF5FsHd7JmJERA6o7sf3KxuPoFYIu/rxzWSM2gR/Tze7eEMSEVHL2euPbyZjRERE5DDs8cc3x4wRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKUjxZCw9PR3BwcHQaDSIjo7G3r17G43fsGEDwsLCoNFoEB4ejszMTNlyIQTmz58Pf39/uLm5QavVoqCgQBZTVlaGxMREeHh4wMvLC8nJyaisrJSWV1dXY9KkSQgPD4eLiwvi4uLq1WPSpElQqVT1Hn379pViFixYUG95WFhYC44SEREROSpFk7GMjAykpKQgNTUV+/fvR0REBHQ6HS5evGgyfs+ePUhISEBycjIOHDiAuLg4xMXF4ciRI1LMkiVLsGLFCqxevRp5eXlwd3eHTqdDdXW1FJOYmIijR48iOzsbW7duxc6dOzFt2jRpeW1tLdzc3PDcc89Bq9WarMu7776LoqIi6XHu3Dl06tQJTz/9tCyub9++srhdu3bdySEjIiIiRyMUFBUVJWbMmCE9r62tFQEBASItLc1k/NixY8WoUaNkZdHR0WL69OlCCCGMRqPw8/MTS5culZaXl5cLV1dXsXbtWiGEEMeOHRMAxL59+6SYb7/9VqhUKnHhwoV6+0xKShJjxoxpsi1ff/21UKlU4syZM1JZamqqiIiIaHLdxuj1egFA6PX6O9oOERERtR5zvr8V6xmrqalBfn6+rOfJyckJWq0Wubm5JtfJzc2t11Ol0+mk+MLCQhQXF8tiPD09ER0dLcXk5ubCy8sLAwYMkGK0Wi2cnJyQl5fX4vZ89NFH0Gq1CAoKkpUXFBQgICAA3bp1Q2JiIs6ePdvodq5fvw6DwSB7EBERkeNSLBkrLS1FbW0tfH19ZeW+vr4oLi42uU5xcXGj8XX/NhXTuXNn2XIXFxd06tSpwf025bfffsO3336LKVOmyMqjo6OxZs0aZGVlYdWqVSgsLMTgwYNRUVHR4LbS0tLg6ekpPQIDA1tUJyIiIrIPig/gdwSffvopvLy86g30f+SRR/D000/j3nvvhU6nQ2ZmJsrLy7F+/foGtzV37lzo9Xrpce7cOSvXnoiIiJSkWDLm7e0NZ2dnlJSUyMpLSkrg5+dnch0/P79G4+v+bSrm9gsEbt68ibKysgb32xghBD7++GNMmDABarW60VgvLy+Ehobi1KlTDca4urrCw8ND9iAiIiLHpVgyplarERkZiZycHKnMaDQiJycHMTExJteJiYmRxQNAdna2FB8SEgI/Pz9ZjMFgQF5enhQTExOD8vJy5OfnSzHbt2+H0WhEdHS02e344YcfcOrUKSQnJzcZW1lZidOnT8Pf39/s/RAREZFjclFy5ykpKUhKSsKAAQMQFRWF5cuXo6qqCpMnTwYATJw4EV26dEFaWhoAYNasWYiNjcVbb72FUaNGYd26dfjpp5/wwQcfAABUKhVmz56NN954Az179kRISAjmzZuHgIAA6RRi7969MXLkSEydOhWrV6/GjRs3MHPmTIwbNw4BAQFS3Y4dO4aamhqUlZWhoqICBw8eBAD0799f1oaPPvoI0dHR6NevX732vfDCCxg9ejSCgoLw22+/ITU1Fc7OzkhISLDwkSQiIiK7Zf2LOxu3cuVK0bVrV6FWq0VUVJT48ccfpWWxsbEiKSlJFr9+/XoRGhoq1Gq16Nu3r/jmm29ky41Go5g3b57w9fUVrq6uYvjw4eLkyZOymMuXL4uEhATRoUMH4eHhISZPniwqKipkMUFBQQJAvcetysvLhZubm/jggw9Mti0+Pl74+/sLtVotunTpIuLj48WpU6fMOj6c2oKIiMj+mPP9rRJCCAVzQWqCwWCAp6cn9Ho9x48RERHZCXO+v3k1JREREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKYjJGBEREZGCmIwRERERKUjxZCw9PR3BwcHQaDSIjo7G3r17G43fsGEDwsLCoNFoEB4ejszMTNlyIQTmz58Pf39/uLm5QavVoqCgQBZTVlaGxMREeHh4wMvLC8nJyaisrJSWV1dXY9KkSQgPD4eLiwvi4uLq1WPHjh1QqVT1HsXFxXfUPiIiImpbFE3GMjIykJKSgtTUVOzfvx8RERHQ6XS4ePGiyfg9e/YgISEBycnJOHDgAOLi4hAXF4cjR45IMUuWLMGKFSuwevVq5OXlwd3dHTqdDtXV1VJMYmIijh49iuzsbGzduhU7d+7EtGnTpOW1tbVwc3PDc889B61W22gbTp48iaKiIunRuXPnFrePiIiI2iChoKioKDFjxgzpeW1trQgICBBpaWkm48eOHStGjRolK4uOjhbTp08XQghhNBqFn5+fWLp0qbS8vLxcuLq6irVr1wohhDh27JgAIPbt2yfFfPvtt0KlUokLFy7U22dSUpIYM2ZMvfLvv/9eABBXrlyxWPtM0ev1AoDQ6/XNXoeIiIiUZc73t2I9YzU1NcjPz5f1PDk5OUGr1SI3N9fkOrm5ufV6qnQ6nRRfWFiI4uJiWYynpyeio6OlmNzcXHh5eWHAgAFSjFarhZOTE/Ly8sxuR//+/eHv74+HH34Yu3fvvqP2AcD169dhMBhkDyIiInJciiVjpaWlqK2tha+vr6zc19e33rirOsXFxY3G1/3bVMytpxIBwMXFBZ06dWpwv6b4+/tj9erV+Oqrr/DVV18hMDAQQ4cOxf79+1vcPgBIS0uDp6en9AgMDGx2nYiIiMj+uChdAXvVq1cv9OrVS3o+cOBAnD59Gu+88w7++c9/tni7c+fORUpKivTcYDAwISMiInJgivWMeXt7w9nZGSUlJbLykpIS+Pn5mVzHz8+v0fi6f5uKuX0A/c2bN1FWVtbgfpsrKioKp06dAtCy9gGAq6srPDw8ZA8iIiJyXIolY2q1GpGRkcjJyZHKjEYjcnJyEBMTY3KdmJgYWTwAZGdnS/EhISHw8/OTxRgMBuTl5UkxMTExKC8vR35+vhSzfft2GI1GREdH31GbDh48CH9//xa3j4iIiNoeRU9TpqSkICkpCQMGDEBUVBSWL1+OqqoqTJ48GQAwceJEdOnSBWlpaQCAWbNmITY2Fm+99RZGjRqFdevW4aeffsIHH3wAAFCpVJg9ezbeeOMN9OzZEyEhIZg3bx4CAgKkucJ69+6NkSNHYurUqVi9ejVu3LiBmTNnYty4cQgICJDqduzYMdTU1KCsrAwVFRU4ePAggN8H7APA8uXLERISgr59+6K6uhr/+7//i+3bt2Pbtm3Nbh8RERGRolNbCCHEypUrRdeuXYVarRZRUVHixx9/lJbFxsaKpKQkWfz69etFaGioUKvVom/fvuKbb76RLTcajWLevHnC19dXuLq6iuHDh4uTJ0/KYi5fviwSEhJEhw4dhIeHh5g8ebKoqKiQxQQFBQkA9R513nzzTdG9e3eh0WhEp06dxNChQ8X27dvNal9zcGoLIiIi+2PO97dKCCEUzAWpCQaDAZ6entDr9Rw/RkREZCfM+f5W/HZIRERERG0ZkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBSmejKWnpyM4OBgajQbR0dHYu3dvo/EbNmxAWFgYNBoNwsPDkZmZKVsuhMD8+fPh7+8PNzc3aLVaFBQUyGLKysqQmJgIDw8PeHl5ITk5GZWVldLy6upqTJo0CeHh4XBxcUFcXFy9emzcuBEPP/wwfHx84OHhgZiYGHz33XeymAULFkClUskeYWFhZh4hIiIicmSKJmMZGRlISUlBamoq9u/fj4iICOh0Oly8eNFk/J49e5CQkIDk5GQcOHAAcXFxiIuLw5EjR6SYJUuWYMWKFVi9ejXy8vLg7u4OnU6H6upqKSYxMRFHjx5FdnY2tm7dip07d2LatGnS8traWri5ueG5556DVqs1WZedO3fi4YcfRmZmJvLz8zFs2DCMHj0aBw4ckMX17dsXRUVF0mPXrl13csiIiIjI0QgFRUVFiRkzZkjPa2trRUBAgEhLSzMZP3bsWDFq1ChZWXR0tJg+fboQQgij0Sj8/PzE0qVLpeXl5eXC1dVVrF27VgghxLFjxwQAsW/fPinm22+/FSqVSly4cKHePpOSksSYMWOa1Z4+ffqIhQsXSs9TU1NFREREs9ZtiF6vFwCEXq+/o+0QERFR6zHn+1uxnrGamhrk5+fLep6cnJyg1WqRm5trcp3c3Nx6PVU6nU6KLywsRHFxsSzG09MT0dHRUkxubi68vLwwYMAAKUar1cLJyQl5eXktbo/RaERFRQU6deokKy8oKEBAQAC6deuGxMREnD17ttHtXL9+HQaDQfYgIiIix6VYMlZaWora2lr4+vrKyn19fVFcXGxyneLi4kbj6/5tKqZz586y5S4uLujUqVOD+22OZcuWobKyEmPHjpXKoqOjsWbNGmRlZWHVqlUoLCzE4MGDUVFR0eB20tLS4OnpKT0CAwNbXCciIiKyfYoP4HcEX3zxBRYuXIj169fLEr1HHnkETz/9NO69917odDpkZmaivLwc69evb3Bbc+fOhV6vlx7nzp1rjSYQERGRQlyU2rG3tzecnZ1RUlIiKy8pKYGfn5/Jdfz8/BqNr/u3pKQE/v7+spj+/ftLMbdfIHDz5k2UlZU1uN/GrFu3DlOmTMGGDRsaHOxfx8vLC6GhoTh16lSDMa6urnB1dTW7HkRERGSfFOsZU6vViIyMRE5OjlRmNBqRk5ODmJgYk+vExMTI4gEgOztbig8JCYGfn58sxmAwIC8vT4qJiYlBeXk58vPzpZjt27fDaDQiOjrarDasXbsWkydPxtq1azFq1Kgm4ysrK3H69GlZokhERERtm2I9YwCQkpKCpKQkDBgwAFFRUVi+fDmqqqowefJkAMDEiRPRpUsXpKWlAQBmzZqF2NhYvPXWWxg1ahTWrVuHn376CR988AEAQKVSYfbs2XjjjTfQs2dPhISEYN68eQgICJDmCuvduzdGjhyJqVOnYvXq1bhx4wZmzpyJcePGISAgQKrbsWPHUFNTg7KyMlRUVODgwYMAIPWwffHFF0hKSsK7776L6OhoabyZm5sbPD09AQAvvPACRo8ejaCgIPz2229ITU2Fs7MzEhISrH1oiYiIyF60wtWdjVq5cqXo2rWrUKvVIioqSvz444/SstjYWJGUlCSLX79+vQgNDRVqtVr07dtXfPPNN7LlRqNRzJs3T/j6+gpXV1cxfPhwcfLkSVnM5cuXRUJCgujQoYPw8PAQkydPFhUVFbKYoKAgAaDe49a6mVp+a33j4+OFv7+/UKvVokuXLiI+Pl6cOnXKrOPDqS2IiIjsjznf3yohhFAmDaTmMBgM8PT0hF6vh4eHh9LVISIiomYw5/ubV1MSERERKYjJGBEREZGCmIwRERE1oUh/DXtOl6JIf03pqpADUvRqSiIiIluXse8s5m48DKMAnFRA2hPhiH+gq9LVIgfCnjEiIqIGFOmvSYkYABgF8MrGI+whI4tiMkZERNSAwtIqKRGrUysEzpReVaZC5JCYjBERETUgxNsdTip5mbNKhWDv9spUiBwSkzEiIqIG+Hu6Ie2JcDirfs/InFUq/O2JfvD3dFO4ZuRIOICfiIioEfEPdMWQUB+cKb2KYO/2TMTI4piMERERNcHf041JGFkNT1MSERERKYjJGBEREZGCmIwRERFZGGfsJ3NwzBgREZEFccZ+Mhd7xoiIiCyEM/ZTSzAZIyIishDO2E8twWSMiIjIQjhjP7UEkzEiIiIL4Yz91BIcwE9ERGRBnLGfzMVkjIiIyMI4Yz+Zg6cpiYiIiBTEZIyIiIhIQUzGiIiIiBTEZIyIiIhIQUzGiIiIiBTEZIyIiIhIQUzGiIiIiBTEZIyIiIhIQUzGiIiIiBTEZIyIiIhIQUzGiIiIiBTEZIyIiIhIQUzGiIiIiBTEZIyIiIhIQUzGiIiIiBSkeDKWnp6O4OBgaDQaREdHY+/evY3Gb9iwAWFhYdBoNAgPD0dmZqZsuRAC8+fPh7+/P9zc3KDValFQUCCLKSsrQ2JiIjw8PODl5YXk5GRUVlZKy6urqzFp0iSEh4fDxcUFcXFxJuuyY8cO3H///XB1dUWPHj2wZs2aO24fERERtS2KJmMZGRlISUlBamoq9u/fj4iICOh0Oly8eNFk/J49e5CQkIDk5GQcOHAAcXFxiIuLw5EjR6SYJUuWYMWKFVi9ejXy8vLg7u4OnU6H6upqKSYxMRFHjx5FdnY2tm7dip07d2LatGnS8traWri5ueG5556DVqs1WZfCwkKMGjUKw4YNw8GDBzF79mxMmTIF3333XYvbR0RERG2QUFBUVJSYMWOG9Ly2tlYEBASItLQ0k/Fjx44Vo0aNkpVFR0eL6dOnCyGEMBqNws/PTyxdulRaXl5eLlxdXcXatWuFEEIcO3ZMABD79u2TYr799luhUqnEhQsX6u0zKSlJjBkzpl75Sy+9JPr27Ssri4+PFzqdrsXtM0Wv1wsAQq/XN3sdIiIiUpY539+K9YzV1NQgPz9f1vPk5OQErVaL3Nxck+vk5ubW66nS6XRSfGFhIYqLi2Uxnp6eiI6OlmJyc3Ph5eWFAQMGSDFarRZOTk7Iy8trdv2bqktL2gcA169fh8FgkD2IiIjIcSmWjJWWlqK2tha+vr6ycl9fXxQXF5tcp7i4uNH4un+biuncubNsuYuLCzp16tTgfs2pi8FgwLVr11rUPgBIS0uDp6en9AgMDGx2nYiIiMj+KD6An+Tmzp0LvV4vPc6dO6d0lYiIiMiKzErGbty4gZdeegk9evRAVFQUPv74Y9nykpISODs7N2tb3t7ecHZ2RklJSb1t+Pn5mVzHz8+v0fi6f5uKuX0A/c2bN1FWVtbgfs2pi4eHB9zc3FrUPgBwdXWFh4eH7EFERESOy6xk7K9//Sv+8Y9/4M9//jNGjBiBlJQUTJ8+XRYjhGjWttRqNSIjI5GTkyOVGY1G5OTkICYmxuQ6MTExsngAyM7OluJDQkLg5+cnizEYDMjLy5NiYmJiUF5ejvz8fClm+/btMBqNiI6Oblbdm1OXlrSPiIiI2iBzrgzo0aOH+Ne//iU9LygoED169BCTJk0SRqNRFBcXCycnp2Zvb926dcLV1VWsWbNGHDt2TEybNk14eXmJ4uJiIYQQEyZMEHPmzJHid+/eLVxcXMSyZcvE8ePHRWpqqmjXrp04fPiwFLN48WLh5eUlNm/eLA4dOiTGjBkjQkJCxLVr16SYkSNHivvuu0/k5eWJXbt2iZ49e4qEhARZ3Y4ePSoOHDggRo8eLYYOHSoOHDggDhw4IC3/5ZdfRPv27cWLL74ojh8/LtLT04Wzs7PIyspqdvuag1dTEhER2R9zvr/NSsbc3NxEYWGhrOz8+fMiNDRUJCYmigsXLpiVjAkhxMqVK0XXrl2FWq0WUVFR4scff5SWxcbGiqSkJFn8+vXrRWhoqFCr1aJv377im2++kS03Go1i3rx5wtfXV7i6uorhw4eLkydPymIuX74sEhISRIcOHYSHh4eYPHmyqKiokMUEBQUJAPUet/r+++9F//79hVqtFt26dROffPKJWe1rDiZjRERE9sec72+VEM08rwigW7du+PDDDzF8+HBZ+W+//YZhw4YhKCgIOTk5qK2ttVTHXZtnMBjg6ekJvV7P8WNERER2wpzvb7PGjP3hD3/AF198Ua88ICAA27dvR2FhoXk1JSIiImrjXMwJnjdvHk6cOGFyWZcuXfDDDz8gOzvbIhUjIiIiagvMOk1JrY+nKYmIiOyP1U5T1tmwYQOeeOIJ9OvXD/369cMTTzyBL7/8skWVJSIiImrLzErGjEYj4uPjER8fj2PHjqFHjx7o0aMHjh49ivj4eIwbN67Z84wRERERkZljxt599138+9//xpYtW/DHP/5RtmzLli2YPHky3n33XcyePduSdSQiIiJyWGb1jH3yySdYunRpvUQMAB577DEsWbKk3i2SiIiIiKhhZiVjBQUF0Gq1DS7XarUoKCi440oRERERtRVmJWNubm4oLy9vcLnBYIBGo7nTOhERERG1GWYlYzExMVi1alWDy9PT03kTbCIiIiIzmDWA/9VXX8XQoUNx+fJlvPDCCwgLC4MQAsePH8dbb72FzZs34/vvv7dWXYmIiIgcjlnJ2MCBA5GRkYFp06bhq6++ki3r2LEj1q5di0GDBlm0gkRERESOrEUz8F+9ehXfffedNFg/NDQUI0aMQPv27S1ewbaOM/ATERHZH3O+v83qGdu+fTtmzpyJH3/8EY8//rhsmV6vR9++fbF69WoMHjzY/FoTERERtUFmDeBfvnw5pk6dajLD8/T0xPTp0/H2229brHJEREREjs6sZOznn3/GyJEjG1w+YsQI5Ofn33GliIiIiNoKs5KxkpIStGvXrsHlLi4uuHTp0h1XioiIiKitMCsZ69KlC44cOdLg8kOHDsHf3/+OK0VERETUVpiVjD366KOYN28eqqur6y27du0aUlNTTd63koiIiIhMM2tqi5KSEtx///1wdnbGzJkz0atXLwDAiRMnkJ6ejtraWuzfvx++vr5Wq3Bbw6ktiIiI7I/Vprbw9fXFnj178Mwzz2Du3Lmoy+NUKhV0Oh3S09OZiBERERGZwaxkDACCgoKQmZmJK1eu4NSpUxBCoGfPnujYsaM16kdERETk0MxOxup07NgRDzzwgCXrQkRERNTmmDWAn4iIiIgsi8kYERERkYKYjBEREREpiMkYERERkYKYjBEREZHNKtJfw57TpSjSX1O6KlbT4qspiYiIiKwpY99ZzN14GEYBOKmAtCfCEf9AV6WrZXHsGSMiIiKbU6S/JiViAGAUwCsbjzhkDxmTMSIiIrI5haVVUiJWp1YInCm9qkyFrIjJGLUJbWHMARGRIwnxdoeTSl7mrFIh2Lu9MhWyIiZj5PAy9p3FoMXbMf7DPAxavB0Z+84qXSUiImqCv6cb0p4Ih7Pq94zMWaXC357oB39PN4VrZnkqUXe3b7JJ5tz1neor0l/DoMXbZV3dzioVds0Z5pBvaCIiR1Okv4YzpVcR7N3erj63zfn+tomesfT0dAQHB0Oj0SA6Ohp79+5tNH7Dhg0ICwuDRqNBeHg4MjMzZcuFEJg/fz78/f3h5uYGrVaLgoICWUxZWRkSExPh4eEBLy8vJCcno7KyUhZz6NAhDB48GBqNBoGBgViyZIls+dChQ6FSqeo9Ro0aJcVMmjSp3vKRI0e25DBRC7SlMQdERI7I39MNMd3vtqtEzFyKJ2MZGRlISUlBamoq9u/fj4iICOh0Oly8eNFk/J49e5CQkIDk5GQcOHAAcXFxiIuLw5EjR6SYJUuWYMWKFVi9ejXy8vLg7u4OnU6H6upqKSYxMRFHjx5FdnY2tm7dip07d2LatGnScoPBgBEjRiAoKAj5+flYunQpFixYgA8++ECK2bhxI4qKiqTHkSNH4OzsjKefflpW55EjR8ri1q5da6nDR01oS2MOiIjITgmFRUVFiRkzZkjPa2trRUBAgEhLSzMZP3bsWDFq1ChZWXR0tJg+fboQQgij0Sj8/PzE0qVLpeXl5eXC1dVVrF27VgghxLFjxwQAsW/fPinm22+/FSqVSly4cEEIIcTf//530bFjR3H9+nUp5uWXXxa9evVqsC3vvPOOuOuuu0RlZaVUlpSUJMaMGdPUYWiQXq8XAIRer2/xNtq6dXt/Fd3mfCOCXt4qus35Rqzb+6vSVSIiIgdnzve3oj1jNTU1yM/Ph1arlcqcnJyg1WqRm5trcp3c3FxZPADodDopvrCwEMXFxbIYT09PREdHSzG5ubnw8vLCgAEDpBitVgsnJyfk5eVJMUOGDIFarZbt5+TJk7hy5YrJun300UcYN24c3N3dZeU7duxA586d0atXLzzzzDO4fPlyg8fk+vXrMBgMsgfdmfgHumLXnGFYO/VB7JozzCEnDCQiIvulaDJWWlqK2tpa+Pr6ysp9fX1RXFxscp3i4uJG4+v+bSqmc+fOsuUuLi7o1KmTLMbUNm7dx6327t2LI0eOYMqUKbLykSNH4h//+AdycnLw5ptv4ocffsAjjzyC2tpak+1LS0uDp6en9AgMDDQZR+ZpC2MOWorTfhA5Nr7HbR9vh2QhH330EcLDwxEVFSUrHzdunPT/8PBw3HvvvejevTt27NiB4cOH19vO3LlzkZKSIj03GAxMyBRQpL+GwtIqhHi7O3QC11ZuNULUVvE9bh8U7Rnz9vaGs7MzSkpKZOUlJSXw8/MzuY6fn1+j8XX/NhVz+wUCN2/eRFlZmSzG1DZu3UedqqoqrFu3DsnJyY03GEC3bt3g7e2NU6dOmVzu6uoKDw8P2YNaV1uZl6wt3WqEqC3ie9x+KJqMqdVqREZGIicnRyozGo3IyclBTEyMyXViYmJk8QCQnZ0txYeEhMDPz08WYzAYkJeXJ8XExMSgvLwc+fn5Usz27dthNBoRHR0txezcuRM3btyQ7adXr17o2LGjbP8bNmzA9evX8ac//anJNp8/fx6XL1+Gv79/k7HU+trShxen/SBybHyP2w/Fp7ZISUnBhx9+iE8//RTHjx/HM888g6qqKkyePBkAMHHiRMydO1eKnzVrFrKysvDWW2/hxIkTWLBgAX766SfMnDkTAKBSqTB79my88cYb2LJlCw4fPoyJEyciICAAcXFxAIDevXtj5MiRmDp1Kvbu3Yvdu3dj5syZGDduHAICAgAA48ePh1qtRnJyMo4ePYqMjAy8++67slOIdT766CPExcXh7rvvlpVXVlbixRdfxI8//ogzZ84gJycHY8aMQY8ePaDT6axxOOkOtaUPL077QeTY+B63H4qPGYuPj8elS5cwf/58FBcXo3///sjKypIGy589exZOTv+XMw4cOBBffPEFXnvtNbzyyivo2bMnNm3ahH79+kkxL730EqqqqjBt2jSUl5fjoYceQlZWFjQajRTz+eefY+bMmRg+fDicnJzw5JNPYsWKFdJyT09PbNu2DTNmzEBkZCS8vb0xf/582VxkAHDy5Ens2rUL27Ztq9c2Z2dnHDp0CJ9++inKy8sREBCAESNG4PXXX4erq6vFjiFZTt2H1+0z9jvih1fdrUZe2XgEtUI49K1GiNoivsftB2+HZON4O6TWl7HvbL0PL0ce8Gqvtxohoubhe1wZ5nx/MxmzcUzGlMEPLyIiuhPmfH8rfpqSyBb5e7oxCSMiolah+AB+IiIioraMyRgRERGRgpiMUbPwdhpERETWwTFj1CTeToOIiMh62DNGjWpLM9ITEREpgckYNaotzUhPRESkBCZj1CjeToOIiMi6mIxRo+pup+Gs+j0j4+00iIiILIsD+KlJ8Q90xZBQH85IT0REZAVMxqhZOCM9ERGZUqS/hsLSKoR4u/N7ooWYjBEREVGLcOojy+CYMSIiIjJba019ZM1Jx21lQnP2jBEREZHZGpv6yFKnK63Z82ZLvXrsGSMiIiKzWXvqI2v2vNnahOZMxqhZbKUrl4iIbIO1pz6y5qTjtjahOU9TUpNsqSuXiIhshzWnPqrrebs1abJUz5s1t90S7BmjRtlaV66tYs8hEbVV/p5uiOl+t8WntbBmz5utTWjOnjFqVGsM0LR37DkkIrIOa/a82dKE5kzGqFG21pVraxrqORwS6sNklYjIAqw56bitTGjO05TUKH9PNzx+XxdZWdx9ATbxx2sLbG0QKBFRa+MwjTvHnjFqVJH+Gr4+cEFWtunAb3hB14sJGdhzSERtG4dpWAZ7xqhR7PlpnK0NAiUiai28wMty2DNGjWLPT9NsaRAoEVFr4QVelsOeMWoUe36ax1qXdhMR2Sprz8DflrBnjJrEnh8iIrpd3Y/1VzYeQa0Q/LF+B5iMUbPYyuW/RERkO/hj3TKYjBEREVlYkf4aCkurEOLt7vAJCn+s3zkmY0RERBbE6R7IXBzAT2SCPU9iaM91J7J3nO6BWoI9Y0S3sedftfZcdyJHwOkeqCXYM0Z0C3v+VWvPdSdyFJzugVqCyRjRLez5jgP2XHciR8G5GakleJqS6Bb2fMcBe647kSPhdA9kLpvoGUtPT0dwcDA0Gg2io6Oxd+/eRuM3bNiAsLAwaDQahIeHIzMzU7ZcCIH58+fD398fbm5u0Gq1KCgokMWUlZUhMTERHh4e8PLyQnJyMiorK2Uxhw4dwuDBg6HRaBAYGIglS5bIlq9ZswYqlUr20Gg0ZteFbIe/pxsev6+LrCzuvgC7+DDlL3Ii28G7cpA5FE/GMjIykJKSgtTUVOzfvx8RERHQ6XS4ePGiyfg9e/YgISEBycnJOHDgAOLi4hAXF4cjR45IMUuWLMGKFSuwevVq5OXlwd3dHTqdDtXV1VJMYmIijh49iuzsbGzduhU7d+7EtGnTpOUGgwEjRoxAUFAQ8vPzsXTpUixYsAAffPCBrD4eHh4oKiqSHr/++qtseXPqQrajSH8NXx+4ICvbdOA3uxl3Ff9AV+yaMwxrpz6IXXOGcfA+EZE9EAqLiooSM2bMkJ7X1taKgIAAkZaWZjJ+7NixYtSoUbKy6OhoMX36dCGEEEajUfj5+YmlS5dKy8vLy4Wrq6tYu3atEEKIY8eOCQBi3759Usy3334rVCqVuHDhghBCiL///e+iY8eO4vr161LMyy+/LHr16iU9/+STT4Snp2eDbWtOXZqi1+sFAKHX65sVT3dm96lLIujlrfUee06VKl01IiKyI+Z8fyvaM1ZTU4P8/HxotVqpzMnJCVqtFrm5uSbXyc3NlcUDgE6nk+ILCwtRXFwsi/H09ER0dLQUk5ubCy8vLwwYMECK0Wq1cHJyQl5enhQzZMgQqNVq2X5OnjyJK1euSGWVlZUICgpCYGAgxowZg6NHj0rLmlOX212/fh0Gg0H2oNbDK6GIiKi1KZqMlZaWora2Fr6+vrJyX19fFBcXm1ynuLi40fi6f5uK6dy5s2y5i4sLOnXqJIsxtY1b99GrVy98/PHH2Lx5Mz777DMYjUYMHDgQ58+fb3ZdbpeWlgZPT0/pERgYaDKOrIPjrsiRcAJgIvvAqynvQExMDGJiYqTnAwcORO/evfH+++/j9ddfb9E2586di5SUFOm5wWBgQtbKeCUUOQJOAExkPxTtGfP29oazszNKSkpk5SUlJfDz8zO5jp+fX6Pxdf82FXP7BQI3b95EWVmZLMbUNm7dx+3atWuH++67D6dOnWp2XW7n6uoKDw8P2YNan7lXQrEHgmwJJwAmsi+KJmNqtRqRkZHIycmRyoxGI3JycmQ9TreKiYmRxQNAdna2FB8SEgI/Pz9ZjMFgQF5enhQTExOD8vJy5OfnSzHbt2+H0WhEdHS0FLNz507cuHFDtp9evXqhY8eOJutWW1uLw4cPw9/fv9l1IfuXse8sBi3ejvEf5mHQ4u3I2HdW6SpRG8cJgInsi+JTW6SkpODDDz/Ep59+iuPHj+OZZ55BVVUVJk+eDACYOHEi5s6dK8XPmjULWVlZeOutt3DixAksWLAAP/30E2bOnAkAUKlUmD17Nt544w1s2bIFhw8fxsSJExEQEIC4uDgAQO/evTFy5EhMnToVe/fuxe7duzFz5kyMGzcOAQEBAIDx48dDrVYjOTkZR48eRUZGBt59913ZKcRFixZh27Zt+OWXX7B//3786U9/wq+//oopU6Y0uy5k39gD4djstceTF6IQ2RfFx4zFx8fj0qVLmD9/PoqLi9G/f39kZWVJg97Pnj0LJ6f/yxkHDhyIL774Aq+99hpeeeUV9OzZE5s2bUK/fv2kmJdeeglVVVWYNm0aysvL8dBDDyErK0s2Ievnn3+OmTNnYvjw4XBycsKTTz6JFStWSMs9PT2xbds2zJgxA5GRkfD29sb8+fNlc5FduXIFU6dORXFxMTp27IjIyEjs2bMHffr0MasuZL94U2DHZc9jruouRHll4xHUCsELUYhsnEoIIZoOI6UYDAZ4enpCr9dz/JgNKtJfw6DF2+vdgmjXnGH84rNjjvK6Fumv8UIUQpH+GgpLqxDi7W4Tfwe2Vh9rMef7W/GeMSJb1NwPC/ZAOCZH6fH093Szq/qS5dlaD6+t1cdWMBkjuo25HxacCsPx8Kbr5AgaGtM6JNRHkc8pW6uPLVF8AD+RLWnpgHzeFNixcPJfcgS2dlWtrdXHlrBnjOgWjnJ6iu4cezzJ3tlaD6+t1ceWsGeM6BacEoBuxR5Psme21sNra/WxJbya0sbxasrWl7HvbL0B+UoOMG0rVx4RkXXY2lW1tlYfazHn+5vJmI1jMqYMW/mw4JVHRET2yZzvb56mJDLBFk5PcXZ/IqK2gckYkY3ilUdERG0DkzEiG8WLCYiI2gYmY0Q2ilceOT57vRE5EVkW5xkjsmGc68px8eIMIqrDnjEiG2cLFxOQZfHiDCK6FZMxIqJWxosz6HY8Zd228TQlEVEr421h6FY8ZU3sGSMiamW8OIPq8JQ1AewZIyJSRPwDXeHdQY3vT1zCsDAfDO/tp3SVSAGNnbJmct52MBkjIlLA8+sP4qv9FwAAn+WdxZP3d8FbY/srWylqdTxlTQBPUxLZPHMH9nIgsO37+dwVKRGr89X+C/j53BWFakRK4SlrAtgzRmTTzB3Yy4HA9mHvmTKT5T+duYKIwI6tXBtSGucTJPaMEZlgC71L5g7s5UBg+xEV3Mlk+YBgJmJtFecTbNuYjBHdJmPfWQxavB3jP8zDoMXbkbHvrCL1MHcuKs5dZT8iAjviyfu7yMqevL8Le8WI2iiepiS6RUO9S0NCfVr9F6u5A3s5ENi+vDW2PybGBOGnM1cwILgjEzGiNow9Y0S3sKXeJXMH9trqQGBbOOVrqyICOyJ5cDcmYkRtHHvGiG7R0t6lIv01FJZWIcTb3aLJj7kDe21tIDAvKLAv1vo7JqLGMRkjukVd79IrG4+gVohm9S5ZO+Hw93Qz64vR3HhrsaVTvtQ0Js5EymEyRnQbc3qXWiPhsNfeCs4sbj+YOBMpi8kYkQnN7V2ydsJhz70VvKDAfjBxJlIWB/AT3YG6hONWlko47H3eMFu9oIDqs+bfMRE1jT1jRHegJWPMmqu1eit+PncFe8+UISq4k8Wv6rO1CwrINGv+HRNR05iMEd0hayUcrXGa79abVQOwys2qbeWCAmocE2ci5fA0JZEFWONWJtY+zcebVdPteEseImWwZ4zIhlmzt4I3q1aevV4pS0SWxWSMyMZZ6zQfb1atLHu+UpaILMsmTlOmp6cjODgYGo0G0dHR2Lt3b6PxGzZsQFhYGDQaDcLDw5GZmSlbLoTA/Pnz4e/vDzc3N2i1WhQUFMhiysrKkJiYCA8PD3h5eSE5ORmVlZWymEOHDmHw4MHQaDQIDAzEkiVLZMs//PBDDB48GB07dkTHjh2h1Wrr1X3SpElQqVSyx8iRI809RHSHeEue+nizauXY+5WyRGRZiidjGRkZSElJQWpqKvbv34+IiAjodDpcvHjRZPyePXuQkJCA5ORkHDhwAHFxcYiLi8ORI0ekmCVLlmDFihVYvXo18vLy4O7uDp1Oh+rqaikmMTERR48eRXZ2NrZu3YqdO3di2rRp0nKDwYARI0YgKCgI+fn5WLp0KRYsWIAPPvhAitmxYwcSEhLw/fffIzc3F4GBgRgxYgQuXJCPwxk5ciSKioqkx9q1ay11+KgZMvadxaDF2zH+wzwMWrwdGfvOKl0lm/HW2P7YPGMg5o3qjc0zBlp88D6ZZkv3QCUi5amEEKLpMOuJjo7GAw88gPfeew8AYDQaERgYiGeffRZz5sypFx8fH4+qqips3bpVKnvwwQfRv39/rF69GkIIBAQE4Pnnn8cLL7wAANDr9fD19cWaNWswbtw4HD9+HH369MG+ffswYMAAAEBWVhYeffRRnD9/HgEBAVi1ahVeffVVFBcXQ61WAwDmzJmDTZs24cSJEybbUltbi44dO+K9997DxIkTAfzeM1ZeXo5Nmza16PgYDAZ4enpCr9fDw8OjRdtoy4r01zBo8fZ6VyTumjOMY3RIMfy7JHJ85nx/K9ozVlNTg/z8fGi1WqnMyckJWq0Wubm5JtfJzc2VxQOATqeT4gsLC1FcXCyL8fT0RHR0tBSTm5sLLy8vKREDAK1WCycnJ+Tl5UkxQ4YMkRKxuv2cPHkSV66Yvtrs6tWruHHjBjp1ko/F2bFjBzp37oxevXrhmWeeweXLlxs8JtevX4fBYJA9qOXYA0G2yFYnxOXpfCJlKDqAv7S0FLW1tfD19ZWV+/r6Ntj7VFxcbDK+uLhYWl5X1lhM586dZctdXFzQqVMnWUxISEi9bdQt69ix/rial19+GQEBAbJEcOTIkXjiiScQEhKC06dP45VXXsEjjzyC3NxcODs719tGWloaFi5caLLtZD5HuCUPr7izH+a8VrY2rxcvKKA6/Mxpfbya0kIWL16MdevWYceOHdBoNFL5uHHjpP+Hh4fj3nvvRffu3bFjxw4MHz683nbmzp2LlJQU6bnBYEBgYKB1K+/A7H1mcX5B2o+WvFa2MiEubxROdfiZowxFT1N6e3vD2dkZJSUlsvKSkhL4+fmZXMfPz6/R+Lp/m4q5/QKBmzdvoqysTBZjahu37qPOsmXLsHjxYmzbtg333ntvo23u1q0bvL29cerUKZPLXV1d4eHhIXvQnYl/oCt2zRmGtVMfxK45w+zmg4VX3FmetU7D2ftrxdP5BNj/37E9UzQZU6vViIyMRE5OjlRmNBqRk5ODmJgYk+vExMTI4gEgOztbig8JCYGfn58sxmAwIC8vT4qJiYlBeXk58vPzpZjt27fDaDQiOjpaitm5cydu3Lgh20+vXr1kpyiXLFmC119/HVlZWbIxaA05f/48Ll++DH9//yZjyXLscWZxfkFaljWvqrX31yrE2x233SccKsCuTufbGnscf2fvf8f2TPGpLVJSUvDhhx/i008/xfHjx/HMM8+gqqoKkydPBgBMnDgRc+fOleJnzZqFrKwsvPXWWzhx4gQWLFiAn376CTNnzgQAqFQqzJ49G2+88Qa2bNmCw4cPY+LEiQgICEBcXBwAoHfv3hg5ciSmTp2KvXv3Yvfu3Zg5cybGjRuHgIAAAMD48eOhVquRnJyMo0ePIiMjA++++67sFOKbb76JefPm4eOPP0ZwcDCKi4tRXFwszVdWWVmJF198ET/++CPOnDmDnJwcjBkzBj169IBOp2uNw0t2rG68263sbbybrbD2L36HfK1uz86o2ex1Oh2H/Du2E4onY/Hx8Vi2bBnmz5+P/v374+DBg8jKypIGy589exZFRUVS/MCBA/HFF1/ggw8+QEREBL788kts2rQJ/fr1k2JeeuklPPvss5g2bRoeeOABVFZWIisrSzaW6/PPP0dYWBiGDx+ORx99FA899JBsDjFPT09s27YNhYWFiIyMxPPPP4/58+fL5iJbtWoVampq8NRTT8Hf3196LFu2DADg7OyMQ4cO4bHHHkNoaCiSk5MRGRmJ//znP3B1dbXaMSXHYKtX3Nkja//it/fXqrC0CrfPcSQE2CPSAvZ8qs/e/47tmeLzjFHjOM8YFemv2cwVd/aqteb1svZrZa2r3DjvmeXsOV2K8R/m1StfO/VBxHS/W4EamY+fOZZhzvc3r6YksnG2csWdPWutq2qt+VpZ8yo3e7/q2JY4wnQ6/MxpfewZs3HsGSOyHHv9xe8oPXttRca+s/USW3u5ipsshz1jREQm2Osv/sbGvFmyPfZ6fGyNrU3oS7aPyRgRkY1zhFNfbQ0TWzKH4ldTEpFl2eP8RtQ4XuVG5NjYM0bkQHgrE8fFU19Ejos9Y0QOwp7nN6Lmscc7SRBR05iMETkI3sqEiMg8tjKsg6cpiRwEB3nbH2tN4uoIeGzI2mxpWAeTMSIHwYk77UtLvgjaSoJiS1+S5JgaGtYxJNRHkfcWkzEiB8JB3vahJV8EbSVBsbUvSXJMrTV3X3NxzBiRg+Egb8ux1ngSc8f3taWLMzj2ke5Uc963dcM6bqXksA72jBERmWDNnihzx/fZ2q94a+LYR7oTzX3f2tqwDvaMERHdxto9UeZO4mprv+KtiRPcUkuZ+76Nf6Ards0ZhrVTH8SuOcMUPe3PnjGyirYy0JgcU2v0RJkzvs/WfsVbG8c+Uku05H1rK7etYjJGFtdWBhqT42qtU2XmfBG0tQTFVr4kyX7Y8ylunqYki2pLA43JcdnqqTJenEHUMFt93zYHe8bIotrSQGNybPEPdEWY313Yd+YKHgjuiIjAjkpXiYiaYK89yEzGyKLsuZuY6FY83U5kn+zxFDdPU5JF2XM3MVEdnm4notbEnjGyOHvtJiaqw9PtRNSamIyRVdhjNzFRHUc53c4pZojsA5OxNowf1ESmOcK8XrY25o2fN7avtrYWN27cULoadsPZ2RkuLi5QqVRNBzdBJYQQTYeRUgwGAzw9PaHX6+Hh4WGx7fKDmqhpRfprdnm6vUh/DYMWb6/Xs7drzjBF2mFrnzdUX2VlJc6fPw+mBOZp3749/P39oVar6y0z5/ubPWNtUEODk4eE+vCDmugW9nq63ZbGvNna5w3VV1tbi/Pnz6N9+/bw8fGxSE+PoxNCoKamBpcuXUJhYSF69uwJJ6eWXxPJZKwN4gc1kW2wVo+wLY15a63PG/aut9yNGzcghICPjw/c3HjsmsvNzQ3t2rXDr7/+ipqaGmg0mhZvi8lYG9QWP6iJbE3GvrOYs/EwhABUKmCxBXuEbWnMW2t83rB33TLYI2a+O+kNk23HIlshu2JLc4HVfVDfyh6vWiMyR5H+Gl7+6vdEDACEAOZ8ddii85jFP9AVu+YMw9qpD2LXnGGKJSfW/rzhnHDkCNgz1kbZylxgtvQLnqi1/PtYSb0yASDneAn+9GCwxfZjK2PerPl5w951cgTsGWvDbOWmw7byC76tKtJfw57TpW2iJ8FW2nqxotpk+SXD9VauSeux1ueNu9rZZHl7Nb/e2ori4mI8++yz6NatG1xdXREYGIjRo0cjJydHitmzZw8effRRdOzYERqNBuHh4Xj77bdRW1srxZw5cwbJyckICQmBm5sbunfvjtTUVNTU1Fi9DewZa8NsacCrrfyCb2va0lgbW2qrtrcvVm4/Xa/8D707K1Ab29Tcz6eqmlqT5VdrjNaqGtmQM2fOYNCgQfDy8sLSpUsRHh6OGzdu4LvvvsOMGTNw4sQJfP311xg7diwmT56M77//Hl5eXvj3v/+Nl156Cbm5uVi/fj1UKhVOnDgBo9GI999/Hz169MCRI0cwdepUVFVVYdmyZVZtB+cZs3FtZZ4xe2dLiW1z2dpcVNZki219fv1BfLX/gvT8yfu74K2x/RWpi60x5/PJFl9be1NdXY3CwkKEhITc0RWBSnj00Udx6NAhnDx5Eu7u7rJl5eXlaNeuHYKCghAbG4uvvvpKtvxf//oXHnvsMaxbtw7x8fEmt7906VKsWrUKv/zyi8nljR07c76/2Y/bBnHAq2Vl7DuLQYu3Y/yHeRi0eDsy9p1VukrN0thYG0fjKG21ldOs1mTu55MtXZBErfs3WlZWhqysLMyYMaNeIgYAXl5e2LZtGy5fvowXXnih3vLRo0cjNDQUa9eubXAfer0enTp1smi9TeFpyjaIA14tx57nSbOlKU6szdba+vO5K7JeMQD4av8FTIwJQkRgR5PrtJXe7JZ8PtnKBUltXWv/jZ46dQpCCISFhTUY89///hcA0Lt3b5PLw8LCpBhT21+5cqXVT1ECNtIzlp6ejuDgYGg0GkRHR2Pv3r2Nxm/YsAFhYWHSILzMzEzZciEE5s+fD39/f7i5uUGr1aKgoEAWU1ZWhsTERHh4eMDLywvJycmorKyUxRw6dAiDBw+GRqNBYGAglixZYpW6tDZOJ2E5rdHjYq1fmm2pR6GlbbXWsd97psxk+U9nrjRYj7bSm93SzydbuSCprVLib9ScUVbmjsi6cOECRo4ciaeffhpTp041t2pmUzwZy8jIQEpKClJTU7F//35ERERAp9Ph4sWLJuP37NmDhIQEJCcn48CBA4iLi0NcXByOHDkixSxZsgQrVqzA6tWrkZeXB3d3d+h0OlRX/98VTImJiTh69Ciys7OxdetW7Ny5E9OmTZOWGwwGjBgxAkFBQcjPz8fSpUuxYMECfPDBBxavS2trS1/C1mbtxNbap0Db0pWs8Q90xca/xOC1Ub2x8S8xTbbVmsc+Ktj0aY8BwaZ7xRzlNGtz8PPJPinxN9qzZ09p4H1DQkNDAQDHjx83ufz48eNSTJ3ffvsNw4YNw8CBA2Xf+dak+AD+6OhoPPDAA3jvvfcAAEajEYGBgXj22WcxZ86cevHx8fGoqqrC1q1bpbIHH3wQ/fv3x+rVqyGEQEBAAJ5//nnpHLFer4evry/WrFmDcePG4fjx4+jTpw/27duHAQMGAACysrLw6KOP4vz58wgICMCqVavw6quvori4WLoB6Jw5c7Bp0ybphbdEXZpirQH8gP3eBNnWZOw7W2+eNEskNRyYbFm2NijcnAH8bfFvgZ9PrccSA/iV+ht95JFHcPjw4UYH8Hft2hVDhw6tN4B/y5YtGDNmjGwA/4ULFzBs2DBERkbis88+g7Oz6alT6jjEAP6amhrk5+dDq9VKZU5OTtBqtcjNzTW5Tm5uriweAHQ6nRRfWFiI4uJiWYynpyeio6OlmNzcXHh5eUmJGABotVo4OTkhLy9PihkyZIjsTuw6nQ4nT57ElStXLFYXJbFb3zKs1bvUlnpDrM3cUyitcezfGtsfm2cMxLxRvbF5xsBGr6Rsi71F/HyyL0r9jaanp6O2thZRUVH46quvUFBQgOPHj2PFihWIiYmBu7s73n//fWzevBnTpk3DoUOHcObMGXz00UeYNGkSnnrqKYwdOxbA74nY0KFD0bVrVyxbtgyXLl1CcXExiouLrdoGQOEB/KWlpaitrYWvr6+s3NfXt8Fux+LiYpPxdQer7t+mYjp3ls/n4+Ligk6dOsliQkJC6m2jblnHjh0tUpfbXb9+Hdev/9/EjwaDwWQc2RZrzJNma4PO7Zm5g8Jb69hHBHZscMD+7ThInWydEn+j3bp1w/79+/HXv/4Vzz//PIqKiuDj44PIyEisWrUKAPDUU0/h+++/x1//+lcMHjwY1dXV6NmzJ1599VXMnj1buidndnY2Tp06hVOnTuGee+6R7cfaJxF5NaWNSUtLw8KFC5WuBtkA3irKcsxNrmz12HNyZLJ1SvyN+vv747333pOGO5kyePBgZGVlNbqdSZMmYdKkSRauXfMomox5e3vD2dkZJSXy+7SVlJTAz8/P5Dp+fn6Nxtf9W1JSAn9/f1lM//79pZjbLxC4efMmysrKZNsxtZ9b92GJutxu7ty5SElJkZ4bDAYEBgaajCXHx94Qy2hJcsVjT0StRdExY2q1GpGRkbL7RxmNRuTk5CAmJsbkOjExMbJ44Peuxbr4kJAQ+Pn5yWIMBgPy8vKkmJiYGJSXlyM/P1+K2b59O4xGI6Kjo6WYnTt34saNG7L99OrVCx07drRYXW7n6uoKDw8P2YPaNo6dsYyWjO3jsSeiViEUtm7dOuHq6irWrFkjjh07JqZNmya8vLxEcXGxEEKICRMmiDlz5kjxu3fvFi4uLmLZsmXi+PHjIjU1VbRr104cPnxYilm8eLHw8vISmzdvFocOHRJjxowRISEh4tq1a1LMyJEjxX333Sfy8vLErl27RM+ePUVCQoK0vLy8XPj6+ooJEyaII0eOiHXr1on27duL999/3+J1aYxerxcAhF6vN//gEhERNeHatWvi2LFjzf5eov/T2LEz5/tb8WRMCCFWrlwpunbtKtRqtYiKihI//vijtCw2NlYkJSXJ4tevXy9CQ0OFWq0Wffv2Fd98841sudFoFPPmzRO+vr7C1dVVDB8+XJw8eVIWc/nyZZGQkCA6dOggPDw8xOTJk0VFRYUs5ueffxYPPfSQcHV1FV26dBGLFy+uV3dL1KUxTMaIiMiamIy1nKWSMcXnGaPGWXOeMSIiInu+UbjSHGKeMSIiIrIN7Jsxn6WOGZMxIiKiNqxulvmamhqFa2J/rl79fSLodu3a3dF2OM8YERFRG+bi4oL27dvj0qVLaNeuHZyc2E/TFCEErl69iosXL8LLy6vJ2yY1hckYERFRG6ZSqeDv74/CwkL8+uuvSlfHrnh5eTU4L6o5mIwRERG1cWq1Gj179uSpSjO0a9fujnvE6jAZIyIiIjg5OfFqSoXwxDARERGRgpiMERERESmIyRgRERGRgjhmzMbVTShnMBgUrgkRERE1V933dnMmhmUyZuMqKioAAIGBgQrXhIiIiMxVUVEBT0/PRmN4b0obZzQa8dtvv+Guu+6CSqWy6LYNBgMCAwNx7tw5h7zvJdtn/xy9jWyf/XP0NrJ9LSeEQEVFBQICApqcSJc9YzbOyckJ99xzj1X34eHh4ZBvsjpsn/1z9DayffbP0dvI9rVMUz1idTiAn4iIiEhBTMaIiIiIFMRkrA1zdXVFamoqXF1dla6KVbB99s/R28j22T9HbyPb1zo4gJ+IiIhIQewZIyIiIlIQkzEiIiIiBTEZIyIiIlIQkzEiIiIiBTEZcyDp6ekIDg6GRqNBdHQ09u7d22j88uXL0atXL7i5uSEwMBD/7//9P1RXV9/RNq3J0u1bsGABVCqV7BEWFmbtZjTKnDbeuHEDixYtQvfu3aHRaBAREYGsrKw72qa1Wbp9tvQa7ty5E6NHj0ZAQABUKhU2bdrU5Do7duzA/fffD1dXV/To0QNr1qypF2NLr5812mjPr2FRURHGjx+P0NBQODk5Yfbs2SbjNmzYgLCwMGg0GoSHhyMzM9PylW8Ga7RvzZo19V4/jUZjnQY0g7lt3LhxIx5++GH4+PjAw8MDMTEx+O677+rFWft9yGTMQWRkZCAlJQWpqanYv38/IiIioNPpcPHiRZPxX3zxBebMmYPU1FQcP34cH330ETIyMvDKK6+0eJvWZI32AUDfvn1RVFQkPXbt2tUazTHJ3Da+9tpreP/997Fy5UocO3YMf/7zn/H444/jwIEDLd6mNVmjfYDtvIZVVVWIiIhAenp6s+ILCwsxatQoDBs2DAcPHsTs2bMxZcoU2ReBLb1+gHXaCNjva3j9+nX4+PjgtddeQ0REhMmYPXv2ICEhAcnJyThw4ADi4uIQFxeHI0eOWLLqzWKN9gG/z15/6+v366+/WqrKZjO3jTt37sTDDz+MzMxM5OfnY9iwYRg9enTrf44KcghRUVFixowZ0vPa2loREBAg0tLSTMbPmDFD/OEPf5CVpaSkiEGDBrV4m9ZkjfalpqaKiIgIq9S3Jcxto7+/v3jvvfdkZU888YRITExs8TatyRrts7XXsA4A8fXXXzca89JLL4m+ffvKyuLj44VOp5Oe29LrdztLtdGeX8NbxcbGilmzZtUrHzt2rBg1apSsLDo6WkyfPv0Oa3hnLNW+Tz75RHh6elqsXpZkbhvr9OnTRyxcuFB63hrvQ/aMOYCamhrk5+dDq9VKZU5OTtBqtcjNzTW5zsCBA5Gfny91tf7yyy/IzMzEo48+2uJtWos12lenoKAAAQEB6NatGxITE3H27FnrNaQRLWnj9evX650OcHNzk3oV7P01bKp9dWzlNTRXbm6u7HgAgE6nk46HLb1+LdVUG+vY62vYHM09BvassrISQUFBCAwMxJgxY3D06FGlq9RiRqMRFRUV6NSpE4DWex8yGXMApaWlqK2tha+vr6zc19cXxcXFJtcZP348Fi1ahIceegjt2rVD9+7dMXToUOk0Xku2aS3WaB8AREdHY82aNcjKysKqVatQWFiIwYMHo6KiwqrtMaUlbdTpdHj77bdRUFAAo9GI7OxsbNy4EUVFRS3eprVYo32Abb2G5iouLjZ5PAwGA65du2ZTr19LNdVGwL5fw+Zo6BjYy2vYlF69euHjjz/G5s2b8dlnn8FoNGLgwIE4f/680lVrkWXLlqGyshJjx44F0Hqfo0zG2qgdO3bgb3/7G/7+979j//792LhxI7755hu8/vrrSlfNIprTvkceeQRPP/007r33Xuh0OmRmZqK8vBzr169XsObN9+6776Jnz54ICwuDWq3GzJkzMXnyZDg5Ocbbujnts/fXkPga2ruYmBhMnDgR/fv3R2xsLDZu3AgfHx+8//77SlfNbF988QUWLlyI9evXo3Pnzq26b5dW3RtZhbe3N5ydnVFSUiIrLykpgZ+fn8l15s2bhwkTJmDKlCkAgPDwcFRVVWHatGl49dVXW7RNa7FG+0wlLF5eXggNDcWpU6cs34gmtKSNPj4+2LRpE6qrq3H58mUEBARgzpw56NatW4u3aS3WaJ8pSr6G5vLz8zN5PDw8PODm5gZnZ2ebef1aqqk2mmJPr2FzNHQM7OU1NFe7du1w33332d3rt27dOkyZMgUbNmyQnZJsrc9Rx/gJ3cap1WpERkYiJydHKjMajcjJyUFMTIzJda5evVovIXF2dgYACCFatE1rsUb7TKmsrMTp06fh7+9voZo3350cb41Ggy5duuDmzZv46quvMGbMmDvepqVZo32mKPkamismJkZ2PAAgOztbOh629Pq1VFNtNMWeXsPmaMkxsGe1tbU4fPiwXb1+a9euxeTJk7F27VqMGjVKtqzV3ocWuxSAFLVu3Trh6uoq1qxZI44dOyamTZsmvLy8RHFxsRBCiAkTJog5c+ZI8ampqeKuu+4Sa9euFb/88ovYtm2b6N69uxg7dmyzt2nv7Xv++efFjh07RGFhodi9e7fQarXC29tbXLx4sdXbJ4T5bfzxxx/FV199JU6fPi127twp/vCHP4iQkBBx5cqVZm+zNVmjfbb0GlZUVIgDBw6IAwcOCADi7bffFgcOHBC//vqrEEKIOXPmiAkTJkjxv/zyi2jfvr148cUXxfHjx0V6erpwdnYWWVlZUowtvX5CWKeN9vwaCiGk+MjISDF+/Hhx4MABcfToUWn57t27hYuLi1i2bJk4fvy4SE1NFe3atROHDx9u1bYJYZ32LVy4UHz33Xfi9OnTIj8/X4wbN05oNBpZTGsyt42ff/65cHFxEenp6aKoqEh6lJeXSzGt8T5kMuZAVq5cKbp27SrUarWIiooSP/74o7QsNjZWJCUlSc9v3LghFixYILp37y40Go0IDAwUf/nLX2RfdE1ts7VZun3x8fHC399fqNVq0aVLFxEfHy9OnTrVii2qz5w27tixQ/Tu3Vu4urqKu+++W0yYMEFcuHDBrG22Nku3z5Zew++//14AqPeoa1NSUpKIjY2tt07//v2FWq0W3bp1E5988km97drS62eNNtr7a2gqPigoSBazfv16ERoaKtRqtejbt6/45ptvWqdBt7FG+2bPni39ffr6+opHH31U7N+/v/UadRtz2xgbG9tofB1rvw9VQjRwzoaIiIiIrI5jxoiIiIgUxGSMiIiISEFMxoiIiIgUxGSMiIiISEFMxoiIiIgUxGSMiIiISEFMxoiIiIgUxGSMiIjMsmPHDqhUKpSXlytdFSKHwGSMiGzWpEmToFKpsHjxYln5pk2boFKppOdCCHz44YeIiYmBh4cHOnTogL59+2LWrFnNvmHx1atXMXfuXHTv3h0ajQY+Pj6IjY3F5s2bpZjg4GAsX77cIm2ztrpjp1Kp0K5dO4SEhOCll15CdXW1WdsZOnQoZs+eLSsbOHAgioqK4OnpacEaE7VdTMaIyKZpNBq8+eabuHLlisnlQgiMHz8ezz33HB599FFs27YNx44dw0cffQSNRoM33nijWfv585//jI0bN2LlypU4ceIEsrKy8NRTT+Hy5cuWbE6rGjlyJIqKivDLL7/gnXfewfvvv4/U1NQ73q5arYafn58sISaiO2DRmysREVlQUlKS+OMf/yjCwsLEiy++KJV//fXXou7ja+3atQKA2Lx5s8ltGI3GZu3L09NTrFmzpsHlpu5hV+c///mPeOihh4RGoxH33HOPePbZZ0VlZaW0/B//+IeIjIwUHTp0EL6+viIhIUGUlJRIy+vup5eVlSX69+8vNBqNGDZsmCgpKRGZmZkiLCxM3HXXXSIhIUFUVVU1qz1JSUlizJgxsrInnnhC3HfffdLz0tJSMW7cOBEQECDc3NxEv379xBdffCHbxu1tLiwslOp7671ev/zyS9GnTx+hVqtFUFCQWLZsWbPqSURCsGeMiGyas7Mz/va3v2HlypU4f/58veVr165Fr1698Nhjj5lcv7m9N35+fsjMzERFRYXJ5Rs3bsQ999yDRYsWoaioCEVFRQCA06dPY+TIkXjyySdx6NAhZGRkYNeuXZg5c6a07o0bN/D666/j559/xqZNm3DmzBlMmjSp3j4WLFiA9957D3v27MG5c+cwduxYLF++HF988QW++eYbbNu2DStXrmxWe2535MgR7NmzB2q1Wiqrrq5GZGQkvvnmGxw5cgTTpk3DhAkTsHfvXgDAu+++i5iYGEydOlVqc2BgYL1t5+fnY+zYsRg3bhwOHz6MBQsWYN68eVizZk2L6krU5iidDRIRNeTW3p0HH3xQ/M///I8QQt4zFhYWJh577DHZerNmzRLu7u7C3d1ddOnSpVn7+uGHH8Q999wj2rVrJwYMGCBmz54tdu3aJYsJCgoS77zzjqwsOTlZTJs2TVb2n//8Rzg5OYlr166Z3Ne+ffsEAFFRUSGE+L+esX//+99STFpamgAgTp8+LZVNnz5d6HS6ZrUnKSlJODs7C3d3d+Hq6ioACCcnJ/Hll182ut6oUaPE888/Lz2PjY0Vs2bNksXc3jM2fvx48fDDD8tiXnzxRdGnT59m1ZWorWPPGBHZhTfffBOffvopjh8/3mTsq6++ioMHD2L+/PmorKxs1vaHDBmCX375BTk5OXjqqadw9OhRDB48GK+//nqj6/38889Ys2YNOnToID10Oh2MRiMKCwsB/N5zNHr0aHTt2hV33XUXYmNjAQBnz56Vbevee++V/u/r64v27dujW7dusrKLFy82qz0AMGzYMBw8eBB5eXlISkrC5MmT8eSTT0rLa2tr8frrryM8PBydOnVChw4d8N1339WrV1OOHz+OQYMGycoGDRqEgoIC1NbWmrUtoraIyRgR2YUhQ4ZAp9Nh7ty5svKePXvi5MmTsjIfHx/06NEDnTt3Nmsf7dq1w+DBg/Hyyy9j27ZtWLRoEV5//XXU1NQ0uE5lZSWmT5+OgwcPSo+ff/4ZBQUF6N69O6qqqqDT6eDh4YHPP/8c+/btw9dffw0A9bbbrl076f91V0HeSqVSwWg0Nrs97u7u6NGjByIiIvDxxx8jLy8PH330kbR86dKlePfdd/Hyyy/j+++/x8GDB6HT6RptLxFZnovSFSAiaq7Fixejf//+6NWrl1SWkJCA8ePHY/PmzRgzZoxF99enTx/cvHkT1dXVUKvVUKvV9Xp67r//fhw7dgw9evQwuY3Dhw/j8uXLWLx4sTTe6qeffrJoPZvDyckJr7zyClJSUjB+/Hi4ublh9+7dGDNmDP70pz8BAIxGI/773/+iT58+0nqm2ny73r17Y/fu3bKy3bt3IzQ0FM7OzpZvDJGDYc8YEdmN8PBwJCYmYsWKFVLZuHHj8NRTT2HcuHFYtGgR8vLycObMGfzwww/IyMhodjIwdOhQvP/++8jPz8eZM2eQmZmJV155BcOGDYOHhweA3+cZ27lzJy5cuIDS0lIAwMsvv4w9e/Zg5syZOHjwIAoKCrB582ZpAH/Xrl2hVquxcuVK/PLLL9iyZUuTpz6t5emnn4azszPS09MB/N6rmJ2djT179uD48eOYPn06SkpKZOsEBwdLx7S0tNRkz9zzzz+PnJwcvP766/jvf/+LTz/9FO+99x5eeOGFVmkXkb1jMkZEdmXRokWyhEClUiEjIwPLly9HZmYmhg8fjl69euF//ud/EBgYiF27djVruzqdDp9++ilGjBiB3r1749lnn4VOp8P69etl+z5z5gy6d+8OHx8fAL+P8/rhhx/w3//+F4MHD8Z9992H+fPnIyAgAMDvp0zXrFmDDRs2oE+fPli8eDGWLVtmwSPSfC4uLpg5cyaWLFmCqqoqvPbaa7j//vuh0+kwdOhQ+Pn5IS4uTrbOCy+8AGdnZ/Tp0wc+Pj4mx5Pdf//9WL9+PdatW4d+/fph/vz5WLRokckrRomoPpUQQihdCSIiIqK2ij1jRERERApiMkZEbcKtU0/c/vjPf/6jdPXMcvbs2UbbY+7UFESkLJ6mJKI2obEbhnfp0gVubm6tWJs7c/PmTZw5c6bB5cHBwXBx4cXyRPaCyRgRERGRgniakoiIiEhBTMaIiIiIFMRkjIiIiEhBTMaIiIiIFMRkjIiIiEhBTMaIiIiIFMRkjIiIiEhBTMaIiIiIFPT/AXNDMDUE8xhTAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAHHCAYAAACBYj2uAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVL9JREFUeJzt3XtcVHX+P/DXcBkGMQYN5GIgeMEriWkQmqIrOaaZZK2KriJfFWu1dK0trBSzdjG1Mo1Vt92k3UrRtHSVNQk0VyEkvF/XC14yQNEYRMEL8/n94Y+zjgyXgZkzt9fz8ZiHcc77nPl8zmnmvOfz+ZzPUQghBIiIiIhIFk6WLgARERGRI2HyRURERCQjJl9EREREMmLyRURERCQjJl9EREREMmLyRURERCQjJl9EREREMmLyRURERCQjJl9EREREMmLyRUQOb/78+VAoFI2KVSgUmD9/vlnLM3DgQAwcONBq90dEzcPki4isRlpaGhQKhfRycXFB27ZtMWnSJFy6dMnSxbM6wcHBeserTZs26N+/P7755huT7P/mzZuYP38+du7caZL9EdE9TL6IyOosWLAA//znP7Fy5Uo8/fTT+OKLLxAdHY2qqiqzvN/bb7+NyspKs+zb3MLDw/HPf/4T//znP/Haa6/hl19+wahRo7By5cpm7/vmzZt45513mHwRmZiLpQtARPSgp59+Gn369AEATJkyBd7e3nj//fexefNmjB492uTv5+LiAhcX2/w6bNu2LX73u99Jf0+cOBEdO3bERx99hBdffNGCJSOiurDli4isXv/+/QEAZ86c0Vt+4sQJvPDCC2jdujVUKhX69OmDzZs368XcuXMH77zzDjp16gSVSoWHH34YTz75JDIzM6UYQ2O+bt26hT/84Q/w8fHBQw89hGeffRY///xzrbJNmjQJwcHBtZYb2ufq1avxm9/8Bm3atIGbmxu6deuGFStWGHUsGuLn54euXbuisLCw3rjLly9j8uTJ8PX1hUqlQs+ePfH5559L68+dOwcfHx8AwDvvvCN1bZp7vBuRI7DNn3pE5FDOnTsHAGjVqpW07OjRo+jXrx/atm2LpKQkeHh4YN26dYiNjcWGDRvw3HPPAbiXBKWkpGDKlCmIiIhAeXk5fvrpJ+zbtw9PPfVUne85ZcoUfPHFFxg3bhz69u2L7OxsDB8+vFn1WLFiBbp3745nn30WLi4u+Ne//oXf//730Ol0mD59erP2XePOnTu4ePEiHn744TpjKisrMXDgQJw+fRozZsxASEgI1q9fj0mTJqGsrAwzZ86Ej48PVqxYgZdeegnPPfccRo0aBQB49NFHTVJOIocmiIisxOrVqwUA8f3334srV66Iixcviq+//lr4+PgINzc3cfHiRSl28ODBIiwsTFRVVUnLdDqd6Nu3r+jUqZO0rGfPnmL48OH1vm9ycrK4/+vwwIEDAoD4/e9/rxc3btw4AUAkJydLy+Lj40W7du0a3KcQQty8ebNWnEajEe3bt9dbFh0dLaKjo+stsxBCtGvXTgwZMkRcuXJFXLlyRRw8eFCMHTtWABAvv/xynftbunSpACC++OILadnt27dFVFSUaNmypSgvLxdCCHHlypVa9SWi5mO3IxFZnZiYGPj4+CAwMBAvvPACPDw8sHnzZjzyyCMAgGvXriE7OxujR4/G9evXUVpaitLSUly9ehUajQanTp2S7o708vLC0aNHcerUqUa/f0ZGBgDglVde0Vs+a9asZtXL3d1d+m+tVovS0lJER0fj7Nmz0Gq1Tdrn9u3b4ePjAx8fH/Ts2RPr16/HhAkT8P7779e5TUZGBvz8/BAXFyctc3V1xSuvvIKKigr88MMPTSoLETUOux2JyOqkpqYiNDQUWq0Wn332GXbt2gU3Nzdp/enTpyGEwNy5czF37lyD+7h8+TLatm2LBQsWYOTIkQgNDUWPHj0wdOhQTJgwod7us/Pnz8PJyQkdOnTQW965c+dm1WvPnj1ITk5Gbm4ubt68qbdOq9VCrVYbvc/IyEi89957UCgUaNGiBbp27QovL696tzl//jw6deoEJyf9399du3aV1hOR+TD5IiKrExERId3tGBsbiyeffBLjxo3DyZMn0bJlS+h0OgDAa6+9Bo1GY3AfHTt2BAAMGDAAZ86cwaZNm7B9+3b87W9/w0cffYSVK1diypQpzS5rXZOzVldX6/195swZDB48GF26dMGHH36IwMBAKJVKZGRk4KOPPpLqZCxvb2/ExMQ0aVsisgwmX0Rk1ZydnZGSkoJBgwbhk08+QVJSEtq3bw/gXldZYxKP1q1bIyEhAQkJCaioqMCAAQMwf/78OpOvdu3aQafT4cyZM3qtXSdPnqwV26pVK5SVldVa/mDr0b/+9S/cunULmzdvRlBQkLR8x44dDZbf1Nq1a4dDhw5Bp9PptX6dOHFCWg/UnVgSUfNwzBcRWb2BAwciIiICS5cuRVVVFdq0aYOBAwdi1apVKCoqqhV/5coV6b+vXr2qt65ly5bo2LEjbt26Vef7Pf300wCAZcuW6S1funRprdgOHTpAq9Xi0KFD0rKioqJas8w7OzsDAIQQ0jKtVovVq1fXWQ5zGTZsGIqLi5Geni4tu3v3LpYvX46WLVsiOjoaANCiRQsAMJhcElHTseWLiGzCH//4R/z2t79FWloaXnzxRaSmpuLJJ59EWFgYpk6divbt26OkpAS5ubn4+eefcfDgQQBAt27dMHDgQPTu3RutW7fGTz/9hK+//hozZsyo873Cw8MRFxeHv/zlL9Bqtejbty+ysrJw+vTpWrFjx47FG2+8geeeew6vvPIKbt68iRUrViA0NBT79u2T4oYMGQKlUokRI0Zg2rRpqKiowKeffoo2bdoYTCDNKTExEatWrcKkSZNQUFCA4OBgfP3119izZw+WLl2Khx56CMC9GwS6deuG9PR0hIaGonXr1ujRowd69Ogha3mJ7I6lb7ckIqpRM9VEfn5+rXXV1dWiQ4cOokOHDuLu3btCCCHOnDkjJk6cKPz8/ISrq6to27ateOaZZ8TXX38tbffee++JiIgI4eXlJdzd3UWXLl3En/70J3H79m0pxtC0EJWVleKVV14RDz/8sPDw8BAjRowQFy9eNDj1wvbt20WPHj2EUqkUnTt3Fl988YXBfW7evFk8+uijQqVSieDgYPH++++Lzz77TAAQhYWFUpwxU000NI1GXfsrKSkRCQkJwtvbWyiVShEWFiZWr15da9ucnBzRu3dvoVQqOe0EkYkohLivDZyIiIiIzIpjvoiIiIhkxOSLiIiISEZMvoiIiIhkxOSLiIiISEZMvoiIiIhkxOSLiIiISEacZNWCdDodfvnlFzz00EN8jAcREZGNEELg+vXrCAgIqPWA+sZg8mVBv/zyCwIDAy1dDCIiImqCixcv4pFHHjF6OyZfFlTzCI+LFy/C09PTwqUhIiKixigvL0dgYKB0HTcWky8Lqulq9PT0ZPJFRERkY5o6ZIgD7omIiIhkxOSLiIiISEZMvoiIiIhkxDFfREREDqC6uhp37tyxdDFshlKpbNI0Eo3B5IuIiMiOCSFQXFyMsrIySxfFpjg5OSEkJARKpdLk+2byRUREZMdqEq82bdqgRYsWnNS7EWomQS8qKkJQUJDJjxmTLyIiIjtVXV0tJV4PP/ywpYtjU3x8fPDLL7/g7t27cHV1Nem+OeCeiIjITtWM8WrRooWFS2J7arobq6urTb5vJl9ERER2jl2NxjPnMWPyRURERCQjJl9EREREMmLyRUREZGJF2krknClFkbbS0kWxacXFxXj55ZfRvn17uLm5ITAwECNGjEBWVpYUk5OTg2HDhqFVq1ZQqVQICwvDhx9+qDdW69y5c5g8eTJCQkLg7u6ODh06IDk5Gbdv37ZEtXi3IxERkSml51/AnI2HoROAkwJIGRWGMY8HWbpYNufcuXPo168fvLy8sHjxYoSFheHOnTv47rvvMH36dJw4cQLffPMNRo8ejYSEBOzYsQNeXl74/vvv8frrryM3Nxfr1q2DQqHAiRMnoNPpsGrVKnTs2BFHjhzB1KlTcePGDSxZskT2uimEEEL2dyUAQHl5OdRqNbRaLTw9PS1dHCIiaqYibSX6LcyG7r4rq7NCgd1Jg+Cvdpe9PFVVVSgsLERISAhUKpXs798cw4YNw6FDh3Dy5El4eHjorSsrK4OrqyvatWuH6OhobNiwQW/9v/71Lzz77LNYu3YtxowZY3D/ixcvxooVK3D27FmD6+s7ds29frPbkYiIyEQKS2/oJV4AUC0EzpXetEyBTEjOrtRr165h27ZtmD59eq3ECwC8vLywfft2XL16Fa+99lqt9SNGjEBoaCjWrFlT53totVq0bt3apOVuLHY7EhERmUiItwecFKjV8hXsbdvzbMndlXr69GkIIdClS5c6Y/773/8CALp27WpwfZcuXaQYQ/tfvny5RbocAbZ8ERERmYy/2h0po8Lg/P/niHJWKPDnUT0s0uVoKkXaSinxAu4llm9uPGLWFjBjRkQZO3rq0qVLGDp0KH77299i6tSpxhbNJNjyRUREZEJjHg/CgFAfnCu9iWDvFjadeAH1d6Waq26dOnWSBsrXJTQ0FABw/Phx9O3bt9b648ePo1u3bnrLfvnlFwwaNAh9+/bFX//6V9MW2ghs+SIiIjIxf7U7ojo8bPOJF/C/rtT7mbsrtXXr1tBoNEhNTcWNGzdqrS8rK8OQIUPQunVrfPDBB7XWb968GadOnUJcXJy07NKlSxg4cCB69+6N1atXw8nJcikQky8iIiKqk6W6UlNTU1FdXY2IiAhs2LABp06dwvHjx7Fs2TJERUXBw8MDq1atwqZNm5CYmIhDhw7h3Llz+Pvf/45JkybhhRdewOjRowH8L/EKCgrCkiVLcOXKFRQXF6O4uNisdagLux2JiIioXpboSm3fvj327duHP/3pT3j11VdRVFQEHx8f9O7dGytWrAAAvPDCC9ixYwf+9Kc/oX///qiqqkKnTp3w1ltvYdasWdLzGTMzM3H69GmcPn0ajzzyiN77WGLGLc7zZUGc54uIiMzJluf5sjS7n+crNTUVwcHBUKlUiIyMxN69e+uNX79+Pbp06SI9RiAjI0NvvRAC8+bNg7+/P9zd3RETE4NTp07pxVy7dg3jx4+Hp6cnvLy8MHnyZFRUVEjrd+7ciZEjR8Lf3x8eHh4IDw/Hl19+qbePtLQ0KBQKvRf/5yYiIqL6WDz5Sk9Px+zZs5GcnIx9+/ahZ8+e0Gg0uHz5ssH4nJwcxMXFYfLkydi/fz9iY2MRGxuLI0eOSDGLFi3CsmXLsHLlSuTl5cHDwwMajQZVVVVSzPjx43H06FFkZmZiy5Yt2LVrFxITE/Xe59FHH8WGDRtw6NAhJCQkYOLEidiyZYteeTw9PVFUVCS9zp8/b+IjRERERHZFWFhERISYPn269Hd1dbUICAgQKSkpBuNHjx4thg8frrcsMjJSTJs2TQghhE6nE35+fmLx4sXS+rKyMuHm5ibWrFkjhBDi2LFjAoDIz8+XYv79738LhUIhLl26VGdZhw0bJhISEqS/V69eLdRqdeMr+wCtVisACK1W2+R9EBER1aWyslIcO3ZMVFZWWrooNqe+Y9fc67dFW75u376NgoICxMTESMucnJwQExOD3Nxcg9vk5ubqxQOARqOR4gsLC1FcXKwXo1arERkZKcXk5ubCy8sLffr0kWJiYmLg5OSEvLy8Ostr6FEEFRUVaNeuHQIDAzFy5EgcPXq0zu1v3bqF8vJyvRcRERE5FosmX6Wlpaiuroavr6/ecl9f3zpv/ywuLq43vubfhmLatGmjt97FxQWtW7eu833XrVuH/Px8JCQkSMs6d+6Mzz77DJs2bcIXX3wBnU6Hvn374ueffza4j5SUFKjVaukVGBhoMI6IiMiUBO+tM5o5j5nFx3zZgh07diAhIQGffvopunfvLi2PiorCxIkTER4ejujoaGzcuBE+Pj5YtWqVwf3MmTMHWq1Wel28eFGuKhARkQNydXUFANy8afsP9pbb7du3AQDOzs4m37dF5/ny9vaGs7MzSkpK9JaXlJTAz8/P4DZ+fn71xtf8W1JSAn9/f72Y8PBwKebBAf13797FtWvXar3vDz/8gBEjRuCjjz7CxIkT662Pq6srevXqhdOnTxtc7+bmBjc3t3r3QUREZCrOzs7w8vKSrnktWrSQ5r6iuul0Oly5cgUtWrSAi4vpUyWLJl9KpRK9e/dGVlYWYmNjAdyrcFZWFmbMmGFwm6ioKGRlZWHWrFnSsszMTERFRQEAQkJC4Ofnh6ysLCnZKi8vR15eHl566SVpH2VlZSgoKEDv3r0BANnZ2dDpdIiMjJT2u3PnTjzzzDN4//339e6ErEt1dTUOHz6MYcOGGXsoiIiIzKKmUaGuWQTIMCcnJwQFBZklWbX4DPezZ89GfHw8+vTpg4iICCxduhQ3btyQxlZNnDgRbdu2RUpKCgBg5syZiI6OxgcffIDhw4dj7dq1+Omnn6QHZCoUCsyaNQvvvfceOnXqhJCQEMydOxcBAQFSgte1a1cMHToUU6dOxcqVK3Hnzh3MmDEDY8eORUBAAIB7XY3PPPMMZs6cieeff14aC6ZUKqVB9wsWLMATTzyBjh07oqysDIsXL8b58+cxZcoUOQ8hERFRnRQKBfz9/dGmTRvcuXPH0sWxGUql0nzPf2zejZimsXz5chEUFCSUSqWIiIgQP/74o7QuOjpaxMfH68WvW7dOhIaGCqVSKbp37y62bt2qt16n04m5c+cKX19f4ebmJgYPHixOnjypF3P16lURFxcnWrZsKTw9PUVCQoK4fv26tD4+Pl4AqPWKjo6WYmbNmiWV29fXVwwbNkzs27ev0fXmVBNERES2p7nXbz5eyIL4eCEiIiLbYxePFyIiIiJyFEy+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGTE5IuIiIhIRky+iIiIiGRkFclXamoqgoODoVKpEBkZib1799Ybv379enTp0gUqlQphYWHIyMjQWy+EwLx58+Dv7w93d3fExMTg1KlTejHXrl3D+PHj4enpCS8vL0yePBkVFRXS+p07d2LkyJHw9/eHh4cHwsPD8eWXXxpdFiIiIqL7WTz5Sk9Px+zZs5GcnIx9+/ahZ8+e0Gg0uHz5ssH4nJwcxMXFYfLkydi/fz9iY2MRGxuLI0eOSDGLFi3CsmXLsHLlSuTl5cHDwwMajQZVVVVSzPjx43H06FFkZmZiy5Yt2LVrFxITE/Xe59FHH8WGDRtw6NAhJCQkYOLEidiyZYtRZSEiIiLSIywsIiJCTJ8+Xfq7urpaBAQEiJSUFIPxo0ePFsOHD9dbFhkZKaZNmyaEEEKn0wk/Pz+xePFiaX1ZWZlwc3MTa9asEUIIcezYMQFA5OfnSzH//ve/hUKhEJcuXaqzrMOGDRMJCQmNLktDtFqtACC0Wm2j4omIiMjymnv9tmjL1+3bt1FQUICYmBhpmZOTE2JiYpCbm2twm9zcXL14ANBoNFJ8YWEhiouL9WLUajUiIyOlmNzcXHh5eaFPnz5STExMDJycnJCXl1dnebVaLVq3bt3osjzo1q1bKC8v13sRERGRY7Fo8lVaWorq6mr4+vrqLff19UVxcbHBbYqLi+uNr/m3oZg2bdrorXdxcUHr1q3rfN9169YhPz8fCQkJjS7Lg1JSUqBWq6VXYGCgwTgiIiKyXxYf82ULduzYgYSEBHz66afo3r17k/czZ84caLVa6XXx4kUTlpKIiIhsgUWTL29vbzg7O6OkpERveUlJCfz8/Axu4+fnV298zb8NxTw4oP/u3bu4du1arff94YcfMGLECHz00UeYOHGiUWV5kJubGzw9PfVeRERE5FgsmnwplUr07t0bWVlZ0jKdToesrCxERUUZ3CYqKkovHgAyMzOl+JCQEPj5+enFlJeXIy8vT4qJiopCWVkZCgoKpJjs7GzodDpERkZKy3bu3Inhw4fj/fff17sTsrFlISIiIqrFxDcAGG3t2rXCzc1NpKWliWPHjonExETh5eUliouLhRBCTJgwQSQlJUnxe/bsES4uLmLJkiXi+PHjIjk5Wbi6uorDhw9LMQsXLhReXl5i06ZN4tChQ2LkyJEiJCREVFZWSjFDhw4VvXr1Enl5eWL37t2iU6dOIi4uTlqfnZ0tWrRoIebMmSOKioqk19WrV40qS314tyMREZHtae712+LJlxBCLF++XAQFBQmlUikiIiLEjz/+KK2Ljo4W8fHxevHr1q0ToaGhQqlUiu7du4utW7fqrdfpdGLu3LnC19dXuLm5icGDB4uTJ0/qxVy9elXExcWJli1bCk9PT5GQkCCuX78urY+PjxcAar2io6ONKkt9mHwRERHZnuZevxVCCGGxZjcHV15eDrVaDa1Wy/FfRERENqK512/e7UhEREQkIyZfRERERDJi8kVEREQkIyZfRERERDJi8kVEREQkIyZfRERERDJi8kVEREQkIyZfRERERDJi8kVEREQkIyZfRERERDJi8kVEREQkIyZfRERERDJi8kVEREQkIyZfRERERDJi8kVEREQkIyZfRERERDJi8kVEREQkIyZfRERERDJi8kVEREQkIyZfRERERDJi8kVEREQkIyZfBAAo0lYi50wpirSVli4KERGRXXOxdAHI8tLzL2DOxsPQCcBJAaSMCsOYx4MsXSwiIiK7xJYvB1ekrZQSLwDQCeDNjUfYAkZERGQmTL4cXGHpDSnxqlEtBM6V3rRMgYiIiOwcky8HF+LtASeF/jJnhQLB3i0sUyAiIiI7x+TLwfmr3ZEyKgzOinsZmLNCgT+P6gF/tbuFS0ZERGSfOOCeMObxIAwI9cG50psI9m7BxIuIiMiMmHwRgHstYEy6iIiIzI/djkREREQyYvJFREREJCMmX0REREQyYvJFREREJCMmX0REREQyYvJFREREJCMmX0REREQyYvJFREREJCMmX0REREQyYvJFREREJCMmX0REREQyYvJFREREJCMmX0REREQyYvJFREREJCMmX0REREQyYvJFREREJCMmX0REREQyYvJFREREJCMmX0REREQyYvJFREREJCMmX0REREQyYvJFsijSViLnTCmKtJWWLgoREZFFuVi6AGT/0vMvYM7Gw9AJwEkBpIwKw5jHgyxdLCIiIotgyxeZVZG2Ukq8AEAngDc3HmELGBEROSyLJ1+pqakIDg6GSqVCZGQk9u7dW2/8+vXr0aVLF6hUKoSFhSEjI0NvvRAC8+bNg7+/P9zd3RETE4NTp07pxVy7dg3jx4+Hp6cnvLy8MHnyZFRUVEjrq6qqMGnSJISFhcHFxQWxsbG1yrFz504oFIpar+Li4qYfDDtUWHpDSrxqVAuBc6U3LVMgIiIiC7No8pWeno7Zs2cjOTkZ+/btQ8+ePaHRaHD58mWD8Tk5OYiLi8PkyZOxf/9+xMbGIjY2FkeOHJFiFi1ahGXLlmHlypXIy8uDh4cHNBoNqqqqpJjx48fj6NGjyMzMxJYtW7Br1y4kJiZK66urq+Hu7o5XXnkFMTEx9dbh5MmTKCoqkl5t2rRp5lGxLyHeHnBS6C9zVigQ7N3CMgUiIiKyMIUQQjQcZh6RkZF4/PHH8cknnwAAdDodAgMD8fLLLyMpKalW/JgxY3Djxg1s2bJFWvbEE08gPDwcK1euhBACAQEBePXVV/Haa68BALRaLXx9fZGWloaxY8fi+PHj6NatG/Lz89GnTx8AwLZt2zBs2DD8/PPPCAgI0HvPSZMmoaysDN9++63e8p07d2LQoEH49ddf4eXl1aT6l5eXQ61WQ6vVwtPTs0n7sAXp+Rfw5sYjqBYCzgoF/jyqB8d8ERGRzWru9dtiLV+3b99GQUGBXsuSk5MTYmJikJuba3Cb3NzcWi1RGo1Gii8sLERxcbFejFqtRmRkpBSTm5sLLy8vKfECgJiYGDg5OSEvL8/oeoSHh8Pf3x9PPfUU9uzZY/T2jmDM40HYnTQIa6Y+gd1Jg5h4ERGRQ7PY3Y6lpaWorq6Gr6+v3nJfX1+cOHHC4DbFxcUG42vGWdX821DMg12DLi4uaN26tVHjtfz9/bFy5Ur06dMHt27dwt/+9jcMHDgQeXl5eOyxxwxuc+vWLdy6dUv6u7y8vNHvZ+v81e7wV7tbuhhEREQWx6kmmqhz587o3Lmz9Hffvn1x5swZfPTRR/jnP/9pcJuUlBS88847chWRiIiIrJDFuh29vb3h7OyMkpISveUlJSXw8/MzuI2fn1+98TX/NhTz4ID+u3fv4tq1a3W+b2NFRETg9OnTda6fM2cOtFqt9Lp48WKz3o+IiIhsj8WSL6VSid69eyMrK0taptPpkJWVhaioKIPbREVF6cUDQGZmphQfEhICPz8/vZjy8nLk5eVJMVFRUSgrK0NBQYEUk52dDZ1Oh8jIyGbV6cCBA/D3969zvZubGzw9PfVeRERE5Fgs2u04e/ZsxMfHo0+fPoiIiMDSpUtx48YNJCQkAAAmTpyItm3bIiUlBQAwc+ZMREdH44MPPsDw4cOxdu1a/PTTT/jrX/8KAFAoFJg1axbee+89dOrUCSEhIZg7dy4CAgKkubq6du2KoUOHYurUqVi5ciXu3LmDGTNmYOzYsXp3Oh47dgy3b9/GtWvXcP36dRw4cADAvQH2ALB06VKEhISge/fuqKqqwt/+9jdkZ2dj+/bt8hw8IiIiskkWTb7GjBmDK1euYN68eSguLkZ4eDi2bdsmDZi/cOECnJz+1zjXt29ffPXVV3j77bfx5ptvolOnTvj222/Ro0cPKeb111/HjRs3kJiYiLKyMjz55JPYtm0bVCqVFPPll19ixowZGDx4MJycnPD8889j2bJlemUbNmwYzp8/L/3dq1cvAPcmcQXu3a356quv4tKlS2jRogUeffRRfP/99xg0aJDpDxQRERHZDYvO8+XoHGWeLyIiIntis/N8ERERETkiJl9EREREMmLyRURERCQjJl9EREREMmLyRURERCQjJl9EREREMmLyRURERCQjJl9EREREMmLyRURERCQjo5KvO3fu4PXXX0fHjh0RERGBzz77TG99SUkJnJ2dTVpAIiIiIntiVPL1pz/9Cf/4xz/w4osvYsiQIZg9ezamTZumF8OnFRERERHVzagHa3/55Zf429/+hmeeeQYAMGnSJDz99NNISEiQWsEUCoXpS0lERERkJ4xq+bp06RJ69Ogh/d2xY0fs3LkTOTk5mDBhAqqrq01eQCIiIiJ7YlTy5efnhzNnzugta9u2LXbs2IH8/HxMmjTJlGUjIiIisjtGJV+/+c1v8NVXX9VaHhAQgOzsbBQWFpqsYERERET2yKgxX3PnzsWJEycMrmvbti1++OEHZGZmmqRgRERERPZIIXh7osWUl5dDrVZDq9XC09PT0sUhIiKiRmju9btJk6yuX78eo0aNQo8ePdCjRw+MGjUKX3/9dVN2RURERORQjEq+dDodxowZgzFjxuDYsWPo2LEjOnbsiKNHj2LMmDEYO3Ys5/kiIiIiqodRY74+/vhjfP/999i8ebM011eNzZs3IyEhAR9//DFmzZplyjISERER2Q2jWr5Wr16NxYsX10q8AODZZ5/FokWLaj1yiIiIiIj+x6jk69SpU4iJialzfUxMDE6dOtXsQhERERHZK6OSL3d3d5SVldW5vry8HCqVqrllIiIiIrJbRiVfUVFRWLFiRZ3rU1NTERUV1exCEREREdkrowbcv/XWWxg4cCCuXr2K1157DV26dIEQAsePH8cHH3yATZs2YceOHeYqKxEREZHNMyr56tu3L9LT05GYmIgNGzborWvVqhXWrFmDfv36mbSARERERPakSTPc37x5E9999500uD40NBRDhgxBixYtTF5Ae8YZ7omIiGxPc6/fRrV8ZWdnY8aMGfjxxx/x3HPP6a3TarXo3r07Vq5cif79+xtdECIiIiJHYNSA+6VLl2Lq1KkGszy1Wo1p06bhww8/NFnhiIiIiOyNUcnXwYMHMXTo0DrXDxkyBAUFBc0uFBEREZG9Mir5Kikpgaura53rXVxccOXKlWYXioiIiMheGZV8tW3bFkeOHKlz/aFDh+Dv79/sQhERERHZK6OSr2HDhmHu3Lmoqqqqta6yshLJyckGn/tIRI1TpK1EzplSFGkrLV0UIiIyE6OmmigpKcFjjz0GZ2dnzJgxA507dwYAnDhxAqmpqaiursa+ffvg6+trtgLbE041QfdLz7+AORsPQycAJwWQMioMYx4PsnSxiIjoAc29fhs9z9f58+fx0ksv4bvvvkPNpgqFAhqNBqmpqQgJCTG6EI6KyRfVKNJWot/CbOju+zQ6KxTYnTQI/mp3yxWMiIhqkXWeLwBo164dMjIy8Ouvv+L06dMQQqBTp05o1aqV0W9ORPcUlt7QS7wAoFoInCu9yeSLiMjOGJ181WjVqhUef/xxU5aFyGGFeHvASYFaLV/B3nxqBBGRvTFqwD0RmYe/2h0po8LgrFAAuJd4/XlUD7Z6ERHZoSa3fBGRaY15PAgDQn1wrvQmgr1bMPEiIrJTTL6IrIi/2p1JFxFRHYq0lSgsvYEQbw+b/q5k8kWysJcPDBERWYY9TcfD5IvMzp4+MEREJL8ibaV0HQHu3Zz05sYjGBDqY5M/6Dngnsyqrg8MZ3AnIqLGqm86HlvE5IvMyt4+MEREJL+a6XjuZ8vT8TD5IrMK8fbAA58XKBSw2Q8MERHJz96m4+GYL5KfUQ+0IiIisq/peJh8kVkVlt6olWsJgI/NISIio9nLdDzsdiSzsrd+eqpfkbYSOWdKeUMFEVE9mHyRWdlbPz3VLT3/AvotzMa4T/PQb2E20vMvWLpIRERWSSGE4AgcCykvL4darYZWq4Wnp6eli2NWRdpKu+inJ8OKtJXotzC71oPBdycN4vkmIoNsefLt5l6/OeaLZGEv/fRkWH1TivC8E9GDHH3ybXY7ElGzcWwfETUWJ99m8kVEJsCxfUTUWJx8m92ORGQi9jQHDxGZT01L+YNjRB2ppdziLV+pqakIDg6GSqVCZGQk9u7dW2/8+vXr0aVLF6hUKoSFhSEjI0NvvRAC8+bNg7+/P9zd3RETE4NTp07pxVy7dg3jx4+Hp6cnvLy8MHnyZFRUVEjrq6qqMGnSJISFhcHFxQWxsbEGy7Jz50489thjcHNzQ8eOHZGWltakY0BkL/zV7ojq8DATLyKqE1vKLZx8paenY/bs2UhOTsa+ffvQs2dPaDQaXL582WB8Tk4O4uLiMHnyZOzfvx+xsbGIjY3FkSNHpJhFixZh2bJlWLlyJfLy8uDh4QGNRoOqqiopZvz48Th69CgyMzOxZcsW7Nq1C4mJidL66upquLu745VXXkFMTIzBshQWFmL48OEYNGgQDhw4gFmzZmHKlCn47rvvTHR0iIiI7NOYx4OwO2kQ1kx9AruTBjnUYHsAgLCgiIgIMX36dOnv6upqERAQIFJSUgzGjx49WgwfPlxvWWRkpJg2bZoQQgidTif8/PzE4sWLpfVlZWXCzc1NrFmzRgghxLFjxwQAkZ+fL8X8+9//FgqFQly6dKnWe8bHx4uRI0fWWv7666+L7t276y0bM2aM0Gg0DdT6f7RarQAgtFpto7chIiIiy2ru9dtiLV+3b99GQUGBXsuSk5MTYmJikJuba3Cb3NzcWi1RGo1Gii8sLERxcbFejFqtRmRkpBSTm5sLLy8v9OnTR4qJiYmBk5MT8vLyGl3+hspCZI04Az0RkeVZbMB9aWkpqqur4evrq7fc19cXJ06cMLhNcXGxwfji4mJpfc2y+mLatGmjt97FxQWtW7eWYhqjrrKUl5ejsrIS7u61+65v3bqFW7duSX+Xl5c3+v2ImsvR59UhIrIWFh9w70hSUlKgVqulV2BgoKWLRA6C8+oQEVkPiyVf3t7ecHZ2RklJid7ykpIS+Pn5GdzGz8+v3viafxuKeXBA/927d3Ht2rU639eYsnh6ehps9QKAOXPmQKvVSq+LFy82+v2ImoPz6hARWQ+LJV9KpRK9e/dGVlaWtEyn0yErKwtRUVEGt4mKitKLB4DMzEwpPiQkBH5+fnox5eXlyMvLk2KioqJQVlaGgoICKSY7Oxs6nQ6RkZGNLn9DZTHEzc0Nnp6eei8iOXAGeiIi62HRbsfZs2fj008/xeeff47jx4/jpZdewo0bN5CQkAAAmDhxIubMmSPFz5w5E9u2bcMHH3yAEydOYP78+fjpp58wY8YMAIBCocCsWbPw3nvvYfPmzTh8+DAmTpyIgIAAaa6url27YujQoZg6dSr27t2LPXv2YMaMGRg7diwCAgKk9zp27BgOHDiAa9euQavV4sCBAzhw4IC0/sUXX8TZs2fx+uuv48SJE/jLX/6CdevW4Q9/+IP5D5wN4kBvy+K8OkREVsTEd18abfny5SIoKEgolUoREREhfvzxR2lddHS0iI+P14tft26dCA0NFUqlUnTv3l1s3bpVb71OpxNz584Vvr6+ws3NTQwePFicPHlSL+bq1asiLi5OtGzZUnh6eoqEhARx/fp1vZh27doJALVe99uxY4cIDw8XSqVStG/fXqxevdqoujvKVBNr954XIUlbRLs3toiQpC1i7d7zli6Sw/ql7KbIOV0qfim7aemiEBHZrOZevxVCCFFPbkZmVF5eDrVaDa1Wa7ddkEXaSvRbmF3rMRK7kwax1YWIiGxSc6/fvNuRzIoDvYmIiPQx+SKz4kBvIiIyFXsZP8zki8yKA72JiMgU0vMvoN/CbIz7NA/9FmYjPf+CpYvUZBzzZUGOMOarRpG2EudKbyLYuwUTLyIiMoq1jR9u7vXbYo8XIsfir3Zn0kVERE1S3/hhW7y2sNuRiIiIrJq9jR9m8kVWy14GVhIRUfPY2/hhdjuSVUrPvyA9CNpJAaSMCsOYx4MsXSwiIrKQMY8HYUCoj12MH2bLF1mdIm2llHgBgE4Ab248whYwIiIrJkdvhb/aHVEdHrbpxAtgyxdZIXsbWElEZO/YW2EctnyR1bG3gZVERPaMvRXGY/JFVsfeBlYSEdkzPkbOeOx2JKtkTwMriYjsWU1vxYMToLK3om5s+aIm4cBKIiIC2FvRFGz5slNF2koUlt5AiLeHyT8AHFhJRET3Y2+FcZh82SFzJkd1DawcEOrDDxsRkQPjY+Qaj92Odsbcd51wYCUREVHzMPmyM+ZOjjgNBBERUfMw+bIz5k6OOLCSiIgM4fN4G49jvuxMTXL05sYjqBbCLMmRXAMrzXnTABERmY613ohlrdcRhRBCNBxG5lBeXg61Wg2tVgtPT0+T7rtIW2nTd51Y6weZiIj0FWkr0W9hdq15vnYnDbLo9cec15HmXr/Z7WinrG2OLGOao/moCiIi22GNN2JZ+3WE3Y5kdsb++uCDtYmIbIc1znBv7dcRtnyRWTXl1wfvqCQish3WeCOWtV9H2PJFZtWUXx9y3DRARESmY20z3Fv7dYTJF5lVU5ujre2DTETkaIy9U9DaZri35usIky8yq+b8+rC2DzIRkaOwlzvOrfU6wqkmLMicU01YG1uf+oKIyFFY69QR1qS512+2fJEsrPXXBxER6bP2OwXtAe92JCIicgCNnW/R2u8UtAdMvoiIiOxcev4F9FuYjXGf5qHfwmyk51+oM9Yap46wNxzzZUGONOaLiIgso6ljuDhWt24c80VERER1auoYLo7VNR92OxJZEWOegUlE1Bgcw2V9mHwRmYmxiZQxYzKIiBqLY7isD8d8WZAtj/kyduZjR2PsBIWcV4eIzI1juEyHY75IdvYy87G51PUw8QGhPnV+4XFeHSLHJscPWo7hsh5MvsgoTUksHE1TEqmmPgOTLZBEto8/aB0Px3yRUepLLOiepgxubcqYDI4RI7J9df2gbcxYUd6g0zBrPUZs+SKjNLWFxpH4q93xXK+22LDvkrQstldAgy1TYx4PwoBQn0aNyWALJJF9aOqQA7aWNcyajxFbvsgovGumYUXaSnyz/5Lesm/3/9KoX17+andEdXi4wePJFkjbZa2/xKl+5jpvTWkpb05rmaOw9mPEli8ymjEtNI5IjsHzbIG0Tdb8S5zqZs7zVvOD9s2NR1AtRKN+0PIGnYZZ+zFi8kVNwrtm6iZHYtSUL2yyLHYV2yY5zpuxP2j546th1n6M2O1IZGJydc2OeTwIu5MGYc3UJ7A7aRBbUKwcu4ptk1znrbFDDmpiOfyjftZ+jNjyRWQGcnXNsgXSdlj7L3EyzFrPG4d/NMyajxFbvojMxJhfsmT/rP2XOBlmzefN2O8YR7zZw1q/h/l4IQuy5ccLEVHT8BEvtsnWzxtv9jAtPl6IiMiGyNFVzCcfmJ4td/HzZg/rw+SLiMiOsIWDHmTt0y44Io75IiKyE9Y+sSRZRlMmciXzYvJFRGQnOJ0FGWLNNw04KnY7EhHZCWudFoEsz5qnXXBEbPkiIrITbOGg+ljrtAuOiC1fRER2hC0cRNbPKlq+UlNTERwcDJVKhcjISOzdu7fe+PXr16NLly5QqVQICwtDRkaG3nohBObNmwd/f3+4u7sjJiYGp06d0ou5du0axo8fD09PT3h5eWHy5MmoqKjQizl06BD69+8PlUqFwMBALFq0SG99WloaFAqF3kulUjXjSBARNR9bOIism8WTr/T0dMyePRvJycnYt28fevbsCY1Gg8uXLxuMz8nJQVxcHCZPnoz9+/cjNjYWsbGxOHLkiBSzaNEiLFu2DCtXrkReXh48PDyg0WhQVVUlxYwfPx5Hjx5FZmYmtmzZgl27diExMVFaX15ejiFDhqBdu3YoKCjA4sWLMX/+fPz1r3/VK4+npyeKioqk1/nz5018hIiIiMiuCAuLiIgQ06dPl/6urq4WAQEBIiUlxWD86NGjxfDhw/WWRUZGimnTpgkhhNDpdMLPz08sXrxYWl9WVibc3NzEmjVrhBBCHDt2TAAQ+fn5Usy///1voVAoxKVLl4QQQvzlL38RrVq1Erdu3ZJi3njjDdG5c2fp79WrVwu1Wt3Emguh1WoFAKHVapu8DyIiIpJXc6/fFm35un37NgoKChATEyMtc3JyQkxMDHJzcw1uk5ubqxcPABqNRoovLCxEcXGxXoxarUZkZKQUk5ubCy8vL/Tp00eKiYmJgZOTE/Ly8qSYAQMGQKlU6r3PyZMn8euvv0rLKioq0K5dOwQGBmLkyJE4evRonfW9desWysvL9V5ERETkWCyafJWWlqK6uhq+vr56y319fVFcXGxwm+Li4nrja/5tKKZNmzZ6611cXNC6dWu9GEP7uP89OnfujM8++wybNm3CF198AZ1Oh759++Lnn382WPaUlBSo1WrpFRgYaDCOiIiI7JfFx3zZsqioKEycOBHh4eGIjo7Gxo0b4ePjg1WrVhmMnzNnDrRarfS6ePGizCUmIiIiS7No8uXt7Q1nZ2eUlJToLS8pKYGfn5/Bbfz8/OqNr/m3oZgHB/TfvXsX165d04sxtI/73+NBrq6u6NWrF06fPm1wvZubGzw9PfVeRERE5FgsmnwplUr07t0bWVlZ0jKdToesrCxERUUZ3CYqKkovHgAyMzOl+JCQEPj5+enFlJeXIy8vT4qJiopCWVkZCgoKpJjs7GzodDpERkZKMbt27cKdO3f03qdz585o1aqVwbJVV1fj8OHD8Pf3N+YwEBERkSMx8Q0ARlu7dq1wc3MTaWlp4tixYyIxMVF4eXmJ4uJiIYQQEyZMEElJSVL8nj17hIuLi1iyZIk4fvy4SE5OFq6uruLw4cNSzMKFC4WXl5fYtGmTOHTokBg5cqQICQkRlZWVUszQoUNFr169RF5enti9e7fo1KmTiIuLk9aXlZUJX19fMWHCBHHkyBGxdu1a0aJFC7Fq1Sop5p133hHfffedOHPmjCgoKBBjx44VKpVKHD16tFF1592OREREtqe512+LJ19CCLF8+XIRFBQklEqliIiIED/++KO0Ljo6WsTHx+vFr1u3ToSGhgqlUim6d+8utm7dqrdep9OJuXPnCl9fX+Hm5iYGDx4sTp48qRdz9epVERcXJ1q2bCk8PT1FQkKCuH79ul7MwYMHxZNPPinc3NxE27ZtxcKFC/XWz5o1Syq3r6+vGDZsmNi3b1+j683ki4iIyPY09/qtEEKI+tvGyFzKy8uhVquh1Wo5/ouIiMhGNPf6zbsdiciuFWkrkXOmFEXaSksXhYgIAB+sTUR2LD3/AuZsPAydAJwUQMqoMIx5PMjSxSIiB8eWLyKyS0XaSinxAgCdAN7ceIQtYERkcUy+iMguFZbekBKvGtVC4FzpTcsUiBqNXcVk79jtSGQmRdpKFJbeQIi3B/zV7pYujsMJ8faAkwJ6CZizQoFg7xaWKxQ1iF3F5AjY8kVkBun5F9BvYTbGfZqHfguzkZ5/wdJFcjj+anekjAqDs0IB4F7i9edRPZgIWzF2FZOjYMsXkYnVdQEZEOrDC7/MxjwehAGhPjhXehPB3i14/K1cfV3FPHdkT5h8EZkYLyDWxV/tzuNuI9hVbBwObbBd7HYkMrGaC8j9eAEhahi7ihuPQxtsG2e4tyDOcG+/0vMv4M2NR1AthHQB4aBhosYp0layq7geRdpK9FuYXauFcHfSIB4vmTT3+s1uRyIz4FgjoqZjV3H9OLTB9jH5IjITXkCsA8fFkL3h2DjbxzFfRGS3OC6G7BHHxtk+jvmyII75IjIfjouxXWytbByOjbMcjvkiIjKA42JsE2e4bzwObbBd7HYkIrvEKT9sD2e4J0fB5IuI7FLNuJiaLzkngONirBwfhk6OgskXEdk3xQP/NqBIW4mcM6VsbbEAtlaSo2DyRUR2qSldWLw70rJ4Fx85Cg64JyK7ZOyAez4Q3TpwgmJyBEy+iMguGTsRJe+OtB68i4/sHbsdiahOtjz+ydguLI43IiK5sOWL7AYnZjStpsy3ZG3nwJgurJpk7cEHoltDPYjIvnCGewviDPemw4kZTasps8PbyzngrOENs7Ykm0hunOGeHB4HSpueNQ9WN/eFn+ON6mcvSTaRJTH5IpvHgdKmZ62D1Xnhtyz+0CEyDQ64J5vHgdKmZ42D1Zv66BlbvmnA2nAGeiLTYMsX2Ty5Bko72jgXaxus3pTWNbaUmZaH0tng8hZK/o5/kLHfF472/eLomHyRXTD3xIyOehE3ZvyTuc+BsV2h7CIzvRu3qw0uv3lbV+92jpZYGPt94ajfL46MP1fIbvir3RHV4WGztHg1pbvLEZnrHNTs25iuUHaRmV5Tupcd7ZFNxn5f8PvFMbHli6gBHNBvPYxpXTO2pcyaWUvLkbHdy47Y+mjs9wW/XxwTky+iBtjTRdweNLYr1FonTTU2kbK2LiljEmBHTCyM/b7g94tjYvJF1ABrvYhTw6ztIc3GJlLW2nLU2AS4qYmFtbT0NYWx3xf8fnFMnOHegjjDvW3hzOfWwVYvzE15akDOmVKM+zSv1vI1U59AVIeHzVVUk0rPv1ArsXCEwefGfl/w+8W2cIZ7Iplw5nPLs+ULc1O64OTqkjJnQmtM66O1tvQ1hbHfF/x+cSy825GIbIKt3xXWlDsFjb3DsynkuBuxsXfB8g5VchRs+SIim2Drg7ebOrbHnOPWrK2liYPPyVEw+SIim2APF+amJlLm6pJqakJrrm5KDj53LLY6ftMUmHwRkU2wlwuzNY3taUpCa+5xd9Z2hyqZhy2P3zQF3u1oQbzbkch4vCvMtIy5G7Epd2wSPcge/j/i3Y5E5FCsqeXIWhnTncNJU62DI3XB8f8jJl9ERHalKd055p40lernaF1w/P+IU00QEdkNc0/HIcfUF47G1qdQaQr+f8SWLyKb5khdFdQwObpzOCDetBy1C87R/z9i8kVkoxytq4IaJld3jrHj7vgjoW6O3AXnyOM32e1IZIMcsauCGuavdkd4oJfesp6Baote4OSYQd+WsQvOMbHli8gGOWpXBdXv4MVfse9Cmd6yfRfKcPDir+gZ2Er28ljbDPrWyl664NjC2XhMvohskCN3Vdg6c16g9p67ZnD5T+csk3zxR0Lj2XoXHIdBGIfdjkQ2iF0Vtik9/wL6/v8uuL5m6IKLCG5tcHmfYPkTL6BpDxMn28NhEMZjyxeRjbKXrgpHUaStxBsbDkt/CwEkbThs0i64noGt8PxjbbFh3yVp2fOPtbVIqxfwvx8J97eI8EeC/WELp/GYfBHZMN51Zju+P1ZSa5kAkHW8BL97Ithk7/PB6HBMjGqHn879ij7BrSyWeN2v5iF2fJidfeIwCOMx+SJyEByTYVmXr1cZXH6l/JbJ36tnoHUkXTXdUTXXZAHzDbjnDwvLsZeH3suJyReRA+BdZ5YX09UXy7PP1Fr+m65tLFAaecjVHcUfFpbHYRDG4YB7AnDv4pxzppQDJO1UfRdBkkfNeKz7NXY8lrV9PhtbHjkG3HOwt/XwV7sjqsPDTLwawSqSr9TUVAQHB0OlUiEyMhJ79+6tN379+vXo0qULVCoVwsLCkJGRobdeCIF58+bB398f7u7uiImJwalTp/Rirl27hvHjx8PT0xNeXl6YPHkyKioq9GIOHTqE/v37Q6VSITAwEIsWLTK6LLaAkyDaP951Zh0+GB2OTdP7Yu7wrtg0vS8+GB3e4DZyfD6NSe6MKY8cd+XyhwXZIosnX+np6Zg9ezaSk5Oxb98+9OzZExqNBpcvXzYYn5OTg7i4OEyePBn79+9HbGwsYmNjceTIESlm0aJFWLZsGVauXIm8vDx4eHhAo9Ggqup/Yy7Gjx+Po0ePIjMzE1u2bMGuXbuQmJgorS8vL8eQIUPQrl07FBQUYPHixZg/fz7++te/GlUWa8dfjY6h5iJYk4BZy11n1taiI4eega0wuX/7Rrd4NeXzaa5kqinlGfN4EHYnDcKaqU9gd9Igk3cH8ocF2SKFEJa9/yQyMhKPP/44PvnkEwCATqdDYGAgXn75ZSQlJdWKHzNmDG7cuIEtW7ZIy5544gmEh4dj5cqVEEIgICAAr776Kl577TUAgFarha+vL9LS0jB27FgcP34c3bp1Q35+Pvr06QMA2LZtG4YNG4aff/4ZAQEBWLFiBd566y0UFxdDqVQCAJKSkvDtt9/ixIkTjSpLQ8rLy6FWq6HVauHp6dnEI9g8OWdKMe7TvFrL10x9AlEdHrZAichc0vMvIGnDvcHPCgALn7fsuBiO02lYUz6fxhzXIm0l+i3MrnWX2u6kQQYTc2v9vkjPv1BrsDf/XyJzau7126ItX7dv30ZBQQFiYmKkZU5OToiJiUFubq7BbXJzc/XiAUCj0UjxhYWFKC4u1otRq9WIjIyUYnJzc+Hl5SUlXgAQExMDJycn5OXlSTEDBgyQEq+a9zl58iR+/fXXRpXlQbdu3UJ5ebney9L4q9Ex1HXXmaVanNji2jjGfj6NPa7GdtlZ6/eFuVvXiEzNoslXaWkpqqur4evrq7fc19cXxcXFBrcpLi6uN77m34Zi2rTRv8PIxcUFrVu31osxtI/736OhsjwoJSUFarVaegUGBhqMkxNnSncM1jYuxtrKY62M/XyaO5my5u8LDvYmW8KpJmQ0Z84czJ49W/q7vLzcKhIw3iJs/6xtEkRrK481M+bzaexxbcr8TPy+IGo+iyZf3t7ecHZ2RkmJ/szPJSUl8PPzM7iNn59fvfE1/5aUlMDf318vJjw8XIp5cED/3bt3ce3aNb39GHqf+9+jobI8yM3NDW5ubgbXWZqtP9SV6mdtkyBaW3msXWM/n3IlU/y+IGoeiyZfSqUSvXv3RlZWFmJjYwHcG3CflZWFGTNmGNwmKioKWVlZmDVrlrQsMzMTUVFRAICQkBD4+fkhKytLSrbKy8uRl5eHl156SdpHWVkZCgoK0Lt3bwBAdnY2dDodIiMjpZi33noLd+7cgaurq/Q+nTt3RqtWrRpVFiJrYm0tFtZWHnvBZIrIBggLW7t2rXBzcxNpaWni2LFjIjExUXh5eYni4mIhhBATJkwQSUlJUvyePXuEi4uLWLJkiTh+/LhITk4Wrq6u4vDhw1LMwoULhZeXl9i0aZM4dOiQGDlypAgJCRGVlZVSzNChQ0WvXr1EXl6e2L17t+jUqZOIi4uT1peVlQlfX18xYcIEceTIEbF27VrRokULsWrVKqPKUh+tVisACK1W2+TjR0RERPJq7vXb4smXEEIsX75cBAUFCaVSKSIiIsSPP/4orYuOjhbx8fF68evWrROhoaFCqVSK7t27i61bt+qt1+l0Yu7cucLX11e4ubmJwYMHi5MnT+rFXL16VcTFxYmWLVsKT09PkZCQIK5fv64Xc/DgQfHkk08KNzc30bZtW7Fw4cJaZW+oLPVh8kVERGR7mnv9tvg8X47MGub5IiIiIuPY9DxfRERERI6GyRcRERGRjJh8EREREcmIyRcRERGRjJh8EREREcmIyRcRERGRjJh8EREREcmIyRcRERGRjJh8EREREcnIog/WdnQ1DxcoLy+3cEmIiIiosWqu2019SBCTLwu6fv06ACAwMNDCJSEiIiJjXb9+HWq12ujt+GxHC9LpdPjll1/w0EMPQaFQmHTf5eXlCAwMxMWLF+36uZGsp/1whDoCrKe9YT3tS2PrKYTA9evXERAQACcn40dwseXLgpycnPDII4+Y9T08PT3t+oNSg/W0H45QR4D1tDesp31pTD2b0uJVgwPuiYiIiGTE5IuIiIhIRky+7JSbmxuSk5Ph5uZm6aKYFetpPxyhjgDraW9YT/siVz054J6IiIhIRmz5IiIiIpIRky8iIiIiGTH5IiIiIpIRky8iIiIiGTH5shGpqakIDg6GSqVCZGQk9u7dW2/80qVL0blzZ7i7uyMwMBB/+MMfUFVV1ax9ysHU9Zw/fz4UCoXeq0uXLuauRoOMqeedO3ewYMECdOjQASqVCj179sS2bduatU+5mLqe1ng+d+3ahREjRiAgIAAKhQLffvttg9vs3LkTjz32GNzc3NCxY0ekpaXVirGm82mOOtrDuSwqKsK4ceMQGhoKJycnzJo1y2Dc+vXr0aVLF6hUKoSFhSEjI8P0hTeCOeqZlpZW63yqVCrzVKCRjK3nxo0b8dRTT8HHxweenp6IiorCd999VyvOFJ9NJl82ID09HbNnz0ZycjL27duHnj17QqPR4PLlywbjv/rqKyQlJSE5ORnHjx/H3//+d6Snp+PNN99s8j7lYI56AkD37t1RVFQkvXbv3i1HdepkbD3ffvttrFq1CsuXL8exY8fw4osv4rnnnsP+/fubvE85mKOegPWdzxs3bqBnz55ITU1tVHxhYSGGDx+OQYMG4cCBA5g1axamTJmi9yVvbefTHHUEbP9c3rp1Cz4+Pnj77bfRs2dPgzE5OTmIi4vD5MmTsX//fsTGxiI2NhZHjhwxZdGNYo56Avdmhb//fJ4/f95URW4SY+u5a9cuPPXUU8jIyEBBQQEGDRqEESNGmOe7VpDVi4iIENOnT5f+rq6uFgEBASIlJcVg/PTp08VvfvMbvWWzZ88W/fr1a/I+5WCOeiYnJ4uePXuapbxNZWw9/f39xSeffKK3bNSoUWL8+PFN3qcczFFPazyf9wMgvvnmm3pjXn/9ddG9e3e9ZWPGjBEajUb62xrPZw1T1dEezuX9oqOjxcyZM2stHz16tBg+fLjessjISDFt2rRmltA0TFXP1atXC7VabbJymZqx9azRrVs38c4770h/m+qzyZYvK3f79m0UFBQgJiZGWubk5ISYmBjk5uYa3KZv374oKCiQmkLPnj2LjIwMDBs2rMn7NDdz1LPGqVOnEBAQgPbt22P8+PG4cOGC+SrSgKbU89atW7Wa793d3aVWAns5nw3Vs4Y1nc+myM3N1TsuAKDRaKTjYo3n01gN1bGGrZ/LxmjssbAHFRUVaNeuHQIDAzFy5EgcPXrU0kVqFp1Oh+vXr6N169YATPvZZPJl5UpLS1FdXQ1fX1+95b6+viguLja4zbhx47BgwQI8+eSTcHV1RYcOHTBw4ECpO64p+zQ3c9QTACIjI5GWloZt27ZhxYoVKCwsRP/+/XH9+nWz1qcuTamnRqPBhx9+iFOnTkGn0yEzMxMbN25EUVFRk/dpbuaoJ2B957MpiouLDR6X8vJyVFZWWuX5NFZDdQTs41w2Rl3HwlbOZWN17twZn332GTZt2oQvvvgCOp0Offv2xc8//2zpojXZkiVLUFFRgdGjRwMw7Xctky87tHPnTvz5z3/GX/7yF+zbtw8bN27E1q1b8e6771q6aCbVmHo+/fTT+O1vf4tHH30UGo0GGRkZKCsrw7p16yxYcuN8/PHH6NSpE7p06QKlUokZM2YgISEBTk729fFtTD3t4XzSPTyX9iUqKgoTJ05EeHg4oqOjsXHjRvj4+GDVqlWWLlqTfPXVV3jnnXewbt06tGnTxuT7dzH5HsmkvL294ezsjJKSEr3lJSUl8PPzM7jN3LlzMWHCBEyZMgUAEBYWhhs3biAxMRFvvfVWk/Zpbuaop6HkxMvLC6GhoTh9+rTpK9EITamnj48Pvv32W1RVVeHq1asICAhAUlIS2rdv3+R9mps56mmIpc9nU/j5+Rk8Lp6ennB3d4ezs7PVnU9jNVRHQ2zxXDZGXcfCVs5lU7m6uqJXr142eT7Xrl2LKVOmYP369XpdjKb8rrWvn852SKlUonfv3sjKypKW6XQ6ZGVlISoqyuA2N2/erJV4ODs7AwCEEE3ap7mZo56GVFRU4MyZM/D39zdRyY3TnGOvUqnQtm1b3L17Fxs2bMDIkSObvU9zMUc9DbH0+WyKqKgoveMCAJmZmdJxscbzaayG6miILZ7LxmjKsbAH1dXVOHz4sM2dzzVr1iAhIQFr1qzB8OHD9daZ9LNp9NB/kt3atWuFm5ubSEtLE8eOHROJiYnCy8tLFBcXCyGEmDBhgkhKSpLik5OTxUMPPSTWrFkjzp49K7Zv3y46dOggRo8e3eh9WoI56vnqq6+KnTt3isLCQrFnzx4RExMjvL29xeXLl2WvXw1j6/njjz+KDRs2iDNnzohdu3aJ3/zmNyIkJET8+uuvjd6nJZijntZ4Pq9fvy72798v9u/fLwCIDz/8UOzfv1+cP39eCCFEUlKSmDBhghR/9uxZ0aJFC/HHP/5RHD9+XKSmpgpnZ2exbds2Kcbazqc56mgP51IIIcX37t1bjBs3Tuzfv18cPXpUWr9nzx7h4uIilixZIo4fPy6Sk5OFq6urOHz4sKx1u5856vnOO++I7777Tpw5c0YUFBSIsWPHCpVKpRcjN2Pr+eWXXwoXFxeRmpoqioqKpFdZWZkUY6rPJpMvG7F8+XIRFBQklEqliIiIED/++KO0Ljo6WsTHx0t/37lzR8yfP1906NBBqFQqERgYKH7/+9/rXcQa2qelmLqeY8aMEf7+/kKpVIq2bduKMWPGiNOnT8tYI8OMqefOnTtF165dhZubm3j44YfFhAkTxKVLl4zap6WYup7WeD537NghANR61dQtPj5eREdH19omPDxcKJVK0b59e7F69epa+7Wm82mOOtrLuTQU365dO72YdevWidDQUKFUKkX37t3F1q1b5alQHcxRz1mzZkn/v/r6+ophw4aJffv2yVcpA4ytZ3R0dL3xNUzx2VQIUUf/DBERERGZHMd8EREREcmIyRcRERGRjJh8EREREcmIyRcRERGRjJh8EREREcmIyRcRERGRjJh8EREREcmIyRcREenZuXMnFAoFysrKLF0UIrvE5IuILGbSpElQKBRYuHCh3vJvv/0WCoVC+lsIgU8//RRRUVHw9PREy5Yt0b17d8ycObPRD+69efMm5syZgw4dOkClUsHHxwfR0dHYtGmTFBMcHIylS5eapG7mVnPsFAoFXF1dERISgtdffx1VVVVG7WfgwIGYNWuW3rK+ffuiqKgIarXahCUmohpMvojIolQqFd5//338+uuvBtcLITBu3Di88sorGDZsGLZv345jx47h73//O1QqFd57771Gvc+LL76IjRs3Yvny5Thx4gS2bduGF154AVevXjVldWQ1dOhQFBUV4ezZs/joo4+watUqJCcnN3u/SqUSfn5+egkwEZlQEx+ZRETUbPHx8eKZZ54RXbp0EX/84x+l5d98842o+Xpas2aNACA2bdpkcB86na5R76VWq0VaWlqd6w09163Gf/7zH/Hkk08KlUolHnnkEfHyyy+LiooKaf0//vEP0bt3b9GyZUvh6+sr4uLiRElJibS+5hlz27ZtE+Hh4UKlUolBgwaJkpISkZGRIbp06SIeeughERcXJ27cuNGo+sTHx4uRI0fqLRs1apTo1auX9HdpaakYO3asCAgIEO7u7qJHjx7iq6++0tvHg3UuLCyUynv/c1K//vpr0a1bN6FUKkW7du3EkiVLGlVOIqqNLV9EZFHOzs7485//jOXLl+Pnn3+utX7NmjXo3Lkznn32WYPbN7Z1xs/PDxkZGbh+/brB9Rs3bsQjjzyCBQsWoKioCEVFRQCAM2fOYOjQoXj++edx6NAhpKenY/fu3ZgxY4a07Z07d/Duu+/i4MGD+Pbbb3Hu3DlMmjSp1nvMnz8fn3zyCXJycnDx4kWMHj0aS5cuxVdffYWtW7di+/btWL58eaPq86AjR44gJycHSqVSWlZVVYXevXtj69atOHLkCBITEzFhwgTs3bsXAPDxxx8jKioKU6dOleocGBhYa98FBQUYPXo0xo4di8OHD2P+/PmYO3cu0tLSmlRWIodn6eyPiBzX/a03TzzxhPi///s/IYR+y1eXLl3Es88+q7fdzJkzhYeHh/Dw8BBt27Zt1Hv98MMP4pFHHhGurq6iT58+YtasWWL37t16Me3atRMfffSR3rLJkyeLxMREvWX/+c9/hJOTk6isrDT4Xvn5+QKAuH79uhDify1f33//vRSTkpIiAIgzZ85Iy6ZNmyY0Gk2j6hMfHy+cnZ2Fh4eHcHNzEwCEk5OT+Prrr+vdbvjw4eLVV1+V/o6OjhYzZ87Ui3mw5WvcuHHiqaee0ov54x//KLp169aoshKRPrZ8EZFVeP/99/H555/j+PHjDca+9dZbOHDgAObNm4eKiopG7X/AgAE4e/YssrKy8MILL+Do0aPo378/3n333Xq3O3jwINLS0tCyZUvppdFooNPpUFhYCOBey9CIESMQFBSEhx56CNHR0QCACxcu6O3r0Ucflf7b19cXLVq0QPv27fWWXb58uVH1AYBBgwbhwIEDyMvLQ3x8PBISEvD8889L66urq/Huu+8iLCwMrVu3RsuWLfHdd9/VKldDjh8/jn79+ukt69evH06dOoXq6mqj9kVEHHBPRFZiwIAB0Gg0mDNnjt7yTp064eTJk3rLfHx80LFjR7Rp08ao93B1dUX//v3xxhtvYPv27ViwYAHeffdd3L59u85tKioqMG3aNBw4cEB6HTx4EKdOnUKHDh1w48YNaDQaeHp64ssvv0R+fj6++eYbAKi1X1dXV+m/a+5SvJ9CoYBOp2t0fTw8PNCxY0f07NkTn332GfLy8vD3v/9dWr948WJ8/PHHeOONN7Bjxw4cOHAAGo2m3voSkfm5WLoAREQ1Fi5ciPDwcHTu3FlaFhcXh3HjxmHTpk0YOXKkSd+vW7duuHv3LqqqqqBUKqFUKmu15Dz22GM4duwYOnbsaHAfhw8fxtWrV7Fw4UJpvNRPP/1k0nI2hpOTE958803Mnj0b48aNg7u7O/bs2YORI0fid7/7HQBAp9Phv//9L7p16yZtZ6jOD+ratSv27Nmjt2zPnj0IDQ2Fs7Oz6StDZOfY8kVEViMsLAzjx4/HsmXLpGVjx47FCy+8gLFjx2LBggXIy8vDuXPn8MMPPyA9Pb3RF/+BAwdi1apVKCgowLlz55CRkYE333wTgwYNgqenJ4B783zt2rULly5dQmlpKQDgjTfeQE5ODmbMmIEDBw7g1KlT2LRpkzTgPigoCEqlEsuXL8fZs2exefPmBrsyzeW3v/0tnJ2dkZqaCuBeq2FmZiZycnJw/PhxTJs2DSUlJXrbBAcHS8e0tLTUYMvbq6++iqysLLz77rv473//i88//xyffPIJXnvtNVnqRWRvmHwRkVVZsGCBXgKgUCiQnp6OpUuXIiMjA4MHD0bnzp3xf//3fwgMDMTu3bsbtV+NRoPPP/8cQ4YMQdeuXfHyyy9Do9Fg3bp1eu997tw5dOjQAT4+PgDujdP64Ycf8N///hf9+/dHr169MG/ePAQEBAC41wWalpaG9evXo1u3bli4cCGWLFliwiPSeC4uLpgxYwYWLVqEGzdu4O2338Zjjz0GjUaDgQMHws/PD7GxsXrbvPbaa3B2dka3bt3g4+NjcDzYY489hnXr1mHt2rXo0aMH5s2bhwULFhi8o5OIGqYQQghLF4KIiIjIUbDli4iIiEhGTL6IyC7cPxXEg6///Oc/li6eUS5cuFBvfYydKoKIrAu7HYnILtT3gO22bdvC3d1dxtI0z927d3Hu3Lk61wcHB8PFhTerE9kqJl9EREREMmK3IxEREZGMmHwRERERyYjJFxEREZGMmHwRERERyYjJFxEREZGMmHwRERERyYjJFxEREZGMmHwRERERyej/AV7qVMxO8CKmAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_60.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJ0UlEQVR4nO3deXxU1cH/8W8WshBIIhKyYCABQVYJgsQgEChpQ0ElomUtW1H01yJQ3IAHCKK/gtYqZXnE2io+FWRRRIv8KDwgUiGNEEAF0SKCgCbBgJlA2DPn94fN1DEJZC6ZzJLP+/WaF+TeM3fOuXeW75x77pkAY4wRAAAAXBLo6QoAAAD4IkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAC/Nnv2bAUEBFSrbEBAgGbPnu3W+vTu3Vu9e/f22u0BqD5CFIBasXTpUgUEBDhuwcHBatq0qcaMGaOvv/7a09XzOklJSU77q0mTJurZs6feeuutGtn+2bNnNXv2bG3durVGtgfURYQoALVqzpw5+utf/6olS5bo5z//uV577TWlp6fr/Pnzbnm8GTNm6Ny5c27ZtrulpKTor3/9q/7617/qkUce0TfffKNBgwZpyZIl17zts2fP6oknniBEAdcg2NMVAFC3/PznP1fXrl0lSffdd58aN26sp59+Wu+8844GDx5c448XHBys4GDffKtr2rSpfvnLXzr+HjVqlG688UY9//zzevDBBz1YMwASPVEAPKxnz56SpEOHDjkt/+yzz3TvvfeqUaNGCgsLU9euXfXOO+84lbl06ZKeeOIJtWrVSmFhYbr++uvVo0cPbdq0yVGmsjFRFy5c0G9/+1vFxMSoYcOGuuuuu3T8+PEKdRszZoySkpIqLK9sm6+88op+8pOfqEmTJgoNDVW7du30wgsvuLQvriYuLk5t27bV4cOHr1juxIkTGjdunGJjYxUWFqZOnTrp1Vdfdaw/cuSIYmJiJElPPPGE45Shu8eDAf7GN7+eAfAbR44ckSRdd911jmX79+/X7bffrqZNm2rq1KmKiIjQqlWrlJWVpTfffFN33323pO/DzNy5c3XfffepW7duKikp0a5du7R792799Kc/rfIx77vvPr322msaPny4unfvri1btmjAgAHX1I4XXnhB7du311133aXg4GD97W9/069//WvZ7Xb95je/uaZtl7t06ZKOHTum66+/vsoy586dU+/evfXFF19owoQJSk5O1urVqzVmzBgVFxdr0qRJiomJ0QsvvKD/83/+j+6++24NGjRIknTzzTfXSD2BOsMAQC145ZVXjCTzv//7v+bbb781x44dM2+88YaJiYkxoaGh5tixY46yffv2NR07djTnz593LLPb7aZ79+6mVatWjmWdOnUyAwYMuOLjZmdnmx++1e3du9dIMr/+9a+dyg0fPtxIMtnZ2Y5lo0ePNs2bN7/qNo0x5uzZsxXKZWZmmhYtWjgtS09PN+np6VesszHGNG/e3PzsZz8z3377rfn222/NRx99ZIYOHWokmYceeqjK7c2fP99IMq+99ppj2cWLF01aWppp0KCBKSkpMcYY8+2331ZoLwDXcDoPQK3KyMhQTEyMEhMTde+99yoiIkLvvPOObrjhBknSqVOntGXLFg0ePFinT59WUVGRioqKdPLkSWVmZurgwYOOq/mio6O1f/9+HTx4sNqPv379eknSxIkTnZZPnjz5mtoVHh7u+L/NZlNRUZHS09P15ZdfymazWdrmxo0bFRMTo5iYGHXq1EmrV6/WyJEj9fTTT1d5n/Xr1ysuLk7Dhg1zLKtXr54mTpyoM2fO6P3337dUFwAVcToPQK1avHixWrduLZvNppdfflnbtm1TaGioY/0XX3whY4xmzpypmTNnVrqNEydOqGnTppozZ44GDhyo1q1bq0OHDurXr59Gjhx5xdNSX331lQIDA9WyZUun5TfddNM1tWv79u3Kzs5WTk6Ozp4967TOZrMpKirK5W2mpqbqqaeeUkBAgOrXr6+2bdsqOjr6ivf56quv1KpVKwUGOn9Hbtu2rWM9gJpBiAJQq7p16+a4Oi8rK0s9evTQ8OHD9fnnn6tBgway2+2SpEceeUSZmZmVbuPGG2+UJPXq1UuHDh3S22+/rY0bN+rPf/6znn/+eS1ZskT33XffNde1qkk6y8rKnP4+dOiQ+vbtqzZt2ui5555TYmKiQkJCtH79ej3//POONrmqcePGysjIsHRfAO5HiALgMUFBQZo7d6769OmjRYsWaerUqWrRooWk709BVSdANGrUSGPHjtXYsWN15swZ9erVS7Nnz64yRDVv3lx2u12HDh1y6n36/PPPK5S97rrrVFxcXGH5j3tz/va3v+nChQt655131KxZM8fy995776r1r2nNmzfXxx9/LLvd7tQb9dlnnznWS1UHRADVx5goAB7Vu3dvdevWTfPnz9f58+fVpEkT9e7dWy+++KLy8/MrlP/2228d/z958qTTugYNGujGG2/UhQsXqny8n//855KkBQsWOC2fP39+hbItW7aUzWbTxx9/7FiWn59fYdbwoKAgSZIxxrHMZrPplVdeqbIe7tK/f38VFBRo5cqVjmWXL1/WwoUL1aBBA6Wnp0uS6tevL0mVhkQA1UNPFACPe/TRR/WLX/xCS5cu1YMPPqjFixerR48e6tixo+6//361aNFChYWFysnJ0fHjx/XRRx9Jktq1a6fevXurS5cuatSokXbt2qU33nhDEyZMqPKxUlJSNGzYMP33f/+3bDabunfvrs2bN+uLL76oUHbo0KF6/PHHdffdd2vixIk6e/asXnjhBbVu3Vq7d+92lPvZz36mkJAQ3XnnnXrggQd05swZvfTSS2rSpEmlQdCdxo8frxdffFFjxoxRXl6ekpKS9MYbb2j79u2aP3++GjZsKOn7gfDt2rXTypUr1bp1azVq1EgdOnRQhw4darW+gE/z9OWBAOqG8ikOdu7cWWFdWVmZadmypWnZsqW5fPmyMcaYQ4cOmVGjRpm4uDhTr14907RpU3PHHXeYN954w3G/p556ynTr1s1ER0eb8PBw06ZNG/N//+//NRcvXnSUqWw6gnPnzpmJEyea66+/3kRERJg777zTHDt2rNJL/jdu3Gg6dOhgQkJCzE033WRee+21Srf5zjvvmJtvvtmEhYWZpKQk8/TTT5uXX37ZSDKHDx92lHNlioOrTd9Q1fYKCwvN2LFjTePGjU1ISIjp2LGjeeWVVyrcd8eOHaZLly4mJCSE6Q4ACwKM+UH/MwAAAKqFMVEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAibbdCO73a5vvvlGDRs25CcWAADwEcYYnT59WgkJCRV+zPuHCFFu9M033ygxMdHT1QAAABYcO3ZMN9xwQ5XrCVFuVP7zCseOHVNkZKSHawMAAKqjpKREiYmJjs/xqhCi3Kj8FF5kZCQhCgAAH3O1oTgMLAcAALCAEAUAAGABIQoAAMACxkR5WFlZmS5duuTpanhcvXr1FBQU5OlqAABQbYQoDzHGqKCgQMXFxZ6uiteIjo5WXFwcc2oBAHwCIcpDygNUkyZNVL9+/TodHIwxOnv2rE6cOCFJio+P93CNAAC4OkKUB5SVlTkC1PXXX+/p6niF8PBwSdKJEyfUpEkTTu0BALweA8s9oHwMVP369T1cE+9Svj8YIwYA8AWEKA+qy6fwKsP+AAD4EkIUAACABYQoAAAACwhRcMmYMWOUlZVVYfnWrVsVEBCg4uJibd26VQMHDlR8fLwiIiKUkpKiZcuW1X5lAQA+I992TjsOFSnfds7TVak2rs5DjduxY4duvvlmPf7444qNjdW6des0atQoRUVF6Y477vB09QAAXmblzqOatuYT2Y0UGCDNHdRRQ25t5ulqXRUhCjVu+vTpTn9PmjRJGzdu1Jo1awhRAAAn+bZzjgAlSXYjTV+zT71axyg+KtyzlbsKTuf5AV/oArXZbGrUqJGnqwEA8DKHi0odAapcmTE6UnTWMxVyAT1RPs4TXaDr1q1TgwYNnJaVlZVVWX7VqlXauXOnXnzxRbfWCwDge5IbRygwQE5BKiggQEmNvX8uRXqifFhVXaDu7pHq06eP9u7d63T785//XGnZ9957T2PHjtVLL72k9u3bu7VeAADfEx8VrrmDOiro33MFBgUE6HeDOnj9qTyJniifdqUuUHc++SIiInTjjTc6LTt+/HiFcu+//77uvPNOPf/88xo1apTb6gMA8G1Dbm2mXq1jdKTorJIa1/eJACURonyaN3eBbt26VXfccYeefvppjR8/3tPVAQB4ufiocJ8JT+U4nefDvLUL9L333tOAAQM0ceJE3XPPPSooKFBBQYFOnTrl0XoBAFCT6Inycd7YBfrqq6/q7Nmzmjt3rubOnetYnp6erq1bt3quYgAA1KAAY4y5ejFYUVJSoqioKNlsNkVGRjqWnz9/XocPH1ZycrLCwsI8WEPvwn4BAHiDqj6/f4zTeQAAABYQogAAACwgRAEAAFhAiAIAALCAEOVBjOl3xv4AAPgSQpQH1KtXT5J09qz3/7hibSrfH+X7BwAAb8Y8UR4QFBSk6OhonThxQpJUv359Bfx7wsy6yBijs2fP6sSJE4qOjlZQUJCnqwQAwFURojwkLi5OkhxBClJ0dLRjvwAA4O0IUR4SEBCg+Ph4NWnSRJcuXfJ0dTyuXr169EABAHwKIcrDgoKCCA8AAPggBpYDAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFnhFiFq8eLGSkpIUFham1NRUffjhh1csv3r1arVp00ZhYWHq2LGj1q9f77TeGKNZs2YpPj5e4eHhysjI0MGDB53KnDp1SiNGjFBkZKSio6M1btw4nTlzptLH++KLL9SwYUNFR0dfUzsBAID/8HiIWrlypaZMmaLs7Gzt3r1bnTp1UmZmpk6cOFFp+R07dmjYsGEaN26c9uzZo6ysLGVlZWnfvn2OMs8884wWLFigJUuWKDc3VxEREcrMzNT58+cdZUaMGKH9+/dr06ZNWrdunbZt26bx48dXeLxLly5p2LBh6tmzZ803HgAA+KwAY4zxZAVSU1N16623atGiRZIku92uxMREPfTQQ5o6dWqF8kOGDFFpaanWrVvnWHbbbbcpJSVFS5YskTFGCQkJevjhh/XII49Ikmw2m2JjY7V06VINHTpUBw4cULt27bRz50517dpVkrRhwwb1799fx48fV0JCgmPbjz/+uL755hv17dtXkydPVnFxcbXbVlJSoqioKNlsNkVGRlrZPQAAoJZV9/Pboz1RFy9eVF5enjIyMhzLAgMDlZGRoZycnErvk5OT41RekjIzMx3lDx8+rIKCAqcyUVFRSk1NdZTJyclRdHS0I0BJUkZGhgIDA5Wbm+tYtmXLFq1evVqLFy+uVnsuXLigkpISpxsAAPBPHg1RRUVFKisrU2xsrNPy2NhYFRQUVHqfgoKCK5Yv//dqZZo0aeK0Pjg4WI0aNXKUOXnypMaMGaOlS5dWuxdp7ty5ioqKctwSExOrdT8AAOB7PD4mylvdf//9Gj58uHr16lXt+0ybNk02m81xO3bsmBtrCAAAPMmjIapx48YKCgpSYWGh0/LCwkLFxcVVep+4uLgrli//92plfjxw/fLlyzp16pSjzJYtW/Tss88qODhYwcHBGjdunGw2m4KDg/Xyyy9XWrfQ0FBFRkY63QAAgH/yaIgKCQlRly5dtHnzZscyu92uzZs3Ky0trdL7pKWlOZWXpE2bNjnKJycnKy4uzqlMSUmJcnNzHWXS0tJUXFysvLw8R5ktW7bIbrcrNTVV0vfjpvbu3eu4zZkzRw0bNtTevXt1991318wOAAAAPivY0xWYMmWKRo8era5du6pbt26aP3++SktLNXbsWEnSqFGj1LRpU82dO1eSNGnSJKWnp+sPf/iDBgwYoBUrVmjXrl3605/+JEkKCAjQ5MmT9dRTT6lVq1ZKTk7WzJkzlZCQoKysLElS27Zt1a9fP91///1asmSJLl26pAkTJmjo0KGOK/Patm3rVM9du3YpMDBQHTp0qKU9AwAAvJnHQ9SQIUP07bffatasWSooKFBKSoo2bNjgGBh+9OhRBQb+p8Ose/fuWr58uWbMmKHp06erVatWWrt2rVO4eeyxx1RaWqrx48eruLhYPXr00IYNGxQWFuYos2zZMk2YMEF9+/ZVYGCg7rnnHi1YsKD2Gg4AAHyax+eJ8mfMEwUAgO/xiXmiAAAAfBUhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALvCJELV68WElJSQoLC1Nqaqo+/PDDK5ZfvXq12rRpo7CwMHXs2FHr1693Wm+M0axZsxQfH6/w8HBlZGTo4MGDTmVOnTqlESNGKDIyUtHR0Ro3bpzOnDnjWP/555+rT58+io2NVVhYmFq0aKEZM2bo0qVLNddwAADgszweolauXKkpU6YoOztbu3fvVqdOnZSZmakTJ05UWn7Hjh0aNmyYxo0bpz179igrK0tZWVnat2+fo8wzzzyjBQsWaMmSJcrNzVVERIQyMzN1/vx5R5kRI0Zo//792rRpk9atW6dt27Zp/PjxjvX16tXTqFGjtHHjRn3++eeaP3++XnrpJWVnZ7tvZwAAAJ8RYIwxnqxAamqqbr31Vi1atEiSZLfblZiYqIceekhTp06tUH7IkCEqLS3VunXrHMtuu+02paSkaMmSJTLGKCEhQQ8//LAeeeQRSZLNZlNsbKyWLl2qoUOH6sCBA2rXrp127typrl27SpI2bNig/v376/jx40pISKi0rlOmTNHOnTv1j3/8o1ptKykpUVRUlGw2myIjI13aLwAAwDOq+/nt0Z6oixcvKi8vTxkZGY5lgYGBysjIUE5OTqX3ycnJcSovSZmZmY7yhw8fVkFBgVOZqKgopaamOsrk5OQoOjraEaAkKSMjQ4GBgcrNza30cb/44gtt2LBB6enpVbbnwoULKikpcboBAAD/5NEQVVRUpLKyMsXGxjotj42NVUFBQaX3KSgouGL58n+vVqZJkyZO64ODg9WoUaMKj9u9e3eFhYWpVatW6tmzp+bMmVNle+bOnauoqCjHLTExscqyAADAt3l8TJS3W7lypXbv3q3ly5fr3Xff1bPPPltl2WnTpslmszlux44dq8WaAgCA2hTsyQdv3LixgoKCVFhY6LS8sLBQcXFxld4nLi7uiuXL/y0sLFR8fLxTmZSUFEeZHw9cv3z5sk6dOlXhcct7k9q1a6eysjKNHz9eDz/8sIKCgirULTQ0VKGhoVdrNgAA8AMe7YkKCQlRly5dtHnzZscyu92uzZs3Ky0trdL7pKWlOZWXpE2bNjnKJycnKy4uzqlMSUmJcnNzHWXS0tJUXFysvLw8R5ktW7bIbrcrNTW1yvra7XZdunRJdrvd9cYCAAC/4tGeKOn7K95Gjx6trl27qlu3bpo/f75KS0s1duxYSdKoUaPUtGlTzZ07V5I0adIkpaen6w9/+IMGDBigFStWaNeuXfrTn/4kSQoICNDkyZP11FNPqVWrVkpOTtbMmTOVkJCgrKwsSVLbtm3Vr18/3X///VqyZIkuXbqkCRMmaOjQoY4r85YtW6Z69eqpY8eOCg0N1a5duzRt2jQNGTJE9erVq/0dBQAAvIrHQ9SQIUP07bffatasWSooKFBKSoo2bNjgGBh+9OhRBQb+p8Ose/fuWr58uWbMmKHp06erVatWWrt2rTp06OAo89hjj6m0tFTjx49XcXGxevTooQ0bNigsLMxRZtmyZZowYYL69u2rwMBA3XPPPVqwYIFjfXBwsJ5++mn961//kjFGzZs314QJE/Tb3/62FvYKAADwdh6fJ8qfMU8UAAC+xyfmiQIAAPBVhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYAEhCgAAwAJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAAAsIEQBAABYQIgCAACwgBAFAABgASEKAADAApdD1Pr163Xffffpscce02effea07rvvvtNPfvKTGqscAACAt3IpRC1fvlx33XWXCgoKlJOTo86dO2vZsmWO9RcvXtT7779f45UEAADwNsGuFP7973+v5557ThMnTpQkrVq1Sr/61a90/vx5jRs3zi0VBAAA8EYuhaiDBw/qzjvvdPw9ePBgxcTE6K677tKlS5d0991313gFUbfl287pcFGpkhtHKD4q3NPVAQDAwaUQFRkZqcLCQiUnJzuW9enTR+vWrdMdd9yh48eP13gFUXet3HlU09Z8IruRAgOkuYM6asitzTxdLQAAJLk4Jqpbt276f//v/1VYnp6err/97W+aP39+TdULdVy+7ZwjQEmS3UjT1+xTvu2cZysGAMC/uRSifvvb3yosLKzSdb1799bf/vY3jRo1qkYqhrrtcFGpI0CVKzNGR4rOeqZCAAD8iEun8zp37qzOnTurpKSk0vVdunRRly5daqRiqNuSG0coMEBOQSooIEBJjet7rlIA/B7jMOEKl0JUdHS0AgICrlqurKzMcoUASYqPCtfcQR01fc0+lRmjoIAA/W5QB97UALgN4zDhKpdC1Hvvvef4vzFG/fv315///Gc1bdq0xiuGmuOr36yG3NpMvVrH6EjRWSU1ru9TdQfgW6oah9mrdQzvPaiSSyEqPT3d6e+goCDddtttatGiRY1WCjXH179ZxUeF8wYGwO2uNA6T9yBUhd/O82Nc4QYA1VM+DvOHGIeJqyFE+TGucAOA6ikfhxn073G/jMNEdbh0Oq8y1RloDs/gCjcAdZ0rY0IZhwlXuRSiBg0a5PT3+fPn9eCDDyoiIsJp+Zo1a669ZrhmXOEGoC6zMiaUcZhwhUshKioqyunvX/7ylzVaGdQ8vlkBqIu42g61waUQ9corr7irHnAjvlkBqGu42g61gYHlAAC/w9V2qA2EKACA3+FqO9SGa746DwAAb8SYULgbIQoA4LcYEwp34nQeAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWECIAgAAsIAQBQAAYIFXhKjFixcrKSlJYWFhSk1N1YcffnjF8qtXr1abNm0UFhamjh07av369U7rjTGaNWuW4uPjFR4eroyMDB08eNCpzKlTpzRixAhFRkYqOjpa48aN05kzZxzrt27dqoEDByo+Pl4RERFKSUnRsmXLaq7RAADAp3k8RK1cuVJTpkxRdna2du/erU6dOikzM1MnTpyotPyOHTs0bNgwjRs3Tnv27FFWVpaysrK0b98+R5lnnnlGCxYs0JIlS5Sbm6uIiAhlZmbq/PnzjjIjRozQ/v37tWnTJq1bt07btm3T+PHjnR7n5ptv1ptvvqmPP/5YY8eO1ahRo7Ru3Tr37QwAAOAzAowx5urF3Cc1NVW33nqrFi1aJEmy2+1KTEzUQw89pKlTp1YoP2TIEJWWljqFmdtuu00pKSlasmSJjDFKSEjQww8/rEceeUSSZLPZFBsbq6VLl2ro0KE6cOCA2rVrp507d6pr166SpA0bNqh///46fvy4EhISKq3rgAEDFBsbq5dffrlabSspKVFUVJRsNpsiIyNd2i8AAMAzqvv57dGeqIsXLyovL08ZGRmOZYGBgcrIyFBOTk6l98nJyXEqL0mZmZmO8ocPH1ZBQYFTmaioKKWmpjrK5OTkKDo62hGgJCkjI0OBgYHKzc2tsr42m02NGjWqcv2FCxdUUlLidAMAAP7JoyGqqKhIZWVlio2NdVoeGxurgoKCSu9TUFBwxfLl/16tTJMmTZzWBwcHq1GjRlU+7qpVq7Rz506NHTu2yvbMnTtXUVFRjltiYmKVZQEAgG/z+JgoX/Dee+9p7Nixeumll9S+ffsqy02bNk02m81xO3bsWC3WEgAA1CaPhqjGjRsrKChIhYWFTssLCwsVFxdX6X3i4uKuWL7836uV+fHA9cuXL+vUqVMVHvf999/XnXfeqeeff16jRo26YntCQ0MVGRnpdAMAAP7JoyEqJCREXbp00ebNmx3L7Ha7Nm/erLS0tErvk5aW5lRekjZt2uQon5ycrLi4OKcyJSUlys3NdZRJS0tTcXGx8vLyHGW2bNkiu92u1NRUx7KtW7dqwIABevrpp52u3AMAAJDxsBUrVpjQ0FCzdOlS8+mnn5rx48eb6OhoU1BQYIwxZuTIkWbq1KmO8tu3bzfBwcHm2WefNQcOHDDZ2dmmXr165pNPPnGUmTdvnomOjjZvv/22+fjjj83AgQNNcnKyOXfunKNMv379TOfOnU1ubq754IMPTKtWrcywYcMc67ds2WLq169vpk2bZvLz8x23kydPVrttNpvNSDI2m+1adhEAAKhF1f389niIMsaYhQsXmmbNmpmQkBDTrVs3889//tOxLj093YwePdqp/KpVq0zr1q1NSEiIad++vXn33Xed1tvtdjNz5kwTGxtrQkNDTd++fc3nn3/uVObkyZNm2LBhpkGDBiYyMtKMHTvWnD592rF+9OjRRlKFW3p6erXbRYgCAMD3VPfz2+PzRPkz5okCAMD3+MQ8UQAAAL6KEAUAAGABIQpeLd92TjsOFSnfds7TVQEAwEmwpysAVGXlzqOatuYT2Y0UGCDNHdRRQ25t5ulqAQAgiZ4oeKl82zlHgJIku5Gmr9lHjxQAwGsQouCVDheVOgJUuTJjdKTorGcqBADAjxCi4JWSG0coMMB5WVBAgJIa1/dMhQAA+BFCFLxSfFS45g7qqKCA75NUUECAfjeog+Kjwj1cMwAAvsfAcnitIbc2U6/WMTpSdFZJjesToAAAXoUQBa8WHxVOeAIAeCVO5wEAAFhAiAIAALCAEAUAAGABIQoAAMACQhQAAIAFhCgAAAALCFEAAAAWEKIAAIDPybed045DRR79YXom2wQAAD5l5c6jmrbmE9mNFBggzR3UUUNubVbr9aAnCgAA+Ix82zlHgJIku5Gmr9nnkR4pQhQAAPAZh4tKHQGqXJkxOlJ0ttbrQogCAAA+I7lxhAIDnJcFBQQoqXH9Wq8LIQoAAPiM+KhwzR3UUUEB3yepoIAA/W5QB4/8WD0DywEAgE8Zcmsz9WodoyNFZ5XUuL5HApREiAIAAD4oPircY+GpHKfz4Fe8Yd4QAEDdeD+mJwp+w1vmDQGAuq6uvB/TEwW/4E3zhgBAXVaX3o8JUXXAR8e+00v/OKSPjn3n6aq4jTfNGwIAdVldej/mdJ6fe3jVXr25+2vH3/fc0lR/GJziuQq5Sfm8IT984Xpq3hAAqMvq0vsxPVF+7KNj3zkFKEl6c/fXftkjFR8Vrrs7N3ValtU5weNXbgBAXeNN8zi5Gz1RfuzDI6cqXb7ryHfqlHhdLdfGvfJt5/TWHufAuHbPN3ok86YrvnDzbed0uKhUyY0j/PIFDgCe4C3zOLkbIcqPdUtqVOnyrkn+FaCkK5+Dr+rFW1euHgEAT/CGeZzcjdN5fqxT4nW65xbnU1z33NLU73qhJNd/S6kuXT0CAHAPeqL83B8Gp2hUWnPtOvKduiZd55cBSvrPOfjpa/apzJirnoO30nPljTgdCQCeQ4iqAzol+m94+iFXzsH7w9UjnI4EAM/idB78SnxUuNJaXn/VXhlfv3qE05EA4Hn0RKHO8uWrR/zldCQA+DJCFOo0X716xB9ORwKAr+N0HuCDfP10JAD4A3qiAB/ly6cjAcAfEKIAH+arpyMBb8W0IXAFIQoAADFtSE2rC4GUEAUAqPOqmjakV+sYvw0A7lRXAikDywEAdd6Vpg2Ba+rSPHaEKABAnefq72+ianUpkBKi4Ffybee041CRX37jAeA+TBtSc+pSIGVMFPxGXTkHD8A9mDakZrj6g/C+LMAYY65eDFaUlJQoKipKNptNkZGRnq6OX8u3ndPt87ZUmMH7g6l9/PKFCwDeLt92zmcDaXU/v+mJgl/gt+QAwLvUhXnsGBMFv1CXzsEDALwDIQp+gUGhAPwRF8t4N07nwW8wKBSAP6mNi2Xqwqzi7kSIgl+pC+fgAfi/2phBnSuarx2n8wAA8DLunrCyLs0q7k6EKAAAvIy7L5apS7OKuxMhCn6FQZgA/IG7L5bhiuaawZgo+A3O7wPwJ+68WCY+Klx3d26qN3d/7ViW1TmBMaUuoicKfoHz+wD8UXxUuNJaXl/j4Sbfdk5v7fnaadnaPd/wnukiQhT8Auf3AaD6eM+sGR4PUYsXL1ZSUpLCwsKUmpqqDz/88IrlV69erTZt2igsLEwdO3bU+vXrndYbYzRr1izFx8crPDxcGRkZOnjwoFOZU6dOacSIEYqMjFR0dLTGjRunM2fOONafP39eY8aMUceOHRUcHKysrKwaay/cg/P7AFB9vGfWDI+GqJUrV2rKlCnKzs7W7t271alTJ2VmZurEiROVlt+xY4eGDRumcePGac+ePcrKylJWVpb27dvnKPPMM89owYIFWrJkiXJzcxUREaHMzEydP3/eUWbEiBHav3+/Nm3apHXr1mnbtm0aP368Y31ZWZnCw8M1ceJEZWRkuG8HoMYwYzkAVB/vmTUjwBhjrl7MPVJTU3Xrrbdq0aJFkiS73a7ExEQ99NBDmjp1aoXyQ4YMUWlpqdatW+dYdttttyklJUVLliyRMUYJCQl6+OGH9cgjj0iSbDabYmNjtXTpUg0dOlQHDhxQu3bttHPnTnXt2lWStGHDBvXv31/Hjx9XQkKC02OOGTNGxcXFWrt2rcvtq+6vQKPmuPqr4d42W6+31QeAf3P1PbOuqO7nt8d6oi5evKi8vDynnp7AwEBlZGQoJyen0vvk5ORU6BnKzMx0lD98+LAKCgqcykRFRSk1NdVRJicnR9HR0Y4AJUkZGRkKDAxUbm7uNbXpwoULKikpcbqhdrkyCHPlzqO6fd4WDX8pV7fP26KVO4/WQg19pz4A/J+7Bq7XFR4LUUVFRSorK1NsbKzT8tjYWBUUFFR6n4KCgiuWL//3amWaNGnitD44OFiNGjWq8nGra+7cuYqKinLcEhMTr2l7cB9vu5rP2+oDAD/GPHwVeXxguT+ZNm2abDab43bs2DFPVwlV8LYrU7ytPgDwQ/SUV85jIapx48YKCgpSYWGh0/LCwkLFxcVVep+4uLgrli//92plfjxw/fLlyzp16lSVj1tdoaGhioyMdLrBO3nblSneVh8AKEdPedU8FqJCQkLUpUsXbd682bHMbrdr8+bNSktLq/Q+aWlpTuUladOmTY7yycnJiouLcypTUlKi3NxcR5m0tDQVFxcrLy/PUWbLli2y2+1KTU2tsfbBu3nblSneVh9vxKkEwDPoKa+aR3/2ZcqUKRo9erS6du2qbt26af78+SotLdXYsWMlSaNGjVLTpk01d+5cSdKkSZOUnp6uP/zhDxowYIBWrFihXbt26U9/+pMkKSAgQJMnT9ZTTz2lVq1aKTk5WTNnzlRCQoJjrqe2bduqX79+uv/++7VkyRJdunRJEyZM0NChQ52uzPv000918eJFnTp1SqdPn9bevXslSSkpKbW2f+Be7vxJBX+ojzfhJ30AzynvKf9hkKKn/HseDVFDhgzRt99+q1mzZqmgoEApKSnasGGDY2D40aNHFRj4n86y7t27a/ny5ZoxY4amT5+uVq1aae3aterQoYOjzGOPPabS0lKNHz9excXF6tGjhzZs2KCwsDBHmWXLlmnChAnq27evAgMDdc8992jBggVOdevfv7+++uorx9+dO3eW9P1knvAf8VHhXhVWvK0+3qCqUwm9Wsewr+D3vGHak/Ke8ulr9qnMGK/pKfeGfePReaL8HfNEwRte5L5ux6EiDX+p4vQjr99/m9JaXu+BGgG1w9t6YL1pTil375vqfn57tCcK8Gfe9gboq/zhVAJhGq7yxh5Yb+kp96Z9wxQHgBtwNUvN8fVB91waDisYzF01b9o39EQBbnClF7mvfPh7E18ddO9N35jhW/yhB9ZdvGnf0BMFuAHzPtU8X/x5Cm/6xgzf4us9sO7kTfuGnijADbz1ahbULm/6xgzf46s9sLXBW/YNV+e5EVfnwZuuZoFnrNx5tEKY5gIDwLtxdR7gBbzlahZ4jrd8YwZQ8whRAOBmhGnAPzGwHAC8DL8TCPgGeqIAwIswSSvgO+iJAgAvwSStgG8hRAGAl2BeKcC3EKIAwEv4yyStjOlCXUGIAgAv4U0zMVvFbwWiLmGyTTdisk0AVvjqJK35tnO6fd6WCjO0fzC1j0+1A2CyTQDwUb46rxQ/vI26htN5AGAB434q8pcxXUB1EaIAwEWM+6mcP4zpAlzBmCg3YkxU7cu3ndPholIlN47gjfsasS8rx7ifq/PVMV1AOcZEoc5hpueaw76sGuN+rs5Xx3QBruJ0HvyC1Zme3T2uxRfHzfjLrNnu2vfJjSP0o2E/CggQ436AOoieKPgFK70D7u5tsbJ9bziF5g89LbXek8agiDrLG16z8BxCFPxC+VVBPx6nUlXvQFW9Lb1ax9TIG6GV7XvLKTRX96W3cfexPVxUWiEzGcmnQiZqhre8ZuE5nM6DX3D1qiB3/0aZq9v3plNovn6FlbuPLZfxQ/Ku1yw8h54o+I0htzZTr9Yx1boqyN29La5u39tOobmyL72Nu49tecicvmafyozxuZCJmuFtr1l4BiEKfqW6VwW5+4PQ1e1b/eB353gMX73CqjZCjreFTMbl1D5fP+2NmsE8UW7EPFHez93z2biy/ZU7j1b44L/S+ArGY1xZXZmriOeB57j6moXvqO7nNyHKjQhRcFV1P/iZ8NHzvKH3p7aeB97QVm9VV8J6XcNkm4APqu4pNMZjeJa39P7UxvPAW9rqrXz1tDdqBlfnAT6IK8Q8x5uuyooICap0ef2Qmnlr96a2At6IEAX4IF+fhsCXWZlCwV2zp5deLKt0+dmL9hrZvruniwB8Hafz4NUYi1E1b7tCzNu467nj6lVZ7jwd5m1TdVjF6xy+ihAFr8VYjKtjPEbl3PnciY8K192dm+rN3V87lmV1Tqj0OLh79nRvm6rDCl7n8GVcnedGXJ1nHVefwSp3P3dc2f6OQ0Ua/lJuhW28fv9tSmt5/TXX5Yd18papOlzdLq9zeCOuzoNP4+ozWOXu544r26+t02Hu7pF01/Z5ncPXMbAcXomrz2BVcuMI/eipowCpxscJ/VBVz00uALgyXufwdYQoeCU+fFCjfpyqroGrz80htzbTB1P76PX7b9MHU/sw3ucHeJ3jh9x1Fas7cToPXourz2DF4aJS/XigpzGq0VNErj43uQCgarzOIfnuBQaEKHg1PnzgKn8Zh1SXsC/rNndfxepOnM4DvIgvdmd7m7p4iojnDXyZL0/qSk8U4CV8tTu7trgyIWNdOkXE8wa+rrZ6j92BnijAC/AbZVe2cudR3T5vi4a/lKvb523Ryp1Hr3qf+KhwpbW83q8DFM8b/Jgv9kr6cu8xPVGAF2C+nKr58ngJd+N5gx/y5V5JX+09picK8ALMl1M1Xx4v4W48b1DOH3olfbH3mBAFeAFf7s52N28NCt5w2oTnDcrxZcMzOJ0HeAlf7c52t9r4EVxXedNpE3943rhy0QAq58uDs30ZP0DsRvwAMfhwqDnu/pFdV+rRfe4Wpwk9AwKkHVN/wjH+N1ee994USH3dyp1HK3zZYF9aww8Q+zE+mH0DHw41y1smZMz76rtKZ0Tf/dV3GnCz5+vnaa4877looGb5Q6+kryFE+Rg+mH0DHw7+q6rOe/r0XX/ec3VhzfOWLxt1BQPLfYg/XH1RVzDI0391TWpU4feMAyR1SbrOE9XxKq4+773xogFvuGAAvoMQ5UP4YPYd3vjhgJoRHxWuQbc0dVo26JamfPuX6897b7u60MqkrqjbCFE+hA9m31FbHw58a659+bZzemvP107L1u75pkaPga8eVyvP+yG3NtMHU/vo9ftv0wdT+3hseAI9/bCCMVE+xBsv9UbV3D3Ik/FxnuHucTy+flytPO+9YRwP47NgBSHKx3D1Rc1y95WO7vpwYOB6zavucyG5cUSFZQFSjfQI+8tx9YZQ5CrmWYIVhCgf5ItvUN7Il7/x8625ZrnyXDhRcr7CMvPv5de67zmunkNPP6wgRPkg5om6dr7+jZ9vzTXH1efCh0dOVbqdXUe+U6fEa7tCj+PqWfT0w1UMLPcxXD1SM3z9Skdvu6qpNrhrsLWrz4VuSY0qXd61BqY4qIvH1dv44o/gwnPoifIhvt574k1q6xu/O3sN69K3ZneeenX1udAp8Trdc0tTvbn7P1fo3XNL02vuhSpXl44r4OsIUT6ktsZL1IXThbUx/qE2xlzVhfFxVr88VPd5bOW58IfBKRqV1ly7jnynrknXXTVAufqaqgvHFfAHhCgfUhu9J7482NpV7vzGX1u9hnUh8Fr58uDq89jKc6FT4tXDk5W6APAdXjEmavHixUpKSlJYWJhSU1P14YcfXrH86tWr1aZNG4WFhaljx45av36903pjjGbNmqX4+HiFh4crIyNDBw8edCpz6tQpjRgxQpGRkYqOjta4ceN05swZpzIff/yxevbsqbCwMCUmJuqZZ56pmQZb5O7xElYnm/PViQEl941/qI0xV3VlfJyrk8xafR67+lyozvOeCRwB/+bxELVy5UpNmTJF2dnZ2r17tzp16qTMzEydOHGi0vI7duzQsGHDNG7cOO3Zs0dZWVnKysrSvn37HGWeeeYZLViwQEuWLFFubq4iIiKUmZmp8+f/c2nyiBEjtH//fm3atEnr1q3Ttm3bNH78eMf6kpIS/exnP1Pz5s2Vl5en3//+95o9e7b+9Kc/uW9nVIM7Z/e18sFfVz7IXRURElTp8vohNfOSq0sfzq5+efCmAOvrFzAAuDKPh6jnnntO999/v8aOHat27dppyZIlql+/vl5++eVKy//xj39Uv3799Oijj6pt27Z68skndcstt2jRokWSvu+Fmj9/vmbMmKGBAwfq5ptv1v/8z//om2++0dq1ayVJBw4c0IYNG/TnP/9Zqamp6tGjhxYuXKgVK1bom2++kSQtW7ZMFy9e1Msvv6z27dtr6NChmjhxop577rla2S9X4q7ek9r6xl8XlF4sq3T52Yv2Gtl+XftwduXLg7t/HsmV5z0/1QT4N4+GqIsXLyovL08ZGRmOZYGBgcrIyFBOTk6l98nJyXEqL0mZmZmO8ocPH1ZBQYFTmaioKKWmpjrK5OTkKDo6Wl27dnWUycjIUGBgoHJzcx1levXqpZCQEKfH+fzzz/Xdd99VWrcLFy6opKTE6eZLvPEbv69y94dnXfxwru6XB3ef9nblec+UBYB/8+jA8qKiIpWVlSk2NtZpeWxsrD777LNK71NQUFBp+YKCAsf68mVXKtOkSROn9cHBwWrUqJFTmeTk5ArbKF933XUVB5TOnTtXTzzxRNUN9gGuDLBlYsCqufvqP2ZXvjJ3XjTg6vOeKQsA/8XVeTVo2rRpmjJliuPvkpISJSYmerBG1lT38mo+yK/M3R+efDhfmbumCbDyvGfKAsA/eTRENW7cWEFBQSosLHRaXlhYqLi4uErvExcXd8Xy5f8WFhYqPj7eqUxKSoqjzI8Hrl++fFmnTp1y2k5lj/PDx/ix0NBQhYaGVtlef8QH+ZW5+8OTD2fP4HkPQPLwmKiQkBB16dJFmzdvdiyz2+3avHmz0tLSKr1PWlqaU3lJ2rRpk6N8cnKy4uLinMqUlJQoNzfXUSYtLU3FxcXKy8tzlNmyZYvsdrtSU1MdZbZt26ZLly45Pc5NN91U6am8uoyfSUBdxPMegIyHrVixwoSGhpqlS5eaTz/91IwfP95ER0ebgoICY4wxI0eONFOnTnWU3759uwkODjbPPvusOXDggMnOzjb16tUzn3zyiaPMvHnzTHR0tHn77bfNxx9/bAYOHGiSk5PNuXPnHGX69etnOnfubHJzc80HH3xgWrVqZYYNG+ZYX1xcbGJjY83IkSPNvn37zIoVK0z9+vXNiy++WO222Ww2I8nYbLZr2UUAAKAWVffz2+MhyhhjFi5caJo1a2ZCQkJMt27dzD//+U/HuvT0dDN69Gin8qtWrTKtW7c2ISEhpn379ubdd991Wm+3283MmTNNbGysCQ0NNX379jWff/65U5mTJ0+aYcOGmQYNGpjIyEgzduxYc/r0aacyH330kenRo4cJDQ01TZs2NfPmzXOpXYQoAAB8T3U/vwOMMebKfVWwqqSkRFFRUbLZbIqMjPR0dQAAQDVU9/Pb45NtAgAA+CJCFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGCBR3+A2N+Vz2NaUlLi4ZoAAIDqKv/cvtp85IQoNzp9+rQkKTEx0cM1AQAArjp9+rSioqKqXM/PvriR3W7XN998o4YNGyogIKDGtltSUqLExEQdO3bML39Oxt/bJ/l/G/29fZL/t5H2+T5/b6M722eM0enTp5WQkKDAwKpHPtET5UaBgYG64YYb3Lb9yMhIv3xhlPP39kn+30Z/b5/k/22kfb7P39vorvZdqQeqHAPLAQAALCBEAQAAWECI8kGhoaHKzs5WaGiop6viFv7ePsn/2+jv7ZP8v420z/f5exu9oX0MLAcAALCAnigAAAALCFEAAAAWEKIAAAAsIEQBAABYQIjyEosXL1ZSUpLCwsKUmpqqDz/88Irl58+fr5tuuknh4eFKTEzUb3/7W50/f/6atulONd2+2bNnKyAgwOnWpk0bdzejSq6079KlS5ozZ45atmypsLAwderUSRs2bLimbdaGmm6jNx3Dbdu26c4771RCQoICAgK0du3aq95n69atuuWWWxQaGqobb7xRS5curVDGW46hO9rny8cvPz9fw4cPV+vWrRUYGKjJkydXWm716tVq06aNwsLC1LFjR61fv77mK19N7mjj0qVLKxzDsLAw9zTgKlxt35o1a/TTn/5UMTExioyMVFpamv7+979XKOfu1yAhygusXLlSU6ZMUXZ2tnbv3q1OnTopMzNTJ06cqLT88uXLNXXqVGVnZ+vAgQP6y1/+opUrV2r69OmWt+lO7mifJLVv3175+fmO2wcffFAbzanA1fbNmDFDL774ohYuXKhPP/1UDz74oO6++27t2bPH8jbdzR1tlLznGJaWlqpTp05avHhxtcofPnxYAwYMUJ8+fbR3715NnjxZ9913n9ObuDcdQ3e0T/Ld43fhwgXFxMRoxowZ6tSpU6VlduzYoWHDhmncuHHas2ePsrKylJWVpX379tVk1avNHW2Uvp/t+4fH8KuvvqqpKrvE1fZt27ZNP/3pT7V+/Xrl5eWpT58+uvPOO2v/fdTA47p162Z+85vfOP4uKyszCQkJZu7cuZWW/81vfmN+8pOfOC2bMmWKuf322y1v053c0b7s7GzTqVMnt9TXVa62Lz4+3ixatMhp2aBBg8yIESMsb9Pd3NFGbzqGPyTJvPXWW1cs89hjj5n27ds7LRsyZIjJzMx0/O1tx7BcTbXPl4/fD6Wnp5tJkyZVWD548GAzYMAAp2WpqanmgQceuMYaXruaauMrr7xioqKiaqxeNcXV9pVr166deeKJJxx/18ZrkJ4oD7t48aLy8vKUkZHhWBYYGKiMjAzl5ORUep/u3bsrLy/P0S355Zdfav369erfv7/lbbqLO9pX7uDBg0pISFCLFi00YsQIHT161H0NqYKV9l24cKFCl3l4eLjjW7w3HT+r9blaG8t5wzG0Iicnx2l/SFJmZqZjf3jbMXTV1dpXzlePX3VUdx/4ujNnzqh58+ZKTEzUwIEDtX//fk9XyRK73a7Tp0+rUaNGkmrvNUiI8rCioiKVlZUpNjbWaXlsbKwKCgoqvc/w4cM1Z84c9ejRQ/Xq1VPLli3Vu3dvx+kuK9t0F3e0T5JSU1O1dOlSbdiwQS+88IIOHz6snj176vTp025tz49ZaV9mZqaee+45HTx4UHa7XZs2bdKaNWuUn59veZvu5I42St5zDK0oKCiodH+UlJTo3LlzXncMXXW19km+ffyqo6p94AvHr7puuukmvfzyy3r77bf12muvyW63q3v37jp+/Linq+ayZ599VmfOnNHgwYMl1d77KCHKB23dulW/+93v9N///d/avXu31qxZo3fffVdPPvmkp6tWI6rTvp///Of6xS9+oZtvvlmZmZlav369iouLtWrVKg/WvHr++Mc/qlWrVmrTpo1CQkI0YcIEjR07VoGB/vNyrE4bffkYguPnD9LS0jRq1CilpKQoPT1da9asUUxMjF588UVPV80ly5cv1xNPPKFVq1apSZMmtfrYwbX6aKigcePGCgoKUmFhodPywsJCxcXFVXqfmTNnauTIkbrvvvskSR07dlRpaanGjx+v//qv/7K0TXdxR/sqCxvR0dFq3bq1vvjii5pvxBVYaV9MTIzWrl2r8+fP6+TJk0pISNDUqVPVokULy9t0J3e0sTKeOoZWxMXFVbo/IiMjFR4erqCgIK86hq66Wvsq40vHrzqq2ge+cPysqlevnjp37uxTx3DFihW67777tHr1aqdTd7X1Puo/X319VEhIiLp06aLNmzc7ltntdm3evFlpaWmV3ufs2bMVgkRQUJAkyRhjaZvu4o72VebMmTM6dOiQ4uPja6jm1XMt+zosLExNmzbV5cuX9eabb2rgwIHXvE13cEcbK+OpY2hFWlqa0/6QpE2bNjn2h7cdQ1ddrX2V8aXjVx1W9oGvKysr0yeffOIzx/D111/X2LFj9frrr2vAgAFO62rtNVhjQ9Rh2YoVK0xoaKhZunSp+fTTT8348eNNdHS0KSgoMMYYM3LkSDN16lRH+ezsbNOwYUPz+uuvmy+//NJs3LjRtGzZ0gwePLja2/T19j388MNm69at5vDhw2b79u0mIyPDNG7c2Jw4ccLr2/fPf/7TvPnmm+bQoUNm27Zt5ic/+YlJTk423333XbW3Wdvc0UZvOoanT582e/bsMXv27DGSzHPPPWf27NljvvrqK2OMMVOnTjUjR450lP/yyy9N/fr1zaOPPmoOHDhgFi9ebIKCgsyGDRscZbzpGLqjfb58/IwxjvJdunQxw4cPN3v27DH79+93rN++fbsJDg42zz77rDlw4IDJzs429erVM5988kmttq2cO9r4xBNPmL///e/m0KFDJi8vzwwdOtSEhYU5laktrrZv2bJlJjg42CxevNjk5+c7bsXFxY4ytfEaJER5iYULF5pmzZqZkJAQ061bN/PPf/7TsS49Pd2MHj3a8felS5fM7NmzTcuWLU1YWJhJTEw0v/71r50+oK62zdpW0+0bMmSIiY+PNyEhIaZp06ZmyJAh5osvvqjFFjlzpX1bt241bdu2NaGhoeb66683I0eONF9//bVL2/SEmm6jNx3D9957z0iqcCtv0+jRo016enqF+6SkpJiQkBDTokUL88orr1TYrrccQ3e0z9ePX2Xlmzdv7lRm1apVpnXr1iYkJMS0b9/evPvuu7XToEq4o42TJ092PD9jY2NN//79ze7du2uvUT/gavvS09OvWL6cu1+DAcZUcX4EAAAAVWJMFAAAgAWEKAAAAAsIUQAAABYQogAAACwgRAEAAFhAiAIAALCAEAUAAGABIQoA6pCtW7cqICBAxcXFnq4K4PMIUQDcYsyYMQoICNC8efOclq9du1YBAQGOv40xeumll5SWlqbIyEg1aNBA7du316RJk6r9Q6hnz57VtGnT1LJlS4WFhSkmJkbp6el6++23HWWSkpI0f/78Gmmbu5Xvu4CAANWrV0/Jycl67LHHdP78eZe207t3b02ePNlpWffu3ZWfn6+oqKgarDFQNxGiALhNWFiYnn76aX333XeVrjfGaPjw4Zo4caL69++vjRs36tNPP9Vf/vIXhYWF6amnnqrW4zz44INas2aNFi5cqM8++0wbNmzQvffeq5MnT9Zkc2pVv379lJ+fry+//FLPP/+8XnzxRWVnZ1/zdkNCQhQXF+cUZAFYVKM/IgMA/zZ69Ghzxx13mDZt2phHH33Usfytt94y5W89r7/+upFk3n777Uq3Ybfbq/VYUVFRZunSpVWur+x3tsr94x//MD169DBhYWHmhhtuMA899JA5c+aMY/3//M//mC5dupgGDRqY2NhYM2zYMFNYWOhYX/6bXxs2bDApKSkmLCzM9OnTxxQWFpr169ebNm3amIYNG5phw4aZ0tLSarVn9OjRZuDAgU7LBg0aZDp37uz4u6ioyAwdOtQkJCSY8PBw06FDB7N8+XKnbfy4zYcPH3bU94e/RfnGG2+Ydu3amZCQENO8eXPz7LPPVqueQF1HTxQAtwkKCtLvfvc7LVy4UMePH6+w/vXXX9dNN92ku+66q9L7V7e3JC4uTuvXr9fp06crXb9mzRrdcMMNmjNnjvLz85Wfny9JOnTokPr166d77rlHH3/8sVauXKkPPvhAEyZMcNz30qVLevLJJ/XRRx9p7dq1OnLkiMaMGVPhMWbPnq1FixZpx44dOnbsmAYPHqz58+dr+fLlevfdd7Vx40YtXLiwWu35sX379mnHjh0KCQlxLDt//ry6dOmid999V/v27dP48eM1cuRIffjhh5KkP/7xj0pLS9P999/vaHNiYmKFbefl5Wnw4MEaOnSoPvnkE82ePVszZ87U0qVLLdUVqFM8neIA+Kcf9qbcdttt5le/+pUxxrknqk2bNuauu+5yut+kSZNMRESEiYiIME2bNq3WY73//vvmhhtuMPXq1TNdu3Y1kydPNh988IFTmebNm5vnn3/eadm4cePM+PHjnZb94x//MIGBgebcuXOVPtbOnTuNJHP69GljzH96ov73f//XUWbu3LlGkjl06JBj2QMPPGAyMzOr1Z7Ro0eboKAgExERYUJDQ40kExgYaN54440r3m/AgAHm4Ycfdvydnp5uJk2a5FTmxz1Rw4cPNz/96U+dyjz66KOmXbt21aorUJfREwXA7Z5++mm9+uqrOnDgwFXL/td//Zf27t2rWbNm6cyZM9Xafq9evfTll19q8+bNuvfee7V//3717NlTTz755BXv99FHH2np0qVq0KCB45aZmSm73a7Dhw9L+r6n5s4771SzZs3UsGFDpaenS5KOHj3qtK2bb77Z8f/Y2FjVr19fLVq0cFp24sSJarVHkvr06aO9e/cqNzdXo0eP1tixY3XPPfc41peVlenJJ59Ux44d1ahRIzVo0EB///vfK9Trag4cOKDbb7/dadntt9+ugwcPqqyszKVtAXUNIQqA2/Xq1UuZmZmaNm2a0/JWrVrp888/d1oWExOjG2+8UU2aNHHpMerVq6eePXvq8ccf18aNGzVnzhw9+eSTunjxYpX3OXPmjB544AHt3bvXcfvoo4908OBBtWzZUqWlpcrMzFRkZKSWLVumnTt36q233pKkCtutV6+e4//lV9X9UEBAgOx2e7XbExERoRtvvFGdOnXSyy+/rNzcXP3lL39xrP/973+vP/7xj3r88cf13nvvae/evcrMzLxiewHUrGBPVwBA3TBv3jylpKTopptuciwbNmyYhg8frrffflsDBw6s0cdr166dLl++rPPnzyskJEQhISEVelZuueUWffrpp7rxxhsr3cYnn3yikydPat68eY7xRLt27arRelZHYGCgpk+frilTpmj48OEKDw/X9u3bNXDgQP3yl7+UJNntdv3rX/9Su3btHPerrM0/1rZtW23fvt1p2fbt29W6dWsFBQXVfGMAP0JPFIBa0bFjR40YMUILFixwLBs6dKjuvfdeDR06VHPmzFFubq6OHDmi999/XytXrqz2h3jv3r314osvKi8vT0eOHNH69es1ffp09enTR5GRkZK+nydq27Zt+vrrr1VUVCRJevzxx7Vjxw5NmDBBe/fu1cGDB/X22287BpY3a9ZMISEhWrhwob788ku98847Vz1F6C6/+MUvFBQUpMWLF0v6vhdv06ZN2rFjhw4cOKAHHnhAhYWFTvdJSkpy7NOioqJKe8Iefvhhbd68WU8++aT+9a9/6dVXX9WiRYv0yCOP1Eq7AF9GiAJQa+bMmeP0QR4QEKCVK1dq/vz5Wr9+vfr27aubbrpJv/rVr5SYmKgPPvigWtvNzMzUq6++qp/97Gdq27atHnroIWVmZmrVqlVOj33kyBG1bNlSMTExkr4fx/T+++/rX//6l3r27KnOnTtr1qxZSkhIkPT9qcWlS5dq9erVateunebNm6dnn322BvdI9QUHB2vChAl65plnVFpaqhkzZuiWW25RZmamevfurbi4OGVlZTnd55FHHlFQUJDatWunmJiYSsdL3XLLLVq1apVWrFihDh06aNasWZozZ06lVyACcBZgjDGergQAAICvoScKAADAAkIUAK/3wykIfnz7xz/+4enqueTo0aNXbI+rUxQA8BxO5wHwelf6IeKmTZsqPDy8FmtzbS5fvqwjR45UuT4pKUnBwVw4DfgCQhQAAIAFnM4DAACwgBAFAABgASEKAADAAkIUAACABYQoAAAACwhRAAAAFhCiAAAALCBEAQAAWPD/AQozCRb6CiyqAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAHHCAYAAACBYj2uAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW09JREFUeJzt3XtclGX+P/7XcJgZxBgykIOh4FmUxFQIT+hKjWklWasiibIo9dksTdtCN8Wsb6i5m6v5CXO36Ld5QNPVVolkQXMVQkLNY64anorBEJkRBA/M9fujD/c6MgIDzPn1fDzmYXPd7/ue65ppuN9zXdd93TIhhAARERERWYSLtStARERE5EyYfBERERFZEJMvIiIiIgti8kVERERkQUy+iIiIiCyIyRcRERGRBTH5IiIiIrIgJl9EREREFsTki4iIiMiCmHwRkdNbvHgxZDJZs2JlMhkWL15s1vqMHDkSI0eOtNnjEVHrMPkiIpuRkZEBmUwmPdzc3NCpUydMnz4dP/30k7WrZ3OCg4MN3q+OHTti+PDh+Mc//tEmx79x4wYWL16MvXv3tsnxiOhXTL6IyOYsWbIEf//735Geno4nn3wSn3/+OaKjo1FbW2uW13vrrbdQU1NjlmObW3h4OP7+97/j73//O15//XX8/PPPmDBhAtLT01t97Bs3buDtt99m8kXUxtysXQEions9+eSTGDRoEABgxowZ8PHxwbJly/Dll19i4sSJbf56bm5ucHOzzz+HnTp1wgsvvCA9T0hIQPfu3fHBBx/gpZdesmLNiOh+2PNFRDZv+PDhAIBz584ZlP/www94/vnn0aFDByiVSgwaNAhffvmlQczt27fx9ttvo0ePHlAqlXjooYcwbNgw5OTkSDHG5nzdvHkTr732Gnx9ffHAAw/gmWeeweXLlxvUbfr06QgODm5QbuyYn376KX7zm9+gY8eOUCgUCA0NxUcffWTSe9EUf39/9OnTByUlJY3GXblyBUlJSfDz84NSqUT//v3x2WefSdvPnz8PX19fAMDbb78tDW2ae74bkTOwz596RORUzp8/DwB48MEHpbITJ05g6NCh6NSpE1JSUuDp6YnNmzcjNjYWW7duxbPPPgvg1yQoLS0NM2bMQEREBHQ6Hb777jscOnQIjz/++H1fc8aMGfj8888xZcoUDBkyBHl5eRg3blyr2vHRRx+hb9++eOaZZ+Dm5oZ//vOf+P3vfw+9Xo+XX365Vceud/v2bVy6dAkPPfTQfWNqamowcuRInD17FrNmzUJISAi2bNmC6dOno7KyErNnz4avry8++ugj/M///A+effZZTJgwAQDwyCOPtEk9iZyaICKyEZ9++qkAIP71r3+JX375RVy6dEl88cUXwtfXVygUCnHp0iUpdvTo0SIsLEzU1tZKZXq9XgwZMkT06NFDKuvfv78YN25co6+bmpoq7v5zeOTIEQFA/P73vzeImzJligAgUlNTpbJp06aJLl26NHlMIYS4ceNGgzi1Wi26du1qUBYdHS2io6MbrbMQQnTp0kU88cQT4pdffhG//PKL+P7778XkyZMFAPHKK6/c93grV64UAMTnn38uld26dUtERUWJ9u3bC51OJ4QQ4pdffmnQXiJqPQ47EpHNiYmJga+vL4KCgvD888/D09MTX375JR5++GEAQEVFBfLy8jBx4kRcv34d5eXlKC8vx9WrV6FWq3HmzBnp6khvb2+cOHECZ86cafbrZ2VlAQBeffVVg/I5c+a0ql0eHh7Sf2u1WpSXlyM6Oho//vgjtFpti465e/du+Pr6wtfXF/3798eWLVswdepULFu27L77ZGVlwd/fH3FxcVKZu7s7Xn31VVRVVeGbb75pUV2IqHk47EhENmfNmjXo2bMntFotPvnkE+zbtw8KhULafvbsWQghsHDhQixcuNDoMa5cuYJOnTphyZIlGD9+PHr27Il+/fphzJgxmDp1aqPDZxcuXICLiwu6detmUN6rV69WtevAgQNITU1FQUEBbty4YbBNq9VCpVKZfMzIyEi8++67kMlkaNeuHfr06QNvb+9G97lw4QJ69OgBFxfD3999+vSRthOR+TD5IiKbExERIV3tGBsbi2HDhmHKlCk4ffo02rdvD71eDwB4/fXXoVarjR6je/fuAIARI0bg3Llz2LFjB3bv3o2//vWv+OCDD5Ceno4ZM2a0uq73W5y1rq7O4Pm5c+cwevRo9O7dG3/+858RFBQEuVyOrKwsfPDBB1KbTOXj44OYmJgW7UtE1sHki4hsmqurK9LS0jBq1Ch8+OGHSElJQdeuXQH8OlTWnMSjQ4cOSExMRGJiIqqqqjBixAgsXrz4vslXly5doNfrce7cOYPertOnTzeIffDBB1FZWdmg/N7eo3/+85+4efMmvvzyS3Tu3Fkq37NnT5P1b2tdunTB0aNHodfrDXq/fvjhB2k7cP/Ekohah3O+iMjmjRw5EhEREVi5ciVqa2vRsWNHjBw5EmvXrkVpaWmD+F9++UX676tXrxpsa9++Pbp3746bN2/e9/WefPJJAMCqVasMyleuXNkgtlu3btBqtTh69KhUVlpa2mCVeVdXVwCAEEIq02q1+PTTT+9bD3MZO3YsNBoNMjMzpbI7d+5g9erVaN++PaKjowEA7dq1AwCjySURtRx7vojILvzhD3/Ab3/7W2RkZOCll17CmjVrMGzYMISFhWHmzJno2rUrysrKUFBQgMuXL+P7778HAISGhmLkyJEYOHAgOnTogO+++w5ffPEFZs2add/XCg8PR1xcHP73f/8XWq0WQ4YMQW5uLs6ePdsgdvLkyXjzzTfx7LPP4tVXX8WNGzfw0UcfoWfPnjh06JAU98QTT0Aul+Ppp5/Giy++iKqqKqxbtw4dO3Y0mkCaU3JyMtauXYvp06ejuLgYwcHB+OKLL3DgwAGsXLkSDzzwAIBfLxAIDQ1FZmYmevbsiQ4dOqBfv37o16+fRetL5HCsfbklEVG9+qUmioqKGmyrq6sT3bp1E926dRN37twRQghx7tw5kZCQIPz9/YW7u7vo1KmTeOqpp8QXX3wh7ffuu++KiIgI4e3tLTw8PETv3r3F//t//0/cunVLijG2LERNTY149dVXxUMPPSQ8PT3F008/LS5dumR06YXdu3eLfv36CblcLnr16iU+//xzo8f88ssvxSOPPCKUSqUIDg4Wy5YtE5988okAIEpKSqQ4U5aaaGoZjfsdr6ysTCQmJgofHx8hl8tFWFiY+PTTTxvsm5+fLwYOHCjkcjmXnSBqIzIh7uoDJyIiIiKz4pwvIiIiIgti8kVERERkQUy+iIiIiCyIyRcRERGRBTH5IiIiIrIgJl9EREREFsRFVq1Ir9fj559/xgMPPMDbeBAREdkJIQSuX7+OwMDABjeobw4mX1b0888/IygoyNrVICIioha4dOkSHn74YZP3Y/JlRfW38Lh06RK8vLysXBsiIiJqDp1Oh6CgIOk8biomX1ZUP9To5eXF5IuIiMjOtHTKECfcExEREVkQky8iIiIiC2LyRURERGRBnPNFREREkrq6Oty+fdva1bA6uVzeomUkmoPJFxEREUEIAY1Gg8rKSmtXxSa4uLggJCQEcrm8zY/N5IuIiIikxKtjx45o166dUy/+Xb8IemlpKTp37tzm7wWTLyIiIidXV1cnJV4PPfSQtatjE3x9ffHzzz/jzp07cHd3b9Njc8I9ERGRk6uf49WuXTsr18R21A831tXVtfmxbSL5WrNmDYKDg6FUKhEZGYmDBw82Gr9lyxb07t0bSqUSYWFhyMrKMtguhMCiRYsQEBAADw8PxMTE4MyZMwYxFRUViI+Ph5eXF7y9vZGUlISqqipp++nTpzFq1Cj4+flBqVSia9eueOuttwwmIWZkZEAmkxk8lEplG7wjRERElufMQ433Mud7YfXkKzMzE3PnzkVqaioOHTqE/v37Q61W48qVK0bj8/PzERcXh6SkJBw+fBixsbGIjY3F8ePHpZjly5dj1apVSE9PR2FhITw9PaFWq1FbWyvFxMfH48SJE8jJycHOnTuxb98+JCcnS9vd3d2RkJCA3bt34/Tp01i5ciXWrVuH1NRUg/p4eXmhtLRUely4cKGN3yEiIiJyKMLKIiIixMsvvyw9r6urE4GBgSItLc1o/MSJE8W4ceMMyiIjI8WLL74ohBBCr9cLf39/8f7770vbKysrhUKhEBs3bhRCCHHy5EkBQBQVFUkxX331lZDJZOKnn366b11fe+01MWzYMOn5p59+KlQqVfMbew+tVisACK1W2+JjEBERtVZNTY04efKkqKmpsXZVbEZj70lrz99W7fm6desWiouLERMTI5W5uLggJiYGBQUFRvcpKCgwiAcAtVotxZeUlECj0RjEqFQqREZGSjEFBQXw9vbGoEGDpJiYmBi4uLigsLDQ6OuePXsW2dnZiI6ONiivqqpCly5dEBQUhPHjx+PEiRP3be/Nmzeh0+kMHkRE5HhKtTXIP1eOUm2Ntavi8KZPn47Y2NgG5Xv37oVMJkNlZSX27t2L8ePHIyAgAJ6enggPD8f69estX9n/Y9Xkq7y8HHV1dfDz8zMo9/Pzg0ajMbqPRqNpNL7+36ZiOnbsaLDdzc0NHTp0aPC6Q4YMgVKpRI8ePTB8+HAsWbJE2tarVy988skn2LFjBz7//HPo9XoMGTIEly9fNlr3tLQ0qFQq6REUFGQ0joiI7Fdm0UUMXZqHKesKMXRpHjKLLlq7Sk4vPz8fjzzyCLZu3YqjR48iMTERCQkJ2Llzp1XqY/U5X7YuMzMThw4dwoYNG7Br1y6sWLFC2hYVFYWEhASEh4cjOjoa27Ztg6+vL9auXWv0WPPnz4dWq5Uely5dslQziIjIAkq1NZi/7Rj04tfnegEs2HacPWBWtmDBArzzzjsYMmQIunXrhtmzZ2PMmDHYtm2bVepj1XW+fHx84OrqirKyMoPysrIy+Pv7G93H39+/0fj6f8vKyhAQEGAQEx4eLsXcO6H/zp07qKioaPC69b1ToaGhqKurQ3JyMubNmwdXV9cGdXN3d8eAAQNw9uxZo3VXKBRQKBRGtxERkf0rKa+WEq96dULgfPkNBKg8rFMpKyjV1qCkvBohPp42226tVos+ffpY5bWt2vMll8sxcOBA5ObmSmV6vR65ubmIiooyuk9UVJRBPADk5ORI8SEhIfD39zeI0el0KCwslGKioqJQWVmJ4uJiKSYvLw96vR6RkZH3ra9er8ft27eh1+uNbq+rq8OxY8cMkj4iInIeIT6ecLlnhQJXmQzBPs6zfpY1hl137tyJ9u3bGzyefPLJ+8Zv3rwZRUVFSExMNHvdjLH6Cvdz587FtGnTMGjQIERERGDlypWorq6W3pCEhAR06tQJaWlpAIDZs2cjOjoaf/rTnzBu3Dhs2rQJ3333HT7++GMAv67LMWfOHLz77rvo0aMHQkJCsHDhQgQGBkoT8vr06YMxY8Zg5syZSE9Px+3btzFr1ixMnjwZgYGBAID169fD3d0dYWFhUCgU+O677zB//nxMmjRJWul2yZIleOyxx9C9e3dUVlbi/fffx4ULFzBjxgwLv4tERGQLAlQeSJsQhgXbjqNOCLjKZHhvQj+b7f1pa/cbdh3R09es78GoUaPw0UcfGZQVFhbihRdeaBC7Z88eJCYmYt26dejbt6/Z6tQYqydfkyZNwi+//IJFixZBo9EgPDwc2dnZ0oT5ixcvGtxVfMiQIdiwYQPeeustLFiwAD169MD27dvRr18/KeaNN95AdXU1kpOTUVlZiWHDhiE7O9tgAdT169dj1qxZGD16NFxcXPDcc89h1apV0nY3NzcsW7YM//nPfyCEQJcuXTBr1iy89tprUsy1a9cwc+ZMaDQaPPjggxg4cCDy8/MRGhpqzreMiIhs2KTBnTGipy/Ol99AsE87p0m8AOsNu3p6eqJ79+4GZcYufvvmm2/w9NNP44MPPkBCQoLZ6tMUmRBCNB1G5qDT6aBSqaDVauHl5WXt6hARkZOqra1FSUkJQkJCWnWnllJtDYYuzTNIwFxlMuxPGWW25Gv69OmorKzE9u3bDcr37t2LUaNG4dq1a/D29sbevXvx1FNPYdmyZXj55ZebPG5j70lrz9+82pGIiIjaRP2wq+v/3ZrHVoZd9+zZg3HjxuHVV1/Fc889B41GA41Gg4qKCqvUx+rDjkREROQ4bHHY9bPPPsONGzeQlpYmzSEHgOjoaOzdu9fi9eGwoxVx2JGIiGxBWw07OhIOOxIRERE5CCZfRERERBbE5IuIiIjIgph8EREREVkQky8iIiICAPAavP8y53vB5IuIiMjJ1d8278aNG1auie24desWAMDV1bXNj811voiIiJycq6srvL29ceXKFQBAu3btIJPJmtjLcen1evzyyy9o164d3NzaPlVi8kVERETw9/cHACkBc3YuLi7o3LmzWZJQJl9EREQEmUyGgIAAdOzYEbdv37Z2daxOLpfDxcU8s7OYfBEREZHE1dXVLPOc6L844Z6IiIjIgph8EREREVkQky8iIiIiC2LyRURERGRBTL6IiIiILIjJFxEREZEFMfkiIiIisiAmX0REREQWxOSLiIiIyIKYfBERERFZEJMvIiIiIgti8kVERERkQUy+iIiIiCyIyRcRERGRBTH5IiIiIrIgJl9EREREFsTki4iIiMiCmHwRERERWRCTLyIiIiILYvJFREREZEFMvoiIiIgsiMkXERERkQUx+SIiIiKyICZfRERERBZkE8nXmjVrEBwcDKVSicjISBw8eLDR+C1btqB3795QKpUICwtDVlaWwXYhBBYtWoSAgAB4eHggJiYGZ86cMYipqKhAfHw8vLy84O3tjaSkJFRVVUnbT58+jVGjRsHPzw9KpRJdu3bFW2+9hdu3b5tUFyIiIqK7WT35yszMxNy5c5GamopDhw6hf//+UKvVuHLlitH4/Px8xMXFISkpCYcPH0ZsbCxiY2Nx/PhxKWb58uVYtWoV0tPTUVhYCE9PT6jVatTW1kox8fHxOHHiBHJycrBz507s27cPycnJ0nZ3d3ckJCRg9+7dOH36NFauXIl169YhNTXVpLoQERERGRBWFhERIV5++WXpeV1dnQgMDBRpaWlG4ydOnCjGjRtnUBYZGSlefPFFIYQQer1e+Pv7i/fff1/aXllZKRQKhdi4caMQQoiTJ08KAKKoqEiK+eqrr4RMJhM//fTTfev62muviWHDhjW7Lk3RarUCgNBqtc2KJyIiIutr7fnbqj1ft27dQnFxMWJiYqQyFxcXxMTEoKCgwOg+BQUFBvEAoFarpfiSkhJoNBqDGJVKhcjISCmmoKAA3t7eGDRokBQTExMDFxcXFBYWGn3ds2fPIjs7G9HR0c2uy71u3rwJnU5n8CAiIiLnYtXkq7y8HHV1dfDz8zMo9/Pzg0ajMbqPRqNpNL7+36ZiOnbsaLDdzc0NHTp0aPC6Q4YMgVKpRI8ePTB8+HAsWbKk2XW5V1paGlQqlfQICgoyGkdERESOy+pzvmxdZmYmDh06hA0bNmDXrl1YsWJFi481f/58aLVa6XHp0qU2rCkRERHZAzdrvriPjw9cXV1RVlZmUF5WVgZ/f3+j+/j7+zcaX/9vWVkZAgICDGLCw8OlmHsn9N+5cwcVFRUNXre+dyo0NBR1dXVITk7GvHnz4Orq2mRd7qVQKKBQKIxuIyIiIudg1Z4vuVyOgQMHIjc3VyrT6/XIzc1FVFSU0X2ioqIM4gEgJydHig8JCYG/v79BjE6nQ2FhoRQTFRWFyspKFBcXSzF5eXnQ6/WIjIy8b331ej1u374NvV7frLoQERERNdDGFwCYbNOmTUKhUIiMjAxx8uRJkZycLLy9vYVGoxFCCDF16lSRkpIixR84cEC4ubmJFStWiFOnTonU1FTh7u4ujh07JsUsXbpUeHt7ix07doijR4+K8ePHi5CQEFFTUyPFjBkzRgwYMEAUFhaK/fv3ix49eoi4uDhp++effy4yMzPFyZMnxblz50RmZqYIDAwU8fHxJtWlMbzakYiIyP609vxt9eRLCCFWr14tOnfuLORyuYiIiBDffvuttC06OlpMmzbNIH7z5s2iZ8+eQi6Xi759+4pdu3YZbNfr9WLhwoXCz89PKBQKMXr0aHH69GmDmKtXr4q4uDjRvn174eXlJRITE8X169el7Zs2bRKPPvqoaN++vfD09BShoaHivffeM0jgmlOXxjD5IiIisj+tPX/LhBDCun1vzkun00GlUkGr1cLLy8va1SEiIqJmaO35m1c7EhEREVkQky8iIiIiC2LyRURERGRBTL6IiIiILIjJFxEREZEFMfkiIiIisiAmX0REREQWxOSLiIiIyIKYfBERERFZEJMvIiIiIgti8kVERERkQUy+iIiIiCyIyRcRERGRBTH5IiIiIrIgJl9EREREFsTki4iIiMiCmHwRERERWRCTLyIiIiILYvJFREREZEFMvoiIiIgsiMkXERERkQUx+SIiIiKyICZfRERERBbE5IuIiIjIgph8EQCgVFuD/HPlKNXWWLsqREREDs3N2hUg68ssuoj5245BLwAXGZA2IQyTBne2drWIiIgcEnu+nFyptkZKvABAL4AF246zB4yIiMhMmHw5uZLyainxqlcnBM6X37BOhYiIiBwcky8nF+LjCReZYZmrTIZgn3bWqRAREZGDY/Ll5AJUHkibEAZX2a8ZmKtMhvcm9EOAysPKNSMiInJMnHBPmDS4M0b09MX58hsI9mnHxIuIiMiMmHwRgF97wJh0ERERmR+HHYmIiIgsiMkXERERkQUx+SIiIiKyICZfRERERBbE5IuIiIjIgph8EREREVmQTSRfa9asQXBwMJRKJSIjI3Hw4MFG47ds2YLevXtDqVQiLCwMWVlZBtuFEFi0aBECAgLg4eGBmJgYnDlzxiCmoqIC8fHx8PLygre3N5KSklBVVSVt37t3L8aPH4+AgAB4enoiPDwc69evNzhGRkYGZDKZwUOpVLby3SAiIiJHZvXkKzMzE3PnzkVqaioOHTqE/v37Q61W48qVK0bj8/PzERcXh6SkJBw+fBixsbGIjY3F8ePHpZjly5dj1apVSE9PR2FhITw9PaFWq1FbWyvFxMfH48SJE8jJycHOnTuxb98+JCcnG7zOI488gq1bt+Lo0aNITExEQkICdu7caVAfLy8vlJaWSo8LFy608TtEREREDkVYWUREhHj55Zel53V1dSIwMFCkpaUZjZ84caIYN26cQVlkZKR48cUXhRBC6PV64e/vL95//31pe2VlpVAoFGLjxo1CCCFOnjwpAIiioiIp5quvvhIymUz89NNP963r2LFjRWJiovT8008/FSqVqvmNvYdWqxUAhFarbfExiIiIyLJae/62as/XrVu3UFxcjJiYGKnMxcUFMTExKCgoMLpPQUGBQTwAqNVqKb6kpAQajcYgRqVSITIyUoopKCiAt7c3Bg0aJMXExMTAxcUFhYWF962vVqtFhw4dDMqqqqrQpUsXBAUFYfz48Thx4sR997958yZ0Op3Bg4iIiJyLVZOv8vJy1NXVwc/Pz6Dcz88PGo3G6D4ajabR+Pp/m4rp2LGjwXY3Nzd06NDhvq+7efNmFBUVITExUSrr1asXPvnkE+zYsQOff/459Ho9hgwZgsuXLxs9RlpaGlQqlfQICgoyGkdERESOy+pzvuzBnj17kJiYiHXr1qFv375SeVRUFBISEhAeHo7o6Ghs27YNvr6+WLt2rdHjzJ8/H1qtVnpcunTJUk0gIiIiG2HV5MvHxweurq4oKyszKC8rK4O/v7/Rffz9/RuNr/+3qZh7J/TfuXMHFRUVDV73m2++wdNPP40PPvgACQkJjbbH3d0dAwYMwNmzZ41uVygU8PLyMngQERGRc7Fq8iWXyzFw4EDk5uZKZXq9Hrm5uYiKijK6T1RUlEE8AOTk5EjxISEh8Pf3N4jR6XQoLCyUYqKiolBZWYni4mIpJi8vD3q9HpGRkVLZ3r17MW7cOCxbtszgSsj7qaurw7FjxxAQENCM1hMREZFTauMLAEy2adMmoVAoREZGhjh58qRITk4W3t7eQqPRCCGEmDp1qkhJSZHiDxw4INzc3MSKFSvEqVOnRGpqqnB3dxfHjh2TYpYuXSq8vb3Fjh07xNGjR8X48eNFSEiIqKmpkWLGjBkjBgwYIAoLC8X+/ftFjx49RFxcnLQ9Ly9PtGvXTsyfP1+UlpZKj6tXr0oxb7/9tvj666/FuXPnRHFxsZg8ebJQKpXixIkTzWo7r3YkIiKyP609f1s9+RJCiNWrV4vOnTsLuVwuIiIixLfffitti46OFtOmTTOI37x5s+jZs6eQy+Wib9++YteuXQbb9Xq9WLhwofDz8xMKhUKMHj1anD592iDm6tWrIi4uTrRv3154eXmJxMREcf36dWn7tGnTBIAGj+joaClmzpw5Ur39/PzE2LFjxaFDh5rdbiZfRERE9qe152+ZEEJYrdvNyel0OqhUKmi1Ws7/IiIiamOl2hqUlFcjxMcTASqPNjtua8/fbm1WEyIiIiIbkVl0EfO3HYNeAC4yIG1CGCYN7mztagHgUhNERETkYEq1NVLiBQB6ASzYdhyl2hrrVuz/MPkiIiIih1JSXi0lXvXqhMD58hvWqdA9mHwRERGRQwnx8YSLzLDMVSZDsE8761ToHky+iIiIyKEEqDyQNiEMrrJfMzBXmQzvTejXppPuW4MT7omIiMjhTBrcGSN6+uJ8+Q0E+7SzmcQLYPJFREREDipA5WFTSVc9DjsSERERWRCTLyIiIiILYvJFREREZEFMvoiIiIgsiMkXERERkQUx+SIiIiKyICZfRERERBbE5IuIiIjIgph8EREREVkQky8iIiIiC2LyRRZRqq1B/rlylGprrF0VIiIiq+K9HcnsMosuYv62Y9ALwEUGpE0Iw6TBna1dLSIiIqtgzxeZVam2Rkq8AEAvgAXbjrMHjIiInBaTLzKrkvJqKfGqVycEzpffsE6FiIiIrIzJF5lViI8nZPeUyWRAsE87q9SHiIjI2ph8keWJpkOIiIgcFZMvMquS8uoGuZYAOOx4H7wqlIjI8fFqRzKrEB9PuMhgMO/LVSbjsKMRvCqUiMg5sOeLzCpA5YG0CWFwlf0688tVJsN7E/ohQOVh5ZrZFl4VSkTkPNjzRWY3aXBnjOjpi/PlNxDs046JlxGNXRXK94uIyLEw+SKLCFB5mJxElGprUFJejRAfT4dPQDg8S0TkPDjsSDYps+gihi7Nw5R1hRi6NA+ZRRetXSWz4vAsEZHzkAkheOG/leh0OqhUKmi1Wnh5eVm7OjajVFuDoUvzGvQC7U8Z5fDJSKm2hsOzREQ2rrXnbw47ks1x5vlPLRmeJSIi+8JhR7I59fOf7sb5T0REZCpbXTuRyRfZHM5/IiKi1rLlucOc82VFnPPVOM5/sj/OdIUqEdkuc88d5pwvclic/2RfuEI/EdkKW587zGFHImo1rtBPRLbE1ucOM/kiolZr7FcmEZGl2frcYZtIvtasWYPg4GAolUpERkbi4MGDjcZv2bIFvXv3hlKpRFhYGLKysgy2CyGwaNEiBAQEwMPDAzExMThz5oxBTEVFBeLj4+Hl5QVvb28kJSWhqqpK2r53716MHz8eAQEB8PT0RHh4ONavX29yXch52epVNuZg678yicj5TBrcGftTRmHjzMewP2WUTU2DsHrylZmZiblz5yI1NRWHDh1C//79oVarceXKFaPx+fn5iIuLQ1JSEg4fPozY2FjExsbi+PHjUszy5cuxatUqpKeno7CwEJ6enlCr1aitrZVi4uPjceLECeTk5GDnzp3Yt28fkpOTDV7nkUcewdatW3H06FEkJiYiISEBO3fuNKku5Jxs+Sobc7D1X5lE5JwCVB6I6vaQzf0tsvrVjpGRkRg8eDA+/PBDAIBer0dQUBBeeeUVpKSkNIifNGkSqqurDZKgxx57DOHh4UhPT4cQAoGBgZg3bx5ef/11AIBWq4Wfnx8yMjIwefJknDp1CqGhoSgqKsKgQYMAANnZ2Rg7diwuX76MwMBAo3UdN24c/Pz88MknnzSrLk3h1Y6OiSv08wpVInJsrT1/W7Xn69atWyguLkZMTIxU5uLigpiYGBQUFBjdp6CgwCAeANRqtRRfUlICjUZjEKNSqRAZGSnFFBQUwNvbW0q8ACAmJgYuLi4oLCy8b321Wi06dOjQ7Lrc6+bNm9DpdAYPcjzOPP/JVn9lEhHZEqsmX+Xl5airq4Ofn59BuZ+fHzQajdF9NBpNo/H1/zYV07FjR4Ptbm5u6NChw31fd/PmzSgqKkJiYmKz63KvtLQ0qFQq6REUFGQ0juwb5z8REVFjrD7nyx7s2bMHiYmJWLduHfr27dvi48yfPx9arVZ6XLp0qQ1rSbaC85+IiKgxVl1k1cfHB66urigrKzMoLysrg7+/v9F9/P39G42v/7esrAwBAQEGMeHh4VLMvRP679y5g4qKigav+8033+Dpp5/GBx98gISEBJPqci+FQgGFQmF0GzmWSYM7Y0RPX85/IiKiBqza8yWXyzFw4EDk5uZKZXq9Hrm5uYiKijK6T1RUlEE8AOTk5EjxISEh8Pf3N4jR6XQoLCyUYqKiolBZWYni4mIpJi8vD3q9HpGRkVLZ3r17MW7cOCxbtszgSsjm1oWcG+c/ERGRUcLKNm3aJBQKhcjIyBAnT54UycnJwtvbW2g0GiGEEFOnThUpKSlS/IEDB4Sbm5tYsWKFOHXqlEhNTRXu7u7i2LFjUszSpUuFt7e32LFjhzh69KgYP368CAkJETU1NVLMmDFjxIABA0RhYaHYv3+/6NGjh4iLi5O25+XliXbt2on58+eL0tJS6XH16lWT6tIYrVYrAAitVtvi94+IiIgsq7Xnb6snX0IIsXr1atG5c2chl8tFRESE+Pbbb6Vt0dHRYtq0aQbxmzdvFj179hRyuVz07dtX7Nq1y2C7Xq8XCxcuFH5+fkKhUIjRo0eL06dPG8RcvXpVxMXFifbt2wsvLy+RmJgorl+/Lm2fNm2aANDgER0dbVJdGsPki4iIyP609vxt9XW+nBnX+SIiIrI/dr3OFxEREZGzYfJFREREZEFMvoiIiMgulGprkH+uHKXaGmtXpVWsus4XUWNKtTUoKa9GiI8nl2sgInJymUUXMX/bMegF4CID0iaEYdLgztauVosw+SKb5EhfMiIiap1SbY10TgAAvQAWbDuOET197fLHOYcdyebc70tm793MRETUMiXl1dI5oV6dEDhffsM6FWolJl9kcxztS0ZERK0T4uMJF5lhmatMhmCfdtapUCsx+SKb42hfMiIiap0AlQfSJoTBVfbrycFVJsN7E/rZ5ZAjwDlfZIPqv2QLth1HnRB2/yUjIqLWmzS4M0b09MX58hsI9mln1+cEJl9kkxzpS0ZERG0jQOXhEOcDJl9ksxzlS0ZERHQ3zvkiIiIisiAmX0REREQWZHLylZWVhRkzZuCNN97ADz/8YLDt2rVr+M1vftNmlSMiIiJyNCYlXxs2bMAzzzwDjUaDgoICDBgwAOvXr5e237p1C998802bV5KIiIjIUZg04f7999/Hn//8Z7z66qsAgM2bN+N3v/sdamtrkZSUZJYKkmPgfRqJiIh+ZVLydebMGTz99NPS84kTJ8LX1xfPPPMMbt++jWeffbbNK0j2j/dpJCIi+i+Tki8vLy+UlZUhJCREKhs1ahR27tyJp556CpcvX27zCpJ9c7SboRIREbWWSXO+IiIi8NVXXzUoj46Oxj//+U+sXLmyrepFDoL3aSQiIjJkUvL12muvQalUGt02cuRI/POf/0RCQkKbVIwcA+/TSEREZEgmhBBNh/1Kp9M1K87Ly6vFFXImOp0OKpUKWq3Wod+zzKKLDe7TyDlfRERkr1p7/jZpzpe3tzdkMlmTcXV1dSZXhBwX79NIRET0XyYlX3v27JH+WwiBsWPH4q9//Ss6derU5hUjx8L7NNoGLvlBRGR9JiVf0dHRBs9dXV3x2GOPoWvXrm1aKSJqe1zyg4jsnaP8gDQp+SIi+8QlP4jI3jnSD0jeWJvICXDJDyKyZ/f7AVmqrbFuxVqo1clXcybgE5F1cckPIrJnjvYD0qRhxwkTJhg8r62txUsvvQRPT0+D8m3btrW+ZkTUZgJUHkibENZgyQ8OORKRPaj/AXl3AmbPPyBNSr5UKpXB8xdeeKFNK0NE5sMlP4jIXjnaD0iTFlmltuUsi6wSERHdqyVXLpZqa2ziB6RFF1klIiIi52DOZR1aeuWio6wZyeSLiIiIDJhzWQcufcOlJoiIiOgu5l7WwdGuXGwJJl9kEaXaGuSfK7fbNVlawhnbTET2z9zJEZe+4bAjWYAjrUrcXM7YZiJyDOZe1sHRrlxsCV7taEXOcLVjqbYGQ5fmNfgS708Z5bBfNGdsMxE5lsyiiw2So7b+AWkrVy62BK92JJvWWPe1vX3ZmssZ20xEjsUS6wI6ypWLLcHki8zK0VYlbg5nbDMROR5nTo7MzeoT7tesWYPg4GAolUpERkbi4MGDjcZv2bIFvXv3hlKpRFhYGLKysgy2CyGwaNEiBAQEwMPDAzExMThz5oxBTEVFBeLj4+Hl5QVvb28kJSWhqqpK2l5bW4vp06cjLCwMbm5uiI2NbVCPvXv3QiaTNXhoNJqWvxkOqH5s3/X/7gHqDGP7zthmIiJqPqv2fGVmZmLu3LlIT09HZGQkVq5cCbVajdOnT6Njx44N4vPz8xEXF4e0tDQ89dRT2LBhA2JjY3Ho0CH069cPALB8+XKsWrUKn332GUJCQrBw4UKo1WqcPHkSSqUSABAfH4/S0lLk5OTg9u3bSExMRHJyMjZs2AAAqKurg4eHB1599VVs3bq10TacPn3aYLzXWL2dnTPe1sYZ20xERM0krCgiIkK8/PLL0vO6ujoRGBgo0tLSjMZPnDhRjBs3zqAsMjJSvPjii0IIIfR6vfD39xfvv/++tL2yslIoFAqxceNGIYQQJ0+eFABEUVGRFPPVV18JmUwmfvrppwavOW3aNDF+/PgG5Xv27BEAxLVr15rd3ntptVoBQGi12hYfg4iIiCyrtedvqw073rp1C8XFxYiJiZHKXFxcEBMTg4KCAqP7FBQUGMQDgFqtluJLSkqg0WgMYlQqFSIjI6WYgoICeHt7Y9CgQVJMTEwMXFxcUFhYaHI7wsPDERAQgMcffxwHDhxoNPbmzZvQ6XQGDyIiInIuVku+ysvLUVdXBz8/P4NyPz+/+86b0mg0jcbX/9tUzL1Dg25ubujQoYNJ87UCAgKQnp6OrVu3YuvWrQgKCsLIkSNx6NCh++6TlpYGlUolPYKCgpr9ekRERLaMC0s3H692bKFevXqhV69e0vMhQ4bg3Llz+OCDD/D3v//d6D7z58/H3Llzpec6nY4JGBER2T0uLG0aq/V8+fj4wNXVFWVlZQblZWVl8Pf3N7qPv79/o/H1/zYVc+XKFYPtd+7cQUVFxX1ft7kiIiJw9uzZ+25XKBTw8vIyeBAREdkzc98L0hFZLfmSy+UYOHAgcnNzpTK9Xo/c3FxERUUZ3ScqKsogHgBycnKk+JCQEPj7+xvE6HQ6FBYWSjFRUVGorKxEcXGxFJOXlwe9Xo/IyMhWtenIkSMICAho1TGIiIjsCW+UbTqrDjvOnTsX06ZNw6BBgxAREYGVK1eiuroaiYmJAICEhAR06tQJaWlpAIDZs2cjOjoaf/rTnzBu3Dhs2rQJ3333HT7++GMAgEwmw5w5c/Duu++iR48e0lITgYGB0lpdffr0wZgxYzBz5kykp6fj9u3bmDVrFiZPnozAwECpbidPnsStW7dQUVGB69ev48iRIwB+nWAPACtXrkRISAj69u2L2tpa/PWvf0VeXh52795tmTePiIjIBnBhadNZNfmaNGkSfvnlFyxatAgajQbh4eHIzs6WJsxfvHgRLi7/7ZwbMmQINmzYgLfeegsLFixAjx49sH37dmmNLwB44403UF1djeTkZFRWVmLYsGHIzs6W1vgCgPXr12PWrFkYPXo0XFxc8Nxzz2HVqlUGdRs7diwuXLggPR8wYACAXxdxBX69WnPevHn46aef0K5dOzzyyCP417/+hVGjRrX9G0VERGSjAlQeeHZAJ2w99JNUFjsgkOsbNoI31rYiZ7ixNhERObZSbQ2GLs1r0PO1P2WUwyZgrT1/W/32QkRERGR+5loKgnO+TMelJoiIiBycOZeC4Jwv07Hni4iIyIGZeymIAJUH0iaEwVUmA/Br4vXehH4OO+TYFtjzRURE5MAaGxZsqwRp0uDOGNHTF+fLbyDYpx0TryYw+SIiInJglhoWDFB5MOlqJg47EhEROTAOC9oe9nwRERE5OA4L2hYmX0RERE6Aw4K2g8OORERERBbE5IuIiIjIgph8ERFZkLlWGSci+8E5X0REFmLOVcaJyH6w54uIyALMvco4EdkPJl9ERBbAmw8TUT0mX0REFlC/yvjdePNhIufE5IuIyAK4yjgR1eOEeyIiC+Eq40QEMPkiIrIorjJORBx2JCIiIrIgJl8Oigs5EhHR3XhesB0cdnRAXMiRiIjuxvOCbWHPl4PhQo5ERHQ3nhdsD5MvB8OFHImI6G48L9geJl8Ohgs5EhHR3XhesD1MvhwMF3IkIqK78bxge2RCCNF0GJmDTqeDSqWCVquFl5dXmx67VFvDhRztUKm2BiXl1Qjx8eTnRkRtiueFttPa8zevdnRQXMjR/vBqJCIyJ54XbAeHHalFuF5M2+LVSERkKv4dtl/s+SKTsYem7TV2NRJ/qRLRvfh32L6x54tMwh4a8+DVSETUXPw7bP+YfJFJbHm9GHvugufVSETUXLb8d5iah8OOZJL6Hpq7v/i20EPjCF3wkwZ3xoievrwaiYgaZat/h6n52PNFJrHFHhpH6oIPUHkgqttDTLyInIwpPfe2+HeYTMOeLzKZrfXQcLI6EdmzlvTc29rfYTINky9qEVtaL4Zd8ERkr+7Xcz+ip2+Tf2Nt6e8wmYbDjmT32AVPRPaKk+edE3u+yCGwC56I7JEz99w78+3UrN7ztWbNGgQHB0OpVCIyMhIHDx5sNH7Lli3o3bs3lEolwsLCkJWVZbBdCIFFixYhICAAHh4eiImJwZkzZwxiKioqEB8fDy8vL3h7eyMpKQlVVVXS9traWkyfPh1hYWFwc3NDbGys0brs3bsXjz76KBQKBbp3746MjIwWvQfOwBLLQHCyOhHZG2ftuc8suoihS/MwZV0hhi7NQ2bRRWtXyaKsmnxlZmZi7ty5SE1NxaFDh9C/f3+o1WpcuXLFaHx+fj7i4uKQlJSEw4cPIzY2FrGxsTh+/LgUs3z5cqxatQrp6ekoLCyEp6cn1Go1amtrpZj4+HicOHECOTk52LlzJ/bt24fk5GRpe11dHTw8PPDqq68iJibGaF1KSkowbtw4jBo1CkeOHMGcOXMwY8YMfP3112307jgOZ/+SkXXZ8/pv5BwmDe6M/SmjsHHmY9ifMsrulskxlSNdod5SMiGEaDrMPCIjIzF48GB8+OGHAAC9Xo+goCC88sorSElJaRA/adIkVFdXY+fOnVLZY489hvDwcKSnp0MIgcDAQMybNw+vv/46AECr1cLPzw8ZGRmYPHkyTp06hdDQUBQVFWHQoEEAgOzsbIwdOxaXL19GYGCgwWtOnz4dlZWV2L59u0H5m2++iV27dhkkfpMnT0ZlZSWys7Ob1f7W3hXdHpRqazB0aV6DLvX9KaMc/pcdWZ8jrP9G5Gjyz5VjyrrCBuUbZz6GqG4PWaFGpmvt+dtqPV+3bt1CcXGxQc+Si4sLYmJiUFBQYHSfgoKCBj1RarVaii8pKYFGozGIUalUiIyMlGIKCgrg7e0tJV4AEBMTAxcXFxQWNvyf4X6aqosxN2/ehE6nM3g4Ok4mJWvhr2si28TbqVkx+SovL0ddXR38/PwMyv38/KDRaIzuo9FoGo2v/7epmI4dOxpsd3NzQ4cOHe77uqbURafToabG+B/3tLQ0qFQq6REUFNTs17NX/JKRtTDxJ7JNzjrP7W682tGC5s+fj7lz50rPdTqdwydg9V+yBduOo04Ip/ySkXU481VkRLbO2a9Qt1ry5ePjA1dXV5SVlRmUl5WVwd/f3+g+/v7+jcbX/1tWVoaAgACDmPDwcCnm3gn9d+7cQUVFxX1f15S6eHl5wcPD+P9ECoUCCoWi2a/hKJz9S0bWwcSfyLY58yKxVht2lMvlGDhwIHJzc6UyvV6P3NxcREVFGd0nKirKIB4AcnJypPiQkBD4+/sbxOh0OhQWFkoxUVFRqKysRHFxsRSTl5cHvV6PyMjIZte/qbqQIS4DQdYwaXBnbPt9FN4a1wfbfh/FyfZEZBOsOuw4d+5cTJs2DYMGDUJERARWrlyJ6upqJCYmAgASEhLQqVMnpKWlAQBmz56N6Oho/OlPf8K4ceOwadMmfPfdd/j4448BADKZDHPmzMG7776LHj16ICQkBAsXLkRgYKC0VlefPn0wZswYzJw5E+np6bh9+zZmzZqFyZMnG1zpePLkSdy6dQsVFRW4fv06jhw5AgBSD9pLL72EDz/8EG+88QZ+97vfIS8vD5s3b8auXbss8+YRUZN4tSMR2SRhZatXrxadO3cWcrlcREREiG+//VbaFh0dLaZNm2YQv3nzZtGzZ08hl8tF3759xa5duwy26/V6sXDhQuHn5ycUCoUYPXq0OH36tEHM1atXRVxcnGjfvr3w8vISiYmJ4vr16wYxXbp0EQAaPO62Z88eER4eLuRyuejatav49NNPTWq7VqsVAIRWqzVpPyJq2s+VN0RIyk7R5c3/Prqm7BI/V96wdtWIyM619vxt1XW+nJ0zrPNFZC2OsJYQEdkmu13ni4jInLjMif3iXQnI0TH5IiKHxLWE7BNvR0bOgMOOVmTPw47OfDd6si+l2houc2IneDsyshetPX9zkVUyGa8gI3vizGsJ2ZvG7krAz5AcCYcdySS8Xx4RmQvn6ZGzYPJFJuH98ojIXGx5nh4vAqC2xGFHMgnvl0dE5mSLtyPjVAtqa+z5IpPY8i9TInIMtnQ7spZOtWBPGTWGPV9kMlv8ZUrUVnglL92tJRcBsKeMmsLki1qEV5CRI+JJk+5l6lSL+/WUjejpy7+ZJOGwIxEReCUvGWfqVAtelETNwZ4vIiJwjSm6P1OmWvCiJGoO9nwREYFrTFHjmnsRAC9KouZgzxcREf570lyw7TjqhOBJk1qMFyVRU5h8ERH9H540qa1Y4qIkXplrv5h8ERHdhVfykj3glbn2jXO+iIiI7AivzLV/TL6IiIjsCJezsH9MvojsGG9hQuR8eGWu/WPyRWSnMosuYujSPExZV4ihS/OQWXTR2lWyCCacjo+fceO4nIX9kwkhRNNhZA46nQ4qlQparRZeXl7Wrg7ZkVJtDYYuzWuwkOP+lFEO/QeYk4ybx56vguNn3Hyl2hpemWslrT1/82pHIjvkjKux8555zWPPyQs/Y9Pwylz7xWFHIjvkjHM+OMm4afZ+FRw/Y3IWTL6I7JAzzvlwxoTTVPaevPAzJmfBYUciO+Vsq7Hz9j9Ns/ebOvMzJmfBCfdWxAn3RKbjJOPGZRZdbJC82Mucr3r8jMnWtfb8zeTLiph8EZE5MHkhMi9e7UhERAZ4FRyRbeOEeyIiIiILYvJFREREZEFMvoiIiIgsiMkXERERkQUx+SIyE94cmIiIjOHVjkRmYM/31yOyNnu+MThRczD5ImpjvDkwUcvxhws5Aw47ErUxe7+/HpG12PuNwYmai8kXURvjzYGJDDV3/iN/uJCzYPJF1Mbqbw7sKvs1A+PNgcmZZRZdxNCleZiyrhBDl+Yhs+jifWP5w8W+8SKj5rOJ5GvNmjUIDg6GUqlEZGQkDh482Gj8li1b0Lt3byiVSoSFhSErK8tguxACixYtQkBAADw8PBATE4MzZ84YxFRUVCA+Ph5eXl7w9vZGUlISqqqqDGKOHj2K4cOHQ6lUIigoCMuXLzfYnpGRAZlMZvBQKpWteCfIUUwa3Bn7U0Zh48zHsD9lFOeskFMydRiRP1zslylJNtlA8pWZmYm5c+ciNTUVhw4dQv/+/aFWq3HlyhWj8fn5+YiLi0NSUhIOHz6M2NhYxMbG4vjx41LM8uXLsWrVKqSnp6OwsBCenp5Qq9Wora2VYuLj43HixAnk5ORg586d2LdvH5KTk6XtOp0OTzzxBLp06YLi4mK8//77WLx4MT7++GOD+nh5eaG0tFR6XLhwoY3fIbJXASoPRHV7iCcOclotGUbkDxf7w7l6ppMJIUTTYeYTGRmJwYMH48MPPwQA6PV6BAUF4ZVXXkFKSkqD+EmTJqG6uho7d+6Uyh577DGEh4cjPT0dQggEBgZi3rx5eP311wEAWq0Wfn5+yMjIwOTJk3Hq1CmEhoaiqKgIgwYNAgBkZ2dj7NixuHz5MgIDA/HRRx/hj3/8IzQaDeRyOQAgJSUF27dvxw8//ADg156vOXPmoLKyskVtb+1d0YmIbFmptgZDl+YZJGCuMhn2p4zijxIHkn+uHFPWFTYo3zjzMUR1e8gKNTK/1p6/rdrzdevWLRQXFyMmJkYqc3FxQUxMDAoKCozuU1BQYBAPAGq1WoovKSmBRqMxiFGpVIiMjJRiCgoK4O3tLSVeABATEwMXFxcUFhZKMSNGjJASr/rXOX36NK5duyaVVVVVoUuXLggKCsL48eNx4sSJ+7b35s2b0Ol0Bg8iInvT3Lk9HEZ0DpyrZzqrrvNVXl6Ouro6+Pn5GZT7+flJvUv30mg0RuM1Go20vb6ssZiOHTsabHdzc0OHDh0MYkJCQhoco37bgw8+iF69euGTTz7BI488Aq1WixUrVmDIkCE4ceIEHn744QZ1T0tLw9tvv33/N4SIyMaZug7XpMGdMaKnL86X30CwTzsmXg6oPslesO046oRgkt0MXGS1FaKiohAVFSU9HzJkCPr06YO1a9finXfeaRA/f/58zJ07V3qu0+kQFBRkkboSEbVWSxcQDlB58ETs4Jhkm8aqyZePjw9cXV1RVlZmUF5WVgZ/f3+j+/j7+zcaX/9vWVkZAgICDGLCw8OlmHsn9N+5cwcVFRUGxzH2One/xr3c3d0xYMAAnD171uh2hUIBhUJhdBsRka1rbAI9T7bEJLv5rDrnSy6XY+DAgcjNzZXK9Ho9cnNzDXqU7hYVFWUQDwA5OTlSfEhICPz9/Q1idDodCgsLpZioqChUVlaiuLhYisnLy4Ner0dkZKQUs2/fPty+fdvgdXr16oUHH3zQaN3q6upw7Ngxg6SPiMhRhPh44p6pPZDJwLk9RCay+lITc+fOxbp16/DZZ5/h1KlT+J//+R9UV1cjMTERAJCQkID58+dL8bNnz0Z2djb+9Kc/4YcffsDixYvx3XffYdasWQAAmUyGOXPm4N1338WXX36JY8eOISEhAYGBgYiNjQUA9OnTB2PGjMHMmTNx8OBBHDhwALNmzcLkyZMRGBgIAJgyZQrkcjmSkpJw4sQJZGZm4i9/+YvBsOGSJUuwe/du/Pjjjzh06BBeeOEFXLhwATNmzLDQu0dEZGVWvV6eyD5Zfc7XpEmT8Msvv2DRokXQaDQIDw9Hdna2NLn94sWLcHH5b444ZMgQbNiwAW+99RYWLFiAHj16YPv27ejXr58U88Ybb6C6uhrJycmorKzEsGHDkJ2dbbAA6vr16zFr1iyMHj0aLi4ueO6557Bq1Sppu0qlwu7du/Hyyy9j4MCB8PHxwaJFiwzWArt27RpmzpwpTcAfOHAg8vPzERoaas63jIjIKkrKqxvkWgLgsCORiay+zpcz4zpfRGRPuG4X0a/sep0vIiJnY8/3v+O6XURtw+rDjkREzsLUNbJsEZcUIGo99nwRkV2x154jR7r/He9bStQ67PkismOl2hqUlFcjxMfTKU6E9txzxDWyiKgeky+iZrK1RMeeE5GWaOnq6rai/v53905W5xpZbcPWvp9EjWHyRdQMtpbo2Hsi0hL23nPE+9+Zj619P4mawuSLqAm2mOjYeyLSEo7Qc8TJ6m3PFr+fRE3hhHuiJjSW6FhLfSJyt+YkIvY6WR1wnGUOOFm9bdni95OoKez5ImqCLfa4tGQIyxGGZthzRPeyxe8nUVO4wr0VcYV7+5FZdLFBomMLiUuptqZZiQhXJidHZqvfT1PwggH70trzN3u+iJrBVntcAlQezaqLpeaI8QRC1mCr38/mcoReaTINky+iZmpuomOLLDE0wxOI7TB3Emzq8S2RlNvr95MXDDgnJl9ETsDcyxzwBGI7zJ0Em3p8JuWNc8Yrl4nJF5HTMOfQDE8gtsHcSbCpx2dS3jReMOCcuNQEkRMx1zIHLV36gtqWuZddMPX4XAaiaY6yhAqZhj1fRNRqXL3dNpi7F8XU47NXp3ns/YIBMh17voioTUwa3Bn7U0Zh48zHsD9lFOf1WEF9ElzfC+kiQ5smwab20rBXp/m4+K5zYc8XEbUZe73izNHUr95ojlUcTe2lYa8OUUNMvojIoTnT2mP1E9zrcy4B80xwNzXJZlJOZIjJFxE5LGdb5oBXndovZ/qRQEy+iMhBOeMyB5zgbp+c7UcCccI9EVlRqbYG+efKUaqtafNjO+MyB7Y6wd2cn7O9u9+PBL5Xjo09X0ROxJaGNsz9a99Ze4FsbYI7e3Uax6Fi58SeLyInkVl0EUOX5mHKukIMXZqHzKKLVquLJX7t22ovkCXYyrIF7NVpGhcodk7s+SJyAi2d/2SunjJL/dq3tV4gZ8NenaZxgWLnxOSLyAm05CRozuEiSw4JOuMyB7YyvOysQ7+m4o8E58NhRyInYOrQhrmHi5x5SNDcbGl4mZ9z89nKUDFZBnu+iJyAqUMblhgu4q/9tmdrw8sAP2ciY5h8EQDbGaYg8zHlJGip4SJnHBI0J1sbXq7Hz5nIEIcdyaaGKci8mju0weEi+2Rrw8tEZBx7vpycM64CTs3D4SLzMGcvsy0OLxNRQ0y+nBz/+FJjOFzUtjKLLiJl6683vpYBWPpc2w/x2eLwMhEZ4rCjk+MCf0SWUaqtkRIvABAAUrYeM8sQH4eXiWwbe76cHBf4I7KM785X4J5OZggAxeev4an+1vu+TRrcGb39H0DR+WsYHPwg+gc9aLW6EDkLJl/EuT3k0GzlSl6ZTHaf8qb3NWcbWnK1o628p0T2iskXAeDcHnJMtnRT54FdGvYoyQA8aqT8buZsQ0suuLGl95TIXnHOFxE5JFtcRqEZnVwGWtqGUm0N8s+VNxnX2AU3bVkfIjJkE8nXmjVrEBwcDKVSicjISBw8eLDR+C1btqB3795QKpUICwtDVlaWwXYhBBYtWoSAgAB4eHggJiYGZ86cMYipqKhAfHw8vLy84O3tjaSkJFRVVRnEHD16FMOHD4dSqURQUBCWL19ucl2IyDpMTSwsUR9jc74aq09L2mDKun2mXnBja+8pkb2yevKVmZmJuXPnIjU1FYcOHUL//v2hVqtx5coVo/H5+fmIi4tDUlISDh8+jNjYWMTGxuL48eNSzPLly7Fq1Sqkp6ejsLAQnp6eUKvVqK2tlWLi4+Nx4sQJ5OTkYOfOndi3bx+Sk5Ol7TqdDk888QS6dOmC4uJivP/++1i8eDE+/vhjk+pCRNZha1fytqQ+IT6eDXrLZECbLZpq6tWOtvaeEtkrmRDi3h9jFhUZGYnBgwfjww8/BADo9XoEBQXhlVdeQUpKSoP4SZMmobq6Gjt37pTKHnvsMYSHhyM9PR1CCAQGBmLevHl4/fXXAQBarRZ+fn7IyMjA5MmTcerUKYSGhqKoqAiDBg0CAGRnZ2Ps2LG4fPkyAgMD8dFHH+GPf/wjNBoN5HI5ACAlJQXbt2/HDz/80Ky6NEWn00GlUkGr1cLLy6uF7yAR3U9m0cUGV/Jac36SqfUp1dZgSFqeQY+ZTAbkp/zGaIKUf64cU9YVNijfOPMxRHV7qNHXae4FN7b2nhJZQ2vP31adcH/r1i0UFxdj/vz5UpmLiwtiYmJQUFBgdJ+CggLMnTvXoEytVmP79u0AgJKSEmg0GsTExEjbVSoVIiMjUVBQgMmTJ6OgoADe3t5S4gUAMTExcHFxQWFhIZ599lkUFBRgxIgRUuJV/zrLli3DtWvX8OCDDzZZl3vdvHkTN2/elJ7rdLrG3yAiahVbu5LX1PoYHaoUuO8iyC1dNNWUC25s7T0lskdWHXYsLy9HXV0d/Pz8DMr9/Pyg0WiM7qPRaBqNr/+3qZiOHTsabHdzc0OHDh0MYowd4+7XaKou90pLS4NKpZIeQUFBRuOIqO00d8FRSzGlPqYO81lq0VRbe0+J7A2XmrCg+fPnG/SU6XQ6JmBEdF8tWQSZPVNEts+qyZePjw9cXV1RVlZmUF5WVgZ/f3+j+/j7+zcaX/9vWVkZAgICDGLCw8OlmHsn9N+5cwcVFRUGxzH2One/RlN1uZdCoYBCoTC6jYjImJYkU1y3j8i2WXXYUS6XY+DAgcjNzZXK9Ho9cnNzERUVZXSfqKgog3gAyMnJkeJDQkLg7+9vEKPT6VBYWCjFREVFobKyEsXFxVJMXl4e9Ho9IiMjpZh9+/bh9u3bBq/Tq1cvPPjgg82qCxFRW+AwH5GDEVa2adMmoVAoREZGhjh58qRITk4W3t7eQqPRCCGEmDp1qkhJSZHiDxw4INzc3MSKFSvEqVOnRGpqqnB3dxfHjh2TYpYuXSq8vb3Fjh07xNGjR8X48eNFSEiIqKmpkWLGjBkjBgwYIAoLC8X+/ftFjx49RFxcnLS9srJS+Pn5ialTp4rjx4+LTZs2iXbt2om1a9eaVJfGaLVaAUBotdoWv39ERERkWa09f1s9+RJCiNWrV4vOnTsLuVwuIiIixLfffitti46OFtOmTTOI37x5s+jZs6eQy+Wib9++YteuXQbb9Xq9WLhwofDz8xMKhUKMHj1anD592iDm6tWrIi4uTrRv3154eXmJxMREcf36dYOY77//XgwbNkwoFArRqVMnsXTp0gZ1b6oujWHyRUREZH9ae/62+jpfzozrfBEREdmf1p6/rb7CPREREZEzYfJFREREZEFMvoiIiIgsiMkXERERkQUx+SIiIiKyICZfRERERBbE5IuIiIjIgph8EREREVmQVW+s7ezq17fV6XRWrgkRERE1V/15u6Xr1DP5sqLr168DAIKCgqxcEyIiIjLV9evXoVKpTN6PtxeyIr1ej59//hkPPPAAZDJZmx5bp9MhKCgIly5dcuhbF7GdjsMZ2giwnY6G7XQszW2nEALXr19HYGAgXFxMn8HFni8rcnFxwcMPP2zW1/Dy8nLoL0o9ttNxOEMbAbbT0bCdjqU57WxJj1c9TrgnIiIisiAmX0REREQWxOTLQSkUCqSmpkKhUFi7KmbFdjoOZ2gjwHY6GrbTsViqnZxwT0RERGRB7PkiIiIisiAmX0REREQWxOSLiIiIyIKYfBERERFZEJMvO7FmzRoEBwdDqVQiMjISBw8ebDR+5cqV6NWrFzw8PBAUFITXXnsNtbW1rTqmJbR1OxcvXgyZTGbw6N27t7mb0SRT2nn79m0sWbIE3bp1g1KpRP/+/ZGdnd2qY1pKW7fTFj/Pffv24emnn0ZgYCBkMhm2b9/e5D579+7Fo48+CoVCge7duyMjI6NBjC19nuZooyN8lqWlpZgyZQp69uwJFxcXzJkzx2jcli1b0Lt3byiVSoSFhSErK6vtK28Cc7QzIyOjweepVCrN04BmMrWd27Ztw+OPPw5fX194eXkhKioKX3/9dYO4tvhuMvmyA5mZmZg7dy5SU1Nx6NAh9O/fH2q1GleuXDEav2HDBqSkpCA1NRWnTp3C3/72N2RmZmLBggUtPqYlmKOdANC3b1+UlpZKj/3791uiOfdlajvfeustrF27FqtXr8bJkyfx0ksv4dlnn8Xhw4dbfExLMEc7Adv7PKurq9G/f3+sWbOmWfElJSUYN24cRo0ahSNHjmDOnDmYMWOGwR95W/s8zdFGwP4/y5s3b8LX1xdvvfUW+vfvbzQmPz8fcXFxSEpKwuHDhxEbG4vY2FgcP368LatuEnO0E/h1Vfi7P88LFy60VZVbxNR27tu3D48//jiysrJQXFyMUaNG4emnnzbP31pBNi8iIkK8/PLL0vO6ujoRGBgo0tLSjMa//PLL4je/+Y1B2dy5c8XQoUNbfExLMEc7U1NTRf/+/c1S35YytZ0BAQHiww8/NCibMGGCiI+Pb/ExLcEc7bTFz/NuAMQ//vGPRmPeeOMN0bdvX4OySZMmCbVaLT23xc+zXlu10RE+y7tFR0eL2bNnNyifOHGiGDdunEFZZGSkePHFF1tZw7bRVu389NNPhUqlarN6tTVT21kvNDRUvP3229LztvpusufLxt26dQvFxcWIiYmRylxcXBATE4OCggKj+wwZMgTFxcVSV+iPP/6IrKwsjB07tsXHNDdztLPemTNnEBgYiK5duyI+Ph4XL140X0Oa0JJ23rx5s0H3vYeHh9RL4CifZ1PtrGdLn2dLFBQUGLwvAKBWq6X3xRY/T1M11cZ69v5ZNkdz3wtHUFVVhS5duiAoKAjjx4/HiRMnrF2lVtHr9bh+/To6dOgAoG2/m0y+bFx5eTnq6urg5+dnUO7n5weNRmN0nylTpmDJkiUYNmwY3N3d0a1bN4wcOVIajmvJMc3NHO0EgMjISGRkZCA7OxsfffQRSkpKMHz4cFy/ft2s7bmflrRTrVbjz3/+M86cOQO9Xo+cnBxs27YNpaWlLT6muZmjnYDtfZ4todFojL4vOp0ONTU1Nvl5mqqpNgKO8Vk2x/3eC3v5LJurV69e+OSTT7Bjxw58/vnn0Ov1GDJkCC5fvmztqrXYihUrUFVVhYkTJwJo27+1TL4c0N69e/Hee+/hf//3f3Ho0CFs27YNu3btwjvvvGPtqrWp5rTzySefxG9/+1s88sgjUKvVyMrKQmVlJTZv3mzFmpvmL3/5C3r06IHevXtDLpdj1qxZSExMhIuLY319m9NOR/g86Vf8LB1LVFQUEhISEB4ejujoaGzbtg2+vr5Yu3attavWIhs2bMDbb7+NzZs3o2PHjm1+fLc2PyK1KR8fH7i6uqKsrMygvKysDP7+/kb3WbhwIaZOnYoZM2YAAMLCwlBdXY3k5GT88Y9/bNExzc0c7TSWnHh7e6Nnz544e/Zs2zeiGVrSTl9fX2zfvh21tbW4evUqAgMDkZKSgq5du7b4mOZmjnYaY+3PsyX8/f2Nvi9eXl7w8PCAq6urzX2epmqqjcbY42fZHPd7L+zls2wpd3d3DBgwwC4/z02bNmHGjBnYsmWLwRBjW/6tdayfzg5ILpdj4MCByM3Nlcr0ej1yc3MRFRVldJ8bN240SDxcXV0BAEKIFh3T3MzRTmOqqqpw7tw5BAQEtFHNTdOa916pVKJTp064c+cOtm7divHjx7f6mOZijnYaY+3PsyWioqIM3hcAyMnJkd4XW/w8TdVUG42xx8+yOVryXjiCuro6HDt2zO4+z40bNyIxMREbN27EuHHjDLa16XfT5Kn/ZHGbNm0SCoVCZGRkiJMnT4rk5GTh7e0tNBqNEEKIqVOnipSUFCk+NTVVPPDAA2Ljxo3ixx9/FLt37xbdunUTEydObPYxrcEc7Zw3b57Yu3evKCkpEQcOHBAxMTHCx8dHXLlyxeLtq2dqO7/99luxdetWce7cObFv3z7xm9/8RoSEhIhr1641+5jWYI522uLnef36dXH48GFx+PBhAUD8+c9/FocPHxYXLlwQQgiRkpIipk6dKsX/+OOPol27duIPf/iDOHXqlFizZo1wdXUV2dnZUoytfZ7maKMjfJZCCCl+4MCBYsqUKeLw4cPixIkT0vYDBw4INzc3sWLFCnHq1CmRmpoq3N3dxbFjxyzatruZo51vv/22+Prrr8W5c+dEcXGxmDx5slAqlQYxlmZqO9evXy/c3NzEmjVrRGlpqfSorKyUYtrqu8nky06sXr1adO7cWcjlchERESG+/fZbaVt0dLSYNm2a9Pz27dti8eLFolu3bkKpVIqgoCDx+9//3uAk1tQxraWt2zlp0iQREBAg5HK56NSpk5g0aZI4e/asBVtknCnt3Lt3r+jTp49QKBTioYceElOnThU//fSTSce0lrZupy1+nnv27BEAGjzq2zZt2jQRHR3dYJ/w8HAhl8tF165dxaefftrguLb0eZqjjY7yWRqL79Kli0HM5s2bRc+ePYVcLhd9+/YVu3btskyD7sMc7ZwzZ470/6ufn58YO3asOHTokOUaZYSp7YyOjm40vl5bfDdlQtxnfIaIiIiI2hznfBERERFZEJMvIiIiIgti8kVERERkQUy+iIiIiCyIyRcRERGRBTH5IiIiIrIgJl9EREREFsTki4iIDOzduxcymQyVlZXWrgqRQ2LyRURWM336dMhkMixdutSgfPv27ZDJZNJzIQTWrVuHqKgoeHl5oX379ujbty9mz57d7Bv33rhxA/Pnz0e3bt2gVCrh6+uL6Oho7NixQ4oJDg7GypUr26Rt5lb/3slkMri7uyMkJARvvPEGamtrTTrOyJEjMWfOHIOyIUOGoLS0FCqVqg1rTET1mHwRkVUplUosW7YM165dM7pdCIEpU6bg1VdfxdixY7F7926cPHkSf/vb36BUKvHuu+8263VeeuklbNu2DatXr8YPP/yA7OxsPP/887h69WpbNseixowZg9LSUvz444/44IMPsHbtWqSmprb6uHK5HP7+/gYJMBG1oRbeMomIqNWmTZsmnnrqKdG7d2/xhz/8QSr/xz/+Ier/PG3cuFEAEDt27DB6DL1e36zXUqlUIiMj477bjd3Xrd6///1vMWzYMKFUKsXDDz8sXnnlFVFVVSVt///+v/9PDBw4ULRv3174+fmJuLg4UVZWJm2vv8dcdna2CA8PF0qlUowaNUqUlZWJrKws0bt3b/HAAw+IuLg4UV1d3az2TJs2TYwfP96gbMKECWLAgAHS8/LycjF58mQRGBgoPDw8RL9+/cSGDRsMjnFvm0tKSqT63n2f1C+++EKEhoYKuVwuunTpIlasWNGsehJRQ+z5IiKrcnV1xXvvvYfVq1fj8uXLDbZv3LgRvXr1wjPPPGN0/+b2zvj7+yMrKwvXr183un3btm14+OGHsWTJEpSWlqK0tBQAcO7cOYwZMwbPPfccjh49iszMTOzfvx+zZs2S9r19+zbeeecdfP/999i+fTvOnz+P6dOnN3iNxYsX48MPP0R+fj4uXbqEiRMnYuXKldiwYQN27dqF3bt3Y/Xq1c1qz72OHz+O/Px8yOVyqay2thYDBw7Erl27cPz4cSQnJ2Pq1Kk4ePAgAOAvf/kLoqKiMHPmTKnNQUFBDY5dXFyMiRMnYvLkyTh27BgWL16MhQsXIiMjo0V1JXJ61s7+iMh53d1789hjj4nf/e53QgjDnq/evXuLZ555xmC/2bNnC09PT+Hp6Sk6derUrNf65ptvxMMPPyzc3d3FoEGDxJw5c8T+/fsNYrp06SI++OADg7KkpCSRnJxsUPbvf/9buLi4iJqaGqOvVVRUJACI69evCyH+2/P1r3/9S4pJS0sTAMS5c+ekshdffFGo1epmtWfatGnC1dVVeHp6CoVCIQAIFxcX8cUXXzS637hx48S8efOk59HR0WL27NkGMff2fE2ZMkU8/vjjBjF/+MMfRGhoaLPqSkSG2PNFRDZh2bJl+Oyzz3Dq1KkmY//4xz/iyJEjWLRoEaqqqpp1/BEjRuDHH39Ebm4unn/+eZw4cQLDhw/HO++80+h+33//PTIyMtC+fXvpoVarodfrUVJSAuDXnqGnn34anTt3xgMPPIDo6GgAwMWLFw2O9cgjj0j/7efnh3bt2qFr164GZVeuXGlWewBg1KhROHLkCAoLCzFt2jQkJibiueeek7bX1dXhnXfeQVhYGDp06ID27dvj66+/blCvppw6dQpDhw41KBs6dCjOnDmDuro6k45FRJxwT0Q2YsSIEVCr1Zg/f75BeY8ePXD69GmDMl9fX3Tv3h0dO3Y06TXc3d0xfPhwvPnmm9i9ezeWLFmCd955B7du3brvPlVVVXjxxRdx5MgR6fH999/jzJkz6NatG6qrq6FWq+Hl5YX169ejqKgI//jHPwCgwXHd3d2l/66/SvFuMpkMer2+2e3x9PRE9+7d0b9/f3zyyScoLCzE3/72N2n7+++/j7/85S948803sWfPHhw5cgRqtbrR9hKR+blZuwJERPWWLl2K8PBw9OrVSyqLi4vDlClTsGPHDowfP75NXy80NBR37txBbW0t5HI55HJ5g56cRx99FCdPnkT37t2NHuPYsWO4evUqli5dKs2X+u6779q0ns3h4uKCBQsWYO7cuZgyZQo8PDxw4MABjB8/Hi+88AIAQK/X4z//+Q9CQ0Ol/Yy1+V59+vTBgQMHDMoOHDiAnj17wtXVte0bQ+Tg2PNFRDYjLCwM8fHxWLVqlVQ2efJkPP/885g8eTKWLFmCwsJCnD9/Ht988w0yMzObffIfOXIk1q5di+LiYpw/fx5ZWVlYsGABRo0aBS8vLwC/rvO1b98+/PTTTygvLwcAvPnmm8jPz8esWbNw5MgRnDlzBjt27JAm3Hfu3BlyuRyrV6/Gjz/+iC+//LLJoUxz+e1vfwtXV1esWbMGwK+9hjk5OcjPz8epU6fw4osvoqyszGCf4OBg6T0tLy832vM2b9485Obm4p133sF//vMffPbZZ/jwww/x+uuvW6RdRI6GyRcR2ZQlS5YYJAAymQyZmZlYuXIlsrKyMHr0aPTq1Qu/+93vEBQUhP379zfruGq1Gp999hmeeOIJ9OnTB6+88grUajU2b95s8Nrnz59Ht27d4OvrC+DXeVrffPMN/vOf/2D48OEYMGAAFi1ahMDAQAC/DoFmZGRgy5YtCA0NxdKlS7FixYo2fEeaz83NDbNmzcLy5ctRXV2Nt956C48++ijUajVGjhwJf39/xMbGGuzz+uuvw9XVFaGhofD19TU6H+zRRx/F5s2bsWnTJvTr1w+LFi3CkiVLjF7RSURNkwkhhLUrQUREROQs2PNFREREZEFMvojIIdy9FMS9j3//+9/Wrp5JLl682Gh7TF0qgohsC4cdicghNHaD7U6dOsHDw8OCtWmdO3fu4Pz58/fdHhwcDDc3XqxOZK+YfBERERFZEIcdiYiIiCyIyRcRERGRBTH5IiIiIrIgJl9EREREFsTki4iIiMiCmHwRERERWRCTLyIiIiILYvJFREREZEH/P9FsLvElYZSkAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_61.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU7ElEQVR4nO3de1hU1f4/8PcMOAyiQMZlwFDwgleSUkHURJMai0qyUtHj7WhYaenBLuhRUbtgZifTOOrphidT0fKoKVl+UfMohIhaXtDUMLQYFI1BEUSZ9fujw/45MeDMlmEuvF/PM4+y9mfvWWvPZX9m7bXXVgghBIiIiIjIIkpbV4CIiIjIETGJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIqc2b948KBQKs2IVCgXmzZtn1foMHDgQAwcOtNvtEZH5mEQRUaNIS0uDQqGQHq6urmjdujXGjx+PX3/91dbVszvBwcFG+8vPzw8PPPAA/vOf/zTI9q9du4Z58+Zh9+7dDbI9oqaISRQRNaoFCxbgs88+w4oVK/DII49g9erViI6ORmVlpVWeb/bs2aioqLDKtq0tPDwcn332GT777DO8/PLL+O233zBs2DCsWLHijrd97do1zJ8/n0kU0R1wtXUFiKhpeeSRR9CrVy8AwKRJk+Dj44O3334bW7ZswfDhwxv8+VxdXeHq6phfda1bt8Zf/vIX6e+xY8eiQ4cOeO+99/Dcc8/ZsGZEBLAniohs7IEHHgAAnDlzxqj8xIkTePrpp9GqVSuo1Wr06tULW7ZsMYq5ceMG5s+fj44dO0KtVuPuu+9G//79sWPHDinG1Jio69ev429/+xt8fX3RsmVLPPHEEzh//nytuo0fPx7BwcG1yk1t89NPP8WDDz4IPz8/uLm5oWvXrli+fLlF++J2NBoNunTpgoKCgnrjLly4gIkTJ8Lf3x9qtRo9evTAqlWrpOVnz56Fr68vAGD+/PnSKUNrjwcjcjaO+fOMiJzG2bNnAQB33XWXVHbs2DH069cPrVu3RlJSEjw8PLB+/XrExcXhyy+/xJNPPgngj2QmJSUFkyZNQkREBMrKynDgwAEcPHgQDz30UJ3POWnSJKxevRqjRo1C3759sXPnTsTGxt5RO5YvX45u3brhiSeegKurK7766iu88MILMBgMmDJlyh1tu8aNGzdw7tw53H333XXGVFRUYODAgTh9+jSmTp2KkJAQbNiwAePHj0dpaSmmTZsGX19fLF++HM8//zyefPJJDBs2DABw7733Nkg9iZoMQUTUCD799FMBQPzf//2fuHjxojh37pz44osvhK+vr3BzcxPnzp2TYgcPHizCwsJEZWWlVGYwGETfvn1Fx44dpbIePXqI2NjYep83OTlZ3PpVd/jwYQFAvPDCC0Zxo0aNEgBEcnKyVDZu3DjRtm3b225TCCGuXbtWK06r1Yp27doZlUVHR4vo6Oh66yyEEG3bthUPP/ywuHjxorh48aL44YcfxMiRIwUA8eKLL9a5vSVLlggAYvXq1VJZVVWViIqKEi1atBBlZWVCCCEuXrxYq71EZBmeziOiRhUTEwNfX18EBQXh6aefhoeHB7Zs2YJ77rkHAHD58mXs3LkTw4cPx5UrV1BSUoKSkhJcunQJWq0Wp06dkq7m8/b2xrFjx3Dq1Cmznz8jIwMA8NJLLxmVT58+/Y7a5e7uLv1fr9ejpKQE0dHR+Pnnn6HX62Vt89tvv4Wvry98fX3Ro0cPbNiwAWPGjMHbb79d5zoZGRnQaDSIj4+Xypo1a4aXXnoJV69exXfffSerLkRUG0/nEVGjSk1NRWhoKPR6PT755BPs2bMHbm5u0vLTp09DCIE5c+Zgzpw5Jrdx4cIFtG7dGgsWLMDQoUMRGhqK7t27Y8iQIRgzZky9p6V++eUXKJVKtG/f3qi8U6dOd9Suffv2ITk5GdnZ2bh27ZrRMr1eDy8vL4u3GRkZiTfeeAMKhQLNmzdHly5d4O3tXe86v/zyCzp27Ail0vg3cpcuXaTlRNQwmEQRUaOKiIiQrs6Li4tD//79MWrUKJw8eRItWrSAwWAAALz88svQarUmt9GhQwcAwIABA3DmzBls3rwZ3377LT766CO89957WLFiBSZNmnTHda1rks7q6mqjv8+cOYPBgwejc+fO+Mc//oGgoCCoVCpkZGTgvffek9pkKR8fH8TExMhal4isj0kUEdmMi4sLUlJSMGjQIHzwwQdISkpCu3btAPxxCsqcBKJVq1aYMGECJkyYgKtXr2LAgAGYN29enUlU27ZtYTAYcObMGaPep5MnT9aKveuuu1BaWlqr/M+9OV999RWuX7+OLVu2oE2bNlL5rl27blv/hta2bVv8+OOPMBgMRr1RJ06ckJYDdSeIRGQ+jokiIpsaOHAgIiIisGTJElRWVsLPzw8DBw7EypUrUVRUVCv+4sWL0v8vXbpktKxFixbo0KEDrl+/XufzPfLIIwCApUuXGpUvWbKkVmz79u2h1+vx448/SmVFRUW1Zg13cXEBAAghpDK9Xo9PP/20znpYy6OPPgqdTof09HSp7ObNm1i2bBlatGiB6OhoAEDz5s0BwGSSSETmYU8UEdncK6+8gmeeeQZpaWl47rnnkJqaiv79+yMsLAzPPvss2rVrh+LiYmRnZ+P8+fP44YcfAABdu3bFwIED0bNnT7Rq1QoHDhzAF198galTp9b5XOHh4YiPj8c///lP6PV69O3bF5mZmTh9+nSt2JEjR+K1117Dk08+iZdeegnXrl3D8uXLERoaioMHD0pxDz/8MFQqFR5//HFMnjwZV69exYcffgg/Pz+TiaA1JSQkYOXKlRg/fjzy8vIQHByML774Avv27cOSJUvQsmVLAH8MhO/atSvS09MRGhqKVq1aoXv37ujevXuj1pfIodn68kAiahpqpjjIzc2ttay6ulq0b99etG/fXty8eVMIIcSZM2fE2LFjhUajEc2aNROtW7cWjz32mPjiiy+k9d544w0REREhvL29hbu7u+jcubN48803RVVVlRRjajqCiooK8dJLL4m7775beHh4iMcff1ycO3fO5CX/3377rejevbtQqVSiU6dOYvXq1Sa3uWXLFnHvvfcKtVotgoODxdtvvy0++eQTAUAUFBRIcZZMcXC76Rvq2l5xcbGYMGGC8PHxESqVSoSFhYlPP/201rpZWVmiZ8+eQqVScboDIhkUQtzS/0xEREREZuGYKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDJxs04oMBgN+++03tGzZkrdYICIichBCCFy5cgWBgYG1buZ9KyZRVvTbb78hKCjI1tUgIiIiGc6dO4d77rmnzuVMoqyo5vYK586dg6enp41rQ0REROYoKytDUFCQdByvC5MoK6o5hefp6ckkioiIyMHcbigOB5YTERERycAkioiIiEgGJlFEREREMtg8iUpNTUVwcDDUajUiIyOxf//+euM3bNiAzp07Q61WIywsDBkZGUbLhRCYO3cuAgIC4O7ujpiYGJw6dcoo5s0330Tfvn3RvHlzeHt713qOH374AfHx8QgKCoK7uzu6dOmC999//47bakp1dTUqKyv5sOBhMBis8loQERFZwqYDy9PT05GYmIgVK1YgMjISS5YsgVarxcmTJ+Hn51crPisrC/Hx8UhJScFjjz2GNWvWIC4uDgcPHkT37t0BAIsWLcLSpUuxatUqhISEYM6cOdBqtTh+/DjUajUAoKqqCs888wyioqLw8ccf13qevLw8+Pn5YfXq1QgKCkJWVhYSEhLg4uKCqVOnNkjbhRDQ6XQoLS1tkO01JUqlEiEhIVCpVLauChERNWEKIYSw1ZNHRkaid+/e+OCDDwD8MTllUFAQXnzxRSQlJdWKHzFiBMrLy7F161aprE+fPggPD8eKFSsghEBgYCBmzJiBl19+GQCg1+vh7++PtLQ0jBw50mh7aWlpmD59ulmJzJQpU5Cfn4+dO3ea3b6ysjJ4eXlBr9fXujqvqKgIpaWl8PPzQ/PmzTkZp5lqJjBt1qwZ2rRpw/1GREQNrr7j961s1hNVVVWFvLw8zJw5UypTKpWIiYlBdna2yXWys7ORmJhoVKbVarFp0yYAQEFBAXQ6HWJiYqTlXl5eiIyMRHZ2dq0kyhJ6vR6tWrWqN+b69eu4fv269HdZWZnJuOrqaimBuvvuu2XXqany9fXFb7/9hps3b6JZs2a2rg4RETVRNhsTVVJSgurqavj7+xuV+/v7Q6fTmVxHp9PVG1/zryXbNEdWVhbS09ORkJBQb1xKSgq8vLykR12zld+4cQMA0Lx5c9l1aspqTuNVV1fbuCZERNSU2Xxgub07evQohg4diuTkZDz88MP1xs6cORN6vV56nDt3rt54noqSh/uNiIjsgc2SKB8fH7i4uKC4uNiovLi4GBqNxuQ6Go2m3viafy3ZZn2OHz+OwYMHIyEhAbNnz75tvJubmzQ7OWcpJyIicm42S6JUKhV69uyJzMxMqcxgMCAzMxNRUVEm14mKijKKB4AdO3ZI8SEhIdBoNEYxZWVlyMnJqXObdTl27BgGDRqEcePG4c0337RoXSIiInJ+Nj2dl5iYiA8//BCrVq1Cfn4+nn/+eZSXl2PChAkAgLFjxxoNPJ82bRq2b9+Od999FydOnMC8efNw4MABadoBhUKB6dOn44033sCWLVtw5MgRjB07FoGBgYiLi5O2U1hYiMOHD6OwsBDV1dU4fPgwDh8+jKtXrwL44xTeoEGD8PDDDyMxMRE6nQ46nQ4XL15svJ1jp8aPH2+0L2vs3r0bCoUCpaWl2L17N4YOHYqAgAB4eHggPDwcn3/+ea11Ll++jOnTp6Nt27ZQqVQIDAzEX//6VxQWFjZCS4iIyJ4U6SuQdaYERfoKW1fFbDadJ2rEiBG4ePEi5s6dC51Oh/DwcGzfvl0aGF5YWAil8v/neX379sWaNWswe/ZszJo1Cx07dsSmTZukOaIA4NVXX0V5eTkSEhJQWlqK/v37Y/v27dIcUQAwd+5crFq1Svr7vvvuAwDs2rULAwcOxBdffIGLFy9i9erVWL16tRTXtm1bnD171lq7w2lkZWXh3nvvxWuvvQZ/f39s3boVY8eOhZeXFx577DEAfyRQffr0gUqlwooVK9CtWzecPXsWs2fPRu/evZGdnY127drZuCVERNQY0nMLMXPjERgEoFQAKcPCMKJ3G1tX67ZsOk+Us6trnonKykoUFBQgJCTEKLlzBOPHj0dpaak0rUSN3bt3Y9CgQfj9999NzgIfGxsLf39/fPLJJwCA559/Hp999hlOnz5tNF6toqICHTt2RFhYGL7++muTdXDk/UdERMaK9BXot3AnDLdkIy4KBfYmDUKAl7tN6mTuPFG8Os8JOEIX6K3zbBkMBqxbtw6jR4+uNeDf3d0dL7zwAr755htcvnzZFlUlIqJGVFBSbpRAAUC1EDhbcs02FbKATU/n0Z2zRRfo1q1b0aJFC6Oy+uZsWr9+PXJzc7Fy5UoAwMWLF1FaWoouXbqYjO/SpQuEEDh9+jQiIiIaruJERGR3Qnw8oFSgVk9UsI/9z6XInigHVqSvkBIo4I834KyNR63eIzVo0CBpMH7N46OPPjIZu2vXLkyYMAEffvghunXrZrSMZ5KJiCjAyx0pw8Lg8r85AF0UCrw1rLvNTuVZgj1RDqy+LlBrvvk8PDzQoUMHo7Lz58/Xivvuu+/w+OOP47333sPYsWOlcl9fX3h7eyM/P9/k9vPz86FQKGo9BxEROacRvdtgQKgvzpZcQ7BPc4dIoAD2RDm0mi7QW9lLF+ju3bsRGxuLt99+u9btcpRKJYYPH441a9bUuh1PRUUF/vnPf0Kr1d72XoVEROQ8ArzcEdX+bodJoAAmUQ7NXrtAd+3ahdjYWLz00kt46qmnpHm2bh0o/tZbb0Gj0eChhx7C119/jXPnzmHPnj3QarW4ceMGUlNTbdgCIiKi2+PpPAdnj12gq1atwrVr15CSkoKUlBSpPDo6Grt37wYA3H333fj++++xYMECTJ48GTqdDq1atcIjjzyC1atXo00b+58fhIiImjbOE2VFzjhPlD3g/iMiImviPFFEREREVsQkioiIiEgGJlFEREREMjCJIiIiIpKBSZQNcUy/PNxvRERkD5hE2UCzZs0AANeu2f/NFe1RVVUVAMDFxcXGNSEioqaM80TZgIuLC7y9vXHhwgUAQPPmzaFQKG6zFgGAwWDAxYsX0bx5c7i68u1LRES2w6OQjWg0GgCQEikyn1KpRJs2bZh4EhGRTTGJshGFQoGAgAD4+fnhxo0btq6OQ1GpVFAqeSaaiIhsi0mUjbm4uHBsDxERkQPiz3kiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDLYPIlKTU1FcHAw1Go1IiMjsX///nrjN2zYgM6dO0OtViMsLAwZGRlGy4UQmDt3LgICAuDu7o6YmBicOnXKKObNN99E37590bx5c3h7e5t8nsLCQsTGxqJ58+bw8/PDK6+8gps3b95RW4mIiMh52DSJSk9PR2JiIpKTk3Hw4EH06NEDWq0WFy5cMBmflZWF+Ph4TJw4EYcOHUJcXBzi4uJw9OhRKWbRokVYunQpVqxYgZycHHh4eECr1aKyslKKqaqqwjPPPIPnn3/e5PNUV1cjNjYWVVVVyMrKwqpVq5CWloa5c+c27A4gIiIixyVsKCIiQkyZMkX6u7q6WgQGBoqUlBST8cOHDxexsbFGZZGRkWLy5MlCCCEMBoPQaDTinXfekZaXlpYKNzc3sXbt2lrb+/TTT4WXl1et8oyMDKFUKoVOp5PKli9fLjw9PcX169fNbp9erxcAhF6vN3sdIiIisi1zj98264mqqqpCXl4eYmJipDKlUomYmBhkZ2ebXCc7O9soHgC0Wq0UX1BQAJ1OZxTj5eWFyMjIOrdZ1/OEhYXB39/f6HnKyspw7NixOte7fv06ysrKjB5ERETknGyWRJWUlKC6utooUQEAf39/6HQ6k+vodLp642v+tWSbljzPrc9hSkpKCry8vKRHUFCQ2c9JREREjsXmA8udycyZM6HX66XHuXPnbF0lIiIishKbJVE+Pj5wcXFBcXGxUXlxcTE0Go3JdTQaTb3xNf9ask1LnufW5zDFzc0Nnp6eRg8iIiJyTjZLolQqFXr27InMzEypzGAwIDMzE1FRUSbXiYqKMooHgB07dkjxISEh0Gg0RjFlZWXIycmpc5t1Pc+RI0eMrhLcsWMHPD090bVrV7O3Q0RERM7L1ZZPnpiYiHHjxqFXr16IiIjAkiVLUF5ejgkTJgAAxo4di9atWyMlJQUAMG3aNERHR+Pdd99FbGws1q1bhwMHDuBf//oXAEChUGD69Ol444030LFjR4SEhGDOnDkIDAxEXFyc9LyFhYW4fPkyCgsLUV1djcOHDwMAOnTogBYtWuDhhx9G165dMWbMGCxatAg6nQ6zZ8/GlClT4Obm1qj7iIiIiOxUI10tWKdly5aJNm3aCJVKJSIiIsT3338vLYuOjhbjxo0zil+/fr0IDQ0VKpVKdOvWTWzbts1oucFgEHPmzBH+/v7Czc1NDB48WJw8edIoZty4cQJArceuXbukmLNnz4pHHnlEuLu7Cx8fHzFjxgxx48YNi9rGKQ6IiIgcj7nHb4UQQtgwh3NqZWVl8PLygl6v5/goIiIiB2Hu8ZtX5xERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkg82TqNTUVAQHB0OtViMyMhL79++vN37Dhg3o3Lkz1Go1wsLCkJGRYbRcCIG5c+ciICAA7u7uiImJwalTp4xiLl++jNGjR8PT0xPe3t6YOHEirl69ahTzzTffoE+fPmjZsiV8fX3x1FNP4ezZsw3SZiIiInJ8Nk2i0tPTkZiYiOTkZBw8eBA9evSAVqvFhQsXTMZnZWUhPj4eEydOxKFDhxAXF4e4uDgcPXpUilm0aBGWLl2KFStWICcnBx4eHtBqtaisrJRiRo8ejWPHjmHHjh3YunUr9uzZg4SEBGl5QUEBhg4digcffBCHDx/GN998g5KSEgwbNsx6O4OIiIgci7ChiIgIMWXKFOnv6upqERgYKFJSUkzGDx8+XMTGxhqVRUZGismTJwshhDAYDEKj0Yh33nlHWl5aWirc3NzE2rVrhRBCHD9+XAAQubm5UszXX38tFAqF+PXXX4UQQmzYsEG4urqK6upqKWbLli1CoVCIqqoqs9un1+sFAKHX681eh4iIiGzL3OO3zXqiqqqqkJeXh5iYGKlMqVQiJiYG2dnZJtfJzs42igcArVYrxRcUFECn0xnFeHl5ITIyUorJzs6Gt7c3evXqJcXExMRAqVQiJycHANCzZ08olUp8+umnqK6uhl6vx2effYaYmBg0a9aszjZdv34dZWVlRg8iIiJyTjZLokpKSlBdXQ1/f3+jcn9/f+h0OpPr6HS6euNr/r1djJ+fn9FyV1dXtGrVSooJCQnBt99+i1mzZsHNzQ3e3t44f/481q9fX2+bUlJS4OXlJT2CgoLqjSciIiLHZfOB5fZIp9Ph2Wefxbhx45Cbm4vvvvsOKpUKTz/9NIQQda43c+ZM6PV66XHu3LlGrDURERE1JldbPbGPjw9cXFxQXFxsVF5cXAyNRmNyHY1GU298zb/FxcUICAgwigkPD5di/jxw/ebNm7h8+bK0fmpqKry8vLBo0SIpZvXq1QgKCkJOTg769Oljsn5ubm5wc3O7XdOJiIjICdisJ0qlUqFnz57IzMyUygwGAzIzMxEVFWVynaioKKN4ANixY4cUHxISAo1GYxRTVlaGnJwcKSYqKgqlpaXIy8uTYnbu3AmDwYDIyEgAwLVr16BUGu8aFxcXqY5ERERENr06b926dcLNzU2kpaWJ48ePi4SEBOHt7S10Op0QQogxY8aIpKQkKX7fvn3C1dVVLF68WOTn54vk5GTRrFkzceTIESlm4cKFwtvbW2zevFn8+OOPYujQoSIkJERUVFRIMUOGDBH33XefyMnJEXv37hUdO3YU8fHx0vLMzEyhUCjE/PnzxU8//STy8vKEVqsVbdu2FdeuXTO7fbw6j4iIyPGYe/y2aRIlhBDLli0Tbdq0ESqVSkRERIjvv/9eWhYdHS3GjRtnFL9+/XoRGhoqVCqV6Natm9i2bZvRcoPBIObMmSP8/f2Fm5ubGDx4sDh58qRRzKVLl0R8fLxo0aKF8PT0FBMmTBBXrlwxilm7dq247777hIeHh/D19RVPPPGEyM/Pt6htTKKIiIgcj7nHb4UQ9YyUpjtSVlYGLy8v6PV6eHp62ro6DqlIX4GCknKE+HggwMvd1tUhIqImwNzjt80GlhPdTnpuIWZuPAKDAJQKIGVYGEb0bmPrahEREQHgFAdkp4r0FVICBQAGAczaeBRF+grbVoyIiOh/mESRXSooKZcSqBrVQuBsyTXbVIiIiOhPmESRXQrx8YBSYVzmolAg2Ke5bSpERET0J0yiyC4FeLkjZVgYXBR/ZFIuCgXeGtadg8uJiMhucGA52a0RvdtgQKgvzpZcQ7BPcyZQRERkV5hEkV0L8HJn8kRERHaJp/OIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJIOr3BVLS0tx+vRpAECHDh3g7e3dUHUiIiIisnsW90SdPXsWsbGx8PHxQWRkJCIjI+Hj44PHHnsMZ8+etUIViYiIiOyPRT1R586dQ58+fdCsWTO8/vrr6NKlCwDg+PHjWL58OaKiopCbm4t77rnHKpUlIiIishcKIYQwN3jixIk4ffo0vvnmG6jVaqNlFRUVGDJkCDp27IiPPvqowSvqiMrKyuDl5QW9Xg9PT09bV4eIiIjMYO7x26KeqO3btyM9Pb1WAgUA7u7ueP311zFy5EjLa0tERETkYCwaE1VSUoLg4OA6l7dr1w6XL1+2qAKpqakIDg6GWq1GZGQk9u/fX2/8hg0b0LlzZ6jVaoSFhSEjI8NouRACc+fORUBAANzd3RETE4NTp04ZxVy+fBmjR4+Gp6cnvL29MXHiRFy9erXWdhYvXozQ0FC4ubmhdevWePPNNy1qGxERETkvi5KogIAAHD9+vM7lR48ehUajMXt76enpSExMRHJyMg4ePIgePXpAq9XiwoULJuOzsrIQHx+PiRMn4tChQ4iLi0NcXByOHj0qxSxatAhLly7FihUrkJOTAw8PD2i1WlRWVkoxo0ePxrFjx7Bjxw5s3boVe/bsQUJCgtFzTZs2DR999BEWL16MEydOYMuWLYiIiDC7bUREROTkhAWmTZsmwsLCxIULF2otKy4uFvfee6+YNm2a2duLiIgQU6ZMkf6urq4WgYGBIiUlxWT88OHDRWxsrFFZZGSkmDx5shBCCIPBIDQajXjnnXek5aWlpcLNzU2sXbtWCCHE8ePHBQCRm5srxXz99ddCoVCIX3/9VYpxdXUVJ06cMLstpuj1egFA6PX6O9oOERERNR5zj98W9UQlJyejsrIS7du3xwsvvIClS5fi/fffx3PPPYcOHTqgoqICc+fONWtbVVVVyMvLQ0xMjFSmVCoRExOD7Oxsk+tkZ2cbxQOAVquV4gsKCqDT6YxivLy8EBkZKcVkZ2fD29sbvXr1kmJiYmKgVCqRk5MDAPjqq6/Qrl07bN26FSEhIQgODsakSZNue6ry+vXrKCsrM3oQERGRc7JoYPldd92FnJwczJo1C+vWrUNpaSkAwNvbG6NGjcJbb72FVq1ambWtkpISVFdXw9/f36jc398fJ06cMLmOTqczGa/T6aTlNWX1xfj5+Rktd3V1RatWraSYn3/+Gb/88gs2bNiAf//736iursbf/vY3PP3009i5c2edbUpJScH8+fNv13QiIiJyAhbPWH7XXXdh+fLl+Oc//4mLFy8CAHx9faFQKBq8crZiMBhw/fp1/Pvf/0ZoaCgA4OOPP0bPnj1x8uRJdOrUyeR6M2fORGJiovR3WVkZgoKCGqXORERE1Lhk3ztPoVDAz88Pfn5+shIoHx8fuLi4oLi42Ki8uLi4zsHpGo2m3viaf28X8+eB6zdv3sTly5elmICAALi6ukoJFABpYtHCwsI62+Tm5gZPT0+jBxERETkni5OojIwMTJo0Ca+++iry8/ONlv3+++948MEHzdqOSqVCz549kZmZKZUZDAZkZmYiKirK5DpRUVFG8QCwY8cOKT4kJAQajcYopqysDDk5OVJMVFQUSktLkZeXJ8Xs3LkTBoMBkZGRAIB+/frh5s2bOHPmjBTz008/AQDatm1rVvuIiIjIyVkyWv3zzz8XLi4uIjY2VvTv31+o1WqxevVqablOpxNKpdLs7a1bt064ubmJtLQ0cfz4cZGQkCC8vb2FTqcTQggxZswYkZSUJMXv27dPuLq6isWLF4v8/HyRnJwsmjVrJo4cOSLFLFy4UHh7e4vNmzeLH3/8UQwdOlSEhISIiooKKWbIkCHivvvuEzk5OWLv3r2iY8eOIj4+XlpeXV0t7r//fjFgwABx8OBBceDAAREZGSkeeughS3YXr84jIiJyQOYevy1KosLDw8X7778v/Z2eni48PDzERx99JISwPIkSQohly5aJNm3aCJVKJSIiIsT3338vLYuOjhbjxo0zil+/fr0IDQ0VKpVKdOvWTWzbts1oucFgEHPmzBH+/v7Czc1NDB48WJw8edIo5tKlSyI+Pl60aNFCeHp6igkTJogrV64Yxfz6669i2LBhokWLFsLf31+MHz9eXLp0yaK2MYkiIiJyPOYevy26d16LFi1w5MgRhISESGW7du3CE088gXfeeQdPPvkkAgMDUV1d3eA9Zo6I984jIiJyPFa5d56npyeKi4uNkqhBgwZh69ateOyxx3D+/Hn5NSYiIiJyIBYNLI+IiMDXX39dqzw6OhpfffUVlixZ0lD1IiIiIrJrFiVRf/vb36BWq00uGzhwIL766iuMHTu2QSpGRER0p4r0Fcg6U4IifYWtq0JOyKIxUebexoTjf/7AMVFERLaTnluImRuPwCAApQJIGRaGEb3b2Lpa5ACsMibK29vbrIk1ObCciIhsqUhfISVQAGAQwKyNRzEg1BcBXu62rRw5DYuSqF27dkn/F0Lg0UcfxUcffYTWrVs3eMWIiIjkKigplxKoGtVC4GzJNSZR1GAsSqKio6ON/nZxcUGfPn3Qrl27Bq0UERHRnQjx8YBSAaNEykWhQLBPc9tVipyO7HvnERER2asAL3ekDAuDy/+GoLgoFHhrWHf2QlGDsqgnioiIyFGM6N0GA0J9cbbkGoJ9mjOBogZ3x0mUOQPNiYiIbCHAy53JE1mNRUnUsGHDjP6urKzEc889Bw8PD6PyjRs33nnNiIiIGlmRvgIFJeUI8fFg8kW3ZVES5eXlZfT3X/7ylwatDBERka1wXimylEWTbZJlONkmEZFjKNJXoN/CnbWu5tubNIg9Uk2QucdvXp1HRERNXn3zShHVhUkUERE1eTXzSt2K80rR7TCJagJ4A04iovpxXimSg/NEOTkOlCQiMg/nlSJLsSfKidV1A072SBERmRbg5Y6o9nczgSKzMIlyYhwoSUREZD1MopwYB0oSERFZD5MoJ8aBkkRERNbDgeVOjgMliYiIrINJVBPAG3ASERE1PJ7OIyIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRXatSF+BrDMlKNJX2LoqRERERngDYrJb6bmFmLnxCAwCUCqAlGFhGNG7ja2rRUREBIA9UWSnivQVUgIFAAYBzNp4lD1SRERkN5hEkV0qKCmXEqga1ULgbMk121SIiIjoT5hEkV0K8fGAUmFc5qJQINinuW0qRERE9CdMosguBXi5I2VYGFwUf2RSLgoF3hrWHQFe7jauGRER0R84sJzs1ojebTAg1BdnS64h2Kc5EygiIrIrTKLIrgV4uTN5IiIiu8TTeUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZLCLJCo1NRXBwcFQq9WIjIzE/v37643fsGEDOnfuDLVajbCwMGRkZBgtF0Jg7ty5CAgIgLu7O2JiYnDq1CmjmMuXL2P06NHw9PSEt7c3Jk6ciKtXr5p8vtOnT6Nly5bw9va+o3YSNTTeW5CIyHZsnkSlp6cjMTERycnJOHjwIHr06AGtVosLFy6YjM/KykJ8fDwmTpyIQ4cOIS4uDnFxcTh69KgUs2jRIixduhQrVqxATk4OPDw8oNVqUVlZKcWMHj0ax44dw44dO7B161bs2bMHCQkJtZ7vxo0biI+PxwMPPNDwjSe6A+m5hei3cCdGfZiDfgt3Ij230NZVIiJqUhRCCHH7MOuJjIxE79698cEHHwAADAYDgoKC8OKLLyIpKalW/IgRI1BeXo6tW7dKZX369EF4eDhWrFgBIQQCAwMxY8YMvPzyywAAvV4Pf39/pKWlYeTIkcjPz0fXrl2Rm5uLXr16AQC2b9+ORx99FOfPn0dgYKC07ddeew2//fYbBg8ejOnTp6O0tNTstpWVlcHLywt6vR6enp5ydg+RSUX6CvRbuNPo1jguCgX2Jg3ilBBERHfI3OO3TXuiqqqqkJeXh5iYGKlMqVQiJiYG2dnZJtfJzs42igcArVYrxRcUFECn0xnFeHl5ITIyUorJzs6Gt7e3lEABQExMDJRKJXJycqSynTt3YsOGDUhNTb3zxhI1IN5bkIjI9mw62WZJSQmqq6vh7+9vVO7v748TJ06YXEen05mM1+l00vKasvpi/Pz8jJa7urqiVatWUsylS5cwfvx4rF692uxepOvXr+P69evS32VlZWatR2SpmnsL/rknivcWJCJqPDYfE2Wvnn32WYwaNQoDBgwwe52UlBR4eXlJj6CgICvWkJoy3luQiMj2bNoT5ePjAxcXFxQXFxuVFxcXQ6PRmFxHo9HUG1/zb3FxMQICAoxiwsPDpZg/D1y/efMmLl++LK2/c+dObNmyBYsXLwbwxxV/BoMBrq6u+Ne//oW//vWvteo2c+ZMJCYmSn+XlZUxkSKr4b0FiYhsy6Y9USqVCj179kRmZqZUZjAYkJmZiaioKJPrREVFGcUDwI4dO6T4kJAQaDQao5iysjLk5ORIMVFRUSgtLUVeXp4Us3PnThgMBkRGRgL4Y9zU4cOHpceCBQvQsmVLHD58GE8++aTJurm5ucHT09PoQWRNAV7uiGp/NxMoIiIbsPkNiBMTEzFu3Dj06tULERERWLJkCcrLyzFhwgQAwNixY9G6dWukpKQAAKZNm4bo6Gi8++67iI2Nxbp163DgwAH861//AgAoFApMnz4db7zxBjp27IiQkBDMmTMHgYGBiIuLAwB06dIFQ4YMwbPPPosVK1bgxo0bmDp1KkaOHCldmdelSxejeh44cABKpRLdu3dvpD1DRERE9szmSdSIESNw8eJFzJ07FzqdDuHh4di+fbs0MLywsBBK5f/vMOvbty/WrFmD2bNnY9asWejYsSM2bdpklNy8+uqrKC8vR0JCAkpLS9G/f39s374darVaivn8888xdepUDB48GEqlEk899RSWLl3aeA0nIiIih2bzeaKcGeeJIiIicjwOMU8UUUPjbVCIyJnwO82+2fx0HlFDSc8txMyNR2AQgFIBpAwLw4jebWxdLSIiWfidZv/YE0VOoUhfIX3ZAH9MQjlr41H+eiMih8TvNMfAJIqcAm+DQkTOhN9pjoFJFDmFmtug3Iq3QSEiR+UM32lNYTwXkyhyCrwNChE5E0f/TkvPLUS/hTsx6sMc9Fu4E+m5hbauklVwigMr4hQHja9IX8HboBCR03DE77QifQX6LdxZ6wbpe5MGOUwbzD1+8+o8cioBXu4O8yElIrodR/xOq288V0O2pUhfgYKScoT4eNhsHzGJIiIiogZTM57rzz1RDTmey16mf+CYKGrSmsLARyKixmTt8Vz2NP0De6KoybKXXzJERM5mRO82GBDqa5XxXI11utAc7IlqAtjbUps9/ZIhInJGAV7uiGp/d4MnNvY0/QOTKCfXVC4ztRQnsiMickz2NP0DT+c5sbp6WwaE+jrc1R4NrTEGPhIRkXVY83ShJdgT5cTY21I3e/olQ0RElrPW6UJLsCfKiXmoXEyWN1cxdwbs55cMERE5JiZRTqy8qtpk+bUqQyPXxH454kR2RERkH9gl4cTs6QoGIiIiZ8Mkyolx3A8RkWU4JQxZgqfznBzH/RARmYcT8JKl2BPVBNjDFQxERPaME/CSHEyiiIioyeOUMCQHkygiImryeCGO47GH8WtMooiIqMnjhTgNz5pJjr3c0kwhhBC3DyM5ysrK4OXlBb1eD09PT1tXh4iIbqNIX8ELcRqANQfpF+kr0G/hzlq37dqbNKjBXjNzj9/siSIiIvofXohz56w9SN+exq8xiSKnYg/nyImImjJrJzn2NH6NSRQ5DXs5R05E1JRZO8mxp/FrHBNlRRwT1Xga4xw5ERGZJz23ELM2HkW1EFKS09ATl1pz/Jq5x2/OWE5Oob7uY0dKoor0FSgoKUeIj4dD1ZuI6FaNcbcMe7iBPJMocgohPh5QALg1j1Io4FBzvPCWE0TU2Kz5w80ekhxrYxJFzsuBTlTXdTXLgFBfp/8SIiLb4A+3O8eB5eQUCkrKa+VMAnCYWzbY0yW7ROT8eK/AhsEkipyCPV3yKoej15+IHAt/uDUMJlHkFOzpklc5HL3+RORY+MOtYXCKAyviFAeNz9Fv2eDo9Scix9EY0xA4KnOP30yirIhJFBER2TP+cDON984jIiKi2xKOdCmzneEUB+RUOFklEZF5OMXBnWMSRU5DzhcCky4iaoo4N13DYBJFTkHOFwJ/hRFRU+Ust8qyNY6JIqdg6ZwnnGjO8RTpK5B1poSvEVED4BQHDYNJFDkFS78QONGcY0nPLUS/hTsx6sMc9Fu4E+m5hbauEpFD49x0DYOn88gp1Hwh/HnOk7q+EGqSrlsTKf4Ks08cu0FkHSN6t8GAUF9OcXAHmESR07DkC8HSpItsh2M3iKwnwMudn6M7wCSKnIolXwj8FeYY2GtITRmvILZvTKKoSeOvMPvXFHsNeeAkgFcQOwK7GFiempqK4OBgqNVqREZGYv/+/fXGb9iwAZ07d4ZarUZYWBgyMjKMlgshMHfuXAQEBMDd3R0xMTE4deqUUczly5cxevRoeHp6wtvbGxMnTsTVq1el5bt378bQoUMREBAADw8PhIeH4/PPP2+4RhOR2Ub0boO9SYOw9tk+2Js0yKkPJBxETwCvIHYUNk+i0tPTkZiYiOTkZBw8eBA9evSAVqvFhQsXTMZnZWUhPj4eEydOxKFDhxAXF4e4uDgcPXpUilm0aBGWLl2KFStWICcnBx4eHtBqtaisrJRiRo8ejWPHjmHHjh3YunUr9uzZg4SEBKPnuffee/Hll1/ixx9/xIQJEzB27Fhs3brVejuDiOoU4OWOqPZ3O3XPDA+cVINXEDsGm9+AODIyEr1798YHH3wAADAYDAgKCsKLL76IpKSkWvEjRoxAeXm5UTLTp08fhIeHY8WKFRBCIDAwEDNmzMDLL78MANDr9fD390daWhpGjhyJ/Px8dO3aFbm5uejVqxcAYPv27Xj00Udx/vx5BAYGmqxrbGws/P398cknn5jVNt6AmIgskXWmBKM+zKlVvvbZPohqf7cNakS2UqSvQL+FO2uNBdybNMipf0jYC4e4AXFVVRXy8vIQExMjlSmVSsTExCA7O9vkOtnZ2UbxAKDVaqX4goIC6HQ6oxgvLy9ERkZKMdnZ2fD29pYSKACIiYmBUqlETk7tL7Aaer0erVq1qnP59evXUVZWZvSgpo0TRJIlOAEi1eA8To7BpgPLS0pKUF1dDX9/f6Nyf39/nDhxwuQ6Op3OZLxOp5OW15TVF+Pn52e03NXVFa1atZJi/mz9+vXIzc3FypUr62xPSkoK5s+fX+dyalo4KJQs1RQH0VPd7O0KYl7wUBuvzjPDrl27MGHCBHz44Yfo1q1bnXEzZ85EYmKi9HdZWRmCgoIao4pkZzhBJN3KkoOPvR04ybbs5Qpi/ig0zaZJlI+PD1xcXFBcXGxUXlxcDI1GY3IdjUZTb3zNv8XFxQgICDCKCQ8Pl2L+PHD95s2buHz5cq3n/e677/D444/jvffew9ixY+ttj5ubG9zc3OqNoaaBE0RSDTkHH3s5cBIB/FFYH5uOiVKpVOjZsycyMzOlMoPBgMzMTERFRZlcJyoqyigeAHbs2CHFh4SEQKPRGMWUlZUhJydHiomKikJpaSny8vKkmJ07d8JgMCAyMlIq2717N2JjY/H2228bXblHdDsc20IAr7Yj58ArBetm8ykOEhMT8eGHH2LVqlXIz8/H888/j/LyckyYMAEAMHbsWMycOVOKnzZtGrZv3453330XJ06cwLx583DgwAFMnToVAKBQKDB9+nS88cYb2LJlC44cOYKxY8ciMDAQcXFxAIAuXbpgyJAhePbZZ7F//37s27cPU6dOxciRI6Ur83bt2oXY2Fi89NJLeOqpp6DT6aDT6XD58uXG3UHkkDgolAAefMg58Edh3Ww+JmrEiBG4ePEi5s6dC51Oh/DwcGzfvl0aGF5YWAil8v/nen379sWaNWswe/ZszJo1Cx07dsSmTZvQvXt3KebVV19FeXk5EhISUFpaiv79+2P79u1Qq9VSzOeff46pU6di8ODBUCqVeOqpp7B06VJp+apVq3Dt2jWkpKQgJSVFKo+Ojsbu3butuEfIWXBsC/GWNeQMeMFD3Ww+T5Qz4zxRRJSeW1jr4MMBueSIivQVTeZHobnHb5v3RBERObPG6JHkpefUGHjBQ21Mosiu8eBAzsCaBx9eek5kO0yiyG7x4EBUP156bnv8ode0MYkiu+QsBwd+wTove3htOR+ZbfGHHjGJIrvkDAcHfsE6L3t5bXn1n+04yw89ujM2nyeKyBRHn5eEkyw6L3t6bTkfme1wDjAC2BNFdsrR5yVxhp40Ms3eXlvOR2Yb7AUkgEkU2TFHPjjwC9Z5eahcTJY3V9muY5+Xnjc+R/+hRw2DSRTZNUc9OPAL1nmVV1WbLL9WZWjkmpCtOfIPPWoYTKKIrIRfsLZlravn2MtIt3LUH3rUMJhEEVmRpV+w9nDZvDOw5tVz9tjLyPcNkW3w3nlWxHvnkSXs5bJ5R1ekr0C/hTtr9RTtTRrUoAmGvdxHjO8booZn7vGbUxwQ2QF7umze0TXWpecBXu6Ian+3zXug+L4hsh0mUUR2gHPONBxHn2PMEnzfENkWkygiO9CUDvzW1pQmoOT7hsi2OLCcyA7Y42BlRzaidxt01rRE7tnf0Tv4LvQIusvWVbIKvm+IbIsDy62IA8vJ0qum7GWwsqOzt8HW1r56ju8booZl7vGbPVFEViLnQG5PUyI46mXz9nZj2MZI6DhXEZFtMIkisoLGOJBb8+Bsbz05lrCne9vZW0JHRA2LA8upSSvSVyDrTEmDXxJu7aumrHlpu6NfNt9Yg63Nee/w6jki58aeKHIqlpyCsmZvi7VvDWLN3hZ76smRozEGW5v73mmqt4hx1FPBRJZiEkVOw5KkyNqnWax9ILfmwdkZDvzWvG+hJe+dpnj1nCOfCiayFJMocgqWJkWN0dtizcvsrXlwdqYDv0DDX3xs6XunKd2ImmPAqKlhEkVOwdIDW2P0tlj7F7k1D86OfuC3t1O1TeXqOUc/FUxkKQ4sJ6dg6WBia89q3ViDs615/zZ7uDecHNbe901pRnRLcQZ1amrYE0VOQc4pKGv2tvAXue3I3feWDIZ29J46a3GmU8FE5mASRU5DzoHNWqdZnGFwtqOSs+8bY2LUpoIJJjUlPJ1HTsVeTkHxlI/tWLrv5Z7+s9YcY3LYU10A+/kcElkbe6KIrIS/yG3Hkn0v5/SfPV3Gb091IWpq2BNFTZq1f8Fb+xe5vfVA2BNz972lg6GL9BVI+tK45ypp4xGbvAaOPrs8kaNjEkV3zFEP5Om5hei3cCdGfZiDfgt3Ij230NZVsoij199S1nqfWXr6L++X32vNPiUEcPCX3xu0XubgbWXozxz1+xhwzLrzdB7dEUc9leDokwI6ev0tZU9zbl0uv15HeVWD1cdcvICh4TnyLWsc9fsYcNy6syfKAdlLtu7IpxIc/Re8o9ffEvY251YrD7c6ylUNWh9z2OsFDJZ+R9nLd5oj9+468vexI9edPVEOxp6ydUeeC6mxfsFb61dtU+qBsLf3Wc+2d0EBGJ3SUyiA+9s23G19LNEYFzBY88be9vKd5ui9u/b2ObGEI9edPVEOxN6ydUeenbgxfsFb81etvfZAWIO9vc8CvNyx8KkwqU5KBbBwWJhN9701L2Cw5H1s6XeUPX2nOXrvrr19TizhyHVnT5QDsbds3dFnJ7bmL/jG+FXbVKZQsMf3WVPZ99a+sbc9fac5eu+uPX5OzOXIdWcS5UDs8UPu6AcTa8063ZgHB1HrWjHnI+d91hgDhJ1931v7xt4eKheT5c1VjX+SxJEP5DUc+fvYUevOJMqB2OuHnLe/qK0xEl57GUvSWCx5n1l73zSVfW/p+9jS76jyqmqT5deqDHdcdzkc9UB+K0f+PnbEuiuEEM79U8qGysrK4OXlBb1eD09PzwbbbpG+wm4GkVLd0nMLax1MGupAW6SvQL+FO2sd3PYmDWryr5m1902RvgJ9U3bWGlielfRgg+17e/oMynkfm/sdxfcx2Stzj9/siXJA1szWm8ov7MZgzV+19jSWxN5Ye9/UN9lm7L13vn17+wxa88be9tq7TmQuJlEkcfRLfO2RtRJeexwfZy+svW/q6rxviD59e/0MWvOHmzOcQqOmi1MckMTRL/FtSprSFAeWsva+6RXcCn+6GhsKAD2D73yeqKb6GbT2PSaJrIU9USRh74Zj4S/4ullz39TMEzXzyyMw4I9foilPNcw8UfwMEjkWDiy3ImsNLLcmaw6GptuzpwHFVD9rXeDBzyCR7Zl7/GYSZUWOmEQB1r/6j0yztwHF9qYpJZj8DBLZFq/OI9kcca4OR2evA4rthT0mmD+c+x37z15GRHAr9Ahq2Pvm8TNI5BjsYmB5amoqgoODoVarERkZif3799cbv2HDBnTu3BlqtRphYWHIyMgwWi6EwNy5cxEQEAB3d3fExMTg1KlTRjGXL1/G6NGj4enpCW9vb0ycOBFXr141ivnxxx/xwAMPQK1WIygoCIsWLWqYBt8he7njOTWcpjqg2Bz2dH+1GjPWH8bQ1Cy8ue0EhqZmYcb6w/XG8zNL5JxsnkSlp6cjMTERycnJOHjwIHr06AGtVosLFy6YjM/KykJ8fDwmTpyIQ4cOIS4uDnFxcTh69KgUs2jRIixduhQrVqxATk4OPDw8oNVqUVlZKcWMHj0ax44dw44dO7B161bs2bMHCQkJ0vKysjI8/PDDaNu2LfLy8vDOO+9g3rx5+Ne//mW9nWEGa97UlmzHkW/AaW32lmD+cO53fHnwV6OyLw/+ih/O/W4ynp9ZIudl8zFRkZGR6N27Nz744AMAgMFgQFBQEF588UUkJSXVih8xYgTKy8uxdetWqaxPnz4IDw/HihUrIIRAYGAgZsyYgZdffhkAoNfr4e/vj7S0NIwcORL5+fno2rUrcnNz0atXLwDA9u3b8eijj+L8+fMIDAzE8uXL8fe//x06nQ4qlQoAkJSUhE2bNuHEiRNmta2hx0Rxdl/nxgHFptnb+/7D/57Bm9tqfwfMie2CiQ+0Myqzt7oTkXnMPX7btCeqqqoKeXl5iImJkcqUSiViYmKQnZ1tcp3s7GyjeADQarVSfEFBAXQ6nVGMl5cXIiMjpZjs7Gx4e3tLCRQAxMTEQKlUIicnR4oZMGCAlEDVPM/Jkyfx+++mf3Fev34dZWVlRo+GZG+/yKlhjejdBnuTBmHts32wN2kQE6j/sbc5sSKCW5ks72Vinih+Zomcm00HlpeUlKC6uhr+/v5G5f7+/nX29uh0OpPxOp1OWl5TVl+Mn5+f0XJXV1e0atXKKCYkJKTWNmqW3XVX7S/MlJQUzJ8/v+4G3yHOIeP8OKDYNHuaE6tH0F146v7WRqf0nrq/tcnB5fzMEjk3m4+JciYzZ86EXq+XHufOnWvQ7dvbL3KixmRPs1q/Ozwcm6f0xZzYLtg8pS/eHR5uMo6fWSLnZtOeKB8fH7i4uKC4uNiovLi4GBqNxuQ6Go2m3viaf4uLixEQEGAUEx4eLsX8eeD6zZs3cfnyZaPtmHqeW5/jz9zc3ODm5lZnexuCPf0iJ2rKegTdZdbUBvzMEjkvm/ZEqVQq9OzZE5mZmVKZwWBAZmYmoqKiTK4TFRVlFA8AO3bskOJDQkKg0WiMYsrKypCTkyPFREVFobS0FHl5eVLMzp07YTAYEBkZKcXs2bMHN27cMHqeTp06mTyV15js6Rc5Ed0eP7NETkrY2Lp164Sbm5tIS0sTx48fFwkJCcLb21vodDohhBBjxowRSUlJUvy+ffuEq6urWLx4scjPzxfJycmiWbNm4siRI1LMwoULhbe3t9i8ebP48ccfxdChQ0VISIioqKiQYoYMGSLuu+8+kZOTI/bu3Ss6duwo4uPjpeWlpaXC399fjBkzRhw9elSsW7dONG/eXKxcudLstun1egFA6PX6O9lFRERE1IjMPX7bPIkSQohly5aJNm3aCJVKJSIiIsT3338vLYuOjhbjxo0zil+/fr0IDQ0VKpVKdOvWTWzbts1oucFgEHPmzBH+/v7Czc1NDB48WJw8edIo5tKlSyI+Pl60aNFCeHp6igkTJogrV64Yxfzwww+if//+ws3NTbRu3VosXLjQonYxiSIiInI85h6/bT5PlDNz1HvnERERNWUOMU8UERERkaNiEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMNr0BsbOrmce0rKzMxjUhIiIic9Uct283HzmTKCu6cuUKACAoKMjGNSEiIiJLXblyBV5eXnUu521frMhgMOC3335Dy5YtoVAoGmy7ZWVlCAoKwrlz55zydjLO3j7A+dvo7O0DnL+NbJ/jc/Y2WrN9QghcuXIFgYGBUCrrHvnEnigrUiqVuOeee6y2fU9PT6f8YNRw9vYBzt9GZ28f4PxtZPscn7O30Vrtq68HqgYHlhMRERHJwCSKiIiISAYmUQ7Izc0NycnJcHNzs3VVrMLZ2wc4fxudvX2A87eR7XN8zt5Ge2gfB5YTERERycCeKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJshOpqakIDg6GWq1GZGQk9u/fX2/8kiVL0KlTJ7i7uyMoKAh/+9vfUFlZeUfbtKaGbt+8efOgUCiMHp07d7Z2M+pkSftu3LiBBQsWoH379lCr1ejRowe2b99+R9tsDA3dRnt6Dffs2YPHH38cgYGBUCgU2LRp023X2b17N+6//364ubmhQ4cOSEtLqxVjL6+hNdrnyK9fUVERRo0ahdDQUCiVSkyfPt1k3IYNG9C5c2eo1WqEhYUhIyOj4StvJmu0MS0trdZrqFarrdOA27C0fRs3bsRDDz0EX19feHp6IioqCt98802tOGt/BplE2YH09HQkJiYiOTkZBw8eRI8ePaDVanHhwgWT8WvWrEFSUhKSk5ORn5+Pjz/+GOnp6Zg1a5bsbVqTNdoHAN26dUNRUZH02Lt3b2M0pxZL2zd79mysXLkSy5Ytw/Hjx/Hcc8/hySefxKFDh2Rv09qs0UbAfl7D8vJy9OjRA6mpqWbFFxQUIDY2FoMGDcLhw4cxffp0TJo0yehL3J5eQ2u0D3Dc1+/69evw9fXF7Nmz0aNHD5MxWVlZiI+Px8SJE3Ho0CHExcUhLi4OR48ebciqm80abQT+mO371tfwl19+aagqW8TS9u3ZswcPPfQQMjIykJeXh0GDBuHxxx9v/O9RQTYXEREhpkyZIv1dXV0tAgMDRUpKisn4KVOmiAcffNCoLDExUfTr10/2Nq3JGu1LTk4WPXr0sEp9LWVp+wICAsQHH3xgVDZs2DAxevRo2du0Nmu00Z5ew1sBEP/5z3/qjXn11VdFt27djMpGjBghtFqt9Le9vYY1Gqp9jvz63So6OlpMmzatVvnw4cNFbGysUVlkZKSYPHnyHdbwzjVUGz/99FPh5eXVYPVqKJa2r0bXrl3F/Pnzpb8b4zPInigbq6qqQl5eHmJiYqQypVKJmJgYZGdnm1ynb9++yMvLk7olf/75Z2RkZODRRx+VvU1rsUb7apw6dQqBgYFo164dRo8ejcLCQus1pA5y2nf9+vVaXebu7u7Sr3h7ev3k1ud2baxhD6+hHNnZ2Ub7AwC0Wq20P+ztNbTU7dpXw1FfP3OYuw8c3dWrV9G2bVsEBQVh6NChOHbsmK2rJIvBYMCVK1fQqlUrAI33GWQSZWMlJSWorq6Gv7+/Ubm/vz90Op3JdUaNGoUFCxagf//+aNasGdq3b4+BAwdKp7vkbNNarNE+AIiMjERaWhq2b9+O5cuXo6CgAA888ACuXLli1fb8mZz2abVa/OMf/8CpU6dgMBiwY8cObNy4EUVFRbK3aU3WaCNgP6+hHDqdzuT+KCsrQ0VFhd29hpa6XfsAx379zFHXPnCE189cnTp1wieffILNmzdj9erVMBgM6Nu3L86fP2/rqlls8eLFuHr1KoYPHw6g8b5HmUQ5oN27d+Ott97CP//5Txw8eBAbN27Etm3b8Prrr9u6ag3CnPY98sgjeOaZZ3DvvfdCq9UiIyMDpaWlWL9+vQ1rbp73338fHTt2ROfOnaFSqTB16lRMmDABSqXzfBzNaaMjv4bE188ZREVFYezYsQgPD0d0dDQ2btwIX19frFy50tZVs8iaNWswf/58rF+/Hn5+fo363K6N+mxUi4+PD1xcXFBcXGxUXlxcDI1GY3KdOXPmYMyYMZg0aRIAICwsDOXl5UhISMDf//53Wdu0Fmu0z1Sy4e3tjdDQUJw+fbrhG1EPOe3z9fXFpk2bUFlZiUuXLiEwMBBJSUlo166d7G1akzXaaIqtXkM5NBqNyf3h6ekJd3d3uLi42NVraKnbtc8UR3r9zFHXPnCE10+uZs2a4b777nOo13DdunWYNGkSNmzYYHTqrrG+R53np6+DUqlU6NmzJzIzM6Uyg8GAzMxMREVFmVzn2rVrtRIJFxcXAIAQQtY2rcUa7TPl6tWrOHPmDAICAhqo5ua5k32tVqvRunVr3Lx5E19++SWGDh16x9u0Bmu00RRbvYZyREVFGe0PANixY4e0P+ztNbTU7dpniiO9fuaQsw8cXXV1NY4cOeIwr+HatWsxYcIErF27FrGxsUbLGu0z2GBD1Em2devWCTc3N5GWliaOHz8uEhIShLe3t9DpdEIIIcaMGSOSkpKk+OTkZNGyZUuxdu1a8fPPP4tvv/1WtG/fXgwfPtzsbTp6+2bMmCF2794tCgoKxL59+0RMTIzw8fERFy5csPv2ff/99+LLL78UZ86cEXv27BEPPvigCAkJEb///rvZ22xs1mijPb2GV65cEYcOHRKHDh0SAMQ//vEPcejQIfHLL78IIYRISkoSY8aMkeJ//vln0bx5c/HKK6+I/Px8kZqaKlxcXMT27dulGHt6Da3RPkd+/YQQUnzPnj3FqFGjxKFDh8SxY8ek5fv27ROurq5i8eLFIj8/XyQnJ4tmzZqJI0eONGrbalijjfPnzxfffPONOHPmjMjLyxMjR44UarXaKKaxWNq+zz//XLi6uorU1FRRVFQkPUpLS6WYxvgMMomyE8uWLRNt2rQRKpVKREREiO+//15aFh0dLcaNGyf9fePGDTFv3jzRvn17oVarRVBQkHjhhReMDlC322Zja+j2jRgxQgQEBAiVSiVat24tRowYIU6fPt2ILTJmSft2794tunTpItzc3MTdd98txowZI3799VeLtmkLDd1Ge3oNd+3aJQDUetS0ady4cSI6OrrWOuHh4UKlUol27dqJTz/9tNZ27eU1tEb7HP31MxXftm1bo5j169eL0NBQoVKpRLdu3cS2bdsap0EmWKON06dPl96f/v7+4tFHHxUHDx5svEbdwtL2RUdH1xtfw9qfQYUQdZwfISIiIqI6cUwUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiJqQnbv3g2FQoHS0lJbV4XI4TGJIiKrGD9+PBQKBRYuXGhUvmnTJigUCulvIQQ+/PBDREVFwdPTEy1atEC3bt0wbdo0s2+Eeu3aNcycORPt27eHWq2Gr68voqOjsXnzZikmODgYS5YsaZC2WVvNvlMoFGjWrBlCQkLw6quvorKy0qLtDBw4ENOnTzcq69u3L4qKiuDl5dWANSZqmphEEZHVqNVqvP322/j9999NLhdCYNSoUXjppZfw6KOP4ttvv8Xx48fx8ccfQ61W44033jDreZ577jls3LgRy5Ytw4kTJ7B9+3Y8/fTTuHTpUkM2p1ENGTIERUVF+Pnnn/Hee+9h5cqVSE5OvuPtqlQqaDQao0SWiGRq0JvIEBH9z7hx48Rjjz0mOnfuLF555RWp/D//+Y+o+epZu3atACA2b95schsGg8Gs5/Ly8hJpaWl1Ljd1n60a//3vf0X//v2FWq0W99xzj3jxxRfF1atXpeX//ve/Rc+ePUWLFi2Ev7+/iI+PF8XFxdLymnt+bd++XYSHhwu1Wi0GDRokiouLRUZGhujcubNo2bKliI+PF+Xl5Wa1Z9y4cWLo0KFGZcOGDRP33Xef9HdJSYkYOXKkCAwMFO7u7qJ79+5izZo1Rtv4c5sLCgqk+t56L8ovvvhCdO3aVahUKtG2bVuxePFis+pJ1NSxJ4qIrMbFxQVvvfUWli1bhvPnz9davnbtWnTq1AlPPPGEyfXN7S3RaDTIyMjAlStXTC7fuHEj7rnnHixYsABFRUUoKioCAJw5cwZDhgzBU089hR9//BHp6enYu3cvpk6dKq1748YNvP766/jhhx+wadMmnD17FuPHj6/1HPPmzcMHH3yArKwsnDt3DsOHD8eSJUuwZs0abNu2Dd9++y2WLVtmVnv+7OjRo8jKyoJKpZLKKisr0bNnT2zbtg1Hjx5FQkICxowZg/379wMA3n//fURFReHZZ5+V2hwUFFRr23l5eRg+fDhGjhyJI0eOYN68eZgzZw7S0tJk1ZWoSbF1FkdEzunW3pQ+ffqIv/71r0II456ozp07iyeeeMJovWnTpgkPDw/h4eEhWrdubdZzfffdd+Kee+4RzZo1E7169RLTp08Xe/fuNYpp27ateO+994zKJk6cKBISEozK/vvf/wqlUikqKipMPldubq4AIK5cuSKE+P89Uf/3f/8nxaSkpAgA4syZM1LZ5MmThVarNas948aNEy4uLsLDw0O4ubkJAEKpVIovvvii3vViY2PFjBkzpL+jo6PFtGnTjGL+3BM1atQo8dBDDxnFvPLKK6Jr165m1ZWoKWNPFBFZ3dtvv41Vq1YhPz//trF///vfcfjwYcydOxdXr141a/sDBgzAzz//jMzMTDz99NM4duwYHnjgAbz++uv1rvfDDz8gLS0NLVq0kB5arRYGgwEFBQUA/uipefzxx9GmTRu0bNkS0dHRAIDCwkKjbd17773S//39/dG8eXO0a9fOqOzChQtmtQcABg0ahMOHDyMnJwfjxo3DhAkT8NRTT0nLq6ur8frrryMsLAytWrVCixYt8M0339Sq1+3k5+ejX79+RmX9+vXDqVOnUF1dbdG2iJoaJlFEZHUDBgyAVqvFzJkzjco7duyIkydPGpX5+vqiQ4cO8PPzs+g5mjVrhgceeACvvfYavv32WyxYsACvv/46qqqq6lzn6tWrmDx5Mg4fPiw9fvjhB5w6dQrt27dHeXk5tFotPD098fnnnyM3Nxf/+c9/AKDWdps1ayb9v+aqulspFAoYDAaz2+Ph4YEOHTqgR48e+OSTT5CTk4OPP/5YWv7OO+/g/fffx2uvvYZdu3bh8OHD0Gq19baXiBqWq60rQERNw8KFCxEeHo5OnTpJZfHx8Rg1ahQ2b96MoUOHNujzde3aFTdv3kRlZSVUKhVUKlWtnpX7778fx48fR4cOHUxu48iRI7h06RIWLlwojSc6cOBAg9bTHEqlErNmzUJiYiJGjRoFd3d37Nu3D0OHDsVf/vIXAIDBYMBPP/2Erl27SuuZavOfdenSBfv27TMq27dvH0JDQ+Hi4tLwjSFyIuyJIqJGERYWhtGjR2Pp0qVS2ciRI/H0009j5MiRWLBgAXJycnD27Fl89913SE9PN/sgPnDgQKxcuRJ5eXk4e/YsMjIyMGvWLAwaNAienp4A/pgnas+ePfj1119RUlICAHjttdeQlZWFqVOn4vDhwzh16hQ2b94sDSxv06YNVCoVli1bhp9//hlbtmy57SlCa3nmmWfg4uKC1NRUAH/04u3YsQNZWVnIz8/H5MmTUVxcbLROcHCwtE9LSkpM9oTNmDEDmZmZeP311/HTTz9h1apV+OCDD/Dyyy83SruIHBmTKCJqNAsWLDA6kCsUCqSnp2PJkiXIyMjA4MGD0alTJ/z1r39FUFAQ9u7da9Z2tVotVq1ahYcffhhdunTBiy++CK1Wi/Xr1xs999mzZ9G+fXv4+voC+GMc03fffYeffvoJDzzwAO677z7MnTsXgYGBAP44tZiWloYNGzaga9euWLhwIRYvXtyAe8R8rq6umDp1KhYtWoTy8nLMnj0b999/P7RaLQYOHAiNRoO4uDijdV5++WW4uLiga9eu8PX1NTle6v7778f69euxbt06dO/eHXPnzsWCBQtMXoFIRMYUQghh60oQERERORr2RBERERHJwCSKiOzerVMQ/Pnx3//+19bVs0hhYWG97bF0igIish2eziMiu1ffjYhbt24Nd3f3RqzNnbl58ybOnj1b5/Lg4GC4uvLCaSJHwCSKiIiISAaeziMiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMvw/G2qoRBvoqD0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHHCAYAAAB9dxZkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVZFJREFUeJzt3Xtc1FX+P/DXcBlAkCEDGTAUvOCVxFAQLdGkxmJLslZFV5FMbdPSNdvQVMwumFm5mqt2xc1UtNwyJdMvZK6CiHjJW64XSC0GRWNQQFHm/P7wx2cdGZCBzzC31/PxmIdyPu/PZ86ZD8O855zzOR+FEEKAiIiIiJrMydIVICIiIrIXTKyIiIiIZMLEioiIiEgmTKyIiIiIZMLEioiIiEgmTKyIiIiIZMLEioiIiEgmTKyIiIiIZMLEioiIiEgmTKyIyK7NmzcPCoWiQbEKhQLz5s0za30GDhyIgQMHWu3xiKhpmFgRUbNIS0uDQqGQHi4uLmjTpg3GjRuH3377zdLVszrBwcEGr1fr1q3x0EMP4d///rcsx6+oqMC8efOwY8cOWY5HRLcwsSKiZjV//nx88cUXWLFiBR577DGsXr0aMTExuHbtmlmeb/bs2aisrDTLsc0tPDwcX3zxBb744gvMmDEDv//+O4YNG4YVK1Y0+dgVFRV4/fXXmVgRyczF0hUgIsfy2GOPoXfv3gCA5557Dr6+vnjnnXewadMmDB8+XPbnc3FxgYuLbf6pa9OmDf7yl79IP48dOxYdO3bEBx98gOeff96CNSOiurDHiogs6qGHHgIAnD592qD8l19+wTPPPINWrVrB3d0dvXv3xqZNmwxibty4gddffx2dOnWCu7s77r33Xjz44IPYvn27FGNsjtX169fxt7/9DX5+fmjZsiWefPJJnD9/vlbdxo0bh+Dg4Frlxo75+eef4+GHH0br1q3h5uaGbt26Yfny5Sa9FnejVqvRtWtXFBQU1Bt34cIFjB8/Hv7+/nB3d0fPnj2xatUqaXthYSH8/PwAAK+//ro03Gju+WVEjsA2v8YRkd0oLCwEANxzzz1S2dGjR9G/f3+0adMGycnJ8PT0xPr16xEfH4+vv/4aTz31FIBbCU5qaiqee+45REZGoqysDPv27cP+/fvxyCOP1Pmczz33HFavXo1Ro0ahX79+yMrKQlxcXJPasXz5cnTv3h1PPvkkXFxc8N133+GFF16AXq/H5MmTm3TsGjdu3MC5c+dw77331hlTWVmJgQMH4tSpU5gyZQpCQkKwYcMGjBs3DqWlpZg6dSr8/PywfPly/PWvf8VTTz2FYcOGAQDuv/9+WepJ5NAEEVEz+PzzzwUA8X//93/i4sWL4ty5c+Krr74Sfn5+ws3NTZw7d06KHTx4sAgLCxPXrl2TyvR6vejXr5/o1KmTVNazZ08RFxdX7/OmpKSI2//UHTx4UAAQL7zwgkHcqFGjBACRkpIilSUmJop27drd9ZhCCFFRUVErTqPRiPbt2xuUxcTEiJiYmHrrLIQQ7dq1E48++qi4ePGiuHjxojh06JAYOXKkACBefPHFOo+3ePFiAUCsXr1aKquqqhLR0dHCy8tLlJWVCSGEuHjxYq32ElHTcSiQiJpVbGws/Pz8EBQUhGeeeQaenp7YtGkT7rvvPgDA5cuXkZWVheHDh+PKlSsoKSlBSUkJLl26BI1Gg5MnT0pXEfr4+ODo0aM4efJkg58/IyMDAPDSSy8ZlE+bNq1J7fLw8JD+r9PpUFJSgpiYGJw5cwY6na5Rx9y2bRv8/Pzg5+eHnj17YsOGDRgzZgzeeeedOvfJyMiAWq1GQkKCVObq6oqXXnoJV69exU8//dSouhBRw3AokIia1bJlyxAaGgqdTofPPvsMO3fuhJubm7T91KlTEEJgzpw5mDNnjtFjXLhwAW3atMH8+fMxdOhQhIaGokePHhgyZAjGjBlT75DWr7/+CicnJ3To0MGgvHPnzk1q1+7du5GSkoKcnBxUVFQYbNPpdFCpVCYfMyoqCm+++SYUCgVatGiBrl27wsfHp959fv31V3Tq1AlOTobfm7t27SptJyLzYWJFRM0qMjJSuiowPj4eDz74IEaNGoUTJ07Ay8sLer0eADBjxgxoNBqjx+jYsSMAYMCAATh9+jS+/fZbbNu2DZ988gk++OADrFixAs8991yT61rXwqLV1dUGP58+fRqDBw9Gly5d8P777yMoKAhKpRIZGRn44IMPpDaZytfXF7GxsY3al4gsg4kVEVmMs7MzUlNTMWjQIHz44YdITk5G+/btAdwavmpIUtGqVSskJSUhKSkJV69exYABAzBv3rw6E6t27dpBr9fj9OnTBr1UJ06cqBV7zz33oLS0tFb5nb0+3333Ha5fv45Nmzahbdu2UvmPP/541/rLrV27dvj555+h1+sNeq1++eUXaTtQd9JIRE3DOVZEZFEDBw5EZGQkFi9ejGvXrqF169YYOHAgVq5ciaKiolrxFy9elP5/6dIlg21eXl7o2LEjrl+/XufzPfbYYwCAJUuWGJQvXry4VmyHDh2g0+nw888/S2VFRUW1Vj93dnYGAAghpDKdTofPP/+8znqYy+OPPw6tVov09HSp7ObNm1i6dCm8vLwQExMDAGjRogUAGE0ciajx2GNFRBb3yiuv4M9//jPS0tLw/PPPY9myZXjwwQcRFhaGCRMmoH379iguLkZOTg7Onz+PQ4cOAQC6deuGgQMHIiIiAq1atcK+ffvw1VdfYcqUKXU+V3h4OBISEvDPf/4TOp0O/fr1Q2ZmJk6dOlUrduTIkXj11Vfx1FNP4aWXXkJFRQWWL1+O0NBQ7N+/X4p79NFHoVQq8cQTT2DSpEm4evUqPv74Y7Ru3dpocmhOEydOxMqVKzFu3Djk5+cjODgYX331FXbv3o3FixejZcuWAG5Ntu/WrRvS09MRGhqKVq1aoUePHujRo0ez1pfI7lj6skQicgw1yy3k5eXV2lZdXS06dOggOnToIG7evCmEEOL06dNi7NixQq1WC1dXV9GmTRvxpz/9SXz11VfSfm+++aaIjIwUPj4+wsPDQ3Tp0kW89dZboqqqSooxtjRCZWWleOmll8S9994rPD09xRNPPCHOnTtndPmBbdu2iR49egilUik6d+4sVq9ebfSYmzZtEvfff79wd3cXwcHB4p133hGfffaZACAKCgqkOFOWW7jbUhJ1Ha+4uFgkJSUJX19foVQqRVhYmPj8889r7ZudnS0iIiKEUqnk0gtEMlEIcVvfNRERERE1GudYEREREcmEiRURERGRTJhYEREREcmEiRURERGRTJhYEREREcmEiRURERGRTLhAqBnp9Xr8/vvvaNmyJW8fQUREZCOEELhy5QoCAwNr3dD8bphYmdHvv/+OoKAgS1eDiIiIGuHcuXO47777TNqHiZUZ1dw64ty5c/D29rZwbYiIiKghysrKEBQUJH2Om4KJlRnVDP95e3szsSIiIrIxjZnGw8nrRERERDJhYkVEREQkEyZWRERERDLhHCsiIiIbptfrUVVVZelq2BRXV1c4Ozub5dhMrIiIiGxUVVUVCgoKoNfrLV0Vm+Pj4wO1Wi37OpNMrIiIiGyQEAJFRUVwdnZGUFCQyQtZOiohBCoqKnDhwgUAQEBAgKzHZ2JFRERkg27evImKigoEBgaiRYsWlq6OTfHw8AAAXLhwAa1bt5Z1WJDpLRERkQ2qrq4GACiVSgvXxDbVJKM3btyQ9bhMrIiIiGwY70XbOOZ63ZhYEREREcmEiRURERGRTJhYERERmaBIV4ns0yUo0lVauio2ady4cYiPj69VvmPHDigUCpSWlmLHjh0YOnQoAgIC4OnpifDwcHz55Ze19rl8+TKmTZuGdu3aQalUIjAwEM8++yzOnj3bDC0xjlcFEhERNVB63lnM3HgYegE4KYDUYWEY0aetpatld7Kzs3H//ffj1Vdfhb+/PzZv3oyxY8dCpVLhT3/6E4BbSVXfvn2hVCqxYsUKdO/eHYWFhZg9ezb69OmDnJwctG/fvtnrzsSKiIioAYp0lVJSBQB6AczaeAQDQv0QoPKwbOXszKxZswx+njp1KrZt24aNGzdKidVrr72G33//HadOnYJarQYAtG3bFj/88AM6deqEyZMn4/vvv2/2unMokIiIqAEKSsqlpKpGtRAoLKmwTIVkZAvDmzqdDq1atQJw6zY+69atw+jRo6WkqoaHhwdeeOEF/PDDD7h8+XKz15M9VkRERA0Q4usJJwUMkitnhQLBvra9OKclhjc3b94MLy8vg7KadbmMWb9+PfLy8rBy5UoAwMWLF1FaWoquXbsaje/atSuEEDh16hQiIyPlq3gDsMeKiIioAQJUHkgdFgbn/7/+kbNCgbeH9bDpYcC6hjfN3XM1aNAgHDx40ODxySefGI398ccfkZSUhI8//hjdu3c32CaEMLqPJbHHioiIqIFG9GmLAaF+KCypQLBvC5tOqoD6hzfN2TZPT0907NjRoOz8+fO14n766Sc88cQT+OCDDzB27Fip3M/PDz4+Pjh+/LjR4x8/fhwKhaLWczQH9lgRERGZIEDlgegO99p8UgX8b3jzdtYyvLljxw7ExcXhnXfewcSJEw22OTk5Yfjw4VizZg20Wq3BtsrKSvzzn/+ERqOR5mQ1JyZWREREDspahzd//PFHxMXF4aWXXsLTTz8NrVYLrVZrMBn97bffhlqtxiOPPILvv/8e586dw86dO6HRaHDjxg0sW7bMInW3eGK1bNkyBAcHw93dHVFRUdi7d2+98Rs2bECXLl3g7u6OsLAwZGRkGGwXQmDu3LkICAiAh4cHYmNjcfLkSYOYt956C/369UOLFi3g4+NT6zkOHTqEhIQEBAUFwcPDA127dsU//vGPJreViIjI2ozo0xa7kgdh7YS+2JU8yCrW5Vq1ahUqKiqQmpqKgIAA6TFs2DAp5t5778WePXswaNAgTJo0CR06dMDw4cPRoUMH5OXlWWQNKwCAsKB169YJpVIpPvvsM3H06FExYcIE4ePjI4qLi43G7969Wzg7O4uFCxeKY8eOidmzZwtXV1dx+PBhKWbBggVCpVKJb775Rhw6dEg8+eSTIiQkRFRWVkoxc+fOFe+//76YPn26UKlUtZ7n008/FS+99JLYsWOHOH36tPjiiy+Eh4eHWLp0qUnt0+l0AoDQ6XQm7UdERHQ3lZWV4tixYwafb9Rw9b1+Tfn8VghhuSn1UVFR6NOnDz788EMAt9alCAoKwosvvojk5ORa8SNGjEB5eTk2b94slfXt2xfh4eFYsWIFhBAIDAzEyy+/jBkzZgC4te6Fv78/0tLSMHLkSIPjpaWlYdq0aSgtLb1rXSdPnozjx48jKyurwe0rKyuDSqWCTqeDt7d3g/cjIiK6m2vXrqGgoAAhISFwd3e3dHVsTn2vX1M+vy02FFhVVYX8/HzExsb+rzJOToiNjUVOTo7RfXJycgziAUCj0UjxBQUF0Gq1BjEqlQpRUVF1HrOhbl+YrC7Xr19HWVmZwYOIiIgch8USq5KSElRXV8Pf39+g3N/fv9YM/xparbbe+Jp/TTlmQ2RnZyM9Pb3WVQl3Sk1NhUqlkh5BQUGNfk4iIiKyPRafvG7tjhw5gqFDhyIlJQWPPvpovbEzZ86ETqeTHufOnWumWhIREZE1sFhi5evrC2dnZxQXFxuUFxcX17rvTw21Wl1vfM2/phyzPseOHcPgwYMxceJEzJ49+67xbm5u8Pb2NngQERGZkwWnSts0c71uFkuslEolIiIikJmZKZXp9XpkZmYiOjra6D7R0dEG8QCwfft2KT4kJARqtdogpqysDLm5uXUesy5Hjx7FoEGDkJiYiLfeesukfYmIiMzN2dkZwK05y2S6iopbN892dXWV9bgWvaXN9OnTkZiYiN69eyMyMhKLFy9GeXk5kpKSAABjx45FmzZtkJqaCgCYOnUqYmJi8N577yEuLg7r1q3Dvn378NFHHwEAFAoFpk2bhjfffBOdOnVCSEgI5syZg8DAQMTHx0vPe/bsWVy+fBlnz55FdXU1Dh48CADo2LEjvLy8cOTIETz88MPQaDSYPn26ND/L2dkZfn5+zfcCERER1cHFxQUtWrTAxYsX4erqCicnzu5pCCEEKioqcOHCBfj4+EgJqlwsmliNGDECFy9exNy5c6HVahEeHo6tW7dKk8/Pnj1r8IvSr18/rFmzBrNnz8asWbPQqVMnfPPNN+jRo4cU8/e//x3l5eWYOHEiSktL8eCDD2Lr1q0Gl1LOnTsXq1atkn7u1asXgFsrvQ4cOBBfffUVLl68iNWrV2P16tVSXLt27VBYWGiul4OIiKjBFAoFAgICUFBQgF9//dXS1bE5Pj4+jZomdDcWXcfK3nEdKyIiMje9Xs/hQBO5urrW21PVlM9vi/ZYERERUdM4OTlxgVArwgFZIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSicUTq2XLliE4OBju7u6IiorC3r17643fsGEDunTpAnd3d4SFhSEjI8NguxACc+fORUBAADw8PBAbG4uTJ08axLz11lvo168fWrRoAR8fH6PPc/bsWcTFxaFFixZo3bo1XnnlFdy8ebNJbSUiIiL7ZtHEKj09HdOnT0dKSgr279+Pnj17QqPR4MKFC0bjs7OzkZCQgPHjx+PAgQOIj49HfHw8jhw5IsUsXLgQS5YswYoVK5CbmwtPT09oNBpcu3ZNiqmqqsKf//xn/PWvfzX6PNXV1YiLi0NVVRWys7OxatUqpKWlYe7cufK+AERERGRfhAVFRkaKyZMnSz9XV1eLwMBAkZqaajR++PDhIi4uzqAsKipKTJo0SQghhF6vF2q1Wrz77rvS9tLSUuHm5ibWrl1b63iff/65UKlUtcozMjKEk5OT0Gq1Utny5cuFt7e3uH79eoPbp9PpBACh0+kavA8RERFZVlM+vy3WY1VVVYX8/HzExsZKZU5OToiNjUVOTo7RfXJycgziAUCj0UjxBQUF0Gq1BjEqlQpRUVF1HrOu5wkLC4O/v7/B85SVleHo0aN17nf9+nWUlZUZPIiIiMhxWCyxKikpQXV1tUHyAgD+/v7QarVG99FqtfXG1/xryjFNeZ7bn8OY1NRUqFQq6REUFNTg5yQiIiLbZ/HJ6/Zk5syZ0Ol00uPcuXOWrhIRERE1I4slVr6+vnB2dkZxcbFBeXFxMdRqtdF91Gp1vfE1/5pyTFOe5/bnMMbNzQ3e3t4GDyIiInIcFkuslEolIiIikJmZKZXp9XpkZmYiOjra6D7R0dEG8QCwfft2KT4kJARqtdogpqysDLm5uXUes67nOXz4sMHVidu3b4e3tze6devW4OMQERGRY3Gx5JNPnz4diYmJ6N27NyIjI7F48WKUl5cjKSkJADB27Fi0adMGqampAICpU6ciJiYG7733HuLi4rBu3Trs27cPH330EQBAoVBg2rRpePPNN9GpUyeEhIRgzpw5CAwMRHx8vPS8Z8+exeXLl3H27FlUV1fj4MGDAICOHTvCy8sLjz76KLp164YxY8Zg4cKF0Gq1mD17NiZPngw3N7dmfY2IiIjIhpjhKkWTLF26VLRt21YolUoRGRkp9uzZI22LiYkRiYmJBvHr168XoaGhQqlUiu7du4stW7YYbNfr9WLOnDnC399fuLm5icGDB4sTJ04YxCQmJgoAtR4//vijFFNYWCgee+wx4eHhIXx9fcXLL78sbty4YVLbuNwCERGR7WnK57dCCCEsmNfZtbKyMqhUKuh0Os63IiIishFN+fzmVYFEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMrF4YrVs2TIEBwfD3d0dUVFR2Lt3b73xGzZsQJcuXeDu7o6wsDBkZGQYbBdCYO7cuQgICICHhwdiY2Nx8uRJg5jLly9j9OjR8Pb2ho+PD8aPH4+rV68axPzwww/o27cvWrZsCT8/Pzz99NMoLCyUpc1ERERknyyaWKWnp2P69OlISUnB/v370bNnT2g0Gly4cMFofHZ2NhISEjB+/HgcOHAA8fHxiI+Px5EjR6SYhQsXYsmSJVixYgVyc3Ph6ekJjUaDa9euSTGjR4/G0aNHsX37dmzevBk7d+7ExIkTpe0FBQUYOnQoHn74YRw8eBA//PADSkpKMGzYMPO9GERERGT7hAVFRkaKyZMnSz9XV1eLwMBAkZqaajR++PDhIi4uzqAsKipKTJo0SQghhF6vF2q1Wrz77rvS9tLSUuHm5ibWrl0rhBDi2LFjAoDIy8uTYr7//nuhUCjEb7/9JoQQYsOGDcLFxUVUV1dLMZs2bRIKhUJUVVU1uH06nU4AEDqdrsH7EBERkWU15fPbYj1WVVVVyM/PR2xsrFTm5OSE2NhY5OTkGN0nJyfHIB4ANBqNFF9QUACtVmsQo1KpEBUVJcXk5OTAx8cHvXv3lmJiY2Ph5OSE3NxcAEBERAScnJzw+eefo7q6GjqdDl988QViY2Ph6upaZ5uuX7+OsrIygwcRERE5DoslViUlJaiuroa/v79Bub+/P7RardF9tFptvfE1/94tpnXr1gbbXVxc0KpVKykmJCQE27Ztw6xZs+Dm5gYfHx+cP38e69evr7dNqampUKlU0iMoKKje+OZSpKtE9ukSFOkqLV0VIiIiu2bxyevWSKvVYsKECUhMTEReXh5++uknKJVKPPPMMxBC1LnfzJkzodPppMe5c+easdbGpeedRf8FWRj1cS76L8hCet5ZS1eJiIjIbrlY6ol9fX3h7OyM4uJig/Li4mKo1Wqj+6jV6nrja/4tLi5GQECAQUx4eLgUc+fk+Js3b+Ly5cvS/suWLYNKpcLChQulmNWrVyMoKAi5ubno27ev0fq5ubnBzc3tbk1vNkW6SszceBj6/58L6gUwa+MRDAj1Q4DKw7KVIyIiskMW67FSKpWIiIhAZmamVKbX65GZmYno6Gij+0RHRxvEA8D27dul+JCQEKjVaoOYsrIy5ObmSjHR0dEoLS1Ffn6+FJOVlQW9Xo+oqCgAQEVFBZycDF8aZ2dnqY62oqCkXEqqalQLgcKSCstUiIiIyM5ZdChw+vTp+Pjjj7Fq1SocP34cf/3rX1FeXo6kpCQAwNixYzFz5kwpfurUqdi6dSvee+89/PLLL5g3bx727duHKVOmAAAUCgWmTZuGN998E5s2bcLhw4cxduxYBAYGIj4+HgDQtWtXDBkyBBMmTMDevXuxe/duTJkyBSNHjkRgYCAAIC4uDnl5eZg/fz5OnjyJ/fv3IykpCe3atUOvXr2a90VqghBfTzgpDMucFQoE+7awTIWIiIjsnfwXKZpm6dKlom3btkKpVIrIyEixZ88eaVtMTIxITEw0iF+/fr0IDQ0VSqVSdO/eXWzZssVgu16vF3PmzBH+/v7Czc1NDB48WJw4ccIg5tKlSyIhIUF4eXkJb29vkZSUJK5cuWIQs3btWtGrVy/h6ekp/Pz8xJNPPimOHz9uUtusYbmFdXt/Fe2Tt4h2r24W7ZO3iHV7f7VYXYiIiGxBUz6/FULUMxubmqSsrAwqlQo6nQ7e3t4Wq0eRrhKFJRUI9m3BuVVERER30ZTPb4tNXqfmE6DyYEJFRETUDLjcAhEREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERycSlsTuWlpbi1KlTAICOHTvCx8dHrjoRERER2SSTe6wKCwsRFxcHX19fREVFISoqCr6+vvjTn/6EwsJCM1SRiIiIyDaY1GN17tw59O3bF66urnjjjTfQtWtXAMCxY8ewfPlyREdHIy8vD/fdd59ZKkvWq0hXiYKScoT4eiJA5WHp6hAREVmEQgghGho8fvx4nDp1Cj/88APc3d0NtlVWVmLIkCHo1KkTPvnkE9kraovKysqgUqmg0+ng7e1t6eqYTXreWczceBh6ATgpgNRhYRjRp62lq0VERNQoTfn8NmkocOvWrXjrrbdqJVUA4OHhgTfeeAMZGRkmVYBsW5GuUkqqAEAvgFkbj6BIV2nZihEREVmASYlVSUkJgoOD69zevn17XL58ual1IhtSUFIuJVU1qoVAYUmFZSpERERkQSYlVgEBATh27Fid248cOQK1Wt3kSpHtCPH1hJPCsMxZoUCwbwvLVIiIiMiCTEqs4uPjMWPGDFy8eLHWtgsXLuDVV19FfHy8XHUjGxCg8kDqsDA4K25lV84KBd4e1oMT2ImIyCGZNHn9jz/+QFRUFLRaLf7yl7+gS5cuEELg+PHjWLNmDdRqNfbs2YNWrVqZs842w1EmrwO35loVllQg2LcFkyoiIrJpTfn8Nmm5hXvuuQe5ubmYNWsW1q1bh9LSUgCAj48PRo0ahbfffptJlYMKUHkwoSIiIodnUo/V7YQQ0pCgn58fFArFXfZwPI7UY0VERGQvmq3H6nYKhQKtW7du7O5kZ7hAKBERUSMSq4yMDGzcuBGtWrVCUlKStPo6cGsO1tNPP42srCxZK0nWjQuEEhER3WLSVYFr1qzBk08+Ca1Wi5ycHDzwwAP48ssvpe1VVVX46aefTKrAsmXLEBwcDHd3d0RFRWHv3r31xm/YsAFdunSBu7s7wsLCai1IKoTA3LlzERAQAA8PD8TGxuLkyZMGMZcvX8bo0aPh7e0NHx8fjB8/HlevXq11nEWLFiE0NBRubm5o06YN3nrrLZPa5giKdJVI/tpwgdDkjYe5QCgRETkkkxKrd999F++//z42b96M//znP1i1ahUmTZqETz/9tFFPnp6ejunTpyMlJQX79+9Hz549odFocOHCBaPx2dnZSEhIwPjx43HgwAHEx8cjPj4eR44ckWIWLlyIJUuWYMWKFcjNzYWnpyc0Gg2uXbsmxYwePRpHjx7F9u3bsXnzZuzcuRMTJ040eK6pU6fik08+waJFi/DLL79g06ZNiIyMbFQ77Vn+r3/gzkl6QgD7f/3DIvUhIiKyKGECT09PcebMGYOyrKws4eXlJZYvXy60Wq1wcnJq8PEiIyPF5MmTpZ+rq6tFYGCgSE1NNRo/fPhwERcXZ1AWFRUlJk2aJIQQQq/XC7VaLd59911pe2lpqXBzcxNr164VQghx7NgxAUDk5eVJMd9//71QKBTit99+k2JcXFzEL7/80uC2GKPT6QQAodPpmnQca7bp4HnR7tXNtR7fHfzN0lUjIiJqlKZ8fpvUY+Xt7Y3i4mKDskGDBmHz5s145ZVXsHTp0gYfq6qqCvn5+YiNjZXKnJycEBsbi5ycHKP75OTkGMQDgEajkeILCgqg1WoNYlQqFaKioqSYnJwc+Pj4oHfv3lJMbGwsnJyckJubCwD47rvv0L59e2zevBkhISEIDg7Gc889d9fb9Vy/fh1lZWUGD3vXO7gV7rweVAEgIvgeS1SHiIjIokxKrCIjI/H999/XKo+JicF3332HxYsXN/hYJSUlqK6uhr+/v0G5v78/tFqt0X20Wm298TX/3i3mzqsZXVxc0KpVKynmzJkz+PXXX7Fhwwb861//QlpaGvLz8/HMM8/U26bU1FSoVCrpERQUVG+8PQhQeWDB02HSL5ITgAVPh/HKQCIickgmXRX4t7/9DdnZ2Ua3DRw4EN999x3+9a9/yVIxS9Lr9bh+/Tr+9a9/ITQ0FADw6aefIiIiAidOnEDnzp2N7jdz5kxMnz5d+rmsrMwhkqsRfdpiQKgfV14nIiKHZ1Ji1atXL/Tq1avOIa6IiAhEREQ06Fi+vr5wdnauNbRYXFxc542c1Wp1vfE1/xYXFyMgIMAgJjw8XIq5c3L8zZs3cfnyZWn/gIAAuLi4SEkVAGlZibNnz9aZWLm5ucHNza3edtsrrrxORERk4lCgj48P7rnnnrs+GkKpVCIiIgKZmZlSmV6vR2ZmJqKjo43uEx0dbRAPANu3b5fiQ0JCoFarDWLKysqQm5srxURHR6O0tBT5+flSTFZWFvR6PaKiogAA/fv3x82bN3H69Gkp5r///S8AoF27dg1qHxERETkek3qsfvzxR+n/Qgg8/vjj+OSTT9CmTZtGPfn06dORmJiI3r17IzIyEosXL0Z5eTmSkpIAAGPHjkWbNm2QmpoK4NYSCDExMXjvvfcQFxeHdevWYd++ffjoo48A3FoNftq0aXjzzTfRqVMnhISEYM6cOQgMDER8fDyAWz1PQ4YMwYQJE7BixQrcuHEDU6ZMwciRIxEYGAjg1mT2Bx54AM8++ywWL14MvV6PyZMn45FHHjHoxSIiIiIy0JTLEb28vMTp06ebcgixdOlS0bZtW6FUKkVkZKTYs2ePtC0mJkYkJiYaxK9fv16EhoYKpVIpunfvLrZs2WKwXa/Xizlz5gh/f3/h5uYmBg8eLE6cOGEQc+nSJZGQkCC8vLyEt7e3SEpKEleuXDGI+e2338SwYcOEl5eX8Pf3F+PGjROXLl0yqW2OsNwCERGRJfxeWiF2n7oofi+tkP3YTfn8bvRNmAGgZcuWOHToENq3by9fpmdHeBNmIiIi+Zn7VmpN+fw2aY4VERERkSUV6SqlpAq4dSu1WRuPWM2t1JqcWCkUdy4PSURERGQeBSXlUlJVo1oIFJZUWKZCdzBp8vqwYcMMfr527Rqef/55eHp6GpRv3Lix6TUjIiIiukOIryecFDBIrpwVCgT7trBcpW5jUmKlUqkMfv7LX/4ia2WI7FmRrhIFJeUI8fXkml9ERI0UoPJA6rAwzNp4BNVCwFmhwNvDeljN39UmTV6n+nHyOtUw90RLIiJHU6SrNNsdPzh5nciKWftESyIiWxSg8kB0h3utpqeqBhMrIjOz9omWpijSVSL7dAmTQiKiOpg0x4qoLpw/VDdrn2jZUBzOJCK6O/ZYUZOl551F/wVZGPVxLvovyEJ63llLV8mq1Ey0dP7/S5NY20TLhuBwJhFRw7DHipqkrg/cAaF+NpU4mNuIPm0xINTPbBMtza2+4UxbawsRWSd7GflgYkVNwg/chgtQedjsa2Ivw5lEZJ3saaoBhwKpSWo+cG/HD1z7Yw/DmURknextqgF7rKhJrH2hNpKPrQ9nEpF1sreRDyZW1GT8wHUctjycSUTWyd6mGnAokGRhrQu1ERGRdbO3qQbssSIiIiKLsqeRDyZWREREZHH2MtWAQ4FEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZERERUryJdJbJPl9js/fuaE9exIiIiojql552VbpLspABSh4VhRJ+2lq6W1WKPFZGd4DdKIpJbka5SSqqAW/fzm7XxCP/O1IM9VkR2gN8oicgcCkrKDW6ODADVQqCwpMIuVkk3B/ZYEdk4fqMkInMJ8fWEk8KwzFmhQLBvC8tUyAYwsSKycfV9oyQiaooAlQdSh4XBWXEru3JWKPD2sB7sraoHhwKJbFzNN8rbkyt+oyQiuYzo0xYDQv1QWFKBYN8WTKrugj1WRDaO3yiJyNwCVB6I7nAv/640AHusiOwAv1ESka0r0lWioKQcIb6eNv03jIkVkZ0IUHnY9B8jInJc9nRlM4cCiYiIyGLs7cpmJlZkEVzMkoiIAPu7splDgdTs7KnLl4iImsbermxmjxU1K3vr8iUioqaxtyub2WNFzYq3RyAiojvZ05XNTKyoWdlbly8REcnDXq5s5lAgNSt76/IlIiK6HXusqNnZU5cvERHR7ZhYkUXYS5cvEZEjsJdV0ZsDEysiIiKqE5fIMY1VzLFatmwZgoOD4e7ujqioKOzdu7fe+A0bNqBLly5wd3dHWFgYMjIyDLYLITB37lwEBATAw8MDsbGxOHnypEHM5cuXMXr0aHh7e8PHxwfjx4/H1atXjT7fqVOn0LJlS/j4+DSpnURERLakKUvkOOpC0BZPrNLT0zF9+nSkpKRg//796NmzJzQaDS5cuGA0Pjs7GwkJCRg/fjwOHDiA+Ph4xMfH48iRI1LMwoULsWTJEqxYsQK5ubnw9PSERqPBtWvXpJjRo0fj6NGj2L59OzZv3oydO3di4sSJtZ7vxo0bSEhIwEMPPSR/4x2Yo77hiIhsSWNXRU/PO4v+C7Iw6uNc9F+QhfS8s2aspXVRCCHE3cPMJyoqCn369MGHH34IANDr9QgKCsKLL76I5OTkWvEjRoxAeXk5Nm/eLJX17dsX4eHhWLFiBYQQCAwMxMsvv4wZM2YAAHQ6Hfz9/ZGWloaRI0fi+PHj6NatG/Ly8tC7d28AwNatW/H444/j/PnzCAwMlI796quv4vfff8fgwYMxbdo0lJaWNrhtZWVlUKlU0Ol08Pb2bszLY5fYrUxEZBuKdJXovyCr1hI5u5IH1TnXqjH7WJumfH5btMeqqqoK+fn5iI2NlcqcnJwQGxuLnJwco/vk5OQYxAOARqOR4gsKCqDVag1iVCoVoqKipJicnBz4+PhISRUAxMbGwsnJCbm5uVJZVlYWNmzYgGXLljWoPdevX0dZWZnBgwxx5XUiItvRmCVy7O3ef6ay6OT1kpISVFdXw9/f36Dc398fv/zyi9F9tFqt0XitVittrymrL6Z169YG211cXNCqVSsp5tKlSxg3bhxWr17d4Gw1NTUVr7/+eoNiHRVXXicisi2mLpHj6AtBW3yOlbWaMGECRo0ahQEDBjR4n5kzZ0Kn00mPc+fOmbGGtqnmDXc7R3rDERHZogCVB6I73NugL8COvhC0RXusfH194ezsjOLiYoPy4uJiqNVqo/uo1ep642v+LS4uRkBAgEFMeHi4FHPn5PibN2/i8uXL0v5ZWVnYtGkTFi1aBODWlYZ6vR4uLi746KOP8Oyzz9aqm5ubG9zc3BrafIdU84abtfEIqoVwuDccEZEjcOSFoC3aY6VUKhEREYHMzEypTK/XIzMzE9HR0Ub3iY6ONogHgO3bt0vxISEhUKvVBjFlZWXIzc2VYqKjo1FaWor8/HwpJisrC3q9HlFRUQBuzcM6ePCg9Jg/fz5atmyJgwcP4qmnnpLnBXBQI/q0xa7kQVg7oS92JQ/ixHUiIjtkSi+XPbH4AqHTp09HYmIievfujcjISCxevBjl5eVISkoCAIwdOxZt2rRBamoqAGDq1KmIiYnBe++9h7i4OKxbtw779u3DRx99BABQKBSYNm0a3nzzTXTq1AkhISGYM2cOAgMDER8fDwDo2rUrhgwZggkTJmDFihW4ceMGpkyZgpEjR0pXBHbt2tWgnvv27YOTkxN69OjRTK+MfbOHlde5EjERWQv+PbIeFk+sRowYgYsXL2Lu3LnQarUIDw/H1q1bpcnnZ8+ehZPT/zrW+vXrhzVr1mD27NmYNWsWOnXqhG+++cYg4fn73/+O8vJyTJw4EaWlpXjwwQexdetWuLu7SzFffvklpkyZgsGDB8PJyQlPP/00lixZ0nwNtzOO9qbmkhFEZC3498i6WHwdK3vmKOtYOdqb2h7WaCEi+8C/R+Zhs+tYke1zxHWpHH2NFiKyHvx7ZH2YWFGTOOKbOsTXE3esGAGFAlwygoianSMvYWOtt0ZjYkVN4shvagMcUCciC3DUNaOs+V6EFp+8TrbNEdelKigpr5VHCYCrxxORRTjamlF1TUEZEOpnFW1nYkVN5mhvake/XQMRWR97WMKmoaz91mgcCiRZONJCcI7a9U5EZA2sfQoKe6yIGsHReumIiKyFtU9BYWJF1Eimdr072iKqRETmYs1fbplYETUDR1tElYiahl/E7s5a55UxsSIyM2u/goWIzM+URIlfxGwbEyuqhd+U5GXtV7AQkXmZkijxi5jtY2JFBvhNSX5cnoHIcZmaKPGLmO3jcgskccT7/jUHLs9A5LhMve2XtS8lQHfHHiuS8JuS+VjzFSxEZD6m9lg311ICnPJhPkysSMIhK/Oy1itYiMh8GpMomfuLGKd8mJdCCMHbx5pJWVkZVCoVdDodvL29LV2dBknPO1vrDwDfcERETVOkq7SKHusiXSX6L8iq9QV6V/IgfvG7TVM+v9ljRQY4ZEVEJD9r6bHmlA/zY2JFtVjLHwAiIpIXp3yYH68KJCIichC8Stn82GNFRETkQDjlw7yYWBERETkYTvkwHw4FElmpIl0lsk+XcIFWIjPje43kxB4rIivEdWaImgffayQ39lgRWRneWoioefC9RubAxIrIyph6bzEiahy+18gcmFgRWRnehJWoefC9RubAxIrIynCdGaLmwfcamQPvFWhGtnivQLIe1nJvMSJ7x/ca3Yn3CiSyQ1xnxjYV6SpRUFKOEF9Pnj8bwfcayYmJFRGRTHjpPsmFCbrtYmJFRCSDui7dHxDqxw9GMgkTdNvGyetERDLgpfskB66tZfuYWBERyYCX7pMcmKDbPiZWREQy4KX7JAcm6LaPc6yoFk6aJGqcEX3aYkCoHy/dp0arSdBnbTyCaiGYoNsgJlZkgJMmiZqGl+5TUzUmQecXYuvBxIokvKqJiMg6mJKg8wuxdeEcK5Jw0iQRkW3hVYTWh4kVSThpkojItvALsfVhYkUSXtVERGRb+IXY+nCOFRngVU1ERLaDVxFaHyZWVAuvaiIish38QmxdmFgRERHZOH4hth5WMcdq2bJlCA4Ohru7O6KiorB379564zds2IAuXbrA3d0dYWFhyMjIMNguhMDcuXMREBAADw8PxMbG4uTJkwYxly9fxujRo+Ht7Q0fHx+MHz8eV69elbbv2LEDQ4cORUBAADw9PREeHo4vv/xSvkYTERGR3bF4YpWeno7p06cjJSUF+/fvR8+ePaHRaHDhwgWj8dnZ2UhISMD48eNx4MABxMfHIz4+HkeOHJFiFi5ciCVLlmDFihXIzc2Fp6cnNBoNrl27JsWMHj0aR48exfbt27F582bs3LkTEydONHie+++/H19//TV+/vlnJCUlYezYsdi8ebP5XgwiIiKyaQohhLh7mPlERUWhT58++PDDDwEAer0eQUFBePHFF5GcnFwrfsSIESgvLzdIcPr27Yvw8HCsWLECQggEBgbi5ZdfxowZMwAAOp0O/v7+SEtLw8iRI3H8+HF069YNeXl56N27NwBg69atePzxx3H+/HkEBgYarWtcXBz8/f3x2WefNahtZWVlUKlU0Ol08Pb2Nul1ISIiIstoyue3RXusqqqqkJ+fj9jYWKnMyckJsbGxyMnJMbpPTk6OQTwAaDQaKb6goABardYgRqVSISoqSorJycmBj4+PlFQBQGxsLJycnJCbm1tnfXU6HVq1amV6Q4mIiMghWHTyeklJCaqrq+Hv729Q7u/vj19++cXoPlqt1mi8VquVtteU1RfTunVrg+0uLi5o1aqVFHOn9evXIy8vDytXrqyzPdevX8f169eln8vKyuqMJSIiIvtj8TlWtuDHH39EUlISPv74Y3Tv3r3OuNTUVKhUKukRFBTUjLUkIiIiS7NoYuXr6wtnZ2cUFxcblBcXF0OtVhvdR61W1xtf8+/dYu6cHH/z5k1cvny51vP+9NNPeOKJJ/DBBx9g7Nix9bZn5syZ0Ol00uPcuXP1xhMREZF9sWhipVQqERERgczMTKlMr9cjMzMT0dHRRveJjo42iAeA7du3S/EhISFQq9UGMWVlZcjNzZVioqOjUVpaivz8fCkmKysLer0eUVFRUtmOHTsQFxeHd955x+CKwbq4ubnB29vb4EFEREQORFjYunXrhJubm0hLSxPHjh0TEydOFD4+PkKr1QohhBgzZoxITk6W4nfv3i1cXFzEokWLxPHjx0VKSopwdXUVhw8flmIWLFggfHx8xLfffit+/vlnMXToUBESEiIqKyulmCFDhohevXqJ3NxcsWvXLtGpUyeRkJAgbc/KyhItWrQQM2fOFEVFRdLj0qVLDW6bTqcTAIROp2vKS0RERGRzfi+tELtPXRS/l1ZYuioma8rnt8UTKyGEWLp0qWjbtq1QKpUiMjJS7NmzR9oWExMjEhMTDeLXr18vQkNDhVKpFN27dxdbtmwx2K7X68WcOXOEv7+/cHNzE4MHDxYnTpwwiLl06ZJISEgQXl5ewtvbWyQlJYkrV65I2xMTEwWAWo+YmJgGt4uJFRHJzZY/rMhxrNv7qwhJ3izavbpZhCRvFuv2/mrpKpmkKZ/fFl/Hyp5xHSsiklN63lnM3HgYegE4KYDUYWEY0aetpatFZKBIV4n+C7Kgvy27cFYosCt5kM3cdsdm17EiIqKGKdJVSkkVAOgFMGvjERTpKi1bMaI7FJSUGyRVAFAtBApLKixToWbGxIqIyAbY04dVka4S2adLmBTaqRBfTzgpDMucFQoE+7awTIWaGRMrIiIbYC8fVul5Z9F/QRZGfZyL/guykJ531tJVIpkFqDyQOiwMzopbv7DOCgXeHtbDZoYBm4pzrMyIc6yISE7peWcxa+MRVAshfVjZ0hwre5h7Qw1XpKtEYUkFgn1b2Nz5bcrnt0VvaUNky4p0lSgoKUeIr6fN/dEg2zSiT1sMCPWz2Q+r+oYzbaktfO83TIDKwyFfHyZWRI3Aq7PIUmz5w6pmOPPOHitbGs7ke5/uhnOsiEzEq7OIGsfW597wvU8NwR4rIhPZy3AGkSXY8nAm3/vUEEysiExkD8MZRJZkq8OZfO9TQ3AokMhEtj6cYU+4HhI1J773qSG43IIZcbkF+2bLlxLbA04itl22flVdY977tt5mR8PlFogswFaHM+xBXZOIB4T68ZxYOXtIiE1979tDm6nhOBRIZCccaVjMnm7v4kgc8ao6R2yzo2OPFZEdcLRvxI2dRMzhGMtyxKvqHLHNjo49VkQ2zhG/ETdmEjHvUWd59nK/Q1M4YpsdHRMrIhvnqMNiI/q0xcYXojE7ris2vhBdbw+dIyaf1qixV9XZ8jA3ryR0PBwKtEEczqDbOeraOqYMf3I4xnqYukCoPQxz2/KiqGQ69ljZGA5n0J0c8RuxqT1QHI6xLgEqD0R3uLdBPVX21NMowNWNHAF7rGwILzGnujjaN2JTe6Bqks9ZG4+gWgiHSD4by5p6xO2lp9Eeet2o4ZhY2RB7+SND5uFI62o1ZvjT0ZLPxrC2BMAehrn5hdjxcCjQhnA4g+iWxg5/NnQIyhE1ZdjNXJPL7WGY21EvLnFk7LGyIRzOIPof9kDJq7E94ubu5bL182wPvW5kGiZWNsbW/8gQyckahz9NnaNkLXOaGpMANNcwlzWe54biF2LHw8TKBtnyHxkie2Zq701zzGlqaOIWoPLAU73a4Ov9v0ll8b0C692nsb1c1pJMNhd+IXYsTKyIiGRgau9Nc/T2mJK4FekqsfG2pAoANu7/DTM0neusT2N6uaxtgnxz4Rdix8HJ60REMjB1krK5JzWbOhl9X+HlWqssCQD5hX/U+RymTi63t3WpiIxhjxURHG9owlrZ6vwkwPTeG3NPajZ1mE6hUNQqu1Ve//OM6NMWXdQtkVf4B/oE34OeQffIViciW8TEihyeow5NWBtrnJ9kClMnKTdmTpMpTE3cItrdAwVg0GulUAAPtKs7UQJMOw+8Qo4cAYcCyaFxaMI6mHoerPW8jejTFruSB2HthL7YlTzorjeG/vcBwzlN3xz4XbY2mDpMF6DywIKnw6S18pwUwIJhYXedhG7KebCHdamI7oY9VmQTzDXkw6EJ01jLebD289aQe8I1RxtMvRrN1PjGtIFXyJG9Y2JFVs+cQz4cmmg4azoP1nrerHVYzJSb/5py9Vpj28Ar5MiecSiQrJq5h3w4NNEw1nYeauYn3U7O+UmNYY3DYul5Z9F/QRZGfZyL/guykJ53VrZjA3z/EBnDHiuyatY4XOKImus8NPTqsrrmJ9W35pK5WduwWHOtis73D5EhJlZk1ZpruIRDE/VrjvNgyjCaNc6xCvH1rH1VHSD7sFhD57k152vE9w/R/3AokKwahxqsg7nPg6nDaDWJ3u2sYY5VLXdZA8pUpgzt2cxrRGRn2GNFVo9DDdbBnOfB1N4Va7yxbUFJee2VywVk6yEydWjPGl8jIkfAxIpsgiMONVjTquI1zHUeGjPUaG0Jt9GhQMXdhwIbqrnmcFnj7x2RLWFiRWSFrG1VcXNrbO+K1SfcDV/l4K48lc5Gy1so65/RYcpr5Gi/d0TmwMSKyMo019Vc1sbaeqBMZXQoEPINBZZXVRstr6jSN/nYgOP+3hHJjYkVkZWxxivemovV90DVw9xXTlZW3TRaXlF1Q5bjO/LvHZGceFUgkZXh1Vy2ydxXTp4pKTdaXlhSIcvxm/J7V6SrRPbpEovfq5HIGrDHisjK8Gou22XO4czI4FZGy3sH172Qqika+3vHeVlEhhRCCBmnV9LtysrKoFKpoNPp4O3tbenqkI0p0lXa7HwjMo+X1x/E1/v/t+L80w+0wXvDw2V9DlN+74p0lei/IKvW8Oeu5EH8nbUzjna1aFM+v9ljRWSlbHm+EZnHe8PDMTa6HfYV/oHed7ntT2OZ8nvHeVmOgb2SprGKOVbLli1DcHAw3N3dERUVhb1799Ybv2HDBnTp0gXu7u4ICwtDRkaGwXYhBObOnYuAgAB4eHggNjYWJ0+eNIi5fPkyRo8eDW9vb/j4+GD8+PG4evWqQczPP/+Mhx56CO7u7ggKCsLChQvlaTCRGZg6z4XzYmxTz6B7MP6h9mZJqkzF+YD2z9w3YLdHFk+s0tPTMX36dKSkpGD//v3o2bMnNBoNLly4YDQ+OzsbCQkJGD9+PA4cOID4+HjEx8fjyJEjUszChQuxZMkSrFixArm5ufD09IRGo8G1a9ekmNGjR+Po0aPYvn07Nm/ejJ07d2LixInS9rKyMjz66KNo164d8vPz8e6772LevHn46KOPzPdimAk/QO2fKbc6aUx8Y/F3z77xllP2r75eSTLO4nOsoqKi0KdPH3z44YcAAL1ej6CgILz44otITk6uFT9ixAiUl5dj8+bNUlnfvn0RHh6OFStWQAiBwMBAvPzyy5gxYwYAQKfTwd/fH2lpaRg5ciSOHz+Obt26IS8vD7179wYAbN26FY8//jjOnz+PwMBALF++HK+99hq0Wi2USiUAIDk5Gd988w1++eWXBrXNGuZYsQvX/pk6z6W55sXwd89xcD6g/XLUeXRN+fy2aI9VVVUV8vPzERsbK5U5OTkhNjYWOTk5RvfJyckxiAcAjUYjxRcUFECr1RrEqFQqREVFSTE5OTnw8fGRkioAiI2NhZOTE3Jzc6WYAQMGSElVzfOcOHECf/zxh9G6Xb9+HWVlZQYPS2IXrmMw9Rtlc3wD5e+eYwlQeSC6w712/UHrqNgraTqLTl4vKSlBdXU1/P39Dcr9/f3r7BXSarVG47VarbS9pqy+mNatWxtsd3FxQatWrQxiQkJCah2jZts999Se35CamorXX3+97gY3M04sdQymLkxp7oUsAf7uEdkTW78rQnOz+BwrezJz5kzodDrpce7cOYvWhxNLHYOp3yib4xsof/eI7At7JRvOoj1Wvr6+cHZ2RnFxsUF5cXEx1Gq10X3UanW98TX/FhcXIyAgwCAmPDxcirlzcvzNmzdx+fJlg+MYe57bn+NObm5ucHNzq7O9zY0LTToOU79RmvsbKH/3iMhRWTSxUiqViIiIQGZmJuLj4wHcmryemZmJKVOmGN0nOjoamZmZmDZtmlS2fft2REdHAwBCQkKgVquRmZkpJVJlZWXIzc3FX//6V+kYpaWlyM/PR0REBAAgKysLer0eUVFRUsxrr72GGzduwNXVVXqezp07Gx0GtFbswnUcpq57Ze51svi7R0QOSVjYunXrhJubm0hLSxPHjh0TEydOFD4+PkKr1QohhBgzZoxITk6W4nfv3i1cXFzEokWLxPHjx0VKSopwdXUVhw8flmIWLFggfHx8xLfffit+/vlnMXToUBESEiIqKyulmCFDhohevXqJ3NxcsWvXLtGpUyeRkJAgbS8tLRX+/v5izJgx4siRI2LdunWiRYsWYuXKlQ1um06nEwCETqdryktEREREzagpn98WT6yEEGLp0qWibdu2QqlUisjISLFnzx5pW0xMjEhMTDSIX79+vQgNDRVKpVJ0795dbNmyxWC7Xq8Xc+bMEf7+/sLNzU0MHjxYnDhxwiDm0qVLIiEhQXh5eQlvb2+RlJQkrly5YhBz6NAh8eCDDwo3NzfRpk0bsWDBApPaxcSKiIjI9jTl89vi61jZM2tYx4qIiIhMY7PrWBERERHZEyZWRERERDJhYkVEREQkEyZWRERERDJhYkVEREQkEyZWRERERDJhYkVEREQkEyZWRERERDJhYkVEREQkE4vehNne1SxqX1ZWZuGaEBERUUPVfG435uY0TKzM6MqVKwCAoKAgC9eEiIiITHXlyhWoVCqT9uG9As1Ir9fj999/R8uWLaFQKGQ7bllZGYKCgnDu3Dm7vgch22lf2E774gjtdIQ2AmynMUIIXLlyBYGBgXByMm3WFHuszMjJyQn33Xef2Y7v7e1t12+CGmynfWE77YsjtNMR2giwnXcytaeqBievExEREcmEiRURERGRTJhY2SA3NzekpKTAzc3N0lUxK7bTvrCd9sUR2ukIbQTYTrlx8joRERGRTNhjRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiZSWWLVuG4OBguLu7IyoqCnv37q03fvHixejcuTM8PDwQFBSEv/3tb7h27VqTjmlucrdx3rx5UCgUBo8uXbqYuxl3ZUo7b9y4gfnz56NDhw5wd3dHz549sXXr1iYds7nI3U5rPJ87d+7EE088gcDAQCgUCnzzzTd33WfHjh144IEH4Obmho4dOyItLa1WjLWdT3O00x7OZ1FREUaNGoXQ0FA4OTlh2rRpRuM2bNiALl26wN3dHWFhYcjIyJC/8g1kjjampaXVOpfu7u7maUADmdrOjRs34pFHHoGfnx+8vb0RHR2NH374oVacHO9NJlZWID09HdOnT0dKSgr279+Pnj17QqPR4MKFC0bj16xZg+TkZKSkpOD48eP49NNPkZ6ejlmzZjX6mOZmjjYCQPfu3VFUVCQ9du3a1RzNqZOp7Zw9ezZWrlyJpUuX4tixY3j++efx1FNP4cCBA40+ZnMwRzsB6zuf5eXl6NmzJ5YtW9ag+IKCAsTFxWHQoEE4ePAgpk2bhueee87gD7g1nk9ztBOw/fN5/fp1+Pn5Yfbs2ejZs6fRmOzsbCQkJGD8+PE4cOAA4uPjER8fjyNHjshZ9QYzRxuBW6uV334uf/31V7mq3CimtnPnzp145JFHkJGRgfz8fAwaNAhPPPGEef7WCrK4yMhIMXnyZOnn6upqERgYKFJTU43GT548WTz88MMGZdOnTxf9+/dv9DHNzRxtTElJET179jRLfRvL1HYGBASIDz/80KBs2LBhYvTo0Y0+ZnMwRzut8XzeDoD497//XW/M3//+d9G9e3eDshEjRgiNRiP9bI3n83ZytdMezuftYmJixNSpU2uVDx8+XMTFxRmURUVFiUmTJjWxhk0nVxs///xzoVKpZKuX3ExtZ41u3bqJ119/XfpZrvcme6wsrKqqCvn5+YiNjZXKnJycEBsbi5ycHKP79OvXD/n5+VIX5ZkzZ5CRkYHHH3+80cc0J3O0scbJkycRGBiI9u3bY/To0Th79qz5GnIXjWnn9evXa3Wpe3h4SN/sre1cNrZOd2tnDWs6n42Rk5Nj8LoAgEajkV4XazyfjXG3dtaw9fPZEA19LWzd1atX0a5dOwQFBWHo0KE4evSopavUJHq9HleuXEGrVq0AyPveZGJlYSUlJaiuroa/v79Bub+/P7RardF9Ro0ahfnz5+PBBx+Eq6srOnTogIEDB0rDZI05pjmZo40AEBUVhbS0NGzduhXLly9HQUEBHnroIVy5csWs7alLY9qp0Wjw/vvv4+TJk9Dr9di+fTs2btyIoqKiRh/T3MzRTsD6zmdjaLVao69LWVkZKisrrfJ8Nsbd2gnYx/lsiLpeC1s6n3fTuXNnfPbZZ/j222+xevVq6PV69OvXD+fPn7d01Rpt0aJFuHr1KoYPHw5A3r+1TKxs0I4dO/D222/jn//8J/bv34+NGzdiy5YteOONNyxdNdk0pI2PPfYY/vznP+P++++HRqNBRkYGSktLsX79egvW3DT/+Mc/0KlTJ3Tp0gVKpRJTpkxBUlISnJzs663ZkHbaw/mk/+H5tB/R0dEYO3YswsPDERMTg40bN8LPzw8rV660dNUaZc2aNXj99dexfv16tG7dWvbju8h+RDKJr68vnJ2dUVxcbFBeXFwMtVptdJ85c+ZgzJgxeO655wAAYWFhKC8vx8SJE/Haa6816pjmZI42Gks8fHx8EBoailOnTsnfiAZoTDv9/PzwzTff4Nq1a7h06RICAwORnJyM9u3bN/qY5maOdhpj6fPZGGq12ujr4u3tDQ8PDzg7O1vd+WyMu7XTGFs8nw1R12thS+fTVK6urujVq5dNnst169bhueeew4YNGwyG/eT8W2tfX4ttkFKpREREBDIzM6UyvV6PzMxMREdHG92noqKiVmLh7OwMABBCNOqY5mSONhpz9epVnD59GgEBATLV3DRNed3d3d3Rpk0b3Lx5E19//TWGDh3a5GOaiznaaYylz2djREdHG7wuALB9+3bpdbHG89kYd2unMbZ4PhuiMa+Frauursbhw4dt7lyuXbsWSUlJWLt2LeLi4gy2yfreNHkaPclu3bp1ws3NTaSlpYljx46JiRMnCh8fH6HVaoUQQowZM0YkJydL8SkpKaJly5Zi7dq14syZM2Lbtm2iQ4cOYvjw4Q0+ZnMzRxtffvllsWPHDlFQUCB2794tYmNjha+vr7hw4UKzt6+Gqe3cs2eP+Prrr8Xp06fFzp07xcMPPyxCQkLEH3/80eBjWoI52mmN5/PKlSviwIED4sCBAwKAeP/998WBAwfEr7/+KoQQIjk5WYwZM0aKP3PmjGjRooV45ZVXxPHjx8WyZcuEs7Oz2Lp1qxRjjefTHO20h/MphJDiIyIixKhRo8SBAwfE0aNHpe27d+8WLi4uYtGiReL48eMiJSVFuLq6isOHDzdr22qYo42vv/66+OGHH8Tp06dFfn6+GDlypHB3dzeIaW6mtvPLL78ULi4uYtmyZaKoqEh6lJaWSjFyvTeZWFmJpUuXirZt2wqlUikiIyPFnj17pG0xMTEiMTFR+vnGjRti3rx5okOHDsLd3V0EBQWJF154weBD6m7HtAS52zhixAgREBAglEqlaNOmjRgxYoQ4depUM7bIOFPauWPHDtG1a1fh5uYm7r33XjFmzBjx22+/mXRMS5G7ndZ4Pn/88UcBoNajpm2JiYkiJiam1j7h4eFCqVSK9u3bi88//7zWca3tfJqjnfZyPo3Ft2vXziBm/fr1IjQ0VCiVStG9e3exZcuW5mmQEeZo47Rp06TfV39/f/H444+L/fv3N1+jjDC1nTExMfXG15DjvakQoo5xFSIiIiIyCedYEREREcmEiRURERGRTJhYEREREcmEiRURERGRTJhYEREREcmEiRURERGRTJhYEREREcmEiRURkQPZsWMHFAoFSktLLV0VIrvExIqIzGLcuHFQKBRYsGCBQfk333wDhUIh/SyEwMcff4zo6Gh4e3vDy8sL3bt3x9SpUxt8k9eKigrMnDkTHTp0gLu7O/z8/BATE4Nvv/1WigkODsbixYtlaZu51bx2CoUCrq6uCAkJwd///ndcu3bNpOMMHDgQ06ZNMyjr168fioqKoFKpZKwxEdVgYkVEZuPu7o533nkHf/zxh9HtQgiMGjUKL730Eh5//HFs27YNx44dw6effgp3d3e8+eabDXqe559/Hhs3bsTSpUvxyy+/YOvWrXjmmWdw6dIlOZvTrIYMGYKioiKcOXMGH3zwAVauXImUlJQmH1epVEKtVhskt0Qko0bepoeIqF6JiYniT3/6k+jSpYt45ZVXpPJ///vfouZPz9q1awUA8e233xo9hl6vb9BzqVQqkZaWVud2Y/cJq/Gf//xHPPjgg8Ld3V3cd9994sUXXxRXr16Vtv/rX/8SERERwsvLS/j7+4uEhARRXFwsba+5Z9nWrVtFeHi4cHd3F4MGDRLFxcUiIyNDdOnSRbRs2VIkJCSI8vLyBrUnMTFRDB061KBs2LBholevXtLPJSUlYuTIkSIwMFB4eHiIHj16iDVr1hgc4842FxQUSPW9/b6bX331lejWrZtQKpWiXbt2YtGiRQ2qJxHVxh4rIjIbZ2dnvP3221i6dCnOnz9fa/vatWvRuXNnPPnkk0b3b2ivilqtRkZGBq5cuWJ0+8aNG3Hfffdh/vz5KCoqQlFREQDg9OnTGDJkCJ5++mn8/PPPSE9Px65duzBlyhRp3xs3buCNN97AoUOH8M0336CwsBDjxo2r9Rzz5s3Dhx9+iOzsbJw7dw7Dhw/H4sWLsWbNGmzZsgXbtm3D0qVLG9SeOx05cgTZ2dlQKpVS2bVr1xAREYEtW7bgyJEjmDhxIsaMGYO9e/cCAP7xj38gOjoaEyZMkNocFBRU69j5+fkYPnw4Ro4cicOHD2PevHmYM2cO0tLSGlVXIodn6cyOiOzT7b0uffv2Fc8++6wQwrDHqkuXLuLJJ5802G/q1KnC09NTeHp6ijZt2jTouX766Sdx3333CVdXV9G7d28xbdo0sWvXLoOYdu3aiQ8++MCgbPz48WLixIkGZf/5z3+Ek5OTqKysNPpceXl5AoC4cuWKEOJ/PVb/93//J8WkpqYKAOL06dNS2aRJk4RGo2lQexITE4Wzs7Pw9PQUbm5uAoBwcnISX331Vb37xcXFiZdffln6OSYmRkydOtUg5s4eq1GjRolHHnnEIOaVV14R3bp1a1BdicgQe6yIyOzeeecdrFq1CsePH79r7GuvvYaDBw9i7ty5uHr1aoOOP2DAAJw5cwaZmZl45plncPToUTz00EN444036t3v0KFDSEtLg5eXl/TQaDTQ6/UoKCgAcKtH54knnkDbtm3RsmVLxMTEAADOnj1rcKz7779f+r+/vz9atGiB9u3bG5RduHChQe0BgEGDBuHgwYPIzc1FYmIikpKS8PTTT0vbq6ur8cYbbyAsLAytWrWCl5cXfvjhh1r1upvjx4+jf//+BmX9+/fHyZMnUV1dbdKxiIiT14moGQwYMAAajQYzZ840KO/UqRNOnDhhUObn54eOHTuidevWJj2Hq6srHnroIbz66qvYtm0b5s+fjzfeeANVVVV17nP16lVMmjQJBw8elB6HDh3CyZMn0aFDB5SXl0Oj0cDb2xtffvkl8vLy8O9//xsAah3X1dVV+n/N1Xy3UygU0Ov1DW6Pp6cnOnbsiJ49e+Kzzz5Dbm4uPv30U2n7u+++i3/84x949dVX8eOPP+LgwYPQaDT1tpeIzM/F0hUgIsewYMEChIeHo3PnzlJZQkICRo0ahW+//RZDhw6V9fm6deuGmzdv4tq1a1AqlVAqlbV6YB544AEcO3YMHTt2NHqMw4cP49KlS1iwYIE0P2nfvn2y1rMhnJycMGvWLEyfPh2jRo2Ch4cHdu/ejaFDh+Ivf/kLAECv1+O///0vunXrJu1nrM136tq1K3bv3m1Qtnv3boSGhsLZ2Vn+xhDZOfZYEVGzCAsLw+jRo7FkyRKpbOTIkXjmmWcwcuRIzJ8/H7m5uSgsLMRPP/2E9PT0Bn+wDxw4ECtXrkR+fj4KCwuRkZGBWbNmYdCgQfD29gZwax2rnTt34rfffkNJSQkA4NVXX0V2djamTJmCgwcP4uTJk/j222+lyett27aFUqnE0qVLcebMGWzatOmuw4vm8uc//xnOzs5YtmwZgFu9fdu3b0d2djaOHz+OSZMmobi42GCf4OBg6TUtKSkx2mP28ssvIzMzE2+88Qb++9//YtWqVfjwww8xY8aMZmkXkb1hYkVEzWb+/PkGH+4KhQLp6elYvHgxMjIyMHjwYHTu3BnPPvssgoKCsGvXrgYdV6PRYNWqVXj00UfRtWtXvPjii9BoNFi/fr3BcxcWFqJDhw7w8/MDcGte1E8//YT//ve/eOihh9CrVy/MnTsXgYGBAG4NS6alpWHDhg3o1q0bFixYgEWLFsn4ijSci4sLpkyZgoULF6K8vByzZ8/GAw88AI1Gg4EDB0KtViM+Pt5gnxkzZsDZ2RndunWDn5+f0flXDzzwANavX49169ahR48emDt3LubPn2/0ykciujuFEEJYuhJERERE9oA9VkREREQyYWJFRFbv9uUQ7nz85z//sXT1THL27Nl622PqcglEZF04FEhEVq++mzG3adMGHh4ezVibprl58yYKCwvr3B4cHAwXF16wTWSrmFgRERERyYRDgUREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJJP/BztnK7tA2uejAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_62.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcEklEQVR4nO3de1xUZf4H8M8MCIMoQ4YyYChomJoE5mXEG5rTjkklaSsiP2+L0u5G6ZIZuipm/kLNNldzo8sW7eYFLVNTlmIxcxVCRC1vmRnmJQYlYlAEL8zz+6MfZxsZkDkyzIXP+/Wal/Kc7znzPGcu5zvPec5zFEIIASIiIiKyitLeFSAiIiJyRkyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIyKUtXrwYCoWiSbEKhQKLFy+2aX1GjBiBESNGOOz2iKjpmEQRUYvIyMiAQqGQHu7u7ujcuTOmTZuGCxcu2Lt6Dic4ONhsf3Xq1AnDhg3Dxx9/3Czbv3r1KhYvXozdu3c3y/aIWiMmUUTUopYsWYJ//vOfSE9PxyOPPIIPPvgAUVFRqKmpscnzLViwANXV1TbZtq1FRETgn//8J/75z39izpw5+PHHHzFu3Dikp6ff8bavXr2KF198kUkU0R1wt3cFiKh1eeSRR9C/f38AwIwZM+Dn54fly5dj+/btmDBhQrM/n7u7O9zdnfOrrnPnzvif//kf6e8pU6bg3nvvxWuvvYbf//73dqwZEQHsiSIiOxs2bBgA4PTp02bl33zzDZ588kl06NABKpUK/fv3x/bt281ibty4gRdffBGhoaFQqVS4++67MXToUOTk5EgxlsZEXbt2DX/605/QsWNHtG/fHo8//jjOnz9fr27Tpk1DcHBwvXJL23zvvffw0EMPoVOnTvD09ETv3r3xxhtvWLUvbkej0aBXr14oLi5uNO7ixYtISEiAv78/VCoVwsPD8f7770vLz5w5g44dOwIAXnzxRemUoa3HgxG5Guf8eUZELuPMmTMAgLvuuksqO3bsGIYMGYLOnTsjJSUF3t7e2LRpE2JiYvDRRx/hiSeeAPBLMpOWloYZM2Zg4MCBqKysxIEDB3Dw4EE8/PDDDT7njBkz8MEHH2DSpEkYPHgwdu3ahejo6DtqxxtvvIH7778fjz/+ONzd3fHJJ5/gj3/8I0wmE55++uk72nadGzdu4Ny5c7j77rsbjKmursaIESPw3XffISkpCSEhIdi8eTOmTZuGiooKzJo1Cx07dsQbb7yBP/zhD3jiiScwbtw4AMADDzzQLPUkajUEEVELeO+99wQA8e9//1tcunRJnDt3Tnz44YeiY8eOwtPTU5w7d06KHTVqlAgLCxM1NTVSmclkEoMHDxahoaFSWXh4uIiOjm70eVNTU8Wvv+oOHz4sAIg//vGPZnGTJk0SAERqaqpUNnXqVNG1a9fbblMIIa5evVovTq/Xi27dupmVRUVFiaioqEbrLIQQXbt2Fb/5zW/EpUuXxKVLl8RXX30lJk6cKACIZ555psHtrVq1SgAQH3zwgVR2/fp1ERkZKdq1aycqKyuFEEJcunSpXnuJyDo8nUdELUqn06Fjx44ICgrCk08+CW9vb2zfvh333HMPAKC8vBy7du3ChAkTcPnyZZSVlaGsrAw//fQT9Ho9Tp06JV3N5+vri2PHjuHUqVNNfv6srCwAwLPPPmtWPnv27Dtql5eXl/R/o9GIsrIyREVF4fvvv4fRaJS1zc8++wwdO3ZEx44dER4ejs2bN2Py5MlYvnx5g+tkZWVBo9EgLi5OKmvTpg2effZZXLlyBV988YWsuhBRfTydR0Qtau3atejRoweMRiPeffdd7NmzB56entLy7777DkIILFy4EAsXLrS4jYsXL6Jz585YsmQJxo4dix49eqBPnz4YPXo0Jk+e3OhpqR9++AFKpRLdu3c3K7/vvvvuqF379u1Damoq8vPzcfXqVbNlRqMRarXa6m1qtVosXboUCoUCbdu2Ra9eveDr69voOj/88ANCQ0OhVJr/Ru7Vq5e0nIiaB5MoImpRAwcOlK7Oi4mJwdChQzFp0iScPHkS7dq1g8lkAgDMmTMHer3e4jbuvfdeAMDw4cNx+vRpbNu2DZ999hneeecdvPbaa0hPT8eMGTPuuK4NTdJZW1tr9vfp06cxatQo9OzZE3/5y18QFBQEDw8PZGVl4bXXXpPaZC0/Pz/odDpZ6xKR7TGJIiK7cXNzQ1paGkaOHInXX38dKSkp6NatG4BfTkE1JYHo0KEDpk+fjunTp+PKlSsYPnw4Fi9e3GAS1bVrV5hMJpw+fdqs9+nkyZP1Yu+66y5UVFTUK7+1N+eTTz7BtWvXsH37dnTp0kUq//zzz29b/+bWtWtXfP311zCZTGa9Ud988420HGg4QSSipuOYKCKyqxEjRmDgwIFYtWoVampq0KlTJ4wYMQJvvvkmSkpK6sVfunRJ+v9PP/1ktqxdu3a49957ce3atQaf75FHHgEArF692qx81apV9WK7d+8Oo9GIr7/+WiorKSmpN2u4m5sbAEAIIZUZjUa89957DdbDVsaMGQODwYDMzEyp7ObNm1izZg3atWuHqKgoAEDbtm0BwGKSSERNw54oIrK7559/Hr/97W+RkZGB3//+91i7di2GDh2KsLAwzJw5E926dUNpaSny8/Nx/vx5fPXVVwCA3r17Y8SIEejXrx86dOiAAwcO4MMPP0RSUlKDzxUREYG4uDj87W9/g9FoxODBg5Gbm4vvvvuuXuzEiRPxwgsv4IknnsCzzz6Lq1ev4o033kCPHj1w8OBBKe43v/kNPDw88Nhjj+Gpp57ClStX8Pbbb6NTp04WE0FbSkxMxJtvvolp06ahqKgIwcHB+PDDD7Fv3z6sWrUK7du3B/DLQPjevXsjMzMTPXr0QIcOHdCnTx/06dOnRetL5NTsfXkgEbUOdVMcFBYW1ltWW1srunfvLrp37y5u3rwphBDi9OnTYsqUKUKj0Yg2bdqIzp07i0cffVR8+OGH0npLly4VAwcOFL6+vsLLy0v07NlT/O///q+4fv26FGNpOoLq6mrx7LPPirvvvlt4e3uLxx57TJw7d87iJf+fffaZ6NOnj/Dw8BD33Xef+OCDDyxuc/v27eKBBx4QKpVKBAcHi+XLl4t3331XABDFxcVSnDVTHNxu+oaGtldaWiqmT58u/Pz8hIeHhwgLCxPvvfdevXXz8vJEv379hIeHB6c7IJJBIcSv+p+JiIiIqEk4JoqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAMn27Qhk8mEH3/8Ee3bt+ctFoiIiJyEEAKXL19GYGBgvZt5/xqTKBv68ccfERQUZO9qEBERkQznzp3DPffc0+ByJlE2VHd7hXPnzsHHx8fOtSEiIqKmqKysRFBQkHQcbwiTKBuqO4Xn4+PDJIqIiMjJ3G4oDgeWExEREcnAJIqIiIhIBiZRRERERDJwTJSd1dbW4saNG/auht21adMGbm5u9q4GERFRkzGJshMhBAwGAyoqKuxdFYfh6+sLjUbDObWIiMgpMImyk7oEqlOnTmjbtm2rThyEELh69SouXrwIAAgICLBzjYiIiG6PSZQd1NbWSgnU3Xffbe/qOAQvLy8AwMWLF9GpUyee2iMiIofHgeV2UDcGqm3btnauiWOp2x8cI0ZERM6ASZQdteZTeJZwfxARkTNhEkVEREQkA5MoIiIiIhmYRJFVpk2bBoVCgWXLlpmVb926VTodt3v3bowdOxYBAQHw9vZGREQE1q1bZ4/qEhGRkygxViPvdBlKjNX2rkqTMYkiq6lUKixfvhw///yzxeV5eXl44IEH8NFHH+Hrr7/G9OnTMWXKFOzYsaOFa0pERM4gs/AshizbhUlvF2DIsl3ILDxr7yo1CZMosppOp4NGo0FaWprF5fPnz8dLL72EwYMHo3v37pg1axZGjx6NLVu2tHBNiYjI0ZUYqzFvyxGYxC9/mwQwf8tRp+iRsnsStXbtWgQHB0OlUkGr1WL//v2Nxm/evBk9e/aESqVCWFgYsrKyzJYLIbBo0SIEBATAy8sLOp0Op06dMospLy9HfHw8fHx84Ovri4SEBFy5csUs5tNPP8WgQYPQvn17dOzYEePHj8eZM2eapc3NraW7QN3c3PDyyy9jzZo1OH/+fJPWMRqN6NChg41rRkREzqa4rEpKoOrUCoEzZVftUyEr2DWJyszMRHJyMlJTU3Hw4EGEh4dDr9dLM1ffKi8vD3FxcUhISMChQ4cQExODmJgYHD16VIpZsWIFVq9ejfT0dBQUFMDb2xt6vR41NTVSTHx8PI4dO4acnBzs2LEDe/bsQWJiorS8uLgYY8eOxUMPPYTDhw/j008/RVlZGcaNG2e7nSGTvbpAn3jiCURERCA1NfW2sZs2bUJhYSGmT5/eAjUjIiJnEuLnDeUtM9y4KRQI9nOCuRSFHQ0cOFA8/fTT0t+1tbUiMDBQpKWlWYyfMGGCiI6ONivTarXiqaeeEkIIYTKZhEajEa+88oq0vKKiQnh6eooNGzYIIYQ4fvy4ACAKCwulmH/9619CoVCICxcuCCGE2Lx5s3B3dxe1tbVSzPbt24VCoRDXr19vcvuMRqMAIIxGo1l5dXW1OH78uKiurm7ytiz5seKqCEnZIbq+8N9Ht5Sd4seKq3e03cZMnTpVjB07VgghxBdffCHc3NzE8ePHxccffywsvZ127dol2rZtK95///3bbru59gsRETmXjft/EN1SdkrHsY37f7BrfRo6ft/Kbj1R169fR1FREXQ6nVSmVCqh0+mQn59vcZ38/HyzeADQ6/VSfHFxMQwGg1mMWq2GVquVYvLz8+Hr64v+/ftLMTqdDkqlEgUFBQCAfv36QalU4r333kNtbS2MRiP++c9/QqfToU2bNg226dq1a6isrDR72JK9u0CHDx8OvV6PefPmWVz+xRdf4LHHHsNrr72GKVOmtEidiIjI+cQO6IK9KSOxYeYg7E0ZidgBXexdpSaxWxJVVlaG2tpa+Pv7m5X7+/vDYDBYXMdgMDQaX/fv7WI6depkttzd3R0dOnSQYkJCQvDZZ59h/vz58PT0hK+vL86fP49NmzY12qa0tDSo1WrpERQU1Gj8nXKELtBly5bhk08+qZf47t69G9HR0Vi+fLnZqVIiIiJLAtReiOx+NwLUXvauSpPZfWC5IzIYDJg5cyamTp2KwsJCfPHFF/Dw8MCTTz4JIUSD682bNw9Go1F6nDt3zqb1DFB7IW1cGNz+f34mN4UCL4/r06JvwLCwMMTHx2P16tVS2eeff47o6Gg8++yzGD9+PAwGAwwGA8rLy1usXkRERLbmbq8n9vPzg5ubG0pLS83KS0tLodFoLK6j0Wgaja/7t7S0FAEBAWYxERERUsytA9dv3ryJ8vJyaf21a9dCrVZjxYoVUswHH3yAoKAgFBQUYNCgQRbr5+npCU9Pz9s1vVnFDuiC4T064kzZVQT7tbVLBr9kyRJkZmZKf7///vu4evUq0tLSzKZBiIqKwu7du1u8fkRERLZgt54oDw8P9OvXD7m5uVKZyWRCbm4uIiMjLa4TGRlpFg8AOTk5UnxISAg0Go1ZTGVlJQoKCqSYyMhIVFRUoKioSIrZtWsXTCYTtFotAODq1atQKs13jZubm1RHR9OSXaAZGRnYunWrWVlwcDCuXbsm9dJlZGRACFHvwQSKiIhciV1P5yUnJ+Ptt9/G+++/jxMnTuAPf/gDqqqqpEvhp0yZYjZoedasWcjOzsarr76Kb775BosXL8aBAweQlJQEAFAoFJg9ezaWLl2K7du348iRI5gyZQoCAwMRExMDAOjVqxdGjx6NmTNnYv/+/di3bx+SkpIwceJEBAYGAgCio6NRWFiIJUuW4NSpUzh48CCmT5+Orl27om/fvi27k4iIiMgh2e10HgDExsbi0qVLWLRoEQwGAyIiIpCdnS0NDD979qxZj9DgwYOxfv16LFiwAPPnz0doaCi2bt2KPn36SDFz585FVVUVEhMTUVFRgaFDhyI7OxsqlUqKWbduHZKSkjBq1CgolUqMHz/ebEzPQw89hPXr12PFihVYsWIF2rZti8jISGRnZ8PLy3kGvBEREZHtKERjI6XpjlRWVkKtVsNoNMLHx0cqr6mpQXFxMUJCQsySu9aO+4WIiBxBQ8fvW/HqPCIiIiIZmETZETsBzXF/EBGRM2ESZQd1s55fver4N1dsSXX7o7FZ4YmIiByFXQeWt1Zubm7w9fWV5qtq27YtFArFbdZyXUIIXL16FRcvXoSvr680nQQREZEjYxJlJ3UTe9468Wdr5uvr2+BEq0RERI6GSZSdKBQKBAQEoFOnTrhx44a9q2N3bdq0YQ8UERE5FSZRdubm5sbkgYiIyAlxYDkRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpLBIZKotWvXIjg4GCqVClqtFvv37280fvPmzejZsydUKhXCwsKQlZVltlwIgUWLFiEgIABeXl7Q6XQ4deqUWUx5eTni4+Ph4+MDX19fJCQk4MqVK9LyxYsXQ6FQ1Ht4e3s3X8OJiIjIadk9icrMzERycjJSU1Nx8OBBhIeHQ6/X4+LFixbj8/LyEBcXh4SEBBw6dAgxMTGIiYnB0aNHpZgVK1Zg9erVSE9PR0FBAby9vaHX61FTUyPFxMfH49ixY8jJycGOHTuwZ88eJCYmSsvnzJmDkpISs0fv3r3x29/+1nY7g4iIiJyHsLOBAweKp59+Wvq7trZWBAYGirS0NIvxEyZMENHR0WZlWq1WPPXUU0IIIUwmk9BoNOKVV16RlldUVAhPT0+xYcMGIYQQx48fFwBEYWGhFPOvf/1LKBQKceHCBYvPe/jwYQFA7Nmzp8ltMxqNAoAwGo1NXoeIiIjsq6nHb7v2RF2/fh1FRUXQ6XRSmVKphE6nQ35+vsV18vPzzeIBQK/XS/HFxcUwGAxmMWq1GlqtVorJz8+Hr68v+vfvL8XodDoolUoUFBRYfN533nkHPXr0wLBhwxpsz7Vr11BZWWn2ICIiItdk1ySqrKwMtbW18Pf3Nyv39/eHwWCwuI7BYGg0vu7f28V06tTJbLm7uzs6dOhg8Xlramqwbt06JCQkNNqetLQ0qNVq6REUFNRoPBERETkvu4+JcgYff/wxLl++jKlTpzYaN2/ePBiNRulx7ty5FqohERERtTS7JlF+fn5wc3NDaWmpWXlpaSk0Go3FdTQaTaPxdf/eLubWges3b95EeXm5xed955138Oijj9br3bqVp6cnfHx8zB5ERETkmuyaRHl4eKBfv37Izc2VykwmE3JzcxEZGWlxncjISLN4AMjJyZHiQ0JCoNFozGIqKytRUFAgxURGRqKiogJFRUVSzK5du2AymaDVas22XVxcjM8///y2p/KIiIiodXG3dwWSk5MxdepU9O/fHwMHDsSqVatQVVWF6dOnAwCmTJmCzp07Iy0tDQAwa9YsREVF4dVXX0V0dDQ2btyIAwcO4K233gIAKBQKzJ49G0uXLkVoaChCQkKwcOFCBAYGIiYmBgDQq1cvjB49GjNnzkR6ejpu3LiBpKQkTJw4EYGBgWb1e/fddxEQEIBHHnmk5XYKEREROTy7J1GxsbG4dOkSFi1aBIPBgIiICGRnZ0unzs6ePQul8r8dZoMHD8b69euxYMECzJ8/H6Ghodi6dSv69OkjxcydOxdVVVVITExERUUFhg4diuzsbKhUKilm3bp1SEpKwqhRo6BUKjF+/HisXr3arG4mkwkZGRmYNm0a3NzcbLwniIiIyJkohBDC3pVwVZWVlVCr1TAajRwfRURE5CSaevzm1XlEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhnsnkStXbsWwcHBUKlU0Gq12L9/f6PxmzdvRs+ePaFSqRAWFoasrCyz5UIILFq0CAEBAfDy8oJOp8OpU6fMYsrLyxEfHw8fHx/4+voiISEBV65cqbedlStXokePHvD09ETnzp3xv//7v83TaCIiInJ6dk2iMjMzkZycjNTUVBw8eBDh4eHQ6/W4ePGixfi8vDzExcUhISEBhw4dQkxMDGJiYnD06FEpZsWKFVi9ejXS09NRUFAAb29v6PV61NTUSDHx8fE4duwYcnJysGPHDuzZsweJiYlmzzVr1iy88847WLlyJb755hts374dAwcOtM2OICIiIucj7GjgwIHi6aeflv6ura0VgYGBIi0tzWL8hAkTRHR0tFmZVqsVTz31lBBCCJPJJDQajXjllVek5RUVFcLT01Ns2LBBCCHE8ePHBQBRWFgoxfzrX/8SCoVCXLhwQYpxd3cX33zzzR21z2g0CgDCaDTe0XaIiIio5TT1+G23nqjr16+jqKgIOp1OKlMqldDpdMjPz7e4Tn5+vlk8AOj1eim+uLgYBoPBLEatVkOr1Uox+fn58PX1Rf/+/aUYnU4HpVKJgoICAMAnn3yCbt26YceOHQgJCUFwcDBmzJiB8vLyRtt07do1VFZWmj2IiIjINdktiSorK0NtbS38/f3Nyv39/WEwGCyuYzAYGo2v+/d2MZ06dTJb7u7ujg4dOkgx33//PX744Qds3rwZ//jHP5CRkYGioiI8+eSTjbYpLS0NarVaegQFBTUaT0RERM7L7gPLHZHJZMK1a9fwj3/8A8OGDcOIESPw97//HZ9//jlOnjzZ4Hrz5s2D0WiUHufOnWvBWhMREVFLslsS5efnBzc3N5SWlpqVl5aWQqPRWFxHo9E0Gl/37+1ibh24fvPmTZSXl0sxAQEBcHd3R48ePaSYXr16AQDOnj3bYJs8PT3h4+Nj9iAiIiLXZLckysPDA/369UNubq5UZjKZkJubi8jISIvrREZGmsUDQE5OjhQfEhICjUZjFlNZWYmCggIpJjIyEhUVFSgqKpJidu3aBZPJBK1WCwAYMmQIbt68idOnT0sx3377LQCga9eud9JsIiIichUtNNDdoo0bNwpPT0+RkZEhjh8/LhITE4Wvr68wGAxCCCEmT54sUlJSpPh9+/YJd3d3sXLlSnHixAmRmpoq2rRpI44cOSLFLFu2TPj6+opt27aJr7/+WowdO1aEhISI6upqKWb06NGib9++oqCgQOzdu1eEhoaKuLg4aXltba148MEHxfDhw8XBgwfFgQMHhFarFQ8//LBV7ePVeURERM6nqcdvuyZRQgixZs0a0aVLF+Hh4SEGDhwovvzyS2lZVFSUmDp1qln8pk2bRI8ePYSHh4e4//77xc6dO82Wm0wmsXDhQuHv7y88PT3FqFGjxMmTJ81ifvrpJxEXFyfatWsnfHx8xPTp08Xly5fNYi5cuCDGjRsn2rVrJ/z9/cW0adPETz/9ZFXbmEQRERE5n6YevxVCCGHfvjDXVVlZCbVaDaPRyPFRRERETqKpx29enUdEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MocmglxmrknS5DibHa3lUhIiIy427vChA1JLPwLOZtOQKTAJQKIG1cGGIHdLF3tYiIiACwJ4ocVImxWkqgAMAkgPlbjrJHioiIHAaTKHJIxWVVUgJVp1YInCm7ap8KERER3YJJFDmkED9vKBXmZW4KBYL92tqnQkRERLdgEkUOKUDthbRxYXBT/JJJuSkUeHlcHwSovexcMyIiol84RBK1du1aBAcHQ6VSQavVYv/+/Y3Gb968GT179oRKpUJYWBiysrLMlgshsGjRIgQEBMDLyws6nQ6nTp0yiykvL0d8fDx8fHzg6+uLhIQEXLlyRVp+5swZKBSKeo8vv/yy+RpOjYod0AV7U0Ziw8xB2JsykoPKiYjIodg9icrMzERycjJSU1Nx8OBBhIeHQ6/X4+LFixbj8/LyEBcXh4SEBBw6dAgxMTGIiYnB0aNHpZgVK1Zg9erVSE9PR0FBAby9vaHX61FTUyPFxMfH49ixY8jJycGOHTuwZ88eJCYm1nu+f//73ygpKZEe/fr1a/6dQA0KUHshsvvd7IEiIiLHI+xs4MCB4umnn5b+rq2tFYGBgSItLc1i/IQJE0R0dLRZmVarFU899ZQQQgiTySQ0Go145ZVXpOUVFRXC09NTbNiwQQghxPHjxwUAUVhYKMX861//EgqFQly4cEEIIURxcbEAIA4dOiS7bUajUQAQRqNR9jaIiIioZTX1+G3Xnqjr16+jqKgIOp1OKlMqldDpdMjPz7e4Tn5+vlk8AOj1eim+uLgYBoPBLEatVkOr1Uox+fn58PX1Rf/+/aUYnU4HpVKJgoICs20//vjj6NSpE4YOHYrt27c32p5r166hsrLS7EFERESuya5JVFlZGWpra+Hv729W7u/vD4PBYHEdg8HQaHzdv7eL6dSpk9lyd3d3dOjQQYpp164dXn31VWzevBk7d+7E0KFDERMT02gilZaWBrVaLT2CgoJutwuIiIjISXHG8gb4+fkhOTlZ+nvAgAH48ccf8corr+Dxxx+3uM68efPM1qmsrGQiRURE5KLs2hPl5+cHNzc3lJaWmpWXlpZCo9FYXEej0TQaX/fv7WJuHbh+8+ZNlJeXN/i8AKDVavHdd981uNzT0xM+Pj5mDyIiInJNdk2iPDw80K9fP+Tm5kplJpMJubm5iIyMtLhOZGSkWTwA5OTkSPEhISHQaDRmMZWVlSgoKJBiIiMjUVFRgaKiIilm165dMJlM0Gq1Ddb38OHDCAgIsL6hRERE5HLsfjovOTkZU6dORf/+/TFw4ECsWrUKVVVVmD59OgBgypQp6Ny5M9LS0gAAs2bNQlRUFF599VVER0dj48aNOHDgAN566y0AgEKhwOzZs7F06VKEhoYiJCQECxcuRGBgIGJiYgAAvXr1wujRozFz5kykp6fjxo0bSEpKwsSJExEYGAgAeP/99+Hh4YG+ffsCALZs2YJ3330X77zzTgvvISIiInJEdk+iYmNjcenSJSxatAgGgwERERHIzs6WBoafPXsWSuV/O8wGDx6M9evXY8GCBZg/fz5CQ0OxdetW9OnTR4qZO3cuqqqqkJiYiIqKCgwdOhTZ2dlQqVRSzLp165CUlIRRo0ZBqVRi/PjxWL16tVndXnrpJfzwww9wd3dHz549kZmZiSeffNLGe4SIiIicgUIIIW4fRnJUVlZCrVbDaDRyfBQREZGTaOrx2+4zlhMRERE5IyZRRERERDIwiSIiIiKSgUkUERERkQxMooiIiIhkYBJFREREJAOTKCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBiZRRERERDIwiSIiIiKSweokKisrCzNmzMDcuXPxzTffmC37+eef8dBDDzVb5YiIiO5EibEaeafLUGKstndVyAVZlUStX78ejz/+OAwGA/Lz89G3b1+sW7dOWn79+nV88cUXzV5JIiIia2UWnsWQZbsw6e0CDFm2C5mFZ2+7DpMusoa7NcGvvPIK/vKXv+DZZ58FAGzatAm/+93vUFNTg4SEBJtUkIiIyFolxmrM23IEJvHL3yYBzN9yFMN7dESA2sviOpmFZ6V1lAogbVwYYgd0acFak7Oxqifq1KlTeOyxx6S/J0yYgE8++QSzZ89Genq67EqsXbsWwcHBUKlU0Gq12L9/f6PxmzdvRs+ePaFSqRAWFoasrCyz5UIILFq0CAEBAfDy8oJOp8OpU6fMYsrLyxEfHw8fHx/4+voiISEBV65csfh83333Hdq3bw9fX1/ZbSQiopZTXFYlJVB1aoXAmbKrFuMbSrrYI0WNsSqJ8vHxQWlpqVnZyJEjsWPHDjz//PNYs2aN1RXIzMxEcnIyUlNTcfDgQYSHh0Ov1+PixYsW4/Py8hAXF4eEhAQcOnQIMTExiImJwdGjR6WYFStWYPXq1UhPT0dBQQG8vb2h1+tRU1MjxcTHx+PYsWPIycnBjh07sGfPHiQmJtZ7vhs3biAuLg7Dhg2zum1ERGQfIX7eUCrMy9wUCgT7tbUYb23SRQQACiGEuH3YL2JiYhAeHo4XX3yx3rLdu3fj0UcfRXV1NWpra5tcAa1WiwEDBuD1118HAJhMJgQFBeGZZ55BSkpKvfjY2FhUVVVhx44dUtmgQYMQERGB9PR0CCEQGBiI5557DnPmzAEAGI1G+Pv7IyMjAxMnTsSJEyfQu3dvFBYWon///gCA7OxsjBkzBufPn0dgYKC07RdeeAE//vgjRo0ahdmzZ6OioqLJbausrIRarYbRaISPj0+T1yMiojuXWXgW87ccRa0QcFMo8PK4Pg2enisxVmPIsl1miZSbQoG9KSMbPP1Hrqupx2+reqL+9Kc/QaVSWVw2YsQIfPLJJ5gyZUqTt3f9+nUUFRVBp9P9t0JKJXQ6HfLz8y2uk5+fbxYPAHq9XoovLi6GwWAwi1Gr1dBqtVJMfn4+fH19pQQKAHQ6HZRKJQoKCqSyXbt2YfPmzVi7dm2T20RERI4hdkAX7E0ZiQ0zB2FvyshGxzcFqL2QNi4Mbopfuq/qki4mUNQYqwaWR0VFISoqqsHlI0eOxMiRI5u8vbKyMtTW1sLf39+s3N/fv970CXUMBoPFeIPBIC2vK2ssplOnTmbL3d3d0aFDBynmp59+wrRp0/DBBx80uRfp2rVruHbtmvR3ZWVlk9YjIiLbCFB7NTkRih3QBcN7dMSZsqsI9mvLBIpuy6okSqlUQqFQNBqjUChw8+bNO6qUI5g5cyYmTZqE4cOHN3mdtLQ0i6c6iYjIOViTdBFZlUR9/PHHDS7Lz8/H6tWrYTKZmrw9Pz8/uLm51RusXlpaCo1GY3EdjUbTaHzdv6WlpQgICDCLiYiIkGJuHbh+8+ZNlJeXS+vv2rUL27dvx8qVKwH8csWfyWSCu7s73nrrLfzud7+rV7d58+YhOTlZ+ruyshJBQUG33Q9ERETkfKxKosaOHVuv7OTJk0hJScEnn3yC+Ph4LFmypMnb8/DwQL9+/ZCbm4uYmBgAvwwsz83NRVJSksV1IiMjkZubi9mzZ0tlOTk5iIyMBACEhIRAo9EgNzdXSpoqKytRUFCAP/zhD9I2KioqUFRUhH79+gH4JWkymUzQarUAfkkKfz1Aftu2bVi+fDny8vLQuXNni3Xz9PSEp6dnk9tPRERETkzIdOHCBTFjxgzRpk0b8eijj4ojR47I2s7GjRuFp6enyMjIEMePHxeJiYnC19dXGAwGIYQQkydPFikpKVL8vn37hLu7u1i5cqU4ceKESE1NFW3atDF7/mXLlglfX1+xbds28fXXX4uxY8eKkJAQUV1dLcWMHj1a9O3bVxQUFIi9e/eK0NBQERcX12A933vvPaFWq61qm9FoFACE0Wi0aj0iIiKyn6Yev63qiQJ+mS7g5Zdfxpo1axAREYHc3Nw7mkMpNjYWly5dwqJFi2AwGBAREYHs7GxpYPjZs2ehVP73IsLBgwdj/fr1WLBgAebPn4/Q0FBs3boVffr0kWLmzp2LqqoqJCYmoqKiAkOHDkV2drbZlYXr1q1DUlISRo0aBaVSifHjx2P16tWy20FERESti1XzRK1YsQLLly+HRqPByy+/bPH0Hv0X54kiIiJyPk09fluVRCmVSuk2Km5ubg3GbdmyxbrauigmUURERM6nqcdvq07nTZky5bZTHBARERG1BlYlURkZGTaqBhEREZFzseq2L0RERET0CyZRRERERDIwiSIiIiKSgUlUK1BirEbe6TKUGKvtXRUiIiKXYfVkm+RcMgvPYt6WIzAJQKkA0saFIXZAF3tXi4iIyOmxJ8qFlRirpQQKAEwCmL/lKHukiIiImgGTKBdWXFYlJVB1aoXAmbKr9qkQERGRC2ES5cJC/LyhvGVuVDeFAsF+be1TISIiIhfCJMqFBai9kDYuDG7/P8u8m0KBl8f1QYDay841IyIicn4cWO7iYgd0wfAeHXGm7CqC/doygSIiImomTKJagQC1F5MnIiKiZsbTeUREREQyMIkiIiIikoFJFDk0zrZORESOimOiyGFxtnUiInJk7Ikih8TZ1omIyNExiSKHxNnWiYjI0TGJIofE2daJiMjRMYkih8TZ1omIyNFxYDk5LM62TkREjoxJFDk0zrZORESOiqfziIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUUREREQyMIkiIiIiksEhkqi1a9ciODgYKpUKWq0W+/fvbzR+8+bN6NmzJ1QqFcLCwpCVlWW2XAiBRYsWISAgAF5eXtDpdDh16pRZTHl5OeLj4+Hj4wNfX18kJCTgypUr0vKTJ09i5MiR8Pf3h0qlQrdu3bBgwQLcuHGj+RpORERETsvuSVRmZiaSk5ORmpqKgwcPIjw8HHq9HhcvXrQYn5eXh7i4OCQkJODQoUOIiYlBTEwMjh49KsWsWLECq1evRnp6OgoKCuDt7Q29Xo+amhopJj4+HseOHUNOTg527NiBPXv2IDExUVrepk0bTJkyBZ999hlOnjyJVatW4e2330ZqaqrtdgYRERE5DYUQQtizAlqtFgMGDMDrr78OADCZTAgKCsIzzzyDlJSUevGxsbGoqqrCjh07pLJBgwYhIiIC6enpEEIgMDAQzz33HObMmQMAMBqN8Pf3R0ZGBiZOnIgTJ06gd+/eKCwsRP/+/QEA2dnZGDNmDM6fP4/AwECLdU1OTkZhYSH+85//NKltlZWVUKvVMBqN8PHxsWq/EBERkX009fht156o69evo6ioCDqdTipTKpXQ6XTIz8+3uE5+fr5ZPADo9Xopvri4GAaDwSxGrVZDq9VKMfn5+fD19ZUSKADQ6XRQKpUoKCiw+LzfffcdsrOzERUV1WB7rl27hsrKSrMHERERuSa7JlFlZWWora2Fv7+/Wbm/vz8MBoPFdQwGQ6Pxdf/eLqZTp05my93d3dGhQ4d6zzt48GCoVCqEhoZi2LBhWLJkSYPtSUtLg1qtlh5BQUENxhIREZFzs/uYKEeXmZmJgwcPYv369di5cydWrlzZYOy8efNgNBqlx7lz51qwpkRERNSS3O355H5+fnBzc0NpaalZeWlpKTQajcV1NBpNo/F1/5aWliIgIMAsJiIiQoq5deD6zZs3UV5eXu9563qTevfujdraWiQmJuK5556Dm5tbvbp5enrC09Pzds0mIiIiF2DXnigPDw/069cPubm5UpnJZEJubi4iIyMtrhMZGWkWDwA5OTlSfEhICDQajVlMZWUlCgoKpJjIyEhUVFSgqKhIitm1axdMJhO0Wm2D9TWZTLhx4wZMJpP1jSUiIiKXYteeKOCXK96mTp2K/v37Y+DAgVi1ahWqqqowffp0AMCUKVPQuXNnpKWlAQBmzZqFqKgovPrqq4iOjsbGjRtx4MABvPXWWwAAhUKB2bNnY+nSpQgNDUVISAgWLlyIwMBAxMTEAAB69eqF0aNHY+bMmUhPT8eNGzeQlJSEiRMnSlfmrVu3Dm3atEFYWBg8PT1x4MABzJs3D7GxsWjTpk3L7ygiIiJyKHZPomJjY3Hp0iUsWrQIBoMBERERyM7OlgaGnz17FkrlfzvMBg8ejPXr12PBggWYP38+QkNDsXXrVvTp00eKmTt3LqqqqpCYmIiKigoMHToU2dnZUKlUUsy6deuQlJSEUaNGQalUYvz48Vi9erW03N3dHcuXL8e3334LIQS6du2KpKQk/OlPf2qBvUJERESOzu7zRLkyzhPV8kqM1Sguq0KInzcC1F72rg4RETmhph6/7d4TRdRcMgvPYt6WIzAJQKkA0saFIXZAF3tXi4iIXBSnOCCXUGKslhIoADAJYP6WoygxVtu3YkRE5LKYRJFLKC6rkhKoOrVC4EzZVftUiIiIXB6TKHIJIX7eUCrMy9wUCgT7tbVPhYiIyOUxiSKXEKD2Qtq4MLgpfsmk3BQKvDyuDweXExGRzXBgeSvQWq5Yix3QBcN7dMSZsqsI9mvr0m2t01peWyJyPq3h+4lJlIvLLDyLlI+OQABQAFg23rWvWAtQe7nsh/VWvBqRiBxVa/l+4uk8F1ZirJYSKAAQAFI+OsIr1lwAr0YkIkfVmr6fmES5sANnynHrTKoCQNGZn+1RHYdUYqxG3ukyp/tw82pEInJUren7iafzXJhCoWigvIUr4qCcubu57mrEX39R8WpEInIEren7iT1RLqxf17twa76kUAAPdr3LLvVxJM7e3cyrEYnIUQWovfBE385mZTF9A13y+4k9US4sQO2FZePD6vW2uOIb2VqNdTc7y/5pjVcjEpHjKzFW4+NDF8zKth76EXP097nc9xSTKBfHA61lrtLd3JquRiQi5+AKP1KbiqfzWoEAtRciu9/tcm/eO8HTYUREttGa7iDBnihqtdhLR0TU/Op+pM7fchS1Qrj0j1QmUdSq8XQYETkyZ531u7X8SGUSRURE5ICceRoWoHX8SOWYKCIiov/nKBPwOvs0LK0Fe6KIiIjgWD0/rekKN7kc4VQnkygiImr1Gur5Gd6jo10O0K4yDYutOErCy9N5RETU6jna/d44DUvDHOlUJ3uiiIio1XPEnp/WcoWbtRzpVCd7osilOMqgUCJyLo7a88PJkutzpMk82RNFLsNRzpETkXNiz49zcKTJPBVCCHH7MJKjsrISarUaRqMRPj4+9q6OSysxVmPIsl31uuL3pozkFyERkQsqMVbbLOFt6vGbPVHkEhzpHDkREdmeI0zmyTFR5BJC/LxxyylyKABeDkxERDbDJIpc161ZFRERUTNiEkUuobisCrcO7hMCdpvjhYiIbMsRrsbmmChyCY44xwsREdmGo1yNzZ4ocgmOOscLERE1L0easdwhkqi1a9ciODgYKpUKWq0W+/fvbzR+8+bN6NmzJ1QqFcLCwpCVlWW2XAiBRYsWISAgAF5eXtDpdDh16pRZTHl5OeLj4+Hj4wNfX18kJCTgypUr0vLdu3dj7NixCAgIgLe3NyIiIrBu3brmazQ1u9gBXbA3ZSQ2zByEvSkjOUcUEdFtOMIpMWs50i167J5EZWZmIjk5GampqTh48CDCw8Oh1+tx8eJFi/F5eXmIi4tDQkICDh06hJiYGMTExODo0aNSzIoVK7B69Wqkp6ejoKAA3t7e0Ov1qKmpkWLi4+Nx7Ngx5OTkYMeOHdizZw8SExPNnueBBx7ARx99hK+//hrTp0/HlClTsGPHDtvtDLpjnN2XiKhpMgvPYsiyXZj0dgGGLNuFzMKz9q5SkzjSjOV2n2xTq9ViwIABeP311wEAJpMJQUFBeOaZZ5CSklIvPjY2FlVVVWbJzKBBgxAREYH09HQIIRAYGIjnnnsOc+bMAQAYjUb4+/sjIyMDEydOxIkTJ9C7d28UFhaif//+AIDs7GyMGTMG58+fR2BgoMW6RkdHw9/fH++++26T2sbJNomIyBE5+wTFmYVn681Y3pxnH5p6/LZrT9T169dRVFQEnU4nlSmVSuh0OuTn51tcJz8/3yweAPR6vRRfXFwMg8FgFqNWq6HVaqWY/Px8+Pr6SgkUAOh0OiiVShQUFDRYX6PRiA4dOjS4/Nq1a6isrDR7EBERORpHOiUmh6MM37BrElVWVoba2lr4+/ublfv7+8NgMFhcx2AwNBpf9+/tYjp16mS23N3dHR06dGjweTdt2oTCwkJMnz69wfakpaVBrVZLj6CgoAZjiYiI7MWRTonJ5QjDN+w+JsoZfP7555g+fTrefvtt3H///Q3GzZs3D0ajUXqcO3euBWtJRETUNLyiuXnYdZ4oPz8/uLm5obS01Ky8tLQUGo3G4joajabR+Lp/S0tLERAQYBYTEREhxdw6cP3mzZsoLy+v97xffPEFHnvsMbz22muYMmVKo+3x9PSEp6dnozFERESOIHZAF/TUtEfhmZ8xIPguhAfdZe8qOR279kR5eHigX79+yM3NlcpMJhNyc3MRGRlpcZ3IyEizeADIycmR4kNCQqDRaMxiKisrUVBQIMVERkaioqICRUVFUsyuXbtgMpmg1Wqlst27dyM6OhrLly83u3KPiIjI2WUWnsUTf8vD0p0n8MTf8pzm6jxHYvcZy5OTkzF16lT0798fAwcOxKpVq1BVVSWNPZoyZQo6d+6MtLQ0AMCsWbMQFRWFV199FdHR0di4cSMOHDiAt956CwCgUCgwe/ZsLF26FKGhoQgJCcHChQsRGBiImJgYAECvXr0wevRozJw5E+np6bhx4waSkpIwceJE6cq8zz//HI8++ihmzZqF8ePHS2OlPDw8Gh1cTkRE5OgamrByeI+OPKVnBbsnUbGxsbh06RIWLVoEg8GAiIgIZGdnSwPDz549C6Xyvx1mgwcPxvr167FgwQLMnz8foaGh2Lp1K/r06SPFzJ07F1VVVUhMTERFRQWGDh2K7OxsqFQqKWbdunVISkrCqFGjoFQqMX78eKxevVpa/v777+Pq1atIS0uTEjgAiIqKwu7du224R6g1KzFWo7isCiF+3vwiIyKbaezqPH73NJ3d54lyZZwniqzhKPeCIiLX5+zzRNmaU8wTRWRvjnLLA0e6FxQRuT5endc87H46j6g5WXM6zJF6fti1Tr/G07rUEmIHdMHwHh1xpuwqgv3a8r0mA5MochnWJEWONqiybuK7W7vWnWniO2oejpTck+sLUHsxeboDPJ1HLsHa02GOdssDdq0TwNO6RM6GPVHkEqw9HeaIPT/sWiee1qVb8dSuY2MSRS7B2qSorufn1ruA2/tLil3rrZsjJvdkPzy16/g4xYENcYqDlpVZeLZeUnS7L5wSYzV7fsihyHkfk+vhFAT21dTjN3uiyGXIOR3Gnh9yNDytSwBP7ToLJlHkUpgUkSvg+5gc8dQux2fVx6vziIiIHIyjXbGbWXgWQ5btwqS3CzBk2S7erPj/cUyUDXFMFPGXGxHdCUcYt9kax2dxTBSRnfHKGiK6U45wapfjsxrG03lENsBJE5ufo9znkKi1qRuf9Wv2Hp/lKJhEEdmAo82I7uw4HoPIfhxtfJYj4ek8IhtwxCtrnJWj3efw1/XieDdqLTj1hmVMoohswFFnRHdGjjgew9rxbky4yBU4wvgsR8MkishG+MuteThar561PWO8wIDIdXFMFJENBai9ENn9biZQd8DRxmNYM96NFxgQuTb2RBGRw3OkXj1resYc8VQkETUf9kQRkVNwlF49a3rGeGk4kWtjTxQRkZWa2jPGCwyIXBuTKCIimQRuf9csRzoVSUTNi0kUEZGVrL3ijpeGE7kmjokiIrICr7gjojpMooiIrMBb+hBRHSZRRERW4BV3RFSHSRQRuaQSYzXyTpc1+2k2R5v8k4jshwPLiWyI90yzD1vfaoVX3DWuNb3vW1NbqT4mUUQ24uz3THPWg4O197aTi1fcWebs73trtKa2kmU8nUdkA85+BVdm4VkMWbYLk94uwJBlu5BZeNbeVWoyDvy2H2d/31ujNbWVGmb3JGrt2rUIDg6GSqWCVqvF/v37G43fvHkzevbsCZVKhbCwMGRlZZktF0Jg0aJFCAgIgJeXF3Q6HU6dOmUWU15ejvj4ePj4+MDX1xcJCQm4cuWKtLympgbTpk1DWFgY3N3dERMT02ztpdbBmQ/kzn5w4MBv+3Hm9721WlNbqWF2TaIyMzORnJyM1NRUHDx4EOHh4dDr9bh48aLF+Ly8PMTFxSEhIQGHDh1CTEwMYmJicPToUSlmxYoVWL16NdLT01FQUABvb2/o9XrU1NRIMfHx8Th27BhycnKwY8cO7NmzB4mJidLy2tpaeHl54dlnn4VOp7PdDqBmZ6vBxNaSeyB3hPo7+8GBA7/tpzUlsK2prdQwhRDi9vctsBGtVosBAwbg9ddfBwCYTCYEBQXhmWeeQUpKSr342NhYVFVVYceOHVLZoEGDEBERgfT0dAghEBgYiOeeew5z5swBABiNRvj7+yMjIwMTJ07EiRMn0Lt3bxQWFqJ///4AgOzsbIwZMwbnz59HYGCg2XNOmzYNFRUV2Lp1q9Xtq6yshFqthtFohI+Pj9Xrk3XkjE+w5bifzMKz9e6Z1lh9HGV8RYmxGkOW7TJLpNwUCuxNGelUiUiJsZoDv+3A2ve9M2tNbW1tmnr8ttvA8uvXr6OoqAjz5s2TypRKJXQ6HfLz8y2uk5+fj+TkZLMyvV4vJTjFxcUwGAxmvUdqtRparRb5+fmYOHEi8vPz4evrKyVQAKDT6aBUKlFQUIAnnnhCdpuuXbuGa9euSX9XVlbK3hZZR85gYke6gqulBkM3havcNJcDv+2jNV252JraSpbZLYkqKytDbW0t/P39zcr9/f3xzTffWFzHYDBYjDcYDNLyurLGYjp16mS23N3dHR06dJBi5EpLS8OLL754R9sgeRo7BWXpi83RruCytv62xoODc3G0KylbUwLbmtpK9XGKg2Y0b948s56yyspKBAUF2bFGzq+pB4e68Qm3noJqaHyCoyUt1ta/JfDg4Bwc5TQwUWtkt4Hlfn5+cHNzQ2lpqVl5aWkpNBqNxXU0Gk2j8XX/3i7m1oHrN2/eRHl5eYPP21Senp7w8fExe5B81lxmb+1gYkcbFCp3MLQjDEQn+ykxViPlI/Me1ZQtR/h+IGohdkuiPDw80K9fP+Tm5kplJpMJubm5iIyMtLhOZGSkWTwA5OTkSPEhISHQaDRmMZWVlSgoKJBiIiMjUVFRgaKiIilm165dMJlM0Gq1zdY+ujNyLrOPHdAFe1NGYsPMQdibMrLRX+OOeAWXNfUHnHsuJ1fgCAls0Q8/49Yrg4QADv7ws13qQ9Ta2PV0XnJyMqZOnYr+/ftj4MCBWLVqFaqqqjB9+nQAwJQpU9C5c2ekpaUBAGbNmoWoqCi8+uqriI6OxsaNG3HgwAG89dZbAACFQoHZs2dj6dKlCA0NRUhICBYuXIjAwEBprqdevXph9OjRmDlzJtLT03Hjxg0kJSVh4sSJZlfmHT9+HNevX0d5eTkuX76Mw4cPAwAiIiJabP+0ZnJPt1lzCsoRx/00tf6ONBC9NXKUU2gNXVxtv2uuiVoXuyZRsbGxuHTpEhYtWgSDwYCIiAhkZ2dLA8PPnj0LpfK/nWWDBw/G+vXrsWDBAsyfPx+hoaHYunUr+vTpI8XMnTsXVVVVSExMREVFBYYOHYrs7GyoVCopZt26dUhKSsKoUaOgVCoxfvx4rF692qxuY8aMwQ8//CD93bdvXwANf2lR82qpMULOOu7H0cZ0tSaOlMD2D+4ABWDWG6UA0C/4rhatB1FrZdd5olwd54m6M5yDpWGuMpeTM8o7XYZJbxfUK98wcxAiu9/d4vXJLDyLeR8dgQm/jM9IG8+B5UR3yuHniSK6HUc83eYoXGUuJ2fkaFdS8nNCZD/sibIh9kSRrXFWbvtobb2kjjYPFZGtsSeKqBVw1jFdzq419f44yiB6Ikdk1xsQExE5qwC1FyK7393kqyntPR2CHHKmGpH7PM64f4jYE0VELslRTkE5c09OS1wF6sz7h4g9UUTkchxlItKW6smxFVvP7O/s+4eISRQRuRRHOjA31pPTnGx1OszWM/u31P4hshWeznNCjnKagsgRtdREpE35HLbEdAi2Ph1my0H0jjZdBJG12BPlZBzlNAU1DQfMtrwQP2/ccgYKCgWaPXFpyufQ1j05LdXrZs0gemu362j3sCSyBnuinIgj3W6Cbo8DZh1IM86GZ+3n0JY9Oa5w+5/WNF1ES+CZipbFJMqJuMIXZmvBhNd+isuq6uVMAmi2z4mcz6Gt5vNyldNhnO+sefCHW8vj6TwnYusrZaj5cMCs/dj6c+JIn0OeDqM6jnRBRWvCJMqJ8AvTeTjSgdZVNHV8ma0/J472OYwd0AV7U0Ziw8xB2Jsy0iF6HqwdC8ixg3eOP9zsg/fOsyFb3TuP90tzDq3t/mq2JOc0hbWfE2vHkvBzaJm1rxVPQTWPEmM1hizbVe/U7t6UkXx/ytDU4zeTKBviDYiJB9o71xIHBx7Im4e1rxUP/M2LP9yaD29ATOQAOGD2ztn6ggpeBNB8rH2teLFM8+KVji2PSRQROTRbX4Em90DOS8nrs/a1cpWrCx0Jf7i1LA4sJ3JirWFArq0Hcsu5CICT3lpm7WvlaIP0iazFMVE2xDFRZMveitY2jseW48usGUvCcTy3J2dQv6OcgmIPIwEcE0Vkd3KvKGvKF3hrHMdjy9MU1owl4Tie27P2tXKUU1Ct7YeJo3HGBJZJFJENyElyrPkC54G8+TX1QO7t4WaxvK0HR0c4s9b4w8SROGsCy089kQ1YO/GdtbMNczJP+6m6Xmux/Op1UwvXhJoTJ6u0H2eebZ1JFLVqthqYbW2SY+0XOAfk2k+InzdueWmhUIAJrJPjDxP7ceYElqfzqNWyZfdxgNoLT/TtjI8OXpDKYvoGNpjkyLnUO3ZAF/TUtEfhmZ8xIPguhAfd1Sx1Jxl4eY7Tq/thcusFBvxhYnvOPNUFe6KoVbJ193GJsRofH7pgVrb10I8Nbl9Oz1Jm4Vk88bc8LN15Ak/8LY+X2beQ4rKqejmTABr91dwapqJwBY54H8LWwJl71tkTRa2SrQdmy9m+NVeIcRDs7dnqSh9rB5Y764DZ1spRrhRsbZx1tnUmUVSPM15mai1bdx/L3X5Tv8B5dV7jbJm4WDOwnMkuUdM5YwLL03lOyJanBlrLTMy27j52xFm2nV1T3/e2PlVrzb535gGzRHR77IlyMrb8hd3afjXbuvvYlttvbYNgHWkOLWv2vTMPmCWi22MS5URsneS0xhux2rr72FFm2XZm1r7vWyJxaeqVkXKTXWf+TBG1JkyinIitf2HLOfhw0Kx9OeMYAmtZ+75viV46a9731ia7/EwROQ+HGBO1du1aBAcHQ6VSQavVYv/+/Y3Gb968GT179oRKpUJYWBiysrLMlgshsGjRIgQEBMDLyws6nQ6nTp0yiykvL0d8fDx8fHzg6+uLhIQEXLlyxSzm66+/xrBhw6BSqRAUFIQVK1Y0T4NlsvU4GGvH8TjzLLPkPOS87215qbqc932A2guR3e9uUg8UP1NEzsPuSVRmZiaSk5ORmpqKgwcPIjw8HHq9HhcvXrQYn5eXh7i4OCQkJODQoUOIiYlBTEwMjh49KsWsWLECq1evRnp6OgoKCuDt7Q29Xo+amhopJj4+HseOHUNOTg527NiBPXv2IDExUVpeWVmJ3/zmN+jatSuKiorwyiuvYPHixXjrrbdstzNuoyXm0rDm4MNBs9QS5L7vm5q4WMuW73t+poici0IIYde5drVaLQYMGIDXX38dAGAymRAUFIRnnnkGKSkp9eJjY2NRVVWFHTt2SGWDBg1CREQE0tPTIYRAYGAgnnvuOcyZMwcAYDQa4e/vj4yMDEycOBEnTpxA7969UVhYiP79+wMAsrOzMWbMGJw/fx6BgYF444038Oc//xkGgwEeHh4AgJSUFGzduhXffPNNk9pWWVkJtVoNo9EIHx+fO9pPv1ZirHaIcTAlxmoMWbar3um/vSkjXf4UE7U8R3nff3XuZ4xdm1evfNvTg+941nh+pogcQ1OP33btibp+/TqKioqg0+mkMqVSCZ1Oh/z8fIvr5Ofnm8UDgF6vl+KLi4thMBjMYtRqNbRarRSTn58PX19fKYECAJ1OB6VSiYKCAilm+PDhUgJV9zwnT57Ezz//bLFu165dQ2VlpdnDFmz1C1tOPZx1lllyPo7yvrflDYj5mSJyLnYdWF5WVoba2lr4+/ublfv7+zfY22MwGCzGGwwGaXldWWMxnTp1Mlvu7u6ODh06mMWEhITU20bdsrvuqv+LMy0tDS+++GLDDXZBreUKMaI6tr76j58pIudh9zFRrmTevHkwGo3S49y5c/auUotwlB4CopbQEr1F/EwROQe79kT5+fnBzc0NpaWlZuWlpaXQaDQW19FoNI3G1/1bWlqKgIAAs5iIiAgp5taB6zdv3kR5ebnZdiw9z6+f41aenp7w9PRssL1E5BrYW0REgJ17ojw8PNCvXz/k5uZKZSaTCbm5uYiMjLS4TmRkpFk8AOTk5EjxISEh0Gg0ZjGVlZUoKCiQYiIjI1FRUYGioiIpZteuXTCZTNBqtVLMnj17cOPGDbPnue+++yyeyiOi1oW9RUQEYWcbN24Unp6eIiMjQxw/flwkJiYKX19fYTAYhBBCTJ48WaSkpEjx+/btE+7u7mLlypXixIkTIjU1VbRp00YcOXJEilm2bJnw9fUV27ZtE19//bUYO3asCAkJEdXV1VLM6NGjRd++fUVBQYHYu3evCA0NFXFxcdLyiooK4e/vLyZPniyOHj0qNm7cKNq2bSvefPPNJrfNaDQKAMJoNN7JLiIiIqIW1NTjt92TKCGEWLNmjejSpYvw8PAQAwcOFF9++aW0LCoqSkydOtUsftOmTaJHjx7Cw8ND3H///WLnzp1my00mk1i4cKHw9/cXnp6eYtSoUeLkyZNmMT/99JOIi4sT7dq1Ez4+PmL69Oni8uXLZjFfffWVGDp0qPD09BSdO3cWy5Yts6pdTKKIiIicT1OP33afJ8qV2WqeKCIiIrIdp5gnioiIiMhZMYkiIiIikoFJFBEREZEMTKKIiIiIZGASRURERCQDkygiIiIiGZhEEREREcnAJIqIiIhIBrvegNjV1c1jWllZaeeaEBERUVPVHbdvNx85kygbunz5MgAgKCjIzjUhIiIia12+fBlqtbrB5bztiw2ZTCb8+OOPaN++PRQKRbNtt7KyEkFBQTh37pxL3k7G1dsHuH4bXb19gOu3ke1zfq7eRlu2TwiBy5cvIzAwEEplwyOf2BNlQ0qlEvfcc4/Ntu/j4+OSH4w6rt4+wPXb6OrtA1y/jWyf83P1NtqqfY31QNXhwHIiIiIiGZhEEREREcnAJMoJeXp6IjU1FZ6envauik24evsA12+jq7cPcP02sn3Oz9Xb6Ajt48ByIiIiIhnYE0VEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUQ5i7dq1CA4Ohkqlglarxf79+xuNX7VqFe677z54eXkhKCgIf/rTn1BTU3NH27Sl5m7f4sWLoVAozB49e/a0dTMaZE37bty4gSVLlqB79+5QqVQIDw9Hdnb2HW2zJTR3Gx3pNdyzZw8ee+wxBAYGQqFQYOvWrbddZ/fu3XjwwQfh6emJe++9FxkZGfViHOU1tEX7nPn1KykpwaRJk9CjRw8olUrMnj3bYtzmzZvRs2dPqFQqhIWFISsrq/kr30S2aGNGRka911ClUtmmAbdhbfu2bNmChx9+GB07doSPjw8iIyPx6aef1ouz9WeQSZQDyMzMRHJyMlJTU3Hw4EGEh4dDr9fj4sWLFuPXr1+PlJQUpKam4sSJE/j73/+OzMxMzJ8/X/Y2bckW7QOA+++/HyUlJdJj7969LdGceqxt34IFC/Dmm29izZo1OH78OH7/+9/jiSeewKFDh2Rv09Zs0UbAcV7DqqoqhIeHY+3atU2KLy4uRnR0NEaOHInDhw9j9uzZmDFjhtmXuCO9hrZoH+C8r9+1a9fQsWNHLFiwAOHh4RZj8vLyEBcXh4SEBBw6dAgxMTGIiYnB0aNHm7PqTWaLNgK/zPb969fwhx9+aK4qW8Xa9u3ZswcPP/wwsrKyUFRUhJEjR+Kxxx5r+e9RQXY3cOBA8fTTT0t/19bWisDAQJGWlmYx/umnnxYPPfSQWVlycrIYMmSI7G3aki3al5qaKsLDw21SX2tZ276AgADx+uuvm5WNGzdOxMfHy96mrdmijY70Gv4aAPHxxx83GjN37lxx//33m5XFxsYKvV4v/e1or2Gd5mqfM79+vxYVFSVmzZpVr3zChAkiOjrarEyr1YqnnnrqDmt455qrje+9955Qq9XNVq/mYm376vTu3Vu8+OKL0t8t8RlkT5SdXb9+HUVFRdDpdFKZUqmETqdDfn6+xXUGDx6MoqIiqVvy+++/R1ZWFsaMGSN7m7Zii/bVOXXqFAIDA9GtWzfEx8fj7NmztmtIA+S079q1a/W6zL28vKRf8Y70+smtz+3aWMcRXkM58vPzzfYHAOj1eml/ONpraK3bta+Os75+TdHUfeDsrly5gq5duyIoKAhjx47FsWPH7F0lWUwmEy5fvowOHToAaLnPIJMoOysrK0NtbS38/f3Nyv39/WEwGCyuM2nSJCxZsgRDhw5FmzZt0L17d4wYMUI63SVnm7Zii/YBgFarRUZGBrKzs/HGG2+guLgYw4YNw+XLl23anlvJaZ9er8df/vIXnDp1CiaTCTk5OdiyZQtKSkpkb9OWbNFGwHFeQzkMBoPF/VFZWYnq6mqHew2tdbv2Ac79+jVFQ/vAGV6/prrvvvvw7rvvYtu2bfjggw9gMpkwePBgnD9/3t5Vs9rKlStx5coVTJgwAUDLfY8yiXJCu3fvxssvv4y//e1vOHjwILZs2YKdO3fipZdesnfVmkVT2vfII4/gt7/9LR544AHo9XpkZWWhoqICmzZtsmPNm+avf/0rQkND0bNnT3h4eCApKQnTp0+HUuk6H8emtNGZX0Pi6+cKIiMjMWXKFERERCAqKgpbtmxBx44d8eabb9q7alZZv349XnzxRWzatAmdOnVq0ed2b9Fno3r8/Pzg5uaG0tJSs/LS0lJoNBqL6yxcuBCTJ0/GjBkzAABhYWGoqqpCYmIi/vznP8vapq3Yon2Wkg1fX1/06NED3333XfM3ohFy2texY0ds3boVNTU1+OmnnxAYGIiUlBR069ZN9jZtyRZttMRer6EcGo3G4v7w8fGBl5cX3NzcHOo1tNbt2meJM71+TdHQPnCG10+uNm3aoG/fvk71Gm7cuBEzZszA5s2bzU7dtdT3qOv89HVSHh4e6NevH3Jzc6Uyk8mE3NxcREZGWlzn6tWr9RIJNzc3AIAQQtY2bcUW7bPkypUrOH36NAICApqp5k1zJ/tapVKhc+fOuHnzJj766COMHTv2jrdpC7ZooyX2eg3liIyMNNsfAJCTkyPtD0d7Da11u/ZZ4kyvX1PI2QfOrra2FkeOHHGa13DDhg2YPn06NmzYgOjoaLNlLfYZbLYh6iTbxo0bhaenp8jIyBDHjx8XiYmJwtfXVxgMBiGEEJMnTxYpKSlSfGpqqmjfvr3YsGGD+P7778Vnn30munfvLiZMmNDkbTp7+5577jmxe/duUVxcLPbt2yd0Op3w8/MTFy9edPj2ffnll+Kjjz4Sp0+fFnv27BEPPfSQCAkJET///HOTt9nSbNFGR3oNL1++LA4dOiQOHTokAIi//OUv4tChQ+KHH34QQgiRkpIiJk+eLMV///33om3btuL5558XJ06cEGvXrhVubm4iOztbinGk19AW7XPm108IIcX369dPTJo0SRw6dEgcO3ZMWr5v3z7h7u4uVq5cKU6cOCFSU1NFmzZtxJEjR1q0bXVs0cYXX3xRfPrpp+L06dOiqKhITJw4UahUKrOYlmJt+9atWyfc3d3F2rVrRUlJifSoqKiQYlriM8gkykGsWbNGdOnSRXh4eIiBAweKL7/8UloWFRUlpk6dKv1948YNsXjxYtG9e3ehUqlEUFCQ+OMf/2h2gLrdNltac7cvNjZWBAQECA8PD9G5c2cRGxsrvvvuuxZskTlr2rd7927Rq1cv4enpKe6++24xefJkceHCBau2aQ/N3UZHeg0///xzAaDeo65NU6dOFVFRUfXWiYiIEB4eHqJbt27ivffeq7ddR3kNbdE+Z3/9LMV37drVLGbTpk2iR48ewsPDQ9x///1i586dLdMgC2zRxtmzZ0vvT39/fzFmzBhx8ODBlmvUr1jbvqioqEbj69j6M6gQooHzI0RERETUII6JIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkA5MoIiIiIhmYRBERERHJwCSKiIiISAYmUURErcju3buhUChQUVFh76oQOT0mUURkE9OmTYNCocCyZcvMyrdu3QqFQiH9LYTA22+/jcjISPj4+KBdu3a4//77MWvWrCbfCPXq1auYN28eunfvDpVKhY4dOyIqKgrbtm2TYoKDg7Fq1apmaZut1e07hUKBNm3aICQkBHPnzkVNTY1V2xkxYgRmz55tVjZ48GCUlJRArVY3Y42JWicmUURkMyqVCsuXL8fPP/9scbkQApMmTcKzzz6LMWPG4LPPPsPx48fx97//HSqVCkuXLm3S8/z+97/Hli1bsGbNGnzzzTfIzs7Gk08+iZ9++qk5m9OiRo8ejZKSEnz//fd47bXX8OabbyI1NfWOt+vh4QGNRmOWyBKRTM16Exkiov83depU8eijj4qePXuK559/Xir/+OOPRd1Xz4YNGwQAsW3bNovbMJlMTXoutVotMjIyGlxu6T5bdf7zn/+IoUOHCpVKJe655x7xzDPPiCtXrkjL//GPf4h+/fqJdu3aCX9/fxEXFydKS0ul5XX3/MrOzhYRERFCpVKJkSNHitLSUpGVlSV69uwp2rdvL+Li4kRVVVWT2jN16lQxduxYs7Jx48aJvn37Sn+XlZWJiRMnisDAQOHl5SX69Okj1q9fb7aNW9tcXFws1ffX96L88MMPRe/evYWHh4fo2rWrWLlyZZPqSdTasSeKiGzGzc0NL7/8MtasWYPz58/XW75hwwbcd999ePzxxy2u39TeEo1Gg6ysLFy+fNni8i1btuCee+7BkiVLUFJSgpKSEgDA6dOnMXr0aIwfPx5ff/01MjMzsXfvXiQlJUnr3rhxAy+99BK++uorbN26FWfOnMG0adPqPcfixYvx+uuvIy8vD+fOncOECROwatUqrF+/Hjt37sRnn32GNWvWNKk9tzp69Cjy8vLg4eEhldXU1KBfv37YuXMnjh49isTEREyePBn79+8HAPz1r39FZGQkZs6cKbU5KCio3raLioowYcIETJw4EUeOHMHixYuxcOFCZGRkyKorUati7yyOiFzTr3tTBg0aJH73u98JIcx7onr27Ckef/xxs/VmzZolvL29hbe3t+jcuXOTnuuLL74Q99xzj2jTpo3o37+/mD17tti7d69ZTNeuXcVrr71mVpaQkCASExPNyv7zn/8IpVIpqqurLT5XYWGhACAuX74shPhvT9S///1vKSYtLU0AEKdPn5bKnnrqKaHX65vUnqlTpwo3Nzfh7e0tPD09BQChVCrFhx9+2Oh60dHR4rnnnpP+joqKErNmzTKLubUnatKkSeLhhx82i3n++edF7969m1RXotaMPVFEZHPLly/H+++/jxMnTtw29s9//jMOHz6MRYsW4cqVK03a/vDhw/H9998jNzcXTz75JI4dO4Zhw4bhpZdeanS9r776ChkZGWjXrp300Ov1MJlMKC4uBvBLT81jjz2GLl26oH379oiKigIAnD171mxbDzzwgPR/f39/tG3bFt26dTMru3jxYpPaAwAjR47E4cOHUVBQgKlTp2L69OkYP368tLy2thYvvfQSwsLC0KFDB7Rr1w6ffvppvXrdzokTJzBkyBCzsiFDhuDUqVOora21altErQ2TKCKyueHDh0Ov12PevHlm5aGhoTh58qRZWceOHXHvvfeiU6dOVj1HmzZtMGzYMLzwwgv47LPPsGTJErz00ku4fv16g+tcuXIFTz31FA4fPiw9vvrqK5w6dQrdu3dHVVUV9Ho9fHx8sG7dOhQWFuLjjz8GgHrbbdOmjfT/uqvqfk2hUMBkMjW5Pd7e3rj33nsRHh6Od999FwUFBfj73/8uLX/llVfw17/+FS+88AI+//xzHD58GHq9vtH2ElHzcrd3BYiodVi2bBkiIiJw3333SWVxcXGYNGkStm3bhrFjxzbr8/Xu3Rs3b95ETU0NPDw84OHhUa9n5cEHH8Tx48dx7733WtzGkSNH8NNPP2HZsmXSeKIDBw40az2bQqlUYv78+UhOTsakSZPg5eWFffv2YezYsfif//kfAIDJZMK3336L3r17S+tZavOtevXqhX379pmV7du3Dz169ICbm1vzN4bIhbAniohaRFhYGOLj47F69WqpbOLEiXjyyScxceJELFmyBAUFBThz5gy++OILZGZmNvkgPmLECLz55psoKirCmTNnkJWVhfnz52PkyJHw8fEB8Ms8UXv27MGFCxdQVlYGAHjhhReQl5eHpKQkHD58GKdOncK2bdukgeVdunSBh4cH1qxZg++//x7bt2+/7SlCW/ntb38LNzc3rF27FsAvvXg5OTnIy8vDiRMn8NRTT6G0tNRsneDgYGmflpWVWewJe+6555Cbm4uXXnoJ3377Ld5//328/vrrmDNnTou0i8iZMYkiohazZMkSswO5QqFAZmYmVq1ahaysLIwaNQr33Xcffve73yEoKAh79+5t0nb1ej3ef/99/OY3v0GvXr3wzDPPQK/XY9OmTWbPfebMGXTv3h0dO3YE8Ms4pi+++ALffvsthg0bhr59+2LRokUIDAwE8MupxYyMDGzevBm9e/fGsmXLsHLlymbcI03n7u6OpKQkrFixAlVVVViwYAEefPBB6PV6jBgxAhqNBjExMWbrzJkzB25ubujduzc6duxocbzUgw8+iE2bNmHjxo3o06cPFi1ahCVLlli8ApGIzCmEEMLelSAiIiJyNuyJIiIiIpKBSRQRObxfT0Fw6+M///mPvatnlbNnzzbaHmunKCAi++HpPCJyeI3diLhz587w8vJqwdrcmZs3b+LMmTMNLg8ODoa7Oy+cJnIGTKKIiIiIZODpPCIiIiIZmEQRERERycAkioiIiEgGJlFEREREMjCJIiIiIpKBSRQRERGRDEyiiIiIiGRgEkVEREQkw/8Bx3qs7q+MksIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHHCAYAAAB9dxZkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWGJJREFUeJzt3XtcVHX+P/DXDAiDKLAGMmAoaHgnMZUJb+g67ZhWkrYi8vXCkrS/zdJFK3RVzNpQs83V/EaXLdrNC1pmZSwbC5mrECJqecvMMLUYFIlBEbwwn98ffTnbyHAZOMPcXs/HYx7K57zPmc/nnGHOm8/5nM9RCCEEiIiIiKjdlLauABEREZGzYGJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFRE5t5cqVUCgUrYpVKBRYuXKlVeszbtw4jBs3zm63R0Ttw8SKiDpEZmYmFAqF9HJ3d0ePHj0wd+5c/PDDD7aunt0JDQ012V/du3fHmDFj8MEHH8iy/WvXrmHlypXYs2ePLNsjop8xsSKiDrVq1Sr84x//QEZGBu6//368++67iImJQV1dnVXeb9myZaitrbXKtq0tMjIS//jHP/CPf/wDixcvxo8//oipU6ciIyOj3du+du0ann32WSZWRDJzt3UFiMi13H///Rg+fDgA4NFHH4W/vz/WrFmDjz76CNOnT5f9/dzd3eHu7phfdT169MD//M//SD/Pnj0bd911F15++WX8/ve/t2HNiKgp7LEiIpsaM2YMAODMmTMm5V9//TUeeeQRdOvWDSqVCsOHD8dHH31kEnPz5k08++yzCA8Ph0qlwh133IHRo0cjNzdXijE3xur69ev44x//iICAAHTt2hUPPfQQLly40Khuc+fORWhoaKNyc9t8++238etf/xrdu3eHp6cnBg4ciFdffdWifdEStVqNAQMGoLS0tNm4ixcvIikpCYGBgVCpVBgyZAjeeecdafnZs2cREBAAAHj22Wely43WHl9G5Aoc8884InIaZ8+eBQD86le/ksqOHz+OUaNGoUePHkhNTYW3tze2b9+O2NhYvP/++3j44YcB/JzgpKen49FHH0VUVBSqq6tx8OBBHDp0CPfdd1+T7/noo4/i3XffxcyZMzFy5Ejk5+dj8uTJ7WrHq6++ikGDBuGhhx6Cu7s7Pv74Y/zhD3+A0WjE448/3q5tN7h58ybOnz+PO+64o8mY2tpajBs3Dt9++y3mz5+PsLAw7NixA3PnzkVVVRUWLFiAgIAAvPrqq/h//+//4eGHH8bUqVMBAHfffbcs9SRyaYKIqAO8/fbbAoD497//LS5duiTOnz8v3nvvPREQECA8PT3F+fPnpdgJEyaIiIgIUVdXJ5UZjUYxcuRIER4eLpUNGTJETJ48udn3TUtLE7/8qjty5IgAIP7whz+YxM2cOVMAEGlpaVLZnDlzRK9evVrcphBCXLt2rVGcTqcTvXv3NimLiYkRMTExzdZZCCF69eolfvOb34hLly6JS5cuiS+//FLMmDFDABBPPPFEk9tbv369ACDeffddqezGjRsiOjpadOnSRVRXVwshhLh06VKj9hJR+/FSIBF1KK1Wi4CAAISEhOCRRx6Bt7c3PvroI9x5550AgMrKSuTn52P69Om4cuUKKioqUFFRgcuXL0On0+H06dPSXYR+fn44fvw4Tp8+3er3z87OBgA8+eSTJuULFy5sV7u8vLyk/xsMBlRUVCAmJgbfffcdDAZDm7b56aefIiAgAAEBARgyZAh27NiBWbNmYc2aNU2uk52dDbVajfj4eKmsU6dOePLJJ3H16lV8/vnnbaoLEbUOLwUSUYfatGkT+vbtC4PBgLfeegt79+6Fp6entPzbb7+FEALLly/H8uXLzW7j4sWL6NGjB1atWoUpU6agb9++GDx4MCZOnIhZs2Y1e0nr+++/h1KpRJ8+fUzK+/Xr16527d+/H2lpaSgsLMS1a9dMlhkMBvj6+lq8TY1Gg+effx4KhQKdO3fGgAED4Ofn1+w633//PcLDw6FUmv7dPGDAAGk5EVkPEysi6lBRUVHSXYGxsbEYPXo0Zs6ciVOnTqFLly4wGo0AgMWLF0On05ndxl133QUAGDt2LM6cOYMPP/wQn376Kd588028/PLLyMjIwKOPPtruujY1sWh9fb3Jz2fOnMGECRPQv39//OUvf0FISAg8PDyQnZ2Nl19+WWqTpfz9/aHVatu0LhHZBhMrIrIZNzc3pKenY/z48XjllVeQmpqK3r17A/j58lVrkopu3bohMTERiYmJuHr1KsaOHYuVK1c2mVj16tULRqMRZ86cMemlOnXqVKPYX/3qV6iqqmpUfnuvz8cff4zr16/jo48+Qs+ePaXyzz77rMX6y61Xr1746quvYDQaTXqtvv76a2k50HTSSETtwzFWRGRT48aNQ1RUFNavX4+6ujp0794d48aNw2uvvYaysrJG8ZcuXZL+f/nyZZNlXbp0wV133YXr1683+X73338/AGDDhg0m5evXr28U26dPHxgMBnz11VdSWVlZWaPZz93c3AAAQgipzGAw4O23326yHtYyadIk6PV6ZGVlSWW3bt3Cxo0b0aVLF8TExAAAOnfuDABmE0ciajv2WBGRzT311FP47W9/i8zMTPz+97/Hpk2bMHr0aERERGDevHno3bs3ysvLUVhYiAsXLuDLL78EAAwcOBDjxo3DsGHD0K1bNxw8eBDvvfce5s+f3+R7RUZGIj4+Hv/7v/8Lg8GAkSNHIi8vD99++22j2BkzZuCZZ57Bww8/jCeffBLXrl3Dq6++ir59++LQoUNS3G9+8xt4eHjgwQcfxGOPPYarV6/ijTfeQPfu3c0mh9aUnJyM1157DXPnzkVJSQlCQ0Px3nvvYf/+/Vi/fj26du0K4OfB9gMHDkRWVhb69u2Lbt26YfDgwRg8eHCH1pfI6dj6tkQicg0N0y0UFxc3WlZfXy/69Okj+vTpI27duiWEEOLMmTNi9uzZQq1Wi06dOokePXqIBx54QLz33nvSes8//7yIiooSfn5+wsvLS/Tv31/8+c9/Fjdu3JBizE2NUFtbK5588klxxx13CG9vb/Hggw+K8+fPm51+4NNPPxWDBw8WHh4eol+/fuLdd981u82PPvpI3H333UKlUonQ0FCxZs0a8dZbbwkAorS0VIqzZLqFlqaSaGp75eXlIjExUfj7+wsPDw8REREh3n777UbrFhQUiGHDhgkPDw9OvUAkE4UQv+i7JiIiIqI24xgrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCRMrIiIiIpkwsSIiIiKSCScItSKj0Ygff/wRXbt25eMjiIiIHIQQAleuXEFwcHCjB5q3hImVFf34448ICQmxdTWIiIioDc6fP48777zTonWYWFlRw6Mjzp8/Dx8fHxvXhoiIiFqjuroaISEh0nncEkysrKjh8p+Pjw8TKyIiIgfTlmE8HLxOREREJBMmVkREREQyYWJFREREJBOOsSIiInIR9fX1uHnzpq2rYXOdOnWCm5ubVbbNxIqIiMjJCSGg1+tRVVVl66rYDT8/P6jVatnnmWRiRURE5OQakqru3bujc+fOLj1ptRAC165dw8WLFwEAQUFBsm6fiRUREZETq6+vl5KqO+64w9bVsQteXl4AgIsXL6J79+6yXhbk4HUiIiIn1jCmqnPnzjauiX1p2B9yjzljYkVEROQCXPnynznW2h9MrIiIiIhkwsSKiIiISCZMrIiIiCxQZqhFwZkKlBlqbV0Vpzd37lwoFAqsXr3apHzXrl3Spbw9e/ZgypQpCAoKgre3NyIjI7F582ZbVBcAEysiIqJWyyo+h1Gr8zHzjSKMWp2PrOJztq6S01OpVFizZg1++ukns8sLCgpw99134/3338dXX32FxMREzJ49G7t37+7gmv6MiRUREVErlBlqsWTnURjFzz8bBbB05zH2XFmZVquFWq1Genq62eVLly7Fc889h5EjR6JPnz5YsGABJk6ciJ07d3ZwTX/GxIqIiKgVSitqpKSqQb0QOFtxzTYVspGOvhTq5uaGF154ARs3bsSFCxdatY7BYEC3bt2sXDPzmFgRERG1Qpi/N5S33aHvplAg1N915oey1aXQhx9+GJGRkUhLS2sxdvv27SguLkZiYmIH1KwxJlZEREStEOTrhfSpEXD7v0HTbgoFXpg6GEG+XjauWcew9aXQNWvW4J133sHJkyebjPnss8+QmJiIN954A4MGDeqQet2Oj7QhIiJqpbgRPTG2bwDOVlxDqH9nl0mqgOYvhXbEfhg7dix0Oh2WLFmCuXPnNlr++eef48EHH8TLL7+M2bNnW70+TWFiRUREZIEgXy+XSqgaNFwK/WVy1dGXQlevXo3IyEj069fPpHzPnj144IEHsGbNGiQnJ3dYfczhpUAiIiJqkT1cCo2IiEBCQgI2bNgglX322WeYPHkynnzySUybNg16vR56vR6VlZUdVq9fYo8VERERtYo9XApdtWoVsrKypJ/feecdXLt2Denp6SZTMsTExGDPnj0dXj+FEEK0HEZtUV1dDV9fXxgMBvj4+Ni6OkRE5ILq6upQWlqKsLAwqFQqW1fHbjS3X9pz/ualQCIiIiKZMLEiIiIikgkTKyIiIiKZMLEiIiIikgkTKyIiIhfAe9VMWWt/MLEiIiJyYp06dQIAXLvmWg+LbknD/mjYP3LhPFZEREROzM3NDX5+frh48SIAoHPnzlAoFC2s5byEELh27RouXrwIPz8/uLm5ybp9JlZEREROTq1WA4CUXBHg5+cn7Rc5MbEiIiJycgqFAkFBQejevTtu3rxp6+rYXKdOnWTvqWrAxIqIiMhFuLm5WS2hoJ9x8DoRERGRTOwisdq0aRNCQ0OhUqmg0Whw4MCBZuN37NiB/v37Q6VSISIiAtnZ2SbLhRBYsWIFgoKC4OXlBa1Wi9OnT5vEVFZWIiEhAT4+PvDz80NSUhKuXr0qLV+5ciUUCkWjl7e3t3wNJyIiIqdi88QqKysLKSkpSEtLw6FDhzBkyBDodLomB9gVFBQgPj4eSUlJOHz4MGJjYxEbG4tjx45JMWvXrsWGDRuQkZGBoqIieHt7Q6fToa6uTopJSEjA8ePHkZubi927d2Pv3r1ITk6Wli9evBhlZWUmr4EDB+K3v/2t9XYGEREROTZhY1FRUeLxxx+Xfq6vrxfBwcEiPT3dbPz06dPF5MmTTco0Go147LHHhBBCGI1GoVarxYsvvigtr6qqEp6enmLr1q1CCCFOnDghAIji4mIp5p///KdQKBTihx9+MPu+R44cEQDE3r17W902g8EgAAiDwdDqdYiIiMi22nP+tmmP1Y0bN1BSUgKtViuVKZVKaLVaFBYWml2nsLDQJB4AdDqdFF9aWgq9Xm8S4+vrC41GI8UUFhbCz88Pw4cPl2K0Wi2USiWKiorMvu+bb76Jvn37YsyYMU225/r166iurjZ5ERERkeuwaWJVUVGB+vp6BAYGmpQHBgZCr9ebXUev1zcb3/BvSzHdu3c3We7u7o5u3bqZfd+6ujps3rwZSUlJzbYnPT0dvr6+0iskJKTZeCIiInIuNh9j5Qg++OADXLlyBXPmzGk2bsmSJTAYDNLr/PnzHVRDIiIisgc2Taz8/f3h5uaG8vJyk/Ly8vImZ0NVq9XNxjf821LM7YPjb926hcrKSrPv++abb+KBBx5o1At2O09PT/j4+Ji8iIiIyHXYNLHy8PDAsGHDkJeXJ5UZjUbk5eUhOjra7DrR0dEm8QCQm5srxYeFhUGtVpvEVFdXo6ioSIqJjo5GVVUVSkpKpJj8/HwYjUZoNBqTbZeWluKzzz5r8TIgERERkc1nXk9JScGcOXMwfPhwREVFYf369aipqUFiYiIAYPbs2ejRowfS09MBAAsWLEBMTAxeeuklTJ48Gdu2bcPBgwfx+uuvA/h52v6FCxfi+eefR3h4OMLCwrB8+XIEBwcjNjYWADBgwABMnDgR8+bNQ0ZGBm7evIn58+djxowZCA4ONqnfW2+9haCgINx///0dt1OIiIjIIdk8sYqLi8OlS5ewYsUK6PV6REZGIicnR7rsdu7cOSiV/+1YGzlyJLZs2YJly5Zh6dKlCA8Px65duzB48GAp5umnn0ZNTQ2Sk5NRVVWF0aNHIycnByqVSorZvHkz5s+fjwkTJkCpVGLatGnYsGGDSd2MRiMyMzMxd+5cPgKAiIiIWqQQQghbV8JZVVdXw9fXFwaDgeOtiIiIHER7zt+8K5CIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGTCxIqIiIhIJkysiIiIiGRi88Rq06ZNCA0NhUqlgkajwYEDB5qN37FjB/r37w+VSoWIiAhkZ2ebLBdCYMWKFQgKCoKXlxe0Wi1Onz5tElNZWYmEhAT4+PjAz88PSUlJuHr1aqPtrFu3Dn379oWnpyd69OiBP//5z/I0moiIiJySTROrrKwspKSkIC0tDYcOHcKQIUOg0+lw8eJFs/EFBQWIj49HUlISDh8+jNjYWMTGxuLYsWNSzNq1a7FhwwZkZGSgqKgI3t7e0Ol0qKurk2ISEhJw/Phx5ObmYvfu3di7dy+Sk5NN3mvBggV48803sW7dOnz99df46KOPEBUVZZ0dQURERM5B2FBUVJR4/PHHpZ/r6+tFcHCwSE9PNxs/ffp0MXnyZJMyjUYjHnvsMSGEEEajUajVavHiiy9Ky6uqqoSnp6fYunWrEEKIEydOCACiuLhYivnnP/8pFAqF+OGHH6QYd3d38fXXX7erfQaDQQAQBoOhXdshIiKijtOe87fNeqxu3LiBkpISaLVaqUypVEKr1aKwsNDsOoWFhSbxAKDT6aT40tJS6PV6kxhfX19oNBopprCwEH5+fhg+fLgUo9VqoVQqUVRUBAD4+OOP0bt3b+zevRthYWEIDQ3Fo48+isrKymbbdP36dVRXV5u8iIiIyHXYLLGqqKhAfX09AgMDTcoDAwOh1+vNrqPX65uNb/i3pZju3bubLHd3d0e3bt2kmO+++w7ff/89duzYgb///e/IzMxESUkJHnnkkWbblJ6eDl9fX+kVEhLSbDwRERE5F5sPXrdHRqMR169fx9///neMGTMG48aNw9/+9jd89tlnOHXqVJPrLVmyBAaDQXqdP3++A2tNREREtmazxMrf3x9ubm4oLy83KS8vL4darTa7jlqtbja+4d+WYm4fHH/r1i1UVlZKMUFBQXB3d0ffvn2lmAEDBgAAzp0712SbPD094ePjY/IiIiIi12GzxMrDwwPDhg1DXl6eVGY0GpGXl4fo6Giz60RHR5vEA0Bubq4UHxYWBrVabRJTXV2NoqIiKSY6OhpVVVUoKSmRYvLz82E0GqHRaAAAo0aNwq1bt3DmzBkp5ptvvgEA9OrVqz3NJiIiImdmhcH0rbZt2zbh6ekpMjMzxYkTJ0RycrLw8/MTer1eCCHErFmzRGpqqhS/f/9+4e7uLtatWydOnjwp0tLSRKdOncTRo0elmNWrVws/Pz/x4Ycfiq+++kpMmTJFhIWFidraWilm4sSJYujQoaKoqEjs27dPhIeHi/j4eGl5fX29uOeee8TYsWPFoUOHxMGDB4VGoxH33XefRe3jXYFERESOpz3nb5smVkIIsXHjRtGzZ0/h4eEhoqKixBdffCEti4mJEXPmzDGJ3759u+jbt6/w8PAQgwYNEp988onJcqPRKJYvXy4CAwOFp6enmDBhgjh16pRJzOXLl0V8fLzo0qWL8PHxEYmJieLKlSsmMT/88IOYOnWq6NKliwgMDBRz584Vly9ftqhtTKyIiIgcT3vO3wohhLBtn5nzqq6uhq+vLwwGA8dbEREROYj2nL95VyARERGRTJhYEREREcmEiZULKDPUouBMBcoMtbauChERkVNzt3UFyLqyis9hyc6jMApAqQDSp0YgbkRPW1eLiIjIKbHHyomVGWqlpAoAjAJYuvMYe66IiIishImVEyutqJGSqgb1QuBsxTXbVIiIiMjJMbFyYmH+3lAqTMvcFAqE+ne2TYWIiIicHBMrJxbk64X0qRFwU/ycXbkpFHhh6mAE+XrZuGZERETOiYPXnVzciJ4Y2zcAZyuuIdS/M5MqIiIiK2Ji5QKCfL2YUBEREXUAXgokIiIikgkTKyIiIiKZMLEiIiIikgkTKyIiIiKZMLEiIiIikgkTKyIiIiKZMLEiIiIikgkTKyIiIiKZMLEiIiIikgkTKyIiIiKZMLEiIiIikgkTKyIiIiKZMLEiIiIikgkTKyIiIiKZMLEiIiIikgkTKyIiIiKZMLEiIiIikgkTKyIiIiKZMLEiIiIikgkTKyIiIiKZMLEiIiIikgkTKyIiIiKZMLEiIiIikgkTKyIiIiKZ2EVitWnTJoSGhkKlUkGj0eDAgQPNxu/YsQP9+/eHSqVCREQEsrOzTZYLIbBixQoEBQXBy8sLWq0Wp0+fNomprKxEQkICfHx84Ofnh6SkJFy9elVafvbsWSgUikavL774Qr6GExERkVOxeWKVlZWFlJQUpKWl4dChQxgyZAh0Oh0uXrxoNr6goADx8fFISkrC4cOHERsbi9jYWBw7dkyKWbt2LTZs2ICMjAwUFRXB29sbOp0OdXV1UkxCQgKOHz+O3Nxc7N69G3v37kVycnKj9/v3v/+NsrIy6TVs2DD5dwIRERE5B2FjUVFR4vHHH5d+rq+vF8HBwSI9Pd1s/PTp08XkyZNNyjQajXjssceEEEIYjUahVqvFiy++KC2vqqoSnp6eYuvWrUIIIU6cOCEAiOLiYinmn//8p1AoFOKHH34QQghRWloqAIjDhw+3uW0Gg0EAEAaDoc3bICIioo7VnvO3TXusbty4gZKSEmi1WqlMqVRCq9WisLDQ7DqFhYUm8QCg0+mk+NLSUuj1epMYX19faDQaKaawsBB+fn4YPny4FKPVaqFUKlFUVGSy7Yceegjdu3fH6NGj8dFHHzXbnuvXr6O6utrkRURERK7DpolVRUUF6uvrERgYaFIeGBgIvV5vdh29Xt9sfMO/LcV0797dZLm7uzu6desmxXTp0gUvvfQSduzYgU8++QSjR49GbGxss8lVeno6fH19pVdISEhLu4CIiIiciLutK2Cv/P39kZKSIv08YsQI/Pjjj3jxxRfx0EMPmV1nyZIlJutUV1czuSIiInIhNu2x8vf3h5ubG8rLy03Ky8vLoVarza6jVqubjW/4t6WY2wfH37p1C5WVlU2+LwBoNBp8++23TS739PSEj4+PyYuIiIhch00TKw8PDwwbNgx5eXlSmdFoRF5eHqKjo82uEx0dbRIPALm5uVJ8WFgY1Gq1SUx1dTWKioqkmOjoaFRVVaGkpESKyc/Ph9FohEajabK+R44cQVBQkOUNJSIiIpdg80uBKSkpmDNnDoYPH46oqCisX78eNTU1SExMBADMnj0bPXr0QHp6OgBgwYIFiImJwUsvvYTJkydj27ZtOHjwIF5//XUAgEKhwMKFC/H8888jPDwcYWFhWL58OYKDgxEbGwsAGDBgACZOnIh58+YhIyMDN2/exPz58zFjxgwEBwcDAN555x14eHhg6NChAICdO3firbfewptvvtnBe4iIiIgchc0Tq7i4OFy6dAkrVqyAXq9HZGQkcnJypMHn586dg1L53461kSNHYsuWLVi2bBmWLl2K8PBw7Nq1C4MHD5Zinn76adTU1CA5ORlVVVUYPXo0cnJyoFKppJjNmzdj/vz5mDBhApRKJaZNm4YNGzaY1O25557D999/D3d3d/Tv3x9ZWVl45JFHrLxHiIiIyFEphBDC1pVwVtXV1fD19YXBYOB4KyIiIgfRnvO3zWdeJyIiInIWTKyIiIiIZMLEioiIiEgmTKyIiIiIZMLEioiIiEgmTKyIiIiIZMLEimRRZqhFwZkKlBlqbV0VIiIim7H5BKHk+LKKz2HJzqMwCkCpANKnRiBuRE9bV4uIiKjDsceK2qXMUCslVQBgFMDSncfYc0VERC6JiRW1S2lFjZRUNagXAmcrrtmmQkRERDbExIraJczfG0qFaZmbQoFQ/862qRAREZENMbGidgny9UL61Ai4KX7OrtwUCrwwdTCCfL1sXDMiIqKOx8Hr1G5xI3pibN8AnK24hlD/zkyqiIjIZTGxIlkE+XoxoSIiIpfHS4FEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlZEREREMmFiRURERCQTJlYkizJDLQrOVKDMUGvrqhAREdmMu60rQI4vq/gcluw8CqMAlAogfWoE4kb0tHW1iIiIOhx7rKhdygy1UlIFAEYBLN15jD1XRETkkphYUbuUVtRISVWDeiFwtuKabSpERERkQ0ysqF3C/L2hVJiWuSkUCPXvbJsK2TGOQyMicn5MrKhdgny9kD41Am6Kn7MrN4UCL0wdjCBfLxvXzL5kFZ/DqNX5mPlGEUatzkdW8TlbV4mIiKzALhKrTZs2ITQ0FCqVChqNBgcOHGg2fseOHejfvz9UKhUiIiKQnZ1tslwIgRUrViAoKAheXl7QarU4ffq0SUxlZSUSEhLg4+MDPz8/JCUl4erVq2bf79tvv0XXrl3h5+fXrnY6q7gRPbEvdTy2zrsX+1LHc+D6bTgOjYjIddg8scrKykJKSgrS0tJw6NAhDBkyBDqdDhcvXjQbX1BQgPj4eCQlJeHw4cOIjY1FbGwsjh07JsWsXbsWGzZsQEZGBoqKiuDt7Q2dToe6ujopJiEhAcePH0dubi52796NvXv3Ijk5udH73bx5E/Hx8RgzZoz8jXciQb5eiO5zB3uqzHCmcWi8nElE1DyFEEK0HGY9Go0GI0aMwCuvvAIAMBqNCAkJwRNPPIHU1NRG8XFxcaipqcHu3bulsnvvvReRkZHIyMiAEALBwcFYtGgRFi9eDAAwGAwIDAxEZmYmZsyYgZMnT2LgwIEoLi7G8OHDAQA5OTmYNGkSLly4gODgYGnbzzzzDH788UdMmDABCxcuRFVVVavbVl1dDV9fXxgMBvj4+LRl95ATKDPUYtTqfJPkyk2hwL7U8Q6ViHJaDSJyFe05f9u0x+rGjRsoKSmBVquVypRKJbRaLQoLC82uU1hYaBIPADqdToovLS2FXq83ifH19YVGo5FiCgsL4efnJyVVAKDVaqFUKlFUVCSV5efnY8eOHdi0aVOr2nP9+nVUV1ebvIicYRwaL2cSEbWOTScIraioQH19PQIDA03KAwMD8fXXX5tdR6/Xm43X6/XS8oay5mK6d+9ustzd3R3dunWTYi5fvoy5c+fi3XffbXW2mp6ejmeffbZVseRa4kb0xNi+AThbcQ2h/p0dKqkCmr+c6WhtISKyJpuPsbJX8+bNw8yZMzF27NhWr7NkyRIYDAbpdf78eSvWkByNI49D47QaREStY9PEyt/fH25ubigvLzcpLy8vh1qtNruOWq1uNr7h35Zibh8cf+vWLVRWVkox+fn5WLduHdzd3eHu7o6kpCQYDAa4u7vjrbfeMls3T09P+Pj4mLyInIEzXM4kIuoINk2sPDw8MGzYMOTl5UllRqMReXl5iI6ONrtOdHS0STwA5ObmSvFhYWFQq9UmMdXV1SgqKpJioqOjUVVVhZKSEikmPz8fRqMRGo0GwM/jsI4cOSK9Vq1aha5du+LIkSN4+OGH5dkBRA6E02oQEbXM5g9hTklJwZw5czB8+HBERUVh/fr1qKmpQWJiIgBg9uzZ6NGjB9LT0wEACxYsQExMDF566SVMnjwZ27Ztw8GDB/H6668DABQKBRYuXIjnn38e4eHhCAsLw/LlyxEcHIzY2FgAwIABAzBx4kTMmzcPGRkZuHnzJubPn48ZM2ZIdwQOGDDApJ4HDx6EUqnE4MGDO2jPENmfIF8v9lIRETXD4sQqOzsbO3fuRLdu3fC73/0O/fv3l5b99NNPmDZtGvLz81u9vbi4OFy6dAkrVqyAXq9HZGQkcnJypMHn586dg1L53461kSNHYsuWLVi2bBmWLl2K8PBw7Nq1yyThefrpp1FTU4Pk5GRUVVVh9OjRyMnJgUqlkmI2b96M+fPnY8KECVAqlZg2bRo2bNhg6e4gIiIiklg0j9WWLVswe/ZsTJw4EQaDAQcPHsSbb76JhIQEAD+PYwoODkZ9fb3VKuxIOI8VERGR42nP+duiHqsXX3wRf/nLX/Dkk08CALZv347f/e53qKurQ1JSkkVvTERERORsLEqsTp8+jQcffFD6efr06QgICMBDDz2EmzdvclA3ERERuTSLEisfHx+Ul5cjLCxMKhs/fjx2796NBx54ABcuXJC9gkRERESOwqLpFqKiovDPf/6zUXlMTAw+/vhjrF+/Xq56ERERETkcixKrP/7xjyZ31v3SuHHj8PHHH2P27NmyVIyIiIioKWWGWhScqbC7Z5ZadFcgWYZ3BRIREckvq/ic9GB4pQJInxoh66TF7Tl/W9RjpVQq4ebm1uzL3d3mc44SERGRkyoz1EpJFQAYBbB05zG76bmyKAv64IMPmlxWWFiIDRs2wGg0trtSREREROaUVtRISVWDeiFwtuKaXTwZwqLEasqUKY3KTp06hdTUVHz88cdISEjAqlWrZKscERER0S+F+XtDqYBJcuWmUCDUv7PtKvULbX4I848//oh58+YhIiICt27dwpEjR/DOO++gV69ectaPiIiISBLk64X0qRFwUygA/JxUvTB1sF30VgFteFagwWDACy+8gI0bNyIyMhJ5eXkYM2aMNepGRERELqLMUIvSihqE+Xu3mCTFjeiJsX0DcLbiGkL9O9tNUgVYmFitXbsWa9asgVqtxtatW81eGiRqDUt+gYiIyLm15S6/IF8vuzx/WDTdglKphJeXF7RaLdzc3JqM27lzpyyVc3ScbsE8a98mS0REjqPMUItRq/MbjZnalzreZolThz2Eefbs2VD83zVNorZo6jbZsX0D7PIvDyIisq623uVnr1c+LEqsMjMzrVQNcnSt/YDb+22yRETUsdpyl589X/lo812BRA2yis9h1Op8zHyjCKNW5yOr+FyTsQ2/QL9kT7fJEhFRx7L0Lj+nmiCU6HaWXtoL8vXCw0N74P1DP0hlsUODHbK3yl67oYmIHE3ciJ7or+6K4rM/YUTorzAk5FdNxtr7lQ8mVtQuln7Aywy1+ODwDyZluw7/iMW6fnbxC9Fa9twNTUTkaCz5TnXaCUKJAMsv7TWXiDkKe++GJiJyJJZ+pzrdBKFEv9TwAV+68xjqhWjxA27vf2m0hr13QxMROZK2fKc6zQShROZY8gG3NBGzR86QHBIR2Yu2fqc6xQShZBlOENq0MkOtXf6l0VpZxecaJYccY0VE1Db29p3anvM3EysrYmLl3Bw9OSQisif29J3aYTOvE9F/2Vs3NKd/ICJHZm/fqW3FxIrICXD6ByIi+8DpFogcHKd/ICKyH0ysiBycM8wNRkTkLJhYETk4Pn+RiMh+MLEicnD2PgsxEZEr4eB1Iidgz7MQExG5EiZWRE7CWW5VJiJyZLwUSERERCQTJlZEREQupsxQi4IzFZyWxQp4KZCIiMiFdNSEwq76NAi76LHatGkTQkNDoVKpoNFocODAgWbjd+zYgf79+0OlUiEiIgLZ2dkmy4UQWLFiBYKCguDl5QWtVovTp0+bxFRWViIhIQE+Pj7w8/NDUlISrl69Ki0/deoUxo8fj8DAQKhUKvTu3RvLli3DzZs35Ws4ERFRB+qoCYWzis9h1Op8zHyjCKNW5yOr+Jys27dnNk+ssrKykJKSgrS0NBw6dAhDhgyBTqfDxYsXzcYXFBQgPj4eSUlJOHz4MGJjYxEbG4tjx45JMWvXrsWGDRuQkZGBoqIieHt7Q6fToa6uTopJSEjA8ePHkZubi927d2Pv3r1ITk6Wlnfq1AmzZ8/Gp59+ilOnTmH9+vV44403kJaWZr2dQUREZEUdMaGwqz8NQiGEEC2HWY9Go8GIESPwyiuvAACMRiNCQkLwxBNPIDU1tVF8XFwcampqsHv3bqns3nvvRWRkJDIyMiCEQHBwMBYtWoTFixcDAAwGAwIDA5GZmYkZM2bg5MmTGDhwIIqLizF8+HAAQE5ODiZNmoQLFy4gODjYbF1TUlJQXFyM//znP61qW3ueju1oXLXLl4jIkZQZajFqdb5JcuWmUGBf6njZvrsLzlRg5htFjcq3zrsX0X3ukOU9rK0952+b9ljduHEDJSUl0Gq1UplSqYRWq0VhYaHZdQoLC03iAUCn00nxpaWl0Ov1JjG+vr7QaDRSTGFhIfz8/KSkCgC0Wi2USiWKihp/GADg22+/RU5ODmJiYppsz/Xr11FdXW3ycgWu3OVLRORIOmJCYVd/GoRNE6uKigrU19cjMDDQpDwwMBB6vd7sOnq9vtn4hn9biunevbvJcnd3d3Tr1q3R+44cORIqlQrh4eEYM2YMVq1a1WR70tPT4evrK71CQkKajHUWrt7lS0TkaOJG9MS+1PHYOu9e7EsdL/vAdVd/GgTvCmxBVlYWrly5gi+//BJPPfUU1q1bh6efftps7JIlS5CSkiL9XF1d7fTJVXPX613ll4iIyNFYOqGwpcM9XPlpEDZNrPz9/eHm5oby8nKT8vLycqjVarPrqNXqZuMb/i0vL0dQUJBJTGRkpBRz++D4W7duobKystH7NiRGAwcORH19PZKTk7Fo0SK4ubk1qpunpyc8PT1barZTaejyvf16vat0+RIRObu2Ts/gqk+DsOmlQA8PDwwbNgx5eXlSmdFoRF5eHqKjo82uEx0dbRIPALm5uVJ8WFgY1Gq1SUx1dTWKioqkmOjoaFRVVaGkpESKyc/Ph9FohEajabK+RqMRN2/ehNFotLyxTsrVu3yJiJwZh3tYzuaXAlNSUjBnzhwMHz4cUVFRWL9+PWpqapCYmAgAmD17Nnr06IH09HQAwIIFCxATE4OXXnoJkydPxrZt23Dw4EG8/vrrAACFQoGFCxfi+eefR3h4OMLCwrB8+XIEBwcjNjYWADBgwABMnDgR8+bNQ0ZGBm7evIn58+djxowZ0h2BmzdvRqdOnRAREQFPT08cPHgQS5YsQVxcHDp16tTxO8qOuXKXLxGRM+NwD8vZPLGKi4vDpUuXsGLFCuj1ekRGRiInJ0cafH7u3Dkolf/tWBs5ciS2bNmCZcuWYenSpQgPD8euXbswePBgKebpp59GTU0NkpOTUVVVhdGjRyMnJwcqlUqK2bx5M+bPn48JEyZAqVRi2rRp2LBhg7Tc3d0da9aswTfffAMhBHr16oX58+fjj3/8YwfsFcfjql2+RETOjMM9LGfzeaycmSvNY0VERM4pq/gclu48hnohpOEe1ngEjj1pz/nb5j1WREREZL843MMyTKyIiIioWRzu0Xo2f1YgkaMqM9Si4EwF744hIiIJe6yI2qCt87oQETkiPg+29ZhYEVmoqXldxvYN4BcOETkd/iFpGV4KJLJQc/O6EBE5E04QajkmVkQWcvUntxOR6+AfkpZjYkVkIT7Gh4hcBf+QtBzHWDkgDiK0Pc7rQkSuoOEPydsnCOV3XtOYWDkYDiK0H5zXhYhcAf+QtAwvBToQDiIkIiJbCPL1QnSfO5hUtQITKwfCQYRERET2jYmVA+EgQiL7xxn5yRb4ubMfHGPlQDiIkMi+cQwk2QI/d/ZFIYQQLYdRW1RXV8PX1xcGgwE+Pj6ybbfMUMtBhER2psxQi1Gr800u17spFNiXOp6/p2Q1/NxZR3vO3+yxckC8G43I/jQ3BpK/r2Qt/NzZH46xIiKSAcdAki14e7iZLe/swdO7rXDPExHJgDPyky3U3Kg3W37thrGDa0INeCmQiEgmnEiROlpDT+ntY6zYU2o77LEiIpIRJ1KkjsSeUvvDHisiIiIHxp5S+8LEioiIyMHxbnH7wUuB1EhbZvDlrL9ERPLhd6rjYo8VmWjLDL6c9ZeISD78TnVs7LEiSZmhVvplBn6+y2TpzmPN/sXUlnWIiMg8fqc6PiZWJGluBl851yEicjWtvbTH71THx0uBJGnLfCicQ4WIqHmWXNrjd6rjY48VSdoyHwrnUCEiapqll/b4ner42GNFJtoyHwrnUCEiMq8tD0nmd6pjY2JFjbRlPhTOoUJE1FhbL+3xO9Vx8VIgUQfhvDREroeX9lwPe6yIOgDnpSFyXby051rYY0VkZZyXhoj4cG7XYReJ1aZNmxAaGgqVSgWNRoMDBw40G79jxw70798fKpUKERERyM7ONlkuhMCKFSsQFBQELy8vaLVanD592iSmsrISCQkJ8PHxgZ+fH5KSknD16lVp+Z49ezBlyhQEBQXB29sbkZGR2Lx5s3yNJpfBeWmIiFyHzROrrKwspKSkIC0tDYcOHcKQIUOg0+lw8eJFs/EFBQWIj49HUlISDh8+jNjYWMTGxuLYsWNSzNq1a7FhwwZkZGSgqKgI3t7e0Ol0qKurk2ISEhJw/Phx5ObmYvfu3di7dy+Sk5NN3ufuu+/G+++/j6+++gqJiYmYPXs2du/ebb2dQU6pYfDqL3FeGiIi56QQQoiWw6xHo9FgxIgReOWVVwAARqMRISEheOKJJ5CamtooPi4uDjU1NSYJzr333ovIyEhkZGRACIHg4GAsWrQIixcvBgAYDAYEBgYiMzMTM2bMwMmTJzFw4EAUFxdj+PDhAICcnBxMmjQJFy5cQHBwsNm6Tp48GYGBgXjrrbda1bbq6mr4+vrCYDDAx8fHov1CziWr+ByW7jyGeiGkwascY0VEZJ/ac/62aY/VjRs3UFJSAq1WK5UplUpotVoUFhaaXaewsNAkHgB0Op0UX1paCr1ebxLj6+sLjUYjxRQWFsLPz09KqgBAq9VCqVSiqKioyfoaDAZ069bN8oaSy4sb0RP7Usdj67x7sS91PJMqIiInZdO7AisqKlBfX4/AwECT8sDAQHz99ddm19Hr9Wbj9Xq9tLyhrLmY7t27myx3d3dHt27dpJjbbd++HcXFxXjttdeabM/169dx/fp16efq6uomY8n1cF4aIiLnZ/MxVo7gs88+Q2JiIt544w0MGjSoybj09HT4+vpKr5CQkA6sJREREdmaTRMrf39/uLm5oby83KS8vLwcarXa7DpqtbrZ+IZ/W4q5fXD8rVu3UFlZ2eh9P//8czz44IN4+eWXMXv27Gbbs2TJEhgMBul1/vz5ZuOJiIjIudg0sfLw8MCwYcOQl5cnlRmNRuTl5SE6OtrsOtHR0SbxAJCbmyvFh4WFQa1Wm8RUV1ejqKhIiomOjkZVVRVKSkqkmPz8fBiNRmg0Gqlsz549mDx5MtasWWNyx2BTPD094ePjY/IiIiIiFyJsbNu2bcLT01NkZmaKEydOiOTkZOHn5yf0er0QQohZs2aJ1NRUKX7//v3C3d1drFu3Tpw8eVKkpaWJTp06iaNHj0oxq1evFn5+fuLDDz8UX331lZgyZYoICwsTtbW1UszEiRPF0KFDRVFRkdi3b58IDw8X8fHx0vL8/HzRuXNnsWTJElFWVia9Ll++3Oq2GQwGAUAYDIb27KIO92PVNbH/20vix6prtq4KERFRh2vP+dvmiZUQQmzcuFH07NlTeHh4iKioKPHFF19Iy2JiYsScOXNM4rdv3y769u0rPDw8xKBBg8Qnn3xistxoNIrly5eLwMBA4enpKSZMmCBOnTplEnP58mURHx8vunTpInx8fERiYqK4cuWKtHzOnDkCQKNXTExMq9vliInVtgPfi7DU3aLXM7tFWOpuse3A97auEhERUYdqz/nb5vNYOTNHm8eqzFCLUavzGz2FfV/qeN7NRkROq8xQi9KKGoT5e/O7jgC07/zNhzCTpLlHr/DLhoicER+QTnLjdAsk4aNXyNGUGWpRcKaCD7SmNuED0skamFiRJMjXC+lTI+Cm+Dm7anj0CnuryB5lFZ/DqNX5mPlGEUatzkdW8TlbV4kcDB+QTtbAS4FkIm5ET4ztG4CzFdcQ6t+ZSRXZpaZ6Gsb2DXD6zyzHA8mnoZf+9nGl7KWn9mBiRY3w0Stk71x1PCDHA8mroZf+9gekO/NniKyPiRURORxX7Glw5V46a2IvPcmNY6yIyOE09DQ0fIEpAafvaeB4IOsJ8vVCdJ87nPrzQx2HiRU5BN79RWYpbvvXifGuXSLHwMSK7B7v/qLbueJt8rxrl8gxcIwV2TWOKyFzXHXwOscDEdk/JlZk11z1BErNc8XB6w141y6RfeOlQLJrHFdC5vCyGBHZK/ZYkV3jPDPUFF4WIyJ7xMSK7J6rnkA5w3bLeFnMMfGzTc6MiRU5BFc7gXKGbevgCd32+NkmZ8cxVkR2xhWnEugInLbD9vjZJlfAxIrIznCGbfnxhG4f+Nl2La46sTMvBRLZGVeeSsBaOG2HfXCWzzYvKbfMlS/5sseKyM5wKgH5cdoO++AMn21eUm6Zq/cQs8eKyA656p2Q1sJpO+yHI3+2+SSI1nH1HmImVkR2ytXuhLQ2Rz6hOyMB0XKQnXH1hKG1nOWSb1sxsSIil8Fk1fYceexNRyYMjjyOy9V7iBVCCMf7s8FBVFdXw9fXFwaDAT4+PrauDhGRTZUZajFqdX6jxGRf6niHOelmFZ9rlDDInRg6cvL5S2WGWoftIW7P+Zs9VkRE1CGc4VKatS8pO9M4LlftIWZiRUREHcJZxt5YM2FwhuTT1XG6BaI2ctXJ74jayhmmW7A2Tg3i+NhjRdQGzjIGgqij8e7M5rn6wG9nwMHrVsTB687JGQbg2itHvhOKSE6OPPDbGXDwOlEH4hgI62AvINF/uerAb2fAMVZEFuIYCPm5+iMwXA3HJ5IzY2JFZCEOwJVfc72A5Fz4rD1ydrwUSNQGHIArL2e5DZ+a50xzNBE1hT1WRG0U5OuF6D538IQgA/YCugb2TJIrYI8VEdkF9gI6P/ZMkiuweY/Vpk2bEBoaCpVKBY1GgwMHDjQbv2PHDvTv3x8qlQoRERHIzs42WS6EwIoVKxAUFAQvLy9otVqcPn3aJKayshIJCQnw8fGBn58fkpKScPXqVWl5XV0d5s6di4iICLi7uyM2Nla29hJR09gL6NzYM0muwKaJVVZWFlJSUpCWloZDhw5hyJAh0Ol0uHjxotn4goICxMfHIykpCYcPH0ZsbCxiY2Nx7NgxKWbt2rXYsGEDMjIyUFRUBG9vb+h0OtTV1UkxCQkJOH78OHJzc7F7927s3bsXycnJ0vL6+np4eXnhySefhFartd4OICJyMXEjemJf6nhsnXcv9qWO55Qa5HRsOkGoRqPBiBEj8MorrwAAjEYjQkJC8MQTTyA1NbVRfFxcHGpqarB7926p7N5770VkZCQyMjIghEBwcDAWLVqExYsXAwAMBgMCAwORmZmJGTNm4OTJkxg4cCCKi4sxfPhwAEBOTg4mTZqECxcuIDg42OQ9586di6qqKuzatcvi9nGCUCJyBZzYlZxNe87fNuuxunHjBkpKSkx6hJRKJbRaLQoLC82uU1hY2KgHSafTSfGlpaXQ6/UmMb6+vtBoNFJMYWEh/Pz8pKQKALRaLZRKJYqKimRrHxGRK+D0CUSmbJZYVVRUoL6+HoGBgSblgYGB0Ov1ZtfR6/XNxjf821JM9+7dTZa7u7ujW7duTb5va12/fh3V1dUmLyIiZ8WJXYkas/ngdWeSnp4OX19f6RUSEmLrKhERWQ2nTyBqzGaJlb+/P9zc3FBeXm5SXl5eDrVabXYdtVrdbHzDvy3F3D44/tatW6isrGzyfVtryZIlMBgM0uv8+fPt2h4RkT3j452IGrNZYuXh4YFhw4YhLy9PKjMajcjLy0N0dLTZdaKjo03iASA3N1eKDwsLg1qtNomprq5GUVGRFBMdHY2qqiqUlJRIMfn5+TAajdBoNO1qk6enJ3x8fExeRETOitMnEDVm0wlCU1JSMGfOHAwfPhxRUVFYv349ampqkJiYCACYPXs2evTogfT0dADAggULEBMTg5deegmTJ0/Gtm3bcPDgQbz++usAAIVCgYULF+L5559HeHg4wsLCsHz5cgQHB0tzUQ0YMAATJ07EvHnzkJGRgZs3b2L+/PmYMWOGyR2BJ06cwI0bN1BZWYkrV67gyJEjAIDIyMgO2z9ERB3N0jv8OLErkSmbJlZxcXG4dOkSVqxYAb1ej8jISOTk5EiDz8+dOwel8r+daiNHjsSWLVuwbNkyLF26FOHh4di1axcGDx4sxTz99NOoqalBcnIyqqqqMHr0aOTk5EClUkkxmzdvxvz58zFhwgQolUpMmzYNGzZsMKnbpEmT8P3330s/Dx06FMDPE5ASuSreVu/csorPSYPRlQogfWpEq+aZCvL14ueB6P/YdB4rZ8d5rBwHE4aWtfWkS46hzFCLUavzGz1uZl/qeP5OkMtpz/mbzwokl8eEoWVN3VY/tm8AT7pOork7/HiMiVqP0y2QS+M8PK3D2+qdn7eHm9nyzh48TRBZgr8x5NKYMLQOb6tvvTJDLQrOVDhccl5zo95s+bUbxg6uCZFjY2JFLo0JQ+vwtvrWceTHu/B3gUgeHLxuRRy87hiyis9h6c5jqBdCShg4xsq8MkMtb6tvgjMM/ubvAtHPOHidqB04D0/r8bb6pjnD4G/+LhC1HxMrIjBhcFT2NE1Gw6W023usHO1SGn8XiNqHY6yIyCHZ23gmjkMjIoBjrKyKY6yIrMOexzNxHBqR4+MYKyJyKfY8nomX0ohcGy8FEpHD4dQA1tOWebgcde6ujsR95DrYY0VEdqO1g9EbxjPdPjUAe4rapy2Pd+IjoVqWVXwOqe8fhQCgALB6muPtI3u6UcTecYyVFXGMFVHrteUEzfFM8mnLuLWOGuvmyCf1MkMtRqbn45cnWgWAgiW/dpi2uGLy3J7zNy8FEpHNtfWZjUG+Xojuc4fDnKDsWVse79QRj4Syt7s/LXXwbCVu770QAErO/mSL6liMz1O1HBMrIrK5tp6gXXHcirXa3JZxa9Ye6+YMJ3WFQtFEeQdXpI34PFXLMbEiIptrywna0Xsy2sKabW7LPFzWnrvLGU7qw3r9CrfnUAoFcE+vX9mkPpbijSKW4+B1IrI5SwejN9WTMbZvgNNeFuyINrflkTbWfAyOM8xmH+TrhdXTIhqNUXKUzylvFLEcEysisguWnKDteR4ra+moNrdlHi5rzd3lLCd1R38Go6PXv6MxsSIiu9HaE7Qz9GRYytvDzWx5Zw/nHtHhLCd1R5841tHr35Gc+zeSiJySKz6Xr+ZGvdnyazeMHVyTjse7P8mRsMeKiBySs/RktJYr9tIROSL2WBHZKVecSsBSrtST4Yq9dESOiD1WRHaorbOQO+rs1NQ6rtZLR+SImFgR2Zm23Fbvio+ccFUcRExk33gpkMjOWDopojPMTk3Ww0vKRB2LPVZEdsbSQcquOKcTtU5H9WTyMjTRf7HHisjOWDpImY+ccC2t7YHqqJ5MV3y0EFFz2GNFZIcsGaTsLLNTU8ss6YHqiJ5MV3y0EFFLmFgR2SlLBim35W4xXr6xji/P/4QDZysRFdoNQ0Lke9CupUlMR8x7xcvQRI0xsSJyEpYkYryL0DoWbT+C9w/9IP087Z4eeGl6pCzbtjSJCfL1wsNDe5jUJ3ZocIufEUsSbk5aStQYx1gRuRjeRWgdX57/ySSJAYD3D/2AL8//JMv2LR1LV2aoxQeHTeuz6/CPzR5nS8dLcdJSosaYWLkA3m7tGlp7nC2dzqEj6uQMDpytNFt+8GzziVVr95GlSUxHTdsRN6In9qWOx9Z592Jf6nj2fJLL46VAJ8dLPq7BkuPcUZdvXO2z19vf22x5c/s1q/gcUt8/CgFAAWD1tOb3kSVj6Tpy2g5OWkr0X+yxcmK85OMaLD3OHXH5xhU/e14e5v9O7ezRyWx5maFWSqoAQABIff9oq3quWvN8RE7bQWQbdpFYbdq0CaGhoVCpVNBoNDhw4ECz8Tt27ED//v2hUqkQERGB7Oxsk+VCCKxYsQJBQUHw8vKCVqvF6dOnTWIqKyuRkJAAHx8f+Pn5ISkpCVevXjWJ+eqrrzBmzBioVCqEhIRg7dq18jS4g3TkJR+ynbYcZ2tfvnHFz56licnBs5W4bRdBACiR6dIhYNlx5ngpInnYPLHKyspCSkoK0tLScOjQIQwZMgQ6nQ4XL140G19QUID4+HgkJSXh8OHDiI2NRWxsLI4dOybFrF27Fhs2bEBGRgaKiorg7e0NnU6Huro6KSYhIQHHjx9Hbm4udu/ejb179yI5OVlaXl1djd/85jfo1asXSkpK8OKLL2LlypV4/fXXrbczZMa/QF1DW49za3s+OrJOjszSxEShUDRR3vR7tGUyTkuOM8dLEbWfQghx+x9NHUqj0WDEiBF45ZVXAABGoxEhISF44oknkJqa2ig+Li4ONTU12L17t1R27733IjIyEhkZGRBCIDg4GIsWLcLixYsBAAaDAYGBgcjMzMSMGTNw8uRJDBw4EMXFxRg+fDgAICcnB5MmTcKFCxcQHByMV199FX/605+g1+vh4eEBAEhNTcWuXbvw9ddft6pt1dXV8PX1hcFggI+PT7v2U1tlFZ9rNHEkvyydjz0eZ3usU0coM9S2agxUmaEWI9PzTXqtFAqgIPXXZtcrM9Ri1Or8RmOm9qWOZ68Skczac/626eD1GzduoKSkBEuWLJHKlEoltFotCgsLza5TWFiIlJQUkzKdToddu3YBAEpLS6HX66HVaqXlvr6+0Gg0KCwsxIwZM1BYWAg/Pz8pqQIArVYLpVKJoqIiPPzwwygsLMTYsWOlpKrhfdasWYOffvoJv/pV44n/rl+/juvXr0s/V1dXW7ZDrKAtE0eS47HH42yPdeoIrR3IHeTrhdXTIhoN8G/LXX6usm+JHIFNE6uKigrU19cjMDDQpDwwMLDJXiG9Xm82Xq/XS8sbypqL6d69u8lyd3d3dOvWzSQmLCys0TYalplLrNLT0/Hss8823WAb4R07rsEej7M91smeWPMuPyKyDZuPsXImS5YsgcFgkF7nz5+3dZWIyM5Z6y4/IrINm/ZY+fv7w83NDeXl5Sbl5eXlUKvVZtdRq9XNxjf8W15ejqCgIJOYyMhIKeb2wfG3bt1CZWWlyXbMvc8v3+N2np6e8PT0bLK9RETt4aqXV4kciU17rDw8PDBs2DDk5eVJZUajEXl5eYiOjja7TnR0tEk8AOTm5krxYWFhUKvVJjHV1dUoKiqSYqKjo1FVVYWSkhIpJj8/H0ajERqNRorZu3cvbt68afI+/fr1M3sZkIioI1jzbk4ikoGwsW3btglPT0+RmZkpTpw4IZKTk4Wfn5/Q6/VCCCFmzZolUlNTpfj9+/cLd3d3sW7dOnHy5EmRlpYmOnXqJI4ePSrFrF69Wvj5+YkPP/xQfPXVV2LKlCkiLCxM1NbWSjETJ04UQ4cOFUVFRWLfvn0iPDxcxMfHS8urqqpEYGCgmDVrljh27JjYtm2b6Ny5s3jttdda3TaDwSAACIPB0J5dRERERB2oPedvmydWQgixceNG0bNnT+Hh4SGioqLEF198IS2LiYkRc+bMMYnfvn276Nu3r/Dw8BCDBg0Sn3zyiclyo9Eoli9fLgIDA4Wnp6eYMGGCOHXqlEnM5cuXRXx8vOjSpYvw8fERiYmJ4sqVKyYxX375pRg9erTw9PQUPXr0EKtXr7aoXUysiIiIHE97zt82n8fKmdnDPFZERERkmfacv3lXIBEREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERyYSJFREREZFMmFgRERERycSmD2F2dg1zr1ZXV9u4JkRERNRaDefttsyhzsTKiq5cuQIACAkJsXFNiIiIyFJXrlyBr6+vRevwkTZWZDQa8eOPP6Jr165QKBSybbe6uhohISE4f/68Uz8qh+10Lmync3GFdrpCGwG20xwhBK5cuYLg4GAolZaNmmKPlRUplUrceeedVtu+j4+PU/8SNGA7nQvb6VxcoZ2u0EaA7bydpT1VDTh4nYiIiEgmTKyIiIiIZMLEygF5enoiLS0Nnp6etq6KVbGdzoXtdC6u0E5XaCPAdsqNg9eJiIiIZMIeKyIiIiKZMLEiIiIikgkTKyIiIiKZMLEiIiIikgkTKzuxadMmhIaGQqVSQaPR4MCBA83Gr1+/Hv369YOXlxdCQkLwxz/+EXV1de3aprXJ3caVK1dCoVCYvPr372/tZrTIknbevHkTq1atQp8+faBSqTBkyBDk5OS0a5sdRe522uPx3Lt3Lx588EEEBwdDoVBg165dLa6zZ88e3HPPPfD09MRdd92FzMzMRjH2djyt0U5nOJ5lZWWYOXMm+vbtC6VSiYULF5qN27FjB/r37w+VSoWIiAhkZ2fLX/lWskYbMzMzGx1LlUplnQa0kqXt3LlzJ+677z4EBATAx8cH0dHR+Ne//tUoTo7fTSZWdiArKwspKSlIS0vDoUOHMGTIEOh0Oly8eNFs/JYtW5Camoq0tDScPHkSf/vb35CVlYWlS5e2eZvWZo02AsCgQYNQVlYmvfbt29cRzWmSpe1ctmwZXnvtNWzcuBEnTpzA73//ezz88MM4fPhwm7fZEazRTsD+jmdNTQ2GDBmCTZs2tSq+tLQUkydPxvjx43HkyBEsXLgQjz76qMkXuD0eT2u0E3D843n9+nUEBARg2bJlGDJkiNmYgoICxMfHIykpCYcPH0ZsbCxiY2Nx7NgxOaveatZoI/DzbOW/PJbff/+9XFVuE0vbuXfvXtx3333Izs5GSUkJxo8fjwcffNA637WCbC4qKko8/vjj0s/19fUiODhYpKenm41//PHHxa9//WuTspSUFDFq1Kg2b9ParNHGtLQ0MWTIEKvUt60sbWdQUJB45ZVXTMqmTp0qEhIS2rzNjmCNdtrj8fwlAOKDDz5oNubpp58WgwYNMimLi4sTOp1O+tkej+cvydVOZzievxQTEyMWLFjQqHz69Oli8uTJJmUajUY89thj7axh+8nVxrffflv4+vrKVi+5WdrOBgMHDhTPPvus9LNcv5vssbKxGzduoKSkBFqtVipTKpXQarUoLCw0u87IkSNRUlIidVF+9913yM7OxqRJk9q8TWuyRhsbnD59GsHBwejduzcSEhJw7tw56zWkBW1p5/Xr1xt1qXt5eUl/2dvbsWxrnVpqZwN7Op5tUVhYaLJfAECn00n7xR6PZ1u01M4Gjn48W6O1+8LRXb16Fb169UJISAimTJmC48eP27pK7WI0GnHlyhV069YNgLy/m0ysbKyiogL19fUIDAw0KQ8MDIRerze7zsyZM7Fq1SqMHj0anTp1Qp8+fTBu3DjpMllbtmlN1mgjAGg0GmRmZiInJwevvvoqSktLMWbMGFy5csWq7WlKW9qp0+nwl7/8BadPn4bRaERubi527tyJsrKyNm/T2qzRTsD+jmdb6PV6s/uluroatbW1dnk826KldgLOcTxbo6l94UjHsyX9+vXDW2+9hQ8//BDvvvsujEYjRo4ciQsXLti6am22bt06XL16FdOnTwcg73ctEysHtGfPHrzwwgv43//9Xxw6dAg7d+7EJ598gueee87WVZNNa9p4//3347e//S3uvvtu6HQ6ZGdno6qqCtu3b7dhzS3z17/+FeHh4ejfvz88PDwwf/58JCYmQql0rl/N1rTTGY4n/RePp/OIjo7G7NmzERkZiZiYGOzcuRMBAQF47bXXbF21NtmyZQueffZZbN++Hd27d5d9++6yb5Es4u/vDzc3N5SXl5uUl5eXQ61Wm11n+fLlmDVrFh599FEAQEREBGpqapCcnIw//elPbdqmNVmjjeYSDz8/P/Tt2xfffvut/I1ohba0MyAgALt27UJdXR0uX76M4OBgpKamonfv3m3eprVZo53m2Pp4toVarTa7X3x8fODl5QU3Nze7O55t0VI7zXHE49kaTe0LRzqelurUqROGDh3qkMdy27ZtePTRR7Fjxw6Ty35yftc615/FDsjDwwPDhg1DXl6eVGY0GpGXl4fo6Giz61y7dq1RYuHm5gYAEEK0aZvWZI02mnP16lWcOXMGQUFBMtXcMu3Z7yqVCj169MCtW7fw/vvvY8qUKe3eprVYo53m2Pp4tkV0dLTJfgGA3Nxcab/Y4/Fsi5baaY4jHs/WaMu+cHT19fU4evSowx3LrVu3IjExEVu3bsXkyZNNlsn6u2nxMHqS3bZt24Snp6fIzMwUJ06cEMnJycLPz0/o9XohhBCzZs0SqampUnxaWpro2rWr2Lp1q/juu+/Ep59+Kvr06SOmT5/e6m12NGu0cdGiRWLPnj2itLRU7N+/X2i1WuHv7y8uXrzY4e1rYGk7v/jiC/H++++LM2fOiL1794pf//rXIiwsTPz000+t3qYtWKOd9ng8r1y5Ig4fPiwOHz4sAIi//OUv4vDhw+L7778XQgiRmpoqZs2aJcV/9913onPnzuKpp54SJ0+eFJs2bRJubm4iJydHirHH42mNdjrD8RRCSPHDhg0TM2fOFIcPHxbHjx+Xlu/fv1+4u7uLdevWiZMnT4q0tDTRqVMncfTo0Q5tWwNrtPHZZ58V//rXv8SZM2dESUmJmDFjhlCpVCYxHc3Sdm7evFm4u7uLTZs2ibKyMulVVVUlxcj1u8nEyk5s3LhR9OzZU3h4eIioqCjxxRdfSMtiYmLEnDlzpJ9v3rwpVq5cKfr06SNUKpUICQkRf/jDH0xOUi1t0xbkbmNcXJwICgoSHh4eokePHiIuLk58++23Hdgi8yxp5549e8SAAQOEp6enuOOOO8SsWbPEDz/8YNE2bUXudtrj8fzss88EgEavhrbNmTNHxMTENFonMjJSeHh4iN69e4u333670Xbt7Xhao53OcjzNxffq1cskZvv27aJv377Cw8NDDBo0SHzyyScd0yAzrNHGhQsXSp/XwMBAMWnSJHHo0KGOa5QZlrYzJiam2fgGcvxuKoRo4roKEREREVmEY6yIiIiIZMLEioiIiEgmTKyIiIiIZMLEioiIiEgmTKyIiIiIZMLEioiIiEgmTKyIiIiIZMLEiojIhezZswcKhQJVVVW2rgqRU2JiRURWMXfuXCgUCqxevdqkfNeuXVAoFNLPQgi88cYbiI6Oho+PD7p06YJBgwZhwYIFrX7I67Vr17BkyRL06dMHKpUKAQEBiImJwYcffijFhIaGYv369bK0zdoa9p1CoUCnTp0QFhaGp59+GnV1dRZtZ9y4cVi4cKFJ2ciRI1FWVgZfX18Za0xEDZhYEZHVqFQqrFmzBj/99JPZ5UIIzJw5E08++SQmTZqETz/9FCdOnMDf/vY3qFQqPP/88616n9///vfYuXMnNm7ciK+//ho5OTl45JFHcPnyZTmb06EmTpyIsrIyfPfdd3j55Zfx2muvIS0trd3b9fDwgFqtNkluiUhGbXxMDxFRs+bMmSMeeOAB0b9/f/HUU09J5R988IFo+OrZunWrACA+/PBDs9swGo2tei9fX1+RmZnZ5HJzzwlr8J///EeMHj1aqFQqceedd4onnnhCXL16VVr+97//XQwbNkx06dJFBAYGivj4eFFeXi4tb3hmWU5OjoiMjBQqlUqMHz9elJeXi+zsbNG/f3/RtWtXER8fL2pqalrVnjlz5ogpU6aYlE2dOlUMHTpU+rmiokLMmDFDBAcHCy8vLzF48GCxZcsWk23c3ubS0lKpvr987uZ7770nBg4cKDw8PESvXr3EunXrWlVPImqMPVZEZDVubm544YUXsHHjRly4cKHR8q1bt6Jfv3546KGHzK7f2l4VtVqN7OxsXLlyxezynTt34s4778SqVatQVlaGsrIyAMCZM2cwceJETJs2DV999RWysrKwb98+zJ8/X1r35s2beO655/Dll19i165dOHv2LObOndvoPVauXIlXXnkFBQUFOH/+PKZPn47169djy5Yt+OSTT/Dpp59i48aNrWrP7Y4dO4aCggJ4eHhIZXV1dRg2bBg++eQTHDt2DMnJyZg1axYOHDgAAPjrX/+K6OhozJs3T2pzSEhIo22XlJRg+vTpmDFjBo4ePYqVK1di+fLlyMzMbFNdiVyerTM7InJOv+x1uffee8Xvfvc7IYRpj1X//v3FQw89ZLLeggULhLe3t/D29hY9evRo1Xt9/vnn4s477xSdOnUSw4cPFwsXLhT79u0zienVq5d4+eWXTcqSkpJEcnKySdl//vMfoVQqRW1trdn3Ki4uFgDElStXhBD/7bH697//LcWkp6cLAOLMmTNS2WOPPSZ0Ol2r2jNnzhzh5uYmvL29haenpwAglEqleO+995pdb/LkyWLRokXSzzExMWLBggUmMbf3WM2cOVPcd999JjFPPfWUGDhwYKvqSkSm2GNFRFa3Zs0avPPOOzh58mSLsX/6059w5MgRrFixAlevXm3V9seOHYvvvvsOeXl5eOSRR3D8+HGMGTMGzz33XLPrffnll8jMzESXLl2kl06ng9FoRGlpKYCfe3QefPBB9OzZE127dkVMTAwA4Ny5cybbuvvuu6X/BwYGonPnzujdu7dJ2cWLF1vVHgAYP348jhw5gqKiIsyZMweJiYmYNm2atLy+vh7PPfccIiIi0K1bN3Tp0gX/+te/GtWrJSdPnsSoUaNMykaNGoXTp0+jvr7eom0REQevE1EHGDt2LHQ6HZYsWWJSHh4ejlOnTpmUBQQE4K677kL37t0teo9OnTphzJgxeOaZZ/Dpp59i1apVeO6553Djxo0m17l69Soee+wxHDlyRHp9+eWXOH36NPr06YOamhrodDr4+Phg8+bNKC4uxgcffAAAjbbbqVMn6f8Nd/P9kkKhgNFobHV7vL29cdddd2HIkCF46623UFRUhL/97W/S8hdffBF//etf8cwzz+Czzz7DkSNHoNPpmm0vEVmfu60rQESuYfXq1YiMjES/fv2ksvj4eMycORMffvghpkyZIuv7DRw4ELdu3UJdXR08PDzg4eHRqAfmnnvuwYkTJ3DXXXeZ3cbRo0dx+fJlrF69WhqfdPDgQVnr2RpKpRJLly5FSkoKZs6cCS8vL+zfvx9TpkzB//zP/wAAjEYjvvnmGwwcOFBaz1ybbzdgwADs37/fpGz//v3o27cv3Nzc5G8MkZNjjxURdYiIiAgkJCRgw4YNUtmMGTPwyCOPYMaMGVi1ahWKiopw9uxZfP7558jKymr1iX3cuHF47bXXUFJSgrNnzyI7OxtLly7F+PHj4ePjA+Dneaz27t2LH374ARUVFQCAZ555BgUFBZg/fz6OHDmC06dP48MPP5QGr/fs2RMeHh7YuHEjvvvuO3z00UctXl60lt/+9rdwc3PDpk2bAPzc25ebm4uCggKcPHkSjz32GMrLy03WCQ0NlfZpRUWF2R6zRYsWIS8vD8899xy++eYbvPPOO3jllVewePHiDmkXkbNhYkVEHWbVqlUmJ3eFQoGsrCysX78e2dnZmDBhAvr164ff/e53CAkJwb59+1q1XZ1Oh3feeQe/+c1vMGDAADzxxBPQ6XTYvn27yXufPXsWffr0QUBAAICfx0V9/vnn+OabbzBmzBgMHToUK1asQHBwMICfL0tmZmZix44dGDhwIFavXo1169bJuEdaz93dHfPnz8fatWtRU1ODZcuW4Z577oFOp8O4ceOgVqsRGxtrss7ixYvh5uaGgQMHIiAgwOz4q3vuuQfbt2/Htm3bMHjwYKxYsQKrVq0ye+cjEbVMIYQQtq4EERERkTNgjxURERGRTJhYEZHd++V0CLe//vOf/9i6ehY5d+5cs+2xdLoEIrIvvBRIRHavuYcx9+jRA15eXh1Ym/a5desWzp492+Ty0NBQuLvzhm0iR8XEioiIiEgmvBRIREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQyYWJFREREJBMmVkREREQy+f/5cRiCL/QLSwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_63.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/wElEQVR4nO3dd3hUdfr//9ckpBFIEBJIAoFA6EVAKR9AKYrGsjZWAWEVcC27gFhWl2KhWAA/rrILiq6fFVgLxgLoriyCYKOsIlgBFQMYxFCiMgESAibv3x/+Ml+G1Elm5pwz83xcV64rOXPmzP2ek+Tcc7/LcRljjAAAAGwowuoAAAAAKkOiAgAAbItEBQAA2BaJCgAAsC0SFQAAYFskKgAAwLZIVAAAgG2RqAAAANsiUQEAALZFogKgzmbMmCGXy1WjfV0ul2bMmBHQeAYPHqzBgwfb9ngAao5EBQghixcvlsvl8nzVq1dPzZs319ixY7Vv3z6rw7OdjIwMr/eradOmOvfcc7V8+XK/HL+wsFAzZszQu+++65fjAeGIRAUIQbNmzdJzzz2np556ShdffLGef/55DRo0SMePHw/I6917770qKioKyLEDrUePHnruuef03HPP6a677tIPP/ygYcOG6amnnqrzsQsLCzVz5kwSFaAO6lkdAAD/u/jii9WrVy9J0o033qikpCTNnTtXb7zxhoYPH+7316tXr57q1XPmv5PmzZvrd7/7nefn66+/Xm3bttXjjz+uP/zhDxZGBkCiogKEhXPPPVeSlJOT47X9q6++0tVXX63GjRsrNjZWvXr10htvvOG1z8mTJzVz5ky1a9dOsbGxatKkic455xytWbPGs09FY1SKi4t1xx13KDk5WQ0bNtTll1+u77//vlxsY8eOVUZGRrntFR1z0aJFOu+889S0aVPFxMSoc+fOWrhwoU/vRXVSUlLUqVMn7d69u8r9Dh48qN///vdq1qyZYmNj1b17dy1ZssTz+J49e5ScnCxJmjlzpqd7KdDjc4BQ48yPQAB8smfPHknSGWec4dm2bds2DRgwQM2bN9eUKVMUHx+vl19+WVdeeaVee+01XXXVVZJ+TRhmz56tG2+8UX369FFBQYE+/vhjbd26VRdccEGlr3njjTfq+eef16hRo9S/f3+tW7dOl156aZ3asXDhQnXp0kWXX3656tWrp3/9618aP368SktLNWHChDodu8zJkye1d+9eNWnSpNJ9ioqKNHjwYH377beaOHGiWrdurVdeeUVjx47V4cOHddtttyk5OVkLFy7UH//4R1111VUaNmyYJOnMM8/0S5xA2DAAQsaiRYuMJPP222+bQ4cOmb1795pXX33VJCcnm5iYGLN3717Pvueff77p1q2bOX78uGdbaWmp6d+/v2nXrp1nW/fu3c2ll15a5etOnz7dnPrv5NNPPzWSzPjx4732GzVqlJFkpk+f7tk2ZswY06pVq2qPaYwxhYWF5fbLysoybdq08do2aNAgM2jQoCpjNsaYVq1amQsvvNAcOnTIHDp0yHz22Wdm5MiRRpK59dZbKz3evHnzjCTz/PPPe7adOHHC9OvXzzRo0MAUFBQYY4w5dOhQufYC8A1dP0AIGjp0qJKTk5Wenq6rr75a8fHxeuONN9SiRQtJ0k8//aR169Zp+PDhOnLkiPLz85Wfn68ff/xRWVlZ2rlzp2eWUKNGjbRt2zbt3Lmzxq+/cuVKSdKkSZO8tt9+++11aldcXJzne7fbrfz8fA0aNEi7du2S2+2u1TFXr16t5ORkJScnq3v37nrllVd03XXXae7cuZU+Z+XKlUpJSdG1117r2RYVFaVJkybp6NGjeu+992oVC4DyQiZRef/993XZZZcpLS1NLpdLK1assMXr7dixQ5dffrkSExMVHx+v3r17Kzc3N6CxAU888YTWrFmjV199VZdccony8/MVExPjefzbb7+VMUb33Xef5yJd9jV9+nRJv47BkH6dQXT48GG1b99e3bp10913363PP/+8ytf/7rvvFBERoczMTK/tHTp0qFO7NmzYoKFDhyo+Pl6NGjVScnKypk2bJkm1TlT69u2rNWvW6O2339bGjRuVn5+vf/7zn15J0em+++47tWvXThER3v9CO3Xq5HkcgH+EzBiVY8eOqXv37rrhhhs8fcFWv15OTo7OOecc/f73v9fMmTOVkJCgbdu2KTY2NuDxIbz16dPHM+vnyiuv1DnnnKNRo0bp66+/VoMGDVRaWipJuuuuu5SVlVXhMdq2bStJGjhwoHJycvT6669r9erV+r//+z89/vjjeuqpp3TjjTfWOdbKFoorKSnx+jknJ0fnn3++OnbsqMcee0zp6emKjo7WypUr9fjjj3va5KukpCQNHTq0Vs8FEHghk6hcfPHFuvjiiyt9vLi4WPfcc4+WLl2qw4cPq2vXrpo7d26tV5us7vUk6Z577tEll1yiRx55xLPt9E+YQKBFRkZq9uzZGjJkiBYsWKApU6aoTZs2kn7trqjJRbpx48YaN26cxo0bp6NHj2rgwIGaMWNGpYlKq1atVFpaqpycHK8qytdff11u3zPOOEOHDx8ut/30qsS//vUvFRcX64033lDLli092995551q4/e3Vq1a6fPPP1dpaalXVeWrr77yPC5VnoQBqLmQ6fqpzsSJE7Vp0ya99NJL+vzzz3XNNdfooosu8qnf3RelpaV688031b59e2VlZalp06bq27dvwLukgIoMHjxYffr00bx583T8+HE1bdpUgwcP1tNPP628vLxy+x86dMjz/Y8//uj1WIMGDdS2bVsVFxdX+nplSfzf/vY3r+3z5s0rt29mZqbcbrdXd1JeXl651WEjIyMlScYYzza3261FixZVGkegXHLJJdq/f7+ys7M923755RfNnz9fDRo00KBBgyRJ9evXl6QKEzEANRMyFZWq5ObmatGiRcrNzVVaWpqkX0veq1at0qJFi/Twww/7/TUPHjyoo0ePas6cOXrwwQc1d+5crVq1SsOGDdM777zj+UcGBMvdd9+ta665RosXL9Yf/vAHPfHEEzrnnHPUrVs33XTTTWrTpo0OHDigTZs26fvvv9dnn30mSercubMGDx6ss88+W40bN9bHH3+sV199VRMnTqz0tXr06KFrr71WTz75pNxut/r376+1a9fq22+/LbfvyJEjNXnyZF111VWaNGmSCgsLtXDhQrVv315bt2717HfhhRcqOjpal112mW655RYdPXpUzzzzjJo2bVphshVIN998s55++mmNHTtWW7ZsUUZGhl599VVt2LBB8+bNU8OGDSX9Ovi3c+fOys7OVvv27dW4cWN17dpVXbt2DWq8gKNZPe0oECSZ5cuXe37+97//bSSZ+Ph4r6969eqZ4cOHG2OM2bFjh5FU5dfkyZNr9HrGGLNv3z4jyVx77bVe2y+77DIzcuRIv7YXKFM2PXnz5s3lHispKTGZmZkmMzPT/PLLL8YYY3Jycsz1119vUlJSTFRUlGnevLn5zW9+Y1599VXP8x588EHTp08f06hRIxMXF2c6duxoHnroIXPixAnPPhVNJS4qKjKTJk0yTZo0MfHx8eayyy4ze/furXC67urVq03Xrl1NdHS06dChg3n++ecrPOYbb7xhzjzzTBMbG2syMjLM3LlzzbPPPmskmd27d3v282V6cnVTrys73oEDB8y4ceNMUlKSiY6ONt26dTOLFi0q99yNGzeas88+20RHRzNVGagFlzGn1FFDhMvl0vLly3XllVdKkrKzszV69Ght27bNUz4u06BBA6WkpOjEiRPatWtXlcdt0qSJZ6XJql5Pkk6cOKH4+HhNnz5d9957r2f75MmTtX79em3YsKH2DQQAIEyERddPz549VVJSooMHD3qWEj9ddHS0Onbs6LfXjI6OVu/evcsNHvzmm288A+0AAEDVQiZROXr0qFf/9+7du/Xpp5+qcePGat++vUaPHq3rr79ef/nLX9SzZ08dOnRIa9eu1ZlnnlmrZb2rer2yGQl33323RowYoYEDB2rIkCFatWqV/vWvf3EnVQAAasrqvid/eeeddyocVzJmzBhjzK/LW99///0mIyPDREVFmdTUVHPVVVeZzz//PCCvV+Yf//iHadu2rYmNjTXdu3c3K1asqGNLAQAIHyE5RgUAAISGsFlHBQAAOA+JCgAAsC1HD6YtLS3VDz/8oIYNG7JUNQAADmGM0ZEjR5SWllbu5p6nc3Si8sMPPyg9Pd3qMAAAQC3s3btXLVq0qHIfRycqZctU7927VwkJCRZHAwAAaqKgoEDp6eme63hVHJ2olHX3JCQkkKgAAOAwNRm2wWBaAABgWyQqAADAtkhUAACAbTl6jEpNlZSU6OTJk1aHYbmoqKhyd48GAMDOQjpRMcZo//79Onz4sNWh2EajRo2UkpLCujMAAEcI6USlLElp2rSp6tevH9YXZ2OMCgsLdfDgQUlSamqqxREBAFC9kE1USkpKPElKkyZNrA7HFuLi4iRJBw8eVNOmTekGAgDYXsgOpi0bk1K/fn2LI7GXsveDMTsAACcI2USlTDh391SE9wMA4CQhn6gAAADnIlEBAAC2RaJiU3v37tUNN9ygtLQ0RUdHq1WrVrrtttv0448/Svp1jMnkyZPVrVs3xcfHKy0tTddff71++OEHiyMHAARLnrtIG3PylecusjqUgCFRsaFdu3apV69e2rlzp5YuXapvv/1WTz31lNauXat+/frpp59+UmFhobZu3ar77rtPW7du1bJly/T111/r8ssvtzp8AEAQZG/O1YA56zTqmQ81YM46ZW/OtTqkgAjZ6clONmHCBEVHR2v16tWeKcUtW7ZUz549lZmZqXvuuUcLFy7UmjVrvJ63YMEC9enTR7m5uWrZsqUVoQMAgiDPXaSpy75Qqfn151IjTVv2pQa2T1ZqYpy1wfkZFZUaClZ57aefftJbb72l8ePHe5KUMikpKRo9erSys7NljCn3XLfbLZfLpUaNGgU0RgCAtXbnH/MkKWVKjNGe/EJrAgogKio1kL0515O5Rrik2cO6aUTvwFQsdu7cKWOMOnXqVOHjnTp10s8//6xDhw6padOmnu3Hjx/X5MmTde211yohISEgsQEA7KF1UrwiXPJKViJdLmUkhd7aYVRUqlFZeS3QlZWKKiaVOXnypIYPHy5jjBYuXBjAqAAAdpCaGKfZw7op8v9fGyvS5dLDw7qGXLePREWlWlWV1wLxC9G2bVu5XC7t2LFDV111VbnHd+zYoTPOOEPJycmS/l+S8t1332ndunVUUwAgTIzo3VID2ydrT36hMpLqh2SSIlFRqVZZee1UgSyvNWnSRBdccIGefPJJFRV5V23279+vF154QSNGjJDL5fIkKTt37tTbb7/NPY0AIMykJsapX2aTkE1SJBKVallRXluwYIGKi4uVlZWl999/X3v37tWqVat0wQUXqHnz5nrooYd08uRJXX311fr444/1wgsvqKSkRPv379f+/ft14sSJgMUGAEAw0fVTA8Eur7Vr104ff/yxpk+fruHDh+unn35SSkqKrrzySk2fPl2NGzfWnj179MYbb0iSevTo4fX8d955R4MHDw5ojAAABAOJSg2lJsYFtbTWqlUrLV68uNLHMzIyfBpwCwCAE9H1AwAAbItEBQAA2BaJCgAAsC0SFQAAYFshn6gw4NQb7wcAwElCNlGJioqSJBUWht4Nmuqi7P0oe38AALCzkJ2eHBkZqUaNGungwYOSpPr168vlclXzrNBljFFhYaEOHjyoRo0aKTIy0uqQAACoVsgmKpKUkpIiSZ5kBVKjRo087wsAAHYX0omKy+VSamqqmjZtqpMnT1odjuWioqKopAAAHCWkE5UykZGRXKABAHCgkB1MCwAAnI9EBQAA2BaJCgAAsC0SFQAAYFskKgAAwLZIVAAAgG2RqAAAANsiUQEAALZFogIAAGyLRAUAANgWiQoAALAtEhUAAGBbJCoAAMC2SFQAAIBtkagAAADbIlEBAAC2RaICAABsi0QFAADYFokKAACwLRIVAABgWyQqAADAtkhUAACAbZGoAAAA2yJRAQAAtkWiAgAAbMvSRKWkpET33XefWrdurbi4OGVmZuqBBx6QMcbKsAAAgE3Us/LF586dq4ULF2rJkiXq0qWLPv74Y40bN06JiYmaNGmSlaEBAAAbsDRR2bhxo6644gpdeumlkqSMjAwtXbpUH330kZVhAQAAm7C066d///5au3atvvnmG0nSZ599pvXr1+viiy+ucP/i4mIVFBR4fQEAgNBlaUVlypQpKigoUMeOHRUZGamSkhI99NBDGj16dIX7z549WzNnzgxylAAAwCqWVlRefvllvfDCC3rxxRe1detWLVmyRI8++qiWLFlS4f5Tp06V2+32fO3duzfIEQMA4Fx57iJtzMlXnrvI6lBqzGUsnGKTnp6uKVOmaMKECZ5tDz74oJ5//nl99dVX1T6/oKBAiYmJcrvdSkhICGSoAAA4WvbmXE1d9oVKjRThkmYP66YRvVtaEosv129LKyqFhYWKiPAOITIyUqWlpRZFBABA6MlzF3mSFEkqNdK0ZV86orJi6RiVyy67TA899JBatmypLl266JNPPtFjjz2mG264wcqwAABhIs9dpN35x9Q6KV6piXFWhxMwu/OPeZKUMiXGaE9+oe3bbWmiMn/+fN13330aP368Dh48qLS0NN1yyy26//77rQwLABAG7NQVEmitk+IV4ZJXshLpcikjqb51QdWQpWNU6ooxKgDgPHaoYuS5izRgzrpyF+71U4bYvsJQW9mbczVt2ZcqMUaRLpceHtbVEWNULK2oAADCi12qGE7uCqmtEb1bamD7ZO3JL1RGUn3HtJObEgIAgsJOAzrLukJO5ZSukLpITYxTv8wmjklSJBIVAECQVFXFCLbUxDjNHtZNka5fs5WyrhAnXcDDBV0/AICgsNuATqd2hYQbKioAgKCwYxXDiV0h4YaKCgAgaKhiwFckKgCAoEpNjCNBQY3R9QMAACpkh5sYUlEBAADl2GXNGyoqAADAi53WvCFRAQAAXuy05g2JCgAA8GKnlXtJVAAAgBc7rXnDYFoAAFCOXda8IVEBAAAVssOaN3T9AAAA2yJRAQAAtkWiAgAAbItEBQBga3ZYxh3WYTAtAMC27LKMO6xDRQUAYEt2WsYd1iFRAQDYkp2WcYd1SFQAALZkp2XcYR0SFQCALdlpGXdYh8G0AADbsssy7rAOiQoAwNbssIw7rEPXDwAAsC0SFQAAYFskKgAAwLZIVAAAgG2RqAAAANsiUQEAALZFogIAAGyLRAUAANgWiQoAALAtEhUAAGBbJCoAAMC2SFQAAKihPHeRNubkK89dZHUoYYObEgIAUAPZm3M1ddkXKjVShEuaPaybRvRuaXVYIY+KCgAA1chzF3mSFEkqNdK0ZV9SWQkCEhUAAKqxO/+YJ0kpU2KM9uQXWhNQGCFRAQCgGq2T4hXh8t4W6XIpI6m+NQGFERIVAACqkZoYp9nDuinS9Wu2Euly6eFhXZWaGGdxZKGPwbQAgKDKcxdpd/4xtU6Kd9SFfkTvlhrYPll78guVkVTfUbE7GYkKACBonD5zJjUxjgQlyOj6AQAEBTNnUBskKgCAoGDmDGqDRAUAEBTMnEFtkKgAAIKCmTOoDQbTAgCChpkz8BWJCgAgqJg5A1/Q9QPuBgoAsC0qKmHO6WsaAABCGxWVMMaaBgAAuyNRCWOsaQAAsDsSlTDGmgYAALsjUalEOAwwZU0DAIDdMZi2AuE0wJQ1DQAAdkZF5TThOMA0NTFO/TKbkKQAAGyHROU0wRhgGg7dSgAA+ANdP6cpG2B6arLizwGm4dStBABAXVFROU1qYpyu6tnca9uVPdP80i0Sjt1KAADUBYnKafLcRVr+yT6vbSs++cEvyQTrlgAA4BvLE5V9+/bpd7/7nZo0aaK4uDh169ZNH3/8sWXxBDKZYN0SAAB8Y2mi8vPPP2vAgAGKiorSf/7zH23fvl1/+ctfdMYZZ1gWUyCTCdYtAQDANy5jjKl+t8CYMmWKNmzYoA8++KBWzy8oKFBiYqLcbrcSEhL8Flf25lxNW/alSozxJBP+HPCa5y7yad2SPHeRducfU+ukeJIaAIDj+XL9tjRR6dy5s7KysvT999/rvffeU/PmzTV+/HjddNNNFe5fXFys4uJiz88FBQVKT0/3e6Ii+Z5MBAqzhAAAocaXRMXSrp9du3Zp4cKFateund566y398Y9/1KRJk7RkyZIK9589e7YSExM9X+np6QGLzQ6LoDFLCAAQ7iytqERHR6tXr17auHGjZ9ukSZO0efNmbdq0qdz+wayo2MHGnHyNeubDctuX3vQ/6pfZxIKIAACoO8dUVFJTU9W5c2evbZ06dVJubm6F+8fExCghIcHrK5QxSwgAEO4sTVQGDBigr7/+2mvbN998o1atWlkUkb0wSwgAEO4sXUL/jjvuUP/+/fXwww9r+PDh+uijj/T3v/9df//7360My1a4uzEAIJxZOkZFkv79739r6tSp2rlzp1q3bq0777yz0lk/pwvU9GQAABA4jpmeXFckKgAAOI9jBtMCAABUhUQFPstzF2ljTj7ruQAAAs7SwbRwHlbKBQAEExUV1Bgr5QIAgo1EBTW2O/+YJ0kpU2KM9uQXWhMQACDkkaigxlgpFwAQbCQqqDFWygUABBuDaeETVsoFAAQTiQp8lpoYR4ICAAgKun4AAIBtkagAAADbIlEBAAC2RaICAIBNcIuS8hhMC+W5i7Q7/5haJ8UzSBYALMItSipGohLm+MMAAOtVdouSge2Tw/4DJF0/YYx79wCAPXCLksqRqIQx/jAAwB64RUnlSFTCGH8YAGAP3KKkcoxRCWNlfxjTln2pEmP4wwAAC3GLkoqRqIQ5/jCqxowoAMHELUrKI1HxEydf0PjDqBgzogDAeiQqfsAFLfQwVRAA7IHBtHXEFN/QxIwoALAHEpU64oIWmpgRBQD2QKJSR/HRkRVurx/NW+tkTBUEAHtgjEodHTtRUuH2whOlQY4E/saMKACwHolKHZV1EZza/UMXQehgRhQAWIv+iTqiiwAAYJU8d5E25uSH9AQOKip+QBcBACDYwmVpDCoqfpKaGKd+mU1IUgAAARdOS2OQqAAA4DDhtDQGiQoAAA4TTms9kagAAOAw4TSRo1aDab///ns1atRIDRo08Np+8uRJbdq0SQMHDvRLcAAAoGLhMpHDp4pKXl6e+vTpo1atWqlRo0a6/vrrdfToUc/jP/30k4YMGeL3IAEAQHnhMJHDp0RlypQpioiI0IcffqhVq1Zp+/btGjJkiH7++WfPPsaYKo4AAABQcz4lKm+//bb+9re/qVevXho6dKg2bNig1NRUnXfeefrpp58kSS6Xq5qjAAAA1IxPiYrb7dYZZ5zh+TkmJkbLli1TRkaGhgwZooMHD/o9QAAAEL58SlTatGmjzz//3GtbvXr19Morr6hNmzb6zW9+49fgAABAePMpUbn44ov197//vdz2smSlR48e/ooLAABALuPD6NdffvlFhYWFSkhIkCTl5+dLkpKSkjyP79u3T61atQpAqOUVFBQoMTFRbrfbExMAwFueu0i784+pdVJ8SM8OgXP4cv32qaJSr149lZaWasKECUpKSlKzZs3UrFkzJSUlaeLEiTp69GjQkhQAQPWyN+dqwJx1GvXMhxowZ52yN+daHRLgE58WfPvpp5/Ur18/7du3T6NHj1anTp0kSdu3b9fixYu1du1abdy40WvALQDAGpXduG5g+2QqK0FCNavufEpUZs2apejoaOXk5KhZs2blHrvwwgs1a9YsPf74434NEqgM/wSAylV14zr+XgIve3OuJ1GMcEmzh3XTiN4trQ7LcXzq+lmxYoUeffTRckmKJKWkpOiRRx7R8uXL/RYc7CnPXaSNOfmW306ckjZQtXC6cZ3dVFbNsvr/phP5vIR+ly5dKn28a9eu2r9/f52Dgn3ZJTngnwBQvXC6cZ3dVFXNgm986vpJSkrSnj171KJFiwof3717txo3buyXwGA/durvpqQdGHSlhZ5wuXGd3ZRVs079P0U1q3Z8qqhkZWXpnnvu0YkTJ8o9VlxcrPvuu08XXXSR34KDvdjpEwIlbf+zS7UM/hcON66zG6pZ/uPzYNpevXqpXbt2mjBhgjp27ChjjHbs2KEnn3xSxcXFeu655wIVKyxmp08IZf8Epi37UiXG8E+gjuxULQNCxYjeLdUxpaE27/lZvTPOUPd0ZsTWhk+JSosWLbRp0yaNHz9eU6dO9dwp2eVy6YILLtCCBQuUnp4ekEBhPbslB5S0/YeuNMD/mPXjHz4lKpLUunVr/ec//9HPP/+snTt3SpLatm3L2JQwYcfkwKjGiyujEnaqlgGhgCql//icqJQ544wz1KdPH3/GAodITYzz6Q8tUAM0+bTiP3arlgFOR5XSf2qdqAA1Eahkgk8r/mfHahngVFQp/cenWT+ALwK51omdZiCFEmaHAP7BrB//oaKCgAlk6ZNPKzgda8DAbqhS+geJCgImkMkEYypwKsYrwa58HdOH8lymbI6xAxUUFCgxMVFut1sJCQlWh4MKZG/OLZdM+PMCkucu4tNKmMtzF2nAnHXlEuL1U4bwOwHYlC/XbyoqCKhAlz75tAJmVwChjUQFAUcygUAK1nglO42BsVMsQKCRqABwtNTEOF3Vs7le27rPs+3Knmkhu2aPnWIBgoHpyUAV8txF2piT75cp1QiMPHeRln+yz2vbik9+8Ns5C+Q0eyfHAgQLFRWgEnxytVZNuzcCPUbFTmNg7BQLECy2qajMmTNHLpdLt99+u9WhAHxytVj25lwNmLNOo575UAPmrFP25txK9y0bo3Iqf45RCfTxnRoLECy2SFQ2b96sp59+WmeeeabVoQCSWPnWSr4miYFeAdROK4zaKRYgWCzv+jl69KhGjx6tZ555Rg8++KDV4QCSWPnWSrXp3gj0NHg7rTBqp1iAYLC8ojJhwgRdeumlGjp0aLX7FhcXq6CgwOsLCAQ+uVqntt0bgb5PkZ3ug2SnWIBAs7Si8tJLL2nr1q3avHlzjfafPXu2Zs6cGeCogF/xydUa3B4BwKksW0J/79696tWrl9asWeMZmzJ48GD16NFD8+bNq/A5xcXFKi4u9vxcUFCg9PR0ltAHQhC3RwBCly9L6FuWqKxYsUJXXXWVIiMjPdtKSkrkcrkUERGh4uJir8cqwr1+AABwHkfc6+f888/XF1984bVt3Lhx6tixoyZPnlxtkgIAAEKfZYlKw4YN1bVrV69t8fHxatKkSbntCCzuGwIAsCvLpyfDWqy+CgCwM1slKu+++67VIYSVyhbWGtg+mcoKAMAWLF9HBdZh9VUAgN2RqISxYN03hDsQAwBqi0QljAVj9VVfbi4HAMDpLFtHxR9YR8U/ArWwVp67SAPmrCt3v5z1U4YwBgYIImb2wW4csY4K7CM1MS4g/7xqc3M5AP7FzD44HV0/CJhgjYHxBeNlEE4qm9nH7z+chEQFAROMMTC+JB6Ml0G4YWYfQgFdPwioQN6B2JeSNmvGIByVVTVPHydmZVUT8BUVFQRcamKc+mU28XslxZeSNp8sEY6CUdUEAo2KChzJ14G6fLJEuApkVRMIBioqcCRfB+ryyRLhLBBVTSBYqKjAkcoSj2nLvlSJMTVKPPhkCQDOQ6ICx6pN4hGoNWMAAIFBogJHI/EAgNDGGBUAtsTifAAkKioAbIhl3wGUoaICwFZY9h3AqUhUANgKi/MBOBWJClAFxkkEnx1vZgnAOiQqQCW4iaE1WJwPwKlcxhhT/W72VFBQoMTERLndbiUkJFgdDkJInrtIA+asK7fk/vopQ7hgBkmeu4jF+YAQ5cv1m4oKUAHGSdiDkWM/RwHwE6YnAxXgJobWYnoygDJUVIAKME7COkxPBnAqKip+kucu0u78Y2qdFM/FLERwE8OqBep3vqpuN84BEH5IVPwg3MrU4ZSUcS+higXydz4+OrLC7fWjKQAD4Yi//DoKtzI1U3YR6N/5YydKKtxeeKLUL8cH4CwkKnUUTrNDwi0pQ8UC/TvPgm8ATkWiUkfh9E81nJIyVC7Qv/MMZAZwKsao1FHZP9Vpy75UiTEh/U+VKbuQgvM7z0BmAGVYmdZPwmUVzezNueUuUKE8cBiVC5ffeQD+58v1m0QFPuMCBQCoC1+u33T9wGdM2QUABAuDaQGEpTx3kTbm5DNrDbA5KioAwk64LdIIOBkVFQBhhfWAAGchUQEQVlgPCHAWEhUAYSWcFmkEQgGJCoCwwsq3gLMwmBZA2GHlW8A5SFQAhCXWAwKcga4fAABgWyQqAADAtkhUAACAbZGoAAAA2yJRAQAAtkWiAgAAbItEBQAA2BaJCoBayXMXaWNOPjfzAxBQLPgGwGfZm3M9dyCOcEmzh3XTiN4trQ4L8Fmeu0i784+pdVI8CwDaFIkKAJ/kuYs8SYoklRpp2rIvNbB9Mv/og8TpF1e7xE/C7QwkKgB8sjv/mCdJKVNijPbkFzryomkHvly4nX5xtUv8JNzOwRgVAD5pnRSvCJf3tkiXSxlJ9a0JyOGyN+dqwJx1GvXMhxowZ52yN+dWum9lF1enjBOyU/xVJdywFxIVAB41GSCbmhin2cO6KdL1a7YS6XLp4WFd+RRaC75euJ1+cbVT/CTczkHXDwBJvpXkR/RuqYHtk7Unv1AZSfVJUmrJ1260sovrqc9x0sXVTvGXJdzTln2pEmNIuG2MRAVArfrrUxPj+KdeR75euJ1+cbVb/CTczkCiAoABshapzYXb6RdXu8VPwm1/JCoAbFWSDze1uXA7/eLq9PgRXAymBcAAWYulJsapX2YT3m+gAlRUAEiyX0keACQSFQSBXVahRPUCWZLn9wBAbZCoIKDssgolrMXvAYDaYowKAsZOq1DCOsH6PeBuzkBosjRRmT17tnr37q2GDRuqadOmuvLKK/X1119bGRL8yE6rUMI6wfg98GUZegA1Z4cPAJYmKu+9954mTJig//73v1qzZo1OnjypCy+8UMeOHbMyLPgJS1RDCvzvAZU7IDDs8gHA0kRl1apVGjt2rLp06aLu3btr8eLFys3N1ZYtW6wMC35ixymvdvh0EG5q+3tQ03NF5Q7wPzt9ALDVYFq32y1Jaty4cYWPFxcXq7i42PNzQUFBUOJC7dlpyisDOq3j6++BL+eKxeoA/7PTatW2GUxbWlqq22+/XQMGDFDXrl0r3Gf27NlKTEz0fKWnpwc5StSGHRazstOng3BV098DX8+VHSt3gNPZqeveNhWVCRMm6Msvv9T69esr3Wfq1Km68847PT8XFBSQrKBG7PTpAFWrzbmyU+UOCAV2uoGkLRKViRMn6t///rfef/99tWjRotL9YmJiFBMTE8TIECroHnCO2p4r7h9jHRbzC012+QBgadePMUYTJ07U8uXLtW7dOrVu3drKcBDC6B5wDs6Vs9hlZggCww5d9y5jjKl+t8AYP368XnzxRb3++uvq0KGDZ3tiYqLi4qp/UwoKCpSYmCi3262EhIRAhooQkecusvzTAWqGc2V/ee4iDZizrlz1a/2UIZwzVMmX67elXT8LFy6UJA0ePNhr+6JFizR27NjgB4SAsFNZmO4B5+Bc2R9jvxAMliYqFhZzECRMCQZCF2O/EAy2mZ4M56jpQlxMCQZCG+OJEAy2mPUD5/ClQkJZGHUR6C5DO3VJOpldZoYgdJGooMYqq5AMbJ9c4T8nysKorUB3GdIl6V+MJ0Ig0fWDGvP1niqUhVEbge4ypEsScBYqKqix2lRIKAvDV4HuMqRLEnAWKiqosdpWSOywYBCco3VSvE67xYhckt+6DO10DxMA1aOiAp9QIYElTs9c6sBO9zABUD0SFfiMgXOQAjdrZnf+MZ2+wpIx8mvXDAk34BwkKgB8FshZM8GaLUbCDTgDY1QA+CTQs2aYLQbgVFRUAAs5cdGxYMyaoWsGQBkSFcAiTl10jK4ZAMFE1w9gAScvOkbXDIBgoqICWMDpi47RNQMgWEhU4DMnjquwm1C4DxJdMwCCga4f+CR7c64GzFmnUc98qAFz1il7c67VITkS3ScAUDMuY8zpays5RkFBgRITE+V2u5WQkGB1OCEvz12kAXPWlasCrJ8yhAtsLeW5i+g+ARB2fLl+0/WDGnP6uAo7ovukcnQxApBIVOCDUBhXAWdw6tRtAP7HGBXUGOMqEAxOnroNwP+oqMAnTEtFoNHFCOBUJCrwmZ3GVTCOIfTQxQjgVHT9wLGYKh2a6GIEcCqmJ8ORmCodGHaqUDF1GwhdTE9GyGMcg//ZbaaNnboYAViHrh84Utk4hlMxjqH2mGkDwK5IVOBIjGPwr6oqVABgJbp+4FhMlfYfZtoAsCsqKnC01MQ49ctsQpJSR1SoANgVFRUAkqhQAbAnEhUAHsy0AWA3dP3A0fLcRdqYk8/sFAAIUVRU4FjBWPfDTgugAUA4IlGBI1W27sfA9sl+SyjstgAaAIQjun7gSIFe94MF0KxHtx4AiYoKHCrQ636wRL+1qGYBKENFBY4U6HU/WKLfOlSzAJyKigocK5DrfpQlQtOWfakSY1gALYjsWs1iYDVgDRIVOFog1/1gATRr2HE5f7qiAOvQ9QNUgSX6g89uy/nTFQVYi4oKANuxUzXLrl1RQLggUQFgS3ZZzt+OXVFAOKHrBwCqYLeuKCDcUFFBWGHmBmrDTl1RQLghUUHYYOYG6sIuXVFAuKHrB2GBmRsA4MxbU1BRQVhg5gaAcOfUqjIVFYQFlsRHXTnxkyhQxslVZRIVhAVmbqAusjfnasCcdRr1zIcaMGedsjfnWh0S4JNA33E+kOj6Qdhg5gZqo7JPogPbJ/M7BMdw8npAVFQQVlgSH75y8idRoIyTq8pUVACgCk7+JAqcyqlVZSoqAFAFJ38SBU7nxKoyFRUAqIZTP4kCoYBEBQBqgJVpAWvQ9QMAAGyLRAUAANgWiQqAWmGlVgDBwBgVAD4Lxj1D8txF2p1/TK2T4hkbAoQxEhUAPgnGSq1OvXkaAP+j6weATwK9UquTb54GwP9IVAD4JNB3ombJegCnskWi8sQTTygjI0OxsbHq27evPvroI6tDAlCJQK/UGuhECICzWD5GJTs7W3feeaeeeuop9e3bV/PmzVNWVpa+/vprNW3a1OrwAFQgkCu1liVC05Z9qRJjWLIeCHMuY4ypfrfA6du3r3r37q0FCxZIkkpLS5Wenq5bb71VU6ZMqfK5BQUFSkxMlNvtVkJCQjDCBRAkee4ilqwHQpQv129LKyonTpzQli1bNHXqVM+2iIgIDR06VJs2bSq3f3FxsYqLiz0/FxQUBCVOAMHHkvUAJIvHqOTn56ukpETNmjXz2t6sWTPt37+/3P6zZ89WYmKi5ys9PT1YoQIAAAvYYjBtTU2dOlVut9vztXfvXqtDAgAAAWRp109SUpIiIyN14MABr+0HDhxQSkpKuf1jYmIUExMTrPAAAIDFLK2oREdH6+yzz9batWs920pLS7V27Vr169fPwsgAAIAdWD49+c4779SYMWPUq1cv9enTR/PmzdOxY8c0btw4q0MDAAAWszxRGTFihA4dOqT7779f+/fvV48ePbRq1apyA2wBAED4sXwdlbpgHRUAAJzHl+u3o2b9AACA8EKiAgAAbItEBQAA2BaJCgAAsC3LZ/3URdk4YO75AwCAc5Rdt2syn8fRicqRI0ckiXv+AADgQEeOHFFiYmKV+zh6enJpaal++OEHNWzYUC6Xy6/HLigoUHp6uvbu3RuSU59pn/OFehtDvX1S6LeR9jlfoNpojNGRI0eUlpamiIiqR6E4uqISERGhFi1aBPQ1EhISQvYXUKJ9oSDU2xjq7ZNCv420z/kC0cbqKillGEwLAABsi0QFAADYFolKJWJiYjR9+nTFxMRYHUpA0D7nC/U2hnr7pNBvI+1zPju00dGDaQEAQGijogIAAGyLRAUAANgWiQoAALAtEhUAAGBbYZOoPPHEE8rIyFBsbKz69u2rjz76qMr9582bpw4dOiguLk7p6em64447dPz48TodM9D83cYZM2bI5XJ5fXXs2DHQzaiUL+07efKkZs2apczMTMXGxqp79+5atWpVnY4ZaP5un53O3/vvv6/LLrtMaWlpcrlcWrFiRbXPeffdd3XWWWcpJiZGbdu21eLFi8vtY6fzF4g2Ovkc5uXladSoUWrfvr0iIiJ0++23V7jfK6+8oo4dOyo2NlbdunXTypUr/R98DQSifYsXLy53/mJjYwPTgBrwtY3Lli3TBRdcoOTkZCUkJKhfv3566623yu0X8L9DEwZeeuklEx0dbZ599lmzbds2c9NNN5lGjRqZAwcOVLj/Cy+8YGJiYswLL7xgdu/ebd566y2Tmppq7rjjjlofM9AC0cbp06ebLl26mLy8PM/XoUOHgtUkL762789//rNJS0szb775psnJyTFPPvmkiY2NNVu3bq31MQMpEO2z0/lbuXKlueeee8yyZcuMJLN8+fIq99+1a5epX7++ufPOO8327dvN/PnzTWRkpFm1apVnHzudP2MC00Ynn8Pdu3ebSZMmmSVLlpgePXqY2267rdw+GzZsMJGRkeaRRx4x27dvN/fee6+JiooyX3zxRWAaUYVAtG/RokUmISHB6/zt378/MA2oAV/beNttt5m5c+eajz76yHzzzTdm6tSpJioqKuj/R8MiUenTp4+ZMGGC5+eSkhKTlpZmZs+eXeH+EyZMMOedd57XtjvvvNMMGDCg1scMtEC0cfr06aZ79+4BiddXvrYvNTXVLFiwwGvbsGHDzOjRo2t9zEAKRPvsdP5OVZN/kH/+859Nly5dvLaNGDHCZGVleX620/k7nb/a6ORzeKpBgwZVeCEfPny4ufTSS7229e3b19xyyy11jLBu/NW+RYsWmcTERL/F5U++trFM586dzcyZMz0/B+PvMOS7fk6cOKEtW7Zo6NChnm0REREaOnSoNm3aVOFz+vfvry1btnjKV7t27dLKlSt1ySWX1PqYgRSINpbZuXOn0tLS1KZNG40ePVq5ubmBa0glatO+4uLiciXWuLg4rV+/vtbHDJRAtK+MHc5fbWzatMnr/ZCkrKwsz/thp/NXW9W1sYxTz2FN1PQ9cLKjR4+qVatWSk9P1xVXXKFt27ZZHVKtlZaW6siRI2rcuLGk4P0dhnyikp+fr5KSEjVr1sxre7NmzbR///4KnzNq1CjNmjVL55xzjqKiopSZmanBgwdr2rRptT5mIAWijZLUt29fLV68WKtWrdLChQu1e/dunXvuuTpy5EhA23O62rQvKytLjz32mHbu3KnS0lKtWbNGy5YtU15eXq2PGSiBaJ9kn/NXG/v376/w/SgoKFBRUZGtzl9tVddGydnnsCYqew+ccg6r06FDBz377LN6/fXX9fzzz6u0tFT9+/fX999/b3VotfLoo4/q6NGjGj58uKTg/R8N+USlNt599109/PDDevLJJ7V161YtW7ZMb775ph544AGrQ/ObmrTx4osv1jXXXKMzzzxTWVlZWrlypQ4fPqyXX37Zwshr5q9//avatWunjh07Kjo6WhMnTtS4ceOqvZ24U9SkfU4+f/gV59DZ+vXrp+uvv149evTQoEGDtGzZMiUnJ+vpp5+2OjSfvfjii5o5c6ZefvllNW3aNKivXS+or2aBpKQkRUZG6sCBA17bDxw4oJSUlAqfc9999+m6667TjTfeKEnq1q2bjh07pptvvln33HNPrY4ZSIFoY0UX9EaNGql9+/b69ttv/d+IKtSmfcnJyVqxYoWOHz+uH3/8UWlpaZoyZYratGlT62MGSiDaVxGrzl9tpKSkVPh+JCQkKC4uTpGRkbY5f7VVXRsr4qRzWBOVvQdOOYe+ioqKUs+ePR13/l566SXdeOONeuWVV7y6eYL1fzQ0Pl5WITo6WmeffbbWrl3r2VZaWqq1a9eqX79+FT6nsLCw3IU6MjJSkmSMqdUxAykQbazI0aNHlZOTo9TUVD9FXjN1eb9jY2PVvHlz/fLLL3rttdd0xRVX1PmY/haI9lXEqvNXG/369fN6PyRpzZo1nvfDTuevtqprY0WcdA5rojbvgZOVlJToiy++cNT5W7p0qcaNG6elS5fq0ksv9XosaH+HfhuWa2MvvfSSiYmJMYsXLzbbt283N998s2nUqJFnmth1111npkyZ4tl/+vTppmHDhmbp0qVm165dZvXq1SYzM9MMHz68xscMtkC08U9/+pN59913ze7du82GDRvM0KFDTVJSkjl48KDt2/ff//7XvPbaayYnJ8e8//775rzzzjOtW7c2P//8c42PGUyBaJ+dzt+RI0fMJ598Yj755BMjyTz22GPmk08+Md99950xxpgpU6aY6667zrN/2dTdu+++2+zYscM88cQTFU5Ptsv5MyYwbXTyOTTGePY/++yzzahRo8wnn3xitm3b5nl8w4YNpl69eubRRx81O3bsMNOnT7dsenIg2jdz5kzz1ltvmZycHLNlyxYzcuRIExsb67VPMPnaxhdeeMHUq1fPPPHEE15TrA8fPuzZJxh/h2GRqBhjzPz5803Lli1NdHS06dOnj/nvf//reWzQoEFmzJgxnp9PnjxpZsyYYTIzM01sbKxJT08348eP97oIVHdMK/i7jSNGjDCpqakmOjraNG/e3IwYMcJ8++23QWyRN1/a9+6775pOnTqZmJgY06RJE3PdddeZffv2+XTMYPN3++x0/t555x0jqdxXWZvGjBljBg0aVO45PXr0MNHR0aZNmzZm0aJF5Y5rp/MXiDY6/RxWtH+rVq289nn55ZdN+/btTXR0tOnSpYt58803g9Og0wSifbfffrvn97NZs2bmkksu8VqDJNh8beOgQYOq3L9MoP8OXcZUUucHAACwWMiPUQEAAM5FogIAAGyLRAUAANgWiQoAALAtEhUAAGBbJCoAAMC2SFQAAIBtkagAgJ+9++67crlcOnz4sNWhAI5HogI42NixY+VyuTRnzhyv7StWrJDL5fL8bIzRM888o379+ikhIUENGjRQly5ddNttt9X4BmmFhYWaOnWqMjMzFRsbq+TkZA0aNEivv/66Z5+MjAzNmzfPL20LtLL3zuVyKSoqSq1bt9af//xnHT9+3KfjDB48WLfffrvXtv79+ysvL0+JiYl+jBgITyQqgMPFxsZq7ty5+vnnnyt83BijUaNGadKkSbrkkku0evVqbd++Xf/4xz8UGxurBx98sEav84c//EHLli3T/Pnz9dVXX2nVqlW6+uqr9eOPP/qzOUF10UUXKS8vT7t27dLjjz+up59+WtOnT6/zcaOjo5WSkuKVLAKoJb8uyA8gqMaMGWN+85vfmI4dO5q7777bs3358uWm7M976dKlRpJ5/fXXKzxGaWlpjV4rMTHRLF68uNLHK7ovSJkPPvjAnHPOOSY2Nta0aNHC3Hrrrebo0aOex//5z3+as88+2zRo0MA0a9bMXHvttebAgQOex8vuUbJq1SrTo0cPExsba4YMGWIOHDhgVq5caTp27GgaNmxorr32WnPs2LEatWfMmDHmiiuu8No2bNgw07NnT8/P+fn5ZuTIkSYtLc3ExcWZrl27mhdffNHrGKe3effu3Z54T7131quvvmo6d+5soqOjTatWrcyjjz5aoziBcEdFBXC4yMhIPfzww5o/f76+//77co8vXbpUHTp00OWXX17h82v6qT8lJUUrV67UkSNHKnx82bJlatGihWbNmqW8vDzl5eVJknJycnTRRRfpt7/9rT7//HNlZ2dr/fr1mjhxoue5J0+e1AMPPKDPPvtMK1as0J49ezR27NhyrzFjxgwtWLBAGzdu1N69ezV8+HDNmzdPL774ot58802tXr1a8+fPr1F7Tvfll19q48aNio6O9mw7fvy4zj77bL355pv68ssvdfPNN+u6667TRx99JEn661//qn79+ummm27ytDk9Pb3csbds2aLhw4dr5MiR+uKLLzRjxgzdd999Wrx4ca1iBcKK1ZkSgNo7tSrwP//zP+aGG24wxnhXVDp27Gguv/xyr+fddtttJj4+3sTHx5vmzZvX6LXee+8906JFCxMVFWV69eplbr/9drN+/XqvfVq1amUef/xxr22///3vzc033+y17YMPPjARERGmqKiowtfavHmzkWSOHDlijPl/FZW3337bs8/s2bONJJOTk+PZdsstt5isrKwatWfMmDEmMjLSxMfHm5iYGCPJREREmFdffbXK51166aXmT3/6k+fnQYMGmdtuu81rn9MrKqNGjTIXXHCB1z5333236dy5c41iBcIZFRUgRMydO1dLlizRjh07qt33nnvu0aeffqr7779fR48erdHxBw4cqF27dmnt2rW6+uqrtW3bNp177rl64IEHqnzeZ599psWLF6tBgwaer6ysLJWWlmr37t2Sfq04XHbZZWrZsqUaNmyoQYMGSZJyc3O9jnXmmWd6vm/WrJnq16+vNm3aeG07ePBgjdojSUOGDNGnn36qDz/8UGPGjNG4ceP029/+1vN4SUmJHnjgAXXr1k2NGzdWgwYN9NZbb5WLqzo7duzQgAEDvLYNGDBAO3fuVElJiU/HAsINiQoQIgYOHKisrCxNnTrVa3u7du309ddfe21LTk5W27Zt1bRpU59eIyoqSueee64mT56s1atXa9asWXrggQd04sSJSp9z9OhR3XLLLfr00089X5999pl27typzMxMHTt2TFlZWUpISNALL7ygzZs3a/ny5ZJU7rhRUVGe78tm65zK5XKptLS0xu2Jj49X27Zt1b17dz377LP68MMP9Y9//MPz+P/+7//qr3/9qyZPnqx33nlHn376qbKysqpsLwD/qmd1AAD8Z86cOerRo4c6dOjg2Xbttddq1KhRev3113XFFVf49fU6d+6sX375RcePH1d0dLSio6PLVQjOOussbd++XW3btq3wGF988YV+/PFHzZkzxzO+4+OPP/ZrnDURERGhadOm6c4779SoUaMUFxenDRs26IorrtDvfvc7SVJpaam++eYbde7c2fO8itp8uk6dOmnDhg1e2zZs2KD27dsrMjLS/40BQggVFSCEdOvWTaNHj9bf/vY3z7aRI0fq6quv1siRIzVr1ix9+OGH2rNnj9577z1lZ2fX+EI5ePBgPf3009qyZYv27NmjlStXatq0aRoyZIgSEhIk/bqOyvvvv699+/YpPz9fkjR58mRt3LhREydO1KeffqqdO3fq9ddf9wymbdmypaKjozV//nzt2rVLb7zxRrXdSYFyzTXXKDIyUk888YSkX6tRa9as0caNG7Vjxw7dcsstOnDggNdzMjIyPO9pfn5+hRWdP/3pT1q7dq0eeOABffPNN1qyZIkWLFigu+66KyjtApyMRAUIMbNmzfK6WLpcLmVnZ2vevHlauXKlzj//fHXo0EE33HCD0tPTtX79+hodNysrS0uWLNGFF16oTp066dZbb1VWVpZefvllr9fes2ePMjMzlZycLOnXcSXvvfeevvnmG5177rnq2bOn7r//fqWlpUn6tRtq8eLFeuWVV9S5c2fNmTNHjz76qB/fkZqrV6+eJk6cqEceeUTHjh3Tvffeq7POOktZWVkaPHiwUlJSdOWVV3o956677lJkZKQ6d+6s5OTkCsevnHXWWXr55Zf10ksvqWvXrrr//vs1a9asCmc2AfDmMsYYq4MAAACoCBUVAABgWyQqACTJa/rw6V8ffPCB1eH5JDc3t8r2+Dq9GIB16PoBIElV3pywefPmiouLC2I0dfPLL79oz549lT6ekZGhevWY9Ag4AYkKAACwLbp+AACAbZGoAAAA2yJRAQAAtkWiAgAAbItEBQAA2BaJCgAAsC0SFQAAYFskKgAAwLb+P80gIrr++IPUAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAHHCAYAAAB3K7g2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQYNJREFUeJzt3Xl4VNXh//HPJJCFQMKSQAIEAmGXTQUsoiyKpmjdqLJWEfcKAlIti1YWWwPWr9IqovVXwbpA1ALSSlkE0bJUEUQRUCEEgxiWqCSEhIDJ+f1BM3VMgJlJZu69M+/X88wDuXPnzjl3lvuZc88512WMMQIAAHCICKsLAAAA4AvCCwAAcBTCCwAAcBTCCwAAcBTCCwAAcBTCCwAAcBTCCwAAcBTCCwAAcBTCCwAAcBTCC4Bqmz59ulwul1frulwuTZ8+PaDl6d+/v/r372/b7QGoHsILEEIWLFggl8vlvtWqVUvNmjXTrbfeqgMHDlhdPNtJS0vz2F+NGzfWpZdeqiVLltTI9ouLizV9+nStW7euRrYH4DTCCxCCZs6cqZdfflnPPfecBg0apFdeeUX9+vXTiRMnAvJ8Dz/8sEpKSgKy7UDr3r27Xn75Zb388st64IEH9M0332jw4MF67rnnqr3t4uJizZgxg/AC1LBaVhcAQM0bNGiQevToIUm64447lJiYqNmzZ2vZsmUaMmRIjT9frVq1VKuWM79OmjVrpl/96lfuv2+55Ra1adNGTz31lO655x4LSwbgTGh5AcLApZdeKknKzs72WP7555/rxhtvVMOGDRUTE6MePXpo2bJlHuucOnVKM2bMUNu2bRUTE6NGjRrpkksu0erVq93rVNXnpbS0VPfff7+SkpJUr149XXvttfr6668rle3WW29VWlpapeVVbXP+/Pm67LLL1LhxY0VHR6tTp06aN2+eT/viXJKTk9WxY0fl5OScdb3Dhw/r9ttvV5MmTRQTE6Nu3brppZdect+/b98+JSUlSZJmzJjhPjUV6P4+QDhw5k8lAD7Zt2+fJKlBgwbuZTt27FCfPn3UrFkzTZ48WXFxcXr99dd1/fXX6+9//7tuuOEGSadDRGZmpu644w716tVLhYWF+uijj7R161ZdccUVZ3zOO+64Q6+88opGjBihiy++WGvXrtXVV19drXrMmzdP5513nq699lrVqlVL//jHP3TvvfeqvLxcY8aMqda2K5w6dUr79+9Xo0aNzrhOSUmJ+vfvrz179mjs2LFq1aqV3njjDd166606evSoxo8fr6SkJM2bN0+//vWvdcMNN2jw4MGSpK5du9ZIOYGwZgCEjPnz5xtJ5p133jFHjhwx+/fvN2+++aZJSkoy0dHRZv/+/e51L7/8ctOlSxdz4sQJ97Ly8nJz8cUXm7Zt27qXdevWzVx99dVnfd5p06aZH3+dbNu2zUgy9957r8d6I0aMMJLMtGnT3MtGjRplWrZsec5tGmNMcXFxpfUyMjJM69atPZb169fP9OvX76xlNsaYli1bmiuvvNIcOXLEHDlyxHzyySdm2LBhRpK57777zri9OXPmGEnmlVdecS87efKk6d27t6lbt64pLCw0xhhz5MiRSvUFUH2cNgJC0MCBA5WUlKTU1FTdeOONiouL07Jly9S8eXNJ0nfffae1a9dqyJAhOnbsmPLz85Wfn69vv/1WGRkZ2r17t3t0Uv369bVjxw7t3r3b6+dfvny5JGncuHEeyydMmFCtesXGxrr/X1BQoPz8fPXr10979+5VQUGBX9tctWqVkpKSlJSUpG7duumNN97QzTffrNmzZ5/xMcuXL1dycrKGDx/uXla7dm2NGzdORUVFeu+99/wqCwDvhEx4ef/993XNNdeoadOmcrlcWrp0qS2eb9euXbr22muVkJCguLg49ezZU7m5uQEtGzB37lytXr1ab775pq666irl5+crOjraff+ePXtkjNHvfvc794G74jZt2jRJp/t0SKdHLh09elTt2rVTly5d9OCDD+rTTz896/N/9dVXioiIUHp6usfy9u3bV6teGzZs0MCBAxUXF6f69esrKSlJU6dOlSS/w8tFF12k1atX65133tHGjRuVn5+vv/3tbx5B6ae++uortW3bVhERnl+hHTt2dN8PIHBCps/L8ePH1a1bN912223uc8tWP192drYuueQS3X777ZoxY4bi4+O1Y8cOxcTEBLx8CG+9evVyjza6/vrrdckll2jEiBH64osvVLduXZWXl0uSHnjgAWVkZFS5jTZt2kiS+vbtq+zsbL311ltatWqV/t//+3966qmn9Nxzz+mOO+6odlnPNLldWVmZx9/Z2dm6/PLL1aFDBz355JNKTU1VVFSUli9frqeeespdJ18lJiZq4MCBfj0WgDVCJrwMGjRIgwYNOuP9paWleuihh7Rw4UIdPXpUnTt31uzZs/2eNfNczydJDz30kK666io9/vjj7mU//SUKBFpkZKQyMzM1YMAAPfPMM5o8ebJat24t6fSpDm8O3A0bNtTo0aM1evRoFRUVqW/fvpo+ffoZw0vLli1VXl6u7Oxsj9aWL774otK6DRo00NGjRyst/2nrxT/+8Q+VlpZq2bJlatGihXv5u+++e87y17SWLVvq008/VXl5uUfry+eff+6+XzpzMANQPSFz2uhcxo4dq02bNmnRokX69NNPddNNN+nnP/+5T+fxfVFeXq63335b7dq1U0ZGhho3bqyLLroo4KezgKr0799fvXr10pw5c3TixAk1btxY/fv31/PPP6+8vLxK6x85csT9/2+//dbjvrp166pNmzYqLS094/NVBPs///nPHsvnzJlTad309HQVFBR4nIrKy8urNMttZGSkJMkY415WUFCg+fPnn7EcgXLVVVfp4MGDysrKci/74Ycf9PTTT6tu3brq16+fJKlOnTqSVGU4A+C/kGl5OZvc3FzNnz9fubm5atq0qaTTzeUrVqzQ/Pnz9dhjj9X4cx4+fFhFRUWaNWuWfv/732v27NlasWKFBg8erHfffdf95QYEy4MPPqibbrpJCxYs0D333KO5c+fqkksuUZcuXXTnnXeqdevWOnTokDZt2qSvv/5an3zyiSSpU6dO6t+/vy688EI1bNhQH330kd58802NHTv2jM/VvXt3DR8+XM8++6wKCgp08cUXa82aNdqzZ0+ldYcNG6ZJkybphhtu0Lhx41RcXKx58+apXbt22rp1q3u9K6+8UlFRUbrmmmt09913q6ioSC+88IIaN25cZQALpLvuukvPP/+8br31Vm3ZskVpaWl68803tWHDBs2ZM0f16tWTdLqDcadOnZSVlaV27dqpYcOG6ty5szp37hzU8gIhx+rhToEgySxZssT99z//+U8jycTFxXncatWqZYYMGWKMMWbXrl1G0llvkyZN8ur5jDHmwIEDRpIZPny4x/JrrrnGDBs2rEbrC1SoGCq9efPmSveVlZWZ9PR0k56ebn744QdjjDHZ2dnmlltuMcnJyaZ27dqmWbNm5he/+IV588033Y/7/e9/b3r16mXq169vYmNjTYcOHcwf/vAHc/LkSfc6VQ1rLikpMePGjTONGjUycXFx5pprrjH79++vcujwqlWrTOfOnU1UVJRp3769eeWVV6rc5rJly0zXrl1NTEyMSUtLM7NnzzYvvviikWRycnLc6/kyVPpcw8DPtL1Dhw6Z0aNHm8TERBMVFWW6dOli5s+fX+mxGzduNBdeeKGJiopi2DRQQ1zG/KgNNkS4XC4tWbJE119/vSQpKytLI0eO1I4dO9xNzxXq1q2r5ORknTx5Unv37j3rdhs1auSeMfNszydJJ0+eVFxcnKZNm6aHH37YvXzSpElav369NmzY4H8FAQAIY2Fx2uj8889XWVmZDh8+7J4m/aeioqLUoUOHGnvOqKgo9ezZs1IHxS+//NLdmQ8AAPguZMJLUVGRx/n0nJwcbdu2TQ0bNlS7du00cuRI3XLLLfq///s/nX/++Tpy5IjWrFmjrl27+jVl+dmer2IkxIMPPqihQ4eqb9++GjBggFasWKF//OMfXGEWAIDqsPq8VU159913q+ynMmrUKGPM6am7H3nkEZOWlmZq165tUlJSzA033GA+/fTTgDxfhb/+9a+mTZs2JiYmxnTr1s0sXbq0mjUFACC8hWSfFwAAELrCZp4XAAAQGggvAADAURzdYbe8vFzffPON6tWrxzTcAAA4hDFGx44dU9OmTStd4NQbjg4v33zzjVJTU60uBgAA8MP+/fvVvHlznx/n6PBSMQX3/v37FR8fb3FpAACANwoLC5Wamuo+jvvK0eGl4lRRfHw84QUAAIfxt8sHHXYBAICjEF4AAICjEF4AAICjOLrPi7fKysp06tQpq4thudq1a1e6qjYAAE4T0uHFGKODBw/q6NGjVhfFNurXr6/k5GTmxQEAOFZIh5eK4NK4cWPVqVMnrA/YxhgVFxfr8OHDkqSUlBSLSwQAgH9CNryUlZW5g0ujRo2sLo4txMbGSpIOHz6sxo0bcwoJAOBIIdtht6KPS506dSwuib1U7A/6AAEAnCpkw0uFcD5VVBX2BwDA6UI+vAAAgNBCeAEAAI5CeLGp/fv367bbblPTpk0VFRWlli1bavz48fr2228lne6zMmnSJHXp0kVxcXFq2rSpbrnlFn3zzTcWlxwAEAx5BSXamJ2vvIISq4sSdIQXG9q7d6969Oih3bt3a+HChdqzZ4+ee+45rVmzRr1799Z3332n4uJibd26Vb/73e+0detWLV68WF988YWuvfZaq4sPAAiwrM256jNrrUa88IH6zFqrrM25VhcpqEJ2qLSTjRkzRlFRUVq1apV7eHOLFi10/vnnKz09XQ899JDmzZun1atXezzumWeeUa9evZSbm6sWLVpYUXQAQIDlFZRoyuLtKjen/y430tTFn6lvuySlJMRaW7ggoeXFS8Fqnvvuu++0cuVK3Xvvve7gUiE5OVkjR45UVlaWjDGVHltQUCCXy6X69esHtIwAAOvk5B93B5cKZcZoX36xNQWyAC0vXsjanOtOuREuKXNwFw3tGZiWjd27d8sYo44dO1Z5f8eOHfX999/ryJEjaty4sXv5iRMnNGnSJA0fPlzx8fEBKRsAwHqtEuMU4ZJHgIl0uZSWGD7zmtHycg5nap4LdAtMVS0rZ3Lq1CkNGTJExhjNmzcvgKUCAFgtJSFWmYO7KPK/83ZFulx6bHDnsDllJNHyck5na54LxBulTZs2crlc2rVrl2644YZK9+/atUsNGjRQUlKSpP8Fl6+++kpr166l1QUAwsDQni3Ut12S9uUXKy2xTlgFF4mWl3OqaJ77sUA2zzVq1EhXXHGFnn32WZWUeLbuHDx4UK+++qqGDh0ql8vlDi67d+/WO++8wzWcACCMpCTEqnd6o7ALLhLh5ZysaJ575plnVFpaqoyMDL3//vvav3+/VqxYoSuuuELNmjXTH/7wB506dUo33nijPvroI7366qsqKyvTwYMHdfDgQZ08eTJgZQMAwGqWh5cDBw7oV7/6lRo1aqTY2Fh16dJFH330kdXF8jC0ZwutnzxAC+/8mdZPHhCwzroV2rZtq48++kitW7fWkCFDlJ6errvuuksDBgzQpk2b1LBhQx04cEDLli3T119/re7duyslJcV927hxY0DLBwCAlSzt8/L999+rT58+GjBggP71r38pKSlJu3fvVoMGDawsVpVSEmKD2jTXsmVLLViw4Iz3p6Wl+dSpFwCAUGFpeJk9e7ZSU1M1f/5897JWrVpZWCIAAGB3lp42WrZsmXr06KGbbrpJjRs31vnnn68XXnjhjOuXlpaqsLDQ4wYAAMKLpeFl7969mjdvntq2bauVK1fq17/+tcaNG6eXXnqpyvUzMzOVkJDgvqWmpga5xAAAwGouY2HHiaioKPXo0cOjg+m4ceO0efNmbdq0qdL6paWlKi0tdf9dWFio1NRUFRQUVJrf5MSJE8rJyVGrVq0UExMTuEo4DPsFAGC1wsJCJSQkVHn89oalLS8pKSnq1KmTx7KOHTsqN7fqq2NGR0crPj7e43YudGr1xP4AADidpeGlT58++uKLLzyWffnll2rZsmW1t127dm1JUnFx+FyoyhsV+6Ni/wAA4DSWjja6//77dfHFF+uxxx7TkCFD9OGHH+ovf/mL/vKXv1R725GRkapfv74OHz4sSapTp45cLtc5HhW6jDEqLi7W4cOHVb9+fUVGRlpdJAAA/GJpnxdJ+uc//6kpU6Zo9+7datWqlSZOnKg777zTq8ee65yZMUYHDx7U0aNHa7jUzlW/fn0lJyeHdZADAFirun1eLA8v1eFt5cvKynTq1KkglsyeateuTYsLAMBy1Q0vYXFV6cjISA7aAACECMuvbQQAAOALwgsAAHAUwgsAAHAUwgsAAHAUwgsAAHAUwgsAAGEgr6BEG7PzlVdQYnVRqi0shkoDABDOsjbnasri7So3UoRLyhzcRUN7trC6WH6j5QUAgBCWV1DiDi6SVG6kqYs/c3QLDOEFAIAQlpN/3B1cKpQZo335zr1wMeEFAIAQ1ioxThE/uZxdpMultMQ61hSoBhBeAAAIYSkJscoc3EWR/70gb6TLpccGd1ZKQqzFJfMfHXYBAAhxQ3u2UN92SdqXX6y0xDqODi4S4QUAgLCQkhDr+NBSgdNGAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAADAUQgvAAB4Ia+gRBuz85VXUGJ1UcJeLasLAACA3WVtztWUxdtVbqQIl5Q5uIuG9mxhdbHCFi0vAACcRV5BiTu4SFK5kaYu/owWGAsRXgAAOIuc/OPu4FKhzBjtyy+2pkAgvAAAcDatEuMU4fJcFulyKS2xzlkfRx+ZwCG8AABwFikJscoc3EWRrtMJJtLl0mODOyslIfaMj8nanKs+s9ZqxAsfqM+stcranBus4oYFlzHGnHs1eyosLFRCQoIKCgoUHx9vdXEAACEsr6BE+/KLlZZY56zBJa+gRH1mrfU41RTpcmn95AFnfVw4qe7x29KWl+nTp8vlcnncOnToYGWRAACoUkpCrHqnNzpnAKGPTOBZPlT6vPPO0zvvvOP+u1Yty4sEAIDfKvrI/LTl5Vx9ZOA9y/u81KpVS8nJye5bYmKi1UUCAMBv/vSRgW8sb+bYvXu3mjZtqpiYGPXu3VuZmZlq0aLqiX9KS0tVWlrq/ruwsDBYxQQAwGtDe7ZQ33ZJXvWRge8sbXm56KKLtGDBAq1YsULz5s1TTk6OLr30Uh07dqzK9TMzM5WQkOC+paamBrnEAAB4x9s+MvCdrUYbHT16VC1bttSTTz6p22+/vdL9VbW8pKamMtoIAAAHqe5oI8tPG/1Y/fr11a5dO+3Zs6fK+6OjoxUdHR3kUgEAADuxvMPujxUVFSk7O1spKSlWFwUAANiUpeHlgQce0Hvvvad9+/Zp48aNuuGGGxQZGanhw4dbWSwAAGBjlp42+vrrrzV8+HB9++23SkpK0iWXXKL//Oc/SkpKsrJYAADAxiwNL4sWLbLy6QEAgAPZqs8LAADAuRBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAoxBeAACAo9gmvMyaNUsul0sTJkywuigAAMDGbBFeNm/erOeff15du3a1uigAAMDmLA8vRUVFGjlypF544QU1aNDA6uIAAACbszy8jBkzRldffbUGDhxodVEAAIAD1LLyyRctWqStW7dq8+bNXq1fWlqq0tJS99+FhYWBKhoAALApy1pe9u/fr/Hjx+vVV19VTEyMV4/JzMxUQkKC+5aamhrgUgIAALtxGWOMFU+8dOlS3XDDDYqMjHQvKysrk8vlUkREhEpLSz3uk6pueUlNTVVBQYHi4+ODVnYAAOC/wsJCJSQk+H38tuy00eWXX67t27d7LBs9erQ6dOigSZMmVQoukhQdHa3o6OhgFREAANiQZeGlXr166ty5s8eyuLg4NWrUqNJyAACACpaPNgIAAPCFpaONfmrdunVWFwEAANgcLS8AAMBRCC8AAMBRCC8AANvJKyjRxux85RWUWF0U2JCt+rwAAJC1OVdTFm9XuZEiXFLm4C4a2rOF1cWCjdDyAgCwjbyCEndwkaRyI01d/BktMPBAeAEA2EZO/nF3cKlQZoz25RdbUyDYEuEFAGAbrRLjFOHyXBbpciktsY41BYItEV4AALaRkhCrzMFdFOk6nWAiXS49NrizUhJiLS4Z7IQOuwAAWxnas4X6tkvSvvxipSXWIbigEsILAMB2UhJiCS04I04bAQAARyG8AAAARyG8AAAARyG8AAAARyG8AAAARyG8AAAARyG8AAAARyG8AADgQHkFJdqYnR+WF61kkjoAABwma3Ou++rbES4pc3AXDe3ZwupiBQ0tLwAAOEheQYk7uEhSuZGmLv4srFpgCC8AADhITv5xd3CpUGaM9uUXW1MgCxBeAABwkFaJcYpweS6LdLmUlljHmgJZgPACAICDpCTEKnNwF0W6TieYSJdLjw3uHFYXsqTDLgAADjO0Zwv1bZekffnFSkusE1bBRSK8AADgSCkJsWEXWipw2ggAADgK4QUAADgK4QUAADgK4QUAADgK4QUAADgK4QUAADgK4QUAADgK4QUAADgK4QUAADgK4QUAADgK4QUAADiKX+Hl66+/VlFRUaXlp06d0vvvv1/tQgEAAJyJT+ElLy9PvXr1UsuWLVW/fn3dcsstHiHmu+++04ABA2q8kAAAABV8Ci+TJ09WRESEPvjgA61YsUI7d+7UgAED9P3337vXMcbUeCEBAAAq+BRe3nnnHf35z39Wjx49NHDgQG3YsEEpKSm67LLL9N1330mSXC5XQAoKAAAg+RheCgoK1KBBA/ff0dHRWrx4sdLS0jRgwAAdPny4xgsIAADwYz6Fl9atW+vTTz/1WFarVi298cYbat26tX7xi1/UaOEAAAB+yqfwMmjQIP3lL3+ptLwiwHTv3r2mygUAAFAll/Ghh+0PP/yg4uJixcfHS5Ly8/MlSYmJie77Dxw4oJYtWwagqJUVFhYqISFBBQUF7jIBAAB7q+7x26eWl1q1aqm8vFxjxoxRYmKimjRpoiZNmigxMVFjx45VUVGRT8Fl3rx56tq1q+Lj4xUfH6/evXvrX//6l8+VAACEt7yCEm3MzldeQYnVRUEQ1PJl5e+++069e/fWgQMHNHLkSHXs2FGStHPnTi1YsEBr1qzRxo0bPTr1nk3z5s01a9YstW3bVsYYvfTSS7ruuuv08ccf67zzzvO9NgAAv+QVlCgn/7haJcYpJSHW6uL4JGtzrqYs3q5yI0W4pMzBXTS0Zwuri4UA8um00YQJE7RmzRq98847atKkicd9Bw8e1JVXXqnLL79cTz31lN8Fatiwof74xz/q9ttvP+e6gTxt5OQPMgD4wskH/7yCEvWZtVblPzqSRbpcWj95AN/dNhbU00ZLly7VE088USm4SFJycrIef/xxLVmyxOdCSFJZWZkWLVqk48ePq3fv3lWuU1paqsLCQo9bIGRtzlWfWWs14oUP1GfWWmVtzg3I8wCA1fIKStzBRZLKjTR18WeOOf2Sk3/cI7hIUpkx2pdfbE2BEBQ+Xx7gbKdzOnfurIMHD/pUgO3bt6tu3bqKjo7WPffcoyVLlqhTp05VrpuZmamEhAT3LTU11afn8obTP8gA4AunH/xbJcYp4idzo0a6XEpLrGNNgRAUPoWXxMRE7du374z35+TkqGHDhj4VoH379tq2bZs++OAD/frXv9aoUaO0c+fOKtedMmWKCgoK3Lf9+/f79FzecPoHGQB84fSDf0pCrDIHd1Hkf2d3j3S59NjgzpwyCnE+9Xm57bbblJ2drdWrVysqKsrjvtLSUmVkZKh169Z68cUX/S7QwIEDlZ6erueff/6c6waizwvnTwGEm6zNuZq6+DOVGeM++Dulz0uFvIIS7csvVlpiHb6rHaC6x2+fRhvNnDlTPXr0UNu2bTVmzBh16NBBxhjt2rVLzz77rEpLS/Xyyy/7XIgfKy8vV2lpabW2UR0VKf6nH2Q+DABC1dCeLdS3XZKjD/4pCbGOLDf841N4ad68uTZt2qR7771XU6ZMcV9B2uVy6YorrtAzzzzjUz+UKVOmaNCgQWrRooWOHTum1157TevWrdPKlSt9q0UNC4UPMgD4goM/nMSn8CJJrVq10r/+9S99//332r17tySpTZs2Pvd1kaTDhw/rlltuUV5enhISEtS1a1etXLlSV1xxhc/bqml8kAEAsCef+rzYDZcHAADAeYI6zwsAAIDVCC8AAMBRCC8AAMBRCC8AAMBRCC8AAMBRCC8AAMBRCC8AAMBRCC8AYHN5BSXamJ3P1e1rEPvU2XyeYRcAEDxZm3M1ZfF2lRspwiVlDu7iuIsm2g371PloeQEAm8orKHEfZCWp3EhTF39Ga0E1sE9DA+EFAGwqJ/+4+yBbocwY7csvtqZAIYB9GhoILwBgU60S4xTh8lwW6XIpLbGONQUKAezT0EB4AQCbSkmIVebgLop0nT7aRrpcemxwZ654Xw3s09DAVaUBwObyCkq0L79YaYl1OMjWEPapd/IKSpSTf1ytEuNqdD9V9/jNaCMAsLmUhFgOsDWMfXpudh6VxWkjAADgwe6jsggvAADAg91HZRFeAACAB7uPyiK8AAAAD3YflUWHXQAAUMnQni3Ut12SLUdlEV4AAECV7Doqi9NGFuGKpgAA+IeWFwvYeew8AAB2R8tLkNl97DwAAHZHeAkyu4+dBwDA7ggvQWb3sfMAANgd4SXI7D52HgAAu6PDrgXsPHYeAAC7I7xYxK5j5wEAsDtOGwEAAEchvAAAAEchvAAAAEchvAAAAEchvAAAAEchvAAAAEchvDgEV6EGAOA05nlxAK5CDQDA/9DyYnNchRoAAE+EF5vz9yrUnGYCAIQqThvZXMVVqH8cYM51FWpOMwEAQhktLzbn61WoOc0E2B8to0D10PLiAEN7tlCH5HravO979UxroG6pDc647tlOM3EhSMB6tIwC1Ud4cQBfvuz8Oc0EIDjO1DLat10SPy4AH1h62igzM1M9e/ZUvXr11LhxY11//fX64osvrCyS7fh6GsjX00wAgsffDvgAPFna8vLee+9pzJgx6tmzp3744QdNnTpVV155pXbu3Km4uDgri2Yb/pwGGtqzhfq2S9K+/GKlJdYhuAA24W/LaF5BiXLyj6tVYlzYfJ7Dsc7wnqXhZcWKFR5/L1iwQI0bN9aWLVvUt29fi0plL3FRkVUurxN17kYzI3POdQAET0XL6NTFn6nMGK9aRsOxj0w41hm+sVWfl4KCAklSw4YNLS6JfRw/WVbl8uKT5Wd8DB98wL58aRkNxz4y4Vhn+M42Q6XLy8s1YcIE9enTR507d65yndLSUhUWFnrc7CJQQx99bXlhqDRgfykJseqd3uicB+Nw7CMTjnWG72zT8jJmzBh99tlnWr9+/RnXyczM1IwZM4JYKu8EsqXD15YXhkoDoSMcRw+GY53hO1u0vIwdO1b//Oc/9e6776p58+ZnXG/KlCkqKChw3/bv3x/EUlYt0C0dFR/kHzvbB9nX9QHYVziOHgzHOsN3lra8GGN03333acmSJVq3bp1atWp11vWjo6MVHR0dpNJ5J9AtHb528POnQyAA+wrH0YPhWGf4xtLwMmbMGL322mt66623VK9ePR08eFCSlJCQoNhYZ7xZgzH00dcPMh98ILSkJMSG3ec4HOsM77mMMZaNp3W5XFUunz9/vm699dZzPr6wsFAJCQkqKChQfHx8DZfOe1mbcyu1dJytzwujgbzDPA9wCt6rgG+qe/y2NLxUl13Ci3T6y8vboY99Zq2t1FKzfvKAcz4u0F+OdvoCJuDBKXivAr6r7vHbNqONnM7bJk5/+sgE48vRTl/AzPOAs7FTyOa9CljDFqONQoG387z4OhooGPO22G1umHCe5yFQ8wWFiqzNueoza61GvPCB+sxaq6zNuZaWJ5zfq4CVCC81wJcvVF+HAQbjy9FuX8DhOtzbbgdmu7FbyJbC970KWI3wUk3+fKEO7dlC6ycP0MI7f6b1kwec9fRMML4c7fYFHI7zPNjxwGw3dgvZUni+VwE7oM9LNfk7z4u3fWSCMW+LHeeGCbfh3syMfG52nXk13N6rgB0QXqopGF+owfhytOMXcDjN82DXA7Od2DFk/7hsdigHEC4YKl0DfJ3nBc4VyJEuvI+84+20BADsi3lebBBeJL5Qw0EwhpPzPgIQKHaaZoB5XmyCZmNn8vbDHKz5PHgfAQgEO83lVRMILwhbvnyY6VALwKlCcTJFhkojLPk6NNluw8kBwFt2nGaguggvCEu+fpiZzwNWYuZlVEco/vjitBHCkj9Dk/0ZTm6nDnJwplDrq4Dgs/M0A/5itBHCVqCHJnPQQXX5exV6oCp2Gs3IaCPAT4GcmC8UO8iFE7u0mNFRHDUplEYzEl5gW8E4gATqw8xBxz58fR/ZqcWMmZeBqhFeYEt2OoD4g4OOPfj6PrJbi1ko9lUAagLhBbbj7wHELk39UmgddOy0X33hz/soWC1mvuxTO153DLAa4QW2488BxI4tNaFw0LHjfvWWP++jYLSY+bNPQ6mvAlATmOcFtuPrnAS+Tjj308cGcv6MlIRY9U5v5MgDT3X2qx34M7dFoOfzcfo+BeyClhfYjq+nXPxt6ndyq0IwOL3Tsb+n7gLZYub0fYrAcuopWisQXhA0gTrP709Tv906ZtpRKHQ69jeIBOo0TSjsUwQGP6Z8w2kjBEXW5lz1mbVWI174QH1mrVXW5txzPsbbUy7+NPWH4rU+alqoXBLBTqfuQmWfomZxOtF3tLwg4ILRyuHrL2x+AXsnFDod2w37FD/F6UTfEV4QcMH6YPrS1B9KQ5kDjZEuNY99ih/jx5TvCC8IOLt+MPkFDMAO+DHlO8ILAs7OH0x+AQOwA35M+YbwgqDggwknYcgqrMCPKe8RXhA0fDDhBAxZBf7HrkGe8AIA/8X8P8D/2DnIM88LAPwX8/8Ap9l97hnCCwD8lz/XQwJCkd2DPOEFAP6LGXCB0+we5OnzAgA/wsg4wN5TXEiEF9iYXXu5I/QxMg6wd5AnvMCW7NzLHQDChV2DPH1eYDt27+UOALAW4QW2Y/de7gAAaxFeYDt27+UOALAW4QW2w3BVAMDZ0GEXtmTnXu4AAGsRXmBbdu3lDlQX0wAA1UN4AYAgYhoAoPro8wLAUfIKSrQxO9+RQ+eZBgCoGZaGl/fff1/XXHONmjZtKpfLpaVLl1pZHAA2l7U5V31mrdWIFz5Qn1lrlbU51+oi+YRpAICaYWl4OX78uLp166a5c+daWQwADhAKrRZMAwDUDEv7vAwaNEiDBg2ysggAHOJsrRZO6fRq94vdAU7hqA67paWlKi0tdf9dWFhoYWkABFNFq8WPA4wTWy2YBgCoPkd12M3MzFRCQoL7lpqaanWRAARJKE1emJIQq97pjRxZdsAOXMYYc+7VAs/lcmnJkiW6/vrrz7hOVS0vqampKigoUHx8fBBKCcBqn+z/Xpv3fa+eaQ3ULbWB1cUB4IfCwkIlJCT4ffx21Gmj6OhoRUdHW10MABZhjhQAksNOGwEIX6Ew2gg4GyfPYRRslra8FBUVac+ePe6/c3JytG3bNjVs2FAtWvBrCsD/BHO0EdP3I9hoVfSNpeHlo48+0oABA9x/T5w4UZI0atQoLViwwKJSwak44IS2YI024iCCYDtTq2Lfdkl8l52BpeGlf//+skl/YTgcB5zQF4w5UjiIwAqhMIdRsDmqwy5QFQ444WNozxbqkFwvYKONOIg4l5NbXkNlDqNgIrzA8TjghI9At7BxEHEmp7e8MvOy7wgvcDwOOIFll1+0wWhh4yDiPKHS8srMy74hvMDxOOAEjp1+0QarhY2DiLOEUstrSkKs48psFcILQgIHnJpnt1+0wWxh4yDiHLS8hicmqUPI4HoxNetsv2itEErXNkLN4X0Rnmh5AVAlO/6ipYUNVeF9EX5oeQFQJbv+oqWFDVXhfRFeaHkBfGCXkTfBwi9aAHZEeAG8ZKeRN8FE51UAdsNpI8ALXNEYAOyD8AJ4wW4jbwAgnBFeAC9UjLz5MatH3gBAuCK8AF6w68gbAAhHdNgFvMTIm/ARbqPKAKchvAA+YORN6AuFUWWEL4Q6wgsA/Jfdrufkj1AIX+GK0Ok9wguAkObLAcHpVygOhfAVrgidviG8AAhZvh4Q7Hg9J184PXyFK0Kn7xhtBOCs8gpKtDE733ET8vkzsaDTR5UxpN+ZmEfKd7S8ADgjJzdl+9sK4eRRZRXha+riz1RmjOPCV7hyeoufFQgvAKrk9Kbs6hwQnDyqzMnhK1wROn1HeAFQJaf3nwjnA4Idwxcjac6O0OkbwguAKvnbcmGngxQHBHtw8unHYLJj6LQrOuwCqFJFy0XFl0SEdM6Wi6zNueoza61GvPCB+sxaq6zNuUEp69mkJMSqd3ojDgoW4YrsCATCC4Czc/3k3zPgIIWqMJIGgUB4AXzg1GHD/vA1jHCQQlUYvo1AILwAXrLjKZFA8jWMcJBCVZw+dw7siQ67gBecPmzYH7522A3W6B47dQiGd+g4jZpGeAG84PRhw/7wJ4wE+iDFqBXnYiQNahLhBfBCuM6A6U8YCdRBKhxbv/xF6xRCHeEF8EI4nxKxyy/mcGz98getU4Fjx89nuCK8AF4KhVMiTv7yDWbrl6/7yS77ldapwCEU2gvhBfCBk0+JOP3LN1itX77uJ3/2a6DCDq1TgUEotB/CC2ADgT7ohMqXb6Bbv3zdT/7s10CGyHDtmyUFtvWLUGg/zPMC2ECg50gJpQnkAjndv6/7ydf1Az0LcbjOqRLoOZiYw8h+CC+ADQT6oMOXr3d83U++rh+MEDm0ZwutnzxAC+/8mdZPHuCoU4P+CMZlKcI1FNoZp40AmwjkKZFg9RdxOl/3k6/rB+u0jl1GiAVDsE7pMNGevbiMMebcq9lTYWGhEhISVFBQoPj4eKuLA9heXkEJX75e8HU/+bJ+1ubcSmEn1FtHAimvoER9Zq2tFAjXTx7Ae9zGqnv8JrwAQJARImsWgdB5qnv85rQR4GB2mV8Evgmn0zrBwCmd8EN4ARzK6fO2ADXJ10BI8Hc2wgvgQKEybwsCgwPz2RH8nc8WQ6Xnzp2rtLQ0xcTE6KKLLtKHH35odZEAWwuleVtQswI954nTBWNoNQLP8vCSlZWliRMnatq0adq6dau6deumjIwMHT582OqiAbbl77wteQUl2pidzxd1iOLAfG4E/9BgeXh58skndeedd2r06NHq1KmTnnvuOdWpU0cvvvii1UUDbMufSbP4RR76ODCfGxM2hgZL+7ycPHlSW7Zs0ZQpU9zLIiIiNHDgQG3atKnS+qWlpSotLXX/XVhYGJRyAnbkywgL+siEh3C+tpG3mLAxNFgaXvLz81VWVqYmTZp4LG/SpIk+//zzSutnZmZqxowZwSoeYHvejrDgwnLhgQOzdxha7XyOGm00ZcoUTZw40f13YWGhUlNTLSwR4Az8Ig8fHJi9w1w7zmZpeElMTFRkZKQOHTrksfzQoUNKTk6utH50dLSio6ODVTwgZPCLPLxwYEaoszS8REVF6cILL9SaNWt0/fXXS5LKy8u1Zs0ajR071sqiASGHX+QAQoXlp40mTpyoUaNGqUePHurVq5fmzJmj48ePa/To0VYXDQg5/CIHEAosDy9Dhw7VkSNH9Mgjj+jgwYPq3r27VqxYUakTLwAAgMRVpQEAQJBV9/ht+SR1AAAAviC8AAAARyG8AAAARyG8AAAARyG8AAAARyG8AAAARyG8AAAARyG8AAAARyG8AAAAR7H88gDVUTE5cGFhocUlAQAA3qo4bvs7yb+jw8uxY8ckSampqRaXBAAA+OrYsWNKSEjw+XGOvrZReXm5vvnmG9WrV08ul6tGt11YWKjU1FTt378/pK+bFA71DIc6StQz1FDP0EI9PRljdOzYMTVt2lQREb73YHF0y0tERISaN28e0OeIj48P6TdahXCoZzjUUaKeoYZ6hhbq+T/+tLhUoMMuAABwFMILAABwFMLLGURHR2vatGmKjo62uigBFQ71DIc6StQz1FDP0EI9a5ajO+wCAIDwQ8sLAABwFMILAABwFMILAABwFMILAABwlLAJL3PnzlVaWppiYmJ00UUX6cMPPzzr+nPmzFH79u0VGxur1NRU3X///Tpx4kS1thkMNV3P6dOny+Vyedw6dOgQ6Gqcky/1PHXqlGbOnKn09HTFxMSoW7duWrFiRbW2GSw1XU+7vZ7vv/++rrnmGjVt2lQul0tLly4952PWrVunCy64QNHR0WrTpo0WLFhQaR27vZaBqKfdXkvJ93rm5eVpxIgRateunSIiIjRhwoQq13vjjTfUoUMHxcTEqEuXLlq+fHnNF94HgajnggULKr2eMTExgamAl3yt5+LFi3XFFVcoKSlJ8fHx6t27t1auXFlpvRr5fJowsGjRIhMVFWVefPFFs2PHDnPnnXea+vXrm0OHDlW5/quvvmqio6PNq6++anJycszKlStNSkqKuf/++/3eZjAEop7Tpk0z5513nsnLy3Pfjhw5EqwqVcnXev72t781TZs2NW+//bbJzs42zz77rImJiTFbt271e5vBEIh62u31XL58uXnooYfM4sWLjSSzZMmSs66/d+9eU6dOHTNx4kSzc+dO8/TTT5vIyEizYsUK9zp2fC0DUU+7vZbG+F7PnJwcM27cOPPSSy+Z7t27m/Hjx1daZ8OGDSYyMtI8/vjjZufOnebhhx82tWvXNtu3bw9MJbwQiHrOnz/fxMfHe7yeBw8eDEwFvORrPcePH29mz55tPvzwQ/Pll1+aKVOmmNq1awfkuzYswkuvXr3MmDFj3H+XlZWZpk2bmszMzCrXHzNmjLnssss8lk2cONH06dPH720GQyDqOW3aNNOtW7eAlNdfvtYzJSXFPPPMMx7LBg8ebEaOHOn3NoMhEPW04+tZwZsvx9/+9rfmvPPO81g2dOhQk5GR4f7bjq/lj9VUPe38WhrjXT1/rF+/flUe1IcMGWKuvvpqj2UXXXSRufvuu6tZwppRU/WcP3++SUhIqLFy1TRf61mhU6dOZsaMGe6/a+rzGfKnjU6ePKktW7Zo4MCB7mUREREaOHCgNm3aVOVjLr74Ym3ZssXdlLV3714tX75cV111ld/bDLRA1LPC7t271bRpU7Vu3VojR45Ubm5u4CpyDv7Us7S0tFLza2xsrNavX+/3NgMtEPWsYKfX01ebNm3y2CeSlJGR4d4ndnwt/XGuelZw8mvpLW/3RSgoKipSy5YtlZqaquuuu047duywukjVUl5ermPHjqlhw4aSavbzGfLhJT8/X2VlZWrSpInH8iZNmujgwYNVPmbEiBGaOXOmLrnkEtWuXVvp6enq37+/pk6d6vc2Ay0Q9ZSkiy66SAsWLNCKFSs0b9485eTk6NJLL9WxY8cCWp8z8aeeGRkZevLJJ7V7926Vl5dr9erVWrx4sfLy8vzeZqAFop6S/V5PXx08eLDKfVJYWKiSkhJbvpb+OFc9Jee/lt46075w0uvpjfbt2+vFF1/UW2+9pVdeeUXl5eW6+OKL9fXXX1tdNL898cQTKioq0pAhQyTV7HdtyIcXf6xbt06PPfaYnn32WW3dulWLFy/W22+/rUcffdTqotUob+o5aNAg3XTTTeratasyMjK0fPlyHT16VK+//rqFJffNn/70J7Vt21YdOnRQVFSUxo4dq9GjR/t1GXY786aeofB64jRey9DSu3dv3XLLLerevbv69eunxYsXKykpSc8//7zVRfPLa6+9phkzZuj1119X48aNa3z7tWp8izaTmJioyMhIHTp0yGP5oUOHlJycXOVjfve73+nmm2/WHXfcIUnq0qWLjh8/rrvuuksPPfSQX9sMtEDUs6qDe/369dWuXTvt2bOn5ivhBX/qmZSUpKVLl+rEiRP69ttv1bRpU02ePFmtW7f2e5uBFoh6VsXq19NXycnJVe6T+Ph4xcbGKjIy0navpT/OVc+qOO219NaZ9oWTXk9/1K5dW+eff74jX89Fixbpjjvu0BtvvOFxiqgmv2tD66dnFaKionThhRdqzZo17mXl5eVas2aNevfuXeVjiouLKx24IyMjJUnGGL+2GWiBqGdVioqKlJ2drZSUlBoquW+qs+9jYmLUrFkz/fDDD/r73/+u6667rtrbDJRA1LMqVr+evurdu7fHPpGk1atXu/eJHV9Lf5yrnlVx2mvpLX/2RSgoKyvT9u3bHfd6Lly4UKNHj9bChQt19dVXe9xXo59Pn7sOO9CiRYtMdHS0WbBggdm5c6e56667TP369d3D0G6++WYzefJk9/rTpk0z9erVMwsXLjR79+41q1atMunp6WbIkCFeb9MKgajnb37zG7Nu3TqTk5NjNmzYYAYOHGgSExPN4cOHg16/Cr7W8z//+Y/5+9//brKzs837779vLrvsMtOqVSvz/fffe71NKwSinnZ7PY8dO2Y+/vhj8/HHHxtJ5sknnzQff/yx+eqrr4wxxkyePNncfPPN7vUrhhA/+OCDZteuXWbu3LlVDpW222sZiHra7bU0xvd6GmPc61944YVmxIgR5uOPPzY7duxw379hwwZTq1Yt88QTT5hdu3aZadOmWT5UOhD1nDFjhlm5cqXJzs42W7ZsMcOGDTMxMTEe6wSbr/V89dVXTa1atczcuXM9hnwfPXrUvU5NfT7DIrwYY8zTTz9tWrRoYaKiokyvXr3Mf/7zH/d9/fr1M6NGjXL/ferUKTN9+nSTnp5uYmJiTGpqqrn33ns9DgLn2qZVarqeQ4cONSkpKSYqKso0a9bMDB061OzZsyeINaqaL/Vct26d6dixo4mOjjaNGjUyN998szlw4IBP27RKTdfTbq/nu+++ayRVulXUa9SoUaZfv36VHtO9e3cTFRVlWrdubebPn19pu3Z7LQNRT7u9lsb4V8+q1m/ZsqXHOq+//rpp166diYqKMuedd555++23g1OhMwhEPSdMmOB+zzZp0sRcddVVHvOjWMHXevbr1++s61eoic+ny5gznB8AAACwoZDv8wIAAEIL4QUAADgK4QUAADgK4QUAADgK4QUAADgK4QUAADgK4QUAADgK4QUAati6devkcrl09OhRq4sChCTCC+Bgt956q1wul2bNmuWxfOnSpXK5XO6/jTF64YUX1Lt3b8XHx6tu3bo677zzNH78eK8v/FZcXKwpU6YoPT1dMTExSkpKUr9+/fTWW2+510lLS9OcOXNqpG6BVrHvXC6XateurVatWum3v/2tTpw44dN2+vfvrwkTJngsu/jii5WXl6eEhIQaLDGACoQXwOFiYmI0e/Zsff/991Xeb4zRiBEjNG7cOF111VVatWqVdu7cqb/+9a+KiYnR73//e6+e55577tHixYv19NNP6/PPP9eKFSt044036ttvv63J6gTVz3/+c+Xl5Wnv3r166qmn9Pzzz2vatGnV3m5UVJSSk5M9AiSAGuTnJQ8A2MCoUaPML37xC9OhQwfz4IMPupcvWbLEVHy8Fy5caCSZt956q8ptlJeXe/VcCQkJZsGCBWe8v6rrmlT497//bS655BITExNjmjdvbu677z5TVFTkvv9vf/ubufDCC03dunVNkyZNzPDhw82hQ4fc91dcY2XFihWme/fuJiYmxgwYMMAcOnTILF++3HTo0MHUq1fPDB8+3Bw/ftyr+owaNcpcd911HssGDx5szj//fPff+fn5ZtiwYaZp06YmNjbWdO7c2bz22mse2/hpnXNyctzl/fF1wt58803TqVMnExUVZVq2bGmeeOIJr8oJoDJaXgCHi4yM1GOPPaann35aX3/9daX7Fy5cqPbt2+vaa6+t8vHetg4kJydr+fLlOnbsWJX3L168WM2bN9fMmTOVl5envLw8SVJ2drZ+/vOf65e//KU+/fRTZWVlaf369Ro7dqz7sadOndKjjz6qTz75REuXLtW+fft06623VnqO6dOn65lnntHGjRu1f/9+DRkyRHPmzNFrr72mt99+W6tWrdLTTz/tVX1+6rPPPtPGjRsVFRXlXnbixAldeOGFevvtt/XZZ5/prrvu0s0336wPP/xQkvSnP/1JvXv31p133umuc2pqaqVtb9myRUOGDNGwYcO0fft2TZ8+Xb/73e+0YMECv8oKhD2r0xMA//249eBnP/uZue2224wxni0vHTp0MNdee63H48aPH2/i4uJMXFycadasmVfP9d5775nmzZub2rVrmx49epgJEyaY9evXe6zTsmVL89RTT3ksu/32281dd93lsezf//63iYiIMCUlJVU+1+bNm40kc+zYMWPM/1pe3nnnHfc6mZmZRpLJzs52L7v77rtNRkaGV/UZNWqUiYyMNHFxcSY6OtpIMhEREebNN9886+Ouvvpq85vf/Mb9d79+/cz48eM91vlpy8uIESPMFVdc4bHOgw8+aDp16uRVWQF4ouUFCBGzZ8/WSy+9pF27dp1z3Yceekjbtm3TI488oqKiIq+237dvX+3du1dr1qzRjTfeqB07dujSSy/Vo48+etbHffLJJ1qwYIHq1q3rvmVkZKi8vFw5OTmSTrdMXHPNNWrRooXq1aunfv36SZJyc3M9ttW1a1f3/5s0aaI6deqodevWHssOHz7sVX0kacCAAdq2bZs++OADjRo1SqNHj9Yvf/lL9/1lZWV69NFH1aVLFzVs2FB169bVypUrK5XrXHbt2qU+ffp4LOvTp492796tsrIyn7YFgA67QMjo27evMjIyNGXKFI/lbdu21RdffOGxLCkpSW3atFHjxo19eo7atWvr0ksv1aRJk7Rq1SrNnDlTjz76qE6ePHnGxxQVFenuu+/Wtm3b3LdPPvlEu3fvVnp6uo4fP66MjAzFx8fr1Vdf1ebNm7VkyRJJqrTd2rVru/9fMUrox1wul8rLy72uT1xcnNq0aaNu3brpxRdf1AcffKC//vWv7vv/+Mc/6k9/+pMmTZqkd999V9u2bVNGRsZZ6wsg8GpZXQAANWfWrFnq3r272rdv7142fPhwjRgxQm+99Zauu+66Gn2+Tp066YcfftCJEycUFRWlqKioSi0JF1xwgXbu3Kk2bdpUuY3t27fr22+/1axZs9z9RT766KMaLac3IiIiNHXqVE2cOFEjRoxQbGysNmzYoOuuu06/+tWvJEnl5eX68ssv1alTJ/fjqqrzT3Xs2FEbNmzwWLZhwwa1a9dOkZGRNV8ZIMTR8gKEkC5dumjkyJH685//7F42bNgw3XjjjRo2bJhmzpypDz74QPv27dN7772nrKwsrw+e/fv31/PPP68tW7Zo3759Wr58uaZOnaoBAwYoPj5e0ul5Xt5//30dOHBA+fn5kqRJkyZp48aNGjt2rLZt26bdu3frrbfecnfYbdGihaKiovT0009r7969WrZs2TlPRQXKTTfdpMjISM2dO1fS6Var1atXa+PGjdq1a5fuvvtuHTp0yOMxaWlp7n2an59fZcvPb37zG61Zs0aPPvqovvzyS7300kt65pln9MADDwSlXkCoIbwAIWbmzJkeB1CXy6WsrCzNmTNHy5cv1+WXX6727dvrtttuU2pqqtavX+/VdjMyMvTSSy/pyiuvVMeOHXXfffcpIyNDr7/+usdz79u3T+np6UpKSpJ0up/Ke++9py+//FKXXnqpzj//fD3yyCNq2rSppNOnsBYsWKA33nhDnTp10qxZs/TEE0/U4B7xXq1atTR27Fg9/vjjOn78uB5++GFdcMEFysjIUP/+/ZWcnKzrr7/e4zEPPPCAIiMj1alTJyUlJVXZH+aCCy7Q66+/rkWLFqlz58565JFHNHPmzCpHVAE4N5cxxlhdCAAAAG/R8gIAAByF8AJAkjyGMv/09u9//9vq4vkkNzf3rPXxdagzAHvhtBEASTrrBRqbNWum2NjYIJamen744Qft27fvjPenpaWpVi0GWwJORXgBAACOwmkjAADgKIQXAADgKIQXAADgKIQXAADgKIQXAADgKIQXAADgKIQXAADgKIQXAADgKP8fnkTZt5YBqjMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_15_64.png" - } - }, + "metadata": {}, "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -1421,913 +1192,688 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJNklEQVR4nO3de1yUZf7/8feADCjC6KAgEoqippUaaLqaqZmlplTfbX/ZQbODtZpUZiddy8Oapw5GhnYwT5VmW7ltaKul6W6Wu7oilaaWiuWWx5kcUAuIuX9/uEyOoDLDHGB4PR+Peejcc819f+5rWXl3Xdd93ybDMAwBAACEiLBgFwAAAOBLhBsAABBSCDcAACCkEG4AAEBIIdwAAICQQrgBAAAhhXADAABCCuEGAACEFMINAAAIKYQbAAiSRYsWyWQyad++fcEuBQgphBsghG3evFmZmZm6+OKLFR0drWbNmummm27SN998U65t7969ZTKZZDKZFBYWptjYWF144YUaOnSoPv74Y4+Om5OTo169eik+Pl716tVTy5YtddNNN2nVqlW+OrVypk2bpvfff7/c9s8//1yTJk3SsWPH/HbsM02aNMnVlyaTSfXq1dNFF12kJ554QgUFBT45xtKlS5WVleWTfQGhhnADhLCZM2fqvffe01VXXaUXXnhB9957r/75z38qPT1d27ZtK9f+ggsu0BtvvKHXX39dzzzzjK677jp9/vnnuuaaazR48GCVlJSc95jPPvusrrvuOplMJo0bN07PP/+8brzxRn377bdatmyZP05T0rnDzeTJkwMabsq89NJLeuONNzRr1iy1bdtWU6dOVf/+/eWLR/oRboCzqxPsAgD4z5gxY7R06VKZzWbXtsGDB6t9+/aaMWOG3nzzTbf2FotFQ4YMcds2Y8YMPfDAA5o7d65SUlI0c+bMsx7v119/1ZQpU3T11Vfro48+Kvf54cOHq3hG1cfJkydVr169c7b5wx/+oEaNGkmSRowYoRtvvFHLly/Xv/71L3Xr1i0QZQK1EiM3QAjr3r27W7CRpNatW+viiy/Wjh07KrWP8PBwzZ49WxdddJGys7PlcDjO2vbo0aMqKCjQ5ZdfXuHn8fHxbu9/+eUXTZo0SW3atFFUVJQSExP1+9//Xnv27HG1efbZZ9W9e3fFxcWpbt266tSpk9599123/ZhMJp04cUKLFy92TQXdcccdmjRpkh599FFJUosWLVyfnb7G5c0331SnTp1Ut25dWa1W3Xzzzdq/f7/b/nv37q1LLrlEW7ZsUc+ePVWvXj396U9/qlT/na5Pnz6SpPz8/HO2mzt3ri6++GJFRkaqadOmGjVqlNvIU+/evbVy5Up99913rnNKSUnxuB4gVDFyA9QyhmHo0KFDuvjiiyv9nfDwcN1yyy168skntWHDBg0cOLDCdvHx8apbt65ycnJ0//33y2q1nnWfpaWlGjRokNauXaubb75ZDz74oAoLC/Xxxx9r27ZtSk1NlSS98MILuu6663TbbbepuLhYy5Yt0//7f/9PK1ascNXxxhtvaPjw4erSpYvuvfdeSVJqaqqio6P1zTff6K233tLzzz/vGkVp3LixJGnq1Kl68sknddNNN2n48OE6cuSIXnzxRfXs2VNbt25VgwYNXPXabDYNGDBAN998s4YMGaKEhIRK91+ZstAWFxd31jaTJk3S5MmT1bdvX40cOVK7du3SSy+9pM2bN+uzzz5TRESExo8fL4fDof/+9796/vnnJUn169f3uB4gZBkAapU33njDkGTMnz/fbXuvXr2Miy+++Kzf++tf/2pIMl544YVz7n/ChAmGJCM6OtoYMGCAMXXqVGPLli3l2i1YsMCQZMyaNavcZ06n0/X3kydPun1WXFxsXHLJJUafPn3ctkdHRxvDhg0rt69nnnnGkGTk5+e7bd+3b58RHh5uTJ061W37V199ZdSpU8dte69evQxJxssvv3zW8z7dxIkTDUnGrl27jCNHjhj5+fnGK6+8YkRGRhoJCQnGiRMnDMMwjIULF7rVdvjwYcNsNhvXXHONUVpa6tpfdna2IclYsGCBa9vAgQON5s2bV6oeoLZhWgqoRXbu3KlRo0apW7duGjZsmEffLRsZKCwsPGe7yZMna+nSpUpLS9Pq1as1fvx4derUSenp6W5TYe+9954aNWqk+++/v9w+TCaT6+9169Z1/f2nn36Sw+HQFVdcodzcXI/qP9Py5cvldDp100036ejRo65XkyZN1Lp1a61bt86tfWRkpO68806PjnHhhReqcePGatGihf74xz+qVatWWrly5VnX6qxZs0bFxcUaPXq0wsJ+++f5nnvuUWxsrFauXOn5iQK1ENNSQC1x8OBBDRw4UBaLRe+++67Cw8M9+v7x48clSTExMedte8stt+iWW25RQUGB/v3vf2vRokVaunSpMjIytG3bNkVFRWnPnj268MILVafOuf8ZWrFihZ566inl5eWpqKjItf30AOSNb7/9VoZhqHXr1hV+HhER4fY+KSmp3Pql83nvvfcUGxuriIgIXXDBBa6ptrP57rvvJJ0KRaczm81q2bKl63MA50a4AWoBh8OhAQMG6NixY/r000/VtGlTj/dRdul4q1atKv2d2NhYXX311br66qsVERGhxYsX69///rd69epVqe9/+umnuu6669SzZ0/NnTtXiYmJioiI0MKFC7V06VKPz+F0TqdTJpNJf//73ysMemeuYTl9BKmyevbs6VrnAyBwCDdAiPvll1+UkZGhb775RmvWrNFFF13k8T5KS0u1dOlS1atXTz169PCqjs6dO2vx4sU6cOCApFMLfv/973+rpKSk3ChJmffee09RUVFavXq1IiMjXdsXLlxYru3ZRnLOtj01NVWGYahFixZq06aNp6fjF82bN5ck7dq1Sy1btnRtLy4uVn5+vvr27evaVtWRKyCUseYGCGGlpaUaPHiwNm7cqHfeecere6uUlpbqgQce0I4dO/TAAw8oNjb2rG1PnjypjRs3VvjZ3//+d0m/TbnceOONOnr0qLKzs8u1Nf53k7vw8HCZTCaVlpa6Ptu3b1+FN+uLjo6u8EZ90dHRklTus9///vcKDw/X5MmTy91UzzAM2Wy2ik/Sj/r27Suz2azZs2e71TR//nw5HA63q9Sio6PPeVk+UJsxcgOEsIcfflgffPCBMjIyZLfby92078wb9jkcDlebkydPavfu3Vq+fLn27Nmjm2++WVOmTDnn8U6ePKnu3bvrd7/7nfr376/k5GQdO3ZM77//vj799FPdcMMNSktLkyTdfvvtev311zVmzBht2rRJV1xxhU6cOKE1a9bovvvu0/XXX6+BAwdq1qxZ6t+/v2699VYdPnxYc+bMUatWrfTll1+6HbtTp05as2aNZs2apaZNm6pFixbq2rWrOnXqJEkaP368br75ZkVERCgjI0Opqal66qmnNG7cOO3bt0833HCDYmJilJ+fr7/+9a+699579cgjj1Sp/z3VuHFjjRs3TpMnT1b//v113XXXadeuXZo7d64uu+wyt/+9OnXqpLfffltjxozRZZddpvr16ysjIyOg9QLVVjAv1QLgX2WXMJ/tda629evXN1q3bm0MGTLE+Oijjyp1vJKSEmPevHnGDTfcYDRv3tyIjIw06tWrZ6SlpRnPPPOMUVRU5Nb+5MmTxvjx440WLVoYERERRpMmTYw//OEPxp49e1xt5s+fb7Ru3dqIjIw02rZtayxcuNB1qfXpdu7cafTs2dOoW7euIcntsvApU6YYSUlJRlhYWLnLwt977z2jR48eRnR0tBEdHW20bdvWGDVqlLFr1y63vjnXZfJnKqvvyJEj52x35qXgZbKzs422bdsaERERRkJCgjFy5Ejjp59+cmtz/Phx49ZbbzUaNGhgSOKycOA0JsPwwUNOAAAAqgnW3AAAgJBCuAEAACGFcAMAAEIK4QYAAIQUwg0AAAgphBsAABBSat1N/JxOp3788UfFxMRw+3IAAGoIwzBUWFiopk2bKizs3GMztS7c/Pjjj0pOTg52GQAAwAv79+/XBRdccM42tS7cxMTESDrVOed6Rg4AAKg+CgoKlJyc7Po9fi61LtyUTUXFxsYSbgAAqGEqs6SEBcUAACCkEG4AAEBIIdwAAICQUuvW3AAA4K3S0lKVlJQEu4yQZTabz3uZd2UQbgAAOA/DMHTw4EEdO3Ys2KWEtLCwMLVo0UJms7lK+yHcAABwHmXBJj4+XvXq1eMmsH5QdpPdAwcOqFmzZlXqY8INAADnUFpa6go2cXFxwS4npDVu3Fg//vijfv31V0VERHi9HxYUAwBwDmVrbOrVqxfkSkJf2XRUaWlplfZDuAEAoBKYivI/X/Ux01JVZLPZVFxcfNbPzWYzw5gAAAQQ4aYKbDabsrOzz9suMzOTgAMAQIAwLVUFZ47YOBwxys9PkcMRc852AAAEwh133CGTySSTyaSIiAglJCTo6quv1oIFC+R0Oiu9n0WLFqlBgwb+K9THGLnxkdzcNOXkDJJhhMlkciojY4XS07cGuywAQJAFe/lC//79tXDhQpWWlurQoUNatWqVHnzwQb377rv64IMPVKdO6EWB0DujIHA4YlzBRpIMI0w5OYOUmrpbFkthkKsDAARLdVi+EBkZqSZNmkiSkpKSlJ6ert/97ne66qqrtGjRIg0fPlyzZs3SwoULtXfvXlmtVmVkZOjpp59W/fr1tX79et15552SflvwO3HiRE2aNElvvPGGXnjhBe3atUvR0dHq06ePsrKyFB8f75dzqSympXzAbo9zBZsyhhEmu90apIoAANVBZZclBHr5Qp8+fdSxY0ctX75c0qk7A8+ePVvbt2/X4sWL9cknn+ixxx6TJHXv3l1ZWVmKjY3VgQMHdODAAT3yyCOSTl0mP2XKFH3xxRd6//33tW/fPt1xxx0BPZeKMHLjA1arTSaT0y3gmExOWa32IFYFAMDZtW3bVl9++aUkafTo0a7tKSkpeuqppzRixAjNnTtXZrNZFotFJpPJNQJU5q677nL9vWXLlpo9e7Yuu+wyHT9+XPXr1w/IeVSEkRsfsFgKlZGxQibTqcVZZWtumJICAFRXhmG4ppnWrFmjq666SklJSYqJidHQoUNls9l08uTJc+5jy5YtysjIULNmzRQTE6NevXpJkr7//nu/138ujNz4SHr6VqWm7pbdbpXVaifYAACqtR07dqhFixbat2+fBg0apJEjR2rq1KmyWq3asGGD7r77bhUXF5/1zswnTpxQv3791K9fPy1ZskSNGzfW999/r379+gX9KmHCTRWc+dRSi6WwwlBT1aebAgDgS5988om++uorPfTQQ9qyZYucTqeee+45hYWdmtD5y1/+4tbebDaXeyTCzp07ZbPZNGPGDCUnJ0uS/vOf/wTmBM6DcFMFcXFxyszM5A7FAIBqq6ioSAcPHnS7FHz69OkaNGiQbr/9dm3btk0lJSV68cUXlZGRoc8++0wvv/yy2z5SUlJ0/PhxrV27Vh07dlS9evXUrFkzmc1mvfjiixoxYoS2bdumKVOmBOks3bHmpori4uKUmJh41hfBBgAQTKtWrVJiYqJSUlLUv39/rVu3TrNnz9bf/vY3hYeHq2PHjpo1a5ZmzpypSy65REuWLNH06dPd9tG9e3eNGDFCgwcPVuPGjfX000+rcePGWrRokd555x1ddNFFmjFjhp599tkgnaU7k2EYRrCLCKSCggJZLBY5HA7FxsYGuxwAQDX3yy+/KD8/Xy1atFBUVJRH360O97mpSc7V1578/mZaCgAAP2H5QnAQbgAA8COCS+Cx5gYAAIQUwg0AAAgphBsAABBSCDcAACCkEG4AAEBIIdwAAICQQrgBAAAhhXADAAC8sn79eplMJh07dqzS30lJSVFWVpbfapIINwAAhKw77rhDJpNJI0aMKPfZqFGjZDKZdMcddwS+MD8j3AAAEMKSk5O1bNky/fzzz65tv/zyi5YuXapmzZoFsTL/IdwAABDC0tPTlZycrOXLl7u2LV++XM2aNVNaWpprW1FRkR544AHFx8crKipKPXr00ObNm9329eGHH6pNmzaqW7eurrzySu3bt6/c8TZs2KArrrhCdevWVXJysh544AGdOHHCb+dXEcINAAAB8t//SuvWnfozkO666y4tXLjQ9X7BggW688473do89thjeu+997R48WLl5uaqVatW6tevn+x2uyRp//79+v3vf6+MjAzl5eVp+PDhGjt2rNs+9uzZo/79++vGG2/Ul19+qbffflsbNmxQZmam/0/yNIQbAAACYP58qXlzqU+fU3/Onx+4Yw8ZMkQbNmzQd999p++++06fffaZhgwZ4vr8xIkTeumll/TMM89owIABuuiiizRv3jzVrVtX8/9X6EsvvaTU1FQ999xzuvDCC3XbbbeVW68zffp03XbbbRo9erRat26t7t27a/bs2Xr99df1yy+/BOx8eSo4AAB+9t//SvfeKzmdp947ndIf/yj16yddcIH/j9+4cWMNHDhQixYtkmEYGjhwoBo1auT6fM+ePSopKdHll1/u2hYREaEuXbpox44dkqQdO3aoa9eubvvt1q2b2/svvvhCX375pZYsWeLaZhiGnE6n8vPz1a5dO3+cXjmEGwAA/Ozbb38LNmVKS6XduwMTbqRTU1Nl00Nz5szxyzGOHz+uP/7xj3rggQfKfRbIxcuEGwAA/Kx1aykszD3ghIdLrVoFrob+/furuLhYJpNJ/fr1c/ssNTVVZrNZn332mZo3by5JKikp0ebNmzV69GhJUrt27fTBBx+4fe9f//qX2/v09HR9/fXXahXIE6sAa24AAPCzCy6QXn31VKCRTv35yiuBG7U5dcxw7dixQ19//bXCywr5n+joaI0cOVKPPvqoVq1apa+//lr33HOPTp48qbvvvluSNGLECH377bd69NFHtWvXLi1dulSLFi1y28/jjz+uzz//XJmZmcrLy9O3336rv/3tbwFfUMzIDQAAAXD33afW2OzefWrEJpDBpkxsbOxZP5sxY4acTqeGDh2qwsJCde7cWatXr1bDhg0lnZpWeu+99/TQQw/pxRdfVJcuXTRt2jTdddddrn106NBB//jHPzR+/HhdccUVMgxDqampGjx4sN/P7XQmwzCMgB4xyAoKCmSxWORwOM75PzIAANKpG97l5+erRYsWioqKCnY5Ie1cfe3J72+mpQAAQEgh3AAAgJBCuAEAACGFcAMAAEIK4QYAgEqoZdffBIWv+phwAwDAOUREREiSTp48GeRKQl9xcbEklbsPj6e4zw0AAOcQHh6uBg0a6PDhw5KkevXqyWQyBbmq0ON0OnXkyBHVq1dPdepULZ4QbgAAOI8mTZpIkivgwD/CwsLUrFmzKodHwg0AAOdhMpmUmJio+Ph4lZSUBLuckGU2mxUWVvUVM4QbAAAqKTw8vMrrQeB/LCgGAAAhhXADAABCCuEGAACEFMINAAAIKYQbAAAQUgg3AAAgpBBuAABASCHcAACAkEK4AQAAIYVwAwAAQkpQw80///lPZWRkqGnTpjKZTHr//ffP+53169crPT1dkZGRatWqlRYtWuT3OgEAQM0R1HBz4sQJdezYUXPmzKlU+/z8fA0cOFBXXnml8vLyNHr0aA0fPlyrV6/2c6UAAKCmCOqDMwcMGKABAwZUuv3LL7+sFi1a6LnnnpMktWvXThs2bNDzzz+vfv36+atM1AI2m03FxcVn/dxsNisuLi6AFQEAvFWjngq+ceNG9e3b121bv379NHr06LN+p6ioSEVFRa73BQUF/ioPNZTNZlN2dvZ522VmZhJwAKAGqFELig8ePKiEhAS3bQkJCSooKNDPP/9c4XemT58ui8XieiUnJweiVNQgZ47YOBwxys9PkcMRc852AIDqqUaN3Hhj3LhxGjNmjOt9QUEBAQdnlZubppycQTKMMJlMTmVkrFB6+tZglwUA8ECNCjdNmjTRoUOH3LYdOnRIsbGxqlu3boXfiYyMVGRkZCDKQw3ncMS4go0kGUaYcnIGKTV1tyyWwiBXBwCorBo1LdWtWzetXbvWbdvHH3+sbt26BakihBK7Pc4VbMoYRpjsdmuQKgIAeCOo4eb48ePKy8tTXl6epFOXeufl5en777+XdGpK6fbbb3e1HzFihPbu3avHHntMO3fu1Ny5c/WXv/xFDz30UDDKR4ixWm0ymZxu20wmp6xWe5AqAgB4I6jh5j//+Y/S0tKUlpYmSRozZozS0tI0YcIESdKBAwdcQUeSWrRooZUrV+rjjz9Wx44d9dxzz+m1117jMnD4hMVSqIyMFa6AU7bmhikpAKhZgrrmpnfv3jIM46yfV3T34d69e2vrVhZ4wj/S07cqNXW37HarrFY7wQYAaqAataAY8Aez2ez23mIprDDUnNkOAFA9EW5Q68XFxSkzM5M7FANAiCDcABLBBQBCSI26FBwAAOB8CDcAACCkEG4AAEBIIdwAAICQQrgBAAAhhXADAABCCuEGAACEFO5zU83YbDZuJgcAQBUQbqoRm82m7Ozs87bLzMwk4AAAcBZMS1UjZ47YOBwxys9PkcMRc852AADgN4zcVFO5uWnKyRkkwwiTyeRURsYKpafzNHQAAM6HkZtqyOGIcQUbSTKMMOXkDCo3ggMAAMoj3FRDdnucK9iUMYww2e3WIFUEAEDNQbiphqxWm0wmp9s2k8kpq9UepIoAAKg5CDfVkMVSqIyMFa6AU7bmxmIpDHJlAABUfyworqbS07cqNXW37HarrFY7wQYAgEoi3FQjZrPZ7b3FUlhhqDmzHQAA+A3hphqJi4tTZmYmdygGAKAKCDfVDMEFAICqYUExAAAIKYQbAAAQUpiWgsd4cjkAoDoj3MAjPLkcAFDdMS0Fj/DkcgBAdcfIDbzGk8t9jyk/AKg6wg28crYnl6em7uZuyl5iyg8AfINpKXiFJ5f7HlN+AOAbjNzAK2VPLj894PDkct9hyg8AvMfIDbzCk8v952xTfmeO4AAAKsbIDbzGk8v941xTfvQxAJwf4QYe4cnl/seUHwBUDeEGHuHJ5f5XNuV35pobRm0AoHIIN/AYwcX/mPIDAO8RboBqgik/APANwg1QTTDlBwC+QbgBqhGCCwBUHfe5AQAAIYVwAwAAQgrhBgAAhBTCDQAACCmEGwAAEFIINwAAIKQQbgAAQEjhPjfwmM1m40ZzAIBqi3ADj9hsNmVnZ5+3XWZmJgEHABAUTEvBI2eO2DgcMcrPT5HDEXPOdgAABAojN/Babm6acnIGyTDCZDI5lZGxQunpW4NdFgCglmPkBl5xOGJcwUaSDCNMOTmDyo3gAAAQaIQbeMVuj3MFmzKGESa73RqkigAAOIVwA69YrTaZTE63bSaTU1arPUgVAQBwCuEGXrFYCpWRscIVcMrW3FgshUGuDABQ27GgGF5LT9+q1NTdstutslrtBBsAQLVAuIFHzGaz23uLpbDCUHNmOwAAAoVwA4/ExcUpMzOTOxQDAKotwg08RnABAFRnLCgGAAAhhXADAABCCuEGAACEFMINAAAIKYQbAAAQUqpFuJkzZ45SUlIUFRWlrl27atOmTedsn5WVpQsvvFB169ZVcnKyHnroIf3yyy8BqhYAAFRnQQ83b7/9tsaMGaOJEycqNzdXHTt2VL9+/XT48OEK2y9dulRjx47VxIkTtWPHDs2fP19vv/22/vSnPwW4cgAAUB2ZDMMwgllA165dddlllyk7O1uS5HQ6lZycrPvvv19jx44t1z4zM1M7duzQ2rVrXdsefvhh/fvf/9aGDRvOe7yCggJZLBY5HA7Fxsb67kQAnJXNZuPGjwCqxJPf30G9iV9xcbG2bNmicePGubaFhYWpb9++2rhxY4Xf6d69u958801t2rRJXbp00d69e/Xhhx9q6NChgSobgAdsNpvrP17OJTMzk4ADwCeCGm6OHj2q0tJSJSQkuG1PSEjQzp07K/zOrbfeqqNHj6pHjx4yDEO//vqrRowYcdZpqaKiIhUVFbneFxQU+O4EAJzXmSM2DkeM7PY4Wa02t+eSnWtkBwA8EfQ1N55av369pk2bprlz5yo3N1fLly/XypUrNWXKlArbT58+XRaLxfVKTk4OcMUAyuTmpikra7QWLx6mrKzRys1NC3ZJAEKQV+GmWbNmuv322zV//nzt2bPH64M3atRI4eHhOnTokNv2Q4cOqUmTJhV+58knn9TQoUM1fPhwtW/fXv/3f/+nadOmafr06XI6neXajxs3Tg6Hw/Xav3+/1/UC8J7DEaOcnEEyjFP/7BhGmHJyBsnhiAlyZQBCjVfhZtq0aYqKitLMmTPVunVrJScna8iQIZo3b56+/fbbSu/HbDarU6dObouDnU6n1q5dq27dulX4nZMnTyoszL3s8PBwSVJFa6MjIyMVGxvr9gIQeHZ7nCvYlDGMMNnt1iBVBCBUebXmZsiQIRoyZIgk6cCBA/rHP/6hFStW6L777pPT6VRpaWml9zVmzBgNGzZMnTt3VpcuXZSVlaUTJ07ozjvvlCTdfvvtSkpK0vTp0yVJGRkZmjVrltLS0tS1a1ft3r1bTz75pDIyMlwhB0D1Y7XaZDI53QKOyeSU1WoPYlUAQpHXC4pPnjypDRs2aP369Vq3bp22bt2qSy65RL179/ZoP4MHD9aRI0c0YcIEHTx4UJdeeqlWrVrlWmT8/fffu43UPPHEEzKZTHriiSf0ww8/qHHjxsrIyNDUqVO9PRUAAWCxFCojY4VraspkciojY4XbomIA8AWv7nPTvXt3bd26Ve3atVPv3r3Vq1cv9ezZUw0bNvRHjT7FfW4Qaqr7PWQOHDigV1991fX+1NVSVlmtdrdgc++99yoxMTEYJQKoAfx+n5udO3cqOjpabdu2Vdu2bdWuXbsaEWyAUFMT7iFjNpvd3lsshRWO1pzZDgC85VW4sdls+uqrr7R+/XqtXr1a48ePl9lsVq9evXTllVfqnnvu8XWdACpQE+4hExcXp8zMzGo9ugQgtFT58QuGYWjLli3Kzs7WkiVLPF5QHGhMSyGUnD7lk5ubVm49S3r6VklM+QCo+fw+LZWbm6v169dr/fr12rBhgwoLC9W+fXvdf//96tWrl1dFA/De2e4hk5q6mwW7AGodr8JNly5dlJaWpl69eumee+5Rz549ZbFYfF0bgEo61z1kCDcAahuvwo3dbmdKB6hGuIcMAPzGq3BTFmy2bNmiHTt2SJIuuugipaen+64yAJXGPWQA4DdehZvDhw9r8ODB+sc//qEGDRpIko4dO6Yrr7xSy5YtU+PGjX1ZI4BKSE/fqtTU3RXeQwYAahOvni11//336/jx49q+fbvsdrvsdru2bdumgoICPfDAA76uEcBZVHQPmRYtvisXbLiHDIDaxKtLwS0Wi9asWaPLLrvMbfumTZt0zTXX6NixY76qz+e4FByhprrfoRgAfMHvl4I7nU5FRESU2x4RESGn0+nNLgF4ieACAO68mpbq06ePHnzwQf3444+ubT/88IMeeughXXXVVT4rDgAAwFNehZvs7GwVFBQoJSVFqampSk1NVYsWLVRQUKAXX3zR1zUCAABUmlfTUsnJycrNzdWaNWu0c+dOSVK7du3Ut29fnxYHAADgqSo/W6qmYUExAAA1j18WFM+ePbvSBXA5OAAACJZKj9y0aNGicjs0mbR3794qFeVPjNwAAFDz+GXkJj8/v8qFAQAA+JtHV0txDxsAAFDdeRRuIiIidPjwYdf7Rx99VHY7Tx0GAADVh0fh5szlOa+88kq1ftQCAACofby6iV+ZWnYVOQAAqAGqFG4AAACqG4/vUDxhwgTVq1dPklRcXKypU6fKYrG4tZk1a5ZvqgMAAPCQR+GmZ8+e2rVrl+t99+7dy93TxmQy+aYyAAAAL3gUbtavX++nMgAAAHzDr2tuYmNjq/XdigEAQOjxa7jhaioAABBoXC0FAABCCuEGAACEFMINAAAIKX4NN1wWDgAAAo0FxQAAIKT4Ndz8/e9/V1JSkj8PAQAA4Mbjxy9Ip0Zk3n33Xa1bt06HDx+W0+l0+3z58uWSpB49elS9QgAAAA94FW5Gjx6tV155RVdeeaUSEhJYWwMAAKoNr8LNG2+8oeXLl+vaa6/1dT1AyLPZbCouLj7r52azWXFxcQGsCABCi1fhxmKxqGXLlr6uBQh5NptN2dnZ522XmZlJwAEAL3m1oHjSpEmaPHmyfv75Z1/XA4S0M0dsHI4Y5eenyOGIOWc7AEDleTVyc9NNN+mtt95SfHy8UlJSFBER4fZ5bm6uT4oDQllubppycgbJMMJkMjmVkbFC6elbg10WANR4XoWbYcOGacuWLRoyZAgLigEvOBwxrmAjSYYRppycQUpN3S2LpTDI1QFAzeZVuFm5cqVWr17Npd6Al+z2OFewKWMYYbLbrYQbAKgir9bcJCcnKzY21te1ALWG1WqTyeR+fyiTySmr1R6kigAgdHgVbp577jk99thj2rdvn4/LAWoHi6VQGRkrXAGnbM1NIEdtbDabDhw4cNaXzWYLWC0A4EteTUsNGTJEJ0+eVGpqqurVq1duQbHdzn99AueTnr5Vqam7ZbdbZbXazxtsfHl/HC5JBxDKvAo3WVlZPi4DqB3MZrPbe4ulsMJQc2Y7X4eRii5Jt9vjZLXa3OrhknQANZHXV0sB8FxcXJwyMzM9HoHxZxjhknQAocarcHO6X375pdw/qCw2Bs6uqtM8vgwjXJIOIBR5taD4xIkTyszMVHx8vKKjo9WwYUO3FwD/OFsYOfMOx5V1rkvSAaCm8ircPPbYY/rkk0/00ksvKTIyUq+99pomT56spk2b6vXXX/d1jQD+x9dhhEvSAYQir8JNTk6O5s6dqxtvvFF16tTRFVdcoSeeeELTpk3TkiVLfF0jgP/xdRipDpekA4CvebXmxm63u54KHhsb67r0u0ePHho5cqTvqgPgpiyMnLnmpiphxNNL0gGguvMq3LRs2VL5+flq1qyZ2rZtq7/85S/q0qWLcnJy1KBBAx+XCOB0vggj3l6SDgA1gVfh5s4779QXX3yhXr16aezYscrIyFB2drZKSko0a9YsX9cI1Hq+DiPeXpIOADWByTAMo6o7+e6777Rlyxa1atVKHTp08EVdflNQUCCLxSKHw8El66hRfHmHYgCoaTz5/e2T+9w0b95czZs3r+quAJwDwQUAKserq6VKS0s1ZcoUJSUlqX79+tq7d68k6cknn9T8+fN9WiAAAIAnvAo3U6dO1aJFi/T000+7zfFfcskleu2113xWHAAAgKe8Cjevv/66Xn31Vd12220KDw93be/YsaN27tzps+IAAAA85VW4+eGHH9SqVaty251Op0pKSqpcFAAAgLe8CjcXXXSRPv3003Lb3333XaWlpVW5KAAAAG95dbXUhAkTNGzYMP3www9yOp1avny5du3apddff10rVqzwdY0AAACV5tXIzfXXX6+cnBytWbNG0dHRmjBhgnbs2KGcnBxdffXVvq4RAACg0nxyE7+ahJv4AQBQ83jy+9urkZuWLVvKZrOV237s2DHXAzU9MWfOHKWkpCgqKkpdu3bVpk2bztn+2LFjGjVqlBITExUZGak2bdroww8/9Pi4AAAg9Hi15mbfvn0qLS0tt72oqEg//PCDR/t6++23NWbMGL388svq2rWrsrKy1K9fP+3atUvx8fHl2hcXF+vqq69WfHy83n33XSUlJem7777jgZ0AAECSh+Hmgw8+cP199erVslgsrvelpaVau3atUlJSPCpg1qxZuueee3TnnXdKkl5++WWtXLlSCxYs0NixY8u1X7Bggex2uz7//HNFRERIksfHBAAAocujNTdhYadmsUwmk878WkREhFJSUvTcc89p0KBBldpfcXGx6tWrp3fffVc33HCDa/uwYcN07Ngx/e1vfyv3nWuvvVZWq1X16tXT3/72NzVu3Fi33nqrHn/8cbcbCpYpKipSUVGR631BQYGSk5NZcwMAQA3itwdnOp1OSVKLFi20efNmNWrUyPsqJR09elSlpaVKSEhw256QkHDWOx3v3btXn3zyiW677TZ9+OGH2r17t+677z6VlJRo4sSJ5dpPnz5dkydPrlKdAACg5vBoQfHGjRu1YsUK5efnu4LN66+/rhYtWig+Pl733nuv2yiJPzidTsXHx+vVV19Vp06dNHjwYI0fP14vv/xyhe3HjRsnh8Pheu3fv9+v9QEAgODyKNxMnjxZ27dvd73/6quvdPfdd6tv374aO3ascnJyNH369Ervr1GjRgoPD9ehQ4fcth86dEhNmjSp8DuJiYlq06aN2xRUu3btdPDgQRUXF5drHxkZqdjYWLcXAAAIXR6Fmy+++EJXXXWV6/2yZcvUtWtXzZs3T2PGjNHs2bP1l7/8pdL7M5vN6tSpk9auXeva5nQ6tXbtWnXr1q3C71x++eXavXu3a4pMkr755hslJia6PaEcAADUTh6Fm59++sltfcw//vEPDRgwwPX+sssu83jaZ8yYMZo3b54WL16sHTt2aOTIkTpx4oTr6qnbb79d48aNc7UfOXKk7Ha7HnzwQX3zzTdauXKlpk2bplGjRnl0XAAAEJo8WlCckJCg/Px8JScnq7i4WLm5uW6LdQsLC12XZ1fW4MGDdeTIEU2YMEEHDx7UpZdeqlWrVrlC1Pfff++6SkuSkpOTtXr1aj300EPq0KGDkpKS9OCDD+rxxx/36LgAACA0eXQp+MiRI/XFF19o5syZev/997V48WL9+OOPrumgJUuWKCsrS5s3b/ZbwVXF4xcAAKh5/HYp+JQpU/T73/9evXr1Uv369bV48WK3dS4LFizQNddc413VAAAAPuDVgzMdDofq169f7qZ5drtd9evXr9YLexm5AQCg5vHbyE2Z0x+7cDqr1erN7gAAAHzGq6eCAwAAVFeEGwAAEFIINwAAIKQQbgAAQEgh3AAAgJBCuAEAACGFcAMAAEIK4QYAAIQUwg0AAAgphBsAABBSCDcAACCkEG4AAEBI8erBmQBQW9hsNhUXF5/1c7PZrLi4uABWBOB8CDcAcBY2m03Z2dnnbZeZmUnAAaoRpqUA4CzOHLFxOGKUn58ihyPmnO0ABBcjNwBQCbm5acrJGSTDCJPJ5FRGxgqlp28NdlnnxJQaaivCDQCch8MR4wo2kmQYYcrJGaTU1N2yWAqDXF3FmFJDbUa4AYDzsNvjXMGmjGGEyW63VttwU9GUmt0eJ6vV5lazJ1NqjAShpiDcAMB5WK02mUxOt4BjMjlltdqDWFXl+WJKjZEg1CQsKAaA87BYCpWRsUImk1OSXAGhuo7anO5sU2pnLoo+HxZXoyZh5AYAKiE9fatSU3fLbrfKarXXiGAj+WdKrSYurkbtwsgNAJyF2Wx2e2+xFKpFi+/KhYIz21UnZVNqp6vKlJqvRoIAf2LkBgDOIi4uTpmZmTV6EW3ZlNqZIy3ejtrUxMXVqH0INwBwDtU5uFSWL6fUavriatQOTEsBQAjy15RaTV5cjdqDkRsACEH+nFKrqYurUXsQbgAgRPlySq2ikaCKQk11XlyN2oNwAwA4r1BYXI3ag3ADAKgUggtqChYUAwCAkEK4AQAAIYVwAwAAQgrhBgAAhBTCDQAACCmEGwAAEFIINwAAIKQQbgAAQEgh3AAAgJBCuAEAACGFcAMAAEIK4QYAAIQUwg0AAAgphBsAABBSCDcAACCkEG4AAEBIIdwAAICQQrgBAAAhpU6wCwAA1E42m03FxcVn/dxsNisuLi6AFSFUEG4AAAFns9mUnZ193naZmZkEHHiMaSkAQMCdOWLjcMQoPz9FDkfMOdsBlcHIDQAgqHJz05STM0iGESaTyamMjBVKT98a7LJQgxFuAKAWqi7rXRyOGFewkSTDCFNOziClpu6WxVLo9+MjNBFuAKCWqU7rXez2OFewKWMYYbLbrYQbeI01NwBQy1Sn9S5Wq00mk9Ntm8nklNVq9/uxEboYuQGAWizY610slkJlZKwoVwOjNqgKwg0A1FLVZb1LevpWpabult1uldVqJ9igygg3AFBLBXO9i9lsdntvsRRWeMwz2wGVQbgBgFqqbL3L6QEnUOtd4uLilJmZWS2u2ELoIdwAQC0V7PUuBBf4C+EGAGox1rsgFFWLS8HnzJmjlJQURUVFqWvXrtq0aVOlvrds2TKZTCbdcMMN/i0QAEJIRetdWrT4rlywYb0Laqqgj9y8/fbbGjNmjF5++WV17dpVWVlZ6tevn3bt2qX4+Pizfm/fvn165JFHdMUVVwSwWgCo+VjvglBnMgzDCGYBXbt21WWXXea6W6bT6VRycrLuv/9+jR07tsLvlJaWqmfPnrrrrrv06aef6tixY3r//fcrdbyCggJZLBY5HA7Fxsb66jQAAIAfefL7O6jTUsXFxdqyZYv69u3r2hYWFqa+fftq48aNZ/3en//8Z8XHx+vuu+8+7zGKiopUUFDg9gIAAKErqOHm6NGjKi0tVUJCgtv2hIQEHTx4sMLvbNiwQfPnz9e8efMqdYzp06fLYrG4XsnJyVWuGwAAVF/VYkFxZRUWFmro0KGaN2+eGjVqVKnvjBs3Tg6Hw/Xav3+/n6sEAADBFNQFxY0aNVJ4eLgOHTrktv3QoUNq0qRJufZ79uzRvn37lJGR4drmdJ564FqdOnW0a9cupaamun0nMjJSkZGRfqgeAABUR0EduTGbzerUqZPWrl3r2uZ0OrV27Vp169atXPu2bdvqq6++Ul5enut13XXX6corr1ReXh5TTgAAIPiXgo8ZM0bDhg1T586d1aVLF2VlZenEiRO68847JUm33367kpKSNH36dEVFRemSSy5x+36DBg0kqdx2AABQOwU93AwePFhHjhzRhAkTdPDgQV166aVatWqVa5Hx999/r7CwGrU0CAAABFHQ73MTaNznBgCAmqfG3OcGAADA1wg3AAAgpBBuAABASCHcAACAkEK4AQAAIYVwAwAAQgrhBgAAhBTCDQAACCmEGwAAEFKC/vgFAADgHZvNpuLi4rN+bjabFRcXF8CKqgfCDQAANZDNZlN2dvZ522VmZta6gMO0FAAANdCZIzYOR4zy81PkcMScs11twMgNAAA1XG5umnJyBskwwmQyOZWRsULp6VuDXVbQMHIDAEAN5HA4/vdnjCvYSJJhhCknZ5BrBKesXW1CuAEAoAYqKSmRJNntca5gU8YwwmS3W93a1SaEGwAAajCr1SbJecZWp6xWezDKqRYINwAA1Hgm93emszSrJQg3AADUYHZ7nM4MN6dPS9VGhBsAAGqgOnVOXfBstdpkMrlPS5lMv01LlbWrTQg3AADUQA0aNJAkWSyFyshY4Qo4ZZeCWyyFbu1qk9oX5wAACDHp6VuVmrpbdrtVVqvdFWxqK8INAAA1kNlsdntvsRRWGGrObFcbEG4AAKiB4uLilJmZyYMzK0C4AQCghqqNwaUyWFAMAABCCuEGAACEFMINAAAIKYQbAAAQUgg3AAAgpBBuAABASCHcAACAkEK4AQAAIYWb+AEAgCqx2WzV6k7JhBsAAOA1m82m7Ozs87bLzMwMWMBhWgoAAHjtzBEbhyNG+fkpcjhiztnOnxi5AQAAPpGbm6acnEEyjDCZTE5lZKxQevrWgNfByA0AAKgyhyPGFWwkyTDClJMzqNwITiAQbgAAQJXZ7XGuYFPGMMJkt1sDXgvhBgAAVJnVapPJ5HTbZjI5ZbXaA14L4QYAAFSZxVKojIwVroBTtubGYikMeC0sKAYAAD6Rnr5Vqam7ZbdbZbXagxJsJMINAACoArPZ7PbeYimsMNSc2c6fCDcAAMBrcXFxyszM5A7FAAAgdAQyuFQGC4oBAEBIIdwAAICQQrgBAAAhhXADAABCCguKAQCAJMlms1Wrq568RbgBAACy2WzKzs4+b7vMzMxqH3CYlgIAAOVGbByOGOXnp5R7qve5RnaqC0ZuAACAm9zcNOXkDJJhhLmeEZWevjXYZVUaIzcAAMDF4YhxBRtJMoww5eQMKjeCU50RbgAAgIvdHucKNmUMI0x2uzVIFXmOcAMAAFysVptMJqfbNpPJKavVHqSKPEe4AQAALhZLoTIyVrgCTtmam4qe9F1dsaAYAAC4SU/fqtTU3bLbrbJa7TUq2EiEGwAAoFM36DudxVJYYag5s111RLgBAACKi4tTZmYmdygGAAChoyYEl8pgQTEAAAgphBsAABBSCDcAACCkVItwM2fOHKWkpCgqKkpdu3bVpk2bztp23rx5uuKKK9SwYUM1bNhQffv2PWd7AABQuwQ93Lz99tsaM2aMJk6cqNzcXHXs2FH9+vXT4cOHK2y/fv163XLLLVq3bp02btyo5ORkXXPNNfrhhx8CXDkAAKiOTIZhGMEsoGvXrrrsssuUnZ0tSXI6nUpOTtb999+vsWPHnvf7paWlatiwobKzs3X77beft31BQYEsFoscDodiY2OrXD8AAPA/T35/B3Xkpri4WFu2bFHfvn1d28LCwtS3b19t3LixUvs4efKkSkpKZLVW/ECvoqIiFRQUuL0AAEDoCmq4OXr0qEpLS5WQkOC2PSEhQQcPHqzUPh5//HE1bdrULSCdbvr06bJYLK5XcnJylesGAADVV9DX3FTFjBkztGzZMv31r39VVFRUhW3GjRsnh8Pheu3fvz/AVQIAgEAK6h2KGzVqpPDwcB06dMht+6FDh9SkSZNzfvfZZ5/VjBkztGbNGnXo0OGs7SIjIxUZGel6X7bEiOkpAABqjrLf25VaKmwEWZcuXYzMzEzX+9LSUiMpKcmYPn36Wb8zc+ZMIzY21ti4caPHx9u/f78hiRcvXrx48eJVA1/79+8/7+/6oD9basyYMRo2bJg6d+6sLl26KCsrSydOnNCdd94pSbr99tuVlJSk6dOnS5JmzpypCRMmaOnSpUpJSXGtzalfv77q169/3uM1bdpU+/fvV0xMjEwm01nbFRQUKDk5Wfv376/VV1XRD6fQD7+hL06hH06hH35DX5zir34wDEOFhYVq2rTpedsGPdwMHjxYR44c0YQJE3Tw4EFdeumlWrVqlWuR8ffff6+wsN+WBr300ksqLi7WH/7wB7f9TJw4UZMmTTrv8cLCwnTBBRdUur7Y2Nha/UNahn44hX74DX1xCv1wCv3wG/riFH/0g8ViqVS7oIcbScrMzFRmZmaFn61fv97t/b59+/xfEAAAqLFq9NVSAAAAZyLcnEVkZKQmTpzodqVVbUQ/nEI//Ia+OIV+OIV++A19cUp16IegP34BAADAlxi5AQAAIYVwAwAAQgrhBgAAhBTCDQAACCm1NtzMmTNHKSkpioqKUteuXbVp06aztt2+fbtuvPFGpaSkyGQyKSsrK3CFBoAnfTFv3jxdccUVatiwoRo2bKi+ffues31N4kk/LF++XJ07d1aDBg0UHR2tSy+9VG+88UYAq/UfT/rhdMuWLZPJZNINN9zg3wIDyJO+WLRokUwmk9vrbA/0rWk8/Zk4duyYRo0apcTEREVGRqpNmzb68MMPA1St/3jSD7179y7382AymTRw4MAAVuw/nv5MZGVl6cILL1TdunWVnJyshx56SL/88ov/CvT44UwhYNmyZYbZbDYWLFhgbN++3bjnnnuMBg0aGIcOHaqw/aZNm4xHHnnEeOutt4wmTZoYzz//fGAL9iNP++LWW2815syZY2zdutXYsWOHcccddxgWi8X473//G+DKfcvTfli3bp2xfPly4+uvvzZ2795tZGVlGeHh4caqVasCXLlvedoPZfLz842kpCTjiiuuMK6//vrAFOtnnvbFwoULjdjYWOPAgQOu18GDBwNcte952g9FRUVG586djWuvvdbYsGGDkZ+fb6xfv97Iy8sLcOW+5Wk/2Gw2t5+Fbdu2GeHh4cbChQsDW7gfeNoXS5YsMSIjI40lS5YY+fn5xurVq43ExETjoYce8luNtTLcdOnSxRg1apTrfWlpqdG0adNzPqyzTPPmzUMq3FSlLwzDMH799VcjJibGWLx4sb9KDIiq9oNhGEZaWprxxBNP+KO8gPGmH3799Veje/fuxmuvvWYMGzYsZMKNp32xcOFCw2KxBKi6wPG0H1566SWjZcuWRnFxcaBKDIiq/hvx/PPPGzExMcbx48f9VWLAeNoXo0aNMvr06eO2bcyYMcbll1/utxpr3bRUcXGxtmzZor59+7q2hYWFqW/fvtq4cWMQKws8X/TFyZMnVVJSIqvV6q8y/a6q/WAYhtauXatdu3apZ8+e/izVr7zthz//+c+Kj4/X3XffHYgyA8Lbvjh+/LiaN2+u5ORkXX/99dq+fXsgyvUbb/rhgw8+ULdu3TRq1CglJCTokksu0bRp01RaWhqosn3OF/9Wzp8/XzfffLOio6P9VWZAeNMX3bt315YtW1xTV3v37tWHH36oa6+91m91VotnSwXS0aNHVVpa6nowZ5mEhATt3LkzSFUFhy/64vHHH1fTpk3dftBrGm/7weFwKCkpSUVFRQoPD9fcuXN19dVX+7tcv/GmHzZs2KD58+crLy8vABUGjjd9ceGFF2rBggXq0KGDHA6Hnn32WXXv3l3bt2/36GG91Yk3/bB371598sknuu222/Thhx9q9+7duu+++1RSUqKJEycGomyfq+q/lZs2bdK2bds0f/58f5UYMN70xa233qqjR4+qR48eMgxDv/76q0aMGKE//elPfquz1oUb+M6MGTO0bNkyrV+/PmQWTnoiJiZGeXl5On78uNauXasxY8aoZcuW6t27d7BLC4jCwkINHTpU8+bNU6NGjYJdTtB169ZN3bp1c73v3r272rVrp1deeUVTpkwJYmWB5XQ6FR8fr1dffVXh4eHq1KmTfvjhBz3zzDM1NtxU1fz589W+fXt16dIl2KUExfr16zVt2jTNnTtXXbt21e7du/Xggw9qypQpevLJJ/1yzFoXbho1aqTw8HAdOnTIbfuhQ4fUpEmTIFUVHFXpi2effVYzZszQmjVr1KFDB3+W6Xfe9kNYWJhatWolSbr00ku1Y8cOTZ8+vcaGG0/7Yc+ePdq3b58yMjJc25xOpySpTp062rVrl1JTU/1btJ/44t+JiIgIpaWlaffu3f4oMSC86YfExERFREQoPDzcta1du3Y6ePCgiouLZTab/VqzP1Tl5+HEiRNatmyZ/vznP/uzxIDxpi+efPJJDR06VMOHD5cktW/fXidOnNC9996r8ePHKyzM9ytkat2aG7PZrE6dOmnt2rWubU6nU2vXrnX7r67awNu+ePrppzVlyhStWrVKnTt3DkSpfuWrnwmn06mioiJ/lBgQnvZD27Zt9dVXXykvL8/1uu6663TllVcqLy9PycnJgSzfp3zxM1FaWqqvvvpKiYmJ/irT77zph8svv1y7d+92BV1J+uabb5SYmFgjg41UtZ+Hd955R0VFRRoyZIi/ywwIb/ri5MmT5QJMWfg1/PV4S78tVa7Gli1bZkRGRhqLFi0yvv76a+Pee+81GjRo4Lpsc+jQocbYsWNd7YuKioytW7caW7duNRITE41HHnnE2Lp1q/Htt98G6xR8xtO+mDFjhmE2m413333X7TLHwsLCYJ2CT3jaD9OmTTM++ugjY8+ePcbXX39tPPvss0adOnWMefPmBesUfMLTfjhTKF0t5WlfTJ482Vi9erWxZ88eY8uWLcbNN99sREVFGdu3bw/WKfiEp/3w/fffGzExMUZmZqaxa9cuY8WKFUZ8fLzx1FNPBesUfMLb/2/06NHDGDx4cKDL9StP+2LixIlGTEyM8dZbbxl79+41PvroIyM1NdW46aab/FZjrQw3hmEYL774otGsWTPDbDYbXbp0Mf71r3+5PuvVq5cxbNgw1/v8/HxDUrlXr169Al+4H3jSF82bN6+wLyZOnBj4wn3Mk34YP3680apVKyMqKspo2LCh0a1bN2PZsmVBqNr3POmHM4VSuDEMz/pi9OjRrrYJCQnGtddea+Tm5gahat/z9Gfi888/N7p27WpERkYaLVu2NKZOnWr8+uuvAa7a9zzth507dxqSjI8++ijAlfqfJ31RUlJiTJo0yUhNTTWioqKM5ORk47777jN++uknv9VnMgx/jQkBAAAEXq1bcwMAAEIb4QYAAIQUwg0AAAgphBsAABBSCDcAACCkEG4AAEBIIdwAAICQQrgBAD+64447dMMNNwS7DKBWIdwAtdQdd9whk8nkesXFxal///768ssvg12aT5x+bmWvHj16+O14+/btk8lkUl5entv2F154QYsWLfLbcQGUR7gBarH+/fvrwIEDOnDggNauXas6depo0KBBwS7LZxYuXOg6vwMHDuiDDz6osF1JSYnfarBYLGrQoIHf9g+gPMINUItFRkaqSZMmatKkiS699FKNHTtW+/fv15EjR9SnTx9lZma6tT9y5IjMZrPricApKSmaMmWKbrnlFkVHRyspKUlz5sxx+86sWbPUvn17RUdHKzk5Wffdd5+OHz/u+vy7775TRkaGGjZsqOjoaF188cX68MMPJUk//fSTbrvtNjVu3Fh169ZV69attXDhwkqfX4MGDVzn16RJE1mtVtcIy9tvv61evXopKipKS5Yskc1m0y233KKkpCTVq1dP7du311tvveW2P6fTqaefflqtWrVSZGSkmjVrpqlTp0qSWrRoIUlKS0uTyWRS7969JZWflioqKtIDDzyg+Ph4RUVFqUePHtq8ebPr8/Xr18tkMmnt2rXq3Lmz6tWrp+7du2vXrl2VPm+gtiPcAJAkHT9+XG+++aZatWqluLg4DR8+XEuXLlVRUZGrzZtvvqmkpCT16dPHte2ZZ55Rx44dtXXrVo0dO1YPPvigPv74Y9fnYWFhmj17trZv367Fixfrk08+0WOPPeb6fNSoUSoqKtI///lPffXVV5o5c6bq168vSXryySf19ddf6+9//7t27Nihl156SY0aNfLJ+ZbVumPHDvXr10+//PKLOnXqpJUrV2rbtm269957NXToUG3atMn1nXHjxmnGjBmuupYuXaqEhARJcrVbs2aNDhw4oOXLl1d43Mcee0zvvfeeFi9erNzcXLVq1Ur9+vWT3W53azd+/Hg999xz+s9//qM6derorrvu8sl5A7WC3x7JCaBaGzZsmBEeHm5ER0cb0dHRhiQjMTHR2LJli2EYhvHzzz8bDRs2NN5++23Xdzp06GBMmjTJ9b558+ZG//793fY7ePBgY8CAAWc97jvvvGPExcW53rdv395tn6fLyMgw7rzzTq/OT5IRFRXlOr/o6Gjjr3/9q5Gfn29IMrKyss67j4EDBxoPP/ywYRiGUVBQYERGRhrz5s2rsG3Zfrdu3eq2/fQnpR8/ftyIiIgwlixZ4vq8uLjYaNq0qfH0008bhmEY69atMyQZa9ascbVZuXKlIcn4+eefPekCoNZi5Aaoxa688krl5eUpLy9PmzZtUr9+/TRgwAB99913ioqK0tChQ7VgwQJJUm5urrZt26Y77rjDbR/dunUr937Hjh2u92vWrNFVV12lpKQkxcTEaOjQobLZbDp58qQk6YEHHtBTTz2lyy+/XBMnTnRb0Dxy5EgtW7ZMl156qR577DF9/vnnHp3f888/7zq/vLw8XX311a7POnfu7Na2tLRUU6ZMUfv27WW1WlW/fn2tXr1a33//vSRpx44dKioq0lVXXeVRDafbs2ePSkpKdPnll7u2RUREqEuXLm59JkkdOnRw/T0xMVGSdPjwYa+PDdQmhBugFouOjlarVq3UqlUrXXbZZXrttdd04sQJzZs3T5I0fPhwffzxx/rvf/+rhQsXqk+fPmrevHml979v3z4NGjRIHTp00HvvvactW7a41uQUFxe7jrF3714NHTpUX331lTp37qwXX3xRklxB66GHHtKPP/6oq666So888kilj9+kSRPX+bVq1UrR0dFu5366Z555Ri+88IIef/xxrVu3Tnl5eerXr5+rzrp161b6uL4QERHh+rvJZJJ0as0PgPMj3ABwMZlMCgsL088//yxJat++vTp37qx58+Zp6dKlFa77+Ne//lXufbt27SRJW7ZskdPp1HPPPaff/e53atOmjX788cdy+0hOTtaIESO0fPlyPfzww65wJUmNGzfWsGHD9OabbyorK0uvvvqqL0/Z5bPPPtP111+vIUOGqGPHjmrZsqW++eYb1+etW7dW3bp1XYupz2Q2myWdGgE6m9TUVJnNZn322WeubSUlJdq8ebMuuugiH50JgDrBLgBA8BQVFengwYOSTl2ZlJ2drePHjysjI8PVZvjw4crMzFR0dLT+7//+r9w+PvvsMz399NO64YYb9PHHH+udd97RypUrJUmtWrVSSUmJXnzxRWVkZOizzz7Tyy+/7Pb90aNHa8CAAWrTpo1++uknrVu3zhWOJkyYoE6dOuniiy9WUVGRVqxY4frM11q3bq13331Xn3/+uRo2bKhZs2bp0KFDrtARFRWlxx9/XI899pjMZrMuv/xyHTlyRNu3b9fdd9+t+Ph41a1bV6tWrdIFF1ygqKgoWSwWt2NER0dr5MiRevTRR2W1WtWsWTM9/fTTOnnypO6++26/nBdQGzFyA9Riq1atUmJiohITE9W1a1dt3rxZ77zzjusyZkm65ZZbVKdOHd1yyy2Kiooqt4+HH35Y//nPf5SWlqannnpKs2bNUr9+/SRJHTt21KxZszRz5kxdcsklWrJkiaZPn+72/dLSUo0aNUrt2rVT//791aZNG82dO1fSqdGQcePGqUOHDurZs6fCw8O1bNkyv/TFE088ofT0dPXr10+9e/dWkyZNyt1Z+Mknn9TDDz+sCRMmqF27dho8eLBrHUydOnU0e/ZsvfLKK2ratKmuv/76Co8zY8YM3XjjjRo6dKjS09O1e/durV69Wg0bNvTLeQG1kckwDCPYRQCovvbt26fU1FRt3rxZ6enpbp+lpKRo9OjRGj16dHCKA4AKMC0FoEIlJSWy2Wx64okn9Lvf/a5csAGA6oppKQAV+uyzz5SYmKjNmzeXWycTbNOmTVP9+vUrfA0YMCDY5QEIMqalANQ4dru93B19y9StW1dJSUkBrghAdUK4AQAAIYVpKQAAEFIINwAAIKQQbgAAQEgh3AAAgJBCuAEAACGFcAMAAEIK4QYAAIQUwg0AAAgp/x+g+cRf9PgMEQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHHCAYAAABdm0mZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASwFJREFUeJzt3XlcVPX+P/DXARk2YXRQEAkFwXJfcMvdFEPTKb91f9miomlezcnUyvSa2zWXtBQVt8yt0rDUuqGmpUmlWRpLuaCGgpop6kwOKAnEfH5/eDnXkUVmmAXOvJ6Pxzxyzvmcc97nE8mrz/mccyQhhAARERGRwrg5uwAiIiIie2DIISIiIkViyCEiIiJFYsghIiIiRWLIISIiIkViyCEiIiJFYsghIiIiRWLIISIiIkViyCEiIiJFYsghInKSjRs3QpIkZGVlObsUIkViyCFSsKNHj0Kn06F58+bw9fVFgwYN8PTTT+PMmTMl2vbq1QuSJEGSJLi5ucHf3x8PPfQQhg4diq+//tqi4yYmJqJnz54IDAyEj48PGjVqhKeffhp79uyx1amVMG/ePHz++ecllv/www+YNWsWbty4Ybdj32vWrFlyX0qSBB8fHzRr1gxvvvkmcnJybHKMLVu2IC4uzib7IlIqhhwiBXv77bexfft29OnTB0uXLsXo0aPx3XffISoqCsePHy/R/oEHHsCHH36IDz74AIsWLcLjjz+OH374AY8++igGDx6MwsLC+x7znXfeweOPPw5JkjB16lQsWbIETz31FH777TckJCTY4zQBlB9yZs+e7dCQU2zVqlX48MMPsXjxYjRp0gRz585Fv379YItXBjLkEN1fDWcXQET2M2nSJGzZsgUqlUpeNnjwYLRs2RILFizARx99ZNZerVZjyJAhZssWLFiA8ePHY+XKlQgLC8Pbb79d5vH+/vtvzJkzB3379sVXX31VYv3Vq1creUZVR15eHnx8fMpt849//AN16tQBAIwZMwZPPfUUduzYgR9//BGdO3d2RJlELo0jOUQK1qVLF7OAAwCNGzdG8+bNkZ6eXqF9uLu7Y9myZWjWrBni4+NhNBrLbHv9+nXk5OSga9eupa4PDAw0+3779m3MmjULDz74ILy8vBAcHIwnn3wSZ8+eldu888476NKlCwICAuDt7Y127dph27ZtZvuRJAm3bt3Cpk2b5EtEw4cPx6xZs/D6668DAMLDw+V1d8+B+eijj9CuXTt4e3tDo9HgmWeewcWLF83236tXL7Ro0QLJycno0aMHfHx88K9//atC/Xe33r17AwAyMzPLbbdy5Uo0b94cnp6eqF+/PsaNG2c2EtWrVy/s2rUL58+fl88pLCzM4nqIlI4jOUQuRgiB7OxsNG/evMLbuLu749lnn8X06dNx8OBBDBgwoNR2gYGB8Pb2RmJiIl5++WVoNJoy91lUVISBAwdi//79eOaZZ/DKK68gNzcXX3/9NY4fP46IiAgAwNKlS/H444/j+eefR0FBARISEvD//t//w86dO+U6PvzwQ4waNQodO3bE6NGjAQARERHw9fXFmTNn8PHHH2PJkiXyqErdunUBAHPnzsX06dPx9NNPY9SoUbh27RqWL1+OHj16IDU1FbVq1ZLr1ev16N+/P5555hkMGTIEQUFBFe6/YsXhLSAgoMw2s2bNwuzZsxEdHY2xY8fi9OnTWLVqFY4ePYpDhw7Bw8MD06ZNg9FoxO+//44lS5YAAGrWrGlxPUSKJ4jIpXz44YcCgFi3bp3Z8p49e4rmzZuXud1nn30mAIilS5eWu/8ZM2YIAMLX11f0799fzJ07VyQnJ5dot379egFALF68uMQ6k8kk/zkvL89sXUFBgWjRooXo3bu32XJfX18RGxtbYl+LFi0SAERmZqbZ8qysLOHu7i7mzp1rtvzYsWOiRo0aZst79uwpAIjVq1eXed53mzlzpgAgTp8+La5duyYyMzPFmjVrhKenpwgKChK3bt0SQgixYcMGs9quXr0qVCqVePTRR0VRUZG8v/j4eAFArF+/Xl42YMAA0bBhwwrVQ+SqeLmKyIWcOnUK48aNQ+fOnREbG2vRtsUjBbm5ueW2mz17NrZs2YK2bdti7969mDZtGtq1a4eoqCizS2Tbt29HnTp18PLLL5fYhyRJ8p+9vb3lP//5558wGo3o3r07UlJSLKr/Xjt27IDJZMLTTz+N69evy5969eqhcePGOHDggFl7T09PjBgxwqJjPPTQQ6hbty7Cw8Pxz3/+E5GRkdi1a1eZc3n27duHgoICTJgwAW5u//vr+cUXX4S/vz927dpl+YkSuTBeriJyEVeuXMGAAQOgVquxbds2uLu7W7T9zZs3AQB+fn73bfvss8/i2WefRU5ODn766Sds3LgRW7ZsgVarxfHjx+Hl5YWzZ8/ioYceQo0a5f81tHPnTrz11ltIS0tDfn6+vPzuIGSN3377DUIING7cuNT1Hh4eZt9DQkJKzG+6n+3bt8Pf3x8eHh544IEH5EtwZTl//jyAO+HobiqVCo0aNZLXE1HFMOQQuQCj0Yj+/fvjxo0b+P7771G/fn2L91F8y3lkZGSFt/H390ffvn3Rt29feHh4YNOmTfjpp5/Qs2fPCm3//fff4/HHH0ePHj2wcuVKBAcHw8PDAxs2bMCWLVssPoe7mUwmSJKEL7/8stTAd+8cl7tHlCqqR48e8jwgInI8hhwihbt9+za0Wi3OnDmDffv2oVmzZhbvo6ioCFu2bIGPjw+6detmVR3t27fHpk2bcPnyZQB3Jgb/9NNPKCwsLDFqUmz79u3w8vLC3r174enpKS/fsGFDibZljeyUtTwiIgJCCISHh+PBBx+09HTsomHDhgCA06dPo1GjRvLygoICZGZmIjo6Wl5W2ZEsIlfAOTlEClZUVITBgwfj8OHD+PTTT616NktRURHGjx+P9PR0jB8/Hv7+/mW2zcvLw+HDh0td9+WXXwL436WYp556CtevX0d8fHyJtuK/D8tzd3eHJEkoKiqS12VlZZX60D9fX99SH/jn6+sLACXWPfnkk3B3d8fs2bNLPJxPCAG9Xl/6SdpRdHQ0VCoVli1bZlbTunXrYDQaze5q8/X1Lfd2fiLiSA6Ror366qv44osvoNVqYTAYSjz8794H/xmNRrlNXl4eMjIysGPHDpw9exbPPPMM5syZU+7x8vLy0KVLFzz88MPo168fQkNDcePGDXz++ef4/vvvMWjQILRt2xYAMGzYMHzwwQeYNGkSjhw5gu7du+PWrVvYt28fXnrpJTzxxBMYMGAAFi9ejH79+uG5557D1atXsWLFCkRGRuLXX381O3a7du2wb98+LF68GPXr10d4eDg6deqEdu3aAQCmTZuGZ555Bh4eHtBqtYiIiMBbb72FqVOnIisrC4MGDYKfnx8yMzPx2WefYfTo0Xjttdcq1f+Wqlu3LqZOnYrZs2ejX79+ePzxx3H69GmsXLkSHTp0MPv31a5dO2zduhWTJk1Chw4dULNmTWi1WofWS1TlOfPWLiKyr+Jbn8v6lNe2Zs2aonHjxmLIkCHiq6++qtDxCgsLxdq1a8WgQYNEw4YNhaenp/Dx8RFt27YVixYtEvn5+Wbt8/LyxLRp00R4eLjw8PAQ9erVE//4xz/E2bNn5Tbr1q0TjRs3Fp6enqJJkyZiw4YN8i3adzt16pTo0aOH8Pb2FgDMbiefM2eOCAkJEW5ubiVuJ9++fbvo1q2b8PX1Fb6+vqJJkyZi3Lhx4vTp02Z9U97t9fcqru/atWvltrv3FvJi8fHxokmTJsLDw0MEBQWJsWPHij///NOszc2bN8Vzzz0natWqJQDwdnKiUkhC2OAlKkRERERVDOfkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjn1YYDfffcdFi1ahOTkZFy+fBmfffYZBg0aVGb7HTt2YNWqVfKL+po3b45Zs2YhJiamwsc0mUz4448/4Ofnx8eiExERVRNCCOTm5qJ+/fpwc6vYGI1TQ86tW7fQunVrvPDCC3jyySfv2/67775D3759MW/ePNSqVQsbNmyAVqvFTz/9JD9F9X7++OMPhIaGVrZ0IiIicoKLFy/igQceqFDbKvMwQEmS7juSU5rmzZtj8ODBmDFjRoXaG41G1KpVCxcvXiz3HTxERERUdeTk5MivilGr1RXaplq/u8pkMiE3NxcajabMNvn5+cjPz5e/5+bmAgD8/f0ZcoiIiKoZS6aaVOuJx++88w5u3ryJp59+usw28+fPh1qtlj+8VEVEROQaqm3I2bJlC2bPno1PPvkEgYGBZbabOnUqjEaj/Ll48aIDqyQiIiJnqZaXqxISEjBq1Ch8+umniI6OLretp6cnPD09HVQZERERVRXVLuR8/PHHeOGFF5CQkIABAwY4uxwiInIhRUVFKCwsdHYZiqVSqSp8e3hFODXk3Lx5ExkZGfL3zMxMpKWlQaPRoEGDBpg6dSouXbqEDz74AMCdS1SxsbFYunQpOnXqhCtXrgAAvL29KzzTmoiIyFJCCFy5cgU3btxwdimK5ubmhvDwcKhUKpvsz6m3kCclJeGRRx4psTw2NhYbN27E8OHDkZWVhaSkJABAr1698O2335bZviJycnKgVqthNBp5dxUREVXI5cuXcePGDQQGBsLHx4cPk7WD4of1enh4oEGDBiX62Jrf31XmOTmOwpBDRESWKCoqwpkzZxAYGIiAgABnl6NoRqMRf/zxByIjI+Hh4WG2zprf39X27ioiIiJHKJ6D4+Pj4+RKlK/4MlVRUZFN9seQQ0REVAG8RGV/tu7jand3FZVNr9ejoKCgzPUqlYpDrURE5DIYchRCr9cjPj7+vu10Oh2DDhERuQRerlKIe0dwjEY/ZGaGwWj0K7cdEREp1/DhwyFJEiRJgoeHB4KCgtC3b1+sX78eJpOpwvvZuHEjatWqZb9C7YQjOQqUktIWiYkDIYQbJMkErXYnoqJSnV0WEZFLcvZUgn79+mHDhg0oKipCdnY29uzZg1deeQXbtm3DF198gRo1lBsFlHtmLspo9JMDDgAI4YbExIGIiMiAWp3r5OqIiFxLVZhK4OnpiXr16gEAQkJCEBUVhYcffhh9+vTBxo0bMWrUKCxevBgbNmzAuXPnoNFooNVqsXDhQtSsWRNJSUkYMWIEgP9NDJ45cyZmzZqFDz/8EEuXLsXp06fh6+uL3r17Iy4urtx3SjoSL1cpjMEQIAecYkK4wWDQOKkiIiLXVdEpAo6eStC7d2+0bt0aO3bsAHDnScPLli3DiRMnsGnTJnzzzTeYPHkyAKBLly6Ii4uDv78/Ll++jMuXL+O1114DcOf2+jlz5uCXX37B559/jqysLAwfPtyh51IejuQojEajhySZzIKOJJmg0RicWBUREVU1TZo0wa+//goAmDBhgrw8LCwMb731FsaMGYOVK1dCpVJBrVZDkiR5RKjYCy+8IP+5UaNGWLZsGTp06ICbN2+iZs2aDjmP8nAkR2HU6lxotTshSXcmlBXPyeGlKiIiupsQQr78tG/fPvTp0wchISHw8/PD0KFDodfrkZeXV+4+kpOTodVq0aBBA/j5+aFnz54AgAsXLti9/orgSI4CRUWlIiIiAwaDBhqNgQGHiIhKSE9PR3h4OLKysjBw4ECMHTsWc+fOhUajwcGDBzFy5EgUFBSU+aTnW7duISYmBjExMdi8eTPq1q2LCxcuICYmpsrcycuQoxD3vrFVrc4tNdzY6s2uRERUfX3zzTc4duwYJk6ciOTkZJhMJrz77rtwc7tzgeeTTz4xa69SqUq8auHUqVPQ6/VYsGABQkNDAQA///yzY06gghhyFCIgIAA6nY5PPCYiIjP5+fm4cuWK2S3k8+fPx8CBAzFs2DAcP34chYWFWL58ObRaLQ4dOoTVq1eb7SMsLAw3b97E/v370bp1a/j4+KBBgwZQqVRYvnw5xowZg+PHj2POnDlOOsvScU6OggQEBCA4OLjMDwMOEZHr2bNnD4KDgxEWFoZ+/frhwIEDWLZsGf7zn//A3d0drVu3xuLFi/H222+jRYsW2Lx5M+bPn2+2jy5dumDMmDEYPHgw6tati4ULF6Ju3brYuHEjPv30UzRr1gwLFizAO++846SzLJ0khBDOLsKRrHlVOxERua7bt28jMzMT4eHh8PLysmjbqvCcnOqkvL625vc3L1cRERHZCacSOBdDDhERkR0xwDgP5+QQERGRIjHkEBERkSIx5BAREZEicU4O2Zxer+ckOyIicjqGHLIp3i5JRERVBS9XkU3dO4JjNPohMzMMRqNfue2IiIhsjSM5ZDcpKW2RmDgQQrjJb0OPikp1dllEROQiOJJDdmE0+skBBwCEcENi4sASIzpERFR9JSUlQZIk3Lhxo8LbhIWFIS4uzm413Y0hh+zCYAiQA04xIdxgMGicVBERkesZPnw4JEnCmDFjSqwbN24cJEnC8OHDHV+YgzDkkF1oNHpIkslsmSSZoNEYnFQREZFrCg0NRUJCAv766y952e3bt7FlyxY0aNDAiZXZH0MO2YVanQutdqccdIrn5KjVuU6ujIjItURFRSE0NBQ7duyQl+3YsQMNGjRA27Zt5WX5+fkYP348AgMD4eXlhW7duuHo0aNm+9q9ezcefPBBeHt745FHHkFWVlaJ4x08eBDdu3eHt7c3QkNDMX78eNy6dctu51cehhyym6ioVEyYEIfY2I2YMCGOk46JyOX9/jtw4MCdfzrSCy+8gA0bNsjf169fjxEjRpi1mTx5MrZv345NmzYhJSUFkZGRiImJgcFwZwT+4sWLePLJJ6HVapGWloZRo0ZhypQpZvs4e/Ys+vXrh6eeegq//vortm7dioMHD0Kn09n/JEvBkEM2pVKpzL6r1bkIDz9fYgTn3nZEREq3bh3QsCHQu/edf65b57hjDxkyBAcPHsT58+dx/vx5HDp0CEOGDJHX37p1C6tWrcKiRYvQv39/NGvWDGvXroW3tzfW/bfQVatWISIiAu+++y4eeughPP/88yXm88yfPx/PP/88JkyYgMaNG6NLly5YtmwZPvjgA9y+fdtxJ/xfvIWcbCogIAA6nY5PPCYiusvvvwOjRwOm/05VNJmAf/4TiIkBHnjA/sevW7cuBgwYgI0bN0IIgQEDBqBOnTry+rNnz6KwsBBdu3aVl3l4eKBjx45IT08HAKSnp6NTp05m++3cubPZ919++QW//vorNm/eLC8TQsBkMiEzMxNNmza1x+mViSGHbI4BhojI3G+//S/gFCsqAjIyHBNygDuXrIovG61YscIux7h58yb++c9/Yvz48SXWOWOSM0MOERGRnTVuDLi5mQcdd3cgMtJxNfTr1w8FBQWQJAkxMTFm6yIiIqBSqXDo0CE0bNgQAFBYWIijR49iwoQJAICmTZviiy++MNvuxx9/NPseFRWFkydPItKRJ1YOzskhIiKyswceAN57706wAe78c80ax43i3DmmO9LT03Hy5Em4FxfyX76+vhg7dixef/117NmzBydPnsSLL76IvLw8jBw5EgAwZswY/Pbbb3j99ddx+vRpbNmyBRs3bjTbzxtvvIEffvgBOp0OaWlp+O233/Cf//zHaROPOZJDRETkACNH3pmDk5FxZwTHkQGnmL+/f5nrFixYAJPJhKFDhyI3Nxft27fH3r17Ubt2bQB3Ljdt374dEydOxPLly9GxY0fMmzcPL7zwgryPVq1a4dtvv8W0adPQvXt3CCEQERGBwYMH2/3cSiMJIYRTjuwkOTk5UKvVMBqN5f7LJiIiAu48OC8zMxPh4eHw8vJydjmKVl5fW/P7m5eriIiISJEYcoiIiEiRGHKIiIhIkRhyiIiISJEYcoiIiCrAxe7TcQpb9zFDDhERUTk8PDwAAHl5eU6uRPmKXwl073N8rMXn5BAREZXD3d0dtWrVwtWrVwEAPj4+kCTJyVUpj8lkwrVr1+Dj44MaNWwTTxhyiIiI7qNevXoAIAcdsg83Nzc0aNDAZiGSIYeIiOg+JElCcHAwAgMDUVhY6OxyFEulUsHNzXYzaRhyiIiIKsjd3d1m80XI/jjxmIiIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkv6KQy6fV6FBQUlLlepVIhICDAgRURERFVHEMOlUqv1yM+Pv6+7XQ6HYMOERFVSbxcRaW6dwTHaPRDZmYYjEa/ctsRERFVFRzJoftKSWmLxMSBEMINkmSCVrsTUVGpzi6LiIioXE4dyfnuu++g1WpRv359SJKEzz///L7bJCUlISoqCp6enoiMjMTGjRvtXqcrMxr95IADAEK4ITFxYIkRHSIioqrGqSM5t27dQuvWrfHCCy/gySefvG/7zMxMDBgwAGPGjMHmzZuxf/9+jBo1CsHBwYiJiXFAxVWbPSYKGwwBcsApJoQbDAYN1Opcq+okIiJyBKeGnP79+6N///4Vbr969WqEh4fj3XffBQA0bdoUBw8exJIlS1w+5NhrorBGo4ckmcyCjiSZoNEYrKqTiIjIUarVxOPDhw8jOjrabFlMTAwOHz5c5jb5+fnIyckx+yiRvSYKq9W50Gp3QpJMACDPyeEoDhERVXXVauLxlStXEBQUZLYsKCgIOTk5+Ouvv+Dt7V1im/nz52P27NmOKrFKsPVE4aioVEREZMBg0ECjMTDgEBFRtVCtRnKsMXXqVBiNRvlz8eJFZ5dkV7aaKKxSqcy+q9W5CA8/XyLg3NuOiIioqqhWIzn16tVDdna22bLs7Gz4+/uXOooDAJ6envD09HREeVWCrSYKBwQEQKfT8YnHRERUbVWrkNO5c2fs3r3bbNnXX3+Nzp07O6miqseWE4UZYIiIqDpz6uWqmzdvIi0tDWlpaQDu3CKelpaGCxcuALhzqWnYsGFy+zFjxuDcuXOYPHkyTp06hZUrV+KTTz7BxIkTnVF+lcSJwkRERHc4dSTn559/xiOPPCJ/nzRpEgAgNjYWGzduxOXLl+XAAwDh4eHYtWsXJk6ciKVLl+KBBx7A+++/7/K3j9+LE4WJiIicHHJ69eoFIUSZ60t7mnGvXr2QmspXCtyrtInCpYUbThQmIiJXUa3m5FDZOFGYiIjIHEOOgjDAEBER/Y/in5NDRERErokhh4iIiBSJIYeIiIgUiXNyKkmv13OyLxERURXEkFMJer0e8fHx922n0+kYdIiIiByMl6sq4d4RHKPRD5mZYSVehlneSA8RERHZB0dybCQlpa389u/iVylERfGhhURERM7CkRwbMBr95IAD3Hnrd2LiwBIjOkREROQ4DDk2YDAEmL31G7gTdAwGjZMqIiIiIoYcG9Bo9PJbv4tJkgkajcFJFRERERFDjg2o1bnQanfKQad4Tg7f/k1EROQ8nHhsI1FRqYiIyIDBoIFGY2DAISIicjKGnEpQqVRm39Xq3FLDzb3tiIiIyP4YciohICAAOp2OTzwmIiKqghhyKokBhoiIqGrixGMiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUqQazi6AiKoHvV6PgoKCMterVCoEBAQ4sCIiovIx5BDRfen1esTHx9+3nU6nY9AhoiqDl6uI6L7uHcExGv2QmRkGo9Gv3HZERM7EkRwiskhKSlskJg6EEG6QJBO02p2Iikp1dllERCVwJIeIKsxo9JMDDgAI4YbExIElRnSIiKoChhwiqjCDIUAOOMWEcIPBoHFSRUREZWPIIaIK02j0kCST2TJJMkGjMTipIiKisjHkEFGFqdW50Gp3ykGneE6OWp3r5MqIiErixGMiskhUVCoiIjJgMGig0RgYcIioymLIIaL7UqlUZt/V6txSw8297YiInIkhh4juKyAgADqdjk88JqJqhSGHiCqEAYaIqhuGHCKS8f1URKQkDDlEBIDvpyIi5eEt5EQEgO+nIiLl4UgOEZXA91MRkRJwJIeIzPD9VESkFAw5RGSG76ciIqVgyCEiM3w/FREpBUMOEZnh+6mISCk48ZiISuD7qYhICRhyiAgA309FRMrDkENEAPh+KiJSHoYcIpIxwBCRknDiMRERESlSlQg5K1asQFhYGLy8vNCpUyccOXKk3PZxcXF46KGH4O3tjdDQUEycOBG3b992ULVERERUHVgVcho0aIBhw4Zh3bp1OHv2bKUK2Lp1KyZNmoSZM2ciJSUFrVu3RkxMDK5evVpq+y1btmDKlCmYOXMm0tPTsW7dOmzduhX/+te/KlUHERERKYskhBCWbvTRRx/hu+++Q1JSEjIyMhASEoKePXuiZ8+e6NWrFxo3blzhfXXq1AkdOnSQ335sMpkQGhqKl19+GVOmTCnRXqfTIT09Hfv375eXvfrqq/jpp59w8ODB+x4vJycHarUaRqMR/v7+Fa6TiIiInMea399WjeQMGTIE7733Hs6cOYNLly5h0aJFAICXXnoJTZo0qfB+CgoKkJycjOjo6P8V5OaG6OhoHD58uNRtunTpguTkZPmS1rlz57B792489thjpbbPz89HTk6O2YeIiIiUz+q7q/Ly8nDw4EEkJSXhwIEDSE1NRYsWLdCrV68K7+P69esoKipCUFCQ2fKgoCCcOnWq1G2ee+45XL9+Hd26dYMQAn///TfGjBlT5uWq+fPnY/bs2RWuiYiIiJTBqpGcLl26ICAgAFOmTMHt27cxZcoUXL58GampqViyZImtazSTlJSEefPmYeXKlUhJScGOHTuwa9cuzJkzp9T2U6dOhdFolD8XL160a31ERERUNVg1knPq1Cn4+vqiSZMmaNKkCZo2bYratWtbvJ86derA3d0d2dnZZsuzs7NRr169UreZPn06hg4dilGjRgEAWrZsiVu3bmH06NGYNm0a3NzMc5unpyc8PT0tro2IiIiqN6tGcvR6Pb755hs8/PDD2Lt3L7p27YqQkBA899xzWLt2bYX3o1Kp0K5dO7NJxCaTCfv370fnzp1L3SYvL69EkHF3dwcAWDGHmoiIiBTKqrur7iaEQHJyMuLj47F582aYTCYUFRVVePutW7ciNjYWa9asQceOHREXF4dPPvkEp06dQlBQEIYNG4aQkBDMnz8fADBr1iwsXrwY7733Hjp16oSMjAyMHTsW7dq1w9atW+97PN5dRUREVP1Y8/vbqstVKSkpSEpKQlJSEg4ePIjc3Fy0bNkSL7/8Mnr27GnRvgYPHoxr165hxowZuHLlCtq0aYM9e/bIk5EvXLhgNnLz5ptvQpIkvPnmm7h06RLq1q0LrVaLuXPnWnMqREREpFBWjeTUqFEDbdu2lZ+N06NHD6jVanvUZ3McySEiIqp+HDaSYzAYGBCISKbX6/n2ciKqcqwKOcUBJzk5Genp6QCAZs2aISoqynaVEVG1oNfr5SeWl0en0zHoEJFDWRVyrl69isGDB+Pbb79FrVq1AAA3btzAI488goSEBNStW9eWNRIpglJHO+49J6PRDwZDADQaPdTq3DLbERHZm1Uh5+WXX8bNmzdx4sQJNG3aFABw8uRJxMbGYvz48fj4449tWiRRdecqox0pKW2RmDgQQrhBkkzQanciKirV2WURkYuyKuTs2bMH+/btkwMOcOdy1YoVK/Doo4/arDgipXCF0Q6j0U8OOAAghBsSEwciIiLD7ByJiBzFqpBjMpng4eFRYrmHhwdMJlOliyJSMqWOdhgMAXLAKSaEGwwGDUMOETmFVU887t27N1555RX88ccf8rJLly5h4sSJ6NOnj82KI1KaskY7jEY/J1dWeRqNHpJk/j85kmSCRmNwUkVE5OqsCjnx8fHIyclBWFgYIiIiEBERgfDwcOTk5GD58uW2rpFIMcob7aju1OpcaLU75aBTPErFURwicharLleFhoYiJSUF+/btw6lTpwAATZs2RXR0tE2LI1Ka4tGOu4OOkkY7oqJSERGRAYNBA43GwIBDRE5lVcgBAEmS0LdvX/Tt29eW9RApWvFox71zcqpzGFCpVGbf1ercUs/n3nZERPZW4ZCzbNmyCu90/PjxVhVD5AqUNtoREBAAnU6nyGcAEVH1VuGQs2TJkgq1kySJIYfoHkof7WCAIaKqyKoXdFZnfEEnOYtSn3hMROQIdn9Bp8lkgpubVTdkEbk8BhgiIseyKLF4eHjg6tWr8vfXX38dBoMy7gohIiIiZbEo5Nx7ZWvNmjW4ceOGLeshIiIisolKXXtysek8REREVI1wgg0REREpksUPA5wxYwZ8fHwA3Hlj8ty5c6FWq83aLF682DbVEVG1x7vKiMhZLAo5PXr0wOnTp+XvXbp0wblz58zaSJJkm8qIqNrT6/WIj4+/bzudTsegQ0Q2Z1HISUpKslMZRKRE947gGI1+MBgCoNHozR6GWN5IDxGRtax+d1VF+Pv7Iy0tDY0aNbLnYYioGkhJaVvinV1RUanOLouIFMyuE4959xURAXdGcIoDDgAI4YbExIEwGv2cXBkRKRnvriIiuzMYAuSAU0wINxgMGidVRESugCGHiOxOo9FDkkxmyyTJBI2GT0wnIvthyCEiu1Orc6HV7pSDTvGcnNLexE5EZCt2nXjM28mJqFhUVCoiIjJgMGig0RgYcIjI7uwacjjxmMi1qVQqs+9qdW6p4ebedkREtmDXkPPll18iJCTEnocgoiosICAAOp2OTzwmIqewKuQIIbBt2zYcOHAAV69ehclkPqFwx44dAIBu3bpVvkIiqtYYYIjIWawKORMmTMCaNWvwyCOPICgoiHNviIiIqMqxKuR8+OGH2LFjBx577DFb10NERERkE1bdQq5Wq/mqBiIiIqrSrAo5s2bNwuzZs/HXX3/Zuh4iIiIim7DqctXTTz+Njz/+GIGBgQgLC4OHh4fZ+pSUFJsUR0RERGQtq0JObGwskpOTMWTIEE48JiIioirJqpCza9cu7N27l7eIExERUZVl1Zyc0NBQ+Pv727oWIiIiIpuxKuS8++67mDx5MrKysmxcDhEREZFtWHW5asiQIcjLy0NERAR8fHxKTDw2GAw2KY6IiIjIWlaFnLi4OBuXQUS2pNfr+b4oInJ5Vt9dRURVk16vR3x8/H3b6XQ6Bh0iUrRKv4X89u3bJf6PkZOSiZzn3v8ejUY/GAwB0Gj0UKtzy2xHRKQ0VoWcW7du4Y033sAnn3wCvV5fYn1RUVGlCyOiyktJaYvExIEQwg2SZIJWuxNRUanOLstpeBmPyLVYFXImT56MAwcOYNWqVRg6dChWrFiBS5cuYc2aNViwYIGtayQiKxiNfnLAAQAh3JCYOBARERlmIzqugpfxiFyPVSEnMTERH3zwAXr16oURI0age/fuiIyMRMOGDbF582Y8//zztq6TiCxkMATIAaeYEG4wGDQuGXJ4GY/I9VgVcgwGg/wWcn9/f/mW8W7dumHs2LG2q46IrKbR6CFJJrOgI0kmaDR8xAMv4xG5BqseBtioUSNkZmYCAJo0aYJPPvkEwJ0Rnlq1atmsOCKynlqdC612JyTJBADyL3NXHMW5W1mX8YxGPydXRkS2ZtVIzogRI/DLL7+gZ8+emDJlCrRaLeLj41FYWIjFixfbukYislJUVCoiIjJgMGig0RhcPuAAvIxH5EqsCjkTJ06U/xwdHY1Tp04hOTkZkZGRaNWqlc2KIyLLqVQqs+9qdW6pv7zvbecqeBmPyHXY5Dk5DRs2RMOGDW1RDxFVUkBAAHQ6HW+VLkPxZbx75+RwFIdIeawKOUVFRZg3bx5Wr16N7OxsnDlzBo0aNcL06dMRFhaGkSNH2rpOIrKAqwaYiuJlPCLXYNXE47lz52Ljxo1YuHCh2ZB3ixYt8P7779usOCIiWyntMl54+PkSAcdVL+MRKZEkhBCWbhQZGYk1a9agT58+8PPzwy+//IJGjRrh1KlT6Ny5M/7880971GoTOTk5UKvVMBqNfP0EkYvhE4+Jqi9rfn9bdbnq0qVLiIyMLLHcZDKhsLDQml0SEdkdAwyRa7HqclWzZs3w/fffl1i+bds2tG3bttJFEREREVWWVSM5M2bMQGxsLC5dugSTyYQdO3bg9OnT+OCDD7Bz505b10hERERkMatGcp544gkkJiZi37598PX1xYwZM5Ceno7ExET07dvX1jUSERERWcyqicfVGSceExERVT/W/P62+t1Ver2+xPIbN27IL+4kIiIiciarQk5WVhaKiopKLM/Pz8elS5cqXRQRERFRZVk08fiLL76Q/7x3716o1Wr5e1FREfbv34+wsDCLi1ixYgUWLVqEK1euoHXr1li+fDk6duxYZvsbN25g2rRp2LFjBwwGAxo2bIi4uDg89thjFh+biIiIlMmikDNo0CAAgCRJiI2NNVvn4eGBsLAwvPvuuxYVsHXrVkyaNAmrV69Gp06dEBcXh5iYGJw+fRqBgYEl2hcUFKBv374IDAzEtm3bEBISgvPnz6NWrVoWHZeIiIiUzaqJx+Hh4Th69Cjq1KlT6QI6deqEDh06ID4+HsCdBwqGhobi5ZdfxpQpU0q0X716NRYtWoRTp07Bw8PD4uNx4jEREVH1Y/eJx4cPH8bOnTuRmZkpB5wPPvgA4eHhCAwMxOjRo5Gfn1/h/RUUFCA5ORnR0dH/K8jNDdHR0Th8+HCp23zxxRfo3Lkzxo0bh6CgILRo0QLz5s0rdY4QERERuS6LQs7s2bNx4sQJ+fuxY8cwcuRIREdHY8qUKUhMTMT8+fMrvL/r16+jqKgIQUFBZsuDgoJw5cqVUrc5d+4ctm3bhqKiIuzevRvTp0/Hu+++i7feeqvU9vn5+cjJyTH7EBERkfJZFHJ++eUX9OnTR/6ekJCATp06Ye3atZg0aRKWLVuGTz75xOZF3s1kMiEwMBDvvfce2rVrh8GDB2PatGlYvXp1qe3nz58PtVotf0JDQ+1aHxEREVUNFoWcP//802zU5dtvv0X//v3l7x06dMDFixcrvL86derA3d0d2dnZZsuzs7NRr169UrcJDg7Ggw8+CHd3d3lZ06ZNceXKlVLfLjx16lQYjUb5Y0l9REREVH1ZFHKCgoKQmZkJ4M58mpSUFDz88MPy+tzcXIsmA6tUKrRr1w779++Xl5lMJuzfvx+dO3cudZuuXbsiIyMDJpNJXnbmzBkEBwdDpVKVaO/p6Ql/f3+zDxERESmfRSHnsccew5QpU/D9999j6tSp8PHxQffu3eX1v/76KyIiIiwqYNKkSVi7di02bdqE9PR0jB07Frdu3cKIESMAAMOGDcPUqVPl9mPHjoXBYMArr7yCM2fOYNeuXZg3bx7GjRtn0XGJiIhI2Sx6Ts6cOXPw5JNPomfPnqhZsyY2bdpkNnqyfv16PProoxYVMHjwYFy7dg0zZszAlStX0KZNG+zZs0e+LHbhwgW4uf0vi4WGhmLv3r2YOHEiWrVqhZCQELzyyit44403LDouERERKZtVz8kxGo2oWbOm2bwYADAYDKhZs2apl42qCj4nh4iIqPqx5ve3RSM5xe5+ncPdNBqNNbsjIiIisjmrXtBJREREVNUx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIln1xGMiIqXR6/UoKCgoc71KpUJAQIADKyKiymLIISKXp9frER8ff992Op2OQYeoGuHlKiJyefeO4BiNfsjMDIPR6FduOyKq2jiSQ0R0l5SUtkhMHAgh3CBJJmi1OxEVlerssojIChzJISL6L6PRTw44ACCEGxITB5YY0SGi6oEhh4jovwyGADngFBPCDQaDxkkVEVFlMOQQEf2XRqOHJJnMlkmSCRqNwUkVEVFlMOQQEf2XWp0LrXanHHSK5+So1blOroyIrMGJx0REd4mKSkVERAYMBg00GgMDDlE1xpBDRC5PpVKZfVerc0sNN/e2I6KqjSGHiFxeQEAAdDodn3hMpDAMOUREAAMMkQJx4jEREREpEkMOERERKRJDDhERESkSQw4REREpEkMOERERKRJDDhERESkSQw4REREpEp+TQ0RENqXX6/lgRaoSGHKIiMhm9Ho94uPj79tOp9Mx6JDd8XIVERHZzL0jOEajHzIzw2A0+pXbjsgeOJJDRER2kZLSFomJAyGEGyTJBK12J6KiUp1dFrkQjuQQEZHNGY1+csABACHckJg4sMSIDpE9MeQQEZHNGQwBcsApJoQbDAaNkyoiV8SQQ0RENqfR6CFJJrNlkmSCRmNwUkXkihhyiIjI5tTqXGi1O+WgUzwnR63OdXJl5Eo48ZiIiOwiKioVEREZMBg00GgMDDjkcAw5RERkMyqVyuy7Wp1bari5tx2RPTDkEBGRzQQEBECn0/GJx1QlMOQQEZFNMcBQVcGJx0RERKRIDDlERESkSAw5REREpEgMOURERKRIDDlERESkSAw5REREpEgMOURERKRIDDlERESkSAw5REREpEgMOURERKRIDDlERESkSAw5REREpEgMOURERKRIDDlERESkSAw5REREpEgMOURERKRIDDlERESkSDWcXQAREZES6PV6FBQUlLlepVIhICDAgRURQw4REVEl6fV6xMfH37edTqdj0HEgXq4iIiKqpHtHcIxGP2RmhsFo9Cu3HdkXR3KIiIhsKCWlLRITB0IIN0iSCVrtTkRFpTq7LJdUJUZyVqxYgbCwMHh5eaFTp044cuRIhbZLSEiAJEkYNGiQfQskIiKqAKPRTw44ACCEGxITB5YY0SHHcHrI2bp1KyZNmoSZM2ciJSUFrVu3RkxMDK5evVrudllZWXjttdfQvXt3B1VKRERUPoMhQA44xYRwg8GgcVJFrs3pIWfx4sV48cUXMWLECDRr1gyrV6+Gj48P1q9fX+Y2RUVFeP755zF79mw0atTIgdUSERGVTaPRQ5JMZsskyQSNxuCkilybU0NOQUEBkpOTER0dLS9zc3NDdHQ0Dh8+XOZ2//73vxEYGIiRI0fe9xj5+fnIyckx+xAREdmDWp0LrXanHHSK5+So1blOrsw1OXXi8fXr11FUVISgoCCz5UFBQTh16lSp2xw8eBDr1q1DWlpahY4xf/58zJ49u7KlEhERVUhUVCoiIjJgMGig0RjsFnD4XJ77q1Z3V+Xm5mLo0KFYu3Yt6tSpU6Ftpk6dikmTJsnfc3JyEBoaaq8SiYhIASwNECqVymy9Wp1bari5t11l6uNzee7PqSGnTp06cHd3R3Z2ttny7Oxs1KtXr0T7s2fPIisrC1qtVl5mMt0ZEqxRowZOnz6NiIgIs208PT3h6elph+qJiEiJrAkQAQEB0Ol0DhtZKe25PAZDADQavVm4cvXn8jg15KhUKrRr1w779++XbwM3mUzYv38/dDpdifZNmjTBsWPHzJa9+eabyM3NxdKlSzlCQ0RElWZtgHDWiAmfy1M2p1+umjRpEmJjY9G+fXt07NgRcXFxuHXrFkaMGAEAGDZsGEJCQjB//nx4eXmhRYsWZtvXqlULAEosJyIiqixHBIjKzK0p67k8EREZnOyMKhByBg8ejGvXrmHGjBm4cuUK2rRpgz179siTkS9cuAA3N6ff6U5ERC7GEQGisnNrynsuD0NOFQg5wJ1/eaVdngKApKSkcrfduHGj7QsiIiKX54gAUdm5NcXP5bm7Tj6X53+qRMghIiKqahwdIKy5NFb8XJ57t+Mozh0MOURERKVwZICozKUxRz2XpzpiyCEiIiqDowKEpZfGHP1cnuqKIYeIiOguzggQll4ac/RzeaorhhwiIqK7OCNAWHNpzNUDTEUw5BAREd3DGQGCc2tsjyGHiIjISTi3xr4YcoiIiJyEc2vsiyGHiIjIiRhg7IfvSyAiIiJFYsghIiIiRWLIISIiIkViyCEiIiJF4sRjIiIihdHr9bxjCww5REREiqLX6xEfH3/fdjqdTvFBh5eriIiIFOTeERyj0Q+ZmWEwGv3KbadEHMkhIiJSqJSUtiXehxUVlersshyGIzlEREQKZDT6yQEHAIRwQ2LiwBIjOkrGkENERKRABkOAHHCKCeEGg0HjpIocjyGHiIhIgTQaPSTJZLZMkkzQaAxOqsjxGHKIiIgUSK3OhVa7Uw46xXNySnvLuVJx4jEREZFCRUWlIiIiAwaDBhqNwaUCDsCQQ0REpCgqlcrsu1qdW2q4ubedEjHkEBERKUhAQAB0Oh2feAyGHCIiIsVxhQBTEZx4TERERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIpUw9kFEBERUfWm1+tRUFBQ5nqVSoWAgAAHVnQHQw4RERFZTa/XIz4+/r7tdDqdw4MOL1cRERGR1e4dwTEa/ZCZGQaj0a/cdo7AkRwiIiKyiZSUtkhMHAgh3CBJJmi1OxEVleq0ejiSQ0RERJVmNPrJAQcAhHBDYuLAEiM6jsSQQ0RERJVmMATIAaeYEG4wGDROqoghh4iIiGxAo9FDkkxmyyTJBI3G4KSKGHKIiIjIBtTqXGi1O+WgUzwnR63OdVpNnHhMRERENhEVlYqIiAwYDBpoNAanBhyAIYeIiIgqQaVSmX1Xq3NLDTf3tnMEhhwiIiKyWkBAAHQ6HZ94TERERMrjjABTEZx4TERERIrEkENERESKxJBDREREilQlQs6KFSsQFhYGLy8vdOrUCUeOHCmz7dq1a9G9e3fUrl0btWvXRnR0dLntiYiIyDU5PeRs3boVkyZNwsyZM5GSkoLWrVsjJiYGV69eLbV9UlISnn32WRw4cACHDx9GaGgoHn30UVy6dMnBlRMREVFVJgkhhDML6NSpEzp06ID4+HgAgMlkQmhoKF5++WVMmTLlvtsXFRWhdu3aiI+Px7Bhw+7bPicnB2q1GkajEf7+/pWun4iIiOzPmt/fTh3JKSgoQHJyMqKjo+Vlbm5uiI6OxuHDhyu0j7y8PBQWFkKjKf0FYPn5+cjJyTH7EBERkfI5NeRcv34dRUVFCAoKMlseFBSEK1euVGgfb7zxBurXr28WlO42f/58qNVq+RMaGlrpuomIiKjqc/qcnMpYsGABEhIS8Nlnn8HLy6vUNlOnToXRaJQ/Fy9edHCVRERE5AxOfeJxnTp14O7ujuzsbLPl2dnZqFevXrnbvvPOO1iwYAH27duHVq1aldnO09MTnp6e8vfiKUi8bEVERFR9FP/etmgqsXCyjh07Cp1OJ38vKioSISEhYv78+WVu8/bbbwt/f39x+PBhi4938eJFAYAffvjhhx9++KmGn4sXL1b4d77T3101adIkxMbGon379ujYsSPi4uJw69YtjBgxAgAwbNgwhISEYP78+QCAt99+GzNmzMCWLVsQFhYmz92pWbMmatased/j1a9fHxcvXoSfnx8kSSq1TU5ODkJDQ3Hx4kXegQX2R2nYJ+bYHyWxT8yxP8yxP0q6X58IIZCbm4v69etXeJ9ODzmDBw/GtWvXMGPGDFy5cgVt2rTBnj175MnIFy5cgJvb/6YOrVq1CgUFBfjHP/5htp+ZM2di1qxZ9z2em5sbHnjggQrV5u/vzx++u7A/SmKfmGN/lMQ+Mcf+MMf+KKm8PlGr1Rbty+khBwB0Oh10Ol2p65KSksy+Z2Vl2b8gIiIiqvaq9d1VRERERGVhyCmFp6cnZs6caXZXlitjf5TEPjHH/iiJfWKO/WGO/VGSPfrE6a91ICIiIrIHjuQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIrlsyFmxYgXCwsLg5eWFTp064ciRI2W2PXHiBJ566imEhYVBkiTExcU5rlAHsaQ/1q5di+7du6N27dqoXbs2oqOjy21fXVnSJzt27ED79u1Rq1Yt+Pr6ok2bNvjwww8dWK39WdIfd0tISIAkSRg0aJB9C3QCS/pk48aNkCTJ7FPWi4WrK0t/Rm7cuIFx48YhODgYnp6eePDBB7F7924HVWt/lvRHr169Svx8SJKEAQMGOLBi+7P0ZyQuLg4PPfQQvL29ERoaiokTJ+L27dsVP6DFL39SgISEBKFSqcT69evFiRMnxIsvvihq1aolsrOzS21/5MgR8dprr4mPP/5Y1KtXTyxZssSxBduZpf3x3HPPiRUrVojU1FSRnp4uhg8fLtRqtfj9998dXLn9WNonBw4cEDt27BAnT54UGRkZIi4uTri7u4s9e/Y4uHL7sLQ/imVmZoqQkBDRvXt38cQTTzimWAextE82bNgg/P39xeXLl+XPlStXHFy1/VjaH/n5+aJ9+/biscceEwcPHhSZmZkiKSlJpKWlObhy+7C0P/R6vdnPxvHjx4W7u7vYsGGDYwu3I0v7ZPPmzcLT01Ns3rxZZGZmir1794rg4GAxceLECh/TJUNOx44dxbhx4+TvRUVFon79+uW+FLRYw4YNFRdyKtMfQgjx999/Cz8/P7Fp0yZ7lehwle0TIYRo27atePPNN+1RnsNZ0x9///236NKli3j//fdFbGys4kKOpX2yYcMGoVarHVSd41naH6tWrRKNGjUSBQUFjirRoSr7d8iSJUuEn5+fuHnzpr1KdDhL+2TcuHGid+/eZssmTZokunbtWuFjutzlqoKCAiQnJyM6Olpe5ubmhujoaBw+fNiJlTmHLfojLy8PhYWF0Gg09irToSrbJ0II7N+/H6dPn0aPHj3sWapDWNsf//73vxEYGIiRI0c6okyHsrZPbt68iYYNGyI0NBRPPPEETpw44Yhy7c6a/vjiiy/QuXNnjBs3DkFBQWjRogXmzZuHoqIiR5VtN7b4e3XdunV45pln4Ovra68yHcqaPunSpQuSk5PlS1rnzp3D7t278dhjj1X4uFXi3VWOdP36dRQVFckvAC0WFBSEU6dOOakq57FFf7zxxhuoX7++2Q9vdWZtnxiNRoSEhCA/Px/u7u5YuXIl+vbta+9y7c6a/jh48CDWrVuHtLQ0B1ToeNb0yUMPPYT169ejVatWMBqNeOedd9ClSxecOHGiwi8Nrqqs6Y9z587hm2++wfPPP4/du3cjIyMDL730EgoLCzFz5kxHlG03lf179ciRIzh+/DjWrVtnrxIdzpo+ee6553D9+nV069YNQgj8/fffGDNmDP71r39V+LguF3LIthYsWICEhAQkJSUpbhKlpfz8/JCWloabN29i//79mDRpEho1aoRevXo5uzSHys3NxdChQ7F27VrUqVPH2eVUGZ07d0bnzp3l7126dEHTpk2xZs0azJkzx4mVOYfJZEJgYCDee+89uLu7o127drh06RIWLVpU7UNOZa1btw4tW7ZEx44dnV2KUyUlJWHevHlYuXIlOnXqhIyMDLzyyiuYM2cOpk+fXqF9uFzIqVOnDtzd3ZGdnW22PDs7G/Xq1XNSVc5Tmf545513sGDBAuzbtw+tWrWyZ5kOZW2fuLm5ITIyEgDQpk0bpKenY/78+dU+5FjaH2fPnkVWVha0Wq28zGQyAQBq1KiB06dPIyIiwr5F25kt/h7x8PBA27ZtkZGRYY8SHcqa/ggODoaHhwfc3d3lZU2bNsWVK1dQUFAAlUpl15rtqTI/H7du3UJCQgL+/e9/27NEh7OmT6ZPn46hQ4di1KhRAICWLVvi1q1bGD16NKZNmwY3t/vPuHG5OTkqlQrt2rXD/v375WUmkwn79+83+78sV2FtfyxcuBBz5szBnj170L59e0eU6jC2+hkxmUzIz8+3R4kOZWl/NGnSBMeOHUNaWpr8efzxx/HII48gLS0NoaGhjizfLmzxM1JUVIRjx44hODjYXmU6jDX90bVrV2RkZMgBGADOnDmD4ODgah1wgMr9fHz66afIz8/HkCFD7F2mQ1nTJ3l5eSWCTHEoFhV97aYVE6SrvYSEBOHp6Sk2btwoTp48KUaPHi1q1aol3845dOhQMWXKFLl9fn6+SE1NFampqSI4OFi89tprIjU1Vfz222/OOgWbsrQ/FixYIFQqldi2bZvZLY+5ubnOOgWbs7RP5s2bJ7766itx9uxZcfLkSfHOO++IGjVqiLVr1zrrFGzK0v64lxLvrrK0T2bPni327t0rzp49K5KTk8UzzzwjvLy8xIkTJ5x1CjZlaX9cuHBB+Pn5CZ1OJ06fPi127twpAgMDxVtvveWsU7Apa/+b6datmxg8eLCjy3UIS/tk5syZws/PT3z88cfi3Llz4quvvhIRERHi6aefrvAxXTLkCCHE8uXLRYMGDYRKpRIdO3YUP/74o7yuZ8+eIjY2Vv6emZkpAJT49OzZ0/GF24kl/dGwYcNS+2PmzJmOL9yOLOmTadOmicjISOHl5SVq164tOnfuLBISEpxQtf1Y0h/3UmLIEcKyPpkwYYLcNigoSDz22GMiJSXFCVXbj6U/Iz/88IPo1KmT8PT0FI0aNRJz584Vf//9t4Orth9L++PUqVMCgPjqq68cXKnjWNInhYWFYtasWSIiIkJ4eXmJ0NBQ8dJLL4k///yzwseThKjomA8RERFR9eFyc3KIiIjINTDkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBHZ0fDhwzFo0CBnl0HkkhhyiFzU8OHDIUmS/AkICEC/fv3w66+/Ors0m7j73Io/3bp1s9vxsrKyIEkS0tLSzJYvXboUGzdutNtxiahsDDlELqxfv364fPkyLl++jP3796NGjRoYOHCgs8uymQ0bNsjnd/nyZXzxxReltissLLRbDWq1GrVq1bLb/omobAw5RC7M09MT9erVQ7169dCmTRtMmTIFFy9exLVr19C7d2/odDqz9teuXYNKpZLfJBwWFoY5c+bg2Wefha+vL0JCQrBixQqzbRYvXoyWLVvC19cXoaGheOmll3Dz5k15/fnz56HValG7dm34+vqiefPm2L17NwDgzz//xPPPP4+6devC29sbjRs3xoYNGyp8frVq1ZLPr169etBoNPKIy9atW9GzZ094eXlh8+bN0Ov1ePbZZxESEgIfHx+0bNkSH3/8sdn+TCYTFi5ciMjISHh6eqJBgwaYO3cuACA8PBwA0LZtW0iShF69egEoebkqPz8f48ePR2BgILy8vNCtWzccPXpUXp+UlARJkrB//360b98ePj4+6NKlC06fPl3h8yaiOxhyiAgAcPPmTXz00UeIjIxEQEAARo0ahS1btiA/P19u89FHHyEkJAS9e/eWly1atAitW7dGamoqpkyZgldeeQVff/21vN7NzQ3Lli3DiRMnsGnTJnzzzTeYPHmyvH7cuHHIz8/Hd999h2PHjuHtt99GzZo1AQDTp0/HyZMn8eWXXyI9PR2rVq1CnTp1bHK+xbWmp6cjJiYGt2/fRrt27bBr1y4cP34co0ePxtChQ3HkyBF5m6lTp2LBggVyXVu2bEFQUBAAyO327duHy5cvY8eOHaUed/Lkydi+fTs2bdqElJQUREZGIiYmBgaDwazdtGnT8O677+Lnn39GjRo18MILL9jkvIlcis1eLUpE1UpsbKxwd3cXvr6+wtfXVwAQwcHBIjk5WQghxF9//SVq164ttm7dKm/TqlUrMWvWLPl7w4YNRb9+/cz2O3jwYNG/f/8yj/vpp5+KgIAA+XvLli3N9nk3rVYrRowYYdX5ARBeXl7y+fn6+orPPvtMZGZmCgAiLi7uvvsYMGCAePXVV4UQQuTk5AhPT0+xdu3aUtsW7zc1NdVs+d1vYL9586bw8PAQmzdvltcXFBSI+vXri4ULFwohhDhw4IAAIPbt2ye32bVrlwAg/vrrL0u6gMjlcSSHyIU98sgjSEtLQ1paGo4cOYKYmBj0798f58+fh5eXF4YOHYr169cDAFJSUnD8+HEMHz7cbB+dO3cu8T09PV3+vm/fPvTp0wchISHw8/PD0KFDodfrkZeXBwAYP3483nrrLXTt2hUzZ840m/g8duxYJCQkoE2bNpg8eTJ++OEHi85vyZIl8vmlpaWhb9++8rr27dubtS0qKsKcOXPQsmVLaDQa1KxZE3v37sWFCxcAAOnp6cjPz0efPn0squFuZ8+eRWFhIbp27Sov8/DwQMeOHc36DABatWol/zk4OBgAcPXqVauPTeSKGHKIXJivry8iIyMRGRmJDh064P3338etW7ewdu1aAMCoUaPw9ddf4/fff8eGDRvQu3dvNGzYsML7z8rKwsCBA9GqVSts374dycnJ8pydgoIC+Rjnzp3D0KFDcezYMbRv3x7Lly8HADlwTZw4EX/88Qf69OmD1157rcLHr1evnnx+kZGR8PX1NTv3uy1atAhLly7FG2+8gQMHDiAtLQ0xMTFynd7e3hU+ri14eHjIf5YkCcCdOUFEVHEMOUQkkyQJbm5u+OuvvwAALVu2RPv27bF27Vps2bKl1HkhP/74Y4nvTZs2BQAkJyfDZDLh3XffxcMPP4wHH3wQf/zxR4l9hIaGYsyYMdixYwdeffVVOWQBQN26dREbG4uPPvoIcXFxeO+992x5yrJDhw7hiSeewJAhQ9C6dWs0atQIZ86ckdc3btwY3t7e8qTre6lUKgB3RoTKEhERAZVKhUOHDsnLCgsLcfToUTRr1sxGZ0JExWo4uwAicp78/HxcuXIFwJ07meLj43Hz5k1otVq5zahRo6DT6eDr64v/+7//K7GPQ4cOYeHChRg0aBC+/vprfPrpp9i1axcAIDIyEoWFhVi+fDm0Wi0OHTqE1atXm20/YcIE9O/fHw8++CD+/PNPHDhwQA5JM2bMQLt27dC8eXPk5+dj586d8jpba9y4MbZt24YffvgBtWvXxuLFi5GdnS2HDy8vL7zxxhuYPHkyVCoVunbtimvXruHEiRMYOXIkAgMD4e3tjT179uCBBx6Al5cX1Gq12TF8fX0xduxYvP7669BoNGjQoAEWLlyIvLw8jBw50i7nReTKOJJD5ML27NmD4OBgBAcHo1OnTjh69Cg+/fRT+fZnAHj22WdRo0YNPPvss/Dy8iqxj1dffRU///wz2rZti7feeguLFy9GTEwMAKB169ZYvHgx3n77bbRo0QKbN2/G/PnzzbYvKirCuHHj0LRpU/Tr1w8PPvggVq5cCeDO6MjUqVPRqlUr9OjRA+7u7khISLBLX7z55puIiopCTEwMevXqhXr16pV4UvH06dPx6quvYsaMGWjatCkGDx4sz5OpUaMGli1bhjVr1qB+/fp44oknSj3OggUL8NRTT2Ho0KGIiopCRkYG9u7di9q1a9vlvIhcmSSEEM4ugoiqrqysLERERODo0aOIiooyWxcWFoYJEyZgwoQJzimOiKgcvFxFRKUqLCyEXq/Hm2++iYcffrhEwCEiqup4uYqISnXo0CEEBwfj6NGjJebRONu8efNQs2bNUj/9+/d3dnlEVEXwchURVTsGg6HEE4KLeXt7IyQkxMEVEVFVxJBDREREisTLVURERKRIDDlERESkSAw5REREpEgMOURERKRIDDlERESkSAw5REREpEgMOURERKRIDDlERESkSP8fvoGXeZDQFjsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_0.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIbElEQVR4nO3deXwTdf7H8Xdam5aWNpgC5bDQUm5UpCgsKBQULQpVV11A5BBPXIsiXuDBISvHqohQUJfl0hXBBQQLLCisqBwrLgUFBeQoxyqHJJIWEIrN/P7g12joQZseaaav5+ORh2TynZnPjJG8/X6/M2MxDMMQAACASQT5uwAAAICyRLgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAD+ZM2eOLBaL9u/f7+9SAFMh3AAm9tVXXyk1NVWtWrVSRESEGjRooF69eun777/P17ZLly6yWCyyWCwKCgpSVFSUmjVrpv79++uTTz4p0X7T09OVlJSk2rVrKzw8XI0aNVKvXr20cuXKsjq0fMaNG6clS5bkW75hwwaNHj1aJ06cKLd9X2j06NGec2mxWBQeHq6WLVvqhRdeUFZWVpnsY968eZo8eXKZbAswG8INYGITJ07UokWLdMMNN+iNN97QQw89pM8//1yJiYnavn17vvaXXXaZ3n33Xb3zzjt65ZVXdOutt2rDhg266aab1Lt3b507d+6i+3z11Vd16623ymKxaMSIEXr99dd15513avfu3Zo/f355HKakosPNmDFjKjTc5HnzzTf17rvvatKkSWrevLlefvllde/eXWXxSD/CDVC4S/xdAIDyM2zYMM2bN09Wq9WzrHfv3rriiis0YcIE/eMf//Bqb7PZ1K9fP69lEyZM0GOPPabp06crLi5OEydOLHR/v/76q8aOHasbb7xRH3/8cb7Pjx07VsojqjxOnz6t8PDwItvcddddqlmzpiRp8ODBuvPOO7V48WL95z//UYcOHSqiTKBKoucGMLGOHTt6BRtJatKkiVq1aqUdO3YUaxvBwcGaMmWKWrZsqbS0NLlcrkLbHj9+XFlZWbr22msL/Lx27dpe78+cOaPRo0eradOmCgsLU926dXXHHXdo7969njavvvqqOnbsqOjoaFWrVk1t27bVwoULvbZjsVh06tQpzZ071zMUdO+992r06NF6+umnJUnx8fGez34/x+Uf//iH2rZtq2rVqslut6tPnz46dOiQ1/a7dOmiyy+/XJs3b1bnzp0VHh6u5557rljn7/euv/56SVJmZmaR7aZPn65WrVopNDRU9erV06OPPurV89SlSxctX75cBw4c8BxTXFxciesBzIqeG6CKMQxDR48eVatWrYq9TnBwsO6++269+OKLWrdunXr06FFgu9q1a6tatWpKT0/XkCFDZLfbC91mbm6uevbsqTVr1qhPnz56/PHHlZ2drU8++UTbt29XQkKCJOmNN97QrbfeqnvuuUc5OTmaP3++/vSnP2nZsmWeOt5991098MADateunR566CFJUkJCgiIiIvT999/r/fff1+uvv+7pRalVq5Yk6eWXX9aLL76oXr166YEHHtBPP/2kqVOnqnPnztqyZYtq1KjhqdfhcOjmm29Wnz591K9fP8XExBT7/OXJC23R0dGFthk9erTGjBmjbt266ZFHHtGuXbv05ptv6quvvtL69esVEhKi559/Xi6XS//73//0+uuvS5KqV69e4noA0zIAVCnvvvuuIcmYOXOm1/KkpCSjVatWha734YcfGpKMN954o8jtjxw50pBkREREGDfffLPx8ssvG5s3b87XbtasWYYkY9KkSfk+c7vdnj+fPn3a67OcnBzj8ssvN66//nqv5REREcbAgQPzbeuVV14xJBmZmZley/fv328EBwcbL7/8stfybdu2GZdcconX8qSkJEOS8dZbbxV63L83atQoQ5Kxa9cu46effjIyMzONt99+2wgNDTViYmKMU6dOGYZhGLNnz/aq7dixY4bVajVuuukmIzc317O9tLQ0Q5Ixa9Ysz7IePXoYDRs2LFY9QFXDsBRQhezcuVOPPvqoOnTooIEDB5Zo3byegezs7CLbjRkzRvPmzVObNm20atUqPf/882rbtq0SExO9hsIWLVqkmjVrasiQIfm2YbFYPH+uVq2a588///yzXC6XOnXqpIyMjBLVf6HFixfL7XarV69eOn78uOdVp04dNWnSRJ9++qlX+9DQUA0aNKhE+2jWrJlq1aql+Ph4Pfzww2rcuLGWL19e6Fyd1atXKycnR0OHDlVQ0G9/PT/44IOKiorS8uXLS36gQBXEsBRQRRw5ckQ9evSQzWbTwoULFRwcXKL1T548KUmKjIy8aNu7775bd999t7KysvTll19qzpw5mjdvnlJSUrR9+3aFhYVp7969atasmS65pOi/hpYtW6a//OUv2rp1q86ePetZ/vsA5Ivdu3fLMAw1adKkwM9DQkK83tevXz/f/KWLWbRokaKiohQSEqLLLrvMM9RWmAMHDkg6H4p+z2q1qlGjRp7PARSNcANUAS6XSzfffLNOnDihL774QvXq1SvxNvIuHW/cuHGx14mKitKNN96oG2+8USEhIZo7d66+/PJLJSUlFWv9L774Qrfeeqs6d+6s6dOnq27dugoJCdHs2bM1b968Eh/D77ndblksFv3rX/8qMOhdOIfl9z1IxdW5c2fPPB8AFYdwA5jcmTNnlJKSou+//16rV69Wy5YtS7yN3NxczZs3T+Hh4bruuut8quPqq6/W3LlzdfjwYUnnJ/x++eWXOnfuXL5ekjyLFi1SWFiYVq1apdDQUM/y2bNn52tbWE9OYcsTEhJkGIbi4+PVtGnTkh5OuWjYsKEkadeuXWrUqJFneU5OjjIzM9WtWzfPstL2XAFmxpwbwMRyc3PVu3dvbdy4Uf/85z99urdKbm6uHnvsMe3YsUOPPfaYoqKiCm17+vRpbdy4scDP/vWvf0n6bcjlzjvv1PHjx5WWlpavrfH/N7kLDg6WxWJRbm6u57P9+/cXeLO+iIiIAm/UFxERIUn5PrvjjjsUHBysMWPG5LupnmEYcjgcBR9kOerWrZusVqumTJniVdPMmTPlcrm8rlKLiIgo8rJ8oCqj5wYwsSeffFIfffSRUlJS5HQ6892078Ib9rlcLk+b06dPa8+ePVq8eLH27t2rPn36aOzYsUXu7/Tp0+rYsaP+8Ic/qHv37oqNjdWJEye0ZMkSffHFF7r99tvVpk0bSdKAAQP0zjvvaNiwYdq0aZM6deqkU6dOafXq1frzn/+s2267TT169NCkSZPUvXt39e3bV8eOHdO0adPUuHFjffPNN177btu2rVavXq1JkyapXr16io+PV/v27dW2bVtJ0vPPP68+ffooJCREKSkpSkhI0F/+8heNGDFC+/fv1+23367IyEhlZmbqww8/1EMPPaSnnnqqVOe/pGrVqqURI0ZozJgx6t69u2699Vbt2rVL06dP1zXXXOP176tt27ZasGCBhg0bpmuuuUbVq1dXSkpKhdYLVFr+vFQLQPnKu4S5sFdRbatXr240adLE6Nevn/Hxxx8Xa3/nzp0zZsyYYdx+++1Gw4YNjdDQUCM8PNxo06aN8corrxhnz571an/69Gnj+eefN+Lj442QkBCjTp06xl133WXs3bvX02bmzJlGkyZNjNDQUKN58+bG7NmzPZda/97OnTuNzp07G9WqVTMkeV0WPnbsWKN+/fpGUFBQvsvCFy1aZFx33XVGRESEERERYTRv3tx49NFHjV27dnmdm6Iuk79QXn0//fRTke0uvBQ8T1pamtG8eXMjJCTEiImJMR555BHj559/9mpz8uRJo2/fvkaNGjUMSVwWDvyOxTDK4CEnAAAAlQRzbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKlUuZv4ud1u/fjjj4qMjOT25QAABAjDMJSdna169eopKKjovpkqF25+/PFHxcbG+rsMAADgg0OHDumyyy4rsk2VCzeRkZGSzp+cop6RAwAAKo+srCzFxsZ6fseLUuXCTd5QVFRUFOEGAIAAU5wpJUwoBgAApkK4AQAApkK4AQAAplLl5twAAOCr3NxcnTt3zt9lmJbVar3oZd7FQbgBAOAiDMPQkSNHdOLECX+XYmpBQUGKj4+X1Wot1XYINwAAXEResKldu7bCw8O5CWw5yLvJ7uHDh9WgQYNSnWPCDQAARcjNzfUEm+joaH+XY2q1atXSjz/+qF9//VUhISE+b4cJxQAAFCFvjk14eLifKzG/vOGo3NzcUm2HcAMAQDEwFFX+yuocMywFAPArh8OhnJycQj+3Wq0MB6FECDcAAL9xOBxKS0u7aLvU1FQCDoqNYSkAgN9c2GPjckUqMzNOLldkke1QPPfee68sFossFotCQkIUExOjG2+8UbNmzZLb7S72dubMmaMaNWqUX6FljJ4bAEClkJHRRunpPWUYQbJY3EpJWabExC3+LqvU/D3s1r17d82ePVu5ubk6evSoVq5cqccff1wLFy7URx99pEsuMV8UMN8RAQACjssV6Qk2kmQYQUpP76mEhD2y2bL9XJ3vKsOwW2hoqOrUqSNJql+/vhITE/WHP/xBN9xwg+bMmaMHHnhAkyZN0uzZs7Vv3z7Z7XalpKTor3/9q6pXr661a9dq0KBBkn6b8Dtq1CiNHj1a7777rt544w3t2rVLERERuv766zV58mTVrl27XI6luBiWAgD4ndMZ7Qk2eQwjSE6n3U8VlY3iDqdV9LDb9ddfr9atW2vx4sWSzt8ZeMqUKfr22281d+5c/fvf/9YzzzwjSerYsaMmT56sqKgoHT58WIcPH9ZTTz0l6fxl8mPHjtXXX3+tJUuWaP/+/br33nsr9FgKQs8NAMDv7HaHLBa3V8CxWNyy251+rMrcmjdvrm+++UaSNHToUM/yuLg4/eUvf9HgwYM1ffp0Wa1W2Ww2WSwWTw9Qnvvuu8/z50aNGmnKlCm65pprdPLkSVWvXr1CjqMg9NwAAPzOZstWSsoyWSznJ7nmzbkJ5CGpys4wDM8w0+rVq3XDDTeofv36ioyMVP/+/eVwOHT69Okit7F582alpKSoQYMGioyMVFJSkiTp4MGD5V5/Uei5AQBUComJW5SQsEdOp112u5NgU8527Nih+Ph47d+/Xz179tQjjzyil19+WXa7XevWrdP999+vnJycQu/MfOrUKSUnJys5OVnvvfeeatWqpYMHDyo5OdnvV7cRbgAAfnPh059ttuwCQ01pnxINb//+97+1bds2PfHEE9q8ebPcbrdee+01BQWdH9D54IMPvNpbrdZ8j0TYuXOnHA6HJkyYoNjYWEnSf//734o5gIsg3AAA/CY6OlqpqancobgcnT17VkeOHPG6FHz8+PHq2bOnBgwYoO3bt+vcuXOaOnWqUlJStH79er311lte24iLi9PJkye1Zs0atW7dWuHh4WrQoIGsVqumTp2qwYMHa/v27Ro7dqyfjtIbc24AAH4VHR2tunXrFvoi2JTOypUrVbduXcXFxal79+769NNPNWXKFC1dulTBwcFq3bq1Jk2apIkTJ+ryyy/Xe++9p/Hjx3tto2PHjho8eLB69+6tWrVq6a9//atq1aqlOXPm6J///KdatmypCRMm6NVXX/XTUXqzGIZh+LuIipSVlSWbzSaXy6WoqCh/lwMAqOTOnDmjzMxMxcfHKywsrETrVob73ASSos51SX6/GZYCAKCcMOzmH4QbAADKEcGl4jHnBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAA+GTt2rWyWCw6ceJEsdeJi4vT5MmTy60miXADAIBp3XvvvbJYLBo8eHC+zx599FFZLBbde++9FV9YOSPcAABgYrGxsZo/f75++eUXz7IzZ85o3rx5atCggR8rKz+EGwAATCwxMVGxsbFavHixZ9nixYvVoEEDtWnTxrPs7Nmzeuyxx1S7dm2FhYXpuuuu01dffeW1rRUrVqhp06aqVq2aunbtqv379+fb37p169SpUydVq1ZNsbGxeuyxx3Tq1KlyO76CEG4AAKgg//uf9Omn5/9Zke677z7Nnj3b837WrFkaNGiQV5tnnnlGixYt0ty5c5WRkaHGjRsrOTlZTqdTknTo0CHdcccdSklJ0datW/XAAw9o+PDhXtvYu3evunfvrjvvvFPffPONFixYoHXr1ik1NbX8D/J3CDcAAFSAmTOlhg2l668//8+ZMytu3/369dO6det04MABHThwQOvXr1e/fv08n586dUpvvvmmXnnlFd18881q2bKlZsyYoWrVqmnm/xf65ptvKiEhQa+99pqaNWume+65J998nfHjx+uee+7R0KFD1aRJE3Xs2FFTpkzRO++8ozNnzlTY8fJUcAAAytn//ic99JDkdp9/73ZLDz8sJSdLl11W/vuvVauWevTooTlz5sgwDPXo0UM1a9b0fL53716dO3dO1157rWdZSEiI2rVrpx07dkiSduzYofbt23ttt0OHDl7vv/76a33zzTd67733PMsMw5Db7VZmZqZatGhRHoeXD+EGAIBytnv3b8EmT26utGdPxYQb6fzQVN7w0LRp08plHydPntTDDz+sxx57LN9nFTl5mXADAEA5a9JECgryDjjBwVLjxhVXQ/fu3ZWTkyOLxaLk5GSvzxISEmS1WrV+/Xo1bNhQknTu3Dl99dVXGjp0qCSpRYsW+uijj7zW+89//uP1PjExUd99950aV+SBFYA5NwAAlLPLLpP+9rfzgUY6/8+33664Xpvz+wzWjh079N133yk4r5D/FxERoUceeURPP/20Vq5cqe+++04PPvigTp8+rfvvv1+SNHjwYO3evVtPP/20du3apXnz5mnOnDle23n22We1YcMGpaamauvWrdq9e7eWLl1a4ROK6bkBAKAC3H//+Tk2e/ac77GpyGCTJyoqqtDPJkyYILfbrf79+ys7O1tXX321Vq1apUsvvVTS+WGlRYsW6YknntDUqVPVrl07jRs3Tvfdd59nG1deeaU+++wzPf/88+rUqZMMw1BCQoJ69+5d7sf2exbDMIwK3aOfZWVlyWazyeVyFfkvGQAA6fwN7zIzMxUfH6+wsDB/l2NqRZ3rkvx+MywFAABMhXADAABMhXADAABMhXADAABMhXADAEAxVLHrb/yirM4x4QYAgCKEhIRIkk6fPu3nSswvJydHkvLdh6ekuM8NAABFCA4OVo0aNXTs2DFJUnh4uCwWi5+rMh+3262ffvpJ4eHhuuSS0sUTwg0AABdRp04dSfIEHJSPoKAgNWjQoNThkXADAMBFWCwW1a1bV7Vr19a5c+f8XY5pWa1WBQWVfsYM4QYAgGIKDg4u9XwQlD8mFAMAAFMh3AAAAFMh3AAAAFMh3AAAAFMh3AAAAFMh3AAAAFMh3AAAAFMh3AAAAFMh3AAAAFMh3AAAAFPxa7j5/PPPlZKSonr16slisWjJkiUXXWft2rVKTExUaGioGjdurDlz5pR7nQAAIHD4NdycOnVKrVu31rRp04rVPjMzUz169FDXrl21detWDR06VA888IBWrVpVzpUCAIBA4dcHZ9588826+eabi93+rbfeUnx8vF577TVJUosWLbRu3Tq9/vrrSk5OLq8yAQBAERwOh3Jycgr93Gq1Kjo6usLqCaingm/cuFHdunXzWpacnKyhQ4cWus7Zs2d19uxZz/usrKzyKg8AgCrH4XAoLS3tou1SU1MrLOAE1ITiI0eOKCYmxmtZTEyMsrKy9MsvvxS4zvjx42Wz2Tyv2NjYiigVAIAq4cIeG5crUpmZcXK5IotsV54CqufGFyNGjNCwYcM877Oysgg4AACUg4yMNkpP7ynDCJLF4lZKyjIlJm6p8DoCKtzUqVNHR48e9Vp29OhRRUVFqVq1agWuExoaqtDQ0IooDwCAKsvlivQEG0kyjCClp/dUQsIe2WzZFVpLQA1LdejQQWvWrPFa9sknn6hDhw5+qggAAEiS0xntCTZ5DCNITqe9wmvxa7g5efKktm7dqq1bt0o6f6n31q1bdfDgQUnnh5QGDBjgaT948GDt27dPzzzzjHbu3Knp06frgw8+0BNPPOGP8gEAwP+z2x2yWNxeyywWt+x2Z4XX4tdw89///ldt2rRRmzZtJEnDhg1TmzZtNHLkSEnS4cOHPUFHkuLj47V8+XJ98sknat26tV577TX9/e9/5zJwAAD8zGbLVkrKMk/AyZtzU9FDUpKf59x06dJFhmEU+nlBdx/u0qWLtmyp+MlJAACgaImJW5SQsEdOp112u9MvwUYKsAnFAACgcrFarV7vbbbsAkPNhe3KE+EGAAD4LDo6WqmpqdyhGAAAmEdFBpfiCKhLwQEAAC6GcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyFcAMAAEyF+9wAPnI4HJXqplUAgPMIN4APHA6H0tLSLtouNTWVgAMAFYxhKcAHF/bYuFyRysyMk8sVWWQ7AED5o+cGKKWMjDZKT+8pwwiSxeJWSsoyJSby5HoA8Bd6boBScLkiPcFGkgwjSOnpPfP14AAAKg7hBigFpzPaE2zyGEaQnE67nyoCABBugFKw2x2yWNxeyywWt+x2p58qAgAQboBSsNmylZKyzBNw8ubc2GzZfq4MAKouJhQDpZSYuEUJCXvkdNpltzsJNgDgZ4QbwAdWq9Xrvc2WXWCoubAdAKD8EW4AH0RHRys1NZU7FANAJUS4AXxEcAGAyokJxQAAwFQINwAAwFQYlgJMjqeXA6hqCDeAifH0cgBVEcNSgInx9HIAVRE9N0AVwdPLgcDDsLJvCDdAFVDY08sTEvZwR2WgkmJY2XcMSwFVAE8vBwIPw8q+o+cGqALynl7++4DD08uBwMGwcsnQcwNUATy9HAhchQ0rX9iDg9/QcwNUETy9HAhMRQ0r899xwQg3gInx9HIg8DGsXHKEG8DEeHo5EPjyhpUvnHNDr03hCDeAyRFcgMDHsHLJEG4AAKiEGFb2HeEGAIBKiGFl3xFuAACopAguvuE+NwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFS4zw0qHYfDwU2rAAA+I9ygUnE4HEpLS7tou9TUVAIOAKBADEuhUrmwx8blilRmZpxcrsgi2wEAkIeeG1RaGRltlJ7eU4YRJIvFrZSUZUpM3OLvsgAAlRw9N6iUXK5IT7CRJMMIUnp6z3w9OAAAXIhwg0rJ6Yz2BJs8hhEkp9Pup4oAAIGCcINKyW53yGJxey2zWNyy251+qggAECgIN6iUbLZspaQs8wScvDk3Nlu2nysDAFR2TChGpZWYuEUJCXvkdNpltzsJNgCAYiHcoFKxWq1e72227AJDzYXtAADIQ7hBpRIdHa3U1FTuUAwA8BnhBpUOwQUAUBpMKAYAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZSKcLNtGnTFBcXp7CwMLVv316bNm0qsv3kyZPVrFkzVatWTbGxsXriiSd05syZCqoWAABUZn4PNwsWLNCwYcM0atQoZWRkqHXr1kpOTtaxY8cKbD9v3jwNHz5co0aN0o4dOzRz5kwtWLBAzz33XAVXDgAAKiOLYRiGPwto3769rrnmGqWlpUmS3G63YmNjNWTIEA0fPjxf+9TUVO3YsUNr1qzxLHvyySf15Zdfat26dRfdX1ZWlmw2m1wul6KiosruQAAAqCQcDofpboZakt9vv97ELycnR5s3b9aIESM8y4KCgtStWzdt3LixwHU6duyof/zjH9q0aZPatWunffv2acWKFerfv39FlQ0AQKXlcDg8HQZFSU1NDbiAU1x+DTfHjx9Xbm6uYmJivJbHxMRo586dBa7Tt29fHT9+XNddd50Mw9Cvv/6qwYMHFzosdfbsWZ09e9bzPisrq+wOAACASubCHhuXK1JOZ7TsdofXs/qK6tkJdH6fc1NSa9eu1bhx4zR9+nRlZGRo8eLFWr58ucaOHVtg+/Hjx8tms3lesbGxFVwxAAD+kZHRRpMnD9XcuQM1efJQZWS08XdJFcKncNOgQQMNGDBAM2fO1N69e33eec2aNRUcHKyjR496LT969Kjq1KlT4Dovvvii+vfvrwceeEBXXHGF/vjHP2rcuHEaP3683G53vvYjRoyQy+XyvA4dOuRzvQAABAqXK1Lp6T1lGOd/6g0jSOnpPeVyRfq5svLnU7gZN26cwsLCNHHiRDVp0kSxsbHq16+fZsyYod27dxd7O1arVW3btvWaHOx2u7VmzRp16NChwHVOnz6toCDvsoODgyVJBc2NDg0NVVRUlNcLAACzczqjPcEmj2EEyem0+6miiuPTnJt+/fqpX79+kqTDhw/rs88+07Jly/TnP/9Zbrdbubm5xd7WsGHDNHDgQF199dVq166dJk+erFOnTmnQoEGSpAEDBqh+/foaP368JCklJUWTJk1SmzZt1L59e+3Zs0cvvviiUlJSPCEHAICqzm53yGJxewUci8Utu93px6oqhs8Tik+fPq1169Zp7dq1+vTTT7VlyxZdfvnl6tKlS4m207t3b/30008aOXKkjhw5oquuukorV670TDI+ePCgV0/NCy+8IIvFohdeeEE//PCDatWqpZSUFL388su+HgoAAKZjs2UrJWWZZ2jKYnErJWWZ16Ris/LpPjcdO3bUli1b1KJFC3Xp0kVJSUnq3LmzLr300vKosUxxnxsAecx4LxDg8OHD+tvf/uZ5f/5qKbvsdqdXsHnooYdUt25df5Tok3K/z83OnTsVERGh5s2bq3nz5mrRokVABBsAyMO9QGBWVqvV673Nll1gb82F7czEp3DjcDi0bds2rV27VqtWrdLzzz8vq9WqpKQkde3aVQ8++GBZ1wkAZYp7gcCsoqOjlZqaWqV7JUv9+AXDMLR582alpaXpvffeK/GE4orGsBQAybvrPiOjTb55CYmJWyQFXtc9YFblPiyVkZGhtWvXau3atVq3bp2ys7N1xRVXaMiQIUpKSvKpaADwh8LuBZKQsKdKTLwEzMincNOuXTu1adNGSUlJevDBB9W5c2fZbLayrg0Ayl1R9wIh3ACByadw43Q6GdIBYApV+V4ggFn5FG7ygs3mzZu1Y8cOSVLLli2VmJhYdpUBQAWoyvcCAczKp3Bz7Ngx9e7dW5999plq1KghSTpx4oS6du2q+fPnq1atWmVZIwCUq8TELUpI2FPgvUAABB6fni01ZMgQnTx5Ut9++62cTqecTqe2b9+urKwsPfbYY2VdIwCUuYLuBRIffyBfsDHzvUAAs/LpUnCbzabVq1frmmuu8Vq+adMm3XTTTTpx4kRZ1VfmuBQcQB7uUAwEjnK/FNztdiskJCTf8pCQELndbl82CQAVjuACmJNPw1LXX3+9Hn/8cf3444+eZT/88IOeeOIJ3XDDDWVWHAAAQEn5FG7S0tKUlZWluLg4JSQkKCEhQfHx8crKytLUqVPLukYAAIBi82lYKjY2VhkZGVq9erV27twpSWrRooW6detWpsUBAACUVKmfLRVomFAMAEDgKZcJxVOmTCl2AVwODgAA/KXYPTfx8fHF26DFon379pWqqPJEzw0AAIGnXHpuMjMzS10YAABAeSvR1VLcwwYAAFR2JQo3ISEhOnbsmOf9008/LaeTJ+cCAIDKo0Th5sLpOW+//XalftQCAACoeny6iV+eKnYVOQAACAClCjcAAACVTYnvUDxy5EiFh4dLknJycvTyyy/LZrN5tZk0aVLZVAcAAFBCJQo3nTt31q5duzzvO3bsmO+eNhaLpWwqAwAA8EGJws3atWvLqQwAAICyUa5zbqKioir13YoBAID5lGu44WoqAABQ0bhaCgAAmArhBgAAmArhBgAAmEq5hhsuCwcAABWNCcUAAMBUyjXc/Otf/1L9+vXLcxcAAABeSvz4Bel8j8zChQv16aef6tixY3K73V6fL168WJJ03XXXlb5CAACAEvAp3AwdOlRvv/22unbtqpiYGObWAACASsOncPPuu+9q8eLFuuWWW8q6nirD4XAoJyen0M+tVquio6MrsCIAAMzBp3Bjs9nUqFGjsq6lynA4HEpLS7tou9TUVAIOAAAl5NOE4tGjR2vMmDH65ZdfyrqeKuHCHhuXK1KZmXFyuSKLbAcAAC7Op56bXr166f3331ft2rUVFxenkJAQr88zMjLKpLiqICOjjdLTe8owgmSxuJWSskyJiVv8XRYAAAHLp3AzcOBAbd68Wf369WNCcSm4XJGeYCNJhhGk9PSeSkjYI5st28/VAQAQmHwKN8uXL9eqVau41LuUnM5oT7DJYxhBcjrthBsAAHzk05yb2NhYRUVFlXUtVY7d7pDF4n2PIIvFLbvd6aeKAAAIfD6Fm9dee03PPPOM9u/fX8blVC02W7ZSUpZ5Ak7enBsz9No4HA4dPny40JfD4fB3iQAAk/JpWKpfv346ffq0EhISFB4enm9CsdNJz0NxJSZuUULCHjmddtntTtMEGy51BwD4i0/hZvLkyWVcRtVy+vRpr/c2W3aBoebCdoGioEvdnc5o2e0Or+PkUncAQHnw+Wop+C48PNzrfWE//he2C0Rc6g4AqGg+hZvfO3PmTL7/A2eycfGZ+cefS90BAP7g04TiU6dOKTU1VbVr11ZERIQuvfRSrxeKp7Af/wvvVByoirrUHQCA8uJTuHnmmWf073//W2+++aZCQ0P197//XWPGjFG9evX0zjvvlHWNpmX2H38udQcA+INP4SY9PV3Tp0/XnXfeqUsuuUSdOnXSCy+8oHHjxum9994r6xpNy+w//ma+1B0AUHn5NOfG6XR6ngoeFRXlufT7uuuu0yOPPFJ21Zlc3o//hXNuzPTjb8ZL3QEAlZtP4aZRo0bKzMxUgwYN1Lx5c33wwQdq166d0tPTVaNGjTIu0dzM+ONvtVq93hd2qfuF7QAAKAs+hZtBgwbp66+/VlJSkoYPH66UlBSlpaXp3LlzmjRpUlnXaDpm//GPjo5WampqkfexsVqt3MAPAFAuLIZhGKXdyIEDB7R582Y1btxYV155ZVnUVW6ysrJks9nkcrn8esm6w+Hgxx8AgGIqye93mdznpmHDhmrYsGFpN1WlEFwAACgfPl0tlZubq7Fjx6p+/fqqXr269u3bJ0l68cUXNXPmzDItEAAAoCR8Cjcvv/yy5syZo7/+9a9e80Iuv/xy/f3vfy+z4gAAAErKp3Dzzjvv6G9/+5vuueceBQcHe5a3bt1aO3fuLLPiAAAASsqncPPDDz+ocePG+Za73W6dO3eu1EUBAAD4yqdw07JlS33xxRf5li9cuFBt2rQpdVEAAAC+8ulqqZEjR2rgwIH64Ycf5Ha7tXjxYu3atUvvvPOOli1bVtY1AgAAFJtPPTe33Xab0tPTtXr1akVERGjkyJHasWOH0tPTdeONN5Z1jQAAAMVWJjfxCySV5SZ+AACg+Ery++1Tz02jRo3kcDjyLT9x4oTngZolMW3aNMXFxSksLEzt27fXpk2bimx/4sQJPfroo6pbt65CQ0PVtGlTrVixosT7BQAA5uPTnJv9+/crNzc33/KzZ8/qhx9+KNG2FixYoGHDhumtt95S+/btNXnyZCUnJ2vXrl2qXbt2vvY5OTm68cYbVbt2bS1cuFD169fXgQMHeGAnAACQVMJw89FHH3n+vGrVKtlsNs/73NxcrVmzRnFxcSUqYNKkSXrwwQc1aNAgSdJbb72l5cuXa9asWRo+fHi+9rNmzZLT6dSGDRsUEhIiSSXeJwAAMK8SzbkJCjo/imWxWHThaiEhIYqLi9Nrr72mnj17Fmt7OTk5Cg8P18KFC3X77bd7lg8cOFAnTpzQ0qVL861zyy23yG63Kzw8XEuXLlWtWrXUt29fPfvss143FMxz9uxZnT171vM+KytLsbGxzLkBACCAlNuDM91utyQpPj5eX331lWrWrOl7lZKOHz+u3NxcxcTEeC2PiYkp9E7H+/bt07///W/dc889WrFihfbs2aM///nPOnfunEaNGpWv/fjx4zVmzJhS1QkAAAJHiSYUb9y4UcuWLVNmZqYn2LzzzjuKj49X7dq19dBDD3n1kpQHt9ut2rVr629/+5vatm2r3r176/nnn9dbb71VYPsRI0bI5XJ5XocOHSrX+gAAgH+VKNyMGTNG3377ref9tm3bdP/996tbt24aPny40tPTNX78+GJvr2bNmgoODtbRo0e9lh89elR16tQpcJ26deuqadOmXkNQLVq00JEjR5STk5OvfWhoqKKiorxeAADAvEoUbr7++mvdcMMNnvfz589X+/btNWPGDA0bNkxTpkzRBx98UOztWa1WtW3bVmvWrPEsc7vdWrNmjTp06FDgOtdee6327NnjGSKTpO+//15169b1ekI5AAComkoUbn7++Wev+TGfffaZbr75Zs/7a665psTDPsOGDdOMGTM0d+5c7dixQ4888ohOnTrluXpqwIABGjFihKf9I488IqfTqccff1zff/+9li9frnHjxunRRx8t0X4BAIA5lWhCcUxMjDIzMxUbG6ucnBxlZGR4TdbNzs72XJ5dXL1799ZPP/2kkSNH6siRI7rqqqu0cuVKT4g6ePCg5yotSYqNjdWqVav0xBNP6Morr1T9+vX1+OOP69lnny3RfgEAgDmV6FLwRx55RF9//bUmTpyoJUuWaO7cufrxxx89w0HvvfeeJk+erK+++qrcCi4tHr8AAEDgKbdLwceOHas77rhDSUlJql69uubOnes1z2XWrFm66aabfKsaAACgDPj04EyXy6Xq1avnu2me0+lU9erVK/XEXnpuAAAIPOXWc5Pn949d+D273e7L5gAAAMqMT08FBwAAqKwINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFR8enAmqg6Hw6GcnJxCP7darYqOjq7AigAAKBrhBoVyOBxKS0u7aLvU1FQCDgCg0mBYCoW6sMfG5YpUZmacXK7IItsBAOBP9NygWDIy2ig9vacMI0gWi1spKcuUmLjF32UBDJ0CyIdwg4tyuSI9wUaSDCNI6ek9lZCwRzZbtp+rQ1XG0CmAghBucFFOZ7Qn2OQxjCA5nXbCDfyqoKFTpzNadrvD67vJ0GnJ0BuGQEe4wUXZ7Q5ZLG6vgGOxuGW3O/1YFeCNodOyQW8YzIAJxbgomy1bKSnLZLG4Jcnzw0GvDSqLwoZOL5z8jovjQgKYAT03KJbExC1KSNgjp9Muu91JsEGlwtBp+aA3DIGKnhsUymq1er232bIVH38g34/Fhe2AipY3dPp7DJ2WDr1hCGT03KBQ0dHRSk1NZWIhKr28odMLexnotfEdvWEIZIQbFInggkDB0GnZ4kICBDKGpQAELIZOyw8XEiCQ0XMDIGAxdFq+6A1DoCLcAAhoBJeyVVBvWEGhht4wVGaEGwCAB71hMAPCDQDAC8EFgY4JxQAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQu8XcBAConh8OhnJycQj+3Wq2Kjo6uwIoAoHgINwDycTgcSktLu2i71NRUAg6ASodhKQD5XNhj43JFKjMzTi5XZJHtAKAyoOcGQJEyMtooPb2nDCNIFotbKSnLlJi4xd9lAUChCDelxLwEmJnLFekJNpJkGEFKT++phIQ9stmy/VwdABSMcFMKzEuA2Tmd0Z5gk8cwguR02gk3ACot5tyUAvMSYHZ2u0MWi9trmcXilt3u9FNFAHBx9NyUEeYlwIxstmylpCzL992m1wZAZUa4KQPMS4CZJSZuUULCHjmddtntTr7TACo9wk0ZYF4CzMZqtXq9t9myC/wuX9gOACoDwk0ZyJuX8PuAw7wEBLLo6GilpqZyJSCAgES4KQPMS4AZEVwABCrCTRlhXgIAAJVDpbgUfNq0aYqLi1NYWJjat2+vTZs2FWu9+fPny2Kx6Pbbby/fAgtR0LyE+PgD+YIN8xIAAKg4fu+5WbBggYYNG6a33npL7du31+TJk5WcnKxdu3apdu3aha63f/9+PfXUU+rUqVMFVuuNeQkAAFQ+FsMwDH8W0L59e11zzTWeO/263W7FxsZqyJAhGj58eIHr5ObmqnPnzrrvvvv0xRdf6MSJE1qyZEmx9peVlSWbzSaXy6WoqKiyOgwAAFCOSvL77ddhqZycHG3evFndunXzLAsKClK3bt20cePGQtd76aWXVLt2bd1///0X3cfZs2eVlZXl9QIAAObl13Bz/Phx5ebmKiYmxmt5TEyMjhw5UuA669at08yZMzVjxoxi7WP8+PGy2WyeV2xsbKnrBgAAlVelmFBcXNnZ2erfv79mzJihmjVrFmudESNGyOVyeV6HDh0q5yoBAIA/+XVCcc2aNRUcHKyjR496LT969Kjq1KmTr/3evXu1f/9+paSkeJa53ecf6nfJJZdo165dSkhI8FonNDRUoaGh5VA9AACojPzac2O1WtW2bVutWbPGs8ztdmvNmjXq0KFDvvbNmzfXtm3btHXrVs/r1ltvVdeuXbV161aGnAAAgP8vBR82bJgGDhyoq6++Wu3atdPkyZN16tQpDRo0SJI0YMAA1a9fX+PHj1dYWJguv/xyr/Vr1KghSfmWAwCAqsnv4aZ379766aefNHLkSB05ckRXXXWVVq5c6ZlkfPDgQQUFBdTUIAAA4Ed+v89NReM+NwAABJ6Auc8NAABAWSPcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAUyHcAAAAU/H74xcAAEDBHA6HcnJyCv3carUqOjq6AisKDIQbAAAqIYfDobS0tIu2S01NJeBcgGEpAAAqoQt7bFyuSGVmxsnliiyyHei5AQCgWPw5RJSR0Ubp6T1lGEGyWNxKSVmmxMQt5bIvMyDcAABwEf4cInK5Ij3BRpIMI0jp6T2VkLBHNlt2me7LLBiWAgDgIvw5ROR0RnuCTR7DCJLTaS/zfZkFPTcAAJRARQ8R2e0OWSxur4BjsbhltzvLbZ+Bjp4bAACKqbAhogt7cMqSzZatlJRlsljckuQJVAxJFY6eGwAAiqmoIaLyDBuJiVuUkLBHTqdddruTYHMRhBsAAIqpIoeIrFar13ubLbvAUHNhOxBuAAAotrwhogvn3JRHT0p0dLRSU1O5Q7EPCDcAAJRARQ4REVx8Q7gBAOAiGCIKLIQbAAAugiGiwEK4AQCgGAgugYP73AAAAFMh3AAAAFMh3AAAAFMh3AAAAFMh3AAAAFMh3AAAAFMh3AAAAFMh3AAAAFPhJn4AAKBUHA5Hpbp7M+EGAAD4zOFwKC0t7aLtUlNTKyzgMCwFAAB8dmGPjcsVqczMOLlckUW2K0/03AAAgDKRkdFG6ek9ZRhBsljcSklZpsTELRVeBz03AACg1FyuSE+wkSTDCFJ6es98PTgVgXADAABKzemM9gSbPIYRJKfTXuG1EG4AAECp2e0OWSxur2UWi1t2u7PCayHcAACAUrPZspWSsswTcPLm3Nhs2RVeCxOKAQBAmUhM3KKEhD1yOu2y251+CTYS4QYAAJSC1Wr1em+zZRcYai5sV54INwAAwGfR0dFKTU3lDsUAAMA8KjK4FAcTigEAgKkQbgAAgKkQbgAAgKkQbgAAgKkwoRim4XA4KtVsfQCAfxBuYAoOh0NpaWkXbZeamkrAAQCTY1gKpnBhj43LFanMzLh8T6MtqmcHAGAO9NzAdDIy2ig9vacMI8jzbJPExC3+LgsAUEHouYGpuFyRnmAjSYYRpPT0nvl6cAAA5kW4gak4ndGeYJPHMILkdNr9VBEAoKIRbmAqdrtDFovba5nF4pbd7vRTRQCAika4ganYbNlKSVnmCTh5c24KekItAMCcmFAM00lM3KKEhD1yOu2y250EGwCoYgg3MAWr1er13mbLLjDUXNgOAGA+hBuYQnR0tFJTU7lDMQCAcAPzILgAACQmFAMAAJMh3AAAAFMh3AAAAFOpFOFm2rRpiouLU1hYmNq3b69NmzYV2nbGjBnq1KmTLr30Ul166aXq1q1bke0BAEDV4vdws2DBAg0bNkyjRo1SRkaGWrdureTkZB07dqzA9mvXrtXdd9+tTz/9VBs3blRsbKxuuukm/fDDDxVcOQAAqIwshmEY/iygffv2uuaaa5SWliZJcrvdio2N1ZAhQzR8+PCLrp+bm6tLL71UaWlpGjBgwEXbZ2VlyWazyeVyKSoqqtT1AwCA8leS32+/9tzk5ORo8+bN6tatm2dZUFCQunXrpo0bNxZrG6dPn9a5c+dktxf8YMSzZ88qKyvL6wUAAMzLr+Hm+PHjys3NVUxMjNfymJgYHTlypFjbePbZZ1WvXj2vgPR748ePl81m87xiY2NLXTcAAKi8/D7npjQmTJig+fPn68MPP1RYWFiBbUaMGCGXy+V5HTp0qIKrBAAAFcmvdyiuWbOmgoODdfToUa/lR48eVZ06dYpc99VXX9WECRO0evVqXXnllYW2Cw0NVWhoqOd93hQjhqcAAAgceb/bxZoqbPhZu3btjNTUVM/73Nxco379+sb48eMLXWfixIlGVFSUsXHjxhLv79ChQ4YkXrx48eLFi1cAvg4dOnTR33q/P1tq2LBhGjhwoK6++mq1a9dOkydP1qlTpzRo0CBJ0oABA1S/fn2NHz9ekjRx4kSNHDlS8+bNU1xcnGduTvXq1VW9evWL7q9evXo6dOiQIiMjZbFYyu/AKpmsrCzFxsbq0KFDVf4qMc7FbzgXv+FcnMd5+A3n4jeV4VwYhqHs7GzVq1fvom39Hm569+6tn376SSNHjtSRI0d01VVXaeXKlZ5JxgcPHlRQ0G9Tg958803l5OTorrvu8trOqFGjNHr06IvuLygoSJdddlmZHkMgiYqKqvL/kebhXPyGc/EbzsV5nIffcC5+4+9zYbPZitXO7+FGklJTU5WamlrgZ2vXrvV6v3///vIvCAAABKyAvloKAADgQoSbKiI0NFSjRo3yunKsquJc/IZz8RvOxXmch99wLn4TaOfC749fAAAAKEv03AAAAFMh3AAAAFMh3AAAAFMh3AAAAFMh3ASoadOmKS4uTmFhYWrfvr02bdpUZPvJkyerWbNmqlatmmJjY/XEE0/ozJkzns9Hjx4ti8Xi9WrevHl5H0aZKMm5OHfunF566SUlJCQoLCxMrVu31sqVK0u1zcqkrM9FoH4vPv/8c6WkpKhevXqyWCxasmTJRddZu3atEhMTFRoaqsaNG2vOnDn52gTi96I8zkUgfi9Keh4OHz6svn37qmnTpgoKCtLQoUMLbPfPf/5TzZs3V1hYmK644gqtWLGi7IsvY+VxLubMmZPvO1HYA60rAuEmAC1YsEDDhg3TqFGjlJGRodatWys5OVnHjh0rsP28efM0fPhwjRo1Sjt27NDMmTO1YMECPffcc17tWrVqpcOHD3te69atq4jDKZWSnosXXnhBb7/9tqZOnarvvvtOgwcP1h//+Edt2bLF521WFuVxLqTA/F6cOnVKrVu31rRp04rVPjMzUz169FDXrl21detWDR06VA888IBWrVrlaROo34vyOBdS4H0vSnoezp49q1q1aumFF15Q69atC2yzYcMG3X333br//vu1ZcsW3X777br99tu1ffv2siy9zJXHuZDO373499+JAwcOlFXJJVfiJ0/C79q1a2c8+uijnve5ublGvXr1Cn3Y6KOPPmpcf/31XsuGDRtmXHvttZ73o0aNMlq3bl0u9Zankp6LunXrGmlpaV7L7rjjDuOee+7xeZuVRXmci0D9XvyeJOPDDz8sss0zzzxjtGrVymtZ7969jeTkZM/7QP1e/F5ZnYtA/14U5zz8XlJSkvH444/nW96rVy+jR48eXsvat29vPPzww6WssOKU1bmYPXu2YbPZyqyu0qLnJsDk5ORo8+bN6tatm2dZUFCQunXrpo0bNxa4TseOHbV582ZPF/q+ffu0YsUK3XLLLV7tdu/erXr16qlRo0a65557dPDgwfI7kDLgy7k4e/Zsvq7SatWqef6v05dtVgblcS7yBNr3whcbN270OneSlJyc7Dl3gfq98MXFzkWeqvC9uJjinquq4uTJk2rYsKFiY2N122236dtvv/VbLYSbAHP8+HHl5uZ6HiyaJyYmxvOE9Av17dtXL730kq677jqFhIQoISFBXbp08RqWat++vebMmaOVK1fqzTffVGZmpjp16qTs7OxyPZ7S8OVcJCcna9KkSdq9e7fcbrc++eQTLV68WIcPH/Z5m5VBeZwLKTC/F744cuRIgecuKytLv/zyS8B+L3xxsXMhVZ3vxcUUdq7M9p0ojmbNmmnWrFlaunSp/vGPf8jtdqtjx4763//+55d6CDdVwNq1azVu3DhNnz5dGRkZWrx4sZYvX66xY8d62tx8883605/+pCuvvFLJyclasWKFTpw4oQ8++MCPlZe9N954Q02aNFHz5s1ltVqVmpqqQYMGeT15vqoozrmoKt8LlAzfC1yoQ4cOGjBggK666iolJSVp8eLFqlWrlt5++22/1FP1/kYPcDVr1lRwcLCOHj3qtfzo0aOqU6dOgeu8+OKL6t+/vx544AFdccUV+uMf/6hx48Zp/PjxcrvdBa5To0YNNW3aVHv27CnzYygrvpyLWrVqacmSJTp16pQOHDignTt3qnr16mrUqJHP26wMyuNcFCQQvhe+qFOnToHnLioqStWqVQvY74UvLnYuCmLW78XFFHauzPad8EVISIjatGnjt+8E4SbAWK1WtW3bVmvWrPEsc7vdWrNmjTp06FDgOqdPn87XMxEcHCxJMgp5tNjJkye1d+9e1a1bt4wqL3u+nIs8YWFhql+/vn799VctWrRIt912W6m36U/lcS4KEgjfC1906NDB69xJ0ieffOI5d4H6vfDFxc5FQcz6vbgYX85VVZGbm6tt27b57zvh7xnNKLn58+cboaGhxpw5c4zvvvvOeOihh4waNWoYR44cMQzDMPr3728MHz7c037UqFFGZGSk8f777xv79u0zPv74YyMhIcHo1auXp82TTz5prF271sjMzDTWr19vdOvWzahZs6Zx7NixCj++kijpufjPf/5jLFq0yNi7d6/x+eefG9dff70RHx9v/Pzzz8XeZmVVHuciUL8X2dnZxpYtW4wtW7YYkoxJkyYZW7ZsMQ4cOGAYhmEMHz7c6N+/v6f9vn37jPDwcOPpp582duzYYUybNs0IDg42Vq5c6WkTqN+L8jgXgfi9KOl5MAzD075t27ZG3759jS1bthjffvut5/P169cbl1xyifHqq68aO3bsMEaNGmWEhIQY27Ztq9BjK6nyOBdjxowxVq1aZezdu9fYvHmz0adPHyMsLMyrTUUi3ASoqVOnGg0aNDCsVqvRrl074z//+Y/ns6SkJGPgwIGe9+fOnTNGjx5tJCQkGGFhYUZsbKzx5z//2etHrHfv3kbdunUNq9Vq1K9f3+jdu7exZ8+eCjwi35XkXKxdu9Zo0aKFERoaakRHRxv9+/c3fvjhhxJtszIr63MRqN+LTz/91JCU75V3/AMHDjSSkpLyrXPVVVcZVqvVaNSokTF79ux82w3E70V5nItA/F74ch4Kat+wYUOvNh988IHRtGlTw2q1Gq1atTKWL19eMQdUCuVxLoYOHer5byMmJsa45ZZbjIyMjIo7qAtYDKOQcQkAAIAAxJwbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAKgE1q5dK4vFohMnTvi7FCDgEW6AKubee++VxWLRhAkTvJYvWbJEFovF894wDM2YMUMdOnRQVFSUqlevrlatWunxxx8v9sPwTp8+rREjRighIUFhYWGqVauWkpKStHTpUk+buLg4TZ48uUyOrbzlnTuLxaKQkBDFx8frmWee0ZkzZ0q0nS5dumjo0KFeyzp27KjDhw/LZrOVYcVA1US4AaqgsLAwTZw4UT///HOBnxuGob59++qxxx7TLbfcoo8//ljfffedZs6cqbCwMP3lL38p1n4GDx6sxYsXa+rUqdq5c6dWrlypu+66Sw6HoywPp0J1795dhw8f1r59+/T666/r7bff1qhRo0q9XavVqjp16ngFTAA+8tuDHwD4xcCBA42ePXsazZs3N55++mnP8g8//NDI+yvh/fffNyQZS5cuLXAbbre7WPuy2WzGnDlzCv08KSkp3/Nq8nzxxRfGddddZ4SFhRmXXXaZMWTIEOPkyZOez9955x2jbdu2RvXq1Y2YmBjj7rvvNo4ePer5PO/5OStXrjSuuuoqIywszOjatatx9OhRY8WKFUbz5s2NyMhI4+677zZOnTpVrOMZOHCgcdttt3ktu+OOO4w2bdp43h8/ftzo06ePUa9ePaNatWrG5ZdfbsybN89rGxcec2Zmpqfe3z/zbeHChUbLli0Nq9VqNGzY0Hj11VeLVSdQ1dFzA1RBwcHBGjdunKZOnar//e9/+T5///331axZM916660Frl/c3oU6depoxYoVys7OLvDzxYsX67LLLtNLL72kw4cP6/Dhw5KkvXv3qnv37rrzzjv1zTffaMGCBVq3bp1SU1M96547d05jx47V119/rSVLlmj//v2699578+1j9OjRSktL04YNG3To0CH16tVLkydP1rx587R8+XJ9/PHHmjp1arGO50Lbt2/Xhg0bZLVaPcvOnDmjtm3bavny5dq+fbseeugh9e/fX5s2bZIkvfHGG+rQoYMefPBBzzHHxsbm2/bmzZvVq1cv9enTR9u2bdPo0aP14osvas6cOT7VClQp/k5XACrW73sf/vCHPxj33XefYRjePTfNmzc3br31Vq/1Hn/8cSMiIsKIiIgw6tevX6x9ffbZZ8Zll11mhISEGFdffbUxdOhQY926dV5tGjZsaLz++utey+6//37joYce8lr2xRdfGEFBQcYvv/xS4L6++uorQ5KRnZ1tGMZvPTerV6/2tBk/frwhydi7d69n2cMPP2wkJycX63gGDhxoBAcHGxEREUZoaKghyQgKCjIWLlxY5Ho9evQwnnzySc/7pKQk4/HHH/dqc2HPTd++fY0bb7zRq83TTz9ttGzZsli1AlUZPTdAFTZx4kTNnTtXO3bsuGjb559/Xlu3btXIkSN18uTJYm2/c+fO2rdvn9asWaO77rpL3377rTp16qSxY8cWud7XX3+tOXPmqHr16p5XcnKy3G63MjMzJZ3v2UhJSVGDBg0UGRmppKQkSdLBgwe9tnXllVd6/hwTE6Pw8HA1atTIa9mxY8eKdTyS1LVrV23dulVffvmlBg4cqEGDBunOO+/0fJ6bm6uxY8fqiiuukN1uV/Xq1bVq1ap8dV3Mjh07dO2113otu/baa7V7927l5uaWaFtAVUO4Aaqwzp07Kzk5WSNGjPBa3qRJE+3atctrWa1atdS4cWPVrl27RPsICQlRp06d9Oyzz+rjjz/WSy+9pLFjxyonJ6fQdU6ePKmHH35YW7du9by+/vpr7d69WwkJCTp16pSSk5MVFRWl9957T1999ZU+/PBDScq33ZCQEM+f865y+j2LxSK3213s44mIiFDjxo3VunVrzZo1S19++aVmzpzp+fyVV17RG2+8oWeffVaffvqptm7dquTk5CKPF0DZusTfBQDwrwkTJuiqq65Ss2bNPMvuvvtu9e3bV0uXLtVtt91Wpvtr2bKlfv31V505c0ZWq1VWqzVfT0RiYqK+++47NW7cuMBtbNu2TQ6HQxMmTPDMV/nvf/9bpnUWR1BQkJ577jkNGzZMffv2VbVq1bR+/Xrddttt6tevnyTJ7Xbr+++/V8uWLT3rFXTMF2rRooXWr1/vtWz9+vVq2rSpgoODy/5gABOh5wao4q644grdc889mjJlimdZnz59dNddd6lPnz566aWX9OWXX2r//v367LPPtGDBgmL/uHbp0kVvv/22Nm/erP3792vFihV67rnn1LVrV0VFRUk6f5+bzz//XD/88IOOHz8uSXr22We1YcMGpaamauvWrdq9e7eWLl3qmVDcoEEDWa1WTZ06Vfv27dNHH3100aGu8vKnP/1JwcHBmjZtmqTzvV6ffPKJNmzYoB07dujhhx/W0aNHvdaJi4vznNPjx48X2HP05JNPas2aNRo7dqy+//57zZ07V2lpaXrqqacq5LiAQEa4AaCXXnrJ6wfWYrFowYIFmjx5slasWKEbbrhBzZo103333afY2FitW7euWNtNTk7W3LlzddNNN6lFixYaMmSIkpOT9cEHH3jte//+/UpISFCtWrUknZ8n89lnn+n7779Xp06d1KZNG40cOVL16tWTdH6IbM6cOfrnP/+pli1basKECXr11VfL8IwU3yWXXKLU1FT99a9/1alTp/TCCy8oMTFRycnJ6tKli+rUqaPbb7/da52nnnpKwcHBatmypWrVqlXgfJzExER98MEHmj9/vi6//HKNHDlSL730UoFXhAHwZjEMw/B3EQAAAGWFnhsAAGAqhBsAPvv9pdoXvr744gt/l1ciBw8eLPJ4SnopNwD/YVgKgM+KeoBm/fr1Va1atQqspnR+/fVX7d+/v9DP4+LidMklXGAKBALCDQAAMBWGpQAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKn8H/VS+2DLnrUVAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASlpJREFUeJzt3XtcVHX+x/H3QAx4gbFBxRuK4l3LxNK0vBWGpZS/atVMJcst28ZrN83ykqW2lnnBym1NrM3U1C6oq6UbleZWC9jVu6Cuq5gzOSCmGHN+f7jMOgIKCAwMr+fjMY+c7/meM59zdhbefM/3nGMyDMMQAACAj/DzdgEAAACliXADAAB8CuEGAAD4FMINAADwKYQbAADgUwg3AADApxBuAACATyHcAAAAn0K4AQAAPoVwAwBekpCQIJPJpPT0dG+XAvgUwg3gw7799lvZbDa1a9dONWrUUOPGjTVw4EDt2bMnX99evXrJZDLJZDLJz89PISEhatWqlYYNG6ZPP/20WJ+bmJionj17qm7duqpevbqaNWumgQMHauPGjaW1a/nMnDlTH374Yb72r776StOmTdPJkyfL7LMvNm3aNPexNJlMql69utq2batnn31WmZmZpfIZy5cv17x580plW4CvIdwAPuyll17SmjVrdOutt2r+/Pl6+OGH9cUXXygqKko//vhjvv6NGjXSO++8o7fffltz5szRnXfeqa+++kq33XabBg0apHPnzl32M19++WXdeeedMplMmjRpkl599VXdc8892rt3r1asWFEWuynp0uFm+vTp5Rpu8rz++ut65513NHfuXLVu3Vovvvii+vbtq9J4pB/hBijcVd4uAEDZmTBhgpYvXy6z2exuGzRokK655hrNnj1bf/vb3zz6WywWDR061KNt9uzZGjNmjF577TVFRETopZdeKvTzfv/9d82YMUN9+vTRJ598km/58ePHr3CPKo7Tp0+revXql+xz7733qnbt2pKkUaNG6Z577tHatWv1z3/+U127di2PMoEqiZEbwId169bNI9hIUosWLdSuXTvt3LmzSNvw9/fXggUL1LZtW8XHx8vpdBba98SJE8rMzNRNN91U4PK6det6vD9z5oymTZumli1bKigoSPXr19fdd9+t/fv3u/u8/PLL6tatm0JDQ1WtWjV16tRJq1ev9tiOyWRSdna2li1b5j4V9MADD2jatGl68sknJUlNmzZ1L7twjsvf/vY3derUSdWqVZPVatXgwYN1+PBhj+336tVL7du3V3Jysnr06KHq1avrmWeeKdLxu9Att9wiSUpLS7tkv9dee03t2rVTYGCgGjRooMcee8xj5KlXr15av369Dh486N6niIiIYtcD+CpGboAqxjAMZWRkqF27dkVex9/fX/fdd5+ee+45bd26Vf369SuwX926dVWtWjUlJiZq9OjRslqthW4zNzdX/fv315YtWzR48GCNHTtWWVlZ+vTTT/Xjjz8qMjJSkjR//nzdeeeduv/++5WTk6MVK1boD3/4g9atW+eu45133tHIkSPVuXNnPfzww5KkyMhI1ahRQ3v27NF7772nV1991T2KUqdOHUnSiy++qOeee04DBw7UyJEj9csvv2jhwoXq0aOHUlNTVatWLXe9drtdt99+uwYPHqyhQ4cqLCysyMcvT15oCw0NLbTPtGnTNH36dEVHR+vRRx/V7t279frrr+vbb7/Vtm3bFBAQoMmTJ8vpdOrf//63Xn31VUlSzZo1i10P4LMMAFXKO++8Y0gylixZ4tHes2dPo127doWu98EHHxiSjPnz519y+1OmTDEkGTVq1DBuv/1248UXXzSSk5Pz9XvrrbcMScbcuXPzLXO5XO5/nz592mNZTk6O0b59e+OWW27xaK9Ro4YRFxeXb1tz5swxJBlpaWke7enp6Ya/v7/x4osverT/8MMPxlVXXeXR3rNnT0OS8cYbbxS63xeaOnWqIcnYvXu38csvvxhpaWnG4sWLjcDAQCMsLMzIzs42DMMwli5d6lHb8ePHDbPZbNx2221Gbm6ue3vx8fGGJOOtt95yt/Xr189o0qRJkeoBqhpOSwFVyK5du/TYY4+pa9euiouLK9a6eSMDWVlZl+w3ffp0LV++XB07dtSmTZs0efJkderUSVFRUR6nwtasWaPatWtr9OjR+bZhMpnc/65WrZr737/++qucTqe6d++ulJSUYtV/sbVr18rlcmngwIE6ceKE+1WvXj21aNFCn332mUf/wMBAjRgxolif0apVK9WpU0dNmzbVI488oubNm2v9+vWFztXZvHmzcnJyNG7cOPn5/e/H8x//+EeFhIRo/fr1xd9RoAritBRQRRw7dkz9+vWTxWLR6tWr5e/vX6z1T506JUkKDg6+bN/77rtP9913nzIzM/X1118rISFBy5cvV2xsrH788UcFBQVp//79atWqla666tI/htatW6cXXnhBO3bs0NmzZ93tFwagkti7d68Mw1CLFi0KXB4QEODxvmHDhvnmL13OmjVrFBISooCAADVq1Mh9qq0wBw8elHQ+FF3IbDarWbNm7uUALo1wA1QBTqdTt99+u06ePKkvv/xSDRo0KPY28i4db968eZHXCQkJUZ8+fdSnTx8FBARo2bJl+vrrr9WzZ88irf/ll1/qzjvvVI8ePfTaa6+pfv36CggI0NKlS7V8+fJi78OFXC6XTCaT/v73vxcY9C6ew3LhCFJR9ejRwz3PB0D5IdwAPu7MmTOKjY3Vnj17tHnzZrVt27bY28jNzdXy5ctVvXp13XzzzSWq4/rrr9eyZct09OhRSecn/H799dc6d+5cvlGSPGvWrFFQUJA2bdqkwMBAd/vSpUvz9S1sJKew9sjISBmGoaZNm6ply5bF3Z0y0aRJE0nS7t271axZM3d7Tk6O0tLSFB0d7W670pErwJcx5wbwYbm5uRo0aJC2b9+u999/v0T3VsnNzdWYMWO0c+dOjRkzRiEhIYX2PX36tLZv317gsr///e+S/nfK5Z577tGJEycUHx+fr6/x35vc+fv7y2QyKTc3170sPT29wJv11ahRo8Ab9dWoUUOS8i27++675e/vr+nTp+e7qZ5hGLLb7QXvZBmKjo6W2WzWggULPGpasmSJnE6nx1VqNWrUuORl+UBVxsgN4MMef/xxffzxx4qNjZXD4ch3076Lb9jndDrdfU6fPq19+/Zp7dq12r9/vwYPHqwZM2Zc8vNOnz6tbt266cYbb1Tfvn0VHh6ukydP6sMPP9SXX36pAQMGqGPHjpKk4cOH6+2339aECRP0zTffqHv37srOztbmzZv1pz/9SXfddZf69eunuXPnqm/fvhoyZIiOHz+uRYsWqXnz5vr+++89PrtTp07avHmz5s6dqwYNGqhp06bq0qWLOnXqJEmaPHmyBg8erICAAMXGxioyMlIvvPCCJk2apPT0dA0YMEDBwcFKS0vTBx98oIcfflhPPPHEFR3/4qpTp44mTZqk6dOnq2/fvrrzzju1e/duvfbaa7rhhhs8/vfq1KmTVq5cqQkTJuiGG25QzZo1FRsbW671AhWWNy/VAlC28i5hLux1qb41a9Y0WrRoYQwdOtT45JNPivR5586dM958801jwIABRpMmTYzAwECjevXqRseOHY05c+YYZ8+e9eh/+vRpY/LkyUbTpk2NgIAAo169esa9995r7N+/391nyZIlRosWLYzAwECjdevWxtKlS92XWl9o165dRo8ePYxq1aoZkjwuC58xY4bRsGFDw8/PL99l4WvWrDFuvvlmo0aNGkaNGjWM1q1bG4899pixe/duj2NzqcvkL5ZX3y+//HLJfhdfCp4nPj7eaN26tREQEGCEhYUZjz76qPHrr7969Dl16pQxZMgQo1atWoYkLgsHLmAyjFJ4yAkAAEAFwZwbAADgUwg3AADApxBuAACATyHcAAAAn0K4AQAAPoVwAwAAfIpXb+L3xRdfaM6cOUpOTtbRo0f1wQcfaMCAAYX2X7t2rV5//XX3A/TatWunadOmKSYmpsif6XK59J///EfBwcHcvhwAgErCMAxlZWWpQYMG8vO79NiMV8NNdna2OnTooAcffFB33333Zft/8cUX6tOnj2bOnKlatWpp6dKlio2N1ddff+2+6+nl/Oc//1F4ePiVlg4AALzg8OHDatSo0SX7VJib+JlMpsuO3BSkXbt2GjRokKZMmVKk/k6nU7Vq1dLhw4cv+YwcAABQcWRmZrof6WKxWC7Zt1I/W8rlcikrK0tWq7XQPmfPntXZs2fd77OysiRJISEhhBsAACqZokwpqdQTil9++WWdOnVKAwcOLLTPrFmzZLFY3C9OSQEA4NsqbbhZvny5pk+frlWrVqlu3bqF9ps0aZKcTqf7dfjw4XKsEgAAlLdKeVpqxYoVGjlypN5//31FR0dfsm9gYKACAwPLqTIAAOBtlS7cvPfee3rwwQe1YsUK9evXr8w+Jzc3V+fOnSuz7Vd1AQEB8vf393YZAAAf5NVwc+rUKe3bt8/9Pi0tTTt27JDValXjxo01adIkHTlyRG+//bak86ei4uLiNH/+fHXp0kXHjh2TJFWrVu2yM6eLyjAMHTt2TCdPniyV7aFwtWrVUr169bjfEACgVHn1UvCkpCT17t07X3tcXJwSEhL0wAMPKD09XUlJSZKkXr166fPPPy+0f1FkZmbKYrHI6XQWeLXU0aNHdfLkSdWtW1fVq1fnF28ZMAxDp0+f1vHjx1WrVi3Vr1/f2yUBACq4y/3+vlCFuc9NebnUwcnNzdWePXtUt25dhYaGeqnCqsNut+v48eNq2bIlp6gAAJdUnHBTaa+WKgt5c2yqV6/u5UqqhrzjzNwmAEBpItwUgFNR5YPjDAAoC5XuaikAAFA4u92unJycQpebzWafn3pBuAEAwEfY7XbFx8dftp/NZvPpgMNpKR/xwAMPyGQyyWQyKSAgQGFhYerTp4/eeustuVyuIm8nISFBtWrVKrtCAQBl5uIRG6czWGlpEXI6gy/Zz9cwclPKvDkc2LdvXy1dulS5ubnKyMjQxo0bNXbsWK1evVoff/yxrrqK/7kBoKpISemoxMT+Mgw/mUwuxcauU1RUqrfLKhf8titF3h4ODAwMVL169SRJDRs2VFRUlG688UbdeuutSkhI0MiRIzV37lwtXbpUBw4ckNVqVWxsrP785z+rZs2aSkpK0ogRIyT9b7Lv1KlTNW3aNL3zzjuaP3++du/erRo1auiWW27RvHnzLvlcLwCAdzidwe5gI0mG4afExP6KjNwniyXLy9WVPU5LlaKiDvOV53DgLbfcog4dOmjt2rWSJD8/Py1YsEA//fSTli1bpn/84x966qmnJEndunXTvHnzFBISoqNHj+ro0aN64oknJJ2/XHvGjBn67rvv9OGHHyo9PV0PPPBAue0HAKDoHI5Qd7DJYxh+cjisXqqofDFyUwW0bt1a33//vSRp3Lhx7vaIiAi98MILGjVqlF577TWZzWZZLBaZTCb3CFCeBx980P3vZs2aacGCBbrhhht06tQp1axZs1z2AwBQNFarXSaTyyPgmEwuWa0OL1ZVfhi5qQIMw3CfZtq8ebNuvfVWNWzYUMHBwRo2bJjsdrtOnz59yW0kJycrNjZWjRs3VnBwsHr27ClJOnToUJnXDwAoHoslS7Gx62Qynb+gJG/OTVU4JSUxclMl7Ny5U02bNlV6err69++vRx99VC+++KKsVqu2bt2qhx56SDk5OYXemTk7O1sxMTGKiYnRu+++qzp16ujQoUOKiYnx+Rn3AFBZRUWlKjJynxwOq6xWR5UJNhLhxuf94x//0A8//KDx48crOTlZLpdLr7zyivz8zg/arVq1yqO/2WxWbm6uR9uuXbtkt9s1e/ZshYeHS5L+9a9/lc8OAACKzGw2e7y3WLIKDDUX9/M1hBsfcvbsWR07dszjUvBZs2apf//+Gj58uH788UedO3dOCxcuVGxsrLZt26Y33njDYxsRERE6deqUtmzZog4dOqh69epq3LixzGazFi5cqFGjRunHH3/UjBkzvLSXAIDChIaGymazVfk7FDPnxods3LhR9evXV0REhPr27avPPvtMCxYs0EcffSR/f3916NBBc+fO1UsvvaT27dvr3Xff1axZszy20a1bN40aNUqDBg1SnTp19Oc//1l16tRRQkKC3n//fbVt21azZ8/Wyy+/7KW9BABcSmhoqOrXr1/oy9eDjSSZDMMwvF1EebrUI9PPnDmjtLQ0NW3aVEFBQcXetrfvc1PZXOnxBgBUHZf6/X0xTkuVIoYDAQDwPsJNKSO4AADgXcy5AQAAPoVwAwAAfArhBgAA+BTm3AAAgCtit9sr1MU0hBsAAFBiFfE2KJyWAgAAJXbxiI3TGay0tAg5ncGX7FeWGLkBAAClIiWloxIT+8sw/NxPIo+KSi33Ohi5QZEkJSXJZDLp5MmTRV4nIiJC8+bNK7OaAAAVh9MZ7A42kmQYfkpM7J9vBKc8EG58xAMPPCCTyaRRo0blW/bYY4/JZDLpgQceKP/CAABVgsMR6g42eQzDTw6HtdxrIdz4kPDwcK1YsUK//fabu+3MmTNavny5Gjdu7MXKAAC+zmq1y2RyebSZTC5ZrY5yr4Vw40OioqIUHh6utWvXutvWrl2rxo0bq2PHju62s2fPasyYMapbt66CgoJ0880369tvv/XY1oYNG9SyZUtVq1ZNvXv3Vnp6er7P27p1q7p3765q1aopPDxcY8aMUXZ2dpntHwCg4rJYshQbu84dcPLm3FgsWeVeC+GmDP3739Jnn53/b3l58MEHtXTpUvf7t956SyNGjPDo89RTT2nNmjVatmyZUlJS1Lx5c8XExMjhOJ+uDx8+rLvvvluxsbHasWOHRo4cqYkTJ3psY//+/erbt6/uueceff/991q5cqW2bt0qm81W9jsJAKiQoqJSNW7cPMXFJWjcuHlemUwsEW7KzJIlUpMm0i23nP/vkiXl87lDhw7V1q1bdfDgQR08eFDbtm3T0KFD3cuzs7P1+uuva86cObr99tvVtm1bvfnmm6pWrZqW/LfI119/XZGRkXrllVfUqlUr3X///fnm68yaNUv333+/xo0bpxYtWqhbt25asGCB3n77bZ05c6Z8dhYA4HVms9njvcWSpaZND+Ybsbm4X1niUvAy8O9/Sw8/LLn+e+rR5ZIeeUSKiZEaNSrbz65Tp4769eunhIQEGYahfv36qXbt2u7l+/fv17lz53TTTTe52wICAtS5c2ft3LlTkrRz50516dLFY7tdu3b1eP/dd9/p+++/17vvvutuMwxDLpdLaWlpatOmTVnsHgCgggkNDZXNZuMOxb5u797/BZs8ubnSvn1lH26k86em8k4PLVq0qEw+49SpU3rkkUc0ZsyYfMuYvAwAVUt5BpeiINyUgRYtJD8/z4Dj7y81b14+n9+3b1/l5OTIZDIpJibGY1lkZKTMZrO2bdumJk2aSJLOnTunb7/9VuPGjZMktWnTRh9//LHHev/85z893kdFRennn39W8/LaKQAAiog5N2WgUSPpL385H2ik8/9dvLh8Rm3Of56/du7cqZ9//ln+eUX8V40aNfToo4/qySef1MaNG/Xzzz/rj3/8o06fPq2HHnpIkjRq1Cjt3btXTz75pHbv3q3ly5crISHBYztPP/20vvrqK9lsNu3YsUN79+7VRx99xIRiAIDXMXJTRh566Pwcm337zo/YlFewyRMSElLostmzZ8vlcmnYsGHKysrS9ddfr02bNunqq6+WdP600po1azR+/HgtXLhQnTt31syZM/Xggw+6t3Httdfq888/1+TJk9W9e3cZhqHIyEgNGjSozPcNAIBLMRmGYXi7iPKUmZkpi8Uip9OZLwCcOXNGaWlpatq0qYKCgrxUYdXB8QYAFNWlfn9fjNNSAADApxBuAACATyHcAAAAn0K4AQAAPoVwU4AqNsfaazjOAICyQLi5QEBAgCTp9OnTXq6kasg7znnHHQCA0sB9bi7g7++vWrVq6fjx45Kk6tWry2Qyebkq32MYhk6fPq3jx4+rVq1a+W40CADAlSDcXKRevXqS5A44KDu1atVyH28AAEoL4eYiJpNJ9evXV926dXXu3Dlvl+OzAgICGLEBAJQJwk0h/P39+eULAEAlxIRiAADgUwg3AADApxBuAACATyHcAAAAn0K4AQAAPoVwAwAAfArhBgAA+BTCDQAA8CmEGwAA4FMINwAAwKcQbgAAgE8h3AAAAJ/CgzMBoJTZ7Xbl5OQUutxsNis0NLQcKwKqFsINAJQiu92u+Pj4y/az2WwEHKCMcFoKAErRxSM2Tmew0tIi5HQGX7IfgNLDyA0AlJGUlI5KTOwvw/CTyeRSbOw6RUWlersswOd5deTmiy++UGxsrBo0aCCTyaQPP/zwsuskJSUpKipKgYGBat68uRISEsq8TgAoLqcz2B1sJMkw/JSY2D/fCA6A0ufVkZvs7Gx16NBBDz74oO6+++7L9k9LS1O/fv00atQovfvuu9qyZYtGjhyp+vXrKyYmphwqBsBk2aJxOELdwSaPYfjJ4bDKYsnyUlVA1eDVcHP77bfr9ttvL3L/N954Q02bNtUrr7wiSWrTpo22bt2qV199lXADlAMmyxad1WqXyeTyCDgmk0tWq8OLVQFVQ6WaULx9+3ZFR0d7tMXExGj79u2FrnP27FllZmZ6vACUDJNli85iyVJs7DqZTC5Jcs+5YdQGKHuVakLxsWPHFBYW5tEWFhamzMxM/fbbb6pWrVq+dWbNmqXp06eXV4lAlcFk2cuLikpVZOQ+ORxWWa0Ogg1QTirVyE1JTJo0SU6n0/06fPiwt0sCKj0myxbObDZ7vLdYstS06cF8webifgBKT6UaualXr54yMjI82jIyMhQSElLgqI0kBQYGKjAwsDzKA6oMJssWLjQ0VDabjUnXgBdVqnDTtWtXbdiwwaPt008/VdeuXb1UEVA1MVn20ggugHd59bTUqVOntGPHDu3YsUPS+Uu9d+zYoUOHDkk6f0pp+PDh7v6jRo3SgQMH9NRTT2nXrl167bXXtGrVKo0fP94b5QNVFpNlAVRkXh25+de//qXevXu730+YMEGSFBcXp4SEBB09etQddCSpadOmWr9+vcaPH6/58+erUaNG+utf/8pl4IAXMFkWQEXl1XDTq1cvGYZR6PKC7j7cq1cvpaZyRQbgDQVNli0o1DBZFoA3Vao5NwC8i8myACoDwg2AYiG4AKjofP4+NwAAoGoh3AAAAJ9CuAEAAD6FOTcoErvdziRSAEClQLjBZdntdsXHx1+2n81mI+AAALyO01K4rItHbJzOYKWlReR7SOKlRnYAACgvjNygWFJSOrqfBp13y/2oKG6qCACoOBi5QZE5ncHuYCOdfwp0YmL/fCM4AAB4E+EGReZwhHo8BVo6H3AcDquXKgIAID/CDYrMarW7nwKdx2RyyWp1eKkiAADyI9ygyCyWLMXGrnMHnLw5NzwNGgBQkTChGMUSFZWqyMh9cjisslodBBsAQIVDuMFlmc1mj/cWS1aBoebifgAAeAPhBpcVGhoqm83GHYoBAJUC4QZFQnABAFQWTCgGAAA+hXADAAB8CuEGAAD4FMINAADwKYQbAADgUwg3AADApxBuAACATyHcAAAAn0K4AQAAPoVwAwAAfArhBgAA+BTCDQAA8CmEGwAA4FMINwAAwKcQbgAAgE8h3AAAAJ9CuAEAAD6FcAMAAHwK4QYAAPgUwg0AAPApV3m7AAAAULnZ7Xbl5OQUutxsNis0NLTc6iHcAACAErPb7YqPj79sP5vNVm4Bh9NSAACgxC4esXE6g5WWFiGnM/iS/coSIzcAAKBUpKR0VGJifxmGn0wml2Jj1ykqKrXc62DkBgAAXDGnM9gdbCTJMPyUmNg/3whOeSDcAACAK+ZwhLqDTR7D8JPDYS33Wgg3AADgilmtdplMLo82k8klq9VR7rUQbgAAwBWzWLIUG7vOHXDy5txYLFnlXgsTigEAQKmIikpVZOQ+ORxWWa0OrwQbiXADAACugNls9nhvsWQVGGou7leWCDcAAKDEQkNDZbPZuEMxAADwHeUZXIqCcAMAqBIq2vOPUHYINwAAn1cRn3+EssOl4AAAn1cRn3+EssPIDQCgSqkozz9C2WHkBgBQZVSk5x+h7BBuAABVRkV6/hHKDuEGAFBlVKTnH6HsEG4AAFVGRXr+EcoOE4oBAFVKRXn+EcoO4QYA4PMq4vOPUHYINwAAn1cRn3+EskO4AQBUCQSXqoMJxQAAwKdUiHCzaNEiRUREKCgoSF26dNE333xzyf7z5s1Tq1atVK1aNYWHh2v8+PE6c+ZMOVULAAAqshKFm8aNG2v48OFasmSJ9u/ff0UFrFy5UhMmTNDUqVOVkpKiDh06KCYmRsePHy+w//LlyzVx4kRNnTpVO3fu1JIlS7Ry5Uo988wzV1QHAADwDSbDMIzirvS3v/1NX3zxhZKSkrRv3z41bNhQPXv2VM+ePdWrVy+1aNGiyNvq0qWLbrjhBvfTWl0ul8LDwzV69GhNnDgxX3+bzaadO3dqy5Yt7rbHH39cX3/9tbZu3XrZz8vMzJTFYpHT6VRISEiR6wQAAN5TnN/fJRq5GTp0qP7yl79oz549OnLkiObMmSNJ+tOf/qTWrVsXeTs5OTlKTk5WdHT0/wry81N0dLS2b99e4DrdunVTcnKy+9TVgQMHtGHDBt1xxx0F9j979qwyMzM9XgAAwHeV+Gqp06dPa+vWrUpKStJnn32m1NRUtW/fXr169SryNk6cOKHc3FyFhYV5tIeFhWnXrl0FrjNkyBCdOHFCN998swzD0O+//65Ro0YVelpq1qxZmj59epFrAgAAlVuJRm66deum0NBQTZw4UWfOnNHEiRN19OhRpaam6tVXXy3tGj0kJSVp5syZeu2115SSkqK1a9dq/fr1mjFjRoH9J02aJKfT6X4dPny4TOsDAADeVaKRm127dqlGjRpq3bq1WrdurTZt2ujqq68u9nZq164tf39/ZWRkeLRnZGSoXr16Ba7z3HPPadiwYRo5cqQk6ZprrlF2drYefvhhTZ48WX5+nnktMDBQgYGBxa4NAABUTiUaubHb7frHP/6hG2+8UZs2bdJNN92khg0basiQIXrzzTeLvB2z2axOnTp5TA52uVzasmWLunbtWuA6p0+fzhdg/P39JUklmBsNAAB8TImulrqQYRhKTk5WfHy83n33XblcLuXm5hZ5/ZUrVyouLk6LFy9W586dNW/ePK1atUq7du1SWFiYhg8froYNG2rWrFmSpGnTpmnu3Ln6y1/+oi5dumjfvn169NFH1alTJ61cufKyn8fVUgAAVD7F+f1dotNSKSkpSkpKUlJSkrZu3aqsrCxdc801Gj16tHr27FmsbQ0aNEi//PKLpkyZomPHjum6667Txo0b3ZOMDx065DFS8+yzz8pkMunZZ5/VkSNHVKdOHcXGxurFF18sya4AAAAfU6KRm6uuukodO3Z039umR48eslgsZVFfqWPkBgCAyqfMR24cDgfBAAAqELvdzhOvgf8qUbjJCzbJycnauXOnJKlt27aKiooqvcoAAEVit9vdd3m/FJvNRsBBlVCicHP8+HENGjRIn3/+uWrVqiVJOnnypHr37q0VK1aoTp06pVkjUGz8FYuq5OLvutMZLIcjVFarXRZLVqH9AF9VonAzevRonTp1Sj/99JPatGkjSfr5558VFxenMWPG6L333ivVIoHi4K9YVGUpKR2VmNhfhuEnk8ml2Nh1iopK9XZZQLkqUbjZuHGjNm/e7A420vnTUosWLdJtt91WasUBJcFfsaiqnM5gd7CRJMPwU2Jif0VG7vP47gO+rkThxuVyKSAgIF97QECAXC7XFRcFlBb+ikVV4nCEuoNNHsPwk8NhJdygSinRHYpvueUWjR07Vv/5z3/cbUeOHNH48eN16623llpxwJUo7K9YpzPYy5UBZcNqtctk8vwD02RyyWp1eKkiwDtKFG7i4+OVmZmpiIgIRUZGKjIyUk2bNlVmZqYWLlxY2jUCJXKpv2IBX2SxZCk2dp074OSNVjJqg6qmRKelwsPDlZKSos2bN2vXrl2SpDZt2ig6OrpUiwOuRN5fsRcGHP6Kha+LikpVZOQ+ORxWWa0Ogg2qpBKFG0kymUzq06eP+vTpU5r1AKUm76/Yi+fc8MMevsZsNnu8t1iyCvyeX9wP8FVFDjcLFiwo8kbHjBlTomKA0sZfsagKQkNDZbPZuLcT8F9FDjevvvpqkfqZTCbCDbyKv2JRFRFcgP8p0YMzKzMenFk1cIdiAPAtZfbgTJfLJT+/El1gBZQrggsAVF3FSioBAQE6fvy4+/2TTz4ph4MrTwAAQMVRrHBz8RmsxYsX6+TJk6VZDwAAwBW5onNMVWy6DgAAqASYQAMAAHxKsW/iN2XKFFWvXl3S+acqv/jii7JYLB595s6dWzrVAYC4+g1A8RQr3PTo0UO7d+92v+/WrZsOHDjg0cdkMpVOZQCg88EmPj7+sv1sNhsBB4CkYoabpKSkMioDAAp28YiN0xkshyNUVqvd4+aMlxrZAVC1lPjZUkUREhKiHTt2qFmzZmX5MQCqiJSUjvmeFRYVlertsgBUMGU6oZirqQCUFqcz2B1sJMkw/JSY2F9OZ7CXKwNQ0XC1FIBKweEIdQebPIbhJ4fD6qWKAFRUhBsAlYLVapfJ5PJoM5lcslq5SzoAT4QbAJWCxZKl2Nh17oCTN+emoCe+A6jaynRCMZeFAyhNUVGpiozcJ4fDKqvVQbABUKAyDTdMKAZwpcxms8d7iyWrwFBzcT8AVVeZhpu///3vatiwYVl+BAAfFxoaKpvNxh2KARRZicKNYRhavXq1PvvsMx0/flwul+ckv7Vr10qSbr755iuvEECVR3ABUBwlCjfjxo3T4sWL1bt3b4WFhTG3BgAAVBglCjfvvPOO1q5dqzvuuKO06wEAALgiJboU3GKx8EgFAABQIZUo3EybNk3Tp0/Xb7/9Vtr1AAAAXJESnZYaOHCg3nvvPdWtW1cREREKCAjwWJ6SklIqxQEAABRXicJNXFyckpOTNXToUCYUAwCACqVE4Wb9+vXatGkTl3oDAIAKp0RzbsLDwxUSElLatQAAAFyxEoWbV155RU899ZTS09NLuRwAAIArU6LTUkOHDtXp06cVGRmp6tWr55tQ7HA4SqU4AACA4ipRuJk3b14pl1F52e12nnkDAEAFUuKrpXA+2MTHx1+2n81mI+AAAFBOrvip4GfOnMk3clFVJhtfvN9OZ7AcjlBZrXZZLFmF9gMAAGWnROEmOztbTz/9tFatWiW73Z5veW5u7hUXVtmkpHRUYmJ/GYafTCaXYmPXKSoq1dtlARUKp3EBlIcShZunnnpKn332mV5//XUNGzZMixYt0pEjR7R48WLNnj27tGus8JzOYHewkSTD8FNiYn9FRu7zGMEBqjJO4wIoLyUKN4mJiXr77bfVq1cvjRgxQt27d1fz5s3VpEkTvfvuu7r//vtLu84KzeEIdQebPIbhJ4fDSrgB/ovTuADKS4nCjcPhcD8VPCQkxH3p980336xHH3209KqrJKxWu0wml0fAMZlcslq5JB4oCKdxAZSlEt3Er1mzZkpLS5MktW7dWqtWrZJ0fkSnVq1apVZcZWGxZCk2dp1MJpckuX9YM2oD5FfYaVynM9jLlQHwFSUauRkxYoS+++479ezZUxMnTlRsbKzi4+N17tw5zZ07t7RrrBSiolIVGblPDodVVquDYAMUgtO4AMpaicLN+PHj3f+Ojo7Wrl27lJycrObNm+vaa68tteIqOrPZ7PHeYskq8Ifzxf2AqozTuADKWqnc56ZJkyZq0qRJadRTqYSGhspms3FpK1AMeadxL55zw6gNgNJSonCTm5urmTNn6o033lBGRob27NmjZs2a6bnnnlNERIQeeuih0q6zwiK4AMXHaVwAZalEE4pffPFFJSQk6M9//rPHKZf27dvrr3/9a6kVB8B3FHQat2nTg/mCDadxAVwpk2EYRnFXat68uRYvXqxbb71VwcHB+u6779SsWTPt2rVLXbt21a+//loWtZaKzMxMWSwWOZ3OKvOYCKCi4A7FAEqqOL+/S3Ra6siRI2revHm+dpfLpXPnzpVkkwCqAIILgPJQotNSbdu21ZdffpmvffXq1erYseMVFwUAAFBSJRq5mTJliuLi4nTkyBG5XC6tXbtWu3fv1ttvv61169aVdo0AAABFVqKRm7vuukuJiYnavHmzatSooSlTpmjnzp1KTExUnz59SrtGAACAIivRhOLKjAnFAABUPsX5/V3iZ0vZ7fZ87SdPnnQ/UBMAAMAbShRu0tPTlZubm6/97NmzOnLkyBUXBQAAUFLFmlD88ccfu/+9adMmWSwW9/vc3Fxt2bJFERERxS5i0aJFmjNnjo4dO6YOHTpo4cKF6ty5c6H9T548qcmTJ2vt2rVyOBxq0qSJ5s2bpzvuuKPYnw0AAHxLscLNgAEDJEkmk0lxcXEeywICAhQREaFXXnmlWAWsXLlSEyZM0BtvvKEuXbpo3rx5iomJ0e7du1W3bt18/XNyctSnTx/VrVtXq1evVsOGDXXw4EHVqlWrWJ8LAAB8U4kmFDdt2lTffvutateufcUFdOnSRTfccIPi4+Mlnb8RYHh4uEaPHq2JEyfm6//GG29ozpw52rVrlwICAor9eUwoBgCg8imzCcXbt2/XunXrlJaW5g42b7/9tpo2baq6devq4Ycf1tmzZ4u8vZycHCUnJys6Ovp/Bfn5KTo6Wtu3by9wnY8//lhdu3bVY489prCwMLVv314zZ84scA4QAACoeooVbqZPn66ffvrJ/f6HH37QQw89pOjoaE2cOFGJiYmaNWtWkbd34sQJ5ebmKiwszKM9LCxMx44dK3CdAwcOaPXq1crNzdWGDRv03HPP6ZVXXtELL7xQYP+zZ88qMzPT4wUAAHxXscLNd999p1tvvdX9fsWKFerSpYvefPNNTZgwQQsWLNCqVatKvcgLuVwu1a1bV3/5y1/UqVMnDRo0SJMnT9Ybb7xRYP9Zs2bJYrG4X+Hh4WVaHwAA8K5ihZtff/3VY5Tl888/1+233+5+f8MNN+jw4cNF3l7t2rXl7++vjIwMj/aMjAzVq1evwHXq16+vli1byt/f393Wpk0bHTt2rMCnDU+aNElOp9P9Kk59AACg8ilWuAkLC1NaWpqk8/NlUlJSdOONN7qXZ2VlFWuSr9lsVqdOnbRlyxZ3m8vl0pYtW9S1a9cC17npppu0b98+uVwud9uePXtUv359mc3mfP0DAwMVEhLi8QIAAL6rWOHmjjvu0MSJE/Xll19q0qRJql69urp37+5e/v333ysyMrJYBUyYMEFvvvmmli1bpp07d+rRRx9Vdna2RowYIUkaPny4Jk2a5O7/6KOPyuFwaOzYsdqzZ4/Wr1+vmTNn6rHHHivW5wIAAN9UrPvczJgxQ3fffbd69uypmjVratmyZR6jJW+99ZZuu+22YhUwaNAg/fLLL5oyZYqOHTum6667Ths3bnSf/jp06JD8/P6XwcLDw7Vp0yaNHz9e1157rRo2bKixY8fq6aefLtbnAgAA31Si+9w4nU7VrFnTY96LJDkcDtWsWbPA00MVBfe5AQCg8inO7+9ijdzkufCxCxeyWq0l2RwAAECpKdGDMwEAACoqwg0AAPAphBsAAOBTCDcAAMCnEG4AAIBPIdwAAACfQrgBAAA+hXADAAB8CuEGAAD4lBLdoRj/Y7fblZOTU+hys9ms0NDQcqwIAICqjXBzBex2u+Lj4y/bz2azEXAAACgnnJa6AheP2DidwUpLi5DTGXzJfgAAoOwwclNKUlI6KjGxvwzDTyaTS7Gx6xQVlertsgAAqHIYuSkFTmewO9hIkmH4KTGxf74RHAAAUPYIN6XA4Qh1B5s8huEnh8PqpYoAAKi6CDelwGq1y2RyebSZTC5ZrQ4vVQQAQNVFuCkFFkuWYmPXuQNO3pwbiyXLy5UBAFD1MKG4lERFpSoycp8cDqusVgfBBgAALyHcXAGz2ezx3mLJKjDUXNwPAACUHcLNFQgNDZXNZuMOxQAAVCCEmytEcAEAoGJhQjEAAPAphBsAAOBTCDcAAMCnEG4AAIBPIdwAAACfQrgBAAA+hXADAAB8Cve5AVBu7HY7N70EUOYINwDKhd1uV3x8/GX72Ww2Ag6AK8JpKQDl4uIRG6czWGlpEXI6gy/ZDwCKi5EbAOUuJaWjEhP7yzD8ZDK5FBu7TlFRqd4uC4CPYOQGQLlyOoPdwUaSDMNPiYn9843gAEBJEW4AlCuHI9QdbPIYhp8cDquXKgLgawg3AMqV1WqXyeTyaDOZXLJaHV6qCICvIdwAKFcWS5ZiY9e5A07enBuLJcvLlQHwFUwoBlDuoqJSFRm5Tw6HVVarg2ADoFQRbgCUC7PZ7PHeYskqMNRc3A8AiotwA6BchIaGymazcYdiAGWOcAOg3BBcAJQHJhQDAACfQrgBAAA+hXADAAB8CuEGAAD4FMINAADwKYQbAADgUwg3AADApxBuAACATyHcAAAAn0K4AQAAPoVwAwAAfArhBgAA+BTCDQAA8CmEGwAA4FMINwAAwKcQbgAAgE8h3AAAAJ9ylbcLAABUTna7XTk5OYUuN5vNCg0NLceKgPMINwCAYrPb7YqPj79sP5vNRsBBueO0FACg2C4esXE6g5WWFiGnM/iS/YDywMgNAOCKpKR0VGJifxmGn0wml2Jj1ykqKtXbZaEKqxAjN4sWLVJERISCgoLUpUsXffPNN0Vab8WKFTKZTBowYEDZFggAKJDTGewONpJkGH5KTOyfbwQHKE9eDzcrV67UhAkTNHXqVKWkpKhDhw6KiYnR8ePHL7leenq6nnjiCXXv3r2cKgUAXMzhCHUHmzyG4SeHw+qlioAKEG7mzp2rP/7xjxoxYoTatm2rN954Q9WrV9dbb71V6Dq5ubm6//77NX36dDVr1qwcqwUAXMhqtctkcnm0mUwuWa0OL1UEeDnc5OTkKDk5WdHR0e42Pz8/RUdHa/v27YWu9/zzz6tu3bp66KGHLvsZZ8+eVWZmpscLAFA6LJYsxcaucwecvDk3FkuWlytDVebVCcUnTpxQbm6uwsLCPNrDwsK0a9euAtfZunWrlixZoh07dhTpM2bNmqXp06dfaakAgEJERaUqMnKfHA6rrFYHwaYKqmj3PKpUV0tlZWVp2LBhevPNN1W7du0irTNp0iRNmDDB/T4zM1Ph4eFlVSJQbBXthwJQFGaz2eO9xZJVYKi5uB98T0W855FXw03t2rXl7++vjIwMj/aMjAzVq1cvX//9+/crPT1dsbGx7jaX6/xQ6FVXXaXdu3crMjLSY53AwEAFBgaWQfXAlauIPxSAoggNDZXNZiOYo8B7HjkcobJa7R6BtzzveeTVcGM2m9WpUydt2bLFfTm3y+XSli1bZLPZ8vVv3bq1fvjhB4+2Z599VllZWZo/fz4jMqh0KuIPBaCoCC64WEW555HXT0tNmDBBcXFxuv7669W5c2fNmzdP2dnZGjFihCRp+PDhatiwoWbNmqWgoCC1b9/eY/1atWpJUr52oLKpKD8UUDlxehPeVtg9jyIj95X7PCyvh5tBgwbpl19+0ZQpU3Ts2DFdd9112rhxo3uS8aFDh+Tn5/Ur1oEyVZF+KKDy4fQmKoJL3fOoyoUb6fz/4Qo6DSVJSUlJl1w3ISGh9AsCyllF+qGAyofTm6gI8u55dOHPMm/d86hChBugqqtIPxRQuXF6E96Sd8+ji79/3vgDjXADVAAV6YcCKi9Ob8LbKso9jwg3QAVRUX4ooPLi9Ca8oSLe84hwA3hRRfyhgMqL05vwhop4zyPCDeBFFfGHAiovTm/CWyrazyjCDeBlFe2HAio3Tm8ChBsAqPQ4vQl4ItwAQCXH6U3AE+EGAHwAwQX4H55rAAAAfArhBgAA+BTCDQAA8CmEGwAA4FOYUAwAFYTdbueKJ6AUEG4AoAKw2+2Kj4+/bD+bzUbAAS6D01IAUAFcPGLjdAYrLS1CTmfwJfsByI+RGwCoYFJSOuZ7PlRUVKq3ywIqDUZuAKACcTqD3cFGkgzDT4mJ/fON4AAoHOEGACoQhyPUHWzyGIafHA6rlyoCKh/CDQBUIFarXSaTy6PNZHLJanV4qSKg8iHcAEAFYrFkKTZ2nTvg5M25Kegp3wAKxoRiAKhgoqJSFRm5Tw6HVVarg2ADFBPhBgAqALPZ7PHeYskqMNRc3A9AfoQbAKgAQkNDZbPZuEMxUAoINwBQQRBcgNLBhGIAAOBTCDcAAMCnEG4AAIBPIdwAAACfQrgBAAA+hXADAAB8CuEGAAD4FMINAADwKYQbAADgUwg3AADApxBuAACATyHcAAAAn0K4AQAAPoVwAwAAfArhBgAA+BTCDQAA8CmEGwAA4FMINwAAwKcQbgAAgE8h3AAAAJ9CuAEAAD6FcAMAAHzKVd4uAJWD3W5XTk5OocvNZrNCQ0PLsSIAAApGuMFl2e12xcfHX7afzWYj4AAAvI7TUrisi0dsnM5gpaVFyOkMvmQ/AAC8gZEbFEtKSkclJvaXYfjJZHIpNnadoqJSvV0WAABujNygyJzOYHewkSTD8FNiYv98IzgAAHgT4QZF5nCEuoNNHsPwk8Nh9VJFAADkR7hBkVmtdplMLo82k8klq9XhpYoAAMiPcIMis1iyFBu7zh1w8ubcWCxZXq4MAID/YUIxiiUqKlWRkfvkcFhltToINgCACodwg8sym80e7y2WrAJDzcX9AADwBsINLis0NFQ2m407FAMAKgXCDYqE4AIAqCyYUAwAAHwK4QYAAPgUwg0AAPApFSLcLFq0SBEREQoKClKXLl30zTffFNr3zTffVPfu3XX11Vfr6quvVnR09CX7AwCAqsXr4WblypWaMGGCpk6dqpSUFHXo0EExMTE6fvx4gf2TkpJ033336bPPPtP27dsVHh6u2267TUeOHCnnygEAQEVkMgzD8GYBXbp00Q033KD4+HhJksvlUnh4uEaPHq2JEydedv3c3FxdffXVio+P1/Dhwy/bPzMzUxaLRU6nUyEhIVdcPwAAKHvF+f3t1ZGbnJwcJScnKzo62t3m5+en6Ohobd++vUjbOH36tM6dOyerteCHN549e1aZmZkeLwAA4Lu8Gm5OnDih3NxchYWFebSHhYXp2LFjRdrG008/rQYNGngEpAvNmjVLFovF/QoPD7/iugEAQMXl9Tk3V2L27NlasWKFPvjgAwUFBRXYZ9KkSXI6ne7X4cOHy7lKAABQnrx6h+LatWvL399fGRkZHu0ZGRmqV6/eJdd9+eWXNXv2bG3evFnXXnttof0CAwMVGBjofp83xYjTUwAAVB55v7eLNFXY8LLOnTsbNpvN/T43N9do2LChMWvWrELXeemll4yQkBBj+/btxf68w4cPG5J48eLFixcvXpXwdfjw4cv+rvf6s6UmTJiguLg4XX/99ercubPmzZun7OxsjRgxQpI0fPhwNWzYULNmzZIkvfTSS5oyZYqWL1+uiIgI99ycmjVrqmbNmpf9vAYNGujw4cMKDg6WyWS6otozMzMVHh6uw4cPc+XVf3FMCsZxyY9jkh/HJD+OSX5V9ZgYhqGsrCw1aNDgsn29Hm4GDRqkX375RVOmTNGxY8d03XXXaePGje5JxocOHZKf3/+mBr3++uvKycnRvffe67GdqVOnatq0aZf9PD8/PzVq1KhU9yEkJKRKfcGKgmNSMI5LfhyT/Dgm+XFM8quKx8RisRSpn9fDjSTZbDbZbLYClyUlJXm8T09PL/uCAABApVWpr5YCAAC4GOHmCgQGBmrq1KkeV2NVdRyTgnFc8uOY5McxyY9jkh/H5PK8/vgFAACA0sTIDQAA8CmEGwAA4FMINwAAwKcQbgAAgE8h3Fxk0aJFioiIUFBQkLp06aJvvvnmkv3nzZunVq1aqVq1agoPD9f48eN15swZ9/Jp06bJZDJ5vFq3bl3Wu1GqinNMzp07p+eff16RkZEKCgpShw4dtHHjxivaZkVU2seksn9PvvjiC8XGxqpBgwYymUz68MMPL7tOUlKSoqKiFBgYqObNmyshISFfn8r8PSmLY1LVvidHjx7VkCFD1LJlS/n5+WncuHEF9nv//ffVunVrBQUF6ZprrtGGDRtKv/gyUhbHJCEhId/3pLCHS/sqws0FVq5cqQkTJmjq1KlKSUlRhw4dFBMTo+PHjxfYf/ny5Zo4caKmTp2qnTt3asmSJVq5cqWeeeYZj37t2rXT0aNH3a+tW7eWx+6UiuIek2effVaLFy/WwoUL9fPPP2vUqFH6v//7P6WmppZ4mxVNWRwTqXJ/T7Kzs9WhQwctWrSoSP3T0tLUr18/9e7dWzt27NC4ceM0cuRIbdq0yd2nsn9PyuKYSFXre3L27FnVqVNHzz77rDp06FBgn6+++kr33XefHnroIaWmpmrAgAEaMGCAfvzxx9IsvcyUxTGRzt+9+MLvycGDB0ur5Mqh2E+e9GGdO3c2HnvsMff73Nxco0GDBoU+xPOxxx4zbrnlFo+2CRMmGDfddJP7/dSpU40OHTqUSb3lobjHpH79+kZ8fLxH2913323cf//9Jd5mRVMWx6Syf08uJMn44IMPLtnnqaeeMtq1a+fRNmjQICMmJsb9vrJ/Ty5UWsekqn1PLtSzZ09j7Nix+doHDhxo9OvXz6OtS5cuxiOPPHKFFZa/0jomS5cuNSwWS6nVVRkxcvNfOTk5Sk5OVnR0tLvNz89P0dHR2r59e4HrdOvWTcnJye6h8gMHDmjDhg264447PPrt3btXDRo0ULNmzXT//ffr0KFDZbcjpagkx+Ts2bP5hj+rVavm/uuyJNusSMrimOSprN+Tkti+fbvHMZSkmJgY9zGs7N+TkrjcMclTlb4nRVHU41bVnDp1Sk2aNFF4eLjuuusu/fTTT94uqVwRbv7rxIkTys3NdT+wM09YWJj7yeMXGzJkiJ5//nndfPPNCggIUGRkpHr16uVxWqpLly5KSEjQxo0b9frrrystLU3du3dXVlZWme5PaSjJMYmJidHcuXO1d+9euVwuffrpp1q7dq2OHj1a4m1WJGVxTKTK/T0piWPHjhV4DDMzM/Xbb79V+u9JSVzumEhV73tSFIUdN1/9nhRFq1at9NZbb+mjjz7S3/72N7lcLnXr1k3//ve/vV1auSHcXIGkpCTNnDlTr732mlJSUrR27VqtX79eM2bMcPe5/fbb9Yc//EHXXnutYmJitGHDBp08eVKrVq3yYuVlZ/78+WrRooVat24ts9ksm82mESNGeDzZvaopyjGpat8TlAzfExRF165dNXz4cF133XXq2bOn1q5dqzp16mjx4sXeLq3cVN3fOBepXbu2/P39lZGR4dGekZGhevXqFbjOc889p2HDhmnkyJG65ppr9H//93+aOXOmZs2aJZfLVeA6tWrVUsuWLbVv375S34fSVpJjUqdOHX344YfKzs7WwYMHtWvXLtWsWVPNmjUr8TYrkrI4JgWpTN+TkqhXr16BxzAkJETVqlWr9N+TkrjcMSmIr39PiqKw4+ar35OSCAgIUMeOHavU94Rw819ms1mdOnXSli1b3G0ul0tbtmxR165dC1zn9OnT+UYk/P39JUlGIY/sOnXqlPbv36/69euXUuVlpyTHJE9QUJAaNmyo33//XWvWrNFdd911xdusCMrimBSkMn1PSqJr164ex1CSPv30U/cxrOzfk5K43DEpiK9/T4qiJMetqsnNzdUPP/xQtb4n3p7RXJGsWLHCCAwMNBISEoyff/7ZePjhh41atWoZx44dMwzDMIYNG2ZMnDjR3X/q1KlGcHCw8d577xkHDhwwPvnkEyMyMtIYOHCgu8/jjz9uJCUlGWlpaca2bduM6Ohoo3bt2sbx48fLff9KorjH5J///KexZs0aY//+/cYXX3xh3HLLLUbTpk2NX3/9tcjbrOjK4phU9u9JVlaWkZqaaqSmphqSjLlz5xqpqanGwYMHDcMwjIkTJxrDhg1z9z9w4IBRvXp148knnzR27txpLFq0yPD39zc2btzo7lPZvydlcUyq2vfEMAx3/06dOhlDhgwxUlNTjZ9++sm9fNu2bcZVV11lvPzyy8bOnTuNqVOnGgEBAcYPP/xQrvtWUmVxTKZPn25s2rTJ2L9/v5GcnGwMHjzYCAoK8ujj6wg3F1m4cKHRuHFjw2w2G507dzb++c9/upf17NnTiIuLc78/d+6cMW3aNCMyMtIICgoywsPDjT/96U8ev7QGDRpk1K9f3zCbzUbDhg2NQYMGGfv27SvHPbpyxTkmSUlJRps2bYzAwEAjNDTUGDZsmHHkyJFibbMyKO1jUtm/J5999pkhKd8r7zjExcUZPXv2zLfOddddZ5jNZqNZs2bG0qVL8223Mn9PyuKYVMXvSUH9mzRp4tFn1apVRsuWLQ2z2Wy0a9fOWL9+ffnsUCkoi2Mybtw49/9vwsLCjDvuuMNISUkpv52qAEyGUcj5EwAAgEqIOTcAAMCnEG4AAIBPIdwAAACfQrgBAAA+hXADAAB8CuEGAAD4FMINAADwKYQbAKgAkpKSZDKZdPLkSW+XAlR6hBuginnggQdkMpk0e/Zsj/YPP/xQJpPJ/d4wDL355pvq2rWrQkJCVLNmTbVr105jx44t8gP4Tp8+rUmTJikyMlJBQUGqU6eOevbsqY8++sjdJyIiQvPmzSuVfStrecfOZDIpICBATZs21VNPPaUzZ84Uazu9evXSuHHjPNq6deumo0ePymKxlGLFQNVEuAGqoKCgIL300kv69ddfC1xuGIaGDBmiMWPG6I477tAnn3yin3/+WUuWLFFQUJBeeOGFIn3OqFGjtHbtWi1cuFC7du3Sxo0bde+998put5fm7pSrvn376ujRozpw4IBeffVVLV68WFOnTr3i7ZrNZtWrV88jYAIoIe8+/QFAeYuLizP69+9vtG7d2njyySfd7R988IGR9yPhvffeMyQZH330UYHbcLlcRfosi8ViJCQkFLq8Z8+e+Z6Rk+fLL780br75ZiMoKMho1KiRMXr0aOPUqVPu5W+//bbRqVMno2bNmkZYWJhx3333GRkZGe7lec/s2bhxo3HdddcZQUFBRu/evY2MjAxjw4YNRuvWrY3g4GDjvvvuM7Kzs4u0P3FxccZdd93l0Xb33XcbHTt2dL8/ceKEMXjwYKNBgwZGtWrVjPbt2xvLly/32MbF+5yWluau98Jn061evdpo27atYTabjSZNmhgvv/xykeoEqjpGboAqyN/fXzNnztTChQv173//O9/y9957T61atdKdd95Z4PpFHV2oV6+eNmzYoKysrAKXr127Vo0aNdLzzz+vo0eP6ujRo5Kk/fv3q2/fvrrnnnv0/fffa+XKldq6datsNpt73XPnzmnGjBn67rvv9OGHHyo9PV0PPPBAvs+YNm2a4uPj9dVXX+nw4cMaOHCg5s2bp+XLl2v9+vX65JNPtHDhwiLtz8V+/PFHffXVVzKbze62M2fOqFOnTlq/fr1+/PFHPfzwwxo2bJi++eYbSdL8+fPVtWtX/fGPf3Tvc3h4eL5tJycna+DAgRo8eLB++OEHTZs2Tc8995wSEhJKVCtQpXg7XQEoXxeOPtx4443Ggw8+aBiG58hN69atjTvvvNNjvbFjxxo1atQwatSoYTRs2LBIn/X5558bjRo1MgICAozrr7/eGDdunLF161aPPk2aNDFeffVVj7aHHnrIePjhhz3avvzyS8PPz8/47bffCvysb7/91pBkZGVlGYbxv5GbzZs3u/vMmjXLkGTs37/f3fbII48YMTExRdqfuLg4w9/f36hRo4YRGBhoSDL8/PyM1atXX3K9fv36GY8//rj7fc+ePY2xY8d69Ll45GbIkCFGnz59PPo8+eSTRtu2bYtUK1CVMXIDVGEvvfSSli1bpp07d1627+TJk7Vjxw5NmTJFp06dKtL2e/TooQMHDmjLli2699579dNPP6l79+6aMWPGJdf77rvvlJCQoJo1a7pfMTExcrlcSktLk3R+ZCM2NlaNGzdWcHCwevbsKUk6dOiQx7auvfZa97/DwsJUvXp1NWvWzKPt+PHjRdofSerdu7d27Nihr7/+WnFxcRoxYoTuuece9/Lc3FzNmDFD11xzjaxWq2rWrKlNmzblq+tydu7cqZtuusmj7aabbtLevXuVm5tbrG0BVQ3hBqjCevTooZiYGE2aNMmjvUWLFtq9e7dHW506ddS8eXPVrVu3WJ8REBCg7t276+mnn9Ynn3yi559/XjNmzFBOTk6h65w6dUqPPPKIduzY4X5999132rt3ryIjI5Wdna2YmBiFhITo3Xff1bfffqsPPvhAkvJtNyAgwP3vvKucLmQymeRyuYq8PzVq1FDz5s3VoUMHvfXWW/r666+1ZMkS9/I5c+Zo/vz5evrpp/XZZ59px44diomJueT+AihdV3m7AADeNXv2bF133XVq1aqVu+2+++7TkCFD9NFHH+muu+4q1c9r27atfv/9d505c0Zms1lmsznfSERUVJR+/vlnNW/evMBt/PDDD7Lb7Zo9e7Z7vsq//vWvUq2zKPz8/PTMM89owoQJGjJkiKpVq6Zt27bprrvu0tChQyVJLpdLe/bsUdu2bd3rFbTPF2vTpo22bdvm0bZt2za1bNlS/v7+pb8zgA9h5Aao4q655hrdf//9WrBggbtt8ODBuvfeezV48GA9//zz+vrrr5Wenq7PP/9cK1euLPIv1169emnx4sVKTk5Wenq6NmzYoGeeeUa9e/dWSEiIpPP3ufniiy905MgRnThxQpL09NNP66uvvpLNZtOOHTu0d+9effTRR+4JxY0bN5bZbNbChQt14MABffzxx5c91VVW/vCHP8jf31+LFi2SdH7U69NPP9VXX32lnTt36pFHHlFGRobHOhEREe5jeuLEiQJHjh5//HFt2bJFM2bM0J49e7Rs2TLFx8friSeeKJf9Aiozwg0APf/88x6/YE0mk1auXKl58+Zpw4YNuvXWW9WqVSs9+OCDCg8P19atW4u03ZiYGC1btky33Xab2rRpo9GjRysmJkarVq3y+Oz09HRFRkaqTp06ks7Pk/n888+1Z88ede/eXR07dtSUKVPUoEEDSedPkSUkJOj9999X27ZtNXv2bL388suleESK7qqrrpLNZtOf//xnZWdn69lnn1VUVJRiYmLUq1cv1atXTwMGDPBY54knnpC/v7/atm2rOnXqFDgfJyoqSqtWrdKKFSvUvn17TZkyRc8//3yBV4QB8GQyDMPwdhEAAAClhZEbAADgUwg3AErswku1L359+eWX3i6vWA4dOnTJ/SnupdwAvIfTUgBK7FIP0GzYsKGqVatWjtVcmd9//13p6emFLo+IiNBVV3GBKVAZEG4AAIBP4bQUAADwKYQbAADgUwg3AADApxBuAACATyHcAAAAn0K4AQAAPoVwAwAAfArhBgAA+JT/B2pvZ2uM3be4AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_1.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZ3klEQVR4nO3de1hU1f4G8HdABhBhdFBuiqDgDe/gJbTUlERD0vL8UkvDW6ZBqVQaaV7S1DSv4eVkhlaaZmon0TTF21EpDSQVFcNQK0VtRgZEBWTW7w8PO0dAZ4a5Ae/neeaRvfeaPd+9jsl71l57jUwIIUBEREREj2Rn7QKIiIiIKgOGJiIiIiI9MDQRERER6YGhiYiIiEgPDE1EREREemBoIiIiItIDQxMRERGRHhiaiIiIiPTA0ERERESkB4YmIqIqZu3atZDJZLh48aK1SyGqUhiaiMhgx48fR0xMDFq2bAkXFxc0bNgQL774Is6fP1+qbY8ePSCTySCTyWBnZwc3Nzc0a9YMw4YNw549ewz63O3bt6N79+7w8PBAzZo10bhxY7z44ovYtWuXqS6tlDlz5uC7774rtf/o0aOYMWMGcnJyzPbZD5sxY4bUlzKZDDVr1kRQUBCmTp2K3Nxck3zGhg0bsGTJEpOci6iqYWgiIoN99NFH2LJlC3r16oWlS5dizJgxOHToEIKDg3H69OlS7Rs0aIAvv/wSX3zxBRYsWIDnnnsOR48eRe/evTFo0CAUFRU99jM//vhjPPfcc5DJZIiLi8PixYsxcOBA/Pbbb9i4caM5LhPAo0PTzJkzLRqaSqxcuRJffvklFi1ahObNm+PDDz9Enz59YIqvEmVoIipfDWsXQESVT2xsLDZs2AC5XC7tGzRoEFq3bo158+bhq6++0mmvUCgwdOhQnX3z5s3Dm2++iRUrVsDf3x8fffRRuZ937949zJo1C8888wx+/PHHUsevX79ewSuyHbdv30bNmjUf2eZf//oX6tatCwAYO3YsBg4ciK1bt+Knn35CaGioJcokqpY40kREBuvSpYtOYAKAJk2aoGXLljh79qxe57C3t8eyZcsQFBSE+Ph4aDSactv+/fffyM3NRdeuXcs87uHhobN99+5dzJgxA02bNoWTkxO8vb3xwgsv4MKFC1Kbjz/+GF26dIG7uzucnZ0REhKCb7/9Vuc8MpkM+fn5WLdunXRLbPjw4ZgxYwbeeecdAECjRo2kYw/OIfrqq68QEhICZ2dnKJVKDB48GH/88YfO+Xv06IFWrVohJSUF3bp1Q82aNfHee+/p1X8P6tmzJwAgKyvrke1WrFiBli1bwtHRET4+PoiOjtYZKevRowd27NiBS5cuSdfk7+9vcD1EVRVHmojIJIQQuHbtGlq2bKn3e+zt7TFkyBC8//77OHz4MCIiIsps5+HhAWdnZ2zfvh1vvPEGlEpluecsLi5Gv379kJSUhMGDB2P8+PHIy8vDnj17cPr0aQQEBAAAli5diueeew4vv/wyCgsLsXHjRvzf//0fEhMTpTq+/PJLjB49Gp06dcKYMWMAAAEBAXBxccH58+fx9ddfY/HixdKoT7169QAAH374Id5//328+OKLGD16NG7cuIFPPvkE3bp1w4kTJ1C7dm2pXpVKhb59+2Lw4MEYOnQoPD099e6/EiVh0N3dvdw2M2bMwMyZMxEWFoZx48YhIyMDK1euxPHjx3HkyBE4ODhgypQp0Gg0+PPPP7F48WIAQK1atQyuh6jKEkREJvDll18KAGLNmjU6+7t37y5atmxZ7vu2bdsmAIilS5c+8vzTpk0TAISLi4vo27ev+PDDD0VKSkqpdp9//rkAIBYtWlTqmFarlX6+ffu2zrHCwkLRqlUr0bNnT539Li4uIioqqtS5FixYIACIrKwsnf0XL14U9vb24sMPP9TZf+rUKVGjRg2d/d27dxcAxKpVq8q97gdNnz5dABAZGRnixo0bIisrS/z73/8Wjo6OwtPTU+Tn5wshhEhISNCp7fr160Iul4vevXuL4uJi6Xzx8fECgPj888+lfREREcLPz0+veoiqG96eI6IKO3fuHKKjoxEaGoqoqCiD3lsykpGXl/fIdjNnzsSGDRvQvn177N69G1OmTEFISAiCg4N1bglu2bIFdevWxRtvvFHqHDKZTPrZ2dlZ+vnmzZvQaDR46qmnkJqaalD9D9u6dSu0Wi1efPFF/P3339LLy8sLTZo0wf79+3XaOzo6YsSIEQZ9RrNmzVCvXj00atQIr732GgIDA7Fjx45y50Lt3bsXhYWFmDBhAuzs/vln/9VXX4Wbmxt27Nhh+IUSVUO8PUdEFZKdnY2IiAgoFAp8++23sLe3N+j9t27dAgC4uro+tu2QIUMwZMgQ5Obm4ueff8batWuxYcMGREZG4vTp03BycsKFCxfQrFkz1Kjx6H/eEhMTMXv2bKSlpaGgoEDa/2CwMsZvv/0GIQSaNGlS5nEHBwed7fr165eaH/Y4W7ZsgZubGxwcHNCgQQPplmN5Ll26BOB+2HqQXC5H48aNpeNE9GgMTURkNI1Gg759+yInJwf//e9/4ePjY/A5SpYoCAwM1Ps9bm5ueOaZZ/DMM8/AwcEB69atw88//4zu3bvr9f7//ve/eO6559CtWzesWLEC3t7ecHBwQEJCAjZs2GDwNTxIq9VCJpPhhx9+KDNAPjxH6MERL31169ZNmkdFRJbD0ERERrl79y4iIyNx/vx57N27F0FBQQafo7i4GBs2bEDNmjXx5JNPGlVHhw4dsG7dOly9ehXA/YnaP//8M4qKikqN6pTYsmULnJycsHv3bjg6Okr7ExISSrUtb+SpvP0BAQEQQqBRo0Zo2rSpoZdjFn5+fgCAjIwMNG7cWNpfWFiIrKwshIWFSfsqOtJGVJVxThMRGay4uBiDBg1CcnIyNm/ebNTaQMXFxXjzzTdx9uxZvPnmm3Bzcyu37e3bt5GcnFzmsR9++AHAP7eeBg4ciL///hvx8fGl2or/Lf5ob28PmUyG4uJi6djFixfLXMTSxcWlzAUsXVxcAKDUsRdeeAH29vaYOXNmqcUmhRBQqVRlX6QZhYWFQS6XY9myZTo1rVmzBhqNRuepRRcXl0cu/0BUnXGkiYgM9tZbb+H7779HZGQk1Gp1qcUsH17IUqPRSG1u376NzMxMbN26FRcuXMDgwYMxa9asR37e7du30aVLFzzxxBPo06cPfH19kZOTg++++w7//e9/MWDAALRv3x4A8Morr+CLL75AbGwsjh07hqeeegr5+fnYu3cvXn/9dfTv3x8RERFYtGgR+vTpg5deegnXr1/H8uXLERgYiJMnT+p8dkhICPbu3YtFixbBx8cHjRo1QufOnRESEgIAmDJlCgYPHgwHBwdERkYiICAAs2fPRlxcHC5evIgBAwbA1dUVWVlZ2LZtG8aMGYO33367Qv1vqHr16iEuLg4zZ85Enz598NxzzyEjIwMrVqxAx44ddf73CgkJwaZNmxAbG4uOHTuiVq1aiIyMtGi9RDbLmo/uEVHlVPKofHmvR7WtVauWaNKkiRg6dKj48ccf9fq8oqIisXr1ajFgwADh5+cnHB0dRc2aNUX79u3FggULREFBgU7727dviylTpohGjRoJBwcH4eXlJf71r3+JCxcuSG3WrFkjmjRpIhwdHUXz5s1FQkKC9Ej/g86dOye6desmnJ2dBQCd5QdmzZol6tevL+zs7EotP7Blyxbx5JNPChcXF+Hi4iKaN28uoqOjRUZGhk7fPGo5hoeV1Hfjxo1Htnt4yYES8fHxonnz5sLBwUF4enqKcePGiZs3b+q0uXXrlnjppZdE7dq1BQAuP0D0AJkQJviyIiIiIqIqjnOaiIiIiPTA0ERERESkB4YmIiIiIj0wNBERERHpgaGJiIiISA8MTURERER64OKWJqLVanHlyhW4urryawiIiIgqCSEE8vLy4OPjAzu7R48lMTSZyJUrV+Dr62vtMoiIiMgIf/zxBxo0aPDINgxNJuLq6grgfqc/6ju0iIiIyHbk5ubC19dX+j3+KAxNJlJyS87NzY2hiYiIqJLRZ2oNJ4ITERER6YGhiYiIiEgPDE1EREREeuCcJiIiIivSarUoLCy0dhlVmlwuf+xyAvpgaCIiIrKSwsJCZGVlQavVWruUKs3Ozg6NGjWCXC6v0HkYmoiIiKxACIGrV6/C3t4evr6+JhkJodJKFp++evUqGjZsWKEFqBmaiIiIrODevXu4ffs2fHx8ULNmTWuXU6XVq1cPV65cwb179+Dg4GD0eRhriYiIrKC4uBgAKnzLiB6vpI9L+txYDE1ERERWxO8rNT9T9TFvz9kolUr1yKcp5HI53N3dLVgRERFR9cbQZINUKhXi4+Mf2y4mJobBiYiIyEJ4e84GPTzCpNG4IivLHxqN6yPbERERmdvw4cMhk8kgk8ng4OAAT09PPPPMM/j8888NWjph7dq1qF27tvkKNQOONNm41NT22L69H4Swg0ymRWRkIoKDT1i7LCIisjJrTuPo06cPEhISUFxcjGvXrmHXrl0YP348vv32W3z//feoUaNqxouqeVVVhEbjKgUmABDCDtu390NAQCYUijwrV0dERNZi7Wkcjo6O8PLyAgDUr18fwcHBeOKJJ9CrVy+sXbsWo0ePxqJFi5CQkIDff/8dSqUSkZGRmD9/PmrVqoUDBw5gxIgRAP6ZpD19+nTMmDEDX375JZYuXYqMjAy4uLigZ8+eWLJkCTw8PEx+HYbi7Tkbpla7S4GphBB2UKuVVqqIiIhsgb7TMyw5jaNnz55o27Yttm7dCuD+KtzLli1Deno61q1bh3379mHSpEkAgC5dumDJkiVwc3PD1atXcfXqVbz99tsAgKKiIsyaNQu//vorvvvuO1y8eBHDhw+32HU8CkeabJhSqYJMptUJTjKZFkql2opVERERla158+Y4efIkAGDChAnSfn9/f8yePRtjx47FihUrIJfLoVAoIJPJpBGrEiNHjpR+bty4MZYtW4aOHTvi1q1bqFWrlkWuozwcabJhCkUeIiMTIZPdn1hXMqeJt+aIiMgWCSGk22179+5Fr169UL9+fbi6umLYsGFQqVS4ffv2I8+RkpKCyMhINGzYEK6urujevTsA4PLly2av/3E40mTjgoNPICAgE2q1EkqlmoGJiIhs1tmzZ9GoUSNcvHgR/fr1w7hx4/Dhhx9CqVTi8OHDGDVqFAoLC8v92pj8/HyEh4cjPDwc69evR7169XD58mWEh4fbxBPjDE026OEl9RWKvDLDEpfeJyIiW7Fv3z6cOnUKEydOREpKCrRaLRYuXCh9EfE333yj014ul5f6WpNz585BpVJh3rx58PX1BQD88ssvlrkAPTA02SB3d3fExMRwRXAiIrJJBQUFyM7O1llyYO7cuejXrx9eeeUVnD59GkVFRfjkk08QGRmJI0eOYNWqVTrn8Pf3x61bt5CUlIS2bduiZs2aaNiwIeRyOT755BOMHTsWp0+fxqxZs6x0laVxTpONcnd3h7e3d7kvBiYiIrKWXbt2wdvbG/7+/ujTpw/279+PZcuW4T//+Q/s7e3Rtm1bLFq0CB999BFatWqF9evXY+7cuTrn6NKlC8aOHYtBgwahXr16mD9/PurVq4e1a9di8+bNCAoKwrx58/Dxxx9b6SpLkwkhhLWLqApyc3OhUCig0Wjg5uZm7XKIiMjG3b17F1lZWWjUqBGcnJwMeq+112mqbB7V14b8/ubtOSIiokqG0zisg6GJiIioEmIgsjzOaSIiIiLSA0MTERERkR4YmoiIiIj0wNBEREREpAeGJiIiIiI9MDQRERER6YGhiYiIiEgPDE1ERERkMw4cOACZTIacnBy93+Pv748lS5aYraYSDE1ERESkt+HDh0Mmk2Hs2LGljkVHR0Mmk2H48OGWL8wCGJqIiIjIIL6+vti4cSPu3Lkj7bt79y42bNiAhg0bWrEy82JoIiIiIoMEBwfD19cXW7dulfZt3boVDRs2RPv27aV9BQUFePPNN+Hh4QEnJyc8+eSTOH78uM65du7ciaZNm8LZ2RlPP/00Ll68WOrzDh8+jKeeegrOzs7w9fXFm2++ifz8fLNdX3kYmoiIiCq5P/8E9u+//6eljBw5EgkJCdL2559/jhEjRui0mTRpErZs2YJ169YhNTUVgYGBCA8Ph1qtBgD88ccfeOGFFxAZGYm0tDSMHj0a7777rs45Lly4gD59+mDgwIE4efIkNm3ahMOHDyMmJsb8F/kQhiYiIqJKbM0awM8P6Nnz/p9r1ljmc4cOHYrDhw/j0qVLuHTpEo4cOYKhQ4dKx/Pz87Fy5UosWLAAffv2RVBQEFavXg1nZ2es+V+RK1euREBAABYuXIhmzZrh5ZdfLjUfau7cuXj55ZcxYcIENGnSBF26dMGyZcvwxRdf4O7du5a52P+pYdFPIyIiIpP5809gzBhAq72/rdUCr70GhIcDDRqY97Pr1auHiIgIrF27FkIIREREoG7dutLxCxcuoKioCF27dpX2OTg4oFOnTjh79iwA4OzZs+jcubPOeUNDQ3W2f/31V5w8eRLr16+X9gkhoNVqkZWVhRYtWpjj8spk1ZGmlStXok2bNnBzc4ObmxtCQ0Pxww8/SMd79OgBmUym83p4tv7ly5cRERGBmjVrwsPDA++88w7u3bun0+bAgQMIDg6Go6MjAgMDsXbt2lK1LF++HP7+/nByckLnzp1x7Ngxs1wzERGRqfz22z+BqURxMZCZaZnPHzlyJNauXYt169Zh5MiRZvmMW7du4bXXXkNaWpr0+vXXX/Hbb78hICDALJ9ZHquGpgYNGmDevHlISUnBL7/8gp49e6J///5IT0+X2rz66qu4evWq9Jo/f750rLi4GBERESgsLMTRo0exbt06rF27FtOmTZPaZGVlISIiAk8//TTS0tIwYcIEjB49Grt375babNq0CbGxsZg+fTpSU1PRtm1bhIeH4/r165bpCCIiIiM0aQLYPfSb3N4eCAy0zOf36dMHhYWFKCoqQnh4uM6xgIAAyOVyHDlyRNpXVFSE48ePIygoCADQokWLUoMUP/30k852cHAwzpw5g8DAwFIvuVxupisrh7AxderUEZ999pkQQoju3buL8ePHl9t2586dws7OTmRnZ0v7Vq5cKdzc3ERBQYEQQohJkyaJli1b6rxv0KBBIjw8XNru1KmTiI6OlraLi4uFj4+PmDt3rt51azQaAUBoNBq930NERNXXnTt3xJkzZ8SdO3cqdJ7PPhPC3l4I4P6f//sVajZRUVGif//+0rZGo9H53de/f38RFRUlhBBi/PjxwsfHR/zwww8iPT1dREVFiTp16gi1Wi2EEOLSpUtCLpeLt99+W5w7d06sX79eeHl5CQDi5s2bQgghfv31V+Hs7Cyio6PFiRMnxPnz58V3332n83vbz89PLF68uNyaH9XXhvz+tpmJ4MXFxdi4cSPy8/N17meuX78edevWRatWrRAXF4fbt29Lx5KTk9G6dWt4enpK+8LDw5GbmyuNViUnJyMsLEzns8LDw5GcnAwAKCwsREpKik4bOzs7hIWFSW3KUlBQgNzcXJ0XERGRpY0aBVy8eP/puYsX729bUskUm7LMmzcPAwcOxLBhwxAcHIzMzEzs3r0bderUAQA0bNgQW7ZswXfffYe2bdti1apVmDNnjs452rRpg4MHD+L8+fN46qmn0L59e0ybNg0+Pj5mv7aHWX0i+KlTpxAaGoq7d++iVq1a2LZtmzRs99JLL8HPzw8+Pj44efIkJk+ejIyMDGldiOzsbJ3ABEDazs7OfmSb3Nxc3LlzBzdv3kRxcXGZbc6dO1du3XPnzsXMmTMrdvFEREQm0KCB+Sd+lyhrXvCDvvvuO+lnJycnLFu2DMuWLSu3fb9+/dCvXz+dfQ8vXdCxY0f8+OOP5Z6jrLWdzMHqoalZs2ZIS0uDRqPBt99+i6ioKBw8eBBBQUEYM2aM1K5169bw9vZGr169cOHCBYtP/npYXFwcYmNjpe3c3Fz4+vpasSIiIiIyJ6uHJrlcjsD/zVgLCQnB8ePHsXTpUvz73/8u1bbkscTMzEwEBATAy8ur1ASya9euAQC8vLykP0v2PdjGzc0Nzs7OsLe3h729fZltSs5RFkdHRzg6Ohp4tURERFRZ2cycphJarRYFBQVlHktLSwMAeHt7A7i/lsOpU6d0nnLbs2cP3NzcpFt8oaGhSEpK0jnPnj17pHlTcrkcISEhOm20Wi2SkpJKrRVBRERE1ZdVR5ri4uLQt29fNGzYEHl5ediwYQMOHDiA3bt348KFC9iwYQOeffZZuLu74+TJk5g4cSK6deuGNm3aAAB69+6NoKAgDBs2DPPnz0d2djamTp2K6OhoaRRo7NixiI+Px6RJkzBy5Ejs27cP33zzDXbs2CHVERsbi6ioKHTo0AGdOnXCkiVLkJ+fX+qeKhEREVVfVg1N169fxyuvvIKrV69CoVCgTZs22L17N5555hn88ccf2Lt3rxRgfH19MXDgQEydOlV6v729PRITEzFu3DiEhobCxcUFUVFR+OCDD6Q2jRo1wo4dOzBx4kQsXboUDRo0wGeffaaznsSgQYNw48YNTJs2DdnZ2WjXrh127dpVanI4ERGRqQkhrF1ClWeqPpYJ/q9lErm5uVAoFNBoNOU+eklERFSiqKgImZmZ8PHxgUKhsHY5VZpGo8GVK1cQGBgIBwcHnWOG/P62+kRwIiKi6qhGjRqoWbMmbty4AQcHB9g9vLQ3mYRWq8WNGzdQs2ZN1KhRsdjD0ERERGQFMpkM3t7eyMrKwqVLl6xdTpVmZ2eHhg0bQiaTVeg8DE1ERERWIpfL0aRJExQWFlq7lCpNLpebZCSPoYmIiMiK7Ozs4OTkZO0ySA+8gUpERESkB4YmIiIiIj0wNBERERHpgaGJiIiISA8MTURERER6YGgiIiIi0gNDExEREZEeGJqIiIiI9MDQRERERKQHhiYiIiIiPfBrVKoJlUr1yO82ksvlcHd3t2BFRERElQtDUzWgUqkQHx//2HYxMTEMTkREROXg7blq4OERJo3GFVlZ/tBoXB/ZjoiIiP7BkaZqJjW1PbZv7wch7CCTaREZmYjg4BPWLouIiMjmcaSpGtFoXKXABABC2GH79n6lRpyIiIioNIamakStdpcCUwkh7KBWK61UERERUeXB0FSNKJUqyGRanX0ymRZKpdpKFREREVUeDE3ViEKRh8jIRCk4lcxpUijyrFwZERGR7eNE8GomOPgEAgIyoVYroVSqGZiIiIj0xNBUDcjlcp1thSKvzLD0cDsiIiL6B0NTNeDu7o6YmBiuCE5ERFQBDE3VBAMRERFRxXAiOBEREZEeGJqIiIiI9MDQRERERKQHhiYiIiIiPTA0EREREemBoYmIiIhID1xygMiMVCoV18ciIqoiGJqIzESlUiE+Pv6x7WJiYhiciIgqAd6eIzKTh0eYNBpXZGX5Q6NxfWQ7IiKyTRxpIrKA1NT22L69H4Swg0ymRWRkIoKDT1i7LCIiMgBDE9mEqjz3R6NxlQITAAhhh+3b+yEgILPML04mIiLbxNBEVlfV5/6o1e5SYCohhB3UaiVDExFRJcI5TWR1VX3uj1Kpgkym1dknk2mhVKqtVBERERmDI01kU6ri3B+FIg+RkYmlroujTERElQtDE9mMqjz3Jzj4BAICMqFWK6FUqiv99RARVUcMTWQzqtrcH7lcrrOtUOSVeR0PtyMiItvE0EQ2o2Tuz4PBqTLP/XF3d0dMTEyVfSqQiKi6YWgim1EV5/4wEBERVR0MTWRTOPeHiIhsFUMTWR3n/hARUWXA0ERWx7k/RERUGTA0kU1gICIiIlvHFcGJiIiI9MDQRERERKQH3p4jm6BSqTiniYiIbBpDE1mdSqVCfHz8Y9vFxMQwOBERkdVY9fbcypUr0aZNG7i5ucHNzQ2hoaH44YcfpON3795FdHQ03N3dUatWLQwcOBDXrl3TOcfly5cRERGBmjVrwsPDA++88w7u3bun0+bAgQMIDg6Go6MjAgMDsXbt2lK1LF++HP7+/nByckLnzp1x7Ngxs1wzlfbwCJNG44qsLH9oNK6PbEdERGRJVg1NDRo0wLx585CSkoJffvkFPXv2RP/+/ZGeng4AmDhxIrZv347Nmzfj4MGDuHLlCl544QXp/cXFxYiIiEBhYSGOHj2KdevWYe3atZg2bZrUJisrCxEREXj66aeRlpaGCRMmYPTo0di9e7fUZtOmTYiNjcX06dORmpqKtm3bIjw8HNevX7dcZxAAIDW1PZYsmYB166KwZMkEpKa2t3ZJRERE9wkbU6dOHfHZZ5+JnJwc4eDgIDZv3iwdO3v2rAAgkpOThRBC7Ny5U9jZ2Yns7GypzcqVK4Wbm5soKCgQQggxadIk0bJlS53PGDRokAgPD5e2O3XqJKKjo6Xt4uJi4ePjI+bOnat33RqNRgAQGo3GsAsmceXKFTFjxgwxceJCIZMVC0BIL5msWEycuFDMmDFDXLlyxdqlEhFRFWPI72+beXquuLgYGzduRH5+PkJDQ5GSkoKioiKEhYVJbZo3b46GDRsiOTkZAJCcnIzWrVvD09NTahMeHo7c3FxptCo5OVnnHCVtSs5RWFiIlJQUnTZ2dnYICwuT2pBlqNXuePivpBB2UKuVVqqIiIjoH1afCH7q1CmEhobi7t27qFWrFrZt24agoCCkpaVBLpejdu3aOu09PT2RnZ0NAMjOztYJTCXHS449qk1ubi7u3LmDmzdvori4uMw2586dK7fugoICFBQUSNu5ubmGXTiVolSqIJNpdYKTTKaFUqm2YlVERET3WX2kqVmzZkhLS8PPP/+McePGISoqCmfOnLF2WY81d+5cKBQK6eXr62vtkio9hSIPkZGJkMm0AO4HpsjIRH5pLxER2QSrjzTJ5XIEBgYCAEJCQnD8+HEsXboUgwYNQmFhIXJycnRGm65duwYvLy8AgJeXV6mn3EqernuwzcNP3F27dg1ubm5wdnaGvb097O3ty2xTco6yxMXFITY2VtrOzc1lcDKB4OATCAjIhFqthFKpZmAiIiKbYfWRpodptVoUFBQgJCQEDg4OSEpKko5lZGTg8uXLCA0NBQCEhobi1KlTOk+57dmzB25ubggKCpLaPHiOkjYl55DL5QgJCdFpo9VqkZSUJLUpi6Ojo7RUQsmLjCOXy3W2FYo8NGp0qVRgergdERGRJVl1pCkuLg59+/ZFw4YNkZeXhw0bNuDAgQPYvXs3FAoFRo0ahdjYWCiVSri5ueGNN95AaGgonnjiCQBA7969ERQUhGHDhmH+/PnIzs7G1KlTER0dDUdHRwDA2LFjER8fj0mTJmHkyJHYt28fvvnmG+zYsUOqIzY2FlFRUejQoQM6deqEJUuWID8/HyNGjLBKv1Q37u7uiImJ4YrgRERk2yzwNF+5Ro4cKfz8/IRcLhf16tUTvXr1Ej/++KN0/M6dO+L1118XderUETVr1hTPP/+8uHr1qs45Ll68KPr27SucnZ1F3bp1xVtvvSWKiop02uzfv1+0a9dOyOVy0bhxY5GQkFCqlk8++UQ0bNhQyOVy0alTJ/HTTz8ZdC1ccoCIiKjyMeT3t0wIIawd3KqC3NxcKBQKaDQa3qojIiKqJAz5/W1zc5qIiIiIbBFDExEREZEerL7kABGZn0ql4kR7IqIKYmgiquJUKhXi4+Mf2y4mJobBiYjoEXh7jqiKe3iESaNxRVaWPzQa10e2IyIiXRxpIqpGUlPbY/v2fhDCTvqamuDgE9Yui4ioUuBIE1E1odG4SoEJAISww/bt/UqNOBERUdkYmoiqCbXaXQpMJYSwg1qttFJFRESVC0MTUTWhVKogk2l19slkWiiVaitVRERUuTA0EVUTCkUeIiMTpeBUMqfp4S9GJiKisnEiOFE1Ehx8AgEBmVCrlVAq1QxMREQGYGgiquLkcrnOtkKRV2ZYergdERHpYmgiquLc3d0RExPDFcGJiCqIoYmoGmAgIiKqOE4EJyIiItIDQxMRERGRHhiaiIiIiPTA0ERERESkB4YmIiIiIj0wNBERERHpgaGJiIiISA9GhyZ/f3988MEHuHz5sinrISIiIrJJRoemCRMmYOvWrWjcuDGeeeYZbNy4EQUFBaasjYiIiMhmVCg0paWl4dixY2jRogXeeOMNeHt7IyYmBqmpqaaskYiIiMjqZEIIYYoTFRUVYcWKFZg8eTKKiorQunVrvPnmmxgxYgRkMpkpPsKm5ebmQqFQQKPRwM3NzdrlEBERkR4M+f1d4e+eKyoqwrZt25CQkIA9e/bgiSeewKhRo/Dnn3/ivffew969e7Fhw4aKfgwRERGRVRkdmlJTU5GQkICvv/4adnZ2eOWVV7B48WI0b95cavP888+jY8eOJimUiIiIyJqMDk0dO3bEM888g5UrV2LAgAFwcHAo1aZRo0YYPHhwhQokIiIisgVGh6bff/8dfn5+j2zj4uKChIQEYz+CiIiIyGYY/fTc008/DZVKVWp/Tk4OGjduXKGiiIiIiGyN0aHp4sWLKC4uLrW/oKAAf/31V4WKIiIiIrI1Bt+e+/7776Wfd+/eDYVCIW0XFxcjKSkJ/v7+JimOiIiIyFYYHJoGDBgAAJDJZIiKitI55uDgAH9/fyxcuNAkxRERERHZCoNDk1arBXD/ybjjx4+jbt26Ji+KiIiIyNYY/fRcVlaWKesgIiIismlGh6YPPvjgkcenTZtm7KmJiIiIbI7RoWnbtm0620VFRcjKykKNGjUQEBDA0ERUyalUKhQWFpZ7XC6Xw93d3YIVERFZl9Gh6cSJE6X25ebmYvjw4Xj++ecrVBQRWZdKpUJ8fPxj28XExDA4EVG1YfQ6TWVxc3PDzJkz8f7775vytERkYQ+PMGk0rsjK8odG4/rIdkREVZnRI03l0Wg00Gg0pj4tEVlJamp7bN/eD0LYQSbTIjIyEcHBpUeaiYiqOqND07Jly3S2hRC4evUqvvzyS/Tt27fChRGR9Wk0rlJgAgAh7LB9ez8EBGRCocizcnVERJZldGhavHixzradnR3q1auHqKgoxMXFVbgwIrI+tdpdCkwlhLCDWq1kaCKiaofrNBFRuZRKFWQyrU5wksm0UCrVVqyKiMg6KjSnSQgBlUoFmUzGJ2iIqiCFIg+RkYml5jTZyigTl0UgIksyKjRlZ2dj0qRJ+P7775GXd/8fTzc3Nzz//POYO3cuPD09TVokEVlPcPAJBARkQq1WQqlU21Rg4rIIRGRJBoem3NxcdOnSBbdu3cKIESPQvHlzCCFw5swZfP311zh8+DBSU1NRq1Ytc9RLRBYgl8t1thWKvDLD0sPtLKmsZRHUancolSqdWrksAhGZisGhaenSpbC3t0d6ejrq1aunc2zq1Kno2rUrli1bhvfee89kRRKRZbm7uyMmJqbS3PrisghEZAkGh6YdO3bgvffeKxWYAMDDwwNxcXFYvXo1QxNRJWcrgehxuCwCEVmKwSuCnz9/Hl26dCn3eJcuXZCRkVGhooiI9PWoZRGIiEzJ4NCUm5uL2rVrl3u8du3ayM3NrUhNRER6K1kW4UFcFoGIzMHg0CSEgJ1d+W+TyWQQQlSoKCIifZUsi1ASnGxtWQQiqjoMntMkhEDTpk0hk8nKPU5EZEm2uiwCEVUtBoemhIQEc9RBRGSQyrAsAhFVLTJh5qGhr7/+Gs899xxcXFxKHZs7dy62bt2Kc+fOwdnZGV26dMFHH32EZs2aSW169OiBgwcP6rzvtddew6pVq6Tty5cvY9y4cdi/fz9q1aqFqKgozJ07FzVq/JMJDxw4gNjYWKSnp8PX1xdTp07F8OHDdc67fPlyLFiwANnZ2Wjbti0++eQTdOrUSa/rzM3NhUKhgEajgZubm17vITKl6rg6dnW8ZiIyLUN+f1foa1T08dprr6Fz585o3LhxqWMHDx5EdHQ0OnbsiHv37uG9995D7969cebMGZ2Q9eqrr+KDDz6QtmvWrCn9XFxcjIiICHh5eeHo0aO4evUqXnnlFTg4OGDOnDkA7n9PXkREBMaOHYv169cjKSkJo0ePhre3N8LDwwEAmzZtQmxsLFatWoXOnTtjyZIlCA8PR0ZGBjw8PMzVPUQmUV1Xx65K10JEts/sI02urq749ddfywxND7tx4wY8PDxw8OBBdOvWDcD9kaZ27dphyZIlZb7nhx9+QL9+/XDlyhXp61tWrVqFyZMn48aNG5DL5Zg8eTJ27NiB06dPS+8bPHgwcnJysGvXLgBA586d0bFjR+kXj1arha+vL9544w28++67j62dI01kTVevXsWnn34qbZe3OvaYMWPg7e1tjRKJiGySIb+/DX56zpw0Gg0AQKnUXV9l/fr1qFu3Llq1aoW4uDjcvn1bOpacnIzWrVvrfN9deHg4cnNzkZ6eLrUJCwvTOWd4eDiSk5MB3P+ahZSUFJ02dnZ2CAsLk9o8rKCgALm5uTovIluQmtoeS5ZMwLp1UViyZAJSU9tbuyQioirB7Lfn9KXVajFhwgR07doVrVq1kva/9NJL8PPzg4+PD06ePInJkycjIyMDW7duBXD/y4Mf/oLgku3s7OxHtsnNzcWdO3dw8+ZNFBcXl9nm3LlzZdY7d+5czJw5s2IXTWRiXB2biMh8bCY0RUdH4/Tp0zh8+LDO/jFjxkg/t27dGt7e3ujVqxcuXLiAgIAAS5cpiYuLQ2xsrLSdm5sLX19fq9VDBDx6dWyGJiKiirGJ0BQTE4PExEQcOnQIDRo0eGTbzp07AwAyMzMREBAALy8vHDt2TKfNtWvXAABeXl7SnyX7Hmzj5uYGZ2dn2Nvbw97evsw2Jed4mKOjIxwdHfW/SCILKFkd+8HgxNWxiYhMw6g5TcXFxTh06BBycnIe29bPzw8ODg5lHhNCICYmBtu2bcO+ffvQqFGjx54vLS0NAKTJrKGhoTh16hSuX78utdmzZw/c3NwQFBQktUlKStI5z549exAaGgrg/mPJISEhOm20Wi2SkpKkNkSVAVfHJiIyH6NGmuzt7dG7d2+cPXv2kd9DB0DnibWHRUdHY8OGDfjPf/4DV1dXaQ6SQqGAs7MzLly4gA0bNuDZZ5+Fu7s7Tp48iYkTJ6Jbt25o06YNAKB3794ICgrCsGHDMH/+fGRnZ2Pq1KmIjo6WRoLGjh2L+Ph4TJo0CSNHjsS+ffvwzTffYMeOHVItsbGxiIqKQocOHdCpUycsWbIE+fn5GDFihDFdRGQ1XB2biMg8jL4916pVK/z+++96jQ6VZ+XKlQDuLyvwoISEBAwfPhxyuRx79+6VAoyvry8GDhyIqVOnSm3t7e2RmJiIcePGITQ0FC4uLoiKitJZ16lRo0bYsWMHJk6ciKVLl6JBgwb47LPPpDWaAGDQoEG4ceMGpk2bhuzsbLRr1w67du0qNTmcyBZVZHVsLhBJRKQfo9dp2rVrF+Li4jBr1iyEhISUWvG7uq1VxHWayNqMCT/VdVFMIqISFlkR/NlnnwUAPPfcczpf3iuEgEwmQ3FxsbGnJiIjGBNqHg5Z5S2K+agwRkRUXRgdmvbv32/KOojIylJT20trPJVMIA8OPmHtsoiIbIbRoal79+6mrIOIrIiLYhIRPV6Fvkblv//9L4YOHYouXbrgr7/+AgB8+eWXpRaoJCLb9qhFMYmI6D6jQ9OWLVsQHh4OZ2dnpKamoqCgAMD974+bM2eOyQokIvMrWRTzQcYuiqlSqXD16tVyXyqVylRlExFZlNG352bPno1Vq1bhlVdewcaNG6X9Xbt2xezZs01SHBFZRsmimA/PaTL01hyfxiOiqszo0JSRkYFu3bqV2q9QKPRaKZyIbIspFsXk03hEVJUZHZq8vLyQmZkJf39/nf2HDx9G48aNK1oXEVlARRbFfBw+jUdEVY3RoenVV1/F+PHj8fnnn0Mmk+HKlStITk7G22+/jffff9+UNRKRmbi7uyMmJsbkK4LzaTwiqoqMDk3vvvsutFotevXqhdu3b6Nbt25wdHTE22+/jTfeeMOUNRKRGZljbtGjnsZjaCKiysro0CSTyTBlyhS88847yMzMxK1btxAUFIRatWqZsj4iqoRKnsZ7MDgZ+zQeEZGtqNA6TcD9ofugoCB06tSJgYmIAPzzNF7JMgbGPo1HRGRLjB5punv3Lj755BPs378f169fh1aru8ZLampqhYsjosrLFE/jERHZEqND06hRo/Djjz/iX//6Fzp16qTzpb1EVD2Z82k8IiJrkwkhhDFvVCgU2LlzJ7p27Wrqmiql3NxcKBQKaDQauLm5WbscIqtRqVQmfxqPiMhcDPn9bfRIU/369eHq6mrs24moimIgIqKqyuiJ4AsXLsTkyZNx6dIlU9ZDREREZJOMHmnq0KED7t69i8aNG6NmzZpwcHDQOa5W89FiIiIiqjqMDk1DhgzBX3/9hTlz5sDT05MTwYmIiKhKMzo0HT16FMnJyWjbtq0p6yEiIiKySUbPaWrevDnu3LljylqIiIiIbJbRoWnevHl46623cODAAahUKuTm5uq8iIiIiKoSo9dpsrO7n7censskhIBMJkNxcXHFq6tEuE4TERFR5WORdZr2799v7FuJiIiIKh2jQlNRURE++OADrFq1Ck2aNDF1TUREREQ2x6g5TQ4ODjh58qSpayEiIiKyWUZPBB86dCjWrFljylqIiIiIbJbRc5ru3buHzz//HHv37kVISAhcXFx0ji9atKjCxRERERHZCqND0+nTpxEcHAwAOH/+vM4xrg5OREREVQ2fniMiIiLSg9Fzmh70559/4s8//zTFqYiIiIhsktGhSavV4oMPPoBCoYCfnx/8/PxQu3ZtzJo1C1qt1pQ1EhEREVmd0bfnpkyZgjVr1mDevHno2rUrAODw4cOYMWMG7t69iw8//NBkRRIRERFZm9Ffo+Lj44NVq1bhueee09n/n//8B6+//jr++usvkxRYWfBrVIiIiCofQ35/G317Tq1Wo3nz5qX2N2/eHGq12tjTEhEREdkko0NT27ZtER8fX2p/fHw82rZtW6GiiIiIiGyN0XOa5s+fj4iICOzduxehoaEAgOTkZPzxxx/YuXOnyQokIiIisgVGjzR1794d58+fx/PPP4+cnBzk5OTghRdeQEZGBp566ilT1khERERkdQaNNL3wwgtYu3Yt3Nzc8MUXX2DQoEF8So6IiIiqBYNGmhITE5Gfnw8AGDFiBDQajVmKIiIiIrI1Bo00NW/eHHFxcXj66achhMA333xT7uN5r7zyikkKJCIiIrIFBq3TdPToUcTGxuLChQtQq9VwdXUt88t5ZTJZtVt2gOs0ERERVT6G/P42enFLOzs7ZGdnw8PDw6giqxqGJiIiosrHIotbZmVloV69esa+nYiIiKhSMTo0+fn54fDhwxg6dChCQ0Olr0358ssvcfjwYZMVSERERGQLjA5NW7ZsQXh4OJydnXHixAkUFBQAADQaDebMmWOyAomIiIhsgdGhafbs2Vi1ahVWr14NBwcHaX/Xrl2RmppqkuKIiIiIbIXRoSkjIwPdunUrtV+hUCAnJ6ciNRERERHZHKNDk5eXFzIzM0vtP3z4MBo3blyhooiIiIhsjdGh6dVXX8X48ePx888/QyaT4cqVK1i/fj3eeustjBs3zpQ1EhEREVmdQSuCP+jdd9+FVqtFr169cPv2bXTr1g2Ojo545513MHr0aFPWSERERGR1Ro80yWQyTJkyBWq1GqdPn8ZPP/2EGzduQKFQoFGjRqaskYiIiMjqDA5NBQUFiIuLQ4cOHdC1a1fs3LkTQUFBSE9PR7NmzbB06VJMnDjRHLUSERERWY3BoWnatGlYuXIl/P39kZWVhf/7v//DmDFjsHjxYixcuBBZWVmYPHmyXueaO3cuOnbsCFdXV3h4eGDAgAHIyMjQaXP37l1ER0fD3d0dtWrVwsCBA3Ht2jWdNpcvX0ZERARq1qwJDw8PvPPOO7h3755OmwMHDiA4OBiOjo4IDAzE2rVrS9WzfPly+Pv7w8nJCZ07d8axY8cM6xwiIiKqsgwOTZs3b8YXX3yBb7/9Fj/++COKi4tx7949/Prrrxg8eDDs7e31PtfBgwcRHR2Nn376CXv27EFRURF69+6N/Px8qc3EiROxfft2bN68GQcPHsSVK1fwwgsvSMeLi4sRERGBwsJCHD16FOvWrcPatWsxbdo0qU1WVhYiIiLw9NNPIy0tDRMmTMDo0aOxe/duqc2mTZsQGxuL6dOnIzU1FW3btkV4eDiuX79uaBcRERFRFWTwF/bK5XJkZWWhfv36AABnZ2ccO3YMrVu3rnAxN27cgIeHBw4ePIhu3bpBo9GgXr162LBhA/71r38BAM6dO4cWLVogOTkZTzzxBH744Qf069cPV65cgaenJwBg1apVmDx5Mm7cuAG5XI7Jkydjx44dOH36tPRZgwcPRk5ODnbt2gUA6Ny5Mzp27Ij4+HgAgFarha+vL9544w28++67j62dX9hLRIZQqVQoLCws97hcLoe7u7sFKyKqngz5/W3w03PFxcWQy+X/nKBGDdSqVcvwKsug0WgAAEqlEgCQkpKCoqIihIWFSW2aN2+Ohg0bSqEpOTkZrVu3lgITAISHh2PcuHFIT09H+/btkZycrHOOkjYTJkwAABQWFiIlJQVxcXHScTs7O4SFhSE5ObnMWgsKCqSvjgHudzoRkT5UKpX0f9AeJSYmhsGJyIYYHJqEEBg+fDgcHR0B3J9zNHbsWLi4uOi027p1q0Hn1Wq1mDBhArp27YpWrVoBALKzsyGXy1G7dm2dtp6ensjOzpbaPBiYSo6XHHtUm9zcXNy5cwc3b95EcXFxmW3OnTtXZr1z587FzJkzDbpGIiIApUaYNBpXqNXuUCpVUCjyym1HRNZlcGiKiorS2R46dKhJComOjsbp06dx+PBhk5zP3OLi4hAbGytt5+bmwtfX14oVEVFllJraHtu394MQdpDJtIiMTERw8Alrl0VEZTA4NCUkJJi8iJiYGCQmJuLQoUNo0KCBtN/LywuFhYXIycnRGW26du0avLy8pDYPP+VW8nTdg20efuLu2rVrcHNzg7OzM+zt7WFvb19mm5JzPMzR0VEabSMiMoZG4yoFJgAQwg7bt/dDQECmzogTEdkGoxe3NAUhBGJiYrBt2zbs27ev1KKYISEhcHBwQFJSkrQvIyMDly9fRmhoKAAgNDQUp06d0nnKbc+ePXBzc0NQUJDU5sFzlLQpOYdcLkdISIhOG61Wi6SkJKkNEZGpqdXuUmAqIYQd1GqllSoiokcx+mtUTCE6OhobNmzAf/7zH7i6ukpzkBQKBZydnaFQKDBq1CjExsZCqVTCzc0Nb7zxBkJDQ/HEE08AAHr37o2goCAMGzYM8+fPR3Z2NqZOnYro6GhpJGjs2LGIj4/HpEmTMHLkSOzbtw/ffPMNduzYIdUSGxuLqKgodOjQAZ06dcKSJUuQn5+PESNGWL5jiKhaUCpVkMm0OsFJJtNCqVRbsSoiKo9VQ9PKlSsBAD169NDZn5CQgOHDhwMAFi9eDDs7OwwcOBAFBQUIDw/HihUrpLb29vZITEzEuHHjEBoaChcXF0RFReGDDz6Q2jRq1Ag7duzAxIkTsXTpUjRo0ACfffYZwsPDpTaDBg3CjRs3MG3aNGRnZ6Ndu3bYtWtXqcnhRESmolDkITIysdScJt6aI7JNBq/TRGXjOk1EpK+rV6/i008/lbbvPz2nhFKp1glMY8aMgbe3tzVKJKo2zLpOExERVcyDa90B90ecyhpdergdEVkXQxMRkYW5u7sjJiaGK4ITVTIMTUREVsBARFT5WHXJASIiIqLKgqGJiIiISA8MTURERER6YGgiIiIi0gMnghMRkUFUKhWf/KNqiaGJiIj0plKpEB8f/9h2MTExDE5U5fD2HBER6e3hESaNxhVZWf7QaFwf2Y6oKuBIExERGSU1tX2p780LDj5h7bKIzIYjTUREZDCNxlUKTAAghB22b+9XasSJqCphaCIiIoOp1e5SYCohhB3UaqWVKiIyP4YmIiIymFKpgkym1dknk2mhVKqtVBGR+XFOExERGUyhyENkZGKpOU0KRZ7B5+ISBlRZMDQREZFRgoNPICAgE2q1Ekql2ujAxCUMqLJgaCIiIr3J5XKdbYUir8yw9HC78pS1hIFa7Q6lUqVzXi5hQLaAoYmIiPTm7u6OmJgYs9xO4xIGZOsYmoiIyCDmuE1W3hIGAQGZRt32IzIHPj1HRERWxyUMqDJgaCIiIqvjEgZUGTA0ERGR1ZUsYVASnCqyhAGRuXBOExER2QRTLGFAZE4MTUREZDWmXsKAyJwYmoiIyGrMuYQBkakxNBERkVUxEFFlwYngRERERHpgaCIiIiLSA0MTERERkR4YmoiIiIj0wNBEREREpAc+PUdERCajUqm4fABVWQxNRERkEiqVCvHx8Y9tFxMTw+BElRJvzxERkUk8PMKk0bgiK8sfGo3rI9sRVRYcaSIiIpNLTW2P7dv7QQg76ct3g4NPWLssogrhSBMREZmURuMqBSYAEMIO27f3KzXiRFTZMDQREZFJqdXuUmAqIYQd1GqllSoiMg2GJiIiMimlUgWZTKuzTybTQqlUW6kiItPgnCYiIjIphSIPkZGJpeY0KRR5Fvl8LntA5sLQREREJhccfAIBAZlQq5VQKtUWDUxc9oDMhaGJiIhMQi6X62wrFHllhqWH25lSWcseqNXuUCpVOrVw2QMyBkMTERGZhLu7O2JiYmzm1hiXPSBTY2giIiKTsZVbXuUtexAQkGmxW4VU9fDpOSIiqnK47AGZA0MTERFVOVz2gMyBoYmIiKqckmUPSoKTpZc9oKqJc5qIiKhKstayB1R1MTQREVGVYQvLHlDVxdBERERVhq0te0BVC0MTERFVKQxEZC6cCE5ERESkB4YmIiIiIj1YNTQdOnQIkZGR8PHxgUwmw3fffadzfPjw4ZDJZDqvPn366LRRq9V4+eWX4ebmhtq1a2PUqFG4deuWTpuTJ0/iqaeegpOTE3x9fTF//vxStWzevBnNmzeHk5MTWrdujZ07d5r8eomIiKjysmpoys/PR9u2bbF8+fJy2/Tp0wdXr16VXl9//bXO8Zdffhnp6enYs2cPEhMTcejQIYwZM0Y6npubi969e8PPzw8pKSlYsGABZsyYgU8//VRqc/ToUQwZMgSjRo3CiRMnMGDAAAwYMACnT582/UUTERFRpSQTQghrFwEAMpkM27Ztw4ABA6R9w4cPR05OTqkRqBJnz55FUFAQjh8/jg4dOgAAdu3ahWeffRZ//vknfHx8sHLlSkyZMgXZ2dnSI6bvvvsuvvvuO5w7dw4AMGjQIOTn5yMxMVE69xNPPIF27dph1apVetWfm5sLhUIBjUYDNzc3I3qAiIiILM2Q3982P6fpwIED8PDwQLNmzTBu3DioVCrpWHJyMmrXri0FJgAICwuDnZ0dfv75Z6lNt27ddNbkCA8PR0ZGBm7evCm1CQsL0/nc8PBwJCcnl1tXQUEBcnNzdV5ERERUddl0aOrTpw+++OILJCUl4aOPPsLBgwfRt29fFBcXAwCys7Ph4eGh854aNWpAqVQiOztbauPp6anTpmT7cW1Kjpdl7ty5UCgU0svX17diF0tEREQ2zabXaRo8eLD0c+vWrdGmTRsEBATgwIED6NWrlxUrA+Li4hAbGytt5+bmMjgRERFVYTY90vSwxo0bo27dusjMzAQAeHl54fr16zpt7t27B7VaDS8vL6nNtWvXdNqUbD+uTcnxsjg6OsLNzU3nRURERFVXpQpNf/75J1QqFby9vQEAoaGhyMnJQUpKitRm37590Gq16Ny5s9Tm0KFDKCoqktrs2bMHzZo1Q506daQ2SUlJOp+1Z88ehIaGmvuSiIiIqJKwami6desW0tLSkJaWBgDIyspCWloaLl++jFu3buGdd97BTz/9hIsXLyIpKQn9+/dHYGAgwsPDAQAtWrRAnz598Oqrr+LYsWM4cuQIYmJiMHjwYPj4+AAAXnrpJcjlcowaNQrp6enYtGkTli5dqnNrbfz48di1axcWLlyIc+fOYcaMGfjll18QExNj8T4hIiIiGyWsaP/+/QJAqVdUVJS4ffu26N27t6hXr55wcHAQfn5+4tVXXxXZ2dk651CpVGLIkCGiVq1aws3NTYwYMULk5eXptPn111/Fk08+KRwdHUX9+vXFvHnzStXyzTffiKZNmwq5XC5atmwpduzYYdC1aDQaAUBoNBrDO4KIiIiswpDf3zazTlNlx3WaiIiIKp8qtU4TERERkS1gaCIiIiLSA0MTERERkR4YmoiIiIj0wNBEREREpAeGJiIiIiI9MDQRERER6YGhiYiIiEgPDE1EREREemBoIiIiItIDQxMRERGRHhiaiIiIiPTA0ERERESkB4YmIiIiIj0wNBERERHpoYa1CyAiIiLbolKpUFhYWO5xuVwOd3d3C1ZkGxiaiIiISKJSqRAfH//YdjExMdUuOPH2HBEREUkeHmHSaFyRleUPjcb1ke2qA440ERERkUSj0Ug/p6a2x/bt/SCEHWQyLSIjExEcfEJq5+3tba0yrYIjTURERCQpKioCcH+EqSQwAYAQdti+vZ804lTSrjphaCIiIqJS1Gp3KTCVEMIOarXSShVZH0MTERERleLgUABAPLRXwMGh+s1lKsHQRERERKUUFTkCkD20V4aiIrk1yrEJDE1ERERUilKpgkym1dknk2mhVKqtVJH1MTQRERGRpEaN+w/WKxR5iIxMlIJTydNzCkWeTrvqpPpdMREREZWrdu3a0s/BwScQEJAJtVoJpVItBaaH21UXDE1EREQkkct15ywpFHk6Yam8dtUBQxMRERFJ3N3dERMTw++eKwNDExEREemojoFIH5wITkRERKQHhiYiIiIiPTA0EREREemBoYmIiIhIDwxNRERERHpgaCIiIiLSA0MTERERkR4YmoiIiIj0wMUtiYiIyCapVCqbWpmcoYmIiIhsjkqlQnx8/GPbxcTEWCw48fYcERER2ZyHR5g0GldkZflDo3F9ZDtz4kgTERER2bTU1PbYvr0fhLCDTKZFZGQigoNPWLwOjjQRERGRzdJoXKXABABC2GH79n6lRpwsgSNNREREZFYVmdCtVrtLgamEEHZQq5VQKPJMWufjMDQRERGR2VR0QrdSqYJMptUJTjKZFkql2qR16oO354iIiMhsKjqhW6HIQ2RkImQyLQBIc5osPcoEcKSJiIiILMTYCd3BwScQEJAJtVoJpVJtlcAEcKSJiIiILMDQCd1yuVxnW6HIQ6NGl0oFpofbmRNHmoiIiMjsDJ3Q7e7ujpiYGK4ITkRERNWLMRO6LRmI9MHbc0RERGR2tjSh21gcaSIiIiKLsJUJ3cZiaCIiIiKzKWtCd1lhyZITuo3F0ERERERmY4sTuo1l1TlNhw4dQmRkJHx8fCCTyfDdd9/pHBdCYNq0afD29oazszPCwsLw22+/6bRRq9V4+eWX4ebmhtq1a2PUqFG4deuWTpuTJ0/iqaeegpOTE3x9fTF//vxStWzevBnNmzeHk5MTWrdujZ07d5r8eomIiKojd3d3eHt7l/uqDIEJsHJoys/PR9u2bbF8+fIyj8+fPx/Lli3DqlWr8PPPP8PFxQXh4eG4e/eu1Obll19Geno69uzZg8TERBw6dAhjxoyRjufm5qJ3797w8/NDSkoKFixYgBkzZuDTTz+V2hw9ehRDhgzBqFGjcOLECQwYMAADBgzA6dOnzXfxREREVLkIGwFAbNu2TdrWarXCy8tLLFiwQNqXk5MjHB0dxddffy2EEOLMmTMCgDh+/LjU5ocffhAymUz89ddfQgghVqxYIerUqSMKCgqkNpMnTxbNmjWTtl988UURERGhU0/nzp3Fa6+9pnf9Go1GABAajUbv9xAREZF1GfL722aXHMjKykJ2djbCwsKkfQqFAp07d0ZycjIAIDk5GbVr10aHDh2kNmFhYbCzs8PPP/8stenWrZvOBLPw8HBkZGTg5s2bUpsHP6ekTcnnlKWgoAC5ubk6LyIiIqq6bDY0ZWdnAwA8PT119nt6ekrHsrOz4eHhoXO8Ro0aUCqVOm3KOseDn1Fem5LjZZk7dy4UCoX08vX1NfQSiYiIqBKx2dBk6+Li4qDRaKTXH3/8Ye2SiIiIyIxsNjR5eXkBAK5du6az/9q1a9IxLy8vXL9+Xef4vXv3oFarddqUdY4HP6O8NiXHy+Lo6Ag3NzedFxEREVVdNhuaGjVqBC8vLyQlJUn7cnNz8fPPPyM0NBQAEBoaipycHKSkpEht9u3bB61Wi86dO0ttDh06hKKiIqnNnj170KxZM9SpU0dq8+DnlLQp+RwiIiIiq4amW7duIS0tDWlpaQDuT/5OS0vD5cuXIZPJMGHCBMyePRvff/89Tp06hVdeeQU+Pj4YMGAAAKBFixbo06cPXn31VRw7dgxHjhxBTEwMBg8eDB8fHwDASy+9BLlcjlGjRiE9PR2bNm3C0qVLERsbK9Uxfvx47Nq1CwsXLsS5c+cwY8YM/PLLL4iJibF0lxAREZGtssDTfOXav3+/AFDqFRUVJYS4v+zA+++/Lzw9PYWjo6Po1auXyMjI0DmHSqUSQ4YMEbVq1RJubm5ixIgRIi8vT6fNr7/+Kp588knh6Ogo6tevL+bNm1eqlm+++UY0bdpUyOVy0bJlS7Fjxw6DroVLDhAREVU+hvz+lgkhhBUzW5Wh0WhQu3Zt/PHHH5zfREREVEnk5ubC19cXOTk5UCgUj2zL754zkby8+18+yKUHiIiIKp+8vLzHhiaONJmIVqvFlStX4OrqCplMVmabkjTL0Sj2RQn2w33sh3+wL+5jP9zHfviHufpCCIG8vDz4+PjAzu7RU7050mQidnZ2aNCggV5tuUTBP9gX97Ef7mM//IN9cR/74T72wz/M0RePG2EqYbNLDhARERHZEoYmIiIiIj0wNFmQo6Mjpk+fDkdHR2uXYnXsi/vYD/exH/7BvriP/XAf++EfttAXnAhOREREpAeONBERERHpgaGJiIiISA8MTURERER6YGgiIiIi0gNDk4ktX74c/v7+cHJyQufOnXHs2LFy26anp2PgwIHw9/eHTCbDkiVLLFeoBRjSF6tXr8ZTTz2FOnXqoE6dOggLC3tk+8rEkH7YunUrOnTogNq1a8PFxQXt2rXDl19+acFqzceQfnjQxo0bIZPJMGDAAPMWaEGG9MXatWshk8l0Xk5OThas1nwM/TuRk5OD6OhoeHt7w9HREU2bNsXOnTstVK35GNIPPXr0KPX3QSaTISIiwoIVm4+hfyeWLFmCZs2awdnZGb6+vpg4cSLu3r1rvgLN+c3B1c3GjRuFXC4Xn3/+uUhPTxevvvqqqF27trh27VqZ7Y8dOybefvtt8fXXXwsvLy+xePFiyxZsRob2xUsvvSSWL18uTpw4Ic6ePSuGDx8uFAqF+PPPPy1cuWkZ2g/79+8XW7duFWfOnBGZmZliyZIlwt7eXuzatcvClZuWof1QIisrS9SvX1889dRTon///pYp1swM7YuEhATh5uYmrl69Kr2ys7MtXLXpGdoPBQUFokOHDuLZZ58Vhw8fFllZWeLAgQMiLS3NwpWblqH9oFKpdP4unD59Wtjb24uEhATLFm4GhvbF+vXrhaOjo1i/fr3IysoSu3fvFt7e3mLixIlmq5GhyYQ6deokoqOjpe3i4mLh4+Mj5s6d+9j3+vn5VanQVJG+EEKIe/fuCVdXV7Fu3TpzlWgRFe0HIYRo3769mDp1qjnKsxhj+uHevXuiS5cu4rPPPhNRUVFVJjQZ2hcJCQlCoVBYqDrLMbQfVq5cKRo3biwKCwstVaJFVPTfiMWLFwtXV1dx69Ytc5VoMYb2RXR0tOjZs6fOvtjYWNG1a1ez1cjbcyZSWFiIlJQUhIWFSfvs7OwQFhaG5ORkK1Zmeaboi9u3b6OoqAhKpdJcZZpdRftBCIGkpCRkZGSgW7du5izVrIzthw8++AAeHh4YNWqUJcq0CGP74tatW/Dz84Ovry/69++P9PR0S5RrNsb0w/fff4/Q0FBER0fD09MTrVq1wpw5c1BcXGypsk3OFP9WrlmzBoMHD4aLi4u5yrQIY/qiS5cuSElJkW7h/f7779i5cyeeffZZs9XJL+w1kb///hvFxcXw9PTU2e/p6Ylz585ZqSrrMEVfTJ48GT4+Pjr/AVU2xvaDRqNB/fr1UVBQAHt7e6xYsQLPPPOMucs1G2P64fDhw1izZg3S0tIsUKHlGNMXzZo1w+eff442bdpAo9Hg448/RpcuXZCenq73l4TbGmP64ffff8e+ffvw8ssvY+fOncjMzMTrr7+OoqIiTJ8+3RJlm1xF/608duwYTp8+jTVr1pirRIsxpi9eeukl/P3333jyySchhMC9e/cwduxYvPfee2ark6GJbM68efOwceNGHDhwoMpMeDWEq6sr0tLScOvWLSQlJSE2NhaNGzdGjx49rF2aReTl5WHYsGFYvXo16tata+1yrC40NBShoaHSdpcuXdCiRQv8+9//xqxZs6xYmWVptVp4eHjg008/hb29PUJCQvDXX39hwYIFlTY0VdSaNWvQunVrdOrUydqlWMWBAwcwZ84crFixAp07d0ZmZibGjx+PWbNm4f333zfLZzI0mUjdunVhb2+Pa9eu6ey/du0avLy8rFSVdVSkLz7++GPMmzcPe/fuRZs2bcxZptkZ2w92dnYIDAwEALRr1w5nz57F3LlzK21oMrQfLly4gIsXLyIyMlLap9VqAQA1atRARkYGAgICzFu0mZji3wkHBwe0b98emZmZ5ijRIozpB29vbzg4OMDe3l7a16JFC2RnZ6OwsBByudysNZtDRf4+5OfnY+PGjfjggw/MWaLFGNMX77//PoYNG4bRo0cDAFq3bo38/HyMGTMGU6ZMgZ2d6WcgcU6TicjlcoSEhCApKUnap9VqkZSUpPP/EqsDY/ti/vz5mDVrFnbt2oUOHTpYolSzMtXfCa1Wi4KCAnOUaBGG9kPz5s1x6tQppKWlSa/nnnsOTz/9NNLS0uDr62vJ8k3KFH8niouLcerUKXh7e5urTLMzph+6du2KzMxMKUADwPnz5+Ht7V0pAxNQsb8PmzdvRkFBAYYOHWruMi3CmL64fft2qWBUEqqFub5W12xTzKuhjRs3CkdHR7F27Vpx5swZMWbMGFG7dm3p8eBhw4aJd999V2pfUFAgTpw4IU6cOCG8vb3F22+/LU6cOCF+++03a12CyRjaF/PmzRNyuVx8++23Oo/T5uXlWesSTMLQfpgzZ4748ccfxYULF8SZM2fExx9/LGrUqCFWr15trUswCUP74WFV6ek5Q/ti5syZYvfu3eLChQsiJSVFDB48WDg5OYn09HRrXYJJGNoPly9fFq6uriImJkZkZGSIxMRE4eHhIWbPnm2tSzAJY//bePLJJ8WgQYMsXa5ZGdoX06dPF66uruLrr78Wv//+u/jxxx9FQECAePHFF81WI0OTiX3yySeiYcOGQi6Xi06dOomffvpJOta9e3cRFRUlbWdlZQkApV7du3e3fOFmYEhf+Pn5ldkX06dPt3zhJmZIP0yZMkUEBgYKJycnUadOHREaGio2btxohapNz5B+eFhVCk1CGNYXEyZMkNp6enqKZ599VqSmplqhatMz9O/E0aNHRefOnYWjo6No3Lix+PDDD8W9e/csXLXpGdoP586dEwDEjz/+aOFKzc+QvigqKhIzZswQAQEBwsnJSfj6+orXX39d3Lx502z1yYQw1xgWERERUdXBOU1EREREemBoIiIiItIDQxMRERGRHhiaiIiIiPTA0ERERESkB4YmIiIiIj0wNBERERHpgaGJiKgSGj58OAYMGGDtMoiqFYYmIjKp4cOHQyaTSS93d3f06dMHJ0+etHZpJvHgtZW8nnzySbN93sWLFyGTyZCWlqazf+nSpVi7dq3ZPpeISmNoIiKT69OnD65evYqrV68iKSkJNWrUQL9+/axdlskkJCRI13f16lV8//33ZbYrKioyWw0KhQK1a9c22/mJqDSGJiIyOUdHR3h5ecHLywvt2rXDu+++iz/++AM3btxAz549ERMTo9P+xo0bkMvl0jec+/v7Y9asWRgyZAhcXFxQv359LF++XOc9ixYtQuvWreHi4gJfX1+8/vrruHXrlnT80qVLiIyMRJ06deDi4oKWLVti586dAICbN2/i5ZdfRr169eDs7IwmTZogISFB7+urXbu2dH1eXl5QKpXSiNCmTZvQvXt3ODk5Yf369VCpVBgyZAjq16+PmjVronXr1vj66691zqfVajF//nwEBgbC0dERDRs2xIcffggAaNSoEQCgffv2kMlk6NGjB4DSt+cKCgrw5ptvwsPDA05OTnjyySdx/Phx6fiBAwcgk8mQlJSEDh06oGbNmujSpQsyMjL0vm6i6o6hiYjM6tatW/jqq68QGBgId3d3jB49Ghs2bEBBQYHU5quvvkL9+vXRs2dPad+CBQvQtm1bnDhxAu+++y7Gjx+PPXv2SMft7OywbNkypKenY926ddi3bx8mTZokHY+OjkZBQQEOHTqEU6dO4aOPPkKtWrUAAO+//z7OnDmDH374AWfPnsXKlStRt25dk1xvSa1nz55FeHg47t69i5CQEOzYsQOnT5/GmDFjMGzYMBw7dkx6T1xcHObNmyfVtWHDBnh6egKA1G7v3r24evUqtm7dWubnTpo0CVu2bMG6deuQmpqKwMBAhIeHQ61W67SbMmUKFi5ciF9++QU1atTAyJEjTXLdRNWC2b4KmIiqpaioKGFvby9cXFyEi4uLACC8vb1FSkqKEEKIO3fuiDp16ohNmzZJ72nTpo2YMWOGtO3n5yf69Omjc95BgwaJvn37lvu5mzdvFu7u7tJ269atdc75oMjISDFixAijrg+AcHJykq7PxcVFbNu2TWRlZQkAYsmSJY89R0REhHjrrbeEEELk5uYKR0dHsXr16jLblpz3xIkTOvujoqJE//79hRBC3Lp1Szg4OIj169dLxwsLC4WPj4+YP3++EEKI/fv3CwBi7969UpsdO3YIAOLOnTuGdAFRtcWRJiIyuaeffhppaWlIS0vDsWPHEB4ejr59++LSpUtwcnLCsGHD8PnnnwMAUlNTcfr0aQwfPlznHKGhoaW2z549K23v3bsXvXr1Qv369eHq6ophw4ZBpVLh9u3bAIA333wTs2fPRteuXTF9+nSdiejjxo3Dxo0b0a5dO0yaNAlHjx416PoWL14sXV9aWhqeeeYZ6ViHDh102hYXF2PWrFlo3bo1lEolatWqhd27d+Py5csAgLNnz6KgoAC9evUyqIYHXbhwAUVFRejatau0z8HBAZ06ddLpMwBo06aN9LO3tzcA4Pr160Z/NlF1wtBERCbn4uKCwMBABAYGomPHjvjss8+Qn5+P1atXAwBGjx6NPXv24M8//0RCQgJ69uwJPz8/vc9/8eJF9OvXD23atMGWLVuQkpIizXkqLCyUPuP333/HsGHDcOrUKXTo0AGffPIJAEgBbuLEibhy5Qp69eqFt99+W+/P9/Lykq4vMDAQLi4uOtf+oAULFmDp0qWYPHky9u/fj7S0NISHh0t1Ojs76/25puDg4CD9LJPJANyfU0VEj8fQRERmJ5PJYGdnhzt37gAAWrdujQ4dOmD16tXYsGFDmfNqfvrpp1LbLVq0AACkpKRAq9Vi4cKFeOKJJ9C0aVNcuXKl1Dl8fX0xduxYbN26FW+99ZYU2gCgXr16iIqKwldffYUlS5bg008/NeUlS44cOYL+/ftj6NChaNu2LRo3bozz589Lx5s0aQJnZ2dpEvzD5HI5gPsjVuUJCAiAXC7HkSNHpH1FRUU4fvw4goKCTHQlRFTD2gUQUdVTUFCA7OxsAPefVIuPj8etW7cQGRkptRk9ejRiYmLg4uKC559/vtQ5jhw5gvnz52PAgAHYs2cPNm/ejB07dgAAAgMDUVRUhE8++QSRkZE4cuQIVq1apfP+CRMmoG/fvmjatClu3ryJ/fv3S6Fr2rRpCAkJQcuWLVFQUIDExETpmKk1adIE3377LY4ePYo6depg0aJFuHbtmhRmnJycMHnyZEyaNAlyuRxdu3bFjRs3kJ6ejlGjRsHDwwPOzs7YtWsXGjRoACcnJygUCp3PcHFxwbhx4/DOO+9AqVSiYcOGmD9/Pm7fvo1Ro0aZ5bqIqiOONBGRye3atQve3t7w9vZG586dcfz4cWzevFl6XB4AhgwZgho1amDIkCFwcnIqdY633noLv/zyC9q3b4/Zs2dj0aJFCA8PBwC0bdsWixYtwkcffYRWrVph/fr1mDt3rs77i4uLER0djRYtWqBPnz5o2rQpVqxYAeD+6E1cXBzatGmDbt26wd7eHhs3bjRLX0ydOhXBwcEIDw9Hjx494OXlVWol7/fffx9vvfUWpk2bhhYtWmDQoEHSPKMaNWpg2bJl+Pe//w0fHx/079+/zM+ZN28eBg4ciGHDhiE4OBiZmZnYvXs36tSpY5brIqqOZEIIYe0iiKj6uXjxIgICAnD8+HEEBwfrHPP398eECRMwYcIE6xRHRFQG3p4jIosqKiqCSqXC1KlT8cQTT5QKTEREtoq354jIoo4cOQJvb28cP3681Dwka5szZw5q1apV5qtv377WLo+IrIy354iI/ketVpdaQbuEs7Mz6tevb+GKiMiWMDQRERER6YG354iIiIj0wNBEREREpAeGJiIiIiI9MDQRERER6YGhiYiIiEgPDE1EREREemBoIiIiItIDQxMRERGRHv4fUwLqdUoKfoEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAHHCAYAAACmzLxGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWkVJREFUeJzt3XlcVGXfP/DPgAybMDoom6IguOEObqipqYmGmOVdLqm45a1BpVgWaWa5pqm42+KWuWVqd6JpiJqpuMSSa3RjmHULajMxgCYgc/3+8OH8HEHkjMPMAJ/36zWv2znnmjPfcz0+zqfrXOc6CiGEABERERGVi42lCyAiIiKqTBieiIiIiGRgeCIiIiKSgeGJiIiISAaGJyIiIiIZGJ6IiIiIZGB4IiIiIpKB4YmIiIhIBoYnIiIiIhkYnoiIqpiNGzdCoVDg6tWrli6FqEpieCIi2c6ePYuoqCi0aNECzs7OaNCgAV566SX8+uuvJdr27NkTCoUCCoUCNjY2cHV1RdOmTTFy5EjEx8fL+t69e/eiR48ecHd3h5OTExo1aoSXXnoJBw4cMNWplTBv3jx88803JbafPHkSs2bNQnZ2doV998NmzZol9aVCoYCTkxMCAwMxY8YM5OTkmOQ7tm7ditjYWJMci6iqYngiItk++ugj7Nq1C71798ayZcswYcIEHDt2DEFBQbhw4UKJ9vXr18fmzZvxxRdfYNGiRRg4cCBOnjyJvn37YsiQISgsLHzsd3788ccYOHAgFAoFYmJisHTpUgwePBj//e9/sX379oo4TQBlh6cPPvjArOGp2Jo1a7B582YsWbIEzZo1w9y5c9GvXz+Y4lGlDE9Ej1fD0gUQUeUTHR2NrVu3QqlUStuGDBmCVq1aYcGCBfjyyy8N2qtUKowYMcJg24IFC/D6669j9erV8PX1xUcfffTI77t37x5mz56NZ555Bt9//32J/Tdv3nzCM7Ied+7cgZOTU5lt/vWvf6FOnToAgIkTJ2Lw4MHYvXs3Tp06hZCQEHOUSVStceSJiGTr0qWLQXACgMaNG6NFixa4fPlyuY5ha2uL5cuXIzAwECtXroROp3tk27/++gs5OTno2rVrqfvd3d0N3t+9exezZs1CkyZN4ODgAC8vL7zwwgu4cuWK1Objjz9Gly5d4ObmBkdHRwQHB+Prr782OI5CocDt27exadMm6VLZ6NGjMWvWLLz11lsAAD8/P2nfg3OMvvzySwQHB8PR0RFqtRpDhw7FH3/8YXD8nj17omXLlkhKSkL37t3h5OSEd999t1z996BevXoBADIyMspst3r1arRo0QL29vbw9vZGZGSkwchZz549sW/fPvz+++/SOfn6+squh6iq48gTEZmEEAI3btxAixYtyv0ZW1tbDBs2DO+99x6OHz+OsLCwUtu5u7vD0dERe/fuxWuvvQa1Wv3IYxYVFWHAgAFISEjA0KFD8cYbbyA3Nxfx8fG4cOEC/P39AQDLli3DwIED8fLLL6OgoADbt2/Hiy++iLi4OKmOzZs3Y/z48ejYsSMmTJgAAPD394ezszN+/fVXbNu2DUuXLpVGgerWrQsAmDt3Lt577z289NJLGD9+PG7duoUVK1age/fuSElJQa1ataR6NRoN+vfvj6FDh2LEiBHw8PAod/8VKw6Fbm5uj2wza9YsfPDBB+jTpw8mTZqEtLQ0rFmzBmfPnsWJEydgZ2eH6dOnQ6fT4c8//8TSpUsBADVr1pRdD1GVJ4iITGDz5s0CgFi3bp3B9h49eogWLVo88nN79uwRAMSyZcvKPP7MmTMFAOHs7Cz69+8v5s6dK5KSkkq0W79+vQAglixZUmKfXq+X/nznzh2DfQUFBaJly5aiV69eBtudnZ1FREREiWMtWrRIABAZGRkG269evSpsbW3F3LlzDbafP39e1KhRw2B7jx49BACxdu3aR573g95//30BQKSlpYlbt26JjIwM8cknnwh7e3vh4eEhbt++LYQQYsOGDQa13bx5UyiVStG3b19RVFQkHW/lypUCgFi/fr20LSwsTDRs2LBc9RBVV7xsR0RP7JdffkFkZCRCQkIQEREh67PFIxu5ublltvvggw+wdetWtGvXDgcPHsT06dMRHByMoKAgg0uFu3btQp06dfDaa6+VOIZCoZD+7OjoKP3577//hk6nw1NPPYXk5GRZ9T9s9+7d0Ov1eOmll/DXX39JL09PTzRu3BhHjhwxaG9vb48xY8bI+o6mTZuibt268PPzw7///W8EBARg3759j5wrdejQIRQUFGDy5Mmwsfn//+y/8sorcHV1xb59++SfKFE1xst2RPREsrKyEBYWBpVKha+//hq2trayPp+XlwcAcHFxeWzbYcOGYdiwYcjJycHp06exceNGbN26FeHh4bhw4QIcHBxw5coVNG3aFDVqlP3PW1xcHObMmYPU1FTk5+dL2x8MWMb473//CyEEGjduXOp+Ozs7g/f16tUrMX/scXbt2gVXV1fY2dmhfv360qXIR/n9998B3A9dD1IqlWjUqJG0n4jKh+GJiIym0+nQv39/ZGdn48cff4S3t7fsYxQvbRAQEFDuz7i6uuKZZ57BM888Azs7O2zatAmnT59Gjx49yvX5H3/8EQMHDkT37t2xevVqeHl5wc7ODhs2bMDWrVtln8OD9Ho9FAoFvvvuu1KD5MNziB4cASuv7t27S/OsiMj8GJ6IyCh3795FeHg4fv31Vxw6dAiBgYGyj1FUVIStW7fCyckJ3bp1M6qO9u3bY9OmTcjMzARwf0L36dOnUVhYWGKUp9iuXbvg4OCAgwcPwt7eXtq+YcOGEm0fNRL1qO3+/v4QQsDPzw9NmjSRezoVomHDhgCAtLQ0NGrUSNpeUFCAjIwM9OnTR9r2pCNvRNUB5zwRkWxFRUUYMmQIEhMTsXPnTqPWFioqKsLrr7+Oy5cv4/XXX4erq+sj2965cweJiYml7vvuu+8A/P9LUoMHD8Zff/2FlStXlmgr/m8RSVtbWygUChQVFUn7rl69WupimM7OzqUuhOns7AwAJfa98MILsLW1xQcffFBi0UohBDQaTeknWYH69OkDpVKJ5cuXG9S0bt066HQ6g7scnZ2dy1w2gog48kRERpg6dSq+/fZbhIeHQ6vVllgU8+EFMXU6ndTmzp07SE9Px+7du3HlyhUMHToUs2fPLvP77ty5gy5duqBz587o168ffHx8kJ2djW+++QY//vgjBg0ahHbt2gEARo0ahS+++ALR0dE4c+YMnnrqKdy+fRuHDh3Cq6++iueeew5hYWFYsmQJ+vXrh+HDh+PmzZtYtWoVAgICcO7cOYPvDg4OxqFDh7BkyRJ4e3vDz88PnTp1QnBwMABg+vTpGDp0KOzs7BAeHg5/f3/MmTMHMTExuHr1KgYNGgQXFxdkZGRgz549mDBhAt58880n6n+56tati5iYGHzwwQfo168fBg4ciLS0NKxevRodOnQw+L9XcHAwduzYgejoaHTo0AE1a9ZEeHi4WeslsnqWvNWPiCqn4lvsH/Uqq23NmjVF48aNxYgRI8T3339fru8rLCwUn332mRg0aJBo2LChsLe3F05OTqJdu3Zi0aJFIj8/36D9nTt3xPTp04Wfn5+ws7MTnp6e4l//+pe4cuWK1GbdunWicePGwt7eXjRr1kxs2LBBWgrgQb/88ovo3r27cHR0FAAMli2YPXu2qFevnrCxsSmxbMGuXbtEt27dhLOzs3B2dhbNmjUTkZGRIi0tzaBvylrG4WHF9d26davMdg8vVVBs5cqVolmzZsLOzk54eHiISZMmib///tugTV5enhg+fLioVauWAMBlC4hKoRDCBA9DIiIiIqomOOeJiIiISAaGJyIiIiIZGJ6IiIiIZGB4IiIiIpKB4YmIiIhIBoYnIiIiIhm4SKaJ6PV6XL9+HS4uLny8ARERUSUhhEBubi68vb1hY1O+MSWGJxO5fv06fHx8LF0GERERGeGPP/5A/fr1y9WW4clEXFxcANzv/LKe0UVERETWIycnBz4+PtLveHkwPJlI8aU6V1dXhiciIqJKRs6UG04YJyIiIpKB4YmIiIhIBoYnIiIiIhk454mIiMiC9Ho9CgoKLF1GlaZUKsu9DEF5MDwRERFZSEFBATIyMqDX6y1dSpVmY2MDPz8/KJVKkxyP4YmIiMgChBDIzMyEra0tfHx8TDoyQv9f8SLWmZmZaNCggUkWsmZ4IiIisoB79+7hzp078Pb2hpOTk6XLqdLq1q2L69ev4969e7Czs3vi4zHmEhERWUBRUREAmOxSEj1acR8X9/mTYngiIiKyID4PteKZuo952Y4eS6PRlHkniFKphJubmxkrIiIishyGJyqTRqPBypUrH9suKiqKAYqIiKoFXrajMj084qTTuSAjwxc6nUuZ7YiIqGoaPXo0FAoFFAoF7Ozs4OHhgWeeeQbr16+XteTCxo0bUatWrYortAJx5InKLTm5HfbuHQAhbKBQ6BEeHoegoBRLl0VEVC1ZckpFv379sGHDBhQVFeHGjRs4cOAA3njjDXz99df49ttvUaNG1Y4XVfvsyGR0OhcpOAGAEDbYu3cA/P3ToVLlWrg6IqLqxdJTKuzt7eHp6QkAqFevHoKCgtC5c2f07t0bGzduxPjx47FkyRJs2LABv/32G9RqNcLDw7Fw4ULUrFkTR48exZgxYwD8/8nc77//PmbNmoXNmzdj2bJlSEtLg7OzM3r16oXY2Fi4u7ub/DyMxct2VC5arZsUnIoJYQOtVm2hioiIqq/yTpUw55SKXr16oU2bNti9ezeA+6t6L1++HBcvXsSmTZtw+PBhTJs2DQDQpUsXxMbGwtXVFZmZmcjMzMSbb74JACgsLMTs2bPx888/45tvvsHVq1cxevRos51HeXDkicpFrdZAodAbBCiFQg+1WmvBqoiIyJo0a9YM586dAwBMnjxZ2u7r64s5c+Zg4sSJWL16NZRKJVQqFRQKhTSCVWzs2LHSnxs1aoTly5ejQ4cOyMvLQ82aNc1yHo/DkScqF5UqF+HhcVAo7k8GLJ7zxEt2RERUTAghXYY7dOgQevfujXr16sHFxQUjR46ERqPBnTt3yjxGUlISwsPD0aBBA7i4uKBHjx4AgGvXrlV4/eXFkScqt6CgFPj7p0OrVUOt1jI4ERGRgcuXL8PPzw9Xr17FgAEDMGnSJMydOxdqtRrHjx/HuHHjUFBQ8MjH0dy+fRuhoaEIDQ3Fli1bULduXVy7dg2hoaFWdVc3wxOV6eHHBqhUuaWGJj5egIioejt8+DDOnz+PKVOmICkpCXq9HosXL5YeePzVV18ZtFcqlSUel/LLL79Ao9FgwYIF8PHxAQD89NNP5jkBGRieqExubm6IioriCuNERCTJz89HVlaWwVIF8+fPx4ABAzBq1ChcuHABhYWFWLFiBcLDw3HixAmsXbvW4Bi+vr7Iy8tDQkIC2rRpAycnJzRo0ABKpRIrVqzAxIkTceHCBcyePdtCZ/lonPNEj+Xm5gYvL69HvhiciIiqlwMHDsDLywu+vr7o168fjhw5guXLl+M///kPbG1t0aZNGyxZsgQfffQRWrZsiS1btmD+/PkGx+jSpQsmTpyIIUOGoG7duli4cCHq1q2LjRs3YufOnQgMDMSCBQvw8ccfW+gsH00hhBCWLqIqyMnJgUqlgk6ng6urq6XLISIiK3f37l1kZGTAz88PDg4Osj5r6XWeKpuy+tqY329etiMiIqpkOKXCshieiIiIKiEGI8vhnCciIiIiGRieiIiIiGRgeCIiIiKSgeGJiIiISAaGJyIiIiIZGJ6IiIiIZGB4IiIiIpKB4YmIiIisxtGjR6FQKJCdnV3uz/j6+iI2NrbCanqYRcPTmjVr0Lp1a7i6usLV1RUhISH47rvvpP09e/aEQqEweE2cONHgGNeuXUNYWBicnJzg7u6Ot956C/fu3TNoc/ToUQQFBcHe3h4BAQHYuHFjiVpWrVoFX19fODg4oFOnTjhz5kyFnDMZT6PRIDMz85EvjUZj6RKJiKq80aNHl/p7DACRkZFQKBQYPXq0+QszI4uuMF6/fn0sWLAAjRs3hhACmzZtwnPPPYeUlBS0aNECAPDKK6/gww8/lD7j5OQk/bmoqAhhYWHw9PTEyZMnkZmZiVGjRsHOzg7z5s0DAGRkZCAsLAwTJ07Eli1bkJCQgPHjx8PLywuhoaEAgB07diA6Ohpr165Fp06dEBsbi9DQUKSlpcHd3d2MPUKPwuc4ERFZDx8fH2zfvh1Lly6Fo6MjgPvPj9u6dSsaNGhg4eoqnkVHnsLDw/Hss8+icePGaNKkCebOnYuaNWvi1KlTUhsnJyd4enpKrwcf2vf999/j0qVL+PLLL9G2bVv0798fs2fPxqpVq6Tn/axduxZ+fn5YvHgxmjdvjqioKPzrX//C0qVLpeMsWbIEr7zyCsaMGYPAwECsXbsWTk5OWL9+vfk6g8r08PObdDoXZGT4QqdzKbMdERGZXlBQEHx8fLB7925p2+7du9GgQQO0a9dO2pafn4/XX38d7u7ucHBwQLdu3XD27FmDY+3fvx9NmjSBo6Mjnn76aVy9erXE9x0/fhxPPfUUHB0d4ePjg9dffx23b9+usPN7HKuZ81RUVITt27fj9u3bCAkJkbZv2bIFderUQcuWLRETE4M7d+5I+xITE9GqVSt4eHhI20JDQ5GTk4OLFy9Kbfr06WPwXaGhoUhMTARw/8c2KSnJoI2NjQ369OkjtSlNfn4+cnJyDF5kHsnJ7RAbOxmbNkUgNnYykpPbPf5DRERV2J9/AkeO3P9fcxk7diw2bNggvV+/fj3GjBlj0GbatGnYtWsXNm3ahOTkZAQEBCA0NBRarRYA8Mcff+CFF15AeHg4UlNTMX78eLzzzjsGx7hy5Qr69euHwYMH49y5c9ixYweOHz+OqKioij/JR7B4eDp//jxq1qwJe3t7TJw4EXv27EFgYCAAYPjw4fjyyy9x5MgRxMTEYPPmzRgxYoT02aysLIPgBEB6n5WVVWabnJwc/PPPP/jrr79QVFRUapviY5Rm/vz5UKlU0svHx8f4TqBy0+lcsHfvAAhx/6+uEDbYu3dAiREoIqLqYt06oGFDoFev+/+7bp15vnfEiBE4fvw4fv/9d/z+++84ceKEwW/07du3sWbNGixatAj9+/dHYGAgPvvsMzg6OmLd/xW5Zs0a+Pv7Y/HixWjatClefvnlEvOl5s+fj5dffhmTJ09G48aN0aVLFyxfvhxffPEF7t69a56TfYhF5zwBQNOmTZGamgqdToevv/4aERER+OGHHxAYGIgJEyZI7Vq1agUvLy/07t0bV65cgb+/vwWrBmJiYhAdHS29z8nJYYAyA63WTQpOxYSwgVarhkqVa6GqiIgs488/gQkTAL3+/nu9Hvj3v4HQUKB+/Yr97rp16yIsLAwbN26EEAJhYWGoU6eOtP/KlSsoLCxE165dpW12dnbo2LEjLl++DAC4fPkyOnXqZHDcB68+AcDPP/+Mc+fOYcuWLdI2IQT0ej0yMjLQvHnziji9Mlk8PCmVSgQEBAAAgoODcfbsWSxbtgyffPJJibbFHZyeng5/f394enqWuCvuxo0bAABPT0/pf4u3PdjG1dUVjo6OsLW1ha2tbaltio9RGnt7e9jb28s8W3pSarUGCoXeIEApFHqo1VoLVkVEZBn//e//D07FioqA9PSKD0/A/Ut3xZfPVq1aVSHfkZeXh3//+994/fXXS+yz1OR0i1+2e5her0d+fn6p+1JTUwEAXl5eAO6n0/Pnz+PmzZtSm/j4eLi6ukqX/kJCQpCQkGBwnPj4eCnZKpVKBAcHG7TR6/VISEgokX7J8lSqXISHx0GhuP+vhUKhR3h4HEediKhaatwYsHnol9zWFvi/MYkK169fPxQUFKCwsFC6g72Yv78/lEolTpw4IW0rLCzE2bNnpd/o5s2blxgEefCmMeD+5PRLly4hICCgxEupVFbQmZXNoiNPMTEx6N+/Pxo0aIDc3Fxs3boVR48excGDB3HlyhVs3boVzz77LNzc3HDu3DlMmTIF3bt3R+vWrQEAffv2RWBgIEaOHImFCxciKysLM2bMQGRkpDQqNHHiRKxcuRLTpk3D2LFjcfjwYXz11VfYt2+fVEd0dDQiIiLQvn17dOzYEbGxsbh9+3aJiW9kHYKCUuDvnw6tVg21WsvgRETVVv36wKef3r9UV1R0Pzh98ol5Rp0AwNbWVroEZ2tra7DP2dkZkyZNwltvvQW1Wo0GDRpg4cKFuHPnDsaNGwfg/m/04sWL8dZbb2H8+PFISkoqsRbj22+/jc6dOyMqKgrjx4+Hs7MzLl26hPj4+HItYVMRLBqebt68iVGjRiEzMxMqlQqtW7fGwYMH8cwzz+CPP/7AoUOHpCDj4+ODwYMHY8aMGdLnbW1tERcXh0mTJiEkJATOzs6IiIgwWBfKz88P+/btw5QpU7Bs2TLUr18fn3/+uUFCHjJkCG7duoWZM2ciKysLbdu2xYEDB0pMIifLefi/LlSq3FJDk6X+K4SIyFLGjbs/xyk9/f6Ik7mCU7EHlxB62IIFC6DX6zFy5Ejk5uaiffv2OHjwIGrXrg3g/mW3Xbt2YcqUKVixYgU6duyIefPmYezYsdIxWrdujR9++AHTp0/HU089BSEE/P39MWTIkAo/t0dRCCGExb69CsnJyYFKpYJOpyvzLxIZT6PRlLmOk1Kp5AKZRFRp3L17FxkZGfDz84ODg4Oly6nSyuprY36/LT5hnKi8GIyIiMgaWN2EcSIiIiJrxvBEREREJAPDExEREZEMDE9EREQWxPu2Kp6p+5jhiYiIyAKK10Uq6y5iMo3iPn54LSpj8W47K8Xb8omIqrYaNWrAyckJt27dgp2dHWweXiqcTEKv1+PWrVtwcnJCjRqmiT0MT1ZIo9GUa9XUqKgoswQoBjkiItNTKBTw8vJCRkYGfv/9d0uXU6XZ2NigQYMGUCgUJjkew5MVejio6HQu0GrdoFZrDFbVNsdQr7UFOSKiqkSpVKJx48a8dFfBlEqlSUf2GJ6sXHJyO+zdOwBC2EgPwQ0KSjHb91tTkCMiqopsbGy4wnglw/BkxXQ6Fyk4AYAQNti7dwD8/dMt8jBcUwU5XgYkIqLKjOHJimm1blJwKiaEDbRatdnDk6mCHC8DEhFRZcep/VZMrdZAodAbbFMo9FCrtWavpawgJ0dplwEzMnyh07mU2Y6IiMhacOTJiqlUuQgPjytxqcwSl+yKg9yDAepJg5yl53MREREZg+HJygUFpcDfPx1arRpqtdYiwQkwfZCztvlcRERE5cXwZIWUSqXBe5Uqt9RA8XC7imbKIGdN87mIiIjkYHiyQm5uboiKirKKO9IqKshVxGVAIiIic2B4slLWcqdZRQU5a5rPRUREJAfDEz1WRQU5a5nPRUREJAfDE5mVtc7nIiIiKi+GJzIra5rPRUREZAyGJzI7BiMiIqrMuMI4ERERkQwMT0REREQyMDwRERERycDwRERERCQDwxMRERGRDAxPRERERDIwPBERERHJwPBEREREJAPDExEREZEMDE9EREREMjA8EREREcnA8EREREQkA8MTERERkQwMT0REREQyMDwRERERycDwRERERCQDwxMRERGRDAxPRERERDIwPBERERHJwPBEREREJAPDExEREZEMDE9EREREMjA8EREREcnA8EREREQkA8MTERERkQwMT0REREQyMDwRERERycDwRERERCQDwxMRERGRDAxPRERERDIwPBERERHJwPBEREREJINFw9OaNWvQunVruLq6wtXVFSEhIfjuu++k/Xfv3kVkZCTc3NxQs2ZNDB48GDdu3DA4xrVr1xAWFgYnJye4u7vjrbfewr179wzaHD16FEFBQbC3t0dAQAA2btxYopZVq1bB19cXDg4O6NSpE86cOVMh50xERESVm0XDU/369bFgwQIkJSXhp59+Qq9evfDcc8/h4sWLAIApU6Zg79692LlzJ3744Qdcv34dL7zwgvT5oqIihIWFoaCgACdPnsSmTZuwceNGzJw5U2qTkZGBsLAwPP3000hNTcXkyZMxfvx4HDx4UGqzY8cOREdH4/3330dycjLatGmD0NBQ3Lx503ydQURERJWDsDK1a9cWn3/+ucjOzhZ2dnZi586d0r7Lly8LACIxMVEIIcT+/fuFjY2NyMrKktqsWbNGuLq6ivz8fCGEENOmTRMtWrQw+I4hQ4aI0NBQ6X3Hjh1FZGSk9L6oqEh4e3uL+fPnl7tunU4nAAidTifvhImIiMhijPn9tpo5T0VFRdi+fTtu376NkJAQJCUlobCwEH369JHaNGvWDA0aNEBiYiIAIDExEa1atYKHh4fUJjQ0FDk5OdLoVWJiosExitsUH6OgoABJSUkGbWxsbNCnTx+pTWny8/ORk5Nj8CIiIqKqz+Lh6fz586hZsybs7e0xceJE7NmzB4GBgcjKyoJSqUStWrUM2nt4eCArKwsAkJWVZRCcivcX7yurTU5ODv755x/89ddfKCoqKrVN8TFKM3/+fKhUKunl4+Nj1PkTERFR5WLx8NS0aVOkpqbi9OnTmDRpEiIiInDp0iVLl/VYMTEx0Ol00uuPP/6wdElERERkBjUsXYBSqURAQAAAIDg4GGfPnsWyZcswZMgQFBQUIDs722D06caNG/D09AQAeHp6lrgrrvhuvAfbPHyH3o0bN+Dq6gpHR0fY2trC1ta21DbFxyiNvb097O3tjTtpIiIiqrQsPvL0ML1ej/z8fAQHB8POzg4JCQnSvrS0NFy7dg0hISEAgJCQEJw/f97grrj4+Hi4uroiMDBQavPgMYrbFB9DqVQiODjYoI1er0dCQoLUhoiIiKiYRUeeYmJi0L9/fzRo0AC5ubnYunUrjh49ioMHD0KlUmHcuHGIjo6GWq2Gq6srXnvtNYSEhKBz584AgL59+yIwMBAjR47EwoULkZWVhRkzZiAyMlIaFZo4cSJWrlyJadOmYezYsTh8+DC++uor7Nu3T6ojOjoaERERaN++PTp27IjY2Fjcvn0bY8aMsUi/EBERkRWrwLv/Hmvs2LGiYcOGQqlUirp164revXuL77//Xtr/zz//iFdffVXUrl1bODk5ieeff15kZmYaHOPq1auif//+wtHRUdSpU0dMnTpVFBYWGrQ5cuSIaNu2rVAqlaJRo0Ziw4YNJWpZsWKFaNCggVAqlaJjx47i1KlTss6FSxUQERFVPsb8fiuEEMLSAa4qyMnJgUqlgk6ng6urq6XLISIionIw5vfb6uY8EREREVkzhiciIiIiGRieiIiIiGRgeCIiIiKSgeGJiIiISAaGJyIiIiIZGJ6IiIiIZGB4IiIiIpKB4YmIiIhIBoYnIiIiIhkYnoiIiIhkYHgiIiIikoHhiYiIiEgGhiciIiIiGRieiIiIiGRgeCIiIiKSgeGJiIiISAaGJyIiIiIZGJ6IiIiIZGB4IiIiIpKhhqULIKLqTaPRoKCg4JH7lUol3NzczFgREVHZGJ6IyGI0Gg1Wrlz52HZRUVEMUERkNXjZjogs5uERJ53OBRkZvtDpXMpsR0RkSRx5IiKrkJzcDnv3DoAQNlAo9AgPj0NQUIqlyyIiKoEjT0RkcTqdixScAEAIG+zdO6DECBQRkTUwOjz5+vriww8/xLVr10xZDxFVQ1qtmxSciglhA61WbaGKiIgezejwNHnyZOzevRuNGjXCM888g+3btyM/P9+UtRFRFaHRaJCZmVni9ddffwEA1GoNFAq9wWcUCj3Uaq0lyiUiKpNCCCGe5ADJycnYuHEjtm3bhqKiIgwfPhxjx45FUFCQqWqsFHJycqBSqaDT6eDq6mrpcoisRnnvqCtrztOECRPg5eVV0aUSUTVkzO/3E4enYoWFhVi9ejXefvttFBYWolWrVnj99dcxZswYKBQKU3yFVWN4IipdZmYmPv30U+m9TucCrdYNarUGKlWuQdv7+9RQq7UG+xieiKiiGPP7/cR32xUWFmLPnj3YsGED4uPj0blzZ4wbNw5//vkn3n33XRw6dAhbt2590q8hoirgcXfUqVS5JQIVcH+hTCIia2F0eEpOTsaGDRuwbds22NjYYNSoUVi6dCmaNWsmtXn++efRoUMHkxRKRKWrLCt0P+qOOn//dKhUuXjhhRdQp06dEp+zlvqJiIoZHZ46dOiAZ555BmvWrMGgQYNgZ2dXoo2fnx+GDh36RAUS0aNVphW6y7qjTqXKRZ06dXhpjogqBaPD02+//YaGDRuW2cbZ2RkbNmww9iuI6DFKW6G7tPlE1rBCd/EddQ8GKN5RR0SVkdFLFTz99NPQaDQltmdnZ6NRo0ZPVBQRyZec3A6xsZOxaVMEYmMnIzm5naVLMqBS5SI8PE5akqB4zlNpc5yIiKyZ0SNPV69eRVFRUYnt+fn5+N///vdERRGRPI+bT2QtgoJS4O+fXuoddURElYXs8PTtt99Kfz548CBUKpX0vqioCAkJCfD19TVJcURUPo+bT2RJD98pxzvqiKiykx2eBg0aBABQKBSIiIgw2GdnZwdfX18sXrzYJMURUflY83wiNzc3REVFVYo7AomIykN2eNLr789X8PPzw9mzZ0u9tZiIzKt4PtHDayhZetSpGIMREVUlRs95ysjIMGUdRPSEOJ+IiMg8jA5PH374YZn7Z86caeyhiaicOJ+IiMj8jH62Xbt2hrdBFxYWIiMjAzVq1IC/vz+Sk5NNUmBlwWfbkaVUlhXGiYiskVmfbZeSklJiW05ODkaPHo3nn3/e2MMSkUwMRkRE5mX0IpmlcXV1xQcffID33nvPlIclIiIishomDU8AoNPpoNPpTH1YIiIiIqtg9GW75cuXG7wXQiAzMxObN29G//79n7gwIiIiImtkdHhaunSpwXsbGxvUrVsXERERiImJeeLCiIiIiKwR13kiIqvFOwmJyBoZHZ6A+5fqNBoNFAoF/wEjIpPSaDRYuXLlY9tFRUXx3x8iMiujJoxnZWVh1KhRqF27Njw8PODu7o7atWtj7NixuHHjhqlrJKJq6OERJ53OBRkZvtDpXMpsR0RU0WSPPOXk5KBLly7Iy8vDmDFj0KxZMwghcOnSJWzbtg3Hjx9HcnIyatasWRH1ElE1lJzcrsRz+4KCSq41R0RkDrLD07Jly2Bra4uLFy+ibt26BvtmzJiBrl27Yvny5Xj33XdNViQRVV86nYsUnABACBvs3TsA/v7pfH4fEVmE7Mt2+/btw7vvvlsiOAGAu7s7YmJisHfvXpMUR0Sk1bpJwamYEDbQatUWqoiIqjvZ4enXX39Fly5dHrm/S5cuSEtLe6KiiIiKqdUaKBR6g20KhR5qtdZCFRFRdSc7POXk5KBWrVqP3F+rVi3k5OQ8SU1ERBKVKhfh4XFSgCqe88RLdkRkKbLDkxACNjaP/phCoYAQolzHmj9/Pjp06AAXFxe4u7tj0KBBJUatevbsCYVCYfCaOHGiQZtr164hLCwMTk5OcHd3x1tvvYV79+4ZtDl69CiCgoJgb2+PgIAAbNy4sUQ9q1atgq+vLxwcHNCpUyecOXOmXOdBRBUrKCgFkyfHIiJiIyZPjuVkcSKyKNkTxoUQaNKkCRQKxSP3l9cPP/yAyMhIdOjQAffu3cO7776Lvn374tKlS3B2dpbavfLKK/jwww+l905OTtKfi4qKEBYWBk9PT5w8eRKZmZkYNWoU7OzsMG/ePAD3F/QMCwvDxIkTsWXLFiQkJGD8+PHw8vJCaGgoAGDHjh2Ijo7G2rVr0alTJ8TGxiI0NBRpaWlwd3eX1UdE9OSUSqXBe5Uqt9TRpofbERFVNIWQk3YAbNq0qVztIiIiZBdz69YtuLu744cffkD37t0B3B95atu2LWJjY0v9zHfffYcBAwbg+vXr8PDwAACsXbsWb7/9Nm7dugWlUom3334b+/btw4ULF6TPDR06FNnZ2Thw4AAAoFOnTujQoYO0KJ9er4ePjw9ee+01vPPOO4+tPScnByqVCjqdDq6urrLPnYhK4grjRFTRjPn9lj3yJDcUbdu2DQMHDjQYSXoUnU4HAFCrDe+i2bJlC7788kt4enoiPDwc7733njT6lJiYiFatWknBCQBCQ0MxadIkXLx4Ee3atUNiYiL69OljcMzQ0FBMnjwZwP1F9pKSkgyeyWdjY4M+ffogMTGx1Frz8/ORn58vvec8LyLTYzAiImtk1Arjcvz73/8u16rjer0ekydPRteuXdGyZUtp+/Dhw/Hll1/iyJEjiImJwebNmzFixAhpf1ZWlkFwAiC9z8rKKrNNTk4O/vnnH/z1118oKioqtU3xMR42f/58qFQq6eXj4/PYcyQiIqLK74mebVce5b0qGBkZiQsXLuD48eMG2ydMmCD9uVWrVvDy8kLv3r1x5coV+Pv7m7RWOWJiYhAdHS29z8nJYYAiIiKqBio8PJVHVFQU4uLicOzYMdSvX7/Mtp06dQIApKenw9/fH56eniXuiise6fL09JT+9+HRrxs3bsDV1RWOjo6wtbWFra1tqW2Kj/Ewe3t72Nvbl/8kicikOB+KiCzFouFJCIHXXnsNe/bswdGjR+Hn5/fYz6SmpgIAvLy8AAAhISGYO3cubt68Kd0VFx8fD1dXVwQGBkpt9u/fb3Cc+Ph4hISEALj/j2xwcDASEhIwaNAgAPcvIyYkJCAqKsoUp0pEJqTRaKSbO8oSFRXFAEVEJmfR8BQZGYmtW7fiP//5D1xcXKT5RSqVCo6Ojrhy5Qq2bt2KZ599Fm5ubjh37hymTJmC7t27o3Xr1gCAvn37IjAwECNHjsTChQuRlZWFGTNmIDIyUhoZmjhxIlauXIlp06Zh7NixOHz4ML766ivs27dPqiU6OhoRERFo3749OnbsiNjYWNy+fRtjxowxf8cQUZkeHnHS6Vyg1bpBrdYYLGdQ1sgUEZGxLBqe1qxZA+D+cgQP2rBhA0aPHg2lUolDhw5JQcbHxweDBw/GjBkzpLa2traIi4vDpEmTEBISAmdnZ0RERBisC+Xn54d9+/ZhypQpWLZsGerXr4/PP/9cWuMJAIYMGYJbt25h5syZyMrKQtu2bXHgwIESk8iJqjNrvFSWnNxOenBw8erjXESTiCqS7HWegPsLU544cQKtW7cu81EtANCyZUt89913VX4yNdd5oqrOmi6VZWZm4tNPP4VO54LY2MkGDw5WKPSYPDkWKlUuJkyYIF3iJyIqjTG/30YtVWBra4u+ffvi77//fmzbCxcuVPngRFQdlHapLCPDFzqdS5ntKpJW62YQnABACBtotepHfIKI6MkZfdmuZcuW+O2338o1yZuIqhZruVSmVmugUOhLjDyp1Vqz10JE1YfRi2TOmTMHb775JuLi4pCZmYmcnByDFxFVTTqdixScgPsjPXv3DigxAmUOKlUuwsPjoFDoAUAKcqU9A4+IyFSMHnl69tlnAQADBw40eEiwEAIKhQJFRUVPXh0RWZ2yLpVZIrQEBaXA3z8dWq0aarWWwYmIKpzR4enIkSOmrIOIKglruFSmVCoN3qtUuaWGpofbERGZgtHhqUePHqasg4gqieJLZQ/PeTLniI+bmxuioqKsbtkEIqoenmidpx9//BGffPIJfvvtN+zcuRP16tXD5s2b4efnh27dupmqRiKyMtZwqYzBiIgsxegJ47t27UJoaCgcHR2RnJyM/Px8AIBOp8O8efNMViARWYfSLpX5+f1eIjjxUhkRVXVGLZIJAO3atcOUKVMwatQouLi44Oeff0ajRo2QkpKC/v37S49aqS64SCZVB9a4wjgR0ZMw5vfb6Mt2aWlp6N69e4ntKpUK2dnZxh6WiKwYgxER0RNctvP09ER6enqJ7cePH0ejRo2eqCgiIiIia2V0eHrllVfwxhtv4PTp01AoFLh+/Tq2bNmCN998E5MmTTJljURERERWw+jLdu+88w70ej169+6NO3fuoHv37rC3t8ebb76J1157zZQ1EhEREVkNoyeMFysoKEB6ejry8vIQGBiImjVrmqq2SoUTxomIiCofs04YL6ZUKhEYGPikhyEiIiKqFIwOT3fv3sWKFStw5MgR3Lx5E3q93mB/cnLyExdHREREZG2MDk/jxo3D999/j3/961/o2LGjwcOBiYiIiKoqo8NTXFwc9u/fj65du5qyHiIiIiKrZvRSBfXq1YOLi4spayEiIiKyekaHp8WLF+Ptt9/G77//bsp6iIiIiKya0Zft2rdvj7t376JRo0ZwcnKCnZ2dwX6tVvvExRERERFZG6PD07Bhw/C///0P8+bNg4eHByeMExERUbVgdHg6efIkEhMT0aZNG1PWQ0RU6Wg0GhQUFDxyv1Kp5EOViaoQo8NTs2bN8M8//5iyFiKiSkej0WDlypWPbRcVFcUARVRFGD1hfMGCBZg6dSqOHj0KjUaDnJwcgxcRUXXw8IiTTueCjAxf6HQuZbYjosrL6JGnfv36AQB69+5tsF0IAYVCgaKioierjIiokklOboe9ewdACBsoFHqEh8chKCjF0mURkYkZHZ6OHDliyjqIiCo1nc5FCk4AIIQN9u4dAH//dKhUuRaujohMyajwVFhYiA8//BBr165F48aNTV0TEVGlo9W6ScGpmBA20GrVDE9EVYxRc57s7Oxw7tw5U9dCRFRpqdUaKBSGD0hXKPRQq7nmHVFVY/SE8REjRmDdunWmrIWIqNJSqXIRHh4nBajiOU8cdSKqeoye83Tv3j2sX78ehw4dQnBwMJydnQ32L1my5ImLIyKqTIKCUuDvnw6tVg21WsvgRFRFGR2eLly4gKCgIADAr7/+arCPq40TUXWhVCoN3qtUuaWGpofbEVHlpRBCCEsXURXk5ORApVJBp9PB1dXV0uUQkRlxhXGiysuY32+jR54e9OeffwIA6tevb4rDERFVKgxGRNWL0RPG9Xo9PvzwQ6hUKjRs2BANGzZErVq1MHv2bOj1+scfgIiIiKgSMnrkafr06Vi3bh0WLFiArl27AgCOHz+OWbNm4e7du5g7d67JiiQiIiKyFkbPefL29sbatWsxcOBAg+3/+c9/8Oqrr+J///ufSQqsLDjniYiIqPIx5vfb6Mt2Wq0WzZo1K7G9WbNm0Gq5KBwRERFVTUaHpzZt2mDlypUltq9cuRJt2rR5oqKIiIiIrJXRc54WLlyIsLAwHDp0CCEhIQCAxMRE/PHHH9i/f7/JCiQiIiKyJkaPPPXo0QO//vornn/+eWRnZyM7OxsvvPAC0tLS8NRTT5myRiIiIiKrIWvk6YUXXsDGjRvh6uqKL774AkOGDOFddURERFStyBp5iouLw+3btwEAY8aMgU6nq5CiiIiIiKyVrJGnZs2aISYmBk8//TSEEPjqq68eeVvfqFGjTFIgERERkTWRtc7TyZMnER0djStXrkCr1cLFxaXUhwArFIpqt1wB13kiIiKqfIz5/TZ6kUwbGxtkZWXB3d3dmI9XOQxPRERElY9ZF8nMyMhA3bp1jf04ERERUaVkdHhq2LAhjh8/jhEjRiAkJER6HMvmzZtx/PhxkxVIREREZE2MDk+7du1CaGgoHB0dkZKSgvz8fACATqfDvHnzTFYgEVFlptFokJmZ+ciXRqOxdIlEJJPRK4zPmTMHa9euxahRo7B9+3Zpe9euXTFnzhyTFEdEVJlpNJpSH2P1sKioKLi5uZmhIiIyBaNHntLS0tC9e/cS21UqFbKzs5+kJiKiKqGgoMDgvU7ngowMX+h0LmW2IyLrZvTIk6enJ9LT0+Hr62uw/fjx42jUqNGT1kVEVKUkJ7fD3r0DIIQNFAo9wsPjEBSUYumyiMgIRo88vfLKK3jjjTdw+vRpKBQKXL9+HVu2bMHUqVMxadIkU9ZIRFSp6XQuUnACACFssHfvgBIjUERUORgdnt555x0MHz4cvXv3Rl5eHrp3747x48dj0qRJGD9+fLmOMX/+fHTo0AEuLi5wd3fHoEGDkJaWZtDm7t27iIyMhJubG2rWrInBgwfjxo0bBm2uXbuGsLAwODk5wd3dHW+99Rbu3btn0Obo0aMICgqCvb09AgICsHHjxhL1rFq1Cr6+vnBwcECnTp1w5swZeZ1CRFQKrdZNCk7FhLCBVqu2UEVE9CSMDk8KhQLTp0+HVqvFhQsXcOrUKdy6dQsqlQp+fn7lOsYPP/yAyMhInDp1CvHx8SgsLETfvn2l5+cBwJQpU7B3717s3LkTP/zwA65fv44XXnhB2l9UVISwsDAUFBTg5MmT2LRpEzZu3IiZM2dKbTIyMhAWFoann34aqampmDx5MsaPH4+DBw9KbXbs2IHo6Gi8//77SE5ORps2bRAaGoqbN28a20VERAAAtVoDhUJvsE2h0EOtrl5PYiCqMoRMd+/eFe+8844IDg4WXbp0EXv27BFCCLF+/Xrh7e0tfHx8xIIFC+QeVgghxM2bNwUA8cMPPwghhMjOzhZ2dnZi586dUpvLly8LACIxMVEIIcT+/fuFjY2NyMrKktqsWbNGuLq6ivz8fCGEENOmTRMtWrQw+K4hQ4aI0NBQ6X3Hjh1FZGSk9L6oqEh4e3uL+fPnl6t2nU4nAAidTifzrImoqrp+/bqYNWuWmDVrlhg48D9CoSgSgBAKRZEYOPA/0r7r169bulSiasuY32/ZE8ZnzpyJTz75BH369MHJkyfx4osvYsyYMTh16hQWL16MF198Eba2tkYFOZ1OBwBQq+8PZSclJaGwsBB9+vSR2jRr1gwNGjRAYmIiOnfujMTERLRq1QoeHh5Sm9DQUEyaNAkXL15Eu3btkJiYaHCM4jaTJ08GcP9Ol6SkJMTExEj7bWxs0KdPHyQmJpZaa35+vrS2FXB/eXciokcJCkqBv386tFo11GotVKpcS5dEREaSHZ527tyJL774AgMHDsSFCxfQunVr3Lt3Dz///HOpDwkuL71ej8mTJ6Nr165o2bIlACArKwtKpRK1atUyaOvh4YGsrCypzYPBqXh/8b6y2uTk5OCff/7B33//jaKiolLb/PLLL6XWO3/+fHzwwQfGnSwRVQtKpdLgvUqVW2poergdEVk32eHpzz//RHBwMACgZcuWsLe3x5QpU54oOAFAZGQkLly4UGke7RITE4Po6GjpfU5ODnx8fCxYERFZGzc3N0RFRZW5jpNSqeQCmUSVjOzwVFRUZPBfSTVq1EDNmjWfqIioqCjExcXh2LFjqF+/vrTd09MTBQUFyM7ONhh9unHjBjw9PaU2D98VV3w33oNtHr5D78aNG3B1dYWjoyNsbW1ha2tbapviYzzM3t4e9vb2xp0wEVUbDEZEVY/s8CSEwOjRo6XgcPfuXUycOBHOzs4G7Xbv3l2uY7322mvYs2cPjh49WuIuveDgYNjZ2SEhIQGDBw8GcH9l82vXriEkJAQAEBISgrlz5+LmzZtwd3cHAMTHx8PV1RWBgYFSm/379xscOz4+XjqGUqlEcHAwEhISMGjQIAD3LyMmJCQgKipKTvcQERFRFSc7PEVERBi8HzFihNFfHhkZia1bt+I///kPXFxcpDlKKpUKjo6OUKlUGDduHKKjo6FWq+Hq6orXXnsNISEh6Ny5MwCgb9++CAwMxMiRI7Fw4UJkZWVhxowZiIyMlALexIkTsXLlSkybNg1jx47F4cOH8dVXX2Hfvn1SLdHR0YiIiED79u3RsWNHxMbG4vbt2xgzZozR50dERERVUIXd+1cOAEp9bdiwQWrzzz//iFdffVXUrl1bODk5ieeff15kZmYaHOfq1auif//+wtHRUdSpU0dMnTpVFBYWGrQ5cuSIaNu2rVAqlaJRo0YG31FsxYoVokGDBkKpVIqOHTuKU6dOlftcuFQBERFR5WPM77dCCCEsF92qjpycHKhUKuh0Ori6ulq6HCIiIioHY36/jV5hnIiIiKg6YngiIiIikoHhiYiIiEgGhiciIiIiGRieiIiIiGRgeCIiIiKSgeGJiIiISAaGJyIiIiIZGJ6IiIiIZGB4IiIiIpKB4YmIiIhIBoYnIiIiIhkYnoiIiIhkYHgiIiIikoHhiYiIiEgGhiciIiIiGRieiIiIiGRgeCIiIiKSgeGJiIiISAaGJyIiIiIZGJ6IiIiIZKhh6QKIiIjKQ6PRoKCg4JH7lUol3NzczFgRVVcMT0REZPU0Gg1Wrlz52HZRUVEMUFTheNmOiIis3sMjTjqdCzIyfKHTuZTZjqgicOSJiIgqleTkdti7dwCEsIFCoUd4eByCglIsXRZVIxx5IiKiSkOnc5GCEwAIYYO9eweUGIEiqkgMT0REVGlotW5ScComhA20WrWFKqLqiOGJiIgqDbVaA4VCb7BNodBDrdZaqCKqjhieiIio0lCpchEeHicFqOI5TypVroUro+qEE8aJiKhSCQpKgb9/OrRaNdRqLYMTmR3DExERWT2lUmnwXqXKLTU0PdyOqCIwPBERkdVzc3NDVFQUVxgnq8DwRERElQKDEVkLThgnIiIikoHhiYiIiEgGhiciIiIiGRieiIiIiGRgeCIiIiKSgeGJiIiISAaGJyIiIiIZGJ6IiIiIZGB4IiIiIpKB4YmIiIhIBoYnIiIiIhkYnoiIiIhkYHgiIiIikoHhiYiIiEgGhiciIiIiGRieiIiIiGRgeCIiIiKSgeGJiIiISAaGJyIiIiIZGJ6IiIiIZGB4IiIiIpLBouHp2LFjCA8Ph7e3NxQKBb755huD/aNHj4ZCoTB49evXz6CNVqvFyy+/DFdXV9SqVQvjxo1DXl6eQZtz587hqaeegoODA3x8fLBw4cIStezcuRPNmjWDg4MDWrVqhf3795v8fImIiKjys2h4un37Ntq0aYNVq1Y9sk2/fv2QmZkpvbZt22aw/+WXX8bFixcRHx+PuLg4HDt2DBMmTJD25+TkoG/fvmjYsCGSkpKwaNEizJo1C59++qnU5uTJkxg2bBjGjRuHlJQUDBo0CIMGDcKFCxdMf9JERERUqSmEEMLSRQCAQqHAnj17MGjQIGnb6NGjkZ2dXWJEqtjly5cRGBiIs2fPon379gCAAwcO4Nlnn8Wff/4Jb29vrFmzBtOnT0dWVhaUSiUA4J133sE333yDX375BQAwZMgQ3L59G3FxcdKxO3fujLZt22Lt2rXlqj8nJwcqlQo6nQ6urq5G9AAREVFJGo0GBQUFj9yvVCrh5uZmxoqqFmN+v2tUcE1P7OjRo3B3d0ft2rXRq1cvzJkzR/pLkpiYiFq1aknBCQD69OkDGxsbnD59Gs8//zwSExPRvXt3KTgBQGhoKD766CP8/fffqF27NhITExEdHW3wvaGhoY8MbQCQn5+P/Px86X1OTo6JzpiIiKoiY0KQRqPBypUrH3vsqKgoBigzsurw1K9fP7zwwgvw8/PDlStX8O6776J///5ITEyEra0tsrKy4O7ubvCZGjVqQK1WIysrCwCQlZUFPz8/gzYeHh7Svtq1ayMrK0va9mCb4mOUZv78+fjggw9McZpERFTFGRuCHg5bOp0LtFo3qNUaqFS5j2xHFcuqw9PQoUOlP7dq1QqtW7eGv78/jh49it69e1uwMiAmJsZgtConJwc+Pj4WrIiIiKyVKUJQcnI77N07AELYQKHQIzw8DkFBKRVWMz2aVYenhzVq1Ah16tRBeno6evfuDU9PT9y8edOgzb1796DVauHp6QkA8PT0xI0bNwzaFL9/XJvi/aWxt7eHvb39E58TERFVL8aEIJ3ORfoMAAhhg717B8DfP90gfJF5VKp1nv78809oNBp4eXkBAEJCQpCdnY2kpCSpzeHDh6HX69GpUyepzbFjx1BYWCi1iY+PR9OmTVG7dm2pTUJCgsF3xcfHIyQkpKJPiYiIqpFHhSCdzqXMz2m1btJniglhA61WXWG10qNZNDzl5eUhNTUVqampAICMjAykpqbi2rVryMvLw1tvvYVTp07h6tWrSEhIwHPPPYeAgACEhoYCAJo3b45+/frhlVdewZkzZ3DixAlERUVh6NCh8Pb2BgAMHz4cSqUS48aNw8WLF7Fjxw4sW7bM4JLbG2+8gQMHDmDx4sX45ZdfMGvWLPz000+Iiooye58QEVHVZWwIUqs1UCj0BtsUCj3Uaq3Ja6THs2h4+umnn9CuXTu0a9cOABAdHY127dph5syZsLW1xblz5zBw4EA0adIE48aNQ3BwMH788UeDy2VbtmxBs2bN0Lt3bzz77LPo1q2bwRpOKpUK33//PTIyMhAcHIypU6di5syZBmtBdenSBVu3bsWnn36KNm3a4Ouvv8Y333yDli1bmq8ziIioyjM2BKlUuQgPj5M+W3y5j5fsLMOic5569uyJspaZOnjw4GOPoVarsXXr1jLbtG7dGj/++GOZbV588UW8+OKLj/0+IiIiYxWHoIfnPJUnBAUFpcDfPx1arRpqtZbByYIq1YRxIiKiyk5OCHpwjULgfvgqrf3D7ahiMTwRERFVMGNDkJubG6KiorjCuJWxmsezVHZ8PAsREZXF3I9Z4WNdyqdKPp6FiIioKjBnUHmSx7owdD0ewxMREVEVY+yK5g+Hrkd9rro/S4/hiYiIqAqTs6L5g2GqrM9V92fpVaoVxomIiKj8jF3R3NjPVRcMT0RERFWUsSua83EwZWN4IiIiqqKMXdGcj4MpG8MTERFRFWXsY134OJiyccI4ERFRFWbsY134OJhHY3giIiKqYkz1WJdHfa66Y3giIiKqYox9rEt5n5FX3Z+lx8ezmAgfz0JERFVBdVthnI9nISIioidSlYJRReHddkREREQycOSJiIiIyqW6XdJ7FIYnIiIieqyHHxr8KNXhocG8bEdERESP9fCIk07ngowM3xLPu6sODw3myBMRERHJkpzcTnpwcPHq40FBKZYuy2w48kRERETlptO5SMEJuP/A4L17B5QYgarKGJ6IiIio3LRaNyk4FRPCBlqt2kIVmR/DExEREZWbWq2RHhhcTKHQQ63WWqgi82N4IiIionJTqXIRHh4nBajiOU/V6Rl4nDBOREREsgQFpcDfPx1arRpqtbZaBSeA4YmIiIjK4eGHAatUuaWGpurw0GCGJyIiInosNzc3REVFcYVxMDwRERFROVWHYFQenDBOREREJAPDExEREZEMDE9EREREMjA8EREREcnA8EREREQkA8MTERERkQwMT0REREQyMDwRERERycDwRERERCQDwxMRERGRDAxPRERERDIwPBERERHJwPBEREREJAPDExEREZEMDE9EREREMtSwdAFEREREpdFoNCgoKHjkfqVSCTc3NzNWdB/DExEREVkdjUaDlStXPrZdVFSU2QMUL9sRERGR1Xl4xEmnc0FGhi90Opcy25kDR56IiIjIqiUnt8PevQMghA0UCj3Cw+MQFJRisXo48kRERERWS6dzkYITAAhhg717B5QYgTInhiciIiKyWlqtmxSciglhA61WbaGKGJ6IiIjIiqnVGigUeoNtCoUearXWQhUxPBEREZEVU6lyER4eJwWo4jlPKlWuxWrihHEiIiKyakFBKfD3T4dWq4ZarbVocAIYnoiIiMgKKZVKg/cqVW6poenhdubA8ERERERWx83NDVFRUVa5wrhF5zwdO3YM4eHh8Pb2hkKhwDfffGOwXwiBmTNnwsvLC46OjujTpw/++9//GrTRarV4+eWX4erqilq1amHcuHHIy8szaHPu3Dk89dRTcHBwgI+PDxYuXFiilp07d6JZs2ZwcHBAq1atsH//fpOfLxEREZWfm5sbvLy8HvmyRHACLByebt++jTZt2mDVqlWl7l+4cCGWL1+OtWvX4vTp03B2dkZoaCju3r0rtXn55Zdx8eJFxMfHIy4uDseOHcOECROk/Tk5Oejbty8aNmyIpKQkLFq0CLNmzcKnn34qtTl58iSGDRuGcePGISUlBYMGDcKgQYNw4cKFijt5IiIiqpyElQAg9uzZI73X6/XC09NTLFq0SNqWnZ0t7O3txbZt24QQQly6dEkAEGfPnpXafPfdd0KhUIj//e9/QgghVq9eLWrXri3y8/OlNm+//bZo2rSp9P6ll14SYWFhBvV06tRJ/Pvf/y53/TqdTgAQOp2u3J8hIiIiyzLm99tqlyrIyMhAVlYW+vTpI21TqVTo1KkTEhMTAQCJiYmoVasW2rdvL7Xp06cPbGxscPr0aalN9+7dDSaUhYaGIi0tDX///bfU5sHvKW5T/D2lyc/PR05OjsGLiIiIqj6rDU9ZWVkAAA8PD4PtHh4e0r6srCy4u7sb7K9RowbUarVBm9KO8eB3PKpN8f7SzJ8/HyqVSnr5+PjIPUUiIiKqhKw2PFm7mJgY6HQ66fXHH39YuiQiIiIyA6sNT56engCAGzduGGy/ceOGtM/T0xM3b9402H/v3j1otVqDNqUd48HveFSb4v2lsbe3h6urq8GLiIiIqj6rDU9+fn7w9PREQkKCtC0nJwenT59GSEgIACAkJATZ2dlISkqS2hw+fBh6vR6dOnWS2hw7dgyFhYVSm/j4eDRt2hS1a9eW2jz4PcVtir+HiIiIqJhFw1NeXh5SU1ORmpoK4P4k8dTUVFy7dg0KhQKTJ0/GnDlz8O233+L8+fMYNWoUvL29MWjQIABA8+bN0a9fP7zyyis4c+YMTpw4gaioKAwdOhTe3t4AgOHDh0OpVGLcuHG4ePEiduzYgWXLliE6Olqq44033sCBAwewePFi/PLLL5g1axZ++uknREVFmbtLiIiIyNpV4N1/j3XkyBEBoMQrIiJCCHF/uYL33ntPeHh4CHt7e9G7d2+RlpZmcAyNRiOGDRsmatasKVxdXcWYMWNEbm6uQZuff/5ZdOvWTdjb24t69eqJBQsWlKjlq6++Ek2aNBFKpVK0aNFC7Nu3T9a5cKkCIiKiyseY32+FEEJYMLtVGTqdDrVq1cIff/zB+U9ERESVRE5ODnx8fJCdnQ2VSlWuz/DZdiaSm3v/YYVcsoCIiKjyyc3NLXd44siTiej1ely/fh0uLi5QKBSltilOtxyduo/9URL7xBD7wxD7oyT2iSH2R0mP6xMhBHJzc+Ht7Q0bm/JNBefIk4nY2Nigfv365WrLpQ0MsT9KYp8YYn8YYn+UxD4xxP4oqaw+Ke+IUzGrXaqAiIiIyBoxPBERERHJwPBkRvb29nj//fdhb29v6VKsAvujJPaJIfaHIfZHSewTQ+yPkiqiTzhhnIiIiEgGjjwRERERycDwRERERCQDwxMRERGRDAxPRERERDIwPJnYqlWr4OvrCwcHB3Tq1Alnzpx5ZNuLFy9i8ODB8PX1hUKhQGxsrPkKNRM5/fHZZ5/hqaeeQu3atVG7dm306dOnzPaVlZw+2b17N9q3b49atWrB2dkZbdu2xebNm81YbcWT0x8P2r59OxQKBQYNGlSxBZqZnP7YuHEjFAqFwcvBwcGM1ZqH3L8j2dnZiIyMhJeXF+zt7dGkSRPs37/fTNVWPDn90bNnzxJ/RxQKBcLCwsxYccWS+/cjNjYWTZs2haOjI3x8fDBlyhTcvXtX3pdWxBOKq6vt27cLpVIp1q9fLy5evCheeeUVUatWLXHjxo1S2585c0a8+eabYtu2bcLT01MsXbrUvAVXMLn9MXz4cLFq1SqRkpIiLl++LEaPHi1UKpX4888/zVx5xZHbJ0eOHBG7d+8Wly5dEunp6SI2NlbY2tqKAwcOmLnyiiG3P4plZGSIevXqiaeeeko899xz5inWDOT2x4YNG4Srq6vIzMyUXllZWWauumLJ7ZP8/HzRvn178eyzz4rjx4+LjIwMcfToUZGammrmyiuG3P7QaDQGfz8uXLggbG1txYYNG8xbeAWR2x9btmwR9vb2YsuWLSIjI0McPHhQeHl5iSlTpsj6XoYnE+rYsaOIjIyU3hcVFQlvb28xf/78x362YcOGVS48PUl/CCHEvXv3hIuLi9i0aVNFlWh2T9onQgjRrl07MWPGjIooz+yM6Y979+6JLl26iM8//1xERERUqfAktz82bNggVCqVmaqzDLl9smbNGtGoUSNRUFBgrhLN6kn/DVm6dKlwcXEReXl5FVWiWcntj8jISNGrVy+DbdHR0aJr166yvpeX7UykoKAASUlJ6NOnj7TNxsYGffr0QWJiogUrswxT9MedO3dQWFgItVpdUWWa1ZP2iRACCQkJSEtLQ/fu3SuyVLMwtj8+/PBDuLu7Y9y4ceYo02yM7Y+8vDw0bNgQPj4+eO6553Dx4kVzlGsWxvTJt99+i5CQEERGRsLDwwMtW7bEvHnzUFRUZK6yK4wp/l1dt24dhg4dCmdn54oq02yM6Y8uXbogKSlJurT322+/Yf/+/Xj22WdlfTcfDGwif/31F4qKiuDh4WGw3cPDA7/88ouFqrIcU/TH22+/DW9vb4P/x6jMjO0TnU6HevXqIT8/H7a2tli9ejWeeeaZii63whnTH8ePH8e6deuQmppqhgrNy5j+aNq0KdavX4/WrVtDp9Ph448/RpcuXXDx4sVyP6jcmhnTJ7/99hsOHz6Ml19+Gfv370d6ejpeffVVFBYW4v333zdH2RXmSf9dPXPmDC5cuIB169ZVVIlmZUx/DB8+HH/99Re6desGIQTu3buHiRMn4t1335X13QxPZJUWLFiA7du34+jRo1VyAqwcLi4uSE1NRV5eHhISEhAdHY1GjRqhZ8+eli7NrHJzczFy5Eh89tlnqFOnjqXLsQohISEICQmR3nfp0gXNmzfHJ598gtmzZ1uwMsvR6/Vwd3fHp59+CltbWwQHB+N///sfFi1aVOnD05Nat24dWrVqhY4dO1q6FIs5evQo5s2bh9WrV6NTp05IT0/HG2+8gdmzZ+O9994r93EYnkykTp06sLW1xY0bNwy237hxA56enhaqynKepD8+/vhjLFiwAIcOHULr1q0rskyzMrZPbGxsEBAQAABo27YtLl++jPnz51f68CS3P65cuYKrV68iPDxc2qbX6wEANWrUQFpaGvz9/Su26Apkin9D7Ozs0K5dO6Snp1dEiWZnTJ94eXnBzs4Otra20rbmzZsjKysLBQUFUCqVFVpzRXqSvyO3b9/G9u3b8eGHH1ZkiWZlTH+89957GDlyJMaPHw8AaNWqFW7fvo0JEyZg+vTpsLEp32wmznkyEaVSieDgYCQkJEjb9Ho9EhISDP7LsLowtj8WLlyI2bNn48CBA2jfvr05SjUbU/0d0ev1yM/Pr4gSzUpufzRr1gznz59Hamqq9Bo4cCCefvpppKamwsfHx5zlm5wp/n4UFRXh/Pnz8PLyqqgyzcqYPunatSvS09OlYA0Av/76K7y8vCp1cAKe7O/Izp07kZ+fjxEjRlR0mWZjTH/cuXOnREAqDtpCzqN+ZU5spzJs375d2Nvbi40bN4pLly6JCRMmiFq1akm3Do8cOVK88847Uvv8/HyRkpIiUlJShJeXl3jzzTdFSkqK+O9//2upUzApuf2xYMECoVQqxddff21wa21ubq6lTsHk5PbJvHnzxPfffy+uXLkiLl26JD7++GNRo0YN8dlnn1nqFExKbn88rKrdbSe3Pz744ANx8OBBceXKFZGUlCSGDh0qHBwcxMWLFy11CiYnt0+uXbsmXFxcRFRUlEhLSxNxcXHC3d1dzJkzx1KnYFLG/v9Mt27dxJAhQ8xdboWT2x/vv/++cHFxEdu2bRO//fab+P7774W/v7946aWXZH0vw5OJrVixQjRo0EAolUrRsWNHcerUKWlfjx49REREhPQ+IyNDACjx6tGjh/kLryBy+qNhw4al9sf7779v/sIrkJw+mT59uggICBAODg6idu3aIiQkRGzfvt0CVVccOf3xsKoWnoSQ1x+TJ0+W2np4eIhnn31WJCcnW6DqiiX378jJkydFp06dhL29vWjUqJGYO3euuHfvnpmrrjhy++OXX34RAMT3339v5krNQ05/FBYWilmzZgl/f3/h4OAgfHx8xKuvvir+/vtvWd+pEELOOBURERFR9cY5T0REREQyMDwRERERycDwRERERCQDwxMRERGRDAxPRERERDIwPBERERHJwPBEREREJAPDExFRJTR69GgMGjTI0mUQVUsMT0RkUqNHj4ZCoZBebm5u6NevH86dO2fp0kziwXMrfnXr1q3Cvu/q1atQKBRITU012L5s2TJs3Lixwr6XiB6N4YmITK5fv37IzMxEZmYmEhISUKNGDQwYMMDSZZnMhg0bpPPLzMzEt99+W2q7wsLCCqtBpVKhVq1aFXZ8Ino0hiciMjl7e3t4enrC09MTbdu2xTvvvIM//vgDt27dQq9evRAVFWXQ/tatW1AqldLT0X19fTF79mwMGzYMzs7OqFevHlatWmXwmSVLlqBVq1ZwdnaGj48PXn31VeTl5Un7f//9d4SHh6N27dpwdnZGixYtsH//fgDA33//jZdffhl169aFo6MjGjdujA0bNpT7/GrVqiWdn6enJ9RqtTRCtGPHDvTo0QMODg7YsmULNBoNhg0bhnr16sHJyQmtWrXCtm3bDI6n1+uxcOFCBAQEwN7eHg0aNMDcuXMBAH5+fgCAdu3aQaFQoGfPngBKXrbLz8/H66+/Dnd3dzg4OKBbt244e/astP/o0aNQKBRISEhA+/bt4eTkhC5duiAtLa3c501E9zE8EVGFysvLw5dffomAgAC4ublh/Pjx2Lp1K/Lz86U2X375JerVq4devXpJ2xYtWoQ2bdogJSUF77zzDt544w3Ex8dL+21sbLB8+XJcvHgRmzZtwuHDhzFt2jRpf2RkJPLz83Hs2DGcP38eH330EWrWrAkAeO+993Dp0iV89913uHz5MtasWYM6deqY5HyLa718+TJCQ0Nx9+5dBAcHY9++fbhw4QImTJiAkSNH4syZM9JnYmJisGDBAqmurVu3wsPDAwCkdocOHUJmZiZ2795d6vdOmzYNu3btwqZNm5CcnIyAgACEhoZCq9UatJs+fToWL16Mn376CTVq1MDYsWNNct5E1YpJHmlMRPR/IiIihK2trXB2dhbOzs4CgPDy8hJJSUlCCCH++ecfUbt2bbFjxw7pM61btxazZs2S3jds2FD069fP4LhDhgwR/fv3f+T37ty5U7i5uUnvW7VqZXDMB4WHh4sxY8YYdX4AhIODg3R+zs7OYs+ePSIjI0MAELGxsY89RlhYmJg6daoQQoicnBxhb28vPvvss1LbFh83JSXFYHtERIR47rnnhBBC5OXlCTs7O7FlyxZpf0FBgfD29hYLFy4UQghx5MgRAUAcOnRIarNv3z4BQPzzzz9yuoCo2uPIExGZ3NNPP43U1FSkpqbizJkzCA0NRf/+/fH777/DwcEBI0eOxPr16wEAycnJuHDhAkaPHm1wjJCQkBLvL1++LL0/dOgQevfujXr16sHFxQUjR46ERqPBnTt3AACvv/465syZg65du+L99983mLA+adIkbN++HW3btsW0adNw8uRJWee3dOlS6fxSU1PxzDPPSPvat29v0LaoqAizZ89Gq1atoFarUbNmTRw8eBDXrl0DAFy+fBn5+fno3bu3rBoedOXKFRQWFqJr167SNjs7O3Ts2NGgzwCgdevW0p+9vLwAADdv3jT6u4mqI4YnIjI5Z2dnBAQEICAgAB06dMDnn3+O27dv47PPPgMAjB8/HvHx8fjzzz+xYcMG9OrVCw0bNiz38a9evYoBAwagdevW2LVrF5KSkqQ5UQUFBdJ3/Pbbbxg5ciTOnz+P9u3bY8WKFQAgBbkpU6bg+vXr6N27N958881yf7+np6d0fgEBAXB2djY49wctWrQIy5Ytw9tvv40jR44gNTUVoaGhUp2Ojo7l/l5TsLOzk/6sUCgA3J9zRUTlx/BERBVOoVDAxsYG//zzDwCgVatWaN++PT777DNs3bq11Hk3p06dKvG+efPmAICkpCTo9XosXrwYnTt3RpMmTXD9+vUSx/Dx8cHEiROxe/duTJ06VQpvAFC3bl1ERETgyy+/RGxsLD799FNTnrLkxIkTeO655zBixAi0adMGjRo1wq+//irtb9y4MRwdHaXJ8g9TKpUA7o9gPYq/vz+USiVOnDghbSssLMTZs2cRGBhoojMhomI1LF0AEVU9+fn5yMrKAnD/zraVK1ciLy8P4eHhUpvx48cjKioKzs7OeP7550sc48SJE1i4cCEGDRqE+Ph47Ny5E/v27QMABAQEoLCwECtWrEB4eDhOnDiBtWvXGnx+8uTJ6N+/P5o0aYK///4bR44ckcLXzJkzERwcjBYtWiA/Px9xcXHSPlNr3Lgxvv76a5w8eRK1a9fGkiVLcOPGDSnUODg44O2338a0adOgVCrRtWtX3Lp1CxcvXsS4cePg7u4OR0dHHDhwAPXr14eDgwNUKpXBdzg7O2PSpEl46623oFar0aBBAyxcuBB37tzBuHHjKuS8iKozjjwRkckdOHAAXl5e8PLyQqdOnXD27Fns3LlTus0eAIYNG4YaNWpg2LBhcHBwKHGMqVOn4qeffkK7du0wZ84cLFmyBKGhoQCANm3aYMmSJfjoo4/QsmVLbNmyBfPnzzf4fFFRESIjI9G8eXP069cPTZo0werVqwHcH82JiYlB69at0b17d9ja2mL79u0V0hczZsxAUFAQQkND0bNnT3h6epZYGfy9997D1KlTMXPmTDRv3hxDhgyR5iHVqFEDy5cvxyeffAJvb28899xzpX7PggULMHjwYIwcORJBQUFIT0/HwYMHUbt27Qo5L6LqTCGEEJYugoiqn6tXr8Lf3x9nz55FUFCQwT5fX19MnjwZkydPtkxxRERl4GU7IjKrwsJCaDQazJgxA507dy4RnIiIrB0v2xGRWZ04cQJeXl44e/ZsiXlKljZv3jzUrFmz1Ff//v0tXR4RWQletiMi+j9arbbEitzFHB0dUa9ePTNXRETWiOGJiIiISAZetiMiIiKSgeGJiIiISAaGJyIiIiIZGJ6IiIiIZGB4IiIiIpKB4YmIiIhIBoYnIiIiIhkYnoiIiIhk+H+zQNIS/mi8IQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_2.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZKUlEQVR4nO3deVxUZd8G8GtABhCYsUEEUQTFhVBTwSU0tzRHQ9SyJ/dwy+UBUyk1ylwrzRY3THueTKwnS82lXHLDLZXUQNzFJdRKUJuRAVEBmfv9w5eTw+YwDMwMXN/PZz5xzrnnzO+cdx7neu9zn/vIhBACRERERFQiO0sXQERERGQLGJqIiIiIjMDQRERERGQEhiYiIiIiIzA0ERERERmBoYmIiIjICAxNREREREZgaCIiIiIyAkMTERERkREYmoiIKpnY2FjIZDJcvXrV0qUQVSoMTURUasePH0dkZCSaNm0KFxcX1KtXD6+++iouXrxYqG2XLl0gk8kgk8lgZ2cHhUKBJk2aYNiwYdi9e3epPnfLli3o3LkzatWqherVq6NBgwZ49dVXsWPHDnMdWiEffvghNm/eXGj9kSNHMGvWLKSnp5fbZxc0a9Ys6VzKZDJUr14dgYGBmD59OjIyMszyGWvWrMGiRYvMsi+iyoahiYhK7aOPPsKGDRvQrVs3LF68GGPGjMHBgwcRFBSEM2fOFGpft25dfPPNN/j666/x8ccfo0+fPjhy5Ah69OiBAQMGIDc394mf+cknn6BPnz6QyWSIjo7GwoUL0b9/f1y6dAnff/99eRwmgJJD0+zZsys0NOVbvnw5vvnmG3z22WcICAjABx98gJ49e8IcjxJlaCIqXjVLF0BEticqKgpr1qyBXC6X1g0YMADNmzfH/Pnz8b///c+gvVKpxNChQw3WzZ8/H2+88QY+//xz+Pn54aOPPir28x4+fIi5c+fihRdewK5duwptv3XrVhmPyHrcu3cP1atXL7HNK6+8gpo1awIAxo0bh/79+2Pjxo349ddfERISUhFlElVJ7GkiolJr3769QWACgEaNGqFp06Y4f/68Ufuwt7fHkiVLEBgYiJiYGOh0umLb/v3338jIyECHDh2K3F6rVi2D5QcPHmDWrFlo3LgxnJycULt2bbz88su4cuWK1OaTTz5B+/bt4e7uDmdnZwQHB+OHH34w2I9MJkNWVhZWr14tXRIbPnw4Zs2ahSlTpgAA6tevL217fAzR//73PwQHB8PZ2RkqlQoDBw7EH3/8YbD/Ll26oFmzZkhISECnTp1QvXp1vPPOO0adv8c9//zzAICUlJQS233++edo2rQpHB0d4e3tjYiICIOesi5dumDbtm24du2adEx+fn6lroeosmJPExGZhRACN2/eRNOmTY1+j729PQYNGoT33nsPhw4dQmhoaJHtatWqBWdnZ2zZsgUTJkyASqUqdp95eXno3bs34uLiMHDgQEycOBGZmZnYvXs3zpw5A39/fwDA4sWL0adPHwwZMgQ5OTn4/vvv8a9//Qtbt26V6vjmm28wevRotG3bFmPGjAEA+Pv7w8XFBRcvXsR3332HhQsXSr0+Hh4eAIAPPvgA7733Hl599VWMHj0at2/fxtKlS9GpUyecOHECNWrUkOrVaDTo1asXBg4ciKFDh8LT09Po85cvPwy6u7sX22bWrFmYPXs2unfvjvHjxyM5ORnLly/H8ePHcfjwYTg4OODdd9+FTqfDn3/+iYULFwIAXF1dS10PUaUliIjM4JtvvhEAxMqVKw3Wd+7cWTRt2rTY923atEkAEIsXLy5x/zNmzBAAhIuLi+jVq5f44IMPREJCQqF2X331lQAgPvvss0Lb9Hq99Pe9e/cMtuXk5IhmzZqJ559/3mC9i4uLCA8PL7Svjz/+WAAQKSkpBuuvXr0q7O3txQcffGCw/vTp06JatWoG6zt37iwAiBUrVhR73I+bOXOmACCSk5PF7du3RUpKivjiiy+Eo6Oj8PT0FFlZWUIIIVatWmVQ261bt4RcLhc9evQQeXl50v5iYmIEAPHVV19J60JDQ4Wvr69R9RBVNbw8R0RlduHCBURERCAkJATh4eGlem9+T0ZmZmaJ7WbPno01a9agVatW2LlzJ959910EBwcjKCjI4JLghg0bULNmTUyYMKHQPmQymfS3s7Oz9PedO3eg0+nQsWNHJCYmlqr+gjZu3Ai9Xo9XX30Vf//9t/Ty8vJCo0aNsG/fPoP2jo6OGDFiRKk+o0mTJvDw8ED9+vUxduxYNGzYENu2bSt2LNSePXuQk5ODSZMmwc7un3/2X3/9dSgUCmzbtq30B0pUBfHyHBGVSVpaGkJDQ6FUKvHDDz/A3t6+VO+/e/cuAMDNze2JbQcNGoRBgwYhIyMDR48eRWxsLNasWYOwsDCcOXMGTk5OuHLlCpo0aYJq1Ur+523r1q14//33kZSUhOzsbGn948HKFJcuXYIQAo0aNSpyu4ODg8FynTp1Co0Pe5INGzZAoVDAwcEBdevWlS45FufatWsAHoWtx8nlcjRo0EDaTkQlY2giIpPpdDr06tUL6enp+OWXX+Dt7V3qfeRPUdCwYUOj36NQKPDCCy/ghRdegIODA1avXo2jR4+ic+fORr3/l19+QZ8+fdCpUyd8/vnnqF27NhwcHLBq1SqsWbOm1MfwOL1eD5lMhp9//rnIAFlwjNDjPV7G6tSpkzSOiogqDkMTEZnkwYMHCAsLw8WLF7Fnzx4EBgaWeh95eXlYs2YNqlevjueee86kOlq3bo3Vq1cjNTUVwKOB2kePHkVubm6hXp18GzZsgJOTE3bu3AlHR0dp/apVqwq1La7nqbj1/v7+EEKgfv36aNy4cWkPp1z4+voCAJKTk9GgQQNpfU5ODlJSUtC9e3dpXVl72ogqM45pIqJSy8vLw4ABAxAfH4/169ebNDdQXl4e3njjDZw/fx5vvPEGFApFsW3v3buH+Pj4Irf9/PPPAP659NS/f3/8/fffiImJKdRW/P/kj/b29pDJZMjLy5O2Xb16tchJLF1cXIqcwNLFxQUACm17+eWXYW9vj9mzZxeabFIIAY1GU/RBlqPu3btDLpdjyZIlBjWtXLkSOp3O4K5FFxeXEqd/IKrK2NNERKX25ptv4qeffkJYWBi0Wm2hySwLTmSp0+mkNvfu3cPly5exceNGXLlyBQMHDsTcuXNL/Lx79+6hffv2ePbZZ9GzZ0/4+PggPT0dmzdvxi+//IJ+/fqhVatWAIDXXnsNX3/9NaKionDs2DF07NgRWVlZ2LNnD/7973+jb9++CA0NxWeffYaePXti8ODBuHXrFpYtW4aGDRvi1KlTBp8dHByMPXv24LPPPoO3tzfq16+Pdu3aITg4GADw7rvvYuDAgXBwcEBYWBj8/f3x/vvvIzo6GlevXkW/fv3g5uaGlJQUbNq0CWPGjMFbb71VpvNfWh4eHoiOjsbs2bPRs2dP9OnTB8nJyfj888/Rpk0bg/97BQcHY+3atYiKikKbNm3g6uqKsLCwCq2XyGpZ8tY9IrJN+bfKF/cqqa2rq6to1KiRGDp0qNi1a5dRn5ebmyv++9//in79+glfX1/h6OgoqlevLlq1aiU+/vhjkZ2dbdD+3r174t133xX169cXDg4OwsvLS7zyyiviypUrUpuVK1eKRo0aCUdHRxEQECBWrVol3dL/uAsXLohOnToJZ2dnAcBg+oG5c+eKOnXqCDs7u0LTD2zYsEE899xzwsXFRbi4uIiAgAAREREhkpOTDc5NSdMxFJRf3+3bt0tsV3DKgXwxMTEiICBAODg4CE9PTzF+/Hhx584dgzZ3794VgwcPFjVq1BAAOP0A0WNkQpjhYUVERERElRzHNBEREREZgaGJiIiIyAgMTURERERGYGgiIiIiMgJDExEREZERGJqIiIiIjMDJLc1Er9fjxo0bcHNz42MIiIiIbIQQApmZmfD29oadXcl9SQxNZnLjxg34+PhYugwiIiIywR9//IG6deuW2IahyUzc3NwAPDrpJT1Di4iIiKxHRkYGfHx8pN/xkjA0mUn+JTmFQsHQREREZGOMGVrDgeBERERERmBoIiIiIjICQxMRERGRETimiYiIyIL0ej1ycnIsXUalJpfLnzidgDEYmoiIiCwkJycHKSkp0Ov1li6lUrOzs0P9+vUhl8vLtB+GJiIiIgsQQiA1NRX29vbw8fExS08IFZY/+XRqairq1atXpgmoGZqIiIgs4OHDh7h37x68vb1RvXp1S5dTqXl4eODGjRt4+PAhHBwcTN4PYy0REZEF5OXlAUCZLxnRk+Wf4/xzbiqGJiIiIgvi80rLn7nOMS/PERFRpaTRaEq8K00ul8Pd3b0CKyJbx9BERESVjkajQUxMzBPbRUZGMjiR0Xh5joiIKp2CPUw6nRtSUvyg07mV2I6ebPjw4ZDJZJDJZHBwcICnpydeeOEFfPXVV6WaOiE2NhY1atQov0LLAXuaiIioUktMbIUtW3pDCDvIZHqEhW1FUNAJS5dVZpa8/NizZ0+sWrUKeXl5uHnzJnbs2IGJEyfihx9+wE8//YRq1SpnvKicR0VERIRHPUz5gQkAhLDDli294e9/GUplpoWrM52lLz86OjrCy8sLAFCnTh0EBQXh2WefRbdu3RAbG4vRo0fjs88+w6pVq/D7779DpVIhLCwMCxYsgKurK/bv348RI0YA+GeQ9syZMzFr1ix88803WLx4MZKTk+Hi4oLnn38eixYtQq1atcx+HKXFy3NERFRpabXuUmDKJ4QdtFqVhSoyD2MvK1bk5cfnn38eLVq0wMaNGwE8moV7yZIlOHv2LFavXo29e/di6tSpAID27dtj0aJFUCgUSE1NRWpqKt566y0AQG5uLubOnYuTJ09i8+bNuHr1KoYPH15hx1ES9jQREVGlpVJpIJPpDYKTTKaHSqW1YFWVV0BAAE6dOgUAmDRpkrTez88P77//PsaNG4fPP/8ccrkcSqUSMplM6rHKN3LkSOnvBg0aYMmSJWjTpg3u3r0LV1fXCjmO4rCniYiIKi2lMhNhYVshkz0aoJw/psmWL81ZMyGEdLltz5496NatG+rUqQM3NzcMGzYMGo0G9+7dK3EfCQkJCAsLQ7169eDm5obOnTsDAK5fv17u9T8Je5qIiKhSCwo6AX//y9BqVVCptAxM5ej8+fOoX78+rl69it69e2P8+PH44IMPoFKpcOjQIYwaNQo5OTnFPjYmKysLarUaarUa3377LTw8PHD9+nWo1WqruNORoYmIiCqdgo8mUSoziwxLfISJ+ezduxenT5/G5MmTkZCQAL1ej08//VR6EPG6desM2svl8kKPNblw4QI0Gg3mz58PHx8fAMBvv/1WMQdgBIYmIiKqdNzd3REZGckZwctJdnY20tLSDKYcmDdvHnr37o3XXnsNZ86cQW5uLpYuXYqwsDAcPnwYK1asMNiHn58f7t69i7i4OLRo0QLVq1dHvXr1IJfLsXTpUowbNw5nzpzB3LlzLXSUhXFMExERVUru7u6oXbt2sS8GJtPt2LEDtWvXhp+fH3r27Il9+/ZhyZIl+PHHH2Fvb48WLVrgs88+w0cffYRmzZrh22+/xbx58wz20b59e4wbNw4DBgyAh4cHFixYAA8PD8TGxmL9+vUIDAzE/Pnz8cknn1joKAuTCSGEpYuoDDIyMqBUKqHT6aBQKCxdDhERWbkHDx4gJSUF9evXh5OTU6nea+l5mmxNSee6NL/fvDxHRERkY3j50TIYmoiIiGwQA1HF45gmIiIiIiMwNBEREREZgaGJiIiIyAgMTURERERGYGgiIiIiMgJDExEREZERGJqIiIiIjMDQRERERFZj//79kMlkSE9PN/o9fn5+WLRoUbnVlI+hiYiIiIw2fPhwyGQyjBs3rtC2iIgIyGQyDB8+vOILqwAMTURERFQqPj4++P7773H//n1p3YMHD7BmzRrUq1fPgpWVL4YmIiIiKpWgoCD4+Phg48aN0rqNGzeiXr16aNWqlbQuOzsbb7zxBmrVqgUnJyc899xzOH78uMG+tm/fjsaNG8PZ2Rldu3bF1atXC33eoUOH0LFjRzg7O8PHxwdvvPEGsrKyyu34isPQREREZOP+/BPYt+/RfyvKyJEjsWrVKmn5q6++wogRIwzaTJ06FRs2bMDq1auRmJiIhg0bQq1WQ6vVAgD++OMPvPzyywgLC0NSUhJGjx6Nt99+22AfV65cQc+ePdG/f3+cOnUKa9euxaFDhxAZGVn+B1kAQxMREZENW7kS8PUFnn/+0X9XrqyYzx06dCgOHTqEa9eu4dq1azh8+DCGDh0qbc/KysLy5cvx8ccfo1evXggMDMR///tfODs7Y+X/F7l8+XL4+/vj008/RZMmTTBkyJBC46HmzZuHIUOGYNKkSWjUqBHat2+PJUuW4Ouvv8aDBw8q5mD/X7UK/TQiIiIymz//BMaMAfT6R8t6PTB2LKBWA3Xrlu9ne3h4IDQ0FLGxsRBCIDQ0FDVr1pS2X7lyBbm5uejQoYO0zsHBAW3btsX58+cBAOfPn0e7du0M9hsSEmKwfPLkSZw6dQrffvuttE4IAb1ej5SUFDz99NPlcXhFsmhP0/Lly/HMM89AoVBAoVAgJCQEP//8s7S9S5cukMlkBq+Co/WvX7+O0NBQVK9eHbVq1cKUKVPw8OFDgzb79+9HUFAQHB0d0bBhQ8TGxhaqZdmyZfDz84OTkxPatWuHY8eOlcsxExERmculS/8Epnx5ecDlyxXz+SNHjkRsbCxWr16NkSNHlstn3L17F2PHjkVSUpL0OnnyJC5dugR/f/9y+cziWDQ01a1bF/Pnz0dCQgJ+++03PP/88+jbty/Onj0rtXn99deRmpoqvRYsWCBty8vLQ2hoKHJycnDkyBGsXr0asbGxmDFjhtQmJSUFoaGh6Nq1K5KSkjBp0iSMHj0aO3fulNqsXbsWUVFRmDlzJhITE9GiRQuo1WrcunWrYk4EERGRCRo1AuwK/JLb2wMNG1bM5/fs2RM5OTnIzc2FWq022Obv7w+5XI7Dhw9L63Jzc3H8+HEEBgYCAJ5++ulCnRS//vqrwXJQUBDOnTuHhg0bFnrJ5fJyOrJiCCvz1FNPiS+//FIIIUTnzp3FxIkTi227fft2YWdnJ9LS0qR1y5cvFwqFQmRnZwshhJg6dapo2rSpwfsGDBgg1Gq1tNy2bVsREREhLefl5Qlvb28xb948o+vW6XQCgNDpdEa/h4iIqq779++Lc+fOifv375dpP19+KYS9vRDAo//+/09ouQkPDxd9+/aVlnU6ncFvX9++fUV4eLgQQoiJEycKb29v8fPPP4uzZ8+K8PBw8dRTTwmtViuEEOLatWtCLpeLt956S1y4cEF8++23wsvLSwAQd+7cEUIIcfLkSeHs7CwiIiLEiRMnxMWLF8XmzZsNfrd9fX3FwoULi625pHNdmt9vqxkInpeXh++//x5ZWVkG1zO//fZb1KxZE82aNUN0dDTu3bsnbYuPj0fz5s3h6ekprVOr1cjIyJB6q+Lj49G9e3eDz1Kr1YiPjwcA5OTkICEhwaCNnZ0dunfvLrUpSnZ2NjIyMgxeREREFW3UKODq1Ud3z129+mi5IuUPsSnK/Pnz0b9/fwwbNgxBQUG4fPkydu7ciaeeegoAUK9ePWzYsAGbN29GixYtsGLFCnz44YcG+3jmmWdw4MABXLx4ER07dkSrVq0wY8YMeHt7l/uxFWTxgeCnT59GSEgIHjx4AFdXV2zatEnqths8eDB8fX3h7e2NU6dOYdq0aUhOTpbmhUhLSzMITACk5bS0tBLbZGRk4P79+7hz5w7y8vKKbHPhwoVi6543bx5mz55dtoMnIiIyg7p1y3/gd76ixgU/bvPmzdLfTk5OWLJkCZYsWVJs+969e6N3794G6wpOXdCmTRvs2rWr2H0UNbdTebB4aGrSpAmSkpKg0+nwww8/IDw8HAcOHEBgYCDGjBkjtWvevDlq166Nbt264cqVKxU++Kug6OhoREVFScsZGRnw8fGxYEVERERUniwemuRyORr+/4i14OBgHD9+HIsXL8YXX3xRqG3+bYmXL1+Gv78/vLy8Cg0gu3nzJgDAy8tL+m/+usfbKBQKODs7w97eHvb29kW2yd9HURwdHeHo6FjKoyUiIiJbZTVjmvLp9XpkZ2cXuS0pKQkAULt2bQCP5nI4ffq0wV1uu3fvhkKhkC7xhYSEIC4uzmA/u3fvlsZNyeVyBAcHG7TR6/WIi4srNFcEERERVV0W7WmKjo5Gr169UK9ePWRmZmLNmjXYv38/du7ciStXrmDNmjV48cUX4e7ujlOnTmHy5Mno1KkTnnnmGQBAjx49EBgYiGHDhmHBggVIS0vD9OnTERERIfUCjRs3DjExMZg6dSpGjhyJvXv3Yt26ddi2bZtUR1RUFMLDw9G6dWu0bdsWixYtQlZWVqFrqkRERFR1WTQ03bp1C6+99hpSU1OhVCrxzDPPYOfOnXjhhRfwxx9/YM+ePVKA8fHxQf/+/TF9+nTp/fb29ti6dSvGjx+PkJAQuLi4IDw8HHPmzJHa1K9fH9u2bcPkyZOxePFi1K1bF19++aXBfBIDBgzA7du3MWPGDKSlpaFly5bYsWNHocHhRERE5iaEsHQJlZ65zrFM8P9aZpGRkQGlUgmdTlfsrZdERET5cnNzcfnyZXh7e0OpVFq6nEpNp9Phxo0baNiwIRwcHAy2leb32+IDwYmIiKqiatWqoXr16rh9+zYcHBxgV3BqbzILvV6P27dvo3r16qhWrWyxh6GJiIjIAmQyGWrXro2UlBRcu3bN0uVUanZ2dqhXrx5kMlmZ9sPQREREZCFyuRyNGjVCTk6OpUup1ORyuVl68hiaiIiILMjOzg5OTk6WLoOMwAuoREREREZgaCIiIiIyAkMTERERkREYmoiIiIiMwNBEREREZASGJiIiIiIjMDQRERERGYGhiYiIiMgIDE1ERERERmBoIiIiIjICH6NCZGU0Gk2Jz6GSy+Vwd3evwIqIiAhgaCKyKhqNBjExMU9sFxkZyeBERFTBeHmOyIoU7GHS6dyQkuIHnc6txHZERFT+2NNEZKUSE1thy5beEMIOMpkeYWFbERR0wtJlERFVWexpIrJCOp2bFJgAQAg7bNnSu1CPExERVRyGJiIrpNW6S4EpnxB20GpVFqqIiIgYmoiskEqlgUymN1gnk+mhUmktVBERETE0EVkhpTITYWFbpeCUP6ZJqcy0cGVERFUXB4ITWamgoBPw978MrVYFlUrLwEREZGEMTURWRC6XGywrlZlFhqWC7YiIqPwxNBFZEXd3d0RGRnJGcCIiK8TQRGRlGIiIiKwTB4ITERERGYGhiYiIiMgIDE1ERERERmBoIiIiIjICQxMRERGRERiaiIiIiIzAKQeIiIjIKmk0Gquat46hiYiIiKyORqNBTEzME9tFRkZWWHDi5TkiIiKyOgV7mHQ6N6Sk+EGncyuxXXliTxMRERFZtcTEVtiypTeEsINMpkdY2FYEBZ2o8DoYmojIJNY21oCIKiedzk0KTAAghB22bOkNf//LRT7QvDwxNBFRqVnjWAMiqpy0WncpMOUTwg5ararCQxPHNBFRqVnjWAMiqpxUKg1kMr3BOplMD5VKW+G1sKeJiMrEWsYaEFHlpFRmIixsa6F/Zyq6lwlgaCKiMrCmsQZEVHkFBZ2Av/9laLUqqFRai/37wtBERCazprEGRFS5yOVyg2WlMrPIf1cKtitPDE1EZLL8sQaPBydLjTUgosrF3d0dkZGRVnWXLkMTEZnMmsYaEFHlY2133zI0EVGZWMtYAyKi8sbQRESlZo1jDYiIyhtDExGVmjWONSAiKm8MTURkEgYiIqpqOCM4ERERkREYmoiIiIiMwMtzVCVoNBqOvyEiojJhaKJKT6PRICYm5ontIiMjGZyIiKhYFr08t3z5cjzzzDNQKBRQKBQICQnBzz//LG1/8OABIiIi4O7uDldXV/Tv3x83b9402Mf169cRGhqK6tWro1atWpgyZQoePnxo0Gb//v0ICgqCo6MjGjZsiNjY2EK1LFu2DH5+fnByckK7du1w7NixcjlmqngFe5h0OjekpPhBp3MrsR0REdHjLBqa6tati/nz5yMhIQG//fYbnn/+efTt2xdnz54FAEyePBlbtmzB+vXrceDAAdy4cQMvv/yy9P68vDyEhoYiJycHR44cwerVqxEbG4sZM2ZIbVJSUhAaGoquXbsiKSkJkyZNwujRo7Fz506pzdq1axEVFYWZM2ciMTERLVq0gFqtxq1btyruZFCFSExshUWLJmH16nAsWjQJiYmtLF0SERHZCmFlnnrqKfHll1+K9PR04eDgINavXy9tO3/+vAAg4uPjhRBCbN++XdjZ2Ym0tDSpzfLly4VCoRDZ2dlCCCGmTp0qmjZtavAZAwYMEGq1Wlpu27atiIiIkJbz8vKEt7e3mDdvntF163Q6AUDodLrSHTCVuxs3bohZs2aJyZM/FTJZngCE9JLJ8sTkyZ+KWbNmiRs3bli6VCIiqmCl+f22mrvn8vLy8P333yMrKwshISFISEhAbm4uunfvLrUJCAhAvXr1EB8fDwCIj49H8+bN4enpKbVRq9XIyMiQeqvi4+MN9pHfJn8fOTk5SEhIMGhjZ2eH7t27S22octBq3VHwKy+EHbRalYUqIiIiW2LxgeCnT59GSEgIHjx4AFdXV2zatAmBgYFISkqCXC5HjRo1DNp7enoiLS0NAJCWlmYQmPK3528rqU1GRgbu37+PO3fuIC8vr8g2Fy5cKLbu7OxsZGdnS8sZGRmlO3CqcCqVBjKZ3iA4yWR6qFRaC1ZFRES2wuI9TU2aNEFSUhKOHj2K8ePHIzw8HOfOnbN0WU80b948KJVK6eXj42PpkugJlMpMhIVthUymB/AoMIWFbeUDZomIyCgW72mSy+Vo2LAhACA4OBjHjx/H4sWLMWDAAOTk5CA9Pd2gt+nmzZvw8vICAHh5eRW6yy3/7rrH2xS84+7mzZtQKBRwdnaGvb097O3ti2yTv4+iREdHIyoqSlrOyMhgcLIBQUEn4O9/GVqtCiqVloGJiIiMZvGepoL0ej2ys7MRHBwMBwcHxMXFSduSk5Nx/fp1hISEAABCQkJw+vRpg7vcdu/eDYVCgcDAQKnN4/vIb5O/D7lcjuDgYIM2er0ecXFxUpuiODo6SlMl5L/IOsnlcoNlpTIT9etfKxSYCrYjIiJ6nEV7mqKjo9GrVy/Uq1cPmZmZWLNmDfbv34+dO3dCqVRi1KhRiIqKgkqlgkKhwIQJExASEoJnn30WANCjRw8EBgZi2LBhWLBgAdLS0jB9+nRERETA0dERADBu3DjExMRg6tSpGDlyJPbu3Yt169Zh27ZtUh1RUVEIDw9H69at0bZtWyxatAhZWVkYMWKERc4LmZe7uzsiIyM5IzgREZVNBdzNV6yRI0cKX19fIZfLhYeHh+jWrZvYtWuXtP3+/fvi3//+t3jqqadE9erVxUsvvSRSU1MN9nH16lXRq1cv4ezsLGrWrCnefPNNkZuba9Bm3759omXLlkIul4sGDRqIVatWFapl6dKlol69ekIul4u2bduKX3/9tVTHwikHiIiIbE9pfr9lQghh6eBWGWRkZECpVEKn0/FSHRERkY0oze+31Y1pIiIiIrJGDE1ERERERrD4lANERERUcTQaDW+MMRFDExERURWh0WgQExPzxHaRkZEMTkXg5TkiIqIqomAPk07nhpQUP+h0biW2o0fY00RERFQFJSa2wpYtvSGEnfRYqaCgE5Yuy6qxp4mIiKiK0encpMAEAELYYcuW3oV6nMgQQxMREVEVo9W6S4EpnxB20GpVFqrINjA0ERERVTEqlQYymd5gnUymh0qltVBFtoGhiYiIqIpRKjMRFrZVCk75Y5oKPsicDHEgOBERURUUFHQC/v6XodWqoFJpGZiMwNBERERURcjlcoNlpTKzyLBUsB09wtBERERURbi7uyMyMpIzgpuIoYmIiKgKYSAyHQeCExERERmBoYmIiIjICAxNREREREZgaCIiIiIyAkMTERERkREYmoiIiIiMwNBEREREZASTQ5Ofnx/mzJmD69evm7MeIiIiIqtkcmiaNGkSNm7ciAYNGuCFF17A999/j+zsbHPWRkRERGQ1yhSakpKScOzYMTz99NOYMGECateujcjISCQmJpqzRiIiIiKLkwkhhDl2lJubi88//xzTpk1Dbm4umjdvjjfeeAMjRoyATCYzx0dYtYyMDCiVSuh0OigUCkuXQ0REREYoze93mZ89l5ubi02bNmHVqlXYvXs3nn32WYwaNQp//vkn3nnnHezZswdr1qwp68cQERERWZTJoSkxMRGrVq3Cd999Bzs7O7z22mtYuHAhAgICpDYvvfQS2rRpY5ZCiYiIiCzJ5NDUpk0bvPDCC1i+fDn69esHBweHQm3q16+PgQMHlqlAIiIiImtgcmj6/fff4evrW2IbFxcXrFq1ytSPICIiIrIaJt8917VrV2g0mkLr09PT0aBBgzIVRURERGRtTA5NV69eRV5eXqH12dnZ+Ouvv8pUFBEREZG1KfXluZ9++kn6e+fOnVAqldJyXl4e4uLi4OfnZ5biiIiIiKxFqUNTv379AAAymQzh4eEG2xwcHODn54dPP/3ULMURERERWYtShya9Xg/g0Z1xx48fR82aNc1eFBEREZG1MfnuuZSUFHPWQURERGTVTA5Nc+bMKXH7jBkzTN01ERERkdUxOTRt2rTJYDk3NxcpKSmoVq0a/P39GZqIqErSaDTIyckpdrtcLoe7u3sFVkRE5mJyaDpx4kShdRkZGRg+fDheeumlMhVFRGSLNBoNYmJintguMjKSwYnIBpk8T1NRFAoFZs+ejffee8+cuyUisgkFe5h0OjekpPhBp3MrsR0R2QaTe5qKo9PpoNPpzL1bIiKbkpjYClu29IYQdpDJ9AgL24qgoMI99ERkO0wOTUuWLDFYFkIgNTUV33zzDXr16lXmwoiIbJVO5yYFJgAQwg5btvSGv/9lKJWZFq6OiExlcmhauHChwbKdnR08PDwQHh6O6OjoMhdGRGSrtFp3KTDlE8IOWq2KoYnIhnGeJiIiM1OpNJDJ9AbBSSbTQ6XSWrAqIiqrMo1pEkJAo9FAJpPxThAiov+nVGYiLGxroTFN7GUiW1fVp9QwKTSlpaVh6tSp+Omnn5CZ+egfAYVCgZdeegnz5s2Dp6enWYskIrI1QUEn4O9/GVqtCiqVloGJbB6n1DAhNGVkZKB9+/a4e/cuRowYgYCAAAghcO7cOXz33Xc4dOgQEhMT4erqWh71EhFZLblcbrCsVGYWGZYKtiOyBUVNqaHVukOl0hh8zyvzlBqlDk2LFy+Gvb09zp49Cw8PD4Nt06dPR4cOHbBkyRK88847ZiuSiMgWuLu7IzIyskpfvqCqoapOqVHq0LRt2za88847hQITANSqVQvR0dH473//y9BERFUSAxFVdlV5So1Szwh+8eJFtG/fvtjt7du3R3JycpmKIiIiIutU0pQalV2pQ1NGRgZq1KhR7PYaNWogIyOjLDURERGRlcqfUuNxVWVKjVKHJiEE7OyKf5tMJoMQokxFERERkXXKn1IjPzhVpSk1Sj2mSQiBxo0bQyaTFbudiIiIKq+qOqVGqUPTqlWryqMOIiIismKcUgOQiXLuGvruu+/Qp08fuLi4FNo2b948bNy4ERcuXICzszPat2+Pjz76CE2aNJHadOnSBQcOHDB439ixY7FixQpp+fr16xg/fjz27dsHV1dXhIeHY968eahW7Z9MuH//fkRFReHs2bPw8fHB9OnTMXz4cIP9Llu2DB9//DHS0tLQokULLF26FG3btjXqODMyMqBUKqHT6aBQKIx6T3mo6rO1EhFR+amMvzGl+f0u02NUjDF27Fi0a9cODRo0KLTtwIEDiIiIQJs2bfDw4UO888476NGjB86dO2cQsl5//XXMmTNHWq5evbr0d15eHkJDQ+Hl5YUjR44gNTUVr732GhwcHPDhhx8CePScvNDQUIwbNw7ffvst4uLiMHr0aNSuXRtqtRoAsHbtWkRFRWHFihVo164dFi1aBLVajeTkZNSqVau8To9ZcbZWIiIqT1X9t6Pce5rc3Nxw8uTJIkNTQbdv30atWrVw4MABdOrUCcCjnqaWLVti0aJFRb7n559/Ru/evXHjxg3p8S0rVqzAtGnTcPv2bcjlckybNg3btm3DmTNnpPcNHDgQ6enp2LFjBwCgXbt2aNOmjRQ69Ho9fHx8MGHCBLz99ttPrN0aeppSU1Pxn//8R1oubrbWMWPGoHbt2pYokYiIyKqU5ve71HfPlSedTgcAUKkM53r49ttvUbNmTTRr1gzR0dG4d++etC0+Ph7Nmzc3eN6dWq1GRkYGzp49K7Xp3r27wT7VajXi4+MBPJryPSEhwaCNnZ0dunfvLrUpKDs7GxkZGQYva5KY2AqLFk3C6tXhWLRoEhITW1m6JCIiIptW7pfnjKXX6zFp0iR06NABzZo1k9YPHjwYvr6+8Pb2xqlTpzBt2jQkJydj48aNAB49PLjgA4Lzl9PS0kpsk5GRgfv37+POnTvIy8srss2FCxeKrHfevHmYPXt22Q66nFTl2VqJiIjKi9WEpoiICJw5cwaHDh0yWD9mzBjp7+bNm6N27dro1q0brly5An9//4ouUxIdHY2oqChpOSMjAz4+Phar53ElzdbK0ERERGQaqwhNkZGR2Lp1Kw4ePIi6deuW2LZdu3YAgMuXL8Pf3x9eXl44duyYQZubN28CALy8vKT/5q97vI1CoYCzszPs7e1hb29fZJv8fRTk6OgIR0dH4w+yAuXP1vp4cKoqs7USERGVF5PGNOXl5eHgwYNIT09/YltfX184ODgUuU0IgcjISGzatAl79+5F/fr1n7i/pKQkAJAGMoeEhOD06dO4deuW1Gb37t1QKBQIDAyU2sTFxRnsZ/fu3QgJCQHw6BbJ4OBggzZ6vR5xcXFSG1tSlWdrJSIiKi8m9TTZ29ujR48eOH/+fInPoQNgcMdaQREREVizZg1+/PFHuLm5SWOQlEolnJ2dceXKFaxZswYvvvgi3N3dcerUKUyePBmdOnXCM888AwDo0aMHAgMDMWzYMCxYsABpaWmYPn06IiIipJ6gcePGISYmBlOnTsXIkSOxd+9erFu3Dtu2bZNqiYqKQnh4OFq3bo22bdti0aJFyMrKwogRI0w5RRZXVWdrJSIiKi8mX55r1qwZfv/9d6N6h4qzfPlyAI+mFXjcqlWrMHz4cMjlcuzZs0cKMD4+Pujfvz+mT58utbW3t8fWrVsxfvx4hISEwMXFBeHh4QbzOtWvXx/btm3D5MmTsXjxYtStWxdffvmlNEcTAAwYMAC3b9/GjBkzkJaWhpYtW2LHjh2FBodbM87WSkREVH5Mnqdpx44diI6Oxty5cxEcHFxoxm9LzoptCdYwTxMntyQiIiqdCpkR/MUXXwQA9OnTx+DhvUIIyGQy5OXlmbprMlHBqe2Lm9yypCnwiYiIqGgmh6Z9+/aZsw4ys8TEVtJcTfkDwYOCTli6LCIiIptlcmjq3LmzOesgM+LklkREROZXpseo/PLLLxg6dCjat2+Pv/76CwDwzTffFJqgkipWSZNbEhERkWlMDk0bNmyAWq2Gs7MzEhMTkZ2dDeDR8+M+/PBDsxVIpZc/ueXjKsvklhqNBqmpqcW+NBqNpUskIqJKyuTLc++//z5WrFiB1157Dd9//720vkOHDnj//ffNUhyZJn9yy4Jjmmz90hzvDiQiIksyOTQlJyejU6dOhdYrlUqjZgqn8lUZJ7fk3YFERGRJJocmLy8vXL58GX5+fgbrDx06hAYNGpS1LjJBVZrckncHEhFRRTM5NL3++uuYOHEivvrqK8hkMty4cQPx8fF466238N5775mzRjKSu7s7IiMjS+xpkcvlNn/pincHEhGRJZgcmt5++23o9Xp069YN9+7dQ6dOneDo6Ii33noLEyZMMGeNVAq2HoiMUdLdgQxNRERUXkwOTTKZDO+++y6mTJmCy5cv4+7duwgMDISrq6s56yMqJP/uwMeDU2W5O5CIiKxXmeZpAh5d7gkMDETbtm0ZmKhC5N8dmD+tQmW5O5CIiKybyT1NDx48wNKlS7Fv3z7cunULer3hvECJiYllLo6oOJXx7kAiIrJuJoemUaNGYdeuXXjllVfQtm1bg4f2EpWHqnR3IBERWR+ZEEKY8kalUont27ejQ4cO5q7JJmVkZECpVEKn00GhUFi6nEpLo9FU+rsDiYio4pTm99vknqY6derAzc3N1LcTmYSBiIiILMXkgeCffvoppk2bhmvXrpmzHiIiIiKrZHJPU+vWrfHgwQM0aNAA1atXh4ODg8F2rZa3fxMREVHlYXJoGjRoEP766y98+OGH8PT05EBwIiIiqtRMDk1HjhxBfHw8WrRoYc56iIiIiKySyWOaAgICcP/+fXPWQkRERGS1TA5N8+fPx5tvvon9+/dDo9EgIyPD4EVERERUmZg8T5Od3aO8VXAskxACMpkMeXl5Za/OhnCeJiIiIttTIfM07du3z9S3EhEREdkck0JTbm4u5syZgxUrVqBRo0bmromIiIjI6pg0psnBwQGnTp0ydy1EREREVsvkgeBDhw7FypUrzVkLERERkdUyeUzTw4cP8dVXX2HPnj0IDg6Gi4uLwfbPPvuszMURERERWQuTQ9OZM2cQFBQEALh48aLBNs4OTkRERJUN754jIiIiMoLJY5oe9+eff+LPP/80x66IiIiIrJLJoUmv12POnDlQKpXw9fWFr68vatSogblz50Kv15uzRiIiIiKLM/ny3LvvvouVK1di/vz56NChAwDg0KFDmDVrFh48eIAPPvjAbEUSERERWZrJj1Hx9vbGihUr0KdPH4P1P/74I/7973/jr7/+MkuBtoKPUSEiIrI9pfn9NvnynFarRUBAQKH1AQEB0Gq1pu6WiIiIyCqZHJpatGiBmJiYQutjYmLQokWLMhVFREREZG1MHtO0YMEChIaGYs+ePQgJCQEAxMfH448//sD27dvNViARERGRNTC5p6lz5864ePEiXnrpJaSnpyM9PR0vv/wykpOT0bFjR3PWSERERGRxpeppevnllxEbGwuFQoGvv/4aAwYM4F1yREREVCWUqqdp69atyMrKAgCMGDECOp2uXIoiIiIisjal6mkKCAhAdHQ0unbtCiEE1q1bV+ztea+99ppZCiQiIiKyBqWap+nIkSOIiorClStXoNVq4ebmVuTDeWUyWZWbdoDzNBEREdme0vx+mzy5pZ2dHdLS0lCrVi2TiqxsGJqIiIhsT4VMbpmSkgIPDw9T305ERERkU0wOTb6+vjh06BCGDh2KkJAQ6bEp33zzDQ4dOmS2AomIiIisgcmhacOGDVCr1XB2dsaJEyeQnZ0NANDpdPjwww/NViARERGRNTA5NL3//vtYsWIF/vvf/8LBwUFa36FDByQmJpqlOCIiIiJrYXJoSk5ORqdOnQqtVyqVSE9PL0tNRERERFbH5NDk5eWFy5cvF1p/6NAhNGjQoExFEREREVkbk0PT66+/jokTJ+Lo0aOQyWS4ceMGvv32W7z55psYP368OWskIiIisrhSzQj+uLfffht6vR7dunXDvXv30KlTJzg6OmLKlCkYPXq0OWskIiIisjiTe5pkMhneffddaLVanDlzBr/++itu374NpVKJ+vXrm7NGIiIiIosrdWjKzs5GdHQ0WrdujQ4dOmD79u0IDAzE2bNn0aRJEyxevBiTJ08uj1qJiIiILKbUoWnGjBlYvnw5/Pz8kJKSgn/9618YM2YMFi5ciE8//RQpKSmYNm2aUfuaN28e2rRpAzc3N9SqVQv9+vVDcnKyQZsHDx4gIiIC7u7ucHV1Rf/+/XHz5k2DNtevX0doaCiqV6+OWrVqYcqUKXj48KFBm/379yMoKAiOjo5o2LAhYmNjC9WzbNky+Pn5wcnJCe3atcOxY8dKd3KIiIio0ip1aFq/fj2+/vpr/PDDD9i1axfy8vLw8OFDnDx5EgMHDoS9vb3R+zpw4AAiIiLw66+/Yvfu3cjNzUWPHj2QlZUltZk8eTK2bNmC9evX48CBA7hx4wZefvllaXteXh5CQ0ORk5ODI0eOYPXq1YiNjcWMGTOkNikpKQgNDUXXrl2RlJSESZMmYfTo0di5c6fUZu3atYiKisLMmTORmJiIFi1aQK1W49atW6U9RURERFQJlfqBvXK5HCkpKahTpw4AwNnZGceOHUPz5s3LXMzt27dRq1YtHDhwAJ06dYJOp4OHhwfWrFmDV155BQBw4cIFPP3004iPj8ezzz6Ln3/+Gb1798aNGzfg6ekJAFixYgWmTZuG27dvQy6XY9q0adi2bRvOnDkjfdbAgQORnp6OHTt2AADatWuHNm3aICYmBgCg1+vh4+ODCRMm4O23335i7Xxgb+loNBrk5OQUu10ul8Pd3b0CKyIioqqoNL/fpb57Li8vD3K5/J8dVKsGV1fX0ldZBJ1OBwBQqVQAgISEBOTm5qJ79+5Sm4CAANSrV08KTfHx8WjevLkUmABArVZj/PjxOHv2LFq1aoX4+HiDfeS3mTRpEgAgJycHCQkJiI6Olrbb2dmhe/fuiI+PL7LW7Oxs6dExwKOTTsbRaDRSOC1JZGQkgxMREVmNUocmIQSGDx8OR0dHAI/GHI0bNw4uLi4G7TZu3Fiq/er1ekyaNAkdOnRAs2bNAABpaWmQy+WoUaOGQVtPT0+kpaVJbR4PTPnb87eV1CYjIwP379/HnTt3kJeXV2SbCxcuFFnvvHnzMHv27FIdIz1SsIdJp3ODVusOlUoDpTKz2HZERESWVOrQFB4ebrA8dOhQsxQSERGBM2fO4NChQ2bZX3mLjo5GVFSUtJyRkQEfHx8LVmSbEhNbYcuW3hDCDjKZHmFhWxEUdMLSZRERERVS6tC0atUqsxcRGRmJrVu34uDBg6hbt6603svLCzk5OUhPTzfobbp58ya8vLykNgXvcsu/u+7xNgXvuLt58yYUCgWcnZ1hb28Pe3v7Itvk76MgR0dHqbeNTKPTuUmBCQCEsMOWLb3h73/ZoMeJiIjIGpg8uaU5CCEQGRmJTZs2Ye/evYUmxQwODoaDgwPi4uKkdcnJybh+/TpCQkIAACEhITh9+rTBXW67d++GQqFAYGCg1ObxfeS3yd+HXC5HcHCwQRu9Xo+4uDipDZmfVusuBaZ8QthBq1VZqCIiIqLimfwYFXOIiIjAmjVr8OOPP8LNzU0ag6RUKuHs7AylUolRo0YhKioKKpUKCoUCEyZMQEhICJ599lkAQI8ePRAYGIhhw4ZhwYIFSEtLw/Tp0xERESH1BI0bNw4xMTGYOnUqRo4cib1792LdunXYtm2bVEtUVBTCw8PRunVrtG3bFosWLUJWVhZGjBhR8SemilCpNJDJ9AbBSSbTQ6XSWrAqIiKiolk0NC1fvhwA0KVLF4P1q1atwvDhwwEACxcuhJ2dHfr374/s7Gyo1Wp8/vnnUlt7e3ts3boV48ePR0hICFxcXBAeHo45c+ZIberXr49t27Zh8uTJWLx4MerWrYsvv/wSarVaajNgwADcvn0bM2bMQFpaGlq2bIkdO3YUGhxO5qNUZiIsbGuhMU28NEdERNao1PM0UdE4T5PxUlNT8Z///EdafnT3nAoqldYgMI0ZMwa1a9e2RIlERFRFlOs8TURl9fg8X8CjHqeiepcKtiMiIrIkhiaqcO7u7oiMjOSM4EREZFMYmsgiGIiIiMjWWHTKASIiIiJbwdBEREREZASGJiIiIiIjMDQRERERGYEDwYmIiqDRaHiHJxEZYGgiIipAo9EgJibmie0iIyMZnIiqEF6eIyIqoGAPk07nhpQUP+h0biW2I6LKjT1NREQlSExsVej5iEFBJyxdFhFZAHuaiIiKodO5SYEJAISww5YtvQv1OBFR1cDQRERUDK3WXQpM+YSwg1arslBFRGRJDE1ERMVQqTSQyfQG62QyPVQqrYUqIiJL4pgmIqJiKJWZCAvbWmhMk1KZaenSbBKncSBbx9BERFSCoKAT8Pe/DK1WBZVKy8BkIk7jQJUBQxMRUQFyudxgWanMLDIsFWxHxStqGget1h0qlcbg3HIaB7JmDE1ERAW4u7sjMjKSl5LKCadxIFvF0EREVAQGovJR3DQO/v6XeemTrB7vniMiogrDaRzIljE0ERFRheE0DmTLGJqIiKjC5E/jkB+cOI0D2RKOaSIiogrFaRzIVjE0ERFRueM0DlQZMDQREVG54zQOVBkwNBERUYVgICJbx4HgREREREZgaCIiIiIyAkMTERERkREYmoiIiIiMwNBEREREZATePWelNBoNb80lIiKyIgxNVkij0SAmJuaJ7SIjIxmciIiIKggvz1mhgj1MOp0bUlL8oNO5ldiOiIiIyg97mqxcYmIrbNnSG0LYSQ+2DAo6YemyiIiIqhz2NFkxnc5NCkwAIIQdtmzpXajHiYiIiMofQ5MV02rdpcCUTwg7aLUqC1VERERUdTE0WTGVSgOZTG+wTibTQ6XSWqgiIiKiqotjmqyYUpmJsLCthcY0KZWZli6NyGScToOIbBVDk5ULCjoBf//L0GpVUKm0DExk0zidBhHZMoYmKySXyw2WlcrMIsNSwXZE1q6o6TS0WneoVBqD7zin0yAia8TQZIXc3d0RGRnJSxhUqXE6DSKyNQxNVoqBiCqz4qbT8Pe/zEvQRGS1ePccEVU4TqdBRLaIoYmIKhyn0yAiW8TQREQVLn86jfzgxOk0iMgWcEwTEVkEp9MgIlvD0EREFYbTaRCRLWNoIqIKw+k0iMiWMTQRUYViICIiW8WB4ERERERGYGgiIiIiMoJFQ9PBgwcRFhYGb29vyGQybN682WD78OHDIZPJDF49e/Y0aKPVajFkyBAoFArUqFEDo0aNwt27dw3anDp1Ch07doSTkxN8fHywYMGCQrWsX78eAQEBcHJyQvPmzbF9+3azHy8RERHZLouGpqysLLRo0QLLli0rtk3Pnj2Rmpoqvb777juD7UOGDMHZs2exe/dubN26FQcPHsSYMWOk7RkZGejRowd8fX2RkJCAjz/+GLNmzcJ//vMfqc2RI0cwaNAgjBo1CidOnEC/fv3Qr18/nDlzxvwHTURERDZJJoQQli4CAGQyGTZt2oR+/fpJ64YPH4709PRCPVD5zp8/j8DAQBw/fhytW7cGAOzYsQMvvvgi/vzzT3h7e2P58uV49913kZaWJt3G/Pbbb2Pz5s24cOECAGDAgAHIysrC1q1bpX0/++yzaNmyJVasWGFU/RkZGVAqldDpdFAoFCacASIiIqpopfn9tvoxTfv370etWrXQpEkTjB8/HhqNRtoWHx+PGjVqSIEJALp37w47OzscPXpUatOpUyeDeV/UajWSk5Nx584dqU337t0NPletViM+Pr7YurKzs5GRkWHwIiIiosrLqkNTz5498fXXXyMuLg4fffQRDhw4gF69eiEvLw8AkJaWhlq1ahm8p1q1alCpVEhLS5PaeHp6GrTJX35Sm/ztRZk3bx6USqX08vHxKdvBEhERkVWz6nmaBg4cKP3dvHlzPPPMM/D398f+/fvRrVs3C1YGREdHIyoqSlrOyMhgcCIiIqrErLqnqaAGDRqgZs2auHz5MgDAy8sLt27dMmjz8OFDaLVaeHl5SW1u3rxp0CZ/+Ult8rcXxdHREQqFwuBFRERElZdNhaY///wTGo0GtWvXBgCEhIQgPT0dCQkJUpu9e/dCr9ejXbt2UpuDBw8iNzdXarN79240adIETz31lNQmLi7O4LN2796NkJCQ8j4kIiIishEWDU13795FUlISkpKSAAApKSlISkrC9evXcffuXUyZMgW//vorrl69iri4OPTt2xcNGzaEWq0GADz99NPo2bMnXn/9dRw7dgyHDx9GZGQkBg4cCG9vbwDA4MGDIZfLMWrUKJw9exZr167F4sWLDS6tTZw4ETt27MCnn36KCxcuYNasWfjtt98QGRlZ4eeEiIiIrJSwoH379gkAhV7h4eHi3r17okePHsLDw0M4ODgIX19f8frrr4u0tDSDfWg0GjFo0CDh6uoqFAqFGDFihMjMzDRoc/LkSfHcc88JR0dHUadOHTF//vxCtaxbt040btxYyOVy0bRpU7Ft27ZSHYtOpxMAhE6nK/2JICIiIosoze+31czTZOs4TxMREZHtqVTzNBERERFZA4YmIiIiIiMwNBEREREZgaGJiIiIyAgMTURERERGYGgiIiIiMgJDExEREZERGJqIiIiIjMDQRERERGQEhiYiIiIiIzA0ERERERmBoYmIiIjICAxNREREREZgaCIiIiIyAkMTERERkRGqWboAIiIiqjgajQY5OTnFbpfL5XB3d6/AimwHQxMREVEVodFoEBMT88R2kZGRDE5FYGgiIiKyoIrs+Sn4OTqdG7Rad6hUGiiVmcW2o0cYmoiIiCzEkj0/iYmtsGVLbwhhB5lMj7CwrQgKOmHWz6hsOBCciIjIQorq+UlJ8YNO51Ziu7LS6dykwAQAQthhy5behT6XDLGniYiIyApUZM+PVusuBaZ8QthBq1UZXKYjQ+xpIiIisrCK7vlRqTSQyfQG62QyPVQqbbl8XmXB0ERERGRhJfX8lAelMhNhYVul4JTfs8VeppLx8hwREZGF5ff8PB6cyrvnJyjoBPz9L0OrVUGl0jIwGYE9TURERBZWUT0/crm80OfWr3+t0OcUbEePsKeJiIjIClREz4+7uzsiIyM5I7iJGJqIiIgspKien6LCkjl7fhiITMfQREREZCHs+bEtDE1EREQWxEBkOzgQnIiIiMgIDE1ERERERmBoIiIiIjICQxMRERGRERiaiIiIiIzA0ERERERkBIYmIiIiIiMwNBEREREZgZNbEhERkVXSaDRWNVs6QxMRERFZHY1Gg5iYmCe2i4yMrLDgxMtzREREZHUK9jDpdG5ISfGDTudWYrvyxJ4mIiIismqJia2wZUtvCGEHmUyPsLCtCAo6UeF1sKeJiIiIrJZO5yYFJgAQwg5btvQu1ONUEdjTRFQCaxuESERU1Wi17lJgyieEHbRaFZTKzAqthaGJqBjWOAiRiKiqUak0kMn0BsFJJtNDpdJWeC28PEdUDGschEhEVNUolZkIC9sKmUwPANKYporuZQLY00RkFGsZhEhEVBUFBZ2Av/9laLUqqFRaiwQmgD1NRE9kTYMQiYiqCrlcbrCsVGaifv1rhQJTwXbliT1NRE9gTYMQiYiqCnd3d0RGRlrVzTgMTURPYE2DEImIqhJru8mGl+eInsCaBiESEZHlsKeJyAjWMgiRiIgsh6GJqBhFDUIsKixV5CBEIiKyHIYmomJY4yBEIiKyHIuOaTp48CDCwsLg7e0NmUyGzZs3G2wXQmDGjBmoXbs2nJ2d0b17d1y6dMmgjVarxZAhQ6BQKFCjRg2MGjUKd+/eNWhz6tQpdOzYEU5OTvDx8cGCBQsK1bJ+/XoEBATAyckJzZs3x/bt281+vGR73N3dUbt27WJfDExERFWHRUNTVlYWWrRogWXLlhW5fcGCBViyZAlWrFiBo0ePwsXFBWq1Gg8ePJDaDBkyBGfPnsXu3buxdetWHDx4EGPGjJG2Z2RkoEePHvD19UVCQgI+/vhjzJo1C//5z3+kNkeOHMGgQYMwatQonDhxAv369UO/fv1w5syZ8jt4IiIisi3CSgAQmzZtkpb1er3w8vISH3/8sbQuPT1dODo6iu+++04IIcS5c+cEAHH8+HGpzc8//yxkMpn466+/hBBCfP755+Kpp54S2dnZUptp06aJJk2aSMuvvvqqCA0NNainXbt2YuzYsUbXr9PpBACh0+mMfg8RERFZVml+v612yoGUlBSkpaWhe/fu0jqlUol27dohPj4eABAfH48aNWqgdevWUpvu3bvDzs4OR48eldp06tTJYLCuWq1GcnIy7ty5I7V5/HPy2+R/TlGys7ORkZFh8CIiIqLKy2pDU1paGgDA09PTYL2np6e0LS0tDbVq1TLYXq1aNahUKoM2Re3j8c8ork3+9qLMmzcPSqVSevn4+JT2EImIiMiGWG1osnbR0dHQ6XTS648//rB0SURERFSOrDY0eXl5AQBu3rxpsP7mzZvSNi8vL9y6dctg+8OHD6HVag3aFLWPxz+juDb524vi6OgIhUJh8CIiIqLKy2pDU/369eHl5YW4uDhpXUZGBo4ePYqQkBAAQEhICNLT05GQkCC12bt3L/R6Pdq1aye1OXjwIHJzc6U2u3fvRpMmTfDUU09JbR7/nPw2+Z9DREREZNHQdPfuXSQlJSEpKQnAo8HfSUlJuH79OmQyGSZNmoT3338fP/30E06fPo3XXnsN3t7e6NevHwDg6aefRs+ePfH666/j2LFjOHz4MCIjIzFw4EB4e3sDAAYPHgy5XI5Ro0bh7NmzWLt2LRYvXoyoqCipjokTJ2LHjh349NNPceHCBcyaNQu//fYbIiMjK/qUEBERkbWqgLv5irVv3z4BoNArPDxcCPFo2oH33ntPeHp6CkdHR9GtWzeRnJxssA+NRiMGDRokXF1dhUKhECNGjBCZmZkGbU6ePCmee+454ejoKOrUqSPmz59fqJZ169aJxo0bC7lcLpo2bSq2bdtWqmPhlANERES2pzS/3zIhhLBgZqs0dDodatSogT/++IPjm4iIiGxERkYGfHx8kJ6eDqVSWWJbPnvOTDIzHz3IlVMPEBER2Z7MzMwnhib2NJmJXq/HjRs34ObmBplMZulyKkx+QmcPG89FPp6Hf/Bc/IPn4h88F/+whnMhhEBmZia8vb1hZ1fyUG/2NJmJnZ0d6tata+kyLIbTLvyD5+IRnod/8Fz8g+fiHzwX/7D0uXhSD1M+q51ygIiIiMiaMDQRERERGYGhicrE0dERM2fOhKOjo6VLsTiei0d4Hv7Bc/EPnot/8Fz8w9bOBQeCExERERmBPU1ERERERmBoIiIiIjICQxMRERGRERiaiIiIiIzA0EQGli1bBj8/Pzg5OaFdu3Y4duxYie0XLVqEJk2awNnZGT4+Ppg8eTIePHggbZ81axZkMpnBKyAgoLwPwyxKcy5yc3MxZ84c+Pv7w8nJCS1atMCOHTvKtE9rYu5zYavfi4MHDyIsLAze3t6QyWTYvHnzE9+zf/9+BAUFwdHREQ0bNkRsbGyhNrb4vSiPc2GL34vSnofU1FQMHjwYjRs3hp2dHSZNmlRku/Xr1yMgIABOTk5o3rw5tm/fbv7izaw8zkVsbGyh74STk1P5HIARGJpIsnbtWkRFRWHmzJlITExEixYtoFarcevWrSLbr1mzBm+//TZmzpyJ8+fPY+XKlVi7di3eeecdg3ZNmzZFamqq9Dp06FBFHE6ZlPZcTJ8+HV988QWWLl2Kc+fOYdy4cXjppZdw4sQJk/dpLcrjXAC2+b3IyspCixYtsGzZMqPap6SkIDQ0FF27dkVSUhImTZqE0aNHY+fOnVIbW/1elMe5AGzve1Ha85CdnQ0PDw9Mnz4dLVq0KLLNkSNHMGjQIIwaNQonTpxAv3790K9fP5w5c8acpZtdeZwL4NFs4Y9/J65du2aukktPEP2/tm3bioiICGk5Ly9PeHt7i3nz5hXZPiIiQjz//PMG66KiokSHDh2k5ZkzZ4oWLVqUS73lqbTnonbt2iImJsZg3csvvyyGDBli8j6tRXmcC1v9XjwOgNi0aVOJbaZOnSqaNm1qsG7AgAFCrVZLy7b6vXicuc6FrX8vjDkPj+vcubOYOHFiofWvvvqqCA0NNVjXrl07MXbs2DJWWHHMdS5WrVollEql2eoqK/Y0EQAgJycHCQkJ6N69u7TOzs4O3bt3R3x8fJHvad++PRISEqRLCb///ju2b9+OF1980aDdpUuX4O3tjQYNGmDIkCG4fv16+R2IGZhyLrKzswt1GTs7O0v/X7Ip+7QG5XEu8tna98IU8fHxBucOANRqtXTubPV7YYonnYt8VeF78STGnquq4u7du/D19YWPjw/69u2Ls2fPWqwWhiYCAPz999/Iy8uDp6enwXpPT0+kpaUV+Z7Bgwdjzpw5eO655+Dg4AB/f3906dLF4PJcu3btEBsbix07dmD58uVISUlBx44dkZmZWa7HUxamnAu1Wo3PPvsMly5dgl6vx+7du7Fx40akpqaavE9rUB7nArDN74Up0tLSijx3GRkZuH//vs1+L0zxpHMBVJ3vxZMUd64q23fCGE2aNMFXX32FH3/8Ef/73/+g1+vRvn17/Pnnnxaph6GJTLZ//358+OGH+Pzzz5GYmIiNGzdi27ZtmDt3rtSmV69e+Ne//oVnnnkGarUa27dvR3p6OtatW2fBys1v8eLFaNSoEQICAiCXyxEZGYkRI0bAzq7q/U/MmHNRVb4XVDr8XlBBISEheO2119CyZUt07twZGzduhIeHB7744guL1FP1/kWnItWsWRP29va4efOmwfqbN2/Cy8uryPe89957GDZsGEaPHo3mzZvjpZdewocffoh58+ZBr9cX+Z4aNWqgcePGuHz5stmPwVxMORceHh7YvHkzsrKycO3aNVy4cAGurq5o0KCByfu0BuVxLopiC98LU3h5eRV57hQKBZydnW32e2GKJ52LolTW78WTFHeuKtt3whQODg5o1aqVxb4TDE0EAJDL5QgODkZcXJy0Tq/XIy4uDiEhIUW+5969e4V6Uuzt7QEAophHGt69exdXrlxB7dq1zVS5+ZlyLvI5OTmhTp06ePjwITZs2IC+ffuWeZ+WVB7noii28L0wRUhIiMG5A4Ddu3dL585WvxemeNK5KEpl/V48iSnnqqrIy8vD6dOnLfedsPRIdLIe33//vXB0dBSxsbHi3LlzYsyYMaJGjRoiLS1NCCHEsGHDxNtvvy21nzlzpnBzcxPfffed+P3338WuXbuEv7+/ePXVV6U2b775pti/f79ISUkRhw8fFt27dxc1a9YUt27dqvDjK43Snotff/1VbNiwQVy5ckUcPHhQPP/886J+/frizp07Ru/TWpXHubDV70VmZqY4ceKEOHHihAAgPvvsM3HixAlx7do1IYQQb7/9thg2bJjU/vfffxfVq1cXU6ZMEefPnxfLli0T9vb2YseOHVIbW/1elMe5sMXvRWnPgxBCah8cHCwGDx4sTpw4Ic6ePSttP3z4sKhWrZr45JNPxPnz58XMmTOFg4ODOH36dIUeW2mVx7mYPXu22Llzp7hy5YpISEgQAwcOFE5OTgZtKhJDExlYunSpqFevnpDL5aJt27bi119/lbZ17txZhIeHS8u5ubli1qxZwt/fXzg5OQkfHx/x73//2+DHccCAAaJ27dpCLpeLOnXqiAEDBojLly9X4BGZrjTnYv/+/eLpp58Wjo6Owt3dXQwbNkz89ddfpdqnNTP3ubDV78W+ffsEgEKv/OMPDw8XnTt3LvSeli1bCrlcLho0aCBWrVpVaL+2+L0oj3Nhi98LU85DUe19fX0N2qxbt040btxYyOVy0bRpU7Ft27aKOaAyKI9zMWnSJOl/G56enuLFF18UiYmJFXdQBciEKOY6ChERERFJOKaJiIiIyAgMTURERERGYGgiIiIiMgJDExEREZERGJqIiIiIjMDQRERERGQEhiYiIiIiIzA0ERFVYvv374dMJkN6erqlSyGyeQxNRGQWw4cPh0wmw/z58w3Wb968GTKZTFoWQuC///0vQkJCoFAo4OrqiqZNm2LixIlGP4Tz3r17iI6Ohr+/P5ycnODh4YHOnTvjxx9/lNr4+flh0aJFZjm28pZ/7mQyGRwcHFC/fn1MnToVDx48KNV+unTpgkmTJhmsa9++PVJTU6FUKs1YMVHVxNBERGbj5OSEjz76CHfu3ClyuxACgwcPxhtvvIEXX3wRu3btwrlz57By5Uo4OTnh/fffN+pzxo0bh40bN2Lp0qW4cOECduzYgVdeeQUajcach1OhevbsidTUVPz+++9YuHAhvvjiC8ycObPM+5XL5fDy8jIIrkRkIos9wIWIKpXw8HDRu3dvERAQIKZMmSKt37Rpk8j/p+a7774TAMSPP/5Y5D70er1Rn6VUKkVsbGyx2zt37lzoeVb5fvnlF/Hcc88JJycnUbduXTFhwgRx9+5dafvXX38tgoODhaurq/D09BSDBg0SN2/elLbnP19rx44domXLlsLJyUl07dpV3Lx5U2zfvl0EBAQINzc3MWjQIJGVlWXU8YSHh4u+ffsarHv55ZdFq1atpOW///5bDBw4UHh7ewtnZ2fRrFkzsWbNGoN9FDzmlJQUqd7Hnwn5ww8/iMDAQCGXy4Wvr6/45JNPjKqTqKpjTxMRmY29vT0+/PBDLF26FH/++Weh7d999x2aNGmCPn36FPl+Y3tDvLy8sH37dmRmZha5fePGjahbty7mzJmD1NRUpKamAgCuXLmCnj17on///jh16hTWrl2LQ4cOITIyUnpvbm4u5s6di5MnT2Lz5s24evUqhg8fXugzZs2ahZiYGBw5cgR//PEHXn31VSxatAhr1qzBtm3bsGvXLixdutSo4ynozJkzOHLkCORyubTuwYMHCA4OxrZt23DmzBmMGTMGw4YNw7FjxwAAixcvRkhICF5//XXpmH18fArtOyEhAa+++ioGDhyI06dPY9asWXjvvfcQGxtrUq1EVYqlUxsRVQ6P95Y8++yzYuTIkUIIw56mgIAA0adPH4P3TZw4Ubi4uAgXFxdRp04doz7rwIEDom7dusLBwUG0bt1aTJo0SRw6dMigja+vr1i4cKHBulGjRokxY8YYrPvll1+EnZ2duH//fpGfdfz4cQFAZGZmCiH+6Wnas2eP1GbevHkCgLhy5Yq0buzYsUKtVht1POHh4cLe3l64uLgIR0dHAUDY2dmJH374ocT3hYaGijfffFNa7ty5s5g4caJBm4I9TYMHDxYvvPCCQZspU6aIwMBAo2olqsrY00REZvfRRx9h9erVOH/+/BPbvvvuu0hKSsKMGTNw9+5do/bfqVMn/P7774iLi8Mrr7yCs2fPomPHjpg7d26J7zt58iRiY2Ph6uoqvdRqNfR6PVJSUgA86okJCwtDvXr14Obmhs6dOwMArl+/brCvZ555Rvrb09MT1atXR4MGDQzW3bp1y6jjAYCuXbsiKSkJR48eRXh4OEaMGIH+/ftL2/Py8jB37lw0b94cKpUKrq6u2LlzZ6G6nuT8+fPo0KGDwboOHTrg0qVLyMvLK9W+iKoahiYiMrtOnTpBrVYjOjraYH2jRo2QnJxssM7DwwMNGzZErVq1SvUZDg4O6NixI6ZNm4Zdu3Zhzpw5mDt3LnJycop9z927dzF27FgkJSVJr5MnT+LSpUvw9/dHVlYW1Go1FAoFvv32Wxw/fhybNm0CgEL7dXBwkP7Ov+vtcTKZDHq93ujjcXFxQcOGDdGiRQt89dVXOHr0KFauXClt//jjj7F48WJMmzYN+/btQ1JSEtRqdYnHS0TmVc3SBRBR5TR//ny0bNkSTZo0kdYNGjQIgwcPxo8//oi+ffua9fMCAwPx8OFDPHjwAHK5HHK5vFDPSVBQEM6dO4eGDRsWuY/Tp09Do9Fg/vz50nig3377zax1GsPOzg7vvPMOoqKiMHjwYDg7O+Pw4cPo27cvhg4dCgDQ6/W4ePEiAgMDpfcVdcwFPf300zh8+LDBusOHD6Nx48awt7c3/8EQVSLsaSKictG8eXMMGTIES5YskdYNHDgQr7zyCgYOHIg5c+bg6NGjuHr1Kg4cOIC1a9ca/aPdpUsXfPHFF0hISMDVq1exfft2vPPOO+jatSsUCgWAR/M0HTx4EH/99Rf+/vtvAMC0adNw5MgRREZGIikpCZcuXcKPP/4oDQSvV68e5HI5li5dit9//x0//fTTEy/5lZd//etfsLe3x7JlywA86qXbvXs3jhw5gvPnz2Ps2LG4efOmwXv8/Pykc/r3338X2dP15ptvIi4uDnPnzsXFixexevVqxMTE4K233qqQ4yKyZQxNRFRu5syZY/DDLZPJsHbtWixatAjbt29Ht27d0KRJE4wcORI+Pj44dOiQUftVq9VYvXo1evTogaeffhoTJkyAWq3GunXrDD776tWr8Pf3h4eHB4BH45AOHDiAixcvomPHjmjVqhVmzJgBb29vAI8uFcbGxmL9+vUIDAzE/Pnz8cknn5jxjBivWrVqiIyMxIIFC5CVlYXp06cjKCgIarUaXbp0gZeXF/r162fwnrfeegv29vYIDAyEh4dHkeOdgoKCsG7dOnz//fdo1qwZZsyYgTlz5hR5hyARGZIJIYSliyAiIiKyduxpIiIiIjICQxMRWZ3HpwQo+Prll18sXV6pXL9+vcTjKe2UAURkObw8R0RWp6QH99apUwfOzs4VWE3ZPHz4EFevXi12u5+fH6pV443MRLaAoYmIiIjICLw8R0RERGQEhiYiIiIiIzA0ERERERmBoYmIiIjICAxNREREREZgaCIiIiIyAkMTERERkREYmoiIiIiM8H+AoCRd8VLrXwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWVRJREFUeJzt3XtYFGX/BvB7QZbzLi4KiKIgHgjPYBqah9JcDTHT8qx4yjQwkdKiTE1LzdI8YFrva2KmpeYpD6lIHlLRDCSPWSpmJUiysSAmIPv8/vDHvK4gDuvCLnB/rmuv3JlnZ78zTe7dM888oxBCCBARERFRqWwsXQARERFRZcDQRERERCQDQxMRERGRDAxNRERERDIwNBERERHJwNBEREREJANDExEREZEMDE1EREREMjA0EREREcnA0EREVMXExcVBoVDgypUrli6FqEphaCKiMjtx4gQiIyPRrFkzODs7o379+hgwYAB+/fXXYm27du0KhUIBhUIBGxsbqFQqNG3aFMOHD0d8fHyZvnf79u3o0qULPDw84OTkhIYNG2LAgAHYvXu3uXatmDlz5mDr1q3Flh89ehQzZ85EVlZWuX33/WbOnCkdS4VCAScnJwQGBmLatGnIzs42y3esW7cOixYtMsu2iKoahiYiKrMPPvgAmzZtQrdu3bB48WKMGzcOhw4dQlBQEM6cOVOsfb169bBmzRp88cUX+PDDD9GnTx8cPXoUPXr0wMCBA1FQUPDQ7/zoo4/Qp08fKBQKxMTE4OOPP0b//v3x22+/4euvvy6P3QRQemh69913KzQ0FVm+fDnWrFmDhQsXIiAgAO+//z569uwJczxKlKGJ6MFqWLoAIqp8oqOjsW7dOiiVSmnZwIED0aJFC8ybNw9ffvmlUXu1Wo1hw4YZLZs3bx5effVVfPLJJ/D19cUHH3zwwO+7c+cOZs+ejWeeeQZ79+4ttj4jI+MR98h63Lp1C05OTqW2eeGFF1CrVi0AwPjx49G/f39s3rwZx44dQ0hISEWUSVQtsaeJiMqsQ4cORoEJABo3boxmzZrh/PnzsrZha2uLJUuWIDAwELGxsdDr9Q9se+PGDWRnZ6Njx44lrvfw8DB6f/v2bcycORNNmjSBg4MD6tSpg379+uHSpUtSm48++ggdOnSAu7s7HB0dERwcjG+++cZoOwqFArm5uVi9erV0SWzkyJGYOXMmpkyZAgDw8/OT1t07hujLL79EcHAwHB0dodFoMGjQIPzxxx9G2+/atSuaN2+OpKQkdO7cGU5OTnjrrbdkHb97Pf300wCA1NTUUtt98sknaNasGezt7eHt7Y2IiAijnrKuXbti586d+P3336V98vX1LXM9RFUVe5qIyCyEELh+/TqaNWsm+zO2trYYPHgw3nnnHRw+fBihoaEltvPw8ICjoyO2b9+OiRMnQqPRPHCbhYWF6N27NxISEjBo0CBMmjQJOTk5iI+Px5kzZ+Dv7w8AWLx4Mfr06YOhQ4ciPz8fX3/9NV588UXs2LFDqmPNmjUYO3Ys2rVrh3HjxgEA/P394ezsjF9//RVfffUVPv74Y6nXp3bt2gCA999/H++88w4GDBiAsWPH4u+//8bSpUvRuXNnnDx5Em5ublK9mZmZ6NWrFwYNGoRhw4bB09NT9vErUhQG3d3dH9hm5syZePfdd9G9e3dMmDABFy5cwPLly3HixAkcOXIEdnZ2ePvtt6HX6/Hnn3/i448/BgC4uLiUuR6iKksQEZnBmjVrBACxcuVKo+VdunQRzZo1e+DntmzZIgCIxYsXl7r96dOnCwDC2dlZ9OrVS7z//vsiKSmpWLvPP/9cABALFy4sts5gMEh/vnXrltG6/Px80bx5c/H0008bLXd2dhbh4eHFtvXhhx8KACI1NdVo+ZUrV4Stra14//33jZafPn1a1KhRw2h5ly5dBACxYsWKB+73vWbMmCEAiAsXLoi///5bpKamik8//VTY29sLT09PkZubK4QQYtWqVUa1ZWRkCKVSKXr06CEKCwul7cXGxgoA4vPPP5eWhYaGigYNGsiqh6i64eU5Inpkv/zyCyIiIhASEoLw8PAyfbaoJyMnJ6fUdu+++y7WrVuHNm3aYM+ePXj77bcRHByMoKAgo0uCmzZtQq1atTBx4sRi21AoFNKfHR0dpT//888/0Ov16NSpE5KTk8tU//02b94Mg8GAAQMG4MaNG9LLy8sLjRs3xv79+43a29vbY9SoUWX6jqZNm6J27drw8/PDyy+/jEaNGmHnzp0PHAu1b98+5OfnIyoqCjY2//tr/6WXXoJKpcLOnTvLvqNE1RAvzxHRI0lPT0doaCjUajW++eYb2NralunzN2/eBAC4uro+tO3gwYMxePBgZGdn4/jx44iLi8O6desQFhaGM2fOwMHBAZcuXULTpk1Ro0bpf73t2LED7733HlJSUpCXlyctvzdYmeK3336DEAKNGzcucb2dnZ3R+7p16xYbH/YwmzZtgkqlgp2dHerVqyddcnyQ33//HcDdsHUvpVKJhg0bSuuJqHQMTURkMr1ej169eiErKws//PADvL29y7yNoikKGjVqJPszKpUKzzzzDJ555hnY2dlh9erVOH78OLp06SLr8z/88AP69OmDzp0745NPPkGdOnVgZ2eHVatWYd26dWXeh3sZDAYoFAp89913JQbI+8cI3dvjJVfnzp2lcVREVHEYmojIJLdv30ZYWBh+/fVX7Nu3D4GBgWXeRmFhIdatWwcnJyc8+eSTJtXRtm1brF69GmlpaQDuDtQ+fvw4CgoKivXqFNm0aRMcHBywZ88e2NvbS8tXrVpVrO2Dep4etNzf3x9CCPj5+aFJkyZl3Z1y0aBBAwDAhQsX0LBhQ2l5fn4+UlNT0b17d2nZo/a0EVVlHNNERGVWWFiIgQMHIjExERs3bjRpbqDCwkK8+uqrOH/+PF599VWoVKoHtr116xYSExNLXPfdd98B+N+lp/79++PGjRuIjY0t1lb8/+SPtra2UCgUKCwslNZduXKlxEksnZ2dS5zA0tnZGQCKrevXrx9sbW3x7rvvFptsUgiBzMzMkneyHHXv3h1KpRJLliwxqmnlypXQ6/VGdy06OzuXOv0DUXXGniYiKrPXXnsN3377LcLCwqDT6YpNZnn/RJZ6vV5qc+vWLVy8eBGbN2/GpUuXMGjQIMyePbvU77t16xY6dOiAJ554Aj179oSPjw+ysrKwdetW/PDDD+jbty/atGkDABgxYgS++OILREdH48cff0SnTp2Qm5uLffv24ZVXXsFzzz2H0NBQLFy4ED179sSQIUOQkZGBZcuWoVGjRjh16pTRdwcHB2Pfvn1YuHAhvL294efnh/bt2yM4OBgA8Pbbb2PQoEGws7NDWFgY/P398d577yEmJgZXrlxB37594erqitTUVGzZsgXjxo3D66+//kjHv6xq166NmJgYvPvuu+jZsyf69OmDCxcu4JNPPsHjjz9u9O8rODgY69evR3R0NB5//HG4uLggLCysQuslslqWvHWPiCqnolvlH/Qqra2Li4to3LixGDZsmNi7d6+s7ysoKBD/+c9/RN++fUWDBg2Evb29cHJyEm3atBEffvihyMvLM2p/69Yt8fbbbws/Pz9hZ2cnvLy8xAsvvCAuXboktVm5cqVo3LixsLe3FwEBAWLVqlXSLf33+uWXX0Tnzp2Fo6OjAGA0/cDs2bNF3bp1hY2NTbHpBzZt2iSefPJJ4ezsLJydnUVAQICIiIgQFy5cMDo2pU3HcL+i+v7+++9S290/5UCR2NhYERAQIOzs7ISnp6eYMGGC+Oeff4za3Lx5UwwZMkS4ubkJAJx+gOgeCiHM8LAiIiIioiqOY5qIiIiIZGBoIiIiIpKBoYmIiIhIBoYmIiIiIhkYmoiIiIhkYGgiIiIikoGTW5qJwWDAtWvX4OrqyscQEBERVRJCCOTk5MDb2xs2NqX3JTE0mcm1a9fg4+Nj6TKIiIjIBH/88Qfq1atXahuGJjNxdXUFcPegl/YMLSIiIrIe2dnZ8PHxkX7HS8PQZCZFl+RUKhVDExERUSUjZ2gNB4ITERERycDQRERERCQDQxMRERGRDBzTVMEKCwtRUFBg6TKqLDs7O9ja2lq6DCIiqoIYmiqIEALp6enIysqydClVnpubG7y8vDhfFhERmRVDUwUpCkweHh5wcnLiD3o5EELg1q1byMjIAADUqVPHwhUREVFVwtBUAQoLC6XA5O7ubulyqjRHR0cAQEZGBjw8PHipjoiIzIYDwStA0RgmJycnC1dSPRQdZ44dIyIic2JoqkC8JFcxeJyJiKg88PIcERERPVRmZiby8/MfuF6pVFb5ISgMTURERFSqzMxMxMbGPrRdZGRklQ5OvDxHpRo5ciQUCgUUCgXs7Ozg6emJZ555Bp9//jkMBoPs7cTFxcHNza38CiUionJzfw+TXu+K1FRf6PWupbaratjTVElYslu0Z8+eWLVqFQoLC3H9+nXs3r0bkyZNwjfffINvv/0WNWrwNCIiqi6Sk9tg+/beEMIGCoUBYWE7EBR00tJlVQj+2lUClu4Wtbe3h5eXFwCgbt26CAoKwhNPPIFu3bohLi4OY8eOxcKFC7Fq1SpcvnwZGo0GYWFhmD9/PlxcXHDgwAGMGjUKwP8Gac+YMQMzZ87EmjVrsHjxYly4cAHOzs54+umnsWjRInh4eJh9P4iI6NHo9a5SYAIAIWywfXtv+PtfhFqdY+Hqyh8vz1UCcrs7K7Jb9Omnn0arVq2wefNmAICNjQ2WLFmCs2fPYvXq1fj+++8xdepUAECHDh2waNEiqFQqpKWlIS0tDa+//jqAu9MCzJ49Gz///DO2bt2KK1euYOTIkRW2H0REJJ9O5y4FpiJC2ECn01iooorFniYyWUBAAE6dOgUAiIqKkpb7+vrivffew/jx4/HJJ59AqVRCrVZDoVBIPVZFRo8eLf25YcOGWLJkCR5//HHcvHkTLi4uFbIfREQkj0aTCYXCYBScFAoDNBqdBauqOOxpIpMJIaTLbfv27UO3bt1Qt25duLq6Yvjw4cjMzMStW7dK3UZSUhLCwsJQv359uLq6okuXLgCAq1evlnv9RERUNmp1DsLCdkChuHsjUNGYpupwaQ5gTxM9gvPnz8PPzw9XrlxB7969MWHCBLz//vvQaDQ4fPgwxowZg/z8/AfOhJ6bmwutVgutVou1a9eidu3auHr1KrRabZW/A4OIqLIKCjoJf/+L0Ok00Gh01SYwAQxNZKLvv/8ep0+fxuTJk5GUlASDwYAFCxbAxuZu5+WGDRuM2iuVShQWFhot++WXX5CZmYl58+bBx8cHAPDTTz9VzA4QEZFsSqXS6L1anVNiWLq/XVXD0EQPlZeXh/T0dKMpB+bOnYvevXtjxIgROHPmDAoKCrB06VKEhYXhyJEjWLFihdE2fH19cfPmTSQkJKBVq1ZwcnJC/fr1oVQqsXTpUowfPx5nzpzB7NmzLbSXRET0IO7u7oiMjKz2M4JzTBM91O7du1GnTh34+vqiZ8+e2L9/P5YsWYJt27bB1tYWrVq1wsKFC/HBBx+gefPmWLt2LebOnWu0jQ4dOmD8+PEYOHAgateujfnz56N27dqIi4vDxo0bERgYiHnz5uGjjz6y0F4SEVFp3N3dUadOnQe+qnpgAgCFEEJYuoiqIDs7G2q1Gnq9HiqVymjd7du3kZqaCj8/Pzg4OJR525aep6myedTjTURE1Udpv9/34+W5SoDdokRERJbH0FRJMBARERFZFsc0EREREcnA0EREREQkA0MTERERkQwMTUREREQyMDQRERERycDQRERERCQDQxMRERGRDAxNZFEHDhyAQqFAVlaW7M/4+vpi0aJF5VYTERFRSSwampYvX46WLVtCpVJBpVIhJCQE3333nbS+a9euUCgURq/x48cbbePq1asIDQ2Fk5MTPDw8MGXKFNy5c8eozYEDBxAUFAR7e3s0atQIcXFxxWpZtmwZfH194eDggPbt2+PHH38sl32ubEaOHFnicQeAiIgIKBQKjBw5suILIyKiKi8zMxNpaWkPfGVmZlZoPRadEbxevXqYN28eGjduDCEEVq9ejeeeew4nT55Es2bNAAAvvfQSZs2aJX3GyclJ+nNhYSFCQ0Ph5eWFo0ePIi0tDSNGjICdnR3mzJkDAEhNTUVoaCjGjx+PtWvXIiEhAWPHjkWdOnWg1WoBAOvXr0d0dDRWrFiB9u3bY9GiRdBqtbhw4QI8PDwq8IhYJx8fH3z99df4+OOP4ejoCODu893WrVuH+vXrW7g6IiKqiqzxuasW7WkKCwvDs88+i8aNG6NJkyZ4//334eLigmPHjkltnJyc4OXlJb3ufZje3r17ce7cOXz55Zdo3bo1evXqhdmzZ2PZsmXSc9pWrFgBPz8/LFiwAI899hgiIyPxwgsv4OOPP5a2s3DhQrz00ksYNWoUAgMDsWLFCjg5OeHzzz+vuINhxYKCguDj44PNmzdLyzZv3oz69eujTZs20rK8vDy8+uqr8PDwgIODA5588kmcOHHCaFu7du1CkyZN4OjoiKeeegpXrlwp9n2HDx9Gp06d4OjoCB8fH7z66qvIzc0tt/0jIiLrc//zVvV6V6Sm+kKvdy21XXmymjFNhYWF+Prrr5Gbm4uQkBBp+dq1a1GrVi00b94cMTExuHXrlrQuMTERLVq0gKenp7RMq9UiOzsbZ8+eldp0797d6Lu0Wi0SExMB3D3YSUlJRm1sbGzQvXt3qU1J8vLykJ2dbfSqKH/+Cezff/efFWX06NFYtWqV9P7zzz/HqFGjjNpMnToVmzZtwurVq5GcnIxGjRpBq9VCp9MBAP744w/069cPYWFhSElJwdixY/Hmm28abePSpUvo2bMn+vfvj1OnTmH9+vU4fPgwIiMjy38niYjIKiUnt8GiRVFYvTocixZFITm5zcM/VA4sHppOnz4NFxcX2NvbY/z48diyZQsCAwMBAEOGDMGXX36J/fv3IyYmBmvWrMGwYcOkz6anpxsFJgDS+/T09FLbZGdn499//8WNGzdQWFhYYpuibZRk7ty5UKvV0svHx8f0g1AGK1cCDRoATz99958rV1bI12LYsGE4fPgwfv/9d/z+++84cuSI0b+L3NxcLF++HB9++CF69eqFwMBA/Oc//4GjoyNW/n+Ry5cvh7+/PxYsWICmTZti6NChxcZDzZ07F0OHDkVUVBQaN26MDh06YMmSJfjiiy9w+/btitlZIiKyGnq9K7Zv7w0h7kYWIWywfXvvYj1OFcGiY5oAoGnTpkhJSYFer8c333yD8PBwHDx4EIGBgRg3bpzUrkWLFqhTpw66deuGS5cuwd/f34JVAzExMYiOjpbeZ2dnl3tw+vNPYNw4wGC4+95gAF5+GdBqgXr1yvWrUbt2bYSGhiIuLg5CCISGhqJWrVrS+kuXLqGgoAAdO3aUltnZ2aFdu3Y4f/48AOD8+fNo37690Xbv7VUEgJ9//hmnTp3C2rVrpWVCCBgMBqSmpuKxxx4rj90jIiIrpdO5S4GpiBA20Ok0UKtzKrQWi4cmpVKJRo0aAQCCg4Nx4sQJLF68GJ9++mmxtkU/uBcvXoS/vz+8vLyK3eV2/fp1AICXl5f0z6Jl97ZRqVRwdHSEra0tbG1tS2xTtI2S2Nvbw97evox7+2h+++1/galIYSFw8WL5hybg7iW6ostky5YtK5fvuHnzJl5++WW8+uqrxdZx0DkRUfWj0WRCoTAYBSeFwgCNRlfhtVj88tz9DAYD8vLySlyXkpICAKhTpw6Au70Up0+fRkZGhtQmPj4eKpVKusQXEhKChIQEo+3Ex8dLPRxKpRLBwcFGbQwGAxISEor1glha48aAzX3/xmxtgf/PnOWuZ8+eyM/PR0FBgXTnYRF/f38olUocOXJEWlZQUIATJ05I/y4ee+yxYiH33kH/wN1B5+fOnUOjRo2KvZRKZTntGRERWSu1OgdhYTugUNztNVAoDAgL21HhvUyAhXuaYmJi0KtXL9SvXx85OTlYt24dDhw4gD179uDSpUtYt24dnn32Wbi7u+PUqVOYPHkyOnfujJYtWwIAevTogcDAQAwfPhzz589Heno6pk2bhoiICKkXaPz48YiNjcXUqVMxevRofP/999iwYQN27twp1REdHY3w8HC0bdsW7dq1w6JFi5Cbm1tsoLOl1asHfPbZ3UtyhYV3A9Onn1ZMLxMA2NraSpfabG1tjdY5OztjwoQJmDJlCjQaDerXr4/58+fj1q1bGDNmDIC7/y4WLFiAKVOmYOzYsUhKSio2Z9Ybb7yBJ554ApGRkRg7diycnZ1x7tw5xMfHy7r1lIiIqp6goJPw978InU4DjUZnkcAEWDg0ZWRkYMSIEUhLS4NarUbLli2xZ88ePPPMM/jjjz+wb98+KcD4+Pigf//+mDZtmvR5W1tb7NixAxMmTEBISAicnZ0RHh5uNK+Tn58fdu7cicmTJ2Px4sWoV68e/vvf/xr1lAwcOBB///03pk+fjvT0dLRu3Rq7d+8uNjjcGowZc3cM08WLd3uYKiowFbl3yof7zZs3DwaDAcOHD0dOTg7atm2LPXv2oGbNmgDuXl7btGkTJk+ejKVLl6Jdu3aYM2cORo8eLW2jZcuWOHjwIN5++2106tQJQgj4+/tj4MCB5b5vRERkPe6/uqBW55QYliryKoRCCCEq7NuqsOzsbKjVauj1+mLB4vbt20hNTYWfnx8cHBwsVGH1weNNRFQ1ZGZmljoPk1KpfOSJLUv7/b6fxQeCExEREZWkomb6lsvqBoITERERWSOGJiIiIiIZGJqIiIiIZGBoqkAcc18xeJyJiKg8MDRVADs7OwAwetgwlZ+i41x03ImIiMyBd89VAFtbW7i5uUkzlzs5OUGhUFi4Kutw584dGO5/Nsw9bGxsUKOGvNNUCIFbt24hIyMDbm5uxSbgJCIiehQMTRWk6Dl29z7ypborLCxETs7DZ3V1dXUtUwByc3Mr9bmBZJ0qYj4WIqJHwdBUQRQKBerUqQMPDw8UFBRYuhyrkJGRgd27d0vvb950hl7vBrU6Cy4uudLyAQMGwMPDQ9Y27ezs2MNUCWVmZsp6TE5kZCSDExFZDENTBbO1teWP+v+zs7NDbu7dcJSc3Abbt/eGEDbSwxiDgk5K7Tizd9V2fw+TXu8Knc4dGk2m0WMTSuuJIiIqbwxNZHF6vasUmABACBts394b/v4XLfZQRrKc0gJ0dcdLmESWxdBEFqfTuUuBqYgQNtDpNAxN1QwD9IPxEiaR5XHKAbI4jSYTCoXxHXQKhQEajc5CFZGllBagq7uSLmGmpvpCr3cttR0RmQ97msji1OochIXtKHZJprr3LFRHRQH63uDEAF0cL2ESWQZDE1mFoKCT8Pe/CJ1OA41Gx8BUTTFAPxwvYRJZDkMTWYxSqTR6r1bnlPiX/v3tqGpjgC4dxwASWQ5DE1mMu7s7IiMjeTcQMUCXAS9hElkOQxNZFAMRAQzQZcFLmESWw9BERFaBgUg+XsIksgyGJiKiSoCXMIksj6GJiKgS4CVMIstjaCIiqiQYiIgsizOCExEREcnA0EREREQkA0MTERERkQwMTUREREQyMDQRERERycDQRERERCQDQxMRERGRDAxNRERERDIwNBERERHJwNBEREREJANDExEREZEMDE1EREREMjA0EREREcnA0EREREQkA0MTERERkQwMTUREREQyMDQRERERycDQRERERCQDQxMRERGRDAxNRERERDIwNBERERHJwNBEREREJANDExEREZEMDE1EREREMjA0EREREcnA0EREREQkA0MTERERkQwMTUREREQyMDQRERERycDQRERERCQDQxMRERGRDAxNRERERDJYNDQtX74cLVu2hEqlgkqlQkhICL777jtp/e3btxEREQF3d3e4uLigf//+uH79utE2rl69itDQUDg5OcHDwwNTpkzBnTt3jNocOHAAQUFBsLe3R6NGjRAXF1eslmXLlsHX1xcODg5o3749fvzxx3LZZyIiIqqcLBqa6tWrh3nz5iEpKQk//fQTnn76aTz33HM4e/YsAGDy5MnYvn07Nm7ciIMHD+LatWvo16+f9PnCwkKEhoYiPz8fR48exerVqxEXF4fp06dLbVJTUxEaGoqnnnoKKSkpiIqKwtixY7Fnzx6pzfr16xEdHY0ZM2YgOTkZrVq1glarRUZGRsUdDCIiIrJuwsrUrFlT/Pe//xVZWVnCzs5ObNy4UVp3/vx5AUAkJiYKIYTYtWuXsLGxEenp6VKb5cuXC5VKJfLy8oQQQkydOlU0a9bM6DsGDhwotFqt9L5du3YiIiJCel9YWCi8vb3F3LlzZdet1+sFAKHX68u2w0RERGQxZfn9tpoxTYWFhfj666+Rm5uLkJAQJCUloaCgAN27d5faBAQEoH79+khMTAQAJCYmokWLFvD09JTaaLVaZGdnS71ViYmJRtsoalO0jfz8fCQlJRm1sbGxQffu3aU2JcnLy0N2drbRi4iIiKoui4em06dPw8XFBfb29hg/fjy2bNmCwMBApKenQ6lUws3Nzai9p6cn0tPTAQDp6elGgalofdG60tpkZ2fj33//xY0bN1BYWFhim6JtlGTu3LlQq9XSy8fHx6T9JyIiosrB4qGpadOmSElJwfHjxzFhwgSEh4fj3Llzli7roWJiYqDX66XXH3/8YemSiIiIqBzVsHQBSqUSjRo1AgAEBwfjxIkTWLx4MQYOHIj8/HxkZWUZ9TZdv34dXl5eAAAvL69id7kV3V13b5v777i7fv06VCoVHB0dYWtrC1tb2xLbFG2jJPb29rC3tzdtp4mIiKjSsXhP0/0MBgPy8vIQHBwMOzs7JCQkSOsuXLiAq1evIiQkBAAQEhKC06dPG93lFh8fD5VKhcDAQKnNvdsoalO0DaVSieDgYKM2BoMBCQkJUhsiIiIii/Y0xcTEoFevXqhfvz5ycnKwbt06HDhwAHv27IFarcaYMWMQHR0NjUYDlUqFiRMnIiQkBE888QQAoEePHggMDMTw4cMxf/58pKenY9q0aYiIiJB6gcaPH4/Y2FhMnToVo0ePxvfff48NGzZg586dUh3R0dEIDw9H27Zt0a5dOyxatAi5ubkYNWqURY4LERERWaEKuJvvgUaPHi0aNGgglEqlqF27tujWrZvYu3evtP7ff/8Vr7zyiqhZs6ZwcnISzz//vEhLSzPaxpUrV0SvXr2Eo6OjqFWrlnjttddEQUGBUZv9+/eL1q1bC6VSKRo2bChWrVpVrJalS5eK+vXrC6VSKdq1ayeOHTtWpn3hlANERESVT1l+vxVCCGHp4FYVZGdnQ61WQ6/XQ6VSWbocIiIikqEsv99WN6aJiIiIyBoxNBERERHJwNBEREREJANDExEREZEMDE1EREREMjA0EREREcnA0EREREQkA0MTERERkQwMTUREREQyMDQRERERycDQRERERCQDQxMRERGRDAxNRERERDIwNBERERHJwNBEREREJANDExEREZEMDE1EREREMjA0EREREcnA0EREREQkA0MTERERkQw1LF0AERERUUkyMzORn5//wPVKpRLu7u4VVg9DExEREVmdzMxMxMbGPrRdZGRkhQUnXp4jIiIiq3N/D5Ne74rUVF/o9a6ltitP7GkiIiIiq5ac3Abbt/eGEDZQKAwIC9uBoKCTFV4He5qIiIjIaun1rlJgAgAhbLB9e+9iPU4VweTQ5Ovri1mzZuHq1avmrIeIiIhIotO5S4GpiBA20Ok0FV6LyaEpKioKmzdvRsOGDfHMM8/g66+/Rl5enjlrIyIismqZmZlIS0t74CszM9PSJVZ6Gk0mFAqD0TKFwgCNRlfhtZg8pikqKgpRUVFITk5GXFwcJk6ciFdeeQVDhgzB6NGjERQUZM46iYiIrIo13t1VFanVOQgL21FsTJNanVPhtTzyQPCgoCAEBQVhwYIF+OSTT/DGG29g+fLlaNGiBV599VWMGjUKCoXCHLUSERFZjZLu7tLp3KHRZBr9oFfk3V1VVVDQSfj7X4ROp4FGo7NIYALMEJoKCgqwZcsWrFq1CvHx8XjiiScwZswY/Pnnn3jrrbewb98+rFu3zhy1EhERWSVruburKlEqlUbv1eqcEsPS/e3Kk8mhKTk5GatWrcJXX30FGxsbjBgxAh9//DECAgKkNs8//zwef/xxsxRKZA2sbXZaIrK8B93d5e9/0WI9IlWBu7s7IiMjrervXJND0+OPP45nnnkGy5cvR9++fWFnZ1esjZ+fHwYNGvRIBRJZC45fIKKSlHZ3F0PTo7G2v0tNDk2XL19GgwYNSm3j7OyMVatWmfoVRFaF4xeIqCRFd3fdG5wsdXcXlS+Tpxx46qmnSryVMisrCw0bNnykooisXXJyGyxaFIXVq8OxaFEUkpPbWLokIrKQoru7im6Lt+TdXVS+TO5punLlCgoLC4stz8vLw19//fVIRRFZM45fIKL7WcvdXVS+yhyavv32W+nPe/bsgVqtlt4XFhYiISEBvr6+ZimOyBpx/AIRAdZ5dxeVrzKHpr59+wIAFAoFwsPDjdbZ2dnB19cXCxYsMEtxRNaI4xeICLDOu7uofJU5NBkMd6/Z+vn54cSJE6hVq5bZiyKyZtY0Oy0RWRYDUfVi8pim1NRUc9ZBVKlw/AIRUfVjcmiaNWtWqeunT59u6qaJrBLHLxARVW8KIYQw5YNt2hjfYl1QUIDU1FTUqFED/v7+SE5ONkuBlUV2djbUajX0ej1UKpWly6FywhnBiYiqlrL8fpvc03TyZPFn6mRnZ2PkyJF4/vnnTd0skVVjICIiqr5MntyyJCqVCu+++y7eeecdc26WiIiIyOLMGpoAQK/XQ6/Xm3uzRERERBZl8uW5JUuWGL0XQiAtLQ1r1qxBr169HrkwIiIiImticmj6+OOPjd7b2Nigdu3aCA8PR0xMzCMXRkRERGRNOE8TERE9EO8YJfofk0MTcPeSXGZmJhQKBf+jISKqYjIzMxEbG/vQdpGRkfwNoGrBpIHg6enpGDFiBGrWrAlPT094eHigZs2aGD16NK5fv27uGomIyALu72HS612RmuoLvd611HZEVVWZe5qys7PRoUMH3Lx5E6NGjUJAQACEEDh37hy++uorHD58GMnJyXBxcSmPeomIyAKSk9sUe95iUFDx+fqIqrIyh6bFixfD1tYWZ8+eRe3atY3WTZs2DR07dsSSJUvw1ltvma1IIiKyHL3eVQpMACCEDbZv7w1//4t87iJVK2W+PLdz50689dZbxQITAHh4eCAmJgbbt283S3FERGR5Op27FJiKCGEDnU5joYqILKPMoenXX39Fhw4dHri+Q4cOuHDhwiMVRURE1kOjyYRCYTBaplAYoNHoLFQRkWWUOTRlZ2fDzc3tgevd3NyQnZ39KDUREZEVUatzEBa2QwpORWOaeGmOqpsyhyYhBGxsHvwxhUIBIYSsbc2dOxePP/44XF1d4eHhgb59+xbrperatSsUCoXRa/z48UZtrl69itDQUDg5OcHDwwNTpkzBnTt3jNocOHAAQUFBsLe3R6NGjRAXF1esnmXLlsHX1xcODg5o3749fvzxR1n7QURU1QUFnURU1CKEh8chKmoRB4FTtVTmgeBCCDRp0gQKheKB6+U6ePAgIiIi8Pjjj+POnTt466230KNHD5w7dw7Ozs5Su5deegmzZs2S3js5OUl/LiwsRGhoKLy8vHD06FGkpaVhxIgRsLOzw5w5cwDcnYgzNDQU48ePx9q1a5GQkICxY8eiTp060Gq1AID169cjOjoaK1asQPv27bFo0SJotVpcuHABHh4eZTpGRERVgVKpNHqvVueU2Lt0fzuiqkohypJyAKxevVpWu/Dw8DIX8/fff8PDwwMHDx5E586dAdztaWrdujUWLVpU4me+++479O7dG9euXYOnpycAYMWKFXjjjTfw999/Q6lU4o033sDOnTtx5swZ6XODBg1CVlYWdu/eDQBo3749Hn/8cWkiN4PBAB8fH0ycOBFvvvnmQ2vPzs6GWq2GXq+HSqUq874TEVkjzghOVV1Zfr/L3NNU1jD01VdfoU+fPkY9Rw+i1+sBABqN8R0Za9euxZdffgkvLy+EhYXhnXfekXqbEhMT0aJFCykwAYBWq8WECRNw9uxZtGnTBomJiejevbvRNrVaLaKiogDcnZgtKSnJ6Jl5NjY26N69OxITE0usNS8vD3l5edJ7juMioqqIgYjof0yaEbwsXn75ZVmzhBsMBkRFRaFjx45o3ry5tHzIkCH48ssvsX//fsTExGDNmjUYNmyYtD49Pd0oMAGQ3qenp5faJjs7G//++y9u3LiBwsLCEtsUbeN+c+fOhVqtll4+Pj4P3UciIiKqvB7p2XNyyL36FxERgTNnzuDw4cNGy8eNGyf9uUWLFqhTpw66deuGS5cuwd/f36y1lkVMTAyio6Ol99nZ2QxOREREVVi5hyY5IiMjsWPHDhw6dAj16tUrtW379u0BABcvXoS/vz+8vLyK3eVW1LPl5eUl/fP+3q7r169DpVLB0dERtra2sLW1LbFN0TbuZ29vD3t7e/k7SURWh+N1iKgsLBqahBCYOHEitmzZggMHDsDPz++hn0lJSQEA1KlTBwAQEhKC999/HxkZGdJdbvHx8VCpVAgMDJTa7Nq1y2g78fHxCAkJAXD3L8bg4GAkJCSgb9++AO5eLkxISEBkZKQ5dpWIrExmZqZ040dpIiMjGZyICICFQ1NERATWrVuHbdu2wdXVVRo/pFar4ejoiEuXLmHdunV49tln4e7ujlOnTmHy5Mno3LkzWrZsCQDo0aMHAgMDMXz4cMyfPx/p6emYNm0aIiIipJ6g8ePHIzY2FlOnTsXo0aPx/fffY8OGDdi5c6dUS3R0NMLDw9G2bVu0a9cOixYtQm5uLkaNGlXxB4aIyt39PUx6vSt0OndoNJlGt9WX1hNFRNWLRUPT8uXLAdydVuBeq1atwsiRI6FUKrFv3z4pwPj4+KB///6YNm2a1NbW1hY7duzAhAkTEBISAmdnZ4SHhxvN6+Tn54edO3di8uTJWLx4MerVq4f//ve/0hxNADBw4ED8/fffmD59OtLT09G6dWvs3r272ODwisLLBkQVJzm5jfRA2qLZrjl5IxHdr8zzNAF3J5Q8cuQIWrZsWeojVQCgefPm+O6776r8IGlzztPEywZE5S8tLQ2fffYZ9HpXLFoUZfRAWoXCgKioRVCrczBu3DhpOAARVT1l+f02acoBW1tb9OjRA//8889D2545c6bKByZzK+myQWqqL/R611LbEVHZ6XTuRoEJAISwgU6necAniKi6MvnyXPPmzXH58mVZg7fJdLxsQFS+NJpMKBSGYj1NGo3OglURkTUyeXLL9957D6+//jp27NiBtLQ0ZGdnG73o0en1rlJgAu7+3+/27b2L9TgRkenU6hyEhe2AQmEAAOl/Tkp6xhoRVW8m9zQ9++yzAIA+ffoYPbxXCAGFQoHCwsJHr66aK+2yAf9CJzKfoKCT8Pe/CJ1OA41Gx/++iKhEJoem/fv3m7MOKgEvGxCVH6VSafRerc4pMSzd346Iqi+TQ1OXLl3MWQeVoOiywf1jmvh/wUSPzt3dHZGRkZzag4hke6R5mn744Qd8+umnuHz5MjZu3Ii6detizZo18PPzw5NPPmmuGqs1XjYgKj8MRERUFiYPBN+0aRO0Wi0cHR2RnJyMvLw8AIBer8ecOXPMVmB1VNJlAz+/34sFJl42ICIiqjgmTW4JAG3atMHkyZMxYsQIuLq64ueff0bDhg1x8uRJ9OrVS3okSnVhzsktAc4ITkREVBHK8vtt8uW5CxcuoHPnzsWWq9VqZGVlmbpZ+n8MRERERNbF5MtzXl5euHjxYrHlhw8fRsOGDR+pKCIiIiJrY3JoeumllzBp0iQcP34cCoUC165dw9q1a/H6669jwoQJ5qyRiIiIyOJMvjz35ptvwmAwoFu3brh16xY6d+4Me3t7vP7665g4caI5ayQiIiKyOJMHghfJz8/HxYsXcfPmTQQGBsLFxcVctVUq5h4ITkREROWvQgaCF1EqlQgMDHzUzRARERFZNZND0+3bt7F06VLs378fGRkZMBgMRuuTk5MfuTgiIiIia2FyaBozZgz27t2LF154Ae3atTN6aC8RERFRVWNyaNqxYwd27dqFjh07mrMeIiIiIqtk8pQDdevWhaurqzlrISIiIrJaJoemBQsW4I033sDvv/9uznqIiIiIrJLJl+fatm2L27dvo2HDhnBycoKdnZ3Rep1O98jFEREREVkLk0PT4MGD8ddff2HOnDnw9PTkQHAiIiKq0kwOTUePHkViYiJatWplznqIiMokMzMT+fn5D1yvVCr5AGwiMguTQ1NAQAD+/fdfc9ZCRFQmmZmZiI2NfWi7yMhIBiciemQmDwSfN28eXnvtNRw4cACZmZnIzs42ehERlbf7e5j0elekpvpCr3cttR0RkSlM7mnq2bMnAKBbt25Gy4UQUCgUKCwsfLTKiIjKIDm5DbZv7w0hbKBQGBAWtgNBQSctXRYRVSEmh6b9+/ebsw4iIpPp9a5SYAIAIWywfXtv+PtfhFqdY+HqiKiqMCk0FRQUYNasWVixYgUaN25s7pqIiMpEp3OXAlMRIWyg02kYmojIbEwa02RnZ4dTp06ZuxYiIpNoNJlQKIwfGq5QGKDRcL44IjIfkweCDxs2DCtXrjRnLUREJlGrcxAWtkMKTkVjmtjLRETmZPKYpjt37uDzzz/Hvn37EBwcDGdnZ6P1CxcufOTiiIjkCgo6CX//i9DpNNBodAxMRGR2JoemM2fOICgoCADw66+/Gq3j7OBEVBGUSqXRe7U6p8SwdH87IiJTKIQQwtJFVAXZ2dlQq9XQ6/VQqVSWLoeo2uCM4ET0KMry+21yT9O9/vzzTwBAvXr1zLE5IiLZGIiIqKKYPBDcYDBg1qxZUKvVaNCgARo0aAA3NzfMnj0bBoPh4RsgIiIiqkRM7ml6++23sXLlSsybNw8dO3YEABw+fBgzZ87E7du38f7775utSCIiIiJLM3lMk7e3N1asWIE+ffoYLd+2bRteeeUV/PXXX2YpsLLgmCYiIqLKpyy/3yZfntPpdAgICCi2PCAgADodJ5QjIiKiqsXk0NSqVSvExsYWWx4bG4tWrVo9UlFERERE1sbkMU3z589HaGgo9u3bh5CQEABAYmIi/vjjD+zatctsBRIRERFZA5N7mrp06YJff/0Vzz//PLKyspCVlYV+/frhwoUL6NSpkzlrJCIiIrK4MvU09evXD3FxcVCpVPjiiy8wcOBA3iVHRERE1UKZepp27NiB3NxcAMCoUaOg1+vLpSgiIiIia1OmnqaAgADExMTgqaeeghACGzZseODteSNGjDBLgURERETWoEzzNB09ehTR0dG4dOkSdDodXF1dS3w4r0KhqHbTDnCeJiIiosqnLL/fJk9uaWNjg/T0dHh4eJhUZFXD0ERERFT5VMjklqmpqahdu7apHyciIiKqVEwOTQ0aNMDhw4cxbNgwhISESI9NWbNmDQ4fPmy2AomIiIisgcmhadOmTdBqtXB0dMTJkyeRl5cHANDr9ZgzZ47ZCqyuMjMzkZaW9sBXZmampUskIiKqVkyeEfy9997DihUrMGLECHz99dfS8o4dO+K9994zS3HVVWZmZomPqLlfZGQk3N3dK6AiIiIiMrmn6cKFC+jcuXOx5Wq1GllZWY9SU7WXn59v9F6vd0Vqqi/0etdS2xEREVH5MbmnycvLCxcvXoSvr6/R8sOHD6Nhw4aPWhf9v+TkNti+vTeEsIFCYUBY2A4EBZ20dFlERETVjsk9TS+99BImTZqE48ePQ6FQ4Nq1a1i7di1ee+01TJgwwZw1Vlt6vasUmABACBts3967WI8TERERlT+TQ9Obb76JIUOGoFu3brh58yY6d+6MsWPHYsKECRg7dqysbcydOxePP/44XF1d4eHhgb59++LChQtGbW7fvo2IiAi4u7vDxcUF/fv3x/Xr143aXL16FaGhoXBycoKHhwemTJmCO3fuGLU5cOAAgoKCYG9vj0aNGiEuLq5YPcuWLYOvry8cHBzQvn17/Pjjj2U7KGam07lLgamIEDbQ6TQWqoiIiKj6Mjk0KRQKvP3229DpdDhz5gyOHTuGv//+G2q1Gn5+frK2cfDgQURERODYsWOIj49HQUEBevToIT3fDgAmT56M7du3Y+PGjTh48CCuXbuGfv36SesLCwsRGhqK/Px8HD16FKtXr0ZcXBymT58utUlNTUVoaCieeuoppKSkICoqCmPHjsWePXukNuvXr0d0dDRmzJiB5ORktGrVClqtFhkZGaYeokem0WRCoTAYLVMoDNBoqtds60RERFZBlNHt27fFm2++KYKDg0WHDh3Eli1bhBBCfP7558Lb21v4+PiIefPmlXWzQgghMjIyBABx8OBBIYQQWVlZws7OTmzcuFFqc/78eQFAJCYmCiGE2LVrl7CxsRHp6elSm+XLlwuVSiXy8vKEEEJMnTpVNGvWzOi7Bg4cKLRarfS+Xbt2IiIiQnpfWFgovL29xdy5c2XVrtfrBQCh1+vLuNfFXbt2TcycOVPMnDlT9OmzTSgUhQIQQqEoFH36bJPWXbt27ZG/i4iIqDory+93mQeCT58+HZ9++im6d++Oo0eP4sUXX8SoUaNw7NgxLFiwAC+++CJsbW1NCnB6vR4AoNHcvfyUlJSEgoICdO/eXWoTEBCA+vXrIzExEU888QQSExPRokULeHp6Sm20Wi0mTJiAs2fPok2bNkhMTDTaRlGbqKgoAHfvQktKSkJMTIy03sbGBt27d0diYmKJtebl5UlzUwF3p2EvD0FBJ+HvfxE6nQYajQ5qdU65fA8RERGVrsyhaePGjfjiiy/Qp08fnDlzBi1btsSdO3fw888/l/jwXrkMBgOioqLQsWNHNG/eHACQnp4OpVIJNzc3o7aenp5IT0+X2twbmIrWF60rrU12djb+/fdf/PPPPygsLCyxzS+//FJivXPnzsW7775r2s4+hFKpNHqvVueUGJbub0dERETlp8yh6c8//0RwcDAAoHnz5rC3t8fkyZMfKTABQEREBM6cOVNpHsESExOD6Oho6X12djZ8fHzMsm13d3dERkaWOg+TUqnkxJZEREQVqMyhqbCw0KiHo0aNGnBxcXmkIiIjI7Fjxw4cOnQI9erVk5Z7eXkhPz8fWVlZRr1N169fh5eXl9Tm/rvciu6uu7fN/XfcXb9+HSqVCo6OjrC1tYWtrW2JbYq2cT97e3vY29ubtsMyMBARERFZlzKHJiEERo4cKQWG27dvY/z48XB2djZqt3nzZlnbmjhxIrZs2YIDBw4Uu+suODgYdnZ2SEhIQP/+/QHcnYn86tWrCAkJAQCEhITg/fffR0ZGBjw8PAAA8fHxUKlUCAwMlNrs2rXLaNvx8fHSNpRKJYKDg5GQkIC+ffsCuHu5MCEhAZGRkWU5PERERFRFlTk0hYeHG70fNmyYyV8eERGBdevWYdu2bXB1dZXGIKnVajg6OkKtVmPMmDGIjo6GRqOBSqXCxIkTERISgieeeAIA0KNHDwQGBmL48OGYP38+0tPTMW3aNEREREjBbvz48YiNjcXUqVMxevRofP/999iwYQN27twp1RIdHY3w8HC0bdsW7dq1w6JFi5Cbm4tRo0aZvH9ERERUhZT7vXylAFDia9WqVVKbf//9V7zyyiuiZs2awsnJSTz//PMiLS3NaDtXrlwRvXr1Eo6OjqJWrVritddeEwUFBUZt9u/fL1q3bi2USqVo2LCh0XcUWbp0qahfv75QKpWiXbt24tixY7L3xZxTDhAREVHFKMvvt0IIISwX2aqO7OxsqNVq6PV6qFQqS5dDREREMpTl99vkGcGJiIiIqhOGJiIiIiIZGJqIiIiIZGBoIiIiIpKBoYmIiIhIBoYmIiIiIhkYmoiIiIhkYGgiIiIikoGhiYiIiEgGhiYiIiIiGRiaiIiIiGRgaCIiIiKSgaGJiIiISAaGJiIiIiIZGJqIiIiIZGBoIiIiIpKBoYmIiIhIBoYmIiIiIhkYmoiIiIhkYGgiIiIikoGhiYiIiEiGGpYugIjoUWRmZiI/P/+B65VKJdzd3SuwIiKqqhiaiKjSyszMRGxs7EPbRUZGMjgR0SPj5TkiqrTu72HS612RmuoLvd611HZERKZgTxMRVQnJyW2wfXtvCGEDhcKAsLAdCAo6aemyiKgKYU8TEVV6er2rFJgAQAgbbN/eu1iPExHRo2BoIqJKT6dzlwJTESFsoNNpLFQREVVFDE1EVOlpNJlQKAxGyxQKAzQanYUqIqKqiKGJiCo9tToHYWE7pOBUNKZJrc6xcGVEVJVwIDgRVQlBQSfh738ROp0GGo2OgYmIzI6hiYgqLaVSafRerc4pMSzd346IyBQMTURUabm7uyMyMpIzghNRhWBoIqJKjYGIiCoKB4ITERERycDQRERERCQDQxMRERGRDAxNRERERDIwNBERERHJwNBEREREJANDExEREZEMDE1EREREMjA0EREREcnA0EREREQkA0MTERERkQwMTUREREQyMDQRERERycDQRERERCQDQxMRERGRDAxNRERERDIwNBERERHJwNBEREREJANDExEREZEMDE1EREREMjA0EREREclg0dB06NAhhIWFwdvbGwqFAlu3bjVaP3LkSCgUCqNXz549jdrodDoMHToUKpUKbm5uGDNmDG7evGnU5tSpU+jUqRMcHBzg4+OD+fPnF6tl48aNCAgIgIODA1q0aIFdu3aZfX+JiIio8rJoaMrNzUWrVq2wbNmyB7bp2bMn0tLSpNdXX31ltH7o0KE4e/Ys4uPjsWPHDhw6dAjjxo2T1mdnZ6NHjx5o0KABkpKS8OGHH2LmzJn47LPPpDZHjx7F4MGDMWbMGJw8eRJ9+/ZF3759cebMGfPvNBEREVVKCiGEsHQRAKBQKLBlyxb07dtXWjZy5EhkZWUV64Eqcv78eQQGBuLEiRNo27YtAGD37t149tln8eeff8Lb2xvLly/H22+/jfT0dCiVSgDAm2++ia1bt+KXX34BAAwcOBC5ubnYsWOHtO0nnngCrVu3xooVK2TVn52dDbVaDb1eD5VKZcIRICIiAMjMzER+fv4D1yuVSri7u1dgRVSVleX3u0YF1WSyAwcOwMPDAzVr1sTTTz+N9957T/qPJTExEW5ublJgAoDu3bvDxsYGx48fx/PPP4/ExER07txZCkwAoNVq8cEHH+Cff/5BzZo1kZiYiOjoaKPv1Wq1DwxrAJCXl4e8vDzpfXZ2tpn2mMg8+MNDlVFmZiZiY2Mf2i4yMpLnL1U4qw5NPXv2RL9+/eDn54dLly7hrbfeQq9evZCYmAhbW1ukp6fDw8PD6DM1atSARqNBeno6ACA9PR1+fn5GbTw9PaV1NWvWRHp6urTs3jZF2yjJ3Llz8e6775pjN4nMjj88VFndH/T1elfodO7QaDKhVuc8sB1RRbDq0DRo0CDpzy1atEDLli3h7++PAwcOoFu3bhasDIiJiTHqncrOzoaPj48FKyL6H/7wUFWQnNwG27f3hhA2UCgMCAvbgaCgk5Yui6oxqw5N92vYsCFq1aqFixcvolu3bvDy8kJGRoZRmzt37kCn08HLywsA4OXlhevXrxu1KXr/sDZF60tib28Pe3v7R94novLGHx6qjPR6V+m8BQAhbLB9e2/4+180Cv5EFalSzdP0559/IjMzE3Xq1AEAhISEICsrC0lJSVKb77//HgaDAe3bt5faHDp0CAUFBVKb+Ph4NG3aFDVr1pTaJCQkGH1XfHw8QkJCynuXiMrVg3549HpXC1dGVDqdzl06b4sIYQOdTmOhiogsHJpu3ryJlJQUpKSkAABSU1ORkpKCq1ev4ubNm5gyZQqOHTuGK1euICEhAc899xwaNWoErVYLAHjsscfQs2dPvPTSS/jxxx9x5MgRREZGYtCgQfD29gYADBkyBEqlEmPGjMHZs2exfv16LF682OjS2qRJk7B7924sWLAAv/zyC2bOnImffvoJkZGRFX5MiMyJPzxUWWk0mVAoDEbLFAoDNBqdhSoisnBo+umnn9CmTRu0adMGABAdHY02bdpg+vTpsLW1xalTp9CnTx80adIEY8aMQXBwMH744Qejy2Jr165FQEAAunXrhmeffRZPPvmk0RxMarUae/fuRWpqKoKDg/Haa69h+vTpRnM5dejQAevWrcNnn32GVq1a4ZtvvsHWrVvRvHnzijsYROWAPzxUWanVOQgL2yGdv0WXlnlpjizJomOaunbtitKmidqzZ89Dt6HRaLBu3bpS27Rs2RI//PBDqW1efPFFvPjiiw/9PqLKpOiH5/4xTfzhocogKOgk/P0vQqfTQKPR8bwli6tUA8GJqOz4w0OVyb1z6gF3g39J5+z97YgqAkMTURXEHx6qrNzd3REZGcmJWckqWc1jVCo7PkaFrA1nBCdz4HlEVV2VeowKEZmGP2T0qDizPFmatYV2hiYiIioRZ5YnS7o/tD/o/KvI0M7QRERED8WZ5ami3RvGSzv/KjK0V6oZwYmIqOJxZnmyJGs6/xiaiIioVJxZnizJms4/hiYiIioVZ5YnS7Km84+hiYiISsVHmpAlWdP5x4HgRET0UJxZnizJWs4/hiYiIioRZ5Yna/Kg868iMTQREVGJ+EgTsiS5YbwiQzsfo2ImfIwKERGReVXEjOB8jAoRERFVetbWi8m754iIiIhkYE8TEVEVZ20PPSWqrBiaiIiqsPsfevogFfnQU6LKipfniIiqsPt7mPR6V6Sm+hZ7bldFPvSUqLJiTxMRUTVR2pPiiejh2NNERFQNWNOT4okqK4YmIqJqwJqeFE9UWTE0ERFVA9b0pHiiyoqhiYioGrCmJ8UTVVYcCE5EVE1Yy5PiiSorhiYioirs/oeZPuhJ8RX50FOiyoqhiYioCnN3d0dkZCRnBCcyA4YmIqIqjoGIyDw4EJyIiIhIBoYmIiIiIhkYmoiIiIhkYGgiIiIikoGhiYiIiEgGhiYiIiIiGRiaiIiIiGRgaCIiIiKSgaGJiIiISAaGJiIiIiIZGJqIiIiIZGBoIiIiIpKBoYmIiIhIBoYmIiIiIhkYmoiIiIhkqGHpAqh6y8zMRH5+/gPXK5VKuLu7V2BFREREJWNoIovJzMxEbGzsQ9tFRkYyOBERkcXx8hxZzP09THq9K1JTfaHXu5bajoiIyBLY00RWITm5DbZv7w0hbKBQGBAWtgNBQSctXRYREZGEPU1kcXq9qxSYAEAIG2zf3rtYjxMREZElMTSRxel07lJgKiKEDXQ6jYUqIiIiKo6hiSxOo8mEQmEwWqZQGKDR6CxUERERUXEMTWRxanUOwsJ2SMGpaEyTWp1j4cqIiIj+hwPBySoEBZ2Ev/9F6HQaaDQ6BiYiIrI6DE1kMUql0ui9Wp1TYli6vx0REZElMDSRxbi7uyMyMpIzghMRUaVg0TFNhw4dQlhYGLy9vaFQKLB161aj9UIITJ8+HXXq1IGjoyO6d++O3377zaiNTqfD0KFDoVKp4ObmhjFjxuDmzZtGbU6dOoVOnTrBwcEBPj4+mD9/frFaNm7ciICAADg4OKBFixbYtWuX2feXinN3d0edOnUe+GJgIiIia2HR0JSbm4tWrVph2bJlJa6fP38+lixZghUrVuD48eNwdnaGVqvF7du3pTZDhw7F2bNnER8fjx07duDQoUMYN26ctD47Oxs9evRAgwYNkJSUhA8//BAzZ87EZ599JrU5evQoBg8ejDFjxuDkyZPo27cv+vbtizNnzpTfzhMREVHlIqwEALFlyxbpvcFgEF5eXuLDDz+UlmVlZQl7e3vx1VdfCSGEOHfunAAgTpw4IbX57rvvhEKhEH/99ZcQQohPPvlE1KxZU+Tl5Ult3njjDdG0aVPp/YABA0RoaKhRPe3btxcvv/yy7Pr1er0AIPR6vezPEBERkWWV5ffbaqccSE1NRXp6Orp37y4tU6vVaN++PRITEwEAiYmJcHNzQ9u2baU23bt3h42NDY4fPy616dy5s9FgYq1WiwsXLuCff/6R2tz7PUVtir6nJHl5ecjOzjZ6ERERUdVltaEpPT0dAODp6Wm03NPTU1qXnp4ODw8Po/U1atSARqMxalPSNu79jge1KVpfkrlz50KtVksvHx+fsu4iERERVSJWG5qsXUxMDPR6vfT6448/LF0SERERlSOrDU1eXl4AgOvXrxstv379urTOy8sLGRkZRuvv3LkDnU5n1Kakbdz7HQ9qU7S+JPb29lCpVEYvIiIiqrqsNjT5+fnBy8sLCQkJ0rLs7GwcP34cISEhAICQkBBkZWUhKSlJavP999/DYDCgffv2UptDhw6hoKBAahMfH4+mTZuiZs2aUpt7v6eoTdH3EBEREVk0NN28eRMpKSlISUkBcHfwd0pKCq5evQqFQoGoqCi89957+Pbbb3H69GmMGDEC3t7e6Nu3LwDgscceQ8+ePfHSSy/hxx9/xJEjRxAZGYlBgwbB29sbADBkyBAolUqMGTMGZ8+exfr167F48WJER0dLdUyaNAm7d+/GggUL8Msvv2DmzJn46aefEBkZWdGHhIiIiKxVBdzN90D79+8XAIq9wsPDhRB3px145513hKenp7C3txfdunUTFy5cMNpGZmamGDx4sHBxcREqlUqMGjVK5OTkGLX5+eefxZNPPins7e1F3bp1xbx584rVsmHDBtGkSROhVCpFs2bNxM6dO8u0L5xygIiIqPIpy++3QgghLJjZqgy9Xg83Nzf88ccfHN9ERERUSWRnZ8PHxwdZWVlQq9WltuWz58wkJ+fug2Y59QAREVHlk5OT89DQxJ4mMzEYDLh27RpcXV2hUCgeaVtFqZe9Vv/DY1Icj0lxPCYl43EpjsekuOp6TIQQyMnJgbe3N2xsSh/qzZ4mM7GxsUG9evXMuk1OZVAcj0lxPCbF8ZiUjMelOB6T4qrjMXlYD1MRq51ygIiIiMiaMDQRERERycDQZIXs7e0xY8YM2NvbW7oUq8FjUhyPSXE8JiXjcSmOx6Q4HpOH40BwIiIiIhnY00REREQkA0MTERERkQwMTUREREQyMDQRERERycDQVEGWLVsGX19fODg4oH379vjxxx9Lbb9o0SI0bdoUjo6O8PHxweTJk3H79m1p/cyZM6FQKIxeAQEB5b0bZlWWY1JQUIBZs2bB398fDg4OaNWqFXbv3v1I27RG5j4mlf08OXToEMLCwuDt7Q2FQoGtW7c+9DMHDhxAUFAQ7O3t0ahRI8TFxRVrU5nPk/I4JtXtPElLS8OQIUPQpEkT2NjYICoqqsR2GzduREBAABwcHNCiRQvs2rXL/MWXk/I4JnFxccXOEwcHh/LZASvF0FQB1q9fj+joaMyYMQPJyclo1aoVtFotMjIySmy/bt06vPnmm5gxYwbOnz+PlStXYv369XjrrbeM2jVr1gxpaWnS6/DhwxWxO2ZR1mMybdo0fPrpp1i6dCnOnTuH8ePH4/nnn8fJkydN3qa1KY9jAlTu8yQ3NxetWrXCsmXLZLVPTU1FaGgonnrqKaSkpCAqKgpjx47Fnj17pDaV/Twpj2MCVK/zJC8vD7Vr18a0adPQqlWrEtscPXoUgwcPxpgxY3Dy5En07dsXffv2xZkzZ8xZerkpj2MC3J0t/N7z5PfffzdXyZWDoHLXrl07ERERIb0vLCwU3t7eYu7cuSW2j4iIEE8//bTRsujoaNGxY0fp/YwZM0SrVq3Kpd6KUNZjUqdOHREbG2u0rF+/fmLo0KEmb9PalMcxqeznyb0AiC1btpTaZurUqaJZs2ZGywYOHCi0Wq30vrKfJ/cy1zGpbufJvbp06SImTZpUbPmAAQNEaGio0bL27duLl19++RErrHjmOiarVq0SarXabHVVRuxpKmf5+flISkpC9+7dpWU2Njbo3r07EhMTS/xMhw4dkJSUJF0yuHz5Mnbt2oVnn33WqN1vv/0Gb29vNGzYEEOHDsXVq1fLb0fMyJRjkpeXV6wb2NHRUfq/YVO2aU3K45gUqazniSkSExONjiEAaLVa6RhW9vPEFA87JkWq03kih9zjVt3cvHkTDRo0gI+PD5577jmcPXvW0iVVKIamcnbjxg0UFhbC09PTaLmnpyfS09NL/MyQIUMwa9YsPPnkk7Czs4O/vz+6du1qdHmuffv2iIuLw+7du7F8+XKkpqaiU6dOyMnJKdf9MQdTjolWq8XChQvx22+/wWAwID4+Hps3b0ZaWprJ27Qm5XFMgMp9npgiPT29xGOYnZ2Nf//9t9KfJ6Z42DEBqt95IseDjltVPU/kaNq0KT7//HNs27YNX375JQwGAzp06IA///zT0qVVGIYmK3TgwAHMmTMHn3zyCZKTk7F582bs3LkTs2fPltr06tULL774Ilq2bAmtVotdu3YhKysLGzZssGDl5Wfx4sVo3LgxAgICoFQqERkZiVGjRsHGpvqewnKOSXU7T8g0PE9IjpCQEIwYMQKtW7dGly5dsHnzZtSuXRuffvqppUurMNX3F6eC1KpVC7a2trh+/brR8uvXr8PLy6vEz7zzzjsYPnw4xo4dixYtWuD555/HnDlzMHfuXBgMhhI/4+bmhiZNmuDixYtm3wdzM+WY1K5dG1u3bkVubi5+//13/PLLL3BxcUHDhg1N3qY1KY9jUpLKdJ6YwsvLq8RjqFKp4OjoWOnPE1M87JiUpKqfJ3I86LhV1fPEFHZ2dmjTpk21Ok8YmsqZUqlEcHAwEhISpGUGgwEJCQkICQkp8TO3bt0q1oNia2sLABAPeFTgzZs3cenSJdSpU8dMlZcfU45JEQcHB9StWxd37tzBpk2b8Nxzzz3yNq1BeRyTklSm88QUISEhRscQAOLj46VjWNnPE1M87JiUpKqfJ3KYctyqm8LCQpw+fbp6nSeWHoleHXz99dfC3t5exMXFiXPnzolx48YJNzc3kZ6eLoQQYvjw4eLNN9+U2s+YMUO4urqKr776Sly+fFns3btX+Pv7iwEDBkhtXnvtNXHgwAGRmpoqjhw5Irp37y5q1aolMjIyKnz/TFHWY3Ls2DGxadMmcenSJXHo0CHx9NNPCz8/P/HPP//I3qa1K49jUtnPk5ycHHHy5Elx8uRJAUAsXLhQnDx5Uvz+++9CCCHefPNNMXz4cKn95cuXhZOTk5gyZYo4f/68WLZsmbC1tRW7d++W2lT286Q8jkl1O0+EEFL74OBgMWTIEHHy5Elx9uxZaf2RI0dEjRo1xEcffSTOnz8vZsyYIezs7MTp06crdN9MVR7H5N133xV79uwRly5dEklJSWLQoEHCwcHBqE1Vx9BUQZYuXSrq168vlEqlaNeunTh27Ji0rkuXLiI8PFx6X1BQIGbOnCn8/f2Fg4OD8PHxEa+88orRj+HAgQNFnTp1hFKpFHXr1hUDBw4UFy9erMA9enRlOSYHDhwQjz32mLC3txfu7u5i+PDh4q+//irTNisDcx+Tyn6e7N+/XwAo9io6DuHh4aJLly7FPtO6dWuhVCpFw4YNxapVq4pttzKfJ+VxTKrjeVJS+wYNGhi12bBhg2jSpIlQKpWiWbNmYufOnRWzQ2ZQHsckKipK+u/G09NTPPvssyI5ObnidsoKKIR4wPUeIiIiIpJwTBMRERGRDAxNRERERDIwNBERERHJwNBEREREJANDExEREZEMDE1EREREMjA0EREREcnA0EREVIUdOHAACoUCWVlZli6FqNJjaCIisxg5ciQUCgXmzZtntHzr1q1QKBTSeyEE/vOf/yAkJAQqlQouLi5o1qwZJk2aJPvBn7du3UJMTAz8/f3h4OCA2rVro0uXLti2bZvUxtfXF4sWLTLLvpW3omOnUChgZ2cHPz8/TJ06Fbdv3y7Tdrp27YqoqCijZR06dEBaWhrUarUZKyaqnhiaiMhsHBwc8MEHH+Cff/4pcb0QAkOGDMGrr76KZ599Fnv37sW5c+ewcuVKODg44L333pP1PePHj8fmzZuxdOlS/PLLL9i9ezdeeOEFZGZmmnN3KlTPnj2RlpaGy5cv4+OPP8ann36KGTNmPPJ2lUolvLy8jIIrEZnIsk9xIaKqIjw8XPTu3VsEBASIKVOmSMu3bNkiiv6q+eqrrwQAsW3bthK3YTAYZH2XWq0WcXFxD1zfpUuXYs/QKvLDDz+IJ598Ujg4OIh69eqJiRMnips3b0rrv/jiCxEcHCxcXFyEp6enGDx4sLh+/bq0vuiZXrt37xatW7cWDg4O4qmnnhLXr18Xu3btEgEBAcLV1VUMHjxY5Obmytqf8PBw8dxzzxkt69evn2jTpo30/saNG2LQoEHC29tbODo6iubNm4t169YZbeP+fU5NTZXqvffZld98840IDAwUSqVSNGjQQHz00Uey6iSq7tjTRERmY2trizlz5mDp0qX4888/i63/6quv0LRpU/Tp06fEz8vtDfHy8sKuXbuQk5NT4vrNmzejXr16mDVrFtLS0pCWlgYAuHTpEnr27In+/fvj1KlTWL9+PQ4fPozIyEjpswUFBZg9ezZ+/vlnbN26FVeuXMHIkSOLfcfMmTMRGxuLo0eP4o8//sCAAQOwaNEirFu3Djt37sTevXuxdOlSWftzvzNnzuDo0aNQKpXSstu3byM4OBg7d+7EmTNnMG7cOAwfPhw//vgjAGDx4sUICQnBSy+9JO2zj49PsW0nJSVhwIABGDRoEE6fPo2ZM2finXfeQVxcnEm1ElUrlk5tRFQ13Ntb8sQTT4jRo0cLIYx7mgICAkSfPn2MPjdp0iTh7OwsnJ2dRd26dWV918GDB0W9evWEnZ2daNu2rYiKihKHDx82atOgQQPx8ccfGy0bM2aMGDdunNGyH374QdjY2Ih///23xO86ceKEACBycnKEEP/radq3b5/UZu7cuQKAuHTpkrTs5ZdfFlqtVtb+hIeHC1tbW+Hs7Czs7e0FAGFjYyO++eabUj8XGhoqXnvtNel9ly5dxKRJk4za3N/TNGTIEPHMM88YtZkyZYoIDAyUVStRdcaeJiIyuw8++ACrV6/G+fPnH9r27bffRkpKCqZPn46bN2/K2n7nzp1x+fJlJCQk4IUXXsDZs2fRqVMnzJ49u9TP/fzzz4iLi4OLi4v00mq1MBgMSE1NBXC3JyYsLAz169eHq6srunTpAgC4evWq0bZatmwp/dnT0xNOTk5o2LCh0bKMjAxZ+wMATz31FFJSUnD8+HGEh4dj1KhR6N+/v7S+sLAQs2fPRosWLaDRaODi4oI9e/YUq+thzp8/j44dOxot69ixI3777TcUFhaWaVtE1Q1DExGZXefOnaHVahETE2O0vHHjxrhw4YLRstq1a6NRo0bw8PAo03fY2dmhU6dOeOONN7B3717MmjULs2fPRn5+/gM/c/PmTbz88stISUmRXj///DN+++03+Pv7Izc3F1qtFiqVCmvXrsWJEyewZcsWACi2XTs7O+nPRXe93UuhUMBgMMjeH2dnZzRq1AitWrXC559/juPHj2PlypXS+g8//BCLFy/GG2+8gf379yMlJQVarbbU/SUi86ph6QKIqGqaN28eWrdujaZNm0rLBg8ejCFDhmDbtm147rnnzPp9gYGBuHPnDm7fvg2lUgmlUlms5yQoKAjnzp1Do0aNStzG6dOnkZmZiXnz5knjgX766Sez1imHjY0N3nrrLURHR2PIkCFwdHTEkSNH8Nxzz2HYsGEAAIPBgF9//RWBgYHS50ra5/s99thjOHLkiNGyI0eOoEmTJrC1tTX/zhBVIexpIqJy0aJFCwwdOhRLliyRlg0aNAgvvPACBg0ahFmzZuH48eO4cuUKDh48iPXr18v+0e7atSs+/fRTJCUl4cqVK9i1axfeeustPPXUU1CpVADuztN06NAh/PXXX7hx4wYA4I033sDRo0cRGRmJlJQU/Pbbb9i2bZs0ELx+/fpQKpVYunQpLl++jG+//fahl/zKy4svvghbW1ssW7YMwN1euvj4eBw9ehTnz5/Hyy+/jOvXrxt9xtfXVzqmN27cKLGn67XXXkNCQgJmz56NX3/9FatXr0ZsbCxef/31CtkvosqMoYmIys2sWbOMfrgVCgXWr1+PRYsWYdeuXejWrRuaNm2K0aNHw8fHB4cPH5a1Xa1Wi9WrV6NHjx547LHHMHHiRGi1WmzYsMHou69cuQJ/f3/Url0bwN1xSAcPHsSvv/6KTp06oU2bNpg+fTq8vb0B3L1UGBcXh40bNyIwMBDz5s3DRx99ZMYjIl+NGjUQGRmJ+fPnIzc3F9OmTUNQUBC0Wi26du0KLy8v9O3b1+gzr7/+OmxtbREYGIjatWuXON4pKCgIGzZswNdff43mzZtj+vTpmDVrVol3CBKRMYUQQli6CCIiIiJrx54mIiIiIhkYmojI6tw7JcD9rx9++MHS5ZXJ1atXS92fsk4ZQESWw8tzRGR1Sntwb926deHo6FiB1TyaO3fu4MqVKw9c7+vrixo1eCMzUWXA0EREREQkAy/PEREREcnA0EREREQkA0MTERERkQwMTUREREQyMDQRERERycDQRERERCQDQxMRERGRDAxNRERERDL8H2IiXWs7U49GAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_3.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABd/ElEQVR4nO3deVxUZf8//teAzAwijA4oDIZCiPuCYCBkkUk3FqL87srlLkXTyG4pCc2tUEsLw43ccknFT6moaeZ2m0p6d6eIG+ZOYuCSDirIgJhgzPX7wy8nRxZBOQzL6/l4nAfMOe9zzvtcUfPuOte5jkIIIUBEREREVc7C3AkQERER1VUstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiICPHx8VAoFMjIyDB3KkR1CgstIqoWhw8fRkREBDp06AAbGxu0aNEC/fv3x2+//VYi9oUXXoBCoYBCoYCFhQXs7OzQpk0bDB48GLt3767Uebdu3YqAgAA0a9YMDRs2xNNPP43+/ftj586dVXVpJXz++efYvHlzifUHDhzA1KlTkZOTI9u5HzZ16lSpLRUKBRo2bIj27dvj448/Rm5ubpWcY82aNYiLi6uSYxHVNSy0iKhafPHFF9i4cSN69eqFL7/8EuHh4fj555/h5eWFU6dOlYh/6qmn8M033+D//u//MHPmTPTt2xcHDhzAP/7xDwwYMAD37t175DlnzZqFvn37QqFQYOLEiZg7dy5effVVnD9/HgkJCXJcJoDyC61PPvmkWgutYl999RW++eYbzJkzB23btsVnn32G3r17oyped8tCi6hsDcydABHVD1FRUVizZg2USqW0bsCAAejUqRNmzJiBb7/91iReo9HgzTffNFk3Y8YMvP/++1i0aBFcXV3xxRdflHm+v/76C9OmTcNLL72EXbt2ldh+/fr1J7yimuPOnTto2LBhuTGvvfYaHBwcAAAjR47Eq6++ik2bNuHgwYPw8/OrjjSJ6iX2aBFRtfD39zcpsgDAw8MDHTp0wNmzZyt0DEtLS8ybNw/t27fHggULYDAYyoy9efMmcnNz8eyzz5a6vVmzZiaf7969i6lTp6J169ZQq9XQ6XT45z//iQsXLkgxs2bNgr+/P+zt7WFtbQ1vb2989913JsdRKBTIz8/HqlWrpNt1Q4cOxdSpU/Hhhx8CANzc3KRtD46J+vbbb+Ht7Q1ra2totVoMHDgQly9fNjn+Cy+8gI4dO+Lo0aN4/vnn0bBhQ0yaNKlC7fegF198EQCQnp5ebtyiRYvQoUMHqFQqODs7Y9SoUSY9ci+88AK2b9+OixcvStfk6upa6XyI6ir2aBGR2QghkJmZiQ4dOlR4H0tLSwwaNAjR0dH45ZdfEBwcXGpcs2bNYG1tja1bt+K9996DVqst85hFRUXo06cPEhMTMXDgQIwePRp5eXnYvXs3Tp06BXd3dwDAl19+ib59++KNN95AYWEhEhIS8Prrr2Pbtm1SHt988w1GjBgBHx8fhIeHAwDc3d1hY2OD3377DWvXrsXcuXOl3qWmTZsCAD777DNER0ejf//+GDFiBG7cuIH58+fj+eefR0pKCho3bizlm5WVhZdffhkDBw7Em2++CUdHxwq3X7HiAtLe3r7MmKlTp+KTTz5BYGAg3n33XaSmpuKrr77C4cOHsX//flhZWeGjjz6CwWDAlStXMHfuXABAo0aNKp0PUZ0liIjM5JtvvhEAxPLly03WBwQEiA4dOpS53/fffy8AiC+//LLc40+ePFkAEDY2NuLll18Wn332mTh69GiJuBUrVggAYs6cOSW2GY1G6fc7d+6YbCssLBQdO3YUL774osl6GxsbERYWVuJYM2fOFABEenq6yfqMjAxhaWkpPvvsM5P1J0+eFA0aNDBZHxAQIACIxYsXl3ndD5oyZYoAIFJTU8WNGzdEenq6WLJkiVCpVMLR0VHk5+cLIYRYuXKlSW7Xr18XSqVS/OMf/xBFRUXS8RYsWCAAiBUrVkjrgoODRcuWLSuUD1F9w1uHRGQW586dw6hRo+Dn54ewsLBK7VvcY5KXl1du3CeffII1a9aga9eu+PHHH/HRRx/B29sbXl5eJrcrN27cCAcHB7z33nsljqFQKKTfra2tpd9v3boFg8GA5557DseOHatU/g/btGkTjEYj+vfvj5s3b0qLk5MTPDw8sHfvXpN4lUqFYcOGVeocbdq0QdOmTeHm5oZ33nkHrVq1wvbt28sc27Vnzx4UFhYiMjISFhZ/f1W8/fbbsLOzw/bt2yt/oUT1EG8dElG10+v1CA4OhkajwXfffQdLS8tK7X/79m0AgK2t7SNjBw0ahEGDBiE3NxfJycmIj4/HmjVrEBISglOnTkGtVuPChQto06YNGjQo/z+J27Ztw/Tp03H8+HEUFBRI6x8sxh7H+fPnIYSAh4dHqdutrKxMPjdv3rzEeLdH2bhxI+zs7GBlZYWnnnpKuh1alosXLwK4X6A9SKlU4umnn5a2E1H5WGgRUbUyGAx4+eWXkZOTg//9739wdnau9DGKp4No1apVhfexs7PDSy+9hJdeeglWVlZYtWoVkpOTERAQUKH9//e//6Fv3754/vnnsWjRIuh0OlhZWWHlypVYs2ZNpa/hQUajEQqFAv/5z39KLTofHvP0YM9aRT3//PPSuDAiqj4stIio2ty9exchISH47bffsGfPHrRv377SxygqKsKaNWvQsGFD9OjR47Hy6NatG1atWoVr164BuD9YPTk5Gffu3SvRe1Rs48aNUKvV+PHHH6FSqaT1K1euLBFbVg9XWevd3d0hhICbmxtat25d2cuRRcuWLQEAqampePrpp6X1hYWFSE9PR2BgoLTuSXv0iOoyjtEiompRVFSEAQMGICkpCRs2bHisuZuKiorw/vvv4+zZs3j//fdhZ2dXZuydO3eQlJRU6rb//Oc/AP6+Lfbqq6/i5s2bWLBgQYlY8f8m9LS0tIRCoUBRUZG0LSMjo9SJSW1sbEqdlNTGxgYASmz75z//CUtLS3zyySclJhAVQiArK6v0i5RRYGAglEol5s2bZ5LT8uXLYTAYTJ72tLGxKXeqDaL6jD1aRFQtxowZgy1btiAkJATZ2dklJih9eHJSg8Egxdy5cwdpaWnYtGkTLly4gIEDB2LatGnlnu/OnTvw9/dH9+7d0bt3b7i4uCAnJwebN2/G//73P4SGhqJr164AgCFDhuD//u//EBUVhUOHDuG5555Dfn4+9uzZg3//+9/o168fgoODMWfOHPTu3Rv/+te/cP36dSxcuBCtWrXCiRMnTM7t7e2NPXv2YM6cOXB2doabmxt8fX3h7e0NAPjoo48wcOBAWFlZISQkBO7u7pg+fTomTpyIjIwMhIaGwtbWFunp6fj+++8RHh6OsWPHPlH7V1bTpk0xceJEfPLJJ+jduzf69u2L1NRULFq0CM8884zJPy9vb2+sW7cOUVFReOaZZ9CoUSOEhIRUa75ENZY5H3kkovqjeFqCspbyYhs1aiQ8PDzEm2++KXbt2lWh8927d08sW7ZMhIaGipYtWwqVSiUaNmwounbtKmbOnCkKCgpM4u/cuSM++ugj4ebmJqysrISTk5N47bXXxIULF6SY5cuXCw8PD6FSqUTbtm3FypUrpekTHnTu3Dnx/PPPC2trawHAZKqHadOmiebNmwsLC4sSUz1s3LhR9OjRQ9jY2AgbGxvRtm1bMWrUKJGammrSNuVNffGw4vxu3LhRbtzD0zsUW7BggWjbtq2wsrISjo6O4t133xW3bt0yibl9+7b417/+JRo3biwAcKoHogcohKiCF10RERERUQkco0VEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDLhhKVmZDQacfXqVdja2vIVFkRERLWEEAJ5eXlwdnaGhUX5fVYstMzo6tWrcHFxMXcaRERE9BguX76Mp556qtwYFlpmZGtrC+D+P6jy3tlGRERENUdubi5cXFyk7/HysNAyo+LbhXZ2diy0iIiIapmKDPsx+2D4hQsXwtXVFWq1Gr6+vjh06FC58Rs2bEDbtm2hVqvRqVMn7Nixw2S7EAKTJ0+GTqeDtbU1AgMDcf78+VKPVVBQAE9PTygUChw/flxav2/fPvTr1w86nQ42Njbw9PTE6tWrTfaNj4+HQqEwWdRq9eM1AhEREdVJZi20it/2PmXKFBw7dgxdunRBUFAQrl+/Xmr8gQMHMGjQIAwfPhwpKSkIDQ1FaGgoTp06JcXExsZi3rx5WLx4MZKTk2FjY4OgoCDcvXu3xPHGjRsHZ2fnUs/TuXNnbNy4ESdOnMCwYcMwZMgQbNu2zSTOzs4O165dk5aLFy8+YYsQERFRnWLON1r7+PiIUaNGSZ+LioqEs7OziImJKTW+f//+Ijg42GSdr6+veOedd4QQQhiNRuHk5CRmzpwpbc/JyREqlUqsXbvWZL8dO3aItm3bitOnTwsAIiUlpdxcX3nlFTFs2DDp88qVK4VGo6nIZZbJYDAIAMJgMDzRcYiIiKj6VOb722xjtAoLC3H06FFMnDhRWmdhYYHAwEAkJSWVuk9SUhKioqJM1gUFBWHz5s0AgPT0dOj1egQGBkrbNRoNfH19kZSUhIEDBwIAMjMz8fbbb2Pz5s1o2LBhhfI1GAxo166dybrbt2+jZcuWMBqN8PLywueff44OHTqUeYyCggIUFBRIn3Nzcyt0biIiogcVFRXh3r175k6jzrKysoKlpWWVHMtshdbNmzdRVFQER0dHk/WOjo44d+5cqfvo9fpS4/V6vbS9eF1ZMUIIDB06FCNHjkS3bt2QkZHxyFzXr1+Pw4cPY8mSJdK6Nm3aYMWKFejcuTMMBgNmzZoFf39/nD59usxHPWNiYvDJJ5888nxERESlEUJAr9cjJyfH3KnUeY0bN4aTk9MTz3NZ7546nD9/PvLy8kx60sqzd+9eDBs2DMuWLTPprfLz84Ofn5/02d/fH+3atcOSJUswbdq0Uo81ceJEkx654sdDiYiIKqK4yGrWrBkaNmzIya5lIITAnTt3pPHiOp3uiY5ntkLLwcEBlpaWyMzMNFmfmZkJJyenUvdxcnIqN774Z2ZmpknDZGZmwtPTEwDw008/ISkpCSqVyuQ43bp1wxtvvIFVq1ZJ6/773/8iJCQEc+fOxZAhQ8q9HisrK3Tt2hVpaWllxqhUqhLnJSIiqoiioiKpyLK3tzd3OnWatbU1AOD69eto1qzZE91GNNtTh0qlEt7e3khMTJTWGY1GJCYmmvQUPcjPz88kHgB2794txbu5ucHJyckkJjc3F8nJyVLMvHnz8Ouvv+L48eM4fvy4ND3EunXr8Nlnn0n77du3D8HBwfjiiy8QHh7+yOspKirCyZMnn7jyJSIiKk3xmKyKji2mJ1Pczk86Fs6stw6joqIQFhaGbt26wcfHB3FxccjPz8ewYcMAAEOGDEHz5s0RExMDABg9ejQCAgIwe/ZsBAcHIyEhAUeOHMHSpUsB3J84LDIyEtOnT4eHhwfc3NwQHR0NZ2dnhIaGAgBatGhhkkOjRo0AAO7u7tLYqr1796JPnz4YPXo0Xn31VWl8l1KphFarBQB8+umn6N69O1q1aoWcnBzMnDkTFy9exIgRI+RtNCIiqtd4u7B6VFU7m7XQGjBgAG7cuIHJkydDr9fD09MTO3fulAazX7p0yeRljf7+/lizZg0+/vhjTJo0CR4eHti8eTM6duwoxYwbNw75+fkIDw9HTk4OevTogZ07d1ZqMtFVq1bhzp07iImJkYo8AAgICMC+ffsAALdu3cLbb78NvV6PJk2awNvbGwcOHED79u2fsFVqjqysLBQWFpa5XalUsvuaiIioHAohhDB3EvVVbm4uNBoNDAZDjXsFT1ZWFhYsWPDIuIiICBZbRETV4O7du0hPT4ebmxvfRFINymvvynx/m/0VPFQzPdyTZTDYIj3dFQaDbblxREREDxs6dKj0ujorKys4OjripZdewooVK2A0Git8nPj4eDRu3Fi+RGVQ76Z3oMo7dqwrtm7tAyEsoFAYERKyDV5eKeZOi4iIKsmcQ0J69+6NlStXoqioCJmZmdi5cydGjx6N7777Dlu2bEGDBnWzJKmbV0VVxmCwlYosABDCAlu39oG7exo0mjwzZ0dERBVl7iEhKpVKmoapefPm8PLyQvfu3dGrVy/Ex8djxIgRmDNnDlauXInff/8dWq0WISEhiI2NRaNGjbBv3z7pYbnigepTpkzB1KlT8c033+DLL79EamoqbGxs8OKLLyIuLg7NmjWr8uuoLN46pHJlZ9tLRVYxISyQna01U0ZERPQ4KjrUozqHhLz44ovo0qULNm3aBOD+q/jmzZuH06dPY9WqVfjpp58wbtw4APcfiIuLi4OdnR2uXbuGa9euYezYsQDuT8Ewbdo0/Prrr9i8eTMyMjIwdOjQaruO8rBHi8ql1WZBoTCaFFsKhRFabbYZsyIiorqibdu2OHHiBAAgMjJSWu/q6orp06dj5MiRWLRoEZRKJTQaDRQKRYmJzd966y3p96effhrz5s3DM888g9u3b0vTOJkLe7SoXBpNHkJCtkGhuD9YsXiMFm8bEhFRVRBCSLcC9+zZg169eqF58+awtbXF4MGDkZWVhTt37pR7jKNHjyIkJAQtWrSAra0tAgICANyfJsrc2KNFj+TllQJ39zRkZ2uh1WbXmCKL83wREdV+Z8+ehZubGzIyMtCnTx+8++67+Oyzz6DVavHLL79g+PDhKCwsLHNG/Pz8fAQFBSEoKAirV69G06ZNcenSJQQFBdWIJ+NZaFGplEqlyWeNJq/UAuvhuOpi7kGdRET05H766SecPHkSH3zwAY4ePQqj0YjZs2dLk5WvX7/eJF6pVKKoqMhk3blz55CVlYUZM2bAxcUFAHDkyJHquYAKYKFFpbK3t0dERESN7TEqbZ6v7Gx7aLVZJgVhTfi/GSIiAgoKCqDX602md4iJiUGfPn0wZMgQnDp1Cvfu3cP8+fMREhKC/fv3Y/HixSbHcHV1xe3bt5GYmIguXbqgYcOGaNGiBZRKJebPn4+RI0fi1KlTmDZtmpmusiQWWlSm2tITxHm+iIhqvp07d0Kn06FBgwZo0qQJunTpgnnz5iEsLAwWFhbo0qUL5syZgy+++AITJ07E888/j5iYGAwZMkQ6hr+/P0aOHIkBAwYgKytLmt4hPj4ekyZNwrx58+Dl5YVZs2ahb9++Zrzav/EVPGZUk1/BU9Ndu3YNS5cuhcFgi7i4yBJPRUZGxkGjyUN4eDh0Op0ZMyUiqhpP+goeDrmonKp6BQ97tKhWK2+er5oyaJ+IqCao6UNC6ioWWlSrcZ4vIqKKYxFV/TiPFtVqnOeLiIhqMvZo1SH1dV6pmjrPFxEREQutOqK+DXJ8eJbgsub5etRswkRERHLircM6oia+LFROD88QbDDYIj3dFQaDbblxRERE1Yk9WnVUWRN41kWcR4uIiGoqFlp1UH0qPAwGW+lagftTO2zd2gfu7ml1vsAkIqKaj7cO65iyCo+Hb6nVFeXNo0VERGRuLLTqmPpWeBTPo/UgzqNFRFS/7Nu3DwqFAjk5ORXex9XVFXFxcbLlVIyFVh1T3woPzqNFRFTzDR06FAqFAiNHjiyxbdSoUVAoFBg6dGj1J1YNOEarjikuPB4eo1WXCw/Oo0VEVPO5uLggISEBc+fOhbW1NYD77xNcs2YNWrRoYebs5MMerTpCqVRKv3t5pSAyMg5hYfGIjIwzGQj/YFxt9vB1aDR5cHO7WKLIqivXS0RU23l5ecHFxQWbNm2S1m3atAktWrRA165dpXUFBQV4//330axZM6jVavTo0QOHDx82OdaOHTvQunVrWFtbo2fPnsjIyChxvl9++QXPPfccrK2t4eLigvfffx/5+fmyXV9Z2KNVR9S3l4XWt+slIqpqV64A588DHh7AU09VzznfeustrFy5Em+88QYAYMWKFRg2bBj27dsnxYwbNw4bN27EqlWr0LJlS8TGxiIoKAhpaWnQarW4fPky/vnPf2LUqFEIDw/HkSNHMGbMGJPzXLhwAb1798b06dOxYsUK3LhxAxEREYiIiMDKlSur52KLCTIbg8EgAAiDwWDuVIiIqIb7888/xZkzZ8Sff/75xMf6+mshLCyEAO7//PrrKkiwHGFhYaJfv37i+vXrQqVSiYyMDJGRkSHUarW4ceOG6NevnwgLCxO3b98WVlZWYvXq1dK+hYWFwtnZWcTGxgohhJg4caJo3769yfHHjx8vAIhbt24JIYQYPny4CA8PN4n53//+JywsLKT2a9mypZg7d26ZOZfX3pX5/maPFhERUT1y5QoQHg4Y/99zU0Yj8M47QFCQ/D1bTZs2RXBwMOLj4yGEQHBwMBwcHKTtFy5cwL179/Dss89K66ysrODj44OzZ88CAM6ePQtfX1+T4/r5+Zl8/vXXX3HixAmsXr1aWieEgNFoRHp6Otq1ayfH5ZWKhRYREVE9cv7830VWsaIiIC2tem4hvvXWW4iIiAAALFy4UJZz3L59G++88w7ef//9Etuqe+A9Cy0iIqJ6xMMDsLAwLbYsLYFWrarn/L1790ZhYSEUCgWCgoJMtrm7u0OpVGL//v1o2bIlAODevXs4fPgwIiMjAQDt2rXDli1bTPY7ePCgyWcvLy+cOXMGrarrosrBQouoHsvKyuIDBUT1zFNPAUuX3r9dWFR0v8hasqT6BsRbWlpKtwEtLS1NttnY2ODdd9/Fhx9+CK1WixYtWiA2NhZ37tzB8OHDAQAjR47E7Nmz8eGHH2LEiBE4evQo4uPjTY4zfvx4dO/eHRERERgxYgRsbGxw5swZ7N69GwsWLKiW6yzGQouonsrKyqrQf3AiIiJYbBHVMcOH3x+TlZZ2vyeruoqsYnZ2dmVumzFjBoxGIwYPHoy8vDx069YNP/74I5o0aQLg/q2/jRs34oMPPsD8+fPh4+ODzz//HG+99ZZ0jM6dO+O///0vPvroIzz33HMQQsDd3R0DBgyQ/doephBCiGo/KwEAcnNzodFoYDAYyv2jI5LDtWvXsHTp0kfGhYeHQ6fTVUNGRFSeu3fvIj09HW5ublCr1eZOp84rr70r8/3NCUuJCMD9F5Knp7vW2ReQExGZA28dEhGOHeta4rVND75RgIiIHg97tIjqOYPBViqyAEAIC2zd2oc9W0REVYA9WkT1XHa2vVRkFRPCAtnZ2lJf0M0nFYmIKo6FFlE9p9VmQaEwmhRbCoURWm12iVg+qUhkfnyGrXpUVTvz1iFRPafR5CEkZBsUivuzFxaP0SqtN6u8nqzHiSOiirOysgIA3Llzx8yZ1A/F7Vzc7o+LPVpE9ZRSqZR+9/JKgbt7GrKztdBqs02KrAfjHmYw2CI72x5abVaphRkRVR1LS0s0btwY169fBwA0bNgQCoXCzFnVPUII3LlzB9evX0fjxo1LTKpaWSy0iOope3t7REREPPZ4Kz6pSFT9nJycAEAqtkg+jRs3ltr7SZi90Fq4cCFmzpwJvV6PLl26SLO8lmXDhg2Ijo5GRkYGPDw88MUXX+CVV16RtgshMGXKFCxbtgw5OTl49tln8dVXX8HDw6PEsQoKCuDr64tff/0VKSkp8PT0lLadOHECo0aNwuHDh9G0aVO89957GDduXKVyIarpHnccVVlPKrq7p7Fni0hGCoUCOp0OzZo1w71798ydTp1lZWX1xD1ZxcxaaK1btw5RUVFYvHgxfH19ERcXh6CgIKSmpqJZs2Yl4g8cOIBBgwYhJiYGffr0wZo1axAaGopjx46hY8eOAIDY2FjMmzcPq1atgpubG6KjoxEUFIQzZ86UmNl13LhxcHZ2xq+//mqyPjc3F//4xz8QGBiIxYsX4+TJk3jrrbfQuHFjhIeHVzgXorqqsk8qElHVsrS0rLJCgGQmzMjHx0eMGjVK+lxUVCScnZ1FTExMqfH9+/cXwcHBJut8fX3FO++8I4QQwmg0CicnJzFz5kxpe05OjlCpVGLt2rUm++3YsUO0bdtWnD59WgAQKSkp0rZFixaJJk2aiIKCAmnd+PHjRZs2bSqcS0UYDAYBQBgMhgrvQ2ROV69eFVOnThUffDBbKBRFAhDSolAUiQ8+mC2mTp0qrl69au5UiYhkU5nvb7M9dVhYWIijR48iMDBQWmdhYYHAwEAkJSWVuk9SUpJJPAAEBQVJ8enp6dDr9SYxGo0Gvr6+JsfMzMzE22+/jW+++QYNGzYs9TzPP/+8ySDg4p62W7duVSiX0hQUFCA3N9dkIaqNKvOkIhFRfWa2W4c3b95EUVERHB0dTdY7Ojri3Llzpe6j1+tLjdfr9dL24nVlxQghMHToUIwcORLdunVDRkZGqedxc3MrcYzibU2aNHlkLqWJiYnBJ598UuZ2opquKp5UJCKqT8w+GL66zZ8/H3l5eZg4cWK1n3vixImIioqSPufm5sLFxaXa8yB6XE/6pCIRUX1jtkLLwcEBlpaWyMzMNFmfmZlZ5uOUTk5O5cYX/8zMzIROpzOJKX6i8KeffkJSUhJUKpXJcbp164Y33ngDq1atKvM8D57jUbmURqVSlTgvUW3DIoqIqOLMNkZLqVTC29sbiYmJ0jqj0YjExET4+fmVuo+fn59JPADs3r1bindzc4OTk5NJTG5uLpKTk6WYefPm4ddff8Xx48dx/Phx7NixA8D9JyA/++wz6Tw///yzyaOzu3fvRps2bdCkSZMK5UJERERk1qcOExIShEqlEvHx8eLMmTMiPDxcNG7cWOj1eiGEEIMHDxYTJkyQ4vfv3y8aNGggZs2aJc6ePSumTJkirKysxMmTJ6WYGTNmiMaNG4sffvhBnDhxQvTr10+4ubmJP//8s9Qc0tPTSzx1mJOTIxwdHcXgwYPFqVOnREJCgmjYsKFYsmRJpXJ5FD51SEREVPtU5vvbrGO0BgwYgBs3bmDy5MnQ6/Xw9PTEzp07pUHmly5dgoXF351u/v7+WLNmDT7++GNMmjQJHh4e2Lx5s8m8VePGjUN+fj7Cw8ORk5ODHj16YOfOnSXm0CqPRqPBrl27MGrUKHh7e8PBwQGTJ0+W5tCqaC5EVDFZWVkc90VEdZJCCL4G3Fxyc3Oh0WhgMBhgZ2dn7nSIzCIrKwsLFix4ZFxERASLLSKqESrz/W22MVpERADK7cl6nDgiopqEhRYR1SgGgy3S011hMNiaOxUioidW7+bRIqKa69ixrtLLqotnm/fySjF3WkREj409WkRUIxgMtlKRBdx/SfXWrX3Ys0VEtRoLLSKqEbKz7fHw61eFsEB2ttZMGRERPTkWWkRUI2i1WdJLqospFEZotdlmyoiI6Mmx0CKiGkGjyUNIyDap2Coeo/Xgy6qJiGobDoYnqmFq8+Sdj5O7UqmUfvfySoG7exqys7XQarNNiqwH44iIagsWWkQ1SG2evPNxc7e3t0dEREStLS6JiMrDQouoBnm42DAYbJGdbQ+tNsukd6cmTt75JLmziCKiuoqFFlENVZvnlKrNuRMRVSUOhieqgWrznFK1OXcioqrGQouoBqrNc0rV5tyJiKoaCy2iGqg2zylVm3MnIqpqLLSIaqDaPKdUbc6diKiqcTA8UQ1V3pxSNV1tzp2IqCqx0CKqQR6elFOjySu1SKmOyTsrO/loTcqdiKimUAghhLmTqK9yc3Oh0WhgMBhgZ2dn7nSohqgJM8M/7uSjNSF3IiK5Veb7mz1aRDVMTShEHnfy0ZqQOxFRTcJCi4jKxclHiYgeH586JKIycfJRIqInw0KLiMrEyUeJiJ4MCy0iKhMnHyUiejIstIioTJx8lIjoyXAwPBGVi5OPEhE9PhZaRFQCJx8lIqoaLLSIqAR7e3tERERw8lEioifEQouISsUiiojoyXEwPBEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMODM8EVEtkZWVxdciEdUyLLSIiGqBrKwsLFiw4JFxERERLLaIahDeOiQiqgXK68l6nDgiqh5mL7QWLlwIV1dXqNVq+Pr64tChQ+XGb9iwAW3btoVarUanTp2wY8cOk+1CCEyePBk6nQ7W1tYIDAzE+fPnTWL69u2LFi1aQK1WQ6fTYfDgwbh69aq0ferUqVAoFCUWGxsbKSY+Pr7EdrVaXQUtQkT0aAaDLdLTXWEw2Jo7FSIqh1kLrXXr1iEqKgpTpkzBsWPH0KVLFwQFBeH69eulxh84cACDBg3C8OHDkZKSgtDQUISGhuLUqVNSTGxsLObNm4fFixcjOTkZNjY2CAoKwt27d6WYnj17Yv369UhNTcXGjRtx4cIFvPbaa9L2sWPH4tq1ayZL+/bt8frrr5vkY2dnZxJz8eLFKm4hIqpqWVlZJf79fnDJysoyd4qPdOxYV8TFRWLVqjDExUXi2LGu5k6JiMqgEEIIc53c19cXzzzzjDTuwGg0wsXFBe+99x4mTJhQIn7AgAHIz8/Htm3bpHXdu3eHp6cnFi9eDCEEnJ2dMWbMGIwdOxYAYDAY4OjoiPj4eAwcOLDUPLZs2YLQ0FAUFBTAysqqxPZff/0Vnp6e+Pnnn/Hcc88BuN+jFRkZiZycnMe+/tzcXGg0GhgMBtjZ2T32cYioYh4e52Qw2CI72x5abRY0mjxpfU0c53Tt2jUsXboUBoMt4uIiIcTf/5+sUBgRGRkHjSYP4eHh0Ol0ZsyUqO6rzPe32Xq0CgsLcfToUQQGBv6djIUFAgMDkZSUVOo+SUlJJvEAEBQUJMWnp6dDr9ebxGg0Gvj6+pZ5zOzsbKxevRr+/v6lFlkA8PXXX6N169ZSkVXs9u3baNmyJVxcXNCvXz+cPn263GsuKChAbm6uyUJE1efB8Uvl9QrV5HFO2dn2JkUWAAhhgexsrZkyIqLymK3QunnzJoqKiuDo6Giy3tHREXq9vtR99Hp9ufHFPytyzPHjx8PGxgb29va4dOkSfvjhh1LPeffuXaxevRrDhw83Wd+mTRusWLECP/zwA7799lsYjUb4+/vjypUrZV5zTEwMNBqNtLi4uJQZS0TyMRhssXVrH6lgEcICW7f2qRXjnbTaLCgURpN1CoURWm22mTIiovKYfTC8uXz44YdISUnBrl27YGlpiSFDhqC0u6jff/898vLyEBYWZrLez88PQ4YMgaenJwICArBp0yY0bdoUS5YsKfOcEydOhMFgkJbLly9X+XUR0aPV5l4hjSYPISHbpGJLoTAiJGSbya1PIqo5zDaPloODAywtLZGZmWmyPjMzE05OTqXu4+TkVG588c/MzEyTMQqZmZnw9PQscX4HBwe0bt0a7dq1g4uLCw4ePAg/Pz+TuK+//hp9+vQp0Uv2MCsrK3Tt2hVpaWllxqhUKqhUqnKPQ0TyK+4VenicU03uFVIqldLvXl4pcHdPQ3a2FlpttkmR9WAcEZmf2QotpVIJb29vJCYmIjQ0FMD9wfCJiYmIiIgodR8/Pz8kJiYiMjJSWrd7926pOHJzc4OTkxMSExOlwio3NxfJycl49913y8zFaLz/f4YFBQUm69PT07F3715s2bLlkddTVFSEkydP4pVXXnlkLBGZV3GvUPHtw9rQK2Rvb4+IiAjODE9Uy5h1ZvioqCiEhYWhW7du8PHxQVxcHPLz8zFs2DAAwJAhQ9C8eXPExMQAAEaPHo2AgADMnj0bwcHBSEhIwJEjR7B06VIAgEKhQGRkJKZPnw4PDw+4ubkhOjoazs7OUjGXnJyMw4cPo0ePHmjSpAkuXLiA6OhouLu7l+jNWrFiBXQ6HV5++eUSuX/66afo3r07WrVqhZycHMycORMXL17EiBEjZGwxIqoq5fUK1VQsoohqH7MWWgMGDMCNGzcwefJk6PV6eHp6YufOndJtukuXLsHC4u+ufX9/f6xZswYff/wxJk2aBA8PD2zevBkdO3aUYsaNG4f8/HyEh4cjJycHPXr0wM6dO6XJRBs2bIhNmzZhypQpyM/Ph06nQ+/evfHxxx+b3NYzGo2Ij4/H0KFDYWlpWSL3W7du4e2334Zer0eTJk3g7e2NAwcOoH379nI1FxFVMY0mr1YUWERUe5l1Hq36jvNoEVUvvi+QiKpCZb6/+VJpIqo3OM6JiKobCy0iqldYRBFRdaq382gRERERyY2FFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyaSBuRMgIqL6LSsrC4WFhWVuVyqVsLe3r8aMiKoOCy0iIjKbrKwsLFiw4JFxERERLLaoVuKtQyIiMpvyerIeJ46opmGhRURENYbBYIv0dFcYDLbmToWoSvDWIRER1QjHjnXF1q19IIQFFAojQkK2wcsrxdxpET0R9mgREZHZGQy2UpEFAEJYYOvWPuzZolqPhRYREZlddra9VGQVE8IC2dlaM2VEVDVYaBERkdlptVlQKIwm6xQKI7TabDNlRFQ1WGgREZHZaTR5CAnZJhVbxWO0NJo8M2dG9GQ4GJ6IiMxGqVRKv3t5pcDdPQ3Z2VpotdkmRdaDcUS1CQstIiIyG3t7e0RERHBmeKqzWGgREZHs+Jodqq9YaBERkaz4mh2qzzgYnoiIZPVwT1ZZs7/zNTtUF7FHi4iIqg1nf6f6hj1aRERULTj7O9VHLLSIiKhacPZ3qo9YaBERUbXg7O9UH7HQIiKiasHZ36k+MnuhtXDhQri6ukKtVsPX1xeHDh0qN37Dhg1o27Yt1Go1OnXqhB07dphsF0Jg8uTJ0Ol0sLa2RmBgIM6fP28S07dvX7Ro0QJqtRo6nQ6DBw/G1atXpe0ZGRlQKBQlloMHD1YqFyIiMuXllYLIyDiEhcUjMjKOA+GpzjNrobVu3TpERUVhypQpOHbsGLp06YKgoCBcv3691PgDBw5g0KBBGD58OFJSUhAaGorQ0FCcOnVKiomNjcW8efOwePFiJCcnw8bGBkFBQbh7964U07NnT6xfvx6pqanYuHEjLly4gNdee63E+fbs2YNr165Ji7e3d6VyISKikq/P0Wjy4OZ2sURPFl+zQ3WRQgghzHVyX19fPPPMM9JEdkajES4uLnjvvfcwYcKEEvEDBgxAfn4+tm3bJq3r3r07PD09sXjxYggh4OzsjDFjxmDs2LEAAIPBAEdHR8THx2PgwIGl5rFlyxaEhoaioKAAVlZWyMjIgJubG1JSUuDp6VnqPo/KpSJyc3Oh0WhgMBhgZ2dXoX2IiGojzgxPdUllvr/N1qNVWFiIo0ePIjAw8O9kLCwQGBiIpKSkUvdJSkoyiQeAoKAgKT49PR16vd4kRqPRwNfXt8xjZmdnY/Xq1fD394eVlZXJtr59+6JZs2bo0aMHtmzZUqlcSlNQUIDc3FyThYioPrC3t4dOpytzYZFFdZXZCq2bN2+iqKgIjo6OJusdHR2h1+tL3Uev15cbX/yzIsccP348bGxsYG9vj0uXLuGHH36QtjVq1AizZ8/Ghg0bsH37dvTo0QOhoaEmxdajcilNTEwMNBqNtLi4uJQZS0RERLWf2QfDm8uHH36IlJQU7Nq1C5aWlhgyZAiK76I6ODggKipKurU5Y8YMvPnmm5g5c+YTnXPixIkwGAzScvny5aq4FCIiIqqhzPYKHgcHB1haWiIzM9NkfWZmJpycnErdx8nJqdz44p+ZmZnQ6XQmMQ+PtXJwcICDgwNat26Ndu3awcXFBQcPHoSfn1+p5/b19cXu3bsrnEtpVCoVVCpVmduJiIiobjFbj5ZSqYS3tzcSExOldUajEYmJiWUWO35+fibxALB7924p3s3NDU5OTiYxubm5SE5OLvOYxecF7o+hKsvx48dNirdH5UJERERk1pdKR0VFISwsDN26dYOPjw/i4uKQn5+PYcOGAQCGDBmC5s2bIyYmBgAwevRoBAQEYPbs2QgODkZCQgKOHDmCpUuXAgAUCgUiIyMxffp0eHh4wM3NDdHR0XB2dkZoaCgAIDk5GYcPH0aPHj3QpEkTXLhwAdHR0XB3d5eKpFWrVkGpVKJr164AgE2bNmHFihX4+uuvpdwflQsRERERhJnNnz9ftGjRQiiVSuHj4yMOHjwobQsICBBhYWEm8evXrxetW7cWSqVSdOjQQWzfvt1ku9FoFNHR0cLR0VGoVCrRq1cvkZqaKm0/ceKE6Nmzp9BqtUKlUglXV1cxcuRIceXKFSkmPj5etGvXTjRs2FDY2dkJHx8fsWHDhhK5PyqXRzEYDAKAMBgMldqPiIiIzKcy399mnUervuM8WkRERLVPrZhHi4iIiKiuY6FFREREJBMWWkREREQyMetTh0RERI+D706k2oKFFhER1SpZWVlYsGDBI+MiIiJYbJHZ8dYhERHVKg/3ZBkMtkhPd4XBYFtuHJE5sEeLiIhqrWPHumLr1j4QwgIKhREhIdvg5ZVi7rSIJOzRIiKiWslgsJWKLAAQwgJbt/Yp0bNFZE4stIiIqFbKzraXiqxiQlggO1trpoyISmKhRUREtZJWmwWFwmiyTqEwQqvNNlNGRCWx0CIiolpJo8lDSMg2qdgqHqOl0eSZOTOiv1XZYPi7d+9iwYIFGDt2bFUdkoiIqFxeXilwd09DdrYWWm02iyyqcSrVo3Xjxg1s27YNu3btQlFREQDg3r17+PLLL+Hq6ooZM2bIkiQREVExpVJp8lmjyYOb28USRdbDcUTmUOEerV9++QV9+vRBbm4uFAoFunXrhpUrVyI0NBQNGjTA1KlTERYWJmeuREREsLe3R0RERJXODM+Z5kkuCiGEqEjgCy+8AGdnZ0yaNAmrVq3C7Nmz4eHhgc8++wyvvfaa3HnWSbm5udBoNDAYDLCzszN3OkRE9RJnmqfKqsz3d4VvHZ48eRIff/wxOnbsiE8//RQKhQKxsbEssoiIqFbjTPMkpwrfOrx16xYcHBwAANbW1mjYsCE6duwoW2JERETVjTPNU1Wr1FOHZ86cgV6vBwAIIZCamor8/HyTmM6dO1dddkRERNWkrJnm3d3T+DQjPbZKFVq9evXCg0O6+vTpY7JdoVBITyMSERHVJuXNNM9Cix5XhQut9PT0R8bk5fEPkYiIaqfimeYfLLY40zw9qQoXWi1btix1fV5eHtauXYvly5fjyJEj7NEiIqJaqXim+YfHaLE3i57EY88M//PPP2P58uXYuHEjnJ2d8c9//rNCj8cSERHVVJxpnqpapQotvV6P+Ph4LF++HLm5uejfvz8KCgqwefNmtG/fXq4ciYiIZFPaTPOlFVicaZ4eR4UnLA0JCcHPP/+M4OBgvPHGG+jduzcsLS1hZWWFX3/9lYXWY+CEpURENQNnhqfKqMz3d4V7tP7zn//g/fffx7vvvgsPD48nTpKIiKimYBFFcqnwzPC//PIL8vLy4O3tDV9fXyxYsAA3b96UMzciIiKiWq3ChVb37t2xbNkyXLt2De+88w4SEhLg7OwMo9GI3bt3c2oHIiIioodUeIxWaVJTU7F8+XJ88803yMnJwUsvvYQtW7ZUZX51GsdoERER1T6yvFS6NG3atEFsbCyuXLmCtWvXPsmhiIiIiOqcJ+rRoifDHi0iIqLap9p6tIiIiIiobCy0iIiIiGTCQouIiIhIJiy0iIiIiGTCQouIiIhIJiy0iIiIiGTCQouIiIhIJiy0iIiIiGTCQouIiIhIJiy0iIiIiGRi9kJr4cKFcHV1hVqthq+vLw4dOlRu/IYNG9C2bVuo1Wp06tQJO3bsMNkuhMDkyZOh0+lgbW2NwMBAnD9/3iSmb9++aNGiBdRqNXQ6HQYPHoyrV69K2/ft24d+/fpBp9PBxsYGnp6eWL16tckx4uPjoVAoTBa1Wv2ErUFERER1iVkLrXXr1iEqKgpTpkzBsWPH0KVLFwQFBeH69eulxh84cACDBg3C8OHDkZKSgtDQUISGhuLUqVNSTGxsLObNm4fFixcjOTkZNjY2CAoKwt27d6WYnj17Yv369UhNTcXGjRtx4cIFvPbaaybn6dy5MzZu3IgTJ05g2LBhGDJkCLZt22aSj52dHa5duyYtFy9erOIWIiIiotrMrC+V9vX1xTPPPIMFCxYAAIxGI1xcXPDee+9hwoQJJeIHDBiA/Px8k4Kne/fu8PT0xOLFiyGEgLOzM8aMGYOxY8cCAAwGAxwdHREfH4+BAweWmseWLVsQGhqKgoICWFlZlRoTHBwMR0dHrFixAsD9Hq3IyEjk5OQ89vXzpdJERES1T614qXRhYSGOHj2KwMDAv5OxsEBgYCCSkpJK3ScpKckkHgCCgoKk+PT0dOj1epMYjUYDX1/fMo+ZnZ2N1atXw9/fv8wiC7hfsGm1WpN1t2/fRsuWLeHi4oJ+/frh9OnT5V80ERER1StmK7Ru3ryJoqIiODo6mqx3dHSEXq8vdR+9Xl9ufPHPihxz/PjxsLGxgb29PS5duoQffvihzFzXr1+Pw4cPY9iwYdK6Nm3aYMWKFfjhhx/w7bffwmg0wt/fH1euXCnzOAUFBcjNzTVZiIiIqO4y+2B4c/nwww+RkpKCXbt2wdLSEkOGDEFpd1H37t2LYcOGYdmyZejQoYO03s/PD0OGDIGnpycCAgKwadMmNG3aFEuWLCnznDExMdBoNNLi4uIiy7URERFRzWC2QsvBwQGWlpbIzMw0WZ+ZmQknJ6dS93Fycio3vvhnRY7p4OCA1q1b46WXXkJCQgJ27NiBgwcPmsT897//RUhICObOnYshQ4aUez1WVlbo2rUr0tLSyoyZOHEiDAaDtFy+fLncYxIREVHtZrZCS6lUwtvbG4mJidI6o9GIxMRE+Pn5lbqPn5+fSTwA7N69W4p3c3ODk5OTSUxubi6Sk5PLPGbxeYH7t/aK7du3D8HBwfjiiy8QHh7+yOspKirCyZMnodPpyoxRqVSws7MzWYiIiKjuamDOk0dFRSEsLAzdunWDj48P4uLikJ+fL42FGjJkCJo3b46YmBgAwOjRoxEQEIDZs2cjODgYCQkJOHLkCJYuXQoAUCgUiIyMxPTp0+Hh4QE3NzdER0fD2dkZoaGhAIDk5GQcPnwYPXr0QJMmTXDhwgVER0fD3d1dKsb27t2LPn36YPTo0Xj11Vel8V1KpVIaEP/pp5+ie/fuaNWqFXJycjBz5kxcvHgRI0aMqM4mJCIioppMmNn8+fNFixYthFKpFD4+PuLgwYPStoCAABEWFmYSv379etG6dWuhVCpFhw4dxPbt2022G41GER0dLRwdHYVKpRK9evUSqamp0vYTJ06Inj17Cq1WK1QqlXB1dRUjR44UV65ckWLCwsIEgBJLQECAFBMZGSnl7ejoKF555RVx7NixSl27wWAQAITBYKjUfkRERGQ+lfn+Nus8WvUd59EiIiKqfWrFPFpEREREdR0LLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikonZC62FCxfC1dUVarUavr6+OHToULnxGzZsQNu2baFWq9GpUyfs2LHDZLsQApMnT4ZOp4O1tTUCAwNx/vx5k5i+ffuiRYsWUKvV0Ol0GDx4MK5evWoSc+LECTz33HNQq9VwcXFBbGxspXMhIiKi+s2shda6desQFRWFKVOm4NixY+jSpQuCgoJw/fr1UuMPHDiAQYMGYfjw4UhJSUFoaChCQ0Nx6tQpKSY2Nhbz5s3D4sWLkZycDBsbGwQFBeHu3btSTM+ePbF+/XqkpqZi48aNuHDhAl577TVpe25uLv7xj3+gZcuWOHr0KGbOnImpU6di6dKllcqFiIiI6jlhRj4+PmLUqFHS56KiIuHs7CxiYmJKje/fv78IDg42Wefr6yveeecdIYQQRqNRODk5iZkzZ0rbc3JyhEqlEmvXri0zjx9++EEoFApRWFgohBBi0aJFokmTJqKgoECKGT9+vGjTpk2Fc6kIg8EgAAiDwVDhfYiIiMi8KvP9bbYercLCQhw9ehSBgYHSOgsLCwQGBiIpKanUfZKSkkziASAoKEiKT09Ph16vN4nRaDTw9fUt85jZ2dlYvXo1/P39YWVlJZ3n+eefh1KpNDlPamoqbt26VaFcSlNQUIDc3FyThYiIiOousxVaN2/eRFFRERwdHU3WOzo6Qq/Xl7qPXq8vN774Z0WOOX78eNjY2MDe3h6XLl3CDz/88MjzPHiOR+VSmpiYGGg0GmlxcXEpM5aIiIhqP7MPhjeXDz/8ECkpKdi1axcsLS0xZMgQCCFkPefEiRNhMBik5fLly7Kej4iIiMyrgblO7ODgAEtLS2RmZpqsz8zMhJOTU6n7ODk5lRtf/DMzMxM6nc4kxtPTs8T5HRwc0Lp1a7Rr1w4uLi44ePAg/Pz8yjzPg+d4VC6lUalUUKlUZW4nIiKiusVsPVpKpRLe3t5ITEyU1hmNRiQmJsLPz6/Uffz8/EziAWD37t1SvJubG5ycnExicnNzkZycXOYxi88L3B9DVXyen3/+Gffu3TM5T5s2bdCkSZMK5UJERERk1qcOExIShEqlEvHx8eLMmTMiPDxcNG7cWOj1eiGEEIMHDxYTJkyQ4vfv3y8aNGggZs2aJc6ePSumTJkirKysxMmTJ6WYGTNmiMaNG4sffvhBnDhxQvTr10+4ubmJP//8UwghxMGDB8X8+fNFSkqKyMjIEImJicLf31+4u7uLu3fvCiHuP6no6OgoBg8eLE6dOiUSEhJEw4YNxZIlSyqVy6PwqUMiIqLapzLf32YttIQQYv78+aJFixZCqVQKHx8fcfDgQWlbQECACAsLM4lfv369aN26tVAqlaJDhw5i+/btJtuNRqOIjo4Wjo6OQqVSiV69eonU1FRp+4kTJ0TPnj2FVqsVKpVKuLq6ipEjR4orV66YHOfXX38VPXr0ECqVSjRv3lzMmDGjRO6PyuVRWGgRERHVPpX5/lYIIfMIcCpTbm4uNBoNDAYD7OzszJ0OERERVUBlvr/r7VOHRERERHJjoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkExZaRERERDJhoUVEREQkkwbmToCIiIhqv6ysLBQWFpa5XalUwt7evhozqhlYaBEREdETycrKwoIFCx4ZFxERUe+KLd46JCIioidSXk/W48TVJSy0iIiI6Ink5OSYfDYYbJGe7gqDwbbcuPqAtw6JiIjoifz111/S78eOdcXWrX0ghAUUCiNCQrbByyulRFx9wR4tIiIiqhIGg61UZAGAEBbYurVPiZ6t+oSFFhEREVWJ7Gx7qcgqJoQFsrO1ZsrI/FhoERERUZWwsioAIB5aK2BlVf8GwRdjoUVERERV4t49FQDFQ2sVuHdPaY50agQWWkRERPRErKysAABabRYUCqPJNoXCCK022ySuPmGhRURERE9Eo9H8v595CAnZJhVbxU8dajR5JnH1Cad3ICIioieiVP59a9DLKwXu7mnIztZCq82WiqyH4+oLFlpERET0ROzt7REREcF3HZaChRYRERE9sfpYRFUEx2gRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYSFFhEREZFMWGgRERERyYTzaBEREVGNk5WVVScmQGWhRURERDVKVlYWFixYIH02GGyRnW0PrTbL5JU+ERERNb7YYqFFRERENcqDPVnHjnXF1q19IISF9JJqL6+UEnE1ldnHaC1cuBCurq5Qq9Xw9fXFoUOHyo3fsGED2rZtC7VajU6dOmHHjh0m24UQmDx5MnQ6HaytrREYGIjz589L2zMyMjB8+HC4ubnB2toa7u7umDJlisk/rKlTp0KhUJRYbGxspJj4+PgS29VqdRW1ChERERkMtlKRBQBCWGDr1j4wGGzNnFnFmbXQWrduHaKiojBlyhQcO3YMXbp0QVBQEK5fv15q/IEDBzBo0CAMHz4cKSkpCA0NRWhoKE6dOiXFxMbGYt68eVi8eDGSk5NhY2ODoKAg3L17FwBw7tw5GI1GLFmyBKdPn8bcuXOxePFiTJo0STrG2LFjce3aNZOlffv2eP31103ysbOzM4m5ePGiDK1ERERUP2Vn20tFVjEhLJCdrTVTRo9BmJGPj48YNWqU9LmoqEg4OzuLmJiYUuP79+8vgoODTdb5+vqKd955RwghhNFoFE5OTmLmzJnS9pycHKFSqcTatWvLzCM2Nla4ubmVuf348eMCgPj555+ldStXrhQajabc63sUg8EgAAiDwfBExyEiIqpLrl69KqZOnSo++GC2UCiKBCCkRaEoEh98MFtMnTpVXL161Sz5Veb722w9WoWFhTh69CgCAwOldRYWFggMDERSUlKp+yQlJZnEA0BQUJAUn56eDr1ebxKj0Wjg6+tb5jEBwGAwQKstuzr++uuv0bp1azz33HMm62/fvo2WLVvCxcUF/fr1w+nTp8u+YAAFBQXIzc01WYiIiKh0Gk0eQkK2QaEwAoA0RuvBAfE1ndkGw9+8eRNFRUVwdHQ0We/o6Ihz586Vuo9ery81Xq/XS9uL15UV87C0tDTMnz8fs2bNKnX73bt3sXr1akyYMMFkfZs2bbBixQp07twZBoMBs2bNgr+/P06fPo2nnnqq1GPFxMTgk08+KXUbERERleTllQJ39zRkZ2uh1WbXqiILqAGD4c3pjz/+QO/evfH666/j7bffLjXm+++/R15eHsLCwkzW+/n5YciQIfD09ERAQAA2bdqEpk2bYsmSJWWeb+LEiTAYDNJy+fLlKr0eIiKiukijyYOb28VaV2QBZiy0HBwcYGlpiczMTJP1mZmZcHJyKnUfJyencuOLf1bkmFevXkXPnj3h7++PpUuXlpnn119/jT59+pToJXuYlZUVunbtirS0tDJjVCoV7OzsTBYiIiIypVQqqzTOnMx261CpVMLb2xuJiYkIDQ0FABiNRiQmJiIiIqLUffz8/JCYmIjIyEhp3e7du+Hn5wcAcHNzg5OTExITE+Hp6QkAyM3NRXJyMt59911pnz/++AM9e/aEt7c3Vq5cCQuL0uvN9PR07N27F1u2bHnk9RQVFeHkyZN45ZVXKnD1REREVBZ7e3tERERwZvgnFRUVhbCwMHTr1g0+Pj6Ii4tDfn4+hg0bBgAYMmQImjdvjpiYGADA6NGjERAQgNmzZyM4OBgJCQk4cuSI1COlUCgQGRmJ6dOnw8PDA25uboiOjoazs7NUzP3xxx944YUX0LJlS8yaNQs3btyQ8nm412vFihXQ6XR4+eWXS+T+6aefonv37mjVqhVycnIwc+ZMXLx4ESNGjJCjqYiIiOqV2lBEVYRZC60BAwbgxo0bmDx5MvR6PTw9PbFz507pNt2lS5dMepv8/f2xZs0afPzxx5g0aRI8PDywefNmdOzYUYoZN24c8vPzER4ejpycHPTo0QM7d+6UJhPdvXs30tLSkJaWVmLQuhBC+t1oNCI+Ph5Dhw6FpaVlidxv3bqFt99+G3q9Hk2aNIG3tzcOHDiA9u3bV2kbERERUe2lEA9WF1StcnNzodFoYDAYOF6LiIiolqjM93e9fuqQiIiISE4stIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYstIiIiIhkwkKLiIiISCYNzJ0AERERUVXJyspCYWFhmduVSiXs7e2rLR8WWkRERFQnZGVlYcGCBY+Mi4iIqLZii7cOiYiIqE4oryfrceKqAgstIiIiIpmw0CIiIqI6yWCwRXq6KwwGW7PlwDFaREREVOccO9YVW7f2gRAWUCiMCAnZBi+vlGrPgz1aREREVKcYDLZSkQUAQlhg69Y+ZunZYqFFREREdUp2tr1UZBUTwgLZ2dpqz4WFFhEREdUpWm0WFAqjyTqFwgitNrvac2GhRURERHWCUqkEAGg0eQgJ2SYVW8VjtDSaPJO46qAQQohqOxuZyM3NhUajgcFggJ2dnbnTISIiqvUenBn+6lULZGQ0gKvrX3B2vl90VcXM8JX5/uZTh0RERFRnPFhE6XSAt7cZkwFvHRIRERHJhoUWERERkUxYaBERERHJxOyF1sKFC+Hq6gq1Wg1fX18cOnSo3PgNGzagbdu2UKvV6NSpE3bs2GGyXQiByZMnQ6fTwdraGoGBgTh//ry0PSMjA8OHD4ebmxusra3h7u6OKVOmmLxgMiMjAwqFosRy8ODBSuVCRERE9ZtZC61169YhKioKU6ZMwbFjx9ClSxcEBQXh+vXrpcYfOHAAgwYNwvDhw5GSkoLQ0FCEhobi1KlTUkxsbCzmzZuHxYsXIzk5GTY2NggKCsLdu3cBAOfOnYPRaMSSJUtw+vRpzJ07F4sXL8akSZNKnG/Pnj24du2atHg/MKKuIrkQERFR/WbW6R18fX3xzDPPYMGCBQAAo9EIFxcXvPfee5gwYUKJ+AEDBiA/Px/btm2T1nXv3h2enp5YvHgxhBBwdnbGmDFjMHbsWACAwWCAo6Mj4uPjMXDgwFLzmDlzJr766iv8/vvvAO73aLm5uSElJQWenp6l7vOoXCqC0zsQERHVPpX5/jZbj1ZhYSGOHj2KwMDAv5OxsEBgYCCSkpJK3ScpKckkHgCCgoKk+PT0dOj1epMYjUYDX1/fMo8J3C/GtNqS0/L37dsXzZo1Q48ePbBly5ZK5VKagoIC5ObmmixERERUd5mt0Lp58yaKiorg6Ohost7R0RF6vb7UffR6fbnxxT8rc8y0tDTMnz8f77zzjrSuUaNGmD17NjZs2IDt27ejR48eCA0NNSm2HpVLaWJiYqDRaKTFxcWlzFgiIiKq/er1hKV//PEHevfujddffx1vv/22tN7BwQFRUVHS52eeeQZXr17FzJkz0bdv38c+38SJE02Om5uby2KLiIioDjNbj5aDgwMsLS2RmZlpsj4zMxNOTk6l7uPk5FRufPHPihzz6tWr6NmzJ/z9/bF06dJH5uvr64u0tLQK51IalUoFOzs7k4WIiIjqLrMVWkqlEt7e3khMTJTWGY1GJCYmws/Pr9R9/Pz8TOIBYPfu3VK8m5sbnJycTGJyc3ORnJxscsw//vgDL7zwAry9vbFy5UpYWDy6GY4fPw6dTlfhXIiIiIjMeuswKioKYWFh6NatG3x8fBAXF4f8/HwMGzYMADBkyBA0b94cMTExAIDRo0cjICAAs2fPRnBwMBISEnDkyBGpR0qhUCAyMhLTp0+Hh4cH3NzcEB0dDWdnZ4SGhgL4u8hq2bIlZs2ahRs3bkj5FPdGrVq1CkqlEl27dgUAbNq0CStWrMDXX38txT4ql4oofuCTg+KJiIhqj+Lv7QpN3CDMbP78+aJFixZCqVQKHx8fcfDgQWlbQECACAsLM4lfv369aN26tVAqlaJDhw5i+/btJtuNRqOIjo4Wjo6OQqVSiV69eonU1FRp+8qVKwWAUpdi8fHxol27dqJhw4bCzs5O+Pj4iA0bNpTI/VG5PMrly5fLzIULFy5cuHDhUrOXy5cvP/K73qzzaNV3RqMRV69eha2tLRQKRakxxQPmL1++XO/HdLEt7mM73Md2+Bvb4j62w31sh7/J1RZCCOTl5cHZ2fmRw4/q9VOH5mZhYYGnnnqqQrEcPP83tsV9bIf72A5/Y1vcx3a4j+3wNznaQqPRVCjO7O86JCIiIqqrWGgRERERyYSFVg2nUqkwZcoUqFQqc6didmyL+9gO97Ed/sa2uI/tcB/b4W81oS04GJ6IiIhIJuzRIiIiIpIJCy0iIiIimbDQIiIiIpIJCy0iIiIimbDQqgEWLlwIV1dXqNVq+Pr64tChQ2XGnj59Gq+++ipcXV2hUCgQFxdXfYlWg8q0xbJly/Dcc8+hSZMmaNKkCQIDA8uNr00q0w6bNm1Ct27d0LhxY9jY2MDT0xPffPNNNWYrn8q0w4MSEhKgUCikd5zWBZVpi/j4eCgUCpNFrVZXY7byqezfRE5ODkaNGgWdTgeVSoXWrVtjx44d1ZStfCrTDi+88EKJvweFQoHg4OBqzFgelf17iIuLQ5s2bWBtbQ0XFxd88MEHuHv3rrxJVurlfFTlEhIShFKpFCtWrBCnT58Wb7/9tmjcuLHIzMwsNf7QoUNi7NixYu3atcLJyUnMnTu3ehOWUWXb4l//+pdYuHChSElJEWfPnhVDhw4VGo1GXLlypZozr1qVbYe9e/eKTZs2iTNnzoi0tDQRFxcnLC0txc6dO6s586pV2XYolp6eLpo3by6ee+450a9fv+pJVmaVbYuVK1cKOzs7ce3aNWnR6/XVnHXVq2w7FBQUiG7duolXXnlF/PLLLyI9PV3s27dPHD9+vJozr1qVbYesrCyTv4VTp04JS0tLsXLlyupNvIpVth1Wr14tVCqVWL16tUhPTxc//vij0Ol04oMPPpA1TxZaZubj4yNGjRolfS4qKhLOzs4iJibmkfu2bNmyThVaT9IWQgjx119/CVtbW7Fq1Sq5UqwWT9oOQgjRtWtX8fHHH8uRXrV5nHb466+/hL+/v/j6669FWFhYnSm0KtsWK1euFBqNppqyqz6VbYevvvpKPP3006KwsLC6UqwWT/rfiLlz5wpbW1tx+/ZtuVKsFpVth1GjRokXX3zRZF1UVJR49tlnZc2Ttw7NqLCwEEePHkVgYKC0zsLCAoGBgUhKSjJjZtWvKtrizp07uHfvHrRarVxpyu5J20EIgcTERKSmpuL555+XM1VZPW47fPrpp2jWrBmGDx9eHWlWi8dti9u3b6Nly5ZwcXFBv379cPr06epIVzaP0w5btmyBn58fRo0aBUdHR3Ts2BGff/45ioqKqivtKlcV/61cvnw5Bg4cCBsbG7nSlN3jtIO/vz+OHj0q3V78/fffsWPHDrzyyiuy5sqXSpvRzZs3UVRUBEdHR5P1jo6OOHfunJmyMo+qaIvx48fD2dnZ5F+82uZx28FgMKB58+YoKCiApaUlFi1ahJdeeknudGXzOO3wyy+/YPny5Th+/Hg1ZFh9Hqct2rRpgxUrVqBz584wGAyYNWsW/P39cfr06Qq/yL6meZx2+P333/HTTz/hjTfewI4dO5CWloZ///vfuHfvHqZMmVIdaVe5J/1v5aFDh3Dq1CksX75crhSrxeO0w7/+9S/cvHkTPXr0gBACf/31F0aOHIlJkybJmisLLaoTZsyYgYSEBOzbt6/ODPqtDFtbWxw/fhy3b99GYmIioqKi8PTTT+OFF14wd2rVIi8vD4MHD8ayZcvg4OBg7nTMzs/PD35+ftJnf39/tGvXDkuWLMG0adPMmFn1MhqNaNasGZYuXQpLS0t4e3vjjz/+wMyZM2ttofWkli9fjk6dOsHHx8fcqVS7ffv24fPPP8eiRYvg6+uLtLQ0jB49GtOmTUN0dLRs52WhZUYODg6wtLREZmamyfrMzEw4OTmZKSvzeJK2mDVrFmbMmIE9e/agc+fOcqYpu8dtBwsLC7Rq1QoA4OnpibNnzyImJqbWFlqVbYcLFy4gIyMDISEh0jqj0QgAaNCgAVJTU+Hu7i5v0jKpiv9OWFlZoWvXrkhLS5MjxWrxOO2g0+lgZWUFS0tLaV27du2g1+tRWFgIpVIpa85yeJK/h/z8fCQkJODTTz+VM8Vq8TjtEB0djcGDB2PEiBEAgE6dOiE/Px/h4eH46KOPYGEhz2gqjtEyI6VSCW9vbyQmJkrrjEYjEhMTTf5vtD543LaIjY3FtGnTsHPnTnTr1q06UpVVVf1NGI1GFBQUyJFitahsO7Rt2xYnT57E8ePHpaVv377o2bMnjh8/DhcXl+pMv0pVxd9EUVERTp48CZ1OJ1easnucdnj22WeRlpYmFd0A8Ntvv0Gn09XKIgt4sr+HDRs2oKCgAG+++abcacrucdrhzp07JYqp4iJcyPnaZ1mH2tMjJSQkCJVKJeLj48WZM2dEeHi4aNy4sfQo9uDBg8WECROk+IKCApGSkiJSUlKETqcTY8eOFSkpKeL8+fPmuoQqU9m2mDFjhlAqleK7774zeXQ5Ly/PXJdQJSrbDp9//rnYtWuXuHDhgjhz5oyYNWuWaNCggVi2bJm5LqFKVLYdHlaXnjqsbFt88skn4scffxQXLlwQR48eFQMHDhRqtVqcPn3aXJdQJSrbDpcuXRK2trYiIiJCpKamim3btolmzZqJ6dOnm+sSqsTj/rvRo0cPMWDAgOpOVzaVbYcpU6YIW1tbsXbtWvH777+LXbt2CXd3d9G/f39Z82ShVQPMnz9ftGjRQiiVSuHj4yMOHjwobQsICBBhYWHS5/T0dAGgxBIQEFD9icugMm3RsmXLUttiypQp1Z94FatMO3z00UeiVatWQq1WiyZNmgg/Pz+RkJBghqyrXmXa4WF1qdASonJtERkZKcU6OjqKV155RRw7dswMWVe9yv5NHDhwQPj6+gqVSiWefvpp8dlnn4m//vqrmrOuepVth3PnzgkAYteuXdWcqbwq0w737t0TU6dOFe7u7kKtVgsXFxfx73//W9y6dUvWHBVCyNlfRkRERFR/cYwWERERkUxYaBERERHJhIUWERERkUxYaBERERHJhIUWERERkUxYaBERERHJhIUWERERkUxYaBER1QNDhw5FaGioudMgqndYaBGRWQ0dOhQKhUJa7O3t0bt3b5w4ccLcqVWJB6+teOnRo4ds58vIyIBCocDx48dN1n/55ZeIj4+X7bxEVDoWWkRkdr1798a1a9dw7do1JCYmokGDBujTp4+506oyK1eulK7v2rVr2LJlS6lx9+7dky0HjUaDxo0by3Z8IiodCy0iMjuVSgUnJyc4OTnB09MTEyZMwOXLl3Hjxg28+OKLiIiIMIm/ceMGlEolEhMTAQCurq6YNm0aBg0aBBsbGzRv3hwLFy402WfOnDno1KkTbGxs4OLign//+9+4ffu2tP3ixYsICQlBkyZNYGNjgw4dOmDHjh0AgFu3buGNN95A06ZNYW1tDQ8PD6xcubLC19e4cWPp+pycnKDVaqWep3Xr1iEgIABqtRqrV69GVlYWBg0ahObNm6Nhw4bo1KkT1q5da3I8o9GI2NhYtGrVCiqVCi1atMBnn30GAHBzcwMAdO3aFQqFAi+88AKAkrcOCwoK8P7776NZs2ZQq9Xo0aMHDh8+LG3ft28fFAoFEhMT0a1bNzRs2BD+/v5ITU2t8HUTEQstIqphbt++jW+//RatWrWCvb09RowYgTVr1qCgoECK+fbbb9G8eXO8+OKL0rqZM2eiS5cuSElJwYQJEzB69Gjs3r1b2m5hYYF58+bh9OnTWLVqFX766SeMGzdO2j5q1CgUFBTg559/xsmTJ/HFF1+gUaNGAIDo6GicOXMG//nPf3D27Fl89dVXcHBwqJLrLc717NmzCAoKwt27d+Ht7Y3t27fj1KlTCA8Px+DBg3Ho0CFpn4kTJ2LGjBlSXmvWrIGjoyMASHF79uzBtWvXsGnTplLPO27cOGzcuBGrVq3CsWPH0KpVKwQFBSE7O9sk7qOPPsLs2bNx5MgRNGjQAG+99VaVXDdRvSHrK6uJiB4hLCxMWFpaChsbG2FjYyMACJ1OJ44ePSqEEOLPP/8UTZo0EevWrZP26dy5s5g6dar0uWXLlqJ3794mxx0wYIB4+eWXyzzvhg0bhL29vfS5U6dOJsd8UEhIiBg2bNhjXR8AoVarpeuzsbER33//vUhPTxcARFxc3COPERwcLMaMGSOEECI3N1eoVCqxbNmyUmOLj5uSkmKyPiwsTPTr108IIcTt27eFlZWVWL16tbS9sLBQODs7i9jYWCGEEHv37hUAxJ49e6SY7du3CwDizz//rEwTENVr7NEiIrPr2bMnjh8/juPHj+PQoUMICgrCyy+/jIsXL0KtVmPw4MFYsWIFAODYsWM4deoUhg4danIMPz+/Ep/Pnj0rfd6zZw969eqF5s2bw9bWFoMHD0ZWVhbu3LkDAHj//fcxffp0PPvss5gyZYrJYPx3330XCQkJ8PT0xLhx43DgwIFKXd/cuXOl6zt+/DheeuklaVu3bt1MYouKijBt2jR06tQJWq0WjRo1wo8//ohLly4BAM6ePYuCggL06tWrUjk86MKFC7h37x6effZZaZ2VlRV8fHxM2gwAOnfuLP2u0+kAANevX3/scxPVNyy0iMjsbGxs0KpVK7Rq1QrPPPMMvv76a+Tn52PZsmUAgBEjRmD37t24cuUKVq5ciRdffBEtW7as8PEzMjLQp08fdO7cGRs3bsTRo0elMVyFhYXSOX7//XcMHjwYJ0+eRLdu3TB//nwAkIq+Dz74AFevXkWvXr0wduzYCp/fyclJur5WrVrBxsbG5NofNHPmTHz55ZcYP3489u7di+PHjyMoKEjK09rausLnrQpWVlbS7wqFAsD9MWJEVDEstIioxlEoFLCwsMCff/4JAOjUqRO6deuGZcuWYc2aNaWOEzp48GCJz+3atQMAHD16FEajEbNnz0b37t3RunVrXL16tcQxXFxcMHLkSGzatAljxoyRCj0AaNq0KcLCwvDtt98iLi4OS5curcpLluzfvx/9+vXDm2++iS5duuDpp5/Gb7/9Jm338PCAtbW19CDAw5RKJYD7PWNlcXd3h1KpxP79+6V19+7dw+HDh9G+ffsquhIiAoAG5k6AiKigoAB6vR7A/Sf8FixYgNu3byMkJESKGTFiBCIiImBjY4P/7//7/0ocY//+/YiNjUVoaCh2796NDRs2YPv27QCAVq1a4d69e5g/fz5CQkKwf/9+LF682GT/yMhIvPzyy2jdujVu3bqFvXv3SoXa5MmT4e3tjQ4dOqCgoADbtm2TtlU1Dw8PfPfddzhw4ACaNGmCOXPmIDMzUyqA1Go1xo8fj3HjxkGpVOLZZ5/FjRs3cPr0aQwfPhzNmjWDtbU1du7ciaeeegpqtRoajcbkHDY2Nnj33Xfx4YcfQqvVokWLFoiNjcWdO3cwfPhwWa6LqL5ijxYRmd3OnTuh0+mg0+ng6+uLw4cPY8OGDdLUBAAwaNAgNGjQAIMGDYJarS5xjDFjxuDIkSPo2rUrpk+fjjlz5iAoKAgA0KVLF8yZMwdffPEFOnbsiNWrVyMmJsZk/6KiIowaNQrt2rVD79690bp1ayxatAjA/V6iiRMnonPnznj++edhaWmJhIQEWdri448/hpeXF4KCgvDCCy/AycmpxIzu0dHRGDNmDCZPnox27dphwIAB0ripBg0aYN68eViyZAmcnZ3Rr1+/Us8zY8YMvPrqqxg8eDC8vLyQlpaGH3/8EU2aNJHluojqK4UQQpg7CSKiR8nIyIC7uzsOHz4MLy8vk22urq6IjIxEZGSkeZIjIioDbx0SUY127949ZGVl4eOPP0b37t1LFFlERDUZbx0SUY22f/9+6HQ6HD58uMS4KnP7/PPP0ahRo1KXl19+2dzpEVENwFuHRESPKTs7u8RM6sWsra3RvHnzas6IiGoaFlpEREREMuGtQyIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIikgkLLSIiIiKZsNAiIiIiksn/D64BTqP1qV0+AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHHCAYAAACbXt0gAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXP5JREFUeJzt3XtcVHX+P/DXgMwMII4OKAyEQoiXvCGQCKmk0aKLKJt9UytFM8lWShbv5q20UPJCXop0Vcwk1HRNzVAjbbdEVC6paaSGaauDCjkgJhDz+f3hj7OOXASHYbi8no/HPHDOeZ9zPuezrrz6nM98RiaEECAiIiKiR2Jh7gYQERERNWYMU0RERERGYJgiIiIiMgLDFBEREZERGKaIiIiIjMAwRURERGQEhikiIiIiIzBMERERERmBYYqIiIjICAxTRERNXEJCAmQyGS5dumTuphA1SQxTRGS0EydOIDIyEt26dYOtrS3at2+PF154AT///HOF2qeffhoymQwymQwWFhZo1aoVOnfujDFjxuDQoUO1uu7evXsRGBiIdu3awcbGBo8//jheeOEFJCcn19WtVfDee+9h9+7dFbYfPXoUCxcuxK1bt0x27QctXLhQ6kuZTAYbGxs88cQTmDt3LgoKCurkGomJiYiLi6uTcxE1VQxTRGS0pUuXYufOnXjmmWfwwQcfICIiAv/+97/h7e2NM2fOVKh/7LHHsGXLFnzyySd4//33MWzYMBw9ehR/+ctfMHLkSJSWlj70msuWLcOwYcMgk8kwe/ZsrFy5EiNGjMD58+eRlJRkitsEUH2Yevvtt+s1TJX76KOPsGXLFqxYsQJdunTBu+++i8GDB6MuvnqVYYro4VqYuwFE1PhFR0cjMTERcrlc2jZy5Ej06NEDS5YswaeffmpQr1Kp8PLLLxtsW7JkCd588018+OGHcHNzw9KlS6u83p9//olFixbh2WefxcGDByvsv379upF31HDcuXMHNjY21dY8//zzcHBwAABMmjQJI0aMwK5du3Ds2DH4+/vXRzOJmjWOTBGR0QICAgyCFAB4enqiW7duOHfuXI3OYWlpiVWrVuGJJ57AmjVroNPpqqy9efMmCgoK8NRTT1W6v127dgbv7969i4ULF6JTp05QKpXQaDR47rnncPHiRalm2bJlCAgIgL29PaytreHj44PPP//c4DwymQxFRUXYvHmz9Ght3LhxWLhwIaZPnw4AcHd3l/bdP0fp008/hY+PD6ytraFWqzFq1ChcuXLF4PxPP/00unfvjvT0dAwYMAA2NjaYM2dOjfrvfoMGDQIA5OTkVFv34Ycfolu3blAoFHB2dsbkyZMNRtaefvppfPnll/j111+le3Jzc6t1e4iaOo5MEZFJCCGQm5uLbt261fgYS0tLjB49GvPmzcN3332HkJCQSuvatWsHa2tr7N27F2+88QbUanWV5ywrK8PQoUORkpKCUaNGYcqUKSgsLMShQ4dw5swZeHh4AAA++OADDBs2DC+99BJKSkqQlJSE//u//8O+ffukdmzZsgWvvvoq+vTpg4iICACAh4cHbG1t8fPPP+Ozzz7DypUrpVGitm3bAgDeffddzJs3Dy+88AJeffVV3LhxA6tXr8aAAQOQmZmJ1q1bS+3Ny8vDkCFDMGrUKLz88stwdHSscf+VKw+J9vb2VdYsXLgQb7/9NoKCgvD6668jOzsbH330EU6cOIHvv/8eVlZWeOutt6DT6fDbb79h5cqVAICWLVvWuj1ETZ4gIjKBLVu2CABiw4YNBtsDAwNFt27dqjzuX//6lwAgPvjgg2rPP3/+fAFA2NraiiFDhoh3331XpKenV6jbuHGjACBWrFhRYZ9er5f+fOfOHYN9JSUlonv37mLQoEEG221tbUV4eHiFc73//vsCgMjJyTHYfunSJWFpaSneffddg+2nT58WLVq0MNgeGBgoAIj4+Pgq7/t+CxYsEABEdna2uHHjhsjJyREff/yxUCgUwtHRURQVFQkhhNi0aZNB265fvy7kcrn4y1/+IsrKyqTzrVmzRgAQGzdulLaFhISIDh061Kg9RM0VH/MRUZ376aefMHnyZPj7+yM8PLxWx5aPfBQWFlZb9/bbbyMxMRG9e/fGgQMH8NZbb8HHxwfe3t4GjxZ37twJBwcHvPHGGxXOIZPJpD9bW1tLf/7999+h0+nQv39/ZGRk1Kr9D9q1axf0ej1eeOEF3Lx5U3o5OTnB09MThw8fNqhXKBQYP358ra7RuXNntG3bFu7u7njttdfQsWNHfPnll1XOtfr6669RUlKCqKgoWFj879fAxIkT0apVK3z55Ze1v1GiZoyP+YioTmm1WoSEhEClUuHzzz+HpaVlrY6/ffs2AMDOzu6htaNHj8bo0aNRUFCAtLQ0JCQkIDExEaGhoThz5gyUSiUuXryIzp07o0WL6v+527dvHxYvXoysrCwUFxdL2+8PXI/i/PnzEELA09Oz0v1WVlYG711cXCrMP3uYnTt3olWrVrCyssJjjz0mPbqsyq+//grgXgi7n1wux+OPPy7tJ6KaYZgiojqj0+kwZMgQ3Lp1C//5z3/g7Oxc63OUL6XQsWPHGh/TqlUrPPvss3j22WdhZWWFzZs3Iy0tDYGBgTU6/j//+Q+GDRuGAQMG4MMPP4RGo4GVlRU2bdqExMTEWt/D/fR6PWQyGb766qtKg+WDc5DuHyGrqQEDBkjztIio/jFMEVGduHv3LkJDQ/Hzzz/j66+/xhNPPFHrc5SVlSExMRE2Njbo16/fI7XD19cXmzdvxrVr1wDcmyCelpaG0tLSCqNA5Xbu3AmlUokDBw5AoVBI2zdt2lShtqqRqqq2e3h4QAgBd3d3dOrUqba3YxIdOnQAAGRnZ+Pxxx+XtpeUlCAnJwdBQUHSNmNH5oiaA86ZIiKjlZWVYeTIkUhNTcWOHTseaW2jsrIyvPnmmzh37hzefPNNtGrVqsraO3fuIDU1tdJ9X331FYD/PcIaMWIEbt68iTVr1lSoFf9/UUtLS0vIZDKUlZVJ+y5dulTp4py2traVLsxpa2sLABX2Pffcc7C0tMTbb79dYRFNIQTy8vIqv0kTCgoKglwux6pVqwzatGHDBuh0OoNPUdra2la7TAURcWSKiOrA1KlTsWfPHoSGhiI/P7/CIp0PLtCp0+mkmjt37uDChQvYtWsXLl68iFGjRmHRokXVXu/OnTsICAhA3759MXjwYLi6uuLWrVvYvXs3/vOf/yAsLAy9e/cGAIwdOxaffPIJoqOjcfz4cfTv3x9FRUX4+uuv8fe//x3Dhw9HSEgIVqxYgcGDB+PFF1/E9evXsXbtWnTs2BGnTp0yuLaPjw++/vprrFixAs7OznB3d4efnx98fHwAAG+99RZGjRoFKysrhIaGwsPDA4sXL8bs2bNx6dIlhIWFwc7ODjk5OfjXv/6FiIgITJs2zaj+r622bdti9uzZePvttzF48GAMGzYM2dnZ+PDDD/Hkk08a/O/l4+ODbdu2ITo6Gk8++SRatmyJ0NDQem0vUYNnzo8SElHTUP6R/qpe1dW2bNlSeHp6ipdfflkcPHiwRtcrLS0V69evF2FhYaJDhw5CoVAIGxsb0bt3b/H++++L4uJig/o7d+6It956S7i7uwsrKyvh5OQknn/+eXHx4kWpZsOGDcLT01MoFArRpUsXsWnTJmnpgfv99NNPYsCAAcLa2loAMFgmYdGiRcLFxUVYWFhUWCZh586dol+/fsLW1lbY2tqKLl26iMmTJ4vs7GyDvqlu2YgHlbfvxo0b1dY9uDRCuTVr1oguXboIKysr4ejoKF5//XXx+++/G9Tcvn1bvPjii6J169YCAJdJIKqETIg6+PImIiIiomaKc6aIiIiIjMAwRURERGQEhikiIiIiIzBMERERERmBYYqIiIjICAxTREREREbgop0mpNfrcfXqVdjZ2fErGYiIiBoJIQQKCwvh7OwMC4uHjzsxTJnQ1atX4erqau5mEBER0SO4cuUKHnvssYfWMUyZkJ2dHYB7/2NU9z1jRERE1HAUFBTA1dVV+j3+MAxTJlT+aK9Vq1YMU0RERI1MTafocAI6ERERkREYpoiIiIiMwDBFREREZATOmSIiImpgysrKUFpaau5mNFlWVlawtLSss/MxTBERETUQQghotVrcunXL3E1p8lq3bg0nJ6c6WQeSYYqIiKiBKA9S7dq1g42NDRd8NgEhBO7cuYPr168DADQajdHnZJgiIiJqAMrKyqQgZW9vb+7mNGnW1tYAgOvXr6Ndu3ZGP/LjBHQiIqIGoHyOlI2NjZlb0jyU93NdzE1jmCIiImpA+GivftRlPzNMERERERmBc6Yaiby8PJSUlFS5Xy6X8xk7ERGRGTBMNQJ5eXlYs2aN9F6ns0N+vj3U6jyoVIXS9sjISAYqIiKqd+PGjcPmzZsBAC1atIBarUbPnj0xevRojBs3DhYWNXsQlpCQgKioqEa3NATDVCNw/4hURkZv7N07FEJYQCbTIzR0H7y9MyvUERFR82LuJxiDBw/Gpk2bUFZWhtzcXCQnJ2PKlCn4/PPPsWfPHrRo0XQjR9O9syZIp7OTghQACGGBvXuHwsPjgsEIFRERNS8PPsGoiimfYCgUCjg5OQEAXFxc4O3tjb59++KZZ55BQkICXn31VaxYsQKbNm3CL7/8ArVajdDQUMTGxqJly5Y4cuQIxo8fD+B/k8MXLFiAhQsXYsuWLfjggw+QnZ0NW1tbDBo0CHFxcWjXrp1J7qW2OAG9EcnPt5eCVDkhLJCfrzZTi4iIqCGo6ZOJ+n6CMWjQIPTq1Qu7du0CAFhYWGDVqlX48ccfsXnzZnzzzTeYMWMGACAgIABxcXFo1aoVrl27hmvXrmHatGkA7i1fsGjRIvzwww/YvXs3Ll26hHHjxtXrvVSHI1ONiFqdB5lMbxCoZDI91Op8M7aKiIioal26dMGpU6cAAFFRUdJ2Nzc3LF68GJMmTcKHH34IuVwOlUoFmUwmjXCVe+WVV6Q/P/7441i1ahWefPJJ3L59Gy1btqyX+6gOR6YaEZWqEKGh+yCT6QFAmjPFR3xERNRQCSGkx3Zff/01nnnmGbi4uMDOzg5jxoxBXl4e7ty5U+050tPTERoaivbt28POzg6BgYEAgMuXL5u8/TXBkalGxts7Ex4eF5Cfr4Zanc8gRUREDdq5c+fg7u6OS5cuYejQoXj99dfx7rvvQq1W47vvvsOECRNQUlJS5crvRUVFCA4ORnBwMLZu3Yq2bdvi8uXLCA4ObjAfvGKYaoRUqkKGKCIiavC++eYbnD59Gv/4xz+Qnp4OvV6P5cuXS0slbN++3aBeLpejrKzMYNtPP/2EvLw8LFmyBK6urgCAkydP1s8N1BAf8zUCcrm8TuuIiIjqWnFxMbRaLf773/8iIyMD7733HoYPH46hQ4di7Nix6NixI0pLS7F69Wr88ssv2LJlC+Lj4w3O4ebmhtu3byMlJQU3b97EnTt30L59e8jlcum4PXv2YNGiRWa6y8o1iDC1du1auLm5QalUws/PD8ePH6+2fseOHejSpQuUSiV69OiB/fv3G+wXQmD+/PnQaDSwtrZGUFAQzp8/X+m5iouL4eXlBZlMhqysLGn7kSNHMHz4cGg0Gtja2sLLywtbt241+l4fhb29PSIjIxEREVHliwt2EhGROSUnJ0Oj0cDNzQ2DBw/G4cOHsWrVKnzxxRewtLREr169sGLFCixduhTdu3fH1q1bERMTY3COgIAATJo0CSNHjkTbtm0RGxuLtm3bIiEhATt27MATTzyBJUuWYNmyZWa6y8rJhBDCnA3Ytm0bxo4di/j4ePj5+SEuLg47duxAdnZ2petHHD16FAMGDEBMTAyGDh2KxMRELF26FBkZGejevTsAYOnSpYiJicHmzZvh7u6OefPm4fTp0zh79iyUSqXB+aZMmYLz58/jq6++QmZmJry8vAAA7733Hv744w8MGTIEjo6O2LdvH6Kjo/HFF19g6NChNbq3goICqFQq6HQ6tGrVyriOIiKiJu3u3bvIycmBu7t7hd9VD9MQ1plqbKrr79r+/jZ7mPLz88OTTz4p/SXQ6/VwdXXFG2+8gVmzZlWoHzlyJIqKirBv3z5pW9++feHl5YX4+HgIIeDs7IypU6dK61PodDo4OjoiISEBo0aNko776quvEB0djZ07d6Jbt24GYaoyISEhcHR0xMaNG2t0bwxTRERUU8aEKcD8K6A3NnUZpsw6Ab2kpATp6emYPXu2tM3CwgJBQUFITU2t9JjU1FRER0cbbAsODsbu3bsBADk5OdBqtQgKCpL2q1Qq+Pn5ITU1VQpTubm5mDhxInbv3l3lJwgepNPp0LVr1yr3FxcXo7i4WHpfUFBQo/MSEREZi0HJfMw6Z+rmzZsoKyuDo6OjwXZHR0dotdpKj9FqtdXWl/+srkYIgXHjxmHSpEnw9fWtUVu3b9+OEydOSEvdVyYmJgYqlUp6lX/qgIiIiJquBjEBvb6tXr0ahYWFBiNi1Tl8+DDGjx+P9evXo1u3blXWzZ49GzqdTnpduXKlrppMREREDZRZw5SDgwMsLS2Rm5trsD03N7fCUvLlnJycqq0v/1ldzTfffIPU1FQoFAq0aNECHTt2BAD4+voiPDzc4Lhvv/0WoaGhWLlyJcaOHVvt/SgUCrRq1crgRURERE2bWcOUXC6Hj48PUlJSpG16vR4pKSnw9/ev9Bh/f3+DegA4dOiQVO/u7g4nJyeDmoKCAqSlpUk1q1atwg8//ICsrCxkZWVJSyts27YN7777rnTckSNHEBISgqVLlyIiIqJubpqIiIiaFLOvgB4dHY3w8HD4+vqiT58+iIuLQ1FRkTQ3aezYsXBxcZHWopgyZQoCAwOxfPlyhISEICkpCSdPnsS6desAADKZDFFRUVi8eDE8PT2lpRGcnZ0RFhYGAGjfvr1BG8q/JNHDwwOPPfYYgHuP9oYOHYopU6ZgxIgR0nwruVwOtVpt8n4hIiKixsHsYWrkyJG4ceMG5s+fD61WCy8vLyQnJ0sTyC9fviwtOw/cW9ArMTERc+fOxZw5c+Dp6Yndu3dLa0wBwIwZM1BUVISIiAjcunUL/fr1Q3Jycq0+arp582bcuXMHMTExBouKBQYG4siRI8bfOBERETUJZl9nqinjOlNERFRTxq4zRbVTl+tMNctP8xEREVHjceTIEchkMty6davGx7i5uSEuLs5kbbofwxQREREZZdy4cZDJZJg0aVKFfZMnT4ZMJsO4cePqv2H1hGGKiIiIjObq6oqkpCT88ccf0ra7d+8iMTGxwge/mhqGKSIiIjKat7c3XF1dsWvXLmnbrl270L59e/Tu3VvaVlxcjDfffBPt2rWDUqlEv379cOLECYNz7d+/H506dYK1tTUGDhyIS5cuVbjed999h/79+8Pa2hqurq548803UVRUZLL7qw7DFNVaXl4erl27VuUrLy/P3E0kImrWfvsNOHz43s/69Morr2DTpk3S+40bN1b4GrYZM2Zg586d2Lx5MzIyMtCxY0cEBwcjPz8fAHDlyhU899xzCA0NRVZWFl599VXMmjXL4BwXL17E4MGDMWLECJw6dQrbtm3Dd999h8jISNPfZCXMvjQCNS55eXlYs2aN9F6ns0N+vj3U6jyoVIXS9sjISH7pJhGRGWzYAEREAHo9YGEBrFsHTJhQP9d++eWXMXv2bPz6668AgO+//x5JSUnSkkJFRUX46KOPkJCQgCFDhgAA1q9fj0OHDmHDhg2YPn06PvroI3h4eGD58uUAgM6dO+P06dNYunSpdJ2YmBi89NJLiIqKAgB4enpi1apVCAwMxEcffVTvn4ZkmKJaKSkpkf6ckdEbe/cOhRAWkMn0CA3dB2/vzAp1RERUP3777X9BCrj387XXgOBg4P+vSW1Sbdu2RUhICBISEiCEQEhICBwcHKT9Fy9eRGlpKZ566ilpm5WVFfr06YNz584BAM6dOwc/Pz+D8z74rSg//PADTp06ha1bt0rbhBDQ6/XIyclB165dTXF7VWKYokei09lJQQoAhLDA3r1D4eFxwWCEioiI6s/58/8LUuXKyoALF+onTAH3HvWVP25bu3atSa5x+/ZtvPbaa3jzzTcr7DPHZHeGKXok+fn2UpAqJ4QF8vPVDFNERGbi6Xnv0d79gcrSEujYsf7aMHjwYJSUlEAmkyE4ONhgn4eHB+RyOb7//nt06NABAFBaWooTJ05Ij+y6du2KPXv2GBx37Ngxg/fe3t44e/YsOtbnjVWDE9DpkajVeZDJDP/zRybTQ63ON1OLiIjoscfuzZGytLz33tIS+Pjj+huVundNS5w7dw5nz56FZXlD/j9bW1u8/vrrmD59OpKTk3H27FlMnDgRd+7cwYT/P7Fr0qRJOH/+PKZPn47s7GwkJiYiISHB4DwzZ87E0aNHERkZiaysLJw/fx5ffPGF2SagM0zRI1GpChEauk8KVOVzpjgqRURkXhMmAJcu3fs036VL9Tf5/H6tWrWq8mtYlixZghEjRmDMmDHw9vbGhQsXcODAAbRp0wbAvcd0O3fuxO7du9GrVy/Ex8fjvffeMzhHz5498e233+Lnn39G//790bt3b8yfPx/Ozs4mv7fK8Lv5TKgpfjfftWvXsG7dOun9vU/zqaFW5xsEqYiICGg0GnM0kYioUeJ389WvuvxuPs6ZIqOoVIUcjSIiomaNj/moVuRyeZ3WERERNXYcmaJasbe3R2RkZLXrSMnlci7YSUREzQbDFNUagxIREdH/8DEfERFRA8LPhdWPuuxnhikiIqIGwMrKCgBw584dM7ekeSjv5/J+NwYf81GDkJeXx3lYRNSsWVpaonXr1rh+/ToAwMbGBjKZzMytanqEELhz5w6uX7+O1q1bV1hY9FEwTJHZ5eXlYc2aNQ+ti4yMZKAioibNyckJAKRARabTunVrqb+NxTBFZvfgiNS9hUDtoVbnGaxhVd3IFRFRUyCTyaDRaNCuXTuUlpaauzlNlpWVVZ2MSJVjmKIGJSOjN/buHQohLKSvqPH2zjR3s4iI6pWlpWWd/rIn0+IEdGowdDo7KUgBgBAW2Lt3KHQ6OzO3jIiIqGoMU9Rg5OfbS0GqnBAWyM9Xm6lFRERED8cwRQ2GWp0HmUxvsE0m00OtzjdTi4iIiB6OYYoaDJWqEKGh+6RAVT5nil+kTEREDRknoFOD4u2dCQ+PC8jPV0OtzmeQIiKiBo9himqtrhfYlMvlBu9VqsJKQ9SDdURERA0BwxTViikW2LS3t0dkZCRXQCciokaJYYpqpaYLZ9Z2gU0GJSIiaqw4AZ2MotPZISfHjWtBERFRs8WRKXpkXK2ciIiIYYoeUVWrlXt4XOAn8Mysrj8gQERE1WOYokdS3WrlDFPmY4oPCBARUfU4Z4oeCVcrb5hM9QEBIiKqWoMIU2vXroWbmxuUSiX8/Pxw/Pjxaut37NiBLl26QKlUokePHti/f7/BfiEE5s+fD41GA2trawQFBeH8+fOVnqu4uBheXl6QyWTIysoy2Hfq1Cn0798fSqUSrq6uiI2NNeo+mxKuVt441McHBPLy8nDt2rUqX3l5eSa7NhFRQ2D2x3zbtm1DdHQ04uPj4efnh7i4OAQHByM7Oxvt2rWrUH/06FGMHj0aMTExGDp0KBITExEWFoaMjAx0794dABAbG4tVq1Zh8+bNcHd3x7x58xAcHIyzZ89CqVQanG/GjBlwdnbGDz/8YLC9oKAAf/nLXxAUFIT4+HicPn0ar7zyClq3bo2IiAjTdUgDd//CmdWtVs4FNs2vPj4gwMeKRESATAghzNkAPz8/PPnkk9I/yHq9Hq6urnjjjTcwa9asCvUjR45EUVER9u3bJ23r27cvvLy8EB8fDyEEnJ2dMXXqVEybNg0AoNPp4OjoiISEBIwaNUo67quvvkJ0dDR27tyJbt26ITMzE15eXgCAjz76CG+99Ra0Wq0UDGbNmoXdu3fjp59+qtG9FRQUQKVSQafToVWrVo/UPw0RJzg3XNeuXcO6deug09khLi7KYF6bTKZHVFQcVKpCREREQKPR1Nn1HqaurkdEVB9q+/vbrI/5SkpKkJ6ejqCgIGmbhYUFgoKCkJqaWukxqampBvUAEBwcLNXn5ORAq9Ua1KhUKvj5+RmcMzc3FxMnTsSWLVtgY2NT6XUGDBhgMMJSPmL2+++/V9q24uJiFBQUGLyaInt7e2g0mipfDFLmV90HBEyJ644RUXNk1sd8N2/eRFlZGRwdHQ22Ozo6Vjn6o9VqK63XarXS/vJtVdUIITBu3DhMmjQJvr6+uHTpUqXXcXd3r3CO8n1t2rSpcExMTAzefvvtqm6XqN6Uf0DgwZEpU35AgOuOEVFz1SAmoNe31atXo7CwELNnz67T886ePRs6nU56XblypU7PT1RT9f0BgarWHeMIFRE1B2YdmXJwcIClpSVyc3MNtufm5sLJyanSY5ycnKqtL/+Zm5trMEcjNzdXmg/1zTffIDU1FQqFwuA8vr6+eOmll7B58+Yqr3P/NR6kUCgqnJNMh3O3KjLXBwS47hgRNWdmDVNyuRw+Pj5ISUlBWFgYgHsT0FNSUhAZGVnpMf7+/khJSUFUVJS07dChQ/D39wcAuLu7w8nJCSkpKVJ4KigoQFpaGl5//XUAwKpVq7B48WLp+KtXryI4OBjbtm2Dn5+fdJ233noLpaWlsLKykq7TuXPnSh/xUf3ip8gqZ29vj8jIyHoPmeZ4rEhE1FCYfWmE6OhohIeHw9fXF3369EFcXByKioowfvx4AMDYsWPh4uKCmJgYAMCUKVMQGBiI5cuXIyQkBElJSTh58qT0iSKZTIaoqCgsXrwYnp6e0tIIzs7OUmBr3769QRtatmwJAPDw8MBjjz0GAHjxxRfx9ttvY8KECZg5cybOnDmDDz74ACtXrqyPbqGHeDAs6HR2yM+3h1qdZzAS0hwXpzRHeCx/rPjgnCmOShFRc2D2MDVy5EjcuHED8+fPh1arhZeXF5KTk6XJ3pcvX4aFxf/+azcgIACJiYmYO3cu5syZA09PT+zevVtaYwq4t3ZUUVERIiIicOvWLfTr1w/JyckV1piqjkqlwsGDBzF58mT4+PjAwcEB8+fPb9ZrTDVUnPhsPlx3jIioAawz1ZQ11XWmGoL6Xk+Jqsa5a0TU1NT297fZR6aIjMGJz+bHoEREzV2zXBqBmg5+4TIREZkbwxQ1avzCZSIiMjc+5qNGr7qJz0RERKbGMEWN0oOfDlOpCisNUfwUGRERmRrDFDVK5lqckoiI6EEMU9RoMSgREVFDwAnoREREREZgmCIiIiIyAsMUERERkREYpoiIiIiMwDBFREREZASGKSIiIiIjMEwRERERGYFhioiIiMgIDFNERERERmCYIiIiIjICwxQRERGRERimiIiIiIzAMEVERERkBIYpIiIiIiMwTBEREREZgWGKiIiIyAgMU0RERERGYJgiIiIiMgLDFBEREZERGKaIiIiIjNDC3A0gIqoLeXl5KCkpqXK/XC6Hvb19PbaIiJoLhikiavTy8vKwZs2ah9ZFRkYyUBFRneNjPiJq9B4ckdLp7JCT4wadzq7aOiKiusCRKSKqd4/6SK6q427evCn9OSOjN/buHQohLCCT6REaug/e3pl103AiokowTBFRvXrwkZxOZ4f8fHuo1XlQqQql7Q8+kqvJozydzk4KUgAghAX27h0KD48LBucmIqpLDFNEVK/uH1mqbhTpwRGoyh7lPRjC8vPtpSBVTggL5OerG0yY4kR5oqaHYYqIzMKYUaSqQphanQeZTG8QqGQyPdTqfJPeS01xojxR02T2Cehr166Fm5sblEol/Pz8cPz48Wrrd+zYgS5dukCpVKJHjx7Yv3+/wX4hBObPnw+NRgNra2sEBQXh/PnzBjXDhg1D+/btoVQqodFoMGbMGFy9etWg5sCBA+jbty/s7OzQtm1bjBgxApcuXaqTeyai6keRqlNVCNPp7KBSFSI0dB9kMj0ASEGroYxK1XQCPCfKEzUuZg1T27ZtQ3R0NBYsWICMjAz06tULwcHBuH79eqX1R48exejRozFhwgRkZmYiLCwMYWFhOHPmjFQTGxuLVatWIT4+HmlpabC1tUVwcDDu3r0r1QwcOBDbt29HdnY2du7ciYsXL+L555+X9ufk5GD48OEYNGgQsrKycODAAdy8eRPPPfec6TqDqJkpH0W6X01GkR4Wwry9MxEVFYfw8ARERcU16MnnVX3qkIgaF7OGqRUrVmDixIkYP348nnjiCcTHx8PGxgYbN26stP6DDz7A4MGDMX36dHTt2hWLFi2Ct7e3NGwuhEBcXBzmzp2L4cOHo2fPnvjkk09w9epV7N69WzrPP/7xD/Tt2xcdOnRAQEAAZs2ahWPHjqG0tBQAkJ6ejrKyMixevBgeHh7w9vbGtGnTkJWVJdUQkXEedRSpJiFMpSqEu/uvFc4ll8vrqPXGy8jojbi4KGzeHI64uChkZPQ2d5OI6BGZbc5USUkJ0tPTMXv2bGmbhYUFgoKCkJqaWukxqampiI6ONtgWHBwsBaWcnBxotVoEBQVJ+1UqFfz8/JCamopRo0ZVOGd+fj62bt2KgIAAWFlZAQB8fHxgYWGBTZs2Ydy4cbh9+za2bNmCoKAgqaYyxcXFKC4ult4XFBQ8vCOImjFv70x4eFxAfr4aanV+jR7HlYewB+dMlR/73HPPwcHBocJxDWliNz91SNS0mC1M3bx5E2VlZXB0dDTY7ujoiJ9++qnSY7RabaX1Wq1W2l++raqacjNnzsSaNWtw584d9O3bF/v27ZP2ubu74+DBg3jhhRfw2muvoaysDP7+/hXmZz0oJiYGb7/9drU1RGRIpSqsdYCoLoQ5ODhAo9HUdTPrVGP41CER1ZzZJ6Cby/Tp05GZmYmDBw/C0tISY8eOhRACwL1QNnHiRISHh+PEiRP49ttvIZfL8fzzz0s1lZk9ezZ0Op30unLlSn3dDlGjUdNHbQ/WPfi+MTzKq8qjzhcjoobJbCNTDg4OsLS0RG5ursH23NxcODk5VXqMk5NTtfXlP3Nzcw3+yzQ3NxdeXl4Vru/g4IBOnTqha9eucHV1xbFjx+Dv74+1a9dCpVIhNjZWqv/000/h6uqKtLQ09O3bt9L2KRQKKBSKmnUAUTNlb2+PyMjIWq+19KjHNUQPe1RJRI2L2cKUXC6Hj48PUlJSEBYWBgDQ6/VISUlBZGRkpcf4+/sjJSUFUVFR0rZDhw7B398fwL3Hc05OTkhJSZHCU0FBAdLS0vD6669X2Ra9/t5/IZbPd7pz5w4sLAwH7SwtLQ1qiejRVRd4yhe1vHbtWqX7G0tgqsz9o2bVPapsDKNrRPQ/Zl20Mzo6GuHh4fD19UWfPn0QFxeHoqIijB8/HgAwduxYuLi4ICYmBgAwZcoUBAYGYvny5QgJCUFSUhJOnjyJdevWAQBkMhmioqKwePFieHp6wt3dHfPmzYOzs7MU2NLS0nDixAn069cPbdq0wcWLFzFv3jx4eHhIoSwkJAQrV67EO++8g9GjR6OwsBBz5sxBhw4d0Ls3P3FDZCqP+lUzjUVTGl0jov8xa5gaOXIkbty4gfnz50Or1cLLywvJycnSBPLLly8bjBAFBAQgMTERc+fOxZw5c+Dp6Yndu3eje/fuUs2MGTNQVFSEiIgI3Lp1C/369UNycjKUSiUAwMbGBrt27cKCBQtQVFQEjUaDwYMHY+7cudIjukGDBiExMRGxsbGIjY2FjY0N/P39kZycDGtr63rsIaLm5VG/aqYxYVAianpkoroZ1WSUgoICqFQq6HQ6tGrVytzNIWrwrl27hnXr1kGns0NcXFSFr4WJioqDSlWIiIiIBv+JPSJqvGr7+5vfzUdEDU5jXzqAX2ZM1LwwTBFRg9PQv7C4OvwyY6Lmp9muM0VEDVdD/8Li6jw4IlXV9+815nlfRGSII1NE1CA9ylfNNDTVTaInoqaDI1NE1GBVtcp5Y1DV9+89OEJFRI0fwxQRNRiP+lUzDVF1k+iJqGnhYz4iajCa0qKWjXkSPRHVDsMUETUojSEo1QS/f4+o+WCYIiIykaYwiZ6IHo5hioioDj04n0ulKqw0RDWGeV9EVDMMU0REdagpzfsiopphmCIiqmMMSkTNC5dGICIiIjICwxQRERGRERimiIiIiIzAMEVERERkBIYpIiIiIiMwTBEREREZgWGKiIiIyAgMU0RERERGYJgiIiIiMgLDFBEREZERGKaIiIiIjMAwRURERGQEhikiIiIiIzBMERERERmBYYqIiIjICAxTREREREZgmCIiIiIyAsMUERERkREYpoiIiIiMwDBFREREZASGKSIiIiIjMEwRERERGcHsYWrt2rVwc3ODUqmEn58fjh8/Xm39jh070KVLFyiVSvTo0QP79+832C+EwPz586HRaGBtbY2goCCcP3/eoGbYsGFo3749lEolNBoNxowZg6tXr1Y4z7Jly9CpUycoFAq4uLjg3XffrZubJiIioibDrGFq27ZtiI6OxoIFC5CRkYFevXohODgY169fr7T+6NGjGD16NCZMmIDMzEyEhYUhLCwMZ86ckWpiY2OxatUqxMfHIy0tDba2tggODsbdu3elmoEDB2L79u3Izs7Gzp07cfHiRTz//PMG15oyZQr++c9/YtmyZfjpp5+wZ88e9OnTxzQdQURERI2WTAghzHVxPz8/PPnkk1izZg0AQK/Xw9XVFW+88QZmzZpVoX7kyJEoKirCvn37pG19+/aFl5cX4uPjIYSAs7Mzpk6dimnTpgEAdDodHB0dkZCQgFGjRlXajj179iAsLAzFxcWwsrLCuXPn0LNnT5w5cwadO3d+5PsrKCiASqWCTqdDq1atHvk8REREVH9q+/vbbCNTJSUlSE9PR1BQ0P8aY2GBoKAgpKamVnpMamqqQT0ABAcHS/U5OTnQarUGNSqVCn5+flWeMz8/H1u3bkVAQACsrKwAAHv37sXjjz+Offv2wd3dHW5ubnj11VeRn59f7T0VFxejoKDA4EVERERNm9nC1M2bN1FWVgZHR0eD7Y6OjtBqtZUeo9Vqq60v/1mTc86cORO2trawt7fH5cuX8cUXX0j7fvnlF/z666/YsWMHPvnkEyQkJCA9Pb3Co8AHxcTEQKVSSS9XV9dq64mIiKjxM/sEdHOZPn06MjMzcfDgQVhaWmLs2LEof+Kp1+tRXFyMTz75BP3798fTTz+NDRs24PDhw8jOzq7ynLNnz4ZOp5NeV65cqa/bISIiIjNpYa4LOzg4wNLSErm5uQbbc3Nz4eTkVOkxTk5O1daX/8zNzYVGozGo8fLyqnB9BwcHdOrUCV27doWrqyuOHTsGf39/aDQatGjRAp06dZLqu3btCgC4fPlylfOoFAoFFApFDe6eiIiImgqzjUzJ5XL4+PggJSVF2qbX65GSkgJ/f/9Kj/H39zeoB4BDhw5J9e7u7nBycjKoKSgoQFpaWpXnLL8ucG/OEwA89dRT+PPPP3Hx4kWp5ueffwYAdOjQoTa3SURERE2c2UamACA6Ohrh4eHw9fVFnz59EBcXh6KiIowfPx4AMHbsWLi4uCAmJgbAveUKAgMDsXz5coSEhCApKQknT57EunXrAAAymQxRUVFYvHgxPD094e7ujnnz5sHZ2RlhYWEAgLS0NJw4cQL9+vVDmzZtcPHiRcybNw8eHh5S4AoKCoK3tzdeeeUVxMXFQa/XY/LkyXj22WcNRquIiIiIzBqmRo4ciRs3bmD+/PnQarXw8vJCcnKyNIH88uXLsLD43+BZQEAAEhMTMXfuXMyZMweenp7YvXs3unfvLtXMmDEDRUVFiIiIwK1bt9CvXz8kJydDqVQCAGxsbLBr1y4sWLAARUVF0Gg0GDx4MObOnSs9orOwsMDevXvxxhtvYMCAAbC1tcWQIUOwfPnyeuwdIiIiagzMus5UU8d1poiIiBqfRrPOFBEREVFTwDBFREREZASGKSIiIiIjMEwRERERGYFhioiIiMgIDFNERERERmCYIiIiIjICwxQRERGREeosTN29exfLli2rq9MRERERNQq1ClM3btzAvn37cPDgQZSVlQEASktL8cEHH8DNzQ1LliwxSSOJiIiIGqoafzffd999h6FDh6KgoAAymQy+vr7YtGkTwsLC0KJFCyxcuBDh4eGmbCsRERFRg1Pjkam5c+fir3/9K06dOoXo6GicOHECf/vb3/Dee+/h7NmzmDRpEqytrU3ZViIiIqIGp8ZfdGxvb4///Oc/eOKJJ/DHH3+gZcuW2LVrF4YPH27qNjZa/KJjIiKixsdkX3T8+++/w8HBAQBgbW0NGxsbdO/e/dFbSkRERNQE1HjOFACcPXsWWq0WACCEQHZ2NoqKigxqevbsWXetIyIiImrgavyYz8LCAjKZDNWVy2Qy6VN+xMd8REREjVFtf3/XeGQqJyfnoTWFhYU1PR0RERFRk1DjMNWhQ4dKtxcWFuKzzz7Dhg0bcPLkSY5MERERUbPyyCug//vf/0Z4eDg0Gg2WLVuGgQMH4tixY3XZNiIiIqIGr1YT0LVaLRISErBhwwYUFBTghRdeQHFxMXbv3o0nnnjCVG0kIiIiarBqPDIVGhqKzp0749SpU4iLi8PVq1exevVqU7aNiIiIqMGr8cjUV199hTfffBOvv/46PD09TdkmIiIiokajVt/Nt2HDBvj4+KBr164YM2YMRo0aZcq2ERERVSkvLw8lJSVV7pfL5bC3t6/HFlFzVeN1psoVFRVh27Zt2LhxI44fP46ysjKsWLECr7zyCuzs7EzVzkaJ60wREZlGXl4e1qxZ89C6yMhIBiqqNZN9nUw5W1tbvPLKK/juu+9w+vRpTJ06FUuWLEG7du0wbNiwR2o0ERFRbTw4IqXT2SEnxw06nV21dUSm8MhLIwBA586dERsbi99++w2fffZZXbWJiIioxjIyeiMuLgqbN4cjLi4KGRm9zd0kamaMClPlLC0tERYWhj179tTF6YiIiGpEp7PD3r1DIcS9X2dCWGDv3qEVRqiITKlOwhQREZE55OfbS0GqnBAWyM9Xm6lF1BwxTBERUaOlVudBJtMbbJPJ9FCr883UImqOGKaIiKjRUqkKERq6TwpUMpkeoaH7oFIVmrll1JzU6utkiIiIGhpv70x4eFxAfr4aanU+gxTVO4YpIiJqdORyucF7laqw0hD1YB2RKTBMERFRo2Nvb4/IyEiugE4NAsMUERE1SgxK1FA0iAnoa9euhZubG5RKJfz8/HD8+PFq63fs2IEuXbpAqVSiR48e2L9/v8F+IQTmz58PjUYDa2trBAUF4fz58wY1w4YNQ/v27aFUKqHRaDBmzBhcvXq10utduHABdnZ2aN26tVH3SURERE2P2cPUtm3bEB0djQULFiAjIwO9evVCcHAwrl+/Xmn90aNHMXr0aEyYMAGZmZkICwtDWFgYzpw5I9XExsZi1apViI+PR1paGmxtbREcHIy7d+9KNQMHDsT27duRnZ2NnTt34uLFi3j++ecrXK+0tBSjR49G//796/7miYiIqNGr9Rcd1zU/Pz88+eST0hdW6vV6uLq64o033sCsWbMq1I8cORJFRUXYt2+ftK1v377w8vJCfHw8hBBwdnbG1KlTMW3aNACATqeDo6MjEhISMGrUqErbsWfPHoSFhaG4uBhWVlbS9pkzZ+Lq1at45plnEBUVhVu3btX43vhFx0RERI2Pyb/ouC6VlJQgPT0dQUFB0jYLCwsEBQUhNTW10mNSU1MN6gEgODhYqs/JyYFWqzWoUalU8PPzq/Kc+fn52Lp1KwICAgyC1DfffIMdO3Zg7dq1Nbqf4uJiFBQUGLyIiIioaTNrmLp58ybKysrg6OhosN3R0RFarbbSY7RabbX15T9rcs6ZM2fC1tYW9vb2uHz5Mr744gtpX15eHsaNG4eEhIQajyrFxMRApVJJL1dX1xodR0RERI2X2edMmdP06dORmZmJgwcPwtLSEmPHjkX5U8+JEyfixRdfxIABA2p8vtmzZ0On00mvK1eumKrpRERE1ECYdWkEBwcHWFpaIjc312B7bm4unJycKj3Gycmp2vryn7m5udBoNAY1Xl5eFa7v4OCATp06oWvXrnB1dcWxY8fg7++Pb775Bnv27MGyZcsA3PuEoF6vR4sWLbBu3Tq88sorFdqmUCigUChq1wlERETUqJl1ZEoul8PHxwcpKSnSNr1ej5SUFPj7+1d6jL+/v0E9ABw6dEiqd3d3h5OTk0FNQUEB0tLSqjxn+XWBe/OegHtzs7KysqTXO++8Azs7O2RlZeFvf/vbo90wERERNTlmX7QzOjoa4eHh8PX1RZ8+fRAXF4eioiKMHz8eADB27Fi4uLggJiYGADBlyhQEBgZi+fLlCAkJQVJSEk6ePIl169YBAGQyGaKiorB48WJ4enrC3d0d8+bNg7OzM8LCwgAAaWlpOHHiBPr164c2bdrg4sWLmDdvHjw8PKTA1bVrV4N2njx5EhYWFujevXs99QwRERE1BmYPUyNHjsSNGzcwf/58aLVaeHl5ITk5WZpAfvnyZVhY/G8ALSAgAImJiZg7dy7mzJkDT09P7N692yDkzJgxA0VFRYiIiMCtW7fQr18/JCcnQ6lUAgBsbGywa9cuLFiwAEVFRdBoNBg8eDDmzp3Lx3RERERUK2ZfZ6op4zpTREREjU+jWmeKiIiIqLFjmCIiIiIyAsMUERERkREYpoiIiIiMwDBFREREZASGKSIiIiIjMEwRERERGYFhioiIiMgIDFNERERERmCYIiIiIjICwxQRERGRERimiIiIiIzAMEVERERkBIYpIiIiIiMwTBEREREZgWGKiIiIyAgMU0RERERGYJgiIiIiMgLDFBEREZERGKaIiIiIjMAwRURERGQEhikiIiIiIzBMERERERmhhbkbQERE1Fzl5eWhpKSkyv1yuRz29vb12CJ6FAxTREREZpCXl4c1a9Y8tC4yMpKBqoHjYz4iIiIzeHBESqezQ06OG3Q6u2rrqOHhyBQREZGZZWT0xt69QyGEBWQyPUJD98HbO9PczaIa4sgUERGRGel0dlKQAgAhLLB379AKI1TUcDFMERERmVF+vr0UpMoJYYH8fLWZWkS1xTBFRERkRmp1HmQyvcE2mUwPtTrfTC2i2mKYIiIiMiOVqhChofukQFU+Z0qlKjRzy6imOAGdiIjIzLy9M+HhcQH5+Wqo1fkMUo0MwxQREZEZyOVyg/cqVWGlIerBOmp4GKaIiIjMwN7eHpGRkVwBvQlgmCIiIjITBqWmoUFMQF+7di3c3NygVCrh5+eH48ePV1u/Y8cOdOnSBUqlEj169MD+/fsN9gshMH/+fGg0GlhbWyMoKAjnz583qBk2bBjat28PpVIJjUaDMWPG4OrVq9L+I0eOYPjw4dBoNLC1tYWXlxe2bt1adzdNRERETYLZw9S2bdsQHR2NBQsWICMjA7169UJwcDCuX79eaf3Ro0cxevRoTJgwAZmZmQgLC0NYWBjOnDkj1cTGxmLVqlWIj49HWloabG1tERwcjLt370o1AwcOxPbt25GdnY2dO3fi4sWLeP755w2u07NnT+zcuROnTp3C+PHjMXbsWOzbt890nUFERESNjkwIIczZAD8/Pzz55JPSlz3q9Xq4urrijTfewKxZsyrUjxw5EkVFRQahpm/fvvDy8kJ8fDyEEHB2dsbUqVMxbdo0AIBOp4OjoyMSEhIwatSoStuxZ88ehIWFobi4GFZWVpXWhISEwNHRERs3bqzRvRUUFEClUkGn06FVq1Y1OoaIiIjMq7a/v806MlVSUoL09HQEBQVJ2ywsLBAUFITU1NRKj0lNTTWoB4Dg4GCpPicnB1qt1qBGpVLBz8+vynPm5+dj69atCAgIqDJIAfdCmVpd9Yq0xcXFKCgoMHgRERFR02bWMHXz5k2UlZXB0dHRYLujoyO0Wm2lx2i12mrry3/W5JwzZ86Era0t7O3tcfnyZXzxxRdVtnX79u04ceIExo8fX2VNTEwMVCqV9HJ1da2yloiIiJoGs8+ZMqfp06cjMzMTBw8ehKWlJcaOHYvKnnoePnwY48ePx/r169GtW7cqzzd79mzodDrpdeXKFVM2n4iIiBoAsy6N4ODgAEtLS+Tm5hpsz83NhZOTU6XHODk5VVtf/jM3NxcajcagxsvLq8L1HRwc0KlTJ3Tt2hWurq44duwY/P39pZpvv/0WoaGhWLlyJcaOHVvt/SgUCigUiupvmoiIiJoUs45MyeVy+Pj4ICUlRdqm1+uRkpJiEGju5+/vb1APAIcOHZLq3d3d4eTkZFBTUFCAtLS0Ks9Zfl3g3rynckeOHEFISAiWLl2KiIiI2t8gERERNXlmX7QzOjoa4eHh8PX1RZ8+fRAXF4eioiJpbtLYsWPh4uKCmJgYAMCUKVMQGBiI5cuXIyQkBElJSTh58iTWrVsHAJDJZIiKisLixYvh6ekJd3d3zJs3D87OzggLCwMApKWl4cSJE+jXrx/atGmDixcvYt68efDw8JAC1+HDhzF06FBMmTIFI0aMkOZbyeXyaiehExERUTMjGoDVq1eL9u3bC7lcLvr06SOOHTsm7QsMDBTh4eEG9du3bxedOnUScrlcdOvWTXz55ZcG+/V6vZg3b55wdHQUCoVCPPPMMyI7O1vaf+rUKTFw4EChVquFQqEQbm5uYtKkSeK3336TasLDwwWACq/AwMAa35dOpxMAhE6nq12HEBERkdnU9ve32deZasq4zhQREVHj06jWmSIiIiJq7BimiIiIiIzAMEVERERkBIYpIiIiIiOYfWkEIiIiqp28vDyUlJRUuV8ul8Pe3r4eW9S8MUwRERE1Inl5eVizZs1D6yIjIxmo6gkf8xERETUiD45I6XR2yMlxg05nV20dmQ5HpoiIiBqpjIze2Lt3KISwgEymR2joPnh7Z5q7Wc0OR6aIiIgaIZ3OTgpSACCEBfbuHVphhIpMj2GKiIioEcrPt5eCVDkhLJCfz++PrW8MU0RERI2QWp0HmUxvsE0m00OtzjdTi5ovhikiIqJGSKUqRGjoPilQlc+ZUqkKzdyy5ocT0ImIiBopb+9MeHhcQH6+Gmp1PoOUmTBMERERNSJyudzgvUpVWGmIerCOTIdhioiIqBGxt7dHZGQkV0BvQBimiIiIGhkGpYaFE9CJiIiIjMAwRURERGQEhikiIiIiIzBMERERERmBE9CJiIiagby8PH4C0EQYpoiIiJq4vLw8rFmz5qF1kZGRDFSPgI/5iIiImrjqRqQepY4MMUwRERE1MzqdHXJy3KDT2Zm7KU0CH/MRERE1IxkZvbF371AIYSF9ObK3d6a5m9WocWSKiIiomdDp7KQgBQBCWGDv3qEcoTISwxQREVEzkZ9vLwWpckJYID9fbaYWNQ0MU0RERM2EWp0HmUxvsE0m00OtzjdTi5oGhikiIqJmQqUqRGjoPilQlc+ZUqkKzdyyxo0T0ImIiJo4uVwu/dnbOxMeHheQn6+GWp1vEKTur6OaY5giIiJq4uzt7REZGckV0E2EYYqIiKgZYFAyHc6ZIiIiIjICwxQRERGRERpEmFq7di3c3NygVCrh5+eH48ePV1u/Y8cOdOnSBUqlEj169MD+/fsN9gshMH/+fGg0GlhbWyMoKAjnz583qBk2bBjat28PpVIJjUaDMWPG4OrVqwY1p06dQv/+/aFUKuHq6orY2Ni6uWEiIiJqMsweprZt24bo6GgsWLAAGRkZ6NWrF4KDg3H9+vVK648ePYrRo0djwoQJyMzMRFhYGMLCwnDmzBmpJjY2FqtWrUJ8fDzS0tJga2uL4OBg3L17V6oZOHAgtm/fjuzsbOzcuRMXL17E888/L+0vKCjAX/7yF3To0AHp6el4//33sXDhQqxbt850nUFERESNjzCzPn36iMmTJ0vvy8rKhLOzs4iJiam0/oUXXhAhISEG2/z8/MRrr70mhBBCr9cLJycn8f7770v7b926JRQKhfjss8+qbMcXX3whZDKZKCkpEUII8eGHH4o2bdqI4uJiqWbmzJmic+fONb43nU4nAAidTlfjY4iIiMi8avv726wjUyUlJUhPT0dQUJC0zcLCAkFBQUhNTa30mNTUVIN6AAgODpbqc3JyoNVqDWpUKhX8/PyqPGd+fj62bt2KgIAAWFlZSdcZMGCAwZobwcHByM7Oxu+//17peYqLi1FQUGDwIiIioqbNrGHq5s2bKCsrg6Ojo8F2R0dHaLXaSo/RarXV1pf/rMk5Z86cCVtbW9jb2+Py5cv44osvHnqd+6/xoJiYGKhUKunl6upaaR0RERE1HWafM2VO06dPR2ZmJg4ePAhLS0uMHTsWQohHPt/s2bOh0+mk15UrV+qwtURERNQQmXXRTgcHB1haWiI3N9dge25uLpycnCo9xsnJqdr68p+5ubnQaDQGNV5eXhWu7+DggE6dOqFr165wdXXFsWPH4O/vX+V17r/GgxQKBRQKxUPumoiIiJoSs45MyeVy+Pj4ICUlRdqm1+uRkpICf3//So/x9/c3qAeAQ4cOSfXu7u5wcnIyqCkoKEBaWlqV5yy/LnBv3lP5df7973+jtLTU4DqdO3dGmzZtanmnRERE1GSZdj78wyUlJQmFQiESEhLE2bNnRUREhGjdurXQarVCCCHGjBkjZs2aJdV///33okWLFmLZsmXi3LlzYsGCBcLKykqcPn1aqlmyZIlo3bq1+OKLL8SpU6fE8OHDhbu7u/jjjz+EEEIcO3ZMrF69WmRmZopLly6JlJQUERAQIDw8PMTdu3eFEPc+Aejo6CjGjBkjzpw5I5KSkoSNjY34+OOPa3xv/DQfERFR41Pb399mD1NCCLF69WrRvn17IZfLRZ8+fcSxY8ekfYGBgSI8PNygfvv27aJTp05CLpeLbt26iS+//NJgv16vF/PmzROOjo5CoVCIZ555RmRnZ0v7T506JQYOHCjUarVQKBTCzc1NTJo0Sfz2228G5/nhhx9Ev379hEKhEC4uLmLJkiW1ui+GKSIiosantr+/ZUIYMeOaqlVQUACVSgWdTodWrVqZuzlERERUA7X9/d2sP81HREREZCyGKSIiIiIjMEwRERERGcGs60wRERFRw5aXl4eSkpIq98vlctjb29djixoehikiIiKqVF5eHtasWfPQusjIyGYdqBimiIiIqFLVjUjd7+rVq5XWNpdRK4YpIiIiqhGdzg75+fZQq/OgUhVK23ft2lXlMc1h1IphioiIiB4qI6M39u4dCiEsIJPpERq6D97emdL+qoJWTUe3GjOGKSIiIqqWTmcnBSkAEMICe/cOhYfHBahUhQ8NWk0dl0YgIiKiauXn20tBqpwQFsjPV1cZtHQ6O3M01SwYpoiIiKhaanUeZDK9wTaZTA+1Or/aoNVcMEwRERFRtVSqQoSG7pMCVfmjPJWqsNqg1VxwzhQRERFVSi6XS3/29s6Eh8cF5OeroVbnS5PMy4PWg3Om7p+E3tQxTBEREVGl7O3tERkZWekn8m7evCktiVBV0GouGKaIiIioSlWtEXX/qBVwb4SqshD1YF1TxDBFREREtVbdqFU5roBOREREVI3mEJRqgp/mIyIiIjICwxQRERGRERimiIiIiIzAMEVERERkBIYpIiIiIiMwTBEREREZgWGKiIiIyAgMU0RERERGYJgiIiIiMgLDFBEREZERGKaIiIiIjMAwRURERGQEhikiIiIiIzBMERERERmBYYqIiIjICAxTREREREZgmCIiIiIygtnD1Nq1a+Hm5galUgk/Pz8cP3682vodO3agS5cuUCqV6NGjB/bv32+wXwiB+fPnQ6PRwNraGkFBQTh//ry0/9KlS5gwYQLc3d1hbW0NDw8PLFiwACUlJQbnOXDgAPr27Qs7Ozu0bdsWI0aMwKVLl+rsvomIiKhpMGuY2rZtG6Kjo7FgwQJkZGSgV69eCA4OxvXr1yutP3r0KEaPHo0JEyYgMzMTYWFhCAsLw5kzZ6Sa2NhYrFq1CvHx8UhLS4OtrS2Cg4Nx9+5dAMBPP/0EvV6Pjz/+GD/++CNWrlyJ+Ph4zJkzRzpHTk4Ohg8fjkGDBiErKwsHDhzAzZs38dxzz5m2Q4iIiKjxEWbUp08fMXnyZOl9WVmZcHZ2FjExMZXWv/DCCyIkJMRgm5+fn3jttdeEEELo9Xrh5OQk3n//fWn/rVu3hEKhEJ999lmV7YiNjRXu7u7S+x07dogWLVqIsrIyaduePXuETCYTJSUlNb4/nU4nAAidTlfjY4iIiMi8avv722wjUyUlJUhPT0dQUJC0zcLCAkFBQUhNTa30mNTUVIN6AAgODpbqc3JyoNVqDWpUKhX8/PyqPCcA6HQ6qNVq6b2Pjw8sLCywadMmlJWVQafTYcuWLQgKCoKVlVWV5ykuLkZBQYHBi4iIiJo2s4WpmzdvoqysDI6OjgbbHR0dodVqKz1Gq9VWW1/+szbnvHDhAlavXo3XXntN2ubu7o6DBw9izpw5UCgUaN26NX777Tds37692nuKiYmBSqWSXq6urtXWExERUeNn9gno5vTf//4XgwcPxv/93/9h4sSJ0natVouJEyciPDwcJ06cwLfffgu5XI7nn38eQogqzzd79mzodDrpdeXKlfq4DSIiIjKjFua6sIODAywtLZGbm2uwPTc3F05OTpUe4+TkVG19+c/c3FxoNBqDGi8vL4Pjrl69ioEDByIgIADr1q0z2Ld27VqoVCrExsZK2z799FO4uroiLS0Nffv2rbR9CoUCCoWimrsmIiKipsZsI1NyuRw+Pj5ISUmRtun1eqSkpMDf37/SY/z9/Q3qAeDQoUNSvbu7O5ycnAxqCgoKkJaWZnDO//73v3j66afh4+ODTZs2wcLCsBvu3LlTYZulpaXURiIiIqJyZhuZAoDo6GiEh4fD19cXffr0QVxcHIqKijB+/HgAwNixY+Hi4oKYmBgAwJQpUxAYGIjly5cjJCQESUlJOHnypDSyJJPJEBUVhcWLF8PT0xPu7u6YN28enJ2dERYWBuB/QapDhw5YtmwZbty4IbWnfGQrJCQEK1euxDvvvIPRo0ejsLAQc+bMQYcOHdC7d+967CEiIiIql5eXV2FdyPvJ5XLY29vXY4vuMWuYGjlyJG7cuIH58+dDq9XCy8sLycnJ0gTyy5cvG4wQBQQEIDExEXPnzsWcOXPg6emJ3bt3o3v37lLNjBkzUFRUhIiICNy6dQv9+vVDcnIylEolgHsjWRcuXMCFCxfw2GOPGbSnfD7UoEGDkJiYiNjYWMTGxsLGxgb+/v5ITk6GtbW1qbuFiIiIHpCXl4c1a9ZI73U6O+Tn20OtzoNKVShtj4yMrPdAJRPVzagmoxQUFEClUkGn06FVq1bmbg4REVGjde3aNelJVEZGb+zdOxRCWEAm0yM0dB+8vTMBABEREQbzph9FbX9/N+tP8xEREVHjotPZSUEKAISwwN69Q6HT2ZmtTQxTRERE1Gjk59vjwTXHhbBAfr66iiNMj2GKiIiIGg21Og8ymeEn62UyPdTqfDO1iGGKiIiIGhGVqhChofukQFU+Z+r+Sej1zayf5iMiIiKqLW/vTHh4XEB+vhpqdb5ZgxTAMEVERESNkEpVaPYQVY6P+YiIiKjBk8vldVpXlzgyRURERA2evb09IiMjuQI6ERER0aMyR1CqCT7mIyIiIjICwxQRERGRERimiIiIiIzAMEVERERkBIYpIiIiIiMwTBEREREZgWGKiIiIyAgMU0RERERGYJgiIiIiMgJXQDchIQQAoKCgwMwtISIiopoq/71d/nv8YRimTKiw8N63Wbu6upq5JURERFRbhYWFUKlUD62TiZrGLqo1vV6Pq1evws7ODjKZrML+goICuLq64sqVK2jVqpUZWtjwsE8MsT8MsT8qYp8YYn8YYn9UVJM+EUKgsLAQzs7OsLB4+IwojkyZkIWFBR577LGH1rVq1Yp/yR/APjHE/jDE/qiIfWKI/WGI/VHRw/qkJiNS5TgBnYiIiMgIDFNERERERmCYMiOFQoEFCxZAoVCYuykNBvvEEPvDEPujIvaJIfaHIfZHRaboE05AJyIiIjICR6aIiIiIjMAwRURERGQEhikiIiIiIzBMERERERmBYcrE1q5dCzc3NyiVSvj5+eH48eNV1v74448YMWIE3NzcIJPJEBcXV38NrUe16ZP169ejf//+aNOmDdq0aYOgoKBq6xuj2vTHrl274Ovri9atW8PW1hZeXl7YsmVLPbbW9GrTH/dLSkqCTCZDWFiYaRtoBrXpk4SEBMhkMoOXUqmsx9aaXm3/jty6dQuTJ0+GRqOBQqFAp06dsH///npqrenVpj+efvrpCn8/ZDIZQkJC6rHFplfbvyNxcXHo3LkzrK2t4erqin/84x+4e/duzS8oyGSSkpKEXC4XGzduFD/++KOYOHGiaN26tcjNza20/vjx42LatGnis88+E05OTmLlypX12+B6UNs+efHFF8XatWtFZmamOHfunBg3bpxQqVTit99+q+eWm0Zt++Pw4cNi165d4uzZs+LChQsiLi5OWFpaiuTk5HpuuWnUtj/K5eTkCBcXF9G/f38xfPjw+mlsPaltn2zatEm0atVKXLt2TXpptdp6brXp1LY/iouLha+vr/jrX/8qvvvuO5GTkyOOHDkisrKy6rnlplHb/sjLyzP4u3HmzBlhaWkpNm3aVL8NN6Ha9snWrVuFQqEQW7duFTk5OeLAgQNCo9GIf/zjHzW+JsOUCfXp00dMnjxZel9WViacnZ1FTEzMQ4/t0KFDkwxTxvSJEEL8+eefws7OTmzevNlUTaxXxvaHEEL07t1bzJ071xTNq3eP0h9//vmnCAgIEP/85z9FeHh4kwtTte2TTZs2CZVKVU+tq3+17Y+PPvpIPP7446KkpKS+mlivjP03ZOXKlcLOzk7cvn3bVE2sd7Xtk8mTJ4tBgwYZbIuOjhZPPfVUja/Jx3wmUlJSgvT0dAQFBUnbLCwsEBQUhNTUVDO2zHzqok/u3LmD0tJSqNVqUzWz3hjbH0IIpKSkIDs7GwMGDDBlU+vFo/bHO++8g3bt2mHChAn10cx69ah9cvv2bXTo0AGurq4YPnw4fvzxx/porsk9Sn/s2bMH/v7+mDx5MhwdHdG9e3e89957KCsrq69mm0xd/Ju6YcMGjBo1Cra2tqZqZr16lD4JCAhAenq69Cjwl19+wf79+/HXv/61xtflFx2byM2bN1FWVgZHR0eD7Y6Ojvjpp5/M1Crzqos+mTlzJpydnQ3+j9JYPWp/6HQ6uLi4oLi4GJaWlvjwww/x7LPPmrq5Jvco/fHdd99hw4YNyMrKqocW1r9H6ZPOnTtj48aN6NmzJ3Q6HZYtW4aAgAD8+OOPNfri9YbsUfrjl19+wTfffIOXXnoJ+/fvx4ULF/D3v/8dpaWlWLBgQX0022SM/Tf1+PHjOHPmDDZs2GCqJta7R+mTF198ETdv3kS/fv0ghMCff/6JSZMmYc6cOTW+LsMUNRpLlixBUlISjhw50uQm1NaGnZ0dsrKycPv2baSkpCA6OhqPP/44nn76aXM3rV4VFhZizJgxWL9+PRwcHMzdnAbD398f/v7+0vuAgAB07doVH3/8MRYtWmTGlpmHXq9Hu3btsG7dOlhaWsLHxwf//e9/8f777zf6MGWsDRs2oEePHujTp4+5m2JWR44cwXvvvYcPP/wQfn5+uHDhAqZMmYJFixZh3rx5NToHw5SJODg4wNLSErm5uQbbc3Nz4eTkZKZWmZcxfbJs2TIsWbIEX3/9NXr27GnKZtabR+0PCwsLdOzYEQDg5eWFc+fOISYmptGHqdr2x8WLF3Hp0iWEhoZK2/R6PQCgRYsWyM7OhoeHh2kbbWJ18e+IlZUVevfujQsXLpiiifXqUfpDo9HAysoKlpaW0rauXbtCq9WipKQEcrncpG02JWP+fhQVFSEpKQnvvPOOKZtY7x6lT+bNm4cxY8bg1VdfBQD06NEDRUVFiIiIwFtvvQULi4fPiOKcKRORy+Xw8fFBSkqKtE2v1yMlJcXgvxqbk0ftk9jYWCxatAjJycnw9fWtj6bWi7r6O6LX61FcXGyKJtar2vZHly5dcPr0aWRlZUmvYcOGYeDAgcjKyoKrq2t9Nt8k6uLvSFlZGU6fPg2NRmOqZtabR+mPp556ChcuXJCCNgD8/PPP0Gg0jTpIAcb9/dixYweKi4vx8ssvm7qZ9epR+uTOnTsVAlN5+BY1/friR5goTzWUlJQkFAqFSEhIEGfPnhURERGidevW0seUx4wZI2bNmiXVFxcXi8zMTJGZmSk0Go2YNm2ayMzMFOfPnzfXLdS52vbJkiVLhFwuF59//rnBx3kLCwvNdQt1qrb98d5774mDBw+KixcvirNnz4ply5aJFi1aiPXr15vrFupUbfvjQU3x03y17ZO3335bHDhwQFy8eFGkp6eLUaNGCaVSKX788Udz3UKdqm1/XL58WdjZ2YnIyEiRnZ0t9u3bJ9q1aycWL15srluoU4/6/5l+/fqJkSNH1ndz60Vt+2TBggXCzs5OfPbZZ+KXX34RBw8eFB4eHuKFF16o8TUZpkxs9erVon379kIul4s+ffqIY8eOSfsCAwNFeHi49D4nJ0cAqPAKDAys/4abUG36pEOHDpX2yYIFC+q/4SZSm/546623RMeOHYVSqRRt2rQR/v7+IikpyQytNp3a9MeDmmKYEqJ2fRIVFSXVOjo6ir/+9a8iIyPDDK02ndr+HTl69Kjw8/MTCoVCPP744+Ldd98Vf/75Zz232nRq2x8//fSTACAOHjxYzy2tP7Xpk9LSUrFw4ULh4eEhlEqlcHV1FX//+9/F77//XuPryYSo6RgWERERET2Ic6aIiIiIjMAwRURERGQEhikiIiIiIzBMERERERmBYYqIiIjICAxTREREREZgmCIiIiIyAsMUEVETMG7cOISFhZm7GUTNEsMUEZnUuHHjIJPJpJe9vT0GDx6MU6dOmbtpdeL+eyt/9evXz2TXu3TpEmQyGbKysgy2f/DBB0hISDDZdYmoagxTRGRygwcPxrVr13Dt2jWkpKSgRYsWGDp0qLmbVWc2bdok3d+1a9ewZ8+eSutKS0tN1gaVSoXWrVub7PxEVDWGKSIyOYVCAScnJzg5OcHLywuzZs3ClStXcOPGDQwaNAiRkZEG9Tdu3IBcLpe++d3NzQ2LFi3C6NGjYWtrCxcXF6xdu9bgmBUrVqBHjx6wtbWFq6sr/v73v+P27dvS/l9//RWhoaFo06YNbG1t0a1bN+zfvx8A8Pvvv+Oll15C27ZtYW1tDU9PT2zatKnG99e6dWvp/pycnKBWq6URpG3btiEwMBBKpRJbt25FXl4eRo8eDRcXF9jY2KBHjx747LPPDM6n1+sRGxuLjh07QqFQoH379nj33XcBAO7u7gCA3r17QyaT4emnnwZQ8TFfcXEx3nzzTbRr1w5KpRL9+vXDiRMnpP1HjhyBTCZDSkoKfH19YWNjg4CAAGRnZ9f4vonoHoYpIqpXt2/fxqeffoqOHTvC3t4er776KhITE1FcXCzVfPrpp3BxccGgQYOkbe+//z569eqFzMxMzJo1C1OmTMGhQ4ek/RYWFli1ahV+/PFHbN68Gd988w1mzJgh7Z88eTKKi4vx73//G6dPn8bSpUvRsmVLAMC8efNw9uxZfPXVVzh37hw++ugjODg41Mn9lrf13LlzCA4Oxt27d+Hj44Mvv/wSZ86cQUREBMaMGYPjx49Lx8yePRtLliyR2pWYmAhHR0cAkOq+/vprXLt2Dbt27ar0ujNmzMDOnTuxefNmZGRkoGPHjggODkZ+fr5B3VtvvYXly5fj5MmTaNGiBV555ZU6uW+iZqXOvqKZiKgS4eHhwtLSUtja2gpbW1sBQGg0GpGeni6EEOKPP/4Qbdq0Edu2bZOO6dmzp1i4cKH0vkOHDmLw4MEG5x05cqQYMmRIldfdsWOHsLe3l9736NHD4Jz3Cw0NFePHj3+k+wMglEqldH+2trbiX//6l8jJyREARFxc3EPPERISIqZOnSqEEKKgoEAoFAqxfv36SmvLz5uZmWmwPTw8XAwfPlwIIcTt27eFlZWV2Lp1q7S/pKREODs7i9jYWCGEEIcPHxYAxNdffy3VfPnllwKA+OOPP2rTBUTNHkemiMjkBg4ciKysLGRlZeH48eMIDg7GkCFD8Ouvv0KpVGLMmDHYuHEjACAjIwNnzpzBuHHjDM7h7+9f4f25c+ek919//TWeeeYZuLi4wM7ODmPGjEFeXh7u3LkDAHjzzTexePFiPPXUU1iwYIHBBPjXX38dSUlJ8PLywowZM3D06NFa3d/KlSul+8vKysKzzz4r7fP19TWoLSsrw6JFi9CjRw+o1Wq0bNkSBw4cwOXLlwEA586dQ3FxMZ555plateF+Fy9eRGlpKZ566ilpm5WVFfr06WPQZwDQs2dP6c8ajQYAcP369Ue+NlFzxDBFRCZna2uLjh07omPHjnjyySfxz3/+E0VFRVi/fj0A4NVXX8WhQ4fw22+/YdOmTRg0aBA6dOhQ4/NfunQJQ4cORc+ePbFz506kp6dLc6pKSkqka/zyyy8YM2YMTp8+DV9fX6xevRoApGD3j3/8A1evXsUzzzyDadOm1fj6Tk5O0v117NgRtra2Bvd+v/fffx8ffPABZs6cicOHDyMrKwvBwcFSO62trWt83bpgZWUl/VkmkwG4N2eLiGqOYYqI6p1MJoOFhQX++OMPAECPHj3g6+uL9evXIzExsdJ5O8eOHavwvmvXrgCA9PR06PV6LF++HH379kWnTp1w9erVCudwdXXFpEmTsGvXLkydOlUKcwDQtm1bhIeH49NPP0VcXBzWrVtXl7cs+f777zF8+HC8/PLL6NWrFx5//HH8/PPP0n5PT09YW1tLk+8fJJfLAdwb4aqKh4cH5HI5vv/+e2lbaWkpTpw4gSeeeKKO7oSIyrUwdwOIqOkrLi6GVqsFcO+Tc2vWrMHt27cRGhoq1bz66quIjIyEra0t/va3v1U4x/fff4/Y2FiEhYXh0KFD2LFjB7788ksAQMeOHVFaWorVq1cjNDQU33//PeLj4w2Oj4qKwpAhQ9CpUyf8/vvvOHz4sBTG5s+fDx8fH3Tr1g3FxcXYt2+ftK+ueXp64vPPP8fRo0fRpk0brFixArm5uVLIUSqVmDlzJmbMmAG5XI6nnnoKN27cwI8//ogJEyagXbt2sLa2RnJyMh577DEolUqoVCqDa9ja2uL111/H9OnToVar0b59e8TGxuLOnTuYMGGCSe6LqDnjyBQRmVxycjI0Gg00Gg38/Pxw4sQJ7NixQ/pYPwCMHj0aLVq0wOjRo6FUKiucY+rUqTh58iR69+6NxYsXY8WKFQgODgYA9OrVCytWrMDSpUvRvXt3bN26FTExMQbHl5WVYfLkyejatSsGDx6MTp064cMPPwRwb7Rn9uzZ6NmzJwYMGABLS0skJSWZpC/mzp0Lb29vBAcH4+mnn4aTk1OFlcvnzZuHqVOnYv78+ejatStGjhwpzWNq0aIFVq1ahY8//hjOzs4YPnx4pddZsmQJRowYgTFjxsDb2xsXLlzAgQMH0KZNG5PcF1FzJhNCCHM3gojo0qVL8PDwwIkTJ+Dt7W2wz83NDVFRUYiKijJP44iIqsHHfERkVqWlpcjLy8PcuXPRt2/fCkGKiKih42M+IjKr77//HhqNBidOnKgwz8nc3nvvPbRs2bLS15AhQ8zdPCJqIPiYj4ioCvn5+RVWDC9nbW0NFxeXem4RETVEDFNERERERuBjPiIiIiIjMEwRERERGYFhioiIiMgIDFNERERERmCYIiIiIjICwxQRERGRERimiIiIiIzAMEVERERkhP8HMCl3Yz14rfEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_4.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdaElEQVR4nO3deVwV1f8/8NcFufciwlVAWQyFENdMBAMhDS3qWojyaXGpBE1D+0pJZJqWYmphLmkupVaKn9Jc0tw/pvHJFkXccF9SA5fkooJcEBP8cM/vD39Mjlw2Zbgsr+fjMQ+4Z94zc+Y0dN+eOXNGJYQQICIiIqIqZ2XpChARERHVVUy0iIiIiBTCRIuIiIhIIUy0iIiIiBTCRIuIiIhIIUy0iIiIiBTCRIuIiIhIIUy0iIiIiBTCRIuIiIhIIUy0iIgIiYmJUKlUSE9Pt3RViOoUJlpEVC327duHmJgYdOjQAXZ2dmjRogX69euHP/74o0Rsjx49oFKpoFKpYGVlBQcHB7Rp0waDBg3Cjh07KnXcTZs2ISQkBM2aNUPDhg3x8MMPo1+/fti2bVtVnVoJH3/8MdavX1+ifPfu3Zg0aRJycnIUO/a9Jk2aJLWlSqVCw4YN0b59e3zwwQfIzc2tkmOsWLECc+bMqZJ9EdU1TLSIqFp88sknWLt2LZ566il89tlniI6Oxq+//go/Pz8cO3asRPxDDz2Eb775Bv/+978xY8YM9OnTB7t378YzzzyD/v374/bt2+Uec+bMmejTpw9UKhXGjRuH2bNn44UXXsCZM2ewcuVKJU4TQNmJ1ocfflitiVaxL774At988w0+/fRTtG3bFh999BF69eqFqnjdLRMtotI1sHQFiKh+iIuLw4oVK6BWq6Wy/v37o2PHjpg2bRq+/fZbWbxOp8Orr74qK5s2bRreeustfP755/D09MQnn3xS6vH+97//YcqUKXj66aexffv2EuuvXLnygGdUc9y8eRMNGzYsM+bFF1+Es7MzAGDEiBF44YUXsG7dOuzZswdBQUHVUU2ieok9WkRULYKDg2VJFgD4+PigQ4cOOHnyZIX2YW1tjblz56J9+/aYP38+jEZjqbHXrl1Dbm4uHn/8cbPrmzVrJvt869YtTJo0Ca1bt4ZWq4Wbmxuef/55nDt3ToqZOXMmgoOD4eTkBFtbW/j7++P777+X7UelUiE/Px/Lli2TbtcNHjwYkyZNwrvvvgsA8PLyktbdPSbq22+/hb+/P2xtbeHo6IgBAwbg4sWLsv336NEDjzzyCA4cOIAnnngCDRs2xPjx4yvUfnd78sknAQBpaWllxn3++efo0KEDNBoN3N3dMXLkSFmPXI8ePbBlyxacP39eOidPT89K14eormKPFhFZjBACmZmZ6NChQ4W3sba2xsCBAzFhwgT8/vvvCAsLMxvXrFkz2NraYtOmTXjzzTfh6OhY6j6LiorQu3dvJCUlYcCAARg1ahTy8vKwY8cOHDt2DN7e3gCAzz77DH369MErr7yCwsJCrFy5Ei+99BI2b94s1eObb77BsGHDEBAQgOjoaACAt7c37Ozs8Mcff+C7777D7Nmzpd6lpk2bAgA++ugjTJgwAf369cOwYcNw9epVzJs3D0888QRSU1PRuHFjqb5ZWVl49tlnMWDAALz66qtwcXGpcPsVK04gnZycSo2ZNGkSPvzwQ4SGhuKNN97A6dOn8cUXX2Dfvn3YtWsXbGxs8P7778NoNOLSpUuYPXs2AKBRo0aVrg9RnSWIiCzkm2++EQDE119/LSsPCQkRHTp0KHW7H374QQAQn332WZn7nzhxogAg7OzsxLPPPis++ugjceDAgRJxS5YsEQDEp59+WmKdyWSSfr9586ZsXWFhoXjkkUfEk08+KSu3s7MTUVFRJfY1Y8YMAUCkpaXJytPT04W1tbX46KOPZOVHjx4VDRo0kJWHhIQIAGLhwoWlnvfd4uPjBQBx+vRpcfXqVZGWliYWLVokNBqNcHFxEfn5+UIIIZYuXSqr25UrV4RarRbPPPOMKCoqkvY3f/58AUAsWbJEKgsLCxMtW7asUH2I6hveOiQiizh16hRGjhyJoKAgREVFVWrb4h6TvLy8MuM+/PBDrFixAp07d8aPP/6I999/H/7+/vDz85Pdrly7di2cnZ3x5ptvltiHSqWSfre1tZV+v379OoxGI7p3746DBw9Wqv73WrduHUwmE/r164dr165Ji6urK3x8fPDzzz/L4jUaDYYMGVKpY7Rp0wZNmzaFl5cXhg8fjlatWmHLli2lju366aefUFhYiNjYWFhZ/fNV8frrr8PBwQFbtmyp/IkS1UO8dUhE1c5gMCAsLAw6nQ7ff/89rK2tK7X9jRs3AAD29vblxg4cOBADBw5Ebm4uUlJSkJiYiBUrViA8PBzHjh2DVqvFuXPn0KZNGzRoUPb/Ejdv3oypU6fi0KFDKCgokMrvTsbux5kzZyCEgI+Pj9n1NjY2ss/NmzcvMd6tPGvXroWDgwNsbGzw0EMPSbdDS3P+/HkAdxK0u6nVajz88MPSeiIqGxMtIqpWRqMRzz77LHJycvDbb7/B3d290vsong6iVatWFd7GwcEBTz/9NJ5++mnY2Nhg2bJlSElJQUhISIW2/+2339CnTx888cQT+Pzzz+Hm5gYbGxssXboUK1asqPQ53M1kMkGlUuE///mP2aTz3jFPd/esVdQTTzwhjQsjourDRIuIqs2tW7cQHh6OP/74Az/99BPat29f6X0UFRVhxYoVaNiwIbp163Zf9ejSpQuWLVuGjIwMAHcGq6ekpOD27dsleo+KrV27FlqtFj/++CM0Go1UvnTp0hKxpfVwlVbu7e0NIQS8vLzQunXryp6OIlq2bAkAOH36NB5++GGpvLCwEGlpaQgNDZXKHrRHj6gu4xgtIqoWRUVF6N+/P5KTk7FmzZr7mrupqKgIb731Fk6ePIm33noLDg4OpcbevHkTycnJZtf95z//AfDPbbEXXngB165dw/z580vEiv8/oae1tTVUKhWKioqkdenp6WYnJrWzszM7KamdnR0AlFj3/PPPw9raGh9++GGJCUSFEMjKyjJ/kgoKDQ2FWq3G3LlzZXX6+uuvYTQaZU972tnZlTnVBlF9xh4tIqoW77zzDjZu3Ijw8HBkZ2eXmKD03slJjUajFHPz5k2cPXsW69atw7lz5zBgwABMmTKlzOPdvHkTwcHB6Nq1K3r16gUPDw/k5ORg/fr1+O233xAREYHOnTsDACIjI/Hvf/8bcXFx2Lt3L7p37478/Hz89NNP+L//+z/07dsXYWFh+PTTT9GrVy+8/PLLuHLlChYsWIBWrVrhyJEjsmP7+/vjp59+wqeffgp3d3d4eXkhMDAQ/v7+AID3338fAwYMgI2NDcLDw+Ht7Y2pU6di3LhxSE9PR0REBOzt7ZGWloYffvgB0dHRGD169AO1f2U1bdoU48aNw4cffohevXqhT58+OH36ND7//HM89thjsv9e/v7+WLVqFeLi4vDYY4+hUaNGCA8Pr9b6EtVYlnzkkYjqj+JpCUpbyopt1KiR8PHxEa+++qrYvn17hY53+/Zt8eWXX4qIiAjRsmVLodFoRMOGDUXnzp3FjBkzREFBgSz+5s2b4v333xdeXl7CxsZGuLq6ihdffFGcO3dOivn666+Fj4+P0Gg0om3btmLp0qXS9Al3O3XqlHjiiSeEra2tACCb6mHKlCmiefPmwsrKqsRUD2vXrhXdunUTdnZ2ws7OTrRt21aMHDlSnD59WtY2ZU19ca/i+l29erXMuHundyg2f/580bZtW2FjYyNcXFzEG2+8Ia5fvy6LuXHjhnj55ZdF48aNBQBO9UB0F5UQVfCiKyIiIiIqgWO0iIiIiBTCRIuIiIhIIUy0iIiIiBTCRIuIiIhIIUy0iIiIiBTCRIuIiIhIIZyw1IJMJhMuX74Me3t7vsKCiIiolhBCIC8vD+7u7rCyKrvPiomWBV2+fBkeHh6WrgYRERHdh4sXL+Khhx4qM4aJlgXZ29sDuPMfqqx3thEREVHNkZubCw8PD+l7vCxMtCyo+Hahg4MDEy0iIqJapiLDfiw+GH7BggXw9PSEVqtFYGAg9u7dW2b8mjVr0LZtW2i1WnTs2BFbt26VrRdCYOLEiXBzc4OtrS1CQ0Nx5swZs/sqKCiAr68vVCoVDh06JJXv3LkTffv2hZubG+zs7ODr64vly5fLtk1MTIRKpZItWq32/hqBiIiI6iSLJlrFb3uPj4/HwYMH0alTJ+j1ely5csVs/O7duzFw4EAMHToUqampiIiIQEREBI4dOybFTJ8+HXPnzsXChQuRkpICOzs76PV63Lp1q8T+xowZA3d3d7PHefTRR7F27VocOXIEQ4YMQWRkJDZv3iyLc3BwQEZGhrScP3/+AVuEiIiI6hRLvtE6ICBAjBw5UvpcVFQk3N3dRUJCgtn4fv36ibCwMFlZYGCgGD58uBBCCJPJJFxdXcWMGTOk9Tk5OUKj0YjvvvtOtt3WrVtF27ZtxfHjxwUAkZqaWmZdn3vuOTFkyBDp89KlS4VOp6vIaZbKaDQKAMJoND7QfoiIiKj6VOb722JjtAoLC3HgwAGMGzdOKrOyskJoaCiSk5PNbpOcnIy4uDhZmV6vx/r16wEAaWlpMBgMCA0NldbrdDoEBgYiOTkZAwYMAABkZmbi9ddfx/r169GwYcMK1ddoNKJdu3ayshs3bqBly5YwmUzw8/PDxx9/jA4dOpS6j4KCAhQUFEifc3NzK3RsIiKiuxUVFeH27duWrkadZWNjA2tr6yrZl8USrWvXrqGoqAguLi6ychcXF5w6dcrsNgaDwWy8wWCQ1heXlRYjhMDgwYMxYsQIdOnSBenp6eXWdfXq1di3bx8WLVoklbVp0wZLlizBo48+CqPRiJkzZyI4OBjHjx8v9VHPhIQEfPjhh+Uej4iIyBwhBAwGA3JycixdlTqvcePGcHV1feB5LuvdU4fz5s1DXl6erCetLD///DOGDBmCL7/8UtZbFRQUhKCgIOlzcHAw2rVrh0WLFmHKlClm9zVu3DhZj1zx46FEREQVUZxkNWvWDA0bNuRk1woQQuDmzZvSeHE3N7cH2p/FEi1nZ2dYW1sjMzNTVp6ZmQlXV1ez27i6upYZX/wzMzNT1jCZmZnw9fUFAPz3v/9FcnIyNBqNbD9dunTBK6+8gmXLlkllv/zyC8LDwzF79mxERkaWeT42Njbo3Lkzzp49W2qMRqMpcVwiIqKKKCoqkpIsJycnS1enTrO1tQUAXLlyBc2aNXug24gWe+pQrVbD398fSUlJUpnJZEJSUpKsp+huQUFBsngA2LFjhxTv5eUFV1dXWUxubi5SUlKkmLlz5+Lw4cM4dOgQDh06JE0PsWrVKnz00UfSdjt37kRYWBg++eQTREdHl3s+RUVFOHr06ANnvkREROYUj8mq6NhiejDF7fygY+EseuswLi4OUVFR6NKlCwICAjBnzhzk5+djyJAhAIDIyEg0b94cCQkJAIBRo0YhJCQEs2bNQlhYGFauXIn9+/dj8eLFAO5MHBYbG4upU6fCx8cHXl5emDBhAtzd3REREQEAaNGihawOjRo1AgB4e3tLY6t+/vln9O7dG6NGjcILL7wgje9Sq9VwdHQEAEyePBldu3ZFq1atkJOTgxkzZuD8+fMYNmyYso1GRET1Gm8XVo+qameLJlr9+/fH1atXMXHiRBgMBvj6+mLbtm3SYPYLFy7IXtYYHByMFStW4IMPPsD48ePh4+OD9evX45FHHpFixowZg/z8fERHRyMnJwfdunXDtm3bKjWZ6LJly3Dz5k0kJCRISR4AhISEYOfOnQCA69ev4/XXX4fBYECTJk3g7++P3bt3o3379g/YKkSVl5WVhcLCwlLXq9Vq3mogIrIAlRBCWLoS9VVubi50Oh2MRiNfwUP3LSsrC/Pnzy83LiYmhskWUS1269YtpKWlwcvLi28iqQZltXdlvr8t/goeInow9/ZkGY32SEvzhNFoX2YcEVF1GTx4sPS6OhsbG7i4uODpp5/GkiVLYDKZKryfxMRENG7cWLmKKqDeTe9AVJcdPNgZmzb1hhBWUKlMCA/fDD+/VEtXi4hqCEsOM+jVqxeWLl2KoqIiZGZmYtu2bRg1ahS+//57bNy4EQ0a1M2UpG6eFVE9ZDTaS0kWAAhhhU2besPb+yx0ujwL146ILM3Swww0Go00DVPz5s3h5+eHrl274qmnnkJiYiKGDRuGTz/9FEuXLsWff/4JR0dHhIeHY/r06WjUqBF27twpPSxXPFA9Pj4ekyZNwjfffIPPPvsMp0+fhp2dHZ588knMmTMHzZo1q/LzqCzeOiSqI7KznaQkq5gQVsjOdrRQjYioJqno8IHqHGbw5JNPolOnTli3bh2AO6/imzt3Lo4fP45ly5bhv//9L8aMGQPgzgNxc+bMgYODAzIyMpCRkYHRo0cDuDMFw5QpU3D48GGsX78e6enpGDx4cLWdR1nYo0VURzg6ZkGlMsmSLZXKBEfHbAvWioiobG3btsWRI0cAALGxsVK5p6cnpk6dihEjRuDzzz+HWq2GTqeDSqUqMbH5a6+9Jv3+8MMPY+7cuXjsscdw48YNaRonS2GPFlEdodPlITx8M1SqOwNLi8do8bYhEdVkQgjpVuBPP/2Ep556Cs2bN4e9vT0GDRqErKws3Lx5s8x9HDhwAOHh4WjRogXs7e0REhIC4M40UZbGHi2iUtTGuan8/FLh7X0W2dmOcHTMZpJFRDXeyZMn4eXlhfT0dPTu3RtvvPEGPvroIzg6OuL333/H0KFDUVhYWOqM+Pn5+dDr9dDr9Vi+fDmaNm2KCxcuQK/X14inrZloEZlh6UGjlaFWq2Wfdbo8swnWvXFERJb23//+F0ePHsXbb7+NAwcOwGQyYdasWdJk5atXr5bFq9VqFBUVycpOnTqFrKwsTJs2DR4eHgCA/fv3V88JVAATLSIzzM1NlZ3tBEfHLFkSUxP+teTk5ISYmJha1/tGRPVLQUEBDAaDbHqHhIQE9O7dG5GRkTh27Bhu376NefPmITw8HLt27cLChQtl+/D09MSNGzeQlJSETp06oWHDhmjRogXUajXmzZuHESNG4NixY5gyZYqFzrIkJlpE5agNc1MxiSKimm7btm1wc3NDgwYN0KRJE3Tq1Alz585FVFQUrKys0KlTJ3z66af45JNPMG7cODzxxBNISEhAZGSktI/g4GCMGDEC/fv3R1ZWljS9Q2JiIsaPH4+5c+fCz88PM2fORJ8+fSx4tv/gK3gsiK/gqbkyMjKwePFiGI32mDMntsSTfLGxc6DT5SE6Ohpubm4WrCkR1RcP+gqe2jQkoiaoqlfwsEeLqAxlzU3FgeZEVJtwmIFlMNEiKgPnpiKiuoRJVPXjPFpEZeDcVERE9CDYo0VUDs5NVXVq49xkVL/wGqWqxkSLyAzOTVX1OBCXajpeo6QEJlpEZnDQaNWrTXOTUf1UE1+6TLUfEy2iUjCJUk5tmJuMqLR/DBBVBhMtIqpWRqO9lGQBd6bL2LSpN7y9z/LLjGoM/mOAqgqfOiSialXW3GRENUFp/xgwGu0tXDOqjZhoEVG1Kp6b7G6cm4xqEv5joPbZuXMnVCoVcnJyKryNp6cn5syZo1idijHRIqJqxbnJqKbjPwaq3uDBg6FSqTBixIgS60aOHAmVSoXBgwdXf8WqAcdoEVG149xkVJMV/2Pg3jFavE4fjIeHB1auXInZs2fD1tYWwJ33Ca5YsQItWrSwcO2Uwx4tIqoW5uYm8/I6X+LLi3OTkaXcfe35+aUiNnYOoqISERs7RzYQntfo/fHz84OHhwfWrVsnla1btw4tWrRA586dpbKCggK89dZbaNasGbRaLbp164Z9+/bJ9rV161a0bt0atra26NmzJ9LT00sc7/fff0f37t1ha2sLDw8PvPXWW8jPz1fs/ErDHi0iqhacm4xquvp2jV66BJw5A/j4AA89VD3HfO2117B06VK88sorAIAlS5ZgyJAh2LlzpxQzZswYrF27FsuWLUPLli0xffp06PV6nD17Fo6Ojrh48SKef/55jBw5EtHR0di/fz/eeecd2XHOnTuHXr16YerUqViyZAmuXr2KmJgYxMTEYOnSpdVzssUEWYzRaBQAhNFotHRViIiohvv777/FiRMnxN9///3A+/rqKyGsrIQA7vz86qsqqGAZoqKiRN++fcWVK1eERqMR6enpIj09XWi1WnH16lXRt29fERUVJW7cuCFsbGzE8uXLpW0LCwuFu7u7mD59uhBCiHHjxon27dvL9j927FgBQFy/fl0IIcTQoUNFdHS0LOa3334TVlZWUvu1bNlSzJ49u9Q6l9Xelfn+Zo8WERFRPXLpEhAdDZj+/3h/kwkYPhzQ65Xv2WratCnCwsKQmJgIIQTCwsLg7OwsrT937hxu376Nxx9/XCqzsbFBQEAATp48CQA4efIkAgMDZfsNCgqSfT58+DCOHDmC5cuXS2VCCJhMJqSlpaFdu3ZKnJ5ZTLSIiIjqkTNn/kmyihUVAWfPVs8txNdeew0xMTEAgAULFihyjBs3bmD48OF46623Sqyr7oH3TLSIiIjqER8fwMpKnmxZWwOtWlXP8Xv16oXCwkKoVCro9XrZOm9vb6jVauzatQstW7YEANy+fRv79u1DbGwsAKBdu3bYuHGjbLs9e/bIPvv5+eHEiRNoVV0nVQYmWoSsrKx6M/iTiKi+e+ghYPHiO7cLi4ruJFmLFlXfgHhra2vpNqC1tbVsnZ2dHd544w28++67cHR0RIsWLTB9+nTcvHkTQ4cOBQCMGDECs2bNwrvvvothw4bhwIEDSExMlO1n7Nix6Nq1K2JiYjBs2DDY2dnhxIkT2LFjB+bPn18t51mMiVY9l5WVVaGLLiYmhskWEVEdMXTonTFZZ8/e6cmqriSrmIODQ6nrpk2bBpPJhEGDBiEvLw9dunTBjz/+iCZNmgC4c+tv7dq1ePvttzFv3jwEBATg448/xmuvvSbt49FHH8Uvv/yC999/H927d4cQAt7e3ujfv7/i53YvlRBCVPtRCQCQm5sLnU4Ho9FY5kWnpIyMDCxevLjcuOjoaLi5uVVDjYiIyJxbt24hLS0NXl5e0Gq1lq5OnVdWe1fm+5sTlpKM0WiPtDRPvjyViIioCvDWIUkOHuxc4pUTd8+GTERERJXDHi0CcKcnqzjJAu68qX7Tpt7s2SIiInoATLQIAJCd7SQlWcWEsEJ2tqOFakRERFT7MdGq54xGIwDA0TELKpV8BjuVygRHx2xZHBERWRafYaseVdXOTLTqudu3bwMAdLo8hIdvlpKt4jFaOl2eLI6IiCzDxsYGAHDz5k0L16R+KG7n4na/XxwMX881aPDPJeDnl4pmzQy4cKEFWrS4gIceyjAbR0RE1c/a2hqNGzfGlStXAAANGzaESqWycK3qHiEEbt68iStXrqBx48YlJlWtLH571nONGzeWfi/rqcO744iIyDJcXV0BQEq2SDmNGzeW2vtBWDzRWrBgAWbMmAGDwYBOnTpJs7yWZs2aNZgwYQLS09Ph4+ODTz75BM8995y0XgiB+Ph4fPnll8jJycHjjz+OL774Aj4+PiX2VVBQgMDAQBw+fBipqanw9fWV1h05cgQjR47Evn370LRpU7z55psYM2ZMpepSm5T21KG391np9iEREVmWSqWCm5sbmjVrxiEdCrKxsXngnqxiFk20Vq1ahbi4OCxcuBCBgYGYM2cO9Ho9Tp8+jWbNmpWI3717NwYOHIiEhAT07t0bK1asQEREBA4ePIhHHnkEADB9+nTMnTsXy5Ytg5eXFyZMmAC9Xo8TJ06UmNl1zJgxcHd3x+HDh2Xlubm5eOaZZxAaGoqFCxfi6NGjeO2119C4cWNER0dXuC61SVlPHTLRIiKqWaytrassESCFCQsKCAgQI0eOlD4XFRUJd3d3kZCQYDa+X79+IiwsTFYWGBgohg8fLoQQwmQyCVdXVzFjxgxpfU5OjtBoNOK7776Tbbd161bRtm1bcfz4cQFApKamSus+//xz0aRJE1FQUCCVjR07VrRp06bCdakIo9EoAAij0Vjhbara5cuXxaRJk8Tbb88SKlWRAIS0qFRF4u23Z4lJkyaJy5cvW6yORERENUllvr8t9tRhYWEhDhw4gNDQUKnMysoKoaGhSE5ONrtNcnKyLB4A9Hq9FJ+WlgaDwSCL0el0CAwMlO0zMzMTr7/+Or755hs0bNjQ7HGeeOIJqNVq2XFOnz6N69evV6gu5hQUFCA3N1e21BTlPXVIRERElWexW4fXrl1DUVERXFxcZOUuLi44deqU2W0MBoPZeIPBIK0vListRgiBwYMHY8SIEejSpQvS09PNHsfLy6vEPorXNWnSpNy6mJOQkIAPP/yw1PWWcHcy6eeXCm/vs8jOdoSjY7Ysybo7joiIiCrG4oPhq9u8efOQl5eHcePGVfuxx40bh7i4OOlzbm4uPDw8qr0ed3NyckJMTAwKCwtLjVGr1XBycqrGWhEREdUNFku0nJ2dYW1tjczMTFl5ZmZmqY9Turq6lhlf/DMzMxNubm6ymOInCv/73/8iOTkZGo1Gtp8uXbrglVdewbJly0o9zt3HKK8u5mg0mhLHrQmYRBERESnDYmO01Go1/P39kZSUJJWZTCYkJSUhKCjI7DZBQUGyeADYsWOHFO/l5QVXV1dZTG5uLlJSUqSYuXPn4vDhwzh06BAOHTqErVu3ArjzBORHH30kHefXX3+VPTq7Y8cOtGnTBk2aNKlQXYiIiIgs+tThypUrhUajEYmJieLEiRMiOjpaNG7cWBgMBiGEEIMGDRLvvfeeFL9r1y7RoEEDMXPmTHHy5EkRHx8vbGxsxNGjR6WYadOmicaNG4sNGzaII0eOiL59+wovLy/x999/m61DWlpaiacOc3JyhIuLixg0aJA4duyYWLlypWjYsKFYtGhRpepSnprw1CERERFVTmW+vy06Rqt///64evUqJk6cCIPBAF9fX2zbtk0aZH7hwgVYWf3T6RYcHIwVK1bggw8+wPjx4+Hj44P169fL5q0aM2YM8vPzER0djZycHHTr1g3btm0rMYdWWXQ6HbZv346RI0fC398fzs7OmDhxojSHVkXrQjVDVlYWx6AREZFFqITga8AtJTc3FzqdDkajEQ4ODpauTp2UlZWF+fPnlxsXExPDZIuIiCqkMt/fFhujRVQdyurJup84IiKiymCiRfWK0WiPtDRPGI32lq4KERHVA/VuHi2qvw4e7Cy9OLt45ns/v1RLV4uIiOow9mhRvWA02ktJFnDnhdmbNvVmzxYRESmKiRbVC9nZTrj31Z5CWCE729FCNSIiovqAiRbVC46OWdILs4upVCY4OmZbqEZERFQfMNGiekGny0N4+GYp2Soeo3X3i7OJiIiqGgfDU52mVqul3/38UuHtfRbZ2Y5wdMyWJVl3xxFVN06qS1R1atrfExMtqtOcnJwQExNTo/7oiO7GSXWJqk5N/HtiokV1Hr+cqCa79x8BRqM9srOd4OiYJet15aS6ROWriX9PTLSIiGoIzvVGVHVqyt8TB8MTEdUAnOuNqOrUpL8nJlpERDUA53ojqjo16e+JiRYRUQ3Aud6Iqk5N+ntiokVEVANwrjeiqlOT/p44GJ6IqIYoa643IqqcmvL3xESLiMiC7p0sV6fLM/uFwEl1yZJq2iSgZdXjbjXh70klhBDVdjSSyc3NhU6ng9FohIODg6WrQ0QWUlu+xKh+qomTgJalOv6eKvP9zR4tIiILqwlfTkSlqYmTgJalpv09MdEiIiKiCqkpk4DWJnzqkIiIiMpVkyYBrU2YaBEREVG5atIkoLUJEy0iIiIqV02aBLQ2YaJFRERE5apJk4DWJhwMT0RERBVSUyYBrU2YaBEREVGpauIkoLUJEy0iIiIqlZOTE2JiYjip7n1iokVERERlYhJ1/zgYnoiIiEghTLSIiIiIFMJEi4iIiEghTLSIiIiIFMJEi4iIiEghTLSIiIiIFMJEi4iIiEghTLSIiIiIFMJEi4iIiEghnBmeao2srCy+AoKIiGoVJlpUK2RlZWH+/PnlxsXExDDZIiKiGoO3DqlWKKsn637iiIiIqoPFE60FCxbA09MTWq0WgYGB2Lt3b5nxa9asQdu2baHVatGxY0ds3bpVtl4IgYkTJ8LNzQ22trYIDQ3FmTNnZDF9+vRBixYtoNVq4ebmhkGDBuHy5cvS+kmTJkGlUpVY7OzspJjExMQS67VabRW0CFWE0WiPtDRPGI32lq4KERFRqSyaaK1atQpxcXGIj4/HwYMH0alTJ+j1ely5csVs/O7duzFw4EAMHToUqampiIiIQEREBI4dOybFTJ8+HXPnzsXChQuRkpICOzs76PV63Lp1S4rp2bMnVq9ejdOnT2Pt2rU4d+4cXnzxRWn96NGjkZGRIVvat2+Pl156SVYfBwcHWcz58+eruIXInIMHO2POnFgsWxaFOXNicfBgZ0tXiYiIzMjKyirxfXr3kpWVZekqKk4lhBCWOnhgYCAee+wxaeyNyWSCh4cH3nzzTbz33nsl4vv374/8/Hxs3rxZKuvatSt8fX2xcOFCCCHg7u6Od955B6NHjwYAGI1GuLi4IDExEQMGDDBbj40bNyIiIgIFBQWwsbEpsf7w4cPw9fXFr7/+iu7duwO406MVGxuLnJyc+z7/3Nxc6HQ6GI1GODg43Pd+6oOMjAwsXrwYRqM95syJhRD//BtBpTIhNnYOdLo8REdHw83NzYI1JSIioOTYWqPRHtnZTnB0zIJOlyeV18axtZX5/rZYj1ZhYSEOHDiA0NDQfypjZYXQ0FAkJyeb3SY5OVkWDwB6vV6KT0tLg8FgkMXodDoEBgaWus/s7GwsX74cwcHBZpMsAPjqq6/QunVrKckqduPGDbRs2RIeHh7o27cvjh8/XuY5FxQUIDc3V7ZQ5WRnO8mSLAAQwgrZ2Y4WqhEREZlz95jZsu5E1PWxtRZLtK5du4aioiK4uLjIyl1cXGAwGMxuYzAYyowv/lmRfY4dOxZ2dnZwcnLChQsXsGHDBrPHvHXrFpYvX46hQ4fKytu0aYMlS5Zgw4YN+Pbbb2EymRAcHIxLly6Ves4JCQnQ6XTS4uHhUWosmefomAWVyiQrU6lMcHTMtlCNiIioLEajPTZt6i39I1kIK2za1LvejLG1+GB4S3n33XeRmpqK7du3w9raGpGRkTB3F/WHH35AXl4eoqKiZOVBQUGIjIyEr68vQkJCsG7dOjRt2hSLFi0q9Zjjxo2D0WiUlosXL1b5edV1Ol0ewsM3S8mWSmVCePhmWTc0ERHVHPX9ToTF5tFydnaGtbU1MjMzZeWZmZlwdXU1u42rq2uZ8cU/MzMzZeN0MjMz4evrW+L4zs7OaN26Ndq1awcPDw/s2bMHQUFBsrivvvoKvXv3LtFLdi8bGxt07twZZ8+eLTVGo9FAo9GUuR8yT61WS7/7+aXC2/sssrMd4eiYLUuy7o4jIiLLK74Tce/Y2vpyJ8JiiZZarYa/vz+SkpIQEREB4M5g+KSkJMTExJjdJigoCElJSYiNjZXKduzYISVHXl5ecHV1RVJSkpRY5ebmIiUlBW+88UapdTGZ7vSOFBQUyMrT0tLw888/Y+PGjeWeT1FREY4ePYrnnnuu3FiqPCcnJ8TExHBmeCKiWqb4TkTx7cP6difCojPDx8XFISoqCl26dEFAQADmzJmD/Px8DBkyBAAQGRmJ5s2bIyEhAQAwatQohISEYNasWQgLC8PKlSuxf/9+LF68GACgUqkQGxuLqVOnwsfHB15eXpgwYQLc3d2lZC4lJQX79u1Dt27d0KRJE5w7dw4TJkyAt7d3id6sJUuWwM3NDc8++2yJuk+ePBldu3ZFq1atkJOTgxkzZuD8+fMYNmyYgi1WvzGJIiKqncq6E1HXWTTR6t+/P65evYqJEyfCYDDA19cX27Ztk27TXbhwAVZW/3Q1BgcHY8WKFfjggw8wfvx4+Pj4YP369XjkkUekmDFjxiA/Px/R0dHIyclBt27dsG3bNmky0YYNG2LdunWIj49Hfn4+3Nzc0KtXL3zwwQey23omkwmJiYkYPHgwrK2tS9T9+vXreP3112EwGNCkSRP4+/tj9+7daN++vVLNRUREVGvpdHn1KsEqZtF5tOo7zqNFRER1VV1+R21lvr/5UmkiIiKqchxbewcTLSIiIlJEXU+iKqLezqNFREREpDQmWkREREQKYaJFREREpBAmWkREREQKYaJFREREpBAmWkREREQKYaJFREREpBAmWkREREQKYaJFREREpBAmWkREREQKYaJFREREpBAmWkREREQKYaJFREREpBAmWkREREQKYaJFREREpBAmWkREREQKYaJFREREpBAmWkREREQKYaJFREREpJAGlq4AVZ2srCwUFhaWul6tVsPJyakaa0RERFS/MdGqI7KysjB//vxy42JiYphsERERVRPeOqwjyurJup84IiIienBMtOooo9EeaWmeMBrtLV0VIiKieou3Duuggwc7Y9Om3hDCCiqVCeHhm+Hnl2rpahEREdU77NGqY4xGeynJAgAhrLBpU2/2bBEREVkAE606JjvbSUqyiglhhexsRwvViIiIqP5iolXHODpmQaUyycpUKhMcHbMtVCMiIqL6i4lWHaPT5SE8fLOUbBWP0dLp8ixcMyIiovqHg+HrCLVaLf3u55cKb++zyM52hKNjtizJujuOiIiIlMVEq45wcnJCTEwMZ4YnIiKqQZho1SFMoogsi6/BIqJ7MdEiIqoCfA0WEZnDwfBERFXg3p6s0t7OwNdgEdUv7NEiIqpifDsDERVjjxYRURXi2xmI6G5MtIiIqhDfzkBEd2OiRURUhfh2BiK6GxMtIqIqxLczENHdLJ5oLViwAJ6entBqtQgMDMTevXvLjF+zZg3atm0LrVaLjh07YuvWrbL1QghMnDgRbm5usLW1RWhoKM6cOSOL6dOnD1q0aAGtVgs3NzcMGjQIly9fltanp6dDpVKVWPbs2VOpuhBR/eTnl4rY2DmIikpEbOwcDoQnqscsmmitWrUKcXFxiI+Px8GDB9GpUyfo9XpcuXLFbPzu3bsxcOBADB06FKmpqYiIiEBERASOHTsmxUyfPh1z587FwoULkZKSAjs7O+j1ety6dUuK6dmzJ1avXo3Tp09j7dq1OHfuHF588cUSx/vpp5+QkZEhLf7+/pWqCxHVH/e+3kqny4OX1/kSPVl8DRZR/aISQghLHTwwMBCPPfaYNMmfyWSCh4cH3nzzTbz33nsl4vv374/8/Hxs3rxZKuvatSt8fX2xcOFCCCHg7u6Od955B6NHjwYAGI1GuLi4IDExEQMGDDBbj40bNyIiIgIFBQWwsbFBeno6vLy8kJqaCl9fX7PblFeXisjNzYVOp4PRaISDg0OFtiGimoszwxPVD5X5/rZYj1ZhYSEOHDiA0NDQfypjZYXQ0FAkJyeb3SY5OVkWDwB6vV6KT0tLg8FgkMXodDoEBgaWus/s7GwsX74cwcHBsLGxka3r06cPmjVrhm7dumHjxo2Vqos5BQUFyM3NlS1EVHc4OTnBzc2t1IVJFlH9Y7FE69q1aygqKoKLi4us3MXFBQaDwew2BoOhzPjinxXZ59ixY2FnZwcnJydcuHABGzZskNY1atQIs2bNwpo1a7BlyxZ069YNERERsmSrvLqYk5CQAJ1OJy0eHh6lxhIREVHtZ/HB8Jby7rvvIjU1Fdu3b4e1tTUiIyNRfBfV2dkZcXFx0q3NadOm4dVXX8WMGTMe6Jjjxo2D0WiUlosXL1bFqRAREVENZbFX8Dg7O8Pa2hqZmZmy8szMTLi6uprdxtXVtcz44p+ZmZlwc3OTxdw71srZ2RnOzs5o3bo12rVrBw8PD+zZswdBQUFmjx0YGIgdO3ZUuC7maDQaaDSaUtcTERFR3WKxHi21Wg1/f38kJSVJZSaTCUlJSaUmO0FBQbJ4ANixY4cU7+XlBVdXV1lMbm4uUlJSSt1n8XGBO2OoSnPo0CFZ8lZeXYiIiIgs+lLpuLg4REVFoUuXLggICMCcOXOQn5+PIUOGAAAiIyPRvHlzJCQkAABGjRqFkJAQzJo1C2FhYVi5ciX279+PxYsXAwBUKhViY2MxdepU+Pj4wMvLCxMmTIC7uzsiIiIAACkpKdi3bx+6deuGJk2a4Ny5c5gwYQK8vb2lJGnZsmVQq9Xo3LkzAGDdunVYsmQJvvrqK6nu5dWFiIiICMLC5s2bJ1q0aCHUarUICAgQe/bskdaFhISIqKgoWfzq1atF69athVqtFh06dBBbtmyRrTeZTGLChAnCxcVFaDQa8dRTT4nTp09L648cOSJ69uwpHB0dhUajEZ6enmLEiBHi0qVLUkxiYqJo166daNiwoXBwcBABAQFizZo1JepeXl3KYzQaBQBhNBortR0RERFZTmW+vy06j1Z9x3m0iIiIap9aMY8WERERUV3HRIuIiIhIIUy0iIiIiBRi0acOiYiIysL3R1Jtx0SLiIhqpKysLMyfP7/cuJiYGCZbVGPx1iEREdVI9/ZkGY32SEvzhNFoX2YcUU3CHi0iIqrxDh7sjE2bekMIK6hUJoSHb4afX6qlq0VULvZoERFRjWY02ktJFgAIYYVNm3qX6NkiqomYaBERUY2Wne0kJVnFhLBCdrajhWpEVHFMtIiIqEZzdMyCSmWSlalUJjg6ZluoRkQVx0SLiIhqNJ0uD+Hhm6Vkq3iMlk6XZ+GaEZWvygbD37p1C/Pnz8fo0aOrapdEREQAAD+/VHh7n0V2tiMcHbOZZFGtUakeratXr2Lz5s3Yvn07ioqKAAC3b9/GZ599Bk9PT0ybNk2RShIRUf2jVqtln3W6PHh5nS+RZN0bR1STVLhH6/fff0fv3r2Rm5sLlUqFLl26YOnSpYiIiECDBg0wadIkREVFKVlXIqqnODt4/eTk5ISYmBj+t6daTSWEEBUJ7NGjB9zd3TF+/HgsW7YMs2bNgo+PDz766CO8+OKLStezTsrNzYVOp4PRaISDg4Olq0NUI3F2cCKqaSrz/V3hW4dHjx7FBx98gEceeQSTJ0+GSqXC9OnTmWQRkaI4OzgR1WYVvnV4/fp1ODs7AwBsbW3RsGFDPPLII4pVjIjoXpwdnIhqm0o9dXjixAkYDAYAgBACp0+fRn5+vizm0UcfrbraERH9f6XNDu7tfZZPoBFRjVWpROupp57C3UO6evfuLVuvUqmkpxGJiKpSWbODM9EiopqqwolWWlpauTF5efyfHREpo3h28LuTLc4OTkQ1XYUTrZYtW5otz8vLw3fffYevv/4a+/fvZ48WESmieHbwe8dosTeLiGqy+54Z/tdff8XXX3+NtWvXwt3dHc8//3yFHsEmIrpfnB2ciGqbSiVaBoMBiYmJ+Prrr5Gbm4t+/fqhoKAA69evR/v27ZWqIxHVY+ZmBzeXYHF2cCKqiSo8YWl4eDh+/fVXhIWF4ZVXXkGvXr1gbW0NGxsbHD58mInWfeCEpUQVw5nhiagmqcz3d4V7tP7zn//grbfewhtvvAEfH58HriQRUUUxiSKi2qrCM8P//vvvyMvLg7+/PwIDAzF//nxcu3ZNyboRERER1WoVTrS6du2KL7/8EhkZGRg+fDhWrlwJd3d3mEwm7Nixg1M7EBEREd2jwmO0zDl9+jS+/vprfPPNN8jJycHTTz+NjRs3VmX96jSO0SIiIqp9FHmptDlt2rTB9OnTcenSJXz33XcPsisiIiKiOueBerTowbBHi4iIqPapth4tIiIiIiodEy0iIiIihTDRIiIiIlIIEy0iIiIihTDRIiIiIlIIEy0iIiIihTDRIiIiIlIIEy0iIiIihTDRIiIiIlIIEy0iIiIihVg80VqwYAE8PT2h1WoRGBiIvXv3lhm/Zs0atG3bFlqtFh07dsTWrVtl64UQmDhxItzc3GBra4vQ0FCcOXNGFtOnTx+0aNECWq0Wbm5uGDRoEC5fviyt37lzJ/r27Qs3NzfY2dnB19cXy5cvl+0jMTERKpVKtmi12gdsDSIiIqpLLJporVq1CnFxcYiPj8fBgwfRqVMn6PV6XLlyxWz87t27MXDgQAwdOhSpqamIiIhAREQEjh07JsVMnz4dc+fOxcKFC5GSkgI7Ozvo9XrcunVLiunZsydWr16N06dPY+3atTh37hxefPFF2XEeffRRrF27FkeOHMGQIUMQGRmJzZs3y+rj4OCAjIwMaTl//nwVtxARERHVZhZ9qXRgYCAee+wxzJ8/HwBgMpng4eGBN998E++9916J+P79+yM/P1+W8HTt2hW+vr5YuHAhhBBwd3fHO++8g9GjRwMAjEYjXFxckJiYiAEDBpitx8aNGxEREYGCggLY2NiYjQkLC4OLiwuWLFkC4E6PVmxsLHJycu77/PlSaSIiotqnVrxUurCwEAcOHEBoaOg/lbGyQmhoKJKTk81uk5ycLIsHAL1eL8WnpaXBYDDIYnQ6HQIDA0vdZ3Z2NpYvX47g4OBSkyzgTsLm6OgoK7tx4wZatmwJDw8P9O3bF8ePHy/7pImIiKhesViide3aNRQVFcHFxUVW7uLiAoPBYHYbg8FQZnzxz4rsc+zYsbCzs4OTkxMuXLiADRs2lFrX1atXY9++fRgyZIhU1qZNGyxZsgQbNmzAt99+C5PJhODgYFy6dKnU/RQUFCA3N1e2EBERUd1l8cHwlvLuu+8iNTUV27dvh7W1NSIjI2HuLurPP/+MIUOG4Msvv0SHDh2k8qCgIERGRsLX1xchISFYt24dmjZtikWLFpV6zISEBOh0Omnx8PBQ5NyIiIioZrBYouXs7Axra2tkZmbKyjMzM+Hq6mp2G1dX1zLji39WZJ/Ozs5o3bo1nn76aaxcuRJbt27Fnj17ZDG//PILwsPDMXv2bERGRpZ5PjY2NujcuTPOnj1basy4ceNgNBql5eLFi2Xuk4iIiGo3iyVaarUa/v7+SEpKkspMJhOSkpIQFBRkdpugoCBZPADs2LFDivfy8oKrq6ssJjc3FykpKaXus/i4wJ1be8V27tyJsLAwfPLJJ4iOji73fIqKinD06FG4ubmVGqPRaODg4CBbiIiIqO5qYMmDx8XFISoqCl26dEFAQADmzJmD/Px8aSxUZGQkmjdvjoSEBADAqFGjEBISglmzZiEsLAwrV67E/v37sXjxYgCASqVCbGwspk6dCh8fH3h5eWHChAlwd3dHREQEACAlJQX79u1Dt27d0KRJE5w7dw4TJkyAt7e3lIz9/PPP6N27N0aNGoUXXnhBGt+lVqulAfGTJ09G165d0apVK+Tk5GDGjBk4f/48hg0bVp1NSERERDWZsLB58+aJFi1aCLVaLQICAsSePXukdSEhISIqKkoWv3r1atG6dWuhVqtFhw4dxJYtW2TrTSaTmDBhgnBxcREajUY89dRT4vTp09L6I0eOiJ49ewpHR0eh0WiEp6enGDFihLh06ZIUExUVJQCUWEJCQqSY2NhYqd4uLi7iueeeEwcPHqzUuRuNRgFAGI3GSm1HREREllOZ72+LzqNV33EeLSIiotqnVsyjRURERFTXMdEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFMNEiIiIiUggTLSIiIiKFWDzRWrBgATw9PaHVahEYGIi9e/eWGb9mzRq0bdsWWq0WHTt2xNatW2XrhRCYOHEi3NzcYGtri9DQUJw5c0YW06dPH7Ro0QJarRZubm4YNGgQLl++LIs5cuQIunfvDq1WCw8PD0yfPr3SdSEiIqL6zaKJ1qpVqxAXF4f4+HgcPHgQnTp1gl6vx5UrV8zG7969GwMHDsTQoUORmpqKiIgIRERE4NixY1LM9OnTMXfuXCxcuBApKSmws7ODXq/HrVu3pJiePXti9erVOH36NNauXYtz587hxRdflNbn5ubimWeeQcuWLXHgwAHMmDEDkyZNwuLFiytVFyIiIqrnhAUFBASIkSNHSp+LioqEu7u7SEhIMBvfr18/ERYWJisLDAwUw4cPF0IIYTKZhKurq5gxY4a0PicnR2g0GvHdd9+VWo8NGzYIlUolCgsLhRBCfP7556JJkyaioKBAihk7dqxo06ZNhetSEUajUQAQRqOxwtsQERGRZVXm+9tiPVqFhYU4cOAAQkNDpTIrKyuEhoYiOTnZ7DbJycmyeADQ6/VSfFpaGgwGgyxGp9MhMDCw1H1mZ2dj+fLlCA4Oho2NjXScJ554Amq1Wnac06dP4/r16xWqizkFBQXIzc2VLURERFR3WSzRunbtGoqKiuDi4iIrd3FxgcFgMLuNwWAoM774Z0X2OXbsWNjZ2cHJyQkXLlzAhg0byj3O3ccory7mJCQkQKfTSYuHh0epsURERFT7WXwwvKW8++67SE1Nxfbt22FtbY3IyEgIIRQ95rhx42A0GqXl4sWLih6PiIiILKuBpQ7s7OwMa2trZGZmysozMzPh6upqdhtXV9cy44t/ZmZmws3NTRbj6+tb4vjOzs5o3bo12rVrBw8PD+zZswdBQUGlHufuY5RXF3M0Gg00Gk2p64mIiKhusViPllqthr+/P5KSkqQyk8mEpKQkBAUFmd0mKChIFg8AO3bskOK9vLzg6uoqi8nNzUVKSkqp+yw+LnBnDFXxcX799Vfcvn1bdpw2bdqgSZMmFaoLERERkUWfOly5cqXQaDQiMTFRnDhxQkRHR4vGjRsLg8EghBBi0KBB4r333pPid+3aJRo0aCBmzpwpTp48KeLj44WNjY04evSoFDNt2jTRuHFjsWHDBnHkyBHRt29f4eXlJf7++28hhBB79uwR8+bNE6mpqSI9PV0kJSWJ4OBg4e3tLW7duiWEuPOkoouLixg0aJA4duyYWLlypWjYsKFYtGhRpepSHj51SEREVPtU5vvboomWEELMmzdPtGjRQqjVahEQECD27NkjrQsJCRFRUVGy+NWrV4vWrVsLtVotOnToILZs2SJbbzKZxIQJE4SLi4vQaDTiqaeeEqdPn5bWHzlyRPTs2VM4OjoKjUYjPD09xYgRI8SlS5dk+zl8+LDo1q2b0Gg0onnz5mLatGkl6l5eXcrDRIuIiKj2qcz3t0oIhUeAU6lyc3Oh0+lgNBrh4OBg6eoQERFRBVTm+7vePnVIREREpDQmWkREREQKYaJFREREpBAmWkREREQKYaJFREREpBAmWkREREQKYaJFREREpBAmWkREREQKYaJFREREpBAmWkREREQKYaJFREREpBAmWkREREQKYaJFREREpBAmWkREREQKYaJFREREpBAmWkREREQKaWDpChAREVHlZGVlobCwsNT1arUaTk5O1VgjKg0TLSIiolokKysL8+fPLzcuJiaGyVYNwESLiIioFimrJ+t+4iqCPWj3j4kWERFRLWY02iM72wmOjlnQ6fKqfP/sQXswTLSIiIhqqYMHO2PTpt4QwgoqlQnh4Zvh55dapcewRA9aXcKnDomIiGoho9FeSrIAQAgrbNrUG0ajveLHTUvzVPw4dQV7tIiIiGqh7GwnKckqJoQVsrMdFbmFCFRPD1pdwx4tIiKiWsjRMQsqlUlWplKZ4OiYrcjxLNWDVtsx0SIiIqqFdLo8hIdvlpKt4h4mpXqzyupBo9Lx1iEREVEtolarpd/9/FLh7X0W2dmOcHTMliVZd8dVheIetLuTLSV70OoKJlpERES1iJOTE2JiYqp9XqviHrR7x2gp1YNWVzDRIiIiqmWqc74qS/Wg1RVMtIiIiKhUlupBqyuYaBEREVGZmETdPz51SERERKQQJlpERERECmGiRURERKQQJlpERERECmGiRURERKQQJlpERERECmGiRURERKQQzqNFVMWysrI4sR8REQFgokVUpbKysjB//nzps9Foj+xsJzg6ZsleVRETE8Nki4ioHmCiRVSF7u7JOniwc4mXr/r5pZaIIyKiusviY7QWLFgAT09PaLVaBAYGYu/evWXGr1mzBm3btoVWq0XHjh2xdetW2XohBCZOnAg3NzfY2toiNDQUZ86ckdanp6dj6NCh8PLygq2tLby9vREfHy/74ps0aRJUKlWJxc7OTopJTEwssV6r1VZRq1BtZzTaS0kWAAhhhU2besNotLdwzYiIqDpZNNFatWoV4uLiEB8fj4MHD6JTp07Q6/W4cuWK2fjdu3dj4MCBGDp0KFJTUxEREYGIiAgcO3ZMipk+fTrmzp2LhQsXIiUlBXZ2dtDr9bh16xYA4NSpUzCZTFi0aBGOHz+O2bNnY+HChRg/fry0j9GjRyMjI0O2tG/fHi+99JKsPg4ODrKY8+fPK9BKVBtlZztJSVYxIayQne1ooRoREZFFCAsKCAgQI0eOlD4XFRUJd3d3kZCQYDa+X79+IiwsTFYWGBgohg8fLoQQwmQyCVdXVzFjxgxpfU5OjtBoNOK7774rtR7Tp08XXl5epa4/dOiQACB+/fVXqWzp0qVCp9OVeX7lMRqNAoAwGo0PtB+qOS5fviwmTZok3n57llCpigQgpEWlKhJvvz1LTJo0SVy+fNnSVSUiovtUme9vi/VoFRYW4sCBAwgNDZXKrKysEBoaiuTkZLPbJCcny+IBQK/XS/FpaWkwGAyyGJ1Oh8DAwFL3CQBGoxGOjqX3NHz11Vdo3bo1unfvLiu/ceMGWrZsCQ8PD/Tt2xfHjx8v/YQBFBQUIDc3V7ZQ3aTT5SE8fDNUKhMASGO07h4QT0REdZ/FBsNfu3YNRUVFcHFxkZW7uLjg1KlTZrcxGAxm4w0Gg7S+uKy0mHudPXsW8+bNw8yZM82uv3XrFpYvX4733ntPVt6mTRssWbIEjz76KIxGI2bOnIng4GAcP34cDz30kNl9JSQk4MMPPzS7juoeP79UeHufRXa2Ixwds5lkERHVQxYfDG9Jf/31F3r16oWXXnoJr7/+utmYH374AXl5eYiKipKVBwUFITIyEr6+vggJCcG6devQtGlTLFq0qNTjjRs3DkajUVouXrxYpedDNY9Olwcvr/NMsoiI6imLJVrOzs6wtrZGZmamrDwzMxOurq5mt3F1dS0zvvhnRfZ5+fJl9OzZE8HBwVi8eHGp9fzqq6/Qu3fvEr1k97KxsUHnzp1x9uzZUmM0Gg0cHBxkC9UtarW6SuOIiKh2s9itQ7VaDX9/fyQlJSEiIgIAYDKZkJSUhJiYGLPbBAUFISkpCbGxsVLZjh07EBQUBADw8vKCq6srkpKS4OvrCwDIzc1FSkoK3njjDWmbv/76Cz179oS/vz+WLl0KKyvz+WZaWhp+/vlnbNy4sdzzKSoqwtGjR/Hcc89V4OyprnJyckJMTAxnhiciIgAWnrA0Li4OUVFR6NKlCwICAjBnzhzk5+djyJAhAIDIyEg0b94cCQkJAIBRo0YhJCQEs2bNQlhYGFauXIn9+/dLPVIqlQqxsbGYOnUqfHx84OXlhQkTJsDd3V1K5v766y/06NEDLVu2xMyZM3H16lWpPvf2ei1ZsgRubm549tlnS9R98uTJ6Nq1K1q1aoWcnBzMmDED58+fx7Bhw5RoKqpFmEQREVExiyZa/fv3x9WrVzFx4kQYDAb4+vpi27Zt0m26CxcuyHqbgoODsWLFCnzwwQcYP348fHx8sH79ejzyyCNSzJgxY5Cfn4/o6Gjk5OSgW7du2LZtmzSZ6I4dO3D27FmcPXu2xKB1IYT0u8lkQmJiIgYPHgxra+sSdb9+/Tpef/11GAwGNGnSBP7+/ti9ezfat29fpW1EREREtZdK3J1dULXKzc2FTqeD0WjkeC0iIqJaojLf3/X6qUMiIiIiJTHRIiIiIlIIEy0iIiIihTDRIiIiIlIIEy0iIiIihTDRIiIiIlIIEy0iIiIihTDRIiIiIlIIEy0iIiIihTDRIiIiIlIIEy0iIiIihTDRIiIiIlIIEy0iIiIihTDRIiIiIlIIEy0iIiIihTDRIiIiIlIIEy0iIiIihTDRIiIiIlIIEy0iIiIihTDRIiIiIlIIEy0iIiIihTDRIiIiIlIIEy0iIiIihTDRIiIiIlIIEy0iIiIihTSwdAWIiIiIqkpWVhYKCwtLXa9Wq+Hk5FRt9WGiRURERHVCVlYW5s+fX25cTExMtSVbvHVIREREdUJZPVn3E1cVmGgRERERKYSJFhEREdVJRqM90tI8YTTaW6wOHKNFREREdc7Bg52xaVNvCGEFlcqE8PDN8PNLrfZ6sEeLiIiI6hSj0V5KsgBACCts2tTbIj1bTLSIiIioTsnOdpKSrGJCWCE727Ha68JEi4iIiOoUR8csqFQmWZlKZYKjY3a114WJFhEREdUJarUaAKDT5SE8fLOUbBWP0dLp8mRx1UElhBDVdjSSyc3NhU6ng9FohIODg6WrQ0REVOvdPTP85ctWSE9vAE/P/8Hd/U7SVRUzw1fm+5tPHRIREVGdcXcS5eYG+PtbsDLgrUMiIiIixTDRIiIiIlIIEy0iIiIihVg80VqwYAE8PT2h1WoRGBiIvXv3lhm/Zs0atG3bFlqtFh07dsTWrVtl64UQmDhxItzc3GBra4vQ0FCcOXNGWp+eno6hQ4fCy8sLtra28Pb2Rnx8vOwFk+np6VCpVCWWPXv2VKouREREVL9ZNNFatWoV4uLiEB8fj4MHD6JTp07Q6/W4cuWK2fjdu3dj4MCBGDp0KFJTUxEREYGIiAgcO3ZMipk+fTrmzp2LhQsXIiUlBXZ2dtDr9bh16xYA4NSpUzCZTFi0aBGOHz+O2bNnY+HChRg/fnyJ4/3000/IyMiQFv+7RtRVpC5ERERUv1l0eofAwEA89thjmD9/PgDAZDLBw8MDb775Jt57770S8f3790d+fj42b94slXXt2hW+vr5YuHAhhBBwd3fHO++8g9GjRwMAjEYjXFxckJiYiAEDBpitx4wZM/DFF1/gzz//BHCnR8vLywupqanw9fU1u015dakITu9ARERU+1Tm+9tiPVqFhYU4cOAAQkND/6mMlRVCQ0ORnJxsdpvk5GRZPADo9XopPi0tDQaDQRaj0+kQGBhY6j6BO8mYo2PJafn79OmDZs2aoVu3bti4cWOl6mJOQUEBcnNzZQsRERHVXRZLtK5du4aioiK4uLjIyl1cXGAwGMxuYzAYyowv/lmZfZ49exbz5s3D8OHDpbJGjRph1qxZWLNmDbZs2YJu3bohIiJClmyVVxdzEhISoNPppMXDw6PUWCIiIqr96vWEpX/99Rd69eqFl156Ca+//rpU7uzsjLi4OOnzY489hsuXL2PGjBno06fPfR9v3Lhxsv3m5uYy2SIiIqrDLNaj5ezsDGtra2RmZsrKMzMz4erqanYbV1fXMuOLf1Zkn5cvX0bPnj0RHByMxYsXl1vfwMBAnD17tsJ1MUej0cDBwUG2EBERUd1lsURLrVbD398fSUlJUpnJZEJSUhKCgoLMbhMUFCSLB4AdO3ZI8V5eXnB1dZXF5ObmIiUlRbbPv/76Cz169IC/vz+WLl0KK6vym+HQoUNwc3OrcF2IiIiILHrrMC4uDlFRUejSpQsCAgIwZ84c5OfnY8iQIQCAyMhING/eHAkJCQCAUaNGISQkBLNmzUJYWBhWrlyJ/fv3Sz1SKpUKsbGxmDp1Knx8fODl5YUJEybA3d0dERERAP5Jslq2bImZM2fi6tWrUn2Ke6OWLVsGtVqNzp07AwDWrVuHJUuW4KuvvpJiy6tLRRQ/8MlB8URERLVH8fd2hSZuEBY2b9480aJFC6FWq0VAQIDYs2ePtC4kJERERUXJ4levXi1at24t1Gq16NChg9iyZYtsvclkEhMmTBAuLi5Co9GIp556Spw+fVpav3TpUgHA7FIsMTFRtGvXTjRs2FA4ODiIgIAAsWbNmhJ1L68u5bl48WKpdeHChQsXLly41Ozl4sWL5X7XW3QerfrOZDLh8uXLsLe3h0qlsnR1qkXxAwAXL16s92PU2Bb/YFv8g23xD7bFP9gW/6gJbSGEQF5eHtzd3csdflSvnzq0NCsrKzz00EOWroZF8GGAf7At/sG2+Afb4h9si3+wLf5h6bbQ6XQVirP4uw6JiIiI6iomWkREREQKYaJF1Uqj0SA+Ph4ajcbSVbE4tsU/2Bb/YFv8g23xD7bFP2pbW3AwPBEREZFC2KNFREREpBAmWkREREQKYaJFREREpBAmWkREREQKYaJFD2zBggXw9PSEVqtFYGAg9u7dW2b8nDlz0KZNG9ja2sLDwwNvv/02bt26Ja2fNGkSVCqVbGnbtq3Sp1ElKtMWt2/fxuTJk+Ht7Q2tVotOnTph27ZtD7TPmqSq26I2Xhe//vorwsPD4e7uDpVKhfXr15e7zc6dO+Hn5weNRoNWrVohMTGxRExtvCaUaIvaeE0AlW+LjIwMvPzyy2jdujWsrKwQGxtrNm7NmjVo27YttFotOnbsiK1bt1Z95auYEm2RmJhY4rrQarXKnEAFMNGiB7Jq1SrExcUhPj4eBw8eRKdOnaDX63HlyhWz8StWrMB7772H+Ph4nDx5El9//TVWrVqF8ePHy+I6dOiAjIwMafn999+r43QeSGXb4oMPPsCiRYswb948nDhxAiNGjMC//vUvpKam3vc+awol2gKofddFfn4+OnXqhAULFlQoPi0tDWFhYejZsycOHTqE2NhYDBs2DD/++KMUU1uvCSXaAqh91wRQ+bYoKChA06ZN8cEHH6BTp05mY3bv3o2BAwdi6NChSE1NRUREBCIiInDs2LGqrHqVU6ItgDuzxt99XZw/f76qqlx5lXoLMtE9AgICxMiRI6XPRUVFwt3dXSQkJJiNHzlypHjyySdlZXFxceLxxx+XPsfHx4tOnTopUl8lVbYt3NzcxPz582Vlzz//vHjllVfue581hRJtUVuvi2IAxA8//FBmzJgxY0SHDh1kZf379xd6vV76XFuvibtVVVvU9mtCiIq1xd1CQkLEqFGjSpT369dPhIWFycoCAwPF8OHDH7CG1aeq2mLp0qVCp9NVWb0eFHu06L4VFhbiwIEDCA0NlcqsrKwQGhqK5ORks9sEBwfjwIED0q2OP//8E1u3bsVzzz0niztz5gzc3d3x8MMP45VXXsGFCxeUO5EqcD9tUVBQUKI729bWVvoX+f3ssyZQoi2K1bbrorKSk5Nl7QYAer1earfaek3cj/LaolhdvyYqqqLtVV/cuHEDLVu2hIeHB/r27Yvjx49brC5MtOi+Xbt2DUVFRXBxcZGVu7i4wGAwmN3m5ZdfxuTJk9GtWzfY2NjA29sbPXr0kN06DAwMRGJiIrZt24YvvvgCaWlp6N69O/Ly8hQ9nwdxP22h1+vx6aef4syZMzCZTNixYwfWrVuHjIyM+95nTaBEWwC187qoLIPBYLbdcnNz8ffff9faa+J+lNcWQP24JiqqtPaqa9dFRbRp0wZLlizBhg0b8O2338JkMiE4OBiXLl2ySH2YaFG12rlzJz7++GN8/vnnOHjwINatW4ctW7ZgypQpUsyzzz6Ll156CY8++ij0ej22bt2KnJwcrF692oI1r3qfffYZfHx80LZtW6jVasTExGDIkCGwsqp/f5YVaYv6cl1QxfGaIHOCgoIQGRkJX19fhISEYN26dWjatCkWLVpkkfrUv/+jU5VxdnaGtbU1MjMzZeWZmZlwdXU1u82ECRMwaNAgDBs2DB07dsS//vUvfPzxx0hISIDJZDK7TePGjdG6dWucPXu2ys+hqtxPWzRt2hTr169Hfn4+zp8/j1OnTqFRo0Z4+OGH73ufNYESbWFObbguKsvV1dVsuzk4OMDW1rbWXhP3o7y2MKcuXhMVVVp71bXr4n7Y2Nigc+fOFrsumGjRfVOr1fD390dSUpJUZjKZkJSUhKCgILPb3Lx5s0SPjbW1NQBAlPLazRs3buDcuXNwc3OroppXvftpi2JarRbNmzfH//73P6xduxZ9+/Z94H1akhJtYU5tuC4qKygoSNZuALBjxw6p3WrrNXE/ymsLc+riNVFR99Ne9UVRURGOHj1quevC0qPxqXZbuXKl0Gg0IjExUZw4cUJER0eLxo0bC4PBIIQQYtCgQeK9996T4uPj44W9vb347rvvxJ9//im2b98uvL29Rb9+/aSYd955R+zcuVOkpaWJXbt2idDQUOHs7CyuXLlS7edXGZVtiz179oi1a9eKc+fOiV9//VU8+eSTwsvLS1y/fr3C+6yplGiL2nhd5OXlidTUVJGamioAiE8//VSkpqaK8+fPCyGEeO+998SgQYOk+D///FM0bNhQvPvuu+LkyZNiwYIFwtraWmzbtk2Kqa3XhBJtURuvCSEq3xZCCCne399fvPzyyyI1NVUcP35cWr9r1y7RoEEDMXPmTHHy5EkRHx8vbGxsxNGjR6v13CpLibb48MMPxY8//ijOnTsnDhw4IAYMGCC0Wq0spjox0aIHNm/ePNGiRQuhVqtFQECA2LNnj7QuJCREREVFSZ9v374tJk2aJLy9vYVWqxUeHh7i//7v/2RfqP379xdubm5CrVaL5s2bi/79+4uzZ89W4xndv8q0xc6dO0W7du2ERqMRTk5OYtCgQeKvv/6q1D5rsqpui9p4Xfz8888CQIml+NyjoqJESEhIiW18fX2FWq0WDz/8sFi6dGmJ/dbGa0KJtqiN14QQ99cW5uJbtmwpi1m9erVo3bq1UKvVokOHDmLLli3Vc0IPQIm2iI2Nlf4+XFxcxHPPPScOHjxYfSd1D5UQpdyvISIiIqIHwjFaRERERAphokVERESkECZaRERERAphokVERESkECZaRERERAphokVERESkECZaRERERAphokVERDI7d+6ESqVCTk6OpatCVOsx0SIiixk8eDBUKhWmTZsmK1+/fj1UKpX0WQiBL7/8EkFBQXBwcECjRo3QoUMHjBo1qsIvir158ybGjRsHb29vaLVaNG3aFCEhIdiwYYMU4+npiTlz5lTJuSmtuO1UKhVsbGzg5eWFMWPG4NatW5XaT48ePRAbGysrCw4ORkZGBnQ6XRXWmKh+YqJFRBal1WrxySef4Pr162bXCyHw8ssv46233sJzzz2H7du348SJE/j666+h1WoxderUCh1nxIgRWLduHebNm4dTp05h27ZtePHFF5GVlVWVp1OtevXqhYyMDPz555+YPXs2Fi1ahPj4+Afer1qthqurqyzZJaL7ZLGX/xBRvRcVFSV69+4t2rZtK959912p/IcffhDF/3v67rvvBACxYcMGs/swmUwVOpZOpxOJiYmlrg8JCSnx/rRiv/32m+jWrZvQarXioYceEm+++aa4ceOGtP7f//638Pf3F40aNRIuLi5i4MCBIjMzU1pf/D63bdu2CV9fX6HVakXPnj1FZmam2Lp1q2jbtq2wt7cXAwcOFPn5+RU6n6ioKNG3b19Z2fPPPy86d+4sfb527ZoYMGCAcHd3F7a2tuKRRx4RK1askO3j3nNOS0uT6nv3O0i///570b59e6FWq0XLli3FzJkzK1RPovqOPVpEZFHW1tb4+OOPMW/ePFy6dKnE+u+++w5t2rRBnz59zG5f0V4XV1dXbN26FXl5eWbXr1u3Dg899BAmT56MjIwMZGRkAADOnTuHXr164YUXXsCRI0ewatUq/P7774iJiZG2vX37NqZMmYLDhw9j/fr1SE9Px+DBg0scY9KkSZg/fz52796Nixcvol+/fpgzZw5WrFiBLVu2YPv27Zg3b16Fzudex44dw+7du6FWq6WyW7duwd/fH1u2bMGxY8cQHR2NQYMGYe/evQCAzz77DEFBQXj99delc/bw8Cix7wMHDqBfv34YMGAAjh49ikmTJmHChAlITEy8r7oS1SuWzvSIqP66u1ema9eu4rXXXhNCyHu02rZtK/r06SPbbtSoUcLOzk7Y2dmJ5s2bV+hYv/zyi3jooYeEjY2N6NKli4iNjRW///67LKZly5Zi9uzZsrKhQ4eK6OhoWdlvv/0mrKysxN9//232WPv27RMARF5enhDinx6tn376SYpJSEgQAMS5c+eksuHDhwu9Xl+h84mKihLW1tbCzs5OaDQaAUBYWVmJ77//vsztwsLCxDvvvCN9DgkJEaNGjZLF3Nuj9fLLL4unn35aFvPuu++K9u3bV6iuRPUZe7SIqEb45JNPsGzZMpw8ebLc2Pfffx+HDh3CxIkTcePGjQrt/4knnsCff/6JpKQkvPjiizh+/Di6d++OKVOmlLnd4cOHkZiYiEaNGkmLXq+HyWRCWloagDs9PuHh4WjRogXs7e0REhICALhw4YJsX48++qj0u4uLCxo2bIiHH35YVnblypUKnQ8A9OzZE4cOHUJKSgqioqIwZMgQvPDCC9L6oqIiTJkyBR07doSjoyMaNWqEH3/8sUS9ynPy5Ek8/vjjsrLHH38cZ86cQVFRUaX2RVTfMNEiohrhiSeegF6vx7hx42TlPj4+OH36tKysadOmaNWqFZo1a1apY9jY2KB79+4YO3Ystm/fjsmTJ2PKlCkoLCwsdZsbN25g+PDhOHTokLQcPnwYZ86cgbe3N/Lz86HX6+Hg4IDly5dj3759+OGHHwCgxH5tbGyk34ufFrybSqWCyWSq8PnY2dmhVatW6NSpE5YsWYKUlBR8/fXX0voZM2bgs88+w9ixY/Hzzz/j0KFD0Ov1ZZ4vEVWtBpauABFRsWnTpsHX1xdt2rSRygYOHIiXX34ZGzZsQN++fav0eO3bt8f//vc/3Lp1C2q1Gmq1ukQPjZ+fH06cOIFWrVqZ3cfRo0eRlZWFadOmSeOb9u/fX6X1rAgrKyuMHz8ecXFxePnll2Fra4tdu3ahb9++ePXVVwEAJpMJf/zxB9q3by9tZ+6c79WuXTvs2rVLVrZr1y60bt0a1tbWVX8yRHUIe7SIqMbo2LEjXnnlFcydO1cqGzBgAF588UUMGDAAkydPRkpKCtLT0/HLL79g1apVFf6i79GjBxYtWoQDBw4gPT0dW7duxfjx49GzZ084ODgAuDOP1q+//oq//voL165dAwCMHTsWu3fvRkxMDA4dOoQzZ85gw4YN0mD4Fi1aQK1WY968efjzzz+xcePGcm9HKuWll16CtbU1FixYAOBOb+COHTuwe/dunDx5EsOHD0dmZqZsG09PT6lNr127ZrZH7Z133kFSUhKmTJmCP/74A8uWLcP8+fMxevToajkvotqMiRYR1SiTJ0+WfdmrVCqsWrUKc+bMwdatW/HUU0+hTZs2eO211+Dh4YHff/+9QvvV6/VYtmwZnnnmGbRr1w5vvvkm9Ho9Vq9eLTt2eno6vL290bRpUwB3xlX98ssv+OOPP9C9e3d07twZEydOhLu7O4A7tzETExOxZs0atG/fHtOmTcPMmTOrsEUqrkGDBoiJicH06dORn5+PDz74AH5+ftDr9ejRowdcXV0REREh22b06NGwtrZG+/bt0bRpU7Pjt/z8/LB69WqsXLkSjzzyCCZOnIjJkyebfbKSiORUQghh6UoQERER1UXs0SIiIiJSCBMtIqoT7p5+4d7lt99+s3T1KuXChQtlnk9lp2cgIsvhrUMiqhPKerl08+bNYWtrW421eTD/+9//kJ6eXup6T09PNGjAh8aJagMmWkREREQK4a1DIiIiIoUw0SIiIiJSCBMtIiIiIoUw0SIiIiJSCBMtIiIiIoUw0SIiIiJSCBMtIiIiIoUw0SIiIiJSyP8Dz8SR2wueYwQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW/xJREFUeJzt3XtYVNXiPvB3QGYGEMYGlIuiEOLdRDARUkmjxg6inPR4K0Uz0b5icjCvKZhaKHnBW5n9TKwkL2neMtQoKxNRAVPTSAnT0kGFHBATjFm/PzzsHLmIIzADvJ/nmQdZe+29117NOfOy9pq1ZUIIASIiIiJ6KBambgARERFRXcQQRURERGQEhigiIiIiIzBEERERERmBIYqIiIjICAxRREREREZgiCIiIiIyAkMUERERkREYooiIiIiMwBBFRFTPJSQkQCaT4cKFC6ZuClG9whBFRI/s2LFjiIiIQMeOHWFra4uWLVtiyJAh+OWXX8rUffrppyGTySCTyWBhYQF7e3u0bdsWI0eOxIEDBx7qvLt370ZgYCCaNWsGGxsbPP744xgyZAiSkpKq69LKePvtt7Fjx44y5YcPH8bcuXNx48aNGjv3/ebOnSv1pUwmg42NDTp06IDZs2cjPz+/Ws6RmJiI+Pj4ajkWUX3DEEVEj2zRokXYtm0bnnnmGSxfvhzh4eH47rvv4OPjg9OnT5ep36JFC3z88cf46KOP8M4772DAgAE4fPgwnnvuOQwdOhR37tx54DkXL16MAQMGQCaTYebMmVi2bBkGDRqEc+fOYdOmTTVxmQAqD1FvvvlmrYaoUu+99x4+/vhjLF26FO3atcNbb72Ffv36oToejcoQRVSxRqZuABHVfVFRUUhMTIRcLpfKhg4dis6dO2PhwoX45JNPDOqrVCq89NJLBmULFy7Ea6+9hnfffRfu7u5YtGhRhef7+++/MX/+fDz77LPYv39/me1Xr159xCsyH7du3YKNjU2ldQYPHgxHR0cAwIQJEzBo0CBs374dR44cgb+/f200k6hB4kgUET2ygIAAgwAFAF5eXujYsSPOnj1bpWNYWlpixYoV6NChA1atWgWdTldh3evXryM/Px9PPfVUudubNWtm8Pvt27cxd+5ctGnTBkqlEi4uLnjhhReQlZUl1Vm8eDECAgLg4OAAa2tr+Pr64rPPPjM4jkwmQ2FhITZs2CDdQhs9ejTmzp2LqVOnAgA8PDykbffOQfrkk0/g6+sLa2trqNVqDBs2DJcuXTI4/tNPP41OnTohLS0NvXv3ho2NDWbNmlWl/rtX3759AQDZ2dmV1nv33XfRsWNHKBQKuLq6YuLEiQYjaU8//TS++OIL/Pbbb9I1ubu7P3R7iOorjkQRUY0QQiAnJwcdO3as8j6WlpYYPnw45syZg0OHDiE4OLjces2aNYO1tTV2796NSZMmQa1WV3jMkpIS9O/fH8nJyRg2bBgmT56MgoICHDhwAKdPn4anpycAYPny5RgwYABefPFFFBcXY9OmTfjPf/6DPXv2SO34+OOP8corr6B79+4IDw8HAHh6esLW1ha//PILPv30UyxbtkwaFWratCkA4K233sKcOXMwZMgQvPLKK7h27RpWrlyJ3r17IyMjA02aNJHam5ubi+effx7Dhg3DSy+9BCcnpyr3X6nScOjg4FBhnblz5+LNN99EUFAQXn31VWRmZuK9997DsWPH8MMPP8DKygpvvPEGdDodfv/9dyxbtgwA0Lhx44duD1G9JYiIasDHH38sAIh169YZlAcGBoqOHTtWuN/nn38uAIjly5dXevzo6GgBQNja2ornn39evPXWWyItLa1MvQ8//FAAEEuXLi2zTa/XS/++deuWwbbi4mLRqVMn0bdvX4NyW1tbERYWVuZY77zzjgAgsrOzDcovXLggLC0txVtvvWVQfurUKdGoUSOD8sDAQAFArFmzpsLrvldMTIwAIDIzM8W1a9dEdna2eP/994VCoRBOTk6isLBQCCHE+vXrDdp29epVIZfLxXPPPSdKSkqk461atUoAEB9++KFUFhwcLFq1alWl9hA1NLydR0TV7ueff8bEiRPh7++PsLCwh9q3dKSjoKCg0npvvvkmEhMT0bVrV+zbtw9vvPEGfH194ePjY3ALcdu2bXB0dMSkSZPKHEMmk0n/tra2lv79559/QqfToVevXkhPT3+o9t9v+/bt0Ov1GDJkCK5fvy69nJ2d4eXlhW+++cagvkKhwJgxYx7qHG3btkXTpk3h4eGB8ePHo3Xr1vjiiy8qnEv11Vdfobi4GJGRkbCw+OdjYNy4cbC3t8cXX3zx8BdK1ADxdh4RVSutVovg4GCoVCp89tlnsLS0fKj9b968CQCws7N7YN3hw4dj+PDhyM/PR2pqKhISEpCYmIiQkBCcPn0aSqUSWVlZaNu2LRo1qvz/7vbs2YMFCxbgxIkTKCoqksrvDVrGOHfuHIQQ8PLyKne7lZWVwe/NmzcvM7/sQbZt2wZ7e3tYWVmhRYsW0i3Kivz2228A7oave8nlcjz++OPSdiKqHEMUEVUbnU6H559/Hjdu3MD3338PV1fXhz5G6ZIIrVu3rvI+9vb2ePbZZ/Hss8/CysoKGzZsQGpqKgIDA6u0//fff48BAwagd+/eePfdd+Hi4gIrKyusX78eiYmJD30N99Lr9ZDJZPjyyy/LDZT3zzG6d0Ssqnr37i3NwyKi2sMQRUTV4vbt2wgJCcEvv/yCr776Ch06dHjoY5SUlCAxMRE2Njbo2bOnUe3o1q0bNmzYgCtXrgC4O/E7NTUVd+7cKTPqU2rbtm1QKpXYt28fFAqFVL5+/foydSsamaqo3NPTE0IIeHh4oE2bNg97OTWiVatWAIDMzEw8/vjjUnlxcTGys7MRFBQklT3qSBxRfcY5UUT0yEpKSjB06FCkpKRg69atRq1NVFJSgtdeew1nz57Fa6+9Bnt7+wrr3rp1CykpKeVu+/LLLwH8c6tq0KBBuH79OlatWlWmrvjfYpSWlpaQyWQoKSmRtl24cKHcRTVtbW3LXVDT1tYWAMpse+GFF2BpaYk333yzzOKXQgjk5uaWf5E1KCgoCHK5HCtWrDBo07p166DT6Qy+FWlra1vpchNEDRlHoojokU2ZMgW7du1CSEgI8vLyyiyuef/CmjqdTqpz69YtnD9/Htu3b0dWVhaGDRuG+fPnV3q+W7duISAgAD169EC/fv3g5uaGGzduYMeOHfj+++8RGhqKrl27AgBGjRqFjz76CFFRUTh69Ch69eqFwsJCfPXVV/i///s/DBw4EMHBwVi6dCn69euHESNG4OrVq1i9ejVat26NkydPGpzb19cXX331FZYuXQpXV1d4eHjAz88Pvr6+AIA33ngDw4YNg5WVFUJCQuDp6YkFCxZg5syZuHDhAkJDQ2FnZ4fs7Gx8/vnnCA8Px+uvv/5I/f+wmjZtipkzZ+LNN99Ev379MGDAAGRmZuLdd9/Fk08+afDfy9fXF5s3b0ZUVBSefPJJNG7cGCEhIbXaXiKzZcqvBhJR/VD61fyKXpXVbdy4sfDy8hIvvfSS2L9/f5XOd+fOHfHBBx+I0NBQ0apVK6FQKISNjY3o2rWreOedd0RRUZFB/Vu3bok33nhDeHh4CCsrK+Hs7CwGDx4ssrKypDrr1q0TXl5eQqFQiHbt2on169dLSwjc6+effxa9e/cW1tbWAoDBcgfz588XzZs3FxYWFmWWO9i2bZvo2bOnsLW1Fba2tqJdu3Zi4sSJIjMz06BvKlv+4X6l7bt27Vql9e5f4qDUqlWrRLt27YSVlZVwcnISr776qvjzzz8N6ty8eVOMGDFCNGnSRADgcgdE95AJUQ0PVyIiIiJqYDgnioiIiMgIDFFERERERmCIIiIiIjICQxQRERGRERiiiIiIiIzAEEVERERkBC62WYP0ej0uX74MOzs7PjqBiIiojhBCoKCgAK6urrCwqHi8iSGqBl2+fBlubm6mbgYREREZ4dKlS2jRokWF2xmiapCdnR2Au/8RKnsOGBEREZmP/Px8uLm5SZ/jFWGIqkGlt/Ds7e0ZooiIiOqYB03F4cRyIiIiIiMwRBEREREZgSGKiIiIyAicE0VERGRmSkpKcOfOHVM3o96ysrKCpaXlIx+HIYqIiMhMCCGg1Wpx48YNUzel3mvSpAmcnZ0faR1HhigiIiIzURqgmjVrBhsbGy7UXAOEELh16xauXr0KAHBxcTH6WAxRREREZqCkpEQKUA4ODqZuTr1mbW0NALh69SqaNWtm9K09TiwnIiIyA6VzoGxsbEzckoahtJ8fZe4ZQxQREZEZ4S282lEd/cwQRURERGQEzokis5Kbm4vi4uIKt8vlcs4VICIis8AQRWYjNzcXq1atkn7X6eyQl+cAtToXKlWBVB4REcEgRURkRkaPHo0NGzYAABo1agS1Wo0nnngCw4cPx+jRo2FhUbUbXwkJCYiMjKwzSzwwRJHZuHcEKj29K3bv7g8hLCCT6RESsgc+Phll6hER0V2mHsnv168f1q9fj5KSEuTk5CApKQmTJ0/GZ599hl27dqFRo/oXOerfFVGdp9PZSQEKAISwwO7d/eHped5gRIqIiO66fyS/IjU5kq9QKODs7AwAaN68OXx8fNCjRw8888wzSEhIwCuvvIKlS5di/fr1+PXXX6FWqxESEoK4uDg0btwYBw8exJgxYwD8M+k7JiYGc+fOxccff4zly5cjMzMTtra26Nu3L+Lj49GsWbMauZaq4sRyMjt5eQ5SgColhAXy8tQmahERkXmr6gh9bY/k9+3bF126dMH27dsBABYWFlixYgV++uknbNiwAV9//TWmTZsGAAgICEB8fDzs7e1x5coVXLlyBa+//jqAu8sQzJ8/Hz/++CN27NiBCxcuYPTo0bV6LeXhSBSZHbU6FzKZ3iBIyWR6qNV5JmwVEREZo127djh58iQAIDIyUip3d3fHggULMGHCBLz77ruQy+VQqVSQyWTSiFapl19+Wfr3448/jhUrVuDJJ5/EzZs30bhx41q5jvJwJIrMjkpVgJCQPZDJ9AAgzYnirTwiorpHCCHdnvvqq6/wzDPPoHnz5rCzs8PIkSORm5uLW7duVXqMtLQ0hISEoGXLlrCzs0NgYCAA4OLFizXe/spwJIrMko9PBjw9zyMvTw21Oo8Bioiojjp79iw8PDxw4cIF9O/fH6+++ireeustqNVqHDp0CGPHjkVxcXGFK7UXFhZCo9FAo9Fg48aNaNq0KS5evAiNRmPyLxoxRJHZUqkKGJ6IiOqwr7/+GqdOncJ///tfpKWlQa/XY8mSJdKSB1u2bDGoL5fLUVJSYlD2888/Izc3FwsXLoSbmxsA4Pjx47VzAQ/A23lkNuRyebXWIyKi2lNUVAStVos//vgD6enpePvttzFw4ED0798fo0aNQuvWrXHnzh2sXLkSv/76Kz7++GOsWbPG4Bju7u64efMmkpOTcf36ddy6dQstW7aEXC6X9tu1axfmz59voqs0ZBYhavXq1XB3d4dSqYSfnx+OHj1aaf2tW7eiXbt2UCqV6Ny5M/bu3WuwXQiB6OhouLi4wNraGkFBQTh37ly5xyoqKoK3tzdkMhlOnDghlR88eBADBw6Ei4sLbG1t4e3tjY0bNz7ytVLFHBwcEBERgfDw8ApfXGiTiMg8JSUlwcXFBe7u7ujXrx+++eYbrFixAjt37oSlpSW6dOmCpUuXYtGiRejUqRM2btyI2NhYg2MEBARgwoQJGDp0KJo2bYq4uDg0bdoUCQkJ2Lp1Kzp06ICFCxdi8eLFJrpKQzIhhDBlAzZv3oxRo0ZhzZo18PPzQ3x8PLZu3YrMzMxy1384fPgwevfujdjYWPTv3x+JiYlYtGgR0tPT0alTJwDAokWLEBsbiw0bNsDDwwNz5szBqVOncObMGSiVSoPjTZ48GefOncOXX36JjIwMeHt7AwDefvtt/PXXX3j++efh5OSEPXv2ICoqCjt37kT//v2rdG35+flQqVTQ6XSwt7d/tI4iIqJ67fbt28jOzoaHh0eZz6oHMYd1ouqayvq7qp/fJg9Rfn5+ePLJJ6X/+Hq9Hm5ubpg0aRJmzJhRpv7QoUNRWFiIPXv2SGU9evSAt7c31qxZAyEEXF1dMWXKFGl9CZ1OBycnJyQkJGDYsGHSfl9++SWioqKwbds2dOzY0SBElSc4OBhOTk748MMPq3RtDFFERFRVjxKiANOvWF7XVEeIMunE8uLiYqSlpWHmzJlSmYWFBYKCgpCSklLuPikpKYiKijIo02g02LFjBwAgOzsbWq0WQUFB0naVSgU/Pz+kpKRIISonJwfjxo3Djh07KvxGwP10Oh3at29f4faioiIUFRVJv+fn51fpuERERI+KAan2mXRO1PXr11FSUgInJyeDcicnJ2i12nL30Wq1ldYv/VlZHSEERo8ejQkTJqBbt25VauuWLVtw7NgxaUn68sTGxkKlUkmv0m8REBERUf1jFhPLa9vKlStRUFBgMAJWmW+++QZjxozBBx98gI4dO1ZYb+bMmdDpdNLr0qVL1dVkIiIiMjMmDVGOjo6wtLRETk6OQXlOTk6ZJd9LOTs7V1q/9Gdldb7++mukpKRAoVCgUaNGaN26NQCgW7duCAsLM9jv22+/RUhICJYtW4ZRo0ZVej0KhQL29vYGLyIiIqqfTBqi5HI5fH19kZycLJXp9XokJyfD39+/3H38/f0N6gPAgQMHpPoeHh5wdnY2qJOfn4/U1FSpzooVK/Djjz/ixIkTOHHihLREwubNm/HWW29J+x08eBDBwcFYtGgRwsPDq+eiiYiIqF4w+YrlUVFRCAsLQ7du3dC9e3fEx8ejsLBQmns0atQoNG/eXFpLYvLkyQgMDMSSJUsQHByMTZs24fjx41i7di0AQCaTITIyEgsWLICXl5e0xIGrqytCQ0MBAC1btjRoQ+nDCz09PdGiRQsAd2/h9e/fH5MnT8agQYOk+VRyuRxqtbrG+4WIiIjMm8lD1NChQ3Ht2jVER0dDq9XC29sbSUlJ0sTwixcvSsvDA3cX4kpMTMTs2bMxa9YseHl5YceOHdIaUQAwbdo0FBYWIjw8HDdu3EDPnj2RlJT0UF8Z3bBhA27duoXY2FiDxcACAwNx8ODBR79wIiIiqtNMvk5UfcZ1ooiIqKoedZ0oejjVsU5Ug/x2HhEREdUdBw8ehEwmw40bN6q8j7u7O+Lj42usTQBDFBERET2i0aNHQyaTYcKECWW2TZw4ETKZDKNHj679htUwhigiIiJ6ZG5ubti0aRP++usvqez27dtITEws84Wu+oIhioiIiB6Zj48P3NzcsH37dqls+/btaNmyJbp27SqVFRUV4bXXXkOzZs2gVCrRs2dPHDt2zOBYe/fuRZs2bWBtbY0+ffrgwoULZc536NAh9OrVC9bW1nBzc8Nrr72GwsLCGru+8jBEEZFZys3NxZUrVyp85ebmmrqJRGbr99+Bb765+7M2vfzyy1i/fr30+4cffljmcWnTpk3Dtm3bsGHDBqSnp6N169bQaDTIy8sDAFy6dAkvvPACQkJCcOLECbzyyiuYMWOGwTGysrLQr18/DBo0CCdPnsTmzZtx6NAhRERE1PxF3sPkSxwQEd0vNzcXq1atkn7X6eyQl+cAtToXKlWBVB4REcGHrhLdZ906IDwc0OsBCwtg7Vpg7NjaOfdLL72EmTNn4rfffgMA/PDDD9i0aZO0NFBhYSHee+89JCQk4PnnnwcAfPDBBzhw4ADWrVuHqVOn4r333oOnpyeWLFkCAGjbti1OnTqFRYsWSeeJjY3Fiy++iMjISACAl5cXVqxYgcDAQLz33nu19u1GhigiMjvFxcXSv9PTu2L37v4QwgIymR4hIXvg45NRph4R3R15Kg1QwN2f48cDGg3wv7Wka1TTpk0RHByMhIQECCEQHBwMR0dHaXtWVhbu3LmDp556SiqzsrJC9+7dcfbsWQDA2bNn4efnZ3Dc+59i8uOPP+LkyZPYuHGjVCaEgF6vR3Z2Ntq3b18Tl1cGQxQRmS2dzk4KUAAghAV27+4PT8/zBiNSRHTXuXP/BKhSJSXA+fO1E6KAu7f0Sm+rrV69ukbOcfPmTYwfPx6vvfZamW21OYmdIYqIzFZenoMUoEoJYYG8PDVDFFE5vLzu3sK7N0hZWgKtW9deG/r164fi4mLIZDJoNBqDbZ6enpDL5fjhhx/QqlUrAMCdO3dw7Ngx6dZc+/btsWvXLoP9jhw5YvC7j48Pzpw5g9a1eWHl4MRyIjJbanUuZDLDP6tlMj3U6jwTtYjIvLVocXcOlKXl3d8tLYH336+9Uai757TE2bNncebMGViWNuR/bG1t8eqrr2Lq1KlISkrCmTNnMG7cONy6dQtj/zdxa8KECTh37hymTp2KzMxMJCYmIiEhweA406dPx+HDhxEREYETJ07g3Llz2LlzZ61PLGeIIiKzpVIVICRkjxSkSudEcRSKqGJjxwIXLtz9dt6FC7U3qfxe9vb2FT4uZeHChRg0aBBGjhwJHx8fnD9/Hvv27cNjjz0G4O7tuG3btmHHjh3o0qUL1qxZg7ffftvgGE888QS+/fZb/PLLL+jVqxe6du2K6OhouLq61vi13YvPzqtBfHYekXGuXLmCtWvXSr/f/XaeGmp1nkGACg8Ph4uLiymaSFTt+Oy82lUdz87jnCgiMnsqVQFHn4jI7PB2HhGZHblcXq31iIhqAkeiiMjsODg4ICIiotJ1oORyORfaJCKTYogiIrPEgERE5o6384iIiMwIv+9VO6qjnxmiiIiIzICVlRUA4NatWyZuScNQ2s+l/W4M3s4jIqqjcnNzOW+sHrG0tESTJk1w9epVAICNjQ1kMpmJW1X/CCFw69YtXL16FU2aNCmzIOjDYIgiIqqDcnNzsWrVqgfWi4iIYJCqQ5ydnQFAClJUc5o0aSL1t7EYooiI6qD7R6DuLkjqALU612BNrcpGqsj8yGQyuLi4oFmzZrhz546pm1NvWVlZPdIIVCmGKCKiOi49vSt27+4PISykR+P4+GSYuln0CCwtLavlQ55qFieWExHVYTqdnRSgAEAIC+ze3R86nZ2JW0ZU/zFEERHVYXl5DlKAKiWEBfLy1CZqEVHDwRBFRFSHqdW5kMn0BmUymR5qdZ6JWkTUcDBEERHVYSpVAUJC9khBqnROFB/YTFTzOLGciKiO8/HJgKfneeTlqaFW5zFAEdUShigiojpILpcb/K5SFZQbnu6vR1RduNgrQxQRUZ3k4OCAiIiIBv8hRqbBxV7vYogiIqqj6vOHE5m3qi7iWt8Xe+XEciIiInokOp0dsrPdG9z6ZByJIiIiIqM15BXzGaKIHgEnVhJRQ1bRivmenucbxLdEGaKIjMSJlUTU0FW2Yn5DCFGcE0VkJE6sJKKGrqGvmG8WIWr16tVwd3eHUqmEn58fjh49Wmn9rVu3ol27dlAqlejcuTP27t1rsF0IgejoaLi4uMDa2hpBQUE4d+5cuccqKiqCt7c3ZDIZTpw4YbDt5MmT6NWrF5RKJdzc3BAXF/dI1/kocnNzceXKlQpfubm5Jmsb3dVQJ1YSUcPV0FfMN/ntvM2bNyMqKgpr1qyBn58f4uPjodFokJmZiWbNmpWpf/jwYQwfPhyxsbHo378/EhMTERoaivT0dHTq1AkAEBcXhxUrVmDDhg3w8PDAnDlzoNFocObMGSiVSoPjTZs2Da6urvjxxx8NyvPz8/Hcc88hKCgIa9aswalTp/Dyyy+jSZMmCA8Pr7kOKQdvG5m/hjyxkogannsXca1sxfz6vtirTAghTNkAPz8/PPnkk1JI0Ov1cHNzw6RJkzBjxowy9YcOHYrCwkLs2bNHKuvRowe8vb2xZs0aCCHg6uqKKVOm4PXXXwcA6HQ6ODk5ISEhAcOGDZP2+/LLLxEVFYVt27ahY8eOyMjIgLe3NwDgvffewxtvvAGtViu9CWbMmIEdO3bg559/rtK15efnQ6VSQafTwd7e3qj+AYArV65g7dq1D6wXHh4OFxcXo89DD6f0v4tOZ4f4+EiDeQEymR6RkfFQqQr434WI6qX6/MWaqn5+m/R2XnFxMdLS0hAUFCSVWVhYICgoCCkpKeXuk5KSYlAfADQajVQ/OzsbWq3WoI5KpYKfn5/BMXNycjBu3Dh8/PHHsLGxKfc8vXv3NkjRpSNkf/75Z7ltKyoqQn5+vsGrJvC2kXmpbGIlEVF95eDgABcXlwpfdTVAPQyT3s67fv06SkpK4OTkZFDu5ORU4WiPVqstt75Wq5W2l5ZVVEcIgdGjR2PChAno1q0bLly4UO55PDw8yhyjdNtjjz1WZp/Y2Fi8+eabFV1uteBtI/NTOrHy/pGohjKxkoiooTKLieW1beXKlSgoKMDMmTOr9bgzZ86ETqeTXpcuXarW41e0HgdHpEyroU+sJCJqqEw6EuXo6AhLS0vk5OQYlOfk5MDZ2bncfZydnSutX/ozJyfHYB5KTk6ONN/p66+/RkpKChQKhcFxunXrhhdffBEbNmyo8Dz3nuN+CoWizDGrU0Nfj8PccGIlEVHtMrd5WCYNUXK5HL6+vkhOTkZoaCiAuxPLk5OTERERUe4+/v7+SE5ORmRkpFR24MAB+Pv7AwA8PDzg7OyM5ORkKTTl5+cjNTUVr776KgBgxYoVWLBggbT/5cuXodFosHnzZvj5+UnneeONN3Dnzh1YWVlJ52nbtm25t/JqA28bmRcHBwdERESY1f+giYjqK3P8prrJlziIiopCWFgYunXrhu7duyM+Ph6FhYUYM2YMAGDUqFFo3rw5YmNjAQCTJ09GYGAglixZguDgYGzatAnHjx+Xvr0mk8kQGRmJBQsWwMvLS1riwNXVVQpqLVu2NGhD48aNAQCenp5o0aIFAGDEiBF48803MXbsWEyfPh2nT5/G8uXLsWzZstrolnKV3ja6f04UR6FMhwGJiKh23P8Hq05nh7w8B6jVuQafg7W5wLHJQ9TQoUNx7do1REdHQ6vVwtvbG0lJSdIk7osXL8LC4p+Rl4CAACQmJmL27NmYNWsWvLy8sGPHDmmNKODu2k+FhYUIDw/HjRs30LNnTyQlJZVZI6oyKpUK+/fvx8SJE+Hr6wtHR0dER0fX+hpRAG8bERER3ctcvmRl8nWi6rPqWicKML/7wERERLWpNtfmq+rnt8lHoqhqGJCIiIjM60tWDXKJAyIiIqqbzOmhxwxRREREVGeY09p8vJ1HREREdUplX7KqTQxRREREZPbu/wa6SlVQbniqzW+qM0QRERGR2TPHBY4ZooiIiKhOMLdvqnNiOREREZERGKKIiIiIjMAQRURERGQEhigiIiIiIzBEERERERmBIYqIiIjICAxRREREREZgiCIiIiIyAkMUERERkREYooiIiIiMwBBFREREZASGKCIiIiIjMEQRERERGYEhioiIiMgIDFFERERERmCIIiIiIjICQxQRERGRERiiiIiIiIzAEEVERERkBIYoIiIiIiM0MnUDiIjMRW5uLoqLiyvcLpfL4eDgUIstIiJzxhBFRIS7AWrVqlUPrBcREcEgRUQAeDuPiAgAyoxA6XR2yM52h05nV2k9Imq4OBJFRHSf9PSu2L27P4SwgEymR0jIHvj4ZJi6WWaBtzwfjH3UcDBEERHdQ6ezkwIUAAhhgd27+8PT8zxUqgITt860eMvzwe7vI53ODnl5DlCrcw3ePw25j+oThqg6gn/ZENWOvDwHKUCVEsICeXnqBh+iyrvlWV5AaMi3PO+99spGNBtyH9UnDFF1AP/6I6o9anUuZDK9QZCSyfRQq/NM2Crzw1ueleOIZsNg8onlq1evhru7O5RKJfz8/HD06NFK62/duhXt2rWDUqlE586dsXfvXoPtQghER0fDxcUF1tbWCAoKwrlz5wzqDBgwAC1btoRSqYSLiwtGjhyJy5cvG9TZt28fevToATs7OzRt2hSDBg3ChQsXquWaH1ZV/2LhXzZEj06lKkBIyB7IZHoAkAICP/j+UVFAuH8SfkNW2Ygm1R8mDVGbN29GVFQUYmJikJ6eji5dukCj0eDq1avl1j98+DCGDx+OsWPHIiMjA6GhoQgNDcXp06elOnFxcVixYgXWrFmD1NRU2NraQqPR4Pbt21KdPn36YMuWLcjMzMS2bduQlZWFwYMHS9uzs7MxcOBA9O3bFydOnMC+fftw/fp1vPDCCzXXGQ+hom8NEVH18PHJQGRkPMLCEhAZGc8RlvswIDxY6YjmvTiiWf+YNEQtXboU48aNw5gxY9ChQwesWbMGNjY2+PDDD8utv3z5cvTr1w9Tp05F+/btMX/+fPj4+Ei3uoQQiI+Px+zZszFw4EA88cQT+Oijj3D58mXs2LFDOs5///tf9OjRA61atUJAQABmzJiBI0eO4M6dOwCAtLQ0lJSUYMGCBfD09ISPjw9ef/11nDhxQqpjKunpXREfH4kNG8IQHx+J9PSuJm0PUX0hl8sNflepCuDh8VuZEaj76zVEDAgPxhHNhsFkc6KKi4uRlpaGmTNnSmUWFhYICgpCSkpKufukpKQgKirKoEyj0UgBKTs7G1qtFkFBQdJ2lUoFPz8/pKSkYNiwYWWOmZeXh40bNyIgIABWVlYAAF9fX1hYWGD9+vUYPXo0bt68iY8//hhBQUFSnfIUFRWhqKhI+j0/P//BHfEQeI+dqOY4ODggIiKCX+CogtKAcP+cKP7/kCEfnwx4ep5HXp4aanUe+6ceMlmIun79OkpKSuDk5GRQ7uTkhJ9//rncfbRabbn1tVqttL20rKI6paZPn45Vq1bh1q1b6NGjB/bs2SNt8/DwwP79+zFkyBCMHz8eJSUl8Pf3LzP/6n6xsbF48803K63zKPitIaKaxYBUdQwIVaNSFbBv6jGTTyw3lalTpyIjIwP79++HpaUlRo0aBSEEgLthbNy4cQgLC8OxY8fw7bffQi6XY/DgwVKd8sycORM6nU56Xbp0qVrbzCF0IjIl3vJ8sKpee0Puo/rEZCNRjo6OsLS0RE5OjkF5Tk4OnJ2dy93H2dm50vqlP3NycuDi4mJQx9vbu8z5HR0d0aZNG7Rv3x5ubm44cuQI/P39sXr1aqhUKsTFxUn1P/nkE7i5uSE1NRU9evQot30KhQIKhaJqHWAEDqETkSnxlueDsY8aFpOFKLlcDl9fXyQnJyM0NBQAoNfrkZycjIiIiHL38ff3R3JyMiIjI6WyAwcOwN/fH8Dd23DOzs5ITk6WQlN+fj5SU1Px6quvVtgWvf7u6E7pfKZbt27BwsJwkM7S0tKgbm269y+WyobQ+ZcNEdU0fvg/GPuo5pjbwtMmXWwzKioKYWFh6NatG7p37474+HgUFhZizJgxAIBRo0ahefPmiI2NBQBMnjwZgYGBWLJkCYKDg7Fp0yYcP34ca9euBQDIZDJERkZiwYIF8PLygoeHB+bMmQNXV1cpqKWmpuLYsWPo2bMnHnvsMWRlZWHOnDnw9PSUwlhwcDCWLVuGefPmYfjw4SgoKMCsWbPQqlUrdO1a+9+G4182RETU0JnjI3VMGqKGDh2Ka9euITo6GlqtFt7e3khKSpImhl+8eNFgRCggIACJiYmYPXs2Zs2aBS8vL+zYsQOdOnWS6kybNg2FhYUIDw/HjRs30LNnTyQlJUGpVAIAbGxssH37dsTExKCwsBAuLi7o168fZs+eLd2K69u3LxITExEXF4e4uDjY2NjA398fSUlJsLa2rsUe+gcDEhERNWTm+EgdmahspjQ9kvz8fKhUKuh0Otjb25u6OURERHXWlStXsHbtWuh0doiPjyzzaKbIyHioVAUIDw83mBdtjKp+fvPZeURU75jbvAkiqj7mtNwPQxQR1St8YDdR/WZODwlvsOtEEVH9dP8IVEXPmuQDu4nqJnN6pA5Hooio3qps8ikR1V3msmI+R6KIqF6q6FmT949IEVHdVNGK+bWJIYqI6qXKJp8SUd1jjo/U4e08IqqXzGnyKRE9OnNceJohiojqJT5rkqj+Mbdv1DJEEVG9ZS6TT4mofmKIIqJ65f75ECpVQbnhiQ/sJqJHxRBFRPWKOc6bIKL6iSGKiOodBiQiqg1c4oCIiIjICAxRREREREZgiCIiIiIyAkMUERERkREYooiIiIiMwBBFREREZASGKCIiIiIjMEQRERERGYEhioiIiMgIDFFERERERmCIIiIiIjICQxQRERGRERiiiIiIiIzAEEVERERkBIYoIiIiIiMwRBEREREZgSGKiIiIyAgMUURERERGYIgiIiIiMgJDFBEREZERGKKIiIiIjMAQRURERGQEk4eo1atXw93dHUqlEn5+fjh69Gil9bdu3Yp27dpBqVSic+fO2Lt3r8F2IQSio6Ph4uICa2trBAUF4dy5cwZ1BgwYgJYtW0KpVMLFxQUjR47E5cuXyxxn8eLFaNOmDRQKBZo3b4633nqrei6aiIiI6jyThqjNmzcjKioKMTExSE9PR5cuXaDRaHD16tVy6x8+fBjDhw/H2LFjkZGRgdDQUISGhuL06dNSnbi4OKxYsQJr1qxBamoqbG1todFocPv2balOnz59sGXLFmRmZmLbtm3IysrC4MGDDc41efJk/L//9/+wePFi/Pzzz9i1axe6d+9eMx1BREREdY5MCCFMdXI/Pz88+eSTWLVqFQBAr9fDzc0NkyZNwowZM8rUHzp0KAoLC7Fnzx6prEePHvD29saaNWsghICrqyumTJmC119/HQCg0+ng5OSEhIQEDBs2rNx27Nq1C6GhoSgqKoKVlRXOnj2LJ554AqdPn0bbtm2Nvr78/HyoVCrodDrY29sbfRwiIiKqPVX9/DbZSFRxcTHS0tIQFBT0T2MsLBAUFISUlJRy90lJSTGoDwAajUaqn52dDa1Wa1BHpVLBz8+vwmPm5eVh48aNCAgIgJWVFQBg9+7dePzxx7Fnzx54eHjA3d0dr7zyCvLy8iq9pqKiIuTn5xu8iIiIqH4yWYi6fv06SkpK4OTkZFDu5OQErVZb7j5arbbS+qU/q3LM6dOnw9bWFg4ODrh48SJ27twpbfv111/x22+/YevWrfjoo4+QkJCAtLS0Mrf87hcbGwuVSiW93NzcKq1PREREdZfJJ5abytSpU5GRkYH9+/fD0tISo0aNQumdTb1ej6KiInz00Ufo1asXnn76aaxbtw7ffPMNMjMzKzzmzJkzodPppNelS5dq63KIiIioljUy1YkdHR1haWmJnJwcg/KcnBw4OzuXu4+zs3Ol9Ut/5uTkwMXFxaCOt7d3mfM7OjqiTZs2aN++Pdzc3HDkyBH4+/vDxcUFjRo1Qps2baT67du3BwBcvHixwnlSCoUCCoWiCldPREREdZ3JRqLkcjl8fX2RnJwslen1eiQnJ8Pf37/cffz9/Q3qA8CBAwek+h4eHnB2djaok5+fj9TU1AqPWXpe4O6cJgB46qmn8PfffyMrK0uq88svvwAAWrVq9TCXSURERPWUyUaiACAqKgphYWHo1q0bunfvjvj4eBQWFmLMmDEAgFGjRqF58+aIjY0FcHfZgcDAQCxZsgTBwcHYtGkTjh8/jrVr1wIAZDIZIiMjsWDBAnh5ecHDwwNz5syBq6srQkNDAQCpqak4duwYevbsicceewxZWVmYM2cOPD09paAVFBQEHx8fvPzyy4iPj4der8fEiRPx7LPPGoxOERERUcNl0hA1dOhQXLt2DdHR0dBqtfD29kZSUpI0MfzixYuwsPhnsCwgIACJiYmYPXs2Zs2aBS8vL+zYsQOdOnWS6kybNg2FhYUIDw/HjRs30LNnTyQlJUGpVAIAbGxssH37dsTExKCwsBAuLi7o168fZs+eLd2Ks7CwwO7duzFp0iT07t0btra2eP7557FkyZJa7B0iIiIyZyZdJ6q+4zpRREREdY/ZrxNFREREVJcxRBEREREZgSGKiIiIyAgMUURERERGYIgiIiIiMgJDFBEREZERGKKIiIiIjMAQRURERGSEagtRt2/fxuLFi6vrcERERERm7aFC1LVr17Bnzx7s378fJSUlAIA7d+5g+fLlcHd3x8KFC2ukkURERETmpsrPzjt06BD69++P/Px8yGQydOvWDevXr0doaCgaNWqEuXPnIiwsrCbbSkRERGQ2qjwSNXv2bPzrX//CyZMnERUVhWPHjuHf//433n77bZw5cwYTJkyAtbV1TbaViIiIyGxU+QHEDg4O+P7779GhQwf89ddfaNy4MbZv346BAwfWdBvrLD6AmIiIqO6p9gcQ//nnn3B0dAQAWFtbw8bGBp06dXr0lhIRERHVQVWeEwUAZ86cgVarBQAIIZCZmYnCwkKDOk888UT1tY6IiIjITFX5dp6FhQVkMhkqqy6TyaRv7RFv5xEREdVFVf38rvJIVHZ29gPrFBQUVPVwRERERHValUNUq1atyi0vKCjAp59+inXr1uH48eMciSIiIqIGwegVy7/77juEhYXBxcUFixcvRp8+fXDkyJHqbBsRERGR2XqoieVarRYJCQlYt24d8vPzMWTIEBQVFWHHjh3o0KFDTbWRiIiIyOxUeSQqJCQEbdu2xcmTJxEfH4/Lly9j5cqVNdk2IiIiIrNV5ZGoL7/8Eq+99hpeffVVeHl51WSbiIiIiMzeQz07b926dfD19UX79u0xcuRIDBs2rCbbRkRklNzcXBQXF1e4XS6Xw8HBoRZbRET1UZXXiSpVWFiIzZs348MPP8TRo0dRUlKCpUuX4uWXX4adnV1NtbNO4jpRRLUvNzcXq1atemC9iIgIBikiKle1P/allK2tLV5++WUcOnQIp06dwpQpU7Bw4UI0a9YMAwYMeKRGExE9qvtHoHQ6O2Rnu0Ons6u0HhHRwzJ6iQMAaNu2LeLi4vD777/j008/ra42ERFVi/T0roiPj8SGDWGIj49EenpXUzeJiOqRRwpRpSwtLREaGopdu3ZVx+GIiB6ZTmeH3bv7Q4i7/zcnhAV27+5fZkSKiMhY1RKiiIjMTV6egxSgSglhgbw8tYlaRET1DUMUEdVLanUuZDK9QZlMpodanWeiFhFRfcMQRUT1kkpVgJCQPVKQksn0CAnZA5WKD0onourxUI99ISKqS3x8MuDpeR55eWqo1XkMUERUrRiiiKhekcvlBr+rVAXlhqf76xERPSyGKCKqVxwcHBAREcEVy4moxjFEEVG9w4BERLXBLCaWr169Gu7u7lAqlfDz88PRo0crrb9161a0a9cOSqUSnTt3xt69ew22CyEQHR0NFxcXWFtbIygoCOfOnTOoM2DAALRs2RJKpRIuLi4YOXIkLl++XO75zp8/Dzs7OzRp0uSRrpOIiIjqD5OHqM2bNyMqKgoxMTFIT09Hly5doNFocPXq1XLrHz58GMOHD8fYsWORkZGB0NBQhIaG4vTp01KduLg4rFixAmvWrEFqaipsbW2h0Whw+/ZtqU6fPn2wZcsWZGZmYtu2bcjKysLgwYPLnO/OnTsYPnw4evXqVf0XT0RERHXWQz+AuLr5+fnhySeflB4Yqtfr4ebmhkmTJmHGjBll6g8dOhSFhYXYs2ePVNajRw94e3tjzZo1EELA1dUVU6ZMweuvvw4A0Ol0cHJyQkJCAoYNG1ZuO3bt2oXQ0FAUFRXByspKKp8+fTouX76MZ555BpGRkbhx40aVr40PICYiIqp7auwBxNWpuLgYaWlpCAoKksosLCwQFBSElJSUcvdJSUkxqA8AGo1Gqp+dnQ2tVmtQR6VSwc/Pr8Jj5uXlYePGjQgICDAIUF9//TW2bt2K1atXV+l6ioqKkJ+fb/AiIiKi+smkIer69esoKSmBk5OTQbmTkxO0Wm25+2i12krrl/6syjGnT58OW1tbODg44OLFi9i5c6e0LTc3F6NHj0ZCQkKVR5FiY2OhUqmkl5ubW5X2IyIiorrH5HOiTGnq1KnIyMjA/v37YWlpiVGjRqH07ua4ceMwYsQI9O7du8rHmzlzJnQ6nfS6dOlSTTWdiIiITMykSxw4OjrC0tISOTk5BuU5OTlwdnYudx9nZ+dK65f+zMnJgYuLi0Edb2/vMud3dHREmzZt0L59e7i5ueHIkSPw9/fH119/jV27dmHx4sUA7n7jT6/Xo1GjRli7di1efvnlMm1TKBRQKBQP1wlERERUJ5l0JEoul8PX1xfJyclSmV6vR3JyMvz9/cvdx9/f36A+ABw4cECq7+HhAWdnZ4M6+fn5SE1NrfCYpecF7s5rAu7OvTpx4oT0mjdvHuzs7HDixAn8+9//Nu6CiYiIqN4w+WKbUVFRCAsLQ7du3dC9e3fEx8ejsLAQY8aMAQCMGjUKzZs3R2xsLABg8uTJCAwMxJIlSxAcHIxNmzbh+PHjWLt2LQBAJpMhMjISCxYsgJeXFzw8PDBnzhy4uroiNDQUAJCamopjx46hZ8+eeOyxx5CVlYU5c+bA09NTClrt27c3aOfx48dhYWGBTp061VLPEBERkTkzeYgaOnQorl27hujoaGi1Wnh7eyMpKUmaGH7x4kVYWPwzYBYQEIDExETMnj0bs2bNgpeXF3bs2GEQbqZNm4bCwkKEh4fjxo0b6NmzJ5KSkqBUKgEANjY22L59O2JiYlBYWAgXFxf069cPs2fP5u04IiIiqhKTrxNVn3GdKCIiorqnTqwTRURERFRXMUQRERERGYEhioiIiMgIDFFERERERmCIIiIiIjICQxQRERGRERiiiIiIiIzAEEVERERkBIYoIiIiIiMwRBEREREZgSGKiIiIyAgMUURERERGYIgiIiIiMgJDFBEREZERGKKIiIiIjMAQRURERGQEhigiIiIiIzBEERERERmBIYqIiIjICAxRREREREZgiCIiIiIyAkMUERERkREYooiIiIiM0MjUDSCi2pObm4vi4uIKt8vlcjg4ONRii4iI6i6GKKIGIjc3F6tWrXpgvYiICAYpIqIq4O08ogbi/hEonc4O2dnu0OnsKq1HRETl40gUUQOUnt4Vu3f3hxAWkMn0CAnZAx+fDFM3i4ioTuFIFFEDo9PZSQEKAISwwO7d/cuMSBERUeUYoogamLw8BylAlRLCAnl5ahO1iIiobmKIImpg1OpcyGR6gzKZTA+1Os9ELSIiqpsYoogaGJWqACEhe6QgVTonSqUqMHHLiIjqFk4sJ2qAfHwy4Ol5Hnl5aqjVeQxQRERGYIgiaiDkcrnB7ypVQbnh6f56RERUPoYoogbCwcEBERERXLGciKiaMEQRNSAMSERE1ccsJpavXr0a7u7uUCqV8PPzw9GjRyutv3XrVrRr1w5KpRKdO3fG3r17DbYLIRAdHQ0XFxdYW1sjKCgI586dM6gzYMAAtGzZEkqlEi4uLhg5ciQuX74sbT948CAGDhwIFxcX2NrawtvbGxs3bqy+iyYiIqI6zeQhavPmzYiKikJMTAzS09PRpUsXaDQaXL16tdz6hw8fxvDhwzF27FhkZGQgNDQUoaGhOH36tFQnLi4OK1aswJo1a5CamgpbW1toNBrcvn1bqtOnTx9s2bIFmZmZ2LZtG7KysjB48GCD8zzxxBPYtm0bTp48iTFjxmDUqFHYs2dPzXUGERER1RkyIYQwZQP8/Pzw5JNPSg9G1ev1cHNzw6RJkzBjxowy9YcOHYrCwkKDMNOjRw94e3tjzZo1EELA1dUVU6ZMweuvvw4A0Ol0cHJyQkJCAoYNG1ZuO3bt2oXQ0FAUFRXBysqq3DrBwcFwcnLChx9+WKVry8/Ph0qlgk6ng729fZX2ISIiItOq6ue3SUeiiouLkZaWhqCgIKnMwsICQUFBSElJKXeflJQUg/oAoNFopPrZ2dnQarUGdVQqFfz8/Co8Zl5eHjZu3IiAgIAKAxRwN4yp1RWv6lxUVIT8/HyDFxEREdVPJg1R169fR0lJCZycnAzKnZycoNVqy91Hq9VWWr/0Z1WOOX36dNja2sLBwQEXL17Ezp07K2zrli1bcOzYMYwZM6bCOrGxsVCpVNLLzc2twrpERERUt5l8TpQpTZ06FRkZGdi/fz8sLS0xatQolHd385tvvsGYMWPwwQcfoGPHjhUeb+bMmdDpdNLr0qVLNdl8IiIiMiGTLnHg6OgIS0tL5OTkGJTn5OTA2dm53H2cnZ0rrV/6MycnBy4uLgZ1vL29y5zf0dERbdq0Qfv27eHm5oYjR47A399fqvPtt98iJCQEy5Ytw6hRoyq9HoVCAYVCUflFExERUb1g0pEouVwOX19fJCcnS2V6vR7JyckGQeZe/v7+BvUB4MCBA1J9Dw8PODs7G9TJz89HampqhccsPS9wd15TqYMHDyI4OBiLFi1CeHj4w18gERER1VsmX2wzKioKYWFh6NatG7p37474+HgUFhZKc49GjRqF5s2bIzY2FgAwefJkBAYGYsmSJQgODsamTZtw/PhxrF27FgAgk8kQGRmJBQsWwMvLCx4eHpgzZw5cXV0RGhoKAEhNTcWxY8fQs2dPPPbYY8jKysKcOXPg6ekpBa1vvvkG/fv3x+TJkzFo0CBpPpVcLq90cjkRERE1EMIMrFy5UrRs2VLI5XLRvXt3ceTIEWlbYGCgCAsLM6i/ZcsW0aZNGyGXy0XHjh3FF198YbBdr9eLOXPmCCcnJ6FQKMQzzzwjMjMzpe0nT54Uffr0EWq1WigUCuHu7i4mTJggfv/9d6lOWFiYAFDmFRgYWOXr0ul0AoDQ6XQP1yFERERkMlX9/Db5OlH1GdeJIiIiqnvqxDpRRERERHUVQxQRERGRERiiiIiIiIzAEEVERERkBJMvcUBERFSZ3NxcFBcXV7hdLpfDwcGhFltEdBdDFBERma3c3FysWrXqgfUiIiIYpKjW8XYeERGZrftHoHQ6O2Rnu0Ons6u0HlFt4EgUERHVCenpXbF7d38IYQGZTI+QkD3w8ckwdbOoAeNIFBERmT2dzk4KUAAghAV27+5fZkSKqDYxRBERkdnLy3OQAlQpISyQl8dnmZLpMEQREZHZU6tzIZPpDcpkMj3U6jwTtYiIIYqIiOoAlaoAISF7pCBVOidKpSowccuoIePEciIiqhN8fDLg6XkeeXlqqNV5DFBkcgxRRERktuRyucHvKlVBueHp/npEtYEhioiIzJaDgwMiIiK4YjmZJYYoIiIyawxIZK44sZyIiIjICAxRREREREZgiCIiIiIyAkMUERERkRE4sZyIiKosNzeX35Qj+h+GKCIiqpLc3FysWrXqgfUiIiIYpKhB4O08IiKqkspGoIypR1TXMUQREZFRdDo7ZGe7Q6ezM3VTiEyCt/OIiOihpad3xe7d/SGEhfQwYB+fDFM3i6hWcSSKiIgeik5nJwUoABDCArt39+eIFDU4DFFERPRQ8vIcpABVSggL5OWpTdQiItNgiCIiooeiVudCJtMblMlkeqjVeSZqEZFpMEQREdFDUakKEBKyRwpSpXOiVKoCE7eMqHZxYjkREVWJXC6X/u3jkwFPz/PIy1NDrc4zCFD31iOqzxiiiIioShwcHBAREcEVy4n+hyGKiIiqjAGJ6B+cE0VERERkBIYoIiIiIiOYRYhavXo13N3doVQq4efnh6NHj1Zaf+vWrWjXrh2USiU6d+6MvXv3GmwXQiA6OhouLi6wtrZGUFAQzp07Z1BnwIABaNmyJZRKJVxcXDBy5EhcvnzZoM7JkyfRq1cvKJVKuLm5IS4urnoumIiIiOo8k4eozZs3IyoqCjExMUhPT0eXLl2g0Whw9erVcusfPnwYw4cPx9ixY5GRkYHQ0FCEhobi9OnTUp24uDisWLECa9asQWpqKmxtbaHRaHD79m2pTp8+fbBlyxZkZmZi27ZtyMrKwuDBg6Xt+fn5eO6559CqVSukpaXhnXfewdy5c7F27dqa6wwiIiKqO4SJde/eXUycOFH6vaSkRLi6uorY2Nhy6w8ZMkQEBwcblPn5+Ynx48cLIYTQ6/XC2dlZvPPOO9L2GzduCIVCIT799NMK27Fz504hk8lEcXGxEEKId999Vzz22GOiqKhIqjN9+nTRtm3bKl+bTqcTAIROp6vyPkRERGRaVf38NulIVHFxMdLS0hAUFCSVWVhYICgoCCkpKeXuk5KSYlAfADQajVQ/OzsbWq3WoI5KpYKfn1+Fx8zLy8PGjRsREBAAKysr6Ty9e/c2WO9Eo9EgMzMTf/75Z7nHKSoqQn5+vsGLiIiI6ieThqjr16+jpKQETk5OBuVOTk7QarXl7qPVaiutX/qzKsecPn06bG1t4eDggIsXL2Lnzp0PPM+957hfbGwsVCqV9HJzcyu3HhEREdV9Jp8TZUpTp05FRkYG9u/fD0tLS4waNQpCCKOPN3PmTOh0Oul16dKlamwtERERmROTLrbp6OgIS0tL5OTkGJTn5OTA2dm53H2cnZ0rrV/6MycnBy4uLgZ1vL29y5zf0dERbdq0Qfv27eHm5oYjR47A39+/wvPce477KRQKKBSKB1w1ERER1QcmHYmSy+Xw9fVFcnKyVKbX65GcnAx/f/9y9/H39zeoDwAHDhyQ6nt4eMDZ2dmgTn5+PlJTUys8Zul5gbvzmkrP89133+HOnTsG52nbti0ee+yxh7xSIiIiqndqZ557xTZt2iQUCoVISEgQZ86cEeHh4aJJkyZCq9UKIYQYOXKkmDFjhlT/hx9+EI0aNRKLFy8WZ8+eFTExMcLKykqcOnVKqrNw4ULRpEkTsXPnTnHy5EkxcOBA4eHhIf766y8hhBBHjhwRK1euFBkZGeLChQsiOTlZBAQECE9PT3H79m0hxN1v9Dk5OYmRI0eK06dPi02bNgkbGxvx/vvvV/na+O08IiKiuqeqn98mD1FCCLFy5UrRsmVLIZfLRffu3cWRI0ekbYGBgSIsLMyg/pYtW0SbNm2EXC4XHTt2FF988YXBdr1eL+bMmSOcnJyEQqEQzzzzjMjMzJS2nzx5UvTp00eo1WqhUCiEu7u7mDBhgvj9998NjvPjjz+Knj17CoVCIZo3by4WLlz4UNfFEEVERFT3VPXzWybEI8ykpkrl5+dDpVJBp9PB3t7e1M0hIiKiKqjq53eD/nYeERERkbEYooiIiIiMwBBFREREZASTrhNFREREVFW5ubkoLi6ucLtcLoeDg0OttYchioiIiMxebm4uVq1a9cB6ERERtRakGKKIiBoYc/trnqgqKnvPGlOvOjBEERE1IOb41zyRMXQ6O+TlOUCtzoVKVWCSNjBEERE1IPf/lV7RB1Ft/jVP9LDS07ti9+7+EMICMpkeISF74OOTUevtYIgiImqgzOWDiOhh6HR20vsWAISwwO7d/eHpeb7WR6S4xAERUQNU0QeRTmdn4pYRVS4vz0F635YSwgJ5eepabwtDFBFRA2ROH0RED0OtzoVMpjcok8n0UKvzar0tDFFERA2QOX0QET0MlaoAISF7pPdv6a1oU0wu55woIqIGqPSD6P45Uab6lhPRg8jlcunfPj4Z8PQ8j7w8NdTqPIP37b31ahpDFBFRA1XZBxGRuXFwcEBERIRZrXHGEEVE1IDc/1e6SlVQbniqzb/miarK3NYuY4giImpAzPGveaK6iiGKiKiBYUAiqh78dh4RERGRERiiiIiIiIzAEEVERERkBIYoIiIiIiMwRBEREREZgSGKiIiIyAgMUURERERGYIgiIiIiMgJDFBEREZERGKKIiIiIjMAQRURERGQEhigiIiIiIzBEERERERmBIYqIiIjICAxRREREREZgiCIiIiIyAkMUERERkRFMHqJWr14Nd3d3KJVK+Pn54ejRo5XW37p1K9q1awelUonOnTtj7969BtuFEIiOjoaLiwusra0RFBSEc+fOSdsvXLiAsWPHwsPDA9bW1vD09ERMTAyKi4sNjrNv3z706NEDdnZ2aNq0KQYNGoQLFy5U23UTERFR3WbSELV582ZERUUhJiYG6enp6NKlCzQaDa5evVpu/cOHD2P48OEYO3YsMjIyEBoaitDQUJw+fVqqExcXhxUrVmDNmjVITU2Fra0tNBoNbt++DQD4+eefodfr8f777+Onn37CsmXLsGbNGsyaNUs6RnZ2NgYOHIi+ffvixIkT2LdvH65fv44XXnihZjuEiIiI6g5hQt27dxcTJ06Ufi8pKRGurq4iNja23PpDhgwRwcHBBmV+fn5i/PjxQggh9Hq9cHZ2Fu+88460/caNG0KhUIhPP/20wnbExcUJDw8P6fetW7eKRo0aiZKSEqls165dQiaTieLi4ipfn06nEwCETqer8j5ERERkWlX9/DbZSFRxcTHS0tIQFBQklVlYWCAoKAgpKSnl7pOSkmJQHwA0Go1UPzs7G1qt1qCOSqWCn59fhccEAJ1OB7VaLf3u6+sLCwsLrF+/HiUlJdDpdPj4448RFBQEKyurCo9TVFSE/Px8gxcRERHVTyYLUdevX0dJSQmcnJwMyp2cnKDVasvdR6vVVlq/9OfDHPP8+fNYuXIlxo8fL5V5eHhg//79mDVrFhQKBZo0aYLff/8dW7ZsqfSaYmNjoVKppJebm1ul9YmIiKjuMvnEclP6448/0K9fP/znP//BuHHjpHKtVotx48YhLCwMx44dw7fffgu5XI7BgwdDCFHh8WbOnAmdTie9Ll26VBuXQURERCbQyFQndnR0hKWlJXJycgzKc3Jy4OzsXO4+zs7OldYv/ZmTkwMXFxeDOt7e3gb7Xb58GX369EFAQADWrl1rsG316tVQqVSIi4uTyj755BO4ubkhNTUVPXr0KLd9CoUCCoWikqsmIiKi+sJkI1FyuRy+vr5ITk6WyvR6PZKTk+Hv71/uPv7+/gb1AeDAgQNSfQ8PDzg7OxvUyc/PR2pqqsEx//jjDzz99NPw9fXF+vXrYWFh2A23bt0qU2ZpaSm1kYiIiMhkI1EAEBUVhbCwMHTr1g3du3dHfHw8CgsLMWbMGADAqFGj0Lx5c8TGxgIAJk+ejMDAQCxZsgTBwcHYtGkTjh8/Lo0kyWQyREZGYsGCBfDy8oKHhwfmzJkDV1dXhIaGAvgnQLVq1QqLFy/GtWvXpPaUjmQFBwdj2bJlmDdvHoYPH46CggLMmjULrVq1QteuXWuxhxqe3NzcMmt23Usul8PBwaEWW0RERFQ+k4aooUOH4tq1a4iOjoZWq4W3tzeSkpKkieEXL140GBEKCAhAYmIiZs+ejVmzZsHLyws7duxAp06dpDrTpk1DYWEhwsPDcePGDfTs2RNJSUlQKpUA7o5cnT9/HufPn0eLFi0M2lM636lv375ITExEXFwc4uLiYGNjA39/fyQlJcHa2rqmu6XBys3NxapVq6TfdTo75OU5QK3OhUpVIJVHREQwSBERkcnJRGUzpemR5OfnQ6VSQafTwd7e3tTNMXtXrlyRRhXT07ti9+7+EMICMpkeISF74OOTAQAIDw83mPNGRERUnar6+d2gv51H5kmns5MCFAAIYYHdu/tDp7MzccuIiIj+wRBFZicvzwH3rwMrhAXy8tQV7EFERFT7GKLI7KjVuZDJDL8FKZPpoVbnmahFREREZTFEkdlRqQoQErJHClKlc6LunVxORERkaib9dh5RRXx8MuDpeR55eWqo1XkMUEREZHYYoshsqVQFDE9ERGS2eDuPzIZcLq/WekRERDWJI1FkNhwcHBAREcEVy4mIqE5giCKzwoBERER1BW/nERERERmBIYqIiIjICAxRREREREZgiCIiIiIyAkMUERERkREYooiIiIiMwBBFREREZASGKCIiIiIjMEQRERERGYErltcgIQQAID8/38QtISIioqoq/dwu/RyvCENUDSooKAAAuLm5mbglRERE9LAKCgqgUqkq3C4TD4pZZDS9Xo/Lly/Dzs4OMpnM6OPk5+fDzc0Nly5dgr29fTW2sG5jv5TFPimLfVIW+6Qs9klZDblPhBAoKCiAq6srLCwqnvnEkagaZGFhgRYtWlTb8ezt7RvcG7kq2C9lsU/KYp+UxT4pi31SVkPtk8pGoEpxYjkRERGRERiiiIiIiIzAEFUHKBQKxMTEQKFQmLopZoX9Uhb7pCz2SVnsk7LYJ2WxTx6ME8uJiIiIjMCRKCIiIiIjMEQRERERGYEhioiIiMgIDFFERERERmCIMpHVq1fD3d0dSqUSfn5+OHr0aKX14+Pj0bZtW1hbW8PNzQ3//e9/cfv2bWn73LlzIZPJDF7t2rWr6cuoVg/TJ3fu3MG8efPg6ekJpVKJLl26ICkp6ZGOaY6qu0/q+vvku+++Q0hICFxdXSGTybBjx44H7nPw4EH4+PhAoVCgdevWSEhIKFOnLr9PaqJPGtr75MqVKxgxYgTatGkDCwsLREZGlltv69ataNeuHZRKJTp37oy9e/dWf+NrSE30SUJCQpn3iVKprJkLMFMMUSawefNmREVFISYmBunp6ejSpQs0Gg2uXr1abv3ExETMmDEDMTExOHv2LNatW4fNmzdj1qxZBvU6duyIK1euSK9Dhw7VxuVUi4ftk9mzZ+P999/HypUrcebMGUyYMAH//ve/kZGRYfQxzU1N9AlQt98nhYWF6NKlC1avXl2l+tnZ2QgODkafPn1w4sQJREZG4pVXXsG+ffukOnX9fVITfQI0rPdJUVERmjZtitmzZ6NLly7l1jl8+DCGDx+OsWPHIiMjA6GhoQgNDcXp06ers+k1pib6BLi7mvm975PffvutuppcNwiqdd27dxcTJ06Ufi8pKRGurq4iNja23PoTJ04Uffv2NSiLiooSTz31lPR7TEyM6NKlS420tzY8bJ+4uLiIVatWGZS98MIL4sUXXzT6mOamJvqkrr9P7gVAfP7555XWmTZtmujYsaNB2dChQ4VGo5F+r+vvk3tVV580tPfJvQIDA8XkyZPLlA8ZMkQEBwcblPn5+Ynx48c/YgtrX3X1yfr164VKpaq2dtVFHImqZcXFxUhLS0NQUJBUZmFhgaCgIKSkpJS7T0BAANLS0qRbDL/++iv27t2Lf/3rXwb1zp07B1dXVzz++ON48cUXcfHixZq7kGpkTJ8UFRWVGTa2traW/lo25pjmpCb6pFRdfZ8YIyUlxaAPAUCj0Uh9WNffJ8Z4UJ+Uakjvk6qoar81NDdv3kSrVq3g5uaGgQMH4qeffjJ1k2oVQ1Qtu379OkpKSuDk5GRQ7uTkBK1WW+4+I0aMwLx589CzZ09YWVnB09MTTz/9tMHtPD8/PyQkJCApKQnvvfcesrOz0atXLxQUFNTo9VQHY/pEo9Fg6dKlOHfuHPR6PQ4cOIDt27fjypUrRh/TnNREnwB1+31iDK1WW24f5ufn46+//qrz7xNjPKhPgIb3PqmKivqtvr5PqqJt27b48MMPsXPnTnzyySfQ6/UICAjA77//buqm1RqGqDrg4MGDePvtt/Huu+8iPT0d27dvxxdffIH58+dLdZ5//nn85z//wRNPPAGNRoO9e/fixo0b2LJliwlbXnOWL18OLy8vtGvXDnK5HBERERgzZgwsLBruW7oqfdLQ3idkHL5PqCr8/f0xatQoeHt7IzAwENu3b0fTpk3x/vvvm7pptabhfuKYiKOjIywtLZGTk2NQnpOTA2dn53L3mTNnDkaOHIlXXnkFnTt3xr///W+8/fbbiI2NhV6vL3efJk2aoE2bNjh//ny1X0N1M6ZPmjZtih07dqCwsBC//fYbfv75ZzRu3BiPP/640cc0JzXRJ+WpS+8TYzg7O5fbh/b29rC2tq7z7xNjPKhPylPf3ydVUVG/1df3iTGsrKzQtWvXBvU+YYiqZXK5HL6+vkhOTpbK9Ho9kpOT4e/vX+4+t27dKjPCYmlpCQAQFTz68ObNm8jKyoKLi0s1tbzmGNMnpZRKJZo3b46///4b27Ztw8CBAx/5mOagJvqkPHXpfWIMf39/gz4EgAMHDkh9WNffJ8Z4UJ+Up76/T6rCmH5raEpKSnDq1KmG9T4x9cz2hmjTpk1CoVCIhIQEcebMGREeHi6aNGkitFqtEEKIkSNHihkzZkj1Y2JihJ2dnfj000/Fr7/+Kvbv3y88PT3FkCFDpDpTpkwRBw8eFNnZ2eKHH34QQUFBwtHRUVy9erXWr88YD9snR44cEdu2bRNZWVniu+++E3379hUeHh7izz//rPIxzV1N9Eldf58UFBSIjIwMkZGRIQCIpUuXioyMDPHbb78JIYSYMWOGGDlypFT/119/FTY2NmLq1Kni7NmzYvXq1cLS0lIkJSVJder6+6Qm+qShvU+EEFJ9X19fMWLECJGRkSF++uknafsPP/wgGjVqJBYvXizOnj0rYmJihJWVlTh16lStXpuxaqJP3nzzTbFv3z6RlZUl0tLSxLBhw4RSqTSoU98xRJnIypUrRcuWLYVcLhfdu3cXR44ckbYFBgaKsLAw6fc7d+6IuXPnCk9PT6FUKoWbm5v4v//7P4MPx6FDhwoXFxchl8tF8+bNxdChQ8X58+dr8Yoe3cP0ycGDB0X79u2FQqEQDg4OYuTIkeKPP/54qGPWBdXdJ3X9ffLNN98IAGVepf0QFhYmAgMDy+zj7e0t5HK5ePzxx8X69evLHLcuv09qok8a4vukvPqtWrUyqLNlyxbRpk0bIZfLRceOHcUXX3xROxdUDWqiTyIjI6X/3Tg5OYl//etfIj09vfYuygzIhKjgfhARERERVYhzooiIiIiMwBBFREREZASGKCIiIiIjMEQRERERGYEhioiIiMgIDFFERERERmCIIiIiIjICQxQRUQNy8OBByGQy3Lhxw9RNIarzGKKIqEaMHj0aMpkMCxcuNCjfsWMHZDKZ9LsQAh988AH8/f1hb2+Pxo0bo2PHjpg8eXKVH2R669YtzJw5E56enlAqlWjatCkCAwOxc+dOqY67uzvi4+Or5dpqWmnfyWQyWFlZwcPDA9OmTcPt27cf6jhPP/00IiMjDcoCAgJw5coVqFSqamwxUcPEEEVENUapVGLRokX4888/y90uhMCIESPw2muv4V//+hf279+PM2fOYN26dVAqlViwYEGVzjNhwgRs374dK1euxM8//4ykpCQMHjwYubm51Xk5tapfv364cuUKfv31Vyxbtgzvv/8+YmJiHvm4crkczs7OBkGWiIxk2qfOEFF9FRYWJvr37y/atWsnpk6dKpV//vnnovT/ej799FMBQOzcubPcY+j1+iqdS6VSiYSEhAq3BwYGlnkGWKnvv/9e9OzZUyiVStGiRQsxadIkcfPmTWn7Rx99JHx9fUXjxo2Fk5OTGD58uMjJyZG2lz6TLCkpSXh7ewulUin69OkjcnJyxN69e0W7du2EnZ2dGD58uCgsLKzS9YSFhYmBAwcalL3wwguia9eu0u/Xr18Xw4YNE66ursLa2lp06tRJJCYmGhzj/mvOzs6W2nvvszc/++wz0aFDByGXy0WrVq3E4sWLq9ROooaOI1FEVGMsLS3x9ttvY+XKlfj999/LbP/000/Rtm1bDBgwoNz9qzpa4uzsjL1796KgoKDc7du3b0eLFi0wb948XLlyBVeuXAEAZGVloV+/fhg0aBBOnjyJzZs349ChQ4iIiJD2vXPnDubPn48ff/wRO3bswIULFzB69Ogy55g7dy5WrVqFw4cP49KlSxgyZAji4+ORmJiIL774Avv378fKlSurdD33O336NA4fPgy5XC6V3b59G76+vvjiiy9w+vRphIeHY+TIkTh69CgAYPny5fD398e4ceOka3Zzcytz7LS0NAwZMgTDhg3DqVOnMHfuXMyZMwcJCQlGtZWoQTF1iiOi+une0ZQePXqIl19+WQhhOBLVrl07MWDAAIP9Jk+eLGxtbYWtra1o3rx5lc717bffihYtWggrKyvRrVs3ERkZKQ4dOmRQp1WrVmLZsmUGZWPHjhXh4eEGZd9//72wsLAQf/31V7nnOnbsmAAgCgoKhBD/jER99dVXUp3Y2FgBQGRlZUll48ePFxqNpkrXExYWJiwtLYWtra1QKBQCgLCwsBCfffZZpfsFBweLKVOmSL8HBgaKyZMnG9S5fyRqxIgR4tlnnzWoM3XqVNGhQ4cqtZWoIeNIFBHVuEWLFmHDhg04e/bsA+u+8cYbOHHiBKKjo3Hz5s0qHb9379749ddfkZycjMGDB+Onn35Cr169MH/+/Er3+/HHH5GQkIDGjRtLL41GA71ej+zsbAB3R2pCQkLQsmVL2NnZITAwEABw8eJFg2M98cQT0r+dnJxgY2ODxx9/3KDs6tWrVboeAOjTpw9OnDiB1NRUhIWFYcyYMRg0aJC0vaSkBPPnz0fnzp2hVqvRuHFj7Nu3r0y7HuTs2bN46qmnDMqeeuopnDt3DiUlJQ91LKKGhiGKiGpc7969odFoMHPmTINyLy8vZGZmGpQ1bdoUrVu3RrNmzR7qHFZWVujVqxemT5+O/fv3Y968eZg/fz6Ki4sr3OfmzZsYP348Tpw4Ib1+/PFHnDt3Dp6enigsLIRGo4G9vT02btyIY8eO4fPPPweAMse1srKS/l36rbp7yWQy6PX6Kl+Pra0tWrdujS5duuDDDz9Eamoq1q1bJ21/5513sHz5ckyfPh3ffPMNTpw4AY1GU+n1ElH1amTqBhBRw7Bw4UJ4e3ujbdu2Utnw4cMxYsQI7Ny5EwMHDqzW83Xo0AF///03bt++DblcDrlcXmZkxcfHB2fOnEHr1q3LPcapU6eQm5uLhQsXSvOJjh8/Xq3trAoLCwvMmjULUVFRGDFiBKytrfHDDz9g4MCBeOmllwAAer0ev/zyCzp06CDtV9413699+/b44YcfDMp++OEHtGnTBpaWltV/MUT1CEeiiKhWdO7cGS+++CJWrFghlQ0bNgyDBw/GsGHDMG/ePKSmpuLChQv49ttvsXnz5ip/iD/99NN4//33kZaWhgsXLmDv3r2YNWsW+vTpA3t7ewB314n67rvv8Mcff+D69esAgOnTp+Pw4cOIiIjAiRMncO7cOezcuVOaWN6yZUvI5XKsXLkSv/76K3bt2vXAW4Q15T//+Q8sLS2xevVqAHdH8Q4cOIDDhw/j7NmzGD9+PHJycgz2cXd3l/r0+vXr5Y6ETZkyBcnJyZg/fz5++eUXbNiwAatWrcLrr79eK9dFVJcxRBFRrZk3b57BB7lMJsPmzZsRHx+PvXv34plnnkHbtm3x8ssvw83NDYcOHarScTUaDTZs2IDnnnsO7du3x6RJk6DRaLBlyxaDc1+4cAGenp5o2rQpgLvzmL799lv88ssv6NWrF7p27Yro6Gi4uroCuHtrMSEhAVu3bkWHDh2wcOFCLF68uBp7pOoaNWqEiIgIxMXFobCwELNnz4aPjw80Gg2efvppODs7IzQ01GCf119/HZaWlujQoQOaNm1a7nwpHx8fbNmyBZs2bUKnTp0QHR2NefPmlfsNRCIyJBNCCFM3goiIiKiu4UgUERERkREYoojI7N27BMH9r++//97UzXsoFy9erPR6HnaJAiIyHd7OIyKzV9mDiJs3bw5ra+tabM2j+fvvv3HhwoUKt7u7u6NRI35xmqguYIgiIiIiMgJv5xEREREZgSGKiIiIyAgMUURERERGYIgiIiIiMgJDFBEREZERGKKIiIiIjMAQRURERGQEhigiIiIiI/x/Tq0n29zsSC4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_5.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP4UlEQVR4nO3de1xUdf4/8NeADCDCKKDcBEEgL3lBUBHUdI1CU5JyN3Tzul5WV1SiMs37quE98p6uqZWEa5opuZSifbeUvHAxTSU1TF0BEXJASEDm8/uDHyfncJFBZobL6/l4zEPnnM858z6fZeXV53zOZxRCCAEiIiIikpgYuwAiIiKi+oYBiYiIiEiGAYmIiIhIhgGJiIiISIYBiYiIiEiGAYmIiIhIhgGJiIiISIYBiYiIiEiGAYmIiIhIhgGJiKgB27VrFxQKBW7cuGHsUogaFQYkIqrW2bNnER4ejmeffRZWVlZwc3PDa6+9hp9//rlC24EDB0KhUEChUMDExAQ2Njbo0KEDxowZg6NHj+r0uYcPH8aAAQPQpk0bNG/eHO3bt8drr72G+Pj4urq0Ct577z0cPHiwwvZTp05h8eLFuH//vt4+W27x4sVSXyoUCjRv3hydO3fG/PnzkZeXVyefERMTg+jo6Do5F1Fjw4BERNVauXIl9u/fj+effx4ffPABpkyZgv/+97/w9fXFxYsXK7Rv27YtPvnkE3z88cdYvXo1Xn75ZZw6dQovvvgiwsLCUFJS8sTPXLNmDV5++WUoFArMnTsX77//PkaMGIGrV68iNjZWH5cJoPqAtGTJEoMGpHJbtmzBJ598gnXr1qFjx45Yvnw5Bg8ejLr4Gk0GJKKqNTN2AURUv0VGRiImJgZKpVLaFhYWhq5du2LFihX49NNPtdqrVCqMHj1aa9uKFSswc+ZMbN68Ge7u7li5cmWVn/fo0SMsXboUL7zwAr755psK++/evfuUV1R/FBYWonnz5tW2+fOf/wx7e3sAwNSpUzFixAgcOHAAP/zwAwICAgxRJlGTxBEkIqpWYGCgVjgCAG9vbzz77LO4fPlyjc5hamqK9evXo3Pnzti4cSPUanWVbe/du4e8vDz07du30v1t2rTRev/w4UMsXrwYzzzzDCwsLODk5IRXX30V169fl9qsWbMGgYGBsLOzg6WlJfz8/PD5559rnUehUKCgoAC7d++WbmuNHz8eixcvxttvvw0A8PDwkPY9Pufn008/hZ+fHywtLWFra4uRI0fi1q1bWucfOHAgunTpgqSkJDz33HNo3rw53n333Rr13+MGDRoEAEhPT6+23ebNm/Hss8/C3Nwczs7OmD59utYI2MCBA/HVV1/h119/la7J3d1d53qIGiuOIBGRzoQQyMrKwrPPPlvjY0xNTTFq1CgsWLAA33//PYYOHVppuzZt2sDS0hKHDx/GjBkzYGtrW+U5S0tLMWzYMCQkJGDkyJGYNWsW8vPzcfToUVy8eBGenp4AgA8++AAvv/wyXn/9dRQXFyM2NhZ/+ctfEBcXJ9XxySefYNKkSejduzemTJkCAPD09ISVlRV+/vlnfPbZZ3j//fel0ZzWrVsDAJYvX44FCxbgtddew6RJk5CdnY0NGzbgueeeQ0pKClq2bCnVm5OTgyFDhmDkyJEYPXo0HBwcatx/5cqDn52dXZVtFi9ejCVLliAoKAjTpk1DWloatmzZgrNnz+LkyZMwMzPDvHnzoFarcfv2bbz//vsAgBYtWuhcD1GjJYiIdPTJJ58IAGLHjh1a2wcMGCCeffbZKo/74osvBADxwQcfVHv+hQsXCgDCyspKDBkyRCxfvlwkJSVVaPfRRx8JAGLdunUV9mk0GunvhYWFWvuKi4tFly5dxKBBg7S2W1lZiXHjxlU41+rVqwUAkZ6errX9xo0bwtTUVCxfvlxr+4ULF0SzZs20tg8YMEAAEFu3bq3yuh+3aNEiAUCkpaWJ7OxskZ6eLj788ENhbm4uHBwcREFBgRBCiJ07d2rVdvfuXaFUKsWLL74oSktLpfNt3LhRABAfffSRtG3o0KGiXbt2NaqHqKnhLTYi0smVK1cwffp0BAQEYNy4cTodWz5CkZ+fX227JUuWICYmBj169MDXX3+NefPmwc/PD76+vlq39fbv3w97e3vMmDGjwjkUCoX0d0tLS+nvv/32G9RqNfr374/k5GSd6pc7cOAANBoNXnvtNdy7d096OTo6wtvbGydOnNBqb25ujgkTJuj0GR06dEDr1q3h4eGBv//97/Dy8sJXX31V5dylY8eOobi4GBERETAx+eOf+MmTJ8PGxgZfffWV7hdK1ATxFhsR1VhmZiaGDh0KlUqFzz//HKampjod/+DBAwCAtbX1E9uOGjUKo0aNQl5eHk6fPo1du3YhJiYGISEhuHjxIiwsLHD9+nV06NABzZpV/09ZXFwcli1bhtTUVBQVFUnbHw9RtXH16lUIIeDt7V3pfjMzM633Li4uFeZzPcn+/fthY2MDMzMztG3bVrptWJVff/0VQFmwepxSqUT79u2l/URUPQYkIqoRtVqNIUOG4P79+/juu+/g7Oys8znKlwXw8vKq8TE2NjZ44YUX8MILL8DMzAy7d+/G6dOnMWDAgBod/9133+Hll1/Gc889h82bN8PJyQlmZmbYuXMnYmJidL6Gx2k0GigUCvznP/+pNCzK5/Q8PpJVU88995w074mIDIcBiYie6OHDhwgJCcHPP/+MY8eOoXPnzjqfo7S0FDExMWjevDn69etXqzp69uyJ3bt3IyMjA0DZJOrTp0+jpKSkwmhNuf3798PCwgJff/01zM3Npe07d+6s0LaqEaWqtnt6ekIIAQ8PDzzzzDO6Xo5etGvXDgCQlpaG9u3bS9uLi4uRnp6OoKAgadvTjqARNWacg0RE1SotLUVYWBgSExOxb9++Wq29U1paipkzZ+Ly5cuYOXMmbGxsqmxbWFiIxMTESvf95z//AfDH7aMRI0bg3r172LhxY4W24v8vpGhqagqFQoHS0lJp340bNypdENLKyqrSxSCtrKwAoMK+V199FaampliyZEmFhRuFEMjJyan8IvUoKCgISqUS69ev16ppx44dUKvVWk8PWllZVbvkAlFTxhEkIqrWm2++iUOHDiEkJAS5ubkVFoaULwqpVqulNoWFhbh27RoOHDiA69evY+TIkVi6dGm1n1dYWIjAwED06dMHgwcPhqurK+7fv4+DBw/iu+++Q2hoKHr06AEAGDt2LD7++GNERkbizJkz6N+/PwoKCnDs2DH84x//wPDhwzF06FCsW7cOgwcPxl//+lfcvXsXmzZtgpeXF3788Uetz/bz88OxY8ewbt06ODs7w8PDA/7+/vDz8wMAzJs3DyNHjoSZmRlCQkLg6emJZcuWYe7cubhx4wZCQ0NhbW2N9PR0fPHFF5gyZQreeuutp+p/XbVu3Rpz587FkiVLMHjwYLz88stIS0vD5s2b0atXL63/vfz8/LB3715ERkaiV69eaNGiBUJCQgxaL1G9ZcxH6Iio/it/PL2qV3VtW7RoIby9vcXo0aPFN998U6PPKykpEdu3bxehoaGiXbt2wtzcXDRv3lz06NFDrF69WhQVFWm1LywsFPPmzRMeHh7CzMxMODo6ij//+c/i+vXrUpsdO3YIb29vYW5uLjp27Ch27twpPUb/uCtXrojnnntOWFpaCgBaj/wvXbpUuLi4CBMTkwqP/O/fv1/069dPWFlZCSsrK9GxY0cxffp0kZaWptU31S2BIFdeX3Z2drXt5I/5l9u4caPo2LGjMDMzEw4ODmLatGnit99+02rz4MED8de//lW0bNlSAOAj/0SPUQhRB1/oQ0RERNSIcA4SERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDBeKrCWNRoM7d+7A2tqay/UTERE1EEII5Ofnw9nZGSYmVY8TMSDV0p07d+Dq6mrsMoiIiKgWbt26hbZt21a5nwGplqytrQGUdXB13ytFRERE9UdeXh5cXV2l3+NVYUCqpfLbajY2NgxIREREDcyTpsdwkjYRERGRjNED0qZNm+Du7g4LCwv4+/vjzJkz1bbft28fOnbsCAsLC3Tt2hVHjhzR2n/gwAG8+OKLsLOzg0KhQGpqqtb+3NxczJgxAx06dIClpSXc3Nwwc+ZMqNXqur40IiIiaqCMGpD27t2LyMhILFq0CMnJyejevTuCg4Nx9+7dStufOnUKo0aNwsSJE5GSkoLQ0FCEhobi4sWLUpuCggL069cPK1eurPQcd+7cwZ07d7BmzRpcvHgRu3btQnx8PCZOnKiXayQiIqKGRyGEEMb6cH9/f/Tq1QsbN24EUPbovKurK2bMmIE5c+ZUaB8WFoaCggLExcVJ2/r06QMfHx9s3bpVq+2NGzfg4eGBlJQU+Pj4VFvHvn37MHr0aBQUFKBZs5pNy8rLy4NKpYJara52DlJpaSlKSkpqdE7SnVKprPYxTSIiosfV9Pe30SZpFxcXIykpCXPnzpW2mZiYICgoCImJiZUek5iYiMjISK1twcHBOHjw4FPVUt5J1YWjoqIiFBUVSe/z8vKqPacQApmZmbh///5T1UbVMzExgYeHB5RKpbFLISKiRsRoAenevXsoLS2Fg4OD1nYHBwdcuXKl0mMyMzMrbZ+ZmflUdSxduhRTpkyptl1UVBSWLFlS4/OWh6M2bdqgefPmXExSD8oX68zIyICbmxv7mIiI6kyTfsw/Ly8PQ4cORefOnbF48eJq286dO1dr9Kp8HYXKlJaWSuHIzs6uLksmmdatW+POnTt49OgRzMzMjF0OERE1EkYLSPb29jA1NUVWVpbW9qysLDg6OlZ6jKOjo07tq5Ofn4/BgwfD2toaX3zxxRN/uZqbm8Pc3LxG5y6fc9S8eXOd6yLdlN9aKy0tZUAiIqI6Y7TZrUqlEn5+fkhISJC2aTQaJCQkICAgoNJjAgICtNoDwNGjR6tsX5W8vDy8+OKLUCqVOHToECwsLHS/gBrgLR/9Yx8TEZE+GPUWW2RkJMaNG4eePXuid+/eiI6ORkFBASZMmAAAGDt2LFxcXBAVFQUAmDVrFgYMGIC1a9di6NChiI2Nxblz57Bt2zbpnLm5ubh58ybu3LkDAEhLSwNQNvrk6OgohaPCwkJ8+umnyMvLkyZct27dGqampobsAiIiIgKQk5OD4uLiKvcrlUqDTlsxakAKCwtDdnY2Fi5ciMzMTPj4+CA+Pl6aiH3z5k2tR7gDAwMRExOD+fPn491334W3tzcOHjyILl26SG0OHTokBSwAGDlyJABg0aJFWLx4MZKTk3H69GkAgJeXl1Y96enpcHd319flEhERUSVycnKkJX+qEx4ebrCQZNR1kBqy6tZRePjwIdLT0+Hh4aG323f6Mn78eOzevRsA0KxZM9ja2qJbt24YNWoUxo8fX+M1h3bt2oWIiAi9L3PQkPuaiIjKZGRkaN0NUqutkZtrB1vbHKhU+dL2KVOmwMnJ6ak+q96vg0RVM/Yw4+DBg7Fz506UlpYiKysL8fHxmDVrFj7//HMcOnSoxotpEhER6So5uQcOHx4GIUygUGgQEhIHX98Ug9fB33T1TH0YZjQ3N5eeDHRxcYGvry/69OmD559/Hrt27cKkSZOwbt067Ny5E7/88gtsbW0REhKCVatWoUWLFvj222+l25zlk6jLb3F+8skn+OCDD5CWlgYrKysMGjQI0dHRaNOmjV6uhYiIGg612loKRwAghAkOHx4GT89rWiNJhsDvaKhnqhs5qk27ujJo0CB0794dBw4cAFC2gvX69evx008/Yffu3Th+/Dhmz54NoGyuWHR0NGxsbJCRkYGMjAy89dZbAMqWQFi6dCnOnz+PgwcP4saNGxg/frxBr4WIiOqn3Fw7KRyVE8IEubm2Bq+FI0hUYx07dsSPP/4IAIiIiJC2u7u7Y9myZZg6dSo2b94MpVIJlUoFhUJRYY2qv/3tb9Lf27dvj/Xr16NXr1548OABWrRoYZDrICKi+snWNgcKhUYrJCkUGtja5hq8Fo4gUY0JIaRbZseOHcPzzz8PFxcXWFtbY8yYMcjJyUFhYWG150hKSkJISAjc3NxgbW2NAQMGACh7YpGIiJo2lSofISFxUCg0ACDNQTL07TWAI0ikg8uXL8PDwwM3btzAsGHDMG3aNCxfvhy2trb4/vvvMXHiRBQXF1e5gnhBQQGCg4MRHByMPXv2oHXr1rh58yaCg4MNfsuQiIjqJ1/fFHh6XkNuri1sbXONEo4ABiSqoePHj+PChQt44403kJSUBI1Gg7Vr10qP/f/73//Waq9UKlFaWqq17cqVK8jJycGKFSuk77E7d+6cYS6AiIjqrfKvjSqnUuVXGozk7fSJAYkqKCoqQmZmptZj/lFRURg2bBjGjh2LixcvoqSkBBs2bEBISAhOnjyJrVu3ap3D3d0dDx48QEJCArp3747mzZvDzc0NSqUSGzZswNSpU3Hx4kUsXbrUSFdJRET1hZ2dHcLDw+vVStqcg0QVxMfHw8nJCe7u7hg8eDBOnDiB9evX48svv4SpqSm6d++OdevWYeXKlejSpQv27NkjfR1MucDAQEydOhVhYWFo3bo1Vq1ahdatW2PXrl3Yt28fOnfujBUrVmDNmjVGukoiIqpP7Ozs4OTkVOXLkOEI4ErataavlbTrwzpIDQlX0iYiIl1wJe0Gqj4OMxIRETU1DEj1EMMPERGRcXEOEhEREZEMAxIRERGRDAMSERERkQznIBEREVGdysnJafAPGzEgERERUZ1pLMvV8BYbERER1Rn5yJFabY30dHeo1dbVtqtvOIJEREREepGc3AOHDw+DECZQKDQICYmDr2+KscuqEY4gkUF9++23UCgUuH//fo2PcXd3R3R0tN5qIiKiuqdWW0vhCACEMMHhw8MqjCTVVwxIpGX8+PFQKBSYOnVqhX3Tp0+HQqHA+PHjDV8YERE1KLm5dlI4KieECXJzbY1UkW4YkKgCV1dXxMbG4vfff5e2PXz4EDExMXBzczNiZURE1FDY2uZAodBobVMoNLC1zTVSRbphQKIKfH194erqigMHDkjbDhw4ADc3N/To0UPaVlRUhJkzZ6JNmzawsLBAv379cPbsWa1zHTlyBM888wwsLS3xpz/9CTdu3Kjwed9//z369+8PS0tLuLq6YubMmSgoKNDb9RERkf6pVPkICYmTQlL5HCSVKt/IldUMA1I9d/s2cOJE2Z+G9Le//Q07d+6U3n/00UeYMGGCVpvZs2dj//792L17N5KTk+Hl5YXg4GDk5pb918GtW7fw6quvIiQkBKmpqZg0aRLmzJmjdY7r169j8ODBGDFiBH788Ufs3bsX33//PcLDw/V/kUREpFe+vimIiIjGuHG7EBER3WAmaAMMSPXajh1Au3bAoEFlf+7YYbjPHj16NL7//nv8+uuv+PXXX3Hy5EmMHj1a2l9QUIAtW7Zg9erVGDJkCDp37ozt27fD0tISO/5/oVu2bIGnpyfWrl2LDh064PXXX68wfykqKgqvv/46IiIi4O3tjcDAQKxfvx4ff/wxHj58aLgLJiKiOqFUKrXeq1T58PD4tcLIkbxdfcPH/Oup27eBKVMAzf+/favRAH//OxAcDLRtq//Pb926NYYOHYpdu3ZBCIGhQ4fC3t5e2n/9+nWUlJSgb9++0jYzMzP07t0bly9fBgBcvnwZ/v7+WucNCAjQen/+/Hn8+OOP2LNnj7RNCAGNRoP09HR06tRJH5dHRER6Ymdnh/DwcK6kTfpx9eof4ahcaSlw7ZphAhJQdput/FbXpk2b9PIZDx48wN///nfMnDmzwj5OCCciapjqe/ipCQakesrbGzAx0Q5JpqaAl5fhahg8eDCKi4uhUCgQHBystc/T0xNKpRInT55Eu3btAAAlJSU4e/YsIiIiAACdOnXCoUOHtI774YcftN77+vri0qVL8DLkhRERET0B5yDVU23bAtu2lYUioOzPDz803OhR2Wea4vLly7h06RJMywv5/6ysrDBt2jS8/fbbiI+Px6VLlzB58mQUFhZi4sSJAICpU6fi6tWrePvtt5GWloaYmBjs2rVL6zzvvPMOTp06hfDwcKSmpuLq1av48ssvOUmbiIiMiiNI9djEiWVzjq5dKxs5MmQ4KmdjY1PlvhUrVkCj0WDMmDHIz89Hz5498fXXX6NVq1YAym6R7d+/H2+88QY2bNiA3r1747333sPf/vY36RzdunXD//3f/2HevHno378/hBDw9PREWFiY3q+NiIioKgohhDB2EQ1RXl4eVCoV1Gp1hRDx8OFDpKenw8PDAxYWFkaqsGlgXxMRkS6q+/39ON5iIyIiIpJhQCIiIiKSYUAiIiIikmFAIiIiIpJhQNIjzn/XP/YxERHpAwOSHpiZmQEACgsLjVxJ41e+lL18nSYiIqKnwXWQ9MDU1BQtW7bE3bt3AQDNmzeHQqEwclWNj0ajQXZ2Npo3b45mzfijTEREdYe/VfTE0dERAKSQRPphYmICNzc3BlAiIqpTDEh6olAo4OTkhDZt2qCkpMTY5TRaSqUSJia8U0xERHWLAUnPTE1NOT+GiIiogeF/ehMRERHJMCARERERyTAgEREREckwIBERERHJMCARERERyTAgEREREckwIBERERHJMCARERERyTAgEREREckYPSBt2rQJ7u7usLCwgL+/P86cOVNt+3379qFjx46wsLBA165dceTIEa39Bw4cwIsvvgg7OzsoFAqkpqZWOMfDhw8xffp02NnZoUWLFhgxYgSysrLq8rKIiIioATNqQNq7dy8iIyOxaNEiJCcno3v37ggODq7yC15PnTqFUaNGYeLEiUhJSUFoaChCQ0Nx8eJFqU1BQQH69euHlStXVvm5b7zxBg4fPox9+/bh//7v/3Dnzh28+uqrdX59RERE1DAphBDCWB/u7++PXr16YePGjQAAjUYDV1dXzJgxA3PmzKnQPiwsDAUFBYiLi5O29enTBz4+Pti6datW2xs3bsDDwwMpKSnw8fGRtqvVarRu3RoxMTH485//DAC4cuUKOnXqhMTERPTp06dGtefl5UGlUkGtVsPGxkbXSyciIiIjqOnvb6ONIBUXFyMpKQlBQUF/FGNigqCgICQmJlZ6TGJiolZ7AAgODq6yfWWSkpJQUlKidZ6OHTvCzc2t2vMUFRUhLy9P60VERESNk9EC0r1791BaWgoHBwet7Q4ODsjMzKz0mMzMTJ3aV3UOpVKJli1b6nSeqKgoqFQq6eXq6lrjzyQiIqKGxeiTtBuKuXPnQq1WS69bt24ZuyQiIiLSk2bG+mB7e3uYmppWeHosKysLjo6OlR7j6OioU/uqzlFcXIz79+9rjSI96Tzm5uYwNzev8ecQERFRw2W0ESSlUgk/Pz8kJCRI2zQaDRISEhAQEFDpMQEBAVrtAeDo0aNVtq+Mn58fzMzMtM6TlpaGmzdv6nQeIiKixiInJwcZGRlVvnJycoxdosEZbQQJACIjIzFu3Dj07NkTvXv3RnR0NAoKCjBhwgQAwNixY+Hi4oKoqCgAwKxZszBgwACsXbsWQ4cORWxsLM6dO4dt27ZJ58zNzcXNmzdx584dAGXhBygbOXJ0dIRKpcLEiRMRGRkJW1tb2NjYYMaMGQgICKjxE2xERESNRU5OjvQ0eXXCw8NhZ2dngIrqB6MGpLCwMGRnZ2PhwoXIzMyEj48P4uPjpYnYN2/ehInJH4NcgYGBiImJwfz58/Huu+/C29sbBw8eRJcuXaQ2hw4dkgIWAIwcORIAsGjRIixevBgA8P7778PExAQjRoxAUVERgoODsXnzZgNcMRERUf0iX3vw9m0n3LzZDm5uv6Jt2wytdk0pIBl1HaSGjOsgERFRY3DhwgUcOHAAAPDFF8Nx/nx3AAoAAt27n8crr3wJAHj11VfRtWtX4xVaR+r9OkhERERUf9y+7fRYOAIABc6f747bt52MWZbRMCARERERbt5shz/CUTkFbt1yM0Y5RseARERERHBz+xWAfNaNgKvrTWOUY3QMSERERIS2bTPQvft5/BGSyuYgPT5Ruykx6lNsREREVH+88sqX6NXrDG7dcoOr680mG44ABiQiIqImzczMTOt927YZlQYjebvGjrfYiIiImrDWrVvXabvGgiNIRERETZidnR3Cw8NRXFxcZRulUtmkFokEGJCIiIiavKYWfmqCt9iIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZIwekDZt2gR3d3dYWFjA398fZ86cqbb9vn370LFjR1hYWKBr1644cuSI1n4hBBYuXAgnJydYWloiKCgIV69e1Wrz888/Y/jw4bC3t4eNjQ369euHEydO1Pm1ERERUcNk1IC0d+9eREZGYtGiRUhOTkb37t0RHByMu3fvVtr+1KlTGDVqFCZOnIiUlBSEhoYiNDQUFy9elNqsWrUK69evx9atW3H69GlYWVkhODgYDx8+lNoMGzYMjx49wvHjx5GUlITu3btj2LBhyMzM1Ps1ExERUf2nEEIIY324v78/evXqhY0bNwIANBoNXF1dMWPGDMyZM6dC+7CwMBQUFCAuLk7a1qdPH/j4+GDr1q0QQsDZ2Rlvvvkm3nrrLQCAWq2Gg4MDdu3ahZEjR+LevXto3bo1/vvf/6J///4AgPz8fNjY2ODo0aMICgqqUe15eXlQqVRQq9WwsbF52q4gIiIiA6jp72+jjSAVFxcjKSlJK5CYmJggKCgIiYmJlR6TmJhYIcAEBwdL7dPT05GZmanVRqVSwd/fX2pjZ2eHDh064OOPP0ZBQQEePXqEDz/8EG3atIGfn1+V9RYVFSEvL0/rRURERI2T0QLSvXv3UFpaCgcHB63tDg4OVd7qyszMrLZ9+Z/VtVEoFDh27BhSUlJgbW0NCwsLrFu3DvHx8WjVqlWV9UZFRUGlUkkvV1dX3S6YiIiIGgyjT9I2NCEEpk+fjjZt2uC7777DmTNnEBoaipCQEGRkZFR53Ny5c6FWq6XXrVu3DFg1ERERGZLRApK9vT1MTU2RlZWltT0rKwuOjo6VHuPo6Fht+/I/q2tz/PhxxMXFITY2Fn379oWvry82b94MS0tL7N69u8p6zc3NYWNjo/UiIiKixsloAUmpVMLPzw8JCQnSNo1Gg4SEBAQEBFR6TEBAgFZ7ADh69KjU3sPDA46Ojlpt8vLycPr0aalNYWEhgLL5To8zMTGBRqN5+gsjIiKiBq+ZMT88MjIS48aNQ8+ePdG7d29ER0ejoKAAEyZMAACMHTsWLi4uiIqKAgDMmjULAwYMwNq1azF06FDExsbi3Llz2LZtG4Cy+UURERFYtmwZvL294eHhgQULFsDZ2RmhoaEAykJWq1atMG7cOCxcuBCWlpbYvn070tPTMXToUKP0AxEREdUvRg1IYWFhyM7OxsKFC5GZmQkfHx/Ex8dLk6xv3rypNdITGBiImJgYzJ8/H++++y68vb1x8OBBdOnSRWoze/ZsFBQUYMqUKbh//z769euH+Ph4WFhYACi7tRcfH4958+Zh0KBBKCkpwbPPPosvv/wS3bt3N2wHEBERUb1k1HWQGjKug0RERNTw1Pt1kIiIiIjqKwYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZBiQiIiIiGQYkIiIiIhkGJCIiIiIZnQLS7du3ce/ePen9d999h9dffx39+/fH6NGjkZiYWOcFEhERERmaTgFpxIgR+OGHHwAAX375JQYOHIgHDx6gb9++KCwsxIABAxAXF6eXQomIiCqTk5ODjIyMKl85OTnGLpEaIIUQQtS0cYsWLXDhwgV4eHigT58+eOWVV/DOO+9I+zdu3IiPPvoIycnJeim2PsnLy4NKpYJarYaNjY2xyyEiapJycnKwcePGJ7YLDw+HnZ2dASqi+q6mv791GkFq1qwZ8vPzAQDp6ekYMmSI1v4hQ4YgLS2tFuUSERHprri4WOu9Wm2N9HR3qNXW1bYjepJmujQeMGAAPvvsM3Tr1g09evTAt99+i27dukn7T5w4ARcXlzovkoiI6EmSk3vg8OFhEMIECoUGISFx8PVNMXZZ1EDpFJBWrFiB/v37486dO+jXrx/mzZuHs2fPolOnTkhLS8PevXuxdetWfdVKRERUKbXaWgpHACCECQ4fHgZPz2tQqfKNXB01RDrdYuvUqRNOnz6N4uJirFq1CgUFBdizZw8WL16Ma9euITY2FuPHj9dTqURERJXLzbWTwlE5IUyQm2trpIqoodNpBAkAPD098dlnn0EIgbt370Kj0cDe3h5mZmb6qI+IiOiJbG1zoFBotEKSQqGBrW2uEauihqzWC0UqFAo4ODjAycmJ4YiIiIxKpcpHSEgcFAoNAEhzkHh7jWpLpxGkyMjIGrVbt25drYohIiKqLV/fFHh6XkNuri1sbXMZjuip6BSQUlK0nwb4/vvv4efnB0tLS2mbQqGom8qIiIieQKlUar1XqfIrDUbydkRPotNCkXLW1tY4f/482rdvX5c1NQhcKJKIqH7Iycmpdp0jpVLJRSJJUtPf3zpP0iYiIqpPGH5IH2o9SZuIiIiosWJAIiIiIpLR6Rbbjz/+qPVeCIErV67gwYMHWtsf//oRIiIiooZGp0naJiYmUCgUqOyQ8u0KhQKlpaV1WmR9xEnaREREDU9Nf3/rdIstPT0dv/zyC9LT0yu8yrf/8ssvOhW6adMmuLu7w8LCAv7+/jhz5ky17fft24eOHTvCwsICXbt2xZEjR7T2CyGwcOFCODk5wdLSEkFBQbh69WqF83z11Vfw9/eHpaUlWrVqhdDQUJ3qJiIiosZLp1ts7dq1q9MP37t3LyIjI7F161b4+/sjOjoawcHBSEtLQ5s2bSq0P3XqFEaNGoWoqCgMGzYMMTExCA0NRXJyMrp06QIAWLVqFdavX4/du3fDw8MDCxYsQHBwMC5dugQLCwsAwP79+zF58mS89957GDRoEB49eoSLFy/W6bURERFRw1WrdZA0Gg1MTCoOPmk0Gty+fRtubm41Oo+/vz969eqFjRs3Sse7urpixowZmDNnToX2YWFhKCgoQFxcnLStT58+8PHxwdatWyGEgLOzM95880289dZbAAC1Wg0HBwfs2rULI0eOxKNHj+Du7o4lS5Zg4sSJul66hLfYiIiIGh693GLLy8vDa6+9BisrKzg4OGDhwoVa842ys7Ph4eFRo3MVFxcjKSkJQUFBfxRjYoKgoCAkJiZWekxiYqJWewAIDg6W2qenpyMzM1OrjUqlgr+/v9QmOTkZ//vf/2BiYoIePXrAyckJQ4YMeeIIUlFREfLy8rReRERE1DjpFJAWLFiA8+fP45NPPsHy5cvx8ccfY/jw4VormNZ0QOrevXsoLS2Fg4OD1nYHBwdkZmZWekxmZma17cv/rK5N+RypxYsXY/78+YiLi0OrVq0wcOBA5OZW/a3PUVFRUKlU0svV1bVG10lEREQNj04B6eDBg/jwww/x5z//GZMmTcK5c+eQnZ2NkJAQFBUVAaj/38Wm0ZR90/O8efMwYsQI+Pn5YefOnVAoFNi3b1+Vx82dOxdqtVp63bp1y1AlExERkYHpNEk7Oztba6K2vb09jh07huDgYLz00kv417/+VeNz2dvbw9TUFFlZWVrbs7Ky4OjoWOkxjo6O1bYv/zMrKwtOTk5abXx8fABA2t65c2dpv7m5Odq3b4+bN29WWa+5uTnMzc1reHVERFQVfncaNQQ6BSQ3NzdcvnxZa56RtbU1vvnmG7z44ot45ZVXanwupVIJPz8/JCQkSI/YazQaJCQkIDw8vNJjAgICkJCQgIiICGnb0aNHERAQAADw8PCAo6MjEhISpECUl5eH06dPY9q0aQAAPz8/mJubIy0tDf369QMAlJSU4MaNG3X+lB4REWnLycmRHsypTnh4OEMSGZVOt9heeOEF7Ny5s8L2Fi1a4Ouvv5Yeo6+pyMhIbN++Hbt378bly5cxbdo0FBQUYMKECQCAsWPHYu7cuVL7WbNmIT4+HmvXrsWVK1ewePFinDt3TgpUCoUCERERWLZsGQ4dOoQLFy5g7NixcHZ2lkKYjY0Npk6dikWLFuGbb75BWlqaFJ7+8pe/6FQ/ERHpRj5ypFZbIz3dHWq1dbXtiAxNpxGkf/7zn8jIyKh0n7W1NY4ePYrk5OQany8sLAzZ2dlYuHAhMjMz4ePjg/j4eGmS9c2bN7WWEwgMDERMTAzmz5+Pd999F97e3jh48KC0BhIAzJ49GwUFBZgyZQru37+Pfv36IT4+Xiu8rV69Gs2aNcOYMWPw+++/w9/fH8ePH0erVq106Q4iInoKyck9cPjwMAhhAoVCg5CQOPj6phi7LCIAOq6DdPz4cYSHh+OHH36osHaAWq1GYGAgtmzZgueee67OC61vuA4SEZHuMjIysG3bNqjV1oiOjoAQf/xHsEKhQURENFSqfEyZMkVrLilRXdHLOkjR0dGYPHlypSdUqVT4+9//jvfff1/3aomIqEnJzbXTCkcAIIQJcnNtjVQRkTadbrGdP38eK1eurHL/iy++iDVr1jx1UUREVP89zdNotrY5UCg0FUaQbG2rXo+OyJB0CkhZWVkwMzOr+mTNmiE7O/upiyIiovrtaZ9GU6nyERISV2EOkkqVr49yiXSmU0BycXHBxYsX4eXlVen+H3/8kfeMiYiagMqeRsvNtYOtbY5WyKluhMnXNwWenteQm2sLW9tchiOqV3QKSC+99BIWLFiAwYMHV3ik//fff8eiRYswbNiwOi2QiIjqN12eRlMqlVrvVar8SoORvB2RoekUkObPn48DBw7gmWeeQXh4ODp06AAAuHLlCjZt2oTS0lLMmzdPL4USEVH9o1ZbS+EIKJtoffjwMHh6Xqs0+NjZ2SE8PJwraVO9p1NAcnBwwKlTpzBt2jTMnTtX+mJahUKB4OBgbNq0qcIXxRIRUeNV3dNoVd0yY/ihhkCngAQA7dq1w5EjR/Dbb7/h2rVrEELA29ubiywSETVBfBqNGiud1kF6XKtWrdCrVy/07t2b4YiIqIkqfxpNodAAAJ9Go0ZD5xEkIiKix/FpNGqMGJCIiEhnfBqNGjsGJCIiqlJ1q2W/9tprUCgUUKlUle7n02jUkDEgERFRpZ52tWyihqzWk7SJiKhxq2y17PR0d6jV1tW2I2oMOIJERERPpMtq2USNAUeQiIioWlWtli0fSSJqTBiQiIioWtWtlk3UWDEgERFRtcpXy34cV8umxo4BiYiIqsXVsqkp4iRtIiJ6Iq6WTU0NAxIREVWKq2VTU8aARERElbKzs0N4eHi16xxxtWxqrBiQiIioSgw/1FRxkjYRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkUwzYxdARNTY5eTkoLi4uMr9SqUSdnZ2BqyIiJ6EAYmISI9ycnKwceNG6b1abY3cXDvY2uZApcqXtoeHhzMkEdUjDEhERHr0+MhRcnIPHD48DEKYQKHQICQkDr6+KRXaEZHxcQ4SEZEBqNXWUjgCACFMcPjwMKjV1kaujIgqw4BERGQAubl2UjgqJ4QJcnNtjVQREVWHAYmIyABsbXOgUGi0tikUGtja5hqpIiKqDgMSEZEBqFT5CAmJk0JS+RykxydqE1H9US8C0qZNm+Du7g4LCwv4+/vjzJkz1bbft28fOnbsCAsLC3Tt2hVHjhzR2i+EwMKFC+Hk5ARLS0sEBQXh6tWrlZ6rqKgIPj4+UCgUSE1NratLIiKqwNc3BRER0Rg3bhciIqKlCdpEVP8YPSDt3bsXkZGRWLRoEZKTk9G9e3cEBwfj7t27lbY/deoURo0ahYkTJyIlJQWhoaEIDQ3FxYsXpTarVq3C+vXrsXXrVpw+fRpWVlYIDg7Gw4cPK5xv9uzZcHZ21tv1ERE9TqXKh4fHrxw5IqrnjB6Q1q1bh8mTJ2PChAno3Lkztm7diubNm+Ojjz6qtP0HH3yAwYMH4+2330anTp2wdOlS+Pr6SuuMCCEQHR2N+fPnY/jw4ejWrRs+/vhj3LlzBwcPHtQ613/+8x988803WLNmjb4vk4iaKKVSWaftiMgwjLoOUnFxMZKSkjB37lxpm4mJCYKCgpCYmFjpMYmJiYiMjNTaFhwcLIWf9PR0ZGZmIigoSNqvUqng7++PxMREjBw5EgCQlZWFyZMn4+DBg2jevPkTay0qKkJRUZH0Pi8vr8bXSURNl52dHcLDw7mSNlEDY9SAdO/ePZSWlsLBwUFru4ODA65cuVLpMZmZmZW2z8zMlPaXb6uqjRAC48ePx9SpU9GzZ0/cuHHjibVGRUVhyZIlNbouIqLHMfwQNTxGv8VmDBs2bEB+fr7WyNWTzJ07F2q1WnrdunVLjxUSERGRMRk1INnb28PU1BRZWVla27OysuDo6FjpMY6OjtW2L/+zujbHjx9HYmIizM3N0axZM3h5eQEAevbsiXHjxlX6uebm5rCxsdF6ERERUeNk1ICkVCrh5+eHhIQEaZtGo0FCQgICAgIqPSYgIECrPQAcPXpUau/h4QFHR0etNnl5eTh9+rTUZv369Th//jxSU1ORmpoqLROwd+9eLF++vE6vkYiIiBoeo39ZbWRkJMaNG4eePXuid+/eiI6ORkFBASZMmAAAGDt2LFxcXBAVFQUAmDVrFgYMGIC1a9di6NChiI2Nxblz57Bt2zYAgEKhQEREBJYtWwZvb294eHhgwYIFcHZ2RmhoKADAzc1Nq4YWLVoAADw9PdG2bVsDXTkRERHVV0YPSGFhYcjOzsbChQuRmZkJHx8fxMfHS5Osb968CROTPwa6AgMDERMTg/nz5+Pdd9+Ft7c3Dh48iC5dukhtZs+ejYKCAkyZMgX3799Hv379EB8fDwsLC4NfHxERETU8CiGEMHYRDVFeXh5UKhXUajXnIxERETUQNf393SSfYiMiIiKqDgMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDAMSERERkUwzYxdARFQTOTk5KC4urnK/UqmEnZ2dASsiosaMAYmI6r2cnBxs3Ljxie3Cw8MZkoioTvAWGxHVe/KRI7XaGunp7lCrrattR0RUWxxBIqIGJTm5Bw4fHgYhTKBQaBASEgdf3xRjl0VEjQxHkIiowVCrraVwBABCmODw4WEVRpKIiJ4WAxIRNRi5uXZSOConhAlyc22NVBERNVYMSETUYNja5kCh0GhtUyg0sLXNNVJFRNRYMSARUYOhUuUjJCROCknlc5BUqnwjV0ZEjQ0naRNRg+LrmwJPz2vIzbWFrW0uwxER6QUDEhHVe0qlUuu9SpVfaTCStyMiqi0GJCKqNUOtbm1nZ4fw8HCupE1EBsOARES1YujVrRl+iMiQOEmbiGqFq1sTUWPGESQiempc3ZqIGhuOIBHRU+Hq1kTUGDEgEdFT4erWRNQYMSAR0VPh6tZE1BgxIBHRU+Hq1kTUGHGSNhEBeLo1jbi6NRE1NgxIRE1IVSHo/v37+Pe///3E4x9f04irWxNRY8aARNRE1HRhR6DsybTcXDvY2uZohZ7HwxVXtyaixowBiaiJqGxhx8pCkC5rGjH8EFFjxYBE1ARVFYKqWtPI0/Ma5xURUZPCp9iImpjqFnbkmkZERGUYkIiamOpCENc0IiIqw1tsRA1UdU+kPXr0CGZmZlCpVNL2e/fuAfhjYcfHQ1J5CCpf00h++42314ioqWFAImqAdHkiTe5JIYhrGhERMSARNUg1fSKtKk8KQVzTiIiaOgYkogauusfyqwtOVYWgsLAwrVtz5bimERE1JQxIRA1YdY/lX7/uVWVwevXVV2Fvb1/hfAxBRERlGJCIGrCqnki7datttesZ2dvbw8nJyRglExE1CHzMn6gBq+qxfEDB9YyIiJ4CAxJRA1b+RFp5SCq/lebqeovrGRERPQXeYiNq4Kp6Io3rGRER1R4DElEDJH/cvrIn0qp7lJ+P6xMRVa9eBKRNmzZh9erVyMzMRPfu3bFhwwb07t27yvb79u3DggULcOPGDXh7e2PlypV46aWXpP1CCCxatAjbt2/H/fv30bdvX2zZsgXe3t4AgBs3bmDp0qU4fvw4MjMz4ezsjNGjR2PevHn8xUENgp2dHcLDw3VaSbscn1QjInoyowekvXv3IjIyElu3boW/vz+io6MRHByMtLQ0tGnTpkL7U6dOYdSoUYiKisKwYcMQExOD0NBQJCcno0uXLgCAVatWYf369di9ezc8PDywYMECBAcH49KlS7CwsMCVK1eg0Wjw4YcfwsvLCxcvXsTkyZNRUFCANWvWGLoLiGqlqpDDp9OIiJ6eQgghjFmAv78/evXqJX1tgkajgaurK2bMmIE5c+ZUaB8WFoaCggLExcVJ2/r06QMfHx9s3boVQgg4OzvjzTffxFtvvQUAUKvVcHBwwK5duzBy5MhK61i9ejW2bNmCX375pUZ15+XlQaVSQa1Ww8bGRtfLJiIiIiOo6e9voz7FVlxcjKSkJAQFBUnbTExMEBQUhMTExEqPSUxM1GoPAMHBwVL79PR0ZGZmarVRqVTw9/ev8pxAWYiyteUj0ERERGTkW2z37t1DaWkpHBwctLY7ODjgypUrlR6TmZlZafvMzExpf/m2qtrIXbt2DRs2bKj29lpRURGKioqk93l5eVW2paYrJyen0nlB5Tj/h4ioYTD6HCRj+9///ofBgwfjL3/5CyZPnlxlu6ioKCxZssSAlVFDk5OTI90qrk54eDhDEhFRPWfUW2z29vYwNTVFVlaW1vasrCw4OjpWeoyjo2O17cv/rMk579y5gz/96U8IDAzEtm3bqq117ty5UKvV0uvWrVtPvkBqUuQjR2q1NdLT3aFWW1fbjoiI6h+jBiSlUgk/Pz8kJCRI2zQaDRISEhAQEFDpMQEBAVrtAeDo0aNSew8PDzg6Omq1ycvLw+nTp7XO+b///Q8DBw6En58fdu7cCROT6rvC3NwcNjY2Wi+iqiQn90B0dAR27x6H6OgIJCf3MHZJRESkA6PfYouMjMS4cePQs2dP9O7dG9HR0SgoKMCECRMAAGPHjoWLiwuioqIAALNmzcKAAQOwdu1aDB06FLGxsTh37pw0AqRQKBAREYFly5bB29tbeszf2dkZoaGhAP4IR+3atcOaNWuQnZ0t1VPVyBVRTanV1tV+USwREdV/Rg9IYWFhyM7OxsKFC5GZmQkfHx/Ex8dLk6xv3rypNboTGBiImJgYzJ8/H++++y68vb1x8OBBaQ0kAJg9ezYKCgowZcoU3L9/H/369UN8fDwsLCwAlI04Xbt2DdeuXUPbtm216jHyqgfUCOTm2lX5RbEMSEREDYPR10FqqLgOEsllZGRg27ZtUKutER0doRWSFAoNIiKioVLlY8qUKVzMkYjISBrEOkhEjZFKlY+QkDgoFBoA4BfFEhE1QEa/xUbUGFX3RbFERFT/MSAR1RH5Fx2rVPmVBiN+ITIRUf3HgERUR+zs7BAeHs6VtImIGgEGJKI6xPBDRNQ4cJI2ERERkQwDEhEREZEMAxIRERGRDAMSERERkQwDEhEREZEMAxIRERGRDB/zJ6O4fv06CgsLq9zfvHlzeHp6GrAiIiKiPzAgkcFdv34dn3766RPbjR49miGJiIiMgrfYyODkI0e3bzvh1Kk+uH3bqdp2REREhsIRJDKqL74YjvPnuwNQABDo3v08XnnlS2OXRURETRxHkMhobt92eiwcAYAC5893rzCSREREZGgMSGQ0N2+2wx/hqJwCt265GaMcIiIiCQMSGY2b268AhGyrgKvrTWOUQ0REJGFAIqNp2zYD3bufxx8hqWwOUtu2GcYsi4iIiJO0ybheeeVL9Op1BrduucHV9SbDERER1QsMSGRwzZs313rftm1GpcFI3o6IiMhQGJDI4Dw9PTF69GiupE1ERPUWAxIZBcMPERHVZ5ykTURERCTDEaRGKicnB8XFxVXuVyqVsLOzM2BFREREDQcDUiOUk5ODjRs3PrFdeHg4QxIREVEleIutEZKPHKnV1khPd4dabV1tOyIiIirDEaRGLjm5Bw4fHgYhTKBQaBASEgdf3xRjl0VERFSvcQSpEVOrraVwBABCmODw4WEVRpKIiIhIGwNSI5abayeFo3JCmCA319ZIFRERETUMvMVWD+jriTNb2xwoFBqtkKRQaGBrm1urOomIiJoKBiQj0+cTZypVPkJC4irMQVKp8mtbLhERUZPAgGRklT1xlptrB1vbHK0gU9snznx9U+DpeQ25ubawtc1lOCIiIqoBBqR6pK6eOFMqlVrvVar8SoORvB0RERGVYUCqJ6p64szT85rOoz52dnYIDw/nStpERES1xIBUT1T3xFltbosx/BAREdUeH/OvJ8qfOHscnzgjIiIyDgakeqL8ibPykMQnzoiIiIyHt9jqET5xRkREVD8wIBkZnzgjIiKqfxiQjIxPnBEREdU/DEj1AMMPERFR/cJJ2kREREQyDEhEREREMgxIRERERDIMSEREREQyDEhEREREMgxIRERERDIMSEREREQyDEhEREREMgxIRERERDJcSbuWhBAAgLy8PCNXQkRERDVV/nu7/Pd4VRiQaik/v+wLZV1dXY1cCREREekqPz8fKpWqyv0K8aQIRZXSaDS4c+cOrK2toVAoKm2Tl5cHV1dX3Lp1CzY2NgausP5gP/yBfVGG/VCG/fAH9kUZ9kMZffaDEAL5+flwdnaGiUnVM404glRLJiYmaNu2bY3a2tjYNOkf9HLshz+wL8qwH8qwH/7AvijDfiijr36obuSoHCdpExEREckwIBERERHJMCDpkbm5ORYtWgRzc3Njl2JU7Ic/sC/KsB/KsB/+wL4ow34oUx/6gZO0iYiIiGQ4gkREREQkw4BEREREJMOARERERCTDgEREREQkw4D0lDZt2gR3d3dYWFjA398fZ86cqbLtTz/9hBEjRsDd3R0KhQLR0dGGK1TPdOmH7du3o3///mjVqhVatWqFoKCgats3JLr0w4EDB9CzZ0+0bNkSVlZW8PHxwSeffGLAavVLl754XGxsLBQKBUJDQ/VboIHo0g+7du2CQqHQellYWBiwWv3R9efh/v37mD59OpycnGBubo5nnnkGR44cMVC1+qVLXwwcOLDCz4RCocDQoUMNWLF+6PozER0djQ4dOsDS0hKurq5444038PDhQ/0VKKjWYmNjhVKpFB999JH46aefxOTJk0XLli1FVlZWpe3PnDkj3nrrLfHZZ58JR0dH8f777xu2YD3RtR/++te/ik2bNomUlBRx+fJlMX78eKFSqcTt27cNXHnd0rUfTpw4IQ4cOCAuXbokrl27JqKjo4WpqamIj483cOV1T9e+KJeeni5cXFxE//79xfDhww1TrB7p2g87d+4UNjY2IiMjQ3plZmYauOq6p2s/FBUViZ49e4qXXnpJfP/99yI9PV18++23IjU11cCV1z1d+yInJ0fr5+HixYvC1NRU7Ny507CF1zFd+2HPnj3C3Nxc7NmzR6Snp4uvv/5aODk5iTfeeENvNTIgPYXevXuL6dOnS+9LS0uFs7OziIqKeuKx7dq1azQB6Wn6QQghHj16JKytrcXu3bv1VaJBPG0/CCFEjx49xPz58/VRnkHVpi8ePXokAgMDxb/+9S8xbty4RhGQdO2HnTt3CpVKZaDqDEfXftiyZYto3769KC4uNlSJBvO0/068//77wtraWjx48EBfJRqErv0wffp0MWjQIK1tkZGRom/fvnqrkbfYaqm4uBhJSUkICgqStpmYmCAoKAiJiYlGrMyw6qIfCgsLUVJSAltbW32VqXdP2w9CCCQkJCAtLQ3PPfecPkvVu9r2xT//+U+0adMGEydONESZelfbfnjw4AHatWsHV1dXDB8+HD/99JMhytWb2vTDoUOHEBAQgOnTp8PBwQFdunTBe++9h9LSUkOVrRd18e/ljh07MHLkSFhZWemrTL2rTT8EBgYiKSlJug33yy+/4MiRI3jppZf0Vie/rLaW7t27h9LSUjg4OGhtd3BwwJUrV4xUleHVRT+88847cHZ21vo/S0NT235Qq9VwcXFBUVERTE1NsXnzZrzwwgv6LlevatMX33//PXbs2IHU1FQDVGgYtemHDh064KOPPkK3bt2gVquxZs0aBAYG4qeffqrxl2PXN7Xph19++QXHjx/H66+/jiNHjuDatWv4xz/+gZKSEixatMgQZevF0/57eebMGVy8eBE7duzQV4kGUZt++Otf/4p79+6hX79+EELg0aNHmDp1Kt5991291cmAREa1YsUKxMbG4ttvv200k1F1YW1tjdTUVDx48AAJCQmIjIxE+/btMXDgQGOXZjD5+fkYM2YMtm/fDnt7e2OXY1QBAQEICAiQ3gcGBqJTp0748MMPsXTpUiNWZlgajQZt2rTBtm3bYGpqCj8/P/zvf//D6tWrG3RAelo7duxA165d0bt3b2OXYnDffvst3nvvPWzevBn+/v64du0aZs2ahaVLl2LBggV6+UwGpFqyt7eHqakpsrKytLZnZWXB0dHRSFUZ3tP0w5o1a7BixQocO3YM3bp102eZelfbfjAxMYGXlxcAwMfHB5cvX0ZUVFSDDki69sX169dx48YNhISESNs0Gg0AoFmzZkhLS4Onp6d+i9aDuvg3wszMDD169MC1a9f0UaJB1KYfnJycYGZmBlNTU2lbp06dkJmZieLiYiiVSr3WrC9P8zNRUFCA2NhY/POf/9RniQZRm35YsGABxowZg0mTJgEAunbtioKCAkyZMgXz5s2DiUndzxjiHKRaUiqV8PPzQ0JCgrRNo9EgISFB678AG7va9sOqVauwdOlSxMfHo2fPnoYoVa/q6udBo9GgqKhIHyUajK590bFjR1y4cAGpqanS6+WXX8af/vQnpKamwtXV1ZDl15m6+JkoLS3FhQsX4OTkpK8y9a42/dC3b19cu3ZNCsoA8PPPP8PJyanBhiPg6X4m9u3bh6KiIowePVrfZepdbfqhsLCwQggqD9BCX18pq7fp301AbGysMDc3F7t27RKXLl0SU6ZMES1btpQeyx0zZoyYM2eO1L6oqEikpKSIlJQU4eTkJN566y2RkpIirl69aqxLqBO69sOKFSuEUqkUn3/+udbjq/n5+ca6hDqhaz+899574ptvvhHXr18Xly5dEmvWrBHNmjUT27dvN9Yl1Bld+0KusTzFpms/LFmyRHz99dfi+vXrIikpSYwcOVJYWFiIn376yViXUCd07YebN28Ka2trER4eLtLS0kRcXJxo06aNWLZsmbEuoc7U9v8b/fr1E2FhYYYuV2907YdFixYJa2tr8dlnn4lffvlFfPPNN8LT01O89tprequRAekpbdiwQbi5uQmlUil69+4tfvjhB2nfgAEDxLhx46T36enpAkCF14ABAwxfeB3TpR/atWtXaT8sWrTI8IXXMV36Yd68ecLLy0tYWFiIVq1aiYCAABEbG2uEqvVDl76QaywBSQjd+iEiIkJq6+DgIF566SWRnJxshKrrnq4/D6dOnRL+/v7C3NxctG/fXixfvlw8evTIwFXrh659ceXKFQFAfPPNNwauVL906YeSkhKxePFi4enpKSwsLISrq6v4xz/+IX777Te91acQQl9jU0REREQNE+cgEREREckwIBERERHJMCARERERyTAgEREREckwIBERERHJMCARERERyTAgEREREckwIBER1XPjx49HaGioscsgalIYkIio1saPHw+FQiG97OzsMHjwYPz444/GLq1OPH5t5a9+/frp7fNu3LgBhUKB1NRUre0ffPABdu3apbfPJaKKGJCI6KkMHjwYGRkZyMjIQEJCApo1a4Zhw4YZu6w6s3PnTun6MjIycOjQoUrblZSU6K0GlUqFli1b6u38RFQRAxIRPRVzc3M4OjrC0dERPj4+mDNnDm7duoXs7GwMGjQI4eHhWu2zs7OhVCqlb/J2d3fH0qVLMWrUKFhZWcHFxQWbNm3SOmbdunXo2rUrrKys4Orqin/84x948OCBtP/XX39FSEgIWrVqBSsrKzz77LM4cuQIAOC3337D66+/jtatW8PS0hLe3t7YuXNnja+vZcuW0vU5OjrC1tZWGunZu3cvBgwYAAsLC+zZswc5OTkYNWoUXFxc0Lx5c3Tt2hWfffaZ1vk0Gg1WrVoFLy8vmJubw83NDcuXLwcAeHh4AAB69OgBhUKBgQMHAqh4i62oqAgzZ85EmzZtYGFhgX79+uHs2bPS/m+//RYKhQIJCQno2bMnmjdvjsDAQKSlpdX4uomaOgYkIqozDx48wKeffgovLy/Y2dlh0qRJiImJQVFRkdTm008/hYuLCwYNGiRtW716Nbp3746UlBTMmTMHs2bNwtGjR6X9JiYmWL9+PX766Sfs3r0bx48fx+zZs6X906dPR1FREf773//iwoULWLlyJVq0aAEAWLBgAS5duoT//Oc/uHz5MrZs2QJ7e/s6ud7yWi9fvozg4GA8fPgQfn5++Oqrr3Dx4kVMmTIFY8aMwZkzZ6Rj5s6dixUrVkh1xcTEwMHBAQCkdseOHUNGRgYOHDhQ6efOnj0b+/fvx+7du5GcnAwvLy8EBwcjNzdXq928efOwdu1anDt3Ds2aNcPf/va3OrluoiZBb1+DS0SN3rhx44SpqamwsrISVlZWAoBwcnISSUlJQgghfv/9d9GqVSuxd+9e6Zhu3bqJxYsXS+/btWsnBg8erHXesLAwMWTIkCo/d9++fcLOzk5637VrV61zPi4kJERMmDChVtcHQFhYWEjXZ2VlJb744guRnp4uAIjo6OgnnmPo0KHizTffFEIIkZeXJ8zNzcX27dsrbVt+3pSUFK3t48aNE8OHDxdCCPHgwQNhZmYm9uzZI+0vLi4Wzs7OYtWqVUIIIU6cOCEAiGPHjkltvvrqKwFA/P7777p0AVGTxREkInoqf/rTn5CamorU1FScOXMGwcHBGDJkCH799VdYWFhgzJgx+OijjwAAycnJuHjxIsaPH691joCAgArvL1++LL0/duwYnn/+ebi4uMDa2hpjxoxBTk4OCgsLAQAzZ87EsmXL0LdvXyxatEhrkvi0adMQGxsLHx8fzJ49G6dOndLp+t5//33p+lJTU/HCCy9I+3r27KnVtrS0FEuXLkXXrl1ha2uLFi1a4Ouvv8bNmzcBAJcvX0ZRURGef/55nWp43PXr11FSUoK+fftK28zMzNC7d2+tPgOAbt26SX93cnICANy9e7fWn03UlDAgEdFTsbKygpeXF7y8vNCrVy/861//QkFBAbZv3w4AmDRpEo4ePYrbt29j586dGDRoENq1a1fj89+4cQPDhg1Dt27dsH//fiQlJUlzlIqLi6XP+OWXXzBmzBhcuHABPXv2xIYNGwBACmtvvPEG7ty5g+effx5vvfVWjT/f0dFRuj4vLy9YWVlpXfvjVq9ejQ8++ADvvPMOTpw4gdTUVAQHB0t1Wlpa1vhz64KZmZn0d4VCAaBsDhQRPRkDEhHVKYVCARMTE/z+++8AgK5du6Jnz57Yvn07YmJiKp0H88MPP1R436lTJwBAUlISNBoN1q5diz59+uCZZ57BnTt3KpzD1dUVU6dOxYEDB/Dmm29KAQ0AWrdujXHjxuHTTz9FdHQ0tm3bVpeXLDl58iSGDx+O0aNHo3v37mjfvj1+/vlnab+3tzcsLS2lCepySqUSQNlIVFU8PT2hVCpx8uRJaVtJSQnOnj2Lzp0719GVEFEzYxdARA1bUVERMjMzAZQ9MbZx40Y8ePAAISEhUptJkyYhPDwcVlZWeOWVVyqc4+TJk1i1ahVCQ0Nx9OhR7Nu3D1999RUAwMvLCyUlJdiwYQNCQkJw8uRJbN26Vev4iIgIDBkyBM888wx+++03nDhxQgpYCxcuhJ+fH5599lkUFRUhLi5O2lfXvL298fnnn+PUqVNo1aoV1q1bh6ysLCm4WFhY4J133sHs2bOhVCrRt29fZGdn46effsLEiRPRpk0bWFpaIj4+Hm3btoWFhQVUKpXWZ1hZWWHatGl4++23YWtrCzc3N6xatQqFhYWYOHGiXq6LqCniCBIRPZX4+Hg4OTnByckJ/v7+OHv2LPbt2yc9og4Ao0aNQrNmzTBq1ChYWFhUOMebb76Jc+fOoUePHli2bBnWrVuH4OBgAED37t2xbt06rFy5El26dMGePXsQFRWldXxpaSmmT5+OTp06YfDgwXjmmWewefNmAGWjMnPnzkW3bt3w3HPPwdTUFLGxsXrpi/nz58PX1xfBwcEYOHAgHB0dK6yAvWDBArz55ptYuHAhOnXqhLCwMGleULNmzbB+/Xp8+OGHcHZ2xvDhwyv9nBUrVmDEiBEYM2YMfH19ce3aNXz99ddo1aqVXq6LqClSCCGEsYsgosbtxo0b8PT0xNmzZ+Hr66u1z93dHREREYiIiDBOcUREleAtNiLSm5KSEuTk5GD+/Pno06dPhXBERFRf8RYbEenNyZMn4eTkhLNnz1aYN2Rs7733Hlq0aFHpa8iQIcYuj4iMjLfYiKhJys3NrbDydDlLS0u4uLgYuCIiqk8YkIiIiIhkeIuNiIiISIYBiYiIiEiGAYmIiIhIhgGJiIiISIYBiYiIiEiGAYmIiIhIhgGJiIiISIYBiYiIiEjm/wENrVPhy5eY5AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATblJREFUeJzt3X9YVGX+//HXgAwgwuigAhoKomWliaCiZmlGoasUm7upW6at5dpKZVRu5u/V0rTMTM1qS93K9Gu6bppLqdVupakJVppaGmatQgo5ICYQc75/+GG2ERgZZBiQ5+O65tI5555z3udeVl7d5577mAzDMAQAAIAK+Xi7AAAAgLqMsAQAAOACYQkAAMAFwhIAAIALhCUAAAAXCEsAAAAuEJYAAABcICwBAAC4QFgCAABwgbAEAPXY8uXLZTKZdOTIEW+XAlyyCEsAXNq1a5dSU1N19dVXKygoSG3atNHtt9+ur7/+ulzbfv36yWQyyWQyycfHRyEhIbriiis0YsQIbd682a3zbtiwQX379lXLli3VuHFjtWvXTrfffrvS09Nr6tLKefLJJ7V+/fpy27dt26bp06fr1KlTHjv3+aZPn+7oS5PJpMaNG+uqq67S5MmTlZ+fXyPnWLlypRYsWFAjxwIuZYQlAC499dRTWrt2rW688UY999xzGjNmjP7zn/8oLi5Oe/fuLdf+sssu02uvvaa///3vmjdvnm655RZt27ZNN998s4YOHaqSkpILnvPpp5/WLbfcIpPJpIkTJ+rZZ5/VkCFD9M0332jVqlWeuExJrsPSjBkzajUslXnhhRf02muvaf78+erYsaOeeOIJDRgwQDXxWE/CElA1jbxdAIC6LS0tTStXrpTZbHZsGzp0qDp37qw5c+bo9ddfd2pvsVh05513Om2bM2eOHnjgAS1ZskRRUVF66qmnKj3fL7/8opkzZ+qmm27Se++9V27/jz/+eJFXVHecOXNGjRs3dtnmd7/7nZo3by5JGjt2rIYMGaJ169bp008/Va9evWqjTKDBY2QJgEu9e/d2CkqS1KFDB1199dXav39/lY7h6+urhQsX6qqrrtKiRYtks9kqbXvy5Enl5+fr2muvrXB/y5Ytnd6fPXtW06dP1+WXX66AgABFRETotttu0+HDhx1tnn76afXu3VuhoaEKDAxUfHy83nrrLafjmEwmFRYWasWKFY5bX6NGjdL06dP16KOPSpKio6Md+349R+j1119XfHy8AgMDZbVaNWzYMH3//fdOx+/Xr586deqk3bt36/rrr1fjxo31+OOPV6n/fq1///6SpKysLJftlixZoquvvlr+/v5q1aqVxo0b5zQy1q9fP73zzjv67rvvHNcUFRXldj1AQ8DIEgC3GYahnJwcXX311VX+jK+vr4YPH64pU6bo448/1qBBgyps17JlSwUGBmrDhg26//77ZbVaKz1maWmpBg8erK1bt2rYsGF68MEHVVBQoM2bN2vv3r2KiYmRJD333HO65ZZbdMcdd6i4uFirVq3S73//e23cuNFRx2uvvaZ77rlHPXr00JgxYyRJMTExCgoK0tdff60333xTzz77rGOUp0WLFpKkJ554QlOmTNHtt9+ue+65RydOnNDzzz+v66+/XpmZmWratKmj3tzcXA0cOFDDhg3TnXfeqbCwsCr3X5myEBgaGlppm+nTp2vGjBlKTEzUfffdp4MHD+qFF17Qrl279Mknn8jPz0+TJk2SzWbTDz/8oGeffVaS1KRJE7frARoEAwDc9NprrxmSjFdeecVpe9++fY2rr7660s/94x//MCQZzz33nMvjT5061ZBkBAUFGQMHDjSeeOIJY/fu3eXavfrqq4YkY/78+eX22e12x9/PnDnjtK+4uNjo1KmT0b9/f6ftQUFBxsiRI8sda968eYYkIysry2n7kSNHDF9fX+OJJ55w2v7ll18ajRo1ctret29fQ5KxdOnSSq/716ZNm2ZIMg4ePGicOHHCyMrKMl588UXD39/fCAsLMwoLCw3DMIxly5Y51fbjjz8aZrPZuPnmm43S0lLH8RYtWmRIMl599VXHtkGDBhlt27atUj1AQ8ZtOABuOXDggMaNG6devXpp5MiRbn22bOSioKDAZbsZM2Zo5cqV6tq1q959911NmjRJ8fHxiouLc7r1t3btWjVv3lz3339/uWOYTCbH3wMDAx1//+mnn2Sz2XTdddcpIyPDrfrPt27dOtntdt1+++06efKk4xUeHq4OHTrogw8+cGrv7++vu+++261zXHHFFWrRooWio6P1pz/9Se3bt9c777xT6VynLVu2qLi4WOPHj5ePz//+ib/33nsVEhKid955x/0LBRo4bsMBqLLs7GwNGjRIFotFb731lnx9fd36/OnTpyVJwcHBF2w7fPhwDR8+XPn5+dqxY4eWL1+ulStXKjk5WXv37lVAQIAOHz6sK664Qo0auf6nbOPGjZo1a5b27NmjoqIix/ZfB6rq+Oabb2QYhjp06FDhfj8/P6f3rVu3Ljf/60LWrl2rkJAQ+fn56bLLLnPcWqzMd999J+lcyPo1s9msdu3aOfYDqDrCEoAqsdlsGjhwoE6dOqWPPvpIrVq1cvsYZUsNtG/fvsqfCQkJ0U033aSbbrpJfn5+WrFihXbs2KG+fftW6fMfffSRbrnlFl1//fVasmSJIiIi5Ofnp2XLlmnlypVuX8Ov2e12mUwm/etf/6owOJ4/B+jXI1xVdf311zvmSQHwDsISgAs6e/askpOT9fXXX2vLli266qqr3D5GaWmpVq5cqcaNG6tPnz7VqqNbt25asWKFjh8/LuncBOwdO3aopKSk3ChOmbVr1yogIEDvvvuu/P39HduXLVtWrm1lI02VbY+JiZFhGIqOjtbll1/u7uV4RNu2bSVJBw8eVLt27Rzbi4uLlZWVpcTERMe2ix1ZAxoK5iwBcKm0tFRDhw7V9u3btWbNmmqt7VNaWqoHHnhA+/fv1wMPPKCQkJBK2545c0bbt2+vcN+//vUvSf+7xTRkyBCdPHlSixYtKtfW+L9FG319fWUymVRaWurYd+TIkQoXnwwKCqpw4cmgoCBJKrfvtttuk6+vr2bMmFFukUjDMJSbm1vxRXpQYmKizGazFi5c6FTTK6+8IpvN5vQtxKCgIJfLOAA4h5ElAC49/PDDevvtt5WcnKy8vLxyi1CevwClzWZztDlz5owOHTqkdevW6fDhwxo2bJhmzpzp8nxnzpxR79691bNnTw0YMECRkZE6deqU1q9fr48++kgpKSnq2rWrJOmuu+7S3//+d6WlpWnnzp267rrrVFhYqC1btujPf/6zbr31Vg0aNEjz58/XgAED9Ic//EE//vijFi9erPbt2+uLL75wOnd8fLy2bNmi+fPnq1WrVoqOjlZCQoLi4+MlSZMmTdKwYcPk5+en5ORkxcTEaNasWZo4caKOHDmilJQUBQcHKysrS//4xz80ZswYPfLIIxfV/+5q0aKFJk6cqBkzZmjAgAG65ZZbdPDgQS1ZskTdu3d3+t8rPj5eq1evVlpamrp3764mTZooOTm5VusF6gVvfhUPQN1X9pX3yl6u2jZp0sTo0KGDceeddxrvvfdelc5XUlJivPzyy0ZKSorRtm1bw9/f32jcuLHRtWtXY968eUZRUZFT+zNnzhiTJk0yoqOjDT8/PyM8PNz43e9+Zxw+fNjR5pVXXjE6dOhg+Pv7Gx07djSWLVvm+Gr+rx04cMC4/vrrjcDAQEOS0zICM2fONFq3bm34+PiUW0Zg7dq1Rp8+fYygoCAjKCjI6NixozFu3Djj4MGDTn3jalmF85XVd+LECZftzl86oMyiRYuMjh07Gn5+fkZYWJhx3333GT/99JNTm9OnTxt/+MMfjKZNmxqSWEYAqITJMGrgAUMAAACXKOYsAQAAuEBYAgAAcIGwBAAA4AJhCQAAwAXCEgAAgAuEJQAAABdYlLKa7Ha7jh07puDgYB4ZAABAPWEYhgoKCtSqVSv5+FRtzIiwVE3Hjh1TZGSkt8sAAADV8P333+uyyy6rUlvCUjUFBwdLOtfZrp5zBQAA6o78/HxFRkY6fo9XBWGpmspuvYWEhBCWAACoZ9yZQsMEbwAAABcISwAAAC4QlgAAAFxgzpKHlZaWqqSkxNtlXLLMZnOVv/oJAEB1EJY8xDAMZWdn69SpU94u5ZLm4+Oj6Ohomc1mb5cCALhEEZY8pCwotWzZUo0bN2bhSg8oWxj0+PHjatOmDX0MAPAIwpIHlJaWOoJSaGiot8u5pLVo0ULHjh3TL7/8Ij8/P2+XAwC4BDHZwwPK5ig1btzYy5Vc+spuv5WWlnq5EgDApYqw5EHcFvI8+hgA4GnchgMAAF6Xm5ur4uLiSvebzWavTW0hLAEAAK/Kzc3VokWLLtguNTXVK4GJ23BwMmrUKJlMJplMJvn5+SksLEw33XSTXn31Vdnt9iofZ/ny5WratKnnCgUAXDLOH1Gy2YKVlRUlmy3YZbvawshSHeTtocgBAwZo2bJlKi0tVU5OjtLT0/Xggw/qrbfe0ttvv61GjfixAQB4RkZGV23YMFiG4SOTya7k5I2Ki8v0ak381qtj6sJQpL+/v8LDwyVJrVu3VlxcnHr27Kkbb7xRy5cv1z333KP58+dr2bJl+vbbb2W1WpWcnKy5c+eqSZMm+vDDD3X33XdL+t8E7GnTpmn69Ol67bXX9Nxzz+ngwYMKCgpS//79tWDBArVs2dIj1wIAqD9stmBHUJIkw/DRhg2DFRNzSBZLgdfq4jZcHVPVIcbaHors37+/unTponXr1kk6t3L2woULtW/fPq1YsULvv/++JkyYIEnq3bu3FixYoJCQEB0/flzHjx/XI488IuncsgozZ87U559/rvXr1+vIkSMaNWpUrV4LAKBuyssLdQSlMobho7w8q5cqOoeRJVRZx44d9cUXX0iSxo8f79geFRWlWbNmaezYsVqyZInMZrMsFotMJpNjhKrMH//4R8ff27Vrp4ULF6p79+46ffq0mjRpUivXAQCom6zWXJlMdqfAZDLZZbXmebEqRpbgBsMwHLfVtmzZohtvvFGtW7dWcHCwRowYodzcXJ05c8blMXbv3q3k5GS1adNGwcHB6tu3ryTp6NGjHq8fAFC3WSwFSk7eKJPp3BeKyuYsefMWnMTIEtywf/9+RUdH68iRIxo8eLDuu+8+PfHEE7Jarfr44481evRoFRcXV7pyeWFhoZKSkpSUlKQ33nhDLVq00NGjR5WUlOS1bzgAAOqWuLhMxcQcUl6eVVZrnteDkkRYQhW9//77+vLLL/XQQw9p9+7dstvteuaZZ+Tjc25w8v/9v//n1N5sNpd7BMmBAweUm5urOXPmKDIyUpL02Wef1c4FAADqrLJHV5WxWAoqDEnnt6sthCWUU1RUpOzsbKelA2bPnq3Bgwfrrrvu0t69e1VSUqLnn39eycnJ+uSTT7R06VKnY0RFRen06dPaunWrunTposaNG6tNmzYym816/vnnNXbsWO3du1czZ8700lUCAOqK0NBQpaam1tkVvJmzhHLS09MVERGhqKgoDRgwQB988IEWLlyof/7zn/L19VWXLl00f/58PfXUU+rUqZPeeOMNzZ492+kYvXv31tixYzV06FC1aNFCc+fOVYsWLbR8+XKtWbNGV111lebMmaOnn37aS1cJAKhLQkNDFRERUenLW0FJkkyGYRheO3s9lp+fL4vFIpvNppCQEKd9Z8+eVVZWlqKjoxUQEODWcevCOkv1ycX0NQCg4XH1+7sy3IarY+r6UCQAAA0NYakOIggBAFB3MGcJAADABcISAACAC4QlAAAAFwhLAAAALhCWAAAAXCAsAQAAuEBYAgAAcIGwhFr14YcfymQy6dSpU1X+TFRUlBYsWOCxmgAAcIWwBCejRo2SyWTS2LFjy+0bN26cTCaTRo0aVfuFAQDgJYQllBMZGalVq1bp559/dmw7e/asVq5cqTZt2nixMgAAah9hCeXExcUpMjJS69atc2xbt26d2rRpo65duzq2FRUV6YEHHlDLli0VEBCgPn36aNeuXU7H2rRpky6//HIFBgbqhhtu0JEjR8qd7+OPP9Z1112nwMBARUZG6oEHHlBhYaHHrg8AAHcQluq4H36QPvjg3J+16Y9//KOWLVvmeP/qq6/q7rvvdmozYcIErV27VitWrFBGRobat2+vpKQk5eXlSZK+//573XbbbUpOTtaePXt0zz336LHHHnM6xuHDhzVgwAANGTJEX3zxhVavXq2PP/5Yqampnr9IAACqgLBUh73yitS2rdS//7k/X3ml9s5955136uOPP9Z3332n7777Tp988onuvPNOx/7CwkK98MILmjdvngYOHKirrrpKL7/8sgIDA/XK/xX6wgsvKCYmRs8884yuuOIK3XHHHeXmO82ePVt33HGHxo8frw4dOqh3795auHCh/v73v+vs2bO1d8EAAFSikbcLQMV++EEaM0ay28+9t9ulP/1JSkqSLrvM8+dv0aKFBg0apOXLl8swDA0aNEjNmzd37D98+LBKSkp07bXXOrb5+fmpR48e2r9/vyRp//79SkhIcDpur169nN5//vnn+uKLL/TGG284thmGIbvdrqysLF155ZWeuDwAAKqMsFRHffPN/4JSmdJS6dCh2glL0rlbcWW3wxYvXuyRc5w+fVp/+tOf9MADD5Tbx2RyAEBdQFiqozp0kHx8nAOTr6/Uvn3t1TBgwAAVFxfLZDIpKSnJaV9MTIzMZrM++eQTtW3bVpJUUlKiXbt2afz48ZKkK6+8Um+//bbT5z799FOn93Fxcfrqq6/UvjYvDAAANzBnqY667DLppZfOBSTp3J8vvlh7o0rnzumr/fv366uvvpJvWSH/JygoSPfdd58effRRpaen66uvvtK9996rM2fOaPTo0ZKksWPH6ptvvtGjjz6qgwcPauXKlVq+fLnTcf7yl79o27ZtSk1N1Z49e/TNN9/on//8JxO8AQB1BiNLddjo0efmKB06dG5EqTaDUpmQkJBK982ZM0d2u10jRoxQQUGBunXrpnfffVfNmjWTdO422tq1a/XQQw/p+eefV48ePfTkk0/qj3/8o+MY11xzjf79739r0qRJuu6662QYhmJiYjR06FCPXxsAAFVhMgzD8HYR9VF+fr4sFotsNlu5QHH27FllZWUpOjpaAQEBXqqwYaCvAQDucPX7uzLchgMAAHCBsAQAAOACYQkAAMAFr4elxYsXKyoqSgEBAUpISNDOnTtdtl+zZo06duyogIAAde7cWZs2bXLav27dOt18880KDQ2VyWTSnj17yh3j7NmzGjdunEJDQ9WkSRMNGTJEOTk5NXlZAADgEuHVsLR69WqlpaVp2rRpysjIUJcuXZSUlKQff/yxwvbbtm3T8OHDNXr0aGVmZiolJUUpKSnau3evo01hYaH69Omjp556qtLzPvTQQ9qwYYPWrFmjf//73zp27Jhuu+22Gr8+5s57Hn0MAPA0r34bLiEhQd27d9eiRYskSXa7XZGRkbr//vvLPXBVkoYOHarCwkJt3LjRsa1nz56KjY3V0qVLndoeOXJE0dHRyszMVGxsrGO7zWZTixYttHLlSv3ud7+TJB04cEBXXnmltm/frp49e1apdlez6UtLS/X111+rZcuWCg0NrdLxUD02m03Hjh1T+/bt5efn5+1yAAB1XHW+Dee1dZaKi4u1e/duTZw40bHNx8dHiYmJ2r59e4Wf2b59u9LS0py2JSUlaf369VU+7+7du1VSUqLExETHto4dO6pNmzYuw1JRUZGKiooc7/Pz8ys9h6+vr5o2beoYIWvcuLFMJlOVa0TV2O12nThxQo0bN1ajRiwZBgDwDK/9hjl58qRKS0sVFhbmtD0sLEwHDhyo8DPZ2dkVts/Ozq7yebOzs2U2m9W0aVO3jjN79mzNmDGjyucJDw+XpEpvKaJm+Pj4qE2bNoRRAIDH8J/jVTRx4kSnUa38/HxFRkZW2t5kMikiIkItW7ZUSUlJbZTYIJnNZvn4eP17CgCAS5jXwlLz5s3l6+tb7ltoOTk5jlGZ84WHh7vVvrJjFBcX69SpU06jSxc6jr+/v/z9/at8njK+vr7lnqsGAADqD6/9J7nZbFZ8fLy2bt3q2Ga327V161b16tWrws/06tXLqb0kbd68udL2FYmPj5efn5/TcQ4ePKijR4+6dRwAANAwePU2XFpamkaOHKlu3bqpR48eWrBggQoLC3X33XdLku666y61bt1as2fPliQ9+OCD6tu3r5555hkNGjRIq1at0meffaaXXnrJccy8vDwdPXpUx44dk3QuCEnnRpTCw8NlsVg0evRopaWlyWq1KiQkRPfff7969epV5W/CAQCAhsOrYWno0KE6ceKEpk6dquzsbMXGxio9Pd0xifvo0aNO81F69+6tlStXavLkyXr88cfVoUMHrV+/Xp06dXK0efvttx1hS5KGDRsmSZo2bZqmT58uSXr22Wfl4+OjIUOGqKioSElJSVqyZEktXDEAAKhvvLrOUn1WnXUaAACAd1Xn9zdfIwIAAHCBsAQAAOACYQkAAMAFwhIAAIALhCUAAAAXCEsAAAAu8Gw4AABQTm5uroqLiyvdbzabFRoaWosVeQ9hCQAAOMnNzdWiRYsu2C41NbVBBCZuwwEAACfnjyjZbMHKyoqSzRbsst2lipElAABQqYyMrtqwYbAMw0cmk13JyRsVF5fp7bJqFSNLAACgQjZbsCMoSZJh+GjDhsHlRpgudYQlAABQoby8UEdQKmMYPsrLs3qpIu8gLAEAgApZrbkymexO20wmu6zWPC9V5B2EJQAAUCGLpUDJyRsdgalszpLFUuDlymoXE7wBAECl4uIyFRNzSHl5VlmteQ0uKEmEJQAAcB6z2ez03mIpqDAknd/uUkVYAgAATkJDQ5WamsoK3v+HsAQAAMppKEGoKpjgDQAA4AJhCQAAwAXCEgAAgAvMWQIAoAHLzc1lIvcFEJYAAGigcnNztWjRogu2S01NbdCBidtwAAA0UOePKNlswcrKiir3oFxXI08NASNLAABAGRldtWHDYBmGj+OxJnFxmd4uq05gZAkAgAbOZgt2BCVJMgwfbdgwuNwIU0NFWAIAoIHLywt1BKUyhuGjvDyrlyqqWwhLAAA0cFZrrkwmu9M2k8kuqzXPSxXVLYQlAAAaOIulQMnJGx2BqWzOUkUPz22ImOANAAAUF5epmJhDysuzymrNIyj9CmEJAIAGymw2O723WAoqDEnnt2toCEsAADRQoaGhSk1NZQXvCyAsAQDQgDX0IFQVTPAGAABwgbAEAADgAmEJAADABcISAACAC0zwBgDgEpCbm8u32jyEsAQAQD2Xm5urRYsWXbBdamoqgakauA0HAEA9d/6Iks0WrKysKNlswS7boWoYWQIA4BKSkdFVGzYMlmH4OJ7xFheX6e2y6jVGlgAAuETYbMGOoCRJhuGjDRsGlxthgnsISwAAXCLy8kIdQamMYfgoL8/qpYouDYQlAAAuEVZrrkwmu9M2k8kuqzXPSxVdGghLAABcIiyWAiUnb3QEprI5SxZLgZcrq9+Y4A0AwCUkLi5TMTGHlJdnldWaR1CqAYQlAADqObPZ7PTeYimoMCSd3w5VQ1gCAKCeCw0NVWpqKit4ewhhCQCASwBByHOY4A0AAOACYQkAAMAFwhIAAIALhCUAAAAXvB6WFi9erKioKAUEBCghIUE7d+502X7NmjXq2LGjAgIC1LlzZ23atMlpv2EYmjp1qiIiIhQYGKjExER98803Tm2+/vpr3XrrrWrevLlCQkLUp08fffDBBzV+bQAAoP7zalhavXq10tLSNG3aNGVkZKhLly5KSkrSjz/+WGH7bdu2afjw4Ro9erQyMzOVkpKilJQU7d2719Fm7ty5WrhwoZYuXaodO3YoKChISUlJOnv2rKPN4MGD9csvv+j999/X7t271aVLFw0ePFjZ2dkev2YAAFC/mAzDMLx18oSEBHXv3l2LFi2SJNntdkVGRur+++/XY489Vq790KFDVVhYqI0bNzq29ezZU7GxsVq6dKkMw1CrVq308MMP65FHHpEk2Ww2hYWFafny5Ro2bJhOnjypFi1a6D//+Y+uu+46SVJBQYFCQkK0efNmJSYmVqn2/Px8WSwW2Ww2hYSEXGxXAACAWlCd399eG1kqLi7W7t27ncKJj4+PEhMTtX379go/s3379nJhJikpydE+KytL2dnZTm0sFosSEhIcbUJDQ3XFFVfo73//uwoLC/XLL7/oxRdfVMuWLRUfH19pvUVFRcrPz3d6AQBQ03Jzc3X8+PFKX7m5ud4uscHx2qKUJ0+eVGlpqcLCwpy2h4WF6cCBAxV+Jjs7u8L2ZbfPyv501cZkMmnLli1KSUlRcHCwfHx81LJlS6Wnp6tZs2aV1jt79mzNmDHDvYsEAMANubm5jrstrqSmprIIZS3y+gTv2mYYhsaNG6eWLVvqo48+0s6dO5WSkqLk5GQdP3680s9NnDhRNpvN8fr+++9rsWoAQENw/uNKbLZgZWVFyWYLdtkOnuW1kaXmzZvL19dXOTk5TttzcnIUHh5e4WfCw8Ndti/7MycnRxEREU5tYmNjJUnvv/++Nm7cqJ9++slxr3LJkiXavHmzVqxYUeFcKUny9/eXv7+/+xcKAEA1ZGR01YYNg2UYPjKZ7EpO3qi4uExvl9UgeW1kyWw2Kz4+Xlu3bnVss9vt2rp1q3r16lXhZ3r16uXUXpI2b97saB8dHa3w8HCnNvn5+dqxY4ejzZkzZySdmx/1az4+PrLb7Rd/YQAAXCSbLdgRlCTJMHy0YcPgciNMqB1evQ2Xlpaml19+WStWrND+/ft13333qbCwUHfffbck6a677tLEiRMd7R988EGlp6frmWee0YEDBzR9+nR99tlnSk1NlXRuPtL48eM1a9Ysvf322/ryyy911113qVWrVkpJSZF0LnA1a9ZMI0eO1Oeff66vv/5ajz76qLKysjRo0KBa7wMAAM6XlxfqCEplDMNHeXlWL1XUsHntNpx0bimAEydOaOrUqcrOzlZsbKzS09MdE7SPHj3qNALUu3dvrVy5UpMnT9bjjz+uDh06aP369erUqZOjzYQJE1RYWKgxY8bo1KlT6tOnj9LT0xUQECDp3O2/9PR0TZo0Sf3791dJSYmuvvpq/fOf/1SXLl1qtwMAAKiA1Zork8nuFJhMJrus1jwvVtVweXWdpfqMdZYAADXt+PHjeumllyS5nrM0ZswYp7m5qLrq/P726sgSAACoWFxcpmJiDikvzyqrNU8WS4G3S2qwCEsAANQRZrPZ6b3FUlBhSDq/HTyLsAQAQB0RGhqq1NRUl+somc1mFqSsZYQlAADqEIJQ3dPgVvAGAABwB2EJAADABW7DAQDgAbm5ucw9ukQQlgAAqGG5ublatGjRBdulpqYSmOoBbsMBAFDDzh9RstmClZUVVe7Zbq5GnlB3MLIEAIAHuVqJG/UDI0sAAHiIzRbsCErSuYfhbtgwuNwIE+o2whIAAB6Slxfq9DBc6VxgysuzeqkiVAdhCQAAD7Fac2Uy2Z22mUx2Wa15XqoI1UFYAgDAQyyWAiUnb3QEprI5SzwUt35hgjcAAB4UF5epmJhDysuzymrNIyjVQ4QlAABqmNlsdnpvsRRUGJLOb4e6ibAEAEANCw0NVWpqKit4XyIISwAAeABB6NLBBG8AAAAXCEsAAAAuEJYAAABcICwBAAC4QFgCAABwgbAEAADgAmEJAADABcISAACAC4QlAAAAFwhLAAAALhCWAAAAXCAsAQAAuEBYAgAAcIGwBAAA4AJhCQAAwAXCEgAAgAuEJQAAABcISwAAAC4QlgAAAFwgLAEAALhAWAIAAHCBsAQAAOACYQkAAMAFwhIAAIALhCUAAAAXCEsAAAAuEJYAAABccCss/fDDDzp58qTj/UcffaQ77rhD1113ne68805t3769xgsEAADwJrfC0pAhQ/Tpp59Kkv75z3+qX79+On36tK699lqdOXNGffv21caNGz1SKAAAgDeYDMMwqtq4SZMm+vLLLxUdHa2ePXvqt7/9rf7yl7849i9atEivvvqqMjIyPFJsXZKfny+LxSKbzaaQkBBvlwMAAKqgOr+/3RpZatSokQoKCiRJWVlZGjhwoNP+gQMH6uDBg+4cEgAAoE5zKyz17dtXb775piSpa9eu+vDDD532f/DBB2rdunWNFQcAAOBtjdxpPGfOHF133XU6duyY+vTpo0mTJmnXrl268sordfDgQa1evVpLly71VK0AAAC1zq05S5J0+PBhTZ48We+8845Onz4t6dztue7du+vRRx9VSkqKJ+qsc5izBABA/VOd399uh6UyhmHoxx9/lN1uV/PmzeXn51edw9RbhCUAAOofj0/w/jWTyaSwsDBFRERcVFBavHixoqKiFBAQoISEBO3cudNl+zVr1qhjx44KCAhQ586dtWnTJqf9hmFo6tSpioiIUGBgoBITE/XNN9+UO84777yjhIQEBQYGqlmzZg1mRAwAALjHrTlLaWlpVWo3f/78KrVbvXq10tLStHTpUiUkJGjBggVKSkrSwYMH1bJly3Ltt23bpuHDh2v27NkaPHiwVq5cqZSUFGVkZKhTp06SpLlz52rhwoVasWKFoqOjNWXKFCUlJemrr75SQECAJGnt2rW699579eSTT6p///765ZdftHfv3ir2AgAAaEjcug13ww03OL3/+OOPFR8fr8DAwP8d0GTS+++/X6XjJSQkqHv37lq0aJEkyW63KzIyUvfff78ee+yxcu2HDh2qwsJCp4Uve/bsqdjYWC1dulSGYahVq1Z6+OGH9cgjj0iSbDabwsLCtHz5cg0bNky//PKLoqKiNGPGDI0ePbqql14Ot+EAAKh/qvP7262RpQ8++MDpfXBwsFauXKl27dq5cxhJUnFxsXbv3q2JEyc6tvn4+CgxMbHSx6Zs37693OhWUlKS1q9fL+nc2k/Z2dlKTEx07LdYLEpISND27ds1bNgwZWRk6L///a98fHzUtWtXZWdnKzY2VvPmzXOMTlWkqKhIRUVFjvf5+fluXzMAAKh/vPYg3ZMnT6q0tFRhYWFO28PCwpSdnV3hZ7Kzs122L/vTVZtvv/1WkjR9+nRNnjxZGzduVLNmzdSvXz/l5eVVWu/s2bNlsVgcr8jISDeuFgAA1FdujSxdCux2uyRp0qRJGjJkiCRp2bJluuyyy7RmzRr96U9/qvBzEydOdBrVys/PJzABgIfk5uaquLi40v1ms1mhoaG1WBEaMq+FpebNm8vX11c5OTlO23NychQeHl7hZ8LDw122L/szJydHERERTm1iY2MlybH9qquucuz39/dXu3btdPTo0Urr9ff3l7+/fxWvDgBQXbm5uY65rK6kpqYSmFAr3LoN98UXXzi9DMPQgQMHym2vCrPZrPj4eG3dutWxzW63a+vWrerVq1eFn+nVq5dTe0navHmzo310dLTCw8Od2uTn52vHjh2ONvHx8fL393d6hl1JSYmOHDmitm3bVq0jAAAec/6Iks0WrKysKNlswS7bAZ7i1shSbGysTCaTfv0FusGDB0uSY7vJZFJpaWmVjpeWlqaRI0eqW7du6tGjhxYsWKDCwkLdfffdkqS77rpLrVu31uzZsyVJDz74oPr27atnnnlGgwYN0qpVq/TZZ5/ppZdectQwfvx4zZo1Sx06dHAsHdCqVSvHOkohISEaO3aspk2bpsjISLVt21bz5s2TJP3+9793pzsAAB6WkdFVGzYMlmH4yGSyKzl5o+LiMr1dFhoYt8JSVlZWjZ586NChOnHihKZOner4Vlp6erpjgvbRo0fl4/O/wa/evXtr5cqVmjx5sh5//HF16NBB69evd/oW24QJE1RYWKgxY8bo1KlT6tOnj9LT0x1rLEnSvHnz1KhRI40YMUI///yzEhIS9P7776tZs2Y1en0AgOqz2YIdQUmSDMNHGzYMVkzMIVksBV6uDg1JtR930tCxzhIAeMbx48f10ksvKSsrSitWjCy3f+TI5YqO/k5jxoxxmp8KVEWtPe6k7BtlFW13NUkaAICqslpzZTI5/74xmeyyWitf5gXwBLfCUn5+vm6//XYFBQUpLCxMU6dOdZqfdOLECUVHR9d4kQCAhsdiKVBy8kZHYCqbs8QtONQ2t+YsTZkyRZ9//rlee+01nTp1SrNmzVJGRobWrVsns9ksSeKuHgCgpsTFZSom5pDy8qyyWvMISvAKt8LS+vXrtWLFCvXr10+SlJKSokGDBik5OVlvv/22pHPfSAMAoLrK/uO7jMVSUGFIOr8d4CluTfBu3Lix9u3b53SrraCgQElJSQoMDNTf/vY3tW/fvspLB9RnTPAGAM9hBW94iscfpNumTRvt37/fKSwFBwfrvffe080336zf/va37lUMAEAFCEKoS9ya4H3TTTdp2bJl5bY3adJE7777rtNaRgAAAJcCt0aW/vrXv+r48eMV7gsODtbmzZuVkZFRI4UBAADUBW6NLGVmZup3v/ud8vPzy+2z2Wzq2bMnE7wBAMAlxa2wtGDBAt17770VToiyWCz605/+pGeffbbGigMAAPA2t8LS559/rgEDBlS6/+abb9bu3bsvuigAAIC6wq2wlJOTIz8/v0r3N2rUSCdOnLjoogAAAOoKt8JS69attXfv3kr3f/HFFzzUEAAAXFLcCku/+c1vNGXKFJ09e7bcvp9//lnTpk3T4MGDa6w4AAAAb3NrBe+cnBzFxcXJ19dXqampuuKKKyRJBw4c0OLFi1VaWqqMjAyFhYV5rOC6ghW8AQCofzy+gndYWJi2bdum++67TxMnTnQ8NNdkMikpKUmLFy9uEEEJAAA0HG6FJUlq27atNm3apJ9++kmHDh2SYRjq0KGDmjVr5on6AAAAvMrtsFSmWbNm6t69e03WAgAAUOe4NcEbAACgoSEsAQAAuEBYAgAAcIGwBAAA4AJhCQAAwAXCEgAAgAuEJQAAABcISwAAAC4QlgAAAFwgLAEAALhAWAIAAHCBsAQAAOACYQkAAMAFwhIAAIALhCUAAAAXCEsAAAAuEJYAAABcICwBAAC4QFgCAABwgbAEAADgAmEJAADABcISAACAC4QlAAAAFwhLAAAALhCWAAAAXCAsAQAAuEBYAgAAcIGwBAAA4AJhCQAAwAXCEgAAgAuEJQAAABcISwAAAC4QlgAAAFwgLAEAALhAWAIAAHChToSlxYsXKyoqSgEBAUpISNDOnTtdtl+zZo06duyogIAAde7cWZs2bXLabxiGpk6dqoiICAUGBioxMVHffPNNhccqKipSbGysTCaT9uzZU1OXBAAALhFeD0urV69WWlqapk2bpoyMDHXp0kVJSUn68ccfK2y/bds2DR8+XKNHj1ZmZqZSUlKUkpKivXv3OtrMnTtXCxcu1NKlS7Vjxw4FBQUpKSlJZ8+eLXe8CRMmqFWrVh67PgAAUL+ZDMMwvFlAQkKCunfvrkWLFkmS7Ha7IiMjdf/99+uxxx4r137o0KEqLCzUxo0bHdt69uyp2NhYLV26VIZhqFWrVnr44Yf1yCOPSJJsNpvCwsK0fPlyDRs2zPG5f/3rX0pLS9PatWt19dVXKzMzU7GxsVWqOz8/XxaLRTabTSEhIRfRAwAuFbm5uSouLq50v9lsVmhoaC1WBOB81fn93cjDNblUXFys3bt3a+LEiY5tPj4+SkxM1Pbt2yv8zPbt25WWlua0LSkpSevXr5ckZWVlKTs7W4mJiY79FotFCQkJ2r59uyMs5eTk6N5779X69evVuHHjC9ZaVFSkoqIix/v8/PwqXyeAS19ubq7jP/okyWYLVl5eqKzWXFksBY7tqampBCagnvFqWDp58qRKS0sVFhbmtD0sLEwHDhyo8DPZ2dkVts/OznbsL9tWWRvDMDRq1CiNHTtW3bp105EjRy5Y6+zZszVjxowqXReAhufXI0oZGV21YcNgGYaPTCa7kpM3Ki4us1w7APWD1+csecPzzz+vgoICpxGtC5k4caJsNpvj9f3333uwQgD1lc0W7AhKkmQYPtqwYbBstmAvVwagurwalpo3by5fX1/l5OQ4bc/JyVF4eHiFnwkPD3fZvuxPV23ef/99bd++Xf7+/mrUqJHat28vSerWrZtGjhxZ4Xn9/f0VEhLi9AKA8+XlhTqCUhnD8FFentVLFQG4WF4NS2azWfHx8dq6datjm91u19atW9WrV68KP9OrVy+n9pK0efNmR/vo6GiFh4c7tcnPz9eOHTscbRYuXKjPP/9ce/bs0Z49exxLD6xevVpPPPFEjV4jgIbFas2VyWR32mYy2WW15nmpIgAXy6tzliQpLS1NI0eOVLdu3dSjRw8tWLBAhYWFuvvuuyVJd911l1q3bq3Zs2dLkh588EH17dtXzzzzjAYNGqRVq1bps88+00svvSRJMplMGj9+vGbNmqUOHTooOjpaU6ZMUatWrZSSkiJJatOmjVMNTZo0kSTFxMTosssuq6UrB3ApslgKlJy8sdycpV9P8gZQv3g9LA0dOlQnTpzQ1KlTlZ2drdjYWKWnpzsmaB89elQ+Pv8bAOvdu7dWrlypyZMn6/HHH1eHDh20fv16derUydFmwoQJKiws1JgxY3Tq1Cn16dNH6enpCggIqPXrA3BpqWx5gJMnTzr+HheXqZiYQ8rLs8pqzSMoAfWc19dZqq9YZwloeM5fHqA6xowZo4iIiBqqCIC7qvP7u0F+Gw4AquP8ESWbLVhZWVFufdPNbDbXdFkAPMzrt+EAoD5ytZbSbbfdpubNm5f7DCt4A/UTYQkA3FTZWkoxMYdksRSoefPm3GoDLiHchgMAN7GWEtCwEJYAwE2spQQ0LIQlAHBT2VpKZYGJtZSASxtzlgCgGlhLCWg4CEsAUEXnf+3fYimoMCSxPABwaSEsAUAVhYaGKjU1tcIVvMuwPABw6SEsAYAbCEJAw8MEbwAAABcISwAAAC4QlgAAAFwgLAEAALhAWAIAAHCBsAQAAOACYQkAAMAFwhIAAIALLEoJoM7Lzc1l1WwAXkNYAlCn5ebmatGiRRdsl5qaSmAC4BHchgNQp50/omSzBSsrK0o2W7DLdgBQUxhZAlBvZGR01YYNg2UYPjKZ7EpO3qi4uExvlwXgEkdYAlBnVDQ36eTJk5LOjSiVBSVJMgwfbdgwWDExh2SxFNR6rQAaDsISgDrhQnOT8vJCHUGpjGH4KC/PSlgC4FHMWQJQJ1xobpLVmiuTye7UxmSyy2rNq7UaATRMjCwBqHMqm5uUnLyx3HZGlQB4GmEJQJ3iam5SXFymYmIOKS/PKqs1j6AEoFYQlgDUqsoWmCybyH2huUllr/OZzWbPFAygwSMsAag1VVlgsmxu0q8D06/nJt12221q3ry502dYwRuAJxGWANSaiiZx5+WFymrNdYwWWSwFLucmNW/eXBEREbVeO4CGi7AEoMZd6Fab5HqBSeYmAahLCEsAalRVbrVVZYFJ5iYBqCsISwBqVFVutV1oEndF85Ik5iYB8A7CEoBKVXY7rcyFwktlt9ouNImbeUkA6hLCEoAKVeV2miSlpqZWGJgudKuNBSYB1BeEJQAVqsrttIralbnQrTYmcQOoLwhLAC7I1TfXKnOhW20Sk7gB1A+EJQAuVeWbaxW50K02JnEDqC8ISwBcutDtNFdc3WpjEjeA+oKwBMClqtxO+7Xzb6Fxqw1AfUdYAuCSu99cCw0NVWpq6kUtOQAAdQlhCcAFufvNNYIQgEsJYQlAhbidBgDnEJYAVIjbaQBwDmEJQKUIQgAg+Vy4CQAAQMNFWAIAAHCB23BAPZKbm8scIgCoZYQloJ7Izc3VokWLLtguNTWVwAQANYjbcEA9cf6Iks0WrKysKNlswS7bAQAuDiNLQD2UkdG13IracXGZ3i4LAC5JjCwB9YzNFuwIStK5h9pu2DC43AgTAKBmEJaAeiYvL9TpobbSucCUl2f1UkUAcGmrE2Fp8eLFioqKUkBAgBISErRz506X7desWaOOHTsqICBAnTt31qZNm5z2G4ahqVOnKiIiQoGBgUpMTNQ333zj2H/kyBGNHj1a0dHRCgwMVExMjKZNm8ZcD9QLVmuuTCa70zaTyS6rNc9LFQHApc3rYWn16tVKS0vTtGnTlJGRoS5duigpKUk//vhjhe23bdum4cOHa/To0crMzFRKSopSUlK0d+9eR5u5c+dq4cKFWrp0qXbs2KGgoCAlJSXp7NmzkqQDBw7IbrfrxRdf1L59+/Tss89q6dKlevzxx2vlmoGLYbEUKDl5oyMwlc1ZutDDbQEA1WMyDMPwZgEJCQnq3r274yvRdrtdkZGRuv/++/XYY4+Vaz906FAVFhZq48aNjm09e/ZUbGysli5dKsMw1KpVKz388MN65JFHJEk2m01hYWFavny5hg0bVmEd8+bN0wsvvKBvv/22SnXn5+fLYrHIZrMpJCTE3csG3Hb8+HG99NJLjvc2W7Dy8qyyWvOcgtKYMWMUERHhjRIBoM6rzu9vr44sFRcXa/fu3UpMTHRs8/HxUWJiorZv317hZ7Zv3+7UXpKSkpIc7bOyspSdne3UxmKxKCEhodJjSucCldVa+ZyPoqIi5efnO72A2mQ2m53eWywFio7+rtyI0vntAAAXx6tLB5w8eVKlpaUKCwtz2h4WFqYDBw5U+Jns7OwK22dnZzv2l22rrM35Dh06pOeff15PP/10pbXOnj1bM2bMcH1BgAeFhoYqNTWVFbwBoJY1+HWW/vvf/2rAgAH6/e9/r3vvvbfSdhMnTlRaWprjfX5+viIjI2ujRMCBIAQAtc+rt+GaN28uX19f5eTkOG3PyclReHh4hZ8JDw932b7sz6oc89ixY7rhhhvUu3dvp7kgFfH391dISIjTCwAAXPq8GpbMZrPi4+O1detWxza73a6tW7eqV69eFX6mV69eTu0lafPmzY720dHRCg8Pd2qTn5+vHTt2OB3zv//9r/r166f4+HgtW7ZMPj5e/2IgAACog7x+Gy4tLU0jR45Ut27d1KNHDy1YsECFhYW6++67JUl33XWXWrdurdmzZ0uSHnzwQfXt21fPPPOMBg0apFWrVumzzz5zjAyZTCaNHz9es2bNUocOHRQdHa0pU6aoVatWSklJkfS/oNS2bVs9/fTTOnHihKOeyka0AABAw+T1sDR06FCdOHFCU6dOVXZ2tmJjY5Wenu6YoH306FGnUZ/evXtr5cqVmjx5sh5//HF16NBB69evV6dOnRxtJkyYoMLCQo0ZM0anTp1Snz59lJ6eroCAAEnnRqIOHTqkQ4cO6bLLLnOqx8srKQAAgDrG6+ss1VesswQAQP1T79ZZAgAAqOsISwAAAC4QlgAAAFwgLAEAALhAWAIAAHCBsAQAAOACYQkAAMAFwhIAAIALhCUAAAAXCEsAAAAuEJYAAABc8PqDdIHK5Obmqri4uNL9ZrNZoaGhtVgRAKAhIiyhTsrNzdWiRYsu2C41NZXABADwKG7DoU46f0TJZgtWVlaUbLZgl+0AAKhpjCyhzsvI6KoNGwbLMHxkMtmVnLxRcXGZ3i4LANBAEJbgcRcz98hmC3YEJUkyDB9t2DBYMTGHZLEUeKReAAB+jbAEj7rYuUd5eaGOoFTGMHyUl2clLAEAagVzluBRFzv3yGrNlclkd9pmMtlltebVbKEAAFSCkSXUmurMPbJYCpScvLHc5xhVAgDUFsISasXFzD2Ki8tUTMwh5eVZZbXmEZQAALWKsIRa4e7cI7PZ7PTeYimoUjsAAGoaYQlOPLVqdtnco18HJldzj0JDQ5WamsoK3gAAryMswcGTq2ZXZ+4RQQgAUBcQluBw4sQJp/c2W7Dy8kJlteY6hZoTJ05UK8gw9wgAUB8RluBQUlLi+HtGRle9/fZgnVtdwq5bbvnfN9d+3e5CmHsEAKjvCEsox2YL/lVQkiQfvf129VbNZu4RAKC+IyyhnO+/j1T59Up99P33l8li2e/28QhCAID6jBW8AQAAXCAsoZzIyO8lGU7bTCa7IiN/8E5BAAB4EWEJ5VgsBbrllg2OZ7LxiBEAQEPGnCU4NGr0vx8HV1/z/3U7AAAudfzWqwM8tWq2u1q2bOn0vrKv+Z/fDgCASxlhycs8uWq2u/iaPwAA5RGWvMxVMKlOu4tFEAIAwBkTvOsYmy1YWVlRstmCvV0KAAAQI0t1SkZG13IPmi17xAgAAPAORpbqCJst2BGUJMkwfLRhw2BGmAAA8DLCUh2RlxfqCEplDMNHeXlWL1UEAAAkwlKdYbXmOhaBLGMy2WW15nmpIgAAIBGW6gyLpUDJyRtZNRsAgDqGCd5eZjabHX93tWr2r9sBAIDaQ1jyMhaCBACgbiMs1QEEIQAA6i7mLAEAALhAWAIAAHCBsAQAAOACYQkAAMAFwhIAAIALhCUAAAAXCEsAAAAuEJYAAABcICwBAAC4QFgCAABwgcedVJNhGJKk/Px8L1cCAACqquz3dtnv8aogLFVTQUGBJCkyMtLLlQAAAHcVFBTIYrFUqa3JcCdawcFut+vYsWMKDg6WyWQqtz8/P1+RkZH6/vvvFRIS4oUK6x76xBn9UR594oz+cEZ/lEefOKtKfxiGoYKCArVq1Uo+PlWbjcTIUjX5+Pjosssuu2C7kJAQfoDPQ584oz/Ko0+c0R/O6I/y6BNnF+qPqo4olWGCNwAAgAuEJQAAABcISx7i7++vadOmyd/f39ul1Bn0iTP6ozz6xBn94Yz+KI8+ceap/mCCNwAAgAuMLAEAALhAWAIAAHCBsAQAAOACYQkAAMAFwtJFWLx4saKiohQQEKCEhATt3Lmz0rb79u3TkCFDFBUVJZPJpAULFtReobXInT55+eWXdd1116lZs2Zq1qyZEhMTXbavj9zpj3Xr1qlbt25q2rSpgoKCFBsbq9dee60Wq60d7vTJr61atUomk0kpKSmeLbCWudMfy5cvl8lkcnoFBATUYrWe5+7Px6lTpzRu3DhFRETI399fl19+uTZt2lRL1dYOd/qkX79+5X5GTCaTBg0aVIsVe5a7PyMLFizQFVdcocDAQEVGRuqhhx7S2bNn3TupgWpZtWqVYTabjVdffdXYt2+fce+99xpNmzY1cnJyKmy/c+dO45FHHjHefPNNIzw83Hj22Wdrt+Ba4G6f/OEPfzAWL15sZGZmGvv37zdGjRplWCwW44cffqjlyj3D3f744IMPjHXr1hlfffWVcejQIWPBggWGr6+vkZ6eXsuVe467fVImKyvLaN26tXHdddcZt956a+0UWwvc7Y9ly5YZISEhxvHjxx2v7OzsWq7ac9ztj6KiIqNbt27Gb37zG+Pjjz82srKyjA8//NDYs2dPLVfuOe72SW5urtPPx969ew1fX19j2bJltVu4h7jbH2+88Ybh7+9vvPHGG0ZWVpbx7rvvGhEREcZDDz3k1nkJS9XUo0cPY9y4cY73paWlRqtWrYzZs2df8LNt27a9JMPSxfSJYRjGL7/8YgQHBxsrVqzwVIm16mL7wzAMo2vXrsbkyZM9UZ5XVKdPfvnlF6N3797G3/72N2PkyJGXVFhytz+WLVtmWCyWWqqu9rnbHy+88ILRrl07o7i4uLZKrHUX++/Is88+awQHBxunT5/2VIm1yt3+GDdunNG/f3+nbWlpaca1117r1nm5DVcNxcXF2r17txITEx3bfHx8lJiYqO3bt3uxMu+piT45c+aMSkpKZLVaPVVmrbnY/jAMQ1u3btXBgwd1/fXXe7LUWlPdPvnrX/+qli1bavTo0bVRZq2pbn+cPn1abdu2VWRkpG699Vbt27evNsr1uOr0x9tvv61evXpp3LhxCgsLU6dOnfTkk0+qtLS0tsr2qJr4d/WVV17RsGHDFBQU5Kkya011+qN3797avXu341bdt99+q02bNuk3v/mNW+fmQbrVcPLkSZWWliosLMxpe1hYmA4cOOClqryrJvrkL3/5i1q1auX0f4T6qrr9YbPZ1Lp1axUVFcnX11dLlizRTTfd5Olya0V1+uTjjz/WK6+8oj179tRChbWrOv1xxRVX6NVXX9U111wjm82mp59+Wr1799a+ffuq9GDvuqw6/fHtt9/q/fff1x133KFNmzbp0KFD+vOf/6ySkhJNmzatNsr2qIv9d3Xnzp3au3evXnnlFU+VWKuq0x9/+MMfdPLkSfXp00eGYeiXX37R2LFj9fjjj7t1bsIS6oQ5c+Zo1apV+vDDDy+5CavuCA4O1p49e3T69Glt3bpVaWlpateunfr16+ft0mpdQUGBRowYoZdfflnNmzf3djl1Qq9evdSrVy/H+969e+vKK6/Uiy++qJkzZ3qxMu+w2+1q2bKlXnrpJfn6+io+Pl7//e9/NW/evEsiLF2sV155RZ07d1aPHj28XYrXfPjhh3ryySe1ZMkSJSQk6NChQ3rwwQc1c+ZMTZkypcrHISxVQ/PmzeXr66ucnByn7Tk5OQoPD/dSVd51MX3y9NNPa86cOdqyZYuuueYaT5ZZa6rbHz4+Pmrfvr0kKTY2Vvv379fs2bMvibDkbp8cPnxYR44cUXJysmOb3W6XJDVq1EgHDx5UTEyMZ4v2oJr4d8TPz09du3bVoUOHPFFirapOf0RERMjPz0++vr6ObVdeeaWys7NVXFwss9ns0Zo97WJ+RgoLC7Vq1Sr99a9/9WSJtao6/TFlyhSNGDFC99xzjySpc+fOKiws1JgxYzRp0iT5+FRtNhJzlqrBbDYrPj5eW7dudWyz2+3aunWr03/1NSTV7ZO5c+dq5syZSk9PV7du3Wqj1FpRUz8jdrtdRUVFniix1rnbJx07dtSXX36pPXv2OF633HKLbrjhBu3Zs0eRkZG1WX6Nq4mfkdLSUn355ZeKiIjwVJm1pjr9ce211+rQoUOOEC1JX3/9tSIiIup9UJIu7mdkzZo1Kioq0p133unpMmtNdfrjzJkz5QJRWbg23Hk0rpsT0fF/Vq1aZfj7+xvLly83vvrqK2PMmDFG06ZNHV/jHTFihPHYY4852hcVFRmZmZlGZmamERERYTzyyCNGZmam8c0333jrEmqcu30yZ84cw2w2G2+99ZbTV10LCgq8dQk1yt3+ePLJJ4333nvPOHz4sPHVV18ZTz/9tNGoUSPj5Zdf9tYl1Dh3++R8l9q34dztjxkzZhjvvvuucfjwYWP37t3GsGHDjICAAGPfvn3euoQa5W5/HD161AgODjZSU1ONgwcPGhs3bjRatmxpzJo1y1uXUOOq+/+ZPn36GEOHDq3tcj3O3f6YNm2aERwcbLz55pvGt99+a7z33ntGTEyMcfvtt7t1XsLSRXj++eeNNm3aGGaz2ejRo4fx6aefOvb17dvXGDlypON9VlaWIancq2/fvrVfuAe50ydt27atsE+mTZtW+4V7iDv9MWnSJKN9+/ZGQECA0axZM6NXr17GqlWrvFC1Z7nTJ+e71MKSYbjXH+PHj3e0DQsLM37zm98YGRkZXqjac9z9+di2bZuRkJBg+Pv7G+3atTOeeOIJ45dffqnlqj3L3T45cOCAIcl47733arnS2uFOf5SUlBjTp083YmJijICAACMyMtL485//bPz0009undNkGO6MQwEAADQszFkCAABwgbAEAADgAmEJAADABcISAACAC4QlAAAAFwhLAAAALhCWAAAAXCAsAUAdN2rUKKWkpHi7DKDBIiwBqLZRo0bJZDI5XqGhoRowYIC++OILb5dWI359bWWvPn36eOx8R44ckclk0p49e5y2P/fcc1q+fLnHzgvANcISgIsyYMAAHT9+XMePH9fWrVvVqFEjDR482Ntl1Zhly5Y5ru/48eN6++23K2xXUlLisRosFouaNm3qseMDcI2wBOCi+Pv7Kzw8XOHh4YqNjdVjjz2m77//XidOnFD//v2Vmprq1P7EiRMym82OJ4dHRUVp5syZGj58uIKCgtS6dWstXrzY6TPz589X586dFRQUpMjISP35z3/W6dOnHfu/++47JScnq1mzZgoKCtLVV1+tTZs2SZJ++ukn3XHHHWrRooUCAwPVoUMHLVu2rMrX17RpU8f1hYeHy2q1OkaAVq9erb59+yogIEBvvPGGcnNzNXz4cLVu3VqNGzdW586d9eabbzodz263a+7cuWrfvr38/f3Vpk0bPfHEE5Kk6OhoSVLXrl1lMpnUr18/SeVvwxUVFemBBx5Qy5YtFRAQoD59+mjXrl2O/R9++KFMJpO2bt2qbt26qXHjxurdu7cOHjxY5esG8D+EJQA15vTp03r99dfVvn17hYaG6p577tHKlStVVFTkaPP666+rdevW6t+/v2PbvHnz1KVLF2VmZuqxxx7Tgw8+qM2bNzv2+/j4aOHChdq3b59WrFih999/XxMmTHDsHzdunIqKivSf//xHX375pZ566ik1adJEkjRlyhR99dVX+te//qX9+/frhRdeUPPmzWvkestq3b9/v5KSknT27FnFx8frnXfe0d69ezVmzBiNGDFCO3fudHxm4sSJmjNnjqOulStXKiwsTJIc7bZs2aLjx49r3bp1FZ53woQJWrt2rVasWKGMjAy1b99eSUlJysvLc2o3adIkPfPMM/rss8/UqFEj/fGPf6yR6wYanBp5BDCABmnkyJGGr6+vERQUZAQFBRmSjIiICGP37t2GYRjGzz//bDRr1sxYvXq14zPXXHONMX36dMf7tm3bGgMGDHA67tChQ42BAwdWet41a9YYoaGhjvedO3d2OuavJScnG3fffXe1rk+SERAQ4Li+oKAg4x//+IeRlZVlSDIWLFhwwWMMGjTIePjhhw3DMIz8/HzD39/fePnllytsW3bczMxMp+0jR440br31VsMwDOP06dOGn5+f8cYbbzj2FxcXG61atTLmzp1rGIZhfPDBB4YkY8uWLY4277zzjiHJ+Pnnn93pAgCGYTCyBOCi3HDDDdqzZ4/27NmjnTt3KikpSQMHDtR3332ngIAAjRgxQq+++qokKSMjQ3v37tWoUaOcjtGrV69y7/fv3+94v2XLFt14441q3bq1goODNWLECOXm5urMmTOSpAceeECzZs3Stddeq2nTpjlNML/vvvu0atUqxcbGasKECdq2bZtb1/fss886rm/Pnj266aabHPu6devm1La0tFQzZ85U586dZbVa1aRJE7377rs6evSoJGn//v0qKirSjTfe6FYNv3b48GGVlJTo2muvdWzz8/NTjx49nPpMkq655hrH3yMiIiRJP/74Y7XPDTRUhCUAFyUoKEjt27dX+/bt1b17d/3tb39TYWGhXn75ZUnSPffco82bN+uHH37QsmXL1L9/f7Vt27bKxz9y5IgGDx6sa665RmvXrtXu3bsdc5qKi4sd5/j22281YsQIffnll+rWrZuef/55SXIEt4ceekjHjh3TjTfeqEceeaTK5w8PD3dcX/v27RUUFOR07b82b948Pffcc/rLX/6iDz74QHv27FFSUpKjzsDAwCqftyb4+fk5/m4ymSSdmzMFwD2EJQA1ymQyycfHRz///LMkqXPnzurWrZtefvllrVy5ssJ5M59++mm591deeaUkaffu3bLb7XrmmWfUs2dPXX755Tp27Fi5Y0RGRmrs2LFat26dHn74YUdYk6QWLVpo5MiRev3117VgwQK99NJLNXnJDp988oluvfVW3XnnnerSpYvatWunr7/+2rG/Q4cOCgwMdExuP5/ZbJZ0boSqMjExMTKbzfrkk08c20pKSrRr1y5dddVVNXQlAH6tkbcLAFC/FRUVKTs7W9K5b54tWrRIp0+fVnJysqPNPffco9TUVAUFBem3v/1tuWN88sknmjt3rlJSUrR582atWbNG77zzjiSpffv2Kikp0fPPP6/k5GR98sknWrp0qdPnx48fr4EDB+ryyy/XTz/9pA8++MARtqZOnar4+HhdffXVKioq0saNGx37alqHDh301ltvadu2bWrWrJnmz5+vnJwcR4gJCAjQX/7yF02YMEFms1nXXnutTpw4oX379mn06NFq2bKlAgMDlZ6erssuu0wBAQGyWCxO5wgKCtJ9992nRx99VFarVW3atNHcuXN15swZjR492iPXBTR0jCwBuCjp6emKiIhQRESEEhIStGvXLq1Zs8bxtXdJGj58uBo1aqThw4crICCg3DEefvhhffbZZ+ratatmzZql+fPnKykpSZLUpUsXzZ8/X0899ZQ6deqkN954Q7Nnz3b6fGlpqcaNG6crr7xSAwYM0OWXX64lS5ZIOjdaM3HiRF1zzTW6/vrr5evrq1WrVnmkLyZPnqy4uDglJSWpX79+Cg8PL7fy9pQpU/Twww9r6tSpuvLKKzV06FDHPKJGjRpp4cKFevHFF9WqVSvdeuutFZ5nzpw5GjJkiEaMGKG4uDgdOnRI7777rpo1a+aR6wIaOpNhGIa3iwBwaTty5IhiYmK0a9cuxcXFOe2LiorS+PHjNX78eO8UBwAXwG04AB5TUlKi3NxcTZ48WT179iwXlACgPuA2HACP+eSTTxQREaFdu3aVm2fkbU8++aSaNGlS4WvgwIHeLg9AHcJtOAANUl5eXrkVr8sEBgaqdevWtVwRgLqKsAQAAOACt+EAAABcICwBAAC4QFgCAABwgbAEAADgAmEJAADABcISAACAC4QlAAAAFwhLAAAALvx/06+8yNx2wQIAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_6.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOpElEQVR4nO3de1hU1eL/8c+ADKDCFKjgBRWRNC+pYCKmYR0KSylOVmoXL1lm3zA5dPWuWWllRl7K6ldqnUgzzdI8lNHVNCvBypOaF0xLQYUcEFOU2b8/PEzOcBEMGC7v1/PMo6y99p61VxPzce211zYZhmEIAAAAdm6ubgAAAEBNQ0ACAABwQkACAABwQkACAABwQkACAABwQkACAABwQkACAABwQkACAABwQkACAABwQkACgFpsyZIlMplM2rdvn6ubAtQpBCQAZfruu+8UHx+vzp07q1GjRmrdurVuvfVW/fLLL8Xq9u/fXyaTSSaTSW5ubvL19VWHDh105513av369RV63zVr1igqKkrNmjVTw4YN1a5dO916661KSUmprFMr5qmnntLq1auLlW/cuFHTp0/XsWPHquy9nU2fPt3elyaTSQ0bNlSnTp00efJk5ebmVsp7JCcnKykpqVKOBdQ1BCQAZXr66ae1cuVK/eMf/9ALL7ygMWPG6Msvv1RYWJi2bdtWrH6rVq305ptv6o033tCzzz6rG264QRs3btS1116rIUOG6PTp0+d9zzlz5uiGG26QyWTShAkT9Pzzz2vw4MHatWuXli1bVhWnKansgDRjxoxqDUhFXnrpJb355puaO3euOnbsqCeffFIDBgxQZTxGk4AElK6BqxsAoGZLTExUcnKyzGazvWzIkCHq2rWrZs+erX//+98O9S0Wi+644w6HstmzZ+uBBx7Qiy++qLZt2+rpp58u9f3OnDmjmTNn6pprrtHHH39cbPvhw4f/5hnVHCdOnFDDhg3LrHPzzTerSZMmkqSxY8dq8ODBWrVqlb755htFRkZWRzOBeokRJABl6tOnj0M4kqTQ0FB17txZ27dvL9cx3N3dNW/ePHXq1EkLFiyQ1Wotte7Ro0eVm5urK664osTtzZo1c/j55MmTmj59ui655BJ5eXmpefPmuummm7Rnzx57nTlz5qhPnz7y9/eXt7e3wsPD9e677zocx2QyKT8/X0uXLrVf1ho5cqSmT5+uhx9+WJIUHBxs33bunJ9///vfCg8Pl7e3t/z8/DR06FAdOHDA4fj9+/dXly5dtGXLFl155ZVq2LChJk6cWK7+O9fVV18tScrIyCiz3osvvqjOnTvL09NTLVq00P333+8wAta/f399+OGH+vXXX+3n1LZt2wq3B6irGEECUGGGYSgrK0udO3cu9z7u7u4aNmyYpkyZog0bNmjgwIEl1mvWrJm8vb21Zs0ajRs3Tn5+fqUes7CwUIMGDVJqaqqGDh2q8ePHKy8vT+vXr9e2bdsUEhIiSXrhhRd0ww036Pbbb1dBQYGWLVumW265RWvXrrW3480339Tdd9+tXr16acyYMZKkkJAQNWrUSL/88ovefvttPf/88/bRnKZNm0qSnnzySU2ZMkW33nqr7r77bh05ckTz58/XlVdeqfT0dF100UX29mZnZ+u6667T0KFDdccddyggIKDc/VekKPj5+/uXWmf69OmaMWOGoqOjdd9992nnzp166aWX9N133+nrr7+Wh4eHJk2aJKvVqt9++03PP/+8JKlx48YVbg9QZxkAUEFvvvmmIcl47bXXHMqjoqKMzp07l7rfe++9Z0gyXnjhhTKPP3XqVEOS0ahRI+O6664znnzySWPLli3F6r3++uuGJGPu3LnFttlsNvvfT5w44bCtoKDA6NKli3H11Vc7lDdq1MgYMWJEsWM9++yzhiQjIyPDoXzfvn2Gu7u78eSTTzqU//TTT0aDBg0cyqOiogxJxqJFi0o973NNmzbNkGTs3LnTOHLkiJGRkWG8/PLLhqenpxEQEGDk5+cbhmEYixcvdmjb4cOHDbPZbFx77bVGYWGh/XgLFiwwJBmvv/66vWzgwIFGmzZtytUeoL7hEhuACtmxY4fuv/9+RUZGasSIERXat2iEIi8vr8x6M2bMUHJysnr06KGPPvpIkyZNUnh4uMLCwhwu661cuVJNmjTRuHHjih3DZDLZ/+7t7W3/+x9//CGr1ap+/fopLS2tQu13tmrVKtlsNt166606evSo/RUYGKjQ0FB99tlnDvU9PT01atSoCr1Hhw4d1LRpUwUHB+vee+9V+/bt9eGHH5Y6d+mTTz5RQUGBEhIS5Ob216/4e+65R76+vvrwww8rfqJAPcQlNgDllpmZqYEDB8pisejdd9+Vu7t7hfY/fvy4JMnHx+e8dYcNG6Zhw4YpNzdXmzdv1pIlS5ScnKzY2Fht27ZNXl5e2rNnjzp06KAGDcr+VbZ27Vo98cQT2rp1q06dOmUvPzdEXYhdu3bJMAyFhoaWuN3Dw8Ph55YtWxabz3U+K1eulK+vrzw8PNSqVSv7ZcPS/Prrr5LOBqtzmc1mtWvXzr4dQNkISADKxWq16rrrrtOxY8f01VdfqUWLFhU+RtGyAO3bty/3Pr6+vrrmmmt0zTXXyMPDQ0uXLtXmzZsVFRVVrv2/+uor3XDDDbryyiv14osvqnnz5vLw8NDixYuVnJxc4XM4l81mk8lk0n/+858Sw6LznJ5zR7LK68orr7TPewJQfQhIAM7r5MmTio2N1S+//KJPPvlEnTp1qvAxCgsLlZycrIYNG6pv374X1I6ePXtq6dKlOnTokKSzk6g3b96s06dPFxutKbJy5Up5eXnpo48+kqenp7188eLFxeqWNqJUWnlISIgMw1BwcLAuueSSip5OlWjTpo0kaefOnWrXrp29vKCgQBkZGYqOjraX/d0RNKAuYw4SgDIVFhZqyJAh2rRpk1asWHFBa+8UFhbqgQce0Pbt2/XAAw/I19e31LonTpzQpk2bStz2n//8R9Jfl48GDx6so0ePasGCBcXqGv9bSNHd3V0mk0mFhYX2bfv27StxQchGjRqVuBhko0aNJKnYtptuuknu7u6aMWNGsYUbDcNQdnZ2ySdZhaKjo2U2mzVv3jyHNr322muyWq0Odw82atSozCUXgPqMESQAZXrwwQf1wQcfKDY2Vjk5OcUWhnReFNJqtdrrnDhxQrt379aqVau0Z88eDR06VDNnzizz/U6cOKE+ffqod+/eGjBggIKCgnTs2DGtXr1aX331leLi4tSjRw9J0vDhw/XGG28oMTFR3377rfr166f8/Hx98skn+r//+z/deOONGjhwoObOnasBAwbotttu0+HDh7Vw4UK1b99eP/74o8N7h4eH65NPPtHcuXPVokULBQcHKyIiQuHh4ZKkSZMmaejQofLw8FBsbKxCQkL0xBNPaMKECdq3b5/i4uLk4+OjjIwMvffeexozZoweeuihv9X/FdW0aVNNmDBBM2bM0IABA3TDDTdo586devHFF3X55Zc7/PcKDw/X8uXLlZiYqMsvv1yNGzdWbGxstbYXqLFceQsdgJqv6Pb00l5l1W3cuLERGhpq3HHHHcbHH39crvc7ffq08eqrrxpxcXFGmzZtDE9PT6Nhw4ZGjx49jGeffdY4deqUQ/0TJ04YkyZNMoKDgw0PDw8jMDDQuPnmm409e/bY67z22mtGaGio4enpaXTs2NFYvHix/Tb6c+3YscO48sorDW9vb0OSwy3/M2fONFq2bGm4ubkVu+V/5cqVRt++fY1GjRoZjRo1Mjp27Gjcf//9xs6dOx36pqwlEJwVte/IkSNl1nO+zb/IggULjI4dOxoeHh5GQECAcd999xl//PGHQ53jx48bt912m3HRRRcZkrjlHziHyTAq4YE+AAAAdQhzkAAAAJwQkAAAAJwQkAAAAJwQkAAAAJwQkAAAAJwQkAAAAJywUOQFstlsOnjwoHx8fFiuHwCAWsIwDOXl5alFixZycyt9nIiAdIEOHjyooKAgVzcDAABcgAMHDqhVq1albicgXSAfHx9JZzu4rOdKAQCAmiM3N1dBQUH27/HSEJAuUNFlNV9fXwISAAC1zPmmxzBJGwAAwInLA9LChQvVtm1beXl5KSIiQt9++22Z9VesWKGOHTvKy8tLXbt21bp16xy2r1q1Stdee638/f1lMpm0detWh+05OTkaN26cOnToIG9vb7Vu3VoPPPCArFZrZZ8aAACopVwakJYvX67ExERNmzZNaWlp6tatm2JiYnT48OES62/cuFHDhg3T6NGjlZ6erri4OMXFxWnbtm32Ovn5+erbt6+efvrpEo9x8OBBHTx4UHPmzNG2bdu0ZMkSpaSkaPTo0VVyjgAAoPYxGYZhuOrNIyIidPnll2vBggWSzt46HxQUpHHjxumxxx4rVn/IkCHKz8/X2rVr7WW9e/dW9+7dtWjRIoe6+/btU3BwsNLT09W9e/cy27FixQrdcccdys/PV4MG5ZuWlZubK4vFIqvVWuYcpMLCQp0+fbpcx0TFmc3mMm/TBADgXOX9/nbZJO2CggJt2bJFEyZMsJe5ubkpOjpamzZtKnGfTZs2KTEx0aEsJiZGq1ev/lttKeqkssLRqVOndOrUKfvPubm5ZR7TMAxlZmbq2LFjf6ttKJubm5uCg4NlNptd3RQAQB3isoB09OhRFRYWKiAgwKE8ICBAO3bsKHGfzMzMEutnZmb+rXbMnDlTY8aMKbPerFmzNGPGjHIftygcNWvWTA0bNmQxySpQtFjnoUOH1Lp1a/oYAFBp6vVt/rm5uRo4cKA6deqk6dOnl1l3woQJDqNXResolKSwsNAejvz9/SuzyXDStGlTHTx4UGfOnJGHh4ermwMAqCNcFpCaNGkid3d3ZWVlOZRnZWUpMDCwxH0CAwMrVL8seXl5GjBggHx8fPTee++d98vV09NTnp6e5Tp20Zyjhg0bVrhdqJiiS2uFhYUEJABApXHZ7Faz2azw8HClpqbay2w2m1JTUxUZGVniPpGRkQ71JWn9+vWl1i9Nbm6urr32WpnNZn3wwQfy8vKq+AmUA5d8qh59DACoCi69xJaYmKgRI0aoZ8+e6tWrl5KSkpSfn69Ro0ZJkoYPH66WLVtq1qxZkqTx48crKipKzz33nAYOHKhly5bp+++/1yuvvGI/Zk5Ojvbv36+DBw9Kknbu3Cnp7OhTYGCgPRydOHFC//73v5Wbm2ufcN20aVO5u7tXZxcAAABJ2dnZKigoKHW72Wyu1mkrLg1IQ4YM0ZEjRzR16lRlZmaqe/fuSklJsU/E3r9/v8Mt3H369FFycrImT56siRMnKjQ0VKtXr1aXLl3sdT744AN7wJKkoUOHSpKmTZum6dOnKy0tTZs3b5YktW/f3qE9GRkZatu2bVWdLgAAKEF2drZ9yZ+yxMfHV1tIcuk6SLVZWesonDx5UhkZGQoODq6yy3dVZeTIkVq6dKkkqUGDBvLz89Nll12mYcOGaeTIkeVec2jJkiVKSEio8mUOanNfAwDOOnTokMPVIKvVRzk5/vLzy5bFkmcvHzNmjJo3b/633qvGr4OE0rl6mHHAgAFavHixCgsLlZWVpZSUFI0fP17vvvuuPvjgg3IvpgkAQEWlpfXQmjWDZBhuMplsio1dq7Cw9GpvB990NUxNGGb09PS03xnYsmVLhYWFqXfv3vrHP/6hJUuW6O6779bcuXO1ePFi7d27V35+foqNjdUzzzyjxo0b6/PPP7df5iyaRF10ifPNN9/UCy+8oJ07d6pRo0a6+uqrlZSUpGbNmlXJuQAAag+r1ccejiTJMNy0Zs0ghYTsdhhJqg48o6GGKWvk6ELqVZarr75a3bp106pVqySdXcF63rx5+u9//6ulS5fq008/1SOPPCLp7FyxpKQk+fr66tChQzp06JAeeughSWeXQJg5c6Z++OEHrV69Wvv27dPIkSOr9VwAADVTTo6/PRwVMQw35eT4VXtbGEFCuXXs2FE//vijJCkhIcFe3rZtWz3xxBMaO3asXnzxRZnNZlksFplMpmJrVN111132v7dr107z5s3T5ZdfruPHj6tx48bVch4AgJrJzy9bJpPNISSZTDb5+eVUe1sYQUK5GYZhv2T2ySef6B//+IdatmwpHx8f3XnnncrOztaJEyfKPMaWLVsUGxur1q1by8fHR1FRUZLO3rEIAKjfLJY8xcaulclkkyT7HKTqvrwmMYKECti+fbuCg4O1b98+DRo0SPfdd5+efPJJ+fn5acOGDRo9erQKCgpKXUE8Pz9fMTExiomJ0VtvvaWmTZtq//79iomJqfZLhgCAmiksLF0hIbuVk+MnP78cl4QjiYCEcvr000/1008/6V//+pe2bNkim82m5557zn7b/zvvvONQ32w2q7Cw0KFsx44dys7O1uzZs+3Psfv++++r5wQAADVW0WOjilgseSUGI+d6VYmAhGJOnTqlzMxMh9v8Z82apUGDBmn48OHatm2bTp8+rfnz5ys2NlZff/21Fi1a5HCMtm3b6vjx40pNTVW3bt3UsGFDtW7dWmazWfPnz9fYsWO1bds2zZw500VnCQCoKfz9/RUfH1+jVtJmDhKKSUlJUfPmzdW2bVsNGDBAn332mebNm6f3339f7u7u6tatm+bOnaunn35aXbp00VtvvWV/HEyRPn36aOzYsRoyZIiaNm2qZ555Rk2bNtWSJUu0YsUKderUSbNnz9acOXNcdJYAgJrE399fzZs3L/VVneFIYiXtC1ZVK2nXhHWQahNW0gYAVAQraddSNXGYEQCA+oaAVAMRfgAAcC3mIAEAADghIAEAADghIAEAADhhDhJwjuzsbCbIAwAISEARllgAABThEhvwP84jR1arjzIy2spq9SmzHgCg7mEECShBWloPrVkzSIbhZn+adFhYuqubBQCoJowgoVp9/vnnMplMOnbsWLn3adu2rZKSkqqsTc6sVh97OJIkw3DTmjWDio0kAQDqLgISHIwcOVImk0ljx44ttu3++++XyWTSyJEjq79h1Sgnx98ejooYhptycvxc1CIAQHUjIKGYoKAgLVu2TH/++ae97OTJk0pOTlbr1q1d2LLq4eeXLZPJ5lBmMtnk55fjohYBAKobAQnFhIWFKSgoSKtWrbKXrVq1Sq1bt1aPHj3sZadOndIDDzygZs2aycvLS3379tV3333ncKx169bpkksukbe3t6666irt27ev2Ptt2LBB/fr1k7e3t4KCgvTAAw8oPz+/ys7vfCyWPMXGrrWHpKI5SBZLnsvaBACoXgSkGu6336TPPjv7Z3W66667tHjxYvvPr7/+ukaNGuVQ55FHHtHKlSu1dOlSpaWlqX379oqJiVFOztmRlgMHDuimm25SbGystm7dqrvvvluPPfaYwzH27NmjAQMGaPDgwfrxxx+1fPlybdiwQfHx8VV/kmUIC0tXQkKSRoxYooSEJCZoA0A9Q0CqwV57TWrTRrr66rN/vvZa9b33HXfcoQ0bNujXX3/Vr7/+qq+//lp33HGHfXt+fr5eeuklPfvss7ruuuvUqVMnvfrqq/L29tZr/2voSy+9pJCQED333HPq0KGDbr/99mLzl2bNmqXbb79dCQkJCg0NVZ8+fTRv3jy98cYbOnnyZPWdsM4uAnkuiyVPwcG/Fhs5cq4HAKh7uM2/hvrtN2nMGMn2v6kwNpt0771STIzUqlXVv3/Tpk01cOBALVmyRIZhaODAgWrSpIl9+549e3T69GldccUV9jIPDw/16tVL27dvlyRt375dERERDseNjIx0+PmHH37Qjz/+qLfeesteZhiGbDabMjIydOmll1bF6ZXI399f8fHxrKQNACAg1VS7dv0VjooUFkq7d1dPQJLOXmYrutS1cOHCKnmP48eP695779UDDzxQbJsrJoQTfgAAEgGpxgoNldzcHEOSu7vUvn31tWHAgAEqKCiQyWRSTEyMw7aQkBCZzWZ9/fXXatOmjSTp9OnT+u6775SQkCBJuvTSS/XBBx847PfNN984/BwWFqaff/5Z7avzxAAAOA/mINVQrVpJr7xyNhRJZ/98+eXqGz06+57u2r59u37++We5FzXkfxo1aqT77rtPDz/8sFJSUvTzzz/rnnvu0YkTJzR69GhJ0tixY7Vr1y49/PDD2rlzp5KTk7VkyRKH4zz66KPauHGj4uPjtXXrVu3atUvvv/++yydpAwDqN0aQarDRo8/OOdq9++zIUXWGoyK+vr6lbps9e7ZsNpvuvPNO5eXlqWfPnvroo4908cUXSzp7iWzlypX617/+pfnz56tXr1566qmndNddd9mPcdlll+mLL77QpEmT1K9fPxmGoZCQEA0ZMqTKzw0AgNKYDMMwXN2I2ig3N1cWi0VWq7VYiDh58qQyMjIUHBwsLy8vF7WwfqCvAQAVUdb397m4xAYAAOCEgAQAAOCEgAQAAOCEgAQAAOCEgFSFmP9e9ehjAEBVICBVAQ8PD0nSiRMnXNySuq/osSDO6zQBAPB3sA5SFXB3d9dFF12kw4cPS5IaNmwok8nk4lbVPTabTUeOHFHDhg3VoAEfZQBA5eFbpYoEBgZKkj0koWq4ubmpdevWBFAAQKUiIFURk8mk5s2bq1mzZjp9+rSrm1Nnmc1mublxpRgAULkISFXM3d2d+TEAANQy/NMbAADACQEJAADACQEJAADACQEJAADACQEJAADACQEJAADACQEJAADACQEJAADACQEJAADAicsD0sKFC9W2bVt5eXkpIiJC3377bZn1V6xYoY4dO8rLy0tdu3bVunXrHLavWrVK1157rfz9/WUymbR169Zixzh58qTuv/9++fv7q3Hjxho8eLCysrIq87QAAEAt5tKAtHz5ciUmJmratGlKS0tTt27dFBMTU+oDXjdu3Khhw4Zp9OjRSk9PV1xcnOLi4rRt2zZ7nfz8fPXt21dPP/10qe/7r3/9S2vWrNGKFSv0xRdf6ODBg7rpppsq/fwAAEDtZDIMw3DVm0dEROjyyy/XggULJEk2m01BQUEaN26cHnvssWL1hwwZovz8fK1du9Ze1rt3b3Xv3l2LFi1yqLtv3z4FBwcrPT1d3bt3t5dbrVY1bdpUycnJuvnmmyVJO3bs0KWXXqpNmzapd+/e5Wp7bm6uLBaLrFarfH19K3rqAADABcr7/e2yEaSCggJt2bJF0dHRfzXGzU3R0dHatGlTifts2rTJob4kxcTElFq/JFu2bNHp06cdjtOxY0e1bt26zOOcOnVKubm5Di8AAFA3uSwgHT16VIWFhQoICHAoDwgIUGZmZon7ZGZmVqh+accwm8266KKLKnScWbNmyWKx2F9BQUHlfk8AAFC7uHySdm0xYcIEWa1W++vAgQOubhIAAKgiDVz1xk2aNJG7u3uxu8eysrIUGBhY4j6BgYEVql/aMQoKCnTs2DGHUaTzHcfT01Oenp7lfh8AAFB7uWwEyWw2Kzw8XKmpqfYym82m1NRURUZGlrhPZGSkQ31JWr9+fan1SxIeHi4PDw+H4+zcuVP79++v0HEAALgQ2dnZOnToUKmv7OxsVzcRcuEIkiQlJiZqxIgR6tmzp3r16qWkpCTl5+dr1KhRkqThw4erZcuWmjVrliRp/PjxioqK0nPPPaeBAwdq2bJl+v777/XKK6/Yj5mTk6P9+/fr4MGDks6GH+nsyFFgYKAsFotGjx6txMRE+fn5ydfXV+PGjVNkZGS572ADAOBCZGdn2+/cLkt8fLz8/f0r7T0LCgpK3W42myvtveoSlwakIUOG6MiRI5o6daoyMzPVvXt3paSk2Cdi79+/X25ufw1y9enTR8nJyZo8ebImTpyo0NBQrV69Wl26dLHX+eCDD+wBS5KGDh0qSZo2bZqmT58uSXr++efl5uamwYMH69SpU4qJidGLL75YDWcMAKjPnIOK1eqjnBx/+flly2LJK7XehXIOZKW9X2UGsrrCpesg1WasgwQAqKhDhw7Zr3qkpfXQmjWDZBhuMplsio1dq7CwdEnSmDFj1Lx581r3frVBjV8HCQCA+spq9bGHFUkyDDetWTNIVqtPnXi/uoCABABANcvJ8beHlSKG4aacHL868X51AQEJAIBq5ueXLZPJ5lBmMtnk55dTJ96vLiAgAQBQzSyWPMXGrrWHlqI5QedOnK7N71cXuPQuNgAA6quwsHSFhOxWTo6f/PxyqjysVPf71XYEJAAAqonZbHb42WLJKzGoONerLKW9H4ojIAEAUE38/f0VHx9fbQs3ljdoVVUgq81YB+kCsQ4SAKA2YCVtR+X9/mYECQCAOqw+hZ/KxF1sAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATghIAAAATlwekBYuXKi2bdvKy8tLERER+vbbb8usv2LFCnXs2FFeXl7q2rWr1q1b57DdMAxNnTpVzZs3l7e3t6Kjo7Vr1y6HOr/88otuvPFGNWnSRL6+vurbt68+++yzSj83AABQO7k0IC1fvlyJiYmaNm2a0tLS1K1bN8XExOjw4cMl1t+4caOGDRum0aNHKz09XXFxcYqLi9O2bdvsdZ555hnNmzdPixYt0ubNm9WoUSPFxMTo5MmT9jqDBg3SmTNn9Omnn2rLli3q1q2bBg0apMzMzCo/ZwAAUPOZDMMwXPXmERERuvzyy7VgwQJJks1mU1BQkMaNG6fHHnusWP0hQ4YoPz9fa9eutZf17t1b3bt316JFi2QYhlq0aKEHH3xQDz30kCTJarUqICBAS5Ys0dChQ3X06FE1bdpUX375pfr16ydJysvLk6+vr9avX6/o6OhytT03N1cWi0VWq1W+vr5/tysAAEA1KO/3t8tGkAoKCrRlyxaHQOLm5qbo6Ght2rSpxH02bdpULMDExMTY62dkZCgzM9OhjsViUUREhL2Ov7+/OnTooDfeeEP5+fk6c+aMXn75ZTVr1kzh4eGltvfUqVPKzc11eAEAgLrJZQHp6NGjKiwsVEBAgEN5QEBAqZe6MjMzy6xf9GdZdUwmkz755BOlp6fLx8dHXl5emjt3rlJSUnTxxReX2t5Zs2bJYrHYX0FBQRU7YQAAUGu4fJJ2dTMMQ/fff7+aNWumr776St9++63i4uIUGxurQ4cOlbrfhAkTZLVa7a8DBw5UY6sBAEB1cllAatKkidzd3ZWVleVQnpWVpcDAwBL3CQwMLLN+0Z9l1fn000+1du1aLVu2TFdccYXCwsL04osvytvbW0uXLi21vZ6envL19XV4AQCAusllAclsNis8PFypqan2MpvNptTUVEVGRpa4T2RkpEN9SVq/fr29fnBwsAIDAx3q5ObmavPmzfY6J06ckHR2vtO53NzcZLPZ/v6JAQCAWq+BK988MTFRI0aMUM+ePdWrVy8lJSUpPz9fo0aNkiQNHz5cLVu21KxZsyRJ48ePV1RUlJ577jkNHDhQy5Yt0/fff69XXnlF0tn5RQkJCXriiScUGhqq4OBgTZkyRS1atFBcXJyksyHr4osv1ogRIzR16lR5e3vr1VdfVUZGhgYOHOiSfgAAADWLSwPSkCFDdOTIEU2dOlWZmZnq3r27UlJS7JOs9+/f7zDS06dPHyUnJ2vy5MmaOHGiQkNDtXr1anXp0sVe55FHHlF+fr7GjBmjY8eOqW/fvkpJSZGXl5eks5f2UlJSNGnSJF199dU6ffq0OnfurPfff1/dunWr3g4AAAA1kkvXQarNWAcJAIDap8avgwQAAFBTEZAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcVCgg/fbbbzp69Kj956+++kq33367+vXrpzvuuEObNm2q9AYCAABUtwoFpMGDB+ubb76RJL3//vvq37+/jh8/riuuuEInTpxQVFSU1q5dWyUNBVA7ZWdn69ChQ6W+srOzXd1EACjGZBiGUd7KjRs31k8//aTg4GD17t1b//znP/Xoo4/aty9YsECvv/660tLSqqSxNUlubq4sFousVqt8fX1d3RygRsrOztaCBQvOWy8+Pl7+/v7V0CIA9V15v78rNILUoEED5eXlSZIyMjJ03XXXOWy/7rrrtHPnzgtoLoC6qKCgwOFnq9VHGRltZbX6lFkPAFytQUUqR0VF6e2339Zll12mHj166PPPP9dll11m3/7ZZ5+pZcuWld5IALVfWloPrVkzSIbhJpPJptjYtQoLS3d1swCgRBUKSLNnz1a/fv108OBB9e3bV5MmTdJ3332nSy+9VDt37tTy5cu1aNGiqmorgFrKavWxhyNJMgw3rVkzSCEhu2Wx5Lm4dQBQXIUusV166aXavHmzCgoK9Mwzzyg/P19vvfWWpk+frt27d2vZsmUaOXJkFTUVQG2Vk+NvD0dFDMNNOTl+LmoRAJStQiNIkhQSEqK3335bhmHo8OHDstlsatKkiTw8PKqifQDqAD+/bJlMNoeQZDLZ5OeX48JWAUDpLnihSJPJpICAADVv3pxwBKBMFkueYmPXymSySZJ9DhKX1wDUVBUaQUpMTCxXvblz515QYwDUXWFh6QoJ2a2cHD/5+eUQjgDUaBUKSOnpjnecbNiwQeHh4fL29raXmUymymkZgFrPbDY7/Gyx5JUYjJzrAYCrVWihSGc+Pj764Ycf1K5du8psU63AQpFA+WRnZ5e5zpHZbGaRSADVprzf3xWepA0AFUH4AVAbXfAkbQAAgLqKgAQAAOCkQpfYfvzxR4efDcPQjh07dPz4cYfycx8/AgAAUNtUaJK2m5ubTCaTStqlqNxkMqmwsLBSG1kTMUkbAIDap7zf3xW6xJaRkaG9e/cqIyOj2KuofO/evRVq6MKFC9W2bVt5eXkpIiJC3377bZn1V6xYoY4dO8rLy0tdu3bVunXrHLYbhqGpU6eqefPm8vb2VnR0tHbt2lXsOB9++KEiIiLk7e2tiy++WHFxcRVqNwAAqLsqdImtTZs2lfrmy5cvV2JiohYtWqSIiAglJSUpJiZGO3fuVLNmzYrV37hxo4YNG6ZZs2Zp0KBBSk5OVlxcnNLS0tSlSxdJ0jPPPKN58+Zp6dKlCg4O1pQpUxQTE6Off/5ZXl5ekqSVK1fqnnvu0VNPPaWrr75aZ86c0bZt2yr13AAAQO11Qesg2Ww2ubkVH3yy2Wz67bff1Lp163IdJyIiQpdffrkWLFhg3z8oKEjjxo3TY489Vqz+kCFDlJ+fr7Vr19rLevfure7du2vRokUyDEMtWrTQgw8+qIceekiSZLVaFRAQoCVLlmjo0KE6c+aM2rZtqxkzZmj06NEVPXU7LrEBAFD7VMklttzcXN16661q1KiRAgICNHXqVIf5RkeOHFFwcHC5jlVQUKAtW7YoOjr6r8a4uSk6OlqbNm0qcZ9NmzY51JekmJgYe/2MjAxlZmY61LFYLIqIiLDXSUtL0++//y43Nzf16NFDzZs313XXXXfeEaRTp04pNzfX4QUAAOqmCgWkKVOm6IcfftCbb76pJ598Um+88YZuvPFGh1VyyzsgdfToURUWFiogIMChPCAgQJmZmSXuk5mZWWb9oj/LqlM0R2r69OmaPHmy1q5dq4svvlj9+/dXTk7pTxafNWuWLBaL/RUUFFSu8wQAALVPhQLS6tWr9fLLL+vmm2/W3Xffre+//15HjhxRbGysTp06JanmP4vNZjv7NPFJkyZp8ODBCg8P1+LFi2UymbRixYpS95swYYKsVqv9deDAgepqMgAAqGYVmqR95MgRh4naTZo00SeffKKYmBhdf/31+n//7/+V+1hNmjSRu7u7srKyHMqzsrIUGBhY4j6BgYFl1i/6MysrS82bN3eo0717d0myl3fq1Mm+3dPTU+3atdP+/ftLba+np6c8PT3LeXYAUL/xDD7UdhUKSK1bt9b27dsd5hn5+Pjo448/1rXXXqt//vOf5T6W2WxWeHi4UlNT7bfY22w2paamKj4+vsR9IiMjlZqaqoSEBHvZ+vXrFRkZKUkKDg5WYGCgUlNT7YEoNzdXmzdv1n333SdJCg8Pl6enp3bu3Km+fftKkk6fPq19+/ZV+l16AFAfZWdn22++KUt8fDwhCTVWhS6xXXPNNVq8eHGx8saNG+ujjz6y30ZfXomJiXr11Ve1dOlSbd++Xffdd5/y8/M1atQoSdLw4cM1YcIEe/3x48crJSVFzz33nHbs2KHp06fr+++/twcqk8mkhIQEPfHEE/rggw/0008/afjw4WrRooU9hPn6+mrs2LGaNm2aPv74Y+3cudMenm655ZYKtR8AUJzzyJHV6qOMjLayWn3KrAfUJBUaQXr88cd16NChErf5+Pho/fr1SktLK/fxhgwZoiNHjmjq1KnKzMxU9+7dlZKSYp9kvX//foflBPr06aPk5GRNnjxZEydOVGhoqFavXm1fA0mSHnnkEeXn52vMmDE6duyY+vbtq5SUFIfw9uyzz6pBgwa688479eeffyoiIkKffvqpLr744op0BwDgPNLSemjNmkEyDDeZTDbFxq5VWFi6q5sFnFeF1kH69NNPFR8fr2+++abY2gFWq1V9+vTRSy+9pCuvvLLSG1rTsA4SAJTs0KFDeuWVV2S1+igpKUGG8dc/dE0mmxISkmSx5GnMmDEO80WB6lAl6yAlJSXpnnvuKfGAFotF9957r55//vmKtxYAUOfk5Pg7hCNJMgw35eT4uahFQPlV6BLbDz/8oKeffrrU7ddee63mzJnztxtV33C3B4C6yM8vWyaTrdgIkp9f6WvOATVFhQJSVlaWPDw8Sj9YgwY6cuTI325UfcLdHgDqKoslT7Gxa4vNQbJY8lzdNOC8KhSQWrZsqW3btql9+/Ylbv/xxx+5nlxBJd3tkZPjLz+/bIdfItztAaA2CgtLV0jIbuXk+MnPL4dwhFqjQgHp+uuv15QpUzRgwIBit/T/+eefmjZtmgYNGlSpDaxPuNsDQF1gNpsdfrZY8koMRs71gJqkQgFp8uTJWrVqlS655BLFx8erQ4cOkqQdO3Zo4cKFKiws1KRJk6qkoXWd1epjD0fS2YmMa9YMUkjIbv7FBaBW8ff3V3x8PHMrUatVKCAFBARo48aNuu+++zRhwgT7g2lNJpNiYmK0cOHCYg+KRfmUdbcHAQlAbUP4QW1XoYAkSW3atNG6dev0xx9/aPfu3TIMQ6GhoSyy+DdxtwcAADVHhdZBOtfFF1+syy+/XL169SIcVYKiuz1MJpskcbcHAAAuVOERJFQd7vYAAKBmICC5GHd7AABQ8xCQXIy7PYCagRXtAZyLgFQD8EsXcC1WtAfg7IInaQNAXVHSivYZGW1ltfqUWQ9A3cUIEgCcgxXtAUiMIAGAXWkr2juPJAGo+whIAPA/Za1oD6B+ISABwP8UrWh/Lla0B+onAhIA/A8r2gMowiRtADgHK9oDkAhIAMCK9gCKISABqPdY0R6AMwISAIgV7QE4YpI2AACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAkwaubgDqh+zsbBUUFJS63Ww2y9/fvxpbBABA6QhIqHLZ2dlasGCB/Wer1Uc5Of7y88uWxZJnL4+PjyckAQBqBAISqty5I0dpaT20Zs0gGYabTCabYmPXKiwsvVg9AABciTlIqDZWq489HEmSYbhpzZpBslp9XNwyAAAcEZBQbXJy/O3hqIhhuCknx89FLQIAoGQEJFQbP79smUw2hzKTySY/vxwXtQgAgJIRkFBtLJY8xcautYekojlI507UBgCgJqgRAWnhwoVq27atvLy8FBERoW+//bbM+itWrFDHjh3l5eWlrl27at26dQ7bDcPQ1KlT1bx5c3l7eys6Olq7du0q8VinTp1S9+7dZTKZtHXr1so6JZQiLCxdCQlJGjFiiRISkuwTtAEAqElcHpCWL1+uxMRETZs2TWlpaerWrZtiYmJ0+PDhEutv3LhRw4YN0+jRo5Wenq64uDjFxcVp27Zt9jrPPPOM5s2bp0WLFmnz5s1q1KiRYmJidPLkyWLHe+SRR9SiRYsqOz8UZ7HkKTj4V0aOAAA1lssD0ty5c3XPPfdo1KhR6tSpkxYtWqSGDRvq9ddfL7H+Cy+8oAEDBujhhx/WpZdeqpkzZyosLMy+zo5hGEpKStLkyZN144036rLLLtMbb7yhgwcPavXq1Q7H+s9//qOPP/5Yc+bMqerTrNfMZnOl1gMAoKq5dB2kgoICbdmyRRMmTLCXubm5KTo6Wps2bSpxn02bNikxMdGhLCYmxh5+MjIylJmZqejoaPt2i8WiiIgIbdq0SUOHDpUkZWVl6Z577tHq1avVsGHD87b11KlTOnXqlP3n3Nzccp9nfefv76/4+HhW0gYA1BouDUhHjx5VYWGhAgICHMoDAgK0Y8eOEvfJzMwssX5mZqZ9e1FZaXUMw9DIkSM1duxY9ezZU/v27TtvW2fNmqUZM2aU67xQHOEHAFCbuPwSmyvMnz9feXl5DiNX5zNhwgRZrVb768CBA1XYQgAA4EouDUhNmjSRu7u7srKyHMqzsrIUGBhY4j6BgYFl1i/6s6w6n376qTZt2iRPT081aNBA7du3lyT17NlTI0aMKPF9PT095evr6/ACAAB1k0sDktlsVnh4uFJTU+1lNptNqampioyMLHGfyMhIh/qStH79env94OBgBQYGOtTJzc3V5s2b7XXmzZunH374QVu3btXWrVvtywQsX75cTz75ZKWeIwAAqH1c/rDaxMREjRgxQj179lSvXr2UlJSk/Px8jRo1SpI0fPhwtWzZUrNmzZIkjR8/XlFRUXruuec0cOBALVu2TN9//71eeeUVSZLJZFJCQoKeeOIJhYaGKjg4WFOmTFGLFi0UFxcnSWrdurVDGxo3bixJCgkJUatWrarpzAEAQE3l8oA0ZMgQHTlyRFOnTlVmZqa6d++ulJQU+yTr/fv3y83tr4GuPn36KDk5WZMnT9bEiRMVGhqq1atXq0uXLvY6jzzyiPLz8zVmzBgdO3ZMffv2VUpKiry8vKr9/AAAQO1jMgzDcHUjaqPc3FxZLBZZrVbmIwEAUEuU9/u7Xt7FBgAAUBYCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgJMGrm4AAACoebKzs1VQUFDqdrPZLH9//2psUfUiIAEAAAfZ2dlasGDBeevFx8fX2ZDEJTYAAODAeeTIavVRRkZbWa0+ZdarSxhBAgAApUpL66E1awbJMNxkMtkUG7tWYWHprm5WlWMECQAAlMhq9bGHI0kyDDetWTOo2EhSXURAAgAAJcrJ8beHoyKG4aacHD8Xtaj6EJAAAECJ/PyyZTLZHMpMJpv8/HJc1KLqQ0ACAAAlsljyFBu71h6SiuYgWSx5Lm5Z1WOSNgAAKFVYWLpCQnYrJ8dPfn459SIcSQQkAADgxGw2O/xsseSVGIyc69UlBCTUaPV9JVcAcAV/f3/Fx8fX69+/BCTUWKzkCgCuU99/rzJJGzUWK7kCAFyFESTUCvV1JVcAgGswgoQarz6v5AoAcA0CEmq8+rySKwDANQhIqPHq80quAADXICChxqvPK7kCAFyDSdqoFerrSq6o+VirC6ibCEi1WF3/xcxKrqjpWKsLqLsISLVUffjFzEquqOlKWqsrJ8dffn7ZDmGetbqA2oeAVEvVl1/MhB/UFqzVBdQtBKQ6gF/MgGuVtlZXSMhu5ssBtRR3sdVyLKIIuB5rdQF1DwGpluMXM+B6rNUF1D1cYqvlin4xnxuS+MUMVK+itbqcL3VzeQ01QV2/47mqEJBqqWPHjkk6/y/mY8eOqXnz5i5sKVA/sFYXaqL6cMdzVSEg1VJnzpyx/z0sLF3NmmXqwIHWCgrar1atDpVYD0DlYq0u1HTlvZO5tt/xXBUISLWUh4eH/e9l3cV2bj0AlYu1ulDblLYkDIojINVSFotF0vlvLy6qB6BqEH5QW7AkTMVwF1stx11sAIDzYUmYiiMg1XLcXgwAOB/+MV1xBKRarugutqKQxO3FAABn/GO64piDVAdwezEAoCys1VVxBKRaituLAQDnc+53QFn/mOa7ojiTYRiGqxuxcOFCPfvss8rMzFS3bt00f/589erVq9T6K1as0JQpU7Rv3z6Fhobq6aef1vXXX2/fbhiGpk2bpldffVXHjh3TFVdcoZdeekmhoaGSpH379mnmzJn69NNPlZmZqRYtWuiOO+7QpEmTyv0hyc3NlcVikdVqla+v79/rgAvE6qgAgPPhu8JReb+/XT6CtHz5ciUmJmrRokWKiIhQUlKSYmJitHPnTjVr1qxY/Y0bN2rYsGGaNWuWBg0apOTkZMXFxSktLU1dunSRJD3zzDOaN2+eli5dquDgYE2ZMkUxMTH6+eef5eXlpR07dshms+nll19W+/bttW3bNt1zzz3Kz8/XnDlzqrsLLlh9+kADAC4M3xUXxuUjSBEREbr88svtS6HbbDYFBQVp3Lhxeuyxx4rVHzJkiPLz87V27Vp7We/evdW9e3ctWrRIhmGoRYsWevDBB/XQQw9JkqxWqwICArRkyRINHTq0xHY8++yzeumll7R3795ytbsmjCABAICKKe/3t0vvYisoKNCWLVsUHR1tL3Nzc1N0dLQ2bdpU4j6bNm1yqC9JMTEx9voZGRnKzMx0qGOxWBQREVHqMaWzIcrPj9sdAQCAiy+xHT16VIWFhQoICHAoDwgI0I4dO0rcJzMzs8T6mZmZ9u1FZaXVcbZ7927Nnz+/zMtrp06d0qlTp+w/5+bmlloXAABUTE2bK+XyOUiu9vvvv2vAgAG65ZZbdM8995Rab9asWZoxY0Y1tgwAgPohOzvbPtWmLPHx8dUWklx6ia1JkyZyd3dXVlaWQ3lWVpYCAwNL3CcwMLDM+kV/lueYBw8e1FVXXaU+ffrolVdeKbOtEyZMkNVqtb8OHDhw/hMEAADn5TxyZLX6KCOjbbFHoZQ1wlTZXBqQzGazwsPDlZqaai+z2WxKTU1VZGRkiftERkY61Jek9evX2+sHBwcrMDDQoU5ubq42b97scMzff/9d/fv3V3h4uBYvXiw3t7K7wtPTU76+vg4vAABQudLSeigpKUFLl45QUlKC0tJ6uKQdLr/ElpiYqBEjRqhnz57q1auXkpKSlJ+fr1GjRkmShg8frpYtW2rWrFmSpPHjxysqKkrPPfecBg4cqGXLlun777+3jwCZTCYlJCToiSeeUGhoqP02/xYtWiguLk7SX+GoTZs2mjNnjo4cOWJvT2kjVwAAoGqV9lDdkJDd1b7qt8sD0pAhQ3TkyBFNnTpVmZmZ6t69u1JSUuyTrPfv3+8wutOnTx8lJydr8uTJmjhxokJDQ7V69Wr7GkiS9Mgjjyg/P19jxozRsWPH1LdvX6WkpMjLy0vS2RGn3bt3a/fu3WrVqpVDe2rAupkAANRLZT1Ut7oDksvXQaqtWAcJAIDKcejQIb3yyiuyWn2UlJTgEJJMJpsSEpJkseRpzJgxat68+d96r1qxDhIAAECRoofqmkw2SXLpQ3VdfokNAACgSFkP1a1OBCQAAOBSzg+Kt1jySgxG5X2gfGUgIAEAAJfy9/dXfHw8K2kDAACcqzrDT3kwSRsAAMAJAQkAAMAJAQkAAMAJAQkAAMAJAQkAAMAJAQkAAMAJt/mjTsrOzq5R62nUdvQngPqGgIQ6Jzs7WwsWLDhvvfj4eL7Uy4H+BFAfcYkNdY7zSIfV6qOMjLayWn3KrIeS0Z8A6iNGkFCnpaX10Jo1g2QYbvanQoeFpbu6WbUW/QmgvmAECXWW1epj/zKXJMNw05o1g4qNfKB86E8A9QkBCXVWTo6//cu8iGG4KSfHz0Utqt3oTwD1CQEJdZafX7ZMJptDmclkk59fjotaVLvRnwDqEwIS6iyLJU+xsWvtX+pFc2YsljwXt6x2oj8B1CdM0kadFhaWrpCQ3crJ8ZOfXw5f5n8T/QmgviAgoc4xm80OP1sseSV+kTvXQ8noTwD1kckwDMPVjaiNcnNzZbFYZLVa5evr6+rmwAkrP1cu+hNAXVHe729GkFAn8WVduehPAPUNk7QBAACcMIIEuBCXrgCgZiIgAS7CQ2ABoObiEhvgIjwEFgBqLkaQgBqAh8ACQM3CCBLgYjwEFgBqHgIS4GI8BBYAah4usQEuVvQQ2HNDEg+BBSqOu0JRmQhIgIsVPQTWeQ4SzzkDyo+7QlHZCEhADcBDYIG/p6S7QnNy/OXnl+3w/xN3haK8CEiAi/AQWKBqcFcoKgMBCXARf39/xcfHM2cCqESl3RUaErKbkVlUCAEJcCHCD1C5yrorlICEiuA2fwBAnVF0V+i5uCsUF4KABACoM4ruCi0KSdwVigvFJTYAQJ3CXaGoDAQkAECtx12hqGwEJABArcddoahsBCQAQJ1A+EFlYpI2AACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAEwISAACAE1bSvkCGYUiScnNzXdwSAABQXkXf20Xf46UhIF2gvLyzD0EMCgpycUsAAEBF5eXlyWKxlLrdZJwvQqFENptNBw8elI+Pj0wmk6ubUy1yc3MVFBSkAwcOyNfX19XNcSn64i/0xV/oi7/QF3+hL/5SE/rCMAzl5eWpRYsWcnMrfaYRI0gXyM3NTa1atXJ1M1zC19e33v9PXoS++At98Rf64i/0xV/oi7+4ui/KGjkqwiRtAAAAJwQkAAAAJwQklJunp6emTZsmT09PVzfF5eiLv9AXf6Ev/kJf/IW++Ett6gsmaQMAADhhBAkAAMAJAQkAAMAJAQkAAMAJAQkAAMAJAameW7hwodq2bSsvLy9FRETo22+/LbN+UlKSOnToIG9vbwUFBelf//qXTp48ad8+ffp0mUwmh1fHjh2r+jQqRUX64vTp03r88ccVEhIiLy8vdevWTSkpKX/rmDVFZfdDbf1MfPnll4qNjVWLFi1kMpm0evXq8+7z+eefKywsTJ6enmrfvr2WLFlSrE5t/ExURV/Ul8/FoUOHdNttt+mSSy6Rm5ubEhISSqy3YsUKdezYUV5eXuratavWrVtX+Y2vZFXRF0uWLCn2ufDy8qqaEzgPAlI9tnz5ciUmJmratGlKS0tTt27dFBMTo8OHD5dYPzk5WY899pimTZum7du367XXXtPy5cs1ceJEh3qdO3fWoUOH7K8NGzZUx+n8LRXti8mTJ+vll1/W/Pnz9fPPP2vs2LH65z//qfT09As+Zk1QFf0g1c7PRH5+vrp166aFCxeWq35GRoYGDhyoq666Slu3blVCQoLuvvtuffTRR/Y6tfEzIVVNX0j143Nx6tQpNW3aVJMnT1a3bt1KrLNx40YNGzZMo0ePVnp6uuLi4hQXF6dt27ZVZtMrXVX0hXR2le1zPxe//vprZTW5YgzUW7169TLuv/9++8+FhYVGixYtjFmzZpVY//777zeuvvpqh7LExETjiiuusP88bdo0o1u3blXS3qpU0b5o3ry5sWDBAoeym266ybj99tsv+Jg1QVX0Q239TJxLkvHee++VWeeRRx4xOnfu7FA2ZMgQIyYmxv5zbfxMOKusvqgvn4tzRUVFGePHjy9WfuuttxoDBw50KIuIiDDuvffev9nC6lNZfbF48WLDYrFUWrv+DkaQ6qmCggJt2bJF0dHR9jI3NzdFR0dr06ZNJe7Tp08fbdmyxX5JYO/evVq3bp2uv/56h3q7du1SixYt1K5dO91+++3av39/1Z1IJbiQvjh16lSxYV9vb2/7v4Av5JiuVhX9UKS2fSYuxKZNmxz6TpJiYmLsfVcbPxMX6nx9UaQ+fC7Ko7z9VV8cP35cbdq0UVBQkG688Ub997//dUk7CEj11NGjR1VYWKiAgACH8oCAAGVmZpa4z2233abHH39cffv2lYeHh0JCQtS/f3+HS2wRERFasmSJUlJS9NJLLykjI0P9+vVTXl5elZ7P33EhfRETE6O5c+dq165dstlsWr9+vVatWqVDhw5d8DFdrSr6Qaqdn4kLkZmZWWLf5ebm6s8//6yVn4kLdb6+kOrP56I8Suuvuva5KI8OHTro9ddf1/vvv69///vfstls6tOnj3777bdqbwsBCeX2+eef66mnntKLL76otLQ0rVq1Sh9++KFmzpxpr3Pdddfplltu0WWXXaaYmBitW7dOx44d0zvvvOPClle+F154QaGhoerYsaPMZrPi4+M1atQoubnVr/+lytMP9eUzgYrhc4GSREZGavjw4erevbuioqK0atUqNW3aVC+//HK1t6V+/TaHXZMmTeTu7q6srCyH8qysLAUGBpa4z5QpU3TnnXfq7rvvVteuXfXPf/5TTz31lGbNmiWbzVbiPhdddJEuueQS7d69u9LPobJcSF80bdpUq1evVn5+vn799Vft2LFDjRs3Vrt27S74mK5WFf1QktrwmbgQgYGBJfadr6+vvL29a+Vn4kKdry9KUlc/F+VRWn/Vtc/FhfDw8FCPHj1c8rkgINVTZrNZ4eHhSk1NtZfZbDalpqYqMjKyxH1OnDhRbITE3d1dkmSU8ki/48ePa8+ePWrevHkltbzyXUhfFPHy8lLLli115swZrVy5UjfeeOPfPqarVEU/lKQ2fCYuRGRkpEPfSdL69evtfVcbPxMX6nx9UZK6+rkojwvpr/qisLBQP/30k2s+F66eJQ7XWbZsmeHp6WksWbLE+Pnnn40xY8YYF110kZGZmWkYhmHceeedxmOPPWavP23aNMPHx8d4++23jb179xoff/yxERISYtx66632Og8++KDx+eefGxkZGcbXX39tREdHG02aNDEOHz5c7edXERXti2+++cZYuXKlsWfPHuPLL780rr76aiM4ONj4448/yn3Mmqgq+qG2fiby8vKM9PR0Iz093ZBkzJ0710hPTzd+/fVXwzAM47HHHjPuvPNOe/29e/caDRs2NB5++GFj+/btxsKFCw13d3cjJSXFXqc2fiYMo2r6or58LgzDsNcPDw83brvtNiM9Pd3473//a9/+9ddfGw0aNDDmzJljbN++3Zg2bZrh4eFh/PTTT9V6bhVVFX0xY8YM46OPPjL27NljbNmyxRg6dKjh5eXlUKe6EJDqufnz5xutW7c2zGaz0atXL+Obb76xb4uKijJGjBhh//n06dPG9OnTjZCQEMPLy8sICgoy/u///s/hy3DIkCFG8+bNDbPZbLRs2dIYMmSIsXv37mo8owtXkb74/PPPjUsvvdTw9PQ0/P39jTvvvNP4/fffK3TMmqqy+6G2fiY+++wzQ1KxV9H5jxgxwoiKiiq2T/fu3Q2z2Wy0a9fOWLx4cbHj1sbPRFX0RX36XJRUv02bNg513nnnHeOSSy4xzGaz0blzZ+PDDz+snhP6G6qiLxISEuz/fwQEBBjXX3+9kZaWVn0ndQ7T/xoMAACA/2EOEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgDUEZ9//rlMJpOOHTvm6qYAtR4BCUCFjRw5UiaTSbNnz3YoX716tUwmk/1nwzD06quvKjIyUr6+vmrcuLE6d+6s8ePHl/vhkydOnNCECRMUEhIiLy8vNW3aVFFRUXr//fftddq2baukpKRKObeqVtR3JpNJHh4eCg4O1iOPPKKTJ09W6Dj9+/dXQkKCQ1mfPn106NAhWSyWSmwxUD8RkABcEC8vLz399NP6448/StxuGIZuu+02PfDAA7r++uv18ccf6+eff9Zrr70mLy8vPfHEE+V6n7Fjx2rVqlWaP3++duzYoZSUFN18883Kzs6uzNOpVgMGDNChQ4e0d+9ePf/883r55Zc1bdq0v31cs9mswMBAh5AK4AK55AEnAGq1ESNGGIMGDTI6duxoPPzww/by9957zyj6tfL2228bkoz333+/xGPYbLZyvZfFYjGWLFlS6vaoqKhiz3Yq8tVXXxl9+/Y1vLy8jFatWhnjxo0zjh8/bt/+xhtvGOHh4Ubjxo2NgIAAY9iwYUZWVpZ9e9GzplJSUozu3bsbXl5exlVXXWVkZWUZ69atMzp27Gj4+PgYw4YNM/Lz88t1PiNGjDBuvPFGh7KbbrrJ6NGjh/3no0ePGkOHDjVatGhheHt7G126dDGSk5MdjuF8zhkZGfb2nvt8xHfffdfo1KmTYTabjTZt2hhz5swpVzuB+o4RJAAXxN3dXU899ZTmz5+v3377rdj2t99+Wx06dNANN9xQ4v7lHeUIDAzUunXrlJeXV+L2VatWqVWrVnr88cd16NAhHTp0SJK0Z88eDRgwQIMHD9aPP/6o5cuXa8OGDYqPj7fve/r0ac2cOVM//PCDVq9erX379mnkyJHF3mP69OlasGCBNm7cqAMHDujWW29VUlKSkpOT9eGHH+rjjz/W/Pnzy3U+zrZt26aNGzfKbDbby06ePKnw8HB9+OGH2rZtm8aMGaM777xT3377rSTphRdeUGRkpO655x77OQcFBRU79pYtW3Trrbdq6NCh+umnnzR9+nRNmTJFS5YsuaC2AvWKqxMagNrn3FGQ3r17G3fddZdhGI4jSB07djRuuOEGh/3Gjx9vNGrUyGjUqJHRsmXLcr3XF198YbRq1crw8PAwevbsaSQkJBgbNmxwqNOmTRvj+eefdygbPXq0MWbMGIeyr776ynBzczP+/PPPEt/ru+++MyQZeXl5hmH8NYL0ySef2OvMmjXLkGTs2bPHXnbvvfcaMTEx5TqfESNGGO7u7kajRo0MT09PQ5Lh5uZmvPvuu2XuN3DgQOPBBx+0/xwVFWWMHz/eoY7zCNJtt91mXHPNNQ51Hn74YaNTp07laitQnzGCBOBvefrpp7V06VJt3779vHUnTZqkrVu3aurUqTp+/Hi5jn/llVdq7969Sk1N1c0336z//ve/6tevn2bOnFnmfj/88IOWLFmixo0b218xMTGy2WzKyMiQdHaEJTY2Vq1bt5aPj4+ioqIkSfv373c41mWXXWb/e0BAgBo2bKh27do5lB0+fLhc5yNJV111lbZu3arNmzdrxIgRGjVqlAYPHmzfXlhYqJkzZ6pr167y8/NT48aN9dFHHxVr1/ls375dV1xxhUPZFVdcoV27dqmwsLBCxwLqGwISgL/lyiuvVExMjCZMmOBQHhoaqp07dzqUNW3aVO3bt1ezZs0q9B4eHh7q16+fHn30UX388cd6/PHHNXPmTBUUFJS6z/Hjx3Xvvfdq69at9tcPP/ygXbt2KSQkRPn5+YqJiZGvr6/eeustfffdd3rvvfckqdhxPTw87H8vuvvsXCaTSTabrdzn06hRI7Vv317dunXT66+/rs2bN+u1116zb3/22Wf1wgsv6NFHH9Vnn32mrVu3KiYmpszzBVC5Gri6AQBqv9mzZ6t79+7q0KGDvWzYsGG67bbb9P777+vGG2+s1Pfr1KmTzpw5o5MnT8psNstsNhcbEQkLC9PPP/+s9u3bl3iMn376SdnZ2Zo9e7Z9/s73339fqe0sDzc3N02cOFGJiYm67bbb5O3tra+//lo33nij7rjjDkmSzWbTL7/8ok6dOtn3K+mcnV166aX6+uuvHcq+/vprXXLJJXJ3d6/8kwHqEEaQAPxtXbt21e2336558+bZy4YOHaqbb75ZQ4cO1eOPP67Nmzdr3759+uKLL7R8+fJyf0H3799fL7/8srZs2aJ9+/Zp3bp1mjhxoq666ir5+vpKOrsO0pdffqnff/9dR48elSQ9+uij2rhxo+Lj47V161bt2rVL77//vn2SduvWrWU2mzV//nzt3btXH3zwwXkv21WVW265Re7u7lq4cKGks6Nv69ev18aNG7V9+3bde++9ysrKctinbdu29j49evRoiSNYDz74oFJTUzVz5kz98ssvWrp0qRYsWKCHHnqoWs4LqM0ISAAqxeOPP+7wJW0ymbR8+XIlJSVp3bp1+sc//qEOHTrorrvuUlBQkDZs2FCu48bExGjp0qW69tprdemll2rcuHGKiYnRO++84/De+/btU0hIiJo2bSrp7LyhL774Qr/88ov69eunHj16aOrUqWrRooWks5f7lixZohUrVqhTp06aPXu25syZU4k9Un4NGjRQfHy8nnnmGeXn52vy5MkKCwtTTEyM+vfvr8DAQMXFxTns89BDD8nd3V2dOnVS06ZNS5yfFBYWpnfeeUfLli1Tly5dNHXqVD3++OMl3qkHwJHJMAzD1Y0AAACoSRhBAgAAcEJAAuBS596G7/z66quvXN28Ctm/f3+Z51PR2/QBuA6X2AC4VFkPrW3ZsqW8vb2rsTV/z5kzZ7Rv375St7dt21YNGnDzMFAbEJAAAACccIkNAADACQEJAADACQEJAADACQEJAADACQEJAADACQEJAADACQEJAADACQEJAADAyf8HlJRSodQI64YAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAS/tJREFUeJzt3XtYVNXi//HPgAwgwhioIIqCaJqXI0KGmIZ1KOwoxclK7WZmmZ0wPXTVzEtW2t0Uyzq/EuscykyzNA9ldjXNSrCy1NQwuwgq5ICYYsz+/eGXOc5wERRmBni/nodHZ+2196y9mpwPa6+9tskwDEMAAACw83J3AwAAADwNAQkAAMAJAQkAAMAJAQkAAMAJAQkAAMAJAQkAAMAJAQkAAMAJAQkAAMAJAQkAAMAJAQkAGrHMzEyZTCbt2bPH3U0BmhQCEoAaffnll0pLS1OvXr0UEBCgTp066eqrr9YPP/xQqe6QIUNkMplkMpnk5eWloKAgde/eXddff73Wrl1bp/ddtWqVEhMT1a5dO7Vs2VJdunTR1Vdfrezs7Po6tUoeeeQRrVy5slL5hg0bNHPmTB06dKjB3tvZzJkz7X1pMpnUsmVL9ezZU9OmTVNxcXG9vEdWVpbmzZtXL8cCmhoCEoAaPfroo1q+fLn++te/6plnntH48eP1ySefKDY2Vlu3bq1Uv2PHjnrllVf08ssv6/HHH9dll12mDRs26JJLLtHIkSN1/PjxU77nE088ocsuu0wmk0lTpkzR008/rREjRmjnzp167bXXGuI0JdUckGbNmuXSgFThueee0yuvvKKnnnpKPXr00MMPP6yhQ4eqPh6jSUACqtfC3Q0A4NnS09OVlZUls9lsLxs5cqT69OmjuXPn6t///rdDfYvFouuuu86hbO7cubrjjjv07LPPKjIyUo8++mi17/fnn39q9uzZuvjii/Xee+9V2r5///4zPCPPceTIEbVs2bLGOldeeaXatGkjSZowYYJGjBihFStW6PPPP1dCQoIrmgk0S4wgAajRwIEDHcKRJHXr1k29evXStm3banUMb29vzZ8/Xz179lRGRoasVmu1dQ8ePKji4mKdf/75VW5v166dw+ujR49q5syZOvvss+Xn56f27dvriiuu0O7du+11nnjiCQ0cOFAhISHy9/dXXFyc3njjDYfjmEwmlZaWasmSJfbLWjfeeKNmzpypu+++W5IUFRVl33bynJ9///vfiouLk7+/v4KDgzVq1Cj9/PPPDscfMmSIevfurc2bN+uCCy5Qy5YtNXXq1Fr138kuuugiSVJeXl6N9Z599ln16tVLvr6+Cg8P1+233+4wAjZkyBC98847+umnn+znFBkZWef2AE0VI0gA6swwDBUUFKhXr1613sfb21ujR4/WAw88oPXr12vYsGFV1mvXrp38/f21atUqTZw4UcHBwdUes7y8XMOHD9e6des0atQoTZo0SSUlJVq7dq22bt2q6OhoSdIzzzyjyy67TNdee63Kysr02muv6aqrrtLq1avt7XjllVd0880367zzztP48eMlSdHR0QoICNAPP/ygV199VU8//bR9NKdt27aSpIcfflgPPPCArr76at188806cOCAFixYoAsuuEC5ublq3bq1vb2FhYW69NJLNWrUKF133XUKDQ2tdf9VqAh+ISEh1daZOXOmZs2apaSkJN12223asWOHnnvuOX355Zf67LPP5OPjo/vvv19Wq1W//PKLnn76aUlSq1at6tweoMkyAKCOXnnlFUOS8eKLLzqUJyYmGr169ap2vzfffNOQZDzzzDM1Hn/69OmGJCMgIMC49NJLjYcfftjYvHlzpXovvfSSIcl46qmnKm2z2Wz2vx85csRhW1lZmdG7d2/joosucigPCAgwxowZU+lYjz/+uCHJyMvLcyjfs2eP4e3tbTz88MMO5d9++63RokULh/LExERDkrFo0aJqz/tkM2bMMCQZO3bsMA4cOGDk5eUZzz//vOHr62uEhoYapaWlhmEYxuLFix3atn//fsNsNhuXXHKJUV5ebj9eRkaGIcl46aWX7GXDhg0zOnfuXKv2AM0Nl9gA1Mn27dt1++23KyEhQWPGjKnTvhUjFCUlJTXWmzVrlrKystSvXz+9++67uv/++xUXF6fY2FiHy3rLly9XmzZtNHHixErHMJlM9r/7+/vb//7777/LarVq8ODBysnJqVP7na1YsUI2m01XX321Dh48aP8JCwtTt27d9OGHHzrU9/X11dixY+v0Ht27d1fbtm0VFRWlW2+9VV27dtU777xT7dyl999/X2VlZZo8ebK8vP73T/wtt9yioKAgvfPOO3U/UaAZ4hIbgFrLz8/XsGHDZLFY9MYbb8jb27tO+x8+fFiSFBgYeMq6o0eP1ujRo1VcXKxNmzYpMzNTWVlZSklJ0datW+Xn56fdu3ere/fuatGi5n/KVq9erYceekhbtmzRsWPH7OUnh6jTsXPnThmGoW7dulW53cfHx+F1hw4dKs3nOpXly5crKChIPj4+6tixo/2yYXV++uknSSeC1cnMZrO6dOli3w6gZgQkALVitVp16aWX6tChQ/r0008VHh5e52NULAvQtWvXWu8TFBSkiy++WBdffLF8fHy0ZMkSbdq0SYmJibXa/9NPP9Vll12mCy64QM8++6zat28vHx8fLV68WFlZWXU+h5PZbDaZTCb997//rTIsOs/pOXkkq7YuuOAC+7wnAK5DQAJwSkePHlVKSop++OEHvf/+++rZs2edj1FeXq6srCy1bNlSgwYNOq12nHvuuVqyZIn27dsn6cQk6k2bNun48eOVRmsqLF++XH5+fnr33Xfl6+trL1+8eHGlutWNKFVXHh0dLcMwFBUVpbPPPruup9MgOnfuLEnasWOHunTpYi8vKytTXl6ekpKS7GVnOoIGNGXMQQJQo/Lyco0cOVIbN27UsmXLTmvtnfLyct1xxx3atm2b7rjjDgUFBVVb98iRI9q4cWOV2/773/9K+t/loxEjRujgwYPKyMioVNf4v4UUvb29ZTKZVF5ebt+2Z8+eKheEDAgIqHIxyICAAEmqtO2KK66Qt7e3Zs2aVWnhRsMwVFhYWPVJNqCkpCSZzWbNnz/foU0vvviirFarw92DAQEBNS65ADRnjCABqNGdd96pt99+WykpKSoqKqq0MKTzopBWq9Ve58iRI9q1a5dWrFih3bt3a9SoUZo9e3aN73fkyBENHDhQAwYM0NChQxUREaFDhw5p5cqV+vTTT5Wamqp+/fpJkm644Qa9/PLLSk9P1xdffKHBgwertLRU77//vv7xj3/o8ssv17Bhw/TUU09p6NChuuaaa7R//34tXLhQXbt21TfffOPw3nFxcXr//ff11FNPKTw8XFFRUYqPj1dcXJwk6f7779eoUaPk4+OjlJQURUdH66GHHtKUKVO0Z88epaamKjAwUHl5eXrzzTc1fvx43XXXXWfU/3XVtm1bTZkyRbNmzdLQoUN12WWXaceOHXr22WfVv39/h/9ecXFxWrp0qdLT09W/f3+1atVKKSkpLm0v4LHceQsdAM9XcXt6dT811W3VqpXRrVs347rrrjPee++9Wr3f8ePHjX/9619Gamqq0blzZ8PX19do2bKl0a9fP+Pxxx83jh075lD/yJEjxv33329ERUUZPj4+RlhYmHHllVcau3fvttd58cUXjW7duhm+vr5Gjx49jMWLF9tvoz/Z9u3bjQsuuMDw9/c3JDnc8j979myjQ4cOhpeXV6Vb/pcvX24MGjTICAgIMAICAowePXoYt99+u7Fjxw6HvqlpCQRnFe07cOBAjfWcb/OvkJGRYfTo0cPw8fExQkNDjdtuu834/fffHeocPnzYuOaaa4zWrVsbkrjlHziJyTDq4YE+AAAATQhzkAAAAJwQkAAAAJwQkAAAAJwQkAAAAJwQkAAAAJwQkAAAAJywUORpstls+u233xQYGMhy/QAANBKGYaikpETh4eHy8qp+nIiAdJp+++03RUREuLsZAADgNPz888/q2LFjtdsJSKcpMDBQ0okOrum5UgAAwHMUFxcrIiLC/j1eHQLSaaq4rBYUFERAAgCgkTnV9BgmaQMAADghIAEAADghIAEAADhhDhIAAC5UXl6u48ePu7sZTZaPj4+8vb3P+DgEJAAAXMAwDOXn5+vQoUPubkqT17p1a4WFhZ3ROoUEJAAAXKAiHLVr104tW7ZkkeEGYBiGjhw5ov3790uS2rdvf9rHIiABANDAysvL7eEoJCTE3c1p0vz9/SVJ+/fvV7t27U77chuTtAEAaGAVc45atmzp5pY0DxX9fCZzvQhIAAC4CJfVXKM++plLbHCpwsJClZWVVbvdbDYz/AwAcDsCElymsLBQGRkZp6yXlpZGSAIAuBWX2OAyziNHVmug8vIiZbUG1lgPAOA+N954o0wmk0wmk3x8fBQaGqqLL75YL730kmw2W62Pk5mZqdatWzdcQ+sZI0hwi5ycflq1argMw0smk00pKasVG5vr7mYBgMdy5xSFoUOHavHixSovL1dBQYGys7M1adIkvfHGG3r77bfVokXTixNN74zg8azWQHs4kiTD8NKqVcMVHb1LFkuJm1sHAJ7H3VMUfH19FRYWJknq0KGDYmNjNWDAAP31r39VZmambr75Zj311FNavHixfvzxRwUHByslJUWPPfaYWrVqpY8++khjx46V9L8J1DNmzNDMmTP1yiuv6JlnntGOHTsUEBCgiy66SPPmzVO7du3q/TzqgktscLmiohB7OKpgGF4qKgp2U4sAwLPVduqBK6coXHTRRerbt69WrFghSfLy8tL8+fP13XffacmSJfrggw90zz33SJIGDhyoefPmKSgoSPv27dO+fft01113STpxK/7s2bP19ddfa+XKldqzZ49uvPFGl51HdRhBgssFBxfKZLI5hCSTyabg4CI3tgoAUFc9evTQN998I0maPHmyvTwyMlIPPfSQJkyYoGeffVZms1kWi0Umk8k+ElXhpptusv+9S5cumj9/vvr376/Dhw+rVatWLjmPqjCCBJezWEqUkrJaJtOJyX0Vc5C4vAYAjYthGPZLZu+//77++te/qkOHDgoMDNT111+vwsJCHTlypMZjbN68WSkpKerUqZMCAwOVmJgoSdq7d2+Dt78mjCDBLWJjcxUdvUtFRcEKDi4iHAFAI7Rt2zZFRUVpz549Gj58uG677TY9/PDDCg4O1vr16zVu3DiVlZVVu4J4aWmpkpOTlZycrP/85z9q27at9u7dq+TkZLff0UxAgsuYzWaH1xZLSZXByLkeAMDzfPDBB/r222/1z3/+U5s3b5bNZtOTTz4pL68TF6def/11h/pms1nl5eUOZdu3b1dhYaHmzp2riIgISdJXX33lmhM4BQISXCYkJERpaWmspA0AjcyxY8eUn5/vcJv/nDlzNHz4cN1www3aunWrjh8/rgULFiglJUWfffaZFi1a5HCMyMhIHT58WOvWrVPfvn3VsmVLderUSWazWQsWLNCECRO0detWzZ49201n6Yg5SHCpkJAQtW/fvtofwhEAeJ7s7Gy1b99ekZGRGjp0qD788EPNnz9fb731lry9vdW3b1899dRTevTRR9W7d2/95z//0Zw5cxyOMXDgQE2YMEEjR45U27Zt9dhjj6lt27bKzMzUsmXL1LNnT82dO1dPPPGEm87SkckwDMPdjWiMiouLZbFYZLVaFRQU5O7mAAA82NGjR5WXl6eoqCj5+fnVeX93r4PU2NTU37X9/uYSGwAAHo4pCq5HQAIAoBEg/LgWc5AAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAACcEJAAAIDbfPTRRzKZTDp06FCt94mMjNS8efMarE0SAQkAANTgxhtvlMlk0oQJEyptu/3222UymXTjjTe6vmENjIAEAABqFBERoddee01//PGHvezo0aPKyspSp06d3NiyhkNAAgAANYqNjVVERIRWrFhhL1uxYoU6deqkfv362cuOHTumO+64Q+3atZOfn58GDRqkL7/80uFYa9as0dlnny1/f39deOGF2rNnT6X3W79+vQYPHix/f39FRETojjvuUGlpaYOdX1UISAAANDK//CJ9+OGJP13lpptu0uLFi+2vX3rpJY0dO9ahzj333KPly5dryZIlysnJUdeuXZWcnKyioiJJ0s8//6wrrrhCKSkp2rJli26++Wbdd999DsfYvXu3hg4dqhEjRuibb77R0qVLtX79eqWlpTX8SZ6EgAQAQCPy4otS587SRRed+PPFF13zvtddd53Wr1+vn376ST/99JM+++wzXXfddfbtpaWleu655/T444/r0ksvVc+ePfWvf/1L/v7+evH/Gvncc88pOjpaTz75pLp3765rr7220vylOXPm6Nprr9XkyZPVrVs3DRw4UPPnz9fLL7+so0ePuuZkJbVw2TsBAIAz8ssv0vjxks124rXNJt16q5ScLHXs2LDv3bZtWw0bNkyZmZkyDEPDhg1TmzZt7Nt3796t48eP6/zzz7eX+fj46LzzztO2bdskSdu2bVN8fLzDcRMSEhxef/311/rmm2/0n//8x15mGIZsNpvy8vJ0zjnnNMTpVUJAAgCgkdi583/hqEJ5ubRrV8MHJOnEZbaKS10LFy5skPc4fPiwbr31Vt1xxx2VtrlyQjgBCQCARqJbN8nLyzEkeXtLXbu65v2HDh2qsrIymUwmJScnO2yLjo6W2WzWZ599ps6dO0uSjh8/ri+//FKTJ0+WJJ1zzjl6++23Hfb7/PPPHV7Hxsbq+++/V1dXnVQ1mIMEAEAj0bGj9MILJ0KRdOLP5593zejRiffz1rZt2/T999/Lu6IR/ycgIEC33Xab7r77bmVnZ+v777/XLbfcoiNHjmjcuHGSpAkTJmjnzp26++67tWPHDmVlZSkzM9PhOPfee682bNigtLQ0bdmyRTt37tRbb73l8knajCABANCIjBt3Ys7Rrl0nRo5cFY4qBAUFVbtt7ty5stlsuv7661VSUqJzzz1X7777rs466yxJJy6RLV++XP/85z+1YMECnXfeeXrkkUd000032Y/xl7/8RR9//LHuv/9+DR48WIZhKDo6WiNHjmzwczuZyTAMw6Xv2EQUFxfLYrHIarXW+GEBAODo0aPKy8tTVFSU/Pz83N2cJq+m/q7t9zeX2AAAAJwQkAAAAJwQkAAAAJy4PSAtXLhQkZGR8vPzU3x8vL744osa6y9btkw9evSQn5+f+vTpozVr1jhsX7FihS655BKFhITIZDJpy5YtlY5x9OhR3X777QoJCVGrVq00YsQIFRQU1OdpAQCARsytAWnp0qVKT0/XjBkzlJOTo759+yo5OVn79++vsv6GDRs0evRojRs3Trm5uUpNTVVqaqq2bt1qr1NaWqpBgwbp0UcfrfZ9//nPf2rVqlVatmyZPv74Y/3222+64oor6v38AAA4GfdFuUZ99LNb72KLj49X//79lZGRIUmy2WyKiIjQxIkTKz28TpJGjhyp0tJSrV692l42YMAAxcTEaNGiRQ519+zZo6ioKOXm5iomJsZebrVa1bZtW2VlZenKK6+UJG3fvl3nnHOONm7cqAEDBtSq7dzFBgCorfLycv3www9q166dQkJC3N2cJq+wsFD79+/X2WefXWm9ptp+f7ttHaSysjJt3rxZU6ZMsZd5eXkpKSlJGzdurHKfjRs3Kj093aEsOTlZK1eurPX7bt68WcePH1dSUpK9rEePHurUqVONAenYsWM6duyY/XVxcXGt3xMA0Lx5e3urdevW9iskLVu2lMlkcnOrmh7DMHTkyBHt379frVu3rhSO6sJtAengwYMqLy9XaGioQ3loaKi2b99e5T75+flV1s/Pz6/1++bn58tsNqt169Z1Os6cOXM0a9asWr8PAAAnCwsLk6Rqp5Gg/rRu3dre36eLlbRracqUKQ6jV8XFxYqIiHBjiwAAjYnJZFL79u3Vrl07HT9+3N3NabJ8fHzOaOSogtsCUps2beTt7V3p7rGCgoJqU19YWFid6ld3jLKyMh06dMhhFOlUx/H19ZWvr2+t3wcAgKp4e3vXyxc4Gpbb7mIzm82Ki4vTunXr7GU2m03r1q1TQkJClfskJCQ41JektWvXVlu/KnFxcfLx8XE4zo4dO7R37946HQcAADRdbr3Elp6erjFjxujcc8/Veeedp3nz5qm0tFRjx46VJN1www3q0KGD5syZI0maNGmSEhMT9eSTT2rYsGF67bXX9NVXX+mFF16wH7OoqEh79+7Vb7/9JulE+JFOjByFhYXJYrFo3LhxSk9PV3BwsIKCgjRx4kQlJCTU+g42AADQtLk1II0cOVIHDhzQ9OnTlZ+fr5iYGGVnZ9snYu/du1deXv8b5Bo4cKCysrI0bdo0TZ06Vd26ddPKlSvVu3dve523337bHrAkadSoUZKkGTNmaObMmZKkp59+Wl5eXhoxYoSOHTum5ORkPfvssy44YwAA0Bi4dR2kxox1kAAAaHxq+/3t9keNAAAAeBoCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBOexQYATUxhYaHKysqq3W42mxUSEuLCFgGNDwEJAJqQwsJCZWRknLJeWloaIQmoAZfYAKAJcR45sloDlZcXKas1sMZ6ABwxggQATVROTj+tWjVchuElk8mmlJTVio3NdXezgEaBESQAaIKs1kB7OJIkw/DSqlXDK40kAagaAQkAmqCiohB7OKpgGF4qKgp2U4uAxoWABABNUHBwoUwmm0OZyWRTcHCRm1oENC4EJABogiyWEqWkrLaHpIo5SBZLiZtbBjQOTNIGgCYqNjZX0dG7VFQUrODgIsIRUAcEJABoQsxms8Nri6WkymDkXA+AIwISADQhISEhSktLYyVt4AwRkACgiSH8AGeOSdoAAABOCEgAAABOCEgAAABOmIMEAADcrrCw0KNuLiAgAQAAtyosLFRGRsYp66WlpbksJHGJDQAAuJXzyJHVGqi8vMhKD1euaYSpvjGCBAAAPEZOTj+tWjVchuFlf0RObGyuy9vBCBIAAPAIVmugPRxJkmF4adWq4ZVGklyBgAQAADxCUVGIPRxVMAwvFRUFu7wtBCQAAOARgoMLZTLZHMpMJpuCg4tc3hYCEgAA8AgWS4lSUlbbQ1LFHKSqHrjc0JikDQAAPEZsbK6io3epqChYwcFFbglHEgEJAAC4mdlsdnhtsZRUGYyc6zUkAhIAAHCrkJAQpaWlsZI2AADAyVwZfmqDSdoAAABOCEgAAABOCEgAAABOCEgAAABOmKQNAJAkFRYWetRdRIA7EZAAACosLFRGRsYp66WlpRGS0CxwiQ0AUGnkyGoNVF5eZKWnqNc0wgQ0JYwgAQAc5OT006pVw2UYXvZnYcXG5rq7WYBLMYIEALCzWgPt4UiSDMNLq1YNrzSSBDR1BCQAgF1RUYg9HFUwDC8VFQW7qUWAexCQAAB2wcGFMplsDmUmk03BwUVuahHgHgQkAICdxVKilJTV9pBUMQepqierA00Zk7QBAA5iY3MVHb1LRUXBCg4uIhyhWSIgAQBkNpsdXlssJVUGI+d6QFNFQAIAKCQkRGlpaaykDfwfAhIAQJIIP8BJmKQNAADghIAEAADghIAEAADghIAEAADgxO0BaeHChYqMjJSfn5/i4+P1xRdf1Fh/2bJl6tGjh/z8/NSnTx+tWbPGYbthGJo+fbrat28vf39/JSUlaefOnQ51fvjhB11++eVq06aNgoKCNGjQIH344Yf1fm4AAKBxcmtAWrp0qdLT0zVjxgzl5OSob9++Sk5O1v79+6usv2HDBo0ePVrjxo1Tbm6uUlNTlZqaqq1bt9rrPPbYY5o/f74WLVqkTZs2KSAgQMnJyTp69Ki9zvDhw/Xnn3/qgw8+0ObNm9W3b18NHz5c+fn5DX7OAADA85kMwzDc9ebx8fHq37+/MjIyJEk2m00RERGaOHGi7rvvvkr1R44cqdLSUq1evdpeNmDAAMXExGjRokUyDEPh4eG68847ddddd0mSrFarQkNDlZmZqVGjRungwYNq27atPvnkEw0ePFiSVFJSoqCgIK1du1ZJSUm1antxcbEsFousVquCgoLOtCsAAIAL1Pb7220jSGVlZdq8ebNDIPHy8lJSUpI2btxY5T4bN26sFGCSk5Pt9fPy8pSfn+9Qx2KxKD4+3l4nJCRE3bt318svv6zS0lL9+eefev7559WuXTvFxcVV295jx46puLjY4QcAcGYKCwu1b9++an8KCwvd3UQ0U25bKPLgwYMqLy9XaGioQ3loaKi2b99e5T75+flV1q+4NFbxZ011TCaT3n//faWmpiowMFBeXl5q166dsrOzddZZZ1Xb3jlz5mjWrFl1O0kAQLUKCwvtVxBqkpaWxiKWcDm3T9J2NcMwdPvtt6tdu3b69NNP9cUXXyg1NVUpKSnat29ftftNmTJFVqvV/vPzzz+7sNUA0PQ4P9bEag1UXl6krNbAGusBruC2EaQ2bdrI29tbBQUFDuUFBQUKCwurcp+wsLAa61f8WVBQoPbt2zvUiYmJkSR98MEHWr16tX7//Xf7tcdnn31Wa9eu1ZIlS6qc+yRJvr6+8vX1rfuJAgBOKSenn1atGi7D8JLJZFNKymrFxua6u1loxtw2gmQ2mxUXF6d169bZy2w2m9atW6eEhIQq90lISHCoL0lr166114+KilJYWJhDneLiYm3atMle58iRI5JOzHc6mZeXl2w225mfGACgTqzWQHs4kiTD8NKqVcMrjSQBruTWS2zp6en617/+pSVLlmjbtm267bbbVFpaqrFjx0qSbrjhBk2ZMsVef9KkScrOztaTTz6p7du3a+bMmfrqq6+UlpYm6cT8osmTJ+uhhx7S22+/rW+//VY33HCDwsPDlZqaKulEyDrrrLM0ZswYff311/rhhx909913Ky8vT8OGDXN5HwBAc1dUFGIPRxUMw0tFRcFuahHgxkts0onb9g8cOKDp06crPz9fMTExys7Otk+y3rt3r8NIz8CBA5WVlaVp06Zp6tSp6tatm1auXKnevXvb69xzzz0qLS3V+PHjdejQIQ0aNEjZ2dny8/OTdOLSXnZ2tu6//35ddNFFOn78uHr16qW33npLffv2dW0HAAAUHFwok8nmEJJMJpuCg4vc2Co0d25dB6kxYx0kADgz+/bt0wsvvCCp5jlI48ePd5hXCpyJ2n5/u3UECQAASYqNzVV09C4VFQUrOLhIFkuJu5uEZo6ABABwC7PZ7PDaYimpMhg51wNcgYAEAHCLkJAQpaWl1bjOkdlsZpFIuAUBCQDgNoQfeKpmt5I2AADAqRCQAAAAnHCJDWgiCgsLmcsBAPWEgAQ0ATwVHQDqF5fYgCaAp6IDQP1iBAloYngqOgCcOUaQgCaEp6IDQP0gIAFNCE9FB4D6QUACmpCKp6KfjKeiA0DdEZCAJsRiKVFKymp7SKqYg8SDPwGgbpikDTQxPBUdAM4cAQloAngqOgDULwIS0ATwVHQAqF8EJKCJIPwAQP1hkjYAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAIATAhIAAICTOgWkX375RQcPHrS//vTTT3Xttddq8ODBuu6667Rx48Z6byAAAICr1SkgjRgxQp9//rkk6a233tKQIUN0+PBhnX/++Tpy5IgSExO1evXqBmkoAACAq5gMwzBqW7lVq1b69ttvFRUVpQEDBujvf/+77r33Xvv2jIwMvfTSS8rJyWmQxnqS4uJiWSwWWa1WBQUFubs5AACgFmr7/V2nEaQWLVqopKREkpSXl6dLL73UYfull16qHTt2nEZzAQAAPEedAlJiYqJeffVVSVK/fv300UcfOWz/8MMP1aFDh3prHAAAgDu0qEvluXPnavDgwfrtt980aNAg3X///fryyy91zjnnaMeOHVq6dKkWLVrUUG0FAABwiTrNQZKk3bt3a9q0aXrnnXd0+PBhSScuvfXv31933323UlNTG6KdHoc5SAAAND61/f6uc0CqYBiG9u/fL5vNpjZt2sjHx+e0G9sYEZAAAGh8GmSS9slMJpNCQ0PVvn37MwpHCxcuVGRkpPz8/BQfH68vvviixvrLli1Tjx495Ofnpz59+mjNmjUO2w3D0PTp09W+fXv5+/srKSlJO3furHScd955R/Hx8fL399dZZ53VbEa+AADAqdVpDlJ6enqt6j311FO1qrd06VKlp6dr0aJFio+P17x585ScnKwdO3aoXbt2lepv2LBBo0eP1pw5czR8+HBlZWUpNTVVOTk56t27tyTpscce0/z587VkyRJFRUXpgQceUHJysr7//nv5+flJkpYvX65bbrlFjzzyiC666CL9+eef2rp1ay17AQAANHV1usR24YUXOrxev3694uLi5O/v/78Dmkz64IMPanW8+Ph49e/fXxkZGZIkm82miIgITZw4Uffdd1+l+iNHjlRpaanDYpQDBgxQTEyMFi1aJMMwFB4erjvvvFN33XWXJMlqtSo0NFSZmZkaNWqU/vzzT0VGRmrWrFkaN25cbU+9Ei6xAQDQ+NT2+7tOI0gffvihw+vAwEBlZWWpS5cudW5gWVmZNm/erClTptjLvLy8lJSUVO0jSzZu3FhpFCs5OVkrV66UdGJtpvz8fCUlJdm3WywWxcfHa+PGjRo1apRycnL066+/ysvLS/369VN+fr5iYmL0+OOP20ehqnLs2DEdO3bM/rq4uLjO5wwAABoHtz2s9uDBgyovL1doaKhDeWhoqPLz86vcJz8/v8b6FX/WVOfHH3+UJM2cOVPTpk3T6tWrddZZZ2nIkCEqKiqqtr1z5syRxWKx/0RERNThbAEAQGNSpxGkpsBms0mS7r//fo0YMUKStHjxYnXs2FHLli3TrbfeWuV+U6ZMcRi9Ki4uJiQBblBYWKiysrJqt5vNZoWEhLiwRQCaIrcFpDZt2sjb21sFBQUO5QUFBQoLC6tyn7CwsBrrV/xZUFCg9u3bO9SJiYmRJHt5z5497dt9fX3VpUsX7d27t9r2+vr6ytfXt5ZnB6AhFBYW2ucs1iQtLY2QBOCM1OkS2zfffOPwYxiGtm/fXqm8Nsxms+Li4rRu3Tp7mc1m07p165SQkFDlPgkJCQ71JWnt2rX2+lFRUQoLC3OoU1xcrE2bNtnrxMXFydfX1+GZccePH9eePXvUuXPn2nUEALdwHjmyWgOVlxcpqzWwxnoAUFd1GkGKiYmRyWTSyTe+DR8+XJLs5SaTSeXl5bU6Xnp6usaMGaNzzz1X5513nubNm6fS0lKNHTtWknTDDTeoQ4cOmjNnjiRp0qRJSkxM1JNPPqlhw4bptdde01dffaUXXnjB3obJkyfroYceUrdu3ey3+YeHh9vXOQoKCtKECRM0Y8YMRUREqHPnznr88cclSVdddVVdugOAG+Xk9NOqVcNlGF4ymWxKSVmt2NhcdzcLQBNRp4CUl5dXr28+cuRIHThwQNOnT7ffTZadnW2fZL137155ef1vkGvgwIHKysrStGnTNHXqVHXr1k0rV650uPvsnnvuUWlpqcaPH69Dhw5p0KBBys7Otq+BJEmPP/64WrRooeuvv15//PGH4uPj9cEHH+iss86q1/MD0DCs1kB7OJIkw/DSqlXDFR29SxZLiZtbB6ApOO1HjTR3rIMEuN6+ffv0wgsvKC8vUkuWjKm0fcyYTEVF/aTx48c7zEMEgAoN+qiRijvBqiqvaaIzANSH4OBCmUyO/w6ZTDYFB1e/VAcA1EWdAlJxcbGuvvpqBQQEKDQ0VNOnT3eYb3TgwAFFRUXVeyMB4GQWS4lSUlbbQ1LFHCQurwGoL3Wag/TAAw/o66+/1iuvvKJDhw7poYceUk5OjlasWCGz2SxJ4oodAFeIjc1VdPQuFRUFKzi4iHAEoF7VKSCtXLlSS5Ys0ZAhQyRJqampGjZsmFJSUvT2229LOnEnGQA0hIpfxCpYLCVVBiPnegBQV3WapN2yZUt99913DpfRSkpKlJycLH9/f/2///f/1LVr11rf5t+YMUkbcA9W0gZwJhrkYbWdOnXStm3bHAJSYGCg3nvvPV1yySX6+9//fvotBoBaIPwAcIU6TdK++OKLtXjx4krlrVq10rvvvuuw1hAAAEBjVacRpAcffFD79u2rcltgYKDWrl2rnJycemkYAACAu9RpBCk3N1dXXnmliouLK22zWq0aMGAAk7QBAECjV6eANG/ePN1yyy1VTmqyWCy69dZb9fTTT9db4wAAANyhTgHp66+/1tChQ6vdfskll2jz5s1n3CgAAAB3qlNAKigokI+PT7XbW7RooQMHDpxxowAAANypTgGpQ4cO2rp1a7Xbv/nmGx4QCQAAGr06BaS//e1veuCBB3T06NFK2/744w/NmDFDw4cPr7fGAQAAuEOdVtIuKChQbGysvL29lZaWpu7du0uStm/froULF6q8vFw5OTkKDQ1tsAZ7ClbSBgCg8WmQlbRDQ0O1YcMG3XbbbZoyZYr9wbQmk0nJyclauHBhswhHAACgaatTQJKkzp07a82aNfr999+1a9cuGYahbt266ayzzmqI9gEAALhcnQNShbPOOkv9+/evz7YAAAB4hDpN0gYAAGgOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOCEgAAABOPCIgLVy4UJGRkfLz81N8fLy++OKLGusvW7ZMPXr0kJ+fn/r06aM1a9Y4bDcMQ9OnT1f79u3l7++vpKQk7dy5s8pjHTt2TDExMTKZTNqyZUt9nRIAAGjE3B6Qli5dqvT0dM2YMUM5OTnq27evkpOTtX///irrb9iwQaNHj9a4ceOUm5ur1NRUpaamauvWrfY6jz32mObPn69FixZp06ZNCggIUHJyso4ePVrpePfcc4/Cw8Mb7PwAAEDjYzIMw3BnA+Lj49W/f39lZGRIkmw2myIiIjRx4kTdd999leqPHDlSpaWlWr16tb1swIABiomJ0aJFi2QYhsLDw3XnnXfqrrvukiRZrVaFhoYqMzNTo0aNsu/33//+V+np6Vq+fLl69eql3NxcxcTE1KrdxcXFslgsslqtCgoKOoMekAoLC1VWVlbtdrPZrJCQkDN6DwAAUPvv7xYubFMlZWVl2rx5s6ZMmWIv8/LyUlJSkjZu3FjlPhs3blR6erpDWXJyslauXClJysvLU35+vpKSkuzbLRaL4uPjtXHjRntAKigo0C233KKVK1eqZcuWp2zrsWPHdOzYMfvr4uLiWp9nTQoLC+3hUJKs1kAVFYUoOLhQFkuJvTwtLY2QBACAi7g1IB08eFDl5eUKDQ11KA8NDdX27dur3Cc/P7/K+vn5+fbtFWXV1TEMQzfeeKMmTJigc889V3v27DllW+fMmaNZs2bV6rzq4uSRo5ycflq1argMw0smk00pKasVG5tbqR4AAGhYbp+D5A4LFixQSUmJw8jVqUyZMkVWq9X+8/PPP9drm6zWQHs4kiTD8NKqVcNltQbW6/sAAIBTc2tAatOmjby9vVVQUOBQXlBQoLCwsCr3CQsLq7F+xZ811fnggw+0ceNG+fr6qkWLFuratask6dxzz9WYMWOqfF9fX18FBQU5/NSnoqIQeziqYBheKioKrtf3AQAAp+bWgGQ2mxUXF6d169bZy2w2m9atW6eEhIQq90lISHCoL0lr166114+KilJYWJhDneLiYm3atMleZ/78+fr666+1ZcsWbdmyxb5MwNKlS/Xwww/X6znWVnBwoUwmm0OZyWRTcHCRW9oDAEBz5tY5SJKUnp6uMWPG6Nxzz9V5552nefPmqbS0VGPHjpUk3XDDDerQoYPmzJkjSZo0aZISExP15JNPatiwYXrttdf01Vdf6YUXXpAkmUwmTZ48WQ899JC6deumqKgoPfDAAwoPD1dqaqokqVOnTg5taNWqlSQpOjpaHTt2dNGZO7JYSpSSsrrSHKSTJ2oDAADXcHtAGjlypA4cOKDp06crPz9fMTExys7Otk+y3rt3r7y8/jfQNXDgQGVlZWnatGmaOnWqunXrppUrV6p37972Ovfcc49KS0s1fvx4HTp0SIMGDVJ2drb8/Pxcfn51ERubq+joXSoqClZwcBHhCKgCy2IAcAW3r4PUWNXXOkj79u2zj37VZPz48Wrfvv1pvw/QFDgvi1EdlsUAUJ3afn83y7vYPInZbK7XekBT5jxyZLUGKi8vstLdniyLAeBMuf0SW3MXEhKitLQ0LhkAdVTTumEAcKYISB6A8APUTXXrhkVH72LuHoB6wSU2AI0O64YBaGgEJACNDuuGAWhoBCQAjU7FumEVIYl1wwDUN+YgAWiUWDcMQEMiIAFoNJyXu7BYSqoMRiyLAeBMEZAANBosiwHAVQhIABoVwg8AV2CSNgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMCEgAAgBMWigTQbBQWFrIKN4BaISABaBYKCwuVkZFxynppaWmEJABcYgPQPDiPHFmtgcrLi5TVGlhjPQDNEyNIAJqdnJx+WrVquAzDSyaTTSkpqxUbm+vuZgHwIAQkAM2K1RpoD0eSZBheWrVquKKjd8liKXFz69yLOVrA/xCQADQrRUUh9nBUwTC8VFQU3KwDEnO0AEfMQQLQrAQHF8pksjmUmUw2BQcXualFnoE5WoAjRpAANCsWS4lSUlZXmoPUnEePnDFHCyAgAWiGYmNzFR29S0VFwQoOLiIcnYQ5WsAJBCQAzYLZbHZ4bbGUVPmF71yvuWGOFtzF024SICABaBZCQkKUlpbmUf8Ae6KKOVonhyTmaKGheeJNAgQkAM1Gcw8/tcEcLbhDVTcJFBWFKDi40OGz58qbBAhIAAAHzNGqnqddBmqKPOUmAQISAIA5WrXgiZeBmhpPukmAgAQAYI5WLXjiZaCmxpNuEiAgeQCGbAF4Av6dqT1PuQzU1HjSTQIEJDdjyBYAGhdPugzU1HjSTQIEJDdjyBYAGhdPugzUFHnKTQIEJA/CkC0AeD5PugzUVHjiTQIEJA/BkC0ANA6edBmoqfDEmwQISB6CIVsAaDw85TJQU+Jp82wJSB6CIVsA8GyeeBkIDYeA5CEYsgUAz+aJl4HQcAhIHoQhWwDwbISf5oOA5GYM2QIA4HkISG7GkC0AAJ6HgOQBCD8AAHgWr1NXAQAAaF4ISAAAAE64xAZUo7CwkLlhANBMEZCAKhQWFiojI+OU9dLS0ghJANAEcYkNqILzyJHVGqi8vEhZrYE11gMANA2MIAGnkJPTr9IK57Gxue5uFgCgATGCBNTAag20hyPpxAOEV60aXmkkCQDQtBCQgBoUFYU4PEBYOhGSioqC3dQiAIAreERAWrhwoSIjI+Xn56f4+Hh98cUXNdZftmyZevToIT8/P/Xp00dr1qxx2G4YhqZPn6727dvL399fSUlJ2rlzp337nj17NG7cOEVFRcnf31/R0dGaMWMG80lQSXBwoUwmm0OZyWRTcHCRm1oEAHAFtwekpUuXKj09XTNmzFBOTo769u2r5ORk7d+/v8r6GzZs0OjRozVu3Djl5uYqNTVVqamp2rp1q73OY489pvnz52vRokXatGmTAgIClJycrKNHj0qStm/fLpvNpueff17fffednn76aS1atEhTp051yTmj8bBYSpSSstoekirmIPEgYQBo2kyGYRjubEB8fLz69+9vv6XaZrMpIiJCEydO1H333Vep/siRI1VaWqrVq1fbywYMGKCYmBgtWrRIhmEoPDxcd955p+666y5JktVqVWhoqDIzMzVq1Kgq2/H444/rueee048//lirdhcXF8tischqtSooKKiupw0Pt2/fPr3wwgv211ZroIqKghUcXOQQjsaPH6/27du7o4kAgNNQ2+9vt44glZWVafPmzUpKSrKXeXl5KSkpSRs3bqxyn40bNzrUl6Tk5GR7/by8POXn5zvUsVgsio+Pr/aY0okQFRxc/bySY8eOqbi42OEHTZfZbHZ4bbGUKCrqp0ojR871AABNg1tv8z948KDKy8sVGhrqUB4aGqrt27dXuU9+fn6V9fPz8+3bK8qqq+Ns165dWrBggZ544olq2zpnzhzNmjWr5hNCkxESEqK0tDRW0gaAZqrZr4P066+/aujQobrqqqt0yy23VFtvypQpSk9Pt78uLi5WRESEK5oINyH8AEDz5dZLbG3atJG3t7cKCgocygsKChQWFlblPmFhYTXWr/izNsf87bffdOGFF2rgwIEO802q4uvrq6CgIIcfAADQNLk1IJnNZsXFxWndunX2MpvNpnXr1ikhIaHKfRISEhzqS9LatWvt9aOiohQWFuZQp7i4WJs2bXI45q+//qohQ4YoLi5OixcvlpeX22/oAwAAHsLtl9jS09M1ZswYnXvuuTrvvPM0b948lZaWauzYsZKkG264QR06dNCcOXMkSZMmTVJiYqKefPJJDRs2TK+99pq++uor+wiQyWTS5MmT9dBDD6lbt26KiorSAw88oPDwcKWmpkr6Xzjq3LmznnjiCR04cMDenupGrgAAQPPh9oA0cuRIHThwQNOnT1d+fr5iYmKUnZ1tn2S9d+9eh9GdgQMHKisrS9OmTdPUqVPVrVs3rVy5Ur1797bXueeee1RaWqrx48fr0KFDGjRokLKzs+Xn5yfpxIjTrl27tGvXLnXs2NGhPW5e9QAAAHgAt6+D1FixDhIAAI1Po1gHCQAAwBMRkAAAAJwQkAAAAJwQkAAAAJwQkAAAAJwQkAAAAJwQkAAAAJwQkAAAAJwQkAAAAJwQkAAAAJwQkAAAAJy4/WG1AAAAhYWFKisrq3a72WxWSEiIy9pDQAIAAG5VWFiojIyMU9ZLS0tzWUjiEhsAAHAr55EjqzVQeXmRsloDa6zXkBhBAgAAHiMnp59WrRouw/CSyWRTSspqxcbmurwdBCQA8ECeNh8DcAWrNdAejiTJMLy0atVwRUfvksVS4tK2EJAAwMN44nwMwBWKikLs4aiCYXipqCjY5QGJOUgA4GE8cT4G4ArBwYUymWwOZSaTTcHBRS5vCyNIAODBPGU+BuAKFkuJUlJWV/rMu3r0SCIgAYDH8qT5GICrxMbmKjp6l4qKghUcXOS2zzoBCQA8lCfNxwAaktlsdnhtsZRU+Rl3rteQCEgAXI47tGqnYj7GySHJXfMxgIYUEhKitLQ0j/p3gYAEwKW4Q6v2PGk+BpoXd/wS42n/vxOQALhUVXdoFRWFKDi40OGLnzu0TvCU+RhoPvgl5gQCEgC34Q6tqnnifAw0H/wScwIBCYBbcIdW9TxxPgaap+b8SwwBCYBbcIdWzQg/cLfm/ksMK2kDcAtPWjEXQGU1/RLTHBCQALhFxR1aFSGJO7QAz9Lcf4nhEhsAt+EOLcBzNfdlJghIAFyKO7SAxqM5/xJDQIJLsYIyuEML8Gz8EnOCyTAMw92NaIyKi4tlsVhktVoVFBTk7uY0Ciw+BgCNQ1P+Zba239+MIMFlaruoWFNffAwAPF1jDT/1ibvY4DZWa6Dy8iJltQa6uykAADhgBAlu0ZxXZwUAeD5GkOBy1a3OykgSAMBTEJDgcs19dVYAgOcjIMHlmvvqrAAAz0dAgsvxiAkAgKdjkjZc5uRFxWpanbWpLz4GAPB8BCS4DCsoAwAaCwISXIrwAwBoDJiDBAAA4ISABAAA4ISABAAA4ISABAAA4ISABAAA4ISABAAA4ISABAAA4ISABAAA4ISABAAA4ISABAAA4IRHjZwmwzAkScXFxW5uCQAAqK2K7+2K7/HqEJBOU0nJiafPR0REuLklAACgrkpKSmSxWKrdbjJOFaFQJZvNpt9++02BgYEymUxndKzi4mJFRETo559/VlBQUD21sHGjTyqjTyqjTyqjTyqjTyprzn1iGIZKSkoUHh4uL6/qZxoxgnSavLy81LFjx3o9ZlBQULP7oJ4KfVIZfVIZfVIZfVIZfVJZc+2TmkaOKjBJGwAAwAkBCQAAwAkByQP4+vpqxowZ8vX1dXdTPAZ9Uhl9Uhl9Uhl9Uhl9Uhl9cmpM0gYAAHDCCBIAAIATAhIAAIATAhIAAIATAhIAAIATAlIDWLhwoSIjI+Xn56f4+Hh98cUXNdafN2+eunfvLn9/f0VEROif//ynjh49at8+c+ZMmUwmh58ePXo09GnUq7r0yfHjx/Xggw8qOjpafn5+6tu3r7Kzs8/omJ6ovvuksX9OPvnkE6WkpCg8PFwmk0krV6485T4fffSRYmNj5evrq65duyozM7NSncb8OWmIPmlun5N9+/bpmmuu0dlnny0vLy9Nnjy5ynrLli1Tjx495Ofnpz59+mjNmjX13/gG0hB9kpmZWelz4ufn1zAn4KEISPVs6dKlSk9P14wZM5STk6O+ffsqOTlZ+/fvr7J+VlaW7rvvPs2YMUPbtm3Tiy++qKVLl2rq1KkO9Xr16qV9+/bZf9avX++K06kXde2TadOm6fnnn9eCBQv0/fffa8KECfr73/+u3Nzc0z6mp2mIPpEa9+ektLRUffv21cKFC2tVPy8vT8OGDdOFF16oLVu2aPLkybr55pv17rvv2us09s9JQ/SJ1Lw+J8eOHVPbtm01bdo09e3bt8o6GzZs0OjRozVu3Djl5uYqNTVVqamp2rp1a302vcE0RJ9IJ1bZPvlz8tNPP9VXkxsHA/XqvPPOM26//Xb76/LyciM8PNyYM2dOlfVvv/1246KLLnIoS09PN84//3z76xkzZhh9+/ZtkPa6Ql37pH379kZGRoZD2RVXXGFce+21p31MT9MQfdLYPycnk2S8+eabNda55557jF69ejmUjRw50khOTra/buyfk5PVV580t8/JyRITE41JkyZVKr/66quNYcOGOZTFx8cbt9566xm20PXqq08WL15sWCyWemtXY8QIUj0qKyvT5s2blZSUZC/z8vJSUlKSNm7cWOU+AwcO1ObNm+3D/j/++KPWrFmjv/3tbw71du7cqfDwcHXp0kXXXnut9u7d23AnUo9Op0+OHTtWaSjX39/f/lvu6RzTkzREn1RorJ+T07Fx40aHPpSk5ORkex829s/J6ThVn1RoTp+T2qhtvzU3hw8fVufOnRUREaHLL79c3333nbub5FIEpHp08OBBlZeXKzQ01KE8NDRU+fn5Ve5zzTXX6MEHH9SgQYPk4+Oj6OhoDRkyxOESW3x8vDIzM5Wdna3nnntOeXl5Gjx4sEpKShr0fOrD6fRJcnKynnrqKe3cuVM2m01r167VihUrtG/fvtM+pidpiD6RGvfn5HTk5+dX2YfFxcX6448/Gv3n5HScqk+k5vc5qY3q+q2pfk5qo3v37nrppZf01ltv6d///rdsNpsGDhyoX375xd1NcxkCkpt99NFHeuSRR/Tss88qJydHK1as0DvvvKPZs2fb61x66aW66qqr9Je//EXJyclas2aNDh06pNdff92NLW84zzzzjLp166YePXrIbDYrLS1NY8eOlZdX8/241qZPmtvnBKeHzwlqIyEhQTfccINiYmKUmJioFStWqG3btnr++efd3TSXab7fOA2gTZs28vb2VkFBgUN5QUGBwsLCqtzngQce0PXXX6+bb75Zffr00d///nc98sgjmjNnjmw2W5X7tG7dWmeffbZ27dpV7+dQ306nT9q2bauVK1eqtLRUP/30k7Zv365WrVqpS5cup31MT9IQfVKVxvQ5OR1hYWFV9mFQUJD8/f0b/efkdJyqT6rS1D8ntVFdvzXVz8np8PHxUb9+/ZrV54SAVI/MZrPi4uK0bt06e5nNZtO6deuUkJBQ5T5HjhypNDLi7e0tSTKqeUze4cOHtXv3brVv376eWt5wTqdPKvj5+alDhw76888/tXz5cl1++eVnfExP0BB9UpXG9Dk5HQkJCQ59KElr166192Fj/5ycjlP1SVWa+uekNk6n35qb8vJyffvtt83rc+LuWeJNzWuvvWb4+voamZmZxvfff2+MHz/eaN26tZGfn28YhmFcf/31xn333WevP2PGDCMwMNB49dVXjR9//NF47733jOjoaOPqq6+217nzzjuNjz76yMjLyzM+++wzIykpyWjTpo2xf/9+l5/f6ahrn3z++efG8uXLjd27dxuffPKJcdFFFxlRUVHG77//XutjerqG6JPG/jkpKSkxcnNzjdzcXEOS8dRTTxm5ubnGTz/9ZBiGYdx3333G9ddfb6//448/Gi1btjTuvvtuY9u2bcbChQsNb29vIzs7216nsX9OGqJPmtvnxDAMe/24uDjjmmuuMXJzc43vvvvOvv2zzz4zWrRoYTzxxBPGtm3bjBkzZhg+Pj7Gt99+69JzO10N0SezZs0y3n33XWP37t3G5s2bjVGjRhl+fn4OdZo6AlIDWLBggdGpUyfDbDYb5513nvH555/btyUmJhpjxoyxvz5+/Lgxc+ZMIzo62vDz8zMiIiKMf/zjHw5ffCNHjjTat29vmM1mo0OHDsbIkSONXbt2ufCMzlxd+uSjjz4yzjnnHMPX19cICQkxrr/+euPXX3+t0zEbg/ruk8b+Ofnwww8NSZV+KvphzJgxRmJiYqV9YmJiDLPZbHTp0sVYvHhxpeM25s9JQ/RJc/ycVFW/c+fODnVef/114+yzzzbMZrPRq1cv45133nHNCdWDhuiTyZMn2/+/CQ0NNf72t78ZOTk5rjspD2AyjGqu4wAAADRTzEECAABwQkACAABwQkACAABwQkACAABwQkACAABwQkACAABwQkACAABwQkACgCbio48+kslk0qFDh9zdFKDRIyABqLMbb7xRJpNJc+fOdShfuXKlTCaT/bVhGPrXv/6lhIQEBQUFqVWrVurVq5cmTZpU64deHjlyRFOmTFF0dLT8/PzUtm1bJSYm6q233rLXiYyM1Lx58+rl3BpaRd+ZTCb5+PgoKipK99xzj44ePVqn4wwZMkSTJ092KBs4cKD27dsni8VSjy0GmicCEoDT4ufnp0cffVS///57ldsNw9A111yjO+64Q3/729/03nvv6fvvv9eLL74oPz8/PfTQQ7V6nwkTJmjFihVasGCBtm/fruzsbF155ZUqLCysz9NxqaFDh2rfvn368ccf9fTTT+v555/XjBkzzvi4ZrNZYWFhDiEVwGly75NOADRGY8aMMYYPH2706NHDuPvuu+3lb775plHxz8qrr75qSDLeeuutKo9hs9lq9V4Wi8XIzMysdntiYmKlZ0pV+PTTT41BgwYZfn5+RseOHY2JEycahw8ftm9/+eWXjbi4OKNVq1ZGaGioMXr0aKOgoMC+veIZV9nZ2UZMTIzh5+dnXHjhhUZBQYGxZs0ao0ePHkZgYKAxevRoo7S0tFbnM2bMGOPyyy93KLviiiuMfv362V8fPHjQGDVqlBEeHm74+/sbvXv3NrKyshyO4XzOeXl59vae/CzHN954w+jZs6dhNpuNzp07G0888USt2gk0d4wgATgt3t7eeuSRR7RgwQL98ssvlba/+uqr6t69uy677LIq96/tKEdYWJjWrFmjkpKSKrevWLFCHTt21IMPPqh9+/Zp3759kqTdu3dr6NChGjFihL755hstXbpU69evV1pamn3f48ePa/bs2fr666+1cuVK7dmzRzfeeGOl95g5c6YyMjK0YcMG/fzzz7r66qs1b948ZWVl6Z133tF7772nBQsW1Op8nG3dulUbNmyQ2Wy2lx09elRxcXF65513tHXrVo0fP17XX3+9vvjiC0nSM888o4SEBN1yyy32c46IiKh07M2bN+vqq6/WqFGj9O2332rmzJl64IEHlJmZeVptBZoVdyc0AI3PyaMgAwYMMG666SbDMBxHkHr06GFcdtllDvtNmjTJCAgIMAICAowOHTrU6r0+/vhjo2PHjoaPj49x7rnnGpMnTzbWr1/vUKdz587G008/7VA2btw4Y/z48Q5ln376qeHl5WX88ccfVb7Xl19+aUgySkpKDMP43wjS+++/b68zZ84cQ5Kxe/due9mtt95qJCcn1+p8xowZY3h7exsBAQGGr6+vIcnw8vIy3njjjRr3GzZsmHHnnXfaXycmJhqTJk1yqOM8gnTNNdcYF198sUOdu+++2+jZs2et2go0Z4wgATgjjz76qJYsWaJt27adsu7999+vLVu2aPr06Tp8+HCtjn/BBRfoxx9/1Lp163TllVfqu+++0+DBgzV79uwa9/v666+VmZmpVq1a2X+Sk5Nls9mUl5cn6cQIS0pKijp16qTAwEAlJiZKkvbu3etwrL/85S/2v4eGhqply5bq0qWLQ9n+/ftrdT6SdOGFF2rLli3atGmTxowZo7Fjx2rEiBH27eXl5Zo9e7b69Omj4OBgtWrVSu+++26ldp3Ktm3bdP755zuUnX/++dq5c6fKy8vrdCyguSEgATgjF1xwgZKTkzVlyhSH8m7dumnHjh0OZW3btlXXrl3Vrl27Or2Hj4+PBg8erHvvvVfvvfeeHnzwQc2ePVtlZWXV7nP48GHdeuut2rJli/3n66+/1s6dOxUdHa3S0lIlJycrKChI//nPf/Tll1/qzTfflKRKx/Xx8bH/veLus5OZTCbZbLZan09AQIC6du2qvn376qWXXtKmTZv04osv2rc//vjjeuaZZ3Tvvffqww8/1JYtW5ScnFzj+QKoXy3c3QAAjd/cuXMVExOj7t2728tGjx6ta665Rm+99ZYuv/zyen2/nj176s8//9TRo0dlNptlNpsrjYjExsbq+++/V9euXas8xrfffqvCwkLNnTvXPn/nq6++qtd21oaXl5emTp2q9PR0XXPNNfL399dnn32myy+/XNddd50kyWaz6YcfflDPnj3t+1V1zs7OOeccffbZZw5ln332mc4++2x5e3vX/8kATQgjSADOWJ8+fXTttddq/vz59rJRo0bpyiuv1KhRo/Tggw9q06ZN2rNnjz7++GMtXbq01l/QQ4YM0fPPP6/Nmzdrz549WrNmjaZOnaoLL7xQQUFBkk6sg/TJJ5/o119/1cGDByVJ9957rzZs2KC0tDRt2bJFO3fu1FtvvWWfpN2pUyeZzWYtWLBAP/74o95+++1TXrZrKFdddZW8vb21cOFCSSdG39auXasNGzZo27ZtuvXWW1VQUOCwT2RkpL1PDx48WOUI1p133ql169Zp9uzZ+uGHH7RkyRJlZGTorrvucsl5AY0ZAQlAvXjwwQcdvqRNJpOWLl2qefPmac2aNfrrX/+q7t2766abblJERITWr19fq+MmJydryZIluuSSS3TOOedo4sSJSk5O1uuvv+7w3nv27FF0dLTatm0r6cS8oY8//lg//PCDBg8erH79+mn69OkKDw+XdOJyX2ZmppYtW6aePXtq7ty5euKJJ+qxR2qvRYsWSktL02OPPabS0lJNmzZNsbGxSk5O1pAhQxQWFqbU1FSHfe666y55e3urZ8+eatu2bZXzk2JjY/X666/rtddeU+/evTV9+nQ9+OCDVd6pB8CRyTAMw92NAAAA8CSMIAEAADghIAFwq5Nvw3f++fTTT93dvDrZu3dvjedT19v0AbgPl9gAuFVND63t0KGD/P39XdiaM/Pnn39qz5491W6PjIxUixbcPAw0BgQkAAAAJ1xiAwAAcEJAAgAAcEJAAgAAcEJAAgAAcEJAAgAAcEJAAgAAcEJAAgAAcEJAAgAAcPL/AT8w8vg1JGCpAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_7.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPnklEQVR4nO3df3zN9f//8fvZ7Gwzc9hkPxhmSEmYH4sUZTVi2vvdu1CJ3krJKlFKhXpTRCS/q3d+9EO8Rb0jb/lRfd/vEPKj8jPT/Ir5seWMyTbb8/uHz06O/WDHzs42t+vlci6c1+t5Xq/H69lq956v5+t5LMYYIwAAABSLl6cLAAAAKI8IUQAAAC4gRAEAALiAEAUAAOACQhQAAIALCFEAAAAuIEQBAAC4gBAFAADgAkIUAACACwhRAFDBzZkzRxaLRfv27fN0KUCFQogCcMU2btyoxMRENWnSRAEBAapTp47uu+8+/fLLL/naduzYURaLRRaLRV5eXqpataquvfZa9e7dWytXrizWeZcsWaIOHTqoZs2aqly5surXr6/77rtPy5cvL6lLy+f111/X559/nm/72rVr9corr+jkyZNuO/fFXnnlFUdfWiwWVa5cWddff71efvllpaenl8g55s2bp0mTJpXIsYCKhhAF4Iq98cYbWrRokTp16qS3335b/fv313//+19FR0dr27Zt+drXrl1bH374oT744AONHz9e3bt319q1a3XnnXeqR48eys7OvuQ533zzTXXv3l0Wi0XDhg3TW2+9pXvuuUd79uzR/Pnz3XGZkooOUa+++mqphqg8M2bM0IcffqiJEyeqcePGeu2119S5c2eVxFejEqKAwlXydAEAyr/Bgwdr3rx5slqtjm09evRQ06ZNNXbsWH300UdO7W02mx588EGnbWPHjtVTTz2l6dOnq169enrjjTcKPd+5c+c0atQo3XHHHVqxYkW+/ceOHbvCKyo7zpw5o8qVKxfZ5m9/+5tq1KghSXr88cd1zz33aPHixfr+++/Vtm3b0igTuCoxEgXgirVr184pQElSw4YN1aRJE+3cufOyjuHt7a3Jkyfr+uuv19SpU2W32wtte+LECaWnp+vmm28ucH/NmjWd3p89e1avvPKKGjVqJD8/P4WFhemvf/2r9u7d62jz5ptvql27dgoODpa/v79atmypTz/91Ok4FotFGRkZmjt3ruMWWt++ffXKK6/oueeekyRFRkY69l04B+mjjz5Sy5Yt5e/vr6CgIPXs2VMHDx50On7Hjh11ww03aNOmTbr11ltVuXJlvfjii5fVfxe6/fbbJUnJyclFtps+fbqaNGkiX19fhYeHa+DAgU4jaR07dtSXX36p/fv3O66pXr16xa4HqKgYiQLgFsYYHT16VE2aNLnsz3h7e6tXr14aPny4vvvuO3Xt2rXAdjVr1pS/v7+WLFmiJ598UkFBQYUeMycnR926ddPq1avVs2dPPf300zp16pRWrlypbdu2KSoqSpL09ttvq3v37nrggQeUlZWl+fPn695779XSpUsddXz44Yd65JFH1KZNG/Xv31+SFBUVpYCAAP3yyy/65JNP9NZbbzlGha655hpJ0muvvabhw4frvvvu0yOPPKLjx49rypQpuvXWW7VlyxZVq1bNUW9qaqq6dOminj176sEHH1RISMhl91+evHAYHBxcaJtXXnlFr776qmJjYzVgwADt3r1bM2bM0MaNG7VmzRr5+PjopZdekt1u16FDh/TWW29JkqpUqVLseoAKywCAG3z44YdGknn//fedtnfo0ME0adKk0M999tlnRpJ5++23izz+iBEjjCQTEBBgunTpYl577TWzadOmfO1mzZplJJmJEyfm25ebm+v4+5kzZ5z2ZWVlmRtuuMHcfvvtTtsDAgJMnz598h1r/PjxRpJJTk522r5v3z7j7e1tXnvtNaftP//8s6lUqZLT9g4dOhhJZubMmYVe94VGjhxpJJndu3eb48ePm+TkZPPOO+8YX19fExISYjIyMowxxsyePduptmPHjhmr1WruvPNOk5OT4zje1KlTjSQza9Ysx7auXbuaunXrXlY9wNWG23kAStyuXbs0cOBAtW3bVn369CnWZ/NGOk6dOlVku1dffVXz5s1TixYt9NVXX+mll15Sy5YtFR0d7XQLcdGiRapRo4aefPLJfMewWCyOv/v7+zv+/vvvv8tut+uWW27R5s2bi1X/xRYvXqzc3Fzdd999OnHihOMVGhqqhg0b6ptvvnFq7+vrq4cffrhY57j22mt1zTXXKDIyUo899pgaNGigL7/8stC5VKtWrVJWVpYGDRokL68/fw08+uijqlq1qr788sviXyhwFeJ2HoASlZKSoq5du8pms+nTTz+Vt7d3sT5/+vRpSVJgYOAl2/bq1Uu9evVSenq61q9frzlz5mjevHmKj4/Xtm3b5Ofnp7179+raa69VpUpF/+du6dKlGj16tLZu3arMzEzH9guDliv27NkjY4waNmxY4H4fHx+n97Vq1co3v+xSFi1apKpVq8rHx0e1a9d23KIszP79+yWdD18Xslqtql+/vmM/gKIRogCUGLvdri5duujkyZP63//+p/Dw8GIfI29JhAYNGlz2Z6pWrao77rhDd9xxh3x8fDR37lytX79eHTp0uKzP/+9//1P37t116623avr06QoLC5OPj49mz56tefPmFfsaLpSbmyuLxaL//Oc/BQbKi+cYXTgidrluvfVWxzwsAKWHEAWgRJw9e1bx8fH65ZdftGrVKl1//fXFPkZOTo7mzZunypUrq3379i7V0apVK82dO1dHjhyRdH7i9/r165WdnZ1v1CfPokWL5Ofnp6+++kq+vr6O7bNnz87XtrCRqcK2R0VFyRijyMhINWrUqLiX4xZ169aVJO3evVv169d3bM/KylJycrJiY2Md2650JA6oyJgTBeCK5eTkqEePHlq3bp0WLlzo0tpEOTk5euqpp7Rz50499dRTqlq1aqFtz5w5o3Xr1hW47z//+Y+kP29V3XPPPTpx4oSmTp2ar635v8Uovb29ZbFYlJOT49i3b9++AhfVDAgIKHBBzYCAAEnKt++vf/2rvL299eqrr+Zb/NIYo9TU1IIv0o1iY2NltVo1efJkp5ref/992e12p6ciAwICilxuAriaMRIF4IoNGTJEX3zxheLj45WWlpZvcc2LF9a02+2ONmfOnFFSUpIWL16svXv3qmfPnho1alSR5ztz5ozatWunm266SZ07d1ZERIROnjypzz//XP/73/+UkJCgFi1aSJIeeughffDBBxo8eLA2bNigW265RRkZGVq1apWeeOIJ3X333eratasmTpyozp076/7779exY8c0bdo0NWjQQD/99JPTuVu2bKlVq1Zp4sSJCg8PV2RkpGJiYtSyZUtJ0ksvvaSePXvKx8dH8fHxioqK0ujRozVs2DDt27dPCQkJCgwMVHJysj777DP1799fzz777BX1f3Fdc801GjZsmF599VV17txZ3bt31+7duzV9+nS1bt3a6Z9Xy5YttWDBAg0ePFitW7dWlSpVFB8fX6r1AmWWJx8NBFAx5D2aX9irqLZVqlQxDRs2NA8++KBZsWLFZZ0vOzvbvPfeeyYhIcHUrVvX+Pr6msqVK5sWLVqY8ePHm8zMTKf2Z86cMS+99JKJjIw0Pj4+JjQ01Pztb38ze/fudbR5//33TcOGDY2vr69p3LixmT17tmMJgQvt2rXL3Hrrrcbf399IclruYNSoUaZWrVrGy8sr33IHixYtMu3btzcBAQEmICDANG7c2AwcONDs3r3bqW+KWv7hYnn1HT9+vMh2Fy9xkGfq1KmmcePGxsfHx4SEhJgBAwaY33//3anN6dOnzf3332+qVatmJLHcAXABizEl8OVKAAAAVxnmRAEAALiAEAUAAOACQhQAAIALCFEAAAAuIEQBAAC4gBAFAADgAhbbdKPc3FwdPnxYgYGBfHUCAADlhDFGp06dUnh4uLy8Ch9vIkS50eHDhxUREeHpMgAAgAsOHjyo2rVrF7qfEOVGgYGBks7/Qyjqe8AAAEDZkZ6eroiICMfv8cIQotwo7xZe1apVCVEAAJQzl5qKw8RyAAAAFxCiAAAAXECIAgAAcAFzojwsJydH2dnZni6jwvLx8ZG3t7enywAAVECEKA8xxiglJUUnT570dCkVXrVq1RQaGspaXQCAEkWI8pC8AFWzZk1VrlyZX/BuYIzRmTNndOzYMUlSWFiYhysCAFQkhCgPyMnJcQSo4OBgT5dTofn7+0uSjh07ppo1a3JrDwBQYphY7gF5c6AqV67s4UquDnn9zNwzAEBJIkR5ELfwSgf9DABwB27nAQCAciE1NVVZWVmF7rdaraU6TYYQBQAAyrzU1FRNnTr1ku0SExNLLUhxOw/F0rdvX1ksFlksFvn4+CgkJER33HGHZs2apdzc3Ms+zpw5c1StWjX3FQoAqFAuHoGy2wOVnFxPdntgke3ciZGocsqTQ5qdO3fW7NmzlZOTo6NHj2r58uV6+umn9emnn+qLL75QpUr8WAEA3Gfz5hZasqSbjPGSxZKr+Pilio7eUup18NuuHPL0kKavr69CQ0MlSbVq1VJ0dLRuuukmderUSXPmzNEjjzyiiRMnavbs2fr1118VFBSk+Ph4jRs3TlWqVNG3336rhx9+WNKfk75HjhypV155RR9++KHefvtt7d69WwEBAbr99ts1adIk1axZs8SvAwBQ/tjtgY4AJUnGeGnJkm6KikqSzXaqVGvhdl45dLlDlaU5pHn77berWbNmWrx4sSTJy8tLkydP1vbt2zV37lx9/fXXGjp0qCSpXbt2mjRpkqpWraojR47oyJEjevbZZyWdX4Zg1KhR+vHHH/X5559r37596tu3b6ldBwCgbEtLC3YEqDzGeCktLajUa2EkCiWmcePG+umnnyRJgwYNcmyvV6+eRo8erccff1zTp0+X1WqVzWaTxWJxjGjl+fvf/+74e/369TV58mS1bt1ap0+fVpUqVUrlOgAAZVdQUKosllynIGWx5CooKK3Ua2EkCiXGGOO4Pbdq1Sp16tRJtWrVUmBgoHr37q3U1FSdOXOmyGNs2rRJ8fHxqlOnjgIDA9WhQwdJ0oEDB9xePwCg7LPZTik+fqkslvMPM+XNiSrtW3kSI1EoQTt37lRkZKT27dunbt26acCAAXrttdcUFBSk7777Tv369VNWVlahK7VnZGQoLi5OcXFx+vjjj3XNNdfowIEDiouLK9VbkwCAsi06eouiopKUlhakoKA0jwQoqYyMRE2bNk316tWTn5+fYmJitGHDhiLbL1y4UI0bN5afn5+aNm2qZcuWOe03xmjEiBEKCwuTv7+/YmNjtWfPHsf+ffv2qV+/foqMjJS/v7+ioqI0cuRIp1/U+/btczzKf+Hr+++/L9mLryC+/vpr/fzzz7rnnnu0adMm5ebmasKECbrpppvUqFEjHT582Km91WpVTk6O07Zdu3YpNTVVY8eO1S233KLGjRs7vjwYAHB1s1qtTu9ttlOKjNyfL0Bd3M6dPD4StWDBAg0ePFgzZ85UTEyMJk2apLi4OO3evbvAJ7LWrl2rXr16acyYMerWrZvmzZunhIQEbd68WTfccIMkady4cZo8ebLmzp2ryMhIDR8+XHFxcdqxY4f8/Py0a9cu5ebm6p133lGDBg20bds2Pfroo8rIyNCbb77pdL5Vq1apSZMmjvd8YbCUmZmplJQUpyUO8v55PPTQQ9q2bZuys7M1ZcoUxcfHa82aNZo5c6bTMerVq6fTp09r9erVatasmSpXrqw6derIarVqypQpevzxx7Vt2zaNGjXKQ1cJAChLgoODlZiYWKZWLLcYY0ypna0AMTExat26teOR/dzcXEVEROjJJ5/UCy+8kK99jx49lJGRoaVLlzq23XTTTWrevLlmzpwpY4zCw8M1ZMgQxxNfdrtdISEhmjNnjnr27FlgHePHj9eMGTP066+/Sjo/EhUZGaktW7aoefPmLl1benq6bDab7Ha7qlat6th+9uxZJScnKzIyUn5+fsU+7pEjR/Tuu+9esl3//v0VFhZW7OMXpW/fvpo7d64kqVKlSqpevbqaNWum+++/X3369JGX1/nBzbfeekvjx4/XyZMndeutt+qBBx7QQw89pN9//92xyOaAAQO0cOFCpaamOpY4+OSTT/Tiiy/qyJEjio6O1rBhw9S9e/cr+udwpf0NALi6FPb7+2IeHYnKysrSpk2bNGzYMMc2Ly8vxcbGat26dQV+Zt26dRo8eLDTtri4OH3++eeSpOTkZKWkpCg2Ntax32azKSYmRuvWrSs0RNntdgUF5X88snv37jp79qwaNWqkoUOHqnv37oVeT2ZmpjIzMx3v09PTC217JS53qNIdQ5pz5szRnDlzLtnumWee0TPPPOO0rXfv3k7vZ8yYoRkzZjht69Wrl3r16uW0zcM5HwCAAnk0RJ04cUI5OTkKCQlx2h4SEqJdu3YV+JmUlJQC26ekpDj2520rrM3FkpKSNGXKFKdbeVWqVNGECRN08803y8vLS4sWLVJCQoI+//zzQoPUmDFj9OqrrxZxxSWjLA5pAgBwtfH4nChP++2339S5c2fde++9evTRRx3ba9So4TTi1bp1ax0+fFjjx48vNEQNGzbM6TPp6emKiIhwS90EJAAAPMujT+fVqFFD3t7eOnr0qNP2o0eP5luEMU9oaGiR7fP+vJxjHj58WLfddpvatWt3WXOMYmJilJSUVOh+X19fVa1a1ekFAAAqJo+GKKvVqpYtW2r16tWObbm5uVq9erXatm1b4Gfatm3r1F6SVq5c6WgfGRmp0NBQpzbp6elav3690zF/++03dezYUS1bttTs2bMdE6KLsnXr1hKfqA0AAMonj9/OGzx4sPr06aNWrVqpTZs2mjRpkjIyMhxfUPvQQw+pVq1aGjNmjCTp6aefVocOHTRhwgR17dpV8+fP1w8//OAYSbJYLBo0aJBGjx6thg0bOpY4CA8PV0JCgqQ/A1TdunX15ptv6vjx44568kar5s6dK6vVqhYtWkiSFi9erFmzZumf//xnaXUNAAAowzweonr06KHjx49rxIgRSklJUfPmzbV8+XLHxPADBw44jRK1a9dO8+bN08svv6wXX3xRDRs21Oeff+5YI0qShg4dqoyMDPXv318nT55U+/bttXz5csfj7StXrlRSUpKSkpJUu3Ztp3oufBJs1KhR2r9/vypVqqTGjRtrwYIF+tvf/ubO7gAA4KqQmppa7h+Q8vg6URWZu9aJQvHQ3wBQtqSmpjrWhyxKYmKiR4LU5a4TVSa+9gUAAFw9Lh6BstsDlZxcT3Z7YJHtyhqP384DAABXr82bW2jJkm4yxksWS67i45cqOnqLp8u6LIxEoUz59ttvZbFYdPLkycv+TL169TRp0iS31QQAcA+7PdARoCTJGC8tWdIt34hUWUWIQrH07dtXFotFjz/+eL59AwcOlMViUd++fUu/MABAuZOWFuwIUHmM8VJaWv6vYSuLCFEotoiICM2fP19//PGHY9vZs2c1b9481alTx4OVAQDKk6CgVFksuU7bLJZcBQWleaii4iFEodiio6MVERGhxYsXO7YtXrxYderUcayrJZ3/QuannnpKNWvWlJ+fn9q3b6+NGzc6HWvZsmVq1KiR/P39ddttt2nfvn35zvfdd9/plltukb+/vyIiIvTUU08pIyPDbdcHACgdNtspxccvdQSpvDlRNtspD1d2eQhRFcChQ9I335z/s7T8/e9/1+zZsx3vZ82a5VggNc/QoUO1aNEizZ07V5s3b1aDBg0UFxentLTz/4dx8OBB/fWvf1V8fLy2bt2qRx55RC+88ILTMfbu3avOnTvrnnvu0U8//aQFCxbou+++U2JiovsvEgDgdtHRWzRo0CT16TNHgwZNKjeTyiVCVLn3/vtS3brS7bef//P990vnvA8++KC+++477d+/X/v379eaNWv04IMPOvZnZGRoxowZGj9+vLp06aLrr79e7733nvz9/fX+/xU5Y8YMRUVFacKECbr22mv1wAMP5JtPNWbMGD3wwAMaNGiQGjZsqHbt2mny5Mn64IMPdPbs2dK5WABAibJarU7vbbZTiozcn28E6uJ2ZQ1LHJRjhw5J/ftLuf93Ozk3V3rsMSkuTrpoIfYSd80116hr166aM2eOjDHq2rWratSo4di/d+9eZWdn6+abb3Zs8/HxUZs2bbRz505J0s6dOxUTE+N03Iu/M/HHH3/UTz/9pI8//tixzRij3NxcJScn67rrrnPH5QEA3Cg4OFiJiYnlfsVyQlQ5tmfPnwEqT06OlJTk/hAlnb+ll3dbbdq0aW45x+nTp/XYY4/pqaeeyrePSewAUH6V9YB0OQhR5VjDhpKXl3OQ8vaWGjQonfN37txZWVlZslgsiouLc9oXFRUlq9WqNWvWqG7dupKk7Oxsbdy4UYMGDZIkXXfddfriiy+cPvf99987vY+OjtaOHTvUoLQuCgCAy8ScqHKsdm3p3XfPByfp/J/vvFM6o1Dnz+etnTt3aseOHfLOK+L/BAQEaMCAAXruuee0fPly7dixQ48++qjOnDmjfv36SZIef/xx7dmzR88995x2796tefPmac6cOU7Hef7557V27VolJiZq69at2rNnj/79738zsRwA4HGMRJVz/fqdnwOVlHR+BKq0AlSeor6YcezYscrNzVXv3r116tQptWrVSl999ZWqV68u6fztuEWLFumZZ57RlClT1KZNG73++uv6+9//7jjGjTfeqP/3//6fXnrpJd1yyy0yxigqKko9evRw+7UBAFAUizHGeLqIiqqwb4E+e/askpOTFRkZKT8/Pw9WeHWgvwEAxVHY7++LcTsPAADABYQoAAAAFxCiAAAAXECIAgAAcAEhyoOY01866GcAgDsQojzAx8dHknTmzBkPV3J1yOvnvH4HAKAksE6UB3h7e6tatWo6duyYJKly5cqyWCwerqriMcbozJkzOnbsmKpVq5ZvQVAAAK4EIcpDQkNDJckRpOA+1apVc/Q3AAAlhRDlIRaLRWFhYapZs6ays7M9XU6F5ePjwwgUAMAtCFEe5u3tzS95AADKISaWAwAAuIAQBQAA4AJCFAAAgAsIUQAAAC4gRAEAALiAEAUAAOACQhQAAIALCFEAAAAuIEQBAAC4gBAFAADgAkIUAACACwhRAAAALiBEAQAAuIAQBQAA4AJCFAAAgAsIUQAAAC6o5OkCAABA2ZaamqqsrKxC91utVgUHB5diRWUDIQoAABQqNTVVU6dOvWS7xMTEqy5IcTsPAAAU6tixY07vDx0K09q1N+nQobAi210NGIkCAACFOnfunOPvn312t378sZkkiySjZs1+1F/+8u987a4WjEQBAIBLOnQo7IIAJUkW/fhjs3wjUlcTQhQAALikAwfq6s8AlceigwfreKKcMoEQBQAALqlOnf2SzEVbjSIiDniinDKBEAUAAC6pdu0jatbsR/0ZpM7Piapd+4gny/IoJpYDAIDL8pe//FutW2/QwYN1FBFx4KoOUBIhCgAAFMHHx8fpfe3aRwoMTxe3uxpwOw8AABTqmmuuKdF2FQkjUQAAoFDBwcFKTEzka18KQIgCAABFuhoD0uXgdh4AAIALCFEAAAAuIEQBAAC4gBAFAADgAkIUAACACwhRAAAALigTIWratGmqV6+e/Pz8FBMTow0bNhTZfuHChWrcuLH8/PzUtGlTLVu2zGm/MUYjRoxQWFiY/P39FRsbqz179jj279u3T/369VNkZKT8/f0VFRWlkSNH5lsD46efftItt9wiPz8/RUREaNy4cSV30QAAoFzzeIhasGCBBg8erJEjR2rz5s1q1qyZ4uLidOzYsQLbr127Vr169VK/fv20ZcsWJSQkKCEhQdu2bXO0GTdunCZPnqyZM2dq/fr1CggIUFxcnM6ePStJ2rVrl3Jzc/XOO+9o+/bteuuttzRz5ky9+OKLjmOkp6frzjvvVN26dbVp0yaNHz9er7zyit599133dggAACgfjIe1adPGDBw40PE+JyfHhIeHmzFjxhTY/r777jNdu3Z12hYTE2Mee+wxY4wxubm5JjQ01IwfP96x/+TJk8bX19d88sknhdYxbtw4ExkZ6Xg/ffp0U716dZOZmenY9vzzz5trr732sq/NbrcbScZut1/2ZwAAgGdd7u9vj45EZWVladOmTYqNjXVs8/LyUmxsrNatW1fgZ9atW+fUXpLi4uIc7ZOTk5WSkuLUxmazKSYmptBjSpLdbldQUJDTeW699VZZrVan8+zevVu///57gcfIzMxUenq60wsAAFRMHg1RJ06cUE5OjkJCQpy2h4SEKCUlpcDPpKSkFNk+78/iHDMpKUlTpkzRY489dsnzXHiOi40ZM0Y2m83xioiIKLAdAAAo/zw+J8rTfvvtN3Xu3Fn33nuvHn300Ss61rBhw2S32x2vgwcPllCVAACgrPFoiKpRo4a8vb119OhRp+1Hjx5VaGhogZ8JDQ0tsn3en5dzzMOHD+u2225Tu3bt8k0YL+w8F57jYr6+vqpatarTCwAAVEweDVFWq1UtW7bU6tWrHdtyc3O1evVqtW3btsDPtG3b1qm9JK1cudLRPjIyUqGhoU5t0tPTtX79eqdj/vbbb+rYsaNatmyp2bNny8vLuSvatm2r//73v8rOznY6z7XXXqvq1au7ftEAAKBiKKWJ7oWaP3++8fX1NXPmzDE7duww/fv3N9WqVTMpKSnGGGN69+5tXnjhBUf7NWvWmEqVKpk333zT7Ny504wcOdL4+PiYn3/+2dFm7Nixplq1aubf//63+emnn8zdd99tIiMjzR9//GGMMebQoUOmQYMGplOnTubQoUPmyJEjjleekydPmpCQENO7d2+zbds2M3/+fFO5cmXzzjvvXPa18XQeAADlz+X+/q7k6RDXo0cPHT9+XCNGjFBKSoqaN2+u5cuXOyZxHzhwwGmUqF27dpo3b55efvllvfjii2rYsKE+//xz3XDDDY42Q4cOVUZGhvr376+TJ0+qffv2Wr58ufz8/CSdH1FKSkpSUlKSateu7VSPMUbS+Sf6VqxYoYEDB6ply5aqUaOGRowYof79+7u7SwAAQDlgMXmpASUuPT1dNptNdrud+VEAAJQTl/v7+6p/Og8AAMAVhCgAAAAXEKIAAABcQIgCAABwASEKAADABYQoAAAAFxCiAAAAXECIAgAAcAEhCgAAwAWEKAAAABcQogAAAFxAiAIAAHABIQoAAMAFhCgAAAAXEKIAAABcQIgCAABwASEKAADABYQoAAAAFxCiAAAAXECIAgAAcAEhCgAAwAWEKAAAABcQogAAAFxAiAIAAHABIQoAAMAFhCgAAAAXEKIAAABcQIgCAABwASEKAADABYQoAAAAFxCiAAAAXECIAgAAcAEhCgAAwAWEKAAAABcQogAAAFxAiAIAAHABIQoAAMAFhCgAAAAXEKIAAABcQIgCAABwASEKAADABYQoAAAAFxCiAAAAXECIAgAAcAEhCgAAwAWEKAAAABcQogAAAFxAiAIAAHABIQoAAMAFhCgAAAAXEKIAAABcQIgCAABwASEKAADABYQoAAAAFxCiAAAAXECIAgAAcAEhCgAAwAWEKAAAABd4PERNmzZN9erVk5+fn2JiYrRhw4Yi2y9cuFCNGzeWn5+fmjZtqmXLljntN8ZoxIgRCgsLk7+/v2JjY7Vnzx6nNq+99pratWunypUrq1q1agWex2Kx5HvNnz//iq4VAABUHB4NUQsWLNDgwYM1cuRIbd68Wc2aNVNcXJyOHTtWYPu1a9eqV69e6tevn7Zs2aKEhAQlJCRo27Ztjjbjxo3T5MmTNXPmTK1fv14BAQGKi4vT2bNnHW2ysrJ07733asCAAUXWN3v2bB05csTxSkhIKJHrBgAA5Z/FGGM8dfKYmBi1bt1aU6dOlSTl5uYqIiJCTz75pF544YV87Xv06KGMjAwtXbrUse2mm25S8+bNNXPmTBljFB4eriFDhujZZ5+VJNntdoWEhGjOnDnq2bOn0/HmzJmjQYMG6eTJk/nOZbFY9Nlnn11RcEpPT5fNZpPdblfVqlVdPg4AACg9l/v722MjUVlZWdq0aZNiY2P/LMbLS7GxsVq3bl2Bn1m3bp1Te0mKi4tztE9OTlZKSopTG5vNppiYmEKPWZSBAweqRo0aatOmjWbNmqVL5c3MzEylp6c7vQAAQMVUyVMnPnHihHJychQSEuK0PSQkRLt27SrwMykpKQW2T0lJcezP21ZYm8v1j3/8Q7fffrsqV66sFStW6IknntDp06f11FNPFfqZMWPG6NVXXy3WeQAAQPnksRBV1g0fPtzx9xYtWigjI0Pjx48vMkQNGzZMgwcPdrxPT09XRESEW+sEAACe4bHbeTVq1JC3t7eOHj3qtP3o0aMKDQ0t8DOhoaFFts/7szjHvFwxMTE6dOiQMjMzC23j6+urqlWrOr0AAEDF5LEQZbVa1bJlS61evdqxLTc3V6tXr1bbtm0L/Ezbtm2d2kvSypUrHe0jIyMVGhrq1CY9PV3r168v9JiXa+vWrapevbp8fX2v6DgAAKBi8OjtvMGDB6tPnz5q1aqV2rRpo0mTJikjI0MPP/ywJOmhhx5SrVq1NGbMGEnS008/rQ4dOmjChAnq2rWr5s+frx9++EHvvvuupPNP1A0aNEijR49Ww4YNFRkZqeHDhys8PNzpKbsDBw4oLS1NBw4cUE5OjrZu3SpJatCggapUqaIlS5bo6NGjuummm+Tn56eVK1fq9ddfdzzxBwAAIFNMS5YsMcOHDzffffedMcaY1atXmy5dupi4uDjzzjvvFPdwZsqUKaZOnTrGarWaNm3amO+//96xr0OHDqZPnz5O7f/1r3+ZRo0aGavVapo0aWK+/PJLp/25ublm+PDhJiQkxPj6+ppOnTqZ3bt3O7Xp06ePkZTv9c033xhjjPnPf/5jmjdvbqpUqWICAgJMs2bNzMyZM01OTk6xrs1utxtJxm63F+tzAADAcy7393ex1ol65513lJiYqGbNmmnPnj2aNm2annjiCfXo0UPe3t764IMPNGbMGD399NNuCXzlDetEAUDZkJqaqqysrEL3W61WBQcHl2JFKMsu9/d3sW7nTZ48WdOnT9ejjz6qb775RnfddZcmTJigJ554QtL5hS/HjRtHiAIAlBmpqamORZ2LkpiYSJBCsRRrYnlycrLi4uIkSbfddptycnJ06623OvZ37NhR+/fvL9kKAQC4AhePQNntgUpOrie7PbDIdsClFGskKjg4WPv371edOnV0+PBhnTt3TgcOHNANN9wgSdq/f7+CgoLcUigAAFdq8+YWWrKkm4zxksWSq/j4pYqO3uLpslBOFStE3X333erXr5/69OmjL774Qg899JCGDBkiLy8vWSwWPffcc7rzzjvdVSsAAC6z2wMdAUqSjPHSkiXdFBWVJJvtlIerQ3lUrBD1xhtvKCsrS/Pnz1e7du00ZcoUTZ48WXfffbeys7PVoUMHx3IEAACUJWlpwY4AlccYL6WlBRGi4JJihaiAgADHmkx5nn32WSUmJio7O1uBgYGFfBIAAM8KCkqVxZLrFKQsllwFBaV5sCqUZyWyYrmfnx8BCgBQptlspxQfv1QWS64kOeZEMQoFVxVrJOrCL9ctysSJE10qBgAAd4qO3qKoqCSlpQUpKCiNAIUrUqwQtWWL8xMM3333nVq2bCl/f3/HNovFUjKVAQBQAqxWq9N7m+1UgeHp4nbApRRrxfKLBQYG6scff1T9+vVLsqYKgxXLAaBsYMVyFIdbViwHAKA8IiDBHUpkYjkAAMDVhhAFAADggmLdzvvpp5+c3htjtGvXLp0+fdpp+4033njllQEAAJRhxZpYnvf1LgV9JG+7xWJRTk5OiRZZXjGxHACA8sctE8uTk5OvuDAAAICKoFghqm7duu6qAwAAoFwp9sRyY4ySk5N17tw5SVJWVpYWLFigDz74QCdOnCjxAgEAAMqiYo1E7d69W3FxcTp48KDq16+vFStW6N5779WuXbtkjFHlypW1du1aNWzY0F31AgAAlAnFGol6/vnn1axZM23dulXdunVT165dVbt2bf3+++9KS0tT27Zt9Y9//MNdtQIAAJQZxXo6r2bNmlqxYoWaN2+ujIwMBQYG6r///a/at28vSVq7dq169eql/fv3u63g8oSn8wAAKH/c8nTe6dOnFRQUJEkKCAhQQECAwsLCHPsjIiJ09OhRF0sGAIDvuUP5UawQFR4ergMHDqhOnTqSpHHjxqlmzZqO/cePH1f16tVLtkIAwFUjNTVVU6dOvWS7xMREghQ8rlhzomJjY7Vr1y7H+wEDBigwMNDxfsWKFYqOji656gAAV5WLR6Ds9kAlJ9eT3R5YZDvAE4o1EjVz5swi9/fs2VN9+vS5ooIAAJCkzZtbaMmSbjLGSxZLruLjlyo6eounywIcijUS9fXXX+v6669Xenp6vn12u11du3ZVUlJSiRUHALg62e2BjgAlScZ4acmSbvlGpABPKlaImjRpkh599NECZ6rbbDY99thjmjhxYokVBwC4OqWlBTsCVB5jvJSWFuShioD8inU778cff9Qbb7xR6P4777xTb7755hUXBQCoGFx90i4oKFUWS65TkLJYchUUlOaWOgFXFCtEHT16VD4+PoUfrFIlHT9+/IqLAgCUf1fypJ3Ndkrx8UvzzYmy2U65q1yg2IoVomrVqqVt27apQYMGBe7/6aefnNaNAgBcvQp60i4tLVhBQalOYaiwkaro6C2KikpSWlqQgoLSCFAoc4oVou666y4NHz5cnTt3lp+fn9O+P/74QyNHjlS3bt1KtEAAQPl3uU/aWa1Wp/c226kCw9PF7QBPKFaIevnll7V48WI1atRIiYmJuvbaayVJu3bt0rRp05STk6OXXnrJLYUCAMqnwp60i4pKyheQgoODlZiYyIrlKBeKFaJCQkK0du1aDRgwQMOGDVPe1+5ZLBbFxcVp2rRpCgkJcUuhAIDyqagn7QoaZSIgobwoVoiSpLp162rZsmX6/ffflZSUJGOMGjZsyNe9AAAKxJN2qKiKtU7UhapXr67WrVurTZs2BCgAQKHynrSzWHIliSftUGEUeyQKAIDi4kk7VESEKACAW/CkHSo6QhQA4IoUtSr5fffdJ4vFIpvNVuB+nrRDeUaIAgC47EpWJQfKO5cnlgMAUNCq5MnJ9WS3BxbZDqgIGIkCAJSIy12VHKgoGIkCAFyxwlYlv3hECqhICFEAgCtW1KrkQEVFiAIAXLG8VckvxKrkqOgIUQCAK8aq5LgaMbEcAFAiWJUcVxtCFADAZaxKjqsZIQoA4LLg4GAlJiYWuQ4Uq5KjoiJEAQCuCAEJVysmlgMAALiAEAUAAOACQhQAAIALCFEAAAAuIEQBAAC4gBAFAADgAkIUAACACwhRAAAALiBEAQAAuMDjIWratGmqV6+e/Pz8FBMTow0bNhTZfuHChWrcuLH8/PzUtGlTLVu2zGm/MUYjRoxQWFiY/P39FRsbqz179ji1ee2119SuXTtVrlxZ1apVK/A8Bw4cUNeuXVW5cmXVrFlTzz33nM6dO3dF1woAACoOj4aoBQsWaPDgwRo5cqQ2b96sZs2aKS4uTseOHSuw/dq1a9WrVy/169dPW7ZsUUJCghISErRt2zZHm3Hjxmny5MmaOXOm1q9fr4CAAMXFxens2bOONllZWbr33ns1YMCAAs+Tk5Ojrl27KisrS2vXrtXcuXM1Z84cjRgxomQ7AAAAlF/Gg9q0aWMGDhzoeJ+Tk2PCw8PNmDFjCmx/3333ma5duzpti4mJMY899pgxxpjc3FwTGhpqxo8f79h/8uRJ4+vraz755JN8x5s9e7ax2Wz5ti9btsx4eXmZlJQUx7YZM2aYqlWrmszMzMu+PrvdbiQZu91+2Z8BAACedbm/vz02EpWVlaVNmzYpNjbWsc3Ly0uxsbFat25dgZ9Zt26dU3tJiouLc7RPTk5WSkqKUxubzaaYmJhCj1nYeZo2baqQkBCn86Snp2v79u2XfRwAAFBxVfLUiU+cOKGcnBynoCJJISEh2rVrV4GfSUlJKbB9SkqKY3/etsLaXI7CznPhOQqSmZmpzMxMx/v09PTLPicAAChfPD6xvCIZM2aMbDab4xUREeHpkgAAgJt4LETVqFFD3t7eOnr0qNP2o0ePKjQ0tMDPhIaGFtk+78/iHLM457nwHAUZNmyY7Ha743Xw4MHLPicAAChfPBairFarWrZsqdWrVzu25ebmavXq1Wrbtm2Bn2nbtq1Te0lauXKlo31kZKRCQ0Od2qSnp2v9+vWFHrOw8/z8889OTwmuXLlSVatW1fXXX1/o53x9fVW1alWnFwAAqJg8NidKkgYPHqw+ffqoVatWatOmjSZNmqSMjAw9/PDDkqSHHnpItWrV0pgxYyRJTz/9tDp06KAJEyaoa9eumj9/vn744Qe9++67kiSLxaJBgwZp9OjRatiwoSIjIzV8+HCFh4crISHBcd4DBw4oLS1NBw4cUE5OjrZu3SpJatCggapUqaI777xT119/vXr37q1x48YpJSVFL7/8sgYOHChfX99S7SMAAFBGldLTgoWaMmWKqVOnjrFaraZNmzbm+++/d+zr0KGD6dOnj1P7f/3rX6ZRo0bGarWaJk2amC+//NJpf25urhk+fLgJCQkxvr6+plOnTmb37t1Obfr06WMk5Xt98803jjb79u0zXbp0Mf7+/qZGjRpmyJAhJjs7u1jXxhIHAACUP5f7+9tijDEezHAVWnp6umw2m+x2O7f2AAAoJy7397dHb+cBAM5LTU1VVlZWofutVquCg4NLsSIAl0KIAgAPS01N1dSpUx3v7fZApaUFKygoVTbbKcf2xMREghRQhhCiAMDDLhyB2ry5hZYs6SZjvGSx5Co+fqmio7fkawfA81hsEwDKCLs90BGgJMkYLy1Z0k12e6CHKwNQEEIUAJQRaWnBuvgrTY3xUlpakIcqAlAUQhQAlBFBQamyWHKdtlksuQoKSvNQRQCKQogCgDLCZjul+PiljiCVNyfqwsnlAMoOJpYDQBkSHb1FUVFJSksLUlBQGgEKKMMIUQBQxthspwhPQDnA7TwA8DCr1Vqi7QCUDkaiAMDDgoODlZiYyIrlQDlDiAKAMoCABJQ/3M4DAABwASEKAADABYQoAAAAFxCiAAAAXECIAgAAcAEhCgAAwAWEKAAAABcQogAAAFxAiAIAAHABIQoAAMAFhCgAAAAXEKIAAABcQIgCAABwASEKAADABYQoAAAAFxCiAAAAXECIAgAAcAEhCgAAwAWEKAAAABcQogAAAFxQydMFAEBJSU1NVVZWVqH7rVargoODS7EiABUZIQpAhZCamqqpU6desl1iYiJBCkCJ4HYegArh4hEouz1Qycn1ZLcHFtkOAFzFSBSACmfz5hZasqSbjPGSxZKr+Pilio7e4umyAFQwjEQBqFDs9kBHgJIkY7y0ZEm3fCNSAHClCFEAKpS0tGBHgMpjjJfS0oI8VBGAiooQBaBCCQpKlcWS67TNYslVUFCahyoCUFERogBUKDbbKcXHL3UEqbw5UTbbKQ9XBqCiYWI5gAonOnqLoqKSlJYWpKCgNAIUALcgRAGoEKxWq9N7m+1UgeHp4nYA4CpCFAC3Kq1VxIODg5WYmMiK5QBKDSEKgNuU9iriBCQApYmJ5QDchlXEAVRkjEQBKBWsIg6gomEkCoDbsYo4gIqIEAXA7VhFHEBFRIgC4HasIg6gIiJEAXA7VhEHUBExsRzAZbuSNZ9YRRxARUOIAuCksKB08uRJ/etf/7rk5y9c84lVxAFUZIQoAA6XuzimdP6Ju7S0YAUFpToFowsDGKuIA6jICFEAHApaHLOgoFScNZ8ISAAqKkIUgAIVFpQKW/MpKiqJeU4Ario8nQcgn6IWx2TNJwA4jxAFIJ+ighJrPgHAedzOAyqoopYjOHnypCwWi2w2m9P2EydOSPpzccwLg1ReUMpb8+niW33cygNwtSFEARVQcZ6yK8ilghJrPgFAGbmdN23aNNWrV09+fn6KiYnRhg0bimy/cOFCNW7cWH5+fmratKmWLVvmtN8YoxEjRigsLEz+/v6KjY3Vnj17nNqkpaXpgQceUNWqVVWtWjX169dPp0+fduzft2+fLBZLvtf3339fchcOuElBT9klJ9cr1hf+Rkdv0aBBk9SnzxwNGjQp39N3NtspRUbuzxegWPMJwNXC4yNRCxYs0ODBgzVz5kzFxMRo0qRJiouL0+7du1WzZs187deuXatevXppzJgx6tatm+bNm6eEhARt3rxZN9xwgyRp3Lhxmjx5subOnavIyEgNHz5ccXFx2rFjh/z8/CRJDzzwgI4cOaKVK1cqOztbDz/8sPr376958+Y5nW/VqlVq0qSJ4z2Pa6O8udRyBIUtYyAVvjhmjx498t0KlFjzCcDVxWKMMZ4sICYmRq1bt3bcesjNzVVERISefPJJvfDCC/na9+jRQxkZGVq6dKlj20033aTmzZtr5syZMsYoPDxcQ4YM0bPPPitJstvtCgkJ0Zw5c9SzZ0/t3LlT119/vTZu3KhWrVpJkpYvX6677rpLhw4dUnh4uPbt26fIyEht2bJFzZs3d+na0tPTZbPZZLfbVbVqVZeOAbjiyJEjevfdd2W3B2rSpEH55jYNGjRJNtupIgPWX//6V9WoUSPfsQlKACq6y/397dHbeVlZWdq0aZNiY2Md27y8vBQbG6t169YV+Jl169Y5tZekuLg4R/vk5GSlpKQ4tbHZbIqJiXG0WbdunapVq+YIUJIUGxsrLy8vrV+/3unY3bt3V82aNdW+fXt98cUXRV5PZmam0tPTnV6AJxX1lF1RyxhIUo0aNRQWFpbvRYACgPM8GqJOnDihnJwchYSEOG0PCQlRSkpKgZ9JSUkpsn3en5dqc/GtwkqVKikoKMjRpkqVKpowYYIWLlyoL7/8Uu3bt1dCQkKRQWrMmDGy2WyOV0RExKW6AHCropYjYL0nALgyHp8TVVbVqFFDgwcPdrxv3bq1Dh8+rPHjx6t79+4FfmbYsGFOn0lPTydIwaMu9ZRdYcsYAAAuzaMhqkaNGvL29tbRo0edth89elShoaEFfiY0NLTI9nl/Hj16VGFhYU5t8uY2hYaG6tixY07HOHfunNLS0go9r3R+/tbKlSsL3e/r6ytfX99C9wOeUNhyBKz3BABXxqO386xWq1q2bKnVq1c7tuXm5mr16tVq27ZtgZ9p27atU3tJWrlypaN9ZGSkQkNDndqkp6dr/fr1jjZt27bVyZMntWnTJkebr7/+Wrm5uYqJiSm03q1btzoFM6CsuniZgcKWIyhqGQOWKgCAonn8dt7gwYPVp08ftWrVSm3atNGkSZOUkZGhhx9+WJL00EMPqVatWhozZowk6emnn1aHDh00YcIEde3aVfPnz9cPP/ygd999V5JksVg0aNAgjR49Wg0bNnQscRAeHq6EhARJ0nXXXafOnTvr0Ucf1cyZM5Wdna3ExET17NlT4eHhkqS5c+fKarWqRYsWkqTFixdr1qxZ+uc//1nKPQQUX3BwsBITE4u9YnkensADgEvzeIjq0aOHjh8/rhEjRiglJUXNmzfX8uXLHRPDDxw4IC+vPwfM2rVrp3nz5unll1/Wiy++qIYNG+rzzz93rBElSUOHDlVGRob69++vkydPqn379lq+fLljjShJ+vjjj5WYmKhOnTrJy8tL99xzjyZPnuxU26hRo7R//35VqlRJjRs31oIFC/S3v/3NzT0ClIyiQhAjqgBw5Ty+TlRFxjpRAACUP+VinSgAAIDyyuO384CrSWpqaqHzlCTmIgFAeUKIAkpJamqq4+uNipKYmEiQAoBygNt5QCm5eATKbg9UcnI9x9esFNYOAFA2MRIFeEBRX/wLACgfGIkCStmlvvgXAFA+EKKAUsYX/wJAxUCIAkpZUFCqLJZcp2188S8AlD+EKKCU5X3xb16Q4ot/AaB8YmI54AHR0VsUFZWktLQgBQWlEaAAoBwiRAGlxGq1Or232U4VGJ4ubgcAKJsIUUApCQ4OVmJiIiuWA0AFQYgCShEBCQAqDiaWAwAAuIAQBQAA4AJCFAAAgAsIUQAAAC4gRAEAALiAEAUAAOACljhAmbV3716dOXOm0P2VK1dWVFRUKVYEAMCfCFEok/bu3auPPvroku0efPBBghQAwCO4nYcy6eIRqEOHwrR27U06dCisyHYAAJQWRqJQ5n322d368cdmkiySjJo1+1F/+cu/PV0WAOAqx0gUyrRDh8IuCFCSZNGPPzbLNyIFAEBpI0ShTDtwoK7+DFB5LDp4sI4nygEAwIEQhTKtTp39ksxFW40iIg54ohwAABwIUSjTatc+ombNftSfQer8nKjatY94siwAAJhYjrLvL3/5t1q33qCDB+soIuIAAQoAUCYQolAmVa5c2el97dpHCgxPF7cDAKC0EKJQJkVFRenBBx9kxXIAQJlFiEKZRUACAJRlTCwHAABwASNRV6nU1FRlZWUVut9qtSo4OLgUKwIAoHwhRF2FUlNTNXXq1Eu2S0xMJEgBAFAIbuddhS4egbLbA5WcXE92e2CR7QAAwJ8YibrKbd7cQkuWdJMxXrJYchUfv1TR0Vs8XRYAAGUeI1FXMbs90BGgJMkYLy1Z0i3fiBQAAMiPEHUVS0sLdgSoPMZ4KS0tyEMVAQBQfnA7r5xwx9N0QUGpslhynYKUxZKroKA0l+sEAOBqQYgqB9z1NJ3Ndkrx8UvzzYmy2U5dSbkAAFwVCFHlQEFP06WlBSsoKNUp8LjyNF109BZFRSUpLS1IQUFpBCgAAC4TIaqcKYmn6axWq9N7m+1UgeHp4nYAAOBPhKhypLCn6aKikoo1ghQcHKzExERWLAcA4AoQosqRop6mK+5tOAISAABXhiUOypG8p+kuxNN0AAB4BiGqHMl7mi4vSPE0HQAAnsPtvHKGp+kAACgbCFHlAE/TAQBQ9hCiygGepgMAoOwhRJUTBCQAAMoWJpYDAAC4gBAFAADgAkIUAACACwhRAAAALiBEAQAAuIAQBQAA4AJCFAAAgAsIUQAAAC4gRAEAALiAFcvdyBgjSUpPT/dwJQAA4HLl/d7O+z1eGEKUG506df5LgiMiIjxcCQAAKK5Tp07JZrMVut9iLhWz4LLc3FwdPnxYgYGBslgsBbZJT09XRESEDh48qKpVq5ZyhWUH/XAe/fAn+uI8+uE8+uFP9MV57uwHY4xOnTql8PBweXkVPvOJkSg38vLyUu3atS+rbdWqVa/qfxny0A/n0Q9/oi/Oox/Oox/+RF+c565+KGoEKg8TywEAAFxAiAIAAHABIcrDfH19NXLkSPn6+nq6FI+iH86jH/5EX5xHP5xHP/yJvjivLPQDE8sBAABcwEgUAACACwhRAAAALiBEAQAAuIAQBQAA4AJClJtNmzZN9erVk5+fn2JiYrRhw4ZC227fvl333HOP6tWrJ4vFokmTJpVeoaWgOH3x3nvv6ZZbblH16tVVvXp1xcbGFtm+PClOPyxevFitWrVStWrVFBAQoObNm+vDDz8sxWrdqzh9caH58+fLYrEoISHBvQWWkuL0w5w5c2SxWJxefn5+pVit+xT35+HkyZMaOHCgwsLC5Ovrq0aNGmnZsmWlVK17FacvOnbsmO9nwmKxqGvXrqVYsXsU92di0qRJuvbaa+Xv76+IiAg988wzOnv2rPsKNHCb+fPnG6vVambNmmW2b99uHn30UVOtWjVz9OjRAttv2LDBPPvss+aTTz4xoaGh5q233irdgt2ouH1x//33m2nTppktW7aYnTt3mr59+xqbzWYOHTpUypWXrOL2wzfffGMWL15sduzYYZKSksykSZOMt7e3Wb58eSlXXvKK2xd5kpOTTa1atcwtt9xi7r777tIp1o2K2w+zZ882VatWNUeOHHG8UlJSSrnqklfcfsjMzDStWrUyd911l/nuu+9McnKy+fbbb83WrVtLufKSV9y+SE1Ndfp52LZtm/H29jazZ88u3cJLWHH74eOPPza+vr7m448/NsnJyearr74yYWFh5plnnnFbjYQoN2rTpo0ZOHCg431OTo4JDw83Y8aMueRn69atW6FC1JX0hTHGnDt3zgQGBpq5c+e6q8RScaX9YIwxLVq0MC+//LI7yitVrvTFuXPnTLt27cw///lP06dPnwoRoorbD7NnzzY2m62Uqis9xe2HGTNmmPr165usrKzSKrHUXOl/J9566y0TGBhoTp8+7a4SS0Vx+2HgwIHm9ttvd9o2ePBgc/PNN7utRm7nuUlWVpY2bdqk2NhYxzYvLy/FxsZq3bp1Hqys9JVEX5w5c0bZ2dkKCgpyV5lud6X9YIzR6tWrtXv3bt16663uLNXtXO2Lf/zjH6pZs6b69etXGmW6nav9cPr0adWtW1cRERG6++67tX379tIo121c6YcvvvhCbdu21cCBAxUSEqIbbrhBr7/+unJyckqrbLcoif9evv/+++rZs6cCAgLcVabbudIP7dq106ZNmxy3/H799VctW7ZMd911l9vq5AuI3eTEiRPKyclRSEiI0/aQkBDt2rXLQ1V5Rkn0xfPPP6/w8HCnf6HKG1f7wW63q1atWsrMzJS3t7emT5+uO+64w93lupUrffHdd9/p/fff19atW0uhwtLhSj9ce+21mjVrlm688UbZ7Xa9+eabateunbZv337ZX3he1rjSD7/++qu+/vprPfDAA1q2bJmSkpL0xBNPKDs7WyNHjiyNst3iSv97uWHDBm3btk3vv/++u0osFa70w/33368TJ06offv2Msbo3Llzevzxx/Xiiy+6rU5CFMq8sWPHav78+fr2228rzATa4ggMDNTWrVt1+vRprV69WoMHD1b9+vXVsWNHT5dWak6dOqXevXvrvffeU40aNTxdjke1bdtWbdu2dbxv166drrvuOr3zzjsaNWqUBysrXbm5uapZs6beffddeXt7q2XLlvrtt980fvz4ch2irtT777+vpk2bqk2bNp4updR9++23ev311zV9+nTFxMQoKSlJTz/9tEaNGqXhw4e75ZyEKDepUaOGvL29dfToUaftR48eVWhoqIeq8owr6Ys333xTY8eO1apVq3TjjTe6s0y3c7UfvLy81KBBA0lS8+bNtXPnTo0ZM6Zch6ji9sXevXu1b98+xcfHO7bl5uZKkipVqqTdu3crKirKvUW7QUn8d8LHx0ctWrRQUlKSO0osFa70Q1hYmHx8fOTt7e3Ydt111yklJUVZWVmyWq1urdldruRnIiMjQ/Pnz9c//vEPd5ZYKlzph+HDh6t379565JFHJElNmzZVRkaG+vfvr5deekleXiU/g4k5UW5itVrVsmVLrV692rEtNzdXq1evdvq/yKuBq30xbtw4jRo1SsuXL1erVq1Ko1S3KqmfidzcXGVmZrqjxFJT3L5o3Lixfv75Z23dutXx6t69u2677TZt3bpVERERpVl+iSmJn4mcnBz9/PPPCgsLc1eZbudKP9x8881KSkpyhGlJ+uWXXxQWFlZuA5R0ZT8TCxcuVGZmph588EF3l+l2rvTDmTNn8gWlvJBt3PU1wW6bsg4zf/584+vra+bMmWN27Nhh+vfvb6pVq+Z4HLl3797mhRdecLTPzMw0W7ZsMVu2bDFhYWHm2WefNVu2bDF79uzx1CWUmOL2xdixY43VajWffvqp06O7p06d8tQllIji9sPrr79uVqxYYfbu3Wt27Nhh3nzzTVOpUiXz3nvveeoSSkxx++JiFeXpvOL2w6uvvmq++uors3fvXrNp0ybTs2dP4+fnZ7Zv3+6pSygRxe2HAwcOmMDAQJOYmGh2795tli5damrWrGlGjx7tqUsoMa7+u9G+fXvTo0eP0i7XbYrbDyNHjjSBgYHmk08+Mb/++qtZsWKFiYqKMvfdd5/baiREudmUKVNMnTp1jNVqNW3atDHff/+9Y1+HDh1Mnz59HO+Tk5ONpHyvDh06lH7hblCcvqhbt26BfTFy5MjSL7yEFacfXnrpJdOgQQPj5+dnqlevbtq2bWvmz5/vgardozh9cbGKEqKMKV4/DBo0yNE2JCTE3HXXXWbz5s0eqLrkFffnYe3atSYmJsb4+vqa+vXrm9dee82cO3eulKt2j+L2xa5du4wks2LFilKu1L2K0w/Z2dnmlVdeMVFRUcbPz89ERESYJ554wvz+++9uq89ijLvGuAAAACou5kQBAAC4gBAFAADgAkIUAACACwhRAAAALiBEAQAAuIAQBQAA4AJCFAAAgAsIUQBQAfTt21cJCQmeLgO4qhCiALhV3759ZbFYHK/g4GB17txZP/30k6dLKxEXXlveq3379m473759+2SxWLR161an7W+//bbmzJnjtvMCyI8QBcDtOnfurCNHjujIkSNavXq1KlWqpG7dunm6rBIze/Zsx/UdOXJEX3zxRYHtsrOz3VaDzWZTtWrV3HZ8APkRogC4na+vr0JDQxUaGqrmzZvrhRde0MGDB3X8+HHdfvvtSkxMdGp//PhxWa1Wxze416tXT6NGjVKvXr0UEBCgWrVqadq0aU6fmThxopo2baqAgABFREToiSee0OnTpx379+/fr/j4eFWvXl0BAQFq0qSJli1bJkn6/fff9cADD+iaa66Rv7+/GjZsqNmzZ1/29VWrVs1xfaGhoQoKCnKMGC1YsEAdOnSQn5+fPv74Y6WmpqpXr16qVauWKleurKZNm+qTTz5xOl5ubq7GjRunBg0ayNfXV3Xq1NFrr70mSYqMjJQktWjRQhaLRR07dpSU/3ZeZmamnnrqKdWsWVN+fn5q3769Nm7c6Nj/7bffymKxaPXq1WrVqpUqV66sdu3aaffu3Zd93cDVjhAFoFSdPn1aH330kRo0aKDg4GA98sgjmjdvnjIzMx1tPvroI9WqVUu33367Y9v48ePVrFkzbdmyRS+88IKefvpprVy50rHfy8tLkydP1vbt2zV37lx9/fXXGjp0qGP/wIEDlZmZqf/+97/6+eef9cYbb6hKlSqSpOHDh2vHjh36z3/+o507d2rGjBmqUaNGiVxvXq07d+5UXFyczp49q5YtW+rLL7/Utm3b1L9/f/Xu3VsbNmxwfGbYsGEaO3aso6558+YpJCREkhztVq1apSNHjmjx4sUFnnfo0KFatGiR5s6dq82bN6tBgwaKi4tTWlqaU7uXXnpJEyZM0A8//KBKlSrp73//e4lcN3BVcNtXGwOAMaZPnz7G29vbBAQEmICAACPJhIWFmU2bNhljjPnjjz9M9erVzYIFCxyfufHGG80rr7zieF+3bl3TuXNnp+P26NHDdOnSpdDzLly40AQHBzveN23a1OmYF4qPjzcPP/ywS9cnyfj5+TmuLyAgwHz22WcmOTnZSDKTJk265DG6du1qhgwZYowxJj093fj6+pr33nuvwLZ5x92yZYvT9j59+pi7777bGGPM6dOnjY+Pj/n4448d+7Oyskx4eLgZN26cMcaYb775xkgyq1atcrT58ssvjSTzxx9/FKcLgKsWI1EA3O62227T1q1btXXrVm3YsEFxcXHq0qWL9u/fLz8/P/Xu3VuzZs2SJG3evFnbtm1T3759nY7Rtm3bfO937tzpeL9q1Sp16tRJtWrVUmBgoHr37q3U1FSdOXNGkvTUU09p9OjRuvnmmzVy5Einie0DBgzQ/Pnz1bx5cw0dOlRr164t1vW99dZbjuvbunWr7rjjDse+Vq1aObXNycnRqFGj1LRpUwUFBalKlSr66quvdODAAUnSzp07lZmZqU6dOhWrhgvt3btX2dnZuvnmmx3bfHx81KZNG6c+k6Qbb7zR8fewsDBJ0rFjx1w+N3A1IUQBcLuAgAA1aNBADRo0UOvWrfXPf/5TGRkZeu+99yRJjzzyiFauXKlDhw5p9uzZuv3221W3bt3LPv6+ffvUrVs33XjjjVq0aJE2bdrkmDOVlZXlOMevv/6q3r176+eff1arVq00ZcoUSXIEumeeeUaHDx9Wp06d9Oyzz172+UNDQx3X16BBAwUEBDhd+4XGjx+vt99+W88//7y++eYbbd26VXFxcY46/f39L/u8JcHHx8fxd4vFIun8nCwAl0aIAlDqLBaLvLy89Mcff0iSmjZtqlatWum9997TvHnzCpyX8/333+d7f91110mSNm3apNzcXE2YMEE33XSTGjVqpMOHD+c7RkREhB5//HEtXrxYQ4YMcYQ4SbrmmmvUp08fffTRR5o0aZLefffdkrxkhzVr1ujuu+/Wgw8+qGbNmql+/fr65ZdfHPsbNmwof39/x6T6i1mtVknnR7QKExUVJavVqjVr1ji2ZWdna+PGjbr++utL6EoAVPJ0AQAqvszMTKWkpEg6/yTc1KlTdfr0acXHxzvaPPLII0pMTFRAQID+8pe/5DvGmjVrNG7cOCUkJGjlypVauHChvvzyS0lSgwYNlJ2drSlTpig+Pl5r1qzRzJkznT4/aNAgdenSRY0aNdLvv/+ub775xhHCRowYoZYtW6pJkybKzMzU0qVLHftKWsOGDfXpp59q7dq1ql69uiZOnKijR486wo2fn5+ef/55DR06VFarVTfffLOOHz+u7du3q1+/fqpZs6b8/f21fPly1a5dW35+frLZbE7nCAgI0IABA/Tcc88pKChIderU0bhx43TmzBn169fPLdcFXI0YiQLgdsuXL1dYWJjCwsIUExOjjRs3auHChY7H8yWpV69eqlSpknr16iU/P798xxgyZIh++OEHtWjRQqNHj9bEiRMVFxcnSWrWrJkmTpyoN954QzfccIM+/vhjjRkzxunzOTk5GjhwoK677jp17txZjRo10vTp0yWdH90ZNmyYbrzxRt16663y9vbW/Pnz3dIXL7/8sqKjoxUXF6eOHTsqNDQ030rjw4cP15AhQzRixAhdd9116tGjh2OeUqVKlTR58mS98847Cg8P1913313gecaOHat77rlHvXv3VnR0tJKSkvTVV1+pevXqbrku4GpkMcYYTxcBAPv27VNUVJQ2btyo6Ohop3316tXToEGDNGjQIM8UBwAF4HYeAI/Kzs5WamqqXn75Zd100035AhQAlFXczgPgUWvWrFFYWJg2btyYbx6Tp73++uuqUqVKga8uXbp4ujwAHsbtPAAoRFpaWr4VvvP4+/urVq1apVwRgLKEEAUAAOACbucBAAC4gBAFAADgAkIUAACACwhRAAAALiBEAQAAuIAQBQAA4AJCFAAAgAsIUQAAAC74/69pxu7q4vmAAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHHCAYAAACbXt0gAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUHVJREFUeJzt3XtclGX+//H3gA4gwuhgcjBUQs0OpqJJmmUHCksxvrVlbpm1lmWy5drRSq3VsjTNPJTV5mEr03V1+6aZpWa/3dK0FLc0NSnUDoLK5OBhBWKu3x9+udcRUMZhGMDX8/GYh859X3Pfn/v6us37e93XXLfNGGMEAACA0xIS7AIAAADqMsIUAACAHwhTAAAAfiBMAQAA+IEwBQAA4AfCFAAAgB8IUwAAAH4gTAEAAPiBMAUAAOAHwhQA1HNz5syRzWbTzp07g10KUC8RpgD47csvv1RWVpYuuOACRUZGqmXLlrrlllv03XfflWt7xRVXyGazyWazKSQkRNHR0Tr33HM1cOBArVixwqfzLlmyRL169VLz5s3VqFEjnXPOObrlllu0fPny6rq0cp577jm999575bavWbNGTz/9tA4cOBCwc5/o6aeftvrSZrOpUaNGOv/88/XUU0+psLCwWs4xb948TZkypVqOBdRXhCkAfnvhhRe0aNEiXX311Xr55Zc1ZMgQ/fOf/1RKSoo2b95crv3ZZ5+tt956S3/96181ceJE9evXT2vWrNG1116r/v37q6Sk5JTnfPHFF9WvXz/ZbDaNHDlSL730km666Sbt2LFD8+fPD8RlSjp5mHrmmWdqNEyVefXVV/XWW29p8uTJat++vZ599ln17t1b1fHoVcIUcGoNgl0AgLpvxIgRmjdvnux2u7Wtf//+6tChg55//nm9/fbbXu0dDoduv/12r23PP/+8HnjgAb3yyitq3bq1XnjhhUrP99tvv2ns2LG65ppr9PHHH5fbv3fvXj+vqPY4cuSIGjVqdNI2v/vd79SsWTNJ0n333aebbrpJixcv1hdffKHu3bvXRJnAGY2RKQB+69Gjh1eQkqS2bdvqggsu0NatW6t0jNDQUE2dOlXnn3++pk+fLrfbXWnb/fv3q7CwUJdeemmF+5s3b+71/ujRo3r66afVrl07hYeHKz4+XjfeeKO+//57q82LL76oHj16KCYmRhEREerSpYv+/ve/ex3HZrPp8OHDmjt3rnVr7c4779TTTz+tRx55RJKUlJRk7Tt+jtLbb7+tLl26KCIiQk6nU7feeqt+/PFHr+NfccUVuvDCC7VhwwZdfvnlatSokZ544okq9d/xrrrqKklSbm7uSdu98soruuCCCxQWFqaEhAQNGzbMa2Ttiiuu0AcffKBdu3ZZ19S6dWuf6wHqO0amAASEMUb5+fm64IILqvyZ0NBQDRgwQKNGjdJnn32mPn36VNiuefPmioiI0JIlS/THP/5RTqez0mOWlpaqb9++WrVqlW699VY9+OCDOnjwoFasWKHNmzcrOTlZkvTyyy+rX79+uu2221RcXKz58+fr5ptv1tKlS6063nrrLd19993q1q2bhgwZIklKTk5WZGSkvvvuO7377rt66aWXrFGis846S5L07LPPatSoUbrlllt09913a9++fZo2bZouv/xyZWdnq0mTJla9BQUFuu6663Trrbfq9ttvV2xsbJX7r0xZSIyJiam0zdNPP61nnnlGaWlpGjp0qLZv365XX31VX375pT7//HM1bNhQTz75pNxut3766Se99NJLkqTGjRv7XA9Q7xkACIC33nrLSDJvvvmm1/ZevXqZCy64oNLP/eMf/zCSzMsvv3zS448ePdpIMpGRkea6664zzz77rNmwYUO5drNmzTKSzOTJk8vt83g81t+PHDnita+4uNhceOGF5qqrrvLaHhkZaQYNGlTuWBMnTjSSTG5urtf2nTt3mtDQUPPss896bf/mm29MgwYNvLb36tXLSDIzZ86s9LqPN2bMGCPJbN++3ezbt8/k5uaa1157zYSFhZnY2Fhz+PBhY4wxs2fP9qpt7969xm63m2uvvdaUlpZax5s+fbqRZGbNmmVt69Onj2nVqlWV6gHOVNzmA1Dttm3bpmHDhql79+4aNGiQT58tG/k4ePDgSds988wzmjdvnjp37qyPPvpITz75pLp06aKUlBSvW4uLFi1Ss2bN9Mc//rHcMWw2m/X3iIgI6++//vqr3G63LrvsMm3cuNGn+k+0ePFieTwe3XLLLdq/f7/1iouLU9u2bbV69Wqv9mFhYbrrrrt8Ose5556rs846S0lJSbr33nvVpk0bffDBB5XOtVq5cqWKi4s1fPhwhYT892vgnnvuUXR0tD744APfLxQ4g3GbD0C1ysvLU58+feRwOPT3v/9doaGhPn3+0KFDkqSoqKhTth0wYIAGDBigwsJCrVu3TnPmzNG8efOUkZGhzZs3Kzw8XN9//73OPfdcNWhw8v/cLV26VOPGjdOmTZtUVFRkbT8+cJ2OHTt2yBijtm3bVri/YcOGXu9btGhRbv7ZqSxatEjR0dFq2LChzj77bOvWZWV27dol6VgIO57dbtc555xj7QdQNYQpANXG7Xbruuuu04EDB/Svf/1LCQkJPh+jbCmFNm3aVPkz0dHRuuaaa3TNNdeoYcOGmjt3rtatW6devXpV6fP/+te/1K9fP11++eV65ZVXFB8fr4YNG2r27NmaN2+ez9dwPI/HI5vNpg8//LDCYHniHKTjR8iq6vLLL7fmaQGoeYQpANXi6NGjysjI0HfffaeVK1fq/PPP9/kYpaWlmjdvnho1aqSePXueVh1du3bV3LlztWfPHknHJoivW7dOJSUl5UaByixatEjh4eH66KOPFBYWZm2fPXt2ubaVjVRVtj05OVnGGCUlJaldu3a+Xk5AtGrVSpK0fft2nXPOOdb24uJi5ebmKi0tzdrm78gccCZgzhQAv5WWlqp///5au3atFi5ceFprG5WWluqBBx7Q1q1b9cADDyg6OrrStkeOHNHatWsr3Pfhhx9K+u8trJtuukn79+/X9OnTy7U1/7eoZWhoqGw2m0pLS619O3furHBxzsjIyAoX5oyMjJSkcvtuvPFGhYaG6plnnim3iKYxRgUFBRVfZAClpaXJbrdr6tSpXjW9+eabcrvdXr+ijIyMPOkyFQAYmQJQDR566CG9//77ysjIkMvlKrdI54kLdLrdbqvNkSNHlJOTo8WLF+v777/XrbfeqrFjx570fEeOHFGPHj10ySWXqHfv3kpMTNSBAwf03nvv6V//+pcyMzPVuXNnSdIdd9yhv/71rxoxYoTWr1+vyy67TIcPH9bKlSt1//3364YbblCfPn00efJk9e7dW7///e+1d+9ezZgxQ23atNHXX3/tde4uXbpo5cqVmjx5shISEpSUlKTU1FR16dJFkvTkk0/q1ltvVcOGDZWRkaHk5GSNGzdOI0eO1M6dO5WZmamoqCjl5ubqH//4h4YMGaKHH37Yr/731VlnnaWRI0fqmWeeUe/evdWvXz9t375dr7zyii6++GKv/3t16dJFCxYs0IgRI3TxxRercePGysjIqNF6gVovmD8lBFA/lP2kv7LXydo2btzYtG3b1tx+++3m448/rtL5SkpKzBtvvGEyMzNNq1atTFhYmGnUqJHp3LmzmThxoikqKvJqf+TIEfPkk0+apKQk07BhQxMXF2d+97vfme+//95q8+abb5q2bduasLAw0759ezN79mxr6YHjbdu2zVx++eUmIiLCSPJaJmHs2LGmRYsWJiQkpNwyCYsWLTI9e/Y0kZGRJjIy0rRv394MGzbMbN++3atvTrZsxInK6tu3b99J2524NEKZ6dOnm/bt25uGDRua2NhYM3ToUPPrr796tTl06JD5/e9/b5o0aWIksUwCUAGbMdXw8CYAAIAzFHOmAAAA/ECYAgAA8ANhCgAAwA+EKQAAAD8QpgAAAPxAmAIAAPADi3YGkMfj0S+//KKoqCgeyQAAQB1hjNHBgweVkJCgkJBTjzsRpgLol19+UWJiYrDLAAAAp+HHH3/U2Weffcp2hKkAioqKknTs/xgne84YAACoPQoLC5WYmGh9j58KYSqAym7tRUdHE6YAAKhjqjpFp1ZMQJ8xY4Zat26t8PBwpaamav369Sdtv3DhQrVv317h4eHq0KGDli1b5rXfGKPRo0crPj5eERERSktL044dO6z9O3fu1ODBg5WUlKSIiAglJydrzJgxKi4u9mpjs9nKvb744ovqvXgAAFCnBT1MlT2NfMyYMdq4caM6duyo9PR07d27t8L2a9as0YABAzR48GBlZ2crMzNTmZmZ2rx5s9VmwoQJmjp1qmbOnKl169YpMjJS6enpOnr0qCRp27Zt8ng8eu2117Rlyxa99NJLmjlzpp544oly51u5cqX27NljvcqeDA8AACBJQX/QcWpqqi6++GJNnz5d0rFfwCUmJuqPf/yjHn/88XLt+/fvr8OHD2vp0qXWtksuuUSdOnXSzJkzZYxRQkKCHnroIT388MOSJLfbrdjYWM2ZM0e33nprhXVMnDhRr776qn744QdJx0amkpKSlJ2drU6dOp3WtRUWFsrhcMjtdnObDwCAOsLX7++gzpkqLi7Whg0bNHLkSGtbSEiI0tLStHbt2go/s3btWo0YMcJrW3p6ut577z1JUm5urvLy8pSWlmbtdzgcSk1N1dq1aysNU263W06ns9z2fv366ejRo2rXrp0effRR9evXr9LrKSoqUlFRkfW+sLCw0rZlSktLVVJScsp2OD0NGzZUaGhosMsAANRjQQ1T+/fvV2lpqWJjY722x8bGatu2bRV+Ji8vr8L2eXl51v6ybZW1OVFOTo6mTZumF1980drWuHFjTZo0SZdeeqlCQkK0aNEiZWZm6r333qs0UI0fP17PPPPMSa74v4wxysvL04EDB6rUHqevSZMmiouLY60vAEBAnPG/5vv555/Vu3dv3Xzzzbrnnnus7c2aNfMaAbv44ov1yy+/aOLEiZWGqZEjR3p9puynlRUpC1LNmzdXo0aN+KIPAGOMjhw5Ys2/i4+PD3JFAID6KKhhqlmzZgoNDVV+fr7X9vz8fMXFxVX4mbi4uJO2L/szPz/f68szPz+/3NynX375RVdeeaV69Oih119//ZT1pqamasWKFZXuDwsLU1hY2CmPU1paagWpmJiYU7bH6YuIiJAk7d27V82bN+eWHwCg2gX113x2u11dunTRqlWrrG0ej0erVq1S9+7dK/xM9+7dvdpL0ooVK6z2SUlJiouL82pTWFiodevWeR3z559/1hVXXKEuXbpo9uzZVVouftOmTdUyulE2R6pRo0Z+HwunVtbPzE0DAARC0G/zjRgxQoMGDVLXrl3VrVs3TZkyRYcPH9Zdd90lSbrjjjvUokULjR8/XpL04IMPqlevXpo0aZL69Omj+fPn66uvvrJGlmw2m4YPH65x48apbdu2SkpK0qhRo5SQkKDMzExJ/w1SrVq10osvvqh9+/ZZ9ZSNbM2dO1d2u12dO3eWJC1evFizZs3SX/7yl2q7dm7t1Qz6GQAQSEEPU/3799e+ffs0evRo5eXlqVOnTlq+fLk1gXz37t1eo0Y9evTQvHnz9NRTT+mJJ55Q27Zt9d577+nCCy+02jz66KM6fPiwhgwZogMHDqhnz55avny5wsPDJR0bycrJyVFOTk65Z+4cv1LE2LFjtWvXLjVo0EDt27fXggUL9Lvf/S6Q3QEAACpRUFDgtcD2iex2e1CmzwR9nan6rLJ1Ko4eParc3FwlJSVZAQ+BQ38DQN1XUFBgrUl5MllZWX4HKl/XmQr6CuioW+68807r0ToNGzZUbGysrrnmGs2aNUsej6fKx5kzZ46aNGkSuEIBAPXKiSNSbneUcnNby+2OOmm7mhD023w4PcEc6uzdu7dmz56t0tJS5efna/ny5XrwwQf197//Xe+//74aNOCfFQAgcDZu7KwlS/rKmBDZbB5lZCxVSkp20OrhW68OqsmhzoqEhYVZE/VbtGihlJQUXXLJJbr66qs1Z84c3X333Zo8ebJmz56tH374QU6nUxkZGZowYYIaN26sTz/91PqBQdnk8DFjxujpp5/WW2+9pZdfflnbt29XZGSkrrrqKk2ZMkXNmzev9usAANQ9bneUFaQkyZgQLVnSV8nJOXI4DgalJm7z1UFVHcKsyaHOq666Sh07dtTixYslHXss0NSpU7VlyxbNnTtXn3zyiR599FFJx35EMGXKFEVHR1sPkC57jmJJSYnGjh2rf//733rvvfe0c+dO3XnnnTV2HQCA2s3lirGCVBljQuRylX8kXE1hZArVpn379vr6668lScOHD7e2t27dWuPGjdN9992nV155RXa7XQ6HQzabrdzirH/4wx+sv59zzjmaOnWqLr74Yh06dEiNGzeukesAANReTmeBbDaPV6Cy2TxyOl1Bq4mRKVQbY4x1227lypW6+uqr1aJFC0VFRWngwIEqKCjQkSNHTnqMDRs2KCMjQy1btlRUVJR69eol6dgSGQAAOBwHlZGxVDbbsR89lc2ZCtYtPomRKVSjrVu3KikpSTt37lTfvn01dOhQPfvss3I6nfrss880ePBgFRcXV7ry++HDh5Wenq709HS98847Ouuss7R7926lp6cH5dcZAIDaKSUlW8nJOXK5nHI6XUENUhJhCtXkk08+0TfffKM//elP2rBhgzwejyZNmmQtuPq3v/3Nq73dbldpaanXtm3btqmgoEDPP/+89YDor776qmYuAABQq9ntdq/3DsfBCkPUie1qAmEKPisqKlJeXp7X0gjjx49X3759dccdd2jz5s0qKSnRtGnTlJGRoc8//1wzZ870Okbr1q116NAhrVq1Sh07dlSjRo3UsmVL2e12TZs2Tffdd582b96ssWPHBukqAQC1SUxMjLKysmrlCujMmYLPli9frvj4eLVu3Vq9e/fW6tWrNXXqVP3v//6vQkND1bFjR02ePFkvvPCCLrzwQr3zzjvWsxXL9OjRQ/fdd5/69++vs846SxMmTNBZZ52lOXPmaOHChTr//PP1/PPP68UXXwzSVQIAapuYmBjFx8dX+gpGkJJ4nExABepxMsFeZ6qu4XEyAABf+Po4GW7z1UG1eagTAIAzDWGqjiIoAQBQOzBnCgAAwA+EKQAAAD8QpgAAAPxAmAIAAPADYQoAAMAPhCkAAAA/EKYAAAD8QJhCrfLpp5/KZrPpwIEDVf5M69atNWXKlIDVBADAyRCm4JM777xTNptN9913X7l9w4YNk81m05133lnzhQEAECSEKfgsMTFR8+fP13/+8x9r29GjRzVv3jy1bNkyiJUBAFDzCFPwWUpKihITE7V48WJr2+LFi9WyZUt17tzZ2lZUVKQHHnhAzZs3V3h4uHr27Kkvv/zS61jLli1Tu3btFBERoSuvvFI7d+4sd77PPvtMl112mSIiIpSYmKgHHnhAhw8fDtj1AQDgC8JUPfDTT9Lq1cf+rCl/+MMfNHv2bOv9rFmzdNddd3m1efTRR7Vo0SLNnTtXGzduVJs2bZSeni6XyyVJ+vHHH3XjjTcqIyNDmzZt0t13363HH3/c6xjff/+9evfurZtuuklff/21FixYoM8++0xZWVmBv0gAAKqAMFXHvfmm1KqVdNVVx/58882aOe/tt9+uzz77TLt27dKuXbv0+eef6/bbb7f2Hz58WK+++qomTpyo6667Tueff77eeOMNRURE6M3/K/LVV19VcnKyJk2apHPPPVe33XZbuflW48eP12233abhw4erbdu26tGjh6ZOnaq//vWvOnr0aM1cLAAAJ9Eg2AXg9P30kzRkiOTxHHvv8Uj33iulp0tnnx3Yc5911lnq06eP5syZI2OM+vTpo2bNmln7v//+e5WUlOjSSy+1tjVs2FDdunXT1q1bJUlbt25Vamqq13G7d+/u9f7f//63vv76a73zzjvWNmOMPB6PcnNzdd555wXi8gAAqDLCVB22Y8d/g1SZ0lIpJyfwYUo6dquv7HbbjBkzAnKOQ4cO6d5779UDDzxQbh+T3QEAtQFhqg5r21YKCfEOVKGhUps2NXP+3r17q7i4WDabTenp6V77kpOTZbfb9fnnn6tVq1aSpJKSEn355ZcaPny4JOm8887T+++/7/W5L774wut9SkqKvv32W7WpqYsCAMBHzJmqw84+W3r99WMBSjr252uv1cyo1LHzhWrr1q369ttvFVpWxP+JjIzU0KFD9cgjj2j58uX69ttvdc899+jIkSMaPHiwJOm+++7Tjh079Mgjj2j79u2aN2+e5syZ43Wcxx57TGvWrFFWVpY2bdqkHTt26H//93+ZgA4AqDUYmarjBg8+NkcqJ+fYiFRNBaky0dHRle57/vnn5fF4NHDgQB08eFBdu3bVRx99pKZNm0o6dptu0aJF+tOf/qRp06apW7dueu655/SHP/zBOsZFF12k//f//p+efPJJXXbZZTLGKDk5Wf379w/4tQEAUBU2Y4wJdhH1VWFhoRwOh9xut1foOHr0qHJzc5WUlKTw8PAgVnhmoL8BAL6o7Pu7MtzmAwAA8ANhCgAAwA+EKQAAAD8QpgAAAPxAmAoi5v7XDPoZABBIhKkgaNiwoSTpyJEjQa7kzFDWz2X9DgBAdWKdqSAIDQ1VkyZNtHfvXklSo0aNZLPZglxV/WOM0ZEjR7R37141adKk3MKiAABUB8JUkMTFxUmSFagQOE2aNLH6GwCA6kaYChKbzab4+Hg1b95cJSUlwS6n3mrYsCEjUgCAgCJMBVloaChf9gAA1GFMQAcAAPADYQoAAMAPhCkAAAA/EKYAAAD8QJgCAADwA2EKAADAD4QpAAAAPxCmAAAA/ECYAgAA8ANhCgAAwA88TgYAAJyWgoICFRcXV7rfbrcrJiamBisKDsIUAADwWUFBgaZPn37KdllZWfU+UHGbDwAA+OzEESm3O0q5ua3ldkedtF19xMgUAADwy8aNnbVkSV8ZEyKbzaOMjKVKSckOdlk1hpEpAABw2tzuKCtISZIxIVqypG+5Ear6jDAFAABOm8sVYwWpMsaEyOVyBqmimkeYAgAAp83pLJDN5vHaZrN55HS6glRRzSNMAQCA0+ZwHFRGxlIrUJXNmXI4Dga5sprDBHQAAOCXlJRsJSfnyOVyyul0nVFBSiJMAQCA02C3273eOxwHKwxRJ7arj2rFbb4ZM2aodevWCg8PV2pqqtavX3/S9gsXLlT79u0VHh6uDh06aNmyZV77jTEaPXq04uPjFRERobS0NO3YscPav3PnTg0ePFhJSUmKiIhQcnKyxowZU24tjK+//lqXXXaZwsPDlZiYqAkTJlTfRQMAUIfFxMQoKytLQ4YMqfR1JizYKdWCMLVgwQKNGDFCY8aM0caNG9WxY0elp6dr7969FbZfs2aNBgwYoMGDBys7O1uZmZnKzMzU5s2brTYTJkzQ1KlTNXPmTK1bt06RkZFKT0/X0aNHJUnbtm2Tx+PRa6+9pi1btuill17SzJkz9cQTT1jHKCws1LXXXqtWrVppw4YNmjhxop5++mm9/vrrge0QAADqiJiYGMXHx1f6OhOClCTJBFm3bt3MsGHDrPelpaUmISHBjB8/vsL2t9xyi+nTp4/XttTUVHPvvfcaY4zxeDwmLi7OTJw40dp/4MABExYWZt59991K65gwYYJJSkqy3r/yyiumadOmpqioyNr22GOPmXPPPbfK1+Z2u40k43a7q/wZAAAQXL5+fwd1ZKq4uFgbNmxQWlqatS0kJERpaWlau3ZthZ9Zu3atV3tJSk9Pt9rn5uYqLy/Pq43D4VBqamqlx5Qkt9stp/O/a2KsXbtWl19+ude93vT0dG3fvl2//vprhccoKipSYWGh1wsAANRvQQ1T+/fvV2lpqWJjY722x8bGKi8vr8LP5OXlnbR92Z++HDMnJ0fTpk3Tvffee8rzHH+OE40fP14Oh8N6JSYmVtgOAADUH2f8r/l+/vln9e7dWzfffLPuuecev441cuRIjRgxwnpfWFhIoAIA1GkFBQUnfVix3W4/c+ZGVSKoYapZs2YKDQ1Vfn6+1/b8/HzFxcVV+Jm4uLiTti/7Mz8/X/Hx8V5tOnXq5PW5X375RVdeeaV69OhRbmJ5Zec5/hwnCgsLU1hYWIX7AACoawoKCjR9+vRTtjtTfrVXmaDe5rPb7erSpYtWrVplbfN4PFq1apW6d+9e4We6d+/u1V6SVqxYYbVPSkpSXFycV5vCwkKtW7fO65g///yzrrjiCnXp0kWzZ89WSIh3V3Tv3l3//Oc/VVJS4nWec889V02bNj39iwYAoI44cUTK7Y5Sbm7rcg8xPtnI1Zkg6Lf5RowYoUGDBqlr167q1q2bpkyZosOHD+uuu+6SJN1xxx1q0aKFxo8fL0l68MEH1atXL02aNEl9+vTR/Pnz9dVXX1kjSzabTcOHD9e4cePUtm1bJSUladSoUUpISFBmZqak/wapVq1a6cUXX9S+ffusespGnX7/+9/rmWee0eDBg/XYY49p8+bNevnll/XSSy/VYO8AAFA7bNzYWUuW9JUxIdYjY1JSsoNdVq0Q9DDVv39/7du3T6NHj1ZeXp46deqk5cuXW5O9d+/e7TVq1KNHD82bN09PPfWUnnjiCbVt21bvvfeeLrzwQqvNo48+qsOHD2vIkCE6cOCAevbsqeXLlys8PFzSsRGmnJwc5eTk6Oyzz/aqxxgj6dgvAD/++GMNGzZMXbp0UbNmzTR69GgNGTIk0F0CAECt4nZHWUFKkowJ0ZIlfZWcnHPGPTqmIjZTlh5Q7QoLC+VwOOR2uxUdHR3scgAA8MmePXv0+uuvKze3tebOHVRu/6BBc5SUtEtDhgzxmqdc1/n6/R30FdABAEDt5nQWyGbzeG2z2TxyOl1Bqqh2IUwBAICTcjgOKiNjqRWoyuZMcYvvmKDPmQIAALVfSkq2kpNz5HI55XS6CFLHIUwBAIAKHf9INenYCFVFIerEdmcawhQAAKhQTEyMsrKyWAH9FAhTAACgUmd6UKoKJqADAAD4gTAFAADgB8IUAACAHwhTAAAAfmACOgAAZ4CCggJ+lRcghCkAAOq5goICTZ8+/ZTtsrKyCFSngdt8AADUcyeOSLndUcrNbS23O+qk7VA1jEwBAHAG2bixs5Ys6StjQqxn7KWkZAe7rDqNkSkAAM4QbneUFaQkyZgQLVnSt9wIFXxDmAIA4AzhcsVYQaqMMSFyuZxBqqh+IEwBAHCGcDoLZLN5vLbZbB45na4gVVQ/EKYAADhDOBwHlZGx1ApUZXOmHI6DQa6sbmMCOgAAZ5CUlGwlJ+fI5XLK6XQRpKoBYQoAgHrObrd7vXc4DlYYok5sh6ohTAEAUM/FxMQoKyuLFdADhDAFAMAZgKAUOExABwAA8ANhCgAAwA+EKQAAAD8QpgAAAPxAmAIAAPADYQoAAMAPhCkAAAA/sM4UAAB1TEFBAQtw1iKEKQAA6pCCggJNnz79lO2ysrIIVDWE23wAANQhJ45Iud1Rys1tLbc76qTtEDiMTAEAUEdt3NhZS5b0lTEhstk8yshYqpSU7GCXdcZhZAoAgDrI7Y6ygpQkGROiJUv6lhuhQuARpgAAqINcrhgrSJUxJkQulzNIFZ25CFMAANRBTmeBbDaP1zabzSOn0xWkis5chCkAAOogh+OgMjKWWoGqbM6Uw3EwyJWdeZiADgBAHZWSkq3k5By5XE45nS6CVJAQpgAAqEPsdrvXe4fjYIUh6sR2CBzCFAAAdUhMTIyysrJYAb0WIUwBAFDHEJRqFyagAwAA+IEwBQAA4Adu8wEAECQFBQXMfaoHCFMAAARBQUGBpk+ffsp2WVlZBKpajtt8AAAEwYkjUm53lHJzW5d7tt7JRq5QOzAyBQBAkG3c2Nl6aHHZSuYpKdnBLgtVxMgUAABB5HZHWUFKOvaw4iVL+pYboULtRZgCACCIXK4YK0iVMSZELpczSBXBV4QpAACCyOkssB5WXMZm88jpdAWpIviKMAUAQBA5HAeVkbHUClRlc6Z4aHHdwQR0AACCLCUlW8nJOXK5nHI6XQSpOoYwBQBAENjtdq/3DsfBCkPUie1Q+xCmAAAIgpiYGGVlZbECej1AmAIAIEgISvUDE9ABAAD8QJgCAADwA2EKAADAD4QpAAAAPxCmAAAA/ECYAgAA8ANhCgAAwA9BD1MzZsxQ69atFR4ertTUVK1fv/6k7RcuXKj27dsrPDxcHTp00LJly7z2G2M0evRoxcfHKyIiQmlpadqxY4dXm2effVY9evRQo0aN1KRJkwrPY7PZyr3mz5/v17UCAID6J6hhasGCBRoxYoTGjBmjjRs3qmPHjkpPT9fevXsrbL9mzRoNGDBAgwcPVnZ2tjIzM5WZmanNmzdbbSZMmKCpU6dq5syZWrdunSIjI5Wenq6jR49abYqLi3XzzTdr6NChJ61v9uzZ2rNnj/XKzMyslusGAAD1h80YY4J18tTUVF188cWaPn26JMnj8SgxMVF//OMf9fjjj5dr379/fx0+fFhLly61tl1yySXq1KmTZs6cKWOMEhIS9NBDD+nhhx+WJLndbsXGxmrOnDm69dZbvY43Z84cDR8+XAcOHCh3LpvNpn/84x9+BajCwkI5HA653W5FR0ef9nEAAEDN8fX7O2gjU8XFxdqwYYPS0tL+W0xIiNLS0rR27doKP7N27Vqv9pKUnp5utc/NzVVeXp5XG4fDodTU1EqPeTLDhg1Ts2bN1K1bN82aNUtBzJ0AAKCWCtqz+fbv36/S0lLFxsZ6bY+NjdW2bdsq/ExeXl6F7fPy8qz9Zdsqa1NVf/7zn3XVVVepUaNG+vjjj3X//ffr0KFDeuCBByr9TFFRkYqKiqz3hYWFPp0TAADUPTzouBKjRo2y/t65c2cdPnxYEydOPGmYGj9+vJ555pmaKA8AANQSQbvN16xZM4WGhio/P99re35+vuLi4ir8TFxc3Enbl/3pyzGrKjU1VT/99JPXyNOJRo4cKbfbbb1+/PFHv84JAABqv6CFKbvdri5dumjVqlXWNo/Ho1WrVql79+4VfqZ79+5e7SVpxYoVVvukpCTFxcV5tSksLNS6desqPWZVbdq0SU2bNlVYWFilbcLCwhQdHe31AgAA9VtQb/ONGDFCgwYNUteuXdWtWzdNmTJFhw8f1l133SVJuuOOO9SiRQuNHz9ekvTggw+qV69emjRpkvr06aP58+frq6++0uuvvy7p2C/whg8frnHjxqlt27ZKSkrSqFGjlJCQ4PWrvN27d8vlcmn37t0qLS3Vpk2bJElt2rRR48aNtWTJEuXn5+uSSy5ReHi4VqxYoeeee876hSAAAIDFBNm0adNMy5Ytjd1uN926dTNffPGFta9Xr15m0KBBXu3/9re/mXbt2hm73W4uuOAC88EHH3jt93g8ZtSoUSY2NtaEhYWZq6++2mzfvt2rzaBBg4ykcq/Vq1cbY4z58MMPTadOnUzjxo1NZGSk6dixo5k5c6YpLS316drcbreRZNxut0+fAwAAwePr93dQ15mq71hnCgCAuqfOrDMFAABQHxCmAAAA/ECYAgAA8ANhCgAAwA+EKQAAAD8QpgAAAPxAmAIAAPADYQoAAMAPhCkAAAA/+Bymli5dqtGjR+vzzz+XJH3yySe6/vrr1bt3b+sZeQAAAGcKn8LUa6+9pv/5n//RsmXLdP311+vtt99WZmamWrRoodatW2v48OF6+eWXA1UrAABArdPAl8ZTp07VK6+8onvuuUerV6/W9ddfr0mTJun++++XJF1yySWaMGGCHnzwwYAUCwAAUNv4NDKVm5ur9PR0SdKVV16p0tJSXX755db+K664Qrt27areCgEAAGoxn8JUTEyMFZZ++eUX/fbbb9q9e7e1f9euXXI6ndVbIQAAQC3m022+G264QYMHD9agQYP0/vvv64477tBDDz2kkJAQ2Ww2PfLII7r22msDVSsAAECt41OYeuGFF1RcXKz58+erR48emjZtmqZOnaobbrhBJSUl6tWrl8aPHx+oWgEAAGodmzHG+HuQo0ePqqSkRFFRUdVRU71RWFgoh8Mht9ut6OjoYJcDAACqwNfvb59GpioTHh6u8PDw6jgUAABAneJTmBoxYkSV2k2ePPm0igEAAKhrfApT2dnZXu8/++wzdenSRREREdY2m81WPZUBAADUAT6FqdWrV3u9j4qK0rx583TOOedUa1EAAAB1BQ86BgAA8EO1TEAHAKCmFRQUqLi4uNL9drtdMTExNVgRzlSEKQBAnVNQUKDp06efsl1WVhaBCgHnU5j6+uuvvd4bY7Rt2zYdOnTIa/tFF13kf2UAAFTixBEptztKLleMnM4CORwHK20HBIJPYapTp06y2Ww6fp3Pvn37SpK13WazqbS0tHqrBACgEhs3dtaSJX1lTIhsNo8yMpYqJSX71B8EqolPYSo3NzdQdQAA4DO3O8oKUpJkTIiWLOmr5OQcrxEqIJB8ClOtWrUKVB0AAPjM5YqxglQZY0LkcjkJU6gxPi+NYIxRbm6ufvvtN0nH7kcvWLBAf/3rX7V///5qLxAAgMo4nQWy2Txe22w2j5xOV5AqwpnIpzC1fft2JSUlqU2bNjrvvPOUm5urHj16aPDgwRo6dKjOO+887dixI1C1AgDgxeE4qIyMpVagKpszxagUapJPt/kee+wxdezYUUuWLNGsWbPUp08ftWvXTmvXrpXH49HNN9+sP//5z3rrrbcCVS8AAF5SUrKVnJwjl8spp9NFkEKN8ylMrVmzRh9//LE6dOigcePG6eWXX9brr7+uhg0bSpIef/xxDRgwICCFAgBQxm63e713OA5WGKJObAcEgk9h6tChQ3I6nZKkyMhIRUZGKj4+3tqfmJio/Pz86q0QAIATxMTEKCsrixXQUSv4FKYSEhK0e/dutWzZUpI0YcIENW/e3Nq/b98+NW3atHorBACgAgQl1BY+TUBPS0vTtm3brPdDhw5VVFSU9f7jjz9WSkpK9VUHAABQy9nM8cuZ+2nnzp0KCwvzuvV3JissLJTD4ZDb7VZ0dHSwywEAAFXg6/e3TyNTn3zyic4//3wVFhaW2+d2u9WnTx/l5OT4ckgAAIA6zacwNWXKFN1zzz0VpjSHw6F7771XkydPrrbiAAAAajufwtS///1v9e7du9L91157rTZs2OB3UQAAAHWFT2EqPz/fWlOqIg0aNNC+ffv8LgoAAKCu8ClMtWjRQps3b650/9dff83kcwAAcEbxKUxdf/31GjVqlI4ePVpu33/+8x+NGTNGffv2rbbiAAAAajuflkbIz89XSkqKQkNDlZWVpXPPPVeStG3bNs2YMUOlpaXauHGjYmNjA1ZwXcLSCAAA1D2+fn/7tAJ6bGys1qxZo6FDh2rkyJEqy2E2m03p6emaMWMGQQoAAJxRfApTktSqVSstW7ZMv/76q3JycmSMUdu2bXmMDAAAOCP5HKbKNG3aVBdffHF11gIAAFDn+DQBHQAAAN4IUwAAAH4gTAEAAPiBMAUAAOAHwhQAAIAfCFMAAAB+IEwBAAD4gTAFAADgB8IUAACAHwhTAAAAfiBMAQAA+IEwBQAA4AfCFAAAgB8IUwAAAH4gTAEAAPiBMAUAAOAHwhQAAIAfgh6mZsyYodatWys8PFypqalav379SdsvXLhQ7du3V3h4uDp06KBly5Z57TfGaPTo0YqPj1dERITS0tK0Y8cOrzbPPvusevTooUaNGqlJkyYVnmf37t3q06ePGjVqpObNm+uRRx7Rb7/95te1AgCA+ieoYWrBggUaMWKExowZo40bN6pjx45KT0/X3r17K2y/Zs0aDRgwQIMHD1Z2drYyMzOVmZmpzZs3W20mTJigqVOnaubMmVq3bp0iIyOVnp6uo0ePWm2Ki4t18803a+jQoRWep7S0VH369FFxcbHWrFmjuXPnas6cORo9enT1dgAAAKj7TBB169bNDBs2zHpfWlpqEhISzPjx4ytsf8stt5g+ffp4bUtNTTX33nuvMcYYj8dj4uLizMSJE639Bw4cMGFhYebdd98td7zZs2cbh8NRbvuyZctMSEiIycvLs7a9+uqrJjo62hQVFVX5+txut5Fk3G53lT8DAACCy9fv76CNTBUXF2vDhg1KS0uztoWEhCgtLU1r166t8DNr1671ai9J6enpVvvc3Fzl5eV5tXE4HEpNTa30mJWdp0OHDoqNjfU6T2FhobZs2VLp54qKilRYWOj1AgAA9VvQwtT+/ftVWlrqFVgkKTY2Vnl5eRV+Ji8v76Tty/705Zi+nOf4c1Rk/Pjxcjgc1isxMbHK5wQAAHVT0Ceg1ycjR46U2+22Xj/++GOwSwIAAAEWtDDVrFkzhYaGKj8/32t7fn6+4uLiKvxMXFzcSduX/enLMX05z/HnqEhYWJiio6O9XgAAoH4LWpiy2+3q0qWLVq1aZW3zeDxatWqVunfvXuFnunfv7tVeklasWGG1T0pKUlxcnFebwsJCrVu3rtJjVnaeb775xutXhStWrFB0dLTOP//8Kh8HAADUfw2CefIRI0Zo0KBB6tq1q7p166YpU6bo8OHDuuuuuyRJd9xxh1q0aKHx48dLkh588EH16tVLkyZNUp8+fTR//nx99dVXev311yVJNptNw4cP17hx49S2bVslJSVp1KhRSkhIUGZmpnXe3bt3y+Vyaffu3SotLdWmTZskSW3atFHjxo117bXX6vzzz9fAgQM1YcIE5eXl6amnntKwYcMUFhZWo30EAABquQD/uvCUpk2bZlq2bGnsdrvp1q2b+eKLL6x9vXr1MoMGDfJq/7e//c20a9fO2O12c8EFF5gPPvjAa7/H4zGjRo0ysbGxJiwszFx99dVm+/btXm0GDRpkJJV7rV692mqzc+dOc91115mIiAjTrFkz89BDD5mSkhKfro2lEQAAqHt8/f62GWNMELNcvVZYWCiHwyG32838KQAA6ghfv7/5NR8AAIAfCFMAAAB+IEwBAAD4gTAFAADgB8IUAACAHwhTAAAAfiBMAQAA+IEwBQAA4AfCFAAAgB+C+mw+ADjTFBQUqLi4uNL9drtdMTExNVgRAH8RpgCghhQUFGj69OnWe7c7Si5XjJzOAjkcB63tWVlZBCqgDiFMAUANOX5EauPGzlqypK+MCZHN5lFGxlKlpGSXaweg9mPOFADUMLc7ygpSkmRMiJYs6Su3OyrIlQE4HYQpAKhhLleMFaTKGBMil8sZpIoA+IMwBQA1zOkskM3m8dpms3nkdLqCVBEAfxCmAKCGORwHlZGx1ApUZXOmjp+EDqDuYAI6AFSzypY/2L9/v/X3lJRsJSfnyOVyyul0EaSAOowwBQDV6MTlD07G4ThIiALqAW7zAUA1OnFEyu2OUm5ua59+qWe326u7LAABxMgUAATIydaSuvHGG9WsWbNyn2EFdKDuIUwBQABUtpZUcnKOHI6DatasmeLj44NcJYDqwG0+AAgA1pICzhyEKQAIANaSAs4chCkACADWkgLOHMyZAoAAYS0p4MxAmAKAanTisgaVrSXF8gdA/UGYAoBqFBMTo6ysrApXQC/D8gdA/UKYAoBqRlACzixMQAcAAPADYQoAAMAPhCkAAAA/EKYAAAD8QJgCAADwA2EKAADAD4QpAAAAPxCmAAAA/MCinQDqhYKCAlYdBxAUhCkAdV5BQYGmT59+ynZZWVkEKgDVjtt8AOq8E0ek3O4o5ea2ltsdddJ2AFAdGJkCUK9s3NhZS5b0lTEhstk8yshYqpSU7GCXBaAeI0wBqDMqmxe1f/9+ScdGpMqClCQZE6IlS/oqOTlHDsfBGq0VwJmDMAWgTqjKvCiXK8YKUmWMCZHL5SRMAQgY5kwBqBOqMi/K6SyQzebxamezeeR0umqkRgBnJkamANQ5lc2LcjgOKiNjabl9jEoBCCTCFIA65VTzolJSspWcnCOXyymn00WQAhBwhCkAtcqpJplXZV6Uw3GwwhBlt9sDUDGAMx1hCkCtUZVJ5mXzoo4PVMfPi7rxxhvVrFmzcp9jBXQAgUKYAlBrVDTJ3OWKkdNZ4DXqdLJ5Uc2aNVN8fHyN1w7gzEWYAlDjTnUrTzr54pvMiwJQmxCmANSoqtzKq8rim8yLAlBbEKYA1Kiq3Mo71SRz5kUBqE0IUwD8UtktuzInCziV3co71SRz5kUBqE0IUwBOW1Vu2UlSVlZWuUB1qlt5LL4JoK4gTAE4bVW5ZVdRO+nUt/KYZA6griBMAagWJ/v1XUVOdStPYpI5gLqBMAXAb1X59d2JTnUrj0nmAOoKwhQAv1XlES8VOdmtPCaZA6grCFMA/FaVW3ZlTrxFx608AHUdYQqA33z59V1MTIyysrJOezkFAKhtCFMAqoUvv74jKAGoTwhTAE4bt+wAgDAFwA/csgMAKeTUTQJvxowZat26tcLDw5Wamqr169eftP3ChQvVvn17hYeHq0OHDlq2bJnXfmOMRo8erfj4eEVERCgtLU07duzwauNyuXTbbbcpOjpaTZo00eDBg3Xo0CFr/86dO2Wz2cq9vvjii+q7cKAeiImJUXx8fKUvghSA+i7oYWrBggUaMWKExowZo40bN6pjx45KT0/X3r17K2y/Zs0aDRgwQIMHD1Z2drYyMzOVmZmpzZs3W20mTJigqVOnaubMmVq3bp0iIyOVnp6uo0ePWm1uu+02bdmyRStWrNDSpUv1z3/+U0OGDCl3vpUrV2rPnj3Wq0uXLtXfCQAAoO4yQdatWzczbNgw631paalJSEgw48ePr7D9LbfcYvr06eO1LTU11dx7773GGGM8Ho+Ji4szEydOtPYfOHDAhIWFmXfffdcYY8y3335rJJkvv/zSavPhhx8am81mfv75Z2OMMbm5uUaSyc7OPu1rc7vdRpJxu92nfQwAAFCzfP3+DurIVHFxsTZs2KC0tDRrW0hIiNLS0rR27doKP7N27Vqv9pKUnp5utc/NzVVeXp5XG4fDodTUVKvN2rVr1aRJE3Xt2tVqk5aWppCQEK1bt87r2P369VPz5s3Vs2dPvf/++ye9nqKiIhUWFnq9gJpWUFDgNZp64qugoCDYJQJAvRLUCej79+9XaWmpYmNjvbbHxsZq27ZtFX4mLy+vwvZ5eXnW/rJtJ2vTvHlzr/0NGjSQ0+m02jRu3FiTJk3SpZdeqpCQEC1atEiZmZl677331K9fvwprGz9+vJ555pmqXDoQEAUFBZo+ffop22VlZTGXCQCqCb/mq0SzZs00YsQI6/3FF1+sX375RRMnTqw0TI0cOdLrM4WFhUpMTAx4rUCZE39V53ZHyeWKkdNZ4LVkwcl+fQcA8E1Qw1SzZs0UGhqq/Px8r+35+fmKi4ur8DNxcXEnbV/2Z35+vtdzvfLz89WpUyerzYkT3H/77Te5XK5KzytJqampWrFiRaX7w8LCFBYWVul+oCZt3Ni53IrkKSnZwS4LAOqdoM6Zstvt6tKli1atWmVt83g8WrVqlbp3717hZ7p37+7VXpJWrFhhtU9KSlJcXJxXm8LCQq1bt85q0717dx04cEAbNmyw2nzyySfyeDxKTU2ttN5Nmzbx4FXUCW53lBWkpGMPHV6ypK/c7qggVwYA9U/Qb/ONGDFCgwYNUteuXdWtWzdNmTJFhw8f1l133SVJuuOOO9SiRQuNHz9ekvTggw+qV69emjRpkvr06aP58+frq6++0uuvvy5JstlsGj58uMaNG6e2bdsqKSlJo0aNUkJCgjIzMyVJ5513nnr37q177rlHM2fOVElJibKysnTrrbcqISFBkjR37lzZ7XZ17txZkrR48WLNmjVLf/nLX2q4hwDfuVwxOvH3JcaEyOVynvQxLwAA3wU9TPXv31/79u3T6NGjlZeXp06dOmn58uXWBPLdu3crJOS/Xwo9evTQvHnz9NRTT+mJJ55Q27Zt9d577+nCCy+02jz66KM6fPiwhgwZogMHDqhnz55avny5wsPDrTbvvPOOsrKydPXVVyskJEQ33XSTpk6d6lXb2LFjtWvXLjVo0EDt27fXggUL9Lvf/S7APQL4z+kskM3m8QpUNptHTqcriFUBQP1kM8aYYBdRXxUWFsrhcMjtdis6OjrY5eAMsGfPHmuU9mRzpoYMGcItawCohK/f30EfmQIQGCkp2UpOzpHL5ZTT6eL2HgAECGEKqEfsdrvXe4fjYIUh6sR2AIDTR5gC6pGYmBhlZWWddB0pu93Ogp0AUI0IU0A9Q1ACgJoV1HWmAAAA6jrCFAAAgB8IUwAAAH4gTAEAAPiBMAUAAOAHwhQAAIAfCFMAAAB+IEwBAAD4gTAFAADgB8IUAACAHwhTAAAAfiBMAQAA+IEwBQAA4AfCFAAAgB8IUwAAAH4gTAEAAPihQbALAE5XQUGBiouLK91vt9sVExNTgxUBAM5EhCnUSQUFBZo+ffop22VlZRGoAAABxW0+1Eknjki53VHKzW0ttzvqpO0AAKhujEyhztu4sbOWLOkrY0Jks3mUkbFUKSnZwS4LAHCGIEyhVjjd+U9ud5QVpCTJmBAtWdJXyck5cjgOBqxeAADKEKYQdP7Mf3K5YqwgVcaYELlcTsIUAKBGMGcKQefP/Cens0A2m8drm83mkdPpqv5CAQCoACNTqFV8nf/kcBxURsbScp9hVAoAUFMIU6g1Tnf+U0pKtpKTc+RyOeV0ughSAIAaRZhCreHL/Ce73e713uE4WGGIOrEdAADVjTAFnwVq5fGy+U/HB6rK5j/FxMQoKyuLFdABAEFHmIJPArnyuK/znwhKAIDagDAFn+zbt8/rvdsdJZcrRk5ngVfo2bdv32mFHeY/AQDqGsIUfFJSUmL9fePGznr//b46tsKGR/36/feXd8e3OxXmPwEA6jLCFE6L2x11XJCSpBC9//7prTzO/CcAQF1GmMJp+fHHRJVf8zVEP/54thyOrT4fj6AEAKirWAEdAADAD4QpnJbExB8lGa9tNptHiYk/BacgAACChDCF0+JwHFS/fkus5+LxGBcAwJmKOVPwSYMG//0nc7JlDI5vBwBAfcY3Xh0RqFXHfdW8eXOv95UtY3BiOwAA6ivCVB0QyFXHfcUyBgAAeCNM1QEnCy6n085fBCUAAP6LCeh1kNsdpdzc1nK7o4JdCgAAZzxGpuqYjRs7l3sQcNkjXAAAQM1jZKoOcbujrCAlScaEaMmSvoxQAQAQRISpOsTlirGCVBljQuRyOYNUEQAAIEzVIU5ngbVIZhmbzSOn0xWkigAAAGGqDnE4DiojYymrjgMAUIswAb0OsNvt1t9Ptur48e0AAEDNIEzVASyUCQBA7UWYqiMISgAA1E7MmQIAAPADYQoAAMAPhCkAAAA/EKYAAAD8QJgCAADwA2EKAADAD4QpAAAAPxCmAAAA/ECYAgAA8ANhCgAAwA88TiaAjDGSpMLCwiBXAgAAqqrse7vse/xUCFMBdPDgQUlSYmJikCsBAAC+OnjwoBwOxynb2UxVYxd85vF49MsvvygqKko2m63c/sLCQiUmJurHH39UdHR0ECqsfegTb/SHN/qjPPrEG/3hjf4oryp9YozRwYMHlZCQoJCQU8+IYmQqgEJCQnT22Wefsl10dDT/yE9An3ijP7zRH+XRJ97oD2/0R3mn6pOqjEiVYQI6AACAHwhTAAAAfiBMBVFYWJjGjBmjsLCwYJdSa9An3ugPb/RHefSJN/rDG/1RXiD6hAnoAAAAfmBkCgAAwA+EKQAAAD8QpgAAAPxAmAIAAPADYSrAZsyYodatWys8PFypqalav359pW23bNmim266Sa1bt5bNZtOUKVNqrtAa5EufvPHGG7rsssvUtGlTNW3aVGlpaSdtXxf50h+LFy9W165d1aRJE0VGRqpTp0566623arDawPOlP443f/582Ww2ZWZmBrbAIPClT+bMmSObzeb1Cg8Pr8FqA8/XfyMHDhzQsGHDFB8fr7CwMLVr107Lli2roWoDz5f+uOKKK8r9+7DZbOrTp08NVhx4vv4bmTJlis4991xFREQoMTFRf/rTn3T06NGqn9AgYObPn2/sdruZNWuW2bJli7nnnntMkyZNTH5+foXt169fbx5++GHz7rvvmri4OPPSSy/VbME1wNc++f3vf29mzJhhsrOzzdatW82dd95pHA6H+emnn2q48sDwtT9Wr15tFi9ebL799luTk5NjpkyZYkJDQ83y5ctruPLA8LU/yuTm5poWLVqYyy67zNxwww01U2wN8bVPZs+ebaKjo82ePXusV15eXg1XHTi+9kdRUZHp2rWruf76681nn31mcnNzzaeffmo2bdpUw5UHhq/9UVBQ4PVvY/PmzSY0NNTMnj27ZgsPIF/75J133jFhYWHmnXfeMbm5ueajjz4y8fHx5k9/+lOVz0mYCqBu3bqZYcOGWe9LS0tNQkKCGT9+/Ck/26pVq3oZpvzpE2OM+e2330xUVJSZO3duoEqsUf72hzHGdO7c2Tz11FOBKK/GnU5//Pbbb6ZHjx7mL3/5ixk0aFC9C1O+9sns2bONw+Gooepqnq/98eqrr5pzzjnHFBcX11SJNcrf/4a89NJLJioqyhw6dChQJdY4X/tk2LBh5qqrrvLaNmLECHPppZdW+Zzc5guQ4uJibdiwQWlpada2kJAQpaWlae3atUGsLHiqo0+OHDmikpISOZ3OQJVZY/ztD2OMVq1ape3bt+vyyy8PZKk14nT7489//rOaN2+uwYMH10SZNep0++TQoUNq1aqVEhMTdcMNN2jLli01UW7AnU5/vP/+++revbuGDRum2NhYXXjhhXruuedUWlpaU2UHTHX8N/XNN9/UrbfeqsjIyECVWaNOp0969OihDRs2WLcCf/jhBy1btkzXX399lc/Lg44DZP/+/SotLVVsbKzX9tjYWG3bti1IVQVXdfTJY489poSEBK//odRVp9sfbrdbLVq0UFFRkUJDQ/XKK6/ommuuCXS5AXc6/fHZZ5/pzTff1KZNm2qgwpp3On1y7rnnatasWbrooovkdrv14osvqkePHtqyZUuVHrxem51Of/zwww/65JNPdNttt2nZsmXKycnR/fffr5KSEo0ZM6Ymyg4Yf/+bun79em3evFlvvvlmoEqscafTJ7///e+1f/9+9ezZU8YY/fbbb7rvvvv0xBNPVPm8hCnUGc8//7zmz5+vTz/9tN5NqPVFVFSUNm3apEOHDmnVqlUaMWKEzjnnHF1xxRXBLq1GHTx4UAMHDtQbb7yhZs2aBbucWqN79+7q3r279b5Hjx4677zz9Nprr2ns2LFBrCw4PB6Pmjdvrtdff12hoaHq0qWLfv75Z02cOLHOhyl/vfnmm+rQoYO6desW7FKC6tNPP9Vzzz2nV155RampqcrJydGDDz6osWPHatSoUVU6BmEqQJo1a6bQ0FDl5+d7bc/Pz1dcXFyQqgouf/rkxRdf1PPPP6+VK1fqoosuCmSZNeZ0+yMkJERt2rSRJHXq1Elbt27V+PHj63yY8rU/vv/+e+3cuVMZGRnWNo/HI0lq0KCBtm/fruTk5MAWHWDV8d+Rhg0bqnPnzsrJyQlEiTXqdPojPj5eDRs2VGhoqLXtvPPOU15enoqLi2W32wNacyD58+/j8OHDmj9/vv785z8HssQadzp9MmrUKA0cOFB33323JKlDhw46fPiwhgwZoieffFIhIaeeEcWcqQCx2+3q0qWLVq1aZW3zeDxatWqV1//XeCY53T6ZMGGCxo4dq+XLl6tr1641UWqNqK5/Ix6PR0VFRYEosUb52h/t27fXN998o02bNlmvfv366corr9SmTZuUmJhYk+UHRHX8GyktLdU333yj+Pj4QJVZY06nPy699FLl5ORYQVuSvvvuO8XHx9fpICX59+9j4cKFKioq0u233x7oMmvU6fTJkSNHygWmsvBtqvr44tOYKI8qmj9/vgkLCzNz5swx3377rRkyZIhp0qSJ9TPlgQMHmscff9xqX1RUZLKzs012draJj483Dz/8sMnOzjY7duwI1iVUO1/75Pnnnzd2u938/e9/9/o578GDB4N1CdXK1/547rnnzMcff2y+//578+2335oXX3zRNGjQwLzxxhvBuoRq5Wt/nKg+/prP1z555plnzEcffWS+//57s2HDBnPrrbea8PBws2XLlmBdQrXytT92795toqKiTFZWltm+fbtZunSpad68uRk3blywLqFane7/Znr27Gn69+9f0+XWCF/7ZMyYMSYqKsq8++675ocffjAff/yxSU5ONrfcckuVz0mYCrBp06aZli1bGrvdbrp162a++OILa1+vXr3MoEGDrPe5ublGUrlXr169ar7wAPKlT1q1alVhn4wZM6bmCw8QX/rjySefNG3atDHh4eGmadOmpnv37mb+/PlBqDpwfOmPE9XHMGWMb30yfPhwq21sbKy5/vrrzcaNG4NQdeD4+m9kzZo1JjU11YSFhZlzzjnHPPvss+a3336r4aoDx9f+2LZtm5FkPv744xqutOb40iclJSXm6aefNsnJySY8PNwkJiaa+++/3/z6669VPp/NmKqOYQEAAOBEzJkCAADwA2EKAADAD4QpAAAAPxCmAAAA/ECYAgAA8ANhCgAAwA+EKQAAAD8QpgCgHrjzzjuVmZkZ7DKAMxJhCkBA3XnnnbLZbNYrJiZGvXv31tdffx3s0qrF8ddW9urZs2fAzrdz507ZbDZt2rTJa/vLL7+sOXPmBOy8ACpHmAIQcL1799aePXu0Z88erVq1Sg0aNFDfvn2DXVa1mT17tnV9e/bs0fvvv19hu5KSkoDV4HA41KRJk4AdH0DlCFMAAi4sLExxcXGKi4tTp06d9Pjjj+vHH3/Uvn37dNVVVykrK8ur/b59+2S3260nv7du3Vpjx47VgAEDFBkZqRYtWmjGjBlen5k8ebI6dOigyMhIJSYm6v7779ehQ4es/bt27VJGRoaaNm2qyMhIXXDBBVq2bJkk6ddff9Vtt92ms846SxEREWrbtq1mz55d5etr0qSJdX1xcXFyOp3WCNKCBQvUq1cvhYeH65133lFBQYEGDBigFi1aqFGjRurQoYPeffddr+N5PB5NmDBBbdq0UVhYmFq2bKlnn31WkpSUlCRJ6ty5s2w2m6644gpJ5W/zFRUV6YEHHlDz5s0VHh6unj176ssvv7T2f/rpp7LZbFq1apW6du2qRo0aqUePHtq+fXuVrxvAMYQpADXq0KFDevvtt9WmTRvFxMTo7rvv1rx581RUVGS1efvtt9WiRQtdddVV1raJEyeqY8eOys7O1uOPP64HH3xQK1assPaHhIRo6tSp2rJli+bOnatPPvlEjz76qLV/2LBhKioq0j//+U998803euGFF9S4cWNJ0qhRo/Ttt9/qww8/1NatW/Xqq6+qWbNm1XK9ZbVu3bpV6enpOnr0qLp06aIPPvhAmzdv1pAhQzRw4ECtX7/e+szIkSP1/PPPW3XNmzdPsbGxkmS1W7lypfbs2aPFixdXeN5HH31UixYt0ty5c7Vx40a1adNG6enpcrlcXu2efPJJTZo0SV999ZUaNGigP/zhD9Vy3cAZpdoe0QwAFRg0aJAJDQ01kZGRJjIy0kgy8fHxZsOGDcYYY/7zn/+Ypk2bmgULFlifueiii8zTTz9tvW/VqpXp3bu313H79+9vrrvuukrPu3DhQhMTE2O979Chg9cxj5eRkWHuuuuu07o+SSY8PNy6vsjISPOPf/zD5ObmGklmypQppzxGnz59zEMPPWSMMaawsNCEhYWZN954o8K2ZcfNzs722j5o0CBzww03GGOMOXTokGnYsKF55513rP3FxcUmISHBTJgwwRhjzOrVq40ks3LlSqvNBx98YCSZ//znP750AXDGY2QKQMBdeeWV2rRpkzZt2qT169crPT1d1113nXbt2qXw8HANHDhQs2bNkiRt3LhRmzdv1p133ul1jO7du5d7v3XrVuv9ypUrdfXVV6tFixaKiorSwIEDVVBQoCNHjkiSHnjgAY0bN06XXnqpxowZ4zUBfujQoZo/f746deqkRx99VGvWrPHp+l566SXr+jZt2qRrrrnG2te1a1evtqWlpRo7dqw6dOggp9Opxo0b66OPPtLu3bslSVu3blVRUZGuvvpqn2o43vfff6+SkhJdeuml1raGDRuqW7duXn0mSRdddJH19/j4eEnS3r17T/vcwJmIMAUg4CIjI9WmTRu1adNGF198sf7yl7/o8OHDeuONNyRJd999t1asWKGffvpJs2fP1lVXXaVWrVpV+fg7d+5U3759ddFFF2nRokXasGGDNaequLjYOscPP/yggQMH6ptvvlHXrl01bdo0SbKC3Z/+9Cf98ssvuvrqq/Xwww9X+fxxcXHW9bVp00aRkZFe1368iRMn6uWXX9Zjjz2m1atXa9OmTUpPT7fqjIiIqPJ5q0PDhg2tv9tsNknH5mwBqDrCFIAaZ7PZFBISov/85z+SpA4dOqhr16564403NG/evArn7XzxxRfl3p933nmSpA0bNsjj8WjSpEm65JJL1K5dO/3yyy/ljpGYmKj77rtPixcv1kMPPWSFOUk666yzNGjQIL399tuaMmWKXn/99eq8ZMvnn3+uG264Qbfffrs6duyoc845R9999521v23btoqIiLAm35/IbrdLOjbCVZnk5GTZ7XZ9/vnn1raSkhJ9+eWXOv/886vpSgCUaRDsAgDUf0VFRcrLy5N07Jdz06dP16FDh5SRkWG1ufvuu5WVlaXIyEj9z//8T7ljfP7555owYYIyMzO1YsUKLVy4UB988IEkqU2bNiopKdG0adOUkZGhzz//XDNnzvT6/PDhw3XdddepXbt2+vXXX7V69WorjI0ePVpdunTRBRdcoKKiIi1dutTaV93atm2rv//971qzZo2aNm2qyZMnKz8/3wo54eHheuyxx/Too4/Kbrfr0ksv1b59+7RlyxYNHjxYzZs3V0REhJYvX66zzz5b4eHhcjgcXueIjIzU0KFD9cgjj8jpdKply5aaMGGCjhw5osGDBwfkuoAzGSNTAAJu+fLlio+PV3x8vFJTU/Xll19q4cKF1s/6JWnAgAFq0KCBBgwYoPDw8HLHeOihh/TVV1+pc+fOGjdunCZPnqz09HRJUseOHTV58mS98MILuvDCC/XOO+9o/PjxXp8vLS3VsGHDdN5556l3795q166dXnnlFUnHRntGjhypiy66SJdffrlCQ0M1f/78gPTFU089pZSUFKWnp+uKK65QXFxcuZXLR40apYceekijR4/Weeedp/79+1vzmBo0aKCpU6fqtddeU0JCgm644YYKz/P888/rpptu0sCBA5WSkqKcnBx99NFHatq0aUCuCziT2YwxJthFAMDOnTuVnJysL7/8UikpKV77WrdureHDh2v48OHBKQ4AToLbfACCqqSkRAUFBXrqqad0ySWXlAtSAFDbcZsPQFB9/vnnio+P15dffllunlOwPffcc2rcuHGFr+uuuy7Y5QGoJbjNBwCVcLlc5VYMLxMREaEWLVrUcEUAaiPCFAAAgB+4zQcAAOAHwhQAAIAfCFMAAAB+IEwBAAD4gTAFAADgB8IUAACAHwhTAAAAfiBMAQAA+OH/A7HvyykWAF9aAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_8.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOd0lEQVR4nO3deVxU9eL/8feADCDCGKggioq4pXlVLAnTsKLGUoxvi1sZlaWVlF5brVzKytIWcynt3hLrXtNMs0yvad665ZKVS2UuqaG2CCbkoJhizOf3hz8mRxZhBIbl9Xw85gFzzuec8zmfJubt53zO51iMMUYAAAAoEx9vVwAAAKA6IkQBAAB4gBAFAADgAUIUAACABwhRAAAAHiBEAQAAeIAQBQAA4AFCFAAAgAcIUQAAAB4gRAFADZeWliaLxaK9e/d6uypAjUKIAnDOvvrqK6WmpqpDhw4KCgpSs2bN1L9/f/3www+Fyvbq1UsWi0UWi0U+Pj4KCQlR27ZtNWTIEK1atapMx126dKkSEhLUqFEj1a1bVy1btlT//v21YsWK8jq1Qp555hktWbKk0PJ169ZpwoQJOnz4cIUd+0wTJkxwtaXFYlHdunXVvn17Pf7448rJySmXY8ybN09Tp04tl30BNQ0hCsA5e+6557Ro0SJdccUVevnllzVs2DB99tlnio2N1datWwuVb9q0qd566y29+eabmjJlivr166d169bpqquu0oABA3Ty5MmzHvP5559Xv379ZLFYNGbMGL300ku6/vrrtWvXLs2fP78iTlNSySHqiSeeqNQQVeDVV1/VW2+9pRdffFHt2rXT008/rd69e6s8Ho1KiAKKV8fbFQBQ/Y0ePVrz5s2T1Wp1LRswYIA6duyoZ599Vv/617/cyttsNt18881uy5599lndd999euWVV9SiRQs999xzxR7vzz//1MSJE3XllVdq5cqVhdYfPHjwHM+o6jh27Jjq1q1bYpkbbrhBDRo0kCTddddduv7667V48WJ98cUXio+Pr4xqArUSPVEAzln37t3dApQktW7dWh06dND27dtLtQ9fX19NmzZN7du314wZM+RwOIote+jQIeXk5OiSSy4pcn2jRo3c3h8/flwTJkxQmzZtFBAQoMaNG+u6667Tnj17XGWef/55de/eXWFhYQoMDFTXrl317rvvuu3HYrEoNzdXc+fOdV1Cu/XWWzVhwgQ9+OCDkqTo6GjXutPHIP3rX/9S165dFRgYqNDQUA0cOFA//fST2/579eqlCy64QBs3btSll16qunXr6tFHHy1V+53u8ssvlySlp6eXWO6VV15Rhw4d5O/vr8jISI0YMcKtJ61Xr15atmyZ9u3b5zqnFi1alLk+QE1FTxSACmGMUWZmpjp06FDqbXx9fTVo0CCNHTtWa9asUZ8+fYos16hRIwUGBmrp0qW69957FRoaWuw+8/Pz1bdvX61evVoDBw7UyJEjdeTIEa1atUpbt25VTEyMJOnll19Wv379dNNNNykvL0/z58/XjTfeqA8//NBVj7feekt33HGHunXrpmHDhkmSYmJiFBQUpB9++EFvv/22XnrpJVevUMOGDSVJTz/9tMaOHav+/fvrjjvu0G+//abp06fr0ksv1ebNm1W/fn1XfbOysnT11Vdr4MCBuvnmmxUeHl7q9itQEA7DwsKKLTNhwgQ98cQTSkxM1N13362dO3fq1Vdf1VdffaW1a9fKz89Pjz32mBwOh37++We99NJLkqR69eqVuT5AjWUAoAK89dZbRpJ5/fXX3ZYnJCSYDh06FLvde++9ZySZl19+ucT9jxs3zkgyQUFB5uqrrzZPP/202bhxY6Fyb7zxhpFkXnzxxULrnE6n6/djx465rcvLyzMXXHCBufzyy92WBwUFmZSUlEL7mjJlipFk0tPT3Zbv3bvX+Pr6mqefftpt+XfffWfq1KnjtjwhIcFIMrNmzSr2vE83fvx4I8ns3LnT/PbbbyY9Pd3Mnj3b+Pv7m/DwcJObm2uMMWbOnDludTt48KCxWq3mqquuMvn5+a79zZgxw0gyb7zxhmtZnz59TPPmzUtVH6C24XIegHK3Y8cOjRgxQvHx8UpJSSnTtgU9HUeOHCmx3BNPPKF58+apS5cu+uijj/TYY4+pa9euio2NdbuEuGjRIjVo0ED33ntvoX1YLBbX74GBga7ff//9dzkcDvXs2VObNm0qU/3PtHjxYjmdTvXv31+HDh1yvSIiItS6dWt98sknbuX9/f112223lekYbdu2VcOGDRUdHa3hw4erVatWWrZsWbFjqT7++GPl5eVp1KhR8vH562vgzjvvVEhIiJYtW1b2EwVqIS7nAShXGRkZ6tOnj2w2m9599135+vqWafujR49KkoKDg89adtCgQRo0aJBycnK0YcMGpaWlad68eUpKStLWrVsVEBCgPXv2qG3btqpTp+Q/dx9++KGeeuopbdmyRSdOnHAtPz1oeWLXrl0yxqh169ZFrvfz83N736RJk0Ljy85m0aJFCgkJkZ+fn5o2beq6RFmcffv2SToVvk5ntVrVsmVL13oAJSNEASg3DodDV199tQ4fPqzPP/9ckZGRZd5HwZQIrVq1KvU2ISEhuvLKK3XllVfKz89Pc+fO1YYNG5SQkFCq7T///HP169dPl156qV555RU1btxYfn5+mjNnjubNm1fmczid0+mUxWLRf/7znyID5ZljjE7vESutSy+91DUOC0DlIUQBKBfHjx9XUlKSfvjhB3388cdq3759mfeRn5+vefPmqW7duurRo4dH9bjwwgs1d+5cHThwQNKpgd8bNmzQyZMnC/X6FFi0aJECAgL00Ucfyd/f37V8zpw5hcoW1zNV3PKYmBgZYxQdHa02bdqU9XQqRPPmzSVJO3fuVMuWLV3L8/LylJ6ersTERNeyc+2JA2oyxkQBOGf5+fkaMGCA1q9fr4ULF3o0N1F+fr7uu+8+bd++Xffdd59CQkKKLXvs2DGtX7++yHX/+c9/JP11qer666/XoUOHNGPGjEJlzf+fjNLX11cWi0X5+fmudXv37i1yUs2goKAiJ9QMCgqSpELrrrvuOvn6+uqJJ54oNPmlMUZZWVlFn2QFSkxMlNVq1bRp09zq9Prrr8vhcLjdFRkUFFTidBNAbUZPFIBzdv/99+uDDz5QUlKSsrOzC02ueebEmg6Hw1Xm2LFj2r17txYvXqw9e/Zo4MCBmjhxYonHO3bsmLp3766LL75YvXv3VlRUlA4fPqwlS5bo888/V3Jysrp06SJJuuWWW/Tmm29q9OjR+vLLL9WzZ0/l5ubq448/1j333KNrr71Wffr00YsvvqjevXtr8ODBOnjwoGbOnKlWrVrp22+/dTt2165d9fHHH+vFF19UZGSkoqOjFRcXp65du0qSHnvsMQ0cOFB+fn5KSkpSTEyMnnrqKY0ZM0Z79+5VcnKygoODlZ6ervfee0/Dhg3TAw88cE7tX1YNGzbUmDFj9MQTT6h3797q16+fdu7cqVdeeUUXXXSR23+vrl27asGCBRo9erQuuugi1atXT0lJSZVaX6DK8uatgQBqhoJb84t7lVS2Xr16pnXr1ubmm282K1euLNXxTp48af7xj3+Y5ORk07x5c+Pv72/q1q1runTpYqZMmWJOnDjhVv7YsWPmscceM9HR0cbPz89ERESYG264wezZs8dV5vXXXzetW7c2/v7+pl27dmbOnDmuKQROt2PHDnPppZeawMBAI8ltuoOJEyeaJk2aGB8fn0LTHSxatMj06NHDBAUFmaCgINOuXTszYsQIs3PnTre2KWn6hzMV1O+3334rsdyZUxwUmDFjhmnXrp3x8/Mz4eHh5u677za///67W5mjR4+awYMHm/r16xtJTHcAnMZiTDk8XAkAAKCWYUwUAACABwhRAAAAHiBEAQAAeIAQBQAA4AFCFAAAgAcIUQAAAB5gss0K5HQ69euvvyo4OJhHJwAAUE0YY3TkyBFFRkbKx6f4/iZCVAX69ddfFRUV5e1qAAAAD/z0009q2rRpsesJURUoODhY0qn/CCU9BwwAAFQdOTk5ioqKcn2PF4cQVYEKLuGFhIQQogAAqGbONhSHgeUAAAAeIEQBAAB4gBAFAADgAcZEeVl+fr5Onjzp7WrUWH5+fvL19fV2NQAANRAhykuMMcrIyNDhw4e9XZUar379+oqIiGCuLgBAuSJEeUlBgGrUqJHq1q3LF3wFMMbo2LFjOnjwoCSpcePGXq4RAKAmIUR5QX5+vitAhYWFebs6NVpgYKAk6eDBg2rUqBGX9gAA5YaB5V5QMAaqbt26Xq5J7VDQzow9AwCUJ0KUF3EJr3LQzgCAisDlPAAAUC1kZWUpLy+v2PVWq7VSh8kQogAAQJWXlZWlGTNmnLVcampqpQUpLuehTG699VZZLBZZLBb5+fkpPDxcV155pd544w05nc5S7yctLU3169evuIoCAGqUM3ugHI5gpae3kMMRXGK5ikRPVDXlzS7N3r17a86cOcrPz1dmZqZWrFihkSNH6t1339UHH3ygOnX4WAEAKs6mTV20dGlfGeMji8WppKQPFRu7udLrwbddNeTtLk1/f39FRERIkpo0aaLY2FhdfPHFuuKKK5SWlqY77rhDL774oubMmaMff/xRoaGhSkpK0uTJk1WvXj19+umnuu222yT9Neh7/PjxmjBhgt566y29/PLL2rlzp4KCgnT55Zdr6tSpatSoUbmfBwCg+nE4gl0BSpKM8dHSpX0VE7NbNtuRSq0Ll/OqodJ2VVZml+bll1+uTp06afHixZIkHx8fTZs2Td9//73mzp2r//73v3rooYckSd27d9fUqVMVEhKiAwcO6MCBA3rggQcknZqGYOLEifrmm2+0ZMkS7d27V7feemulnQcAoGrLzg5zBagCxvgoOzu00utCTxTKTbt27fTtt99KkkaNGuVa3qJFCz311FO666679Morr8hqtcpms8lisbh6tArcfvvtrt9btmypadOm6aKLLtLRo0dVr169SjkPAEDVFRqaJYvF6RakLBanQkOzK70u9ESh3BhjXJfnPv74Y11xxRVq0qSJgoODNWTIEGVlZenYsWMl7mPjxo1KSkpSs2bNFBwcrISEBEnS/v37K7z+AICqz2Y7oqSkD2WxnLqZqWBMVGVfypPoiUI52r59u6Kjo7V371717dtXd999t55++mmFhoZqzZo1Gjp0qPLy8oqdqT03N1d2u112u13//ve/1bBhQ+3fv192u71SL00CAKq22NjNionZrezsUIWGZnslQElVpCdq5syZatGihQICAhQXF6cvv/yyxPILFy5Uu3btFBAQoI4dO2r58uVu640xGjdunBo3bqzAwEAlJiZq165drvV79+7V0KFDFR0drcDAQMXExGj8+PFuX9R79+513cp/+uuLL74o35OvIf773//qu+++0/XXX6+NGzfK6XTqhRde0MUXX6w2bdro119/dStvtVqVn5/vtmzHjh3KysrSs88+q549e6pdu3auhwcDAGo3q9Xq9t5mO6Lo6H2FAtSZ5SqS13uiFixYoNGjR2vWrFmKi4vT1KlTZbfbtXPnziLvyFq3bp0GDRqkSZMmqW/fvpo3b56Sk5O1adMmXXDBBZKkyZMna9q0aZo7d66io6M1duxY2e12bdu2TQEBAdqxY4ecTqdmz56tVq1aaevWrbrzzjuVm5ur559/3u14H3/8sTp06OB6zwODpRMnTigjI8NtioOC/x633HKLtm7dqpMnT2r69OlKSkrS2rVrNWvWLLd9tGjRQkePHtXq1avVqVMn1a1bV82aNZPVatX06dN11113aevWrZo4caKXzhIAUJWEhYUpNTW1Ss1YbjHGmEo7WhHi4uJ00UUXuW7ZdzqdioqK0r333qtHHnmkUPkBAwYoNzdXH374oWvZxRdfrM6dO2vWrFkyxigyMlL333+/644vh8Oh8PBwpaWlaeDAgUXWY8qUKXr11Vf1448/SjrVExUdHa3Nmzerc+fOHp1bTk6ObDabHA6HQkJCXMuPHz+u9PR0RUdHKyAgoMz7PXDggF577bWzlhs2bJgaN25c5v2X5NZbb9XcuXMlSXXq1NF5552nTp06afDgwUpJSZGPz6nOzZdeeklTpkzR4cOHdemll+qmm27SLbfcot9//901yebdd9+thQsXKisryzXFwdtvv61HH31UBw4cUGxsrMaMGaN+/fqd03+Hc21vAEDtUtz395m82hOVl5enjRs3asyYMa5lPj4+SkxM1Pr164vcZv369Ro9erTbMrvdriVLlkiS0tPTlZGRocTERNd6m82muLg4rV+/vtgQ5XA4FBpa+PbIfv366fjx42rTpo0eeugh9evXr9jzOXHihE6cOOF6n5OTU2zZc1HarsqK6NJMS0tTWlraWcv9/e9/19///ne3ZUOGDHF7/+qrr+rVV191WzZo0CANGjTIbZmXcz4AAEXyaog6dOiQ8vPzFR4e7rY8PDxcO3bsKHKbjIyMIstnZGS41hcsK67MmXbv3q3p06e7XcqrV6+eXnjhBV1yySXy8fHRokWLlJycrCVLlhQbpCZNmqQnnniihDMuH1WxSxMAgNrG62OivO2XX35R7969deONN+rOO+90LW/QoIFbj9dFF12kX3/9VVOmTCk2RI0ZM8Ztm5ycHEVFRVVIvQlIAAB4l1fvzmvQoIF8fX2VmZnptjwzM7PQJIwFIiIiSixf8LM0+/z111912WWXqXv37qUaYxQXF6fdu3cXu97f318hISFuLwAAUDN5NURZrVZ17dpVq1evdi1zOp1avXq14uPji9wmPj7erbwkrVq1ylU+OjpaERERbmVycnK0YcMGt33+8ssv6tWrl7p27ao5c+a4BkSXZMuWLeU+UBsAAFRPXr+cN3r0aKWkpOjCCy9Ut27dNHXqVOXm5roeUHvLLbeoSZMmmjRpkiRp5MiRSkhI0AsvvKA+ffpo/vz5+vrrr109SRaLRaNGjdJTTz2l1q1bu6Y4iIyMVHJysqS/AlTz5s31/PPP67fffnPVp6C3au7cubJarerSpYskafHixXrjjTf0z3/+s7KaBgAAVGFeD1EDBgzQb7/9pnHjxikjI0OdO3fWihUrXAPD9+/f79ZL1L17d82bN0+PP/64Hn30UbVu3VpLlixxzRElSQ899JByc3M1bNgwHT58WD169NCKFStct7evWrVKu3fv1u7du9W0aVO3+px+J9jEiRO1b98+1alTR+3atdOCBQt0ww03VGRzoBrIyspiUD8AwPvzRNVkFTVPFMqmPNs7KyvLNadZSVJTUwlSAFBNlXaeqCrx2BegujizB8rhCFZ6egs5HMEllgMA1Dxev5wHVFebNnXR0qV9ZYyP6ynisbGbvV0tAEAloScKVcqnn34qi8Wiw4cPl3qbFi1aaOrUqRVWp6I4HMGuACVJxvho6dK+hXqkAAA1FyEKZXLrrbfKYrHorrvuKrRuxIgRslgsuvXWWyu/YpUsOzvMFaAKGOOj7OzCjw4CANRMhCiUWVRUlObPn68//vjDtez48eOaN2+emjVr5sWaVZ7Q0CxZLE63ZRaLU6Gh2V6qEQCgshGiUGaxsbGKiorS4sWLXcsWL16sZs2auebVkk49kPm+++5To0aNFBAQoB49euirr75y29fy5cvVpk0bBQYG6rLLLtPevXsLHW/NmjXq2bOnAgMDFRUVpfvuu0+5ubkVdn6lYbMdUVLSh64gVTAmymY74tV6AQAqDyGqBvj5Z+mTT079rCy333675syZ43r/xhtvuCZILfDQQw9p0aJFmjt3rjZt2qRWrVrJbrcrO/tUb81PP/2k6667TklJSdqyZYvuuOMOPfLII2772LNnj3r37q3rr79e3377rRYsWKA1a9YoNTW14k/yLGJjN2vUqKlKSUnTqFFTGVQOALUMIaqae/11qXlz6fLLT/18/fXKOe7NN9+sNWvWaN++fdq3b5/Wrl2rm2++2bU+NzdXr776qqZMmaKrr75a7du31z/+8Q8FBgbq9f9fyVdffVUxMTF64YUX1LZtW910002FxlNNmjRJN910k0aNGqXWrVure/fumjZtmt58800dP368ck72NFar1e29zXZE0dH7CvVAnVkOAFDzMMVBNfbzz9KwYZLz/w/NcTql4cMlu106YyL2ctewYUP16dNHaWlpMsaoT58+atCggWv9nj17dPLkSV1yySWuZX5+furWrZu2b98uSdq+fbvi4uLc9nvmMxO/+eYbffvtt/r3v//tWmaMkdPpVHp6us4///yKOL1ihYWFKTU1lRnLAQCEqOps166/AlSB/Hxp9+6KD1HSqUt6BZfVZs6cWSHHOHr0qIYPH6777ruv0DpvDWInIAEAJEJUtda6teTj4x6kfH2lVq0q5/i9e/dWXl6eLBaL7Ha727qYmBhZrVatXbtWzZs3lySdPHlSX331lUaNGiVJOv/88/XBBx+4bffFF1+4vY+NjdW2bdvUqrJOCgCAUmJMVDXWtKn02mungpN06ufs2ZXTC3XqeL7avn27tm3bJt+CSvx/QUFBuvvuu/Xggw9qxYoV2rZtm+68804dO3ZMQ4cOlSTddddd2rVrlx588EHt3LlT8+bNU1pamtt+Hn74Ya1bt06pqanasmWLdu3apffff79KDCwHANRu9ERVc0OHnhoDtXv3qR6oygpQBUp6MOOzzz4rp9OpIUOG6MiRI7rwwgv10Ucf6bzzzpN06nLcokWL9Pe//13Tp09Xt27d9Mwzz+j222937eNvf/ub/ve//+mxxx5Tz549ZYxRTEyMBgwYUOHnBgBASSzGGOPtStRUxT0F+vjx40pPT1d0dLQCAgK8WMPagfYGAJRFcd/fZ+JyHgAAgAcIUQAAAB4gRAEAAHiAEAUAAOABQpQXMaa/ctDOAICKQIjyAj8/P0nSsWPHvFyT2qGgnQvaHQCA8sA8UV7g6+ur+vXr6+DBg5KkunXrymKxeLlWNY8xRseOHdPBgwdVv379QhOCAgBwLghRXhIRESFJriCFilO/fn1XewMAUF4IUV5isVjUuHFjNWrUSCdPnvR2dWosPz8/eqAAABWCEOVlvr6+fMkDAFANMbAcAADAA4QoAAAADxCiAAAAPECIAgAA8AAhCgAAwAOEKAAAAA8QogAAADxAiAIAAPAAIQoAAMADhCgAAAAPEKIAAAA8QIgCAADwACEKAADAA4QoAAAADxCiAAAAPECIAgAA8EAdb1cAAAC4y8rKUl5eXrHrrVarwsLCKrFGKAohCgCAKiQrK0szZsw4a7nU1NRyC1KENs8QogAAqELODDMOR7Cys8MUGpolm+1IseU8dWZoK+545RnaagpCFAAAVdSmTV20dGlfGeMji8WppKQPFRu7uVyPcXoYK+l45RXaahIGlgMAUAU5HMGuQCNJxvho6dK+cjiCa8TxagJCFAAAVVB2dpgr0BQwxkfZ2aE14ng1ASEKAIAqKDQ0SxaL022ZxeJUaGh2jTheTUCIAgCgCrLZjigp6UNXsCkYo3T6YO/qfLyagIHlAABUUbGxmxUTs1vZ2aEKDc2u8EBT2cer7ghRAABUIVar1e29zXakyDBzZrnyUtzxUBghCgCAKiQsLEypqamVNvllacNYRYW26sxijDHerkRNlZOTI5vNJofDoZCQEG9XBwCAIjFjubvSfn/TEwUAQC1XmwJSeeLuPAAAAA8QogAAADxAiAIAAPAAIQoAAMADhCgAAAAPEKIAAAA8UCVC1MyZM9WiRQsFBAQoLi5OX375ZYnlFy5cqHbt2ikgIEAdO3bU8uXL3dYbYzRu3Dg1btxYgYGBSkxM1K5du1zr9+7dq6FDhyo6OlqBgYGKiYnR+PHjC82R8e2336pnz54KCAhQVFSUJk+eXH4nDQAAqjWvh6gFCxZo9OjRGj9+vDZt2qROnTrJbrfr4MGDRZZft26dBg0apKFDh2rz5s1KTk5WcnKytm7d6iozefJkTZs2TbNmzdKGDRsUFBQku92u48ePS5J27Nghp9Op2bNn6/vvv9dLL72kWbNm6dFHH3XtIycnR1dddZWaN2+ujRs3asqUKZowYYJee+21im0QAABQPRgv69atmxkxYoTrfX5+vomMjDSTJk0qsnz//v1Nnz593JbFxcWZ4cOHG2OMcTqdJiIiwkyZMsW1/vDhw8bf39+8/fbbxdZj8uTJJjo62vX+lVdeMeedd545ceKEa9nDDz9s2rZtW+pzczgcRpJxOByl3gYAAHhXab+/vdoTlZeXp40bNyoxMdG1zMfHR4mJiVq/fn2R26xfv96tvCTZ7XZX+fT0dGVkZLiVsdlsiouLK3afkuRwOBQaGup2nEsvvdTtWUF2u107d+7U77//XuQ+Tpw4oZycHLcXAACombwaog4dOqT8/HyFh4e7LQ8PD1dGRkaR22RkZJRYvuBnWfa5e/duTZ8+XcOHDz/rcU4/xpkmTZokm83mekVFRRVZDgAAVH9eHxPlbb/88ot69+6tG2+8UXfeeec57WvMmDFyOByu108//VROtQQAAFWNV0NUgwYN5Ovrq8zMTLflmZmZioiIKHKbiIiIEssX/CzNPn/99Vdddtll6t69e6EB48Ud5/RjnMnf318hISFuLwAAUDN5NURZrVZ17dpVq1evdi1zOp1avXq14uPji9wmPj7erbwkrVq1ylU+OjpaERERbmVycnK0YcMGt33+8ssv6tWrl7p27ao5c+bIx8e9KeLj4/XZZ5/p5MmTbsdp27atzjvvPM9PGgAA1AyVNNC9WPPnzzf+/v4mLS3NbNu2zQwbNszUr1/fZGRkGGOMGTJkiHnkkUdc5deuXWvq1Kljnn/+ebN9+3Yzfvx44+fnZ7777jtXmWeffdbUr1/fvP/+++bbb7811157rYmOjjZ//PGHMcaYn3/+2bRq1cpcccUV5ueffzYHDhxwvQocPnzYhIeHmyFDhpitW7ea+fPnm7p165rZs2eX+ty4Ow8AgOqntN/fdbwd4gYMGKDffvtN48aNU0ZGhjp37qwVK1a4BnHv37/frZeoe/fumjdvnh5//HE9+uijat26tZYsWaILLrjAVeahhx5Sbm6uhg0bpsOHD6tHjx5asWKFAgICJJ3qUdq9e7d2796tpk2butXHGCPp1B19K1eu1IgRI9S1a1c1aNBA48aN07Bhwyq6SQAAQDVgMQWpAeUuJydHNptNDoeD8VEAAFQTpf3+rvV35wEAAHiCEAUAAOABQhQAAIAHCFEAAAAeIEQBAAB4gBAFAADgAUIUAACABwhRAAAAHiBEAQAAeIAQBQAA4AFCFAAAgAcIUQAAAB4gRAEAAHiAEAUAAOABQhQAAIAHCFEAAAAeIEQBAAB4gBAFAADgAUIUAACABwhRAAAAHiBEAQAAeIAQBQAA4AFCFAAAgAcIUQAAAB4gRAEAAHiAEAUAAOABQhQAAIAHCFEAAAAeIEQBAAB4gBAFAADgAUIUAACABwhRAAAAHiBEAQAAeIAQBQAA4AFCFAAAgAcIUQAAAB4gRAEAAHiAEAUAAOABQhQAAIAHCFEAAAAeIEQBAAB4gBAFAADgAUIUAACABwhRAAAAHiBEAQAAeIAQBQAA4AFCFAAAgAcIUQAAAB4gRAEAAHiAEAUAAOABQhQAAIAHCFEAAAAeIEQBAAB4gBAFAADgAUIUAACABwhRAAAAHiBEAQAAeIAQBQAA4AGvh6iZM2eqRYsWCggIUFxcnL788ssSyy9cuFDt2rVTQECAOnbsqOXLl7utN8Zo3Lhxaty4sQIDA5WYmKhdu3a5lXn66afVvXt31a1bV/Xr1y/yOBaLpdBr/vz553SuAACg5vBqiFqwYIFGjx6t8ePHa9OmTerUqZPsdrsOHjxYZPl169Zp0KBBGjp0qDZv3qzk5GQlJydr69atrjKTJ0/WtGnTNGvWLG3YsEFBQUGy2+06fvy4q0xeXp5uvPFG3X333SXWb86cOTpw4IDrlZycXC7nDQAAqj+LMcZ46+BxcXG66KKLNGPGDEmS0+lUVFSU7r33Xj3yyCOFyg8YMEC5ubn68MMPXcsuvvhide7cWbNmzZIxRpGRkbr//vv1wAMPSJIcDofCw8OVlpamgQMHuu0vLS1No0aN0uHDhwsdy2Kx6L333jun4JSTkyObzSaHw6GQkBCP9wMAACpPab+/vdYTlZeXp40bNyoxMfGvyvj4KDExUevXry9ym/Xr17uVlyS73e4qn56eroyMDLcyNptNcXFxxe6zJCNGjFCDBg3UrVs3vfHGGzpb3jxx4oRycnLcXgAAoGaq460DHzp0SPn5+QoPD3dbHh4erh07dhS5TUZGRpHlMzIyXOsLlhVXprSefPJJXX755apbt65Wrlype+65R0ePHtV9991X7DaTJk3SE088UabjAACA6slrIaqqGzt2rOv3Ll26KDc3V1OmTCkxRI0ZM0ajR492vc/JyVFUVFSF1hMAAHiH1y7nNWjQQL6+vsrMzHRbnpmZqYiIiCK3iYiIKLF8wc+y7LO04uLi9PPPP+vEiRPFlvH391dISIjbCwAA1ExeC1FWq1Vdu3bV6tWrXcucTqdWr16t+Pj4IreJj493Ky9Jq1atcpWPjo5WRESEW5mcnBxt2LCh2H2W1pYtW3TeeefJ39//nPYDAABqBq9ezhs9erRSUlJ04YUXqlu3bpo6dapyc3N12223SZJuueUWNWnSRJMmTZIkjRw5UgkJCXrhhRfUp08fzZ8/X19//bVee+01SafuqBs1apSeeuoptW7dWtHR0Ro7dqwiIyPd7rLbv3+/srOztX//fuXn52vLli2SpFatWqlevXpaunSpMjMzdfHFFysgIECrVq3SM88847rjDwAAQKaMli5dasaOHWvWrFljjDFm9erV5uqrrzZ2u93Mnj27rLsz06dPN82aNTNWq9V069bNfPHFF651CQkJJiUlxa38O++8Y9q0aWOsVqvp0KGDWbZsmdt6p9Npxo4da8LDw42/v7+54oorzM6dO93KpKSkGEmFXp988okxxpj//Oc/pnPnzqZevXomKCjIdOrUycyaNcvk5+eX6dwcDoeRZBwOR5m2AwAA3lPa7+8yzRM1e/ZspaamqlOnTtq1a5dmzpype+65RwMGDJCvr6/efPNNTZo0SSNHjqyQwFfdME8UcHZZWVnKy8srdr3ValVYWFgl1ghAbVfa7+8yXc6bNm2aXnnlFd1555365JNPdM011+iFF17QPffcI+nUxJeTJ08mRAEolaysLNdkuyVJTU0lSAGocso0sDw9PV12u12SdNlllyk/P1+XXnqpa32vXr20b9++8q0hgBrrzB4ohyNY6ekt5HAEl1gOAKqCMvVEhYWFad++fWrWrJl+/fVX/fnnn9q/f78uuOACSdK+ffsUGhpaIRUFULNt2tRFS5f2lTE+slicSkr6ULGxm71dLQAoVplC1LXXXquhQ4cqJSVFH3zwgW655Rbdf//98vHxkcVi0YMPPqirrrqqouoKoIZyOIJdAUqSjPHR0qV9FROzWzbbES/XDgCKVqYQ9dxzzykvL0/z589X9+7dNX36dE2bNk3XXnutTp48qYSEBNd0BABQWtnZYa4AVcAYH2VnhxKiAFRZZQpRQUFBrjmZCjzwwANKTU3VyZMnFRwcXMyWAFC80NAsWSxOtyBlsTgVGprtxVoBQMnKZcbygIAAAhQAj9lsR5SU9KEsFqckucZE0QsFoCorU0/U6Q/XLcmLL77oUWUA1F6xsZsVE7Nb2dmhCg3NJkABqPLKFKI2b3a/U2bNmjXq2rWrAgMDXcssFkv51AxAjWe1Wt3e22xHigxPZ5YDgKqgTDOWnyk4OFjffPONWrZsWZ51qjGYsRw4O2YsB1DVVMiM5QBQ3ghIAKqrchlYDgAAUNsQogAAADxQpst53377rdt7Y4x27Niho0ePui3/29/+du41AwAAqMLKNLC84PEuRW1SsNxisSg/P79cK1ldMbAcAIDqp0IGlqenp59zxQAAAGqCMoWo5s2bV1Q9AAAAqpUyDyw3xig9PV1//vmnJCkvL08LFizQm2++qUOHDpV7BQEAAKqiMvVE7dy5U3a7XT/99JNatmyplStX6sYbb9SOHTtkjFHdunW1bt06tW7duqLqCwAAUCWUqSfq4YcfVqdOnbRlyxb17dtXffr0UdOmTfX7778rOztb8fHxevLJJyuqrgAAAFVGme7Oa9SokVauXKnOnTsrNzdXwcHB+uyzz9SjRw9J0rp16zRo0CDt27evwipcnXB3HgAA1U+F3J139OhRhYaGSpKCgoIUFBSkxo0bu9ZHRUUpMzPTwyoDAGoTnpuI6q5MISoyMlL79+9Xs2bNJEmTJ09Wo0aNXOt/++03nXfeeeVbQwBAjZOVlaUZM2actVxqaipBClVWmcZEJSYmaseOHa73d999t4KDg13vV65cqdjY2PKrHQCgRjqzB8rhCFZ6egs5HMEllgOqkjL1RM2aNavE9QMHDlRKSso5VQgAULts2tRFS5f2lTE+slicSkr6ULGxm71dLeCsytQT9d///lft27dXTk5OoXUOh0N9+vTR7t27y61yAICazeEIdgUoSTLGR0uX9i3UIwVURWUKUVOnTtWdd95Z5Eh1m82m4cOH68UXXyy3ygEAarbs7DBXgCpgjI+ys0O9VCOg9Mp0Oe+bb77Rc889V+z6q666Ss8///w5VwqFcRcLgJooNDRLFovTLUhZLE6FhmZ7sVZA6ZQpRGVmZsrPz6/4ndWpo99+++2cKwV33MUCoKay2Y4oKenDQmOibLYj3q4acFZlClFNmjTR1q1b1apVqyLXf/vtt27zRqF8FHUXS3Z2mEJDs9z+0HAXC4DqKDZ2s2Jidis7O1ShodkEKFQbZQpR11xzjcaOHavevXsrICDAbd0ff/yh8ePHq2/fvuVaQbjjLhYANYHVanV7b7MdKTI8nVkOqErKFKIef/xxLV68WG3atFFqaqratm0rSdqxY4dmzpyp/Px8PfbYYxVSURR/F0tMzG7+5QagWgkLC1NqaipjPVGtlSlEhYeHa926dbr77rs1ZswYFTx2z2KxyG63a+bMmQoPD6+QiqLku1gIUQCqGwISqrsyhShJat68uZYvX67ff/9du3fvljFGrVu35nEvlYC7WAAAqDrKNE/U6c477zxddNFF6tatGwGqkhTcxWKxOCWJu1gAAPCiMvdEwbu4iwUAgKqBEFUNcBcLAABVDyGqGuAuFqBq4MkBAE5HiKom+MMMeBdPDgBwJo8HlgNAbVLUkwPS01vI4QgusRyAmoueKAAoI54cAECiJwoAyqS4Jwec2SMFoOYjRAFAGZT05AAAtQshCgDKoODJAafjyQFA7USIAoAy4MkBAAowsBwAyognBwCQCFEAUCo8OQDAmQhRAFAKPDkAwJkIUQBQSgQkAKdjYDkAAIAHCFEAAAAeIEQBAAB4gBAFAADgAUIUAACABwhRAAAAHiBEAQAAeIAQBQAA4AFCFAAAgAe8HqJmzpypFi1aKCAgQHFxcfryyy9LLL9w4UK1a9dOAQEB6tixo5YvX+623hijcePGqXHjxgoMDFRiYqJ27drlVubpp59W9+7dVbduXdWvX7/I4+zfv199+vRR3bp11ahRIz344IP6888/z+lcAQBAzeHVELVgwQKNHj1a48eP16ZNm9SpUyfZ7XYdPHiwyPLr1q3ToEGDNHToUG3evFnJyclKTk7W1q1bXWUmT56sadOmadasWdqwYYOCgoJkt9t1/PhxV5m8vDzdeOONuvvuu4s8Tn5+vvr06aO8vDytW7dOc+fOVVpamsaNG1e+DQAAAKov40XdunUzI0aMcL3Pz883kZGRZtKkSUWW79+/v+nTp4/bsri4ODN8+HBjjDFOp9NERESYKVOmuNYfPnzY+Pv7m7fffrvQ/ubMmWNsNluh5cuXLzc+Pj4mIyPDtezVV181ISEh5sSJE6U+P4fDYSQZh8NR6m0AAIB3lfb722s9UXl5edq4caMSExNdy3x8fJSYmKj169cXuc369evdykuS3W53lU9PT1dGRoZbGZvNpri4uGL3WdxxOnbsqPDwcLfj5OTk6Pvvvy/1fgAAQM1Vx1sHPnTokPLz892CiiSFh4drx44dRW6TkZFRZPmMjAzX+oJlxZUpjeKOc/oxinLixAmdOHHC9T4nJ6fUxwQAANWL1weW1ySTJk2SzWZzvaKiorxdJQAAUEG8FqIaNGggX19fZWZmui3PzMxUREREkdtERESUWL7gZ1n2WZbjnH6MoowZM0YOh8P1+umnn0p9TAAAUL14LURZrVZ17dpVq1evdi1zOp1avXq14uPji9wmPj7erbwkrVq1ylU+OjpaERERbmVycnK0YcOGYvdZ3HG+++47t7sEV61apZCQELVv377Y7fz9/RUSEuL2AgAANZPXxkRJ0ujRo5WSkqILL7xQ3bp109SpU5Wbm6vbbrtNknTLLbeoSZMmmjRpkiRp5MiRSkhI0AsvvKA+ffpo/vz5+vrrr/Xaa69JkiwWi0aNGqWnnnpKrVu3VnR0tMaOHavIyEglJye7jrt//35lZ2dr//79ys/P15YtWyRJrVq1Ur169XTVVVepffv2GjJkiCZPnqyMjAw9/vjjGjFihPz9/Su1jQAAQBVVSXcLFmv69OmmWbNmxmq1mm7dupkvvvjCtS4hIcGkpKS4lX/nnXdMmzZtjNVqNR06dDDLli1zW+90Os3YsWNNeHi48ff3N1dccYXZuXOnW5mUlBQjqdDrk08+cZXZu3evufrqq01gYKBp0KCBuf/++83JkyfLdG5McQAAQPVT2u9vizHGeDHD1Wg5OTmy2WxyOBxc2gMAoJoo7fe3Vy/nAQWysrKUl5dX7Hqr1aqwsLBKrBEAACUjRMHrsrKyNGPGDNd7hyNY2dlhCg3Nks12xLU8NTWVIAUAqDIIUfC603ugNm3qoqVL+8oYH1ksTiUlfajY2M2FygEA4G1Mtokqw+EIdgUoSTLGR0uX9pXDEezlmgEAUBghClVGdnaYznycozE+ys4O9VKNAAAoHiEKVUZoaJYsFqfbMovFqdDQbC/VCACA4hGiUGXYbEeUlPShK0gVjIk6fXA5AABVBQPLUaXExm5WTMxuZWeHKjQ0mwAFAKiyCFGocmy2I4QnAECVx+U8eJ3Vai3XcgAAVAZ6ouB1YWFhSk1NZcZyAEC1QohClUBAAgBUN1zOAwAA8AAhCgAAwAOEKAAAAA8QogAAADxAiAIAAPAAIQoAAMADhCgAAAAPEKIAAAA8QIgCAADwACEKAADAA4QoAAAADxCiAAAAPECIAgAA8AAhCgAAwAOEKAAAAA8QogAAADxAiAIAAPAAIQoAAMADhCgAAAAPEKIAAAA8UMfbFQAAANVTVlaW8vLyil1vtVoVFhZWiTWqXIQoAABQZllZWZoxY8ZZy6WmptbYIMXlPAAAUGZn9kA5HMFKT28hhyO4xHI1CT1RAADgnGza1EVLl/aVMT6yWJxKSvpQsbGbvV2tCkdPFAAA8JjDEewKUJJkjI+WLu1bqEeqJiJEAQAAj2Vnh7kCVAFjfJSdHeqlGlUeQhQAAPBYaGiWLBan2zKLxanQ0Gwv1ajyEKIAAIDHbLYjSkr60BWkCsZE2WxHvFyzisfAcgAAcE5iYzcrJma3srNDFRqaXSsClESIAgAAHrBarW7vbbYjRYanM8vVJIQoVHu1fcZcAPCGsLAwpaam1uq/v4QoVGvMmAsA3lPb/64ysBzVGjPmAgC8hZ4o1Bi1dcZcAIB30BOFGqE2z5gLAPAOQhRqhNo8Yy4AwDsIUagRavOMuQAA7yBEoUaozTPmAgC8g4HlqDFq64y5qPqYywyomQhRNVxN/+PNjLmo6pjLDKi5CFE1WG34482MuajqiprLLDs7TKGhWW6Bn7nMgOqHEFWD1ZY/3gQkVBfMZQbULISoWoI/3oB3FTeXWUzMbsbvAdUUd+fVAkxECXgfc5kBNQ8hqhbgjzfgfcxlBtQ8XM6rBQr+eJ8epPjjDVSugrnMzryszqU8VAU1/U7uikKIqsEOHz4s6ex/vA8fPqzGjRt7saZA7cBcZqiKasOd3BWlSlzOmzlzplq0aKGAgADFxcXpyy+/LLH8woUL1a5dOwUEBKhjx45avny523pjjMaNG6fGjRsrMDBQiYmJ2rVrl1uZ7Oxs3XTTTQoJCVH9+vU1dOhQHT161LV+7969slgshV5ffPFF+Z14Bfvzzz9dv8fGbtbQof+U3b5CQ4f+021Q+enlAJSvouYyi47eVyhAMZcZvKW0d2hX9zu5K4LXe6IWLFig0aNHa9asWYqLi9PUqVNlt9u1c+dONWrUqFD5devWadCgQZo0aZL69u2refPmKTk5WZs2bdIFF1wgSZo8ebKmTZumuXPnKjo6WmPHjpXdbte2bdsUEBAgSbrpppt04MABrVq1SidPntRtt92mYcOGad68eW7H+/jjj9WhQwfX++qUwv38/Fy/l3R33unlAJQv5jJDdVPcdDgozGKMMd6sQFxcnC666CJXV6LT6VRUVJTuvfdePfLII4XKDxgwQLm5ufrwww9dyy6++GJ17txZs2bNkjFGkZGRuv/++/XAAw9IkhwOh8LDw5WWlqaBAwdq+/btat++vb766itdeOGFkqQVK1bommuu0c8//6zIyEjt3btX0dHR2rx5szp37uzRueXk5Mhms8nhcCgkJMSjfZyLAwcO6LXXXpPDEaypU0cVGhM1atRU2WxHNGzYMC7nAUAtVfBdIZX8D+7a9F1R2u9vr17Oy8vL08aNG5WYmOha5uPjo8TERK1fv77IbdavX+9WXpLsdrurfHp6ujIyMtzK2Gw2xcXFucqsX79e9evXdwUoSUpMTJSPj482bNjgtu9+/fqpUaNG6tGjhz744IMSz+fEiRPKyclxe1UF3J0HADgbpsMpO6+GqEOHDik/P1/h4eFuy8PDw5WRkVHkNhkZGSWWL/h5tjJnXiqsU6eOQkNDXWXq1aunF154QQsXLtSyZcvUo0cPJScnlxikJk2aJJvN5npFRUWdrQkqBbdWAwDOhn9wl53Xx0RVVQ0aNNDo0aNd7y+66CL9+uuvmjJlivr161fkNmPGjHHbJicnp0oEKW6tBgCcDdPhlJ1XQ1SDBg3k6+urzMxMt+WZmZmKiIgocpuIiIgSyxf8zMzMdLt2m5mZ6RrbFBERoYMHD7rt488//1R2dnaxx5VOjd9atWpVsev9/f3l7+9f7Hpv4tZqAEBJ+Ad32Xn1cp7ValXXrl21evVq1zKn06nVq1crPj6+yG3i4+PdykvSqlWrXOWjo6MVERHhViYnJ0cbNmxwlYmPj9fhw4e1ceNGV5n//ve/cjqdiouLK7a+W7ZsqVaD6ri1GgBwNqd/B8TGbtaoUVOVkpKmUaOmuk2Hw3dFYV6/nDd69GilpKTowgsvVLdu3TR16lTl5ubqtttukyTdcsstatKkiSZNmiRJGjlypBISEvTCCy+oT58+mj9/vr7++mvXnQUWi0WjRo3SU089pdatW7umOIiMjFRycrIk6fzzz1fv3r115513atasWTp58qRSU1M1cOBARUZGSpLmzp0rq9WqLl26SJIWL16sN954Q//85z8ruYU8x63VAICz4bvCc14PUQMGDNBvv/2mcePGKSMjQ507d9aKFStcA8P3798vH5+/Osy6d++uefPm6fHHH9ejjz6q1q1ba8mSJa45oiTpoYceUm5uroYNG6bDhw+rR48eWrFihWuOKEn697//rdTUVF1xxRXy8fHR9ddfr2nTprnVbeLEidq3b5/q1Kmjdu3aacGCBbrhhhsquEXKFx96AMDZ8F3hGa/PE1WTeXueKAAAUHbVYp4oAACA6srrl/MAAABKIysrq0qN3SJEAQCAKi8rK8v1iLiSpKamVlqQ4nIeAACo8s7sgXI4gpWe3qLQY2lK6qkqb/REAQCAaqWkByVXJnqiAABAtVGVHpRMiAIAANVGVXpQMiEKAABUGwUPSj6dtx6UTIgCAADVRsGDkguClDcflMzAcgAAUK3Exm5WTMxuZWeHKjQ02ysBSiJEAQCAasBqtbq9t9mOFBmezixXkQhRAACgygsLC1NqaiozlgMAAJRVZQak0mBgOQAAgAcIUQAAAB4gRAEAAHiAEAUAAOABQhQAAIAHCFEAAAAeYIoD1FpZWVlVar6R6o72BFDbEKJQK2VlZWnGjBlnLZeamsoXfynQngBqIy7noVY6s8fE4QhWenoLORzBJZZD0WhPALURPVGo9TZt6qKlS/vKGB/X08BjYzd7u1rVFu0JoLagJwq1msMR7PrClyRjfLR0ad9CPSgoHdoTQG1CiEKtlp0d5vrCL2CMj7KzQ71Uo+qN9gRQmxCiUKuFhmbJYnG6LbNYnAoNzfZSjao32hNAbUKIQq1msx1RUtKHri/+gjE8NtsRL9eseqI9AdQmDCxHrRcbu1kxMbuVnR2q0NBsvvDPEe0JoLYgRKFWslqtbu9ttiNFftmfWQ5Foz0B1EYWY4zxdiVqqpycHNlsNjkcDoWEhHi7OjgDM2yXL9oTQE1R2u9veqJQa/GFXr5oTwC1DQPLAQAAPEBPFFDFcZkMAKomQhRQhfFgXwCouricB1RhPNgXAKoueqKAaoIH+wJA1UJPFFAN8GBfAKh6CFFANcCDfQGg6uFyHlANFDzY9/QgxYN9gbLhTleUN0IUUA0UPNj3zDFRPJcOKB3udEVFIEQB1QQP9gU8V9SdrtnZYQoNzXL7f4k7XVEWhCigCuPBvkD5405XlBdCFFCFhYWFKTU1lXEcQDkp7k7XmJjd9O6izAhRQBVHQALKT0l3uhKiUFZMcQAAqDUK7nQ9HXe6wlOEKABArVFwp2tBkOJOV5wLLucBAGoV7nRFeSFEAQBqPO50RUUgRAEAajzudEVFIEQBAGoFAhLKGwPLAQAAPECIAgAA8AAhCgAAwAOEKAAAAA8QogAAADxAiAIAAPAAIQoAAMADhCgAAAAPEKIAAAA8wIzlFcgYI0nKycnxck0AAEBpFXxvF3yPF4cQVYGOHDn1cMuoqCgv1wQAAJTVkSNHZLPZil1vMWeLWfCY0+nUr7/+quDgYFksFm9Xp1Lk5OQoKipKP/30k0JCQrxdHa+iLf5CW/yFtvgLbXEK7fCXqtIWxhgdOXJEkZGR8vEpfuQTPVEVyMfHR02bNvV2NbwiJCSk1v8xKEBb/IW2+Att8Rfa4hTa4S9VoS1K6oEqwMByAAAADxCiAAAAPECIQrny9/fX+PHj5e/v7+2qeB1t8Rfa4i+0xV9oi1Noh79Ut7ZgYDkAAIAH6IkCAADwACEKAADAA4QoAAAADxCiAAAAPECIQolmzpypFi1aKCAgQHFxcfryyy9LLD916lS1bdtWgYGBioqK0t///ncdP37ctX7ChAmyWCxur3bt2lX0aZSLsrTFyZMn9eSTTyomJkYBAQHq1KmTVqxYcU77rErKuy2q6+fis88+U1JSkiIjI2WxWLRkyZKzbvPpp58qNjZW/v7+atWqldLS0gqVqY6fi4poi9ryuThw4IAGDx6sNm3ayMfHR6NGjSqy3MKFC9WuXTsFBASoY8eOWr58eflXvpxVRFukpaUV+lwEBARUzAmcBSEKxVqwYIFGjx6t8ePHa9OmTerUqZPsdrsOHjxYZPl58+bpkUce0fjx47V9+3a9/vrrWrBggR599FG3ch06dNCBAwdcrzVr1lTG6ZyTsrbF448/rtmzZ2v69Onatm2b7rrrLv3f//2fNm/e7PE+q4qKaAupen4ucnNz1alTJ82cObNU5dPT09WnTx9ddtll2rJli0aNGqU77rhDH330katMdf1cVERbSLXjc3HixAk1bNhQjz/+uDp16lRkmXXr1mnQoEEaOnSoNm/erOTkZCUnJ2vr1q3lWfVyVxFtIZ2a0fz0z8W+ffvKq8plY4BidOvWzYwYMcL1Pj8/30RGRppJkyYVWX7EiBHm8ssvd1s2evRoc8kll7jejx8/3nTq1KlC6luRytoWjRs3NjNmzHBbdt1115mbbrrJ431WFRXRFtX1c3E6Sea9994rscxDDz1kOnTo4LZswIABxm63u95X18/F6cqrLWrL5+J0CQkJZuTIkYWW9+/f3/Tp08dtWVxcnBk+fPg51rDylFdbzJkzx9hstnKr17mgJwpFysvL08aNG5WYmOha5uPjo8TERK1fv77Ibbp3766NGze6Lj38+OOPWr58ua655hq3crt27VJkZKRatmypm266Sfv376+4EykHnrTFiRMnCnUvBwYGuv4V7ck+q4KKaIsC1e1z4Yn169e7tZ0k2e12V9tV18+FJ87WFgVqw+eiNErbXrXF0aNH1bx5c0VFRenaa6/V999/75V6EKJQpEOHDik/P1/h4eFuy8PDw5WRkVHkNoMHD9aTTz6pHj16yM/PTzExMerVq5fb5by4uDilpaVpxYoVevXVV5Wenq6ePXvqyJEjFXo+58KTtrDb7XrxxRe1a9cuOZ1OrVq1SosXL9aBAwc83mdVUBFtIVXPz4UnMjIyimy7nJwc/fHHH9X2c+GJs7WFVHs+F6VRXHvVtM9FabRt21ZvvPGG3n//ff3rX/+S0+lU9+7d9fPPP1d6XQhRKDeffvqpnnnmGb3yyivatGmTFi9erGXLlmnixImuMldffbVuvPFG/e1vf5Pdbtfy5ct1+PBhvfPOO16sefl7+eWX1bp1a7Vr105Wq1Wpqam67bbb5ONT+/6XK01b1JbPBcqGzwWKEh8fr1tuuUWdO3dWQkKCFi9erIYNG2r27NmVXpfa9xcdpdKgQQP5+voqMzPTbXlmZqYiIiKK3Gbs2LEaMmSI7rjjDnXs2FH/93//p2eeeUaTJk2S0+kscpv69eurTZs22r17d7mfQ3nxpC0aNmyoJUuWKDc3V/v27dOOHTtUr149tWzZ0uN9VgUV0RZFqQ6fC09EREQU2XYhISEKDAystp8LT5ytLYpSUz8XpVFce9W0z4Un/Pz81KVLF698LghRKJLValXXrl21evVq1zKn06nVq1crPj6+yG2OHTtWqKfF19dXkmSKeUTj0aNHtWfPHjVu3Lical7+PGmLAgEBAWrSpIn+/PNPLVq0SNdee+0579ObKqItilIdPheeiI+Pd2s7SVq1apWr7arr58ITZ2uLotTUz0VpeNJetUV+fr6+++4773wuvD2yHVXX/Pnzjb+/v0lLSzPbtm0zw4YNM/Xr1zcZGRnGGGOGDBliHnnkEVf58ePHm+DgYPP222+bH3/80axcudLExMSY/v37u8rcf//95tNPPzXp6elm7dq1JjEx0TRo0MAcPHiw0s+vLMraFl988YVZtGiR2bNnj/nss8/M5ZdfbqKjo83vv/9e6n1WVRXRFtX1c3HkyBGzefNms3nzZiPJvPjii2bz5s1m3759xhhjHnnkETNkyBBX+R9//NHUrVvXPPjgg2b79u1m5syZxtfX16xYscJVprp+LiqiLWrL58IY4yrftWtXM3jwYLN582bz/fffu9avXbvW1KlTxzz//PNm+/btZvz48cbPz8989913lXpuZVURbfHEE0+Yjz76yOzZs8ds3LjRDBw40AQEBLiVqSyEKJRo+vTpplmzZsZqtZpu3bqZL774wrUuISHBpKSkuN6fPHnSTJgwwcTExJiAgAATFRVl7rnnHrcvywEDBpjGjRsbq9VqmjRpYgYMGGB2795diWfkubK0xaeffmrOP/984+/vb8LCwsyQIUPML7/8UqZ9VmXl3RbV9XPxySefGEmFXgXnn5KSYhISEgpt07lzZ2O1Wk3Lli3NnDlzCu23On4uKqItatPnoqjyzZs3dyvzzjvvmDZt2hir1Wo6dOhgli1bVjkndA4qoi1GjRrl+v8jPDzcXHPNNWbTpk2Vd1Knsfz/CgMAAKAMGBMFAADgAUIUAACABwhRAAAAHiBEAQAAeIAQBQAA4AFCFAAAgAcIUQAAAB4gRAFALfLpp5/KYrHo8OHD3q4KUO0RogBUiFtvvVUWi0XPPvus2/IlS5bIYrG43htj9I9//EPx8fEKCQlRvXr11KFDB40cObLUDxQ9duyYxowZo5iYGAUEBKhhw4ZKSEjQ+++/7yrTokULTZ06tVzOraIVtJ3FYpGfn5+io6P10EMP6fjx42XaT69evTRq1Ci3Zd27d9eBAwdks9nKscZA7USIAlBhAgIC9Nxzz+n3338vcr0xRoMHD9Z9992na665RitXrtS2bdv0+uuvKyAgQE899VSpjnPXXXdp8eLFmj59unbs2KEVK1bohhtuUFZWVnmeTqXq3bu3Dhw4oB9//FEvvfSSZs+erfHjx5/zfq1WqyIiItyCLAAPeeVhMwBqvJSUFNO3b1/Trl078+CDD7qWv/fee6bgT8/bb79tJJn333+/yH04nc5SHctms5m0tLRi1yckJBR6FleBzz//3PTo0cMEBASYpk2bmnvvvdccPXrUtf7NN980Xbt2NfXq1TPh4eFm0KBBJjMz07W+4NlgK1asMJ07dzYBAQHmsssuM5mZmWb58uWmXbt2Jjg42AwaNMjk5uaW6nxSUlLMtdde67bsuuuuM126dHG9P3TokBk4cKCJjIw0gYGB5oILLjDz5s1z28eZ55yenu6q7+nPtHz33XdN+/btjdVqNc2bNzfPP/98qeoJ1Hb0RAGoML6+vnrmmWc0ffp0/fzzz4XWv/3222rbtq369etX5Pal7S2JiIjQ8uXLdeTIkSLXL168WE2bNtWTTz6pAwcO6MCBA5KkPXv2qHfv3rr++uv17bffasGCBVqzZo1SU1Nd2548eVITJ07UN998oyVLlmjv3r269dZbCx1jwoQJmjFjhtatW6effvpJ/fv319SpUzVv3jwtW7ZMK1eu1PTp00t1PmfaunWr1q1bJ6vV6lp2/Phxde3aVcuWLdPWrVs1bNgwDRkyRF9++aUk6eWXX1Z8fLzuvPNO1zlHRUUV2vfGjRvVv39/DRw4UN99950mTJigsWPHKi0tzaO6ArWKt1McgJrp9N6Uiy++2Nx+++3GGPeeqHbt2pl+/fq5bTdy5EgTFBRkgoKCTJMmTUp1rP/973+madOmxs/Pz1x44YVm1KhRZs2aNW5lmjdvbl566SW3ZUOHDjXDhg1zW/b5558bHx8f88cffxR5rK+++spIMkeOHDHG/NUT9fHHH7vKTJo0yUgye/bscS0bPny4sdvtpTqflJQU4+vra4KCgoy/v7+RZHx8fMy7775b4nZ9+vQx999/v+t9QkKCGTlypFuZM3uiBg8ebK688kq3Mg8++KBp3759qeoK1Gb0RAGocM8995zmzp2r7du3n7XsY489pi1btmjcuHE6evRoqfZ/6aWX6scff9Tq1at1ww036Pvvv1fPnj01ceLEErf75ptvlJaWpnr16rledrtdTqdT6enpkk711CQlJalZs2YKDg5WQkKCJGn//v1u+/rb3/7m+j08PFx169ZVy5Yt3ZYdPHiwVOcjSZdddpm2bNmiDRs2KCUlRbfddpuuv/561/r8/HxNnDhRHTt2VGhoqOrVq6ePPvqoUL3OZvv27brkkkvcll1yySXatWuX8vPzy7QvoLYhRAGocJdeeqnsdrvGjBnjtrx169bauXOn27KGDRuqVatWatSoUZmO4efnp549e+rhhx/WypUr9eSTT2rixInKy8srdpujR49q+PDh2rJli+v1zTffaNeuXYqJiVFubq7sdrtCQkL073//W1999ZXee+89SSq0Xz8/P9fvBXfVnc5iscjpdJb6fIKCgtSqVSt16tRJb7zxhjZs2KDXX3/dtX7KlCl6+eWX9fDDD+uTTz7Rli1bZLfbSzxfAOWrjrcrAKB2ePbZZ9W5c2e1bdvWtWzQoEEaPHiw3n//fV177bXlerz27dvrzz//1PHjx2W1WmW1Wgv1rMTGxmrbtm1q1apVkfv47rvvlJWVpWeffdY1nujrr78u13qWho+Pjx599FGNHj1agwcPVmBgoNauXatrr71WN998syTJ6XTqhx9+UPv27V3bFXXOZzr//PO1du1at2Vr165VmzZt5OvrW/4nA9Qg9EQBqBQdO3bUTTfdpGnTprmWDRw4UDfccIMGDhyoJ598Uhs2bNDevXv1v//9TwsWLCj1l3ivXr00e/Zsbdy4UXv37tXy5cv16KOP6rLLLlNISIikU/NEffbZZ/rll1906NAhSdLDDz+sdevWKTU1VVu2bNGuXbv0/vvvuwaWN2vWTFarVdOnT9ePP/6oDz744KyXCCvKjTfeKF9fX82cOVPSqV68VatWad26ddq+fbuGDx+uzMxMt21atGjhatNDhw4V2RN2//33a/Xq1Zo4caJ++OEHzZ07VzNmzNADDzxQKecFVGeEKACV5sknn3T7IrdYLFqwYIGmTp2q5cuX64orrlDbtm11++23KyoqSmvWrCnVfu12u+bOnaurrrpK559/vu69917Z7Xa98847bsfeu3evYmJi1LBhQ0mnxjH973//0w8//KCePXuqS5cuGjdunCIjIyWdurSYlpamhQsXqn379nr22Wf1/PPPl2OLlF6dOnWUmpqqyZMnKzc3V48//rhiY2Nlt9vVq1cvRUREKDk52W2bBx54QL6+vmrfvr0aNmxY5Hip2NhYvfPOO5o/f74uuOACjRs3Tk8++WSRdyACcGcxxhhvVwIAAKC6oScKAADAA4QoAFXe6VMQnPn6/PPPvV29Mtm/f3+J51PWKQoAeA+X8wBUeSU9iLhJkyYKDAysxNqcmz///FN79+4tdn2LFi1Upw43TgPVASEKAADAA1zOAwAA8AAhCgAAwAOEKAAAAA8QogAAADxAiAIAAPAAIQoAAMADhCgAAAAPEKIAAAA88P8AhU6ypeJfjlkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATy5JREFUeJzt3Xtc1FXi//H3gAwgwtigghgq4S3NVbEk7YIVhYUY28VbFytLa6V0bbtYeUvL0jSvZe0vL7WZVpqluaZZbZlmpVhZamqoXQQTckBcxZjz+8Mvs45chBGYAV7Px2MeOudzPp/P+Zydbd6ez/mcsRhjjAAAAFAhft5uAAAAQE1EiAIAAPAAIQoAAMADhCgAAAAPEKIAAAA8QIgCAADwACEKAADAA4QoAAAADxCiAAAAPECIAoBabsGCBbJYLNq7d6+3mwLUKoQoAGftq6++Ulpamjp06KCQkBA1b95cffv21Y8//lisbs+ePWWxWGSxWOTn56ewsDC1bdtWt912m9auXVuh865YsUIJCQlq0qSJ6tevr/POO099+/bV6tWrK+vSinn66ae1fPnyYuUbNmzQuHHjdPjw4So79+nGjRvn6kuLxaL69eurffv2euKJJ5Sbm1sp51i0aJGmT59eKccCahtCFICz9uyzz2rp0qW66qqrNGPGDA0ZMkSffvqp4uLitG3btmL1zz33XL322mt69dVXNWXKFPXp00cbNmzQNddco379+unEiRNnPOdzzz2nPn36yGKxaNSoUXr++ed14403ateuXVq8eHFVXKakskPU+PHjqzVEFXnxxRf12muvadq0aWrXrp2eeuop9erVS5Xx06iEKKB09bzdAAA138iRI7Vo0SJZrVZXWb9+/dSxY0c988wz+te//uVW32az6dZbb3Ure+aZZ/TAAw/ohRdeUMuWLfXss8+Wer4///xTEyZM0NVXX601a9YU237w4MGzvCLfcfToUdWvX7/MOjfddJMaNWokSbr33nt14403atmyZfriiy/UvXv36mgmUCcxEgXgrPXo0cMtQElS69at1aFDB23fvr1cx/D399fMmTPVvn17zZ49Ww6Ho9S6hw4dUm5uri655JIStzdp0sTt/bFjxzRu3Di1adNGQUFBatq0qW644Qbt2bPHVee5555Tjx49FB4eruDgYHXt2lVvv/2223EsFovy8/O1cOFC1y20O+64Q+PGjdNDDz0kSYqJiXFtO3UO0r/+9S917dpVwcHBstvt6t+/v37++We34/fs2VMXXHCBNm/erMsvv1z169fXY489Vq7+O9WVV14pScrIyCiz3gsvvKAOHTooMDBQUVFRGjZsmNtIWs+ePfX+++9r3759rmtq2bJlhdsD1FaMRAGoEsYYZWVlqUOHDuXex9/fXwMGDNDo0aO1fv16JScnl1ivSZMmCg4O1ooVK3T//ffLbreXeszCwkL17t1b69atU//+/TV8+HDl5eVp7dq12rZtm2JjYyVJM2bMUJ8+fXTLLbeooKBAixcv1s0336yVK1e62vHaa6/p7rvvVrdu3TRkyBBJUmxsrEJCQvTjjz/qjTfe0PPPP+8aFWrcuLEk6amnntLo0aPVt29f3X333fr99981a9YsXX755UpPT1fDhg1d7c3Ozta1116r/v3769Zbb1VERES5+69IUTgMDw8vtc64ceM0fvx4JSYm6r777tPOnTv14osv6quvvtLnn3+ugIAAPf7443I4HPrll1/0/PPPS5IaNGhQ4fYAtZYBgCrw2muvGUnmlVdecStPSEgwHTp0KHW/d955x0gyM2bMKPP4Y8aMMZJMSEiIufbaa81TTz1lNm/eXKzevHnzjCQzbdq0YtucTqfr70ePHnXbVlBQYC644AJz5ZVXupWHhISYQYMGFTvWlClTjCSTkZHhVr53717j7+9vnnrqKbfy7777ztSrV8+tPCEhwUgyc+fOLfW6TzV27FgjyezcudP8/vvvJiMjw7z00ksmMDDQREREmPz8fGOMMfPnz3dr28GDB43VajXXXHONKSwsdB1v9uzZRpKZN2+eqyw5Odm0aNGiXO0B6hpu5wGodDt27NCwYcPUvXt3DRo0qEL7Fo105OXllVlv/PjxWrRokbp06aIPPvhAjz/+uLp27aq4uDi3W4hLly5Vo0aNdP/99xc7hsVicf09ODjY9fc//vhDDodDl112mbZs2VKh9p9u2bJlcjqd6tu3rw4dOuR6RUZGqnXr1vr444/d6gcGBurOO++s0Dnatm2rxo0bKyYmRkOHDlWrVq30/vvvlzqX6sMPP1RBQYFGjBghP7//fQ3cc889CgsL0/vvv1/xCwXqIG7nAahUmZmZSk5Ols1m09tvvy1/f/8K7X/kyBFJUmho6BnrDhgwQAMGDFBubq42bdqkBQsWaNGiRUpJSdG2bdsUFBSkPXv2qG3btqpXr+z/3K1cuVITJ07U1q1bdfz4cVf5qUHLE7t27ZIxRq1bty5xe0BAgNv7Zs2aFZtfdiZLly5VWFiYAgICdO6557puUZZm3759kk6Gr1NZrVadd955ru0AykaIAlBpHA6Hrr32Wh0+fFifffaZoqKiKnyMoiURWrVqVe59wsLCdPXVV+vqq69WQECAFi5cqE2bNikhIaFc+3/22Wfq06ePLr/8cr3wwgtq2rSpAgICNH/+fC1atKjC13Aqp9Mpi8Wif//73yUGytPnGJ06IlZel19+uWseFoDqQ4gCUCmOHTumlJQU/fjjj/rwww/Vvn37Ch+jsLBQixYtUv369XXppZd61I4LL7xQCxcu1IEDBySdnPi9adMmnThxotioT5GlS5cqKChIH3zwgQIDA13l8+fPL1a3tJGp0spjY2NljFFMTIzatGlT0cupEi1atJAk7dy5U+edd56rvKCgQBkZGUpMTHSVne1IHFCbMScKwFkrLCxUv379tHHjRr311lserU1UWFioBx54QNu3b9cDDzygsLCwUusePXpUGzduLHHbv//9b0n/u1V144036tChQ5o9e3axuub/FqP09/eXxWJRYWGha9vevXtLXFQzJCSkxAU1Q0JCJKnYthtuuEH+/v4aP358scUvjTHKzs4u+SKrUGJioqxWq2bOnOnWpldeeUUOh8PtqciQkJAyl5sA6jJGogCctQcffFDvvfeeUlJSlJOTU2xxzdMX1nQ4HK46R48e1e7du7Vs2TLt2bNH/fv314QJE8o839GjR9WjRw9dfPHF6tWrl6Kjo3X48GEtX75cn332mVJTU9WlSxdJ0u23365XX31VI0eO1JdffqnLLrtM+fn5+vDDD/W3v/1N119/vZKTkzVt2jT16tVLAwcO1MGDBzVnzhy1atVK3377rdu5u3btqg8//FDTpk1TVFSUYmJiFB8fr65du0qSHn/8cfXv318BAQFKSUlRbGysJk6cqFGjRmnv3r1KTU1VaGioMjIy9M4772jIkCH6xz/+cVb9X1GNGzfWqFGjNH78ePXq1Ut9+vTRzp079cILL+iiiy5y+9+ra9euWrJkiUaOHKmLLrpIDRo0UEpKSrW2F/BZ3nw0EEDtUPRofmmvsuo2aNDAtG7d2tx6661mzZo15TrfiRMnzD//+U+TmppqWrRoYQIDA039+vVNly5dzJQpU8zx48fd6h89etQ8/vjjJiYmxgQEBJjIyEhz0003mT179rjqvPLKK6Z169YmMDDQtGvXzsyfP9+1hMCpduzYYS6//HITHBxsJLktdzBhwgTTrFkz4+fnV2y5g6VLl5pLL73UhISEmJCQENOuXTszbNgws3PnTre+KWv5h9MVte/3338vs97pSxwUmT17tmnXrp0JCAgwERER5r777jN//PGHW50jR46YgQMHmoYNGxpJLHcAnMJiTCX8uBIAAEAdw5woAAAADxCiAAAAPECIAgAA8AAhCgAAwAOEKAAAAA8QogAAADzAYptVyOl06rffflNoaCg/nQAAQA1hjFFeXp6ioqLk51f6eBMhqgr99ttvio6O9nYzAACAB37++Wede+65pW4nRFWh0NBQSSf/Ryjrd8AAAIDvyM3NVXR0tOt7vDSEqCpUdAsvLCyMEAUAQA1zpqk4PjGxfM6cOWrZsqWCgoIUHx+vL7/8ssz6b731ltq1a6egoCB17NhRq1atcttujNGYMWPUtGlTBQcHKzExUbt27XJt37t3rwYPHqyYmBgFBwcrNjZWY8eOVUFBgVsdi8VS7PXFF19U7sUDAIAayeshqujXwceOHastW7aoU6dOSkpK0sGDB0usv2HDBg0YMECDBw9Wenq6UlNTlZqaqm3btrnqTJ48WTNnztTcuXO1adMmhYSEKCkpSceOHZMk7dixQ06nUy+99JK+//57Pf/885o7d64ee+yxYuf78MMPdeDAAder6JfaAQBA3eb1HyCOj4/XRRddpNmzZ0s6+URbdHS07r//fj366KPF6vfr10/5+flauXKlq+ziiy9W586dNXfuXBljFBUVpQcffFD/+Mc/JEkOh0MRERFasGCB+vfvX2I7pkyZohdffFE//fSTpJMjUTExMUpPT1fnzp09urbc3FzZbDY5HA5u5wEAUEOU9/vbq3OiCgoKtHnzZo0aNcpV5ufnp8TERG3cuLHEfTZu3KiRI0e6lSUlJWn58uWSpIyMDGVmZioxMdG13WazKT4+Xhs3biw1RDkcDtnt9mLlffr00bFjx9SmTRs9/PDD6tOnT6nXc/z4cR0/ftz1Pjc3t9S6AACUprCwUCdOnPB2M2qtgIAA+fv7n/VxvBqiDh06pMLCQkVERLiVR0REaMeOHSXuk5mZWWL9zMxM1/aistLqnG737t2aNWuWnnvuOVdZgwYNNHXqVF1yySXy8/PT0qVLlZqaquXLl5capCZNmqTx48eXccUAAJTOGKPMzEwdPnzY202p9Ro2bKjIyMizWsexzj+d9+uvv6pXr166+eabdc8997jKGzVq5DbiddFFF+m3337TlClTSg1Ro0aNctun6BFJAADKoyhANWnSRPXr12eh5ipgjNHRo0ddc6+bNm3q8bG8GqIaNWokf39/ZWVluZVnZWUpMjKyxH0iIyPLrF/0Z1ZWllvHZGVlFZvb9Ntvv+mKK65Qjx499PLLL5+xvfHx8Vq7dm2p2wMDAxUYGHjG4wAAcLrCwkJXgAoPD/d2c2q14OBgSdLBgwfVpEkTj2/tefXpPKvVqq5du2rdunWuMqfTqXXr1ql79+4l7tO9e3e3+pK0du1aV/2YmBhFRka61cnNzdWmTZvcjvnrr7+qZ8+e6tq1q+bPn1/msu5Ftm7delaJFQCA0hTNgapfv76XW1I3FPXz2cw98/rtvJEjR2rQoEG68MIL1a1bN02fPl35+fm68847JUm33367mjVrpkmTJkmShg8froSEBE2dOlXJyclavHixvv76a9dIksVi0YgRIzRx4kS1bt1aMTExGj16tKKiopSamirpfwGqRYsWeu655/T777+72lM0krVw4UJZrVZ16dJFkrRs2TLNmzdP/+///b/q6hoAQB3ELbzqURn97PUQ1a9fP/3+++8aM2aMMjMz1blzZ61evdo1MXz//v1uo0Q9evTQokWL9MQTT+ixxx5T69attXz5cl1wwQWuOg8//LDy8/M1ZMgQHT58WJdeeqlWr16toKAgSSdHrnbv3q3du3cX+02cU1d8mDBhgvbt26d69eqpXbt2WrJkiW666aaq7I46Lzs7223R09NZrVaGuQEAPsHr60TVZqwTVTHZ2dmu9cLKkpaWRpACUOscO3ZMGRkZiomJcf2jH1WnrP4u7/e311csB4qcPgLlcIQqI6OlHI7QMusBALzrjjvucP08WkBAgCIiInT11Vdr3rx5cjqd5T7OggUL1LBhw6praCXz+u08oCRbtnTRihW9ZYyfLBanUlJWKi4u3dvNAgCf5e3pEL169dL8+fNVWFiorKwsrV69WsOHD9fbb7+t9957T/Xq1b7IUfuuCDWewxHqClCSZIyfVqzordjY3bLZ8rzcOgDwPb4wHSIwMND1cFazZs0UFxeniy++WFdddZUWLFigu+++W9OmTdP8+fP1008/yW63KyUlRZMnT1aDBg30ySefuB4qK5r0PXbsWI0bN06vvfaaZsyYoZ07dyokJERXXnmlpk+friZNmlTJtZQXt/Pgc3Jywl0BqogxfsrJKf6zPACA8k9zqO7pEFdeeaU6deqkZcuWSTr5024zZ87U999/r4ULF+qjjz7Sww8/LOnkg2PTp09XWFiYDhw4oAMHDrh+A/fEiROaMGGCvvnmGy1fvlx79+7VHXfcUa3XUhJGouBz7PZsWSxOtyBlsThlt+d4sVUAAE+0a9dO3377rSRpxIgRrvKWLVtq4sSJuvfee/XCCy/IarXKZrPJYrEUW3D7rrvucv39vPPO08yZM3XRRRfpyJEjatCgQbVcR0kYiYLPsdnylJKyUhbLycmIRXOiuJUHADWPMcZ1e+7DDz/UVVddpWbNmik0NFS33XabsrOzdfTo0TKPsXnzZqWkpKh58+YKDQ1VQkKCpJPLIHkTI1HwSXFx6YqN3a2cHLvs9hwCFADUUNu3b1dMTIz27t2r3r1767777tNTTz0lu92u9evXa/DgwSooKCh1pfb8/HwlJSUpKSlJr7/+uho3bqz9+/crKSnJ609rE6LgM6xWq9t7my2vxPB0ej0AgG/66KOP9N133+nvf/+7Nm/eLKfTqalTp7oW0X7zzTfd6lutVhUWFrqV7dixQ9nZ2XrmmWcUHR0tSfr666+r5wLOgBAFnxEeHq60tDRWLAeAGuj48ePKzMx0W+Jg0qRJ6t27t26//XZt27ZNJ06c0KxZs5SSkqLPP/9cc+fOdTtGy5YtdeTIEa1bt06dOnVS/fr11bx5c1mtVs2aNUv33nuvtm3bpgkTJnjpKt0xJwo+JTw8XE2bNi31RYACAN+0evVqNW3aVC1btlSvXr308ccfa+bMmXr33Xfl7++vTp06adq0aXr22Wd1wQUX6PXXX3f9Lm6RHj166N5771W/fv3UuHFjTZ48WY0bN9aCBQv01ltvqX379nrmmWf03HPPeekq3fGzL1WIn30BAJTX2fzsiy+sE1XTVMbPvnA7DwCAGo7pEN5BiAIAoBYgIFU/5kQBAAB4gBAFAADgAUIUAACABwhRAAAAHiBEAQAAeIAQBQAA4AFCFAAAgAcIUQAAwKd98sknslgsOnz4cLn3admypaZPn15lbZIIUQAA4Czdcccdslgsuvfee4ttGzZsmCwWi+64447qb1gVI0QBAICzFh0drcWLF+u///2vq+zYsWNatGiRmjdv7sWWVR1CFAAAOGtxcXGKjo7WsmXLXGXLli1T8+bN1aVLF1fZ8ePH9cADD6hJkyYKCgrSpZdeqq+++srtWKtWrVKbNm0UHBysK664Qnv37i12vvXr1+uyyy5TcHCwoqOj9cADDyg/P7/Krq8khCgAAGqZX36RPv745J/V6a677tL8+fNd7+fNm6c777zTrc7DDz+spUuXauHChdqyZYtatWqlpKQk5eTkSJJ+/vln3XDDDUpJSdHWrVt1991369FHH3U7xp49e9SrVy/deOON+vbbb7VkyRKtX79eaWlpVX+RpyBEAQBQi7zyitSihXTllSf/fOWV6jv3rbfeqvXr12vfvn3at2+fPv/8c916662u7fn5+XrxxRc1ZcoUXXvttWrfvr3++c9/Kjg4WK/8X0NffPFFxcbGaurUqWrbtq1uueWWYvOpJk2apFtuuUUjRoxQ69at1aNHD82cOVOvvvqqjh07Vm3XW6/azgQAAKrUL79IQ4ZITufJ906nNHSolJQknXtu1Z+/cePGSk5O1oIFC2SMUXJysho1auTavmfPHp04cUKXXHKJqywgIEDdunXT9u3bJUnbt29XfHy823G7d+/u9v6bb77Rt99+q9dff91VZoyR0+lURkaGzj///Kq4vGIIUQAA1BK7dv0vQBUpLJR2766eECWdvKVXdFttzpw5VXKOI0eOaOjQoXrggQeKbavOSeyEKAAAaonWrSU/P/cg5e8vtWpVfW3o1auXCgoKZLFYlJSU5LYtNjZWVqtVn3/+uVq0aCFJOnHihL766iuNGDFCknT++efrvffec9vviy++cHsfFxenH374Qa2q88JKwJwoAABqiXPPlV5++WRwkk7++dJL1TcKdfKc/tq+fbt++OEH+Rc15P+EhITovvvu00MPPaTVq1frhx9+0D333KOjR49q8ODBkqR7771Xu3bt0kMPPaSdO3dq0aJFWrBggdtxHnnkEW3YsEFpaWnaunWrdu3apXfffbfaJ5YzEgUAQC0yePDJOVC7d58cgarOAFUkLCys1G3PPPOMnE6nbrvtNuXl5enCCy/UBx98oHPOOUfSydtxS5cu1d///nfNmjVL3bp109NPP6277rrLdYy//OUv+s9//qPHH39cl112mYwxio2NVb9+/ar82k5lMcaYaj1jHZKbmyubzSaHw1HmBwoAgGPHjikjI0MxMTEKCgrydnNqvbL6u7zf39zOAwAA8AAhCgAAwAOEKAAAAA8QogAAADxAiAIAwIfwvFf1qIx+JkQBAOADAgICJElHjx71ckvqhqJ+Lup3T7BOFAAAPsDf318NGzbUwYMHJUn169eXxWLxcqtqH2OMjh49qoMHD6phw4bFFgStCEIUAAA+IjIyUpJcQQpVp2HDhq7+9hQhCgAAH2GxWNS0aVM1adJEJ06c8HZzaq2AgICzGoEqQogCAMDH+Pv7V8qXPKoWE8sBAAA8QIgCAADwACEKAADAA4QoAAAADxCiAAAAPECIAgAA8AAhCgAAwAOEKAAAAA8QogAAADxAiAIAAPAAP/sCAHVMdna2CgoKSt1utVoVHh5ejS0CaiZCFADUIdnZ2Zo9e/YZ66WlpRGkgDPgdh4A1CGnj0A5HKHKyGgphyO0zHoAimMkCgDqqC1bumjFit4yxk8Wi1MpKSsVF5fu7WYBNQYjUQBQBzkcoa4AJUnG+GnFit7FRqQAlI4QBQB1UE5OuCtAFTHGTzk5di+1CKh5CFEAUAfZ7dmyWJxuZRaLU3Z7jpdaBNQ8hCgAqINstjylpKx0BamiOVE2W56XWwbUHEwsB4A6Ki4uXbGxu5WTY5fdnkOAAiqIEAUAdYjVanV7b7PllRieTq8HoDifuJ03Z84ctWzZUkFBQYqPj9eXX35ZZv233npL7dq1U1BQkDp27KhVq1a5bTfGaMyYMWratKmCg4OVmJioXbt2ubbv3btXgwcPVkxMjIKDgxUbG6uxY8cWWxfl22+/1WWXXaagoCBFR0dr8uTJlXfRAOAF4eHhSktL05AhQ0p9sdAmUD5eD1FLlizRyJEjNXbsWG3ZskWdOnVSUlKSDh48WGL9DRs2aMCAARo8eLDS09OVmpqq1NRUbdu2zVVn8uTJmjlzpubOnatNmzYpJCRESUlJOnbsmCRpx44dcjqdeumll/T999/r+eef19y5c/XYY4+5jpGbm6trrrlGLVq00ObNmzVlyhSNGzdOL7/8ctV2CABUsfDwcDVt2rTUFwEKKCfjZd26dTPDhg1zvS8sLDRRUVFm0qRJJdbv27evSU5OdiuLj483Q4cONcYY43Q6TWRkpJkyZYpr++HDh01gYKB54403Sm3H5MmTTUxMjOv9Cy+8YM455xxz/PhxV9kjjzxi2rZtW+5rczgcRpJxOBzl3gcAAHhXeb+/vToSVVBQoM2bNysxMdFV5ufnp8TERG3cuLHEfTZu3OhWX5KSkpJc9TMyMpSZmelWx2azKT4+vtRjSpLD4ZDd/r/1UTZu3KjLL7/cbV5AUlKSdu7cqT/++KPEYxw/fly5ubluLwAAUDt5NUQdOnRIhYWFioiIcCuPiIhQZmZmiftkZmaWWb/oz4occ/fu3Zo1a5aGDh16xvOceo7TTZo0STabzfWKjo4usR4AAKj56vzTeb/++qt69eqlm2++Wffcc89ZHWvUqFEaOXKk631ubi5BCgCASpKdnV3mj2NbrdZqndPn1RDVqFEj+fv7Kysry608KytLkZGRJe4TGRlZZv2iP7OystS0aVO3Op07d3bb77ffftMVV1yhHj16FJswXtp5Tj3H6QIDAxUYGFjiNgAA4Lns7GzNnj37jPWq8+lSr97Os1qt6tq1q9atW+cqczqdWrdunbp3717iPt27d3erL0lr16511Y+JiVFkZKRbndzcXG3atMntmL/++qt69uyprl27av78+fLzc++K7t2769NPP9WJEyfcztO2bVudc845nl80AACosNNHoByOUGVktCz2o9lljVRVNq/fzhs5cqQGDRqkCy+8UN26ddP06dOVn5+vO++8U5J0++23q1mzZpo0aZIkafjw4UpISNDUqVOVnJysxYsX6+uvv3aNJFksFo0YMUITJ05U69atFRMTo9GjRysqKkqpqamS/hegWrRooeeee06///67qz1Fo0wDBw7U+PHjNXjwYD3yyCPatm2bZsyYoeeff74aewcAAJxuy5YuWrGit4zxc/1kUVxcerW3w+shql+/fvr99981ZswYZWZmqnPnzlq9erVrEvf+/fvdRol69OihRYsW6YknntBjjz2m1q1ba/ny5brgggtcdR5++GHl5+dryJAhOnz4sC699FKtXr1aQUFBkk6OKO3evVu7d+/Wueee69YeY4ykk0/0rVmzRsOGDVPXrl3VqFEjjRkzRkOGDKnqLgEAAKVwOEJdAUqSjPHTihW9FRu7u9p/ushiilIDKl1ubq5sNpscDofCwsK83RwAAGqsAwcO6OWXX1ZGRkstXDio2PZBgxYoJmafhgwZ4jYn2hPl/f72+orlAAAA5WW3Z8ticbqVWSxO2e051d4WQhQAAKgxbLY8paSsdAWpojlR1X0rT/KBOVEAAAAVEReXrtjY3crJsctuz/FKgJIIUQAAoAY49WfYpJMjUiWFp9PrVSVCFAAA8Hnh4eFKS0tjxXIAAICKqs6AVB5MLAcAAPAAIQoAAMADhCgAAAAPEKIAAAA8wMRyAEC5ZWdn+9TTUYA3EaIAAOWSnZ2t2bNnn7FeWloaQQp1ArfzAADlcvoIlMMRqoyMlnI4QsusB9RWjEQBACpsy5YuWrGit4zxc/12WVxcurebBVQrRqIAABXicIS6ApQkGeOnFSt6FxuRAmo7QhQAoEJycsJdAaqIMX7KybF7qUWAdxCiAAAVYrdny2JxupVZLE7Z7TleahHgHYQoAECF2Gx5SklZ6QpSRXOibLY8L7cMqF5MLAcAVFhcXLpiY3crJ8cuuz2HAIU6iRAFACgXq9Xq9t5myysxPJ1eD6itCFEAgHIJDw9XWloaK5YD/4cQBQAoNwIS8D9MLAcAAPAAIQoAAMADhCgAAAAPEKIAAAA8QIgCAADwACEKAADAA4QoAAAAD7BOFADAp2VnZ7PAJ3wSIQoA4LOys7M1e/bsM9ZLS0sjSKHacTsPAOCzTh+BcjhClZHRUg5HaJn1gOrASBQAoEbYsqWLVqzoLWP8ZLE4lZKyUnFx6d5uFuowRqIAAD7P4Qh1BShJMsZPK1b0LjYiBVQnQhQAwOfl5IS7AlQRY/yUk2P3UosAQhQAoAaw27NlsTjdyiwWp+z2HC+1CCBEAQBqAJstTykpK11BqmhOlM2W5+WWoS5jYjkAoEaIi0tXbOxu5eTYZbfnEKDgdYQoAIDPslqtbu9ttrwSw9Pp9YDqQIgCAPis8PBwpaWlsWI5fBIhCgDg0whI8FVMLAcAAPAAIQoAAMAD3M4D6pDs7GzmlgBAJSFEAXVEdna2Zs+efcZ6aWlpBCkAKAdu5wF1xOkjUA5HqDIyWhb77bGyRqoAAP/DSBRQB23Z0sX1Y65FKz/HxaV7u1kAUKMwEgXUMQ5HqCtASSd/xHXFit7FRqQAAGUjRAF1TE5OuCtAFTHGTzk5di+1CABqJkIUUMfY7dmuH3EtYrE4ZbfneKlFAFAzEaKAOsZmy1NKykpXkCqaE8WPuQJAxTCxHKiD4uLSFRu7Wzk5dtntOQQoAPAAIQqoI07/lXubLa/E8HR6PQBAyQhRQB0RHh6utLQ0ViwHgEpCiALqEAISAFQeJpYDAAB4gBAFAADgAUIUAACABwhRAAAAHiBEAQAAeIAQBQAA4AFCFAAAgAe8HqLmzJmjli1bKigoSPHx8fryyy/LrP/WW2+pXbt2CgoKUseOHbVq1Sq37cYYjRkzRk2bNlVwcLASExO1a9cutzpPPfWUevToofr166thw4YlnsdisRR7LV68+KyuFQAA1B5eDVFLlizRyJEjNXbsWG3ZskWdOnVSUlKSDh48WGL9DRs2aMCAARo8eLDS09OVmpqq1NRUbdu2zVVn8uTJmjlzpubOnatNmzYpJCRESUlJOnbsmKtOQUGBbr75Zt13331ltm/+/Pk6cOCA65Wamlop1w0AAGo+izHGeOvk8fHxuuiiizR79mxJktPpVHR0tO6//349+uijxer369dP+fn5Wrlypavs4osvVufOnTV37lwZYxQVFaUHH3xQ//jHPyRJDodDERERWrBggfr37+92vAULFmjEiBE6fPhwsXNZLBa98847ZxWccnNzZbPZ5HA4FBYW5vFxAABA9Snv97fXRqIKCgq0efNmJSYm/q8xfn5KTEzUxo0bS9xn48aNbvUlKSkpyVU/IyNDmZmZbnVsNpvi4+NLPWZZhg0bpkaNGqlbt26aN2+evJg3AQCAj/Hab+cdOnRIhYWFioiIcCuPiIjQjh07StwnMzOzxPqZmZmu7UVlpdUpryeffFJXXnml6tevrzVr1uhvf/ubjhw5ogceeKDUfY4fP67jx4+73ufm5lbonAAAoObgB4hLMXr0aNffu3Tpovz8fE2ZMqXMEDVp0iSNHz++OpoHAAC8zGu38xo1aiR/f39lZWW5lWdlZSkyMrLEfSIjI8usX/RnRY5ZXvHx8frll1/cRppON2rUKDkcDtfr559/PqtzAgAA3+W1EGW1WtW1a1etW7fOVeZ0OrVu3Tp17969xH26d+/uVl+S1q5d66ofExOjyMhItzq5ubnatGlTqccsr61bt+qcc85RYGBgqXUCAwMVFhbm9gIAALWTV2/njRw5UoMGDdKFF16obt26afr06crPz9edd94pSbr99tvVrFkzTZo0SZI0fPhwJSQkaOrUqUpOTtbixYv19ddf6+WXX5Z08om6ESNGaOLEiWrdurViYmI0evRoRUVFuT1lt3//fuXk5Gj//v0qLCzU1q1bJUmtWrVSgwYNtGLFCmVlZeniiy9WUFCQ1q5dq6efftr1xB8AAICMl82aNcs0b97cWK1W061bN/PFF1+4tiUkJJhBgwa51X/zzTdNmzZtjNVqNR06dDDvv/++23an02lGjx5tIiIiTGBgoLnqqqvMzp073eoMGjTISCr2+vjjj40xxvz73/82nTt3Ng0aNDAhISGmU6dOZu7cuaawsLBC1+ZwOIwk43A4KrQfAADwnvJ+f3t1najajnWiAACoeXx+nSgAAICajBAFAADgAUIUAACABwhRAAAAHiBEAQAAeIAQBQAA4AFCFAAAgAcIUQAAAB4gRAEAAHigwiFq5cqVGjNmjD7//HNJ0kcffaTrrrtOvXr1cv2GHQAAQG1XoRD10ksv6a9//atWrVql6667Tv/617+UmpqqZs2aqWXLlhoxYoRmzJhRVW0FAADwGfUqUnnmzJl64YUXdM899+jjjz/Wddddp6lTp+pvf/ubJOniiy/W5MmTNXz48CppLAAAgK+o0EhURkaGkpKSJElXXHGFCgsLdfnll7u29+zZU/v27avcFgIAAPigCoWo8PBwV0j67bff9Oeff2r//v2u7fv27ZPdbq/cFgIAAPigCt3Ou/766zV48GANGjRI7733nm6//XY9+OCD8vPzk8Vi0UMPPaRrrrmmqtoKAADgMyoUop599lkVFBRo8eLF6tGjh2bNmqWZM2fq+uuv14kTJ5SQkKBJkyZVVVsBAAB8hsUYY872IMeOHdOJEycUGhpaGW2qNXJzc2Wz2eRwOBQWFubt5gAAgHIo7/d3hUaiShMUFKSgoKDKOBQAAECNUKEQNXLkyHLVmzZtmkeNAQAAqCkqFKLS09Pd3q9fv15du3ZVcHCwq8xisVROywAAAHxYhULUxx9/7PY+NDRUixYt0nnnnVepjQIAAPB1/AAxAACAByplYjkA+JLs7GwVFBSUut1qtSo8PLwaWwSgNiJEAahVsrOzNXv27DPWS0tLI0gBOCsVClHffvut23tjjHbs2KEjR464lf/lL385+5YBgAdOH4FyOEKVkxMuuz1bNlteqfUAoKIqFKI6d+4si8WiU9fn7N27tyS5yi0WiwoLCyu3lQDggS1bumjFit4yxk8Wi1MpKSsVF5d+5h0BoBwqFKIyMjKqqh0AUKkcjlBXgJIkY/y0YkVvxcbudhuRAgBPVShEtWjRoqraAQCVKicn3BWgihjjp5wcOyEKQKWo8BIHxhhlZGTozz//lHRyXsGSJUv06quv6tChQ5XeQADwhN2eLYvF6VZmsThlt+d4qUUAapsKhaidO3cqJiZGrVq10vnnn6+MjAz16NFDgwcP1n333afzzz9fu3btqqq2AkC52Wx5SklZ6QpSRXOiGIUCUFkqdDvvkUceUadOnbRixQrNmzdPycnJatOmjTZu3Cin06mbb75ZTz75pF577bWqai8AlFtcXLpiY3crJ8cuuz2HAAWgUlUoRG3YsEFr1qxRx44dNXHiRM2YMUMvv/yyAgICJEmPPvqoBgwYUCUNBYDysFqtbu9ttrwSw9Pp9QCgoioUoo4cOSK73S5JCgkJUUhIiJo2beraHh0draysrMptIQBUQHh4uNLS0lixHECVq1CIioqK0v79+9W8eXNJ0uTJk9WkSRPX9t9//13nnHNO5bYQACqIgASgOlRoYnliYqJ27Njhen/fffcpNDTU9X7NmjWKi4urvNYBAAD4KIs5dfnxs7R3714FBga63eKry3Jzc2Wz2eRwOBQWFubt5gAAgHIo7/d3hUaiPvroI7Vv3165ubnFtjkcDiUnJ2v37t0Vby0AAEANU6EQNX36dN1zzz0lpjKbzaahQ4dq2rRpldY4AAAAX1WhEPXNN9+oV69epW6/5pprtHnz5rNuFAAAgK+rUIjKyspyrQlVknr16un3338/60YBAAD4ugqFqGbNmmnbtm2lbv/222+ZVA4AAOqECoWo6667TqNHj9axY8eKbfvvf/+rsWPHqnfv3pXWOAAAAF9VoSUOsrKyFBcXJ39/f6Wlpalt27aSpB07dmjOnDkqLCzUli1bFBERUWUNrklY4gAAgJqnvN/fFVqxPCIiQhs2bNB9992nUaNGqSh/WSwWJSUlac6cOQQoAABQJ1QoRElSixYttGrVKv3xxx/avXu3jDFq3bo1P/cCAADqlAqHqCLnnHOOLrroospsCwAAQI1RoYnlAAAAOIkQBQAA4AFCFAAAgAcIUQAAAB4gRAEAAHiAEAUAAOABQhQAAIAHCFEAAAAeIEQBAAB4gBAFAADgAUIUAACABwhRAAAAHiBEAQAAeIAQBQAA4AFCFAAAgAcIUQAAAB4gRAEAAHjA6yFqzpw5atmypYKCghQfH68vv/yyzPpvvfWW2rVrp6CgIHXs2FGrVq1y226M0ZgxY9S0aVMFBwcrMTFRu3btcqvz1FNPqUePHqpfv74aNmxY4nn279+v5ORk1a9fX02aNNFDDz2kP//886yuFQAA1B5eDVFLlizRyJEjNXbsWG3ZskWdOnVSUlKSDh48WGL9DRs2aMCAARo8eLDS09OVmpqq1NRUbdu2zVVn8uTJmjlzpubOnatNmzYpJCRESUlJOnbsmKtOQUGBbr75Zt13330lnqewsFDJyckqKCjQhg0btHDhQi1YsEBjxoyp3A4AAAA1l/Gibt26mWHDhrneFxYWmqioKDNp0qQS6/ft29ckJye7lcXHx5uhQ4caY4xxOp0mMjLSTJkyxbX98OHDJjAw0LzxxhvFjjd//nxjs9mKla9atcr4+fmZzMxMV9mLL75owsLCzPHjx8t9fQ6Hw0gyDoej3PsAAADvKu/3t9dGogoKCrR582YlJia6yvz8/JSYmKiNGzeWuM/GjRvd6ktSUlKSq35GRoYyMzPd6thsNsXHx5d6zNLO07FjR0VERLidJzc3V99//32p+x0/fly5ubluLwAAUDt5LUQdOnRIhYWFbkFFkiIiIpSZmVniPpmZmWXWL/qzIsesyHlOPUdJJk2aJJvN5npFR0eX+5wAAKBm8frE8tpk1KhRcjgcrtfPP//s7SYBAIAq4rUQ1ahRI/n7+ysrK8utPCsrS5GRkSXuExkZWWb9oj8rcsyKnOfUc5QkMDBQYWFhbi8AAFA7eS1EWa1Wde3aVevWrXOVOZ1OrVu3Tt27dy9xn+7du7vVl6S1a9e66sfExCgyMtKtTm5urjZt2lTqMUs7z3fffef2lODatWsVFham9u3bl/s4AACg9qrnzZOPHDlSgwYN0oUXXqhu3bpp+vTpys/P15133ilJuv3229WsWTNNmjRJkjR8+HAlJCRo6tSpSk5O1uLFi/X111/r5ZdfliRZLBaNGDFCEydOVOvWrRUTE6PRo0crKipKqamprvPu379fOTk52r9/vwoLC7V161ZJUqtWrdSgQQNdc801at++vW677TZNnjxZmZmZeuKJJzRs2DAFBgZWax8BAAAfVU1PC5Zq1qxZpnnz5sZqtZpu3bqZL774wrUtISHBDBo0yK3+m2++adq0aWOsVqvp0KGDef/99922O51OM3r0aBMREWECAwPNVVddZXbu3OlWZ9CgQUZSsdfHH3/sqrN3715z7bXXmuDgYNOoUSPz4IMPmhMnTlTo2ljiAACAmqe8398WY4zxYoar1XJzc2Wz2eRwOJgfBQBADVHe72+ezgMAAPAAIQoAAMADhCgAAAAPEKIAAAA8QIgCAADwACEKAADAA4QoAAAADxCiAAAAPECIAgAA8IBXfzsP5Zedna2CgoJSt1utVoWHh1djiwAAqNsIUTVAdna2Zs+e7XrvcIQqJydcdnu2bLY8V3laWhpBCgCAakKIqgFOHYHasqWLVqzoLWP8ZLE4lZKyUnFx6cXqAQCAqsWcqBrE4Qh1BShJMsZPK1b0lsMR6uWWAQBQ9xCiapCcnHBXgCpijJ9ycuxeahEAAHUXIaoGsduzZbE43cosFqfs9hwvtQgAgLqLEFWD2Gx5SklZ6QpSRXOiTp1cDgAAqgcTy2uYuLh0xcbuVk6OXXZ7DgEKKAFLggCoDoSoGshmyyM8AaU4fUmQ0rAkCICzxe28GsBqtVZqPaA2O30EyuEIVUZGy2JPsbIkCICzxUhUDRAeHq60tDRuTwAVVNa6agBwtghRNQQBCaiY0tZVi43dze1wAJWC23kAaiXWVQNQ1QhRAGol1lUDUNUIUQBqJdZVA1DVmBMFoNZiXTUAVYkQBaBWOX2pj9LWVWNJEABnixAFoFZhSRAA1YUQBaDWISABqA5MLAcAAPAAIQoAAMADhCgAAAAPEKIAAAA8QIgCAADwACEKAADAA4QoAAAADxCiAAAAPMBimwDwf7Kzs1npHEC5EaIAQCcD1OzZs89YLy0tjSAFQBK38wBAkoqNQDkcocrIaCmHI7TMegDqLkaiAOA0W7Z00YoVvWWMnywWp1JSViouLt3bzQLgYwhRAHAKhyPUFaAkyRg/rVjRW7Gxu2Wz5Xm5dd7HvDHgfwhRAHCKnJxwV4AqYoyfcnLsdT5EMW8McMecKAA4hd2eLYvF6VZmsThlt+d4qUW+g3ljgDtGogDgFDZbnlJSVhabE1XXR6FOx7wxgBAFAMXExaUrNna3cnLssttzCFCnYd4YcBIhCgB0ckL0qWy2vBIDwen16iLmjcFbfO3BBkIUAEgKDw9XWlqaT/0H2lcVzRs7NUgxbwxVzRcfbCBEAcD/ISCVD/PG4A0lPdiQkxMuuz3b7bNXnQ82EKIAABXGvLHS+dotp9rIVx5sIEQBAMqFeWNn5ou3nGobX3qwgRAFACgX5o2dmS/ecqptfOnBBkJUDcHwMABfwH9nys9XbjnVNr70YAMhqgZgeBgAahZfuuVU2/jSgw2EqBqA4WEAqFl86ZZTbeQrDzYQomoYhocBwPf50i2n2sIXH2wgRNUgDA8DQM3gS7ecagtffLCBEFWDMDwMADWHr9xyqk18bd4vIaoGYXgYAHybL95yQtUhRNUgDA8DgG/zxVtOqDqEqBqG4WEA8G0EpLqDEFUDMDwMAIDvIUTVAAwPAwDge/zOXKXqzZkzRy1btlRQUJDi4+P15Zdflln/rbfeUrt27RQUFKSOHTtq1apVbtuNMRozZoyaNm2q4OBgJSYmateuXW51cnJydMsttygsLEwNGzbU4MGDdeTIEdf2vXv3ymKxFHt98cUXlXfhFRAeHq6mTZuW+iJAAQBQvbweopYsWaKRI0dq7Nix2rJlizp16qSkpCQdPHiwxPobNmzQgAEDNHjwYKWnpys1NVWpqanatm2bq87kyZM1c+ZMzZ07V5s2bVJISIiSkpJ07NgxV51bbrlF33//vdauXauVK1fq008/1ZAhQ4qd78MPP9SBAwdcr65du1Z+JwAAgJrHeFm3bt3MsGHDXO8LCwtNVFSUmTRpUon1+/bta5KTk93K4uPjzdChQ40xxjidThMZGWmmTJni2n748GETGBho3njjDWOMMT/88IORZL766itXnX//+9/GYrGYX3/91RhjTEZGhpFk0tPTPb42h8NhJBmHw+HxMQAAQPUq7/e3V0eiCgoKtHnzZiUmJrrK/Pz8lJiYqI0bN5a4z8aNG93qS1JSUpKrfkZGhjIzM93q2Gw2xcfHu+ps3LhRDRs21IUXXuiqk5iYKD8/P23atMnt2H369FGTJk106aWX6r333ivzeo4fP67c3Fy3F2q37Oxst5HK01/Z2dnebiIAoIp4dWL5oUOHVFhYqIiICLfyiIgI7dixo8R9MjMzS6yfmZnp2l5UVladJk2auG2vV6+e7Ha7q06DBg00depUXXLJJfLz89PSpUuVmpqq5cuXq0+fPiW2bdKkSRo/fnx5Lh21QHZ2tmbPnn3GemlpacxZA4BaiKfzStGoUSONHDnS9f6iiy7Sb7/9pilTppQaokaNGuW2T25urqKjo6u8rfCO05+WdDhClZMTLrs9220JirKeqgQA1FxeDVGNGjWSv7+/srKy3MqzsrIUGRlZ4j6RkZFl1i/6MysrS02bNnWr07lzZ1ed0yeu//nnn8rJySn1vJIUHx+vtWvXlro9MDBQgYGBpW5H7bVlS5diK8nHxaV7u1kAgCrk1TlRVqtVXbt21bp161xlTqdT69atU/fu3Uvcp3v37m71JWnt2rWu+jExMYqMjHSrk5ubq02bNrnqdO/eXYcPH9bmzZtddT766CM5nU7Fx8eX2t6tW7e6BTNAOjkCVRSgpJM/Cr1iRW85HKFebhkAoCp5/XbeyJEjNWjQIF144YXq1q2bpk+frvz8fN15552SpNtvv13NmjXTpEmTJEnDhw9XQkKCpk6dquTkZC1evFhff/21Xn75ZUmSxWLRiBEjNHHiRLVu3VoxMTEaPXq0oqKilJqaKkk6//zz1atXL91zzz2aO3euTpw4obS0NPXv319RUVGSpIULF8pqtapLly6SpGXLlmnevHn6f//v/1VzD8HX5eSE6/RnNIzxU06OnZ/lAYBazOshql+/fvr99981ZswYZWZmqnPnzlq9erVrYvj+/fvl5/e/L6gePXpo0aJFeuKJJ/TYY4+pdevWWr58uS644AJXnYcfflj5+fkaMmSIDh8+rEsvvVSrV69WUFCQq87rr7+utLQ0XXXVVfLz89ONN96omTNnurVtwoQJ2rdvn+rVq6d27dppyZIluummm6q4R1DT2O3ZslicbkHKYnHKbs/xYqsAAFXNYowx3m5EbZWbmyubzSaHw6GwsDBvNweV7MCBA64R0LLmRA0ZMoTbwABQg5T3+9vrI1FAbRAXl67Y2N3KybHLbs/hNh4A1AGEKMBDVqvV7b3NlldieDq9HgCgdiBEAR4KDw9XWlpametAWa1WFtoEgFqKEAWcBQISANRdXl0nCgAAoKYiRAEAAHiAEAUAAOABQhQAAIAHCFEAAAAeIEQBAAB4gBAFAADgAUIUAACABwhRAAAAHiBEAQAAeIAQBQAA4AFCFAAAgAcIUQAAAB4gRAEAAHiAEAUAAOABQhQAAIAH6nm7AQAAAOWRnZ2tgoKCUrdbrVaFh4dXW3sIUQAAwOdlZ2dr9uzZZ6yXlpZWbUGK23kAAMDnnT4C5XCEKiOjpRyO0DLrVSVGogAAQI2yZUsXrVjRW8b4yWJxKiVlpeLi0qu9HYQoAKihfG1+CFAdHI5QV4CSJGP8tGJFb8XG7pbNlletbSFEAUAN5IvzQ4DqkJMT7gpQRYzxU06OvdpDFHOiAKAG8sX5IUB1sNuzZbE43cosFqfs9pxqbwsjUQBQw/nK/BCgOthseUpJWVnsM1/do1ASIQoAajRfmh8CVJe4uHTFxu5WTo5ddnuO1z7rhCgAqMF8aX4IUJWsVqvbe5str8TP+On1qhIhCoBP4smz8imaH3JqkPLW/BCgKoWHhystLc2n/rtAiALgc3jyrPx8aX4I6hZv/EPH1/7/TogC4HNKevIsJydcdnu2WzjgybOTfGV+COoO/qFzEiEKgE/jybOS+eL8ENQd/EPnJEIUAJ/Fk2el88X5Iaib6vI/dAhRAHwWT56VjYAEb6vr/9BhxXIAPsuXViYGUFxZ/9CpCwhRAHxW0ZNnRUGKJ88A31LX/6HD7TwAPo0nzwDfVdeX2CBEAfA5PHkG1Bx1+R86hCj4FFaphsSTZ4Cv4x86J1mMMcbbjaitcnNzZbPZ5HA4FBYW5u3m+DwWbwOAmqM2/6O3vN/fjETBZ5R3UbbavngbANQENTUgVSaezoPPcjhClZHRUg5HqLebAgBAMYxEwSfV5RVwAQA1AyNR8DmlrYDLiBQAwJcQouBz6voKuACAmoEQBZ9T11fABQDUDIQo+Bx+6gMAUBMwsRw+49RF2cpaAbe2L94GAKgZCFHwGaxSDQCoSQhR8CkEJABATcGcKAAAAA8QogAAADxAiAIAAPAAIQoAAMADhCgAAAAPEKIAAAA8QIgCAADwACEKAADAA4QoAAAADxCiAAAAPMDPvlQhY4wkKTc318stAQAA5VX0vV30PV4aQlQVysvLkyRFR0d7uSUAAKCi8vLyZLPZSt1uMWeKWfCY0+nUb7/9ptDQUFksFo+Pk5ubq+joaP38888KCwurxBbWbPRLcfRJcfRJcfRJcfRJcXW5T4wxysvLU1RUlPz8Sp/5xEhUFfLz89O5555baccLCwurcx/k8qBfiqNPiqNPiqNPiqNPiqurfVLWCFQRJpYDAAB4gBAFAADgAUJUDRAYGKixY8cqMDDQ203xKfRLcfRJcfRJcfRJcfRJcfTJmTGxHAAAwAOMRAEAAHiAEAUAAOABQhQAAIAHCFEAAAAeIER5yZw5c9SyZUsFBQUpPj5eX375ZZn1p0+frrZt2yo4OFjR0dH6+9//rmPHjrm2jxs3ThaLxe3Vrl27qr6MSlWRPjlx4oSefPJJxcbGKigoSJ06ddLq1avP6pi+qLL7pKZ/Tj799FOlpKQoKipKFotFy5cvP+M+n3zyieLi4hQYGKhWrVppwYIFxerU5M9JVfRJXfucHDhwQAMHDlSbNm3k5+enESNGlFjvrbfeUrt27RQUFKSOHTtq1apVld/4KlIVfbJgwYJin5OgoKCquQAfRYjygiVLlmjkyJEaO3astmzZok6dOikpKUkHDx4ssf6iRYv06KOPauzYsdq+fbteeeUVLVmyRI899phbvQ4dOujAgQOu1/r166vjcipFRfvkiSee0EsvvaRZs2bphx9+0L333qu//vWvSk9P9/iYvqYq+kSq2Z+T/Px8derUSXPmzClX/YyMDCUnJ+uKK67Q1q1bNWLECN1999364IMPXHVq+uekKvpEqlufk+PHj6tx48Z64okn1KlTpxLrbNiwQQMGDNDgwYOVnp6u1NRUpaamatu2bZXZ9CpTFX0inVzN/NTPyb59+yqryTWDQbXr1q2bGTZsmOt9YWGhiYqKMpMmTSqx/rBhw8yVV17pVjZy5EhzySWXuN6PHTvWdOrUqUraWx0q2idNmzY1s2fPdiu74YYbzC233OLxMX1NVfRJTf+cnEqSeeedd8qs8/DDD5sOHTq4lfXr188kJSW53tf0z8mpKqtP6trn5FQJCQlm+PDhxcr79u1rkpOT3cri4+PN0KFDz7KF1a+y+mT+/PnGZrNVWrtqIkaiqllBQYE2b96sxMREV5mfn58SExO1cePGEvfp0aOHNm/e7LrF8NNPP2nVqlW67rrr3Ort2rVLUVFROu+883TLLbdo//79VXchlciTPjl+/HixYePg4GDXv5Y9OaYvqYo+KVJTPyee2Lhxo1sfSlJSUpKrD2v658QTZ+qTInXpc1Ie5e23uubIkSNq0aKFoqOjdf311+v777/3dpOqFSGqmh06dEiFhYWKiIhwK4+IiFBmZmaJ+wwcOFBPPvmkLr30UgUEBCg2NlY9e/Z0u50XHx+vBQsWaPXq1XrxxReVkZGhyy67THl5eVV6PZXBkz5JSkrStGnTtGvXLjmdTq1du1bLli3TgQMHPD6mL6mKPpFq9ufEE5mZmSX2YW5urv773//W+M+JJ87UJ1Ld+5yUR2n9Vls/J+XRtm1bzZs3T++++67+9a9/yel0qkePHvrll1+83bRqQ4iqAT755BM9/fTTeuGFF7RlyxYtW7ZM77//viZMmOCqc+211+rmm2/WX/7yFyUlJWnVqlU6fPiw3nzzTS+2vOrMmDFDrVu3Vrt27WS1WpWWlqY777xTfn519yNdnj6pa58TeIbPCcqje/fuuv3229W5c2clJCRo2bJlaty4sV566SVvN63a1N1vHC9p1KiR/P39lZWV5VaelZWlyMjIEvcZPXq0brvtNt19993q2LGj/vrXv+rpp5/WpEmT5HQ6S9ynYcOGatOmjXbv3l3p11DZPOmTxo0ba/ny5crPz9e+ffu0Y8cONWjQQOedd57Hx/QlVdEnJalJnxNPREZGltiHYWFhCg4OrvGfE0+cqU9KUts/J+VRWr/V1s+JJwICAtSlS5c69TkhRFUzq9Wqrl27at26da4yp9OpdevWqXv37iXuc/To0WIjLP7+/pIkU8pPHx45ckR79uxR06ZNK6nlVceTPikSFBSkZs2a6c8//9TSpUt1/fXXn/UxfUFV9ElJatLnxBPdu3d360NJWrt2rasPa/rnxBNn6pOS1PbPSXl40m91TWFhob777ru69Tnx9sz2umjx4sUmMDDQLFiwwPzwww9myJAhpmHDhiYzM9MYY8xtt91mHn30UVf9sWPHmtDQUPPGG2+Yn376yaxZs8bExsaavn37uuo8+OCD5pNPPjEZGRnm888/N4mJiaZRo0bm4MGD1X59nqhon3zxxRdm6dKlZs+ePebTTz81V155pYmJiTF//PFHuY/p66qiT2r65yQvL8+kp6eb9PR0I8lMmzbNpKenm3379hljjHn00UfNbbfd5qr/008/mfr165uHHnrIbN++3cyZM8f4+/ub1atXu+rU9M9JVfRJXfucGGNc9bt27WoGDhxo0tPTzffff+/a/vnnn5t69eqZ5557zmzfvt2MHTvWBAQEmO+++65ar81TVdEn48ePNx988IHZs2eP2bx5s+nfv78JCgpyq1PbEaK8ZNasWaZ58+bGarWabt26mS+++MK1LSEhwQwaNMj1/sSJE2bcuHEmNjbWBAUFmejoaPO3v/3N7cuxX79+pmnTpsZqtZpmzZqZfv36md27d1fjFZ29ivTJJ598Ys4//3wTGBhowsPDzW233WZ+/fXXCh2zJqjsPqnpn5OPP/7YSCr2KuqHQYMGmYSEhGL7dO7c2VitVnPeeeeZ+fPnFztuTf6cVEWf1MXPSUn1W7Ro4VbnzTffNG3atDFWq9V06NDBvP/++9VzQZWgKvpkxIgRrv/fREREmOuuu85s2bKl+i7KB1iMKeV+EAAAAErFnCgAAAAPEKIAAAA8QIgCAADwACEKAADAA4QoAAAADxCiAAAAPECIAgAA8AAhCgDqkE8++UQWi0WHDx/2dlOAGo8QBaBK3HHHHbJYLHrmmWfcypcvXy6LxeJ6b4zRP//5T3Xv3l1hYWFq0KCBOnTooOHDh5f7h0yPHj2qUaNGKTY2VkFBQWrcuLESEhL07rvvuuq0bNlS06dPr5Rrq2pFfWexWBQQEKCYmBg9/PDDOnbsWIWO07NnT40YMcKtrEePHjpw4IBsNlslthiomwhRAKpMUFCQnn32Wf3xxx8lbjfGaODAgXrggQd03XXXac2aNfrhhx/0yiuvKCgoSBMnTizXee69914tW7ZMs2bN0o4dO7R69WrddNNNys7OrszLqVa9evXSgQMH9NNPP+n555/XSy+9pLFjx571ca1WqyIjI92CLAAPefdXZwDUVoMGDTK9e/c27dq1Mw899JCr/J133jFF/+l54403jCTz7rvvlngMp9NZrnPZbDazYMGCUrcnJCQU+w2wIp999pm59NJLTVBQkDn33HPN/fffb44cOeLa/uqrr5quXbuaBg0amIiICDNgwACTlZXl2l70m2SrV682nTt3NkFBQeaKK64wWVlZZtWqVaZdu3YmNDTUDBgwwOTn55fregYNGmSuv/56t7IbbrjBdOnSxfX+0KFDpn///iYqKsoEBwebCy64wCxatMjtGKdfc0ZGhqu9p/725ttvv23at29vrFaradGihXnuuefK1U6grmMkCkCV8ff319NPP61Zs2bpl19+Kbb9jTfeUNu2bdWnT58S9y/vaElkZKRWrVqlvLy8ErcvW7ZM5557rp588kkdOHBABw4ckCTt2bNHvXr10o033qhvv/1WS5Ys0fr165WWluba98SJE5owYYK++eYbLV++XHv37tUdd9xR7Bzjxo3T7NmztWHDBv3888/q27evpk+frkWLFun999/XmjVrNGvWrHJdz+m2bdumDRs2yGq1usqOHTumrl276v3339e2bds0ZMgQ3Xbbbfryyy8lSTNmzFD37t11zz33uK45Ojq62LE3b96svn37qn///vruu+80btw4jR49WgsWLPCorUCd4u0UB6B2OnU05eKLLzZ33XWXMcZ9JKpdu3amT58+bvsNHz7chISEmJCQENOsWbNynes///mPOffcc01AQIC58MILzYgRI8z69evd6rRo0cI8//zzbmWDBw82Q4YMcSv77LPPjJ+fn/nvf/9b4rm++uorI8nk5eUZY/43EvXhhx+66kyaNMlIMnv27HGVDR061CQlJZXregYNGmT8/f1NSEiICQwMNJKMn5+fefvtt8vcLzk52Tz44IOu9wkJCWb48OFudU4fiRo4cKC5+uqr3eo89NBDpn379uVqK1CXMRIFoMo9++yzWrhwobZv337Guo8//ri2bt2qMWPG6MiRI+U6/uWXX66ffvpJ69at00033aTvv/9el112mSZMmFDmft98840WLFigBg0auF5JSUlyOp3KyMiQdHKkJiUlRc2bN1doaKgSEhIkSfv373c71l/+8hfX3yMiIlS/fn2dd955bmUHDx4s1/VI0hVXXKGtW7dq06ZNGjRokO68807deOONru2FhYWaMGGCOnbsKLvdrgYNGuiDDz4o1q4z2b59uy655BK3sksuuUS7du1SYWFhhY4F1DWEKABV7vLLL1dSUpJGjRrlVt66dWvt3LnTraxx48Zq1aqVmjRpUqFzBAQE6LLLLtMjjzyiNWvW6Mknn9SECRNUUFBQ6j5HjhzR0KFDtXXrVtfrm2++0a5duxQbG6v8/HwlJSUpLCxMr7/+ur766iu98847klTsuAEBAa6/Fz1VdyqLxSKn01nu6wkJCVGrVq3UqVMnzZs3T5s2bdIrr7zi2j5lyhTNmDFDjzzyiD7++GNt3bpVSUlJZV4vgMpVz9sNAFA3PPPMM+rcubPatm3rKhswYIAGDhyod999V9dff32lnq99+/b6888/dezYMVmtVlmt1mIjK3Fxcfrhhx/UqlWrEo/x3XffKTs7W88884xrPtHXX39dqe0sDz8/Pz322GMaOXKkBg4cqODgYH3++ee6/vrrdeutt0qSnE6nfvzxR7Vv3961X0nXfLrzzz9fn3/+uVvZ559/rjZt2sjf37/yLwaoRRiJAlAtOnbsqFtuuUUzZ850lfXv31833XST+vfvryeffFKbNm3S3r179Z///EdLliwp95d4z5499dJLL2nz5s3au3evVq1apccee0xXXHGFwsLCJJ1cJ+rTTz/Vr7/+qkOHDkmSHnnkEW3YsEFpaWnaunWrdu3apXfffdc1sbx58+ayWq2aNWuWfvrpJ7333ntnvEVYVW6++Wb5+/trzpw5kk6O4q1du1YbNmzQ9u3bNXToUGVlZbnt07JlS1efHjp0qMSRsAcffFDr1q3ThAkT9OOPP2rhwoWaPXu2/vGPf1TLdQE1GSEKQLV58skn3b7ILRaLlixZounTp2vVqlW66qqr1LZtW911112Kjo7W+vXry3XcpKQkLVy4UNdcc43OP/983X///UpKStKbb77pdu69e/cqNjZWjRs3lnRyHtN//vMf/fjjj7rsssvUpUsXjRkzRlFRUZJO3lpcsGCB3nrrLbVv317PPPOMnnvuuUrskfKrV6+e0tLSNHnyZOXn5+uJJ55QXFyckpKS1LNnT0VGRio1NdVtn3/84x/y9/dX+/bt1bhx4xLnS8XFxenNN9/U4sWLdcEFF2jMmDF68sknS3wCEYA7izHGeLsRAAAANQ0jUQAAAB4gRAHweacuQXD667PPPvN28ypk//79ZV5PRZcoAOA93M4D4PPK+iHiZs2aKTg4uBpbc3b+/PNP7d27t9TtLVu2VL16PDgN1ASEKAAAAA9wOw8AAMADhCgAAAAPEKIAAAA8QIgCAADwACEKAADAA4QoAAAADxCiAAAAPECIAgAA8MD/B41Y7loMF1aKAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_9.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABX8klEQVR4nO3de1hU5d4+8HsGGE7CICgMKAoi5iFFBUHMspTCQpJyb5XM0E1RJqViJ/OApobhIfNQlplYappppWiUor7tlFBRzAOaGobuBBViOCXgzPP7wx8rRw4yAzMDeH+uay6dtb5rre96Xndzv2vWekYmhBAgIiIiIr3Izd0AERERUXPEEEVERERkAIYoIiIiIgMwRBEREREZgCGKiIiIyAAMUUREREQGYIgiIiIiMgBDFBEREZEBGKKIiIiIDMAQRUTUwiUlJUEmk+HixYvmboWoRWGIIqIGO3z4MGJjY9GjRw/Y29ujQ4cOGDlyJH777bdqtQ8//DBkMhlkMhnkcjkcHR1x3333YezYsdi9e7dex92xYwcGDRoEV1dX2NnZoVOnThg5ciRSUlIa69Sqeffdd/Htt99WW37w4EHMnj0bhYWFRjv2nWbPni2NpUwmg52dHbp3744ZM2agqKioUY6xceNGLF26tFH2RdTSMEQRUYO999572Lp1K4YMGYIPPvgAMTEx+Omnn9C3b1+cPHmyWn379u3xxRdf4PPPP8fChQvx5JNP4uDBg3jssccwatQoVFZW3vWYixYtwpNPPgmZTIZp06bh/fffx4gRI3Du3Dls2rTJGKcJoO4QNWfOHJOGqCofffQRvvjiCyxZsgRdu3bF/PnzMXToUDTGT6MyRBHVztLcDRBR8xcXF4eNGzdCoVBIy0aNGoWePXtiwYIFWL9+vU69UqnEs88+q7NswYIFePXVV/Hhhx/Cy8sL7733Xq3Hu3nzJubOnYtHH30UP/74Y7X1V69ebeAZNR1lZWWws7Ors+Zf//oX2rRpAwB46aWXMGLECGzbtg2//PILgoODTdEm0T2JV6KIqMEGDBigE6AAwNfXFz169EBWVla99mFhYYFly5ahe/fuWLFiBdRqda21169fR1FRER544IEa17u6uuq8v3HjBmbPno0uXbrAxsYG7u7uePrpp3HhwgWpZtGiRRgwYABcXFxga2sLf39/fP311zr7kclkKC0txbp166Sv0MaNG4fZs2fj9ddfBwB4e3tL626/B2n9+vXw9/eHra0tnJ2dMXr0aFy6dEln/w8//DDuv/9+ZGRk4KGHHoKdnR3efvvteo3f7QYPHgwAyM7OrrPuww8/RI8ePWBtbQ0PDw9MnDhR50raww8/jJ07d+KPP/6QzsnLy0vvfohaKl6JIiKjEEIgLy8PPXr0qPc2FhYWiIyMxMyZM/Hzzz8jLCysxjpXV1fY2tpix44deOWVV+Ds7FzrPjUaDYYNG4bU1FSMHj0akyZNQnFxMXbv3o2TJ0/Cx8cHAPDBBx/gySefxJgxY1BRUYFNmzbh3//+N5KTk6U+vvjiCzz//PMIDAxETEwMAMDHxwf29vb47bff8OWXX+L999+Xrgq1bdsWADB//nzMnDkTI0eOxPPPP49r165h+fLleOihh3Ds2DE4OTlJ/ebn5+Pxxx/H6NGj8eyzz8LNza3e41elKhy6uLjUWjN79mzMmTMHISEhmDBhAs6ePYuPPvoIhw8fxoEDB2BlZYXp06dDrVbj8uXLeP/99wEArVq10rsfohZLEBEZwRdffCEAiDVr1ugsHzRokOjRo0et233zzTcCgPjggw/q3P+sWbMEAGFvby8ef/xxMX/+fJGRkVGt7rPPPhMAxJIlS6qt02q10t/Lysp01lVUVIj7779fDB48WGe5vb29iIqKqravhQsXCgAiOztbZ/nFixeFhYWFmD9/vs7yEydOCEtLS53lgwYNEgDEqlWraj3v28XHxwsA4uzZs+LatWsiOztbfPzxx8La2lq4ubmJ0tJSIYQQa9eu1ent6tWrQqFQiMcee0xoNBppfytWrBAAxGeffSYtCwsLEx07dqxXP0T3Gn6dR0SN7syZM5g4cSKCg4MRFRWl17ZVVzqKi4vrrJszZw42btyIPn364IcffsD06dPh7++Pvn376nyFuHXrVrRp0wavvPJKtX3IZDLp77a2ttLf//rrL6jVajz44IM4evSoXv3fadu2bdBqtRg5ciSuX78uvVQqFXx9fbFv3z6demtra4wfP16vY9x3331o27YtvL298eKLL6Jz587YuXNnrfdS7dmzBxUVFZg8eTLk8n8+Bl544QU4Ojpi586d+p8o0T2IX+cRUaPKzc1FWFgYlEolvv76a1hYWOi1fUlJCQDAwcHhrrWRkZGIjIxEUVER0tPTkZSUhI0bNyI8PBwnT56EjY0NLly4gPvuuw+WlnX/5y45ORnz5s1DZmYmysvLpeW3By1DnDt3DkII+Pr61rjeyspK5327du2q3V92N1u3boWjoyOsrKzQvn176SvK2vzxxx8AboWv2ykUCnTq1ElaT0R1Y4giokajVqvx+OOPo7CwEP/973/h4eGh9z6qpkTo3LlzvbdxdHTEo48+ikcffRRWVlZYt24d0tPTMWjQoHpt/9///hdPPvkkHnroIXz44Ydwd3eHlZUV1q5di40bN+p9DrfTarWQyWT4/vvvawyUd95jdPsVsfp66KGHpPuwiMh0GKKIqFHcuHED4eHh+O2337Bnzx50795d731oNBps3LgRdnZ2GDhwoEF9BAQEYN26dbhy5QqAWzd+p6eno7KystpVnypbt26FjY0NfvjhB1hbW0vL165dW622titTtS338fGBEALe3t7o0qWLvqdjFB07dgQAnD17Fp06dZKWV1RUIDs7GyEhIdKyhl6JI2rJeE8UETWYRqPBqFGjkJaWhi1bthg0N5FGo8Grr76KrKwsvPrqq3B0dKy1tqysDGlpaTWu+/777wH881XViBEjcP36daxYsaJarfj/k1FaWFhAJpNBo9FI6y5evFjjpJr29vY1Tqhpb28PANXWPf3007CwsMCcOXOqTX4phEB+fn7NJ2lEISEhUCgUWLZsmU5Pa9asgVqt1nkq0t7evs7pJojuZbwSRUQNNnXqVGzfvh3h4eEoKCioNrnmnRNrqtVqqaasrAznz5/Htm3bcOHCBYwePRpz586t83hlZWUYMGAA+vfvj6FDh8LT0xOFhYX49ttv8d///hcRERHo06cPAOC5557D559/jri4OBw6dAgPPvggSktLsWfPHrz88ssYPnw4wsLCsGTJEgwdOhTPPPMMrl69ipUrV6Jz58749ddfdY7t7++PPXv2YMmSJfDw8IC3tzeCgoLg7+8PAJg+fTpGjx4NKysrhIeHw8fHB/PmzcO0adNw8eJFREREwMHBAdnZ2fjmm28QExOD1157rUHjr6+2bdti2rRpmDNnDoYOHYonn3wSZ8+exYcffoh+/frp/N/L398fmzdvRlxcHPr164dWrVohPDzcpP0SNVnmfDSQiFqGqkfza3vVVduqVSvh6+srnn32WfHjjz/W63iVlZVi9erVIiIiQnTs2FFYW1sLOzs70adPH7Fw4UJRXl6uU19WViamT58uvL29hZWVlVCpVOJf//qXuHDhglSzZs0a4evrK6ytrUXXrl3F2rVrpSkEbnfmzBnx0EMPCVtbWwFAZ7qDuXPninbt2gm5XF5tuoOtW7eKgQMHCnt7e2Fvby+6du0qJk6cKM6ePaszNnVN/3Cnqv6uXbtWZ92dUxxUWbFihejatauwsrISbm5uYsKECeKvv/7SqSkpKRHPPPOMcHJyEgA43QHRbWRCNMKPKxERERHdY3hPFBEREZEBGKKIiIiIDMAQRURERGQAhigiIiIiAzBEERERERmAIYqIiIjIAJxs04i0Wi3+/PNPODg48KcTiIiImgkhBIqLi+Hh4QG5vPbrTQxRRvTnn3/C09PT3G0QERGRAS5duoT27dvXup4hyogcHBwA3Po/Ql2/A0ZERERNR1FRETw9PaXP8dowRBlR1Vd4jo6ODFFERETNzN1uxeGN5UREREQGYIgiIiIiMgBDFBEREZEBeE+UmWk0GlRWVpq7jRbLysoKFhYW5m6DiIhaIIYoMxFCIDc3F4WFheZupcVzcnKCSqXiXF1ERNSoGKLMpCpAubq6ws7Ojh/wRiCEQFlZGa5evQoAcHd3N3NHRETUkjBEmYFGo5EClIuLi7nbadFsbW0BAFevXoWrqyu/2iMiokbDG8vNoOoeKDs7OzN3cm+oGmfee0ZERI2JIcqM+BWeaXCciYjIGPh1HhERETUL+fn5qKioqHW9QqEw6W0yDFFERETU5OXn52PFihV3rYuNjTVZkOLXeaSXcePGQSaTQSaTwcrKCm5ubnj00Ufx2WefQavV1ns/SUlJcHJyMl6jRETUotx5BUqtdkB2thfUaoc664yJV6KaKXNe0hw6dCjWrl0LjUaDvLw8pKSkYNKkSfj666+xfft2WFrynxURERnP0aN9sGPHMAghh0ymRXh4Mvr2PWbyPvhp1wyZ+5KmtbU1VCoVAKBdu3bo27cv+vfvjyFDhiApKQnPP/88lixZgrVr1+L333+Hs7MzwsPDkZiYiFatWmH//v0YP348gH9u+o6Pj8fs2bPxxRdf4IMPPsDZs2dhb2+PwYMHY+nSpXB1dW308yAiouZHrXaQAhQACCHHjh3D4ONzHkplsUl74dd5zVB9L1Wa8pLm4MGD4efnh23btgEA5HI5li1bhlOnTmHdunXYu3cv3njjDQDAgAEDsHTpUjg6OuLKlSu4cuUKXnvtNQC3piGYO3cujh8/jm+//RYXL17EuHHjTHYeRETUtBUUuEgBqooQchQUOJu8F16JokbTtWtX/PrrrwCAyZMnS8u9vLwwb948vPTSS/jwww+hUCigVCohk8mkK1pV/vOf/0h/79SpE5YtW4Z+/fqhpKQErVq1Msl5EBFR0+XsnA+ZTKsTpGQyLZydC0zeC69EUaMRQkhfz+3ZswdDhgxBu3bt4ODggLFjxyI/Px9lZWV17iMjIwPh4eHo0KEDHBwcMGjQIABATk6O0fsnIqKmT6ksRnh4MmSyWw8zVd0TZeqv8gBeiaJGlJWVBW9vb1y8eBHDhg3DhAkTMH/+fDg7O+Pnn39GdHQ0Kioqap2pvbS0FKGhoQgNDcWGDRvQtm1b5OTkIDQ01KRfTRIRUdPWt+8x+PicR0GBM5ydC8wSoACGKGoke/fuxYkTJzBlyhRkZGRAq9Vi8eLFkMtvXez86quvdOoVCgU0Go3OsjNnziA/Px8LFiyAp6cnAODIkSOmOQEiImrSFAqFznulsrjG8HRnnTExRJHeysvLkZubqzPFQUJCAoYNG4bnnnsOJ0+eRGVlJZYvX47w8HAcOHAAq1at0tmHl5cXSkpKkJqaCj8/P9jZ2aFDhw5QKBRYvnw5XnrpJZw8eRJz584101kSEVFT4uLigtjY2CY1YznviSK9paSkwN3dHV5eXhg6dCj27duHZcuW4bvvvoOFhQX8/PywZMkSvPfee7j//vuxYcMGJCQk6OxjwIABeOmllzBq1Ci0bdsWiYmJaNu2LZKSkrBlyxZ0794dCxYswKJFi8x0lkRE1NS4uLjA3d291pcpAxQAyIQQwqRHvIcUFRVBqVRCrVbD0dFRWn7jxg1kZ2fD29sbNjY2eu/X3PNENTcNHW8iIrq31Pb5fSd+ndcMNcVLmkRERPcahqhmigGJiIjIvHhPFBEREZEBzB6iVq5cCS8vL9jY2CAoKAiHDh2qs37Lli3o2rUrbGxs0LNnT+zatUtnvRACs2bNgru7O2xtbRESEoJz587p1MyfPx8DBgyAnZ0dnJyc6jxefn4+2rdvD5lMhsLCQkNOkYiIiFogs4aozZs3Iy4uDvHx8Th69Cj8/PwQGhqKq1ev1lh/8OBBREZGIjo6GseOHUNERAQiIiJw8uRJqSYxMRHLli3DqlWrkJ6eDnt7e4SGhuLGjRtSTUVFBf79739jwoQJd+0xOjoavXr1avjJEhERUYti1qfzgoKC0K9fP+lJM61WC09PT7zyyit46623qtWPGjUKpaWlSE5Olpb1798fvXv3xqpVqyCEgIeHB6ZOnSr9oK1arYabmxuSkpIwevRonf0lJSVh8uTJtV5h+uijj7B582bMmjULQ4YMwV9//XXXK1e3M9bTeaQfjjcRUdOTn5/fZB+QavJP51VUVCAjIwPTpk2TlsnlcoSEhCAtLa3GbdLS0hAXF6ezLDQ0FN9++y0AIDs7G7m5uQgJCZHWK5VKBAUFIS0trVqIqsvp06fxzjvvID09Hb///nu9tikvL0d5ebn0vqioqN7HIyIiule0lKl6zPZ13vXr16HRaODm5qaz3M3NDbm5uTVuk5ubW2d91Z/67LMm5eXliIyMxMKFC9GhQ4d6b5eQkAClUim9qn66hIiIiP5x5xUotdoB2dleUKsd6qxrajjFQQ2mTZuGbt264dlnn9V7u9uvlBUVFTFIERER1eHo0T7YsWMYhJBDJtMiPDwZffseM3db9WK2K1Ft2rSBhYUF8vLydJbn5eVBpVLVuI1KpaqzvupPffZZk71792LLli2wtLSEpaUlhgwZIvUcHx9f63bW1tZwdHTUeZF+9u/fr/eTkF5eXli6dKnReiIiIuNQqx2kAAUAQsixY8ewalekmiqzhSiFQgF/f3+kpqZKy7RaLVJTUxEcHFzjNsHBwTr1ALB7926p3tvbGyqVSqemqKgI6enpte6zJlu3bsXx48eRmZmJzMxMfPrppwCA//73v5g4cWK999MSjRs3DjKZDC+99FK1dRMnToRMJsO4ceNM3xgRETU7BQUuUoCqIoQcBQXOZupIP2b9Oi8uLg5RUVEICAhAYGAgli5ditLSUowfPx4A8Nxzz6Fdu3bSj9dOmjQJgwYNwuLFixEWFoZNmzbhyJEj+OSTTwAAMpkMkydPxrx58+Dr6wtvb2/MnDkTHh4eiIiIkI6bk5ODgoIC5OTkQKPRIDMzEwDQuXNntGrVCj4+Pjp9Xr9+HQDQrVs3vZ7Oa6k8PT2xadMmvP/++7C1tQVw6wm4jRs36nUPGRER3ducnfMhk2l1gpRMpoWzc4EZu6o/s84TNWrUKCxatAizZs1C7969kZmZiZSUFOnG8JycHFy5ckWqHzBgADZu3IhPPvkEfn5++Prrr/Htt9/i/vvvl2reeOMNvPLKK4iJiUG/fv1QUlKClJQUnUfbZ82ahT59+iA+Ph4lJSXo06cP+vTpgyNHjpju5Juxvn37wtPTE9u2bZOWbdu2DR06dECfPn2kZeXl5Xj11Vfh6uoKGxsbDBw4EIcPH9bZ165du9ClSxfY2trikUcewcWLF6sd7+eff8aDDz4IW1tbeHp64tVXX0VpaanRzo+IiExDqSxGeHgyZDItAEj3RCmVxWburH7MOk9US2eqeaIuXwbOnQN8fYH27Ru8uzqNGzcOhYWFGDRoEHbu3Ik9e/YAAEJCQjBs2DDs378fTk5OSEpKwqRJk/D111/j008/RceOHZGYmIjt27fj/PnzcHZ2xqVLl+Dr64uJEyciJiYGR44cwdSpU5GXlyfNyXXhwgX4+flh3rx5CAsLw7Vr1xAbGws/Pz+sXbsWwK17oiZPnozJkyfX2DPniSIialquXLkifYsE3Lo3qqDAGc7OBToBKiYmBu7u7ibvr77zRJn9Z1+oYdasATp2BAYPvvXnmjWmOe6zzz6Ln3/+GX/88Qf++OMPHDhwQOdpxtLSUnz00UdYuHAhHn/8cXTv3h2rV6+Gra0t1vz/Jj/66CP4+Phg8eLFuO+++zBmzJhq91MlJCRgzJgxmDx5Mnx9fTFgwAAsW7YMn3/+uc4s9ERE1HwoFAqd90plMby9/6h2BerOuqaGUxw0Y5cvAzExgPbWVVBotcCLLwKhoca/ItW2bVuEhYUhKSkJQgiEhYWhTZs20voLFy6gsrISDzzwgLTMysoKgYGByMrKAgBkZWUhKChIZ793PgBw/Phx/Prrr9iwYYO0TAgBrVaL7OxsdOvWzRinR0RERuTi4oLY2NgmO2N5fTFENWPnzv0ToKpoNMD588YPUQDwn//8B7GxsQBu/ZC0MZSUlODFF1/Eq6++Wm0db2InImq+mnpAqg+GqGbM1xeQy3WDlIUF0LmzaY4/dOhQVFRUQCaTITQ0VGedj48PFAoFDhw4gI4dOwIAKisrcfjwYenepW7dumH79u062/3yyy867/v27YvTp0+js6lOioiIqJ54T1Qz1r498Mknt4ITcOvPjz82zVWoW8ezQFZWFk6fPg2Lqib+P3t7e0yYMAGvv/46UlJScPr0abzwwgsoKytDdHQ0AOCll17CuXPn8Prrr+Ps2bPYuHEjkpKSdPbz5ptv4uDBg4iNjUVmZibOnTuH7777TroCRkREZC68EtXMRUffugfq/PlbV6BMFaCq1PXUwoIFC6DVajF27FgUFxcjICAAP/zwA1q3bg3g1tdxW7duxZQpU7B8+XIEBgbi3XffxX/+8x9pH7169cL//d//Yfr06XjwwQchhICPjw9GjRpl9HMjIiKqC6c4MCJTTXFAdeN4ExGRPjjFAREREZERMUQRERERGYAhioiIiMgADFFEREREBmCIMiPe028aHGciIjIGhigzsLKyAgCUlZWZuZN7Q9U4V407ERFRY+A8UWZgYWEBJycnXL16FQBgZ2cHmUxm5q5aHiEEysrKcPXqVTg5OVWbEJSIiKghGKLMRKVSAYAUpMh4nJycpPEmIiJqLAxRZiKTyeDu7g5XV1dUVlaau50Wy8rKilegiIjIKBiizMzCwoIf8kRERM0QbywnIiIiMgBDFBEREZEBGKKIiIiIDMAQRURERGQAhigiIiIiAzBEERERERmAIYqIiIjIAAxRRERERAZgiCIiIiIyAEMUERERkQEYooiIiIgMwBBFREREZACGKCIiIiIDMEQRERERGYAhioiIiMgADFFEREREBrA0dwNERETUtOXn56OioqLW9QqFAi4uLibsqGlgiCIiIqJa5efnY8WKFXeti42NveeCFL/OIyIiolpdvXpV5/3ly+44eLA/Ll92r7PuXsArUURERFSrmzdvSn//5pvhOH7cD4AMgICf33E89dR31eruFbwSRURERHd1+bL7bQEKAGQ4ftyv2hWpe4nZQ9TKlSvh5eUFGxsbBAUF4dChQ3XWb9myBV27doWNjQ169uyJXbt26awXQmDWrFlwd3eHra0tQkJCcO7cOZ2a+fPnY8CAAbCzs4OTk1O1Yxw/fhyRkZHw9PSEra0tunXrhg8++KDB50pERNRc5eR0xD8BqooMly51MEc7TYJZQ9TmzZsRFxeH+Ph4HD16FH5+fggNDa31e9WDBw8iMjIS0dHROHbsGCIiIhAREYGTJ09KNYmJiVi2bBlWrVqF9PR02NvbIzQ0FDdu3JBqKioq8O9//xsTJkyo8TgZGRlwdXXF+vXrcerUKUyfPh3Tpk2r1411RERELVGHDn8AEHcsFfD0zDFHO02CTAhx54iYTFBQEPr16yeFE61WC09PT7zyyit46623qtWPGjUKpaWlSE5Olpb1798fvXv3xqpVqyCEgIeHB6ZOnYrXXnsNAKBWq+Hm5oakpCSMHj1aZ39JSUmYPHkyCgsL79rrxIkTkZWVhb1799b7/IqKiqBUKqFWq+Ho6Fjv7YiIiJqKEydOYNu2bQDqvifq6aefRs+ePc3XaCOq7+e32W4sr6ioQEZGBqZNmyYtk8vlCAkJQVpaWo3bpKWlIS4uTmdZaGgovv32WwBAdnY2cnNzERISIq1XKpUICgpCWlpatRClD7VaDWdn5zprysvLUV5eLr0vKioy+HhERERNzVNPfYd+/Q7h0qUO8PTMQfv2V8zdklmZLURdv34dGo0Gbm5uOsvd3Nxw5syZGrfJzc2tsT43N1daX7WsthpDHDx4EJs3b8bOnTvrrEtISMCcOXMMPg4REVFTY2VlpfO+ffsrNYanO+vuBWa/sbypO3nyJIYPH474+Hg89thjddZOmzYNarVael26dMlEXRIRERlH27ZtG7WuJTHblag2bdrAwsICeXl5Osvz8vKgUqlq3EalUtVZX/VnXl4e3N3ddWp69+6td4+nT5/GkCFDEBMTgxkzZty13traGtbW1nofh4iIqKlycXFBbGwsf/alBma7EqVQKODv74/U1FRpmVarRWpqKoKDg2vcJjg4WKceAHbv3i3Ve3t7Q6VS6dQUFRUhPT291n3W5tSpU3jkkUcQFRWF+fPn67UtERFRS+Li4gJ3d/daX/digALMPGN5XFwcoqKiEBAQgMDAQCxduhSlpaUYP348AOC5555Du3btkJCQAACYNGkSBg0ahMWLFyMsLAybNm3CkSNH8MknnwAAZDIZJk+ejHnz5sHX1xfe3t6YOXMmPDw8EBERIR03JycHBQUFyMnJgUajQWZmJgCgc+fOaNWqFU6ePInBgwcjNDQUcXFx0v1UFhYW9+TlSiIiIqqBMLPly5eLDh06CIVCIQIDA8Uvv/wirRs0aJCIiorSqf/qq69Ely5dhEKhED169BA7d+7UWa/VasXMmTOFm5ubsLa2FkOGDBFnz57VqYmKihK4NdmFzmvfvn1CCCHi4+NrXN+xY0e9zk2tVgsAQq1W67UdERERmU99P7/NOk9US8d5ooiIiJqf+n5+8+k8IiIiIgMwRBEREREZgCGKiIiIyAAMUUREREQGYIgiIiIiMgBDFBEREZEBGKKIiIiIDMAQRURERGQAhigiIiIiAzBEERERERmAIYqIiIjIAAxRRERERAZgiCIiIiIyAEMUERERkQEYooiIiIgMwBBFREREZACGKCIiIiIDMEQRERERGYAhioiIiMgADFFEREREBmCIIiIiIjIAQxQRERGRARiiiIiIiAzAEEVERERkAIYoIiIiIgMwRBEREREZgCGKiIiIyAAMUUREREQGYIgiIiIiMgBDFBEREZEBGKKIiIiIDMAQRURERGQAhigiIiIiAzBEERERERmAIYqIiIjIAAxRRERERAZgiCIiIiIygNlD1MqVK+Hl5QUbGxsEBQXh0KFDddZv2bIFXbt2hY2NDXr27Ildu3bprBdCYNasWXB3d4etrS1CQkJw7tw5nZr58+djwIABsLOzg5OTU43HycnJQVhYGOzs7ODq6orXX38dN2/ebNC5EhERUcth1hC1efNmxMXFIT4+HkePHoWfnx9CQ0Nx9erVGusPHjyIyMhIREdH49ixY4iIiEBERAROnjwp1SQmJmLZsmVYtWoV0tPTYW9vj9DQUNy4cUOqqaiowL///W9MmDChxuNoNBqEhYWhoqICBw8exLp165CUlIRZs2Y17gAQERFR8yXMKDAwUEycOFF6r9FohIeHh0hISKixfuTIkSIsLExnWVBQkHjxxReFEEJotVqhUqnEwoULpfWFhYXC2tpafPnll9X2t3btWqFUKqst37Vrl5DL5SI3N1da9tFHHwlHR0dRXl5e7/NTq9UCgFCr1fXehoiIiMyrvp/fZrsSVVFRgYyMDISEhEjL5HI5QkJCkJaWVuM2aWlpOvUAEBoaKtVnZ2cjNzdXp0apVCIoKKjWfdZ2nJ49e8LNzU3nOEVFRTh16lSt25WXl6OoqEjnRURERC2T2ULU9evXodFodIIKALi5uSE3N7fGbXJzc+usr/pTn33qc5zbj1GThIQEKJVK6eXp6VnvYxIREVHzYvYby1uSadOmQa1WS69Lly6ZuyUiIiIyErOFqDZt2sDCwgJ5eXk6y/Py8qBSqWrcRqVS1Vlf9ac++9TnOLcfoybW1tZwdHTUeREREVHLZLYQpVAo4O/vj9TUVGmZVqtFamoqgoODa9wmODhYpx4Adu/eLdV7e3tDpVLp1BQVFSE9Pb3WfdZ2nBMnTug8Jbh79244Ojqie/fu9d4PERERtVyW5jx4XFwcoqKiEBAQgMDAQCxduhSlpaUYP348AOC5555Du3btkJCQAACYNGkSBg0ahMWLFyMsLAybNm3CkSNH8MknnwAAZDIZJk+ejHnz5sHX1xfe3t6YOXMmPDw8EBERIR03JycHBQUFyMnJgUajQWZmJgCgc+fOaNWqFR577DF0794dY8eORWJiInJzczFjxgxMnDgR1tbWJh0jIiIiaqJM9LRgrZYvXy46dOggFAqFCAwMFL/88ou0btCgQSIqKkqn/quvvhJdunQRCoVC9OjRQ+zcuVNnvVarFTNnzhRubm7C2tpaDBkyRJw9e1anJioqSgCo9tq3b59Uc/HiRfH4448LW1tb0aZNGzF16lRRWVmp17lxigMiIqLmp76f3zIhhDBjhmvRioqKoFQqoVareX8UERFRM1Hfz28+nUdERERkAIYoIiIiIgMwRBEREREZgCGKiIiIyAAMUUREREQGYIgiIiIiMgBDFBEREZEBGKKIiIiIDMAQRURERGQAhigiIiIiAzBEERERERmAIYqIiIjIAAxRRERERAZgiCIiIiIyAEMUERERkQEYooiIiIgMwBBFREREZACGKCIiIiIDMEQRERERGYAhioiIiMgADFFEREREBmCIIiIiIjIAQxQRERGRARiiiIiIiAzAEEVERERkAIYoIiIiIgMwRBEREREZgCGKiIiIyACWhmx06NAhpKWlITc3FwCgUqkQHByMwMDARm2OiIiIqKnSK0RdvXoVI0aMwIEDB9ChQwe4ubkBAPLy8jBlyhQ88MAD2Lp1K1xdXY3SLBEREVFTodfXeS+//DI0Gg2ysrJw8eJFpKenIz09HRcvXkRWVha0Wi0mTpxorF6JiIiImgyZEELUt9jBwQE//fQT+vTpU+P6jIwMPPzwwyguLm60BpuzoqIiKJVKqNVqODo6mrsdIiIiqof6fn7rdSXK2toaRUVFta4vLi6GtbW1PrskIiIiapb0ClGjRo1CVFQUvvnmG50wVVRUhG+++Qbjx49HZGRkozdJRERE1NTodWP5kiVLoNVqMXr0aNy8eRMKhQIAUFFRAUtLS0RHR2PRokVGaZSIiMhQ+fn5qKioqHW9QqGAi4uLCTuilkCve6KqFBUVISMjQ2eKA39/f973cwfeE0VEZH75+flYsWLFXetiY2MZpAhA/T+/DZonytHREY888ojBzREREZnKnVeg1GoHFBS4wNk5H0plca11RHdjUIiqTV5eHj7++GPMmjWrMXdLRETUKI4e7YMdO4ZBCDlkMi3Cw5PRt+8xc7dFzVSj/uxLbm4u5syZo9c2K1euhJeXF2xsbBAUFIRDhw7VWb9lyxZ07doVNjY26NmzJ3bt2qWzXgiBWbNmwd3dHba2tggJCcG5c+d0agoKCjBmzBg4OjrCyckJ0dHRKCkp0an54Ycf0L9/fzg4OKBt27YYMWIELl68qNe5ERFR06FWO0gBCgCEkGPHjmFQqx3M3Bk1V3qFqF9//bXO19mzZ/U6+ObNmxEXF4f4+HgcPXoUfn5+CA0NxdWrV2usP3jwICIjIxEdHY1jx44hIiICEREROHnypFSTmJiIZcuWYdWqVUhPT4e9vT1CQ0Nx48YNqWbMmDE4deoUdu/ejeTkZPz000+IiYmR1mdnZ2P48OEYPHgwMjMz8cMPP+D69et4+umn9To/IiJqOgoKXKQAVUUIOQoKnM3UETV7Qg8ymUzI5XIhk8mqvaqWy+Xyeu8vMDBQTJw4UXqv0WiEh4eHSEhIqLF+5MiRIiwsTGdZUFCQePHFF4UQQmi1WqFSqcTChQul9YWFhcLa2lp8+eWXQgghTp8+LQCIw4cPSzXff/+9kMlk4n//+58QQogtW7YIS0tLodFopJrt27cLmUwmKioq6n1+arVaABBqtbre2xARUeP6888/xezZs8WUKYuFTKYRgJBeMplGTJmyWMyePVv8+eef5m6Vmoj6fn7rdSXK2dkZq1evRnZ2drXX77//juTk5Hrvq6KiAhkZGQgJCZGWyeVyhISEIC0trcZt0tLSdOoBIDQ0VKrPzs5Gbm6uTo1SqURQUJBUk5aWBicnJwQEBEg1ISEhkMvlSE9PBwD4+/tDLpdj7dq10Gg0UKvV+OKLLxASEgIrK6taz6m8vBxFRUU6LyIiahqUymKEhydDJtMCgHRP1O03lxPpQ68by/39/fHnn3+iY8eONa4vLCyEqOeMCdevX4dGo5F+xLiKm5sbzpw5U+M2ubm5NdZXTbVQ9efdau78gWRLS0s4OztLNd7e3vjxxx8xcuRIvPjii9BoNAgODq52/9WdEhIS9L4njIiITKdv32Pw8TmPggJnODsXMEBRg+h1Jeqll16Cl5dXres7dOiAtWvXNrQns8vNzcULL7yAqKgoHD58GP/3f/8HhUKBf/3rX3WGxGnTpkGtVkuvS5cumbBrIiKqSdXE0FWUymJ4e/9RLUDdWUd0N3pdiXrqqafqXN+6dWtERUXVa19t2rSBhYUF8vLydJbn5eVBpVLVuI1KpaqzvurPvLw8uLu769T07t1bqrnzxvWbN2+ioKBA2n7lypVQKpVITEyUatavXw9PT0+kp6ejf//+NfZnbW3N3w4kImpiXFxcEBsbyxnLqdE16hQH+lAoFPD390dqaqq0TKvVIjU1FcHBwTVuExwcrFMPALt375bqvb29oVKpdGqKioqQnp4u1QQHB6OwsBAZGRlSzd69e6HVahEUFAQAKCsrg1yuOzQWFhZSj0RE1Ly4uLjA3d291hcDFBlCrytRcXFx9apbsmRJvfcXFRWFgIAABAYGYunSpSgtLcX48eMBAM899xzatWuHhIQEAMCkSZMwaNAgLF68GGFhYdi0aROOHDmCTz75BAAgk8kwefJkzJs3D76+vvD29sbMmTPh4eGBiIgIAEC3bt0wdOhQvPDCC1i1ahUqKysRGxuL0aNHw8PDAwAQFhaG999/H++88w4iIyNRXFyMt99+Gx07dkSfPn30GTIiIiJqofQKUceO6c7q+vPPP8Pf3x+2trbSMplMVu/9jRo1CteuXcOsWbOQm5uL3r17IyUlRboxPCcnR+eK0IABA7Bx40bMmDEDb7/9Nnx9ffHtt9/i/vvvl2reeOMNlJaWIiYmBoWFhRg4cCBSUlJgY2Mj1WzYsAGxsbEYMmQI5HI5RowYgWXLlknrBw8ejI0bNyIxMRGJiYmws7NDcHAwUlJSdM6ViIiI7l0G/QBxFQcHBxw/fhydOnVqzJ5aDP4AMRERUfNT389vs90TRURERNScMUQRERERGYAhioiIiMgAet1Y/uuvv+q8F0LgzJkzKCkp0Vneq1evhndGRERE1ITpdWO5XC6HTCarcdbuquUymQwajaZRm2yueGM5ERFR81Pfz2+9rkRlZ2c3uDEiIiKilkCvEFXbDw8TERER3Wv0ClG1GTx4MNauXcuQRUREDZafn8/fuaNmQa8QtX379hqX//TTT0hOToanpycA4Mknn2x4Z0REdM/Jz8/HihUr7loXGxvLIEVmp1eIioiIqPXG8ldeeQUAeGM5EREZ7M4rUGq1AwoKXODsnA+lsrjWOiJz0CtEhYaGwsLCAp999hlcXV2l5VZWVjh+/Di6d+/e6A0SEdG96ejRPtixYxiEkEMm0yI8PBl9+x67+4ZEJqLXZJvff/89hgwZgoCAACQnJxurJyIiusep1Q5SgAIAIeTYsWMY1GoHM3dG9A+9ZyyfMmUKtm/fjjfffBMvvvgiysrKjNEXERHdwwoKXKQAVUUIOQoKnM3UEVF1Bj2d17t3bxw5cgRTpkxB7969a7xHioiIyNAn7Zyd8yGTaXWClEymhbNzgVH6JDKEwVMc2NraYtWqVdi+fTv27duHNm3aNGZfRETUzDXkSTulshjh4cnV7om6/eZyInPTK0Tt3bsXsbGx+OWXX6Rp0J988kk8+eSTUKvV6NGjB1atWoUHH3zQKM0SEVHz0dAn7fr2PQYfn/MoKHCGs3MBAxQ1OXqFqKVLl+KFF16o8XdklEolXnzxRSxZsoQhioiIdNT3STuFQqHzXqksrjE83VlHZA56hajjx4/jvffeq3X9Y489hkWLFjW4KSIiajlqe9LOx+d8tYDk4uKC2NhYzlhOzYJeISovLw9WVla178zSEteuXWtwU0RE1HLU9aRdTVeZGJCoudBrioN27drh5MmTta7/9ddf4e7u3uCmiIio5ah60u52fNKOWgK9QtQTTzyBmTNn4saNG9XW/f3334iPj8ewYcMarTkiImr+qp60qwpSfNKOWgq9vs6bMWMGtm3bhi5duiA2Nhb33XcfAODMmTNYuXIlNBoNpk+fbpRGiYio+eKTdtQS6RWi3NzccPDgQUyYMAHTpk2TJtmUyWQIDQ3FypUr4ebmZpRGiYioeeGTdtTSyYSB043/9ddfOH/+PIQQ8PX1RevWrRu7t2avqKgISqUSarW6xmkhiIhagrpmJS8sLIRMJoNSqaxxPZ+0o6aovp/fBs9Y3rp1a/Tr18/QzYmIqAVoyKzkRM2d3j9ATEREVKWmWcmzs72gVjvUWUfUEhh8JYqIiOh29Z2VnKil4JUoIiJqsNpmJb/zihRRS8IQRUREDVbXrORELRVDFBERNRhnJad7EUMUERE1GGclp3sRbywnIqJGwVnJ6V7DEEVERAbjrOR0L2OIIiIig7m4uCA2NrbOeaA4Kzm1VAxRRETUIAxIdK/ijeVEREREBmCIIiIiIjKA2UPUypUr4eXlBRsbGwQFBeHQoUN11m/ZsgVdu3aFjY0NevbsiV27dumsF0Jg1qxZcHd3h62tLUJCQnDu3DmdmoKCAowZMwaOjo5wcnJCdHQ0SkpKqu1n0aJF6NKlC6ytrdGuXTvMnz+/cU6aiIiImj2zhqjNmzcjLi4O8fHxOHr0KPz8/BAaGoqrV6/WWH/w4EFERkYiOjoax44dQ0REBCIiInDy5EmpJjExEcuWLcOqVauQnp4Oe3t7hIaG4saNG1LNmDFjcOrUKezevRvJycn46aefEBMTo3OsSZMm4dNPP8WiRYtw5swZbN++HYGBgcYZCCIiImp+hBkFBgaKiRMnSu81Go3w8PAQCQkJNdaPHDlShIWF6SwLCgoSL774ohBCCK1WK1QqlVi4cKG0vrCwUFhbW4svv/xSCCHE6dOnBQBx+PBhqeb7778XMplM/O9//5NqLC0txZkzZxp0fmq1WgAQarW6QfshIiIi06nv57fZrkRVVFQgIyMDISEh0jK5XI6QkBCkpaXVuE1aWppOPQCEhoZK9dnZ2cjNzdWpUSqVCAoKkmrS0tLg5OSEgIAAqSYkJARyuRzp6ekAgB07dqBTp05ITk6Gt7c3vLy88Pzzz6OggD9fQERERLeYLURdv34dGo0Gbm5uOsvd3NyQm5tb4za5ubl11lf9ebcaV1dXnfWWlpZwdnaWan7//Xf88ccf2LJlCz7//HMkJSUhIyMD//rXv+o8p/LychQVFem8iIiIqGXiPFE10Gq1KC8vx+eff44uXboAANasWQN/f3+cPXsW9913X43bJSQkYM6cOaZslYiIiMzEbFei2rRpAwsLC+Tl5eksz8vLg0qlqnEblUpVZ33Vn3erufPG9Zs3b6KgoECqcXd3h6WlpRSgAKBbt24AgJycnFrPadq0aVCr1dLr0qVLtdYSERFR82a2EKVQKODv74/U1FRpmVarRWpqKoKDg2vcJjg4WKceAHbv3i3Ve3t7Q6VS6dQUFRUhPT1dqgkODkZhYSEyMjKkmr1790Kr1SIoKAgA8MADD+DmzZu4cOGCVPPbb78BADp27FjrOVlbW8PR0VHnRURERC2UiW50r9GmTZuEtbW1SEpKEqdPnxYxMTHCyclJ5ObmCiGEGDt2rHjrrbek+gMHDghLS0uxaNEikZWVJeLj44WVlZU4ceKEVLNgwQLh5OQkvvvuO/Hrr7+K4cOHC29vb/H3339LNUOHDhV9+vQR6enp4ueffxa+vr4iMjJSWq/RaETfvn3FQw89JI4ePSqOHDkigoKCxKOPPqrX+fHpPCIiouanvp/fZg1RQgixfPly0aFDB6FQKERgYKD45ZdfpHWDBg0SUVFROvVfffWV6NKli1AoFKJHjx5i586dOuu1Wq2YOXOmcHNzE9bW1mLIkCHi7NmzOjX5+fkiMjJStGrVSjg6Oorx48eL4uJinZr//e9/4umnnxatWrUSbm5uYty4cSI/P1+vc2OIIiIian7q+/ktE0II814La7mKioqgVCqhVqv51R4REVEzUd/Pb7P/7AsRERFRc8QQRURERGQAhigiIiIiAzBEERERERmAIYqIiIjIAAxRRERERAZgiCIiIiIyAH+AmIioCcjPz0dFRUWt6xUKBVxcXEzYERHdDUMUEZGZ5efnY8WKFdJ7tdoBBQUucHbOh1JZLC2PjY1lkCJqQhiiiIjM7PYrUEeP9sGOHcMghBwymRbh4cno2/dYtToiMj/eE0VE1ESo1Q5SgAIAIeTYsWMY1GoHM3dGRDVhiCIiaiIKClykAFVFCDkKCpzN1BER1YUhioioiXB2zodMptVZJpNp4excYKaOiKguDFFERE2EUlmM8PBkKUhV3RN1+83lRNR08MZyIqImpG/fY/DxOY+CAmc4OxcwQBE1YQxRRERNjFJZzPBE1Azw6zwiIjNTKBSNWkdEpsErUUREZubi4oLY2FjOWE7UzDBEERE1AQxIRM0Pv84jIiIiMgBDFBEREZEBGKKIiIiIDMAQRURERGQAhigiIiIiAzBEERERERmAIYqIiIjIAAxRRERERAZgiCIiIiIyAEMUERERkQEYooiIiIgMwBBFREREZACGKCIiIiIDMEQRERERGYAhioiIiMgADFFEREREBmCIIiIiIjIAQxQRERGRARiiiIiIiAzQJELUypUr4eXlBRsbGwQFBeHQoUN11m/ZsgVdu3aFjY0NevbsiV27dumsF0Jg1qxZcHd3h62tLUJCQnDu3DmdmoKCAowZMwaOjo5wcnJCdHQ0SkpKajze+fPn4eDgACcnpwadJxEREbUcZg9RmzdvRlxcHOLj43H06FH4+fkhNDQUV69erbH+4MGDiIyMRHR0NI4dO4aIiAhERETg5MmTUk1iYiKWLVuGVatWIT09Hfb29ggNDcWNGzekmjFjxuDUqVPYvXs3kpOT8dNPPyEmJqba8SorKxEZGYkHH3yw8U+eiBpVfn4+rly5UusrPz/f3C0SUQsiE0IIczYQFBSEfv36YcWKFQAArVYLT09PvPLKK3jrrbeq1Y8aNQqlpaVITk6WlvXv3x+9e/fGqlWrIISAh4cHpk6ditdeew0AoFar4ebmhqSkJIwePRpZWVno3r07Dh8+jICAAABASkoKnnjiCVy+fBkeHh7Svt988038+eefGDJkCCZPnozCwsJ6n1tRURGUSiXUajUcHR0NGR4iqqf8/HzpvyN1iY2NhYuLiwk6IqLmqr6f32a9ElVRUYGMjAyEhIRIy+RyOUJCQpCWllbjNmlpaTr1ABAaGirVZ2dnIzc3V6dGqVQiKChIqklLS4OTk5MUoAAgJCQEcrkc6enp0rK9e/diy5YtWLlyZb3Op7y8HEVFRTovIjKNiooKnfdqtQOys72gVjvUWUdEZChLcx78+vXr0Gg0cHNz01nu5uaGM2fO1LhNbm5ujfW5ubnS+qplddW4urrqrLe0tISzs7NUk5+fj3HjxmH9+vX1voqUkJCAOXPm1KuWiIzn6NE+2LFjGISQQybTIjw8GX37HjN3W0TUwpj9nqim6oUXXsAzzzyDhx56qN7bTJs2DWq1WnpdunTJiB0SUU3UagcpQAGAEHLs2DGs2hUpIqKGMmuIatOmDSwsLJCXl6ezPC8vDyqVqsZtVCpVnfVVf96t5s4b12/evImCggKpZu/evVi0aBEsLS1haWmJ6OhoqNVqWFpa4rPPPquxN2trazg6Ouq8iMi0CgpcpABVRQg5CgqczdQREbVUZg1RCoUC/v7+SE1NlZZptVqkpqYiODi4xm2Cg4N16gFg9+7dUr23tzdUKpVOTVFREdLT06Wa4OBgFBYWIiMjQ6rZu3cvtFotgoKCANy6byozM1N6vfPOO3BwcEBmZiaeeuqpxhkAImp0zs75kMm0OstkMi2cnQvM1BERtVRmvScKAOLi4hAVFYWAgAAEBgZi6dKlKC0txfjx4wEAzz33HNq1a4eEhAQAwKRJkzBo0CAsXrwYYWFh2LRpE44cOYJPPvkEACCTyTB58mTMmzcPvr6+8Pb2xsyZM+Hh4YGIiAgAQLdu3TB06FC88MILWLVqFSorKxEbG4vRo0dLT+Z169ZNp88jR45ALpfj/vvvN9HIEJEhlMpihIcnV7snSqksNndrRNTCmD1EjRo1CteuXcOsWbOQm5uL3r17IyUlRboxPCcnB3L5PxfMBgwYgI0bN2LGjBl4++234evri2+//VYn3LzxxhsoLS1FTEwMCgsLMXDgQKSkpMDGxkaq2bBhA2JjYzFkyBDI5XKMGDECy5YtM92JE5HR9O17DD4+51FQ4Axn5wIGKCIyCrPPE9WScZ4oItPhPFFE1Fjq+/lt9itRRNSy5efn1zk3k0KhaJRQ4+LigtjYWJMci4gIYIgiIiMy9dUhBiQiMiXOE0VERsNZxImoJeOVKCIyCc4iTkQtDa9EEZHRcRZxImqJGKKIyOg4izgRtUQMUURkdJxFnIhaIoYoIjK6qlnEq4IUZxEnopaAN5YTUb01ZM4nziJORC0NQxQR6agtKBUWFuKrr7666/a3z/mkUCh01imVxTWGpzvriIiaA4YoIpLUd3JM4NYTdwUFLnB2ztcJRrcHMM4iTkQtGUMUEUlqmhyzpqCkz5xPDEhE1FIxRBFRjWoLSrXN+eTjc573ORHRPYVP5xFRNXVNjsk5n4iIbmGIIqJq6gpKnPOJiOgWfp1H1ELVNR1BYWEhZDIZlEqlzvLr168D+GdyzNuDVFVQqprz6c6v+vhVHhHdaxiiiFogfZ6yq8ndghLnfCIiYogiapHq+5RdXe4WlDjnExHd6xiiiFq4u01HUFfAqi0ojRo1qtpXgQDnfCKiewtDFFELdrfpCOoKWE8//TTatGlTbZ8MSkREtzBEEbVgd5uOoK6A1aZNG7i7u5u8ZyKi5oJTHBC1YHVNR8D5noiIGoYhiqgFq3rKripI3f6UHed7IiJqGH6dR9TC1faUHed7IiJqGIYoohbozmkGanvKrq5pDDhVARFR3RiiiFogFxcXxMbG6j1jeRU+gUdEdHcMUUQtVF0hiE/dERE1HG8sJyIiIjIAQxQRERGRAfh1HpEJ5efn13qfEsB7kYiImhOGKCITyc/Px4oVK+5aFxsbyyBFRNQM8Os8IhO58wqUWu2A7GwvqNUOddYREVHTxCtRRGZQ1w//EhFR88ArUUQmplY71PjDv3dekSIioqaNIYrIxPjDv0RELQNDFJGJ8Yd/iYhaBoYoIhOr+uHfqiDFH/4lImqeeGM5kRnU9cO/RETUPDSJK1ErV66El5cXbGxsEBQUhEOHDtVZv2XLFnTt2hU2Njbo2bMndu3apbNeCIFZs2bB3d0dtra2CAkJwblz53RqCgoKMGbMGDg6OsLJyQnR0dEoKSmR1u/fvx/Dhw+Hu7s77O3t0bt3b2zYsKHxTpruOQqFQue9UlkMb+8/qgWoO+uIiKhpMvuVqM2bNyMuLg6rVq1CUFAQli5ditDQUJw9exaurq7V6g8ePIjIyEgkJCRg2LBh2LhxIyIiInD06FHcf//9AIDExEQsW7YM69atg7e3N2bOnInQ0FCcPn0aNjY2AIAxY8bgypUr2L17NyorKzF+/HjExMRg48aN0nF69eqFN998E25ubkhOTsZzzz0HpVKJYcOGmW6AqMVwcXFBbGwsZywnImohZEIIYc4GgoKC0K9fP2kmZ61WC09PT7zyyit46623qtWPGjUKpaWlSE5Olpb1798fvXv3xqpVqyCEgIeHB6ZOnYrXXnsNAKBWq+Hm5oakpCSMHj0aWVlZ6N69Ow4fPoyAgAAAQEpKCp544glcvnwZHh4eNfYaFhYGNzc3fPbZZ/U6t6KiIiiVSqjVajg6Ouo1LkRERGQe9f38NuvXeRUVFcjIyEBISIi0TC6XIyQkBGlpaTVuk5aWplMPAKGhoVJ9dnY2cnNzdWqUSiWCgoKkmrS0NDg5OUkBCgBCQkIgl8uRnp5ea79qtRrOzrU/hl5eXo6ioiKdFxEREbVMZg1R169fh0ajgZubm85yNzc35Obm1rhNbm5unfVVf96t5s6vCi0tLeHs7Fzrcb/66iscPnwY48ePr/V8EhISoFQqpZenp2ettURERNS8NYkby5u6ffv2Yfz48Vi9ejV69OhRa920adOgVqul16VLl0zYJREREZmSWUNUmzZtYGFhgby8PJ3leXl5UKlUNW6jUqnqrK/68241V69e1Vl/8+ZNFBQUVDvu//3f/yE8PBzvv/8+nnvuuTrPx9raGo6OjjovIiIiapnMGqIUCgX8/f2RmpoqLdNqtUhNTUVwcHCN2wQHB+vUA8Du3bulem9vb6hUKp2aoqIipKenSzXBwcEoLCxERkaGVLN3715otVoEBQVJy/bv34+wsDC89957iImJafgJExERUcshzGzTpk3C2tpaJCUlidOnT4uYmBjh5OQkcnNzhRBCjB07Vrz11ltS/YEDB4SlpaVYtGiRyMrKEvHx8cLKykqcOHFCqlmwYIFwcnIS3333nfj111/F8OHDhbe3t/j777+lmqFDh4o+ffqI9PR08fPPPwtfX18RGRkprd+7d6+ws7MT06ZNE1euXJFe+fn59T43tVotAAi1Wt2QISIiIiITqu/nt9nniRo1ahSuXbuGWbNmITc3F71790ZKSop0Y3hOTg7k8n8umA0YMAAbN27EjBkz8Pbbb8PX1xfffvutNEcUALzxxhsoLS1FTEwMCgsLMXDgQKSkpEhzRAHAhg0bEBsbiyFDhkAul2PEiBFYtmyZtH7dunUoKytDQkICEhISpOWDBg3C/v37jTgiVOXChQsoKyurdb2dnR18fHxM2BEREdE/zD5PVEvGeaIMd+HCBaxfv/6udc8++yyDFBERNapmMU8UUW3uvAJ1+bI7Dh7sj8uX3eusIyIiMhWzf51HdDfffDMcx4/7AZABEPDzO46nnvrO3G0REdE9jleiqEm7fNn9tgAFADIcP+5X7YoUERGRqTFEUZOWk9MR/wSoKjJcutTBHO0QERFJGKKoSevQ4Q8Adz77IODpmWOOdoiIiCQMUdSktW9/BX5+x/FPkLp1T1T79lfM2RYRERFvLKem76mnvkO/fodw6VIHeHrmMEAREVGTwBBFTZKdnZ3O+/btr9QYnu6sIyIiMhWGKGqSfHx88Oyzz3LGciIiarIYoqjJYkAiIqKmjDeWExERERmAV6LuUfn5+aioqKh1vUKhgIuLiwk7IiIial4You5B+fn5WLFixV3rYmNjGaSIiIhqwa/z7kF3XoFSqx2Qne0FtdqhzjoiIiL6B69E3eOOHu2DHTuGQQg5ZDItwsOT0bfvMXO3RURE1OTxStQ9TK12kAIUAAghx44dw6pdkSIiIqLqGKLuYQUFLlKAqiKEHAUFzmbqiIiIqPng13nNhDGepnN2zodMptUJUjKZFs7OBQb3SUREdK9giGoGjPU0nVJZjPDw5Gr3RCmVxQ1pl4iI6J7AENUM1PQ0XUGBC5yd83UCjyFP0/Xteww+PudRUOAMZ+cCBigiIqJ6YohqZhrjaTqFQqHzXqksrjE83VlHRERE/2CIakZqe5rOx+e8XleQXFxcEBsbyxnLiYiIGoAhqhmp62k6fb+GY0AiIiJqGE5x0IxUPU13Oz5NR0REZB4MUc1I1dN0VUGKT9MRERGZD7/Oa2b4NB0REVHTwBDVDPBpOiIioqaHIaoZ4NN0RERETQ9DVDPBgERERNS08MZyIiIiIgMwRBEREREZgCGKiIiIyAAMUUREREQGYIgiIiIiMgBDFBEREZEBGKKIiIiIDMAQRURERGQAhigiIiIiA3DGciMSQgAAioqKzNwJERER1VfV53bV53htGKKMqLj41o8Ee3p6mrkTIiIi0ldxcTGUSmWt62XibjGLDKbVavHnn3/CwcEBMpmsxpqioiJ4enri0qVLcHR0NHGHTQfH4RaOwz84FrdwHG7hOPyDY3GLMcdBCIHi4mJ4eHhALq/9zideiTIiuVyO9u3b16vW0dHxnv4fQxWOwy0ch39wLG7hONzCcfgHx+IWY41DXVegqvDGciIiIiIDMEQRERERGYAhysysra0RHx8Pa2trc7diVhyHWzgO/+BY3MJxuIXj8A+OxS1NYRx4YzkRERGRAXglioiIiMgADFFEREREBmCIIiIiIjIAQxQRERGRARiijGzlypXw8vKCjY0NgoKCcOjQoVprT506hREjRsDLywsymQxLly41XaMmoM9YrF69Gg8++CBat26N1q1bIyQkpM765kSfcdi2bRsCAgLg5OQEe3t79O7dG1988YUJuzUufcbidps2bYJMJkNERIRxGzQRfcYhKSkJMplM52VjY2PCbo1H338PhYWFmDhxItzd3WFtbY0uXbpg165dJurWuPQZi4cffrjavwmZTIawsDATdmwc+v6bWLp0Ke677z7Y2trC09MTU6ZMwY0bN4zXoCCj2bRpk1AoFOKzzz4Tp06dEi+88IJwcnISeXl5NdYfOnRIvPbaa+LLL78UKpVKvP/++6Zt2Ij0HYtnnnlGrFy5Uhw7dkxkZWWJcePGCaVSKS5fvmzizhuXvuOwb98+sW3bNnH69Glx/vx5sXTpUmFhYSFSUlJM3Hnj03csqmRnZ4t27dqJBx98UAwfPtw0zRqRvuOwdu1a4ejoKK5cuSK9cnNzTdx149N3HMrLy0VAQIB44oknxM8//yyys7PF/v37RWZmpok7b3z6jkV+fr7Ov4eTJ08KCwsLsXbtWtM23sj0HYcNGzYIa2trsWHDBpGdnS1++OEH4e7uLqZMmWK0HhmijCgwMFBMnDhReq/RaISHh4dISEi467YdO3ZsUSGqIWMhhBA3b94UDg4OYt26dcZq0SQaOg5CCNGnTx8xY8YMY7RnUoaMxc2bN8WAAQPEp59+KqKiolpEiNJ3HNauXSuUSqWJujMdfcfho48+Ep06dRIVFRWmatFkGvrfiffff184ODiIkpISY7VoEvqOw8SJE8XgwYN1lsXFxYkHHnjAaD3y6zwjqaioQEZGBkJCQqRlcrkcISEhSEtLM2NnptcYY1FWVobKyko4Ozsbq02ja+g4CCGQmpqKs2fP4qGHHjJmq0Zn6Fi88847cHV1RXR0tCnaNDpDx6GkpAQdO3aEp6cnhg8fjlOnTpmiXaMxZBy2b9+O4OBgTJw4EW5ubrj//vvx7rvvQqPRmKpto2iM/16uWbMGo0ePhr29vbHaNDpDxmHAgAHIyMiQvvL7/fffsWvXLjzxxBNG65M/QGwk169fh0ajgZubm85yNzc3nDlzxkxdmUdjjMWbb74JDw8Pnf9BNTeGjoNarUa7du1QXl4OCwsLfPjhh3j00UeN3a5RGTIWP//8M9asWYPMzEwTdGgahozDfffdh88++wy9evWCWq3GokWLMGDAAJw6dareP3je1BgyDr///jv27t2LMWPGYNeuXTh//jxefvllVFZWIj4+3hRtG0VD/3t56NAhnDx5EmvWrDFWiyZhyDg888wzuH79OgYOHAghBG7evImXXnoJb7/9ttH6ZIiiJm/BggXYtGkT9u/f32JuoNWHg4MDMjMzUVJSgtTUVMTFxaFTp054+OGHzd2ayRQXF2Ps2LFYvXo12rRpY+52zCo4OBjBwcHS+wEDBqBbt274+OOPMXfuXDN2ZlparRaurq745JNPYGFhAX9/f/zvf//DwoULm3WIaqg1a9agZ8+eCAwMNHcrJrd//368++67+PDDDxEUFITz589j0qRJmDt3LmbOnGmUYzJEGUmbNm1gYWGBvLw8neV5eXlQqVRm6so8GjIWixYtwoIFC7Bnzx706tXLmG0anaHjIJfL0blzZwBA7969kZWVhYSEhGYdovQdiwsXLuDixYsIDw+Xlmm1WgCApaUlzp49Cx8fH+M2bQSN8d8JKysr9OnTB+fPnzdGiyZhyDi4u7vDysoKFhYW0rJu3bohNzcXFRUVUCgURu3ZWBryb6K0tBSbNm3CO++8Y8wWTcKQcZg5cybGjh2L559/HgDQs2dPlJaWIiYmBtOnT4dc3vh3MPGeKCNRKBTw9/dHamqqtEyr1SI1NVXn/4u8Fxg6FomJiZg7dy5SUlIQEBBgilaNqrH+TWi1WpSXlxujRZPRdyy6du2KEydOIDMzU3o9+eSTeOSRR5CZmQlPT09Ttt9oGuPfhEajwYkTJ+Du7m6sNo3OkHF44IEHcP78eSlMA8Bvv/0Gd3f3ZhuggIb9m9iyZQvKy8vx7LPPGrtNozNkHMrKyqoFpaqQLYz1M8FGu2WdxKZNm4S1tbVISkoSp0+fFjExMcLJyUl6HHns2LHirbfekurLy8vFsWPHxLFjx4S7u7t47bXXxLFjx8S5c+fMdQqNRt+xWLBggVAoFOLrr7/WeXS3uLjYXKfQKPQdh3fffVf8+OOP4sKFC+L06dNi0aJFwtLSUqxevdpcp9Bo9B2LO7WUp/P0HYc5c+aIH374QVy4cEFkZGSI0aNHCxsbG3Hq1ClznUKj0HcccnJyhIODg4iNjRVnz54VycnJwtXVVcybN89cp9BoDP3fxsCBA8WoUaNM3a7R6DsO8fHxwsHBQXz55Zfi999/Fz/++KPw8fERI0eONFqPDFFGtnz5ctGhQwehUChEYGCg+OWXX6R1gwYNElFRUdL77OxsAaDaa9CgQaZv3Aj0GYuOHTvWOBbx8fGmb7yR6TMO06dPF507dxY2NjaidevWIjg4WGzatMkMXRuHPmNxp5YSooTQbxwmT54s1bq5uYknnnhCHD161AxdNz59/z0cPHhQBAUFCWtra9GpUycxf/58cfPmTRN3bRz6jsWZM2cEAPHjjz+auFPj0mccKisrxezZs4WPj4+wsbERnp6e4uWXXxZ//fWX0fqTCWGsa1xERERELRfviSIiIiIyAEMUERERkQEYooiIiIgMwBBFREREZACGKCIiIiIDMEQRERERGYAhioiIiMgADFFERC3AuHHjEBERYe42iO4pDFFEZFTjxo2DTCaTXi4uLhg6dCh+/fVXc7fWKG4/t6rXwIEDjXa8ixcvQiaTITMzU2f5Bx98gKSkJKMdl4iqY4giIqMbOnQorly5gitXriA1NRWWlpYYNmyYudtqNGvXrpXO78qVK9i+fXuNdZWVlUbrQalUwsnJyWj7J6LqGKKIyOisra2hUqmgUqnQu3dvvPXWW7h06RKuXbuGwYMHIzY2Vqf+2rVrUCgU0i+4e3l5Ye7cuYiMjIS9vT3atWuHlStX6myzZMkS9OzZE/b29vD09MTLL7+MkpISaf0ff/yB8PBwtG7dGvb29ujRowd27doFAPjrr78wZswYtG3bFra2tvD19cXatWvrfX5OTk7S+alUKjg7O0tXjDZv3oxBgwbBxsYGGzZsQH5+PiIjI9GuXTvY2dmhZ8+e+PLLL3X2p9VqkZiYiM6dO8Pa2hodOnTA/PnzAQDe3t4AgD59+kAmk+Hhhx8GUP3rvPLycrz66qtwdXWFjY0NBg4ciMOHD0vr9+/fD5lMhtTUVAQEBMDOzg4DBgzA2bNn633eRPc6higiMqmSkhKsX78enTt3houLC55//nls3LgR5eXlUs369evRrl07DB48WFq2cOFC+Pn54dixY3jrrbcwadIk7N69W1ovl8uxbNkynDp1CuvWrcPevXvxxhtvSOsnTpyI8vJy/PTTTzhx4gTee+89tGrVCgAwc+ZMnD59Gt9//z2ysrLw0UcfoU2bNo1yvlW9ZmVlITQ0FDdu3IC/vz927tyJkydPIiYmBmPHjsWhQ4ekbaZNm4YFCxZIfW3cuBFubm4AINXt2bMHV65cwbZt22o87htvvIGtW7di3bp1OHr0KDp37ozQ0FAUFBTo1E2fPh2LFy/GkSNHYGlpif/85z+Nct5E9wSj/bQxEZEQIioqSlhYWAh7e3thb28vAAh3d3eRkZEhhBDi77//Fq1btxabN2+WtunVq5eYPXu29L5jx45i6NChOvsdNWqUePzxx2s97pYtW4SLi4v0vmfPnjr7vF14eLgYP368QecHQNjY2EjnZ29vL7755huRnZ0tAIilS5fedR9hYWFi6tSpQgghioqKhLW1tVi9enWNtVX7PXbsmM7yqKgoMXz4cCGEECUlJcLKykps2LBBWl9RUSE8PDxEYmKiEEKIffv2CQBiz549Us3OnTsFAPH333/rMwRE9yxeiSIio3vkkUeQmZmJzMxMHDp0CKGhoXj88cfxxx9/wMbGBmPHjsVnn30GADh69ChOnjyJcePG6ewjODi42vusrCzp/Z49ezBkyBC0a9cODg4OGDt2LPLz81FWVgYAePXVVzFv3jw88MADiI+P17mxfcKECdi0aRN69+6NN954AwcPHtTr/N5//33p/DIzM/Hoo49K6wICAnRqNRoN5s6di549e8LZ2RmtWrXCDz/8gJycHABAVlYWysvLMWTIEL16uN2FCxdQWVmJBx54QFpmZWWFwMBAnTEDgF69ekl/d3d3BwBcvXrV4GMT3UsYoojI6Ozt7dG5c2d07twZ/fr1w6efforS0lKsXr0aAPD8889j9+7duHz5MtauXYvBgwejY8eO9d7/xYsXMWzYMPTq1Qtbt25FRkaGdM9URUWFdIzff/8dY8eOxYkTJxAQEIDly5cDgBTopkyZgj///BNDhgzBa6+9Vu/jq1Qq6fw6d+4Me3t7nXO/3cKFC/HBBx/gzTffxL59+5CZmYnQ0FCpT1tb23oftzFYWVlJf5fJZABu3ZNFRHfHEEVEJieTySCXy/H3338DAHr27ImAgACsXr0aGzdurPG+nF9++aXa+27dugEAMjIyoNVqsXjxYvTv3x9dunTBn3/+WW0fnp6eeOmll7Bt2zZMnTpVCnEA0LZtW0RFRWH9+vVYunQpPvnkk8Y8ZcmBAwcwfPhwPPvss/Dz80OnTp3w22+/Set9fX1ha2sr3VR/J4VCAeDWFa3a+Pj4QKFQ4MCBA9KyyspKHD58GN27d2+kMyEiS3M3QEQtX3l5OXJzcwHcehJuxYoVKCkpQXh4uFTz/PPPIzY2Fvb29njqqaeq7ePAgQNITExEREQEdu/ejS1btmDnzp0AgM6dO6OyshLLly9HeHg4Dhw4gFWrVulsP3nyZDz++OPo0qUL/vrrL+zbt08KYbNmzYK/vz969OiB8vJyJCcnS+sam6+vL77++mscPHgQrVu3xpIlS5CXlyeFGxsbG7z55pt44403oFAo8MADD+DatWs4deoUoqOj4erqCltbW6SkpKB9+/awsbGBUqnUOYa9vT0mTJiA119/Hc7OzujQoQMSExNRVlaG6Ohoo5wX0b2IV6KIyOhSUlLg7u4Od3d3BAUF4fDhw9iyZYv0eD4AREZGwtLSEpGRkbCxsam2j6lTp+LIkSPo06cP5s2bhyVLliA0NBQA4OfnhyVLluC9997D/fffjw0bNiAhIUFne41Gg4kTJ6Jbt24YOnQounTpgg8//BDAras706ZNQ69evfDQQw/BwsICmzZtMspYzJgxA3379kVoaCgefvhhqFSqajONz5w5E1OnTsWsWbPQrVs3jBo1SrpPydLSEsuWLcPHH38MDw8PDB8+vMbjLFiwACNGjMDYsWPRt29fnD9/Hj/88ANat25tlPMiuhfJhBDC3E0QEV28eBE+Pj44fPgw+vbtq7POy8sLkydPxuTJk83THBFRDfh1HhGZVWVlJfLz8zFjxgz079+/WoAiImqq+HUeEZnVgQMH4O7ujsOHD1e7j8nc3n33XbRq1arG1+OPP27u9ojIzPh1HhFRLQoKCqrN8F3F1tYW7dq1M3FHRNSUMEQRERERGYBf5xEREREZgCGKiIiIyAAMUUREREQGYIgiIiIiMgBDFBEREZEBGKKIiIiIDMAQRURERGQAhigiIiIiA/w/k6v3efIxuGcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHHCAYAAACbXt0gAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWPJJREFUeJzt3XtYVOXePvB7BpgBEQYH5WQoiHhMRTARsnQrhYUobyclMzSLcktlVKZ5IFPD1NQ8lLt2iqWmmVaKpinaLpVQOaQomhqm7RzUmRgQE5B5fn/4Y+1GDjIMM8Ph/lzXXDprfdda3/W87uZ+13pmjUwIIUBERERE9SK3dQNERERETRnDFBEREZEZGKaIiIiIzMAwRURERGQGhikiIiIiMzBMEREREZmBYYqIiIjIDAxTRERERGZgmCIiIiIyA8MUEVEzl5KSAplMhvPnz9u6FaJmiWGKiMx25MgRJCQkoGfPnnB2dkaHDh3wxBNP4JdffqlSO3jwYMhkMshkMsjlcri6uqJr164YO3Ys9uzZY9Jxt2/fjkGDBsHDwwOtWrVCp06d8MQTT2DXrl0NdWpVvPPOO/j666+rLD906BDeeustFBYWWuzYt3vrrbeksZTJZGjVqhV69OiBGTNmoKioqEGOsWHDBixdurRB9kXUXDFMEZHZ3n33XWzZsgVDhw7F+++/j/j4ePzwww8IDg5Gbm5ulfq77roLn332GT799FMsXLgQI0aMwKFDh/Dggw9i1KhRKC8vv+MxFy1ahBEjRkAmk2HatGlYsmQJHn30UZw5cwYbN260xGkCqD1MzZ4926phqtKHH36Izz77DIsXL0a3bt0wb948DBs2DA3x06sMU0R3Zm/rBoio6UtMTMSGDRugUCikZaNGjUKvXr0wf/58rFu3zqhepVLhqaeeMlo2f/58vPTSS/jggw/g5+eHd999t8bj3bx5E3PmzMEDDzyA7777rsr6y5cvm3lGjcf169fRqlWrWmsee+wxtG3bFgDwwgsv4NFHH8XWrVvx008/ISwszBptErVovDJFRGYLDw83ClIAEBgYiJ49eyIvL69O+7Czs8OyZcvQo0cPrFixAnq9vsbaq1evoqioCPfee2+16z08PIze37hxA2+99Ra6dOkCR0dHeHt745FHHsG5c+ekmkWLFiE8PBzu7u5wcnJCSEgIvvzyS6P9yGQylJSUYO3atdKttXHjxuGtt97C66+/DgDw9/eX1v19jtK6desQEhICJycnqNVqjB49GhcvXjTa/+DBg3H33XcjMzMT999/P1q1aoU333yzTuP3d0OGDAEA5Ofn11r3wQcfoGfPnlAqlfDx8cGkSZOMrqwNHjwYO3bswG+//Sadk5+fn8n9EDV3vDJFRBYhhEBBQQF69uxZ523s7OwQGxuLmTNn4sCBA4iKiqq2zsPDA05OTti+fTtefPFFqNXqGvdZUVGB4cOHIy0tDaNHj8bLL7+M4uJi7NmzB7m5uQgICAAAvP/++xgxYgTGjBmDsrIybNy4EY8//jhSU1OlPj777DM8++yz6N+/P+Lj4wEAAQEBcHZ2xi+//ILPP/8cS5Yska4StWvXDgAwb948zJw5E0888QSeffZZXLlyBcuXL8f999+P7OxsuLm5Sf1qtVo89NBDGD16NJ566il4enrWefwqVYZEd3f3GmveeustzJ49GxEREZg4cSJOnz6NDz/8EEeOHMHBgwfh4OCA6dOnQ6/X4/fff8eSJUsAAK1btza5H6JmTxARWcBnn30mAIhPPvnEaPmgQYNEz549a9zuq6++EgDE+++/X+v+Z82aJQAIZ2dn8dBDD4l58+aJzMzMKnWrV68WAMTixYurrDMYDNLfr1+/brSurKxM3H333WLIkCFGy52dnUVcXFyVfS1cuFAAEPn5+UbLz58/L+zs7MS8efOMlh8/flzY29sbLR80aJAAIFatWlXjef9dUlKSACBOnz4trly5IvLz88W//vUvoVQqhaenpygpKRFCCLFmzRqj3i5fviwUCoV48MEHRUVFhbS/FStWCABi9erV0rKoqCjRsWPHOvVD1FLxNh8RNbhTp05h0qRJCAsLQ1xcnEnbVl75KC4urrVu9uzZ2LBhA/r27Yvdu3dj+vTpCAkJQXBwsNGtxS1btqBt27Z48cUXq+xDJpNJf3dycpL+/ueff0Kv1+O+++5DVlaWSf3fbuvWrTAYDHjiiSdw9epV6eXl5YXAwEDs37/fqF6pVGL8+PEmHaNr165o164d/P398fzzz6Nz587YsWNHjXOt9u7di7KyMkyePBly+f8+Bp577jm4urpix44dpp8oUQvG23xE1KA0Gg2ioqKgUqnw5Zdfws7OzqTtr127BgBwcXG5Y21sbCxiY2NRVFSEjIwMpKSkYMOGDYiOjkZubi4cHR1x7tw5dO3aFfb2tf/nLjU1FXPnzkVOTg5KS0ul5X8PXPVx5swZCCEQGBhY7XoHBwej9+3bt68y/+xOtmzZAldXVzg4OOCuu+6Sbl3W5LfffgNwK4T9nUKhQKdOnaT1RFQ3DFNE1GD0ej0eeughFBYW4scff4SPj4/J+6h8lELnzp3rvI2rqyseeOABPPDAA3BwcMDatWuRkZGBQYMG1Wn7H3/8ESNGjMD999+PDz74AN7e3nBwcMCaNWuwYcMGk8/h7wwGA2QyGb799ttqg+Xtc5D+foWsru6//35pnhYRWR/DFBE1iBs3biA6Ohq//PIL9u7dix49epi8j4qKCmzYsAGtWrXCwIED69VHv379sHbtWly6dAnArQniGRkZKC8vr3IVqNKWLVvg6OiI3bt3Q6lUSsvXrFlTpbamK1U1LQ8ICIAQAv7+/ujSpYupp2MRHTt2BACcPn0anTp1kpaXlZUhPz8fERER0jJzr8wRtQScM0VEZquoqMCoUaOQnp6OzZs31+vZRhUVFXjppZeQl5eHl156Ca6urjXWXr9+Henp6dWu+/bbbwH87xbWo48+iqtXr2LFihVVasX/f6ilnZ0dZDIZKioqpHXnz5+v9uGczs7O1T6Y09nZGQCqrHvkkUdgZ2eH2bNnV3mIphACWq22+pO0oIiICCgUCixbtsyop08++QR6vd7oW5TOzs61PqaCiHhliogawKuvvopt27YhOjoaOp2uykM6b39Ap16vl2quX7+Os2fPYuvWrTh37hxGjx6NOXPm1Hq869evIzw8HAMGDMCwYcPg6+uLwsJCfP311/jxxx8RExODvn37AgCefvppfPrpp0hMTMThw4dx3333oaSkBHv37sU///lPjBw5ElFRUVi8eDGGDRuGJ598EpcvX8bKlSvRuXNnHDt2zOjYISEh2Lt3LxYvXgwfHx/4+/sjNDQUISEhAIDp06dj9OjRcHBwQHR0NAICAjB37lxMmzYN58+fR0xMDFxcXJCfn4+vvvoK8fHxeO2118waf1O1a9cO06ZNw+zZszFs2DCMGDECp0+fxgcffIB77rnH6P9eISEh2LRpExITE3HPPfegdevWiI6Otmq/RI2eLb9KSETNQ+VX+mt61VbbunVrERgYKJ566inx3Xff1el45eXl4uOPPxYxMTGiY8eOQqlUilatWom+ffuKhQsXitLSUqP669evi+nTpwt/f3/h4OAgvLy8xGOPPSbOnTsn1XzyySciMDBQKJVK0a1bN7FmzRrp0QN/d+rUKXH//fcLJycnAcDoMQlz5swR7du3F3K5vMpjErZs2SIGDhwonJ2dhbOzs+jWrZuYNGmSOH36tNHY1PbYiNtV9nflypVa625/NEKlFStWiG7dugkHBwfh6ekpJk6cKP7880+jmmvXroknn3xSuLm5CQB8TAJRNWRCNMCPNxERERG1UJwzRURERGQGhikiIiIiMzBMEREREZmBYYqIiIjIDAxTRERERGZgmCIiIiIyAx/aaUEGgwF//PEHXFxc+JMMRERETYQQAsXFxfDx8YFcfufrTgxTFvTHH3/A19fX1m0QERFRPVy8eBF33XXXHesYpizIxcUFwK3/Y9T2O2NERETUeBQVFcHX11f6HL8ThikLqry15+rqyjBFRETUxNR1ig4noBMRERGZgWGKiIiIyAwMU0RERERm4JwpG6uoqEB5ebmt22i2HBwcYGdnZ+s2iIioGWOYshEhBDQaDQoLC23dSrPn5uYGLy8vPuuLiIgsgmHKRiqDlIeHB1q1asUPegsQQuD69eu4fPkyAMDb29vGHRERUXPEMGUDFRUVUpByd3e3dTvNmpOTEwDg8uXL8PDw4C0/IiJqcDafgL5y5Ur4+fnB0dERoaGhOHz4cK31mzdvRrdu3eDo6IhevXph586dRuuFEJg1axa8vb3h5OSEiIgInDlzxqhm3rx5CA8PR6tWreDm5lbr8bRaLe666y7IZLIGuyVXOUeqVatWDbI/ql3lOHNuGhERWYJNw9SmTZuQmJiIpKQkZGVloU+fPoiMjJRuy9zu0KFDiI2NxYQJE5CdnY2YmBjExMQgNzdXqlmwYAGWLVuGVatWISMjA87OzoiMjMSNGzekmrKyMjz++OOYOHHiHXucMGECevfubf7JVoO39qyD40xERJYkE0IIWx08NDQU99xzD1asWAHg1g8D+/r64sUXX8TUqVOr1I8aNQolJSVITU2Vlg0YMABBQUFYtWoVhBDw8fHBq6++itdeew0AoNfr4enpiZSUFIwePdpofykpKZg8eXKNV5w+/PBDbNq0CbNmzcLQoUPx559/3vFK1t8VFRVBpVJBr9cbPQH9xo0byM/Ph7+/PxwdHeu8P6ofjjcRUfOg1WpRVlZW43qFQtEg02dq+vyuic3mTJWVlSEzMxPTpk2TlsnlckRERCA9Pb3abdLT05GYmGi0LDIyEl9//TUAID8/HxqNBhEREdJ6lUqF0NBQpKenVwlTtTl58iTefvttZGRk4Ndff63TNqWlpSgtLZXeFxUV1fl4REREVDOtVitdfKlNQkKC1ecj2+w239WrV1FRUQFPT0+j5Z6entBoNNVuo9Foaq2v/NOUfVantLQUsbGxWLhwITp06FDn7ZKTk6FSqaSXr69vnbdtKsaNGweZTAaZTAYHBwd4enrigQcewOrVq2EwGOq8n5SUFJOu8hERUct2+xUpvd4F+fl+0Otdaq2zBn6brxrTpk1D9+7d8dRTT5m83d+vnFX+6rQlWOtSZ3WGDRuGNWvWoKKiAgUFBdi1axdefvllfPnll9i2bRvs7fnPioiILCcrqy+2bx8OIeSQyQyIjk5FcHC2zfqx2ade27ZtYWdnh4KCAqPlBQUF8PLyqnYbLy+vWusr/ywoKDB6plBBQQGCgoLq3Nu+fftw/PhxfPnllwBufUOwsufp06dj9uzZ1W6nVCqhVCrrfJz6svWlTqVSKY11+/btERwcjAEDBmDo0KFISUnBs88+i8WLF2PNmjX49ddfoVarER0djQULFqB169b4/vvvMX78eAD/mxyelJSEt956C5999hnef/99nD59Gs7OzhgyZAiWLl0KDw+PBj8PIiJqevR6FylIAYAQcmzfPhwBAWehUhXbpCeb3eZTKBQICQlBWlqatMxgMCAtLQ1hYWHVbhMWFmZUDwB79uyR6v39/eHl5WVUU1RUhIyMjBr3WZ0tW7bg559/Rk5ODnJycvDvf/8bAPDjjz9i0qRJdd6PpdT1EqY1L3UOGTIEffr0wdatWwHcmv+2bNkynDhxAmvXrsW+ffswZcoUAEB4eDiWLl0KV1dXXLp0CZcuXZK+MFBeXo45c+bg559/xtdff43z589j3LhxVjsPIiJq3HQ6dylIVRJCDp1ObaOObHybLzExEXFxcejXrx/69++PpUuXoqSkRLpq8fTTT6N9+/ZITk4GALz88ssYNGgQ3nvvPURFRWHjxo04evQoPvroIwC3rnJMnjwZc+fORWBgIPz9/TFz5kz4+PggJiZGOu6FCxeg0+lw4cIFVFRUICcnBwDQuXNntG7dGgEBAUZ9Xr16FQDQvXt3zvOpRbdu3XDs2DEAwOTJk6Xlfn5+mDt3Ll544QV88MEHUCgUUKlUkMlkVa5CPvPMM9LfO3XqhGXLluGee+7BtWvX0Lp1a6ucBxERNV5qtRYymcEoUMlkBqjVOpv1ZNMwNWrUKFy5cgWzZs2CRqNBUFAQdu3aJU0gv3DhAuTy/w1WeHg4NmzYgBkzZuDNN99EYGAgvv76a9x9991SzZQpU1BSUoL4+HgUFhZi4MCB2LVrl9FX4mfNmoW1a9dK7/v27QsA2L9/PwYPHmzhs26+hBDSbbu9e/ciOTkZp06dQlFREW7evIkbN27g+vXrtT6sNDMzE2+99RZ+/vln/Pnnn9Kk9gsXLqBHjx5WOQ8iImq8VKpiREenVpkzZatbfEAjmICekJCAhISEatd9//33VZY9/vjjePzxx2vcn0wmw9tvv4233367xpqUlBSkpKTUucfBgwfDho/jajLy8vLg7++P8+fPY/jw4Zg4cSLmzZsHtVqNAwcOYMKECSgrK6sxTJWUlCAyMhKRkZFYv3492rVrhwsXLiAyMtIm384gIqLGKTg4GwEBZ6HTqaFW62wapIBGEKaoeaictP/KK68gMzMTBoMB7733nnRl8YsvvjCqVygUqKioMFp26tQpaLVazJ8/X/oW5NGjR61zAkRE1KgpFAqj9ypVcbUh6vY6a2CYIpOVlpZCo9EYPRohOTkZw4cPx9NPP43c3FyUl5dj+fLliI6OxsGDB7Fq1Sqjffj5+eHatWtIS0tDnz590KpVK3To0AEKhQLLly/HCy+8gNzcXMyZM8dGZ0lERI2Ju7s7EhISbPZYoNrY/IeOqenZtWsXvL294efnh2HDhmH//v1YtmwZvvnmG9jZ2aFPnz5YvHgx3n33Xdx9991Yv3699CWCSuHh4XjhhRcwatQotGvXDgsWLEC7du2QkpKCzZs3o0ePHpg/fz4WLVpko7MkIqLGxt3dHd7e3jW+bBGkABv/Nl9zZ6nf5rP1c6aaGv42HxERmaLJ/DYf1V9jvtRJRETU0jBMNVEMSkRERI0D50wRERERmYFhioiIiMgMDFNEREREZmCYIiIiIjIDwxQRERGRGRimiIiIiMzAMEVERERkBoYpalS+//57yGQyFBYW1nkbPz8/LF261GI9ERER1YZhikwybtw4yGQyvPDCC1XWTZo0CTKZDOPGjbN+Y0RERDbCMEUm8/X1xcaNG/HXX39Jy27cuIENGzagQ4cONuyMiIjI+himyGTBwcHw9fXF1q1bpWVbt25Fhw4d0LdvX2lZaWkpXnrpJXh4eMDR0REDBw7EkSNHjPa1c+dOdOnSBU5OTvjHP/6B8+fPVznegQMHcN9998HJyQm+vr546aWXUFJSYrHzIyIiMgXDVDPw++/A/v23/rSWZ555BmvWrJHer169GuPHjzeqmTJlCrZs2YK1a9ciKysLnTt3RmRkJHQ6HQDg4sWLeOSRRxAdHY2cnBw8++yzmDp1qtE+zp07h2HDhuHRRx/FsWPHsGnTJhw4cAAJCQmWP0kiIqI6YJhq4j75BOjYERgy5Nafn3xineM+9dRTOHDgAH777Tf89ttvOHjwIJ566ilpfUlJCT788EMsXLgQDz30EHr06IGPP/4YTk5O+OT/N/nhhx8iICAA7733Hrp27YoxY8ZUmW+VnJyMMWPGYPLkyQgMDER4eDiWLVuGTz/9FDdu3LDOyRIREdXC3tYNUP39/jsQHw8YDLfeGwzA888DkZHAXXdZ9tjt2rVDVFQUUlJSIIRAVFQU2rZtK60/d+4cysvLce+990rLHBwc0L9/f+Tl5QEA8vLyEBoaarTfsLAwo/c///wzjh07hvXr10vLhBAwGAzIz89H9+7dLXF6REREdcYw1YSdOfO/IFWpogI4e9byYQq4dauv8nbbypUrLXKMa9eu4fnnn8dLL71UZR0nuxMRUWPAMNWEBQYCcrlxoLKzAzp3ts7xhw0bhrKyMshkMkRGRhqtCwgIgEKhwMGDB9GxY0cAQHl5OY4cOYLJkycDALp3745t27YZbffTTz8ZvQ8ODsbJkyfR2VonRUREZCLOmWrC7roL+OijWwEKuPXnv/5lnatSt45nh7y8PJw8eRJ2lU38f87Ozpg4cSJef/117Nq1CydPnsRzzz2H69evY8KECQCAF154AWfOnMHrr7+O06dPY8OGDUhJSTHazxtvvIFDhw4hISEBOTk5OHPmDL755htOQCciokaDV6aauAkTbs2ROnv21hUpawWpSq6urjWumz9/PgwGA8aOHYvi4mL069cPu3fvRps2bQDcuk23ZcsWvPLKK1i+fDn69++Pd955B88884y0j969e+M///kPpk+fjvvuuw9CCAQEBGDUqFEWPzciIqK6kAkhhK2baK6KioqgUqmg1+uNQseNGzeQn58Pf39/ODo62rDDloHjTUREpqjp87smvM1HREREZAaGKSIiIiIzMEwRERERmYFhioiIiMgMDFM2xLn/1sFxJiIiS2KYsgEHBwcAwPXr123cSctQOc6V405ERNSQ+JwpG7Czs4ObmxsuX74MAGjVqhVkMpmNu2p+hBC4fv06Ll++DDc3tyoPFiUiImoIDFM24uXlBQBSoCLLcXNzk8abiIiooTFM2YhMJoO3tzc8PDxQXl5u63aaLQcHB16RIiIii2KYsjE7Ozt+2BMRETVhnIBOREREZAaGKSIiIiIzMEwRERERmYFhioiIiMgMDFNEREREZmCYIiIiIjKDzcPUypUr4efnB0dHR4SGhuLw4cO11m/evBndunWDo6MjevXqhZ07dxqtF0Jg1qxZ8Pb2hpOTEyIiInDmzBmjmnnz5iE8PBytWrWCm5tblWP8/PPPiI2Nha+vL5ycnNC9e3e8//77Zp8rERERNT82DVObNm1CYmIikpKSkJWVhT59+iAyMrLGp4IfOnQIsbGxmDBhArKzsxETE4OYmBjk5uZKNQsWLMCyZcuwatUqZGRkwNnZGZGRkbhx44ZUU1ZWhscffxwTJ06s9jiZmZnw8PDAunXrcOLECUyfPh3Tpk3DihUrGnYAiIiIqMmTCSGErQ4eGhqKe+65RwopBoMBvr6+ePHFFzF16tQq9aNGjUJJSQlSU1OlZQMGDEBQUBBWrVoFIQR8fHzw6quv4rXXXgMA6PV6eHp6IiUlBaNHjzbaX0pKCiZPnozCwsI79jpp0iTk5eVh3759dT6/oqIiqFQq6PV6uLq61nk7IiIish1TP79tdmWqrKwMmZmZiIiI+F8zcjkiIiKQnp5e7Tbp6elG9QAQGRkp1efn50Oj0RjVqFQqhIaG1rjPutLr9VCr1bXWlJaWoqioyOhFREREzZvNfk7m6tWrqKiogKenp9FyT09PnDp1qtptNBpNtfUajUZaX7msppr6OHToEDZt2oQdO3bUWpecnIzZs2fX+zhERERNiVarRVlZWY3rFQoF3N3drdiRbfC3+e4gNzcXI0eORFJSEh588MFaa6dNm4bExETpfVFREXx9fS3dIhERkdVptdo6zSVOSEho9oHKZrf52rZtCzs7OxQUFBgtLygogJeXV7XbeHl51Vpf+acp+6zNyZMnMXToUMTHx2PGjBl3rFcqlXB1dTV6ERERNUe3X5HS612Qn+8Hvd6l1rrmyGZhSqFQICQkBGlpadIyg8GAtLQ0hIWFVbtNWFiYUT0A7NmzR6r39/eHl5eXUU1RUREyMjJq3GdNTpw4gX/84x+Ii4vDvHnzTNqWiIioJcnK6oulSydj7do4LF06GVlZfW3dklXZ9DZfYmIi4uLi0K9fP/Tv3x9Lly5FSUkJxo8fDwB4+umn0b59eyQnJwMAXn75ZQwaNAjvvfceoqKisHHjRhw9ehQfffQRAEAmk2Hy5MmYO3cuAgMD4e/vj5kzZ8LHxwcxMTHScS9cuACdTocLFy6goqICOTk5AIDOnTujdevWyM3NxZAhQxAZGYnExERpvpWdnR3atWtnvQEiIiJq5PR6F2zfPhxC3Lo+I4Qc27cPR0DAWahUxTbuzjpsGqZGjRqFK1euYNasWdBoNAgKCsKuXbukCeQXLlyAXP6/i2fh4eHYsGEDZsyYgTfffBOBgYH4+uuvcffdd0s1U6ZMQUlJCeLj41FYWIiBAwdi165dcHR0lGpmzZqFtWvXSu/79r2VoPfv34/Bgwfjyy+/xJUrV7Bu3TqsW7dOquvYsSPOnz9vqeEgIiJqcnQ6dylIVRJCDp1O3WLClE2fM9Xc8TlTRETUXF26dAkfffQR9HoXLF062ShQyWQGTJ68FCpVMeLj4+Ht7W3DTk3XZJ4zRURERE2fSlWM6OhUyGQGALeCVHR0aou5KgXw0QhERERkpuDgbAQEnIVOp4ZarWtRQQpgmCIiIqJ6UCgURu9VquJqQ9Ttdc0RwxQRERGZzN3dHQkJCXwCOhimiIiIqJ5aQlCqC05AJyIiIjIDwxQRERGRGRimiIiIiMzAOVNERERUI61Wy0nmd8AwRURERNXSarVYsWLFHesSEhJadKDibT4iIiKq1u1XpPR6F+Tn+0Gvd6m1rqXhlSkiIiK6o6ysvti+fTiEkEs/GRMcnG3rthoFXpkiIiKiWun1LlKQAgAh5Ni+fXiVK1QtFcMUERER1Uqnc5eCVCUh5NDp1DbqqHFhmCIiIqJaqdVayGQGo2UymQFqtc5GHTUuDFNERERUK5WqGNHRqVKgqpwzVd0PG7dEnIBOREREdxQcnI2AgLPQ6dRQq3UMUn/DMEVERETVUigURu9VquJqQ9TtdS0NwxQRERFVy93dHQkJCXwC+h0wTBEREVGNWnpQqgtOQCciIiIyA8MUERERkRkYpoiIiIjMwDBFREREZAZOQCciImoBtFotv5VnIQxTREREzZxWq8WKFSvuWJeQkMBAVQ+8zUdERNTM3X5FSq93QX6+H/R6l1rrqG54ZYqIiKgFycrqi+3bh0MIufQbe8HB2bZuq0njlSkiIqIWQq93kYIUAAghx/btw6tcoSLTMEwRERG1EDqduxSkKgkhh06ntlFHzQPDFBERUQuhVmshkxmMlslkBqjVOht11DwwTBEREbUQKlUxoqNTpUBVOWdKpSq2cWdNGyegExERtSDBwdkICDgLnU4NtVrHINUAGKaIiIiaOYVCYfRepSquNkTdXkd1wzBFRETUzLm7uyMhIYFPQLcQhikiIqIWgEHJcjgBnYiIiMgMDFNEREREZmCYIiIiIjIDwxQRERGRGWweplauXAk/Pz84OjoiNDQUhw8frrV+8+bN6NatGxwdHdGrVy/s3LnTaL0QArNmzYK3tzecnJwQERGBM2fOGNXMmzcP4eHhaNWqFdzc3Ko9zoULFxAVFYVWrVrBw8MDr7/+Om7evGnWuRIREVHzY9MwtWnTJiQmJiIpKQlZWVno06cPIiMjcfny5WrrDx06hNjYWEyYMAHZ2dmIiYlBTEwMcnNzpZoFCxZg2bJlWLVqFTIyMuDs7IzIyEjcuHFDqikrK8Pjjz+OiRMnVnuciooKREVFoaysDIcOHcLatWuRkpKCWbNmNewAEBERUdMnbKh///5i0qRJ0vuKigrh4+MjkpOTq61/4oknRFRUlNGy0NBQ8fzzzwshhDAYDMLLy0ssXLhQWl9YWCiUSqX4/PPPq+xvzZo1QqVSVVm+c+dOIZfLhUajkZZ9+OGHwtXVVZSWltb5/PR6vQAg9Hp9nbchIiIi2zL189tmV6bKysqQmZmJiIgIaZlcLkdERATS09Or3SY9Pd2oHgAiIyOl+vz8fGg0GqMalUqF0NDQGvdZ03F69eoFT09Po+MUFRXhxIkTNW5XWlqKoqIioxcREVFD02q1uHTpUo0vrVZr6xZbFJs9tPPq1auoqKgwCiwA4OnpiVOnTlW7jUajqbZeo9FI6yuX1VRTFzUd5+/HqE5ycjJmz55d5+MQERGZSqvVYsWKFXesS0hI4IM6rcTmE9Cbk2nTpkGv10uvixcv2rolIiJqZm7/SRi93gX5+X7Q611qrSPLsdmVqbZt28LOzg4FBQVGywsKCuDl5VXtNl5eXrXWV/5ZUFAAb29vo5qgoKA69+bl5VXlW4WVx62pNwBQKpVQKpV1Pg4REZE5srL6Yvv24RBCDpnMgOjoVAQHZ9u6rRbHZlemFAoFQkJCkJaWJi0zGAxIS0tDWFhYtduEhYUZ1QPAnj17pHp/f394eXkZ1RQVFSEjI6PGfdZ0nOPHjxt9q3DPnj1wdXVFjx496rwfIiIiS9HrXaQgBQBCyLF9+/AqV6jI8mz6Q8eJiYmIi4tDv3790L9/fyxduhQlJSUYP348AODpp59G+/btkZycDAB4+eWXMWjQILz33nuIiorCxo0bcfToUXz00UcAAJlMhsmTJ2Pu3LkIDAyEv78/Zs6cCR8fH8TExEjHvXDhAnQ6HS5cuICKigrk5OQAADp37ozWrVvjwQcfRI8ePTB27FgsWLAAGo0GM2bMwKRJk3jliYiIGgWdzh23f49MCDl0OjVUqmIbddUy2TRMjRo1CleuXMGsWbOg0WgQFBSEXbt2SZO9L1y4ALn8f/9QwsPDsWHDBsyYMQNvvvkmAgMD8fXXX+Puu++WaqZMmYKSkhLEx8ejsLAQAwcOxK5du+Do6CjVzJo1C2vXrpXe9+3bFwCwf/9+DB48GHZ2dkhNTcXEiRMRFhYGZ2dnxMXF4e2337b0kBAREdWJWq2FTGYwClQymQFqtc6GXbVMMiGEsHUTzVVRURFUKhX0ej1cXV1t3Q4RETUDly5dku7I1DZnKj4+3mj+MNWdqZ/fNr0yRURERPUXHJyNgICz0OnUUKt1vL1nIwxTRERETYhCoTB6r1IVVxuibq8jy2GYIiIiakLc3d2RkJBQ63OkFAoFH9hpRQxTRERETQyDUuPCJ6ATERERmYFhioiIiMgMvM1HRERkI1qtlnOfmgGGKSIiIhvQarVYsWLFHesSEhIYqBo53uYjIiKygduvSOn1LsjP96vy23q1XbmixoFXpoiIiGystieZU+PHK1NEREQ2pNe7SEEKuPVjxdu3D69yhYoaL4YpIiIiG9Lp3I1+rBi4Fah0OrWNOiJTMUwRERHZkFqthUxmMFomkxmgVuts1BGZimGKiIjIhlSqYkRHp0qBqnLOFH+0uOngBHQiIiIbCw7ORkDAWeh0aqjVOgapJoZhioiIyAYUCoXRe5WquNoQdXsdNT4MU0RERDbg7u6OhIQEPgG9GWCYIiIishEGpeaBE9CJiIiIzMAwRURERGQGhikiIiIiMzBMEREREZmBYYqIiIjIDAxTRERERGZgmCIiIiIyA8MUERERkRkYpoiIiIjMwDBFREREZAaGKSIiIiIzMEwRERERmYFhioiIiMgMDFNEREREZmCYIiIiIjIDwxQRERGRGRimiIiIiMzAMEVERERkBoYpIiIiIjMwTBERERGZgWGKiIiIyAwMU0RERERmqFeYOnz4MN5//31MmzYN06ZNw/vvv4/Dhw/Xq4GVK1fCz88Pjo6OCA0NveN+Nm/ejG7dusHR0RG9evXCzp07jdYLITBr1ix4e3vDyckJEREROHPmjFGNTqfDmDFj4OrqCjc3N0yYMAHXrl0zqtm9ezcGDBgAFxcXtGvXDo8++ijOnz9fr3MkIiKi5sukMHX58mXcd999GDBgAJYsWYJ9+/Zh3759WLJkCQYMGID77rsPly9frvP+Nm3ahMTERCQlJSErKwt9+vRBZGRkjfs4dOgQYmNjMWHCBGRnZyMmJgYxMTHIzc2VahYsWIBly5Zh1apVyMjIgLOzMyIjI3Hjxg2pZsyYMThx4gT27NmD1NRU/PDDD4iPj5fW5+fnY+TIkRgyZAhycnKwe/duXL16FY888ogpw0VEREQtgTDBo48+KsLCwsSpU6eqrDt16pQIDw8Xjz32WJ33179/fzFp0iTpfUVFhfDx8RHJycnV1j/xxBMiKirKaFloaKh4/vnnhRBCGAwG4eXlJRYuXCitLywsFEqlUnz++edCCCFOnjwpAIgjR45INd9++62QyWTiv//9rxBCiM2bNwt7e3tRUVEh1Wzbtk3IZDJRVlZW5/PT6/UCgNDr9XXehoiIiGzL1M9vk65M7d69GytXrkTXrl2rrOvatSuWLVuGXbt21WlfZWVlyMzMREREhLRMLpcjIiIC6enp1W6Tnp5uVA8AkZGRUn1+fj40Go1RjUqlQmhoqFSTnp4ONzc39OvXT6qJiIiAXC5HRkYGACAkJARyuRxr1qxBRUUF9Ho9PvvsM0RERMDBwaHGcyotLUVRUZHRi4iIiJo3k8KUUqmsNSAUFxdDqVTWaV9Xr15FRUUFPD09jZZ7enpCo9FUu41Go6m1vvLPO9V4eHgYrbe3t4darZZq/P398d133+HNN9+EUqmEm5sbfv/9d3zxxRe1nlNycjJUKpX08vX1rbWeiIiImj6TwtSoUaMQFxeHr776yihUFRUV4auvvsL48eMRGxvb4E1am0ajwXPPPYe4uDgcOXIE//nPf6BQKPDYY49BCFHjdtOmTYNer5deFy9etGLXREREZAv2phQvXrwYBoMBo0ePxs2bN6FQKADcumVnb2+PCRMmYNGiRXXaV9u2bWFnZ4eCggKj5QUFBfDy8qp2Gy8vr1rrK/8sKCiAt7e3UU1QUJBUc/sE95s3b0Kn00nbr1y5EiqVCgsWLJBq1q1bB19fX2RkZGDAgAHV9qdUKut8ZY6IiIiaB5Nv83344Ye4cuUK9u7di9WrV2P16tXYu3cvrly5gg8++KDOYUKhUCAkJARpaWnSMoPBgLS0NISFhVW7TVhYmFE9AOzZs0eq9/f3h5eXl1FNUVERMjIypJqwsDAUFhYiMzNTqtm3bx8MBgNCQ0MBANevX4dcbjw0dnZ2Uo9EREREEsvOh6/dxo0bhVKpFCkpKeLkyZMiPj5euLm5CY1GI4QQYuzYsWLq1KlS/cGDB4W9vb1YtGiRyMvLE0lJScLBwUEcP35cqpk/f75wc3MT33zzjTh27JgYOXKk8Pf3F3/99ZdUM2zYMNG3b1+RkZEhDhw4IAIDA0VsbKy0Pi0tTchkMjF79mzxyy+/iMzMTBEZGSk6duworl+/Xufz47f5iIiImh5TP78bNExpNBoxe/Zsk7ZZvny56NChg1AoFKJ///7ip59+ktYNGjRIxMXFGdV/8cUXokuXLkKhUIiePXuKHTt2GK03GAxi5syZwtPTUyiVSjF06FBx+vRpoxqtVitiY2NF69athaurqxg/frwoLi42qvn8889F3759hbOzs2jXrp0YMWKEyMvLM+ncGKaIiIiaHlM/v2VC1DKj2kQ///wzgoODUVFR0VC7bNKKioqgUqmg1+vh6upq63aIiIioDkz9/DZpAvqxY8dqXX/69GlTdkdERETU5JkUpoKCgiCTyap9PEDlcplM1mDNERERETV2JoUptVqNBQsWYOjQodWuP3HiBKKjoxukMSIiIqKmwKQwFRISgj/++AMdO3asdn1hYWGtD7UkIiIiam5MClMvvPACSkpKalzfoUMHrFmzxuymiIiIiJqKBv02Hxnjt/mIiIiaHlM/v016AjoRERERGTPpNl9iYmKd6hYvXlyvZoiIiOpKq9WirKysxvUKhQLu7u5W7IhaKpPCVHZ2ttH7AwcOICQkBE5OTtIyPhqBiIgsTavVYsWKFXesS0hIYKAiizMpTO3fv9/ovYuLCzZs2IBOnTo1aFNERES1uf2KlF7vAp3OHWq1FipVcY11RJZgUpgiIiJqbLKy+mL79uEQQg6ZzIDo6FQEB2ffeUOiBsIJ6ERE1GTp9S5SkAIAIeTYvn049HoXG3dGLQnDFBERNVk6nbsUpCoJIYdOp7ZRR9QSmfVDx0IInDp1CteuXTNa3rt3b/M7IyIiugO1WguZzGAUqGQyA9RqnQ27opbG7B86Hj58OADjHzquqKho2C6JiIiqoVIVIzo6tcqcqb9PQieyNJPCVH5+vqX6ICIiqpfg4GwEBJyFTqeGWq1jkCKrMylM1fQDx0RERNakUCiM3qtUxdWGqNvriCyhQR6NMGTIEKxZs4Zhi4iIrMLd3R0JCQl8Ajo1CiaFqW3btlW7/IcffkBqaip8fX0BACNGjDC/MyIiolowKFFjIRN/n01+B3K5vMoE9Co75AR0iam/Ok1ERES2Z+rnt0nPmYqMjMRDDz0EjUYDg8Egvezs7JCbmwuDwcAgRURERC2KSWHq22+/xdChQ9GvXz+kpqZaqiciIiKiJsPkJ6C/8sor2LZtG9544w08//zzuH79uiX6IiIiImoS6vVzMkFBQTh69ChkMhmCgoJqnUNFRERE1JzV+9EITk5OWLVqFbZt24b9+/ejbdu2DdkXERERUZNg0pWpffv2oUePHigqKpKWjRgxAkuWLIFSqUTPnj3x448/NniTRERERI2VSWFq6dKleO6556r9mqBKpcLzzz+PxYsXN1hzRERERI2dSWHq559/xrBhw2pc/+CDDyIzM9PspoiIiIiaCpPCVEFBARwcHGpcb29vjytXrpjdFBEREVFTYVKYat++PXJzc2tcf+zYMXh7e5vdFBEREVFTYVKYevjhhzFz5kzcuHGjyrq//voLSUlJGD58eIM1R0RERNTYmfTbfAUFBQgODoadnR0SEhLQtWtXAMCpU6ewcuVKVFRUICsrC56enhZruCnhb/MRERE1PaZ+fpv0nClPT08cOnQIEydOxLRp06SHdcpkMkRGRmLlypUMUkRERNSimPzQzo4dO2Lnzp34888/cfbsWQghEBgYiDZt2liiPyIiIqJGrd5PQG/Tpg3uueeehuyFiIiIqMmp12/zEREREdEtDFNEREREZmCYIiIiIjIDwxQRERGRGRimiIiIiMxg8zC1cuVK+Pn5wdHREaGhoTh8+HCt9Zs3b0a3bt3g6OiIXr16YefOnUbrhRCYNWsWvL294eTkhIiICJw5c8aoRqfTYcyYMXB1dYWbmxsmTJiAa9euVdnPokWL0KVLFyiVSrRv3x7z5s1rmJMmIiKiZsOmYWrTpk1ITExEUlISsrKy0KdPH0RGRuLy5cvV1h86dAixsbGYMGECsrOzERMTg5iYGKPfC1ywYAGWLVuGVatWISMjA87OzoiMjDT6CZwxY8bgxIkT2LNnD1JTU/HDDz8gPj7e6Fgvv/wy/v3vf2PRokU4deoUtm3bhv79+1tmIIiIiKjpEjbUv39/MWnSJOl9RUWF8PHxEcnJydXWP/HEEyIqKspoWWhoqHj++eeFEEIYDAbh5eUlFi5cKK0vLCwUSqVSfP7550IIIU6ePCkAiCNHjkg13377rZDJZOK///2vVGNvby9OnTpl1vnp9XoBQOj1erP2Q0RERNZj6ue3za5MlZWVITMzExEREdIyuVyOiIgIpKenV7tNenq6UT0AREZGSvX5+fnQaDRGNSqVCqGhoVJNeno63Nzc0K9fP6kmIiICcrkcGRkZAIDt27ejU6dOSE1Nhb+/P/z8/PDss89Cp9M1zMkTERFRs2GzMHX16lVUVFRU+S0/T09PaDSaarfRaDS11lf+eacaDw8Po/X29vZQq9VSza+//orffvsNmzdvxqeffoqUlBRkZmbiscceq/WcSktLUVRUZPQiIiKi5q3ePyfTnBkMBpSWluLTTz9Fly5dAACffPIJQkJCcPr0aXTt2rXa7ZKTkzF79mxrtkpEREQ2ZrMrU23btoWdnR0KCgqMlhcUFMDLy6vabby8vGqtr/zzTjW3T3C/efMmdDqdVOPt7Q17e3spSAFA9+7dAQAXLlyo8ZymTZsGvV4vvS5evFhjLRERETUPNgtTCoUCISEhSEtLk5YZDAakpaUhLCys2m3CwsKM6gFgz549Ur2/vz+8vLyMaoqKipCRkSHVhIWFobCwEJmZmVLNvn37YDAYEBoaCgC49957cfPmTZw7d06q+eWXXwAAHTt2rPGclEolXF1djV5ERETUzFl4QnytNm7cKJRKpUhJSREnT54U8fHxws3NTWg0GiGEEGPHjhVTp06V6g8ePCjs7e3FokWLRF5enkhKShIODg7i+PHjUs38+fOFm5ub+Oabb8SxY8fEyJEjhb+/v/jrr7+kmmHDhom+ffuKjIwMceDAAREYGChiY2Ol9RUVFSI4OFjcf//9IisrSxw9elSEhoaKBx54wKTz47f5iIiImh5TP79tGqaEEGL58uWiQ4cOQqFQiP79+4uffvpJWjdo0CARFxdnVP/FF1+ILl26CIVCIXr27Cl27NhhtN5gMIiZM2cKT09PoVQqxdChQ8Xp06eNarRarYiNjRWtW7cWrq6uYvz48aK4uNio5r///a945JFHROvWrYWnp6cYN26c0Gq1Jp0bwxQREVHTY+rnt0wIIWx7baz5Kioqgkqlgl6v5y0/IiKiJsLUz2+b/5wMERERUVPGMEVERERkBoYpIiIiIjMwTBERERGZgWGKiIiIyAwMU0RERERmYJgiIiIiMgPDFBEREZEZGKaIiIiIzMAwRURERGQGhikiIiIiMzBMEREREZmBYYqIiIjIDAxTRERERGZgmCIiIiIyA8MUERERkRkYpoiIiIjMYG/rBoiIWhKtVouysrIa1ysUCri7u1uxIyIyF8MUEZGVaLVarFixQnqv17tAp3OHWq2FSlUsLU9ISGCgImpCGKaIiKzk71eksrL6Yvv24RBCDpnMgOjoVAQHZ1epI6LGj3OmiIisTK93kYIUAAghx/btw6HXu9i4MyKqD4YpIiIr0+ncpSBVSQg5dDq1jToiInMwTBERWZlarYVMZjBaJpMZoFbrbNQREZmDYYqIyMpUqmJER6dKgapyztTfJ6ETUdPBCehERA2spscfXL16Vfp7cHA2AgLOQqdTQ63WMUgRNWEMU0REDej2xx/URqUqZogiagZ4m4+IqAHdfkVKr3dBfr6fSd/UUygUDd0WEVkQr0wREVlIbc+SeuSRR9C2bdsq2/AJ6ERND8MUEZEF1PQsqYCAs1CpitG2bVt4e3vbuEsiagi8zUdEZAF8lhRRy8EwRURkAXyWFFHLwTBFRGQBfJYUUcvBOVNERBbCZ0kRtQwMU0REDej2xxrU9CwpPv6AqPlgmCIiakDu7u5ISEio9gnolfj4A6LmhWGKiKiBMSgRtSycgE5ERERkBoYpIiIiIjMwTBERERGZgWGKiIiIyAwMU0RERERmaBRhauXKlfDz84OjoyNCQ0Nx+PDhWus3b96Mbt26wdHREb169cLOnTuN1gshMGvWLHh7e8PJyQkRERE4c+aMUY1Op8OYMWPg6uoKNzc3TJgwAdeuXav2eGfPnoWLiwvc3NzMOk8iIiJqfmwepjZt2oTExEQkJSUhKysLffr0QWRkJC5fvlxt/aFDhxAbG4sJEyYgOzsbMTExiImJQW5urlSzYMECLFu2DKtWrUJGRgacnZ0RGRmJGzduSDVjxozBiRMnsGfPHqSmpuKHH35AfHx8leOVl5cjNjYW9913X8OfPBERETV5MiGEsGUDoaGhuOeee7BixQoAgMFggK+vL1588UVMnTq1Sv2oUaNQUlKC1NRUadmAAQMQFBSEVatWQQgBHx8fvPrqq3jttdcAAHq9Hp6enkhJScHo0aORl5eHHj164MiRI+jXrx8AYNeuXXj44Yfx+++/w8fHR9r3G2+8gT/++ANDhw7F5MmTUVhYWOdzKyoqgkqlgl6vh6ura32Gh4iIiKzM1M9vm16ZKisrQ2ZmJiIiIqRlcrkcERERSE9Pr3ab9PR0o3oAiIyMlOrz8/Oh0WiMalQqFUJDQ6Wa9PR0uLm5SUEKACIiIiCXy5GRkSEt27dvHzZv3oyVK1fW6XxKS0tRVFRk9CIi69Bqtbh06VKNL61Wa+sWiaiZsukT0K9evYqKigp4enoaLff09MSpU6eq3Uaj0VRbr9FopPWVy2qr8fDwMFpvb28PtVot1Wi1WowbNw7r1q2r81Wl5ORkzJ49u061RNRwtFqtdHW7NgkJCXw6ORE1OJvPmWqsnnvuOTz55JO4//7767zNtGnToNfrpdfFixct2CERVbr9d/D0ehfk5/tBr3eptY6IqCHY9MpU27ZtYWdnh4KCAqPlBQUF8PLyqnYbLy+vWusr/ywoKIC3t7dRTVBQkFRz+wT3mzdvQqfTSdvv27cP27Ztw6JFiwDc+oagwWCAvb09PvroIzzzzDNVelMqlVAqlXU9fSKygKysvti+fTiEkEMmMyA6OhXBwdm2bouImjGbXplSKBQICQlBWlqatMxgMCAtLQ1hYWHVbhMWFmZUDwB79uyR6v39/eHl5WVUU1RUhIyMDKkmLCwMhYWFyMzMlGr27dsHg8GA0NBQALfmVeXk5Eivt99+Gy4uLsjJycH//d//NcwAEJFJapoXdfXqVQC3rkhVBikAEEKO7duHV7lCRUTUkGx6ZQoAEhMTERcXh379+qF///5YunQpSkpKMH78eADA008/jfbt2yM5ORkA8PLLL2PQoEF47733EBUVhY0bN+Lo0aP46KOPAAAymQyTJ0/G3LlzERgYCH9/f8ycORM+Pj6IiYkBAHTv3h3Dhg3Dc889h1WrVqG8vBwJCQkYPXq09E2+7t27G/V59OhRyOVy3H333VYaGSL6u7rMi9Lp3KUgVUkIOXQ6NVSqYku2R0QtmM3D1KhRo3DlyhXMmjULGo0GQUFB2LVrlzSB/MKFC5DL//cfx/DwcGzYsAEzZszAm2++icDAQHz99ddGIWfKlCkoKSlBfHw8CgsLMXDgQOzatQuOjo5Szfr165GQkIChQ4dCLpfj0UcfxbJly6x34kRkkurmRel07lCrtVJQUqu1kMkMRoFKJjNArdZZtVcialls/pyp5ozPmSJqOJcuXZKuQNc2L6q2dfHx8UZzKYmIqmPq57fNr0wREZmipnlRAQFnoVIVIzg4GwEBZ6HTqaFW63h7j4gsjmGKiBoVrVZb7SMMKieZ12VelEpVXG2IUigUFuiYiFo6hikiajTqMsn8TvOiHnnkEbRt27bKdgqFgg/sJCKLYJgiokajLpPMVapiREenVpkXVbm+bdu2nBdFRFbFMEVEVnenW3lA7RPJOS+KiBoThikisqq63Mq70yRzgPOiiKjxYJgiIquqy628O00y57woImpMGKaIyCw13bKrVFvAqelW3p0mmXNeFBE1JgxTRFRvdbllBwAJCQlVAtWdbuXVNsmciKgxYZgionqryy276uqAO9/K4yRzImoqGKaIqEHU9u276tTld/Q4yZyImgKGKSIyW12+fXe7O93K4yRzImoqGKaIyGx1+YmX6tR2K4+TzImoqWCYIiKz1eWWXaXbb9HxVh4RNXUMU0RkNlO+fefu7o6EhIR6P06BiKixYZgiogZhyrfvGJSIqDlhmCKieuMtOyIihikiMgNv2RERMUwRkZkYlIiopZPfuYSIiIiIasIwRURERGQG3uYjama0Wi3nMBERWRHDFFEzotVqsWLFijvWJSQkMFARETUQ3uYjakZuvyKl17sgP98Per1LrXVERFR/vDJF1ExlZfWt8kTy4OBsW7dFRNTs8MoUUTOk17tIQQq49aPD27cPr3KFioiIzMcwRdQM6XTuRj86DNwKVDqd2kYdERE1XwxTRM2QWq2FTGYwWiaTGaBW62zUERFR88UwRdQMqVTFiI5OlQJV5Zyp2n58mIiI6ocT0ImaqeDgbAQEnIVOp4ZarWOQIiKyEIYpomZEoVAYvVepiqsNUbfXERFR/TFMETUj7u7uSEhI4BPQiYisiGGKqJlhUCIisi5OQCciIiIyA8MUERERkRkYpoiIiIjMwDBFREREZAaGKSIiIiIzMEwRERERmYFhioiIiMgMjSJMrVy5En5+fnB0dERoaCgOHz5ca/3mzZvRrVs3ODo6olevXti5c6fReiEEZs2aBW9vbzg5OSEiIgJnzpwxqtHpdBgzZgxcXV3h5uaGCRMm4Nq1a9L677//HiNHjoS3tzecnZ0RFBSE9evXN9xJExERUbNg8zC1adMmJCYmIikpCVlZWejTpw8iIyNx+fLlausPHTqE2NhYTJgwAdnZ2YiJiUFMTAxyc3OlmgULFmDZsmVYtWoVMjIy4OzsjMjISNy4cUOqGTNmDE6cOIE9e/YgNTUVP/zwA+Lj442O07t3b2zZsgXHjh3D+PHj8fTTTyM1NdVyg0FERERNjkwIIWzZQGhoKO655x6sWLECAGAwGODr64sXX3wRU6dOrVI/atQolJSUGIWaAQMGICgoCKtWrYIQAj4+Pnj11Vfx2muvAQD0ej08PT2RkpKC0aNHIy8vDz169MCRI0fQr18/AMCuXbvw8MMP4/fff4ePj0+1vUZFRcHT0xOrV6+u07kVFRVBpVJBr9fD1dXVpHEhIiIi2zD189umV6bKysqQmZmJiIgIaZlcLkdERATS09Or3SY9Pd2oHgAiIyOl+vz8fGg0GqMalUqF0NBQqSY9PR1ubm5SkAKAiIgIyOVyZGRk1NivXq+HWq2ucX1paSmKioqMXkRERNS82TRMXb16FRUVFfD09DRa7unpCY1GU+02Go2m1vrKP+9U4+HhYbTe3t4earW6xuN+8cUXOHLkCMaPH1/j+SQnJ0OlUkkvX1/fGmuJiIioebD5nKmmYP/+/Rg/fjw+/vhj9OzZs8a6adOmQa/XS6+LFy9asUsiIiKyBZuGqbZt28LOzg4FBQVGywsKCuDl5VXtNl5eXrXWV/55p5rbJ7jfvHkTOp2uynH/85//IDo6GkuWLMHTTz9d6/kolUq4uroavYiIiKh5s2mYUigUCAkJQVpamrTMYDAgLS0NYWFh1W4TFhZmVA8Ae/bsker9/f3h5eVlVFNUVISMjAypJiwsDIWFhcjMzJRq9u3bB4PBgNDQUGnZ999/j6ioKLz77rtG3/QjIiIikggb27hxo1AqlSIlJUWcPHlSxMfHCzc3N6HRaIQQQowdO1ZMnTpVqj948KCwt7cXixYtEnl5eSIpKUk4ODiI48ePSzXz588Xbm5u4ptvvhHHjh0TI0eOFP7+/uKvv/6SaoYNGyb69u0rMjIyxIEDB0RgYKCIjY2V1u/bt0+0atVKTJs2TVy6dEl6abXaOp+bXq8XAIRerzdniIiIiMiKTP38tnmYEkKI5cuXiw4dOgiFQiH69+8vfvrpJ2ndoEGDRFxcnFH9F198Ibp06SIUCoXo2bOn2LFjh9F6g8EgZs6cKTw9PYVSqRRDhw4Vp0+fNqrRarUiNjZWtG7dWri6uorx48eL4uJiaX1cXJwAUOU1aNCgOp8Xw5RlXb16Vfzxxx81vq5evWrrFomIqAky9fPb5s+Zas74nCnL0Wq10rPJapOQkAB3d3crdERERM1Fk3rOFFF9lZWVGb3X612Qn+8Hvd6l1joiIqKGZm/rBojMlZXVF9u3D4cQcshkBkRHpyI4ONvWbRERUQvBMEWNglarrfUqkkKhqPZ2nV7vIgUpABBCju3bhyMg4CxUqmKL9UtERFSJYYpszpz5TzqduxSkKgkhh06nZpgiIiKr4Jwpsjlz5j+p1VrIZAajZTKZAWq1ruEbJSIiqgavTFGjYur8J5WqGNHRqVW24VUpIiKyFoYpajTqO/8pODgbAQFnodOpoVbrGKSIiMiqGKao0TBl/pNCoTB6r1IVVxuibq8jIiJqaAxTZLL6fvPuTirnP/09UNU0/8nd3R0JCQkW6YOIiMgUDFNkEks+edzU+U8MSkRE1BgwTJFJrly5YvRer3eBTucOtVprFHquXLlSr7DD+U9ERNTUMEyRScrLy6W/Z2X1xbZtw3HrCRsGjBjxv2/e/b3uTjj/iYiImjKGKaoXvd7lb0EKAOTYtq1+Tx7n/CciImrKGKaoXi5e9EXVZ77KcfHiXVCp8kzeH4MSERE1VXwCOhEREZEZGKaoXnx9LwIQRstkMgN8fX+3TUNEREQ2wjBF9aJSFWPEiO3S7+LxZ1yIiKil4pwpMom9/f/+ydT2GIO/1xERETVn/MRrIiz11HFTeXh4GL2v6TEGt9cRERE1VwxTTYAlnzpuKj7GgIiIyBjDVBNQW3CpT525GJSIiIj+hxPQmyC93gX5+X7Q611s3QoREVGLxytTTUxWVt8qPwRc+RMuREREZH28MtWE6PUuUpACACHk2L59OK9QERER2RDDVBOi07lLQaqSEHLodGobdUREREQMU02IWq2VHpJZSSYzQK3W2agjIiIiYphqQlSqYkRHp/Kp40RERI0IJ6A3AQqFQvp7bU8d/3sdERERWQfDVBPAB2USERE1XgxTTQSDEhERUePEOVNEREREZmCYIiIiIjIDwxQRERGRGRimiIiIiMzAMEVERERkBoYpIiIiIjMwTBERERGZgWGKiIiIyAwMU0RERERmYJgiIiIiMgN/TsaChBAAgKKiIht3QkRERHVV+bld+Tl+JwxTFlRcXAwA8PX1tXEnREREZKri4mKoVKo71slEXWMXmcxgMOCPP/6Ai4sLZDJZlfVFRUXw9fXFxYsX4erqaoMOGx+OiTGOhzGOR1UcE2McD2Mcj6rqMiZCCBQXF8PHxwdy+Z1nRPHKlAXJ5XLcddddd6xzdXXlP/LbcEyMcTyMcTyq4pgY43gY43hUdacxqcsVqUqcgE5ERERkBoYpIiIiIjMwTNmQUqlEUlISlEqlrVtpNDgmxjgexjgeVXFMjHE8jHE8qrLEmHACOhEREZEZeGWKiIiIyAwMU0RERERmYJgiIiIiMgPDFBEREZEZGKYsbOXKlfDz84OjoyNCQ0Nx+PDhGmtPnDiBRx99FH5+fpDJZFi6dKn1GrUiU8bk448/xn333Yc2bdqgTZs2iIiIqLW+KTJlPLZu3Yp+/frBzc0Nzs7OCAoKwmeffWbFbi3PlPH4u40bN0ImkyEmJsayDdqAKWOSkpICmUxm9HJ0dLRit5Zn6r+RwsJCTJo0Cd7e3lAqlejSpQt27txppW4tz5TxGDx4cJV/HzKZDFFRUVbs2PJM/TeydOlSdO3aFU5OTvD19cUrr7yCGzdu1P2Agixm48aNQqFQiNWrV4sTJ06I5557Tri5uYmCgoJq6w8fPixee+018fnnnwsvLy+xZMkS6zZsBaaOyZNPPilWrlwpsrOzRV5enhg3bpxQqVTi999/t3LnlmHqeOzfv19s3bpVnDx5Upw9e1YsXbpU2NnZiV27dlm5c8swdTwq5efni/bt24v77rtPjBw50jrNWompY7JmzRrh6uoqLl26JL00Go2Vu7YcU8ejtLRU9OvXTzz88MPiwIEDIj8/X3z//fciJyfHyp1bhqnjodVqjf5t5ObmCjs7O7FmzRrrNm5Bpo7J+vXrhVKpFOvXrxf5+fli9+7dwtvbW7zyyit1PibDlAX1799fTJo0SXpfUVEhfHx8RHJy8h237dixY7MMU+aMiRBC3Lx5U7i4uIi1a9daqkWrMnc8hBCib9++YsaMGZZoz+rqMx43b94U4eHh4t///reIi4trdmHK1DFZs2aNUKlUVurO+kwdjw8//FB06tRJlJWVWatFqzL3vyFLliwRLi4u4tq1a5Zq0epMHZNJkyaJIUOGGC1LTEwU9957b52Pydt8FlJWVobMzExERERIy+RyOSIiIpCenm7DzmynIcbk+vXrKC8vh1qttlSbVmPueAghkJaWhtOnT+P++++3ZKtWUd/xePvtt+Hh4YEJEyZYo02rqu+YXLt2DR07doSvry9GjhyJEydOWKNdi6vPeGzbtg1hYWGYNGkSPD09cffdd+Odd95BRUWFtdq2mIb4b+onn3yC0aNHw9nZ2VJtWlV9xiQ8PByZmZnSrcBff/0VO3fuxMMPP1zn4/KHji3k6tWrqKiogKenp9FyT09PnDp1ykZd2VZDjMkbb7wBHx8fo/+hNFX1HQ+9Xo/27dujtLQUdnZ2+OCDD/DAAw9Yul2Lq894HDhwAJ988glycnKs0KH11WdMunbtitWrV6N3797Q6/VYtGgRwsPDceLEiTr98HpjVp/x+PXXX7Fv3z6MGTMGO3fuxNmzZ/HPf/4T5eXlSEpKskbbFmPuf1MPHz6M3NxcfPLJJ5Zq0erqMyZPPvkkrl69ioEDB0IIgZs3b+KFF17Am2++WefjMkxRkzF//nxs3LgR33//fbObUGsKFxcX5OTk4Nq1a0hLS0NiYiI6deqEwYMH27o1qyouLsbYsWPx8ccfo23btrZup9EICwtDWFiY9D48PBzdu3fHv/71L8yZM8eGndmGwWCAh4cHPvroI9jZ2SEkJAT//e9/sXDhwiYfpsz1ySefoFevXujfv7+tW7Gp77//Hu+88w4++OADhIaG4uzZs3j55ZcxZ84czJw5s077YJiykLZt28LOzg4FBQVGywsKCuDl5WWjrmzLnDFZtGgR5s+fj71796J3796WbNNq6jsecrkcnTt3BgAEBQUhLy8PycnJTT5MmToe586dw/nz5xEdHS0tMxgMAAB7e3ucPn0aAQEBlm3awhrivyMODg7o27cvzp49a4kWrao+4+Ht7Q0HBwfY2dlJy7p37w6NRoOysjIoFAqL9mxJ5vz7KCkpwcaNG/H2229bskWrq8+YzJw5E2PHjsWzzz4LAOjVqxdKSkoQHx+P6dOnQy6/84wozpmyEIVCgZCQEKSlpUnLDAYD0tLSjP6/xpakvmOyYMECzJkzB7t27UK/fv2s0apVNNS/EYPBgNLSUku0aFWmjke3bt1w/Phx5OTkSK8RI0bgH//4B3JycuDr62vN9i2iIf6NVFRU4Pjx4/D29rZUm1ZTn/G49957cfbsWSloA8Avv/wCb2/vJh2kAPP+fWzevBmlpaV46qmnLN2mVdVnTK5fv14lMFWGb1HXny+ux0R5qqONGzcKpVIpUlJSxMmTJ0V8fLxwc3OTvqY8duxYMXXqVKm+tLRUZGdni+zsbOHt7S1ee+01kZ2dLc6cOWOrU2hwpo7J/PnzhUKhEF9++aXR13mLi4ttdQoNytTxeOedd8R3330nzp07J06ePCkWLVok7O3txccff2yrU2hQpo7H7Zrjt/lMHZPZs2eL3bt3i3PnzonMzEwxevRo4ejoKE6cOGGrU2hQpo7HhQsXhIuLi0hISBCnT58WqampwsPDQ8ydO9dWp9Cg6vu/mYEDB4pRo0ZZu12rMHVMkpKShIuLi/j888/Fr7/+Kr777jsREBAgnnjiiTofk2HKwpYvXy46dOggFAqF6N+/v/jpp5+kdYMGDRJxcXHS+/z8fAGgymvQoEHWb9yCTBmTjh07VjsmSUlJ1m/cQkwZj+nTp4vOnTsLR0dH0aZNGxEWFiY2btxog64tx5TxuF1zDFNCmDYmkydPlmo9PT3Fww8/LLKysmzQteWY+m/k0KFDIjQ0VCiVStGpUycxb948cfPmTSt3bTmmjsepU6cEAPHdd99ZuVPrMWVMysvLxVtvvSUCAgKEo6Oj8PX1Ff/85z/Fn3/+WefjyYSo6zUsIiIiIrod50wRERERmYFhioiIiMgMDFNEREREZmCYIiIiIjIDwxQRERGRGRimiIiIiMzAMEVERERkBoYpIqJmYNy4cYiJibF1G0QtEsMUEVnUuHHjIJPJpJe7uzuGDRuGY8eO2bq1BvH3c6t8DRw40GLHO3/+PGQyGXJycoyWv//++0hJSbHYcYmoZgxTRGRxw4YNw6VLl3Dp0iWkpaXB3t4ew4cPt3VbDWbNmjXS+V26dAnbtm2rtq68vNxiPahUKri5uVls/0RUM4YpIrI4pVIJLy8veHl5ISgoCFOnTsXFixdx5coVDBkyBAkJCUb1V65cgUKhkH753c/PD3PmzEFsbCycnZ3Rvn17rFy50mibxYsXo1evXnB2doavry/++c9/4tq1a9L63377DdHR0WjTpg2cnZ3Rs2dP7Ny5EwDw559/YsyYMWjXrh2cnJwQGBiINWvW1Pn83NzcpPPz8vKCWq2WriBt2rQJgwYNgqOjI9avXw+tVovY2Fi0b98erVq1Qq9evfD5558b7c9gMGDBggXo3LkzlEolOnTogHnz5gEA/P39AQB9+/aFTCbD4MGDAVS9zVdaWoqXXnoJHh4ecHR0xMCBA3HkyBFp/ffffw+ZTIa0tDT069cPrVq1Qnh4OE6fPl3n8yaiWximiMiqrl27hnXr1qFz585wd3fHs88+iw0bNqC0tFSqWbduHdq3b48hQ4ZIyxYuXIg+ffogOzsbU6dOxcsvv4w9e/ZI6+VyOZYtW4YTJ05g7dq12LdvH6ZMmSKtnzRpEkpLS/HDDz/g+PHjePfdd9G6dWsAwMyZM3Hy5El8++23yMvLw4cffoi2bds2yPlW9pqXl4fIyEjcuHEDISEh2LFjB3JzcxEfH4+xY8fi8OHD0jbTpk3D/Pnzpb42bNgAT09PAJDq9u7di0uXLmHr1q3VHnfKlCnYsmUL1q5di6ysLHTu3BmRkZHQ6XRGddOnT8d7772Ho0ePwt7eHs8880yDnDdRi9JgP9FMRFSNuLg4YWdnJ5ydnYWzs7MAILy9vUVmZqYQQoi//vpLtGnTRmzatEnapnfv3uKtt96S3nfs2FEMGzbMaL+jRo0SDz30UI3H3bx5s3B3d5fe9+rVy2iffxcdHS3Gjx9fr/MDIBwdHaXzc3Z2Fl999ZXIz88XAMTSpUvvuI+oqCjx6quvCiGEKCoqEkqlUnz88cfV1lbuNzs722h5XFycGDlypBBCiGvXrgkHBwexfv16aX1ZWZnw8fERCxYsEEIIsX//fgFA7N27V6rZsWOHACD++usvU4aAqMXjlSkisrh//OMfyMnJQU5ODg4fPozIyEg89NBD+O233+Do6IixY8di9erVAICsrCzk5uZi3LhxRvsICwur8j4vL096v3fvXgwdOhTt27eHi4sLxo4dC61Wi+vXrwMAXnrpJcydOxf33nsvkpKSjCbAT5w4ERs3bkRQUBCmTJmCQ4cOmXR+S5Yskc4vJycHDzzwgLSuX79+RrUVFRWYM2cOevXqBbVajdatW2P37t24cOECACAvLw+lpaUYOnSoST383blz51BeXo57771XWubg4ID+/fsbjRkA9O7dW/q7t7c3AODy5cv1PjZRS8QwRUQW5+zsjM6dO6Nz586455578O9//xslJSX4+OOPAQDPPvss9uzZg99//x1r1qzBkCFD0LFjxzrv//z58xg+fDh69+6NLVu2IDMzU5pTVVZWJh3j119/xdixY3H8+HH069cPy5cvBwAp2L3yyiv4448/MHToULz22mt1Pr6Xl5d0fp07d4azs7PRuf/dwoUL8f777+ONN97A/v37kZOTg8jISKlPJyenOh+3ITg4OEh/l8lkAG7N2SKiumOYIiKrk8lkkMvl+OuvvwAAvXr1Qr9+/fDxxx9jw4YN1c7b+emnn6q87969OwAgMzMTBoMB7733HgYMGIAuXbrgjz/+qLIPX19fvPDCC9i6dSteffVVKcwBQLt27RAXF4d169Zh6dKl+OijjxrylCUHDx7EyJEj8dRTT6FPnz7o1KkTfvnlF2l9YGAgnJycpMn3t1MoFABuXeGqSUBAABQKBQ4ePCgtKy8vx5EjR9CjR48GOhMiqmRv6waIqPkrLS2FRqMBcOubcytWrMC1a9cQHR0t1Tz77LNISEiAs7Mz/u///q/KPg4ePIgFCxYgJiYGe/bswebNm7Fjxw4AQOfOnVFeXo7ly5cjOjoaBw8exKpVq4y2nzx5Mh566CF06dIFf/75J/bv3y+FsVmzZiEkJAQ9e/ZEaWkpUlNTpXUNLTAwEF9++SUOHTqENm3aYPHixSgoKJBCjqOjI9544w1MmTIFCoUC9957L65cuYITJ05gwoQJ8PDwgJOTE3bt2oW77roLjo6OUKlURsdwdnbGxIkT8frrr0OtVqNDhw5YsGABrl+/jgkTJljkvIhaMl6ZIiKL27VrF7y9veHt7Y3Q0FAcOXIEmzdvlr7WDwCxsbGwt7dHbGwsHB0dq+zj1VdfxdGjR9G3b1/MnTsXixcvRmRkJACgT58+WLx4Md59913cfffdWL9+PZKTk422r6iowKRJk9C9e3cMGzYMXbp0wQcffADg1tWeadOmoXfv3rj//vthZ2eHjRs3WmQsZsyYgeDgYERGRmLw4MHw8vKq8uTymTNn4tVXX8WsWbPQvXt3jBo1SprHZG9vj2XLluFf//oXfHx8MHLkyGqPM3/+fDz66KMYO3YsgoODcfbsWezevRtt2rSxyHkRtWQyIYSwdRNEROfPn0dAQACOHDmC4OBgo3V+fn6YPHkyJk+ebJvmiIhqwdt8RGRT5eXl0Gq1mDFjBgYMGFAlSBERNXa8zUdENnXw4EF4e3vjyJEjVeY52do777yD1q1bV/t66KGHbN0eETUSvM1HRFQDnU5X5YnhlZycnNC+fXsrd0REjRHDFBEREZEZeJuPiIiIyAwMU0RERERmYJgiIiIiMgPDFBEREZEZGKaIiIiIzMAwRURERGQGhikiIiIiMzBMEREREZnh/wFSKtqmvtY3bwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_10.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWxUlEQVR4nO3deVhUZf8/8PcMMIAIwwMqi6Ig4m4qqIillFJjIcqTpaIpmoX2FdOwRUvBNUzNzKWsnhJbzCXNBY0yzEwlVMQdzQWXysFkYkBM0Zn794c/To4MODMCw8D7dV1zIed8zjn3uZ95mHf3nHMfmRBCgIiIiIjMIrd2A4iIiIhsEUMUERERkQUYooiIiIgswBBFREREZAGGKCIiIiILMEQRERERWYAhioiIiMgCDFFEREREFmCIIiIiIrIAQxQRUS2XkpICmUyG8+fPW7spRLUKQxQRPbD9+/cjPj4e7dq1g4uLC5o2bYpBgwbht99+K1P76KOPQiaTQSaTQS6Xw83NDa1atcLw4cOxfft2s467ZcsWhIeHo1GjRqhXrx6aN2+OQYMGIS0trbJOrYy3334bGzduLLN87969mD59OgoKCqrs2PeaPn261JcymQz16tVD27ZtMXXqVBQWFlbKMVatWoVFixZVyr6IahuGKCJ6YO+88w7Wr1+PPn364P3330dcXBx27dqF4OBgHDt2rEx9kyZN8MUXX+Dzzz/H/Pnz0b9/f+zduxdPPPEEBg8ejFu3bt33mAsWLED//v0hk8kwZcoUvPfeexg4cCBOnz6N1atXV8VpAqg4RM2YMaNaQ1SpDz/8EF988QUWLlyI1q1bY86cOejbty8q49GoDFFE5bO3dgOIyPYlJCRg1apVUCgU0rLBgwejQ4cOmDt3Lr788kuDeqVSieeee85g2dy5c/Hyyy/jgw8+gL+/P955551yj3f79m3MmjULjz/+OH744Ycy669cufKAZ1RzXL9+HfXq1auw5plnnkGDBg0AAGPHjsXAgQOxYcMG/PrrrwgLC6uOZhLVSRyJIqIH1qNHD4MABQBBQUFo164dcnJyTNqHnZ0dFi9ejLZt22Lp0qXQarXl1l69ehWFhYV4+OGHja5v1KiRwe83btzA9OnT0bJlSzg5OcHHxwdPP/00zp49K9UsWLAAPXr0gKenJ5ydnRESEoJvvvnGYD8ymQzFxcVYuXKl9BXayJEjMX36dLz22msAgICAAGnd3dcgffnllwgJCYGzszM8PDwwZMgQXLp0yWD/jz76KNq3b4+srCz06tUL9erVw5tvvmlS/92td+/eAIDc3NwK6z744AO0a9cOjo6O8PX1xbhx4wxG0h599FFs3boVFy5ckM7J39/f7PYQ1VYciSKiKiGEQF5eHtq1a2fyNnZ2doiJicG0adOwe/duREZGGq1r1KgRnJ2dsWXLFowfPx4eHh7l7lOn06Ffv35IT0/HkCFDMGHCBBQVFWH79u04duwYAgMDAQDvv/8++vfvj2HDhqGkpASrV6/Gs88+i9TUVKkdX3zxBV544QV069YNcXFxAIDAwEC4uLjgt99+w9dff4333ntPGhVq2LAhAGDOnDmYNm0aBg0ahBdeeAF//fUXlixZgl69eiE7Oxvu7u5Se/Pz8/Hkk09iyJAheO655+Dl5WVy/5UqDYeenp7l1kyfPh0zZsxAREQEXnrpJZw6dQoffvgh9u/fjz179sDBwQFvvfUWtFotfv/9d7z33nsAgPr165vdHqJaSxARVYEvvvhCABCffvqpwfLw8HDRrl27crf79ttvBQDx/vvvV7j/xMREAUC4uLiIJ598UsyZM0dkZWWVqfvss88EALFw4cIy6/R6vfTv69evG6wrKSkR7du3F7179zZY7uLiImJjY8vsa/78+QKAyM3NNVh+/vx5YWdnJ+bMmWOw/OjRo8Le3t5geXh4uAAgli9fXu553y0pKUkAEKdOnRJ//fWXyM3NFR999JFwdHQUXl5eori4WAghxIoVKwzaduXKFaFQKMQTTzwhdDqdtL+lS5cKAOKzzz6TlkVGRopmzZqZ1B6iuoZf5xFRpTt58iTGjRuHsLAwxMbGmrVt6UhHUVFRhXUzZszAqlWr0LlzZ3z//fd46623EBISguDgYIOvENevX48GDRpg/PjxZfYhk8mkfzs7O0v//vvvv6HVatGzZ08cPHjQrPbfa8OGDdDr9Rg0aBCuXr0qvby9vREUFISffvrJoN7R0RGjRo0y6xitWrVCw4YNERAQgDFjxqBFixbYunVruddS/fjjjygpKcHEiRMhl//7MfDiiy/Czc0NW7duNf9Eieogfp1HRJVKrVYjMjISSqUS33zzDezs7Mza/tq1awAAV1fX+9bGxMQgJiYGhYWFyMzMREpKClatWoWoqCgcO3YMTk5OOHv2LFq1agV7+4r/3KWmpmL27Nk4dOgQbt68KS2/O2hZ4vTp0xBCICgoyOh6BwcHg98bN25c5vqy+1m/fj3c3Nzg4OCAJk2aSF9RlufChQsA7oSvuykUCjRv3lxaT0QVY4giokqj1Wrx5JNPoqCgAL/88gt8fX3N3kfplAgtWrQweRs3Nzc8/vjjePzxx+Hg4ICVK1ciMzMT4eHhJm3/yy+/oH///ujVqxc++OAD+Pj4wMHBAStWrMCqVavMPoe76fV6yGQyfPfdd0YD5b3XGN09ImaqXr16SddhEVH1YYgiokpx48YNREVF4bfffsOPP/6Itm3bmr0PnU6HVatWoV69enjkkUcsakeXLl2wcuVKXL58GcCdC78zMzNx69atMqM+pdavXw8nJyd8//33cHR0lJavWLGiTG15I1PlLQ8MDIQQAgEBAWjZsqW5p1MlmjVrBgA4deoUmjdvLi0vKSlBbm4uIiIipGUPOhJHVJvxmigiemA6nQ6DBw9GRkYG1q1bZ9HcRDqdDi+//DJycnLw8ssvw83Nrdza69evIyMjw+i67777DsC/X1UNHDgQV69exdKlS8vUiv8/GaWdnR1kMhl0Op207vz580Yn1XRxcTE6oaaLiwsAlFn39NNPw87ODjNmzCgz+aUQAvn5+cZPsgpFRERAoVBg8eLFBm369NNPodVqDe6KdHFxqXC6CaK6jCNRRPTAJk2ahM2bNyMqKgoajabM5Jr3Tqyp1WqlmuvXr+PMmTPYsGEDzp49iyFDhmDWrFkVHu/69evo0aMHunfvjr59+8LPzw8FBQXYuHEjfvnlF0RHR6Nz584AgBEjRuDzzz9HQkIC9u3bh549e6K4uBg//vgj/u///g8DBgxAZGQkFi5ciL59+2Lo0KG4cuUKli1bhhYtWuDIkSMGxw4JCcGPP/6IhQsXwtfXFwEBAQgNDUVISAgA4K233sKQIUPg4OCAqKgoBAYGYvbs2ZgyZQrOnz+P6OhouLq6Ijc3F99++y3i4uLw6quvPlD/m6thw4aYMmUKZsyYgb59+6J///44deoUPvjgA3Tt2tXgf6+QkBCsWbMGCQkJ6Nq1K+rXr4+oqKhqbS9RjWXNWwOJqHYovTW/vFdFtfXr1xdBQUHiueeeEz/88INJx7t165b45JNPRHR0tGjWrJlwdHQU9erVE507dxbz588XN2/eNKi/fv26eOutt0RAQIBwcHAQ3t7e4plnnhFnz56Vaj799FMRFBQkHB0dRevWrcWKFSukKQTudvLkSdGrVy/h7OwsABhMdzBr1izRuHFjIZfLy0x3sH79evHII48IFxcX4eLiIlq3bi3GjRsnTp06ZdA3FU3/cK/S9v31118V1t07xUGppUuXitatWwsHBwfh5eUlXnrpJfH3338b1Fy7dk0MHTpUuLu7CwCc7oDoLjIhKuHhSkRERER1DK+JIiIiIrIAQxQRERGRBRiiiIiIiCzAEEVERERkAYYoIiIiIgswRBERERFZgJNtViG9Xo8///wTrq6ufHQCERGRjRBCoKioCL6+vpDLyx9vYoiqQn/++Sf8/Pys3QwiIiKywKVLl9CkSZNy1zNEVSFXV1cAd/5HqOg5YERERFRzFBYWws/PT/ocLw9DVBUq/QrPzc2NIYqIiMjG3O9SHF5YTkRERGQBhigiIiIiCzBEEREREVmA10RZmU6nw61bt6zdjFrLwcEBdnZ21m4GERHVQgxRViKEgFqtRkFBgbWbUuu5u7vD29ubc3UREVGlYoiyktIA1ahRI9SrV48f8FVACIHr16/jypUrAAAfHx8rt4iIiGoThigr0Ol0UoDy9PS0dnNqNWdnZwDAlStX0KhRI361R0RElYYXlltB6TVQ9erVs3JL6obSfua1Z0REVJkYoqyIX+FVD/YzERFVBX6dR0RERDYhPz8fJSUl5a5XKBTVepkMQxQRERHVePn5+Vi6dOl96+Lj46stSPHrPDLLyJEjIZPJIJPJ4ODgAC8vLzz++OP47LPPoNfrTd5PSkoK3N3dq66hRERUq9w7AqXVuiI31x9arWuFdVWJI1E2yppDmn379sWKFSug0+mQl5eHtLQ0TJgwAd988w02b94Me3u+rYiIqOocPNgZW7b0gxByyGR6REWlIjg4u9rbwU87G2TtIU1HR0d4e3sDABo3bozg4GB0794dffr0QUpKCl544QUsXLgQK1aswLlz5+Dh4YGoqCjMmzcP9evXx86dOzFq1CgA/170nZSUhOnTp+OLL77A+++/j1OnTsHFxQW9e/fGokWL0KhRo0o/DyIisj1arasUoABACDm2bOmHwMAzUCqLqrUt/DrPBpk6VFmdQ5q9e/dGx44dsWHDBgCAXC7H4sWLcfz4caxcuRI7duzA66+/DgDo0aMHFi1aBDc3N1y+fBmXL1/Gq6++CuDONASzZs3C4cOHsXHjRpw/fx4jR46stvMgIqKaTaPxlAJUKSHk0Gg8qr0tHImiStO6dWscOXIEADBx4kRpub+/P2bPno2xY8figw8+gEKhgFKphEwmk0a0Sj3//PPSv5s3b47Fixeja9euuHbtGurXr18t50FERDWXh0c+ZDK9QZCSyfTw8NBUe1s4EkWVRgghfT33448/ok+fPmjcuDFcXV0xfPhw5Ofn4/r16xXuIysrC1FRUWjatClcXV0RHh4OALh48WKVt5+IiGo+pbIIUVGpkMnu3MxUek1UdX+VB3AkiipRTk4OAgICcP78efTr1w8vvfQS5syZAw8PD+zevRujR49GSUlJuTO1FxcXQ6VSQaVS4auvvkLDhg1x8eJFqFSqav1qkoiIarbg4GwEBp6BRuMBDw+NVQIUwBBFlWTHjh04evQoXnnlFWRlZUGv1+Pdd9+FXH5nsHPt2rUG9QqFAjqdzmDZyZMnkZ+fj7lz58LPzw8AcODAgeo5ASIiqtEUCoXB70plkdHwdG9dVWKIIrPdvHkTarXaYIqD5ORk9OvXDyNGjMCxY8dw69YtLFmyBFFRUdizZw+WL19usA9/f39cu3YN6enp6NixI+rVq4emTZtCoVBgyZIlGDt2LI4dO4ZZs2ZZ6SyJiKgm8fT0RHx8fI2asZzXRJHZ0tLS4OPjA39/f/Tt2xc//fQTFi9ejE2bNsHOzg4dO3bEwoUL8c4776B9+/b46quvkJycbLCPHj16YOzYsRg8eDAaNmyIefPmoWHDhkhJScG6devQtm1bzJ07FwsWLLDSWRIRUU3j6ekJHx+fcl/VGaAAQCaEENV6xDqksLAQSqUSWq0Wbm5u0vIbN24gNzcXAQEBcHJyMnu/1p4nytY8aH8TEVHdUt7n9734dZ4NqolDmkRERHUNQ5SNYkAiIiKyLl4TRURERGQBq4eoZcuWwd/fH05OTggNDcW+ffsqrF+3bh1at24NJycndOjQAdu2bTNYL4RAYmIifHx84OzsjIiICJw+fdqgZs6cOejRowfq1asHd3f3Co+Xn5+PJk2aQCaToaCgwJJTJCIiolrIqiFqzZo1SEhIQFJSEg4ePIiOHTtCpVLhypUrRuv37t2LmJgYjB49GtnZ2YiOjkZ0dDSOHTsm1cybNw+LFy/G8uXLkZmZCRcXF6hUKty4cUOqKSkpwbPPPouXXnrpvm0cPXo0HnrooQc/WSIiIqpVrHp3XmhoKLp27SrdaabX6+Hn54fx48dj8uTJZeoHDx6M4uJipKamSsu6d++OTp06Yfny5RBCwNfXF5MmTZIeaKvVauHl5YWUlBQMGTLEYH8pKSmYOHFiuSNMH374IdasWYPExET06dMHf//9931Hru5WVXfnkXkqu7/z8/N5UT8RUS1W4+/OKykpQVZWFqZMmSItk8vliIiIQEZGhtFtMjIykJCQYLBMpVJh48aNAIDc3Fyo1WpERERI65VKJUJDQ5GRkVEmRFXkxIkTmDlzJjIzM3Hu3DmTtrl58yZu3rwp/V5YWGjy8cg2cHoJIiIqZbWv865evQqdTgcvLy+D5V5eXlCr1Ua3UavVFdaX/jRnn8bcvHkTMTExmD9/Ppo2bWrydsnJyVAqldKr9NElVHvcOwKl1boiN9cfWq1rhXVERFT7cIoDI6ZMmYI2bdrgueeeM3u7u0fKCgsLGaRqsYMHO2PLln4QQi49RTw4ONvazSIiompitZGoBg0awM7ODnl5eQbL8/Ly4O3tbXQbb2/vCutLf5qzT2N27NiBdevWwd7eHvb29ujTp4/U5qSkpHK3c3R0hJubm8GLzLNz506z74T09/fHokWLqqxNxmi1rlKAAgAh5NiypV+ZESkiIqq9rBaiFAoFQkJCkJ6eLi3T6/VIT09HWFiY0W3CwsIM6gFg+/btUn1AQAC8vb0NagoLC5GZmVnuPo1Zv349Dh8+jEOHDuHQoUP43//+BwD45ZdfMG7cOJP3UxuNHDkSMpkMY8eOLbNu3LhxkMlkGDlyZPU3rJppNJ5SgColhBwajYeVWkRERNXNql/nJSQkIDY2Fl26dEG3bt2waNEiFBcXY9SoUQCAESNGoHHjxtLDaydMmIDw8HC8++67iIyMxOrVq3HgwAF8/PHHAACZTIaJEydi9uzZCAoKQkBAAKZNmwZfX19ER0dLx7148SI0Gg0uXrwInU6HQ4cOAQBatGiB+vXrIzAw0KCdV69eBQC0adPGrLvzais/Pz+sXr0a7733HpydnQHcuQNu1apVZl1DZss8PPIhk+kNgpRMpoeHh8aKrSIioupk1XmiBg8ejAULFiAxMRGdOnXCoUOHkJaWJl0YfvHiRVy+fFmq79GjB1atWoWPP/4YHTt2xDfffIONGzeiffv2Us3rr7+O8ePHIy4uDl27dsW1a9eQlpZmcGt7YmIiOnfujKSkJFy7dg2dO3dG586dceDAgeo7eRsWHBwMPz8/bNiwQVq2YcMGNG3aFJ07d5aW3bx5Ey+//DIaNWoEJycnPPLII9i/f7/BvrZt24aWLVvC2dkZjz32GM6fP1/meLt370bPnj3h7OwMPz8/vPzyyyguLq6y8zOFUlmEqKhUyGR6AJCuiVIqi6zaLiIiqj5WnSeqtquueaJ+/x04fRoICgKaNHng3VVo5MiRKCgoQHh4OLZu3Yoff/wRABAREYF+/fph586dcHd3R0pKCiZMmIBvvvkG//vf/9CsWTPMmzcPmzdvxpkzZ+Dh4YFLly4hKCgI48aNQ1xcHA4cOIBJkyYhLy9PmpPr7Nmz6NixI2bPno3IyEj89ddfiI+PR8eOHbFixQoAd66JmjhxIiZOnGi0zZXZ35cvX5ZGPoE710ZpNB7w8NAYBKi4uDj4+Pg80LGIiMg6TJ0nyuqPfaEH8+mnQLNmQO/ed35++mn1HPe5557D7t27ceHCBVy4cAF79uwxuJuxuLgYH374IebPn48nn3wSbdu2xSeffAJnZ2d8+v8b+eGHHyIwMBDvvvsuWrVqhWHDhpW5nio5ORnDhg3DxIkTERQUhB49emDx4sX4/PPPDWahry4KhcLgd6WyCAEBF8qMQN1bR0REtQ+nOLBhv/8OxMUB+jvfKEGvB8aMAVSqqh+RatiwISIjI5GSkgIhBCIjI9GgQQNp/dmzZ3Hr1i08/PDD0jIHBwd069YNOTk5AICcnByEhoYa7PfeGwAOHz6MI0eO4KuvvpKWCSGg1+uRm5uLNm3aVMXplcvT0xPx8fGcsZyIiBiibNnp0/8GqFI6HXDmTNWHKAB4/vnnER8fD+DOg6SrwrVr1zBmzBi8/PLLZdZZ6yJ2BiQiIgIYomxaUBAglxsGKTs7oEWL6jl+3759UVJSAplMBpVKZbAuMDAQCoUCe/bsQbNmzQAAt27dwv79+6Vrl9q0aYPNmzcbbPfrr78a/B4cHIwTJ06gRXWdFBERkYl4TZQNa9IE+PjjO8EJuPPzo4+qZxTqzvHskJOTgxMnTsCutBH/n4uLC1566SW89tprSEtLw4kTJ/Diiy/i+vXrGD16NABg7NixOH36NF577TWcOnUKq1atQkpKisF+3njjDezduxfx8fE4dOgQTp8+jU2bNkkjYERERNbCkSgbN3r0nWugzpy5MwJVXQGqVEV3LcydOxd6vR7Dhw9HUVERunTpgu+//x7/+c9/ANz5Om79+vV45ZVXsGTJEnTr1g1vv/02nn/+eWkfDz30EH7++We89dZb6NmzJ4QQCAwMxODBg6v83IiIiCrCKQ6qUHVNcUAVY38TEZE5OMUBERERURViiCIiIiKyAEMUERERkQUYooiIiIgswBBlRbymv3qwn4mIqCowRFmBg4MDAOD69etWbkndUNrPpf1ORERUGThPlBXY2dnB3d0dV65cAQDUq1cPMpnMyq2qfYQQuH79Oq5cuQJ3d/cyE4ISERE9CIYoK/H29gYAKUhR1XF3d5f6m4iIqLIwRFmJTCaDj48PGjVqhFu3blm7ObWWg4MDR6CIiKhKMERZmZ2dHT/kiYiIbBAvLCciIiKyAEMUERERkQUYooiIiIgswBBFREREZAGGKCIiIiILMEQRERERWYAhioiIiMgCDFFEREREFmCIIiIiIrIAQxQRERGRBRiiiIiIiCzAEEVERERkAYYoIiIiIgswRBERERFZgCGKiIiIyAIMUUREREQWsLd2A4iIiMhQfn4+SkpKyl2vUCjg6elZjS0iYxiiiIiIapD8/HwsXbr0vnXx8fGVFqQY2izDEEVERFSD3BtmtFpXaDSe8PDIh1JZVG6dpe4NbeUdrzJDW23BEEVERFRDHTzYGVu29IMQcshkekRFpSI4OLtSj3F3GKvoeJUV2moTXlhORERUA2m1rlKgAQAh5NiypR+0WtdacbzawOohatmyZfD394eTkxNCQ0Oxb9++CuvXrVuH1q1bw8nJCR06dMC2bdsM1gshkJiYCB8fHzg7OyMiIgKnT582qJkzZw569OiBevXqwd3dvcwxDh8+jJiYGPj5+cHZ2Rlt2rTB+++//8DnSkREZCqNxlMKNKWEkEOj8agVx6sNrBqi1qxZg4SEBCQlJeHgwYPo2LEjVCoVrly5YrR+7969iImJwejRo5GdnY3o6GhER0fj2LFjUs28efOwePFiLF++HJmZmXBxcYFKpcKNGzekmpKSEjz77LN46aWXjB4nKysLjRo1wpdffonjx4/jrbfewpQpU0y60I+IiKgyeHjkQybTGyyTyfTw8NDUiuPVBjIhhLDWwUNDQ9G1a1cpnOj1evj5+WH8+PGYPHlymfrBgwejuLgYqamp0rLu3bujU6dOWL58OYQQ8PX1xaRJk/Dqq68CALRaLby8vJCSkoIhQ4YY7C8lJQUTJ05EQUHBfds6btw45OTkYMeOHSafX2FhIZRKJbRaLdzc3EzejoiI6q7Lly/j448/BlDxNUpxcXHw8fGxuePZAlM/v612YXlJSQmysrIwZcoUaZlcLkdERAQyMjKMbpORkYGEhASDZSqVChs3bgQA5ObmQq1WIyIiQlqvVCoRGhqKjIyMMiHKHFqtFh4eFQ9p3rx5Ezdv3pR+LywstPh4REREwcHZCAw8A43GAx4eGoO75WrD8Wyd1ULU1atXodPp4OXlZbDcy8sLJ0+eNLqNWq02Wq9Wq6X1pcvKq7HE3r17sWbNGmzdurXCuuTkZMyYMcPi4xARESkUCoPflcoio2Hm3rrKUt7xqCxOcXAfx44dw4ABA5CUlIQnnniiwtopU6YYjJQVFhbCz8+vqptIRES1iKenJ+Lj46tt8ktTw1hVhTZbZrUQ1aBBA9jZ2SEvL89geV5eHry9vY1u4+3tXWF96c+8vDyD723z8vLQqVMns9t44sQJ9OnTB3FxcZg6dep96x0dHeHo6Gj2cYiIiO5WnZNaVndoq02sdneeQqFASEgI0tPTpWV6vR7p6ekICwszuk1YWJhBPQBs375dqg8ICIC3t7dBTWFhITIzM8vdZ3mOHz+Oxx57DLGxsZgzZ45Z2xIREdkST09P+Pj4lPtigDLOql/nJSQkIDY2Fl26dEG3bt2waNEiFBcXY9SoUQCAESNGoHHjxkhOTgYATJgwAeHh4Xj33XcRGRmJ1atX48CBA9JdBTKZDBMnTsTs2bMRFBSEgIAATJs2Db6+voiOjpaOe/HiRWg0Gly8eBE6nQ6HDh0CALRo0QL169fHsWPH0Lt3b6hUKiQkJEjXU9nZ2aFhw4bV10FERERUcwkrW7JkiWjatKlQKBSiW7du4tdff5XWhYeHi9jYWIP6tWvXipYtWwqFQiHatWsntm7darBer9eLadOmCS8vL+Ho6Cj69OkjTp06ZVATGxsrAJR5/fTTT0IIIZKSkoyub9asmVnnptVqBQCh1WrN2o6IiIisx9TPb6vOE1XbcZ4oIiIi22Pq57fVH/tCREREZIsYooiIiIgswBBFREREZAGGKCIiIiILMEQRERERWYAhioiIiMgCDFFEREREFmCIIiIiIrIAQxQRERGRBRiiiIiIiCzAEEVERERkAYYoIiIiIgswRBERERFZgCGKiIiIyAIMUUREREQWYIgiIiIisgBDFBEREZEFGKKIiIiILMAQRURERGQBhigiIiIiCzBEEREREVmAIYqIiIjIAgxRRERERBZgiCIiIiKyAEMUERERkQUYooiIiIgswBBFREREZAGGKCIiIiILMEQRERERWYAhioiIiMgCDFFEREREFmCIIiIiIrIAQxQRERGRBRiiiIiIiCzAEEVERERkAYYoIiIiIgswRBERERFZwOohatmyZfD394eTkxNCQ0Oxb9++CuvXrVuH1q1bw8nJCR06dMC2bdsM1gshkJiYCB8fHzg7OyMiIgKnT582qJkzZw569OiBevXqwd3d3ehxLl68iMjISNSrVw+NGjXCa6+9htu3bz/QuRIREVHtYdUQtWbNGiQkJCApKQkHDx5Ex44doVKpcOXKFaP1e/fuRUxMDEaPHo3s7GxER0cjOjoax44dk2rmzZuHxYsXY/ny5cjMzISLiwtUKhVu3Lgh1ZSUlODZZ5/FSy+9ZPQ4Op0OkZGRKCkpwd69e7Fy5UqkpKQgMTGxcjuAiIiIbJewom7duolx48ZJv+t0OuHr6yuSk5ON1g8aNEhERkYaLAsNDRVjxowRQgih1+uFt7e3mD9/vrS+oKBAODo6iq+//rrM/lasWCGUSmWZ5du2bRNyuVyo1Wpp2Ycffijc3NzEzZs3TT4/rVYrAAitVmvyNkRERGRdpn5+W20kqqSkBFlZWYiIiJCWyeVyREREICMjw+g2GRkZBvUAoFKppPrc3Fyo1WqDGqVSidDQ0HL3Wd5xOnToAC8vL4PjFBYW4vjx4+Vud/PmTRQWFhq8iIiIqHayWoi6evUqdDqdQVABAC8vL6jVaqPbqNXqCutLf5qzT3OOc/cxjElOToZSqZRefn5+Jh+TiIiIbIvVLyyvTaZMmQKtViu9Ll26ZO0mERERURWxWohq0KAB7OzskJeXZ7A8Ly8P3t7eRrfx9vausL70pzn7NOc4dx/DGEdHR7i5uRm8iIiIqHayWohSKBQICQlBenq6tEyv1yM9PR1hYWFGtwkLCzOoB4Dt27dL9QEBAfD29jaoKSwsRGZmZrn7LO84R48eNbhLcPv27XBzc0Pbtm1N3g8RERHVXvbWPHhCQgJiY2PRpUsXdOvWDYsWLUJxcTFGjRoFABgxYgQaN26M5ORkAMCECRMQHh6Od999F5GRkVi9ejUOHDiAjz/+GAAgk8kwceJEzJ49G0FBQQgICMC0adPg6+uL6Oho6bgXL16ERqPBxYsXodPpcOjQIQBAixYtUL9+fTzxxBNo27Ythg8fjnnz5kGtVmPq1KkYN24cHB0dq7WPiIiIqIaqprsFy7VkyRLRtGlToVAoRLdu3cSvv/4qrQsPDxexsbEG9WvXrhUtW7YUCoVCtGvXTmzdutVgvV6vF9OmTRNeXl7C0dFR9OnTR5w6dcqgJjY2VgAo8/rpp5+kmvPnz4snn3xSODs7iwYNGohJkyaJW7dumXVunOKAiIjI9pj6+S0TQggrZrharbCwEEqlElqtltdHERER2QhTP795dx4RERGRBRiiiIiIiCzAEEVERERkAYYoIiIiIgswRBERERFZgCGKiIiIyAIMUUREREQWYIgiIiIisgBDFBEREZEFGKKIiIiILMAQRURERGQBhigiIiIiCzBEEREREVmAIYqIiIjIAgxRRERERBZgiCIiIiKyAEMUERERkQUYooiIiIgswBBFREREZAGGKCIiIiILMEQRERERWYAhioiIiMgCDFFEREREFmCIIiIiIrIAQxQRERGRBRiiiIiIiCzAEEVERERkAYYoIiIiIgvYW7LRvn37kJGRAbVaDQDw9vZGWFgYunXrVqmNIyIiIqqpzApRV65cwcCBA7Fnzx40bdoUXl5eAIC8vDy88sorePjhh7F+/Xo0atSoShpLREREVFOY9XXe//3f/0Gn0yEnJwfnz59HZmYmMjMzcf78eeTk5ECv12PcuHFV1VYiIiKiGkMmhBCmFru6umLXrl3o3Lmz0fVZWVl49NFHUVRUVGkNtGWFhYVQKpXQarVwc3OzdnOIiIjIBKZ+fps1EuXo6IjCwsJy1xcVFcHR0dGcXRIRERHZJLNC1ODBgxEbG4tvv/3WIEwVFhbi22+/xahRoxATE1PpjSQiIiKqacy6sHzhwoXQ6/UYMmQIbt++DYVCAQAoKSmBvb09Ro8ejQULFlRJQ4modsrPz0dJSUm56xUKBTw9PauxRUREpjHrmqhShYWFyMrKMpjiICQkhNf93IPXRBFVLD8/H0uXLr1vXXx8PIMUEVUbUz+/LZonys3NDY899pjFjSMiAlBmBEqrdYVG4wkPj3wolUXl1hER1QQWhajy5OXl4aOPPkJiYmJl7paI6oCDBztjy5Z+EEIOmUyPqKhUBAdnW7tZRETlqtTHvqjVasyYMcOsbZYtWwZ/f384OTkhNDQU+/btq7B+3bp1aN26NZycnNChQwds27bNYL0QAomJifDx8YGzszMiIiJw+vRpgxqNRoNhw4bBzc0N7u7uGD16NK5du2ZQ8/3336N79+5wdXVFw4YNMXDgQJw/f96scyMi02i1rlKAAgAh5NiypR+0Wlcrt4yIqHxmhagjR45U+Dp16pRZB1+zZg0SEhKQlJSEgwcPomPHjlCpVLhy5YrR+r179yImJgajR49GdnY2oqOjER0djWPHjkk18+bNw+LFi7F8+XJkZmbCxcUFKpUKN27ckGqGDRuG48ePY/v27UhNTcWuXbsQFxcnrc/NzcWAAQPQu3dvHDp0CN9//z2uXr2Kp59+2qzzIyLTaDSeUoAqJYQcGo2HlVpERGQCYQaZTCbkcrmQyWRlXqXL5XK5yfvr1q2bGDdunPS7TqcTvr6+Ijk52Wj9oEGDRGRkpMGy0NBQMWbMGCGEEHq9Xnh7e4v58+dL6wsKCoSjo6P4+uuvhRBCnDhxQgAQ+/fvl2q+++47IZPJxB9//CGEEGLdunXC3t5e6HQ6qWbz5s1CJpOJkpISk89Pq9UKAEKr1Zq8DVFd8ueff4rp06eLV155V8hkOgEI6SWT6cQrr7wrpk+fLv78809rN5WI6hBTP7/NGony8PDAJ598gtzc3DKvc+fOITU11eR9lZSUICsrCxEREdIyuVyOiIgIZGRkGN0mIyPDoB4AVCqVVJ+bmwu1Wm1Qo1QqERoaKtVkZGTA3d0dXbp0kWoiIiIgl8uRmZkJAAgJCYFcLseKFSug0+mg1WrxxRdfICIiAg4ODuWe082bN1FYWGjwIqL7UyqLEBWVCplMDwDSNVF3X1xORFTTmHVheUhICP788080a9bM6PqCggIIE2dMuHr1KnQ6nfQQ41JeXl44efKk0W3UarXR+tKpFkp/3q/m3gck29vbw8PDQ6oJCAjADz/8gEGDBmHMmDHQ6XQICwsrc/3VvZKTk82+JoyI7ggOzkZg4BloNB7w8NAwQBFRjWfWSNTYsWPh7+9f7vqmTZtixYoVD9omq1Or1XjxxRcRGxuL/fv34+eff4ZCocAzzzxTYUicMmUKtFqt9Lp06VI1tprI9pRO2FtKqSxCQMCFMgHq3joioprArJGo//73vxWu/89//oPY2FiT9tWgQQPY2dkhLy/PYHleXh68vb2NbuPt7V1hfenPvLw8+Pj4GNR06tRJqrn3wvXbt29Do9FI2y9btgxKpRLz5s2Tar788kv4+fkhMzMT3bt3N9o+R0dHPjuQyAyenp6Ij4/njOVEZJMqdYoDcygUCoSEhCA9PV1aptfrkZ6ejrCwMKPbhIWFGdQDwPbt26X6gIAAeHt7G9QUFhYiMzNTqgkLC0NBQQGysrKkmh07dkCv1yM0NBQAcP36dcjlhl1jZ2cntZGIKo+npyd8fHzKfTFAEVFNZdZIVEJCgkl1CxcuNHl/sbGx6NKlC7p164ZFixahuLgYo0aNAgCMGDECjRs3RnJyMgBgwoQJCA8Px7vvvovIyEisXr0aBw4cwMcffwwAkMlkmDhxImbPno2goCAEBARg2rRp8PX1RXR0NACgTZs26Nu3L1588UUsX74ct27dQnx8PIYMGQJfX18AQGRkJN577z3MnDkTMTExKCoqwptvvolmzZqhc+fO5nQZERER1VJmhajsbMPZg3fv3o2QkBA4OztLy2Qymcn7Gzx4MP766y8kJiZCrVajU6dOSEtLky4Mv3jxosGIUI8ePbBq1SpMnToVb775JoKCgrBx40a0b99eqnn99ddRXFyMuLg4FBQU4JFHHkFaWhqcnJykmq+++grx8fHo06cP5HI5Bg4ciMWLF0vre/fujVWrVmHevHmYN28e6tWrh7CwMKSlpRmcKxEREdVdFj2AuJSrqysOHz6M5s2bV2abag0+gJiIiMj2mPr5bbVrooiIiIhsGUMUERERkQUYooiIiIgsYNaF5UeOHDH4XQiBkydP4tq1awbLH3rooQdvGREREVENZtaF5XK5HDKZzOis3aXLZTIZdDpdpTbSVvHCciIiIttj6ue3WSNRubm5D9wwIiIiotrArBBV3oOHiYiIiOoas0JUeXr37o0VK1YwZBERkcny8/P53ESyaWaFqM2bNxtdvmvXLqSmpsLPzw8A0L9//wdvGRER1Vr5+flYunTpfevi4+MZpKjGMitERUdHl3th+fjx4wGAF5YTEdF93TsCpdW6QqPxhIdHPpTKonLriGoSs0KUSqWCnZ0dPvvsMzRq1Eha7uDggMOHD6Nt27aV3kAiIqrdDh7sjC1b+kEIOWQyPaKiUhEcnH3/DYmszKzJNr/77jv06dMHXbp0QWpqalW1iYiI6git1lUKUAAghBxbtvSDVutq5ZYR3Z/ZM5a/8sor2Lx5M9544w2MGTMG169fr4p2ERFRHaDReEoBqpQQcmg0HlZqEZHpLLo7r1OnTjhw4ABeeeUVdOrUyeg1UlS5eBcLEdVGHh75kMn0BkFKJtPDw0NjxVYRmcbiKQ6cnZ2xfPlybN68GT/99BMaNGhQme2iu/AuFiKqrZTKIkRFpZa5Jurui8uJaiqzQtSOHTsQHx+PX3/9VZoGvX///ujfvz+0Wi3atWuH5cuXo2fPnlXS2LqKd7EQUW0WHJyNwMAz0Gg84OGhYYAim2FWiFq0aBFefPFFo8+RUSqVGDNmDBYuXMgQVYV4FwsR1QYKhcLgd6WyyGh4ureOqCYxK0QdPnwY77zzTrnrn3jiCSxYsOCBG0XGlXcXS2DgGf6XGxHZFE9PT8THx/NaT7JpZoWovLw8ODg4lL8ze3v89ddfD9woMq6iu1gYoojI1jAgka0za4qDxo0b49ixY+WuP3LkCHx8fB64UWRc6V0sd+NdLERERNZhVoh66qmnMG3aNNy4caPMun/++QdJSUno169fpTWODJXexVIapHgXCxERkfWY9XXe1KlTsWHDBrRs2RLx8fFo1aoVAODkyZNYtmwZdDod3nrrrSppKN3Bu1iIiIhqBrNClJeXF/bu3YuXXnoJU6ZMkSbZlMlkUKlUWLZsGby8vKqkoXUZ72IhIiKqeWTCwunG//77b5w5cwZCCAQFBeE///lPZbfN5hUWFkKpVEKr1RqdFsIcnLGcyPr4/0OiusHUz2+LZyz/z3/+g65du1q6OZmJf5iJrItPDiCie5n9AGIiorrI2JMDcnP9odW6VlhHRLWXxSNRRER1FZ8cQEQAR6KIiMxS3pMD7h2RIqLajyGKiMgMFT05gIjqFoYoIiIz8MkBRFSKIYqIyAx8cgARleKF5UREZuKTA4gIYIgiIjIJnxxARPdiiCIiMoGnpyfi4+M5YzkRSRiiiIhMxIBERHfjheVEREREFmCIIiIiIrKA1UPUsmXL4O/vDycnJ4SGhmLfvn0V1q9btw6tW7eGk5MTOnTogG3bthmsF0IgMTERPj4+cHZ2RkREBE6fPm1Qo9FoMGzYMLi5ucHd3R2jR4/GtWvXyuxnwYIFaNmyJRwdHdG4cWPMmTOnck6aiIiIbJ5VQ9SaNWuQkJCApKQkHDx4EB07doRKpcKVK1eM1u/duxcxMTEYPXo0srOzER0djejoaBw7dkyqmTdvHhYvXozly5cjMzMTLi4uUKlUuHHjhlQzbNgwHD9+HNu3b0dqaip27dqFuLg4g2NNmDAB//vf/7BgwQKcPHkSmzdvRrdu3aqmI4iIiMj2CCvq1q2bGDdunPS7TqcTvr6+Ijk52Wj9oEGDRGRkpMGy0NBQMWbMGCGEEHq9Xnh7e4v58+dL6wsKCoSjo6P4+uuvhRBCnDhxQgAQ+/fvl2q+++47IZPJxB9//CHV2Nvbi5MnTz7Q+Wm1WgFAaLXaB9oPERERVR9TP7+tNhJVUlKCrKwsRERESMvkcjkiIiKQkZFhdJuMjAyDegBQqVRSfW5uLtRqtUGNUqlEaGioVJORkQF3d3d06dJFqomIiIBcLkdmZiYAYMuWLWjevDlSU1MREBAAf39/vPDCC9Bo+FgHIiIiusNqIerq1avQ6XTw8vIyWO7l5QW1Wm10G7VaXWF96c/71TRq1Mhgvb29PTw8PKSac+fO4cKFC1i3bh0+//xzpKSkICsrC88880yF53Tz5k0UFhYavIiIiKh24jxRRuj1ety8eROff/45WrZsCQD49NNPERISglOnTqFVq1ZGt0tOTsaMGTOqs6lERERkJVYbiWrQoAHs7OyQl5dnsDwvLw/e3t5Gt/H29q6wvvTn/WruvXD99u3b0Gg0Uo2Pjw/s7e2lAAUAbdq0AQBcvHix3HOaMmUKtFqt9Lp06VK5tURERGTbrBaiFAoFQkJCkJ6eLi3T6/VIT09HWFiY0W3CwsIM6gFg+/btUn1AQAC8vb0NagoLC5GZmSnVhIWFoaCgAFlZWVLNjh07oNfrERoaCgB4+OGHcfv2bZw9e1aq+e233wAAzZo1K/ecHB0d4ebmZvAiIiKiWqqaLnQ3avXq1cLR0VGkpKSIEydOiLi4OOHu7i7UarUQQojhw4eLyZMnS/V79uwR9vb2YsGCBSInJ0ckJSUJBwcHcfToUalm7ty5wt3dXWzatEkcOXJEDBgwQAQEBIh//vlHqunbt6/o3LmzyMzMFLt37xZBQUEiJiZGWq/T6URwcLDo1auXOHjwoDhw4IAIDQ0Vjz/+uFnnx7vziIiIbI+pn99WDVFCCLFkyRLRtGlToVAoRLdu3cSvv/4qrQsPDxexsbEG9WvXrhUtW7YUCoVCtGvXTmzdutVgvV6vF9OmTRNeXl7C0dFR9OnTR5w6dcqgJj8/X8TExIj69esLNzc3MWrUKFFUVGRQ88cff4inn35a1K9fX3h5eYmRI0eK/Px8s86NIYqIiMj2mPr5LRNCCOuOhdVehYWFUCqV0Gq1/GqPiIjIRpj6+W31x74QERER2SKGKCIiIiILMEQRERERWYAhioiIiMgCDFFEREREFmCIIiIiIrIAQxQRERGRBfgAYqoR8vPzUVJSUu56hUIBT0/PamwRERFRxRiiyOry8/OxdOlS6Xet1hUajSc8PPKhVBZJy+Pj4xmkiIioxmCIIqu7ewTq4MHO2LKlH4SQQybTIyoqFcHB2WXqiIiIrI3XRFGNodW6SgEKAISQY8uWftBqXa3cMiIiorIYoqjG0Gg8pQBVSgg5NBoPK7WIiIiofAxRVGN4eORDJtMbLJPJ9PDw0FipRUREROVjiKIaQ6ksQlRUqhSkSq+JuvviciIiopqCF5ZTjRIcnI3AwDPQaDzg4aFhgCIiohqLIYpqHKWyiOGJiIhqPH6dR1anUCgqtY6IiKg6cCSKrM7T0xPx8fGcsZyIiGwKQxTVCAxIRERka/h1HhEREZEFGKKIiIiILMAQRURERGQBhigiIiIiCzBEEREREVmAIYqIiIjIAgxRRERERBZgiCIiIiKyAEMUERERkQUYooiIiIgswBBFREREZAGGKCIiIiILMEQRERERWYAhioiIiMgCDFFEREREFmCIIiIiIrIAQxQRERGRBRiiiIiIiCzAEEVERERkgRoRopYtWwZ/f384OTkhNDQU+/btq7B+3bp1aN26NZycnNChQwds27bNYL0QAomJifDx8YGzszMiIiJw+vRpgxqNRoNhw4bBzc0N7u7uGD16NK5du2b0eGfOnIGrqyvc3d0f6DyJiIio9rB6iFqzZg0SEhKQlJSEgwcPomPHjlCpVLhy5YrR+r179yImJgajR49GdnY2oqOjER0djWPHjkk18+bNw+LFi7F8+XJkZmbCxcUFKpUKN27ckGqGDRuG48ePY/v27UhNTcWuXbsQFxdX5ni3bt1CTEwMevbsWfknT0REZMPy8/Nx+fLlcl/5+fnWbmKVkgkhhDUbEBoaiq5du2Lp0qUAAL1eDz8/P4wfPx6TJ08uUz948GAUFxcjNTVVWta9e3d06tQJy5cvhxACvr6+mDRpEl599VUAgFarhZeXF1JSUjBkyBDk5OSgbdu22L9/P7p06QIASEtLw1NPPYXff/8dvr6+0r7feOMN/Pnnn+jTpw8mTpyIgoICk8+tsLAQSqUSWq0Wbm5ulnQPERFRjZSfny99dlckPj4enp6e1dCiymPq57dVR6JKSkqQlZWFiIgIaZlcLkdERAQyMjKMbpORkWFQDwAqlUqqz83NhVqtNqhRKpUIDQ2VajIyMuDu7i4FKACIiIiAXC5HZmamtGzHjh1Yt24dli1bZtL53Lx5E4WFhQYvIiKi2qikpMTgd63WFbm5/tBqXSusq03srXnwq1evQqfTwcvLy2C5l5cXTp48aXQbtVpttF6tVkvrS5dVVNOoUSOD9fb29vDw8JBq8vPzMXLkSHz55ZcmjyIlJydjxowZJtUSERHVFgcPdsaWLf0ghBwymR5RUakIDs62drOqnNWviaqpXnzxRQwdOhS9evUyeZspU6ZAq9VKr0uXLlVhC4mIiKxPq3WVAhQACCHHli39yoxI1UZWDVENGjSAnZ0d8vLyDJbn5eXB29vb6Dbe3t4V1pf+vF/NvReu3759GxqNRqrZsWMHFixYAHt7e9jb22P06NHQarWwt7fHZ599ZrRtjo6OcHNzM3gRERHVZhqNpxSgSgkhh0bjYaUWVR+rhiiFQoGQkBCkp6dLy/R6PdLT0xEWFmZ0m7CwMIN6ANi+fbtUHxAQAG9vb4OawsJCZGZmSjVhYWEoKChAVlaWVLNjxw7o9XqEhoYCuHPd1KFDh6TXzJkz4erqikOHDuG///1v5XQAERGRjfPwyIdMpjdYJpPp4eGhsVKLqo9Vr4kCgISEBMTGxqJLly7o1q0bFi1ahOLiYowaNQoAMGLECDRu3BjJyckAgAkTJiA8PBzvvvsuIiMjsXr1ahw4cAAff/wxAEAmk2HixImYPXs2goKCEBAQgGnTpsHX1xfR0dEAgDZt2qBv37548cUXsXz5cty6dQvx8fEYMmSIdGdemzZtDNp54MAByOVytG/fvpp6hoiIqOZTKosQFZVa5poopbLI2k2rclYPUYMHD8Zff/2FxMREqNVqdOrUCWlpadKF4RcvXoRc/u+AWY8ePbBq1SpMnToVb775JoKCgrBx40aDcPP666+juLgYcXFxKCgowCOPPIK0tDQ4OTlJNV999RXi4+PRp08fyOVyDBw4EIsXL66+EyciIqolgoOzERh4BhqNBzw8NHUiQAE1YJ6o2ozzRBERUW3FeaJqwEgU0YPKz8+vcB4ShUJhc/8HJiKq6Tw9PREfH1+n//4yRJFNq83/JUREVNPV9b+rnCeKbBpnzCUiImvhSBTVGnV1xlwiIrIOjkRRrVCXZ8wlIiLrYIiiWqEuz5hLRETWwRBFtUJdnjGXiIisgyGKaoXSGXNLg1RdmjGXiIisgxeWU61RV2fMpZqPc5kR1U4MUbVcbf/jrVAoDH5XKouMhqd764iqC+cyI6q9GKJqsbrwx5sz5lJNZ2wuM43GEx4e+QaBn3OZEdkehqharK788WZAIlvBucyIaheGqDqCf7yJrKu8ucwCA8/w+j0iG8W78+oATkRJZH2cy4yo9mGIqgP4x5vI+jiXGVHtw6/z6oDSP953Byn+8SaqXqVzmd37tTq/yqOaoLbfyV1VGKJqsYKCAgD3/+NdUFAAHx8fK7aUqG7gXGZUE9WFO7mrCkNULXb79m3p38HB2WjUSI1Ll5rCz+8imjS5bLSOiCoX5zKjms7UO7Rt/U7uqsAQVYs5ODhI/67o7ry764iocnEuM7I15U2HQ2UxRNViSqUSwP1vrS6tI6KqwYBEtoLT4ZiHd+fVAbw7j4iI7ofT4ZiPIaoO4K3VRER0P/wPbvMxRNUBpXfnlQYp3lpNRET34n9wm4/XRNURvLWaiIgqwrnMzMcQVYvx1moiIrqfuz8DKvoPbn5WlCUTQghrN6K2KiwshFKphFarhZubm1XawFloiYjofvhZYcjUz2+ORNVydelNT0REluFnhWV4YTkRERGRBRiiiIiIiCzAr/OIiIjIJtS0a7cYooiIiKjGy8/Px9KlS+9bFx8fX21Bil/nERERUY137wiUVuuK3Fz/Mo+lqWikqrJxJIqIiIhsSk15UDJHooiIiMhm1KQHJTNEERERkc2oSQ9KZogiIiIim1GTHpTMEEVEREQ2o/RByaVBypoPSuaF5URERGRTKnpQcnWqESNRy5Ytg7+/P5ycnBAaGop9+/ZVWL9u3Tq0bt0aTk5O6NChA7Zt22awXgiBxMRE+Pj4wNnZGRERETh9+rRBjUajwbBhw+Dm5gZ3d3eMHj0a165dk9bv3LkTAwYMgI+PD1xcXNCpUyd89dVXlXfSREREZDKFQmHwu1JZhICAC2UC1L11VcnqI1Fr1qxBQkICli9fjtDQUCxatAgqlQqnTp1Co0aNytTv3bsXMTExSE5ORr9+/bBq1SpER0fj4MGDaN++PQBg3rx5WLx4MVauXImAgABMmzYNKpUKJ06cgJOTEwBg2LBhuHz5MrZv345bt25h1KhRiIuLw6pVq6TjPPTQQ3jjjTfg5eWF1NRUjBgxAkqlEv369au+DiIiIiJ4enoiPj6+Rs1YLhNCiGo7mhGhoaHo2rWrNAupXq+Hn58fxo8fj8mTJ5epHzx4MIqLi5Gamiot6969Ozp16oTly5dDCAFfX19MmjQJr776KgBAq9XCy8sLKSkpGDJkCHJyctC2bVvs378fXbp0AQCkpaXhqaeewu+//w5fX1+jbY2MjISXlxc+++wzk86tsLAQSqUSWq0Wbm5uZvULERERWYepn99W/TqvpKQEWVlZiIiIkJbJ5XJEREQgIyPD6DYZGRkG9QCgUqmk+tzcXKjVaoMapVKJ0NBQqSYjIwPu7u5SgAKAiIgIyOVyZGZmltterVYLD4/yb6G8efMmCgsLDV5ERERUO1k1RF29ehU6nQ5eXl4Gy728vKBWq41uo1arK6wv/Xm/mnu/KrS3t4eHh0e5x127di3279+PUaNGlXs+ycnJUCqV0svPz6/cWiIiIrJtNeLC8prup59+wqhRo/DJJ5+gXbt25dZNmTIFWq1Wel26dKkaW0lERETVyaohqkGDBrCzs0NeXp7B8ry8PHh7exvdxtvbu8L60p/3q7ly5YrB+tu3b0Oj0ZQ57s8//4yoqCi89957GDFiRIXn4+joCDc3N4MXERER1U5WDVEKhQIhISFIT0+Xlun1eqSnpyMsLMzoNmFhYQb1ALB9+3apPiAgAN7e3gY1hYWFyMzMlGrCwsJQUFCArKwsqWbHjh3Q6/UIDQ2Vlu3cuRORkZF45513EBcX9+AnTERERLWHsLLVq1cLR0dHkZKSIk6cOCHi4uKEu7u7UKvVQgghhg8fLiZPnizV79mzR9jb24sFCxaInJwckZSUJBwcHMTRo0elmrlz5wp3d3exadMmceTIETFgwAAREBAg/vnnH6mmb9++onPnziIzM1Ps3r1bBAUFiZiYGGn9jh07RL169cSUKVPE5cuXpVd+fr7J56bVagUAodVqH6SLiIiIqBqZ+vlt9XmiBg8ejL/++guJiYlQq9Xo1KkT0tLSpAvDL168CLn83wGzHj16YNWqVZg6dSrefPNNBAUFYePGjdIcUQDw+uuvo7i4GHFxcSgoKMAjjzyCtLQ0aY4oAPjqq68QHx+PPn36QC6XY+DAgVi8eLG0fuXKlbh+/TqSk5ORnJwsLQ8PD8fOnTursEeouuTn59eo+UZsHfuTiOoaq88TVZtxnqiaKz8/X5qbrCLx8fH84DcB+5OIahObmCeKyFruHTHRal2Rm+sPrda1wjoyjv1JRHWR1b/OI7K2gwc7Y8uWfhBCLj0NPDg429rNslnsTyKqKzgSRXWaVusqfeADgBBybNnSr8wICpmG/UlEdQlDFNVpGo2n9IFfSgg5NJryH+9D5WN/ElFdwhBFdZqHRz5kMr3BMplMDw8PjZVaZNvYn0RUlzBEUZ2mVBYhKipV+uAvvYZHqSyycstsE/uTiOoSXlhOdV5wcDYCA89Ao/GAh4eGH/gPiP1JRHUFQxTVSQqFwuB3pbLI6If9vXVkHPuTiOoiTrZZhTjZZs3GGbYrF/uTiGoLUz+/ORJFdRY/0CsX+5OI6hpeWE5ERERkAY5EEdVw/JqMiKhmYogiqsH4YF8iopqLX+cR1WB8sC8RUc3FkSgiG8EH+xIR1SwciSKyAXywLxFRzcMQRWQD+GBfIqKah1/nEdmA0gf73h2k+GBfIvPwTleqbAxRRDag9MG+914TxefSEZmGd7pSVWCIIrIRfLAvkeWM3emq0XjCwyPf4P9LvNOVzMEQRVSD8cG+RJWPd7pSZWGIIqrBPD09ER8fz+s4iCpJeXe6Bgae4egumY0hiqiGY0AiqjwV3enKEEXm4hQHRERUZ5Te6Xo33ulKlmKIIiKiOqP0TtfSIMU7XelB8Os8IiKqU3inK1UWhigiIqr1eKcrVQWGKCIiqvV4pytVBYYoIiKqExiQqLLxwnIiIiIiCzBEEREREVmAIYqIiIjIAgxRRERERBZgiCIiIiKyAEMUERERkQUYooiIiIgswBBFREREZAGGKCIiIiILcMbyKiSEAAAUFhZauSVERERkqtLP7dLP8fIwRFWhoqI7D7f08/OzckuIiIjIXEVFRVAqleWul4n7xSyymF6vx59//glXV1fIZDJrN6daFBYWws/PD5cuXYKbm5u1m2NV7It/sS/+xb74F/viDvbDv2pKXwghUFRUBF9fX8jl5V/5xJGoKiSXy9GkSRNrN8Mq3Nzc6vwfg1Lsi3+xL/7FvvgX++IO9sO/akJfVDQCVYoXlhMRERFZgCGKiIiIyAIMUVSpHB0dkZSUBEdHR2s3xerYF/9iX/yLffEv9sUd7Id/2Vpf8MJyIiIiIgtwJIqIiIjIAgxRRERERBZgiCIiIiKyAEMUERERkQUYoqhCy5Ytg7+/P5ycnBAaGop9+/ZVWL9o0SK0atUKzs7O8PPzwyuvvIIbN25I66dPnw6ZTGbwat26dVWfRqUwpy9u3bqFmTNnIjAwEE5OTujYsSPS0tIeaJ81SWX3ha2+L3bt2oWoqCj4+vpCJpNh48aN991m586dCA4OhqOjI1q0aIGUlJQyNbb4vqiKvqgr74vLly9j6NChaNmyJeRyOSZOnGi0bt26dWjdujWcnJzQoUMHbNu2rfIbX8mqoi9SUlLKvC+cnJyq5gTugyGKyrVmzRokJCQgKSkJBw8eRMeOHaFSqXDlyhWj9atWrcLkyZORlJSEnJwcfPrpp1izZg3efPNNg7p27drh8uXL0mv37t3VcToPxNy+mDp1Kj766CMsWbIEJ06cwNixY/Hf//4X2dnZFu+zpqiKvgBs831RXFyMjh07YtmyZSbV5+bmIjIyEo899hgOHTqEiRMn4oUXXsD3338v1djq+6Iq+gKoG++LmzdvomHDhpg6dSo6duxotGbv3r2IiYnB6NGjkZ2djejoaERHR+PYsWOV2fRKVxV9AdyZ0fzu98WFCxcqq8nmEUTl6Natmxg3bpz0u06nE76+viI5Odlo/bhx40Tv3r0NliUkJIiHH35Y+j0pKUl07NixStpblcztCx8fH7F06VKDZU8//bQYNmyYxfusKaqiL2z1fXE3AOLbb7+tsOb1118X7dq1M1g2ePBgoVKppN9t9X1xt8rqi7ryvrhbeHi4mDBhQpnlgwYNEpGRkQbLQkNDxZgxYx6whdWnsvpixYoVQqlUVlq7HgRHosiokpISZGVlISIiQloml8sRERGBjIwMo9v06NEDWVlZ0lcP586dw7Zt2/DUU08Z1J0+fRq+vr5o3rw5hg0bhosXL1bdiVQCS/ri5s2bZYaXnZ2dpf+KtmSfNUFV9EUpW3tfWCIjI8Og7wBApVJJfWer7wtL3K8vStWF94UpTO2vuuLatWto1qwZ/Pz8MGDAABw/ftwq7WCIIqOuXr0KnU4HLy8vg+VeXl5Qq9VGtxk6dChmzpyJRx55BA4ODggMDMSjjz5q8HVeaGgoUlJSkJaWhg8//BC5ubno2bMnioqKqvR8HoQlfaFSqbBw4UKcPn0aer0e27dvx4YNG3D58mWL91kTVEVfALb5vrCEWq022neFhYX4559/bPZ9YYn79QVQd94Xpiivv2rb+8IUrVq1wmeffYZNmzbhyy+/hF6vR48ePfD7779Xe1sYoqjS7Ny5E2+//TY++OADHDx4EBs2bMDWrVsxa9YsqebJJ5/Es88+i4ceeggqlQrbtm1DQUEB1q5da8WWV773338fQUFBaN26NRQKBeLj4zFq1CjI5XXv/3Km9EVdeV+Qefi+IGPCwsIwYsQIdOrUCeHh4diwYQMaNmyIjz76qNrbUvf+opNJGjRoADs7O+Tl5Rksz8vLg7e3t9Ftpk2bhuHDh+OFF15Ahw4d8N///hdvv/02kpOTodfrjW7j7u6Oli1b4syZM5V+DpXFkr5o2LAhNm7ciOLiYly4cAEnT55E/fr10bx5c4v3WRNURV8YYwvvC0t4e3sb7Ts3Nzc4Ozvb7PvCEvfrC2Nq6/vCFOX1V217X1jCwcEBnTt3tsr7giGKjFIoFAgJCUF6erq0TK/XIz09HWFhYUa3uX79epmRFjs7OwCAKOcRjdeuXcPZs2fh4+NTSS2vfJb0RSknJyc0btwYt2/fxvr16zFgwIAH3qc1VUVfGGML7wtLhIWFGfQdAGzfvl3qO1t9X1jifn1hTG19X5jCkv6qK3Q6HY4ePWqd94W1r2ynmmv16tXC0dFRpKSkiBMnToi4uDjh7u4u1Gq1EEKI4cOHi8mTJ0v1SUlJwtXVVXz99dfi3Llz4ocffhCBgYFi0KBBUs2kSZPEzp07RW5urtizZ4+IiIgQDRo0EFeuXKn28zOHuX3x66+/ivXr14uzZ8+KXbt2id69e4uAgADx999/m7zPmqoq+sJW3xdFRUUiOztbZGdnCwBi4cKFIjs7W1y4cEEIIcTkyZPF8OHDpfpz586JevXqiddee03k5OSIZcuWCTs7O5GWlibV2Or7oir6oq68L4QQUn1ISIgYOnSoyM7OFsePH5fW79mzR9jb24sFCxaInJwckZSUJBwcHMTRo0er9dzMVRV9MWPGDPH999+Ls2fPiqysLDFkyBDh5ORkUFNdGKKoQkuWLBFNmzYVCoVCdOvWTfz666/SuvDwcBEbGyv9fuvWLTF9+nQRGBgonJychJ+fn/i///s/gw/LwYMHCx8fH6FQKETjxo3F4MGDxZkzZ6rxjCxnTl/s3LlTtGnTRjg6OgpPT08xfPhw8ccff5i1z5qssvvCVt8XP/30kwBQ5lV6/rGxsSI8PLzMNp06dRIKhUI0b95crFixosx+bfF9URV9UZfeF8bqmzVrZlCzdu1a0bJlS6FQKES7du3E1q1bq+eEHkBV9MXEiROl/394eXmJp556Shw8eLD6Tuousv/fYCIiIiIyA6+JIiIiIrIAQxQRERGRBRiiiIiIiCzAEEVERERkAYYoIiIiIgswRBERERFZgCGKiIiIyAIMUUREdcjOnTshk8lQUFBg7aYQ2TyGKCKqEiNHjoRMJsPcuXMNlm/cuBEymUz6XQiBTz75BGFhYXBzc0P9+vXRrl07TJgwweQHil6/fh1TpkxBYGAgnJyc0LBhQ4SHh2PTpk1Sjb+/PxYtWlQp51bVSvtOJpPBwcEBAQEBeP3113Hjxg2z9vPoo49i4sSJBst69OiBy5cvQ6lUVmKLieomhigiqjJOTk5455138PfffxtdL4TA0KFD8fLLL+Opp57CDz/8gBMnTuDTTz+Fk5MTZs+ebdJxxo4diw0bNmDJkiU4efIk0tLS8MwzzyA/P78yT6da9e3bF5cvX8a5c+fw3nvv4aOPPkJSUtID71ehUMDb29sgyBKRhazysBkiqvViY2NFv379ROvWrcVrr70mLf/2229F6Z+er7/+WgAQmzZtMroPvV5v0rGUSqVISUkpd314eHiZZ3GV+uWXX8QjjzwinJycRJMmTcT48ePFtWvXpPWff/65CAkJEfXr1xdeXl4iJiZG5OXlSetLnw2WlpYmOnXqJJycnMRjjz0m8vLyxLZt20Tr1q2Fq6uriImJEcXFxSadT2xsrBgwYIDBsqefflp07txZ+v3q1atiyJAhwtfXVzg7O4v27duLVatWGezj3nPOzc2V2nv3My2/+eYb0bZtW6FQKESzZs3EggULTGonUV3HkSgiqjJ2dnZ4++23sWTJEvz+++9l1n/99ddo1aoV+vfvb3R7U0dLvL29sW3bNhQVFRldv2HDBjRp0gQzZ87E5cuXcfnyZQDA2bNn0bdvXwwcOBBHjhzBmjVrsHv3bsTHx0vb3rp1C7NmzcLhw4exceNGnD9/HiNHjixzjOnTp2Pp0qXYu3cvLl26hEGDBmHRokVYtWoVtm7dih9++AFLliwx6XzudezYMezduxcKhUJaduPGDYSEhGDr1q04duwY4uLiMHz4cOzbtw8A8P777yMsLAwvvviidM5+fn5l9p2VlYVBgwZhyJAhOHr0KKZPn45p06YhJSXForYS1SnWTnFEVDvdPZrSvXt38fzzzwshDEeiWrduLfr372+w3YQJE4SLi4twcXERjRs3NulYP//8s2jSpIlwcHAQXbp0ERMnThS7d+82qGnWrJl47733DJaNHj1axMXFGSz75ZdfhFwuF//884/RY+3fv18AEEVFRUKIf0eifvzxR6kmOTlZABBnz56Vlo0ZM0aoVCqTzic2NlbY2dkJFxcX4ejoKAAIuVwuvvnmmwq3i4yMFJMmTZJ+Dw8PFxMmTDCouXckaujQoeLxxx83qHnttddE27ZtTWorUV3GkSgiqnLvvPMOVq5ciZycnPvWvvXWWzh06BASExNx7do1k/bfq1cvnDt3Dunp6XjmmWdw/Phx9OzZE7Nmzapwu8OHDyMlJQX169eXXiqVCnq9Hrm5uQDujNRERUWhadOmcHV1RXh4OADg4sWLBvt66KGHpH97eXmhXr16aN68ucGyK1eumHQ+APDYY4/h0KFDyMzMRGxsLEaNGoWBAwdK63U6HWbNmoUOHTrAw8MD9evXx/fff1+mXfeTk5ODhx9+2GDZww8/jNOnT0On05m1L6K6hiGKiKpcr169oFKpMGXKFIPlQUFBOHXqlMGyhg0bokWLFmjUqJFZx3BwcEDPnj3xxhtv4IcffsDMmTMxa9YslJSUlLvNtWvXMGbMGBw6dEh6HT58GKdPn0ZgYCCKi4uhUqng5uaGr776Cvv378e3334LAGX26+DgIP279K66u8lkMuj1epPPx8XFBS1atEDHjh3x2WefITMzE59++qm0fv78+Xj//ffxxhtv4KeffsKhQ4egUqkqPF8iqlz21m4AEdUNc+fORadOndCqVStpWUxMDIYOHYpNmzZhwIABlXq8tm3b4vbt27hx4wYUCgUUCkWZkZXg4GCcOHECLVq0MLqPo0ePIj8/H3PnzpWuJzpw4EClttMUcrkcb775JhISEjB06FA4Oztjz549GDBgAJ577jkAgF6vx2+//Ya2bdtK2xk753u1adMGe/bsMVi2Z88etGzZEnZ2dpV/MkS1CEeiiKhadOjQAcOGDcPixYulZUOGDMEzzzyDIUOGYObMmcjMzMT58+fx888/Y82aNSZ/iD/66KP46KOPkJWVhfPnz2Pbtm1488038dhjj8HNzQ3AnXmidu3ahT/++ANXr14FALzxxhvYu3cv4uPjcejQIZw+fRqbNm2SLixv2rQpFAoFlixZgnPnzmHz5s33/Yqwqjz77LOws7PDsmXLANwZxdu+fTv27t2LnJwcjBkzBnl5eQbb+Pv7S3169epVoyNhkyZNQnp6OmbNmoXffvsNK1euxNKlS/Hqq69Wy3kR2TKGKCKqNjNnzjT4IJfJZFizZg0WLVqEbdu2oU+fPmjVqhWef/55+Pn5Yffu3SbtV6VSYeXKlXjiiSfQpk0bjB8/HiqVCmvXrjU49vnz5xEYGIiGDRsCuHMd088//4zffvsNPXv2ROfOnZGYmAhfX18Ad75aTElJwbp169C2bVvMnTsXCxYsqMQeMZ29vT3i4+Mxb948FBcXY+rUqQgODoZKpcKjjz4Kb29vREdHG2zz6quvws7ODm3btkXDhg2NXi8VHByMtWvXYvXq1Wjfvj0SExMxc+ZMo3cgEpEhmRBCWLsRRERERLaGI1FEREREFmCIIqIa7+4pCO59/fLLL9ZunlkuXrxY4fmYO0UBEVkPv84johqvogcRN27cGM7OztXYmgdz+/ZtnD9/vtz1/v7+sLfnjdNEtoAhioiIiMgC/DqPiIiIyAIMUUREREQWYIgiIiIisgBDFBEREZEFGKKIiIiILMAQRURERGQBhigiIiIiCzBEEREREVng/wEzwOKxkWju6AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV6pJREFUeJzt3XtcVNXeBvBnBpgBEYYzqFwUBRGvmQgmYhmm1FiIcrqoaEZmYb1SeuimpeAlw8zMa1nnLbGLeUnzgkYZaqUSGuAdTQ3TykGdiQExRZn1/uHLzpEBhxGYGXi+n898dPb+7b3X3mdO87j22mtkQggBIiIiIqoVua0bQEREROSIGKKIiIiIrMAQRURERGQFhigiIiIiKzBEEREREVmBIYqIiIjICgxRRERERFZgiCIiIiKyAkMUERERkRUYooiIGrn09HTIZDKcOnXK1k0halQYoojotu3duxdJSUno1q0b3N3d0bZtWwwbNgy//PJLldr+/ftDJpNBJpNBLpfD09MTnTp1wujRo7F169ZaHXfTpk2IiopCq1at0KxZM7Rv3x7Dhg1DZmZmXZ1aFW+++SbWr19fZfnu3bsxbdo0FBcX19uxbzZt2jTpWspkMjRr1gxdu3bFlClTUFJSUifHWLFiBebPn18n+yJqbBiiiOi2vfXWW1i7di0GDhyIBQsWIDExET/88APCwsJw6NChKvVt2rTBp59+ik8++QRvv/02hgwZgt27d+OBBx7A8OHDcfXq1Vsec+7cuRgyZAhkMhkmT56Md999F4888giOHz+OlStX1sdpAqg5RE2fPr1BQ1Sl999/H59++inmzZuHzp07Y9asWRg0aBDq4qdRGaKIquds6wYQkeNLTk7GihUroFAopGXDhw9H9+7dMXv2bHz22Wcm9SqVCo8//rjJstmzZ+OFF17Ae++9h8DAQLz11lvVHu/atWuYOXMm7r//fnz77bdV1p87d+42z8h+XLp0Cc2aNaux5tFHH0WLFi0AAM8++yweeeQRrFu3Dj/99BMiIyMboplETRJ7oojotvXt29ckQAFASEgIunXrhoKCAov24eTkhIULF6Jr165YvHgxDAZDtbUXLlxASUkJ7r77brPrW7VqZfL+8uXLmDZtGjp27AhXV1f4+fnh4YcfxsmTJ6WauXPnom/fvvD29oabmxvCw8Px5ZdfmuxHJpOhrKwMy5cvl26hPfnkk5g2bRpefvllAEBQUJC07sYxSJ999hnCw8Ph5uYGtVqNESNG4MyZMyb779+/P+644w7k5ubi3nvvRbNmzfDaa69ZdP1uNGDAAABAYWFhjXXvvfceunXrBqVSCX9/f4wfP96kJ61///7YvHkzfvvtN+mcAgMDa90eosaKPVFEVC+EECgqKkK3bt0s3sbJyQnx8fGYOnUqdu7ciZiYGLN1rVq1gpubGzZt2oTnn38earW62n1WVFRg8ODByMrKwogRIzBhwgSUlpZi69atOHToEIKDgwEACxYswJAhQzBq1CiUl5dj5cqVeOyxx5CRkSG149NPP8XTTz+N3r17IzExEQAQHBwMd3d3/PLLL/jiiy/w7rvvSr1CLVu2BADMmjULU6dOxbBhw/D000/j/PnzWLRoEe69917k5+fDy8tLaq9Op8ODDz6IESNG4PHHH4ePj4/F169SZTj09vautmbatGmYPn06oqOj8dxzz+HYsWN4//33sXfvXuzatQsuLi54/fXXYTAY8Pvvv+Pdd98FADRv3rzW7SFqtAQRUT349NNPBQDx0UcfmSyPiooS3bp1q3a7r776SgAQCxYsqHH/KSkpAoBwd3cXDz74oJg1a5bIzc2tUvfxxx8LAGLevHlV1hmNRunvly5dMllXXl4u7rjjDjFgwACT5e7u7iIhIaHKvt5++20BQBQWFposP3XqlHBychKzZs0yWX7w4EHh7OxssjwqKkoAEEuXLq32vG+UmpoqAIhjx46J8+fPi8LCQvHBBx8IpVIpfHx8RFlZmRBCiGXLlpm07dy5c0KhUIgHHnhAVFRUSPtbvHixACA+/vhjaVlMTIxo166dRe0hamp4O4+I6tzRo0cxfvx4REZGIiEhoVbbVvZ0lJaW1lg3ffp0rFixAj179sQ333yD119/HeHh4QgLCzO5hbh27Vq0aNECzz//fJV9yGQy6e9ubm7S3//66y8YDAb069cPeXl5tWr/zdatWwej0Yhhw4bhwoUL0svX1xchISHYvn27Sb1SqcSYMWNqdYxOnTqhZcuWCAoKwrhx49ChQwds3ry52rFU3333HcrLyzFx4kTI5f98DTzzzDPw9PTE5s2ba3+iRE0Qb+cRUZ3SarWIiYmBSqXCl19+CScnp1ptf/HiRQCAh4fHLWvj4+MRHx+PkpIS5OTkID09HStWrEBsbCwOHToEV1dXnDx5Ep06dYKzc83/ucvIyMAbb7yBffv24cqVK9LyG4OWNY4fPw4hBEJCQsyud3FxMXnfunXrKuPLbmXt2rXw9PSEi4sL2rRpI92irM5vv/0G4Hr4upFCoUD79u2l9URUM4YoIqozBoMBDz74IIqLi/Hjjz/C39+/1vuonBKhQ4cOFm/j6emJ+++/H/fffz9cXFywfPly5OTkICoqyqLtf/zxRwwZMgT33nsv3nvvPfj5+cHFxQXLli3DihUran0ONzIajZDJZPj666/NBsqbxxjd2CNmqXvvvVcah0VEDYchiojqxOXLlxEbG4tffvkF3333Hbp27VrrfVRUVGDFihVo1qwZ7rnnHqva0atXLyxfvhxnz54FcH3gd05ODq5evVql16fS2rVr4erqim+++QZKpVJavmzZsiq11fVMVbc8ODgYQggEBQWhY8eOtT2detGuXTsAwLFjx9C+fXtpeXl5OQoLCxEdHS0tu92eOKLGjGOiiOi2VVRUYPjw4cjOzsaaNWusmpuooqICL7zwAgoKCvDCCy/A09Oz2tpLly4hOzvb7Lqvv/4awD+3qh555BFcuHABixcvrlIr/n8ySicnJ8hkMlRUVEjrTp06ZXZSTXd3d7MTarq7uwNAlXUPP/wwnJycMH369CqTXwohoNPpzJ9kPYqOjoZCocDChQtN2vTRRx/BYDCYPBXp7u5e43QTRE0Ze6KI6La9+OKL2LhxI2JjY6HX66tMrnnzxJoGg0GquXTpEk6cOIF169bh5MmTGDFiBGbOnFnj8S5duoS+ffuiT58+GDRoEAICAlBcXIz169fjxx9/RFxcHHr27AkAeOKJJ/DJJ58gOTkZe/bsQb9+/VBWVobvvvsO//M//4OhQ4ciJiYG8+bNw6BBgzBy5EicO3cOS5YsQYcOHXDgwAGTY4eHh+O7777DvHnz4O/vj6CgIERERCA8PBwA8Prrr2PEiBFwcXFBbGwsgoOD8cYbb2Dy5Mk4deoU4uLi4OHhgcLCQnz11VdITEzESy+9dFvXv7ZatmyJyZMnY/r06Rg0aBCGDBmCY8eO4b333sNdd91l8r9XeHg4Vq1aheTkZNx1111o3rw5YmNjG7S9RHbLlo8GElHjUPlofnWvmmqbN28uQkJCxOOPPy6+/fZbi4539epV8d///lfExcWJdu3aCaVSKZo1ayZ69uwp3n77bXHlyhWT+kuXLonXX39dBAUFCRcXF+Hr6yseffRRcfLkSanmo48+EiEhIUKpVIrOnTuLZcuWSVMI3Ojo0aPi3nvvFW5ubgKAyXQHM2fOFK1btxZyubzKdAdr164V99xzj3B3dxfu7u6ic+fOYvz48eLYsWMm16am6R9uVtm+8+fP11h38xQHlRYvXiw6d+4sXFxchI+Pj3juuefEX3/9ZVJz8eJFMXLkSOHl5SUAcLoDohvIhKiDH1ciIiIiamI4JoqIiIjICgxRRERERFZgiCIiIiKyAkMUERERkRUYooiIiIiswBBFREREZAVOtlmPjEYj/vzzT3h4ePCnE4iIiByEEAKlpaXw9/eHXF59fxNDVD36888/ERAQYOtmEBERkRXOnDmDNm3aVLueIaoeeXh4ALj+P0JNvwNGRERE9qOkpAQBAQHS93h1GKLqUeUtPE9PT4YoIiIiB3OroTgcWE5ERERkBYYoIiIiIiswRBERERFZgWOiiIiI7ExFRQWuXr1q62Y0Wi4uLnBycrrt/TBEERER2QkhBLRaLYqLi23dlEbPy8sLvr6+tzWPI0MUERGRnagMUK1atUKzZs04UXM9EELg0qVLOHfuHADAz8/P6n0xRBEREdmBiooKKUB5e3vbujmNmpubGwDg3LlzaNWqldW39mw+sHzJkiUIDAyEq6srIiIisGfPnhrr16xZg86dO8PV1RXdu3fHli1bTNYLIZCSkgI/Pz+4ubkhOjoax48fN6mZNWsW+vbti2bNmsHLy6vG4+l0OrRp0wYymYzdq0REVG8qx0A1a9bMxi1pGiqv8+2MPbNpiFq1ahWSk5ORmpqKvLw89OjRAxqNRupiu9nu3bsRHx+PsWPHIj8/H3FxcYiLi8OhQ4ekmjlz5mDhwoVYunQpcnJy4O7uDo1Gg8uXL0s15eXleOyxx/Dcc8/dso1jx47FnXfeefsnS0REZAHewmsYdXGdZUIIUQdtsUpERATuuusuLF68GMD1H+wNCAjA888/j0mTJlWpHz58OMrKypCRkSEt69OnD0JDQ7F06VIIIeDv748XX3wRL730EgDAYDDAx8cH6enpGDFihMn+0tPTMXHixGp7mN5//32sWrUKKSkpGDhwIP76669b9lzdqKSkBCqVCgaDgTOWW0in06G8vLza9QqFgt3cRNQoXb58GYWFhQgKCoKrq6utm9Po1XS9Lf3+ttmYqPLycuTm5mLy5MnSMrlcjujoaGRnZ5vdJjs7G8nJySbLNBoN1q9fDwAoLCyEVqtFdHS0tF6lUiEiIgLZ2dlVQlRNjhw5ghkzZiAnJwe//vqrRdtcuXIFV65ckd6XlJRYfDy6HqAqA3VNkpKSGKSIiMjmbHY778KFC6ioqICPj4/Jch8fH2i1WrPbaLXaGusr/6zNPs25cuUK4uPj8fbbb6Nt27YWb5eWlgaVSiW9AgICLN6WUKUHymDwQGFhIAwGjxrriIjItp588knIZDLIZDK4uLjAx8cH999/Pz7++GMYjUaL95Oenl6rOz62xqfzzJg8eTK6dOmCxx9/vNbb3dhTVvkr0FR7eXk9sWnTYAghh0xmRGxsBsLC8m3dLCIiu2Xr4RCDBg3CsmXLUFFRgaKiImRmZmLChAn48ssvsXHjRjg7N77IYbMzatGiBZycnFBUVGSyvKioCL6+vma38fX1rbG+8s+ioiKTeR+KiooQGhpqcdu2bduGgwcP4ssvvwRw/Ym/yja//vrrmD59utntlEollEqlxcch8wwGDylAAYAQcmzaNBjBwSegUpXauHVERPbHHoZDKJVK6Xu4devWCAsLQ58+fTBw4ECkp6fj6aefxrx587Bs2TL8+uuvUKvViI2NxZw5c9C8eXPs2LEDY8aMAfDPoO/U1FRMmzYNn376KRYsWIBjx47B3d0dAwYMwPz589GqVat6ORdL2ex2nkKhQHh4OLKysqRlRqMRWVlZiIyMNLtNZGSkST0AbN26VaoPCgqCr6+vSU1JSQlycnKq3ac5a9euxf79+7Fv3z7s27cP//u//wsA+PHHHzF+/HiL90PW0eu9pQBVSQg59Hq1jVpERGTfLB3m0NDDIQYMGIAePXpg3bp1AK6PfV64cCEOHz6M5cuXY9u2bXjllVcAAH379sX8+fPh6emJs2fP4uzZs9JDYlevXsXMmTOxf/9+rF+/HqdOncKTTz7ZoOdijk371pKTk5GQkIBevXqhd+/emD9/PsrKyqQk+sQTT6B169ZIS0sDAEyYMAFRUVF45513EBMTg5UrV+Lnn3/Ghx9+COB6cp04cSLeeOMNhISEICgoCFOnToW/vz/i4uKk454+fRp6vR6nT59GRUUF9u3bBwDo0KEDmjdvjuDgYJN2XrhwAQDQpUsXh7pX66jUah1kMqNJkJLJjFCr9TZsFRERWaNz5844cOAAAGDixInS8sDAQLzxxht49tln8d5770GhUEClUkEmk1W5I/XUU09Jf2/fvj0WLlyIu+66CxcvXkTz5s0b5DzMsWmIGj58OM6fP4+UlBRotVqEhoYiMzNTGhh++vRpyOX/fJH27dsXK1aswJQpU/Daa68hJCQE69evxx133CHVvPLKKygrK0NiYiKKi4txzz33IDMz0+TxxZSUFCxfvlx637NnTwDA9u3b0b9//3o+a7oVlaoUsbEZVcZE8VYeEZHjEUJIt+e+++47pKWl4ejRoygpKcG1a9dw+fJlXLp0qcZJRnNzczFt2jTs378ff/31lzRY/fTp0+jatWuDnIc5Nh/llZSUhKSkJLPrduzYUWXZY489hscee6za/clkMsyYMQMzZsyotiY9PR3p6ekWt7F///6w4XRaTVJYWD6Cg09Ar1dDrdYzQBEROaiCggIEBQXh1KlTGDx4MJ577jnMmjULarUaO3fuxNixY1FeXl5tiCorK4NGo4FGo8Hnn3+Oli1b4vTp09BoNDZ/WtvmIYqokkKhMHmvUpWaDU831xERkX2qfFDrP//5D3Jzc2E0GvHOO+9Id5lWr15tUq9QKFBRUWGy7OjRo9DpdJg9e7b0xPvPP//cMCdwCwxRZDe8vb2RlJTEGcuJiBzQlStXoNVqTaY4SEtLw+DBg/HEE0/g0KFDuHr1KhYtWoTY2Fjs2rULS5cuNdlHYGAgLl68iKysLPTo0QPNmjVD27ZtoVAosGjRIjz77LM4dOgQZs6caaOzNGXzHyAmupG3tzf8/PyqfTFAERHZp8zMTPj5+SEwMBCDBg3C9u3bsXDhQmzYsAFOTk7o0aMH5s2bh7feegt33HEHPv/8c+nBsUp9+/bFs88+i+HDh6Nly5aYM2cOWrZsifT0dKxZswZdu3bF7NmzMXfuXBudpSmb/nZeY8ffziMiIkvdzm/n2cM8UY7GoX87j4iIiOoGh0PYBkMUERFRI8CA1PA4JoqIiIjICgxRRERERFZgiCIiIiKyAkMUERERkRUYooiIiIiswBBFREREZAWGKCIiIiIrMEQRERGRXduxYwdkMhmKi4st3iYwMBDz58+vtzYBDFFERER0m5588knIZDI8++yzVdaNHz8eMpkMTz75ZMM3rJ4xRBEREdFtCwgIwMqVK/H3339Lyy5fvowVK1agbdu2NmxZ/WGIIiIiotsWFhaGgIAArFu3Tlq2bt06tG3bFj179pSWXblyBS+88AJatWoFV1dX3HPPPdi7d6/JvrZs2YKOHTvCzc0N9913H06dOlXleDt37kS/fv3g5uaGgIAAvPDCCygrK6u38zOHIYqIiKiR+f13YPv26382pKeeegrLli2T3n/88ccYM2aMSc0rr7yCtWvXYvny5cjLy0OHDh2g0Wig1+sBAGfOnMHDDz+M2NhY7Nu3D08//TQmTZpkso+TJ09i0KBBeOSRR3DgwAGsWrUKO3fuRFJSUv2f5A0YooiIiBqRjz4C2rUDBgy4/udHHzXcsR9//HHs3LkTv/32G3777Tfs2rULjz/+uLS+rKwM77//Pt5++208+OCD6Nq1K/773//Czc0NH/1/Q99//30EBwfjnXfeQadOnTBq1Kgq46nS0tIwatQoTJw4ESEhIejbty8WLlyITz75BJcvX26w83VusCMRERFRvfr9dyAxETAar783GoFx4wCNBmjTpv6P37JlS8TExCA9PR1CCMTExKBFixbS+pMnT+Lq1au4++67pWUuLi7o3bs3CgoKAAAFBQWIiIgw2W9kZKTJ+/379+PAgQP4/PPPpWVCCBiNRhQWFqJLly71cXpVMEQRERE1EseP/xOgKlVUACdONEyIAq7f0qu8rbZkyZJ6OcbFixcxbtw4vPDCC1XWNeQgdoYoIiKiRiIkBJDLTYOUkxPQoUPDtWHQoEEoLy+HTCaDRqMxWRccHAyFQoFdu3ahXbt2AICrV69i7969mDhxIgCgS5cu2Lhxo8l2P/30k8n7sLAwHDlyBB0a8sTM4JgoIiKiRqJNG+DDD68HJ+D6nx980HC9UNeP6YSCggIcOXIETpUN+X/u7u547rnn8PLLLyMzMxNHjhzBM888g0uXLmHs2LEAgGeffRbHjx/Hyy+/jGPHjmHFihVIT0832c+rr76K3bt3IykpCfv27cPx48exYcOGBh9Yzp4oIiKiRmTs2OtjoE6cuN4D1ZABqpKnp2e162bPng2j0YjRo0ejtLQUvXr1wjfffIN//etfAK7fjlu7di3+85//YNGiRejduzfefPNNPPXUU9I+7rzzTnz//fd4/fXX0a9fPwghEBwcjOHDh9f7ud1IJoQQDXrEJqSkpAQqlQoGg6HGDxQREdHly5dRWFiIoKAguLq62ro5jV5N19vS72/eziMiIiKyAkMUERERkRUYooiIiIiswBBFREREZAWGKCIiIjvC570aRl1cZ4YoIiIiO+Di4gIAuHTpko1b0jRUXufK624NzhNFRERkB5ycnODl5YVz584BAJo1awaZTGbjVjU+QghcunQJ586dg5eXV5UJQWuDIYqIiMhO+Pr6AoAUpKj+eHl5SdfbWgxRREREdkImk8HPzw+tWrXC1atXbd2cRsvFxeW2eqAqMUQRERHZGScnpzr5kqf6xYHlRERERFZgiCIiIiKyAkMUERERkRUYooiIiIiswBBFREREZAWGKCIiIiIr2DxELVmyBIGBgXB1dUVERAT27NlTY/2aNWvQuXNnuLq6onv37tiyZYvJeiEEUlJS4OfnBzc3N0RHR+P48eMmNbNmzULfvn3RrFkzeHl5VTnG/v37ER8fj4CAALi5uaFLly5YsGDBbZ8rERERNR42DVGrVq1CcnIyUlNTkZeXhx49ekCj0VQ7U+vu3bsRHx+PsWPHIj8/H3FxcYiLi8OhQ4ekmjlz5mDhwoVYunQpcnJy4O7uDo1Gg8uXL0s15eXleOyxx/Dcc8+ZPU5ubi5atWqFzz77DIcPH8brr7+OyZMnY/HixXV7AYiIiMhhyYQNfy46IiICd911lxROjEYjAgIC8Pzzz2PSpElV6ocPH46ysjJkZGRIy/r06YPQ0FAsXboUQgj4+/vjxRdfxEsvvQQAMBgM8PHxQXp6OkaMGGGyv/T0dEycOBHFxcW3bOv48eNRUFCAbdu2WXx+JSUlUKlUMBgM8PT0tHg7IiIish1Lv79t1hNVXl6O3NxcREdH/9MYuRzR0dHIzs42u012drZJPQBoNBqpvrCwEFqt1qRGpVIhIiKi2n1aymAwQK1W11hz5coVlJSUmLyIiIiocbLZz75cuHABFRUV8PHxMVnu4+ODo0ePmt1Gq9WarddqtdL6ymXV1Vhj9+7dWLVqFTZv3lxjXVpaGqZPn271cYiIGoJOp0N5eXm16xUKBby9vRuwRUSOib+ddwuHDh3C0KFDkZqaigceeKDG2smTJyM5OVl6X1JSgoCAgPpuIhGRxXQ6nUXjO5OSkhikiG7BZrfzWrRoAScnJxQVFZksLyoqgq+vr9ltfH19a6yv/LM2+6zJkSNHMHDgQCQmJmLKlCm3rFcqlfD09DR5ERHZk5t7oAwGDxQWBsJg8KixjoiqslmIUigUCA8PR1ZWlrTMaDQiKysLkZGRZreJjIw0qQeArVu3SvVBQUHw9fU1qSkpKUFOTk61+6zO4cOHcd999yEhIQGzZs2q1bZERI4gL68n5s+fiOXLEzB//kTk5fW0dZOIHIpNb+clJycjISEBvXr1Qu/evTF//nyUlZVhzJgxAIAnnngCrVu3RlpaGgBgwoQJiIqKwjvvvIOYmBisXLkSP//8Mz788EMAgEwmw8SJE/HGG28gJCQEQUFBmDp1Kvz9/REXFycd9/Tp09Dr9Th9+jQqKiqwb98+AECHDh3QvHlzHDp0CAMGDIBGo0FycrI0nsrJyQktW7ZsuAtERFRPDAYPbNo0GEJc/7e0EHJs2jQYwcEnoFKV2rh1RI7BpiFq+PDhOH/+PFJSUqDVahEaGorMzExpYPjp06chl//TWda3b1+sWLECU6ZMwWuvvYaQkBCsX78ed9xxh1TzyiuvoKysDImJiSguLsY999yDzMxMuLq6SjUpKSlYvny59L5nz+v/+tq+fTv69++PL7/8EufPn8dnn32Gzz77TKpr164dTp06VV+Xg4iowej13lKAqiSEHHq9miGKyEI2nSeqseM8UURkb86ePYsPP/wQBoMH5s+faBKkZDIjJk6cD5WqFImJifDz87NhS4lsx+7niSIiIttRqUoRG5sBmcwI4HqAio3NYC8UUS1wigMioiYqLCwfwcEnoNeroVbrGaCIaokhioioCVEoFCbvVapSs+Hp5joiqoohioioCfH29kZSUhJnLCeqAwxRRERNDAMSUd3gwHIiIiIiKzBEEREREVmBIYqIiIjIChwTRURERA5Bp9PZ1UMRDFFERERk93Q6HRYvXnzLuqSkpAYLUrydR0RERHbv5h4og8EDhYWBMBg8aqyrT+yJIiIiIoeSl9cTmzYNhhBy6SeLwsLyG7wd7IkiIiIih2EweEgBCgCEkGPTpsFVeqQaAkMUEREROQy93lsKUJWEkEOvVzd4WxiiiIiIyGGo1TrIZEaTZTKZEWq1vsHbwhBFREREDkOlKkVsbIYUpCrHRJn7Ie36xoHlRERE5FDCwvIRHHwCer0aarXeJgEKYIgiIiIiB6BQKEzeq1SlZsPTzXX1iSGKiIiI7J63tzeSkpI4YzkRERFRbTVkQLIEB5YTERERWYEhioiIiMgKDFFEREREVmCIIiIiIrICB5YTEZHFdDqdXT0dRWRLDFFERGQRnU6HxYsX37IuKSmJQYqaBN7OIyIii9zcA2UweKCwMBAGg0eNdUSNFXuiiIio1vLyemLTpsEQQi79dllYWL6tm0XUoNgTRUREtWIweEgBCgCEkGPTpsFVeqSIGjuGKCIiqhW93lsKUJWEkEOvV9uoRUS2wRBFRES1olbrIJMZTZbJZEao1XobtYjINhiiiIioVlSqUsTGZkhBqnJMlEpVauOWETUsDiwnIqJaCwvLR3DwCej1aqjVegYoapIYooiIyCIKhcLkvUpVajY83VxH1FgxRBERkUW8vb2RlJTEGcuJ/h9DFBERWYwBiegfHFhOREREZAWGKCIiIiIrMEQRERERWYEhioiIiMgKNg9RS5YsQWBgIFxdXREREYE9e/bUWL9mzRp07twZrq6u6N69O7Zs2WKyXgiBlJQU+Pn5wc3NDdHR0Th+/LhJzaxZs9C3b180a9YMXl5eZo9z+vRpxMTEoFmzZmjVqhVefvllXLt27bbOlYiIiBoPm4aoVatWITk5GampqcjLy0OPHj2g0Whw7tw5s/W7d+9GfHw8xo4di/z8fMTFxSEuLg6HDh2SaubMmYOFCxdi6dKlyMnJgbu7OzQaDS5fvizVlJeX47HHHsNzzz1n9jgVFRWIiYlBeXk5du/ejeXLlyM9PR0pKSl1ewGIiIjIcQkb6t27txg/frz0vqKiQvj7+4u0tDSz9cOGDRMxMTEmyyIiIsS4ceOEEEIYjUbh6+sr3n77bWl9cXGxUCqV4osvvqiyv2XLlgmVSlVl+ZYtW4RcLhdarVZa9v777wtPT09x5coVi8/PYDAIAMJgMFi8DREREdmWpd/fNuuJKi8vR25uLqKjo6Vlcrkc0dHRyM7ONrtNdna2ST0AaDQaqb6wsBBardakRqVSISIiotp9Vnec7t27w8fHx+Q4JSUlOHz4cLXbXblyBSUlJSYvIiK6PTqdDmfPnq32pdPpbN1EaqJsNtnmhQsXUFFRYRJUAMDHxwdHjx41u41WqzVbr9VqpfWVy6qrsUR1x7nxGOakpaVh+vTpFh+HiIhqptPpsHjx4lvWJSUlcSJQanA2H1jemEyePBkGg0F6nTlzxtZNIiJyaDf/xIzB4IHCwkAYDB411hE1BJv1RLVo0QJOTk4oKioyWV5UVARfX1+z2/j6+tZYX/lnUVER/Pz8TGpCQ0Mtbpuvr2+VpwQrj1td2wBAqVRCqVRafBwiIrJcXl5PbNo0GELIIZMZERubgbCwfFs3i5owm/VEKRQKhIeHIysrS1pmNBqRlZWFyMhIs9tERkaa1APA1q1bpfqgoCD4+vqa1JSUlCAnJ6fafVZ3nIMHD5o8Jbh161Z4enqia9euFu+HiIjqhsHgIQUoABBCjk2bBlfpkSJqSDb9AeLk5GQkJCSgV69e6N27N+bPn4+ysjKMGTMGAPDEE0+gdevWSEtLAwBMmDABUVFReOeddxATE4OVK1fi559/xocffggAkMlkmDhxIt544w2EhIQgKCgIU6dOhb+/P+Li4qTjnj59Gnq9HqdPn0ZFRQX27dsHAOjQoQOaN2+OBx54AF27dsXo0aMxZ84caLVaTJkyBePHj2dPExGRDej13rj5WSgh5NDr1VCpSm3UKmrqbBqihg8fjvPnzyMlJQVarRahoaHIzMyUBnGfPn0acvk//6fp27cvVqxYgSlTpuC1115DSEgI1q9fjzvuuEOqeeWVV1BWVobExEQUFxfjnnvuQWZmJlxdXaWalJQULF++XHrfs2dPAMD27dvRv39/ODk5ISMjA8899xwiIyPh7u6OhIQEzJgxo74vCRERmaFW6yCTGU2ClExmhFqtt2GrqKmTCSGErRvRWJWUlEClUsFgMMDT09PWzSEicjhnz56V7jbUNCYqMTHRZCws0e2w9Pvbpj1RRERElgoLy0dw8Ano9Wqo1XrexiObY4giIiK7pVAoTN6rVKVmw9PNdUQNgSGKiIjslre3N5KSkmqcB0qhUHCiTbIJhigiIrJrDEhkrzhjOREREZEVGKKIiIiIrMDbeURNiE6n49gSIqI6whBF1ETodDosXrz4lnVJSUkMUkREFuDtPKIm4uYeKIPBA4WFgVV+e6ymnioiIvoHe6KImqCaZn4mIiLLsCeKqIkxGDykAAVc/xHXTZsGV+mRIiKimjFEETUxer23yY+4AteDlF6vtlGLiIgcE0MUUROjVusgkxlNlslkRqjVehu1iIjIMTFEETUxKlUpYmMzpCBVOSaKP+ZKRFQ7HFhO1ASFheUjOPgE9Ho11Go9AxQRkRUYooiaiJt/5V6lKjUbnm6uIyIi8xiiiJoIb29vJCUlccZyIqI6whBF1IQwIBER1R0OLCciIiKyAkMUERERkRUYooiIiIiswBBFREREZAWGKCIiIiIrMEQRERERWYEhioiIiMgKDFFEREREVmCIIiIiIrICQxQRERGRFRiiiIiIiKzAEEVERERkBYYoIiIiIiswRBERERFZgSGKiIiIyAoMUURERERWYIgiIiIisgJDFBEREZEVGKKIiIiIrMAQRURERGQFhigiIiIiKzBEEREREVnBqhC1Z88eLFiwAJMnT8bkyZOxYMEC7Nmzx6oGLFmyBIGBgXB1dUVERMQt97NmzRp07twZrq6u6N69O7Zs2WKyXgiBlJQU+Pn5wc3NDdHR0Th+/LhJjV6vx6hRo+Dp6QkvLy+MHTsWFy9eNKn55ptv0KdPH3h4eKBly5Z45JFHcOrUKavOkYiIiBqfWoWoc+fOoV+/fujTpw/effddbNu2Ddu2bcO7776LPn36oF+/fjh37pzF+1u1ahWSk5ORmpqKvLw89OjRAxqNptp97N69G/Hx8Rg7dizy8/MRFxeHuLg4HDp0SKqZM2cOFi5ciKVLlyInJwfu7u7QaDS4fPmyVDNq1CgcPnwYW7duRUZGBn744QckJiZK6wsLCzF06FAMGDAA+/btwzfffIMLFy7g4Ycfrs3lIiIiosZM1MIjjzwiIiMjxdGjR6usO3r0qOjbt6949NFHLd5f7969xfjx46X3FRUVwt/fX6SlpZmtHzZsmIiJiTFZFhERIcaNGyeEEMJoNApfX1/x9ttvS+uLi4uFUqkUX3zxhRBCiCNHjggAYu/evVLN119/LWQymfjjjz+EEEKsWbNGODs7i4qKCqlm48aNQiaTifLycovPz2AwCADCYDBYvA0RERHZlqXf37Xqifrmm2+wZMkSdOrUqcq6Tp06YeHChcjMzLRoX+Xl5cjNzUV0dLS0TC6XIzo6GtnZ2Wa3yc7ONqkHAI1GI9UXFhZCq9Wa1KhUKkREREg12dnZ8PLyQq9evaSa6OhoyOVy5OTkAADCw8Mhl8uxbNkyVFRUwGAw4NNPP0V0dDRcXFyqPacrV66gpKTE5EVERESNU61ClFKprDEYlJaWQqlUWrSvCxcuoKKiAj4+PibLfXx8oNVqzW6j1WprrK/881Y1rVq1Mlnv7OwMtVot1QQFBeHbb7/Fa6+9BqVSCS8vL/z+++9YvXp1jeeUlpYGlUolvQICAmqsJyIiIsdVqxA1fPhwJCQk4KuvvjIJUyUlJfjqq68wZswYxMfH13kjG5pWq8UzzzyDhIQE7N27F99//z0UCgUeffRRCCGq3W7y5MkwGAzS68yZMw3YaiIiImpIzrUpnjdvHoxGI0aMGIFr165BoVAAuH5rztnZGWPHjsXcuXMt2leLFi3g5OSEoqIik+VFRUXw9fU1u42vr2+N9ZV/FhUVwc/Pz6QmNDRUqrl54Pq1a9eg1+ul7ZcsWQKVSoU5c+ZINZ999hkCAgKQk5ODPn36mG2fUqm0uCeOiIiIHFutb+e9//77OH/+PL777jt8/PHH+Pjjj/Hdd9/h/PnzeO+99ywOEQqFAuHh4cjKypKWGY1GZGVlITIy0uw2kZGRJvUAsHXrVqk+KCgIvr6+JjUlJSXIycmRaiIjI1FcXIzc3FypZtu2bTAajYiIiAAAXLp0CXK56aVxcnKS2khERERUq6fz6trKlSuFUqkU6enp4siRIyIxMVF4eXkJrVYrhBBi9OjRYtKkSVL9rl27hLOzs5g7d64oKCgQqampwsXFRRw8eFCqmT17tvDy8hIbNmwQBw4cEEOHDhVBQUHi77//lmoGDRokevbsKXJycsTOnTtFSEiIiI+Pl9ZnZWUJmUwmpk+fLn755ReRm5srNBqNaNeunbh06ZLF58en84iIiByPpd/fdRqitFqtmD59eq22WbRokWjbtq1QKBSid+/e4qeffpLWRUVFiYSEBJP61atXi44dOwqFQiG6desmNm/ebLLeaDSKqVOnCh8fH6FUKsXAgQPFsWPHTGp0Op2Ij48XzZs3F56enmLMmDGitLTUpOaLL74QPXv2FO7u7qJly5ZiyJAhoqCgoFbnxhBFRETkeCz9/pYJUcNI6Vrav38/wsLCUFFRUVe7dGglJSVQqVQwGAzw9PS0dXOIiIjIApZ+f9dqYPmBAwdqXH/s2LHa7I6IiIjIYdUqRIWGhkImk5l9zL9yuUwmq7PGEREREdmrWoUotVqNOXPmYODAgWbXHz58GLGxsXXSMCIiIiJ7VqsQFR4ejj///BPt2rUzu764uLjGySiJiIiIGotahahnn30WZWVl1a5v27Ytli1bdtuNIiIiIrJ3dfp0Hpni03lERESOx9Lv71rNWE5ERERE19Xqdl5ycrJFdfPmzbOqMUREdUGn06G8vLza9QqFAt7e3g3YIiJqjGoVovLz803e79y5E+Hh4XBzc5OWcYoDIrIlnU6HxYsX37IuKSmJQYqIbkutQtT27dtN3nt4eGDFihVo3759nTaKiMhaN/dAGQwe0Ou9oVbroFKVVltHRFRbtQpRRESOJC+vJzZtGgwh5JDJjIiNzUBYWP6tNyQisgAHlhNRo2QweEgBCgCEkGPTpsEwGDxs3DIiaiwYooioUdLrvaUAVUkIOfR6tY1aRESNzW39ALEQAkePHsXFixdNlt9555233zIiotugVusgkxlNgpRMZoRarbdhq4ioMbntHyAePHgwANMfIK6oqKjbVhIR1ZJKVYrY2IwqY6JuHFxORHQ7ahWiCgsL66sdRER1LiwsH8HBJ6DXq6FW6xmgiKhO1SpEVffDw0RE9kKhUJi8V6lKzYanm+uIiGqrTqY4GDBgAJYtW8aQRUQ25+3tjaSkJM5YTkT1rlYhauPGjWaX//DDD8jIyEBAQAAAYMiQIbffMiIiKzEgEVFDkIkbR4nfglwurzKwvMoOObBcYumvQBMREZH9sPT7u1bzRGk0Gjz44IPQarUwGo3Sy8nJCYcOHYLRaGSAIiIioiahViHq66+/xsCBA9GrVy9kZGTUV5uIiIiI7F6tZyz/z3/+g40bN+LVV1/FuHHjcOnSpfpoFxEREZFds+pnX0JDQ/Hzzz9DJpMhNDS0xjFSRERERI2R1VMcuLm5YenSpdi4cSO2b9+OFi1a1GW7iIiIiOxarXqitm3bhq5du6KkpERaNmTIELz77rtQKpXo1q0bfvzxxzpvJBEREZG9qVWImj9/Pp555hmzj/upVCqMGzcO8+bNq7PGEREREdmrWoWo/fv3Y9CgQdWuf+CBB5Cbm3vbjSIiIiKyd7UKUUVFRXBxcal2vbOzM86fP3/bjSIiIiKyd7UKUa1bt8ahQ4eqXX/gwAH4+fnddqOIiIiI7F2tQtRDDz2EqVOn4vLly1XW/f3330hNTcXgwYPrrHFERERE9qpWv51XVFSEsLAwODk5ISkpCZ06dQIAHD16FEuWLEFFRQXy8vLg4+NTbw12JPztPCIiIsdj6fd3reaJ8vHxwe7du/Hcc89h8uTJ0iSbMpkMGo0GS5YsYYAiIiKiJqHWk222a9cOW7ZswV9//YUTJ05ACIGQkBD861//qo/2EREREdklq2cs/9e//oW77rqrLttCRERE5DCs+u08IiIioqaOIYqIiIjICgxRRERERFZgiCIiIiKyAkMUERERkRVsHqKWLFmCwMBAuLq6IiIiAnv27Kmxfs2aNejcuTNcXV3RvXt3bNmyxWS9EAIpKSnw8/ODm5sboqOjcfz4cZMavV6PUaNGwdPTE15eXhg7diwuXrxYZT9z585Fx44doVQq0bp1a8yaNatuTpqIiIgcnk1D1KpVq5CcnIzU1FTk5eWhR48e0Gg0OHfunNn63bt3Iz4+HmPHjkV+fj7i4uIQFxdn8nt+c+bMwcKFC7F06VLk5OTA3d0dGo3G5KdqRo0ahcOHD2Pr1q3IyMjADz/8gMTERJNjTZgwAf/7v/+LuXPn4ujRo9i4cSN69+5dPxeCiIiIHI+wod69e4vx48dL7ysqKoS/v79IS0szWz9s2DARExNjsiwiIkKMGzdOCCGE0WgUvr6+4u2335bWFxcXC6VSKb744gshhBBHjhwRAMTevXulmq+//lrIZDLxxx9/SDXOzs7i6NGjt3V+BoNBABAGg+G29kNEREQNx9Lvb5v1RJWXlyM3NxfR0dHSMrlcjujoaGRnZ5vdJjs726QeADQajVRfWFgIrVZrUqNSqRARESHVZGdnw8vLC7169ZJqoqOjIZfLkZOTAwDYtGkT2rdvj4yMDAQFBSEwMBBPP/009Hp93Zw8EREROTybhagLFy6goqKiym/t+fj4QKvVmt1Gq9XWWF/5561qWrVqZbLe2dkZarVaqvn111/x22+/Yc2aNfjkk0+Qnp6O3NxcPProozWe05UrV1BSUmLyIiIiosbJ6p99acyMRiOuXLmCTz75BB07dgQAfPTRRwgPD8exY8fQqVMns9ulpaVh+vTpDdlUIiIishGb9US1aNECTk5OKCoqMlleVFQEX19fs9v4+vrWWF/5561qbh64fu3aNej1eqnGz88Pzs7OUoACgC5dugAATp8+Xe05TZ48GQaDQXqdOXOm2loiIiJybDYLUQqFAuHh4cjKypKWGY1GZGVlITIy0uw2kZGRJvUAsHXrVqk+KCgIvr6+JjUlJSXIycmRaiIjI1FcXIzc3FypZtu2bTAajYiIiAAA3H333bh27RpOnjwp1fzyyy8AgHbt2lV7TkqlEp6eniYvIiIiaqQaaKC7WStXrhRKpVKkp6eLI0eOiMTEROHl5SW0Wq0QQojRo0eLSZMmSfW7du0Szs7OYu7cuaKgoECkpqYKFxcXcfDgQalm9uzZwsvLS2zYsEEcOHBADB06VAQFBYm///5bqhk0aJDo2bOnyMnJETt37hQhISEiPj5eWl9RUSHCwsLEvffeK/Ly8sTPP/8sIiIixP3331+r8+PTeURERI7H0u9vm4YoIYRYtGiRaNu2rVAoFKJ3797ip59+ktZFRUWJhIQEk/rVq1eLjh07CoVCIbp16yY2b95sst5oNIqpU6cKHx8foVQqxcCBA8WxY8dManQ6nYiPjxfNmzcXnp6eYsyYMaK0tNSk5o8//hAPP/ywaN68ufDx8RFPPvmk0Ol0tTo3higiIiLHY+n3t0wIIWzbF9Z4lZSUQKVSwWAw8NYeERGRg7D0+9vmP/tCRERE5IgYooiIiIiswBBFREREZAWGKCIiIiIrMEQRERERWYEhioiIiMgKDFFEREREVmCIIiIiIrICQxQRERGRFRiiiIiIiKzAEEVERERkBYYoIiIiIiswRBERERFZgSGKiIiIyAoMUURERERWYIgiIiIisgJDFBEREZEVnG3dALKMTqdDeXl5tesVCgW8vb0bsEVERERNG0OUA9DpdFi8eLH03mDwgF7vDbVaB5WqVFqelJTEIEVERNRAGKIcwI09UHl5PbFp02AIIYdMZkRsbAbCwvKr1BEREVH94pgoB2IweEgBCgCEkGPTpsEwGDxs3DIiIqKmhyHKgej13lKAqiSEHHq92kYtIiIiaroYohyIWq2DTGY0WSaTGaFW623UIiIioqaLIcqBqFSliI3NkIJU5ZioGweXExERUcPgwHIHExaWj+DgE9Dr1VCr9QxQRGZwShAiaggMUQ5IpSpleCKqxs1TglSHU4IQ0e3i7TwHoFAo6rSOqDG7uQfKYPBAYWFgladYOSUIEd0u9kQ5AG9vbyQlJfH2BFEt1TSvGhHR7WKIchAMSES1U928asHBJ3g7nIjqBG/nEVGjxHnViKi+MUQRUaPEedWIqL4xRBFRo8R51YiovnFMFBE1WpxXjYjqE0MUETUqN0/1Ud28apwShIhuF0MUETUqnBKEiBoKQxQRNToMSETUEDiwnIiIiMgKDFFEREREVmCIIiIiIrICQxQRERGRFRiiiIiIiKxgFyFqyZIlCAwMhKurKyIiIrBnz54a69esWYPOnTvD1dUV3bt3x5YtW0zWCyGQkpICPz8/uLm5ITo6GsePHzep0ev1GDVqFDw9PeHl5YWxY8fi4sWLZo934sQJeHh4wMvL67bOk4iIiBoPm4eoVatWITk5GampqcjLy0OPHj2g0Whw7tw5s/W7d+9GfHw8xo4di/z8fMTFxSEuLg6HDh2SaubMmYOFCxdi6dKlyMnJgbu7OzQaDS5fvizVjBo1CocPH8bWrVuRkZGBH374AYmJiVWOd/XqVcTHx6Nfv351f/JERETksGRCCGHLBkREROCuu+7C4sWLAQBGoxEBAQF4/vnnMWnSpCr1w4cPR1lZGTIyMqRlffr0QWhoKJYuXQohBPz9/fHiiy/ipZdeAgAYDAb4+PggPT0dI0aMQEFBAbp27Yq9e/eiV69eAIDMzEw89NBD+P333+Hv7y/t+9VXX8Wff/6JgQMHYuLEiSguLrb43EpKSqBSqWAwGODp6WnN5SEiIqIGZun3t017osrLy5Gbm4vo6GhpmVwuR3R0NLKzs81uk52dbVIPABqNRqovLCyEVqs1qVGpVIiIiJBqsrOz4eXlJQUoAIiOjoZcLkdOTo60bNu2bVizZg2WLFli0flcuXIFJSUlJi8ichw6nQ5nz56t9qXT6WzdRCKyIzadsfzChQuoqKiAj4+PyXIfHx8cPXrU7DZardZsvVarldZXLqupplWrVibrnZ2doVarpRqdTocnn3wSn332mcW9SGlpaZg+fbpFtURkX3Q6ndQjXpOkpCTOiE5EAOxgTJS9euaZZzBy5Ejce++9Fm8zefJkGAwG6XXmzJl6bCER1aWbf2vPYPBAYWEgDAaPGuuIqOmyaU9UixYt4OTkhKKiIpPlRUVF8PX1NbuNr69vjfWVfxYVFcHPz8+kJjQ0VKq5eeD6tWvXoNfrpe23bduGjRs3Yu7cuQCuP/FnNBrh7OyMDz/8EE899VSVtimVSiiVSktPn4jsVF5eT2zaNBhCyCGTGREbm4GwsHxbN4uI7IxNe6IUCgXCw8ORlZUlLTMajcjKykJkZKTZbSIjI03qAWDr1q1SfVBQEHx9fU1qSkpKkJOTI9VERkaiuLgYubm5Us22bdtgNBoREREB4Pq4qX379kmvGTNmwMPDA/v27cO///3vurkARGR3DAYPKUABgBBybNo0uEqPVFPFcWNE/7BpTxQAJCcnIyEhAb169ULv3r0xf/58lJWVYcyYMQCAJ554Aq1bt0ZaWhoAYMKECYiKisI777yDmJgYrFy5Ej///DM+/PBDAIBMJsPEiRPxxhtvICQkBEFBQZg6dSr8/f0RFxcHAOjSpQsGDRqEZ555BkuXLsXVq1eRlJSEESNGSE/mdenSxaSdP//8M+RyOe64444GujJEZAt6vbcUoCoJIYder4ZKVWqjVtkHjhsjMmXzEDV8+HCcP38eKSkp0Gq1CA0NRWZmpjQw/PTp05DL//kPWt++fbFixQpMmTIFr732GkJCQrB+/XqTcPPKK6+grKwMiYmJKC4uxj333IPMzEy4urpKNZ9//jmSkpIwcOBAyOVyPPLII1i4cGHDnTgR2SW1WgeZzGgSpGQyI9RqvQ1bZR/MjRvT672hVutMAibHjVFTYfN5ohozzhNF5DjOnj0r9WjXNCYqMTHRZLxlU8JrRE2Fpd/fNu+JIiKyN2Fh+QgOPgG9Xg21Wt/kb+PdrLpxY8HBJ3itqElhiCIiwvUHXW6kUpWaDQQ31zVFHDdGtqLT6Wq8XaxQKBp0PB5DFBERAG9vbyQlJdnVf6DtFceNkS3Y44MNDFFERP+PAckyKlUpYmMzqoyJYi8U1Sd7fLCBIYqIiGqN48aqZ2+3nBoje5kQlyGKiIgswnFjt2aPt5waG3t6sIEhioiILMJxY7dmj7ecGht7erCBIcpBsHuYiOwB/ztjOXu55dTY2NODDQxRDoDdw0REjsWebjk1Nvb0YANDlANg9zARkWOxp1tOjZG9PNjAEOVg2D1MRGT/7OmWU2Nhjw82MEQ5EHYPExE5Bnu65dRY2OODDQxRDoTdw0REjsNebjk1JvY27pchyoGwe5iIyL7Z4y0nqj8MUQ6E3cNERPbNHm85Uf1hiHIw7B4mIrJvDEhNB0OUA2D3MBERkf1hiHIA7B4mIiKyPwxRDoIBiYiIyL7Ib11CRERERDdjiCIiIiKyAm/nEd0GnU7HsWpERE0UQxSRlXQ6HRYvXnzLuqSkJAYpIqJGiLfziKx0cw+UweCBwsJAGAweNdYREVHjwJ4oojqQl9ezykzyYWH5tm4WERHVI/ZEEd0mg8FDClDA9R+F3rRpcJUeKSIialwYoohuk17vbfKj0MD1IKXXq23UIiIiaggMUUS3Sa3WQSYzmiyTyYxQq/U2ahERETUEhiii26RSlSI2NkMKUpVjovjj0EREjRsHlhPVgbCwfAQHn4Ber4ZarWeAIiJqAhiiiKykUChM3qtUpWbD0811RETUODBEEVnJ29sbSUlJnLGciKiJYogiug0MSERETRcHlhMRERFZgSGKiIiIyAoMUURERERWYIgiIiIisgJDFBEREZEVGKKIiIiIrMAQRURERGQFuwhRS5YsQWBgIFxdXREREYE9e/bUWL9mzRp07twZrq6u6N69O7Zs2WKyXgiBlJQU+Pn5wc3NDdHR0Th+/LhJjV6vx6hRo+Dp6QkvLy+MHTsWFy9elNbv2LEDQ4cOhZ+fH9zd3REaGorPP/+87k6aiIiIHJrNQ9SqVauQnJyM1NRU5OXloUePHtBoNDh37pzZ+t27dyM+Ph5jx45Ffn4+4uLiEBcXh0OHDkk1c+bMwcKFC7F06VLk5OTA3d0dGo0Gly9flmpGjRqFw4cPY+vWrcjIyMAPP/yAxMREk+PceeedWLt2LQ4cOIAxY8bgiSeeQEZGRv1dDCIiInIYMiGEsGUDIiIicNddd2Hx4sUAAKPRiICAADz//POYNGlSlfrhw4ejrKzMJMz06dMHoaGhWLp0KYQQ8Pf3x4svvoiXXnoJAGAwGODj44P09HSMGDECBQUF6Nq1K/bu3YtevXoBADIzM/HQQw/h999/h7+/v9m2xsTEwMfHBx9//LFF51ZSUgKVSgWDwQBPT89aXRciIiKyDUu/v23aE1VeXo7c3FxER0dLy+RyOaKjo5GdnW12m+zsbJN6ANBoNFJ9YWEhtFqtSY1KpUJERIRUk52dDS8vLylAAUB0dDTkcjlycnKqba/BYIBara52/ZUrV1BSUmLyIiIiosbJpiHqwoULqKiogI+Pj8lyHx8faLVas9totdoa6yv/vFVNq1atTNY7OztDrVZXe9zVq1dj7969GDNmTLXnk5aWBpVKJb0CAgKqrSUiIiLHZvMxUY5g+/btGDNmDP773/+iW7du1dZNnjwZBoNBep05c6YBW0lEREQNyaYhqkWLFnByckJRUZHJ8qKiIvj6+prdxtfXt8b6yj9vVXPzwPVr165Br9dXOe7333+P2NhYvPvuu3jiiSdqPB+lUglPT0+TFxERETVONg1RCoUC4eHhyMrKkpYZjUZkZWUhMjLS7DaRkZEm9QCwdetWqT4oKAi+vr4mNSUlJcjJyZFqIiMjUVxcjNzcXKlm27ZtMBqNiIiIkJbt2LEDMTExeOutt0ye3CMiIiKCsLGVK1cKpVIp0tPTxZEjR0RiYqLw8vISWq1WCCHE6NGjxaRJk6T6Xbt2CWdnZzF37lxRUFAgUlNThYuLizh48KBUM3v2bOHl5SU2bNggDhw4IIYOHSqCgoLE33//LdUMGjRI9OzZU+Tk5IidO3eKkJAQER8fL63ftm2baNasmZg8ebI4e/as9NLpdBafm8FgEACEwWC4nUtEREREDcjS72+bhyghhFi0aJFo27atUCgUonfv3uKnn36S1kVFRYmEhAST+tWrV4uOHTsKhUIhunXrJjZv3myy3mg0iqlTpwofHx+hVCrFwIEDxbFjx0xqdDqdiI+PF82bNxeenp5izJgxorS0VFqfkJAgAFR5RUVFWXxeDFFERER158KFC+LPP/+s9nXhwoU6OY6l3982nyeqMeM8UURERHVDp9NJc0rWJCkpCd7e3rd1LIeYJ4qIiIjIEuXl5SbvDQYPFBYGwmDwqLGuPjk32JGIiIiI6kBeXk9s2jQYQsghkxkRG5uBsLD8Bm8HQxQRkYPS6XQ1/qtboVDc9m0NIntjMHhIAQoAhJBj06bBCA4+AZWqtEHbwhBFROSAGnJ8CJE90eu9pQBVSQg59Hp1g4cojokiInJA9jg+hKghqNU6yGRGk2UymRFqtb7B28KeKCIiB2cv40OIGoJKVYrY2Iwqn/mG7oUCGKKIiByaPY0PIWooYWH5CA4+Ab1eDbVab7PPOkMUEZEDs6fxIUT1SaFQmLxXqUrNfsZvrqtPDFFEZJf45JllKseH3BikbDU+hKg+eXt7Iykpya7+u8AQRUR2h0+eWc6exodQ02KLf+jY2//fGaKIyO6Ye/JMr/eGWq0zCQd88uw6exkfQk0H/6FzHUMUEdk1Pnlmnj2OD6Gmg//QuY4hiojsFp88q549jg+hpqkp/0OHIYqI7BafPKsZAxLZWlP/hw5nLCciu2VPMxMTUVU1/UOnKWCIIiK7VfnkWWWQ4pNnRPalqf9Dh7fziMiu8ckzIvvV1KfYYIgiIrvDJ8+IHEdT/ocOQxTZFc5STQCfPCOyd/yHznUyIYSwdSMaq5KSEqhUKhgMBnh6etq6OXaPk7cRETmOxvyPXku/v9kTRXbD0knZGvvkbUREjsBRA1Jd4tN5ZLcMBg8UFgbCYPCwdVOIiIiqYE8U2aWmPAMuERE5BvZEkd2pbgZc9kgREZE9YYgiu9PUZ8AlIiLHwBBFdqepz4BLRESOgSGK7A5/6oOIiBwBB5aT3bhxUraaZsBt7JO3ERGRY2CIIrvBWaqJiMiRMESRXWFAIiIiR8ExUURERERWYIgiIiIisgJDFBEREZEVGKKIiIiIrMAQRURERGQFhigiIiIiKzBEEREREVmBIYqIiIjICgxRRERERFZgiCIiIiKyAn/2pR4JIQAAJSUlNm4JERERWarye7vye7w6DFH1qLS0FAAQEBBg45YQERFRbZWWlkKlUlW7XiZuFbPIakajEX/++Sc8PDwgk8ms3k9JSQkCAgJw5swZeHp61mELHRuvS1W8JlXxmlTFa1IVr0lVTfmaCCFQWloKf39/yOXVj3xiT1Q9ksvlaNOmTZ3tz9PTs8l9kC3B61IVr0lVvCZV8ZpUxWtSVVO9JjX1QFXiwHIiIiIiKzBEEREREVmBIcoBKJVKpKamQqlU2ropdoXXpSpek6p4TariNamK16QqXpNb48ByIiIiIiuwJ4qIiIjICgxRRERERFZgiCIiIiKyAkMUERERkRUYomxkyZIlCAwMhKurKyIiIrBnz54a6+fPn49OnTrBzc0NAQEB+M9//oPLly9L66dNmwaZTGby6ty5c32fRp2qzTW5evUqZsyYgeDgYLi6uqJHjx7IzMy8rX3ao7q+Jo7+Ofnhhx8QGxsLf39/yGQyrF+//pbb7NixA2FhYVAqlejQoQPS09Or1Djy56Q+rklT+5ycPXsWI0eORMeOHSGXyzFx4kSzdWvWrEHnzp3h6uqK7t27Y8uWLXXf+HpSH9ckPT29yufE1dW1fk7ATjFE2cCqVauQnJyM1NRU5OXloUePHtBoNDh37pzZ+hUrVmDSpElITU1FQUEBPvroI6xatQqvvfaaSV23bt1w9uxZ6bVz586GOJ06UdtrMmXKFHzwwQdYtGgRjhw5gmeffRb//ve/kZ+fb/U+7U19XBPAsT8nZWVl6NGjB5YsWWJRfWFhIWJiYnDfffdh3759mDhxIp5++ml88803Uo2jf07q45oATetzcuXKFbRs2RJTpkxBjx49zNbs3r0b8fHxGDt2LPLz8xEXF4e4uDgcOnSoLpteb+rjmgDXZzO/8XPy22+/1VWTHYOgBte7d28xfvx46X1FRYXw9/cXaWlpZuvHjx8vBgwYYLIsOTlZ3H333dL71NRU0aNHj3ppb0Oo7TXx8/MTixcvNln28MMPi1GjRlm9T3tTH9fE0T8nNwIgvvrqqxprXnnlFdGtWzeTZcOHDxcajUZ67+ifkxvV1TVpap+TG0VFRYkJEyZUWT5s2DARExNjsiwiIkKMGzfuNlvY8OrqmixbtkyoVKo6a5cjYk9UAysvL0dubi6io6OlZXK5HNHR0cjOzja7Td++fZGbmyvdYvj111+xZcsWPPTQQyZ1x48fh7+/P9q3b49Ro0bh9OnT9Xcidciaa3LlypUq3cZubm7Sv5at2ac9qY9rUslRPyfWyM7ONrmGAKDRaKRr6OifE2vc6ppUakqfE0tYet2amosXL6Jdu3YICAjA0KFDcfjwYVs3qUExRDWwCxcuoKKiAj4+PibLfXx8oNVqzW4zcuRIzJgxA/fccw9cXFwQHByM/v37m9zOi4iIQHp6OjIzM/H++++jsLAQ/fr1Q2lpab2eT12w5ppoNBrMmzcPx48fh9FoxNatW7Fu3TqcPXvW6n3ak/q4JoBjf06sodVqzV7DkpIS/P333w7/ObHGra4J0PQ+J5ao7ro11s+JJTp16oSPP/4YGzZswGeffQaj0Yi+ffvi999/t3XTGgxDlAPYsWMH3nzzTbz33nvIy8vDunXrsHnzZsycOVOqefDBB/HYY4/hzjvvhEajwZYtW1BcXIzVq1fbsOX1Z8GCBQgJCUHnzp2hUCiQlJSEMWPGQC5vuh9pS65JU/uckHX4OSFLREZG4oknnkBoaCiioqKwbt06tGzZEh988IGtm9Zgmu43jo20aNECTk5OKCoqMlleVFQEX19fs9tMnToVo0ePxtNPP43u3bvj3//+N958802kpaXBaDSa3cbLywsdO3bEiRMn6vwc6po116Rly5ZYv349ysrK8Ntvv+Ho0aNo3rw52rdvb/U+7Ul9XBNzHOlzYg1fX1+z19DT0xNubm4O/zmxxq2uiTmN/XNiiequW2P9nFjDxcUFPXv2bFKfE4aoBqZQKBAeHo6srCxpmdFoRFZWFiIjI81uc+nSpSo9LE5OTgAAUc1PH168eBEnT56En59fHbW8/lhzTSq5urqidevWuHbtGtauXYuhQ4fe9j7tQX1cE3Mc6XNijcjISJNrCABbt26VrqGjf06scatrYk5j/5xYwprr1tRUVFTg4MGDTetzYuuR7U3RypUrhVKpFOnp6eLIkSMiMTFReHl5Ca1WK4QQYvTo0WLSpElSfWpqqvDw8BBffPGF+PXXX8W3334rgoODxbBhw6SaF198UezYsUMUFhaKXbt2iejoaNGiRQtx7ty5Bj8/a9T2mvz0009i7dq14uTJk+KHH34QAwYMEEFBQeKvv/6yeJ/2rj6uiaN/TkpLS0V+fr7Iz88XAMS8efNEfn6++O2334QQQkyaNEmMHj1aqv/1119Fs2bNxMsvvywKCgrEkiVLhJOTk8jMzJRqHP1zUh/XpKl9ToQQUn14eLgYOXKkyM/PF4cPH5bW79q1Szg7O4u5c+eKgoICkZqaKlxcXMTBgwcb9NysVR/XZPr06eKbb74RJ0+eFLm5uWLEiBHC1dXVpKaxY4iykUWLFom2bdsKhUIhevfuLX766SdpXVRUlEhISJDeX716VUybNk0EBwcLV1dXERAQIP7nf/7H5Mtx+PDhws/PTygUCtG6dWsxfPhwceLEiQY8o9tXm2uyY8cO0aVLF6FUKoW3t7cYPXq0+OOPP2q1T0dQ19fE0T8n27dvFwCqvCqvQ0JCgoiKiqqyTWhoqFAoFKJ9+/Zi2bJlVfbryJ+T+rgmTfFzYq6+Xbt2JjWrV68WHTt2FAqFQnTr1k1s3ry5YU6oDtTHNZk4caL0/xsfHx/x0EMPiby8vIY7KTsgE6Ka+0FEREREVC2OiSIiIiKyAkMUERERkRUYooiIiIiswBBFREREZAWGKCIiIiIrMEQRERERWYEhioiIiMgKDFFERE3Ijh07IJPJUFxcbOumEDk8higiqhdPPvkkZDIZZs+ebbJ8/fr1kMlk0nshBP773/8iMjISnp6eaN68Obp164YJEyZY/EOmly5dwuTJkxEcHAxXV1e0bNkSUVFR2LBhg1QTGBiI+fPn18m51bfKayeTyeDi4oKgoCC88soruHz5cq32079/f0ycONFkWd++fXH27FmoVKo6bDFR08QQRUT1xtXVFW+99Rb++usvs+uFEBg5ciReeOEFPPTQQ/j2229x5MgRfPTRR3B1dcUbb7xh0XGeffZZrFu3DosWLcLRo0eRmZmJRx99FDqdri5Pp0ENGjQIZ8+exa+//op3330XH3zwAVJTU297vwqFAr6+viZBloisZNtfnSGixiohIUEMHjxYdO7cWbz88svS8q+++kpU/qfniy++EADEhg0bzO7DaDRadCyVSiXS09OrXR8VFVXlN8Aq/fjjj+Kee+4Rrq6uok2bNuL5558XFy9elNZ/8sknIjw8XDRv3lz4+PiI+Ph4UVRUJK2v/E2yzMxMERoaKlxdXcV9990nioqKxJYtW0Tnzp2Fh4eHiI+PF2VlZRadT0JCghg6dKjJsocfflj07NlTen/hwgUxYsQI4e/vL9zc3MQdd9whVqxYYbKPm8+5sLBQau+Nv7355Zdfiq5duwqFQiHatWsn5s6da1E7iZo69kQRUb1xcnLCm2++iUWLFuH333+vsv6LL75Ap06dMGTIELPbW9pb4uvriy1btqC0tNTs+nXr1qFNmzaYMWMGzp49i7NnzwIATp48iUGDBuGRRx7BgQMHsGrVKuzcuRNJSUnStlevXsXMmTOxf/9+rF+/HqdOncKTTz5Z5RjTpk3D4sWLsXv3bpw5cwbDhg3D/PnzsWLFCmzevBnffvstFi1aZNH53OzQoUPYvXs3FAqFtOzy5csIDw/H5s2bcejQISQmJmL06NHYs2cPAGDBggWIjIzEM888I51zQEBAlX3n5uZi2LBhGDFiBA4ePIhp06Zh6tSpSE9Pt6qtRE2KrVMcETVON/am9OnTRzz11FNCCNOeqM6dO4shQ4aYbDdhwgTh7u4u3N3dRevWrS061vfffy/atGkjXFxcRK9evcTEiRPFzp07TWratWsn3n33XZNlY8eOFYmJiSbLfvzxRyGXy8Xff/9t9lh79+4VAERpaakQ4p+eqO+++06qSUtLEwDEyZMnpWXjxo0TGo3GovNJSEgQTk5Owt3dXSiVSgFAyOVy8eWXX9a4XUxMjHjxxRel91FRUWLChAkmNTf3RI0cOVLcf//9JjUvv/yy6Nq1q0VtJWrK2BNFRPXurbfewvLly1FQUHDL2tdffx379u1DSkoKLl68aNH+7733Xvz666/IysrCo48+isOHD6Nfv36YOXNmjdvt378f6enpaN68ufTSaDQwGo0oLCwEcL2nJjY2Fm3btoWHhweioqIAAKdPnzbZ15133in93cfHB82aNUP79u1Nlp07d86i8wGA++67D/v27UNOTg4SEhIwZswYPPLII9L6iooKzJw5E927d4darUbz5s3xzTffVGnXrRQUFODuu+82WXb33Xfj+PHjqKioqNW+iJoahigiqnf33nsvNBoNJk+ebLI8JCQEx44dM1nWsmVLdOjQAa1atarVMVxcXNCvXz+8+uqr+PbbbzFjxgzMnDkT5eXl1W5z8eJFjBs3Dvv27ZNe+/fvx/HjxxEcHIyysjJoNBp4enri888/x969e/HVV18BQJX9uri4SH+vfKruRjKZDEaj0eLzcXd3R4cOHdCjRw98/PHHyMnJwUcffSStf/vtt7FgwQK8+uqr2L59O/bt2weNRlPj+RJR3XK2dQOIqGmYPXs2QkND0alTJ2lZfHw8Ro4ciQ0bNmDo0KF1eryuXbvi2rVruHz5MhQKBRQKRZWelbCwMBw5cgQdOnQwu4+DBw9Cp9Nh9uzZ0niin3/+uU7baQm5XI7XXnsNycnJGDlyJNzc3LBr1y4MHToUjz/+OADAaDTil19+QdeuXaXtzJ3zzbp06YJdu3aZLNu1axc6duwIJyenuj8ZokaEPVFE1CC6d++OUaNGYeHChdKyESNG4NFHH8WIESMwY8YM5OTk4NSpU/j++++xatUqi7/E+/fvjw8++AC5ubk4deoUtmzZgtdeew333XcfPD09AVyfJ+qHH37AH3/8gQsXLgAAXn31VezevRtJSUnYt28fjh8/jg0bNkgDy9u2bQuFQoFFixbh119/xcaNG295i7C+PPbYY3BycsKSJUsAXO/F27p1K3bv3o2CggKMGzcORUVFJtsEBgZK1/TChQtme8JefPFFZGVlYebMmfjll1+wfPlyLF68GC+99FKDnBeRI2OIIqIGM2PGDJMvcplMhlWrVmH+/PnYsmULBg4ciE6dOuGpp55CQEAAdu7cadF+NRoNli9fjgceeABdunTB888/D41Gg9WrV5sc+9SpUwgODkbLli0BXB/H9P333+OXX35Bv3790LNnT6SkpMDf3x/A9VuL6enpWLNmDbp27YrZs2dj7ty5dXhFLOfs7IykpCTMmTMHZWVlmDJlCsLCwqDRaNC/f3/4+voiLi7OZJuXXnoJTk5O6Nq1K1q2bGl2vFRYWBhWr16NlStX4o477kBKSgpmzJhh9glEIjIlE0IIWzeCiIiIyNGwJ4qIiIjICgxRRGT3bpyC4ObXjz/+aOvm1crp06drPJ/aTlFARLbD23lEZPdq+iHi1q1bw83NrQFbc3uuXbuGU6dOVbs+MDAQzs58cJrIETBEEREREVmBt/OIiIiIrMAQRURERGQFhigiIiIiKzBEEREREVmBIYqIiIjICgxRRERERFZgiCIiIiKyAkMUERERkRX+D2Ay691TQkiQAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_11.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMF0lEQVR4nO3de1zUVf4/8NcMMoAIIxe5ioLgJU1BQAnTdBUFU9LNNrS8lrmaZEZmkim6aHjLyLztut7STLc0N83FkqJvKqmB5N1E8ZaCOuQgkIDM+f3hj4+OXGSAmQE+r+fjMY9lPnPmzPtzlpXXns/5nFEIIQSIiIiIZERp7gKIiIiITI0BiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiKie2rBhAxQKBS5evGjuUogaHQYgIhk7cuQIoqOj0alTJ9ja2qJVq1Z48cUX8dtvv5Vr26dPHygUCigUCiiVStjb26N9+/YYNWoUvvvuO4M+d9euXejduzdcXFzQtGlTtGnTBi+++CKSkpLq6tTK+eCDD7Bz585yxw8ePIg5c+bg9u3bRvvsR82ZM0caS4VCgaZNm6Jjx454//33kZeXVyefsWXLFiQmJtZJX0SNEQMQkYwtXLgQ27dvR79+/fDxxx9jwoQJ+L//+z8EBgbixIkT5dq3bNkSmzZtwqefforFixfjueeew8GDBzFgwABERUWhpKTksZ+5ZMkSPPfcc1AoFIiNjcVHH32EYcOG4dy5c9i6dasxThNA1QFo7ty5Jg1AZVatWoVNmzZh6dKl6NChA+bPn4+IiAjUxVc0MgARVa2JuQsgIvOJiYnBli1boFKppGNRUVHo3LkzFixYgM2bN+u1V6vVGDlypN6xBQsWYMqUKVi5ciW8vb2xcOHCSj/v3r17iI+PR//+/fHtt9+We/3GjRu1PKP6o7CwEE2bNq2yzQsvvABnZ2cAwMSJEzFs2DDs2LEDP//8M0JDQ01RJpFscQaISMZ69OihF34AoG3btujUqRNOnz5drT4sLCywbNkydOzYEcuXL4dWq6207a1bt5CXl4enn366wtddXFz0nt+9exdz5sxBu3btYG1tDXd3dzz//PM4f/681GbJkiXo0aMHnJycYGNjg6CgIHz55Zd6/SgUChQUFGDjxo3SZaexY8dizpw5eOeddwAAPj4+0msPr7nZvHkzgoKCYGNjA0dHRwwfPhxXrlzR679Pnz548sknkZaWhmeeeQZNmzbFe++9V63xe1jfvn0BAFlZWVW2W7lyJTp16gQrKyt4eHhg8uTJejNYffr0wTfffINLly5J5+Tt7W1wPUSNGWeAiEiPEAI5OTno1KlTtd9jYWGBESNGYNasWdi/fz8GDRpUYTsXFxfY2Nhg165deOONN+Do6Fhpn6WlpRg8eDCSk5MxfPhwvPnmm7hz5w6+++47nDhxAr6+vgCAjz/+GM899xxefvllFBcXY+vWrfjb3/6G3bt3S3Vs2rQJ48ePR/fu3TFhwgQAgK+vL2xtbfHbb7/h888/x0cffSTNxrRo0QIAMH/+fMyaNQsvvvgixo8fj5s3b+KTTz7BM888g6NHj6J58+ZSvRqNBgMHDsTw4cMxcuRIuLq6Vnv8ypQFOycnp0rbzJkzB3PnzkVYWBgmTZqEs2fPYtWqVThy5AgOHDgAS0tLzJw5E1qtFlevXsVHH30EAGjWrJnB9RA1aoKI6CGbNm0SAMTatWv1jvfu3Vt06tSp0vd99dVXAoD4+OOPq+x/9uzZAoCwtbUVAwcOFPPnzxdpaWnl2q1bt04AEEuXLi33mk6nk34uLCzUe624uFg8+eSTom/fvnrHbW1txZgxY8r1tXjxYgFAZGVl6R2/ePGisLCwEPPnz9c7fvz4cdGkSRO947179xYAxOrVqys974fFxcUJAOLs2bPi5s2bIisrS/zzn/8UVlZWwtXVVRQUFAghhFi/fr1ebTdu3BAqlUoMGDBAlJaWSv0tX75cABDr1q2Tjg0aNEi0bt26WvUQyREvgRGR5MyZM5g8eTJCQ0MxZswYg95bNsNw586dKtvNnTsXW7ZsQdeuXbF3717MnDkTQUFBCAwM1Lvstn37djg7O+ONN94o14dCoZB+trGxkX7+448/oNVq0atXL6SnpxtU/6N27NgBnU6HF198Ebdu3ZIebm5uaNu2LX744Qe99lZWVhg3bpxBn9G+fXu0aNECPj4++Pvf/w4/Pz988803la4d2rdvH4qLizF16lQolQ/++X7ttddgb2+Pb775xvATJZIpXgIjIgBAdnY2Bg0aBLVajS+//BIWFhYGvT8/Px8AYGdn99i2I0aMwIgRI5CXl4dDhw5hw4YN2LJlCyIjI3HixAlYW1vj/PnzaN++PZo0qfqfqd27d2PevHnIyMhAUVGRdPzhkFQT586dgxACbdu2rfB1S0tLveeenp7l1lM9zvbt22Fvbw9LS0u0bNlSuqxXmUuXLgG4H5weplKp0KZNG+l1Ino8BiAiglarxcCBA3H79m389NNP8PDwMLiPstvm/fz8qv0ee3t79O/fH/3794elpSU2btyIQ4cOoXfv3tV6/08//YTnnnsOzzzzDFauXAl3d3dYWlpi/fr12LJli8Hn8DCdTgeFQoH//e9/FYbBR9fUPDwTVV3PPPOMtO6IiEyLAYhI5u7evYvIyEj89ttv2LdvHzp27GhwH6WlpdiyZQuaNm2Knj171qiO4OBgbNy4EdevXwdwf5HyoUOHUFJSUm62pcz27dthbW2NvXv3wsrKSjq+fv36cm0rmxGq7Livry+EEPDx8UG7du0MPR2jaN26NQDg7NmzaNOmjXS8uLgYWVlZCAsLk47VdgaMqLHjGiAiGSstLUVUVBRSU1PxxRdf1GjvmdLSUkyZMgWnT5/GlClTYG9vX2nbwsJCpKamVvja//73PwAPLu8MGzYMt27dwvLly8u1Ff9/o0ALCwsoFAqUlpZKr128eLHCDQ9tbW0r3OzQ1tYWAMq99vzzz8PCwgJz584ttzGhEAIajabikzSisLAwqFQqLFu2TK+mtWvXQqvV6t19Z2trW+WWBERyxxkgIhl7++238fXXXyMyMhK5ubnlNj58dNNDrVYrtSksLERmZiZ27NiB8+fPY/jw4YiPj6/y8woLC9GjRw889dRTiIiIgJeXF27fvo2dO3fip59+wtChQ9G1a1cAwOjRo/Hpp58iJiYGhw8fRq9evVBQUIB9+/bh9ddfx5AhQzBo0CAsXboUEREReOmll3Djxg2sWLECfn5+OHbsmN5nBwUFYd++fVi6dCk8PDzg4+ODkJAQBAUFAQBmzpyJ4cOHw9LSEpGRkfD19cW8efMQGxuLixcvYujQobCzs0NWVha++uorTJgwAdOmTavV+BuqRYsWiI2Nxdy5cxEREYHnnnsOZ8+excqVK9GtWze9/76CgoKwbds2xMTEoFu3bmjWrBkiIyNNWi9RvWbOW9CIyLzKbt+u7FFV22bNmom2bduKkSNHim+//bZan1dSUiLWrFkjhg4dKlq3bi2srKxE06ZNRdeuXcXixYtFUVGRXvvCwkIxc+ZM4ePjIywtLYWbm5t44YUXxPnz56U2a9euFW3bthVWVlaiQ4cOYv369dJt5g87c+aMeOaZZ4SNjY0AoHdLfHx8vPD09BRKpbLcLfHbt28XPXv2FLa2tsLW1lZ06NBBTJ48WZw9e1ZvbKraIuBRZfXdvHmzynaP3gZfZvny5aJDhw7C0tJSuLq6ikmTJok//vhDr01+fr546aWXRPPmzQUA3hJP9AiFEHXwpTNEREREDQjXABEREZHsMAARERGR7DAAERERkewwABEREZHsMAARERGR7DAAERERkexwI8QK6HQ6XLt2DXZ2dtxOnoiIqIEQQuDOnTvw8PCAUln1HA8DUAWuXbsGLy8vc5dBRERENXDlyhW0bNmyyjYMQBWws7MDcH8Aq/peIyIiIqo/8vLy4OXlJf0drwoDUAXKLnvZ29szABERETUw1Vm+wkXQREREJDsMQERERCQ7DEBEREQkO1wDVAulpaUoKSkxdxmNlqWlJSwsLMxdBhERNUIMQDUghEB2djZu375t7lIavebNm8PNzY37MRERUZ1iAKqBsvDj4uKCpk2b8o+zEQghUFhYiBs3bgAA3N3dzVwRERE1JgxABiotLZXCj5OTk7nLadRsbGwAADdu3ICLiwsvhxERUZ3hImgDla35adq0qZkrkYeyceZaKyIiqksMQDXEy16mwXEmIiJj4CUwIiIiMiqNRoPi4uJKX1epVCZfVsIAREREREaj0WiwfPnyx7aLjo42aQjiJTAZGTt2LBQKBRQKBSwtLeHq6or+/ftj3bp10Ol01e5nw4YNaN68ufEKJSKiRuPRmR+t1g5ZWd7Qau2qbGdsnAEyMXNPA0ZERGD9+vUoLS1FTk4OkpKS8Oabb+LLL7/E119/jSZN+CtBRETGkZ7eFbt2DYYQSigUOkRG7kZg4FGz1MK/diZUH6YBrays4ObmBgDw9PREYGAgnnrqKfTr1w8bNmzA+PHjsXTpUqxfvx4XLlyAo6MjIiMjsWjRIjRr1gwpKSkYN24cgAcLlOPi4jBnzhxs2rQJH3/8Mc6ePQtbW1v07dsXiYmJcHFxMcq5EBFRw6HV2knhBwCEUGLXrsHw9c2EWn3H5PXwEpgJVXd6z9TTgH379oW/vz927NgBAFAqlVi2bBlOnjyJjRs34vvvv8f06dMBAD169EBiYiLs7e1x/fp1XL9+HdOmTQNw/1b1+Ph4/Prrr9i5cycuXryIsWPHmvRciIiofsrNdZLCTxkhlMjNdTRLPZwBIgBAhw4dcOzYMQDA1KlTpePe3t6YN28eJk6ciJUrV0KlUkGtVkOhUEgzSWVeeeUV6ec2bdpg2bJl6NatG/Lz89GsWTOTnAcREdVPjo4aKBQ6vRCkUOjg6JhrlnrqxQzQihUr4O3tDWtra4SEhODw4cOVtt2xYweCg4PRvHlz2NraIiAgAJs2bdJr8/Bi37JHRESEsU+jQRNCSJe09u3bh379+sHT0xN2dnYYNWoUNBoNCgsLq+wjLS0NkZGRaNWqFezs7NC7d28AwOXLl41ePxER1W9q9R1ERu6GQnH/ppuyNUDmuPwF1IMZoG3btiEmJgarV69GSEgIEhMTER4ejrNnz1a4dsTR0REzZ85Ehw4doFKpsHv3bowbNw4uLi4IDw+X2pUt9i1jZWVlkvNpqE6fPg0fHx9cvHgRgwcPxqRJkzB//nw4Ojpi//79ePXVV1FcXFzpDtgFBQUIDw9HeHg4PvvsM7Ro0QKXL19GeHi4yS/pERFR/RQYeBS+vpnIzXWEo2Ou2cIPUA8C0NKlS/Haa69JC2tXr16Nb775BuvWrcOMGTPKte/Tp4/e8zfffBMbN27E/v379QLQw4t9qWrff/89jh8/jrfeegtpaWnQ6XT48MMPoVTenyD8z3/+o9depVKhtLRU79iZM2eg0WiwYMECeHl5AQB++eUX05wAERHVWyqVSu+5Wn2nwuDzaDtjM2sAKi4uRlpaGmJjY6VjSqUSYWFhSE1Nfez7hRD4/vvvcfbsWSxcuFDvtZSUFLi4uMDBwQF9+/bFvHnz+OWlAIqKipCdna13G3xCQgIGDx6M0aNH48SJEygpKcEnn3yCyMhIHDhwAKtXr9brw9vbG/n5+UhOToa/vz+aNm2KVq1aQaVS4ZNPPsHEiRNx4sQJxMfHm+ksiYiovnByckJ0dDR3gn7YrVu3UFpaCldXV73jrq6uOHPmTKXv02q18PT0RFFRESwsLLBy5Ur0799fej0iIgLPP/88fHx8cP78ebz33nsYOHAgUlNTK/xG8aKiIhQVFUnP8/Ly6uDs6qekpCS4u7ujSZMmcHBwgL+/P5YtW4YxY8ZAqVTC398fS5cuxcKFCxEbG4tnnnkGCQkJGD16tNRHjx49MHHiRERFRUGj0Ui3wW/YsAHvvfceli1bhsDAQCxZsgTPPfecGc+WiIjqg/o4AaEQQghzffi1a9fg6emJgwcPIjQ0VDo+ffp0/Pjjjzh06FCF79PpdLhw4YI0CxEfH4+dO3eWuzxW5sKFC/D19ZUW9z5qzpw5mDt3brnjWq0W9vb2esfu3r2LrKws+Pj4wNra2oCzrR/7ADU0tRlvIiKSl7y8PKjV6gr/fj/KrDNAzs7OsLCwQE5Ojt7xnJycKtfvKJVK+Pn5AQACAgJw+vRpJCQkVBqA2rRpA2dnZ2RmZlYYgGJjYxETEyM9z8vLk9ax1KX6Og1IREQkN2YNQCqVCkFBQUhOTsbQoUMB3J/dSU5ORnR0dLX70el0epewHnX16lVoNBq4u7tX+LqVlZXJ7hJjuCEiIjI/s98FFhMTgzFjxiA4OBjdu3dHYmIiCgoKpLvCRo8eDU9PTyQkJAAAEhISEBwcDF9fXxQVFWHPnj3YtGkTVq1aBQDIz8/H3LlzMWzYMLi5ueH8+fOYPn06/Pz89O4SIyIiIvkyewCKiorCzZs3MXv2bGRnZyMgIABJSUnSwujLly9Lt2MD9/ebef3113H16lXY2NigQ4cO2Lx5M6KiogAAFhYWOHbsGDZu3Ijbt2/Dw8MDAwYMQHx8PPcCIiIiIgBmXgRdX1W1iIqLck2L401ERNXVYBZBExERUcOi0Wgaxc08DEBERERULY1pO5d68WWoREREVP89OvOj1dohK8sbWq1dle3qI84AERERkcHS07ti167BEEIpfbN7YOBRc5dVbZwBojqTkpIChUKB27dvV/s93t7eSExMNFpNRERU97RaOyn8AIAQSuzaNbjcTFB9xgAkI2PHjoVCocDEiRPLvTZ58mQoFAqMHTvW9IUREVGDkpvrJIWfMkIokZvraKaKDMcAJDNeXl7YunUr/vzzT+nY3bt3sWXLFrRq1cqMlRERUUPh6KiBQqHTO6ZQ6ODomGumigzHACQzgYGB8PLywo4dO6RjO3bsQKtWrdC1a1fpWFFREaZMmQIXFxdYW1ujZ8+eOHLkiF5fe/bsQbt27WBjY4O//OUvuHjxYrnP279/P3r16gUbGxt4eXlhypQpKCgoMNr5ERGR8anVdxAZuVsKQWVrgNTqO2aurPoYgMzo6lXghx/u/6cpvfLKK1i/fr30fN26ddJXj5SZPn06tm/fjo0bNyI9PV36KpHc3Pvp/sqVK3j++ecRGRmJjIwMjB8/HjNmzNDr4/z584iIiMCwYcNw7NgxbNu2Dfv37zfoe96IiKh+Cgw8iqlTEzFmzAZMnZrYoBZAAwxAZrN2LdC6NdC37/3/XLvWdJ89cuRI7N+/H5cuXcKlS5dw4MABjBw5Unq9oKAAq1atwuLFizFw4EB07NgRa9asgY2NDdb+/0JXrVoFX19ffPjhh2jfvj1efvnlcuuHEhIS8PLLL2Pq1Klo27YtevTogWXLluHTTz/F3bt3TXfCRERUJ1Qqld5ztfoOfHwulZv5ebRdfcTb4M3g6lVgwgRA9/8vn+p0wN//DoSHAy1bGv/zW7RogUGDBmHDhg0QQmDQoEFwdnaWXj9//jxKSkrw9NNPS8csLS3RvXt3nD59GgBw+vRphISE6PUbGhqq9/zXX3/FsWPH8Nlnn0nHhBDQ6XTIysrCE088YYzTIyIiI3FyckJ0dDR3gqaaOXfuQfgpU1oKZGaaJgAB9y+DlV2KWrFihVE+Iz8/H3//+98xZcqUcq9xwTURUcPUEMJNdTAAmUHbtoBSqR+CLCwAPz/T1RAREYHi4mIoFAqEh4frvebr6wuVSoUDBw6gdevWAICSkhIcOXIEU6dOBQA88cQT+Prrr/Xe9/PPP+s9DwwMxKlTp+BnyhMjIiKqBq4BMoOWLYF//et+6AHu/+c//2m62Z/7n2mB06dP49SpU7AoK+T/s7W1xaRJk/DOO+8gKSkJp06dwmuvvYbCwkK8+uqrAICJEyfi3LlzeOedd3D27Fls2bIFGzZs0Ovn3XffxcGDBxEdHY2MjAycO3cO//3vf7kImoiIzI4zQGby6qv31/xkZt6f+TFl+Cljb29f6WsLFiyATqfDqFGjcOfOHQQHB2Pv3r1wcHAAcP8S1vbt2/HWW2/hk08+Qffu3fHBBx/glVdekfro0qULfvzxR8ycORO9evWCEAK+vr6Iiooy+rkRERFVRSGEEOYuor7Jy8uDWq2GVqstFxLu3r2LrKws+Pj4wNra2kwVygfHm4iIqquqv9+P4iUwIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GoBri2nHT4DgTEZExMAAZyNLSEgBQWFho5krkoWycy8adiIioLnAfIANZWFigefPmuHHjBgCgadOmUCgUZq6q8RFCoLCwEDdu3EDz5s3LbdZIRERUGwxANeDm5gYAUggi42nevLk03kRERHWFAagGFAoF3N3d4eLigpKSEnOX02hZWlpy5oeIiIyCAagWLCws+AeaiIioAeIiaCIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpKdehGAVqxYAW9vb1hbWyMkJASHDx+utO2OHTsQHByM5s2bw9bWFgEBAdi0aZNeGyEEZs+eDXd3d9jY2CAsLAznzp0z9mkQERFRA2H2ALRt2zbExMQgLi4O6enp8Pf3R3h4OG7cuFFhe0dHR8ycOROpqak4duwYxo0bh3HjxmHv3r1Sm0WLFmHZsmVYvXo1Dh06BFtbW4SHh+Pu3bumOi0iIiKqxxRCCGHOAkJCQtCtWzcsX74cAKDT6eDl5YU33ngDM2bMqFYfgYGBGDRoEOLj4yGEgIeHB95++21MmzYNAKDVauHq6ooNGzZg+PDhj+0vLy8ParUaWq0W9vb2NT85IiIiMhlD/n43MVFNFSouLkZaWhpiY2OlY0qlEmFhYUhNTX3s+4UQ+P7773H27FksXLgQAJCVlYXs7GyEhYVJ7dRqNUJCQpCamlphACoqKkJRUZH0PC8vrzanRUREVG9oNBoUFxdX+rpKpYKTk5MJK6ofzBqAbt26hdLSUri6uuodd3V1xZkzZyp9n1arhaenJ4qKimBhYYGVK1eif//+AIDs7Gypj0f7LHvtUQkJCZg7d25tToWIiKje0Wg00hWWqkRHR8suBJl9DVBN2NnZISMjA0eOHMH8+fMRExODlJSUGvcXGxsLrVYrPa5cuVJ3xRIREZnJo+tpr151x8GDT+HqVfcq28mBWWeAnJ2dYWFhgZycHL3jOTk5cHNzq/R9SqUSfn5+AICAgACcPn0aCQkJ6NOnj/S+nJwcuLs/+C84JycHAQEBFfZnZWUFKyurWp4NERFR/XLv3j3p56++GoJff/UHoAAg4O//K/761/+WaycXZp0BUqlUCAoKQnJysnRMp9MhOTkZoaGh1e5Hp9NJa3h8fHzg5uam12deXh4OHTpkUJ9ERESNxdWr7g+FHwBQ4Ndf/cvNBMmJWWeAACAmJgZjxoxBcHAwunfvjsTERBQUFGDcuHEAgNGjR8PT0xMJCQkA7q/XCQ4Ohq+vL4qKirBnzx5s2rQJq1atAgAoFApMnToV8+bNQ9u2beHj44NZs2bBw8MDQ4cONddpEhERmc3ly63xIPyUUeDKlVZo2fK6OUoyO7MHoKioKNy8eROzZ89GdnY2AgICkJSUJC1ivnz5MpTKBxNVBQUFeP3113H16lXY2NigQ4cO2Lx5M6KioqQ206dPR0FBASZMmIDbt2+jZ8+eSEpKgrW1tcnPj4iIyNxatboEQEA/BAl4eV02U0XmZ/Z9gOoj7gNERESNwfHjx7Fjxw4AVa8Bev7559G5c2fzFVpHGsw+QERERGQaf/3rf9Gt22FcudIKXl6XZXvpqwwDEBERUSNlaWmp97xly+sVBp9H28lBg9wHiIiIiB6vRYsWddquMeEMEBERUSPl5OSE6OhofhVGBRiAiIiIGjE5hpvq4CUwIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikp16EYBWrFgBb29vWFtbIyQkBIcPH6607Zo1a9CrVy84ODjAwcEBYWFh5dqPHTsWCoVC7xEREWHs0yAiIqIGwuwBaNu2bYiJiUFcXBzS09Ph7++P8PBw3Lhxo8L2KSkpGDFiBH744QekpqbCy8sLAwYMwO+//67XLiIiAtevX5cen3/+uSlOh4iIiBoAhRBCmLOAkJAQdOvWDcuXLwcA6HQ6eHl54Y033sCMGTMe+/7S0lI4ODhg+fLlGD16NID7M0C3b9/Gzp07a1RTXl4e1Go1tFot7O3ta9QHERERmZYhf7/NOgNUXFyMtLQ0hIWFSceUSiXCwsKQmpparT4KCwtRUlICR0dHveMpKSlwcXFB+/btMWnSJGg0mkr7KCoqQl5ent6DiIiIGi+zBqBbt26htLQUrq6uesddXV2RnZ1drT7effddeHh46IWoiIgIfPrpp0hOTsbChQvx448/YuDAgSgtLa2wj4SEBKjVaunh5eVV85MiIiKieq+JuQuojQULFmDr1q1ISUmBtbW1dHz48OHSz507d0aXLl3g6+uLlJQU9OvXr1w/sbGxiImJkZ7n5eUxBBERETViZp0BcnZ2hoWFBXJycvSO5+TkwM3Nrcr3LlmyBAsWLMC3336LLl26VNm2TZs2cHZ2RmZmZoWvW1lZwd7eXu9BREREjZdZA5BKpUJQUBCSk5OlYzqdDsnJyQgNDa30fYsWLUJ8fDySkpIQHBz82M+5evUqNBoN3N3d66RuIiIiatjMfht8TEwM1qxZg40bN+L06dOYNGkSCgoKMG7cOADA6NGjERsbK7VfuHAhZs2ahXXr1sHb2xvZ2dnIzs5Gfn4+ACA/Px/vvPMOfv75Z1y8eBHJyckYMmQI/Pz8EB4ebpZzJCIiovrF7GuAoqKicPPmTcyePRvZ2dkICAhAUlKStDD68uXLUCof5LRVq1ahuLgYL7zwgl4/cXFxmDNnDiwsLHDs2DFs3LgRt2/fhoeHBwYMGID4+HhYWVmZ9NyIiIiofjL7PkD1EfcBIiIiangazD5ARERERObAAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREslMvAtCKFSvg7e0Na2trhISE4PDhw5W2XbNmDXr16gUHBwc4ODggLCysXHshBGbPng13d3fY2NggLCwM586dM/ZpEBERUQNh9gC0bds2xMTEIC4uDunp6fD390d4eDhu3LhRYfuUlBSMGDECP/zwA1JTU+Hl5YUBAwbg999/l9osWrQIy5Ytw+rVq3Ho0CHY2toiPDwcd+/eNdVpERFRHdBoNLh+/XqlD41GY+4SqYFSCCGEOQsICQlBt27dsHz5cgCATqeDl5cX3njjDcyYMeOx7y8tLYWDgwOWL1+O0aNHQwgBDw8PvP3225g2bRoAQKvVwtXVFRs2bMDw4cMf22deXh7UajW0Wi3s7e1rd4JERFQjGo1G+ttQlejoaDg5OZmgIqrvDPn7bdYZoOLiYqSlpSEsLEw6plQqERYWhtTU1Gr1UVhYiJKSEjg6OgIAsrKykJ2drdenWq1GSEhIpX0WFRUhLy9P70FEROZVXFys91yrtUNWlje0Wrsq2xFVR5O66CQrKwteXl5o0sSw7m7duoXS0lK4urrqHXd1dcWZM2eq1ce7774LDw8PKfBkZ2dLfTzaZ9lrj0pISMDcuXMNqp2IiEwnPb0rdu0aDCGUUCh0iIzcjcDAo+YuixqwOpkBat++vVkWGS9YsABbt27FV199BWtr6xr3ExsbC61WKz2uXLlSh1USEVFtaLV2UvgBACGU2LVrcLmZICJDGDRl8/zzz1d4vLS0FFOmTIGd3f1fxh07dlSrP2dnZ1hYWCAnJ0fveE5ODtzc3Kp875IlS7BgwQLs27cPXbp0kY6XvS8nJwfu7u56fQYEBFTYl5WVFaysrKpVMxERmVZurpMUfsoIoURuriPU6jtmqooaOoNmgHbu3Inc3Fyo1Wq9BwA0a9ZM73l1qFQqBAUFITk5WTqm0+mQnJyM0NDQSt+3aNEixMfHIykpCcHBwXqv+fj4wM3NTa/PvLw8HDp0qMo+iYiofnJ01ECh0OkdUyh0cHTMNVNF1BgYNAO0ZcsWvPPOOxgzZgzGjRsnHd+8eTPmz5+Pjh07GlxATEwMxowZg+DgYHTv3h2JiYkoKCiQ+h89ejQ8PT2RkJAAAFi4cCFmz56NLVu2wNvbW1rX06xZMzRr1gwKhQJTp07FvHnz0LZtW/j4+GDWrFnw8PDA0KFDDa6PiIjMS62+g8jI3eXWAHH2h2rDoAA0fPhwPPXUUxg5ciR2796Nf//733BwcKhVAVFRUbh58yZmz56N7OxsBAQEICkpSVrEfPnyZSiVDyaqVq1aheLiYrzwwgt6/cTFxWHOnDkAgOnTp6OgoAATJkzA7du30bNnTyQlJdVqnRAREZlPYOBR+PpmIjfXEY6OuQw/VGs12gdIp9Nh7ty5WL9+PdasWYPIyEhkZGTUaAaoPuI+QERE5sd9gMhQhvz9rtVGiPv378fo0aNx6dIlHD9+nAGIiIjqlEajqXKfH5VKxfBDEkP+ftdqH6CePXvi2LFjOH/+PHx9fWvTFRERUTkMN2Qstd4IsVmzZvD396+LWoiIiIhMwqAA1LVrVygUise2S09Pr3FBRERERMZmUAB6+DZyIQQSEhIwceJE6Xu4iIiIiBqCWi2CtrOzw6+//oo2bdrUZU1mx0XQREREDU+D+TZ4IiIiInNgACIiIiLZYQAiIiIi2TFoEfSyZcv0nt+7dw8bNmyAs7Oz3vEpU6bUvjIiIiIiIzFoEbSPj8/jO1QocOHChVoVZW5cBE1ERNTwGG0n6KysrFoVRkRERFQfGLQG6Pvvv0fHjh2Rl5dX7jWtVotOnTrhp59+qrPiiIioYdFoNLh+/XqlD41GY+4SiQAYOAOUmJiI1157rcJpJbVajb///e9YunQpevXqVWcFEhFRw8Bvb6eGxKAZoF9//RURERGVvj5gwACkpaXVuigiImp4Hv3Wdq3WDllZ3tBq7apsR2QOBs0A5eTkwNLSsvLOmjTBzZs3a10UERE1bOnpXbFr12AIoYRCoUNk5G4EBh41d1lEEoNmgDw9PXHixIlKXz927Bjc3d1rXRQRETVcWq2dFH4AQAgldu0aXG4miMicDApAzz77LGbNmoW7d++We+3PP/9EXFwcBg8eXGfFERFRw5Ob6ySFnzJCKJGbyy/OpvrDoEtg77//Pnbs2IF27dohOjoa7du3BwCcOXMGK1asQGlpKWbOnGmUQomIyHQ0Gk2Va3VUKlWlC5kdHTVQKHR6IUih0MHRMbfO6ySqKYMCkKurKw4ePIhJkyYhNjYWZXsoKhQKhIeHY8WKFXB1dTVKoUREZBq1vZtLrb6DyMjd5dYAqdV3jFEuUY0YFIAAoHXr1tizZw/++OMPZGZmQgiBtm3bwsHBwRj1ERGRiVV0N1durhMcHTV6IaaqGaLAwKPw9c1Ebq4jHB1zGX6o3jE4AJVxcHBAt27d6rIWIiKqZwy5m0ulUuk9V6vvVBh8Hm1HZA41DkBERNS4VXY3l69vZoXBxsnJCdHR0TVeO0RkSgxARERUoaru5qrskhbDDTUUBt0GT0RE8lF2N9fDeDcXNRYMQEREVKGyu7nKQhDv5qLGhJfAiIioUrybixorBiAiItLDu7lIDhiAiIhkrLIdn1988UXcu3cPlpaWUKvV5V7n3VzU0DEAERHJ1KM7Ple24WFlOz4TNWQMQEREMvXwzE9VGx5Wta8PUUPFu8CIiGSusg0PtVo7M1dGZDwMQEREMlfVhodEjRUDEBGRzHHDQ5IjBiAiIpnjhockR1wETURE3PCQZIcBiIiIAFS+4SFRY8RLYEREMlXdnZy54zM1RpwBIiKSKScnJ0RHR1e5zw93fKbGyuwzQCtWrIC3tzesra0REhKCw4cPV9r25MmTGDZsGLy9vaFQKJCYmFiuzZw5c6BQKPQeHTp0MOIZEBE1XE5OTnB3d6/0wfBDjZVZA9C2bdsQExODuLg4pKenw9/fH+Hh4bhx40aF7QsLC9GmTRssWLAAbm5ulfbbqVMnXL9+XXrs37/fWKdAREREDZBZA9DSpUvx2muvYdy4cejYsSNWr16Npk2bYt26dRW279atGxYvXozhw4fDysqq0n6bNGkCNzc36eHs7GysUyAiIqIGyGwBqLi4GGlpaQgLC3tQjFKJsLAwpKam1qrvc+fOwcPDA23atMHLL7+My5cvV9m+qKgIeXl5eg8iIiJqvMwWgG7duoXS0lK4urrqHXd1dUV2dnaN+w0JCcGGDRuQlJSEVatWISsrC7169cKdO5Xf2pmQkAC1Wi09vLy8avz5REREVP+ZfRF0XRs4cCD+9re/oUuXLggPD8eePXtw+/Zt/Oc//6n0PbGxsdBqtdLjypUrJqyYiIiITM1st8E7OzvDwsICOTk5esdzcnKqXOBsqObNm6Ndu3bIzMystI2VlVWVa4qIiIiocTHbDJBKpUJQUBCSk5OlYzqdDsnJyQgNDa2zz8nPz8f58+fh7u5eZ30SERFRw2bWjRBjYmIwZswYBAcHo3v37khMTERBQQHGjRsHABg9ejQ8PT2RkJAA4P7C6VOnTkk///7778jIyECzZs3g5+cHAJg2bRoiIyPRunVrXLt2DXFxcbCwsMCIESPMc5JERERU75g1AEVFReHmzZuYPXs2srOzERAQgKSkJGlh9OXLl6FUPpikunbtGrp27So9X7JkCZYsWYLevXsjJSUFAHD16lWMGDECGo0GLVq0QM+ePfHzzz+jRYsWJj03IiIiqr8UQghh7iLqm7y8PKjVami1Wtjb25u7HCIiIqoGQ/5+N7q7wIiIiIgehwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkx6zfBUZE1BhoNBoUFxdX+rpKpYKTk5MJKyKix2EAIiKqBY1Gg+XLl0vPtVo75OY6wdFRA7X6jnQ8OjqaIYioHmEAIiKqhYdnftLTu2LXrsEQQgmFQofIyN0IDDxarh0RmR/XABER1QGt1k4KPwAghBK7dg2GVmtn5sqIqCIMQEREdSA310kKP2WEUCI319FMFRFRVRiAiIjqgKOjBgqFTu+YQqGDo2OumSoioqowABER1QG1+g4iI3dLIahsDdDDC6GJqP7gImgiojoSGHgUvr6ZyM11hKNjLsMPUT3GAEREVIfU6jsMPkQNAC+BERHVgkqlqtN2RGQanAEiIqoFJycnREdHcydoogaGAYiIqJYYbogaHl4CIyIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZMXsAWrFiBby9vWFtbY2QkBAcPny40rYnT57EsGHD4O3tDYVCgcTExFr3SURERPJj1gC0bds2xMTEIC4uDunp6fD390d4eDhu3LhRYfvCwkK0adMGCxYsgJubW530SURERPKjEEIIc314SEgIunXrhuXLlwMAdDodvLy88MYbb2DGjBlVvtfb2xtTp07F1KlT66zPMnl5eVCr1dBqtbC3tzf8xIiIiMjkDPn73cRENZVTXFyMtLQ0xMbGSseUSiXCwsKQmppq0j6LiopQVFQkPc/Ly6vR5xNRzWg0GhQXF1f6ukqlgpOTkwkrIqLGzmwB6NatWygtLYWrq6vecVdXV5w5c8akfSYkJGDu3Lk1+kwiqh2NRiPN2FYlOjqaIYiI6ozZF0HXB7GxsdBqtdLjypUr5i6JSDYenfnRau2QleUNrdauynZERLVhthkgZ2dnWFhYICcnR+94Tk5OpQucjdWnlZUVrKysavSZRFR30tO7YteuwRBCCYVCh8jI3QgMPGrusoioETLbDJBKpUJQUBCSk5OlYzqdDsnJyQgNDa03fRKRaWi1dlL4AQAhlNi1a3C5mSAiorpgthkgAIiJicGYMWMQHByM7t27IzExEQUFBRg3bhwAYPTo0fD09ERCQgKA+1Pgp06dkn7+/fffkZGRgWbNmsHPz69afRJR/ZSb6ySFnzJCKJGb6wi1+o6ZqiKixsqsASgqKgo3b97E7NmzkZ2djYCAACQlJUmLmC9fvgyl8sE/iNeuXUPXrl2l50uWLMGSJUvQu3dvpKSkVKtPIqqfHB01UCh0eiFIodDB0THXjFURUWNl1n2A6ivuA0RkOtevX8e//vUvAFWvAZowYQLc3d3NWSoR1XMNYh8gIqJHBQYeha9vJnJzHeHomMtLX0RkNAxARGRWKpVK77lafafC4PNoOyKi2mAAIqJKmWKHZicnJ0RHR3MnaCIyKQYgIqqQKXdoZrghIlPjTtBEVCHu0ExEjRlngIjosbhDMxE1NpwBIqIqcYdmImqMGICIqEpV7dBMRNRQMQARUZXKdmh+GHdoJqKGjgGIiKqkVt9BZORuKQSVrQHiJoVE1JBxETSRDNR2Px/u0ExEjQ0DEFEjUVnIuX37Nv7zn/889v2P7ufDHZqJqDFjACJqBKq7aSFw/66u3FwnODpq9ALNo+GJOzQTUWPGAETUCFS0aWFFIcfQ/XwYboiosWIAImpkKgs5le3n4+ubyTU9RCQ7vAuMqBGpatNC7udDRPQAAxBRI1JVyOF+PkRED/ASGFE9VNVt67dv34ZCoYBarZaO3bp1C8CDTQsfDkFlIadsP59HL4/x8hcRyREDEFE9Y8gdXY96XMjhfj5ERPcxABHVM9W9o6syjws53M+HiIgBiKhee9xt65WFo8pCTlRUlN6lszLcz4eI5IYBiKieetxt61WFo+effx7Ozs56/THkEBE9wABEVE897rb1qsKRs7Mz3N3dTV4zEVFDwdvgieqpqm5b554+RES1wwBEVE+V3dFVFoIevqOLe/oQEdUOL4ER1WOV3dHFPX2IiGqHAYionnn0dvTK7uiq6nZ33tJORFQ1BiCiesbJyQnR0dEG7QT9MN7tRUT0eAxARPVQVQGGd3cREdUeF0ETERGR7DAAERERkezwEhhRNVX1De0A194QETUkDEBE1VDdb2iPjo5mCCIiagB4CYyoGir6hvasLG9otXZVtiMiovqJM0BEBnrcN7QTEVH9xxkgIgNU9g3tj84EERFR/cYARGQAfgkpEVHjwABEZAB+CSkRUePAAERkgKq+oZ2IiBqOehGAVqxYAW9vb1hbWyMkJASHDx+usv0XX3yBDh06wNraGp07d8aePXv0Xh87diwUCoXeIyIiwpinQDISGHgUU6cmYsyYDZg6NZELoImIGiCzB6Bt27YhJiYGcXFxSE9Ph7+/P8LDw3Hjxo0K2x88eBAjRozAq6++iqNHj2Lo0KEYOnQoTpw4odcuIiIC169flx6ff/65KU6HGqmKvqHdx+dSuZkffgs7EVHDoBBCCHMWEBISgm7dukmbzOl0Onh5eeGNN97AjBkzyrWPiopCQUEBdu/eLR176qmnEBAQgNWrVwO4PwN0+/Zt7Ny5s0Y15eXlQa1WQ6vVwt7evkZ9UOPDnaCJiOo3Q/5+m3UfoOLiYqSlpSE2NlY6plQqERYWhtTU1Arfk5qaipiYGL1j4eHh5cJOSkoKXFxc4ODggL59+2LevHmV/nEqKipCUVGR9DwvL6+GZ0SNGcMNEVHjYdZLYLdu3UJpaSlcXV31jru6uiI7O7vC92RnZz+2fUREBD799FMkJydj4cKF+PHHHzFw4ECUlpZW2GdCQgLUarX08PLyquWZERERUX3WKHeCHj58uPRz586d0aVLF/j6+iIlJQX9+vUr1z42NlZvVikvL48hiIiIqBEz6wyQs7MzLCwskJOTo3c8JycHbm5uFb7Hzc3NoPYA0KZNGzg7OyMzM7PC162srGBvb6/3ICIiosbLrAFIpVIhKCgIycnJ0jGdTofk5GSEhoZW+J7Q0FC99gDw3XffVdoeAK5evQqNRgN3d/e6KZyIiIgaNLPfBh8TE4M1a9Zg48aNOH36NCZNmoSCggKMGzcOADB69Gi9RdJvvvkmkpKS8OGHH+LMmTOYM2cOfvnlF0RHRwMA8vPz8c477+Dnn3/GxYsXkZycjCFDhsDPzw/h4eFmOUciIiKqX8y+BigqKgo3b97E7NmzkZ2djYCAACQlJUkLnS9fvgyl8kFO69GjB7Zs2YL3338f7733Htq2bYudO3fiySefBABYWFjg2LFj2LhxI27fvg0PDw8MGDAA8fHxsLKyMss5EhERUf1i9n2A6iPuA1Q758+fR2FhYaWvN23aFL6+viasiIiI5KDB7ANEjc/58+exefPmx7YbOXIkQxAREZmN2dcAUePy6MzP1avuOHjwKVy96l5lOyIiIlPiDBAZzVdfDcGvv/oDUAAQ8Pf/FX/963/NXRYRERFngMg4rl51fyj8AIACv/7qX24miIiIyBwYgMgoLl9ujQfhp4wCV660Mkc5REREehiAyChatboE4NEbDAW8vC6boxwiIiI9DEBkFC1bXoe//694EILurwFq2fK6OcsiIiICwEXQZER//et/0a3bYVy50gpeXpcZfoiIqN5gAKI61bRpU73nLVterzD4PNqOiIjIlBiAqE75+vpi5MiR3AmaiIjqNQYgqnMMN0REVN8xADVAGo0GxcXFlb6uUqng5ORkwoqIiIgaFgagBkaj0WD58uWPbRcdHc0QREREVAneBt/AVDXzU5N2REREcsQA1MBptXbIyvKGVmtn7lKIiIgaDF4Ca8DS07ti167BEEIJhUKHyMjdCAw8au6yiIiI6j3OADVQWq2dFH4AQAgldu0azJkgIiKiamAAaqByc52k8FNGCCVycx3NVBEREVHDwUtgJmCM29YdHTVQKHR6IUih0MHRMbfGdRIREckFA5CRGeu2dbX6DiIjd5dbA6RW36lNuURERLLAAGRkj878aLV2yM11gqOjRi+sVPe2dZVKJf0cGHgUvr6ZyM11hKNjrl5/D7cjIiIifQxAJlQXd205OTkhOjqaO0ETERHVAgOQiVR215avb6bBl60YboiIiGqHd4GZCO/aIiIiqj8YgEyk7K6th/GuLSIiIvNgADKRsru2ykIQ79oiIiIyH64BMqGq7toiIiIi02EAMrJHb0dXq+9UGHx42zoREZHpMAAZGW9bJyIiqn8YgEyA4YaIiKh+4SJoIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHe4EXQEhBAAgLy/PzJUQERFRdZX93S77O14VBqAK3Llz/8tKvby8zFwJERERGerOnTtQq9VVtlGI6sQkmdHpdLh27Rrs7OygUCgqbJOXlwcvLy9cuXIF9vb2Jq6w/uA4PMCxuI/jcB/H4QGOxX0ch/uMOQ5CCNy5cwceHh5QKqte5cMZoAoolUq0bNmyWm3t7e1l/YtchuPwAMfiPo7DfRyHBzgW93Ec7jPWODxu5qcMF0ETERGR7DAAERERkewwANWQlZUV4uLiYGVlZe5SzIrj8ADH4j6Ow30chwc4FvdxHO6rL+PARdBEREQkO5wBIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhAKrCihUr4O3tDWtra4SEhODw4cOVtj158iSGDRsGb29vKBQKJCYmmq5QIzNkHNasWYNevXrBwcEBDg4OCAsLq7J9Q2PIWOzYsQPBwcFo3rw5bG1tERAQgE2bNpmwWuMxZBwetnXrVigUCgwdOtS4BZqIIeOwYcMGKBQKvYe1tbUJqzUuQ38nbt++jcmTJ8Pd3R1WVlZo164d9uzZY6JqjceQcejTp0+53wmFQoFBgwaZsGLjMPT3ITExEe3bt4eNjQ28vLzw1ltv4e7du8YtUlCFtm7dKlQqlVi3bp04efKkeO2110Tz5s1FTk5Ohe0PHz4spk2bJj7//HPh5uYmPvroI9MWbCSGjsNLL70kVqxYIY4ePSpOnz4txo4dK9Rqtbh69aqJK697ho7FDz/8IHbs2CFOnTolMjMzRWJiorCwsBBJSUkmrrxuGToOZbKysoSnp6fo1auXGDJkiGmKNSJDx2H9+vXC3t5eXL9+XXpkZ2ebuGrjMHQsioqKRHBwsHj22WfF/v37RVZWlkhJSREZGRkmrrxuGToOGo1G7/fhxIkTwsLCQqxfv960hdcxQ8fhs88+E1ZWVuKzzz4TWVlZYu/evcLd3V289dZbRq2TAagS3bt3F5MnT5ael5aWCg8PD5GQkPDY97Zu3brRBKDajIMQQty7d0/Y2dmJjRs3GqtEk6ntWAghRNeuXcX7779vjPJMpibjcO/ePdGjRw/x73//W4wZM6ZRBCBDx2H9+vVCrVabqDrTMnQsVq1aJdq0aSOKi4tNVaJJ1PbfiI8++kjY2dmJ/Px8Y5VoEoaOw+TJk0Xfvn31jsXExIinn37aqHXyElgFiouLkZaWhrCwMOmYUqlEWFgYUlNTzViZadXFOBQWFqKkpASOjo7GKtMkajsWQggkJyfj7NmzeOaZZ4xZqlHVdBz+8Y9/wMXFBa+++qopyjS6mo5Dfn4+WrduDS8vLwwZMgQnT540RblGVZOx+PrrrxEaGorJkyfD1dUVTz75JD744AOUlpaaquw6Vxf/Xq5duxbDhw+Hra2tsco0upqMQ48ePZCWliZdJrtw4QL27NmDZ5991qi18stQK3Dr1i2UlpbC1dVV77irqyvOnDljpqpMry7G4d1334WHh4fe/xgaopqOhVarhaenJ4qKimBhYYGVK1eif//+xi7XaGoyDvv378fatWuRkZFhggpNoybj0L59e6xbtw5dunSBVqvFkiVL0KNHD5w8ebLaX75cH9VkLC5cuIDvv/8eL7/8Mvbs2YPMzEy8/vrrKCkpQVxcnCnKrnO1/ffy8OHDOHHiBNauXWusEk2iJuPw0ksv4datW+jZsyeEELh37x4mTpyI9957z6i1MgCR0SxYsABbt25FSkpKo1rsaQg7OztkZGQgPz8fycnJiImJQZs2bdCnTx9zl2YSd+7cwahRo7BmzRo4OzubuxyzCg0NRWhoqPS8R48eeOKJJ/DPf/4T8fHxZqzM9HQ6HVxcXPCvf/0LFhYWCAoKwu+//47Fixc32ABUW2vXrkXnzp3RvXt3c5dicikpKfjggw+wcuVKhISEIDMzE2+++Sbi4+Mxa9Yso30uA1AFnJ2dYWFhgZycHL3jOTk5cHNzM1NVplebcViyZAkWLFiAffv2oUuXLsYs0yRqOhZKpRJ+fn4AgICAAJw+fRoJCQkNNgAZOg7nz5/HxYsXERkZKR3T6XQAgCZNmuDs2bPw9fU1btFGUBf/RlhaWqJr167IzMw0RokmU5OxcHd3h6WlJSwsLKRjTzzxBLKzs1FcXAyVSmXUmo2hNr8TBQUF2Lp1K/7xj38Ys0STqMk4zJo1C6NGjcL48eMBAJ07d0ZBQQEmTJiAmTNnQqk0zmodrgGqgEqlQlBQEJKTk6VjOp0OycnJev8PrrGr6TgsWrQI8fHxSEpKQnBwsClKNbq6+p3Q6XQoKioyRokmYeg4dOjQAcePH0dGRob0eO655/CXv/wFGRkZ8PLyMmX5daYufh9KS0tx/PhxuLu7G6tMk6jJWDz99NPIzMyUwjAA/Pbbb3B3d2+Q4Qeo3e/EF198gaKiIowcOdLYZRpdTcahsLCwXMgpC8fCmF9XatQl1g3Y1q1bhZWVldiwYYM4deqUmDBhgmjevLl02+qoUaPEjBkzpPZFRUXi6NGj4ujRo8Ld3V1MmzZNHD16VJw7d85cp1AnDB2HBQsWCJVKJb788ku92zvv3LljrlOoM4aOxQcffCC+/fZbcf78eXHq1CmxZMkS0aRJE7FmzRpznUKdMHQcHtVY7gIzdBzmzp0r9u7dK86fPy/S0tLE8OHDhbW1tTh58qS5TqHOGDoWly9fFnZ2diI6OlqcPXtW7N69W7i4uIh58+aZ6xTqRE3/t9GzZ08RFRVl6nKNxtBxiIuLE3Z2duLzzz8XFy5cEN9++63w9fUVL774olHrZACqwieffCJatWolVCqV6N69u/j555+l13r37i3GjBkjPc/KyhIAyj169+5t+sLrmCHj0Lp16wrHIS4uzvSFG4EhYzFz5kzh5+cnrK2thYODgwgNDRVbt241Q9V1z5BxeFRjCUBCGDYOU6dOldq6urqKZ599VqSnp5uhauMw9Hfi4MGDIiQkRFhZWYk2bdqI+fPni3v37pm46rpn6DicOXNGABDffvutiSs1LkPGoaSkRMyZM0f4+voKa2tr4eXlJV5//XXxxx9/GLVGhRDGnF8iIiIiqn+4BoiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiMiMxo4di6FDh5q7DCLZYQAiogqNHTsWCoVCejg5OSEiIgLHjh0zd2l14uFzK3v07NnTaJ938eJFKBQKZGRk6B3/+OOPsWHDBqN9LhFVjAGIiCoVERGB69ev4/r160hOTkaTJk0wePBgc5dVZ9avXy+d3/Xr1/H1119X2K6kpMRoNajVajRv3txo/RNRxRiAiKhSVlZWcHNzg5ubGwICAjBjxgxcuXIFN2/eRN++fREdHa3X/ubNm1CpVNI3QXt7eyM+Ph4jRoyAra0tPD09sWLFCr33LF26FJ07d4atrS28vLzw+uuvIz8/X3r90qVLiIyMhIODA2xtbdGpUyfs2bMHAPDHH3/g5ZdfRosWLWBjY4O2bdti/fr11T6/5s2bS+fn5uYGR0dHaaZm27Zt6N27N6ytrfHZZ59Bo9FgxIgR8PT0RNOmTdG5c2d8/vnnev3pdDosWrQIfn5+sLKyQqtWrTB//nwAgI+PDwCga9euUCgU6NOnD4Dyl8CKioowZcoUuLi4wNraGj179sSRI0ek11NSUqBQKJCcnIzg4GA0bdoUPXr0wNmzZ6t93kTEAERE1ZSfn4/NmzfDz88PTk5OGD9+PLZs2YKioiKpzebNm+Hp6Ym+fftKxxYvXgx/f38cPXoUM2bMwJtvvonvvvtOel2pVGLZsmU4efIkNm7ciO+//x7Tp0+XXp88eTKKiorwf//3fzh+/DgWLlyIZs2aAQBmzZqFU6dO4X//+x9Onz6NVatWwdnZuU7Ot6zW06dPIzw8HHfv3kVQUBC++eYbnDhxAhMmTMCoUaNw+PBh6T2xsbFYsGCBVNeWLVvg6uoKAFK7ffv24fr169ixY0eFnzt9+nRs374dGzduRHp6Ovz8/BAeHo7c3Fy9djNnzsSHH36IX375BU2aNMErr7xSJ+dNJBtG/apVImqwxowZIywsLIStra2wtbUVAIS7u7tIS0sTQgjx559/CgcHB7Ft2zbpPV26dBFz5syRnrdu3VpERETo9RsVFSUGDhxY6ed+8cUXwsnJSXreuXNnvT4fFhkZKcaNG1ej8wMgrK2tpfOztbUVX331lcjKyhIARGJi4mP7GDRokHj77beFEELk5eUJKysrsWbNmgrblvV79OhRveNjxowRQ4YMEUIIkZ+fLywtLcVnn30mvV5cXCw8PDzEokWLhBBC/PDDDwKA2Ldvn9Tmm2++EQDEn3/+acgQEMkaZ4CIqFJ/+ctfkJGRgYyMDBw+fBjh4eEYOHAgLl26BGtra4waNQrr1q0DAKSnp+PEiRMYO3asXh+hoaHlnp8+fVp6vm/fPvTr1w+enp6ws7PDqFGjoNFoUFhYCACYMmUK5s2bh6effhpxcXF6i7AnTZqErVu3IiAgANOnT8fBgwcNOr+PPvpIOr+MjAz0799fei04OFivbWlpKeLj49G5c2c4OjqiWbNm2Lt3Ly5fvgwAOH36NIqKitCvXz+DanjY+fPnUVJSgqefflo6Zmlpie7du+uNGQB06dJF+tnd3R0AcOPGjRp/NpHcMAARUaVsbW3h5+cHPz8/dOvWDf/+979RUFCANWvWAADGjx+P7777DlevXsX69evRt29ftG7dutr9X7x4EYMHD0aXLl2wfft2pKWlSWuEiouLpc+4cOECRo0ahePHjyM4OBiffPIJAEhh7K233sK1a9fQr18/TJs2rdqf7+bmJp2fn58fbG1t9c79YYsXL8bHH3+Md999Fz/88AMyMjIQHh4u1WljY1Ptz60LlpaW0s8KhQLA/TVIRFQ9DEBEVG0KhQJKpRJ//vknAKBz584IDg7GmjVrsGXLlgrXofz888/lnj/xxBMAgLS0NOh0Onz44Yd46qmn0K5dO1y7dq1cH15eXpg4cSJ27NiBt99+WwpgANCiRQuMGTMGmzdvRmJiIv71r3/V5SlLDhw4gCFDhmDkyJHw9/dHmzZt8Ntvv0mvt23bFjY2NtIC8EepVCoA92eSKuPr6wuVSoUDBw5Ix0pKSnDkyBF07Nixjs6EiACgibkLIKL6q6ioCNnZ2QDu33G1fPly5OfnIzIyUmozfvx4REdHw9bWFn/961/L9XHgwAEsWrQIQ4cOxXfffYcvvvgC33zzDQDAz88PJSUl+OSTTxAZGYkDBw5g9erVeu+fOnUqBg4ciHbt2uGPP/7ADz/8IAWo2bNnIygoCJ06dUJRURF2794tvVbX2rZtiy+//BIHDx6Eg4MDli5dipycHCmYWFtb491338X06dOhUqnw9NNP4+bNmzh58iReffVVuLi4wMbGBklJSWjZsiWsra2hVqv1PsPW1haTJk3CO++8A0dHR7Rq1QqLFi1CYWEhXn31VaOcF5FccQaIiCqVlJQEd3d3uLu7IyQkBEeOHMEXX3wh3cINACNGjECTJk0wYsQIWFtbl+vj7bffxi+//IKuXbti3rx5WLp0KcLDwwEA/v7+WLp0KRYuXIgnn3wSn332GRISEvTeX1paismTJ+OJJ55AREQE2rVrh5UrVwK4P6sSGxuLLl264JlnnoGFhQW2bt1qlLF4//33ERgYiPDwcPTp0wdubm7ldnCeNWsW3n77bcyePRtPPPEEoqKipHU5TZo0wbJly/DPf/4THh4eGDJkSIWfs2DBAgwbNgyjRo1CYGAgMjMzsXfvXjg4OBjlvIjkSiGEEOYugogarosXL8LX1xdHjhxBYGCg3mve3t6YOnUqpk6dap7iiIgqwUtgRFQjJSUl0Gg0eP/99/HUU0+VCz9ERPUZL4ERUY0cOHAA7u7uOHLkSLl1O+b2wQcfoFmzZhU+Bg4caO7yiKge4CUwImp0cnNzy+2cXMbGxgaenp4mroiI6hsGICIiIpIdXgIjIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItn5f1DHEUfEFZpGAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATJpJREFUeJzt3XlcVOX+B/DPzMgAIowOyCoKAmmLG6CkuV3FwJT0Zje0XFu8mmSGZZopel1wy8j9Xq9bluktrZvmpZLid3MpDSRzTQhTS1BnctgSiHl+f3g5ObLIADMHOJ/36zWvmHOeeeZ7nstPPr/nPOcclRBCgIiIiEiB1HIXQERERCQXBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISKiBmrr1q1QqVS4cOGC3KUQNVkMQkQKduzYMcTFxeH++++Hi4sL2rZtiyeeeAI//PBDhbb9+/eHSqWCSqWCWq2Gm5sbOnTogDFjxuDzzz+36nv37t2Lfv36wdPTE82bN0f79u3xxBNPIDk5ub4OrYLFixfjo48+qrD98OHDmDdvHm7cuGGz777TvHnzpLFUqVRo3rw57rvvPrz++uvIy8url+/YsWMHkpKS6qUvoqaMQYhIwZYuXYrdu3dj4MCBeOuttzBx4kT897//RWhoKE6ePFmhfZs2bbB9+3a8/fbbWL58OR599FEcPnwYDz/8MGJjY1FaWnrX71yxYgUeffRRqFQqzJo1C2+++SZGjBiB8+fPY+fOnbY4TADVB6H58+fbNQiVW79+PbZv346VK1eiY8eOWLRoEaKjo1Efj4BkECKqmWZyF0BE8omPj8eOHTug1WqlbbGxsejUqROWLFmCd955x6K9TqfD6NGjLbYtWbIEU6dOxbp16xAQEIClS5dW+X2///47FixYgEGDBuGzzz6rsP/q1at1PKKGo6ioCM2bN6+2zeOPPw4PDw8AwKRJkzBixAjs2bMHX3/9NXr27GmPMokUjzNCRArWq1cvixAEACEhIbj//vtx5syZGvWh0WiwatUq3HfffVizZg1MJlOVba9fv468vDw89NBDle739PS0eH/z5k3MmzcP99xzD5ycnODj44PHHnsMWVlZUpsVK1agV69ecHd3h7OzM8LCwvDBBx9Y9KNSqVBYWIht27ZJp6PGjx+PefPm4ZVXXgEABAYGSvtuX5PzzjvvICwsDM7OztDr9Rg5ciQuXbpk0X///v3xwAMPIC0tDX379kXz5s3x2muv1Wj8bjdgwAAAQHZ2drXt1q1bh/vvvx+Ojo7w9fXFlClTLGa0+vfvj08++QQ//fSTdEwBAQFW10OkBJwRIiILQgjk5ubi/vvvr/FnNBoNRo0ahTlz5uDgwYMYMmRIpe08PT3h7OyMvXv34oUXXoBer6+yz7KyMgwdOhQpKSkYOXIkXnzxReTn5+Pzzz/HyZMnERQUBAB466238Oijj+Kpp55CSUkJdu7cib/85S/Yt2+fVMf27dvx7LPPokePHpg4cSIAICgoCC4uLvjhhx/w3nvv4c0335RmZ1q3bg0AWLRoEebMmYMnnngCzz77LK5du4bVq1ejb9++OH78OFq2bCnVazAYMHjwYIwcORKjR4+Gl5dXjcevXHnAc3d3r7LNvHnzMH/+fERGRmLy5Mk4d+4c1q9fj2PHjuHQoUNwcHDA7NmzYTKZcPnyZbz55psAgBYtWlhdD5EiCCKi22zfvl0AEJs2bbLY3q9fP3H//fdX+bkPP/xQABBvvfVWtf3PnTtXABAuLi5i8ODBYtGiRSItLa1Cu82bNwsAYuXKlRX2mc1m6eeioiKLfSUlJeKBBx4QAwYMsNju4uIixo0bV6Gv5cuXCwAiOzvbYvuFCxeERqMRixYtstj+/fffi2bNmlls79evnwAgNmzYUOVx3y4hIUEAEOfOnRPXrl0T2dnZ4u9//7twdHQUXl5eorCwUAghxJYtWyxqu3r1qtBqteLhhx8WZWVlUn9r1qwRAMTmzZulbUOGDBHt2rWrUT1ESsZTY0QkOXv2LKZMmYKePXti3LhxVn22fMYhPz+/2nbz58/Hjh070K1bN3z66aeYPXs2wsLCEBoaanE6bvfu3fDw8MALL7xQoQ+VSiX97OzsLP3866+/wmQyoU+fPkhPT7eq/jvt2bMHZrMZTzzxBK5fvy69vL29ERISgi+//NKivaOjIyZMmGDVd3To0AGtW7dGYGAg/vrXvyI4OBiffPJJlWuLDhw4gJKSEkybNg1q9R//fD/33HNwc3PDJ598Yv2BEikcT40REQAgJycHQ4YMgU6nwwcffACNRmPV5wsKCgAArq6ud207atQojBo1Cnl5efjmm2+wdetW7NixAzExMTh58iScnJyQlZWFDh06oFmz6v+Z2rdvHxYuXIiMjAwUFxdL228PS7Vx/vx5CCEQEhJS6X4HBweL935+fhXWW93N7t274ebmBgcHB7Rp00Y63VeVn376CcCtAHU7rVaL9u3bS/uJqOYYhIgIJpMJgwcPxo0bN/DVV1/B19fX6j7KL7cPDg6u8Wfc3NwwaNAgDBo0CA4ODti2bRu++eYb9OvXr0af/+qrr/Doo4+ib9++WLduHXx8fODg4IAtW7Zgx44dVh/D7cxmM1QqFf7zn/9UGgrvXHNz+8xUTfXt21dal0RE8mAQIlK4mzdvIiYmBj/88AMOHDiA++67z+o+ysrKsGPHDjRv3hy9e/euVR3h4eHYtm0brly5AuDWYuZvvvkGpaWlFWZfyu3evRtOTk749NNP4ejoKG3fsmVLhbZVzRBVtT0oKAhCCAQGBuKee+6x9nBsol27dgCAc+fOoX379tL2kpISZGdnIzIyUtpW1xkxIqXgGiEiBSsrK0NsbCyOHDmC999/v1b3rikrK8PUqVNx5swZTJ06FW5ublW2LSoqwpEjRyrd95///AfAH6d9RowYgevXr2PNmjUV2or/3XBQo9FApVKhrKxM2nfhwoVKb5zo4uJS6U0TXVxcAKDCvsceewwajQbz58+vcINDIQQMBkPlB2lDkZGR0Gq1WLVqlUVNmzZtgslksrhaz8XFpdpbGRDRLZwRIlKw6dOn4+OPP0ZMTAyMRmOFGyjeefNEk8kktSkqKkJmZib27NmDrKwsjBw5EgsWLKj2+4qKitCrVy88+OCDiI6Ohr+/P27cuIGPPvoIX331FYYPH45u3boBAMaOHYu3334b8fHxOHr0KPr06YPCwkIcOHAAzz//PIYNG4YhQ4Zg5cqViI6OxpNPPomrV69i7dq1CA4OxokTJyy+OywsDAcOHMDKlSvh6+uLwMBAREREICwsDAAwe/ZsjBw5Eg4ODoiJiUFQUBAWLlyIWbNm4cKFCxg+fDhcXV2RnZ2NDz/8EBMnTsTLL79cp/G3VuvWrTFr1izMnz8f0dHRePTRR3Hu3DmsW7cO3bt3t/jfKywsDLt27UJ8fDy6d++OFi1aICYmxq71EjUKcl6yRkTyKr/su6pXdW1btGghQkJCxOjRo8Vnn31Wo+8rLS0VGzduFMOHDxft2rUTjo6Oonnz5qJbt25i+fLlori42KJ9UVGRmD17tggMDBQODg7C29tbPP744yIrK0tqs2nTJhESEiIcHR1Fx44dxZYtW6TL02939uxZ0bdvX+Hs7CwAWFxKv2DBAuHn5yfUanWFS+l3794tevfuLVxcXISLi4vo2LGjmDJlijh37pzF2FR3a4E7ldd37dq1atvdefl8uTVr1oiOHTsKBwcH4eXlJSZPnix+/fVXizYFBQXiySefFC1bthQAeCk9URVUQtTDQ22IiIiIGiGuESIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsXiDRUrYTab8csvv8DV1ZW3qSciImokhBDIz8+Hr68v1OqazfUwCFXil19+gb+/v9xlEBERUS1cunQJbdq0qVHbBhGE1q5di+XLlyMnJwddunTB6tWr0aNHj0rb7tmzB4sXL0ZmZiZKS0sREhKC6dOnY8yYMVKb8ePHY9u2bRafi4qKQnJyco3qcXV1BXBrIKt7bhIRERE1HHl5efD395f+jteE7EGo/Fk4GzZsQEREBJKSkhAVFYVz587B09OzQnu9Xo/Zs2ejY8eO0Gq12LdvHyZMmABPT09ERUVJ7aKjoy2eQH37k6nvpvx0mJubG4MQERFRI2PNshbZH7ERERGB7t27S0+YNpvN8Pf3xwsvvICZM2fWqI/Q0FAMGTJEeuDj+PHjpQc51kZeXh50Oh1MJhODEBERUSNRm7/fsl41VlJSgrS0NERGRkrb1Go1IiMjceTIkbt+XgiBlJQUnDt3Dn379rXYl5qaCk9PT3To0AGTJ0+GwWCosp/i4mLk5eVZvIiIiKjpk/XU2PXr11FWVgYvLy+L7V5eXjh79myVnzOZTPDz80NxcTE0Gg3WrVuHQYMGSfujo6Px2GOPITAwEFlZWXjttdcwePBgHDlyBBqNpkJ/iYmJmD9/fv0dGBERETUKsq8Rqg1XV1dkZGSgoKAAKSkpiI+PR/v27dG/f38AwMiRI6W2nTp1QufOnREUFITU1FQMHDiwQn+zZs1CfHy89L58sdXdlJWVobS0tO4HRJVycHCoNLgSERHVF1mDkIeHBzQaDXJzcy225+bmwtvbu8rPqdVqBAcHAwC6du2KM2fOIDExUQpCd2rfvj08PDyQmZlZaRBydHS0ajG1EAI5OTm4ceNGjT9DtdOyZUt4e3vzfk5ERGQTsgYhrVaLsLAwpKSkYPjw4QBuLZZOSUlBXFxcjfsxm80oLi6ucv/ly5dhMBjg4+NT15IBQApBnp6eaN68Of9I24AQAkVFRbh69SoA1Nv/dkRERLeT/dRYfHw8xo0bh/DwcPTo0QNJSUkoLCzEhAkTAABjx46Fn58fEhMTAdxazxMeHo6goCAUFxdj//792L59O9avXw8AKCgowPz58zFixAh4e3sjKysLM2bMQHBwsMXl9bVVVlYmhSB3d/c690dVc3Z2BgBcvXoVnp6ePE1GRET1TvYgFBsbi2vXrmHu3LnIyclB165dkZycLC2gvnjxosVtsgsLC/H888/j8uXLcHZ2RseOHfHOO+8gNjYWAKDRaHDixAls27YNN27cgK+vLx5++GEsWLDAqtNfVSlfE9S8efM690V3Vz7OpaWlDEJERFTvZL+PUENU3X0Ibt68iezsbAQGBsLJyUmmCpWD401ERDVVm/sIyT4jRERERE2bwWBASUlJlfu1Wq1sy00YhIiIiMhmDAaD9PSI6sTFxckShmS9szTZ1/jx46FSqaBSqeDg4AAvLy8MGjQImzdvhtlsrnE/W7duRcuWLW1XKBERNRl3zgSZTK7Izg6AyeRabTt74YyQnck9PVj+MNqysjLk5uYiOTkZL774Ij744AN8/PHHaNaMvxJERGQb6endsHfvUAihhkplRkzMPoSGHpe1Jv7Vs6OGMD3o6Ogo3azSz88PoaGhePDBBzFw4EBs3boVzz77LFauXIktW7bgxx9/hF6vR0xMDJYtW4YWLVogNTVVurVB+f2TEhISMG/ePGzfvh1vvfUWzp07BxcXFwwYMABJSUnw9PS0ybEQEVHjYTK5SiEIAIRQY+/eoQgKyoROly9bXTw1Zkc1nfaz9/TggAED0KVLF+zZswfArTt3r1q1CqdOncK2bdvwxRdfYMaMGQCAXr16ISkpCW5ubrhy5QquXLmCl19+GcCtS9wXLFiA7777Dh999BEuXLiA8ePH2/VYiIioYTIa3aUQVE4INYxGvUwV3cIZIQIAdOzYESdOnAAATJs2TdoeEBCAhQsXYtKkSVi3bh20Wi10Oh1UKlWFx6A8/fTT0s/t27fHqlWr0L17dxQUFKBFixZ2OQ4iImqY9HoDVCqzRRhSqczQ640yVsUZIfofIYR0quvAgQMYOHAg/Pz84OrqijFjxsBgMKCoqKjaPtLS0hATE4O2bdvC1dUV/fr1A3DrpphERKRsOl0+YmL2QaW6dXFO+RohOU+LAZwRov85c+YMAgMDceHCBQwdOhSTJ0/GokWLoNfrcfDgQTzzzDMoKSmp8o7ahYWFiIqKQlRUFN599120bt0aFy9eRFRUlGxXAhARUcMSGnocQUGZMBr10OuNsocggEGIAHzxxRf4/vvv8dJLLyEtLQ1msxlvvPGG9GiTf/3rXxbttVotysrKLLadPXsWBoMBS5Ysgb+/PwDg22+/tc8BEBFRg6XVai3e63T5lQagO9vZC4OQwhQXFyMnJ8fi8vnExEQMHToUY8eOxcmTJ1FaWorVq1cjJiYGhw4dwoYNGyz6CAgIQEFBAVJSUtClSxc0b94cbdu2hVarxerVqzFp0iScPHkSCxYskOkoiYiooXB3d0dcXFyDvbM01wgpTHJyMnx8fBAQEIDo6Gh8+eWXWLVqFf79739Do9GgS5cuWLlyJZYuXYoHHngA7777LhITEy366NWrFyZNmoTY2Fi0bt0ay5YtQ+vWrbF161a8//77uO+++7BkyRKsWLFCpqMkIqKGxN3dHT4+PlW+5ApBAB+6WilbPXS1IdxHqLHhQ1eJiKim+NDVBq6hTw8SEREpDYOQnTHkEBERNRxcI0RERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBE9SY1NRUqlQo3btyo8WcCAgKQlJRks5qIiIiqwyCkIOPHj4dKpcKkSZMq7JsyZQpUKhXGjx9v/8KIiIhkwiCkMP7+/ti5cyd+++03advNmzexY8cOtG3bVsbKiIiI7I9BSGFCQ0Ph7++PPXv2SNv27NmDtm3bolu3btK24uJiTJ06FZ6ennByckLv3r1x7Ngxi77279+Pe+65B87OzvjTn/6ECxcuVPi+gwcPok+fPnB2doa/vz+mTp2KwsJCmx0fERGRNRiEZHT5MvDll7f+a09PP/00tmzZIr3fvHkzJkyYYNFmxowZ2L17N7Zt24b09HQEBwcjKioKRqMRAHDp0iU89thjiImJQUZGBp599lnMnDnToo+srCxER0djxIgROHHiBHbt2oWDBw8iLi7O9gdJRERUAwxCMtm0CWjXDhgw4NZ/N22y33ePHj0aBw8exE8//YSffvoJhw4dwujRo6X9hYWFWL9+PZYvX47Bgwfjvvvuw8aNG+Hs7IxN/yt0/fr1CAoKwhtvvIEOHTrgqaeeqrC+KDExEU899RSmTZuGkJAQ9OrVC6tWrcLbb7+Nmzdv2u+AiYiIqsCnz8vg8mVg4kTAbL713mwG/vpXICoKaNPG9t/funVrDBkyBFu3boUQAkOGDIGHh4e0PysrC6WlpXjooYekbQ4ODujRowfOnDkDADhz5gwiIiIs+u3Zs6fF+++++w4nTpzAu+++K20TQsBsNiM7Oxv33nuvLQ6PiIioxhiEZHD+/B8hqFxZGZCZaZ8gBNw6PVZ+imrt2rU2+Y6CggL89a9/xdSpUyvs48JsIiJqCBiEZBASAqjVlmFIowGCg+1XQ3R0NEpKSqBSqRAVFWWxLygoCFqtFocOHUK7du0AAKWlpTh27BimTZsGALj33nvx8ccfW3zu66+/tngfGhqK06dPI9ieB0ZERGQFrhGSQZs2wD/+cSv8ALf++/e/22826NZ3anDmzBmcPn0amvJC/sfFxQWTJ0/GK6+8guTkZJw+fRrPPfccioqK8MwzzwAAJk2ahPPnz+OVV17BuXPnsGPHDmzdutWin1dffRWHDx9GXFwcMjIycP78efz73//mYmkiImowOCMkk2eeubUmKDPz1kyQPUNQOTc3tyr3LVmyBGazGWPGjEF+fj7Cw8Px6aefolWrVgBundravXs3XnrpJaxevRo9evTA4sWL8fTTT0t9dO7cGf/3f/+H2bNno0+fPhBCICgoCLGxsTY/NiIioppQCSGE3EU0NHl5edDpdDCZTBXCws2bN5GdnY3AwEA4OTnJVKFycLyJiKimqvv7XRWeGiMiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhCqJa4xtw+OMxER2RKDkJUcHBwAAEVFRTJXogzl41w+7kRERPWJ9xGykkajQcuWLXH16lUAQPPmzaFSqWSuqukRQqCoqAhXr15Fy5YtK9z0kYiIqD4wCNWCt7c3AEhhiGynZcuW0ngTERHVtwYRhNauXYvly5cjJycHXbp0ke5UXJk9e/Zg8eLFyMzMRGlpKUJCQjB9+nSMGTNGaiOEQEJCAjZu3IgbN27goYcewvr16xESElIv9apUKvj4+MDT0xOlpaX10idV5ODgwJkgIiKyKdmD0K5duxAfH48NGzYgIiICSUlJiIqKwrlz5+Dp6VmhvV6vx+zZs9GxY0dotVrs27cPEyZMgKenp/Tw0GXLlmHVqlXYtm0bAgMDMWfOHERFReH06dP1endijUbDP9RERESNmOyP2IiIiED37t2xZs0aAIDZbIa/vz9eeOEFzJw5s0Z9hIaGYsiQIViwYAGEEPD19cX06dPx8ssvAwBMJhO8vLywdetWjBw58q791eYW3URERCSvRveIjZKSEqSlpSEyMlLaplarERkZiSNHjtz180IIpKSk4Ny5c+jbty8AIDs7Gzk5ORZ96nQ6REREVNlncXEx8vLyLF5ERETU9MkahK5fv46ysjJ4eXlZbPfy8kJOTk6VnzOZTGjRogW0Wi2GDBmC1atXY9CgQQAgfc6aPhMTE6HT6aSXv79/XQ6LiIiIGolGeR8hV1dXZGRk4NixY1i0aBHi4+ORmppa6/5mzZoFk8kkvS5dulR/xRIREVGDJetiaQ8PD2g0GuTm5lpsz83NrfaSabVajeDgYABA165dcebMGSQmJqJ///7S53Jzc+Hj42PRZ9euXSvtz9HREY6OjnU8GiIiImpsZJ0R0mq1CAsLQ0pKirTNbDYjJSUFPXv2rHE/ZrMZxcXFAIDAwEB4e3tb9JmXl4dvvvnGqj6JiIio6ZP98vn4+HiMGzcO4eHh6NGjB5KSklBYWIgJEyYAAMaOHQs/Pz8kJiYCuLWeJzw8HEFBQSguLsb+/fuxfft2rF+/HsCte/xMmzYNCxcuREhIiHT5vK+vL4YPHy7XYRIREVEDJHsQio2NxbVr1zB37lzk5OSga9euSE5OlhY7X7x4EWr1HxNXhYWFeP7553H58mU4OzujY8eOeOeddxAbGyu1mTFjBgoLCzFx4kTcuHEDvXv3RnJycr3eQ4iIiIgaP9nvI9QQ8T5CREREjU+ju48QERERkZxkPzVGRERE9mcwGFBSUlLlfq1WC3d3dztWJA8GISIiIoUxGAzSo62qExcX1+TDEE+NERERKcydM0EmkyuyswNgMrlW264p4owQERGRgqWnd8PevUMhhBoqlRkxMfsQGnpc7rLshjNCRERECmUyuUohCACEUGPv3qEVZoaaMgYhIiIihTIa3aUQVE4INYxGvUwV2R+DEBERkULp9QaoVGaLbSqVGXq9UaaK7I9BiIiISKF0unzExOyTwlD5GiGdLl/myuyHi6WJiIgULDT0OIKCMmE06qHXGxUVggAGISIiIsXRarUW73W6/EoD0J3tmiIGISIiIoVxd3dHXFwc7ywNBiEiIiJFUkLIqQkuliYiIiLFYhAiIiIixWIQIiIiIsXiGiEiIqImymAwcEH0XTAIERERNUEGgwFr1qy5a7u4uDhFhyGeGiMiImqC7pwJMplckZ0dUOGBqtXNGCkBZ4SIiIiauPT0btJT5ssfoxEaelzushoEzggRERE1YSaTqxSCgFtPl9+7d2iFmSGlYhAiIiJqwoxGdykElRNCDaNRL1NFDQuDEBERUROm1xukp8uXU6nM0OuNMlXUsDAIERERNWE6XT5iYvZJYah8jZDSnjJfFS6WJiIiauJCQ48jKCgTRqMeer2RIeg2DEJERERNkFartXiv0+VXGoDubKc0DEJERERNkLu7O+Li4nhn6btgECIiImqilB5yaoKLpYmIiEixGISIiIhIsRiEiIiISLEYhIiIiEixuFiaiIiogTMYDLz6y0YYhIiIiBowg8GANWvW3LVdXFwcw1At8NQYERFRA3bnTJDJ5Irs7IAKT4+vbsaIqsYZISIiokYiPb0b9u4dCiHU0jPDQkOPy11Wo8YZISIiokbAZHKVQhAACKHG3r1DK8wMkXUYhIiIiBoBo9FdCkHlhFDDaNTLVFHTwCBERETUCOj1BqhUZottKpUZer1RpoqaBgYhIiKiRkCny0dMzD4pDJWvEarsifJUc1wsTURE1EiEhh5HUFAmjEY99HojQ1A9aBAzQmvXrkVAQACcnJwQERGBo0ePVtl248aN6NOnD1q1aoVWrVohMjKyQvvx48dDpVJZvKKjo219GERERPVOq9VavNfp8hEY+FOFEHRnO6oZ2WeEdu3ahfj4eGzYsAERERFISkpCVFQUzp07B09PzwrtU1NTMWrUKPTq1QtOTk5YunQpHn74YZw6dQp+fn5Su+joaGzZskV67+joaJfjISIiqk/u7u6Ii4vjnaVtRCWEEHIWEBERge7du0t3zTSbzfD398cLL7yAmTNn3vXzZWVlaNWqFdasWYOxY8cCuDUjdOPGDXz00Ue1qikvLw86nQ4mkwlubm616oOIiIjsqzZ/v2U9NVZSUoK0tDRERkZK29RqNSIjI3HkyJEa9VFUVITS0lLo9ZaXD6ampsLT0xMdOnTA5MmTYTAY6rV2IiIiavxkPTV2/fp1lJWVwcvLy2K7l5cXzp49W6M+Xn31Vfj6+lqEqejoaDz22GMIDAxEVlYWXnvtNQwePBhHjhyBRqOp0EdxcTGKi4ul93l5ebU8IiIiImpMZF8jVBdLlizBzp07kZqaCicnJ2n7yJEjpZ87deqEzp07IygoCKmpqRg4cGCFfhITEzF//ny71ExEREQNh6ynxjw8PKDRaJCbm2uxPTc3F97e3tV+dsWKFViyZAk+++wzdO7cudq27du3h4eHBzIzMyvdP2vWLJhMJul16dIl6w6EiIiIGiVZg5BWq0VYWBhSUlKkbWazGSkpKejZs2eVn1u2bBkWLFiA5ORkhIeH3/V7Ll++DIPBAB8fn0r3Ozo6ws3NzeJFRERETZ/s9xGKj4/Hxo0bsW3bNpw5cwaTJ09GYWEhJkyYAAAYO3YsZs2aJbVfunQp5syZg82bNyMgIAA5OTnIyclBQUEBAKCgoACvvPIKvv76a1y4cAEpKSkYNmwYgoODERUVJcsxEhERUcMk+xqh2NhYXLt2DXPnzkVOTg66du2K5ORkaQH1xYsXoVb/kdfWr1+PkpISPP744xb9JCQkYN68edBoNDhx4gS2bduGGzduwNfXFw8//DAWLFjAewkRERGRBdnvI9QQ8T5CREREjU9t/n7LPiNERESkFAaDgXeIbmAYhIiIiOzAYDBIT1GoTlxcHMOQHcm+WJqIiEgJ7pwJMplckZ0dAJPJtdp2ZFucESIiIrKz9PRu2Lt3KIRQQ6UyIyZmH0JDj8tdliJxRoiIiMiOTCZXKQQBgBBq7N07tMLMENkHgxAREZEdGY3uUggqJ4QaRqO+ik+QLTEIERER2ZFeb4BKZbbYplKZodcbZapI2RiEiIiI7Einy0dMzD4pDJWvEdLp8mWuTJm4WJqIiMjOQkOPIygoE0ajHnq9kSFIRgxCREREdqDVai3e63T5lQagO9uRbTEIERER2YG7uzvi4uJ4Z+kGhkGIiIjIThhyGh4uliYiIiLF4owQERGRlfjw1KaDQYiIiMgKfHhq08JTY0RERFbgw1ObFs4IERER1RIfntr4cUaIiIioFvjw1KaBQYiIiKgW+PDUpoFBiIiIqBb48NSmgUGIiIioFvjw1KaBi6WJiIhqiQ9PbfwYhIiIiKzAh6c2LQxCREREVuDDU5sWBiEiIiIrMeQ0HVwsTURERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESK1SCC0Nq1axEQEAAnJydERETg6NGjVbbduHEj+vTpg1atWqFVq1aIjIys0F4Igblz58LHxwfOzs6IjIzE+fPnbX0YRERE1MjIHoR27dqF+Ph4JCQkID09HV26dEFUVBSuXr1aafvU1FSMGjUKX375JY4cOQJ/f388/PDD+Pnnn6U2y5Ytw6pVq7BhwwZ88803cHFxQVRUFG7evGmvwyIiIqJGQCWEEHIWEBERge7du2PNmjUAALPZDH9/f7zwwguYOXPmXT9fVlaGVq1aYc2aNRg7diyEEPD19cX06dPx8ssvAwBMJhO8vLywdetWjBw58q595uXlQafTwWQywc3NrW4HSERERHZRm7/fss4IlZSUIC0tDZGRkdI2tVqNyMhIHDlypEZ9FBUVobS0FHq9HgCQnZ2NnJwciz51Oh0iIiKq7LO4uBh5eXkWLyIiImr6ZA1C169fR1lZGby8vCy2e3l5IScnp0Z9vPrqq/D19ZWCT/nnrOkzMTEROp1Oevn7+1t7KERERNQIyb5GqC6WLFmCnTt34sMPP4STk1Ot+5k1axZMJpP0unTpUj1WSURERA1VMzm/3MPDAxqNBrm5uRbbc3Nz4e3tXe1nV6xYgSVLluDAgQPo3LmztL38c7m5ufDx8bHos2vXrpX25ejoCEdHx1oeBRERETVWss4IabVahIWFISUlRdpmNpuRkpKCnj17Vvm5ZcuWYcGCBUhOTkZ4eLjFvsDAQHh7e1v0mZeXh2+++abaPomIiEh5ZJ0RAoD4+HiMGzcO4eHh6NGjB5KSklBYWIgJEyYAAMaOHQs/Pz8kJiYCAJYuXYq5c+dix44dCAgIkNb9tGjRAi1atIBKpcK0adOwcOFChISEIDAwEHPmzIGvry+GDx8u12ESERFRAyR7EIqNjcW1a9cwd+5c5OTkoGvXrkhOTpYWO1+8eBFq9R8TV+vXr0dJSQkef/xxi34SEhIwb948AMCMGTNQWFiIiRMn4saNG+jduzeSk5PrtI6IiIiImh7Z7yPUEPE+QkRERI1Po7uPEBEREZGcGISIiIhIsRiEiIiISLHqJQhlZ2fj999/r4+uiIiIiOymXoJQhw4dcP78+froioiIiMhurLp8/rHHHqt0e1lZGaZOnQpXV1cAwJ49e+peGREREZGNWTUj9NFHH8FoNFo8oFSn0wG4dUPD298TERERNXRW3Udo586deOWVV/C3v/1NuvMzADg4OOC7777DfffdZ5Mi7Y33ESIiImp8bH4foZEjR+Krr77Cpk2bMGLECPz666+1KpSIiIioIbB6sXRAQAD++9//4oEHHkCXLl3w6aefQqVS2aI2IiIiIpuq1bPG1Go15s+fj0GDBmHs2LEoKyur77qIiIiIbK5OD13t3bs3Tpw4gaysLAQFBdVXTURERER2Ueenz7do0QJdunSpj1qIiEghDAYDSkpKqtyv1Wrh7u5ux4pIqawKQt26davReqD09PRaF0RERE2bwWDAmjVr7touLi6OYYhszqogNHz4cOlnIQQSExMxadIk6PX6+q6LiIiaqDtngkwmVxiN7tDrDdDp8qtsR2QLVgWhhIQEi/dvvPEGXnzxRbRv375eiyIiImVIT++GvXuHQgg1VCozYmL2ITT0uNxlkYLw6fNERCQLk8lVCkEAIIQae/cOhcnkKnNlpCQMQkREJAuj0V0KQeWEUMNo5HILsh8GISIikoVeb4BKZbbYplKZodcbZaqIlMiqNUKrVq2yeP/7779j69at8PDwsNg+derUuldGRERNmk6Xj5iYfRXWCN2+YJrI1qwKQm+++abFe29vb2zfvt1im0qlYhAiIqIaCQ09jqCgTBiNeuj1RoYgsjurglB2drat6iAiIoXQarUW73W6/EoD0J3tiGzBqiD0xRdfIC4uDl9//XWFx9ubTCb06tULGzZsQJ8+feq1SCIiajrc3d0RFxfHO0tTg2BVEEpKSsJzzz1XIQQBgE6nw1//+lesXLmSQYiIiKrFkEMNhVVXjX333XeIjo6ucv/DDz+MtLS0OhdFREREZA9WBaHc3Fw4ODhUub9Zs2a4du1anYsiIiIisgergpCfnx9OnjxZ5f4TJ07Ax8enzkURERER2YNVQeiRRx7BnDlzcPPmzQr7fvvtNyQkJGDo0KH1VhwRERGRLamEEKKmjXNzcxEaGgqNRoO4uDh06NABAHD27FmsXbsWZWVlSE9Ph5eXl80Ktoe8vDzodDqYTKZKF4YTERFRw1Obv99WXTXm5eWFw4cPY/LkyZg1axbKM5RKpUJUVBTWrl3b6EMQERERKYdVQQgA2rVrh/379+PXX39FZmYmhBAICQlBq1atbFEfERERkc1YHYTKtWrVCt27d6/PWoiIiIjsik+fJyIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsWSPQitXbsWAQEBcHJyQkREBI4ePVpl21OnTmHEiBEICAiASqVCUlJShTbz5s2DSqWyeHXs2NGGR0BERESNlaxBaNeuXYiPj0dCQgLS09PRpUsXREVF4erVq5W2LyoqQvv27bFkyRJ4e3tX2e/999+PK1euSK+DBw/a6hCIiIioEZM1CK1cuRLPPfccJkyYgPvuuw8bNmxA8+bNsXnz5krbd+/eHcuXL8fIkSPh6OhYZb/NmjWDt7e39PLw8LDVIRAREVEjJlsQKikpQVpaGiIjI/8oRq1GZGQkjhw5Uqe+z58/D19fX7Rv3x5PPfUULl68WG374uJi5OXlWbyIiIio6ZMtCF2/fh1lZWXw8vKy2O7l5YWcnJxa9xsREYGtW7ciOTkZ69evR3Z2Nvr06YP8/PwqP5OYmAidTie9/P39a/39RERE1HjIvli6vg0ePBh/+ctf0LlzZ0RFRWH//v24ceMG/vWvf1X5mVmzZsFkMkmvS5cu2bFiIiIikkszub7Yw8MDGo0Gubm5Fttzc3OrXQhtrZYtW+Kee+5BZmZmlW0cHR2rXXNERERETZNsM0JarRZhYWFISUmRtpnNZqSkpKBnz5719j0FBQXIysqCj49PvfVJRERETYNsM0IAEB8fj3HjxiE8PBw9evRAUlISCgsLMWHCBADA2LFj4efnh8TERAC3FlifPn1a+vnnn39GRkYGWrRogeDgYADAyy+/jJiYGLRr1w6//PILEhISoNFoMGrUKHkOkoiIiBosWYNQbGwsrl27hrlz5yInJwddu3ZFcnKytID64sWLUKv/mLT65Zdf0K1bN+n9ihUrsGLFCvTr1w+pqakAgMuXL2PUqFEwGAxo3bo1evfuja+//hqtW7e267ERERFRw6cSQgi5i2ho8vLyoNPpYDKZ4ObmJnc5REREVAO1+fvd5K4aIyIiIqopBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSrGZyF0BE1BgYDAaUlJRUuV+r1cLd3d2OFRFRfWAQIiK6C4PBgDVr1kjvTSZXGI3u0OsN0Onype1xcXEMQ0SNDIMQEdFd3D4TlJ7eDXv3DoUQaqhUZsTE7ENo6PEK7YioceAaISKiGjKZXKUQBABCqLF371CYTK4yV0ZEtcUgRERUQ0ajuxSCygmhhtGol6kiIqorBiEiohrS6w1QqcwW21QqM/R6o0wVEVFdMQgREdWQTpePmJh9UhgqXyN0+4JpImpcuFiaiOh/qrpE/vr169LPoaHHERSUCaNRD73eyBBE1MgxCBERoeIl8tXR6fIZgIiaCJ4aIyJCxUvfTSZXZGcHWHVFmFarre+yiMjGOCNERHSH6u4V9Nhjj8HDw6PCZ3hnaaLGiUGIiOg2Vd0rKCgoEzpdPjw8PODj4yNzlURUX3hqjIjoNrxXEJGyMAgREd2G9woiUhYGISKi2/BeQUTKwjVCRER34L2CiJSDQYiICBUvfa/qXkG8RJ6oaWEQIiIC4O7ujri4uErvLF2Ol8gTNT0MQkRE/8OQQ6Q8XCxNREREisUgRERERIrFIERERESKJXsQWrt2LQICAuDk5ISIiAgcPXq0yranTp3CiBEjEBAQAJVKhaSkpDr3SURERMolaxDatWsX4uPjkZCQgPT0dHTp0gVRUVG4evVqpe2LiorQvn17LFmyBN7e3vXSJxERESmXSggh5PryiIgIdO/eHWvWrAEAmM1m+Pv744UXXsDMmTOr/WxAQACmTZuGadOm1Vuf5fLy8qDT6WAymeDm5mb9gREREZHd1ebvt2wzQiUlJUhLS0NkZOQfxajViIyMxJEjR+zaZ3FxMfLy8ixeRERE1PTJFoSuX7+OsrIyeHl5WWz38vJCTk6OXftMTEyETqeTXv7+/rX6fiIiImpceENFALNmzUJ8fLz0Pi8vj2GIyI4MBgPv6ExEspAtCHl4eECj0SA3N9die25ubpULoW3Vp6OjIxwdHWv1nURUNwaDQVrTV524uDiGISKqd7KdGtNqtQgLC0NKSoq0zWw2IyUlBT179mwwfRKRbd05E2QyuSI7OwAmk2u17YiI6oOsp8bi4+Mxbtw4hIeHo0ePHkhKSkJhYSEmTJgAABg7diz8/PyQmJgI4NY/hKdPn5Z+/vnnn5GRkYEWLVogODi4Rn0SUcOVnt4Ne/cOhRBqqFRmxMTsQ2jocbnLIqImTNYgFBsbi2vXrmHu3LnIyclB165dkZycLC12vnjxItTqPyatfvnlF3Tr1k16v2LFCqxYsQL9+vVDampqjfokInlUtQ7o+vXrAG7NBJWHIAAQQo29e4ciKCgTOl2+XWslIuWQ9T5CDRXvI0RUv2qyDig7OwDbto2rsH3cuK0IDPwJEydOhI+Pj61KJKImoFHdR4iIlKMm64D0egNUKrNFO5XKDL3eaJcaiUiZePk8EdlVVeuAdLp8xMTsq7CPp8WIyJYYhIjIbu62Dig09DiCgjJhNOqh1xsZgojI5hiEiKje3G1BtNHoLoWgckKoYTTqpdCj0+VXGoC0Wq0NKiYipWMQIqJ6UZMF0eXrgG4PQ7evA3rsscfg4eFR4XO8szQR2QqDEBHVi5rc8PBu64A8PDx4ZRgR2RWDEBFZ5W6nv8qZTK4wGt2h1xssTnVxHRARNSQMQkRUYzV9Ltjd7hDNdUBE1FAwCBFRjVV2P6A7Z33udmUY1wERUUPCIESkUFWd4ip3t2BS1azP3a4M4zogImpIGISIFKimp7ji4uIqDUPVzfrc7cowIqKGhI/YIFKgmjzyorJ25e426xMTs096XAbvEE1EDRlnhIgU7m4Lmytzt1mf6q4M44JoImpIGISIFOxuC5urcrf7AXFBNBE1FgxCRApWk0deVKW6WR8uiCaixoJBiEjBrF3YfOdpLd4PiIgaOwYhIgW72ymuO7m7uyMuLq5Ol90TETUkDEJECmftIy8YcoioKWEQIlIgnuIiIrqFQYhIgXiKi4joFgYhIoViyCEi4p2liYiISMEYhIiIiEixeGqMqIGo69PgiYjIegxCRA1AXZ8GT0REtcNTY0QNQF2fBk9ERLXDGSGiBqY2T4MnIqLa4YwQUQNS1dPg75wZIiKi+sEgRNSAVPc0eCIiqn8MQkQNSPnT4G9X3dPgiYiobhiEiBqQ8qfBl4ehuz0NnoiI6oaLpYkaGGufBk9ERLXHIETUAPBp8ERE8mAQImoA+DR4IiJ5MAgRNRAMOURE9sfF0kRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgNIgitXbsWAQEBcHJyQkREBI4ePVpt+/fffx8dO3aEk5MTOnXqhP3791vsHz9+PFQqlcUrOjralodAREREjZDsQWjXrl2Ij49HQkIC0tPT0aVLF0RFReHq1auVtj98+DBGjRqFZ555BsePH8fw4cMxfPhwnDx50qJddHQ0rly5Ir3ee+89exwOERERNSIqIYSQs4CIiAh0794da9asAQCYzWb4+/vjhRdewMyZMyu0j42NRWFhIfbt2ydte/DBB9G1a1ds2LABwK0ZoRs3buCjjz6qVU15eXnQ6XQwmUxwc3OrVR9ERERkX7X5+y3rjFBJSQnS0tIQGRkpbVOr1YiMjMSRI0cq/cyRI0cs2gNAVFRUhfapqanw9PREhw4dMHnyZBgMhirrKC4uRl5ensWLiIiImj5Zg9D169dRVlYGLy8vi+1eXl7Iycmp9DM5OTl3bR8dHY23334bKSkpWLp0Kf7v//4PgwcPRllZWaV9JiYmQqfTSS9/f/86HhkRERE1Bk3yWWMjR46Ufu7UqRM6d+6MoKAgpKamYuDAgRXaz5o1C/Hx8dL7vLw8hiEiIiIFkHVGyMPDAxqNBrm5uRbbc3Nz4e3tXelnvL29rWoPAO3bt4eHhwcyMzMr3e/o6Ag3NzeLFxERETV9sgYhrVaLsLAwpKSkSNvMZjNSUlLQs2fPSj/Ts2dPi/YA8Pnnn1fZHgAuX74Mg8EAHx+f+imciIiImgTZL5+Pj4/Hxo0bsW3bNpw5cwaTJ09GYWEhJkyYAAAYO3YsZs2aJbV/8cUXkZycjDfeeANnz57FvHnz8O233yIuLg4AUFBQgFdeeQVff/01Lly4gJSUFAwbNgzBwcGIioqS5RiJiIioYZJ9jVBsbCyuXbuGuXPnIicnB127dkVycrK0IPrixYtQq//Ia7169cKOHTvw+uuv47XXXkNISAg++ugjPPDAAwAAjUaDEydOYNu2bbhx4wZ8fX3x8MMPY8GCBXB0dJTlGImIiKhhkv0+Qg0R7yNkewaDASUlJVXu12q1cHd3t2NFRETU2NXm77fsM0KkPAaDQbqBZnXi4uIYhoiIyKZkXyNEynPnTJDJ5Irs7ACYTK7VtiMiIqpvnBEiWaWnd8PevUMhhBoqlRkxMfsQGnpc7rKIiEghGISoTuqy1sdkcpVCEAAIocbevUMRFJQJnS7fJvUSERHdjkGIaq2ua32MRncpBJUTQg2jUc8gREREdsE1QlRrdV3ro9cboFKZLbapVGbo9cb6LZSIiKgKnBGielGbtT46XT5iYvZV+Bxng4iIyF4YhKjO6rLWJzT0OIKCMmE06qHXGxmCiIjIrhiEqM6sXeuj1Wot3ut0+TVqR0REVN8YhKjOytf63B6Gqlvr4+7ujri4ON5ZmoiIZMcgpCBZWVkoKiqqcn/z5s0RFBRkdb+1WevDkENERA0Bg5BCZGVl4Z133rlru9GjR9cqDHGtDxERNUYMQgpx50zQ5cs+uHixHdq2/Qlt2lypsl11uNaHiIgaOwYhBfrww2H47rsuAFQABLp0+Q5//vO/re6Ha32IiKixYxBSmMuXfW4LQQCgwnffdUH37kctZoZqiiGHiIgaM95ZWmEuXmyHP0JQORUuXWorRzlERESyYhBSmLZtfwIg7tgq4O9/UY5yiIiIZMUgpDBt2lxBly7f4Y8wdGuNUG1OixERETV2XCOkQH/+87/RvftRXLrUFv7+FxmCiIhIsRiE7MBgMMh+ZVXz5s0t3rdpc6XSAHRnOyIioqaMQcjGDAYD1qxZc9d2cXFxNg1DQUFBGD16tE3uLE1ERNRYMQjZWHUzQbVpVxcMOURERJa4WNrOTCZXZGcHwGRylbsUIiIixeOMkB2lp3er8GDS0NDjcpdFRESkWJwRshOTyVUKQQAghBp79w7lzBAREZGMGITsxGh0l0JQOSHUMBr1MlVEREREDEJ2otcboFKZLbapVGbo9UaZKiIiIiIGITvR6fIRE7NPCkPla4R0unyZKyMiIlIuLpa2Ma1WK/0cGnocQUGZMBr10OuNFiHo9nZERERkHwxCNubu7o64uDjZ7yxNREREFTEI2QFDDhERUcPENUJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWHzERiWEEACAvLw8mSshIiKimir/u13+d7wmGIQqkZ9/66nw/v7+MldCRERE1srPz4dOp6tRW5WwJjYphNlsxi+//AJXV1eoVKpK2+Tl5cHf3x+XLl2Cm5ubnStseDgeljgeFXFMLHE8KuKYWOJ4WKrJeAghkJ+fD19fX6jVNVv9wxmhSqjVarRp06ZGbd3c3PgLehuOhyWOR0UcE0scj4o4JpY4HpbuNh41nQkqx8XSREREpFgMQkRERKRYDEK15OjoiISEBDg6OspdSoPA8bDE8aiIY2KJ41ERx8QSx8OSrcaDi6WJiIhIsTgjRERERIrFIERERESKxSBEREREisUgRERERIrFIFSNtWvXIiAgAE5OToiIiMDRo0erbHvq1CmMGDECAQEBUKlUSEpKsl+hdmLNeGzcuBF9+vRBq1at0KpVK0RGRlbbvjGyZjz27NmD8PBwtGzZEi4uLujatSu2b99ux2rtw5oxud3OnTuhUqkwfPhw2xZoZ9aMx9atW6FSqSxeTk5OdqzW9qz9/bhx4wamTJkCHx8fODo64p577sH+/fvtVK19WDMm/fv3r/A7olKpMGTIEDtWbFvW/o4kJSWhQ4cOcHZ2hr+/P1566SXcvHnTui8VVKmdO3cKrVYrNm/eLE6dOiWee+450bJlS5Gbm1tp+6NHj4qXX35ZvPfee8Lb21u8+eab9i3YxqwdjyeffFKsXbtWHD9+XJw5c0aMHz9e6HQ6cfnyZTtXbhvWjseXX34p9uzZI06fPi0yMzNFUlKS0Gg0Ijk52c6V2461Y1IuOztb+Pn5iT59+ohhw4bZp1g7sHY8tmzZItzc3MSVK1ekV05Ojp2rth1rx6O4uFiEh4eLRx55RBw8eFBkZ2eL1NRUkZGRYefKbcfaMTEYDBa/HydPnhQajUZs2bLFvoXbiLXj8e677wpHR0fx7rvviuzsbPHpp58KHx8f8dJLL1n1vQxCVejRo4eYMmWK9L6srEz4+vqKxMTEu362Xbt2TS4I1WU8hBDi999/F66urmLbtm22KtGu6joeQgjRrVs38frrr9uiPFnUZkx+//130atXL/HPf/5TjBs3rkkFIWvHY8uWLUKn09mpOvuzdjzWr18v2rdvL0pKSuxVot3V9d+RN998U7i6uoqCggJblWhX1o7HlClTxIABAyy2xcfHi4ceesiq7+WpsUqUlJQgLS0NkZGR0ja1Wo3IyEgcOXJExsrkUR/jUVRUhNLSUuj1eluVaTd1HQ8hBFJSUnDu3Dn07dvXlqXaTW3H5G9/+xs8PT3xzDPP2KNMu6nteBQUFKBdu3bw9/fHsGHDcOrUKXuUa3O1GY+PP/4YPXv2xJQpU+Dl5YUHHngAixcvRllZmb3Ktqn6+Hd106ZNGDlyJFxcXGxVpt3UZjx69eqFtLQ06fTZjz/+iP379+ORRx6x6rv50NVKXL9+HWVlZfDy8rLY7uXlhbNnz8pUlXzqYzxeffVV+Pr6WvySN1a1HQ+TyQQ/Pz8UFxdDo9Fg3bp1GDRokK3LtYvajMnBgwexadMmZGRk2KFC+6rNeHTo0AGbN29G586dYTKZsGLFCvTq1QunTp2q8UOgG6rajMePP/6IL774Ak899RT279+PzMxMPP/88ygtLUVCQoI9yrapuv67evToUZw8eRKbNm2yVYl2VZvxePLJJ3H9+nX07t0bQgj8/vvvmDRpEl577TWrvptBiGxuyZIl2LlzJ1JTU5vc4k9ruLq6IiMjAwUFBUhJSUF8fDzat2+P/v37y12a3eXn52PMmDHYuHEjPDw85C6nQejZsyd69uwpve/Vqxfuvfde/P3vf8eCBQtkrEweZrMZnp6e+Mc//gGNRoOwsDD8/PPPWL58eZMIQnW1adMmdOrUCT169JC7FNmkpqZi8eLFWLduHSIiIpCZmYkXX3wRCxYswJw5c2rcD4NQJTw8PKDRaJCbm2uxPTc3F97e3jJVJZ+6jMeKFSuwZMkSHDhwAJ07d7ZlmXZT2/FQq9UIDg4GAHTt2hVnzpxBYmJikwhC1o5JVlYWLly4gJiYGGmb2WwGADRr1gznzp1DUFCQbYu2ofr4N8TBwQHdunVDZmamLUq0q9qMh4+PDxwcHKDRaKRt9957L3JyclBSUgKtVmvTmm2tLr8jhYWF2LlzJ/72t7/ZskS7qs14zJkzB2PGjMGzzz4LAOjUqRMKCwsxceJEzJ49G2p1zVb/cI1QJbRaLcLCwpCSkiJtM5vNSElJsfj/2JSituOxbNkyLFiwAMnJyQgPD7dHqXZRX78fZrMZxcXFtijR7qwdk44dO+L7779HRkaG9Hr00Ufxpz/9CRkZGfD397dn+fWuPn5HysrK8P3338PHx8dWZdpNbcbjoYceQmZmphSQAeCHH36Aj49Pow9BQN1+R95//30UFxdj9OjRti7TbmozHkVFRRXCTnlwFtY8RtXKRd2KsXPnTuHo6Ci2bt0qTp8+LSZOnChatmwpXc46ZswYMXPmTKl9cXGxOH78uDh+/Ljw8fERL7/8sjh+/Lg4f/68XIdQr6wdjyVLlgitVis++OADi8s98/Pz5TqEemXteCxevFh89tlnIisrS5w+fVqsWLFCNGvWTGzcuFGuQ6h31o7JnZraVWPWjsf8+fPFp59+KrKyskRaWpoYOXKkcHJyEqdOnZLrEOqVteNx8eJF4erqKuLi4sS5c+fEvn37hKenp1i4cKFch1Dvavt/M7179xaxsbH2LtfmrB2PhIQE4erqKt577z3x448/is8++0wEBQWJJ554wqrvZRCqxurVq0Xbtm2FVqsVPXr0EF9//bW0r1+/fmLcuHHS++zsbAGgwqtfv372L9xGrBmPdu3aVToeCQkJ9i/cRqwZj9mzZ4vg4GDh5OQkWrVqJXr27Cl27twpQ9W2Zc2Y3KmpBSEhrBuPadOmSW29vLzEI488ItLT02Wo2nas/f04fPiwiIiIEI6OjqJ9+/Zi0aJF4vfff7dz1bZl7ZicPXtWABCfffaZnSu1D2vGo7S0VMybN08EBQUJJycn4e/vL55//nnx66+/WvWdKiGsmT8iIiIiajq4RoiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiEhG48ePx/Dhw+Uug0ixGISIqFLjx4+HSqWSXu7u7oiOjsaJEyfkLq1e3H5s5a/evXvb7PsuXLgAlUqFjIwMi+1vvfUWtm7darPvJaLqMQgRUZWio6Nx5coVXLlyBSkpKWjWrBmGDh0qd1n1ZsuWLdLxXblyBR9//HGl7UpLS21Wg06nQ8uWLW3WPxFVj0GIiKrk6OgIb29veHt7o2vXrpg5cyYuXbqEa9euYcCAAYiLi7Nof+3aNWi1WukJ0gEBAViwYAFGjRoFFxcX+Pn5Ye3atRafWblyJTp16gQXFxf4+/vj+eefR0FBgbT/p59+QkxMDFq1agUXFxfcf//92L9/PwDg119/xVNPPYXWrVvD2dkZISEh2LJlS42Pr2XLltLxeXt7Q6/XSzM3u3btQr9+/eDk5IR3330XBoMBo0aNgp+fH5o3b45OnTrhvffes+jPbDZj2bJlCA4OhqOjI9q2bYtFixYBAAIDAwEA3bp1g0qlQv/+/QFUPDVWXFyMqVOnwtPTE05OTujduzeOHTsm7U9NTYVKpUJKSgrCw8PRvHlz9OrVC+fOnavxcRPRHxiEiKhGCgoK8M477yA4OBju7u549tlnsWPHDhQXF0tt3nnnHfj5+WHAgAHStuXLl6NLly44fvw4Zs6ciRdffBGff/65tF+tVmPVqlU4deoUtm3bhi+++AIzZsyQ9k+ZMgXFxcX473//i++//x5Lly5FixYtAABz5szB6dOn8Z///AdnzpzB+vXr4eHhUS/HW17rmTNnEBUVhZs3byIsLAyffPIJTp48iYkTJ2LMmDE4evSo9JlZs2ZhyZIlUl07duyAl5cXAEjtDhw4gCtXrmDPnj2Vfu+MGTOwe/dubNu2Denp6QgODkZUVBSMRqNFu9mzZ+ONN97At99+i2bNmuHpp5+ul+MmUpx6eVwsETU548aNExqNRri4uAgXFxcBQPj4+Ii0tDQhhBC//fabaNWqldi1a5f0mc6dO4t58+ZJ79u1ayeio6Mt+o2NjRWDBw+u8nvff/994e7uLr3v1KmTRZ+3i4mJERMmTKjV8QEQTk5O0vG5uLiIDz/8UGRnZwsAIikp6a59DBkyREyfPl0IIUReXp5wdHQUGzdurLRteb/Hjx+32D5u3DgxbNgwIYQQBQUFwsHBQbz77rvS/pKSEuHr6yuWLVsmhBDiyy+/FADEgQMHpDaffPKJACB+++03a4aAiIQQnBEioir96U9/QkZGBjIyMnD06FFERUVh8ODB+Omnn+Dk5IQxY8Zg8+bNAID09HScPHkS48ePt+ijZ8+eFd6fOXNGen/gwAEMHDgQfn5+cHV1xZgxY2AwGFBUVAQAmDp1KhYuXIiHHnoICQkJFou1J0+ejJ07d6Jr166YMWMGDh8+bNXxvfnmm9LxZWRkYNCgQdK+8PBwi7ZlZWVYsGABOnXqBL1ejxYtWuDTTz/FxYsXAQBnzpxBcXExBg4caFUNt8vKykJpaSkeeughaZuDgwN69OhhMWYA0LlzZ+lnHx8fAMDVq1dr/d1ESsUgRERVcnFxQXBwMIKDg9G9e3f885//RGFhITZu3AgAePbZZ/H555/j8uXL2LJlCwYMGIB27drVuP8LFy5g6NCh6Ny5M3bv3o20tDRpDVFJSYn0HT/++CPGjBmD77//HuHh4Vi9ejUASKHspZdewi+//IKBAwfi5ZdfrvH3e3t7S8cXHBwMFxcXi2O/3fLly/HWW2/h1VdfxZdffomMjAxERUVJdTo7O9f4e+uDg4OD9LNKpQJwa40SEVmHQYiIakylUkGtVuO3334DAHTq1Anh4eHYuHEjduzYUek6la+//rrC+3vvvRcAkJaWBrPZjDfeeAMPPvgg7rnnHvzyyy8V+vD398ekSZOwZ88eTJ8+XQpiANC6dWuMGzcO77zzDpKSkvCPf/yjPg9ZcujQIQwbNgyjR49Gly5d0L59e/zwww/S/pCQEDg7O0sLxe+k1WoB3JpZqkpQUBC0Wi0OHTokbSstLcWxY8dw33331dORENHtmsldABE1XMXFxcjJyQFw6wqtNWvWoKCgADExMVKbZ599FnFxcXBxccGf//znCn0cOnQIy5Ytw/Dhw/H555/j/fffxyeffAIACA4ORmlpKVavXo2YmBgcOnQIGzZssPj8tGnTMHjwYNxzzz349ddf8eWXX0pBau7cuQgLC8P999+P4uJi7Nu3T9pX30JCQvDBBx/g8OHDaNWqFVauXInc3FwpoDg5OeHVV1/FjBkzoNVq8dBDD+HatWs4deoUnnnmGXh6esLZ2RnJyclo06YNnJycoNPpLL7DxcUFkydPxiuvvAK9Xo+2bdti2bJlKCoqwjPPPGOT4yJSOs4IEVGVkpOT4ePjAx8fH0RERODYsWN4//33pUu/AWDUqFFo1qwZRo0aBScnpwp9TJ8+Hd9++y26deuGhQsXYuXKlYiKigIAdOnSBStXrsTSpUvxwAMP4N1330ViYqLF58vKyjBlyhTce++9iI6Oxj333IN169YBuDXLMmvWLHTu3Bl9+/aFRqPBzp07bTIWr7/+OkJDQxEVFYX+/fvD29u7wh2h58yZg+nTp2Pu3Lm49957ERsbK63badasGVatWoW///3v8PX1xbBhwyr9niVLlmDEiBEYM2YMQkNDkZmZiU8//RStWrWyyXERKZ1KCCHkLoKIGq8LFy4gKCgIx44dQ2hoqMW+gIAATJs2DdOmTZOnOCKiu+CpMSKqldLSUhgMBrz++ut48MEHK4QgIqLGgKfGiKhWDh06BB8fHxw7dqzCuh65LV68GC1atKj0NXjwYLnLI6IGhKfGiKjJMRqNFe7EXM7Z2Rl+fn52roiIGioGISIiIlIsnhojIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsX6f/29dpK1tDLxAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_12.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLFklEQVR4nO3de1xU1cL/8e+ADCDCKKhclETxllYqXkjLtKKwo5RPdVK7aHaxOqF5KEu6iGaFlsfIS9bpl2J1LDtldjQfulB2Mk07XjJLzQtmlqBCDohHMGb//vBhdOQiIDAD+/N+veYVs/eaNWuvpplva6+9tsUwDEMAAAAm4uXuBgAAANQ3AhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAeKj09HRZLBbt27fP3U0BGh0CEGBi3377rRITE9W9e3cFBAToggsu0C233KKffvqpTNnBgwfLYrHIYrHIy8tLQUFB6tKli+644w59+umn1XrfFStWaNCgQWrdurWaNm2qDh066JZbblFGRkZtHVoZzz33nJYvX15m+9q1azV16lQdPXq0zt77bFOnTnX2pcViUdOmTdWtWzc9+eSTys/Pr5X3WLJkidLS0mqlLqAxIgABJjZz5ky9//77uvrqq/XSSy9p3Lhx+ve//62YmBht27atTPm2bdvqzTff1BtvvKEXXnhB119/vdauXatrr71WI0aM0MmTJ8/5nrNmzdL1118vi8Wi5ORkvfjii7rpppu0a9cuvfPOO3VxmJIqD0DTpk2r1wBUasGCBXrzzTc1e/Zsde3aVc8++6yGDBmi2rhFIwEIqFwTdzcAgPskJSVpyZIlslqtzm0jRozQxRdfrBkzZuitt95yKW+z2XT77be7bJsxY4YmTJigl19+WVFRUZo5c2aF7/fHH39o+vTpuuaaa/TJJ5+U2X/o0KHzPCLPcfz4cTVt2rTSMjfffLNatmwpSbr//vt10003admyZfrmm2/Uv3//+mgmYFqMAAEmNmDAAJfwI0mdOnVS9+7dtX379irV4e3trTlz5qhbt26aN2+e7HZ7hWWPHDmi/Px8XXbZZeXub926tcvzEydOaOrUqercubP8/PwUHh6uG2+8UXv27HGWmTVrlgYMGKCQkBD5+/urd+/eeu+991zqsVgsKiws1OLFi52nne68805NnTpVkyZNkiS1b9/eue/MOTdvvfWWevfuLX9/fwUHB2vkyJH65ZdfXOofPHiwLrroIm3cuFFXXHGFmjZtqscff7xK/Xemq666SpKUlZVVabmXX35Z3bt3l6+vryIiIvTggw+6jGANHjxYH330kX7++WfnMUVFRVW7PUBjxggQABeGYSgnJ0fdu3ev8mu8vb01atQoPfXUU1qzZo2GDh1abrnWrVvL399fK1as0Pjx4xUcHFxhnSUlJRo2bJgyMzM1cuRIPfTQQyooKNCnn36qbdu2KTo6WpL00ksv6frrr9dtt92m4uJivfPOO/rzn/+slStXOtvx5ptv6p577lG/fv00btw4SVJ0dLQCAgL0008/6e2339aLL77oHI1p1aqVJOnZZ5/VU089pVtuuUX33HOPDh8+rLlz5+qKK67Q5s2b1bx5c2d7c3Nzdd1112nkyJG6/fbbFRoaWuX+K1Ua7EJCQiosM3XqVE2bNk1xcXF64IEHtHPnTi1YsEDffvutvv76a/n4+OiJJ56Q3W7XgQMH9OKLL0qSmjVrVu32AI2aAQBnePPNNw1Jxuuvv+6yfdCgQUb37t0rfN0HH3xgSDJeeumlSuufMmWKIckICAgwrrvuOuPZZ581Nm7cWKbcwoULDUnG7Nmzy+xzOBzOv48fP+6yr7i42LjooouMq666ymV7QECAMWbMmDJ1vfDCC4YkIysry2X7vn37DG9vb+PZZ5912f79998bTZo0cdk+aNAgQ5LxyiuvVHjcZ0pJSTEkGTt37jQOHz5sZGVlGa+++qrh6+trhIaGGoWFhYZhGMaiRYtc2nbo0CHDarUa1157rVFSUuKsb968eYYkY+HChc5tQ4cONdq1a1el9gBmxCkwAE47duzQgw8+qP79+2vMmDHVem3pCENBQUGl5aZNm6YlS5aoV69e+vjjj/XEE0+od+/eiomJcTnt9v7776tly5YaP358mTosFovzb39/f+ffv//+u+x2uwYOHKhNmzZVq/1nW7ZsmRwOh2655RYdOXLE+QgLC1OnTp30xRdfuJT39fXV2LFjq/UeXbp0UatWrdS+fXvdd9996tixoz766KMK5w599tlnKi4u1sSJE+Xldfrr+95771VQUJA++uij6h8oYFKcAgMgScrOztbQoUNls9n03nvvydvbu1qvP3bsmCQpMDDwnGVHjRqlUaNGKT8/X+vXr1d6erqWLFmihIQEbdu2TX5+ftqzZ4+6dOmiJk0q/5pauXKlnnnmGW3ZskVFRUXO7WeGpJrYtWuXDMNQp06dyt3v4+Pj8rxNmzZl5lOdy/vvv6+goCD5+Piobdu2ztN6Ffn5558lnQpOZ7JarerQoYNzP4BzIwABkN1u13XXXaejR4/qq6++UkRERLXrKL1svmPHjlV+TVBQkK655hpdc8018vHx0eLFi7V+/XoNGjSoSq//6quvdP311+uKK67Qyy+/rPDwcPn4+GjRokVasmRJtY/hTA6HQxaLRf/7v/9bbhg8e07NmSNRVXXFFVc45x0BqF8EIMDkTpw4oYSEBP3000/67LPP1K1bt2rXUVJSoiVLlqhp06a6/PLLa9SOPn36aPHixTp48KCkU5OU169fr5MnT5YZbSn1/vvvy8/PTx9//LF8fX2d2xctWlSmbEUjQhVtj46OlmEYat++vTp37lzdw6kT7dq1kyTt3LlTHTp0cG4vLi5WVlaW4uLinNvOdwQMaOyYAwSYWElJiUaMGKF169bpn//8Z43WnikpKdGECRO0fft2TZgwQUFBQRWWPX78uNatW1fuvv/93/+VdPr0zk033aQjR45o3rx5Zcoa/7dQoLe3tywWi0pKSpz79u3bV+6ChwEBAeUudhgQECBJZfbdeOON8vb21rRp08osTGgYhnJzc8s/yDoUFxcnq9WqOXPmuLTp9ddfl91ud7n6LiAgoNIlCQCzYwQIMLGHH35Y//rXv5SQkKC8vLwyCx+eveih3W53ljl+/Lh2796tZcuWac+ePRo5cqSmT59e6fsdP35cAwYM0KWXXqohQ4YoMjJSR48e1fLly/XVV19p+PDh6tWrlyRp9OjReuONN5SUlKQNGzZo4MCBKiws1Geffaa//OUvuuGGGzR06FDNnj1bQ4YM0a233qpDhw5p/vz56tixo7Zu3ery3r1799Znn32m2bNnKyIiQu3bt1dsbKx69+4tSXriiSc0cuRI+fj4KCEhQdHR0XrmmWeUnJysffv2afjw4QoMDFRWVpY++OADjRs3To888sh59X91tWrVSsnJyZo2bZqGDBmi66+/Xjt37tTLL7+svn37uvz76t27t5YuXaqkpCT17dtXzZo1U0JCQr22F/Bo7rwEDYB7lV6+XdGjsrLNmjUzOnXqZNx+++3GJ598UqX3O3nypPHaa68Zw4cPN9q1a2f4+voaTZs2NXr16mW88MILRlFRkUv548ePG0888YTRvn17w8fHxwgLCzNuvvlmY8+ePc4yr7/+utGpUyfD19fX6Nq1q7Fo0SLnZeZn2rFjh3HFFVcY/v7+hiSXS+KnT59utGnTxvDy8ipzSfz7779vXH755UZAQIAREBBgdO3a1XjwwQeNnTt3uvRNZUsEnK20fYcPH6603NmXwZeaN2+e0bVrV8PHx8cIDQ01HnjgAeP33393KXPs2DHj1ltvNZo3b25I4pJ44CwWw6iFm84AAAA0IMwBAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApsNCiOVwOBz67bffFBgYyHLyAAA0EIZhqKCgQBEREfLyqnyMhwBUjt9++02RkZHubgYAAKiBX375RW3btq20DAGoHIGBgZJOdWBl9zUCAACeIz8/X5GRkc7f8coQgMpRetorKCiIAAQAQANTlekrTIIGAACmQwACAACmQwACAACmwxyg81BSUqKTJ0+6uxmNlo+Pj7y9vd3dDABAI0QAqgHDMJSdna2jR4+6uymNXvPmzRUWFsZ6TACAWkUAqoHS8NO6dWs1bdqUH+c6YBiGjh8/rkOHDkmSwsPD3dwiAEBjQgCqppKSEmf4CQkJcXdzGjV/f39J0qFDh9S6dWtOhwEAag2ToKupdM5P06ZN3dwScyjtZ+ZaAQBqEwGohjjtVT/oZwBAXeAUGAAAqFO5ubkqLi6ucL/Vaq33aSUEIAAAUGdyc3M1b968c5ZLTEys1xDEKTATufPOO2WxWGSxWOTj46PQ0FBdc801WrhwoRwOR5XrSU9PV/PmzeuuoQCARuPskR+7PVBZWVGy2wMrLVfXGAGqZ+4eBhwyZIgWLVqkkpIS5eTkKCMjQw899JDee+89/etf/1KTJnwkAAB1Y9OmXlqxYpgMw0sWi0MJCSsVE7PZLW3h164eecIwoK+vr8LCwiRJbdq0UUxMjC699FJdffXVSk9P1z333KPZs2dr0aJF2rt3r4KDg5WQkKDnn39ezZo10+rVqzV27FhJpycop6SkaOrUqXrzzTf10ksvaefOnQoICNBVV12ltLQ0tW7duk6OBQDQcNjtgc7wI0mG4aUVK4YpOnq3bLaCem8Pp8DqUVWH9+p7GPCqq65Sjx49tGzZMkmSl5eX5syZox9++EGLFy/W559/rkcffVSSNGDAAKWlpSkoKEgHDx7UwYMH9cgjj0g6dan69OnT9d1332n58uXat2+f7rzzzno9FgCAZ8rLC3GGn1KG4aW8vGC3tIcRIEiSunbtqq1bt0qSJk6c6NweFRWlZ555Rvfff79efvllWa1W2Ww2WSwW50hSqbvuusv5d4cOHTRnzhz17dtXx44dU7NmzerlOAAAnik4OFcWi8MlBFksDgUH57mlPR4xAjR//nxFRUXJz89PsbGx2rBhQ4Vlly1bpj59+qh58+YKCAhQz5499eabb7qUOXOyb+ljyJAhdX0YDZphGM5TWp999pmuvvpqtWnTRoGBgbrjjjuUm5ur48ePV1rHxo0blZCQoAsuuECBgYEaNGiQJGn//v113n4AgGez2QqUkLBSFsupi25K5wC54/SX5AEjQEuXLlVSUpJeeeUVxcbGKi0tTfHx8dq5c2e5c0eCg4P1xBNPqGvXrrJarVq5cqXGjh2r1q1bKz4+3lmudLJvKV9f33o5noZq+/btat++vfbt26dhw4bpgQce0LPPPqvg4GCtWbNGd999t4qLiytcAbuwsFDx8fGKj4/XP/7xD7Vq1Ur79+9XfHx8vZ/SAwB4ppiYzYqO3q28vGAFB+e5LfxIHhCAZs+erXvvvdc5sfaVV17RRx99pIULF2ry5Mllyg8ePNjl+UMPPaTFixdrzZo1LgHozMm+qNznn3+u77//Xn/961+1ceNGORwO/e1vf5OX16kBwnfffdelvNVqVUlJicu2HTt2KDc3VzNmzFBkZKQk6T//+U/9HAAAwGNZrVaX5zZbQbnB5+xydc2tAai4uFgbN25UcnKyc5uXl5fi4uK0bt26c77eMAx9/vnn2rlzp2bOnOmyb/Xq1WrdurVatGihq666Ss888ww3L5VUVFSk7Oxsl8vgU1NTNWzYMI0ePVrbtm3TyZMnNXfuXCUkJOjrr7/WK6+84lJHVFSUjh07pszMTPXo0UNNmzbVBRdcIKvVqrlz5+r+++/Xtm3bNH36dDcdJQDAU4SEhCgxMZGVoM905MgRlZSUKDQ01GV7aGioduzYUeHr7Ha72rRpo6KiInl7e+vll1/WNddc49w/ZMgQ3XjjjWrfvr327Nmjxx9/XNddd53WrVtX7h3Fi4qKVFRU5Hyen59fC0fnmTIyMhQeHq4mTZqoRYsW6tGjh+bMmaMxY8bIy8tLPXr00OzZszVz5kwlJyfriiuuUGpqqkaPHu2sY8CAAbr//vs1YsQI5ebmOi+DT09P1+OPP645c+YoJiZGs2bN0vXXX+/GowUAeAJPHICwGIZhuOvNf/vtN7Vp00Zr165V//79ndsfffRRffnll1q/fn25r3M4HNq7d69zFGL69Olavnx5mdNjpfbu3avo6Gjn5N6zTZ06VdOmTSuz3W63KygoyGXbiRMnlJWVpfbt28vPz68aR+sZ6wA1NOfT3wAAc8nPz5fNZiv39/tsbh0Batmypby9vZWTk+OyPScnp9L5O15eXurYsaMkqWfPntq+fbtSU1MrDEAdOnRQy5YttXv37nIDUHJyspKSkpzP8/PznfNYapOnDgMCAGA2bg1AVqtVvXv3VmZmpoYPHy7p1OhOZmamEhMTq1yPw+FwOYV1tgMHDig3N1fh4eHl7vf19a23q8QINwAAuJ/brwJLSkrSmDFj1KdPH/Xr109paWkqLCx0XhU2evRotWnTRqmpqZKk1NRU9enTR9HR0SoqKtKqVav05ptvasGCBZKkY8eOadq0abrpppsUFhamPXv26NFHH1XHjh1drhIDAADm5fYANGLECB0+fFhTpkxRdna2evbsqYyMDOfE6P379zsvx5ZOrTfzl7/8RQcOHJC/v7+6du2qt956SyNGjJAkeXt7a+vWrVq8eLGOHj2qiIgIXXvttZo+fTprAQEAAElungTtqSqbRMWk3PpFfwMAqqrBTIIG6lNubi4T0AEAkghAMAmWIAAAnMkjboYK1LWzR37s9kBlZUXJbg+stBwAoHFiBAims2lTL61YMUyG4eW8G3FMzGZ3NwsAUI8YAUKtWb16tSwWi44ePVrl10RFRSktLa3O2nQ2uz3QGX4kyTC8tGLFsDIjQQCAxo0AZCJ33nmnLBaL7r///jL7HnzwQVksFt15553137B6lJcX4gw/pQzDS3l5wW5qEQDAHQhAJhMZGal33nlH//3vf53bTpw4oSVLluiCCy5wY8vqR3BwriwWh8s2i8Wh4OA8N7UIAOAOBCCTiYmJUWRkpJYtW+bctmzZMl1wwQXq1auXc1tRUZEmTJig1q1by8/PT5dffrm+/fZbl7pWrVqlzp07y9/fX1deeaX27dtX5v3WrFmjgQMHyt/fX5GRkZowYYIKCwvr7PjOxWYrUELCSmcIKp0DZLMVuK1NAID6RwByowMHpC++OPXP+nTXXXdp0aJFzucLFy503nqk1KOPPqr3339fixcv1qZNm5y3EsnLOzVS8ssvv+jGG29UQkKCtmzZonvuuUeTJ092qWPPnj0aMmSIbrrpJm3dulVLly7VmjVrqnWft7oQE7NZEyemacyYdE2cmMYEaAAwIQKQm7z+utSunXTVVaf++frr9ffet99+u9asWaOff/5ZP//8s77++mvdfvvtzv2FhYVasGCBXnjhBV133XXq1q2bXnvtNfn7++v1/2voggULFB0drb/97W/q0qWLbrvttjLzh1JTU3Xbbbdp4sSJ6tSpkwYMGKA5c+bojTfe0IkTJ+rvgHVqkcMz2WwFat/+5zIjP2eXAwA0TlwG7wYHDkjjxkmO/5uK4nBI990nxcdLbdvW/fu3atVKQ4cOVXp6ugzD0NChQ9WyZUvn/j179ujkyZO67LLLnNt8fHzUr18/bd++XZK0fft2xcbGutTbv39/l+ffffedtm7dqn/84x/ObYZhyOFwKCsrSxdeeGFdHF65QkJClJiYyErQAABJBCC32LXrdPgpVVIi7d5dPwFIOnUarPRU1Pz58+vkPY4dO6b77rtPEyZMKLPPHROuCTcAgFIEIDfo1Eny8nINQd7eUseO9deGIUOGqLi4WBaLRfHx8S77oqOjZbVa9fXXX6tdu3aSpJMnT+rbb7/VxIkTJUkXXnih/vWvf7m87ptvvnF5HhMTox9//FEd6/PAAACoAuYAuUHbttLf/34q9Ein/vnqq/U3+nPqPb21fft2/fjjj/Iubcj/CQgI0AMPPKBJkyYpIyNDP/74o+69914dP35cd999tyTp/vvv165duzRp0iTt3LlTS5YsUXp6uks9jz32mNauXavExERt2bJFu3bt0ocffuj2SdAAADAC5CZ3331qzs/u3adGfuoz/JQKCgqqcN+MGTPkcDh0xx13qKCgQH369NHHH3+sFi1aSDp1Cuv999/XX//6V82dO1f9+vXTc889p7vuustZxyWXXKIvv/xSTzzxhAYOHCjDMBQdHa0RI0bU+bEBAFAZi2EYhrsb4Wny8/Nls9lkt9vLhIQTJ04oKytL7du3l5+fn5taaB70NwCgqir7/T4bp8AAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIBqiLnj9YN+BgDUBQJQNfn4+EiSjh8/7uaWmENpP5f2OwAAtYF1gKrJ29tbzZs316FDhyRJTZs2lcVicXOrGh/DMHT8+HEdOnRIzZs3L7NYIwAA54MAVANhYWGS5AxBqDvNmzd39jcAALWFAFQDFotF4eHhat26tU6ePOnu5jRaPj4+jPwAAOoEAeg8eHt78wMNAEADxCRoAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOh4RgObPn6+oqCj5+fkpNjZWGzZsqLDssmXL1KdPHzVv3lwBAQHq2bOn3nzzTZcyhmFoypQpCg8Pl7+/v+Li4rRr1666PgwAANBAuD0ALV26VElJSUpJSdGmTZvUo0cPxcfH69ChQ+WWDw4O1hNPPKF169Zp69atGjt2rMaOHauPP/7YWeb555/XnDlz9Morr2j9+vUKCAhQfHy8Tpw4UV+HBQAAPJjFMAzDnQ2IjY1V3759NW/ePEmSw+FQZGSkxo8fr8mTJ1epjpiYGA0dOlTTp0+XYRiKiIjQww8/rEceeUSSZLfbFRoaqvT0dI0cOfKc9eXn58tms8lutysoKKjmBwcAAOpNdX6/m9RTm8pVXFysjRs3Kjk52bnNy8tLcXFxWrdu3TlfbxiGPv/8c+3cuVMzZ86UJGVlZSk7O1txcXHOcjabTbGxsVq3bl25AaioqEhFRUXO5/n5+edzWAAAk8rNzVVxcXGF+61Wq0JCQuqxRaiIWwPQkSNHVFJSotDQUJftoaGh2rFjR4Wvs9vtatOmjYqKiuTt7a2XX35Z11xzjSQpOzvbWcfZdZbuO1tqaqqmTZt2PocCADC53Nxc59mMyiQmJtZaCCJw1ZxbA1BNBQYGasuWLTp27JgyMzOVlJSkDh06aPDgwTWqLzk5WUlJSc7n+fn5ioyMrKXWAgDM4OwgYrcHKi8vRMHBubLZCiosV1NnB66K3q82A1dj4tYA1LJlS3l7eysnJ8dle05OjsLCwip8nZeXlzp27ChJ6tmzp7Zv367U1FQNHjzY+bqcnByFh4e71NmzZ89y6/P19ZWvr+95Hg0AAKds2tRLK1YMk2F4yWJxKCFhpWJiNtfqe5wZpCp7v9oKXI2NW68Cs1qt6t27tzIzM53bHA6HMjMz1b9//yrX43A4nHN42rdvr7CwMJc68/PztX79+mrVCQBATdjtgc4wIkmG4aUVK4bJbg9sFO/XWLj9FFhSUpLGjBmjPn36qF+/fkpLS1NhYaHGjh0rSRo9erTatGmj1NRUSafm6/Tp00fR0dEqKirSqlWr9Oabb2rBggWSJIvFookTJ+qZZ55Rp06d1L59ez311FOKiIjQ8OHD3XWYAACTyMsLcYaRUobhpby8YJdTUw31/RoLtwegESNG6PDhw5oyZYqys7PVs2dPZWRkOCcx79+/X15ep//FFhYW6i9/+YsOHDggf39/de3aVW+99ZZGjBjhLPPoo4+qsLBQ48aN09GjR3X55ZcrIyNDfn5+9X58AABzCQ7OlcXicAklFotDwcF5jeL9Ggu3rwPkiVgHCABQXQcPHtTf//53SZXPyRk3bpzLHNWG8n4NQYNZBwgAgMYoJmazoqN3Ky8vWMHBeXV+Kqq+368xIAABAFALrFary3ObraDcIHJ2udpS0fuhfAQgAABqQUhIiBITE+ttYcKqBqm6ClwNHXOAysEcIABAQ8BK0K6YAwQAgAmYKdzUNrcuhAgAAOAOBCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6HhGA5s+fr6ioKPn5+Sk2NlYbNmyosOxrr72mgQMHqkWLFmrRooXi4uLKlL/zzjtlsVhcHkOGDKnrwwAAAA2E2wPQ0qVLlZSUpJSUFG3atEk9evRQfHy8Dh06VG751atXa9SoUfriiy+0bt06RUZG6tprr9Wvv/7qUm7IkCE6ePCg8/H222/Xx+EAAIAGwGIYhuHOBsTGxqpv376aN2+eJMnhcCgyMlLjx4/X5MmTz/n6kpIStWjRQvPmzdPo0aMlnRoBOnr0qJYvX16jNuXn58tms8lutysoKKhGdQAAgPpVnd9vt44AFRcXa+PGjYqLi3Nu8/LyUlxcnNatW1elOo4fP66TJ08qODjYZfvq1avVunVrdenSRQ888IByc3MrrKOoqEj5+fkuDwAA0Hi5NQAdOXJEJSUlCg0NddkeGhqq7OzsKtXx2GOPKSIiwiVEDRkyRG+88YYyMzM1c+ZMffnll7ruuutUUlJSbh2pqamy2WzOR2RkZM0PCgAAeLwm7m7A+ZgxY4beeecdrV69Wn5+fs7tI0eOdP598cUX65JLLlF0dLRWr16tq6++ukw9ycnJSkpKcj7Pz88nBAEA0Ii5dQSoZcuW8vb2Vk5Ojsv2nJwchYWFVfraWbNmacaMGfrkk090ySWXVFq2Q4cOatmypXbv3l3ufl9fXwUFBbk8AABA4+XWAGS1WtW7d29lZmY6tzkcDmVmZqp///4Vvu7555/X9OnTlZGRoT59+pzzfQ4cOKDc3FyFh4fXSrsBAEDD5vbL4JOSkvTaa69p8eLF2r59ux544AEVFhZq7NixkqTRo0crOTnZWX7mzJl66qmntHDhQkVFRSk7O1vZ2dk6duyYJOnYsWOaNGmSvvnmG+3bt0+ZmZm64YYb1LFjR8XHx7vlGAEAgGdx+xygESNG6PDhw5oyZYqys7PVs2dPZWRkOCdG79+/X15ep3PaggULVFxcrJtvvtmlnpSUFE2dOlXe3t7aunWrFi9erKNHjyoiIkLXXnutpk+fLl9f33o9NgAA4Jncvg6QJ2IdIAAAGp4Gsw4QAACAOxCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6XhEAJo/f76ioqLk5+en2NhYbdiwocKyr732mgYOHKgWLVqoRYsWiouLK1PeMAxNmTJF4eHh8vf3V1xcnHbt2lXXhwEAABoItwegpUuXKikpSSkpKdq0aZN69Oih+Ph4HTp0qNzyq1ev1qhRo/TFF19o3bp1ioyM1LXXXqtff/3VWeb555/XnDlz9Morr2j9+vUKCAhQfHy8Tpw4UV+HBZhCbm6uDh48WOEjNzfX3U0EgHJZDMMw3NmA2NhY9e3bV/PmzZMkORwORUZGavz48Zo8efI5X19SUqIWLVpo3rx5Gj16tAzDUEREhB5++GE98sgjkiS73a7Q0FClp6dr5MiR56wzPz9fNptNdrtdQUFB53eAQCOVm5vr/O+2MomJiQoJCamHFgEwu+r8frt1BKi4uFgbN25UXFycc5uXl5fi4uK0bt26KtVx/PhxnTx5UsHBwZKkrKwsZWdnu9Rps9kUGxtbYZ1FRUXKz893eQCoXHFxsctzuz1QWVlRstsDKy0HAJ6gSW1UkpWVpcjISDVpUr3qjhw5opKSEoWGhrpsDw0N1Y4dO6pUx2OPPaaIiAhn4MnOznbWcXadpfvOlpqaqmnTplWr7QBO27Spl1asGCbD8JLF4lBCwkrFxGx2d7MAoEK1MgLUpUsXt0wynjFjht555x198MEH8vPzq3E9ycnJstvtzscvv/xSi60EGje7PdAZfiTJMLy0YsWwMiNBAOBJqjVkc+ONN5a7vaSkRBMmTFBg4KkvvGXLllWpvpYtW8rb21s5OTku23NychQWFlbpa2fNmqUZM2bos88+0yWXXOLcXvq6nJwchYeHu9TZs2fPcuvy9fWVr69vldoMwFVeXogz/JQyDC/l5QXLZitwU6sAoHLVGgFavny58vLyZLPZXB6S1KxZM5fnVWG1WtW7d29lZmY6tzkcDmVmZqp///4Vvu7555/X9OnTlZGRoT59+rjsa9++vcLCwlzqzM/P1/r16yutE0DNBAfnymJxuGyzWBwKDs5zU4sA4NyqNQK0ZMkSTZo0SWPGjNHYsWOd29966y09++yz6tatW7UbkJSUpDFjxqhPnz7q16+f0tLSVFhY6Kx/9OjRatOmjVJTUyVJM2fO1JQpU7RkyRJFRUU55/U0a9ZMzZo1k8Vi0cSJE/XMM8+oU6dOat++vZ566ilFRERo+PDh1W4fgMrZbAVKSFhZZg4Qoz8APFm1AtDIkSN16aWX6vbbb9fKlSv1//7f/1OLFi3OqwEjRozQ4cOHNWXKFGVnZ6tnz57KyMhwTmLev3+/vLxOD1QtWLBAxcXFuvnmm13qSUlJ0dSpUyVJjz76qAoLCzVu3DgdPXpUl19+uTIyMs5rnhCAisXEbFZ09G7l5QUrODiP8APA49VoHSCHw6Fp06Zp0aJFeu2115SQkKAtW7bUaATIE7EOEHBurAMEwNNU5/f7vBZCXLNmjUaPHq2ff/5Z33//PQEIMJnc3NxK1/mxWq2EHwD1pjq/3+e1DtDll1+urVu3as+ePYqOjj6fqgA0QIQbAA3VeS+E2KxZM/Xo0aM22gIAAFAvqhWAevXqJYvFcs5ymzZtqnGDAAAA6lq1AtCZl5EbhqHU1FTdf//9zvtwAQAANATnNQk6MDBQ3333nTp06FCbbXI7JkEDANDwNJi7wQMAALgDAQgAAJgOAQgAAJhOtSZBz5kzx+X5H3/8ofT0dLVs2dJl+4QJE86/ZQAAAHWkWpOg27dvf+4KLRbt3bv3vBrlbkyCBgCg4amzlaCzsrLOq2EAAACeoFpzgD7//HN169ZN+fn5ZfbZ7XZ1795dX331Va01DgDgmXJzc3Xw4MEKH7m5ue5uIlCpao0ApaWl6d577y13WMlms+m+++7T7NmzNXDgwFprIADAs+Tm5mrevHnnLJeYmMj94uCxqjUC9N1332nIkCEV7r/22mu1cePG824UAMBzFRcXuzy32wOVlRUluz2w0nKAJ6nWCFBOTo58fHwqrqxJEx0+fPi8GwUAaBg2beqlFSuGyTC8ZLE4lJCwUjExm93dLOCcqjUC1KZNG23btq3C/Vu3blV4ePh5NwoA4Pns9kBn+JEkw/DSihXDyowEAZ6oWgHoT3/6k5566imdOHGizL7//ve/SklJ0bBhw2qtcQAAz5WXF+IMP6UMw0t5edwgG56vWqfAnnzySS1btkydO3dWYmKiunTpIknasWOH5s+fr5KSEj3xxBN10tCGLDc3t9Jz4VarlYmCABqc4OBcWSwOlxBksTgUHJznxlYBVVOtABQaGqq1a9fqgQceUHJyskrXULRYLIqPj9f8+fMVGhpaJw1tqLhaAkBjZbMVKCFhZZk5QDZbgbubBpxTtQKQJLVr106rVq3S77//rt27d8swDHXq1EktWrSoi/Y1eOVdLZGXF6Lg4FyXLwmulgDQEMXEbFZ09G7l5QUrODiP8IMGo9oBqFSLFi3Ut2/f2mxLo8fVEgAaA6vV6vLcZisoN/icXQ7wJDUOQKieiq6WiI7ezf8xAWhQQkJClJiYyNxGNGgEoHpS2dUSBCAADQ3hBg1dtS6DR82VXi1xJq6WAADAPQhA9aT0aonSEMTVEgAAuA+nwOoRV0sAAOAZCEB1jKslAADwPASgOsbVEoD7sRo7gLMRgOoBX6yA+5y9GntFi5GyGjtgLgQgAI3amSM/lS1GymrsgLlwFRgAU6hoMVK7PdDNLQPgDgQgAKZQ2WKkAMyHAATAFFiMFMCZCEAATIHFSAGciUnQAEyDxUgBlCIAATCVihYjBWAunAID0KhVdZV1VmMHzIURIACNGquxAyiP20eA5s+fr6ioKPn5+Sk2NlYbNmyosOwPP/ygm266SVFRUbJYLEpLSytTZurUqbJYLC6Prl271uERAPB0ISEhCg8Pr/BB+AHMx60BaOnSpUpKSlJKSoo2bdqkHj16KD4+XocOHSq3/PHjx9WhQwfNmDFDYWFhFdbbvXt3HTx40PlYs2ZNXR0CAABogNwagGbPnq17771XY8eOVbdu3fTKK6+oadOmWrhwYbnl+/btqxdeeEEjR46Ur69vhfU2adJEYWFhzkfLli3r6hAAAEAD5LYAVFxcrI0bNyouLu50Y7y8FBcXp3Xr1p1X3bt27VJERIQ6dOig2267Tfv376+0fFFRkfLz810eAACg8XJbADpy5IhKSkoUGhrqsj00NFTZ2dk1rjc2Nlbp6enKyMjQggULlJWVpYEDB6qgoOLLXlNTU2Wz2ZyPyMjIGr8/AADwfG6fBF3brrvuOv35z3/WJZdcovj4eK1atUpHjx7Vu+++W+FrkpOTZbfbnY9ffvmlHlsMAADqm9sug2/ZsqW8vb2Vk5Pjsj0nJ6fSCc7V1bx5c3Xu3Fm7d++usIyvr2+lc4oAAEDj4rYRIKvVqt69eyszM9O5zeFwKDMzU/3796+19zl27Jj27Nmj8PDwWqsTAAA0bG5dCDEpKUljxoxRnz591K9fP6WlpamwsFBjx46VJI0ePVpt2rRRamqqpFMTp3/88Ufn37/++qu2bNmiZs2aqWPHjpKkRx55RAkJCWrXrp1+++03paSkyNvbW6NGjXLPQQIAAI/j1gA0YsQIHT58WFOmTFF2drZ69uypjIwM58To/fv3y8vr9CDVb7/9pl69ejmfz5o1S7NmzdKgQYO0evVqSdKBAwc0atQo5ebmqlWrVrr88sv1zTffqFWrVvV6bAAAwHNZDMMw3N0IT5Ofny+bzSa73a6goCB3NwcAAFRBdX6/G91VYAAAAOdCAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKbj1nuBoXHIzc1VcXFxhfutVqtCQkLqsUUAAFSOAITzkpubq3nz5jmf2+2ByssLUXBwrmy2Auf2xMREQhAAwGMQgHBezhz52bSpl1asGCbD8JLF4lBCwkrFxGwuUw4AAHdjDhBqhd0e6Aw/kmQYXlqxYpjs9kA3twwAgLIIQKgVeXkhzvBTyjC8lJcX7KYWAQBQMQIQakVwcK4sFofLNovFoeDgPDe1CACAihGAUCtstgIlJKx0hqDSOUBnToQGAMBTMAkatSYmZrOio3crLy9YwcF5hB8AgMciAKFW2WwFBB8AgMfjFBjOi9VqrdVyAADUB0aAcF5CQkKUmJjIStAAgAaFAITzRrgBADQ0nAIDAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACm4/YANH/+fEVFRcnPz0+xsbHasGFDhWV/+OEH3XTTTYqKipLFYlFaWtp51wkAAMzHrQFo6dKlSkpKUkpKijZt2qQePXooPj5ehw4dKrf88ePH1aFDB82YMUNhYWG1UicAADAfi2EYhrvePDY2Vn379tW8efMkSQ6HQ5GRkRo/frwmT55c6WujoqI0ceJETZw4sdbqLJWfny+bzSa73a6goKDqHxgAAKh31fn9blJPbSqjuLhYGzduVHJysnObl5eX4uLitG7dunqts6ioSEVFRc7n+fn5NXp/AAAagtzcXBUXF1e432q1KiQkpB5bVP/cFoCOHDmikpIShYaGumwPDQ3Vjh076rXO1NRUTZs2rUbvCQBAQ5Kbm+s8S1KZxMTERh2C3D4J2hMkJyfLbrc7H7/88ou7mwQAQJ04e+THbg9UVlaU7PbASss1Nm4bAWrZsqW8vb2Vk5Pjsj0nJ6fCCc51Vaevr698fX1r9J4AADRUmzb10ooVw2QYXrJYHEpIWKmYmM3ubla9cNsIkNVqVe/evZWZmenc5nA4lJmZqf79+3tMnQAANEZ2e6Az/EiSYXhpxYphZUaCGiu3jQBJUlJSksaMGaM+ffqoX79+SktLU2FhocaOHStJGj16tNq0aaPU1FRJp4bjfvzxR+ffv/76q7Zs2aJmzZqpY8eOVaoTAABIeXkhzvBTyjC8lJcXLJutwE2tqj9uDUAjRozQ4cOHNWXKFGVnZ6tnz57KyMhwTmLev3+/vLxO/8v57bff1KtXL+fzWbNmadasWRo0aJBWr15dpToBAIAUHJwri8XhEoIsFoeCg/Pc2Kr649Z1gDwV6wABABqrgwcP6u9//7ukyucAjRs3TuHh4e5sarU1iHWAAACAe8XEbFZ09G7l5QUrODjPFKe+ShGAAAAwEavV6vLcZisoN/icXa6xIQDBbViJFADqX0hIiBITE03//UsAgluwEikAuA/fq6wEDTdhJVIAgDsxAgS3M/NKpAAA92AECG5l9pVIAQDuQQCCW1W2EikAAHWFAAS3Kl2J9ExmWokUAOAeBCC4lc1WoISElc4QVDoHyEyLcQEA6h+ToOF2Zl6JFJ6NtaqAxosA5MEa85cvK5HC07FWFdC4EYA8VGP/8mUlUni68taqyssLUXBwrktYZ60qoGEiAHkoM3z5Em7QULBWFdD4EIAaAL58AfepaK2q6OjdzFcDGjCuAvNwLBQIuBdrVQGNEwHIw/HlC7gXa1UBjROnwDxc6ZfvmSGIL1+g/pSuVXX2aWhOf8ETNOarhesaAchDHT16VNK5v3yPHj2q8PBwN7YUaPxYqwqeqLFfLVzXCEAe6o8//nD+HROzWa1bZ+uXXy5QZOR+tW17sNxyAGoPa1XB01X1KuCGfLVwXSIAeSgfHx/n35VdBXZmOQC1h7Wq0NBUtFwKykcA8lA2m03SuS/BLS0HoPYRbtBQsFxK9XEVmIfjKjAAQGVYLqVmCEAejktwAQCV4X+Ua4YA5OFKrwIrDUFcggsAOBP/o1wzzAFqALgEFwBQEdaqqhkCkIfiElwAQGXO/P6v7H+U+Z0on8UwDMPdjfA0+fn5stlsstvtCgoKcls7WOETAFAZfidcVef3mxEgD2amDy0AoPr4nag5JkEDAADTIQABAADT4RQYAACoU544V4kABAAA6oyn3rWeU2AAAKDOnD3yY7cHKisrqsytOur7rvWMAAEAgHrhSTdtZQQIAADUOU+7aSsBCAAA1DlPu2krAQgAANQ5T7tpKwEIAADUudKbtpaGIHfftNUjAtD8+fMVFRUlPz8/xcbGasOGDZWW/+c//6muXbvKz89PF198sVatWuWy/84775TFYnF5DBkypC4PAQAAnENMzGZNnJimMWPSNXFimtsmQEseEICWLl2qpKQkpaSkaNOmTerRo4fi4+N16NChcsuvXbtWo0aN0t13363Nmzdr+PDhGj58uLZt2+ZSbsiQITp48KDz8fbbb9fH4QAAgDOcfTd6m61A7dv/XGbkp77vWu/2u8HHxsaqb9++zkWSHA6HIiMjNX78eE2ePLlM+REjRqiwsFArV650brv00kvVs2dPvfLKK5JOjQAdPXpUy5cvr1GbPOVu8AAANAb1tRJ0g7kbfHFxsTZu3Kjk5GTnNi8vL8XFxWndunXlvmbdunVKSkpy2RYfH18m7KxevVqtW7dWixYtdNVVV+mZZ56psHOLiopUVFTkfJ6fn1/DIwIAAGfzxLvWu/UU2JEjR1RSUqLQ0FCX7aGhocrOzi73NdnZ2ecsP2TIEL3xxhvKzMzUzJkz9eWXX+q6665TSUlJuXWmpqbKZrM5H5GRked5ZAAAwJM1ypWgR44c6fz74osv1iWXXKLo6GitXr1aV199dZnyycnJLqNK+fn5hCAAABoxt44AtWzZUt7e3srJyXHZnpOTo7CwsHJfExYWVq3yktShQwe1bNlSu3fvLne/r6+vgoKCXB4AAKDxcmsAslqt6t27tzIzM53bHA6HMjMz1b9//3Jf079/f5fykvTpp59WWF6SDhw4oNzcXIWHh9dOwwEAQIPm9svgk5KS9Nprr2nx4sXavn27HnjgARUWFmrs2LGSpNGjR7tMkn7ooYeUkZGhv/3tb9qxY4emTp2q//znP0pMTJQkHTt2TJMmTdI333yjffv2KTMzUzfccIM6duyo+Ph4txwjAADwLG6fAzRixAgdPnxYU6ZMUXZ2tnr27KmMjAznROf9+/fLy+t0ThswYICWLFmiJ598Uo8//rg6deqk5cuX66KLLpIkeXt7a+vWrVq8eLGOHj2qiIgIXXvttZo+fbp8fX3dcowAAMCzuH0dIE/EOkCerb7WkzAT+hRAY9Bg1gECqis3N9e5aGZlEhMT+cGuIvoUgBm5fQ4QUB1nj1LY7YHKyoqS3R5YaTlUjD4FYEaMAKHB2rSpl1asGCbD8HLeVdidN9ZrDOhTAGbBCBAaJLs90PlDLUmG4aUVK4aVGbVA1dGnAMyEAIQGKS8vxPlDXcowvJSXF+ymFjV89CkAMyEAoUEKDs6VxeJw2WaxOBQcnOemFjV89CkAMyEAoUGy2QqUkLDS+YNdOl/FZitwc8saLvoUgJkwCRoNVkzMZkVH71ZeXrCCg/P4oa4F9CkAsyAAoUGxWq0uz222gnJ/pM8uh4rRpwDMiJWgy8FK0J6NVYtrH30KoDFgJWg0avwQ1z76FIDZEICAOsKoCgB4LgIQUAe4vxYAeDYugwfqQFXvm8X9tQDAPQhAQD2o6AajAAD34BQYUMe4wSgAeB5GgIA6xA1GAcAzEYCAOsQNRgHAM3EKDKhDpTcYPTMEcYNRoPpYVgK1jQAE1KHSG4yePQeIe2wBVceyEqgLBCCgDpx536zKbjDK/bWAczt75MduD1ReXoiCg3Nd/ntiWQlUBwEIqAMhISFKTExkyB6oZVxVidpCAALqCOEGqF0VXVUZHb2b08qoNq4CAwA0CFxVidpEAAIANAilV1WeiasqUVMEIABAg1B6VWVpCOKqSpwP5gABABqMyq6qBKqDAAQA8GhnLxdhsxWUG3xYVgLVQQACAHg0lpVAXSAAAQA8HuEGtY1J0AAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHRYCbochmFIkvLz893cEgAAUFWlv9ulv+OVIQCVo6Dg1E32IiMj3dwSAABQXQUFBbLZbJWWsRhViUkm43A49NtvvykwMFAWi8XdzakX+fn5ioyM1C+//KKgoCB3N8et6IvT6IvT6IvT6IvT6IvTPKEvDMNQQUGBIiIi5OVV+SwfRoDK4eXlpbZt27q7GW4RFBRk+v+IS9EXp9EXp9EXp9EXp9EXp7m7L8418lOKSdAAAMB0CEAAAMB0CECQJPn6+iolJUW+vr7uborb0Ren0Ren0Ren0Ren0RenNbS+YBI0AAAwHUaAAACA6RCAAACA6RCAAACA6RCAAACA6RCAGrH58+crKipKfn5+io2N1YYNGyotn5aWpi5dusjf31+RkZH661//qhMnTjj3T506VRaLxeXRtWvXuj6MWlGdvjh58qSefvppRUdHy8/PTz169FBGRsZ51elJarsvGuLn4t///rcSEhIUEREhi8Wi5cuXn/M1q1evVkxMjHx9fdWxY0elp6eXKdMQPxN10RcN8TMhVb8vDh48qFtvvVWdO3eWl5eXJk6cWG65f/7zn+ratav8/Px08cUXa9WqVbXf+FpWF32Rnp5e5nPh5+dXNwdQBQSgRmrp0qVKSkpSSkqKNm3apB49eig+Pl6HDh0qt/ySJUs0efJkpaSkaPv27Xr99de1dOlSPf744y7lunfvroMHDzofa9asqY/DOS/V7Ysnn3xSr776qubOnasff/xR999/v/7nf/5HmzdvrnGdnqIu+kJqeJ+LwsJC9ejRQ/Pnz69S+aysLA0dOlRXXnmltmzZookTJ+qee+7Rxx9/7CzTUD8TddEXUsP7TEjV74uioiK1atVKTz75pHr06FFumbVr12rUqFG6++67tXnzZg0fPlzDhw/Xtm3barPpta4u+kI6tUr0mZ+Ln3/+ubaaXH0GGqV+/foZDz74oPN5SUmJERERYaSmppZb/sEHHzSuuuoql21JSUnGZZdd5nyekpJi9OjRo07aW5eq2xfh4eHGvHnzXLbdeOONxm233VbjOj1FXfRFQ/1clJJkfPDBB5WWefTRR43u3bu7bBsxYoQRHx/vfN5QPxNnqq2+aOifCcOoWl+cadCgQcZDDz1UZvstt9xiDB061GVbbGyscd99951nC+tPbfXFokWLDJvNVmvtOl+MADVCxcXF2rhxo+Li4pzbvLy8FBcXp3Xr1pX7mgEDBmjjxo3OIfu9e/dq1apV+tOf/uRSbteuXYqIiFCHDh102223af/+/XV3ILWgJn1RVFRUZljW39/f+X+wNanTE9RFX5RqaJ+L6lq3bp1Lv0lSfHy8s98a6meiJs7VF6Ua+2eiqqraX2Zx7NgxtWvXTpGRkbrhhhv0ww8/uK0tBKBG6MiRIyopKVFoaKjL9tDQUGVnZ5f7mltvvVVPP/20Lr/8cvn4+Cg6OlqDBw92OQUWGxur9PR0ZWRkaMGCBcrKytLAgQNVUFBQp8dzPmrSF/Hx8Zo9e7Z27dolh8OhTz/9VMuWLdPBgwdrXKcnqIu+kBrm56K6srOzy+23/Px8/fe//22wn4maOFdfSOb4TFRVRf3V2D4XVdGlSxctXLhQH374od566y05HA4NGDBABw4ccEt7CECQdGpS43PPPaeXX35ZmzZt0rJly/TRRx9p+vTpzjLXXXed/vznP+uSSy5RfHy8Vq1apaNHj+rdd991Y8tr30svvaROnTqpa9euslqtSkxM1NixY+XlZb7/XKrSF2b5XKDq+EygPP3799fo0aPVs2dPDRo0SMuWLVOrVq306quvuqU95vtGN4GWLVvK29tbOTk5LttzcnIUFhZW7mueeuop3XHHHbrnnnt08cUX63/+53/03HPPKTU1VQ6Ho9zXNG/eXJ07d9bu3btr/RhqS036olWrVlq+fLkKCwv1888/a8eOHWrWrJk6dOhQ4zo9QV30RXkawueiusLCwsrtt6CgIPn7+zfYz0RNnKsvytMYPxNVVVF/NbbPRU34+PioV69ebvtcEIAaIavVqt69eyszM9O5zeFwKDMzU/379y/3NcePHy8zwuHt7S1JMiq4XdyxY8e0Z88ehYeH11LLa19N+qKUn5+f2rRpoz/++EPvv/++brjhhvOu053qoi/K0xA+F9XVv39/l36TpE8//dTZbw31M1ET5+qL8jTGz0RV1aS/zKKkpETff/+9+z4X7p6FjbrxzjvvGL6+vkZ6errx448/GuPGjTOaN29uZGdnG4ZhGHfccYcxefJkZ/mUlBQjMDDQePvtt429e/can3zyiREdHW3ccsstzjIPP/ywsXr1aiMrK8v4+uuvjbi4OKNly5bGoUOH6v34qqO6ffHNN98Y77//vrFnzx7j3//+t3HVVVcZ7du3N37//fcq1+mp6qIvGuLnoqCgwNi8ebOxefNmQ5Ixe/ZsY/PmzcbPP/9sGIZhTJ482bjjjjuc5ffu3Ws0bdrUmDRpkrF9+3Zj/vz5hre3t5GRkeEs01A/E3XRFw3xM2EY1e8LwzCc5Xv37m3ceuutxubNm40ffvjBuf/rr782mjRpYsyaNcvYvn27kZKSYvj4+Bjff/99vR5bddVFX0ybNs34+OOPjT179hgbN240Ro4cafj5+bmUqU8EoEZs7ty5xgUXXGBYrVajX79+xjfffOPcN2jQIGPMmDHO5ydPnjSmTp1qREdHG35+fkZkZKTxl7/8xeWHbsSIEUZ4eLhhtVqNNm3aGCNGjDB2795dj0dUc9Xpi9WrVxsXXnih4evra4SEhBh33HGH8euvv1arTk9W233RED8XX3zxhSGpzKP02MeMGWMMGjSozGt69uxpWK1Wo0OHDsaiRYvK1NsQPxN10RcN8TNhGDXri/LKt2vXzqXMu+++a3Tu3NmwWq1G9+7djY8++qh+Dug81EVfTJw40fnfR2hoqPGnP/3J2LRpU/0d1FkshlHB+Q0AAIBGijlAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAANAArF69WhaLRUePHnV3U4BGgQAEwMWdd94pi8WiGTNmuGxfvny5LBaL87lhGHrttdfUv39/BQUFqVmzZurevbseeuihKt/c8Pjx40pOTlZ0dLT8/PzUqlUrDRo0SB9++KGzTFRUlNLS0mrl2Opaad9ZLBb5+Pioffv2evTRR3XixIlq1TN48GBNnDjRZduAAQN08OBB2Wy2WmwxYF4EIABl+Pn5aebMmfr999/L3W8Yhm699VZNmDBBf/rTn/TJJ5/oxx9/1Ouvvy4/Pz8988wzVXqf+++/X8uWLdPcuXO1Y8cOZWRk6Oabb1Zubm5tHk69GjJkiA4ePKi9e/fqxRdf1KuvvqqUlJTzrtdqtSosLMwlhAI4D267CQcAjzRmzBhj2LBhRteuXY1JkyY5t3/wwQdG6VfG22+/bUgyPvzww3LrcDgcVXovm81mpKenV7h/0KBBZe4tVOqrr74yLr/8csPPz89o27atMX78eOPYsWPO/W+88YbRu3dvo1mzZkZoaKgxatQoIycnx7m/9F5HGRkZRs+ePQ0/Pz/jyiuvNHJycoxVq1YZXbt2NQIDA41Ro0YZhYWFVTqeMWPGGDfccIPLthtvvNHo1auX8/mRI0eMkSNHGhEREYa/v79x0UUXGUuWLHGp4+xjzsrKcrb3zPvzvffee0a3bt0Mq9VqtGvXzpg1a1aV2gnAMBgBAlCGt7e3nnvuOc2dO1cHDhwos//tt99Wly5ddP3115f7+qqOUoSFhWnVqlUqKCgod/+yZcvUtm1bPf300zp48KAOHjwoSdqzZ4+GDBmim266SVu3btXSpUu1Zs0aJSYmOl978uRJTZ8+Xd99952WL1+uffv26c477yzzHlOnTtW8efO0du1a/fLLL7rllluUlpamJUuW6KOPPtInn3yiuXPnVul4zrZt2zatXbtWVqvVue3EiRPq3bu3PvroI23btk3jxo3THXfcoQ0bNkiSXnrpJfXv31/33nuv85gjIyPL1L1x40bdcsstGjlypL7//ntNnTpVTz31lNLT02vUVsB03J3AAHiWM0cxLr30UuOuu+4yDMN1BKhr167G9ddf7/K6hx56yAgICDACAgKMNm3aVOm9vvzyS6Nt27aGj4+P0adPH2PixInGmjVrXMq0a9fOePHFF1223X333ca4ceNctn311VeGl5eX8d///rfc9/r2228NSUZBQYFhGKdHgD777DNnmdTUVEOSsWfPHue2++67z4iPj6/S8YwZM8bw9vY2AgICDF9fX0OS4eXlZbz33nuVvm7o0KHGww8/7Hw+aNAg46GHHnIpc/YI0K233mpcc801LmUmTZpkdOvWrUptBcyOESAAFZo5c6YWL16s7du3n7PsE088oS1btmjKlCk6duxYleq/4oortHfvXmVmZurmm2/WDz/8oIEDB2r69OmVvu67775Tenq6mjVr5nzEx8fL4XAoKytL0qkRkoSEBF1wwQUKDAzUoEGDJEn79+93qeuSSy5x/h0aGqqmTZuqQ4cOLtsOHTpUpeORpCuvvFJbtmzR+vXrNWbMGI0dO1Y33XSTc39JSYmmT5+uiy++WMHBwWrWrJk+/vjjMu06l+3bt+uyyy5z2XbZZZdp165dKikpqVZdgBkRgABU6IorrlB8fLySk5Ndtnfq1Ek7d+502daqVSt17NhRrVu3rtZ7+Pj4aODAgXrsscf0ySef6Omnn9b06dNVXFxc4WuOHTum++67T1u2bHE+vvvuO+3atUvR0dEqLCxUfHy8goKC9I9//EPffvutPvjgA0kqU6+Pj4/z79Krt85ksVjkcDiqfDwBAQHq2LGjevTooYULF2r9+vV6/fXXnftfeOEFvfTSS3rsscf0xRdfaMuWLYqPj6/0eAHUvibubgAAzzZjxgz17NlTXbp0cW4bNWqUbr31Vn344Ye64YYbavX9unXrpj/++EMnTpyQ1WqV1WotM6IRExOjH3/8UR07diy3ju+//165ubmaMWOGc/7Mf/7zn1ptZ1V4eXnp8ccfV1JSkm699Vb5+/vr66+/1g033KDbb79dkuRwOPTTTz+pW7duzteVd8xnu/DCC/X111+7bPv666/VuXNneXt71/7BAI0MI0AAKnXxxRfrtttu05w5c5zbRo4cqZtvvlkjR47U008/rfXr12vfvn368ssvtXTp0ir/AA8ePFivvvqqNm7cqH379mnVqlV6/PHHdeWVVyooKEjSqXWA/v3vf+vXX3/VkSNHJEmPPfaY1q5dq8TERG3ZskW7du3Shx9+6JwEfcEFF8hqtWru3Lnau3ev/vWvf53ztFpd+fOf/yxvb2/Nnz9f0qnRs08//VRr167V9u3bdd999yknJ8flNVFRUc4+PXLkSLkjUA8//LAyMzM1ffp0/fTTT1q8eLHmzZunRx55pF6OC2joCEAAzunpp592+RG2WCxaunSp0tLStGrVKl199dXq0qWL7rrrLkVGRmrNmjVVqjc+Pl6LFy/WtddeqwsvvFDjx49XfHy83n33XZf33rdvn6Kjo9WqVStJp+btfPnll/rpp580cOBA9erVS1OmTFFERISkU6fj0tPT9c9//lPdunXTjBkzNGvWrFrskapr0qSJEhMT9fzzz6uwsFBPPvmkYmJiFB8fr8GDByssLEzDhw93ec0jjzwib29vdevWTa1atSp3flBMTIzeffddvfPOO7rooos0ZcoUPf300+Ve6QagLIthGIa7GwEAAFCfGAECAACmQwACUGfOvEz97MdXX33l7uZVy/79+ys9nupexg7AvTgFBqDOVHZT1DZt2sjf378eW3N+/vjjD+3bt6/C/VFRUWrShAtrgYaCAAQAAEyHU2AAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0/j9U2hAYREpcgAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAS4lJREFUeJzt3Xtc1FXi//H3QAx4gbFBBTESRdO0UvHCapldKGyV8pttauWtuxuWSzetTTQrrFwjL1m/HhVWa9nFbDW/dGGjMu2yXjLTTA0zS1CHHBBXMOb8/vDL5MhFUIYZmNfz8ZhHzPmcz5nz+ewg7z2f8zkfizHGCAAAIIAE+boDAAAADY0ABAAAAg4BCAAABBwCEAAACDgEIAAAEHAIQAAAIOAQgAAAQMAhAAEAgIBDAAIAAAGHAAQAfiorK0sWi0U7d+70dVeAJocABASwr7/+WqmpqerRo4datGihM888U9dee61++OGHSnUvuugiWSwWWSwWBQUFKSIiQl27dtWYMWP04Ycf1ulzly9frsGDB6tt27Zq3ry5OnXqpGuvvVbZ2dn1dWiVPPbYY1q2bFml8tWrV2v69Ok6cOCA1z77eNOnT3efS4vFoubNm6t79+76+9//rqKionr5jMWLFyszM7Ne2gKaIgIQEMAef/xxvf3227r00kv19NNP69Zbb9Wnn36qhIQEbdq0qVL9M844Q6+88opefvllPfnkk7ryyiu1evVqXX755Ro5cqSOHDlyws+cPXu2rrzySlksFk2dOlVPPfWURowYoW3btun111/3xmFKqjkAzZgxo0EDUIWFCxfqlVde0Zw5c9StWzc9+uijGjJkiOrjEY0EIKBmp/m6AwB8Jy0tTYsXL5bVanWXjRw5Uueee65mzZqlV1991aO+zWbTDTfc4FE2a9Ys3XnnnXrmmWcUFxenxx9/vNrP+/333zVz5kxddtll+uCDDypt37t37ykekf84dOiQmjdvXmOda665Rq1bt5Yk3X777RoxYoSWLl2qL774QgMGDGiIbgIBixEgIIANHDjQI/xIUpcuXdSjRw9t2bKlVm0EBwdr7ty56t69u+bPny+n01lt3f3796uoqEjnn39+ldvbtm3r8f7w4cOaPn26zjrrLIWFhaldu3a6+uqrtWPHDned2bNna+DAgYqMjFSzZs3Up08fvfXWWx7tWCwWlZSUaNGiRe7LTuPHj9f06dN17733SpI6duzo3nbsnJtXX31Vffr0UbNmzWS32zVq1Cj9/PPPHu1fdNFFOuecc7R27VpdeOGFat68uR544IFanb9jXXLJJZKkvLy8Gus988wz6tGjh0JDQxUTE6M77rjDYwTroosu0nvvvaeffvrJfUxxcXF17g/QlDECBMCDMUYFBQXq0aNHrfcJDg7W6NGj9dBDD2nVqlUaOnRolfXatm2rZs2aafny5Zo0aZLsdnu1bZaXl2vYsGHKycnRqFGjdNddd6m4uFgffvihNm3apPj4eEnS008/rSuvvFLXX3+9ysrK9Prrr+svf/mLVqxY4e7HK6+8optvvln9+/fXrbfeKkmKj49XixYt9MMPP+i1117TU0895R6NadOmjSTp0Ucf1UMPPaRrr71WN998s/bt26d58+bpwgsv1Pr169WqVSt3fx0Oh6644gqNGjVKN9xwg6Kiomp9/ipUBLvIyMhq60yfPl0zZsxQUlKSJk6cqK1bt2rhwoX6+uuv9fnnnyskJEQPPvignE6ndu/eraeeekqS1LJlyzr3B2jSDAAc45VXXjGSzAsvvOBRPnjwYNOjR49q93vnnXeMJPP000/X2P60adOMJNOiRQtzxRVXmEcffdSsXbu2Ur0XX3zRSDJz5syptM3lcrl/PnTokMe2srIyc84555hLLrnEo7xFixZm3Lhxldp68sknjSSTl5fnUb5z504THBxsHn30UY/yb7/91px22mke5YMHDzaSzLPPPlvtcR8rPT3dSDJbt241+/btM3l5eea5554zoaGhJioqypSUlBhjjHnppZc8+rZ3715jtVrN5ZdfbsrLy93tzZ8/30gyL774orts6NChpkOHDrXqDxCIuAQGwO3777/XHXfcoQEDBmjcuHF12rdihKG4uLjGejNmzNDixYvVu3dvvf/++3rwwQfVp08fJSQkeFx2e/vtt9W6dWtNmjSpUhsWi8X9c7Nmzdw///bbb3I6nRo0aJDWrVtXp/4fb+nSpXK5XLr22mu1f/9+9ys6OlpdunTRxx9/7FE/NDRUEyZMqNNndO3aVW3atFHHjh112223qXPnznrvvfeqnTv00UcfqaysTJMnT1ZQ0B//fN9yyy2KiIjQe++9V/cDBQIUl8AASJLy8/M1dOhQ2Ww2vfXWWwoODq7T/gcPHpQkhYeHn7Du6NGjNXr0aBUVFenLL79UVlaWFi9erJSUFG3atElhYWHasWOHunbtqtNOq/mfqRUrVuiRRx7Rhg0bVFpa6i4/NiSdjG3btskYoy5dulS5PSQkxON9+/btK82nOpG3335bERERCgkJ0RlnnOG+rFedn376SdLR4HQsq9WqTp06ubcDODECEAA5nU5dccUVOnDggD777DPFxMTUuY2K2+Y7d+5c630iIiJ02WWX6bLLLlNISIgWLVqkL7/8UoMHD67V/p999pmuvPJKXXjhhXrmmWfUrl07hYSE6KWXXtLixYvrfAzHcrlcslgs+t///d8qw+Dxc2qOHYmqrQsvvNA97whAwyIAAQHu8OHDSklJ0Q8//KCPPvpI3bt3r3Mb5eXlWrx4sZo3b64LLrjgpPrRt29fLVq0SHv27JF0dJLyl19+qSNHjlQabanw9ttvKywsTO+//75CQ0Pd5S+99FKlutWNCFVXHh8fL2OMOnbsqLPOOquuh+MVHTp0kCRt3bpVnTp1cpeXlZUpLy9PSUlJ7rJTHQEDmjrmAAEBrLy8XCNHjtSaNWv05ptvntTaM+Xl5brzzju1ZcsW3XnnnYqIiKi27qFDh7RmzZoqt/3v//6vpD8u74wYMUL79+/X/PnzK9U1/7dQYHBwsCwWi8rLy93bdu7cWeWChy1atKhyscMWLVpIUqVtV199tYKDgzVjxoxKCxMaY+RwOKo+SC9KSkqS1WrV3LlzPfr0wgsvyOl0etx916JFixqXJAACHSNAQAC7++679a9//UspKSkqLCystPDh8YseOp1Od51Dhw5p+/btWrp0qXbs2KFRo0Zp5syZNX7eoUOHNHDgQP3pT3/SkCFDFBsbqwMHDmjZsmX67LPPNHz4cPXu3VuSNHbsWL388stKS0vTV199pUGDBqmkpEQfffSR/vrXv+qqq67S0KFDNWfOHA0ZMkTXXXed9u7dqwULFqhz587auHGjx2f36dNHH330kebMmaOYmBh17NhRiYmJ6tOnjyTpwQcf1KhRoxQSEqKUlBTFx8frkUce0dSpU7Vz504NHz5c4eHhysvL0zvvvKNbb71V99xzzymd/7pq06aNpk6dqhkzZmjIkCG68sortXXrVj3zzDPq16+fx/9effr00ZIlS5SWlqZ+/fqpZcuWSklJadD+An7Nl7egAfCtitu3q3vVVLdly5amS5cu5oYbbjAffPBBrT7vyJEj5vnnnzfDhw83HTp0MKGhoaZ58+amd+/e5sknnzSlpaUe9Q8dOmQefPBB07FjRxMSEmKio6PNNddcY3bs2OGu88ILL5guXbqY0NBQ061bN/PSSy+5bzM/1vfff28uvPBC06xZMyPJ45b4mTNnmvbt25ugoKBKt8S//fbb5oILLjAtWrQwLVq0MN26dTN33HGH2bp1q8e5qWmJgONV9G/fvn011jv+NvgK8+fPN926dTMhISEmKirKTJw40fz2228edQ4ePGiuu+4606pVKyOJW+KB41iMqYeHzgAAADQizAECAAABhwAEAAACDgEIAAAEHAIQAAAIOAQgAAAQcAhAAAAg4LAQYhVcLpd+/fVXhYeHs5w8AACNhDFGxcXFiomJUVBQzWM8BKAq/Prrr4qNjfV1NwAAwEn4+eefdcYZZ9RYxy8C0IIFC/Tkk08qPz9fPXv21Lx589S/f/8q6y5dulSPPfaYtm/friNHjqhLly66++67NWbMGHed8ePHa9GiRR77JScnKzs7u1b9CQ8Pl3T0BNb0XCMAAOA/ioqKFBsb6/47XhOfB6CKZ9U8++yzSkxMVGZmppKTk7V161a1bdu2Un273a4HH3xQ3bp1k9Vq1YoVKzRhwgS1bdtWycnJ7npDhgzxeCL0sU+KPpGKy14REREEIAAAGpnaTF/x+aMwEhMT1a9fP/cTn10ul2JjYzVp0iRNmTKlVm0kJCRo6NCh7gcxjh8/3v2AxZNRVFQkm80mp9NJAAIAoJGoy99vn94FVlZWprVr1yopKcldFhQUpKSkJK1Zs+aE+xtjlJOTo61bt+rCCy/02Jabm6u2bduqa9eumjhxohwOR7XtlJaWqqioyOMFAACaLp9eAtu/f7/Ky8sVFRXlUR4VFaXvv/++2v2cTqfat2+v0tJSBQcH65lnntFll13m3j5kyBBdffXV6tixo3bs2KEHHnhAV1xxhdasWaPg4OBK7WVkZGjGjBn1d2AAAMCv+XwO0MkIDw/Xhg0bdPDgQeXk5CgtLU2dOnXSRRddJEkaNWqUu+65556r8847T/Hx8crNzdWll15aqb2pU6cqLS3N/b5iEhUAAHVRXl6uI0eO+LobTVZISEiVAxknw6cBqHXr1goODlZBQYFHeUFBgaKjo6vdLygoSJ07d5Yk9erVS1u2bFFGRoY7AB2vU6dOat26tbZv315lAAoNDa3TJGkAAI5ljFF+fr4OHDjg6640ea1atVJ0dPQpr9Pn0wBktVrVp08f5eTkaPjw4ZKOToLOyclRampqrdtxuVwqLS2tdvvu3bvlcDjUrl27U+0yAACVVISftm3bqnnz5iyi6wXGGB06dEh79+6VpFP+m+7zS2BpaWkaN26c+vbtq/79+yszM1MlJSWaMGGCJGns2LFq3769MjIyJB2dr9O3b1/Fx8ertLRUK1eu1CuvvKKFCxdKkg4ePKgZM2ZoxIgRio6O1o4dO3Tfffepc+fOHrfJAwBQH8rLy93hJzIy0tfdadKaNWsmSdq7d6/atm17SpfDfB6ARo4cqX379mnatGnKz89Xr169lJ2d7Z4YvWvXLo/lrEtKSvTXv/5Vu3fvVrNmzdStWze9+uqrGjlypCQpODhYGzdu1KJFi3TgwAHFxMTo8ssv18yZM7nMBQCodxVzfpo3b+7jngSGivN85MiRUwpAPl8HyB+xDhAAoLYOHz6svLw8dezYUWFhYb7uTpNX0/muy99vn48AoelwOBwqKyurdrvVamV4GADgFwhAqBcOh8O9mndNUlNTCUEAAJ/z6UrQaDqOH/lxOsOVlxcnpzO8xnoAAN8ZP368LBaLLBaLQkJCFBUVpcsuu0wvvviiXC5XrdvJyspSq1atvNdRL2AECPVu3breWr58mIwJksXiUkrKCiUkrPd1twDAb/lyCkHFw8PLy8tVUFCg7Oxs3XXXXXrrrbf0r3/9S6ed1jSjQtM8KviM0xnuDj+SZEyQli8fpvj47bLZin3cOwDwP76eQhAaGupefLh9+/ZKSEjQn/70J1166aXKysrSzTffrDlz5uill17Sjz/+KLvdrpSUFD3xxBNq2bKlcnNz3UvXVKx/lJ6erunTp+uVV17R008/ra1bt6pFixa65JJLlJmZqbZt29b7cdQVl8BQrwoLI93hp4IxQSostPuoRwDg32o7NaAhpxBccskl6tmzp5YuXSrp6BMY5s6dq++++06LFi3Sv//9b913332SpIEDByozM1MRERHas2eP9uzZo3vuuUfS0VvVZ86cqW+++UbLli3Tzp07NX78+AY7jpowAoR6Zbc7ZLG4PEKQxeKS3V7ow14BAOqqW7du2rhxoyRp8uTJ7vK4uDg98sgjuv322/XMM8/IarXKZrPJYrFUeozVjTfe6P65U6dOmjt3rvr166eDBw+qZcuWDXIc1WEECPXKZitWSsoKWSxHJ89VzAHi8hcANC7GGPclrY8++kiXXnqp2rdvr/DwcI0ZM0YOh0OHDh2qsY21a9cqJSVFZ555psLDwzV48GBJRxc59jVGgFDvEhLWKz5+uwoL7bLbCwk/ANAIbdmyRR07dtTOnTs1bNgwTZw4UY8++qjsdrtWrVqlm266SWVlZdWugF1SUqLk5GQlJyfrn//8p9q0aaNdu3YpOTnZL+4IJgChXlitVo/3NltxlcHn+HoAAP/z73//W99++63+9re/ae3atXK5XPrHP/7hfjTVG2+84VHfarWqvLzco+z777+Xw+HQrFmzFBsbK0n6z3/+0zAHUAsEINSLyMhIpaamshI0ADQypaWlys/P97gNPiMjQ8OGDdPYsWO1adMmHTlyRPPmzVNKSoo+//xzPfvssx5txMXF6eDBg8rJyVHPnj3VvHlznXnmmbJarZo3b55uv/12bdq0STNnzvTRUVbGHCDUm8jISLVr167aF+EHAPxPdna22rVrp7i4OA0ZMkQff/yx5s6dq3fffVfBwcHq2bOn5syZo8cff1znnHOO/vnPfyojI8OjjYEDB+r222/XyJEj1aZNGz3xxBNq06aNsrKy9Oabb6p79+6aNWuWZs+e7aOjrIyHoVaBh6ECAGrrVB+G6ut1gBobHoYKAEATwBQC3yAAAQDgY4SbhsccIAAAEHAIQAAAIOAQgAAAQMAhAAEAgIBDAAIAAAGHAAQAAAIOAQgAAAQcAhAAAPCK3NxcWSwWHThwoNb7xMXFKTMz02t9qkAAAgAgQI0fP14Wi0W33357pW133HGHLBaLxo8f3/AdawAEIAAAAlhsbKxef/11/fe//3WXHT58WIsXL9aZZ57pw555FwEIAIAAlpCQoNjYWC1dutRdtnTpUp155pnq3bu3u6y0tFR33nmn2rZtq7CwMF1wwQX6+uuvPdpauXKlzjrrLDVr1kwXX3yxdu7cWenzVq1apUGDBqlZs2aKjY3VnXfeqZKSEq8dX3UIQAAA+JHdu6WPPz7634Zy44036qWXXnK/f/HFFzVhwgSPOvfdd5/efvttLVq0SOvWrVPnzp2VnJyswsJCSdLPP/+sq6++WikpKdqwYYNuvvlmTZkyxaONHTt2aMiQIRoxYoQ2btyoJUuWaNWqVUpNTfX+QR6HAAQAgJ944QWpQwfpkkuO/veFFxrmc2+44QatWrVKP/30k3766Sd9/vnnuuGGG9zbS0pKtHDhQj355JO64oor1L17dz3//PNq1qyZXvi/Ti5cuFDx8fH6xz/+oa5du+r666+vNH8oIyND119/vSZPnqwuXbpo4MCBmjt3rl5++WUdPny4YQ72//A0eAAA/MDu3dKtt0ou19H3Lpd0221ScrJ0xhne/ew2bdpo6NChysrKkjFGQ4cOVevWrd3bd+zYoSNHjuj88893l4WEhKh///7asmWLJGnLli1KTEz0aHfAgAEe77/55htt3LhR//znP91lxhi5XC7l5eXp7LPP9sbhVYkABACAH9i27Y/wU6G8XNq+3fsBSDp6GaziUtSCBQu88hkHDx7UbbfdpjvvvLPStoaecE0AAgDAD3TpIgUFeYag4GCpc+eG+fwhQ4aorKxMFotFycnJHtvi4+NltVr1+eefq0OHDpKkI0eO6Ouvv9bkyZMlSWeffbb+9a9/eez3xRdfeLxPSEjQ5s2b1bmhDqoGzAECAMAPnHGG9P/+39HQIx3973PPNczoz9HPC9aWLVu0efNmBVd04v+0aNFCEydO1L333qvs7Gxt3rxZt9xyiw4dOqSbbrpJknT77bdr27Ztuvfee7V161YtXrxYWVlZHu3cf//9Wr16tVJTU7VhwwZt27ZN7777rk8mQTMCBACAn7jppqNzfrZvPzry01Dhp0JERES122bNmiWXy6UxY8aouLhYffv21fvvv6/TTz9d0tFLWG+//bb+9re/ad68eerfv78ee+wx3Xjjje42zjvvPH3yySd68MEHNWjQIBljFB8fr5EjR3r92I5nMcaYBv9UP1dUVCSbzSan01njlwEAgMOHDysvL08dO3ZUWFiYr7vT5NV0vuvy95tLYAAAIOAQgAAAQMAhAAEAgIBDAAIAAAGHAAQAQD3gnqKGUV/nmQAEAMApCAkJkSQdOnTIxz0JDBXnueK8nyzWAQIA4BQEBwerVatW2rt3rySpefPmslgsPu5V02OM0aFDh7R37161atWq0mKNdUUAAgDgFEVHR0uSOwTBe1q1auU+36fCLwLQggUL9OSTTyo/P189e/Z0ryBZlaVLl+qxxx7T9u3bdeTIEXXp0kV33323xowZ465jjFF6erqef/55HThwQOeff74WLlyoLl26NNQhAQACiMViUbt27dS2bVsdOXLE191pskJCQk555KeCzwPQkiVLlJaWpmeffVaJiYnKzMxUcnKytm7dqrZt21aqb7fb9eCDD6pbt26yWq1asWKFJkyYoLZt27of3vbEE09o7ty5WrRokTp27KiHHnpIycnJ2rx5M6t0AgC8Jjg4uN7+QMO7fP4ojMTERPXr10/z58+XJLlcLsXGxmrSpEmaMmVKrdpISEjQ0KFDNXPmTBljFBMTo7vvvlv33HOPJMnpdCoqKkpZWVkaNWrUCdvjURgAADQ+jeZRGGVlZVq7dq2SkpLcZUFBQUpKStKaNWtOuL8xRjk5Odq6dasuvPBCSVJeXp7y8/M92rTZbEpMTKy2zdLSUhUVFXm8AABA0+XTALR//36Vl5crKirKozwqKkr5+fnV7ud0OtWyZUtZrVYNHTpU8+bN02WXXSZJ7v3q0mZGRoZsNpv7FRsbeyqHBQAA/FyjXAcoPDxcGzZs0Ndff61HH31UaWlpys3NPen2pk6dKqfT6X79/PPP9ddZAADgd3w6Cbp169YKDg5WQUGBR3lBQUGNt7gFBQWpc+fOkqRevXppy5YtysjI0EUXXeTer6CgQO3atfNos1evXlW2FxoaqtDQ0FM8GgAA0Fj4dATIarWqT58+ysnJcZe5XC7l5ORowIABtW7H5XKptLRUktSxY0dFR0d7tFlUVKQvv/yyTm0CAICmy+e3waelpWncuHHq27ev+vfvr8zMTJWUlGjChAmSpLFjx6p9+/bKyMiQdHS+Tt++fRUfH6/S0lKtXLlSr7zyihYuXCjp6FoMkydP1iOPPKIuXbq4b4OPiYnR8OHDfXWYAADAj/g8AI0cOVL79u3TtGnTlJ+fr169eik7O9s9iXnXrl0KCvpjoKqkpER//etftXv3bjVr1kzdunXTq6++qpEjR7rr3HfffSopKdGtt96qAwcO6IILLlB2djZrAAEAAEl+sA6QP2IdIAAAGp9Gsw4QAACAL/j8EhgAoPYcDofKysqq3W61WhUZGdmAPQIaJwIQADQSDofD/digmqSmphKCgBPgEhgANBLHj/w4neHKy4uT0xleYz0AlTECBACN0Lp1vbV8+TAZEySLxaWUlBVKSFjv624BjQYjQADQyDid4e7wI0nGBGn58mGVRoIAVI8ABACNTGFhpDv8VDAmSIWFdh/1CGh8CEAA0MjY7Q5ZLC6PMovFJbu90Ec9AhofAhAANDI2W7FSUla4Q1DFHCCbrdjHPQMaDyZBA0AjlJCwXvHx21VYaJfdXkj4AeqIAAQAjYTVavV4b7MVVxl8jq8HoDICEAA0EpGRkUpNTWUlaKAeEIAAoBEh3AD1g0nQAAAg4BCAAABAwCEAAQCAgMMcIAAA4FUOh8PvJu8TgAAAgNc4HA7Nnz//hPVSU1MbNARxCQwAAHjN8SM/Tme48vLiKj28t6YRIm9gBAgAADSIdet6a/nyYTImyP0Il4SE9T7pCyNAAADA65zOcHf4kSRjgrR8+bBKI0ENhQAEAAC8rrAw0h1+KhgTpMJCu0/6QwACAABeZ7c7ZLG4PMosFpfs9kKf9IcABAAAvM5mK1ZKygp3CKqYA1TVA30bApOgAQBAg0hIWK/4+O0qLLTLbi/0WfiRCEAAAMCLrFarx3ubrbjK4HN8PW8jAAEAAK+JjIxUamoqK0EDAIDA0tDhpjaYBA0AAAIOAQgAAAQcAhAAAAg4BCAAABBwmAQNAAHA4XD43V04gC8RgACgiXM4HJo/f/4J66WmphKCEDC4BAYATdzxIz9OZ7jy8uIqPYW7phEioKlhBAgAAsi6db21fPkwGRPkfhZTQsJ6X3cLaHCMAAFAgHA6w93hR5KMCdLy5cMqjQQBgYAABAABorAw0h1+KhgTpMJCu496BPgOAQgAAoTd7pDF4vIos1hcstsLfdQjwHcIQAAQIGy2YqWkrHCHoIo5QFU9mRto6pgEDQABJCFhveLjt6uw0C67vZDwg4DlFyNACxYsUFxcnMLCwpSYmKivvvqq2rrPP/+8Bg0apNNPP12nn366kpKSKtUfP368LBaLx2vIkCHePgwA8EtWq9Xjvc1WrI4df6oUfo6vBzRlPh8BWrJkidLS0vTss88qMTFRmZmZSk5O1tatW9W2bdtK9XNzczV69GgNHDhQYWFhevzxx3X55Zfru+++U/v27d31hgwZopdeesn9PjQ0tEGOBwD8TWRkpFJTU1kJGjiGxRhjfNmBxMRE9evXz71KqcvlUmxsrCZNmqQpU6accP/y8nKdfvrpmj9/vsaOHSvp6AjQgQMHtGzZspPqU1FRkWw2m5xOpyIiIk6qDQAA0LDq8vfbp5fAysrKtHbtWiUlJbnLgoKClJSUpDVr1tSqjUOHDunIkSOy2z1v48zNzVXbtm3VtWtXTZw4UQ6Ho177DgAAGi+fXgLbv3+/ysvLFRUV5VEeFRWl77//vlZt3H///YqJifEIUUOGDNHVV1+tjh07aseOHXrggQd0xRVXaM2aNQoODq7URmlpqUpLS93vi4qKTvKIAABAY+DzOUCnYtasWXr99deVm5ursLAwd/moUaPcP5977rk677zzFB8fr9zcXF166aWV2snIyNCMGTMapM8AAMD3fHoJrHXr1goODlZBQYFHeUFBgaKjo2vcd/bs2Zo1a5Y++OADnXfeeTXW7dSpk1q3bq3t27dXuX3q1KlyOp3u188//1y3AwEAAI2KTwOQ1WpVnz59lJOT4y5zuVzKycnRgAEDqt3viSee0MyZM5Wdna2+ffue8HN2794th8Ohdu3aVbk9NDRUERERHi8AANB0+XwdoLS0ND3//PNatGiRtmzZookTJ6qkpEQTJkyQJI0dO1ZTp05113/88cf10EMP6cUXX1RcXJzy8/OVn5+vgwcPSpIOHjyoe++9V1988YV27typnJwcXXXVVercubOSk5N9cowAAMC/+HwO0MiRI7Vv3z5NmzZN+fn56tWrl7Kzs90To3ft2qWgoD9y2sKFC1VWVqZrrrnGo5309HRNnz5dwcHB2rhxoxYtWqQDBw4oJiZGl19+uWbOnMlaQAAAQJIfrAPkj1gHCACAxqcuf799PgIEAGi6HA4HK1DDLxGAAABe4XA43Kv81yQ1NZUQhAbn80nQAICm6fiRH6czXHl5cXI6w2usBzQERoAAAF63bl1vLV8+TMYEyWJxKSVlhRIS1vu6WwhgjAABALzK6Qx3hx9JMiZIy5cPqzQSBDQkAhAAwKsKCyPd4aeCMUEqLLRXswfgfQQgAIBX2e0OWSwujzKLxSW7vdBHPQIIQAAAL7PZipWSssIdgirmANlsxT7uGQIZk6ABAF6XkLBe8fHbVVhol91eSPiBzxGAAABeYbVaPd7bbMVVBp/j6wENgQAEAPCKyMhIpaamshI0/BIBCADgNYQb+CsmQQMAgIDDCBDQCPBASQCoXwQgwM/xQEkAqH9cAgP8HA+UBID6xwgQ0IjwQEkAqB+MAAGNBA+UBID6QwACGgkeKAkA9YcABDQSPFASAOoPAQhoJHigJADUHyZBA40ID5QEgPpBAAL8HA+UBID6RwAC/BwPlASA+kcAAhoBwg0A1C8mQQMAgIBDAAIAAAGHAAQAAAIOAQgAAAQcAhAAAAg4BCAAABBwCEAAACDgEIAAAEDAIQABAICAQwACAAABhwAEAAACDgEIAAAEHAIQAAAIOAQgAAAQcAhAAAAg4BCAAABAwCEAAQCAgOMXAWjBggWKi4tTWFiYEhMT9dVXX1Vb9/nnn9egQYN0+umn6/TTT1dSUlKl+sYYTZs2Te3atVOzZs2UlJSkbdu2efswAABAI+HzALRkyRKlpaUpPT1d69atU8+ePZWcnKy9e/dWWT83N1ejR4/Wxx9/rDVr1ig2NlaXX365fvnlF3edJ554QnPnztWzzz6rL7/8Ui1atFBycrIOHz7cUIcFAAD8mMUYY3zZgcTERPXr10/z58+XJLlcLsXGxmrSpEmaMmXKCfcvLy/X6aefrvnz52vs2LEyxigmJkZ333237rnnHkmS0+lUVFSUsrKyNGrUqBO2WVRUJJvNJqfTqYiIiFM7QAAA0CDq8vfbpyNAZWVlWrt2rZKSktxlQUFBSkpK0po1a2rVxqFDh3TkyBHZ7XZJUl5envLz8z3atNlsSkxMrLbN0tJSFRUVebwAAEDT5dMAtH//fpWXlysqKsqjPCoqSvn5+bVq4/7771dMTIw78FTsV5c2MzIyZLPZ3K/Y2Ni6HgoAAGhEfD4H6FTMmjVLr7/+ut555x2FhYWddDtTp06V0+l0v37++ed67CUAAPA3p/nyw1u3bq3g4GAVFBR4lBcUFCg6OrrGfWfPnq1Zs2bpo48+0nnnnecur9ivoKBA7dq182izV69eVbYVGhqq0NDQkzwKAADQ2Ph0BMhqtapPnz7Kyclxl7lcLuXk5GjAgAHV7vfEE09o5syZys7OVt++fT22dezYUdHR0R5tFhUV6csvv6yxTQAAEDh8OgIkSWlpaRo3bpz69u2r/v37KzMzUyUlJZowYYIkaezYsWrfvr0yMjIkSY8//rimTZumxYsXKy4uzj2vp2XLlmrZsqUsFosmT56sRx55RF26dFHHjh310EMPKSYmRsOHD/fVYQIAAD/i8wA0cuRI7du3T9OmTVN+fr569eql7Oxs9yTmXbt2KSjoj4GqhQsXqqysTNdcc41HO+np6Zo+fbok6b777lNJSYluvfVWHThwQBdccIGys7NPaZ4QAABoOny+DpA/Yh0gAAAan0azDhAAAIAvEIAAAEDAIQABAICAUy8BKC8vT7///nt9NAUAAOB19RKAunbtqm3bttVHUwAAAF5Xp9vgr7766irLy8vLdeeddyo8PFyStHTp0lPvGQAAgJfUaQRo2bJlKiws9HhwqM1mk3R0IcJj3wMAAPirOq0D9Prrr+vee+/Vww8/7F6pWZJCQkL0zTffqHv37l7pZENjHSAAABofr60DNGrUKH322Wd64YUXNGLECP3222+n1FEAAABfqPMk6Li4OH366ac655xz1LNnT73//vuyWCze6BsAAIBXnNSzwIKCgjRjxgxddtllGjt2rMrLy+u7XwAAAF5zSg9DveCCC7Rx40bt2LFD8fHx9dUnAAAArzrlp8G3bNlSPXv2rI++AAhwDodDZWVl1W63Wq2KjIxswB4BaKrqFIB69+5dq/k+69atO+kOAQhMDodD8+fPP2G91NRUQhCAU1anADR8+HD3z8YYZWRk6Pbbb5fdbq/vfgEIMMeP/Did4SosjJTd7pDNVlxtPQA4GXUKQOnp6R7v//GPf+iuu+5Sp06d6rVTAALbunW9tXz5MBkTJIvFpZSUFUpIWO/rbgFoQngaPAC/4nSGu8OPJBkTpOXLh8npDPdxzwA0JQQgAH6lsDDSHX4qGBOkwkIutQOoPwQgAH7FbnfIYnF5lFksLtnthT7qEYCmqE5zgObOnevx/vfff1dWVpZat27tUX7nnXeees8ABCSbrVgpKSsqzQE6diI0AJyqOgWgp556yuN9dHS0XnnlFY8yi8VCAAJwShIS1is+frsKC+2y2wsJPwDqXZ0CUF5enrf6ASDAWa1Wj/c2W3GVwef4egBwMuoUgP79738rNTVVX3zxRaXHzDudTg0cOFDPPvusBg0aVK+dBND0RUZGKjU1lZWgATSIOgWgzMxM3XLLLZXCjyTZbDbddtttmjNnDgEIwEkh3ABoKHW6C+ybb77RkCFDqt1++eWXa+3atafcKQAAAG+qUwAqKChQSEhItdtPO+007du375Q7BQAA4E11CkDt27fXpk2bqt2+ceNGtWvX7pQ7BQAA4E11CkB//vOf9dBDD+nw4cOVtv33v/9Venq6hg0bVm+dAwAA8AaLMcbUtnJBQYESEhIUHBys1NRUde3aVZL0/fffa8GCBSovL9e6desUFRXltQ43hKKiItlsNjmdzionfAMAAP9Tl7/fdboLLCoqSqtXr9bEiRM1depUVWQni8Wi5ORkLViwoNGHHwAA0PTVKQBJUocOHbRy5Ur99ttv2r59u4wx6tKli04//XRv9A8AAKDe1TkAVTj99NPVr1+/+uwLAABAg+Bp8AAAIOAQgAAAQMAhAAEAgIBDAAIAAAGHAAQAAAIOAQgAAAQcAhAAAAg4BCAAABBwCEAAACDgEIAAAEDA8XkAWrBggeLi4hQWFqbExER99dVX1db97rvvNGLECMXFxclisSgzM7NSnenTp8tisXi8unXr5sUjAAAAjY1PA9CSJUuUlpam9PR0rVu3Tj179lRycrL27t1bZf1Dhw6pU6dOmjVrlqKjo6ttt0ePHtqzZ4/7tWrVKm8dAgAAaIR8GoDmzJmjW265RRMmTFD37t317LPPqnnz5nrxxRerrN+vXz89+eSTGjVqlEJDQ6tt97TTTlN0dLT71bp1a28dAgAAaIR8FoDKysq0du1aJSUl/dGZoCAlJSVpzZo1p9T2tm3bFBMTo06dOun666/Xrl27aqxfWlqqoqIijxcAAGi6fBaA9u/fr/LyckVFRXmUR0VFKT8//6TbTUxMVFZWlrKzs7Vw4ULl5eVp0KBBKi4urnafjIwM2Ww29ys2NvakPx8AAPg/n0+Crm9XXHGF/vKXv+i8885TcnKyVq5cqQMHDuiNN96odp+pU6fK6XS6Xz///HMD9hgAADS003z1wa1bt1ZwcLAKCgo8ygsKCmqc4FxXrVq10llnnaXt27dXWyc0NLTGOUUAAKBp8dkIkNVqVZ8+fZSTk+Muc7lcysnJ0YABA+rtcw4ePKgdO3aoXbt29dYmAABo3Hw2AiRJaWlpGjdunPr27av+/fsrMzNTJSUlmjBhgiRp7Nixat++vTIyMiQdnTi9efNm98+//PKLNmzYoJYtW6pz586SpHvuuUcpKSnq0KGDfv31V6Wnpys4OFijR4/2zUECAAC/49MANHLkSO3bt0/Tpk1Tfn6+evXqpezsbPfE6F27diko6I9Bql9//VW9e/d2v589e7Zmz56twYMHKzc3V5K0e/dujR49Wg6HQ23atNEFF1ygL774Qm3atGnQYwMAAP7LYowxvu6EvykqKpLNZpPT6VRERISvuwMAAGqhLn+/m9xdYAAAACdCAAIAAAGHAAQAAAIOAQgAAAQcAhAAAAg4BCAAABBwCEAAACDgEIAAAEDAIQABAICAQwACAAABhwAEAAACDgEIAAAEHAIQAAAIOAQgAAAQcAhAAAAg4BCAAABAwCEAAQCAgEMAAgAAAYcABAAAAg4BCAAABJzTfN2BQOBwOFRWVlbtdqvVqsjIyAbsEQAAgY0A5GUOh0Pz5893v3c6w1VYGCm73SGbrdhdnpqaSggCAKCBEIC87NiRn3Xremv58mEyJkgWi0spKSuUkLC+Uj0AAOBdzAFqIE5nuDv8SJIxQVq+fJicznAf9wwAgMBDAGoghYWR7vBTwZggFRbafdQjAAACFwGogdjtDlksLo8yi8Ulu73QRz0CACBwEYAaiM1WrJSUFe4QVDEH6NiJ0AAAoGEwCboBJSSsV3z8dhUW2mW3FxJ+gOOwZASAhkIAamA2WzHBB6jC8UtGVIclIwDUBy6BeZnVaq3XekBTdfzIj9MZrry8uEp3SrJkBID6wAiQl0VGRio1NZVhfaAOalozCwDqAwGoARBugNqrbs2s+PjtXD4GUG+4BAbAr7BmFoCGQAAC4FdYMwtAQyAAAfArrJkFoCEwBwiA32HNLADeRgAC4BeOXwqiujWzWDICQH0gAAHwCywZAaAhEYAA+A3CDYCGwiRoAAAQcAhAAAAg4BCAAABAwPF5AFqwYIHi4uIUFhamxMREffXVV9XW/e677zRixAjFxcXJYrEoMzPzlNsEAACBx6cBaMmSJUpLS1N6errWrVunnj17Kjk5WXv37q2y/qFDh9SpUyfNmjVL0dHR9dImAAAIPBZjjPHVhycmJqpfv36aP3++JMnlcik2NlaTJk3SlClTatw3Li5OkydP1uTJk+utzQpFRUWy2WxyOp2KiIio+4EBAIAGV5e/3z4bASorK9PatWuVlJT0R2eCgpSUlKQ1a9Y0aJulpaUqKiryeAEAgKbLZwFo//79Ki8vV1RUlEd5VFSU8vPzG7TNjIwM2Ww29ys2NvakPh8AADQOLIQoaerUqUpLS3O/LyoqIgQBjYzD4WAVaQC15rMA1Lp1awUHB6ugoMCjvKCgoNoJzt5qMzQ0VKGhoSf1mQB8z+FwuOf91SQ1NZUQBECSDy+BWa1W9enTRzk5Oe4yl8ulnJwcDRgwwG/aBOD/jh/5cTrDlZcXJ6czvMZ6AAKXTy+BpaWlady4cerbt6/69++vzMxMlZSUaMKECZKksWPHqn379srIyJB09B+vzZs3u3/+5ZdftGHDBrVs2VKdO3euVZsAmrZ163pr+fJhMiZIFotLKSkrlJCw3tfdAuBnfBqARo4cqX379mnatGnKz89Xr169lJ2d7Z7EvGvXLgUF/TFI9euvv6p3797u97Nnz9bs2bM1ePBg5ebm1qpNAE2X0xnuDj+SZEyQli8fpvj47bLZin3cO99ijhTgyeeToFNTU5WamlrltopQUyEuLk61WbaopjYBNF2FhZHu8FPBmCAVFtoDOgAxRwqozOePwgCA+mK3O2SxuDzKLBaX7PZCH/XIPzBHCqjM5yNAAFBfbLZipaSsqDQHKJBHf47HHCngKAIQgCYlIWG94uO3q7DQLru9kPBzDOZIAX8gAAFo9KxWq8d7m624yj/ox9cLNMyRgq/44yR8AhCARi8yMlKpqal+9w+sv6mYI3VsCGKOFLzNXyfhE4AANAmBHm5qgzlS8IXaTq5v6En4BCAACCDMkaqeP16maYqcznAVFkbKbnf49PtHAAKAJo45Uifmr5dpmhp/uguRAAQATRxzpE6sqrWSqhqlYK2kk+dvdyESgBoAw6oAfI1/Y2rPn0YpmhJ/uwuRAORlDKsCQOPhb6MUTYm/3YXIozC8jCXoAaDxqGmUAqem4i7EisfV+PouREaAGhDDqgDg3/xtlKIpOHZyfU13ITb0JHwCUANhWBUA/B9rJdU/f52ETwBqIP42+QsAUDXWSqp//jjHlQDUQBhWBQD/xVpJgYcA1EAYVgUA/+Wvl2ngPQSgBsSwKgD4L8JNYCEAeRnDqgAA+B8CkJcxrAoAgP8hADUAwg0AAP6FlaABAEDAIQABAICAwyUwBCSHw8G8LAAIYAQgBByHw6H58+efsF5qaiohCACaKC6BIeAcP/LjdIYrLy9OTmd4jfUAAE0HI0AIaOvW9a60OndCwnpfdwsA4GWMACFgOZ3h7vAjHX047fLlwyqNBAEAmh4CEAJWYWGkx8NppaMhqLDQ7qMeAQAaCgEIActud8hicXmUWSwu2e2FPuoRAKChEIAQsGy2YqWkrHCHoIo5QDykFgCaPiZBI6AlJKxXfPx2FRbaZbcXEn4AIEAQgBBwrFarx3ubrbjK4HN8PQBA00EAQsCJjIxUamoqK0EDQAAjACEgEW4AILAxCRoAAAQcAhAAAAg4BCAAABBwCEAAACDgEIAAAEDAIQABAICA4xcBaMGCBYqLi1NYWJgSExP11Vdf1Vj/zTffVLdu3RQWFqZzzz1XK1eu9Ng+fvx4WSwWj9eQIUO8eQgAAKAR8XkAWrJkidLS0pSenq5169apZ8+eSk5O1t69e6usv3r1ao0ePVo33XST1q9fr+HDh2v48OHatGmTR70hQ4Zoz5497tdrr73WEIcDAAAaAYsxxviyA4mJierXr5/mz58vSXK5XIqNjdWkSZM0ZcqUSvVHjhypkpISrVixwl32pz/9Sb169dKzzz4r6egI0IEDB7Rs2bKT6lNRUZFsNpucTqciIiJOqg0AANCw6vL326cjQGVlZVq7dq2SkpLcZUFBQUpKStKaNWuq3GfNmjUe9SUpOTm5Uv3c3Fy1bdtWXbt21cSJE+VwOKrtR2lpqYqKijxeAACg6fJpANq/f7/Ky8sVFRXlUR4VFaX8/Pwq98nPzz9h/SFDhujll19WTk6OHn/8cX3yySe64oorVF5eXmWbGRkZstls7ldsbOwpHhkAAPBnTfJZYKNGjXL/fO655+q8885TfHy8cnNzdemll1aqP3XqVKWlpbnfFxUVEYIAAGjCfDoC1Lp1awUHB6ugoMCjvKCgQNHR0VXuEx0dXaf6ktSpUye1bt1a27dvr3J7aGioIiIiPF4AAKDp8mkAslqt6tOnj3JyctxlLpdLOTk5GjBgQJX7DBgwwKO+JH344YfV1pek3bt3y+FwqF27dvXTcQAA0Kj5/Db4tLQ0Pf/881q0aJG2bNmiiRMnqqSkRBMmTJAkjR07VlOnTnXXv+uuu5Sdna1//OMf+v777zV9+nT95z//UWpqqiTp4MGDuvfee/XFF19o586dysnJ0VVXXaXOnTsrOTnZJ8cIAAD8i8/nAI0cOVL79u3TtGnTlJ+fr169eik7O9s90XnXrl0KCvojpw0cOFCLFy/W3//+dz3wwAPq0qWLli1bpnPOOUeSFBwcrI0bN2rRokU6cOCAYmJidPnll2vmzJkKDQ31yTECAAD/4vN1gPwR6wABAFB/HA6HysrKqt1utVoVGRl5yp9Tl7/fPh8BAgAATZfD4XAvdlyT1NTUeglBteXzOUAAAKDpOn7kx+kMV15enJzO8BrreRsjQAAAoEGsW9dby5cPkzFBslhcSklZoYSE9T7pCwEIABpYQ82HAPyJ0xnuDj+SZEyQli8fpvj47bLZihu8PwQgAGhA/jofAvC2wsJId/ipYEyQCgvtPglAzAECgAbkr/MhAG+z2x2yWFweZRaLS3Z7oU/6wwgQAPiIP82HALzNZitWSsqKSt95X4z+SAQgAPAJf5sPATSEhIT1io/frsJCu+z2Qp9+1wlAAOAD/jYfAvAWq9Xq8d5mK67yO358PW8jAAGAD1TMhzg2BPlyPgTgLZGRkUpNTfW7Ox8JQADqHbd5n5i/zYdA4PDF76c//r4TgADUK27zrj1/mg+BwMDv5x8IQADqVVW3eRcWRspud3j8gQ/U27z9dT4EAgO/n38gAAHwGm7zrsxf50Mg8AT67ycBCIBXcJt39Qg38DV+P1kJGoCX1HSbNwDf4veTAATAS/xt2XsAf+D3kwAEwEsqbvOu+EeW27wB/8HvJ3OAAHgRt3kD/ivQfz8JQKg3LH4Hidu8AX/G7+cfLMYY4+tO+JuioiLZbDY5nU5FRET4ujuNAotr4ViEYcB/NeXfz7r8/WYECPWitotmBcLiWuA2b8Cf8ft5FJOg4RVOZ7jy8uLkdIb7uisAAFTCCBDqXaCvLgoA8H+MAKFeVbe6KCNBAAB/QgBCvWJ1UQBAY0AAQr1idVEAQGNAAEK9YnVRAEBjwCRo1ItjF82qaXXRQFhcCwDg/whAqBeRkZFKTU1tsotrAQCaFgIQ6g3hBgDQWDAHCAAABBwCEAAACDgEIAAAEHAIQAAAIOAQgAAAQMAhAAEAgIBDAAIAAAGHAAQAAAIOAQgAAAQcAhAAAAg4PAqjCsYYSVJRUZGPewIAAGqr4u92xd/xmhCAqlBcfPTp5bGxsT7uCQAAqKvi4mLZbLYa61hMbWJSgHG5XPr1118VHh4ui8VySm0VFRUpNjZWP//8syIiIuqph40b56QyzkllnJPKOCeVcU4qC+RzYoxRcXGxYmJiFBRU8ywfRoCqEBQUpDPOOKNe24yIiAi4L+KJcE4q45xUxjmpjHNSGeekskA9Jyca+anAJGgAABBwCEAAACDgEIC8LDQ0VOnp6QoNDfV1V/wG56QyzkllnJPKOCeVcU4q45zUDpOgAQBAwGEECAAABBwCEAAACDgEIAAAEHAIQAAAIOAQgOpowYIFiouLU1hYmBITE/XVV1/VWD8zM1Ndu3ZVs2bNFBsbq7/97W86fPiwe/v06dNlsVg8Xt26dfP2YdS7upyXI0eO6OGHH1Z8fLzCwsLUs2dPZWdnn1Kb/qi+z0lj/q58+umnSklJUUxMjCwWi5YtW3bCfXJzc5WQkKDQ0FB17txZWVlZleo05u+IN85JY/6OVKjredmzZ4+uu+46nXXWWQoKCtLkyZOrrPfmm2+qW7duCgsL07nnnquVK1fWf+e9xBvnJCsrq9J3JSwszDsH4KcIQHWwZMkSpaWlKT09XevWrVPPnj2VnJysvXv3Vll/8eLFmjJlitLT07Vlyxa98MILWrJkiR544AGPej169NCePXvcr1WrVjXE4dSbup6Xv//973ruuec0b948bd68Wbfffrv+53/+R+vXrz/pNv2NN86J1Hi/KyUlJerZs6cWLFhQq/p5eXkaOnSoLr74Ym3YsEGTJ0/WzTffrPfff99dp7F/R7xxTqTG+x2pUNfzUlpaqjZt2ujvf/+7evbsWWWd1atXa/To0brpppu0fv16DR8+XMOHD9emTZvqs+te441zIh1dKfrY78pPP/1UX11uHAxqrX///uaOO+5wvy8vLzcxMTEmIyOjyvp33HGHueSSSzzK0tLSzPnnn+9+n56ebnr27OmV/jaUup6Xdu3amfnz53uUXX311eb6668/6Tb9jTfOSVP4rhhjjCTzzjvv1FjnvvvuMz169PAoGzlypElOTna/b+zfkWPV1zlpKt+RCrU5L8caPHiwueuuuyqVX3vttWbo0KEeZYmJiea22247xR42vPo6Jy+99JKx2Wz11q/GiBGgWiorK9PatWuVlJTkLgsKClJSUpLWrFlT5T4DBw7U2rVr3cPyP/74o1auXKk///nPHvW2bdummJgYderUSddff7127drlvQOpZydzXkpLSysNtTZr1sz9/1RPpk1/4o1zUqExf1fqYs2aNR7nT5KSk5Pd56+xf0dOxonOSYVA+Y7URW3PXaA5ePCgOnTooNjYWF111VX67rvvfN2lBkUAqqX9+/ervLxcUVFRHuVRUVHKz8+vcp/rrrtODz/8sC644AKFhIQoPj5eF110kcclsMTERGVlZSk7O1sLFy5UXl6eBg0apOLiYq8eT305mfOSnJysOXPmaNu2bXK5XPrwww+1dOlS7dmz56Tb9CfeOCdS4/+u1EV+fn6V56+oqEj//e9/G/135GSc6JxIgfUdqYvqzl1T/a7URteuXfXiiy/q3Xff1auvviqXy6WBAwdq9+7dvu5agyEAeVFubq4ee+wxPfPMM1q3bp2WLl2q9957TzNnznTXueKKK/SXv/xF5513npKTk7Vy5UodOHBAb7zxhg977l1PP/20unTpom7duslqtSo1NVUTJkxQUFDgfh1rc04C8buCuuE7gtoaMGCAxo4dq169emnw4MFaunSp2rRpo+eee87XXWswgfsXp45at26t4OBgFRQUeJQXFBQoOjq6yn0eeughjRkzRjfffLPOPfdc/c///I8ee+wxZWRkyOVyVblPq1atdNZZZ2n79u31fgzecDLnpU2bNlq2bJlKSkr0008/6fvvv1fLli3VqVOnk27Tn3jjnFSlsX1X6iI6OrrK8xcREaFmzZo1+u/IyTjROalKU/6O1EV1566pfldORkhIiHr37h1Q3xUCUC1ZrVb16dNHOTk57jKXy6WcnBwNGDCgyn0OHTpUaVQjODhYkmSqeQTbwYMHtWPHDrVr166eeu5dJ3NeKoSFhal9+/b6/fff9fbbb+uqq6465Tb9gTfOSVUa23elLgYMGOBx/iTpww8/dJ+/xv4dORknOidVacrfkbo4mXMXaMrLy/Xtt98G1nfF17OwG5PXX3/dhIaGmqysLLN582Zz6623mlatWpn8/HxjjDFjxowxU6ZMcddPT0834eHh5rXXXjM//vij+eCDD0x8fLy59tpr3XXuvvtuk5uba/Ly8sznn39ukpKSTOvWrc3evXsb/PhOVl3PyxdffGHefvtts2PHDvPpp5+aSy65xHTs2NH89ttvtW7T33njnDTm70pxcbFZv369Wb9+vZFk5syZY9avX29++uknY4wxU6ZMMWPGjHHX//HHH03z5s3Nvffea7Zs2WIWLFhggoODTXZ2trtOY/+OeOOcNObvSIW6nhdjjLt+nz59zHXXXWfWr19vvvvuO/f2zz//3Jx22mlm9uzZZsuWLSY9Pd2EhISYb7/9tkGP7WR545zMmDHDvP/++2bHjh1m7dq1ZtSoUSYsLMyjTlNHAKqjefPmmTPPPNNYrVbTv39/88UXX7i3DR482IwbN879/siRI2b69OkmPj7ehIWFmdjYWPPXv/7V44/ayJEjTbt27YzVajXt27c3I0eONNu3b2/AI6ofdTkvubm55uyzzzahoaEmMjLSjBkzxvzyyy91arMxqO9z0pi/Kx9//LGRVOlVcQ7GjRtnBg8eXGmfXr16GavVajp16mReeumlSu025u+IN85JY/6OVDiZ81JV/Q4dOnjUeeONN8xZZ51lrFar6dGjh3nvvfca5oDqgTfOyeTJk92/O1FRUebPf/6zWbduXcMdlB+wGFPNtRgAAIAmijlAAAAg4BCAAABAwCEAAQCAgEMAAgAAAYcABAAAAg4BCAAABBwCEAAACDgEIABoBHJzc2WxWHTgwAFfdwVoEghAADyMHz9eFotFs2bN8ihftmyZLBaL+70xRs8//7wGDBigiIgItWzZUj169NBdd91V6wcqHjp0SFOnTlV8fLzCwsLUpk0bDR48WO+++667TlxcnDIzM+vl2Lyt4txZLBaFhISoY8eOuu+++3T48OE6tXPRRRdp8uTJHmUDBw7Unj17ZLPZ6rHHQOAiAAGoJCwsTI8//rh+++23KrcbY3Tdddfpzjvv1J///Gd98MEH2rx5s1544QWFhYXpkUceqdXn3H777Vq6dKnmzZun77//XtnZ2brmmmvkcDjq83Aa1JAhQ7Rnzx79+OOPeuqpp/Tcc88pPT39lNu1Wq2Kjo72CKEAToFvn8QBwN+MGzfODBs2zHTr1s3ce++97vJ33nnHVPyT8dprrxlJ5t13362yDZfLVavPstlsJisrq9rtgwcPrvQ8owqfffaZueCCC0xYWJg544wzzKRJk8zBgwfd219++WXTp08f07JlSxMVFWVGjx5tCgoK3Nsrnq+UnZ1tevXqZcLCwszFF19sCgoKzMqVK023bt1MeHi4GT16tCkpKanV8YwbN85cddVVHmVXX3216d27t/v9/v37zahRo0xMTIxp1qyZOeecc8zixYs92jj+mPPy8tz9PfZZgm+99Zbp3r27sVqtpkOHDmb27Nm16icAYxgBAlBJcHCwHnvsMc2bN0+7d++utP21115T165ddeWVV1a5f21HKaKjo7Vy5UoVFxdXuX3p0qU644wz9PDDD2vPnj3as2ePJGnHjh0aMmSIRowYoY0bN2rJkiVatWqVUlNT3fseOXJEM2fO1DfffKNly5Zp586dGj9+fKXPmD59uubPn6/Vq1fr559/1rXXXqvMzEwtXrxY7733nj744APNmzevVsdzvE2bNmn16tWyWq3ussOHD6tPnz567733tGnTJt16660aM2aMvvrqK0nS008/rQEDBuiWW25xH3NsbGyltteuXatrr71Wo0aN0rfffqvp06froYceUlZW1kn1FQg4vk5gAPzLsaMYf/rTn8yNN95ojPEcAerWrZu58sorPfa76667TIsWLUyLFi1M+/bta/VZn3zyiTnjjDNMSEiI6du3r5k8ebJZtWqVR50OHTqYp556yqPspptuMrfeeqtH2WeffWaCgoLMf//73yo/6+uvvzaSTHFxsTHmjxGgjz76yF0nIyPDSDI7duxwl912220mOTm5Vsczbtw4ExwcbFq0aGFCQ0ONJBMUFGTeeuutGvcbOnSoufvuu93vBw8ebO666y6POsePAF133XXmsssu86hz7733mu7du9eqr0CgYwQIQLUef/xxLVq0SFu2bDlh3QcffFAbNmzQtGnTdPDgwVq1f+GFF+rHH39UTk6OrrnmGn333XcaNGiQZs6cWeN+33zzjbKystSyZUv3Kzk5WS6XS3l5eZKOjpCkpKTozDPPVHh4uAYPHixJ2rVrl0db5513nvvnqKgoNW/eXJ06dfIo27t3b62OR5IuvvhibdiwQV9++aXGjRunCRMmaMSIEe7t5eXlmjlzps4991zZ7Xa1bNlS77//fqV+nciWLVt0/vnne5Sdf/752rZtm8rLy+vUFhCICEAAqnXhhRcqOTlZU6dO9Sjv0qWLtm7d6lHWpk0bde7cWW3btq3TZ4SEhGjQoEG6//779cEHH+jhhx/WzJkzVVZWVu0+Bw8e1G233aYNGza4X9988422bdum+Ph4lZSUKDk5WREREfrnP/+pr7/+Wu+8844kVWo3JCTE/XPF3VvHslgscrlctT6eFi1aqHPnzurZs6defPFFffnll3rhhRfc25988kk9/fTTuv/++/Xxxx9rw4YNSk5OrvF4AdS/03zdAQD+bdasWerVq5e6du3qLhs9erSuu+46vfvuu7rqqqvq9fO6d++u33//XYcPH5bVapXVaq00opGQkKDNmzerc+fOVbbx7bffyuFwaNasWe75M//5z3/qtZ+1ERQUpAceeEBpaWm67rrr1KxZM33++ee66qqrdMMNN0iSXC6XfvjhB3Xv3t29X1XHfLyzzz5bn3/+uUfZ559/rrPOOkvBwcH1fzBAE8MIEIAanXvuubr++us1d+5cd9moUaN0zTXXaNSoUXr44Yf15ZdfaufOnfrkk0+0ZMmSWv8Bvuiii/Tcc89p7dq12rlzp1auXKkHHnhAF198sSIiIiQdXQfo008/1S+//KL9+/dLku6//36tXr1aqamp2rBhg7Zt26Z3333XPQn6zDPPlNVq1bx58/Tjjz/qX//61wkvq3nLX/7yFwUHB2vBggWSjo6effjhh1q9erW2bNmi2267TQUFBR77xMXFuc/p/v37qxyBuvvuu5WTk6OZM2fqhx9+0KJFizR//nzdc889DXJcQGNHAAJwQg8//LDHH2GLxaIlS5YoMzNTK1eu1KWXXqquXbvqxhtvVGxsrFatWlWrdpOTk7Vo0SJdfvnlOvvsszVp0iQlJyfrjTfe8PjsnTt3Kj4+Xm3atJF0dN7OJ598oh9++EGDBg1S7969NW3aNMXExEg6ejkuKytLb775prp3765Zs2Zp9uzZ9XhGau+0005TamqqnnjiCZWUlOjvf/+7EhISlJycrIsuukjR0dEaPny4xz733HOPgoOD1b17d7Vp06bK+UEJCQl644039Prrr+ucc87RtGnT9PDDD1d5pxuAyizGGOPrTgAAADQkRoAAAEDAIQAB8Jpjb1M//vXZZ5/5unt1smvXrhqPp663sQPwLS6BAfCamh6K2r59ezVr1qwBe3Nqfv/9d+3cubPa7XFxcTrtNG6sBRoLAhAAAAg4XAIDAAABhwAEAAACDgEIAAAEHAIQAAAIOAQgAAAQcAhAAAAg4BCAAABAwCEAAQCAgPP/AQiYwcYM3ya2AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_13.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGpklEQVR4nO3de1yUdd7/8feAnEQYBRVQURQsM4/gIe1gBwpdpdy8f6GVp7VaW6mMjmZmrZWWh/CUrd6etjK9TbdVcy0lu3dTW01ky0OmhtlBUIcaVAoIrt8f3kyOHGSUmQGu1/PxmEfOdX3nuj7XN3TefK/vdV0WwzAMAQAAmIiPtwsAAADwNAIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQANRiy5Ytk8Vi0dGjR71dClCvEIAAk9u1a5dSU1N19dVXKzg4WK1bt9Zdd92lr776qlzbG2+8URaLRRaLRT4+PgoNDdWVV16p4cOHa/PmzS7td/369erXr5+aN2+uhg0bql27drrrrru0adOmmjq0cl5++WW999575ZZv375dzz//vH766Se37ftCzz//vKMvLRaLGjZsqI4dO+rZZ59Vfn5+jexjxYoVSk9Pr5FtAfUNAQgwuVdeeUVr1qzRLbfcotmzZ+uBBx7QP//5T8XHx2vv3r3l2rdq1Upvvvmm/vrXv2r69Om6/fbbtX37dt12221KSUlRcXHxRfc5Y8YM3X777bJYLJowYYJee+01DRkyRIcOHdLKlSvdcZiSqg5AL7zwgkcDUJkFCxbozTff1KxZs9ShQwe99NJL6t+/v2riMY0EIKByDbxdAADvSktL04oVK+Tv7+9YlpKSos6dO2vatGl66623nNpbrVbde++9TsumTZumhx9+WK+//rpiYmL0yiuvVLq/X3/9VVOmTNGtt96qDz/8sNz6EydOXOYR1R4FBQVq2LBhlW3+67/+S02bNpUkjR07VkOGDNHatWv16aefqk+fPp4oEzAlRoAAk+vbt69T+JGk9u3b6+qrr9aBAweqtQ1fX1/NmTNHHTt21Lx582S32ytte+rUKeXn5+vaa6+tcH3z5s2d3v/yyy96/vnndcUVVygwMFBRUVG68847deTIEUebGTNmqG/fvgoPD1dQUJASEhL07rvvOm3HYrHo7NmzWr58ueO006hRo/T888/riSeekCS1bdvWse78OTdvvfWWEhISFBQUpLCwMA0dOlTffvut0/ZvvPFGderUSbt379YNN9yghg0b6plnnqlW/53v5ptvliRlZ2dX2e7111/X1VdfrYCAALVo0ULjxo1zGsG68cYb9f777+ubb75xHFNMTIzL9QD1FSNAAMoxDEO5ubm6+uqrq/0ZX19fDRs2TJMmTdInn3yigQMHVtiuefPmCgoK0vr16/XQQw8pLCys0m2WlJRo0KBBysjI0NChQ/XII4/o9OnT2rx5s/bu3avY2FhJ0uzZs3X77bfrnnvuUVFRkVauXKn/9//+nzZs2OCo480339R9992nXr166YEHHpAkxcbGKjg4WF999ZXeeecdvfbaa47RmGbNmkmSXnrpJU2aNEl33XWX7rvvPp08eVJz587VDTfcoD179qhx48aOem02mwYMGKChQ4fq3nvvVURERLX7r0xZsAsPD6+0zfPPP68XXnhBiYmJevDBB3Xw4EEtWLBAu3bt0rZt2+Tn56eJEyfKbrfru+++02uvvSZJatSokcv1APWWAQAXePPNNw1JxuLFi52W9+vXz7j66qsr/dzf/vY3Q5Ixe/bsKrf/3HPPGZKM4OBgY8CAAcZLL71k7N69u1y7JUuWGJKMWbNmlVtXWlrq+HNBQYHTuqKiIqNTp07GzTff7LQ8ODjYGDlyZLltTZ8+3ZBkZGdnOy0/evSo4evra7z00ktOy7/44gujQYMGTsv79etnSDLeeOONSo/7fJMnTzYkGQcPHjROnjxpZGdnG3/5y1+MgIAAIyIiwjh79qxhGIaxdOlSp9pOnDhh+Pv7G7fddptRUlLi2N68efMMScaSJUscywYOHGi0adOmWvUAZsMpMABOvvzyS40bN059+vTRyJEjXfps2QjD6dOnq2z3wgsvaMWKFerevbs++OADTZw4UQkJCYqPj3c67bZmzRo1bdpUDz30ULltWCwWx5+DgoIcf/7xxx9lt9t1/fXXKzMz06X6L7R27VqVlpbqrrvu0qlTpxyvyMhItW/fXlu3bnVqHxAQoNGjR7u0jyuvvFLNmjVT27Zt9cc//lFxcXF6//33K507tGXLFhUVFWn8+PHy8fntn/D7779foaGhev/9910/UMCEOAUGwCEnJ0cDBw6U1WrVu+++K19fX5c+f+bMGUlSSEjIRdsOGzZMw4YNU35+vv79739r2bJlWrFihZKTk7V3714FBgbqyJEjuvLKK9WgQdX/VG3YsEEvvviisrKyVFhY6Fh+fki6FIcOHZJhGGrfvn2F6/38/Jzet2zZstx8qotZs2aNQkND5efnp1atWjlO61Xmm2++kXQuOJ3P399f7dq1c6wHUDUCEABJkt1u14ABA/TTTz/pX//6l1q0aOHyNsoum4+Li6v2Z0JDQ3Xrrbfq1ltvlZ+fn5YvX65///vf6tevX7U+/69//Uu33367brjhBr3++uuKioqSn5+fli5dqhUrVrh8DOcrLS2VxWLRP/7xjwrD4IVzas4fiaquG264wTHvCIDnEIAA6JdfflFycrK++uorbdmyRR07dnR5GyUlJVqxYoUaNmyo66677pLq6NGjh5YvX67jx49LOjdJ+d///reKi4vLjbaUWbNmjQIDA/XBBx8oICDAsXzp0qXl2lY2IlTZ8tjYWBmGobZt2+qKK65w9XDcok2bNpKkgwcPql27do7lRUVFys7OVmJiomPZ5Y6AAfUZc4AAkyspKVFKSop27Nih1atXX9K9Z0pKSvTwww/rwIEDevjhhxUaGlpp24KCAu3YsaPCdf/4xz8k/XZ6Z8iQITp16pTmzZtXrq3xfzcK9PX1lcViUUlJiWPd0aNHK7zhYXBwcIU3OwwODpakcuvuvPNO+fr66oUXXih3Y0LDMGSz2So+SDdKTEyUv7+/5syZ41TT4sWLZbfbna6+Cw4OrvKWBICZMQIEmNxjjz2mdevWKTk5WXl5eeVufHjhTQ/tdrujTUFBgQ4fPqy1a9fqyJEjGjp0qKZMmVLl/goKCtS3b19dc8016t+/v6Kjo/XTTz/pvffe07/+9S8NHjxY3bt3lySNGDFCf/3rX5WWlqadO3fq+uuv19mzZ7Vlyxb96U9/0h133KGBAwdq1qxZ6t+/v+6++26dOHFC8+fPV1xcnD7//HOnfSckJGjLli2aNWuWWrRoobZt26p3795KSEiQJE2cOFFDhw6Vn5+fkpOTFRsbqxdffFETJkzQ0aNHNXjwYIWEhCg7O1t/+9vf9MADD+jxxx+/rP53VbNmzTRhwgS98MIL6t+/v26//XYdPHhQr7/+unr27On0/yshIUGrVq1SWlqaevbsqUaNGik5Odmj9QK1ljcvQQPgfWWXb1f2qqpto0aNjPbt2xv33nuv8eGHH1Zrf8XFxcaiRYuMwYMHG23atDECAgKMhg0bGt27dzemT59uFBYWOrUvKCgwJk6caLRt29bw8/MzIiMjjf/6r/8yjhw54mizePFio3379kZAQIDRoUMHY+nSpY7LzM/35ZdfGjfccIMRFBRkSHK6JH7KlClGy5YtDR8fn3KXxK9Zs8a47rrrjODgYCM4ONjo0KGDMW7cOOPgwYNOfVPVLQIuVFbfyZMnq2x34WXwZebNm2d06NDB8PPzMyIiIowHH3zQ+PHHH53anDlzxrj77ruNxo0bG5K4JB44j8UwauCBMwAAAHUIc4AAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpcCPECpSWluqHH35QSEgIt5IHAKCOMAxDp0+fVosWLeTjU/UYDwGoAj/88IOio6O9XQYAALgE3377rVq1alVlGwJQBUJCQiSd68CqnmkEAABqj/z8fEVHRzu+x6tCAKpA2Wmv0NBQAhAAAHVMdaavMAkaAACYDgEIAACYDgEIAACYDnOAAACoISUlJSouLvZ2GfWWn5+ffH19a2RbBCAAAC6TYRjKycnRTz/95O1S6r3GjRsrMjLysu/TRwACAOAylYWf5s2bq2HDhtxE1w0Mw1BBQYFOnDghSYqKirqs7RGAAAC4DCUlJY7wEx4e7u1y6rWgoCBJ0okTJ9S8efPLOh3GJGgAAC5D2Zyfhg0berkScyjr58uda0UAAgCgBnDayzNqqp8JQAAAwHSYA1QH2Ww2FRUVVbre39/fq+eha3t9AAAQgOoYm82mefPmOd7b7SHKywtXWJhNVutpx/LU1FSvhIwL66uMt+oDAPxm1KhRWr58uSSpQYMGCgsLU5cuXTRs2DCNGjVKPj7VO1G0bNkyjR8/vk7dBoAAVMecP7KSmdld69cPkmH4yGIpVXLyBsXH7ynXzlv1SZUHNG/VBwC1kTdHzvv376+lS5eqpKREubm52rRpkx555BG9++67WrdunRo0qJ9RoX4elQnY7SGO8CNJhuGj9esHKTb2sFPQ8KaqAhoA4Bxvj5wHBAQoMjJSktSyZUvFx8frmmuu0S233KJly5bpvvvu06xZs7R06VJ9/fXXCgsLU3Jysl599VU1atRIH3/8sUaPHi3ptwnKkydP1vPPP68333xTs2fP1sGDBxUcHKybb75Z6enpat68eY0fh6uYBF1H5eWFO8JPGcPwUV5emJcqclZZQLPbQ7xcGQDULtUdEffkyPnNN9+srl27au3atZIkHx8fzZkzR/v27dPy5cv10Ucf6cknn5Qk9e3bV+np6QoNDdXx48d1/PhxPf7445LOXao+ZcoU/ec//9F7772no0ePatSoUR47jqowAlRHhYXZZLGUOoUgi6VUYWF5XqzqN1UFtNoyQgUAqFyHDh30+eefS5LGjx/vWB4TE6MXX3xRY8eO1euvvy5/f39ZrVZZLBbHSFKZP/zhD44/t2vXTnPmzFHPnj115swZNWrUyCPHURlGgOooq/W0kpM3yGIplSTHKabaEi7KAtr5alNAAwBUzTAMxymtLVu26JZbblHLli0VEhKi4cOHy2azqaCgoMpt7N69W8nJyWrdurVCQkLUr18/SdKxY8fcXv/FMAJUh8XH71Fs7GHl5YUpLCyv1oQf6beAduEcoNpUIwCgcgcOHFDbtm119OhRDRo0SA8++KBeeuklhYWF6ZNPPtGYMWNUVFRU6R2wz549q6SkJCUlJentt99Ws2bNdOzYMSUlJdWKC2EIQHWc1Xq61oaK2hzQAACV++ijj/TFF1/o0Ucf1e7du1VaWqqZM2c6Lov/n//5H6f2/v7+KikpcVr25Zdfymazadq0aYqOjpYkffbZZ545gGogANUx/v7+Ndqupl2438oCmrfqAwA4KywsVE5OjtNl8FOnTtWgQYM0YsQI7d27V8XFxZo7d66Sk5O1bds2vfHGG07biImJ0ZkzZ5SRkaGuXbuqYcOGat26tfz9/TV37lyNHTtWe/fu1ZQpU7x0lOURgOqY8PBwpaam1to7Ldf2+uoK7qYNwFM2bdqkqKgoNWjQQE2aNFHXrl01Z84cjRw5Uj4+PuratatmzZqlV155RRMmTNANN9ygqVOnasSIEY5t9O3bV2PHjlVKSopsNpvjMvhly5bpmWee0Zw5cxQfH68ZM2bo9ttv9+LR/sZiGIbh7SJqm/z8fFmtVtntdoWGhnq7HJiMt+8JAsA1v/zyi7Kzs9W2bVsFBga6/Hn+zrumqv525fubESCglqmN9wQB4D6MnHsHAQgAAC8j3Hge9wECajm7PUTZ2THcRRsAahAjQEAtxvPUAMA9CEBALeXqA2+5cgwAqo8ABNRSrjxPjatIAMA1zAECailXnqfGlWMA4BoCEFDLlN0l+2IPvK3qbtpMnAaAqnEKDKhlLrwnyHPPndTRow0UE/OrWrToKalnlfN5mDgNABdHAEKNYzLu5Tu/f6KipISE6n3O1YnTAOBOH3/8sW666Sb9+OOPaty4cbU+ExMTo/Hjx2v8+PFurc3rp8Dmz5+vmJgYBQYGqnfv3tq5c2elbfft26chQ4YoJiZGFotF6enp5dr885//VHJyslq0aCGLxaL33nvPfcWjnLLJuAsXLtTChQs1ffo7mjDhQ02f/o5j2bx582Sz2bxdar1U1cRpALjQqFGjZLFYNHbs2HLrxo0bJ4vFolGjRnm+MA/wagBatWqV0tLSNHnyZGVmZqpr165KSkrSiRMnKmxfUFCgdu3aadq0aYqMjKywzdmzZ9W1a1fNnz/fnaWjEueP/GRmdld6+ngtXz5S6enjlZnZvcJ2qDmuTJwGAEmKjo7WypUr9fPPPzuW/fLLL1qxYoVat27txcrcy6sBaNasWbr//vs1evRodezYUW+88YYaNmyoJUuWVNi+Z8+emj59uoYOHaqAgIAK2wwYMEAvvviifv/737uzdFxEZadimJTrXhebOA0AF4qPj1d0dLTWrl3rWLZ27Vq1bt1a3bv/9otrYWGhHn74YTVv3lyBgYG67rrrtGvXLqdtbdy4UVdccYWCgoJ000036ejRo+X298knn+j6669XUFCQoqOj9fDDD+vs2bNuO77KeC0AFRUVaffu3UpMTPytGB8fJSYmaseOHR6tpbCwUPn5+U4vXB5OxXjW+VeExcfv0fjx6Ro5cpnGj093mgBd1ZVjAGqH776Ttm49919P+cMf/qClS5c63i9ZskSjR492avPkk09qzZo1Wr58uTIzMxUXF6ekpCTl5Z0bYf7222915513Kjk5WVlZWbrvvvv09NNPO23jyJEj6t+/v4YMGaLPP/9cq1at0ieffKLU1FT3H+QFvDYJ+tSpUyopKVFERITT8oiICH355ZcerWXq1Kl64YUXPLrP+q7sVMz5IYhTMe7D06SB+mHxYumBB6TSUsnHR1q4UBozxv37vffeezVhwgR98803kqRt27Zp5cqV+vjjjyWdm16yYMECLVu2TAMGDJAkLVq0SJs3b9bixYv1xBNPaMGCBYqNjdXMmTMlSVdeeaW++OILvfLKK479TJ06Vffcc49jgnP79u01Z84c9evXTwsWLFBgYKD7D/b/cBWYpAkTJigtLc3xPj8/X9HR0V6sqO4rOxVz4eXYnIpxH8INULd9991v4Uc6998//lFKSpJatXLvvps1a6aBAwdq2bJlMgxDAwcOVNOmTR3rjxw5ouLiYl177bWOZX5+furVq5cOHDggSTpw4IB69+7ttN0+ffo4vf/Pf/6jzz//XG+//bZjmWEYKi0tVXZ2tq666ip3HF6FvBaAmjZtKl9fX+Xm5jotz83NrXSCs7sEBARUOqcIly4+fo9iYw8rLy9MYWF5hB8AqMKhQ7+FnzIlJdLhw+4PQNK502Blp6LcdSHRmTNn9Mc//lEPP/xwuXWennDttTlA/v7+SkhIUEZGhmNZaWmpMjIyyiVG1F1W62m1bfsN4QcALqJ9+3Onvc7n6yvFxXlm//3791dRUZGKi4uVlJTktC42Nlb+/v7atm2bY1lxcbF27dqljh07SpKuuuqqcrey+fTTT53ex8fHa//+/YqLiyv38vQcRa9eBZaWlqZFixZp+fLlOnDggB588EGdPXvWMfFqxIgRmjBhgqN9UVGRsrKylJWVpaKiIn3//ffKysrS4cOHHW3OnDnjaCNJ2dnZysrK0rFjxzx6bGZV3R9gJuMCgLNWrc7N+fH1Pffe11f6y188M/pzbn++OnDggPbv3y/fsiL+T3BwsB588EE98cQT2rRpk/bv36/7779fBQUFGvN/k5TGjh2rQ4cO6YknntDBgwe1YsUKLVu2zGk7Tz31lLZv367U1FRlZWXp0KFD+vvf/26uSdCSlJKSopMnT+q5555TTk6OunXrpk2bNjkmRh87dkw+58XhH374wemSvBkzZmjGjBnq16+fY6LWZ599pptuusnRpmxuz8iRI8v9j0DNYzIuAFy6MWPOzfk5fPjcyI+nwk+Z0NDQStdNmzZNpaWlGj58uE6fPq0ePXrogw8+UJMmTSSdO4W1Zs0aPfroo5o7d6569eqll19+WX/4wx8c2+jSpYv+93//VxMnTtT1118vwzAUGxurlJQUtx/bhSyGYRge32stl5+fL6vVKrvdXuUPAwAAv/zyi7Kzs9W2bVuPXsVkVlX1tyvf315/FAYAAICnEYAAAIDpEIAAAIDpEIAAAIDpEIAAAKgBXFPkGTXVzzwKA0ClbDYbtzQALsLPz0+SVFBQoKCgIC9XU/8VFBRI+q3fLxUBCECFbDab5s2bd9F2qamphCCYmq+vrxo3bqwTJ05Ikho2bCiLxeLlquofwzBUUFCgEydOqHHjxuVu1ugqAhCAClU18nMp7YD6rOwZlmUhCO7TuHHjGnlmKAEIQLXY7SHKywtXWJiNZ7sBF7BYLIqKilLz5s1VXFzs7XLqLT8/v8se+SlDAAJwUZmZ3bV+/SAZho8sllIlJ29QfPweb5cF1Dq+vr419gUN9+IqMABVsttDHOFHkgzDR+vXD5LdHuLlygDg0jEC5AFcSYO6LC8v3BF+yhiGj/LywjgVBqDOIgC5GVfSoK4LC7PJYil1CkEWS6nCwvK8WBUAXB5OgbkZV9KgrrNaTys5eYMsllJJcswBYvQHQF3GCBCACvn7+zv+HB+/R7Gxh5WXF6awsDyn8HN+OwCoKwhAHsalxKgrwsPDlZqayvw1APUSAciDuJQYdQ3hBkB9xRwgD+FSYgAAag8CkIdUdSkxAADwLAKQh5RdSnw+LiUGAMA7CEBuVnaFzMUuJeZKGgAAPMdiGIbh7SJqm/z8fFmtVtntdoWGhl729s6/E/QPP/jo6NEGion5VS1anAtDXEkDAMDlc+X7m6vAPOD8cBMVJSUkeLEYAADAKTAAAGA+BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6DbxdAAD3s9lsKioqqnS9v7+/wsPDPVgRAHgXAQio52w2m+bNm3fRdqmpqYQgAKZBAALquQtHfuz2EOXlhSsszCar9XSl7VB9jLABdQ8BCDCRzMzuWr9+kAzDRxZLqZKTNyg+fo+3y6rTGGED6iYmQQMmYbeHOMKPJBmGj9avHyS7PcTLldVt1R05Y4QNqF0IQIBJ5OWFO8JPGcPwUV5emJcqqp/s9hBlZ8cQLIFajlNggEmEhdlksZQ6hSCLpVRhYXlerKp+4RQjUHcwAgSYhNV6WsnJG2SxlEqS4wv6/InQuHScYgTqFkaAABOJj9+j2NjDyssLU1hYHuGnBlV1ipF+BmofAhBQz/n7+zu9t1pPV/iFfGE7uIZTjEDdQgAC6rnw8HClpqZynxo3KzvFeOEcIEZ/gNqJAASYAOHGfc4fOavqFCMjbEDtQgACgMvACBtQNxGAAOAyEW6AuofL4AEAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOnUigA0f/58xcTEKDAwUL1799bOnTsrbbtv3z4NGTJEMTExslgsSk9Pv+xtAgAAc/F6AFq1apXS0tI0efJkZWZmqmvXrkpKStKJEycqbF9QUKB27dpp2rRpioyMrJFtAgAAc7EYhmF4s4DevXurZ8+emjdvniSptLRU0dHReuihh/T0009X+dmYmBiNHz9e48ePr7FtSlJ+fr6sVqvsdrtCQ0Mv7cAAAIBHufL97dURoKKiIu3evVuJiYmOZT4+PkpMTNSOHTs8ts3CwkLl5+c7vQAAQP3l1QB06tQplZSUKCIiwml5RESEcnJyPLbNqVOnymq1Ol7R0dGXtG8AAFA38DBUSRMmTFBaWprjfX5+PiEIgOnZbDaeco96y6sBqGnTpvL19VVubq7T8tzc3EonOLtjmwEBAQoICLik/QFAfWSz2RzzKKuSmppKCEKd5NVTYP7+/kpISFBGRoZjWWlpqTIyMtSnT59as01AOveFcPz48UpfNpvN2yUCNaaqkZ9LaQfUNl4/BZaWlqaRI0eqR48e6tWrl9LT03X27FmNHj1akjRixAi1bNlSU6dOlXTuL9v+/fsdf/7++++VlZWlRo0aKS4urlrbBFzFb8MwO7s9RHl54QoLs8lqPe3tcoDL5vUAlJKSopMnT+q5555TTk6OunXrpk2bNjkmMR87dkw+Pr8NVP3www/q3r274/2MGTM0Y8YM9evXTx9//HG1tgm46sLfciv7MvDEb8PMy4CnZWZ21/r1g2QYPrJYSpWcvEHx8Xu8XRZwWbwegKRzvzWnpqZWuK4s1JSJiYlRdW5dVNU2gcvhzS8DRqLgaXZ7iOPnXZIMw0fr1w9SbOxhRoJQp3n9TtBAXVLZl4HdHuKR/Vc0EpWdHVNu/8zLQE3Jywt3/LyXMQwf5eWFeakioGbUihEgoK6o6svA078Nc1oCnhAWZpPFUur0c2+xlCosLM+LVQGXjxEgwAVlXwbn88aXgbdHomAeVutpJSdvcPzcl4VtTn+hrmMECHBB2ZfBhSMvnv4yqE0jUaif/P39HX+Oj9+j2NjDyssLU1hYntPP2PntgLqEAAS4qKovA0/htATcLTw8XKmpqVxxiHqLAARUw4W/5VqtpysMPp76bbi2jEShfiPcoD4jAAHVUBt/G64NI1EAUFcRgIBqqg2/Dde2kSgAqKsIQEAdUhtHogCgLiIAAXUM4QYALh/3AQIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKbDs8AA1Ao2m42HvALwGAIQAK+z2WyaN2+e473dHqK8vHCFhdlktZ52LE9NTSUEAagRBCAAXnf+yE9mZnetXz9IhuEji6VUyckbFB+/p1w7ALgczAECUGvY7SGO8CNJhuGj9esHyW4P8XJlAOobAhCAWiMvL9wRfsoYho/y8sK8VBGA+ooABKDWCAuzyWIpdVpmsZQqLCzPSxUBqK8IQABqDav1tJKTNzhCUNkcoPMnQgNATWASNIBaJT5+j2JjDysvL0xhYXmEHwBuQQACUOtYracJPgDcilNgALzO39+/RtsBwMUwAgTA68LDw5WamsqdoAF4DAEIQK1AuAHgSQQgADAxnsEGsyIAAYBJXfgMtsrwDDbUR0yCBgCTunDkx24PUXZ2TLlHj/AMNtRHjAABAKp8CC1QHzECBAAmx0NoYUYEIAAwOR5CCzMiAAGAyfEQWpgRAQgATI6H0MKMmAQNAOAhtDAdAhAAmNSFz1ar7CG0PIMN9REBCABMimewwcwIQABgYoQbmBWToAEAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOnwLDAAQK1ls9l4WCvcggAEAKiVbDab5s2bd9F2qamphCC4rFacAps/f75iYmIUGBio3r17a+fOnVW2X716tTp06KDAwEB17txZGzdudFqfm5urUaNGqUWLFmrYsKH69++vQ4cOufMQAAA17MKRH7s9RNnZMbLbQ6psB1SH1wPQqlWrlJaWpsmTJyszM1Ndu3ZVUlKSTpw4UWH77du3a9iwYRozZoz27NmjwYMHa/Dgwdq7d68kyTAMDR48WF9//bX+/ve/a8+ePWrTpo0SExN19uxZTx4aAKCGZGZ2V3r6eC1fPlLp6eOVmdnd2yWhjvN6AJo1a5buv/9+jR49Wh07dtQbb7yhhg0basmSJRW2nz17tvr3768nnnhCV111laZMmaL4+HjHMOmhQ4f06aefasGCBerZs6euvPJKLViwQD///LPeeecdTx4aAKAG2O0hWr9+kAzj3FeWYfho/fpB5UaCAFd4NQAVFRVp9+7dSkxMdCzz8fFRYmKiduzYUeFnduzY4dRekpKSkhztCwsLJUmBgYFO2wwICNAnn3xS4TYLCwuVn5/v9AIA1A55eeGO8FPGMHyUlxfmpYpQH1xSAFq9erXuvPNOderUSZ06ddKdd96pd9991+XtnDp1SiUlJYqIiHBaHhERoZycnAo/k5OTU2X7Dh06qHXr1powYYJ+/PFHFRUV6ZVXXtF3332n48ePV7jNqVOnymq1Ol7R0dEuHwsAwD3CwmyyWEqdllkspQoLy/NSRagPXApApaWlSklJUUpKivbv36+4uDjFxcVp3759SklJ0dChQ2UYhrtqrRY/Pz+tXbtWX331lcLCwtSwYUNt3bpVAwYMkI9PxYc7YcIE2e12x+vbb7/1cNUAUD/YbDYdP3680pfNZnN5m1braSUnb3CEIIulVMnJG2S1nq7p8mEiLl0GP3v2bG3ZskXr1q3ToEGDnNatW7dOo0eP1uzZszV+/Phqba9p06by9fVVbm6u0/Lc3FxFRkZW+JnIyMiLtk9ISFBWVpbsdruKiorUrFkz9e7dWz169KhwmwEBAQoICKhWzQCAil142brdHqK8vHCFhdmcwsqlXLYeH79HsbGHlZcXprCwPMIPLptLI0BLly7V9OnTy4UfSbr99tv16quvVjp5uSL+/v5KSEhQRkaGY1lpaakyMjLUp0+fCj/Tp08fp/aStHnz5grbW61WNWvWTIcOHdJnn32mO+64o9q1AQBcc/7l6FVdtVXdy9b9/f2d3lutp9W27Tflws+F7YDqcGkE6NChQ+UmIJ8vMTFRqampLhWQlpamkSNHqkePHurVq5fS09N19uxZjR49WpI0YsQItWzZUlOnTpUkPfLII+rXr59mzpypgQMHauXKlfrss8+0cOFCxzZXr16tZs2aqXXr1vriiy/0yCOPaPDgwbrttttcqg0A4LrKrtqKjT3s0shNeHi4UlNTuRM03MKlABQUFKSffvpJrVu3rnB9fn6+09VX1ZGSkqKTJ0/queeeU05Ojrp166ZNmzY5JjofO3bMae5O3759tWLFCj377LN65pln1L59e7333nvq1KmTo83x48eVlpam3NxcRUVFacSIEZo0aZJLdQEALk1VV225euqKcAN3sRguzFoeOHCgWrdurQULFlS4fuzYsTp27Fi5OzPXNfn5+bJarbLb7QoNDfV2OQBQJxw/flwLFy6U3R6i9PTxTiHIYinV+PHpslpP64EHHlBUVJQXK0V95cr3t0sjQBMnTtSNN94om82mxx9/XB06dJBhGDpw4IBmzpypv//979q6detlFQ8AqNvKrtoqOw3GVVuojVwKQH379tWqVav0wAMPaM2aNU7rmjRponfeeUfXXnttjRYIAKh7uGoLtZ3LT4P//e9/r6SkJH3wwQeOB4xeccUVuu2229SwYcMaLxAAUDdZracJPqi1XApAH330kVJTU/Xpp5/q97//vdM6u92uq6++Wm+88Yauv/76Gi0SAFD7VfdydC5bR23gUgBKT0/X/fffX+HEIqvVqj/+8Y+aNWsWAQgATIjL1lGXuBSA/vOf/+iVV16pdP1tt92mGTNmXHZRAIC6iXCDusKlO0Hn5ubKz8+v0vUNGjTQyZMnL7soAAAAd3IpALVs2VJ79+6tdP3nn3/OvR0AAECt51IA+t3vfqdJkybpl19+Kbfu559/1uTJkyt8ThgAAEBt4tKdoHNzcxUfHy9fX1+lpqbqyiuvlCR9+eWXmj9/vkpKSpSZmel4jEVdxZ2gAQCoe9x2J+iIiAht375dDz74oCZMmKCy7GSxWJSUlKT58+fX+fADAADqP5dvhNimTRtt3LhRP/74ow4fPizDMNS+fXs1adLEHfUBAADUOJcDUJkmTZqoZ8+eNVkLAACAR7g0CRoAAKA+IAABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTqRUBaP78+YqJiVFgYKB69+6tnTt3Vtl+9erV6tChgwIDA9W5c2dt3LjRaf2ZM2eUmpqqVq1aKSgoSB07dtQbb7zhzkMAAAB1iNcD0KpVq5SWlqbJkycrMzNTXbt2VVJSkk6cOFFh++3bt2vYsGEaM2aM9uzZo8GDB2vw4MHau3evo01aWpo2bdqkt956SwcOHND48eOVmpqqdevWeeqwAABALWYxDMPwZgG9e/dWz549NW/ePElSaWmpoqOj9dBDD+npp58u1z4lJUVnz57Vhg0bHMuuueYadevWzTHK06lTJ6WkpGjSpEmONgkJCRowYIBefPHFi9aUn58vq9Uqu92u0NDQyz1EAADgAa58f3t1BKioqEi7d+9WYmKiY5mPj48SExO1Y8eOCj+zY8cOp/aSlJSU5NS+b9++Wrdunb7//nsZhqGtW7fqq6++0m233VbhNgsLC5Wfn+/0AgAA9ZdXA9CpU6dUUlKiiIgIp+URERHKycmp8DM5OTkXbT937lx17NhRrVq1kr+/v/r376/58+frhhtuqHCbU6dOldVqdbyio6Mv88gAAEBt5vU5QO4wd+5cffrpp1q3bp12796tmTNnaty4cdqyZUuF7SdMmCC73e54ffvttx6uGAAAeFIDb+68adOm8vX1VW5urtPy3NxcRUZGVviZyMjIKtv//PPPeuaZZ/S3v/1NAwcOlCR16dJFWVlZmjFjRrnTZ5IUEBCggICAmjgkAABQB3h1BMjf318JCQnKyMhwLCstLVVGRob69OlT4Wf69Onj1F6SNm/e7GhfXFys4uJi+fg4H5qvr69KS0tr+AgAAEBd5NURIOncJesjR45Ujx491KtXL6Wnp+vs2bMaPXq0JGnEiBFq2bKlpk6dKkl65JFH1K9fP82cOVMDBw7UypUr9dlnn2nhwoWSpNDQUPXr109PPPGEgoKC1KZNG/3v//6v/vrXv2rWrFleO04AAFB7eD0ApaSk6OTJk3ruueeUk5Ojbt26adOmTY6JzseOHXMazenbt69WrFihZ599Vs8884zat2+v9957T506dXK0WblypSZMmKB77rlHeXl5atOmjV566SWNHTvW48cHAABqH6/fB6g24j5AAADUPXXmPkAAAADeQAACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACX5LvvpK1bz/23riEAAQCAarPZbDp+/LhmzvxJbdoYuvlmqU0bQzNn/qTjx4/LZrN5u8RqaeDtAgAAQN1gs9k0b9482e0hSk8fL8OwSJJKSy164olQff/9Elmtp5Wamqrw8HAvV1s1RoAAAEC1FBUVSZLy8sJlGM4RwjB8lJcX5tSuNiMAAQAAl4SF2WSxlDots1hKFRaW56WKXEcAAgAALrFaTys5eYMjBFkspUpO3iCr9bSXK6s+5gABAACXxcfvUWzsYeXlhSksLK9OhR+JAAQAAC6R1Xq6zgWfMpwCAwAApkMAAgAApsMpMAAA6jGbzVblZen+/v7VvmePv79/jbbzJgIQAAD1VNmNCy+mujcuDA8PV2pqao0FKm8iAAEAUE9V94aErty4sC6Em+pgDhAAADAdAhAAACZht4coOztGdnuIt0vxOk6BAQBQT/3000+OP2dmdtf69YNkGD6OOzfHx+9xtIuKivJSld7BCBAAAPXUr7/+KuncyE9Z+JHOPbh0/fpBjpGgsnZmQgACAKCeu9jT282IAAQAQD1XH57eXtMIQAAA1FN+fn6SLv709rJ2ZkIAAgCgnrJarU7vDcP5v5W1MwMCEAAA9VzZJOjfvvadJ0GbEQEIAIB6jknQ5RGAAACop8oeSnqxSdB14eGlNY0bIQIAUE+d//DSli3z9dRTVpWUWOTra+iVV/J1993D6szDS2uaxTAunAqF/Px8Wa1W2e12hYaGerscAABqxHffSYcPS3FxUqtW3q6m5rny/c0IEAAAJtGqVf0MPpeCOUAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0akUAmj9/vmJiYhQYGKjevXtr586dVbZfvXq1OnTooMDAQHXu3FkbN250Wm+xWCp8TZ8+3Z2HAQAA6givB6BVq1YpLS1NkydPVmZmprp27aqkpCSdOHGiwvbbt2/XsGHDNGbMGO3Zs0eDBw/W4MGDtXfvXkeb48ePO72WLFkii8WiIUOGeOqwAABALeb1Z4H17t1bPXv21Lx58yRJpaWlio6O1kMPPaSnn366XPuUlBSdPXtWGzZscCy75ppr1K1bN73xxhsV7mPw4ME6ffq0MjIyqlUTzwIDAKDuceX726sjQEVFRdq9e7cSExMdy3x8fJSYmKgdO3ZU+JkdO3Y4tZekpKSkStvn5ubq/fff15gxYyqto7CwUPn5+U4vAABQf3k1AJ06dUolJSWKiIhwWh4REaGcnJwKP5OTk+NS++XLlyskJER33nlnpXVMnTpVVqvV8YqOjnbxSAAAQF3i9TlA7rZkyRLdc889CgwMrLTNhAkTZLfbHa9vv/3WgxUCAABPa+DNnTdt2lS+vr7Kzc11Wp6bm6vIyMgKPxMZGVnt9v/617908OBBrVq1qso6AgICFBAQ4GL1AACgrvLqCJC/v78SEhKcJieXlpYqIyNDffr0qfAzffr0KTeZefPmzRW2X7x4sRISEtS1a9eaLRwAANRpXh0BkqS0tDSNHDlSPXr0UK9evZSenq6zZ89q9OjRkqQRI0aoZcuWmjp1qiTpkUceUb9+/TRz5kwNHDhQK1eu1GeffaaFCxc6bTc/P1+rV6/WzJkzPX5MAACgdvN6AEpJSdHJkyf13HPPKScnR926ddOmTZscE52PHTsmH5/fBqr69u2rFStW6Nlnn9Uzzzyj9u3b67333lOnTp2ctrty5UoZhqFhw4Z59HgAAEDt5/X7ANVG3AcIAIC6p87cBwgAAMAbCEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0Gni7AAAAUP/ZbDYVFRVVut7f31/h4eEeq4cABAAA3Mpms2nevHkXbZeamuqxEMQpMAAA4FZVjfxcSruaQAACAACmQwACAACmQwACAACmQwACAAAeZbeHKDs7RnZ7iNdq4CowAADgMZmZ3bV+/SAZho8sllIlJ29QfPwej9fBCBAAAPAIuz3EEX4kyTB8tH79IK+MBBGAAACAW/n7+0uS8vLCHeGnjGH4KC8vzKmdJ1gMwzA8trc6Ij8/X1arVXa7XaGhod4uBwCAOs9ms+no0V/Vq1dzlZZaHMt9fQ39+98nFBPT4LJvgujK9zcjQAAAwO3Cw8OVkBChhQst8vU9t8zXV/rLXyxKSIjw6GMwJCZBAwAADxozRkpKkg4fluLipFatvFMHAQgAAHhUq1beCz5lOAUGAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMh2eBVcAwDElSfn6+lysBAADVVfa9XfY9XhUCUAVOnz4tSYqOjvZyJQAAwFWnT5+W1Wqtso3FqE5MMpnS0lL98MMPCgkJkcViqbBNfn6+oqOj9e233yo0NNTDFdYu9MU59MM59MNv6Itz6Idz6IffuKsvDMPQ6dOn1aJFC/n4VD3LhxGgCvj4+KhVq1bVahsaGmr6H+Qy9MU59MM59MNv6Itz6Idz6IffuKMvLjbyU4ZJ0AAAwHQIQAAAwHQIQJcoICBAkydPVkBAgLdL8Tr64hz64Rz64Tf0xTn0wzn0w29qQ18wCRoAAJgOI0AAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEBVmD9/vmJiYhQYGKjevXtr586dlbbdt2+fhgwZopiYGFksFqWnp3uuUA9wpS8WLVqk66+/Xk2aNFGTJk2UmJhYZfu6xJV+WLt2rXr06KHGjRsrODhY3bp105tvvunBat3HlX4438qVK2WxWDR48GD3FuhBrvTFsmXLZLFYnF6BgYEerNZ9XP2Z+OmnnzRu3DhFRUUpICBAV1xxhTZu3Oihat3HlX648cYby/08WCwWDRw40IMVu4erPw/p6em68sorFRQUpOjoaD366KP65Zdf3FukgQqtXLnS8Pf3N5YsWWLs27fPuP/++43GjRsbubm5FbbfuXOn8fjjjxvvvPOOERkZabz22mueLdiNXO2Lu+++25g/f76xZ88e48CBA8aoUaMMq9VqfPfddx6uvGa52g9bt2411q5da+zfv984fPiwkZ6ebvj6+hqbNm3ycOU1y9V+KJOdnW20bNnSuP7664077rjDM8W6mat9sXTpUiM0NNQ4fvy445WTk+Phqmueq/1QWFho9OjRw/jd735nfPLJJ0Z2drbx8ccfG1lZWR6uvGa52g82m83pZ2Hv3r2Gr6+vsXTpUs8WXsNc7Ye3337bCAgIMN5++20jOzvb+OCDD4yoqCjj0UcfdWudBKBK9OrVyxg3bpzjfUlJidGiRQtj6tSpF/1smzZt6lUAupy+MAzD+PXXX42QkBBj+fLl7irRIy63HwzDMLp37248++yz7ijPYy6lH3799Vejb9++xn//938bI0eOrDcByNW+WLp0qWG1Wj1Unee42g8LFiww2rVrZxQVFXmqRI+43H8jXnvtNSMkJMQ4c+aMu0r0CFf7Ydy4ccbNN9/stCwtLc249tpr3Vonp8AqUFRUpN27dysxMdGxzMfHR4mJidqxY4cXK/O8muiLgoICFRcXKywszF1lut3l9oNhGMrIyNDBgwd1ww03uLNUt7rUfvjzn/+s5s2ba8yYMZ4o0yMutS/OnDmjNm3aKDo6WnfccYf27dvniXLd5lL6Yd26derTp4/GjRuniIgIderUSS+//LJKSko8VXaNq4l/KxcvXqyhQ4cqODjYXWW63aX0Q9++fbV7927HabKvv/5aGzdu1O9+9zu31srDUCtw6tQplZSUKCIiwml5RESEvvzySy9V5R010RdPPfWUWrRo4fQXoq651H6w2+1q2bKlCgsL5evrq9dff1233nqru8t1m0vph08++USLFy9WVlaWByr0nEvpiyuvvFJLlixRly5dZLfbNWPGDPXt21f79u2r9gOYa5tL6Yevv/5aH330ke655x5t3LhRhw8f1p/+9CcVFxdr8uTJnii7xl3uv5U7d+7U3r17tXjxYneV6BGX0g933323Tp06peuuu06GYejXX3/V2LFj9cwzz7i1VgIQ3GratGlauXKlPv7443oz2dMVISEhysrK0pkzZ5SRkaG0tDS1a9dON954o7dL84jTp09r+PDhWrRokZo2bertcryuT58+6tOnj+N93759ddVVV+kvf/mLpkyZ4sXKPKu0tFTNmzfXwoUL5evrq4SEBH3//feaPn16nQ1Al2vx4sXq3LmzevXq5e1SPO7jjz/Wyy+/rNdff129e/fW4cOH9cgjj2jKlCmaNGmS2/ZLAKpA06ZN5evrq9zcXKflubm5ioyM9FJV3nE5fTFjxgxNmzZNW7ZsUZcuXdxZpttdaj/4+PgoLi5OktStWzcdOHBAU6dOrbMByNV+OHLkiI4ePark5GTHstLSUklSgwYNdPDgQcXGxrq3aDepiX8n/Pz81L17dx0+fNgdJXrEpfRDVFSU/Pz85Ovr61h21VVXKScnR0VFRfL393drze5wOT8PZ8+e1cqVK/XnP//ZnSV6xKX0w6RJkzR8+HDdd999kqTOnTvr7NmzeuCBBzRx4kT5+Lhntg5zgCrg7++vhIQEZWRkOJaVlpYqIyPD6bc3M7jUvnj11Vc1ZcoUbdq0ST169PBEqW5VUz8TpaWlKiwsdEeJHuFqP3To0EFffPGFsrKyHK/bb79dN910k7KyshQdHe3J8mtUTfxMlJSU6IsvvlBUVJS7ynS7S+mHa6+9VocPH3aEYUn66quvFBUVVSfDj3R5Pw+rV69WYWGh7r33XneX6XaX0g8FBQXlQk5ZODbc+bhSt06xrsNWrlxpBAQEGMuWLTP2799vPPDAA0bjxo0dl6wOHz7cePrppx3tCwsLjT179hh79uwxoqKijMcff9zYs2ePcejQIW8dQo1xtS+mTZtm+Pv7G++++67TJZ6nT5/21iHUCFf74eWXXzY+/PBD48iRI8b+/fuNGTNmGA0aNDAWLVrkrUOoEa72w4Xq01VgrvbFCy+8YHzwwQfGkSNHjN27dxtDhw41AgMDjX379nnrEGqEq/1w7NgxIyQkxEhNTTUOHjxobNiwwWjevLnx4osveusQasSl/t247rrrjJSUFE+X6zau9sPkyZONkJAQ45133jG+/vpr48MPPzRiY2ONu+66y611EoCqMHfuXKN169aGv7+/0atXL+PTTz91rOvXr58xcuRIx/vs7GxDUrlXv379PF+4G7jSF23atKmwLyZPnuz5wmuYK/0wceJEIy4uzggMDDSaNGli9OnTx1i5cqUXqq55rvTDhepTADIM1/pi/PjxjrYRERHG7373OyMzM9MLVdc8V38mtm/fbvTu3dsICAgw2rVrZ7z00kvGr7/+6uGqa56r/fDll18akowPP/zQw5W6lyv9UFxcbDz//PNGbGysERgYaERHRxt/+tOfjB9//NGtNVoMw53jSwAAALUPc4AAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIAAwItGjRqlwYMHe7sMwHQIQAAqNGrUKFksFscrPDxc/fv31+eff+7t0mrE+cdW9rruuuvctr+jR4/KYrEoKyvLafns2bO1bNkyt+0XQMUIQAAq1b9/fx0/flzHjx9XRkaGGjRooEGDBnm7rBqzdOlSx/EdP35c69atq7BdcXGx22qwWq1q3Lix27YPoGIEIACVCggIUGRkpCIjI9WtWzc9/fTT+vbbb3Xy5EndfPPNSk1NdWp/8uRJ+fv7O54EHRMToylTpmjYsGEKDg5Wy5YtNX/+fKfPzJo1S507d1ZwcLCio6P1pz/9SWfOnHGs/+abb5ScnKwmTZooODhYV199tTZu3ChJ+vHHH3XPPfeoWbNmCgoKUvv27bV06dJqH1/jxo0dxxcZGamwsDDHSM2qVavUr18/BQYG6u2335bNZtOwYcPUsmVLNWzYUJ07d9Y777zjtL3S0lK9+uqriouLU0BAgFq3bq2XXnpJktS2bVtJUvfu3WWxWHTjjTdKKn8KrLCwUA8//LCaN2+uwMBAXXfdddq1a5dj/ccffyyLxaKMjAz16NFDDRs2VN++fXXw4MFqHzcAAhCAajpz5ozeeustxcXFKTw8XPfdd59WrFihwsJCR5u33npLLVu21M033+xYNn36dHXt2lV79uzR008/rUceeUSbN292rPfx8dGcOXO0b98+LV++XB999JGefPJJx/px48apsLBQ//znP/XFF1/olVdeUaNGjSRJkyZN0v79+/WPf/xDBw4c0IIFC9S0adMaOd6yWg8cOKCkpCT98ssvSkhI0Pvvv6+9e/fqgQce0PDhw7Vz507HZyZMmKBp06Y56lqxYoUiIiIkydFuy5YtOn78uNauXVvhfp988kmtWbNGy5cvV2ZmpuLi4pSUlKS8vDyndhMnTtTMmTP12WefqUGDBvrDH/5QI8cNmIZbH7UKoM4aOXKk4evrawQHBxvBwcGGJCMqKsrYvXu3YRiG8fPPPxtNmjQxVq1a5fhMly5djOeff97xvk2bNkb//v2dtpuSkmIMGDCg0v2uXr3aCA8Pd7zv3Lmz0zbPl5ycbIwePfqSjk+SERgY6Di+4OBg429/+5uRnZ1tSDLS09Mvuo2BAwcajz32mGEYhpGfn28EBAQYixYtqrBt2Xb37NnjtHzkyJHGHXfcYRiGYZw5c8bw8/Mz3n77bcf6oqIio0WLFsarr75qGIZhbN261ZBkbNmyxdHm/fffNyQZP//8sytdAJgaI0AAKnXTTTcpKytLWVlZ2rlzp5KSkjRgwAB98803CgwM1PDhw7VkyRJJUmZmpvbu3atRo0Y5baNPnz7l3h84cMDxfsuWLbrlllvUsmVLhYSEaPjw4bLZbCooKJAkPfzww3rxxRd17bXXavLkyU6TsB988EGtXLlS3bp105NPPqnt27e7dHyvvfaa4/iysrJ06623Otb16NHDqW1JSYmmTJmizp07KywsTI0aNdIHH3ygY8eOSZIOHDigwsJC3XLLLS7VcL4jR46ouLhY1157rWOZn5+fevXq5dRnktSlSxfHn6OioiRJJ06cuOR9A2ZDAAJQqeDgYMXFxSkuLk49e/bUf//3f+vs2bNatGiRJOm+++7T5s2b9d1332np0qW6+eab1aZNm2pv/+jRoxo0aJC6dOmiNWvWaPfu3Y45QkVFRY59fP311xo+fLi++OIL9ejRQ3PnzpUkRxh79NFH9cMPP+iWW27R448/Xu39R0ZGOo4vLi5OwcHBTsd+vunTp2v27Nl66qmntHXrVmVlZSkpKclRZ1BQULX3WxP8/Pwcf7ZYLJLOzUECUD0EIADVZrFY5OPjo59//lmS1LlzZ/Xo0UOLFi3SihUrKpyH8umnn5Z7f9VVV0mSdu/erdLSUs2cOVPXXHONrrjiCv3www/lthEdHa2xY8dq7dq1euyxxxwBTJKaNWumkSNH6q233lJ6eroWLlxYk4fssG3bNt1xxx2699571bVrV7Vr105fffWVY3379u0VFBTkmAB+IX9/f0nnRpIqExsbK39/f23bts2xrLi4WLt27VLHjh1r6EgASFIDbxcAoPYqLCxUTk6OpHNXXM2bN09nzpxRcnKyo819992n1NRUBQcH6/e//325bWzbtk2vvvqqBg8erM2bN2v16tV6//33JUlxcXEqLi7W3LlzlZycrG3btumNN95w+vz48eM1YMAAXXHFFfrxxx+1detWR4B67rnnlJCQoKuvvlqFhYXasGGDY11Na9++vd59911t375dTZo00axZs5Sbm+sIJoGBgXrqqaf05JNPyt/fX9dee61Onjypffv2acyYMWrevLmCgoK0adMmtWrVSoGBgbJarU77CA4O1oMPPqgnnnhCYWFhat26tV599VUVFBRozJgxbjkuwKwYAQJQqU2bNikqKkpRUVHq3bu3du3apdWrVzsu4ZakYcOGqUGDBho2bJgCAwPLbeOxxx7TZ599pu7du+vFF1/UrFmzlJSUJEnq2rWrZs2apVdeeUWdOnXS22+/ralTpzp9vqSkROPGjdNVV12l/v3764orrtDrr78u6dyoyoQJE9SlSxfdcMMN8vX11cqVK93SF88++6zi4+OVlJSkG2+8UZGRkeXu4Dxp0iQ99thjeu6553TVVVcpJSXFMS+nQYMGmjNnjv7yl7+oRYsWuuOOOyrcz7Rp0zRkyBANHz5c8fHxOnz4sD744AM1adLELccFmJXFMAzD20UAqLuOHj2q2NhY7dq1S/Hx8U7rYmJiNH78eI0fP947xQFAJTgFBuCSFBcXy2az6dlnn9U111xTLvwAQG3GKTAAl2Tbtm2KiorSrl27ys3b8baXX35ZjRo1qvA1YMAAb5cHoBbgFBiAeicvL6/cnZPLBAUFqWXLlh6uCEBtQwACAACmwykwAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOv8fWe9dle3kb+cAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARINJREFUeJzt3XtcVXW+//H3BtmACFs3KqChKGpWmgpe0i46ZqGjlGeak1mZOplTI5XRZTIz81hpamZeqsnjpalMf6Y1ao2VZmemtMlQprxfQruoqFAblASC7+8PD/u4BRSQfcH1ej4ePHKv9d1rf9Z3GPfb7/qu77IZY4wAAAAsKMjfBQAAAPgLQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAtjixYtls9l04MABf5cCXJQIQoDFbd68WWlpabriiisUERGhFi1a6NZbb9WePXvKte3Tp49sNptsNpuCgoIUFRWlSy+9VMOGDdPHH39crc9dvXq1evfuraZNm6p+/fpq3bq1br31Vq1du7a2Tq2c5557Tu+991657Rs3btTTTz+tn3/+2Wuffbann37a3Zc2m03169fX5ZdfrieffFJ5eXm18hlLlizRrFmzauVYwMWKIARY3PPPP68VK1bo+uuv10svvaTRo0frH//4h5KSkrRt27Zy7S+55BK98cYb+utf/6rp06frpptu0saNG3XjjTdqyJAhKi4uPu9nzpgxQzfddJNsNpvGjRunF198Ubfccov27t2rpUuXeuM0JZ07CE2aNMmnQajMK6+8ojfeeEMzZ85U+/bt9eyzz6p///6qjcdAEoSA86vn7wIA+Fd6erqWLFkiu93u3jZkyBB17NhRU6dO1ZtvvunR3uFw6M477/TYNnXqVD3wwAN6+eWXlZCQoOeff77Sz/v11181efJk3XDDDfroo4/K7T969OgFnlHgKCgoUP369c/Z5ve//70aN24sSbr33nt1yy23aOXKlfriiy/Us2dPX5QJWBojQoDF9erVyyMESVLbtm11xRVXaOfOnVU6RnBwsGbPnq3LL79cc+fOlcvlqrTt8ePHlZeXp6uvvrrC/U2bNvV4ferUKT399NNq166dwsLCFBcXp9/97nfav3+/u82MGTPUq1cvRUdHKzw8XMnJyXrnnXc8jmOz2XTy5Em9/vrr7stRI0aM0NNPP61HH31UktSqVSv3vjPn5Lz55ptKTk5WeHi4nE6nbrvtNn3//fcex+/Tp486dOigjIwMXXfddapfv76eeOKJKvXfmfr27StJysrKOme7l19+WVdccYVCQ0PVrFkzjRkzxmNEq0+fPnr//fd18OBB9zklJCRUux7gYseIEIByjDHKzs7WFVdcUeX3BAcHa+jQoZowYYI+++wzDRw4sMJ2TZs2VXh4uFavXq37779fTqez0mOWlJRo0KBBWr9+vW677TY9+OCDys/P18cff6xt27YpMTFRkvTSSy/ppptu0h133KGioiItXbpU//mf/6k1a9a463jjjTc0atQode/eXaNHj5YkJSYmKiIiQnv27NHbb7+tF1980T0606RJE0nSs88+qwkTJujWW2/VqFGjdOzYMc2ZM0fXXXedtm7dqoYNG7rrzcnJ0YABA3TbbbfpzjvvVExMTJX7r0xZwIuOjq60zdNPP61JkyapX79+uu+++7R792698sor2rx5sz7//HOFhIRo/Pjxcrlc+uGHH/Tiiy9Kkho0aFDteoCLngGAs7zxxhtGklmwYIHH9t69e5srrrii0ve9++67RpJ56aWXznn8p556ykgyERERZsCAAebZZ581GRkZ5dotXLjQSDIzZ84st6+0tNT954KCAo99RUVFpkOHDqZv374e2yMiIszw4cPLHWv69OlGksnKyvLYfuDAARMcHGyeffZZj+3ffPONqVevnsf23r17G0nm1VdfrfS8zzRx4kQjyezevdscO3bMZGVlmb/85S8mNDTUxMTEmJMnTxpjjFm0aJFHbUePHjV2u93ceOONpqSkxH28uXPnGklm4cKF7m0DBw40LVu2rFI9gFVxaQyAh127dmnMmDHq2bOnhg8fXq33lo045Ofnn7PdpEmTtGTJEnXp0kUffvihxo8fr+TkZCUlJXlcjluxYoUaN26s+++/v9wxbDab+8/h4eHuP//0009yuVy69tprtWXLlmrVf7aVK1eqtLRUt956q44fP+7+iY2NVdu2bbVhwwaP9qGhoRo5cmS1PuPSSy9VkyZN1KpVK/3xj39UmzZt9P7771c6t2jdunUqKirS2LFjFRT0f3+F33PPPYqKitL7779f/RMFLIxLYwDcjhw5ooEDB8rhcOidd95RcHBwtd5/4sQJSVJkZOR52w4dOlRDhw5VXl6e/vWvf2nx4sVasmSJUlNTtW3bNoWFhWn//v269NJLVa/euf+qWrNmjZ555hllZmaqsLDQvf3MsFQTe/fulTFGbdu2rXB/SEiIx+vmzZuXm291PitWrFBUVJRCQkJ0ySWXuC/3VebgwYOSTgeoM9ntdrVu3dq9H0DVEIQASJJcLpcGDBign3/+Wf/85z/VrFmzah+j7Hb7Nm3aVPk9UVFRuuGGG3TDDTcoJCREr7/+uv71r3+pd+/eVXr/P//5T91000267rrr9PLLLysuLk4hISFatGiRlixZUu1zOFNpaalsNpv+/ve/VxgKz55zc+bIVFVdd9117nlJAHyPIARAp06dUmpqqvbs2aN169bp8ssvr/YxSkpKtGTJEtWvX1/XXHNNjero2rWrXn/9dR0+fFjS6cnM//rXv1RcXFxu9KXMihUrFBYWpg8//FChoaHu7YsWLSrXtrIRosq2JyYmyhijVq1aqV27dtU9Ha9o2bKlJGn37t1q3bq1e3tRUZGysrLUr18/97YLHREDrIA5QoDFlZSUaMiQIdq0aZOWL19eo7VrSkpK9MADD2jnzp164IEHFBUVVWnbgoICbdq0qcJ9f//73yX932WfW265RcePH9fcuXPLtTX/u+BgcHCwbDabSkpK3PsOHDhQ4cKJERERFS6aGBERIUnl9v3ud79TcHCwJk2aVG6BQ2OMcnJyKj5JL+rXr5/sdrtmz57tUdOCBQvkcrk87taLiIg451IGABgRAizv4Ycf1qpVq5Samqrc3NxyCyievXiiy+VytykoKNC+ffu0cuVK7d+/X7fddpsmT558zs8rKChQr169dNVVV6l///6Kj4/Xzz//rPfee0///Oc/NXjwYHXp0kWSdNddd+mvf/2r0tPT9eWXX+raa6/VyZMntW7dOv3pT3/SzTffrIEDB2rmzJnq37+/br/9dh09elTz5s1TmzZt9PXXX3t8dnJystatW6eZM2eqWbNmatWqlXr06KHk5GRJ0vjx43XbbbcpJCREqampSkxM1DPPPKNx48bpwIEDGjx4sCIjI5WVlaV3331Xo0eP1iOPPHJB/V9dTZo00bhx4zRp0iT1799fN910k3bv3q2XX35Z3bp18/jfKzk5WcuWLVN6erq6deumBg0aKDU11af1AgHPn7esAfC/stu+K/s5V9sGDRqYtm3bmjvvvNN89NFHVfq84uJiM3/+fDN48GDTsmVLExoaaurXr2+6dOlipk+fbgoLCz3aFxQUmPHjx5tWrVqZkJAQExsba37/+9+b/fv3u9ssWLDAtG3b1oSGhpr27dubRYsWuW9PP9OuXbvMddddZ8LDw40kj1vpJ0+ebJo3b26CgoLK3Uq/YsUKc80115iIiAgTERFh2rdvb8aMGWN2797t0TfnWlrgbGX1HTt27Jztzr59vszcuXNN+/btTUhIiImJiTH33Xef+emnnzzanDhxwtx+++2mYcOGRhK30gMVsBlTCw+0AQAAqIOYIwQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLBRUrUFpaqkOHDikyMpIl6gEAqCOMMcrPz1ezZs0UFFS1sR6CUAUOHTqk+Ph4f5cBAABq4Pvvv9cll1xSpbYEoQpERkZKOt2R53pmEgAACBx5eXmKj493f49XBUGoAmWXw6KioghCAADUMdWZ1sJkaQAAYFkEIQAAYFkEIQAAYFnMEQIAoJaUlJSouLjY32VctEJCQhQcHFyrxyQIAQBwgYwxOnLkiH7++Wd/l3LRa9iwoWJjY2ttnT+CEAAAF6gsBDVt2lT169dnMV4vMMaooKBAR48elSTFxcXVynEJQgAAXICSkhJ3CIqOjvZ3ORe18PBwSdLRo0fVtGnTWrlMxmRpAAAuQNmcoPr16/u5Emso6+famotFEAIAoBZwOcw3arufCUIAAMCyCEIAAMCyCEI+9sMP0oYNp/8LAIA/jRgxQjabTTabTSEhIYqJidENN9yghQsXqrS0tMrHWbx4sRo2bOi9Qr2Iu8Z8ICcnR0VFRVqyJFyPPeZQaalNQUFG06a5dPvtv8hut3OnAQBYWNn3RGW8+T3Rv39/LVq0SCUlJcrOztbatWv14IMP6p133tGqVatUr97FHRUu7rMLADk5OZo7d65crkjNmjVWxpye5FVaatOjj0bpxx8XyuHIV1paGmEIACyo7HvifLz1PREaGqrY2FhJUvPmzZWUlKSrrrpK119/vRYvXqxRo0Zp5syZWrRokb799ls5nU6lpqZq2rRpatCggT799FONHDlS0v9NZJ44caKefvppvfHGG3rppZe0e/duRUREqG/fvpo1a5aaNm1a6+dRU1wa87KyhJ+bGy1jPLvbmCDl5jo92gEArKWqf//78nuib9++6tSpk1auXClJCgoK0uzZs7V9+3a9/vrr+uSTT/TYY49Jknr16qVZs2YpKipKhw8f1uHDh/XII49IOn2L++TJk/Xvf/9b7733ng4cOKARI0b47DyqghEhH3E6c2SzlXqEIZutVE5nrh+rAgCgYu3bt9fXX38tSRo7dqx7e0JCgp555hnde++9evnll2W32+VwOGSz2dwjS2X+8Ic/uP/cunVrzZ49W926ddOJEyfUoEEDn5zH+TAi5CMOR75SU9fIZjs9+cxmK1Vq6ho5HPl+rgwAgPKMMe5LXevWrdP111+v5s2bKzIyUsOGDVNOTo4KCgrOeYyMjAylpqaqRYsWioyMVO/evSVJ3333ndfrrypGhHwoKWmrEhP3KTfXKaczlxAEAAhYO3fuVKtWrXTgwAENGjRI9913n5599lk5nU599tlnuvvuu1VUVFTpitonT55USkqKUlJS9NZbb6lJkyb67rvvlJKSElDTQQhCPuZw5BOAAAAB7ZNPPtE333yjhx56SBkZGSotLdULL7ygoKDTF5L+3//7fx7t7Xa7SkpKPLbt2rVLOTk5mjp1quLj4yVJX331lW9OoBq4NAYAgIUVFhbqyJEj+vHHH7VlyxY999xzuvnmmzVo0CDdddddatOmjYqLizVnzhx9++23euONN/Tqq696HCMhIUEnTpzQ+vXrdfz4cRUUFKhFixay2+3u961atUqTJ0/201lWjiAEAICFrV27VnFxcUpISFD//v21YcMGzZ49W3/7298UHBysTp06aebMmXr++efVoUMHvfXWW5oyZYrHMXr16qV7771XQ4YMUZMmTTRt2jQ1adJEixcv1vLly3X55Zdr6tSpmjFjhp/OsnI2Y4zxdxGBJi8vTw6HQy6XS1FRURd0LH+vDwEA8K5Tp04pKytLrVq1UlhYWLXfz/dE9Zyrv2vy/c0cIS+Ljo5WWlqa31YMBQAENr4n/Isg5AP88gIAzoXvCf9hjhAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAAPCKTz/9VDabTT///HOV35OQkKBZs2Z5raazEYQAALCoESNGyGaz6d577y23b8yYMbLZbBoxYoTvC/MhghAAABYWHx+vpUuX6pdffnFvO3XqlJYsWaIWLVr4sTLfIAgBAGBhSUlJio+P18qVK93bVq5cqRYtWqhLly7ubYWFhXrggQfUtGlThYWF6ZprrtHmzZs9jvXBBx+oXbt2Cg8P129+8xsdOHCg3Od99tlnuvbaaxUeHq74+Hg98MADOnnypNfO73wIQgAABJAffpA2bDj9X1/5wx/+oEWLFrlfL1y4UCNHjvRo89hjj2nFihV6/fXXtWXLFrVp00YpKSnKzc2VJH3//ff63e9+p9TUVGVmZmrUqFF6/PHHPY6xf/9+9e/fX7fccou+/vprLVu2TJ999pnS0tK8f5KVIAgBABAgFiyQWraU+vY9/d8FC3zzuXfeeac+++wzHTx4UAcPHtTnn3+uO++8073/5MmTeuWVVzR9+nQNGDBAl19+uebPn6/w8HAt+N8iX3nlFSUmJuqFF17QpZdeqjvuuKPc/KIpU6bojjvu0NixY9W2bVv16tVLs2fP1l//+ledOnXKNyd7Fp4+DwBAAPjhB2n0aKm09PTr0lLpj3+UUlKkSy7x7mc3adJEAwcO1OLFi2WM0cCBA9W4cWP3/v3796u4uFhXX321e1tISIi6d++unTt3SpJ27typHj16eBy3Z8+eHq///e9/6+uvv9Zbb73l3maMUWlpqbKysnTZZZd54/TOiSAEAEAA2Lv3/0JQmZISad8+7wch6fTlsbJLVPPmzfPKZ5w4cUJ//OMf9cADD5Tb56+J2QQhAAACQNu2UlCQZxgKDpbatPHN5/fv319FRUWy2WxKSUnx2JeYmCi73a7PP/9cLVu2lCQVFxdr8+bNGjt2rCTpsssu06pVqzze98UXX3i8TkpK0o4dO9TGVydVBcwRAgAgAFxyifTaa6fDj3T6v3/5i29Gg05/XrB27typHTt2KLisiP8VERGh++67T48++qjWrl2rHTt26J577lFBQYHuvvtuSdK9996rvXv36tFHH9Xu3bu1ZMkSLV682OM4f/7zn7Vx40alpaUpMzNTe/fu1d/+9je/TpZmRAgAgABx992n5wTt23d6JMhXIahMVFRUpfumTp2q0tJSDRs2TPn5+eratas+/PBDNWrUSNLpS1srVqzQQw89pDlz5qh79+567rnn9Ic//MF9jCuvvFL/8z//o/Hjx+vaa6+VMUaJiYkaMmSI18+tMjZjjPHbpweovLw8ORwOuVyuc/5SAABw6tQpZWVlqVWrVgoLC/N3ORe9c/V3Tb6/uTQGAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAEAt4N4j36jtfiYIAQBwAUJCQiRJBQUFfq7EGsr6uazfLxTrCAEAcAGCg4PVsGFDHT16VJJUv3592Ww2P1d18THGqKCgQEePHlXDhg3LLfpYUwQhAAAuUGxsrCS5wxC8p2HDhu7+rg0EIQAALpDNZlNcXJyaNm2q4uJif5dz0QoJCam1kaAyfg9C8+bN0/Tp03XkyBF16tTJvSx3RbZv366nnnpKGRkZOnjwoF588UX3w97K/OMf/9D06dOVkZGhw4cP691339XgwYO9fyIAAMsLDg6u9S9qeJdfJ0svW7ZM6enpmjhxorZs2aJOnTopJSWl0qHFgoICtW7dWlOnTq10WOzkyZPq1KmT5s2b583SAQDARcCvzxrr0aOHunXrprlz50qSSktLFR8fr/vvv1+PP/74Od+bkJCgsWPHlhsROpPNZqvRiBDPGgMAoO6pU88aKyoqUkZGhvr16/d/xQQFqV+/ftq0aZNPayksLFReXp7HDwAAuPj5bY7Q8ePHVVJSopiYGI/tMTEx2rVrl09rmTJliiZNmuTTzwT8LScnR0VFRZXut9vtio6O9mFFAOB7fp8sHQjGjRun9PR09+u8vDzFx8f7sSLAu3JyctyXpM8lLS2NMATgoua3INS4cWMFBwcrOzvbY3t2dnatrg9QFaGhoQoNDfXpZ/oDIwAoc67fg5q0A4C6ym9ByG63Kzk5WevXr3dPZi4tLdX69euVlpbmr7IuWmePALhckcrNjZbTmSOHI9+9nREAa6rs9wEALnZ+vTSWnp6u4cOHq2vXrurevbtmzZqlkydPauTIkZKku+66S82bN9eUKVMknf7X6Y4dO9x//vHHH5WZmakGDRqoTZs2kqQTJ05o37597s/IyspSZmamnE6nWrRo4eMzDBxn/st+y5YuWr16kIwJks1WqtTUNUpK2lquHazhXL8PAHCx82sQGjJkiI4dO6annnpKR44cUefOnbV27Vr3BOrvvvtOQUH/d2PboUOH1KVLF/frGTNmaMaMGerdu7c+/fRTSdJXX32l3/zmN+42ZXN/hg8frsWLF3v/pAKcyxXp/tKTJGOCtHr1ICUm7mMkwIL4fQBgdX6fLJ2WllbppbCycFMmISFB51v2qE+fPudtY2W5udHuL70yxgQpN9fJF58F8fsAwOr8urI0fM/pzJHNVuqxzWYrldOZ66eK4E/8PgCwOoKQxTgc+UpNXeP+8iubE8K//q2J3wcAVuf3S2PwvaSkrUpM3KfcXKeczly+9CzIbre7/3yu34cz2wHAxYggZFEORz4ByMKio6OVlpbGulIALI8gZBFV/Zc9IwDWQcgBAIKQZTACAABAeQQhCyHkAADgibvGAACAZTEiBAQIHooLAL5HEAICwNkPxa0MD8UFgNrFpTEgAJw9EuRyRSorK0EuV+Q52wEALgwjQkCA4WnwAOA7jAgBAaSyp8GfPTIEAKgdBCEggJzrafAAgNpHEAICCE+DBwDfIggBAYSnwQOAbzFZGggw53oaPACgdhGEgABw9sNuHY78CgMQD8UFgNpFEAICAA/FBQD/IAgBAYKQAwC+RxDCBeH5WACAuowghBrj+VgAgLqO2+dRYzwfCwBQ1zEihFrB87EAAHURI0K4YDwfCwBQVxGEcMF4PhYAoK4iCOGC8XwsAEBdRRDCBeP5WACAuorJ0qgVPB8LAFAXEYRQYzwfCwBQ1xGEUGM8HwsAUNcRhHBBCDkAgLqMydIAAMCyCEIAAMCyCEIAAMCymCMEAFWQk5PDjQHARYggBADnkZOTo7lz5563XVpaGmEIqGO4NAYA53GukaCatAMQOAhCAADAsghCAFBNLleksrIS5HJF+rsUABeIOUIAUA1btnTR6tWDZEyQ+wHDSUlb/V0WgBpiRAgAqsjlinSHIEkyJkirVw9iZAiowwhCAFBFubnR7hBUxpgg5eY6/VQRgAtFEAKAKnI6c2SzlXpss9lK5XTm+qkiABeKIAQA52G32yVJDke+UlPXuMNQ2RwhhyPfox2AusNmjDH+LiLQ5OXlyeFwyOVyKSoqyt/lAAgAZ64sfehQkA4cqKeEhF/VrNnpUMTK0oD/1eT7m7vGAKAKzgw5cXFScrIfiwFQa7g0BgAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIvb5y3kzHVQKsI6KAAAqyEIWUROTo7mzp173nZpaWmEIQCAZXBpzCLONRJUk3YAAFwMCEIAAMCyCEIW5XJFKisrQS5XpL9LAQDAb5gjZEFbtnTR6tWDZEyQ++nZSUlb/V0WAAA+x4iQxbhcke4QJEnGBGn16kGMDAEALIkgZDG5udHuEFTGmCDl5jr9VBEAAP5DELIYpzNHNlupxzabrVROZ66fKgIAwH8IQhZht9slSQ5HvlJT17jDUNkcIYcj36MdAABWYDPGGH8XEWjy8vLkcDjkcrkUFRXl73JqzZkrSx86FKQDB+opIeFXNWt2OhSxsjQAoC6ryfc3d41ZyJkhJy5OSk72YzEAAAQAghAAv+M5eAD8hSAEwK94Dh4Af2KyNAC/OnskqLJVz3kOHgBvYEQIQMBg1XMAvkYQgl8wJwRnq2zV88TEfe7lHQCgtgVEEJo3b56mT5+uI0eOqFOnTpozZ466d+9eYdvt27frqaeeUkZGhg4ePKgXX3xRY8eOvaBjwreYE4KKnGvVc4IQAG/x+xyhZcuWKT09XRMnTtSWLVvUqVMnpaSk6OjRoxW2LygoUOvWrTV16lTFxsbWyjHhW1Wd68GcEGth1XMA/uD3IDRz5kzdc889GjlypC6//HK9+uqrql+/vhYuXFhh+27dumn69Om67bbbFBoaWivHBOB/51v1HAC8wa+XxoqKipSRkaFx48a5twUFBalfv37atGmTz45ZWFiowsJC9+u8vLwafTZqxuWKVG5utJzOHL70LC4paasSE/cpN9cppzOX3wcAXufXIHT8+HGVlJQoJibGY3tMTIx27drls2NOmTJFkyZNqtHn4cJwlxDOfr6dw5FfYQDiOXgAvCEgJkv727hx45Senu5+nZeXp/j4eD9WZA3cJQTp9KNf0tLSuIsQgF/4NQg1btxYwcHBys7O9tienZ1d6URobxwzNDS00vlG8B7uEkIZQg4Af/HrZGm73a7k5GStX7/eva20tFTr169Xz549A+aY8A7uEgIA+JvfL42lp6dr+PDh6tq1q7p3765Zs2bp5MmTGjlypCTprrvuUvPmzTVlyhRJpydD79ixw/3nH3/8UZmZmWrQoIHatGlTpWPCv8rmepTdJXT2HKGy0SDmhFxcWEQTQCCyGWOMv4uYO3eue/HDzp07a/bs2erRo4ckqU+fPkpISNDixYslSQcOHFCrVq3KHaN379769NNPq3TM88nLy5PD4ZDL5VJUVNQFnx/KO/NL8dChIB04UE8JCb+qWbPTI0R8KV5czl5Es7I7BQNhEU0CG1B31eT7OyCCUKAhCAG16/Dhw3rttdcknftOwdGjRysuLs5vdbLqOVC31eT72+8LKgKwjsruFDz7SfP+wqrngPUQhAD4zLnuFAxELleksrISAiaoAah9fp8sDcA6yu4UPDMMBeqdgiz2CVgDI0IAfKauPE8s0C/hAag9jAgB8Km68DwxFvsErIMgBMDnKnueWKCoS5fwAFwYLo0B8LqqLo4ZKIto1pVLeAAuHCNCAKqlJgsO1pUHq54ZxM51CS9QAhuAC8eCihVgQUWgYnVpheiaYmVpoO6qyfc3I0IAquzMgHCu28vr8oKDhBzAWpgjBKDauL0cwMWCIASg2uraCtEAUBmCEIBqK7u9/EzcXg6gLiIIAag2bi8HcLFgsjSAGqkLK0QDwPkQhADUWKCvEA0A58OlMQBVVtdWiAaA82FECECV1ZUVogGgqghCAKqFkAPgYsKlMQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFk1etbY8uXL9fbbb2vPnj2SpHbt2un222/X73//+1otDkDdkpOT434g66FDQcrKqqdWrX5Vs2alknggK4DAU60gVFpaqqFDh2r58uVq166d2rdvL0navn27hgwZov/8z//U22+/LZvN5pViAQSunJwczZ07V5K0ZUsXrV49SMYEyWYrVWrqGiUlbZUkpaWlEYYABIxqXRp76aWXtG7dOq1atUq7du3Se++9p/fee0+7d+/Wu+++q48//lgvvfSSt2oFEMDKRoJcrkh3CJIkY4K0evUguVyRHu0AIBBUKwgtWrRI06dP16BBg8rtu+mmmzRt2jQtXLiw1ooDUPfk5ka7Q1AZY4KUm+v0U0UAULlqBaG9e/eqX79+le7v16+f9u7de8FFAai7nM4c2WylHttstlI5nbl+qggAKletIBQeHq6ff/650v15eXkKCwu70JoA1GEOR75SU9e4w1DZHCGHI9/PlQFAedWaLN2zZ0+98soreuWVVyrcP2/ePPXs2bNWCgNQdyUlbVVi4j7l5jrldOYSggAErGoFofHjx6tPnz7KycnRI488ovbt28sYo507d+qFF17Q3/72N23YsMFbtQKoQxyOfAIQgIBXrSDUq1cvLVu2TKNHj9aKFSs89jVq1Ehvv/22rr766lotEAAAwFuqvaDif/zHfyglJUUffvihe2J0u3btdOONN6p+/fq1XiCAusFut9dqOwDwBZsxxlS18SeffKK0tDR98cUXioqK8tjncrnUq1cvvfrqq7r22mtrvVBfysvLk8PhkMvlKneeACp35srSFWFlaQDeVJPv72qNCM2aNUv33HNPhQd3OBz64x//qJkzZ9b5IASgZgg5AOqaat0+/+9//1v9+/evdP+NN96ojIyMCy4KAADAF6oVhLKzsxUSElLp/nr16unYsWMXXBQAAIAvVCsINW/eXNu2bat0/9dff624uLgLLgoAAMAXqhWEfvvb32rChAk6depUuX2//PKLJk6cWOFzyAAAAAJRte4ay87OVlJSkoKDg5WWlqZLL71UkrRr1y7NmzdPJSUl2rJli2JiYrxWsC9w1xgAAHWP1+8ai4mJ0caNG3Xfffdp3LhxKstQNptNKSkpmjdvXp0PQQAAwDqqvaBiy5Yt9cEHH+inn37Svn37ZIxR27Zt1ahRI2/UBwAA4DXVDkJlGjVqpG7dutVmLQAAAD5VrcnSAAAAFxOCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsKwaP2sMAICaysnJUVFRUaX77Xa7oqOjfVgRrIogBADwqZycHM2dO/e87dLS0ghD8DoujQEAfOrskSCXK1JZWQlyuSLP2Q7wBkaEAAB+s2VLF61ePUjGBMlmK1Vq6holJW31d1mwEEaEAAB+4XJFukOQJBkTpNWrB5UbGQK8iSAEAPCL3NxodwgqY0yQcnOdfqoIVkQQAgD4hdOZI5ut1GObzVYqpzPXTxXBighCAAC/cDjylZq6xh2GyuYIORz5fq4MVsJkaQCA3yQlbVVi4j7l5jrldOYSguBzATEiNG/ePCUkJCgsLEw9evTQl19+ec72y5cvV/v27RUWFqaOHTvqgw8+8NifnZ2tESNGqFmzZqpfv7769++vvXv3evMUAABVZLfbPV47HPlq1epguRB0djvAG/w+IrRs2TKlp6fr1VdfVY8ePTRr1iylpKRo9+7datq0abn2Gzdu1NChQzVlyhQNGjRIS5Ys0eDBg7VlyxZ16NBBxhgNHjxYISEh+tvf/qaoqCjNnDlT/fr1044dOxQREeGHswQAlImOjlZaWhorSyMg2Iwxxp8F9OjRQ926dXOvMlpaWqr4+Hjdf//9evzxx8u1HzJkiE6ePKk1a9a4t1111VXq3LmzXn31Ve3Zs0eXXnqptm3bpiuuuMJ9zNjYWD333HMaNWrUeWvKy8uTw+GQy+VSVFRULZ0pAADwppp8f/v10lhRUZEyMjLUr18/97agoCD169dPmzZtqvA9mzZt8mgvSSkpKe72hYWFkqSwsDCPY4aGhuqzzz6r8JiFhYXKy8vz+AEAABc/vwah48ePq6SkRDExMR7bY2JidOTIkQrfc+TIkXO2b9++vVq0aKFx48bpp59+UlFRkZ5//nn98MMPOnz4cIXHnDJlihwOh/snPj6+Fs4OAAAEuoCYLF2bQkJCtHLlSu3Zs0dOp1P169fXhg0bNGDAAAUFVXy648aNk8vlcv98//33Pq4aAAD4g18nSzdu3FjBwcHKzs722J6dna3Y2NgK3xMbG3ve9snJycrMzJTL5VJRUZGaNGmiHj16qGvXrhUeMzQ0VKGhoRd4NgAAoK7x64iQ3W5XcnKy1q9f795WWlqq9evXq2fPnhW+p2fPnh7tJenjjz+usL3D4VCTJk20d+9effXVV7r55ptr9wQAAECd5vfb59PT0zV8+HB17dpV3bt316xZs3Ty5EmNHDlSknTXXXepefPmmjJliiTpwQcfVO/evfXCCy9o4MCBWrp0qb766iu99tpr7mMuX75cTZo0UYsWLfTNN9/owQcf1ODBg3XjjTf65RwBAEBg8nsQGjJkiI4dO6annnpKR44cUefOnbV27Vr3hOjvvvvOY25Pr169tGTJEj355JN64okn1LZtW7333nvq0KGDu83hw4eVnp6u7OxsxcXF6a677tKECRN8fm4AACCw+X0doUDEOkIAANQ9dW4dIQAAAH8iCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMuq5+8CAACoa3JyclRUVFTpfrvdrujoaB9WhJoiCAEAUA05OTmaO3fuedulpaURhuoALo0BAFANZ48EuVyRyspKkMsVec52CEyMCAEAUENbtnTR6tWDZEyQbLZSpaauUVLSVn+XhWpgRAgAgBpwuSLdIUiSjAnS6tWDyo0MIbARhAAAqIHc3Gh3CCpjTJByc51+qgg1QRACAKAGnM4c2WylHttstlI5nbl+qgg1QRACAKAGHI58paaucYehsjlCDke+nytDdTBZGgCAGkpK2qrExH3KzXXK6cwlBNVBBCEAAKrBbrd7vHY48isMQGe3Q2AiCAEAUA3R0dFKS0tjZemLBEEIAIBqIuRcPJgsDQAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALKuevwsAAMAqcnJyVFRUVOl+u92u6OhoH1YEghAAAD6Qk5OjuXPnnrddWloaYciHuDQGAIAPnD0S5HJFKisrQS5X5DnbwbsYEQIAwMe2bOmi1asHyZgg2WylSk1do6Skrf4uy5IYEQIAwIdcrkh3CJIkY4K0evWgciND8A2CEAAAPpSbG+0OQWWMCVJurtNPFVlbQAShefPmKSEhQWFhYerRo4e+/PLLc7Zfvny52rdvr7CwMHXs2FEffPCBx/4TJ04oLS1Nl1xyicLDw3X55Zfr1Vdf9eYpAABQJU5njmy2Uo9tNlupnM5cP1VkbX4PQsuWLVN6eromTpyoLVu2qFOnTkpJSdHRo0crbL9x40YNHTpUd999t7Zu3arBgwdr8ODB2rZtm7tNenq61q5dqzfffFM7d+7U2LFjlZaWplWrVvnqtAAAqJDDka/U1DXuMFQ2R8jhyPdzZdZkM8YYfxbQo0cPdevWzX1LYWlpqeLj43X//ffr8ccfL9d+yJAhOnnypNasWePedtVVV6lz587uUZ8OHTpoyJAhmjBhgrtNcnKyBgwYoGeeeea8NeXl5cnhcMjlcikqKupCTxEAAB0+fFivvfaa+7XLFancXKeczlyPEDR69GjFxcX5o8Q6rybf334dESoqKlJGRob69evn3hYUFKR+/fpp06ZNFb5n06ZNHu0lKSUlxaN9r169tGrVKv34448yxmjDhg3as2ePbrzxxgqPWVhYqLy8PI8fAABqk91u93jtcOSrVauD5UaCzm4H7/Lr7fPHjx9XSUmJYmJiPLbHxMRo165dFb7nyJEjFbY/cuSI+/WcOXM0evRoXXLJJapXr56CgoI0f/58XXfddRUec8qUKZo0adIFng0AAJWLjo5WWloaK0sHmItyHaE5c+boiy++0KpVq9SyZUv94x//0JgxY9SsWbNyo0mSNG7cOKWnp7tf5+XlKT4+3pclAwAsgJATePwahBo3bqzg4GBlZ2d7bM/OzlZsbGyF74mNjT1n+19++UVPPPGE3n33XQ0cOFCSdOWVVyozM1MzZsyoMAiFhoYqNDS0Nk4JAIBaxzPKvMevQchutys5OVnr16/X4MGDJZ2eLL1+/XqlpaVV+J6ePXtq/fr1Gjt2rHvbxx9/rJ49e0qSiouLVVxcrKAgz+lPwcHBKi31vF0RAIBAxzPKvMvvl8bS09M1fPhwde3aVd27d9esWbN08uRJjRw5UpJ01113qXnz5poyZYok6cEHH1Tv3r31wgsvaODAgVq6dKm++uor90z8qKgo9e7dW48++qjCw8PVsmVL/c///I/++te/aubMmX47TwAAaqKiZ5Tl5kbL6czxmGjNM8pqxu9BaMiQITp27JieeuopHTlyRJ07d9batWvdE6K/++47j9GdXr16acmSJXryySf1xBNPqG3btnrvvffUoUMHd5ulS5dq3LhxuuOOO5Sbm6uWLVvq2Wef1b333uvz8wMAoLbwjLLa5/d1hAIR6wgBAAJF2fpDLlekZs0a6/F4DputVGPHzpLDkc/6Q6qD6wgBAICq4Rll3kEQAgCgDuAZZd5BEAIAoA7gGWXe4ffJ0gAAoGqSkrYqMXFfhc8oQ80QhAAACGAVPaOsogDEM8pqhiAEAEAA4xll3kUQAgAgwBFyvIfJ0gAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLJ4+jwAABaUk5OjoqKiSvfb7XZLPPWeIAQAgMXk5ORo7ty5522XlpZ20YchLo0BAGAx5xoJqkm7uowgBACAxblckcrKSpDLFenvUnyOS2MAAFjYli1dtHr1IBkTJJutVKmpa5SUtNXfZfkMI0IAAFiUyxXpDkGSZEyQVq8eZKmRIYIQAAAWlZsb7Q5BZYwJUm6u008V+R5BCAAAi3I6c2SzlXpss9lK5XTm+qki3yMIAQBgUQ5HvlJT17jDUNkcIYcj38+V+Q6TpQEAsBi73e7+c1LSViUm7lNurlNOZ65HCDqz3cWKIAQAgMVER0crLS3NpytLB+pK1gQhAAAsyJeh4+yVrF2uSOXmRsvpzPEYgfLHStYEIQAA4FVnjgSda90if6xkzWRpAADgE4G4bhFBCAAA+EQgrltEEAIAAD4RiOsWEYQAAIBPBOK6RUyWBgAAPnOudYv8gSAEAMBFKlDX7nE48v0egMoQhAAAuAidvXZPZXyxdk9VV6j2x0rWBCEAAC5CVV2Txxdr9/hjJeuqIggBAACv80fIqQruGgMAwAJcrkhlZSX4dfHCQMSIEAAAF7lzPdbC6hgRAgDgIhaIj7UIJAQhAAAuYoH4WItAQhACAOAiFoiPtQgkBCEAAC5CZWvynO+xFv5YuyeQ2Iwxxt9FBJq8vDw5HA65XC5FRUX5uxwAAGrkzJWlDx0K0oED9ZSQ8KuaNTsdivy1do+31OT7m7vGAAC4SJ0ZcuLipORkPxYToLg0BgAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALItnjVWg7Dm0eXl5fq4EAABUVdn3dnWeJ08QqkB+fr4kKT4+3s+VAACA6srPz5fD4ahSW5upTmyyiNLSUh06dEiRkZGy2WwVtsnLy1N8fLy+//57RUVF+bjCwEN/lEefeKI/PNEf5dEnnugPT1XpD2OM8vPz1axZMwUFVW32DyNCFQgKCtIll1xSpbZRUVH8gp6B/iiPPvFEf3iiP8qjTzzRH57O1x9VHQkqw2RpAABgWQQhAABgWQShGgoNDdXEiRMVGhrq71ICAv1RHn3iif7wRH+UR594oj88eas/mCwNAAAsixEhAABgWQQhAABgWQQhAABgWQQhAABgWQShc5g3b54SEhIUFhamHj166Msvv6y07fbt23XLLbcoISFBNptNs2bN8l2hPlKd/pg/f76uvfZaNWrUSI0aNVK/fv3O2b6uqk6frFy5Ul27dlXDhg0VERGhzp0764033vBhtd5Xnf4409KlS2Wz2TR48GDvFuhj1emPxYsXy2azefyEhYX5sFrfqO7vyM8//6wxY8YoLi5OoaGhateunT744AMfVet91emPPn36lPsdsdlsGjhwoA8r9q7q/n7MmjVLl156qcLDwxUfH6+HHnpIp06dqt6HGlRo6dKlxm63m4ULF5rt27ebe+65xzRs2NBkZ2dX2P7LL780jzzyiHn77bdNbGysefHFF31bsJdVtz9uv/12M2/ePLN161azc+dOM2LECONwOMwPP/zg48q9p7p9smHDBrNy5UqzY8cOs2/fPjNr1iwTHBxs1q5d6+PKvaO6/VEmKyvLNG/e3Fx77bXm5ptv9k2xPlDd/li0aJGJiooyhw8fdv8cOXLEx1V7V3X7pLCw0HTt2tX89re/NZ999pnJysoyn376qcnMzPRx5d5R3f7Iycnx+P3Ytm2bCQ4ONosWLfJt4V5S3f546623TGhoqHnrrbdMVlaW+fDDD01cXJx56KGHqvW5BKFKdO/e3YwZM8b9uqSkxDRr1sxMmTLlvO9t2bLlRReELqQ/jDHm119/NZGRkeb111/3Vok+d6F9YowxXbp0MU8++aQ3yvO5mvTHr7/+anr16mX++7//2wwfPvyiCkLV7Y9FixYZh8Pho+r8o7p98sorr5jWrVuboqIiX5XoUxf6d8iLL75oIiMjzYkTJ7xVok9Vtz/GjBlj+vbt67EtPT3dXH311dX6XC6NVaCoqEgZGRnq16+fe1tQUJD69eunTZs2+bEy/6iN/igoKFBxcbGcTqe3yvSpC+0TY4zWr1+v3bt367rrrvNmqT5R0/74r//6LzVt2lR33323L8r0mZr2x4kTJ9SyZUvFx8fr5ptv1vbt231Rrk/UpE9WrVqlnj17asyYMYqJiVGHDh303HPPqaSkxFdle01t/L26YMEC3XbbbYqIiPBWmT5Tk/7o1auXMjIy3JfPvv32W33wwQf67W9/W63P5qGrFTh+/LhKSkoUExPjsT0mJka7du3yU1X+Uxv98ec//1nNmjXz+CWvy2raJy6XS82bN1dhYaGCg4P18ssv64YbbvB2uV5Xk/747LPPtGDBAmVmZvqgQt+qSX9ceumlWrhwoa688kq5XC7NmDFDvXr10vbt26v8EOhAVpM++fbbb/XJJ5/ojjvu0AcffKB9+/bpT3/6k4qLizVx4kRflO01F/r36pdffqlt27ZpwYIF3irRp2rSH7fffruOHz+ua665RsYY/frrr7r33nv1xBNPVOuzCULwuqlTp2rp0qX69NNPL8rJn9URGRmpzMxMnThxQuvXr1d6erpat26tPn36+Ls0n8rPz9ewYcM0f/58NW7c2N/lBISePXuqZ8+e7te9evXSZZddpr/85S+aPHmyHyvzn9LSUjVt2lSvvfaagoODlZycrB9//FHTp0+v80HoQi1YsEAdO3ZU9+7d/V2K33z66ad67rnn9PLLL6tHjx7at2+fHnzwQU2ePFkTJkyo8nEIQhVo3LixgoODlZ2d7bE9OztbsbGxfqrKfy6kP2bMmKGpU6dq3bp1uvLKK71Zpk/VtE+CgoLUpk0bSVLnzp21c+dOTZkypc4Hoer2x/79+3XgwAGlpqa6t5WWlkqS6tWrp927dysxMdG7RXtRbfwdEhISoi5dumjfvn3eKNHnatIncXFxCgkJUXBwsHvbZZddpiNHjqioqEh2u92rNXvThfyOnDx5UkuXLtV//dd/ebNEn6pJf0yYMEHDhg3TqFGjJEkdO3bUyZMnNXr0aI0fP15BQVWb/cMcoQrY7XYlJydr/fr17m2lpaVav369x7/YrKKm/TFt2jRNnjxZa9euVdeuXX1Rqs/U1u9IaWmpCgsLvVGiT1W3P9q3b69vvvlGmZmZ7p+bbrpJv/nNb5SZman4+Hhfll/rauP3o6SkRN98843i4uK8VaZP1aRPrr76au3bt88dkiVpz549iouLq9MhSLqw35Hly5ersLBQd955p7fL9Jma9EdBQUG5sFMWmk11HqNazUndlrF06VITGhpqFi9ebHbs2GFGjx5tGjZs6L6dddiwYebxxx93ty8sLDRbt241W7duNXFxceaRRx4xW7duNXv37vXXKdSq6vbH1KlTjd1uN++8847H7Z75+fn+OoVaV90+ee6558xHH31k9u/fb3bs2GFmzJhh6tWrZ+bPn++vU6hV1e2Ps11sd41Vtz8mTZpkPvzwQ7N//36TkZFhbrvtNhMWFma2b9/ur1OoddXtk++++85ERkaatLQ0s3v3brNmzRrTtGlT88wzz/jrFGpVTf8/c80115ghQ4b4ulyvq25/TJw40URGRpq3337bfPvtt+ajjz4yiYmJ5tZbb63W5xKEzmHOnDmmRYsWxm63m+7du5svvvjCva93795m+PDh7tdZWVlGUrmf3r17+75wL6lOf7Rs2bLC/pg4caLvC/ei6vTJ+PHjTZs2bUxYWJhp1KiR6dmzp1m6dKkfqvae6vTH2S62IGRM9fpj7Nix7rYxMTHmt7/9rdmyZYsfqvau6v6ObNy40fTo0cOEhoaa1q1bm2effdb8+uuvPq7ae6rbH7t27TKSzEcffeTjSn2jOv1RXFxsnn76aZOYmGjCwsJMfHy8+dOf/mR++umnan2mzZjqjB8BAABcPJgjBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAB+NGLECA0ePNjfZQCWRRACUKERI0bIZrO5f6Kjo9W/f399/fXX/i6tVpx5bmU/11xzjdc+78CBA7LZbMrMzPTY/tJLL2nx4sVe+1wA50YQAlCp/v376/Dhwzp8+LDWr1+vevXqadCgQf4uq9YsWrTIfX6HDx/WqlWrKmxXXFzstRocDocaNmzoteMDODeCEIBKhYaGKjY2VrGxsercubMef/xxff/99zp27Jj69u2rtLQ0j/bHjh2T3W53P0E6ISFBkydP1tChQxUREaHmzZtr3rx5Hu+ZOXOmOnbsqIiICMXHx+tPf/qTTpw44d5/8OBBpaamqlGjRoqIiNAVV1yhDz74QJL0008/6Y477lCTJk0UHh6utm3batGiRVU+v4YNG7rPLzY2Vk6n0z1ys2zZMvXu3VthYWF66623lJOTo6FDh6p58+aqX7++OnbsqLffftvjeKWlpZo2bZratGmj0NBQtWjRQs8++6wkqVWrVpKkLl26yGazqU+fPpLKXxorLCzUAw88oKZNmyosLEzXXHONNm/e7N7/6aefymazaf369eratavq16+vXr16affu3VU+bwD/hyAEoEpOnDihN998U23atFF0dLRGjRqlJUuWqLCw0N3mzTffVPPmzdW3b1/3tunTp6tTp07aunWrHn/8cT344IP6+OOP3fuDgoI0e/Zsbd++Xa+//ro++eQTPfbYY+79Y8aMUWFhof7xj3/om2++0fPPP68GDRpIkiZMmKAdO3bo73//u3bu3KlXXnlFjRs3rpXzLat1586dSklJ0alTp5ScnKz3339f27Zt0+jRozVs2DB9+eWX7veMGzdOU6dOdde1ZMkSxcTESJK73bp163T48GGtXLmyws997LHHtGLFCr3++uvasmWL2rRpo5SUFOXm5nq0Gz9+vF544QV99dVXqlevnv7whz/UynkDllMrj4sFcNEZPny4CQ4ONhERESYiIsJIMnFxcSYjI8MYY8wvv/xiGjVqZJYtW+Z+z5VXXmmefvpp9+uWLVua/v37exx3yJAhZsCAAZV+7vLly010dLT7dceOHT2OeabU1FQzcuTIGp2fJBMWFuY+v4iICPPuu++arKwsI8nMmjXrvMcYOHCgefjhh40xxuTl5ZnQ0FAzf/78CtuWHXfr1q0e24cPH25uvvlmY4wxJ06cMCEhIeatt95y7y8qKjLNmjUz06ZNM8YYs2HDBiPJrFu3zt3m/fffN5LML7/8Up0uAGCMYUQIQKV+85vfKDMzU5mZmfryyy+VkpKiAQMG6ODBgwoLC9OwYcO0cOFCSdKWLVu0bds2jRgxwuMYPXv2LPd6586d7tfr1q3T9ddfr+bNmysyMlLDhg1TTk6OCgoKJEkPPPCAnnnmGV199dWaOHGix2Tt++67T0uXLlXnzp312GOPaePGjdU6vxdffNF9fpmZmbrhhhvc+7p27erRtqSkRJMnT1bHjh3ldDrVoEEDffjhh/ruu+8kSTt37lRhYaGuv/76atVwpv3796u4uFhXX321e1tISIi6d+/u0WeSdOWVV7r/HBcXJ0k6evRojT8bsCqCEIBKRUREqE2bNmrTpo26deum//7v/9bJkyc1f/58SdKoUaP08ccf64cfftCiRYvUt29ftWzZssrHP3DggAYNGqQrr7xSK1asUEZGhnsOUVFRkfszvv32Ww0bNkzffPONunbtqjlz5kiSO5Q99NBDOnTokK6//no98sgjVf782NhY9/m1adNGERERHud+punTp+ull17Sn//8Z23YsEGZmZlKSUlx1xkeHl7lz60NISEh7j/bbDZJp+coAageghCAKrPZbAoKCtIvv/wiSerYsaO6du2q+fPna8mSJRXOU/niiy/Kvb7sssskSRkZGSotLdULL7ygq666Su3atdOhQ4fKHSM+Pl733nuvVq5cqYcfftgdxCSpSZMmGj58uN58803NmjVLr732Wm2estvnn3+um2++WXfeeac6deqk1q1ba8+ePe79bdu2VXh4uHui+Nnsdruk0yNLlUlMTJTdbtfnn3/u3lZcXKzNmzfr8ssvr6UzAXCmev4uAEDgKiws1JEjRySdvkNr7ty5OnHihFJTU91tRo0apbS0NEVEROg//uM/yh3j888/17Rp0zR48GB9/PHHWr58ud5//31JUps2bVRcXKw5c+YoNTVVn3/+uV599VWP948dO1YDBgxQu3bt9NNPP2nDhg3uIPXUU08pOTlZV1xxhQoLC7VmzRr3vtrWtm1bvfPOO9q4caMaNWqkmTNnKjs72x1QwsLC9Oc//1mPPfaY7Ha7rr76ah07dkzbt2/X3XffraZNmyo8PFxr167VJZdcorCwMDkcDo/PiIiI0H333adHH31UTqdTLVq00LRp01RQUKC7777bK+cFWB0jQgAqtXbtWsXFxSkuLk49evTQ5s2btXz5cvet35I0dOhQ1atXT0OHDlVYWFi5Yzz88MP66quv1KVLFz3zzDOaOXOmUlJSJEmdOnXSzJkz9fzzz6tDhw566623NGXKFI/3l5SUaMyYMbrsssvUv39/tWvXTi+//LKk06Ms48aN05VXXqnrrrtOwcHBWrp0qVf64sknn1RSUpJSUlLUp08fxcbGllsResKECXr44Yf11FNP6bLLLtOQIUPc83bq1aun2bNn6y9/+YuaNWumm2++ucLPmTp1qm655RYNGzZMSUlJ2rdvnz788EM1atTIK+cFWJ3NGGP8XQSAuuvAgQNKTEzU5s2blZSU5LEvISFBY8eO1dixY/1THACcB5fGANRIcXGxcnJy9OSTT+qqq64qF4IAoC7g0hiAGvn8888VFxenzZs3l5vX42/PPfecGjRoUOHPgAED/F0egADCpTEAF53c3NxyKzGXCQ8PV/PmzX1cEYBARRACAACWxaUxAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWf8fsT+8fTjnRUsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_14.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGH0lEQVR4nO3de1xUdf7H8feADKDCGKh4Q1E0TS0VUtMyqnXDVjHLNtTKS3axX5Qum7tppZaVtqlhalb7yMu2a5pplubPMrebl26ilWmmhtkFUIcaEFOM+f7+8MfoyEVQYBjO6/l4zEPmnO+c+ZxvJ3n7Pd9zjs0YYwQAAGAhAb4uAAAAoLoRgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgACgBlu0aJFsNpv279/v61KAWoUABFjcZ599ppSUFHXq1En16tVTy5YtdfPNN+vbb78t1vaqq66SzWaTzWZTQECAwsPD1b59e912221av359hb539erVSkhIUOPGjVW3bl21adNGN998s9atW1dZu1bMk08+qVWrVhVbvnnzZk2ZMkW//vprlX33maZMmeLpS5vNprp166pjx456+OGHlZubWynfsWTJEqWlpVXKtoDahgAEWNxTTz2lFStW6A9/+INmz56tu+66Sx9++KHi4uK0Y8eOYu1btGihl19+Wf/617/09NNPa+DAgdq8ebOuvfZaJScn68SJE2f9zhkzZmjgwIGy2WyaMGGCnnnmGQ0ePFh79uzR0qVLq2I3JZUdgB599NFqDUBF5s+fr5dfflmzZs1Shw4d9MQTT6hfv36qjMc0EoCA0tXxdQEAfCs1NVVLliyR3W73LEtOTtbFF1+s6dOn69///rdXe4fDoVtvvdVr2fTp03X//ffrueeeU0xMjJ566qlSv+/333/X1KlT9cc//lHvvPNOsfUHDx48zz2qOY4ePaq6deuW2eamm25Sw4YNJUljxozR4MGDtXLlSn388cfq1atXdZQJWBIjQIDF9e7d2yv8SFK7du3UqVMn7dq1q1zbCAwM1LPPPquOHTtq7ty5crlcpbY9fPiwcnNzdfnll5e4vnHjxl7vjx07pilTpujCCy9USEiImjZtqhtvvFH79u3ztJkxY4Z69+6tyMhIhYaGKj4+Xq+99prXdmw2m/Lz87V48WLPaaeRI0dqypQpGj9+vCSpdevWnnWnz7n597//rfj4eIWGhioiIkJDhgzRDz/84LX9q666Sp07d9bWrVt15ZVXqm7dupo4cWK5+u9011xzjSQpIyOjzHbPPfecOnXqpODgYDVr1kz33nuv1wjWVVddpbfeekvff/+9Z59iYmIqXA9QWzECBKAYY4yys7PVqVOncn8mMDBQQ4cO1SOPPKKNGzeqf//+JbZr3LixQkNDtXr1at13332KiIgodZuFhYUaMGCANmzYoCFDhmjs2LHKy8vT+vXrtWPHDsXGxkqSZs+erYEDB+qWW25RQUGBli5dqj//+c9as2aNp46XX35Zd9xxh3r06KG77rpLkhQbG6t69erp22+/1SuvvKJnnnnGMxrTqFEjSdITTzyhRx55RDfffLPuuOMOHTp0SHPmzNGVV16pbdu2qUGDBp56nU6nrrvuOg0ZMkS33nqroqKiyt1/RYqCXWRkZKltpkyZokcffVR9+/bVPffco927d2v+/Pn67LPPtGnTJgUFBemhhx6Sy+XSjz/+qGeeeUaSVL9+/QrXA9RaBgDO8PLLLxtJ5qWXXvJanpCQYDp16lTq515//XUjycyePbvM7U+aNMlIMvXq1TPXXXedeeKJJ8zWrVuLtVuwYIGRZGbNmlVsndvt9vx89OhRr3UFBQWmc+fO5pprrvFaXq9ePTNixIhi23r66aeNJJORkeG1fP/+/SYwMNA88cQTXsu/+uorU6dOHa/lCQkJRpJ5/vnnS93v002ePNlIMrt37zaHDh0yGRkZ5oUXXjDBwcEmKirK5OfnG2OMWbhwoVdtBw8eNHa73Vx77bWmsLDQs725c+caSWbBggWeZf379zetWrUqVz2A1XAKDICXb775Rvfee6969eqlESNGVOizRSMMeXl5ZbZ79NFHtWTJEnXr1k1vv/22HnroIcXHxysuLs7rtNuKFSvUsGFD3XfffcW2YbPZPD+HhoZ6fv7ll1/kcrnUp08fpaenV6j+M61cuVJut1s333yzDh8+7Hk1adJE7dq103vvvefVPjg4WKNGjarQd7Rv316NGjVS69atdffdd6tt27Z66623Sp079O6776qgoEDjxo1TQMCpv8LvvPNOhYeH66233qr4jgIWxCkwAB5ZWVnq37+/HA6HXnvtNQUGBlbo80eOHJEkhYWFnbXt0KFDNXToUOXm5uqTTz7RokWLtGTJEiUlJWnHjh0KCQnRvn371L59e9WpU/ZfVWvWrNHjjz+u7du36/jx457lp4ekc7Fnzx4ZY9SuXbsS1wcFBXm9b968ebH5VGezYsUKhYeHKygoSC1atPCc1ivN999/L+lkcDqd3W5XmzZtPOsBlI0ABECS5HK5dN111+nXX3/VRx99pGbNmlV4G0WXzbdt27bcnwkPD9cf//hH/fGPf1RQUJAWL16sTz75RAkJCeX6/EcffaSBAwfqyiuv1HPPPaemTZsqKChICxcu1JIlSyq8D6dzu92y2Wz63//93xLD4Jlzak4fiSqvK6+80jPvCED1IQAB0LFjx5SUlKRvv/1W7777rjp27FjhbRQWFmrJkiWqW7eurrjiinOq49JLL9XixYuVmZkp6eQk5U8++UQnTpwoNtpSZMWKFQoJCdHbb7+t4OBgz/KFCxcWa1vaiFBpy2NjY2WMUevWrXXhhRdWdHeqRKtWrSRJu3fvVps2bTzLCwoKlJGRob59+3qWne8IGFCbMQcIsLjCwkIlJydry5YtWr58+Tnde6awsFD333+/du3apfvvv1/h4eGltj169Ki2bNlS4rr//d//lXTq9M7gwYN1+PBhzZ07t1hb8/83CgwMDJTNZlNhYaFn3f79+0u84WG9evVKvNlhvXr1JKnYuhtvvFGBgYF69NFHi92Y0Bgjp9NZ8k5Wob59+8put+vZZ5/1qumll16Sy+XyuvquXr16Zd6SALAyRoAAi/vrX/+qN998U0lJScrJySl248Mzb3rocrk8bY4ePaq9e/dq5cqV2rdvn4YMGaKpU6eW+X1Hjx5V7969ddlll6lfv36Kjo7Wr7/+qlWrVumjjz7SoEGD1K1bN0nS8OHD9a9//Uupqan69NNP1adPH+Xn5+vdd9/V//zP/+j6669X//79NWvWLPXr10/Dhg3TwYMHNW/ePLVt21Zffvml13fHx8fr3Xff1axZs9SsWTO1bt1aPXv2VHx8vCTpoYce0pAhQxQUFKSkpCTFxsbq8ccf14QJE7R//34NGjRIYWFhysjI0Ouvv6677rpLDzzwwHn1f0U1atRIEyZM0KOPPqp+/fpp4MCB2r17t5577jl1797d679XfHy8li1bptTUVHXv3l3169dXUlJStdYL1Fi+vAQNgO8VXb5d2qustvXr1zft2rUzt956q3nnnXfK9X0nTpww//znP82gQYNMq1atTHBwsKlbt67p1q2befrpp83x48e92h89etQ89NBDpnXr1iYoKMg0adLE3HTTTWbfvn2eNi+99JJp166dCQ4ONh06dDALFy70XGZ+um+++cZceeWVJjQ01EjyuiR+6tSppnnz5iYgIKDYJfErVqwwV1xxhalXr56pV6+e6dChg7n33nvN7t27vfqmrFsEnKmovkOHDpXZ7szL4IvMnTvXdOjQwQQFBZmoqChzzz33mF9++cWrzZEjR8ywYcNMgwYNjCQuiQdOYzOmEh44AwAA4EeYAwQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHGyGWwO126+eff1ZYWBi3kgcAwE8YY5SXl6dmzZopIKDsMR4CUAl+/vlnRUdH+7oMAABwDn744Qe1aNGizDYEoBKEhYVJOtmBZT3TCAAA1By5ubmKjo72/B4vCwGoBEWnvcLDwwlAAAD4mfJMX2ESNAAAsBwCEAAAsBwCEAAAsBzmAAEAUEkKCwt14sQJX5dRawUFBSkwMLBStkUAAgDgPBljlJWVpV9//dXXpdR6DRo0UJMmTc77Pn0EIAAAzlNR+GncuLHq1q3LTXSrgDFGR48e1cGDByVJTZs2Pa/tEYAAADgPhYWFnvATGRnp63JqtdDQUEnSwYMH1bhx4/M6HcYkaAAAzkPRnJ+6dev6uBJrKOrn851rRQACAKAScNqrelRWPxOAAACA5TAHCH7H6XSqoKCg1PV2u73GnIf3p1oBwEoIQPArTqdTc+fOPWu7lJQUnweLM2t1ucKUkxOpiAinHI48z/KaUCsAaxo5cqQWL14sSapTp44iIiJ0ySWXaOjQoRo5cqQCAsp3omjRokUaN26cX90GgAAEv3LmaEppoaKsUZfqcnoN6endtHr1ABkTIJvNraSkNYqL21asHQBr8uVocb9+/bRw4UIVFhYqOztb69at09ixY/Xaa6/pzTffVJ06tTMq1M69giWUFSpqEpcrzFOnJBkToNWrByg2dq9XaANgTb4e2Q4ODlaTJk0kSc2bN1dcXJwuu+wy/eEPf9CiRYt0xx13aNasWVq4cKG+++47RUREKCkpSf/4xz9Uv359vf/++xo1apSkUxOUJ0+erClTpujll1/W7NmztXv3btWrV0/XXHON0tLS1Lhx40rfj4piEjT8UmmhwuUK83FlxeXkRHrqLGJMgHJyInxUEYCapLyjwNU5WnzNNdeoS5cuWrlypSQpICBAzz77rL7++mstXrxY//3vf/W3v/1NktS7d2+lpaUpPDxcmZmZyszM1AMPPCDp5KXqU6dO1RdffKFVq1Zp//79GjlyZLXtR1kYAYJfKitU1LRRlYgIp2w2t1e9NptbERE5PqwKAMrWoUMHffnll5KkcePGeZbHxMTo8ccf15gxY/Tcc8/JbrfL4XDIZrN5RpKK3H777Z6f27Rpo2effVbdu3fXkSNHVL9+/WrZj9IwAgS/VBQqTldTQ4XDkaekpDWeeotO19W0oAYApzPGeE5pvfvuu/rDH/6g5s2bKywsTLfddpucTqeOHj1a5ja2bt2qpKQktWzZUmFhYUpISJAkHThwoMrrPxtGgOCXikLFmXOAamqoiIvbptjYvcrJiVBERE6NrRMAiuzatUutW7fW/v37NWDAAN1zzz164oknFBERoY0bN2r06NEqKCgo9Q7Y+fn5SkxMVGJiov7zn/+oUaNGOnDggBITE2vExR8EIPgtfwsVDkdeja8RACTpv//9r7766iv95S9/0datW+V2uzVz5kzPZfGvvvqqV3u73a7CwkKvZd98842cTqemT5+u6OhoSdLnn39ePTtQDgQg+BW73e71vrRQcWY7XyhvDTWhVgDWdfz4cWVlZXldBj9t2jQNGDBAw4cP144dO3TixAnNmTNHSUlJ2rRpk55//nmvbcTExOjIkSPasGGDunTporp166ply5ay2+2aM2eOxowZox07dmjq1Kk+2sviCEA1GHcRLi4yMlIpKSl+0S/+VCsA61q3bp2aNm2qOnXq6IILLlCXLl307LPPasSIEQoICFCXLl00a9YsPfXUU5owYYKuvPJKTZs2TcOHD/dso3fv3hozZoySk5PldDo9l8EvWrRIEydO1LPPPqu4uDjNmDFDAwcO9OHenmIzxhhfF1HT5ObmyuFwyOVyKTw83Cc1+Pq+EACA8jl27JgyMjLUunVrhYSEVPjz/H1fMWX1d0V+fzMCVEPVxPtCAAAqH6PFvkEAAgDAxwg31Y/7APkJlytMGRkxNfJOxwAA+BtGgPyAvzzzCgAAf8EIUA3nT8+8AgDAXxCAaiiXyyXp7A/SLGoHAADKjwBUQ504cULS2Z95VdQOAACUHwGohqpT5+T0rKJnXklFIcj7mVdF7QAAQPkRgGqoBg0aeL3//wfyev4srR0AADg7AlANxyRoVAen06nMzMxSX06n09clAvBD77//vmw2m3799ddyfyYmJkZpaWlVVlMRnwegefPmKSYmRiEhIerZs6c+/fTTUtt+/fXXGjx4sGJiYmSz2UrsoA8//FBJSUlq1qyZbDabVq1aVXXFV4OzTYIGzlfRbfhffPFFvfjii3r66Vc0YcI7evrpVzzL5s6dSwgCaqGRI0fKZrNpzJgxxdbde++9stlsGjlyZPUXVg18GoCWLVum1NRUTZ48Wenp6erSpYsSExN18ODBEtsfPXpUbdq00fTp09WkSZMS2+Tn56tLly6aN29eVZZebc42CRo4X6fffj89vZvS0sZp8eIRSksbp/T0biW2A1B7REdHa+nSpfrtt988y44dO6YlS5aoZcuWPqysavk0AM2aNUt33nmnRo0apY4dO+r5559X3bp1tWDBghLbd+/eXU8//bSGDBmi4ODgEttcd911evzxx3XDDTdUZenVpmgSdFEIKroRYtEkaKCycLoVsKa4uDhFR0dr5cqVnmUrV65Uy5Yt1a3bqX8EHT9+XPfff78aN26skJAQXXHFFfrss8+8trV27VpdeOGFCg0N1dVXX639+/cX+76NGzeqT58+Cg0NVXR0tO6//37l5+dX2f6VxmcBqKCgQFu3blXfvn1PFRMQoL59+2rLli3VWsvx48eVm5vr9fI1u93u+TkubpvGjUvTiBGLNG5cmtddoE9vB5wPTrcCNcOPP0rvvXfyz+py++23a+HChZ73CxYs0KhRo7za/O1vf9OKFSu0ePFipaenq23btkpMTFROzskzEj/88INuvPFGJSUlafv27brjjjv04IMPem1j37596tevnwYPHqwvv/xSy5Yt08aNG5WSklL1O3kGn11DffjwYRUWFioqKspreVRUlL755ptqrWXatGl69NFHq/U7z4anA6O6FZ1uPT0EcboVqF4vvSTddZfkdksBAdKLL0qjR1f99956662aMGGCvv/+e0nSpk2btHTpUr3//vuSTk4vmT9/vhYtWqTrrrtOkvTPf/5T69ev10svvaTx48dr/vz5io2N1cyZMyVJ7du311dffaWnnnrK8z3Tpk3TLbfconHjxkmS2rVrp2effVYJCQmaP3++QkJCqn5n/x83kZE0YcIEpaamet7n5uYqOjrahxWdRLhBdSo63Xrmc+c43QpUjx9/PBV+pJN/3n23lJgotWhRtd/dqFEj9e/fX4sWLZIxRv3791fDhg096/ft26cTJ07o8ssv9ywLCgpSjx49tGvXLknSrl271LNnT6/t9urVy+v9F198oS+//FL/+c9/PMuMMXK73crIyNBFF11UFbtXIp8FoIYNGyowMFDZ2dley7Ozs0ud4FxVgoODS51TBFhJXNw2xcbuVU5OhCIicgg/QDXas+dU+ClSWCjt3Vv1AUg6eRqs6FRUVV1IdOTIEd199926//77i62r7gnXPpsDZLfbFR8frw0bNniWud1ubdiwoVhiBFB9HI48tW79PeEHqGbt2p087XW6wECpbdvq+f5+/fqpoKBAJ06cUGJiote62NhY2e12bdq0ybPsxIkT+uyzz9SxY0dJ0kUXXVTsVjYff/yx1/u4uDjt3LlTbdu2Lfaq7jmtPr0KLDU1Vf/85z+1ePFi7dq1S/fcc4/y8/M9E6+GDx+uCRMmeNoXFBRo+/bt2r59uwoKCvTTTz9p+/bt2rt3r6fNkSNHPG0kKSMjQ9u3b9eBAweqdd8Af1Hev3SYcA9UrRYtTs75CQw8+T4wUHrhheoZ/Tn5fYHatWuXdu7cqcCiIv5fvXr1dM8992j8+PFat26ddu7cqTvvvFNHjx7V6P+fpDRmzBjt2bNH48eP1+7du7VkyRItWrTIazt///vftXnzZqWkpGj79u3as2eP3njjDWtNgpak5ORkHTp0SJMmTVJWVpa6du2qdevWeSZGHzhwQAGnxeGff/7Z65K8GTNmaMaMGUpISPBM1Pr888919dVXe9oUze0ZMWJEsf8QAJhwD9Qko0efnPOzd+/JkZ/qCj9FwsPDS103ffp0ud1u3XbbbcrLy9Oll16qt99+WxdccIGkk6ewVqxYob/85S+aM2eOevTooSeffFK33367ZxuXXHKJPvjgAz300EPq06ePjDGKjY1VcnJyle/bmWzGGFPt31rD5ebmyuFwyOVylXkwAABw7NgxZWRkqHXr1tV6FZNVldXfFfn97fNHYQAAAFQ3AhAAALAcAhAAALAcAhAAALAcAhAAAJWAa4qqR2X1M4/CgM84nU4uvQbg94KCgiRJR48eVWhoqI+rqf2OHj0q6VS/nysCEHzC6XRq7ty5Z22XkpJCCAJQowUGBqpBgwY6ePCgJKlu3bqy2Ww+rqr2Mcbo6NGjOnjwoBo0aFDsZo0VRQCCT5Q18nMu7QDAl4qeYVkUglB1GjRoUCnPDCUAoUZwucKUkxOpiAgnz6AC4HdsNpuaNm2qxo0b68SJE74up9YKCgo675GfIgQg+Fx6ejetXj1AxgTIZnMrKWmN4uK2+bosAKiwwMDASvsFjarFVWDwKZcrzBN+JMmYAK1ePUAuV5iPKwMA1GaMAMGncnIiPeGniDEBysmJ4FQYAA+uGkVlIwDBpyIinLLZ3F4hyGZzKyIix4dVAahJuGoUVYFTYPAphyNPSUlrZLO5JckzB4jRHwBFuGoUVYERIPiE3W73/BwXt02xsXuVkxOhiIgcr/BzejsAACoLAQg+ERkZqZSUFM7pA6gwbpuBykAAgs8QbgBUFLfNQGVhDhAAwC9w2wxUJgIQAMAvlHXbDKCiCEAAAL9QdNuM03HbDJwrAhAAoEYruhr0bLfN4KpRVITNGGN8XURNk5ubK4fDIZfLpfDwcF+XAwCWd/qdoH/+OUD799dRTMzvatbsZBjiqlFIFfv9zVVgAIAa7/Rw07SpFB/vw2JQK3AKDAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWE4dXxcAADWV0+lUQUFBqevtdrsiIyOrsSIAlYUABAAlcDqdmjt37lnbpaSkEIIAP0QAwnnjX8mojc48pl2uMOXkRCoiwimHI6/UdgD8AwEI54V/JcMK0tO7afXqATImQDabW0lJaxQXt83XZQE4D0yCxnkp779++Vcy/JXLFeYJP5JkTIBWrx4glyvMx5UBOB8EIFQqlytMGRkx/HJArZGTE+kJP0WMCVBOToSPKgJQGTgFhkrDaQLURhERTtlsbq8QZLO5FRGR48OqAJwvRoBQKThNgNrK4chTUtIa2WxuSfKE+9MnQgPwP4wAoVKUdZqAXxTwd3Fx2xQbu1c5ORGKiMjhmAZqAQIQKgWnCVDb2O12r/cOR16JwefMdgD8AwEIlaLoNMGZc4D4lzL8VWRkpFJSUrjHFVBLEYBwXk7/129Zpwn4VzL8EeEGqL0IQDgv/CsZAOCPCEA4b4QbAIC/4TJ4AABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOTUiAM2bN08xMTEKCQlRz5499emnn5ba9uuvv9bgwYMVExMjm82mtLS0894mAACwFp8HoGXLlik1NVWTJ09Wenq6unTposTERB08eLDE9kePHlWbNm00ffp0NWnSpFK2CQAArMVmjDG+LKBnz57q3r275s6dK0lyu92Kjo7WfffdpwcffLDMz8bExGjcuHEaN25cpW1TknJzc+VwOORyuRQeHn5uOwYAAKpVRX5/+3QEqKCgQFu3blXfvn09ywICAtS3b19t2bKl2rZ5/Phx5ebmer0AAEDt5dMAdPjwYRUWFioqKspreVRUlLKysqptm9OmTZPD4fC8oqOjz+m7AQCAf+BhqJImTJig1NRUz/vc3NxKDUFOp5OnpQMAUIP4NAA1bNhQgYGBys7O9lqenZ1d6gTnqthmcHCwgoODz+n7zsbpdHrmIpUlJSWFEAQAQDXx6Skwu92u+Ph4bdiwwbPM7XZrw4YN6tWrV43Z5vkoa+TnXNoBAOCPnE6nMjMzS305nc5qrcfnp8BSU1M1YsQIXXrpperRo4fS0tKUn5+vUaNGSZKGDx+u5s2ba9q0aZJOBoWdO3d6fv7pp5+0fft21a9fX23bti3XNn3J5QpTTk6kIiKccjjyfF0OAABVriaeDfF5AEpOTtahQ4c0adIkZWVlqWvXrlq3bp1nEvOBAwcUEHBqoOrnn39Wt27dPO9nzJihGTNmKCEhQe+//365tukr6endtHr1ABkTIJvNraSkNYqL2+bTmgAA/stf5pieWWNpgwHVeTbE5wFIOpn4UlJSSlxXFGqKxMTEqDy3Liprm77gcoV5wo8kGROg1asHKDZ2LyNBAIAKq4mjKuVRUwYDfH4naKvIyYn0hJ8ixgQoJyfCRxUBAPxZSaMqGRkxcrnCymznS6UNBpxZc3WoESNAVhAR4ZTN5vYKQTabWxEROT6sCgBQG9SUUZWzKWswoLrPhjACVE0cjjwlJa2RzeaWJM8ByukvAMD5qEmjKmdTNBhwOl8NBjACVMXsdrvn57i4bYqN3aucnAhFROR4hZ/T2wEAUF41aVTlbIoGA84crfJFnQSgKhYZGamUlBS/mKUPAPA//jbFoqzBgOpEAKoGhBsAQFWpSaMqpTnzLIfDkVdifdV5NoQABACAn6spoyqlqYlnQwhAAAD4oZo4qlKWmnY2hAAEAIAfqomjKv6EAAQAgJ8i3Jw77gMEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAsh2eBAQBgMU6n0/IPUSUAAQBgIU6nU3PnzvW8d7nClJMTqYgIpxyOPM/ylJSUWh2CCEAAAFjI6SM/6endtHr1ABkTIJvNraSkNYqL21asXW3EHCAAACzI5QrzhB9JMiZAq1cPkMsV5uPKqgcBCAAAC8rJifSEnyLGBCgnJ8JHFVUvAhAAABYUEeGUzeb2WmazuRURkeOjiqoXAQgAAAtyOPKUlLTGE4KK5gCdPhG6NmMSNAAAFhUXt02xsXuVkxOhiIgcy4QfiQAEAIClORx5lgo+RTgFBgCAhdjt9kpt568YAQIAwEIiIyOVkpLCnaB9XQAAAKhetT3clAcBCECtx3OPAJyJAASgVjvzuUelqe3PPQLgjUnQAGq1M0d+XK4wZWTEFLvdf21/7hEAb4wAAbCMsh78CMBaGAECYAlWf/AjAG8EIACWYPUHPwLwRgACYAlWf/AjAG8EIACWYPUHPwLwxiRoAJZh5Qc/AvBGAAJQq535PKPSHvxY2597BMAbAQhArcZzjwCUhAAEoNYj3AA4E5OgAQCA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5fAsMADnzOl08pBRAH6JAATgnDidTs2dO/es7VJSUghBAGqcGnEKbN68eYqJiVFISIh69uypTz/9tMz2y5cvV4cOHRQSEqKLL75Ya9eu9VqfnZ2tkSNHqlmzZqpbt6769eunPXv2VOUuAJZz5siPyxWmjIwYuVxhZbYDgJrA5wFo2bJlSk1N1eTJk5Wenq4uXbooMTFRBw8eLLH95s2bNXToUI0ePVrbtm3ToEGDNGjQIO3YsUOSZIzRoEGD9N133+mNN97Qtm3b1KpVK/Xt21f5+fnVuWuAZaSnd1Na2jgtXjxCaWnjlJ7ezdclAUCZfB6AZs2apTvvvFOjRo1Sx44d9fzzz6tu3bpasGBBie1nz56tfv36afz48brooos0depUxcXFeYbi9+zZo48//ljz589X9+7d1b59e82fP1+//fabXnnllercNcASXK4wrV49QMac/OvEmACtXj2g2EgQANQkPg1ABQUF2rp1q/r27etZFhAQoL59+2rLli0lfmbLli1e7SUpMTHR0/748eOSpJCQEK9tBgcHa+PGjSVu8/jx48rNzfV6ASifnJxIT/gpYkyAcnIifFQRAJzdOQWg5cuX68Ybb1Tnzp3VuXNn3XjjjXrttdcqvJ3Dhw+rsLBQUVFRXsujoqKUlZVV4meysrLKbN+hQwe1bNlSEyZM0C+//KKCggI99dRT+vHHH5WZmVniNqdNmyaHw+F5RUdHV3hfAKuKiHDKZnN7LbPZ3IqIyPFRRQBwdhUKQG63W8nJyUpOTtbOnTvVtm1btW3bVl9//bWSk5M1ZMgQGWOqqtZyCQoK0sqVK/Xtt98qIiJCdevW1XvvvafrrrtOAQEl7+6ECRPkcrk8rx9++KGaqwb8l8ORp6SkNZ4QZLO5lZS0Rg5Hno8rQ1VyOp3KzMws9eV0On1dIlCmCl0GP3v2bL377rt68803NWDAAK91b775pkaNGqXZs2dr3Lhx5dpew4YNFRgYqOzsbK/l2dnZatKkSYmfadKkyVnbx8fHa/v27XK5XCooKFCjRo3Us2dPXXrppSVuMzg4WMHBweWqGUBxcXHbFBu7Vzk5EYqIyCH81HJn3gLB5QpTTk6kIiKcXv/tuQUCarIKjQAtXLhQTz/9dLHwI0kDBw7UP/7xj1InL5fEbrcrPj5eGzZs8Cxzu93asGGDevXqVeJnevXq5dVektavX19ie4fDoUaNGmnPnj36/PPPdf3115e7NgBls9vtXu8djjy1bv19sfBzZjv4v9NvbVDWFYDcAgE1WYVGgPbs2VNsAvLp+vbtq5SUlAoVkJqaqhEjRujSSy9Vjx49lJaWpvz8fI0aNUqSNHz4cDVv3lzTpk2TJI0dO1YJCQmaOXOm+vfvr6VLl+rzzz/Xiy++6Nnm8uXL1ahRI7Vs2VJfffWVxo4dq0GDBunaa6+tUG0AShcZGamUlBTuBG1hpV0BGBu7l1FA1HgVCkChoaH69ddf1bJlyxLX5+bmel19VR7Jyck6dOiQJk2apKysLHXt2lXr1q3zTHQ+cOCA19yd3r17a8mSJXr44Yc1ceJEtWvXTqtWrVLnzp09bTIzM5Wamqrs7Gw1bdpUw4cP1yOPPFKhugCcHeHG2sq6ApAAhJrOZiowa7l///5q2bKl5s+fX+L6MWPG6MCBA8XuzOxvcnNz5XA45HK5FB4e7utyAKBGyczM1IsvviiXK0xpaeO8QpDN5ta4cWlyOPJ01113qWnTpj6sFFZTkd/fFRoBeuihh3TVVVfJ6XTqgQceUIcOHWSM0a5duzRz5ky98cYbeu+9986reACAfyi6ArDoNBhXAMKfVCgA9e7dW8uWLdNdd92lFStWeK274IIL9Morr+jyyy+v1AIBADUXVwDCX1X4afA33HCDEhMT9fbbb3seMHrhhRfq2muvVd26dSu9QABAzeZw5BF84HcqFID++9//KiUlRR9//LFuuOEGr3Uul0udOnXS888/rz59+lRqkQCAmqO8tzbgFgioySoUgNLS0nTnnXeWOLHI4XDo7rvv1qxZswhAAFCLcQsE1AYVCkBffPGFnnrqqVLXX3vttZoxY8Z5FwUAqNkIN/B3FboTdHZ2toKCgkpdX6dOHR06dOi8iwIAAKhKFQpAzZs3144dO0pd/+WXX3LPBwAAUONVKAD96U9/0iOPPKJjx44VW/fbb79p8uTJJT4nDAAAoCap0J2gs7OzFRcXp8DAQKWkpKh9+/aSpG+++Ubz5s1TYWGh0tPTPY+x8FfcCRoAAP9TZXeCjoqK0ubNm3XPPfdowoQJKspONptNiYmJmjdvnt+HHwAAUPtV+EaIrVq10tq1a/XLL79o7969MsaoXbt2uuCCC6qiPgAAgEpX4QBU5IILLlD37t0rsxYAAIBqUaFJ0AAAALUBAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFhOjQhA8+bNU0xMjEJCQtSzZ099+umnZbZfvny5OnTooJCQEF188cVau3at1/ojR44oJSVFLVq0UGhoqDp27Kjnn3++KncBAAD4EZ8HoGXLlik1NVWTJ09Wenq6unTposTERB08eLDE9ps3b9bQoUM1evRobdu2TYMGDdKgQYO0Y8cOT5vU1FStW7dO//73v7Vr1y6NGzdOKSkpevPNN6trtwAAQA1mM8YYXxbQs2dPde/eXXPnzpUkud1uRUdH67777tODDz5YrH1ycrLy8/O1Zs0az7LLLrtMXbt29YzydO7cWcnJyXrkkUc8beLj43Xdddfp8ccfP2tNubm5cjgccrlcCg8PP99dBAAA1aAiv799OgJUUFCgrVu3qm/fvp5lAQEB6tu3r7Zs2VLiZ7Zs2eLVXpISExO92vfu3VtvvvmmfvrpJxlj9N577+nbb7/VtddeW+I2jx8/rtzcXK8XAACovXwagA4fPqzCwkJFRUV5LY+KilJWVlaJn8nKyjpr+zlz5qhjx45q0aKF7Ha7+vXrp3nz5unKK68scZvTpk2Tw+HwvKKjo89zzwAAQE3m8zlAVWHOnDn6+OOP9eabb2rr1q2aOXOm7r33Xr377rsltp8wYYJcLpfn9cMPP1RzxQAAoDrV8eWXN2zYUIGBgcrOzvZanp2drSZNmpT4mSZNmpTZ/rffftPEiRP1+uuvq3///pKkSy65RNu3b9eMGTOKnT6TpODgYAUHB1fGLgEAAD/g0xEgu92u+Ph4bdiwwbPM7XZrw4YN6tWrV4mf6dWrl1d7SVq/fr2n/YkTJ3TixAkFBHjvWmBgoNxudyXvAQAA8Ec+HQGSTl6yPmLECF166aXq0aOH0tLSlJ+fr1GjRkmShg8frubNm2vatGmSpLFjxyohIUEzZ85U//79tXTpUn3++ed68cUXJUnh4eFKSEjQ+PHjFRoaqlatWumDDz7Qv/71L82aNctn+wkAAGoOnweg5ORkHTp0SJMmTVJWVpa6du2qdevWeSY6HzhwwGs0p3fv3lqyZIkefvhhTZw4Ue3atdOqVavUuXNnT5ulS5dqwoQJuuWWW5STk6NWrVrpiSee0JgxY6p9/wAAQM3j8/sA1UTcBwgAAP/jN/cBAgAA8AUCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCECzpxx+l9947+ScAwHoIQLAMp9OpzMxMzZz5q1q1MrrmGqlVK6OZM39VZmamnE6nr0sEAFSTOr4uAKgOTqdTc+fOlcsVprS0cTLGJklyu20aPz5cP/20QA5HnlJSUhQZGenjagEAVY0RIFhCQUGBJCknJ1LGeB/2xgQoJyfCqx0AoHYjAMFSIiKcstncXstsNrciInJ8VBEAwBcIQLAUhyNPSUlrPCHIZnMrKWmNHI48H1cGAKhOzAGC5cTFbVNs7F7l5EQoIiKH8AMAFkQAgiU5HHkEHwCwME6BAQAAyyEAAQAAy+EUGCzBbrdXajsAKInT6Szzdhp2u517jdUQBCBYQmRkpFJSUviLCUCVKbrh6tlww9WagQAEy+AvHABVqbw3UuWGqzUDc4AAAIDlMAIEAEAVcLnClJMTqYgIZ5XddoM5R+eOAAQAQCVLT++m1asHyJgAzx3n4+K2Vep3MOfo/HAKDACASuRyhXnCj3TygcurVw+QyxVWqd/DnKPzQwACAKAS5eREesJPEWMClJMT4aOKUBICEAAAlSgiwul54HIRm82tiIgcH1WEkhCAAACoBEU3UnU48pSUtMYTgormABVNhK6qG666XGHKyIip9FNttRWToAEAqARn3nB10qRD2r+/jmJiflezZt0lda+yq7KqY9J1bUMAAgCgkpwebpo2leLjq/47S5t0HRu7t8ouv68NOAUGAIAfY9L1uSEAAQDgh4rmEp1t0jUPeS4Zp8AAAPBDp885at48V3//u0OFhTYFBho99VSuhg0byp2gy2AzxhhfF1HT5ObmyuFwyOVyKTw83NflAABwVj/+KO3dK7VtK7Vo4etqfKMiv78ZAQIAoBZo0cK6wedcMAcIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYDgEIAABYTo0IQPPmzVNMTIxCQkLUs2dPffrpp2W2X758uTp06KCQkBBdfPHFWrt2rdd6m81W4uvpp5+uyt0AAAB+wucBaNmyZUpNTdXkyZOVnp6uLl26KDExUQcPHiyx/ebNmzV06FCNHj1a27Zt06BBgzRo0CDt2LHD0yYzM9PrtWDBAtlsNg0ePLi6dgsAANRgPn8WWM+ePdW9e3fNnTtXkuR2uxUdHa377rtPDz74YLH2ycnJys/P15o1azzLLrvsMnXt2lXPP/98id8xaNAg5eXlacOGDeWqiWeBAQDgfyry+9unI0AFBQXaunWr+vbt61kWEBCgvn37asuWLSV+ZsuWLV7tJSkxMbHU9tnZ2Xrrrbc0evToUus4fvy4cnNzvV4AAKD28mkAOnz4sAoLCxUVFeW1PCoqSllZWSV+Jisrq0LtFy9erLCwMN14442l1jFt2jQ5HA7PKzo6uoJ7AgAA/InP5wBVtQULFuiWW25RSEhIqW0mTJggl8vlef3www/VWCEAAKhudXz55Q0bNlRgYKCys7O9lmdnZ6tJkyYlfqZJkyblbv/RRx9p9+7dWrZsWZl1BAcHKzg4uILVAwAAf+XTESC73a74+Hivyclut1sbNmxQr169SvxMr169ik1mXr9+fYntX3rpJcXHx6tLly6VWzgAAPBrPh0BkqTU1FSNGDFCl156qXr06KG0tDTl5+dr1KhRkqThw4erefPmmjZtmiRp7NixSkhI0MyZM9W/f38tXbpUn3/+uV588UWv7ebm5mr58uWaOXNmte8TAACo2XwegJKTk3Xo0CFNmjRJWVlZ6tq1q9atW+eZ6HzgwAEFBJwaqOrdu7eWLFmihx9+WBMnTlS7du20atUqde7c2Wu7S5culTFGQ4cOrdb9AQAANZ/P7wNUE3EfIAAA/I/f3AcIAADAFwhAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcur4ugAAAFD7OZ1OFRQUlLrebrcrMjKy2uohAAEAgCrldDo1d+7cs7ZLSUmpthDEKTAAAFClyhr5OZd2lYEABAAALIcABAAALIcABAAALIcABAAAqpXLFaaMjBi5XGE+q4GrwAAAQLVJT++m1asHyJgA2WxuJSWtUVzctmqvgxEgAABQLVyuME/4kSRjArR69QCfjAQRgAAAQJWy2+2SpJycSE/4KWJMgHJyIrzaVQebMcZU27f5idzcXDkcDrlcLoWHh/u6HAAA/J7T6dT+/b+rR4/GcrttnuWBgUaffHJQMTF1zvsmiBX5/c0IEAAAqHKRkZGKj4/Siy/aFBh4cllgoPTCCzbFx0dV62MwJCZBAwCAajR6tJSYKO3dK7VtK7Vo4Zs6CEAAAKBatWjhu+BThFNgAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcngWWAmMMZKk3NxcH1cCAADKq+j3dtHv8bIQgEqQl5cnSYqOjvZxJQAAoKLy8vLkcDjKbGMz5YlJFuN2u/Xzzz8rLCxMNpvN1+VUi9zcXEVHR+uHH35QeHi4r8vxKfriFPriFPriFPriFPrilJrQF8YY5eXlqVmzZgoIKHuWDyNAJQgICFCLFi18XYZPhIeHW/5/4iL0xSn0xSn0xSn0xSn0xSm+7ouzjfwUYRI0AACwHAIQAACwHAIQJEnBwcGaPHmygoODfV2Kz9EXp9AXp9AXp9AXp9AXp/hbXzAJGgAAWA4jQAAAwHIIQAAAwHIIQAAAwHIIQAAAwHIIQLXYvHnzFBMTo5CQEPXs2VOffvppme3T0tLUvn17hYaGKjo6Wn/5y1907Ngxz/opU6bIZrN5vTp06FDVu1EpKtIXJ06c0GOPPabY2FiFhISoS5cuWrdu3Xltsyap7L7wx+Piww8/VFJSkpo1ayabzaZVq1ad9TPvv/++4uLiFBwcrLZt22rRokXF2vjjMVEVfeGPx4RU8b7IzMzUsGHDdOGFFyogIEDjxo0rsd3y5cvVoUMHhYSE6OKLL9batWsrv/hKVhV9sWjRomLHRUhISNXsQDkQgGqpZcuWKTU1VZMnT1Z6erq6dOmixMREHTx4sMT2S5Ys0YMPPqjJkydr165deumll7Rs2TJNnDjRq12nTp2UmZnpeW3cuLE6due8VLQvHn74Yb3wwguaM2eOdu7cqTFjxuiGG27Qtm3bznmbNUVV9IXkf8dFfn6+unTponnz5pWrfUZGhvr376+rr75a27dv17hx43THHXfo7bff9rTx12OiKvpC8r9jQqp4Xxw/flyNGjXSww8/rC5dupTYZvPmzRo6dKhGjx6tbdu2adCgQRo0aJB27NhRmaVXuqroC+nkXaJPPy6+//77yiq54gxqpR49eph7773X876wsNA0a9bMTJs2rcT29957r7nmmmu8lqWmpprLL7/c837y5MmmS5cuVVJvVapoXzRt2tTMnTvXa9mNN95obrnllnPeZk1RFX3hr8dFEUnm9ddfL7PN3/72N9OpUyevZcnJySYxMdHz3l+PidNVVl/4+zFhTPn64nQJCQlm7NixxZbffPPNpn///l7Levbsae6+++7zrLD6VFZfLFy40Dgcjkqr63wxAlQLFRQUaOvWrerbt69nWUBAgPr27astW7aU+JnevXtr69atniH77777TmvXrtWf/vQnr3Z79uxRs2bN1KZNG91yyy06cOBA1e1IJTiXvjh+/HixYdnQ0FDPv2DPZZs1QVX0RRF/Oy4qasuWLV79JkmJiYmefvPXY+JcnK0vitT2Y6K8yttfVnHkyBG1atVK0dHRuv766/X111/7rBYCUC10+PBhFRYWKioqymt5VFSUsrKySvzMsGHD9Nhjj+mKK65QUFCQYmNjddVVV3mdAuvZs6cWLVqkdevWaf78+crIyFCfPn2Ul5dXpftzPs6lLxITEzVr1izt2bNHbrdb69ev18qVK5WZmXnO26wJqqIvJP88LioqKyurxH7Lzc3Vb7/95rfHxLk4W19I1jgmyqu0/qptx0V5tG/fXgsWLNAbb7yhf//733K73erdu7d+/PFHn9RDAIKkk5Man3zyST333HNKT0/XypUr9dZbb2nq1KmeNtddd53+/Oc/65JLLlFiYqLWrl2rX3/9Va+++qoPK698s2fPVrt27dShQwfZ7XalpKRo1KhRCgiw3v8u5ekLqxwXKD+OCZSkV69eGj58uLp27aqEhAStXLlSjRo10gsvvOCTeqz3N7oFNGzYUIGBgcrOzvZanp2drSZNmpT4mUceeUS33Xab7rjjDl188cW64YYb9OSTT2ratGlyu90lfqZBgwa68MILtXfv3krfh8pyLn3RqFEjrVq1Svn5+fr+++/1zTffqH79+mrTps05b7MmqIq+KIk/HBcV1aRJkxL7LTw8XKGhoX57TJyLs/VFSWrjMVFepfVXbTsuzkVQUJC6devms+OCAFQL2e12xcfHa8OGDZ5lbrdbGzZsUK9evUr8zNGjR4uNcAQGBkqSTCmPizty5Ij27dunpk2bVlLlle9c+qJISEiImjdvrt9//10rVqzQ9ddff97b9KWq6IuS+MNxUVG9evXy6jdJWr9+vaff/PWYOBdn64uS1MZjorzOpb+sorCwUF999ZXvjgtfz8JG1Vi6dKkJDg42ixYtMjt37jR33XWXadCggcnKyjLGGHPbbbeZBx980NN+8uTJJiwszLzyyivmu+++M++8846JjY01N998s6fNX//6V/P++++bjIwMs2nTJtO3b1/TsGFDc/DgwWrfv4qoaF98/PHHZsWKFWbfvn3mww8/NNdcc41p3bq1+eWXX8q9zZqqKvrCH4+LvLw8s23bNrNt2zYjycyaNcts27bNfP/998YYYx588EFz2223edp/9913pm7dumb8+PFm165dZt68eSYwMNCsW7fO08Zfj4mq6At/PCaMqXhfGGM87ePj482wYcPMtm3bzNdff+1Zv2nTJlOnTh0zY8YMs2vXLjN58mQTFBRkvvrqq2rdt4qqir549NFHzdtvv2327dtntm7daoYMGWJCQkK82lQnAlAtNmfOHNOyZUtjt9tNjx49zMcff+xZl5CQYEaMGOF5f+LECTNlyhQTGxtrQkJCTHR0tPmf//kfr190ycnJpmnTpsZut5vmzZub5ORks3fv3mrco3NXkb54//33zUUXXWSCg4NNZGSkue2228xPP/1UoW3WZJXdF/54XLz33ntGUrFX0b6PGDHCJCQkFPtM165djd1uN23atDELFy4stl1/PCaqoi/88Zgw5tz6oqT2rVq18mrz6quvmgsvvNDY7XbTqVMn89Zbb1XPDp2HquiLcePGef7/iIqKMn/6059Menp69e3UGWzGlHJ+AwAAoJZiDhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAA+In3339fNptNv/76q69LAfweAQhAMSNHjpTNZtP06dO9lq9atUo2m83z3hijf/7zn+rVq5fCw8NVv359derUSWPHji33Aw6PHj2qCRMmKDY2ViEhIWrUqJESEhL0xhtveNrExMQoLS2tUvatqhX1nc1mU1BQkFq3bq2//e1vOnbsWIW2c9VVV2ncuHFey3r37q3MzEw5HI5KrBiwJgIQgBKFhIToqaee0i+//FLiemOMhg0bpvvvv19/+tOf9M4772jnzp166aWXFBISoscff7xc3zNmzBitXLlSc+bM0TfffKN169bppptuktPprMzdqVb9+vVTZmamvvvuOz3zzDN64YUXNHny5PPert1uV5MmTbxCKIBz5LOHcACosUaMGGEGDBhgOnToYMaPH+9Z/vrrr5uivzZeeeUVI8m88cYbJW7D7XaX67scDodZtGhRqesTEhKKPV+oyEcffWSuuOIKExISYlq0aGHuu+8+c+TIEc/6f/3rXyY+Pt7Ur1/fREVFmaFDh5rs7GzP+qLnHa1bt8507drVhISEmKuvvtpkZ2ebtWvXmg4dOpiwsDAzdOhQk5+fX679GTFihLn++uu9lt14442mW7dunveHDx82Q4YMMc2aNTOhoaGmc+fOZsmSJV7bOHOfMzIyPPWe/oy+1157zXTs2NHY7XbTqlUrM2PGjHLVCVgdI0AAShQYGKgnn3xSc+bM0Y8//lhs/SuvvKL27dtr4MCBJX6+vKMUTZo00dq1a5WXl1fi+pUrV6pFixZ67LHHlJmZqczMTEnSvn371K9fPw0ePFhffvmlli1bpo0bNyolJcXz2RMnTmjq1Kn64osvtGrVKu3fv18jR44s9h1TpkzR3LlztXnzZv3www+6+eablZaWpiVLluitt97SO++8ozlz5pRrf860Y8cObd68WXa73bPs2LFjio+P11tvvaUdO3borrvu0m233aZPP/1UkjR79mz16tVLd955p2efo6Oji21769atuvnmmzVkyBB99dVXmjJlih555BEtWrTonGoFLMXXCQxAzXP6KMZll11mbr/9dmOM9whQhw4dzMCBA70+N3bsWFOvXj1Tr14907x583J91wcffGBatGhhgoKCzKWXXmrGjRtnNm7c6NWmVatW5plnnvFaNnr0aHPXXXd5Lfvoo49MQECA+e2330r8rs8++8xIMnl5ecaYUyNA7777rqfNtGnTjCSzb98+z7K7777bJCYmlmt/RowYYQIDA029evVMcHCwkWQCAgLMa6+9Vubn+vfvb/7617963ickJJixY8d6tTlzBGjYsGHmj3/8o1eb8ePHm44dO5arVsDKGAECUKannnpKixcv1q5du87a9qGHHtL27ds1adIkHTlypFzbv/LKK/Xdd99pw4YNuummm/T111+rT58+mjp1apmf++KLL7Ro0SLVr1/f80pMTJTb7VZGRoakkyMkSUlJatmypcLCwpSQkCBJOnDggNe2LrnkEs/PUVFRqlu3rtq0aeO17ODBg+XaH0m6+uqrtX37dn3yyScaMWKERo0apcGDB3vWFxYWaurUqbr44osVERGh+vXr6+233y5W19ns2rVLl19+udeyyy+/XHv27FFhYWGFtgVYDQEIQJmuvPJKJSYmasKECV7L27Vrp927d3sta9Sokdq2bavGjRtX6DuCgoLUp08f/f3vf9c777yjxx57TFOnTlVBQUGpnzly5Ijuvvtubd++3fP64osvtGfPHsXGxio/P1+JiYkKDw/Xf/7zH3322Wd6/fXXJanYdoOCgjw/F129dTqbzSa3213u/alXr57atm2rLl26aMGCBfrkk0/00ksvedY//fTTmj17tv7+97/rvffe0/bt25WYmFjm/gKoXHV8XQCAmm/69Onq2rWr2rdv71k2dOhQDRs2TG+88Yauv/76Sv2+jh076vfff9exY8dkt9tlt9uLjWjExcVp586datu2bYnb+Oqrr+R0OjV9+nTP/JnPP/+8Uussj4CAAE2cOFGpqakaNmyYQkNDtWnTJl1//fW69dZbJUlut1vffvutOnbs6PlcSft8posuukibNm3yWrZp0yZdeOGFCgwMrPydAWoRRoAAnNXFF1+sW265Rc8++6xn2ZAhQ3TTTTdpyJAheuyxx/TJJ59o//79+uCDD7Rs2bJy/wK+6qqr9MILL2jr1q3av3+/1q5dq4kTJ+rqq69WeHi4pJP3Afrwww/1008/6fDhw5Kkv//979q8ebNSUlK0fft27dmzR2+88YZnEnTLli1lt9s1Z84cfffdd3rzzTfPelqtqvz5z39WYGCg5s2bJ+nk6Nn69eu1efNm7dq1S3fffbeys7O9PhMTE+Pp08OHD5c4AvXXv/5VGzZs0NSpU/Xtt99q8eLFmjt3rh544IFq2S/AnxGAAJTLY4895vVL2GazadmyZUpLS9PatWv1hz/8Qe3bt9ftt9+u6Ohobdy4sVzbTUxM1OLFi3Xttdfqoosu0n333afExES9+uqrXt+9f/9+xcbGqlGjRpJOztv54IMP9O2336pPnz7q1q2bJk2apGbNmkk6eTpu0aJFWr58uTp27Kjp06drxowZldgj5VenTh2lpKToH//4h/Lz8/Xwww8rLi5OiYmJuuqqq9SkSRMNGjTI6zMPPPCAAgMD1bFjRzVq1KjE+UFxcXF69dVXtXTpUnXu3FmTJk3SY489VuKVbgC82YwxxtdFAAAAVCdGgAAAgOUQgABUqdMvUz/z9dFHH/m6vAo5cOBAmftT0cvYAfgOp8AAVKmyHoravHlzhYaGVmM15+f333/X/v37S10fExOjOnW4uBbwBwQgAABgOZwCAwAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlvN/gZh2h5C1yXkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQ51JREFUeJzt3XlclNXix/HvgAygwngHETcUxS21VChNy7CuhV2lvG0uLWaL1S9KL622uGSlpZkmttz7Sqnutcw0t7y2eLUybQOtzN3QNsWEGhBTjDm/P7zMdWQRFGYGns/79eKV8zxnnjnP6ZH5ep7znGMzxhgBAABYSJC/KwAAAOBrBCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAACGAZGRmy2WzavXu3v6sC1CkEIMDivvjiC6WmpqpLly5q0KCBWrVqpWuuuUbbt28vVbZfv36y2Wyy2WwKCgpSZGSkOnbsqOuvv17vv/9+lT532bJlSkpKUpMmTVS/fn21bdtW11xzjVauXFldp1bKk08+qcWLF5favm7dOk2YMEG//fZbjX32iSZMmOBpS5vNpvr166tz58565JFHlJ+fXy2fMW/ePM2YMaNajgXUNQQgwOKeeuopLVy4UH/+8581c+ZMjRo1Sh999JESEhK0adOmUuVbtmyp1157Ta+++qqmTp2qyy67TOvWrdMll1yiIUOG6OjRoyf9zGnTpumyyy6TzWbT2LFj9eyzz+rKK6/Ujh079MYbb9TEaUqqOABNnDjRpwGoxAsvvKDXXntN06dPV6dOnfTEE09owIABqo5lGglAQPnq+bsCAPwrLS1N8+bNk91u92wbMmSIzjzzTE2ZMkX//Oc/vco7HA5dd911XtumTJmiu+++W88//7zi4uL01FNPlft5f/zxhyZNmqSLL75Y7733Xqn9+/fvP80zChyHDh1S/fr1Kyxz1VVXqXHjxpKk22+/XVdeeaUWLVqkTz/9VL179/ZFNQFLogcIsLg+ffp4hR9Jat++vbp06aItW7ZU6hjBwcF67rnn1LlzZ6Wnp8vlcpVb9sCBA8rPz9d5551X5v4mTZp4vT58+LAmTJigDh06KCwsTM2aNdMVV1yhXbt2ecpMmzZNffr0UVRUlMLDw5WYmKi33nrL6zg2m02FhYV65ZVXPLedbrzxRk2YMEH33XefJKlNmzaefcePufnnP/+pxMREhYeHy+l0aujQofrhhx+8jt+vXz917dpVmZmZuuCCC1S/fn099NBDlWq/41100UWSpOzs7ArLPf/88+rSpYtCQ0PVvHlz3XnnnV49WP369dM777yjPXv2eM4pLi6uyvUB6ip6gACUYoxRTk6OunTpUun3BAcHa9iwYXr00Ue1du1aDRw4sMxyTZo0UXh4uJYtW6a77rpLTqez3GMWFxdr0KBBWrVqlYYOHarRo0eroKBA77//vjZt2qT4+HhJ0syZM3XZZZfp2muvVVFRkd544w1dffXVWr58uacer732mm655Rb17NlTo0aNkiTFx8erQYMG2r59u15//XU9++yznt6Y6OhoSdITTzyhRx99VNdcc41uueUW/fLLL5o1a5YuuOACbdiwQY0aNfLUNzc3V5deeqmGDh2q6667TjExMZVuvxIlwS4qKqrcMhMmTNDEiRPVv39/3XHHHdq2bZteeOEFffHFF/rkk08UEhKihx9+WC6XSz/++KOeffZZSVLDhg2rXB+gzjIAcILXXnvNSDIvv/yy1/akpCTTpUuXct/39ttvG0lm5syZFR5/3LhxRpJp0KCBufTSS80TTzxhMjMzS5WbM2eOkWSmT59eap/b7fb8+dChQ177ioqKTNeuXc1FF13ktb1BgwZmxIgRpY41depUI8lkZ2d7bd+9e7cJDg42TzzxhNf2b775xtSrV89re1JSkpFkXnzxxXLP+3jjx483ksy2bdvML7/8YrKzs81LL71kQkNDTUxMjCksLDTGGDN37lyvuu3fv9/Y7XZzySWXmOLiYs/x0tPTjSQzZ84cz7aBAwea1q1bV6o+gNVwCwyAl61bt+rOO+9U7969NWLEiCq9t6SHoaCgoMJyEydO1Lx589SjRw+9++67evjhh5WYmKiEhASv224LFy5U48aNddddd5U6hs1m8/w5PDzc8+dff/1VLpdLffv2VVZWVpXqf6JFixbJ7Xbrmmuu0YEDBzw/TZs2Vfv27bV69Wqv8qGhoRo5cmSVPqNjx46Kjo5WmzZtdNttt6ldu3Z65513yh079MEHH6ioqEhjxoxRUND/foXfeuutioyM1DvvvFP1EwUsiFtgADz27dungQMHyuFw6K233lJwcHCV3n/w4EFJUkRExEnLDhs2TMOGDVN+fr4+++wzZWRkaN68eUpJSdGmTZsUFhamXbt2qWPHjqpXr+JfVcuXL9fjjz+ujRs36siRI57tx4ekU7Fjxw4ZY9S+ffsy94eEhHi9btGiRanxVCezcOFCRUZGKiQkRC1btvTc1ivPnj17JB0LTsez2+1q27atZz+AihGAAEiSXC6XLr30Uv3222/6+OOP1bx58yofo+Sx+Xbt2lX6PZGRkbr44ot18cUXKyQkRK+88oo+++wzJSUlVer9H3/8sS677DJdcMEFev7559WsWTOFhIRo7ty5mjdvXpXP4Xhut1s2m03//ve/ywyDJ46pOb4nqrIuuOACz7gjAL5DAAKgw4cPKyUlRdu3b9cHH3ygzp07V/kYxcXFmjdvnurXr6/zzz//lOpx9tln65VXXtHevXslHRuk/Nlnn+no0aOleltKLFy4UGFhYXr33XcVGhrq2T537txSZcvrESpve3x8vIwxatOmjTp06FDV06kRrVu3liRt27ZNbdu29WwvKipSdna2+vfv79l2uj1gQF3GGCDA4oqLizVkyBCtX79eCxYsOKW5Z4qLi3X33Xdry5YtuvvuuxUZGVlu2UOHDmn9+vVl7vv3v/8t6X+3d6688kodOHBA6enppcqa/04UGBwcLJvNpuLiYs++3bt3lznhYYMGDcqc7LBBgwaSVGrfFVdcoeDgYE2cOLHUxITGGOXm5pZ9kjWof//+stvteu6557zq9PLLL8vlcnk9fdegQYMKpyQArIweIMDi7rnnHi1dulQpKSnKy8srNfHhiZMeulwuT5lDhw5p586dWrRokXbt2qWhQ4dq0qRJFX7eoUOH1KdPH5177rkaMGCAYmNj9dtvv2nx4sX6+OOPNXjwYPXo0UOSdMMNN+jVV19VWlqaPv/8c/Xt21eFhYX64IMP9H//93+6/PLLNXDgQE2fPl0DBgzQ8OHDtX//fs2ePVvt2rXT119/7fXZiYmJ+uCDDzR9+nQ1b95cbdq0Ua9evZSYmChJevjhhzV06FCFhIQoJSVF8fHxevzxxzV27Fjt3r1bgwcPVkREhLKzs/X2229r1KhRuvfee0+r/asqOjpaY8eO1cSJEzVgwABddtll2rZtm55//nmdc845Xv+/EhMTNX/+fKWlpemcc85Rw4YNlZKS4tP6AgHLn4+gAfC/kse3y/upqGzDhg1N+/btzXXXXWfee++9Sn3e0aNHzT/+8Q8zePBg07p1axMaGmrq169vevToYaZOnWqOHDniVf7QoUPm4YcfNm3atDEhISGmadOm5qqrrjK7du3ylHn55ZdN+/btTWhoqOnUqZOZO3eu5zHz423dutVccMEFJjw83EjyeiR+0qRJpkWLFiYoKKjUI/ELFy40559/vmnQoIFp0KCB6dSpk7nzzjvNtm3bvNqmoikCTlRSv19++aXCcic+Bl8iPT3ddOrUyYSEhJiYmBhzxx13mF9//dWrzMGDB83w4cNNo0aNjCQeiQeOYzOmGhacAQAAqEUYAwQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHiRDL4Ha79fPPPysiIoKp5AEAqCWMMSooKFDz5s0VFFRxHw8BqAw///yzYmNj/V0NAABwCn744Qe1bNmywjIEoDJERERIOtaAFa1pBAAAAkd+fr5iY2M93+MVIQCVoeS2V2RkJAEIAIBapjLDVxgEDQAALIcABAAALIcABAAALIcxQAAAVJPi4mIdPXrU39Wos0JCQhQcHFwtxyIAAQBwmowx2rdvn3777Td/V6XOa9SokZo2bXra8/QRgAAAOE0l4adJkyaqX78+k+jWAGOMDh06pP3790uSmjVrdlrHIwABAHAaiouLPeEnKirK39Wp08LDwyVJ+/fvV5MmTU7rdhiDoAEAOA0lY37q16/v55pYQ0k7n+5YKwIQAADVgNtevlFd7UwAAgAAlkMAAgAAlkMAQo348Udp9epj/wUABKYbb7xRNptNNptNISEhiomJ0cUXX6w5c+bI7XZX+jgZGRlq1KhRzVW0BvAUGKpNbm6uioqKNG9euO6/3yG326agIKOnn3Zp+PDfZbfbeUICAMpQ8vuzPDX5+3PAgAGaO3euiouLlZOTo5UrV2r06NF66623tHTpUtWrVzejQt08K/hcbm6u0tPT5XJFaMaMMTLm2CA1t9um++6L1E8/zZHDUaDU1FRCEAAcp+T358nU1O/P0NBQNW3aVJLUokULJSQk6Nxzz9Wf//xnZWRk6JZbbtH06dM1d+5cfffdd3I6nUpJSdHTTz+thg0bas2aNRo5cqSk/w1QHj9+vCZMmKDXXntNM2fO1LZt29SgQQNddNFFmjFjhpo0aVLt51FV3AJDtSj5l0teXpSM8b6sjAlSXp7TqxwA4JjK/l705e/Piy66SN26ddOiRYskSUFBQXruuef07bff6pVXXtF//vMf3X///ZKkPn36aMaMGYqMjNTevXu1d+9e3XvvvZKOPao+adIkffXVV1q8eLF2796tG2+80WfnURF6gFCtnM5c2WxurxBks7nldOb5sVYAgKrq1KmTvv76a0nSmDFjPNvj4uL0+OOP6/bbb9fzzz8vu90uh8Mhm83m6UkqcdNNN3n+3LZtWz333HM655xzdPDgQTVs2NAn51EeeoBQrRyOAqWkLJfNdmzwnM3mVkrKcjkcBX6uGQCgKowxnltaH3zwgf785z+rRYsWioiI0PXXX6/c3FwdOnSowmNkZmYqJSVFrVq1UkREhJKSkiRJ33//fY3X/2ToAUK1S0jYoPj4ncrLc8rpzCP8AEAttGXLFrVp00a7d+/WoEGDdMcdd+iJJ56Q0+nU2rVrdfPNN6uoqKjcGbALCwuVnJys5ORk/etf/1J0dLS+//57JScnB8RwCAIQaoTDUUDwAYBa6j//+Y+++eYb/e1vf1NmZqbcbreeeeYZBQUdu3H05ptvepW32+0qLi722rZ161bl5uZqypQpio2NlSR9+eWXvjmBSuAWGAAAFnbkyBHt27dPP/30k7KysvTkk0/q8ssv16BBg3TDDTeoXbt2Onr0qGbNmqXvvvtOr732ml588UWvY8TFxengwYNatWqVDhw4oEOHDqlVq1ay2+2e9y1dulSTJk3y01mWRgACAMDCVq5cqWbNmikuLk4DBgzQ6tWr9dxzz2nJkiUKDg5Wt27dNH36dD311FPq2rWr/vWvf2ny5Mlex+jTp49uv/12DRkyRNHR0Xr66acVHR2tjIwMLViwQJ07d9aUKVM0bdo0P51laTZjjPF3JQJNfn6+HA6HXC6XIiMj/V2dWsHf81gAgL8cPnxY2dnZatOmjcLCwqr8fn5/Vk1F7V2V72/GAKFaREVFKTU11W8zmQJAbcXvT/8gAKHa8JcTAE4Nvz99jzFAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAACgRqxZs0Y2m02//fZbpd8TFxenGTNm1FidShCAAACwqBtvvFE2m0233357qX133nmnbDabbrzxRt9XzAcIQAAAWFhsbKzeeOMN/f77755thw8f1rx589SqVSs/1qxmEYAAALCwhIQExcbGatGiRZ5tixYtUqtWrdSjRw/PtiNHjujuu+9WkyZNFBYWpvPPP19ffPGF17FWrFihDh06KDw8XBdeeKF2795d6vPWrl2rvn37Kjw8XLGxsbr77rtVWFhYY+dXHgIQAAAB5McfpdWrj/3XV2666SbNnTvX83rOnDkaOXKkV5n7779fCxcu1CuvvKKsrCy1a9dOycnJysvLkyT98MMPuuKKK5SSkqKNGzfqlltu0YMPPuh1jF27dmnAgAG68sor9fXXX2v+/Plau3atUlNTa/4kT0AAAgAgQLz8stS6tXTRRcf++/LLvvnc6667TmvXrtWePXu0Z88effLJJ7ruuus8+wsLC/XCCy9o6tSpuvTSS9W5c2f94x//UHh4uF7+byVfeOEFxcfH65lnnlHHjh117bXXlho/NHnyZF177bUaM2aM2rdvrz59+ui5557Tq6++qsOHD/vmZP+L1eABAAgAP/4ojRolud3HXrvd0m23ScnJUsuWNfvZ0dHRGjhwoDIyMmSM0cCBA9W4cWPP/l27duno0aM677zzPNtCQkLUs2dPbdmyRZK0ZcsW9erVy+u4vXv39nr91Vdf6euvv9a//vUvzzZjjNxut7Kzs3XGGWfUxOmViQAEAEAA2LHjf+GnRHGxtHNnzQcg6dhtsJJbUbNnz66Rzzh48KBuu+023X333aX2+XrANQEIAIAA0L69FBTkHYKCg6V27Xzz+QMGDFBRUZFsNpuSk5O99sXHx8tut+uTTz5R69atJUlHjx7VF198oTFjxkiSzjjjDC1dutTrfZ9++qnX64SEBG3evFntfHVSFWAMEAAAAaBlS+nvfz8WeqRj/33pJd/0/hz7vGBt2bJFmzdvVnBJJf6rQYMGuuOOO3Tfffdp5cqV2rx5s2699VYdOnRIN998syTp9ttv144dO3Tfffdp27ZtmjdvnjIyMryO88ADD2jdunVKTU3Vxo0btWPHDi1ZssQvg6DpAQIAIEDcfPOxMT87dx7r+fFV+CkRGRlZ7r4pU6bI7Xbr+uuvV0FBgc4++2y9++67+tOf/iTp2C2shQsX6m9/+5tmzZqlnj176sknn9RNN93kOcZZZ52lDz/8UA8//LD69u0rY4zi4+M1ZMiQGj+3E9mMMcbnnxrg8vPz5XA45HK5KrwYAAA4fPiwsrOz1aZNG4WFhfm7OnVeRe1dle9vboEBAADLIQABAADLIQABAADLIQABAADLIQABAFANeKbIN6qrnQlAAACchpCQEEnSoUOH/FwTayhp55J2P1XMAwQAwGkIDg5Wo0aNtH//fklS/fr1ZbPZ/FyruscYo0OHDmn//v1q1KhRqckaq4oABADAaWratKkkeUIQak6jRo087X06CEAAAJwmm82mZs2aqUmTJjp69Ki/q1NnhYSEnHbPTwm/B6DZs2dr6tSp2rdvn7p16+aZPrss3377rcaNG6fMzEzt2bNHzz77rGcRthIfffSRpk6dqszMTO3du1dvv/22Bg8eXPMnAgCwvODg4Gr7gkbN8usg6Pnz5ystLU3jx49XVlaWunXrpuTk5HK7EA8dOqS2bdtqypQp5XZ/FRYWqlu3bpo9e3ZNVh0AANRifl0LrFevXjrnnHOUnp4uSXK73YqNjdVdd92lBx98sML3xsXFacyYMaV6gI5ns9lOqQeItcAAAKh9asVaYEVFRcrMzFT//v3/V5mgIPXv31/r16/3aV2OHDmi/Px8rx8AAFB3+W0M0IEDB1RcXKyYmBiv7TExMdq6datP6zJ58mRNnDixxo6fm5uroqKicvfb7XZFRUXV2OcDAABvfh8EHQjGjh2rtLQ0z+v8/HzFxsZWy7Fzc3M9t/gqkpqaSggCAMBH/BaAGjdurODgYOXk5Hhtz8nJqZbn+6siNDRUoaGhNXLsinp+TqUcUBvQ6wkg0PktANntdiUmJmrVqlWeQcput1urVq1Samqqv6pV41yuCOXlRcnpzJXDUeDv6gDV7sRez/KueXo9AfiTX2+BpaWlacSIETr77LPVs2dPzZgxQ4WFhRo5cqQk6YYbblCLFi00efJkScd6STZv3uz5808//aSNGzeqYcOGateunSTp4MGD2rlzp+czsrOztXHjRjmdTrVq1crHZ+gtK6uHli0bJGOCZLO5lZKyXAkJG/xaJ6C6Hd/zU9E1T68nAH/yawAaMmSIfvnlF40bN0779u1T9+7dtXLlSs/A6O+//15BQf97UO3nn39Wjx49PK+nTZumadOmKSkpSWvWrJEkffnll7rwwgs9ZUrG9owYMUIZGRk1f1LlcLkiPF8EkmRMkJYtG6T4+J30BKFO4poHEMj8Pgg6NTW13FteJaGmRFxcnE42bVG/fv1OWsYf8vKiPF8EJYwJUl6eky8D1Elc8wACmV9ngrYSpzNXNpvba5vN5pbTmeenGgE1i2seQCAjAPmIw1GglJTlni+EkvEQ/EsYdRXXPIBA5vdbYHWd3W73/DkhYYPi43cqL88ppzPP64vg+HJAXVHRNQ8A/kQAqmFRUVFKTU1lThRYlsNRQPABEHAIQD5AuIGVVLY3k15PAP5EAAJQrej1BFAbEIAAVDvCDYBAx1NgAADAcugBgmWxYCcAWBcBCJZ04oKd5WHBTgCom7gFBks6sefH5YpQdnacXK6ICssBAOoGeoBgeRWtWA4AqJvoAYKllbdi+Yk9QQCAuoUABEuraMVyAEDdRQCCpbFiOQBYEwEIlsaK5QBgTQyChuWxYjkAWA8BCJZ04kKc5a1YzoKdAFA3EYBgSSzYCQDWRgCCZRFuAMC6CEAA4AesRQf4FwEIAHyMtegA/+MxeADwMdaiA/yPHiAA8CPWogP8gx4gAPAT1qID/IcABAB+wlp0gP8QgADAT1iLDvAfAhAA+Alr0QH+wyBoAPAj1qID/IMABAA+xlp0gP8RgADAx1iLDvA/AhAA+AHhBvAvBkEDAADLIQABAADLIQABAADLYQyQD+Tm5jLYEQCAAEIAqmG5ublKT08/abnU1FRCEAAAPsItsBpWUc/PqZQDAACnjwAEAAAshwDkYy5XhLKz4+RyRfi7KgAAWBZjgHwoK6uHli0bJGOCPIseJiRs8He1AACwHHqAfMTlivCEH0kyJkjLlg2iJwgAAD8gAPlIXl6UJ/yUMCZIeXlOP9UIAADrIgD5iNOZK5vN7bXNZnPL6czzU40AALAuAlANs9vtkiSHo0ApKcs9IahkDJDDUeBVDgAA1DybMcb4uxKBJj8/Xw6HQy6XS5GRkad9vONngv755yDt3l1PcXF/qHnzY2GImaABADh9Vfn+5ikwHzg+3DRrJiUm+rEyAACAW2AAAMB6CEAAAMByCEAAAMByCEAAAMByCEAAAMByCEAAAMByeAweAACLOX5+urJYYX46AhAAABaSm5ur9PT0k5ZLTU2t0yGIW2AAAFhIRT0/p1KutiIAAQAAyyEAAQBgYS5XhLKz4+RyRfi7Kj7FGCAAACwqK6uHli0bJGOCZLO5lZKyXAkJG/xdLZ+gBwgAAAtyuSI84UeSjAnSsmWDLNMTRAACAMCC8vKiPOGnhDFBystz+qlGvkUAAgDAgpzOXNlsbq9tNptbTmeen2rkWwQgAAAsxG63S5IcjgKlpCz3hKCSMUAOR4FXubrKZowx/q5EoMnPz5fD4ZDL5VJkZKS/qwMAQLU6fibon38O0u7d9RQX94eaNz8WhmrrTNBV+f7mKTAAACzm+HDTrJmUmOjHyvgJAQhAncDaRgCqggAEoNZjbSMAVcUgaAC13ok9P+XNbFvX1zYCUHn0AAGoU6w8sy2AyiMAAagzypvZNj5+p+fRXgD+EWjj9AIiAM2ePVtTp07Vvn371K1bN82aNUs9e/Yss+y3336rcePGKTMzU3v27NGzzz6rMWPGnNYxAdQNFc1sSwAC/CcQx+n5fQzQ/PnzlZaWpvHjxysrK0vdunVTcnKy9u/fX2b5Q4cOqW3btpoyZYqaNm1aLccEUDdYfWZbIFBVdvydL8fp+T0ATZ8+XbfeeqtGjhypzp0768UXX1T9+vU1Z86cMsufc845mjp1qoYOHarQ0NBqOSaAuuFkM9sCQAm/3gIrKipSZmamxo4d69kWFBSk/v37a/369T475pEjR3TkyBHP6/z8/FP6bAD+l5CwQfHxO5WX55TTmUf4AQKQyxWhvLwoOZ25fvs76tcAdODAARUXFysmJsZre0xMjLZu3eqzY06ePFkTJ048pc8D4H8nrlnkcBSU+Uu1rq9tBNQGgfKkZkAMgva3sWPHKi0tzfM6Pz9fsbGxfqwRgKqIiopSampqQD1hAqC0QHpS068BqHHjxgoODlZOTo7X9pycnHIHONfEMUNDQ8sdTwSgdiDcAIEvkJ7U9OsgaLvdrsTERK1atcqzze12a9WqVerdu3fAHBMAAJy+QHpS0++3wNLS0jRixAidffbZ6tmzp2bMmKHCwkKNHDlSknTDDTeoRYsWmjx5sqRjg5w3b97s+fNPP/2kjRs3qmHDhmrXrl2ljgkAVhRoE9HBOkrG35U8qXniGKCS3h9fjtOzGWOMzz6tHOnp6Z5JC7t3767nnntOvXr1kiT169dPcXFxysjIkCTt3r1bbdq0KXWMpKQkrVmzplLHPJn8/Hw5HA65XC5FRkae9vkBqBy+oGvOiRPRlfcUDgvGoqYc//f755+DtHt3PcXF/aHmzY/1CFXH3++qfH8HRAAKNAQgwPcCcabYumTv3r36+9//Lqnip3BGjRqlZs2a+bOqwCmryve33ydCBAApMGeKrYvKewrH5Yrwc80A3yIAAQhILleEsrPj+GKuZhU9hQNYid8HQQPAiQJlorS6qOQpnONDEOulwYroAQIQULhFU7NYLw04hh4gAAElkCZKq6tYLw0gAAEIMNyi8Y3y1ksDrIJbYAACCrdoakZlJ5hjwVhYBT1AAALC8V+8Fd2i4Qv61LBg7MkxEae1MBFiGZgIEfAPvoDgL8yUXTdU5fubHiAAAYMvFvjL8cG7omkYmIiz7mAMEAAA/8U0DNZBAAIA4L+YKds6CEAAAPxXyTQMx2MahrqJAAQAwH8xDYN1MAgaAIDjMFO2NRCAAAA4ATNl133cAgMAWB4zZVsPPUAAAMtjpmzrIQABACAm4rQaboEBAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLOaW1wBYsWKDXX39d27dvlyR16NBBw4cP11VXXVWtlQMAAHVDbm6uZ7HZn38OUnZ2PbVp84eaN3dL8v1is1UKQG63W8OGDdOCBQvUoUMHderUSZL07bffasiQIbr66qv1+uuvy2az1UhlAQBA7ZObm6v09HRJUlZWDy1bNkjGBMlmcyslZbkSEjZIklJTU30Wgqp0C2zmzJn64IMPtHTpUm3dulWLFy/W4sWLtW3bNr399tt6//33NXPmzJqqKwAAqIVKen5crghP+JEkY4K0bNkguVwRXuV8oUoBaO7cuZo6daoGDRpUat9ll12mp59+WnPmzKm2ygEAgLojLy/KE35KGBOkvDynz+tSpQC0Y8cO9e/fv9z9/fv3144dO067UgAAoO5xOnNls7m9ttlsbjmdeT6vS5UCUHh4uH777bdy9+fn5yssLOx06wQAAOogh6NAKSnLPSGoZAyQw1Hg87pUaRB079699cILL+iFF14oc//s2bPVu3fvaqkYAACoexISNig+fqfy8pxyOvP8En6kKgaghx9+WP369VNubq7uvfdederUScYYbdmyRc8884yWLFmi1atX11RdAQBAHeBwFPgt+JSoUgDq06eP5s+fr1GjRmnhwoVe+/70pz/p9ddf13nnnVetFQQAAKhuVZ4I8a9//auSk5P17rvvegY8d+jQQZdcconq169f7RUEAAC1m91ur9Zy1cFmjDGVLfyf//xHqamp+vTTTxUZGem1z+VyqU+fPnrxxRfVt2/faq+oL+Xn58vhcMjlcpU6TwAAUHXHzwRdluqYCboq399V6gGaMWOGbr311jIP6nA4dNttt2n69Om1PgABAIDq5ctlLiqjSo/Bf/XVVxowYEC5+y+55BJlZmaedqUAAABqUpUCUE5OjkJCQsrdX69ePf3yyy+nXSkAAICaVKUA1KJFC23atKnc/V9//bWaNWt22pUCAACoSVUKQH/5y1/06KOP6vDhw6X2/f777xo/fnyZ64QBAAAEkio9BZaTk6OEhAQFBwcrNTVVHTt2lCRt3bpVs2fPVnFxsbKyshQTE1NjFfYFngIDAKD2qbGnwGJiYrRu3TrdcccdGjt2rEqyk81mU3JysmbPnl3rww8AAKj7qjwRYuvWrbVixQr9+uuv2rlzp4wxat++vf70pz/VRP0AAACqXZUDUIk//elPOuecc6qzLgAAAD5RpUHQAAAAdQEBCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWM4prwUGANUtNzdXRUVF5e632+2KioryYY0A1FUEIAABITc3V+np6Sctl5qaSggCcNq4BQYgIJzY8+NyRSg7O04uV0SF5QDgVNADBCDgZGX10LJlg2RMkGw2t1JSlishYYO/qwWgDqEHCEBAcbkiPOFHkowJ0rJlg0r1BAHA6SAAAQgoeXlRnvBTwpgg5eU5/VQjAHURAQhAQHE6c2Wzub222WxuOZ15fqoRgLqIAAQgoDgcBUpJWe4JQSVjgByOAj/XDEBdwiBoAAEnIWGD4uN3Ki/PKaczj/ADoNoFRA/Q7NmzFRcXp7CwMPXq1Uuff/55heUXLFigTp06KSwsTGeeeaZWrFjhtT8nJ0c33nijmjdvrvr162vAgAHasWNHTZ4CgNNkt9u9XjscBWrTZk+p8HNiOQA4FX7vAZo/f77S0tL04osvqlevXpoxY4aSk5O1bds2NWnSpFT5devWadiwYZo8ebIGDRqkefPmafDgwcrKylLXrl1ljNHgwYMVEhKiJUuWKDIyUtOnT1f//v21efNmNWjQwA9nCeBkoqKilJqaykzQAHzCZowx/qxAr169dM4553hmgHW73YqNjdVdd92lBx98sFT5IUOGqLCwUMuXL/dsO/fcc9W9e3e9+OKL2r59uzp27KhNmzapS5cunmM2bdpUTz75pG655ZaT1ik/P18Oh0Mul0uRkZHVdKYAAKAmVeX726+3wIqKipSZman+/ft7tgUFBal///5av359me9Zv369V3lJSk5O9pQ/cuSIJCksLMzrmKGhoVq7dm2Zxzxy5Ijy8/O9fgAAQN3l1wB04MABFRcXKyYmxmt7TEyM9u3bV+Z79u3bV2H5Tp06qVWrVho7dqx+/fVXFRUV6amnntKPP/6ovXv3lnnMyZMny+FweH5iY2Or4ewAAECgCohB0NUpJCREixYt0vbt2+V0OlW/fn2tXr1al156qYKCyj7dsWPHyuVyeX5++OEHH9caAAD4kl8HQTdu3FjBwcHKycnx2p6Tk6OmTZuW+Z6mTZuetHxiYqI2btwol8uloqIiRUdHq1evXjr77LPLPGZoaKhCQ0NP82wAAEBt4dceILvdrsTERK1atcqzze12a9WqVerdu3eZ7+ndu7dXeUl6//33yyzvcDgUHR2tHTt26Msvv9Tll19evScAAABqJb8/Bp+WlqYRI0bo7LPPVs+ePTVjxgwVFhZq5MiRkqQbbrhBLVq00OTJkyVJo0ePVlJSkp555hkNHDhQb7zxhr788kv9/e9/9xxzwYIFio6OVqtWrfTNN99o9OjRGjx4sC655BK/nCMAAAgsfg9AQ4YM0S+//KJx48Zp37596t69u1auXOkZ6Pz99997jd3p06eP5s2bp0ceeUQPPfSQ2rdvr8WLF6tr166eMnv37lVaWppycnLUrFkz3XDDDXr00Ud9fm4AACAw+X0eoEDEPEAAANQ+tWYeIAAAAH8gAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMup5+8KADi53NxcFRUVlbvfbrcrKirKhzUCgNqNAAQEuNzcXKWnp5+0XGpqKiEIACqJW2BAgDux58flilB2dpxcrogKywEAykcPEFCLZGX10LJlg2RMkGw2t1JSlishYYO/qwUAtQ49QEAt4XJFeMKPJBkTpGXLBpXqCQIAnBwBCKgl8vKiPOGnhDFBystz+qlGAFB7EYCAWsLpzJXN5vbaZrO55XTm+alGAFB7EYCAWsLhKFBKynJPCCoZA+RwFPi5ZgBQ+zAIGqhFEhI2KD5+p/LynHI68wg/AHCKCEBAgLPb7V6vHY6CMoPPieUAAOUjAAEBLioqSqmpqcwEDQDViAAE1AKEGwCoXgyCBgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAllPP3xUAANRdubm5KioqKne/3W5XVFSUD2sEHEMAAgDUiNzcXKWnp5+0XGpqKiEIPsctMABAjTix58flilB2dpxcrogKywG+QA8QAKDGZWX10LJlg2RMkGw2t1JSlishYYO/qwULowcIAFCjXK4IT/iRJGOCtGzZoFI9QYAvEYAAADUqLy/KE35KGBOkvDynn2oEBEgAmj17tuLi4hQWFqZevXrp888/r7D8ggUL1KlTJ4WFhenMM8/UihUrvPYfPHhQqampatmypcLDw9W5c2e9+OKLNXkKAIByOJ25stncXttsNreczjw/1QgIgAA0f/58paWlafz48crKylK3bt2UnJys/fv3l1l+3bp1GjZsmG6++WZt2LBBgwcP1uDBg7Vp0yZPmbS0NK1cuVL//Oc/tWXLFo0ZM0apqalaunSpr04LAPBfDkeBUlKWe0JQyRggh6PAzzWDldmMMcafFejVq5fOOeccz6OSbrdbsbGxuuuuu/Tggw+WKj9kyBAVFhZq+fLlnm3nnnuuunfv7unl6dq1q4YMGaJHH33UUyYxMVGXXnqpHn/88ZPWKT8/Xw6HQy6XS5GRkad7igBgSXv37tXf//53z2uXK0J5eU45nXle4WfUqFFq1qyZP6qIOqYq399+7QEqKipSZmam+vfv79kWFBSk/v37a/369WW+Z/369V7lJSk5OdmrfJ8+fbR06VL99NNPMsZo9erV2r59uy655JIyj3nkyBHl5+d7/QAATo/dbvd67XAUqE2bPaV6fk4sB/iCXx+DP3DggIqLixUTE+O1PSYmRlu3bi3zPfv27Suz/L59+zyvZ82apVGjRqlly5aqV6+egoKC9I9//EMXXHBBmcecPHmyJk6ceJpnAwA4XlRUlFJTU5kJGgGpTs4DNGvWLH366adaunSpWrdurY8++kh33nmnmjdvXqr3SJLGjh2rtLQ0z+v8/HzFxsb6ssoAUCcRbhCo/BqAGjdurODgYOXk5Hhtz8nJUdOmTct8T9OmTSss//vvv+uhhx7S22+/rYEDB0qSzjrrLG3cuFHTpk0rMwCFhoYqNDS0Ok4JAAIW63IB/+PXAGS325WYmKhVq1Zp8ODBko4Ngl61apVSU1PLfE/v3r21atUqjRkzxrPt/fffV+/evSVJR48e1dGjRxUU5D28KTg4WG6392OYAGAVrMsFePP7LbC0tDSNGDFCZ599tnr27KkZM2aosLBQI0eOlCTdcMMNatGihSZPnixJGj16tJKSkvTMM89o4MCBeuONN/Tll196njSIjIxUUlKS7rvvPoWHh6t169b68MMP9eqrr2r69Ol+O08A8Key1uXKy4uS05nrNSiZdblgFX4PQEOGDNEvv/yicePGad++ferevbtWrlzpGej8/fffe/Xm9OnTR/PmzdMjjzyihx56SO3bt9fixYvVtWtXT5k33nhDY8eO1bXXXqu8vDy1bt1aTzzxhG6//Xafnx8ABBrW5QICYB6gQMQ8QADqmpI5eVyuCM2YMcZraQqbza0xY2bI4ShgTh7UarVmHiAAgG+xLhdwDAEIACyEdbmAYwhAAGAhrMsFHOP3QdAAAN9KSNig+PidZa7LBVgFAQgALKCsdbnKCj6sywWrIAABgAWwLhfgjQAEABZBuAH+h0HQAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAcghAAADAclgNHgBqkdzcXBUVFZW73263s+o7UAkEIACoJXJzc5Wenn7ScqmpqYQg4CS4BQYAtURFPT+nUg6wMgIQANRSLleEsrPj5HJF+LsqQK3DLTAAqIWysnpo2bJBMiZINptbKSnLlZCwwd/VAmoNeoAAoJZxuSI84UeSjAnSsmWD6AkCqoAABAC1TF5elCf8lDAmSHl5Tj/VCKh9CEAAUMs4nbmy2dxe22w2t5zOPD/VCKh9CEAAUMs4HAVKSVnuCUElY4AcjgI/1wyoPRgEDQC1hN1u9/w5IWGD4uN3Ki/PKaczzyv8HF8OQNkIQKg2zFAL1KyoqCilpqby9wyoBgQgVIsTZ6h1uSKUlxclpzPX61+mzFALnB7+/gDVgwCEanH8v0grmp+EGWoBAIGAQdCoVsxPAgCoDQhAqFbMTwIAqA0IQKhWzE8CAKgNCECoVsxPAgCoDRgEjWpX0fwkAAAEAgIQaoTDUUDwAQB4BNpccQQgVIvKzjzLDLUAYD0nzhVXHl/OFUcAQrVghloAQHkqOwecL+eKIwCh2hBuAAC1BU+BAQAAn3K5IpSdHefXSXLpAQIAAD5T0XJJvkQPEAAA8IlAWi6JAAQAAHwikJZLIgABAACfCKTlkghAAACgRpXMAXey5ZJ8OVeczRhjfPZptUR+fr4cDodcLpciIyP9XR0AAGq942eC/vnnIO3eXU9xcX+oefNjYag65oqryvc3T4EBAIAad3y4adZMSkz0Y2XELTAAAGBBBCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5BCAAAGA5rAVWhpL1YfPz8/1cEwAAUFkl39uVWeedAFSGgoICSVJsbKyfawIAAKqqoKBADoejwjI2U5mYZDFut1s///yzIiIiZLPZTutY+fn5io2N1Q8//KDIyMhqqmHtRpuURpuURpuURpuUjXYpzaptYoxRQUGBmjdvrqCgikf50ANUhqCgILVs2bJajxkZGWmpi7AyaJPSaJPSaJPSaJOy0S6lWbFNTtbzU4JB0AAAwHIIQAAAwHIIQDUsNDRU48ePV2hoqL+rEjBok9Jok9Jok9Jok7LRLqXRJifHIGgAAGA59AABAADLIQABAADLIQABAADLIQABAADLIQCdgtmzZysuLk5hYWHq1auXPv/88wrLz5gxQx07dlR4eLhiY2P1t7/9TYcPH/bsnzBhgmw2m9dPp06davo0qlVV2uTo0aN67LHHFB8fr7CwMHXr1k0rV648rWMGoupuk9p+nXz00UdKSUlR8+bNZbPZtHjx4pO+Z82aNUpISFBoaKjatWunjIyMUmVq83VSE21itetk7969Gj58uDp06KCgoCCNGTOmzHILFixQp06dFBYWpjPPPFMrVqyo/srXkJpok4yMjFLXSVhYWM2cQIAiAFXR/PnzlZaWpvHjxysrK0vdunVTcnKy9u/fX2b5efPm6cEHH9T48eO1ZcsWvfzyy5o/f74eeughr3JdunTR3r17PT9r1671xelUi6q2ySOPPKKXXnpJs2bN0ubNm3X77bfrr3/9qzZs2HDKxww0NdEmUu2+TgoLC9WtWzfNnj27UuWzs7M1cOBAXXjhhdq4caPGjBmjW265Re+++66nTG2/TmqiTSRrXSdHjhxRdHS0HnnkEXXr1q3MMuvWrdOwYcN08803a8OGDRo8eLAGDx6sTZs2VWfVa0xNtIl0bJbo46+TPXv2VFeVaweDKunZs6e58847Pa+Li4tN8+bNzeTJk8ssf+edd5qLLrrIa1taWpo577zzPK/Hjx9vunXrViP19YWqtkmzZs1Menq617YrrrjCXHvttad8zEBTE21S26+T40kyb7/9doVl7r//ftOlSxevbUOGDDHJycme17X9OjledbWJ1a6T4yUlJZnRo0eX2n7NNdeYgQMHem3r1auXue22206zhr5XXW0yd+5c43A4qq1etRE9QFVQVFSkzMxM9e/f37MtKChI/fv31/r168t8T58+fZSZmenplv/uu++0YsUK/eUvf/Eqt2PHDjVv3lxt27bVtddeq++//77mTqQanUqbHDlypFRXa3h4uOdfqadyzEBSE21SorZeJ6di/fr1Xm0oScnJyZ42rO3Xyak4WZuUsNJ1UhmVbTerOXjwoFq3bq3Y2Fhdfvnl+vbbb/1dJZ8iAFXBgQMHVFxcrJiYGK/tMTEx2rdvX5nvGT58uB577DGdf/75CgkJUXx8vPr16+d1C6xXr17KyMjQypUr9cILLyg7O1t9+/ZVQUFBjZ5PdTiVNklOTtb06dO1Y8cOud1uvf/++1q0aJH27t17yscMJDXRJlLtvk5Oxb59+8psw/z8fP3++++1/jo5FSdrE8l610lllNdudfU6qYyOHTtqzpw5WrJkif75z3/K7XarT58++vHHH/1dNZ8hANWwNWvW6Mknn9Tzzz+vrKwsLVq0SO+8844mTZrkKXPppZfq6quv1llnnaXk5GStWLFCv/32m958800/1rzmzJw5U+3bt1enTp1kt9uVmpqqkSNHKijIupdjZdrEatcJTg3XCSqjd+/euuGGG9S9e3clJSVp0aJFio6O1ksvveTvqvmMdb9xTkHjxo0VHBysnJwcr+05OTlq2rRpme959NFHdf311+uWW27RmWeeqb/+9a968sknNXnyZLnd7jLf06hRI3Xo0EE7d+6s9nOobqfSJtHR0Vq8eLEKCwu1Z88ebd26VQ0bNlTbtm1P+ZiBpCbapCy16To5FU2bNi2zDSMjIxUeHl7rr5NTcbI2KUtdv04qo7x2q6vXyakICQlRjx49LHWdEICqwG63KzExUatWrfJsc7vdWrVqlXr37l3mew4dOlSqZyM4OFiSZMpZhu3gwYPatWuXmjVrVk01rzmn0iYlwsLC1KJFC/3xxx9auHChLr/88tM+ZiCoiTYpS226Tk5F7969vdpQkt5//31PG9b26+RUnKxNylLXr5PKOJV2s5ri4mJ988031rpO/D0Ku7Z54403TGhoqMnIyDCbN282o0aNMo0aNTL79u0zxhhz/fXXmwcffNBTfvz48SYiIsK8/vrr5rvvvjPvvfeeiY+PN9dcc42nzD333GPWrFljsrOzzSeffGL69+9vGjdubPbv3+/z8zsVVW2TTz/91CxcuNDs2rXLfPTRR+aiiy4ybdq0Mb/++muljxnoaqJNavt1UlBQYDZs2GA2bNhgJJnp06ebDRs2mD179hhjjHnwwQfN9ddf7yn/3Xffmfr165v77rvPbNmyxcyePdsEBweblStXesrU9uukJtrEateJMcZTPjEx0QwfPtxs2LDBfPvtt579n3zyialXr56ZNm2a2bJlixk/frwJCQkx33zzjU/P7VTVRJtMnDjRvPvuu2bXrl0mMzPTDB061ISFhXmVqesIQKdg1qxZplWrVsZut5uePXuaTz/91LMvKSnJjBgxwvP66NGjZsKECSY+Pt6EhYWZ2NhY83//939eX2xDhgwxzZo1M3a73bRo0cIMGTLE7Ny504dndPqq0iZr1qwxZ5xxhgkNDTVRUVHm+uuvNz/99FOVjlkbVHeb1PbrZPXq1UZSqZ+SdhgxYoRJSkoq9Z7u3bsbu91u2rZta+bOnVvquLX5OqmJNrHidVJW+datW3uVefPNN02HDh2M3W43Xbp0Me+8845vTqga1ESbjBkzxvP3JiYmxvzlL38xWVlZvjupAGAzppz7MAAAAHUUY4AAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAoJZYs2aNbDabfvvtN39XBaj1CEAASrnxxhtls9k0ZcoUr+2LFy+WzWbzvDbG6B//+Id69+6tyMhINWzYUF26dNHo0aMrvajioUOHNHbsWMXHxyssLEzR0dFKSkrSkiVLPGXi4uI0Y8aMajm3mlbSdjabTSEhIWrTpo3uv/9+HT58uErH6devn8aMGeO1rU+fPtq7d68cDkc11hiwJgIQgDKFhYXpqaee0q+//lrmfmOMhg8frrvvvlt/+ctf9N5772nz5s16+eWXFRYWpscff7xSn3P77bdr0aJFmjVrlrZu3aqVK1fqqquuUm5ubnWejk8NGDBAe/fu1Xfffadnn31WL730ksaPH3/ax7Xb7WratKlXCAVwivy7EgeAQDRixAgzaNAg06lTJ3Pfffd5tr/99tum5NfG66+/biSZJUuWlHkMt9tdqc9yOBwmIyOj3P1JSUml1jQq8fHHH5vzzz/fhIWFmZYtW5q77rrLHDx40LP/1VdfNYmJiaZhw4YmJibGDBs2zOTk5Hj2l6yxtHLlStO9e3cTFhZmLrzwQpOTk2NWrFhhOnXqZCIiIsywYcNMYWFhpc5nxIgR5vLLL/fadsUVV5gePXp4Xh84cMAMHTrUNG/e3ISHh5uuXbuaefPmeR3jxHPOzs721Pf4tQTfeust07lzZ2O3203r1q3NtGnTKlVPwOroAQJQpuDgYD355JOaNWuWfvzxx1L7X3/9dXXs2FGXXXZZme+vbC9F06ZNtWLFChUUFJS5f9GiRWrZsqUee+wx7d27V3v37pUk7dq1SwMGDNCVV16pr7/+WvPnz9fatWuVmprqee/Ro0c1adIkffXVV1q8eLF2796tG2+8sdRnTJgwQenp6Vq3bp1++OEHXXPNNZoxY4bmzZund955R++9955mzZpVqfM50aZNm7Ru3TrZ7XbPtsOHDysxMVHvvPOONm3apFGjRun666/X559/LkmaOXOmevfurVtvvdVzzrGxsaWOnZmZqWuuuUZDhw7VN998owkTJujRRx9VRkbGKdUVsBR/JzAAgef4Xoxzzz3X3HTTTcYY7x6gTp06mcsuu8zrfaNHjzYNGjQwDRo0MC1atKjUZ3344YemZcuWJiQkxJx99tlmzJgxZu3atV5lWrdubZ599lmvbTfffLMZNWqU17aPP/7YBAUFmd9//73Mz/riiy+MJFNQUGCM+V8P0AcffOApM3nyZCPJ7Nq1y7PttttuM8nJyZU6nxEjRpjg4GDToEEDExoaaiSZoKAg89Zbb1X4voEDB5p77rnH8zopKcmMHj3aq8yJPUDDhw83F198sVeZ++67z3Tu3LlSdQWsjB4gABV66qmn9Morr2jLli0nLfvwww9r48aNGjdunA4ePFip419wwQX67rvvtGrVKl111VX69ttv1bdvX02aNKnC93311VfKyMhQw4YNPT/Jyclyu93Kzs6WdKyHJCUlRa1atVJERISSkpIkSd9//73Xsc466yzPn2NiYlS/fn21bdvWa9v+/fsrdT6SdOGFF2rjxo367LPPNGLECI0cOVJXXnmlZ39xcbEmTZqkM888U06nUw0bNtS7775bql4ns2XLFp133nle28477zzt2LFDxcXFVToWYDUEIAAVuuCCC5ScnKyxY8d6bW/fvr22bdvmtS06Olrt2rVTkyZNqvQZISEh6tu3rx544AG99957euyxxzRp0iQVFRWV+56DBw/qtttu08aNGz0/X331lXbs2KH4+HgVFhYqOTlZkZGR+te//qUvvvhCb7/9tiSVOm5ISIjnzyVPbx3PZrPJ7XZX+nwaNGigdu3aqVu3bpozZ44+++wzvfzyy579U6dO1cyZM/XAAw9o9erV2rhxo5KTkys8XwDVq56/KwAg8E2ZMkXdu3dXx44dPduGDRum4cOHa8mSJbr88sur9fM6d+6sP/74Q4cPH5bdbpfdbi/Vo5GQkKDNmzerXbt2ZR7jm2++UW5urqZMmeIZP/Pll19Waz0rIygoSA899JDS0tI0fPhwhYeH65NPPtHll1+u6667TpLkdru1fft2de7c2fO+ss75RGeccYY++eQTr22ffPKJOnTooODg4Oo/GaAOoQcIwEmdeeaZuvbaa/Xcc895tg0dOlRXXXWVhg4dqscee0yfffaZdu/erQ8//FDz58+v9Bdwv3799NJLLykzM1O7d+/WihUr9NBDD+nCCy9UZGSkpGPzAH300Uf66aefdODAAUnSAw88oHXr1ik1NVUbN27Ujh07tGTJEs8g6FatWslut2vWrFn67rvvtHTp0pPeVqspV199tYKDgzV79mxJx3rP3n//fa1bt05btmzRbbfdppycHK/3xMXFedr0wIEDZfZA3XPPPVq1apUmTZqk7du365VXXlF6erruvfden5wXUJsRgABUymOPPeb1JWyz2TR//nzNmDFDK1as0J///Gd17NhRN910k2JjY7V27dpKHTc5OVmvvPKKLrnkEp1xxhm66667lJycrDfffNPrs3fv3q34+HhFR0dLOjZu58MPP9T27dvVt29f9ejRQ+PGjVPz5s0lHbsdl5GRoQULFqhz586aMmWKpk2bVo0tUnn16tVTamqqnn76aRUWFuqRRx5RQkKCkpOT1a9fPzVt2lSDBw/2es+9996r4OBgde7cWdHR0WWOD0pISNCbb76pN954Q127dtW4ceP02GOPlfmkGwBvNmOM8XclAAAAfIkeIAAAYDkEIAA16vjH1E/8+fjjj/1dvSr5/vvvKzyfqj7GDsB/uAUGoEZVtChqixYtFB4e7sPanJ4//vhDu3fvLnd/XFyc6tXj4VqgNiAAAQAAy+EWGAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsJz/B9I9jmHVf3FvAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_15.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdc0lEQVR4nO3deVxU9f4/8NcMMIwijA7EKgoCirkhqAi5S4Ipxs0KrRDNJU1UoixRc7lWuIuGaZqityS9pnkVvRpSfivFjeW6pBYGmgqIgw6KCcic3x/+ODmxyIwMw/J6Ph7zyDnnM+e8zyeSV5/zOZ+RCIIggIiIiIh0IjV2AUREREQNEUMUERERkR4YooiIiIj0wBBFREREpAeGKCIiIiI9MEQRERER6YEhioiIiEgPDFFEREREemCIIiIiItIDQxQRUSO3ZcsWSCQSZGdnG7sUokaFIYqIntqpU6cQERGBTp06wcLCAm3atMGrr76KX3/9tULbAQMGQCKRQCKRQCqVwsrKCh06dEBYWBiSkpJ0Ou++ffvQv39/2Nraonnz5mjXrh1effVVHDx4sLYurYJPPvkEe/bsqbD92LFjWLBgAe7cuWOwc//dggULxL6USCRo3rw5nn32WcydOxeFhYW1co6EhATExsbWyrGIGhuGKCJ6akuWLMGuXbswePBgrF69GpMmTcKPP/4Ib29vnDt3rkL71q1b48svv8S//vUvLFu2DCNGjMCxY8cwZMgQhIaGorS09InnXL58OUaMGAGJRILo6GisWrUKI0eOxG+//Ybt27cb4jIBVB+iFi5cWKchqty6devw5ZdfYuXKlfD09MTHH3+MoKAg1MZXozJEEVXN1NgFEFHDFxUVhYSEBMhkMnFbaGgounTpgsWLF+Orr77Saq9QKPDGG29obVu8eDGmT5+Ozz77DC4uLliyZEmV53v48CEWLVqE559/Ht99912F/Tdv3nzKK6o/7t+/j+bNm1fb5uWXX4aNjQ0AYPLkyRg5ciR2796N48ePw8/Pry7KJGqSOBJFRE/N399fK0ABgIeHBzp16oQLFy7U6BgmJiZYs2YNnn32WcTFxUGtVlfZ9tatWygsLMRzzz1X6X5bW1ut9w8ePMCCBQvQvn17yOVyODg44KWXXsLly5fFNsuXL4e/vz+sra3RrFkz+Pj44JtvvtE6jkQiQVFREbZu3SreQhs7diwWLFiAmTNnAgBcXV3FfY/PQfrqq6/g4+ODZs2aQalUYtSoUfjjjz+0jj9gwAB07twZqamp6NevH5o3b47Zs2fXqP8eN2jQIABAVlZWte0+++wzdOrUCebm5nB0dMTUqVO1RtIGDBiA/fv348qVK+I1ubi46FwPUWPFkSgiMghBEJCXl4dOnTrV+DMmJiYYPXo0PvzwQ/z8888YNmxYpe1sbW3RrFkz7Nu3D9OmTYNSqazymGVlZRg+fDiSk5MxatQozJgxA3fv3kVSUhLOnTsHNzc3AMDq1asxYsQIvP766ygpKcH27dvxyiuvIDExUazjyy+/xIQJE9CrVy9MmjQJAODm5gYLCwv8+uuv+Prrr7Fq1SpxVOiZZ54BAHz88cf48MMP8eqrr2LChAnIz8/Hp59+in79+iE9PR0tW7YU61WpVBg6dChGjRqFN954A3Z2djXuv3Ll4dDa2rrKNgsWLMDChQsREBCAKVOm4NKlS1i3bh1OnTqFo0ePwszMDHPmzIFarca1a9ewatUqAECLFi10roeo0RKIiAzgyy+/FAAImzZt0trev39/oVOnTlV+7ttvvxUACKtXr672+PPmzRMACBYWFsLQoUOFjz/+WEhNTa3QbvPmzQIAYeXKlRX2aTQa8c/379/X2ldSUiJ07txZGDRokNZ2CwsLITw8vMKxli1bJgAQsrKytLZnZ2cLJiYmwscff6y1/ezZs4KpqanW9v79+wsAhPXr11d53Y+bP3++AEC4dOmSkJ+fL2RlZQmff/65YG5uLtjZ2QlFRUWCIAhCfHy8Vm03b94UZDKZMGTIEKGsrEw8XlxcnABA2Lx5s7ht2LBhQtu2bWtUD1FTw9t5RFTrLl68iKlTp8LPzw/h4eE6fbZ8pOPu3bvVtlu4cCESEhLQvXt3HDp0CHPmzIGPjw+8vb21biHu2rULNjY2mDZtWoVjSCQS8c/NmjUT/3z79m2o1Wr07dsXaWlpOtX/d7t374ZGo8Grr76KW7duiS97e3t4eHjghx9+0Gpvbm6OcePG6XSODh064JlnnoGrqyveeustuLu7Y//+/VXOpTp8+DBKSkoQGRkJqfSvXwMTJ06ElZUV9u/fr/uFEjVBvJ1HRLUqNzcXw4YNg0KhwDfffAMTExOdPn/v3j0AgKWl5RPbjh49GqNHj0ZhYSFOnDiBLVu2ICEhAcHBwTh37hzkcjkuX76MDh06wNS0+r/uEhMT8dFHHyEjIwPFxcXi9seDlj5+++03CIIADw+PSvebmZlpvXdycqowv+xJdu3aBSsrK5iZmaF169biLcqqXLlyBcCj8PU4mUyGdu3aifuJqHoMUURUa9RqNYYOHYo7d+7gp59+gqOjo87HKF8Swd3dvcafsbKywvPPP4/nn38eZmZm2Lp1K06cOIH+/fvX6PM//fQTRowYgX79+uGzzz6Dg4MDzMzMEB8fj4SEBJ2v4XEajQYSiQT//e9/Kw2Uf59j9PiIWE3169dPnIdFRHWHIYqIasWDBw8QHByMX3/9FYcPH8azzz6r8zHKysqQkJCA5s2bo0+fPnrV0aNHD2zduhU5OTkAHk38PnHiBEpLSyuM+pTbtWsX5HI5Dh06BHNzc3F7fHx8hbZVjUxVtd3NzQ2CIMDV1RXt27fX9XIMom3btgCAS5cuoV27duL2kpISZGVlISAgQNz2tCNxRI0Z50QR0VMrKytDaGgoUlJSsHPnTr3WJiorK8P06dNx4cIFTJ8+HVZWVlW2vX//PlJSUird99///hfAX7eqRo4ciVu3biEuLq5CW+H/L0ZpYmICiUSCsrIycV92dnali2paWFhUuqCmhYUFAFTY99JLL8HExAQLFy6ssPilIAhQqVSVX6QBBQQEQCaTYc2aNVo1bdq0CWq1WuupSAsLi2qXmyBqyjgSRURP7d1338XevXsRHByMgoKCCotr/n1hTbVaLba5f/8+MjMzsXv3bly+fBmjRo3CokWLqj3f/fv34e/vj969eyMoKAjOzs64c+cO9uzZg59++gkhISHo3r07AGDMmDH417/+haioKJw8eRJ9+/ZFUVERDh8+jLfffhsvvvgihg0bhpUrVyIoKAivvfYabt68ibVr18Ld3R1nzpzROrePjw8OHz6MlStXwtHREa6urvD19YWPjw8AYM6cORg1ahTMzMwQHBwMNzc3fPTRR4iOjkZ2djZCQkJgaWmJrKwsfPvtt5g0aRLee++9p+p/XT3zzDOIjo7GwoULERQUhBEjRuDSpUv47LPP0LNnT61/Xz4+PtixYweioqLQs2dPtGjRAsHBwXVaL1G9ZcxHA4mocSh/NL+qV3VtW7RoIXh4eAhvvPGG8N1339XofKWlpcLGjRuFkJAQoW3btoK5ubnQvHlzoXv37sKyZcuE4uJirfb3798X5syZI7i6ugpmZmaCvb298PLLLwuXL18W22zatEnw8PAQzM3NBU9PTyE+Pl5cQuBxFy9eFPr16yc0a9ZMAKC13MGiRYsEJycnQSqVVljuYNeuXUKfPn0ECwsLwcLCQvD09BSmTp0qXLp0Satvqlv+4e/K68vPz6+23d+XOCgXFxcneHp6CmZmZoKdnZ0wZcoU4fbt21pt7t27J7z22mtCy5YtBQBc7oDoMRJBqIUvVyIiIiJqYjgnioiIiEgPDFFEREREemCIIiIiItIDQxQRERGRHhiiiIiIiPTAEEVERESkBy62aSAajQY3btyApaUlvzaBiIiogRAEAXfv3oWjoyOk0urHmhiiDOTGjRtwdnY2dhlERESkhz/++AOtW7eutg1DlIFYWloCePQvobrvACMiIqL6o7CwEM7OzuLv8eowRBlI+S08KysrhigiIqIGpiZTcTixnIiIiEgPDFFEREREemCIIiIiItID50QRERHVIxqNBiUlJcYuo1GTyWRPXL6gJhiiiIiI6omSkhJkZWVBo9EYu5RGTSqVwtXVFTKZ7KmOwxBFRERUDwiCgJycHJiYmMDZ2blWRkqoovLFsHNyctCmTZunWhCbIYqIiKgeePjwIe7fvw9HR0c0b97c2OU0as888wxu3LiBhw8fwszMTO/jMOYSERHVA2VlZQDw1LeY6MnK+7i8z/XFEEVERFSP8PtWDa+2+tjoIWrt2rVwcXGBXC6Hr68vTp48WW37nTt3wtPTE3K5HF26dMGBAwe09o8dOxYSiUTrFRQUJO7Pzs7G+PHj4erqimbNmsHNzQ3z58/XehIiOzu7wjEkEgmOHz9euxdPREREDZZR50Tt2LEDUVFRWL9+PXx9fREbG4vAwEBcunQJtra2FdofO3YMo0ePRkxMDIYPH46EhASEhIQgLS0NnTt3FtsFBQUhPj5efG9ubi7++eLFi9BoNPj888/h7u6Oc+fOYeLEiSgqKsLy5cu1znf48GF06tRJfG9tbV2bl68TlUpV7SOvMpnMqPURERE1NRJBEARjndzX1xc9e/ZEXFwcgEcz5p2dnTFt2jTMmjWrQvvQ0FAUFRUhMTFR3Na7d294eXlh/fr1AB6NRN25cwd79uypcR3Lli3DunXr8PvvvwN4NBLl6uqK9PR0eHl56XVthYWFUCgUUKvVT/3deSqVSuwjAFCrLVFQYA2lUgWF4q64PSIigkGKiKiBevDgAbKysuDq6gq5XG7scnQyduxYbN26FQBgamoKpVKJrl27YvTo0Rg7dmyNnzTcsmULIiMjcefOHQNWW31f6/L722gjUSUlJUhNTUV0dLS4TSqVIiAgACkpKZV+JiUlBVFRUVrbAgMDKwSmI0eOwNbWFq1atcKgQYPw0UcfVRsu1Go1lEplhe0jRozAgwcP0L59e7z//vsYMWJElccoLi5GcXGx+L6wsLDKtrp6fAQqLa079u0bDkGQQiLRIDg4Ed7e6RXaERFR02LsOxbld4HKysqQl5eHgwcPYsaMGfjmm2+wd+9emJo2vgUBjHZFt27dQllZGezs7LS229nZ4eLFi5V+Jjc3t9L2ubm54vugoCC89NJLcHV1xeXLlzF79mwMHToUKSkpMDExqXDMzMxMfPrpp1q38lq0aIEVK1bgueeeg1Qqxa5duxASEoI9e/ZUGaRiYmKwcOHCGl+/PtRqSzFAAYAgSLFv33C4uWVqjUgREVHT8vc7FlUx5B0Lc3Nz2NvbAwCcnJzg7e2N3r17Y/DgwdiyZQsmTJiAlStXIj4+Hr///juUSiWCg4OxdOlStGjRAkeOHMG4ceMA/DXxe/78+ViwYAG+/PJLrF69GpcuXYKFhQUGDRqE2NjYSqf+1KVGFwtHjRol/rlLly7o2rUr3NzccOTIEQwePFir7fXr1xEUFIRXXnkFEydOFLfb2NhojXj17NkTN27cwLJly6oMUdHR0VqfKSwshLOzc21dFgCgoMBaDFDlBEGKggIlQ1QDYez/UySixqmmdyLq+o7FoEGD0K1bN+zevRsTJkyAVCrFmjVr4Orqit9//x1vv/023n//fXz22Wfw9/dHbGws5s2bh0uXLgF4NKgBAKWlpVi0aBE6dOiAmzdvIioqCmPHjq3wcFldM1qIsrGxgYmJCfLy8rS25+XliUn27+zt7XVqDwDt2rWDjY0NMjMztULUjRs3MHDgQPj7+2PDhg1PrNfX1xdJSUlV7jc3N9eawG4ISqUKEolGK0hJJBoolQUGPS/Vjvrwf4pERHXN09MTZ86cAQBERkaK211cXPDRRx9h8uTJ+OyzzyCTyaBQKCCRSCr8Xn/zzTfFP7dr1w5r1qxBz549ce/ePTFoGYPRljiQyWTw8fFBcnKyuE2j0SA5ORl+fn6VfsbPz0+rPQAkJSVV2R4Arl27BpVKBQcHB3Hb9evXMWDAAPj4+CA+Pr5GE94yMjK0jmEMCsVdBAcnQiJ59J1K5XOiOArVMPz9/wDVaktkZblArbasth0RUUMmCIJ4e+7w4cMYPHgwnJycYGlpibCwMKhUKty/f7/aY6SmpiI4OBht2rSBpaUl+vfvDwC4evWqweuvjlFv50VFRSE8PBw9evRAr169EBsbi6KiIvGe6JgxY+Dk5ISYmBgAwIwZM9C/f3+sWLECw4YNw/bt23H69GlxJOnevXtYuHAhRo4cCXt7e1y+fBnvv/8+3N3dERgYCOCvANW2bVssX74c+fn5Yj3lyXfr1q2QyWTo3r07AGD37t3YvHkzvvjiizrrm6p4e6fDzS0TBQVKKJUFDFANVHUPCBARNSYXLlyAq6srsrOzMXz4cEyZMgUff/wxlEolfv75Z4wfPx4lJSVVftVNUVERAgMDERgYiG3btuGZZ57B1atXERgYaPT/6TRqiAoNDUV+fj7mzZuH3NxceHl54eDBg+Lk8atXr2qNEvn7+yMhIQFz587F7Nmz4eHhgT179ohrRJmYmODMmTPYunUr7ty5A0dHRwwZMgSLFi0Sb7UlJSUhMzMTmZmZaN26tVY9j6/2sGjRIly5cgWmpqbw9PTEjh078PLLLxu6S2pEobjL8NSA8QEBImoqvv/+e5w9exbvvPMOUlNTodFosGLFCvF3+7///W+t9jKZrMJXsVy8eBEqlQqLFy8W5xqfPn26bi7gCYw+sTwiIgIRERGV7jty5EiFba+88gpeeeWVSts3a9YMhw4dqvZ8Y8eOxdixY6ttEx4ejvDw8Grb1KWafo8Sv2+pYeADAkTUGBUXFyM3N1driYPyxbHHjBmDc+fOobS0FJ9++imCg4Nx9OhRcY3Hci4uLrh37x6Sk5PRrVs3NG/eHG3atIFMJsOnn36KyZMn49y5c1i0aJGRrlKb0UMUPZm1tTUiIiL4VFcjwQcEiKgxOnjwIBwcHGBqaopWrVqhW7duWLNmDcLDwyGVStGtWzesXLkSS5YsQXR0NPr164eYmBiMGTNGPIa/vz8mT56M0NBQqFQqcYmDLVu2YPbs2VizZg28vb2xfPnyatdurCtGXbG8MavNFcupccjJyRHn71U3J2rSpElGf4iBiOre06xYzqd/ddPgVywnasr4gAAR1SbesTAOhiiiOvL3OWtVPSDAuW1EpA8GpLrHEEVUR/h/ikREjQtDFFEdYkAiImo8jLZiOREREVFDxhBFREREpAeGKCIiIiI9MEQRERER6YEhioiIiEgPDFFERERUrx05cgQSiQR37typ8WdcXFwQGxtrsJoAhigiIiJ6SmPHjoVEIsHkyZMr7Js6dSokEgnGjh1b94UZGEMUERERPTVnZ2ds374df/75p7jtwYMHSEhIQJs2bYxYmeEwRBEREdFT8/b2hrOzM3bv3i1u2717N9q0aYPu3buL24qLizF9+nTY2tpCLpejT58+OHXqlNaxDhw4gPbt26NZs2YYOHAgsrOzK5zv559/Rt++fdGsWTM4Oztj+vTpKCoqMtj1VYYhioiIqJG5dg344YdH/6xLb775JuLj48X3mzdvxrhx47TavP/++9i1axe2bt2KtLQ0uLu7IzAwEAUFBQCAP/74Ay+99BKCg4ORkZGBCRMmYNasWVrHuHz5MoKCgjBy5EicOXMGO3bswM8//4yIiAjDX+RjGKKIiIgakU2bgLZtgUGDHv1z06a6O/cbb7yBn3/+GVeuXMGVK1dw9OhRvPHGG+L+oqIirFu3DsuWLcPQoUPx7LPPYuPGjWjWrBk2/f9C161bBzc3N6xYsQIdOnTA66+/XmE+VUxMDF5//XVERkbCw8MD/v7+WLNmDf71r3/hwYMHdXa9/O48oiZIpVLxi5CJGqFr14BJkwCN5tF7jQZ46y0gMBBo3drw53/mmWcwbNgwbNmyBYIgYNiwYbCxsRH3X758GaWlpXjuuefEbWZmZujVqxcuXLgAALhw4QJ8fX21juvn56f1/n//+x/OnDmDbdu2idsEQYBGo0FWVhY6duxoiMurgCGKqIlRqVSIi4t7YruIiAgGKaIG5rff/gpQ5crKgMzMuglRwKNbeuW31dauXWuQc9y7dw9vvfUWpk+fXmFfXU5iZ4giamL+PgKlVluioMAaSqUKCsXdKtsRUf3n4QFIpdpBysQEcHevuxqCgoJQUlICiUSCwMBArX1ubm6QyWQ4evQo2rZtCwAoLS3FqVOnEBkZCQDo2LEj9u7dq/W548ePa7339vbGL7/8Ave6vLBKMEQRNWFpad2xb99wCIIUEokGwcGJ8PZON3ZZRKSn1q2BDRse3cIrK3sUoD7/vO5GoQDAxMREvDVnYmKitc/CwgJTpkzBzJkzoVQq0aZNGyxduhT379/H+PHjAQCTJ0/GihUrMHPmTEyYMAGpqanYsmWL1nE++OAD9O7dGxEREZgwYQIsLCzwyy+/ICkpqUYj7bWFE8uJmii12lIMUAAgCFLs2zccarWlkSsjoqcxfjyQnf3o6bzs7Efv65qVlRWsrKwq3bd48WKMHDkSYWFh8Pb2RmZmJg4dOoRWrVoBeHQ7bteuXdizZw+6deuG9evX45NPPtE6RteuXfF///d/+PXXX9G3b190794d8+bNg6Ojo8Gv7XESQRCEOj1jE1FYWAiFQgG1Wl3lDxKRMeTk5GDDhg3IynLB1q3hFfaHh2+Bq+sVTJo0CQ4ODkaokKhpevDgAbKysuDq6gq5XG7schq16vpal9/fHIkiaqKUShUkEu0ZqBKJBkplgZEqIiJqWBiiiJooheIugoMTxSBVPifq8cnlRERUNU4sJ2rCvL3T4eaWiYICJZTKAgYoIiIdMEQRNTEymUzrvUJxt9Lw9Pd2RESkjSGKqImxtrZGREQEVywnqqf4vJfh1VYfM0QRNUEMSET1T/maSiUlJWjWrJmRq2ncyv8n8u/rWOmKIYqIiKgeMDU1RfPmzZGfnw8zMzNIpXz2yxA0Gg3y8/PRvHlzmJo+XQxiiCIiIqoHJBIJHBwckJWVhStXrhi7nEZNKpWiTZs2kEgkT3UchigiIqJ6QiaTwcPDg99daWAymaxWRvoYooiIiOoRqVTKFcsbCN5wJSIiItIDQxQRERGRHhiiiIiIiPTAEEVERESkB6OHqLVr18LFxQVyuRy+vr44efJkte137twJT09PyOVydOnSBQcOHNDaP3bsWEgkEq1XUFCQVpuCggK8/vrrsLKyQsuWLTF+/Hjcu3dPq82ZM2fQt29fyOVyODs7Y+nSpbVzwURkMCqVCjk5OVW+VCqVsUskokbEqE/n7dixA1FRUVi/fj18fX0RGxuLwMBAXLp0Cba2thXaHzt2DKNHj0ZMTAyGDx+OhIQEhISEIC0tDZ07dxbbBQUFIT4+Xnxvbm6udZzXX38dOTk5SEpKQmlpKcaNG4dJkyYhISEBAFBYWIghQ4YgICAA69evx9mzZ/Hmm2+iZcuWmDRpkoF6g4iehkqlQlxc3BPbRUREcMV2IqoVEsGIX9Lj6+uLnj17in/xaTQaODs7Y9q0aZg1a1aF9qGhoSgqKkJiYqK4rXfv3vDy8sL69esBPBqJunPnDvbs2VPpOS9cuIBnn30Wp06dQo8ePQAABw8exAsvvIBr167B0dER69atw5w5c5Cbmyt+CeusWbOwZ88eXLx4sUbXVlhYCIVCAbVaDSsrqxr3CRHpJycnBxs2bHhiu0mTJsHBwaEOKiKihkiX399Gu51XUlKC1NRUBAQE/FWMVIqAgACkpKRU+pmUlBSt9gAQGBhYof2RI0dga2uLDh06YMqUKVpD+CkpKWjZsqUYoAAgICAAUqkUJ06cENv069dP61vsy0fIbt++XWltxcXFKCws1HoRkfGo1ZbIynKBWm1p7FKIqJEy2u28W7duoaysDHZ2dlrb7ezsqhztyc3NrbR9bm6u+D4oKAgvvfQSXF1dcfnyZcyePRtDhw5FSkoKTExMkJubW+FWoampKZRKpXic3NxcuLq6VjhP+b5WrVpVqC0mJgYLFy6s4dUTkSGlpXXHvn3DIQhSSCQaBAcnwts73dhlEVEj0+hWLB81apT45y5duqBr165wc3PDkSNHMHjwYIOdNzo6GlFRUeL7wsJCODs7G+x8RFQ5tdpSDFAAIAhS7Ns3HG5umVAo7hq5OiJqTIx2O8/GxgYmJibIy8vT2p6Xlwd7e/tKP2Nvb69TewBo164dbGxskJmZKR7j5s2bWm0ePnyIgoIC8ThVnad8X2XMzc1hZWWl9SKiuldQYC0GqHKCIEVBgdJIFRFRY2W0ECWTyeDj44Pk5GRxm0ajQXJyMvz8/Cr9jJ+fn1Z7AEhKSqqyPQBcu3YNKpVKnEjq5+eHO3fuIDU1VWzz/fffQ6PRwNfXV2zz448/orS0VOs8HTp0qPRWHhHVH0qlChKJRmubRKKBUllgpIqIqLEy6jpRUVFR2LhxI7Zu3YoLFy5gypQpKCoqwrhx4wAAY8aMQXR0tNh+xowZOHjwIFasWIGLFy9iwYIFOH36NCIiIgAA9+7dw8yZM3H8+HFkZ2cjOTkZL774Itzd3REYGAgA6NixI4KCgjBx4kScPHkSR48eRUREBEaNGgVHR0cAwGuvvQaZTIbx48fj/Pnz2LFjB1avXq11u46I6ieF4i6CgxPFIFU+J4q38oiothl1TlRoaCjy8/Mxb9485ObmwsvLCwcPHhQncV+9ehVS6V85z9/fHwkJCZg7dy5mz54NDw8P7NmzR1wjysTEBGfOnMHWrVtx584dODo6YsiQIVi0aJHWWlHbtm1DREQEBg8eDKlUipEjR2LNmjXifoVCge+++w5Tp06Fj48PbGxsMG/ePK4RRVSPPf40rbd3OtzcMlFQoIRSWaAVoB5vR0T0NIy6TlRjxnWiiOqeSqVCSUlJlftlMhkX2iSiauny+7vRPZ1HRE0XAxIR1SWjf3ceERERUUPEEEVERESkB4YoIiIiIj0wRBERERHpgSGKiIiISA8MUURERER6YIgiIiIi0gPXiaJ6iwsnEhFRfcYQRfWSSqVCXFzcE9tFREQwSBERkVHwdh7VS9WNQOnTjoiIqLZxJKqJami3ytRqSxQUWEOpVGl9mSwREZGxMEQ1QQ3tVllaWnfs2zccgiCFRKJBcHAivL3TjV0WERE1cbyd1wQ1pFtlarWlGKAAQBCk2LdvONRqSyNXRkRETR1DFEGttkRWlku9DCYFBdZigConCFIUFCiNVBEREdEjvJ3XxNX3W2VKpQoSiUYrSEkkGiiVBUasioiIiCNRTVpDuFWmUNxFcHAiJBINAIhBj5PLiYjI2DgS1YRVd6vM2CFFJpOJf/b2ToebWyYKCpRQKgu0anu8HRERUV1iiGrC6vOtMmtra0RERDSoZRiIiKhpYYhqwspvlf19TpSxR6HKMSAREVF9xhDVBPFWGemjoS3QSkRkaAxRTRBvlZGuGtoCrUREdYEhqoniLzrSxd8Dd1Vfw1MfFmglIqorDFFEpJP6vrYYEVFd4TpRRFRjDWFtMSKiusIQRUQ1xq/hISL6C0MUEdVY+dpij6sva4sREdU1higiqjF+DQ8R0V84sZyIdFLd2mJERE0JQxQRPdHfF15VKO5WGp64QCsRNSUMUUT0RFyglYioIoYoIqoRBiQiIm2cWE5ERESkB4YoIiIiIj0wRBERERHpgXOiqN5SqVScyExERPWW0Uei1q5dCxcXF8jlcvj6+uLkyZPVtt+5cyc8PT0hl8vRpUsXHDhwoMq2kydPhkQiQWxsrLjtyJEjkEgklb5OnToFAMjOzq50//Hjx2vlmunJVCoV4uLisGHDhipfcXFxUKlUxi6ViIiaKKOGqB07diAqKgrz589HWloaunXrhsDAQNy8ebPS9seOHcPo0aMxfvx4pKenIyQkBCEhITh37lyFtt9++y2OHz8OR0dHre3+/v7IycnRek2YMAGurq7o0aOHVtvDhw9rtfPx8am9i6dqVTcCpU87IiKi2mbUELVy5UpMnDgR48aNw7PPPov169ejefPm2Lx5c6XtV69ejaCgIMycORMdO3bEokWL4O3tjbi4OK12169fx7Rp07Bt2zaYmZlp7ZPJZLC3txdf1tbW+M9//oNx48ZBIpFotbW2ttZq+/djUd1Rqy2RleUCtdrS2KUQEREBMGKIKikpQWpqKgICAv4qRipFQEAAUlJSKv1MSkqKVnsACAwM1Gqv0WgQFhaGmTNnolOnTk+sY+/evVCpVBg3blyFfSNGjICtrS369OmDvXv31vTSqJalpXVHbGwktm4NR2xsJNLSuhu7JCIiIuOFqFu3bqGsrAx2dnZa2+3s7JCbm1vpZ3Jzc5/YfsmSJTA1NcX06dNrVMemTZsQGBiI1q1bi9tatGiBFStWYOfOndi/fz/69OmDkJCQaoNUcXExCgsLtV709NRqS+zbNxyC8OhHVRCk2LdvOEekiIjI6BrV03mpqalYvXo10tLSKtyaq8y1a9dw6NAh/Pvf/9babmNjg6ioKPF9z549cePGDSxbtgwjRoyo9FgxMTFYuHDh010AVVBQYC0GqHKCIEVBgZJffEtEREZltJEoGxsbmJiYIC8vT2t7Xl4e7O3tK/2Mvb19te1/+ukn3Lx5E23atIGpqSlMTU1x5coVvPvuu3BxcalwvPj4eFhbW1cZjB7n6+uLzMzMKvdHR0dDrVaLrz/++OOJx6QnUypVkEg0WtskEg2UygIjVURERPSI0UKUTCaDj48PkpOTxW0ajQbJycnw8/Or9DN+fn5a7QEgKSlJbB8WFoYzZ84gIyNDfDk6OmLmzJk4dOiQ1ucEQUB8fDzGjBlTownjGRkZcHBwqHK/ubk5rKystF709BSKuwgOThSDlESiQXBwIkehiIjI6Ix6Oy8qKgrh4eHo0aMHevXqhdjYWBQVFYmTvMeMGQMnJyfExMQAAGbMmIH+/ftjxYoVGDZsGLZv347Tp09jw4YNAB49Tff3xRfNzMxgb2+PDh06aG3//vvvkZWVhQkTJlSoa+vWrZDJZOje/dEE5t27d2Pz5s344osvar0PqHIymUz8s7d3OtzcMlFQoIRSWaAVoB5vR0REVJeMGqJCQ0ORn5+PefPmITc3F15eXjh48KA4efzq1auQSv8aLPP390dCQgLmzp2L2bNnw8PDA3v27EHnzp11PvemTZvg7+8PT0/PSvcvWrQIV65cgampKTw9PbFjxw68/PLL+l0o6cza2hoRERFcsZyIiOotiSAIgrGLaIwKCwuhUCigVqt5a4+IiKiB0OX3t9G/9oWIiIioIWKIIiIiItIDQxQRERGRHhiiiIiIiPTAEEVERESkB4YoIiIiIj0wRBERERHpgSGKiIiISA8MUURERER6YIgiIiIi0gNDFBEREZEeGKKIiIiI9MAQRURERKQHhigiIiIiPTBEEREREemBIYqIiIhIDwxRRERERHpgiCIiIiLSA0MUERERkR4YooiIiIj0wBBFREREpAeGKCIiIiI9MEQRERER6YEhioiIiEgPDFFEREREemCIIiIiItIDQxQRERGRHhiiiIiIiPTAEEVERESkB4YoIiIiIj2YGrsAImrcVCoVSkpKqtwvk8lgbW1dhxUREdUOhigiMhiVSoW4uDjxvVptiYICayiVKigUd8XtERERDFJE1OAwRBGRwTw+ApWW1h379g2HIEghkWgQHJwIb+/0Cu2IiBoKzokiIoNTqy3FAAUAgiDFvn3DoVZbGrkyIiL9MUQRkcEVFFiLAaqcIEhRUKA0UkVERE+PIYqIDE6pVEEi0Whtk0g0UCoLjFQREdHT45wookaqPj0Vp1DcRXBwYoU5UY9PLiciamiMPhK1du1auLi4QC6Xw9fXFydPnqy2/c6dO+Hp6Qm5XI4uXbrgwIEDVbadPHkyJBIJYmNjtba7uLhAIpFovRYvXqzV5syZM+jbty/kcjmcnZ2xdOlSva+RqK6VPxW3YcMGbNiwAcuWfY3o6O+wbNnX4ra4uDioVKo6q8nbOx2RkbEID9+CyMhYcVI5EVFDZdSRqB07diAqKgrr16+Hr68vYmNjERgYiEuXLsHW1rZC+2PHjmH06NGIiYnB8OHDkZCQgJCQEKSlpaFz585abb/99lscP34cjo6OlZ77n//8JyZOnCi+t7T8a4JrYWEhhgwZgoCAAKxfvx5nz57Fm2++iZYtW2LSpEm1dPVEhlNfn4pTKO5y9ImIGg2jjkStXLkSEydOxLhx4/Dss89i/fr1aN68OTZv3lxp+9WrVyMoKAgzZ85Ex44dsWjRInh7e2utQwMA169fx7Rp07Bt2zaYmZlVeixLS0vY29uLLwsLC3Hftm3bUFJSgs2bN6NTp04YNWoUpk+fjpUrV9bexRPVAWM/FSeTyWq1HRFRfWK0kaiSkhKkpqYiOjpa3CaVShEQEICUlJRKP5OSkoKoqCitbYGBgdizZ4/4XqPRICwsDDNnzkSnTp2qPP/ixYuxaNEitGnTBq+99hreeecdmJqaiufp16+f1l/sgYGBWLJkCW7fvo1WrVpVOF5xcTGKi4vF94WFhdV3AFEdqO6puLoYEbK2tkZERES9mZtFRFSbjBaibt26hbKyMtjZ2Wltt7Ozw8WLFyv9TG5ubqXtc3NzxfdLliyBqakppk+fXuW5p0+fDm9vbyiVShw7dgzR0dHIyckRR5pyc3Ph6upa4Tzl+yoLUTExMVi4cGE1V0xU98qfins8SD3pqbjanpDOgES6qk8PRRBVp1E9nZeamorVq1cjLS0NEomkynaPj2Z17doVMpkMb731FmJiYmBubq7XuaOjo7WOW1hYCGdnZ72ORVRbdH0qjl/TQsb295/BqvBnkOoDo4UoGxsbmJiYIC8vT2t7Xl4e7O3tK/2Mvb19te1/+ukn3Lx5E23atBH3l5WV4d1330VsbCyys7MrPa6vry8ePnyI7OxsdOjQocrzlNdQGXNzc70DGJEheXunw80tEwUFSiiVBdXexquvE9Kp6ajpzxZ/Bqk+MNrEcplMBh8fHyQnJ4vbNBoNkpOT4efnV+ln/Pz8tNoDQFJSktg+LCwMZ86cQUZGhvhydHTEzJkzcejQoSprycjIgFQqFZ8I9PPzw48//ojS0lKt83To0KHSW3lE9Z1CcReurldqPA/K2BPSicqp1ZbIynLhzx7VS0a9nRcVFYXw8HD06NEDvXr1QmxsLIqKijBu3DgAwJgxY+Dk5ISYmBgAwIwZM9C/f3+sWLECw4YNw/bt23H69Gls2LABwKO5F38f3jUzM4O9vT06dOgA4NGk8RMnTmDgwIGwtLRESkoK3nnnHbzxxhtiQHrttdewcOFCjB8/Hh988AHOnTuH1atXY9WqVXXVNURP5WmfijP2hHQioPrRUKL6wKghKjQ0FPn5+Zg3bx5yc3Ph5eWFgwcPipO4r169Cqn0r7/I/f39kZCQgLlz52L27Nnw8PDAnj17KqwRVR1zc3Ns374dCxYsQHFxMVxdXfHOO+9ozWdSKBT47rvvMHXqVPj4+MDGxgbz5s3jGlHUYDztU3H6TEgnqk1VjYa6uWUyyFO9YfSJ5REREYiIiKh035EjRypse+WVV/DKK6/U+Ph/nwfl7e2N48ePP/FzXbt2xU8//VTj8xDVN08z6ZZf00LGxtFQagiMHqKIqH7SZUI6NW2GWJKAo6HUEDBEEVGV+DUt9CSGWpKAo6HUEDBEEZGIX9NCuqrtJQke/9mqbjSUP4NUHzBEEZGIX9NCT6uqBVprij+D1JAwRBGRFv5yIn3V1pIE/BmkhsJoi20SEVHjwQVaqSliiCIioqdW3ZIERI0VQxQRET218iUJHsclCaix0ylElZaW4v3334e7uzt69eqFzZs3a+3Py8uDiYlJrRZIRET1X/mSBOVBiksSUFOg08Tyjz/+GP/617/w3nvv4c6dO4iKisKJEyfw+eefi20EQaj1IomIqH7ikgTUlEkEHVKPh4cHVq1aheHDhwMAMjMzMXToUPTp0webN2/GzZs34ejoiLKyMoMV3FAUFhZCoVBArVbDysrK2OUQERmMIVYsJzIWXX5/6zQSdf36da0v+3V3d8eRI0cwaNAghIWFYenSpfpVTEREDRYDEjVVOs2Jsre3x+XLl7W2OTk54YcffsCpU6cwduzY2qyNiIiIqN7SKUQNGjQICQkJFbY7Ojri+++/R1ZWVq0VRkRERFSf6XQ778MPP8TFixcr3efk5IT/+7//Q1JSUq0URkRERFSf6TSxnGqOE8uJiIgaHl1+f+u12ObOnTvx0ksvoXPnzujcuTNeeuklfPPNN3oVS0RERNQQ6RSiNBoNQkNDERoail9++QXu7u5wd3fH+fPnERoailGjRnGdKCIiImoSdJoTtXr1ahw+fBh79+4V14oqt3fvXowbNw6rV69GZGRkbdZIREREVO/oNBIVHx+PZcuWVQhQADBixAgsXbq0wlfBEBERETVGOoWo3377DQEBAVXuDwgIwG+//fbURRERERHVdzrdzmvWrBnu3LmDNm3aVLq/sLAQcrm8VgojImpKHv/qlBs3pMjKMoWr60M4Oj76Ql9+dQpR/aNTiPLz88O6deuwbt26SvevXbsWfn5+tVIYEVFToVKpEBcXBwBIS+uOffuGQxCkkEg0CA5OhLd3OgAgIiKCQYqoHtEpRM2ZMwcDBgyASqXCe++9B09PTwiCgAsXLmDFihX4z3/+gx9++MFQtRIRNUrlI1BqtaUYoABAEKTYt2843NwyoVDcrfZLfomo7ukUovz9/bFjxw5MmjQJu3bt0trXqlUrfP3113juuedqtUAioqaioMBaDFDlBEGKggIlFIq7RqqKiKqiU4gCgH/84x8IDAzEoUOHxEnk7du3x5AhQ9C8efNaL5CIqKlQKlWQSDRaQUoi0UCpLDBiVURUFZ1C1Pfff4+IiAgcP34c//jHP7T2qdVqdOrUCevXr0ffvn1rtUgioqZAobiL4ODECnOiOApFVD/pFKJiY2MxceLESr9LRqFQ4K233sLKlSsZooiI9OTtnQ43t0wUFCihVBYwQBHVYzqtE/W///0PQUFBVe4fMmQIUlNTn7ooIqKmTKG4C1fXKwxQRPWcTiEqLy8PZmZmVe43NTVFfn7+UxdFREREVN/pFKKcnJxw7ty5KvefOXMGDg4OT10UEVFTIpPJarUdEdUNiSAIQk0bT5s2DUeOHMGpU6cqrEz+559/olevXhg4cCDWrFlT64U2NIWFhVAoFFCr1ZXOISMietzjK5ZXhiuWE9UNXX5/6xSi8vLy4O3tDRMTE0RERKBDhw4AgIsXL2Lt2rUoKytDWloa7Ozsnu4KGgGGKCIiooZHl9/fOj2dZ2dnh2PHjmHKlCmIjo5Gef6SSCQIDAzE2rVrGaCIiIioSdB5sc22bdviwIEDuH37NjIzMyEIAjw8PNCqVStD1EdERERUL+kcosq1atUKPXv2rM1aiIiIiBoMnZ7OIyIiIqJHjB6i1q5dCxcXF8jlcvj6+uLkyZPVtt+5cyc8PT0hl8vRpUsXHDhwoMq2kydPhkQiQWxsrLgtOzsb48ePh6urK5o1awY3NzfMnz9f66mY7OxsSCSSCq/jx48/9fUSERFR42DUELVjxw5ERUVh/vz5SEtLQ7du3RAYGIibN29W2v7YsWMYPXo0xo8fj/T0dISEhCAkJKTStau+/fZbHD9+HI6OjlrbL168CI1Gg88//xznz5/HqlWrsH79esyePbvCMQ4fPoycnBzx5ePjUzsXTkRERA2eTksc1DZfX1/07NkTcXFxAACNRgNnZ2dMmzYNs2bNqtA+NDQURUVFSExMFLf17t0bXl5eWL9+vbjt+vXr8PX1xaFDhzBs2DBERkYiMjKyyjqWLVuGdevW4ffffwfwaCTK1dUV6enp8PLy0uvauMQBERFRw6PL72+jjUSVlJQgNTUVAQEBfxUjlSIgIAApKSmVfiYlJUWrPQAEBgZqtddoNAgLC8PMmTPRqVOnGtWiVquhVCorbB8xYgRsbW3Rp08f7N27t9pjFBcXo7CwUOtFREREjZfRQtStW7dQVlZWYV0pOzs75ObmVvqZ3NzcJ7ZfsmQJTE1NMX369BrVkZmZiU8//RRvvfWWuK1FixZYsWIFdu7cif3796NPnz4ICQmpNkjFxMRAoVCIL2dn5xqdn4iIiBomvZc4qI9SU1OxevVqpKWlQSKRPLH99evXERQUhFdeeQUTJ04Ut9vY2CAqKkp837NnT9y4cQPLli3DiBEjKj1WdHS01mcKCwsZpIiIiBoxo4UoGxsbmJiYIC8vT2t7Xl4e7O3tK/2Mvb19te1/+ukn3Lx5E23atBH3l5WV4d1330VsbCyys7PF7Tdu3MDAgQPh7++PDRs2PLFeX19fJCUlVbnf3Nwc5ubmTzwOERHVLX4vIRmK0UKUTCaDj48PkpOTERISAuDRfKbk5GRERERU+hk/Pz8kJydrTRJPSkqCn58fACAsLKzSOVNhYWEYN26cuO369esYOHAgfHx8EB8fD6n0yXc1MzIy4ODgoONVEhGRMalUKvHhJQBQqy1RUGANpVIFheKuuD0iIoJBinRm1Nt5UVFRCA8PR48ePdCrVy/ExsaiqKhIDDxjxoyBk5MTYmJiAAAzZsxA//79sWLFCgwbNgzbt2/H6dOnxZEka2vrCv8RmJmZwd7eXvyy5OvXr2PAgAFo27Ytli9fjvz8fLFt+YjW1q1bIZPJ0L17dwDA7t27sXnzZnzxxReG7RAiIqpVj49ApaV1x759wyEIUkgkGgQHJ8LbO71CO6KaMmqICg0NRX5+PubNm4fc3Fx4eXnh4MGD4uTxq1evao0S+fv7IyEhAXPnzsXs2bPh4eGBPXv2oHPnzjU+Z1JSEjIzM5GZmYnWrVtr7Xt8tYdFixbhypUrMDU1haenJ3bs2IGXX375Ka+YiIiMQa22FAMUAAiCFPv2DYebW6bWiBSRLoy6TlRjxnWiiIiMLycnBxs2bEBWlgu2bg2vsD88fAtcXa9g0qRJnLJBABrIOlFERER1RalUQSLRaG2TSDRQKguMVBE1BgxRRETU6CkUdxEcnCgGqfI5UbyVR0+jUa0TRUREVBVv73S4uWWioEAJpbKAAYqeGkMUERE1GQrFXYYnqjW8nUdERI2WTCar1XZEj+NIFBERNVrW1taIiIjgiuVkEAxRRETUqDEgkaHwdh4RERGRHhiiiIiIiPTAEEVERESkB4YoIiIiIj0wRBERERHpgSGKiIiISA8MUURERER6YIgiIiIi0gNDFBEREZEeGKKIiIiI9MAQRURERKQHhigiIiIiPTBEEREREemBIYqIiIhIDwxRRERERHowNXYBRETUeKlUKpSUlFS5XyaTwdraug4rIqo9DFFERGQQKpUKcXFxT2wXERHBIEUNEm/nERGRQfx9BEqttkRWlgvUastq2xE1FByJIiIig0tL6459+4ZDEKSQSDQIDk6Et3e6scsieiociSIiIoNSqy3FAAUAgiDFvn3DK4xIETU0DFFERGRQBQXWYoAqJwhSFBQojVQRUe1giCIiIoNSKlWQSDRa2yQSDZTKAiNVRFQ7GKKIiMigFIq7CA5OFINU+ZwoheKukSsjejqcWE5ERAbn7Z0ON7dMFBQooVQWMEBRo8AQRUREBiGTybTeKxR3Kw1Pf29H1FAwRBERkUFYW1sjIiKCK5Y3Ao+vPH/jhhRZWaZwdX0IR8dHt2ib6r9HhigiIjKYpviLtbF5fOX56tb7aoorz3NiOREREVWpfATqSet9NcWV5xmiiIiI6Im43ldFRg9Ra9euhYuLC+RyOXx9fXHy5Mlq2+/cuROenp6Qy+Xo0qULDhw4UGXbyZMnQyKRIDY2Vmt7QUEBXn/9dVhZWaFly5YYP3487t27p9XmzJkz6Nu3L+RyOZydnbF06VK9r5GIiKih43pfFRk1RO3YsQNRUVGYP38+0tLS0K1bNwQGBuLmzZuVtj927BhGjx6N8ePHIz09HSEhIQgJCcG5c+cqtP32229x/PhxODo6Vtj3+uuv4/z580hKSkJiYiJ+/PFHTJo0SdxfWFiIIUOGoG3btkhNTcWyZcuwYMECbNiwofYunoiIqAHhel8VSQRBEIx1cl9fX/Ts2VOcsKbRaODs7Ixp06Zh1qxZFdqHhoaiqKgIiYmJ4rbevXvDy8sL69evF7ddv34dvr6+OHToEIYNG4bIyEhERkYCAC5cuIBnn30Wp06dQo8ePQAABw8exAsvvIBr167B0dER69atw5w5c5Cbmys+ejtr1izs2bMHFy9erNG1FRYWQqFQQK1Ww8rKSq/+ISIiMracnBytQYRr1xxw9WobtGlzFa1b54jbJ02aBAcHB2OUWKt0+f1ttJGokpISpKamIiAg4K9ipFIEBAQgJSWl0s+kpKRotQeAwMBArfYajQZhYWGYOXMmOnXqVOkxWrZsKQYoAAgICIBUKsWJEyfENv369dNauyQwMBCXLl3C7du39btgIiKiBkitVot/Tkvrjk2bJuC774KwadMEpKV1r7RdU2G0EHXr1i2UlZXBzs5Oa7udnR1yc3Mr/Uxubu4T2y9ZsgSmpqaYPn16lcewtbXV2mZqagqlUikep6rzlO+rTHFxMQoLC7VeREREDV1paSmAJz+dV96uKTH6xPLalJqaitWrV2PLli2QSCR1eu6YmBgoFArx5ezsXKfnJyIiMgRT00dLSj7p6bzydk2J0UKUjY0NTExMkJeXp7U9Ly8P9vb2lX7G3t6+2vY//fQTbt68iTZt2sDU1BSmpqa4cuUK3n33Xbi4uIjH+PvE9YcPH6KgoEA8TlXnKd9XmejoaKjVavH1xx9/1KAXiIiI6reWLVsCePLTeeXtmhKjhSiZTAYfHx8kJyeL2zQaDZKTk+Hn51fpZ/z8/LTaA0BSUpLYPiwsDGfOnEFGRob4cnR0xMyZM3Ho0CHxGHfu3EFqaqp4jO+//x4ajQa+vr5imx9//FFraDIpKQkdOnRAq1atKq3N3NwcVlZWWi8iIqLGgk/nVWTUsbeoqCiEh4ejR48e6NWrF2JjY1FUVIRx48YBAMaMGQMnJyfExMQAAGbMmIH+/ftjxYoVGDZsGLZv347Tp0+LTw1YW1tXWHLezMwM9vb26NChAwCgY8eOCAoKwsSJE7F+/XqUlpYiIiICo0aNEpdDeO2117Bw4UKMHz8eH3zwAc6dO4fVq1dj1apVddU1RERE9Y63dzrc3DJRUKCEUlnQpAMUYOQQFRoaivz8fMybNw+5ubnw8vLCwYMHxUncV69ehVT612CZv78/EhISMHfuXMyePRseHh7Ys2cPOnfurNN5t23bhoiICAwePBhSqRQjR47EmjVrxP0KhQLfffcdpk6dCh8fH9jY2GDevHlaa0kRERE1RQrF3SYfnsoZdZ2oxozrRBERUWPw93WiqsJ1ooiIiIge8/iaibXRrjFpes8jEhERUY1ZW1sjIiICJSUlVbaRyWQV5iQ3BQxRREREVK2mGJBqgrfziIiIiPTAEEVERESkB4YoIiIiIj0wRBERERHpgSGKiIiISA8MUURERER6YIgiIiIi0gNDFBEREZEeGKKIiIiI9MAQRURERKQHhigiIiIiPTBEEREREemBIYqIiIhIDwxRRERERHpgiCIiIiLSA0MUERERkR4YooiIiIj0wBBFREREpAeGKCIiIiI9MEQRERER6YEhioiIiEgPDFFEREREemCIIiIiItIDQxQRERGRHhiiiIiIiPTAEEVERESkB4YoIiIiIj0wRBERERHpgSGKiIiIGpxr14Affnj0T2NhiCIiIqIGZdMmoG1bYNCgR//ctMk4dTBEERERUYNx7RowaRKg0Tx6r9EAb71lnBEphigiIiJqEFQqFY4fV4kBqlxZGXDihAoqlapO62GIIiIionpPpVIhLi4Ox45thUSinaIkEg2OHt2KuLi4Og1SDFFERERU75WUlAAAFIq7CA5OFIOURKJBcHAiFIq7Wu3qgtFD1Nq1a+Hi4gK5XA5fX1+cPHmy2vY7d+6Ep6cn5HI5unTpggMHDmjtX7BgATw9PWFhYYFWrVohICAAJ06cEPcfOXIEEomk0tepU6cAANnZ2ZXuP378eO13ABEREenE2zsdkZGxCA/fgsjIWHh7pxulDqOGqB07diAqKgrz589HWloaunXrhsDAQNy8ebPS9seOHcPo0aMxfvx4pKenIyQkBCEhITh37pzYpn379oiLi8PZs2fx888/w8XFBUOGDEF+fj4AwN/fHzk5OVqvCRMmwNXVFT169NA63+HDh7Xa+fj4GK4ziIiIqMYUirtwdb0ijkAZg0QQBMFYJ/f19UXPnj0RFxcHANBoNHB2dsa0adMwa9asCu1DQ0NRVFSExMREcVvv3r3h5eWF9evXV3qOwsJCKBQKHD58GIMHD66wv7S0FE5OTpg2bRo+/PBDAI9GolxdXZGeng4vLy+9rq38vGq1GlZWVnodg4iIiB7JycnBhg0bnthu0qRJcHBw0Ps8uvz+NtpIVElJCVJTUxEQEPBXMVIpAgICkJKSUulnUlJStNoDQGBgYJXtS0pKsGHDBigUCnTr1q3SNnv37oVKpcK4ceMq7BsxYgRsbW3Rp08f7N27t9rrKS4uRmFhodaLiIiIGi+jhahbt26hrKwMdnZ2Wtvt7OyQm5tb6Wdyc3Nr1D4xMREtWrSAXC7HqlWrkJSUBBsbm0qPuWnTJgQGBqJ169bithYtWmDFihXYuXMn9u/fjz59+iAkJKTaIBUTEwOFQiG+nJ2dq71+IiIiathMjV2AIQwcOBAZGRm4desWNm7ciFdffRUnTpyAra2tVrtr167h0KFD+Pe//6213cbGBlFRUeL7nj174saNG1i2bBlGjBhR6Tmjo6O1PlNYWMggRURE1IgZbSTKxsYGJiYmyMvL09qel5cHe3v7Sj9jb29fo/YWFhZwd3dH7969sWnTJpiammJTJWvCx8fHw9rauspg9DhfX19kZmZWud/c3BxWVlZaLyIiIqodMpmsVtvVBqONRMlkMvj4+CA5ORkhISEAHk0sT05ORkRERKWf8fPzQ3JyMiIjI8VtSUlJ8PPzq/ZcGo0GxcXFWtsEQUB8fDzGjBkDMzOzJ9abkZHxVBPViIiISH/W1taIiIiodh0omUwGa2vrOqvJqLfzoqKiEB4ejh49eqBXr16IjY1FUVGROMl7zJgxcHJyQkxMDABgxowZ6N+/P1asWIFhw4Zh+/btOH36tDhbv6ioCB9//DFGjBgBBwcH3Lp1C2vXrsX169fxyiuvaJ37+++/R1ZWFiZMmFChrq1bt0Imk6F79+4AgN27d2Pz5s344osvDNkdREREVI26DEg1YdQQFRoaivz8fMybNw+5ubnw8vLCwYMHxcnjV69ehVT61x1Hf39/JCQkYO7cuZg9ezY8PDywZ88edO7cGQBgYmKCixcvYuvWrbh16xasra3Rs2dP/PTTT+jUqZPWuTdt2gR/f394enpWWtuiRYtw5coVmJqawtPTEzt27MDLL79soJ4gIiKihsao60Q1ZlwnioiIqOFpEOtEERERETVkDFFEREREemCIIiIiItIDQxQRERGRHhiiiIiIiPTAEEVERESkB4YoIiIiIj0wRBERERHpgSGKiIiISA8MUURERER6YIgiIiIi0gNDFBEREZEeGKKIiIiI9MAQRURERKQHhigiIiIiPTBEEREREemBIYqIiIhIDwxRRERERHpgiCIiIiLSA0MUERERkR4YooiIiIj0wBBFREREpAeGKCIiIiI9MEQRERER6YEhioiIiEgPDFFEREREemCIIiIiItIDQxQRERGRHhiiiIiIiPTAEEVERESkB4YoIiIiIj0wRBERERHpgSGKiIiISA8MUURERER6YIgiIiIi0gNDFBEREZEeTI1dABERETUtKpUKJSUlVe6XyWSwtrauw4r0Y/SRqLVr18LFxQVyuRy+vr44efJkte137twJT09PyOVydOnSBQcOHNDav2DBAnh6esLCwgKtWrVCQEAATpw4odXGxcUFEolE67V48WKtNmfOnEHfvn0hl8vh7OyMpUuX1s4FExERNWEqlQpxcXHYsGFDla+4uDioVCpjl/pERg1RO3bsQFRUFObPn4+0tDR069YNgYGBuHnzZqXtjx07htGjR2P8+PFIT09HSEgIQkJCcO7cObFN+/btERcXh7Nnz+Lnn3+Gi4sLhgwZgvz8fK1j/fOf/0ROTo74mjZtmrivsLAQQ4YMQdu2bZGamoply5ZhwYIF2LBhg2E6goiIqImobgRKn3bGJBEEQTDWyX19fdGzZ0/ExcUBADQaDZydnTFt2jTMmjWrQvvQ0FAUFRUhMTFR3Na7d294eXlh/fr1lZ6jsLAQCoUChw8fxuDBgwE8GomKjIxEZGRkpZ9Zt24d5syZg9zcXMhkMgDArFmzsGfPHly8eLFG11Z+XrVaDSsrqxp9hoiIqLHLycmp0aDEpEmT4ODgUAcVadPl97fRRqJKSkqQmpqKgICAv4qRShEQEICUlJRKP5OSkqLVHgACAwOrbF9SUoINGzZAoVCgW7duWvsWL14Ma2trdO/eHcuWLcPDhw+1ztOvXz8xQJWf59KlS7h9+3al5youLkZhYaHWi4iIiBovo00sv3XrFsrKymBnZ6e13c7OrsrRntzc3Erb5+bmam1LTEzEqFGjcP/+fTg4OCApKQk2Njbi/unTp8Pb2xtKpRLHjh1DdHQ0cnJysHLlSvE8rq6uFc5Tvq9Vq1YVaouJicHChQtrePVEREQEAGq1JQoKrKFUqqBQ3DV2OTpplE/nDRw4EBkZGbh16xY2btyIV199FSdOnICtrS0AICoqSmzbtWtXyGQyvPXWW4iJiYG5uble54yOjtY6bmFhIZydnZ/uQoiIiBqxtLTu2LdvOARBColEg+DgRHh7pxu7rBoz2u08GxsbmJiYIC8vT2t7Xl4e7O3tK/2Mvb19jdpbWFjA3d0dvXv3xqZNm2BqaopNmzZVWYuvry8ePnyI7Ozsas9Tvq8y5ubmsLKy0noRERFR5dRqSzFAAYAgSLFv33Co1ZZGrqzmjBaiZDIZfHx8kJycLG7TaDRITk6Gn59fpZ/x8/PTag8ASUlJVbZ//LjFxcVV7s/IyIBUKhVHqvz8/PDjjz+itLRU6zwdOnSo9FYeERER6aagwFoMUOUEQYqCAqWRKtKdUZc4iIqKwsaNG7F161ZcuHABU6ZMQVFREcaNGwcAGDNmDKKjo8X2M2bMwMGDB7FixQpcvHgRCxYswOnTpxEREQEAKCoqwuzZs3H8+HFcuXIFqampePPNN3H9+nW88sorAB5NGo+NjcX//vc//P7779i2bRveeecdvPHGG2JAeu211yCTyTB+/HicP38eO3bswOrVq7Vu1xEREZHuyh/aUipVkEg0WvskEg2UygKtdvWaYGSffvqp0KZNG0Emkwm9evUSjh8/Lu7r37+/EB4ertX+3//+t9C+fXtBJpMJnTp1Evbv3y/u+/PPP4V//OMfgqOjoyCTyQQHBwdhxIgRwsmTJ8U2qampgq+vr6BQKAS5XC507NhR+OSTT4QHDx5oned///uf0KdPH8Hc3FxwcnISFi9erNN1qdVqAYCgVqt1+hwREVFjd+vWLeHGjRvC8uW3BRMTjQAIgomJRli+/LZw48YN4datW0arTZff30ZdJ6ox4zpRRERET3btGpCZCbi7A61bG7sa3X5/N8qn84iIiKhhaN26foQnfRj9u/OIiIiIGiKGKCIiIiI9MEQRERER6YEhioiIiEgPDFFEREREemCIIiIiItIDQxQRERGRHhiiiIiIiPTAEEVERESkB4YoIiIiIj0wRBERERHpgd+dZyDl3+tcWFho5EqIiIiopsp/b5f/Hq8OQ5SB3L17FwDg7Oxs5EqIiIhIV3fv3oVCoai2jUSoSdQinWk0Gty4cQOWlpaQSCSVtiksLISzszP++OMPWFlZ1XGF9Qv74hH2w1/YF4+wHx5hP/yFffGIofpBEATcvXsXjo6OkEqrn/XEkSgDkUqlaN26dY3aWllZNen/EB7HvniE/fAX9sUj7IdH2A9/YV88Yoh+eNIIVDlOLCciIiLSA0MUERERkR4YoozI3Nwc8+fPh7m5ubFLMTr2xSPsh7+wLx5hPzzCfvgL++KR+tAPnFhOREREpAeORBERERHpgSGKiIiISA8MUURERER6YIgiIiIi0gNDlIGtXbsWLi4ukMvl8PX1xcmTJ6tse/78eYwcORIuLi6QSCSIjY2tu0LrgC59sXHjRvTt2xetWrVCq1atEBAQUG37hkSXfti9ezd69OiBli1bwsLCAl5eXvjyyy/rsFrD0aUfHrd9+3ZIJBKEhIQYtsA6pEtfbNmyBRKJROsll8vrsFrD0fVn4s6dO5g6dSocHBxgbm6O9u3b48CBA3VUreHo0g8DBgyo8PMgkUgwbNiwOqzYcHT9mYiNjUWHDh3QrFkzODs745133sGDBw8MV6BABrN9+3ZBJpMJmzdvFs6fPy9MnDhRaNmypZCXl1dp+5MnTwrvvfee8PXXXwv29vbCqlWr6rZgA9K1L1577TVh7dq1Qnp6unDhwgVh7NixgkKhEK5du1bHldcuXfvhhx9+EHbv3i388ssvQmZmphAbGyuYmJgIBw8erOPKa5eu/VAuKytLcHJyEvr27Su8+OKLdVOsgenaF/Hx8YKVlZWQk5MjvnJzc+u46tqnaz8UFxcLPXr0EF544QXh559/FrKysoQjR44IGRkZdVx57dK1H1QqldbPwrlz5wQTExMhPj6+bgs3AF37Ytu2bYK5ubmwbds2ISsrSzh06JDg4OAgvPPOOwarkSHKgHr16iVMnTpVfF9WViY4OjoKMTExT/xs27ZtG1WIepq+EARBePjwoWBpaSls3brVUCXWiaftB0EQhO7duwtz5841RHl1Rp9+ePjwoeDv7y988cUXQnh4eKMJUbr2RXx8vKBQKOqourqjaz+sW7dOaNeunVBSUlJXJdaJp/07YtWqVYKlpaVw7949Q5VYZ3Tti6lTpwqDBg3S2hYVFSU899xzBquRt/MMpKSkBKmpqQgICBC3SaVSBAQEICUlxYiV1b3a6Iv79++jtLQUSqXSUGUa3NP2gyAISE5OxqVLl9CvXz9DlmpQ+vbDP//5T9ja2mL8+PF1UWad0Lcv7t27h7Zt28LZ2Rkvvvgizp8/XxflGow+/bB37174+flh6tSpsLOzQ+fOnfHJJ5+grKysrsqudbXxd+WmTZswatQoWFhYGKrMOqFPX/j7+yM1NVW85ff777/jwIEDeOGFFwxWJ7+A2EBu3bqFsrIy2NnZaW23s7PDxYsXjVSVcdRGX3zwwQdwdHTU+g+qodG3H9RqNZycnFBcXAwTExN89tlneP755w1drsHo0w8///wzNm3ahIyMjDqosO7o0xcdOnTA5s2b0bVrV6jVaixfvhz+/v44f/58jb/0vL7Rpx9+//13fP/993j99ddx4MABZGZm4u2330ZpaSnmz59fF2XXuqf9u/LkyZM4d+4cNm3aZKgS64w+ffHaa6/h1q1b6NOnDwRBwMOHDzF58mTMnj3bYHUyRFG9t3jxYmzfvh1HjhxpNBNodWFpaYmMjAzcu3cPycnJiIqKQrt27TBgwABjl1Yn7t69i7CwMGzcuBE2NjbGLsfo/Pz84OfnJ7739/dHx44d8fnnn2PRokVGrKxuaTQa2NraYsOGDTAxMYGPjw+uX7+OZcuWNdgQ9bQ2bdqELl26oFevXsYuxSiOHDmCTz75BJ999hl8fX2RmZmJGTNmYNGiRfjwww8Nck6GKAOxsbGBiYkJ8vLytLbn5eXB3t7eSFUZx9P0xfLly7F48WIcPnwYXbt2NWSZBqdvP0ilUri7uwMAvLy8cOHCBcTExDTYEKVrP1y+fBnZ2dkIDg4Wt2k0GgCAqakpLl26BDc3N8MWbSC18feEmZkZunfvjszMTEOUWCf06QcHBweYmZnBxMRE3NaxY0fk5uaipKQEMpnMoDUbwtP8PBQVFWH79u345z//acgS64w+ffHhhx8iLCwMEyZMAAB06dIFRUVFmDRpEubMmQOptPZnMHFOlIHIZDL4+PggOTlZ3KbRaJCcnKz1f5FNgb59sXTpUixatAgHDx5Ejx496qJUg6qtnwmNRoPi4mJDlFgndO0HT09PnD17FhkZGeJrxIgRGDhwIDIyMuDs7FyX5deq2viZKCsrw9mzZ+Hg4GCoMg1On3547rnnkJmZKQZqAPj111/h4ODQIAMU8HQ/Dzt37kRxcTHeeOMNQ5dZJ/Tpi/v371cISuUhWzDU1wQbbMo6Cdu3bxfMzc2FLVu2CL/88oswadIkoWXLluLjyGFhYcKsWbPE9sXFxUJ6erqQnp4uODg4CO+9956Qnp4u/Pbbb8a6hFqja18sXrxYkMlkwjfffKP1+O7du3eNdQm1Qtd++OSTT4TvvvtOuHz5svDLL78Iy5cvF0xNTYWNGzca6xJqha798HeN6ek8Xfti4cKFwqFDh4TLly8LqampwqhRowS5XC6cP3/eWJdQK3Tth6tXrwqWlpZCRESEcOnSJSExMVGwtbUVPvroI2NdQq3Q97+NPn36CKGhoXVdrkHp2hfz588XLC0tha+//lr4/fffhe+++05wc3MTXn31VYPVyBBlYJ9++qnQpk0bQSaTCb169RKOHz8u7uvfv78QHh4uvs/KyhIAVHj179+/7gs3AF36om3btpX2xfz58+u+8FqmSz/MmTNHcHd3F+RyudCqVSvBz89P2L59uxGqrn269MPfNaYQJQi69UVkZKTY1s7OTnjhhReEtLQ0I1Rd+3T9mTh27Jjg6+srmJubC+3atRM+/vhj4eHDh3Vcde3TtR8uXrwoABC+++67Oq7U8HTpi9LSUmHBggWCm5ubIJfLBWdnZ+Htt98Wbt++bbD6JIJgqDEuIiIiosaLc6KIiIiI9MAQRURERKQHhigiIiIiPTBEEREREemBIYqIiIhIDwxRRERERHpgiCIiIiLSA0MUEVEjMHbsWISEhBi7DKImhSGKiAxq7NixkEgk4sva2hpBQUE4c+aMsUurFY9fW/mrT58+BjtfdnY2JBIJMjIytLavXr0aW7ZsMdh5iagihigiMrigoCDk5OQgJycHycnJMDU1xfDhw41dVq2Jj48Xry8nJwd79+6ttF1paanBalAoFGjZsqXBjk9EFTFEEZHBmZubw97eHvb29vDy8sKsWbPwxx9/ID8/H4MGDUJERIRW+/z8fMhkMvEb3F1cXLBo0SKMHj0aFhYWcHJywtq1a7U+s3LlSnTp0gUWFhZwdnbG22+/jXv37on7r1y5guDgYLRq1QoWFhbo1KkTDhw4AAC4ffs2Xn/9dTzzzDNo1qwZPDw8EB8fX+Pra9mypXh99vb2UCqV4ojRjh070L9/f8jlcmzbtg0qlQqjR4+Gk5MTmjdvji5duuDrr7/WOp5Go8HSpUvh7u4Oc3NztGnTBh9//DEAwNXVFQDQvXt3SCQSDBgwAEDF23nFxcWYPn06bG1tIZfL0adPH5w6dUrcf+TIEUgkEiQnJ6NHjx5o3rw5/P39cenSpRpfN1FTxxBFRHXq3r17+Oqrr+Du7g5ra2tMmDABCQkJKC4uFtt89dVXcHJywqBBg8Rty5YtQ7du3ZCeno5Zs2ZhxowZSEpKEvdLpVKsWbMG58+fx9atW/H999/j/fffF/dPnToVxcXF+PHHH3H27FksWbIELVq0AAB8+OGH+OWXX/Df//4XFy5cwLp162BjY1Mr11te64ULFxAYGIgHDx7Ax8cH+/fvx7lz5zBp0iSEhYXh5MmT4meio6OxePFisa6EhATY2dkBgNju8OHDyMnJwe7duys97/vvv49du3Zh69atSEtLg7u7OwIDA1FQUKDVbs6cOVixYgVOnz4NU1NTvPnmm7Vy3URNgsG+2piISBCE8PBwwcTERLCwsBAsLCwEAIKDg4OQmpoqCIIg/Pnnn0KrVq2EHTt2iJ/p2rWrsGDBAvF927ZthaCgIK3jhoaGCkOHDq3yvDt37hSsra3F9126dNE65uOCg4OFcePG6XV9AAS5XC5en4WFhfDtt98KWVlZAgAhNjb2iccYNmyY8O677wqCIAiFhYWCubm5sHHjxkrblh83PT1da3t4eLjw4osvCoIgCPfu3RPMzMyEbdu2iftLSkoER0dHYenSpYIgCMIPP/wgABAOHz4sttm/f78AQPjzzz916QKiJosjUURkcAMHDkRGRgYyMjJw8uRJBAYGYujQobhy5QrkcjnCwsKwefNmAEBaWhrOnTuHsWPHah3Dz8+vwvsLFy6I7w8fPozBgwfDyckJlpaWCAsLg0qlwv379wEA06dPx0cffYTnnnsO8+fP15rYPmXKFGzfvh1eXl54//33cezYMZ2ub9WqVeL1ZWRk4Pnnnxf39ejRQ6ttWVkZFi1ahC5dukCpVKJFixY4dOgQrl69CgC4cOECiouLMXjwYJ1qeNzly5dRWlqK5557TtxmZmaGXr16afUZAHTt2lX8s4ODAwDg5s2bep+bqClhiCIig7OwsIC7uzvc3d3Rs2dPfPHFFygqKsLGjRsBABMmTEBSUhKuXbuG+Ph4DBo0CG3btq3x8bOzszF8+HB07doVu3btQmpqqjhnqqSkRDzH77//jrCwMJw9exY9evTAp59+CgBioHvnnXdw48YNDB48GO+9916Nz29vby9en7u7OywsLLSu/XHLli3D6tWr8cEHH+CHH35ARkYGAgMDxTqbNWtW4/PWBjMzM/HPEokEwKM5WUT0ZAxRRFTnJBIJpFIp/vzzTwBAly5d0KNHD2zcuBEJCQmVzss5fvx4hfcdO3YEAKSmpkKj0WDFihXo3bs32rdvjxs3blQ4hrOzMyZPnozdu3fj3XffFUMcADzzzDMIDw/HV199hdjYWGzYsKE2L1l09OhRvPjii3jjjTfQrVs3tGvXDr/++qu438PDA82aNRMn1f+dTCYD8GhEqypubm6QyWQ4evSouK20tBSnTp3Cs88+W0tXQkSmxi6AiBq/4uJi5ObmAnj0JFxcXBzu3buH4OBgsc2ECRMQEREBCwsL/OMf/6hwjKNHj2Lp0qUICQlBUlISdu7cif379wMA3N3dUVpaik8//RTBwcE4evQo1q9fr/X5yMhIDB06FO3bt8ft27fxww8/iCFs3rx58PHxQadOnVBcXIzExERxX23z8PDAN998g2PHjqFVq1ZYuXIl8vLyxHAjl8vxwQcf4P3334dMJsNzzz2H/Px8nD9/HuPHj4etrS2aNWuGgwcPonXr1pDL5VAoFFrnsLCwwJQpUzBz5kwolUq0adMGS5cuxf379zF+/HiDXBdRU8SRKCIyuIMHD8LBwQEODg7w9fXFqVOnsHPnTvHxfAAYPXo0TE1NMXr0aMjl8grHePfdd3H69Gl0794dH330EVauXInAwEAAQLdu3bBy5UosWbIEnTt3xrZt2xATE6P1+bKyMkydOhUdO3ZEUFAQ2rdvj88++wzAo9Gd6OhodO3aFf369YOJiQm2b99ukL6YO3cuvL29ERgYiAEDBsDe3r7CSuMffvgh3n33XcybNw8dO3ZEaGioOE/J1NQUa9asweeffw5HR0e8+OKLlZ5n8eLFGDlyJMLCwuDt7Y3MzEwcOnQIrVq1Msh1ETVFEkEQBGMXQUSUnZ0NNzc3nDp1Ct7e3lr7XFxcEBkZicjISOMUR0RUCd7OIyKjKi0thUqlwty5c9G7d+8KAYqIqL7i7TwiMqqjR4/CwcEBp06dqjCPydg++eQTtGjRotLX0KFDjV0eERkZb+cREVWhoKCgwgrf5Zo1awYnJ6c6roiI6hOGKCIiIiI98HYeERERkR4YooiIiIj0wBBFREREpAeGKCIiIiI9MEQRERER6YEhioiIiEgPDFFEREREemCIIiIiItLD/wMnPRbuH/JfIAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHHCAYAAACbXt0gAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXURJREFUeJzt3XlcVOXiBvBnBhhGEUYHZBUFQcXcQUVwTUnoKsZtUytccsmupEZpueRyrXAXFcsst0rDa5pXzash5W0Rl1gy3G4YaiqgzuiAmIDM+/vDHydHFoFhZlie7+dzPjHnvOec97wR8/Se97xHJoQQICIiIqJqkVu6AkRERER1GcMUERERkREYpoiIiIiMwDBFREREZASGKSIiIiIjMEwRERERGYFhioiIiMgIDFNERERERmCYIiIiIjICwxQRUT23efNmyGQyXLhwwdJVIaqXGKaIyGgnTpxAVFQUOnToADs7O7Rs2RLPP/88/ve//5UqO2DAAMhkMshkMsjlcjg4OKBdu3aIjIxEQkJClc67d+9e9O/fH87OzmjcuDFat26N559/HgcOHKipSyvl/fffx+7du0utP3LkCObPn49bt26Z7NwPmz9/vtSWMpkMjRs3xmOPPYY5c+YgNze3Rs6xbds2xMbG1sixiOorhikiMtrixYuxc+dODBo0CKtWrcLEiRPx/fffw9/fH+np6aXKt2jRAp999hk+/fRTLF26FMOGDcORI0cwePBgDB8+HEVFRY8857JlyzBs2DDIZDLMnDkTK1euxDPPPIPffvsN8fHxprhMABWHqQULFpg1TJX48MMP8dlnn2HFihXw8/PDe++9h7CwMNTEq1cZpogezdrSFSCiui86Ohrbtm2DQqGQ1g0fPhydOnXCokWL8PnnnxuUV6lUeOmllwzWLVq0CFOmTMEHH3wALy8vLF68uNzz3bt3DwsXLsQTTzyBb775ptT2a9euGXlFtcedO3fQuHHjCss8++yzcHJyAgBMmjQJzzzzDHbt2oWjR48iKCjIHNUkatDYM0VERgsODjYIUgDQpk0bdOjQAWfOnKnUMaysrLB69Wo89thjiIuLg06nK7fsjRs3kJubi969e5e53dnZ2eDz3bt3MX/+fLRt2xZKpRJubm54+umncf78eanMsmXLEBwcDEdHRzRq1AgBAQH48ssvDY4jk8mQn5+PLVu2SLfWxowZg/nz52P69OkAAG9vb2nbg2OUPv/8cwQEBKBRo0ZQq9UYMWIE/vjjD4PjDxgwAB07dkRycjL69euHxo0bY9asWZVqvwcNHDgQAJCZmVlhuQ8++AAdOnSAra0t3N3dMXnyZIOetQEDBuDrr7/GxYsXpWvy8vKqcn2I6jv2TBGRSQghkJOTgw4dOlR6HysrK4wcORLvvPMOfvzxRwwZMqTMcs7OzmjUqBH27t2L1157DWq1utxjFhcXY+jQoUhMTMSIESMwdepU5OXlISEhAenp6fDx8QEArFq1CsOGDcOLL76IwsJCxMfH47nnnsO+ffukenz22WcYP348evbsiYkTJwIAfHx8YGdnh//973/44osvsHLlSqmXqHnz5gCA9957D++88w6ef/55jB8/HtevX8eaNWvQr18/pKamomnTplJ9NRoNnnzySYwYMQIvvfQSXFxcKt1+JUpCoqOjY7ll5s+fjwULFiAkJASvvvoqzp07hw8//BAnTpzATz/9BBsbG8yePRs6nQ6XL1/GypUrAQBNmjSpcn2I6j1BRGQCn332mQAgNmzYYLC+f//+okOHDuXu99VXXwkAYtWqVRUef+7cuQKAsLOzE08++aR47733RHJycqlyGzduFADEihUrSm3T6/XSz3fu3DHYVlhYKDp27CgGDhxosN7Ozk6MHj261LGWLl0qAIjMzEyD9RcuXBBWVlbivffeM1j/66+/Cmtra4P1/fv3FwDEunXryr3uB82bN08AEOfOnRPXr18XmZmZ4qOPPhK2trbCxcVF5OfnCyGE2LRpk0Hdrl27JhQKhRg8eLAoLi6WjhcXFycAiI0bN0rrhgwZIlq1alWp+hA1VLzNR0Q17uzZs5g8eTKCgoIwevToKu1b0vORl5dXYbkFCxZg27Zt6NatGw4ePIjZs2cjICAA/v7+BrcWd+7cCScnJ7z22muljiGTyaSfGzVqJP188+ZN6HQ69O3bFykpKVWq/8N27doFvV6P559/Hjdu3JAWV1dXtGnTBt99951BeVtbW4wdO7ZK52jXrh2aN28Ob29vvPLKK/D19cXXX39d7lirQ4cOobCwENOmTYNc/tfXwIQJE+Dg4ICvv/666hdK1IDxNh8R1ajs7GwMGTIEKpUKX375JaysrKq0/+3btwEA9vb2jyw7cuRIjBw5Erm5uTh27Bg2b96Mbdu2ITw8HOnp6VAqlTh//jzatWsHa+uK/9zt27cP7777LtLS0lBQUCCtfzBwVcdvv/0GIQTatGlT5nYbGxuDzx4eHqXGnz3Kzp074eDgABsbG7Ro0UK6dVmeixcvArgfwh6kUCjQunVraTsRVQ7DFBHVGJ1OhyeffBK3bt3CDz/8AHd39yofo2QqBV9f30rv4+DggCeeeAJPPPEEbGxssGXLFhw7dgz9+/ev1P4//PADhg0bhn79+uGDDz6Am5sbbGxssGnTJmzbtq3K1/AgvV4PmUyG//znP2UGy4fHID3YQ1ZZ/fr1k8ZpEZH5MUwRUY24e/cuwsPD8b///Q+HDh3CY489VuVjFBcXY9u2bWjcuDH69OlTrXp0794dW7ZsQVZWFoD7A8SPHTuGoqKiUr1AJXbu3AmlUomDBw/C1tZWWr9p06ZSZcvrqSpvvY+PD4QQ8Pb2Rtu2bat6OSbRqlUrAMC5c+fQunVraX1hYSEyMzMREhIirTO2Z46oIeCYKSIyWnFxMYYPH46kpCTs2LGjWnMbFRcXY8qUKThz5gymTJkCBweHcsveuXMHSUlJZW77z3/+A+CvW1jPPPMMbty4gbi4uFJlxf9PamllZQWZTIbi4mJp24ULF8qcnNPOzq7MiTnt7OwAoNS2p59+GlZWVliwYEGpSTSFENBoNGVfpAmFhIRAoVBg9erVBnXasGEDdDqdwVOUdnZ2FU5TQUTsmSKiGvDGG29gz549CA8Ph1arLTVJ58MTdOp0OqnMnTt3kJGRgV27duH8+fMYMWIEFi5cWOH57ty5g+DgYPTq1QthYWHw9PTErVu3sHv3bvzwww+IiIhAt27dAACjRo3Cp59+iujoaBw/fhx9+/ZFfn4+Dh06hH/84x946qmnMGTIEKxYsQJhYWF44YUXcO3aNaxduxa+vr44efKkwbkDAgJw6NAhrFixAu7u7vD29kZgYCACAgIAALNnz8aIESNgY2OD8PBw+Pj44N1338XMmTNx4cIFREREwN7eHpmZmfjqq68wceJEvPnmm0a1f1U1b94cM2fOxIIFCxAWFoZhw4bh3Llz+OCDD9CjRw+Df18BAQHYvn07oqOj0aNHDzRp0gTh4eFmrS9RrWfJRwmJqH4oeaS/vKWisk2aNBFt2rQRL730kvjmm28qdb6ioiLx8ccfi4iICNGqVStha2srGjduLLp16yaWLl0qCgoKDMrfuXNHzJ49W3h7ewsbGxvh6uoqnn32WXH+/HmpzIYNG0SbNm2Era2t8PPzE5s2bZKmHnjQ2bNnRb9+/USjRo0EAINpEhYuXCg8PDyEXC4vNU3Czp07RZ8+fYSdnZ2ws7MTfn5+YvLkyeLcuXMGbVPRtBEPK6nf9evXKyz38NQIJeLi4oSfn5+wsbERLi4u4tVXXxU3b940KHP79m3xwgsviKZNmwoAnCaBqAwyIWrg5U1EREREDRTHTBEREREZgWGKiIiIyAgMU0RERERGYJgiIiIiMgLDFBEREZERGKaIiIiIjMBJO01Er9fj6tWrsLe35+sYiIiI6gghBPLy8uDu7g65vHJ9TgxTJnL16lV4enpauhpERERUDX/88QdatGhRqbIMUyZib28P4P6/jIreMUZERES1R25uLjw9PaXv8cpgmDKRklt7Dg4ODFNERER1TFWG6HAAOhEREZERGKaIiIiIjMAwRURERGQEjpkiIiKqRfR6PQoLCy1djXpNoVBUetqDymCYIiIiqiUKCwuRmZkJvV5v6arUa3K5HN7e3lAoFDVyPIYpIiKiWkAIgaysLFhZWcHT07NGe07oLyWTamdlZaFly5Y1MrE2wxQREVEtcO/ePdy5cwfu7u5o3LixpatTrzVv3hxXr17FvXv3YGNjY/TxGHuJiIhqgeLiYgCosVtPVL6SNi5pc2MxTBEREdUifJ+r6dV0GzNMERERERmBY6aoyjQaTYWP7SoUCjg6OpqxRkRERJbDMEVVotFoEBcXJ33W6eyh1TpCrdZApcqT1kdFRTFQERE1EGPGjMGWLVsAANbW1lCr1ejcuTNGjhyJMWPGVPrJxM2bN2PatGm4deuWCWtb8ximqEoe7JFKSemGvXuHQgg5ZDI9wsP3wd8/tVQ5IiIyPUvfNQgLC8OmTZtQXFyMnJwcHDhwAFOnTsWXX36JPXv2wNq6/kaO+ntlZFI6nb0UpABACDn27h0KH58Mgx4qU3rwD8fVq3JkZlrD2/se3N3vT3bH241E1FA8fNegPKa8a2BrawtXV1cAgIeHB/z9/dGrVy8MGjQImzdvxvjx47FixQps2rQJv//+O9RqNcLDw7FkyRI0adIEhw8fxtixYwH8NUB83rx5mD9/Pj777DOsWrUK586dg52dHQYOHIjY2Fg4Ozub5FqqigPQqVq0WkcpSJUQQg6tVm2W85f84Vi/fj0mTTqBHj2a47nnHNGjR3NMmnQC69evR1xcHDQajVnqQ0RkSZW9G2DuuwYDBw5Ely5dsGvXLgD3Zx5fvXo1Tp06hS1btuDbb7/FjBkzAADBwcGIjY2Fg4MDsrKykJWVhTfffBMAUFRUhIULF+KXX37B7t27ceHCBYwZM8as11IR9kxRtajVGshkeoNAJZPpoVZrzXL+kj8Ij+oh4+1GIiLL8vPzw8mTJwEA06ZNk9Z7eXnh3XffxaRJk/DBBx9AoVBApVJBJpNJPVwlXn75Zenn1q1bY/Xq1ejRowdu376NJk2amOU6KsKeKaoWlSoP4eH7IJPdv6VWMmbKXLf4Sli6h4yIiComhJBu2x06dAiDBg2Ch4cH7O3tERkZCY1Ggzt37lR4jOTkZISHh6Nly5awt7dH//79AQCXLl0yef0rgz1TVG3+/qnw8cmAVquGWq01e5ACLN9DRkREFTtz5gy8vb1x4cIFDB06FK+++iree+89qNVq/Pjjjxg3bhwKCwvLfYVOfn4+QkNDERoaiq1bt6J58+a4dOkSQkNDa83dB/ZMkVFUqjx4e1+0SJAqOX9t6CEjIqLSvv32W/z666945plnkJycDL1ej+XLl6NXr15o27Ytrl69alBeoVCUesXL2bNnodFosGjRIvTt2xd+fn64du2aOS/jkdgzRVVS2XdGmfPdUrWhh4yIqKErKChAdna2wdQIMTExGDp0KEaNGoX09HQUFRVhzZo1CA8Px08//YR169YZHMPLywu3b99GYmIiunTpgsaNG6Nly5ZQKBRYs2YNJk2ahPT0dCxcuNBCV1k2himqEkdHR0RFRdW6GdBVqjyGKCIiCzpw4ADc3NxgbW2NZs2aoUuXLli9ejVGjx4NuVyOLl26YMWKFVi8eDFmzpyJfv36ISYmBqNGjZKOERwcjEmTJmH48OHQaDTS1AibN2/GrFmzsHr1avj7+2PZsmUYNmyYBa/WkEwIISxdifooNzcXKpUKOp0ODg4Olq5OvZOVlYX169c/stzEiRPh5uZmhhoRERnn7t27yMzMhLe3N5RKZZX2rQ3zTNUlFbV1db6/2TNFdVJtvN1IRGQptfWuQUPBMEV1Ev9wEBEZ4t87y2GYojqLfziIiKg24NQIREREREZgmCIiIiIyAsMUERERkREYpoiIiIiMYPEwtXbtWnh5eUGpVCIwMBDHjx+vsPyOHTvg5+cHpVKJTp06Yf/+/Qbbx4wZA5lMZrCEhYVJ2y9cuIBx48bB29sbjRo1go+PD+bNm2fwVNiFCxdKHUMmk+Ho0aM1e/FERERU51n0ab7t27cjOjoa69atQ2BgIGJjYxEaGopz587B2dm5VPkjR45g5MiR0vT027ZtQ0REBFJSUtCxY0epXFhYGDZt2iR9trW1lX4+e/Ys9Ho9PvroI/j6+iI9PR0TJkxAfn4+li1bZnC+Q4cOoUOHDtJnPj1GRERED7Noz9SKFSswYcIEjB07Fo899hjWrVuHxo0bY+PGjWWWX7VqFcLCwjB9+nS0b98eCxcuhL+/f6lZX21tbeHq6iotzZo1k7aVBK3BgwejdevWGDZsGN58803s2rWr1PkcHR0NjmNjY1OzDUBERESPdPjwYchkMty6davS+3h5eSE2NtZkdXqQxcJUYWEhkpOTERIS8ldl5HKEhIQgKSmpzH2SkpIMygNAaGhoqfKHDx+Gs7Mz2rVrh1dffRUajabCuuh0OqjV6lLrhw0bBmdnZ/Tp0wd79uyp7KURERE1KCVDbCZNmlRq2+TJkyGTyTBmzBjzV8xMLBambty4geLiYri4uBisd3FxQXZ2dpn7ZGdnP7J8WFgYPv30UyQmJmLx4sX473//iyeffBLFxcVlHjMjIwNr1qzBK6+8Iq1r0qQJli9fjh07duDrr79Gnz59EBERUWGgKigoQG5ursFCRETUUHh6eiI+Ph5//vmntO7u3bvYtm0bWrZsacGamZ7FB6DXtBEjRmDYsGHo1KkTIiIisG/fPpw4cQKHDx8uVfbKlSsICwvDc889hwkTJkjrnZycEB0djcDAQPTo0QOLFi3CSy+9hKVLl5Z73piYGKhUKmnx9PQ0xeURERHVSv7+/vD09DQYNrNr1y60bNkS3bp1k9YVFBRgypQpcHZ2hlKpRJ8+fXDixAmDY+3fvx9t27ZFo0aN8Pjjj+PChQulzvfjjz+ib9++aNSoETw9PTFlyhTk5+eb7PoqYrEw5eTkBCsrK+Tk5Bisz8nJgaura5n7uLq6Vqk8ALRu3RpOTk7IyMgwWH/16lU8/vjjCA4Oxvr16x9Z38DAwFLHeNDMmTOh0+mk5Y8//njkMYmIiEzh8mXgu+/u/9OcXn75ZYMHwDZu3IixY8calJkxYwZ27tyJLVu2ICUlBb6+vggNDYVWqwUA/PHHH3j66acRHh6OtLQ0jB8/Hm+//bbBMc6fP4+wsDA888wzOHnyJLZv344ff/wRUVFRpr/IMlgsTCkUCgQEBCAxMVFap9frkZiYiKCgoDL3CQoKMigPAAkJCeWWB4DLly9Do9HAzc1NWnflyhUMGDAAAQEB2LRpE+TyRzdDWlqawTEeZmtrCwcHB4OFiIjI3DZsAFq1AgYOvP/PDRvMd+6XXnoJP/74Iy5evIiLFy/ip59+wksvvSRtz8/Px4cffoilS5fiySefxGOPPYaPP/4YjRo1wob/r+iHH34IHx8fLF++HO3atcOLL75YarxVTEwMXnzxRUybNg1t2rRBcHAwVq9ejU8//RR379413wX/P4tOjRAdHY3Ro0eje/fu6NmzJ2JjY5Gfny+l2FGjRsHDwwMxMTEAgKlTp6J///5Yvnw5hgwZgvj4ePz8889Sz9Lt27exYMECPPPMM3B1dcX58+cxY8YMKfUCfwWpVq1aYdmyZbh+/bpUn5Ieri1btkChUEjdkrt27cLGjRvxySefmK1tiIiIquryZWDiRECvv/9ZrwdeeQUIDQVatDD9+Zs3b44hQ4Zg8+bNEEJgyJAhcHJykrafP38eRUVF6N27t7TOxsYGPXv2xJkzZwAAZ86cQWBgoMFxH+40+eWXX3Dy5Els3bpVWieEgF6vR2ZmJtq3b2+KyyuXRcPU8OHDcf36dcydOxfZ2dno2rUrDhw4IA0yv3TpkkGvUXBwMLZt24Y5c+Zg1qxZaNOmDXbv3i3NMWVlZYWTJ09iy5YtuHXrFtzd3TF48GAsXLhQmmsqISEBGRkZyMjIQIuHfrOEENLPCxcuxMWLF2FtbQ0/Pz9s374dzz77rKmbhIiIqNp+++2vIFWiuBjIyDBPmALu3+orud22du1ak5zj9u3beOWVVzBlypRS2ywx2N2iYQoAoqKiyr3HWdag8eeeew7PPfdcmeUbNWqEgwcPVni+MWPGPPLxzNGjR2P06NEVliEiIqpt2rQB5HLDQGVlBfj6mq8OYWFhKCwshEwmk+4KlfDx8YFCocBPP/2EVq1aAQCKiopw4sQJTJs2DQDQvn37Uk/PP/wGEn9/f5w+fRq+5rywCtS7p/mIiIgaqhYtgPXr7wco4P4/P/rIfL1S989phTNnzuD06dOwKqnI/7Ozs8Orr76K6dOn48CBAzh9+jQmTJiAO3fuYNy4cQCASZMm4bfffsP06dNx7tw5bNu2DZs3bzY4zltvvYUjR44gKioKaWlp+O233/Dvf//bYgPQLd4zRURERDVn3Lj7Y6QyMu73SJkzSJWo6CGsRYsWQa/XIzIyEnl5eejevTsOHjwova2kZcuW2LlzJ15//XWsWbMGPXv2xPvvv4+XX35ZOkbnzp3x3//+F7Nnz0bfvn0hhICPjw+GDx9u8msri0w8OFCIakxubi5UKhV0Oh2f7CMioke6e/cuMjMz4e3tDaVSaenq1GsVtXV1vr95m4+IiIjICAxTREREREZgmCIiIiIyAsMUERERkREYpoiIiGoRPhdmejXdxgxTREREtUDJnEyFhYUWrkn9V9LGD8+DVV2cZ4qIiKgWsLa2RuPGjXH9+nXY2NgYvE6Nao5er8f169fRuHFjWFvXTAximCIiIqoFZDIZ3NzckJmZiYsXL1q6OvWaXC5Hy5YtIZPJauR4DFNERES1hEKhQJs2bXirz8QUCkWN9vwxTBEREdUicrmcM6DXMQxTRFSraDSaCv+vXKFQwNHR0Yw1IiKqGMMUEdUaGo0GcXFxjywXFRXFQEVEtQbDFFkceyKoRGXHiXA8CRHVJgxTZFHsiaCK6HT20GodoVZroFLlWbo6RERlYpgii3q4h6G8L0/2RDQ8KSndsHfvUAghh0ymR3j4Pvj7p1q6WkREpTBMUa3BL08qodPZS78LACCEHHv3DoWPTwZ7qIio1uH0qlQrlPflqdPZW7hmZAlaraP0u1BCCDm0WrWFakREVD6GKaoV+OVJD1KrNZDJ9AbrZDI91GqthWpERFQ+himqFfjlSQ9SqfIQHr5P+p0oue3LW3xEVBtxzBTVCiVfng+PmeKXZ8OiUCikn/39U+HjkwGtVg21Wmvwu/BgOSIiS2OYolqjoi9PahgcHR0RFRXFeceIqE5hmCKLeriHQaXKKzNEsSei4WBQIqK6hmGKLIo9EUREVNcxTJHFMSgREVFdxqf5iIiIiIzAMEVERERkBN7moyrTaDQc40RERPT/GKaoSjQaDeLi4h5ZLioqioGKysVATkT1CcMUVUlFX4DVKUcNDwM5EdU3HDNFRtHp7JGZ6cUXElOlMZATUX3DnimqtpSUbqVe/+Lvn2rpalEdo9PZQ6t1hFqt4az3RFQnWbxnau3atfDy8oJSqURgYCCOHz9eYfkdO3bAz88PSqUSnTp1wv79+w22jxkzBjKZzGAJCwszKKPVavHiiy/CwcEBTZs2xbhx43D79m2DMidPnkTfvn2hVCrh6emJJUuW1MwF1xM6nb0UpABACDn27h3KHiqqkpSUboiNnYYtW0YjNnYaUlK6WbpKRERVZtEwtX37dkRHR2PevHlISUlBly5dEBoaimvXrpVZ/siRIxg5ciTGjRuH1NRUREREICIiAunp6QblwsLCkJWVJS1ffPGFwfYXX3wRp06dQkJCAvbt24fvv/8eEydOlLbn5uZi8ODBaNWqFZKTk7F06VLMnz8f69evr/lGqKO0WkcpSJUQQg6tVm2hGlFdw0BORPWFRcPUihUrMGHCBIwdOxaPPfYY1q1bh8aNG2Pjxo1lll+1ahXCwsIwffp0tG/fHgsXLoS/v3+pway2trZwdXWVlmbNmknbzpw5gwMHDuCTTz5BYGAg+vTpgzVr1iA+Ph5Xr14FAGzduhWFhYXYuHEjOnTogBEjRmDKlClYsWKF6RqjjlGrNZDJ9AbrZDI91GqthWpEdQ0DORHVFxYLU4WFhUhOTkZISMhflZHLERISgqSkpDL3SUpKMigPAKGhoaXKHz58GM7OzmjXrh1effVVaDQag2M0bdoU3bt3l9aFhIRALpfj2LFjUpl+/foZvFw3NDQU586dw82bN6t/0fWISpWH8PB9UqAqGTPFMS9UWQzkRFRfWGwA+o0bN1BcXAwXFxeD9S4uLjh79myZ+2RnZ5dZPjs7W/ocFhaGp59+Gt7e3jh//jxmzZqFJ598EklJSbCyskJ2djacnZ0NjmFtbQ21Wi0dJzs7G97e3qXOU7LtwZ6uEgUFBSgoKJA+5+bmPqoJ6qQHA6a/fyp8fDKg1aqhVmsNgtSD5YjKUhLIH36IgYGciOqaevc034gRI6SfO3XqhM6dO8PHxweHDx/GoEGDTHbemJgYLFiwwGTHry0cHR0RFRXFCRep2hjIiai+sViYcnJygpWVFXJycgzW5+TkwNXVtcx9XF1dq1QeAFq3bg0nJydkZGRg0KBBcHV1LTXA/d69e9BqtdJxyjtPybayzJw5E9HR0dLn3NxceHp6lluvuoxBiYzBQE5E9Y3FxkwpFAoEBAQgMTFRWqfX65GYmIigoKAy9wkKCjIoDwAJCQnllgeAy5cvQ6PRwM3NTTrGrVu3kJycLJX59ttvodfrERgYKJX5/vvvUVRUZHCedu3alXmLD7g/6N3BwcFgIaKyOTo6ws3NrdyFQYqI6hRhQfHx8cLW1lZs3rxZnD59WkycOFE0bdpUZGdnCyGEiIyMFG+//bZU/qeffhLW1tZi2bJl4syZM2LevHnCxsZG/Prrr0IIIfLy8sSbb74pkpKSRGZmpjh06JDw9/cXbdq0EXfv3pWOExYWJrp16yaOHTsmfvzxR9GmTRsxcuRIafutW7eEi4uLiIyMFOnp6SI+Pl40btxYfPTRR5W+Np1OJwAInU5nbDMRERGRmVTn+9uiYUoIIdasWSNatmwpFAqF6Nmzpzh69Ki0rX///mL06NEG5f/1r3+Jtm3bCoVCITp06CC+/vpradudO3fE4MGDRfPmzYWNjY1o1aqVmDBhghTOSmg0GjFy5EjRpEkT4eDgIMaOHSvy8vIMyvzyyy+iT58+wtbWVnh4eIhFixZV6boYpoiIiOqe6nx/y4QQwrJ9Y/VTbm4uVCoVdDodb/kRERHVEdX5/rb462SIiIiI6jKGKSIiIiIjMEwRERERGYFhioiIiMgIDFNERERERmCYIiIiIjICwxQRERGRERimiIiIiIxgsRcdExFVlUaj4QuSiajWYZgiojpBo9EgLi7ukeWioqIYqIjIrHibj4jqhIp6pKpTjoiopjBMEVGdpNPZIzPTCzqdvaWrQkQNHG/zEVGdk5LSDXv3DoUQcshkeoSH74O/f6qlq0VEDRR7poioTtHp7KUgBQBCyLF371D2UBGRxbBnqo7gU0xE92m1jlKQKiGEHFqtGipVnoVqRUQNGcNUHcCnmIj+olZrIJPpDQKVTKaHWq21YK2IqCHjbb46gE8xEf1FpcpDePg+yGR6AJDGTLFXiogshT1TRFQnKBQK6Wd//1T4+GRAq1VDrdYaBKkHyxERmQPDFBHVCY6OjoiKiuLYQSKqdRim6iCdzh5arSPUag1vbVCDwqBERLURw1Qdw/l1iIiIahcOQK9DOL8OERFR7cMwVYdUNL8OERERWQbDVB1Q8nRSyfw6D3pwfh0+xURERGR+HDNVBzz4FJOHRy7eekuF4mIZrKwEFi/OxQsvjORTTERERBYiE0IIS1eiPsrNzYVKpYJOp4ODg0ONHvvyZSAjA/D1BVq0qNFDExERNWjV+f5mz1Qd1KIFQxQREVFtwTFTREREREZgmCIiIiIyAm/zEVG9oNFo+KoZIrIIhikiqvM0Gg3i4uIeWS4qKoqBiohqHG/zEVGd93CPlE5nj8xMr1JvB6io54qIqLrYM0VE9QrfX0lE5saeKSKqN/j+SiKyBIuHqbVr18LLywtKpRKBgYE4fvx4heV37NgBPz8/KJVKdOrUCfv37y+37KRJkyCTyRAbGyutO3z4MGQyWZnLiRMnAAAXLlwoc/vRo0dr5JqJyDT4/koisgSLhqnt27cjOjoa8+bNQ0pKCrp06YLQ0FBcu3atzPJHjhzByJEjMW7cOKSmpiIiIgIRERFIT08vVfarr77C0aNH4e7ubrA+ODgYWVlZBsv48ePh7e2N7t27G5Q9dOiQQbmAgICau3giqnGPen8lEZEpWDRMrVixAhMmTMDYsWPx2GOPYd26dWjcuDE2btxYZvlVq1YhLCwM06dPR/v27bFw4UL4+/uXeornypUreO2117B161bY2NgYbFMoFHB1dZUWR0dH/Pvf/8bYsWMhk8kMyjo6OhqUffhYRFS7qFR5CA/fJwWqkjFTKlWehWtGRPWZxQagFxYWIjk5GTNnzpTWyeVyhISEICkpqcx9kpKSEB0dbbAuNDQUu3fvlj7r9XpERkZi+vTp6NChwyPrsWfPHmg0GowdO7bUtmHDhuHu3bto27YtZsyYgWHDhpV7nIKCAhQUFEifc3NzH3luIqp5/v6p8PHJgFarhlqtZZAiIpOzWJi6ceMGiouL4eLiYrDexcUFZ8+eLXOf7OzsMstnZ2dLnxcvXgxra2tMmTKlUvXYsGEDQkND0eKBl901adIEy5cvR+/evSGXy7Fz505ERERg9+7d5QaqmJgYLFiwoFLnJDKlhjh5pUKhMPisUuWVGaIeLkdEVBPq1dQIycnJWLVqFVJSUkrdsivL5cuXcfDgQfzrX/8yWO/k5GTQA9ajRw9cvXoVS5cuLTdMzZw502Cf3NxceHp6VvNKiKrn4ckrdTp7aLWOUKs1BuGivk1e6ejoiKioqAYXIomodrBYmHJycoKVlRVycnIM1ufk5MDV1bXMfVxdXSss/8MPP+DatWto2bKltL24uBhvvPEGYmNjceHCBYN9N23aBEdHxwpv35UIDAxEQkJCudttbW1ha2v7yOMQmdKDYaKi+Zbq4+SVDEpEZCkWG4CuUCgQEBCAxMREaZ1er0diYiKCgoLK3CcoKMigPAAkJCRI5SMjI3Hy5EmkpaVJi7u7O6ZPn46DBw8a7CeEwKZNmzBq1KhKDSxPS0uDm5tbVS+TyCI43xIRkflY9DZfdHQ0Ro8eje7du6Nnz56IjY1Ffn6+NBh81KhR8PDwQExMDABg6tSp6N+/P5YvX44hQ4YgPj4eP//8M9avXw/g/v+ZPvx/pzY2NnB1dUW7du0M1n/77bfIzMzE+PHjS9Vry5YtUCgU6NatGwBg165d2LhxIz755JMabwMiU6hoviUOyCYiqlkWDVPDhw/H9evXMXfuXGRnZ6Nr1644cOCANMj80qVLkMv/+kIIDg7Gtm3bMGfOHMyaNQtt2rTB7t270bFjxyqfe8OGDQgODoafn1+Z2xcuXIiLFy/C2toafn5+2L59O5599tnqXSiRmZXMt/RgoOJ8S0REpiETQghLV6I+ys3NhUqlgk6ng4ODg6WrQw1EVlaW1FNb0ZipiRMn8rY1EVEZqvP9Xa+e5iOiv3C+JSIi82CYIqrHyptviYiIao7FX3RMRDWnspNScvJKIqKaw54ponqEk1fWDg1xFnqihoxhiqie4Ze0ZT08C3156tss9EQNGW/zERHVoId7pHQ6e2RmepWaMLU+zkJP1FCxZ4qIyEQqmp6CiOoP9kwREZkAX+lD1HAwTBERmUBFr/QhovqFYYqIyARKXunzIL7Sh6h+YpgiIjIBlSoP4eH7pEBVMmaKk6gS1T8cgE5EZCJ8pQ9Rw8AwRURUgx6eXb68V/pwFnqi+oNhioioBnEWeqKGh2GKiKiGMSgRNSwcgE5ERERkBIYpIiIiIiMwTBEREREZgWGKiIiIyAgMU0RERERGYJgiIiIiMgLDFBEREZERGKaIiIiIjMAwRURERGQEhikiIiIiIzBMERERERmBYYqIiIjICAxTREREREZgmCIiIiIyAsMUERERkREYpoiIiIiMwDBFREREZARrS1eAiOoujUaDwsLCcrcrFAo4OjqasUZERObHMEVE1aLRaBAXFyd91unsodU6Qq3WQKXKk9ZHRUUxUBFRvWbx23xr166Fl5cXlEolAgMDcfz48QrL79ixA35+flAqlejUqRP2799fbtlJkyZBJpMhNjbWYL2XlxdkMpnBsmjRIoMyJ0+eRN++faFUKuHp6YklS5ZU+xqJ6qMHe6RSUrohNnYatmwZjdjYaUhJ6VZmOSKi+siiYWr79u2Ijo7GvHnzkJKSgi5duiA0NBTXrl0rs/yRI0cwcuRIjBs3DqmpqYiIiEBERATS09NLlf3qq69w9OhRuLu7l3msf/7zn8jKypKW1157TdqWm5uLwYMHo1WrVkhOTsbSpUsxf/58rF+/vmYunKge0enssXfvUAhx/8+JEHLs3TsUOp29hWtGRGQeFg1TK1aswIQJEzB27Fg89thjWLduHRo3boyNGzeWWX7VqlUICwvD9OnT0b59eyxcuBD+/v4GtxoA4MqVK3jttdewdetW2NjYlHkse3t7uLq6SoudnZ20bevWrSgsLMTGjRvRoUMHjBgxAlOmTMGKFStq7uKJ6gmt1lEKUiWEkEOrVVuoRkRE5mWxMFVYWIjk5GSEhIT8VRm5HCEhIUhKSipzn6SkJIPyABAaGmpQXq/XIzIyEtOnT0eHDh3KPf+iRYvg6OiIbt26YenSpbh3757Befr16weFQmFwnnPnzuHmzZtlHq+goAC5ubkGC1FDoFZrIJPpDdbJZHqo1VoL1YiIyLwsFqZu3LiB4uJiuLi4GKx3cXFBdnZ2mftkZ2c/svzixYthbW2NKVOmlHvuKVOmID4+Ht999x1eeeUVvP/++5gxY8Yjz1OyrSwxMTFQqVTS4unpWe75ieoTlSoP4eH7pEAlk+kRHr7PYBA6EVF9Vq+e5ktOTsaqVauQkpICmUxWbrno6Gjp586dO0OhUOCVV15BTEwMbG1tq3XumTNnGhw3NzeXgYoaDH//VPj4ZECrVUOt1jJIEVGDYrGeKScnJ1hZWSEnJ8dgfU5ODlxdXcvcx9XVtcLyP/zwA65du4aWLVvC2toa1tbWuHjxIt544w14eXmVW5fAwEDcu3cPFy5cqPA8JdvKYmtrCwcHB4OFqCFRqfLg7X2RQYqIGpwqhamioiLMmDEDvr6+6NmzZ6mB4jk5ObCysqrUsRQKBQICApCYmCit0+v1SExMRFBQUJn7BAUFGZQHgISEBKl8ZGQkTp48ibS0NGlxd3fH9OnTcfDgwXLrkpaWBrlcDmdnZ+k833//PYqKigzO065dOzRr1qxS10dU3z04prAmyhER1VVVus333nvv4dNPP8Wbb76JW7duITo6GseOHcNHH30klRFCVPp40dHRGD16NLp3746ePXsiNjYW+fn5GDt2LABg1KhR8PDwQExMDABg6tSp6N+/P5YvX44hQ4YgPj4eP//8szRlgaOjY6nJAW1sbODq6op27doBuD+4/NixY3j88cdhb2+PpKQkvP7663jppZekoPTCCy9gwYIFGDduHN566y2kp6dj1apVWLlyZVWai6hec3R0RFRUFGdAJyISVeDr6yv27t0rff7tt9+Er6+vGDNmjNDr9SI7O1vI5fKqHFKsWbNGtGzZUigUCtGzZ09x9OhRaVv//v3F6NGjDcr/61//Em3bthUKhUJ06NBBfP311xUev1WrVmLlypXS5+TkZBEYGChUKpVQKpWiffv24v333xd379412O+XX34Rffr0Eba2tsLDw0MsWrSoStel0+kEAKHT6aq0HxEREVlOdb6/ZUJUviupcePGOH36tMH4oytXrmDgwIHo0aMHlixZAk9PTxQXF9d86qtjcnNzoVKpoNPpOH6KiIiojqjO93eVxky5urri/PnzBus8PDzw3Xff4cSJExgzZkxVDkdERERU51UpTA0cOBDbtm0rtd7d3R3ffvstMjMza6xiRERERHVBlQagv/POOzh79myZ2zw8PPDf//4XCQkJNVIxIiIiorqgSmOmqPI4ZoqIiKjuMfmYqRI7duzA008/jY4dO6Jjx454+umn8eWXX1bnUERERER1WpXClF6vx/DhwzF8+HCcPn0avr6+8PX1xalTpzB8+HCMGDGiSvNMEREREdV1VRoztWrVKhw6dAh79uzB0KFDDbbt2bMHY8eOxapVqzBt2rSarCMRERFRrVWlnqlNmzZh6dKlpYIUAAwbNgxLliwp9YoZIiIiovqsSmHqt99+Q0hISLnbQ0JC8NtvvxldKSIiIqK6okphqlGjRrh161a523Nzc6FUKo2tExEREVGdUaUxU0FBQfjwww/x4Ycflrl97dq1CAoKqpGKERERVUSj0fBF21QrVClMzZ49GwMGDIBGo8Gbb74JPz8/CCFw5swZLF++HP/+97/x3XffmaquREREAO4Hqbi4uEeWi4qKYqAik6tSmAoODsb27dsxceJE7Ny502Bbs2bN8MUXX6B37941WkEiIqKHPdwjpdPZQ6t1hFqtgUqVV245IlOoUpgCgL///e8IDQ3FwYMHpcHmbdu2xeDBg9G4ceMaryAREVFFUlK6Ye/eoRBCDplMj/DwffD3T7V0tagBqVKY+vbbbxEVFYWjR4/i73//u8E2nU6HDh06YN26dejbt2+NVpKIiKgsOp29FKQAQAg59u4dCh+fDIMeKiJTqtLTfLGxsZgwYUKZ76pRqVR45ZVXsGLFihqrHBERUUW0WkcpSJUQQg6tVm2hGlFDVKUw9csvvyAsLKzc7YMHD0ZycrLRlSIiIqoMtVoDmUxvsE4m00Ot1lqoRtQQVek2X05ODmxsbMo/mLU1rl+/bnSliIjqqwcf5796VY7MTGt4e9+Du/v9QMDH+atGpcpDePi+UmOmeIuPzKlKYcrDwwPp6enw9fUtc/vJkyfh5uZWIxUjIqpvHnycv6JB03ycv2r8/VPh45MBrVYNtVrLIEVmV6XbfH/729/wzjvv4O7du6W2/fnnn5g3b16Z7+0jIqK/HtMvb9C0TmdvUI7Kp1AoDD6rVHnw9r5YKkg9XI7IFKrUMzVnzhzs2rULbdu2RVRUFNq1awcAOHv2LNauXYvi4mLMnj3bJBUlIqovKho0zV6VynF0dERUVBRnQKdaoUphysXFBUeOHMGrr76KmTNnQggBAJDJZAgNDcXatWvh4uJikooSEdUXJYOmHwxUHDRddQxKVFtUedLOVq1aYf/+/bh58yYyMjIghECbNm3QrFkzU9SPiKje4aBpovqlymGqRLNmzdCjR4+arAsRUYPBQdNE9Ue1wxQRERlHpcpjiCKqB6r0NB8RERERGWKYIiIyk8o+ps/H+YnqFt7mIyIyEz7OT1Q/MUwREZkRgxJR/cPbfERERERGYJgiIiIiMgLDFBEREZERGKaIiIiIjMAwRURERGQEi4eptWvXwsvLC0qlEoGBgTh+/HiF5Xfs2AE/Pz8olUp06tQJ+/fvL7fspEmTIJPJEBsbK627cOECxo0bB29vbzRq1Ag+Pj6YN2+ewaPKFy5cgEwmK7UcPXrU6OslIiKi+sWiYWr79u2Ijo7GvHnzkJKSgi5duiA0NBTXrl0rs/yRI0cwcuRIjBs3DqmpqYiIiEBERATS09NLlf3qq69w9OhRuLu7G6w/e/Ys9Ho9PvroI5w6dQorV67EunXrMGvWrFLHOHToELKysqQlICCgZi6ciIiI6g2ZEEJY6uSBgYHo0aMH4uLiAAB6vR6enp547bXX8Pbbb5cqP3z4cOTn52Pfvn3Sul69eqFr165Yt26dtO7KlSsIDAzEwYMHMWTIEEybNg3Tpk0rtx5Lly7Fhx9+iN9//x3A/Z4pb29vpKamomvXrtW6ttzcXKhUKuh0Ojg4OFTrGERERGRe1fn+tljPVGFhIZKTkxESEvJXZeRyhISEICkpqcx9kpKSDMoDQGhoqEF5vV6PyMhITJ8+HR06dKhUXXQ6HdRqdan1w4YNg7OzM/r06YM9e/ZUeIyCggLk5uYaLERERFT/WWwG9Bs3bqC4uBguLi4G611cXHD27Nky98nOzi6zfHZ2tvR58eLFsLa2xpQpUypVj4yMDKxZswbLli2T1jVp0gTLly9H7969IZfLsXPnTkRERGD37t0YNmxYmceJiYnBggULKnVOIiKi6tJoNHwlUS1Tr14nk5ycjFWrViElJQUymeyR5a9cuYKwsDA899xzmDBhgrTeyckJ0dHR0ucePXrg6tWrWLp0ablhaubMmQb75ObmwtPT04irISIiMqTRaKShMRWJiopioDIji93mc3JygpWVFXJycgzW5+TkwNXVtcx9XF1dKyz/ww8/4Nq1a2jZsiWsra1hbW2Nixcv4o033oCXl5fBflevXsXjjz+O4OBgrF+//pH1DQwMREZGRrnbbW1t4eDgYLAQERHVpId7pHQ6e2RmekGns6+wHJmWxcKUQqFAQEAAEhMTpXV6vR6JiYkICgoqc5+goCCD8gCQkJAglY+MjMTJkyeRlpYmLe7u7pg+fToOHjwo7XPlyhUMGDAAAQEB2LRpE+TyRzdDWloa3NzcqnOpRERENS4lpRtiY6dhy5bRiI2dhpSUbpauUoNl0dt80dHRGD16NLp3746ePXsiNjYW+fn5GDt2LABg1KhR8PDwQExMDABg6tSp6N+/P5YvX44hQ4YgPj4eP//8s9Sz5OjoWKpb08bGBq6urmjXrh2Av4JUq1atsGzZMly/fl0qW9LDtWXLFigUCnTrdv8Xc9euXdi4cSM++eQT0zYIERFRJeh09ti7dyiEuN8ZIIQce/cOhY9PBlSqPAvXruGxaJgaPnw4rl+/jrlz5yI7Oxtdu3bFgQMHpEHmly5dMug1Cg4OxrZt2zBnzhzMmjULbdq0we7du9GxY8dKnzMhIQEZGRnIyMhAixYtDLY9OEvEwoULcfHiRVhbW8PPzw/bt2/Hs88+a+QVExERGU+rdZSCVAkh5NBq1QxTFmDReabqM84zRURENS0rKwvr16+HTmeP2NhpBoFKJtNj2rRYqFR5mDhxYo0NTWloTw9W5/u7Xj3NR0RE1BCoVHkID98n3eqTyfQID99X471SDz89qNPZQ6t1hFqtMThXQ396kGGKiIioDvL3T4WPTwa0WjXUaq1Jbu892COVktKtVHjz908tVa4hsviLjomIiKhyFAqFwWeVKg/e3hdLBamHyxmrvAHvD0/J0FCxZ4qIiKiOcHR0RFRUlNnHMHHAe8UYpoiIiOoQS4xNUqs1kMn0pQa8q9Vas9elNuJtPiIiIqpQyYB3mUwPACYb8F5XsWeKiIiIHskcA97rKoYpIiIiqhSVKo8hqgy8zUdERERlquxTgTX99GBdw54pIiIiKpOlnh6saximiIiIqFwNPShVBm/zERERERmBYYqIiIjICAxTREREREbgmCkiIqIGQKPRcCC5iTBMERER1XMajQZxcXHSZ53OHlqtI9RqjcG8UVFRUQxU1cAwRUREVM892COVktINe/cOhRBy6bUw/v6ppcpR5XHMFBERUQOh09lLQQoAhJBj796h0OnsLVyzuo09U0RERBZi7nFMWq2jFKRKCCGHVqvma2KMwDBFRERkAZYYx6RWayCT6Q0ClUymh1qtrZHjN1QMU0RERBZgiXFMKlUewsP3lToXe6WMwzBFRERkQeWNY/LxyTBJyPH3T4WPTwa0WjXUai2DVA1gmCIiIrIgS4xjUqnyGKJqEJ/mIyIisqCScUwPqulxTAqFokbLkSH2TBEREVmQOcYxOTo6IioqijOgmwjDFBERkYWZYxwTg5LpMEwRERHVAhzHVHdxzBQREZEFcBxT/cGeKSIiIgvgOKb6g2GKiIjIQhiU6gfe5iMiIiIyAsMUERERkREYpoiIiIiMwDBFREREZASLh6m1a9fCy8sLSqUSgYGBOH78eIXld+zYAT8/PyiVSnTq1An79+8vt+ykSZMgk8kQGxtrsF6r1eLFF1+Eg4MDmjZtinHjxuH27dsGZU6ePIm+fftCqVTC09MTS5YsqfY1EhERUf1l0TC1fft2REdHY968eUhJSUGXLl0QGhqKa9eulVn+yJEjGDlyJMaNG4fU1FREREQgIiIC6enppcp+9dVXOHr0KNzd3Utte/HFF3Hq1CkkJCRg3759+P777zFx4kRpe25uLgYPHoxWrVohOTkZS5cuxfz587F+/fqau3giIiKqH4QF9ezZU0yePFn6XFxcLNzd3UVMTEyZ5Z9//nkxZMgQg3WBgYHilVdeMVh3+fJl4eHhIdLT00WrVq3EypUrpW2nT58WAMSJEyekdf/5z3+ETCYTV65cEUII8cEHH4hmzZqJgoICqcxbb70l2rVrV+lr0+l0AoDQ6XSV3oeIiIgsqzrf3xbrmSosLERycjJCQkKkdXK5HCEhIUhKSipzn6SkJIPyABAaGmpQXq/XIzIyEtOnT0eHDh3KPEbTpk3RvXt3aV1ISAjkcjmOHTsmlenXr5/BrLOhoaE4d+4cbt68WWbdCgoKkJuba7AQERFR/WexMHXjxg0UFxfDxcXFYL2Liwuys7PL3Cc7O/uR5RcvXgxra2tMmTKl3GM4OzsbrLO2toZarZaOU955SraVJSYmBiqVSlo8PT3LLEdERET1i8UHoNek5ORkrFq1Cps3b4ZMJjPruWfOnAmdTictf/zxh1nPT0RERJZhsTDl5OQEKysr5OTkGKzPycmBq6trmfu4urpWWP6HH37AtWvX0LJlS1hbW8Pa2hoXL17EG2+8AS8vL+kYDw9wv3fvHrRarXSc8s5Tsq0stra2cHBwMFiIiIio/rNYmFIoFAgICEBiYqK0Tq/XIzExEUFBQWXuExQUZFAeABISEqTykZGROHnyJNLS0qTF3d0d06dPx8GDB6Vj3Lp1C8nJydIxvv32W+j1egQGBkplvv/+exQVFRmcp127dmjWrFnNNAAREVEdp9FokJWVVe6i0WgsXUWzsOiLjqOjozF69Gh0794dPXv2RGxsLPLz8zF27FgAwKhRo+Dh4YGYmBgAwNSpU9G/f38sX74cQ4YMQXx8PH7++WdpygJHR8dSL420sbGBq6sr2rVrBwBo3749wsLCMGHCBKxbtw5FRUWIiorCiBEjpGkUXnjhBSxYsADjxo3DW2+9hfT0dKxatQorV640V9MQERHVahqNBnFxcdJnnc4eWq0j1GoNVKo8aX1UVFS9f6GzRcPU8OHDcf36dcydOxfZ2dno2rUrDhw4IA32vnTpEuTyvzrPgoODsW3bNsyZMwezZs1CmzZtsHv3bnTs2LFK5926dSuioqIwaNAgyOVyPPPMM1i9erW0XaVS4ZtvvsHkyZMREBAAJycnzJ0712AuKiIiooassLBQ+jklpRv27h0KIeSQyfQID98Hf//UUuXqK5kQQli6EvVRbm4uVCoVdDodx08REVG9k5WVhfXr10Ons0ds7DQ8ONuSTKbHtGmxUKnyMHHiRLi5uVmwplVTne/vevU0HxEREZmXVuuIh6etFEIOrVZtoRqZH8MUERERVZtarYFMpjdYJ5PpoVZrLVQj82OYIiIiompTqfIQHr5PClQlY6YeHIRe31l0ADoRERHVff7+qfDxyYBWq4ZarW1QQQpgmCIiIqIaoFLlNbgQVYK3+YiIiKjKFApFjZary9gzRURERFXm6OiIqKioCueRUigU9X7CToBhioiIiKqpIQSlyuBtPiIiIiIjMEwRERERGYFhioiIiMgIDFNERERERmCYIiIiIjICwxQRERGRERimiIiIiIzAMEVERERkBIYpIiIiIiMwTBEREREZgWGKiIiIyAgMU0RERERGYJgiIiIiMgLDFBEREZERGKaIiIiIjMAwRURERGQEhikiIiIiIzBMERERERmBYYqIiIjICAxTREREREZgmCIiIiIyAsMUERERkREYpoiIiIiMwDBFREREZASGKSIiIiIjMEwRERERGcHiYWrt2rXw8vKCUqlEYGAgjh8/XmH5HTt2wM/PD0qlEp06dcL+/fsNts+fPx9+fn6ws7NDs2bNEBISgmPHjknbDx8+DJlMVuZy4sQJAMCFCxfK3H706NGabwAiIiKq0ywaprZv347o6GjMmzcPKSkp6NKlC0JDQ3Ht2rUyyx85cgQjR47EuHHjkJqaioiICERERCA9PV0q07ZtW8TFxeHXX3/Fjz/+CC8vLwwePBjXr18HAAQHByMrK8tgGT9+PLy9vdG9e3eD8x06dMigXEBAgOkag4iIiOokmRBCWOrkgYGB6NGjB+Li4gAAer0enp6eeO211/D222+XKj98+HDk5+dj37590rpevXqha9euWLduXZnnyM3NhUqlwqFDhzBo0KBS24uKiuDh4YHXXnsN77zzDoD7PVPe3t5ITU1F165dq3VtJefV6XRwcHCo1jGIiIjIvKrz/W2xnqnCwkIkJycjJCTkr8rI5QgJCUFSUlKZ+yQlJRmUB4DQ0NByyxcWFmL9+vVQqVTo0qVLmWX27NkDjUaDsWPHlto2bNgwODs7o0+fPtizZ0+F11NQUIDc3FyDhYiIiOo/i4WpGzduoLi4GC4uLgbrXVxckJ2dXeY+2dnZlSq/b98+NGnSBEqlEitXrkRCQgKcnJzKPOaGDRsQGhqKFi1aSOuaNGmC5cuXY8eOHfj666/Rp08fREREVBioYmJioFKppMXT07PC6yciIqL6wdrSFTCFxx9/HGlpabhx4wY+/vhjPP/88zh27BicnZ0Nyl2+fBkHDx7Ev/71L4P1Tk5OiI6Olj736NEDV69exdKlSzFs2LAyzzlz5kyDfXJzcxmoiIiIGgCL9Uw5OTnBysoKOTk5ButzcnLg6upa5j6urq6VKm9nZwdfX1/06tULGzZsgLW1NTZs2FDqeJs2bYKjo2O5AelBgYGByMjIKHe7ra0tHBwcDBYiIiKq/ywWphQKBQICApCYmCit0+v1SExMRFBQUJn7BAUFGZQHgISEhHLLP3jcgoICg3VCCGzatAmjRo2CjY3NI+ublpYGNze3R5YjIiKihsWit/mio6MxevRodO/eHT179kRsbCzy8/OlweCjRo2Ch4cHYmJiAABTp05F//79sXz5cgwZMgTx8fH4+eefsX79egBAfn4+3nvvPQwbNgxubm64ceMG1q5diytXruC5554zOPe3336LzMxMjB8/vlS9tmzZAoVCgW7dugEAdu3ahY0bN+KTTz4xZXMQERFRHWTRMDV8+HBcv34dc+fORXZ2Nrp27YoDBw5Ig8wvXboEufyvzrPg4GBs27YNc+bMwaxZs9CmTRvs3r0bHTt2BABYWVnh7Nmz2LJlC27cuAFHR0f06NEDP/zwAzp06GBw7g0bNiA4OBh+fn5l1m3hwoW4ePEirK2t4efnh+3bt+PZZ581UUsQERFRXWXReabqM84zRUREVPfUqXmmiIiIiOoDhikiIiIiIzBMERERERmBYYqIiIjICAxTREREREZgmCIiIiIyAsMUERERkREYpoiIiIiMwDBFREREZASGKSIiIiIjMEwRERERGYFhioiIiMgIDFNERERERmCYIiIiIjICwxQRERGRERimiIiIiIzAMEVERERkBIYpIiIiIiMwTBEREREZgWGKiIiIyAgMU0RERERGYJgiIiIiMgLDFBEREZERGKaIiIiIjMAwRURERGQEhikiIiIiIzBMERERERmBYYqIiIjICAxTREREREZgmCIiIiIyAsMUERERkREYpoiIiIiMwDBFREREZASGKSIiIiIjWDxMrV27Fl5eXlAqlQgMDMTx48crLL9jxw74+flBqVSiU6dO2L9/v8H2+fPnw8/PD3Z2dmjWrBlCQkJw7NgxgzJeXl6QyWQGy6JFiwzKnDx5En379oVSqYSnpyeWLFlSMxdMRERE1aLRaJCVlVXuotFoLFIva4uc9f9t374d0dHRWLduHQIDAxEbG4vQ0FCcO3cOzs7OpcofOXIEI0eORExMDIYOHYpt27YhIiICKSkp6NixIwCgbdu2iIuLQ+vWrfHnn39i5cqVGDx4MDIyMtC8eXPpWP/85z8xYcIE6bO9vb30c25uLgYPHoyQkBCsW7cOv/76K15++WU0bdoUEydONGGLEBERUVk0Gg3i4uIeWS4qKgqOjo5mqNFfZEIIYdYzPiAwMBA9evSQGkev18PT0xOvvfYa3n777VLlhw8fjvz8fOzbt09a16tXL3Tt2hXr1q0r8xy5ublQqVQ4dOgQBg0aBOB+z9S0adMwbdq0Mvf58MMPMXv2bGRnZ0OhUAAA3n77bezevRtnz56t1LWVnFen08HBwaFS+xAREVHZsrKysH79+keWmzhxItzc3Kp9nup8f1vsNl9hYSGSk5MREhLyV2XkcoSEhCApKanMfZKSkgzKA0BoaGi55QsLC7F+/XqoVCp06dLFYNuiRYvg6OiIbt26YenSpbh3757Befr16ycFqZLznDt3Djdv3izzXAUFBcjNzTVYiIiIyDR0OntkZnpBp7N/dGETs9htvhs3bqC4uBguLi4G611cXMrt/cnOzi6zfHZ2tsG6ffv2YcSIEbhz5w7c3NyQkJAAJycnafuUKVPg7+8PtVqNI0eOYObMmcjKysKKFSuk83h7e5c6T8m2Zs2alapbTEwMFixYUMmrJyIioupKSemGvXuHQgg5ZDI9wsP3wd8/1WL1sfgAdFN4/PHHkZaWhiNHjiAsLAzPP/88rl27Jm2Pjo7GgAED0LlzZ0yaNAnLly/HmjVrUFBQUO1zzpw5EzqdTlr++OOPmrgUIiIieoBOZy8FKQAQQo69e4datIfKYmHKyckJVlZWyMnJMVifk5MDV1fXMvdxdXWtVHk7Ozv4+vqiV69e2LBhA6ytrbFhw4Zy6xIYGIh79+7hwoULFZ6nZFtZbG1t4eDgYLAQERFRzdJqHaUgVUIIObRatYVqZMEwpVAoEBAQgMTERGmdXq9HYmIigoKCytwnKCjIoDwAJCQklFv+weNW1OuUlpYGuVwuPUEYFBSE77//HkVFRQbnadeuXZm3+IiIiMg81GoNZDK9wTqZTA+1WmuhGln4Nl90dDQ+/vhjbNmyBWfOnMGrr76K/Px8jB07FgAwatQozJw5Uyo/depUHDhwAMuXL8fZs2cxf/58/Pzzz4iKigIA5OfnY9asWTh69CguXryI5ORkvPzyy7hy5Qqee+45APcHl8fGxuKXX37B77//jq1bt+L111/HSy+9JAWlF154AQqFAuPGjcOpU6ewfft2rFq1CtHR0WZuISIiInqQSpWH8PB9UqAqGTOlUuVZrE4WnWdq+PDhuH79OubOnYvs7Gx07doVBw4ckAZ7X7p0CXL5X3kvODgY27Ztw5w5czBr1iy0adMGu3fvluaYsrKywtmzZ7FlyxbcuHEDjo6O6NGjB3744Qd06NABwP3bcfHx8Zg/fz4KCgrg7e2N119/3SAoqVQqfPPNN5g8eTICAgLg5OSEuXPnco4pIiIiC3nwCXt//1T4+GRAq1VDrdYaBKkHy5mLReeZqs84zxQREVHN0mg0KCwsLHe7QqEwesLO6nx/W7RnioiIiKiyzD2zeWXVy6kRiIiIiMyFYYqIiIjICAxTREREREZgmCIiIiIyAsMUERERkREYpoiIiIiMwDBFREREZASGKSIiIiIjMEwRERERGYFhioiIiMgIfJ2MiZS88jA3N9fCNSEiIqLKKvnersqrixmmTCQv7/4brD09PS1cEyIiIqqqvLw8qFSqSpWViapEL6o0vV6Pq1evwt7eHjKZrMwyubm58PT0xB9//FHpN1PXZ2yP0tgmhtgepbFNDLE9DLE9SntUmwghkJeXB3d3d8jllRsNxZ4pE5HL5WjRokWlyjo4OPCX/AFsj9LYJobYHqWxTQyxPQyxPUqrqE0q2yNVggPQiYiIiIzAMEVERERkBIYpC7K1tcW8efNga2tr6arUCmyP0tgmhtgepbFNDLE9DLE9SjNFm3AAOhEREZER2DNFREREZASGKSIiIiIjMEwRERERGYFhioiIiMgIDFMmtnbtWnh5eUGpVCIwMBDHjx8vt+ypU6fwzDPPwMvLCzKZDLGxsearqJlUpT0+/vhj9O3bF82aNUOzZs0QEhJSYfm6qiptsmvXLnTv3h1NmzaFnZ0dunbtis8++8yMtTW9qrTHg+Lj4yGTyRAREWHaClpAVdpk8+bNkMlkBotSqTRjbU2vqr8jt27dwuTJk+Hm5gZbW1u0bdsW+/fvN1NtTa8q7TFgwIBSvx8ymQxDhgwxY41Nr6q/I7GxsWjXrh0aNWoET09PvP7667h7927lTyjIZOLj44VCoRAbN24Up06dEhMmTBBNmzYVOTk5ZZY/fvy4ePPNN8UXX3whXF1dxcqVK81bYROranu88MILYu3atSI1NVWcOXNGjBkzRqhUKnH58mUz19x0qtom3333ndi1a5c4ffq0yMjIELGxscLKykocOHDAzDU3jaq2R4nMzEzh4eEh+vbtK5566inzVNZMqtommzZtEg4ODiIrK0tasrOzzVxr06lqexQUFIju3buLv/3tb+LHH38UmZmZ4vDhwyItLc3MNTeNqraHRqMx+N1IT08XVlZWYtOmTeatuAlVtU22bt0qbG1txdatW0VmZqY4ePCgcHNzE6+//nqlz8kwZUI9e/YUkydPlj4XFxcLd3d3ERMT88h9W7VqVe/ClDHtIYQQ9+7dE/b29mLLli2mqqLZGdsmQgjRrVs3MWfOHFNUz+yq0x737t0TwcHB4pNPPhGjR4+ud2Gqqm2yadMmoVKpzFQ786tqe3z44YeidevWorCw0FxVNCtj/4asXLlS2Nvbi9u3b5uqimZX1TaZPHmyGDhwoMG66Oho0bt370qfk7f5TKSwsBDJyckICQmR1snlcoSEhCApKcmCNbOMmmiPO3fuoKioCGq12lTVNCtj20QIgcTERJw7dw79+vUzZVXNorrt8c9//hPOzs4YN26cOappVtVtk9u3b6NVq1bw9PTEU089hVOnTpmjuiZXnfbYs2cPgoKCMHnyZLi4uKBjx454//33UVxcbK5qm0xN/F3dsGEDRowYATs7O1NV06yq0ybBwcFITk6WbgX+/vvv2L9/P/72t79V+rx80bGJ3LhxA8XFxXBxcTFY7+LigrNnz1qoVpZTE+3x1ltvwd3d3eA/krqsum2i0+ng4eGBgoICWFlZ4YMPPsATTzxh6uqaXHXa48cff8SGDRuQlpZmhhqaX3XapF27dti4cSM6d+4MnU6HZcuWITg4GKdOnar0y9drq+q0x++//45vv/0WL774Ivbv34+MjAz84x//QFFREebNm2eOapuMsX9Xjx8/jvT0dGzYsMFUVTS76rTJCy+8gBs3bqBPnz4QQuDevXuYNGkSZs2aVenzMkxRnbBo0SLEx8fj8OHD9W4wbVXZ29sjLS0Nt2/fRmJiIqKjo9G6dWsMGDDA0lUzq7y8PERGRuLjjz+Gk5OTpatTawQFBSEoKEj6HBwcjPbt2+Ojjz7CwoULLVgzy9Dr9XB2dsb69ethZWWFgIAAXLlyBUuXLq3zYcpYGzZsQKdOndCzZ09LV8WiDh8+jPfffx8ffPABAgMDkZGRgalTp2LhwoV45513KnUMhikTcXJygpWVFXJycgzW5+TkwNXV1UK1shxj2mPZsmVYtGgRDh06hM6dO5uymmZV3TaRy+Xw9fUFAHTt2hVnzpxBTExMnQ9TVW2P8+fP48KFCwgPD5fW6fV6AIC1tTXOnTsHHx8f01baxGri74iNjQ26deuGjIwMU1TRrKrTHm5ubrCxsYGVlZW0rn379sjOzkZhYSEUCoVJ62xKxvx+5OfnIz4+Hv/85z9NWUWzq06bvPPOO4iMjMT48eMBAJ06dUJ+fj4mTpyI2bNnQy5/9IgojpkyEYVCgYCAACQmJkrr9Ho9EhMTDf6vsaGobnssWbIECxcuxIEDB9C9e3dzVNVsaup3RK/Xo6CgwBRVNKuqtoefnx9+/fVXpKWlScuwYcPw+OOPIy0tDZ6enuasvknUxO9IcXExfv31V7i5uZmqmmZTnfbo3bs3MjIypKANAP/73//g5uZWp4MUYNzvx44dO1BQUICXXnrJ1NU0q+q0yZ07d0oFppLwLSr7+uJqDJSnSoqPjxe2trZi8+bN4vTp02LixImiadOm0mPKkZGR4u2335bKFxQUiNTUVJGamirc3NzEm2++KVJTU8Vvv/1mqUuoUVVtj0WLFgmFQiG+/PJLg0d58/LyLHUJNa6qbfL++++Lb775Rpw/f16cPn1aLFu2TFhbW4uPP/7YUpdQo6raHg+rj0/zVbVNFixYIA4ePCjOnz8vkpOTxYgRI4RSqRSnTp2y1CXUqKq2x6VLl4S9vb2IiooS586dE/v27RPOzs7i3XfftdQl1Kjq/jfTp08fMXz4cHNX1yyq2ibz5s0T9vb24osvvhC///67+Oabb4SPj494/vnnK31OhikTW7NmjWjZsqVQKBSiZ8+e4ujRo9K2/v37i9GjR0ufMzMzBYBSS//+/c1fcROpSnu0atWqzPaYN2+e+StuQlVpk9mzZwtfX1+hVCpFs2bNRFBQkIiPj7dArU2nKu3xsPoYpoSoWptMmzZNKuvi4iL+9re/iZSUFAvU2nSq+jty5MgRERgYKGxtbUXr1q3Fe++9J+7du2fmWptOVdvj7NmzAoD45ptvzFxT86lKmxQVFYn58+cLHx8foVQqhaenp/jHP/4hbt68WenzyYSobB8WERERET2MY6aIiIiIjMAwRURERGQEhikiIiIiIzBMERERERmBYYqIiIjICAxTREREREZgmCIiIiIyAsMUEVE9MGbMGERERFi6GkQNEsMUEZnUmDFjIJPJpMXR0RFhYWE4efKkpatWIx68tpKlT58+JjvfhQsXIJPJkJaWZrB+1apV2Lx5s8nOS0TlY5giIpMLCwtDVlYWsrKykJiYCGtrawwdOtTS1aoxmzZtkq4vKysLe/bsKbNcUVGRyeqgUqnQtGlTkx2fiMrHMEVEJmdrawtXV1e4urqia9euePvtt/HHH3/g+vXrGDhwIKKiogzKX79+HQqFQnrzu5eXFxYuXIiRI0fCzs4OHh4eWLt2rcE+K1asQKdOnWBnZwdPT0/84x//wO3bt6XtFy9eRHh4OJo1awY7Ozt06NAB+/fvBwDcvHkTL774Ipo3b45GjRqhTZs22LRpU6Wvr2nTptL1ubq6Qq1WSz1I27dvR//+/aFUKrF161ZoNBqMHDkSHh4eaNy4MTp16oQvvvjC4Hh6vR5LliyBr68vbG1t0bJlS7z33nsAAG9vbwBAt27dIJPJMGDAAAClb/MVFBRgypQpcHZ2hlKpRJ8+fXDixAlp++HDhyGTyZCYmIju3bujcePGCA4Oxrlz5yp93UR0H8MUEZnV7du38fnnn8PX1xeOjo4YP348tm3bhoKCAqnM559/Dg8PDwwcOFBat3TpUnTp0gWpqal4++23MXXqVCQkJEjb5XI5Vq9ejVOnTmHLli349ttvMWPGDGn75MmTUVBQgO+//x6//vorFi9ejCZNmgAA3nnnHZw+fRr/+c9/cObMGXz44YdwcnKqkestqeuZM2cQGhqKu3fvIiAgAF9//TXS09MxceJEREZG4vjx49I+M2fOxKJFi6R6bdu2DS4uLgAglTt06BCysrKwa9euMs87Y8YM7Ny5E1u2bEFKSgp8fX0RGhoKrVZrUG727NlYvnw5fv75Z1hbW+Pll1+ukesmalBq7BXNRERlGD16tLCyshJ2dnbCzs5OABBubm4iOTlZCCHEn3/+KZo1aya2b98u7dO5c2cxf/586XOrVq1EWFiYwXGHDx8unnzyyXLPu2PHDuHo6Ch97tSpk8ExHxQeHi7Gjh1bresDIJRKpXR9dnZ24quvvhKZmZkCgIiNjX3kMYYMGSLeeOMNIYQQubm5wtbWVnz88cdlli05bmpqqsH60aNHi6eeekoIIcTt27eFjY2N2Lp1q7S9sLBQuLu7iyVLlgghhPjuu+8EAHHo0CGpzNdffy0AiD///LMqTUDU4LFniohM7vHHH0daWhrS0tJw/PhxhIaG4sknn8TFixehVCoRGRmJjRs3AgBSUlKQnp6OMWPGGBwjKCio1OczZ85Inw8dOoRBgwbBw8MD9vb2iIyMhEajwZ07dwAAU6ZMwbvvvovevXtj3rx5BgPgX331VcTHx6Nr166YMWMGjhw5UqXrW7lypXR9aWlpeOKJJ6Rt3bt3NyhbXFyMhQsXolOnTlCr1WjSpAkOHjyIS5cuAQDOnDmDgoICDBo0qEp1eND58+dRVFSE3r17S+tsbGzQs2dPgzYDgM6dO0s/u7m5AQCuXbtW7XMTNUQMU0RkcnZ2dvD19YWvry969OiBTz75BPn5+fj4448BAOPHj0dCQgIuX76MTZs2YeDAgWjVqlWlj3/hwgUMHToUnTt3xs6dO5GcnCyNqSosLJTO8fvvvyMyMhK//vorunfvjjVr1gCAFOxef/11XL16FYMGDcKbb75Z6fO7urpK1+fr6ws7OzuDa3/Q0qVLsWrVKrz11lv47rvvkJaWhtDQUKmejRo1qvR5a4KNjY30s0wmA3B/zBYRVR7DFBGZnUwmg1wux59//gkA6NSpE7p3746PP/4Y27ZtK3PcztGjR0t9bt++PQAgOTkZer0ey5cvR69evdC2bVtcvXq11DE8PT0xadIk7Nq1C2+88YYU5gCgefPmGD16ND7//HPExsZi/fr1NXnJkp9++glPPfUUXnrpJXTp0gWtW7fG//73P2l7mzZt0KhRI2nw/cMUCgWA+z1c5fHx8YFCocBPP/0krSsqKsKJEyfw2GOP1dCVEFEJa0tXgIjqv4KCAmRnZwO4/+RcXFwcbt++jfDwcKnM+PHjERUVBTs7O/z9738vdYyffvoJS5YsQUREBBISErBjxw58/fXXAABfX18UFRVhzZo1CA8Px08//YR169YZ7D9t2jQ8+eSTaNu2LW7evInvvvtOCmNz585FQEAAOnTogIKCAuzbt0/aVtPatGmDL7/8EkeOHEGzZs2wYsUK5OTkSCFHqVTirbfewowZM6BQKNC7d29cv34dp06dwrhx4+Ds7IxGjRrhwIEDaNGiBZRKJVQqlcE57Ozs8Oqrr2L69OlQq9Vo2bIllixZgjt37mDcuHEmuS6ihow9U0RkcgcOHICbmxvc3NwQGBiIEydOYMeOHdJj/QAwcuRIWFtbY+TIkVAqlaWO8cYbb+Dnn39Gt27d8O6772LFihUIDQ0FAHTp0gUrVqzA4sWL0bFjR2zduhUxMTEG+xcXF2Py5Mlo3749wsLC0LZtW3zwwQcA7vf2zJw5E507d0a/fv1gZWWF+Ph4k7TFnDlz4O/vj9DQUAwYMACurq6lZi5/55138MYbb2Du3Llo3749hg8fLo1jsra2xurVq/HRRx/B3d0dTz31VJnnWbRoEZ555hlERkbC398fGRkZOHjwIJo1a2aS6yJqyGRCCGHpShARXbhwAT4+Pjhx4gT8/f0Ntnl5eWHatGmYNm2aZSpHRFQB3uYjIosqKiqCRqPBnDlz0KtXr1JBioiotuNtPiKyqJ9++glubm44ceJEqXFOlvb++++jSZMmZS5PPvmkpatHRLUEb/MREZVDq9WWmjG8RKNGjeDh4WHmGhFRbcQwRURERGQE3uYjIiIiMgLDFBEREZERGKaIiIiIjMAwRURERGQEhikiIiIiIzBMERERERmBYYqIiIjICAxTREREREb4P163nXl4pPZyAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_16.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcqElEQVR4nO3deVxUVeM/8M8MMAwijA4oi6IgLrglgoqQiguPQylGmeKSorn2hEqUJWYuUaG5oWKaPW71RJJp5PbVkLJccANMLTVR0FQWGXJQfBRj7u8Pf1wdGRBGYBj4vF+vecWce+69514n5sO5554rEQRBABERERFVitTYDSAiIiIyRQxRRERERAZgiCIiIiIyAEMUERERkQEYooiIiIgMwBBFREREZACGKCIiIiIDMEQRERERGYAhioiIiMgADFFERHXcpk2bIJFIkJmZaeymENUpDFFE9MxOnDiBsLAwdOzYEdbW1mjRogWGDx+OP//8s1Tdvn37QiKRQCKRQCqVwtbWFu3atcOYMWOQmJhYqf3u3LkT/v7+aNq0KRo0aIBWrVph+PDh2Lt3b1UdWimffPIJEhISSpUfOXIE8+fPx61bt6pt30+aP3++eC4lEgkaNGiADh06YM6cOSgoKKiSfcTFxSEmJqZKtkVU1zBEEdEzW7RoEbZt24YBAwZgxYoVmDx5Mn799Vd4eXnh7Nmzpeo3b94cX331Fb788kssXrwYQ4YMwZEjRzBw4ECEhITgwYMHT93nkiVLMGTIEEgkEkRGRmL58uUYOnQoLl68iC1btlTHYQIoP0QtWLCgRkNUiTVr1uCrr77CsmXL4OHhgY8//hiBgYGoikejMkQRlc3c2A0gItMXERGBuLg4yGQysSwkJASdO3fGwoUL8d///lenvkKhwGuvvaZTtnDhQkyfPh2fffYZXF1dsWjRojL3988//yAqKgr/+te/8OOPP5Zanpub+4xHVHvcvXsXDRo0KLfOq6++Cnt7ewDA1KlTMXToUGzfvh1Hjx6Fr69vTTSTqF5iTxQRPTM/Pz+dAAUAbdq0QceOHXHu3LkKbcPMzAwrV65Ehw4dEBsbC41GU2bdvLw8FBQU4Pnnn9e7vGnTpjrv7927h/nz56Nt27aQy+VwcnLCK6+8gkuXLol1lixZAj8/P9jZ2cHKygre3t747rvvdLYjkUhQWFiIzZs3i5fQxo0bh/nz52PmzJkAADc3N3HZ42OQ/vvf/8Lb2xtWVlZQKpUYMWIE/vrrL53t9+3bF506dUJKSgr69OmDBg0aYPbs2RU6f4/r378/ACAjI6Pcep999hk6duwIS0tLODs7480339TpSevbty92796NK1euiMfk6upa6fYQ1VXsiSKiaiEIAnJyctCxY8cKr2NmZoaRI0figw8+wKFDhzBo0CC99Zo2bQorKyvs3LkT06ZNg1KpLHObxcXFGDx4MJKSkjBixAjMmDEDt2/fRmJiIs6ePQt3d3cAwIoVKzBkyBCMHj0aRUVF2LJlC4YNG4Zdu3aJ7fjqq68wceJE9OjRA5MnTwYAuLu7w9raGn/++Se++eYbLF++XOwVatKkCQDg448/xgcffIDhw4dj4sSJuHnzJlatWoU+ffogLS0NjRo1EturVqvxwgsvYMSIEXjttdfg4OBQ4fNXoiQc2tnZlVln/vz5WLBgAQICAvDGG2/gwoULWLNmDU6cOIHDhw/DwsIC77//PjQaDa5du4bly5cDABo2bFjp9hDVWQIRUTX46quvBADC+vXrdcr9/f2Fjh07lrne999/LwAQVqxYUe72586dKwAQrK2thRdeeEH4+OOPhZSUlFL1NmzYIAAQli1bVmqZVqsVf757967OsqKiIqFTp05C//79dcqtra2F0NDQUttavHixAEDIyMjQKc/MzBTMzMyEjz/+WKf8zJkzgrm5uU65v7+/AEBYu3Ztmcf9uHnz5gkAhAsXLgg3b94UMjIyhM8//1ywtLQUHBwchMLCQkEQBGHjxo06bcvNzRVkMpkwcOBAobi4WNxebGysAEDYsGGDWDZo0CChZcuWFWoPUX3Dy3lEVOXOnz+PN998E76+vggNDa3UuiU9Hbdv3y633oIFCxAXF4euXbti3759eP/99+Ht7Q0vLy+dS4jbtm2Dvb09pk2bVmobEolE/NnKykr8+e+//4ZGo0Hv3r2RmppaqfY/afv27dBqtRg+fDjy8vLEl6OjI9q0aYOff/5Zp76lpSXGjx9fqX20a9cOTZo0gZubG6ZMmYLWrVtj9+7dZY6l2r9/P4qKihAeHg6p9NHXwKRJk2Bra4vdu3dX/kCJ6iFeziOiKpWdnY1BgwZBoVDgu+++g5mZWaXWv3PnDgDAxsbmqXVHjhyJkSNHoqCgAMeOHcOmTZsQFxeHoKAgnD17FnK5HJcuXUK7du1gbl7+r7tdu3bho48+wqlTp3D//n2x/PGgZYiLFy9CEAS0adNG73ILCwud982aNSs1vuxptm3bBltbW1hYWKB58+biJcqyXLlyBcDD8PU4mUyGVq1aicuJqHwMUURUZTQaDV544QXcunULBw8ehLOzc6W3UTIlQuvWrSu8jq2tLf71r3/hX//6FywsLLB582YcO3YM/v7+FVr/4MGDGDJkCPr06YPPPvsMTk5OsLCwwMaNGxEXF1fpY3icVquFRCLB//3f/+kNlE+OMXq8R6yi+vTpI47DIqKawxBFRFXi3r17CAoKwp9//on9+/ejQ4cOld5GcXEx4uLi0KBBA/Tq1cugdnTr1g2bN29GVlYWgIcDv48dO4YHDx6U6vUpsW3bNsjlcuzbtw+WlpZi+caNG0vVLatnqqxyd3d3CIIANzc3tG3btrKHUy1atmwJALhw4QJatWollhcVFSEjIwMBAQFi2bP2xBHVZRwTRUTPrLi4GCEhIUhOTsbWrVsNmpuouLgY06dPx7lz5zB9+nTY2tqWWffu3btITk7Wu+z//u//ADy6VDV06FDk5eUhNja2VF3h/09GaWZmBolEguLiYnFZZmam3kk1ra2t9U6oaW1tDQCllr3yyiswMzPDggULSk1+KQgC1Gq1/oOsRgEBAZDJZFi5cqVOm9avXw+NRqNzV6S1tXW5000Q1WfsiSKiZ/b2229jx44dCAoKQn5+fqnJNZ+cWFOj0Yh17t69i/T0dGzfvh2XLl3CiBEjEBUVVe7+7t69Cz8/P/Ts2ROBgYFwcXHBrVu3kJCQgIMHDyI4OBhdu3YFAIwdOxZffvklIiIicPz4cfTu3RuFhYXYv38//v3vf+Oll17CoEGDsGzZMgQGBmLUqFHIzc3F6tWr0bp1a5w+fVpn397e3ti/fz+WLVsGZ2dnuLm5wcfHB97e3gCA999/HyNGjICFhQWCgoLg7u6Ojz76CJGRkcjMzERwcDBsbGyQkZGB77//HpMnT8Y777zzTOe/spo0aYLIyEgsWLAAgYGBGDJkCC5cuIDPPvsM3bt31/n38vb2Rnx8PCIiItC9e3c0bNgQQUFBNdpeolrLmLcGElHdUHJrflmv8uo2bNhQaNOmjfDaa68JP/74Y4X29+DBA+GLL74QgoODhZYtWwqWlpZCgwYNhK5duwqLFy8W7t+/r1P/7t27wvvvvy+4ubkJFhYWgqOjo/Dqq68Kly5dEuusX79eaNOmjWBpaSl4eHgIGzduFKcQeNz58+eFPn36CFZWVgIAnekOoqKihGbNmglSqbTUdAfbtm0TevXqJVhbWwvW1taCh4eH8OabbwoXLlzQOTflTf/wpJL23bx5s9x6T05xUCI2Nlbw8PAQLCwsBAcHB+GNN94Q/v77b506d+7cEUaNGiU0atRIAMDpDogeIxGEKni4EhEREVE9wzFRRERERAZgiCIiIiIyAEMUERERkQEYooiIiIgMwBBFREREZACGKCIiIiIDcLLNaqLVanHjxg3Y2NjwsQlEREQmQhAE3L59G87OzpBKy+9rYoiqJjdu3ICLi4uxm0FEREQG+Ouvv9C8efNy6zBEVRMbGxsAD/8RynsGGBEREdUeBQUFcHFxEb/Hy8MQVU1KLuHZ2toyRBEREZmYigzF4cByIiIiIgMwRBEREREZgCGKiIiIyAAcE2VkxcXFePDggbGbUWdZWFjAzMzM2M0gIqI6iCHKSARBQHZ2Nm7dumXsptR5jRo1gqOjI+frIiKiKsUQZSQlAapp06Zo0KABv+CrgSAIuHv3LnJzcwEATk5ORm4RERHVJQxRRlBcXCwGKDs7O2M3p06zsrICAOTm5qJp06a8tEdERFWGA8uNoGQMVIMGDYzckvqh5Dxz7BkREVUlhigj4iW8msHzTERE1cHoIWr16tVwdXWFXC6Hj48Pjh8/Xm79rVu3wsPDA3K5HJ07d8aePXt0lo8bNw4SiUTnFRgYKC7PzMzEhAkT4ObmBisrK7i7u2PevHkoKirSqfPkNiQSCY4ePVq1B09EREQmy6hjouLj4xEREYG1a9fCx8cHMTExUKlUuHDhApo2bVqq/pEjRzBy5EhER0dj8ODBiIuLQ3BwMFJTU9GpUyexXmBgIDZu3Ci+t7S0FH8+f/48tFotPv/8c7Ru3Rpnz57FpEmTUFhYiCVLlujsb//+/ejYsaP4nuOXiIhMl1qt1vmD+UkymYy/56lSJIIgCMbauY+PD7p3747Y2FgAgFarhYuLC6ZNm4ZZs2aVqh8SEoLCwkLs2rVLLOvZsyc8PT2xdu1aAA97om7duoWEhIQKt2Px4sVYs2YNLl++DOBhT5SbmxvS0tLg6elp0LEVFBRAoVBAo9GUenbevXv3kJGRATc3N8jlcoO2byzjxo3D5s2bAQDm5uZQKpV47rnnMHLkSIwbNw5SacU6Nzdt2oTw8PAameLBlM83EVUNtVotftcAgEZjg/x8OyiVaigUt8XysLAwBql6rrzv7ycZrSeqqKgIKSkpiIyMFMukUikCAgKQnJysd53k5GRERETolKlUqlKB6cCBA2jatCkaN26M/v3746OPPir3fwqNRgOlUlmqfMiQIbh37x7atm2Ld999F0OGDClzG/fv38f9+/fF9wUFBWXWrQrG/IuqpKevuLgYOTk52Lt3L2bMmIHvvvsOO3bsgLk5b/okotrl8d+XqaldsXPnYAiCFBKJFkFBu+DllVaqHtHTGO3bLi8vD8XFxXBwcNApd3BwwPnz5/Wuk52drbd+dna2+D4wMBCvvPIK3NzccOnSJcyePRsvvPACkpOT9d7enp6ejlWrVulcymvYsCGWLl2K559/HlKpFNu2bUNwcDASEhLKDFLR0dFYsGBBhY//WTz5F1VZqusvKktLSzg6OgIAmjVrBi8vL/Ts2RMDBgzApk2bMHHiRCxbtgwbN27E5cuXoVQqERQUhE8//RQNGzbEgQMHMH78eACPBn3PmzcP8+fPx1dffYUVK1bgwoULsLa2Rv/+/RETE6P38i4RUWVpNDZigAIAQZBi587BcHdP1+mRIqqIOtdlMGLECPHnzp0747nnnoO7uzsOHDiAAQMG6NS9fv06AgMDMWzYMEyaNEkst7e31+nx6t69O27cuIHFixeXGaIiIyN11ikoKICLi0tVHZaOiv6lVJN/UfXv3x9dunTB9u3bMXHiREilUqxcuRJubm64fPky/v3vf+Pdd9/FZ599Bj8/P8TExGDu3Lm4cOECgIfBFXg4DUFUVBTatWuH3NxcREREYNy4caVuICAiMkR+vp0YoEoIghT5+UqGKBNQ28a1GS1E2dvbw8zMDDk5OTrlOTk5Yi/HkxwdHStVHwBatWoFe3t7pKen64SoGzduoF+/fvDz88O6deue2l4fHx8kJiaWudzS0lJnAHt95OHhgdOnTwMAwsPDxXJXV1d89NFHmDp1Kj777DPIZDIoFApIJJJS/3avv/66+HOrVq2wcuVKdO/eHXfu3BGDFhGRoZRKNSQSrU6Qkki0UCrzjdgqqghjX4XRx2hTHMhkMnh7eyMpKUks02q1SEpKgq+vr951fH19deoDQGJiYpn1AeDatWtQq9U6j/y4fv06+vbtC29vb2zcuLFCg6FPnTrFx4Y8hSAI4uW5/fv3Y8CAAWjWrBlsbGwwZswYqNVq3L17t9xtpKSkICgoCC1atICNjQ38/f0BAFevXq329hNR3adQ3EZQ0C5IJFoAEMdEsReq9nuyB0qjsUFGhis0Gpty61Uno17Oi4iIQGhoKLp164YePXogJiYGhYWF4niZsWPHolmzZoiOjgYAzJgxA/7+/li6dCkGDRqELVu24OTJk2JP0p07d7BgwQIMHToUjo6OuHTpEt599120bt0aKpUKwKMA1bJlSyxZsgQ3b94U21PSK7J582bIZDJ07doVALB9+3Zs2LAB//nPf2rs3Jiic+fOwc3NDZmZmRg8eDDeeOMNfPzxx1AqlTh06BAmTJiAoqKiMmdqLywshEqlgkqlwtdff40mTZrg6tWrUKlUHOxJRFXGyysN7u7pyM9XQqnMZ4AyQeXdHFCTjBqiQkJCcPPmTcydOxfZ2dnw9PTE3r17xcHjV69e1ekl8vPzQ1xcHObMmYPZs2ejTZs2SEhIEOeIMjMzw+nTp7F582bcunULzs7OGDhwIKKiosRLbYmJiUhPT0d6ejqaN2+u057HZ3uIiorClStXYG5uDg8PD8THx+PVV1+t7lNisn766SecOXMGb731FlJSUqDVarF06VLx3+/bb7/VqS+TyVBcXKxTdv78eajVaixcuFAcT3by5MmaOQAiqlcUitsMTyaqNt0cYPSB5WFhYQgLC9O77MCBA6XKhg0bhmHDhumtb2VlhX379pW7v3HjxmHcuHHl1gkNDUVoaGi5deqz+/fvIzs7W2eKg5IJUMeOHYuzZ8/iwYMHWLVqFYKCgnD48GFxHq8Srq6uuHPnDpKSktClSxc0aNAALVq0gEwmw6pVqzB16lScPXsWUVFRRjpKIqpLZDJZldYj46lNNwcYPUSR6dm7dy+cnJxgbm6Oxo0bo0uXLli5ciVCQ0MhlUrRpUsXLFu2DIsWLUJkZCT69OmD6OhojB07VtyGn58fpk6dipCQEKjVanGKg02bNmH27NlYuXIlvLy8sGTJknLn5yIiqgg7OzuEhYXVqju7yDC16eYAo85YXpdV54zltfEOhdqMM5YTEZm+rKwscQx0eWOiJk+e/Ew3gpnEjOVkOP5FRURE9VltuTmAIcpEMSAREVF98uR4tbJuDqjJcW0MUURERFTr1carMAxRREREZBJq21UYo81YTkRERGTKGKKIiIiIDMAQRURERGQAhigiIiIiAzBEERERERmAIYpqlQMHDkAikeDWrVsVXsfV1RUxMTHV1iYiIiJ9GKKoUsaNGweJRIKpU6eWWvbmm29CIpE89QHPREREdQFDFFWai4sLtmzZgv/9739i2b179xAXF4cWLVoYsWVEREQ1hyGKKs3LywsuLi7Yvn27WLZ9+3a0aNECXbt2Fcvu37+P6dOno2nTppDL5ejVqxdOnDihs609e/agbdu2sLKyQr9+/ZCZmVlqf4cOHULv3r1hZWUFFxcXTJ8+HYWFhdV2fERERBXBEFUHXLsG/Pzzw//WlNdffx0bN24U32/YsAHjx4/XqfPuu+9i27Zt2Lx5M1JTU9G6dWuoVCrk5+cDAP766y+88sorCAoKwqlTpzBx4kTMmjVLZxuXLl1CYGAghg4ditOnTyM+Ph6HDh1CWFhY9R8kERFRORiiTNz69UDLlkD//g//u359zez3tddew6FDh3DlyhVcuXIFhw8fxmuvvSYuLywsxJo1a7B48WK88MIL6NChA7744gtYWVlh/f9v5Jo1a+Du7o6lS5eiXbt2GD16dKnxVNHR0Rg9ejTCw8PRpk0b+Pn5YeXKlfjyyy9x7969mjlYIiIiPfjsPBN27RoweTKg1T58r9UCU6YAKhXQvHn17rtJkyYYNGgQNm3aBEEQMGjQINjb24vLL126hAcPHuD5558XyywsLNCjRw+cO3cOAHDu3Dn4+PjobNfX11fn/W+//YbTp0/j66+/FssEQYBWq0VGRgbat29fHYdHRFSvqNXqWvVgX1PBEGXCLl58FKBKFBcD6enVH6KAh5f0Si6rrV69ulr2cefOHUyZMgXTp08vtYyD2ImInp1arUZsbOxT64WFhTFIPYEhyoS1aQNIpbpByswMaN26ZvYfGBiIoqIiSCQSqFQqnWXu7u6QyWQ4fPgwWrZsCQB48OABTpw4gfDwcABA+/btsWPHDp31jh49qvPey8sLf/zxB1rX1EEREdUzT/ZAaTQ2yM+3g1KphkJxu8x6xBBl0po3B9ate3gJr7j4YYD6/POa6YUCADMzM/HSnJmZmc4ya2trvPHGG5g5cyaUSiVatGiBTz/9FHfv3sWECRMAAFOnTsXSpUsxc+ZMTJw4ESkpKdi0aZPOdt577z307NkTYWFhmDhxIqytrfHHH38gMTGxQn85ERFRxaWmdsXOnYMhCFJIJFoEBe2Cl1easZtVa3FguYmbMAHIzHx4d15m5sP3NcnW1ha2trZ6ly1cuBBDhw7FmDFj4OXlhfT0dOzbtw+NGzcG8PBy3LZt25CQkIAuXbpg7dq1+OSTT3S28dxzz+GXX37Bn3/+id69e6Nr166YO3cunJ2dq/3YiIjqE43GRgxQACAIUuzcORgajY2RW1Z7SQRBEIzdiLqooKAACoUCGo2mVMi4d+8eMjIy4ObmBrlcbqQW1h8830REZcvKysK6deuQkeGKzZtDSy0PDd0EN7crmDx5MpycnIzQwppV3vf3k9gTRURERFAq1ZBIdO9Wkki0UCrzjdSi2o8hioiIiKBQ3EZQ0C4xSJWMiXp8cDnp4sByIiIiAgB4eaXB3T0d+flKKJX5DFBPwRBFRERUj8lkMp33CsVtveHpyXrEEGVUHNNfM3ieiYjKZmdnh7CwMM5YbgCGKCOwsLAAANy9exdWVlZGbk3dd/fuXQCPzjsREeliQDIMQ5QRmJmZoVGjRsjNzQUANGjQABKJxMitqnsEQcDdu3eRm5uLRo0alZoQlIiI6FkwRBmJo6MjAIhBiqpPo0aNxPNNRERUVRiijEQikcDJyQlNmzbFgwcPjN2cOsvCwoI9UEREVC0YoozMzMyMX/JEREQmiJNtEhERERmAIYqIiIjIAAxRRERERAZgiCIiIiIygNFD1OrVq+Hq6gq5XA4fHx8cP3683Ppbt26Fh4cH5HI5OnfujD179ugsHzduHCQSic4rMDBQp05+fj5Gjx4NW1tbNGrUCBMmTMCdO3d06pw+fRq9e/eGXC6Hi4sLPv3006o5YCIiojpCrVYjKyurzJdarTZ2E6uVUe/Oi4+PR0REBNauXQsfHx/ExMRApVLhwoULaNq0aan6R44cwciRIxEdHY3BgwcjLi4OwcHBSE1NRadOncR6gYGB2Lhxo/je0tJSZzujR49GVlYWEhMT8eDBA4wfPx6TJ09GXFwcAKCgoAADBw5EQEAA1q5dizNnzuD1119Ho0aNMHny5Go6G0RERKZDrVYjNjb2qfXCwsLq7IzoEsGIDxbz8fFB9+7dxX8ErVYLFxcXTJs2DbNmzSpVPyQkBIWFhdi1a5dY1rNnT3h6emLt2rUAHvZE3bp1CwkJCXr3ee7cOXTo0AEnTpxAt27dAAB79+7Fiy++iGvXrsHZ2Rlr1qzB+++/j+zsbPGBi7NmzUJCQgLOnz9foWMrKCiAQqGARqOBra1thc8JERGRKcjKysK6deueWm/y5MlwcnKqgRZVjcp8fxvtcl5RURFSUlIQEBDwqDFSKQICApCcnKx3neTkZJ36AKBSqUrVP3DgAJo2bYp27drhjTfe0OlOTE5ORqNGjcQABQABAQGQSqU4duyYWKdPnz46T6wu6SH7+++/9bbt/v37KCgo0HkRERHVFxqNDTIyXKHR2Bi7KTXGaJfz8vLyUFxcDAcHB51yBweHMnt7srOz9dbPzs4W3wcGBuKVV16Bm5sbLl26hNmzZ+OFF15AcnIyzMzMkJ2dXepSobm5OZRKpbid7OxsuLm5ldpPybLGjRuXalt0dDQWLFhQwaMnIiKqO1JTu2LnzsEQBCkkEi2CgnbByyvN2M2qdnVuxvIRI0aIP3fu3BnPPfcc3N3dceDAAQwYMKDa9hsZGYmIiAjxfUFBAVxcXKptf0RERLWBRmMjBigAEAQpdu4cDHf3dCgUt43cuupltMt59vb2MDMzQ05Ojk55Tk5OmQ+LdXR0rFR9AGjVqhXs7e2Rnp4ubuPJh/7+888/yM/PF7dT1n5KluljaWkJW1tbnRcREVFdl59vJwaoEoIgRX6+0kgtqjlGC1EymQze3t5ISkoSy7RaLZKSkuDr66t3HV9fX536AJCYmFhmfQC4du0a1Gq1OKjN19cXt27dQkpKiljnp59+glarhY+Pj1jn119/1XkwcGJiItq1a6f3Uh4REVF9pVSqIZFodcokEi2UynwjtajmGHWeqIiICHzxxRfYvHkzzp07hzfeeAOFhYUYP348AGDs2LGIjIwU68+YMQN79+7F0qVLcf78ecyfPx8nT55EWFgYAODOnTuYOXMmjh49iszMTCQlJeGll15C69atoVKpAADt27dHYGAgJk2ahOPHj+Pw4cMICwvDiBEj4OzsDAAYNWoUZDIZJkyYgN9//x3x8fFYsWKFzuU6IiIiAhSK2wgK2iUGqZIxUXX9Uh5g5DFRISEhuHnzJubOnYvs7Gx4enpi79694iDuq1evQip9lPP8/PwQFxeHOXPmYPbs2WjTpg0SEhLEOaLMzMxw+vRpbN68Gbdu3YKzszMGDhyIqKgonbmivv76a4SFhWHAgAGQSqUYOnQoVq5cKS5XKBT48ccf8eabb8Lb2xv29vaYO3cu54giIiL6/x6/g93LKw3u7unIz1dCqczXCVCP16trjDpPVF3GeaKIiKiuU6vVKCoqKnO5TCYzuYk2K/P9XefuziMiIqKaYWoBqaoZ/dl5RERERKaIIYqIiIjIAAxRRERERAZgiCIiIiIyAEMUERERkQEYooiIiIgMwBBFREREZADOE0VEVaIuTrpHRFQehigiemZqtRqxsbFPrRcWFsYgRUR1Bi/nEdEzK68HypB6RESmgD1RRLWcKV4m02hskJ9vB6VSXS+e5E5E9RNDFFEtZoqXyVJTu2LnzsEQBCkkEi2CgnbByyvN2M0iIqpyvJxHVIuZ2mUyjcZGDFAAIAhS7Nw5GBqNjZFbRkRU9RiiiEyIRmODjAzXWhtK8vPtxABVQhCkyM9XGqlFRETVh5fziEyEKVwmUyrVkEi0OkFKItFCqcw3YquIiKoHe6KITICpXCZTKG4jKGgXJBItAIhhj4PLiaguYk8UkQko7zJZbQgoMplM/NnLKw3u7unIz1dCqczXad/j9YiITB1DFJEJqO2Xyezs7BAWFmZyUzEQET0LhigiE1BymezJMVG1oReqBAMSEdU3DFFEtRgvk5k+U5wslYgqhiGKqBbjZTLTZoqTpRJRxTFEEdVy/HI1XU+G37Ieh1NbJkslosphiCIiqgGmMM8XEVUO54kiIqpmpjLPFxFVDkMUEVE14+NwiOomhigiompWMs/X42rTPF9EZBiGKCKiasbH4RDVTRxYTkRUA8qb54uITBNDFBFRNXlyElSF4rbe8MTJUolME0MUEVE14WSpRHUbQxQRUTViQCKquziwnIiIiMgADFFEREREBmCIIiIiIjIAx0RRvaRWqznYl4iInonRe6JWr14NV1dXyOVy+Pj44Pjx4+XW37p1Kzw8PCCXy9G5c2fs2bOnzLpTp06FRCJBTEyMWHbgwAFIJBK9rxMnTgAAMjMz9S4/evRolRwzGZdarUZsbCzWrVtX5is2NhZqtdrYTSUiolrMqCEqPj4eERERmDdvHlJTU9GlSxeoVCrk5ubqrX/kyBGMHDkSEyZMQFpaGoKDgxEcHIyzZ8+Wqvv999/j6NGjcHZ21in38/NDVlaWzmvixIlwc3NDt27ddOru379fp563t3fVHTwZTXk9UIbUIyKi+smoIWrZsmWYNGkSxo8fjw4dOmDt2rVo0KABNmzYoLf+ihUrEBgYiJkzZ6J9+/aIioqCl5cXYmNjdepdv34d06ZNw9dffw0LCwudZTKZDI6OjuLLzs4OP/zwA8aPHw+JRKJT187OTqfuk9uiukGjsUFGhis0GhtjN4WIiEyI0UJUUVERUlJSEBAQ8KgxUikCAgKQnJysd53k5GSd+gCgUql06mu1WowZMwYzZ85Ex44dn9qOHTt2QK1WY/z48aWWDRkyBE2bNkWvXr2wY8eOih4amZDU1K6IiQnH5s2hiIkJR2pqV2M3iYiITITRQlReXh6Ki4vh4OCgU+7g4IDs7Gy962RnZz+1/qJFi2Bubo7p06dXqB3r16+HSqVC8+bNxbKGDRti6dKl2Lp1K3bv3o1evXohODi43CB1//59FBQU6LyodtNobLBz52AIwsP/DQRBip07B7NHioiIKqRO3Z2XkpKCFStWIDU1tdSlOX2uXbuGffv24dtvv9Upt7e3R0REhPi+e/fuuHHjBhYvXowhQ4bo3VZ0dDQWLFjwbAdANSo/304MUCUEQYr8fCUfDktERE9ltJ4oe3t7mJmZIScnR6c8JycHjo6OetdxdHQst/7BgweRm5uLFi1awNzcHObm5rhy5QrefvttuLq6ltrexo0bYWdnV2YwepyPjw/S09PLXB4ZGQmNRiO+/vrrr6duk4xLqVRDItHqlEkkWiiV+UZqERERmRKjhSiZTAZvb28kJSWJZVqtFklJSfD19dW7jq+vr059AEhMTBTrjxkzBqdPn8apU6fEl7OzM2bOnIl9+/bprCcIAjZu3IixY8dWaMD4qVOn4OTkVOZyS0tL2Nra6ryodlMobiMoaJcYpCQSLYKCdrEXioiIKsSol/MiIiIQGhqKbt26oUePHoiJiUFhYaE4yHvs2LFo1qwZoqOjAQAzZsyAv78/li5dikGDBmHLli04efIk1q1bB+Dh3XRPTpBoYWEBR0dHtGvXTqf8p59+QkZGBiZOnFiqXZs3b4ZMJkPXrg8HGW/fvh0bNmzAf/7znyo/B1TzZDKZ+LOXVxrc3dORn6+EUpmvE6Aer0dERPQko4aokJAQ3Lx5E3PnzkV2djY8PT2xd+9ecfD41atXIZU+6izz8/NDXFwc5syZg9mzZ6NNmzZISEhAp06dKr3v9evXw8/PDx4eHnqXR0VF4cqVKzA3N4eHhwfi4+Px6quvGnagVKvY2dkhLCyMM5YTEdEzkQiCIBi7EXVRQUEBFAoFNBoNL+0RERGZiMp8fxv9sS9EREREpoghioiIiMgADFFEREREBmCIIiIiIjIAQxQRERGRARiiiIiIiAzAEEVERERkAIYoIiIiIgMwRBEREREZgCGKiIiIyAAMUUREREQGYIgiIiIiMgBDFBEREZEBGKKIiIiIDMAQRURERGQAhigiIiIiAzBEERERERmAIYqIiIjIAAxRRERERAZgiCIiIiIyAEMUERERkQEYooiIiIgMwBBFREREZACGKCIiIiIDMEQRERERGYAhioiIiMgADFFEREREBmCIIiIiIjIAQxQRERGRARiiiIiIiAxgbuwGED0LtVqNoqKiMpfLZDLY2dnVYIuIiKi+YIgik6VWqxEbGyu+12hskJ9vB6VSDYXitlgeFhbGIEVERFWOIYpM1uM9UKmpXbFz52AIghQSiRZBQbvg5ZVWqh4REVFV4ZgoMnkajY0YoABAEKTYuXMwNBobI7eMiIjqMoYoMnn5+XZigCohCFLk5yuN1CIiIqoPGKLI5CmVakgkWp0yiUQLpTLfSC0iIqL6gGOi6rj6cPeaQnEbQUG7So2JenxwORERUVUzek/U6tWr4erqCrlcDh8fHxw/frzc+lu3boWHhwfkcjk6d+6MPXv2lFl36tSpkEgkiImJ0Sl3dXWFRCLReS1cuFCnzunTp9G7d2/I5XK4uLjg008/NfgYjaXk7rV169Zh3bp1WLz4G0RG/ojFi78Ry2JjY6FWq43d1Gfm5ZWG8PAYhIZuQnh4jDionIiIqLoYtScqPj4eERERWLt2LXx8fBATEwOVSoULFy6gadOmpeofOXIEI0eORHR0NAYPHoy4uDgEBwcjNTUVnTp10qn7/fff4+jRo3B2dta77w8//BCTJk0S39vYPBqEXFBQgIEDByIgIABr167FmTNn8Prrr6NRo0aYPHlyFR199atvd68pFLfZ+0RERDXGqD1Ry5Ytw6RJkzB+/Hh06NABa9euRYMGDbBhwwa99VesWIHAwEDMnDkT7du3R1RUFLy8vHTmCgKA69evY9q0afj6669hYWGhd1s2NjZwdHQUX9bW1uKyr7/+GkVFRdiwYQM6duyIESNGYPr06Vi2bFnVHXwNqqt3r8lksiqtR0REVBlG64kqKipCSkoKIiMjxTKpVIqAgAAkJyfrXSc5ORkRERE6ZSqVCgkJCeJ7rVaLMWPGYObMmejYsWOZ+1+4cCGioqLQokULjBo1Cm+99RbMzc3F/fTp00fny1elUmHRokX4+++/0bhx41Lbu3//Pu7fvy++LygoKP8E1KDy7l4z5Z4bOzs7hIWF1fkxX0REVDsZLUTl5eWhuLgYDg4OOuUODg44f/683nWys7P11s/OzhbfL1q0CObm5pg+fXqZ+54+fTq8vLygVCpx5MgRREZGIisrS+xpys7OhpubW6n9lCzTF6Kio6OxYMGCco7YeEruXns8SNWVu9cYkIhMV3248YXqtjp1d15KSgpWrFiB1NRUSCSSMus93pv13HPPQSaTYcqUKYiOjoalpaVB+46MjNTZbkFBAVxcXAzaVlXRaDQAHt29tmPHYDy8gqt795pGo4GTk5PxGkpE9c6Tj20qCx/bRLWZ0cZE2dvbw8zMDDk5OTrlOTk5cHR01LuOo6NjufUPHjyI3NxctGjRAubm5jA3N8eVK1fw9ttvw9XVtcy2+Pj44J9//kFmZma5+ylZpo+lpSVsbW11Xsb24MEDnfclufLJfPlkPSKi6lbRG1rqyo0vVDcZLUTJZDJ4e3sjKSlJLNNqtUhKSoKvr6/edXx9fXXqA0BiYqJYf8yYMTh9+jROnTolvpydnTFz5kzs27evzLacOnUKUqlUvCPQ19cXv/76q064SExMRLt27fReyqvt6urAciKqOzQaG2RkuPL3EpkUo17Oi4iIQGhoKLp164YePXogJiYGhYWFGD9+PABg7NixaNasGaKjowEAM2bMgL+/P5YuXYpBgwZhy5YtOHnyJNatWwfg4fiYJ7t9LSws4OjoiHbt2gF4OGj82LFj6NevH2xsbJCcnIy33noLr732mhiQRo0ahQULFmDChAl47733cPbsWaxYsQLLly+vqVNTJUoGyj9tYHlJPSIiYyhvChai2syo354hISG4efMm5s6di+zsbHh6emLv3r3iIO6rV69CKn305e/n54e4uDjMmTMHs2fPRps2bZCQkFBqjqjyWFpaYsuWLZg/fz7u378PNzc3vPXWWzrjmRQKBX788Ue8+eab8Pb2hr29PebOnWtSc0QBQKNGjQA8fWB5ST0ioppWVk+5u3u6Sd89TPWD0bsgwsLCEBYWpnfZgQMHSpUNGzYMw4YNq/D2S8Y5lfDy8sLRo0efut5zzz2HgwcPVng/tRkfi0JEtVVdnYKF6gejhyiqGV5eaXB3T0d+vhJKZT5/ORFVEm/Hrx51eQoWqvsYouoRPhaFyDC8Hb/6sKecTBlDVB3Gx6IQVQ3ejl/1Hv+9U15POX8/UW3GEFWH8bEoRNVDo7FBfr4dlEo1e0wMxN9PVBcwRNVx/AVEVLV4O37V4e8nMnVGm2yTiMjUcOJaInocQxQRUQWVdzs+EdU/DFFERBVUcjv+43g7PlH9VakQ9eDBA7z77rto3bo1evTogQ0bNugsz8nJgZmZWZU2kIiotii5Hb8kSPF2fKL6rVIDyz/++GN8+eWXeOedd3Dr1i1ERETg2LFj+Pzzz8U6giBUeSOJiIyJt+MTkT4SoRKpp02bNli+fDkGDx4MAEhPT8cLL7yAXr16YcOGDcjNzYWzszOKi4urrcGmoqCgAAqFAhqNBra2tsZuDhE9I85YTlQ/VOb7u1I9UdevX9d52G/r1q1x4MAB9O/fH2PGjMGnn35qWIuJiGo5BiQielKlxkQ5Ojri0qVLOmXNmjXDzz//jBMnTmDcuHFV2TYiIiKiWqtSIap///6Ii4srVe7s7IyffvoJGRkZVdYwIiIiotqsUpfzPvjgA5w/f17vsmbNmuGXX35BYmJilTSMiIiIqDar1MByqjgOLCciIjI9lfn+Nmiyza1bt+KVV15Bp06d0KlTJ7zyyiv47rvvDGosERERkSmqVIjSarUICQlBSEgI/vjjD7Ru3RqtW7fG77//jpCQEIwYMYLzRBEREVG9UKkxUStWrMD+/fuxY8cOca6oEjt27MD48eOxYsUKhIeHV2UbiYiIiGqdSvVEbdy4EYsXLy4VoABgyJAh+PTTT0s9CoaIiIioLqpUiLp48SICAgLKXB4QEICLFy8+c6OIiIiIartKXc6zsrLCrVu30KJFC73LCwoKIJfLq6RhVL88/kiNGzekyMgwh5vbP3B2fvigVz5Sg4iIaptKhShfX1+sWbMGa9as0bt89erV8PX1rZKGUf2hVqsRGxsLAEhN7YqdOwdDEKSQSLQICtoFL680AEBYWBiDFBER1RqVClHvv/8++vbtC7VajXfeeQceHh4QBAHnzp3D0qVL8cMPP+Dnn3+urrZSHVXSA6XR2IgBCgAEQYqdOwfD3T0dCsXtch/+SkREVNMqFaL8/PwQHx+PyZMnY9u2bTrLGjdujG+++QbPP/98lTaQ6o/8fDsxQJUQBCny85VQKG4bqVVERET6VSpEAcDLL78MlUqFffv2iYPI27Zti4EDB6JBgwZV3kCqP5RKNSQSrU6Qkki0UCrzjdgqIiIi/SoVon766SeEhYXh6NGjePnll3WWaTQadOzYEWvXrkXv3r2rtJFUPygUtxEUtKvUmCj2QhERUW1UqRAVExODSZMm6X2WjEKhwJQpU7Bs2TKGKDKYl1ca3N3TkZ+vhFKZzwBFRES1VqXmifrtt98QGBhY5vKBAwciJSXlmRtF9ZtCcRtublcYoIiIqFarVIjKycmBhYVFmcvNzc1x8+bNZ24UERERUW1XqRDVrFkznD17tszlp0+fhpOT0zM3iuoXmUxWpfWIiIhqgkQQBKGiladNm4YDBw7gxIkTpWYm/9///ocePXqgX79+WLlyZZU31NQUFBRAoVBAo9HoHUNGuh6fsVwfzlhOREQ1oTLf35UKUTk5OfDy8oKZmRnCwsLQrl07AMD58+exevVqFBcXIzU1FQ4ODs92BHUAQxQREZHpqcz3d6XuznNwcMCRI0fwxhtvIDIyEiX5SyKRQKVSYfXq1QxQREREVC9UerLNli1bYs+ePfj777+Rnp4OQRDQpk0bNG7cuDraR0RERFQrVTpElWjcuDG6d+9elW0hIiIiMhmVujuPiIiIiB4yeohavXo1XF1dIZfL4ePjg+PHj5dbf+vWrfDw8IBcLkfnzp2xZ8+eMutOnToVEokEMTExYllmZiYmTJgANzc3WFlZwd3dHfPmzdO5MywzMxMSiaTU6+jRo898vERERFQ3GDVExcfHIyIiAvPmzUNqaiq6dOkClUqF3NxcvfWPHDmCkSNHYsKECUhLS0NwcDCCg4P1zl31/fff4+jRo3B2dtYpP3/+PLRaLT7//HP8/vvvWL58OdauXYvZs2eX2sb+/fuRlZUlvry9vavmwImIiMjkVWqKg6rm4+OD7t27IzY2FgCg1Wrh4uKCadOmYdasWaXqh4SEoLCwELt27RLLevbsCU9PT6xdu1Ysu379Onx8fLBv3z4MGjQI4eHhCA8PL7Mdixcvxpo1a3D58mUAD3ui3NzckJaWBk9PT4OOjVMcEBERmZ7KfH8brSeqqKgIKSkpCAgIeNQYqRQBAQFITk7Wu05ycrJOfQBQqVQ69bVaLcaMGYOZM2eiY8eOFWqLRqOBUqksVT5kyBA0bdoUvXr1wo4dO8rdxv3791FQUKDzIiIiorrLaCEqLy8PxcXFpeaVcnBwQHZ2tt51srOzn1p/0aJFMDc3x/Tp0yvUjvT0dKxatQpTpkwRyxo2bIilS5di69at2L17N3r16oXg4OByg1R0dDQUCoX4cnFxqdD+iYiIyDQZPMVBbZSSkoIVK1YgNTUVEonkqfWvX7+OwMBADBs2DJMmTRLL7e3tERERIb7v3r07bty4gcWLF2PIkCF6txUZGamzTkFBAYMUERFRHWa0EGVvbw8zMzPk5OTolOfk5MDR0VHvOo6OjuXWP3jwIHJzc9GiRQtxeXFxMd5++23ExMQgMzNTLL9x4wb69esHPz8/rFu37qnt9fHxQWJiYpnLLS0tYWlp+dTtEJEuPjeRiEyV0UKUTCaDt7c3kpKSEBwcDODheKakpCSEhYXpXcfX1xdJSUk6g8QTExPh6+sLABgzZozeMVNjxozB+PHjxbLr16+jX79+8Pb2xsaNGyGVPv2q5qlTp+Dk5FTJoySi8qjVavHGEgDQaGyQn28HpVINheK2WB4WFsYgRUS1jlEv50VERCA0NBTdunVDjx49EBMTg8LCQjHwjB07Fs2aNUN0dDQAYMaMGfD398fSpUsxaNAgbNmyBSdPnhR7kuzs7Er9orWwsICjo6P4sOTr16+jb9++aNmyJZYsWYKbN2+KdUt6tDZv3gyZTIauXbsCALZv344NGzbgP//5T/WeEKJ65vEeqNTUrti5czAEQQqJRIugoF3w8korVY+IqLYwaogKCQnBzZs3MXfuXGRnZ8PT0xN79+4VB49fvXpVp5fIz88PcXFxmDNnDmbPno02bdogISEBnTp1qvA+ExMTkZ6ejvT0dDRv3lxn2eOzPURFReHKlSswNzeHh4cH4uPj8eqrrz7jERORPhqNjRigAEAQpNi5czDc3dN1eqSIiGoTo84TVZdxniiip8vKysK6deuQkeGKzZtDSy0PDd0EN7crmDx5Mi+nE1GNMIl5ooiISiiVakgkWp0yiUQLpTLfSC0iIno6higiMjqF4jaCgnaJQapkTBQv5RFRbVan5okiItPl5ZUGd/d05OcroVTmM0ARUa3HEEVEtYZCcZvhiYhMBi/nEZHRyGSyKq1HRFST2BNFREZjZ2eHsLAwzlhORCaJIYqIjIoBiYhMFS/nERERERmAIYqIiIjIAAxRRERERAZgiCIiIiIyAEMUERERkQEYooiIiIgMwBBFREREZACGKCIiIiIDMEQRERERGYAhioiIiMgADFFEREREBmCIIiIiIjIAQxQRERGRARiiiIiIiAzAEEVERERkAHNjN4AqRq1Wo6ioqMzlMpkMdnZ2NdgiIiKi+o0hygSo1WrExsY+tV5YWBiDFBERUQ3h5TwT8GQPlEZjg4wMV2g0NuXWIyIiourDnigTk5raFTt3DoYgSCGRaBEUtAteXmnGbhYREVG9w54oE6LR2IgBCgAEQYqdOweX6pEiIiKi6scQZULy8+3EAFVCEKTIz1caqUVERET1F0OUCVEq1ZBItDplEokWSmW+kVpERERUfzFEmRCF4jaCgnaJQapkTJRCcdvILSMiIqp/OLDcxHh5pcHdPR35+UoolfkMUEREREbCEGUCZDKZznuF4rbe8PRkPSIiIqo+DFEmwM7ODmFhYZyxnIiIqsXjT8W4cUOKjAxzuLn9A2fnh8NH+B2jH0OUieCHl4iIqsPjT8Uoby5CPhWjNA4sJyIiqsdKeqCeNhchn4pRGkMUERERcS5CAxg9RK1evRqurq6Qy+Xw8fHB8ePHy62/detWeHh4QC6Xo3PnztizZ0+ZdadOnQqJRIKYmBid8vz8fIwePRq2trZo1KgRJkyYgDt37ujUOX36NHr37g25XA4XFxd8+umnBh8jERFRbce5CCvPqCEqPj4eERERmDdvHlJTU9GlSxeoVCrk5ubqrX/kyBGMHDkSEyZMQFpaGoKDgxEcHIyzZ8+Wqvv999/j6NGjcHZ2LrVs9OjR+P3335GYmIhdu3bh119/xeTJk8XlBQUFGDhwIFq2bImUlBQsXrwY8+fPx7p166ru4ImIiGoRzkVYeRJBEARj7dzHxwfdu3cXB7RptVq4uLhg2rRpmDVrVqn6ISEhKCwsxK5du8Synj17wtPTE2vXrhXLrl+/Dh8fH+zbtw+DBg1CeHg4wsPDAQDnzp1Dhw4dcOLECXTr1g0AsHfvXrz44ou4du0anJ2dsWbNGrz//vvIzs4Wpw2YNWsWEhIScP78+QodW0FBARQKBTQaDWxtbQ06P0REVP/U9J1yWVlZOp0EGo2N3rkIJ0+eDCcnpyrbb21Vme9vo92dV1RUhJSUFERGRoplUqkUAQEBSE5O1rtOcnIyIiIidMpUKhUSEhLE91qtFmPGjMHMmTPRsWNHvdto1KiRGKAAICAgAFKpFMeOHcPLL7+M5ORk9OnTR2feJZVKhUWLFuHvv/9G48aNDT1sIiKiMtWGO+XKmouQSjPa5by8vDwUFxfDwcFBp9zBwQHZ2dl618nOzn5q/UWLFsHc3BzTp08vcxtNmzbVKTM3N4dSqRS3U9Z+Spbpc//+fRQUFOi8iIiIKoN3ypkWow8sr0opKSlYsWIFNm3aBIlEUqP7jo6OhkKhEF8uLi41un8iIqo7avJOuYo+7YJPxSjNaJfz7O3tYWZmhpycHJ3ynJwcODo66l3H0dGx3PoHDx5Ebm4uWrRoIS4vLi7G22+/jZiYGGRmZsLR0bHUwPV//vkH+fn54nbK2k/JMn0iIyN1LjUWFBQwSBERkUFK7pR7PEhV151yfCqG4YzWEyWTyeDt7Y2kpCSxTKvVIikpCb6+vnrX8fX11akPAImJiWL9MWPG4PTp0zh16pT4cnZ2xsyZM7Fv3z5xG7du3UJKSoq4jZ9++glarRY+Pj5inV9//RUPHjzQ2U+7du3KHA9laWkJW1tbnRcREZEhavpOOTs7Ozg5OZX5YoDSz6iPfYmIiEBoaCi6deuGHj16ICYmBoWFhRg/fjwAYOzYsWjWrBmio6MBADNmzIC/vz+WLl2KQYMGYcuWLTh58qR4V4GdnV2pf2gLCws4OjqiXbt2AID27dsjMDAQkyZNwtq1a/HgwQOEhYVhxIgR4nQIo0aNwoIFCzBhwgS89957OHv2LFasWIHly5fX1KkhIqJ6zssrDe7u6XrvlKPawaghKiQkBDdv3sTcuXORnZ0NT09P7N27VxzEffXqVUiljzrL/Pz8EBcXhzlz5mD27Nlo06YNEhIS0KlTp0rt9+uvv0ZYWBgGDBgAqVSKoUOHYuXKleJyhUKBH3/8EW+++Sa8vb1hb2+PuXPn6swlRUREVN14p1ztZtR5ouoyzhNFRESV9eScTWWpL3M2GUNlvr/r1N15REREpox3ypkWo17OIyIiokd4p5xpYYgiIiKqRRiQTAcv5xEREREZgCGKiIiIyAAMUUREREQGYIgiIiIiMgBDFBEREZEBGKKIiIiIDMAQRURERGQAhigiIiIiAzBEERERERmAIYqIiIjIAAxRRERERAZgiCIiIiIyAEMUERERkQEYooiIiIgMwBBFREREZACGKCIiIiIDMEQRERERGYAhioiIiMgADFFEREREBmCIIiIiIjIAQxQRERGRARiiiIiIiAzAEEVERERkAIYoIiIiIgMwRBEREREZgCGKiIiIyAAMUUREREQGYIgiIiIiMgBDFBEREZmca9eAn39++F9jYYgiIiIik7J+PdCyJdC//8P/rl9vnHYwRBEREZHJuHYNmDwZ0GofvtdqgSlTjNMjxRBFREREJkGtVuPoUbUYoEoUFwPHjqmhVqtrtD0MUURERFTrqdVqxMbG4siRzZBIdFOURKLF4cObERsbW6NBiiGKiIiIar2ioiIAgEJxG0FBu8QgJZFoERS0CwrFbZ16NcHoIWr16tVwdXWFXC6Hj48Pjh8/Xm79rVu3wsPDA3K5HJ07d8aePXt0ls+fPx8eHh6wtrZG48aNERAQgGPHjonLDxw4AIlEovd14sQJAEBmZqbe5UePHq36E0BERESV4uWVhvDwGISGbkJ4eAy8vNKM0g6jhqj4+HhERERg3rx5SE1NRZcuXaBSqZCbm6u3/pEjRzBy5EhMmDABaWlpCA4ORnBwMM6ePSvWadu2LWJjY3HmzBkcOnQIrq6uGDhwIG7evAkA8PPzQ1ZWls5r4sSJcHNzQ7du3XT2t3//fp163t7e1XcyiIiIqMIUittwc7si9kAZg0QQBMFYO/fx8UH37t0RGxsLANBqtXBxccG0adMwa9asUvVDQkJQWFiIXbt2iWU9e/aEp6cn1q5dq3cfBQUFUCgU2L9/PwYMGFBq+YMHD9CsWTNMmzYNH3zwAYCHPVFubm5IS0uDp6enQcdWsl+NRgNbW1uDtkFEREQPZWVlYd26dU+tN3nyZDg5ORm8n8p8fxutJ6qoqAgpKSkICAh41BipFAEBAUhOTta7TnJysk59AFCpVGXWLyoqwrp166BQKNClSxe9dXbs2AG1Wo3x48eXWjZkyBA0bdoUvXr1wo4dO8o9nvv376OgoEDnRURERHWX0UJUXl4eiouL4eDgoFPu4OCA7OxsvetkZ2dXqP6uXbvQsGFDyOVyLF++HImJibC3t9e7zfXr10OlUqF58+ZiWcOGDbF06VJs3boVu3fvRq9evRAcHFxukIqOjoZCoRBfLi4u5R4/ERERmTZzYzegOvTr1w+nTp1CXl4evvjiCwwfPhzHjh1D06ZNdepdu3YN+/btw7fffqtTbm9vj4iICPF99+7dcePGDSxevBhDhgzRu8/IyEiddQoKChikiIiI6jCj9UTZ29vDzMwMOTk5OuU5OTlwdHTUu46jo2OF6ltbW6N169bo2bMn1q9fD3Nzc6zXMyf8xo0bYWdnV2YwepyPjw/S09PLXG5paQlbW1udFxEREVUNmUxWpfWqgtF6omQyGby9vZGUlITg4GAADweWJyUlISwsTO86vr6+SEpKQnh4uFiWmJgIX1/fcvel1Wpx//59nTJBELBx40aMHTsWFhYWT23vqVOnnmmgGhERERnOzs4OYWFh5c4DJZPJYGdnV2NtMurlvIiICISGhqJbt27o0aMHYmJiUFhYKA7yHjt2LJo1a4bo6GgAwIwZM+Dv74+lS5di0KBB2LJlC06ePCmO1i8sLMTHH3+MIUOGwMnJCXl5eVi9ejWuX7+OYcOG6ez7p59+QkZGBiZOnFiqXZs3b4ZMJkPXrl0BANu3b8eGDRvwn//8pzpPBxEREZWjJgNSRRg1RIWEhODmzZuYO3cusrOz4enpib1794qDx69evQqp9NEVRz8/P8TFxWHOnDmYPXs22rRpg4SEBHTq1AkAYGZmhvPnz2Pz5s3Iy8uDnZ0dunfvjoMHD6Jjx446+16/fj38/Pzg4eGht21RUVG4cuUKzM3N4eHhgfj4eLz66qvVdCaIiIjI1Bh1nqi6jPNEERERmR6TmCeKiIiIyJQxRBEREREZgCGKiIiIyAAMUUREREQGYIgiIiIiMgBDFBEREZEBGKKIiIiIDMAQRURERGQAhigiIiIiAzBEERERERmAIYqIiIjIAAxRRERERAZgiCIiIiIyAEMUERERkQEYooiIiIgMwBBFREREZACGKCIiIiIDMEQRERERGYAhioiIiMgADFFEREREBmCIIiIiIjIAQxQRERGRARiiiIiIiAzAEEVERERkAIYoIiIiIgMwRBEREREZgCGKiIiIyAAMUUREREQGYIgiIiIiMgBDFBEREZEBGKKIiIiIDMAQRURERGQAhigiIiIiAzBEERERERmAIYqIiIjIAAxRRERERAYwN3YDiEyNWq1GUVFRmctlMhns7OxqsEVERGQMRu+JWr16NVxdXSGXy+Hj44Pjx4+XW3/r1q3w8PCAXC5H586dsWfPHp3l8+fPh4eHB6ytrdG4cWMEBATg2LFjOnVcXV0hkUh0XgsXLtSpc/r0afTu3RtyuRwuLi749NNPq+aAyaSp1WrExsZi3bp1Zb5iY2OhVquN3VQiIqpmRg1R8fHxiIiIwLx585CamoouXbpApVIhNzdXb/0jR45g5MiRmDBhAtLS0hAcHIzg4GCcPXtWrNO2bVvExsbizJkzOHToEFxdXTFw4EDcvHlTZ1sffvghsrKyxNe0adPEZQUFBRg4cCBatmyJlJQULF68GPPnz8e6deuq50SQySivB8qQekREZLokgiAIxtq5j48PunfvjtjYWACAVquFi4sLpk2bhlmzZpWqHxISgsLCQuzatUss69mzJzw9PbF27Vq9+ygoKIBCocD+/fsxYMAAAA97osLDwxEeHq53nTVr1uD9999HdnY2ZDIZAGDWrFlISEjA+fPnK3RsJfvVaDSwtbWt0DpU+2VlZVUoTE+ePBlOTk410CIiIqpKlfn+NlpPVFFREVJSUhAQEPCoMVIpAgICkJycrHed5ORknfoAoFKpyqxfVFSEdevWQaFQoEuXLjrLFi5cCDs7O3Tt2hWLFy/GP//8o7OfPn36iAGqZD8XLlzA33//rXdf9+/fR0FBgc6LiIiI6i6jDSzPy8tDcXExHBwcdModHBzK7O3Jzs7WWz87O1unbNeuXRgxYgTu3r0LJycnJCYmwt7eXlw+ffp0eHl5QalU4siRI4iMjERWVhaWLVsm7sfNza3UfkqWNW7cuFTboqOjsWDBggoePdUVGo0N8vPtoFSqoVDcNnZziIioBtXJu/P69euHU6dOIS8vD1988QWGDx+OY8eOoWnTpgCAiIgIse5zzz0HmUyGKVOmIDo6GpaWlgbtMzIyUme7BQUFcHFxebYDoVotNbUrdu4cDEGQQiLRIihoF7y80ozdLCIiqiFGu5xnb28PMzMz5OTk6JTn5OTA0dFR7zqOjo4Vqm9tbY3WrVujZ8+eWL9+PczNzbF+/foy2+Lj44N//vkHmZmZ5e6nZJk+lpaWsLW11XlR3aXR2IgBCgAEQYqdOwdDo7ExcsuIiKimGC1EyWQyeHt7IykpSSzTarVISkqCr6+v3nV8fX116gNAYmJimfUf3+79+/fLXH7q1ClIpVKxp8rX1xe//vorHjx4oLOfdu3a6b2UR/VPfr6dGKBKCIIU+flKI7WIiIhqmlGnOIiIiMAXX3yBzZs349y5c3jjjTdQWFiI8ePHAwDGjh2LyMhIsf6MGTOwd+9eLF26FOfPn8f8+fNx8uRJhIWFAQAKCwsxe/ZsHD16FFeuXEFKSgpef/11XL9+HcOGDQPwcNB4TEwMfvvtN1y+fBlff/013nrrLbz22mtiQBo1ahRkMhkmTJiA33//HfHx8VixYoXO5Tqqn0puNlAq1ZBItDrLJBItlMp8nXpERFSHCUa2atUqoUWLFoJMJhN69OghHD16VFzm7+8vhIaG6tT/9ttvhbZt2woymUzo2LGjsHv3bnHZ//73P+Hll18WnJ2dBZlMJjg5OQlDhgwRjh8/LtZJSUkRfHx8BIVCIcjlcqF9+/bCJ598Ity7d09nP7/99pvQq1cvwdLSUmjWrJmwcOHCSh2XRqMRAAgajaZS61Htl5eXJ9y4cUNYsuRvwcxMKwCCYGamFZYs+Vu4ceOGkJeXZ+wmEhGRgSrz/W3UeaLqMs4TVT9cuwakpwOtWwPNmxu7NURE9Kwq8/1dJ+/OI6opzZszPBER1VdGf3YeERERkSliiCIiIiIyAEMUERERkQEYooiIiIgMwBBFREREZACGKCIiIiIDMEQRERERGYAhioiIiMgADFFEREREBmCIIiIiIjIAQxQRERGRAfjsvGpS8lzngoICI7eEiIiIKqrke7vke7w8DFHV5Pbt2wAAFxcXI7eEiIiIKuv27dtQKBTl1pEIFYlaVGlarRY3btyAjY0NJBKJsZtTYwoKCuDi4oK//voLtra2xm6OUfFcPMJz8RDPwyM8F4/wXDxSG86FIAi4ffs2nJ2dIZWWP+qJPVHVRCqVonnz5sZuhtHY2trW+18GJXguHuG5eIjn4RGei0d4Lh4x9rl4Wg9UCQ4sJyIiIjIAQxQRERGRARiiqEpZWlpi3rx5sLS0NHZTjI7n4hGei4d4Hh7huXiE5+IRUzsXHFhOREREZAD2RBEREREZgCGKiIiIyAAMUUREREQGYIgiIiIiMgBDFJVr9erVcHV1hVwuh4+PD44fP15u/ZiYGLRr1w5WVlZwcXHBW2+9hXv37onL58+fD4lEovPy8PCo7sOoEpU5Fw8ePMCHH34Id3d3yOVydOnSBXv37n2mbdYmVX0uTPVz8euvvyIoKAjOzs6QSCRISEh46joHDhyAl5cXLC0t0bp1a2zatKlUHVP8XFTHuTDFz0Vlz0NWVhZGjRqFtm3bQiqVIjw8XG+9rVu3wsPDA3K5HJ07d8aePXuqvvFVrDrOxaZNm0p9JuRyefUcQAUwRFGZ4uPjERERgXnz5iE1NRVdunSBSqVCbm6u3vpxcXGYNWsW5s2bh3PnzmH9+vWIj4/H7Nmzdep17NgRWVlZ4uvQoUM1cTjPpLLnYs6cOfj888+xatUq/PHHH5g6dSpefvllpKWlGbzN2qI6zgVgmp+LwsJCdOnSBatXr65Q/YyMDAwaNAj9+vXDqVOnEB4ejokTJ2Lfvn1iHVP9XFTHuQBM73NR2fNw//59NGnSBHPmzEGXLl301jly5AhGjhyJCRMmIC0tDcHBwQgODsbZs2ersulVrjrOBfBwNvPHPxNXrlypqiZXnkBUhh49eghvvvmm+L64uFhwdnYWoqOj9dZ/8803hf79++uURURECM8//7z4ft68eUKXLl2qpb3VqbLnwsnJSYiNjdUpe+WVV4TRo0cbvM3aojrOhal+Lh4HQPj+++/LrfPuu+8KHTt21CkLCQkRVCqV+N5UPxePq6pzYeqfi4qch8f5+/sLM2bMKFU+fPhwYdCgQTplPj4+wpQpU56xhTWnqs7Fxo0bBYVCUWXtelbsiSK9ioqKkJKSgoCAALFMKpUiICAAycnJetfx8/NDSkqKeOnh8uXL2LNnD1588UWdehcvXoSzszNatWqF0aNH4+rVq9V3IFXAkHNx//79Ul3MVlZW4l/RhmyzNqiOc1HC1D4XhkhOTtY5dwCgUqnEc2eqnwtDPO1clKgPn4unqei5qi/u3LmDli1bwsXFBS+99BJ+//13o7WFIYr0ysvLQ3FxMRwcHHTKHRwckJ2drXedUaNG4cMPP0SvXr1gYWEBd3d39O3bV+dyno+PDzZt2oS9e/dizZo1yMjIQO/evXH79u1qPZ5nYci5UKlUWLZsGS5evAitVovExERs374dWVlZBm+zNqiOcwGY5ufCENnZ2XrPXUFBAf73v/+Z7OfCEE87F0D9+Vw8TVnnqq59JiqiXbt22LBhA3744Qf897//hVarhZ+fH65du2aU9jBEUZU5cOAAPvnkE3z22WdITU3F9u3bsXv3bkRFRYl1XnjhBQwbNgzPPfccVCoV9uzZg1u3buHbb781Ysur3ooVK9CmTRt4eHhAJpMhLCwM48ePh1Ra//6Xq8i5qC+fC6ocfi7oSb6+vhg7diw8PT3h7++P7du3o0mTJvj888+N0p769xudKsTe3h5mZmbIycnRKc/JyYGjo6PedT744AOMGTMGEydOROfOnfHyyy/jk08+QXR0NLRard51GjVqhLZt2yI9Pb3Kj6GqGHIumjRpgoSEBBQWFuLKlSs4f/48GjZsiFatWhm8zdqgOs6FPqbwuTCEo6Oj3nNna2sLKysrk/1cGOJp50Kfuvq5eJqyzlVd+0wYwsLCAl27djXaZ4IhivSSyWTw9vZGUlKSWKbVapGUlARfX1+969y9e7dUT4uZmRkAQCjjEY137tzBpUuX4OTkVEUtr3qGnIsScrkczZo1wz///INt27bhpZdeeuZtGlN1nAt9TOFzYQhfX1+dcwcAiYmJ4rkz1c+FIZ52LvSpq5+LpzHkXNUXxcXFOHPmjPE+E8Ye2U6115YtWwRLS0th06ZNwh9//CFMnjxZaNSokZCdnS0IgiCMGTNGmDVrllh/3rx5go2NjfDNN98Ily9fFn788UfB3d1dGD58uFjn7bffFg4cOCBkZGQIhw8fFgICAgR7e3shNze3xo+vMip7Lo4ePSps27ZNuHTpkvDrr78K/fv3F9zc3IS///67wtusrarjXJjq5+L27dtCWlqakJaWJgAQli1bJqSlpQlXrlwRBEEQZs2aJYwZM0asf/nyZaFBgwbCzJkzhXPnzgmrV68WzMzMhL1794p1TPVzUR3nwhQ/F5U9D4IgiPW9vb2FUaNGCWlpacLvv/8uLj98+LBgbm4uLFmyRDh37pwwb948wcLCQjhz5kyNHltlVce5WLBggbBv3z7h0qVLQkpKijBixAhBLpfr1KlJDFFUrlWrVgktWrQQZDKZ0KNHD+Ho0aPiMn9/fyE0NFR8/+DBA2H+/PmCu7u7IJfLBRcXF+Hf//63zpdlSEiI4OTkJMhkMqFZs2ZCSEiIkJ6eXoNHZLjKnIsDBw4I7du3FywtLQU7OzthzJgxwvXr1yu1zdqsqs+FqX4ufv75ZwFAqVfJ8YeGhgr+/v6l1vH09BRkMpnQqlUrYePGjaW2a4qfi+o4F6b4uTDkPOir37JlS5063377rdC2bVtBJpMJHTt2FHbv3l0zB/QMquNchIeHi/9vODg4CC+++KKQmppacwf1BIkglHGdhYiIiIjKxDFRRERERAZgiCIiIiIyAEMUERERkQEYooiIiIgMwBBFREREZACGKCIiIiIDMEQRERERGYAhioioHjlw4AAkEglu3bpl7KYQmTyGKCKqFuPGjYNEIsHChQt1yhMSEiCRSMT3giDgiy++gK+vL2xtbdGwYUN07NgRM2bMqPBDRe/evYvIyEi4u7tDLpejSZMm8Pf3xw8//CDWcXV1RUxMTJUcW3UrOXcSiQQWFhZwc3PDu+++i3v37lVqO3379kV4eLhOmZ+fH7KysqBQKKqwxUT1E0MUEVUbuVyORYsW4e+//9a7XBAEjBo1CtOnT8eLL76IH3/8EX/88QfWr18PuVyOjz76qEL7mTp1KrZv345Vq1bh/Pnz2Lt3L1599VWo1eqqPJwaFRgYiKysLFy+fBnLly/H559/jnnz5j3zdmUyGRwdHXWCLBEZyGgPnCGiOi00NFQYPHiw4OHhIcycOVMs//7774WSXz3ffPONAED44Ycf9G5Dq9VWaF8KhULYtGlTmcv9/f1LPY+rxMGDB4VevXoJcrlcaN68uTBt2jThzp074vIvv/xS8Pb2Fho2bCg4ODgII0eOFHJycsTlJc8H27t3r+Dp6SnI5XKhX79+Qk5OjrBnzx7Bw8NDsLGxEUaOHCkUFhZW6HhCQ0OFl156SafslVdeEbp27Sq+z8vLE0aMGCE4OzsLVlZWQqdOnYS4uDidbTx5zBkZGWJ7H3+m5XfffSd06NBBkMlkQsuWLYUlS5ZUqJ1E9R17ooio2piZmeGTTz7BqlWrcO3atVLLv/nmG7Rr1w5DhgzRu35Fe0scHR2xZ88e3L59W+/y7du3o3nz5vjwww+RlZWFrKwsAMClS5cQGBiIoUOH4vTp04iPj8ehQ4cQFhYmrvvgwQNERUXht99+Q0JCAjIzMzFu3LhS+5g/fz5iY2Nx5MgR/PXXXxg+fDhiYmIQFxeH3bt348cff8SqVasqdDxPOnv2LI4cOQKZTCaW3bt3D97e3ti9ezfOnj2LyZMnY8yYMTh+/DgAYMWKFfD19cWkSZPEY3ZxcSm17ZSUFAwfPhwjRozAmTNnMH/+fHzwwQfYtGmTQW0lqleMneKIqG56vDelZ8+ewuuvvy4Igm5PlIeHhzBkyBCd9WbMmCFYW1sL1tbWQrNmzSq0r19++UVo3ry5YGFhIXTr1k0IDw8XDh06pFOnZcuWwvLly3XKJkyYIEyePFmn7ODBg4JUKhX+97//6d3XiRMnBADC7du3BUF41BO1f/9+sU50dLQAQLh06ZJYNmXKFEGlUlXoeEJDQwUzMzPB2tpasLS0FAAIUqlU+O6778pdb9CgQcLbb78tvvf39xdmzJihU+fJnqhRo0YJ//rXv3TqzJw5U+jQoUOF2kpUn7Enioiq3aJFi7B582acO3fuqXXff/99nDp1CnPnzsWdO3cqtP0+ffrg8uXLSEpKwquvvorff/8dvXv3RlRUVLnr/fbbb9i0aRMaNmwovlQqFbRaLTIyMgA87KkJCgpCixYtYGNjA39/fwDA1atXdbb13HPPiT87ODigQYMGaNWqlU5Zbm5uhY4HAPr164dTp07h2LFjCA0Nxfjx4zF06FBxeXFxMaKiotC5c2colUo0bNgQ+/btK9Wupzl37hyef/55nbLnn38eFy9eRHFxcaW2RVTfMEQRUbXr06cPVCoVIiMjdcrbtGmDCxcu6JQ1adIErVu3RtOmTSu1DwsLC/Tu3RvvvfcefvzxR3z44YeIiopCUVFRmevcuXMHU6ZMwalTp8TXb7/9hosXL8Ld3R2FhYVQqVSwtbXF119/jRMnTuD7778HgFLbtbCwEH8uuavucRKJBFqttsLHY21tjdatW6NLly7YsGEDjh07hvXr14vLFy9ejBUrVuC9997Dzz//jFOnTkGlUpV7vERUtcyN3QAiqh8WLlwIT09PtGvXTiwbOXIkRo0ahR9++AEvvfRSle6vQ4cO+Oeff3Dv3j3IZDLIZLJSPSteXl74448/0Lp1a73bOHPmDNRqNRYuXCiOJzp58mSVtrMipFIpZs+ejYiICIwaNQpWVlY4fPgwXnrpJbz22msAAK1Wiz///BMdOnQQ19N3zE9q3749Dh8+rFN2+PBhtG3bFmZmZlV/MER1CHuiiKhGdO7cGaNHj8bKlSvFshEjRuDVV1/FiBEj8OGHH+LYsWPIzMzEL7/8gvj4+Ap/ifft2xeff/45UlJSkJmZiT179mD27Nno168fbG1tATycJ+rXX3/F9evXkZeXBwB47733cOTIEYSFheHUqVO4ePEifvjhB3FgeYsWLSCTybBq1SpcvnwZO3bseOolwuoybNgwmJmZYfXq1QAe9uIlJibiyJEjOHfuHKZMmYKcnByddVxdXcVzmpeXp7cn7O2330ZSUhKioqLw559/YvPmzYiNjcU777xTI8dFZMoYooioxnz44Yc6X+QSiQTx8fGIiYnBnj17MGDAALRr1w6vv/46XFxccOjQoQptV6VSYfPmzRg4cCDat2+PadOmQaVS4dtvv9XZd2ZmJtzd3dGkSRMAD8cx/fLLL/jzzz/Ru3dvdO3aFXPnzoWzszOAh5cWN23ahK1bt6JDhw5YuHAhlixZUoVnpOLMzc0RFhaGTz/9FIWFhZgzZw68vLygUqnQt29fODo6Ijg4WGedd955B2ZmZujQoQOaNGmid7yUl5cXvv32W2zZsgWdOnXC3Llz8eGHH+q9A5GIdEkEQRCM3QgiIiIiU8OeKCIiIiIDMEQRUa33+BQET74OHjxo7OZVytWrV8s9nspOUUBExsPLeURU65X3IOJmzZrBysqqBlvzbP755x9kZmaWudzV1RXm5rxxmsgUMEQRERERGYCX84iIiIgMwBBFREREZACGKCIiIiIDMEQRERERGYAhioiIiMgADFFEREREBmCIIiIiIjIAQxQRERGRAf4fbPsLduvrfXEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXG5JREFUeJzt3XlcVFXjP/DPDDCMC4wOyCoKooKiqaASpKLFI/QoxtMiLimaa79wibLSzCWfQnPDxDLLrZ5MMs3cHg0pc8MlloxcEgNNZdGZHBAfQZnz+8MvN0cGhBEYls/79ZpXzLnn3nvubWo+c+6558qEEAJEREREVCVyczeAiIiIqD5iiCIiIiIyAUMUERERkQkYooiIiIhMwBBFREREZAKGKCIiIiITMEQRERERmYAhioiIiMgEDFFEREREJmCIIiJq4DZs2ACZTIasrCxzN4WoQWGIIqJHdvLkSURFRcHHxwfNmjVDmzZtMHToUPz+++9l6vbv3x8ymQwymQxyuRy2trbw8vLCqFGjkJCQUKX97ty5E0FBQXBwcEDTpk3Rrl07DB06FHv37q2uQyvj/fffx/bt28uUHz16FPPmzcONGzdqbN8PmjdvnnQuZTIZmjZtis6dO2P27NnIz8+vln1s2rQJsbGx1bItooaGIYqIHtmiRYuwdetWPPXUU1ixYgUmTpyIgwcPwtfXF+np6WXqt27dGl988QU+//xzLF68GEOGDMHRo0cxcOBARERE4M6dOw/d55IlSzBkyBDIZDLMnDkTy5cvx3PPPYfz589j8+bNNXGYACoOUfPnz6/VEFXq448/xhdffIFly5bB29sb7733HkJDQ1Edj0ZliCIqn6W5G0BE9V90dDQ2bdoEhUIhlUVERKBr165YuHAh/vOf/xjUV6lUePHFFw3KFi5ciKlTp+Kjjz6Cu7s7Fi1aVO7+7t69iwULFuAf//gHvv/++zLL8/LyHvGI6o5bt26hadOmFdZ5/vnnYW9vDwCYPHkynnvuOWzbtg3Hjh1DQEBAbTSTqFFiTxQRPbLAwECDAAUAHTp0gI+PD86cOVOpbVhYWODDDz9E586dERcXB51OV27d69evIz8/H0888YTR5Q4ODgbvb9++jXnz5qFjx45QKpVwdnbGs88+iwsXLkh1lixZgsDAQNjZ2aFJkybw8/PDN998Y7AdmUyGwsJCbNy4UbqENmbMGMybNw8zZswAAHh4eEjL7h+D9J///Ad+fn5o0qQJ1Go1hg0bhj///NNg+/3790eXLl2QnJyMfv36oWnTppg1a1alzt/9nnzySQBAZmZmhfU++ugj+Pj4wNraGi4uLnjllVcMetL69++P3bt34+LFi9Ixubu7V7k9RA0Ve6KIqEYIIZCbmwsfH59Kr2NhYYHhw4fjnXfeweHDhzFo0CCj9RwcHNCkSRPs3LkTU6ZMgVqtLnebJSUlGDx4MBITEzFs2DBMmzYNBQUFSEhIQHp6Ojw9PQEAK1aswJAhQzBy5EgUFxdj8+bNeOGFF7Br1y6pHV988QXGjx+P3r17Y+LEiQAAT09PNGvWDL///ju++uorLF++XOoVatWqFQDgvffewzvvvIOhQ4di/PjxuHbtGlauXIl+/fohNTUVLVq0kNqr0Wjw9NNPY9iwYXjxxRfh6OhY6fNXqjQc2tnZlVtn3rx5mD9/PoKDg/Hyyy/j3Llz+Pjjj3Hy5EkcOXIEVlZWePvtt6HT6XD58mUsX74cANC8efMqt4eowRJERDXgiy++EADE2rVrDcqDgoKEj49Puet9++23AoBYsWJFhdufM2eOACCaNWsmnn76afHee++J5OTkMvXWrVsnAIhly5aVWabX66W/b926ZbCsuLhYdOnSRTz55JMG5c2aNRORkZFltrV48WIBQGRmZhqUZ2VlCQsLC/Hee+8ZlP/666/C0tLSoDwoKEgAEKtXry73uO83d+5cAUCcO3dOXLt2TWRmZopPPvlEWFtbC0dHR1FYWCiEEGL9+vUGbcvLyxMKhUIMHDhQlJSUSNuLi4sTAMS6deukskGDBom2bdtWqj1EjQ0v5xFRtTt79ixeeeUVBAQEIDIyskrrlvZ0FBQUVFhv/vz52LRpE3r06IF9+/bh7bffhp+fH3x9fQ0uIW7duhX29vaYMmVKmW3IZDLp7yZNmkh///XXX9DpdOjbty9SUlKq1P4Hbdu2DXq9HkOHDsX169ell5OTEzp06IAff/zRoL61tTXGjh1bpX14eXmhVatW8PDwwKRJk9C+fXvs3r273LFU+/fvR3FxMaZPnw65/O+vgQkTJsDW1ha7d++u+oESNUK8nEdE1SonJweDBg2CSqXCN998AwsLiyqtf/PmTQCAjY3NQ+sOHz4cw4cPR35+Po4fP44NGzZg06ZNCAsLQ3p6OpRKJS5cuAAvLy9YWlb8v7tdu3bh3//+N9LS0lBUVCSV3x+0THH+/HkIIdChQwejy62srAzeu7q6lhlf9jBbt26Fra0trKys0Lp1a+kSZXkuXrwI4F74up9CoUC7du2k5URUMYYoIqo2Op0OTz/9NG7cuIFDhw7BxcWlytsonRKhffv2lV7H1tYW//jHP/CPf/wDVlZW2LhxI44fP46goKBKrX/o0CEMGTIE/fr1w0cffQRnZ2dYWVlh/fr12LRpU5WP4X56vR4ymQz//e9/jQbKB8cY3d8jVln9+vWTxmERUe1hiCKianH79m2EhYXh999/x/79+9G5c+cqb6OkpASbNm1C06ZN0adPH5Pa0bNnT2zcuBHZ2dkA7g38Pn78OO7cuVOm16fU1q1boVQqsW/fPlhbW0vl69evL1O3vJ6p8so9PT0hhICHhwc6duxY1cOpEW3btgUAnDt3Du3atZPKi4uLkZmZieDgYKnsUXviiBoyjokiokdWUlKCiIgIJCUlYcuWLSbNTVRSUoKpU6fizJkzmDp1Kmxtbcute+vWLSQlJRld9t///hfA35eqnnvuOVy/fh1xcXFl6or/m4zSwsICMpkMJSUl0rKsrCyjk2o2a9bM6ISazZo1A4Ayy5599llYWFhg/vz5ZSa/FEJAo9EYP8gaFBwcDIVCgQ8//NCgTWvXroVOpzO4K7JZs2YVTjdB1JixJ4qIHtlrr72GHTt2ICwsDFqttszkmg9OrKnT6aQ6t27dQkZGBrZt24YLFy5g2LBhWLBgQYX7u3XrFgIDA/H4448jNDQUbm5uuHHjBrZv345Dhw4hPDwcPXr0AACMHj0an3/+OaKjo3HixAn07dsXhYWF2L9/P/7f//t/eOaZZzBo0CAsW7YMoaGhGDFiBPLy8rBq1Sq0b98ep06dMti3n58f9u/fj2XLlsHFxQUeHh7w9/eHn58fAODtt9/GsGHDYGVlhbCwMHh6euLf//43Zs6ciaysLISHh8PGxgaZmZn49ttvMXHiRLz++uuPdP6rqlWrVpg5cybmz5+P0NBQDBkyBOfOncNHH32EXr16Gfz78vPzQ3x8PKKjo9GrVy80b94cYWFhtdpeojrLnLcGElHDUHprfnmviuo2b95cdOjQQbz44ovi+++/r9T+7ty5Iz799FMRHh4u2rZtK6ytrUXTpk1Fjx49xOLFi0VRUZFB/Vu3bom3335beHh4CCsrK+Hk5CSef/55ceHCBanO2rVrRYcOHYS1tbXw9vYW69evl6YQuN/Zs2dFv379RJMmTQQAg+kOFixYIFxdXYVcLi8z3cHWrVtFnz59RLNmzUSzZs2Et7e3eOWVV8S5c+cMzk1F0z88qLR9165dq7Deg1MclIqLixPe3t7CyspKODo6ipdffln89ddfBnVu3rwpRowYIVq0aCEAcLoDovvIhKiGhysRERERNTIcE0VERERkAoYoIiIiIhMwRBERERGZgCGKiIiIyAQMUUREREQmYIgiIiIiMgEn26wher0eV69ehY2NDR+bQEREVE8IIVBQUAAXFxfI5RX3NTFE1ZCrV6/Czc3N3M0gIiIiE/z5559o3bp1hXUYomqIjY0NgHv/Eip6BhgRERHVHfn5+XBzc5O+xyvCEFVDSi/h2draMkQRERHVM5UZisOB5UREREQmYIgiIiIiMgFDFBEREZEJOCbKzEpKSnDnzh1zN6PBsrKygoWFhbmbQUREDRBDlJkIIZCTk4MbN26YuykNXosWLeDk5MT5uoiIqFoxRJlJaYBycHBA06ZN+QVfA4QQuHXrFvLy8gAAzs7OZm4RERE1JAxRZlBSUiIFKDs7O3M3p0Fr0qQJACAvLw8ODg68tEdERNWGA8vNoHQMVNOmTc3cksah9Dxz7BkREVUnhigz4iW82sHzTERENYEhioiIiMgEHBNFREREVabRaFBcXFzucoVC0eDH/TJEUZWMGTMGGzduBABYWlpCrVbjsccew/DhwzFmzBjI5ZXr3NywYQOmT5/OKR6IiOohjUaDuLg46b1OZwOt1g5qtQYqVYFUHhUV1aCDFENUPWXOXwChoaFYv349SkpKkJubi71792LatGn45ptvsGPHDlha8mNFRNSQ3f/9k5LSAzt3DoYQcshkeoSF7YKvb2qZeg0Rv+3qoQd/AZSnpn4BWFtbw8nJCQDg6uoKX19fPP7443jqqaewYcMGjB8/HsuWLcP69evxxx9/QK1WIywsDB988AGaN2+OAwcOYOzYsQD+HvQ9d+5czJs3D1988QVWrFiBc+fOoVmzZnjyyScRGxsLBweHaj8OIiJ6NDqdjRSgAEAIOXbuHAxPzwyDHqnqcn8HwtWrcmRmWsLD4y5cXPQAav8SIgeW10OVTfa1+QvgySefRLdu3bBt2zYAgFwux4cffojffvsNGzduxA8//IA33ngDABAYGIjY2FjY2toiOzsb2dnZeP311wHcm4ZgwYIF+OWXX7B9+3ZkZWVhzJgxtXYcRERUeVqtnRSgSgkhh1arrvZ9lXYgrFmzBpMnn0SvXq3wwgt26NWrFSZPPok1a9YgLi4OGo2m2vddHvZEUbXx9vbGqVOnAADTp0+Xyt3d3fHvf/8bkydPxkcffQSFQgGVSgWZTCb1aJV66aWXpL/btWuHDz/8EL169cLNmzfRvHnzWjkOIiKqHLVaA5lMbxCkZDI91Gptte+rtGPgYb1ftdmBwJ4oqjZCCOny3P79+/HUU0/B1dUVNjY2GDVqFDQaDW7dulXhNpKTkxEWFoY2bdrAxsYGQUFBAIBLly7VePuJiKhqVKoChIXtgkx273Ja6ZiomriUV6o2e78ehj1RVG3OnDkDDw8PZGVlYfDgwXj55Zfx3nvvQa1W4/Dhwxg3bhyKi4vLnam9sLAQISEhCAkJwZdffolWrVrh0qVLCAkJafCDE4mI6itf31R4emZAq1VDrdbWaIACarf362HYE0XV4ocffsCvv/6K5557DsnJydDr9Vi6dCkef/xxdOzYEVevXjWor1AoUFJSYlB29uxZaDQaLFy4EH379oW3t7f08GAiIqq7VKoCeHhcrPEAVbqv2u79Kg97oqjKioqKkJOTYzDFQUxMDAYPHozRo0cjPT0dd+7cwcqVKxEWFoYjR45g9erVBttwd3fHzZs3kZiYiG7duqFp06Zo06YNFAoFVq5cicmTJyM9PR0LFiww01ESEVF5FApFtdarqtru/SoPQxRV2d69e+Hs7AxLS0u0bNkS3bp1w4cffojIyEjI5XJ069YNy5Ytw6JFizBz5kz069cPMTExGD16tLSNwMBATJ48GREREdBoNNIUBxs2bMCsWbPw4YcfwtfXF0uWLMGQIUPMeLRERPQgOzs7REVFmXXGcpWqwGzhqZRMCCHM2oIGKj8/HyqVCjqdDra2tgbLbt++jczMTHh4eECpVFZ52+aeJ6q+edTzTURE5pednY01a9Y8tN7EiRPh7Oxs8n4q+v5+EHui6qG68AuAiIioNpn7EqIxDFH1FAMSERE1JnWxA4EhioiIiOqFutaBwCkOiIiIiEzAEEVERERkAoYoIiIiIhMwRBERERGZwOwhatWqVXB3d4dSqYS/vz9OnDhRYf0tW7bA29sbSqUSXbt2xZ49ewyWjxkzBjKZzOAVGhoqLc/KysK4cePg4eGBJk2awNPTE3PnzjUY7Z+VlVVmGzKZDMeOHavegyciIqJ6y6x358XHxyM6OhqrV6+Gv78/YmNjERISgnPnzsHBwaFM/aNHj2L48OHSI0Y2bdqE8PBwpKSkoEuXLlK90NBQrF+/XnpvbW0t/X327Fno9Xp88sknaN++PdLT0zFhwgQUFhZiyZIlBvvbv38/fHx8pPd17a4AIiIiMh+z9kQtW7YMEyZMwNixY9G5c2esXr0aTZs2xbp164zWX7FiBUJDQzFjxgx06tQJCxYsgK+vb5nZu62treHk5CS9WrZsKS0rDVgDBw5Eu3btMGTIELz++uvYtm1bmf3Z2dkZbMfKyqp6TwCVceDAAchkMty4caPS67i7uyM2NrbG2kRERGSM2UJUcXExkpOTERwc/Hdj5HIEBwcjKSnJ6DpJSUkG9QEgJCSkTP0DBw7AwcEBXl5eePnll6HRaCpsi06ng1qtLlM+ZMgQODg4oE+fPtixY0dlD61BK71cOnny5DLLXnnlFchkMowZM6b2G0ZERFTLzBairl+/jpKSEjg6OhqUOzo6Iicnx+g6OTk5D60fGhqKzz//HImJiVi0aBF++uknPP300ygpKTG6zYyMDKxcuRKTJk2Sypo3b46lS5diy5Yt2L17N/r06YPw8PAKg1RRURHy8/MNXg2Vm5sbNm/ejP/9739S2e3bt7Fp0ya0adPGjC0jIiKqPWYfWF7dhg0bhiFDhqBr164IDw/Hrl27cPLkSRw4cKBM3StXriA0NBQvvPACJkyYIJXb29sjOjoa/v7+6NWrFxYuXIgXX3wRixcvLne/MTExUKlU0svNza0mDq9O8PX1hZubm8El0G3btqFNmzbo0aOHVFZUVISpU6fCwcEBSqUSffr0wcmTJw22tWfPHnTs2BFNmjTBgAEDkJWVVWZ/hw8fRt++fdGkSRO4ublh6tSpKCwsrLHjIyIiqgyzhSh7e3tYWFggNzfXoDw3NxdOTk5G13FycqpSfQBo164d7O3tkZGRYVB+9epVDBgwAIGBgZV6KrS/v3+Zbdxv5syZ0Ol00uvPP/986Dary+XLwI8/3vtnbXnppZcMBu+vW7cOY8eONajzxhtvYOvWrdi4cSNSUlLQvn17hISEQKvVAgD+/PNPPPvsswgLC0NaWhrGjx+Pt956y2AbFy5cQGhoKJ577jmcOnUK8fHxOHz4MKKiomr+IImIiCpgthClUCjg5+eHxMREqUyv1yMxMREBAQFG1wkICDCoDwAJCQnl1geAy5cvQ6PRwNnZWSq7cuUK+vfvDz8/P6xfvx5y+cNPQ1pamsE2HmRtbQ1bW1uDV21YuxZo2xZ48sl7/1y7tlZ2ixdffBGHDx/GxYsXcfHiRRw5cgQvvviitLywsBAff/wxFi9ejKeffhqdO3fGp59+iiZNmmDt/zXy448/hqenJ5YuXQovLy+MHDmyzHiqmJgYjBw5EtOnT0eHDh0QGBiIDz/8EJ9//jlu375dOwdLRERkhFmnOIiOjkZkZCR69uyJ3r17IzY2FoWFhVKPxujRo+Hq6oqYmBgAwLRp0xAUFISlS5di0KBB2Lx5M37++WepJ+nmzZuYP38+nnvuOTg5OeHChQt44403pB4Q4O8A1bZtWyxZsgTXrl2T2lPao7Vx40YoFArp0tS2bduwbt06fPbZZ7V2birj8mVg4kRAr7/3Xq8HJk0CQkKA1q1rdt+tWrXCoEGDsGHDBgghMGjQINjb20vLL1y4gDt37uCJJ56QyqysrNC7d2+cOXMGAHDmzBn4+/sbbPfBQPzLL7/g1KlT+PLLL6UyIQT0ej0yMzPRqVOnmjg8IiKihzJriIqIiMC1a9cwZ84c5OTkoHv37ti7d680ePzSpUsGvUSBgYHYtGkTZs+ejVmzZqFDhw7Yvn27NEeUhYUFTp06hY0bN+LGjRtwcXHBwIEDsWDBAmmuqISEBGRkZCAjIwOtH0gaQgjp7wULFuDixYuwtLSEt7c34uPj8fzzz9f0KamS8+f/DlClSkqAjIyaD1HAvUt6pZfVVq1aVSP7uHnzJiZNmoSpU6eWWcZB7EREZE5mDVEAEBUVVe74FmODwV944QW88MILRus3adIE+/btq3B/Y8aMeegt+JGRkYiMjKywTl3QoQMglxsGKQsLoH372tl/aGgoiouLIZPJpJ6+Up6enlAoFDhy5Ajatm0LALhz5w5OnjyJ6dOnAwA6depU5o7HB2eF9/X1xenTp9G+tg6KiIiokhrc3XmNSevWwJo194ITcO+fn3xSO71Q9/ZngTNnzuD06dOwKG3E/2nWrBlefvllzJgxA3v37sXp06cxYcIE3Lp1C+PGjQMATJ48GefPn8eMGTNw7tw5bNq0CRs2bDDYzptvvomjR48iKioKaWlpOH/+PL777jsOLCciIrMze08UPZpx4+6NgcrIuNcDVVsBqlRFA+gXLlwIvV6PUaNGoaCgAD179sS+ffukGeTbtGmDrVu34tVXX8XKlSvRu3dvvP/++3jppZekbTz22GP46aef8Pbbb6Nv374QQsDT0xMRERE1fmxEREQVkYn7BwJRtcnPz4dKpYJOpysTNG7fvo3MzEx4eHhAqVSaqYWNB883ERFVVkXf3w/i5TwiIiIiEzBEEREREZmAIYqIiIjIBAxRRERERCZgiDIjjumvHTzPRERUExiizMDKygoAcOvWLTO3pHEoPc+l552IiKg6cJ4oM7CwsECLFi2Ql5cHAGjatClkMpmZW9XwCCFw69Yt5OXloUWLFmUmBCUiInoUDFFmUvqw49IgRTWnRYsW0vkmIiKqLgxRZiKTyeDs7AwHBwfcuXPH3M1psKysrNgDRURENYIhyswsLCz4JU9ERFQPMUQRERFRvaDRaFBcXFzucoVCATs7u1prD0MUERER1XkajQZxcXEPrRcVFVVrQYohioionqprv8qJalJFn3VT6lUHhigionqoLv4qJ6pNOp0NtFo7qNUaqFQFZmkDQxQRUT304K/t8r5QavNXOVFtSUnpgZ07B0MIOWQyPcLCdsHXN7XW28EQRURUz9WVLxSi2qDT2UifdwAQQo6dOwfD0zOj1nuk+NgXIqJ6rLwvFJ3OxswtI6oZWq2d9HkvJYQcWq261tvCEEVEVI/VpS8UotqgVmsgk+kNymQyPdRqba23hSGKiKgeq0tfKES1QaUqQFjYLulzX3oJ2xyDyzkmioioHiv9QnlwTJS57lYiqikKhUL629c3FZ6eGdBq1VCrtQaf9/vr1TSGKCKieq6iLxSihsLOzg5RUVF1am40higionrowV/bKlWB0fBUm7/KiWpaXZvzjCGKiKgeqou/yokaG4YoIqJ6igGJyLx4dx4RERGRCRiiiIiIiEzAy3lEVCdpNBqO9yGiOo0hiojqHI1Gg7i4uIfWi4qKYpCiOoc/ABoPhigiqnMq+gIypR5RbeEPgMaFY6KIqM7T6WyQmenOh+pSnccfAI0Le6KIqE5LSelR5pEmvr6p5m4WUaXodDbQau2gVms4k3wDZPaeqFWrVsHd3R1KpRL+/v44ceJEhfW3bNkCb29vKJVKdO3aFXv27DFYPmbMGMhkMoNXaGioQR2tVouRI0fC1tYWLVq0wLhx43Dz5k2DOqdOnULfvn2hVCrh5uaGDz74oHoOmIgqTaezkQIUAAghx86dg9kjRfVCSkoPxMZOx8aNkYiNnY6UlB7mbhJVM7OGqPj4eERHR2Pu3LlISUlBt27dEBISgry8PKP1jx49iuHDh2PcuHFITU1FeHg4wsPDkZ6eblAvNDQU2dnZ0uurr74yWD5y5Ej89ttvSEhIwK5du3Dw4EFMnDhRWp6fn4+BAweibdu2SE5OxuLFizFv3jysWbOm+k8CEZVLq7WTAlQpIeTQatVmahFR5fAHQONg1hC1bNkyTJgwAWPHjkXnzp2xevVqNG3aFOvWrTNaf8WKFQgNDcWMGTPQqVMnLFiwAL6+vmUG8VlbW8PJyUl6tWzZUlp25swZ7N27F5999hn8/f3Rp08frFy5Eps3b8bVq1cBAF9++SWKi4uxbt06+Pj4YNiwYZg6dSqWLVtWcyeDiMpQqzWQyfQGZTKZHmq11kwtIqoc/gBoHMwWooqLi5GcnIzg4OC/GyOXIzg4GElJSUbXSUpKMqgPACEhIWXqHzhwAA4ODvDy8sLLL78MjUZjsI0WLVqgZ8+eUllwcDDkcjmOHz8u1enXr5/BgztDQkJw7tw5/PXXX6YfNBFViUpVgLCwXVKQKh0TxbElVNfxB0DjYLaB5devX0dJSQkcHR0Nyh0dHXH27Fmj6+Tk5Bitn5OTI70PDQ3Fs88+Cw8PD1y4cAGzZs3C008/jaSkJFhYWCAnJwcODg4G27C0tIRarZa2k5OTAw8PjzL7KV12f89WqaKiIhQVFUnv8/PzH3YKiKgc9/+A8fVNhadnBrRaNdRqrUGAur8eUV1S+gPgwZsi+AOgYWlwd+cNGzZM+rtr16547LHH4OnpiQMHDuCpp56qsf3GxMRg/vz5NbZ9osbEzs4OUVFRnLCQ6h3+AGhczBai7O3tYWFhgdzcXIPy3NxcODk5GV3HycmpSvUBoF27drC3t0dGRgaeeuopODk5lRm4fvfuXWi1Wmk75e2ndJkxM2fORHR0tPQ+Pz8fbm5u5baLiCrGgET1EX8ANC5mGxOlUCjg5+eHxMREqUyv1yMxMREBAQFG1wkICDCoDwAJCQnl1geAy5cvQ6PRwNnZWdrGjRs3kJycLNX54YcfoNfr4e/vL9U5ePAg7ty5Y7AfLy8vo5fygHuD2W1tbQ1eRETU+NjZ2cHZ2bncFwNUAyLMaPPmzcLa2lps2LBBnD59WkycOFG0aNFC5OTkCCGEGDVqlHjrrbek+keOHBGWlpZiyZIl4syZM2Lu3LnCyspK/Prrr0IIIQoKCsTrr78ukpKSRGZmpti/f7/w9fUVHTp0ELdv35a2ExoaKnr06CGOHz8uDh8+LDp06CCGDx8uLb9x44ZwdHQUo0aNEunp6WLz5s2iadOm4pNPPqn0sel0OgFA6HS6Rz1NREREVEuq8v1t1hAlhBArV64Ubdq0EQqFQvTu3VscO3ZMWhYUFCQiIyMN6n/99deiY8eOQqFQCB8fH7F7925p2a1bt8TAgQNFq1athJWVlWjbtq2YMGGCFMpKaTQaMXz4cNG8eXNha2srxo4dKwoKCgzq/PLLL6JPnz7C2tpauLq6ioULF1bpuBiiiIiI6p+qfH/LhBDCvH1hDVN+fj5UKhV0Oh0v7REREdUTVfn+NvtjX4iIiIjqI4YoIiIiIhMwRBERERGZgCGKiIiIyAQMUUREREQmYIgiIiIiMgFDFBEREZEJGKKIiIiITGC2BxATEVH9o9Fo+HBdov/DEEVERJWi0WgQFxf30HpRUVEMUtQo8HIeERFVSkU9UKbUI6rvGKKIiMgkOp0NMjPdodPZmLspRGbBy3lERFRlKSk9sHPnYAghh0ymR1jYLvj6ppq7WUS1ij1RRERUJTqdjRSgAEAIOXbuHMweKWp02BNFdQrv/CGq+7RaOylAlRJCDq1WDZWqwEytIqp9DFFUZ/DOH6L6Qa3WQCbTGwQpmUwPtVprxlYR1T5ezqM6g3f+ENUPKlUBwsJ2QSbTA4A0Joq9UNTYsCeKiIgqRaFQSH/7+qbC0zMDWq0aarXWIEDdX4+oIWOIIiKiSrGzs0NUVBTHLRL9H4YoqrN0OhtotXZQqzW8TEBURzAgEf2NIYrqJM5BQ0REdR0HllOdwzloiIioPmCIojqnojloiIiI6gqGKKozSu/oKZ2D5n73z0HDO3+IiKgu4JgoqjPuv/PH1TUfb76pQkmJDBYWAosW5WPEiOG884eIiOoMmRBCmLsRDVF+fj5UKhV0Oh1sbW3N3Zx66fJlICMDaN8eaN3a3K0hIqLGoCrf3+yJojqrdWuGJyIiqrs4JoqIiIjIBAxRRERERCbg5Twiov+j0Wj4SBMiqjSGKCIi3AtQcXFxD60XFRXFIEVEAHg5j4gIAMr0QOl0NsjMdC8zU35FPVVE1LiwJ4qI6AF8diMRVQZ7ooiI7sNnNxJRZZk9RK1atQru7u5QKpXw9/fHiRMnKqy/ZcsWeHt7Q6lUomvXrtizZ0+5dSdPngyZTIbY2Fip7MCBA5DJZEZfJ0+eBABkZWUZXX7s2LFqOWYiqrv47EYiqiyzhqj4+HhER0dj7ty5SElJQbdu3RASEoK8vDyj9Y8ePYrhw4dj3LhxSE1NRXh4OMLDw5Genl6m7rfffotjx47BxcXFoDwwMBDZ2dkGr/Hjx8PDwwM9e/Y0qLt//36Den5+ftV38ERUJz3s2Y1ERKXMGqKWLVuGCRMmYOzYsejcuTNWr16Npk2bYt26dUbrr1ixAqGhoZgxYwY6deqEBQsWwNfXt8wdNVeuXMGUKVPw5ZdfwsrKymCZQqGAk5OT9LKzs8N3332HsWPHQiaTGdS1s7MzqPvgtoio4VGpChAWtksKUqVjolSqAjO3jIjqGrMNLC8uLkZycjJmzpwplcnlcgQHByMpKcnoOklJSYiOjjYoCwkJwfbt26X3er0eo0aNwowZM+Dj4/PQduzYsQMajQZjx44ts2zIkCG4ffs2OnbsiDfeeANDhgwpdztFRUUoKiqS3ufn5z9030RUN/n6psLTMwNarRpqtZYBioiMMluIun79OkpKSuDo6GhQ7ujoiLNnzxpdJycnx2j9nJwc6f2iRYtgaWmJqVOnVqoda9euRUhICFrf95C25s2bY+nSpXjiiScgl8uxdetWhIeHY/v27eUGqZiYGMyfP79S+6SGg5MzNhwKhcLgvUpVYDQ8PViPiBqvBjXFQXJyMlasWIGUlJQyl+aMuXz5Mvbt24evv/7aoNze3t6gx6tXr164evUqFi9eXG6ImjlzpsE6+fn5cHNzM/FIqD54cHJGnc4GWq0d1GqNwZcvJ2esH+zs7BAVFcVQTESVZrYQZW9vDwsLC+Tm5hqU5+bmwsnJyeg6Tk5OFdY/dOgQ8vLy0KZNG2l5SUkJXnvtNcTGxiIrK8tg3fXr18POzq7Cy3Sl/P39kZCQUO5ya2trWFtbP3Q71HDc/2Vb0bxCnJyx/mBAIqKqMNvAcoVCAT8/PyQmJkpler0eiYmJCAgIMLpOQECAQX0ASEhIkOqPGjUKp06dQlpamvRycXHBjBkzsG/fPoP1hBBYv349Ro8eXakB42lpaXB2dq7qYVIjwHmFiIgaJ7NezouOjkZkZCR69uyJ3r17IzY2FoWFhdIg79GjR8PV1RUxMTEAgGnTpiEoKAhLly7FoEGDsHnzZvz8889Ys2YNgHu/Ih/8JWllZQUnJyd4eXkZlP/www/IzMzE+PHjy7Rr48aNUCgU6NGjBwBg27ZtWLduHT777LNqPwdU/1U0rxAHJBMRNVxmDVERERG4du0a5syZg5ycHHTv3h179+6VBo9funQJcvnfX06BgYHYtGkTZs+ejVmzZqFDhw7Yvn07unTpUuV9r127FoGBgfD29ja6fMGCBbh48SIsLS3h7e2N+Ph4PP/886YdKDVopfMK3R+kOK8QEVHDJxNCCHM3oiHKz8+HSqWCTqeDra2tuZtDNSA7O1vqBa1oTNTEiRN5KZiIqJ6oyvd3g7o7j8hcOK8QEVHjwxBFVE3Km1eIiIgaJrM/gJiovqrspIucnJGIqGFiTxSRiTg5Y93FmeSJqDYwRBE9An4R1z0PziRfHs4kT0SPipfziKhBebAHSqezQWame5nJTzmTPBE9KvZEEVGDVdHUE0REj4o9UUTUIPFxPERU0xiiiKhBquhxPERE1YEhiogapNLH8dyPj+MhourEEEVEDZJKVYCwsF1SkCodE8UJUYmounBgORE1WHwcDxHVJIYoImpQHpwhvrzH8XAmeSJ6VAxRRNSgcCZ5IqotDFFE1OAwIBFRbeDAciIiIiITMEQRERERmYAhioiIiMgEDFFEREREJmCIIiIiIjIBQxQRERGRCRiiiIiIiEzAEEVERERkAoYoIiIiIhMwRBERERGZgCGKiIiIyAQMUUREREQmYIgiIiIiMgFDFBEREZEJGKKIiIiITMAQRURERGQChigiIiIiE1iauwFUORqNBsXFxeUuVygUsLOzq8UWERERNW4MUfWARqNBXFyc9F6ns4FWawe1WgOVqkAqj4qKYpAiIiKqJWa/nLdq1Sq4u7tDqVTC398fJ06cqLD+li1b4O3tDaVSia5du2LPnj3l1p08eTJkMhliY2MNyt3d3SGTyQxeCxcuNKhz6tQp9O3bF0qlEm5ubvjggw9MPsZHdX8PVEpKD8TGTsfGjZGIjZ2OlJQeRusRERFRzTJriIqPj0d0dDTmzp2LlJQUdOvWDSEhIcjLyzNa/+jRoxg+fDjGjRuH1NRUhIeHIzw8HOnp6WXqfvvttzh27BhcXFyMbuvdd99Fdna29JoyZYq0LD8/HwMHDkTbtm2RnJyMxYsXY968eVizZk31HLiJdDob7Nw5GELc+9cmhBw7dw6GTmdj1nYRERE1RmYNUcuWLcOECRMwduxYdO7cGatXr0bTpk2xbt06o/VXrFiB0NBQzJgxA506dcKCBQvg6+trcKkLAK5cuYIpU6bgyy+/hJWVldFt2djYwMnJSXo1a9ZMWvbll1+iuLgY69atg4+PD4YNG4apU6di2bJl1XfwJtBq7aQAVUoIObRatZlaRERE1HiZLUQVFxcjOTkZwcHBfzdGLkdwcDCSkpKMrpOUlGRQHwBCQkIM6uv1eowaNQozZsyAj49PuftfuHAh7Ozs0KNHDyxevBh379412E+/fv2gUCgM9nPu3Dn89ddfRrdXVFSE/Px8g1d1U6s1kMn0BmUymR5qtbba90VEREQVM1uIun79OkpKSuDo6GhQ7ujoiJycHKPr5OTkPLT+okWLYGlpialTp5a776lTp2Lz5s348ccfMWnSJLz//vt44403Hrqf0mXGxMTEQKVSSS83N7dy928qlaoAYWG7pCAlk+kRFrbLYHA5ERER1Y4GdXdecnIyVqxYgZSUFMhksnLrRUdHS38/9thjUCgUmDRpEmJiYmBtbW3SvmfOnGmw3fz8/BoJUr6+qfD0zIBWq4ZarWWAIiIiMhOz9UTZ29vDwsICubm5BuW5ublwcnIyuo6Tk1OF9Q8dOoS8vDy0adMGlpaWsLS0xMWLF/Haa6/B3d293Lb4+/vj7t27yMrKqnA/pcuMsba2hq2trcGrpqhUBfDwuMgARUREZEZVClF37tzBG2+8gfbt26N3795lBoDn5ubCwsKiUttSKBTw8/NDYmKiVKbX65GYmIiAgACj6wQEBBjUB4CEhASp/qhRo3Dq1CmkpaVJLxcXF8yYMQP79u0rty1paWmQy+VwcHCQ9nPw4EHcuXPHYD9eXl5o2bJlpY6vOt0/Nqs66hEREdGjq9LlvPfeew+ff/45Xn/9ddy4cQPR0dE4fvw4PvnkE6mOEKLS24uOjkZkZCR69uyJ3r17IzY2FoWFhRg7diwAYPTo0XB1dUVMTAwAYNq0aQgKCsLSpUsxaNAgbN68GT///LM09YCdnV2ZySatrKzg5OQELy8vAPcGjR8/fhwDBgyAjY0NkpKS8Oqrr+LFF1+UAtKIESMwf/58jBs3Dm+++SbS09OxYsUKLF++vCqnq9rY2dkhKiqKM5YTERHVJaIK2rdvL3bu3Cm9P3/+vGjfvr0YM2aM0Ov1IicnR8jl8qpsUqxcuVK0adNGKBQK0bt3b3Hs2DFpWVBQkIiMjDSo//XXX4uOHTsKhUIhfHx8xO7duyvcftu2bcXy5cul98nJycLf31+oVCqhVCpFp06dxPvvvy9u375tsN4vv/wi+vTpI6ytrYWrq6tYuHBhlY5Lp9MJAEKn01VpPSIiIjKfqnx/y4SofNdR06ZNcfr0aYPxRVeuXMGTTz6JXr164YMPPoCbmxtKSkqqP+3VM/n5+VCpVNDpdDU6PoqIiIiqT1W+v6s0JsrJyQkXLlwwKHN1dcWPP/6IkydPYsyYMVVuLBEREVF9VKUQ9eSTT2LTpk1lyl1cXPDDDz8gMzOz2hpGREREVJdVaWD5O++8g7Nnzxpd5urqip9++gkJCQnV0jAiIiKiuqxKY6Ko8jgmioiIqP6psTFRpbZs2YJnn30WXbp0QZcuXfDss8/im2++MamxRERERPVRlUKUXq9HREQEIiIicPr0abRv3x7t27fHb7/9hoiICAwbNqxK80QRERER1VdVGhO1YsUK7N+/Hzt27MDgwYMNlu3YsQNjx47FihUrMH369OpsIxEREVGdU6WeqPXr12Px4sVlAhQADBkyBB988EGZR8EQERERNURVClHnz59HcHBwucuDg4Nx/vz5R24UERERUV1XpRDVpEkT3Lhxo9zl+fn5UCqVj9omIiIiojqvSmOiAgIC8PHHH+Pjjz82unzVqlUICAioloYREZlKo9Hwgd1EVOOqFKLefvtt9O/fHxqNBq+//jq8vb0hhMCZM2ewdOlSfPfdd/jxxx9rqq1ERA+l0WgQFxf30HpRUVEMUkT0SKoUogIDAxEfH4+JEydi69atBstatmyJr776Ck888US1NpCIqCoe7IHS6Wyg1dpBrdZApSootx4RUVVVKUQBwL/+9S+EhIRg37590iDyjh07YuDAgWjatGm1N5CIyFQpKT2wc+dgCCGHTKZHWNgu+PqmmrtZRNRAVClE/fDDD4iKisKxY8fwr3/9y2CZTqeDj48PVq9ejb59+1ZrI4mIqkqns5ECFAAIIcfOnYPh6Zlh0CNFRGSqKt2dFxsbiwkTJhh9loxKpcKkSZOwbNmyamscEZGptFo7KUCVEkIOrVZtphYRUUNTpRD1yy+/IDQ0tNzlAwcORHJy8iM3iojoUanVGshkeoMymUwPtVprphYRUUNTpct5ubm5sLKyKn9jlpa4du3aIzeKyrr/lu2rV+XIzLSEh8dduLjc+5LgLdtEhlSqAoSF7SozJoqX8oioulQpRLm6uiI9PR3t27c3uvzUqVNwdnaulobR3+6/ZbuigbK8ZZvIkK9vKjw9M6DVqqFWaxmgiKhaVely3j//+U+88847uH37dpll//vf/zB37lyjz9WjR1PaA1XeQFmdzsagHlFjplAoDN6rVAXw8LhYJkA9WI+IqKqq1BM1e/ZsbNu2DR07dkRUVBS8vLwAAGfPnsWqVatQUlKCt99+u0YaShUPlOUvbKJ77OzsEBUVxRnLiajGVSlEOTo64ujRo3j55Zcxc+ZMCCEAADKZDCEhIVi1ahUcHR1rpKH090DZ+4MUB8oSlcWARES1ocqTbbZt2xZ79uzBX3/9hYyMDAgh0KFDB7Rs2bIm2kf34UBZIiKiuqPKIapUy5Yt0atXr+psC1UCB8oSERHVDSaHKDIflaqA4YmIiMjMqnR3HhERERHdwxBVD1T2Vmzesk1ERFR7eDmvHuAt20RERHUPQ1Q9wYBERERUt/ByHhEREZEJGKKIiIiITMAQRURERGQChigiIiIiEzBEEREREZnA7CFq1apVcHd3h1KphL+/P06cOFFh/S1btsDb2xtKpRJdu3bFnj17yq07efJkyGQyxMbGSmVZWVkYN24cPDw80KRJE3h6emLu3LkG0wdkZWVBJpOVeR07duyRj5eIiIgaBrOGqPj4eERHR2Pu3LlISUlBt27dEBISgry8PKP1jx49iuHDh2PcuHFITU1FeHg4wsPDkZ6eXqbut99+i2PHjsHFxcWg/OzZs9Dr9fjkk0/w22+/Yfny5Vi9ejVmzZpVZhv79+9Hdna29PLz86ueAyciIqJ6TyaEEObaub+/P3r16oW4uDgAgF6vh5ubG6ZMmYK33nqrTP2IiAgUFhZi165dUtnjjz+O7t27Y/Xq1VLZlStX4O/vj3379mHQoEGYPn06pk+fXm47Fi9ejI8//hh//PEHgHs9UR4eHkhNTUX37t1NOrb8/HyoVCrodDrY2tqatA0iIiKqXVX5/jZbT1RxcTGSk5MRHBz8d2PkcgQHByMpKcnoOklJSQb1ASAkJMSgvl6vx6hRozBjxgz4+PhUqi06nQ5qtbpM+ZAhQ+Dg4IA+ffpgx44dFW6jqKgI+fn5Bi8iIiJquMw2Y/n169dRUlICR0dHg3JHR0ecPXvW6Do5OTlG6+fk5EjvFy1aBEtLS0ydOrVS7cjIyMDKlSuxZMkSqax58+ZYunQpnnjiCcjlcmzduhXh4eHYvn07hgwZYnQ7MTExmD9/fqX2SURElafRaPjYK6qTGtRjX5KTk7FixQqkpKRAJpM9tP6VK1cQGhqKF154ARMmTJDK7e3tER0dLb3v1asXrl69isWLF5cbombOnGmwTn5+Ptzc3B7haIiISKPRSEM+KhIVFcUgRbXObJfz7O3tYWFhgdzcXIPy3NxcODk5GV3HycmpwvqHDh1CXl4e2rRpA0tLS1haWuLixYt47bXX4O7ubrDe1atXMWDAAAQGBmLNmjUPba+/vz8yMjLKXW5tbQ1bW1uDFxERPZoHe6B0OhtkZrpDp7OpsB5RbTBbiFIoFPDz80NiYqJUptfrkZiYiICAAKPrBAQEGNQHgISEBKn+qFGjcOrUKaSlpUkvFxcXzJgxA/v27ZPWuXLlCvr37w8/Pz+sX78ecvnDT0NaWhqcnZ1NOVQiIqoGKSk9EBs7HRs3RiI2djpSUnqYu0nUyJn1cl50dDQiIyPRs2dP9O7dG7GxsSgsLMTYsWMBAKNHj4arqytiYmIAANOmTUNQUBCWLl2KQYMGYfPmzfj555+lniQ7O7sy3blWVlZwcnKCl5cXgL8DVNu2bbFkyRJcu3ZNqlvao7Vx40YoFAr06HHvP9Bt27Zh3bp1+Oyzz2r2hBARkVE6nQ127hwMIe796BVCjp07B8PTMwMqVYGZW0eNlVlDVEREBK5du4Y5c+YgJycH3bt3x969e6XB45cuXTLoJQoMDMSmTZswe/ZszJo1Cx06dMD27dvRpUuXSu8zISEBGRkZyMjIQOvWrQ2W3T/bw4IFC3Dx4kVYWlrC29sb8fHxeP755x/xiImIyBRarZ0UoEoJIYdWq2aIIrMx6zxRDRnniSIienTZ2dlYs2YNdDobxMZONwhSMpke06fHQqUqwMSJEznkohGojTs1q/L93aDuziMiooZJpSpAWNgu6ZKeTKZHWNgu9kI1Ig/eqanT2UCrtYNarTH4HNTmnZoMUUREVC/4+qbC0zMDWq0aarWWAaqRub8HKiWlR5lA7eubWqZeTTP7A4iJiIjKo1AoDN6rVAXw8LhYJkA9WI8arvJuMnhw2ovawJ4oIiKqs+zs7BAVFcUZy0lSl24yYIgiIqI6jQGJ7qdWayCT6cvcZKBWa2u9LbycR0RERPVG6U0GMpkeAMx6kwF7ooiIiKheqSs3GTBEERERUb2jUhWY/Q5NXs4jIiKiOq+yd2DW5p2a7IkiIiKiOq8u3qnJEEVERET1Ql27U5OX84iIiIhMwBBFREREZAKGKCIiIiITcEwUERFVmkajqVMDe4nMiSGKiIgqRaPRIC4uTnqv09lAq7WDWq0xmK8nKiqKQYoaBYYoIiKqlPt7oFJSemDnzsEQQi49dsPXN7VMPaKGjGOiiIioSnQ6GylAAYAQcuzcORg6nY2ZW0ZUu9gTRdRIcCwLVRet1k4KUKWEkEOrVZv9MRxEtYkhiqgR4FgWqk5qtQYymd4gSMlkeqjVWjO2iqj2MUQRNQIcy0LVSaUqQFjYrjKfI/ZCUWPDEEXUiJQ3lsXTM4NfgFQlvr6p8PTMgFarhlqt5eeHGiWGKKJGhGNZqDqpVAX83FCjxrvziBqR0rEs9+NYFqoshUJRrfWI6jv2RBE1IhzLQo/Czs4OUVFRvMuT6P8wRBE1MhzLQo+CAYnobwxRRI0Qx7IQET06jokiagQ4loWIqPqxJ4qoEeBYFiKi6scQRdRIMCAREVUvXs4jIiIiMgFDFBEREZEJGKKIiIiITMAQRURERGQCs4eoVatWwd3dHUqlEv7+/jhx4kSF9bds2QJvb28olUp07doVe/bsKbfu5MmTIZPJEBsba1Cu1WoxcuRI2NraokWLFhg3bhxu3rxpUOfUqVPo27cvlEol3Nzc8MEHH5h8jERERNTwmDVExcfHIzo6GnPnzkVKSgq6deuGkJAQ5OXlGa1/9OhRDB8+HOPGjUNqairCw8MRHh6O9PT0MnW//fZbHDt2DC4uLmWWjRw5Er/99hsSEhKwa9cuHDx4EBMnTpSW5+fnY+DAgWjbti2Sk5OxePFizJs3D2vWrKm+gyciIqL6TZhR7969xSuvvCK9LykpES4uLiImJsZo/aFDh4pBgwYZlPn7+4tJkyYZlF2+fFm4urqK9PR00bZtW7F8+XJp2enTpwUAcfLkSansv//9r5DJZOLKlStCCCE++ugj0bJlS1FUVCTVefPNN4WXl1elj02n0wkAQqfTVXodIiIiMq+qfH+brSequLgYycnJCA4OlsrkcjmCg4ORlJRkdJ2kpCSD+gAQEhJiUF+v12PUqFGYMWMGfHx8jG6jRYsW6Nmzp1QWHBwMuVyO48ePS3X69etnMHtzSEgIzp07h7/++sto24qKipCfn2/wIiIioobLbCHq+vXrKCkpgaOjo0G5o6MjcnJyjK6Tk5Pz0PqLFi2CpaUlpk6dWu42HBwcDMosLS2hVqul7ZS3n9JlxsTExEClUkkvNzc3o/WIiIioYTD7wPLqlJycjBUrVmDDhg2QyWS1uu+ZM2dCp9NJrz///LNW909ERES1y2whyt7eHhYWFsjNzTUoz83NhZOTk9F1nJycKqx/6NAh5OXloU2bNrC0tISlpSUuXryI1157De7u7tI2Hhy4fvfuXWi1Wmk75e2ndJkx1tbWsLW1NXgRERFRw2W2EKVQKODn54fExESpTK/XIzExEQEBAUbXCQgIMKgPAAkJCVL9UaNG4dSpU0hLS5NeLi4umDFjBvbt2ydt48aNG0hOTpa28cMPP0Cv18Pf31+qc/DgQdy5c8dgP15eXmjZsmX1nAAiIjPRaDTIzs4u96XRaMzdRKJ6wawPII6OjkZkZCR69uyJ3r17IzY2FoWFhRg7diwAYPTo0XB1dUVMTAwAYNq0aQgKCsLSpUsxaNAgbN68GT///LM09YCdnV2Zh6xaWVnByckJXl5eAIBOnTohNDQUEyZMwOrVq3Hnzh1ERUVh2LBh0nQII0aMwPz58zFu3Di8+eabSE9Px4oVK7B8+fLaOjVERDVCo9EgLi5Oeq/T2UCrtYNarYFKVSCVR0VF8aHVRA9h1hAVERGBa9euYc6cOcjJyUH37t2xd+9eaRD3pUuXIJf/3VkWGBiITZs2Yfbs2Zg1axY6dOiA7du3o0uXLlXa75dffomoqCg89dRTkMvleO655/Dhhx9Ky1UqFb7//nu88sor8PPzg729PebMmWMwlxQRUX1UXFws/Z2S0gM7dw6GEHLIZHqEhe2Cr29qmXpEZJxMCCHM3YiGKD8/HyqVCjqdjuOjiKjOyM7Oxpo1a6DT2SA2djrun+lGJtNj+vRYqFQFmDhxIpydnc3YUiLzqMr3d4O6O4+IiCpHq7XDg1MFCiGHVqs2U4uI6h+GKCKiRkit1kAm0xuUyWR6qNVaM7WIqP5hiCIiaoRUqgKEhe2SglTpmKj7B5cTUcXMOrCciIjMx9c3FZ6eGdBq1VCrtQxQRFXEEEVE1IipVAUMT0Qm4uU8IqJG5P4Hq1dHPaLGjD1RRESNiJ2dHaKioiqcB0qhUHCiTaJKYIgiImpkGJCIqgcv5xERERGZgCGKiIiIyAQMUUREREQmYIgiIiIiMgFDFBEREZEJGKKIiIiITMAQRURERGQChigiIiIiEzBEEREREZmAIYqIiIjIBAxRRERERCZgiCIiIiIyAUMUERERkQkYooiIiIhMwBBFREREZAKGKCIiIiITMEQRERERmYAhioiIiMgEDFFEREREJmCIIiIiIjIBQxQRERGRCRiiiIiIiEzAEEVERERkAoYoIiIiIhMwRBERERGZgCGKiIiIyARmD1GrVq2Cu7s7lEol/P39ceLEiQrrb9myBd7e3lAqlejatSv27NljsHzevHnw9vZGs2bN0LJlSwQHB+P48ePS8gMHDkAmkxl9nTx5EgCQlZVldPmxY8eq/wQQERFRvWTWEBUfH4/o6GjMnTsXKSkp6NatG0JCQpCXl2e0/tGjRzF8+HCMGzcOqampCA8PR3h4ONLT06U6HTt2RFxcHH799VccPnwY7u7uGDhwIK5duwYACAwMRHZ2tsFr/Pjx8PDwQM+ePQ32t3//foN6fn5+NXcyiIiIqF6RCSGEuXbu7++PXr16IS4uDgCg1+vh5uaGKVOm4K233ipTPyIiAoWFhdi1a5dU9vjjj6N79+5YvXq10X3k5+dDpVJh//79eOqpp8osv3PnDlxdXTFlyhS88847AO71RHl4eCA1NRXdu3c36dhK96vT6WBra2vSNoiIiKh2VeX722w9UcXFxUhOTkZwcPDfjZHLERwcjKSkJKPrJCUlGdQHgJCQkHLrFxcXY82aNVCpVOjWrZvROjt27IBGo8HYsWPLLBsyZAgcHBzQp08f7Nixo8LjKSoqQn5+vsGLiIiIGi6zhajr16+jpKQEjo6OBuWOjo7Iyckxuk5OTk6l6u/atQvNmzeHUqnE8uXLkZCQAHt7e6PbXLt2LUJCQtC6dWuprHnz5li6dCm2bNmC3bt3o0+fPggPD68wSMXExEClUkkvNze3Co+fiIiI6jdLczegJgwYMABpaWm4fv06Pv30UwwdOhTHjx+Hg4ODQb3Lly9j3759+Prrrw3K7e3tER0dLb3v1asXrl69isWLF2PIkCFG9zlz5kyDdfLz8xmkiIiIGjCz9UTZ29vDwsICubm5BuW5ublwcnIyuo6Tk1Ol6jdr1gzt27fH448/jrVr18LS0hJr164ts73169fDzs6u3GB0P39/f2RkZJS73NraGra2tgYvIiIiarjMFqIUCgX8/PyQmJgolen1eiQmJiIgIMDoOgEBAQb1ASAhIaHc+vdvt6ioyKBMCIH169dj9OjRsLKyemh709LS4Ozs/NB6RERE1DiY9XJedHQ0IiMj0bNnT/Tu3RuxsbEoLCyUBnmPHj0arq6uiImJAQBMmzYNQUFBWLp0KQYNGoTNmzfj559/xpo1awAAhYWFeO+99zBkyBA4Ozvj+vXrWLVqFa5cuYIXXnjBYN8//PADMjMzMX78+DLt2rhxIxQKBXr06AEA2LZtG9atW4fPPvusJk8HERER1SNmDVERERG4du0a5syZg5ycHHTv3h179+6VBo9funQJcvnfnWWBgYHYtGkTZs+ejVmzZqFDhw7Yvn07unTpAgCwsLDA2bNnsXHjRly/fh12dnbo1asXDh06BB8fH4N9r127FoGBgfD29jbatgULFuDixYuwtLSEt7c34uPj8fzzz9fQmSAiIqL6xqzzRDVknCeKiIio/qkX80QRERER1WcMUUREREQmYIgiIiIiMgFDFBEREZEJGKKIiIiITMAQRURERGQChigiIiIiEzBEEREREZmAIYqIiIjIBAxRRERERCZgiCIiIiIyAUMUERERkQkYooiIiIhMwBBFREREZAKGKCIiIiITMEQRERERmYAhioiIiMgEDFFEREREJmCIIiIiIjIBQxQRERGRCRiiiIiIiEzAEEVERERkAoYoIiIiIhMwRBERERGZgCGKiIiIyAQMUUREREQmYIgiIiIiMgFDFBEREZEJGKKIiIiITMAQRURERGQChigiIiIiEzBEEREREZmAIYqIiIjIBAxRRERERCYwe4hatWoV3N3doVQq4e/vjxMnTlRYf8uWLfD29oZSqUTXrl2xZ88eg+Xz5s2Dt7c3mjVrhpYtWyI4OBjHjx83qOPu7g6ZTGbwWrhwoUGdU6dOoW/fvlAqlXBzc8MHH3xQPQdMFdJoNMjOzi73pdFozN1EIiIiAIClOXceHx+P6OhorF69Gv7+/oiNjUVISAjOnTsHBweHMvWPHj2K4cOHIyYmBoMHD8amTZsQHh6OlJQUdOnSBQDQsWNHxMXFoV27dvjf//6H5cuXY+DAgcjIyECrVq2kbb377ruYMGGC9N7Gxkb6Oz8/HwMHDkRwcDBWr16NX3/9FS+99BJatGiBiRMn1uAZadw0Gg3i4uIeWi8qKgp2dna10CIiIqLyyYQQwlw79/f3R69evaQvTr1eDzc3N0yZMgVvvfVWmfoREREoLCzErl27pLLHH38c3bt3x+rVq43uIz8/HyqVCvv378dTTz0F4F5P1PTp0zF9+nSj63z88cd4++23kZOTA4VCAQB46623sH37dpw9e7ZSx1a6X51OB1tb20qt09hlZ2djzZo1D603ceJEODs710KLiIiosanK97fZLucVFxcjOTkZwcHBfzdGLkdwcDCSkpKMrpOUlGRQHwBCQkLKrV9cXIw1a9ZApVKhW7duBssWLlwIOzs79OjRA4sXL8bdu3cN9tOvXz8pQJXu59y5c/jrr7+M7quoqAj5+fkGL3o0Op0NMjPdodPZPLwyERFRLTPb5bzr16+jpKQEjo6OBuWOjo7l9vbk5OQYrZ+Tk2NQtmvXLgwbNgy3bt2Cs7MzEhISYG9vLy2fOnUqfH19oVarcfToUcycORPZ2dlYtmyZtB8PD48y+yld1rJlyzJti4mJwfz58yt59PQwKSk9sHPnYAghh0ymR1jYLvj6ppq7WURERBKzDyyvCQMGDEBaWhqOHj2K0NBQDB06FHl5edLy6Oho9O/fH4899hgmT56MpUuXYuXKlSgqKjJ5nzNnzoROp5Nef/75Z3UcSqOk09lIAQoAhJBj587B7JEiIqI6xWwhyt7eHhYWFsjNzTUoz83NhZOTk9F1nJycKlW/WbNmaN++PR5//HGsXbsWlpaWWLt2bblt8ff3x927d5GVlVXhfkqXGWNtbQ1bW1uDF5lGq7WTAlQpIeTQatVmahEREVFZZgtRCoUCfn5+SExMlMr0ej0SExMREBBgdJ2AgACD+gCQkJBQbv37t1tRL1NaWhrkcrl0R2BAQAAOHjyIO3fuGOzHy8vL6KU8ql5qtQYymd6gTCbTQ63WmqlFREREZZn1cl50dDQ+/fRTbNy4EWfOnMHLL7+MwsJCjB07FgAwevRozJw5U6o/bdo07N27F0uXLsXZs2cxb948/Pzzz4iKigIAFBYWYtasWTh27BguXryI5ORkvPTSS7hy5QpeeOEFAPcGjcfGxuKXX37BH3/8gS+//BKvvvoqXnzxRSkgjRgxAgqFAuPGjcNvv/2G+Ph4rFixAtHR0bV8hhonlaoAYWG7pCBVOiZKpSowc8uIiIj+ZtZ5oiIiInDt2jXMmTMHOTk56N69O/bu3SsN4r506RLk8r9zXmBgIDZt2oTZs2dj1qxZ6NChA7Zv3y7NEWVhYYGzZ89i48aNuH79Ouzs7NCrVy8cOnQIPj4+AO5ddtu8eTPmzZuHoqIieHh44NVXXzUISCqVCt9//z1eeeUV+Pn5wd7eHnPmzOEcUTXs/rshfX1T4emZAa1WDbVaaxCg7q9HRERkLmadJ6oh4zxRptFoNCguLi53uUKh4ESbRERUY6ry/W3WniiiBzEgERFRfdEgpzggIiIiqmkMUUREREQmYIgiIiIiMgFDFBEREZEJGKKIiIiITMAQRURERGQChigiIiIiEzBEEREREZmAIYqIiIjIBAxRRERERCbgY19qSOkjCfPz883cEiIiIqqs0u/tyjxamCGqhhQUFAAA3NzczNwSIiIiqqqCggKoVKoK68hEZaIWVZler8fVq1dhY2MDmUz2SNvKz8+Hm5sb/vzzz4c+Ubqx4Dkpi+fEOJ6XsnhOyuI5KauxnhMhBAoKCuDi4gK5vOJRT+yJqiFyuRytW7eu1m3a2to2qg9yZfCclMVzYhzPS1k8J2XxnJTVGM/Jw3qgSnFgOREREZEJGKKIiIiITMAQVQ9YW1tj7ty5sLa2NndT6gyek7J4TozjeSmL56QsnpOyeE4ejgPLiYiIiEzAnigiIiIiEzBEEREREZmAIYqIiIjIBAxRRERERCZgiDKTVatWwd3dHUqlEv7+/jhx4kSF9WNjY+Hl5YUmTZrAzc0Nr776Km7fvi0tnzdvHmQymcHL29u7pg+jWlXlnNy5cwfvvvsuPD09oVQq0a1bN+zdu/eRtlkXVfc5qe+fk4MHDyIsLAwuLi6QyWTYvn37Q9c5cOAAfH19YW1tjfbt22PDhg1l6tTnz0lNnJPG9jnJzs7GiBEj0LFjR8jlckyfPt1ovS1btsDb2xtKpRJdu3bFnj17qr/xNaQmzsmGDRvKfE6USmXNHEAdxRBlBvHx8YiOjsbcuXORkpKCbt26ISQkBHl5eUbrb9q0CW+99Rbmzp2LM2fOYO3atYiPj8esWbMM6vn4+CA7O1t6HT58uDYOp1pU9ZzMnj0bn3zyCVauXInTp09j8uTJ+Ne//oXU1FSTt1nX1MQ5Aer356SwsBDdunXDqlWrKlU/MzMTgwYNwoABA5CWlobp06dj/Pjx2Ldvn1Snvn9OauKcAI3rc1JUVIRWrVph9uzZ6Natm9E6R48exfDhwzFu3DikpqYiPDwc4eHhSE9Pr86m15iaOCfAvdnM7/+cXLx4sbqaXD8IqnW9e/cWr7zyivS+pKREuLi4iJiYGKP1X3nlFfHkk08alEVHR4snnnhCej937lzRrVu3GmlvbajqOXF2dhZxcXEGZc8++6wYOXKkydusa2rinNT3z8n9AIhvv/22wjpvvPGG8PHxMSiLiIgQISEh0vv6/jm5X3Wdk8b2OblfUFCQmDZtWpnyoUOHikGDBhmU+fv7i0mTJj1iC2tfdZ2T9evXC5VKVW3tqo/YE1XLiouLkZycjODgYKlMLpcjODgYSUlJRtcJDAxEcnKydInhjz/+wJ49e/DPf/7ToN758+fh4uKCdu3aYeTIkbh06VLNHUg1MuWcFBUVlek2btKkifRr2ZRt1iU1cU5K1dfPiSmSkpIMziEAhISESOewvn9OTPGwc1KqMX1OKqOy562xuXnzJtq2bQs3Nzc888wz+O2338zdpFrFEFXLrl+/jpKSEjg6OhqUOzo6Iicnx+g6I0aMwLvvvos+ffrAysoKnp6e6N+/v8HlPH9/f2zYsAF79+7Fxx9/jMzMTPTt2xcFBQU1ejzVwZRzEhISgmXLluH8+fPQ6/VISEjAtm3bkJ2dbfI265KaOCdA/f6cmCInJ8foOczPz8f//ve/ev85McXDzgnQ+D4nlVHeeWuon5PK8PLywrp16/Ddd9/hP//5D/R6PQIDA3H58mVzN63WMETVAwcOHMD777+Pjz76CCkpKdi2bRt2796NBQsWSHWefvppvPDCC3jssccQEhKCPXv24MaNG/j666/N2PKas2LFCnTo0AHe3t5QKBSIiorC2LFjIZc33o90Zc5JY/uckGn4OaHKCAgIwOjRo9G9e3cEBQVh27ZtaNWqFT755BNzN63WNN5vHDOxt7eHhYUFcnNzDcpzc3Ph5ORkdJ133nkHo0aNwvjx49G1a1f861//wvvvv4+YmBjo9Xqj67Ro0QIdO3ZERkZGtR9DdTPlnLRq1Qrbt29HYWEhLl68iLNnz6J58+Zo166dydusS2rinBhTnz4npnBycjJ6Dm1tbdGkSZN6/zkxxcPOiTEN/XNSGeWdt4b6OTGFlZUVevTo0ag+JwxRtUyhUMDPzw+JiYlSmV6vR2JiIgICAoyuc+vWrTI9LBYWFgAAUc6jD2/evIkLFy7A2dm5mlpec0w5J6WUSiVcXV1x9+5dbN26Fc8888wjb7MuqIlzYkx9+pyYIiAgwOAcAkBCQoJ0Duv758QUDzsnxjT0z0llmHLeGpuSkhL8+uuvjetzYu6R7Y3R5s2bhbW1tdiwYYM4ffq0mDhxomjRooXIyckRQggxatQo8dZbb0n1586dK2xsbMRXX30l/vjjD/H9998LT09PMXToUKnOa6+9Jg4cOCAyMzPFkSNHRHBwsLC3txd5eXm1fnymqOo5OXbsmNi6dau4cOGCOHjwoHjyySeFh4eH+Ouvvyq9zbquJs5Jff+cFBQUiNTUVJGamioAiGXLlonU1FRx8eJFIYQQb731lhg1apRU/48//hBNmzYVM2bMEGfOnBGrVq0SFhYWYu/evVKd+v45qYlz0tg+J0IIqb6fn58YMWKESE1NFb/99pu0/MiRI8LS0lIsWbJEnDlzRsydO1dYWVmJX3/9tVaPzVQ1cU7mz58v9u3bJy5cuCCSk5PFsGHDhFKpNKjT0DFEmcnKlStFmzZthEKhEL179xbHjh2TlgUFBYnIyEjp/Z07d8S8efOEp6enUCqVws3NTfy///f/DL4cIyIihLOzs1AoFMLV1VVERESIjIyMWjyiR1eVc3LgwAHRqVMnYW1tLezs7MSoUaPElStXqrTN+qC6z0l9/5z8+OOPAkCZV+l5iIyMFEFBQWXW6d69u1AoFKJdu3Zi/fr1ZbZbnz8nNXFOGuPnxFj9tm3bGtT5+uuvRceOHYVCoRA+Pj5i9+7dtXNA1aAmzsn06dOl/24cHR3FP//5T5GSklJ7B1UHyIQo53oQEREREZWLY6KIiIiITMAQRURERGQChigiIiIiEzBEEREREZmAIYqIiIjIBAxRRERERCZgiCIiIiIyAUMUEVEjcuDAAchkMty4ccPcTSGq9xiiiKhGjBkzBjKZDAsXLjQo3759O2QymfReCIFPP/0UAQEBsLW1RfPmzeHj44Np06ZV+kGmt27dwsyZM+Hp6QmlUolWrVohKCgI3333nVTH3d0dsbGx1XJsNa303MlkMlhZWcHDwwNvvPEGbt++XaXt9O/fH9OnTzcoCwwMRHZ2NlQqVTW2mKhxYogiohqjVCqxaNEi/PXXX0aXCyEwYsQITJ06Ff/85z/x/fff4/Tp01i7di2USiX+/e9/V2o/kydPxrZt27By5UqcPXsWe/fuxfPPPw+NRlOdh1OrQkNDkZ2djT/++APLly/HJ598grlz5z7ydhUKBZycnAyCLBGZyLxPnSGihioyMlIMHjxYeHt7ixkzZkjl3377rSj9X89XX30lAIjvvvvO6Db0en2l9qVSqcSGDRvKXR4UFFTmGWClDh06JPr06SOUSqVo3bq1mDJlirh586a0/PPPPxd+fn6iefPmwtHRUQwfPlzk5uZKy0ufSbZ3717RvXt3oVQqxYABA0Rubq7Ys2eP8Pb2FjY2NmL48OGisLCwUscTGRkpnnnmGYOyZ599VvTo0UN6f/36dTFs2DDh4uIimjRpIrp06SI2bdpksI0HjzkzM1Nq7/3P3vzmm29E586dhUKhEG3bthVLliypVDuJGjv2RBFRjbGwsMD777+PlStX4vLly2WWf/XVV/Dy8sKQIUOMrl/Z3hInJyfs2bMHBQUFRpdv27YNrVu3xrvvvovs7GxkZ2cDAC5cuIDQ0FA899xzOHXqFOLj43H48GFERUVJ6965cwcLFizAL7/8gu3btyMrKwtjxowps4958+YhLi4OR48exZ9//omhQ4ciNjYWmzZtwu7du/H9999j5cqVlTqeB6Wnp+Po0aNQKBRS2e3bt+Hn54fdu3cjPT0dEydOxKhRo3DixAkAwIoVKxAQEIAJEyZIx+zm5lZm28nJyRg6dCiGDRuGX3/9FfPmzcM777yDDRs2mNRWokbF3CmOiBqm+3tTHn/8cfHSSy8JIQx7ory9vcWQIUMM1ps2bZpo1qyZaNasmXB1da3Uvn766SfRunVrYWVlJXr27CmmT58uDh8+bFCnbdu2Yvny5QZl48aNExMnTjQoO3TokJDL5eJ///uf0X2dPHlSABAFBQVCiL97ovbv3y/ViYmJEQDEhQsXpLJJkyaJkJCQSh1PZGSksLCwEM2aNRPW1tYCgJDL5eKbb76pcL1BgwaJ1157TXofFBQkpk2bZlDnwZ6oESNGiH/84x8GdWbMmCE6d+5cqbYSNWbsiSKiGrdo0SJs3LgRZ86ceWjdt99+G2lpaZgzZw5u3rxZqe3369cPf/zxBxITE/H888/jt99+Q9++fbFgwYIK1/vll1+wYcMGNG/eXHqFhIRAr9cjMzMTwL2emrCwMLRp0wY2NjYICgoCAFy6dMlgW4899pj0t6OjI5o2bYp27doZlOXl5VXqeABgwIABSEtLw/HjxxEZGYmxY8fiueeek5aXlJRgwYIF6Nq1K9RqNZo3b459+/aVadfDnDlzBk888YRB2RNPPIHz58+jpKSkStsiamwYooioxvXr1w8hISGYOXOmQXmHDh1w7tw5g7JWrVqhffv2cHBwqNI+rKys0LdvX7z55pv4/vvv8e6772LBggUoLi4ud52bN29i0qRJSEtLk16//PILzp8/D09PTxQWFiIkJAS2trb48ssvcfLkSXz77bcAUGa7VlZW0t+ld9XdTyaTQa/XV/p4mjVrhvbt26Nbt25Yt24djh8/jrVr10rLFy9ejBUrVuDNN9/Ejz/+iLS0NISEhFR4vERUvSzN3QAiahwWLlyI7t27w8vLSyobPnw4RowYge+++w7PPPNMte6vc+fOuHv3Lm7fvg2FQgGFQlGmZ8XX1xenT59G+/btjW7j119/hUajwcKFC6XxRD///HO1trMy5HI5Zs2ahejoaIwYMQJNmjTBkSNH8Mwzz+DFF18EAOj1evz+++/o3LmztJ6xY35Qp06dcOTIEYOyI0eOoGPHjrCwsKj+gyFqQNgTRUS1omvXrhg5ciQ+/PBDqWzYsGF4/vnnMWzYMLz77rs4fvw4srKy8NNPPyE+Pr7SX+L9+/fHJ598guTkZGRlZWHPnj2YNWsWBgwYAFtbWwD35ok6ePAgrly5guvXrwMA3nzzTRw9ehRRUVFIS0vD+fPn8d1330kDy9u0aQOFQoGVK1fijz/+wI4dOx56ibCmvPDCC7CwsMCqVasA3OvFS0hIwNGjR3HmzBlMmjQJubm5Buu4u7tL5/T69etGe8Jee+01JCYmYsGCBfj999+xceNGxMXF4fXXX6+V4yKqzxiiiKjWvPvuuwZf5DKZDPHx8YiNjcWePXvw1FNPwcvLCy+99BLc3Nxw+PDhSm03JCQEGzduxMCBA9GpUydMmTIFISEh+Prrrw32nZWVBU9PT7Rq1QrAvXFMP/30E37//Xf07dsXPXr0wJw5c+Di4gLg3qXFDRs2YMuWLejcuTMWLlyIJUuWVOMZqTxLS0tERUXhgw8+QGFhIWbPng1fX1+EhISgf//+cHJyQnh4uME6r7/+OiwsLNC5c2e0atXK6HgpX19ffP3119i8eTO6dOmCOXPm4N133zV6ByIRGZIJIYS5G0FERERU37AnioiIiMgEDFFEVOfdPwXBg69Dhw6Zu3lVcunSpQqPp6pTFBCR+fByHhHVeRU9iNjV1RVNmjSpxdY8mrt37yIrK6vc5e7u7rC05I3TRPUBQxQRERGRCXg5j4iIiMgEDFFEREREJmCIIiIiIjIBQxQRERGRCRiiiIiIiEzAEEVERERkAoYoIiIiIhMwRBERERGZ4P8DBcxNRoTptLgAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_17.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKvUlEQVR4nO3de1yUZf7/8feADCDC6KAiIIqiZZYnREnzlFHYKnb8ZW4eslq/luQaHcx1PfTVQs01S8123dIyXd3SdtNaLEl3t7J0RTuqqeGhElSoQWUFYu7fH36ZGjkEyMyA9+v5eMwj576vuedzXcvK2+u+7vu2GIZhCAAAwET8fF0AAACAtxGAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAKCeWrlypSwWiw4fPuzrUoBLDgEIMLGdO3cqNTVVV155pUJCQtSmTRvdcccd+uqrr8q1HTRokCwWiywWi/z8/BQWFqbLL79co0eP1rvvvluj7924caMGDhyoli1bqnHjxmrfvr3uuOMOZWRk1FXXynnqqaf0t7/9rdz2Dz/8ULNmzdIPP/zgse++0KxZs1xjabFY1LhxY3Xu3Fm///3vVVBQUCffsWbNGi1atKhOjgVcighAgInNmzdP69ev13XXXadnn31W48eP17/+9S/Fx8fr888/L9e+devWWrVqlV555RU9/fTTGj58uD788EPdcMMNGjFihEpKSn7xOxcsWKDhw4fLYrFo6tSpeuaZZ3TbbbfpwIEDWrt2rSe6KanqAPTEE094NQCVWbZsmVatWqWFCxeqU6dOevLJJzVkyBDVxSMaCUBA1Rr5ugAAvpOWlqY1a9bIarW6to0YMUJdunTR3Llz9eqrr7q1t9lsGjVqlNu2uXPnatKkSXr++ecVGxurefPmVfp9P/74o2bPnq3rr79e77zzTrn9J06cuMge1R+FhYVq3LhxlW1uv/12NW/eXJI0YcIE3XbbbdqwYYM++ugj9enTxxtlAqbFDBBgYn379nULP5LUsWNHXXnlldq7d2+1juHv76/nnntOnTt31pIlS+RwOCpte+rUKRUUFOiaa66pcH/Lli3d3p87d06zZs3SZZddpqCgIEVGRurWW2/VoUOHXG0WLFigvn37Kjw8XMHBwerZs6def/11t+NYLBadPXtWL7/8suu00913361Zs2bp0UcflSS1a9fOte/na25effVV9ezZU8HBwbLb7brzzjt17Ngxt+MPGjRIV111lXbt2qUBAwaocePG+t3vflet8fu5wYMHS5Kys7OrbPf888/ryiuvVGBgoKKiojRx4kS3GaxBgwbprbfe0pEjR1x9io2NrXE9wKWMGSAAbgzDUG5urq688spqf8bf318jR47U9OnT9f7772vo0KEVtmvZsqWCg4O1ceNGPfjgg7Lb7ZUes7S0VMOGDVNmZqbuvPNO/fa3v9Xp06f17rvv6vPPP1dcXJwk6dlnn9Xw4cN11113qbi4WGvXrtX/+3//T5s2bXLVsWrVKt13333q3bu3xo8fL0mKi4tTSEiIvvrqK/3lL3/RM88845qNadGihSTpySef1PTp03XHHXfovvvu08mTJ7V48WINGDBAu3fvVtOmTV315uXl6cYbb9Sdd96pUaNGKSIiotrjV6Ys2IWHh1faZtasWXriiSeUlJSk+++/X/v379eyZcu0c+dOffDBBwoICNC0adPkcDj0zTff6JlnnpEkNWnSpMb1AJc0AwB+ZtWqVYYk48UXX3TbPnDgQOPKK6+s9HNvvPGGIcl49tlnqzz+jBkzDElGSEiIceONNxpPPvmksWvXrnLtXnrpJUOSsXDhwnL7nE6n68+FhYVu+4qLi42rrrrKGDx4sNv2kJAQY+zYseWO9fTTTxuSjOzsbLfthw8fNvz9/Y0nn3zSbftnn31mNGrUyG37wIEDDUnGCy+8UGm/f27mzJmGJGP//v3GyZMnjezsbOOPf/yjERgYaERERBhnz541DMMwVqxY4VbbiRMnDKvVatxwww1GaWmp63hLliwxJBkvvfSSa9vQoUONtm3bVqsewIw4BQbAZd++fZo4caL69OmjsWPH1uizZTMMp0+frrLdE088oTVr1qhHjx7avHmzpk2bpp49eyo+Pt7ttNv69evVvHlzPfjgg+WOYbFYXH8ODg52/fn777+Xw+FQ//79lZWVVaP6L7RhwwY5nU7dcccdOnXqlOvVqlUrdezYUVu3bnVrHxgYqHHjxtXoOy6//HK1aNFC7dq10//8z/+oQ4cOeuuttypdO7RlyxYVFxdr8uTJ8vP76a/v3/zmNwoLC9Nbb71V844CJsUpMACSpJycHA0dOlQ2m02vv/66/P39a/T5M2fOSJJCQ0N/se3IkSM1cuRIFRQU6OOPP9bKlSu1Zs0apaSk6PPPP1dQUJAOHTqkyy+/XI0aVf3X1KZNmzRnzhzt2bNHRUVFru0/D0m1ceDAARmGoY4dO1a4PyAgwO19dHR0ufVUv2T9+vUKCwtTQECAWrdu7TqtV5kjR45IOh+cfs5qtap9+/au/QB+GQEIgBwOh2688Ub98MMP+ve//62oqKgaH6PssvkOHTpU+zNhYWG6/vrrdf311ysgIEAvv/yyPv74Yw0cOLBan//3v/+t4cOHa8CAAXr++ecVGRmpgIAArVixQmvWrKlxH37O6XTKYrHoH//4R4Vh8MI1NT+fiaquAQMGuNYdAfAuAhBgcufOnVNKSoq++uorbdmyRZ07d67xMUpLS7VmzRo1btxY/fr1q1UdCQkJevnll3X8+HFJ5xcpf/zxxyopKSk321Jm/fr1CgoK0ubNmxUYGOjavmLFinJtK5sRqmx7XFycDMNQu3btdNlll9W0Ox7Rtm1bSdL+/fvVvn171/bi4mJlZ2crKSnJte1iZ8CASx1rgAATKy0t1YgRI7R9+3a99tprtbr3TGlpqSZNmqS9e/dq0qRJCgsLq7RtYWGhtm/fXuG+f/zjH5J+Or1z22236dSpU1qyZEm5tsb/3SjQ399fFotFpaWlrn2HDx+u8IaHISEhFd7sMCQkRJLK7bv11lvl7++vJ554otyNCQ3DUF5eXsWd9KCkpCRZrVY999xzbjW9+OKLcjgcblffhYSEVHlLAsDsmAECTOzhhx/Wm2++qZSUFOXn55e78eGFNz10OByuNoWFhTp48KA2bNigQ4cO6c4779Ts2bOr/L7CwkL17dtXV199tYYMGaKYmBj98MMP+tvf/qZ///vfuvnmm9WjRw9J0pgxY/TKK68oLS1NO3bsUP/+/XX27Flt2bJFDzzwgG666SYNHTpUCxcu1JAhQ/TrX/9aJ06c0NKlS9WhQwd9+umnbt/ds2dPbdmyRQsXLlRUVJTatWunxMRE9ezZU5I0bdo03XnnnQoICFBKSori4uI0Z84cTZ06VYcPH9bNN9+s0NBQZWdn64033tD48eP1yCOPXNT411SLFi00depUPfHEExoyZIiGDx+u/fv36/nnn1evXr3c/vfq2bOn1q1bp7S0NPXq1UtNmjRRSkqKV+sF6jVfXoIGwLfKLt+u7FVV2yZNmhgdO3Y0Ro0aZbzzzjvV+r6SkhJj+fLlxs0332y0bdvWCAwMNBo3bmz06NHDePrpp42ioiK39oWFhca0adOMdu3aGQEBAUarVq2M22+/3Th06JCrzYsvvmh07NjRCAwMNDp16mSsWLHCdZn5z+3bt88YMGCAERwcbEhyuyR+9uzZRnR0tOHn51fukvj169cb/fr1M0JCQoyQkBCjU6dOxsSJE439+/e7jU1Vtwi4UFl9J0+erLLdhZfBl1myZInRqVMnIyAgwIiIiDDuv/9+4/vvv3drc+bMGePXv/610bRpU0MSl8QDF7AYRh08dAYAAKABYQ0QAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHW6EWAGn06nvvvtOoaGh3E4eAIAGwjAMnT59WlFRUfLzq3qOhwBUge+++04xMTG+LgMAANTCsWPH1Lp16yrbEIAqEBoaKun8AFb1XCMAAFB/FBQUKCYmxvV7vCoEoAqUnfYKCwsjAAEA0MBUZ/kKi6ABAIDpEIAAAIDpEIAAAIDpsAYIAIA6UlpaqpKSEl+XcckKCAiQv79/nRyLAAQAwEUyDEM5OTn64YcffF3KJa9p06Zq1arVRd+njwAEAMBFKgs/LVu2VOPGjbmJrgcYhqHCwkKdOHFCkhQZGXlRxyMAAQBwEUpLS13hJzw83NflXNKCg4MlSSdOnFDLli0v6nQYi6ABALgIZWt+Gjdu7ONKzKFsnC92rRUBCACAOsBpL++oq3HmFFgDlJeXp+Li4kr3W61WpmEBAKgCAaiBycvL05IlS36xXWpqKiEIAIBKcAqsgblw5sfhCFV2dqwcjtAq2wEAcKG7775bFotFFotFAQEBioiI0PXXX6+XXnpJTqez2sdZuXKlmjZt6rlCPYAZIC/w1CmrrKwe2rhxmAzDTxaLUykpmxQfv/tiSgUA+IAvlzYMGTJEK1asUGlpqXJzc5WRkaHf/va3ev311/Xmm2+qUaNLMypcmr2qRzx1ysrhCHWFH0kyDD9t3DhMcXEHZbOdrnW9AADv8vXShsDAQLVq1UqSFB0drfj4eF199dW67rrrtHLlSt13331auHChVqxYoa+//lp2u10pKSmaP3++mjRpom3btmncuHGSflqgPHPmTM2aNUurVq3Ss88+q/379yskJESDBw/WokWL1LJlyzrvR01xCszDqnsqqqanrPLzw13hp4xh+Ck/316j4wAAfMtTvycuxuDBg9WtWzdt2LBBkuTn56fnnntOX3zxhV5++WW99957euyxxyRJffv21aJFixQWFqbjx4/r+PHjeuSRRySdv1R99uzZ+uSTT/S3v/1Nhw8f1t133+21flSFGSAvczhClZ8fLrs976Jmauz2PFksTrcQZLE4Zbfn10WZAACT69Spkz799FNJ0uTJk13bY2NjNWfOHE2YMEHPP/+8rFarbDabLBaLayapzD333OP6c/v27fXcc8+pV69eOnPmjJo0aeKVflSGAORFdblmx2Y7rZSUTeWOx+kvAEBdMAzDdUpry5YtSk9P1759+1RQUKAff/xR586dU2FhYZU3gNy1a5dmzZqlTz75RN9//71rYfXRo0fVuXNnr/SjMgQgL/HEmp34+N2Kizuo/Hy77PZ8wg8AoM7s3btX7dq10+HDhzVs2DDdf//9evLJJ2W32/X+++/r3nvvVXFxcaUB6OzZs0pOTlZycrJWr16tFi1a6OjRo0pOTq4XVyoTgLykqjU7NQkuVqvV7b3NdrrCz1/YDgCA6nrvvff02Wef6aGHHtKuXbvkdDr1hz/8QX5+53+P/fWvf3Vrb7VaVVpa6rZt3759ysvL09y5cxUTEyNJ+s9//uOdDlQDAchL6mrNTnh4uFJTU7kTNACgThQVFSknJ8ftMvj09HQNGzZMY8aM0eeff66SkhItXrxYKSkp+uCDD/TCCy+4HSM2NlZnzpxRZmamunXrpsaNG6tNmzayWq1avHixJkyYoM8//1yzZ8/2US/L4yowLylbs2OxnD//eTFrdsLDwxUZGVnpy9fhJy8vz3UlQEWvvLw8n9YHAPhJRkaGIiMjFRsbqyFDhmjr1q167rnn9Pe//13+/v7q1q2bFi5cqHnz5umqq67S6tWrlZ6e7naMvn37asKECRoxYoRatGih+fPnq0WLFlq5cqVee+01de7cWXPnztWCBQt81MvyLIZhGL4uor4pKCiQzWaTw+FQWFjYRR3rwvs7nL8KrPyanUvl0RW+vp8FAHjbuXPnlJ2drXbt2ikoKKjGn+fvzZqparxr8vubU2AeZrZTVhU9qqOiy/7rwwI4AKgPzPZ7or4gAHmBWX9oeVQHAFSPWX9P+BJrgFCnHA7H//234sv+yx7aWtYOAABfIAChTpWUlEj65Ud1lLUDAMAXCEDwCLs9T5Lzgq08qgMAUD8QgOBBFvd3lkqaAQDgZQQgeER+frguDEA8rR4AUF8QgFCnGjU6f2Fh2Z2vf+7nd74uawcAgC8QgFCnmjZtKumX73xd1g4AAF/gn+HwGJ5WDwDmtm3bNl177bX6/vvvq/0P39jYWE2ePFmTJ0/2aG3MAKFOVfS0+nbtjpQLPzytHgB87+6775bFYtGECRPK7Zs4caIsFovuvvtu7xfmBcwAoU5xS3cAaFhiYmK0du1aPfPMMwoODpZ0/nlba9asUZs2bXxcnecwA4Q6V9+fVg8A+El8fLxiYmK0YcMG17YNGzaoTZs26tGjh2tbUVGRJk2apJYtWyooKEj9+vXTzp073Y719ttv67LLLlNwcLCuvfZaHT58uNz3vf/+++rfv7+Cg4MVExOjSZMm6ezZsx7rX2UIQAAA1CPffCNt3Xr+v95yzz33aMWKFa73L730ksaNG+fW5rHHHtP69ev18ssvKysrSx06dFBycrLy889f3Xvs2DHdeuutSklJ0Z49e3Tffffp8ccfdzvGoUOHNGTIEN1222369NNPtW7dOr3//vtKTU31fCcvQAACAKCeePFFqW1bafDg8/998UXvfO+oUaP0/vvv68iRIzpy5Ig++OADjRo1yrX/7NmzWrZsmZ5++mndeOON6ty5s5YvX67g4GC9+H9FLlu2THFxcfrDH/6gyy+/XHfddVe59UPp6em66667NHnyZHXs2FF9+/bVc889p1deeUXnzp3zTmf/D2uAAACoB775Rho/XnL+3y3UnE7pf/5HSk6WWrf27He3aNFCQ4cO1cqVK2UYhoYOHarmzZu79h86dEglJSW65pprXNsCAgLUu3dv7d27V5K0d+9eJSYmuh23T58+bu8/+eQTffrpp1q9erVrm2EYcjqdys7O1hVXXOGJ7lWIAAQAQD1w4MBP4adMaal08KDnA5B0/jRY2amopUuXeuQ7zpw5o//5n//RpEmTyu3z9oJrAhAAAPVAx46Sn597CPL3lzp08M73DxkyRMXFxbJYLEpOTnbbFxcXJ6vVqg8++EBt27aVJJWUlGjnzp2u+/VcccUVevPNN90+99FHH7m9j4+P15dffqkO3upUFVgDBABAPdC6tfSnP50PPdL5//7xj96Z/Tn/ff7au3evvvzyS/mXFfF/QkJCdP/99+vRRx9VRkaGvvzyS/3mN79RYWGh7r33XknShAkTdODAAT366KPav3+/1qxZo5UrV7odZ8qUKfrwww+VmpqqPXv26MCBA/r73//uk0XQzAABAFBP3Hvv+TU/Bw+en/nxVvgpExYWVum+uXPnyul0avTo0Tp9+rQSEhK0efNmNWvWTNL5U1jr16/XQw89pMWLF6t379566qmndM8997iO0bVrV/3zn//UtGnT1L9/fxmGobi4OI0YMcLjfbuQxTAMw+vfWs8VFBTIZrPJ4XBU+cMAAMC5c+eUnZ2tdu3aKSgoyNflXPKqGu+a/P7mFBgAADCdehGAli5dqtjYWAUFBSkxMVE7duyotO2GDRuUkJCgpk2bKiQkRN27d9eqVatc+0tKSjRlyhR16dJFISEhioqK0pgxY/Tdd995oysAAKAB8HkAWrdundLS0jRz5kxlZWWpW7duSk5O1okTJypsb7fbNW3aNG3fvl2ffvqpxo0bp3Hjxmnz5s2SpMLCQmVlZWn69OnKysrShg0btH//fg0fPtyb3QIAAPWYz9cAJSYmqlevXlqyZIkkyel0KiYmRg8++GC5W2hXJj4+XkOHDtXs2bMr3L9z50717t1bR44cqdZ9BlgDBACoLtYAedclsQaouLhYu3btUlJSkmubn5+fkpKStH379l/8vGEYyszM1P79+zVgwIBK2zkcDlksFjVt2rTC/UVFRSooKHB7AQBQE1xT5B11Nc4+vQz+1KlTKi0tVUREhNv2iIgI7du3r9LPORwORUdHq6ioSP7+/nr++ed1/fXXV9j23LlzmjJlikaOHFlpGkxPT9cTTzxR+44AdSwvL0/FxcWV7rdarQoPD/diRQAqExAQIOn8Eozg4GAfV3PpKywslPTTuNdWg7wPUGhoqPbs2aMzZ84oMzNTaWlpat++vQYNGuTWrqSkRHfccYcMw9CyZcsqPd7UqVOVlpbmel9QUKCYmBhPlQ9UKS8vz3VKuCqpqamEIKAe8Pf3V9OmTV1rVxs3biyLxeLjqi49hmGosLBQJ06cUNOmTcvdrLGmfBqAmjdvLn9/f+Xm5rptz83NVatWrSr9nJ+fn+s22t27d9fevXuVnp7uFoDKws+RI0f03nvvVXkuMDAwUIGBgRfXGaCOVDXzU5t2ADyv7HdWZRfwoO40bdq0yoxQXT4NQFarVT179lRmZqZuvvlmSecXQWdmZtbotthOp1NFRUWu92Xh58CBA9q6dSv/SkaD5nCEKj8/XHZ7nmy2074uB0AFLBaLIiMj1bJlS5WUlPi6nEtWQEDARc/8lPH5KbC0tDSNHTtWCQkJ6t27txYtWqSzZ89q3LhxkqQxY8YoOjpa6enpks6v10lISFBcXJyKior09ttva9WqVa5TXCUlJbr99tuVlZWlTZs2qbS0VDk5OZLOX0JvtVp901GgFrKyemjjxmEyDD9ZLE6lpGxSfPxuX5cFoBL+/v519gsanuXzADRixAidPHlSM2bMUE5Ojrp3766MjAzXwuijR4/Kz++ni9XOnj2rBx54QN98842Cg4PVqVMnvfrqq67niHz77beup9F2797d7bu2bt1abp0QUF3eXpjscIS6wo8kGYafNm4cpri4g8wEAcBF8nkAks4v5qzslNe2bdvc3s+ZM0dz5syp9FixsbFciog654uFyfn54a7wU8Yw/JSfb68wAHHlGABUX70IQEB9d2GwqGxdTl0uTLbb82SxON1CkMXilN2eX64tV44BQM0QgIAa8ta6HJvttFJSNpX7ropmf7hyDABqhgAE1IA31uX8fKF+fPxuxcUdVH6+XXZ7vtt3VLWgnyvHAKBqBCCgBmq6Lqc2wsPDlZqaWuv1PFw5BgC/jAAE1EBN1uVcjNqu0+HKMQCoHp8+DBVoaMrW5VgsTkmqcl2OL1Q1QwUA+AkzQEANVbUux9e8NUMFAA0dM0BANVy44NhmO6127Y6UCz++vtN4fZ+hAoD6ghkgoBoudmGyp9XFlWMAYCYWg9sml1NQUCCbzSaHw1HlU+SB+oQ7QQMwu5r8/mYGCGhgahN0yj5z/Pjxan+mtt8FAA0BAQhoQGrzyIvaPiaDx2sAuJSxCBpoQCp6Jll2dqwcjtBK29XmMxW9r25NANAQMAMENFC1uePzxdwlmsdrALiUEICABqg2d3y+mLtE83gNAJcaToEBDVBt7vhc27tEVxacLjyFBgANCQEIaIDK7vj8c790x+fafEbi8RoALk0EIKABqs0dn2t7l+jaBicAqM9YAwQ0ULV5JlltPlMWnC5cA8RCaAANGQEIaEAqeiZZRUHk5+1q85kL3/N4DQCXGh6FUQEehYH67GLuBF2Tz1zM5wDAF3gUBnAJq03gqG1IIdwAuFSxCBoAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOT4MH4HN5eXkqLi6udL/VauXJ9ADqFAEIgE/l5eVpyZIlv9guNTWVEASgznAKDIBPXTjz43CEKjs7Vg5HaJXtAOBiMAMEoN7IyuqhjRuHyTD8ZLE4lZKySfHxu31dFoBLEDNAAOoFhyPUFX4kyTD8tHHjsHIzQQBQFwhAAOqF/PxwV/gpYxh+ys+3+6giAJcyAhCAesFuz5PF4nTbZrE4Zbfn+6giAJcyAhCAesFmO62UlE2uEFS2BshmO+3jygBciupFAFq6dKliY2MVFBSkxMRE7dixo9K2GzZsUEJCgpo2baqQkBB1795dq1atcmtjGIZmzJihyMhIBQcHKykpSQcOHPB0NwBcpPj43Zo8eZHGjl2pyZMXsQAagMf4PACtW7dOaWlpmjlzprKystStWzclJyfrxIkTFba32+2aNm2atm/frk8//VTjxo3TuHHjtHnzZleb+fPn67nnntMLL7ygjz/+WCEhIUpOTta5c+e81S0A1WS1Wt3e22yn1a7dkXIzPxe2A4CLYTEMw/BlAYmJierVq5frRmhOp1MxMTF68MEH9fjjj1frGPHx8Ro6dKhmz54twzAUFRWlhx9+WI888ogkyeFwKCIiQitXrtSdd975i8crKCiQzWaTw+FQWFhY7TsHoFq4EzSAulCT398+vQ9QcXGxdu3apalTp7q2+fn5KSkpSdu3b//FzxuGoffee0/79+/XvHnzJEnZ2dnKyclRUlKSq53NZlNiYqK2b99eYQAqKipSUVGR631BQcHFdAtADRFuAHibT0+BnTp1SqWlpYqIiHDbHhERoZycnEo/53A41KRJE1mtVg0dOlSLFy/W9ddfL0muz9XkmOnp6bLZbK5XTEzMxXQLAADUcz5fA1QboaGh2rNnj3bu3Kknn3xSaWlp2rZtW62PN3XqVDkcDtfr2LFjdVcsAACod3x6Cqx58+by9/dXbm6u2/bc3Fy1atWq0s/5+fmpQ4cOkqTu3btr7969Sk9P16BBg1yfy83NVWRkpNsxu3fvXuHxAgMDFRgYeJG9AQAADYVPZ4CsVqt69uypzMxM1zan06nMzEz16dOn2sdxOp2uNTzt2rVTq1at3I5ZUFCgjz/+uEbHBAAAly6fPww1LS1NY8eOVUJCgnr37q1Fixbp7NmzGjdunCRpzJgxio6OVnp6uqTz63USEhIUFxenoqIivf3221q1apWWLVsmSbJYLJo8ebLmzJmjjh07ql27dpo+fbqioqJ08803+6qbAACgHvF5ABoxYoROnjypGTNmKCcnR927d1dGRoZrEfPRo0fl5/fTRNXZs2f1wAMP6JtvvlFwcLA6deqkV199VSNGjHC1eeyxx3T27FmNHz9eP/zwg/r166eMjAwFBQV5vX8ALn1cxg80PD6/D1B9xH2AAFRXXl6e6z5mVUlNTSUEAR5Wk9/fDfIqMACoLy6c+XE4QpWdHSuHI7TKdgB8y+enwADgUpGV1UMbNw6TYfi5HubK88yA+okZIACoAw5HqCv8SJJh+GnjxmHlZoIA1A8EIACoA/n54a7wU8Yw/JSfb/dRRQCqQgACgDpgt+fJYnG6bbNYnLLb831UEYCqEIAAoA7YbKeVkrLJFYLK1gDZbKd9XBmAirAIGgDqSHz8bsXFHVR+vl12ez7hB6jHCEAAcBGsVqvbe5vtdIXB58J2AHyLAAQAFyE8PFypqancCRpoYAhAAHCRCDdAw8MiaAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDqNfF0AAMB38vLyVFxcXOl+q9Wq8PBwL1YEeAcBCABMKi8vT0uWLPnFdiNGjJDNZnPbRjBCQ0cAAgCTunDmx+EIVX5+uOz2PNlsp13b161bV+HnU1NTCUFosAhAAABlZfXQxo3DZBh+slicSknZpPj43ZIqD0ZVnToD6jsCEACYnMMR6go/kmQYftq4cZji4g7q0KEOlQYjoCHjKjAAMLn8/HBX+CljGH46dqx1hcHI4Qj1RZlAnSIAAYDJ2e15slicbtvOv7dUGIzy8+1erA7wDJ8HoKVLlyo2NlZBQUFKTEzUjh07Km27fPly9e/fX82aNVOzZs2UlJRUrv2ZM2eUmpqq1q1bKzg4WJ07d9YLL7zg6W4AQINls51WSsomVwgqO9UVE3OswmBkt+f7okygTvl0DdC6deuUlpamF154QYmJiVq0aJGSk5O1f/9+tWzZslz7bdu2aeTIkerbt6+CgoI0b9483XDDDfriiy8UHR0tSUpLS9N7772nV199VbGxsXrnnXf0wAMPKCoqSsOHD/d2FwGgQYiP3624uIPKz7fLbs93LXZOSdlUbg3QzxdCAw2VxTAMw1dfnpiYqF69ernuQ+F0OhUTE6MHH3xQjz/++C9+vrS0VM2aNdOSJUs0ZswYSdJVV12lESNGaPr06a52PXv21I033qg5c+ZUq66CggLZbDY5HA6FhYXVomcAUP9V9z5A568Ccw9GkjR+/HhFRkZ6skSgRmry+9tnM0DFxcXatWuXpk6d6trm5+enpKQkbd++vVrHKCwsVElJiez2n85H9+3bV2+++abuueceRUVFadu2bfrqq6/0zDPPVHqcoqIiFRUVud4XFBTUokcA0LCEh4crNTW13OXsP/zwg/7617+63ttspyuc9bFarR6vEfAUnwWgU6dOqbS0VBEREW7bIyIitG/fvmodY8qUKYqKilJSUpJr2+LFizV+/Hi1bt1ajRo1kp+fn5YvX64BAwZUepz09HQ98cQTtesIADRgFd3IMDIyssJg9HPcCRoNXYO9D9DcuXO1du1abdu2TUFBQa7tixcv1kcffaQ333xTbdu21b/+9S9NnDixXFD6ualTpyotLc31vqCgQDExMR7vAwDUV4QbXOp8FoCaN28uf39/5ebmum3Pzc1Vq1atqvzsggULNHfuXG3ZskVdu3Z1bf/vf/+r3/3ud3rjjTc0dOhQSVLXrl21Z88eLViwoNIAFBgYqMDAwIvsEQAAaCh8dhm81WpVz549lZmZ6drmdDqVmZmpPn36VPq5+fPna/bs2crIyFBCQoLbvpKSEpWUlMjPz71b/v7+cjrdL+UEAADm5dNTYGlpaRo7dqwSEhLUu3dvLVq0SGfPntW4ceMkSWPGjFF0dLTS09MlSfPmzdOMGTO0Zs0axcbGKicnR5LUpEkTNWnSRGFhYRo4cKAeffRRBQcHq23btvrnP/+pV155RQsXLvRZPwEAQP3i0wA0YsQInTx5UjNmzFBOTo66d++ujIwM18Loo0ePus3mLFu2TMXFxbr99tvdjjNz5kzNmjVLkrR27VpNnTpVd911l/Lz89W2bVs9+eSTmjBhgtf6BQAA6jef3geovuI+QAAANDw1+f3t80dhAAAAeFuDvQweAFD/5OXlcf8gNAgEIABAnajuozVSU1MJQfA5ToEBAOrEhTM/DkeosrNj5XCEVtkO8AVmgAAAdS4rq0e5p8jHx+/2dVmACzNAAIA65XCEusKPJBmGnzZuHFZuJgjwJQIQAKBO5eeHu8JPGcPwU36+3UcVAeURgAAAdcpuz5PF4v74IYvFKbs930cVAeURgAAAdcpmO62UlE2uEFS2BshmO+3jyoCfsAgaAFDn4uN3Ky7uoPLz7bLb8wk/qHcIQACAOmG1Wt3e22ynKww+F7YDfIEABACoE+Hh4UpNTeVO0GgQCEAAgDpDuEFDwSJoAABgOjUOQG+//bbuu+8+PfbYY9q3b5/bvu+//16DBw+us+IAAAA8oUYBaM2aNRo+fLhycnK0fft29ejRQ6tXr3btLy4u1j//+c86LxIAAKAu1WgN0NNPP62FCxdq0qRJkqS//vWvuueee3Tu3Dnde++9HikQAACgrtUoAB04cEApKSmu93fccYdatGih4cOHq6SkRLfcckudFwgAMK+8vDyuKoNH1CgAhYWFKTc3V+3atXNtu/baa7Vp0yYNGzZM33zzTZ0XCAAwp7y8PC1ZsuQX26WmphKCUGM1WgPUu3dv/eMf/yi3feDAgdq4caMWLVpUV3UBAEzuwpkfhyNU2dmx5Z4qX9UMEVCZGs0APfTQQ/rwww8r3Ddo0CBt3LhRr7zySp0UBgBAmaysHtq4cZgMw8/1bLH4+N2+LgsNWI0CUI8ePdSjRw8VFBRUuL9nz57q2bNnnRQGAIB0fuanLPxIkmH4aePGYYqLO8gzxlBrNQpATZs2lcVi+cV2paWltS4IAICfy88Pd4WfMobhp/x8OwEItVajALR161bXnw3D0K9+9Sv9+c9/VnR0dJ0XBgCAJNntebJYnG4hyGJxym7P92FVaOhqFIAGDhzo9t7f319XX3212rdvX6dFAQBQxmY7rZSUTeXWADH7g4vBw1ABAPVefPxuxcUdVH6+XXZ7PuEHF40ABACol6xWq9t7m+10hcHnwnZAdVx0AKrOomgAAGoqPDxcqamp3AkaHlGjAHTrrbe6vT937pwmTJigkJAQt+0bNmy4+MoAAKZHuIGn1CgA2Ww2t/ejRo2q02IAAAC8oUYBaMWKFZ6qAwAAwGtq9CwwAACASwEBCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmI7PA9DSpUsVGxuroKAgJSYmaseOHZW2Xb58ufr3769mzZqpWbNmSkpKqrD93r17NXz4cNlsNoWEhKhXr146evSoJ7sBAAAaEJ8GoHXr1iktLU0zZ85UVlaWunXrpuTkZJ04caLC9tu2bdPIkSO1detWbd++XTExMbrhhhv07bffutocOnRI/fr1U6dOnbRt2zZ9+umnmj59uoKCgrzVLQAAUM9ZDMMwfPXliYmJ6tWrl5YsWSJJcjqdiomJ0YMPPqjHH3/8Fz9fWlqqZs2aacmSJRozZowk6c4771RAQIBWrVpV67oKCgpks9nkcDgUFhZW6+MAAADvqcnvb5/NABUXF2vXrl1KSkr6qRg/PyUlJWn79u3VOkZhYaFKSkpkt9slnQ9Qb731li677DIlJyerZcuWSkxM1N/+9rcqj1NUVKSCggK3FwAAuHT5LACdOnVKpaWlioiIcNseERGhnJycah1jypQpioqKcoWoEydO6MyZM5o7d66GDBmid955R7fccotuvfVW/fOf/6z0OOnp6bLZbK5XTExM7TsGAADqvUa+LqC25s6dq7Vr12rbtm2u9T1Op1OSdNNNN+mhhx6SJHXv3l0ffvihXnjhBQ0cOLDCY02dOlVpaWmu9wUFBYQgAAAuYT4LQM2bN5e/v79yc3Pdtufm5qpVq1ZVfnbBggWaO3eutmzZoq5du7ods1GjRurcubNb+yuuuELvv/9+pccLDAxUYGBgLXoBAAAaIp+dArNarerZs6cyMzNd25xOpzIzM9WnT59KPzd//nzNnj1bGRkZSkhIKHfMXr16af/+/W7bv/rqK7Vt27ZuOwAAABosn54CS0tL09ixY5WQkKDevXtr0aJFOnv2rMaNGydJGjNmjKKjo5Weni5JmjdvnmbMmKE1a9YoNjbWtVaoSZMmatKkiSTp0Ucf1YgRIzRgwABde+21ysjI0MaNG7Vt2zaf9BEAANQ/Pg1AI0aM0MmTJzVjxgzl5OSoe/fuysjIcC2MPnr0qPz8fpqkWrZsmYqLi3X77be7HWfmzJmaNWuWJOmWW27RCy+8oPT0dE2aNEmXX3651q9fr379+nmtXwAAoH7z6X2A6ivuAwQAQMPTIO4DBAAA4CsEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDoEIAAAYDr1IgAtXbpUsbGxCgoKUmJionbs2FFp2+XLl6t///5q1qyZmjVrpqSkpCrbT5gwQRaLRYsWLfJA5QAAoCHyeQBat26d0tLSNHPmTGVlZalbt25KTk7WiRMnKmy/bds2jRw5Ulu3btX27dsVExOjG264Qd9++225tm+88YY++ugjRUVFebobAACgAfF5AFq4cKF+85vfaNy4cercubNeeOEFNW7cWC+99FKF7VevXq0HHnhA3bt3V6dOnfTnP/9ZTqdTmZmZbu2+/fZbPfjgg1q9erUCAgK80RUAANBA+DQAFRcXa9euXUpKSnJt8/PzU1JSkrZv316tYxQWFqqkpER2u921zel0avTo0Xr00Ud15ZVX/uIxioqKVFBQ4PYCAACXLp8GoFOnTqm0tFQRERFu2yMiIpSTk1OtY0yZMkVRUVFuIWrevHlq1KiRJk2aVK1jpKeny2azuV4xMTHV7wQAAGhwfH4K7GLMnTtXa9eu1RtvvKGgoCBJ0q5du/Tss89q5cqVslgs1TrO1KlT5XA4XK9jx455smwAAOBjPg1AzZs3l7+/v3Jzc9225+bmqlWrVlV+dsGCBZo7d67eeecdde3a1bX93//+t06cOKE2bdqoUaNGatSokY4cOaKHH35YsbGxFR4rMDBQYWFhbi8AAHDp8mkAslqt6tmzp9sC5rIFzX369Kn0c/Pnz9fs2bOVkZGhhIQEt32jR4/Wp59+qj179rheUVFRevTRR7V582aP9QUAADQcjXxdQFpamsaOHauEhAT17t1bixYt0tmzZzVu3DhJ0pgxYxQdHa309HRJ59f3zJgxQ2vWrFFsbKxrrVCTJk3UpEkThYeHKzw83O07AgIC1KpVK11++eXe7RwAAKiXfB6ARowYoZMnT2rGjBnKyclR9+7dlZGR4VoYffToUfn5/TRRtWzZMhUXF+v22293O87MmTM1a9Ysb5YOAAAaKIthGIavi6hvCgoKZLPZ5HA4WA8EAEADUZPf3w36KjAAAIDaIAABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTaeTrAgAAgOccOnRIhYWFle5v3Lix4uLivFhR/UAAAgDgEnXo0CG9+uqrv9hu1KhRpgtBnAIDAOASVdXMT23aXUoIQAAAmMQ330Tqww+v1jffRPq6FJ/jFBgAACbwxhs36ZNPukmySDLUrdsnuuWWv/u6LJ9hBggAgEvcN99E/iz8SJJFn3zSzdQzQQQgAAAucUePttVP4aeMRceOtfFFOfUCAQgAgEtcmzZHJBkXbDUUE3PUF+XUCwQgAAAuca1bH1e3bp/opxB0fg1Q69bHfVmWT7EIGgCAS1Tjxo1df77llr+rV68dOnasjWJijrqFn5+3MwsCEAAAl6i4uDiNGjWqgvv8RLv+xJ2gAQDAJceM4aY6WAMEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMp14EoKVLlyo2NlZBQUFKTEzUjh07Km27fPly9e/fX82aNVOzZs2UlJTk1r6kpERTpkxRly5dFBISoqioKI0ZM0bfffedN7oCAAAaAJ8HoHXr1iktLU0zZ85UVlaWunXrpuTkZJ04caLC9tu2bdPIkSO1detWbd++XTExMbrhhhv07bffSpIKCwuVlZWl6dOnKysrSxs2bND+/fs1fPhwb3YLAADUYxbDMAxfFpCYmKhevXppyZIlkiSn06mYmBg9+OCDevzxx3/x86WlpWrWrJmWLFmiMWPGVNhm586d6t27t44cOaI2bdr84jELCgpks9nkcDgUFhZWsw4BAACfqMnv70ZeqqlCxcXF2rVrl6ZOnera5ufnp6SkJG3fvr1axygsLFRJSYnsdnulbRwOhywWi5o2bVrh/qKiIhUVFbneFxQUVK8DAACYTF5enoqLiyvdb7VaFR4e7sWKasenAejUqVMqLS1VRESE2/aIiAjt27evWseYMmWKoqKilJSUVOH+c+fOacqUKRo5cmSlaTA9PV1PPPFEzYoHAMBk8vLyXGdsqpKamlrvQ5DP1wBdjLlz52rt2rV64403FBQUVG5/SUmJ7rjjDhmGoWXLllV6nKlTp8rhcLhex44d82TZAAA0SBfO/DgcocrOjpXDEVplu/rIpzNAzZs3l7+/v3Jzc9225+bmqlWrVlV+dsGCBZo7d662bNmirl27lttfFn6OHDmi9957r8pzgYGBgQoMDKxdJwAAMKGsrB7auHGYDMNPFotTKSmbFB+/29dlVZtPZ4CsVqt69uypzMxM1zan06nMzEz16dOn0s/Nnz9fs2fPVkZGhhISEsrtLws/Bw4c0JYtW+r9NBwAAA2JwxHqCj+SZBh+2rhxWLmZoPrMpzNAkpSWlqaxY8cqISFBvXv31qJFi3T27FmNGzdOkjRmzBhFR0crPT1dkjRv3jzNmDFDa9asUWxsrHJyciRJTZo0UZMmTVRSUqLbb79dWVlZ2rRpk0pLS11t7Ha7rFarbzoKAMAlIj8/3BV+yhiGn/Lz7bLZTvuoqprxeQAaMWKETp48qRkzZignJ0fdu3dXRkaGa2H00aNH5ef30yAvW7ZMxcXFuv32292OM3PmTM2aNUvffvut3nzzTUlS9+7d3dps3bpVgwYN8mh/AAC41NntebJYnG4hyGJxym7P92FVNePzACSdXy2emppa4b5t27a5vT98+HCVx4qNjZWPb20EAMAlzWY7rZSUTeXWADWU2R+pngQgAADQsMTH71Zc3EHl59tlt+c3qPAjEYAAAEA1XbiO1mY7XWHwaQjrbQlAAACgWsLDw5WamsqdoAEAgLk0hHBTHQ36TtAAAAC1QQACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACm08jXBQAAgEtbXl6eiouLK91vtVoVHh7uxYoIQAAAwIPy8vK0ZMmSX2yXmprq1RDEKTAAAOAxVc381KZdXSEAAQAAr3E4QpWdHSuHI9SndXAKDAAAeEVWVg9t3DhMhuEni8WplJRNio/f7ZNamAECAAAe53CEusKPJBmGnzZuHOazmSACEAAA8Lj8/HBX+CljGH7Kz7f7pB4CEAAA8Di7PU8Wi9Ntm8XilN2e75N6CEAAAMDjbLbTSknZ5ApBZWuAbLbTPqmHRdAAAMBjrFar68/x8bsVF3dQ+fl22e35buHn5+28gQAEAAA8Jjw8XKmpqdwJGgAAmIu3w011sAYIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDo/CqIBhGJKkgoICH1cCAACqq+z3dtnv8aoQgCpw+vT5p9PGxMT4uBIAAFBTp0+fls1mq7KNxahOTDIZp9Op7777TqGhobJYLBW2KSgoUExMjI4dO6awsDAvV1h/MA4/YSzOYxzOYxx+wlicxzic58lxMAxDp0+fVlRUlPz8ql7lwwxQBfz8/NS6detqtQ0LCzP1D3IZxuEnjMV5jMN5jMNPGIvzGIfzPDUOvzTzU4ZF0AAAwHQIQAAAwHQIQLUUGBiomTNnKjAw0Nel+BTj8BPG4jzG4TzG4SeMxXmMw3n1ZRxYBA0AAEyHGSAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BKAqLF26VLGxsQoKClJiYqJ27NhRadsvvvhCt912m2JjY2WxWLRo0SLvFephNRmH5cuXq3///mrWrJmaNWumpKSkKts3NDUZiw0bNighIUFNmzZVSEiIunfvrlWrVnmxWs+pyTj83Nq1a2WxWHTzzTd7tkAvqck4rFy5UhaLxe0VFBTkxWo9q6Y/Ez/88IMmTpyoyMhIBQYG6rLLLtPbb7/tpWo9pybjMGjQoHI/ExaLRUOHDvVixZ5R05+HRYsW6fLLL1dwcLBiYmL00EMP6dy5c54t0kCF1q5da1itVuOll14yvvjiC+M3v/mN0bRpUyM3N7fC9jt27DAeeeQR4y9/+YvRqlUr45lnnvFuwR5S03H49a9/bSxdutTYvXu3sXfvXuPuu+82bDab8c0333i58rpX07HYunWrsWHDBuPLL780Dh48aCxatMjw9/c3MjIyvFx53arpOJTJzs42oqOjjf79+xs33XSTd4r1oJqOw4oVK4ywsDDj+PHjrldOTo6Xq/aMmo5FUVGRkZCQYPzqV78y3n//fSM7O9vYtm2bsWfPHi9XXrdqOg55eXluPw+ff/654e/vb6xYscK7hdexmo7D6tWrjcDAQGP16tVGdna2sXnzZiMyMtJ46KGHPFonAagSvXv3NiZOnOh6X1paakRFRRnp6em/+Nm2bdteMgHoYsbBMAzjxx9/NEJDQ42XX37ZUyV6zcWOhWEYRo8ePYzf//73nijPa2ozDj/++KPRt29f489//rMxduzYSyIA1XQcVqxYYdhsNi9V5101HYtly5YZ7du3N4qLi71Voldc7N8RzzzzjBEaGmqcOXPGUyV6RU3HYeLEicbgwYPdtqWlpRnXXHONR+vkFFgFiouLtWvXLiUlJbm2+fn5KSkpSdu3b/dhZd5VF+NQWFiokpIS2e12T5XpFRc7FoZhKDMzU/v379eAAQM8WapH1XYc/vd//1ctW7bUvffe640yPa6243DmzBm1bdtWMTExuummm/TFF194o1yPqs1YvPnmm+rTp48mTpyoiIgIXXXVVXrqqadUWlrqrbLrXF38ffniiy/qzjvvVEhIiKfK9LjajEPfvn21a9cu12myr7/+Wm+//bZ+9atfebRWHoZagVOnTqm0tFQRERFu2yMiIrRv3z4fVeV9dTEOU6ZMUVRUlNv/GRqi2o6Fw+FQdHS0ioqK5O/vr+eff17XX3+9p8v1mNqMw/vvv68XX3xRe/bs8UKF3lGbcbj88sv10ksvqWvXrnI4HFqwYIH69u2rL774otoPX66PajMWX3/9td577z3dddddevvtt3Xw4EE98MADKikp0cyZM71Rdp272L8vd+zYoc8//1wvvviip0r0itqMw69//WudOnVK/fr1k2EY+vHHHzVhwgT97ne/82itBCB4zNy5c7V27Vpt27btklrsWROhoaHas2ePzpw5o8zMTKWlpal9+/YaNGiQr0vzitOnT2v06NFavny5mjdv7utyfKpPnz7q06eP633fvn11xRVX6I9//KNmz57tw8q8z+l0qmXLlvrTn/4kf39/9ezZU99++62efvrpBhuALtaLL76oLl26qHfv3r4uxeu2bdump556Ss8//7wSExN18OBB/fa3v9Xs2bM1ffp0j30vAagCzZs3l7+/v3Jzc9225+bmqlWrVj6qyvsuZhwWLFiguXPnasuWLeratasny/SK2o6Fn5+fOnToIEnq3r279u7dq/T09AYbgGo6DocOHdLhw4eVkpLi2uZ0OiVJjRo10v79+xUXF+fZoj2gLv6OCAgIUI8ePXTw4EFPlOg1tRmLyMhIBQQEyN/f37XtiiuuUE5OjoqLi2W1Wj1asydczM/E2bNntXbtWv3v//6vJ0v0itqMw/Tp0zV69Gjdd999kqQuXbro7NmzGj9+vKZNmyY/P8+s1mENUAWsVqt69uypzMxM1zan06nMzEy3f8Fd6mo7DvPnz9fs2bOVkZGhhIQEb5TqcXX1M+F0OlVUVOSJEr2ipuPQqVMnffbZZ9qzZ4/rNXz4cF177bXas2ePYmJivFl+namLn4fS0lJ99tlnioyM9FSZXlGbsbjmmmt08OBBVxiWpK+++kqRkZENMvxIF/cz8dprr6moqEijRo3ydJkeV5txKCwsLBdyysKx4cnHlXp0iXUDtnbtWiMwMNBYuXKl8eWXXxrjx483mjZt6rpsdfTo0cbjjz/ual9UVGTs3r3b2L17txEZGWk88sgjxu7du40DBw74qgt1oqbjMHfuXMNqtRqvv/662+Wdp0+f9lUX6kxNx+Kpp54y3nnnHePQoUPGl19+aSxYsMBo1KiRsXz5cl91oU7UdBwudKlcBVbTcXjiiSeMzZs3G4cOHTJ27dpl3HnnnUZQUJDxxRdf+KoLdaamY3H06FEjNDTUSE1NNfbv329s2rTJaNmypTFnzhxfdaFO1Pb/G/369TNGjBjh7XI9pqbjMHPmTCM0NNT4y1/+Ynz99dfGO++8Y8TFxRl33HGHR+skAFVh8eLFRps2bQyr1Wr07t3b+Oijj1z7Bg4caIwdO9b1Pjs725BU7jVw4EDvF17HajIObdu2rXAcZs6c6f3CPaAmYzFt2jSjQ4cORlBQkNGsWTOjT58+xtq1a31Qdd2ryThc6FIJQIZRs3GYPHmyq21ERITxq1/9ysjKyvJB1Z5R05+JDz/80EhMTDQCAwON9u3bG08++aTx448/ernqulfTcdi3b58hyXjnnXe8XKln1WQcSkpKjFmzZhlxcXFGUFCQERMTYzzwwAPG999/79EaLYbhyfklAACA+oc1QAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQADgQ3fffbduvvlmX5cBmA4BCECF7r77blksFtcrPDxcQ4YM0aeffurr0urEz/tW9urXr5/Hvu/w4cOyWCzas2eP2/Znn31WK1eu9Nj3AqgYAQhApYYMGaLjx4/r+PHjyszMVKNGjTRs2DBfl1VnVqxY4erf8ePH9eabb1bYrqSkxGM12Gw2NW3a1GPHB1AxAhCASgUGBqpVq1Zq1aqVunfvrscff1zHjh3TyZMnNXjwYKWmprq1P3nypKxWq+tJ0LGxsZo9e7ZGjhypkJAQRUdHa+nSpW6fWbhwobp06aKQkBDFxMTogQce0JkzZ1z7jxw5opSUFDVr1kwhISG68sor9fbbb0uSvv/+e911111q0aKFgoOD1bFjR61YsaLa/WvatKmrf61atZLdbnfN1Kxbt04DBw5UUFCQVq9erby8PI0cOVLR0dFq3LixunTpor/85S9ux3M6nZo/f746dOigwMBAtWnTRk8++aQkqV27dpKkHj16yGKxaNCgQZLKnwIrKirSpEmT1LJlSwUFBalfv37auXOna/+2bdtksViUmZmphIQENW7cWH379tX+/fur3W8ABCAA1XTmzBm9+uqr6tChg8LDw3XfffdpzZo1KioqcrV59dVXFR0drcGDB7u2Pf300+rWrZt2796txx9/XL/97W/17rvvuvb7+fnpueee0xdffKGXX35Z7733nh577DHX/okTJ6qoqEj/+te/9Nlnn2nevHlq0qSJJGn69On68ssv9Y9//EN79+7VsmXL1Lx58zrpb1mte/fuVXJyss6dO6eePXvqrbfe0ueff67x48dr9OjR2rFjh+szU6dO1dy5c111rVmzRhEREZLkardlyxYdP35cGzZsqPB7H3vsMa1fv14vv/yysrKy1KFDByUnJys/P9+t3bRp0/SHP/xB//nPf9SoUSPdc889ddJvwDQ8+qhVAA3W2LFjDX9/fyMkJMQICQkxJBmRkZHGrl27DMMwjP/+979Gs2bNjHXr1rk+07VrV2PWrFmu923btjWGDBnidtwRI0YYN954Y6Xf+9prrxnh4eGu9126dHE75s+lpKQY48aNq1X/JBlBQUGu/oWEhBhvvPGGkZ2dbUgyFi1a9IvHGDp0qPHwww8bhmEYBQUFRmBgoLF8+fIK25Ydd/fu3W7bx44da9x0002GYRjGmTNnjICAAGP16tWu/cXFxUZUVJQxf/58wzAMY+vWrYYkY8uWLa42b731liHJ+O9//1uTIQBMjRkgAJW69tprtWfPHu3Zs0c7duxQcnKybrzxRh05ckRBQUEaPXq0XnrpJUlSVlaWPv/8c919991ux+jTp0+593v37nW937Jli6677jpFR0crNDRUo0ePVl5engoLCyVJkyZN0pw5c3TNNddo5syZbouw77//fq1du1bdu3fXY489pg8//LBG/XvmmWdc/duzZ4+uv/56176EhAS3tqWlpZo9e7a6dOkiu92uJk2aaPPmzTp69Kgkae/evSoqKtJ1111Xoxp+7tChQyopKdE111zj2hYQEKDevXu7jZkkde3a1fXnyMhISdKJEydq/d2A2RCAAFQqJCREHTp0UIcOHdSrVy/9+c9/1tmzZ7V8+XJJ0n333ad3331X33zzjVasWKHBgwerbdu21T7+4cOHNWzYMHXt2lXr16/Xrl27XGuEiouLXd/x9ddfa/To0frss8+UkJCgxYsXS5IrjD300EP67rvvdN111+mRRx6p9ve3atXK1b8OHTooJCTEre8/9/TTT+vZZ5/VlClTtHXrVu3Zs0fJycmuOoODg6v9vXUhICDA9WeLxSLp/BokANVDAAJQbRaLRX5+fvrvf/8rSerSpYsSEhK0fPlyrVmzpsJ1KB999FG591dccYUkadeuXXI6nfrDH/6gq6++Wpdddpm+++67cseIiYnRhAkTtGHDBj388MOuACZJLVq00NixY/Xqq69q0aJF+tOf/lSXXXb54IMPdNNNN2nUqFHq1q2b2rdvr6+++sq1v2PHjgoODnYtAL+Q1WqVdH4mqTJxcXGyWq364IMPXNtKSkq0c+dOde7cuY56AkCSGvm6AAD1V1FRkXJyciSdv+JqyZIlOnPmjFJSUlxt7rvvPqWmpiokJES33HJLuWN88MEHmj9/vm6++Wa9++67eu211/TWW29Jkjp06KCSkhItXrxYKSkp+uCDD/TCCy+4fX7y5Mm68cYbddlll+n777/X1q1bXQFqxowZ6tmzp6688koVFRVp06ZNrn11rWPHjnr99df14YcfqlmzZlq4cKFyc3NdwSQoKEhTpkzRY489JqvVqmuuuUYnT57UF198oXvvvVctW7ZUcHCwMjIy1Lp1awUFBclms7l9R0hIiO6//349+uijstvtatOmjebPn6/CwkLde++9HukXYFbMAAGoVEZGhiIjIxUZGanExETt3LlTr732musSbkkaOXKkGjVqpJEjRyooKKjcMR5++GH95z//UY8ePTRnzhwtXLhQycnJkqRu3bpp4cKFmjdvnq666iqtXr1a6enpbp8vLS3VxIkTdcUVV2jIkCG67LLL9Pzzz0s6P6sydepUde3aVQMGDJC/v7/Wrl3rkbH4/e9/r/j4eCUnJ2vQoEFq1apVuTs4T58+XQ8//LBmzJihK664QiNGjHCty2nUqJGee+45/fGPf1RUVJRuuummCr9n7ty5uu222zR69GjFx8fr4MGD2rx5s5o1a+aRfgFmZTEMw/B1EQAarsOHDysuLk47d+5UfHy8277Y2FhNnjxZkydP9k1xAFAJToEBqJWSkhLl5eXp97//va6++upy4QcA6jNOgQGolQ8++ECRkZHauXNnuXU7vvbUU0+pSZMmFb5uvPFGX5cHoB7gFBiAS05+fn65OyeXCQ4OVnR0tJcrAlDfEIAAAIDpcAoMAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYzv8HgUkNoswW6EIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATdVJREFUeJzt3XlclNXiP/DPzMgAsgwMxhqKgkuZioCQ5pZRaIrZ8hWtFGnxWo5mmKmZ21UDzQx37zW3XNJK6idmWJLc22JpIN82IjVwS1BnckAoIOb8/vDLkyOLDDIzwPN5v17zuszznDlzzrlc+dzznOc8CiGEABEREZEMKe3dACIiIiJ7YRAiIiIi2WIQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItliECIiaqa2bt0KhUKBgoICezeFqNViECKSsWPHjkGn06F79+5wcXFB+/btMXr0aPzyyy81yg4ePBgKhQIKhQJKpRLu7u7o2rUrxo0bh08//dSi701LS8OgQYPg7e2Ntm3bolOnThg9ejTS09Obqms1vPbaa/jwww9rHP/qq6+wYMECXLlyxWrffaMFCxZIY6lQKNC2bVvceeedePXVV1FcXNwk37Fr1y6kpKQ0SV1ErRmDEJGMLV26FHv37sV9992HlStXYuLEifjvf/+LsLAw/PDDDzXK33777di+fTvefvttvP766xg5ciS++uorPPDAA4iLi0NlZeVNv3P58uUYOXIkFAoFZs+ejTfffBOPPvooTpw4gd27d1ujmwDqD0ILFy60aRCqtn79emzfvh0rVqxAt27dsGTJEgwdOhRN8QhIBiGihmlj7wYQkf0kJiZi165dUKvV0rG4uDj06NEDycnJ2LFjh1l5jUaDJ5980uxYcnIypk6dinXr1iEoKAhLly6t8/v++usvLFq0CPfffz8++eSTGucvXrx4iz1qPsrKytC2bdt6yzz22GNo164dAGDSpEl49NFHkZqaiq+//hp9+/a1RTOJZI8zQkQy1q9fP7MQBACdO3dG9+7dkZub26A6VCoVVq1ahTvvvBNr1qyB0Wiss+zly5dRXFyMe+65p9bz3t7eZu///PNPLFiwAF26dIGTkxP8/PzwyCOP4NSpU1KZ5cuXo1+/fvDy8oKzszPCw8Px/vvvm9WjUChQWlqKbdu2SZejJkyYgAULFmDGjBkAgI4dO0rnrl+Ts2PHDoSHh8PZ2RlarRZjxozB2bNnzeofPHgw7rrrLmRlZWHgwIFo27YtXnnllQaN3/WGDBkCAMjPz6+33Lp169C9e3c4OjrC398fkydPNpvRGjx4MD766COcPn1a6lNQUJDF7SGSA84IEZEZIQSKiorQvXv3Bn9GpVJh7NixmDt3Lr744gsMHz681nLe3t5wdnZGWloapkyZAq1WW2edVVVVGDFiBDIyMjBmzBi88MILKCkpwaeffooffvgBwcHBAICVK1di5MiReOKJJ1BRUYHdu3fjf/7nf7B//36pHdu3b8czzzyDyMhITJw4EQAQHBwMFxcX/PLLL3jnnXfw5ptvSrMzt912GwBgyZIlmDt3LkaPHo1nnnkGly5dwurVqzFw4EAcP34cHh4eUnv1ej2GDRuGMWPG4Mknn4SPj0+Dx69adcDz8vKqs8yCBQuwcOFCREdH47nnnkNeXh7Wr1+PY8eO4csvv4SDgwPmzJkDo9GIc+fO4c033wQAuLq6WtweIlkQRETX2b59uwAgNm3aZHZ80KBBonv37nV+7oMPPhAAxMqVK+utf968eQKAcHFxEcOGDRNLliwRWVlZNcpt3rxZABArVqyocc5kMkk/l5WVmZ2rqKgQd911lxgyZIjZcRcXFxEfH1+jrtdff10AEPn5+WbHCwoKhEqlEkuWLDE7/v3334s2bdqYHR80aJAAIDZs2FBnv683f/58AUDk5eWJS5cuifz8fPGvf/1LODo6Ch8fH1FaWiqEEGLLli1mbbt48aJQq9XigQceEFVVVVJ9a9asEQDE5s2bpWPDhw8XHTp0aFB7iOSMl8aISPLzzz9j8uTJ6Nu3L+Lj4y36bPWMQ0lJSb3lFi5ciF27dqF37944ePAg5syZg/DwcISFhZldjtu7dy/atWuHKVOm1KhDoVBIPzs7O0s///777zAajRgwYACys7Mtav+NUlNTYTKZMHr0aFy+fFl6+fr6onPnzjh8+LBZeUdHRyQkJFj0HV27dsVtt92Gjh074h//+AdCQkLw0Ucf1bm26NChQ6ioqMC0adOgVP79z/ezzz4Ld3d3fPTRR5Z3lEjmeGmMiAAAhYWFGD58ODQaDd5//32oVCqLPn/16lUAgJub203Ljh07FmPHjkVxcTG++eYbbN26Fbt27UJsbCx++OEHODk54dSpU+jatSvatKn/n6n9+/dj8eLFyMnJQXl5uXT8+rDUGCdOnIAQAp07d671vIODg9n7gICAGuutbmbv3r1wd3eHg4MDbr/9dulyX11Onz4N4FqAup5arUanTp2k80TUcAxCRASj0Yhhw4bhypUr+Pzzz+Hv729xHdW324eEhDT4M+7u7rj//vtx//33w8HBAdu2bcM333yDQYMGNejzn3/+OUaOHImBAwdi3bp18PPzg4ODA7Zs2YJdu3ZZ3IfrmUwmKBQKfPzxx7WGwhvX3Fw/M9VQAwcOlNYlEZF9MAgRydyff/6J2NhY/PLLLzh06BDuvPNOi+uoqqrCrl270LZtW/Tv379R7YiIiMC2bdtw4cIFANcWM3/zzTeorKysMftSbe/evXBycsLBgwfh6OgoHd+yZUuNsnXNENV1PDg4GEIIdOzYEV26dLG0O1bRoUMHAEBeXh46deokHa+oqEB+fj6io6OlY7c6I0YkF1wjRCRjVVVViIuLw5EjR/Dee+81au+aqqoqTJ06Fbm5uZg6dSrc3d3rLFtWVoYjR47Ueu7jjz8G8Pdln0cffRSXL1/GmjVrapQV/7fhoEqlgkKhQFVVlXSuoKCg1o0TXVxcat000cXFBQBqnHvkkUegUqmwcOHCGhscCiGg1+tr76QVRUdHQ61WY9WqVWZt2rRpE4xGo9ndei4uLvVuZUBE13BGiEjGpk+fjn379iE2NhYGg6HGBoo3bp5oNBqlMmVlZTh58iRSU1Nx6tQpjBkzBosWLar3+8rKytCvXz/cfffdGDp0KAIDA3HlyhV8+OGH+PzzzzFq1Cj07t0bADB+/Hi8/fbbSExMxNGjRzFgwACUlpbi0KFDeP755/HQQw9h+PDhWLFiBYYOHYrHH38cFy9exNq1axESEoLvvvvO7LvDw8Nx6NAhrFixAv7+/ujYsSOioqIQHh4OAJgzZw7GjBkDBwcHxMbGIjg4GIsXL8bs2bNRUFCAUaNGwc3NDfn5+fjggw8wceJEvPTSS7c0/pa67bbbMHv2bCxcuBBDhw7FyJEjkZeXh3Xr1qFPnz5m/32Fh4djz549SExMRJ8+feDq6orY2FibtpeoRbDnLWtEZF/Vt33X9aqvrKurq+jcubN48sknxSeffNKg76usrBQbN24Uo0aNEh06dBCOjo6ibdu2onfv3uL1118X5eXlZuXLysrEnDlzRMeOHYWDg4Pw9fUVjz32mDh16pRUZtOmTaJz587C0dFRdOvWTWzZskW6Pf16P//8sxg4cKBwdnYWAMxupV+0aJEICAgQSqWyxq30e/fuFf379xcuLi7CxcVFdOvWTUyePFnk5eWZjU19WwvcqLp9ly5dqrfcjbfPV1uzZo3o1q2bcHBwED4+PuK5554Tv//+u1mZq1eviscff1x4eHgIALyVnqgOCiGa4KE2RERERC0Q1wgRERGRbDEIERERkWwxCBEREZFsMQgRERGRbDEIERERkWwxCBEREZFscUPFWphMJvz2229wc3PjNvVEREQthBACJSUl8Pf3h1LZwLkeO+9jJIS4tjlY9eZqkZGR4ptvvqmz7N69e0V4eLjQaDSibdu2olevXuLtt9+us/w//vEPAUC8+eabDW7P2bNn691kji+++OKLL774ar6vs2fPNvhvvt1nhKq3gN+wYQOioqKQkpKCmJgY5OXlwdvbu0Z5rVaLOXPmoFu3blCr1di/fz8SEhLg7e2NmJgYs7IffPABvv76a4ufpO3m5gYAOHv2bL3PTSIiIqLmo7i4GIGBgdLf8Yaw+87SUVFR6NOnj/RgRZPJhMDAQEyZMgWzZs1qUB1hYWEYPny42XOOzp8/j6ioKBw8eBDDhw/HtGnTMG3atAbVV1xcDI1GA6PRyCBERETUQjTm77ddF0tXVFQgKysL0dHR0jGlUono6Og6n1B9PSEEMjIykJeXh4EDB0rHTSYTxo0bhxkzZqB79+43rae8vBzFxcVmLyIiImr97BqELl++jKqqKvj4+Jgd9/HxQWFhYZ2fMxqNcHV1hVqtxvDhw7F69Wrcf//90vmlS5eiTZs2mDp1aoPakZSUBI1GI70CAwMb1yEiIiJqUey+Rqgx3NzckJOTg6tXryIjIwOJiYno1KkTBg8ejKysLKxcuRLZ2dkNvuNr9uzZSExMlN5XX2MkIiKi1s2uQahdu3ZQqVQoKioyO15UVARfX986P6dUKhESEgIACA0NRW5uLpKSkjB48GB8/vnnuHjxItq3by+Vr6qqwvTp05GSkoKCgoIa9Tk6OsLR0bFpOkVERLJVVVWFyspKezej1XJwcIBKpWrSOu0ahNRqNcLDw5GRkYFRo0YBuLa+JyMjAzqdrsH1mEwmlJeXAwDGjRtntuYIAGJiYjBu3DgkJCQ0WduJiIiqCSFQWFiIK1eu2LsprZ6Hhwd8fX2bbJ8/u18aS0xMRHx8PCIiIhAZGYmUlBSUlpZKoWX8+PEICAhAUlISgGvreSIiIhAcHIzy8nIcOHAA27dvx/r16wEAXl5e8PLyMvsOBwcH+Pr6omvXrrbtHBERyUJ1CPL29kbbtm25Ga8VCCFQVlaGixcvAgD8/PyapF67B6G4uDhcunQJ8+bNQ2FhIUJDQ5Geni4toD5z5ozZ7pClpaV4/vnnce7cOTg7O6Nbt27YsWMH4uLi7NUFIiKSsaqqKikE3fh/xKlpOTs7AwAuXrwIb2/vJrlMZvd9hJoj7iNEREQN9eeffyI/Px9BQUHSH2qynj/++AMFBQXo2LEjnJyczM61uH2EiIiIWgteDrONph5nBiEiIiKSLbuvEZIDvV6PioqKOs+r1WpeVyYiIrIDBiEr0+v10nPUAMBodIPB4AWtVg+NpkQ6rtPpGIaIiMimJkyYgG3btgEA2rRpA61Wi549e2Ls2LGYMGGC2c1K9dm6dSumTZvWIrcPYBCysutngrKzeyMtbQSEUEKhMCE2dj/Cwo7XKEdERPJizysHQ4cOxZYtW1BVVYWioiKkp6fjhRdewPvvv499+/ahTZvWHRVad++aEaPRTQpBACCEEmlpIxAcfNJsZoiIiOTlxisHdbHWlQNHR0fpaQ4BAQEICwvD3Xffjfvuuw9bt27FM888gxUrVmDLli349ddfodVqERsbi2XLlsHV1RWZmZnS3n/VC5nnz5+PBQsWYPv27Vi5ciXy8vLg4uKCIUOGICUlBd7e3k3ej8biYmkbMRi8pBBUTQglDAatnVpERETNQUOvCNjyysGQIUPQq1cvpKamArj2aKtVq1bhxx9/xLZt2/DZZ5/h5ZdfBgD069cPKSkpcHd3x4ULF3DhwgW89NJLAIDKykosWrQI//u//4sPP/wQBQUFmDBhgs360RCcEbIRrVYPhcJkFoYUChO0WoMdW0VERFS7bt264bvvvgMATJs2TToeFBSExYsXY9KkSVi3bh3UajU0Gg0UCkWN54Q+9dRT0s+dOnXCqlWr0KdPH1y9ehWurq426cfNcEbIRjSaEsTG7odCYQIAaY0QL4sREVFzJISQLnUdOnQI9913HwICAuDm5oZx48ZBr9ejrKys3jqysrIQGxuL9u3bw83NDYMGDQJw7akRzQVnhGwoLOw4goNPwmDQQqs1MAQREVGzlZubi44dO6KgoAAjRozAc889hyVLlkCr1eKLL77A008/jYqKCrRt27bWz5eWliImJgYxMTHYuXMnbrvtNpw5cwYxMTHN6gYhBiEb02hKGICIiKhZ++yzz/D999/jxRdfRFZWFkwmE9544w3pdvp3333XrLxarUZVVZXZsZ9//hl6vR7JyckIDAwEAHz77be26YAFeGnMytRqdZOWIyIiakrl5eUoLCzE+fPnkZ2djddeew0PPfQQRowYgfHjxyMkJASVlZVYvXo1fv31V2zfvh0bNmwwqyMoKAhXr15FRkYGLl++jLKyMrRv3x5qtVr63L59+7Bo0SI79bJunBGyMi8vL+h0Ou4sTUREzVJ6ejr8/PzQpk0beHp6olevXli1ahXi4+OhVCrRq1cvrFixAkuXLsXs2bMxcOBAJCUlYfz48VId/fr1w6RJkxAXFwe9Xi/dPr9161a88sorWLVqFcLCwrB8+XKMHDnSjr2tiU+frwWfPk9ERA1V/fT52p6G3hD23keopalvvBvz95szQkRERHbEKwf2xSBERERkZww59sPF0kRERCRbnBGSEXs+1I+IiKg5YhCSCS7GIyIiqomXxmTixpkgo9EN+flBMBrd6i1HRETUmnFGSIays3sjLW0EhFBKzzwLCztu72YRERHZHGeEZMZodJNCEAAIoURa2ogaM0NERERywCAkMwaDlxSCqgmhhMGgtVOLiIiI7IdBSGa0Wj0UCpPZMYXCBK3WYKcWERFRa5WZmQmFQoErV640+DNBQUFISUmxWptuxCAkMxpNCWJj90thqHqNkEZTYueWERGRrU2YMAEKhQKTJk2qcW7y5MlQKBSYMGGC7RtmQ1wsLUNhYccRHHwSBoMWWq2BIYiISMYCAwOxe/duvPnmm3B2dgZw7Xleu3btQvv27e3cOuvjjJBMqNVqs/caTQk6djxdIwTdWI6IiFq3sLAwBAYGIjU1VTqWmpqK9u3bo3fv3tKx8vJyTJ06Fd7e3nByckL//v1x7Ngxs7oOHDiALl26wNnZGffeey8KCgpqfN8XX3yBAQMGwNnZGYGBgZg6dSpKS0ut1r+b4YyQTFjroX7crZqIqGmdOwecOAF07gzcfrttvvOpp57Cli1b8MQTTwAANm/ejISEBGRmZkplXn75Zezduxfbtm1Dhw4dsGzZMsTExODkyZPQarU4e/YsHnnkEUyePBkTJ07Et99+i+nTp5t9z6lTpzB06FAsXrwYmzdvxqVLl6DT6aDT6bBlyxbbdPYGDELUaNytmoioaW3aBEycCJhMgFIJ/PvfwNNPW/97n3zyScyePRunT58GAHz55ZfYvXu3FIRKS0uxfv16bN26FcOGDQMAbNy4EZ9++ik2bdqEGTNmYP369QgODsYbb7wBAOjatSu+//57LF26VPqepKQkPPHEE5g2bRoAoHPnzli1ahUGDRqE9evXw8nJyfqdvQGDkExYI7TUtlu1weAFrVZvdsmNu1UTEd3cuXN/hyDg2n/+4x9ATIz1Z4Zuu+02DB8+HFu3boUQAsOHD0e7du2k86dOnUJlZSXuuece6ZiDgwMiIyORm5sLAMjNzUVUVJRZvX379jV7/7//+7/47rvvsHPnTumYEAImkwn5+fm44447rNG9ejEIyYS1Qwt3qyYiujUnTvwdgqpVVQEnT9rmEtlTTz0FnU4HAFi7dq1VvuPq1av4xz/+galTp9Y4Z6+F2QxCMtTUoaWu3aqDg0/yjjQiogbq3Pna5bDrw5BKBYSE2Ob7hw4dioqKCigUCsTExJidCw4OhlqtxpdffokOHToAACorK3Hs2DHpMtcdd9yBffv2mX3u66+/NnsfFhaGn376CSG26lQD8K4xmbHGIza4WzUR0a27/fZra4JUqmvvVSrgX/+y3YJplUqF3Nxc/PTTT1BVN+L/uLi44LnnnsOMGTOQnp6On376Cc8++yzKysrw9P8tYpo0aRJOnDiBGTNmIC8vD7t27cLWrVvN6pk5cya++uor6HQ65OTk4MSJE/h//+//STNR9sAgJDPWCC3crZqIqGk8/TRQUAAcPnztP22xUPp67u7ucHd3r/VccnIyHn30UYwbNw5hYWE4efIkDh48CE9PTwDXLm3t3bsXH374IXr16oUNGzbgtddeM6ujZ8+e+M9//oNffvkFAwYMQO/evTFv3jz4+/tbvW914aUxmakOLdeHoVsNLdW7Vd94uY2XxYiILHf77babBbpxxuZGH374ofSzk5MTVq1ahVWrVtVZfsSIERgxYoTZsYSEBLP3ffr0wSeffFJnHbXtPWRNDEIyY63Qwt2qiYioJWIQkqGmCi217VZdW13crZqIiJorBiGZsEZosdZu1URERLbCICQT1gotDDlERNSSMQjJCEMLEZH1CCHs3QRZaOpxZhAiu+DDWomotXBwcAAAlJWVwdnZ2c6taf3KysoA/D3ut4pBiGyOD2slotZEpVLBw8MDFy9eBAC0bdsWCoXCzq1qfYQQKCsrw8WLF+Hh4VFj08fGYhAim+PDWomotfH19QUAKQyR9Xh4eEjj3RQYhMiu+LBWImoNFAoF/Pz84O3tjcrKSns3p9VycHBospmgagxCZDd8WCsRtTYqlarJ/1CTdfFZY2Q3fFgrERHZW7MIQmvXrkVQUBCcnJwQFRWFo0eP1lk2NTUVERER8PDwgIuLC0JDQ7F9+3bpfGVlJWbOnIkePXrAxcUF/v7+GD9+PH777TdbdIUswIe1EhGRvdk9CO3ZsweJiYmYP38+srOz0atXL8TExNS54Eyr1WLOnDk4cuQIvvvuOyQkJCAhIQEHDx4EcO22uuzsbMydOxfZ2dlITU1FXl4eRo4cactuUQNUP/esOgzxYa1ERGRrCmHnHaCioqLQp08f6XZqk8mEwMBATJkyBbNmzWpQHWFhYRg+fDgWLVpU6/ljx44hMjISp0+fRvv27W9aX3FxMTQaDYxGI9zd3RveGWqQCxcu4N///rf0/tpdYzWfezZx4kT4+fnZo4lERNQCNebvt11nhCoqKpCVlYXo6GjpmFKpRHR0NI4cOXLTzwshkJGRgby8PAwcOLDOckajEQqFAh4eHrWeLy8vR3FxsdmLrKe255517Hi6xkwQH9ZKRETWZte7xi5fvoyqqir4+PiYHffx8cHPP/9c5+eMRiMCAgJQXl4OlUqFdevW4f7776+17J9//omZM2di7NixdabDpKQkLFy4sPEdIYvwYa1ERNRctMjb593c3JCTk4OrV68iIyMDiYmJ6NSpEwYPHmxWrrKyEqNHj4YQAuvXr6+zvtmzZyMxMVF6X1xcjMDAQGs1n8DnnhERUfNg1yDUrl07qFQqFBUVmR0vKiqqd9dIpVKJkJAQAEBoaChyc3ORlJRkFoSqQ9Dp06fx2Wef1Xut0NHREY6OjrfWGaJbxOevERHZnl2DkFqtRnh4ODIyMjBq1CgA1xZLZ2RkQKfTNbgek8mE8vJy6X11CDpx4gQOHz7MPx7U7PH5a0RE9mH3S2OJiYmIj49HREQEIiMjkZKSgtLSUiQkJAAAxo8fj4CAACQlJQG4tp4nIiICwcHBKC8vx4EDB7B9+3bp0ldlZSUee+wxZGdnY//+/aiqqkJhYSGAa7fecwEuNUd8/hoRkX3YPQjFxcXh0qVLmDdvHgoLCxEaGor09HRpAfWZM2egVP59c1tpaSmef/55nDt3Ds7OzujWrRt27NiBuLg4AMD58+exb98+ANcum13v8OHDNdYRETU3fP4aEZHt2H0foeaI+wiRrVXvrWQ0uiElZZrZo0cUChOmTUuBRlPCvZWIiOrR4vYRIiJzfP4aEZFtMQgRNSN8/hoRkW0xCBE1I3z+GhGRbdl9sTQRmQsLO47g4JO1Pn+NiIiaFoMQUTNQ2/PXagtATbn9AzdwJCJiECJqFmz9/DVu4EhEdA2DEFEzYcvA0dCNGbmBIxG1dlwsTUQwGt2Qnx8Eo9HN3k0hIrIpzggRyRx3siYiOeOMEJGMGY1uUggCrm3emJY2gjNDRCQbDEJEMsadrIlI7hiEiGSMO1kTkdwxCBHJGHeyJiK542JpIhm6fmPG+naybsoNHImImiMGISIZsvUGjkREzRWDEJFMMeQQEXGNEBEREckYgxARERHJFoMQERERyRaDEBEREckWgxARERHJFoMQERERyRaDEBEREckW9xEiIovo9XpuxEhErQaDEBE1mF6vx5o1a25aTqfTMQwRUYvAS2NE1GA3zgQZjW7Izw+C0ehWbzkiouaKM0JE1CjZ2b2RljYCQiilp9aHhR23d7OIiCzCGSEispjR6CaFIAAQQom0tBE1ZoaIiJo7zggRkcUMBi8pBFUTQgmDQQuNpqTWz3CRNRE1RwxCRGQxrVYPhcJkFoYUChO0WkOt5Ru6yHr06NHw8PCocZwhiYishUGIiCym0ZQgNnZ/jTVC1bNBly9fNit/43uj0Q0Ggxe0Wr3ZDNK7775b53fyTjQisgYGISJqlLCw4wgOPgmDQQut1mAWaFJTU+sMOzdbZF3X53gnGhFZA4MQETWYWq02e6/RlNS6JqiusFPXIuvg4JPQaEp4JxoR2RyDEBE1mJeXF3Q6Xa2zM5cvX5ZmguoKO/UtsgZQb0giIrIGBiEissjN1unUF3bqW2TdmDvRiIhuFfcRIqImVR12rlcddqoXWVefv36RdX2fIyKyFs4IEVGTutkdZXUtsr7Z54iIrIFBiIiaXH13lAF1L7K+2eeIiJoagxARWUVdYeeRRx5Bu3btpPdGoxF79uy56eduvGONiKgpMAgRUZNoaFDx9/c3W3Dt5+dX551o19fNzRSJyBoUQghh70Y0N8XFxdBoNDAajXB3d7d3c4haDD5PjIjsqTF/vzkjRERNhiGHiFoa3j5PREREssUgRERERLLFIERERESyxSBEREREssUgRERERLLVLILQ2rVrERQUBCcnJ0RFReHo0aN1lk1NTUVERAQ8PDzg4uKC0NBQbN++3ayMEALz5s2Dn58fnJ2dER0djRMnTli7G0TUiun1ely4cKHOl16vt3cTiagR7H77/J49e5CYmIgNGzYgKioKKSkpiImJQV5eHry9vWuU12q1mDNnDrp16wa1Wo39+/cjISEB3t7eiImJAQAsW7YMq1atwrZt29CxY0fMnTsXMTEx+Omnn+Dk5GTrLhJRC1HXPkhXrlzBu+++e9PP63Q6biFA1MLYfUPFqKgo9OnTB2vWrAEAmEwmBAYGYsqUKZg1a1aD6ggLC8Pw4cOxaNEiCCHg7++P6dOn46WXXgJwbQt/Hx8fbN26FWPGjLlpfdxQkUh+9Hq99O/QzRiNbjAYvKDV6s0eBzJx4kT4+flZq4lEdBON+ftt10tjFRUVyMrKQnR0tHRMqVQiOjoaR44cuennhRDIyMhAXl4eBg4cCADIz89HYWGhWZ0ajQZRUVF11lleXo7i4mKzFxHJy40zQUajG/Lzg2A0upkdz87ujZSUadi2LR4pKdOQnd3bls0koiZm10tjly9fRlVVFXx8fMyO+/j44Oeff67zc0ajEQEBASgvL4dKpcK6detw//33AwAKCwulOm6ss/rcjZKSkrBw4cJb6QoRtSLZ2b2RljYCQiihUJgQG7sfYWHHYTS6SccBQAgl0tJGIDj4ZK0PiiWi5q9ZLJa2lJubG3JycnDs2DEsWbIEiYmJyMzMbHR9s2fPhtFolF5nz55tusYSUYtSV9ipvhxWfbyaEEoYDFp7NJWImoBdZ4TatWsHlUqFoqIis+NFRUXw9fWt83NKpRIhISEAgNDQUOTm5iIpKQmDBw+WPldUVGR2rb6oqAihoaG11ufo6AhHR8db7A0RtQb1hR2tVg+FwmR2XqEwQas12LqZRNRE7DojpFarER4ejoyMDOmYyWRCRkYG+vbt2+B6TCYTysvLAQAdO3aEr6+vWZ3FxcX45ptvLKqTiOSpOuxcrzrsaDQliI3dL52vvmzGy2JELZfdb59PTExEfHw8IiIiEBkZiZSUFJSWliIhIQEAMH78eAQEBCApKQnAtfU8ERERCA4ORnl5OQ4cOIDt27dj/fr1AACFQoFp06Zh8eLF6Ny5s3T7vL+/P0aNGmWvbhJRC1Eddm5cI1QddsLCjiM4+OT/zRAZGIKIWji7B6G4uDhcunQJ8+bNQ2FhIUJDQ5Geni4tdj5z5gyUyr8nrkpLS/H888/j3LlzcHZ2Rrdu3bBjxw7ExcVJZV5++WWUlpZi4sSJuHLlCvr374/09HTuIUREDXKzsKPRlNQagNRqta2aSERNxO77CDVH3EeISH4auo9QXFwcNBpNjeNqtZqbKRLZWWP+ftt9RoiIqDnw8vKCTqerdWfpagw7RK0PgxAR0f9hyCGSnxa5jxARERFRU2AQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItliECIiIiLZYhAiIiIi2WIQIiIiItmyexBau3YtgoKC4OTkhKioKBw9erTOshs3bsSAAQPg6ekJT09PREdH1yh/9epV6HQ63H777XB2dsadd96JDRs2WLsbRERE1ALZNQjt2bMHiYmJmD9/PrKzs9GrVy/ExMTg4sWLtZbPzMzE2LFjcfjwYRw5cgSBgYF44IEHcP78ealMYmIi0tPTsWPHDuTm5mLatGnQ6XTYt2+frbpFRERELYRCCCHs9eVRUVHo06cP1qxZAwAwmUwIDAzElClTMGvWrJt+vqqqCp6enlizZg3Gjx8PALjrrrsQFxeHuXPnSuXCw8MxbNgwLF68uEHtKi4uhkajgdFohLu7eyN6RkRERLbWmL/fdpsRqqioQFZWFqKjo/9ujFKJ6OhoHDlypEF1lJWVobKyElqtVjrWr18/7Nu3D+fPn4cQAocPH8Yvv/yCBx54oM56ysvLUVxcbPYiIiKi1s9uQejy5cuoqqqCj4+P2XEfHx8UFhY2qI6ZM2fC39/fLEytXr0ad955J26//Xao1WoMHToUa9euxcCBA+usJykpCRqNRnoFBgY2rlNERETUoth9sXRjJScnY/fu3fjggw/g5OQkHV+9ejW+/vpr7Nu3D1lZWXjjjTcwefJkHDp0qM66Zs+eDaPRKL3Onj1riy4QERGRnbWx1xe3a9cOKpUKRUVFZseLiorg6+tb72eXL1+O5ORkHDp0CD179pSO//HHH3jllVfwwQcfYPjw4QCAnj17IicnB8uXLzebObqeo6MjHB0db7FHRERE1NLYbUZIrVYjPDwcGRkZ0jGTyYSMjAz07du3zs8tW7YMixYtQnp6OiIiIszOVVZWorKyEkqlebdUKhVMJlPTdoCIiIhaPItnhA4cOIDU1FRotVo89dRT6Natm3Tu999/x6OPPorPPvusQXUlJiYiPj4eERERiIyMREpKCkpLS5GQkAAAGD9+PAICApCUlAQAWLp0KebNm4ddu3YhKChIWkvk6uoKV1dXuLu7Y9CgQZgxYwacnZ3RoUMH/Oc//8Hbb7+NFStWWNpVIiIiau2EBXbu3ClUKpUYPny46N+/v3BychI7duyQzhcWFgqlUmlJlWL16tWiffv2Qq1Wi8jISPH1119L5wYNGiTi4+Ol9x06dBAAarzmz58vlblw4YKYMGGC8Pf3F05OTqJr167ijTfeECaTqcFtMhqNAoAwGo0W9YWIiIjspzF/vy3aR6h3795ISEjA1KlTAQDvvvsunnrqKaxcuRJPP/00ioqK4O/vj6qqqqZPbDbEfYSIiIhansb8/bbo0tiJEycQGxsrvR89ejRuu+02jBw5EpWVlXj44YctazEREcmSXq9HRUVFnefVajW8vLxs2CKSK4uCkLu7O4qKitCxY0fp2L333ov9+/djxIgROHfuXJM3kIiIWhe9Xi89UaA+Op2OYYiszqK7xiIjI/Hxxx/XOD5o0CCkpaUhJSWlqdpFRESt1I0zQUajG/Lzg2A0utVbjsgaLJoRevHFF/HVV1/Vem7w4MFIS0vD22+/3SQNIyKi1i87uzfS0kZACCUUChNiY/cjLOy4vZtFMmJREOrduzd69+5d57O4wsPDER4e3iQNIyKi1s1odJNCEAAIoURa2ggEB5+ERlNi59aRXFgUhDw8PKBQKG5arqXfNUZERNZnMHhJIaiaEEoYDFoGIbIZi4LQ4cOHpZ+FEHjwwQfx1ltvISAgoMkbRkRErZtWq4dCYTILQwqFCVqtwY6tIrmxKAgNGjTI7L1KpcLdd9+NTp06NWmjiIio9dNoShAbu7/GGiHOBpEt2e2hq0RERGFhxxEcfBIGgxZarYEhiGyOQYiIiGxKrVabvddoSmoNQDeWI7KGWw5CDVk8TUREVM3Lyws6nY47S1OzYFEQeuSRR8ze//nnn5g0aRJcXFzMjqempt56y4iIqNViyKHmwqIgpNFozN4/+eSTTdoYIiIiIluyKAht2bLFWu0gIiIisjmLnjVGRERE1JowCBEREZFsMQgRERGRbDEIERERkWwxCBEREZFsMQgRERGRbDEIERERkWwxCBEREZFsMQgRERGRbDEIERERkWwxCBEREZFsMQgRERGRbDEIERERkWwxCBEREZFsMQgRERGRbDEIERERkWwxCBEREZFsMQgRERGRbDEIERERkWwxCBEREZFsMQgRERGRbDEIERERkWwxCBEREZFsMQgRERGRbDEIERERkWwxCBEREZFsMQgRERGRbDEIERERkWwxCBEREZFsMQgRERGRbDEIERERkWwxCBEREZFs2T0IrV27FkFBQXByckJUVBSOHj1aZ9mNGzdiwIAB8PT0hKenJ6Kjo2stn5ubi5EjR0Kj0cDFxQV9+vTBmTNnrNkNIiIiaoHsGoT27NmDxMREzJ8/H9nZ2ejVqxdiYmJw8eLFWstnZmZi7NixOHz4MI4cOYLAwEA88MADOH/+vFTm1KlT6N+/P7p164bMzEx89913mDt3LpycnGzVLSIiImohFEIIYa8vj4qKQp8+fbBmzRoAgMlkQmBgIKZMmYJZs2bd9PNVVVXw9PTEmjVrMH78eADAmDFj4ODggO3btze6XcXFxdBoNDAajXB3d290PURERGQ7jfn7bbcZoYqKCmRlZSE6OvrvxiiViI6OxpEjRxpUR1lZGSorK6HVagFcC1IfffQRunTpgpiYGHh7eyMqKgoffvhhvfWUl5ejuLjY7EVEREStn92C0OXLl1FVVQUfHx+z4z4+PigsLGxQHTNnzoS/v78Upi5evIirV68iOTkZQ4cOxSeffIKHH34YjzzyCP7zn//UWU9SUhI0Go30CgwMbHzHiIio1dPr9bhw4UKdL71eb+8mUgO1sXcDGis5ORm7d+9GZmamtP7HZDIBAB566CG8+OKLAIDQ0FB89dVX2LBhAwYNGlRrXbNnz0ZiYqL0vri4mGGIiIhqpdfrpSUd9dHpdPDy8rJBi+hW2C0ItWvXDiqVCkVFRWbHi4qK4OvrW+9nly9fjuTkZBw6dAg9e/Y0q7NNmza48847zcrfcccd+OKLL+qsz9HREY6Ojo3oBRERyU1FRYXZe6PRDQaDF7RaPTSakjrLUfNktyCkVqsRHh6OjIwMjBo1CsC1GZ2MjAzodLo6P7ds2TIsWbIEBw8eRERERI06+/Tpg7y8PLPjv/zyCzp06NDkfSAiInnLzu6NtLQREEIJhcKE2Nj9CAs7bu9mkQXsemksMTER8fHxiIiIQGRkJFJSUlBaWoqEhAQAwPjx4xEQEICkpCQAwNKlSzFv3jzs2rULQUFB0loiV1dXuLq6AgBmzJiBuLg4DBw4EPfeey/S09ORlpaGzMxMu/SRiIhaJ6PRTQpBACCEEmlpIxAcfNJsZoiaN7sGobi4OFy6dAnz5s1DYWEhQkNDkZ6eLi2gPnPmDJTKv9dzr1+/HhUVFXjsscfM6pk/fz4WLFgAAHj44YexYcMGJCUlYerUqejatSv27t2L/v3726xfRETU+hkMXlIIqiaEEgaDlkGoBbH7YmmdTlfnpbAbZ3EKCgoaVOdTTz2Fp5566hZbRkREVDetVg+FwmQWhhQKE7Ragx1bRZay+yM2iIiIWiKNpgSxsfuhUFy7Y7l6jRBng1oWu88IERERtVRhYccRHHwSBoMWWq2BIagFYhAiIiKygFqtNnuv0ZTUGoBuLEfNE4MQERGRBby8vKDT6erdJ0itVnMzxRaCQYiIiMhCDDmtBxdLExERkWwxCBEREZFsMQgRERGRbDEIERERkWwxCBEREZFsMQgRERGRbDEIERERkWxxHyEiIiIb0ev13IixmWEQIiIisgG9Xo81a9bctJxOp2MYsiFeGiMiIrKBG2eCjEY35OcHwWh0q7ccWRdnhIiIiGwsO7s30tJGQAglFAoTYmP3IyzsuL2bJUucESIiIrIho9FNCkEAIIQSaWkjaswMkW0wCBEREdmQweAlhaBqQihhMGjt1CJ5YxAiIiKyIa1WD4XCZHZMoTBBqzXYqUXyxiBERERkQxpNCWJj90thqHqNkEZTYueWyRMXSxMREdlYWNhxBAefhMGghVZrYAiyIwYhIiIiG1Cr1WbvNZqSWgPQjeXIuhiEiIiIbMDLyws6nY47SzczDEJEREQ2wpDT/HCxNBEREckWgxARERHJFoMQERERyRaDEBEREckWgxARERHJFoMQERERyRZvnyciImrm9Ho99x+yEgYhIiKiZkyv12PNmjU3LafT6RiGGoGXxoiIiJqxG2eCjEY35OcHwWh0q7ccNQxnhIiIiFqI7OzeSEsbASGU0lPrw8KO27tZLRpnhIiIiFoAo9FNCkEAIIQSaWkjaswMkWUYhIiIiFoAg8FLCkHVhFDCYNDaqUWtA4MQERFRC6DV6qFQmMyOKRQmaLUGO7WodWAQIiIiagE0mhLExu6XwlD1GiGNpsTOLWvZuFiaiIiohQgLO47g4JMwGLTQag0MQU2AQYiIiKgZU6vVZu81mpJaA9CN5ahhGISIiIiaMS8vL+h0Ou4sbSUMQkRERM0cQ471cLE0ERERyRaDEBEREckWgxARERHJFoMQERERyRaDEBEREclWswhCa9euRVBQEJycnBAVFYWjR4/WWXbjxo0YMGAAPD094enpiejo6HrLT5o0CQqFAikpKVZoOREREbVkdg9Ce/bsQWJiIubPn4/s7Gz06tULMTExuHjxYq3lMzMzMXbsWBw+fBhHjhxBYGAgHnjgAZw/f75G2Q8++ABff/01/P39rd0NIiIiaoHsHoRWrFiBZ599FgkJCbjzzjuxYcMGtG3bFps3b661/M6dO/H8888jNDQU3bp1w1tvvQWTyYSMjAyzcufPn8eUKVOwc+dOODg42KIrRERE1MLYNQhVVFQgKysL0dHR0jGlUono6GgcOXKkQXWUlZWhsrISWq1WOmYymTBu3DjMmDED3bt3v2kd5eXlKC4uNnsRERFR62fXIHT58mVUVVXBx8fH7LiPjw8KCwsbVMfMmTPh7+9vFqaWLl2KNm3aYOrUqQ2qIykpCRqNRnoFBgY2vBNERETUYrXoR2wkJydj9+7dyMzMhJOTEwAgKysLK1euRHZ2NhQKRYPqmT17NhITE6X3xcXFDENERNTi6fV6PqPsJuwahNq1aweVSoWioiKz40VFRfD19a33s8uXL0dycjIOHTqEnj17Ssc///xzXLx4Ee3bt5eOVVVVYfr06UhJSUFBQUGNuhwdHeHo6HhrnSEiImpG9Ho91qxZc9NyOp1O1mHIrpfG1Go1wsPDzRY6Vy987tu3b52fW7ZsGRYtWoT09HRERESYnRs3bhy+++475OTkSC9/f3/MmDEDBw8etFpfiIiImpP6ZoIaU661svulscTERMTHxyMiIgKRkZFISUlBaWkpEhISAADjx49HQEAAkpKSAFxb/zNv3jzs2rULQUFB0loiV1dXuLq6wsvLq0aydXBwgK+vL7p27WrbzhERETUTRqMbDAYvaLV6aDQl9m5Os2H3IBQXF4dLly5h3rx5KCwsRGhoKNLT06UF1GfOnIFS+ffE1fr161FRUYHHHnvMrJ758+djwYIFtmw6ERFRi5Cd3RtpaSMghBIKhQmxsfsRFnbc3s1qFuwehIBr1yd1Ol2t5zIzM83e17bG52Ya8xkiIqLWwGh0k0IQAAihRFraCAQHn+TMEJrBhopERERkPQaDlxSCqgmhhMGgreMT8sIgRERE1IpptXooFCazYwqFCVqtwU4tal4YhIiIiFoxjaYEsbH7pTBUvUaIl8WuaRZrhIiIiKhpqdVq6eewsOMIDj4Jg0ELrdZgFoKuXLlS5+flsL+QQggh7N2I5qa4uBgajQZGoxHu7u72bg4REVGj1LWztNFoxJ49e276+Za22WJj/n5zRoiIiKiVamiIqWuPITlstsggREREJGNy32OIi6WJiIhkqq49hoxGNzu3zHYYhIiIiGSKewwxCBEREckW9xhiECIiIpIt7jHExdJERESyVt8eQ3LAIERERCQz12+2CFybGaotAN1YrjViECIiIpIZLy8v6HS6evcJksvO0gxCREREMiSHkNMQXCxNREREssUgRERERLLFIERERESyxSBEREREssUgRERERLLFIERERESyxSBEREREssUgRERERLLFIERERESyxSBEREREssUgRERERLLFIERERESyxSBEREREssUgRERERLLFIERERESyxSBEREREssUgRERERLLFIERERESyxSBEREREssUgRERERLLFIERERESyxSBEREREssUgRERERLLFIERERESyxSBEREREssUgRERERLLFIERERESyxSBEREREssUgRERERLLFIERERESyxSBEREREstUsgtDatWsRFBQEJycnREVF4ejRo3WW3bhxIwYMGABPT094enoiOjrarHxlZSVmzpyJHj16wMXFBf7+/hg/fjx+++03W3SFiIiIWhC7B6E9e/YgMTER8+fPR3Z2Nnr16oWYmBhcvHix1vKZmZkYO3YsDh8+jCNHjiAwMBAPPPAAzp8/DwAoKytDdnY25s6di+zsbKSmpiIvLw8jR460ZbeIiIioBVAIIYQ9GxAVFYU+ffpgzZo1AACTyYTAwEBMmTIFs2bNuunnq6qq4OnpiTVr1mD8+PG1ljl27BgiIyNx+vRptG/f/qZ1FhcXQ6PRwGg0wt3d3bIOERERkV005u+3XWeEKioqkJWVhejoaOmYUqlEdHQ0jhw50qA6ysrKUFlZCa1WW2cZo9EIhUIBDw+PWs+Xl5ejuLjY7EVEREStXxt7fvnly5dRVVUFHx8fs+M+Pj74+eefG1THzJkz4e/vbxamrvfnn39i5syZGDt2bJ3pMCkpCQsXLrSs8URERNQger0eFRUVdZ5Xq9Xw8vKyYYv+ZtcgdKuSk5Oxe/duZGZmwsnJqcb5yspKjB49GkIIrF+/vs56Zs+ejcTEROl9cXExAgMDrdJmIiIiOdHr9dLyl/rodDq7hCG7BqF27dpBpVKhqKjI7HhRURF8fX3r/ezy5cuRnJyMQ4cOoWfPnjXOV4eg06dP47PPPqv3WqGjoyMcHR0b1wkiIiKq040zQUajGwwGL2i1emg0JXWWsxW7BiG1Wo3w8HBkZGRg1KhRAK4tls7IyIBOp6vzc8uWLcOSJUtw8OBBRERE1DhfHYJOnDiBw4cP2226jYiIiP6Wnd0baWkjIIQSCoUJsbH7ERZ23K5tsvulscTERMTHxyMiIgKRkZFISUlBaWkpEhISAADjx49HQEAAkpKSAABLly7FvHnzsGvXLgQFBaGwsBAA4OrqCldXV1RWVuKxxx5DdnY29u/fj6qqKqmMVquFWq22T0eJiIhkzGh0k0IQAAihRFraCAQHnzSbGbI1uwehuLg4XLp0CfPmzUNhYSFCQ0ORnp4uLaA+c+YMlMq/b25bv349Kioq8Nhjj5nVM3/+fCxYsADnz5/Hvn37AAChoaFmZQ4fPozBgwdbtT9ERERUk8HgJYWgakIoYTBo5R2EgGsLpOq6FJaZmWn2vqCgoN66goKCYOetkYiIiOgGWq0eCoXJLAwpFCZotQY7tqoZ7CxNRERErZ9GU4LY2P1QKEwAIK0RsudsENBMZoSIiIio9QsLO47g4JMwGLTQag12D0EAgxARERFZ0Y03KWk0JbUGIHvdzMQgRERERFbj5eUFnU7HnaWJiIhInprzfn5cLE1ERESyxSBEREREssUgRERERLLFIERERESyxSBEREREssUgRERERLLFIERERESyxSBEREREssUgRERERLLFnaVrIYQAABQXF9u5JURERNRQ1X+3q/+ONwSDUC1KSq49DC4wMNDOLSEiIiJLlZSUQKPRNKisQlgSm2TCZDLht99+g5ubGxQKRa1liouLERgYiLNnz8Ld3d3GLWx+OB7mOB41cUzMcTxq4piY43iYa8h4CCFQUlICf39/KJUNW/3DGaFaKJVK3H777Q0q6+7uzl/Q63A8zHE8auKYmON41MQxMcfxMHez8WjoTFA1LpYmIiIi2WIQIiIiItliEGokR0dHzJ8/H46OjvZuSrPA8TDH8aiJY2KO41ETx8Qcx8OctcaDi6WJiIhItjgjRERERLLFIERERESyxSBEREREssUgRERERLLFIFSPtWvXIigoCE5OToiKisLRo0frLPvjjz/i0UcfRVBQEBQKBVJSUmzXUBuxZDw2btyIAQMGwNPTE56enoiOjq63fEtkyXikpqYiIiICHh4ecHFxQWhoKLZv327D1tqGJWNyvd27d0OhUGDUqFHWbaCNWTIeW7duhUKhMHs5OTnZsLXWZ+nvx5UrVzB58mT4+fnB0dERXbp0wYEDB2zUWtuwZEwGDx5c43dEoVBg+PDhNmyxdVn6O5KSkoKuXbvC2dkZgYGBePHFF/Hnn39a9qWCarV7926hVqvF5s2bxY8//iieffZZ4eHhIYqKimotf/ToUfHSSy+Jd955R/j6+oo333zTtg22MkvH4/HHHxdr164Vx48fF7m5uWLChAlCo9GIc+fO2bjl1mHpeBw+fFikpqaKn376SZw8eVKkpKQIlUol0tPTbdxy67F0TKrl5+eLgIAAMWDAAPHQQw/ZprE2YOl4bNmyRbi7u4sLFy5Ir8LCQhu32nosHY/y8nIREREhHnzwQfHFF1+I/Px8kZmZKXJycmzccuuxdEz0er3Z78cPP/wgVCqV2LJli20bbiWWjsfOnTuFo6Oj2Llzp8jPzxcHDx4Ufn5+4sUXX7ToexmE6hAZGSkmT54sva+qqhL+/v4iKSnppp/t0KFDqwtCtzIeQgjx119/CTc3N7Ft2zZrNdGmbnU8hBCid+/e4tVXX7VG8+yiMWPy119/iX79+om33npLxMfHt6ogZOl4bNmyRWg0Ghu1zvYsHY/169eLTp06iYqKCls10eZu9d+RN998U7i5uYmrV69aq4k2Zel4TJ48WQwZMsTsWGJiorjnnnss+l5eGqtFRUUFsrKyEB0dLR1TKpWIjo7GkSNH7Ngy+2iK8SgrK0NlZSW0Wq21mmkztzoeQghkZGQgLy8PAwcOtGZTbaaxY/LPf/4T3t7eePrpp23RTJtp7HhcvXoVHTp0QGBgIB566CH8+OOPtmiu1TVmPPbt24e+ffti8uTJ8PHxwV133YXXXnsNVVVVtmq2VTXFv6ubNm3CmDFj4OLiYq1m2kxjxqNfv37IysqSLp/9+uuvOHDgAB588EGLvpsPXa3F5cuXUVVVBR8fH7PjPj4++Pnnn+3UKvtpivGYOXMm/P39zX7JW6rGjofRaERAQADKy8uhUqmwbt063H///dZurk00Zky++OILbNq0CTk5OTZooW01Zjy6du2KzZs3o2fPnjAajVi+fDn69euHH3/8scEPgW6uGjMev/76Kz777DM88cQTOHDgAE6ePInnn38elZWVmD9/vi2abVW3+u/q0aNH8cMPP2DTpk3WaqJNNWY8Hn/8cVy+fBn9+/eHEAJ//fUXJk2ahFdeecWi72YQIqtLTk7G7t27kZmZ2eoWf1rCzc0NOTk5uHr1KjIyMpCYmIhOnTph8ODB9m6azZWUlGDcuHHYuHEj2rVrZ+/mNAt9+/ZF3759pff9+vXDHXfcgX/9619YtGiRHVtmHyaTCd7e3vj3v/8NlUqF8PBwnD9/Hq+//nqrCEK3atOmTejRowciIyPt3RS7yczMxGuvvYZ169YhKioKJ0+exAsvvIBFixZh7ty5Da6HQagW7dq1g0qlQlFRkdnxoqIi+Pr62qlV9nMr47F8+XIkJyfj0KFD6NmzpzWbaTONHQ+lUomQkBAAQGhoKHJzc5GUlNQqgpClY3Lq1CkUFBQgNjZWOmYymQAAbdq0QV5eHoKDg63baCtqin9DHBwc0Lt3b5w8edIaTbSpxoyHn58fHBwcoFKppGN33HEHCgsLUVFRAbVabdU2W9ut/I6UlpZi9+7d+Oc//2nNJtpUY8Zj7ty5GDduHJ555hkAQI8ePVBaWoqJEydizpw5UCobtvqHa4RqoVarER4ejoyMDOmYyWRCRkaG2f9jk4vGjseyZcuwaNEipKenIyIiwhZNtYmm+v0wmUwoLy+3RhNtztIx6datG77//nvk5ORIr5EjR+Lee+9FTk4OAgMDbdn8JtcUvyNVVVX4/vvv4efnZ61m2kxjxuOee+7ByZMnpYAMAL/88gv8/PxafAgCbu135L333kN5eTmefPJJazfTZhozHmVlZTXCTnVwFpY8RtXCRd2ysXv3buHo6Ci2bt0qfvrpJzFx4kTh4eEh3c46btw4MWvWLKl8eXm5OH78uDh+/Ljw8/MTL730kjh+/Lg4ceKEvbrQpCwdj+TkZKFWq8X7779vdrtnSUmJvbrQpCwdj9dee0188skn4tSpU+Knn34Sy5cvF23atBEbN260VxeanKVjcqPWdteYpeOxcOFCcfDgQXHq1CmRlZUlxowZI5ycnMSPP/5ory40KUvH48yZM8LNzU3odDqRl5cn9u/fL7y9vcXixYvt1YUm19j/zfTv31/ExcXZurlWZ+l4zJ8/X7i5uYl33nlH/Prrr+KTTz4RwcHBYvTo0RZ9L4NQPVavXi3at28v1Gq1iIyMFF9//bV0btCgQSI+Pl56n5+fLwDUeA0aNMj2DbcSS8ajQ4cOtY7H/Pnzbd9wK7FkPObMmSNCQkKEk5OT8PT0FH379hW7d++2Q6uty5IxuVFrC0JCWDYe06ZNk8r6+PiIBx98UGRnZ9uh1dZj6e/HV199JaKiooSjo6Po1KmTWLJkifjrr79s3GrrsnRMfv75ZwFAfPLJJzZuqW1YMh6VlZViwYIFIjg4WDg5OYnAwEDx/PPPi99//92i71QIYcn8EREREVHrwTVCREREJFsMQkRERCRbDEJEREQkWwxCREREJFsMQkRERCRbDEJEREQkWwxCREREJFsMQkREdjRhwgSMGjXK3s0gki0GISKq1YQJE6BQKKSXl5cXhg4diu+++87eTWsS1/et+tW/f3+rfV9BQQEUCgVycnLMjq9cuRJbt2612vcSUf0YhIioTkOHDsWFCxdw4cIFZGRkoE2bNhgxYoS9m9VktmzZIvXvwoUL2LdvX63lKisrrdYGjUYDDw8Pq9VPRPVjECKiOjk6OsLX1xe+vr4IDQ3FrFmzcPbsWVy6dAlDhgyBTqczK3/p0iWo1WrpCdJBQUFYtGgRxo4dCxcXFwQEBGDt2rVmn1mxYgV69OgBFxcXBAYG4vnnn8fVq1el86dPn0ZsbCw8PT3h4uKC7t2748CBAwCA33//HU888QRuu+02ODs7o3PnztiyZUuD++fh4SH1z9fXF1qtVpq52bNnDwYNGgQnJyfs3LkTer0eY8eORUBAANq2bYsePXrgnXfeMavPZDJh2bJlCAkJgaOjI9q3b48lS5YAADp27AgA6N27NxQKBQYPHgyg5qWx8vJyTJ06Fd7e3nByckL//v1x7Ngx6XxmZiYUCgUyMjIQERGBtm3bol+/fsjLy2twv4nobwxCRNQgV69exY4dOxASEgIvLy8888wz2LVrF8rLy6UyO3bsQEBAAIYMGSIde/3119GrVy8cP34cs2bNwgsvvIBPP/1UOq9UKrFq1Sr8+OOP2LZtGz777DO8/PLL0vnJkyejvLwc//3vf/H9999j6dKlcHV1BQDMnTsXP/30Ez7++GPk5uZi/fr1aNeuXZP0t7qtubm5iImJwZ9//onw8HB89NFH+OGHHzBx4kSMGzcOR48elT4ze/ZsJCcnS+3atWsXfHx8AEAqd+jQIVy4cAGpqam1fu/LL7+MvXv3Ytu2bcjOzkZISAhiYmJgMBjMys2ZMwdvvPEGvv32W7Rp0wZPPfVUk/SbSHaa5HGxRNTqxMfHC5VKJVxcXISLi4sAIPz8/ERWVpYQQog//vhDeHp6ij179kif6dmzp1iwYIH0vkOHDmLo0KFm9cbFxYlhw4bV+b3vvfee8PLykt736NHDrM7rxcbGioSEhEb1D4BwcnKS+ufi4iI++OADkZ+fLwCIlJSUm9YxfPhwMX36dCGEEMXFxcLR0VFs3Lix1rLV9R4/ftzseHx8vHjooYeEEEJcvXpVODg4iJ07d0rnKyoqhL+/v1i2bJkQQojDhw8LAOLQoUNSmY8++kgAEH/88YclQ0BEQgjOCBFRne69917k5OQgJycHR48eRUxMDIYNG4bTp0/DyckJ48aNw+bNmwEA2dnZ+OGHHzBhwgSzOvr27VvjfW5urvT+0KFDuO+++xAQEAA3NzeMGzcOer0eZWVlAICpU6di8eLFuOeeezB//nyzxdrPPfccdu/ejdDQULz88sv46quvLOrfm2++KfUvJycH999/v3QuIiLCrGxVVRUWLVqEHj16QKvVwtXVFQcPHsSZM2cAALm5uSgvL8d9991nURuud+rUKVRWVuKee+6Rjjk4OCAyMtJszACgZ8+e0s9+fn4AgIsXLzb6u4nkikGIiOrk4uKCkJAQhISEoE+fPnjrrbdQWlqKjRs3AgCeeeYZfPrppzh37hy2bNmCIUOGoEOHDg2uv6CgACNGjEDPnj2xd+9eZGVlSWuIKioqpO/49ddfMW7cOHz//feIiIjA6tWrAUAKZS+++CJ+++033HfffXjppZca/P2+vr5S/0JCQuDi4mLW9+u9/vrrWLlyJWbOnInDhw8jJycHMTExUjudnZ0b/L1NwcHBQfpZoVAAuLZGiYgswyBERA2mUCigVCrxxx9/AAB69OiBiIgIbNy4Ebt27ap1ncrXX39d4/0dd9wBAMjKyoLJZMIbb7yBu+++G126dMFvv/1Wo47AwEBMmjQJqampmD59uhTEAOC2225DfHw8duzYgZSUFPz73/9uyi5LvvzySzz00EN48skn0atXL3Tq1Am//PKLdL5z585wdnaWForfSK1WA7g2s1SX4OBgqNVqfPnll9KxyspKHDt2DHfeeWcT9YSIrtfG3g0gouarvLwchYWFAK7dobVmzRpcvXoVsbGxUplnnnkGOp0OLi4uePjhh2vU8eWXX2LZsmUYNWoUPv30U7z33nv46KOPAAAhISGorKzE6tWrERsbiy+//BIbNmww+/y0adMwbNgwdOnSBb///jsOHz4sBal58+YhPDwc3bt3R3l5Ofbv3y+da2qdO3fG+++/j6+++gqenp5YsWIFioqKpIDi5OSEmTNn4uWXX4ZarcY999yDS5cu4ccff8TTTz8Nb29vODs7Iz09HbfffjucnJyg0WjMvsPFxQXPPfccZsyYAa1Wi/bt22PZsmUoKyvD008/bZV+EckdZ4SIqE7p6enw8/ODn58foqKicOzYMbz33nvSrd8AMHbsWLRp0wZjx46Fk5NTjTqmT5+Ob7/9Fr1798bixYuxYsUKxMTEAAB69eqFFStWYOnSpbjrrruwc+dOJCUlmX2+qqoKkydPxh133IGhQ4eiS5cuWLduHYBrsyyzZ89Gz549MXDgQKhUKuzevdsqY/Hqq68iLCwMMTExGDx4MHx9fWvsCD137lxMnz4d8+bNwx133IG4uDhp3U6bNm2watUq/Otf/4K/vz8eeuihWr8nOTkZjz76KMaNG4ewsDCcPHkSBw8ehKenp1X6RSR3CiGEsHcjiKjlKigoQHBwMI4dO4awsDCzc0FBQZg2bRqmTZtmn8YREd0EL40RUaNUVlZCr9fj1Vdfxd13310jBBERtQS8NEZEjfLll1/Cz88Px44dq7Gux95ee+01uLq61voaNmyYvZtHRM0IL40RUatjMBhq7MRczdnZGQEBATZuERE1VwxCREREJFu8NEZERESyxSBEREREssUgRERERLLFIERERESyxSBEREREssUgRERERLLFIERERESyxSBEREREsvX/AZLUXl8SCor4AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_18.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJ/ElEQVR4nO3de1xUdeL/8feADCCX0UFFURRF07QS0XS1vNRS2Cp2c7100exibpEZZWZtXrJCyzVLzPq1pWW52qZdMJdK0sq0bEW7qpmhdhFMqAFhBWLO7w+/jI1cBARm4Lyej8c81jnnc858Pp89zLz7nM85x2IYhiEAAAAT8fF0BQAAABoaAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAQgAvNSKFStksVh04MABT1cFaHIIQICJffbZZ0pMTFSvXr0UFBSkjh07asyYMfr222/LlR02bJgsFossFot8fHwUGhqq7t276/rrr9d7771Xo89NTU3V0KFD1aZNGzVv3lxdunTRmDFjlJaWVldNK+fRRx/VG2+8UW751q1bNWfOHP3222/19tmnmjNnjqsvLRaLmjdvrp49e+rvf/+78vLy6uQzVq1apcWLF9fJvoCmiAAEmNiCBQu0du1a/fnPf9aTTz6pyZMn68MPP1RsbKy++uqrcuU7dOiglStX6qWXXtLjjz+uUaNGaevWrbr00ks1duxYlZSUnPYzFy5cqFGjRslisWjmzJl64okndPXVV2vfvn1avXp1fTRTUtUBaO7cuQ0agMosW7ZMK1eu1KJFi9SjRw898sgjGj58uOriEY0EIKBqzTxdAQCek5SUpFWrVslqtbqWjR07Vueee67mz5+vl19+2a28zWbTdddd57Zs/vz5mjp1qp5++mlFRUVpwYIFlX7e77//rnnz5umSSy7Ru+++W279kSNHzrBF3qOwsFDNmzevsszo0aPVqlUrSdKUKVN09dVXa926dfrkk080cODAhqgmYFqMAAEmNmjQILfwI0ndunVTr169tHv37mrtw9fXV0899ZR69uyplJQUORyOSssePXpUeXl5uuCCCypc36ZNG7f3x48f15w5c3TWWWcpICBA7dq101VXXaX9+/e7yixcuFCDBg1SWFiYAgMD1bdvX7322mtu+7FYLCooKNCLL77oOu10ww03aM6cOZo+fbokqXPnzq51f5xz8/LLL6tv374KDAyU3W7XuHHj9MMPP7jtf9iwYTrnnHO0Y8cODRkyRM2bN9f9999frf77o4svvliSlJmZWWW5p59+Wr169ZK/v78iIiJ0++23u41gDRs2TG+//bYOHjzoalNUVFSN6wM0ZYwAAXBjGIays7PVq1evam/j6+ur8ePH68EHH9SWLVs0YsSICsu1adNGgYGBSk1N1R133CG73V7pPktLSzVy5Eilp6dr3LhxuvPOO5Wfn6/33ntPX331laKjoyVJTz75pEaNGqVrr71WxcXFWr16tf76179q/fr1rnqsXLlSN998s/r376/JkydLkqKjoxUUFKRvv/1W//rXv/TEE0+4RmNat24tSXrkkUf04IMPasyYMbr55pv1yy+/aMmSJRoyZIh27typFi1auOqbk5Ojyy67TOPGjdN1112n8PDwavdfmbJgFxYWVmmZOXPmaO7cuYqLi9Pf/vY37d27V8uWLdNnn32mjz/+WH5+fnrggQfkcDj0448/6oknnpAkBQcH17g+QJNmAMAfrFy50pBkPP/8827Lhw4davTq1avS7V5//XVDkvHkk09Wuf9Zs2YZkoygoCDjsssuMx555BFjx44d5cq98MILhiRj0aJF5dY5nU7XvwsLC93WFRcXG+ecc45x8cUXuy0PCgoyJk6cWG5fjz/+uCHJyMzMdFt+4MABw9fX13jkkUfcln/55ZdGs2bN3JYPHTrUkGQ888wzlbb7j2bPnm1IMvbu3Wv88ssvRmZmpvHss88a/v7+Rnh4uFFQUGAYhmEsX77crW5HjhwxrFarcemllxqlpaWu/aWkpBiSjBdeeMG1bMSIEUanTp2qVR/AjDgFBsBlz549uv322zVw4EBNnDixRtuWjTDk5+dXWW7u3LlatWqV+vTpo3feeUcPPPCA+vbtq9jYWLfTbmvXrlWrVq10xx13lNuHxWJx/TswMND1719//VUOh0ODBw9WRkZGjep/qnXr1snpdGrMmDE6evSo69W2bVt169ZNmzZtcivv7++vSZMm1egzunfvrtatW6tz58669dZb1bVrV7399tuVzh3auHGjiouLNW3aNPn4nPz6vuWWWxQaGqq333675g0FTIpTYAAkSVlZWRoxYoRsNptee+01+fr61mj7Y8eOSZJCQkJOW3b8+PEaP3688vLy9Omnn2rFihVatWqVEhIS9NVXXykgIED79+9X9+7d1axZ1V9T69ev18MPP6xdu3apqKjItfyPIak29u3bJ8Mw1K1btwrX+/n5ub1v3759uflUp7N27VqFhobKz89PHTp0cJ3Wq8zBgwclnQhOf2S1WtWlSxfXegCnRwACIIfDocsuu0y//fabPvroI0VERNR4H2WXzXft2rXa24SGhuqSSy7RJZdcIj8/P7344ov69NNPNXTo0Gpt/9FHH2nUqFEaMmSInn76abVr105+fn5avny5Vq1aVeM2/JHT6ZTFYtF//vOfCsPgqXNq/jgSVV1DhgxxzTsC0LAIQIDJHT9+XAkJCfr222+1ceNG9ezZs8b7KC0t1apVq9S8eXNdeOGFtapHv3799OKLL+rw4cOSTkxS/vTTT1VSUlJutKXM2rVrFRAQoHfeeUf+/v6u5cuXLy9XtrIRocqWR0dHyzAMde7cWWeddVZNm1MvOnXqJEnau3evunTp4lpeXFyszMxMxcXFuZad6QgY0NQxBwgwsdLSUo0dO1bbtm3Tv//971rde6a0tFRTp07V7t27NXXqVIWGhlZatrCwUNu2batw3X/+8x9JJ0/vXH311Tp69KhSUlLKlTX+70aBvr6+slgsKi0tda07cOBAhTc8DAoKqvBmh0FBQZJUbt1VV10lX19fzZ07t9yNCQ3DUE5OTsWNrEdxcXGyWq166qmn3Or0/PPPy+FwuF19FxQUVOUtCQCzYwQIMLG7775bb731lhISEpSbm1vuxoen3vTQ4XC4yhQWFuq7777TunXrtH//fo0bN07z5s2r8vMKCws1aNAg/elPf9Lw4cMVGRmp3377TW+88YY++ugjXXHFFerTp48kacKECXrppZeUlJSk7du3a/DgwSooKNDGjRt122236fLLL9eIESO0aNEiDR8+XNdcc42OHDmipUuXqmvXrvriiy/cPrtv377auHGjFi1apIiICHXu3FkDBgxQ3759JUkPPPCAxo0bJz8/PyUkJCg6OloPP/ywZs6cqQMHDuiKK65QSEiIMjMz9frrr2vy5Mm65557zqj/a6p169aaOXOm5s6dq+HDh2vUqFHau3evnn76aZ1//vlu/3/17dtXa9asUVJSks4//3wFBwcrISGhQesLeDVPXoIGwLPKLt+u7FVV2eDgYKNbt27GddddZ7z77rvV+rySkhLjueeeM6644gqjU6dOhr+/v9G8eXOjT58+xuOPP24UFRW5lS8sLDQeeOABo3Pnzoafn5/Rtm1bY/To0cb+/ftdZZ5//nmjW7duhr+/v9GjRw9j+fLlrsvM/2jPnj3GkCFDjMDAQEOS2yXx8+bNM9q3b2/4+PiUuyR+7dq1xoUXXmgEBQUZQUFBRo8ePYzbb7/d2Lt3r1vfVHWLgFOV1e+XX36pstypl8GXSUlJMXr06GH4+fkZ4eHhxt/+9jfj119/dStz7Ngx45prrjFatGhhSOKSeOAUFsOog4fOAAAANCLMAQIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKbDjRAr4HQ69fPPPyskJITbyQMA0EgYhqH8/HxFRETIx6fqMR4CUAV+/vlnRUZGeroaAACgFn744Qd16NChyjIEoAqEhIRIOtGBVT3XCAAAeI+8vDxFRka6fserQgCqQNlpr9DQUAIQAACNTHWmrzAJGgAAmA4BCAAAmA4BCAAAmA5zgAAAqCOlpaUqKSnxdDWaLD8/P/n6+tbJvghAAACcIcMwlJWVpd9++83TVWnyWrRoobZt257xffoIQAAAnKGy8NOmTRs1b96cm+jWA8MwVFhYqCNHjkiS2rVrd0b7IwABAHAGSktLXeEnLCzM09Vp0gIDAyVJR44cUZs2bc7odBiToAEAOANlc36aN2/u4ZqYQ1k/n+lcKwIQAAB1gNNeDaOu+plTYEA9ycnJUXFxcaXrrVYrw+UA4CEEIKAe5OTkKCUl5bTlEhMTCUEA4AGcAgPqwakjPw5HiDIzo+RwhFRZDgAa0g033CCLxSKLxSI/Pz+Fh4frkksu0QsvvCCn01nt/axYsUItWrSov4rWA0aAgHqWkdFHqakjZRg+slicSkhYr9jYnZ6uFtCoNPVTyp5s3/Dhw7V8+XKVlpYqOztbaWlpuvPOO/Xaa6/prbfeUrNmTTMqNM1WAV7C4QhxhR9JMgwfpaaOVHT0d7LZ8j1cO6BxaOqnlD3dPn9/f7Vt21aS1L59e8XGxupPf/qT/vznP2vFihW6+eabtWjRIi1fvlzff/+97Ha7EhIS9Nhjjyk4OFibN2/WpEmTJJ2coDx79mzNmTNHK1eu1JNPPqm9e/cqKChIF198sRYvXqw2bdrUeTtqilNgQD3KzQ1zhZ8yhuGj3Fy7h2oEND7VPVXcWE8pe2P7Lr74YvXu3Vvr1q2TJPn4+Oipp57S119/rRdffFHvv/++7r33XknSoEGDtHjxYoWGhurw4cM6fPiw7rnnHkknLlWfN2+ePv/8c73xxhs6cOCAbrjhhgZrR1UYAQLqkd2eI4vF6RaCLBan7PZcD9YKaNwcjhDl5obJbs9hJLUe9ejRQ1988YUkadq0aa7lUVFRevjhhzVlyhQ9/fTTslqtstlsslgsrpGkMjfeeKPr3126dNFTTz2l888/X8eOHVNwcHCDtKMyBCCgHtls+UpIWF9uDhBf2kDtMKeu4RiG4TqltXHjRiUnJ2vPnj3Ky8vT77//ruPHj6uwsLDKG0Du2LFDc+bM0eeff65ff/3VNbH60KFD6tmzZ4O0ozIEIKCexcbuVHT0d8rNtctuzyX8ALXEnLqGtXv3bnXu3FkHDhzQyJEj9be//U2PPPKI7Ha7tmzZoptuuknFxcWVBqCCggLFx8crPj5er7zyilq3bq1Dhw4pPj7eK05XEoCAemC1Wt3e22z5FX5Bn1oOQOWqmlNHAKpb77//vr788kvddddd2rFjh5xOp/7xj3/Ix+dE/7/66qtu5a1Wq0pLS92W7dmzRzk5OZo/f74iIyMlSf/9738bpgHVQAAC6kFYWJgSExOb9GW7QENjTl39KCoqUlZWlttl8MnJyRo5cqQmTJigr776SiUlJVqyZIkSEhL08ccf65lnnnHbR1RUlI4dO6b09HT17t1bzZs3V8eOHWW1WrVkyRJNmTJFX331lebNm+ehVpbHVWBodHJyclxXGlT0ysnJ8XQVJZ0IQe3atav0RfgBaqZsTp3FcmIeCXPq6kZaWpratWunqKgoDR8+XJs2bdJTTz2lN998U76+vurdu7cWLVqkBQsW6JxzztErr7yi5ORkt30MGjRIU6ZM0dixY9W6dWs99thjat26tVasWKF///vf6tmzp+bPn6+FCxd6qJXlWQzDMDxdCW+Tl5cnm80mh8Oh0NBQT1cHf+Dp+2UAaHin/t2fuAqs/Jw6T/3dHz9+XJmZmercubMCAgJqvD3fazVTVX/X5PebU2BoVCp6xERFl8N6wwQ7AHWjqZ9Sburt81YEIDRaXA5bd5r6YwbQ+DX146+pt88bEYDQKHE5bN1h+B2AGTEJGo0Sj5ioOzy5HoAZMQKERonLYesHpxUBmAUjQGiUuBy27lV2WvHUkSAAaAoYAUKjxSMm6hZ32QVgJgQgNCo8YqL+cFoRgJkQgNCocL+M+sOT6wGYCQEIjQ7hpv5wWhFAXdq8ebMuuugi/frrr2rRokW1tomKitK0adM0bdq0eq0bk6ABk6votGLnzgfLhR9OKwJNzw033CCLxaIpU6aUW3f77bfLYrHohhtuaPiKNQBGgACT47QiYG6RkZFavXq1nnjiCQUGBko68bytVatWqWPHjh6uXf1hBAgAT64HTCw2NlaRkZFat26da9m6devUsWNH9enTx7WsqKhIU6dOVZs2bRQQEKALL7xQn332mdu+NmzYoLPOOkuBgYG66KKLdODAgXKft2XLFg0ePFiBgYGKjIzU1KlTVVBQUG/tqwwBCAAAL/Ljj9KmTSf+t6HceOONWr58uev9Cy+8oEmTJrmVuffee7V27Vq9+OKLysjIUNeuXRUfH6/c3BNXiv7www+66qqrlJCQoF27dunmm2/Wfffd57aP/fv3a/jw4br66qv1xRdfaM2aNdqyZYsSExPrv5GnIAABAOAlnn9e6tRJuvjiE//7/PMN87nXXXedtmzZooMHD+rgwYP6+OOPdd1117nWFxQUaNmyZXr88cd12WWXqWfPnnruuecUGBio5/+vksuWLVN0dLT+8Y9/qHv37rr22mvLzR9KTk7Wtddeq2nTpqlbt24aNGiQnnrqKb300ks6fvx4wzT2/zAHCAAAL/Djj9LkyZLzxA3u5XRKt94qxcdLHTrU72e3bt1aI0aM0IoVK2QYhkaMGKFWrVq51u/fv18lJSW64IILXMv8/PzUv39/7d69W5K0e/duDRgwwG2/AwcOdHv/+eef64svvtArr7ziWmYYhpxOpzIzM3X22WfXR/MqRAACAMAL7Nt3MvyUKS2Vvvuu/gOQdOI0WNmpqKVLl9bLZxw7dky33nqrpk6dWm5dQ0+4JgABAOAFunWTfHzcQ5Cvr9S1a8N8/vDhw1VcXCyLxaL4+Hi3ddHR0bJarfr444/VqVMnSVJJSYk+++wz1/16zj77bL311ltu233yySdu72NjY/XNN9+oa0M1qgrMAQIAwAt06CD9v/93IvRIJ/732WcbZvTnxOf5avfu3frmm2/kW1aJ/xMUFKS//e1vmj59utLS0vTNN9/olltuUWFhoW666SZJ0pQpU7Rv3z5Nnz5de/fu1apVq7RixQq3/cyYMUNbt25VYmKidu3apX379unNN9/0yCRoRoAAAPASN910Ys7Pd9+dGPlpqPBTJjQ0tNJ18+fPl9Pp1PXXX6/8/Hz169dP77zzjlq2bCnpxCmstWvX6q677tKSJUvUv39/Pfroo7rxxhtd+zjvvPP0wQcf6IEHHtDgwYNlGIaio6M1duzYem/bqSyGYRgN/qleLi8vTzabTQ6Ho8qDAQCA48ePKzMzU507d1ZAQICnq9PkVdXfNfn95hQYAAAwHa8IQEuXLlVUVJQCAgI0YMAAbd++vdKy69atU79+/dSiRQsFBQUpJiZGK1eudK0vKSnRjBkzdO655yooKEgRERGaMGGCfv7554ZoCgAAaAQ8HoDWrFmjpKQkzZ49WxkZGerdu7fi4+N15MiRCsvb7XY98MAD2rZtm7744gtNmjRJkyZN0jvvvCNJKiwsVEZGhh588EFlZGRo3bp12rt3r0aNGtWQzQIAAF7M43OABgwYoPPPP18pKSmSJKfTqcjISN1xxx3lbqFdmdjYWI0YMULz5s2rcP1nn32m/v376+DBg9W6zwBzgAAA1cUcoIbVJOYAFRcXa8eOHYqLi3Mt8/HxUVxcnLZt23ba7Q3DUHp6uvbu3ashQ4ZUWs7hcMhisahFixYVri8qKlJeXp7bCwCAmuCaooZRV/3s0cvgjx49qtLSUoWHh7stDw8P1549eyrdzuFwqH379ioqKpKvr6+efvppXXLJJRWWPX78uGbMmKHx48dXmgaTk5M1d+7c2jeknuTk5Ki4uLjS9Varlad0A4CH+fn5SToxBSMwMNDDtWn6CgsLJZ3s99pqlPcBCgkJ0a5du3Ts2DGlp6crKSlJXbp00bBhw9zKlZSUaMyYMTIMQ8uWLat0fzNnzlRSUpLrfV5eniIjI+ur+tWSk5PjOi1YlcTEREIQAHiQr6+vWrRo4Zq72rx5c1ksFg/XqukxDEOFhYU6cuSIWrRoUe5mjTXl0QDUqlUr+fr6Kjs72215dna22rZtW+l2Pj4+rttox8TEaPfu3UpOTnYLQGXh5+DBg3r//ferPBfo7+8vf3//M2tMHatq5Kc25QAA9afsN6uyC3hQd1q0aFFlRqgujwYgq9Wqvn37Kj09XVdccYWkE5Og09PTa3RbbKfTqaKiItf7svCzb98+bdq0qUmMkDgcIcrNDZPdniObLd/T1QEA/IHFYlG7du3Upk0blZSUeLo6TZafn98Zj/yU8fgpsKSkJE2cOFH9+vVT//79tXjxYhUUFGjSpEmSpAkTJqh9+/ZKTk6WdGK+Tr9+/RQdHa2ioiJt2LBBK1eudJ3iKikp0ejRo5WRkaH169ertLRUWVlZkk5cQm+1Wj3T0DOQkdFHqakjZRg+slicSkhYr9jYnZ6uFgDgFL6+vnX2A4365fEANHbsWP3yyy+aNWuWsrKyFBMTo7S0NNfE6EOHDsnH5+TFagUFBbrtttv0448/KjAwUD169NDLL7/seo7ITz/95HoabUxMjNtnbdq0qdw8IW/ncIS4wo8kGYaPUlNHKjr6O0aCAACNgjde1OPxACSdmMhb2SmvzZs3u71/+OGH9fDDD1e6r6ioqCZ1KWJubpgr/JQxDB/l5toJQAAAr+etF/V4/E7QqJjD4ZAk2e05slicbussFqfs9ly3cgAAeKNTR34cjhBlZkbJ4Qipslx984oRIJRXNonOZstXQsL6cnOAykZ/mGwHAGgsvGlOKwHISzVrdvL/mtjYnWrTJkuHDnVUx46H1KHD4QrLAQDgrbxtTiu/nl7qj4/tqCoxV/Z4DwAAvIm3zWllDpCXqywxn3ruFAAAb3a6Oa0NjQDk5apKzAAANBZlc1rLQtCpc1obGqfAvFxZYv5jCPJkYgYAoLZiY3cqOvo75ebaZbfnevR2LowAeTlvS8wAANTEqU9gsNny1bnzwXK/Yw39pAZGgLzUHw+EqhJzY3y0BwDAPMLCwpSYmOh1d4K2GE3ptsl1JC8vTzabTQ6Ho8qnyNc3b7x1OAAA3qomv9+MAHmxph5uCHjwdhyj8HYco7VHAIJHeOuzYYAyHKPwdhyjZ4ZJ0PCI6j7zpaGfDQOU8dbnFwFlOEbPDCNA8AoOR4hyc8Nkt+dwhRu8jjc9vwioCMdozRGA4HH84cKbedvzi4BTcYzWDqfA4FE86gPejruxw9txjNYOAQgexR8uvJ23Pb8IOBXHaO0QgOBR/OHC23E3dng7jtHaYQ4QPKrsD/fUOUD84cKbeNPzi4CKcIzWHAEIHsGjPuDtKnp+UUU/Khyj8BSO0TPDozAq4C2PwmjquIMpvB3HKLwdx6g7HoWBRsFMf5RonDhG4e04RmuPSdAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0eBo8AAAmk5OTo+Li4krXW63WJv+keQIQAAAmkpOTo5SUlNOWS0xMbNIhiFNgAACYyKkjPw5HiDIzo+RwhFRZrqlhBAgAAJPKyOij1NSRMgwfWSxOJSSsV2zsTk9Xq0EwAgQAgAk5HCGu8CNJhuGj1NSR5UaCmioCEAAAJpSbG+YKP2UMw0e5uXYP1ahhEYAAADAhuz1HFovTbZnF4pTdnuuhGjUsAhAAACZks+UrIWG9KwSVzQGy2fI9XLOG4RUBaOnSpYqKilJAQIAGDBig7du3V1p23bp16tevn1q0aKGgoCDFxMRo5cqVbmUMw9CsWbPUrl07BQYGKi4uTvv27avvZgAA0KjExu7UtGmLNXHiCk2bttg0E6AlLwhAa9asUVJSkmbPnq2MjAz17t1b8fHxOnLkSIXl7Xa7HnjgAW3btk1ffPGFJk2apEmTJumdd95xlXnsscf01FNP6ZlnntGnn36qoKAgxcfH6/jx4w3VLAAAvJLVanV7b7Plq3Png+VGfk4t19RYDMMwPFmBAQMG6Pzzz3fdlMnpdCoyMlJ33HGH7rvvvmrtIzY2ViNGjNC8efNkGIYiIiJ0991365577pEkORwOhYeHa8WKFRo3btxp95eXlyebzSaHw6HQ0NDaNw4AAC/UVO8EXZPfb4/eB6i4uFg7duzQzJkzXct8fHwUFxenbdu2nXZ7wzD0/vvva+/evVqwYIEkKTMzU1lZWYqLi3OVs9lsGjBggLZt21ZhACoqKlJRUZHrfV5e3pk0CwAAr9YYw01d8+gpsKNHj6q0tFTh4eFuy8PDw5WVlVXpdg6HQ8HBwbJarRoxYoSWLFmiSy65RJJc29Vkn8nJybLZbK5XZGTkmTQLAAB4OY/PAaqNkJAQ7dq1S5999pkeeeQRJSUlafPmzbXe38yZM+VwOFyvH374oe4qCwAAvI5HT4G1atVKvr6+ys7OdluenZ2ttm3bVrqdj4+PunbtKkmKiYnR7t27lZycrGHDhrm2y87OVrt27dz2GRMTU+H+/P395e/vf4atAQAAjYVHR4CsVqv69u2r9PR01zKn06n09HQNHDiw2vtxOp2uOTydO3dW27Zt3faZl5enTz/9tEb7BAAATZfHH4aalJSkiRMnql+/furfv78WL16sgoICTZo0SZI0YcIEtW/fXsnJyZJOzNfp16+foqOjVVRUpA0bNmjlypVatmyZJMlisWjatGl6+OGH1a1bN3Xu3FkPPvigIiIidMUVV3iqmQAAwIt4PACNHTtWv/zyi2bNmqWsrCzFxMQoLS3NNYn50KFD8vE5OVBVUFCg2267TT/++KMCAwPVo0cPvfzyyxo7dqyrzL333quCggJNnjxZv/32my688EKlpaUpICCgwdtnBk31ckoAQNPl8fsAeSPuA1R9OTk5rns4VSUxMZEQBACoVzX5/W6UV4HBe5w68uNwhCgzM0oOR0iV5QAA8CSPnwJD05GR0UepqSNlGD6uh+qZ6bkyAIDGgxEg1AmHI8QVfiTJMHyUmjqy3EgQAADegACEOpGbG+YKP2UMw0e5uXYP1QgAgMoRgFAn7PYcWSxOt2UWi1N2e66HagQAQOUIQKgTNlu+EhLWu0JQ2Rwgmy3fwzUDAKA8JkGjzsTG7lR09HfKzbXLbs8l/AAAvBYBCGfEarW6vbfZ8isMPqeWAwDAkwhAOCNhYWFKTEzkTtAAgEaFAIQzRrgBADQ2TIIGAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACm08zTFQCA+paTk6Pi4uJK11utVoWFhTVgjQB4GgGoAfDlC3hOTk6OUlJSTlsuMTGRv0PARAhA9YwvX8CzTv2PD4cjRLm5YbLbc2Sz5VdaDkDTRgCqZ3z5At4jI6OPUlNHyjB8ZLE4lZCwXrGxOz1dLQAeQABqQHz5Ap7jcIS4/v4kyTB8lJo6UtHR37n9xwgAc+AqsAZS2ZevwxHi4ZoB5pCbG+b6+ytjGD7KzbV7qEYAPIkA1ED48gU8y27PkcXidFtmsThlt+d6qEYAPMnjAWjp0qWKiopSQECABgwYoO3bt1da9rnnntPgwYPVsmVLtWzZUnFxceXKHzt2TImJierQoYMCAwPVs2dPPfPMM/XdjNPiyxfwLJstXwkJ611/h2WnoTn9BZiTR+cArVmzRklJSXrmmWc0YMAALV68WPHx8dq7d6/atGlTrvzmzZs1fvx4DRo0SAEBAVqwYIEuvfRSff3112rfvr0kKSkpSe+//75efvllRUVF6d1339Vtt92miIgIjRo1qqGb6FL25XvqHCC+fIGGExu7U9HR3yk31y67PZe/P8DEPBqAFi1apFtuuUWTJk2SJD3zzDN6++239cILL+i+++4rV/6VV15xe//Pf/5Ta9euVXp6uiZMmCBJ2rp1qyZOnKhhw4ZJkiZPnqxnn31W27dv92gAkvjyBTzBarW6vbfZ8iv82zu1HICmzWMBqLi4WDt27NDMmTNdy3x8fBQXF6dt27ZVax+FhYUqKSmR3X5yHs2gQYP01ltv6cYbb1RERIQ2b96sb7/9Vk888USl+ykqKlJRUZHrfV5eXi1aVDG+fAHPCgsLU2JiIjcjBeDGYwHo6NGjKi0tVXh4uNvy8PBw7dmzp1r7mDFjhiIiIhQXF+datmTJEk2ePFkdOnRQs2bN5OPjo+eee05DhgypdD/JycmaO3du7RpyGnz5Ap7H3xeAUzXa+wDNnz9fq1ev1ubNmxUQEOBavmTJEn3yySd666231KlTJ3344Ye6/fbbywWlP5o5c6aSkpJc7/Py8hQZGVlndeXLFwAA7+KxANSqVSv5+voqOzvbbXl2drbatm1b5bYLFy7U/PnztXHjRp133nmu5f/73/90//336/XXX9eIESMkSeedd5527dqlhQsXVhqA/P395e/vf4YtAgAAjYXHLoO3Wq3q27ev0tPTXcucTqfS09M1cODASrd77LHHNG/ePKWlpalfv35u60pKSlRSUiIfH/dm+fr6yul0vwQdAACYl0dPgSUlJWnixInq16+f+vfvr8WLF6ugoMB1VdiECRPUvn17JScnS5IWLFigWbNmadWqVYqKilJWVpYkKTg4WMHBwQoNDdXQoUM1ffp0BQYGqlOnTvrggw/00ksvadGiRR5rJwAA8C4eDUBjx47VL7/8olmzZikrK0sxMTFKS0tzTYw+dOiQ22jOsmXLVFxcrNGjR7vtZ/bs2ZozZ44kafXq1Zo5c6auvfZa5ebmqlOnTnrkkUc0ZcqUBmsXAADwbhbDMAxPV8Lb5OXlyWazyeFwKDQ01NPVAQAA1VCT32+PPwoDAACgoTXay+ABAJ6Tk5PD/c3QqBGAAAA1kpOTo5SUlNOWS0xMJATBa3EKDABQI6eO/DgcIcrMjJLDEVJlOcCbMAIEAKi1jIw+Sk0dKcPwkcXiVELCesXG7vR0tYDTYgQIAFArDkeIK/xIkmH4KDV1ZLmRIMAbEYAAALWSmxvmCj9lDMNHubl2D9UIqD4CEACgVuz2HFks7o8ZslicsttzPVQjoPoIQACAWrHZ8pWQsN4VgsrmANls+R6uGXB6TIIGANRabOxORUd/p9xcu+z2XMIPGg0CEACgRqxWq9t7my2/wuBzajnAmxCAAAA1EhYWpsTERO4EjUaNAAQAqDHCDRo7JkEDAADTqXEA2rBhg26++Wbde++92rNnj9u6X3/9VRdffHGdVQ4AAKA+1CgArVq1SqNGjVJWVpa2bdumPn366JVXXnGtLy4u1gcffFDnlQQAAKhLNZoD9Pjjj2vRokWaOnWqJOnVV1/VjTfeqOPHj+umm26qlwoCAADUtRoFoH379ikhIcH1fsyYMWrdurVGjRqlkpISXXnllXVeQQDeKycnhyuBADRKNQpAoaGhys7OVufOnV3LLrroIq1fv14jR47Ujz/+WOcVBOCdcnJylJKSctpyiYmJhCAAXqdGc4D69++v//znP+WWDx06VKmpqVq8eHFd1QuAlzt15MfhCFFmZlS5J4FXNUIEAJ5SoxGgu+66S1u3bq1w3bBhw5SamqqXXnqpTioGoPHIyOij1NSRMgwf1/OgYmN3erpaAFCpGgWgPn36qE+fPsrLy6twfd++fdW3b986qRiAxsHhCHGFH0kyDB+lpo5UdPR3PBcKgNeqUQBq0aKFLBbLacuVlpbWukIAGpfc3DBX+CljGD7KzbUTgAB4rRoFoE2bNrn+bRiG/vKXv+if//yn2rdvX+cVA9A42O05slicbiHIYnHKbs/1YK0AoGo1CkBDhw51e+/r66s//elP6tKlS51WCkDjYbPlKyFhfbk5QIz+APBmPAwVwBmLjd2p6OjvlJtrl92eS/gB4PUIQABqxWq1ur232fIrDD6nlgMAb3DGAag6k6IBND1hYWFKTEzkTtAAGqUaBaCrrrrK7f3x48c1ZcoUBQUFuS1ft27dmdcMgNcj3ABorGoUgGw2m9v76667rk4rAwAA0BBqFICWL19eX/UAAABoMDV6FhgAAEBTQAACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACm4/EAtHTpUkVFRSkgIEADBgzQ9u3bKy373HPPafDgwWrZsqVatmypuLi4Csvv3r1bo0aNks1mU1BQkM4//3wdOnSoPpsBAAAaEY8GoDVr1igpKUmzZ89WRkaGevfurfj4eB05cqTC8ps3b9b48eO1adMmbdu2TZGRkbr00kv1008/ucrs379fF154oXr06KHNmzfriy++0IMPPqiAgICGahYAAPByFsMwDE99+IABA3T++ecrJSVFkuR0OhUZGak77rhD991332m3Ly0tVcuWLZWSkqIJEyZIksaNGyc/Pz+tXLmy1vXKy8uTzWaTw+FQaGhorfcDAAAaTk1+vz02AlRcXKwdO3YoLi7uZGV8fBQXF6dt27ZVax+FhYUqKSmR3W6XdCJAvf322zrrrLMUHx+vNm3aaMCAAXrjjTeq3E9RUZHy8vLcXgAAoOnyWAA6evSoSktLFR4e7rY8PDxcWVlZ1drHjBkzFBER4QpRR44c0bFjxzR//nwNHz5c7777rq688kpdddVV+uCDDyrdT3Jysmw2m+sVGRlZ+4YBAACv18zTFait+fPna/Xq1dq8ebNrfo/T6ZQkXX755brrrrskSTExMdq6daueeeYZDR06tMJ9zZw5U0lJSa73eXl5hCAAAJowjwWgVq1aydfXV9nZ2W7Ls7Oz1bZt2yq3XbhwoebPn6+NGzfqvPPOc9tns2bN1LNnT7fyZ599trZs2VLp/vz9/eXv71+LVgAAgMbIY6fArFar+vbtq/T0dNcyp9Op9PR0DRw4sNLtHnvsMc2bN09paWnq169fuX2ef/752rt3r9vyb7/9Vp06darbBgAAgEbLo6fAkpKSNHHiRPXr10/9+/fX4sWLVVBQoEmTJkmSJkyYoPbt2ys5OVmStGDBAs2aNUurVq1SVFSUa65QcHCwgoODJUnTp0/X2LFjNWTIEF100UVKS0tTamqqNm/e7JE2AgAA7+PRADR27Fj98ssvmjVrlrKyshQTE6O0tDTXxOhDhw7Jx+fkINWyZctUXFys0aNHu+1n9uzZmjNnjiTpyiuv1DPPPKPk5GRNnTpV3bt319q1a3XhhRc2WLsAAIB38+h9gLwV9wECAKDxaRT3AQIAAPAUAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdrwhAS5cuVVRUlAICAjRgwABt37690rLPPfecBg8erJYtW6ply5aKi4ursvyUKVNksVi0ePHieqg5AABojDwegNasWaOkpCTNnj1bGRkZ6t27t+Lj43XkyJEKy2/evFnjx4/Xpk2btG3bNkVGRurSSy/VTz/9VK7s66+/rk8++UQRERH13QwAANCIeDwALVq0SLfccosmTZqknj176plnnlHz5s31wgsvVFj+lVde0W233aaYmBj16NFD//znP+V0OpWenu5W7qefftIdd9yhV155RX5+fg3RFAAA0Eh4NAAVFxdrx44diouLcy3z8fFRXFyctm3bVq19FBYWqqSkRHa73bXM6XTq+uuv1/Tp09WrV6/T7qOoqEh5eXluLwAA0HR5NAAdPXpUpaWlCg8Pd1seHh6urKysau1jxowZioiIcAtRCxYsULNmzTR16tRq7SM5OVk2m831ioyMrH4jAABAo+PxU2BnYv78+Vq9erVef/11BQQESJJ27NihJ598UitWrJDFYqnWfmbOnCmHw+F6/fDDD/VZbQAA4GEeDUCtWrWSr6+vsrOz3ZZnZ2erbdu2VW67cOFCzZ8/X++++67OO+881/KPPvpIR44cUceOHdWsWTM1a9ZMBw8e1N13362oqKgK9+Xv76/Q0FC3FwAAaLo8GoCsVqv69u3rNoG5bELzwIEDK93uscce07x585SWlqZ+/fq5rbv++uv1xRdfaNeuXa5XRESEpk+frnfeeafe2gIAABqPZp6uQFJSkiZOnKh+/fqpf//+Wrx4sQoKCjRp0iRJ0oQJE9S+fXslJydLOjG/Z9asWVq1apWioqJcc4WCg4MVHByssLAwhYWFuX2Gn5+f2rZtq+7duzds4wAAgFfyeAAaO3asfvnlF82aNUtZWVmKiYlRWlqaa2L0oUOH5ONzcqBq2bJlKi4u1ujRo932M3v2bM2ZM6chqw4AABopi2EYhqcr4W3y8vJks9nkcDiYDwQAQCNRk9/vRn0VGAAAQG0QgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOk083QFAABoKnJyclRcXFzpeqvVqrCwsEb7eU0JAQgAgDqQk5OjlJSU05ZLTEysk1DS0J/X1HAKDACAOlDVSExtynnb5zU1BCAAAOqBwxGizMwoORwhTfLzGjtOgQEAUMcyMvooNXWkDMNHFotTCQnrFRu7s8l8XlPACBAAAHXI4QhxhRFJMgwfpaaOrLeRmYb+vKaCAAQAQB3KzQ1zhZEyhuGj3Fx7k/i8poIABABAHbLbc2SxON2WWSxO2e25TeLzmgoCEAAAdchmy1dCwnpXKCmbk2Oz5TeJz2sqmAQNAEAdsFqtrn/Hxu5UdPR3ys21y27PdQsjfyzXmD6vqbEYhmF4uhLeJi8vTzabTQ6HQ6GhoZ6uDgCgkeBO0J5Vk99vRoAAAKgjDR02zBRu6hpzgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOl4RQBaunSpoqKiFBAQoAEDBmj79u2Vln3uuec0ePBgtWzZUi1btlRcXJxb+ZKSEs2YMUPnnnuugoKCFBERoQkTJujnn39uiKYAAIBGwOMBaM2aNUpKStLs2bOVkZGh3r17Kz4+XkeOHKmw/ObNmzV+/Hht2rRJ27ZtU2RkpC699FL99NNPkqTCwkJlZGTowQcfVEZGhtatW6e9e/dq1KhRDdksAADgxSyGYRierMCAAQN0/vnnKyUlRZLkdDoVGRmpO+64Q/fdd99pty8tLVXLli2VkpKiCRMmVFjms88+U//+/XXw4EF17NjxtPvMy8uTzWaTw+FQaGhozRoEAAA8oia/380aqE4VKi4u1o4dOzRz5kzXMh8fH8XFxWnbtm3V2kdhYaFKSkpkt9srLeNwOGSxWNSiRYsK1xcVFamoqMj1Pi8vr3oNQKOSk5Oj4uLiStdbrVaFhYU1YI0AAJ7i0QB09OhRlZaWKjw83G15eHi49uzZU619zJgxQxEREYqLi6tw/fHjxzVjxgyNHz++0jSYnJysuXPn1qzyaFRycnJco4xVSUxMJAQBgAl4fA7QmZg/f75Wr16t119/XQEBAeXWl5SUaMyYMTIMQ8uWLat0PzNnzpTD4XC9fvjhh/qsNjzg1JEfhyNEmZlRcjhCqiwHAGiaPDoC1KpVK/n6+io7O9tteXZ2ttq2bVvltgsXLtT8+fO1ceNGnXfeeeXWl4WfgwcP6v3336/yXKC/v7/8/f1r1wg0OhkZfZSaOlKG4SOLxamEhPWKjd3p6WoBABqQR0eArFar+vbtq/T0dNcyp9Op9PR0DRw4sNLtHnvsMc2bN09paWnq169fufVl4Wffvn3auHEjpzTg4nCEuMKPJBmGj1JTR5YbCQIANG0eHQGSpKSkJE2cOFH9+vVT//79tXjxYhUUFGjSpEmSpAkTJqh9+/ZKTk6WJC1YsECzZs3SqlWrFBUVpaysLElScHCwgoODVVJSotGjRysjI0Pr169XaWmpq4zdbpfVavVMQ+EVcnPDXOGnjGH4KDfXLpst30O1AgA0NI8HoLFjx+qXX37RrFmzlJWVpZiYGKWlpbkmRh86dEg+Pid/sJYtW6bi4mKNHj3abT+zZ8/WnDlz9NNPP+mtt96SJMXExLiV2bRpk4YNG1av7YF3s9tzZLE43UKQxeKU3Z7rwVoBABqaxwOQdOLKm8TExArXbd682e39gQMHqtxXVFSUPHxrI3gxmy1fCQnry80BYvQHAMzFKwIQ0JBiY3cqOvo75ebaZbfnEn4AwIQIQDCFU+d+2Wz5FQYf5ogBgDkQgGAKYWFhSkxM5E7QAABJBCCYCOEGAFCmUd8JGgAAoDYIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHSaeboCAACgacvJyVFxcXGl661Wq8LCwhqwRgQgAABQj3JycpSSknLacomJiQ0agjgFBgAA6k1VIz+1KVdXCEAAAKDBOBwhysyMksMR4tF6cAoMAAA0iIyMPkpNHSnD8JHF4lRCwnrFxu70SF0YAQIAAPXO4QhxhR9JMgwfpaaO9NhIEAEIAADUu9zcMFf4KWMYPsrNtXukPgQgAABQ7+z2HFksTrdlFotTdnuuR+pDAAIAAPXOZstXQsJ6VwgqmwNks+V7pD5MggYAAPXGarW6/h0bu1PR0d8pN9cuuz3XLfz8sVxDIAABAIB6ExYWpsTERO4EDQAAzKWhw011MAcIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDo/CqIBhGJKkvLw8D9cEAABUV9nvdtnveFUIQBXIzz/xdNrIyEgP1wQAANRUfn6+bDZblWUsRnViksk4nU79/PPPCgkJkcVi8XR1GkReXp4iIyP1ww8/KDQ01NPV8Sj64iT64iT64iT64iT64iRv6AvDMJSfn6+IiAj5+FQ9y4cRoAr4+PioQ4cOnq6GR4SGhpr+j7gMfXESfXESfXESfXESfXGSp/vidCM/ZZgEDQAATIcABAAATIcABEmSv7+/Zs+eLX9/f09XxePoi5Poi5Poi5Poi5Poi5MaW18wCRoAAJgOI0AAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEBN2NKlSxUVFaWAgAANGDBA27dvr7L84sWL1b17dwUGBioyMlJ33XWXjh8/7lo/Z84cWSwWt1ePHj3quxl1oiZ9UVJSooceekjR0dEKCAhQ7969lZaWdkb79CZ13ReN8bj48MMPlZCQoIiICFksFr3xxhun3Wbz5s2KjY2Vv7+/unbtqhUrVpQr0xiPifroi8Z4TEg174vDhw/rmmuu0VlnnSUfHx9NmzatwnL//ve/1aNHDwUEBOjcc8/Vhg0b6r7ydaw++mLFihXljouAgID6aUA1EICaqDVr1igpKUmzZ89WRkaGevfurfj4eB05cqTC8qtWrdJ9992n2bNna/fu3Xr++ee1Zs0a3X///W7levXqpcOHD7teW7ZsaYjmnJGa9sXf//53Pfvss1qyZIm++eYbTZkyRVdeeaV27txZ6316i/roC6nxHRcFBQXq3bu3li5dWq3ymZmZGjFihC666CLt2rVL06ZN080336x33nnHVaaxHhP10RdS4zsmpJr3RVFRkVq3bq2///3v6t27d4Vltm7dqvHjx+umm27Szp07dcUVV+iKK67QV199VZdVr3P10RfSibtE//G4OHjwYF1VueYMNEn9+/c3br/9dtf70tJSIyIiwkhOTq6w/O23325cfPHFbsuSkpKMCy64wPV+9uzZRu/eveulvvWppn3Rrl07IyUlxW3ZVVddZVx77bW13qe3qI++aKzHRRlJxuuvv15lmXvvvdfo1auX27KxY8ca8fHxrveN9Zj4o7rqi8Z+TBhG9frij4YOHWrceeed5ZaPGTPGGDFihNuyAQMGGLfeeusZ1rDh1FVfLF++3LDZbHVWrzPFCFATVFxcrB07diguLs61zMfHR3Fxcdq2bVuF2wwaNEg7duxwDdl///332rBhg/7yl7+4ldu3b58iIiLUpUsXXXvttTp06FD9NaQO1KYvioqKyg3LBgYGuv4Ltjb79Ab10RdlGttxUVPbtm1z6zdJio+Pd/VbYz0mauN0fVGmqR8T1VXd/jKLY8eOqVOnToqMjNTll1+ur7/+2mN1IQA1QUePHlVpaanCw8PdloeHhysrK6vCba655ho99NBDuvDCC+Xn56fo6GgNGzbM7RTYgAEDtGLFCqWlpWnZsmXKzMzU4MGDlZ+fX6/tORO16Yv4+HgtWrRI+/btk9Pp1Hvvvad169bp8OHDtd6nN6iPvpAa53FRU1lZWRX2W15env73v/812mOiNk7XF5I5jonqqqy/mtpxUR3du3fXCy+8oDfffFMvv/yynE6nBg0apB9//NEj9SEAQdKJSY2PPvqonn76aWVkZGjdunV6++23NW/ePFeZyy67TH/961913nnnKT4+Xhs2bNBvv/2mV1991YM1r3tPPvmkunXrph49eshqtSoxMVGTJk2Sj4/5/lyq0xdmOS5QfRwTqMjAgQM1YcIExcTEaOjQoVq3bp1at26tZ5991iP1Md83ugm0atVKvr6+ys7OdluenZ2ttm3bVrjNgw8+qOuvv14333yzzj33XF155ZV69NFHlZycLKfTWeE2LVq00FlnnaXvvvuuzttQV2rTF61bt9Ybb7yhgoICHTx4UHv27FFwcLC6dOlS6316g/roi4o0huOiptq2bVthv4WGhiowMLDRHhO1cbq+qEhTPCaqq7L+amrHRW34+fmpT58+HjsuCEBNkNVqVd++fZWenu5a5nQ6lZ6eroEDB1a4TWFhYbkRDl9fX0mSUcnj4o4dO6b9+/erXbt2dVTzulebvigTEBCg9u3b6/fff9fatWt1+eWXn/E+Pak++qIijeG4qKmBAwe69Zskvffee65+a6zHRG2cri8q0hSPieqqTX+ZRWlpqb788kvPHReenoWN+rF69WrD39/fWLFihfHNN98YkydPNlq0aGFkZWUZhmEY119/vXHfffe5ys+ePdsICQkx/vWvfxnff/+98e677xrR0dHGmDFjXGXuvvtuY/PmzUZmZqbx8ccfG3FxcUarVq2MI0eONHj7aqKmffHJJ58Ya9euNfbv3298+OGHxsUXX2x07tzZ+PXXX6u9T29VH33RGI+L/Px8Y+fOncbOnTsNScaiRYuMnTt3GgcPHjQMwzDuu+8+4/rrr3eV//77743mzZsb06dPN3bv3m0sXbrU8PX1NdLS0lxlGusxUR990RiPCcOoeV8YhuEq37dvX+Oaa64xdu7caXz99deu9R9//LHRrFkzY+HChcbu3buN2bNnG35+fsaXX37ZoG2rqfroi7lz5xrvvPOOsX//fmPHjh3GuHHjjICAALcyDYkA1IQtWbLE6Nixo2G1Wo3+/fsbn3zyiWvd0KFDjYkTJ7rel5SUGHPmzDGio6ONgIAAIzIy0rjtttvcfujGjh1rtGvXzrBarUb79u2NsWPHGt99910Dtqj2atIXmzdvNs4++2zD39/fCAsLM66//nrjp59+qtE+vVld90VjPC42bdpkSCr3Kmv7xIkTjaFDh5bbJiYmxrBarUaXLl2M5cuXl9tvYzwm6qMvGuMxYRi164uKynfq1MmtzKuvvmqcddZZhtVqNXr16mW8/fbbDdOgM1AffTFt2jTX30d4eLjxl7/8xcjIyGi4Rp3CYhiVnN8AAABoopgDBAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABACNwObNm2WxWPTbb795uipAk0AAAuDmhhtukMVi0fz5892Wv/HGG7JYLK73hmHoueee08CBAxUaGqrg4GD16tVLd955Z7UfblhYWKiZM2cqOjpaAQEBat26tYYOHao333zTVSYqKkqLFy+uk7bVt7K+s1gs8vPzU+fOnXXvvffq+PHjNdrPsGHDNG3aNLdlgwYN0uHDh2Wz2eqwxoB5EYAAlBMQEKAFCxbo119/rXC9YRi65pprNHXqVP3lL3/Ru+++q2+++UbPP/+8AgIC9PDDD1frc6ZMmaJ169ZpyZIl2rNnj9LS0jR69Gjl5OTUZXMa1PDhw3X48GF9//33euKJJ/Tss89q9uzZZ7xfq9Wqtm3buoVQAGfAYw/hAOCVJk6caIwcOdLo0aOHMX36dNfy119/3Sj7yvjXv/5lSDLefPPNCvfhdDqr9Vk2m81YsWJFpeuHDh1a7tlCZT766CPjwgsvNAICAowOHToYd9xxh3Hs2DHX+pdeesno27evERwcbISHhxvjx483srOzXevLnnWUlpZmxMTEGAEBAcZFF11kZGdnGxs2bDB69OhhhISEGOPHjzcKCgqq1Z6JEycal19+uduyq666yujTp4/r/dGjR41x48YZERERRmBgoHHOOecYq1atctvHqW3OzMx01fePz+d77bXXjJ49expWq9Xo1KmTsXDhwmrVE4BhMAIEoBxfX189+uijWrJkiX788cdy6//1r3+pe/fuGjVqVIXbV3eUom3bttqwYYPy8/MrXL9u3Tp16NBBDz30kA4fPqzDhw9Lkvbv36/hw4fr6quv1hdffKE1a9Zoy5YtSkxMdG1bUlKiefPm6fPPP9cbb7yhAwcO6IYbbij3GXPmzFFKSoq2bt2qH374QWPGjNHixYu1atUqvf3223r33Xe1ZMmSarXnVF999ZW2bt0qq9XqWnb8+HH17dtXb7/9tr766itNnjxZ119/vbZv3y5JevLJJzVw4EDdcsstrjZHRkaW2/eOHTs0ZswYjRs3Tl9++aXmzJmjBx98UCtWrKhVXQHT8XQCA+Bd/jiK8ac//cm48cYbDcNwHwHq0aOHMWrUKLft7rzzTiMoKMgICgoy2rdvX63P+uCDD4wOHToYfn5+Rr9+/Yxp06YZW7ZscSvTqVMn44knnnBbdtNNNxmTJ092W/bRRx8ZPj4+xv/+978KP+uzzz4zJBn5+fmGYZwcAdq4caOrTHJysiHJ2L9/v2vZrbfeasTHx1erPRMnTjR8fX2NoKAgw9/f35Bk+Pj4GK+99lqV240YMcK4++67Xe+HDh1q3HnnnW5lTh0Buuaaa4xLLrnErcz06dONnj17VquugNkxAgSgUgsWLNCLL76o3bt3n7bsAw88oF27dmnWrFk6duxYtfY/ZMgQff/990pPT9fo0aP19ddfa/DgwZo3b16V233++edasWKFgoODXa/4+Hg5nU5lZmZKOjFCkpCQoI4dOyokJERDhw6VJB06dMhtX+edd57r3+Hh4WrevLm6dOnituzIkSPVao8kXXTRRdq1a5c+/fRTTZw4UZMmTdLVV1/tWl9aWqp58+bp3HPPld1uV3BwsN55551y9Tqd3bt364ILLnBbdsEFF2jfvn0qLS2t0b4AMyIAAajUkCFDFB8fr5kzZ7ot79atm/bu3eu2rHXr1uratavatGlTo8/w8/PT4MGDNWPGDL377rt66KGHNG/ePBUXF1e6zbFjx3Trrbdq165drtfnn3+uffv2KTo6WgUFBYqPj1doaKheeeUVffbZZ3r99dclqdx+/fz8XP8uu3rrjywWi5xOZ7XbExQUpK5du6p379564YUX9Omnn+r55593rX/88cf15JNPasaMGdq0aZN27dql+Pj4KtsLoO4183QFAHi3+fPnKyYmRt27d3ctGz9+vK655hq9+eabuvzyy+v083r27Knff/9dx48fl9VqldVqLTeiERsbq2+++UZdu3atcB9ffvmlcnJyNH/+fNf8mf/+9791Ws/q8PHx0f3336+kpCRdc801CgwM1Mcff6zLL79c1113nSTJ6XTq22+/Vc+ePV3bVdTmU5199tn6+OOP3ZZ9/PHHOuuss+Tr61v3jQGaGEaAAFTp3HPP1bXXXqunnnrKtWzcuHEaPXq0xo0bp4ceekiffvqpDhw4oA8++EBr1qyp9g/wsGHD9Oyzz2rHjh06cOCANmzYoPvvv18XXXSRQkNDJZ24D9CHH36on376SUePHpUkzZgxQ1u3blViYqJ27dqlffv26c0333RNgu7YsaOsVquWLFmi77//Xm+99dZpT6vVl7/+9a/y9fXV0qVLJZ0YPXvvvfe0detW7d69W7feequys7PdtomKinL16dGjRyscgbr77ruVnp6uefPm6dtvv9WLL76olJQU3XPPPQ3SLqCxIwABOK2HHnrI7UfYYrFozZo1Wrx4sTZs2KA///nP6t69u2688UZFRkZqy5Yt1dpvfHy8XnzxRV166aU6++yzdccddyg+Pl6vvvqq22cfOHBA0dHRat26taQT83Y++OADffvttxo8eLD69OmjWbNmKSIiQtKJ03ErVqzQv//9b/Xs2VPz58/XwoUL67BHqq9Zs2ZKTEzUY489poKCAv39739XbGys4uPjNWzYMLVt21ZXXHGF2zb33HOPfH191bNnT7Vu3brC+UGxsbF69dVXtXr1ap1zzjmaNWuWHnrooQqvdANQnsUwDMPTlQAAAGhIjAABAADTIQABqDd/vEz91NdHH33k6erVyKFDh6psT00vYwfgWZwCA1Bvqnooavv27RUYGNiAtTkzv//+uw4cOFDp+qioKDVrxoW1QGNBAAIAAKbDKTAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6/x/1uawNpyZRfAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATR9JREFUeJzt3XtYVNXCBvB3ZmQAuYwOKgiiKF5ISxFQ0lSsSCxFrTyilheszGo0o0zNFM0KLDNUTDudvGSaVmKJerAkqUxLD2h2IVPDa4A6UwNCAjHr+8OPnSMXQefKfn/PM0/M3muvWWs3OC9rr1lbIYQQICIiIpIRpb0bQERERGRrDEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDsMQEREDmrt2rVQKBQ4efKkvZtC1OgwABHJ2MGDB6HT6dCtWzd4eHigbdu2GDVqFH799ddqZQcOHAiFQgGFQgGlUglvb2906dIF48aNw+eff96g101PT0dUVBRatWqFpk2bokOHDhg1ahQyMjIs1bVqXn31VXzyySfVtu/btw/z58/Hn3/+abXXvtb8+fOlc6lQKNC0aVN07doVL774IoqKiizyGhs3bkRKSopF6iJqjBiAiGRs0aJF2LJlC+6++24sXboUkydPxldffYWwsDD8+OOP1cq3adMG69evx3vvvYfXX38dw4YNw759+zBo0CDExcWhoqLiuq+5ePFiDBs2DAqFArNnz8abb76JBx98EMeOHcOmTZus0U0AdQegBQsW2DQAVVm5ciXWr1+PJUuWICQkBK+88goGDx4MS9yikQGIqG5N7N0AIrKfhIQEbNy4EWq1WtoWFxeH2267DcnJyXj//ffNyms0Gjz88MNm25KTkzFt2jS89dZbCAoKwqJFi2p9vb///hsLFy7EPffcg88++6za/vPnz99kjxxHaWkpmjZtWmeZkSNHokWLFgCAKVOm4MEHH0RaWhq+/fZb9OnTxxbNJJItjgARyVjfvn3Nwg8AdOrUCd26dUNubm696lCpVFi2bBm6du2K1NRUGI3GWstevHgRRUVFuOOOO2rc36pVK7Pnly9fxvz589G5c2e4ubmhdevWeOCBB3DixAmpzOLFi9G3b1/4+PjA3d0d4eHh+Pjjj83qUSgUKCkpwbp166TLThMnTsT8+fMxY8YMAED79u2lfVfPuXn//fcRHh4Od3d3aLVajB49GmfOnDGrf+DAgbj11luRnZ2NAQMGoGnTpnjhhRfqdf6udtdddwEA8vLy6iz31ltvoVu3bnB1dYW/vz+eeuopsxGsgQMHYseOHTh16pTUp6CgoAa3h6gx4wgQEZkRQqCwsBDdunWr9zEqlQpjxozB3LlzsXfvXgwZMqTGcq1atYK7uzvS09MxdepUaLXaWuusrKzE0KFDkZmZidGjR+Ppp59GcXExPv/8c/z4448IDg4GACxduhTDhg3DQw89hPLycmzatAn/+te/sH37dqkd69evx6OPPorevXtj8uTJAIDg4GB4eHjg119/xQcffIA333xTGo1p2bIlAOCVV17B3LlzMWrUKDz66KO4cOECli9fjgEDBuDQoUNo1qyZ1F69Xo97770Xo0ePxsMPPwxfX996n78qVcHOx8en1jLz58/HggULEB0djSeeeAJHjx7FypUrcfDgQXzzzTdwcXHBnDlzYDQacfbsWbz55psAAE9Pzwa3h6hRE0REV1m/fr0AIN59912z7VFRUaJbt261Hrd161YBQCxdurTO+ufNmycACA8PD3HvvfeKV155RWRnZ1crt3r1agFALFmypNo+k8kk/VxaWmq2r7y8XNx6663irrvuMtvu4eEhJkyYUK2u119/XQAQeXl5ZttPnjwpVCqVeOWVV8y2//DDD6JJkyZm26OiogQAsWrVqlr7fbXExEQBQBw9elRcuHBB5OXlibffflu4uroKX19fUVJSIoQQYs2aNWZtO3/+vFCr1WLQoEGisrJSqi81NVUAEKtXr5a2DRkyRLRr165e7SGSI14CIyLJL7/8gqeeegp9+vTBhAkTGnRs1QhDcXFxneUWLFiAjRs3omfPnti1axfmzJmD8PBwhIWFmV1227JlC1q0aIGpU6dWq0OhUEg/u7u7Sz//8ccfMBqN6N+/P3JychrU/mulpaXBZDJh1KhRuHjxovTw8/NDp06dsGfPHrPyrq6uiI+Pb9BrdOnSBS1btkT79u3x+OOPo2PHjtixY0etc4d2796N8vJyTJ8+HUrlP/98P/bYY/D29saOHTsa3lEimeIlMCICABQUFGDIkCHQaDT4+OOPoVKpGnT8pUuXAABeXl7XLTtmzBiMGTMGRUVF+O6777B27Vps3LgRsbGx+PHHH+Hm5oYTJ06gS5cuaNKk7n+mtm/fjpdffhmHDx9GWVmZtP3qkHQjjh07BiEEOnXqVON+FxcXs+cBAQHV5lNdz5YtW+Dt7Q0XFxe0adNGuqxXm1OnTgG4Epyuplar0aFDB2k/EV0fAxARwWg04t5778Wff/6Jr7/+Gv7+/g2uo+pr8x07dqz3Md7e3rjnnntwzz33wMXFBevWrcN3332HqKioeh3/9ddfY9iwYRgwYADeeusttG7dGi4uLlizZg02btzY4D5czWQyQaFQ4L///W+NYfDaOTVXj0TV14ABA6R5R0RkWwxARDJ3+fJlxMbG4tdff8Xu3bvRtWvXBtdRWVmJjRs3omnTpujXr98NtSMiIgLr1q1Dfn4+gCuTlL/77jtUVFRUG22psmXLFri5uWHXrl1wdXWVtq9Zs6Za2dpGhGrbHhwcDCEE2rdvj86dOze0O1bRrl07AMDRo0fRoUMHaXt5eTny8vIQHR0tbbvZETCixo5zgIhkrLKyEnFxcdi/fz8++uijG1p7prKyEtOmTUNubi6mTZsGb2/vWsuWlpZi//79Ne7773//C+CfyzsPPvggLl68iNTU1Gplxf8vFKhSqaBQKFBZWSntO3nyZI0LHnp4eNS42KGHhwcAVNv3wAMPQKVSYcGCBdUWJhRCQK/X19xJK4qOjoZarcayZcvM2vTuu+/CaDSaffvOw8OjziUJiOSOI0BEMvbss89i27ZtiI2NhcFgqLbw4bWLHhqNRqlMaWkpjh8/jrS0NJw4cQKjR4/GwoUL63y90tJS9O3bF7fffjsGDx6MwMBA/Pnnn/jkk0/w9ddfY8SIEejZsycAYPz48XjvvfeQkJCAAwcOoH///igpKcHu3bvx5JNPYvjw4RgyZAiWLFmCwYMHY+zYsTh//jxWrFiBjh074siRI2avHR4ejt27d2PJkiXw9/dH+/btERkZifDwcADAnDlzMHr0aLi4uCA2NhbBwcF4+eWXMXv2bJw8eRIjRoyAl5cX8vLysHXrVkyePBnPPffcTZ3/hmrZsiVmz56NBQsWYPDgwRg2bBiOHj2Kt956C7169TL7/xUeHo7NmzcjISEBvXr1gqenJ2JjY23aXiKHZs+voBGRfVV9fbu2R11lPT09RadOncTDDz8sPvvss3q9XkVFhXjnnXfEiBEjRLt27YSrq6to2rSp6Nmzp3j99ddFWVmZWfnS0lIxZ84c0b59e+Hi4iL8/PzEyJEjxYkTJ6Qy7777rujUqZNwdXUVISEhYs2aNdLXzK/2yy+/iAEDBgh3d3cBwOwr8QsXLhQBAQFCqVRW+0r8li1bRL9+/YSHh4fw8PAQISEh4qmnnhJHjx41Ozd1LRFwrar2Xbhwoc5y134NvkpqaqoICQkRLi4uwtfXVzzxxBPijz/+MCtz6dIlMXbsWNGsWTMBgF+JJ7qGQggL3HSGiIiIyIlwDhARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOF0Ksgclkwu+//w4vLy8uJ09EROQkhBAoLi6Gv78/lMrrjPHYeR0iIcSVRb2qFkXr3bu3+O6772otu2XLFhEeHi40Go1o2rSp6NGjh3jvvfdqLf/4448LAOLNN9+sd3vOnDlT5+JwfPDBBx988MGH4z7OnDlz3c96u48AVS3VvmrVKkRGRiIlJQUxMTE4evQoWrVqVa28VqvFnDlzEBISArVaje3btyM+Ph6tWrVCTEyMWdmtW7fi22+/bfCdrb28vAAAZ86cqfO+RkREROQ4ioqKEBgYKH2O18XuK0FHRkaiV69e0g0PTSYTAgMDMXXqVMyaNatedYSFhWHIkCFm9yE6d+4cIiMjsWvXLgwZMgTTp0/H9OnT61VfUVERNBoNjEYjAxAREZGTaMjnt10nQZeXlyM7OxvR0dHSNqVSiejo6FrvGH01IQQyMzNx9OhRDBgwQNpuMpkwbtw4zJgxA926dbtuPWVlZSgqKjJ7EBERUeNl1wB08eJFVFZWwtfX12y7r68vCgoKaj3OaDTC09MTarUaQ4YMwfLly3HPPfdI+xctWoQmTZpg2rRp9WpHUlISNBqN9AgMDLyxDhEREZFTsPscoBvh5eWFw4cP49KlS8jMzERCQgI6dOiAgQMHIjs7G0uXLkVOTk69v8E1e/ZsJCQkSM+rriESERFR42TXANSiRQuoVCoUFhaabS8sLISfn1+txymVSnTs2BEAEBoaitzcXCQlJWHgwIH4+uuvcf78ebRt21YqX1lZiWeffRYpKSk4efJktfpcXV3h6upqmU4RERGRw7PrJTC1Wo3w8HBkZmZK20wmEzIzM9GnT59612MymVBWVgYAGDduHI4cOYLDhw9LD39/f8yYMQO7du2yeB+IiIjI+dj9ElhCQgImTJiAiIgI9O7dGykpKSgpKUF8fDwAYPz48QgICEBSUhKAK/N1IiIiEBwcjLKyMuzcuRPr16/HypUrAQA+Pj7w8fExew0XFxf4+fmhS5cutu0cEREROSS7B6C4uDhcuHAB8+bNQ0FBAUJDQ5GRkSFNjD59+rTZao4lJSV48skncfbsWbi7uyMkJATvv/8+4uLi7NUFIiIicjJ2XwfIEXEdICIiIufjNOsAEREREdkDAxARERHJjt3nAFHjodfrUV5eXut+tVpdbYI6ERGRPTAAkUXo9Xrpfm4AYDR6wWDwgVarh0ZTLG3X6XQMQUREZHcMQGQRV4/85OT0RHr6UAihhEJhQmzsdoSFHapWjoiIyF44B4gsymj0ksIPAAihRHr6UBiNXnZuGRER0T8YgMiiDAYfKfxUEUIJg0FrpxYRERFVxwBEFqXV6qFQmMy2KRQmaLUGO7WIiIioOgYgsiiNphixsdulEFQ1B+jqidBERET2xknQZHFhYYcQHHwcBoMWWq2B4YeIiBwOAxBZhUZTzOBDREQOi5fAyCLUarVFyxEREVkTR4DIInx8fKDT6bgSNBEROQUGILIYhhsiInIWvARGREREssMARERERLLDAERERESywzlARGRxer2eE+KJyKExABGRRen1eqSmpl63nE6nYwgiIrvhJTAisqhrR36MRi/k5QXBaPSqsxwRkS1xBIiIrCYnpyfS04dCCKV0X7iwsEP2bhYREUeAiMg6jEYvKfwAgBBKpKcPrTYSRERkDwxARGQVBoOPFH6qCKGEwaC1U4uIiP7BAEREVqHV6qFQmMy2KRQmaLUGO7WIiOgfDEBEZBUaTTFiY7dLIahqDpBGU2znlhERcRI0EVlRWNghBAcfh8GghVZrYPghIofBAEREFqVWq82eazTFNQafa8sREdkSAxARWZSPjw90Oh1Xgq4DV8omsj8GICKyOH54144rZZO9MYBfwQBERGRDNa2UbTD4QKvVm10q5ErZZA0M4P9gACIishOulE22xgD+DwYgIiI7qG2l7ODg4/y2HNmE3AM41wEiIrIDrpRN9sRb1TAAERHZBVfKJntiAGcAIiKyC66UTfbEAM45QEREdsOVssleqgL4tXOA5PQeZAAiIrIhrpRNjkLuAZwBiIjIhrhSNtkTA/g/FEIIYe9GOJqioiJoNBoYjUZ4e3vbuzlEREQW05hXgm7I5zdHgIiIiGTEWcONpTEAERERkVU54qgTAxARERFZjaPef4zrABEREZHV1HT/sby8oGqrTtv6/mMcASIiIiKbcKT7j3EEiIiIiKzO0e4/xgBEREREVudo9x9ziAC0YsUKBAUFwc3NDZGRkThw4ECtZdPS0hAREYFmzZrBw8MDoaGhWL9+vbS/oqICM2fOxG233QYPDw/4+/tj/Pjx+P33323RFSIiIqqBo91/zO4BaPPmzUhISEBiYiJycnLQo0cPxMTE4Pz58zWW12q1mDNnDvbv348jR44gPj4e8fHx2LVrFwCgtLQUOTk5mDt3LnJycpCWloajR49i2LBhtuwWERERXcXRbgBs95WgIyMj0atXL+krciaTCYGBgZg6dSpmzZpVrzrCwsIwZMgQLFy4sMb9Bw8eRO/evXHq1Cm0bdv2uvVxJWgiIiLLyM/Px7///W/pudHoVeP9xyZPnozWrVvf1Gs15PPbriNA5eXlyM7ORnR0tLRNqVQiOjoa+/fvv+7xQghkZmbi6NGjGDBgQK3ljEYjFAoFmjVrVuP+srIyFBUVmT2IiIjo5tV0/7H27U9VG/mx9f3H7Po1+IsXL6KyshK+vr5m2319ffHLL7/UepzRaERAQADKysqgUqnw1ltv4Z577qmx7OXLlzFz5kyMGTOm1jSYlJSEBQsW3HhHiIiIqEaOegNgp1wHyMvLC4cPH8alS5eQmZmJhIQEdOjQAQMHDjQrV1FRgVGjRkEIgZUrV9Za3+zZs5GQkCA9LyoqQmBgoLWaT0REJCuOeP8xuwagFi1aQKVSobCw0Gx7YWEh/Pz8aj1OqVSiY8eOAIDQ0FDk5uYiKSnJLABVhZ9Tp07hiy++qPNaoKurK1xdXW+uM+RUHPG+NEREZDt2DUBqtRrh4eHIzMzEiBEjAFyZBJ2ZmQmdTlfvekwmE8rKyqTnVeHn2LFj2LNnDz/IyIyj3peGiIhsx+6XwBISEjBhwgRERESgd+/eSElJQUlJCeLj4wEA48ePR0BAAJKSkgBcma8TERGB4OBglJWVYefOnVi/fr10iauiogIjR45ETk4Otm/fjsrKShQUFAC48hV6W0+yIsdT031pDAYfaLV6s0l5tr4vDRER2Y7dA1BcXBwuXLiAefPmoaCgAKGhocjIyJAmRp8+fRpK5T9fVispKcGTTz6Js2fPwt3dHSEhIXj//fcRFxcHADh37hy2bdsG4Mrlsavt2bOn2jwhkjdHui8NERHZjt3XAXJEXAeocatak8Jo9EJKynSzpdkVChOmT0+BRlNskTUpiIjIdpxmHSAie3K0+9IQEZHtMACRbDnafWmIiMh2GIBIthztvjRERGQ7dp8ETWRPYWGHEBx8vMb70hARUePFAGQDXHTPsdR0X5qagg+XTCAiarwYgKyMi+45Hke9Lw0REdkOA5CV1XcxPS66Z1sMN0RE8sZJ0DZmNHohLy8IRqOXvZtCREQkWxwBsiGuOkxEROQYOAJkI0ajlxR+gCsL7qWnD+VIEBERkR0wANkIVx0mIiJyHAxANsJVh4mIiBwHA5CNcNVhIiIix8FJ0FZ29WJ6da06zEX3iIiIbIcByMq46B4REZHjYQCyAYYbIiIix8I5QERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7XAeIiIgIgF6v56K1MsIAREREsqfX65GamnrdcjqdjiGokeAlMCIikr1rR36MRi/k5QXBaPSqsxw5L44AERERXSUnpyfS04dCCCUUChNiY7cjLOyQvZtFFsYRICIiov9nNHpJ4QcAhFAiPX1otZEgcn4cASIikgFO8K0fg8FHCj9VhFDCYNBCoym2U6vIGhiAiKhR4Ad87TjBt/60Wj0UCpNZCFIoTNBqDXZsFVkDAxAROT1+wNetpgm+BoMPtFq92agGJ/gCGk0xYmO3V5sDxNGfm+OIf6AwABGR0+MHfP1xgu/1hYUdQnDwcRgMWmi1Boafm3TtHyi1/X7a+g8UBiAialT4AV+72ib4Bgcfl/2HvFqtNnuu0RTXeE6uLUfXd/UfHnX9ftr6DxQGICJqNPgBXzdO8K2dj48PdDqdw12maUwc7feTAYiIGg1+wNeNE3zrxnBjXY72+8l1gIio0aj6gL8aP+D/UTXBt+occYIv2ZKj/X5yBIiIGg1+g+f6OMGX7MXRfj8ZgIioUeEHfHWc4EuOwpF+PxmAiMjp8QO+bpzgS46ktt9PW2MAIiKnxw/465Nz38m+6vuHh63/QFEIIYRNX9EJFBUVQaPRwGg0wtvb297NISIicmq2Wgm6IZ/fHAEiIiIiq3LEEUh+DZ6IiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZMchAtCKFSsQFBQENzc3REZG4sCBA7WWTUtLQ0REBJo1awYPDw+EhoZi/fr1ZmWEEJg3bx5at24Nd3d3REdH49ixY9buRq30ej3y8/Nrfej1eru1jYiISI7s/jX4zZs3IyEhAatWrUJkZCRSUlIQExODo0ePolWrVtXKa7VazJkzByEhIVCr1di+fTvi4+PRqlUrxMTEAABee+01LFu2DOvWrUP79u0xd+5cxMTE4Oeff4abm5tN+6fX65GamnrdcjqdziG/JkhkS7ZaK4SIyO4LIUZGRqJXr15SSDCZTAgMDMTUqVMxa9asetURFhaGIUOGYOHChRBCwN/fH88++yyee+45AIDRaISvry/Wrl2L0aNHX7c+Sy6EmJ+fj3//+9/Sc6PRCwaDD7RavdlS4JMnT0br1q1v6rWInBn/WCCim9WQz2+7XgIrLy9HdnY2oqOjpW1KpRLR0dHYv3//dY8XQiAzMxNHjx7FgAEDAAB5eXkoKCgwq1Oj0SAyMrLWOsvKylBUVGT2sIacnJ5ISZmOdesmICVlOnJyelrldYic0bUjP0ajF/LygmA0etVZjojoRtj1EtjFixdRWVkJX19fs+2+vr745Zdfaj3OaDQiICAAZWVlUKlUeOutt3DPPfcAAAoKCqQ6rq2zat+1kpKSsGDBgpvpynUZjV5ITx8KIa5kTiGUSE8fiuDg4w5xUzgiR5KT01P6fVEoTIiN3Y6wsEP2bhYRNSIOMQm6oby8vHD48GEcPHgQr7zyChISEpCVlXXD9c2ePRtGo1F6nDlzxnKN/X8Gg48UfqoIoYTBoLX4axE5s9r+WLh2JIiI6GbYdQSoRYsWUKlUKCwsNNteWFgIPz+/Wo9TKpXo2LEjACA0NBS5ublISkrCwIEDpeMKCwvN5tQUFhYiNDS0xvpcXV3h6up6k72pm1arh0JhMgtBCoUJWq3Bqq9L5Gzq+mOBo6VEZCl2HQFSq9UIDw9HZmamtM1kMiEzMxN9+vSpdz0mkwllZWUAgPbt28PPz8+szqKiInz33XcNqtPSNJpixMZuh0JhAgBpWJ//oBOZq/pj4Wr8Y4GILM3uX4NPSEjAhAkTEBERgd69eyMlJQUlJSWIj48HAIwfPx4BAQFISkoCcGW+TkREBIKDg1FWVoadO3di/fr1WLlyJQBAoVBg+vTpePnll9GpUyfpa/D+/v4YMWKEvboJAAgLO4Tg4OMwGLTQag0MP0Q1qPpj4do5QPx9ISJLsnsAiouLw4ULFzBv3jwUFBQgNDQUGRkZ0iTm06dPQ6n8Z6CqpKQETz75JM6ePQt3d3eEhITg/fffR1xcnFTm+eefR0lJCSZPnow///wT/fr1Q0ZGhs3XAAKujHJdTaMprvEf8mvLEckZ/1ggImuz+zpAjsiS6wABXNyNqD64DhAR3ayGfH4zANXA0gGIiOqHfywQ0c1oyOe33S+BERFVYbghIltxynWAiIiIiG4GAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJjt0D0IoVKxAUFAQ3NzdERkbiwIEDtZZ955130L9/fzRv3hzNmzdHdHR0tfKXLl2CTqdDmzZt4O7ujq5du2LVqlXW7gYRERE5EbsGoM2bNyMhIQGJiYnIyclBjx49EBMTg/Pnz9dYPisrC2PGjMGePXuwf/9+BAYGYtCgQTh37pxUJiEhARkZGXj//feRm5uL6dOnQ6fTYdu2bbbqFhERETk4hRBC2OvFIyMj0atXL6SmpgIATCYTAgMDMXXqVMyaNeu6x1dWVqJ58+ZITU3F+PHjAQC33nor4uLiMHfuXKlceHg47r33Xrz88sv1aldRURE0Gg2MRiO8vb1voGdERERkaw35/LbbCFB5eTmys7MRHR39T2OUSkRHR2P//v31qqO0tBQVFRXQarXStr59+2Lbtm04d+4chBDYs2cPfv31VwwaNKjWesrKylBUVGT2ICIiosbLbgHo4sWLqKyshK+vr9l2X19fFBQU1KuOmTNnwt/f3yxELV++HF27dkWbNm2gVqsxePBgrFixAgMGDKi1nqSkJGg0GukRGBh4Y50iIiIip2D3SdA3Kjk5GZs2bcLWrVvh5uYmbV++fDm+/fZbbNu2DdnZ2XjjjTfw1FNPYffu3bXWNXv2bBiNRulx5swZW3SBiIiI7KSJvV64RYsWUKlUKCwsNNteWFgIPz+/Oo9dvHgxkpOTsXv3bnTv3l3a/tdff+GFF17A1q1bMWTIEABA9+7dcfjwYSxevNhspOhqrq6ucHV1vckeERERkbOw2wiQWq1GeHg4MjMzpW0mkwmZmZno06dPrce99tprWLhwITIyMhAREWG2r6KiAhUVFVAqzbulUqlgMpks2wEiIiJyWg0eAdq5cyfS0tKg1WoxadIkhISESPv++OMPPPjgg/jiiy/qVVdCQgImTJiAiIgI9O7dGykpKSgpKUF8fDwAYPz48QgICEBSUhIAYNGiRZg3bx42btyIoKAgaa6Qp6cnPD094e3tjaioKMyYMQPu7u5o164dvvzyS7z33ntYsmRJQ7tKREREjZVogA0bNgiVSiWGDBki+vXrJ9zc3MT7778v7S8oKBBKpbIhVYrly5eLtm3bCrVaLXr37i2+/fZbaV9UVJSYMGGC9Lxdu3YCQLVHYmKiVCY/P19MnDhR+Pv7Czc3N9GlSxfxxhtvCJPJVO82GY1GAUAYjcYG9YWIiIjspyGf3w1aB6hnz56Ij4/HtGnTAAAffvghJk2ahKVLl+KRRx5BYWEh/P39UVlZafmkZkNcB4iIiMj5NOTzu0GXwI4dO4bY2Fjp+ahRo9CyZUsMGzYMFRUVuP/++2+sxUREAPR6PcrLy2vdr1ar4ePjY8MWEVFj1aAA5O3tjcLCQrRv317aduedd2L79u0YOnQozp49a/EGEpE86PV6aVX4uuh0OoYgIrppDfoWWO/evfHf//632vaoqCikp6cjJSXFUu0iIpm5duTHaPRCXl4QjEavOssREd2IBo0APfPMM9i3b1+N+wYOHIj09HS89957FmkYEclXTk5PpKcPhRBKKBQmxMZuR1jYIXs3i4gakQYFoJ49e6Jnz5613isrPDwc4eHhFmkYEcmT0eglhR8AEEKJ9PShCA4+Do2m2M6tI6LGokEBqFmzZlAoFNct5+zfAiMi+zEYfKTwU0UIJQwGLQMQEVlMgwLQnj17pJ+FELjvvvvwn//8BwEBARZvGBHJk1arh0JhMgtBCoUJWq3Bjq0iosamQQEoKirK7LlKpcLtt9+ODh06WLRRRCRfGk0xYmO3V5sDxNEfIrIku90MlYioNmFhhxAcfBwGgxZarYHhh4gsjgGIiByCWq02e67RFNcYfK4tR0R0I246ANVnUjQR0fX4+PhAp9NxJWgisokGBaAHHnjA7Pnly5cxZcoUeHh4mG1PS0u7+ZYRkeww3BCRrTQoAGk0GrPnDz/8sEUbQ0RERGQLDQpAa9assVY7iIiIiGymQfcCIyIiImoMGICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIduwegFasWIGgoCC4ubkhMjISBw4cqLXsO++8g/79+6N58+Zo3rw5oqOjayyfm5uLYcOGQaPRwMPDA7169cLp06et2Q0iIiJyInYNQJs3b0ZCQgISExORk5ODHj16ICYmBufPn6+xfFZWFsaMGYM9e/Zg//79CAwMxKBBg3Du3DmpzIkTJ9CvXz+EhIQgKysLR44cwdy5c+Hm5marbhEREZGDUwghhL1ePDIyEr169UJqaioAwGQyITAwEFOnTsWsWbOue3xlZSWaN2+O1NRUjB8/HgAwevRouLi4YP369TfcrqKiImg0GhiNRnh7e99wPURERGQ7Dfn8ttsIUHl5ObKzsxEdHf1PY5RKREdHY//+/fWqo7S0FBUVFdBqtQCuBKgdO3agc+fOiImJQatWrRAZGYlPPvmkznrKyspQVFRk9iAiIqLGy24B6OLFi6isrISvr6/Zdl9fXxQUFNSrjpkzZ8Lf318KUefPn8elS5eQnJyMwYMH47PPPsP999+PBx54AF9++WWt9SQlJUGj0UiPwMDAG+8YkRXo9Xrk5+fX+tDr9fZuIhGRU2li7wbcqOTkZGzatAlZWVnS/B6TyQQAGD58OJ555hkAQGhoKPbt24dVq1YhKiqqxrpmz56NhIQE6XlRURFDEDkMvV4vXSaui06ng4+Pjw1aRETk/OwWgFq0aAGVSoXCwkKz7YWFhfDz86vz2MWLFyM5ORm7d+9G9+7dzeps0qQJunbtalb+lltuwd69e2utz9XVFa6urjfQCyLrKy8vN3tuNHrBYPCBVquHRlNcazkiIqqd3QKQWq1GeHg4MjMzMWLECABXRnAyMzOh0+lqPe61117DK6+8gl27diEiIqJanb169cLRo0fNtv/6669o166dxftAZGs5OT2Rnj4UQiihUJgQG7sdYWGH7N0sIiKnY9dLYAkJCZgwYQIiIiLQu3dvpKSkoKSkBPHx8QCA8ePHIyAgAElJSQCARYsWYd68edi4cSOCgoKkuUKenp7w9PQEAMyYMQNxcXEYMGAA7rzzTmRkZCA9PR1ZWVl26SORpRiNXlL4AQAhlEhPH4rg4ONmI0FERHR9dg1AcXFxuHDhAubNm4eCggKEhoYiIyNDmhh9+vRpKJX/zNNeuXIlysvLMXLkSLN6EhMTMX/+fADA/fffj1WrViEpKQnTpk1Dly5dsGXLFvTr189m/SKyBoPBRwo/VYRQwmDQMgARETWQ3SdB63S6Wi95XTtqc/LkyXrVOWnSJEyaNOkmW0bkWLRaPRQKk1kIUihM0GoNdmwVEZFzsvutMIiofjSaYsTGbodCceXbjlVzgDj6Q0TUcHYfASKi+gsLO4Tg4OMwGLTQag0MP0REN4gBiMjBqdVqs+caTXGNwefackREVDsGICIH5+PjA51OV+c6P2q1mosgEhE1AAMQkRNguCEisixOgiYiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZ4TpARERkNXq9not4kkNiACIiIqvQ6/VITU29bjmdTscQRDbHS2BERGQV1478GI1eyMsLgtHoVWc5IlvgCBAREVldTk5PpKcPhRBKKBQmxMZuR1jYIXs3i2SMI0BERGRVRqOXFH4AQAgl0tOHVhsJIrIlBiAiIrIqg8FHCj9VhFDCYNDaqUVEDEBERGRlWq0eCoXJbJtCYYJWa7BTi4gYgIiIyMo0mmLExm6XQlDVHCCNptjOLSM54yRoIiKyurCwQwgOPg6DQQut1sDwQ3bHAERERFahVqvNnms0xTUGn2vLEdkCAxAREVmFj48PdDodV4Imh8QAREREVsNwQ46Kk6CJiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2+DV4IiIZ0Ov1XI+H6CoMQEREjZxer0dqaup1y+l0OoYgkg1eAiMiauSuHfkxGr2QlxcEo9GrznJEjRlHgIiIZCQnpyfS04dCCKV0V/awsEP2bhaRzXEEiIhIJoxGLyn8AIAQSqSnD602EkQkBwxAREQyYTD4SOGnihBKGAxaO7WIyH4YgIiIZEKr1UOhMJltUyhM0GoNdmoRkf0wABERyYRGU4zY2O1SCKqaA6TRFNu5ZUS2x0nQREQyEhZ2CMHBx2EwaKHVGhh+SLYYgIiIGjm1Wm32XKMprjH4XFuOqDFjACIiauR8fHyg0+m4EjTRVRiAiIhkgOGGyBwnQRMREZHsMAARERGR7DAAERERkewwABEREZHsMAARERGR7DhEAFqxYgWCgoLg5uaGyMhIHDhwoNay77zzDvr374/mzZujefPmiI6OrrP8lClToFAokJKSYoWWExERkTOyewDavHkzEhISkJiYiJycHPTo0QMxMTE4f/58jeWzsrIwZswY7NmzB/v370dgYCAGDRqEc+fOVSu7detWfPvtt/D397d2N4iIiMiJ2D0ALVmyBI899hji4+PRtWtXrFq1Ck2bNsXq1atrLL9hwwY8+eSTCA0NRUhICP7zn//AZDIhMzPTrNy5c+cwdepUbNiwAS4uLrboChERETkJuwag8vJyZGdnIzo6WtqmVCoRHR2N/fv316uO0tJSVFRUQKvVSttMJhPGjRuHGTNmoFu3bteto6ysDEVFRWYPIiIiarzsGoAuXryIyspK+Pr6mm339fVFQUFBveqYOXMm/P39zULUokWL0KRJE0ybNq1edSQlJUGj0UiPwMDA+neCiIiInI5T3wojOTkZmzZtQlZWFtzc3AAA2dnZWLp0KXJycqBQKOpVz+zZs5GQkCA9LyoqYggiIiKyEL1e73D3orNrAGrRogVUKhUKCwvNthcWFsLPz6/OYxcvXozk5GTs3r0b3bt3l7Z//fXXOH/+PNq2bSttq6ysxLPPPouUlBScPHmyWl2urq5wdXW9uc4QERFRNXq9Hqmpqdctp9PpbBqC7HoJTK1WIzw83GwCc9WE5j59+tR63GuvvYaFCxciIyMDERERZvvGjRuHI0eO4PDhw9LD398fM2bMwK5du6zWFyIiIqqurpGfGylnKXa/BJaQkIAJEyYgIiICvXv3RkpKCkpKShAfHw8AGD9+PAICApCUlATgyvyeefPmYePGjQgKCpLmCnl6esLT0xM+Pj7VEqSLiwv8/PzQpUsX23aOiIiIzBiNXjAYfKDV6qHRFNutHXYPQHFxcbhw4QLmzZuHgoIChIaGIiMjQ5oYffr0aSiV/wxUrVy5EuXl5Rg5cqRZPYmJiZg/f74tm05EREQNkJPTE+npQyGEEgqFCbGx2xEWdsgubbF7AAKuXPfT6XQ17svKyjJ7XtMcnuu5kWOIiIjIcoxGLyn8AIAQSqSnD0Vw8HG7jATZfSFEIiIiavwMBh8p/FQRQgmDQVvLEdbFAERERERWp9XqoVCYzLYpFCZotQa7tIcBiIiIiKxOoylGbOx2KQRVzQGy10Roh5gDRERE9eOIC8oR1UWtVks/h4UdQnDwcRgMWmi1BrPwc3U5W2AAIiJyEo66oBxRXXx8fKDT6RwuuDMAERE5iWs/QGpbT8XWC8oRXY8jBnIGICIiJ+RI66kQOSNOgiYicjK1radiNHrZuWVEzoMBiIjIyTjaeipEzogBiIjIyTjaeipEzogBiIjIyTjaeipEzoiToImInFBd66kQ0fUxABEROYlrF4rTaIprDD62XlCOyBkxABEROQlHXVCOyBkxABERORGGGyLL4CRoIiIikh0GICIiIpIdBiAiIiKSHc4BIiIisgAhBP7++29UVlbauymNlkqlQpMmTaBQKG66LgYgIiKim1ReXo78/HyUlpbauymNXtOmTdG6deubXu6BAYiIiOgmmEwm5OXlQaVSwd/fH2q12iIjFGROCIHy8nJcuHABeXl56NSpE5TKG5/JwwBERER0E8rLy2EymRAYGIimTZvauzmNmru7O1xcXHDq1CmUl5fDzc3thuviJGgiIiILuJnRCKo/S51n/t8iIiIi2WEAIiIiItlhACIiIpKpiRMnQqFQQKFQwMXFBb6+vrjnnnuwevVqmEymetezdu1aNGvWzHoNtQJOgiYiIrIzvV5vt5vcDh48GGvWrEFlZSUKCwuRkZGBp59+Gh9//DG2bduGJk0aZ1RonL0iIiJyEnq9Hqmpqdctp9PprBKCXF1d4efnBwAICAhAWFgYbr/9dtx9991Yu3YtHn30USxZsgRr1qzBb7/9Bq1Wi9jYWLz22mvw9PREVlYW4uPjAUD6+n9iYiLmz5+P9evXY+nSpTh69Cg8PDxw1113ISUlBa1atbJ4PxqKl8CIiIjsqK6RnxspZwl33XUXevTogbS0NABXvnm1bNky/PTTT1i3bh2++OILPP/88wCAvn37IiUlBd7e3sjPz0d+fj6ee+45AEBFRQUWLlyI77//Hp988glOnjyJiRMn2qwfdeEIEBEREVUTEhKCI0eOAACmT58ubQ8KCsLLL7+MKVOm4K233oJarYZGo4FCoZBGkqpMmjRJ+rlDhw5YtmwZevXqhUuXLsHT09Mm/agNR4CIiIioGiGEdElr9+7duPvuuxEQEAAvLy+MGzcOer3+urf+yM7ORmxsLNq2bQsvLy9ERUUBAE6fPm319l8PAxARERFVk5ubi/bt2+PkyZMYOnQounfvji1btiA7OxsrVqwAUPdluZKSEsTExMDb2xsbNmzAwYMHsXXr1useZyu8BEZERERmvvjiC/zwww945plnkJ2dDZPJhDfeeENahfnDDz80K69Wq1FZWWm27ZdffoFer0dycjICAwMBAP/73/9s04F64AgQERGRjJWVlaGgoADnzp1DTk4OXn31VQwfPhxDhw7F+PHj0bFjR1RUVGD58uX47bffsH79eqxatcqsjqCgIFy6dAmZmZm4ePEiSktL0bZtW6jVaum4bdu2YeHChXbqZXUMQERERDKWkZGB1q1bIygoCIMHD8aePXuwbNkyfPrpp1CpVOjRoweWLFmCRYsW4dZbb8WGDRuQlJRkVkffvn0xZcoUxMXFoWXLlnjttdfQsmVLrF27Fh999BG6du2K5ORkLF682E69rE4hhBD2boSjKSoqgkajgdFohLe3t72bQ0REDuzy5cvIy8tD+/btb+ju5PZeB8jZ1HW+G/L5zTlAREREduTj4wOdTme3laDligGIiIjIzhhubI9zgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIjIKrKysqBQKPDnn3/W+5igoCCkpKRYrU1VHCIArVixAkFBQXBzc0NkZCQOHDhQa9l33nkH/fv3R/PmzdG8eXNER0ebla+oqMDMmTNx2223wcPDA/7+/hg/fjx+//13W3SFiIjIaUycOBEKhQJTpkyptu+pp56CQqHAxIkTbd8wG7B7ANq8eTMSEhKQmJiInJwc9OjRAzExMTh//nyN5bOysjBmzBjs2bMH+/fvR2BgIAYNGoRz584BAEpLS5GTk4O5c+ciJycHaWlpOHr0KIYNG2bLbhERETmFwMBAbNq0CX/99Ze07fLly9i4cSPatm1rx5ZZl90D0JIlS/DYY48hPj4eXbt2xapVq9C0aVOsXr26xvIbNmzAk08+idDQUISEhOA///kPTCYTMjMzAQAajQaff/45Ro0ahS5duuD2229HamoqsrOzcfr0aVt2jYiIyOGFhYUhMDAQaWlp0ra0tDS0bdsWPXv2lLaVlZVh2rRpaNWqFdzc3NCvXz8cPHjQrK6dO3eic+fOcHd3x5133omTJ09We729e/eif//+cHd3R2BgIKZNm4aSkhKr9a82dg1A5eXlyM7ORnR0tLRNqVQiOjoa+/fvr1cdpaWlqKiogFarrbWM0WiEQqFAs2bNatxfVlaGoqIiswcREZE9nD0L7Nlz5b+2MmnSJKxZs0Z6vnr1asTHx5uVef7557FlyxasW7cOOTk56NixI2JiYmAwGAAAZ86cwQMPPIDY2FgcPnwYjz76KGbNmmVWx4kTJzB48GA8+OCDOHLkCDZv3oy9e/dCp9NZv5PXsGsAunjxIiorK+Hr62u23dfXFwUFBfWqY+bMmfD39zcLUVe7fPkyZs6ciTFjxsDb27vGMklJSdBoNNIjMDCwYR0hAIBer0d+fn6tD71eb+8mEhE5tHffBdq1A+6668p/333XNq/78MMPY+/evTh16hROnTqFb775Bg8//LC0v6SkBCtXrsTrr7+Oe++9F127dsU777wDd3d3vPv/jVy5ciWCg4PxxhtvoEuXLnjooYeqzR9KSkrCQw89hOnTp6NTp07o27cvli1bhvfeew+XL1+2TWf/n1PfDT45ORmbNm1CVlYW3Nzcqu2vqKjAqFGjIITAypUra61n9uzZSEhIkJ4XFRUxBDWQXq9HamrqdcvpdDre9ZiIqAZnzwKTJwMm05XnJhPw+ONATAzQpo11X7tly5YYMmQI1q5dCyEEhgwZghYtWkj7T5w4gYqKCtxxxx3SNhcXF/Tu3Ru5ubkAgNzcXERGRprV26dPH7Pn33//PY4cOYINGzZI24QQMJlMyMvLwy233GKN7tXIrgGoRYsWUKlUKCwsNNteWFgIPz+/Oo9dvHgxkpOTsXv3bnTv3r3a/qrwc+rUKXzxxRe1jv4AgKurK1xdXW+sEwTgyuXMqxmNXjAYfKDV6qHRFNdajoiIrjh27J/wU6WyEjh+3PoBCLhyGazqUtSKFSus8hqXLl3C448/jmnTplXbZ+sJ13YNQGq1GuHh4cjMzMSIESMAQJrQXNf1wNdeew2vvPIKdu3ahYiIiGr7q8LPsWPHsGfPHo442FhOTk+kpw+FEEooFCbExm5HWNghezeLiMihdeoEKJXmIUilAjp2tM3rDx48GOXl5VAoFIiJiTHbFxwcDLVajW+++Qbt2rUDcOWz9uDBg5g+fToA4JZbbsG2bdvMjvv222/NnoeFheHnn39GR1t1qg52/xZYQkIC3nnnHaxbtw65ubl44oknUFJSIk2+Gj9+PGbPni2VX7RoEebOnYvVq1cjKCgIBQUFKCgowKVLlwBc+R8ycuRI/O9//8OGDRtQWVkpleHog/UZjV5S+AEAIZRITx8Ko9HLzi0jInJsbdoA//73ldADXPnv22/bZvTnyuupkJubi59//hmqqkb8Pw8PDzzxxBOYMWMGMjIy8PPPP+Oxxx5DaWkpHnnkEQDAlClTcOzYMcyYMQNHjx7Fxo0bsXbtWrN6Zs6ciX379kGn0+Hw4cM4duwYPv30U7tMgrb7HKC4uDhcuHAB8+bNQ0FBAUJDQ5GRkSFNjD59+jSUyn9y2sqVK1FeXo6RI0ea1ZOYmIj58+fj3LlzUgINDQ01K7Nnzx4MHDjQqv2RO4PBRwo/VYRQwmDQml0KIyKi6h555Mqcn+PHr4z82Cr8VKlrukhycjJMJhPGjRuH4uJiREREYNeuXWjevDmAK5ewtmzZgmeeeQbLly9H79698eqrr2LSpElSHd27d8eXX36JOXPmoH///hBCIDg4GHFxcVbv27UUQghh81d1cEVFRdBoNDAajXW+Gegf+fn5+Pe//w2j0QspKdPNQpBCYcL06SnQaIoxefJktG7d2o4tJSKyrMuXLyMvLw/t27ev8Qs5ZFl1ne+GfH7b/RIYNS4aTTFiY7dDobhyEbtqDhBHf4iIyJHY/RIYNT5hYYcQHHwcBoMWWq2B4YeIiBwOAxBZhFqtNnuu0RTXGHyuLUdERGQPDEBkET4+PtDpdHV+006tVnNJAiIicggMQGQxDDdEROQsOAmaiIjIAvilatuw1HlmACIiIroJLi4uAIDS0lI7t0Qeqs5z1Xm/UbwERkREdBNUKhWaNWuG8+fPAwCaNm0KhUJh51Y1PkIIlJaW4vz582jWrFm11aobigGIiIjoJlXdwLsqBJH1NGvW7Lo3TK8PBiAiIqKbpFAo0Lp1a7Rq1QoVFRX2bk6j5eLictMjP1UYgIiIiCxEpVJZ7AOarIuToImIiEh2GICIiIhIdhiAiIiISHY4B6gGVYssFRUV2bklREREVF9Vn9v1WSyRAagGxcVXbuIZGBho55YQERFRQxUXF0Oj0dRZRiG4dnc1JpMJv//+O7y8vG56MauioiIEBgbizJkz8Pb2tlALnRvPSXU8J9XxnFTHc1Idz0l1cj4nQggUFxfD398fSmXds3w4AlQDpVKJNm3aWLROb29v2b0Rr4fnpDqek+p4TqrjOamO56Q6uZ6T6438VOEkaCIiIpIdBiAiIiKSHQYgK3N1dUViYiJcXV3t3RSHwXNSHc9JdTwn1fGcVMdzUh3PSf1wEjQRERHJDkeAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgBpoxYoVCAoKgpubGyIjI3HgwIE6y6ekpKBLly5wd3dHYGAgnnnmGVy+fFnaP3/+fCgUCrNHSEiItbthcQ05LxUVFXjppZcQHBwMNzc39OjRAxkZGTdVpyOy9Dlx5vfKV199hdjYWPj7+0OhUOCTTz657jFZWVkICwuDq6srOnbsiLVr11Yr48zvEWucE2d+j1Rp6HnJz8/H2LFj0blzZyiVSkyfPr3Gch999BFCQkLg5uaG2267DTt37rR8463EGudk7dq11d4rbm5u1umAg2IAaoDNmzcjISEBiYmJyMnJQY8ePRATE4Pz58/XWH7jxo2YNWsWEhMTkZubi3fffRebN2/GCy+8YFauW7duyM/Plx579+61RXcspqHn5cUXX8Tbb7+N5cuX4+eff8aUKVNw//3349ChQzdcp6OxxjkBnPe9UlJSgh49emDFihX1Kp+Xl4chQ4bgzjvvxOHDhzF9+nQ8+uij2LVrl1TG2d8j1jgngPO+R6o09LyUlZWhZcuWePHFF9GjR48ay+zbtw9jxozBI488gkOHDmHEiBEYMWIEfvzxR0s23WqscU6AKytFX/1eOXXqlKWa7BwE1Vvv3r3FU089JT2vrKwU/v7+IikpqcbyTz31lLjrrrvMtiUkJIg77rhDep6YmCh69OhhlfbaSkPPS+vWrUVqaqrZtgceeEA89NBDN1yno7HGOWkM7xUhhAAgtm7dWmeZ559/XnTr1s1sW1xcnIiJiZGeO/t75GqWOieN5T1SpT7n5WpRUVHi6aefrrZ91KhRYsiQIWbbIiMjxeOPP36TLbQ9S52TNWvWCI1GY7F2OSOOANVTeXk5srOzER0dLW1TKpWIjo7G/v37azymb9++yM7Oloblf/vtN+zcuRP33XefWbljx47B398fHTp0wEMPPYTTp09bryMWdiPnpaysrNpQq7u7u/SX6o3U6UiscU6qOPN7pSH2799vdv4AICYmRjp/zv4euRHXOydV5PIeaYj6nju5uXTpEtq1a4fAwEAMHz4cP/30k72bZFMMQPV08eJFVFZWwtfX12y7r68vCgoKajxm7NixeOmll9CvXz+4uLggODgYAwcONLsEFhkZibVr1yIjIwMrV65EXl4e+vfvj+LiYqv2x1Ju5LzExMRgyZIlOHbsGEwmEz7//HOkpaUhPz//hut0JNY4J4Dzv1caoqCgoMbzV1RUhL/++svp3yM34nrnBJDXe6Qhajt3jfW9Uh9dunTB6tWr8emnn+L999+HyWRC3759cfbsWXs3zWYYgKwoKysLr776Kt566y3k5OQgLS0NO3bswMKFC6Uy9957L/71r3+he/fuiImJwc6dO/Hnn3/iww8/tGPLrWvp0qXo1KkTQkJCoFarodPpEB8fD6VSvm/H+pwTOb5XqGH4HqH66tOnD8aPH4/Q0FBERUUhLS0NLVu2xNtvv23vptmMfD9xGqhFixZQqVQoLCw0215YWAg/P78aj5k7dy7GjRuHRx99FLfddhvuv/9+vPrqq0hKSoLJZKrxmGbNmqFz5844fvy4xftgDTdyXlq2bIlPPvkEJSUlOHXqFH755Rd4enqiQ4cON1ynI7HGOamJs71XGsLPz6/G8+ft7Q13d3enf4/ciOudk5o05vdIQ9R27hrre+VGuLi4oGfPnrJ6rzAA1ZNarUZ4eDgyMzOlbSaTCZmZmejTp0+Nx5SWllYb1VCpVAAAUcst2C5duoQTJ06gdevWFmq5dd3Ieani5uaGgIAA/P3339iyZQuGDx9+03U6Amuck5o423ulIfr06WN2/gDg888/l86fs79HbsT1zklNGvN7pCFu5NzJTWVlJX744Qd5vVfsPQvbmWzatEm4urqKtWvXip9//llMnjxZNGvWTBQUFAghhBg3bpyYNWuWVD4xMVF4eXmJDz74QPz222/is88+E8HBwWLUqFFSmWeffVZkZWWJvLw88c0334jo6GjRokULcf78eZv370Y19Lx8++23YsuWLeLEiRPiq6++EnfddZdo3769+OOPP+pdp6Ozxjlx5vdKcXGxOHTokDh06JAAIJYsWSIOHTokTp06JYQQYtasWWLcuHFS+d9++000bdpUzJgxQ+Tm5ooVK1YIlUolMjIypDLO/h6xxjlx5vdIlYaeFyGEVD48PFyMHTtWHDp0SPz000/S/m+++UY0adJELF68WOTm5orExETh4uIifvjhB5v27UZZ45wsWLBA7Nq1S5w4cUJkZ2eL0aNHCzc3N7MyjR0DUAMtX75ctG3bVqjVatG7d2/x7bffSvuioqLEhAkTpOcVFRVi/vz5Ijg4WLi5uYnAwEDx5JNPmn2oxcXFidatWwu1Wi0CAgJEXFycOH78uA17ZBkNOS9ZWVnilltuEa6ursLHx0eMGzdOnDt3rkF1OgNLnxNnfq/s2bNHAKj2qDoHEyZMEFFRUdWOCQ0NFWq1WnTo0EGsWbOmWr3O/B6xxjlx5vdIlRs5LzWVb9eunVmZDz/8UHTu3Fmo1WrRrVs3sWPHDtt0yAKscU6mT58u/e74+vqK++67T+Tk5NiuUw5AIUQt12KIiIiIGinOASIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiInICWVlZUCgU+PPPP+3dFKJGgQGIiMxMnDgRCoUCycnJZts/+eQTKBQK6bkQAu+88w769OkDb29veHp6olu3bnj66afrfUPF0tJSzJ49G8HBwXBzc0PLli0RFRWFTz/9VCoTFBSElJQUi/TN2qrOnUKhgIuLC9q3b4/nn38ely9fblA9AwcOxPTp08229e3bF/n5+dBoNBZsMZF8MQARUTVubm5YtGgR/vjjjxr3CyEwduxYTJs2Dffddx8+++wz/Pzzz3j33Xfh5uaGl19+uV6vM2XKFKSlpWH58uX45ZdfkJGRgZEjR0Kv11uyOzY1ePBg5Ofn47fffsObb76Jt99+G4mJiTddr1qthp+fn1kIJaKbYN87cRCRo5kwYYIYOnSoCAkJETNmzJC2b926VVT9k/HBBx8IAOLTTz+tsQ6TyVSv19JoNGLt2rW17o+Kiqp2P6MqX3/9tejXr59wc3MTbdq0EVOnThWXLl2S9r/33nsiPDxceHp6Cl9fXzFmzBhRWFgo7a+6v1JGRoYIDQ0Vbm5u4s477xSFhYVi586dIiQkRHh5eYkxY8aIkpKSevVnwoQJYvjw4WbbHnjgAdGzZ0/p+cWLF8Xo0aOFv7+/cHd3F7feeqvYuHGjWR3X9jkvL09q79X3Evz4449F165dhVqtFu3atROLFy+uVzuJSAiOABFRNSqVCq+++iqWL1+Os2fPVtv/wQcfoEuXLhg2bFiNx9d3lMLPzw87d+5EcXFxjfvT0tLQpk0bvPTSS8jPz0d+fj4A4MSJExg8eDAefPBBHDlyBJs3b8bevXuh0+mkYysqKrBw4UJ8//33+OSTT3Dy5ElMnDix2mvMnz8fqamp2LdvH86cOYNRo0YhJSUFGzduxI4dO/DZZ59h+fLl9erPtX788Ufs27cParVa2nb58mWEh4djx44d+PHHHzF58mSMGzcOBw4cAAAsXboUffr0wWOPPSb1OTAwsFrd2dnZGDVqFEaPHo0ffvgB8+fPx9y5c7F27dobaiuR7Ng7gRGRY7l6FOP2228XkyZNEkKYjwCFhISIYcOGmR339NNPCw8PD+Hh4SECAgLq9VpffvmlaNOmjXBxcRERERFi+vTpYu/evWZl2rVrJ958802zbY888oiYPHmy2bavv/5aKJVK8ddff9X4WgcPHhQARHFxsRDinxGg3bt3S2WSkpIEAHHixAlp2+OPPy5iYmLq1Z8JEyYIlUolPDw8hKurqwAglEql+Pjjj+s8bsiQIeLZZ5+VnkdFRYmnn37arMy1I0Bjx44V99xzj1mZGTNmiK5du9arrURyxxEgIqrVokWLsG7dOuTm5l637Jw5c3D48GHMmzcPly5dqlf9AwYMwG+//YbMzEyMHDkSP/30E/r374+FCxfWedz333+PtWvXwtPTU3rExMTAZDIhLy8PwJURktjYWLRt2xZeXl6IiooCAJw+fdqsru7du0s/+/r6omnTpujQoYPZtvPnz9erPwBw55134vDhw/juu+8wYcIExMfH48EHH5T2V1ZWYuHChbjtttug1Wrh6emJXbt2VWvX9eTm5uKOO+4w23bHHXfg2LFjqKysbFBdRHLEAEREtRowYABiYmIwe/Zss+2dOnXC0aNHzba1bNkSHTt2RKtWrRr0Gi4uLujfvz9mzpyJzz77DC+99BIWLlyI8vLyWo+5dOkSHn/8cRw+fFh6fP/99zh27BiCg4NRUlKCmJgYeHt7Y8OGDTh48CC2bt0KANXqdXFxkX6u+vbW1RQKBUwmU7374+HhgY4dO6JHjx5YvXo1vvvuO7z77rvS/tdffx1Lly7FzJkzsWfPHhw+fBgxMTF19peILK+JvRtARI4tOTkZoaGh6NKli7RtzJgxGDt2LD799FMMHz7coq/XtWtX/P3337h8+TLUajXUanW1EY2wsDD8/PPP6NixY411/PDDD9Dr9UhOTpbmz/zvf/+zaDvrQ6lU4oUXXkBCQgLGjh0Ld3d3fPPNNxg+fDgefvhhAIDJZMKvv/6Krl27SsfV1Odr3XLLLfjmm2/Mtn3zzTfo3LkzVCqV5TtD1MhwBIiI6nTbbbfhoYcewrJly6Rto0ePxsiRIzF69Gi89NJL+O6773Dy5El8+eWX2Lx5c70/gAcOHIi3334b2dnZOHnyJHbu3IkXXngBd955J7y9vQFcWQfoq6++wrlz53Dx4kUAwMyZM7Fv3z7odDocPnwYx44dw6effipNgm7bti3UajWWL1+O3377Ddu2bbvuZTVr+de//gWVSoUVK1YAuDJ69vnnn2Pfvn3Izc3F448/jsLCQrNjgoKCpHN68eLFGkegnn32WWRmZmLhwoX49ddfsW7dOqSmpuK5556zSb+InB0DEBFd10svvWT2IaxQKLB582akpKRg586duPvuu9GlSxdMmjQJgYGB2Lt3b73qjYmJwbp16zBo0CDccsstmDp1KmJiYvDhhx+avfbJkycRHByMli1bArgyb+fLL7/Er7/+iv79+6Nnz56YN28e/P39AVy5HLd27Vp89NFH6Nq1K5KTk7F48WILnpH6a9KkCXQ6HV577TWUlJTgxRdfRFhYGGJiYjBw4ED4+flhxIgRZsc899xzUKlU6Nq1K1q2bFnj/KCwsDB8+OGH2LRpE2699VbMmzcPL730Uo3fdCOi6hRCCGHvRhARERHZEkeAiIiISHYYgIjIaq7+mvq1j6+//trezWuQ06dP19mfhn6NnYjsi5fAiMhq6ropakBAANzd3W3Ympvz999/4+TJk7XuDwoKQpMm/GItkbNgACIiIiLZ4SUwIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpKd/wPxRH2XEnwS4wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_19.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMQElEQVR4nO3deVxU9f4/8NcMMmzC6KAsIoqCpeYGqISVmFFgQnnz/lJzQdPMrmRGm7RoXStIzUhxKXOrJLymLZhhSVrXpTSQb26pGKSmgA45IBQQ8/n9weXkyCIDM3OA83o+HvOIOfPhnPf5ZM6rz/mcz1EJIQSIiIiIFEQtdwFEREREtsYARERERIrDAERERESKwwBEREREisMARERERIrDAERERESKwwBEREREisMARERERIrDAERERESKwwBERNSCbdiwASqVCnl5eXKXQtSmMAARKdyhQ4cQGxuLW265BS4uLujWrRsefPBBnDp1qlbbESNGQKVSQaVSQa1Ww83NDTfffDMmT56Mr7/+2qzjpqWlISwsDB4eHnB2dkbPnj3x4IMPIj093VKnVsvrr7+OTz/9tNb2/fv34+WXX8aVK1esduzrvfzyy1JfqlQqODs7o2/fvnjxxRdRXFxskWOkpKQgKSnJIvsiamsYgIgU7o033sDWrVtx11134e2338bMmTPx3XffISgoCEePHq3VvmvXrvjggw/w/vvvY/Hixbjvvvuwf/9+3HPPPRg3bhwqKytveMwlS5bgvvvug0qlQnx8PN566y2MHTsWp0+fRmpqqjVOE0DDAeiVV16xaQCqsWrVKnzwwQdYunQpevfujddeew2RkZGwxGMaGYCI6tdO7gKISF5xcXFISUmBRqORto0bNw79+/dHYmIiPvzwQ5P2Wq0WkyZNMtmWmJiIOXPmYOXKlfDz88Mbb7xR7/H++usvLFy4EHfffTe++uqrWp8XFhY284xajrKyMjg7OzfY5p///Cc6deoEAJg1axbGjh2Lbdu24fvvv0doaKgtyiRSJI4AESncsGHDTMIPAPTq1Qu33HILTpw40ah92NnZYdmyZejbty+Sk5NhMBjqbXv58mUUFxfjtttuq/NzDw8Pk/d//vknXn75Zdx0001wdHSEt7c3HnjgAZw5c0Zqs2TJEgwbNgzu7u5wcnJCcHAwPv74Y5P9qFQqlJaWYuPGjdJlp6lTp+Lll1/GM888AwDo0aOH9Nm1c24+/PBDBAcHw8nJCTqdDuPHj8e5c+dM9j9ixAj069cPmZmZGD58OJydnfH88883qv+uNXLkSABAbm5ug+1WrlyJW265BQ4ODujSpQtmz55tMoI1YsQIfPHFF/j111+lc/Lz8zO7HqK2iiNARFSLEAIFBQW45ZZbGv07dnZ2mDBhAl566SXs3bsXo0ePrrOdh4cHnJyckJaWhscffxw6na7efVZVVSEqKgoZGRkYP348nnjiCZSUlODrr7/G0aNH4e/vDwB4++23cd9992HixImoqKhAamoq/t//+3/Yvn27VMcHH3yAGTNmYOjQoZg5cyYAwN/fHy4uLjh16hQ++ugjvPXWW9JoTOfOnQEAr732Gl566SU8+OCDmDFjBi5duoTly5dj+PDhOHz4MDp06CDVq9frMWrUKIwfPx6TJk2Cp6dno/uvRk2wc3d3r7fNyy+/jFdeeQXh4eF47LHHcPLkSaxatQqHDh3Cvn37YG9vjxdeeAEGgwHnz5/HW2+9BQBo37692fUQtVmCiOg6H3zwgQAg1q5da7I9LCxM3HLLLfX+3ieffCIAiLfffrvB/c+fP18AEC4uLmLUqFHitddeE5mZmbXarVu3TgAQS5curfWZ0WiUfi4rKzP5rKKiQvTr10+MHDnSZLuLi4uIiYmpta/FixcLACI3N9dke15enrCzsxOvvfaayfYjR46Idu3amWwPCwsTAMTq1avrPe9rLViwQAAQJ0+eFJcuXRK5ubninXfeEQ4ODsLT01OUlpYKIYRYv369SW2FhYVCo9GIe+65R1RVVUn7S05OFgDEunXrpG2jR48W3bt3b1Q9RErDS2BEZOLnn3/G7NmzERoaipiYGLN+t2aEoaSkpMF2r7zyClJSUhAYGIidO3fihRdeQHBwMIKCgkwuu23duhWdOnXC448/XmsfKpVK+tnJyUn6+ffff4fBYMAdd9yBrKwss+q/3rZt22A0GvHggw/i8uXL0svLywu9evXC7t27Tdo7ODhg2rRpZh3j5ptvRufOndGjRw88+uijCAgIwBdffFHv3KFdu3ahoqICc+fOhVr991/hjzzyCNzc3PDFF1+Yf6JECsRLYEQkyc/Px+jRo6HVavHxxx/Dzs7OrN+/evUqAMDV1fWGbSdMmIAJEyaguLgYP/zwAzZs2ICUlBRER0fj6NGjcHR0xJkzZ3DzzTejXbuG/6ravn07Xn31VWRnZ6O8vFzafm1IaorTp09DCIFevXrV+bm9vb3Jex8fn1rzqW5k69atcHNzg729Pbp27Spd1qvPr7/+CqA6OF1Lo9GgZ8+e0udE1DAGICICABgMBowaNQpXrlzBf//7X3Tp0sXsfdTcNh8QENDo33Fzc8Pdd9+Nu+++G/b29ti4cSN++OEHhIWFNer3//vf/+K+++7D8OHDsXLlSnh7e8Pe3h7r169HSkqK2edwLaPRCJVKhS+//LLOMHj9nJprR6Iaa/jw4dK8IyKyHQYgIsKff/6J6OhonDp1Crt27ULfvn3N3kdVVRVSUlLg7OyM22+/vUl1DB48GBs3bsTFixcBVE9S/uGHH1BZWVlrtKXG1q1b4ejoiJ07d8LBwUHavn79+lpt6xsRqm+7v78/hBDo0aMHbrrpJnNPxyq6d+8OADh58iR69uwpba+oqEBubi7Cw8Olbc0dASNqyzgHiEjhqqqqMG7cOBw4cABbtmxp0tozVVVVmDNnDk6cOIE5c+bAzc2t3rZlZWU4cOBAnZ99+eWXAP6+vDN27FhcvnwZycnJtdqK/y0UaGdnB5VKhaqqKumzvLy8Ohc8dHFxqXOxQxcXFwCo9dkDDzwAOzs7vPLKK7UWJhRCQK/X132SVhQeHg6NRoNly5aZ1LR27VoYDAaTu+9cXFwaXJKASMk4AkSkcE899RQ+//xzREdHo6ioqNbCh9cvemgwGKQ2ZWVlyMnJwbZt23DmzBmMHz8eCxcubPB4ZWVlGDZsGG699VZERkbC19cXV65cwaeffor//ve/GDNmDAIDAwEAU6ZMwfvvv4+4uDgcPHgQd9xxB0pLS7Fr1y7861//wv3334/Ro0dj6dKliIyMxEMPPYTCwkKsWLECAQEB+Omnn0yOHRwcjF27dmHp0qXo0qULevTogZCQEAQHBwMAXnjhBYwfPx729vaIjo6Gv78/Xn31VcTHxyMvLw9jxoyBq6srcnNz8cknn2DmzJl4+umnm9X/5urcuTPi4+PxyiuvIDIyEvfddx9OnjyJlStXYsiQISb/voKDg7F582bExcVhyJAhaN++PaKjo21aL1GLJectaEQkv5rbt+t7NdS2ffv2olevXmLSpEniq6++atTxKisrxZo1a8SYMWNE9+7dhYODg3B2dhaBgYFi8eLFory83KR9WVmZeOGFF0SPHj2Evb298PLyEv/85z/FmTNnpDZr164VvXr1Eg4ODqJ3795i/fr10m3m1/r555/F8OHDhZOTkwBgckv8woULhY+Pj1Cr1bVuid+6dau4/fbbhYuLi3BxcRG9e/cWs2fPFidPnjTpm4aWCLheTX2XLl1qsN31t8HXSE5OFr179xb29vbC09NTPPbYY+L33383aXP16lXx0EMPiQ4dOggAvCWe6BoqISzwwBkiIiKiVoRzgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHG4EGIdjEYjLly4AFdXVy4lT0RE1EoIIVBSUoIuXbpArW54jIcBqA4XLlyAr6+v3GUQERFRE5w7dw5du3ZtsA0DUB1cXV0BVHdgQ880IiIiopajuLgYvr6+0vd4QxiA6lBz2cvNzY0BiIiIqJVpzPQVToImIiIixWEAIiIiIsVhACIiIiLF4RwgIiIiC6mqqkJlZaXcZbRZ9vb2sLOzs8i+GICIiIiaSQiB/Px8XLlyRe5S2rwOHTrAy8ur2ev0MQARERE1U0348fDwgLOzMxfRtQIhBMrKylBYWAgA8Pb2btb+GICIiIiaoaqqSgo/7u7ucpfTpjk5OQEACgsL4eHh0azLYZwETURE1Aw1c36cnZ1lrkQZavq5uXOtGICIiIgsgJe9bMNS/cxLYESNpNfrUVFRUe/nGo2Gw99ERK0EAxBRI+j1eiQnJ9+wXWxsLEMQEVErwEtgRI1w/ciPweCK3Fw/GAyuDbYjImrJpk6dCpVKBZVKBXt7e3h6euLuu+/GunXrYDQaG72fDRs2oEOHDtYr1Ao4AkRkpqysQKSlRUEINVQqI6KjtyMo6LDcZRFRKybnJfbIyEisX78eVVVVKCgoQHp6Op544gl8/PHH+Pzzz9GuXduMCm3zrIisxGBwlcIPAAihRlpaFPz9c6DVlshcHRG1RnJfYndwcICXlxcAwMfHB0FBQbj11ltx1113YcOGDZgxYwaWLl2K9evX45dffoFOp0N0dDQWLVqE9u3bY8+ePZg2bRqAvycoL1iwAC+//DI++OADvP322zh58iRcXFwwcuRIJCUlwcPDw+LnYS5eAiMyQ1GRuxR+agihRlGRTqaKiKi1a+ylc1teYh85ciQGDhyIbdu2AQDUajWWLVuGY8eOYePGjfjmm2/w7LPPAgCGDRuGpKQkuLm54eLFi7h48SKefvppANW3qi9cuBD/93//h08//RR5eXmYOnWqzc6jIRwBIjKDTqeHSmU0CUEqlRE6XZGMVRERWV7v3r3x008/AQDmzp0rbffz88Orr76KWbNmYeXKldBoNNBqtVCpVNJIUo2HH35Y+rlnz55YtmwZhgwZgqtXr6J9+/Y2OY/6cASIyAxabQmio7dDpaqeHFgzB4iXv4iorRFCSJe0du3ahbvuugs+Pj5wdXXF5MmTodfrUVZW1uA+MjMzER0djW7dusHV1RVhYWEAgLNnz1q9/hvhCBCRmYKCDsPfPwdFRTrodEUMP0TUJp04cQI9evRAXl4eoqKi8Nhjj+G1116DTqfD3r17MX36dFRUVNS7AnZpaSkiIiIQERGBTZs2oXPnzjh79iwiIiJaxB2zDEBEjaDRaEzea7UldQaf69sREbVG33zzDY4cOYInn3wSmZmZMBqNePPNN6FWV184+s9//mPSXqPRoKqqymTbzz//DL1ej8TERPj6+gIAfvzxR9ucQCMwABE1gru7O2JjY7kSNBG1OeXl5cjPzze5DT4hIQFRUVGYMmUKjh49isrKSixfvhzR0dHYt28fVq9ebbIPPz8/XL16FRkZGRg4cCCcnZ3RrVs3aDQaLF++HLNmzcLRo0excOFCmc6yNs4BImokd3d3eHt71/ti+CGi1ig9PR3e3t7w8/NDZGQkdu/ejWXLluGzzz6DnZ0dBg4ciKVLl+KNN95Av379sGnTJiQkJJjsY9iwYZg1axbGjRuHzp07Y9GiRejcuTM2bNiALVu2oG/fvkhMTMSSJUtkOsvaVEIIIXcRLU1xcTG0Wi0MBgPc3NzkLoeIiFqwP//8E7m5uejRowccHR3N/n251wFqbRrqb3O+v3kJzAauXeHzwgU1cnPboUePv9ClS/WdRLx0QkSkXLzELg8GICu7Ntk39AgFJnsiIuXi3/+2xzlAVlaT6Ot7hELNwzRbwi2BRERESsEAZCN8hAIREVHLwQBkIzWPULgWH6FAREQkDwYgG+EjFIiIiFoOToK2IT5CgYiIqGVgALKx+h6hQERERLbDS2BERESkOAxAVtbYh2PyIZpERNTW7NmzByqVCleuXGn07/j5+SEpKclqNdXgJTAr4wqfRETUUk2dOhUbN27Eo48+WusBp7Nnz8bKlSsRExODDRs2yFOgFTEA2QDDDRERtVS+vr5ITU3FW2+9BScnJwDVz9tKSUlBt27dZK7OengJjIiISMGCgoLg6+uLbdu2Sdu2bduGbt26ITAwUNpWXl6OOXPmwMPDA46Ojrj99ttx6NAhk33t2LEDN910E5ycnHDnnXciLy+v1vH27t2LO+64A05OTvD19cWcOXNQWlpqtfOrDwMQERFRC3L+PLB7d/U/beXhhx/G+vXrpffr1q3DtGnTTNo8++yz2Lp1KzZu3IisrCwEBAQgIiICRUXVC/qeO3cODzzwAKKjo5GdnY0ZM2Zg3rx5Jvs4c+YMIiMjMXbsWPz000/YvHkz9u7di9jYWOuf5HUYgIiIiFqItWuB7t2BkSOr/7l2rW2OO2nSJOzduxe//vorfv31V+zbtw+TJk2SPi8tLcWqVauwePFijBo1Cn379sWaNWvg5OSEtf8rctWqVfD398ebb76Jm2++GRMnTsTUqVNNjpOQkICJEydi7ty56NWrF4YNG4Zly5bh/fffx59//mmbk/0fzgEiamX0ej0n1RO1QefPAzNnAsb/PTXJaAQefRSIiAC6drXusTt37ozRo0djw4YNEEJg9OjR6NSpk/T5mTNnUFlZidtuu03aZm9vj6FDh+LEiRMAgBMnTiAkJMRkv6GhoSbv/+///g8//fQTNm3aJG0TQsBoNCI3Nxd9+vSxxunViQGIqBXR6/VITk6+YbvY2FiGIKJW5vTpv8NPjaoqICfH+gEIqL4MVnMpasWKFVY5xtWrV/Hoo49izpw5tT6z9YTrFnEJbMWKFfDz84OjoyNCQkJw8ODBetseO3YMY8eOhZ+fH1Qq1Q3XCkhMTIRKpcLcuXMtWzSRDK4f+TEYXJGb6weDwbXBdkTU8vXqBaiv+1a2swMCAmxz/MjISFRUVKCyshIREREmn/n7+0Oj0WDfvn3StsrKShw6dAh9+/YFAPTp06fW9/f3339v8j4oKAjHjx9HQEBArZet18OTPQBt3rwZcXFxWLBgAbKysjBw4EBERESgsLCwzvZlZWXo2bMnEhMT4eXl1eC+Dx06hHfeeQcDBgywRulEssrKCkRS0lxs3BiDpKS5yMoKvPEvEVGL1bUr8O671aEHqP7nO+/YZvSn+nh2OHHiBI4fPw67miL+x8XFBY899hieeeYZpKen4/jx43jkkUdQVlaG6dOnAwBmzZqF06dP45lnnsHJkyeRkpJSa/2g5557Dvv370dsbCyys7Nx+vRpfPbZZ8qcBL106VI88sgjmDZtGvr27YvVq1fD2dkZ69atq7P9kCFDsHjxYowfPx4ODg717vfq1auYOHEi1qxZg44dO1qrfCJZGAyuSEuLghDV/wkLoUZaWlStkSAial2mTwfy8qrvAsvLq35vS25ubnBzc6vzs8TERIwdOxaTJ09GUFAQcnJysHPnTuk7tlu3bti6dSs+/fRTDBw4EKtXr8brr79uso8BAwbg22+/xalTp3DHHXcgMDAQ8+fPR5cuXax+bteTdQ5QRUUFMjMzER8fL21Tq9UIDw/HgQMHmrXv2bNnY/To0QgPD8err77aYNvy8nKUl5dL74uLi5t1bCJrKypyl8JPDSHUKCrS8WG7RK1c1662G/W50QrPn376qfSzo6Mjli1bhmXLltXbPioqClFRUSbbrr+dfsiQIfjqq6/q3UddawdZg6wjQJcvX0ZVVRU8PT1Ntnt6eiI/P7/J+01NTUVWVhYSEhIa1T4hIQFarVZ6+fr6NvnYRLag0+mhUpnOllSpjNDpimSqiIiodZH9EpilnTt3Dk888QQ2bdoER0fHRv1OfHw8DAaD9Dp37pyVqyRqHq22BNHR26UQpFIZER29naM/RESNJOslsE6dOsHOzg4FBQUm2wsKCm44wbk+mZmZKCwsRFBQkLStqqoK3333HZKTk1FeXl5rcpeDg0OD84mIWqKgoMPw989BUZEOOl0Rww8RkRlkHQHSaDQIDg5GRkaGtM1oNCIjI6PW4kmNddddd+HIkSPIzs6WXoMHD8bEiRORnZ1dK/wQtSbX3yaq1ZagR49fa4UfW99OSkTU2si+EGJcXBxiYmIwePBgDB06FElJSSgtLZUmTU2ZMgU+Pj7SfJ6KigocP35c+vm3335DdnY22rdvj4CAALi6uqJfv34mx3BxcYG7u3ut7UStjbu7O2JjY7kSNFELJISQuwRFsFQ/yx6Axo0bh0uXLmH+/PnIz8/HoEGDkJ6eLk2MPnv2LNTXrAx14cIFk6fTLlmyBEuWLEFYWBj27Nlj6/KJbI7hhqhlsbe3B1C9Tp2Tk5PM1bR9ZWVlAP7u96ZSCUbWWoqLi6HVamEwGOpdD4GIiKjGxYsXceXKFXh4eMDZ2RkqlUruktocIQTKyspQWFiIDh06wNvbu1Ybc76/ZR8BIiIiau1qbtyp7ykGZDkdOnRo8o1S12IAIiIiaiaVSgVvb294eHigsrJS7nLaLHt7e4vdzMQAREREZCF2dna827iVYAAiohZBr9fz7jYishkGICKSnV6vR3Jy8g3bxcbGMgQRkUW0uUdhEFHr09DIT1PaERHdCAMQEbU4BoMrcnP9YDC4yl0KEbVRvARGRC1KVlYg0tKiIIRaeshrUNBhucsiojaGI0BE1GIYDK5S+AEAIdRIS4viSBARWRwDEBG1GEVF7lL4qSGEGkVFOpkqIqK2igGIiFoMnU4Plcposk2lMkKnK5KpIiJqqxiAiKjF0GpLEB29XQpBNXOAtNoSmSsjoraGk6CJSHYajUb6OSjoMPz9c1BUpINOV2QSfq5tR0TUHAxARCQ7d3d3xMbGciVoIrIZBiAiahEYbojIljgHiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUp0UEoBUrVsDPzw+Ojo4ICQnBwYMH62177NgxjB07Fn5+flCpVEhKSqrVZtWqVRgwYADc3Nzg5uaG0NBQfPnll1Y8AyIiImpNZA9AmzdvRlxcHBYsWICsrCwMHDgQERERKCwsrLN9WVkZevbsicTERHh5edXZpmvXrkhMTERmZiZ+/PFHjBw5Evfffz+OHTtmzVMhIiKiVkIlhBByFhASEoIhQ4YgOTkZAGA0GuHr64vHH38c8+bNa/B3/fz8MHfuXMydO/eGx9HpdFi8eDGmT59+w7bFxcXQarUwGAxwc3Nr1HkQERGRvMz5/pZ1BKiiogKZmZkIDw+XtqnVaoSHh+PAgQMWOUZVVRVSU1NRWlqK0NDQOtuUl5ejuLjY5EVERERtl6wB6PLly6iqqoKnp6fJdk9PT+Tn5zdr30eOHEH79u3h4OCAWbNm4ZNPPkHfvn3rbJuQkACtViu9fH19m3VsIiIiatlknwNkLTfffDOys7Pxww8/4LHHHkNMTAyOHz9eZ9v4+HgYDAbpde7cORtXS0RERLbUTs6Dd+rUCXZ2digoKDDZXlBQUO8E58bSaDQICAgAAAQHB+PQoUN4++238c4779Rq6+DgAAcHh2Ydj4iIiFoPWUeANBoNgoODkZGRIW0zGo3IyMiod75OUxmNRpSXl1t0n0RERNQ6yToCBABxcXGIiYnB4MGDMXToUCQlJaG0tBTTpk0DAEyZMgU+Pj5ISEgAUD1xuuZSVkVFBX777TdkZ2ejffv20ohPfHw8Ro0ahW7duqGkpAQpKSnYs2cPdu7cKc9JEhERUYsiewAaN24cLl26hPnz5yM/Px+DBg1Cenq6NDH67NmzUKv/Hqi6cOECAgMDpfdLlizBkiVLEBYWhj179gAACgsLMWXKFFy8eBFarRYDBgzAzp07cffdd9v03IiIiKhlkn0doJaI6wARERG1Pq1mHSAiIiIiOch+CYzaHr1ej4qKino/12g0cHd3t2FFREREphiAyKL0er30WJOGxMbGMgQREZFsGIDIohoa+WlKO7IMjsoREZliACKrMhhcUVTkDp1OD622RO5yFImjckREtTEAkdVkZQUiLS0KQqihUhkRHb0dQUGH5S5Lca4f+akvlHJUjoiUhAGIrMJgcJXCDwAIoUZaWhT8/XM4EiQjhlIiomq8DZ6soqjIXQo/NYRQo6hIJ1NFVF8oNRhcZa6MiMj2GIDIKnQ6PVQqo8k2lcoIna5IpoqIoZSI6G+8BNYKtYY7erTaEkRHb691uYWXv+RTE0qvDUEMpUSkVAxArUxLv6NHo9FIPwcFHYa/fw6KinTQ6YpMws+17cg2GEqJiP7GANTKtPR1dtzd3REbG9viR6iUqqFQSkSkJAxArVxLXGeH4aZluX60TastqfPPCkfliEhJGIBaMd7STI3BUTkiotoYgFoprrND5mC4ISIyxdvgWyne0kxERNR0DECtFNfZISIiajoGoFaq5pbmmhDEW5qJiIgaj3OAWhmus0NERNR8DECtDO/oISIiaj4GoFaI4YaIiKh5OAeIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSnndwFUNuj1+tRUVFR7+cajQbu7u42rIiIiMgUAxBZlF6vR3Jy8g3bxcbGMgQREZFseAmMLKqhkZ+mtCMiIrIGBiCyKoPBFbm5fjAYXOUuhYiISMJLYGQ1WVmBSEuLghBqqFRGREdvR1DQYbnLIiIiahkjQCtWrICfnx8cHR0REhKCgwcP1tv22LFjGDt2LPz8/KBSqZCUlFSrTUJCAoYMGQJXV1d4eHhgzJgxOHnypBXPgK5nMLhK4QcAhFAjLS2KI0FERNQiyB6ANm/ejLi4OCxYsABZWVkYOHAgIiIiUFhYWGf7srIy9OzZE4mJifDy8qqzzbfffovZs2fj+++/x9dff43Kykrcc889KC0tteap0DWKityl8FNDCDWKinQyVURERPQ32S+BLV26FI888gimTZsGAFi9ejW++OILrFu3DvPmzavVfsiQIRgyZAgA1Pk5AKSnp5u837BhAzw8PJCZmYnhw4db+AyoLjqdHiqV0SQEqVRG6HRFMlZFRERUTdYRoIqKCmRmZiI8PFzaplarER4ejgMHDljsOAaDAQCg09U9+lBeXo7i4mKTFzWPVluC6OjtUKmMACDNAdJqS2SujIiISOYRoMuXL6Oqqgqenp4m2z09PfHzzz9b5BhGoxFz587Fbbfdhn79+tXZJiEhAa+88opFjqd0Go1G+jko6DD8/XNQVKSDTldkEn6ubUdERGRrsl8Cs7bZs2fj6NGj2Lt3b71t4uPjERcXJ70vLi6Gr6+vLcprc9zd3REbG8uVoImIqEWTNQB16tQJdnZ2KCgoMNleUFBQ7wRnc8TGxmL79u347rvv0LVr13rbOTg4wMHBodnHo2oMN0RE1NLJOgdIo9EgODgYGRkZ0jaj0YiMjAyEhoY2eb9CCMTGxuKTTz7BN998gx49eliiXCIiImojZL8EFhcXh5iYGAwePBhDhw5FUlISSktLpbvCpkyZAh8fHyQkJAConjh9/Phx6efffvsN2dnZaN++PQICAgBUX/ZKSUnBZ599BldXV+Tn5wMAtFotnJycZDhLIiIiaklUQgghdxHJyclYvHgx8vPzMWjQICxbtgwhISEAgBEjRsDPzw8bNmwAAOTl5dU5ohMWFoY9e/YAAFQqVZ3HWb9+PaZOnXrDeoqLi6HVamEwGODm5takcyIiIiLbMuf7u0UEoJaGAYiIiKj1Mef7W/aVoImIiIhsjQGIiIiIFIcBiIiIiBSHAYiIiIgUR/bb4ImIqO3Q6/VcCZ5aBQYgIiKyCL1ej+Tk5Bu2i42NZQgi2fESGBERWURDIz9NaUdkTQxARERkFQaDK3Jz/WAwuMpdClEtvARGREQWl5UViLS0KAihhkplRHT0dgQFHZa7LCIJR4CIiMiiDAZXKfwAgBBqpKVFcSSIWhQGICIisqiiIncp/NQQQo2iIp1MFRHVxgBEREQWpdPpoVIZTbapVEbodEUyVURUGwMQERFZlFZbgujo7VIIqpkDpNWWyFwZ0d84CZqIiCxCo9FIPwcFHYa/fw6KinTQ6YpMws+17YjkwgBEREQW4e7ujtjYWK4ETa0CAxAREVkMww21FpwDRERERIrT5BGgK1euICcnBwAQEBCADh06WKomIiIiIqsyewQoLy8Po0ePRqdOnRASEoKQkBB06tQJUVFRyMvLs0KJRERERJZl1gjQuXPncOutt8Le3h4LFy5Enz59AADHjx/HqlWrEBoaikOHDqFr165WKZaIiIjIElRCCNHYxtOnT0dOTg527twJR0dHk8/++OMPREZGolevXnjvvfcsXqgtFRcXQ6vVwmAwwM3NTe5yiIisRq/X864tajPM+f42awQoPT0dmzdvrhV+AMDJyQkLFy7E+PHjzauWiFqsa78cL1xQIze3HXr0+AtdulQvcMcvx9ZNr9cjOTn5hu1iY2P575naHLMC0OXLl+Hn51fv5z179kRREZc6J2oLrv1ybOjJ3vxybL2uH/kxGFxRVOQOnU5vsnBhQyNERK2VWQHI29sbx48fr3eOz9GjR+Hl5WWRwohIXjVfevU92dvfPwdabQm/HNuIhkIuUVtk1l1gY8aMwdNPP41Lly7V+qywsBDPPfccxowZY6naiKgF4JO92776Qq7B4CpzZUTWY9YI0IIFC7Bjxw74+/tj0qRJ6N27N4QQOHHiBFJSUuDl5YX58+dbq1YikkHNk72vDUF8snfb0lDI5QNMqa0yKwB17NgRP/zwA55//nmkpqbiypUrAIAOHTrgoYcewuuvvw6djv9XSNSW1DzZ+/rLI/xibDsYckmJzF4JumPHjli1ahVWrlwpXQrr3LkzVCqVxYsjopahoSd7U+vHkEtK1ORHYahUKnh4eFiyFiJqwbTaEn4htmEMuaQ0Zj8KY8eOHZgxYwaeffZZnDhxwuSz33//HSNHjrRYcUREZD0ajcbkvVZbgh49fq0Vfq5vR9QWmDUClJKSgilTpiAyMhInT57E8uXL8d5772HixIkAqm+b/fbbb61SKBHZVmO/9Pjl2Hq5u7sjNjaWK0GTIpkVgBYvXoylS5dizpw5AID//Oc/ePjhh/Hnn39i+vTpVimQiOTBL0dl4L8/UiqzAtDp06cRHR0tvX/wwQfRuXNn3HfffaisrMQ//vEPixdIRPLhlyMRtVVmBSA3NzcUFBSgR48e0rY777wT27dvR1RUFM6fP2/xAomUiM/gIiKyLrMC0NChQ/Hll1/i1ltvNdkeFhaGtLQ0REVFWbQ4IiXiM7iIiKzPrLvAnnzyyTqfBA8AI0aMQFpaGqZMmWKRwoiU6kbP4Kp5PAGfwUVE1HRmjQAFBgYiMDAQxcXFdX4eHByM4OBgixRGpHR8PAERkfWYFYA6dOjQqBWfq6qqmlwQEVUz9/EEnDdERNR4ZgWg3bt3Sz8LIXDvvffivffeg4+Pj8ULI1I6cx5PwHlDRETmMSsAhYWFmby3s7PDrbfeip49e1q0KCKq1tjHE9xo3pC/fw602hLOGyIi+p8mPwuMiGzDnGdwcd4QEVHjmP0sMEtbsWIF/Pz84OjoiJCQEBw8eLDetseOHcPYsWPh5+cHlUqFpKSkWm2+++47REdHo0uXLlCpVPj000+tVzxRC1Mzb+haDc0bIiJSqmYHoMZMiq7P5s2bERcXhwULFiArKwsDBw5EREQECgsL62xfVlaGnj17IjExEV5eXnW2KS0txcCBA7FixYom10Ukp+Y8g6tm3lBNCGpo3hARkZKZdQnsgQceMHn/559/YtasWXBxcTHZvm3btkbtb+nSpXjkkUcwbdo0AMDq1avxxRdfYN26dZg3b16t9kOGDMGQIUMAoM7PAWDUqFEYNWpUo45P1BI19xlcjZ03RESkZGYFIK1Wa/J+0qRJTT5wRUUFMjMzER8fL21Tq9UIDw/HgQMHmrzfpigvL0d5ebn0vr51johspbl3apkzb4iISInMCkDr16+32IEvX76MqqoqeHp6mmz39PTEzz//bLHjNEZCQgJeeeUVmx6TiIiI5CP7JOiWID4+HgaDQXqdO3dO7pKIzNKceUNEREok223wnTp1gp2dHQoKCky2FxQU1DvB2VocHBzg4OBg02MSWVJz5w0RESmNbAFIo9EgODgYGRkZGDNmDADAaDQiIyMDsbGxcpVF1Gox3BARNZ6sCyHGxcUhJiYGgwcPxtChQ5GUlITS0lLprrApU6bAx8cHCQkJAKonTh8/flz6+bfffkN2djbat2+PgIAAAMDVq1eRk5MjHSM3NxfZ2dnQ6XTo1q2bjc+QiIiIWiKVEELIWUBycjIWL16M/Px8DBo0CMuWLUNISAgAYMSIEfDz88OGDRsAAHl5eejRo0etfYSFhWHPnj0AgD179uDOO++s1SYmJkbaz40UFxdDq9XCYDDAzc2tSedFREREtmXO97fsAaglYgAiIiJqfcz5/uZdYERERKQ4DEBERESkOAxAREREpDgMQERERKQ4st4GT0TUFuj1emkRygsX1MjNbYcePf5Cly5GAFyEkqglYgAiImoGvV6P5ORkAEBWViDS0qIghBoqlRHR0dsRFHQYABAbG8sQRNSC8BIYEVEz1Iz8GAyuUvgBACHUSEuLgsHgatKOiFoGBiAiIgsoKnKXwk8NIdQoKtLJVBERNYQBiIjIAnQ6PVQqo8k2lcoIna5IpoqIqCEMQEREFqDVliA6ersUgmrmAGm1JTJXRkR14SRoIiILCQo6DH//HBQV6aDTFTH8WMC1d9jVhXfYUVMxABERWZBWW8LgYyHX3mHXEN5hR03BS2BERNQiXT/yYzC4IjfXT7qzrr52RI3BESAiombQaDQWbUd1a2iNJaKmYAAiImoGd3d3xMbGcp6KFdW3xpK/fw4vN1KTMQARETUTw411NbTGEgMQNRXnABERUYvGNZbIGhiAiIioReMaS2QNvARGREQtHtdYIktjACIiohbp+jvn6ltjiXfYNd7588Dp00CvXkDXrnJXIy8GICIiapF4h51l1KymnZLihGef1cJoVEGtFli0yICHHvpDsX3IAERERC2WEr+YLalmNW2DwRVJSXMhhAoAYDSq8Mwzbvjtt3XQaksUuZo2J0ETERG1UTWjZw0tJXBtOyVhACIiImrjuJRAbQxAREREbRyXEqiNc4CIiIgUgEsJmGIAIiIiUoj6lhJQIl4CIyIiIsVhACIiIlIIg8EVubl+MBhc5S5FdrwERkRE1EaVlZVJP2dlBSItLQpCqKVJ0EFBh2u1UwqOABEREbVRzs7OAKpHfmrCD1C9BlBaWpQ0ElTTTkkYgIiIiNq4Gy2EqEQMQERERG0cF0KsjQGIiIiojeNCiLVxEjQREZECcCFEUwxARERECsGFEP/GS2BERESkOAxAREREbZRGo7Fou7aEl8CIiIjaKHd3d8TGxqKioqLeNhqNBu7u7jasqmVgACIiImrDlBhuGqNFXAJbsWIF/Pz84OjoiJCQEBw8eLDetseOHcPYsWPh5+cHlUqFpKSkZu+TiIiIlEX2ALR582bExcVhwYIFyMrKwsCBAxEREYHCwsI625eVlaFnz55ITEyEl5eXRfZJREREyqISQgg5CwgJCcGQIUOQnJwMADAajfD19cXjjz+OefPmNfi7fn5+mDt3LubOnWuxfQJAcXExtFotDAYD3NzcmnZiREREZFPmfH/LOgJUUVGBzMxMhIeHS9vUajXCw8Nx4MABm+2zvLwcxcXFJi8iIiJqu2QNQJcvX0ZVVRU8PT1Ntnt6eiI/P99m+0xISIBWq5Vevr6+TTo2ERERtQ6yzwFqCeLj42EwGKTXuXPn5C6JiIiIrEjW2+A7deoEOzs7FBQUmGwvKCiod4KzNfbp4OAABweHJh2PiIiIWh9ZR4A0Gg2Cg4ORkZEhbTMajcjIyEBoaGiL2ScRERG1LbIvhBgXF4eYmBgMHjwYQ4cORVJSEkpLSzFt2jQAwJQpU+Dj44OEhAQA1ZOcjx8/Lv3822+/ITs7G+3bt0dAQECj9klERETKJnsAGjduHC5duoT58+cjPz8fgwYNQnp6ujSJ+ezZs1Cr/x6ounDhAgIDA6X3S5YswZIlSxAWFoY9e/Y0ap9ERESkbLKvA9QScR0gIiKi1sec72/ZR4CIiKhl0uv1fIgmtVkMQEREVIter5dW0wcAg8EVRUXu0On00GpLpO2xsbEMQdQqMQAREVEt1478ZGUFIi0tCkKooVIZER29HUFBh2u1I2pNuBAiERHVy2BwlcIPAAihRlpaFAwGV5krI2oeBiAiIqpXUZG7FH5qCKFGUZFOpoqILIMBiIiI6qXT6aFSGU22qVRG6HRFMlVEbcH588Du3dX/lAsDEBER1UurLUF09HYpBNXMAbp2IjSROdauBbp3B0aOrP7n2rXy1MFJ0ERE1KCgoMPw989BUZEOOl0Rww812fnzwMyZgPF/g4pGI/Doo0BEBNC1q21rYQAiIqIb0mpLGHyo2U6f/jv81KiqAnJybB+AeAmMiIhq0Wg0Fm1HBAC9egHq65KHnR3wv0d52hRHgIiIqBZ3d3fExsZyJWiyGL1eDzu7Cixa5ITnntOiqkoFOzuBN94wwM7uD+j1tv3zxGeB1YHPAiMiIrKculcWrz2nrLkri/NZYERERNRiXD+SWN+cMluuLM45QERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERGRVLXFlca4DRERERFbVElcWZwAiIiIiq2tpj03hJTAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlKcFhGAVqxYAT8/Pzg6OiIkJAQHDx5ssP2WLVvQu3dvODo6on///tixY4fJ5wUFBZg6dSq6dOkCZ2dnREZG4vTp09Y8BSIiImpFZA9AmzdvRlxcHBYsWICsrCwMHDgQERERKCwsrLP9/v37MWHCBEyfPh2HDx/GmDFjMGbMGBw9ehQAIITAmDFj8Msvv+Czzz7D4cOH0b17d4SHh6O0tNSWp0ZEREQtlEoIIeQsICQkBEOGDEFycjIAwGg0wtfXF48//jjmzZtXq/24ceNQWlqK7du3S9tuvfVWDBo0CKtXr8apU6dw88034+jRo7jlllukfXp5eeH111/HjBkzblhTcXExtFotDAYD3NzcLHSmREREZE3mfH/LOgJUUVGBzMxMhIeHS9vUajXCw8Nx4MCBOn/nwIEDJu0BICIiQmpfXl4OAHB0dDTZp4ODA/bu3WvpUyAiIqJWSNYAdPnyZVRVVcHT09Nku6enJ/Lz8+v8nfz8/Abb9+7dG926dUN8fDx+//13VFRU4I033sD58+dx8eLFOvdZXl6O4uJikxcRERG1XbLPAbI0e3t7bNu2DadOnYJOp4OzszN2796NUaNGQa2u+3QTEhKg1Wqll6+vr42rJiIiIluSNQB16tQJdnZ2KCgoMNleUFAALy+vOn/Hy8vrhu2Dg4ORnZ2NK1eu4OLFi0hPT4der0fPnj3r3Gd8fDwMBoP0OnfuXDPPjIiIiFoyWQOQRqNBcHAwMjIypG1GoxEZGRkIDQ2t83dCQ0NN2gPA119/XWd7rVaLzp074/Tp0/jxxx9x//3317lPBwcHuLm5mbyIiIio7WondwFxcXGIiYnB4MGDMXToUCQlJaG0tBTTpk0DAEyZMgU+Pj5ISEgAADzxxBMICwvDm2++idGjRyM1NRU//vgj3n33XWmfW7ZsQefOndGtWzccOXIETzzxBMaMGYN77rlHlnMkIiKilkX2ADRu3DhcunQJ8+fPR35+PgYNGoT09HRpovPZs2dN5u4MGzYMKSkpePHFF/H888+jV69e+PTTT9GvXz+pzcWLFxEXF4eCggJ4e3tjypQpeOmll2x+bkRERNQyyb4OUEvEdYCIiIhan1azDhARERGRHBiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcdrJXQARERG1Hnq9HhUVFfV+rtFo4O7ubsOKmoYBiIiIiBpFr9cjOTn5hu1iY2NbfAjiJTAiIiJqlIZGfprSTk4MQERERKQ4DEBERESkOAxAREREpDgMQERERNQkBoMrcnP9YDC4yl2K2VpEAFqxYgX8/Pzg6OiIkJAQHDx4sMH2W7ZsQe/eveHo6Ij+/ftjx44dJp9fvXoVsbGx6Nq1K5ycnNC3b1+sXr3amqdARESkKFlZgUhKmouNG2OQlDQXWVmBcpdkFtkD0ObNmxEXF4cFCxYgKysLAwcOREREBAoLC+tsv3//fkyYMAHTp0/H4cOHMWbMGIwZMwZHjx6V2sTFxSE9PR0ffvghTpw4gblz5yI2Nhaff/65rU6LiIiozTIYXJGWFgUhqmOEEGqkpUW1qpEg2QPQ0qVL8cgjj2DatGnSSI2zszPWrVtXZ/u3334bkZGReOaZZ9CnTx8sXLgQQUFBJusS7N+/HzExMRgxYgT8/Pwwc+ZMDBw48IYjS0RERFQ/jUYDACgqcpfCTw0h1Cgq0pm0a8lkDUAVFRXIzMxEeHi4tE2tViM8PBwHDhyo83cOHDhg0h4AIiIiTNoPGzYMn3/+OX777TcIIbB7926cOnUK99xzT537LC8vR3FxscmLiIiITLm7uyM2NhaPPx4JtVqYfGZnJ/D446NaxSKIgMwB6PLly6iqqoKnp6fJdk9PT+Tn59f5O/n5+Tdsv3z5cvTt2xddu3aFRqNBZGQkVqxYgeHDh9e5z4SEBGi1Wunl6+vbzDMjIiJqm9zd3REc7Il331XBzq56m50d8M47KgQHe7aK8AO00UdhLF++HN9//z0+//xzdO/eHd999x1mz56NLl261Bo9AoD4+HjExcVJ74uLixmCiIiIGjB9OhARAeTkAAEBQNeucldkHlkDUKdOnWBnZ4eCggKT7QUFBfDy8qrzd7y8vBps/8cff+D555/HJ598gtGjRwMABgwYgOzsbCxZsqTOAOTg4AAHBwdLnBIREZFidO3a+oJPDVkvgWk0GgQHByMjI0PaZjQakZGRgdDQ0Dp/JzQ01KQ9AHz99ddS+8rKSlRWVkKtNj01Ozs7GI1GC58BERERtUayXwKLi4tDTEwMBg8ejKFDhyIpKQmlpaWYNm0aAGDKlCnw8fFBQkICAOCJJ55AWFgY3nzzTYwePRqpqan48ccf8e677wIA3NzcEBYWhmeeeQZOTk7o3r07vv32W7z//vtYunSpbOdJRERELYfsAWjcuHG4dOkS5s+fj/z8fAwaNAjp6enSROezZ8+ajOYMGzYMKSkpePHFF/H888+jV69e+PTTT9GvXz+pTWpqKuLj4zFx4kQUFRWhe/fueO211zBr1iybnx8RERG1PCohhLhxM2UpLi6GVquFwWCAm5ub3OUQERFRI5jz/S37QohEREREtsYARERERIrDAERERESKwwBEREREisMARERERIrDAERERESKwwBEREREiiP7QogtUc3SSMXFxTJXQkRERI1V873dmCUOGYDqUFJSAgB8IjwREVErVFJSAq1W22AbrgRdB6PRiAsXLsDV1RUqlarONsXFxfD19cW5c+cUv1o0+6Ia+6Ea++Fv7Itq7Idq7Ie/WasvhBAoKSlBly5daj0U/XocAaqDWq1G165dG9XWzc1N8X+Qa7AvqrEfqrEf/sa+qMZ+qMZ++Js1+uJGIz81OAmaiIiIFIcBiIiIiBSHAaiJHBwcsGDBAjg4OMhdiuzYF9XYD9XYD39jX1RjP1RjP/ytJfQFJ0ETERGR4nAEiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAagBK1asgJ+fHxwdHRESEoKDBw/W2/bYsWMYO3Ys/Pz8oFKpkJSUZLtCbcCcvlizZg3uuOMOdOzYER07dkR4eHiD7VsTc/ph27ZtGDx4MDp06AAXFxcMGjQIH3zwgQ2rtR5z+uFaqampUKlUGDNmjHULtCFz+mLDhg1QqVQmL0dHRxtWaz3m/pm4cuUKZs+eDW9vbzg4OOCmm27Cjh07bFSt9ZjTDyNGjKj150GlUmH06NE2rNg6zP3zkJSUhJtvvhlOTk7w9fXFk08+iT///NO6RQqqU2pqqtBoNGLdunXi2LFj4pFHHhEdOnQQBQUFdbY/ePCgePrpp8VHH30kvLy8xFtvvWXbgq3I3L546KGHxIoVK8Thw4fFiRMnxNSpU4VWqxXnz5+3ceWWZW4/7N69W2zbtk0cP35c5OTkiKSkJGFnZyfS09NtXLllmdsPNXJzc4WPj4+44447xP3332+bYq3M3L5Yv369cHNzExcvXpRe+fn5Nq7a8szth/LycjF48GBx7733ir1794rc3FyxZ88ekZ2dbePKLcvcftDr9SZ/Fo4ePSrs7OzE+vXrbVu4hZnbD5s2bRIODg5i06ZNIjc3V+zcuVN4e3uLJ5980qp1MgDVY+jQoWL27NnS+6qqKtGlSxeRkJBww9/t3r17mwpAzekLIYT466+/hKurq9i4caO1SrSJ5vaDEEIEBgaKF1980Rrl2UxT+uGvv/4Sw4YNE++9956IiYlpMwHI3L5Yv3690Gq1NqrOdszth1WrVomePXuKiooKW5VoE839O+Ktt94Srq6u4urVq9Yq0SbM7YfZs2eLkSNHmmyLi4sTt912m1Xr5CWwOlRUVCAzMxPh4eHSNrVajfDwcBw4cEDGymzPEn1RVlaGyspK6HQ6a5Vpdc3tByEEMjIycPLkSQwfPtyapVpVU/vh3//+Nzw8PDB9+nRblGkTTe2Lq1evonv37vD19cX999+PY8eO2aJcq2lKP3z++ecIDQ3F7Nmz4enpiX79+uH1119HVVWVrcq2OEv8Xbl27VqMHz8eLi4u1irT6prSD8OGDUNmZqZ0meyXX37Bjh07cO+991q1Vj4MtQ6XL19GVVUVPD09TbZ7enri559/lqkqeViiL5577jl06dLF5D+I1qap/WAwGODj44Py8nLY2dlh5cqVuPvuu61drtU0pR/27t2LtWvXIjs72wYV2k5T+uLmm2/GunXrMGDAABgMBixZsgTDhg3DsWPHGv0A5pamKf3wyy+/4JtvvsHEiROxY8cO5OTk4F//+hcqKyuxYMECW5Rtcc39u/LgwYM4evQo1q5da60SbaIp/fDQQw/h8uXLuP322yGEwF9//YVZs2bh+eeft2qtDEBkVYmJiUhNTcWePXvazGRPc7i6uiI7OxtXr15FRkYG4uLi0LNnT4wYMULu0myipKQEkydPxpo1a9CpUye5y5FdaGgoQkNDpffDhg1Dnz598M4772DhwoUyVmZbRqMRHh4eePfdd2FnZ4fg4GD89ttvWLx4casNQM21du1a9O/fH0OHDpW7FJvbs2cPXn/9daxcuRIhISHIycnBE088gYULF+Kll16y2nEZgOrQqVMn2NnZoaCgwGR7QUEBvLy8ZKpKHs3piyVLliAxMRG7du3CgAEDrFmm1TW1H9RqNQICAgAAgwYNwokTJ5CQkNBqA5C5/XDmzBnk5eUhOjpa2mY0GgEA7dq1w8mTJ+Hv72/doq3EEn9P2NvbIzAwEDk5OdYo0Saa0g/e3t6wt7eHnZ2dtK1Pnz7Iz89HRUUFNBqNVWu2hub8eSgtLUVqair+/e9/W7NEm2hKP7z00kuYPHkyZsyYAQDo378/SktLMXPmTLzwwgtQq60zW4dzgOqg0WgQHByMjIwMaZvRaERGRobJ/70pQVP7YtGiRVi4cCHS09MxePBgW5RqVZb6M2E0GlFeXm6NEm3C3H7o3bs3jhw5guzsbOl133334c4770R2djZ8fX1tWb5FWeLPRFVVFY4cOQJvb29rlWl1TemH2267DTk5OVIYBoBTp07B29u7VYYfoHl/HrZs2YLy8nJMmjTJ2mVaXVP6oaysrFbIqQnHwpqPK7XqFOtWLDU1VTg4OIgNGzaI48ePi5kzZ4oOHTpIt6xOnjxZzJs3T2pfXl4uDh8+LA4fPiy8vb3F008/LQ4fPixOnz4t1ylYjLl9kZiYKDQajfj4449NbvEsKSmR6xQswtx+eP3118VXX30lzpw5I44fPy6WLFki2rVrJ9asWSPXKViEuf1wvbZ0F5i5ffHKK6+InTt3ijNnzojMzEwxfvx44ejoKI4dOybXKViEuf1w9uxZ4erqKmJjY8XJkyfF9u3bhYeHh3j11VflOgWLaOp/G7fffrsYN26crcu1GnP7YcGCBcLV1VV89NFH4pdffhFfffWV8Pf3Fw8++KBV62QAasDy5ctFt27dhEajEUOHDhXff/+99FlYWJiIiYmR3ufm5goAtV5hYWG2L9wKzOmL7t2719kXCxYssH3hFmZOP7zwwgsiICBAODo6io4dO4rQ0FCRmpoqQ9WWZ04/XK8tBSAhzOuLuXPnSm09PT3FvffeK7KysmSo2vLM/TOxf/9+ERISIhwcHETPnj3Fa6+9Jv766y8bV2155vbDzz//LACIr776ysaVWpc5/VBZWSlefvll4e/vLxwdHYWvr6/417/+JX7//Xer1qgSwprjS0REREQtD+cAERERkeIwABEREZHiMAARERGR4jAAERERkeIwABEREZHiMAARERGR4jAAERERkeIwABERyWjq1KkYM2aM3GUQKQ4DEBHVaerUqVCpVNLL3d0dkZGR+Omnn+QuzSKuPbea1+2332614+Xl5UGlUiE7O9tk+9tvv40NGzZY7bhEVDcGICKqV2RkJC5evIiLFy8iIyMD7dq1Q1RUlNxlWcz69eul87t48SI+//zzOttVVlZarQatVosOHTpYbf9EVDcGICKql4ODA7y8vODl5YVBgwZh3rx5OHfuHC5duoSRI0ciNjbWpP2lS5eg0WikJ0H7+flh4cKFmDBhAlxcXODj44MVK1aY/M7SpUvRv39/uLi4wNfXF//6179w9epV6fNff/0V0dHR6NixI1xcXHDLLbdgx44dAIDff/8dEydOROfOneHk5IRevXph/fr1jT6/Dh06SOfn5eUFnU4njdRs3rwZYWFhcHR0xKZNm6DX6zFhwgT4+PjA2dkZ/fv3x0cffWSyP6PRiEWLFiEgIAAODg7o1q0bXnvtNQBAjx49AACBgYFQqVQYMWIEgNqXwMrLyzFnzhx4eHjA0dERt99+Ow4dOiR9vmfPHqhUKmRkZGDw4MFwdnbGsGHDcPLkyUafNxExABFRI129ehUffvghAgIC4O7ujhkzZiAlJQXl5eVSmw8//BA+Pj4YOXKktG3x4sUYOHAgDh8+jHnz5uGJJ57A119/LX2uVquxbNkyHDt2DBs3bsQ333yDZ599Vvp89uzZKC8vx3fffYcjR47gjTfeQPv27QEAL730Eo4fP44vv/wSJ06cwKpVq9CpUyeLnG9NrSdOnEBERAT+/PNPBAcH44svvsDRo0cxc+ZMTJ48GQcPHpR+Jz4+HomJiVJdKSkp8PT0BACp3a5du3Dx4kVs27atzuM+++yz2Lp1KzZu3IisrCwEBAQgIiICRUVFJu1eeOEFvPnmm/jxxx/Rrl07PPzwwxY5byLFsOqjVomo1YqJiRF2dnbCxcVFuLi4CADC29tbZGZmCiGE+OOPP0THjh3F5s2bpd8ZMGCAePnll6X33bt3F5GRkSb7HTdunBg1alS9x92yZYtwd3eX3vfv399kn9eKjo4W06ZNa9L5ARCOjo7S+bm4uIhPPvlE5ObmCgAiKSnphvsYPXq0eOqpp4QQQhQXFwsHBwexZs2aOtvW7Pfw4cMm22NiYsT9998vhBDi6tWrwt7eXmzatEn6vKKiQnTp0kUsWrRICCHE7t27BQCxa9cuqc0XX3whAIg//vjDnC4gUjSOABFRve68805kZ2cjOzsbBw8eREREBEaNGoVff/0Vjo6OmDx5MtatWwcAyMrKwtGjRzF16lSTfYSGhtZ6f+LECen9rl27cNddd8HHxweurq6YPHky9Ho9ysrKAABz5szBq6++ittuuw0LFiwwmYT92GOPITU1FYMGDcKzzz6L/fv3m3V+b731lnR+2dnZuPvuu6XPBg8ebNK2qqoKCxcuRP/+/aHT6dC+fXvs3LkTZ8+eBQCcOHEC5eXluOuuu8yq4VpnzpxBZWUlbrvtNmmbvb09hg4datJnADBgwADpZ29vbwBAYWFhk49NpDQMQERULxcXFwQEBCAgIABDhgzBe++9h9LSUqxZswYAMGPGDHz99dc4f/481q9fj5EjR6J79+6N3n9eXh6ioqIwYMAAbN26FZmZmdIcoYqKCukYv/zyCyZPnowjR45g8ODBWL58OQBIYezJJ5/EhQsXcNddd+Hpp59u9PG9vLyk8wsICICLi4vJuV9r8eLFePvtt/Hcc89h9+7dyM7ORkREhFSnk5NTo49rCfb29tLPKpUKQPUcJCJqHAYgImo0lUoFtVqNP/74AwDQv39/DB48GGvWrEFKSkqd81C+//77Wu/79OkDAMjMzITRaMSbb76JW2+9FTfddBMuXLhQax++vr6YNWsWtm3bhqeeekoKYADQuXNnxMTE4MMPP0RSUhLeffddS56yZN++fbj//vsxadIkDBw4ED179sSpU6ekz3v16gUnJydpAvj1NBoNgOqRpPr4+/tDo9Fg37590rbKykocOnQIffv2tdCZEBEAtJO7ACJqucrLy5Gfnw+g+o6r5ORkXL16FdHR0VKbGTNmIDY2Fi4uLvjHP/5Rax/79u3DokWLMGbMGHz99dfYsmULvvjiCwBAQEAAKisrsXz5ckRHR2Pfvn1YvXq1ye/PnTsXo0aNwk033YTff/8du3fvlgLU/PnzERwcjFtuuQXl5eXYvn279Jml9erVCx9//DH279+Pjh07YunSpSgoKJCCiaOjI5577jk8++yz0Gg0uO2223Dp0iUcO3YM06dPh4eHB5ycnJCeno6uXbvC0dERWq3W5BguLi547LHH8Mwzz0Cn06Fbt25YtGgRysrKMH36dKucF5FScQSIiOqVnp4Ob29veHt7IyQkBIcOHcKWLVukW7gBYMKECWjXrh0mTJgAR0fHWvt46qmn8OOPPyIwMBCvvvoqli5dioiICADAwIEDsXTpUrzxxhvo168fNm3ahISEBJPfr6qqwuzZs9GnTx9ERkbipptuwsqVKwFUj6rEx8djwIABGD58OOzs7JCammqVvnjxxRcRFBSEiIgIjBgxAl5eXrVWcH7ppZfw1FNPYf78+ejTpw/GjRsnzctp164dli1bhnfeeQddunTB/fffX+dxEhMTMXbsWEyePBlBQUHIycnBzp070bFjR6ucF5FSqYQQQu4iiKj1ysvLg7+/Pw4dOoSgoCCTz/z8/DB37lzMnTtXnuKIiOrBS2BE1CSVlZXQ6/V48cUXceutt9YKP0RELRkvgRFRk+zbtw/e3t44dOhQrXk7cnv99dfRvn37Ol+jRo2SuzwiagF4CYyI2pyioqJaKyfXcHJygo+Pj40rIqKWhgGIiIiIFIeXwIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcf4/7uXmcfch0YgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATkRJREFUeJzt3XtcVHX+P/DXzMgAIowOyFV0uJj3GyCElZhR6CrJrltqXtA011YypJt08bKWWJKRYVqul7ZkcU1r1QxL0trS0kC+eU8N01RQhxwQEoj5/P7wx8mRi4DMnIHzej4e84g585lz3ucTMa8+5zOfoxJCCBAREREpkFruAoiIiIjkwiBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIEREZMfWrVsHlUqF06dPy10KUavEIESkcPv370dCQgJ69eoFFxcXdO7cGQ8//DB+/PHHGm2HDBkClUoFlUoFtVoNNzc3dOvWDRMnTsTnn3/eqONu3boVUVFR8PT0RNu2bREYGIiHH34YWVlZzXVqNSxatAgff/xxje179uzB/PnzceXKFasd+2bz58+X+lKlUqFt27bo2bMnXnzxRRQXFzfLMTIyMpCWltYs+yJqrRiEiBTu1VdfxaZNm3DffffhzTffxPTp0/HVV18hJCQEhw4dqtG+U6dOeP/99/Gvf/0LS5YswYMPPog9e/bggQcewJgxY1BZWXnLY6ampuLBBx+ESqVCcnIy3njjDYwePRonTpxAZmamNU4TQP1BaMGCBTYNQtVWrFiB999/H0uXLkX37t3xyiuvYNiwYWiO20AyCBHdWhu5CyAieSUlJSEjIwNarVbaNmbMGPTp0weLFy/GBx98YNFep9NhwoQJFtsWL16MWbNm4e2334bBYMCrr75a5/F+//13LFy4EPfffz8+++yzGq9fvHjxNs/IfpSVlaFt27b1tvnrX/8KDw8PAMCMGTMwevRobN68Gd9++y0iIyNtUSaRonFEiEjhBg0aZBGCAKBr167o1asXjh492qB9aDQaLFu2DD179kR6ejpMJlOdbS9fvozi4mLcddddtb7u6elp8fzatWuYP38+7rjjDjg5OcHHxwd/+ctfcOrUKalNamoqBg0aBHd3dzg7OyM0NBQffvihxX5UKhVKS0vx3nvvSZejJk+ejPnz5+OZZ54BAAQEBEiv3Tgn54MPPkBoaCicnZ2h1+sxduxYnD171mL/Q4YMQe/evZGTk4PBgwejbdu2eP755xvUfzcaOnQoACA/P7/edm+//TZ69eoFR0dH+Pr6YubMmRYjWkOGDMEnn3yCn3/+WTong8HQ6HqIWjuOCBFRDUIIFBYWolevXg1+j0ajwbhx4/DSSy/h66+/xogRI2pt5+npCWdnZ2zduhVPPPEE9Hp9nfusqqrCyJEjkZ2djbFjx+LJJ59ESUkJPv/8cxw6dAhBQUEAgDfffBMPPvggxo8fj4qKCmRmZuKhhx7Ctm3bpDref/99TJs2DeHh4Zg+fToAICgoCC4uLvjxxx/x73//G2+88YY0OtOxY0cAwCuvvIKXXnoJDz/8MKZNm4ZLly7hrbfewuDBg3HgwAG0b99eqtdoNGL48OEYO3YsJkyYAC8vrwb3X7XqgOfu7l5nm/nz52PBggWIjo7G448/juPHj2PFihXYv38/vvnmGzg4OOCFF16AyWTCL7/8gjfeeAMA0K5du0bXQ9TqCSKim7z//vsCgFi9erXF9qioKNGrV6863/fRRx8JAOLNN9+sd/9z584VAISLi4sYPny4eOWVV0ROTk6NdmvWrBEAxNKlS2u8ZjabpZ/LysosXquoqBC9e/cWQ4cOtdju4uIi4uPja+xryZIlAoDIz8+32H769Gmh0WjEK6+8YrH94MGDok2bNhbbo6KiBACxcuXKOs/7RvPmzRMAxPHjx8WlS5dEfn6+eOedd4Sjo6Pw8vISpaWlQggh1q5da1HbxYsXhVarFQ888ICoqqqS9peeni4AiDVr1kjbRowYIbp06dKgeoiUipfGiMjCsWPHMHPmTERGRiI+Pr5R760ecSgpKam33YIFC5CRkYEBAwZgx44deOGFFxAaGoqQkBCLy3GbNm2Ch4cHnnjiiRr7UKlU0s/Ozs7Sz7/++itMJhPuuece5ObmNqr+m23evBlmsxkPP/wwLl++LD28vb3RtWtX7Nq1y6K9o6MjpkyZ0qhjdOvWDR07dkRAQAD+9re/ITg4GJ988kmdc4t27tyJiooKJCYmQq3+40/4Y489Bjc3N3zyySeNP1EiBeOlMSKSFBQUYMSIEdDpdPjwww+h0Wga9f6rV68CAFxdXW/Zdty4cRg3bhyKi4vx3XffYd26dcjIyEBsbCwOHToEJycnnDp1Ct26dUObNvX/qdq2bRtefvll5OXloby8XNp+Y1hqihMnTkAIga5du9b6uoODg8VzPz+/GvOtbmXTpk1wc3ODg4MDOnXqJF3uq8vPP/8M4HqAupFWq0VgYKD0OhE1DIMQEQEATCYThg8fjitXruB///sffH19G72P6q/bBwcHN/g9bm5uuP/++3H//ffDwcEB7733Hr777jtERUU16P3/+9//8OCDD2Lw4MF4++234ePjAwcHB6xduxYZGRmNPocbmc1mqFQqfPrpp7WGwpvn3Nw4MtVQgwcPluYlEZHtMQgREa5du4bY2Fj8+OOP2LlzJ3r27NnofVRVVSEjIwNt27bF3Xff3aQ6wsLC8N577+HChQsArk9m/u6771BZWVlj9KXapk2b4OTkhB07dsDR0VHavnbt2hpt6xohqmt7UFAQhBAICAjAHXfc0djTsYouXboAAI4fP47AwEBpe0VFBfLz8xEdHS1tu90RMSIl4BwhIoWrqqrCmDFjsHfvXmzcuLFJa9dUVVVh1qxZOHr0KGbNmgU3N7c625aVlWHv3r21vvbpp58C+OOyz+jRo3H58mWkp6fXaCv+/4KDGo0GKpUKVVVV0munT5+udeFEFxeXWhdNdHFxAYAar/3lL3+BRqPBggULaixwKISA0Wis/SStKDo6GlqtFsuWLbOoafXq1TCZTBbf1nNxcal3KQMi4ogQkeI99dRT2LJlC2JjY1FUVFRjAcWbF080mUxSm7KyMpw8eRKbN2/GqVOnMHbsWCxcuLDe45WVlWHQoEG48847MWzYMPj7++PKlSv4+OOP8b///Q9xcXEYMGAAAGDSpEn417/+haSkJOzbtw/33HMPSktLsXPnTvz973/HqFGjMGLECCxduhTDhg3DI488gosXL2L58uUIDg7GDz/8YHHs0NBQ7Ny5E0uXLoWvry8CAgIQERGB0NBQAMALL7yAsWPHwsHBAbGxsQgKCsLLL7+M5ORknD59GnFxcXB1dUV+fj4++ugjTJ8+HU8//fRt9X9jdezYEcnJyViwYAGGDRuGBx98EMePH8fbb7+NgQMHWvz7Cg0NxYYNG5CUlISBAweiXbt2iI2NtWm9RHZPzq+sEZH8qr/2Xdejvrbt2rUTXbt2FRMmTBCfffZZg45XWVkpVq1aJeLi4kSXLl2Eo6OjaNu2rRgwYIBYsmSJKC8vt2hfVlYmXnjhBREQECAcHByEt7e3+Otf/ypOnToltVm9erXo2rWrcHR0FN27dxdr166Vvp5+o2PHjonBgwcLZ2dnAcDiq/QLFy4Ufn5+Qq1W1/gq/aZNm8Tdd98tXFxchIuLi+jevbuYOXOmOH78uEXf1Le0wM2q67t06VK97W7++ny19PR00b17d+Hg4CC8vLzE448/Ln799VeLNlevXhWPPPKIaN++vQDAr9IT1UIlRDPc0IaIiIioBeIcISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwuqFgLs9mM8+fPw9XVlUvUExERtRBCCJSUlMDX1xdqdcPGehiEanH+/Hn4+/vLXQYRERE1wdmzZ9GpU6cGtWUQqoWrqyuA6x1Z3z2TiIiIyH4UFxfD399f+hxvCAahWlRfDnNzc2MQIiIiamEaM62Fk6WJiIhIsRiEiIiISLEYhIiIiEixOEeIiIiomVRVVaGyslLuMlotBwcHaDSaZt0ngxAREdFtEkKgoKAAV65ckbuUVq99+/bw9vZutnX+GISIiIhuU3UI8vT0RNu2bbkYrxUIIVBWVoaLFy8CAHx8fJplvwxCREREt6GqqkoKQe7u7nKX06o5OzsDAC5evAhPT89muUzGydJERES3oXpOUNu2bWWuRBmq+7m55mIxCBERETUDXg6zjebuZwYhIiIiUiwGISIiIlIsBiGShdFoxIULF3DhwgXk5BTiww+NyMkplLYZjUa5SyQiavUmT54MlUoFlUoFBwcHeHl54f7778eaNWtgNpsbvJ9169ahffv21ivUivitMQUxGo2oqKgAAJw/r0Z+fhsEBPwOX9/rv+xardYm33gwGo1IT08HAOTmDsDWrSMhhBoqlRmxsdsQEnIAAJCQkMBvYBCRItz497k21vz7PGzYMKxduxZVVVUoLCxEVlYWnnzySXz44YfYsmUL2rRp3VGhdZ8dSewpfFT/x24yuUp1AIAQamzdOhJBQSeh05XU+0eBiKi1uPHvc32s9ffZ0dER3t7eAAA/Pz+EhITgzjvvxH333Yd169Zh2rRpWLp0KdauXYuffvoJer0esbGxeO2119CuXTvs3r0bU6ZMAfDHROZ58+Zh/vz5eP/99/Hmm2/i+PHjcHFxwdChQ5GWlgZPT89mP4+msotLY8uXL4fBYICTkxMiIiKwb9++OtsePnwYo0ePhsFggEqlQlpaWo028+fPl4b6qh/du3e34hnYv1uFD5PJ1aKdLRQVuUt1VBNCjaIivc1qICKSW0P/7try7/PQoUPRr18/bN68GQCgVquxbNkyHD58GO+99x6++OILPPvsswCAQYMGIS0tDW5ubtL0hqeffhrA9a+4L1y4EP/3f/+Hjz/+GKdPn8bkyZNtdh4NIfuI0IYNG5CUlISVK1ciIiICaWlpiImJwfHjx2tNjGVlZQgMDMRDDz2E2bNn17nfXr16YefOndLz1j6011D1hQ+drsSmtej1RqhUZot6VCoz9Poim9ZBREQ1de/eHT/88AMAIDExUdpuMBjw8ssvY8aMGXj77beh1Wqh0+mgUqmkkaVqjz76qPRzYGAgli1bhoEDB+Lq1ato166dTc7jVmQfEVq6dCkee+wxTJkyBT179sTKlSvRtm1brFmzptb2AwcOxJIlSzB27Fg4OjrWud82bdrA29tbenh4eFjrFFqU6vBxI7nCh05XgtjYbVI91ZfpbB3IiIioJiGEdKlr586duO++++Dn5wdXV1dMnDgRRqMRZWVl9e4jJycHsbGx6Ny5M1xdXREVFQUAOHPmjNXrbyhZg1BFRQVycnIQHR0tbVOr1YiOjsbevXtva98nTpyAr68vAgMDMX78+Ho7vby8HMXFxRaP1srewkdIyAEkJqYhPn4dEhPTpLlKREQkr6NHjyIgIACnT5/GyJEj0bdvX2zatAk5OTlYvnw5gPov15WWliImJgZubm5Yv3499u/fj48++uiW77M1Wa8XXb58GVVVVfDy8rLY7uXlhWPHjjV5vxEREVi3bh26deuGCxcuYMGCBbjnnntw6NAhuLq61mifkpKCBQsWNPl4LU1IyAEEBZ1EUZEeen2R7CMwOl2J7DUQEdEfvvjiCxw8eBCzZ89GTk4OzGYzXn/9dajV18dP/vOf/1i012q1qKqqsth27NgxGI1GLF68GP7+/gCA77//3jYn0AiyXxqzhuHDh+Ohhx5C3759ERMTg+3bt+PKlSs1/sVVS05Ohslkkh5nz561ccW2p9OVICDgZwYQIiKFKy8vR0FBAc6dO4fc3FwsWrQIo0aNwsiRIzFp0iQEBwejsrISb731Fn766Se8//77WLlypcU+DAYDrl69iuzsbFy+fBllZWXo3LkztFqt9L4tW7Zg4cKFMp1l3WQNQh4eHtBoNCgsLLTYXlhYWGPC1e1o37497rjjDpw8ebLW1x0dHeHm5mbxIOvRarXN2o6IiJouKysLPj4+MBgMGDZsGHbt2oVly5bhv//9LzQaDfr164elS5fi1VdfRe/evbF+/XqkpKRY7GPQoEGYMWMGxowZg44dO+K1115Dx44dsW7dOmzcuBE9e/bE4sWLkZqaKtNZ1k3WS2NarRahoaHIzs5GXFwcAMBsNiM7OxsJCQnNdpyrV6/i1KlTmDhxYrPts6Wxp/Dh7u6OhIQE2RYPIyKyJ3L+fV63bh3WrVt3y3azZ8+u8U3tmz9TV6xYgRUrVlhsGzduHMaNG2exTQjRtGKtRPbvlCclJSE+Ph5hYWEIDw9HWloaSktLpcWZJk2aBD8/Pyl9VlRU4MiRI9LP586dQ15eHtq1a4fg4GAAwNNPP43Y2Fh06dIF58+fx7x586DRaGr8y1ASewsfDDlERNfZ299npZE9CI0ZMwaXLl3C3LlzUVBQgP79+yMrK0uaQH3mzBlpchYAnD9/HgMGDJCep6amIjU1FVFRUdi9ezcA4JdffsG4ceNgNBrRsWNH3H333fj222/RsWNHm56bveF/RERE9ol/n+WjEvY2RmUHiouLodPpYDKZOF+IiIjqde3aNeTn5yMgIABOTk5yl9Pq1dffTfn8bpXfGiMiIiJqCAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiKyit27d0OlUuHKlSsNfo/BYEBaWprVaroZgxAREZFCTZ48GSqVCjNmzKjx2syZM6FSqTB58mTbF2ZDDEJEREQK5u/vj8zMTPz222/StmvXriEjIwOdO3eWsTLbYBAiIiJSsJCQEPj7+2Pz5s3Sts2bN6Nz584Wt7QqLy/HrFmz4OnpCScnJ9x9993Yv3+/xb62b9+OO+64A87Ozrj33ntx+vTpGsf7+uuvcc8998DZ2Rn+/v6YNWsWSktLrXZ+t8IgREREZEd++QXYtev6P23l0Ucfxdq1a6Xna9askW5+Xu3ZZ5/Fpk2b8N577yE3NxfBwcGIiYlBUVERAODs2bP4y1/+gtjYWOTl5WHatGmYM2eOxT5OnTqFYcOGYfTo0fjhhx+wYcMGfP3110hISLD+SdaBQYiIiMhOrF4NdOkCDB16/Z+rV9vmuBMmTMDXX3+Nn3/+GT///DO++eYbTJgwQXq9tLQUK1aswJIlSzB8+HD07NkTq1atgrOzM1b//yJXrFiBoKAgvP766+jWrRvGjx9fY35RSkoKxo8fj8TERHTt2hWDBg3CsmXL8K9//QvXrl2zzcneRPa7zxMREdH1EaDp0wGz+fpzsxn429+AmBigUyfrHrtjx44YMWIE1q1bByEERowYAQ8PD+n1U6dOobKyEnfddZe0zcHBAeHh4Th69CgA4OjRo4iIiLDYb2RkpMXz//u//8MPP/yA9evXS9uEEDCbzcjPz0ePHj2scXr1YhAiIiKyAydO/BGCqlVVASdPWj8IAdcvj1Vfolq+fLlVjnH16lX87W9/w6xZs2q8JtfEbAYhIiIiO9C1K6BWW4YhjQYIDrbN8YcNG4aKigqoVCrExMRYvBYUFAStVotvvvkGXbp0AQBUVlZi//79SExMBAD06NEDW7ZssXjft99+a/E8JCQER44cQbCtTqoBOEeIiIjIDnTqBLz77vXwA1z/5zvv2GY06PrxNDh69CiOHDkCTXUR/5+Liwsef/xxPPPMM8jKysKRI0fw2GOPoaysDFOnTgUAzJgxAydOnMAzzzyD48ePIyMjA+vWrbPYz3PPPYc9e/YgISEBeXl5OHHiBP773//KOlmaI0JERER2YurU63OCTp68PhJkqxBUzc3Nrc7XFi9eDLPZjIkTJ6KkpARhYWHYsWMHOnToAOD6pa1NmzZh9uzZeOuttxAeHo5Fixbh0UcflfbRt29ffPnll3jhhRdwzz33QAiBoKAgjBkzxurnVheVEELIdnQ7VVxcDJ1OB5PJVO8vBRER0bVr15Cfn4+AgAA4OTnJXU6rV19/N+Xzm5fGiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLH4rTEiajZGoxEVFRV1vq7VauHu7m7Diohsh989so3m7mcGISJqFkajEenp6bdsl5CQwDBErYqDgwMAoKysDM7OzjJX0/qVlZUB+KPfbxeDEBE1i/pGgprSjqil0Gg0aN++PS5evAgAaNu2LVQqlcxVtT5CCJSVleHixYto3759jUUfm4pBiIiI6DZ5e3sDgBSGyHrat28v9XdzYBAiIqswmVxRVOQOvd4Ina5E7nKIrEqlUsHHxweenp6orKyUu5xWy8HBodlGgqoxCBFRs8vNHYCtW0dCCDVUKjNiY7chJOSA3GURWZ1Go2n2D2qyLn59noialcnkKoUgABBCja1bR8JkcpW5MiKimhiEiKhZFRW5SyGomhBqFBXpZaqIiKhuDEJE1Kz0eiNUKrPFNpXKDL2+SKaKiIjqxiBERM1Cq9UCAHS6EsTGbpPCUPUcoeoJ09XtiIjsgUpwKcwaiouLodPpYDKZ4ObmJnc5RC3GjStLnz+vxunTbWAw/A5f3+uhiCtLE5E1NeXzm98aI6Jmc2PI8fEBQkNlLIaIqAF4aYyIiIgUi0GIiIiIFItBiIiIiBTLLoLQ8uXLYTAY4OTkhIiICOzbt6/OtocPH8bo0aNhMBigUqmQlpZW774XL14MlUqFxMTE5i2aiIiIWjzZg9CGDRuQlJSEefPmITc3F/369UNMTEydN64rKytDYGAgFi9efMubru3fvx/vvPMO+vbta43SiYiIqIWTPQgtXboUjz32GKZMmYKePXti5cqVaNu2LdasWVNr+4EDB2LJkiUYO3YsHB0d69zv1atXMX78eKxatQodOnSwVvlERETUgskahCoqKpCTk4Po6Ghpm1qtRnR0NPbu3Xtb+545cyZGjBhhse+6lJeXo7i42OJBRERErZ+sQejy5cuoqqqCl5eXxXYvLy8UFBQ0eb+ZmZnIzc1FSkpKg9qnpKRAp9NJD39//yYfm4iIiFoO2S+NNbezZ8/iySefxPr16+Hk5NSg9yQnJ8NkMkmPs2fPWrlKIiIisgeyrizt4eEBjUaDwsJCi+2FhYW3nAhdl5ycHFy8eBEhISHStqqqKnz11VdIT09HeXk5NBqNxXscHR3rnW9ERERErZOsI0JarRahoaHIzs6WtpnNZmRnZyMyMrJJ+7zvvvtw8OBB5OXlSY+wsDCMHz8eeXl5NUIQERERKZfs9xpLSkpCfHw8wsLCEB4ejrS0NJSWlmLKlCkAgEmTJsHPz0+a71NRUYEjR45IP587dw55eXlo164dgoOD4erqit69e1scw8XFBe7u7jW2ExERkbLJHoTGjBmDS5cuYe7cuSgoKED//v2RlZUlTaA+c+YM1Oo/Bq7Onz+PAQMGSM9TU1ORmpqKqKgo7N6929blExERUQumEkIIuYuwN8XFxdDpdDCZTHBzc5O7HCIiImqApnx+yz4iRC2b0WhERUVFna9rtVq4u7vbsCIiIqKGYxCiJjMajUhPT79lu4SEBIahVoThl4haEwYharKbPwxNJlcUFblDrzdCpyupsx21XAy/RNTaMAhRs8jNHYCtW0dCCDVUKjNiY7chJOSA3GVRM2toqGX4JaKWotWtLE22ZzK5SiEIAIRQY+vWkTCZXGWujKzNZHJFfr6B/66JqMXiiBDdtqIidykEVRNCjaIivcUlMmpdOApIRK0BR4Totun1RqhUZottKpUZen2RTBWRtXEUkIhaCwYhum06XQliY7dJYah6dICjQa1XfaOAREQtCS+NUbMICTmAoKCTKCrSQ68vYghq5apHAW8MQxwFJKKWiCNC1GRardbiuU5XgoCAn2uEoJvbUcvHUUAiai04IkRN5u7ujoSEBC6upyA3htr6RgEZfomopeC9xmrBe40R1Y0rSxORveK9xojI6hhyiKg14RwhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsLqioIFwRmIiIyBKDkEIYjUakp6ffsl1CQgLDEBERKQYvjSlEfSNBTWlHRETUGjAIKZTJ5Ir8fANMJle5SyEiIpINL40pUG7uAGzdOhJCqKFSmREbuw0hIQfkLouIiMjmOCKkMCaTqxSCAEAINbZuHcmRISIiUiQGIYUpKnKXQlA1IdQoKtLLVBEREZF8GIQURq83QqUyW2xTqczQ64tkqoiIiEg+DEIKo9OVIDZ2mxSGqucI6XQlMldGRERke5wsrRBarVb6OSTkAIKCTqKoSA+9vsgiBN3Yjqg5cUFPIrJHDEIK4e7ujoSEBH4QkSy4oCcR2SsGIQXhBwzJhQt6EpG94hwhIrI5LuhJRPaCI0JEZFNc0JOI7AlHhIjIZrigJxHZGwYhIrIZLuhJRPbGLoLQ8uXLYTAY4OTkhIiICOzbt6/OtocPH8bo0aNhMBigUqmQlpZWo82KFSvQt29fuLm5wc3NDZGRkfj000+teAZE1BBc0JOI7I3sQWjDhg1ISkrCvHnzkJubi379+iEmJgYXL16stX1ZWRkCAwOxePFieHt719qmU6dOWLx4MXJycvD9999j6NChGDVqFA4fPmzNUyGiW+CCnkRkb1RCCCFnARERERg4cKC0xojZbIa/vz+eeOIJzJkzp973GgwGJCYmIjEx8ZbH0ev1WLJkCaZOnXrLtsXFxdDpdDCZTHBzc2vQeRBR3W5eR8hkcq11QU+uI0REt6Mpn9+yfmusoqICOTk5SE5Olrap1WpER0dj7969zXKMqqoqbNy4EaWlpYiMjKy1TXl5OcrLy6XnxcXFzXJsIrqOC3oSkb2SNQhdvnwZVVVV8PLystju5eWFY8eO3da+Dx48iMjISFy7dg3t2rXDRx99hJ49e9baNiUlBQsWLLit4xFR/RhyiMgeyT5HyFq6deuGvLw8fPfdd3j88ccRHx+PI0eO1No2OTkZJpNJepw9e9bG1RIREZEcZB0R8vDwgEajQWFhocX2wsLCOidCN5RWq0VwcDAAIDQ0FPv378ebb76Jd955p0ZbR0dHODo63tbxiIiIqOWRdURIq9UiNDQU2dnZ0jaz2Yzs7Ow65/M0ldlstpgHRERERCT7LTaSkpIQHx+PsLAwhIeHIy0tDaWlpZgyZQoAYNKkSfDz80NKSgqA6xOsqy9xVVRU4Ny5c8jLy0O7du2kEaDk5GQMHz4cnTt3RklJCTIyMrB7927s2LFDnpMkIiIiuyR7EBozZgwuXbqEuXPnoqCgAP3790dWVpY0gfrMmTNQq/8YuDp//jwGDBggPU9NTUVqaiqioqKwe/duAMDFixcxadIkXLhwATqdDn379sWOHTtw//332/TciIiIyL7Jvo6QPeI6QkRERC1PUz6/W+23xoiIiIhuhUGIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBRL9ltsEBEZjUZUVFTU+bpWq4W7u7sNKyIipWAQIiJZGY1GpKen37JdQkICwxARNTteGiMiWd08EmQyuSI/3wCTybXedkREzYEjQkRkN3JzB2Dr1pEQQg2VyozY2G0ICTkgd1lE1IpxRIiI7ILJ5CqFIAAQQo2tW0fWGBkiImpOHBGyAU4EJbq1oiJ3KQRVE0KNoiI9dLoSmaoiotaOQcjKOBGUqGH0eiNUKrNFGFKpzNDri2SsiohaO14as7KGTvDkRFBSOp2uBLGx26BSmQFAmiPE0SAisiaOCBGR3QgJOYCgoJMoKtJDry9iCCIiq2MQIiJZabVai+c6XUmtAejmdkREzYFBiIhk5e7ujoSEBH6hgIhkwSBkYyaTK4qK3KHXGznsT/T/MeQQkVwYhGyIi8URERHZF35rzEa4WBwREZH9YRCysuoJnvUtFndjOyIiIrIdlRBCyF2EvSkuLoZOp4PJZIKbm9tt789oNOL06d8RHu4Js1klbddoBL777iIMhjacI0FERHSbmvL5zREhG3B3d0doqBfefVcFjeb6No0GeOcdFUJDvRiCiIiIZMLJ0jY0dSoQEwOcPAkEBwOdOsldERERkbIxCNlYp04MQERERPaCQYiI6AZGo5GLOxIpCIMQkZ3gB7D8jEYj0tPTped1LYCakJDAfxdErQSDEJEduPkDuC78ALauG4NofQug1hdYiahl4bfGiOzAzR+sJpMr8vMNNRbc5AewbXABVCLl4IgQkZ3hrVjkV98CqLxHIFHrwhEhIjvCkQj7oNcboVKZLbapVGbo9UUyVURE1sIgRGRHbnUrFrINna4EsbHbpDBUPTLH0SCi1oeXxojsSPVIxI1hiCMR8ggJOYCgoJMoKtJDry9iCCJqpTgiRGRHOBJhX3S6EgQE/Mz+J2rF7CIILV++HAaDAU5OToiIiMC+ffvqbHv48GGMHj0aBoMBKpUKaWlpNdqkpKRg4MCBcHV1haenJ+Li4nD8+HErngFR8wkJOYDExDTEx69DYmIaJ0rbkFarbdZ2RGT/ZL80tmHDBiQlJWHlypWIiIhAWloaYmJicPz4cXh6etZoX1ZWhsDAQDz00EOYPXt2rfv88ssvMXPmTAwcOBC///47nn/+eTzwwAM4cuQIXFxcrH1KRI128werTldS6ygEP4Cty93dHQkJCVzYkkhBVEIIIWcBERERGDhwoLSYnNlshr+/P5544gnMmTOn3vcaDAYkJiYiMTGx3naXLl2Cp6cnvvzySwwePPiWNRUXF0On08FkMsHNza3B50J0O7iyNBHR7WnK57esI0IVFRXIyclBcnKytE2tViM6Ohp79+5ttuOYTCYAgF5f+zdvysvLUV5eLj0vLi5utmMTNRRDDhGR7ck6R+jy5cuoqqqCl5eXxXYvLy8UFBQ0yzHMZjMSExNx1113oXfv3rW2SUlJgU6nkx7+/v7NcmwiIiKyb3YxWdqaZs6ciUOHDiEzM7PONsnJyTCZTNLj7NmzNqyQiIiI5CLrpTEPDw9oNBoUFhZabC8sLIS3t/dt7z8hIQHbtm3DV199hU6dOtXZztHREY6Ojrd9PCIiImpZZB0R0mq1CA0NRXZ2trTNbDYjOzsbkZGRTd6vEAIJCQn46KOP8MUXXyAgIKA5yiUiIqJWRvavzyclJSE+Ph5hYWEIDw9HWloaSktLMWXKFADApEmT4Ofnh5SUFADXJ1gfOXJE+vncuXPIy8tDu3btEBwcDOD65bCMjAz897//haurqzTfSKfTwdnZWYazJCIiInsk+9fnASA9PR1LlixBQUEB+vfvj2XLliEiIgIAMGTIEBgMBqxbtw4AcPr06VpHeKKiorB7924AgEqlqvU4a9euxeTJk29ZD78+T0RE1PI05fPbLoKQvWEQIiIianma8vnd6r81RkRERFSXJs8RunLlCk6ePAkACA4ORvv27ZurJiIiIiKbaPSI0OnTpzFixAh4eHggIiICERER8PDwwMiRI3H69GkrlEhERERkHY0aETp79izuvPNOODg4YOHChejRowcA4MiRI1ixYgUiIyOxf//+etfsISIiIrIXjZosPXXqVJw8eRI7duyAk5OTxWu//fYbhg0bhq5du+Kf//xnsxdqS5wsTURE1PJY/aarWVlZ2LBhQ40QBADOzs5YuHAhxo4d25hdEhEREcmmUXOELl++DIPBUOfrgYGBKCoqut2aiIiIiGyiUUHIx8dHWtW5NocOHWqWe4QRERER2UKjglBcXByefvppXLp0qcZrFy9exHPPPYe4uLjmqo2IiIjIqho1WfrXX39FREQECgoKMGHCBHTv3h1CCBw9ehQZGRnw9vbGt99+C71eb82arY6TpYmIiFoeq0+W7tChA7777js8//zzyMzMxJUrVwAA7du3xyOPPIJFixa1+BBEREREytHke40JIaRLZB07dqzzRqctEUeEiIiIWh6rjwjdSKVSwdPTs6lvJyIiIpJdo2+xsX37dkybNg3PPvssjh49avHar7/+iqFDhzZbcURERETW1KgglJGRgQcffBAFBQXYu3cvQkJCsH79eun1iooKfPnll81eJBEREZE1NOrS2JIlS7B06VLMmjULAPCf//wHjz76KK5du4apU6dapUAiIiIia2lUEDpx4gRiY2Ol5w8//DA6duyIBx98EJWVlfjzn//c7AUSERERWUujgpCbmxsKCwsREBAgbbv33nuxbds2jBw5Er/88kuzF0hERERkLY2aIxQeHo5PP/20xvaoqChs3boVaWlpzVUXERERkdU1KgjNnj271jvPA8CQIUOwdetWTJo0qVkKIyIiIrK2Ri2oWFxc3KB2LX0RQi6oSERE1PJYfUHF9u3bN2gF6aqqqsbsloiIiEgWjQpCu3btkn4WQuBPf/oT/vnPf8LPz6/ZCyMiIiKytkYFoaioKIvnGo0Gd955JwIDA5u1KCIiIiJbaPQtNoiIiIhaiybfdJWIWjaj0YiKioo6X9dqtXB3d7dhRaQk/P0je3HbQaghk6eJyL4YjUakp6dLz00mVxQVuUOvN0KnK5G2JyQk8MOImt3Nv3914e8f2UKjgtBf/vIXi+fXrl3DjBkz4OLiYrF98+bNt18ZEVnNjf8nnps7AFu3joQQaqhUZsTGbkNIyIEa7Yiay82/V3UFcf7+kS00KgjpdDqL5xMmTGjWYojItkwmVykEAYAQamzdOhJBQSctPpCIrKW+IE5kC40KQmvXrrVWHUQkg6IidykEVRNCjaIiPYMQWR2DONkDTpYmUjC93giVymwRhlQqM/T6IhmrIqVgELe+Gyelnz+vRn5+GwQE/A5fXzMATkoHGISIFE2nK0Fs7LYalyb4IUS2wCBuXTdOSq/vEqTSJ6UzCBEpXEjIAQQFnURRkR56fRFDENkMg7h1VY8E3eoSpNInpTMIERF0uhJ++JAsGMStj5cg68cgRKRAWq22WdsRNcbNv1d1BXH+/jUPXoKsH4MQkQK5u7sjISGBK/uSLPj7Z1u8BFk/BiEiheKHDMmJv3+2xUuQdZP9pqvLly+HwWCAk5MTIiIisG/fvjrbHj58GKNHj4bBYIBKpUJaWlqNNl999RViY2Ph6+sLlUqFjz/+2HrFExERtRA6XQkCAn5mCLqJrEFow4YNSEpKwrx585Cbm4t+/fohJiYGFy9erLV9WVkZAgMDsXjxYnh7e9faprS0FP369cPy5cutWToREVGjGY1GXLhwoc6H0WiUu0TFkfXS2NKlS/HYY49hypQpAICVK1fik08+wZo1azBnzpwa7QcOHIiBAwcCQK2vA8Dw4cMxfPhw6xVNRETUBLa+2Sy/FNEwsgWhiooK5OTkIDk5WdqmVqsRHR2NvXv32rSW8vJylJeXS8+Li4ttenwiImr9bH2zWU5KbxjZgtDly5dRVVUFLy8vi+1eXl44duyYTWtJSUnBggULbHpMIiJSLlvdbFbpIachZJ8sbQ+Sk5NhMpmkx9mzZ+UuiYiIWqm6Vno2mVxlrkyZZBsR8vDwgEajQWFhocX2wsLCOidCW4ujoyMcHR1tekwiIlImrvRsX2QbEdJqtQgNDUV2dra0zWw2Izs7G5GRkXKVRUREZFXVKz3fiCs9y0fWb40lJSUhPj4eYWFhCA8PR1paGkpLS6VvkU2aNAl+fn5ISUkBcH0C2ZEjR6Sfz507h7y8PLRr1w7BwcEAgKtXr+LkyZPSMfLz85GXlwe9Xo/OnTvb+AyJiIgscaVn+yJrEBozZgwuXbqEuXPnoqCgAP3790dWVpY0gfrMmTNQq/8YtDp//jwGDBggPU9NTUVqaiqioqKwe/duAMD333+Pe++9V2qTlJQEAIiPj8e6deusf1JERES3wJWe7YdKCCHkLsLeFBcXQ6fTwWQywc3NTe5yiIioFbD1OkJK1JTPb95rjIiIyAa4ro99YhAiIiKyEYYc+8MgRETUAEajUfo/+fPn1cjPb4OAgN/h63v92z/8P3milolBiIjoFm6c21HfisCc20HU8nBlaSKiW6geCbrVisDNdY8oIrIdBiEiogaqb0VgImqZGISIiBqIKwITtT4MQkREDVS9InB1GOKKwEQtHydLExE1AlcEJmpdGISIiBpJpythACJqJXhpjIiIiBSLI0JERLeg1WqbtR1RY924oGdtuKBn0zEIERHdAu8RRXLizVqti0GIiKgB+AFDcrk5gJtMrigqcodeb7SYq8YFPZuGQYiIiKiFqO8WL9Q0nCxNRETUAtzqFi/UNAxCRERELQBv8WIdDEJEREQtAG/xYh0MQkRERC0Ab/FiHZwsTURE1ELwFi/Nj0GIiIjIjt28UGddt3jhgp5NwyBERERkx7igp3UxCBEREdk5hhzr4WRpIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsfmuMiIiokYxGI7/O3kowCBERETWC0WhEenr6LdslJCQwDLUAvDRGRETUCDePBJlMrsjPN8Bkcq23HdknjggRERE1UW7uAGzdOhJCqKWboIaEHJC7LGoEjggRERE1gcnkKoUgABBCja1bR9YYGSL7xiBERETUBEVF7lIIqiaEGkVFepkqoqZgECIiImoCvd4IlcpssU2lMkOvL5KpImoKBiEiIqIm0OlKEBu7TQpD1XOEdLoSmSujxuBkaSIioiYKCTmAoKCTKCrSQ68vYghqgexiRGj58uUwGAxwcnJCREQE9u3bV2fbw4cPY/To0TAYDFCpVEhLS7vtfRIRETWUVqu1eK7TlSAg4OcaIejmdvbGaDTiwoULdT6MRqPcJdqE7CNCGzZsQFJSElauXImIiAikpaUhJiYGx48fh6enZ432ZWVlCAwMxEMPPYTZs2c3yz6JiIgayt3dHQkJCS16ZembF4U0mVxRVOQOvd5oEeiUsCikSggh5CwgIiICAwcOlP6FmM1m+Pv744knnsCcOXPqfa/BYEBiYiISExObbZ8AUFxcDJ1OB5PJBDc3t6adGBERkZ26cOEC3n33XQD1r4U0ffp0+Pj4yFlqozTl81vWS2MVFRXIyclBdHS0tE2tViM6Ohp79+612T7Ly8tRXFxs8SAiImrtuBaSzEHo8uXLqKqqgpeXl8V2Ly8vFBQU2GyfKSkp0Ol00sPf379JxyYiImpJuBaSnUyWlltycjJMJpP0OHv2rNwlERERWR3XQpI5CHl4eECj0aCwsNBie2FhIby9vW22T0dHR7i5uVk8iIiIWjuuhSTzt8a0Wi1CQ0ORnZ2NuLg4ANcnNmdnZyMhIcFu9klERNRaKX0tJNm/Pp+UlIT4+HiEhYUhPDwcaWlpKC0txZQpUwAAkyZNgp+fH1JSUgBcnwx95MgR6edz584hLy8P7dq1Q3BwcIP2SURERH/Q6UoUF4CqyR6ExowZg0uXLmHu3LkoKChA//79kZWVJU12PnPmDNTqP67gnT9/HgMGDJCep6amIjU1FVFRUdi9e3eD9klERKRkDV3s0d4XhWwOsq8jZI+4jhAREbV2RqOxRS8KWZumfH7LPiJEREREttfSQo618OvzREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYdhGEli9fDoPBACcnJ0RERGDfvn31tt+4cSO6d+8OJycn9OnTB9u3b7d4vbCwEJMnT4avry/atm2LYcOG4cSJE9Y8BSIiImqBZA9CGzZsQFJSEubNm4fc3Fz069cPMTExuHjxYq3t9+zZg3HjxmHq1Kk4cOAA4uLiEBcXh0OHDgEAhBCIi4vDTz/9hP/+9784cOAAunTpgujoaJSWltry1IiIiMjOqYQQQs4CIiIiMHDgQKSnpwMAzGYz/P398cQTT2DOnDk12o8ZMwalpaXYtm2btO3OO+9E//79sXLlSvz444/o1q0bDh06hF69ekn79Pb2xqJFizBt2rRb1lRcXAydTgeTyQQ3N7dmOlMiIiKypqZ8fss6IlRRUYGcnBxER0dL29RqNaKjo7F3795a37N3716L9gAQExMjtS8vLwcAODk5WezT0dERX3/9dXOfAhEREbVgsgahy5cvo6qqCl5eXhbbvby8UFBQUOt7CgoK6m3fvXt3dO7cGcnJyfj1119RUVGBV199Fb/88gsuXLhQ6z7Ly8tRXFxs8SAiIqLWT/Y5Qs3NwcEBmzdvxo8//gi9Xo+2bdti165dGD58ONTq2k83JSUFOp1Oevj7+9u4aiIiIpKDrEHIw8MDGo0GhYWFFtsLCwvh7e1d63u8vb1v2T40NBR5eXm4cuUKLly4gKysLBiNRgQGBta6z+TkZJhMJulx9uzZ2zwzIiIiaglkDUJarRahoaHIzs6WtpnNZmRnZyMyMrLW90RGRlq0B4DPP/+81vY6nQ4dO3bEiRMn8P3332PUqFG17tPR0RFubm4WDyIiImr92shdQFJSEuLj4xEWFobw8HCkpaWhtLQUU6ZMAQBMmjQJfn5+SElJAQA8+eSTiIqKwuuvv44RI0YgMzMT33//Pd59911pnxs3bkTHjh3RuXNnHDx4EE8++STi4uLwwAMPyHKOREREZJ9kD0JjxozBpUuXMHfuXBQUFKB///7IysqSJkSfOXPGYm7PoEGDkJGRgRdffBHPP/88unbtio8//hi9e/eW2ly4cAFJSUkoLCyEj48PJk2ahJdeesnm50ZERET2TfZ1hOwR1xEiIiJqeVrcOkJEREREcmIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWojdwFERETU+hmNRlRUVNT5ularhbu7uw0ruo5BiIiIiKzKaDQiPT39lu0SEhJsHoZ4aYyIiIisqr6RoKa0a04MQkRERKRYDEJERERkUyaTK/LzDTCZXOUuhXOEiIiIyHZycwdg69aREEINlcqM2NhtCAk5IFs9djEitHz5chgMBjg5OSEiIgL79u2rt/3GjRvRvXt3ODk5oU+fPti+fbvF61evXkVCQgI6deoEZ2dn9OzZEytXrrTmKRAREdEtmEyuUggCACHU2Lp1pKwjQ7IHoQ0bNiApKQnz5s1Dbm4u+vXrh5iYGFy8eLHW9nv27MG4ceMwdepUHDhwAHFxcYiLi8OhQ4ekNklJScjKysIHH3yAo0ePIjExEQkJCdiyZYutTouIiIhuUlTkLoWgakKoUVSkl6kiOwhCS5cuxWOPPYYpU6ZIIzdt27bFmjVram3/5ptvYtiwYXjmmWfQo0cPLFy4ECEhIRZfy9uzZw/i4+MxZMgQGAwGTJ8+Hf369bvlSBMRERFZj15vhEplttimUpmh1xfJVJHMQaiiogI5OTmIjo6WtqnVakRHR2Pv3r21vmfv3r0W7QEgJibGov2gQYOwZcsWnDt3DkII7Nq1Cz/++CMeeOAB65wIERER1Umr1QIAdLoSxMZuk8JQ9Rwhna7Eop0tyTpZ+vLly6iqqoKXl5fFdi8vLxw7dqzW9xQUFNTavqCgQHr+1ltvYfr06ejUqRPatGkDtVqNVatWYfDgwbXus7y8HOXl5dLz4uLipp4SERER3cTd3R0JCQnSOkFz517C6dNtYDD8Dl/fgQAGcmXp5vTWW2/h22+/xZYtW9ClSxd89dVXmDlzJnx9fWuMJgFASkoKFixYIEOlREREynBjyPHxAUJDZSzmBrIGIQ8PD2g0GhQWFlpsLywshLe3d63v8fb2rrf9b7/9hueffx4fffQRRowYAQDo27cv8vLykJqaWmsQSk5ORlJSkvS8uLgY/v7+t3VuREREZP9knSOk1WoRGhqK7OxsaZvZbEZ2djYiIyNrfU9kZKRFewD4/PPPpfaVlZWorKyEWm15ahqNBmaz5QStao6OjnBzc7N4EBERUesn+6WxpKQkxMfHIywsDOHh4UhLS0NpaSmmTJkCAJg0aRL8/PyQkpICAHjyyScRFRWF119/HSNGjEBmZia+//57vPvuuwAANzc3REVF4ZlnnoGzszO6dOmCL7/8Ev/617+wdOlS2c6TiIiI7I/sQWjMmDG4dOkS5s6di4KCAvTv3x9ZWVnShOgzZ85YjO4MGjQIGRkZePHFF/H888+ja9eu+Pjjj9G7d2+pTWZmJpKTkzF+/HgUFRWhS5cueOWVVzBjxgybnx8RERHZL5UQQshdhL0pLi6GTqeDyWTiZTIiIqIWoimf37IvqEhEREQkFwYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIs2dcRskfVKwrw5qtEREQtR/XndmNWBmIQqkVJSQkA8H5jRERELVBJSQl0Ol2D2nJBxVqYzWacP38erq6uUKlUtbapvjHr2bNnuegi2B+1YZ9YYn9YYn/UxD6xxP6w1JD+EEKgpKQEvr6+Ne45WheOCNVCrVajU6dODWrLm7RaYn/UxD6xxP6wxP6oiX1iif1h6Vb90dCRoGqcLE1ERESKxSBEREREisUg1ESOjo6YN28eHB0d5S7FLrA/amKfWGJ/WGJ/1MQ+scT+sGSt/uBkaSIiIlIsjggRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEI1WP58uUwGAxwcnJCREQE9u3bV2fbw4cPY/To0TAYDFCpVEhLS7NdoTbSmP5YtWoV7rnnHnTo0AEdOnRAdHR0ve1bqsb0yebNmxEWFob27dvDxcUF/fv3x/vvv2/Daq2vMf1xo8zMTKhUKsTFxVm3QBtrTH+sW7cOKpXK4uHk5GTDam2jsb8jV65cwcyZM+Hj4wNHR0fccccd2L59u42qtb7G9MeQIUNq/I6oVCqMGDHChhVbV2N/P9LS0tCtWzc4OzvD398fs2fPxrVr1xp3UEG1yszMFFqtVqxZs0YcPnxYPPbYY6J9+/aisLCw1vb79u0TTz/9tPj3v/8tvL29xRtvvGHbgq2ssf3xyCOPiOXLl4sDBw6Io0ePismTJwudTid++eUXG1duPY3tk127donNmzeLI0eOiJMnT4q0tDSh0WhEVlaWjSu3jsb2R7X8/Hzh5+cn7rnnHjFq1CjbFGsDje2PtWvXCjc3N3HhwgXpUVBQYOOqrauxfVJeXi7CwsLEn/70J/H111+L/Px8sXv3bpGXl2fjyq2jsf1hNBotfj8OHTokNBqNWLt2rW0Lt5LG9sf69euFo6OjWL9+vcjPzxc7duwQPj4+Yvbs2Y06LoNQHcLDw8XMmTOl51VVVcLX11ekpKTc8r1dunRpdUHodvpDCCF+//134erqKt577z1rlWhzt9snQggxYMAA8eKLL1qjPJtrSn/8/vvvYtCgQeKf//yniI+Pb1VBqLH9sXbtWqHT6WxUnTwa2ycrVqwQgYGBoqKiwlYl2tTt/g154403hKurq7h69aq1SrSpxvbHzJkzxdChQy22JSUlibvuuqtRx+WlsVpUVFQgJycH0dHR0ja1Wo3o6Gjs3btXxsrk0Rz9UVZWhsrKSuj1emuVaVO32ydCCGRnZ+P48eMYPHiwNUu1iab2xz/+8Q94enpi6tSptijTZpraH1evXkWXLl3g7++PUaNG4fDhw7Yo1yaa0idbtmxBZGQkZs6cCS8vL/Tu3RuLFi1CVVWVrcq2mub4u7p69WqMHTsWLi4u1irTZprSH4MGDUJOTo50+eynn37C9u3b8ac//alRx+ZNV2tx+fJlVFVVwcvLy2K7l5cXjh07JlNV8mmO/njuuefg6+tr8UvekjW1T0wmE/z8/FBeXg6NRoO3334b999/v7XLtbqm9MfXX3+N1atXIy8vzwYV2lZT+qNbt25Ys2YN+vbtC5PJhNTUVAwaNAiHDx9u8E2g7VlT+uSnn37CF198gfHjx2P79u04efIk/v73v6OyshLz5s2zRdlWc7t/V/ft24dDhw5h9erV1irRpprSH4888gguX76Mu+++G0II/P7775gxYwaef/75Rh2bQYisbvHixcjMzMTu3btb5eTPxnB1dUVeXh6uXr2K7OxsJCUlITAwEEOGDJG7NJsqKSnBxIkTsWrVKnh4eMhdjl2IjIxEZGSk9HzQoEHo0aMH3nnnHSxcuFDGyuRjNpvh6emJd999FxqNBqGhoTh37hyWLFnS4oPQ7Vq9ejX69OmD8PBwuUuRze7du7Fo0SK8/fbbiIiIwMmTJ/Hkk09i4cKFeOmllxq8HwahWnh4eECj0aCwsNBie2FhIby9vWWqSj630x+pqalYvHgxdu7cib59+1qzTJtqap+o1WoEBwcDAPr374+jR48iJSWlxQehxvbHqVOncPr0acTGxkrbzGYzAKBNmzY4fvw4goKCrFu0FTXH3xAHBwcMGDAAJ0+etEaJNteUPvHx8YGDgwM0Go20rUePHigoKEBFRQW0Wq1Va7am2/kdKS0tRWZmJv7xj39Ys0Sbakp/vPTSS5g4cSKmTZsGAOjTpw9KS0sxffp0vPDCC1CrGzb7h3OEaqHVahEaGors7Gxpm9lsRnZ2tsX/sSlFU/vjtddew8KFC5GVlYWwsDBblGozzfU7YjabUV5ebo0Sbaqx/dG9e3ccPHgQeXl50uPBBx/Evffei7y8PPj7+9uy/GbXHL8fVVVVOHjwIHx8fKxVpk01pU/uuusunDx5UgrJAPDjjz/Cx8enRYcg4PZ+RzZu3Ijy8nJMmDDB2mXaTFP6o6ysrEbYqQ7NojG3UW3kpG7FyMzMFI6OjmLdunXiyJEjYvr06aJ9+/bS11knTpwo5syZI7UvLy8XBw4cEAcOHBA+Pj7i6aefFgcOHBAnTpyQ6xSaVWP7Y/HixUKr1YoPP/zQ4uueJSUlcp1Cs2tsnyxatEh89tln4tSpU+LIkSMiNTVVtGnTRqxatUquU2hWje2Pm7W2b401tj8WLFggduzYIU6dOiVycnLE2LFjhZOTkzh8+LBcp9DsGtsnZ86cEa6uriIhIUEcP35cbNu2TXh6eoqXX35ZrlNoVk39b+buu+8WY8aMsXW5VtfY/pg3b55wdXUV//73v8VPP/0kPvvsMxEUFCQefvjhRh2XQageb731lujcubPQarUiPDxcfPvtt9JrUVFRIj4+Xnqen58vANR4REVF2b5wK2lMf3Tp0qXW/pg3b57tC7eixvTJCy+8IIKDg4WTk5Po0KGDiIyMFJmZmTJUbT2N6Y+btbYgJETj+iMxMVFq6+XlJf70pz+J3NxcGaq2rsb+juzZs0dEREQIR0dHERgYKF555RXx+++/27hq62lsfxw7dkwAEJ999pmNK7WNxvRHZWWlmD9/vggKChJOTk7C399f/P3vfxe//vpro46pEqIx40dERERErQfnCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgREclo8uTJiIuLk7sMIsViECKiWk2ePBkqlUp6uLu7Y9iwYfjhhx/kLq1Z3Hhu1Y+7777basc7ffo0VCoV8vLyLLa/+eabWLdundWOS0T1YxAiojoNGzYMFy5cwIULF5CdnY02bdpg5MiRcpfVbNauXSud34ULF7Bly5Za21VWVlqtBp1Oh/bt21tt/0RUPwYhIqqTo6MjvL294e3tjf79+2POnDk4e/YsLl26hKFDhyIhIcGi/aVLl6DVaqU7SBsMBixcuBDjxo2Di4sL/Pz8sHz5cov3LF26FH369IGLiwv8/f3x97//HVevXpVe//nnnxEbG4sOHTrAxcUFvXr1wvbt2wEAv/76K8aPH4+OHTvC2dkZXbt2xdq1axt8fu3bt5fOz9vbG3q9Xhq52bBhA6KiouDk5IT169fDaDRi3Lhx8PPzQ9u2bdGnTx/8+9//ttif2WzGa6+9huDgYDg6OqJz58545ZVXAAABAQEAgAEDBkClUmHIkCEAal4aKy8vx6xZs+Dp6QknJyfcfffd2L9/v/T67t27oVKpkJ2djbCwMLRt2xaDBg3C8ePHG3zeRPQHBiEiapCrV6/igw8+QHBwMNzd3TFt2jRkZGSgvLxcavPBBx/Az88PQ4cOlbYtWbIE/fr1w4EDBzBnzhw8+eST+Pzzz6XX1Wo1li1bhsOHD+O9997DF198gWeffVZ6febMmSgvL8dXX32FgwcP4tVXX0W7du0AAC+99BKOHDmCTz/9FEePHsWKFSvg4eHRLOdbXevRo0cRExODa9euITQ0FJ988gkOHTqE6dOnY+LEidi3b5/0nuTkZCxevFiqKyMjA15eXgAgtdu5cycuXLiAzZs313rcZ599Fps2bcJ7772H3NxcBAcHIyYmBkVFRRbtXnjhBbz++uv4/vvv0aZNGzz66KPNct5EitMst4slolYnPj5eaDQa4eLiIlxcXAQA4ePjI3JycoQQQvz222+iQ4cOYsOGDdJ7+vbtK+bPny8979Klixg2bJjFfseMGSOGDx9e53E3btwo3N3dped9+vSx2OeNYmNjxZQpU5p0fgCEk5OTdH4uLi7io48+Evn5+QKASEtLu+U+RowYIZ566ikhhBDFxcXC0dFRrFq1qta21fs9cOCAxfb4+HgxatQoIYQQV69eFQ4ODmL9+vXS6xUVFcLX11e89tprQgghdu3aJQCInTt3Sm0++eQTAUD89ttvjekCIhJCcESIiOp07733Ii8vD3l5edi3bx9iYmIwfPhw/Pzzz3BycsLEiROxZs0aAEBubi4OHTqEyZMnW+wjMjKyxvOjR49Kz3fu3In77rsPfn5+cHV1xcSJE2E0GlFWVgYAmDVrFl5++WXcddddmDdvnsVk7ccffxyZmZno378/nn32WezZs6dR5/fGG29I55eXl4f7779fei0sLMyibVVVFRYuXIg+ffpAr9ejXbt22LFjB86cOQMAOHr0KMrLy3Hfffc1qoYbnTp1CpWVlbjrrrukbQ4ODggPD7foMwDo27ev9LOPjw8A4OLFi00+NpFSMQgRUZ1cXFwQHByM4OBgDBw4EP/85z9RWlqKVatWAQCmTZuGzz//HL/88gvWrl2LoUOHokuXLg3e/+nTpzFy5Ej07dsXmzZtQk5OjjSHqKKiQjrGTz/9hIkTJ+LgwYMICwvDW2+9BQBSKJs9ezbOnz+P++67D08//XSDj+/t7S2dX3BwMFxcXCzO/UZLlizBm2++ieeeew67du1CXl4eYmJipDqdnZ0bfNzm4ODgIP2sUqkAXJ+jRESNwyBERA2mUqmgVqvx22+/AQD69OmDsLAwrFq1ChkZGbXOU/n2229rPO/RowcAICcnB2azGa+//jruvPNO3HHHHTh//nyNffj7+2PGjBnYvHkznnrqKSmIAUDHjh0RHx+PDz74AGlpaXj33Xeb85Ql33zzDUaNGoUJEyagX79+CAwMxI8//ii93rVrVzg7O0sTxW+m1WoBXB9ZqktQUBC0Wi2++eYbaVtlZSX279+Pnj17NtOZENGN2shdABHZr/LychQUFAC4/g2t9PR0XL16FbGxsVKbadOmISEhAS4uLvjzn/9cYx/ffPMNXnvtNcTFxeHzzz/Hxo0b8cknnwAAgoODUVlZibfeeguxsbH45ptvsHLlSov3JyYmYvjw4bjjjjvw66+/YteuXVKQmjt3LkJDQ9GrVy+Ul5dj27Zt0mvNrWvXrvjwww+xZ88edOjQAUuXLkVhYaEUUJycnPDcc8/h2WefhVarxV133YVLly7h8OHDmDp1Kjw9PeHs7IysrCx06tQJTk5O0Ol0FsdwcXHB448/jmeeeQZ6vR6dO3fGa6+9hrKyMkydOtUq50WkdBwRIqI6ZWVlwcfHBz4+PoiIiMD+/fuxceNG6avfADBu3Di0adMG48aNg5OTU419PPXUU/j+++8xYMAAvPzyy1i6dCliYmIAAP369cPSpUvx6quvonfv3li/fj1SUlIs3l9VVYWZM2eiR48eGDZsGO644w68/fbbAK6PsiQnJ6Nv374YPHgwNBoNMjMzrdIXL774IkJCQhATE4MhQ4bA29u7xorQL730Ep566inMnTsXPXr0wJgxY6R5O23atMGyZcvwzjvvwNfXF6NGjar1OIsXL8bo0aMxceJEhISE4OTJk9ixYwc6dOhglfMiUjqVEELIXQQRtVynT59GUFAQ9u/fj5CQEIvXDAYDEhMTkZiYKE9xRES3wEtjRNQklZWVMBqNePHFF3HnnXfWCEFERC0BL40RUZN888038PHxwf79+2vM65HbokWL0K5du1ofw4cPl7s8IrIjvDRGRK1OUVFRjZWYqzk7O8PPz8/GFRGRvWIQIiIiIsXipTEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUqz/B6Clu1kRtV3XAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_20.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABL40lEQVR4nO3de1xUZeLH8e9ADKDCuKCCFxRF07RCQSXtghmFrlJutmlaktnFflK6bDe7qGWFpWuo2GV381Kbq13M0ly7sFmZlgVSeclbmFYCCTkgphhzfn+4TI5cBASG4Xzer9e8Yp7zzDnPeXZqvvuc5zzHYhiGIQAAABPxcncDAAAAGhoBCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAasSVLlshisWjfvn3ubgrQpBCAAJP74osvlJSUpF69eql58+bq2LGjrr/+eu3atatc3UGDBslischiscjLy0uBgYHq3r27brrpJr3//vs1Ou7q1asVGxurNm3aqFmzZurSpYuuv/56rVu3rq5OrZwnn3xSq1atKle+ceNGzZgxQ4cPH663Y59uxowZzr60WCxq1qyZevbsqYcffliFhYV1coxly5YpNTW1TvYFNDUEIMDknnrqKb3xxhu64oorNG/ePN1+++36+OOPFRUVpa1bt5ar36FDB7388st66aWXNHv2bF199dXauHGjrrrqKo0aNUonTpw44zHnzJmjq6++WhaLRVOnTtUzzzyjkSNHavfu3Vq+fHl9nKakqgPQo48+2qABqMxzzz2nl19+WXPnzlWPHj30xBNPaMiQIaqLxzQSgIDKnePuBgBwr+TkZC1btkxWq9VZNmrUKF1wwQWaNWuW/vWvf7nUt9lsuvHGG13KZs2apbvvvlvPPvuswsPD9dRTT1V6vN9++00zZ87UlVdeqffee6/c9ry8vLM8o8bj6NGjatasWZV1rrvuOrVq1UqSNHHiRI0cOVIrV67UZ599pgEDBjREMwFTYgQIMLmBAwe6hB9J6tatm3r16qUdO3ZUax/e3t6aP3++evbsqbS0NNnt9krrHjp0SIWFhbr44osr3N6mTRuX98eOHdOMGTN07rnnys/PT23bttW1116rvXv3OuvMmTNHAwcOVHBwsPz9/RUdHa3XX3/dZT8Wi0XFxcVaunSp87LTzTffrBkzZujee++VJHXu3Nm57dQ5N//6178UHR0tf39/BQUFafTo0Tpw4IDL/gcNGqTzzz9fGRkZuuyyy9SsWTM9+OCD1eq/Uw0ePFiSlJ2dXWW9Z599Vr169ZKvr6/atWunSZMmuYxgDRo0SO+8846+//575zmFh4fXuD1AU8UIEIByDMNQbm6uevXqVe3PeHt764YbbtAjjzyiDRs2aNiwYRXWa9Omjfz9/bV69WrdddddCgoKqnSfpaWlGj58uNLT0zV69GhNnjxZRUVFev/997V161ZFRERIkubNm6err75aY8eOVUlJiZYvX64///nPWrNmjbMdL7/8sm699Vb1799ft99+uyQpIiJCzZs3165du/Tvf/9bzzzzjHM0pnXr1pKkJ554Qo888oiuv/563Xrrrfr555+1YMECXXbZZdqyZYtatmzpbG9+fr6GDh2q0aNH68Ybb1RISEi1+69MWbALDg6utM6MGTP06KOPKi4uTnfeead27typ5557Tl988YU+/fRT+fj46KGHHpLdbtcPP/ygZ555RpLUokWLGrcHaLIMADjNyy+/bEgyXnzxRZfy2NhYo1evXpV+7s033zQkGfPmzaty/9OmTTMkGc2bNzeGDh1qPPHEE0ZGRka5eosWLTIkGXPnzi23zeFwOP8+evSoy7aSkhLj/PPPNwYPHuxS3rx5cyMxMbHcvmbPnm1IMrKzs13K9+3bZ3h7extPPPGES/k333xjnHPOOS7lsbGxhiTj+eefr/S8TzV9+nRDkrFz507j559/NrKzs40XXnjB8PX1NUJCQozi4mLDMAxj8eLFLm3Ly8szrFarcdVVVxmlpaXO/aWlpRmSjEWLFjnLhg0bZnTq1Kla7QHMhktgAFx8++23mjRpkgYMGKDExMQafbZshKGoqKjKeo8++qiWLVumPn366N1339VDDz2k6OhoRUVFuVx2e+ONN9SqVSvddddd5fZhsVicf/v7+zv//uWXX2S323XppZcqMzOzRu0/3cqVK+VwOHT99dfr0KFDzldoaKi6deumDz/80KW+r6+vxo8fX6NjdO/eXa1bt1bnzp11xx13qGvXrnrnnXcqnTv0wQcfqKSkRFOmTJGX1+//Cb/tttsUGBiod955p+YnCpgQl8AAOOXk5GjYsGGy2Wx6/fXX5e3tXaPPHzlyRJIUEBBwxro33HCDbrjhBhUWFurzzz/XkiVLtGzZMiUkJGjr1q3y8/PT3r171b17d51zTtX/qVqzZo0ef/xxZWVl6fjx487yU0NSbezevVuGYahbt24Vbvfx8XF53759+3Lzqc7kjTfeUGBgoHx8fNShQwfnZb3KfP/995JOBqdTWa1WdenSxbkdQNUIQAAkSXa7XUOHDtXhw4f1ySefqF27djXeR9lt8127dq32ZwIDA3XllVfqyiuvlI+Pj5YuXarPP/9csbGx1fr8J598oquvvlqXXXaZnn32WbVt21Y+Pj5avHixli1bVuNzOJXD4ZDFYtF//vOfCsPg6XNqTh2Jqq7LLrvMOe8IQMMhAAHQsWPHlJCQoF27dumDDz5Qz549a7yP0tJSLVu2TM2aNdMll1xSq3b07dtXS5cu1cGDByWdnKT8+eef68SJE+VGW8q88cYb8vPz07vvvitfX19n+eLFi8vVrWxEqLLyiIgIGYahzp0769xzz63p6dSLTp06SZJ27typLl26OMtLSkqUnZ2tuLg4Z9nZjoABTRlzgACTKy0t1ahRo7Rp0ya99tprtVp7prS0VHfffbd27Nihu+++W4GBgZXWPXr0qDZt2lThtv/85z+Sfr+8M3LkSB06dEhpaWnl6hr/WyjQ29tbFotFpaWlzm379u2rcMHD5s2bV7jYYfPmzSWp3LZrr71W3t7eevTRR8stTGgYhvLz8ys+yXoUFxcnq9Wq+fPnu7TpxRdflN1ud7n7rnnz5lUuSQCYGSNAgMn99a9/1dtvv62EhAQVFBSUW/jw9EUP7Xa7s87Ro0e1Z88erVy5Unv37tXo0aM1c+bMKo939OhRDRw4UBdddJGGDBmisLAwHT58WKtWrdInn3yiESNGqE+fPpKkcePG6aWXXlJycrI2b96sSy+9VMXFxfrggw/0f//3f7rmmms0bNgwzZ07V0OGDNGYMWOUl5enhQsXqmvXrvr6669djh0dHa0PPvhAc+fOVbt27dS5c2fFxMQoOjpakvTQQw9p9OjR8vHxUUJCgiIiIvT4449r6tSp2rdvn0aMGKGAgABlZ2frzTff1O2336577rnnrPq/plq3bq2pU6fq0Ucf1ZAhQ3T11Vdr586devbZZ9WvXz+X/72io6O1YsUKJScnq1+/fmrRooUSEhIatL1Ao+XOW9AAuF/Z7duVvaqq26JFC6Nbt27GjTfeaLz33nvVOt6JEyeMf/zjH8aIESOMTp06Gb6+vkazZs2MPn36GLNnzzaOHz/uUv/o0aPGQw89ZHTu3Nnw8fExQkNDjeuuu87Yu3evs86LL75odOvWzfD19TV69OhhLF682Hmb+am+/fZb47LLLjP8/f0NSS63xM+cOdNo37694eXlVe6W+DfeeMO45JJLjObNmxvNmzc3evToYUyaNMnYuXOnS99UtUTA6cra9/PPP1dZ7/Tb4MukpaUZPXr0MHx8fIyQkBDjzjvvNH755ReXOkeOHDHGjBljtGzZ0pDELfHAKSyGUQcPnAEAAPAgzAECAACmQwACAACmQwACAACmQwACAACmQwACAACmQwACAACmw0KIFXA4HPrpp58UEBDAUvIAAHgIwzBUVFSkdu3aycur6jEeAlAFfvrpJ4WFhbm7GQAAoBYOHDigDh06VFmHAFSBgIAASSc7sKpnGgEAgMajsLBQYWFhzt/xqhCAKlB22SswMJAABACAh6nO9BUmQQMAANMhAAEAANMhAAEAANNhDtBZKC0t1YkTJ9zdjCbLx8dH3t7e7m4GAKAJIgDVgmEYysnJ0eHDh93dlCavZcuWCg0NZT0mAECdIgDVQln4adOmjZo1a8aPcz0wDENHjx5VXl6eJKlt27ZubhEAoCkhANVQaWmpM/wEBwe7uzlNmr+/vyQpLy9Pbdq04XIYAKDOMAm6hsrm/DRr1szNLTGHsn5mrhUAoC4RgGqJy14Ng34GANQHLoEBAIB6l5+fr5KSkkq3W63WBp1aQgACAAD1Kj8/X2lpaWesl5SU1GAhiEtgJnLzzTfLYrHIYrHIx8dHISEhuvLKK7Vo0SI5HI5q72fJkiVq2bJl/TUUANCknD7yY7cHKDs7XHZ7QJX16hMjQG7gzmHAIUOGaPHixSotLVVubq7WrVunyZMn6/XXX9fbb7+tc87hKwEAqD+ZmX20evVwGYaXLBaHEhLWKCpqS4O3g1+7BubuYUBfX1+FhoZKktq3b6+oqChddNFFuuKKK7RkyRLdeuutmjt3rhYvXqzvvvtOQUFBSkhI0NNPP60WLVpo/fr1Gj9+vKTfJyhPnz5dM2bM0Msvv6x58+Zp586dat68uQYPHqzU1FS1adOmzs8DAOB57PYAZ/iRJMPw0urVwxURsUc2W1GDtoVLYA2susN7DTkMOHjwYEVGRmrlypWSJC8vL82fP1/btm3T0qVL9d///lf33XefJGngwIFKTU1VYGCgDh48qIMHD+qee+6RdPJW9ZkzZ+qrr77SqlWrtG/fPt18880Ndh4AgMatoCDYGX7KGIaXCgqCGrwtjABBktSjRw99/fXXkqQpU6Y4y8PDw/X4449r4sSJevbZZ2W1WmWz2WSxWJwjSWVuueUW599dunTR/Pnz1a9fPx05ckQtWrRokPMAADReQUH5slgcLiHIYnEoKKigwdvCCBAknXz0RNklrQ8++EBXXHGF2rdvr4CAAN10003Kz8/X0aNHq9xHRkaGEhIS1LFjRwUEBCg2NlaStH///npvPwCg8bPZipSQsEYWy8kbb8rmADX05S+JESD8z44dO9S5c2ft27dPw4cP15133qknnnhCQUFB2rBhgyZMmKCSkpJKV8AuLi5WfHy84uPj9corr6h169bav3+/4uPjG/RyHgCgcYuK2qKIiD0qKAhSUFCBW8KPRACCpP/+97/65ptv9Je//EUZGRlyOBz629/+Ji+vkwOEr776qkt9q9Wq0tJSl7Jvv/1W+fn5mjVrlsLCwiRJX375ZcOcAACgUbNarS7vbbaiCoPP6fXqEwHIZI4fP66cnByX2+BTUlI0fPhwjRs3Tlu3btWJEye0YMECJSQk6NNPP9Xzzz/vso/w8HAdOXJE6enpioyMVLNmzdSxY0dZrVYtWLBAEydO1NatWzVz5kw3nSUAoDEJDg5WUlJSo1oJmjlAJrNu3Tq1bdtW4eHhGjJkiD788EPNnz9fb731lry9vRUZGam5c+fqqaee0vnnn69XXnlFKSkpLvsYOHCgJk6cqFGjRql169Z6+umn1bp1ay1ZskSvvfaaevbsqVmzZmnOnDluOksAQGMTHBystm3bVvpqyPAjSRbDMIwGPaIHKCwslM1mk91uV2BgoMu2Y8eOKTs7W507d5afn1+N9+3udYA8zdn2NwDAPKr6/T4dl8AaWGMcBgSAxu7UFfR/+slL2dnnqHPn39Su3cm7ifjvJmqKAOQG/EsKANV36sh5VY9RYOQcNcEcIABAo1Y28lPZYxTKHqjJkhuoCQIQAMAjNKbHKMDzEYAAAB6h7DEKp3LXYxTg+QhAAACP0JgeowDPxyRoAIDHaCyPUYDnIwABADxKZY9RAGqCS2AAAMB0CECoM+vXr5fFYtHhw4er/Znw8HClpqbWW5sAeL7qPiCzIR+kCc/HJTATufnmm7V06VLdcccd5R5wOmnSJD377LNKTEzUkiVL3NNAAKgAK+ijPhCATCYsLEzLly/XM888I39/f0knn7e1bNkydezY0c2tA4CKEW5Q17gEZjJRUVEKCwvTypUrnWUrV65Ux44d1adPH2fZ8ePHdffdd6tNmzby8/PTJZdcoi+++MJlX2vXrtW5554rf39/XX755dq3b1+5423YsEGXXnqp/P39FRYWprvvvlvFxcX1dn4AAFQHAcjNfvhB+vDDk/9sKLfccosWL17sfL9o0SKNHz/epc59992nN954Q0uXLlVmZqa6du2q+Ph4FRScXHDswIEDuvbaa5WQkKCsrCzdeuuteuCBB1z2sXfvXg0ZMkQjR47U119/rRUrVmjDhg1KSkqq/5MEAKAKBCA3evFFqVMnafDgk/988cWGOe6NN96oDRs26Pvvv9f333+vTz/9VDfeeKNze3FxsZ577jnNnj1bQ4cOVc+ePfWPf/xD/v7+evF/jXzuuecUERGhv/3tb+revbvGjh2rm2++2eU4KSkpGjt2rKZMmaJu3bpp4MCBmj9/vl566SUdO3asYU4WAIAKMAfITX74Qbr9dsnxv1XdHQ7pjjuk+HipQ4f6PXbr1q01bNgwLVmyRIZhaNiwYWrVqpVz+969e3XixAldfPHFzjIfHx/1799fO3bskCTt2LFDMTExLvsdMGCAy/uvvvpKX3/9tV555RVnmWEYcjgcys7O1nnnnVcfpwcAppGfn8/k8FoiALnJ7t2/h58ypaXSnj31H4Ckk5fByi5FLVy4sF6OceTIEd1xxx26++67y21jwjUAnJ38/HylpaWdsV5SUhIhqAKN4hLYwoULFR4eLj8/P8XExGjz5s2V1t22bZtGjhyp8PBwWSyWM64hM2vWLFksFk2ZMqVuG32WunWTvE7rfW9vqWvXhjn+kCFDVFJSohMnTig+Pt5lW0REhKxWqz799FNn2YkTJ/TFF1+oZ8+ekqTzzjuv3P9On332mcv7qKgobd++XV27di33Yr0OADg7p4/82O0Bys4Ol90eUGU9nOT2ALRixQolJydr+vTpyszMVGRkpOLj45WXl1dh/aNHj6pLly6aNWuWQkNDq9z3F198oRdeeEEXXnhhfTT9rHToIP397ydDj3Tyny+80DCjPyeP560dO3Zo+/bt8i5rxP80b95cd955p+69916tW7dO27dv12233aajR49qwoQJkqSJEydq9+7duvfee7Vz504tW7as3PpB999/vzZu3KikpCRlZWVp9+7deuutt5gEDQB1LDOzj1JTp2jp0kSlpk5RZmafM3/I5NwegObOnavbbrtN48ePV8+ePfX888+rWbNmWrRoUYX1+/Xrp9mzZ2v06NHy9fWtdL9HjhzR2LFj9Y9//EN/+MMf6qv5Z2XCBGnfvpN3ge3bd/J9QwoMDFRgYGCF22bNmqWRI0fqpptuUlRUlPbs2aN3333X2ZcdO3bUG2+8oVWrVikyMlLPP/+8nnzySZd9XHjhhfroo4+0a9cuXXrpperTp4+mTZumdu3a1fu5AYBZ2O0BWr16uAzj5E+6YXhp9erh5UaC4Mqtc4BKSkqUkZGhqVOnOsu8vLwUFxenTZs2ndW+J02apGHDhikuLk6PP/54lXWPHz+u48ePO98XFhae1bFrokOHhhv1OdMKz6tWrXL+7efnp/nz52v+/PmV1h8+fLiGDx/uUnb67fT9+vXTe++9V+k+Klo7CABQfQUFwc7wU8YwvFRQEMRDY6vg1hGgQ4cOqbS0VCEhIS7lISEhysnJqfV+ly9frszMTKWkpFSrfkpKimw2m/MVFhZW62MDANCQgoLyZbG43lVjsTgUFFTgphZ5BrdfAqtrBw4c0OTJk/XKK6/Iz8+vWp+ZOnWq7Ha783XgwIF6biUAAHXDZitSQsIaZwiyWBxKSFjD6M8ZuPUSWKtWreTt7a3c3FyX8tzc3DNOcK5MRkaG8vLyFBUV5SwrLS3Vxx9/rLS0NB0/frzcpF9fX98q5xMBANCYRUVtUUTEHhUUBCkoqIDwUw1uHQGyWq2Kjo5Wenq6s8zhcCg9Pb3conrVdcUVV+ibb75RVlaW89W3b1+NHTtWWVlZ5cIPAACe6PTlRGy2InXu/H258MOyIxVz+0KIycnJSkxMVN++fdW/f3+lpqaquLjYOZl23Lhxat++vXM+T0lJibZv3+78+8cff1RWVpZatGihrl27KiAgQOeff77LMZo3b67g4OBy5WfDMIw62xcqRz8DQMWCg4OVlJTEStC15PYANGrUKP3888+aNm2acnJy1Lt3b61bt845MXr//v3yOmXFwJ9++snlqeVz5szRnDlzFBsbq/Xr19d7e318fCSdXI/I39+/3o9ndkePHpX0e78DAH5HuKk9i8H/xS6nsLBQNptNdru9wnVyDh48qMOHD6tNmzZq1qyZLBaLG1rZtBmGoaNHjyovL08tW7ZU27Zt3d0kAEAjd6bf71O5fQTIE5VN0K5stWrUnZYtW9Z6QjwAAJUhANWCxWJR27Zt1aZNG504ccLdzWmyfHx8mLQOAKgXBKCz4O3tzQ80AAAeiAAEAIDJ5Ofnm/7uMQIQAAAmkp+fr7S0tDPWS0pKatIhqMk9CgMAAFSuqpGf2tTzVAQgAABMzG4PUHZ2uOz2AHc3pUFxCQwAAJPKzOyj1auHyzC8nA9RjYra4u5mNQhGgAAAMCG7PcAZfiTJMLy0evVw04wEEYAAADChgoJgZ/gpYxheKigIclOLGhYBCAAAEwoKypfF4nAps1gcCgoqcFOLGhYBCAAAE7LZipSQsMYZgsrmANlsRW5uWcNgEjQAACZitVqdf0dFbVFExB4VFAQpKKjAJfycWq8pIgABAGAiwcHBSkpKYiVodzcAAAA0rKYebqqDOUAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0GkUAWrhwocLDw+Xn56eYmBht3ry50rrbtm3TyJEjFR4eLovFotTU1HJ1nnvuOV144YUKDAxUYGCgBgwYoP/85z/1eAYAAMCTuD0ArVixQsnJyZo+fboyMzMVGRmp+Ph45eXlVVj/6NGj6tKli2bNmqXQ0NAK63To0EGzZs1SRkaGvvzySw0ePFjXXHONtm3bVp+nAgAAPITFMAzDnQ2IiYlRv379lJaWJklyOBwKCwvTXXfdpQceeKDKz4aHh2vKlCmaMmXKGY8TFBSk2bNna8KECWesW1hYKJvNJrvdrsDAwGqdBwAAcK+a/H67dQSopKREGRkZiouLc5Z5eXkpLi5OmzZtqpNjlJaWavny5SouLtaAAQMqrHP8+HEVFha6vAAAQNPl1gB06NAhlZaWKiQkxKU8JCREOTk5Z7Xvb775Ri1atJCvr68mTpyoN998Uz179qywbkpKimw2m/MVFhZ2VscGAACNm9vnANWX7t27KysrS59//rnuvPNOJSYmavv27RXWnTp1qux2u/N14MCBBm4tAABoSOe48+CtWrWSt7e3cnNzXcpzc3MrneBcXVarVV27dpUkRUdH64svvtC8efP0wgsvlKvr6+srX1/fszoeAADwHG4dAbJarYqOjlZ6erqzzOFwKD09vdL5OrXlcDh0/PjxOt0nAADwTG4dAZKk5ORkJSYmqm/fvurfv79SU1NVXFys8ePHS5LGjRun9u3bKyUlRdLJidNll7JKSkr0448/KisrSy1atHCO+EydOlVDhw5Vx44dVVRUpGXLlmn9+vV699133XOSAACgUXF7ABo1apR+/vlnTZs2TTk5Oerdu7fWrVvnnBi9f/9+eXn9PlD1008/qU+fPs73c+bM0Zw5cxQbG6v169dLkvLy8jRu3DgdPHhQNptNF154od59911deeWVDXpuAACgcXL7OkCNEesAAQDgeTxmHSAAAAB3cPslMADul5+fr5KSkkq3W61WBQcHN2CLAKB+EYAAk8vPz3c+iqYqSUlJhCAATQYBCDC5qkZ+alOvKWFkDGi6CEAAXNjtASooCFZQUL5stiJ3N8dtGBkDmjYCEACnzMw+Wr16uAzDSxaLQwkJaxQVtcXdzXKL00d+KguGZhwZA5oCAhAASSd/4MvCjyQZhpdWrx6uiIg9ph4JkgiGQFPEbfAAJEkFBcHO8FPGMLxUUBDkphY1DpUFQ7s9wM0tA3A2CEAAJElBQfmyWBwuZRaLQ0FBBW5qUeNAMASaJi6BAfXIk+4istmKlJCwptylHrNf/ioLhqeGIIIh4PkIQEA98ZS7iKxWq/PvqKgtiojYo4KCIAUFFbiEn1PrmQnBEGiaCEBAPfGU9XWCg4OVlJTkMSNV7lBVMATgmQhAQANpzOvrmDncVOb0ES+brajC/93MOjIGeDoCENAAuI3a8zAyBjRtBCCgnrG+juci3ABNF7fBA/WM26gBoPEhAAH1jPV1AKDxIQAB9azsNuqyEMRt1ADgfswBAuoJ6+sAQONFAALqCXcRAUDjRQAC6hHhBgAaJ+YAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0yEAAQAA0znH3Q0Aaio/P18lJSWVbrdarQoODm7AFgEAPA0BCB4lPz9faWlpZ6yXlJRECAIAVIpLYPAoVY381KYeAMCcCEDwaHZ7gLKzw2W3B7i7KQAAD8IlMHiszMw+Wr16uAzDSxaLQwkJaxQVtcXdzQIAeIBGMQK0cOFChYeHy8/PTzExMdq8eXOldbdt26aRI0cqPDxcFotFqamp5eqkpKSoX79+CggIUJs2bTRixAjt3LmzHs8ADc1uD3CGH0kyDC+tXj2ckSAAQLW4PQCtWLFCycnJmj59ujIzMxUZGan4+Hjl5eVVWP/o0aPq0qWLZs2apdDQ0ArrfPTRR5o0aZI+++wzvf/++zpx4oSuuuoqFRcX1+epoAEVFAQ7w08Zw/BSQUGQm1oEAPAkbr8ENnfuXN12220aP368JOn555/XO++8o0WLFumBBx4oV79fv37q16+fJFW4XZLWrVvn8n7JkiVq06aNMjIydNlll9XxGcAdgoLyZbE4XEKQxeJQUFCBG1sFAPAUbh0BKikpUUZGhuLi4pxlXl5eiouL06ZNm+rsOHa7XZIUFFTx6MDx48dVWFjo8kLjZrMVKSFhjSwWhyQ55wDZbEVubhkAwBO4dQTo0KFDKi0tVUhIiEt5SEiIvv322zo5hsPh0JQpU3TxxRfr/PPPr7BOSkqKHn300To5HuqX1Wp1/h0VtUUREXtUUBCkoKACl/Bzaj0AAE7n9ktg9W3SpEnaunWrNmzYUGmdqVOnKjk52fm+sLBQYWFhDdE81FBwcLCSkpJYCRoAcFbcGoBatWolb29v5ebmupTn5uZWOsG5JpKSkrRmzRp9/PHH6tChQ6X1fH195evre9bHQ8Mg3AAAzpZb5wBZrVZFR0crPT3dWeZwOJSenq4BAwbUer+GYSgpKUlvvvmm/vvf/6pz58510VwAANBEuP0SWHJyshITE9W3b1/1799fqampKi4udt4VNm7cOLVv314pKSmSTk6c3r59u/PvH3/8UVlZWWrRooW6du0q6eRlr2XLlumtt95SQECAcnJyJEk2m03+/v5uOEsAANCYWAzDMNzdiLS0NM2ePVs5OTnq3bu35s+fr5iYGEnSoEGDFB4eriVLlkiS9u3bV+GITmxsrNavXy9JslgsFR5n8eLFuvnmm8/YnsLCQtlsNtntdgUGBtbqnAAAQMOqye93owhAjQ0BCAAAz1OT32+3rwQNAADQ0AhAAADAdAhAAADAdAhAAADAdNx+GzwAwPPk5+ezIjs8GgEIAFAj+fn5SktLO2O9pKQkQhAaLS6BAQBqpKqRn9rUA9yBAAQAOCt2e4Cys8Nltwe4uylAtXEJDABQa5mZfbR69XAZhpcsFocSEtYoKmqLu5sFnBEjQACAWrHbA5zhR5IMw0urVw9nJAgegQAEAKiVgoJgZ/gpYxheKigIclOLgOojAAEAaiUoKF8Wi8OlzGJxKCiowE0tAqqPAAQAqBWbrUgJCWucIahsDpDNVuTmlgFnxiRoAECNWK1W599RUVsUEbFHBQVBCgoqcAk/p9YDGhsCEACgRoKDg5WUlMRK0PBoBCAAQI0RbuDpmAMEAABMp9YjQIcPH9aePXskSV27dlXLli3rqk0AAAD1qsYjQPv27dOwYcPUqlUrxcTEKCYmRq1atdLw4cO1b9++emgiAABA3arRCNCBAwd00UUXycfHRzNnztR5550nSdq+fbuee+45DRgwQF988YU6dOhQL40FAACoCxbDMIzqVp4wYYL27Nmjd999V35+fi7bfv31Vw0ZMkTdunXTP//5zzpvaEMqLCyUzWaT3W5XYGCgu5sD4Czl5+dzxxJgAjX5/a7RCNC6deu0YsWKcuFHkvz9/TVz5kyNHj26Zq2FaZ36o/TTT17Kzj5HnTv/pnbtTi6qxo8S6kJ+fr7S0tLOWC8pKYnvG2AiNQpAhw4dUnh4eKXbu3TpooIClkDHmZ36o1TV06T5UcLZOn3kx24PUEFBsIKC8l0W7atqhAhA01OjANS2bVtt37690jk+W7duVWhoaJ00DE1b2Y9NZU+TjojYI5utiB8l1KmqwjYAc6nRXWAjRozQPffco59//rnctry8PN1///0aMWJEXbUNJsDTpNFQKgvbdnuAm1sGwB1qNAI0ffp0rV27VhEREbrxxhvVo0cPGYahHTt2aNmyZQoNDdW0adPqq61ogsqeJn1qCOJp0qgPVYVtHt4JmE+NAtAf/vAHff7553rwwQe1fPlyHT58WJLUsmVLjRkzRk8++aSCgvh/7qi+sqdJn35Zgh8k1DXCNoBT1Xgl6D/84Q967rnn9OyzzzovhbVu3VoWi6XOGwdzqOpp0kBdIWwDOFWtH4VhsVjUpk2bumwLTMxmK+KHCPWOsA2gTI0fhbF27Vrdeuutuu+++7Rjxw6Xbb/88osGDx5cZ40DgLNltVpd3ttsRerc+fty4ef0egCathqNAC1btkzjxo3TkCFDtHPnTi1YsED//Oc/NXbsWEknb23+6KOP6qWhaFqq+2PDjxLOVnBwsJKSklgJGoCLGgWg2bNna+7cubr77rslSa+++qpuueUWHTt2TBMmTKiXBqJp4kcJDYnvEYDT1SgA7d69WwkJCc73119/vVq3bq2rr75aJ06c0J/+9Kc6byCaLn6UAADuUqMAFBgYqNzcXHXu3NlZdvnll2vNmjUaPny4fvjhhzpvoJnxrCwAAOpHjQJQ//799Z///EcXXXSRS3lsbKxWr16t4cOH12njzIxnZQEAUH9qdBfYX/7ylwqfBC9JgwYN0urVqzVu3Lg6aZjZnelZWWXL9/OsLAAAaq5GI0B9+vRRnz59VFhYWOH26OhoRUdH10nDcBLL9wMAUPdqFIBatmxZrRWfS0tLa90guGL5fgAA6l6NAtCHH37o/NswDP3xj3/UP//5T7Vv377OG2Z2drtd0slF2y688Gt99VWkJIskQxde+LVz9Mdut6tt27buaygAAB6oRgEoNjbW5b23t7cuuugidenSpU4bBenEiROSTs4B+vrrC3Uy/EiSRV9/faEGD/6vbLYiZz0AAFB9NX4UBhpWVXOAAABA7bg9AC1cuFDh4eHy8/NTTEyMNm/eXGndbdu2aeTIkQoPD5fFYlFqamq5Oh9//LESEhLUrl07WSwWrVq1qv4a3wDK5gCdijlAAACcnbMOQNWZFF2ZFStWKDk5WdOnT1dmZqYiIyMVHx+vvLy8CusfPXpUXbp00axZsxQaGlphneLiYkVGRmrhwoW1bldjcM45J69O2mxFSkhY4wxBZesAlc0BKqsHAACqr0a/ntdee63L+2PHjmnixIlq3ry5S/nKlSurtb+5c+fqtttu0/jx4yVJzz//vN555x0tWrRIDzzwQLn6/fr1U79+/SSpwu2SNHToUA0dOrRax2/MWrZs6fw7KmqLIiL2qKAgSEFBBS63v59aDwAAVE+NApDNZnN5f+ONN9b6wCUlJcrIyNDUqVOdZV5eXoqLi9OmTZtqvd/aOH78uI4fP+58X9k6R+5ksxWx7g8AAHWkRgFo8eLFdXbgQ4cOqbS0VCEhIS7lISEh+vbbb+vsONWRkpKiRx99tEGPCQAA3Mftk6Abg6lTp8putztfBw4ccHeTZLVa67QeAAD4ndtm0LZq1Ure3t7Kzc11Kc/Nza10gnN98fX1la+vb4Me80yCg4OVlJRU5bO+eBo8AAC147YAZLVaFR0drfT0dI0YMUKS5HA4lJ6erqSkJHc1q1Eh3AAAUD/ceg91cnKyEhMT1bdvX/Xv31+pqakqLi523hU2btw4tW/fXikpKZJOTpzevn278+8ff/xRWVlZatGihbp27SpJOnLkiPbs2eM8RnZ2trKyshQUFKSOHTs28BkCAIDGyGIYhuHOBqSlpWn27NnKyclR7969NX/+fMXExEiSBg0apPDwcC1ZskSStG/fPnXu3LncPmJjY7V+/XpJ0vr163X55ZeXq5OYmOjcz5kUFhbKZrPJbrcrMDCwVucFAAAaVk1+v90egBojAhAAAJ6nJr/f3AUGAABMhwAEAABMhwAEAABMhwAEAABMh0eJ46zl5+c7F2z86ScvZWefo86df1O7diefYM+CjQCAxoYAhLOSn5+vtLQ0SVJmZh+tXj1chuEli8WhhIQ1ioraIklKSkoiBAEAGg0ugeGslI382O0BzvAjSYbhpdWrh8tuD3CpBwBAY0AAQp0oKAh2hp8yhuGlgoIgN7UIAIDKEYBQJ4KC8mWxOFzKLBaHgoIK3NQiAAAqRwBCnbDZipSQsMYZgsrmANlsRW5uGQAA5TEJGnUmKmqLIiL2qKAgSEFBBYQfEzj1DsCKcAcggMaKAIQ6ZbMVEXxM4tQ7AKvCHYAAGiMugQGoldNHfuz2AGVnhzvv/KusHgA0BowA4axYrdY6rQfPVNUaUADQGBGAcFaCg4OVlJTEPBATq2wNqIiIPVwOBdBoEYBw1gg35lbVGlAEIACNFXOAAJwV1oAC4IkIQADOCmtAAfBEXAIDcNZYAwqApyEAAaiV0+/sq2wNKO4ABBrGDz9Iu3dL3bpJHTq4uzWNHwEIQK1wByDgfmWrsS9b5q/77rPJ4bDIy8vQ00/bNWbMr/w7WAUCEIBa4z+sgPuUrcZutwcoNXWKDMMiSXI4LLr33kD9+OMi2WxFrMZeCSZBAwDggcpGX6taiuLUenBFAAIAwIOxFEXtEIAAAPBgLEVRO8wBAgDAw7EURc0RgAAAaAIqW4oCFeMSGAAAMB1GgAAAqCNl6/JI0k8/eSk7+xx17vyb2rU7OT+HdXkaDwIQAAB1oGxdHknKzOyj1auHyzC8nJOSo6K2SFKdrctT3VXWWY29YgQgAADqQNnIj90e4Aw/0sk1eVavHq6IiD2y2YrqbF0eVmM/OwQgAADqUFULE9b1JGXCTe0xCRoAgDrEwoSegQAEAEAdYmFCz8AlMAAA6hgLEzZ+BCAAAOoBCxM2blwCAwAApkMAAgCgDrAuj2fhEhgAAHWAdXk8CwEIAIA6QrjxHI3iEtjChQsVHh4uPz8/xcTEaPPmzZXW3bZtm0aOHKnw8HBZLBalpqae9T4BAIC5uD0ArVixQsnJyZo+fboyMzMVGRmp+Ph45eXlVVj/6NGj6tKli2bNmqXQ0NA62ScAADAXi2EYhjsbEBMTo379+jkfIOdwOBQWFqa77rpLDzzwQJWfDQ8P15QpUzRlypQ626ckFRYWymazyW63KzAwsHYnBgAAGlRNfr/dOgJUUlKijIwMxcXFOcu8vLwUFxenTZs2Ndg+jx8/rsLCQpcXAABoutwagA4dOqTS0lKFhIS4lIeEhCgnJ6fB9pmSkiKbzeZ8hYWF1erYAADAM7h9DlBjMHXqVNntdufrwIED7m4SAACoR269Db5Vq1by9vZWbm6uS3lubm6lE5zrY5++vr7y9fWt1fEAAIDncesIkNVqVXR0tNLT051lDodD6enpGjBgQKPZJwAAaFrcvhBicnKyEhMT1bdvX/Xv31+pqakqLi7W+PHjJUnjxo1T+/btlZKSIunkJOft27c7//7xxx+VlZWlFi1aqGvXrtXaJwAAMDe3B6BRo0bp559/1rRp05STk6PevXtr3bp1zknM+/fvl5fX7wNVP/30k/r06eN8P2fOHM2ZM0exsbFav359tfYJAADMze3rADVGrAMEAIDnqcnvt9tHgMwgPz+fh+MBANCIEIDqWX5+vnNFakmy2wNUUBCsoKB82WxFzvKkpCRCEAAADYQAVM9OHfnJzOyj1auHyzC8ZLE4lJCwRlFRW8rVAwAA9YuFEBuI3R7gDD+SZBheWr16uOz2ADe3DAAA8yEANZCCgmBn+CljGF4qKAhyU4sAADAvAlADCQrKl8XicCmzWBwKCipwU4sAAHCPH36QPvzw5D/dhQDUQGy2IiUkrHGGoLI5QKdOhAYAoKl78UWpUydp8OCT/3zxRfe0g0nQDSgqaosiIvaooCBIQUEFhB8AgKn88IN0++2S438XRBwO6Y47pPh4qUOHhm0LAaiB2WxFBB8AgCnt3v17+ClTWirt2dPwAYhLYPXMarXWaT0AADxVt26S12nJw9tb+t+jPBsUI0D1LDg4WElJSawEDQAwtfz8fHl7l+jpp/11//02lZZa5O1t6Kmn7PL2/lX5+Q37W8izwCrAs8AAAKg7FT8Vofx82LN9KgLPAgMAAI3G6VdBKpsP25BPRWAOEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAqFeN8akIrAMEAADqVWN8KgIBCAAA1LvG9sgnLoEBAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTIQABAADTaRQBaOHChQoPD5efn59iYmK0efPmKuu/9tpr6tGjh/z8/HTBBRdo7dq1Lttzc3N18803q127dmrWrJmGDBmi3bt31+cpAAAAD+L2ALRixQolJydr+vTpyszMVGRkpOLj45WXl1dh/Y0bN+qGG27QhAkTtGXLFo0YMUIjRozQ1q1bJUmGYWjEiBH67rvv9NZbb2nLli3q1KmT4uLiVFxc3JCnBgAAGimLYRiGOxsQExOjfv36KS0tTZLkcDgUFhamu+66Sw888EC5+qNGjVJxcbHWrFnjLLvooovUu3dvPf/889q1a5e6d++urVu3qlevXs59hoaG6sknn9Stt956xjYVFhbKZrPJbrcrMDCwjs4UAADUp5r8frt1BKikpEQZGRmKi4tzlnl5eSkuLk6bNm2q8DObNm1yqS9J8fHxzvrHjx+XJPn5+bns09fXVxs2bKjrUwAAAB7IrQHo0KFDKi0tVUhIiEt5SEiIcnJyKvxMTk5OlfV79Oihjh07aurUqfrll19UUlKip556Sj/88IMOHjxY4T6PHz+uwsJClxcAAGi63D4HqK75+Pho5cqV2rVrl4KCgtSsWTN9+OGHGjp0qLy8Kj7dlJQU2Ww25yssLKyBWw0AABqSWwNQq1at5O3trdzcXJfy3NxchYaGVviZ0NDQM9aPjo5WVlaWDh8+rIMHD2rdunXKz89Xly5dKtzn1KlTZbfbna8DBw6c5ZkBAIDGzK0ByGq1Kjo6Wunp6c4yh8Oh9PR0DRgwoMLPDBgwwKW+JL3//vsV1rfZbGrdurV2796tL7/8Utdcc02F+/T19VVgYKDLCwAANF3nuLsBycnJSkxMVN++fdW/f3+lpqaquLhY48ePlySNGzdO7du3V0pKiiRp8uTJio2N1d/+9jcNGzZMy5cv15dffqm///3vzn2+9tprat26tTp27KhvvvlGkydP1ogRI3TVVVe55RwBAEDj4vYANGrUKP3888+aNm2acnJy1Lt3b61bt8450Xn//v0uc3cGDhyoZcuW6eGHH9aDDz6obt26adWqVTr//POddQ4ePKjk5GTl5uaqbdu2GjdunB555JEGPzcAANA4uX0doMaIdYAAAPA8HrMOEAAAgDsQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOkQgAAAgOmc4+4GAA0lPz9fJSUllW63Wq0KDg5uwBYBANyFAARTyM/PV1pa2hnrJSUlEYIAwAS4BAZTqGrkpzb1AACejQAEAABMhwAEAABMhwAEAABMhwAEU7LbA5SdHS67PcDdTQEAuEGjCEALFy5UeHi4/Pz8FBMTo82bN1dZ/7XXXlOPHj3k5+enCy64QGvXrnXZfuTIESUlJalDhw7y9/dXz5499fzzz9fnKcCDZGb2UWrqFC1dmqjU1CnKzOzj7iYBABqY2wPQihUrlJycrOnTpyszM1ORkZGKj49XXl5ehfU3btyoG264QRMmTNCWLVs0YsQIjRgxQlu3bnXWSU5O1rp16/Svf/1LO3bs0JQpU5SUlKS33367oU4LjZTdHqDVq4fLME5+9Q3DS6tXD2ckCABMxu0BaO7cubrttts0fvx450hNs2bNtGjRogrrz5s3T0OGDNG9996r8847TzNnzlRUVJTLGi8bN25UYmKiBg0apPDwcN1+++2KjIw848gSmi6r1SpJKigIdoafMobhpYKCIJd6AICmza0BqKSkRBkZGYqLi3OWeXl5KS4uTps2barwM5s2bXKpL0nx8fEu9QcOHKi3335bP/74owzD0Icffqhdu3bpqquuqnCfx48fV2FhocsLTUtwcLCSkpJ0111D5OVluGzz9jZ0111DWQQRAEzErQHo0KFDKi0tVUhIiEt5SEiIcnJyKvxMTk7OGesvWLBAPXv2VIcOHWS1WjVkyBAtXLhQl112WYX7TElJkc1mc77CwsLO8szQGAUHBys6OkR//7tF3t4ny7y9pRdesCg6OoTwAwAm0iQfhbFgwQJ99tlnevvtt9WpUyd9/PHHmjRpktq1a1du9EiSpk6dquTkZOf7wsJCQlATNmGCFB8v7dkjde0qdejg7hYBABqaWwNQq1at5O3trdzcXJfy3NxchYaGVviZ0NDQKuv/+uuvevDBB/Xmm29q2LBhkqQLL7xQWVlZmjNnToUByNfXV76+vnVxSvAQHToQfADAzNx6CcxqtSo6Olrp6enOMofDofT0dA0YMKDCzwwYMMClviS9//77zvonTpzQiRMn5OXlemre3t5yOBx1fAYAAMATuf0SWHJyshITE9W3b1/1799fqampKi4u1vjx4yVJ48aNU/v27ZWSkiJJmjx5smJjY/W3v/1Nw4YN0/Lly/Xll1/q73//uyQpMDBQsbGxuvfee+Xv769OnTrpo48+0ksvvaS5c+e67TwBAEDj4fYANGrUKP3888+aNm2acnJy1Lt3b61bt8450Xn//v0uozkDBw7UsmXL9PDDD+vBBx9Ut27dtGrVKp1//vnOOsuXL9fUqVM1duxYFRQUqFOnTnriiSc0ceLEBj8/AADQ+FgMwzDOXM1cCgsLZbPZZLfbFRgY6O7mAACAaqjJ77fbF0IEAABoaAQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOm5fCLExKlsaqbCw0M0tAQAA1VX2u12dJQ4JQBUoKiqSJJ4IDwCAByoqKpLNZquyDitBV8DhcOinn35SQECALBaLu5vTIAoLCxUWFqYDBw6YfvVr+uJ39MXv6Ivf0Re/oy9+1xj6wjAMFRUVqV27duUein46RoAq4OXlpQ4dOri7GW4RGBho+n+Jy9AXv6Mvfkdf/I6++B198Tt398WZRn7KMAkaAACYDgEIAACYDgEIkiRfX19Nnz5dvr6+7m6K29EXv6Mvfkdf/I6++B198TtP6wsmQQMAANNhBAgAAJgOAQgAAJgOAQgAAJgOAQgAAJgOAagJW7hwocLDw+Xn56eYmBht3ry5yvqpqanq3r27/P39FRYWpr/85S86duyYc/uMGTNksVhcXj169Kjv06gTNemLEydO6LHHHlNERIT8/PwUGRmpdevWndU+G5O67gtP/F58/PHHSkhIULt27WSxWLRq1aozfmb9+vWKioqSr6+vunbtqiVLlpSr44nfifroC0/8Tkg174uDBw9qzJgxOvfcc+Xl5aUpU6ZUWO+1115Tjx495OfnpwsuuEBr166t+8bXsfroiyVLlpT7Xvj5+dXPCVQDAaiJWrFihZKTkzV9+nRlZmYqMjJS8fHxysvLq7D+smXL9MADD2j69OnasWOHXnzxRa1YsUIPPvigS71evXrp4MGDzteGDRsa4nTOSk374uGHH9YLL7ygBQsWaPv27Zo4caL+9Kc/acuWLbXeZ2NRH30hed73ori4WJGRkVq4cGG16mdnZ2vYsGG6/PLLlZWVpSlTpujWW2/Vu+++66zjqd+J+ugLyfO+E1LN++L48eNq3bq1Hn74YUVGRlZYZ+PGjbrhhhs0YcIEbdmyRSNGjNCIESO0devWumx6nauPvpBOrhJ96vfi+++/r6sm15yBJql///7GpEmTnO9LS0uNdu3aGSkpKRXWnzRpkjF48GCXsuTkZOPiiy92vp8+fboRGRlZL+2tTzXti7Zt2xppaWkuZddee60xduzYWu+zsaiPvvDU70UZScabb75ZZZ377rvP6NWrl0vZqFGjjPj4eOd7T/1OnKqu+sLTvxOGUb2+OFVsbKwxefLkcuXXX3+9MWzYMJeymJgY44477jjLFjacuuqLxYsXGzabrc7adbYYAWqCSkpKlJGRobi4OGeZl5eX4uLitGnTpgo/M3DgQGVkZDiH7L/77jutXbtWf/zjH13q7d69W+3atVOXLl00duxY7d+/v/5OpA7Upi+OHz9ebljW39/f+f9ga7PPxqA++qKMp30vamrTpk0u/SZJ8fHxzn7z1O9EbZypL8o09e9EdVW3v8ziyJEj6tSpk8LCwnTNNddo27ZtbmsLAagJOnTokEpLSxUSEuJSHhISopycnAo/M2bMGD322GO65JJL5OPjo4iICA0aNMjlElhMTIyWLFmidevW6bnnnlN2drYuvfRSFRUV1ev5nI3a9EV8fLzmzp2r3bt3y+Fw6P3339fKlSt18ODBWu+zMaiPvpA883tRUzk5ORX2W2FhoX799VeP/U7Uxpn6QjLHd6K6Kuuvpva9qI7u3btr0aJFeuutt/Svf/1LDodDAwcO1A8//OCW9hCAIOnkpMYnn3xSzz77rDIzM7Vy5Uq98847mjlzprPO0KFD9ec//1kXXnih4uPjtXbtWh0+fFivvvqqG1te9+bNm6du3bqpR48eslqtSkpK0vjx4+XlZb5/XarTF2b5XqD6+E6gIgMGDNC4cePUu3dvxcbGauXKlWrdurVeeOEFt7THfP9FN4FWrVrJ29tbubm5LuW5ubkKDQ2t8DOPPPKIbrrpJt1666264IIL9Kc//UlPPvmkUlJS5HA4KvxMy5Ytde6552rPnj11fg51pTZ90bp1a61atUrFxcX6/vvv9e2336pFixbq0qVLrffZGNRHX1TEE74XNRUaGlphvwUGBsrf399jvxO1caa+qEhT/E5UV2X91dS+F7Xh4+OjPn36uO17QQBqgqxWq6Kjo5Wenu4sczgcSk9P14ABAyr8zNGjR8uNcHh7e0uSjEoeF3fkyBHt3btXbdu2raOW173a9EUZPz8/tW/fXr/99pveeOMNXXPNNWe9T3eqj76oiCd8L2pqwIABLv0mSe+//76z3zz1O1EbZ+qLijTF70R11aa/zKK0tFTffPON+74X7p6FjfqxfPlyw9fX11iyZImxfft24/bbbzdatmxp5OTkGIZhGDfddJPxwAMPOOtPnz7dCAgIMP79738b3333nfHee+8ZERERxvXXX++s89e//tVYv369kZ2dbXz66adGXFyc0apVKyMvL6/Bz68matoXn332mfHGG28Ye/fuNT7++GNj8ODBRufOnY1ffvml2vtsrOqjLzzxe1FUVGRs2bLF2LJliyHJmDt3rrFlyxbj+++/NwzDMB544AHjpptuctb/7rvvjGbNmhn33nuvsWPHDmPhwoWGt7e3sW7dOmcdT/1O1EdfeOJ3wjBq3heGYTjrR0dHG2PGjDG2bNlibNu2zbn9008/Nc455xxjzpw5xo4dO4zp06cbPj4+xjfffNOg51ZT9dEXjz76qPHuu+8ae/fuNTIyMozRo0cbfn5+LnUaEgGoCVuwYIHRsWNHw2q1Gv379zc+++wz57bY2FgjMTHR+f7EiRPGjBkzjIiICMPPz88ICwsz/u///s/lh27UqFFG27ZtDavVarRv394YNWqUsWfPngY8o9qrSV+sX7/eOO+88wxfX18jODjYuOmmm4wff/yxRvtszOq6Lzzxe/Hhhx8aksq9ys49MTHRiI2NLfeZ3r17G1ar1ejSpYuxePHicvv1xO9EffSFJ34nDKN2fVFR/U6dOrnUefXVV41zzz3XsFqtRq9evYx33nmnYU7oLNRHX0yZMsX570dISIjxxz/+0cjMzGy4kzqNxTAqub4BAADQRDEHCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAA8xPr162WxWHT48GF3NwXweAQgAOXcfPPNslgsmjVrlkv5qlWrZLFYnO8Nw9A//vEPDRgwQIGBgWrRooV69eqlyZMnV/sBh0ePHtXUqVMVEREhPz8/tW7dWrGxsXrrrbecdcLDw5Wamlon51bfyvrOYrHIx8dHnTt31n333adjx47VaD+DBg3SlClTXMoGDhyogwcPymaz1WGLAXMiAAGokJ+fn5566in98ssvFW43DENjxozR3XffrT/+8Y967733tH37dr344ovy8/PT448/Xq3jTJw4UStXrtSCBQv07bffat26dbruuuuUn59fl6fToIYMGaKDBw/qu+++0zPPPKMXXnhB06dPP+v9Wq1WhYaGuoRQALXktodwAGi0EhMTjeHDhxs9evQw7r33Xmf5m2++aZT9Z+Pf//63Icl46623KtyHw+Go1rFsNpuxZMmSSrfHxsaWe75QmU8++cS45JJLDD8/P6NDhw7GXXfdZRw5csS5/aWXXjKio6ONFi1aGCEhIcYNN9xg5ObmOreXPe9o3bp1Ru/evQ0/Pz/j8ssvN3Jzc421a9caPXr0MAICAowbbrjBKC4urtb5JCYmGtdcc41L2bXXXmv06dPH+f7QoUPG6NGjjXbt2hn+/v7G+eefbyxbtsxlH6efc3Z2trO9pz6j7/XXXzd69uxpWK1Wo1OnTsacOXOq1U7A7BgBAlAhb29vPfnkk1qwYIF++OGHctv//e9/q3v37rr66qsr/Hx1RylCQ0O1du1aFRUVVbh95cqV6tChgx577DEdPHhQBw8elCTt3btXQ4YM0ciRI/X1119rxYoV2rBhg5KSkpyfPXHihGbOnKmvvvpKq1at0r59+3TzzTeXO8aMGTOUlpamjRs36sCBA7r++uuVmpqqZcuW6Z133tF7772nBQsWVOt8Trd161Zt3LhRVqvVWXbs2DFFR0frnXfe0datW3X77bfrpptu0ubNmyVJ8+bN04ABA3Tbbbc5zzksLKzcvjMyMnT99ddr9OjR+uabbzRjxgw98sgjWrJkSa3aCpiKuxMYgMbn1FGMiy66yLjlllsMw3AdAerRo4dx9dVXu3xu8uTJRvPmzY3mzZsb7du3r9axPvroI6NDhw6Gj4+P0bdvX2PKlCnGhg0bXOp06tTJeOaZZ1zKJkyYYNx+++0uZZ988onh5eVl/PrrrxUe64svvjAkGUVFRYZh/D4C9MEHHzjrpKSkGJKMvXv3OsvuuOMOIz4+vlrnk5iYaHh7exvNmzc3fH19DUmGl5eX8frrr1f5uWHDhhl//etfne9jY2ONyZMnu9Q5fQRozJgxxpVXXulS59577zV69uxZrbYCZsYIEIAqPfXUU1q6dKl27NhxxroPPfSQsrKyNG3aNB05cqRa+7/sssv03XffKT09Xdddd522bdumSy+9VDNnzqzyc1999ZWWLFmiFi1aOF/x8fFyOBzKzs6WdHKEJCEhQR07dlRAQIBiY2MlSfv373fZ14UXXuj8OyQkRM2aNVOXLl1cyvLy8qp1PpJ0+eWXKysrS59//rkSExM1fvx4jRw50rm9tLRUM2fO1AUXXKCgoCC1aNFC7777brl2ncmOHTt08cUXu5RdfPHF2r17t0pLS2u0L8BsCEAAqnTZZZcpPj5eU6dOdSnv1q2bdu7c6VLWunVrde3aVW3atKnRMXx8fHTppZfq/vvv13vvvafHHntMM2fOVElJSaWfOXLkiO644w5lZWU5X1999ZV2796tiIgIFRcXKz4+XoGBgXrllVf0xRdf6M0335Skcvv18fFx/l1299apLBaLHA5Htc+nefPm6tq1qyIjI7Vo0SJ9/vnnevHFF53bZ8+erXnz5un+++/Xhx9+qKysLMXHx1d5vgDq1jnubgCAxm/WrFnq3bu3unfv7iy74YYbNGbMGL311lu65ppr6vR4PXv21G+//aZjx47JarXKarWWG9GIiorS9u3b1bVr1wr38c033yg/P1+zZs1yzp/58ssv67Sd1eHl5aUHH3xQycnJGjNmjPz9/fXpp5/qmmuu0Y033ihJcjgc2rVrl3r27On8XEXnfLrzzjtPn376qUvZp59+qnPPPVfe3t51fzJAE8IIEIAzuuCCCzR27FjNnz/fWTZ69Ghdd911Gj16tB577DF9/vnn2rdvnz766COtWLGi2j/AgwYN0gsvvKCMjAzt27dPa9eu1YMPPqjLL79cgYGBkk6uA/Txxx/rxx9/1KFDhyRJ999/vzZu3KikpCRlZWVp9+7deuutt5yToDt27Cir1aoFCxbou+++09tvv33Gy2r15c9//rO8vb21cOFCSSdHz95//31t3LhRO3bs0B133KHc3FyXz4SHhzv79NChQxWOQP31r39Venq6Zs6cqV27dmnp0qVKS0vTPffc0yDnBXgyAhCAannsscdcfoQtFotWrFih1NRUrV27VldccYW6d++uW265RWFhYdqwYUO19hsfH6+lS5fqqquu0nnnnae77rpL8fHxevXVV12OvW/fPkVERKh169aSTs7b+eijj7Rr1y5deuml6tOnj6ZNm6Z27dpJOnk5bsmSJXrttdfUs2dPzZo1S3PmzKnDHqm+c845R0lJSXr66adVXFyshx9+WFFRUYqPj9egQYMUGhqqESNGuHzmnnvukbe3t3r27KnWrVtXOD8oKipKr776qpYvX67zzz9f06ZN02OPPVbhnW4AXFkMwzDc3QgAAICGxAgQAAAwHQIQgHp16m3qp78++eQTdzevRvbv31/l+dT0NnYA7sMlMAD1qqqHorZv317+/v4N2Jqz89tvv2nfvn2Vbg8PD9c553BzLeAJCEAAAMB0uAQGAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABMhwAEAABM5/8BrnXZrc8mHaMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATWtJREFUeJzt3XtYVNXCBvB3BhlALuMZRBBEh4tpal5AJSzFjEKPopwsrymaZZ5PSuJ0ESsveQo7cgwT0+pLqU4crbylebDiZGWaGkh5v4KacpEhB4QEY9b3hx87Ry4Czswe2O/veeaJWbNm77V3G/fL2muvrRJCCBAREREpiFruBhARERHZGgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxARkR1LS0uDSqVCXl6e3E0halUYgIgUbv/+/YiLi0PPnj3h6uqKzp07Y9y4cThx4kStukOHDoVKpYJKpYJarYaHhwe6deuGKVOm4Msvv2zSerdu3YqIiAh06NABbdu2RWBgIMaNG4eMjAxLbVotr732GjZv3lyrfPfu3Vi4cCEuX75stXXfbOHChdK+VKlUaNu2LXr06IGXXnoJpaWlFllHeno6UlJSLLIsotaGAYhI4V5//XVs2LAB999/P5YvX46ZM2fi22+/RUhICA4dOlSrfqdOnfDhhx/igw8+wNKlSzF69Gjs3r0bDz74IMaPH49r167dcp3JyckYPXo0VCoVEhMT8cYbb2Ds2LE4efIk1q1bZ43NBNBwAFq0aJFNA1CNVatW4cMPP8SyZcvQvXt3vPrqqxg+fDgs8ZhGBiCi+rWRuwFEJK+EhASkp6dDo9FIZePHj8ddd92FJUuW4F//+pdZfa1Wi0cffdSsbMmSJXj66afx1ltvQa/X4/XXX693fb///jsWL16MBx54AF988UWtz4uKim5zi+xHRUUF2rZt22Cdhx9+GO3btwcAzJo1C2PHjsXGjRvxww8/IDw83BbNJFIk9gARKdygQYPMwg8AdO3aFT179sTRo0cbtQwHBwe8+eab6NGjB1JTU2E0GuutW1xcjNLSUtxzzz11ft6hQwez91evXsXChQtxxx13wNnZGR07dsRDDz2E06dPS3WSk5MxaNAgeHp6wsXFBaGhofj000/NlqNSqVBeXo73339fuuw0bdo0LFy4EM899xwAICAgQPrsxjE3//rXvxAaGgoXFxfodDpMmDAB58+fN1v+0KFD0atXL2RlZWHIkCFo27Yt5s2b16j9d6Nhw4YBAHJzcxus99Zbb6Fnz55wcnKCr68vZs+ebdaDNXToUHz++ec4e/astE16vb7J7SFqrdgDRES1CCFQWFiInj17Nvo7Dg4OmDhxIl5++WXs2rULI0eOrLNehw4d4OLigq1bt+Kpp56CTqerd5nV1dUYNWoUMjMzMWHCBMyZMwdlZWX48ssvcejQIQQFBQEAli9fjtGjR2Py5MmoqqrCunXr8Mgjj2Dbtm1SOz788EM8/vjjGDhwIGbOnAkACAoKgqurK06cOIF///vfeOONN6TeGC8vLwDAq6++ipdffhnjxo3D448/jkuXLmHFihUYMmQIDhw4gHbt2kntNRgMGDFiBCZMmIBHH30U3t7ejd5/NWqCnaenZ711Fi5ciEWLFiEyMhJ//etfcfz4caxatQr79+/H999/D0dHR7z44oswGo345Zdf8MYbbwAA3NzcmtweolZLEBHd5MMPPxQAxHvvvWdWHhERIXr27Fnv9zZt2iQAiOXLlze4/Pnz5wsAwtXVVYwYMUK8+uqrIisrq1a9NWvWCABi2bJltT4zmUzSzxUVFWafVVVViV69eolhw4aZlbu6uorY2Nhay1q6dKkAIHJzc83K8/LyhIODg3j11VfNyg8ePCjatGljVh4RESEAiNWrV9e73TdasGCBACCOHz8uLl26JHJzc8Xbb78tnJychLe3tygvLxdCCLF27VqzthUVFQmNRiMefPBBUV1dLS0vNTVVABBr1qyRykaOHCm6dOnSqPYQKQ0vgRGRmWPHjmH27NkIDw9HbGxsk75b08NQVlbWYL1FixYhPT0d/fr1w44dO/Diiy8iNDQUISEhZpfdNmzYgPbt2+Opp56qtQyVSiX97OLiIv3866+/wmg0YvDgwcjOzm5S+2+2ceNGmEwmjBs3DsXFxdLLx8cHXbt2xddff21W38nJCdOnT2/SOrp16wYvLy8EBATgySefRHBwMD7//PN6xw599dVXqKqqQnx8PNTqP/4Jf+KJJ+Dh4YHPP/+86RtKpEC8BEZEkoKCAowcORJarRaffvopHBwcmvT9K1euAADc3d1vWXfixImYOHEiSktLsXfvXqSlpSE9PR3R0dE4dOgQnJ2dcfr0aXTr1g1t2jT8T9W2bdvw97//HTk5OaisrJTKbwxJzXHy5EkIIdC1a9c6P3d0dDR77+fnV2s81a1s2LABHh4ecHR0RKdOnaTLevU5e/YsgOvB6UYajQaBgYHS50TUMAYgIgIAGI1GjBgxApcvX8Z3330HX1/fJi+j5rb54ODgRn/Hw8MDDzzwAB544AE4Ojri/fffx969exEREdGo73/33XcYPXo0hgwZgrfeegsdO3aEo6Mj1q5di/T09CZvw41MJhNUKhX+85//1BkGbx5Tc2NPVGMNGTJEGndERLbDAEREuHr1KqKjo3HixAl89dVX6NGjR5OXUV1djfT0dLRt2xb33ntvs9rRv39/vP/++8jPzwdwfZDy3r17ce3atVq9LTU2bNgAZ2dn7NixA05OTlL52rVra9Wtr0eovvKgoCAIIRAQEIA77rijqZtjFV26dAEAHD9+HIGBgVJ5VVUVcnNzERkZKZXdbg8YUWvGMUBEClddXY3x48djz549+OSTT5o190x1dTWefvppHD16FE8//TQ8PDzqrVtRUYE9e/bU+dl//vMfAH9c3hk7diyKi4uRmppaq674/4kCHRwcoFKpUF1dLX2Wl5dX54SHrq6udU526OrqCgC1PnvooYfg4OCARYsW1ZqYUAgBg8FQ90ZaUWRkJDQaDd58802zNr333nswGo1md9+5uro2OCUBkZKxB4hI4f72t7/hs88+Q3R0NEpKSmpNfHjzpIdGo1GqU1FRgVOnTmHjxo04ffo0JkyYgMWLFze4voqKCgwaNAh33303hg8fDn9/f1y+fBmbN2/Gd999h5iYGPTr1w8AMHXqVHzwwQdISEjAvn37MHjwYJSXl+Orr77C//zP/2DMmDEYOXIkli1bhuHDh2PSpEkoKirCypUrERwcjJ9//tls3aGhofjqq6+wbNky+Pr6IiAgAGFhYQgNDQUAvPjii5gwYQIcHR0RHR2NoKAg/P3vf0diYiLy8vIQExMDd3d35ObmYtOmTZg5cyaeffbZ29r/TeXl5YXExEQsWrQIw4cPx+jRo3H8+HG89dZbGDBggNn/r9DQUKxfvx4JCQkYMGAA3NzcEB0dbdP2EtktOW9BIyL51dy+Xd+robpubm6ia9eu4tFHHxVffPFFo9Z37do18e6774qYmBjRpUsX4eTkJNq2bSv69esnli5dKiorK83qV1RUiBdffFEEBAQIR0dH4ePjIx5++GFx+vRpqc57770nunbtKpycnET37t3F2rVrpdvMb3Ts2DExZMgQ4eLiIgCY3RK/ePFi4efnJ9Rqda1b4jds2CDuvfde4erqKlxdXUX37t3F7NmzxfHjx832TUNTBNyspn2XLl1qsN7Nt8HXSE1NFd27dxeOjo7C29tb/PWvfxW//vqrWZ0rV66ISZMmiXbt2gkAvCWe6AYqISzwwBkiIiKiFoRjgIiIiEhxGICIiIhIcRiAiIiISHEYgIiIiEhxGICIiIhIcRiAiIiISHE4EWIdTCYTLl68CHd3d04lT0RE1EIIIVBWVgZfX1+o1Q338TAA1eHixYvw9/eXuxlERETUDOfPn0enTp0arMMAVAd3d3cA13dgQ880IiIiIvtRWloKf39/6TzeEAagOtRc9vLw8GAAIiIiamEaM3yFg6CJiIhIcRiAiIiISHEYgIiIiEhxOAboNlRXV+PatWtyN6PVcnR0hIODg9zNICKiVogBqBmEECgoKMDly5flbkqr165dO/j4+HA+JiIisigGoGaoCT8dOnRA27ZteXK2AiEEKioqUFRUBADo2LGjzC0iIqLWhAGoiaqrq6Xw4+npKXdzWjUXFxcAQFFRETp06MDLYUREZDEcBN1ENWN+2rZtK3NLlKFmP3OsFRERWRIDUDPxspdtcD8TEZE1MAARERGR4jAAERERkeIwACnItGnToFKpoFKp4OjoCG9vbzzwwANYs2YNTCZTo5eTlpaGdu3aWa+hRETU6hgMBuTn5yM/Px9ZWYX49FMDsrIKpTKDwWDT9vAuMBkYDAZUVVXV+7lGo7HaHWbDhw/H2rVrUV1djcLCQmRkZGDOnDn49NNP8dlnn6FNGx4SRESt3Y3noYsX1cjNbYOAgN/h63v9j2FLn4cMBgNSU1MBANnZ/bB16ygIoYZKZUJ09DaEhBwAAMTFxdnsDmue7WzsxoOgIdY6CJycnODj4wMA8PPzQ0hICO6++27cf//9SEtLw+OPP45ly5Zh7dq1OHPmDHQ6HaKjo/GPf/wDbm5u2LlzJ6ZPnw7gjwHKCxYswMKFC/Hhhx9i+fLlOH78OFxdXTFs2DCkpKSgQ4cOFt8OIiJqHjnCSE3YMhrdpfUBgBBqbN06CkFBp6DVljXYOWBpdnEJbOXKldDr9XB2dkZYWBj27dtXb93Dhw9j7Nix0Ov1UKlUSElJqVVn4cKF0qWemlf37t2tuAWN19j/ubY8CIYNG4Y+ffpg48aNAAC1Wo0333wThw8fxvvvv4///ve/eP755wEAgwYNQkpKCjw8PKRuy2effRbA9VvVFy9ejJ9++gmbN29GXl4epk2bZrPtICKiW7tVGDEa3c3qWVJJiae0vhpCqFFSorP4um5F9h6g9evXIyEhAatXr0ZYWBhSUlIQFRWF48eP19lzUFFRgcDAQDzyyCN45pln6l1uz5498dVXX0nveWmnYd27d8fPP/8MAIiPj5fK9Xo9/v73v2PWrFl46623oNFooNVqoVKppJ6kGo899pj0c2BgIN58800MGDAAV65cgZubm022g4iIGqehMKLVllllnTqdASqVyWy9KpUJOl2JVdbXENl7gJYtW4YnnngC06dPR48ePbB69Wq0bdsWa9asqbP+gAEDsHTpUkyYMAFOTk71LrdNmzbw8fGRXu3bt7fWJrQKQgjpktZXX32F+++/H35+fnB3d8eUKVNgMBhQUVHR4DKysrIQHR2Nzp07w93dHREREQCAc+fOWb39RETUNDVh5EbWDiNabRmio7dJ66257GatwNUQWQNQVVUVsrKyEBkZKZWp1WpERkZiz549t7XskydPwtfXF4GBgZg8eXKDJ+HKykqUlpaavZTm6NGjCAgIQF5eHkaNGoXevXtjw4YNyMrKwsqVKwE03B1aXl6OqKgoeHh44KOPPsL+/fuxadOmW36PiIjkIVcYCQk5gPj4FMTGpiE+PkUac2Rrsl4XKi4uRnV1Nby9vc3Kvb29cezYsWYvNywsDGlpaejWrRvy8/OxaNEiDB48GIcOHYK7u3ut+klJSVi0aFGz19fS/fe//8XBgwfxzDPPICsrCyaTCf/85z+hVl/Pxx9//LFZfY1Gg+rqarOyY8eOwWAwYMmSJfD39wcA/Pjjj7bZACIiapaQkAMICjqFkhIddLoSm/XEaLVlsvT63Ej2S2DWMGLECDzyyCPo3bs3oqKisH37dly+fLnWibxGYmIijEaj9Dp//ryNW2w7lZWVKCgowIULF5CdnY3XXnsNY8aMwahRozB16lQEBwfj2rVrWLFiBc6cOYMPP/wQq1evNluGXq/HlStXkJmZieLiYlRUVKBz587QaDTS9z777DMsXrxYpq0kIqLG0mrLEBBwVvZAYmuyBqD27dvDwcEBhYWFZuWFhYW1Btjejnbt2uGOO+7AqVOn6vzcyckJHh4eZq/WKiMjAx07doRer8fw4cPx9ddf480338SWLVvg4OCAPn36YNmyZXj99dfRq1cvfPTRR0hKSjJbxqBBgzBr1iyMHz8eXl5e+Mc//gEvLy+kpaXhk08+QY8ePbBkyRIkJyfLtJVERGRPNBqNRetZgqyXwDQaDUJDQ5GZmYmYmBgAgMlkQmZmJuLi4iy2nitXruD06dOYMmWKxZbZXHIeBGlpaUhLS7tlvWeeeabWHXY377tVq1Zh1apVZmUTJ07ExIkTzcqEEM1rLBERWYUc5yFPT0/ExcXJNglwXWS/NzwhIQGxsbHo378/Bg4ciJSUFJSXl0uT7U2dOhV+fn5SL0RVVRWOHDki/XzhwgXk5OTAzc0NwcHBAIBnn30W0dHR6NKlCy5evIgFCxbAwcGh1slZDvZ4EBARkXLIdR6yt/Oa7AFo/PjxuHTpEubPn4+CggL07dsXGRkZ0sDoc+fOSYNxAeDixYvo16+f9D45ORnJycmIiIjAzp07AQC//PILJk6cCIPBAC8vL9x777344Ycf4OXlZdNtq4+9HQRERKQsPA8BKsFrFLWUlpZCq9XCaDTWGg909epV5ObmIiAgAM7OzjK1UDm4v4mIqLEaOn/frFXeBUZERETUEAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiCymJ07d0KlUuHy5cuN/o5er0dKSorV2kRERFQXBiAFmTZtGlQqFWbNmlXrs9mzZ0OlUmHatGm2bxgREZGNMQApjL+/P9atW4fffvtNKrt69SrS09PRuXNnGVtGRERkOwxAChMSEgJ/f39s3LhRKtu4cSM6d+5s9oiRyspKPP300+jQoQOcnZ1x7733Yv/+/WbL2r59O+644w64uLjgvvvuQ15eXq317dq1C4MHD4aLiwv8/f3x9NNPo7y83GrbR0RE1BgMQDL75Rfg66+v/9dWHnvsMaxdu1Z6v2bNGunhszWef/55bNiwAe+//z6ys7MRHByMqKgolJSUAADOnz+Phx56CNHR0cjJycHjjz+OuXPnmi3j9OnTGD58OMaOHYuff/4Z69evx65duxAXF2f9jSQiImoAA5CM3nsP6NIFGDbs+n/fe88263300Uexa9cunD17FmfPnsX333+PRx99VPq8vLwcq1atwtKlSzFixAj06NED7777LlxcXPDe/zdy1apVCAoKwj//+U9069YNkydPrjV+KCkpCZMnT0Z8fDy6du2KQYMG4c0338QHH3yAq1ev2mZjiYiI6iD70+CV6pdfgJkzAZPp+nuTCXjySSAqCujUybrr9vLywsiRI5GWlgYhBEaOHIn27dtLn58+fRrXrl3DPffcI5U5Ojpi4MCBOHr0KADg6NGjCAsLM1tueHi42fuffvoJP//8Mz766COpTAgBk8mE3Nxc3HnnndbYPCIioltiAJLJyZN/hJ8a1dXAqVPWD0DA9ctgNZeiVq5caZV1XLlyBU8++SSefvrpWp9xwDUREcmJAUgmXbsCarV5CHJwAIKDbbP+4cOHo6qqCiqVClFRUWafBQUFQaPR4Pvvv0eXLl0AANeuXcP+/fsRHx8PALjzzjvx2WefmX3vhx9+MHsfEhKCI0eOINhWG0VERNRIHAMkk06dgHfeuR56gOv/fftt2/T+XF+fA44ePYojR47AoaYR/8/V1RV//etf8dxzzyEjIwNHjhzBE088gYqKCsyYMQMAMGvWLJw8eRLPPfccjh8/jvT0dKSlpZkt54UXXsDu3bsRFxeHnJwcnDx5Elu2bOEgaCIikh17gGQ0Y8b1MT+nTl3v+bFV+Knh4eFR72dLliyByWTClClTUFZWhv79+2PHjh3405/+BOD6JawNGzbgmWeewYoVKzBw4EC89tpreOyxx6Rl9O7dG9988w1efPFFDB48GEIIBAUFYfz48VbfNiIiooaohBBC7kbYm9LSUmi1WhiNxloh4erVq8jNzUVAQACcnZ1laqFycH8TEVFjNXT+vhkvgREREZHiMAARERGR4jAAERERkeIwABEREZHi8C6wZuLYcdvgfiYiah0MBgOqqqrq/Vyj0cDT09Nm7WEAaiJHR0cAQEVFBVxcXGRuTetXUVEB4I/9TkRELY/BYEBqauot68XFxdksBDEANZGDgwPatWuHoqIiAEDbtm2hUqlkblXrI4RARUUFioqK0K5du1qTNRIRUcvRUM9Pc+pZAgNQM/j4+ACAFILIetq1ayftbyIiIkthAGoGlUqFjh07okOHDrh27ZrczWm1HB0d2fNDRNQKGY3uKCnxhE5ngFZbJksbGIBug4ODA0/QRERETZCd3Q9bt46CEGqoVCZER29DSMgBm7eDt8ETERGRTRiN7lL4AQAh1Ni6dRSMRnebt4UBiIiIiGyipMRTCj81hFCjpERn87YwABEREZFN6HQGqFQmszKVygSdrsTmbWEAIiIiIqvSaDQAAK22DNHR26QQVDMGqGYgdE09W1AJTrVbS2lpKbRaLYxGIzw8PORuDhERUYt340zQFy+qkZfXBnr97/D1vR6GLDETdFPO37wLjIiIiKzuxnDTsSMQGipjY8BLYERERKRADEBERESkOAxAREREpDh2EYBWrlwJvV4PZ2dnhIWFYd++ffXWPXz4MMaOHQu9Xg+VSoWUlJQGl71kyRKoVCrEx8dbttFERETUYskegNavX4+EhAQsWLAA2dnZ6NOnD6Kioup90GhFRQUCAwOxZMmSWz4kc//+/Xj77bfRu3dvazSdiIiIWijZA9CyZcvwxBNPYPr06ejRowdWr16Ntm3bYs2aNXXWHzBgAJYuXYoJEybAycmp3uVeuXIFkydPxrvvvos//elP1mo+ERERtUCyBqCqqipkZWUhMjJSKlOr1YiMjMSePXtua9mzZ8/GyJEjzZZdn8rKSpSWlpq9iIiIqPWSNQAVFxejuroa3t7eZuXe3t4oKCho9nLXrVuH7OxsJCUlNap+UlIStFqt9PL392/2uomIiMj+yX4JzNLOnz+POXPm4KOPPoKzs3OjvpOYmAij0Si9zp8/b+VWEhERkZxknQm6ffv2cHBwQGFhoVl5YWHhLQc41ycrKwtFRUUICQmRyqqrq/Htt98iNTUVlZWVcHBwMPuOk5NTg+OJiIiIqHWRtQdIo9EgNDQUmZmZUpnJZEJmZibCw8Obtcz7778fBw8eRE5OjvTq378/Jk+ejJycnFrhh4iIiJRH9meBJSQkIDY2Fv3798fAgQORkpKC8vJyTJ8+HQAwdepU+Pn5SeN5qqqqcOTIEennCxcuICcnB25ubggODoa7uzt69epltg5XV1d4enrWKiciIiJlkj0AjR8/HpcuXcL8+fNRUFCAvn37IiMjQxoYfe7cOajVf3RUXbx4Ef369ZPeJycnIzk5GREREdi5c6etm09EREQtkEoIIeRuhL0pLS2FVquF0WiEh4eH3M0hIiKiRmjK+Vv2HiAiIiUyGAyoqqqq93ONRgNPT08btohIWRiAiIhszGAwIDU19Zb14uLiGIJsiKFUWRiAiIhs7OaTrNHojpIST+h0Bmi1ZfXWI+thKFUeBiAiIhllZ/fD1q2jIIQaKpUJ0dHbEBJyQO5mKU5jwyZDaevR6maCJiJqKYxGdyn8AIAQamzdOgpGo7vMLSOj0R25uXr+v2jF2ANERCSTkhJPKfzUEEKNkhKd2aUwsi32yikDe4CIiGSi0xmgUpnMylQqE3S6EplaROyVUw4GICIimWi1ZYiO3iaFoJreBvb+yKehXjlqXXgJjIhIRiEhBxAUdAolJTrodCUMPzKr6ZW7MQSxV651Yg8QEZGNaTQas/dabRkCAs7WCj831yPrY6+ccrAHiIjIxjw9PREXF8dJ9+zIjWGzoV45htLWg88CqwOfBUZEpDycCbrl47PAiIiImojhRlk4BoiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcTIRKRxXFGXSKydwxARGRRBoMBqampt6wXFxfHEEREsuElMCKyqIZ6fppTj4jIGhiAiMiqjEZ35ObqYTS6y90UIiIJL4ERkdVkZ/fD1q2jIIQaKpUJ0dHbEBJyQO5mERGxB4iIrMNodJfCDwAIocbWraPYE0REdoEBiIisoqTEUwo/NYRQo6REJ1OLiIj+wABERFah0xmgUpnMylQqE3S6EplaRET0BwYgIrIKrbYM0dHbpBBUMwZIqy2TuWVERBwETUQWptFopJ9DQg4gKOgUSkp00OlKzMLPjfXINjhBJdEfGICIyKI8PT0RFxfHE62d4QSVROYYgIjI4ngCtT+coJLIHMcAEREpECeoJKVjDxARkcJwgkoi9gARESkKJ6gkuo4BiIhIQThBJdF1dhGAVq5cCb1eD2dnZ4SFhWHfvn311j18+DDGjh0LvV4PlUqFlJSUWnVWrVqF3r17w8PDAx4eHggPD8d//vMfK24BEVHLwAkqia6TPQCtX78eCQkJWLBgAbKzs9GnTx9ERUWhqKiozvoVFRUIDAzEkiVL4OPjU2edTp06YcmSJcjKysKPP/6IYcOGYcyYMTh8+LA1N4WIyO5xgkqi61RCCCFnA8LCwjBgwABpfgqTyQR/f3889dRTmDt3boPf1ev1iI+PR3x8/C3Xo9PpsHTpUsyYMeOWdUtLS6HVamE0GuHh4dGo7SAismc3zwNkNLrXOUEl5wGilqwp529Z7wKrqqpCVlYWEhMTpTK1Wo3IyEjs2bPHIuuorq7GJ598gvLycoSHh9dZp7KyEpWVldL70tJSi6ybiMhecIJKInOyBqDi4mJUV1fD29vbrNzb2xvHjh27rWUfPHgQ4eHhuHr1Ktzc3LBp0yb06NGjzrpJSUlYtGjRba2PiMjeMdwQ/UH2MUDW0q1bN+Tk5GDv3r3461//itjYWBw5cqTOuomJiTAajdLr/PnzNm4tERER2ZKsPUDt27eHg4MDCgsLzcoLCwvrHeDcWBqNBsHBwQCA0NBQ7N+/H8uXL8fbb79dq66TkxOcnJxua31ERETUcsjaA6TRaBAaGorMzEypzGQyITMzs97xOs1lMpnMxvkQERGRcsn+KIyEhATExsaif//+GDhwIFJSUlBeXo7p06cDAKZOnQo/Pz8kJSUBuD5wuuZSVlVVFS5cuICcnBy4ublJPT6JiYkYMWIEOnfujLKyMqSnp2Pnzp3YsWOHPBtJREREdkX2ADR+/HhcunQJ8+fPR0FBAfr27YuMjAxpYPS5c+egVv/RUXXx4kX069dPep+cnIzk5GRERERg586dAICioiJMnToV+fn50Gq16N27N3bs2IEHHnjApttGRERE9kn2eYDsEecBIiIianmacv5utXeBEREREdWHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFIcBiIiIiBSHAYiIiIgUhwGIiIiIFEf2R2EQEVmCwWBAVVVVvZ9rNBp4enrasEVEZM8YgIioxTMYDEhNTb1lvbi4OIYgIgLAS2BE1Arc3PNjNLojN1cPo9G9wXpEpFzsASKiViU7ux+2bh0FIdRQqUyIjt6GkJADcjeLiOwMe4CIqNUwGt2l8AMAQqixdeuoWj1BRETsASKL4SBUkltJiacUfmoIoUZJiQ5abZlMrSIie8QARBbBQahkD3Q6A1Qqk1kIUqlM0OlKZGwVEdkjXgIji2js4FIOQiVr0mrLEB29DSqVCQCkMUDs/SGim7EHiIhalZCQAwgKOoWSEh10uhKGHyKqEwMQEbV4Go3G7L1WW1Zn8Lm5HhEpFwMQEbV4np6eiIuL4yB8Imo0BiCyCqPRHSUlntDpDLwEQTbBcENETcEARBbHieiIiMje8S4wsihOREdERC0BAxBZRM3g0oYmoruxHhERkZxUQgghdyPsTWlpKbRaLYxGIzw8PORuTothMBiQl/c7Bg7sAJNJJZU7OAjs3VsEvb4Nx2kQEZHVNOX8zR4gshhPT0+EhnrjnXdUcHC4XubgALz9tgqhod4MP0REZDc4CJosbsYMICoKOHUKCA4GOnWSu0VERETmGIDIKjp1YvAhIiL7xQBERHbDYDBwMkMisgkGIFIsnmzti8FgQGpqqvS+vsk04+Li+P+FiG4bAxAp0s0n2/rwZGs7N4bRhibTbCi0EhE1Fu8CI0W6+SRqNLojN1dfa8JGnmxtj5NpEpEtsAeIFI+P7rAvDU2myefKEZGlsAeIFI29DfZHpzNApTKZlalUJuh0JTK1iIhaIwYgUrRbPbqDbE+rLUN09DYpBNX0yrH3h4gsiZfASNFqehtuDEHsbZBfSMgBBAWdQkmJDjpdCcMPEVkce4BI0djbYL+02jIEBJzl/wsisgq7CEArV66EXq+Hs7MzwsLCsG/fvnrrHj58GGPHjoVer4dKpUJKSkqtOklJSRgwYADc3d3RoUMHxMTE4Pjx41bcAmrJQkIOID4+BbGxaYiPT+EAaJloNBqL1iMiaojsl8DWr1+PhIQErF69GmFhYUhJSUFUVBSOHz+ODh061KpfUVGBwMBAPPLII3jmmWfqXOY333yD2bNnY8CAAfj9998xb948PPjggzhy5AhcXV2tvUnUAtx8EtVqy+rsaeDJ1nY8PT0RFxfHySmJyCZUQgghZwPCwsIwYMAAaVI6k8kEf39/PPXUU5g7d26D39Xr9YiPj0d8fHyD9S5duoQOHTrgm2++wZAhQ27ZptLSUmi1WhiNRnh4eDR6W6hl4UzQREStS1PO37L2AFVVVSErKwuJiYlSmVqtRmRkJPbs2WOx9RiNRgCATlf3nT2VlZWorKyU3peWllps3WS/GG6IiJRL1jFAxcXFqK6uhre3t1m5t7c3CgoKLLIOk8mE+Ph43HPPPejVq1eddZKSkqDVaqWXv7+/RdZNRERE9skuBkFb0+zZs3Ho0CGsW7eu3jqJiYkwGo3S6/z58zZsIREREdmarJfA2rdvDwcHBxQWFpqVFxYWwsfH57aXHxcXh23btuHbb79Fp06d6q3n5OQEJyen214fERERtQyy9gBpNBqEhoYiMzNTKjOZTMjMzER4eHizlyuEQFxcHDZt2oT//ve/CAgIsERziYiIqJWQ/Tb4hIQExMbGon///hg4cCBSUlJQXl6O6dOnAwCmTp0KPz8/JCUlAbg+cPrIkSPSzxcuXEBOTg7c3NwQHBwM4Pplr/T0dGzZsgXu7u7SeCKtVgsXFxcZtpKIiIjsiey3wQNAamoqli5dioKCAvTt2xdvvvkmwsLCAABDhw6FXq9HWloaACAvL6/OHp2IiAjs3LkTAKBSqepcz9q1azFt2rRbtoe3wRMREbU8TTl/20UAsjcMQERERC1PU87frf4uMCIiIqKbNXsM0OXLl3Hq1CkAQHBwMNq1a2epNhERERFZVZN7gPLy8jBy5Ei0b98eYWFhCAsLQ/v27TFq1Cjk5eVZoYlEREREltWkHqDz58/j7rvvhqOjIxYvXow777wTAHDkyBGsWrUK4eHh2L9/f4Nz7hARERHJrUmDoGfMmIFTp05hx44dcHZ2Nvvst99+w/Dhw9G1a1f87//+r8UbakscBE1ERNTyWO1hqBkZGVi/fn2t8AMALi4uWLx4MSZMmNC01hIRERHZWJPGABUXF0Ov19f7eWBgIEpKSm63TURERERW1aQA1LFjR2kW5rocOnTIIs/wIiIiIrKmJgWgmJgYPPvss7h06VKtz4qKivDCCy8gJibGUm0jIiIisoomDYL+9ddfERYWhoKCAjz66KPo3r07hBA4evQo0tPT4ePjgx9++AE6nc6abbY6DoImIiJqeaw2CPpPf/oT9u7di3nz5mHdunW4fPkyAKBdu3aYNGkSXnvttRYffoiIiKj1a/azwIQQ0qUwLy+veh9A2hKxB4iIiKjlsVoP0I1UKhU6dOjQ3K8TERERyabJj8LYvn07Hn/8cTz//PM4evSo2We//vorhg0bZrHGEREREVlDkwJQeno6Ro8ejYKCAuzZswchISH46KOPpM+rqqrwzTffWLyRRERERJbUpEtgS5cuxbJly/D0008DAD7++GM89thjuHr1KmbMmGGVBhIRERFZWpMC0MmTJxEdHS29HzduHLy8vDB69Ghcu3YNf/nLXyzeQCIiIiJLa1IA8vDwQGFhIQICAqSy++67D9u2bcOoUaPwyy+/WLyBRERERJbWpDFAAwcOxH/+859a5REREdi6dStSUlIs1S4iIiIiq2lSAHrmmWfqfBI8AAwdOhRbt27F1KlTLdIwIiIiImtp0kSIpaWljarX0icP5ESIRERELY/VJkJs165do2Z8rq6ubspiiYiIiGyqSQHo66+/ln4WQuDPf/4z/vd//xd+fn4WbxgRERGRtTQpAEVERJi9d3BwwN13343AwECLNoqIiIjImpr8KAwiIiKilq7ZD0OlxjMYDKiqqqr3c41GA09PTxu2iMg+8XeFiGzltgNQYwZFK5nBYEBqaqr03mh0R0mJJ3Q6A7TaMqk8Li6O/7CTot38u1If/q4QkSU0KQA99NBDZu+vXr2KWbNmwdXV1ax848aNt9+yVuLGv2azs/th69ZREEINlcqE6OhtCAk5UKsekRLd/DtQ3x8L/F0hIktoUgDSarVm7x999FGLNqY1MxrdpfADAEKosXXrKAQFnTL7x52IGv5jgYjIEpoUgNauXWutdrR6JSWeUvipIYQaJSU6BiCiG/CPBSKyBQ6CthGdzgCVymQWglQqE3S6EhlbRWR/+McCUet0400OFy+qkZvbBgEBv8PX1wTA9jc5MADZiFZbhujobbW69fkPOpE5/rFA1PrceJNDQ5e4bXmTAwOQDYWEHEBQ0CmUlOig05Uw/BDVgX8sELU+NT0/t7rEbcubHBiAbEyrLeM/5ES3wD8WiFone7rEzQBkZRqNxqL1iFqrm38H6vtjgb8rRC2XPV3iZgCyMk9PT8TFxXF2W6Jb4O8KUetnT5e4GYBsgP9gEzUOf1eIWj97ucQt+8NQV65cCb1eD2dnZ4SFhWHfvn311j18+DDGjh0LvV4PlUqFlJSUWnW+/fZbREdHw9fXFyqVCps3b7Ze44mIiKjJtNoyBASclXV8n6wBaP369UhISMCCBQuQnZ2NPn36ICoqCkVFRXXWr6ioQGBgIJYsWQIfH58665SXl6NPnz5YuXKlNZtORESNYDAYkJ+fX+/LYDDI3URSKFkvgS1btgxPPPEEpk+fDgBYvXo1Pv/8c6xZswZz586tVX/AgAEYMGAAANT5OQCMGDECI0aMsF6jiYioUfiAW6phjzcEyRaAqqqqkJWVhcTERKlMrVYjMjISe/bssWlbKisrUVlZKb0vLS216fqJiFojPuCWatjjTQ6yBaDi4mJUV1fD29vbrNzb2xvHjh2zaVuSkpKwaNEim66TiEhJ+IBbsrdePtkHQduDxMREGI1G6XX+/Hm5m0RE1GrUN/uv0eguc8tIyWTrAWrfvj0cHBxQWFhoVl5YWFjvAGdrcXJygpOTk03XSUSkFPY0+y9RDdl6gDQaDUJDQ5GZmSmVmUwmZGZmIjw8XK5mERGRhdXM/nsjPuCW5CbrXWAJCQmIjY1F//79MXDgQKSkpKC8vFy6K2zq1Knw8/NDUlISgOsD5Y4cOSL9fOHCBeTk5MDNzQ3BwcEAgCtXruDUqVPSOnJzc5GTkwOdTofOnTvbeAuJiMieZv8lqiFrABo/fjwuXbqE+fPno6CgAH379kVGRoY0MPrcuXNQq//opLp48SL69esnvU9OTkZycjIiIiKwc+dOAMCPP/6I++67T6qTkJAAAIiNjUVaWpr1N4qIiGqxl9l/iWqohBBC7kbYm9LSUmi1WhiNRnh4eMjdHCKiFonzAJGtNeX8zWeBERGRVdjj3C9ENRiAiIjIahhuyF4xANmAwWCQ/gK6eFGN3Nw2CAj4Hb6+1++K4F9AREREtsUAZGU3XgNvaCZUXgMnIiKyHc4EbWU1PT+3mgmVz8IhIiKyHQYgG2loJlQiIiKyLQYgG+FMqERERPaDAchGamZCrQlBnAmViIhIPhwEbUOcCZWIiMg+MADZmFZbxuBDREQkM14CIyIiIsVhD5CVaTQai9YjImquGydlrQsnZSUlYQCyMj4Lh4jsAR9MSmSOAcgG+I8JEcnt5j/CjEZ3lJR4QqczmI1L5KSspBQMQERECtPQY3mIlIKDoImIFORWj+UhUgoGICIiBeFjeYiuYwAiIlIQPpaH6DoGICIiBeFjeYiu4yBoIiKF4WN5iBiAiIgU4ebJVut7LA8nZSWlYAAiIlIATspKZI4BiIhIIRhuiP7AQdBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDi8C4yoBTAYDLx9mYjIghiAiOycwWBAamrqLevFxcUxBBERNRIvgRHZuZt7foxGd+Tm6mE0ujdYj4iI6sceIKIWJDu7H7ZuHQUh1NJDLENCDsjdLCKiFoc9QEQthNHoLoUfABBCja1bR9XqCSIioltjACJqIUpKPKXwU0MINUpKdDK1iIio5WIAImohdDoDVCqTWZlKZYJOVyJTi4iIWi4GIKIWQqstQ3T0NikE1YwB0mrLZG4ZEVHLw0HQRC1ISMgBBAWdQkmJDjpdCcMPEVEz2UUP0MqVK6HX6+Hs7IywsDDs27ev3rqHDx/G2LFjodfroVKpkJKSctvLJLJnGo3G7L1WW4aAgLO1ws/N9ah1MhgMyM/Pr/dlMBjkbiJRiyB7D9D69euRkJCA1atXIywsDCkpKYiKisLx48fRoUOHWvUrKioQGBiIRx55BM8884xFlklkzzw9PREXF8eZoKnWpJhGoztKSjyh0xnMAjEnxSS6NZUQQsjZgLCwMAwYMED6pTaZTPD398dTTz2FuXPnNvhdvV6P+Ph4xMfHW2yZAFBaWgqtVguj0QgPD4/mbRgRkYXl5+fjnXfeAdDwnFAzZ85Ex44d5WwqkSyacv6W9RJYVVUVsrKyEBkZKZWp1WpERkZiz549NltmZWUlSktLzV5ERPaKc0IR3T5ZA1BxcTGqq6vh7e1tVu7t7Y2CggKbLTMpKQlarVZ6+fv7N2vdRES2wDmhiG6fXQyClltiYiKMRqP0On/+vNxNIiKqF+eEIrp9sgag9u3bw8HBAYWFhWblhYWF8PHxsdkynZyc4OHhYfYiIrJXnBOK6PbJeheYRqNBaGgoMjMzERMTA+D6gOXMzEzExcXZzTKJiOwN54Qiuj2y3wafkJCA2NhY9O/fHwMHDkRKSgrKy8sxffp0AMDUqVPh5+eHpKQkANcHOR85ckT6+cKFC8jJyYGbmxuCg4MbtUwiotZAqy1j8CFqJtkD0Pjx43Hp0iXMnz8fBQUF6Nu3LzIyMqRBzOfOnYNa/ceVuosXL6Jfv37S++TkZCQnJyMiIgI7d+5s1DKJiFqixk52yUkxiW5N9nmA7BHnASIie2UwGDgpJlE9mnL+lr0HiIiIGo/hhsgyeBs8ERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESmOXQSglStXQq/Xw9nZGWFhYdi3b1+D9T/55BN0794dzs7OuOuuu7B9+3azzwsLCzFt2jT4+vqibdu2GD58OE6ePGnNTSAiIqIWRPYAtH79eiQkJGDBggXIzs5Gnz59EBUVhaKiojrr7969GxMnTsSMGTNw4MABxMTEICYmBocOHQIACCEQExODM2fOYMuWLThw4AC6dOmCyMhIlJeX23LTiIiIyE6phBBCzgaEhYVhwIABSE1NBQCYTCb4+/vjqaeewty5c2vVHz9+PMrLy7Ft2zap7O6770bfvn2xevVqnDhxAt26dcOhQ4fQs2dPaZk+Pj547bXX8Pjjj9+yTaWlpdBqtTAajfDw8LDQlhIREZE1NeX8LWsPUFVVFbKyshAZGSmVqdVqREZGYs+ePXV+Z8+ePWb1ASAqKkqqX1lZCQBwdnY2W6aTkxN27dpl6U0gIiKiFkjWAFRcXIzq6mp4e3ublXt7e6OgoKDO7xQUFDRYv3v37ujcuTMSExPx66+/oqqqCq+//jp++eUX5Ofn17nMyspKlJaWmr2IiIio9ZJ9DJClOTo6YuPGjThx4gR0Oh3atm2Lr7/+GiNGjIBaXffmJiUlQavVSi9/f38bt5qIiIhsSdYA1L59ezg4OKCwsNCsvLCwED4+PnV+x8fH55b1Q0NDkZOTg8uXLyM/Px8ZGRkwGAwIDAysc5mJiYkwGo3S6/z587e5ZURERGTPZA1AGo0GoaGhyMzMlMpMJhMyMzMRHh5e53fCw8PN6gPAl19+WWd9rVYLLy8vnDx5Ej/++CPGjBlT5zKdnJzg4eFh9iIiIqLWq43cDUhISEBsbCz69++PgQMHIiUlBeXl5Zg+fToAYOrUqfDz80NSUhIAYM6cOYiIiMA///lPjBw5EuvWrcOPP/6Id955R1rmJ598Ai8vL3Tu3BkHDx7EnDlzEBMTgwcffFCWbSQiIiL7InsAGj9+PC5duoT58+ejoKAAffv2RUZGhjTQ+dy5c2ZjdwYNGoT09HS89NJLmDdvHrp27YrNmzejV69eUp38/HwkJCSgsLAQHTt2xNSpU/Hyyy/bfNuIiIjIPsk+D5A94jxARERELU+LmQeIiIiISA4MQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDht5G4AtR4GgwFVVVX1fq7RaODp6WnDFhEREdWNAYgswmAwIDU19Zb14uLiGIKIiEh2vARGFtFQz09z6hEREVkTAxAREREpDgMQWYXR6I7cXD2MRne5m0JERFQLxwCRxWVn98PWraMghBoqlQnR0dsQEnJA7mYRERFJ7KIHaOXKldDr9XB2dkZYWBj27dvXYP1PPvkE3bt3h7OzM+666y5s377d7PMrV64gLi4OnTp1gouLC3r06IHVq1dbcxPo/xmN7lL4AQAh1Ni6dRR7goiIyK7IHoDWr1+PhIQELFiwANnZ2ejTpw+ioqJQVFRUZ/3du3dj4sSJmDFjBg4cOICYmBjExMTg0KFDUp2EhARkZGTgX//6F44ePYr4+HjExcXhs88+s9VmKVZJiacUfmoIoUZJiU6mFhEREdUmewBatmwZnnjiCUyfPl3qqWnbti3WrFlTZ/3ly5dj+PDheO6553DnnXdi8eLFCAkJMbsFe/fu3YiNjcXQoUOh1+sxc+ZM9OnT55Y9S3T7dDoDVCqTWZlKZYJOVyJTi4iIiGqTNQBVVVUhKysLkZGRUplarUZkZCT27NlT53f27NljVh8AoqKizOoPGjQIn332GS5cuAAhBL7++mucOHECDz74oHU2hKDRaAAAWm0ZoqO3SSGoZgyQVltmVo+IiEhOsg6CLi4uRnV1Nby9vc3Kvb29cezYsTq/U1BQUGf9goIC6f2KFSswc+ZMdOrUCW3atIFarca7776LIUOG1LnMyspKVFZWSu9LS0ubu0mK5enpibi4OGmen/nzLyEvrw30+t/h6zsAwADOBE1ERHajVd4FtmLFCvzwww/47LPP0KVLF3z77beYPXs2fH19a/UeAUBSUhIWLVokQ0tblxvDTceOQGiojI0hIiJqgKwBqH379nBwcEBhYaFZeWFhIXx8fOr8jo+PT4P1f/vtN8ybNw+bNm3CyJEjAQC9e/dGTk4OkpOT6wxAiYmJSEhIkN6XlpbC39//traNiIiI7JesY4A0Gg1CQ0ORmZkplZlMJmRmZiI8PLzO74SHh5vVB4Avv/xSqn/t2jVcu3YNarX5pjk4OMBkMh+cW8PJyQkeHh5mLyIiImq9ZL8ElpCQgNjYWPTv3x8DBw5ESkoKysvLMX36dADA1KlT4efnh6SkJADAnDlzEBERgX/+858YOXIk1q1bhx9//BHvvPMOAMDDwwMRERF47rnn4OLigi5duuCbb77BBx98gGXLlsm2nURERGQ/ZA9A48ePx6VLlzB//nwUFBSgb9++yMjIkAY6nzt3zqw3Z9CgQUhPT8dLL72EefPmoWvXrti8eTN69eol1Vm3bh0SExMxefJklJSUoEuXLnj11Vcxa9Ysm28fERER2R+VEELI3Qh7U1paCq1WC6PRyMthRERELURTzt+yT4RIREREZGsMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOLLPA2SPamYG4ENRiYiIWo6a83ZjZvhhAKpDWVkZAPB5YERERC1QWVkZtFptg3U4EWIdTCYTLl68CHd3d6hUqttaVs2DVc+fP89JFf8f90lt3Ce1cZ/Uxn1SN+6X2pS6T4QQKCsrg6+vb61ngt6MPUB1UKvV6NSpk0WXyYes1sZ9Uhv3SW3cJ7Vxn9SN+6U2Je6TW/X81OAgaCIiIlIcBiAiIiJSHAYgK3NycsKCBQvg5OQkd1PsBvdJbdwntXGf1MZ9Ujful9q4T26Ng6CJiIhIcdgDRERERIrDAERERESKwwBEREREisMARERERIrDANQMK1euhF6vh7OzM8LCwrBv374G66ekpKBbt25wcXGBv78/nnnmGVy9elX6fOHChVCpVGav7t27W3szLKop++TatWt45ZVXEBQUBGdnZ/Tp0wcZGRm3tUx7ZOl90tKPk2+//RbR0dHw9fWFSqXC5s2bb/mdnTt3IiQkBE5OTggODkZaWlqtOi35OLHGPlHacZKfn49JkybhjjvugFqtRnx8fJ31PvnkE3Tv3h3Ozs646667sH37dss33kqssU/S0tJqHSfOzs7W2QA7xQDUROvXr0dCQgIWLFiA7Oxs9OnTB1FRUSgqKqqzfnp6OubOnYsFCxbg6NGjeO+997B+/XrMmzfPrF7Pnj2Rn58vvXbt2mWLzbGIpu6Tl156CW+//TZWrFiBI0eOYNasWfjLX/6CAwcONHuZ9sYa+wRo2cdJeXk5+vTpg5UrVzaqfm5uLkaOHIn77rsPOTk5iI+Px+OPP44dO3ZIdVr6cWKNfQIo6ziprKyEl5cXXnrpJfTp06fOOrt378bEiRMxY8YMHDhwADExMYiJicGhQ4cs2XSrscY+Aa7PEn3jcXL27FlLNbllENQkAwcOFLNnz5beV1dXC19fX5GUlFRn/dmzZ4thw4aZlSUkJIh77rlHer9gwQLRp08fq7TXFpq6Tzp27ChSU1PNyh566CExefLkZi/T3lhjn7T04+RGAMSmTZsarPP888+Lnj17mpWNHz9eREVFSe9b+nFyI0vtE6UdJzeKiIgQc+bMqVU+btw4MXLkSLOysLAw8eSTT95mC23PUvtk7dq1QqvVWqxdLRF7gJqgqqoKWVlZiIyMlMrUajUiIyOxZ8+eOr8zaNAgZGVlSd3yZ86cwfbt2/HnP//ZrN7Jkyfh6+uLwMBATJ48GefOnbPehlhQc/ZJZWVlra5WFxcX6a/U5izTnlhjn9RoqcdJc+zZs8dsHwJAVFSUtA9b+nHSHLfaJzWUdJw0RmP3m9JcuXIFXbp0gb+/P8aMGYPDhw/L3SSbYgBqguLiYlRXV8Pb29us3NvbGwUFBXV+Z9KkSXjllVdw7733wtHREUFBQRg6dKjZJbCwsDCkpaUhIyMDq1atQm5uLgYPHoyysjKrbo8lNGefREVFYdmyZTh58iRMJhO+/PJLbNy4Efn5+c1epj2xxj4BWvZx0hwFBQV17sPS0lL89ttvLf44aY5b7RNAecdJY9S331rrcdIY3bp1w5o1a7Blyxb861//gslkwqBBg/DLL7/I3TSbYQCysp07d+K1117DW2+9hezsbGzcuBGff/45Fi9eLNUZMWIEHnnkEfTu3RtRUVHYvn07Ll++jI8//ljGllvP8uXL0bVrV3Tv3h0ajQZxcXGYPn061GrlHo6N2SdKO06oeXicUGOEh4dj6tSp6Nu3LyIiIrBx40Z4eXnh7bfflrtpNqPcM04ztG/fHg4ODigsLDQrLywshI+PT53fefnllzFlyhQ8/vjjuOuuu/CXv/wFr732GpKSkmAymer8Trt27XDHHXfg1KlTFt8GS2vOPvHy8sLmzZtRXl6Os2fP4tixY3Bzc0NgYGCzl2lPrLFP6tKSjpPm8PHxqXMfenh4wMXFpcUfJ81xq31Sl9Z+nDRGffuttR4nzeHo6Ih+/fop6jhhAGoCjUaD0NBQZGZmSmUmkwmZmZkIDw+v8zsVFRW1ejYcHBwAAKKex7BduXIFp0+fRseOHS3Ucutpzj6p4ezsDD8/P/z+++/YsGEDxowZc9vLtAfW2Cd1aUnHSXOEh4eb7UMA+PLLL6V92NKPk+a41T6pS2s/ThqjOftNaaqrq3Hw4EFlHSdyj8JuadatWyecnJxEWlqaOHLkiJg5c6Zo166dKCgoEEIIMWXKFDF37lyp/oIFC4S7u7v497//Lc6cOSO++OILERQUJMaNGyfV+dvf/iZ27twpcnNzxffffy8iIyNF+/btRVFRkc23rzmauk9++OEHsWHDBnH69Gnx7bffimHDhomAgADx66+/NnqZ9s4a+6SlHydlZWXiwIED4sCBAwKAWLZsmThw4IA4e/asEEKIuXPniilTpkj1z5w5I9q2bSuee+45cfToUbFy5Urh4OAgMjIypDot/Tixxj5R2nEihJDqh4aGikmTJokDBw6Iw4cPS59///33ok2bNiI5OVkcPXpULFiwQDg6OoqDBw/adNuayxr7ZNGiRWLHjh3i9OnTIisrS0yYMEE4Ozub1WntGICaYcWKFaJz585Co9GIgQMHih9++EH6LCIiQsTGxkrvr127JhYuXCiCgoKEs7Oz8Pf3F//zP/9jdmIbP3686Nixo9BoNMLPz0+MHz9enDp1yoZbdPuask927twp7rzzTuHk5CQ8PT3FlClTxIULF5q0zJbA0vukpR8nX3/9tQBQ61WzH2JjY0VERESt7/Tt21doNBoRGBgo1q5dW2u5Lfk4scY+UeJxUlf9Ll26mNX5+OOPxR133CE0Go3o2bOn+Pzzz22zQRZgjX0SHx8v/d54e3uLP//5zyI7O9t2G2UHVELUcx2GiIiIqJXiGCAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIiIiUhwGICIiIlIcBiAiIiJSHAYgIqIWYufOnVCpVLh8+bLcTSFq8RiAiKiWadOmQaVSYcmSJWblmzdvhkqlkt4LIfDuu+8iPDwcHh4ecHNzQ8+ePTFnzpxGP1SxoqICiYmJCAoKgrOzM7y8vBAREYEtW7ZIdfR6PVJSUiyybdZWs+9UKhUcHR0REBCA559/HlevXm3ScoYOHYr4+HizskGDBiE/Px9ardaCLSZSJgYgIqqTs7MzXn/9dfz66691fi6EwKRJk/D000/jz3/+M7744gscOXIE7733HpydnfH3v/+9UeuZNWsWNm7ciBUrVuDYsWPIyMjAww8/DIPBYMnNsanhw4cjPz8fZ86cwRtvvIG3334bCxYsuO3lajQa+Pj4mIVQImomeZ/EQUT2KDY2VowaNUp0795dPPfcc1L5pk2bRM0/G//+978FALFly5Y6l2EymRq1Lq1WK9LS0ur9PCIiotYzjWp899134t577xXOzs6iU6dO4qmnnhJXrlyRPv/ggw9EaGiocHNzE97e3mLixImisLBQ+rzmGUsZGRmib9++wtnZWdx3332isLBQbN++XXTv3l24u7uLiRMnivLy8kZtT2xsrBgzZoxZ2UMPPST69esnvS8uLhYTJkwQvr6+wsXFRfTq1Uukp6ebLePmbc7NzZXae+OzBD/99FPRo0cPodFoRJcuXURycnKj2kmkdOwBIqI6OTg44LXXXsOKFSvwyy+/1Pr83//+N7p164bRo0fX+f3G9lL4+Phg+/btKCsrq/PzjRs3olOnTnjllVeQn5+P/Px8AMDp06cxfPhwjB07Fj///DPWr1+PXbt2IS4uTvrutWvXsHjxYvz000/YvHkz8vLyMG3atFrrWLhwIVJTU7F7926cP38e48aNQ0pKCtLT0/H555/jiy++wIoVKxq1PTc7dOgQdu/eDY1GI5VdvXoVoaGh+Pzzz3Ho0CHMnDkTU6ZMwb59+wAAy5cvR3h4OJ544glpm/39/WstOysrC+PGjcOECRNw8OBBLFy4EC+//DLS0tKa1VYiRZE7gRGR/bmxF+Puu+8Wjz32mBDCvAeoe/fuYvTo0WbfmzNnjnB1dRWurq7Cz8+vUev65ptvRKdOnYSjo6Po37+/iI+PF7t27TKr06VLF/HGG2+Ylc2YMUPMnDnTrOy7774TarVa/Pbbb3Wua//+/QKAKCsrE0L80QP01VdfSXWSkpIEAHH69Gmp7MknnxRRUVGN2p7Y2Fjh4OAgXF1dhZOTkwAg1Gq1+PTTTxv83siRI8Xf/vY36X1ERISYM2eOWZ2be4AmTZokHnjgAbM6zz33nOjRo0ej2kqkZOwBIqIGvf7663j//fdx9OjRW9Z98cUXkZOTg/nz5+PKlSuNWv6QIUNw5swZZGZm4uGHH8bhw4cxePBgLF68uMHv/fTTT0hLS4Obm5v0ioqKgslkQm5uLoDrPSTR0dHo3Lkz3N3dERERAQA4d+6c2bJ69+4t/ezt7Y22bdsiMDDQrKyoqKhR2wMA9913H3JycrB3717ExsZi+vTpGDt2rPR5dXU1Fi9ejLvuugs6nQ5ubm7YsWNHrXbdytGjR3HPPfeYld1zzz04efIkqqurm7QsIqVhACKiBg0ZMgRRUVFITEw0K+/atSuOHz9uVubl5YXg4GB06NChSetwdHTE4MGD8cILL+CLL77AK6+8gsWLF6Oqqqre71y5cgVPPvkkcnJypNdPP/2EkydPIigoCOXl5YiKioKHhwc++ugj7N+/H5s2bQKAWst1dHSUfq65e+tGKpUKJpOp0dvj6uqK4OBg9OnTB2vWrMHevXvx3nvvSZ8vXboUy5cvxwsvvICvv/4aOTk5iIqKanB7iciy2sjdACKyf0uWLEHfvn3RrVs3qWzixImYNGkStmzZgjFjxlh0fT169MDvv/+Oq1evQqPRQKPR1OrRCAkJwZEjRxAcHFznMg4ePAiDwYAlS5ZI42d+/PFHi7azMdRqNebNm4eEhARMmjQJLi4u+P777zFmzBg8+uijAACTyYQTJ06gR48e0vfq2uab3Xnnnfj+++/Nyr7//nvccccdcHBwsPzGELUi7AEiolu66667MHnyZLz55ptS2YQJE/Dwww9jwoQJeOWVV7B3717k5eXhm2++wfr16xt9Ah46dCjefvttZGVlIS8vD9u3b8e8efNw3333wcPDA8D1eYC+/fZbXLhwAcXFxQCAF154Abt370ZcXBxycnJw8uRJbNmyRRoE3blzZ2g0GqxYsQJnzpzBZ599dsvLatbyyCOPwMHBAStXrgRwvffsyy+/xO7du3H06FE8+eSTKCwsNPuOXq+X9mlxcXGdPVB/+9vfkJmZicWLF+PEiRN4//33kZqaimeffdYm20XUkjEAEVGjvPLKK2YnYZVKhfXr1yMlJQXbt2/H/fffj27duuGxxx6Dv78/du3a1ajlRkVF4f3338eDDz6IO++8E0899RSioqLw8ccfm607Ly8PQUFB8PLyAnB93M4333yDEydOYPDgwejXrx/mz58PX19fANcvx6WlpeGTTz5Bjx49sGTJEiQnJ1twjzRemzZtEBcXh3/84x8oLy/HSy+9hJCQEERFRWHo0KHw8fFBTEyM2XeeffZZODg4oEePHvDy8qpzfFBISAg+/vhjrFu3Dr169cL8+fPxyiuv1HmnGxGZUwkhhNyNICIiIrIl9gARERGR4jAAEZFV3Xib+s2v7777Tu7mNcm5c+ca3J6m3sZORPLhJTAisqqGHorq5+cHFxcXG7bm9vz+++/Iy8ur93O9Xo82bXhzLVFLwABEREREisNLYERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOAxAREREpDgMQERERKQ4DEBERESkOP8H3nyNPV4QQ+oAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_21.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNOElEQVR4nO3de1xU1d4/8M8MMoBcBgblKoqC91QEhDRvGYoeRa18RCtFyjymaEYX5Xi8HTXQTFHxcrK8HC/pKbGfqKGJ2kmj9IA+5iVKw7ugQg4KCcSs3x88bB25yCAzA+zP+/WaV87ea/Z8147k09prr60QQggQERERyYjS3AUQERERmRoDEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQEVEdtXHjRigUCly6dMncpRA1OAxARDJ24sQJREVFoWPHjrC1tUXz5s0xcuRI/PLLL+Xa9u3bFwqFAgqFAkqlEg4ODmjbti3GjBmDb775xqDvTUpKQp8+feDi4oLGjRujVatWGDlyJJKTk2ura+V8+OGH+Oqrr8pt//777zF37lzcvXvXaN/9uLlz50rnUqFQoHHjxujQoQP+/ve/Iy8vr1a+Y9u2bYiPj6+VYxE1RAxARDK2aNEi7Ny5Ey+88AKWL1+OCRMm4D//+Q/8/f1x5syZcu2bNWuGzZs341//+hc++ugjDB06FN9//z0GDBiA8PBwFBcXP/E7lyxZgqFDh0KhUCAmJgbLli3Dyy+/jF9//RXbt283RjcBVB2A5s2bZ9IAVGbNmjXYvHkzli5dinbt2mHhwoUYOHAgauMRjQxARFVrZO4CiMh8oqOjsW3bNqhUKmlbeHg4OnXqhLi4OGzZskWvvVqtxmuvvaa3LS4uDlOnTsXq1avh7e2NRYsWVfp9f/75J+bPn4/+/fvjwIED5fbfunXrKXtUdxQUFKBx48ZVthkxYgSaNGkCAJg4cSJefvllJCYm4ocffkD37t1NUSaRbHEEiEjGevTooRd+AKB169bo2LEjzp8/X61jWFhYYMWKFejQoQMSEhKg1WorbXvnzh3k5eXhueeeq3C/i4uL3vsHDx5g7ty5aNOmDaytreHu7o6XXnoJFy9elNosWbIEPXr0gLOzM2xsbBAQEIAvv/xS7zgKhQL5+fnYtGmTdNlp3LhxmDt3Lt5//30AQMuWLaV9j8652bJlCwICAmBjYwONRoNRo0bh6tWresfv27cvnnnmGaSlpaF3795o3Lgx/va3v1Xr/D2qX79+AIDMzMwq261evRodO3aElZUVPDw8MHnyZL0RrL59+2Lv3r24fPmy1Cdvb2+D6yFqyDgCRER6hBDIzs5Gx44dq/0ZCwsLjB49GrNmzcLRo0cxePDgCtu5uLjAxsYGSUlJmDJlCjQaTaXHLCkpwZAhQ5CSkoJRo0bh7bffxr179/DNN9/gzJkz8PHxAQAsX74cQ4cOxauvvoqioiJs374d//M//4M9e/ZIdWzevBnjx49HUFAQJkyYAADw8fGBra0tfvnlF3z++edYtmyZNBrTtGlTAMDChQsxa9YsjBw5EuPHj8ft27excuVK9O7dGydPnoSjo6NUb05ODgYNGoRRo0bhtddeg6ura7XPX5myYOfs7Fxpm7lz52LevHkICQnBW2+9hYyMDKxZswYnTpzAsWPHYGlpiZkzZ0Kr1eLatWtYtmwZAMDOzs7geogaNEFE9IjNmzcLAOKzzz7T296nTx/RsWPHSj+3a9cuAUAsX768yuPPnj1bABC2trZi0KBBYuHChSItLa1cu/Xr1wsAYunSpeX26XQ66c8FBQV6+4qKisQzzzwj+vXrp7fd1tZWRERElDvWRx99JACIzMxMve2XLl0SFhYWYuHChXrbf/rpJ9GoUSO97X369BEAxNq1ayvt96PmzJkjAIiMjAxx+/ZtkZmZKf75z38KKysr4erqKvLz84UQQmzYsEGvtlu3bgmVSiUGDBggSkpKpOMlJCQIAGL9+vXStsGDB4sWLVpUqx4iOeIlMCKS/Pzzz5g8eTK6d++OiIgIgz5bNsJw7969KtvNmzcP27ZtQ9euXbF//37MnDkTAQEB8Pf317vstnPnTjRp0gRTpkwpdwyFQiH92cbGRvrz77//Dq1Wi169eiE9Pd2g+h+XmJgInU6HkSNH4s6dO9LLzc0NrVu3xuHDh/XaW1lZITIy0qDvaNu2LZo2bYqWLVvir3/9K3x9fbF3795K5w4dPHgQRUVFmDZtGpTKh399v/nmm3BwcMDevXsN7yiRTPESGBEBALKysjB48GCo1Wp8+eWXsLCwMOjz9+/fBwDY29s/se3o0aMxevRo5OXl4ccff8TGjRuxbds2hIWF4cyZM7C2tsbFixfRtm1bNGpU9V9Te/bswYIFC3Dq1CkUFhZK2x8NSTXx66+/QgiB1q1bV7jf0tJS772np2e5+VRPsnPnTjg4OMDS0hLNmjWTLutV5vLlywBKg9OjVCoVWrVqJe0noidjACIiaLVaDBo0CHfv3sV3330HDw8Pg49Rdtu8r69vtT/j4OCA/v37o3///rC0tMSmTZvw448/ok+fPtX6/HfffYehQ4eid+/eWL16Ndzd3WFpaYkNGzZg27ZtBvfhUTqdDgqFAl9//XWFYfDxOTWPjkRVV+/evaV5R0RkWgxARDL34MEDhIWF4ZdffsHBgwfRoUMHg49RUlKCbdu2oXHjxujZs2eN6ggMDMSmTZtw8+ZNAKWTlH/88UcUFxeXG20ps3PnTlhbW2P//v2wsrKStm/YsKFc28pGhCrb7uPjAyEEWrZsiTZt2hjaHaNo0aIFACAjIwOtWrWSthcVFSEzMxMhISHStqcdASNq6DgHiEjGSkpKEB4ejtTUVHzxxRc1WnumpKQEU6dOxfnz5zF16lQ4ODhU2ragoACpqakV7vv6668BPLy88/LLL+POnTtISEgo11b830KBFhYWUCgUKCkpkfZdunSpwgUPbW1tK1zs0NbWFgDK7XvppZdgYWGBefPmlVuYUAiBnJycijtpRCEhIVCpVFixYoVeTZ999hm0Wq3e3Xe2trZVLklAJHccASKSsXfffRe7d+9GWFgYcnNzyy18+Piih1qtVmpTUFCACxcuIDExERcvXsSoUaMwf/78Kr+voKAAPXr0wLPPPouBAwfCy8sLd+/exVdffYXvvvsOw4cPR9euXQEAY8eOxb/+9S9ER0fj+PHj6NWrF/Lz83Hw4EFMmjQJw4YNw+DBg7F06VIMHDgQr7zyCm7duoVVq1bB19cXp0+f1vvugIAAHDx4EEuXLoWHhwdatmyJ4OBgBAQEAABmzpyJUaNGwdLSEmFhYfDx8cGCBQsQExODS5cuYfjw4bC3t0dmZiZ27dqFCRMm4L333nuq82+opk2bIiYmBvPmzcPAgQMxdOhQZGRkYPXq1ejWrZvev6+AgADs2LED0dHR6NatG+zs7BAWFmbSeonqNHPegkZE5lV2+3Zlr6ra2tnZidatW4vXXntNHDhwoFrfV1xcLNatWyeGDx8uWrRoIaysrETjxo1F165dxUcffSQKCwv12hcUFIiZM2eKli1bCktLS+Hm5iZGjBghLl68KLX57LPPROvWrYWVlZVo166d2LBhg3Sb+aN+/vln0bt3b2FjYyMA6N0SP3/+fOHp6SmUSmW5W+J37twpevbsKWxtbYWtra1o166dmDx5ssjIyNA7N1UtEfC4svpu375dZbvHb4Mvk5CQINq1aycsLS2Fq6ureOutt8Tvv/+u1+b+/fvilVdeEY6OjgIAb4kneoxCiFp46AwRERFRPcI5QERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDtcCLECOp0ON27cgL29PZeTJyIiqieEELh37x48PDygVFY9xsMAVIEbN27Ay8vL3GUQERFRDVy9ehXNmjWrsg0DUAXs7e0BlJ7Aqp5rRERERHVHXl4evLy8pN/jVWEAqkDZZS8HBwcGICIionqmOtNXOAmaiIiIZIcBiIiIiGSHAYiIiIhkh3OAiIiIaklJSQmKi4vNXUaDZWlpCQsLi1o5FgMQERHRUxJCICsrC3fv3jV3KQ2eo6Mj3NzcnnqdPgYgIiKip1QWflxcXNC4cWMuomsEQggUFBTg1q1bAAB3d/enOh4DEBER0VMoKSmRwo+zs7O5y2nQbGxsAAC3bt2Ci4vLU10O4yRoIiKip1A256dx48ZmrkQeys7z0861YgAiIiKqBbzsZRq1dZ55CaweysnJQVFRUaX7VSoVh2GJiIiqwABUz+Tk5CAhIeGJ7aKiohiCiIiIKsFLYPXM4yM/Wq09MjO9odXaV9mOiIjocePGjYNCoYBCoYClpSVcXV3Rv39/rF+/HjqdrtrH2bhxIxwdHY1XqBFwBKgeS0/viqSkIRBCCYVCh7CwPfD3P2nusoiIyEDmnNowcOBAbNiwASUlJcjOzkZycjLefvttfPnll9i9ezcaNWqYUaFh9koGtFp7KfwAgBBKJCUNgY/PBajV98xcHRERVZe5pzZYWVnBzc0NAODp6Ql/f388++yzeOGFF7Bx40aMHz8eS5cuxYYNG/Dbb79Bo9EgLCwMixcvhp2dHY4cOYLIyEgADycoz5kzB3PnzsXmzZuxfPlyZGRkwNbWFv369UN8fDxcXFxqvR+G4iWweio311kKP2WEUCI3V2OmioiIqCaqO2XBlFMb+vXrhy5duiAxMREAoFQqsWLFCpw9exabNm3CoUOH8MEHHwAAevTogfj4eDg4OODmzZu4efMm3nvvPQClt6rPnz8f//u//4uvvvoKly5dwrhx40zWj6pwBKie0mhyoFDo9EKQQqGDRpNrxqqIiKihaNeuHU6fPg0AmDZtmrTd29sbCxYswMSJE7F69WqoVCqo1WooFAppJKnM66+/Lv25VatWWLFiBbp164b79+/Dzs7OJP2oDEeA6im1+h7CwvZAoSidpFY2B4iXv4iIqDYIIaRLWgcPHsQLL7wAT09P2NvbY8yYMcjJyUFBQUGVx0hLS0NYWBiaN28Oe3t79OnTBwBw5coVo9f/JBwBqsf8/U/Cx+cCcnM10Ghy60z44TpFRET13/nz59GyZUtcunQJQ4YMwVtvvYWFCxdCo9Hg6NGjeOONN1BUVFTpCtj5+fkIDQ1FaGgotm7diqZNm+LKlSsIDQ2tE3cqMwDVMyqVSu+9Wn2vwuDzeDtTMfdkPiIienqHDh3CTz/9hHfeeQdpaWnQ6XT4+OOPoVSWXjj697//rddepVKhpKREb9vPP/+MnJwcxMXFwcvLCwDw3//+1zQdqAYGoHrG2dkZUVFRdXaEpaJ1inJznaHR5OgFtbqQ/omICCgsLERWVpbebfCxsbEYMmQIxo4dizNnzqC4uBgrV65EWFgYjh07hrVr1+odw9vbG/fv30dKSgq6dOmCxo0bo3nz5lCpVFi5ciUmTpyIM2fOYP78+WbqZXkMQPVQfRk54TpFRER1X3JyMtzd3dGoUSM4OTmhS5cuWLFiBSIiIqBUKtGlSxcsXboUixYtQkxMDHr37o3Y2FiMHTtWOkaPHj0wceJEhIeHIycnR7oNfuPGjfjb3/6GFStWwN/fH0uWLMHQoUPN2NuHFEIIYe4i6pq8vDyo1WpotVo4ODiYu5x65ebNm/jkk0+g1dojPn5aubvUpk2Lh1p9DxMmTIC7u7sZKyUiqh0PHjxAZmYmWrZsCWtra4M/z6kDhqnqfBvy+5sjQGQUVa1TVFcmaxMR1QV1fWpDQ8UAREbBdYqIiKqP4cb0uA4QGQXXKSIiorqMI0BkNHV1nSIiIiIGIBOQ08KAdX2dIiIiIoAByOjkPru/snWAiIiIzIkByMjq4lN+jenRflS1DlBD6S8REdVPnARtYlqtPTIzvaHV2pu7FKPSau2l8AOU3gKflDSkwfebiIjqhzoRgFatWgVvb29YW1sjODgYx48fr7RtYmIiAgMD4ejoCFtbW/j5+WHz5s2Vtp84cSIUCgXi4+ONULlh0tO7Ij5+GjZtikB8/DSkp3c1d0lGU9U6QEREROZm9gC0Y8cOREdHY86cOUhPT0eXLl0QGhqKW7duVdheo9Fg5syZSE1NxenTpxEZGYnIyEjs37+/XNtdu3bhhx9+gIeHh7G78URyGxEpWwfoUVwHiIhIXo4cOQKFQoG7d+9W+zPe3t4mGbQwewBaunQp3nzzTURGRqJDhw5Yu3YtGjdujPXr11fYvm/fvnjxxRfRvn17+Pj44O2330bnzp1x9OhRvXbXr1/HlClTsHXrVlhaWpqiK1WS24gI1wEiIqr7xo0bB4VCgYkTJ5bbN3nyZCgUCowbN870hZmAWSdBFxUVIS0tDTExMdI2pVKJkJAQpKamPvHzQggcOnQIGRkZWLRokbRdp9NhzJgxeP/999GxY8cnHqewsBCFhYXS+7y8PAN78mRyXBmZ6wAREdV9Xl5e2L59O5YtWwYbGxsApc/b2rZtG5o3b27m6ozHrCNAd+7cQUlJCVxdXfW2u7q6Iisrq9LPabVa2NnZQaVSYfDgwVi5ciX69+8v7V+0aBEaNWqEqVOnVquO2NhYqNVq6eXl5VWzDlVBriMiavU9tGx5ucH3k4iovvL394eXlxcSExOlbYmJiWjevDm6dn04V7WwsBBTp06Fi4sLrK2t0bNnT5w4cULvWPv27UObNm1gY2OD559/HpcuXSr3fUePHkWvXr1gY2MDLy8vTJ06Ffn5+UbrX2XMfgmsJuzt7XHq1CmcOHECCxcuRHR0NI4cOQIASEtLw/Lly7Fx40YoFIpqHS8mJgZarVZ6Xb16tdZqfXTBP3//k5g2LR4RERsxbVq8dEv44+3qs+r2o6H0l4iotl27Bhw+XPpPU3n99dexYcMG6f369esRGRmp1+aDDz7Azp07sWnTJqSnp8PX1xehoaHIzS29knH16lW89NJLCAsLw6lTpzB+/HjMmDFD7xgXL17EwIED8fLLL+P06dPYsWMHjh49iqioKON38nHCjAoLC4WFhYXYtWuX3vaxY8eKoUOHVvs4b7zxhhgwYIAQQohly5YJhUIhLCwspBcAoVQqRYsWLap1PK1WKwAIrVZb7RqqcufOHXHjxo1KX3fu3KmV76kr5NZfIpK3P/74Q5w7d0788ccfT32sTz8VQqkUAij956ef1kKBVYiIiBDDhg0Tt27dElZWVuLSpUvi0qVLwtraWty+fVsMGzZMREREiPv37wtLS0uxdetW6bNFRUXCw8NDLF68WAghRExMjOjQoYPe8adPny4AiN9//10IUfr7esKECXptvvvuO6FUKqXz16JFC7Fs2bJKa67qfBvy+9usc4BUKhUCAgKQkpKC4cOHAyidv5OSkmJQGtTpdNIcnjFjxiAkJERvf2hoKMaMGVMuzZpKQ1zhuSpy6y8RUW24dg2YMAHQ/d8NtDod8Ne/AqGhQLNmxv3upk2bYvDgwdi4cSOEEBg8eDCaNGki7b948SKKi4vx3HPPSdssLS0RFBSE8+fPAwDOnz+P4OBgveN2795d7/3//u//4vTp09i6dau0TQgBnU6HzMxMtG/f3hjdq5DZV4KOjo5GREQEAgMDERQUhPj4eOTn50thZezYsfD09ERsbCyA0vk6gYGB8PHxQWFhIfbt24fNmzdjzZo1AEp/+T7+C9jS0hJubm5o27ataTtHRERUTb/++jD8lCkpAS5cMH4AAkovg5UNPqxatcoo33H//n389a9/rXCOrqknXJs9AIWHh+P27duYPXs2srKy4Ofnh+TkZGli9JUrV6BUPpyqlJ+fj0mTJuHatWuwsbFBu3btsGXLFoSHh5urC0S1Tk4P0CWiUq1bA0qlfgiysAB8fU3z/QMHDkRRUREUCgVCQ0P19vn4+EClUuHYsWNo0aIFAKC4uBgnTpzAtGnTAADt27fH7t279T73ww8/6L339/fHuXPn4GuqTlXB7AEIKH0QaGWXvMomN5dZsGABFixYYNDxK5qFTlRXyf0BukRy1awZ8MknpZe9SkpKw88//2ma0R8AsLCwkC5nWVhY6O2ztbXFW2+9hffffx8ajQbNmzfH4sWLUVBQgDfeeANA6ZMXPv74Y7z//vsYP3480tLSsHHjRr3jTJ8+Hc8++yyioqIwfvx42Nra4ty5c/jmm2+q9fdebaoTAYiIHpLbA3SJ6KE33iid83PhQunIj6nCTxkHB4dK98XFxUnr7N27dw+BgYHYv38/nJycAJRewtq5cyfeeecdrFy5EkFBQfjwww/x+uuvS8fo3Lkzvv32W8ycORO9evWCEAI+Pj5muYqjEEIIk39rHZeXlwe1Wg2tVlvlDwORMdy8eROffPKJ9F6rtUdurjM0mhy99ZQmTJgAd3d3c5RIRI948OABMjMz0bJlS1hbW5u7nAavqvNtyO9vjgAR1WHp6V2lZ8iVLZ756PpRRERUM/VyIUQiOZDbA3SJiEyJI0BEdVRVD9Ct6NEivHOMiKj6GICI6ihDHqDLO8eIiAzDS2BEdZQhD9DlnWNE5sd7ikyjts4zR4CI6pjHH6Dr43MBubkaaDS5euGnqgfKVnbnGBHVPktLSwBAQUEBbGxszFxNw1dQUADg4XmvKQYgojrG2dkZUVFRNZ7PwzvHiEzLwsICjo6OuHXrFgCgcePGUCgUZq6q4RFCoKCgALdu3YKjo2O5xRoNxQBEVAfVdJ5OZXeO+fhc4EgQkRG5ubkBgBSCyHgcHR2l8/00GICIGhBD7xwjotqhUCjg7u4OFxcXFBcXm7ucBsvS0vKpR37KMAARNSCG3DlGRLXPwsKi1n5Bk3HxLjCiBsSQO8eIiOSMI0BEDUBt3DlGRCQnDEBEDcDT3jlGRCQ3DEBEDQTDDRFR9XEOEBEREckOAxARERHJDgMQERERyQ7nABFRpXJycjixmogaJAYgIqpQTk4OEhISntguKiqKIYiI6h1eAiOiCj0+8qPV2iMz0xtarX2V7YiI6gOOABHRE/EJ80TU0HAEiIiqVNkT5h8fCSIiqk8YgIioSlU9YZ6IqL5iACKiKpU9Yf5RfMI8EdV3DEBEVCU+YZ6IGiJOgiaiJ6rqCfNERPURAxCRDNRkQUOVSqX3Xq2+V2HwebwdEVF9wABEVE31dVXkmi5o6OzsjKioqHrZZyKiJ2EAIqqG+rwqckULGubmOkOjydEb0ako6NS1vhAR1RYGIKJqqO5qx3V9VWQuaEhEVIp3gRHVQGWPhajLuKAhEdFDHAEiMlB9HUWpakFD3tVFRHLDESAiA9TnURQuaEhE9BADEJEB6vNjIbigIRHRQ7wERmSAslGUR0NQfRpF4YKGRESlOAJEZID6OIpS0YKGLVteLlczFzQkIjnhCBBRNTwaDqoaRTFFiDB0QUYuaEhEVJ5CCCHMXURdk5eXB7VaDa1WCwcHB3OXQ3VEXVgJuj4vyEhEZGyG/P7mCBBRNdWFQPE0qzoTEdFDdWIO0KpVq+Dt7Q1ra2sEBwfj+PHjlbZNTExEYGAgHB0dYWtrCz8/P2zevFnaX1xcjOnTp6NTp06wtbWFh4cHxo4dixs3bpiiK0Qmk57eFfHx07BpUwTi46chPb2ruUsiIqo3zB6AduzYgejoaMyZMwfp6eno0qULQkNDcevWrQrbazQazJw5E6mpqTh9+jQiIyMRGRmJ/fv3AwAKCgqQnp6OWbNmIT09HYmJicjIyMDQoUNN2S0io6rP6xEREdUFZr8EtnTpUrz55puIjIwEAKxduxZ79+7F+vXrMWPGjHLt+/btq/f+7bffxqZNm3D06FGEhoZCrVbjm2++0WuTkJCAoKAgXLlyBc2bNzdaX4hMhas6ExE9HbOOABUVFSEtLQ0hISHSNqVSiZCQEKSmpj7x80IIpKSkICMjA7179660nVarhUKhgKOjY4X7CwsLkZeXp/ciqsu4qjMR0dMxawC6c+cOSkpK4Orqqrfd1dUVWVlZlX5Oq9XCzs4OKpUKgwcPxsqVK9G/f/8K2z548ADTp0/H6NGjK50RHhsbC7VaLb28vLxq3ikiE6iP6xEREdUlZr8EVhP29vY4deoU7t+/j5SUFERHR6NVq1blLo8VFxdj5MiREEJgzZo1lR4vJiYG0dHR0vu8vDyGIKrzuKozEVHNmTUANWnSBBYWFsjOztbbnp2dDTc3t0o/p1Qq4evrCwDw8/PD+fPnERsbqxeAysLP5cuXcejQoSrXA7CysoKVldXTdYbIBCpa1bmi4MNVnYmIqmbWAKRSqRAQEICUlBQMHz4cAKDT6ZCSkoKoqKhqH0en06GwsFB6XxZ+fv31Vxw+fLhOrN9CVBu4qjMRUe0w+yWw6OhoREREIDAwEEFBQYiPj0d+fr50V9jYsWPh6emJ2NhYAKXzdQIDA+Hj44PCwkLs27cPmzdvli5xFRcXY8SIEUhPT8eePXtQUlIizSfSaDT8P2Oq9xhuiIientkDUHh4OG7fvo3Zs2cjKysLfn5+SE5OliZGX7lyBUrlw7na+fn5mDRpEq5duwYbGxu0a9cOW7ZsQXh4OADg+vXr2L17N4DSy2OPOnz4cLl5QkRERCQ/fBZYBfgsMCIiovrHkN/fZl8JmoiIiMjUGICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHbMvg4QEVF9l5OTw9W5ieoZBiAioqeQk5ODhISEJ7aLiopiCCKqQ3gJjIjoKVQ18lOTdkRkGgxARES1SKu1R2amN7Rae3OXQkRV4CUwIqJakp7eFUlJQyCEEgqFDmFhe+Dvf9LcZRFRBRiAiMjsGsIkYq3WXgo/ACCEEklJQ+DjcwFq9T0zV0dEj2MAIiKzenwSsVZrj9xcZ2g0OXrBoa5PIs7NdZbCTxkhlMjN1TAAEdVBDEBEZFaPjvxUdQmprk8i1mhyoFDo9EKQQqGDRpNrxqqIqDKcBE1EdUJll5Dqy2RitfoewsL2QKHQAYAU4Dj6Q1Q3cQSIiOqE+noJSaVSSX/29z8JH58LyM3VQKPJ1av70XZEZH4MQERUJ9TXS0jOzs6Iioqq95O4ieSGAYiI6oSyS0iPzwGqy6M/ZRhuiOofBiAiqjOquoRERFSbGICIqE5Rq+8x+BCR0fEuMCIyq+pODuYkYiKqTRwBIiKz4iRiIjIHBiAiMjuGGyIyNV4CIyIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZqRMBaNWqVfD29oa1tTWCg4Nx/PjxStsmJiYiMDAQjo6OsLW1hZ+fHzZv3qzXRgiB2bNnw93dHTY2NggJCcGvv/5q7G4QETUYOTk5uHnzZqWvnJwcc5dI9FQambuAHTt2IDo6GmvXrkVwcDDi4+MRGhqKjIwMuLi4lGuv0Wgwc+ZMtGvXDiqVCnv27EFkZCRcXFwQGhoKAFi8eDFWrFiBTZs2oWXLlpg1axZCQ0Nx7tw5WFtbm7qLRET1Sk5ODhISEp7YLioqCs7OziaoiKj2KYQQwpwFBAcHo1u3btJ/bDqdDl5eXpgyZQpmzJhRrWP4+/tj8ODBmD9/PoQQ8PDwwLvvvov33nsPAKDVauHq6oqNGzdi1KhRTzxeXl4e1Go1tFotHBwcat45IqJ66ObNm/jkk0+e2G7ChAlwd3c3QUVE1WPI72+zXgIrKipCWloaQkJCpG1KpRIhISFITU194ueFEEhJSUFGRgZ69+4NAMjMzERWVpbeMdVqNYKDgys9ZmFhIfLy8vReRERUSqu1R2amN7Rae3OXQlRrzHoJ7M6dOygpKYGrq6vedldXV/z888+Vfk6r1cLT0xOFhYWwsLDA6tWr0b9/fwBAVlaWdIzHj1m273GxsbGYN2/e03SFiKhBSk/viqSkIRBCCYVCh7CwPfD3P2nusoieWp2YBG0oe3t7nDp1CidOnMDChQsRHR2NI0eO1Ph4MTEx0Gq10uvq1au1VywRUT2l1dpL4QcAhFAiKWkIR4KoQTDrCFCTJk1gYWGB7Oxsve3Z2dlwc3Or9HNKpRK+vr4AAD8/P5w/fx6xsbHo27ev9Lns7Gy9a9PZ2dnw8/Or8HhWVlawsrJ6yt4QETUsubnOUvgpI4QSubkaqNX3zFQVUe0w6wiQSqVCQEAAUlJSpG06nQ4pKSno3r17tY+j0+lQWFgIAGjZsiXc3Nz0jpmXl4cff/zRoGMSEcmdRpMDhUKnt02h0EGjyTVTRUS1x+y3wUdHRyMiIgKBgYEICgpCfHw88vPzERkZCQAYO3YsPD09ERsbC6B0vk5gYCB8fHxQWFiIffv2YfPmzVizZg0AQKFQYNq0aViwYAFat24t3Qbv4eGB4cOHm6ubRET1jlp9D2Fhe8rNAeLoDzUEZg9A4eHhuH37NmbPno2srCz4+fkhOTlZmsR85coVKJUPB6ry8/MxadIkXLt2DTY2NmjXrh22bNmC8PBwqc0HH3yA/Px8TJgwAXfv3kXPnj2RnJzMNYCIiKpBpVJJf/b3PwkfnwvIzdVAo8nVCz+PtiOqb8y+DlBdxHWAiEjucnJyUFRUVOl+lUrFRRCpzjHk97fZR4CIiKjuYbihho4BiIhIxjjSQ3LFAEREJFN85hfJWb1cCJGIiJ7e4yM/lT3yoqoRIqL6iiNARETER16Q7HAEiIhI5vjIC5IjBiAiIpmr6pEXRA0VAxARkczxkRckRwxAREQyV/bIi7IQxEdekBxwEjQREVX5yAuihogBiIhIph5/lpdafa/C4MNnflFDxABERCRTzs7OiIqK4krQJEsMQEREMsZwQ3LFSdBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkO3wUBhER1ZqcnBw+W4zqBQYgIiKqFTk5OUhISHhiu6ioKIYgMjteAiMiolrx+MiPVmuPzExvaLX2VbYjMgeOABERUa1LT++KpKQhEEIJhUKHsLA98Pc/ae6yiCQcASIiolql1dpL4QcAhFAiKWlIuZEgInNiACIiolqVm+sshZ8yQiiRm6sxU0VE5TEAERFRrdJocqBQ6PS2KRQ6aDS5ZqqIqDwGICIiqlVq9T2Ehe2RQlDZHCC1+p6ZKyN6iJOgiYio1vn7n4SPzwXk5mqg0eQy/FCdwwBERES1QqVS6b1Xq+9VGHweb1cVLqxIxmJwANq3bx8SExOh0Wjw+uuvo127dtK+33//HS+//DIOHTpUq0USEVHd5+zsjKioqFoLLFxYkYzJoDlA27Ztw9ChQ5GVlYXU1FR07doVW7dulfYXFRXh22+/rfUiiYiofnB2doa7u3ulL0OCChdWJGMyaAToo48+wtKlSzF16lQAwL///W+8/vrrePDgAd544w2jFEhERMSFFam2GRSAfv31V4SFhUnvR44ciaZNm2Lo0KEoLi7Giy++WOsFEhGRvFW2sKKPzwVOrqYaMygAOTg4IDs7Gy1btpS2Pf/889izZw+GDBmCa9eu1XqBREQkb1UtrMgARDVl0BygoKAgfP311+W29+nTB0lJSYiPj6+tuoiIiABwYUUyDoMC0DvvvANra+sK9/Xt2xdJSUkYO3ZsrRRGREQEcGFFMg6DLoH16dMHffr0qXT/888/j+eff/6piyIiInoUF1ak2mbQCJBSqYSFhUWVr0aNDFtaaNWqVfD29oa1tTWCg4Nx/PjxStuuW7cOvXr1gpOTE5ycnBASElKu/f379xEVFYVmzZrBxsYGHTp0wNq1aw2qiYiIzK+ihRVbtrxcLvwYsrAiURmD0squXbsq3ZeamooVK1ZAp9NV2uZxO3bsQHR0NNauXYvg4GDEx8cjNDQUGRkZcHFxKdf+yJEjGD16NHr06AFra2ssWrQIAwYMwNmzZ+Hp6QkAiI6OxqFDh7BlyxZ4e3vjwIEDmDRpEjw8PDB06FBDuktERGZU2wsrEj1KIYQQT3OAjIwMzJgxA0lJSXj11Vfxj3/8Ay1atKjWZ4ODg9GtWzdppU+dTgcvLy9MmTIFM2bMeOLnS0pK4OTkhISEBGnu0TPPPIPw8HDMmjVLahcQEIBBgwZhwYIF1aorLy8ParUaWq0WDg4O1foMERERmZchv79r/DT4Gzdu4M0330SnTp3w559/4tSpU9i0aVO1w09RURHS0tIQEhLysBilEiEhIUhNTa3WMQoKClBcXAyNRiNt69GjB3bv3o3r169DCIHDhw/jl19+wYABAyo9TmFhIfLy8vReRERE1HAZHIC0Wi2mT58OX19fnD17FikpKUhKSsIzzzxj0HHu3LmDkpISuLq66m13dXVFVlZWtY4xffp0eHh46IWolStXokOHDmjWrBlUKhUGDhyIVatWoXfv3pUeJzY2Fmq1Wnp5eXkZ1BciIiKqXwwKQIsXL0arVq2wZ88efP755/j+++/Rq1cvY9VWpbi4OGzfvh27du3SuzV/5cqV+OGHH7B7926kpaXh448/xuTJk3Hw4MFKjxUTEwOtViu9rl69aoouEBERkZkYNAdIqVTCxsYGISEhsLCwqLRdYmLiE49VVFSExo0b48svv8Tw4cOl7REREbh79y7+3//7f5V+dsmSJViwYAEOHjyIwMBAafsff/wBtVqNXbt2YfDgwdL28ePH49q1a0hOTn5iXQDnABEREdVHhvz+NugusLFjx0KhUDxVcWVUKhUCAgKQkpIiBSCdToeUlBRERUVV+rnFixdj4cKF2L9/v174AYDi4mIUFxdDqdQf2LKwsDDo7jQiIiJq2AwKQBs3bqzVL4+OjkZERAQCAwMRFBSE+Ph45OfnIzIyEkBp4PL09ERsbCwAYNGiRZg9eza2bdsGb29vaa6QnZ0d7Ozs4ODggD59+uD999+HjY0NWrRogW+//Rb/+te/sHTp0lqtnYiIiOovw1YtrGXh4eG4ffs2Zs+ejaysLPj5+SE5OVmaGH3lyhW90Zw1a9agqKgII0aM0DvOnDlzMHfuXADA9u3bERMTg1dffRW5ublo0aIFFi5ciIkTJ5qsX0RERFS3PfU6QA0R5wARERHVPyZZB4iIiIiovmIAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2TF7AFq1ahW8vb1hbW2N4OBgHD9+vNK269atQ69eveDk5AQnJyeEhIRU2P78+fMYOnQo1Go1bG1t0a1bN1y5csWY3SAiIqJ6xKwBaMeOHYiOjsacOXOQnp6OLl26IDQ0FLdu3aqw/ZEjRzB69GgcPnwYqamp8PLywoABA3D9+nWpzcWLF9GzZ0+0a9cOR44cwenTpzFr1ixYW1ubqltERERUxymEEMJcXx4cHIxu3bohISEBAKDT6eDl5YUpU6ZgxowZT/x8SUkJnJyckJCQgLFjxwIARo0aBUtLS2zevLnGdeXl5UGtVkOr1cLBwaHGxyEiIiLTMeT3t9lGgIqKipCWloaQkJCHxSiVCAkJQWpqarWOUVBQgOLiYmg0GgClAWrv3r1o06YNQkND4eLiguDgYHz11VfG6AIRERHVU2YLQHfu3EFJSQlcXV31tru6uiIrK6tax5g+fTo8PDykEHXr1i3cv38fcXFxGDhwIA4cOIAXX3wRL730Er799ttKj1NYWIi8vDy9FxERETVcjcxdQE3FxcVh+/btOHLkiDS/R6fTAQCGDRuGd955BwDg5+eH77//HmvXrkWfPn0qPFZsbCzmzZtnmsKJiIjI7Mw2AtSkSRNYWFggOztbb3t2djbc3Nyq/OySJUsQFxeHAwcOoHPnznrHbNSoETp06KDXvn379lXeBRYTEwOtViu9rl69WoMeERERUX1htgCkUqkQEBCAlJQUaZtOp0NKSgq6d+9e6ecWL16M+fPnIzk5GYGBgeWO2a1bN2RkZOht/+WXX9CiRYtKj2llZQUHBwe9FxERETVcZr0EFh0djYiICAQGBiIoKAjx8fHIz89HZGQkAGDs2LHw9PREbGwsAGDRokWYPXs2tm3bBm9vb2mukJ2dHezs7AAA77//PsLDw9G7d288//zzSE5ORlJSEo4cOWKWPhIREVHdY9YAFB4ejtu3b2P27NnIysqCn58fkpOTpYnRV65cgVL5cJBqzZo1KCoqwogRI/SOM2fOHMydOxcA8OKLL2Lt2rWIjY3F1KlT0bZtW+zcuRM9e/Y0Wb+IiIiobjPrOkB1FdcBIiIiqn/qxTpARERERObCAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREstPI3AUQERGR8eTk5KCoqKjS/SqVCs7OziasqG5gACIiImqgcnJykJCQ8MR2UVFRsgtBvARGRETUQFU18lOTdg0JAxAREVEDdffuXb33Wq09MjO9odXaV9lODngJjIiIqIH6888/pT+np3dFUtIQCKGEQqFDWNge+PufLNdOLurECNCqVavg7e0Na2trBAcH4/jx45W2XbduHXr16gUnJyc4OTkhJCSkyvYTJ06EQqFAfHy8ESonIiKq+7Raeyn8AIAQSiQlDSk3EiQnZg9AO3bsQHR0NObMmYP09HR06dIFoaGhuHXrVoXtjxw5gtGjR+Pw4cNITU2Fl5cXBgwYgOvXr5dru2vXLvzwww/w8PAwdjeIiIjqrNxcZyn8lBFCidxcjZkqMj+zB6ClS5fizTffRGRkJDp06IC1a9eicePGWL9+fYXtt27dikmTJsHPzw/t2rXDp59+Cp1Oh5SUFL12169fx5QpU7B161ZYWlqaoitERER1kqVlIQDx2FYBS0v5TX4uY9YAVFRUhLS0NISEhEjblEolQkJCkJqaWq1jFBQUoLi4GBrNwxSr0+kwZswYvP/+++jYseMTj1FYWIi8vDy9FxERUUNRXGwFQPHYVgWKi1XmKKdOMGsAunPnDkpKSuDq6qq33dXVFVlZWdU6xvTp0+Hh4aEXohYtWoRGjRph6tSp1TpGbGws1Gq19PLy8qp+J4iIiOqosisgGk0OFAqd3j6FQgeNJlevnZyY/RLY04iLi8P27duxa9cuWFtbAwDS0tKwfPlybNy4EQrF42m3YjExMdBqtdLr6tWrxiybiIjIJNRq9f/98x7CwvZIIajsLjC1+p5eOzkx623wTZo0gYWFBbKzs/W2Z2dnw83NrcrPLlmyBHFxcTh48CA6d+4sbf/uu+9w69YtNG/eXNpWUlKCd999F/Hx8bh06VK5Y1lZWcHKyurpOkNERFTHqFQPL3H5+5+Ej88F5OZqoNHkSuHn8XZyYdYApFKpEBAQgJSUFAwfPhwApAnNUVFRlX5u8eLFWLhwIfbv34/AwEC9fWPGjNG7HAYAoaGhGDNmDCIjI2u9D0RERHWVs7MzoqKi+CywCph9IcTo6GhEREQgMDAQQUFBiI+PR35+vhRWxo4dC09PT8TGxgIond8ze/ZsbNu2Dd7e3tJcITs7O9jZ2cHZ2bncv0hLS0u4ubmhbdu2pu0cERGRmckx3FSH2QNQeHg4bt++jdmzZyMrKwt+fn5ITk6WJkZfuXIFSuXDqUpr1qxBUVERRowYoXecOXPmYO7cuaYsnYiIiOophRDi8YUBZC8vLw9qtRparRYODg7mLoeIiIiqwZDf3/X6LjAiIiKimmAAIiIiItlhACIiIiLZYQAiIiIi2TH7XWBERERUf+Tk5EjrCt24oURmZiO0bPknPDxKV5muL+sKMQARERFRteTk5CAhIQEAkJ7eFUlJQyCEUnq0hr//SQBAVFRUnQ9BvARGRERE1VI28qPV2kvhBwCEUCIpaQi0Wnu9dnUZAxAREREZJDfXWQo/ZYRQIjdXY6aKDMcARERERAbRaHKkJ8uXUSh00GhyzVSR4RiAiIiIyCBq9T2Ehe2RQlDZHKBHnzBf13ESNBERERnM3/8kfHwuIDdXA40mt16FH4ABiIiIiGpIrb5X74JPGV4CIyIiItlhACIiIqJqUalUtdrOnHgJjIiIiKrF2dkZUVFRVa7zw5WgiYiIqMGpD+GmOngJjIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSnTgSgVatWwdvbG9bW1ggODsbx48crbbtu3Tr06tULTk5OcHJyQkhIiF774uJiTJ8+HZ06dYKtrS08PDwwduxY3LhxwxRdISIionrA7AFox44diI6Oxpw5c5Ceno4uXbogNDQUt27dqrD9kSNHMHr0aBw+fBipqanw8vLCgAEDcP36dQBAQUEB0tPTMWvWLKSnpyMxMREZGRkYOnSoKbtFREREdZhCCCHMWUBwcDC6deuGhIQEAIBOp4OXlxemTJmCGTNmPPHzJSUlcHJyQkJCAsaOHVthmxMnTiAoKAiXL19G8+bNn3jMvLw8qNVqaLVaODg4GNYhIiIiMgtDfn83MlFNFSoqKkJaWhpiYmKkbUqlEiEhIUhNTa3WMQoKClBcXAyNRlNpG61WC4VCAUdHxwr3FxYWorCwUHqfl5dXvQ4QERHRE+Xk5KCoqKjS/SqVCs7OziasyMwB6M6dOygpKYGrq6vedldXV/z888/VOsb06dPh4eGBkJCQCvc/ePAA06dPx+jRoytNg7GxsZg3b55hxRMREdET5eTkSFd5qhIVFWXSEGT2OUBPIy4uDtu3b8euXbtgbW1dbn9xcTFGjhwJIQTWrFlT6XFiYmKg1Wql19WrV41ZNhERkWxUNfJTk3a1xawjQE2aNIGFhQWys7P1tmdnZ8PNza3Kzy5ZsgRxcXE4ePAgOnfuXG5/Wfi5fPkyDh06VOW1QCsrK1hZWdWsE0RERFTvmHUESKVSISAgACkpKdI2nU6HlJQUdO/evdLPLV68GPPnz0dycjICAwPL7S8LP7/++isOHjxo8uuKREREVDGt1h6Zmd7Qau3NWodZR4AAIDo6GhEREQgMDERQUBDi4+ORn5+PyMhIAMDYsWPh6emJ2NhYAMCiRYswe/ZsbNu2Dd7e3sjKygIA2NnZwc7ODsXFxRgxYgTS09OxZ88elJSUSG00Gg1UKpV5OkpERCRz6eldkZQ0BEIooVDoEBa2B/7+J81Si9kDUHh4OG7fvo3Zs2cjKysLfn5+SE5OliZGX7lyBUrlw4GqNWvWoKioCCNGjNA7zpw5czB37lxcv34du3fvBgD4+fnptTl8+DD69u1r1P4QERFReVqtvRR+AEAIJZKShsDH5wLU6nsmr8fsAQgonfkdFRVV4b4jR47ovb906VKVx/L29oaZlzYiIiKix+TmOkvhp4wQSuTmaswSgOr1XWBERERUP2g0OVAodHrbFAodNJpcs9TDAERERERGUzb3Vq2+h7CwPVIIKpsDVDb6Y+o5umZ/FEZdxEdhEBER1Z5HV4K+cUOJS5cawdv7T3h4lIah2loJut48CoOIiIgavkfDjbs7EBBgxmL+Dy+BERERkewwABEREZHsMAARERGR7DAAERERkewwABEREZHsMAARERGR7DAAERERkewwABEREZHsMAARERGR7DAAERERkewwABEREZHs8FlgFSh7PmxeXp6ZKyEiIqLqKvu9XZ3nvDMAVeDevXsAAC8vLzNXQkRERIa6d+8e1Gp1lW0UojoxSWZ0Oh1u3LgBe3t7KBSKCtvk5eXBy8sLV69ehYODg4krrDt4Hh7iuSjF81CK5+EhnotSPA+ljHkehBC4d+8ePDw8oFRWPcuHI0AVUCqVaNasWbXaOjg4yPoHuQzPw0M8F6V4HkrxPDzEc1GK56GUsc7Dk0Z+ynASNBEREckOAxARERHJDgNQDVlZWWHOnDmwsrIydylmxfPwEM9FKZ6HUjwPD/FclOJ5KFVXzgMnQRMREZHscASIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBqAqrVq2Ct7c3rK2tERwcjOPHj1fa9uzZs3j55Zfh7e0NhUKB+Ph40xVqZIach3Xr1qFXr15wcnKCk5MTQkJCqmxf3xhyLhITExEYGAhHR0fY2trCz88PmzdvNmG1xmPIeXjU9u3boVAoMHz4cOMWaCKGnIeNGzdCoVDovaytrU1YrXEZ+jNx9+5dTJ48Ge7u7rCyskKbNm2wb98+E1VrPIach759+5b7mVAoFBg8eLAJKzYOQ38e4uPj0bZtW9jY2MDLywvvvPMOHjx4YNwiBVVo+/btQqVSifXr14uzZ8+KN998Uzg6Oors7OwK2x8/fly899574vPPPxdubm5i2bJlpi3YSAw9D6+88opYtWqVOHnypDh//rwYN26cUKvV4tq1ayauvPYZei4OHz4sEhMTxblz58SFCxdEfHy8sLCwEMnJySauvHYZeh7KZGZmCk9PT9GrVy8xbNgw0xRrRIaehw0bNggHBwdx8+ZN6ZWVlWXiqo3D0HNRWFgoAgMDxV/+8hdx9OhRkZmZKY4cOSJOnTpl4sprl6HnIScnR+/n4cyZM8LCwkJs2LDBtIXXMkPPw9atW4WVlZXYunWryMzMFPv37xfu7u7inXfeMWqdDECVCAoKEpMnT5bel5SUCA8PDxEbG/vEz7Zo0aLBBKCnOQ9CCPHnn38Ke3t7sWnTJmOVaDJPey6EEKJr167i73//uzHKM5manIc///xT9OjRQ3z66aciIiKiQQQgQ8/Dhg0bhFqtNlF1pmXouVizZo1o1aqVKCoqMlWJJvG0f0csW7ZM2Nvbi/v37xurRJMw9DxMnjxZ9OvXT29bdHS0eO6554xaJy+BVaCoqAhpaWkICQmRtimVSoSEhCA1NdWMlZlWbZyHgoICFBcXQ6PRGKtMk3jacyGEQEpKCjIyMtC7d29jlmpUNT0P//jHP+Di4oI33njDFGUaXU3Pw/3799GiRQt4eXlh2LBhOHv2rCnKNaqanIvdu3eje/fumDx5MlxdXfHMM8/gww8/RElJianKrnW18fflZ599hlGjRsHW1tZYZRpdTc5Djx49kJaWJl0m++2337Bv3z785S9/MWqtfBhqBe7cuYOSkhK4urrqbXd1dcXPP/9spqpMrzbOw/Tp0+Hh4aH3H0N9VNNzodVq4enpicLCQlhYWGD16tXo37+/scs1mpqch6NHj+Kzzz7DqVOnTFChadTkPLRt2xbr169H586dodVqsWTJEvTo0QNnz56t9sOX66KanIvffvsNhw4dwquvvop9+/bhwoULmDRpEoqLizFnzhxTlF3rnvbvy+PHj+PMmTP47LPPjFWiSdTkPLzyyiu4c+cOevbsCSEE/vzzT0ycOBF/+9vfjForAxAZTVxcHLZv344jR440qMmehrC3t8epU6dw//59pKSkIDo6Gq1atULfvn3NXZpJ3Lt3D2PGjMG6devQpEkTc5djVt27d0f37t2l9z169ED79u3xz3/+E/PnzzdjZaan0+ng4uKCTz75BBYWFggICMD169fx0Ucf1dsA9LQ+++wzdOrUCUFBQeYuxeSOHDmCDz/8EKtXr0ZwcDAuXLiAt99+G/Pnz8esWbOM9r0MQBVo0qQJLCwskJ2drbc9Ozsbbm5uZqrK9J7mPCxZsgRxcXE4ePAgOnfubMwyTaKm50KpVMLX1xcA4Ofnh/PnzyM2NrbeBiBDz8PFixdx6dIlhIWFSdt0Oh0AoFGjRsjIyICPj49xizaC2vg7wtLSEl27dsWFCxeMUaLJ1ORcuLu7w9LSEhYWFtK29u3bIysrC0VFRVCpVEat2Rie5mciPz8f27dvxz/+8Q9jlmgSNTkPs2bNwpgxYzB+/HgAQKdOnZCfn48JEyZg5syZUCqNM1uHc4AqoFKpEBAQgJSUFGmbTqdDSkqK3v/BNXQ1PQ+LFy/G/PnzkZycjMDAQFOUanS19TOh0+lQWFhojBJNwtDz0K5dO/z00084deqU9Bo6dCief/55nDp1Cl5eXqYsv9bUxs9DSUkJfvrpJ7i7uxurTJOoybl47rnncOHCBSkMA8Avv/wCd3f3ehl+gKf7mfjiiy9QWFiI1157zdhlGl1NzkNBQUG5kFMWjoUxH1dq1CnW9dj27duFlZWV2Lhxozh37pyYMGGCcHR0lG5bHTNmjJgxY4bUvrCwUJw8eVKcPHlSuLu7i/fee0+cPHlS/Prrr+bqQq0w9DzExcUJlUolvvzyS73bO+/du2euLtQaQ8/Fhx9+KA4cOCAuXrwozp07J5YsWSIaNWok1q1bZ64u1ApDz8PjGspdYIaeh3nz5on9+/eLixcvirS0NDFq1ChhbW0tzp49a64u1BpDz8WVK1eEvb29iIqKEhkZGWLPnj3CxcVFLFiwwFxdqBU1/W+jZ8+eIjw83NTlGo2h52HOnDnC3t5efP755+K3334TBw4cED4+PmLkyJFGrZMBqAorV64UzZs3FyqVSgQFBYkffvhB2tenTx8REREhvc/MzBQAyr369Olj+sJrmSHnoUWLFhWehzlz5pi+cCMw5FzMnDlT+Pr6Cmtra+Hk5CS6d+8utm/fboaqa58h5+FxDSUACWHYeZg2bZrU1tXVVfzlL38R6enpZqjaOAz9mfj+++9FcHCwsLKyEq1atRILFy4Uf/75p4mrrn2Gnoeff/5ZABAHDhwwcaXGZch5KC4uFnPnzhU+Pj7C2tpaeHl5iUmTJonff//dqDUqhDDm+BIRERFR3cM5QERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7DEBEREQkOwxAREREJDsMQERERCQ7DEBERGY0btw4DB8+3NxlEMkOAxARVWjcuHFQKBTSy9nZGQMHDsTp06fNXVqteLRvZa+ePXsa7fsuXboEhUKBU6dO6W1fvnw5Nm7caLTvJaKKMQARUaUGDhyImzdv4ubNm0hJSUGjRo0wZMgQc5dVazZs2CD17+bNm9i9e3eF7YqLi41Wg1qthqOjo9GOT0QVYwAiokpZWVnBzc0Nbm5u8PPzw4wZM3D16lXcvn0b/fr1Q1RUlF7727dvQ6VSSU+C9vb2xvz58zF69GjY2trC09MTq1at0vvM0qVL0alTJ9ja2sLLywuTJk3C/fv3pf2XL19GWFgYnJycYGtri44dO2Lfvn0AgN9//x2vvvoqmjZtChsbG7Ru3RobNmyodv8cHR2l/rm5uUGj0UgjNTt27ECfPn1gbW2NrVu3IicnB6NHj4anpycaN26MTp064fPPP9c7nk6nw+LFi+Hr6wsrKys0b94cCxcuBAC0bNkSANC1a1coFAr07dsXQPlLYIWFhZg6dSpcXFxgbW2Nnj174sSJE9L+I0eOQKFQICUlBYGBgWjcuDF69OiBjIyMavebiBiAiKia7t+/jy1btsDX1xfOzs4YP348tm3bhsLCQqnNli1b4OnpiX79+knbPvroI3Tp0gUnT57EjBkz8Pbbb+Obb76R9iuVSqxYsQJnz57Fpk2bcOjQIXzwwQfS/smTJ6OwsBD/+c9/8NNPP2HRokWws7MDAMyaNQvnzp3D119/jfPnz2PNmjVo0qRJrfS3rNbz588jNDQUDx48QEBAAPbu3YszZ85gwoQJGDNmDI4fPy59JiYmBnFxcVJd27Ztg6urKwBI7Q4ePIibN28iMTGxwu/94IMPsHPnTmzatAnp6enw9fVFaGgocnNz9drNnDkTH3/8Mf773/+iUaNGeP3112ul30SyYdRHrRJRvRURESEsLCyEra2tsLW1FQCEu7u7SEtLE0II8ccffwgnJyexY8cO6TOdO3cWc+fOld63aNFCDBw4UO+44eHhYtCgQZV+7xdffCGcnZ2l9506ddI75qPCwsJEZGRkjfoHQFhbW0v9s7W1Fbt27RKZmZkCgIiPj3/iMQYPHizeffddIYQQeXl5wsrKSqxbt67CtmXHPXnypN72iIgIMWzYMCGEEPfv3xeWlpZi69at0v6ioiLh4eEhFi9eLIQQ4vDhwwKAOHjwoNRm7969AoD4448/DDkFRLLGESAiqtTzzz+PU6dO4dSpUzh+/DhCQ0MxaNAgXL58GdbW1hgzZgzWr18PAEhPT8eZM2cwbtw4vWN079693Pvz589L7w8ePIgXXngBnp6esLe3x5gxY5CTk4OCggIAwNSpU7FgwQI899xzmDNnjt4k7Lfeegvbt2+Hn58fPvjgA3z//fcG9W/ZsmVS/06dOoX+/ftL+wIDA/XalpSUYP78+ejUqRM0Gg3s7Oywf/9+XLlyBQBw/vx5FBYW4oUXXjCohkddvHgRxcXFeO6556RtlpaWCAoK0jtnANC5c2fpz+7u7gCAW7du1fi7ieSGAYiIKmVrawtfX1/4+vqiW7du+PTTT5Gfn49169YBAMaPH49vvvkG165dw4YNG9CvXz+0aNGi2se/dOkShgwZgs6dO2Pnzp1IS0uT5ggVFRVJ3/Hbb79hzJgx+OmnnxAYGIiVK1cCgBTG3nnnHdy4cQMvvPAC3nvvvWp/v5ubm9Q/X19f2Nra6vX9UR999BGWL1+O6dOn4/Dhwzh16hRCQ0OlOm1sbKr9vbXB0tJS+rNCoQBQOgeJiKqHAYiIqk2hUECpVOKPP/4AAHTq1AmBgYFYt24dtm3bVuE8lB9++KHc+/bt2wMA0tLSoNPp8PHHH+PZZ59FmzZtcOPGjXLH8PLywsSJE5GYmIh3331XCmAA0LRpU0RERGDLli2Ij4/HJ598Uptdlhw7dgzDhg3Da6+9hi5duqBVq1b45ZdfpP2tW7eGjY2NNAH8cSqVCkDpSFJlfHx8oFKpcOzYMWlbcXExTpw4gQ4dOtRST4gIABqZuwAiqrsKCwuRlZUFoPSOq4SEBNy/fx9hYWFSm/HjxyMqKgq2trZ48cUXyx3j2LFjWLx4MYYPH45vvvkGX3zxBfbu3QsA8PX1RXFxMVauXImwsDAcO3YMa9eu1fv8tGnTMGjQILRp0wa///47Dh8+LAWo2bNnIyAgAB07dkRhYSH27Nkj7attrVu3xpdffonvv/8eTk5OWLp0KbKzs6VgYm1tjenTp+ODDz6ASqXCc889h9u3b+Ps2bN444034OLiAhsbGyQnJ6NZs2awtraGWq3W+w5bW1u89dZbeP/996HRaNC8eXMsXrwYBQUFeOONN4zSLyK54ggQEVUqOTkZ7u7ucHd3R3BwME6cOIEvvvhCuoUbAEaPHo1GjRph9OjRsLa2LneMd999F//973/RtWtXLFiwAEuXLkVoaCgAoEuXLli6dCkWLVqEZ555Blu3bkVsbKze50tKSjB58mS0b98eAwcORJs2bbB69WoApaMqMTEx6Ny5M3r37g0LCwts377dKOfi73//O/z9/REaGoq+ffvCzc2t3ArOs2bNwrvvvovZs2ejffv2CA8Pl+blNGrUCCtWrMA///lPeHh4YNiwYRV+T1xcHF5++WWMGTMG/v7+uHDhAvbv3w8nJyej9ItIrhRCCGHuIoio/rp06RJ8fHxw4sQJ+Pv76+3z9vbGtGnTMG3aNPMUR0RUCV4CI6IaKS4uRk5ODv7+97/j2WefLRd+iIjqMl4CI6IaOXbsGNzd3XHixIly83bM7cMPP4SdnV2Fr0GDBpm7PCKqA3gJjIganNzc3HIrJ5exsbGBp6eniSsiorqGAYiIiIhkh5fAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2/j9fq7KbSGI4WgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASsBJREFUeJzt3XtcVNXeP/DPDDCAXEYGlVsoCt5TEVDSvGUYehS1yxNaeaHMY4pmmKl5vHRQUTNDxcvJY+rxkp5S+4kZmqSdMkoPyGMZkRpeE9SZGhASiFm/P3zYOXKRQWY2sD/v12teOXuvvfd3rUg+7b1mjUoIIUBERESkQGq5CyAiIiKSC4MQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxARUT21ZcsWqFQqXLhwQe5SiBotBiEiBTt58iRiY2PRuXNnuLi4oGXLlnj22Wfx008/VWg7YMAAqFQqqFQqqNVquLu7o3379hgzZgw+++wzi66bnJyM/v37o0WLFmjSpAnatGmDZ599FikpKXXVtQqWLFmCjz/+uML2r7/+GgsXLsRvv/1mtWvfa+HChdJYqlQqNGnSBJ06dcLf/vY35Ofn18k1du7cicTExDo5F1FjxiBEpGDLli3Dnj178Pjjj2PVqlWYOHEi/vOf/yAkJATff/99hfYPPfQQtm3bhn/96194++23MXz4cHz99dd44oknEB0djdLS0vtec8WKFRg+fDhUKhXmzJmDd999F08//TTOnj2LXbt2WaObAKoPQm+99ZZNg1C59evXY9u2bVi5ciU6dOiAxYsXY/DgwaiLr4BkECKqGXu5CyAi+cTFxWHnzp3QaDTStujoaHTp0gVLly7F9u3bzdprtVq88MILZtuWLl2KadOmYd26dQgICMCyZcuqvN4ff/yB+Ph4DBo0CIcPH66w//r16w/Yo/qjqKgITZo0qbbNM888g2bNmgEAJk2ahKeffhp79+7FN998g169etmiTCLF4x0hIgXr3bu3WQgCgLZt26Jz587Iysqq0Tns7OywevVqdOrUCUlJSTAajVW2vXnzJvLz8/Hoo49Wur9FixZm72/fvo2FCxeiXbt2cHJygo+PD5566imcP39earNixQr07t0bnp6ecHZ2RmhoKD766COz86hUKhQWFmLr1q3S46jx48dj4cKFmDlzJgCgdevW0r675+Rs374doaGhcHZ2hk6nw6hRo3D58mWz8w8YMAAPP/ww0tPT0a9fPzRp0gRvvvlmjcbvbgMHDgQA5OTkVNtu3bp16Ny5MxwdHeHr64spU6aY3dEaMGAAPvnkE1y8eFHqU0BAgMX1ECkB7wgRkRkhBPLy8tC5c+caH2NnZ4fRo0dj3rx5+OqrrzB06NBK27Vo0QLOzs5ITk7G1KlTodPpqjxnWVkZhg0bhtTUVIwaNQqvvvoqCgoK8Nlnn+H7779HYGAgAGDVqlUYPnw4nn/+eZSUlGDXrl34n//5Hxw4cECqY9u2bZgwYQJ69uyJiRMnAgACAwPh4uKCn376CR988AHeffdd6e5M8+bNAQCLFy/GvHnz8Oyzz2LChAm4ceMG1qxZg379+uHUqVNo2rSpVK9er8eQIUMwatQovPDCC/Dy8qrx+JUrD3ienp5Vtlm4cCHeeustRERE4JVXXkF2djbWr1+PkydP4vjx43BwcMDcuXNhNBpx5coVvPvuuwAAV1dXi+shUgRBRHSXbdu2CQBi06ZNZtv79+8vOnfuXOVx+/btEwDEqlWrqj3//PnzBQDh4uIihgwZIhYvXizS09MrtHv//fcFALFy5coK+0wmk/TnoqIis30lJSXi4YcfFgMHDjTb7uLiIsaNG1fhXG+//bYAIHJycsy2X7hwQdjZ2YnFixebbf/uu++Evb292fb+/fsLAGLDhg1V9vtuCxYsEABEdna2uHHjhsjJyRH/+Mc/hKOjo/Dy8hKFhYVCCCE2b95sVtv169eFRqMRTzzxhCgrK5POl5SUJACI999/X9o2dOhQ0apVqxrVQ6RkfDRGRJIff/wRU6ZMQa9evTBu3DiLji2/41BQUFBtu7feegs7d+5E9+7dcejQIcydOxehoaEICQkxexy3Z88eNGvWDFOnTq1wDpVKJf3Z2dlZ+vOvv/4Ko9GIvn37IiMjw6L677V3716YTCY8++yzuHnzpvTy9vZG27ZtcfToUbP2jo6OiImJsega7du3R/PmzdG6dWv89a9/RVBQED755JMq5xYdOXIEJSUlmD59OtTqP//6fvnll+Hu7o5PPvnE8o4SKRwfjRERACA3NxdDhw6FVqvFRx99BDs7O4uOv3XrFgDAzc3tvm1Hjx6N0aNHIz8/H99++y22bNmCnTt3IioqCt9//z2cnJxw/vx5tG/fHvb21f81deDAASxatAiZmZkoLi6Wtt8dlmrj7NmzEEKgbdu2le53cHAwe+/n51dhvtX97NmzB+7u7nBwcMBDDz0kPe6rysWLFwHcCVB302g0aNOmjbSfiGqOQYiIYDQaMWTIEPz222/48ssv4evra/E5yj9uHxQUVONj3N3dMWjQIAwaNAgODg7YunUrvv32W/Tv379Gx3/55ZcYPnw4+vXrh3Xr1sHHxwcODg7YvHkzdu7caXEf7mYymaBSqfDpp59WGgrvnXNz952pmurXr580L4mI5MEgRKRwt2/fRlRUFH766SccOXIEnTp1svgcZWVl2LlzJ5o0aYI+ffrUqo6wsDBs3boV165dA3BnMvO3336L0tLSCndfyu3ZswdOTk44dOgQHB0dpe2bN2+u0LaqO0RVbQ8MDIQQAq1bt0a7du0s7Y5VtGrVCgCQnZ2NNm3aSNtLSkqQk5ODiIgIaduD3hEjUgrOESJSsLKyMkRHRyMtLQ0ffvhhrdauKSsrw7Rp05CVlYVp06bB3d29yrZFRUVIS0urdN+nn34K4M/HPk8//TRu3ryJpKSkCm3F/y04aGdnB5VKhbKyMmnfhQsXKl040cXFpdJFE11cXACgwr6nnnoKdnZ2eOuttyoscCiEgF6vr7yTVhQREQGNRoPVq1eb1bRp0yYYjUazT+u5uLhUu5QBEd3BO0JECjZjxgzs378fUVFRMBgMFRZQvHfxRKPRKLUpKirCuXPnsHfvXpw/fx6jRo1CfHx8tdcrKipC79698cgjj2Dw4MHw9/fHb7/9ho8//hhffvklRo4cie7duwMAxo4di3/961+Ii4vDiRMn0LdvXxQWFuLIkSOYPHkyRowYgaFDh2LlypUYPHgwnnvuOVy/fh1r165FUFAQTp8+bXbt0NBQHDlyBCtXroSvry9at26N8PBwhIaGAgDmzp2LUaNGwcHBAVFRUQgMDMSiRYswZ84cXLhwASNHjoSbmxtycnKwb98+TJw4Ea+//voDjb+lmjdvjjlz5uCtt97C4MGDMXz4cGRnZ2PdunXo0aOH2b+v0NBQ7N69G3FxcejRowdcXV0RFRVl03qJGgQ5P7JGRPIq/9h3Va/q2rq6uoq2bduKF154QRw+fLhG1ystLRUbN24UI0eOFK1atRKOjo6iSZMmonv37uLtt98WxcXFZu2LiorE3LlzRevWrYWDg4Pw9vYWzzzzjDh//rzUZtOmTaJt27bC0dFRdOjQQWzevFn6ePrdfvzxR9GvXz/h7OwsAJh9lD4+Pl74+fkJtVpd4aP0e/bsEX369BEuLi7CxcVFdOjQQUyZMkVkZ2ebjU11Swvcq7y+GzduVNvu3o/Pl0tKShIdOnQQDg4OwsvLS7zyyivi119/NWtz69Yt8dxzz4mmTZsKAPwoPVEVVELUwZfaEBERETVAnCNEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxQUVK2EymfDLL7/Azc2Ny9QTERE1EEIIFBQUwNfXF2p1ze71MAhV4pdffoG/v7/cZRAREVEtXL58GQ899FCN2jIIVcLNzQ3AnYGs7nuTiIiIqP7Iz8+Hv7+/9Hu8JhiEKlH+OMzd3Z1BiIiIqIGxZFoLJ0sTERGRYjEIERERkWIxCBEREZFicY4QERFRHSkrK0NpaancZTRaDg4OsLOzq9NzMggRERE9ICEEcnNz8dtvv8ldSqPXtGlTeHt719k6fwxCRERED6g8BLVo0QJNmjThYrxWIIRAUVERrl+/DgDw8fGpk/MyCBERET2AsrIyKQR5enrKXU6j5uzsDAC4fv06WrRoUSePyThZmoiI6AGUzwlq0qSJzJUoQ/k419VcLAYhIiKiOsDHYbZR1+PMIERERESKxTlCNqDX61FSUlLlfo1Gw+fKREREMmAQsjK9Xo+kpCTpvdHoBoPBEzqdHlptgbQ9NjaWYYiIiGxq/Pjx2Lp1KwDA3t4eOp0OXbt2xejRozF+/Hio1TV7cLRlyxZMnz69QS4fwCBkZXffCcrI6I7k5GEQQg2VyoSoqAMICTlVoR0RESmLnE8OBg8ejM2bN6OsrAx5eXlISUnBq6++io8++gj79++HvX3jjgqNu3f1iNHoJoUgABBCjeTkYQgMPGd2Z4iIiJTl3icHVbHWkwNHR0d4e3sDAPz8/BASEoJHHnkEjz/+OLZs2YIJEyZg5cqV2Lx5M37++WfodDpERUVh+fLlcHV1xbFjxxATEwPgz4nMCxYswMKFC7Ft2zasWrUK2dnZcHFxwcCBA5GYmIgWLVrUeT9qi5OlbcRg8JRCUDkh1DAYdDJVRERE9UFNnwjY8snBwIED0a1bN+zduxcAoFarsXr1apw5cwZbt27F559/jjfeeAMA0Lt3byQmJsLd3R3Xrl3DtWvX8PrrrwO48xH3+Ph4/O///i8+/vhjXLhwAePHj7dZP2qCd4RsRKfTQ6UymYUhlcoEnc4gY1VERESV69ChA06fPg0AmD59urQ9ICAAixYtwqRJk7Bu3TpoNBpotVqoVCrpzlK5F198UfpzmzZtsHr1avTo0QO3bt2Cq6urTfpxP7wjZCNabQGiog5ApTIBgDRHiI/FiIioPhJCSI+6jhw5gscffxx+fn5wc3PDmDFjoNfrUVRUVO050tPTERUVhZYtW8LNzQ39+/cHAFy6dMnq9dcU7wjZUEjIKQQGnoPBoINOZ2AIIiKieisrKwutW7fGhQsXMGzYMLzyyitYvHgxdDodvvrqK7z00ksoKSmpckXtwsJCREZGIjIyEjt27EDz5s1x6dIlREZG1qsPCDEI2ZhWW8AARERE9drnn3+O7777Dq+99hrS09NhMpnwzjvvSB+n//e//23WXqPRoKyszGzbjz/+CL1ej6VLl8Lf3x8A8N///tc2HbAAH41ZmUajqdN2REREdam4uBi5ubm4evUqMjIysGTJEowYMQLDhg3D2LFjERQUhNLSUqxZswY///wztm3bhg0bNpidIyAgALdu3UJqaipu3ryJoqIitGzZEhqNRjpu//79iI+Pl6mXVeMdISvz9PREbGwsV5YmIqJ6KSUlBT4+PrC3t4eHhwe6deuG1atXY9y4cVCr1ejWrRtWrlyJZcuWYc6cOejXrx8SEhIwduxY6Ry9e/fGpEmTEB0dDb1eL318fsuWLXjzzTexevVqhISEYMWKFRg+fLiMva1IJYQQchdR3+Tn50Or1cJoNMLd3V3ucoiIqB67ffs2cnJy0Lp1azg5OVl8vNzrCDU01Y13bX5/844QERGRjPjkQF4MQkRERDJjyJEPJ0sTERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkVUcO3YMKpUKv/32W42PCQgIQGJiotVquheDEBERkUKNHz8eKpUKkyZNqrBvypQpUKlUGD9+vO0LsyEGISIiIgXz9/fHrl278Pvvv0vbbt++jZ07d6Jly5YyVmYbDEJEREQKFhISAn9/f+zdu1fatnfvXrRs2RLdu3eXthUXF2PatGlo0aIFnJyc0KdPH5w8edLsXAcPHkS7du3g7OyMxx57DBcuXKhwva+++gp9+/aFs7Mz/P39MW3aNBQWFlqtf/fDIKQger0e165dq/Kl1+vlLpGISPGuXAGOHr3zT1t58cUXsXnzZun9+++/j5iYGLM2b7zxBvbs2YOtW7ciIyMDQUFBiIyMhMFgAABcvnwZTz31FKKiopCZmYkJEyZg9uzZZuc4f/48Bg8ejKeffhqnT5/G7t278dVXXyE2Ntb6nawCv3RVIfR6PZKSku7bLjY2ll/+R0Qkk02bgIkTAZMJUKuB994DXnrJ+td94YUXMGfOHFy8eBEAcPz4cezatQvHjh0DABQWFmL9+vXYsmULhgwZAgDYuHEjPvvsM2zatAkzZ87E+vXrERgYiHfeeQcA0L59e3z33XdYtmyZdJ2EhAQ8//zzmD59OgCgbdu2WL16Nfr374/169fDycnJ+p29B4OQQpSUlJi9NxrdYDB4QqfTQ6stqLIdERHZxpUrf4Yg4M4///pXIDISeOgh6167efPmGDp0KLZs2QIhBIYOHYpmzZpJ+8+fP4/S0lI8+uij0jYHBwf07NkTWVlZAICsrCyEh4ebnbdXr15m7//3f/8Xp0+fxo4dO6RtQgiYTCbk5OSgY8eO1uhetRiEFCgjozuSk4dBCDVUKhOiog4gJOSU3GURESna2bN/hqByZWXAuXPWD0LAncdj5Y+o1q5da5Vr3Lp1C3/9618xbdq0CvvkmpjNOUIKYzS6SSEIAIRQIzl5GIxGN5krIyJStrZt7zwOu5udHRAUZJvrDx48GCUlJSgtLUVkZKTZvsDAQGg0Ghw/flzaVlpaipMnT6JTp04AgI4dO+LEiRNmx33zzTdm70NCQvDDDz8gKCiowkuj0VipZ9VjEFIYg8FTCkHlhFDDYNDJVBEREQF37vq8996d8APc+ec//mGbu0F3rmeHrKws/PDDD7ArL+L/uLi44JVXXsHMmTORkpKCH374AS+//DKKiorw0v9NYpo0aRLOnj2LmTNnIjs7Gzt37sSWLVvMzjNr1ix8/fXXiI2NRWZmJs6ePYv/9//+HydLk+3odHqoVCazMKRSmaDTGWSsioiIgDsToyMj7zwOCwqyXQgq5+7uXuW+pUuXwmQyYcyYMSgoKEBYWBgOHToEDw8PAHcebe3ZswevvfYa1qxZg549e2LJkiV48cUXpXN07doVX3zxBebOnYu+fftCCIHAwEBER0dbvW9VUQkhhGxXr6fy8/Oh1WphNBqr/aFoSK5du4b33nsPQPVzhCZOnAgfHx85SyUialBu376NnJwctG7dWpZPPSlNdeNdm9/f9eLR2Nq1axEQEAAnJyeEh4dXeMZ4t7179yIsLAxNmzaFi4sLgoODsW3btirbT5o0CSqVyqbfW1LfhYScwvTpiRg3bgumT0/kRGkiIlIs2R+N7d69G3FxcdiwYQPCw8ORmJiIyMhIZGdno0WLFhXa63Q6zJ07Fx06dIBGo8GBAwcQExODFi1aVJjctW/fPnzzzTfw9fW1VXfqrXsnoWm1BWYfm6+qHRERUWMm+6Ox8PBw9OjRQ1rsz2Qywd/fH1OnTq2wImVVQkJCMHToUMTHx0vbrl69ivDwcBw6dAhDhw7F9OnTpQWc7qcxPhoD7iyqWN06QRqNhospEhFZiI/GbKuuH43JekeopKQE6enpmDNnjrRNrVYjIiICaWlp9z1eCIHPP/8c2dnZZitXlk/mmjlzJjp37nzf8xQXF6O4uFh6n5+fb2FPGgaGHCIiInOyzhG6efMmysrK4OXlZbbdy8sLubm5VR5nNBrh6uoKjUaDoUOHYs2aNRg0aJC0f9myZbC3t690wabKJCQkQKvVSi9/f//adYiIiBSLnz2yjboeZ9nnCNWGm5sbMjMzcevWLaSmpiIuLg5t2rTBgAEDkJ6ejlWrViEjIwMqlapG55szZw7i4uKk9/n5+QxDRERUIw4ODgCAoqIiODs7y1xN41dUVATgz3F/ULIGoWbNmsHOzg55eXlm2/Py8uDt7V3lcWq1GkH/t9RmcHAwsrKykJCQgAEDBuDLL7/E9evXzZbqLisrw4wZM5CYmIgLFy5UOJ+joyMcHR3rplNERKQodnZ2aNq0Ka5fvw4AaNKkSY3/R5xqTgiBoqIiXL9+HU2bNq2w6GNtyRqENBoNQkNDkZqaipEjRwK4M78nNTXVolUmTSaTNMdnzJgxiIiIMNsfGRmJMWPGICYmps5qpzs4AZuICNL/vJeHIbKepk2bVnuzxFKyPxqLi4vDuHHjEBYWhp49eyIxMRGFhYVSaBk7diz8/PyQkJAA4M58nrCwMAQGBqK4uBgHDx7Etm3bsH79egB3JgTf+4vXwcEB3t7eaN++vW0718jp9Xrp037ViY2NZRgiokZNpVLBx8cHLVq0QGlpqdzlNFoODg51dieonOxBKDo6Gjdu3MD8+fORm5uL4OBgpKSkSBOoL126BPVd30JXWFiIyZMn48qVK3B2dkaHDh2wfft2WZfnVqp77wQZjW4wGDyh0+nN1iiq7o4REVFjYmdnV+e/qMm6ZF9HqD5qrOsI1TV+bQcREdUnDfYrNqhhMxrdpBAE3Pk2++TkYTAa3WSujIiIqHoMQvTADAZPs2+zB+6EIYNBJ1NFRERENcMgRA9Mp9NDpTKZbVOpTNDpDDJVREREVDMMQvTAtNoCREUdkMJQ+Ryhyr7UlYiIqD6R/VNj1DiEhJxCYOA5GAw66HQGhiAiImoQGISo1jQajdl7rbag0gB0bzsiIqL6gkFIQep6FWhPT0/ExsZyZWkiImqwGIQUwlqrQDPkEBFRQ8bJ0gpR09WduQo0EREpCYOQQhmNbsjJCeCih0REpGh8NKZA1X0dBsmnrudwERHR/TEIKUxVX4cRGHiOH3mXkbXmcBERUfUYhBSmuq/DYBCSz713goxGNxgMntDp9Gb/XupyDhfvQBERMQgpTvnXYdwdhvh1GPWLLR5d8g4UEdEdnCytMPw6jPqtqkeXdT2pvbI7UJVNnuenCImoseMdIYW4e3Xn6r4Og6tAy0uOR5ecPE9ESsYgpBBcBbphsPWjS06eJyKlYxBSEIac+q/80eW9d2isFUo4eZ6IlI5BiKieqe7RZV3j5HkiUjpOliaqB+6dm6XVFqB164sVQlBdz+Hi5HkiUjreESJZcA0bc3LO4bLlHSgiovqGQYhsjmvYVM6Wfa3sDlRlAYifIiSixo5BiGxOjlWUyRw/RUhEdAeDEMmKa9jIhyGHiIiTpUlGtlpFmYiIqCoMQiSb6tawISIisgUGIZJN+Ro2d+MaNkREZEsMQiQbrmFDRERy42RpkhXXsCEiIjkxCJHNcQ0bIiKqLxiEyOa4hg0REdUXDEIkC4YcIiKqDzhZmoiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUq14EobVr1yIgIABOTk4IDw/HiRMnqmy7d+9ehIWFoWnTpnBxcUFwcDC2bdsm7S8tLcWsWbPQpUsXuLi4wNfXF2PHjsUvv/xii64QERFRAyJ7ENq9ezfi4uKwYMECZGRkoFu3boiMjMT169crba/T6TB37lykpaXh9OnTiImJQUxMDA4dOgQAKCoqQkZGBubNm4eMjAzs3bsX2dnZGD58uC27RURERA2ASggh5CwgPDwcPXr0QFJSEgDAZDLB398fU6dOxezZs2t0jpCQEAwdOhTx8fGV7j958iR69uyJixcvomXLlvc9X35+PrRaLYxGI9zd3WveGSIiIpJNbX5/y3pHqKSkBOnp6YiIiJC2qdVqREREIC0t7b7HCyGQmpqK7Oxs9OvXr8p2RqMRKpUKTZs2rXR/cXEx8vPzzV5ERETU+MkahG7evImysjJ4eXmZbffy8kJubm6VxxmNRri6ukKj0WDo0KFYs2YNBg0aVGnb27dvY9asWRg9enSV6TAhIQFarVZ6+fv7175TRERE1GDYy11Abbi5uSEzMxO3bt1Camoq4uLi0KZNGwwYMMCsXWlpKZ599lkIIbB+/foqzzdnzhzExcVJ7/Pz8xmGiGxIr9ejpKSkyv0ajQaenp42rIiIlELWINSsWTPY2dkhLy/PbHteXh68vb2rPE6tViMoKAgAEBwcjKysLCQkJJgFofIQdPHiRXz++efVPit0dHSEo6Pjg3WGiGpFr9dLcwSrExsbyzBERHVO1kdjGo0GoaGhSE1NlbaZTCakpqaiV69eNT6PyWRCcXGx9L48BJ09exZHjhzhX55E9di9d4KMRjfk5ATAaHSrth0RUV2Q/dFYXFwcxo0bh7CwMPTs2ROJiYkoLCxETEwMAGDs2LHw8/NDQkICgDvzecLCwhAYGIji4mIcPHgQ27Ztkx59lZaW4plnnkFGRgYOHDiAsrIyab6RTqeDRqORp6NEjURtH2NVddzNmzelP2dkdEdy8jAIoYZKZUJU1AGEhJyqm8KJiCohexCKjo7GjRs3MH/+fOTm5iI4OBgpKSnSBOpLly5Brf7zxlVhYSEmT56MK1euwNnZGR06dMD27dsRHR0NALh69Sr2798P4M5js7sdPXq0wjwiIqq52j7GqslxRqObFIIAQAg1kpOHITDwHLTaggcrvA5wHhNR4yR7EALu/KUZGxtb6b5jx46ZvV+0aBEWLVpU5bkCAgIg89JIRI1WZY+xDAZP6HR6s7Byb7uaHGcweEohqJwQahgMOtmDEOcxETVe9SIIEVHDU9vHWFUdp9PpoVKZzMKQSmWCTmewZjdqpLYBkIjqPwYhIrJYbR9j3e+4qKgDFUKS3HeD7sV5TESNC4MQEVmsto+x7ndcSMgpBAaeg8Ggg05nqHchqL7PYyIiyzEIEZHFavsYqybHabUFlYaK+vCJz/o8j4mIaodBiIgsVtvHWPc77qmnnkKzZs0qHFdfPpFVn+cxEVHtMAgRUa3U9jFWdcc1a9YMPj4+1ir5gTWUeUxEVHMMQkRUY/c+nqrpY6zaHlcf1fd5TERkGQYhIqoxT09PxMbGWrywYG2Pqy8aU5AjInMqwdUHK8jPz4dWq4XRaKz2y1qJyFxjXn25MfeNqLGoze9v3hEiojrR2Fdfbog1E9H9yfrt80TUePBb5ImoIeIdISKqc1x9mYgaCgYhIqpTDXn1Zc4DIlIeBiEiqlMNdfXlxj7HiYgqxzlCRFSnyldfvltDWH2Zc5yIlIl3hIioTjWG1Zc5x4lIORiEiKjONeTVlxvyHCcishyDEBHVicay+nJDneNERLXDIEREdaKhf41GOX7DPJGyMAgRUZ2p7yGnJhrDHCciqjkGISKiezTkOU5EZBkGISIiNJ45TkRkGQYhIiI0njlORGQZBiEiov/DkEOkPFxZmoiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSrXgShtWvXIiAgAE5OTggPD8eJEyeqbLt3716EhYWhadOmcHFxQXBwMLZt22bWRgiB+fPnw8fHB87OzoiIiMDZs2et3Q0iIiJqYGQPQrt370ZcXBwWLFiAjIwMdOvWDZGRkbh+/Xql7XU6HebOnYu0tDScPn0aMTExiImJwaFDh6Q2y5cvx+rVq7FhwwZ8++23cHFxQWRkJG7fvm2rbhEREVEDoBJCCDkLCA8PR48ePZCUlAQAMJlM8Pf3x9SpUzF79uwanSMkJARDhw5FfHw8hBDw9fXFjBkz8PrrrwMAjEYjvLy8sGXLFowaNeq+58vPz4dWq4XRaIS7u3vtO0dEREQ2U5vf37LeESopKUF6ejoiIiKkbWq1GhEREUhLS7vv8UIIpKamIjs7G/369QMA5OTkIDc31+ycWq0W4eHhVZ6zuLgY+fn5Zi8iIiJq/GQNQjdv3kRZWRm8vLzMtnt5eSE3N7fK44xGI1xdXaHRaDB06FCsWbMGgwYNAgDpOEvOmZCQAK1WK738/f0fpFtERETUQMg+R6g23NzckJmZiZMnT2Lx4sWIi4vDsWPHan2+OXPmwGg0Sq/Lly/XXbFERERUb9nLefFmzZrBzs4OeXl5Ztvz8vLg7e1d5XFqtRpBQUEAgODgYGRlZSEhIQEDBgyQjsvLy4OPj4/ZOYODgys9n6OjIxwdHR+wN0RERNTQyHpHSKPRIDQ0FKmpqdI2k8mE1NRU9OrVq8bnMZlMKC4uBgC0bt0a3t7eZufMz8/Ht99+a9E5iYiIqPGT9Y4QAMTFxWHcuHEICwtDz549kZiYiMLCQsTExAAAxo4dCz8/PyQkJAC4M58nLCwMgYGBKC4uxsGDB7Ft2zasX78eAKBSqTB9+nQsWrQIbdu2RevWrTFv3jz4+vpi5MiRcnWTiIiI6iHZg1B0dDRu3LiB+fPnIzc3F8HBwUhJSZEmO1+6dAlq9Z83rgoLCzF58mRcuXIFzs7O6NChA7Zv347o6GipzRtvvIHCwkJMnDgRv/32G/r06YOUlBQ4OTnZvH9ERERUf8m+jlB9xHWEiIiIGp4Gt44QERERkZwYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsSwOQgcPHsSECRPwxhtv4McffzTb9+uvv2LgwIF1VhwRERGRNVkUhHbu3Inhw4cjNzcXaWlp6N69O3bs2CHtLykpwRdffFHnRRIRERFZg0Vfuvr2229j5cqVmDZtGgDg3//+N1588UXcvn0bL730klUKJCIiIrIWi4LQ2bNnERUVJb1/9tln0bx5cwwfPhylpaV48skn67xAIiIiImuxKAi5u7sjLy8PrVu3lrY99thjOHDgAIYNG4YrV67UeYFERERE1mLRHKGePXvi008/rbC9f//+SE5ORmJiYl3VRURERGR1FgWh1157DU5OTpXuGzBgAJKTkzF27Ng6KYyIiIjI2lRCCCF3EfVNfn4+tFotjEYj3N3d5S6HiIiIaqA2v78tmiOkVquhUqmqbaNSqfDHH39YcloiIiIiWVgUhPbt21flvrS0NKxevRomk+mBiyIiIiKyBYuC0IgRIypsy87OxuzZs5GcnIznn38ef//73+usOCIiIiJrqvV3jf3yyy94+eWX0aVLF/zxxx/IzMzE1q1b0apVq7qsj4iIiMhqLLojBABGoxFLlizBmjVrEBwcjNTUVPTt29catRERUSOl1+tRUlJS5X6NRgNPT08bVkRKZVEQWr58OZYtWwZvb2988MEHlT4qIyIiqo5er0dSUtJ928XGxjIMkdVZFIRmz54NZ2dnBAUFYevWrdi6dWul7fbu3VsnxRERUeNz750go9ENBoMndDo9tNqCKtsRWYNFQWjs2LH3/fg8ERFRTWVkdEdy8jAIoYZKZUJU1AGEhJySuyxSEIuC0JYtW6xUBhERKY3R6CaFIAAQQo3k5GEIDDxndmeIyJpq/akxIiKiB2EweEohqJwQahgMOpkqIiViECIiIlnodHqoVOaL8KpUJuh0BpkqIiViECIiIllotQWIijoghaHyOUJ8LEa2ZPE6QkRERHUlJOQUAgPPwWDQQaczMASRzTEIERGRTWk0GrP3Wm1BpQHo3nZE1sAgRERENuXp6YnY2FiuLE31AoMQERHZHEMO1RecLE1ERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKJXsQWrt2LQICAuDk5ITw8HCcOHGiyrYbN25E37594eHhAQ8PD0RERFRof+vWLcTGxuKhhx6Cs7MzOnXqhA0bNli7G0RERNQAyRqEdu/ejbi4OCxYsAAZGRno1q0bIiMjcf369UrbHzt2DKNHj8bRo0eRlpYGf39/PPHEE7h69arUJi4uDikpKdi+fTuysrIwffp0xMbGYv/+/bbqFhERETUQKiGEkOvi4eHh6NGjB5KSkgAAJpMJ/v7+mDp1KmbPnn3f48vKyuDh4YGkpCSMHTsWAPDwww8jOjoa8+bNk9qFhoZiyJAhWLRoUY3qys/Ph1arhdFohLu7ey16RkRERLZWm9/fst0RKikpQXp6OiIiIv4sRq1GREQE0tLSanSOoqIilJaWQqfTSdt69+6N/fv34+rVqxBC4OjRo/jpp5/wxBNPVHme4uJi5Ofnm72IiIio8ZMtCN28eRNlZWXw8vIy2+7l5YXc3NwanWPWrFnw9fU1C1Nr1qxBp06d8NBDD0Gj0WDw4MFYu3Yt+vXrV+V5EhISoNVqpZe/v3/tOkVEREQNiuyTpWtr6dKl2LVrF/bt2wcnJydp+5o1a/DNN99g//79SE9PxzvvvIMpU6bgyJEjVZ5rzpw5MBqN0uvy5cu26AIRERHJzF6uCzdr1gx2dnbIy8sz256Xlwdvb+9qj12xYgWWLl2KI0eOoGvXrtL233//HW+++Sb27duHoUOHAgC6du2KzMxMrFixwuzO0d0cHR3h6Oj4gD0iIiKihka2O0IajQahoaFITU2VtplMJqSmpqJXr15VHrd8+XLEx8cjJSUFYWFhZvtKS0tRWloKtdq8W3Z2djCZTHXbASIiImrwZLsjBNz5qPu4ceMQFhaGnj17IjExEYWFhYiJiQEAjB07Fn5+fkhISAAALFu2DPPnz8fOnTsREBAgzSVydXWFq6sr3N3d0b9/f8ycORPOzs5o1aoVvvjiC/zrX//CypUrZesnERER1U+yBqHo6GjcuHED8+fPR25uLoKDg5GSkiJNoL506ZLZ3Z3169ejpKQEzzzzjNl5FixYgIULFwIAdu3ahTlz5uD555+HwWBAq1atsHjxYkyaNMlm/SIiIqKGQdZ1hOorriNERETU8DSodYSIiIiI5MYgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREiiXrd40RERE1RHq9HiUlJVXu12g08PT0tGFFVFsMQkRERBbQ6/VISkq6b7vY2FiGoQaAj8aIiIgscO+dIKPRDTk5ATAa3aptR/UT7wgRERHVUkZGdyQnD4MQaqhUJkRFHUBIyCm5yyIL8I4QERFRLRiNblIIAgAh1EhOHlbhzhDVbwxCREREtWAweEohqJwQahgMOpkqotpgECIiIqoFnU4Plcpktk2lMkGnM8hUEdUGgxAREVEtaLUFiIo6IIWh8jlCWm2BzJWRJThZmoiIqJZCQk4hMPAcDAYddDoDQ1ADxCBERERkAY1GY/Zeqy2oNADd247qJwYhIiIiC3h6eiI2NpYrSzcSDEJEREQWYshpPDhZmoiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBTLXu4CiIiIlEKv16OkpKTK/RqNBp6enjasiBiEiIiIbECv1yMpKem+7WJjYxmGbIiPxoiIiGzg3jtBRqMbcnICYDS6VduOrIt3hIiIiGwsI6M7kpOHQQg1VCoToqIOICTklNxlKRLvCBEREdmQ0egmhSAAEEKN5ORhFe4MkW0wCBEREdmQweAphaByQqhhMOhkqkjZGISIiIhsSKfTQ6UymW1TqUzQ6QwyVaRsDEJEREQ2pNUWICrqgBSGyucIabUFMlemTLIHobVr1yIgIABOTk4IDw/HiRMnqmy7ceNG9O3bFx4eHvDw8EBERESl7bOysjB8+HBotVq4uLigR48euHTpkjW7QUREVGMhIacwfXoixo3bgunTEzlRWkayBqHdu3cjLi4OCxYsQEZGBrp164bIyEhcv3690vbHjh3D6NGjcfToUaSlpcHf3x9PPPEErl69KrU5f/48+vTpgw4dOuDYsWM4ffo05s2bBycnJ1t1i4iIqAKNRmP2XqstQOvWFyvcCbq3HVmXSggh5Lp4eHg4evToIS0wZTKZ4O/vj6lTp2L27Nn3Pb6srAweHh5ISkrC2LFjAQCjRo2Cg4MDtm3bVuu68vPzodVqYTQa4e7uXuvzEBER3Y0rS1tXbX5/y3ZHqKSkBOnp6YiIiPizGLUaERERSEtLq9E5ioqKUFpaCp3uzkx7k8mETz75BO3atUNkZCRatGiB8PBwfPzxx9boAhERkUU8PT3h4+NT5YshyPZkC0I3b95EWVkZvLy8zLZ7eXkhNze3RueYNWsWfH19pTB1/fp13Lp1C0uXLsXgwYNx+PBhPPnkk3jqqafwxRdfVHme4uJi5Ofnm72IiIio8WuwK0svXboUu3btwrFjx6T5PybTnRn4I0aMwGuvvQYACA4Oxtdff40NGzagf//+lZ4rISEBb731lm0KJyIionpDtjtCzZo1g52dHfLy8sy25+Xlwdvbu9pjV6xYgaVLl+Lw4cPo2rWr2Tnt7e3RqVMns/YdO3as9lNjc+bMgdFolF6XL1+uRY+IiIiooZEtCGk0GoSGhiI1NVXaZjKZkJqail69elV53PLlyxEfH4+UlBSEhYVVOGePHj2QnZ1ttv2nn35Cq1atqjyno6Mj3N3dzV5ERETU+Mn6aCwuLg7jxo1DWFgYevbsicTERBQWFiImJgYAMHbsWPj5+SEhIQEAsGzZMsyfPx87d+5EQECANJfI1dUVrq6uAICZM2ciOjoa/fr1w2OPPYaUlBQkJyfj2LFjsvSRiIjoQfHTZtYjaxCKjo7GjRs3MH/+fOTm5iI4OBgpKSnSBOpLly5Brf7zptX69etRUlKCZ555xuw8CxYswMKFCwEATz75JDZs2ICEhARMmzYN7du3x549e9CnTx+b9YuIiKiu6PV6aZmZ6sTGxjIM1YKs6wjVV1xHiIiI6otr167hvffek94bjW4wGDyh0+nNFmOcOHEifHx85Cix3qjN7+8G+6kxIiIipcnI6I7k5GEQQi19Rxm/nuPByP5dY0RERHR/RqObFIIAQAg1kpOHwWh0k7myho1BiIiIqAEwGDylEFROCDUMBp1MFTUODEJEREQNgE6nh0plMtumUpmg0xlkqqhxYBAiIiJqALTaAkRFHZDCUPkcoXu/vZ4sw8nSREREDURIyCkEBp6DwaCDTmdgCKoDDEJERET1mEajMXuv1RZUGoDubUc1wyBERERUj3l6eiI2NpYrS1sJgxAREVE9x5BjPZwsTURERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKZS93AURERGQder0eJSUlle4zGo0QQqBp06aV7tdoNPD09LRidfUDgxAREVEjpNfrkZSU9EDniI2NbfRhiI/GiIiIGqGq7gTZ+hz1HYMQERGRAhiNbsjJCYDR6GbRvsaOj8aIiIgauYyM7khOHgYh1FCpTIiKOoCQkFP33acEvCNERETUiBmNblLQAQAh1EhOHgaj0a3afUrBO0JERESNmMHgKQWdckKoYTDoAKiq3KfVFtiwSvkwCBERETViOp0eKpXJLPCoVCbodAbpz1XtUwI+GiMiImrEtNoCREUdgEplAgBpHpBWW1DtPqXgHSEiIqJGSKPRSH8OCTmFwMBzMBh00OkMZkGnun13n6OxYhAiIiJqhDw9PREbG8uVpe+DQYiIiKiRqi7I+Pj42LCS+otzhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLHqRRBau3YtAgIC4OTkhPDwcJw4caLKths3bkTfvn3h4eEBDw8PREREVNt+0qRJUKlUSExMtELlRERE1JDJHoR2796NuLg4LFiwABkZGejWrRsiIyNx/fr1StsfO3YMo0ePxtGjR5GWlgZ/f3888cQTuHr1aoW2+/btwzfffANfX19rd4OIiIgaINmD0MqVK/Hyyy8jJiYGnTp1woYNG9CkSRO8//77lbbfsWMHJk+ejODgYHTo0AH//Oc/YTKZkJqaatbu6tWrmDp1Knbs2AEHBwdbdIWIiIgaGFmDUElJCdLT0xERESFtU6vViIiIQFpaWo3OUVRUhNLSUuh0OmmbyWTCmDFjMHPmTHTu3Pm+5yguLkZ+fr7Zi4iIiBo/WYPQzZs3UVZWBi8vL7PtXl5eyM3NrdE5Zs2aBV9fX7MwtWzZMtjb22PatGk1OkdCQgK0Wq308vf3r3kniIiIqMGS/dHYg1i6dCl27dqFffv2wcnJCQCQnp6OVatWYcuWLVCpVDU6z5w5c2A0GqXX5cuXrVk2ERER1ROyBqFmzZrBzs4OeXl5Ztvz8vLg7e1d7bErVqzA0qVLcfjwYXTt2lXa/uWXX+L69eto2bIl7O3tYW9vj4sXL2LGjBkICAio9FyOjo5wd3c3exEREVHjJ2sQ0mg0CA0NNZvoXD7xuVevXlUet3z5csTHxyMlJQVhYWFm+8aMGYPTp08jMzNTevn6+mLmzJk4dOiQ1fpCREREDY+93AXExcVh3LhxCAsLQ8+ePZGYmIjCwkLExMQAAMaOHQs/Pz8kJCQAuDP/Z/78+di5cycCAgKkuUSurq5wdXWFp6cnPD09za7h4OAAb29vtG/f3radIyIionpN9iAUHR2NGzduYP78+cjNzUVwcDBSUlKkCdSXLl2CWv3njav169ejpKQEzzzzjNl5FixYgIULF9qydCIiImrgVEIIIXcR9U1+fj60Wi2MRiPnCxERETUQtfn93aA/NUZERET0IBiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLFk//g8ERERNW56vR4lJSVV7tdoNBXWALQVBiEiIiKyGr1ej6SkJOm90egGg8ETOp0eWm2BtD02NlaWMMQgRERERFZz952gjIzuSE4eBiHUUKlMiIo6gJCQUxXa2RLnCBEREZHVGY1uUggCACHUSE4eBqPRTda6GISIiIjI6gwGTykElRNCDYNBJ1NFdzAIERERkdXpdHqoVCazbSqVCTqdQaaK7mAQIiIiIqvTagsQFXVACkPlc4TunjAtB06WJiIiIpsICTmFwMBzMBh00OkMsocggEGIiIiIbEirLagXAagcH40RERGR1Wg0mjptV9d4R4iIiIisxtPTE7GxsVxZmoiIiJRJrpBTE3w0RkRERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisWVpSshhAAA5Ofny1wJERER1VT57+3y3+M1wSBUiYKCO9+K6+/vL3MlREREZKmCggJotdoatVUJS2KTQphMJvzyyy9wc3ODSqWqtE1+fj78/f1x+fJluLu727jC+ofjYY7jURHHxBzHoyKOiTmOh7majIcQAgUFBfD19YVaXbPZP7wjVAm1Wo2HHnqoRm3d3d35A3oXjoc5jkdFHBNzHI+KOCbmOB7m7jceNb0TVI6TpYmIiEixGISIiIhIsRiEasnR0RELFiyAo6Oj3KXUCxwPcxyPijgm5jgeFXFMzHE8zFlrPDhZmoiIiBSLd4SIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEqrF27VoEBATAyckJ4eHhOHHiRJVtz5w5g6effhoBAQFQqVRITEy0XaE2Ysl4bNy4EX379oWHhwc8PDwQERFRbfuGyJLx2Lt3L8LCwtC0aVO4uLggODgY27Zts2G1tmHJmNxt165dUKlUGDlypHULtDFLxmPLli1QqVRmLycnJxtWa32W/nz89ttvmDJlCnx8fODo6Ih27drh4MGDNqrWNiwZkwEDBlT4GVGpVBg6dKgNK7YuS39GEhMT0b59ezg7O8Pf3x+vvfYabt++bdlFBVVq165dQqPRiPfff1+cOXNGvPzyy6Jp06YiLy+v0vYnTpwQr7/+uvjggw+Et7e3ePfdd21bsJVZOh7PPfecWLt2rTh16pTIysoS48ePF1qtVly5csXGlVuHpeNx9OhRsXfvXvHDDz+Ic+fOicTERGFnZydSUlJsXLn1WDom5XJycoSfn5/o27evGDFihG2KtQFLx2Pz5s3C3d1dXLt2TXrl5ubauGrrsXQ8iouLRVhYmPjLX/4ivvrqK5GTkyOOHTsmMjMzbVy59Vg6Jnq93uzn4/vvvxd2dnZi8+bNti3cSiwdjx07dghHR0exY8cOkZOTIw4dOiR8fHzEa6+9ZtF1GYSq0LNnTzFlyhTpfVlZmfD19RUJCQn3PbZVq1aNLgg9yHgIIcQff/wh3NzcxNatW61Vok096HgIIUT37t3F3/72N2uUJ4vajMkff/whevfuLf75z3+KcePGNaogZOl4bN68WWi1WhtVZ3uWjsf69etFmzZtRElJia1KtLkH/Xvk3XffFW5ubuLWrVvWKtGmLB2PKVOmiIEDB5pti4uLE48++qhF1+WjsUqUlJQgPT0dERER0ja1Wo2IiAikpaXJWJk86mI8ioqKUFpaCp1OZ60ybeZBx0MIgdTUVGRnZ6Nfv37WLNVmajsmf//739GiRQu89NJLtijTZmo7Hrdu3UKrVq3g7++PESNG4MyZM7Yo1+pqMx779+9Hr169MGXKFHh5eeHhhx/GkiVLUFZWZquyraou/l7dtGkTRo0aBRcXF2uVaTO1GY/evXsjPT1denz2888/4+DBg/jLX/5i0bX5pauVuHnzJsrKyuDl5WW23cvLCz/++KNMVcmnLsZj1qxZ8PX1Nfshb6hqOx5GoxF+fn4oLi6GnZ0d1q1bh0GDBlm7XJuozZh89dVX2LRpEzIzM21QoW3VZjzat2+P999/H127doXRaMSKFSvQu3dvnDlzpsZfAl1f1WY8fv75Z3z++ed4/vnncfDgQZw7dw6TJ09GaWkpFixYYIuyrepB/149ceIEvv/+e2zatMlaJdpUbcbjueeew82bN9GnTx8IIfDHH39g0qRJePPNNy26NoMQWd3SpUuxa9cuHDt2rNFN/rSEm5sbMjMzcevWLaSmpiIuLg5t2rTBgAED5C7N5goKCjBmzBhs3LgRzZo1k7uceqFXr17o1auX9L53797o2LEj/vGPfyA+Pl7GyuRhMpnQokULvPfee7Czs0NoaCiuXr2Kt99+u1EEoQe1adMmdOnSBT179pS7FNkcO3YMS5Yswbp16xAeHo5z587h1VdfRXx8PObNm1fj8zAIVaJZs2aws7NDXl6e2fa8vDx4e3vLVJV8HmQ8VqxYgaVLl+LIkSPo2rWrNcu0mdqOh1qtRlBQEAAgODgYWVlZSEhIaBRByNIxOX/+PC5cuICoqChpm8lkAgDY29sjOzsbgYGB1i3aiuri7xAHBwd0794d586ds0aJNlWb8fDx8YGDgwPs7OykbR07dkRubi5KSkqg0WisWrO1PcjPSGFhIXbt2oW///3v1izRpmozHvPmzcOYMWMwYcIEAECXLl1QWFiIiRMnYu7cuVCrazb7h3OEKqHRaBAaGorU1FRpm8lkQmpqqtn/sSlFbcdj+fLliI+PR0pKCsLCwmxRqk3U1c+HyWRCcXGxNUq0OUvHpEOHDvjuu++QmZkpvYYPH47HHnsMmZmZ8Pf3t2X5da4ufkbKysrw3XffwcfHx1pl2kxtxuPRRx/FuXPnpIAMAD/99BN8fHwafAgCHuxn5MMPP0RxcTFeeOEFa5dpM7UZj6Kiogphpzw4C0u+RtXCSd2KsWvXLuHo6Ci2bNkifvjhBzFx4kTRtGlT6eOsY8aMEbNnz5baFxcXi1OnTolTp04JHx8f8frrr4tTp06Js2fPytWFOmXpeCxdulRoNBrx0UcfmX3cs6CgQK4u1ClLx2PJkiXi8OHD4vz58+KHH34QK1asEPb29mLjxo1ydaHOWTom92psnxqzdDzeeustcejQIXH+/HmRnp4uRo0aJZycnMSZM2fk6kKdsnQ8Ll26JNzc3ERsbKzIzs4WBw4cEC1atBCLFi2Sqwt1rrb/zfTp00dER0fbulyrs3Q8FixYINzc3MQHH3wgfv75Z3H48GERGBgonn32WYuuyyBUjTVr1oiWLVsKjUYjevbsKb755htpX//+/cW4ceOk9zk5OQJAhVf//v1tX7iVWDIerVq1qnQ8FixYYPvCrcSS8Zg7d64ICgoSTk5OwsPDQ/Tq1Uvs2rVLhqqty5IxuVdjC0JCWDYe06dPl9p6eXmJv/zlLyIjI0OGqq3H0p+Pr7/+WoSHhwtHR0fRpk0bsXjxYvHHH3/YuGrrsnRMfvzxRwFAHD582MaV2oYl41FaWioWLlwoAgMDhZOTk/D39xeTJ08Wv/76q0XXVAlhyf0jIiIiosaDc4SIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIhkNH78eIwcOVLuMogUi0GIiCo1fvx4qFQq6eXp6YnBgwfj9OnTcpdWJ+7uW/mrT58+VrvehQsXoFKpkJmZabZ91apV2LJli9WuS0TVYxAioioNHjwY165dw7Vr15Camgp7e3sMGzZM7rLqzObNm6X+Xbt2Dfv376+0XWlpqdVq0Gq1aNq0qdXOT0TVYxAioio5OjrC29sb3t7eCA4OxuzZs3H58mXcuHEDAwcORGxsrFn7GzduQKPRSN8gHRAQgPj4eIwePRouLi7w8/PD2rVrzY5ZuXIlunTpAhcXF/j7+2Py5Mm4deuWtP/ixYuIioqCh4cHXFxc0LlzZxw8eBAA8Ouvv+L5559H8+bN4ezsjLZt22Lz5s017l/Tpk2l/nl7e0On00l3bnbv3o3+/fvDyckJO3bsgF6vx+jRo+Hn54cmTZqgS5cu+OCDD8zOZzKZsHz5cgQFBcHR0REtW7bE4sWLAQCtW7cGAHTv3h0qlQoDBgwAUPHRWHFxMaZNm4YWLVrAyckJffr0wcmTJ6X9x44dg0qlQmpqKsLCwtCkSRP07t0b2dnZNe43Ef2JQYiIauTWrVvYvn07goKC4OnpiQkTJmDnzp0oLi6W2mzfvh1+fn4YOHCgtO3tt99Gt27dcOrUKcyePRuvvvoqPvvsM2m/Wq3G6tWrcebMGWzduhWff/453njjDWn/lClTUFxcjP/85z/47rvvsGzZMri6ugIA5s2bhx9++AGffvopsrKysH79ejRr1qxO+ltea1ZWFiIjI3H79m2Ehobik08+wffff4+JEydizJgxOHHihHTMnDlzsHTpUqmunTt3wsvLCwCkdkeOHMG1a9ewd+/eSq/7xhtvYM+ePdi6dSsyMjIQFBSEyMhIGAwGs3Zz587FO++8g//+97+wt7fHiy++WCf9JlKcOvm6WCJqdMaNGyfs7OyEi4uLcHFxEQCEj4+PSE9PF0II8fvvvwsPDw+xe/du6ZiuXbuKhQsXSu9btWolBg8ebHbe6OhoMWTIkCqv++GHHwpPT0/pfZcuXczOebeoqCgRExNTq/4BEE5OTlL/XFxcxL59+0ROTo4AIBITE+97jqFDh4oZM2YIIYTIz88Xjo6OYuPGjZW2LT/vqVOnzLaPGzdOjBgxQgghxK1bt4SDg4PYsWOHtL+kpET4+vqK5cuXCyGEOHr0qAAgjhw5IrX55JNPBADx+++/WzIERCSE4B0hIqrSY489hszMTGRmZuLEiROIjIzEkCFDcPHiRTg5OWHMmDF4//33AQAZGRn4/vvvMX78eLNz9OrVq8L7rKws6f2RI0fw+OOPw8/PD25ubhgzZgz0ej2KiooAANOmTcOiRYvw6KOPYsGCBWaTtV955RXs2rULwcHBeOONN/D1119b1L93331X6l9mZiYGDRok7QsLCzNrW1ZWhvj4eHTp0gU6nQ6urq44dOgQLl26BADIyspCcXExHn/8cYtquNv58+dRWlqKRx99VNrm4OCAnj17mo0ZAHTt2lX6s4+PDwDg+vXrtb42kVIxCBFRlVxcXBAUFISgoCD06NED//znP1FYWIiNGzcCACZMmIDPPvsMV65cwebNmzFw4EC0atWqxue/cOEChg0bhq5du2LPnj1IT0+X5hCVlJRI1/j5558xZswYfPfddwgLC8OaNWsAQAplr732Gn755Rc8/vjjeP3112t8fW9vb6l/QUFBcHFxMev73d5++22sWrUKs2bNwtGjR5GZmYnIyEipTmdn5xpfty44ODhIf1apVADuzFEiIsswCBFRjalUKqjVavz+++8AgC5duiAsLAwbN27Ezp07K52n8s0331R437FjRwBAeno6TCYT3nnnHTzyyCNo164dfvnllwrn8Pf3x6RJk7B3717MmDFDCmIA0Lx5c4wbNw7bt29HYmIi3nvvvbrssuT48eMYMWIEXnjhBXTr1g1t2rTBTz/9JO1v27YtnJ2dpYni99JoNADu3FmqSmBgIDQaDY4fPy5tKy0txcmTJ9GpU6c66gkR3c1e7gKIqP4qLi5Gbm4ugDuf0EpKSsKtW7cQFRUltZkwYQJiY2Ph4uKCJ598ssI5jh8/juXLl2PkyJH47LPP8OGHH+KTTz4BAAQFBaG0tBRr1qxBVFQUjh8/jg0bNpgdP336dAwZMgTt2rXDr7/+iqNHj0pBav78+QgNDUXnzp1RXFyMAwcOSPvqWtu2bfHRRx/h66+/hoeHB1auXIm8vDwpoDg5OWHWrFl44403oNFo8Oijj+LGjRs4c+YMXnrpJbRo0QLOzs5ISUnBQw89BCcnJ2i1WrNruLi44JVXXsHMmTOh0+nQsmVLLF++HEVFRXjppZes0i8ipeMdISKqUkpKCnx8fODj44Pw8HCcPHkSH374ofTRbwAYPXo07O3tMXr0aDg5OVU4x4wZM/Df//4X3bt3x6JFi7By5UpERkYCALp164aVK1di2bJlePjhh7Fjxw4kJCSYHV9WVoYpU6agY8eOGDx4MNq1a4d169YBuHOXZc6cOejatSv69esHOzs77Nq1yypj8be//Q0hISGIjIzEgAED4O3tXWFF6Hnz5mHGjBmYP38+OnbsiOjoaGnejr29PVavXo1//OMf8PX1xYgRIyq9ztKlS/H0009jzJgxCAkJwblz53Do0CF4eHhYpV9ESqcSQgi5iyCihuvChQsIDAzEyZMnERISYrYvICAA06dPx/Tp0+UpjojoPvhojIhqpbS0FHq9Hn/729/wyCOPVAhBREQNAR+NEVGtHD9+HD4+Pjh58mSFeT1yW7JkCVxdXSt9DRkyRO7yiKge4aMxImp0DAZDhZWYyzk7O8PPz8/GFRFRfcUgRERERIrFR2NERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFj/H1VJ/7X5JWRpAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_22.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMzElEQVR4nO3de1hU1eI+8HcGGQa5jA4qCKIoXkgzEVDSVLRQ7Chq5RG1hCgzK7xEmZIpXgPNo6iYdjopZpp2Ek3UgyZJeaH0C5qZipfAOyCQA0ICMev3hz9GRy4CAjPDfj/PM89x9l57zVr7jM3r2muvLRNCCBARERFJiNzQDSAiIiJqaAxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREYqJiYGMpkM6enphm4KUaPDAEQkYcePH0dISAi6desGKysrtG3bFmPGjMH58+fLlR04cCBkMhlkMhnkcjlsbW3RpUsXTJgwAd9//32NPjcuLg4+Pj5o1aoVmjZtig4dOmDMmDGIj4+vq66V8/HHH2Pnzp3lth89ehTz5s3D7du36+2zHzZv3jzduZTJZGjatCm6du2Kjz76CHl5eXXyGVu2bEFUVFSd1EXUGDEAEUnYkiVLsH37djz33HNYuXIlJk2ahJ9++gkeHh44ffp0ufJt2rTBpk2b8OWXX+KTTz7BiBEjcPToUQwZMgQBAQEoKSl55GcuW7YMI0aMgEwmQ1hYGFasWIGXXnoJFy5cwNatW+ujmwCqDkDz589v0ABUZu3atdi0aROWL18ONzc3LF68GEOHDkVdPKKRAYioak0M3QAiMpzQ0FBs2bIFCoVCty0gIADdu3dHZGQkvvrqK73yKpUKr7zyit62yMhITJ06FZ9++ilcXFywZMmSSj/v77//xsKFCzF48GDs37+/3P6srKzH7JHxKCwsRNOmTassM3r0aLRo0QIAMHnyZLz00kuIjY3Fzz//jD59+jREM4kkiyNARBLWt29fvfADAJ06dUK3bt1w9uzZatVhZmaGVatWoWvXroiOjoZGo6m0bHZ2NvLy8vDMM89UuL9Vq1Z67+/evYt58+ahc+fOUCqVaN26NV588UVcunRJV2bZsmXo27cv7OzsYGlpCU9PT3z77bd69chkMhQUFGDjxo26y06vvvoq5s2bhxkzZgAA2rdvr9v34Jybr776Cp6enrC0tIRarcbYsWNx9epVvfoHDhyIJ598EsnJyRgwYACaNm2KDz/8sFrn70HPPvssACAtLa3Kcp9++im6desGCwsLODo64p133tEbwRo4cCD27NmDy5cv6/rk4uJS4/YQNWYcASIiPUIIZGZmolu3btU+xszMDOPGjcOcOXNw+PBhDBs2rMJyrVq1gqWlJeLi4jBlyhSo1epK6ywtLcXw4cORkJCAsWPHYtq0acjPz8f333+P06dPw9XVFQCwcuVKjBgxAi+//DKKi4uxdetW/POf/8Tu3bt17di0aRMmTpyI3r17Y9KkSQAAV1dXWFlZ4fz58/j666+xYsUK3WhMy5YtAQCLFy/GnDlzMGbMGEycOBG3bt3C6tWrMWDAAJw4cQLNmjXTtTcnJwfPP/88xo4di1deeQX29vbVPn9lyoKdnZ1dpWXmzZuH+fPnw9fXF2+99RZSU1Oxdu1aHD9+HEeOHIG5uTlmz54NjUaDa9euYcWKFQAAa2vrGreHqFETREQP2LRpkwAgvvjiC73tPj4+olu3bpUet2PHDgFArFy5ssr6586dKwAIKysr8fzzz4vFixeL5OTkcuXWr18vAIjly5eX26fVanV/Liws1NtXXFwsnnzySfHss8/qbbeyshJBQUHl6vrkk08EAJGWlqa3PT09XZiZmYnFixfrbf/tt99EkyZN9Lb7+PgIAGLdunWV9vtB4eHhAoBITU0Vt27dEmlpaeKzzz4TFhYWwt7eXhQUFAghhNiwYYNe27KysoRCoRBDhgwRpaWluvqio6MFALF+/XrdtmHDhol27dpVqz1EUsRLYESkc+7cObzzzjvo06cPgoKCanRs2QhDfn5+leXmz5+PLVu2oGfPnti3bx9mz54NT09PeHh46F122759O1q0aIEpU6aUq0Mmk+n+bGlpqfvzn3/+CY1Gg/79+yMlJaVG7X9YbGwstFotxowZg+zsbN3LwcEBnTp1wsGDB/XKW1hYIDg4uEaf0aVLF7Rs2RLt27fHm2++iY4dO2LPnj2Vzh06cOAAiouLMX36dMjl9//z/cYbb8DW1hZ79uypeUeJJIqXwIgIAJCRkYFhw4ZBpVLh22+/hZmZWY2Ov3PnDgDAxsbmkWXHjRuHcePGIS8vD7/88gtiYmKwZcsW+Pv74/Tp01Aqlbh06RK6dOmCJk2q/s/U7t27sWjRIpw8eRJFRUW67Q+GpNq4cOEChBDo1KlThfvNzc313js5OZWbT/Uo27dvh62tLczNzdGmTRvdZb3KXL58GcC94PQghUKBDh066PYT0aMxABERNBoNnn/+edy+fRuHDh2Co6Njjesou22+Y8eO1T7G1tYWgwcPxuDBg2Fubo6NGzfil19+gY+PT7WOP3ToEEaMGIEBAwbg008/RevWrWFubo4NGzZgy5YtNe7Dg7RaLWQyGf73v/9VGAYfnlPz4EhUdQ0YMEA374iIGhYDEJHE3b17F/7+/jh//jwOHDiArl271riO0tJSbNmyBU2bNkW/fv1q1Q4vLy9s3LgRN2/eBHBvkvIvv/yCkpKScqMtZbZv3w6lUol9+/bBwsJCt33Dhg3lylY2IlTZdldXVwgh0L59e3Tu3Lmm3akX7dq1AwCkpqaiQ4cOuu3FxcVIS0uDr6+vbtvjjoARNXacA0QkYaWlpQgICEBSUhL++9//1mrtmdLSUkydOhVnz57F1KlTYWtrW2nZwsJCJCUlVbjvf//7H4D7l3deeuklZGdnIzo6ulxZ8f8XCjQzM4NMJkNpaaluX3p6eoULHlpZWVW42KGVlRUAlNv34osvwszMDPPnzy+3MKEQAjk5ORV3sh75+vpCoVBg1apVem364osvoNFo9O6+s7KyqnJJAiKp4wgQkYS999572LVrF/z9/ZGbm1tu4cOHFz3UaDS6MoWFhbh48SJiY2Nx6dIljB07FgsXLqzy8woLC9G3b188/fTTGDp0KJydnXH79m3s3LkThw4dwqhRo9CzZ08AQGBgIL788kuEhobi2LFj6N+/PwoKCnDgwAG8/fbbGDlyJIYNG4bly5dj6NChGD9+PLKysrBmzRp07NgRp06d0vtsT09PHDhwAMuXL4ejoyPat28Pb29veHp6AgBmz56NsWPHwtzcHP7+/nB1dcWiRYsQFhaG9PR0jBo1CjY2NkhLS8OOHTswadIkvP/++491/muqZcuWCAsLw/z58zF06FCMGDECqamp+PTTT9GrVy+9/788PT2xbds2hIaGolevXrC2toa/v3+DtpfIqBnyFjQiMqyy27cre1VV1traWnTq1Em88sorYv/+/dX6vJKSEvH555+LUaNGiXbt2gkLCwvRtGlT0bNnT/HJJ5+IoqIivfKFhYVi9uzZon379sLc3Fw4ODiI0aNHi0uXLunKfPHFF6JTp07CwsJCuLm5iQ0bNuhuM3/QuXPnxIABA4SlpaUAoHdL/MKFC4WTk5OQy+Xlbonfvn276Nevn7CyshJWVlbCzc1NvPPOOyI1NVXv3FS1RMDDytp369atKss9fBt8mejoaOHm5ibMzc2Fvb29eOutt8Sff/6pV+bOnTti/PjxolmzZgIAb4kneohMiDp46AwRERGRCeEcICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwuhFgBrVaLGzduwMbGhsvJExERmQghBPLz8+Ho6Ai5vOoxHgagCty4cQPOzs6GbgYRERHVwtWrV9GmTZsqyzAAVcDGxgbAvRNY1XONiIiIyHjk5eXB2dlZ9zteFQagCpRd9rK1tWUAIiIiMjHVmb7CSdBEREQkOQxAREREJDkMQERERCQ5nANERERUR0pLS1FSUmLoZjRa5ubmMDMzq5O6GICIiIgekxACGRkZuH37tqGb0ug1a9YMDg4Oj71OHwMQERHRYyoLP61atULTpk25iG49EEKgsLAQWVlZAIDWrVs/Vn0MQERERI+htLRUF37s7OwM3ZxGzdLSEgCQlZWFVq1aPdblME6CJiIiegxlc36aNm1q4JZIQ9l5fty5VgxAREREdYCXvRpGXZ1nXgIjqic5OTkoLi6udL9CoeBwORGRgTAAEdWDnJwcREdHP7JcSEgIQxARkQHwEhhRPXh45EejsUFamgs0GpsqyxERNaRXX30VMpkMMpkM5ubmsLe3x+DBg7F+/Xpotdpq1xMTE4NmzZrVX0PrAUeAiOpZSkpPxMUNhxByyGRa+PvvhofHCUM3i4iMiCEvmQ8dOhQbNmxAaWkpMjMzER8fj2nTpuHbb7/Frl270KRJ44wKjbNXREZCo7HRhR8AEEKOuLjhcHW9CJUq38CtIyJjYOhL5hYWFnBwcAAAODk5wcPDA08//TSee+45xMTEYOLEiVi+fDk2bNiAP/74A2q1Gv7+/li6dCmsra2RmJiI4OBgAPcnKIeHh2PevHnYtGkTVq5cidTUVFhZWeHZZ59FVFQUWrVqVef9qCleAiOqR7m5drrwU0YIOXJz1QZqEREZm+peCm/IS+bPPvssevTogdjYWACAXC7HqlWr8Pvvv2Pjxo344Ycf8MEHHwAA+vbti6ioKNja2uLmzZu4efMm3n//fQD3blVfuHAhfv31V+zcuRPp6el49dVXG6wfVeEIEFE9UqtzIJNp9UKQTKaFWp1rwFYRET2am5sbTp06BQCYPn26bruLiwsWLVqEyZMn49NPP4VCoYBKpYJMJtONJJV57bXXdH/u0KEDVq1ahV69euHOnTuwtrZukH5UhiNARPVIpcqHv/9uyGT3JhOWzQHi5S8iMnZCCN0lrQMHDuC5556Dk5MTbGxsMGHCBOTk5KCwsLDKOpKTk+Hv74+2bdvCxsYGPj4+AIArV67Ue/sfhSNAZHJMbX0dD48TcHW9iNxcNdTqXIYfIjIJZ8+eRfv27ZGeno7hw4fjrbfewuLFi6FWq3H48GG8/vrrKC4urnQF7IKCAvj5+cHPzw+bN29Gy5YtceXKFfj5+RnFHbAMQGRSDD1ZsLoUCoXee5Uqv8Lg83A5IiJj8MMPP+C3337Du+++i+TkZGi1WvzrX/+CXH7vwtE333yjV16hUKC0tFRv27lz55CTk4PIyEg4OzsDAP7v//6vYTpQDQxAZFIqWl8nN9cOanWOXsAw9L8u7OzsEBISYlIjVUQkTUVFRcjIyNC7DT4iIgLDhw9HYGAgTp8+jZKSEqxevRr+/v44cuQI1q1bp1eHi4sL7ty5g4SEBPTo0QNNmzZF27ZtoVAosHr1akyePBmnT5/GwoULDdTL8hiAyGQZ+/o6DDdEZAri4+PRunVrNGnSBM2bN0ePHj2watUqBAUFQS6Xo0ePHli+fDmWLFmCsLAwDBgwABEREQgMDNTV0bdvX0yePBkBAQHIycnR3QYfExODDz/8EKtWrYKHhweWLVuGESNGGLC398mEEMLQjTA2eXl5UKlU0Gg0sLW1NXRz6AE3b97Ev//9b2g0NoiKml7u7qrp06OgUuVj0qRJaN26tQFbSkRScffuXaSlpaF9+/ZQKpU1Pt5ULu0bi6rOd01+vzkCRCapqvV1OMmYiEwJL5kbBgMQmSSur0NEjQnDTcPjOkBkkri+DhERPQ6OAJHJ4vo6RERUWwxAZFK4vk79MLXFJUl6+B2lusYARCaFkwXr3sN3oFS2thLvQCFD4V1SVB8YgMjk8D9wdevBMFnV2kqGXlySpMsYn5ZOpo+ToIkIwL2Rn7LwA9xbViAubjg0GhsDt4xIn0Zjg7Q0F3436bEYRQBas2YNXFxcoFQq4e3tjWPHjlVaNjY2Fl5eXmjWrBmsrKzg7u6OTZs2VVp+8uTJkMlkiIqKqoeWEzUeVa2tRGQsUlJ6IipqOjZuDEJU1HSkpPQ0dJPIRBk8AG3btg2hoaEIDw9HSkoKevToAT8/P2RlZVVYXq1WY/bs2UhKSsKpU6cQHByM4OBg7Nu3r1zZHTt24Oeff4ajo2N9d4PI5JWtrfQgrq1ExoSjlKYnMTERMpkMt2/frvYxLi4uDTJoYfAAtHz5crzxxhsIDg5G165dsW7dOjRt2hTr16+vsPzAgQPxwgsv4IknnoCrqyumTZuGp556CocPH9Yrd/36dUyZMgWbN2+Gubl5Q3SFyKRxbSUydhylrHuvvvoqZDIZJk+eXG7fO++8A5lMhldffbXhG9YADDoJuri4GMnJyQgLC9Ntk8vl8PX1RVJS0iOPF0Lghx9+QGpqKpYsWaLbrtVqMWHCBMyYMQPdunV7ZD1FRUUoKirSvc/Ly6thT4gaB66tRMaMK8DXD2dnZ2zduhUrVqyApaUlgHvP29qyZQvatm1r4NbVH4OOAGVnZ6O0tBT29vZ62+3t7ZGRkVHpcRqNBtbW1lAoFBg2bBhWr16NwYMH6/YvWbIETZo0wdSpU6vVjoiICKhUKt3L2dm5dh0iagRUqny0b3+Z4YeMDkcp64eHhwecnZ0RGxur2xYbG4u2bduiZ8/7c6yKioowdepUtGrVCkqlEv369cPx48f16tq7dy86d+4MS0tLDBo0COnp6eU+7/Dhw+jfvz8sLS3h7OyMqVOnoqCgoN76VxmDXwKrDRsbG5w8eRLHjx/H4sWLERoaisTERABAcnIyVq5ciZiYGMhksmrVFxYWBo1Go3tdvXq1HltPZFyqu2gkF5ckQ3nwu+fhcQLTp0chKCgG06dH6ZZpeLicKbt2DTh48N7/NpTXXnsNGzZs0L1fv349goOD9cp88MEH2L59OzZu3IiUlBR07NgRfn5+yM29NwJ39epVvPjii/D398fJkycxceJEzJo1S6+OS5cuYejQoXjppZdw6tQpbNu2DYcPH0ZISEj9d/JhwoCKioqEmZmZ2LFjh972wMBAMWLEiGrX8/rrr4shQ4YIIYRYsWKFkMlkwszMTPcCIORyuWjXrl216tNoNAKA0Gg01W4DkSnLzs4WN27cqPSVnZ1t6CaSxBnzd/Svv/4SZ86cEX/99ddj1/Wf/wghlwsB3Pvf//ynDhpYhaCgIDFy5EiRlZUlLCwsRHp6ukhPTxdKpVLcunVLjBw5UgQFBYk7d+4Ic3NzsXnzZt2xxcXFwtHRUSxdulQIIURYWJjo2rWrXv0zZ84UAMSff/4phLj3ez1p0iS9MocOHRJyuVx3/tq1aydWrFhRaZurOt81+f026BwghUIBT09PJCQkYNSoUQDuzd9JSEioURrUarW6OTwTJkyAr6+v3n4/Pz9MmDChXJolonu4uCQZOyl8R69dAyZNArT//2ZMrRZ4803Azw9o06Z+P7tly5YYNmwYYmJiIITAsGHD0KJFC93+S5cuoaSkBM8884xum7m5OXr37o2zZ88CAM6ePQtvb2+9evv06aP3/tdff8WpU6ewefNm3TYhBLRaLdLS0vDEE0/UR/cqZPCVoENDQxEUFAQvLy/07t0bUVFRKCgo0IWVwMBAODk5ISIiAsC9+TpeXl5wdXVFUVER9u7di02bNmHt2rUA7v0lefgvirm5ORwcHNClS5eG7RwREVE1XbhwP/yUKS0FLl6s/wAE3LsMVjb4sGbNmnr5jDt37uDNN9+scI5uQ0+4NngACggIwK1btzB37lxkZGTA3d0d8fHxuonRV65cgVx+f6pSQUEB3n77bVy7dg2WlpZwc3PDV199hYCAAEN1od7w4X9ERNLRqRMgl+uHIDMzoGPHhvn8oUOHori4GDKZDH5+fnr7XF1doVAocOTIEbRr1w4AUFJSguPHj2P69OkAgCeeeAK7du3SO+7nn3/We+/h4YEzZ86gY0N1qgoGD0DAvQfYVXbJq2xyc5lFixZh0aJFNaq/olnoxo4P/yMikpY2bYB///veZa/S0nvh57PPGmb0BwDMzMx0l7PMzMz09llZWeGtt97CjBkzoFar0bZtWyxduhSFhYV4/fXXAdx78sK//vUvzJgxAxMnTkRycjJiYmL06pk5cyaefvpphISEYOLEibCyssKZM2fw/fffV+s3ry4ZRQCi8vjwPyIi6Xn99Xtzfi5evDfy01Dhp4ytrW2l+yIjI3Xr7OXn58PLywv79u1D8+bNAdy7hLV9+3a8++67WL16NXr37o2PP/4Yr732mq6Op556Cj/++CNmz56N/v37QwgBV1dXg1zFkQkhRIN/qpHLy8uDSqWCRqOp8stQn27evIl///vfuvcajQ1yc+2gVuforXkxadIktG7d2hBNJCIi3Fs0MC0tDe3bt4dSqTR0cxq9qs53TX6/OQJkAlJSeuqef1O28NeDa18QERFRzZjkQohSwof/ERER1T0GICPHh/8RERHVPQYgI6XRaADcf/jfgx58+F9ZOSIiIqo+BiAjVVJSAuDRD/8rK0dERIbFe4oaRl2dZ06CNlJNmtz/v8bD4wRatcrAlStt0bbtFbRpc7PCckRE1PDMzc0BAIWFhbC0tDRwaxq/wsJCAPfPe23x19NINWvWTPfnqu4Ce7AcERE1PDMzMzRr1gxZWVkAgKZNm0Imkxm4VY2PEAKFhYXIyspCs2bNyi3WWFMMQEausrvAXF0v6q0HREREhuPg4AAAuhBE9adZs2a68/04GICMXFV3gTEAEREZB5lMhtatW6NVq1acm1mPzM3NH3vkpwwDkJEruwvswRD04F1gRERkPMzMzOrsB5rqF+8CM3KPuguMiIiIao4jQEZKoVDo/uzhcQKurheRm6uGWp2rF34eLEdERETVwwBkpOzs7BASElLl094VCgXs7OwasFVERESNAwOQEWO4ISIiqh+cA0RERESSwwBEREREksMARERERJLDOUBkMDk5OZzkTUREBsEARAaRk5OD6OjoR5YLCQlhCCIiojrHS2BkEA+P/Gg0NkhLc4FGY1NlOSIiorrAESAyuKqedk9ERFQfOAJEBlXZ0+4fHgkiIiKqSwxAZFBVPe2eiIiovjAAkUGVPe3+QXzaPRER1TcGIDIoPu2eiIgMgZOgyeCqeto9ERFRfWAAIoNQKBR671Wq/AqDz8PliBoSF+skarwYgMgg7OzsEBISwh8XMlpcrJOo7hjjPyYYgMhg+KNBxqyixTpzc+2gVufojVZysU6iqhnrPyYYgIiIHoGLdRLVXnX/kdDQ/5jgXWBERFXgYp1EdauyRx81NI4AERFVoarFOnnHIlHNGNNoKkeAiIiqwMU6ieqGsY2mMgAREVWBi3US1Q1je/QRL4ERET0CF+skenxlo6kPhiBDjqZyBIiIqAIVLdbZvv3lcuGHi3USVY+xjaZyBIiIqAJcrJNMgTEuMFhRG8pUNZra0P+YkAkhRIN+ognIy8uDSqWCRqOBra2toZtDRERUjrEuMFiRhgpqNfn95ggQERGRCTKl1coNHcAqYhRzgNasWQMXFxcolUp4e3vj2LFjlZaNjY2Fl5cXmjVrBisrK7i7u2PTpk26/SUlJZg5cya6d+8OKysrODo6IjAwEDdu3GiIrhARETW4lJSeiIqajo0bgxAVNR0pKT0N3SSjZ/AAtG3bNoSGhiI8PBwpKSno0aMH/Pz8kJWVVWF5tVqN2bNnIykpCadOnUJwcDCCg4Oxb98+AEBhYSFSUlIwZ84cpKSkIDY2FqmpqRgxYkRDdouIiKhBGNv6OqbC4JfAli9fjjfeeAPBwcEAgHXr1mHPnj1Yv349Zs2aVa78wIED9d5PmzYNGzduxOHDh+Hn5weVSoXvv/9er0x0dDR69+6NK1euoG3btvXWFyIioobG1cprx6AjQMXFxUhOToavr69um1wuh6+vL5KSkh55vBACCQkJSE1NxYABAyotp9FoIJPJ0KxZswr3FxUVIS8vT+9FRERkCrhaee0YNABlZ2ejtLQU9vb2etvt7e2RkZFR6XEajQbW1tZQKBQYNmwYVq9ejcGDB1dY9u7du5g5cybGjRtX6YzwiIgIqFQq3cvZ2bn2nSIiImpAxra+jqkw+CWw2rCxscHJkydx584dJCQkIDQ0FB06dCh3eaykpARjxoyBEAJr166ttL6wsDCEhobq3ufl5TEEERGRyeBq5TVn0ADUokULmJmZITMzU297ZmYmHBwcKj1OLpejY8eOAAB3d3ecPXsWERERegGoLPxcvnwZP/zwQ5XrAVhYWMDCwuLxOkNERNSAKlqtvKLgw9XKK2bQAKRQKODp6YmEhASMGjUKAKDVapGQkICQkJBq16PValFUVKR7XxZ+Lly4gIMHDxrl+gNERESPg6uVPx6DXwILDQ1FUFAQvLy80Lt3b0RFRaGgoEB3V1hgYCCcnJwQEREB4N58HS8vL7i6uqKoqAh79+7Fpk2bdJe4SkpKMHr0aKSkpGD37t0oLS3VzSdSq9VMwkRE1Ggw3NSewQNQQEAAbt26hblz5yIjIwPu7u6Ij4/XTYy+cuUK5PL7c7ULCgrw9ttv49q1a7C0tISbmxu++uorBAQEAACuX7+OXbt2Abh3eexBBw8eLDdPiIiIiKSHzwKrAJ8FRkREZHpq8vtt8JWgiYiIiBoaAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSY7B1wEi05eTk8OVSImIyKQwANFjycnJQXR09CPLhYSEMAQREZHR4CUweixVjfzUphwREVFDYACiOqXR2CAtzQUajY2hm0JERFQpXgKjOpOS0hNxccMhhBwymRb+/rvh4XHC0M0iIiIqhwGI6oRGY6MLPwAghBxxccPh6noRKlW+gVtHREQP4s0rDEBUR3Jz7XThp4wQcuTmqhmAiIiMyMM3r2g0NsjNtYNanaP33+vGfvMKAxDVCbU6BzKZVi8EyWRaqNW5BmwVERE97MGRn6qmLjT2m1c4CZrqhEqVD3//3ZDJtACg+4vE0R8iIuNU2dQFqdzEwhEgeiwKhUL3Zw+PE3B1vYjcXDXU6ly98PNgOSIiMjypT11gAKLHYmdnh5CQEMlPpiMiMjVSn7rAAESPjeGGiMj0lE1deHgOkBRGfwAGICIiIsmqaupCY8cAREREJGEqVb6kgk8Z3gVGREQkIdW9KaWx37zCESAiIiIJ4c0r9zAAERERSUxjDzfVwUtgREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5RhGA1qxZAxcXFyiVSnh7e+PYsWOVlo2NjYWXlxeaNWsGKysruLu7Y9OmTXplhBCYO3cuWrduDUtLS/j6+uLChQv13Y1K5eTk4ObNm5W+cnJyDNY2IiIiKWpi6AZs27YNoaGhWLduHby9vREVFQU/Pz+kpqaiVatW5cqr1WrMnj0bbm5uUCgU2L17N4KDg9GqVSv4+fkBAJYuXYpVq1Zh48aNaN++PebMmQM/Pz+cOXMGSqWyQfuXk5OD6OjoR5YLCQmBnZ1dA7SIiIiIZEIIYcgGeHt7o1evXrqQoNVq4ezsjClTpmDWrFnVqsPDwwPDhg3DwoULIYSAo6Mj3nvvPbz//vsAAI1GA3t7e8TExGDs2LGPrC8vLw8qlQoajQa2tra17xyAmzdv4t///vcjy02aNAmtW7d+rM8iIiKSspr8fhv0ElhxcTGSk5Ph6+ur2yaXy+Hr64ukpKRHHi+EQEJCAlJTUzFgwAAAQFpaGjIyMvTqVKlU8Pb2rrTOoqIi5OXl6b3qi0Zjg7Q0F2g0NvX2GURERFQ1g14Cy87ORmlpKezt7fW229vb49y5c5Uep9Fo4OTkhKKiIpiZmeHTTz/F4MGDAQAZGRm6Oh6us2zfwyIiIjB//vzH6Uq1pKT0RFzccAghh0ymhb//bnh4nKj3zyUiIiJ9RjEJuqZsbGxw8uRJHD9+HIsXL0ZoaCgSExNrXV9YWBg0Go3udfXq1bpr7P+n0djowg8ACCFHXNxwjgQREREZgEFHgFq0aAEzMzNkZmbqbc/MzISDg0Olx8nlcnTs2BEA4O7ujrNnzyIiIgIDBw7UHZeZmak3pyYzMxPu7u4V1mdhYQELC4vH7E3VcnPtdOGnjBBy5OaqoVLl1+tnExERkT6DjgApFAp4enoiISFBt02r1SIhIQF9+vSpdj1arRZFRUUAgPbt28PBwUGvzry8PPzyyy81qrOuqdU5kMm0ettkMi3U6lwDtYiIiEi6DH4bfGhoKIKCguDl5YXevXsjKioKBQUFCA4OBgAEBgbCyckJERERAO7N1/Hy8oKrqyuKioqwd+9ebNq0CWvXrgUAyGQyTJ8+HYsWLUKnTp10t8E7Ojpi1KhRhuomVKp8+PvvLjcHiKM/REREDc/gASggIAC3bt3C3LlzkZGRAXd3d8THx+smMV+5cgVy+f2BqoKCArz99tu4du0aLC0t4ebmhq+++goBAQG6Mh988AEKCgowadIk3L59G/369UN8fHyDrwEE3BvlKuPhcQKurheRm6uGWp2rF34eLEdERET1y+DrABmjulwHCLi3GGJxcXGl+xUKBRdBJCIiekw1+f02+AiQFDDcEBERGRcGICJq9DgKS0QPYwAiokaNz+MjooqY5EKIRETV9fDIT2WPo6lqhIiIGh+OABGRZPBxNERUhiNARCQJfBwNET2IAYiIJKGqx9EQkfQwABGRJPBxNET0IAYgIpKEssfRlIUgPo6GSNo4CZqIJKOqx9EQkbQwABFRo/bwc/ZUqvwKgw+fx0ckLQxARNSo2dnZISQkhCtBE5EeBiAiavQYbojoYZwETURERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDR2EQEVGN5eTk8PlqZNIYgIiIqEZycnIQHR39yHIhISEMQWS0eAmMiIhq5OGRH43GBmlpLtBobKosR2RMOAJERES1lpLSE3FxwyGEHDKZFv7+u+HhccLQzSJ6JI4AERFRrWg0NrrwAwBCyBEXN7zcSBCRMWIAIiKiWsnNtdOFnzJCyJGbqzZQi4iqjwGIiIhqRa3OgUym1dsmk2mhVucaqEVE1ccAREREtaJS5cPff7cuBJXNAVKp8g3cMqJH4yRoIiKqNQ+PE3B1vYjcXDXU6lyGHzIZDEBEVGtcDE+aFAqF3nuVKr/C4PNwOSJjUuMAtHfvXsTGxkKtVuO1116Dm5ubbt+ff/6Jl156CT/88EOdNpKIjA8Xw5MuOzs7hISEMPySSavRHKAtW7ZgxIgRyMjIQFJSEnr27InNmzfr9hcXF+PHH3+s80YSkfHhYnjSZmdnh9atW1f6YvghY1ejEaBPPvkEy5cvx9SpUwEA33zzDV577TXcvXsXr7/+er00kIiMHxfDIyJTU6MAdOHCBfj7++vejxkzBi1btsSIESNQUlKCF154oc4bSETGrbLF8FxdL3JCLBEZrRoFIFtbW2RmZqJ9+/a6bYMGDcLu3bsxfPhwXLt2rc4bSETGrarF8BiAiMhY1WgOUO/evfG///2v3HYfHx/ExcUhKiqqrtpFRCaCi+ERkSmqUQB69913oVQqK9w3cOBAxMXFITAwsE4aRkSmgYvhEZEpqtElMB8fH/j4+FS6f9CgQRg0aNBjN4qITAsXwyMiU1OjESC5XA4zM7MqX02a1GxpoTVr1sDFxQVKpRLe3t44duxYpWU///xz9O/fH82bN0fz5s3h6+tbrvydO3cQEhKCNm3awNLSEl27dsW6detq1CYierSKFsNr3/5yufDDxfCIyBjVKK3s2LGj0n1JSUlYtWoVtFptpWUetm3bNoSGhmLdunXw9vZGVFQU/Pz8kJqailatWpUrn5iYiHHjxqFv375QKpVYsmQJhgwZgt9//x1OTk4AgNDQUPzwww/46quv4OLigv379+Ptt9+Go6MjRowYUZPuElEVuBgeEZkymRBCPE4FqampmDVrFuLi4vDyyy9jwYIFaNeuXbWO9fb2Rq9evXSryWq1Wjg7O2PKlCmYNWvWI48vLS1F8+bNER0drZt79OSTTyIgIABz5szRlfP09MTzzz+PRYsWVatdeXl5UKlU0Gg0sLW1rdYxREREZFg1+f2u9dPgb9y4gTfeeAPdu3fH33//jZMnT2Ljxo3VDj/FxcVITk6Gr6/v/cbI5fD19UVSUlK16igsLERJSQnUarVuW9++fbFr1y5cv34dQggcPHgQ58+fx5AhQyqtp6ioCHl5eXovIiIiarxqHIA0Gg1mzpyJjh074vfff0dCQgLi4uLw5JNP1qie7OxslJaWwt7eXm+7vb09MjIyqlXHzJkz4ejoqBeiVq9eja5du6JNmzZQKBQYOnQo1qxZgwEDBlRaT0REBFQqle7l7Oxco74QERGRaalRAFq6dCk6dOiA3bt34+uvv8bRo0fRv3//+mpblSIjI7F161bs2LFD79b81atX4+eff8auXbuQnJyMf/3rX3jnnXdw4MCBSusKCwuDRqPRva5evdoQXSAiIiIDqdEcILlcDktLS/j6+sLMzKzScrGxsY+sq7i4GE2bNsW3336LUaNG6bYHBQXh9u3b+O677yo9dtmyZVi0aBEOHDgALy8v3fa//voLKpUKO3bswLBhw3TbJ06ciGvXriE+Pv6R7QI4B4iIiMgU1eT3u0Z3gQUGBkImkz1W48ooFAp4enoiISFBF4C0Wi0SEhIQEhJS6XFLly7F4sWLsW/fPr3wAwAlJSUoKSmBXK4/sGVmZlaju9OIiIiocatRAIqJianTDw8NDUVQUBC8vLzQu3dvREVFoaCgAMHBwQDuBS4nJydEREQAAJYsWYK5c+diy5YtcHFx0c0Vsra2hrW1NWxtbeHj44MZM2bA0tIS7dq1w48//ogvv/wSy5cvr9O2ExERkemq2aqFdSwgIAC3bt3C3LlzkZGRAXd3d8THx+smRl+5ckVvNGft2rUoLi7G6NGj9eoJDw/HvHnzAABbt25FWFgYXn75ZeTm5qJdu3ZYvHgxJk+e3GD9IiIiIuP22OsANUacA0RERGR6GmQdICIiIiJTxQBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSY/AAtGbNGri4uECpVMLb2xvHjh2rtOznn3+O/v37o3nz5mjevDl8fX0rLH/27FmMGDECKpUKVlZW6NWrF65cuVKf3SAiIiITYtAAtG3bNoSGhiI8PBwpKSno0aMH/Pz8kJWVVWH5xMREjBs3DgcPHkRSUhKcnZ0xZMgQXL9+XVfm0qVL6NevH9zc3JCYmIhTp05hzpw5UCqVDdUtIiIiMnIyIYQw1Id7e3ujV69eiI6OBgBotVo4OztjypQpmDVr1iOPLy0tRfPmzREdHY3AwEAAwNixY2Fubo5NmzbVul15eXlQqVTQaDSwtbWtdT1ERETUcGry+22wEaDi4mIkJyfD19f3fmPkcvj6+iIpKaladRQWFqKkpARqtRrAvQC1Z88edO7cGX5+fmjVqhW8vb2xc+fO+ugCERERmSiDBaDs7GyUlpbC3t5eb7u9vT0yMjKqVcfMmTPh6OioC1FZWVm4c+cOIiMjMXToUOzfvx8vvPACXnzxRfz444+V1lNUVIS8vDy9FxERETVeTQzdgNqKjIzE1q1bkZiYqJvfo9VqAQAjR47Eu+++CwBwd3fH0aNHsW7dOvj4+FRYV0REBObPn98wDSciIiKDM9gIUIsWLWBmZobMzEy97ZmZmXBwcKjy2GXLliEyMhL79+/HU089pVdnkyZN0LVrV73yTzzxRJV3gYWFhUGj0eheV69erUWPiIiIyFQYLAApFAp4enoiISFBt02r1SIhIQF9+vSp9LilS5di4cKFiI+Ph5eXV7k6e/XqhdTUVL3t58+fR7t27Sqt08LCAra2tnovIiIiarwMegksNDQUQUFB8PLyQu/evREVFYWCggIEBwcDAAIDA+Hk5ISIiAgAwJIlSzB37lxs2bIFLi4uurlC1tbWsLa2BgDMmDEDAQEBGDBgAAYNGoT4+HjExcUhMTHRIH0kIiIi42PQABQQEIBbt25h7ty5yMjIgLu7O+Lj43UTo69cuQK5/P4g1dq1a1FcXIzRo0fr1RMeHo558+YBAF544QWsW7cOERERmDp1Krp06YLt27ejX79+DdYvIiIiMm4GXQfIWHEdICIiItNjEusAERERERkKAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSU4TQzeAiIioscjJyUFxcXGl+xUKBezs7BqwRVQZBiAiIqI6kJOTg+jo6EeWCwkJYQgyAgxAREREdaCqkZ/alKsOjjjVHgMQERFRPdBobJCbawe1OgcqVX6d188Rp8fDAERERFTHUlJ6Ii5uOISQQybTwt9/Nzw8TtTpZxhixKkxMYq7wNasWQMXFxcolUp4e3vj2LFjlZb9/PPP0b9/fzRv3hzNmzeHr69vleUnT54MmUyGqKioemg5ERGRPo3GRhd+AEAIOeLihkOjsan3z01Lc6n3z2ksDB6Atm3bhtDQUISHhyMlJQU9evSAn58fsrKyKiyfmJiIcePG4eDBg0hKSoKzszOGDBmC69evlyu7Y8cO/Pzzz3B0dKzvbhAREQEAcnPtdOGnjBBy5Oaq6+0zU1J6IipqOjZuDEJU1HSkpPSst89qLAwegJYvX4433ngDwcHB6Nq1K9atW4emTZti/fr1FZbfvHkz3n77bbi7u8PNzQ3/+c9/oNVqkZCQoFfu+vXrmDJlCjZv3gxzc/OG6AoRERHU6hzIZFq9bTKZFmp1br18nqFGnEydQQNQcXExkpOT4evrq9sml8vh6+uLpKSkatVRWFiIkpISqNX3k7VWq8WECRMwY8YMdOvW7ZF1FBUVIS8vT+9FRERUGypVPvz9d+tCUNkcoPqYCA0YZsSpMTDoJOjs7GyUlpbC3t5eb7u9vT3OnTtXrTpmzpwJR0dHvRC1ZMkSNGnSBFOnTq1WHREREZg/f371G05ERPQQhUKh+7OHxwm4ul5Ebq4aanWuXvh5sFxdKBtxejAE1eeIU2Nh0neBRUZGYuvWrUhMTIRSqQQAJCcnY+XKlUhJSYFMJqtWPWFhYQgNDdW9z8vLg7Ozc720mYiIGic7OzuEhIQ0+Lo8ZSNOD991Vl8jTo2FQQNQixYtYGZmhszMTL3tmZmZcHBwqPLYZcuWITIyEgcOHMBTTz2l237o0CFkZWWhbdu2um2lpaV47733EBUVhfT09HJ1WVhYwMLC4vE6Q0REkteQ6+0YasSpsTBoAFIoFPD09ERCQgJGjRoFALoJzSEhIZUet3TpUixevBj79u2Dl5eX3r4JEyboXQ4DAD8/P0yYMAHBwcF13gciIiJDMNSIU2Nh8EtgoaGhCAoKgpeXF3r37o2oqCgUFBTowkpgYCCcnJwQEREB4N78nrlz52LLli1wcXFBRkYGAMDa2hrW1taws7Mr93+2ubk5HBwc0KVLl4btHBERUT1iuKk9gweggIAA3Lp1C3PnzkVGRgbc3d0RHx+vmxh95coVyOX3J3atXbsWxcXFGD16tF494eHhmDdvXkM2nYiIiEyUTAghDN0IY5OXlweVSgWNRgNbW1tDN4eIiIiqoSa/3wZfCJGIiIiooTEAERERkeQwABEREZHkMAARERGR5Bj8LjCihpKTk6NbL+PGDTnS0pqgffu/4eh473k9XC+DiEg6GIBIEnJychAdHQ0ASEnpWW7JeA+PEwCAkJAQhiAiIgngJTCShLKRH43GRhd+gHtPTI6LGw6NxkavHBERNW4MQCQpubl2ek9MBu6FoNxctYFaREREhsAARJKiVudAJtPqbZPJtFCrcw3UIiIiMgQGIJIUlSof/v67dSGobA7Qg09OJiKixo+ToElyPDxOwNX1InJz1VCrcxl+iIgkiAGIJEmlymfwISKSMF4CIyIiIslhACJJUCgUdVqOiIhMGy+BkSTY2dkhJCSkynV+uBI0EZF0MACRZDDcEBFRGV4CIyIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIskxigC0Zs0auLi4QKlUwtvbG8eOHau07Oeff47+/fujefPmaN68OXx9ffXKl5SUYObMmejevTusrKzg6OiIwMBA3LhxoyG6QkRERCbA4AFo27ZtCA0NRXh4OFJSUtCjRw/4+fkhKyurwvKJiYkYN24cDh48iKSkJDg7O2PIkCG4fv06AKCwsBApKSmYM2cOUlJSEBsbi9TUVIwYMaIhu0VERERGTCaEEIZsgLe3N3r16oXo6GgAgFarhbOzM6ZMmYJZs2Y98vjS0lI0b94c0dHRCAwMrLDM8ePH0bt3b1y+fBlt27Z9ZJ15eXlQqVTQaDSwtbWtWYeIiIjIIGry+92kgdpUoeLiYiQnJyMsLEy3TS6Xw9fXF0lJSdWqo7CwECUlJVCr1ZWW0Wg0kMlkaNasWYX7i4qKUFRUpHufl5dXvQ4QERHRI+Xk5KC4uLjS/QqFAnZ2dg3YIgMHoOzsbJSWlsLe3l5vu729Pc6dO1etOmbOnAlHR0f4+vpWuP/u3buYOXMmxo0bV2kajIiIwPz582vWeCIiInqknJwc3VWeqoSEhDRoCDL4HKDHERkZia1bt2LHjh1QKpXl9peUlGDMmDEQQmDt2rWV1hMWFgaNRqN7Xb16tT6bTUREJBlVjfzUplxdMegIUIsWLWBmZobMzEy97ZmZmXBwcKjy2GXLliEyMhIHDhzAU089VW5/Wfi5fPkyfvjhhyqvBVpYWMDCwqJ2nSAiIiKTY9ARIIVCAU9PTyQkJOi2abVaJCQkoE+fPpUet3TpUixcuBDx8fHw8vIqt78s/Fy4cAEHDhxo8OuKREREVDGNxgZpaS7QaGwM2g6DjgABQGhoKIKCguDl5YXevXsjKioKBQUFCA4OBgAEBgbCyckJERERAIAlS5Zg7ty52LJlC1xcXJCRkQEAsLa2hrW1NUpKSjB69GikpKRg9+7dKC0t1ZVRq9VQKBSG6SgREZHEpaT0RFzccAghh0ymhb//bnh4nDBIWwwegAICAnDr1i3MnTsXGRkZcHd3R3x8vG5i9JUrVyCX3x+oWrt2LYqLizF69Gi9esLDwzFv3jxcv34du3btAgC4u7vrlTl48CAGDhxYr/0hIiKi8jQaG134AQAh5IiLGw5X14tQqfIbvD0GD0DAvZnfISEhFe5LTEzUe5+enl5lXS4uLjDw0kZERET0kNxcO134KSOEHLm5aoMEIJO+C4yIiIhMg1qdA5lMq7dNJtNCrc41SHsYgIiIiKjelM29Vany4e+/WxeCyuYAlY3+NPQcXYM/CsMY8VEYREREdefBlaBv3JAjPb0JXFz+hqPjvTBUVytBm8yjMIiIiKjxezDctG4NeHoasDH/Hy+BERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHk8FlgFSh7PmxeXp6BW0JERETVVfa7XZ3nvDMAVSA/Px8A4OzsbOCWEBERUU3l5+dDpVJVWUYmqhOTJEar1eLGjRuwsbGBTCYzdHMaRF5eHpydnXH16lXY2toaujkGxXNxH8/FfTwX9/Fc3MdzcZ8xnAshBPLz8+Ho6Ai5vOpZPhwBqoBcLkebNm0M3QyDsLW1lfxf4jI8F/fxXNzHc3Efz8V9PBf3GfpcPGrkpwwnQRMREZHkMAARERGR5DAAEQDAwsIC4eHhsLCwMHRTDI7n4j6ei/t4Lu7jubiP5+I+UzsXnARNREREksMRICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBqBGbM2aNXBxcYFSqYS3tzeOHTtWZfmoqCh06dIFlpaWcHZ2xrvvvou7d+/q9s+bNw8ymUzv5ebmVt/dqBM1ORclJSVYsGABXF1doVQq0aNHD8THxz9Wncakrs+FKX4vfvrpJ/j7+8PR0REymQw7d+585DGJiYnw8PCAhYUFOnbsiJiYmHJlTPE7UR/nwhS/E0DNz8XNmzcxfvx4dO7cGXK5HNOnT6+w3H//+1+4ublBqVSie/fu2Lt3b903vo7Vx7mIiYkp971QKpX104FqYABqpLZt24bQ0FCEh4cjJSUFPXr0gJ+fH7Kysiosv2XLFsyaNQvh4eE4e/YsvvjiC2zbtg0ffvihXrlu3brh5s2butfhw4cbojuPpabn4qOPPsJnn32G1atX48yZM5g8eTJeeOEFnDhxotZ1Gov6OBeA6X0vCgoK0KNHD6xZs6Za5dPS0jBs2DAMGjQIJ0+exPTp0zFx4kTs27dPV8ZUvxP1cS4A0/tOADU/F0VFRWjZsiU++ugj9OjRo8IyR48exbhx4/D666/jxIkTGDVqFEaNGoXTp0/XZdPrXH2cC+DeKtEPfi8uX75cV02uOUGNUu/evcU777yje19aWiocHR1FREREheXfeecd8eyzz+ptCw0NFc8884zufXh4uOjRo0e9tLc+1fRctG7dWkRHR+tte/HFF8XLL79c6zqNRX2cC1P9XpQBIHbs2FFlmQ8++EB069ZNb1tAQIDw8/PTvTfV78SD6upcmPp3QojqnYsH+fj4iGnTppXbPmbMGDFs2DC9bd7e3uLNN998zBY2nLo6Fxs2bBAqlarO2vW4OALUCBUXFyM5ORm+vr66bXK5HL6+vkhKSqrwmL59+yI5OVk3ZP/HH39g7969+Mc//qFX7sKFC3B0dESHDh3w8ssv48qVK/XXkTpQm3NRVFRUbljW0tJS9y/Y2tRpDOrjXJQxte9FTSUlJemdNwDw8/PTnTdT/U7UxqPORZnG/p2oruqeL6m4c+cO2rVrB2dnZ4wcORK///67wdrCANQIZWdno7S0FPb29nrb7e3tkZGRUeEx48ePx4IFC9CvXz+Ym5vD1dUVAwcO1LsE5u3tjZiYGMTHx2Pt2rVIS0tD//79kZ+fX6/9eRy1ORd+fn5Yvnw5Lly4AK1Wi++//x6xsbG4efNmres0BvVxLgDT/F7UVEZGRoXnLS8vD3/99ZfJfidq41HnApDGd6K6Kjtfje17UR1dunTB+vXr8d133+Grr76CVqtF3759ce3aNYO0hwGIANyb1Pjxxx/j008/RUpKCmJjY7Fnzx4sXLhQV+b555/HP//5Tzz11FPw8/PD3r17cfv2bXzzzTcGbHndW7lyJTp16gQ3NzcoFAqEhIQgODgYcrn0/rpU51xI5XtB1cfvBFWkT58+CAwMhLu7O3x8fBAbG4uWLVvis88+M0h7pPdfdAlo0aIFzMzMkJmZqbc9MzMTDg4OFR4zZ84cTJgwARMnTkT37t3xwgsv4OOPP0ZERAS0Wm2FxzRr1gydO3fGxYsX67wPdaU256Jly5bYuXMnCgoKcPnyZZw7dw7W1tbo0KFDres0BvVxLipiCt+LmnJwcKjwvNna2sLS0tJkvxO18ahzUZHG+J2orsrOV2P7XtSGubk5evbsabDvBQNQI6RQKODp6YmEhATdNq1Wi4SEBPTp06fCYwoLC8uNcJiZmQEARCWPi7tz5w4uXbqE1q1b11HL615tzkUZpVIJJycn/P3339i+fTtGjhz52HUaUn2ci4qYwveipvr06aN33gDg+++/1503U/1O1MajzkVFGuN3orpqc76korS0FL/99pvhvheGnoVN9WPr1q3CwsJCxMTEiDNnzohJkyaJZs2aiYyMDCGEEBMmTBCzZs3SlQ8PDxc2Njbi66+/Fn/88YfYv3+/cHV1FWPGjNGVee+990RiYqJIS0sTR44cEb6+vqJFixYiKyurwftXEzU9Fz///LPYvn27uHTpkvjpp5/Es88+K9q3by/+/PPPatdprOrjXJji9yI/P1+cOHFCnDhxQgAQy5cvFydOnBCXL18WQggxa9YsMWHCBF35P/74QzRt2lTMmDFDnD17VqxZs0aYmZmJ+Ph4XRlT/U7Ux7kwxe+EEDU/F0IIXXlPT08xfvx4ceLECfH777/r9h85ckQ0adJELFu2TJw9e1aEh4cLc3Nz8dtvvzVo32qqPs7F/Pnzxb59+8SlS5dEcnKyGDt2rFAqlXplGhIDUCO2evVq0bZtW6FQKETv3r3Fzz//rNvn4+MjgoKCdO9LSkrEvHnzhKurq1AqlcLZ2Vm8/fbbej90AQEBonXr1kKhUAgnJycREBAgLl682IA9qr2anIvExETxxBNPCAsLC2FnZycmTJggrl+/XqM6jVldnwtT/F4cPHhQACj3Kut7UFCQ8PHxKXeMu7u7UCgUokOHDmLDhg3l6jXF70R9nAtT/E4IUbtzUVH5du3a6ZX55ptvROfOnYVCoRDdunUTe/bsaZgOPYb6OBfTp0/X/f2wt7cX//jHP0RKSkrDdeohMiEqub5BRERE1EhxDhARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQEZEJSExMhEwmw+3btw3dFKJGgQGIiPS8+uqrkMlkiIyM1Nu+c+dOyGQy3XshBD7//HP06dMHtra2sLa2Rrdu3TBt2rRqP9ywsLAQYWFhcHV1hVKpRMuWLeHj44PvvvtOV8bFxQVRUVF10rf6VnbuZDIZzM3N0b59e3zwwQe4e/dujeoZOHAgpk+frretb9++uHnzJlQqVR22mEi6GICIqBylUoklS5bgzz//rHC/EALjx4/H1KlT8Y9//AP79+/HmTNn8MUXX0CpVGLRokXV+pzJkycjNjYWq1evxrlz5xAfH4/Ro0cjJyenLrvToIYOHYqbN2/ijz/+wIoVK/DZZ58hPDz8setVKBRwcHDQC6FE9BgM9hAOIjJKQUFBYvjw4cLNzU3MmDFDt33Hjh2i7D8ZX3/9tQAgvvvuuwrr0Gq11foslUolYmJiKt3v4+NT7tlCZQ4dOiT69esnlEqlaNOmjZgyZYq4c+eObv+XX34pPD09hbW1tbC3txfjxo0TmZmZuv1lzzqKj48X7u7uQqlUikGDBonMzEyxd+9e4ebmJmxsbMS4ceNEQUFBtfoTFBQkRo4cqbftxRdfFD179tS9z87OFmPHjhWOjo7C0tJSPPnkk2LLli16dTzc57S0NF17H3w+37fffiu6du0qFAqFaNeunVi2bFm12klEQnAEiIjKMTMzw8cff4zVq1fj2rVr5fZ//fXX6NKlC0aMGFHh8dUdpXBwcMDevXuRn59f4f7Y2Fi0adMGCxYswM2bN3Hz5k0AwKVLlzB06FC89NJLOHXqFLZt24bDhw8jJCREd2xJSQkWLlyIX3/9FTt37kR6ejpeffXVcp8xb948REdH4+jRo7h69SrGjBmDqKgobNmyBXv27MH+/fuxevXqavXnYadPn8bRo0ehUCh02+7evQtPT0/s2bMHp0+fxqRJkzBhwgQcO3YMALBy5Ur06dMHb7zxhq7Pzs7O5epOTk7GmDFjMHbsWPz222+YN28e5syZg5iYmFq1lUhyDJ3AiMi4PDiK8fTTT4vXXntNCKE/AuTm5iZGjBihd9y0adOElZWVsLKyEk5OTtX6rB9//FG0adNGmJubCy8vLzF9+nRx+PBhvTLt2rUTK1as0Nv2+uuvi0mTJultO3TokJDL5eKvv/6q8LOOHz8uAIj8/HwhxP0RoAMHDujKRERECADi0qVLum1vvvmm8PPzq1Z/goKChJmZmbCyshIWFhYCgJDL5eLbb7+t8rhhw4aJ9957T/fex8dHTJs2Ta/MwyNA48ePF4MHD9YrM2PGDNG1a9dqtZVI6jgCRESVWrJkCTZu3IizZ88+suzs2bNx8uRJzJ07F3fu3KlW/QMGDMAff/yBhIQEjB49Gr///jv69++PhQsXVnncr7/+ipiYGFhbW+tefn5+0Gq1SEtLA3BvhMTf3x9t27aFjY0NfHx8AABXrlzRq+upp57S/dne3h5NmzZFhw4d9LZlZWVVqz8AMGjQIJw8eRK//PILgoKCEBwcjJdeekm3v7S0FAsXLkT37t2hVqthbW2Nffv2lWvXo5w9exbPPPOM3rZnnnkGFy5cQGlpaY3qIpIiBiAiqtSAAQPg5+eHsLAwve2dOnVCamqq3raWLVuiY8eOaNWqVY0+w9zcHP3798fMmTOxf/9+LFiwAAsXLkRxcXGlx9y5cwdvvvkmTp48qXv9+uuvuHDhAlxdXVFQUAA/Pz/Y2tpi8+bNOH78OHbs2AEA5eo1NzfX/bns7q0HyWQyaLXaavfHysoKHTt2RI8ePbB+/Xr88ssv+OKLL3T7P/nkE6xcuRIzZ87EwYMHcfLkSfj5+VXZXyKqe00M3QAiMm6RkZFwd3dHly5ddNvGjRuH8ePH47vvvsPIkSPr9PO6du2Kv//+G3fv3oVCoYBCoSg3ouHh4YEzZ86gY8eOFdbx22+/IScnB5GRkbr5M//3f/9Xp+2sDrlcjg8//BChoaEYP348LC0tceTIEYwcORKvvPIKAECr1eL8+fPo2rWr7riK+vywJ554AkeOHNHbduTIEXTu3BlmZmZ13xmiRoYjQERUpe7du+Pll1/GqlWrdNvGjh2L0aNHY+zYsViwYAF++eUXpKen48cff8S2bduq/QM8cOBAfPbZZ0hOTkZ6ejr27t2LDz/8EIMGDYKtrS2Ae+sA/fTTT7h+/Tqys7MBADNnzsTRo0cREhKCkydP4sKFC/juu+90k6Dbtm0LhUKB1atX448//sCuXbseeVmtvvzzn/+EmZkZ1qxZA+De6Nn333+Po0eP4uzZs3jzzTeRmZmpd4yLi4vunGZnZ1c4AvXee+8hISEBCxcuxPnz57Fx40ZER0fj/fffb5B+EZk6BiAieqQFCxbo/QjLZDJs27YNUVFR2Lt3L5577jl06dIFr732GpydnXH48OFq1evn54eNGzdiyJAheOKJJzBlyhT4+fnhm2++0fvs9PR0uLq6omXLlgDuzdv58ccfcf78efTv3x89e/bE3Llz4ejoCODe5biYmBj897//RdeuXREZGYlly5bV4RmpviZNmiAkJARLly5FQUEBPvroI3h4eMDPzw8DBw6Eg4MDRo0apXfM+++/DzMzM3Tt2hUtW7ascH6Qh4cHvvnmG2zduhVPPvkk5s6diwULFlR4pxsRlScTQghDN4KIiIioIXEEiIiIiCSHAYiI6s2Dt6k//Dp06JChm1cjV65cqbI/Nb2NnYgMi5fAiKjeVPVQVCcnJ1haWjZgax7P33//jfT09Er3u7i4oEkT3lhLZCoYgIiIiEhyeAmMiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCTn/wEG8u4vlo12sQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASf1JREFUeJzt3XtcVHXi//H3DDKAXEYHFURRFE3TSsQLa+WllsJWset6qdTsYm6hGWVpbWpZoeUaKWZ9+1W4lmmbWmEuVmy2XezyFe2ymZl5KRNMqAFhFWLO7w+/TI5cBAVm8Lyej8c8tjnncz7z+Xz20Lz7nM+cYzEMwxAAAICJWL3dAAAAgKZGAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAAKZDAAIAH5WZmSmLxaI9e/Z4uynAGYcABJjYZ599ppSUFPXu3VvBwcHq1KmTRo8erW+//bZK2WHDhslischischqtSosLEw9evTQ+PHj9fbbb9frc7OysjR06FC1a9dOLVu2VNeuXTV69GhlZ2c3VNeqePTRR/Xaa69V2f7RRx9p7ty5+vXXXxvts080d+5c91haLBa1bNlSvXr10l//+lcVFRU1yGesXLlS6enpDVIXcCYiAAEmtmDBAq1Zs0Z//OMf9eSTT2ry5Mn697//rfj4eH311VdVynfs2FErVqzQ3//+dz3++OMaNWqUPvroI1166aUaM2aMysvLT/qZCxcu1KhRo2SxWDRr1iw98cQTuvrqq7Vz506tWrWqMbopqfYA9OCDDzZpAKq0bNkyrVixQosWLVLPnj31yCOPaPjw4WqIRzQSgIDatfB2AwB4T2pqqlauXCmbzebeNmbMGJ177rmaP3++XnzxRY/ydrtd119/vce2+fPna9q0aXrqqacUExOjBQsW1Ph5v/32m+bNm6dLLrlEb731VpX9Bw8ePM0e+Y7S0lK1bNmy1jLXXHON2rRpI0maMmWKrr76aq1du1Yff/yxBg0a1BTNBEyLGSDAxM4//3yP8CNJ3bt3V+/evbV9+/Y61eHn56fFixerV69eysjIkNPprLHsoUOHVFRUpAsuuKDa/e3atfN4f+TIEc2dO1dnnXWWAgMD1b59e1111VXatWuXu8zChQt1/vnnKzw8XEFBQerXr59effVVj3osFotKSkq0fPly92WnG264QXPnztWMGTMkSV26dHHvO37NzYsvvqh+/fopKChIDodDY8eO1Q8//OBR/7Bhw3TOOedoy5YtGjJkiFq2bKn77ruvTuN3vIsvvliStHv37lrLPfXUU+rdu7cCAgIUFRWl22+/3WMGa9iwYXrzzTe1d+9ed59iYmLq3R7gTMYMEAAPhmEoPz9fvXv3rvMxfn5+GjdunB544AF98MEHGjFiRLXl2rVrp6CgIGVlZWnq1KlyOBw11llRUaGRI0cqJydHY8eO1R133KHi4mK9/fbb+uqrrxQbGytJevLJJzVq1Chdd911Kisr06pVq/TnP/9Z69evd7djxYoVuvnmmzVw4EBNnjxZkhQbG6vg4GB9++23evnll/XEE0+4Z2Patm0rSXrkkUf0wAMPaPTo0br55pv1888/a8mSJRoyZIi2bt2qVq1audtbUFCgyy67TGPHjtX111+viIiIOo9fpcpgFx4eXmOZuXPn6sEHH1RiYqL+8pe/aMeOHVq2bJk+++wzffjhh/L399f9998vp9OpH3/8UU888YQkKSQkpN7tAc5oBgAcZ8WKFYYk47nnnvPYPnToUKN37941Hrdu3TpDkvHkk0/WWv/s2bMNSUZwcLBx2WWXGY888oixZcuWKuWef/55Q5KxaNGiKvtcLpf7n0tLSz32lZWVGeecc45x8cUXe2wPDg42Jk6cWKWuxx9/3JBk7N6922P7nj17DD8/P+ORRx7x2P7ll18aLVq08Ng+dOhQQ5Lx9NNP19jv482ZM8eQZOzYscP4+eefjd27dxvPPPOMERAQYERERBglJSWGYRjGCy+84NG2gwcPGjabzbj00kuNiooKd30ZGRmGJOP55593bxsxYoTRuXPnOrUHMCMugQFw++abb3T77bdr0KBBmjhxYr2OrZxhKC4urrXcgw8+qJUrV6pv377auHGj7r//fvXr10/x8fEel93WrFmjNm3aaOrUqVXqsFgs7n8OCgpy//Mvv/wip9OpwYMHKzc3t17tP9HatWvlcrk0evRoHTp0yP2KjIxU9+7d9e6773qUDwgI0KRJk+r1GT169FDbtm3VpUsX3XrrrerWrZvefPPNGtcOvfPOOyorK9P06dNltf7+r+9bbrlFYWFhevPNN+vfUcCkuAQGQJKUl5enESNGyG6369VXX5Wfn1+9jj98+LAkKTQ09KRlx40bp3HjxqmoqEiffPKJMjMztXLlSiUnJ+urr75SYGCgdu3apR49eqhFi9r/NbV+/Xo9/PDD2rZtm44ePerefnxIOhU7d+6UYRjq3r17tfv9/f093nfo0KHKeqqTWbNmjcLCwuTv76+OHTu6L+vVZO/evZKOBafj2Ww2de3a1b0fwMkRgADI6XTqsssu06+//qr3339fUVFR9a6j8mfz3bp1q/MxYWFhuuSSS3TJJZfI399fy5cv1yeffKKhQ4fW6fj3339fo0aN0pAhQ/TUU0+pffv28vf31wsvvKCVK1fWuw/Hc7lcslgs+uc//1ltGDxxTc3xM1F1NWTIEPe6IwBNiwAEmNyRI0eUnJysb7/9Vu+884569epV7zoqKiq0cuVKtWzZUhdeeOEptaN///5avny5Dhw4IOnYIuVPPvlE5eXlVWZbKq1Zs0aBgYHauHGjAgIC3NtfeOGFKmVrmhGqaXtsbKwMw1CXLl101lln1bc7jaJz586SpB07dqhr167u7WVlZdq9e7cSExPd2053Bgw407EGCDCxiooKjRkzRps3b9Y//vGPU7r3TEVFhaZNm6bt27dr2rRpCgsLq7FsaWmpNm/eXO2+f/7zn5J+v7xz9dVX69ChQ8rIyKhS1vi/GwX6+fnJYrGooqLCvW/Pnj3V3vAwODi42psdBgcHS1KVfVdddZX8/Pz04IMPVrkxoWEYKigoqL6TjSgxMVE2m02LFy/2aNNzzz0np9Pp8eu74ODgWm9JAJgdM0CAid1111164403lJycrMLCwio3PjzxpodOp9NdprS0VN99953Wrl2rXbt2aezYsZo3b16tn1daWqrzzz9ff/jDHzR8+HBFR0fr119/1Wuvvab3339fV1xxhfr27StJmjBhgv7+978rNTVVn376qQYPHqySkhK98847uu2223T55ZdrxIgRWrRokYYPH65rr71WBw8e1NKlS9WtWzd98cUXHp/dr18/vfPOO1q0aJGioqLUpUsXJSQkqF+/fpKk+++/X2PHjpW/v7+Sk5MVGxurhx9+WLNmzdKePXt0xRVXKDQ0VLt379a6des0efJk3X333ac1/vXVtm1bzZo1Sw8++KCGDx+uUaNGaceOHXrqqac0YMAAj/+/+vXrp9WrVys1NVUDBgxQSEiIkpOTm7S9gE/z5k/QAHhX5c+3a3rVVjYkJMTo3r27cf311xtvvfVWnT6vvLzcePbZZ40rrrjC6Ny5sxEQEGC0bNnS6Nu3r/H4448bR48e9ShfWlpq3H///UaXLl0Mf39/IzIy0rjmmmuMXbt2ucs899xzRvfu3Y2AgACjZ8+exgsvvOD+mfnxvvnmG2PIkCFGUFCQIcnjJ/Hz5s0zOnToYFit1io/iV+zZo1x4YUXGsHBwUZwcLDRs2dP4/bbbzd27NjhMTa13SLgRJXt+/nnn2std+LP4CtlZGQYPXv2NPz9/Y2IiAjjL3/5i/HLL794lDl8+LBx7bXXGq1atTIk8ZN44AQWw2iAh84AAAA0I6wBAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApsONEKvhcrn0008/KTQ0lNvJAwDQTBiGoeLiYkVFRclqrX2OhwBUjZ9++knR0dHebgYAADgFP/zwgzp27FhrGQJQNUJDQyUdG8DanmsEAAB8R1FRkaKjo93f47UhAFWj8rJXWFgYAQgAgGamLstXWAQNAABMhwAEAABMhwAEAABMhzVAAAA0kIqKCpWXl3u7GWcsf39/+fn5NUhdBCAAAE6TYRjKy8vTr7/+6u2mnPFatWqlyMjI075PHwEIAIDTVBl+2rVrp5YtW3IT3UZgGIZKS0t18OBBSVL79u1Pqz4CEAAAp6GiosIdfsLDw73dnDNaUFCQJOngwYNq167daV0OYxE0AACnoXLNT8uWLb3cEnOoHOfTXWtFAAIAoAFw2atpNNQ4E4AAAIDpsAYIDaagoEBlZWU17rfZbFwfBwD4BAIQGkRBQYEyMjLc753OUBUWhsvhKJDdXuzenpKSQggCAB9xww03aPny5ZKkFi1ayOFw6LzzztO4ceN0ww03yGqt24WizMxMTZ8+vVndBoAAhAZx/MxPbm5fZWWNlGFYZbG4lJy8XvHxW6uUAwAc480Z9OHDh+uFF15QRUWF8vPzlZ2drTvuuEOvvvqq3njjDbVocWZGhTOzV/AapzPUHX4kyTCsysoaqdjY7zxmggAAx5w4g16TxppBDwgIUGRkpCSpQ4cOio+P1x/+8Af98Y9/VGZmpm6++WYtWrRIL7zwgr7//ns5HA4lJyfrscceU0hIiDZt2qRJkyZJ+n2B8pw5czR37lytWLFCTz75pHbs2KHg4GBdfPHFSk9PV7t27Rq8H/XFImg0qMLCcHf4qWQYVhUWOrzUIgDwbXWdGW/KGfSLL75Yffr00dq1ayVJVqtVixcv1n/+8x8tX75c//rXv3TPPfdIks4//3ylp6crLCxMBw4c0IEDB3T33XdLOvZT9Xnz5unzzz/Xa6+9pj179uiGG25osn7UhhkgNCiHo0AWi8sjBFksLjkchV5sFQCgvnr27KkvvvhCkjR9+nT39piYGD388MOaMmWKnnrqKdlsNtntdlksFvdMUqUbb7zR/c9du3bV4sWLNWDAAB0+fFghISFN0o+aMAOEBmW3Fys5eb0sFpckudcAcfkLAJoXwzDcl7Teeecd/fGPf1SHDh0UGhqq8ePHq6CgQKWlpbXWsWXLFiUnJ6tTp04KDQ3V0KFDJUn79u1r9PafDDNAaHDx8VsVG/udCgsdcjgKCT8A0Axt375dXbp00Z49ezRy5Ej95S9/0SOPPCKHw6EPPvhAN910k8rKymq8A3ZJSYmSkpKUlJSkl156SW3bttW+ffuUlJTkEz+IIQChUdjtxQQfAGim/vWvf+nLL7/UnXfeqS1btsjlculvf/ub+2fxr7zyikd5m82miooKj23ffPONCgoKNH/+fEVHR0uS/vd//7dpOlAHXAJDg7DZbA1aDgDQNI4ePaq8vDzt379fubm5evTRR3X55Zdr5MiRmjBhgrp166by8nItWbJE33//vVasWKGnn37ao46YmBgdPnxYOTk5OnTokEpLS9WpUyfZbDb3cW+88YbmzZvnpV5WxQwQGkR4eLhSUlK4EzQANDPZ2dlq3769WrRoodatW6tPnz5avHixJk6cKKvVqj59+mjRokVasGCBZs2apSFDhigtLU0TJkxw13H++edrypQpGjNmjAoKCtw/g8/MzNR9992nxYsXKz4+XgsXLtSoUaO82NvfWQzDMLzdCF9TVFQku90up9OpsLAwbzcHAODDjhw5ot27d6tLly4KDAys9/Hevg9Qc1PbeNfn+5sZIAAAvIgZdO8gAAEA4GWEm6bHImgAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAANAoNm3aJIvFol9//bXOx8TExCg9Pb3R2lSJAAQAgEndcMMNslgsmjJlSpV9t99+uywWi2644Yamb1gTIAABAGBi0dHRWrVqlf773/+6tx05ckQrV65Up06dvNiyxkUAAgDAxOLj4xUdHa21a9e6t61du1adOnVS37593duOHj2qadOmqV27dgoMDNSFF16ozz77zKOuDRs26KyzzlJQUJAuuugi7dmzp8rnffDBBxo8eLCCgoIUHR2tadOmqaSkpNH6VxMCEIAGV1BQoAMHDtT4Kigo8HYTAZ/144/Su+8e+9+mcuONN+qFF15wv3/++ec1adIkjzL33HOP1qxZo+XLlys3N1fdunVTUlKSCgsLJUk//PCDrrrqKiUnJ2vbtm26+eabNXPmTI86du3apeHDh+vqq6/WF198odWrV+uDDz5QSkpK43fyBDwMFUCDKigoUEZGxknLpaSk8ABI4ATPPSdNniy5XJLVKv3P/0g33dT4n3v99ddr1qxZ2rt3ryTpww8/1KpVq7Rp0yZJUklJiZYtW6bMzExddtllkqRnn31Wb7/9tp577jnNmDFDy5YtU2xsrP72t79Jknr06KEvv/xSCxYscH9OWlqarrvuOk2fPl2S1L17dy1evFhDhw7VsmXLFBgY2Pid/T8EIAANqqyszOO90xmqwsJwORwFstuLaywHmN2PP/4efqRj/3vrrVJSktSxY+N+dtu2bTVixAhlZmbKMAyNGDFCbdq0ce/ftWuXysvLdcEFF7i3+fv7a+DAgdq+fbskafv27UpISPCod9CgQR7vP//8c33xxRd66aWX3NsMw5DL5dLu3bt19tlnN0b3qkUAAtBocnP7KitrpAzDKovFpeTk9YqP3+rtZgE+aefO38NPpYoK6bvvGj8ASccug1Veilq6dGmjfMbhw4d16623atq0aVX2NfWCa9YAAWgUTmeoO/xIkmFYlZU1Uk5nqJdbBvim7t2PXfY6np+f1K1b03z+8OHDVVZWpvLyciUlJXnsi42Nlc1m04cffujeVl5ers8++0y9evWSJJ199tn69NNPPY77+OOPPd7Hx8fr66+/Vrdu3aq8bDZbI/WsegQgAI2isDDcHX4qGYZVhYUOL7UI8G0dOx5b8+Pnd+y9n5/0zDNNM/tz7PP8tH37dn399dfyq2zE/wkODtZf/vIXzZgxQ9nZ2fr66691yy23qLS0VDf93yKlKVOmaOfOnZoxY4Z27NihlStXKjMz06Oee++9Vx999JFSUlK0bds27dy5U6+//jqLoAGcORyOAlksLo8QZLG45HAUerFVgG+76aZja36+++7YzE9ThZ9KYWFhNe6bP3++XC6Xxo8fr+LiYvXv318bN25U69atJR27hLVmzRrdeeedWrJkiQYOHKhHH31UN954o7uO8847T++9957uv/9+DR48WIZhKDY2VmPGjGn0vp3IYhiG0eSf6uOKiopkt9vldDprPRkAVHXgwAH9z//8j6Ta1wBNnjxZ7du392ZTgQZx5MgR7d69W126dGnSXzGZVW3jXZ/vb5+4BLZ06VLFxMQoMDBQCQkJVa4hHm/t2rXq37+/WrVqpeDgYMXFxWnFihU1lp8yZYosFkuTPFcEgKf4+K2aPj1dEydmavr0dBZAA/AZXr8Etnr1aqWmpurpp59WQkKC0tPTlZSUpB07dqhdu3ZVyjscDt1///3q2bOnbDab1q9fr0mTJqldu3ZVFm2tW7dOH3/8saKiopqqO4DpnbiQ0W4v9vj5e03lAKApef0SWEJCggYMGOC+cZrL5VJ0dLSmTp1a5Q6SNYmPj9eIESM0b94897b9+/crISFBGzdu1IgRIzR9+nT3jZdOhktgwOkpKCio9T4/NpuNmyDijMElsKbVUJfAvDoDVFZWpi1btmjWrFnubVarVYmJidq8efNJjzcMQ//617+0Y8cOjztNVi7SmjFjhnr37n3Seo4ePaqjR4+63xcVFdWzJwCOR7gB4Ou8ugbo0KFDqqioUEREhMf2iIgI5eXl1Xic0+lUSEiIbDabRowYoSVLluiSSy5x71+wYIFatGhR7Y2WqpOWlia73e5+RUdHn1qHAACmxW+KmkZDjbPX1wCditDQUG3btk2HDx9WTk6OUlNT1bVrVw0bNkxbtmzRk08+qdzcXFksljrVN2vWLKWmprrfFxUVEYIAAHXi7+8vSSotLVVQUJCXW3PmKy0tlfT7uJ8qrwagNm3ayM/PT/n5+R7b8/PzFRkZWeNxVqtV3f7v1phxcXHavn270tLSNGzYML3//vs6ePCgxy21KyoqdNdddyk9PV179uypUl9AQIACAgIaplMAAFPx8/NTq1atdPDgQUlSy5Yt6/wf4Kg7wzBUWlqqgwcPqlWrVlVu1lhfXg1ANptN/fr1U05Ojq644gpJx9bv5OTk1OuukC6Xy72GZ/z48UpMTPTYn5SUpPHjx2vSpEkN1nYAOFUsEj/zVP5He2UIQuNp1apVrZMkdeX1S2CpqamaOHGi+vfvr4EDByo9PV0lJSXusDJhwgR16NBBaWlpko6t1+nfv79iY2N19OhRbdiwQStWrNCyZcskHVt8eeK/OPz9/RUZGakePXo0becA4AQFBQXuX73WJiUlhRDUjFgsFrVv317t2rVTeXm5t5tzxvL39z/tmZ9KXg9AY8aM0c8//6zZs2crLy9PcXFxys7Odi+M3rdvn6zHPR2upKREt912m3788UcFBQWpZ8+eevHFF71yG20AqK8TZ36czlAVFobL4SjwuF9SbTNE8F1+fn4N9gWNxuX1+wD5Iu4DBKCx8KgQoPE0u0dhAIDZOJ2h7vAjSYZhVVbWSDmdoV5uGWAOBCAA8ILCwnB3+KlkGFYVFjq81CLAXAhAAOAFDkeBLBaXxzaLxSWHo9BLLQLMhQAEAF5gtxcrOXm9OwRVrgGq7sGxABqe138FBgBmFR+/VbGx36mw0CGHo5DwAzQhAhAANCGbzebx3m4vrjb4nFgOQMMiAAFAEwoPD1dKSgp3gobXcCfyYwhAANDEzPDlAt/Ench/xyJoAABMoq53GDfDncgJQAAAmJTTGardu2NMeQNOLoHBlLgGDsDsansUixkQgGA6XAMHYHY1PYolNvY709yOgQDUBJht8C08jRuA2dX2KBYCEBoEsw2+zexTwADMqfJRLMeHILM9ioVF0I2sutmG6hacMdvQ9HgaNwCz4lEszAA1KWYbfAtTwADM5vg7jNf2KBYz3ImcANREWHDme5gCBmA23In8dwSgJsJsg++pnAI+cVaO/z8AnMnMEG7qggDURJht8E08jRsAzIlF0E2EBWe+o7qncXfpsrfK/xdmuAYOAGbFDFATYrbBN3ANHACali/eD48A1Miqm22oLvgw29C0CDcA0DR89X54BKBGxmwDAMDMfPXu+wSgJkC4AQDAt+6HxyJoAADQ6Hzt7vsEIAAA0Ohqux+eNxCAAABAo6u8H97xvHk/PAIQAABodL52PzwWQQMAgCbhS/fDIwABAIBG46v3wyMAAQCARuOr98MjAAEAgEbli/fDYxE0AAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHZ8IQEuXLlVMTIwCAwOVkJCgTz/9tMaya9euVf/+/dWqVSsFBwcrLi5OK1ascO8vLy/Xvffeq3PPPVfBwcGKiorShAkT9NNPPzVFVwAAQDPg9QC0evVqpaamas6cOcrNzVWfPn2UlJSkgwcPVlve4XDo/vvv1+bNm/XFF19o0qRJmjRpkjZu3ChJKi0tVW5urh544AHl5uZq7dq12rFjh0aNGtWU3QIAAD7MYhiG4c0GJCQkaMCAAcrIyJAkuVwuRUdHa+rUqZo5c2ad6oiPj9eIESM0b968avd/9tlnGjhwoPbu3atOnTqdtL6ioiLZ7XY5nU6FhYXVvTMAAMBr6vP97dUZoLKyMm3ZskWJiYnubVarVYmJidq8efNJjzcMQzk5OdqxY4eGDBlSYzmn0ymLxaJWrVpVu//o0aMqKiryeAEAgDOXVwPQoUOHVFFRoYiICI/tERERysvLq/E4p9OpkJAQ2Ww2jRgxQkuWLNEll1xSbdkjR47o3nvv1bhx42pMg2lpabLb7e5XdHT0qXcKAAD4vBbebsCpCA0N1bZt23T48GHl5OQoNTVVXbt21bBhwzzKlZeXa/To0TIMQ8uWLauxvlmzZik1NdX9vqioiBAENDMFBQUqKyurcb/NZlN4eHgTtgiAL/NqAGrTpo38/PyUn5/vsT0/P1+RkZE1Hme1WtWtWzdJUlxcnLZv3660tDSPAFQZfvbu3at//etftV4LDAgIUEBAwOl1BoDXFBQUuNcR1iYlJYUQBECSly+B2Ww29evXTzk5Oe5tLpdLOTk5GjRoUJ3rcblcOnr0qPt9ZfjZuXOn3nnnHf6FB5zhTpz5cTpDtXt3jJzO0FrLATAvr18CS01N1cSJE9W/f38NHDhQ6enpKikp0aRJkyRJEyZMUIcOHZSWlibp2Hqd/v37KzY2VkePHtWGDRu0YsUK9yWu8vJyXXPNNcrNzdX69etVUVHhXk/kcDhks9m801EATSI3t6+yskbKMKyyWFxKTl6v+Pit3m6W13GJ8OQYI3PxegAaM2aMfv75Z82ePVt5eXmKi4tTdna2e2H0vn37ZLX+PlFVUlKi2267TT/++KOCgoLUs2dPvfjiixozZowkaf/+/XrjjTckHbs8drx33323yjqhpsAfFdA0nM5Qd/iRJMOwKitrpGJjv5PdXuzl1nkPlwhPjjEyH68HIOnYCZWSklLtvk2bNnm8f/jhh/Xwww/XWFdMTIy8fGsjD/xRAU2nsDDcHX4qGYZVhYUOUweg6i4RFhaGy+Eo8BgXM18iZIzMxycC0JmMPyqg6TgcBbJYXB4hyGJxyeEo9GKrfAuXCE+OMTIHAlAT4o8KaFx2e7GSk9dX+Tsz8+zP8bhEeHKMkXkQgJoIf1RA04iP36rY2O9UWOiQw1HI39dxuER4coyReRCAmgh/VEDjOfHXnXZ7cbV/V2b/FSiXCE+OMTIPAlAT4Y8KaDzh4eFKSUnh15YnwSXCk2OMzIMA1ET4owIal9nDTV1xifDkGCNzIAA1If6oAHgDlwhPjjEyHwJQI+OPCoC3cYnw5Bgj87EYvnTXQB9RVFQku90up9NZ60NU64o7QQMAzKypvgfr8/3NDFATINwAAMzKV5+I4NWnwQMAgDNbdU9E2L07Rk5naK3lGhszQAAAoEn40hMRCEAAfAbr5YAzl689EYEABMAn+Oo6AQANw9eeiMAaIAA+wVfXCQBoGJVPRDieN5+IwAwQAJ/jS+sEADQMX3siAgEIgE/xtXUCABqOLz0RgQAEwKf42joBAKfHV5+IQAAC4FMq1wkcH4K8uU4AwOnx1ceMEIAA+BRfWycA4PT54i83CUAAfI4vrRMAcGYiAAHwCb66TgDAmYkABMAn+Oo6AQBnJgIQAJ9BuAHQVLgTNAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB2fCEBLly5VTEyMAgMDlZCQoE8//bTGsmvXrlX//v3VqlUrBQcHKy4uTitWrPAoYxiGZs+erfbt2ysoKEiJiYnauXNnY3cDAAA0E14PQKtXr1ZqaqrmzJmj3Nxc9enTR0lJSTp48GC15R0Oh+6//35t3rxZX3zxhSZNmqRJkyZp48aN7jKPPfaYFi9erKefflqffPKJgoODlZSUpCNHjjRVtwAAgA+zGIZheLMBCQkJGjBggDIyMiRJLpdL0dHRmjp1qmbOnFmnOuLj4zVixAjNmzdPhmEoKipKd911l+6++25JktPpVEREhDIzMzV27NiT1ldUVCS73S6n06mwsLBT7xwAAGgy9fn+9uoMUFlZmbZs2aLExET3NqvVqsTERG3evPmkxxuGoZycHO3YsUNDhgyRJO3evVt5eXkeddrtdiUkJNRY59GjR1VUVOTxAgAAZy6vBqBDhw6poqJCERERHtsjIiKUl5dX43FOp1MhISGy2WwaMWKElixZoksuuUSS3MfVp860tDTZ7Xb3Kzo6+nS6BQAAfJzX1wCditDQUG3btk2fffaZHnnkEaWmpmrTpk2nXN+sWbPkdDrdrx9++KHhGgsAAHxOC29+eJs2beTn56f8/HyP7fn5+YqMjKzxOKvVqm7dukmS4uLitH37dqWlpWnYsGHu4/Lz89W+fXuPOuPi4qqtLyAgQAEBAafZGwAA0Fx4dQbIZrOpX79+ysnJcW9zuVzKycnRoEGD6lyPy+XS0aNHJUldunRRZGSkR51FRUX65JNP6lUnAAA4c3l1BkiSUlNTNXHiRPXv318DBw5Uenq6SkpKNGnSJEnShAkT1KFDB6WlpUk6tl6nf//+io2N1dGjR7VhwwatWLFCy5YtkyRZLBZNnz5dDz/8sLp3764uXbrogQceUFRUlK644gpvdRMAAPgQrwegMWPG6Oeff9bs2bOVl5enuLg4ZWdnuxcx79u3T1br7xNVJSUluu222/Tjjz8qKChIPXv21IsvvqgxY8a4y9xzzz0qKSnR5MmT9euvv+rCCy9Udna2AgMDm7x/AADA93j9PkC+iPsAAQDQ/DSb+wABAAB4AwEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYTr0D0IYNG3TzzTfrnnvu0TfffOOx75dfftHFF1/cYI0DAABoDPUKQCtXrtSoUaOUl5enzZs3q2/fvnrppZfc+8vKyvTee+81eCMBAAAaUr0ehvr4449r0aJFmjZtmiTplVde0Y033qgjR47opptuapQGAgAANLR6BaCdO3cqOTnZ/X706NFq27atRo0apfLycl155ZUN3kAAAICGVq8AFBYWpvz8fHXp0sW97aKLLtL69es1cuRI/fjjjw3eQAAAgIZWrzVAAwcO1D//+c8q24cOHaqsrCylp6c3VLsAAAAaTb0C0J133qnAwMBq9w0bNkxZWVmaMGFCgzQMAACgsVgMwzC83QhfU1RUJLvdLqfTqbCwMG83BwAA1EF9vr/rtQbIarXKYrHUWsZisei3336rT7UAAABNql4BaN26dTXu27x5sxYvXiyXy3XajQIAAGhM9QpAl19+eZVtO3bs0MyZM5WVlaXrrrtODz30UIM1DgAAoDGc8rPAfvrpJ91yyy0699xz9dtvv2nbtm1avny5Onfu3JDtAwAAaHD1mgGSJKfTqUcffVRLlixRXFyccnJyNHjw4MZoGwCTKSgoUFlZWY37bTabwsPDm7BFAM5U9QpAjz32mBYsWKDIyEi9/PLL1V4SA4BTUVBQoIyMjJOWS0lJIQQBOG31CkAzZ85UUFCQunXrpuXLl2v58uXVllu7dm2DNA6AeZw48+N0hqqwMFwOR4Hs9uIaywHAqahXAJowYcJJfwYPAKcrN7evsrJGyjCsslhcSk5er/j4rd5uFoAzSL0CUGZmZiM1AwCOcTpD3eFHkgzDqqyskYqN/c5jJggATscp/woMABpDYWG4O/xUMgyrCgsdXmoRgDMRAQiAT3E4CmSxeN5Q1WJxyeEo9FKLAJyJCEAAfIrdXqzk5PXuEFS5BojLXwAaUr3vAwQAjS0+fqtiY79TYaFDDkch4QdAgyMAAfAJNpvN473dXlxt8DmxHACcCgIQAJ8QHh6ulJQU7gQNoEkQgAD4DMINgKbCImgAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6Xg9AS5cuVUxMjAIDA5WQkKBPP/20xrLPPvusBg8erNatW6t169ZKTEysUv7w4cNKSUlRx44dFRQUpF69eunpp59u7G4AAIBmxKsBaPXq1UpNTdWcOXOUm5urPn36KCkpSQcPHqy2/KZNmzRu3Di9++672rx5s6Kjo3XppZdq//797jKpqanKzs7Wiy++qO3bt2v69OlKSUnRG2+80VTdAgAAPs5iGIbhrQ9PSEjQgAEDlJGRIUlyuVyKjo7W1KlTNXPmzJMeX1FRodatWysjI0MTJkyQJJ1zzjkaM2aMHnjgAXe5fv366bLLLtPDDz9cp3YVFRXJbrfL6XQqLCzsFHoGAACaWn2+v702A1RWVqYtW7YoMTHx98ZYrUpMTNTmzZvrVEdpaanKy8vlcDjc284//3y98cYb2r9/vwzD0Lvvvqtvv/1Wl156aY31HD16VEVFRR4vAABw5vJaADp06JAqKioUERHhsT0iIkJ5eXl1quPee+9VVFSUR4hasmSJevXqpY4dO8pms2n48OFaunSphgwZUmM9aWlpstvt7ld0dPSpdQoAADQLXl8Efarmz5+vVatWad26dQoMDHRvX7JkiT7++GO98cYb2rJli/72t7/p9ttv1zvvvFNjXbNmzZLT6XS/fvjhh6boAgAA8JIW3vrgNm3ayM/PT/n5+R7b8/PzFRkZWeuxCxcu1Pz58/XOO+/ovPPOc2//73//q/vuu0/r1q3TiBEjJEnnnXeetm3bpoULF3rMFB0vICBAAQEBp9kjAADQXHhtBshms6lfv37Kyclxb3O5XMrJydGgQYNqPO6xxx7TvHnzlJ2drf79+3vsKy8vV3l5uaxWz275+fnJ5XI1bAcAAECz5bUZIOnYT9YnTpyo/v37a+DAgUpPT1dJSYkmTZokSZowYYI6dOigtLQ0SdKCBQs0e/ZsrVy5UjExMe61QiEhIQoJCVFYWJiGDh2qGTNmKCgoSJ07d9Z7772nv//971q0aJHX+gkAAHyLVwPQmDFj9PPPP2v27NnKy8tTXFycsrOz3Quj9+3b5zGbs2zZMpWVlemaa67xqGfOnDmaO3euJGnVqlWaNWuWrrvuOhUWFqpz58565JFHNGXKlCbrFwAA8G1evQ+Qr+I+QAAAND/N4j5AAAAA3kIAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApkMAAgAApuPVZ4EBqJuCggKVlZXVuN9msyk8PLwJWwQAzRsBCPBxBQUFysjIOGm5lJQUQhAA1BGXwAAfd+LMj9MZqt27Y+R0htZaDgBQM2aAgGYkN7evsrJGyjCsslhcSk5er/j4rd5uFgA0O8wAAc2E0xnqDj+SZBhWZWWNrDITBAA4OQIQ0EwUFoa7w08lw7CqsNDhpRYBQPNFAAKaCYejQBaLy2ObxeKSw1HopRYBQPNFAAKaCbu9WMnJ690hqHINkN1e7OWWAUDzwyJooBmJj9+q2NjvVFjokMNRSPgBgFNEAAJ8nM1m83hvtxdXG3xOLAcAqBkBCPBx4eHhSklJ4U7QANCACEBAM0C4AYCGxSJoAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOgQgAABgOi283QAAwJmroKBAZWVlNe632WwKDw9vwhYBxxCAAACNoqCgQBkZGSctl5KSQghCk+MSGACgUZw48+N0hmr37hg5naG1lgOaAjNAAIBGl5vbV1lZI2UYVlksLiUnr1d8/FZvNwsmxgwQAKBROZ2h7vAjSYZhVVbWyCozQUBTIgABABpVYWG4O/xUMgyrCgsdXmoRQAACADQyh6NAFovLY5vF4pLDUeilFgEEIABAI7Pbi5WcvN4dgirXANntxV5uGczM6wFo6dKliomJUWBgoBISEvTpp5/WWPbZZ5/V4MGD1bp1a7Vu3VqJiYnVlt++fbtGjRolu92u4OBgDRgwQPv27WvMbgAAahEfv1XTp6dr4sRMTZ+ezgJoeJ1XA9Dq1auVmpqqOXPmKDc3V3369FFSUpIOHjxYbflNmzZp3Lhxevfdd7V582ZFR0fr0ksv1f79+91ldu3apQsvvFA9e/bUpk2b9MUXX+iBBx5QYGBgU3ULAKBjNzk8nt1erC5d9laZ+TmxHNAULIZhGN768ISEBA0YMMB9oyyXy6Xo6GhNnTpVM2fOPOnxFRUVat26tTIyMjRhwgRJ0tixY+Xv768VK1accruKiopkt9vldDoVFhZ2yvUAgNlxJ2g0pfp8f3ttBqisrExbtmxRYmLi742xWpWYmKjNmzfXqY7S0lKVl5fL4Tj2SwKXy6U333xTZ511lpKSktSuXTslJCTotddea4wuAABOIjw8XO3bt6/xRfiBt3gtAB06dEgVFRWKiIjw2B4REaG8vLw61XHvvfcqKirKHaIOHjyow4cPa/78+Ro+fLjeeustXXnllbrqqqv03nvv1VjP0aNHVVRU5PECAABnrmZ7J+j58+dr1apV2rRpk3t9j8t17BcGl19+ue68805JUlxcnD766CM9/fTTGjp0aLV1paWl6cEHH2yahgMAAK/z2gxQmzZt5Ofnp/z8fI/t+fn5ioyMrPXYhQsXav78+Xrrrbd03nnnedTZokUL9erVy6P82WefXeuvwGbNmiWn0+l+/fDDD6fQIwAA0Fx4LQDZbDb169dPOTk57m0ul0s5OTkaNGhQjcc99thjmjdvnrKzs9W/f/8qdQ4YMEA7duzw2P7tt9+qc+fONdYZEBCgsLAwjxcAADhzefUSWGpqqiZOnKj+/ftr4MCBSk9PV0lJiSZNmiRJmjBhgjp06KC0tDRJ0oIFCzR79mytXLlSMTEx7rVCISEhCgkJkSTNmDFDY8aM0ZAhQ3TRRRcpOztbWVlZ2rRpk1f6CAC+gF9jAZ68GoDGjBmjn3/+WbNnz1ZeXp7i4uKUnZ3tXhi9b98+Wa2/T1ItW7ZMZWVluuaaazzqmTNnjubOnStJuvLKK/X0008rLS1N06ZNU48ePbRmzRpdeOGFTdYvAPAlBQUF7tuN1CYlJYUQBNPw6n2AfBX3AQJwJjlw4ID+53/+x/3e6QxVYWG4HI4Cj5sSTp48We3bt/dGE4EGUZ/v72b7KzAAQP3l5vZVVtZIGYbV/UwuHksBM/L6s8AAAE3D6Qx1hx9JMgyrsrJGyukM9XLLgKZHAAIAkygsDHeHn0qGYVVhocNLLQK8hwAEACbhcBTIYnF5bLNYXHI4Cr3UIsB7CEAAYBJ2e7GSk9e7Q1DlGqATn84OmAGLoAHAROLjtyo29jsVFjrkcBQSfmBaBCAAOMPZbDaP93Z7cbXB58RywJmMAAQAZ7jw8HClpKRwJ2jgOAQgADABwg3giUXQAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdFp4uwEAgLorKChQWVlZjfttNpvCw8ObsEXAyfnieUsAAoBmoqCgQBkZGSctl5KSQgiCz/DV85ZLYADQTNT2X9CnUg5oCr563hKAAKCZcjpDtXt3jJzOUG83BagzXzlvuQQGAM1Qbm5fZWWNlGFYZbG4lJy8XvHxW73dLKBWvnTeMgMEAM2M0xnq/hKRJMOwKitrpNf/ixqoja+dtwQgAGhmCgvD3V8ilQzDqsJCh5daBJycr523BCAAaGYcjgJZLC6PbRaLSw5HoZdaBJycr523BCAAaGbs9mIlJ693f5lUrqWw24u93DKgZr523rIIGgCaCZvN5v7n+Pitio39ToWFDjkchR5fIseXA7zNV89bi2EYRpN+YjNQVFQku90up9OpsLAwbzcHANx88Y66wMk01Xlbn+9vZoAAoBkh3KA58sXzljVAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdAhAAADAdHwiAC1dulQxMTEKDAxUQkKCPv300xrLPvvssxo8eLBat26t1q1bKzExsdbyU6ZMkcViUXp6eiO0HAAANEdeD0CrV69Wamqq5syZo9zcXPXp00dJSUk6ePBgteU3bdqkcePG6d1339XmzZsVHR2tSy+9VPv3769Sdt26dfr4448VFRXV2N0AAADNiNcD0KJFi3TLLbdo0qRJ6tWrl55++mm1bNlSzz//fLXlX3rpJd12222Ki4tTz5499f/+3/+Ty+VSTk6OR7n9+/dr6tSpeumll+Tv798UXQEAAM2EVwNQWVmZtmzZosTERPc2q9WqxMREbd68uU51lJaWqry8XA6Hw73N5XJp/PjxmjFjhnr37n3SOo4ePaqioiKPFwAAOHN5NQAdOnRIFRUVioiI8NgeERGhvLy8OtVx7733KioqyiNELViwQC1atNC0adPqVEdaWprsdrv7FR0dXfdOAACAZsfrl8BOx/z587Vq1SqtW7dOgYGBkqQtW7boySefVGZmpiwWS53qmTVrlpxOp/v1ww8/NGazAQCAl3k1ALVp00Z+fn7Kz8/32J6fn6/IyMhaj124cKHmz5+vt956S+edd557+/vvv6+DBw+qU6dOatGihVq0aKG9e/fqrrvuUkxMTLV1BQQEKCwszOMFAADOXF4NQDabTf369fNYwFy5oHnQoEE1HvfYY49p3rx5ys7OVv/+/T32jR8/Xl988YW2bdvmfkVFRWnGjBnauHFjo/UFAAA0Hy283YDU1FRNnDhR/fv318CBA5Wenq6SkhJNmjRJkjRhwgR16NBBaWlpko6t75k9e7ZWrlypmJgY91qhkJAQhYSEKDw8XOHh4R6f4e/vr8jISPXo0aNpOwcAAHyS1wPQmDFj9PPPP2v27NnKy8tTXFycsrOz3Quj9+3bJ6v194mqZcuWqaysTNdcc41HPXPmzNHcuXObsukAAKCZshiGYXi7Eb6mqKhIdrtdTqeT9UAAADQT9fn+bta/AgMAADgVBCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6Xv8ZPM4cBQUFKisrq3G/zWarco8mAAC8gQCEBlFQUKCMjAz3e6czVIWF4XI4CmS3F7u3p6SkEIIAAF5HAEKDOH7mJze3r7KyRsowrLJYXEpOXq/4+K1VygEA4C2sAUKDcjpD3eFHkgzDqqyskXI6Q73cMgAAfkcAQoMqLAx3h59KhmFVYaHDSy0CAKAqAhAalMNRIIvF5bHNYnHJ4Sj0UosAAKiKAIQGZbcXKzl5vTsEVa4BOn4hNAAA3sYiaDS4+Pitio39ToWFDjkchYQfAIDPIQChUdjtxQQfAIDP4hIYGoTNZmvQcgAANCZmgNAgwsPDlZKSwp2gAQDNAgEIDYZwAwBoLrgEBgAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIcABAAATIc7QVfDMAxJUlFRkZdbAgAA6qrye7vye7w2BKBqFBcfe4p5dHS0l1sCAADqq7i4WHa7vdYyFqMuMclkXC6XfvrpJ4WGhspisZxWXUVFRYqOjtYPP/ygsLCwBmph88aYVMWYVMWYVMWYVMWYVGXmMTEMQ8XFxYqKipLVWvsqH2aAqmG1WtWxY8cGrTMsLMx0J+LJMCZVMSZVMSZVMSZVMSZVmXVMTjbzU4lF0AAAwHQIQAAAwHQIQI0sICBAc+bMUUBAgLeb4jMYk6oYk6oYk6oYk6oYk6oYk7phETQAADAdZoAAAIDpEIAAAIDpEIAAAIDpEIAAAIDpEIDqaenSpYqJiVFgYKASEhL06aef1lo+PT1dPXr0UFBQkKKjo3XnnXfqyJEj7v1z586VxWLxePXs2bOxu9Hg6jMu5eXleuihhxQbG6vAwED16dNH2dnZp1WnL2roMWnO58q///1vJScnKyoqShaLRa+99tpJj9m0aZPi4+MVEBCgbt26KTMzs0qZ5nyONMaYNOdzpFJ9x+XAgQO69tprddZZZ8lqtWr69OnVlvvHP/6hnj17KjAwUOeee642bNjQ8I1vJI0xJpmZmVXOlcDAwMbpgI8iANXD6tWrlZqaqjlz5ig3N1d9+vRRUlKSDh48WG35lStXaubMmZozZ462b9+u5557TqtXr9Z9993nUa537946cOCA+/XBBx80RXcaTH3H5a9//aueeeYZLVmyRF9//bWmTJmiK6+8Ulu3bj3lOn1NY4yJ1HzPlZKSEvXp00dLly6tU/ndu3drxIgRuuiii7Rt2zZNnz5dN998szZu3Ogu09zPkcYYE6n5niOV6jsuR48eVdu2bfXXv/5Vffr0qbbMRx99pHHjxummm27S1q1bdcUVV+iKK67QV1991ZBNbzSNMSbSsTtFH3+u7N27t6Ga3DwYqLOBAwcat99+u/t9RUWFERUVZaSlpVVb/vbbbzcuvvhij22pqanGBRdc4H4/Z84co0+fPo3S3qZS33Fp3769kZGR4bHtqquuMq677rpTrtPXNMaYnAnnimEYhiRj3bp1tZa55557jN69e3tsGzNmjJGUlOR+39zPkeM11JicKedIpbqMy/GGDh1q3HHHHVW2jx492hgxYoTHtoSEBOPWW289zRY2vYYakxdeeMGw2+0N1q7miBmgOiorK9OWLVuUmJjo3ma1WpWYmKjNmzdXe8z555+vLVu2uKflv//+e23YsEF/+tOfPMrt3LlTUVFR6tq1q6677jrt27ev8TrSwE5lXI4ePVplqjUoKMj9X6qnUqcvaYwxqdScz5X62Lx5s8f4SVJSUpJ7/Jr7OXIqTjYmlcxyjtRHXcfObA4fPqzOnTsrOjpal19+uf7zn/94u0lNigBUR4cOHVJFRYUiIiI8tkdERCgvL6/aY6699lo99NBDuvDCC+Xv76/Y2FgNGzbM4xJYQkKCMjMzlZ2drWXLlmn37t0aPHiwiouLG7U/DeVUxiUpKUmLFi3Szp075XK59Pbbb2vt2rU6cODAKdfpSxpjTKTmf67UR15eXrXjV1RUpP/+97/N/hw5FScbE8lc50h91DR2Z+q5Uhc9evTQ888/r9dff10vvviiXC6Xzj//fP3444/eblqTIQA1ok2bNunRRx/VU089pdzcXK1du1Zvvvmm5s2b5y5z2WWX6c9//rPOO+88JSUlacOGDfr111/1yiuveLHljevJJ59U9+7d1bNnT9lsNqWkpGjSpEmyWs17OtZlTMx4rqB+OEdQV4MGDdKECRMUFxenoUOHau3atWrbtq2eeeYZbzetyZj3G6ee2rRpIz8/P+Xn53tsz8/PV2RkZLXHPPDAAxo/frxuvvlmnXvuubryyiv16KOPKi0tTS6Xq9pjWrVqpbPOOkvfffddg/ehMZzKuLRt21avvfaaSkpKtHfvXn3zzTcKCQlR165dT7lOX9IYY1Kd5nau1EdkZGS14xcWFqagoKBmf46cipONSXXO5HOkPmoauzP1XDkV/v7+6tu3r6nOFQJQHdlsNvXr1085OTnubS6XSzk5ORo0aFC1x5SWllaZ1fDz85MkGTU8gu3w4cPatWuX2rdv30Atb1ynMi6VAgMD1aFDB/32229as2aNLr/88tOu0xc0xphUp7mdK/UxaNAgj/GTpLfffts9fs39HDkVJxuT6pzJ50h9nMrYmU1FRYW+/PJLc50r3l6F3ZysWrXKCAgIMDIzM42vv/7amDx5stGqVSsjLy/PMAzDGD9+vDFz5kx3+Tlz5hihoaHGyy+/bHz//ffGW2+9ZcTGxhqjR492l7nrrruMTZs2Gbt37zY+/PBDIzEx0WjTpo1x8ODBJu/fqarvuHz88cfGmjVrjF27dhn//ve/jYsvvtjo0qWL8csvv9S5Tl/XGGPSnM+V4uJiY+vWrcbWrVsNScaiRYuMrVu3Gnv37jUMwzBmzpxpjB8/3l3++++/N1q2bGnMmDHD2L59u7F06VLDz8/PyM7Odpdp7udIY4xJcz5HKtV3XAzDcJfv16+fce211xpbt241/vOf/7j3f/jhh0aLFi2MhQsXGtu3bzfmzJlj+Pv7G19++WWT9u1UNcaYPPjgg8bGjRuNXbt2GVu2bDHGjh1rBAYGepQ50xGA6mnJkiVGp06dDJvNZgwcOND4+OOP3fuGDh1qTJw40f2+vLzcmDt3rhEbG2sEBgYa0dHRxm233ebxpTZmzBijffv2hs1mMzp06GCMGTPG+O6775qwRw2jPuOyadMm4+yzzzYCAgKM8PBwY/z48cb+/fvrVWdz0NBj0pzPlXfffdeQVOVVOQYTJ040hg4dWuWYuLg4w2azGV27djVeeOGFKvU253OkMcakOZ8jlU5lXKor37lzZ48yr7zyinHWWWcZNpvN6N27t/Hmm282TYcaQGOMyfTp091/OxEREcaf/vQnIzc3t+k65QMshlHDtRgAAIAzFGuAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAACA6RCAAKAZ2LRpkywWi3799VdvNwU4IxCAAHi44YYbZLFYNH/+fI/tr732miwWi/u9YRh69tlnNWjQIIWFhSkkJES9e/fWHXfcUecHKpaWlmrWrFmKjY1VYGCg2rZtq6FDh+r11193l4mJiVF6enqD9K2xVY6dxWKRv7+/unTponvuuUdHjhypVz3Dhg3T9OnTPbadf/75OnDggOx2ewO2GDAvAhCAKgIDA7VgwQL98ssv1e43DEPXXnutpk2bpj/96U9666239PXXX+u5555TYGCgHn744Tp9zpQpU7R27VotWbJE33zzjbKzs3XNNdeooKCgIbvTpIYPH64DBw7o+++/1xNPPKFnnnlGc+bMOe16bTabIiMjPUIogNPg3SdxAPA1EydONEaOHGn07NnTmDFjhnv7unXrjMp/Zbz88suGJOP111+vtg6Xy1Wnz7Lb7UZmZmaN+4cOHVrleUaV3n//fePCCy80AgMDjY4dOxpTp041Dh8+7N7/97//3ejXr58REhJiREREGOPGjTPy8/Pd+yufr5SdnW3ExcUZgYGBxkUXXWTk5+cbGzZsMHr27GmEhoYa48aNM0pKSurUn4kTJxqXX365x7arrrrK6Nu3r/v9oUOHjLFjxxpRUVFGUFCQcc455xgrV670qOPEPu/evdvd3uOfJfjqq68avXr1Mmw2m9G5c2dj4cKFdWonAMNgBghAFX5+fnr00Ue1ZMkS/fjjj1X2v/zyy+rRo4dGjRpV7fF1naWIjIzUhg0bVFxcXO3+tWvXqmPHjnrooYd04MABHThwQJK0a9cuDR8+XFdffbW++OILrV69Wh988IFSUlLcx5aXl2vevHn6/PPP9dprr2nPnj264YYbqnzG3LlzlZGRoY8++kg//PCDRo8erfT0dK1cuVJvvvmm3nrrLS1ZsqRO/TnRV199pY8++kg2m8297ciRI+rXr5/efPNNffXVV5o8ebLGjx+vTz/9VJL05JNPatCgQbrlllvcfY6Ojq5S95YtWzR69GiNHTtWX375pebOnasHHnhAmZmZp9RWwHS8ncAA+JbjZzH+8Ic/GDfeeKNhGJ4zQD179jRGjRrlcdwdd9xhBAcHG8HBwUaHDh3q9Fnvvfee0bFjR8Pf39/o37+/MX36dOODDz7wKNO5c2fjiSee8Nh20003GZMnT/bY9v777xtWq9X473//W+1nffbZZ4Yko7i42DCM32eA3nnnHXeZtLQ0Q5Kxa9cu97Zbb73VSEpKqlN/Jk6caPj5+RnBwcFGQECAIcmwWq3Gq6++WutxI0aMMO666y73+6FDhxp33HGHR5kTZ4CuvfZa45JLLvEoM2PGDKNXr151aitgdswAAajRggULtHz5cm3fvv2kZe+//35t27ZNs2fP1uHDh+tU/5AhQ/T9998rJydH11xzjf7zn/9o8ODBmjdvXq3Hff7558rMzFRISIj7lZSUJJfLpd27d0s6NkOSnJysTp06KTQ0VEOHDpUk7du3z6Ou8847z/3PERERatmypbp27eqx7eDBg3XqjyRddNFF2rZtmz755BNNnDhRkyZN0tVXX+3eX1FRoXnz5uncc8+Vw+FQSEiINm7cWKVdJ7N9+3ZdcMEFHtsuuOAC7dy5UxUVFfWqCzAjAhCAGg0ZMkRJSUmaNWuWx/bu3btrx44dHtvatm2rbt26qV27dvX6DH9/fw0ePFj33nuv3nrrLT300EOaN2+eysrKajzm8OHDuvXWW7Vt2zb36/PPP9fOnTsVGxurkpISJSUlKSwsTC+99JI+++wzrVu3TpKq1Ovv7+/+58pfbx3PYrHI5XLVuT/BwcHq1q2b+vTpo+eff16ffPKJnnvuOff+xx9/XE8++aTuvfdevfvuu9q2bZuSkpJq7S+AhtfC2w0A4Nvmz5+vuLg49ejRw71t3Lhxuvbaa/X666/r8ssvb9DP69Wrl3777TcdOXJENptNNputyoxGfHy8vv76a3Xr1q3aOr788ksVFBRo/vz57vUz//u//9ug7awLq9Wq++67T6mpqbr22msVFBSkDz/8UJdffrmuv/56SZLL5dK3336rXr16uY+rrs8nOvvss/Xhhx96bPvwww911llnyc/Pr+E7A5xhmAECUKtzzz1X1113nRYvXuzeNnbsWF1zzTUaO3asHnroIX3yySfas2eP3nvvPa1evbrOX8DDhg3TM888oy1btmjPnj3asGGD7rvvPl100UUKCwuTdOw+QP/+97+1f/9+HTp0SJJ077336qOPPlJKSoq2bdumnTt36vXXX3cvgu7UqZNsNpuWLFmi77//Xm+88cZJL6s1lj//+c/y8/PT0qVLJR2bPXv77bf10Ucfafv27br11luVn5/vcUxMTIx7TA8dOlTtDNRdd92lnJwczZs3T99++62WL1+ujIwM3X333U3SL6C5IwABOKmHHnrI40vYYrFo9erVSk9P14YNG/THP/5RPXr00I033qjo6Gh98MEHdao3KSlJy5cv16WXXqqzzz5bU6dOVVJSkl555RWPz96zZ49iY2PVtm1bScfW7bz33nv69ttvNXjwYPXt21ezZ89WVFSUpGOX4zIzM/WPf/xDvXr10vz587Vw4cIGHJG6a9GihVJSUvTYY4+ppKREf/3rXxUfH6+kpCQNGzZMkZGRuuKKKzyOufvuu+Xn56devXqpbdu21a4Pio+P1yuvvKJVq1bpnHPO0ezZs/XQQw9V+0s3AFVZDMMwvN0IAACApsQMEAAAMB0CEIBGc/zP1E98vf/++95uXr3s27ev1v7U92fsALyLS2AAGk1tD0Xt0KGDgoKCmrA1p+e3337Tnj17atwfExOjFi34YS3QXBCAAACA6XAJDAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmM7/ByEi8rSCAAwtAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_23.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCZ0lEQVR4nO3dfXzN9f/H8efZ7MrYXI6xmYuRhBKRi8RSI4lvfUslUctF8ZV0IV/1RQohSVL4zvgW6Vvo26WK6EL1TS6+hSXDYnKVtJnVzM7798f57eS4mG12rj7ncb/dzu3sfM7n4vV5n7Od596f9+d8bMYYIwAAAD8X5O0CAAAAygOhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgA8bOHChbLZbMrMzPR2KYClEGoAC1q/fr2GDx+uSy65RJGRkapXr55uvfVW/fjjj2fM26VLF9lsNtlsNgUFBSkqKkoXXXSR+vfvr48//rhU233nnXd09dVXKyYmRhUrVlTDhg116623auXKleW1a2eYNGmS3nrrrTOmf/nllxo/frx+++03t237dOPHj3e2pc1mU8WKFdWsWTM9/vjjysnJKZdtLFmyRDNnziyXdQFWQ6gBLOiZZ57RsmXLdM011+j555/X4MGD9dlnn+nyyy/Xli1bzpg/Li5Or7zyiv71r39p2rRpuvHGG/Xll1/quuuuU9++fVVQUHDebU6fPl033nijbDabxowZo+eee04333yzduzYoaVLl7pjNyUVH2omTJjg0VBT5KWXXtIrr7yiGTNmqGnTpnr66afVvXt3lcel9gg1wLlV8HYBAMrfqFGjtGTJEoWGhjqn9e3bVy1atNCUKVP06quvuswfHR2tO++802XalClTNGLECM2ZM0f169fXM888c87tnTx5UhMnTtS1116rjz766IznDx06dIF75Dvy8vJUsWLFYuf561//qho1akiShg4dqptvvlnLly/X119/rfbt23uiTCAg0VMDWFCHDh1cAo0kNW7cWJdcconS09NLtI7g4GDNmjVLzZo10+zZs5WdnX3OeX/55Rfl5OSoY8eOZ30+JibG5fEff/yh8ePHq0mTJgoPD1dsbKxuuukm7dy50znP9OnT1aFDB1WvXl0RERFq3bq13nzzTZf12Gw2HT9+XIsWLXIe8hk4cKDGjx+vRx55RJLUoEED53OnjmF59dVX1bp1a0VERKhatWq67bbbtHfvXpf1d+nSRc2bN9eGDRvUuXNnVaxYUX//+99L1H6nSkpKkiTt3r272PnmzJmjSy65RGFhYapTp46GDRvm0tPUpUsXvffee/rpp5+c+1S/fv1S1wNYFT01QIAwxujgwYO65JJLSrxMcHCwbr/9dj3xxBP64osv1LNnz7POFxMTo4iICL3zzjv629/+pmrVqp1znYWFhbrhhhu0evVq3XbbbXrggQd07Ngxffzxx9qyZYsaNWokSXr++ed14403ql+/fjpx4oSWLl2qW265Re+++66zjldeeUX33nuv2rZtq8GDB0uSGjVqpMjISP3444967bXX9Nxzzzl7TWrWrClJevrpp/XEE0/o1ltv1b333qvDhw/rhRdeUOfOnbVp0yZVqVLFWe+RI0fUo0cP3XbbbbrzzjtVq1atErdfkaKwVr169XPOM378eE2YMEHdunXTfffdp+3bt+ull17S+vXrtW7dOoWEhGjs2LHKzs5WVlaWnnvuOUlSpUqVSl0PYFkGQEB45ZVXjCSTmprqMv3qq682l1xyyTmXW7FihZFknn/++WLX/49//MNIMpGRkaZHjx7m6aefNhs2bDhjvgULFhhJZsaMGWc8Z7fbnT/n5eW5PHfixAnTvHlzk5SU5DI9MjLSDBgw4Ix1TZs2zUgyu3fvdpmemZlpgoODzdNPP+0y/fvvvzcVKlRwmX711VcbSebll18+536faty4cUaS2b59uzl8+LDZvXu3mTt3rgkLCzO1atUyx48fN8YYk5aW5lLboUOHTGhoqLnuuutMYWGhc32zZ882ksyCBQuc03r27GkSEhJKVA8QaDj8BASAH374QcOGDVP79u01YMCAUi1b1BNw7NixYuebMGGClixZolatWunDDz/U2LFj1bp1a11++eUuh7yWLVumGjVq6G9/+9sZ67DZbM6fIyIinD8fPXpU2dnZuuqqq7Rx48ZS1X+65cuXy26369Zbb9Uvv/zivNWuXVuNGzfWmjVrXOYPCwvT3XffXaptXHTRRapZs6YaNGigIUOGKDExUe+99945x+KsWrVKJ06c0MiRIxUU9Oef5UGDBikqKkrvvfde6XcUCEABGWo+++wz9erVS3Xq1JHNZjvrmRPe2F56erpuvPFGRUdHKzIyUldccYX27Nnj1tpgfQcOHFDPnj0VHR2tN998U8HBwaVaPjc3V5JUuXLl8857++236/PPP9fRo0f10Ucf6Y477tCmTZvUq1cv/fHHH5Ich2IuuugiVahQ/NHvd999V1deeaXCw8NVrVo11axZUy+99FKxY3tKYseOHTLGqHHjxqpZs6bLLT09/YxBzXXr1j1jfNL5LFu2TB9//LHWrl2rjIwMbdmyRa1btz7n/D/99JMkRxg6VWhoqBo2bOh8HkDxAnJMzfHjx3XppZfqnnvu0U033eQT29u5c6c6deqklJQUTZgwQVFRUdq6davCw8PdXh+sKzs7Wz169NBvv/2mzz//XHXq1Cn1OopOAU9MTCzxMlFRUbr22mt17bXXKiQkRIsWLdJ///tfXX311SVa/vPPP9eNN96ozp07a86cOYqNjVVISIjS0tK0ZMmSUu/Dqex2u2w2mz744IOzBrzTx6ic2mNUUp07d3aO4wHgOQEZanr06KEePXqc8/n8/HyNHTtWr732mn777Tc1b95czzzzjLp06eKW7UnS2LFjdf3112vq1KnOaUUDJoGy+OOPP9SrVy/9+OOPWrVqlZo1a1bqdRQWFmrJkiWqWLGiOnXqVKY62rRpo0WLFmn//v2SHO/r//73vyooKFBISMhZl1m2bJnCw8P14YcfKiwszDk9LS3tjHlPPWRVkumNGjWSMUYNGjRQkyZNSrs7bpGQkCBJ2r59uxo2bOicfuLECe3evVvdunVzTjvXfgEI0MNP5zN8+HB99dVXWrp0qb777jvdcsst6t69u3bs2OGW7dntdr333ntq0qSJkpOTFRMTo3bt2rn9sBisq7CwUH379tVXX32lN954o0zfjVJYWKgRI0YoPT1dI0aMUFRU1DnnzcvL01dffXXW5z744ANJfx5aufnmm/XLL79o9uzZZ8xr/v/L6YKDg2Wz2VRYWOh8LjMz86y/E5GRkWf9gr3IyEhJOuO5m266ScHBwZowYcIZX4ZnjNGRI0fOvpNu1K1bN4WGhmrWrFkuNaWmpio7O9vlrLPIyMgLPgQHWFVA9tQUZ8+ePUpLS9OePXucXfUPP/ywVq5cqbS0NE2aNKnct3no0CHl5uZqypQpeuqpp/TMM89o5cqVuummm7RmzZoSd9kDRR566CG9/fbb6tWrl3799dczvmzv9C/ay87Ods6Tl5enjIwMLV++XDt37tRtt92miRMnFru9vLw8dejQQVdeeaW6d++u+Ph4/fbbb3rrrbf0+eefq0+fPmrVqpUk6a677tK//vUvjRo1St98842uuuoqHT9+XKtWrdL999+v3r17q2fPnpoxY4a6d++uO+64Q4cOHdKLL76oxMREfffddy7bbt26tVatWqUZM2aoTp06atCggdq1a+ccwzJ27FjddtttCgkJUa9evdSoUSM99dRTGjNmjDIzM9WnTx9VrlxZu3fv1ooVKzR48GA9/PDDF9T+pVWzZk2NGTNGEyZMUPfu3XXjjTdq+/btmjNnjq644gqX16t169Z6/fXXNWrUKF1xxRWqVKmSevXq5dF6AZ/lzVOvfIEks2LFCufjd99913la6qm3ChUqmFtvvdUYY0x6erqRVOxt9OjRJdqeMcbs27fPSDK33367y/RevXqZ2267rVz3F4Gh6FTkc92Km7dSpUqmcePG5s477zQfffRRibZXUFBg5s+fb/r06WMSEhJMWFiYqVixomnVqpWZNm2ayc/Pd5k/Ly/PjB071jRo0MCEhISY2rVrm7/+9a9m586dznlSU1NN48aNTVhYmGnatKlJS0tznjJ9qh9++MF07tzZREREGEkup3dPnDjR1K1b1wQFBZ1xeveyZctMp06dnL/jTZs2NcOGDTPbt293aZviTnc/XVF9hw8fLna+00/pLjJ79mzTtGlTExISYmrVqmXuu+8+c/ToUZd5cnNzzR133GGqVKliJHF6N3AKmzHlcDESP2az2bRixQr16dNHkvT666+rX79+2rp16xmDCCtVqqTatWvrxIkT2rVrV7HrrV69uvOLvorbnuQ4bh4ZGalx48bp8ccfd04fPXq0vvjiC61bt67sOwgAQIDg8NNpWrVqpcLCQh06dEhXXXXVWecJDQ1V06ZNy22boaGhuuKKK7R9+3aX6T/++KNzACEAACheQIaa3NxcZWRkOB/v3r1bmzdvVrVq1dSkSRP169dPd911l5599lm1atVKhw8f1urVq9WyZctzfk18WbdXr149SdIjjzyivn37qnPnzuratatWrlypd955R2vXrr3g/QUAIBAE5OGntWvXqmvXrmdMHzBggBYuXKiCggI99dRT+te//qV9+/apRo0auvLKKzVhwgS1aNGi3LdXZMGCBZo8ebKysrJ00UUXacKECerdu3eptwcAQCAKyFADAACsh++pAQAAlkCoAQAAlhBQA4Xtdrt+/vlnVa5cma8aBwDATxhjdOzYMdWpU8flSvanC6hQ8/PPPys+Pt7bZQAAgDLYu3ev4uLizvl8QIWaypUrS3I0SnHXsQEAAL4jJydH8fHxzs/xcwmoUFN0yCkqKopQAwCAnznf0BEGCgMAAEsg1AAAAEsg1AAAAEsIqDE1AACURWFhoQoKCrxdhmWFhIQoODj4gtdDqAEA4ByMMTpw4IB+++03b5dieVWqVFHt2rUv6HvkCDUAAJxDUaCJiYlRxYoV+eJWNzDGKC8vT4cOHZIkxcbGlnldhBoAAM6isLDQGWiqV6/u7XIsLSIiQpJ06NAhxcTElPlQFAOFAQA4i6IxNBUrVvRyJYGhqJ0vZOwSoQYAgGJwyMkzyqOdCTUAAMASCDUAAMASCDXAKbKypDVrHPcA4K8GDhwom80mm82mkJAQ1apVS9dee60WLFggu91e4vUsXLhQVapUcV+h5Yyzn4D/l5oqDR4s2e1SUJA0b56UkuLtqgD4syNHjujEiRPnfD40NNRtZ1Z1795daWlpKiws1MGDB7Vy5Uo98MADevPNN/X222+rQgXrRQDr7RFQBllZfwYayXE/ZIiUnCzFxXm3NgD+6ciRI5o9e/Z55xs+fLhbgk1YWJhq164tSapbt64uv/xyXXnllbrmmmu0cOFC3XvvvZoxY4bS0tK0a9cuVatWTb169dLUqVNVqVIlrV27VnfffbekPwfxjhs3TuPHj9crr7yi559/Xtu3b1dkZKSSkpI0c+ZMxcTElPt+lAaHnwBJO3b8GWiKFBZKGRneqQeA/yuuh6Ys85WHpKQkXXrppVq+fLkkKSgoSLNmzdLWrVu1aNEiffLJJ3r00UclSR06dNDMmTMVFRWl/fv3a//+/Xr44YclOU67njhxov73v//prbfeUmZmpgYOHOix/TgXemoASY0bOw45nRpsgoOlxETv1QQA7tC0aVN99913kqSRI0c6p9evX19PPfWUhg4dqjlz5ig0NFTR0dGy2WzOHp8i99xzj/Pnhg0batasWbriiiuUm5urSpUqeWQ/zoaeGkCOQ0zz5jmCjOS4nzuXQ08ArMcY4zyctGrVKl1zzTWqW7euKleurP79++vIkSPKy8srdh0bNmxQr169VK9ePVWuXFlXX321JGnPnj1ur784hBrg/6WkSJmZjrOfMjMZJAzAmtLT09WgQQNlZmbqhhtuUMuWLbVs2TJt2LBBL774oqTiD4kdP35cycnJioqK0uLFi7V+/XqtWLHivMt5AoefgFPExdE7A8C6PvnkE33//fd68MEHtWHDBtntdj377LMKCnL0cfz73/92mT80NFSFhYUu03744QcdOXJEU6ZMUXx8vCTp22+/9cwOnAc9NeWA7zYBAPia/Px8HThwQPv27dPGjRs1adIk9e7dWzfccIPuuusuJSYmqqCgQC+88IJ27dqlV155RS+//LLLOurXr6/c3FytXr1av/zyi/Ly8lSvXj2FhoY6l3v77bc1ceJEL+2lK0LNBUpNlRISpKQkx31qqrcrAgBAWrlypWJjY1W/fn11795da9as0axZs/Sf//xHwcHBuvTSSzVjxgw988wzat68uRYvXqzJkye7rKNDhw4aOnSo+vbtq5o1a2rq1KmqWbOmFi5cqDfeeEPNmjXTlClTNH36dC/tpSubMcZ4uwhPycnJUXR0tLKzsxUVFXXB68vKcgSZ08+YyczkEAYA+Ls//vhDu3fvVoMGDRQeHl7q5b39PTX+prj2LunnN2NqLkBx321CqAGAwFa9enUNHz7ca98oHIgINReA7zYBABSHwOJZjKm5AHy3CQAAvoOemguUkuK4PlBGhqOHhkADAIB3EGrKAd9tAgCA93H4CQAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAlMratWtls9n022+/lXiZ+vXra+bMmW6rSSLUAABgOQMHDpTNZtPQoUPPeG7YsGGy2WwaOHCg5wtzM0INAAAWFB8fr6VLl+r33393Tvvjjz+0ZMkS1atXz4uVuY9fhZp9+/bpzjvvVPXq1RUREaEWLVro22+/9XZZAAD4nMsvv1zx8fFavny5c9ry5ctVr149tWrVyjktPz9fI0aMUExMjMLDw9WpUyetX7/eZV3vv/++mjRpooiICHXt2lWZmZlnbO+LL77QVVddpYiICMXHx2vEiBE6fvy42/bvbPwm1Bw9elQdO3ZUSEiIPvjgA23btk3PPvusqlat6u3SAAA4r6wsac0ax72n3HPPPUpLS3M+XrBgge6++26XeR599FEtW7ZMixYt0saNG5WYmKjk5GT9+uuvkqS9e/fqpptuUq9evbR582bde++9euyxx1zWsXPnTnXv3l0333yzvvvuO73++uv64osvNHz4cPfv5KmMnxg9erTp1KnTBa0jOzvbSDLZ2dnlVBUAwKp+//13s23bNvP7779f8Lr++U9jgoKMkRz3//xnORRYjAEDBpjevXubQ4cOmbCwMJOZmWkyMzNNeHi4OXz4sOndu7cZMGCAyc3NNSEhIWbx4sXOZU+cOGHq1Kljpk6daowxZsyYMaZZs2Yu6x89erSRZI4ePWqMMSYlJcUMHjzYZZ7PP//cBAUFOdsvISHBPPfcc+esubj2Lunnt9/01Lz99ttq06aNbrnlFsXExKhVq1aaP39+scvk5+crJyfH5QYAgCdlZUmDB0t2u+Ox3S4NGeKZHpuaNWuqZ8+eWrhwodLS0tSzZ0/VqFHD+fzOnTtVUFCgjh07OqeFhISobdu2Sk9PlySlp6erXbt2Lutt3769y+P//e9/WrhwoSpVquS8JScny263a/fu3W7cQ1d+c+2nXbt26aWXXtKoUaP097//XevXr9eIESMUGhqqAQMGnHWZyZMna8KECR6uFACAP+3Y8WegKVJY6LgQsieuG3jPPfc4DwO9+OKLbtlGbm6uhgwZohEjRpzxnCcHJftNqLHb7WrTpo0mTZokSWrVqpW2bNmil19++ZyhZsyYMRo1apTzcU5OjuLj4z1SLwAAktS4sRQU5BpsgoOlxETPbL979+46ceKEbDabkpOTXZ5r1KiRQkNDtW7dOiUkJEiSCgoKtH79eo0cOVKSdPHFF+vtt992We7rr792eXz55Zdr27ZtSvTUTp2D3xx+io2NVbNmzVymXXzxxdqzZ885lwkLC1NUVJTLDQAAT4qLk+bNcwQZyXE/d65nemkc2wtWenq6tm3bpuCiIv5fZGSk7rvvPj3yyCNauXKltm3bpkGDBikvL08pKSmSpKFDh2rHjh165JFHtH37di1ZskQLFy50Wc/o0aP15Zdfavjw4dq8ebN27Nih//znPx4fKOw3PTUdO3bU9u3bXab9+OOPzmQJAICvSkmRkpMdh5wSEz0XaIoU90/9lClTZLfb1b9/fx07dkxt2rTRhx9+6Dy7uF69elq2bJkefPBBvfDCC2rbtq0mTZqke+65x7mOli1b6tNPP9XYsWN11VVXyRijRo0aqW/fvm7ft1PZjDHGo1sso/Xr16tDhw6aMGGCbr31Vn3zzTcaNGiQ5s2bp379+pVoHTk5OYqOjlZ2dja9NgCAYv3xxx/avXu3GjRooPDwcG+XY3nFtXdJP7/95vDTFVdcoRUrVui1115T8+bNNXHiRM2cObPEgQYAAFib3xx+kqQbbrhBN9xwg7fLAAAAPshvemoAAACKQ6gBAACWQKgBAKAYfnI+jd8rj3Ym1AAAcBYhISGSpLy8PC9XEhiK2rmo3cvCrwYKAwDgKcHBwapSpYoOHTokSapYsaJsNpuXq7IeY4zy8vJ06NAhValS5YwvCCwNQg0AAOdQu3ZtSXIGG7hPlSpVnO1dVoQaAADOwWazKTY2VjExMSooKPB2OZYVEhJyQT00RQg1AACcR3BwcLl86MK9GCgMAAAsgVADAAAsgVADAAAsgVADAAAsgVADAAAsgVADAAAsgVAD+JisLGnNGsc9AKDkCDWAD0lNlRISpKQkx31qqrcrAgD/QagBfERWljR4sGS3Ox7b7dKQIfTYAEBJEWoAH7Fjx5+BpkhhoZSR4Z16AMDfEGoAH9G4sRR02m9kcLCUmOidegDA3xBqAB8RFyfNm+cIMpLjfu5cx3QAwPlxQUvAh6SkSMnJjkNOiYkEGgAoDUIN4GPi4ggzAFAWHH4CAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgB4BFZWdKaNY57AHAHQg0At0tNlRISpKQkx31qqrcrAmBFhBoAbpWVJQ0eLNntjsd2uzRkCD02AMqf34aaKVOmyGazaeTIkd4uBUAxduz4M9AUKSyUMjK8Uw8A6/LLULN+/XrNnTtXLVu29HYpAM6jcWMp6LS/NMHBUmKid+oBYF1+F2pyc3PVr18/zZ8/X1WrVvV2OQDOIy5OmjfPEWQkx/3cuY7pAFCe/C7UDBs2TD179lS3bt3OO29+fr5ycnJcbgA8LyVFysx0nP2Umel4DADlrYK3CyiNpUuXauPGjVq/fn2J5p88ebImTJjg5qoAlERcHL0zANzLb3pq9u7dqwceeECLFy9WeHh4iZYZM2aMsrOznbe9e/e6uUoAAOAtNmOM8XYRJfHWW2/pL3/5i4KLDsxLKiwslM1mU1BQkPLz812eO5ucnBxFR0crOztbUVFR7i4ZAACUg5J+fvvN4adrrrlG33//vcu0u+++W02bNtXo0aPPG2gAAIC1+U2oqVy5spo3b+4yLTIyUtWrVz9jOgAACDx+M6YGAACgOH7TU3M2a9eu9XYJAADAR9BTAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALMFvQs3kyZN1xRVXqHLlyoqJiVGfPn20fft2b5cFAAB8hN+Emk8//VTDhg3T119/rY8//lgFBQW67rrrdPz4cW+XBgAAfIDNGGO8XURZHD58WDExMfr000/VuXPnEi2Tk5Oj6OhoZWdnKyoqys0VAgCA8lDSz+8KHqypXGVnZ0uSqlWrds558vPzlZ+f73yck5Pj9roAAIB3+M3hp1PZ7XaNHDlSHTt2VPPmzc853+TJkxUdHe28xcfHe7BKAADgSX55+Om+++7TBx98oC+++EJxcXHnnO9sPTXx8fEcfgIAwI9Y9vDT8OHD9e677+qzzz4rNtBIUlhYmMLCwjxUGQAA8Ca/CTXGGP3tb3/TihUrtHbtWjVo0MDbJQEAAB/iN6Fm2LBhWrJkif7zn/+ocuXKOnDggCQpOjpaERERXq4OAAB4m9+MqbHZbGednpaWpoEDB5ZoHZzSDQCA/7HcmBo/yV4AAMBL/PKUbgAAgNMRagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQalAmWVnSmjWOe/gGXhMAgY5Qg1JLTZUSEqSkJMd9aqq3KwKvCQBINmOM8XYRnpKTk6Po6GhlZ2crKirK2+X4pawsx4em3f7ntOBgKTNTiovzWlkBjdcEgNWV9PObnhqUyo4drh+eklRYKGVkeKce8JoAQBFCDUqlcWMp6LR3TXCwlJjonXrAawIARQg1KJW4OGnePMeHpuS4nzuXwxzexGsCAA6MqUGZZGU5Dm8kJvLh6St4TQBYVUk/vyuUZeVZWVmqUqWKKlWq5DK9oKBAX331lTp37lyW1cKPxMXxwelreE0ABLpSHX7av3+/2rZtq4SEBFWpUkV33XWXcnNznc//+uuv6tq1a7kXCQAAcD6lCjWPPfaYgoKC9N///lcrV67Utm3b1LVrVx09etQ5TwAdzQIAAD6kVKFm1apVmjVrltq0aaNu3bpp3bp1io2NVVJSkn799VdJks1mc0uhAAAAxSlVqMnOzlbVqlWdj8PCwrR8+XLVr19fXbt21aFDh8q9QAAAgJIoVahp2LChvvvuO5dpFSpU0BtvvKGGDRvqhhtuKNfiAAAASqpUoaZHjx6aN2/eGdOLgs1ll11WXnUBAACUSqm+p+bkyZPKy8tzniP+yy+/SJJq1KjhfH7fvn1KSEhwQ6kXzp++pyYry/H1940bc5ouACCwueXaTxUqVJDdbtewYcNUo0YN1apVS7Vq1VKNGjU0fPhw5ebm+myg8SdccRkAgNIrVU/Nr7/+qvbt22vfvn3q16+fLr74YknStm3btGTJEsXHx+vLL790GUzsS/yhp4YrLgMA4Mot3yj85JNPKjQ0VDt37lStWrXOeO66667Tk08+qeeee65sVaPYKy4TagAAOLdSHX566623NH369DMCjSTVrl1bU6dO1YoVK8qtuEDEFZcBACibUl8m4ZJLLjnn882bN9eBAwcuuKhAxhWXAQAom1IdfqpRo4YyMzMVd45P2N27d6tatWrlUlggS0mRkpO54jIAAKVRqp6a5ORkjR07VidOnDjjufz8fD3xxBPq3r17uRUXyOLipC5dCDQAAJRUqc5+ysrKUps2bRQWFqZhw4apadOmMsYoPT1dc+bMUX5+vr799lvFx8e7s+Yy84eznwAAgCu3nP0UFxenr776Svfff7/GjBnjvCK3zWbTtddeq9mzZ/tsoAEAANZWqlAjSQ0aNNAHH3ygo0ePaseOHZKkxMRExtIAAACvKnWoKVK1alW1bdu2PGvxK0eOHDnr2KIioaGhql69utfXWZ527typvLy8cz5fsWJFNWrUyIMVlQ9Ptvu5tvXbb7/p5MmTCgkJUXR0tMtz2dnZMsaoSpUqZ13OZrOdsUxxtfvC/rpjW+XNqrWX5T1zvnUWt1xZaizL+gJRef9NLstr4muvY5lDjbe8+OKLmjZtmg4cOKBLL71UL7zwgsfD1ZEjRzR79uzzzjd8+PASv5juWGd52rlzp1599dXzznfnnXf6VbDxZLuXdFvl7dTafXF/vfWeLk4g1F6c0/ervNvDn9vXV5T33+SyvCa++DqW6uwnb3v99dc1atQojRs3Ths3btSll16q5ORkHTp0yKN1FJdKyzKfu9ZZnor7b6As8/kKT7a7t167U7fri/vrrXYpTiDUXpp1lHd7+HP7+ory/ptcltfEF19Hvwo1M2bM0KBBg3T33XerWbNmevnll1WxYkUtWLDA26UBAAAv85tQc+LECW3YsEHdunVzTgsKClK3bt301VdfnXWZ/Px85eTkuNwAAIA1+U2o+eWXX1RYWHjGdadq1ap1zkszTJ48WdHR0c4bp5sDAGBdfhNqymLMmDHKzs523vbu3evtkgAAgJv4zdlPNWrUUHBwsA4ePOgy/eDBg6pdu/ZZlwkLC1NYWJgnygMAAF7mNz01oaGhat26tVavXu2cZrfbtXr1arVv396LlQEAAF/gNz01kjRq1CgNGDBAbdq0Udu2bTVz5kwdP35cd999t0frCA0NLdf53LXO8lSxYsVync9XeLLdvfXanbpdX9xfb7VLcQKh9tKso7zbw5/b11eU99/ksrwmvvg6luqClr5g9uzZzi/fu+yyyzRr1iy1a9euRMuW5wUt+UbhM/GNwmXfFt8o7HusWjvfKGwdgfSNwiX9/Pa7UHMhuEo3AAD+p6Sf334zpgYAAKA4hBoAAGAJhBoAAGAJhBoAQKlkZUlr1jjuAV9CqAEAlFhqqpSQICUlOe5TU71dEfAnQg0AoESysqTBgyW73fHYbpeGDKHHBr6DUAMAKJEdO/4MNEUKC6WMDO/UA5yOUAMAKJHGjaWg0z41goOlxETv1AOcjlADACiRuDhp3jxHkJEc93PnOqYDvsCvrv0EAPCulBQpOdlxyCkxkUAD30KoAQCUSlwcYQa+icNPAADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AAD4uawsac0ax30gI9SgTPgFAgDfkJoqJSRISUmO+9RUb1fkPYQalBq/QADgG7KypMGDJbvd8dhul4YMCdx/OAk1KBV+gQDAd+zY8eff4yKFhY6rqAciQg1KhV8gAPAdjRtLQad9kgcHS4mJ3qnH2wg1KBV+gQDAd8TFSfPmOf4OS477uXMd0wMRoQalwi8QAPiWlBQpM9Nx8kZmpuNxoLIZY4y3i/CUnJwcRUdHKzs7W1FRUd4ux69lZTkOOSUmEmgAAI7PhR07HD365f25UNLPb3pqUCZxcVKXLgQaAIDvnBVLqAEAAGXmS2fFEmoAAECZ+dJZsYQaAAD8nDe/5d2Xzool1AAA4Me8PZ7Fl86K5ewnALAwd56RAu/LynIEmVMP/wQHO07t9vTr7c6zYjn7CQACnLf/g4f7+dJ4Fl84K5ZQAwAW5EtnpMB9fGk8iy8g1ACABfnSf/BwH18az+ILKni7AABA+Sv6D/70sRaB+h+8laWkSMnJfMu7RE8NAFgS/8EHFl8Yz+IL6KkBAIviP3gEGkINAFhYXBxhBoGDw08AAMASCDUAAMAS/CLUZGZmKiUlRQ0aNFBERIQaNWqkcePG6cSJE94uDQAA+Ai/GFPzww8/yG63a+7cuUpMTNSWLVs0aNAgHT9+XNOnT/d2eQAAwAf47bWfpk2bppdeekm7du0q8TJc+wkAAP9T0s9vv+ipOZvs7GxVq1at2Hny8/OVn5/vfJyTk+PusgAAgJf4xZia02VkZOiFF17QkCFDip1v8uTJio6Odt7i4+M9VCEAAPA0r4aaxx57TDabrdjbDz/84LLMvn371L17d91yyy0aNGhQsesfM2aMsrOznbe9e/e6c3cAAIAXeXVMzeHDh3XkyJFi52nYsKFCQ0MlST///LO6dOmiK6+8UgsXLlTQ6ZcmPQ/G1AAA4H/8YkxNzZo1VbNmzRLNu2/fPnXt2lWtW7dWWlpaqQMNAACwNr8YKLxv3z516dJFCQkJmj59ug4fPux8rnbt2l6sDAAA+Aq/CDUff/yxMjIylJGRobjTLmLip2ekAwCAcuYXx3AGDhwoY8xZbwAAAJKfhBoAAIDzIdQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAASwrS1qzxnEPAP6OUAMEqNRUKSFBSkpy3KemersiALgwhBogAGVlSYMHS3a747HdLg0ZQo8NvIMeQ5QXQg0QgHbs+DPQFCkslDIyvFMPAhc9hihPhBogADVuLAWd9tsfHCwlJnqnHgQmegxR3gg1QACKi5PmzXMEGclxP3euYzrgKfQYorxV8HYBALwjJUVKTnZ8gCQmEmjgeUU9hqcGG3oMcSHoqQECWFyc1KULgQbeQY8hyhs9NQAAr6HHEOWJUAMA8Kq4OMIMygeHnwAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAvycqS1qxx3AMALhyhBvCC1FQpIUFKSnLcp6Z6uyIA8H+EGsDDsrKkwYMlu93x2G6XhgyhxwYALhShBvCwHTv+DDRFCguljAzv1AMAVkGoATyscWMp6LTfvOBgKTHx/MsyDgcAzs3vQk1+fr4uu+wy2Ww2bd682dvlAKUWFyfNm+cIMpLjfu5cx/TiMA4HAIrnd6Hm0UcfVZ06dbxdBnBBUlKkzExHr0tmpuNxcRiHAwDn51eh5oMPPtBHH32k6dOne7sU4ILFxUldupy/h0ZiHA4AlEQFbxdQUgcPHtSgQYP01ltvqWLFiiVaJj8/X/n5+c7HOTk57ioPcKuicTinBpuSjsPBhcvKcgTLxo1LFkIBeIdf9NQYYzRw4EANHTpUbdq0KfFykydPVnR0tPMWHx/vxioB9ynrOBxcOMYyAf7DZowx3tr4Y489pmeeeabYedLT0/XRRx/p3//+tz799FMFBwcrMzNTDRo00KZNm3TZZZedc9mz9dTEx8crOztbUVFR5bUbgMdkZTkOOSUmEmg8ISvLEWRO7yHLzKT9AU/KyclRdHT0eT+/vRpqDh8+rCNHjhQ7T8OGDXXrrbfqnXfekc1mc04vLCxUcHCw+vXrp0WLFpVoeyVtFACQHAO5k5LOPr1LF4+XAwQsvwg1JbVnzx6X8TA///yzkpOT9eabb6pdu3aKK+G/TIQaAKVBTw3gG0r6+e0XA4Xr1avn8rhSpUqSpEaNGpU40ABAaRWNZRoyxHG2GWOZAN/mF6EGALwlJUVKTmYsE+AP/DLU1K9fX35w1AyARcTFEWYAf+AXp3QDAACcD6EGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAAJUVpa0Zo3jHjiVv743CDUAEIBSU6WEBCkpyXGfmurtiuAr/Pm9YTPGGG8X4Sk5OTmKjo5Wdna2oqKivF0OAHhFVpbjw8pu/3NacLCUmSnFxXmtLPgAX31vlPTzm54aAAgwO3a4fmhJUmGhlJHhnXrgO/z9vUGoAYAA07ixFHTaX//gYCkx0Tv1wHf4+3uDUAMAASYuTpo3z/FhJTnu587l0BP8/73BmBoACFBZWY7DComJ/vOhBc/wtfdGST+/K3iwJgCAD4mL840PLPgef31v+NXhp/fee0/t2rVTRESEqlatqj59+ni7JAAA4CP8pqdm2bJlGjRokCZNmqSkpCSdPHlSW7Zs8XZZAADAR/hFqDl58qQeeOABTZs2TSkpKc7pzZo182JVAADAl/jF4aeNGzdq3759CgoKUqtWrRQbG6sePXqct6cmPz9fOTk5LjcAAGBNfhFqdu3aJUkaP368Hn/8cb377ruqWrWqunTpol9//fWcy02ePFnR0dHOW3x8vKdKBgAAHubVUPPYY4/JZrMVe/vhhx9k//+vNxw7dqxuvvlmtW7dWmlpabLZbHrjjTfOuf4xY8YoOzvbedu7d6+ndg0AAHiYV8fUPPTQQxo4cGCx8zRs2FD79++X5DqGJiwsTA0bNtSePXvOuWxYWJjCwsLKpVYAAODbvBpqatasqZo1a553vtatWyssLEzbt29Xp06dJEkFBQXKzMxUQkKCu8sEAAB+wC/OfoqKitLQoUM1btw4xcfHKyEhQdOmTZMk3XLLLV6uDgAA+AK/CDWSNG3aNFWoUEH9+/fX77//rnbt2umTTz5R1apVvV0aAADwAVz7CQAA+DSu/XQWRfmN76sBAMB/FH1un68fJqBCzbFjxySJ76sBAMAPHTt2TNHR0ed8PqAOP9ntdv3888+qXLmybDbbWefJyclRfHy89u7dG9CHqGiHP9EWDrSDA+3wJ9rCgXZwcGc7GGN07Ngx1alTR0FB5/6KvYDqqQkKClJcCa+lHhUVFdBvziK0w59oCwfawYF2+BNt4UA7OLirHYrroSniF5dJAAAAOB9CDQAAsARCzWnCwsI0bty4gL+8Au3wJ9rCgXZwoB3+RFs40A4OvtAOATVQGAAAWBc9NQAAwBIINQAAwBIINQAAwBIINQAAwBICMtS8+OKLql+/vsLDw9WuXTt9880355x369atuvnmm1W/fn3ZbDbNnDnTc4W6WWnaYf78+brqqqtUtWpVVa1aVd26dSt2fn9SmnZYvny52rRpoypVqigyMlKXXXaZXnnlFQ9W616laYtTLV26VDabTX369HFvgR5SmnZYuHChbDabyy08PNyD1bpPad8Pv/32m4YNG6bY2FiFhYWpSZMmev/99z1UrXuVpi26dOlyxnvCZrOpZ8+eHqzYPUr7npg5c6YuuugiRUREKD4+Xg8++KD++OMP9xVoAszSpUtNaGioWbBggdm6dasZNGiQqVKlijl48OBZ5//mm2/Mww8/bF577TVTu3Zt89xzz3m2YDcpbTvccccd5sUXXzSbNm0y6enpZuDAgSY6OtpkZWV5uPLyVdp2WLNmjVm+fLnZtm2bycjIMDNnzjTBwcFm5cqVHq68/JW2LYrs3r3b1K1b11x11VWmd+/eninWjUrbDmlpaSYqKsrs37/feTtw4ICHqy5/pW2H/Px806ZNG3P99debL774wuzevdusXbvWbN682cOVl7/StsWRI0dc3g9btmwxwcHBJi0tzbOFl7PStsPixYtNWFiYWbx4sdm9e7f58MMPTWxsrHnwwQfdVmPAhZq2bduaYcOGOR8XFhaaOnXqmMmTJ5932YSEBMuEmgtpB2OMOXnypKlcubJZtGiRu0r0iAttB2OMadWqlXn88cfdUZ5HlaUtTp48aTp06GD++c9/mgEDBlgi1JS2HdLS0kx0dLSHqvOc0rbDSy+9ZBo2bGhOnDjhqRI95kL/Tjz33HOmcuXKJjc3110lekRp22HYsGEmKSnJZdqoUaNMx44d3VZjQB1+OnHihDZs2KBu3bo5pwUFBalbt2766quvvFiZZ5VHO+Tl5amgoEDVqlVzV5lud6HtYIzR6tWrtX37dnXu3NmdpbpdWdviySefVExMjFJSUjxRptuVtR1yc3OVkJCg+Ph49e7dW1u3bvVEuW5TlnZ4++231b59ew0bNky1atVS8+bNNWnSJBUWFnqqbLcoj7+Xqampuu222xQZGemuMt2uLO3QoUMHbdiwwXmIateuXXr//fd1/fXXu63OgLqg5S+//KLCwkLVqlXLZXqtWrX0ww8/eKkqzyuPdhg9erTq1Knj8gb3N2Vth+zsbNWtW1f5+fkKDg7WnDlzdO2117q7XLcqS1t88cUXSk1N1ebNmz1QoWeUpR0uuugiLViwQC1btlR2dramT5+uDh06aOvWrSW+gK6vKUs77Nq1S5988on69eun999/XxkZGbr//vtVUFCgcePGeaJst7jQv5fffPONtmzZotTUVHeV6BFlaYc77rhDv/zyizp16iRjjE6ePKmhQ4fq73//u9vqDKhQg/IxZcoULV26VGvXrrXMgMjSqFy5sjZv3qzc3FytXr1ao0aNUsOGDdWlSxdvl+Yxx44dU//+/TV//nzVqFHD2+V4Vfv27dW+fXvn4w4dOujiiy/W3LlzNXHiRC9W5ll2u10xMTGaN2+egoOD1bp1a+3bt0/Tpk3z61BzoVJTU9WiRQu1bdvW26V43Nq1azVp0iTNmTNH7dq1U0ZGhh544AFNnDhRTzzxhFu2GVChpkaNGgoODtbBgwddph88eFC1a9f2UlWedyHtMH36dE2ZMkWrVq1Sy5Yt3Vmm25W1HYKCgpSYmChJuuyyy5Senq7Jkyf7dagpbVvs3LlTmZmZ6tWrl3Oa3W6XJFWoUEHbt29Xo0aN3Fu0G5TH34iQkBC1atVKGRkZ7ijRI8rSDrGxsQoJCVFwcLBz2sUXX6wDBw7oxIkTCg0NdWvN7nIh74njx49r6dKlevLJJ91ZokeUpR2eeOIJ9e/fX/fee68kqUWLFjp+/LgGDx6ssWPHKiio/EfABNSYmtDQULVu3VqrV692TrPb7Vq9erXLf1pWV9Z2mDp1qiZOnKiVK1eqTZs2nijVrcrr/WC325Wfn++OEj2mtG3RtGlTff/999q8ebPzduONN6pr167avHmz4uPjPVl+uSmP90RhYaG+//57xcbGuqtMtytLO3Ts2FEZGRnOcCtJP/74o2JjY/020EgX9p544403lJ+frzvvvNPdZbpdWdohLy/vjOBSFHqNuy476bYhyD5q6dKlJiwszCxcuNBs27bNDB482FSpUsV5Cmb//v3NY4895pw/Pz/fbNq0yWzatMnExsaahx9+2GzatMns2LHDW7tQLkrbDlOmTDGhoaHmzTffdDlV8dixY97ahXJR2naYNGmS+eijj8zOnTvNtm3bzPTp002FChXM/PnzvbUL5aa0bXE6q5z9VNp2mDBhgvnwww/Nzp07zYYNG8xtt91mwsPDzdatW721C+WitO2wZ88eU7lyZTN8+HCzfft28+6775qYmBjz1FNPeWsXyk1Zfzc6depk+vbt6+ly3aa07TBu3DhTuXJl89prr5ldu3aZjz76yDRq1Mjceuutbqsx4EKNMca88MILpl69eiY0NNS0bdvWfP31187nrr76ajNgwADn4927dxtJZ9yuvvpqzxdezkrTDgkJCWdth3Hjxnm+8HJWmnYYO3asSUxMNOHh4aZq1aqmffv2ZunSpV6o2j1K0xans0qoMaZ07TBy5EjnvLVq1TLXX3+92bhxoxeqLn+lfT98+eWXpl27diYsLMw0bNjQPP300+bkyZMerto9StsWP/zwg5FkPvroIw9X6l6laYeCggIzfvx406hRIxMeHm7i4+PN/fffb44ePeq2+mzGuKsPCAAAwHMCakwNAACwLkINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINALjBwIED1adPH2+XAQQUQg0QYAYOHCibzea8Va9eXd27d9d3333n7dLKxan7VnTr1KmT27aXmZkpm82mzZs3u0x//vnntXDhQrdtF8CZCDVAAOrevbv279+v/fv3a/Xq1apQoYJuuOEGb5dVbtLS0pz7t3//fr399ttnna+goMBtNURHR6tKlSpuWz+AMxFqgAAUFham2rVrq3bt2rrsssv02GOPae/evTp8+LCSkpI0fPhwl/kPHz6s0NBQ5xV669evr4kTJ+r2229XZGSk6tatqxdffNFlmRkzZqhFixaKjIxUfHy87r//fuXm5jqf/+mnn9SrVy9VrVpVkZGRuuSSS/T+++9Lko4ePap+/fqpZs2aioiIUOPGjZWWllbi/atSpYpz/2rXrq1q1ao5e1Ref/11XX311QoPD9fixYt15MgR3X777apbt64qVqyoFi1a6LXXXnNZn91u19SpU5WYmKiwsDDVq1dPTz/9tCSpQYMGkqRWrVrJZrOpS5cuks48/JSfn68RI0YoJiZG4eHh6tSpk9avX+98fu3atbLZbFq9erXatGmjihUrqkOHDtq+fXuJ9xsIdIQaIMDl5ubq1VdfVWJioqpXr657771XS5YsUX5+vnOeV199VXXr1lVSUpJz2rRp03TppZdq06ZNeuyxx/TAAw/o448/dj4fFBSkWbNmaevWrVq0aJE++eQTPfroo87nhw0bpvz8fH322Wf6/vvv9cwzz6hSpUqSpCeeeELbtm3TBx98oPT0dL300kuqUaNGuexvUa3p6elKTk7WH3/8odatW+u9997Tli1bNHjwYPXv31/ffPONc5kxY8ZoypQpzrqWLFmiWrVqSZJzvlWrVmn//v1avnz5Wbf76KOPatmyZVq0aJE2btyoxMREJScn69dff3WZb+zYsXr22Wf17bffqkKFCrrnnnvKZb+BgOC2S2UC8EkDBgwwwcHBJjIy0kRGRhpJJjY21mzYsMEYY8zvv/9uqlatal5//XXnMi1btjTjx493Pk5ISDDdu3d3WW/fvn1Njx49zrndN954w1SvXt35uEWLFi7rPFWvXr3M3XffXab9k2TCw8Od+xcZGWlWrFhhdu/ebSSZmTNnnncdPXv2NA899JAxxpicnBwTFhZm5s+ff9Z5i9a7adMml+mnXrU8NzfXhISEmMWLFzufP3HihKlTp46ZOnWqMcaYNWvWGElm1apVznnee+89I8n8/vvvpWkCIGDRUwMEoK5du2rz5s3avHmzvvnmGyUnJ6tHjx766aefFB4erv79+2vBggWSpI0bN2rLli0aOHCgyzrat29/xuP09HTn41WrVumaa65R3bp1VblyZfXv319HjhxRXl6eJGnEiBF66qmn1LFjR40bN85loPJ9992npUuX6rLLLtOjjz6qL7/8slT799xzzzn3b/Pmzbr22mudz7Vp08Zl3sLCQk2cOFEtWrRQtWrVVKlSJX344Yfas2ePJCk9PV35+fm65pprSlXDqXbu3KmCggJ17NjROS0kJERt27Z1aTNJatmypfPn2NhYSdKhQ4fKvG0gkBBqgAAUGRmpxMREJSYm6oorrtA///lPHT9+XPPnz5ck3Xvvvfr444+VlZWltLQ0JSUlKSEhocTrz8zM1A033KCWLVtq2bJl2rBhg3PMzYkTJ5zb2LVrl/r376/vv/9ebdq00QsvvCBJzoD14IMP6ueff9Y111yjhx9+uMTbr127tnP/EhMTFRkZ6bLvp5o2bZqef/55jR49WmvWrNHmzZuVnJzsrDMiIqLE2y0PISEhzp9tNpskx5geAOdHqAEgm82moKAg/f7775KkFi1aqE2bNpo/f76WLFly1nEdX3/99RmPL774YknShg0bZLfb9eyzz+rKK69UkyZN9PPPP5+xjvj4eA0dOlTLly/XQw895AxVklSzZk0NGDBAr776qmbOnKl58+aV5y47rVu3Tr1799add96pSy+9VA0bNtSPP/7ofL5x48aKiIhwDpI+XWhoqCRHj8+5NGrUSKGhoVq3bp1zWkFBgdavX69mzZqV054AqODtAgB4Xn5+vg4cOCDJcabR7NmzlZubq169ejnnuffeezV8+HBFRkbqL3/5yxnrWLdunaZOnao+ffro448/1htvvKH33ntPkpSYmKiCggK98MIL6tWrl9atW6eXX37ZZfmRI0eqR48eatKkiY4ePao1a9Y4Q9E//vEPtW7dWpdccony8/P17rvvOp8rb40bN9abb76pL7/8UlWrVtWMGTN08OBBZ9gIDw/X6NGj9eijjyo0NFQdO3bU4cOHtXXrVqWkpCgmJkYRERFauXKl4uLiFB4erujoaJdtREZG6r777tMjjzyiatWqqV69epo6dary8vKUkpLilv0CAhE9NUAAWrlypWJjYxUbG6t27dpp/fr1euONN5ynI0vS7bffrgoVKuj2229XeHj4Get46KGH9O2336pVq1Z66qmnNGPGDCUnJ0uSLr30Us2YMUPPPPOMmjdvrsWLF2vy5MkuyxcWFmrYsGG6+OKL1b17dzVp0kRz5syR5Oj9GDNmjFq2bKnOnTsrODhYS5cudUtbPP7447r88suVnJysLl26qHbt2md8E/ATTzyhhx56SP/4xz908cUXq2/fvs5xLhUqVNCsWbM0d+5c1alTR7179z7rdqZMmaKbb75Z/fv31+WXX66MjAx9+OGHqlq1qlv2CwhENmOM8XYRAHxPZmamGjVqpPXr1+vyyy93ea5+/foaOXKkRo4c6Z3iAOAsOPwEwEVBQYGOHDmixx9/XFdeeeUZgQYAfBWHnwC4WLdunWJjY7V+/fozxsF426RJk1SpUqWz3nr06OHt8gB4GYefAPiNX3/99Yxv4C0SERGhunXrergiAL6EUAMAACyBw08AAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMAS/g/VANFyaf4JbwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHHCAYAAACyWSKnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQrBJREFUeJzt3Xt8z/X///H7e7OzbU7D2MxhTjnlEDnklBpp8qtPUYhSKD6STnwkJDkmIcJnDhXpU+jTUUV0QCXZtzAybTHnJpuR92Z7/f7Yxzvvxuw9e59eu10vl/fl7f06Pl5P2/t93+v5fL3eFsMwDAEAAJiIj7sLAAAAKGkEHAAAYDoEHAAAYDoEHAAAYDoEHAAAYDoEHAAAYDoEHAAAYDoEHAAAYDoEHAAAYDoEHABwseXLl8tisSg1NdXdpQCmRcABTGj79u0aMWKEGjVqpJCQENWoUUP33HOPfvnllwLLdu7cWRaLRRaLRT4+PgoLC1P9+vU1YMAAff755w7t94MPPlCnTp1UuXJlBQcHq3bt2rrnnnu0fv36kjq0Al588UW99957BaZv3bpVEydO1OnTp52277+bOHGirS0tFouCg4N13XXX6dlnn1VmZmaJ7GPVqlWaM2dOiWwLMDMCDmBC06dP15o1a3TzzTfrlVde0ZAhQ/TVV1+pRYsW2rVrV4Hlo6Ki9MYbb+j111/XzJkz1atXL23dulW33nqr+vTpo5ycnKvuc9asWerVq5csFovGjh2rl19+WXfddZf279+v1atXO+MwJRUecCZNmuTSgHPRwoUL9cYbb2j27Nlq0KCBpkyZou7du6skvvqPgAMUTRl3FwCg5I0ePVqrVq2Sv7+/bVqfPn3UpEkTTZs2TW+++abd8uHh4erfv7/dtGnTpmnkyJFasGCBatasqenTp19xfxcuXNDkyZN1yy236LPPPisw/8SJE9d4RJ7j3LlzCg4OLnSZf/zjH6pUqZIkadiwYbrrrru0du1affvtt2rbtq0rygRKPc7gACbUrl07u3AjSXXr1lWjRo2UlJRUpG34+vpq7ty5uu666zR//nxlZGRccdnff/9dmZmZat++/WXnV65c2e71+fPnNXHiRNWrV0+BgYGKjIzUnXfeqQMHDtiWmTVrltq1a6eKFSsqKChILVu21Lvvvmu3HYvForNnz2rFihW2bqFBgwZp4sSJeuqppyRJtWrVss27dMzLm2++qZYtWyooKEgVKlRQ3759dejQIbvtd+7cWY0bN9aOHTvUsWNHBQcH61//+leR2u9SXbt2lSSlpKQUutyCBQvUqFEjBQQEqFq1aho+fLjdGajOnTvro48+0m+//WY7ppo1azpcD1AacAYHKCUMw9Dx48fVqFGjIq/j6+ure++9V+PHj9c333yjnj17Xna5ypUrKygoSB988IH++c9/qkKFClfcZm5urm6//XZt3LhRffv21WOPPaYzZ87o888/165du1SnTh1J0iuvvKJevXqpX79+ys7O1urVq3X33Xfrww8/tNXxxhtv6KGHHlLr1q01ZMgQSVKdOnUUEhKiX375RW+99ZZefvll29mUiIgISdKUKVM0fvx43XPPPXrooYd08uRJzZs3Tx07dtTOnTtVrlw5W73p6enq0aOH+vbtq/79+6tKlSpFbr+LLga3ihUrXnGZiRMnatKkSerWrZseeeQR7du3TwsXLtT27du1ZcsW+fn5ady4ccrIyFBaWppefvllSVLZsmUdrgcoFQwApcIbb7xhSDISEhLspnfq1Mlo1KjRFddbt26dIcl45ZVXCt3+c889Z0gyQkJCjB49ehhTpkwxduzYUWC5pUuXGpKM2bNnF5iXl5dn+/e5c+fs5mVnZxuNGzc2unbtajc9JCTEGDhwYIFtzZw505BkpKSk2E1PTU01fH19jSlTpthN//nnn40yZcrYTe/UqZMhyXjttdeueNyXmjBhgiHJ2Ldvn3Hy5EkjJSXFWLRokREQEGBUqVLFOHv2rGEYhrFs2TK72k6cOGH4+/sbt956q5Gbm2vb3vz58w1JxtKlS23TevbsacTExBSpHqA0o4sKKAX27t2r4cOHq23btho4cKBD6148Q3DmzJlCl5s0aZJWrVql5s2b69NPP9W4cePUsmVLtWjRwq5bbM2aNapUqZL++c9/FtiGxWKx/TsoKMj27z/++EMZGRm66aab9OOPPzpU/9+tXbtWeXl5uueee/T777/bHlWrVlXdunW1adMmu+UDAgL0wAMPOLSP+vXrKyIiQrVq1dLQoUMVGxurjz766IpjdzZs2KDs7GyNGjVKPj5/vS0//PDDCgsL00cffeT4gQKlXKkMOF999ZXi4+NVrVo1WSyWy16B4Y79JSUlqVevXgoPD1dISIhuuOEGHTx40Km1wfyOHTumnj17Kjw8XO+++658fX0dWj8rK0uSFBoaetVl7733Xn399df6448/9Nlnn+m+++7Tzp07FR8fr/Pnz0vK766pX7++ypQpvIf8ww8/1I033qjAwEBVqFBBERERWrhwYaFjgYpi//79MgxDdevWVUREhN0jKSmpwIDo6tWrFxjPdDVr1qzR559/rs2bNys5OVm7du1Sy5Ytr7j8b7/9Jik/GF3K399ftWvXts0HUHSlcgzO2bNn1axZMz344IO68847PWJ/Bw4cUIcOHTR48GBNmjRJYWFh2r17twIDA51eH8wrIyNDPXr00OnTp/X111+rWrVqDm/j4mXlsbGxRV4nLCxMt9xyi2655Rb5+flpxYoV+u6779SpU6cirf/111+rV69e6tixoxYsWKDIyEj5+flp2bJlWrVqlcPHcKm8vDxZLBZ98sknlw17fx/TcumZpKLq2LGjbdwPAPcolQGnR48e6tGjxxXnW61WjRs3Tm+99ZZOnz6txo0ba/r06ercubNT9idJ48aN02233aYZM2bYpl0cbAkUx/nz5xUfH69ffvlFGzZs0HXXXefwNnJzc7Vq1SoFBwerQ4cOxaqjVatWWrFihY4ePSop/+f6u+++U05Ojvz8/C67zpo1axQYGKhPP/1UAQEBtunLli0rsOyl3VpFmV6nTh0ZhqFatWqpXr16jh6OU8TExEiS9u3bp9q1a9umZ2dnKyUlRd26dbNNu9JxAbBXKruormbEiBHatm2bVq9erZ9++kl33323unfvrv379ztlf3l5efroo49Ur149xcXFqXLlymrTpo3Tu85gXrm5uerTp4+2bdumd955p1j3XsnNzdXIkSOVlJSkkSNHKiws7IrLnjt3Ttu2bbvsvE8++UTSX90vd911l37//XfNnz+/wLLG/26E5+vrK4vFotzcXNu81NTUy/5OhISEXPZmfiEhIZJUYN6dd94pX19fTZo0qcCN9wzDUHp6+uUP0om6desmf39/zZ07166mhIQEZWRk2F29FhIScs3ddEBpUCrP4BTm4MGDWrZsmQ4ePGg7nf/kk09q/fr1WrZsmV588cUS3+eJEyeUlZWladOm6YUXXtD06dO1fv163Xnnndq0aVORT+sDFz3xxBN6//33FR8fr1OnThW4sd/fb+qXkZFhW+bcuXNKTk7W2rVrdeDAAfXt21eTJ08udH/nzp1Tu3btdOONN6p79+6Kjo7W6dOn9d577+nrr79W79691bx5c0nS/fffr9dff12jR4/W999/r5tuuklnz57Vhg0b9Oijj+qOO+5Qz549NXv2bHXv3l333XefTpw4oVdffVWxsbH66aef7PbdsmVLbdiwQbNnz1a1atVUq1YttWnTxjbmZdy4cerbt6/8/PwUHx+vOnXq6IUXXtDYsWOVmpqq3r17KzQ0VCkpKVq3bp2GDBmiJ5988pra31EREREaO3asJk2apO7du6tXr17at2+fFixYoBtuuMHu/6tly5Z6++23NXr0aN1www0qW7as4uPjXVov4BXceQmXJ5BkrFu3zvb6ww8/tF3qeumjTJkyxj333GMYhmEkJSUZkgp9PPPMM0Xan2EYxuHDhw1Jxr333ms3PT4+3ujbt2+JHi9Kh4uXN1/pUdiyZcuWNerWrWv079/f+Oyzz4q0v5ycHGPJkiVG7969jZiYGCMgIMAIDg42mjdvbsycOdOwWq12y587d84YN26cUatWLcPPz8+oWrWq8Y9//MM4cOCAbZmEhASjbt26RkBAgNGgQQNj2bJltsuwL7V3716jY8eORlBQkCHJ7pLxyZMnG9WrVzd8fHwKXDK+Zs0ao0OHDrbf8QYNGhjDhw839u3bZ9c2hV1C/3cX6zt58mShy/39MvGL5s+fbzRo0MDw8/MzqlSpYjzyyCPGH3/8YbdMVlaWcd999xnlypUzJHHJOHAFFsMogS9H8WIWi0Xr1q1T7969JUlvv/22+vXrp927dxcYgFi2bFlVrVpV2dnZ+vXXXwvdbsWKFW03FStsf1J+P3tISIgmTJigZ5991jb9mWee0TfffKMtW7YU/wABACiF6KL6m+bNmys3N1cnTpzQTTfddNll/P391aBBgxLbp7+/v2644Qbt27fPbvovv/xiG3wIAACKrlQGnKysLCUnJ9tep6SkKDExURUqVFC9evXUr18/3X///XrppZfUvHlznTx5Uhs3blTTpk2veKv64u6vRo0akqSnnnpKffr0UceOHdWlSxetX79eH3zwgTZv3nzNxwsAQGlTKruoNm/erC5duhSYPnDgQC1fvlw5OTl64YUX9Prrr+vw4cOqVKmSbrzxRk2aNElNmjQp8f1dtHTpUk2dOlVpaWmqX7++Jk2apDvuuMPh/QEAUNqVyoADAADMjfvgAAAA0yHgAAAA0ylVg4zz8vJ05MgRhYaGcrtzAAC8hGEYOnPmjKpVqyYfn6KdmylVAefIkSOKjo52dxkAAKAYDh06pKioqCItW6oCTmhoqKT8Birse3UAAIDnyMzMVHR0tO1zvChKVcC52C0VFhZGwAEAwMs4MryEQcYAAMB0CDgAAMB0CDgAAMB0vGYMztSpU7V27Vrt3btXQUFBateunaZPn6769euX+L5yc3OVk5NT4ttFPn9//yJf5gcAQHF4TcD58ssvNXz4cN1www26cOGC/vWvf+nWW2/Vnj17FBISUiL7MAxDx44d0+nTp0tke7g8Hx8f1apVS/7+/u4uBQBgUl77XVQnT55U5cqV9eWXX6pjx45FWiczM1Ph4eHKyMi47FVUR48e1enTp1W5cmUFBwdzM0AnuHizRT8/P9WoUYM2BgBc1dU+vy/Ha87g/F1GRoYkqUKFCldcxmq1ymq12l5nZmZecdnc3FxbuKlYsWLJFYoCIiIidOTIEV24cEF+fn7uLgcAYEJeORAiLy9Po0aNUvv27dW4ceMrLjd16lSFh4fbHoXdxfjimJvg4OASrxf2LnZN5ebmurkSAIBZeWXAGT58uHbt2qXVq1cXutzYsWOVkZFhexw6dOiq26bLxPloYwCAs3ldF9WIESP04Ycf6quvvrrq91EEBAQoICDARZUBAABP4TUBxzAM/fOf/9S6deu0efNm1apVy90lAQAAD+U1XVTDhw/Xm2++qVWrVik0NFTHjh3TsWPH9Oeff7q7NLcbNGiQLBaLLBaL/Pz8VKVKFd1yyy1aunSp8vLyiryd5cuXq1y5cs4rFC6XliZt2pT/jKujvQDz8JqAs3DhQmVkZKhz586KjIy0Pd5++213lyZJSk9P19GjR6/4SE9Pd+r+u3fvrqNHjyo1NVWffPKJunTposcee0y33367Lly44NR9wzMlJEgxMVLXrvnPCQnursiz0V7AtfG0PxC8qovKU6Wnp2v+/PlXXW7EiBFOuwQ9ICBAVatWlSRVr15dLVq00I033qibb75Zy5cv10MPPaTZs2dr2bJl+vXXX1WhQgXFx8drxowZKlu2rDZv3qwHHnhA0l+DgCdMmKCJEyfqjTfe0CuvvKJ9+/YpJCREXbt21Zw5c1S5cmWnHAuuXVqaNGSIdPEEXl6eNHSoFBcnXWXoWqlEewHXJiHhr98hHx9p8WJp8GD31uQ1Z3A8WXZ2dokuV1K6du2qZs2aae3atZLy7yA8d+5c7d69WytWrNAXX3yhp59+WpLUrl07zZkzR2FhYbazTk8++aSk/EvoJ0+erP/7v//Te++9p9TUVA0aNMilxwLH7N//14f1Rbm5UnKye+rxdLQXUHxX+gPB3WdyvOYMDoqnQYMG+umnnyRJo0aNsk2vWbOmXnjhBQ0bNkwLFiyQv7+/wsPDZbFYbGeCLnrwwQdt/65du7bmzp2rG264QVlZWSpbtqxLjgOOqVs3/6+oSz+0fX2l2Fj31eTJaC+g+Ar7A8GdZ0A5g2NyhmHYupw2bNigm2++WdWrV1doaKgGDBig9PR0nTt3rtBt7NixQ/Hx8apRo4ZCQ0PVqVMnSdLBgwedXj+KJyoq/xSxr2/+a19fadEiuluuhPYCiu/iHwiX8oQ/EAg4JpeUlKRatWopNTVVt99+u5o2bao1a9Zox44devXVVyUV3nV29uxZxcXFKSwsTCtXrtT27du1bt26q64H9xs8WEpNzR/0l5rq/v5wT0d7AcXjqX8g0EVlYl988YV+/vlnPf7449qxY4fy8vL00ksvyed/Ufs///mP3fL+/v4Fvj5h7969Sk9P17Rp02xfdfHDDz+45gBwzaKi3P8m401oL6B4Bg/OH5SfnJx/5sYTfo8IOCZhtVp17Ngx5ebm6vjx41q/fr2mTp2q22+/Xffff7927dqlnJwczZs3T/Hx8dqyZYtee+01u23UrFlTWVlZ2rhxo5o1a6bg4GDVqFFD/v7+mjdvnoYNG6Zdu3Zp8uTJbjpKAICn8rQ/EOiiMon169crMjJSNWvWVPfu3bVp0ybNnTtX//3vf+Xr66tmzZpp9uzZmj59uho3bqyVK1dq6tSpdtto166dhg0bpj59+igiIkIzZsxQRESEli9frnfeeUfXXXedpk2bplmzZrnpKAEAKBqL4ck3mClhmZmZCg8PV0ZGhsLCwuzmnT9/XikpKapVq5YCAwMd2q4n3AfHm1xLWwMASp/CPr+vhC6qElCxYkWNGDGi0EG3/v7+hBsAAFyEgFNCCC8AAHgOxuAAAADTIeAAAADTIeAAAADTIeAAAGBCaWn5d+Z295deugsBBwAAk0lIkGJipK5d858TEtxdkesRcAAAMJG0NGnIkL++4TsvTxo6tPSdySHgAABgIvv3/xVuLsrNzf+eqNKEgIOr2rx5sywWi06fPl3kdWrWrKk5c+Y4rSYAwOXVrSv5/O3T3dc3/0swSxMCjgkMGjRIFotFw4YNKzBv+PDhslgsGjRokOsLAwC4XFSUtHhxfqiR8p8XLfKsL8J0BQKOSURHR2v16tX6888/bdPOnz+vVatWqUaNGm6sDAC8kzdfhTR4sJSaml9/amr+69KGgGMSLVq0UHR0tNauXWubtnbtWtWoUUPNmze3TbNarRo5cqQqV66swMBAdejQQdu3b7fb1scff6x69eopKChIXbp0UWpqaoH9ffPNN7rpppsUFBSk6OhojRw5UmfPnnXa8QGAK5nhKqSoKKlz59J35uYiAo4TuCv1P/jgg1q2bJnt9dKlS/XAAw/YLfP0009rzZo1WrFihX788UfFxsYqLi5Op06dkiQdOnRId955p+Lj45WYmKiHHnpIY8aMsdvGgQMH1L17d91111366aef9Pbbb+ubb77RiBEjnH+QAOBkXIVkDgScEubO1N+/f3998803+u233/Tbb79py5Yt6t+/v23+2bNntXDhQs2cOVM9evTQddddpyVLligoKEgJ/yt04cKFqlOnjl566SXVr19f/fr1KzB+Z+rUqerXr59GjRqlunXrql27dpo7d65ef/11nT9/3nUHDABOwFVI5sC3iZegK6X+uDjXnCKMiIhQz549tXz5chmGoZ49e6pSpUq2+QcOHFBOTo7at29vm+bn56fWrVsrKSlJkpSUlKQ2bdrYbbdt27Z2r//v//5PP/30k1auXGmbZhiG8vLylJKSooYNGzrj8ADAJS5ehXRpyCmNVyF5OwJOCSos9buqD/TBBx+0dRW9+uqrTtlHVlaWhg4dqpEjRxaYx4BmAN7u4lVIQ4fmv4eX1quQvB0BpwR5Qurv3r27srOzZbFYFBcXZzevTp068vf315YtWxQTEyNJysnJ0fbt2zVq1ChJUsOGDfX+++/brfftt9/avW7RooX27NmjWP6cAWBSgwfnn31PTs5/D3dFuElLy/9DuW5dwlRJYAxOCfKEew/4+voqKSlJe/bske/FQv4nJCREjzzyiJ566imtX79ee/bs0cMPP6xz585p8P+uIRw2bJj279+vp556Svv27dOqVau0fPlyu+0888wz2rp1q0aMGKHExETt379f//3vfxlkDMBUXHkVkhmu2vI0BJwS5gn3HggLC1NYWNhl502bNk133XWXBgwYoBYtWig5OVmffvqpypcvLym/i2nNmjV677331KxZM7322mt68cUX7bbRtGlTffnll/rll1900003qXnz5nruuedUrVo1px8bAJgNV205h8UwDMPdRbhKZmamwsPDlZGRUSAAnD9/XikpKapVq5YCAwPdVGHpQFsDwF82bco/c3O56Z07X3390tC1Vdjn95VwBgcAADe6lu+Oomvrygg4AAC4UXHHb9K1VTiuogIAwM2Kc9WWJ9yaxJMRcAAA8ABRUY4FE0+4NYkno4vqb0rRmGu3oY0B4Np5wq1JPBlncP7Hz89PknTu3DkFBQW5uRpzy87OlqQC9+kBADjGHTck9BYEnP/x9fVVuXLldOLECUlScHCwLBaLm6syn7y8PJ08eVLBwcEqU4YfPwC4Vo52bZUWXvUJ89VXX2nmzJnasWOHjh49qnXr1ql3794ltv2qVatKki3kwDl8fHxUo0YNAiQAUyoN96XxBl4VcM6ePatmzZrpwQcf1J133lni27dYLIqMjFTlypWVk5NT4ttHPn9/f/n8/aYPAGACCQl/Xbrt45M/RsYdd7SHF9/J2GKxOHwGpzh3QgQAoCjS0vJvtvf3q5pSUzmTc624kzEAAG5S2H1p4Hpe1UXlKKvVKqvVanudmZnpxmoAAGbGfWk8i6nP4EydOlXh4eG2R3R0tLtLAgCYFPel8SymHoNzuTM40dHRjMEBADhNWhr3pSlpxRmDY+ouqoCAAAUEBLi7DABAKcJ9aTyDVwWcrKwsJV8yWislJUWJiYmqUKGCatSo4cbKAACAJ/GqgPPDDz+oS5cuttejR4+WJA0cOFDLly93U1UAAMDTeFXA6dy5s0d+USN3rQQAe7wvwt1MfRWVKyQk5N/YqWvX/OeEBHdXBADuxfsiPIHXXkVVHCV9J2PuWgkA9nhfhDNwJ2MX466VAGCP90V4CgLONbh418pLcddKAKUZ74vwFASca8BdKwHAHu+L8BSMwSkB3LUSAOzxvoiSxJ2M3YS7VgKAPd4X4W50UQEAANMh4AAAANMh4AAAANMh4AAAANMh4AAulJYmbdqU/wwAcB4CDuAifD8PALgOAQdwgbQ0aciQv25hn5cnDR3KmRwAcBYCDuACfD8PALgWAQdwAb6fBwBci4ADuADfzwMArsVXNQAuMniwFBfH9/MAgCsQcAAX4vt5AMA16KICAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABAACmQ8ABUKqkpUmbNuU/AzAvAg6AUiMhQYqJkbp2zX9OSHB3RQCcpYy7C/BW6enpys7OvuJ8f39/VaxY0SW1HDhwQOfOnbvi/ODgYNWpU8ehbRb3+DypXTyFq9vEGf93GRkZMgxD5cqVKzDv9OnTslgsCg8PL7BOTk6OypQpc9n1XPmzkJ6ertTUCxoypLLy8iySpLw8aehQQ7VrJysyMrdA/e6o09uZ4fff1e99Jb2eq3/vPPn/3OsCzquvvqqZM2fq2LFjatasmebNm6fWrVu7tIb09HTNnz//qsuNGDHC6f+xBw4c0JtvvnnV5fr371/kkFPc4/OkdvEUrm4TZ//flTRX/CxcPLaUlJrKyxtoNy8316IVK7aoVq3fCt1GafqZLS4z/P67+r3PXb+v7n6/cRWv6qJ6++23NXr0aE2YMEE//vijmjVrpri4OJ04ccKldRSWVouz3LUo7MxNcZaTin98ntQunsLVbeLs/7uS5or9XtxHhQrpsljy7OZZLHmqUOFUkbeBKzPD77+r3/vc9fvq7vcbV/GqgDN79mw9/PDDeuCBB3TdddfptddeU3BwsJYuXeru0gB4uPDwM4qP/9AWciyWPMXHf6jw8DNurgyAM3hNF1V2drZ27NihsWPH2qb5+PioW7du2rZt22XXsVqtslqttteZmZlOrxOA52rRYqfq1EnWqVMVVKHCKcINYGJecwbn999/V25urqpUqWI3vUqVKjp27Nhl15k6darCw8Ntj+joaFeUCsCDhYefUa1avxFuAJPzmoBTHGPHjlVGRobtcejQIXeXBAAAXMBruqgqVaokX19fHT9+3G768ePHVbVq1cuuExAQoICAAFeUBwAAPIjXnMHx9/dXy5YttXHjRtu0vLw8bdy4UW3btnVjZQAAwNN4zRkcSRo9erQGDhyoVq1aqXXr1pozZ47Onj2rBx54wKV1+Pv7l+hy1yI4OLhEl5OKf3ye1C6ewtVt4uz/u5Lmiv2WxD5K089scZnh99/V733u+n119/uNq1gMwzDcsudimj9/vu1Gf9dff73mzp2rNm3aFGndzMxMhYeHKyMjQ2FhYddUhyfdvZE7GXs27mTsGXcyvtKxXan+i0rjz2xxmeH331PuSFzc9cx6J+PifH57XcC5FiUZcAAAgGsU5/Pba8bgAAAAFBUBBwAAmA4BBwAAmA4BBwAAmA4BBwAAmA4BBwAAmA4BB4DTpaVJmzblPwOAKxBwADhVQoIUEyN17Zr/nJDg7ooAlAYEHABOk5YmDRki5eXlv87Lk4YO5UwOAOcj4ABwmv37/wo3F+XmSsnJ7qkHQOlBwAHgNHXrSj5/e5fx9ZViY91TD4DSg4ADwGmioqTFi/NDjZT/vGhR/nQAcKYy7i4AgLkNHizFxeV3S8XGEm4AuAYBB4DTRUURbAC4Fl1UAADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdLwm4EyZMkXt2rVTcHCwypUr5+5yAACAB/OagJOdna27775bjzzyiLtLAQAAHq6MuwsoqkmTJkmSli9f7t5CAACAx/OagFMcVqtVVqvV9jozM9ON1QAAAFfxmi6q4pg6darCw8Ntj+joaHeXBAAAXMCtAWfMmDGyWCyFPvbu3Vvs7Y8dO1YZGRm2x6FDh0qwegAA4Knc2kX1xBNPaNCgQYUuU7t27WJvPyAgQAEBAcVeHwAAeCe3BpyIiAhFRES4swQAAGBCXjPI+ODBgzp16pQOHjyo3NxcJSYmSpJiY2NVtmxZ9xYHQJKUlibt3y/VrStFRbm7GgClmdcEnOeee04rVqywvW7evLkkadOmTercubObqgJwUUKCNGSIlJcn+fhIixdLgwe7uyoApZXFMAzD3UW4SmZmpsLDw5WRkaGwsDB3lwOYRlqaFBOTH24u8vWVUlM5kwPg2hXn89vUl4kDcI39++3DjSTl5krJye6pBwAIOACuWd26+d1Sl/L1lWJj3VMPABBwAFyzqKj8MTe+vvmvfX2lRYvongLgPl4zyBiAZxs8WIqLy++Wio0l3ABwLwKOyXCZLtwpKoqfOwCegS4qE0lIyL+SpWvX/OeEBHdXBACAexBwTCIt7a97kEj5z0OH5k8HAKC0IeCYBJfpAgDwFwKOSXCZLgAAfyHgmASX6QIA8BeuojIRLtMFACAfAcdkuEwXAAC6qAAAgAkRcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkQcAAAgOkUK+CkpaUpKyurwPScnBx99dVX11wUAADAtXAo4Bw9elStW7dWTEyMypUrp/vvv98u6Jw6dUpdunQp8SIBAAAc4VDAGTNmjHx8fPTdd99p/fr12rNnj7p06aI//vjDtoxhGCVeJAAAgCMcCjgbNmzQ3Llz1apVK3Xr1k1btmxRZGSkunbtqlOnTkmSLBaLUwoFAAAoKocCTkZGhsqXL297HRAQoLVr16pmzZrq0qWLTpw4UeIFAgAAOMqhgFO7dm399NNPdtPKlCmjd955R7Vr19btt99eosUBAAAUh0MBp0ePHlq8eHGB6RdDzvXXX19SdQEAABSbxXBgVPCFCxd07tw5hYWFSZJ+//13SVKlSpVs8w8fPqyYmBgnlHrtMjMzFR4eroyMDNsxAAAAz1acz2+HzuCUKVNGeXl5Gj58uCpVqqQqVaqoSpUqqlSpkkaMGKGsrCyPDTcAAKD0KOPIwqdOnVLbtm11+PBh9evXTw0bNpQk7dmzR8uXL9fGjRu1detWu4HIAAAAruZQwHn++efl7++vAwcOqEqVKgXm3XrrrXr++ef18ssvl2iRAAAAjnCoi+q9997TrFmzCoQbSapatapmzJihdevWlVhxAAAAxeHwVzU0atToivMbN26sY8eOXXNRAAAA18KhgFOpUiWlpqZecX5KSooqVKhwrTUBAABcE4cCTlxcnMaNG6fs7OwC86xWq8aPH6/u3buXWHEAAADF4dB9cNLS0tSqVSsFBARo+PDhatCggQzDUFJSkhYsWCCr1aoffvhB0dHRzqy52LgPDgAA3qc4n98OXUUVFRWlbdu26dFHH9XYsWNt3xxusVh0yy23aP78+R4bbgAAQOnhUMCRpFq1aumTTz7RH3/8of3790uSYmNjGXsDAAA8hkNjcC5Vvnx5tW7dWq1bt3Z6uElNTdXgwYNVq1YtBQUFqU6dOpowYcJlxwIBAAA4fAbHHfbu3au8vDwtWrRIsbGx2rVrlx5++GGdPXtWs2bNcnd5AADAwzg0yNiTzJw5UwsXLtSvv/5a5HUYZAwAgPdx+iBjT5KRkXHVrjGr1Sqr1Wp7nZmZ6eyyAACAByj2GBx3Sk5O1rx58zR06NBCl5s6darCw8NtD67wAgCgdHBrwBkzZowsFkuhj71799qtc/jwYXXv3l133323Hn744UK3P3bsWGVkZNgehw4dcubhAAAAD+HWMTgnT55Uenp6ocvUrl1b/v7+kqQjR46oc+fOuvHGG7V8+XL5+DiWzxiDAwCA9/G6MTgRERGKiIgo0rKHDx9Wly5d1LJlSy1btszhcAOg6NLSpP37pbp1pagod1cDAI7zipRw+PBhde7cWTVq1NCsWbN08uRJHTt2jG8uB5wgIUGKiZG6ds1/Tkhwd0UA4DivuEx8+fLleuCBBy47z5Hy6aICCpeWlh9q8vL+mubrK6WmciYHgPsU5/PbK87gDBo0SIZhXPYBoOTs328fbiQpN1dKTnZPPQBQXF4RcAC4Rt260t+Ht/n6SrGx7qkHAIqLgAPAJipKWrw4P9RI+c+LFtE9BcD7eO2djAE4x+DBUlxcfrdUbCzhBoB3IuAAKCAqimADwLvRRQUAAEyHgIOrSkuTNm3KfwYAwBsQcFAobvoGAPBGBBxcUVqaNGTIX/dFycuThg7lTA4AwPMRcHBF3PQNAOCtCDi4Im76BgDwVgQcXBE3fQMAeCvug4NCcdM3AIA3IuDgqrjpGwDA29BFBQAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAA8AhaWnSpk35zwDgqQg4AIosIUGKiZG6ds1/Tkhwd0UAcHleE3B69eqlGjVqKDAwUJGRkRowYICOHDni7rKAUiMtTRoyRMrLy3+dlycNHcqZHACeyWsCTpcuXfSf//xH+/bt05o1a3TgwAH94x//cHdZQKmxf/9f4eai3FwpOdk99QBAYSyGYRjuLqI43n//ffXu3VtWq1V+fn5FWiczM1Ph4eHKyMhQWFiYkysEzCUtLb9b6tKQ4+srpaZKUVFuKwtAKVCcz2+vOYNzqVOnTmnlypVq165doeHGarUqMzPT7gGgeKKipMWL80ONlP+8aBHhBoBn8qqA88wzzygkJEQVK1bUwYMH9d///rfQ5adOnarw8HDbIzo62kWVAuY0eHD+GZtNm/KfBw92d0UAcHlu7aIaM2aMpk+fXugySUlJatCggSTp999/16lTp/Tbb79p0qRJCg8P14cffiiLxXLZda1Wq6xWq+11ZmamoqOj6aICAMCLFKeLyq0B5+TJk0pPTy90mdq1a8vf37/A9LS0NEVHR2vr1q1q27ZtkfbHGBwAALxPcT6/yzi5pkJFREQoIiKiWOvm/W+k46VnaAAAACQ3B5yi+u6777R9+3Z16NBB5cuX14EDBzR+/HjVqVOnyGdvAABA6eEVg4yDg4O1du1a3Xzzzapfv74GDx6spk2b6ssvv1RAQIC7ywMAAB7GK87gNGnSRF988YW7ywAAAF7CK87gAAAAOIKAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATMfrAo7VatX1118vi8WixMREd5cDAAA8kNcFnKefflrVqlVzdxkAAMCDeVXA+eSTT/TZZ59p1qxZ7i4FAAB4sDLuLqCojh8/rocffljvvfeegoODi7SO1WqV1Wq1vc7MzHRWeQAAwIN4xRkcwzA0aNAgDRs2TK1atSryelOnTlV4eLjtER0d7cQqAQCAp3BrwBkzZowsFkuhj71792revHk6c+aMxo4d69D2x44dq4yMDNvj0KFDTjoSAADgSSyGYRju2vnJkyeVnp5e6DK1a9fWPffcow8++EAWi8U2PTc3V76+vurXr59WrFhRpP1lZmYqPDxcGRkZCgsLu6baAQCAaxTn89utAaeoDh48aDd+5siRI4qLi9O7776rNm3aKCoqqkjbIeAAAOB9ivP57RWDjGvUqGH3umzZspKkOnXqFDncAACA0sMrBhkDAAA4wivO4PxdzZo15QU9awAAwE04gwMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEzHawJOzZo1ZbFY7B7Tpk1zd1kAAMADlXF3AY54/vnn9fDDD9teh4aGurEaAADgqbwq4ISGhqpq1aruLgMAAHg4r+mikqRp06apYsWKat68uWbOnKkLFy4UurzValVmZqbdAwAAmJ/XnMEZOXKkWrRooQoVKmjr1q0aO3asjh49qtmzZ19xnalTp2rSpEkurBKXSkuT9u+X6taVoqLcXQ0AoDSxGIZhuGvnY8aM0fTp0wtdJikpSQ0aNCgwfenSpRo6dKiysrIUEBBw2XWtVqusVqvtdWZmpqKjo5WRkaGwsLBrKx6FSkiQhgyR8vIkHx9p8WJp8GB3VwUA8EaZmZkKDw936PPbrQHn5MmTSk9PL3SZ2rVry9/fv8D03bt3q3Hjxtq7d6/q169fpP0Vp4HguLQ0KSYmP9xc5OsrpaZyJgcA4LjifH67tYsqIiJCERERxVo3MTFRPj4+qly5cglXhWu1f799uJGk3FwpOZmAAwBwDa8Yg7Nt2zZ999136tKli0JDQ7Vt2zY9/vjj6t+/v8qXL+/u8vA3devmd0v9/QxObKz7agIAlC5ecRVVQECAVq9erU6dOqlRo0aaMmWKHn/8cS1evNjdpeEyoqLyx9z4+ua/9vWVFi3i7A0AwHXcOgbH1RiD41ppafndUrGxhBsAQPF53RgclDxPujQ7Ksr9NQAASiev6KJC0SQk5F+91LVr/nNCgrsrAgDAPQg4JpGW9td9Z6T856FD86cDAFDaEHBMorBLswEAKG0IOCZx8dLsS3FpNgCgtCLgmASXZgMA8BeuojKRwYOluDguzQYAgIBjMlyaDQAAXVQAAMCECDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0StV3URmGIUnKzMx0cyUAAKCoLn5uX/wcL4pSFXDOnDkjSYqOjnZzJQAAwFFnzpxReHh4kZa1GI7EIS+Xl5enI0eOKDQ0VBaLpcD8zMxMRUdH69ChQwoLC3NDhZ6HNrFHexREm9ijPezRHgXRJvaK0h6GYejMmTOqVq2afHyKNrqmVJ3B8fHxUVRU1FWXCwsL44fub2gTe7RHQbSJPdrDHu1REG1i72rtUdQzNxcxyBgAAJgOAQcAAJgOAecSAQEBmjBhggICAtxdisegTezRHgXRJvZoD3u0R0G0iT1ntUepGmQMAABKB87gAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yl1AefVV19VzZo1FRgYqDZt2uj777+/4rK7d+/WXXfdpZo1a8pisWjOnDmuK9SFHGmTJUuW6KabblL58uVVvnx5devWrdDlvZEj7bF27Vq1atVK5cqVU0hIiK6//nq98cYbLqzWNRxpk0utXr1aFotFvXv3dm6BLuZIeyxfvlwWi8XuERgY6MJqnc/Rn4/Tp09r+PDhioyMVEBAgOrVq6ePP/7YRdW6hiNt0rlz5wI/IxaLRT179nRhxc7l6M/InDlzVL9+fQUFBSk6OlqPP/64zp8/79hOjVJk9erVhr+/v7F06VJj9+7dxsMPP2yUK1fOOH78+GWX//77740nn3zSeOutt4yqVasaL7/8smsLdgFH2+S+++4zXn31VWPnzp1GUlKSMWjQICM8PNxIS0tzceXO4Wh7bNq0yVi7dq2xZ88eIzk52ZgzZ47h6+trrF+/3sWVO4+jbXJRSkqKUb16deOmm24y7rjjDtcU6wKOtseyZcuMsLAw4+jRo7bHsWPHXFy18zjaHlar1WjVqpVx2223Gd98842RkpJibN682UhMTHRx5c7jaJukp6fb/Xzs2rXL8PX1NZYtW+bawp3E0fZYuXKlERAQYKxcudJISUkxPv30UyMyMtJ4/PHHHdpvqQo4rVu3NoYPH257nZuba1SrVs2YOnXqVdeNiYkxZcC5ljYxDMO4cOGCERoaaqxYscJZJbrUtbaHYRhG8+bNjWeffdYZ5blFcdrkwoULRrt27Yx///vfxsCBA00VcBxtj2XLlhnh4eEuqs71HG2PhQsXGrVr1zays7NdVaLLXev7yMsvv2yEhoYaWVlZzirRpRxtj+HDhxtdu3a1mzZ69Gijffv2Du231HRRZWdna8eOHerWrZttmo+Pj7p166Zt27a5sTL3KYk2OXfunHJyclShQgVnleky19oehmFo48aN2rdvnzp27OjMUl2muG3y/PPPq3Llyho8eLArynSZ4rZHVlaWYmJiFB0drTvuuEO7d+92RblOV5z2eP/999W2bVsNHz5cVapUUePGjfXiiy8qNzfXVWU7VUm8ryYkJKhv374KCQlxVpkuU5z2aNeunXbs2GHrxvr111/18ccf67bbbnNo36XmyzZ///135ebmqkqVKnbTq1Spor1797qpKvcqiTZ55plnVK1aNbsfXm9V3PbIyMhQ9erVZbVa5evrqwULFuiWW25xdrkuUZw2+eabb5SQkKDExEQXVOhaxWmP+vXra+nSpWratKkyMjI0a9YstWvXTrt37y7Sl/96suK0x6+//qovvvhC/fr108cff6zk5GQ9+uijysnJ0YQJE1xRtlNd6/vq999/r127dikhIcFZJbpUcdrjvvvu0++//64OHTrIMAxduHBBw4YN07/+9S+H9l1qAg5K3rRp07R69Wpt3rzZdIMmHREaGqrExERlZWVp48aNGj16tGrXrq3OnTu7uzSXO3PmjAYMGKAlS5aoUqVK7i7HI7Rt21Zt27a1vW7Xrp0aNmyoRYsWafLkyW6szD3y8vJUuXJlLV68WL6+vmrZsqUOHz6smTNnmiLgXKuEhAQ1adJErVu3dncpbrN582a9+OKLWrBggdq0aaPk5GQ99thjmjx5ssaPH1/k7ZSagFOpUiX5+vrq+PHjdtOPHz+uqlWruqkq97qWNpk1a5amTZumDRs2qGnTps4s02WK2x4+Pj6KjY2VJF1//fVKSkrS1KlTTRFwHG2TAwcOKDU1VfHx8bZpeXl5kqQyZcpo3759qlOnjnOLdqKSeB/x8/NT8+bNlZyc7IwSXao47REZGSk/Pz/5+vrapjVs2FDHjh1Tdna2/P39nVqzs13Lz8jZs2e1evVqPf/8884s0aWK0x7jx4/XgAED9NBDD0mSmjRporNnz2rIkCEaN26cfHyKNrqm1IzB8ff3V8uWLbVx40bbtLy8PG3cuNHur6vSpLhtMmPGDE2ePFnr169Xq1atXFGqS5TUz0heXp6sVqszSnQ5R9ukQYMG+vnnn5WYmGh79OrVS126dFFiYqKio6NdWX6JK4mfkdzcXP3888+KjIx0VpkuU5z2aN++vZKTk23BV5J++eUXRUZGen24ka7tZ+Sdd96R1WpV//79nV2myxSnPc6dO1cgxFwMxIYjX5/p4GBor7Z69WojICDAWL58ubFnzx5jyJAhRrly5WyXbA4YMMAYM2aMbXmr1Wrs3LnT2LlzpxEZGWk8+eSTxs6dO439+/e76xBKnKNtMm3aNMPf399499137S5rPHPmjLsOoUQ52h4vvvii8dlnnxkHDhww9uzZY8yaNcsoU6aMsWTJEncdQolztE3+zmxXUTnaHpMmTTI+/fRT48CBA8aOHTuMvn37GoGBgcbu3bvddQglytH2OHjwoBEaGmqMGDHC2Ldvn/Hhhx8alStXNl544QV3HUKJK+7vTIcOHYw+ffq4ulync7Q9JkyYYISGhhpvvfWW8euvvxqfffaZUadOHeOee+5xaL+lKuAYhmHMmzfPqFGjhuHv72+0bt3a+Pbbb23zOnXqZAwcOND2OiUlxZBU4NGpUyfXF+5EjrRJTEzMZdtkwoQJri/cSRxpj3HjxhmxsbFGYGCgUb58eaNt27bG6tWr3VC1cznSJn9ntoBjGI61x6hRo2zLVqlSxbjtttuMH3/80Q1VO4+jPx9bt2412rRpYwQEBBi1a9c2pkyZYly4cMHFVTuXo22yd+9eQ5Lx2WefubhS13CkPXJycoyJEycaderUMQIDA43o6Gjj0UcfNf744w+H9mkxDEfO9wAAAHi+UjMGBwAAlB4EHAAAYDoEHAAAYDoEHAAAYDoEHAAAYDoEHAAAYDoEHAAAYDoEHABwgkGDBql3797uLgMotQg4QCkzaNAgWSwW26NixYrq3r27fvrpJ3eXViIuPbaLjw4dOjhtf6mpqbJYLEpMTLSb/sorr2j58uVO2y+AwhFwgFKoe/fuOnr0qI4ePaqNGzeqTJkyuv32291dVolZtmyZ7fiOHj2q999//7LL5eTkOK2G8PBwlStXzmnbB1A4Ag5QCgUEBKhq1aqqWrWqrr/+eo0ZM0aHDh3SyZMn1bVrV40YMcJu+ZMnT8rf39/2jcA1a9bU5MmTde+99yokJETVq1fXq6++arfO7Nmz1aRJE4WEhCg6OlqPPvqosrKybPN/++03xcfHq3z58goJCVGjRo308ccfS5L++OMP9evXTxEREQoKClLdunW1bNmyIh9fuXLlbMdXtWpVVahQwXam5e2331anTp0UGBiolStXKj09Xffee6+qV6+u4OBgNWnSRG+99Zbd9vLy8jRjxgzFxsYqICBANWrU0JQpUyRJtWrVkiQ1b95cFotFnTt3llSwi8pqtWrkyJGqXLmyAgMD1aFDB23fvt02f/PmzbJYLNq4caNatWql4OBgtWvXTvv27SvycQP4CwEHKOWysrL05ptvKjY2VhUrVtRDDz2kVatWyWq12pZ58803Vb16dXXt2tU2bebMmWrWrJl27typMWPG6LHHHtPnn39um+/j46O5c+dq9+7dWrFihb744gs9/fTTtvnDhw+X1WrVV199pZ9//lnTp09X2bJlJUnjx4/Xnj179MknnygpKUkLFy5UpUqVSuR4L9aalJSkuLg4nT9/Xi1bttRHH32kXbt2aciQIRowYIC+//572zpjx47VtGnTbHWtWrVKVapUkSTbchs2bNDRo0e1du3ay+736aef1po1a7RixQr9+OOPio2NVVxcnE6dOmW33Lhx4/TSSy/phx9+UJkyZfTggw+WyHEDpU6JfE0oAK8xcOBAw9fX1wgJCTFCQkIMSUZkZKSxY8cOwzAM488//zTKly9vvP3227Z1mjZtakycONH2OiYmxujevbvddvv06WP06NHjivt95513jIoVK9peN2nSxG6bl4qPjzceeOCBYh2fJCMwMNB2fCEhIca6deuMlJQUQ5IxZ86cq26jZ8+exhNPPGEYhmFkZmYaAQEBxpIlSy677MXt7ty50276pd+inpWVZfj5+RkrV660zc/OzjaqVatmzJgxwzAMw9i0aZMhydiwYYNtmY8++siQZPz555+ONAEAwzA4gwOUQl26dFFiYqISExP1/fffKy4uTj169NBvv/2mwMBADRgwQEuXLpUk/fjjj9q1a5cGDRpkt422bdsWeJ2UlGR7vWHDBt18882qXr26QkNDNWDAAKWnp+vcuXOSpJEjR+qFF15Q+/btNWHCBLtBzo888ohWr16t66+/Xk8//bS2bt3q0PG9/PLLtuNLTEzULbfcYpvXqlUru2Vzc3M1efJkNWnSRBUqVFDZsmX16aef6uDBg5KkpKQkWa1W3XzzzQ7VcKkDBw4oJydH7du3t03z8/NT69at7dpMkpo2bWr7d2RkpCTpxIkTxd43UFoRcIBSKCQkRLGxsYqNjdUNN9ygf//73zp79qyWLFkiSXrooYf0+eefKy0tTcuWLVPXrl0VExNT5O2npqbq9ttvV9OmTbVmzRrt2LHDNkYnOzvbto9ff/1VAwYM0M8//6xWrVpp3rx5kmQLW48//riOHDmim2++WU8++WSR91+1alXb8cXGxiokJMTu2C81c+ZMvfLKK3rmmWe0adMmJSYmKi4uzlZnUFBQkfdbEvz8/Gz/tlgskvLHAAFwDAEHgCwWi3x8fPTnn39Kkpo0aaJWrVppyZIlWrVq1WXHgXz77bcFXjds2FCStGPHDuXl5emll17SjTfeqHr16unIkSMFthEdHa1hw4Zp7dq1euKJJ2wBS5IiIiI0cOBAvfnmm5ozZ44WL15ckodss2XLFt1xxx3q37+/mjVrptq1a+uXX36xza9bt66CgoJsA6z/zt/fX1L+maArqVOnjvz9/bVlyxbbtJycHG3fvl3XXXddCR0JgEuVcXcBAFzParXq2LFjkvKvWJo/f76ysrIUHx9vW+ahhx7SiBEjFBISov/3//5fgW1s2bJFM2bMUO/evfX555/rnXfe0UcffSRJio2NVU5OjubNm6f4+Hht2bJFr732mt36o0aNUo8ePVSvXj398ccf2rRpky0gPffcc2rZsqUaNWokq9WqDz/80DavpNWtW1fvvvuutm7dqvLly2v27Nk6fvy4LXgEBgbqmWee0dNPPy1/f3+1b99eJ0+e1O7duzV48GBVrlxZQUFBWr9+vaKiohQYGKjw8HC7fYSEhOiRRx7RU089pQoVKqhGjRqaMWOGzp07p8GDBzvluIDSjjM4QCm0fv16RUZGKjIyUm3atNH27dv1zjvv2C5xlqR7771XZcqU0b333qvAwMAC23jiiSf0ww8/qHnz5nrhhRc0e/ZsxcXFSZKaNWum2bNna/r06WrcuLFWrlypqVOn2q2fm5ur4cOHq2HDhurevbvq1aunBQsWSMo/KzJ27Fg1bdpUHTt2lK+vr1avXu2Utnj22WfVokULxcXFqXPnzqpatWqBOxCPHz9eTzzxhJ577jk1bNhQffr0sY2LKVOmjObOnatFixapWrVquuOOOy67n2nTpumuu+7SgAED1KJFCyUnJ+vTTz9V+fLlnXJcQGlnMQzDcHcRADxPamqq6tSpo+3bt6tFixZ282rWrKlRo0Zp1KhR7ikOAK6CLioAdnJycpSenq5nn31WN954Y4FwAwDegC4qAHa2bNmiyMhIbd++vcC4GXd78cUXVbZs2cs+evTo4e7yAHgQuqgAeI1Tp04VuPPvRUFBQapevbqLKwLgqQg4AADAdOiiAgAApkPAAQAApkPAAQAApkPAAQAApkPAAQAApkPAAQAApkPAAQAApkPAAQAApvP/AU0UHa1ML4LiAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_24.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBTklEQVR4nO3dd3hUZd7G8XsS0igJAqEmBEgoAkoVBKWKBkTKWgBBBESKCwKLBRFdmlKERaSo4BsIFhSVpoIIsqA0FSkqEiCUCEG6mFAkYOZ5/5hlYEgISUgyMyffz3XNNcxp8ztPTjh3ntNsxhgjAAAAL+fj7gIAAAByAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAABYAqEGAPJYbGysbDabEhIS3F0KYCmEGsCCNm/erIEDB6pGjRoqVKiQypcvr06dOmnPnj1ppm3evLlsNptsNpt8fHwUHBysqlWrqnv37lq1alWWvvfzzz9Xs2bNVLJkSRUsWFCVKlVSp06dtGLFipxatTTGjRunJUuWpBm+ceNGjRo1Sn/++Weuffe1Ro0a5WxLm82mggULqnr16nrppZeUnJycI98xf/58TZ06NUeWBVgNoQawoIkTJ2rhwoW655579MYbb6hv37769ttvVbduXe3YsSPN9GFhYXrvvff07rvvatKkSWrfvr02btyo++67T507d9alS5du+J2TJ09W+/btZbPZNHz4cL3++ut66KGHFB8fr48++ig3VlNSxqFm9OjReRpqLnvrrbf03nvvacqUKapWrZpeffVVtW7dWjnxqD1CDXB9BdxdAICcN3ToUM2fP1/+/v7OYZ07d9Ztt92mCRMm6P3333eZPiQkRI899pjLsAkTJmjQoEF68803VaFCBU2cOPG63/f3339r7Nixuvfee7Vy5co0448fP36Ta+Q5zp8/r4IFC2Y4zcMPP6wSJUpIkvr376+HHnpIixYt0nfffadGjRrlRZlAvkRPDWBBjRs3dgk0klS5cmXVqFFDcXFxmVqGr6+vpk2bpurVq2vGjBlKSkq67rQnT55UcnKy7rrrrnTHlyxZ0uXzhQsXNGrUKFWpUkWBgYEqU6aMHnzwQe3bt885zeTJk9W4cWMVL15cQUFBqlevnj799FOX5dhsNp07d07z5s1zHvLp2bOnRo0apeeee06SVLFiRee4q89hef/991WvXj0FBQWpWLFi6tKliw4dOuSy/ObNm6tmzZrasmWLmjZtqoIFC+rFF1/MVPtdrWXLlpKkAwcOZDjdm2++qRo1aiggIEBly5bVgAEDXHqamjdvrmXLlum3335zrlOFChWyXA9gVfTUAPmEMUbHjh1TjRo1Mj2Pr6+vHn30Ub388stav3692rZtm+50JUuWVFBQkD7//HM9/fTTKlas2HWXmZqaqgceeECrV69Wly5dNHjwYJ05c0arVq3Sjh07FBkZKUl644031L59e3Xr1k0XL17URx99pEceeURffPGFs4733ntPTz75pBo0aKC+fftKkiIjI1WoUCHt2bNHH374oV5//XVnr0loaKgk6dVXX9XLL7+sTp066cknn9SJEyc0ffp0NW3aVNu2bVPRokWd9Z46dUpt2rRRly5d9Nhjj6lUqVKZbr/LLoe14sWLX3eaUaNGafTo0WrVqpWeeuop7d69W2+99ZY2b96sDRs2yM/PTyNGjFBSUpISExP1+uuvS5IKFy6c5XoAyzIA8oX33nvPSDIxMTEuw5s1a2Zq1Khx3fkWL15sJJk33ngjw+X/+9//NpJMoUKFTJs2bcyrr75qtmzZkma6OXPmGElmypQpacbZ7Xbnv8+fP+8y7uLFi6ZmzZqmZcuWLsMLFSpkevTokWZZkyZNMpLMgQMHXIYnJCQYX19f8+qrr7oM/+WXX0yBAgVchjdr1sxIMm+//fZ11/tqI0eONJLM7t27zYkTJ8yBAwfMrFmzTEBAgClVqpQ5d+6cMcaYuXPnutR2/Phx4+/vb+677z6TmprqXN6MGTOMJDNnzhznsLZt25qIiIhM1QPkNxx+AvKBXbt2acCAAWrUqJF69OiRpXkv9wScOXMmw+lGjx6t+fPnq06dOvrqq680YsQI1atXT3Xr1nU55LVw4UKVKFFCTz/9dJpl2Gw257+DgoKc/z59+rSSkpLUpEkTbd26NUv1X2vRokWy2+3q1KmTTp486XyVLl1alStX1po1a1ymDwgIUK9evbL0HVWrVlVoaKgqVqyofv36KSoqSsuWLbvuuThff/21Ll68qCFDhsjH58p/y3369FFwcLCWLVuW9RUF8qF8GWq+/fZbtWvXTmXLlpXNZkv3ygl3fF9cXJzat2+vkJAQFSpUSHfccYcOHjyYq7XB+o4ePaq2bdsqJCREn376qXx9fbM0/9mzZyVJRYoUueG0jz76qNatW6fTp09r5cqV6tq1q7Zt26Z27drpwoULkhyHYqpWraoCBTI++v3FF1/ozjvvVGBgoIoVK6bQ0FC99dZbGZ7bkxnx8fEyxqhy5coKDQ11ecXFxaU5qblcuXJpzk+6kYULF2rVqlVau3at9u7dqx07dqhevXrXnf63336T5AhDV/P391elSpWc4wFkLF+eU3Pu3DnVqlVLTzzxhB588EGP+L59+/bp7rvvVu/evTV69GgFBwfr119/VWBgYK7XB+tKSkpSmzZt9Oeff2rdunUqW7Zslpdx+RLwqKioTM8THByse++9V/fee6/8/Pw0b948ff/992rWrFmm5l+3bp3at2+vpk2b6s0331SZMmXk5+enuXPnav78+Vleh6vZ7XbZbDZ9+eWX6Qa8a89RubrHKLOaNm3qPI8HQN7Jl6GmTZs2atOmzXXHp6SkaMSIEfrwww/1559/qmbNmpo4caKaN2+eK98nSSNGjND999+v1157zTns8gmTQHZcuHBB7dq10549e/T111+revXqWV5Gamqq5s+fr4IFC+ruu+/OVh3169fXvHnzdOTIEUmO7fr777/XpUuX5Ofnl+48CxcuVGBgoL766isFBAQ4h8+dOzfNtFcfssrM8MjISBljVLFiRVWpUiWrq5MrIiIiJEm7d+9WpUqVnMMvXryoAwcOqFWrVs5h11svAPn08NONDBw4UJs2bdJHH32kn3/+WY888ohat26t+Pj4XPk+u92uZcuWqUqVKoqOjlbJkiXVsGHDXD8sButKTU1V586dtWnTJn3yySfZujdKamqqBg0apLi4OA0aNEjBwcHXnfb8+fPatGlTuuO+/PJLSVcOrTz00EM6efKkZsyYkWZa87+b0/n6+spmsyk1NdU5LiEhId3fiUKFCqV7g71ChQpJUppxDz74oHx9fTV69Og0N8MzxujUqVPpr2QuatWqlfz9/TVt2jSXmmJiYpSUlORy1VmhQoVu+hAcYFX5sqcmIwcPHtTcuXN18OBBZ1f9s88+qxUrVmju3LkaN25cjn/n8ePHdfbsWU2YMEGvvPKKJk6cqBUrVujBBx/UmjVrMt1lD1z2zDPP6LPPPlO7du30xx9/pLnZ3rU32ktKSnJOc/78ee3du1eLFi3Svn371KVLF40dOzbD7zt//rwaN26sO++8U61bt1Z4eLj+/PNPLVmyROvWrVPHjh1Vp04dSdLjjz+ud999V0OHDtUPP/ygJk2a6Ny5c/r666/1z3/+Ux06dFDbtm01ZcoUtW7dWl27dtXx48c1c+ZMRUVF6eeff3b57nr16unrr7/WlClTVLZsWVWsWFENGzZ0nsMyYsQIdenSRX5+fmrXrp0iIyP1yiuvaPjw4UpISFDHjh1VpEgRHThwQIsXL1bfvn317LPP3lT7Z1VoaKiGDx+u0aNHq3Xr1mrfvr12796tN998U3fccYfLz6tevXpasGCBhg4dqjvuuEOFCxdWu3bt8rRewGO589IrTyDJLF682Pn5iy++cF6WevWrQIECplOnTsYYY+Li4oykDF/Dhg3L1PcZY8zhw4eNJPPoo4+6DG/Xrp3p0qVLjq4v8ofLlyJf75XRtIULFzaVK1c2jz32mFm5cmWmvu/SpUvmnXfeMR07djQREREmICDAFCxY0NSpU8dMmjTJpKSkuEx//vx5M2LECFOxYkXj5+dnSpcubR5++GGzb98+5zQxMTGmcuXKJiAgwFSrVs3MnTvXecn01Xbt2mWaNm1qgoKCjCSXy7vHjh1rypUrZ3x8fNJc3r1w4UJz9913O3/Hq1WrZgYMGGB2797t0jYZXe5+rcv1nThxIsPprr2k+7IZM2aYatWqGT8/P1OqVCnz1FNPmdOnT7tMc/bsWdO1a1dTtGhRI4nLu4Gr2IzJgYeReDGbzabFixerY8eOkqQFCxaoW7du+vXXX9OcRFi4cGGVLl1aFy9e1P79+zNcbvHixZ03+sro+yTHcfNChQpp5MiReumll5zDhw0bpvXr12vDhg3ZX0EAAPIJDj9do06dOkpNTdXx48fVpEmTdKfx9/dXtWrVcuw7/f39dccdd2j37t0uw/fs2eM8gRAAAGQsX4aas2fPau/evc7PBw4c0Pbt21WsWDFVqVJF3bp10+OPP67//Oc/qlOnjk6cOKHVq1fr9ttvv+5t4rP7feXLl5ckPffcc+rcubOaNm2qFi1aaMWKFfr888+1du3am15fAADyg3x5+Gnt2rVq0aJFmuE9evRQbGysLl26pFdeeUXvvvuuDh8+rBIlSujOO+/U6NGjddttt+X49102Z84cjR8/XomJiapatapGjx6tDh06ZPn7AADIj/JlqAEAANbDfWoAAIAlEGoAAIAl5KsThe12u37//XcVKVKEW40DAOAljDE6c+aMypYt6/Ik+2vlq1Dz+++/Kzw83N1lAACAbDh06JDCwsKuOz5fhZoiRYpIcjRKRs+xAQAAniM5OVnh4eHO/fj15KtQc/mQU3BwMKEGAAAvc6NTRzhRGAAAWAKhBgAAWAKhBgAAWEK+Oqcms1JTU3Xp0iV3l2FZ/v7+GV6SBwBAdhBqrmKM0dGjR/Xnn3+6uxRL8/HxUcWKFeXv7+/uUgAAFkKoucrlQFOyZEkVLFiQG/Tlgss3QDxy5IjKly9PGwMAcgyh5n9SU1OdgaZ48eLuLsfSQkND9fvvv+vvv/+Wn5+fu8sBAFgEJzb8z+VzaAoWLOjmSqzv8mGn1NRUN1cCALASQs01OByS+2hjAEBuINQAAABLINQAAABLINRYQM+ePWWz2WSz2eTn56dSpUrp3nvv1Zw5c2S32zO9nNjYWBUtWjT3CgUAWFZiorRmjePdXbj6KYecOnVKFy9evO54f3//XL2qqnXr1po7d65SU1N17NgxrVixQoMHD9ann36qzz77TAUK8KMGAOSOmBipb1/Jbpd8fKTZs6XevfO+DvZ0OeDUqVOaMWPGDacbOHBgrgWbgIAAlS5dWpJUrlw51a1bV3feeafuuecexcbG6sknn9SUKVM0d+5c7d+/X8WKFVO7du302muvqXDhwlq7dq169eol6cqJvCNHjtSoUaP03nvv6Y033tDu3btVqFAhtWzZUlOnTlXJkiVzZV0AAN4jMfFKoJEc7/36SdHRUlhY3tbC4acckFEPTXamyyktW7ZUrVq1tGjRIkmOO/lOmzZNv/76q+bNm6f//ve/ev755yVJjRs31tSpUxUcHKwjR47oyJEjevbZZyU5LncfO3asfvrpJy1ZskQJCQnq2bNnnq4LAMAzxcdfCTSXpaZKe/fmfS301FhctWrV9PPPP0uShgwZ4hxeoUIFvfLKK+rfv7/efPNN+fv7KyQkRDabzdnjc9kTTzzh/HelSpU0bdo03XHHHTp79qwKFy6cJ+sBAPBMlSs7DjldHWx8faWoqLyvhZ4aizPGOA8nff3117rnnntUrlw5FSlSRN27d9epU6d0/vz5DJexZcsWtWvXTuXLl1eRIkXUrFkzSdLBgwdzvX4AgGcLC3OcQ+Pr6/js6yvNmpX3h54kQo3lxcXFqWLFikpISNADDzyg22+/XQsXLtSWLVs0c+ZMSRkfFjt37pyio6MVHBysDz74QJs3b9bixYtvOB8AIP/o3VtKSHBc/ZSQ4J6ThCUOP1naf//7X/3yyy/617/+pS1btshut+s///mPfHwcWfbjjz92md7f3z/Nowt27dqlU6dOacKECQoPD5ck/fjjj3mzAgAArxEW5p7emavRU2MRKSkpOnr0qA4fPqytW7dq3Lhx6tChgx544AE9/vjjioqK0qVLlzR9+nTt379f7733nt5++22XZVSoUEFnz57V6tWrdfLkSZ0/f17ly5eXv7+/c77PPvtMY8eOddNaArAyT7jPCbwbocYiVqxYoTJlyqhChQpq3bq11qxZo2nTpmnp0qXy9fVVrVq1NGXKFE2cOFE1a9bUBx98oPHjx7sso3Hjxurfv786d+6s0NBQvfbaawoNDVVsbKw++eQTVa9eXRMmTNDkyZPdtJYArComRoqIkFq2dLzHxLi7IngjmzHGuLuIvJKcnKyQkBAlJSUpODjYZdyFCxd04MABVaxYUYGBgVlarifcp8ab3ExbA7CexERHkLn26pmEBPcfzoBnyGj/fTXOqckBxYsX18CBA916R2EA8FYZ3eeEUIOsINTkEAILAGSPJ93nBN6Nc2oAAG7lSfc5gXejpwYA4Ha9ezueFbR3r6OHhkCD7CDUAAA8gifc5wTejcNPAADAEgg1AADAEgg1AADAEgg1AADAEgg1uKG1a9fKZrPpzz//zPQ8FSpU0NSpU3OtJgAArkWosYCePXvKZrOpf//+acYNGDBANptNPXv2zPvCAADIQ4QaiwgPD9dHH32kv/76yznswoULmj9/vsqXL+/GygAAyBteFWoOHz6sxx57TMWLF1dQUJBuu+02/fjjj+4uyyPUrVtX4eHhWrRokXPYokWLVL58edWpU8c5LCUlRYMGDVLJkiUVGBiou+++W5s3b3ZZ1vLly1WlShUFBQWpRYsWSkhISPN969evV5MmTRQUFKTw8HANGjRI586dy7X1AwDgRrwm1Jw+fVp33XWX/Pz89OWXX2rnzp36z3/+o1tuucXdpaWRmCitWeN4z0tPPPGE5s6d6/w8Z84c9erVy2Wa559/XgsXLtS8efO0detWRUVFKTo6Wn/88Yck6dChQ3rwwQfVrl07bd++XU8++aReeOEFl2Xs27dPrVu31kMPPaSff/5ZCxYs0Pr16zVw4MDcX0kAAK7HeIlhw4aZu++++6aWkZSUZCSZpKSkNOP++usvs3PnTvPXX3/d1Hf83/8Z4+NjjOR4/7//u6nFZUqPHj1Mhw4dzPHjx01AQIBJSEgwCQkJJjAw0Jw4ccJ06NDB9OjRw5w9e9b4+fmZDz74wDnvxYsXTdmyZc1rr71mjDFm+PDhpnr16i7LHzZsmJFkTp8+bYwxpnfv3qZv374u06xbt874+Pg42y8iIsK8/vrr6dabU20NAMgfMtp/X81remo+++wz1a9fX4888ohKliypOnXq6J133slwnpSUFCUnJ7u8clNiotS375UnzdrtUr9+eddjExoaqrZt2yo2NlZz585V27ZtVaJECef4ffv26dKlS7rrrrucw/z8/NSgQQPFxcVJkuLi4tSwYUOX5TZq1Mjl808//aTY2FgVLlzY+YqOjpbdbteBAwdycQ0BALg+r3n20/79+/XWW29p6NChevHFF7V582YNGjRI/v7+6tGjR7rzjB8/XqNHj86zGuPjrwSay1JTHQ9oy6vnmTzxxBPOw0AzZ87Mle84e/as+vXrp0GDBqUZx0nJAAB38ZpQY7fbVb9+fY0bN06SVKdOHe3YsUNvv/32dUPN8OHDNXToUOfn5ORkhYeH51qNlStLPj6uwcbX1/HE2bzSunVrXbx4UTabTdHR0S7jIiMj5e/vrw0bNigiIkKSdOnSJW3evFlDhgyRJN1666367LPPXOb77rvvXD7XrVtXO3fuVFRerhgAADfgNYefypQpo+rVq7sMu/XWW3Xw4MHrzhMQEKDg4GCXV24KC5Nmz3YEGcnxPmtW3j511tfXV3Fxcdq5c6d8LxfyP4UKFdJTTz2l5557TitWrNDOnTvVp08fnT9/Xr1795Yk9e/fX/Hx8Xruuee0e/duzZ8/X7GxsS7LGTZsmDZu3KiBAwdq+/btio+P19KlSzlRGADgVl7TU3PXXXdp9+7dLsP27Nnj7HHwFL17S9HRjkNOUVF5G2guyyi8TZgwQXa7Xd27d9eZM2dUv359ffXVV86ryMqXL6+FCxfqX//6l6ZPn64GDRpo3LhxeuKJJ5zLuP322/XNN99oxIgRatKkiYwxioyMVOfOnXN93QAAuB6bMca4u4jM2Lx5sxo3bqzRo0erU6dO+uGHH9SnTx/Nnj1b3bp1y9QykpOTFRISoqSkpDQ7/gsXLujAgQOqWLGiAgMDc2MV8D+0NQAgKzLaf1/Naw4/3XHHHVq8eLE+/PBD1axZU2PHjtXUqVMzHWgAAIC1ec3hJ0l64IEH9MADD7i7DAAA4IG8pqcGAAAgI4QaAABgCYSaa3jJedNejTYGAOQGQs3/+Pn5SZLOnz/v5kqs7+LFi5KU5j46AADcDK86UTg3+fr6qmjRojp+/LgkqWDBgrLZbG6uynrsdrtOnDihggULqkABNj8AQM5hr3KV0qVLS5Iz2CB3+Pj4qHz58oRGAECOItRcxWazqUyZMipZsqQuXbrk7nIsy9/fXz4+HPkEAOQsQk06fH19Od8DAAAvw5/LAADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AAB4sMREac0axzsyRqgBAMBDxcRIERFSy5aO95gYd1fk2Qg1AAB4oMREqW9fyW53fLbbpX796LHJCKEGAAAPFB9/JdBclpoq7d3rnnq8AaEGAAAPVLmydO1j8nx9pago99TjDQg1AAB4oLAwafZsR5CRHO+zZjmGI3080BIAAA/Vu7cUHe045BQVRaC5EUINAAAeLCyMMJNZHH4CAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAACWQKgBAMCCEhOlNWsc7/kFoQYAAIuJiZEiIqSWLR3vMTHurihvEGoAALCQxESpb1/Jbnd8ttulfv3yR4+N14aaCRMmyGazaciQIe4uBQAAjxEffyXQXJaaKu3d65568pJXhprNmzdr1qxZuv32291dCgAAHqVyZcnnmr27r68UFeWeevKS14Was2fPqlu3bnrnnXd0yy23uLscAAA8SliYNHu2I8hIjvdZsxzDrc7rQs2AAQPUtm1btWrV6obTpqSkKDk52eUFAIDV9e4tJSQ4rn5KSHB8zg8KuLuArPjoo4+0detWbd68OVPTjx8/XqNHj87lqgAA8DxhYfmjd+ZqXtNTc+jQIQ0ePFgffPCBAgMDMzXP8OHDlZSU5HwdOnQol6sEAADuYjPGGHcXkRlLlizRP/7xD/lePkgoKTU1VTabTT4+PkpJSXEZl57k5GSFhIQoKSlJwcHBuV0yAADIAZndf3vN4ad77rlHv/zyi8uwXr16qVq1aho2bNgNAw0AALA2rwk1RYoUUc2aNV2GFSpUSMWLF08zHAAA5D9ec04NAABARrympyY9a9eudXcJAADAQ9BTAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALIFQAwAALMFrQs348eN1xx13qEiRIipZsqQ6duyo3bt3u7ssAADgIbwm1HzzzTcaMGCAvvvuO61atUqXLl3Sfffdp3Pnzrm7NAAA4AFsxhjj7iKy48SJEypZsqS++eYbNW3aNFPzJCcnKyQkRElJSQoODs7lCgEAQE7I7P67QB7WlKOSkpIkScWKFbvuNCkpKUpJSXF+Tk5OzvW6AACAe3jN4aer2e12DRkyRHfddZdq1qx53enGjx+vkJAQ5ys8PDwPqwQAAHnJKw8/PfXUU/ryyy+1fv16hYWFXXe69HpqwsPDOfwEAIAXsezhp4EDB+qLL77Qt99+m2GgkaSAgAAFBATkUWUAAMCdvCbUGGP09NNPa/HixVq7dq0qVqzo7pIAAIAH8ZpQM2DAAM2fP19Lly5VkSJFdPToUUlSSEiIgoKC3FwdAABwN685p8Zms6U7fO7cuerZs2emlsEl3QAAeB/LnVPjJdkLAAC4iVde0g0AAHAtQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg2QDyQmSmvWON7hirYBrINQA1hcTIwUESG1bOl4j4lxd0Weg7YBrMVmjDHuLiKvJCcnKyQkRElJSQoODnZ3OUCuS0x07Kzt9ivDfH2lhAQpLMxtZXkE2gbwHpndf9NTA1hYfLzrTluSUlOlvXvdU48noW0A6yHUABZWubLkc81vua+vFBXlnno8CW0DWA+hBrCwsDBp9mzHzlpyvM+axeEVibYBrIhzaoB8IDHRcVglKoqd9rVoG8DzZXb/XSA7C09MTFTRokVVuHBhl+GXLl3Spk2b1LRp0+wsFkAuCQtjh309tA1gHVk6/HTkyBE1aNBAERERKlq0qB5//HGdPXvWOf6PP/5QixYtcrxIAACAG8lSqHnhhRfk4+Oj77//XitWrNDOnTvVokULnT592jlNPjqaBQAAPEiWQs3XX3+tadOmqX79+mrVqpU2bNigMmXKqGXLlvrjjz8kSTabLVcKBQAAyEiWQk1SUpJuueUW5+eAgAAtWrRIFSpUUIsWLXT8+PEcLxAAACAzshRqKlWqpJ9//tllWIECBfTJJ5+oUqVKeuCBB3K0OAAAgMzKUqhp06aNZs+enWb45WBTu3btnKoLAAAgS7J0n5q///5b58+fd14jfvLkSUlSiRIlnOMPHz6siIiIXCj15nGfGuS0xETH7fYrV+ayYADILbny7KcCBQrIbrdrwIABKlGihEqVKqVSpUqpRIkSGjhwoM6ePeuxgQbIaTzhGQA8S5Z6av744w81atRIhw8fVrdu3XTrrbdKknbu3Kn58+crPDxcGzdudDmZ2JPQU4OcwhOeASDv5ModhceMGSN/f3/t27dPpUqVSjPuvvvu05gxY/T6669nr2rAS2T0hGdCDQC4R5YOPy1ZskSTJ09OE2gkqXTp0nrttde0ePHiHCsO8FQ84RkAPE+WH5NQo0aN646vWbOmjh49etNFAZ6OJzwDgOfJ0uGnEiVKKCEhQWHX+Z/7wIEDKlasWI4UBni63r2l6Gie8AwAniJLPTXR0dEaMWKELl68mGZcSkqKXn75ZbVu3TrHigM8XViY1Lw5gQYAPEGWrn5KTExU/fr1FRAQoAEDBqhatWoyxiguLk5vvvmmUlJS9OOPPyo8PDw3a842rn4CAMD75MrVT2FhYdq0aZP++c9/avjw4c4ncttsNt17772aMWOGxwYaAABgbVkKNZJUsWJFffnllzp9+rTi4+MlSVFRUZxLAwAA3CrLoeayW265RQ0aNMjJWrzKqVOn0j236DJ/f38VL148zfB9+/bp/Pnz152vYMGCioyMzJEab1Z219Fb5suuvP6+7LqZOq2+jt6yfnnNHe3iLT+LvK4zu/sKb6kzt2Q71LjLzJkzNWnSJB09elS1atXS9OnT8zxcnTp1SjNmzLjhdAMHDnTZePbt26f333//hvM99thjbg822V1Hb5kvu/L6+7LrZuq0+jp6y/rlNXe0i7f8LPK6zuzuK7ylztyUpauf3G3BggUaOnSoRo4cqa1bt6pWrVqKjo7W8ePH87SOjFJwRtNllGazM11uyu46est82ZXX35ddN1On1dfRW9Yvr7mjXbzlZ5HXdWZ3X+EtdeYmrwo1U6ZMUZ8+fdSrVy9Vr15db7/9tgoWLKg5c+a4uzQAAOBmXhNqLl68qC1btqhVq1bOYT4+PmrVqpU2bdqU7jwpKSlKTk52eQEAAGvymlBz8uRJpaampnnuVKlSpa77aIbx48crJCTE+eJycwAArMtrQk12DB8+XElJSc7XoUOH3F0SAADIJV5z9VOJEiXk6+urY8eOuQw/duyYSpcune48AQEBCggIyIvyAACAm3lNT42/v7/q1aun1atXO4fZ7XatXr1ajRo1cmNlAADAE3hNT40kDR06VD169FD9+vXVoEEDTZ06VefOnVOvXr3ytA5/f/9sTVewYMFMzZfZ6XJTdtfRW+bLrrz+vuy6mTqtvo7esn55zR3t4i0/i7yuM7v7Cm+pMzdl6YGWnmDGjBnOm+/Vrl1b06ZNU8OGDTM1b04+0JI7CnvOnYG5o3D6uKOw52wz3oI7Cl+ft9yp11vqzKrM7r+9LtTcDJ7SDQCA98ns/ttrzqkBAADICKEGAABYAqEGAABYAqEGAJBGYqK0Zo3jHfAWhBoAgIuYGCkiQmrZ0vEeE+PuioDMIdQAAJwSE6W+fSW73fHZbpf69aPHBt6BUAMAcIqPvxJoLktNlfbudU89QFYQagAATpUrSz7X7Bl8faWoKPfUA2QFoQYA4BQWJs2e7QgykuN91izHcMDTedWznwAAua93byk62nHIKSqKQAPvQagBAKQRFkaYgffh8BMAALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AAB4sMVFas8bxjowRauCR+CUGACkmRoqIkFq2dLzHxLi7Is9GqIHH4ZcYABx/1PXtK9ntjs92u9SvH3/sZYRQA4/CLzEAOMTHX/m/8LLUVMfT05E+Qg08Cr/EAOBQubLkc81e2tdXiopyTz3egFADj8IvMQA4hIVJs2c7/g+UHO+zZjmGI32EGngUfokB4IrevaWEBMeFEwkJjs+4Ppsxxri7iLySnJyskJAQJSUlKTg42N3lIAOJiY5DTlFRBBoA8AaJiY5TCCpXzvn/tzO7/6anBh4pLExq3pxAAwDewFOuWiXUAACAbPOkq1YJNQAAINs86apVQg0AAFnAHc9dedJVq4QaAAAyyVPOHfEknnTVKlc/AbCE3LzyApAc21hEhOuhFl9fx6XWbHO5e9UqVz8ByDf46xl5wZPOHfFEnnDVKqEGgFfzpCsvYG2edO4I0keoAeDV+OsZecWTzh1B+gq4uwAAuBmX/3q+9jwH/npGbujdW4qO5o7nnoqeGgBejb+ekdc84dwRpI+eGgBej7+eAUiEGgAWERZGmAHyOw4/AQAASyDUAAAAS/CKUJOQkKDevXurYsWKCgoKUmRkpEaOHKmLFy+6uzQAAOAhvOKcml27dslut2vWrFmKiorSjh071KdPH507d06TJ092d3kAAMADeO2znyZNmqS33npL+/fvz/Q8PPsJAADvk9n9t1f01KQnKSlJxYoVy3CalJQUpaSkOD8nJyfndlkAAMBNvOKcmmvt3btX06dPV79+/TKcbvz48QoJCXG+wsPD86hCAACQ19waal544QXZbLYMX7t27XKZ5/Dhw2rdurUeeeQR9enTJ8PlDx8+XElJSc7XoUOHcnN1AACAG7n1nJoTJ07o1KlTGU5TqVIl+fv7S5J+//13NW/eXHfeeadiY2Plc+3jUm+Ac2oAAPA+XnFOTWhoqEJDQzM17eHDh9WiRQvVq1dPc+fOzXKgAQAA1uYVJwofPnxYzZs3V0REhCZPnqwTJ044x5UuXdqNlQEAAE/hFaFm1apV2rt3r/bu3auwax7u4qVXpAMAgBzmFcdwevbsKWNMui8AAADJS0INAADAjRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqkKsSE6U1axzvAADkJkINck1MjBQRIbVs6XiPiXF3RQAAKyPUIFckJkp9+0p2u+Oz3S7160ePjTeitw2AtyDUIFfEx18JNJelpkp797qnHmQPvW0AvAmhBrmicmXJ55qty9dXiopyTz3IOnrbAHgbQg1yRViYNHu2I8hIjvdZsxzD4R3obQPgbQq4uwBYV+/eUnS0YycYFUWg8TaXe9uuDjb0tgHwZPTUIFeFhUnNmxNovBG9bQC8DT01AK6L3jYA3oRQAyBDYWGEGQDegcNPAADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1bpSYKK1Z43gHAAA3h1DjJjExUkSE1LKl4z0mxt0VAQDg3Qg1bpCYKPXtK9ntjs92u9SvHz02AADcDEKNG8THXwk0l6WmSnv3uqceAACsgFDjBpUrSz7XtLyvrxQV5Z56AACwAq8LNSkpKapdu7ZsNpu2b9/u7nKyJSxM6t7dddhjjzmGAwCA7PG6UPP888+rbNmy7i7jpiQmSu+95zrs/fc5pwYAgJvhVaHmyy+/1MqVKzV58mR3l3JTOKcGAICcV8DdBWTWsWPH1KdPHy1ZskQFCxbM1DwpKSlKSUlxfk5OTs6t8rLk8jk1VwcbTz+nJjHREcYqV+YwGQDAM3lFT40xRj179lT//v1Vv379TM83fvx4hYSEOF/h4eG5WGXmhYVJs2c7gozkeJ81y3PDAvfUAQB4A5sxxrjry1944QVNnDgxw2ni4uK0cuVKffzxx/rmm2/k6+urhIQEVaxYUdu2bVPt2rWvO296PTXh4eFKSkpScHBwTq1GtiUmOg45RUV5bqBJTHQEmWt7lRISPLdmAIC1JCcnKyQk5Ib7b7eGmhMnTujUqVMZTlOpUiV16tRJn3/+uWw2m3N4amqqfH191a1bN82bNy9T35fZRsEVa9Y4emjSG968eZ6XAwDIh7wi1GTWwYMHXc6H+f333xUdHa1PP/1UDRs2VFgmuwwINVlHTw0AwN0yu//2ihOFy5cv7/K5cOHCkqTIyMhMBxpkz+Xzf/r1c1yh5enn/wAA8i+vCDVwr969pehozz//BwCQv3llqKlQoYK84KiZpYSFEWYAAJ7NKy7pBgAAuBFCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCTQ5ITJTWrHG8w734WQBA/kWouUkxMVJEhNSypeM9JsbdFeVf/CwAIH+zGWOMu4vIK8nJyQoJCVFSUpKCg4NvenmJiY6dp91+ZZivr5SQIIWF3fTikQX8LADAujK7/6an5ibEx7vuRCUpNVXau9c99eRn/CwAAISam1C5suRzTQv6+kpRUe6pJz/jZwEAINTchLAwafZsx85TcrzPmsXhDnfgZwEA4JyaHJCY6DjMERXFTtTd+FkAgPVkdv9dIA9rsqywMHagnoKfBQDkX151+GnZsmVq2LChgoKCdMstt6hjx47uLgkAAHgIr+mpWbhwofr06aNx48apZcuW+vvvv7Vjxw53lwUAADyEV4Sav//+W4MHD9akSZPUu3dv5/Dq1au7sSoAAOBJvOLw09atW3X48GH5+PioTp06KlOmjNq0aXPDnpqUlBQlJye7vAAAgDV5RajZv3+/JGnUqFF66aWX9MUXX+iWW25R8+bN9ccff1x3vvHjxyskJMT5Cg8Pz6uSAQBAHnNrqHnhhRdks9kyfO3atUv2/90qdsSIEXrooYdUr149zZ07VzabTZ988sl1lz98+HAlJSU5X4cOHcqrVQMAAHnMrefUPPPMM+rZs2eG01SqVElHjhyR5HoOTUBAgCpVqqSDBw9ed96AgAAFBATkSK0AAMCzuTXUhIaGKjQ09IbT1atXTwEBAdq9e7fuvvtuSdKlS5eUkJCgiIiI3C4TAAB4Aa+4+ik4OFj9+/fXyJEjFR4eroiICE2aNEmS9Mgjj7i5OgAA4Am8ItRI0qRJk1SgQAF1795df/31lxo2bKj//ve/uuWWW9xdGgAA8AA8+wkAAHg0nv2Ujsv5jfvVAADgPS7vt2/UD5OvQs2ZM2ckifvVAADghc6cOaOQkJDrjs9Xh5/sdrt+//13FSlSRDabzd3l5Ink5GSFh4fr0KFD+f6QG21xBW1xBW1xBW1xBW1xhSe0hTFGZ86cUdmyZeXjc/1b7OWrnhofHx+FhYW5uwy3CA4Ozve/mJfRFlfQFlfQFlfQFlfQFle4uy0y6qG5zCsekwAAAHAjhBoAAGAJhBqLCwgI0MiRI3lchGiLq9EWV9AWV9AWV9AWV3hTW+SrE4UBAIB10VMDAAAsgVADAAAsgVADAAAsgVADAAAsgVDjhWbOnKkKFSooMDBQDRs21A8//JDh9FOnTlXVqlUVFBSk8PBw/etf/9KFCxec40eNGiWbzebyqlatWm6vRo7ISltcunRJY8aMUWRkpAIDA1WrVi2tWLHippbpKXK6Hbx1m/j222/Vrl07lS1bVjabTUuWLLnhPGvXrlXdunUVEBCgqKgoxcbGppnGG7eJ3GiL/LJdHDlyRF27dlWVKlXk4+OjIUOGpDvdJ598omrVqikwMFC33Xabli9fnvPF57DcaIvY2Ng020VgYGDurMANEGq8zIIFCzR06FCNHDlSW7duVa1atRQdHa3jx4+nO/38+fP1wgsvaOTIkYqLi1NMTIwWLFigF1980WW6GjVq6MiRI87X+vXr82J1bkpW2+Kll17SrFmzNH36dO3cuVP9+/fXP/7xD23bti3by/QEudEOknduE+fOnVOtWrU0c+bMTE1/4MABtW3bVi1atND27ds1ZMgQPfnkk/rqq6+c03jjNiHlTltI+WO7SElJUWhoqF566SXVqlUr3Wk2btyoRx99VL1799a2bdvUsWNHdezYUTt27MjJ0nNcbrSF5Ljb8NXbxW+//ZZTJWeNgVdp0KCBGTBggPNzamqqKVu2rBk/fny60w8YMMC0bNnSZdjQoUPNXXfd5fw8cuRIU6tWrVypNzdltS3KlCljZsyY4TLswQcfNN26dcv2Mj1BbrSDt24TV5NkFi9enOE0zz//vKlRo4bLsM6dO5vo6GjnZ2/cJq6VU22RX7aLqzVr1swMHjw4zfBOnTqZtm3bugxr2LCh6dev301WmHdyqi3mzp1rQkJCcqyum0FPjRe5ePGitmzZolatWjmH+fj4qFWrVtq0aVO68zRu3Fhbtmxxdpfv379fy5cv1/333+8yXXx8vMqWLatKlSqpW7duOnjwYO6tSA7ITlukpKSk6RINCgpy/qWZnWW6W260w2Xetk1kx6ZNm1zaTpKio6OdbeeN20R23agtLssP20VmZLa98ouzZ88qIiJC4eHh6tChg3799Ve31EGo8SInT55UamqqSpUq5TK8VKlSOnr0aLrzdO3aVWPGjNHdd98tPz8/RUZGqnnz5i6Hnxo2bKjY2FitWLFCb731lg4cOKAmTZrozJkzubo+NyM7bREdHa0pU6YoPj5edrtdq1at0qJFi3TkyJFsL9PdcqMdJO/cJrLj6NGj6bZdcnKy/vrrL6/cJrLrRm0h5Z/tIjOu115W2y4yo2rVqpozZ46WLl2q999/X3a7XY0bN1ZiYmKe10Kosbi1a9dq3LhxevPNN7V161YtWrRIy5Yt09ixY53TtGnTRo888ohuv/12RUdHa/ny5frzzz/18ccfu7HynPfGG2+ocuXKqlatmvz9/TVw4ED16tUrw8fYW1Fm2iG/bBPIGrYLpKdRo0Z6/PHHVbt2bTVr1kyLFi1SaGioZs2alee15K//zb1ciRIl5Ovrq2PHjrkMP3bsmEqXLp3uPC+//LK6d++uJ598Urfddpv+8Y9/aNy4cRo/frzsdnu68xQtWlRVqlTR3r17c3wdckp22iI0NFRLlizRuXPn9Ntvv2nXrl0qXLiwKlWqlO1lultutEN6vGGbyI7SpUun23bBwcEKCgryym0iu27UFumx6naRGddrL6ttF9nh5+enOnXquGW7INR4EX9/f9WrV0+rV692DrPb7Vq9erUaNWqU7jznz59P0xPh6+srSTLXeezX2bNntW/fPpUpUyaHKs952WmLywIDA1WuXDn9/fffWrhwoTp06HDTy3SX3GiH9HjDNpEdjRo1cmk7SVq1apWz7bxxm8iuG7VFeqy6XWRGdtorv0hNTdUvv/zinu3C3WcqI2s++ugjExAQYGJjY83OnTtN3759TdGiRc3Ro0eNMcZ0797dvPDCC87pR44caYoUKWI+/PBDs3//frNy5UoTGRlpOnXq5JzmmWeeMWvXrjUHDhwwGzZsMK1atTIlSpQwx48fz/P1y4qstsV3331nFi5caPbt22e+/fZb07JlS1OxYkVz+vTpTC/TE+VGO3jrNnHmzBmzbds2s23bNiPJTJkyxWzbts389ttvxhhjXnjhBdO9e3fn9Pv37zcFCxY0zz33nImLizMzZ840vr6+ZsWKFc5pvHGbMCZ32iK/bBfGGOf09erVM127djXbtm0zv/76q3P8hg0bTIECBczkyZNNXFycGTlypPHz8zO//PJLnq5bVuVGW4wePdp89dVXZt++fWbLli2mS5cuJjAw0GWavEKo8ULTp0835cuXN/7+/qZBgwbmu+++c45r1qyZ6dGjh/PzpUuXzKhRo0xkZKQJDAw04eHh5p///KfLDqxz586mTJkyxt/f35QrV8507tzZ7N27Nw/XKPuy0hZr1641t956qwkICDDFixc33bt3N4cPH87SMj1VTreDt24Ta9asMZLSvC6vf48ePUyzZs3SzFO7dm3j7+9vKlWqZObOnZtmud64TeRGW+Sn7SK96SMiIlym+fjjj02VKlWMv7+/qVGjhlm2bFnerNBNyI22GDJkiPP3o1SpUub+++83W7duzbuVuortfwUDAAB4Nc6pAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQA3Wrt2rWw2m/788093lwJ4PUINkE/07NlTNptNEyZMcBm+ZMkS2Ww252djjN555x01atRIwcHBKly4sGrUqKHBgwdn+gF158+f1/DhwxUZGanAwECFhoaqWbNmWrp0qXOaChUqaOrUqTmybrntctvZbDb5+fmpYsWKev7553XhwoUsLad58+YaMmSIy7DGjRvryJEjCgkJycGKgfyJUAPkI4GBgZo4caJOnz6d7nhjjLp27apBgwbp/vvv18qVK7Vz507FxMQoMDBQr7zySqa+p3///lq0aJGmT5+uXbt2acWKFXr44Yd16tSpnFydPNW6dWsdOXJE+/fv1+uvv65Zs2Zp5MiRN71cf39/lS5d2iVYAsgmtzycAUCe69Gjh3nggQdMtWrVzHPPPeccvnjxYnP5v4IPP/zQSDJLly5Ndxl2uz1T3xUSEmJiY2OvO75Zs2ZpniVz2bp168zdd99tAgMDTVhYmHn66afN2bNnnePfffddU69ePVO4cGFTqlQp8+ijj5pjx445x19+ts2KFStM7dq1TWBgoGnRooU5duyYWb58ualWrZopUqSIefTRR825c+cytT49evQwHTp0cBn24IMPmjp16jg/nzx50nTp0sWULVvWBAUFmZo1a5r58+e7LOPadT5w4ICz3qufx/bpp5+a6tWrG39/fxMREWEmT56cqTqB/I6eGiAf8fX11bhx4zR9+nQlJiamGf/hhx+qatWqat++fbrzZ7Y3oXTp0lq+fLnOnDmT7vhFixYpLCxMY8aM0ZEjR3TkyBFJ0r59+9S6dWs99NBD+vnnn7VgwQKtX79eAwcOdM576dIljR07Vj/99JOWLFmihIQE9ezZM813jBo1SjNmzNDGjRt16NAhderUSVOnTtX8+fO1bNkyrVy5UtOnT8/U+lxrx44d2rhxo/z9/Z3DLly4oHr16mnZsmXasWOH+vbtq+7du+uHH36QJL3xxhtq1KiR+vTp41zn8PDwNMvesmWLOnXqpC5duuiXX37RqFGj9PLLLys2NjZbtQL5irtTFYC8cXVvw5133mmeeOIJY4xrT021atVM+/btXeYbPHiwKVSokClUqJApV65cpr7rm2++MWFhYcbPz8/Ur1/fDBkyxKxfv95lmoiICPP666+7DOvdu7fp27evy7B169YZHx8f89dff6X7XZs3bzaSzJkzZ4wxV3pqvv76a+c048ePN5LMvn37nMP69etnoqOjM7U+PXr0ML6+vqZQoUImICDASDI+Pj7m008/zXC+tm3bmmeeecb5uVmzZmbw4MEu01zbU9O1a1dz7733ukzz3HPPmerVq2eqViA/o6cGyIcmTpyoefPmKS4u7obTjhgxQtu3b9e///1vnT17NlPLb9q0qfbv36/Vq1fr4Ycf1q+//qomTZpo7NixGc73008/KTY2VoULF3a+oqOjZbfbdeDAAUmOnox27dqpfPnyKlKkiJo1ayZJOnjwoMuybr/9due/S5UqpYIFC6pSpUouw44fP56p9ZGkFi1aaPv27fr+++/Vo0cP9erVSw899JBzfGpqqsaOHavbbrtNxYoVU+HChfXVV1+lqetG4uLidNddd7kMu+uuuxQfH6/U1NQsLQvIbwg1QD7UtGlTRUdHa/jw4S7DK1eurN27d7sMCw0NVVRUlEqWLJml7/Dz81OTJk00bNgwrVy5UmPGjNHYsWN18eLF685z9uxZ9evXT9u3b3e+fvrpJ8XHxysyMlLnzp1TdHS0goOD9cEHH2jz5s1avHixJKVZrp+fn/Pfl69auprNZpPdbs/0+hQqVEhRUVGqVauW5syZo++//14xMTHO8ZMmTdIbb7yhYcOGac2aNdq+fbuio6MzXF8AOauAuwsA4B4TJkxQ7dq1VbVqVeewRx99VF27dtXSpUvVoUOHHP2+6tWr6++//9aFCxfk7+8vf3//ND0PdevW1c6dOxUVFZXuMn755RedOnVKEyZMcJ6P8uOPP+ZonZnh4+OjF198UUOHDlXXrl0VFBSkDRs2qEOHDnrsscckSXa7XXv27FH16tWd86W3zte69dZbtWHDBpdhGzZsUJUqVeTr65vzKwNYCD01QD512223qVu3bpo2bZpzWJcuXfTwww+rS5cuGjNmjL7//nslJCTom2++0YIFCzK9U23evLlmzZqlLVu2KCEhQcuXL9eLL76oFi1aKDg4WJLjPjXffvutDh8+rJMnT0qShg0bpo0bN2rgwIHavn274uPjtXTpUueJwuXLl5e/v7+mT5+u/fv367PPPrvhIa3c8sgjj8jX11czZ86U5OjlWrVqlTZu3Ki4uDj169dPx44dc5mnQoUKzjY9efJkuj1FzzzzjFavXq2xY8dqz549mjdvnmbMmKFnn302T9YL8GaEGiAfGzNmjMuO1WazacGCBZo6daqWL1+ue+65R1WrVtUTTzyh8PBwrV+/PlPLjY6O1rx583Tffffp1ltv1dNPP63o6Gh9/PHHLt+dkJCgyMhIhYaGSnKcB/PNN99oz549atKkierUqaN///vfKlu2rCTHobDY2Fh98sknql69uiZMmKDJkyfnYItkXoECBTRw4EC99tprOnfunF566SXVrVtX0dHRat68uUqXLq2OHTu6zPPss8/K19dX1atXV2hoaLrn29StW1cff/yxPvroI9WsWVP//ve/NWbMmHSv8ALgymaMMe4uAgAA4GbRUwMAACyBUAMgy66+5Pra17p169xdXpYcPHgww/XJ6iXZANyHw08AsiyjB1uWK1dOQUFBeVjNzfn777+VkJBw3fEVKlRQgQJcKAp4A0INAACwBA4/AQAASyDUAAAASyDUAAAASyDUAAAASyDUAAAASyDUAAAASyDUAAAASyDUAAAAS/h/MUTqvl5DAOcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQetJREFUeJzt3Xd4FOXexvF7E7IJARIEQk1oCUVAEVAQlCoaFCmvBRBEQKR4QORgAUSlKUU5gBQVzwkEC4pKU0FEOSBVRQQbAUJIhCAdTCiSYPZ5/8hhZUkI6bs7+X6ua691Z56Z+c3DwN7OMzNrM8YYAQAAeDkfdxcAAACQHwg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AFDIoqOjZbPZlJCQ4O5SAEsh1AAWtG3bNg0dOlT169dXiRIlVLVqVXXr1k179+7N0LZNmzay2Wyy2Wzy8fFRUFCQ6tSpo969e+vLL7/M0XY//fRTtW7dWuXLl1dgYKBq1qypbt26afXq1fm1axlMmjRJy5cvzzB9y5YtGjdunP74448C2/aVxo0b5+xLm82mwMBA1atXT88//7ySk5PzZRuLFi3SzJkz82VdgNUQagALmjp1qpYsWaI77rhDr732mgYOHKgNGzaocePG+uWXXzK0Dw0N1TvvvKO3335br776qjp37qwtW7borrvuUvfu3XXx4sVrbnPatGnq3LmzbDabRo8erRkzZuj+++9XbGysPvjgg4LYTUlZh5rx48cXaqi55I033tA777yj6dOnq27dunr55ZfVoUMH5cdP7RFqgKsr5u4CAOS/ESNGaNGiRbLb7c5p3bt31w033KApU6bo3XffdWkfHByshx9+2GXalClTNGzYML3++uuqXr26pk6detXt/fXXX5o4caLuvPNOrVmzJsP8Y8eO5XGPPMf58+cVGBiYZZsHHnhA5cqVkyQNHjxY999/v5YuXapvvvlGzZs3L4wygSKJMzWABbVo0cIl0EhSrVq1VL9+fcXExGRrHb6+vpo1a5bq1aunOXPmKCkp6aptT5w4oeTkZN12222Zzi9fvrzL5wsXLmjcuHGqXbu2AgICVKlSJd13332Ki4tztpk2bZpatGihsmXLqnjx4mrSpIk+/vhjl/XYbDadO3dOCxcudA759O3bV+PGjdMzzzwjSapRo4Zz3uXXsLz77rtq0qSJihcvrjJlyqhHjx46ePCgy/rbtGmjBg0aaPv27WrVqpUCAwP13HPPZav/LteuXTtJUnx8fJbtXn/9ddWvX1/+/v6qXLmyhgwZ4nKmqU2bNlq5cqV+++035z5Vr149x/UAVsWZGqCIMMbo6NGjql+/fraX8fX11UMPPaQXXnhBmzZtUseOHTNtV758eRUvXlyffvqpnnjiCZUpU+aq60xLS9O9996rtWvXqkePHnryySd15swZffnll/rll18UHh4uSXrttdfUuXNn9erVS6mpqfrggw/04IMP6rPPPnPW8c477+ixxx5T06ZNNXDgQElSeHi4SpQoob179+r999/XjBkznGdNQkJCJEkvv/yyXnjhBXXr1k2PPfaYjh8/rtmzZ6tVq1basWOHSpcu7az35MmTuvvuu9WjRw89/PDDqlChQrb775JLYa1s2bJXbTNu3DiNHz9e7du31+OPP649e/bojTfe0LZt27R582b5+flpzJgxSkpKUmJiombMmCFJKlmyZI7rASzLACgS3nnnHSPJREVFuUxv3bq1qV+//lWXW7ZsmZFkXnvttSzX/+KLLxpJpkSJEubuu+82L7/8stm+fXuGdvPnzzeSzPTp0zPMczgczv8+f/68y7zU1FTToEED065dO5fpJUqUMH369MmwrldffdVIMvHx8S7TExISjK+vr3n55Zddpv/888+mWLFiLtNbt25tJJk333zzqvt9ubFjxxpJZs+ePeb48eMmPj7ezJs3z/j7+5sKFSqYc+fOGWOMWbBggUttx44dM3a73dx1110mLS3Nub45c+YYSWb+/PnOaR07djTVqlXLVj1AUcPwE1AE7N69W0OGDFHz5s3Vp0+fHC176UzAmTNnsmw3fvx4LVq0SI0aNdIXX3yhMWPGqEmTJmrcuLHLkNeSJUtUrlw5PfHEExnWYbPZnP9dvHhx53+fPn1aSUlJatmypX744Ycc1X+lpUuXyuFwqFu3bjpx4oTzVbFiRdWqVUvr1q1zae/v769+/frlaBt16tRRSEiIatSooUGDBikiIkIrV6686rU4X331lVJTUzV8+HD5+Pz9z/KAAQMUFBSklStX5nxHgSKoSIaaDRs2qFOnTqpcubJsNlumd064Y3sxMTHq3LmzgoODVaJECd1yyy06cOBAgdYG6zty5Ig6duyo4OBgffzxx/L19c3R8mfPnpUklSpV6pptH3roIW3cuFGnT5/WmjVr1LNnT+3YsUOdOnXShQsXJKUPxdSpU0fFimU9+v3ZZ5/p1ltvVUBAgMqUKaOQkBC98cYbWV7bkx2xsbEyxqhWrVoKCQlxecXExGS4qLlKlSoZrk+6liVLlujLL7/U+vXrtW/fPv3yyy9q0qTJVdv/9ttvktLD0OXsdrtq1qzpnA8ga0Xymppz586pYcOGevTRR3Xfffd5xPbi4uJ0++23q3///ho/fryCgoL066+/KiAgoMDrg3UlJSXp7rvv1h9//KGNGzeqcuXKOV7HpVvAIyIisr1MUFCQ7rzzTt15553y8/PTwoUL9e2336p169bZWn7jxo3q3LmzWrVqpddff12VKlWSn5+fFixYoEWLFuV4Hy7ncDhks9n0+eefZxrwrrxG5fIzRtnVqlUr53U8AApPkQw1d999t+6+++6rzk9JSdGYMWP0/vvv648//lCDBg00depUtWnTpkC2J0ljxozRPffco1deecU57dIFk0BuXLhwQZ06ddLevXv11VdfqV69ejleR1pamhYtWqTAwEDdfvvtuarj5ptv1sKFC3X48GFJ6cf1t99+q4sXL8rPzy/TZZYsWaKAgAB98cUX8vf3d05fsGBBhraXD1llZ3p4eLiMMapRo4Zq166d090pENWqVZMk7dmzRzVr1nROT01NVXx8vNq3b++cdrX9AlBEh5+uZejQodq6das++OAD/fTTT3rwwQfVoUMHxcbGFsj2HA6HVq5cqdq1aysyMlLly5dXs2bNCnxYDNaVlpam7t27a+vWrfroo49y9WyUtLQ0DRs2TDExMRo2bJiCgoKu2vb8+fPaunVrpvM+//xzSX8Prdx///06ceKE5syZk6Gt+d/D6Xx9fWWz2ZSWluacl5CQkOnfiRIlSmT6gL0SJUpIUoZ59913n3x9fTV+/PgMD8MzxujkyZOZ72QBat++vex2u2bNmuVSU1RUlJKSklzuOitRokSeh+AAqyqSZ2qycuDAAS1YsEAHDhxwnqp/+umntXr1ai1YsECTJk3K920eO3ZMZ8+e1ZQpU/TSSy9p6tSpWr16te677z6tW7cu26fsgUueeuopffLJJ+rUqZNOnTqV4WF7Vz5oLykpydnm/Pnz2rdvn5YuXaq4uDj16NFDEydOzHJ758+fV4sWLXTrrbeqQ4cOCgsL0x9//KHly5dr48aN6tq1qxo1aiRJeuSRR/T2229rxIgR+u6779SyZUudO3dOX331lf7xj3+oS5cu6tixo6ZPn64OHTqoZ8+eOnbsmObOnauIiAj99NNPLttu0qSJvvrqK02fPl2VK1dWjRo11KxZM+c1LGPGjFGPHj3k5+enTp06KTw8XC+99JJGjx6thIQEde3aVaVKlVJ8fLyWLVumgQMH6umnn85T/+dUSEiIRo8erfHjx6tDhw7q3Lmz9uzZo9dff1233HKLy59XkyZNtHjxYo0YMUK33HKLSpYsqU6dOhVqvYDHcuetV55Aklm2bJnz82effea8LfXyV7FixUy3bt2MMcbExMQYSVm+Ro4cma3tGWPMoUOHjCTz0EMPuUzv1KmT6dGjR77uL4qGS7ciX+2VVduSJUuaWrVqmYcfftisWbMmW9u7ePGi+fe//226du1qqlWrZvz9/U1gYKBp1KiRefXVV01KSopL+/Pnz5sxY8aYGjVqGD8/P1OxYkXzwAMPmLi4OGebqKgoU6tWLePv72/q1q1rFixY4Lxl+nK7d+82rVq1MsWLFzeSXG7vnjhxoqlSpYrx8fHJcHv3kiVLzO233+78O163bl0zZMgQs2fPHpe+yep29ytdqu/48eNZtrvylu5L5syZY+rWrWv8/PxMhQoVzOOPP25Onz7t0ubs2bOmZ8+epnTp0kYSt3cDl7EZkw8/RuLFbDabli1bpq5du0qSFi9erF69eunXX3/NcBFhyZIlVbFiRaWmpmr//v1Zrrds2bLOB31ltT0pfdy8RIkSGjt2rJ5//nnn9JEjR2rTpk3avHlz7ncQAIAiguGnKzRq1EhpaWk6duyYWrZsmWkbu92uunXr5ts27Xa7brnlFu3Zs8dl+t69e50XEAIAgKwVyVBz9uxZ7du3z/k5Pj5eO3fuVJkyZVS7dm316tVLjzzyiP71r3+pUaNGOn78uNauXasbb7zxqo+Jz+32qlatKkl65pln1L17d7Vq1Upt27bV6tWr9emnn2r9+vV53l8AAIqCIjn8tH79erVt2zbD9D59+ig6OloXL17USy+9pLfffluHDh1SuXLldOutt2r8+PG64YYb8n17l8yfP1+TJ09WYmKi6tSpo/Hjx6tLly453h4AAEVRkQw1AADAenhODQAAsARCDQAAsIQidaGww+HQ77//rlKlSvGocQAAvIQxRmfOnFHlypVdfsn+SkUq1Pz+++8KCwtzdxkAACAXDh48qNDQ0KvOL1KhplSpUpLSOyWr37EBAACeIzk5WWFhYc7v8aspUqHm0pBTUFAQoQYAAC9zrUtHuFAYAABYAqEGAABYAqEGAABYgteEmsmTJ+uWW25RqVKlVL58eXXt2jXDD0ACAICiy2tCzddff60hQ4bom2++0ZdffqmLFy/qrrvu0rlz59xdGgAA8ABe+9tPx48fV/ny5fX111+rVatW2VomOTlZwcHBSkpK4u4nAAC8RHa/v732lu6kpCRJUpkyZa7aJiUlRSkpKc7PycnJBV4XAABwD68Zfrqcw+HQ8OHDddttt6lBgwZXbTd58mQFBwc7XzxNGAAA6/LK4afHH39cn3/+uTZt2pTl45IzO1MTFhbG8BMAAF7EssNPQ4cO1WeffaYNGzZkGWgkyd/fX/7+/oVUGQAAcCevCTXGGD3xxBNatmyZ1q9frxo1ari7JAAA4EG8JtQMGTJEixYt0ooVK1SqVCkdOXJEkhQcHKzixYu7tbZt26SNG6WWLaVbbnFrKQAAFFlec03N1X7EasGCBerbt2+21lEQt3T37SstXPj35z59pOjofFm1R0pMlGJjpVq1pGuM/gEAkC+y+/3tNXc/GWMyfWU30BSEbdtcA42U/nnbNvfUU9CioqRq1aR27dLfo6LcXREAAH/zmlDjiTZuzHz65s2FW0dhSEyUBg6UHI70zw6HNGhQ+nQAADwBoSYPWrbMfPpttxVuHYUhNvbvQHNJWpq0b5976gEA4EqEmjy45Zb0a2gu16ePNS8WrlVL8rniaPH1lSIi3FMPAABXItTkUXS09N130owZ6e9WvUg4NFR66630ICOlv8+bx8XCAADP4TV3P+UHftAy7xIT04ecIiIINACAwmHZJwrDvUJDCTMAAM/E8BMAALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AALAEQg0AeJjERGndOn4wFsgpQg0AeJCoKKlaNaldu/T3qCh3VwR4D0INAHiIxERp4EDJ4Uj/7HBIgwZxxgbILkINAHiI2Ni/A80laWnpv7cG4NoINQDgIWrVknyu+FfZ1zf9B2QBXBuhBgA8RGio9NZb6UFGSn+fN48fkQWyi1/pBjxEYmL68EOtWnyJFWX9+0uRkelDThERHAtATnCmBvAA3PGCy4WGSm3aEGiAnCLUAG7GHS8AkD8INYCbcccLAOQPQg3gZtzxAgD5g1ADuBl3vABA/uDuJ8ADcMcL8gN30KGo40wN4CG44wV5wR10AKEGALwed9AB6Qg1AODluIMOniAxUVq3zr1hmlADAF6OO+jgbp4y/EmoAQAvxx10cCdPGv7k7icAsADuoIO7ZDX8WdjHIaEGACwiNJQwg8J3afjz8mDjruFPhp8AAECuedLwJ2dqAABAnnjK8CehBgAA5JknDH961fDThg0b1KlTJ1WuXFk2m03Lly93d0kAUKR5wrNJgEu8KtScO3dODRs21Ny5c91dCgAUeZ7ybBLgEpsxxri7iNyw2WxatmyZunbtmu1lkpOTFRwcrKSkJAUFBRVccQBgcYmJ6UHmyjteEhLcPwQB68nu97dXnakBAHgGfpoBnsjSFwqnpKQoJSXF+Tk5OdmN1QCAdXjSs0mASyx9pmby5MkKDg52vsLCwtxdEgBYgic9mwS4xNLX1GR2piYsLIxragAgnyQmuv/ZJLC+7F5TY+nhJ39/f/n7+7u7DACwLE94NglwiVeFmrNnz2rfZVehxcfHa+fOnSpTpoyqVq3qxsoAAIC7eVWo+f7779W2bVvn5xEjRkiS+vTpo+joaDdVBQAAPIFXhZo2bdrISy8BsozExPRbOWvV4pQzcodjCEBBsfTdT8hfPD0UecUxBKAgee3dT7nBE4Vzj6eHIq84hgDkFk8URr7i6aHIK44hAAWNUINsufT00Mvx9FDkBMcQgIJGqEG28PRQ5BXHEICCxjU1yBGeHoq84hgCkFM8URgFgqeHIq84hgAUFIafAACAJRBqAACAJRBqAACAJRBqAACAJRBqYFmJidK6denvAADrI9TAkviNIQAoegg1sJzERGngwL8fye9wSIMGccYGAKyOUAPL4TeGAKBoItTAcviNIQAomgg1sBx+YwgAiiZ+JgGW1L+/FBnJbwwBQFFCqIFl8RtDAFC0MPwEAAAsgVADAAAsgVADAAAsgVADAAAsgVADAAAsgVADAAAsgVADAAAsgVADAAAsgVADAAAsgVADAAAsgVADAAAsgVADAAAsgVADAAAsgVADAAAsgVADAAAsgVADoFAlJkrr1qW/A0B+ItQAKDRRUVK1alK7dunvUVHurgiAlRRzdwHeKi4uTufPn7/q/MDAQIWHhxdiRQXHm/b15MmTSk1Nvep8u92usmXLFmJFWfOmevNSa1xcnPbvT9XAgXXlcNgkSQ6HNHCgUdWqu1Wzpv2qx1BR6aPcLuuOv5/e9GcieV+9ueWO/dyxY4fOnDlz1fmlSpVSo0aN8nWbWfG6UDN37ly9+uqrOnLkiBo2bKjZs2eradOmhVpDXFyc3n333Wu2e/jhhz3myz63vGlfT548qTlz5lyz3dChQz3iHzBvqjcvtV46huLjq8vhuN5lnsNh03vvfasaNX7L9BgqKn2U22Xd8ffTm/5MJO+rN7fcsZ87duzQJ598kq22hRVsvGr4afHixRoxYoTGjh2rH374QQ0bNlRkZKSOHTtWqHVk9X9FuWnnybxpX7P6P5TctCto3lRvXmq9dGyUKXNSNpvDZZ7N5lCZMqdc2uXXdgtbXmrN7bLu+PvpTX8mkvfVm1vu2M+sztDkpl1+8KpQM336dA0YMED9+vVTvXr19OabbyowMFDz5893d2kAriE4+Iw6dfrMGWxsNoc6dfpMwcGF9w8eAGvzmuGn1NRUbd++XaNHj3ZO8/HxUfv27bV169ZMl0lJSVFKSorzc3JycoHXCeDqGjfeofDwfTp1qozKlDlFoAGQr7zmTM2JEyeUlpamChUquEyvUKGCjhw5kukykydPVnBwsPMVFhZWGKUCyEJw8BnVqPEbgQZAvvOaUJMbo0ePVlJSkvN18OBBd5cEAAAKiNcMP5UrV06+vr46evSoy/SjR4+qYsWKmS7j7+8vf3//wigPAAC4mdecqbHb7WrSpInWrl3rnOZwOLR27Vo1b97cjZUBAABP4DVnaiRpxIgR6tOnj26++WY1bdpUM2fO1Llz59SvX79CrSMwMDBf23kyb9pXu92er+0KmjfVm5da83IMFZU+yu2y7vj76U1/JpL31Ztb7tjPUqVK5Wu7/GAzxphC21o+mDNnjvPhezfddJNmzZqlZs2aZWvZ5ORkBQcHKykpSUFBQXmqw5uesptX3rSv3vbkUG+qN69PFM7tMVRU+ognChccb6s3t6z8ROHsfn97XajJi/wMNQAAoHBk9/vba66pAQAAyAqhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKhBoDXSEyU1q1LfweAKxFqAHiFqCipWjWpXbv096god1cEwNMQagB4vMREaeBAyeFI/+xwSIMGccYGgCtCDQCPFxv7d6C5JC1N2rfPPfUA8EyEGgAer1YtyeeKf618faWICPfUA8AzEWoAeLzQUOmtt9KDjJT+Pm9e+nQAuKSYuwsAgOzo31+KjEwfcoqIINAAyIhQA8BrhIYSZgBcHcNPAADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAEgg1AADAErwm1Lz88stq0aKFAgMDVbp0aXeXAwAAPIzXhJrU1FQ9+OCDevzxx91dCgAA8EDF3F1Ado0fP16SFB0d7d5CAACAR/KaUJMbKSkpSklJcX5OTk52YzUAAKAgec3wU25MnjxZwcHBzldYWJi7SwIAAAXEraFm1KhRstlsWb52796d6/WPHj1aSUlJztfBgwfzsXoAAOBJ3Dr89NRTT6lv375ZtqlZs2au1+/v7y9/f/9cLw8AALyHW0NNSEiIQkJC3FkCAACwCK+5UPjAgQM6deqUDhw4oLS0NO3cuVOSFBERoZIlS7q3OADwAImJUmysVKuWFBrq7mqAwuc1oebFF1/UwoULnZ8bNWokSVq3bp3atGnjpqoAwDNERUkDB0oOh+TjI731ltS/v7urAgqXzRhj3F1EYUlOTlZwcLCSkpIUFBTk7nIAIF8kJkrVqqUHmkt8faWEBM7YwBqy+/1t6Vu6AaAoiI11DTSSlJYm7dvnnnoAdyHUAICXq1Urfcjpcr6+UkSEe+oB3IVQAwBeLjQ0/RoaX9/0z76+0rx5DD2h6PGaC4UBAFfXv78UGZk+5BQRQaBB0USoAZBj3DrsmUJD+fNA0cbwE4AciYpKv9OmXbv096god1cEAOkINQCyLTHx72ehSOnvgwalTwcAdyPUAMg2bh0G4MkINQCyjVuHAXgyQg2AbOPWYQCejLufAOQItw4D8FSEGgA5xq3DADwRw08AAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASchVqEhMTdfbs2QzTL168qA0bNuS5KAAAgJzKUag5fPiwmjZtqmrVqql06dJ65JFHXMLNqVOn1LZt23wvEgAA4FpyFGpGjRolHx8fffvtt1q9erV27dqltm3b6vTp0842xph8LxIAAOBachRqvvrqK82aNUs333yz2rdvr82bN6tSpUpq166dTp06JUmy2WwFUigAAEBWchRqkpKSdN111zk/+/v7a+nSpapevbratm2rY8eO5XuBAAAA2ZGjUFOzZk399NNPLtOKFSumjz76SDVr1tS9996br8UBAABkV45Czd1336233norw/RLweamm27Kr7oAAAByxGZycGXvX3/9pfPnzysoKEiSdOLECUlSuXLlnPMPHTqkatWqFUCpeZecnKzg4GAlJSU59wEAAHi27H5/5+hMTbFixeRwODRkyBCVK1dOFSpUUIUKFVSuXDkNHTpUZ8+e9dhAAwAArK1YThqfOnVKzZs316FDh9SrVy9df/31kqRdu3YpOjpaa9eu1ZYtW1wuJgYAACgMOQo1EyZMkN1uV1xcnCpUqJBh3l133aUJEyZoxowZ+VokAADAteRo+Gn58uWaNm1ahkAjSRUrVtQrr7yiZcuW5VtxAAAA2ZXjn0moX7/+Vec3aNBAR44cyXNRAAAAOZWjUFOuXDklJCRcdX58fLzKlCmT15oAAAByLEehJjIyUmPGjFFqamqGeSkpKXrhhRfUoUOHfCsOAAAgu3L0nJrExETdfPPN8vf315AhQ1S3bl0ZYxQTE6PXX39dKSkp+v777xUWFlaQNecaz6kBAMD7ZPf7O0d3P4WGhmrr1q36xz/+odGjRzt/kdtms+nOO+/UnDlzPDbQAAAAa8tRqJGkGjVq6PPPP9fp06cVGxsrSYqIiOBaGgAA4FY5uqbmctddd52aNm2qpk2bFnigSUhIUP/+/VWjRg0VL15c4eHhGjt2bKbX9gAAgKIpx2dq3GH37t1yOByaN2+eIiIi9Msvv2jAgAE6d+6cpk2b5u7yAACAB8jRhcKe5NVXX9Ubb7yh/fv3Z3sZLhQGAMD7FMiFwp4kKSnpmsNeKSkpSklJcX5OTk4u6LIAAICb5PqaGnfat2+fZs+erUGDBmXZbvLkyQoODna+uDMLAADrcmuoGTVqlGw2W5av3bt3uyxz6NAhdejQQQ8++KAGDBiQ5fpHjx6tpKQk5+vgwYMFuTsAAMCN3HpNzfHjx3Xy5Mks29SsWVN2u12S9Pvvv6tNmza69dZbFR0dLR+fnGUyrqkBAMD7eMU1NSEhIQoJCclW20OHDqlt27Zq0qSJFixYkONAAwBAYqIUGyvVqiWFhrq7GuQ3r0gGhw4dUps2bVS1alVNmzZNx48f15EjR/hFcABAtkVFSdWqSe3apb9HRbm7IuQ3r7ilOzo6Wv369ct0Xk7KZ/gJAIqmxMT0IONw/D3N11dKSOCMjTfI7ve3V5yp6du3r4wxmb4AALiW2FjXQCNJaWnSvn3uqQcFwytCDQAAeVGrlnTlpZi+vlJEhHvqQcEg1AAALC80VHrrrfQgI6W/z5vH0JPVeO0ThQEAyIn+/aXIyPQhp4gIAo0VEWoAAEVGaChhxsoYfgIAAJZAqAGAApCYKK1bl/4OoHAQagAgn/GQN8A9CDUAkI8SE6WBA/9+JorDIQ0axBkboDAQagAgH/GQN8B9CDUAkI94yBvgPoQaAMhHPOQNcB+eUwMA+YyHvAHuQagBgALAQ96AwsfwEwAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAsARCDQAAyLPERGnduvR3dyHUAACAPImKkqpVk9q1S3+PinJPHV4Tajp37qyqVasqICBAlSpVUu/evfX777+7uywAAIq0xERp4EDJ4Uj/7HBIgwa554yN14Satm3b6sMPP9SePXu0ZMkSxcXF6YEHHnB3WQAAFGmxsX8HmkvS0qR9+wq/FpsxxhT+ZvPuk08+UdeuXZWSkiI/P79sLZOcnKzg4GAlJSUpKCiogCsEAMD6EhPTh5wuDza+vlJCghQamj/byO73t9ecqbncqVOn9N5776lFixZZBpqUlBQlJye7vAAAQP4JDZXeeis9yEjp7/Pm5V+gyQmvCjUjR45UiRIlVLZsWR04cEArVqzIsv3kyZMVHBzsfIWFhRVSpQAAFB39+6efmVm3Lv29f3/31OHW4adRo0Zp6tSpWbaJiYlR3bp1JUknTpzQqVOn9Ntvv2n8+PEKDg7WZ599JpvNlumyKSkpSklJcX5OTk5WWFgYw08AAHiR7A4/uTXUHD9+XCdPnsyyTc2aNWW32zNMT0xMVFhYmLZs2aLmzZtna3tcUwMAgPfJ7vd3sUKsKYOQkBCFhITkalnH/65IuvxMDAAAKLrcGmqy69tvv9W2bdt0++2367rrrlNcXJxeeOEFhYeHZ/ssDQAAsDavuFA4MDBQS5cu1R133KE6deqof//+uvHGG/X111/L39/f3eUBAAAP4BVnam644Qb997//dXcZAADAg3nFmRoAAIBrIdQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABLINQAAABL8LpQk5KSoptuukk2m007d+50dzkAAMBDeF2oefbZZ1W5cmV3lwEAADyMV4Wazz//XGvWrNG0adPcXQoAAPAwxdxdQHYdPXpUAwYM0PLlyxUYGJitZVJSUpSSkuL8nJycXFDlAQAAN/OKMzXGGPXt21eDBw/WzTffnO3lJk+erODgYOcrLCysAKsEAADu5NZQM2rUKNlstixfu3fv1uzZs3XmzBmNHj06R+sfPXq0kpKSnK+DBw8W0J4AAAB3sxljjLs2fvz4cZ08eTLLNjVr1lS3bt306aefymazOaenpaXJ19dXvXr10sKFC7O1veTkZAUHByspKUlBQUF5qh0AABSO7H5/uzXUZNeBAwdcrof5/fffFRkZqY8//ljNmjVTaGhottZDqAEAwPtk9/vbKy4Urlq1qsvnkiVLSpLCw8OzHWgAAIC1ecWFwgAAANfiFWdqrlS9enV5wagZAAAoRJypAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAlkCoAQAAllDM3QV4GmOM/vrrL6Wlpbm7FMvy8/OTr6+vu8sAAFgMoeYyqampOnz4sM6fP+/uUizNZrMpNDRUJUuWdHcpAAALIdT8j8PhUHx8vHx9fVW5cmXZ7XbZbDZ3l2U5xhgdP35ciYmJqlWrFmdsAAD5hlDzP6mpqXI4HAoLC1NgYKC7y7G0kJAQJSQk6OLFi4QaAEC+4ULhK/j40CUFjTNgAICCwDc4AACwBEINAACwBEKNBfTt21c2m002m01+fn6qUKGC7rzzTs2fP18OhyPb64mOjlbp0qULrlAAAAoQFwrnk5MnTyo1NfWq8+12u8qWLVtg2+/QoYMWLFigtLQ0HT16VKtXr9aTTz6pjz/+WJ988omKFeOPGgBgbXzT5YOTJ09qzpw512w3dOjQAgs2/v7+qlixoiSpSpUqaty4sW699Vbdcccdio6O1mOPPabp06drwYIF2r9/v8qUKaNOnTrplVdeUcmSJbV+/Xr169dP0t8X8o4dO1bjxo3TO++8o9dee0179uxRiRIl1K5dO82cOVPly5cvkH0BACA3GH7KB1mdoclNu/zSrl07NWzYUEuXLpWUfmfXrFmz9Ouvv2rhwoX673//q2effVaS1KJFC82cOVNBQUE6fPiwDh8+rKefflqSdPHiRU2cOFE//vijli9froSEBPXt27dQ9wUAgGvhTI3F1a1bVz/99JMkafjw4c7p1atX10svvaTBgwfr9ddfl91uV3BwsGw2m/OMzyWPPvqo879r1qypWbNm6ZZbbtHZs2d5KjAAwGNwpsbijDHO4aSvvvpKd9xxh6pUqaJSpUqpd+/eOnny5DV/FmL79u3q1KmTqlatqlKlSql169aSpAMHDhR4/QAAZBehxuJiYmJUo0YNJSQk6N5779WNN96oJUuWaPv27Zo7d66krIfFzp07p8jISAUFBem9997Ttm3btGzZsmsuBwBAYWP4ycL++9//6ueff9Y///lPbd++XQ6HQ//617+cT03+8MMPXdrb7fYMv06+e/dunTx5UlOmTFFYWJgk6fvvvy+cHQAAIAc4U2MRKSkpOnLkiA4dOqQffvhBkyZNUpcuXXTvvffqkUceUUREhC5evKjZs2dr//79euedd/Tmm2+6rKN69eo6e/as1q5dqxMnTuj8+fOqWrWq7Ha7c7lPPvlEEydOdNNeAgBwdYQai1i9erUqVaqk6tWrq0OHDlq3bp1mzZqlFStWyNfXVw0bNtT06dM1depUNWjQQO+9954mT57sso4WLVpo8ODB6t69u0JCQvTKK68oJCRE0dHR+uijj1SvXj1NmTJF06ZNc9NeAgBwdTZjjHF3EYUlOTlZwcHBSkpKUlBQkMu8CxcuKD4+XjVq1FBAQECO1usJz6nxJnnpawBA0ZPV9/fluKYmH5QtW1ZDhw516xOFAQAo6gg1+YTAAgCAe3FNDQAAsARCDQAAsARCDQAAsASvCTXVq1eXzWZzeU2ZMsXdZQEAAA/hVRcKT5gwQQMGDHB+LlWqlBurAQAAnsSrQk2pUqUy/II0AACA5EXDT5I0ZcoUlS1bVo0aNdKrr76qv/76K8v2KSkpSk5OdnkBAABr8ppQM2zYMH3wwQdat26dBg0apEmTJunZZ5/NcpnJkycrODjY+br0g4zImfXr18tms+mPP/7I9jLVq1fXzJkzC6wmAIBnSUyU1q1Lf3cXt4aaUaNGZbj498rX7t27JUkjRoxQmzZtdOONN2rw4MH617/+pdmzZyslJeWq6x89erSSkpKcr4MHDxbWrhWqvn37ymazafDgwRnmDRkyRDabTX379i38wgAARUJUlFStmtSuXfp7VJR76nDrNTVPPfXUNb9sa9asmen0Zs2a6a+//lJCQoLq1KmTaRt/f3/5+/vntUyvEBYWpg8++EAzZsxQ8eLFJaX/xtKiRYtUtWpVN1cHALCqxERp4EDJ4Uj/7HBIgwZJkZFSaGjh1uLWMzUhISGqW7duli+73Z7psjt37pSPj4/Kly9fyFV7psaNGyssLExLly51Tlu6dKmqVq2qRo0aOaelpKRo2LBhKl++vAICAnT77bdr27ZtLutatWqVateureLFi6tt27ZKSEjIsL1NmzapZcuWKl68uMLCwjRs2DCdO3euwPYPAOCZYmP/DjSXpKVJ+/YVfi1ecU3N1q1bNXPmTP3444/av3+/3nvvPf3zn//Uww8/rOuuu87d5WXgrnHFRx99VAsWLHB+nj9/vvr16+fS5tlnn9WSJUu0cOFC/fDDD4qIiFBkZKROnTolSTp48KDuu+8+derUSTt37tRjjz2mUaNGuawjLi5OHTp00P3336+ffvpJixcv1qZNmzR06NCC30kAgEepVUvyuSJN+PpKERFuKMZ4ge3bt5tmzZqZ4OBgExAQYK6//nozadIkc+HChRytJykpyUgySUlJGeb9+eefZteuXebPP//MU63/+Y8xPj7GSOnv//lPnlaXLX369DFdunQxx44dM/7+/iYhIcEkJCSYgIAAc/z4cdOlSxfTp08fc/bsWePn52fee+8957KpqammcuXK5pVXXjHGGDN69GhTr149l/WPHDnSSDKnT582xhjTv39/M3DgQJc2GzduND4+Ps7+q1atmpkxY0am9eZXXwMAPMN//mOMr2/6d5+vb/5/92X1/X05r3hOTePGjfXNN9+4u4xrcve4YkhIiDp27Kjo6GgZY9SxY0eVK1fOOT8uLk4XL17Ubbfd5pzm5+enpk2bKiYmRpIUExOjZs2auay3efPmLp9//PFH/fTTT3rvvfec04wxcjgcio+P1/XXX18QuwcA8FD9+6d/1+3bl36GprCvpbnEK0KNt8hqXLGw/oAfffRR5zDQ3LlzC2QbZ8+e1aBBgzRs2LAM87goGQDcLzEx/TupVq3C+/4JDXVfmLnEK66p8RaeMK7YoUMHpaam6uLFi4qMjHSZFx4eLrvdrs2bNzunXbx4Udu2bVO9evUkSddff72+++47l+WuPEvWuHFj7dq1SxERERleV7uwGwBQODzl9mp3INTko9BQ6a230oOMlP4+b17hJldfX1/FxMRo165d8r1UyP+UKFFCjz/+uJ555hmtXr1au3bt0oABA3T+/Hn1799fkjR48GDFxsbqmWee0Z49e7Ro0SJFR0e7rGfkyJHasmWLhg4dqp07dyo2NlYrVqzgQmEAcLOrXQbhzgfiFSZCTT7r319KSEi/+ykhIf1zYQsKClJQUFCm86ZMmaL7779fvXv3VuPGjbVv3z598cUXzrvIqlatqiVLlmj58uVq2LCh3nzzTU2aNMllHTfeeKO+/vpr7d27Vy1btlSjRo304osvqnLlygW+bwCAq/Ok26vdwWaMMe4uorAkJycrODhYSUlJGb70L1y4oPj4eNWoUUMBAQFuqrBooK8BoGAkJqYPOV0ebHx90/8n293Xu+RFVt/fl+NMDQAAFuEJl0G4E3c/AQBgIZ5ye7U7EGoAALAYT7i92h0YfgIAAJZAqAEAAJZAqLlCEboZzG3oYwBAQSDU/I+fn58k6fz5826uxPpSU1MlKcPDAQEAyAsuFP4fX19flS5dWseOHZMkBQYGymazubkq63E4HDp+/LgCAwNVrBiHHwAg//CtcpmKFStKkjPYoGD4+PioatWqhEYAQL4i1FzGZrOpUqVKKl++vC5evOjucizLbrfL58pf/gQAII8INZnw9fXleg8AALwM/7sMAAAsgVADAAAsgVADAAAsoUhdU3PpoW/JyclurgQAAGTXpe/taz28tUiFmjNnzkiSwsLC3FwJAADIqTNnzig4OPiq822mCD2z3uFw6Pfff1epUqXy/IyU5ORkhYWF6eDBgwoKCsqnCr0bfZIRfZIRfZIRfZIRfZJRUe4TY4zOnDmjypUrZ/lIkCJ1psbHx0eh+fxb7EFBQUXu4LoW+iQj+iQj+iQj+iQj+iSjotonWZ2huYQLhQEAgCUQagAAgCUQanLJ399fY8eOlb+/v7tL8Rj0SUb0SUb0SUb0SUb0SUb0ybUVqQuFAQCAdXGmBgAAWAKhBgAAWAKhBgAAWAKhBgAAWAKh5n/mzp2r6tWrKyAgQM2aNdN3332XZfuZM2eqTp06Kl68uMLCwvTPf/5TFy5ccM4fN26cbDaby6tu3boFvRv5Kid9cvHiRU2YMEHh4eEKCAhQw4YNtXr16jyt0xPld594+3GyYcMGderUSZUrV5bNZtPy5cuvucz69evVuHFj+fv7KyIiQtHR0RnaePNxUhB9UtSOk8OHD6tnz56qXbu2fHx8NHz48EzbffTRR6pbt64CAgJ0ww03aNWqVflffAEpiD6Jjo7OcJwEBAQUzA54KEKNpMWLF2vEiBEaO3asfvjhBzVs2FCRkZE6duxYpu0XLVqkUaNGaezYsYqJiVFUVJQWL16s5557zqVd/fr1dfjwYedr06ZNhbE7+SKnffL8889r3rx5mj17tnbt2qXBgwfr//7v/7Rjx45cr9PTFESfSN59nJw7d04NGzbU3Llzs9U+Pj5eHTt2VNu2bbVz504NHz5cjz32mL744gtnG28/TgqiT6SidZykpKQoJCREzz//vBo2bJhpmy1btuihhx5S//79tWPHDnXt2lVdu3bVL7/8kp+lF5iC6BMp/WnDlx8nv/32W36V7B0MTNOmTc2QIUOcn9PS0kzlypXN5MmTM20/ZMgQ065dO5dpI0aMMLfddpvz89ixY03Dhg0LpN7CkNM+qVSpkpkzZ47LtPvuu8/06tUr1+v0NAXRJ95+nFxOklm2bFmWbZ599llTv359l2ndu3c3kZGRzs/efpxcLr/6pKgdJ5dr3bq1efLJJzNM79atm+nYsaPLtGbNmplBgwblscLCl199smDBAhMcHJxvdXmjIn+mJjU1Vdu3b1f79u2d03x8fNS+fXtt3bo102VatGih7du3O0+J79+/X6tWrdI999zj0i42NlaVK1dWzZo11atXLx04cKDgdiQf5aZPUlJSMpzmLF68uPP/JnOzTk9SEH1yibceJ7mxdetWlz6UpMjISGcfevtxkhvX6pNLitJxkh3Z7bei5uzZs6pWrZrCwsLUpUsX/frrr+4uqVAV+VBz4sQJpaWlqUKFCi7TK1SooCNHjmS6TM+ePTVhwgTdfvvt8vPzU3h4uNq0aeMy/NSsWTNFR0dr9erVeuONNxQfH6+WLVvqzJkzBbo/+SE3fRIZGanp06crNjZWDodDX375pZYuXarDhw/nep2epCD6RPLu4yQ3jhw5kmkfJicn688///T64yQ3rtUnUtE7TrLjav1m1eMkO+rUqaP58+drxYoVevfdd+VwONSiRQslJia6u7RCU+RDTW6sX79ekyZN0uuvv64ffvhBS5cu1cqVKzVx4kRnm7vvvlsPPvigbrzxRkVGRmrVqlX6448/9OGHH7qx8oLz2muvqVatWqpbt67sdruGDh2qfv36ZfkT8VaXnT4pascJcofjBNnRvHlzPfLII7rpppvUunVrLV26VCEhIZo3b567Sys0Rfcb53/KlSsnX19fHT161GX60aNHVbFixUyXeeGFF9S7d2899thjuuGGG/R///d/mjRpkiZPniyHw5HpMqVLl1bt2rW1b9++fN+H/JabPgkJCdHy5ct17tw5/fbbb9q9e7dKliypmjVr5nqdnqQg+iQz3nSc5EbFihUz7cOgoCAVL17c64+T3LhWn2TG6sdJdlyt36x6nOSGn5+fGjVqVKSOkyIfaux2u5o0aaK1a9c6pzkcDq1du1bNmzfPdJnz589nOAPh6+srSTJX+Smts2fPKi4uTpUqVcqnygtObvrkkoCAAFWpUkV//fWXlixZoi5duuR5nZ6gIPokM950nORG8+bNXfpQkr788ktnH3r7cZIb1+qTzFj9OMmO3PRbUZOWlqaff/65aB0n7r5S2RN88MEHxt/f30RHR5tdu3aZgQMHmtKlS5sjR44YY4zp3bu3GTVqlLP92LFjTalSpcz7779v9u/fb9asWWPCw8NNt27dnG2eeuops379ehMfH282b95s2rdvb8qVK2eOHTtW6PuXGzntk2+++cYsWbLExMXFmQ0bNph27dqZGjVqmNOnT2d7nZ6uIPrE24+TM2fOmB07dpgdO3YYSWb69Olmx44d5rfffjPGGDNq1CjTu3dvZ/v9+/ebwMBA88wzz5iYmBgzd+5c4+vra1avXu1s4+3HSUH0SVE7TowxzvZNmjQxPXv2NDt27DC//vqrc/7mzZtNsWLFzLRp00xMTIwZO3as8fPzMz///HOh7ltuFUSfjB8/3nzxxRcmLi7ObN++3fTo0cMEBAS4tLE6Qs3/zJ4921StWtXY7XbTtGlT88033zjntW7d2vTp08f5+eLFi2bcuHEmPDzcBAQEmLCwMPOPf/zD5cuqe/fuplKlSsZut5sqVaqY7t27m3379hXiHuVdTvpk/fr15vrrrzf+/v6mbNmypnfv3ubQoUM5Wqc3yO8+8fbjZN26dUZShtelfujTp49p3bp1hmVuuukmY7fbTc2aNc2CBQsyrNebj5OC6JOieJxk1r5atWoubT788ENTu3ZtY7fbTf369c3KlSsLZ4fyQUH0yfDhw51/bypUqGDuuece88MPPxTeTnkAmzFXGS8BAADwIkX+mhoAAGANhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAcKP169fLZrPpjz/+cHcpgNcj1ABFRN++fWWz2TRlyhSX6cuXL5fNZnN+Nsbo3//+t5o3b66goCCVLFlS9evX15NPPpntH8Y7f/68Ro8erfDwcAUEBCgkJEStW7fWihUrnG2qV6+umTNn5su+FbRLfWez2eTn56caNWro2Wef1YULF3K0njZt2mj48OEu01q0aKHDhw8rODg4HysGiiZCDVCEBAQEaOrUqTp9+nSm840x6tmzp4YNG6Z77rlHa9as0a5duxQVFaWAgAC99NJL2drO4MGDtXTpUs2ePVu7d+/W6tWr9cADD+jkyZP5uTuFqkOHDjp8+LD279+vGTNmaN68eRo7dmye12u321WxYkWXYAkgl9z7Kw0ACkufPn3Mvffea+rWrWueeeYZ5/Rly5aZS/8UvP/++0aSWbFiRabrcDgc2dpWcHCwiY6Ovur81q1bZ/gNm0s2btxobr/9dhMQEGBCQ0PNE088Yc6ePeuc//bbb5smTZqYkiVLmgoVKpiHHnrIHD161Dn/0m/qrF692tx0000mICDAtG3b1hw9etSsWrXK1K1b15QqVco89NBD5ty5c9nanz59+pguXbq4TLvvvvtMo0aNnJ9PnDhhevToYSpXrmyKFy9uGjRoYBYtWuSyjiv3OT4+3lnv5b8d9/HHH5t69eoZu91uqlWrZqZNm5atOoGijjM1QBHi6+urSZMmafbs2UpMTMww//3331edOnXUuXPnTJfP7tmEihUratWqVTpz5kym85cuXarQ0FBNmDBBhw8f1uHDhyVJcXFx6tChg+6//3799NNPWrx4sTZt2qShQ4c6l7148aImTpyoH3/8UcuXL1dCQoL69u2bYRvjxo3TnDlztGXLFh08eFDdunXTzJkztWjRIq1cuVJr1qzR7Nmzs7U/V/rll1+0ZcsW2e1257QLFy6oSZMmWrlypX755RcNHDhQvXv31nfffSdJeu2119S8eXMNGDDAuc9hYWEZ1r19+3Z169ZNPXr00M8//6xx48bphRdeUHR0dK5qBYoUd6cqAIXj8rMNt956q3n00UeNMa5naurWrWs6d+7sstyTTz5pSpQoYUqUKGGqVKmSrW19/fXXJjQ01Pj5+Zmbb77ZDB8+3GzatMmlTbVq1cyMGTNcpvXv398MHDjQZdrGjRuNj4+P+fPPPzPd1rZt24wkc+bMGWPM32dqvvrqK2ebyZMnG0kmLi7OOW3QoEEmMjIyW/vTp08f4+vra0qUKGH8/f2NJOPj42M+/vjjLJfr2LGjeeqpp5yfW7dubZ588kmXNleeqenZs6e58847Xdo888wzpl69etmqFSjKOFMDFEFTp07VwoULFRMTc822Y8aM0c6dO/Xiiy/q7Nmz2Vp/q1attH//fq1du1YPPPCAfv31V7Vs2VITJ07Mcrkff/xR0dHRKlmypPMVGRkph8Oh+Ph4SelnMjp16qSqVauqVKlSat26tSTpwIEDLuu68cYbnf9doUIFBQYGqmbNmi7Tjh07lq39kaS2bdtq586d+vbbb9WnTx/169dP999/v3N+WlqaJk6cqBtuuEFlypRRyZIl9cUXX2So61piYmJ02223uUy77bbbFBsbq7S0tBytCyhqCDVAEdSqVStFRkZq9OjRLtNr1aqlPXv2uEwLCQlRRESEypcvn6Nt+Pn5qWXLlho5cqTWrFmjCRMmaOLEiUpNTb3qMmfPntWgQYO0c+dO5+vHH39UbGyswsPDde7cOUVGRiooKEjvvfeetm3bpmXLlklShvX6+fk5//vSXUuXs9lscjgc2d6fEiVKKCIiQg0bNtT8+fP17bffKioqyjn/1Vdf1WuvvaaRI0dq3bp12rlzpyIjI7PcXwD5q5i7CwDgHlOmTNFNN92kOnXqOKc99NBD6tmzp1asWKEuXbrk6/bq1aunv/76SxcuXJDdbpfdbs9w5qFx48batWuXIiIiMl3Hzz//rJMnT2rKlCnO61G+//77fK0zO3x8fPTcc89pxIgR6tmzp4oXL67NmzerS5cuevjhhyVJDodDe/fuVb169ZzLZbbPV7r++uu1efNml2mbN29W7dq15evrm/87A1gIZ2qAIuqGG25Qr169NGvWLOe0Hj166IEHHlCPHj00YcIEffvtt0pISNDXX3+txYsXZ/tLtU2bNpo3b562b9+uhIQErVq1Ss8995zatm2roKAgSenPqdmwYYMOHTqkEydOSJJGjhypLVu2aOjQodq5c6diY2O1YsUK54XCVatWld1u1+zZs7V//3598skn1xzSKigPPvigfH19NXfuXEnpZ7m+/PJLbdmyRTExMRo0aJCOHj3qskz16tWdfXrixIlMzxQ99dRTWrt2rSZOnKi9e/dq4cKFmjNnjp5++ulC2S/AmxFqgCJswoQJLl+sNptNixcv1syZM7Vq1SrdcccdqlOnjh599FGFhYVp06ZN2VpvZGSkFi5cqLvuukvXX3+9nnjiCUVGRurDDz902XZCQoLCw8MVEhIiKf06mK+//lp79+5Vy5Yt1ahRI7344ouqXLmypPShsOjoaH300UeqV6+epkyZomnTpuVjj2RfsWLFNHToUL3yyis6d+6cnn/+eTVu3FiRkZFq06aNKlasqK5du7os8/TTT8vX11f16tVTSEhIptfbNG7cWB9++KE++OADNWjQQC+++KImTJiQ6R1eAFzZjDHG3UUAAADkFWdqAACAJRBqAOTY5bdcX/nauHGju8vLkQMHDmS5Pzm9JRuA+zD8BCDHsvphyypVqqh48eKFWE3e/PXXX0pISLjq/OrVq6tYMW4UBbwBoQYAAFgCw08AAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMAS/h/lma+/DdwoHgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_25.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOiUlEQVR4nO3dd1gUZ/s24GtBiogUlSZBsZdo7KLGWEnQKGpi8vJawd6NEBuxYEeNIrZoYsPYjf1TFBUlNhKjBit2UIyAWAAFact8f/hz34wsugu7zJbrPI49krl3ZvbeTJSL55kiEwRBABEREZGBMJG6ASIiIiJNYrghIiIig8JwQ0RERAaF4YaIiIgMCsMNERERGRSGGyIiIjIoDDdERERkUBhuiIiIyKAw3BAREZFBYbghIp0kk8kwY8YMqdtQ8PPzg7u7u9RtEJEKGG6ISGVhYWGQyWSKl6WlJWrWrInRo0cjOTlZq5997tw5zJgxA6mpqRrdb7t27UTfqVy5cmjWrBnWr1+P/Px8jXzGvHnzsG/fPo3si4g+rJTUDRCR/pk1axaqVKmCrKwsnDlzBqtWrUJ4eDiuXbsGKysrjXzG69evUarU//6KOnfuHGbOnAk/Pz/Y2dlp5DPe+uijjxAcHAwASElJwa+//opBgwbh9u3bmD9/frH3P2/ePHzzzTfo0aNHsfdFRB/GcENEauvcuTOaNm0KABg8eDDKly+PkJAQ7N+/H7169SryfvPz85GTkwNLS0tYWlpqqt0PsrW1Rd++fRXLw4YNQ61atbBixQrMnj0bZmZmJdYLERUfp6WIqNg6dOgAAIiLiwMALFq0CK1atUL58uVRunRpNGnSBLt27SqwnUwmw+jRo7FlyxZ8/PHHsLCwwJEjRxTvvT3nZsaMGZgwYQIAoEqVKooppPj4eLRt2xYNGjRQ2letWrXg5eWl9vexsrJCixYtkJGRgZSUlELXy8jIwPfffw83NzdYWFigVq1aWLRoEQRBEH3HjIwMbNy4UdG3n5+f2j0Rkeo4ckNExXbv3j0AQPny5QEAS5cuRbdu3dCnTx/k5ORg+/bt+Pbbb3Hw4EF06dJFtO2JEyewc+dOjB49GhUqVFB60u7XX3+N27dvY9u2bViyZAkqVKgAAHBwcEC/fv0wZMgQXLt2DfXq1VNs89dff+H27duYOnVqkb7T/fv3YWpqWugUmCAI6NatG06ePIlBgwahYcOGiIiIwIQJE/DPP/9gyZIlAIBNmzZh8ODBaN68OYYOHQoAqFatWpF6IiIVCUREKtqwYYMAQDh+/LiQkpIiJCQkCNu3bxfKly8vlC5dWnj06JEgCIKQmZkp2i4nJ0eoV6+e0KFDB1EdgGBiYiJcv369wGcBEIKCghTLP/74owBAiIuLE62XmpoqWFpaCpMmTRLVx44dK5QpU0Z49erVe79T27Zthdq1awspKSlCSkqKEBsbK4wdO1YAIHh7eyvW8/X1FSpXrqxY3rdvnwBAmDNnjmh/33zzjSCTyYS7d+8qamXKlBF8fX3f2wcRaQ6npYhIbZ6ennBwcICbmxv++9//wtraGnv37oWrqysAoHTp0op1X7x4gbS0NHz22We4dOlSgX21bdsWdevWLXIvtra26N69O7Zt26aYDpLL5dixYwd69OiBMmXKfHAfN2/ehIODAxwcHFCnTh0sX74cXbp0wfr16wvdJjw8HKamphg7dqyo/v3330MQBBw+fLjI34mIiofTUkSktpUrV6JmzZooVaoUnJycUKtWLZiY/O93pYMHD2LOnDmIiYlBdna2oi6TyQrsq0qVKsXup3///tixYwdOnz6NNm3a4Pjx40hOTka/fv1U2t7d3R1r1qxRXN5eo0YNODo6vnebBw8eoGLFiihbtqyoXqdOHcX7RCQNhhsiUlvz5s0VV0u96/Tp0+jWrRvatGmDn376CS4uLjAzM8OGDRuwdevWAuv/e5SnqLy8vODk5ITNmzejTZs22Lx5M5ydneHp6anS9mXKlFF5XSLSfZyWIiKN2r17NywtLREREYGBAweic+fOGgkOykZ93jI1NUXv3r2xa9cuvHjxAvv27UOvXr1gampa7M8tTOXKlfH48WO8fPlSVL9586bi/bfe1zsRaR7DDRFplKmpKWQyGeRyuaIWHx9f7Dv0vj13prA7FPfr1w8vXrzAsGHD8OrVK9F9a7Thyy+/hFwux4oVK0T1JUuWQCaToXPnzopamTJlNH5nZSIqHKeliEijunTpgpCQEHTq1Am9e/fGkydPsHLlSlSvXh1Xrlwp8n6bNGkCAJgyZQr++9//wszMDN7e3orQ06hRI9SrVw+//fYb6tSpg8aNG2vk+xTG29sb7du3x5QpUxAfH48GDRrg6NGj2L9/P8aNGye63LtJkyY4fvw4QkJCULFiRVSpUgUeHh5a7Y/ImHHkhog0qkOHDli3bh2SkpIwbtw4bNu2DQsWLMBXX31VrP02a9YMs2fPxuXLl+Hn54devXoVuMFe//79AUDlE4mLw8TEBAcOHMC4ceNw8OBBjBs3Djdu3MCPP/6IkJAQ0bohISFo0qQJpk6dil69emHVqlVa74/ImMkE4V+30iQi0mNLly6Fv78/4uPjUalSJanbISKJMNwQkUEQBAENGjRA+fLlcfLkSanbISIJ8ZwbItJrGRkZOHDgAE6ePImrV69i//79UrdERBLjyA0R6bX4+HhUqVIFdnZ2GDlyJObOnSt1S0QkMYYbIiIiMii8WoqIiIgMCsMNERERGRSjO6E4Pz8fjx8/RtmyZXlLdCIiIj0hCAJevnyJihUrih7Uq4zRhZvHjx/Dzc1N6jaIiIioCBISEvDRRx+9dx2jCzdly5YF8OY/jo2NjcTdEBERkSrS09Ph5uam+Dn+PkYXbt5ORdnY2DDcEBER6RlVTinhCcVERERkUBhuiIiIyKAw3BAREZFBMbpzblQll8uRm5srdRtUAszNzT94WSEREekPhpt3CIKApKQkpKamSt0KlRATExNUqVIF5ubmUrdCREQawHDzjrfBxtHREVZWVrzRn4F7e1PHxMREVKpUicebiMgAMNz8i1wuVwSb8uXLS90OlRAHBwc8fvwYeXl5MDMzk7odIiIqJp5o8C9vz7GxsrKSuBMqSW+no+RyucSdEBGRJjDcKMGpCePC401EZFgYboiIiMigMNwQERGRQWG4MRB+fn6QyWSQyWQwMzODk5MTPv/8c6xfvx75+fkq7ycsLAx2dnbaa5SIiEjLGG4MSKdOnZCYmIj4+HgcPnwY7du3x3fffYeuXbsiLy9P6vaIiMgI3L59G9nZ2ZL2wHBjQCwsLODs7AxXV1c0btwYP/zwA/bv34/Dhw8jLCwMABASEoL69eujTJkycHNzw8iRI/Hq1SsAQFRUFAYMGIC0tDTFKNCMGTMAAJs2bULTpk1RtmxZODs7o3fv3njy5IlE35SIiHRNZmYmZs6ciW3btmH+/Pk4cEC6XhhuPkAQBOTk5EjyEgSh2P136NABDRo0wJ49ewC8uRvvsmXLcP36dWzcuBEnTpzAxIkTAQCtWrVCaGgobGxskJiYiMTERIwfPx7Am8vkZ8+ejcuXL2Pfvn2Ij4+Hn59fsfsjIiL9Fxsbix9//FGx/OBBJcyfL10/vInfB+Tm5iI4OFiSzw4MDNTIIwFq166NK1euAADGjRunqLu7u2POnDkYPnw4fvrpJ5ibm8PW1hYymQzOzs6ifQwcOFDx71WrVsWyZcvQrFkzvHr1CtbW1sXukYiI9NOvv/6KuLg4xbKT06eIiPDE5MnS9cRwYwQEQVDcy+X48eMIDg7GzZs3kZ6ejry8PGRlZSEzM/O9Ny+8ePEiZsyYgcuXL+PFixeKk5QfPnyIunXrlsj3ICIi3ZGRkYFFixaJasOGDYOzszOGD5eoqf/DcPMBZmZmCAwMlOyzNSE2NhZVqlRBfHw8unbtihEjRmDu3LkoV64czpw5g0GDBiEnJ6fQcJORkQEvLy94eXlhy5YtcHBwwMOHD+Hl5YWcnByN9EhERPrj2rVr2L17t2LZ1NQUgYGBMDU1lbCr/2G4+QCZTKbXT4s+ceIErl69Cn9/f1y8eBH5+flYvHgxTEzenG61c+dO0frm5uYFHkNw8+ZNPHv2DPPnz4ebmxsA4MKFCyXzBYiISGcIgoD169fj0aNHilq7du3Qtm1bCbsqiOHGgGRnZyMpKQlyuRzJyck4cuQIgoOD0bVrV/Tv3x/Xrl1Dbm4uli9fDm9vb5w9exarV68W7cPd3R2vXr1CZGQkGjRoACsrK1SqVAnm5uZYvnw5hg8fjmvXrmH27NkSfUsiIpLCy5cvERISIqqNGDECjo6OEnVUOF4tZUCOHDkCFxcXuLu7o1OnTjh58iSWLVuG/fv3w9TUFA0aNEBISAgWLFiAevXqYcuWLQVOlm7VqhWGDx8OHx8fODg4YOHChXBwcEBYWBh+++031K1bF/Pnzy8wz0pERIYrJiZGFGwsLS0xbdo0nQw2ACATNHG9sR5JT0+Hra0t0tLSYGNjI3ovKysLcXFxqFKlCiwtLSXqkEoajzsRkXKCIODnn39GcnKyotaxY0e0bt26xHt538/vd3FaioiIiApIS0tDaGioqDZ69GiUL19emobUwHBDREREIhcvXsTBgwcVy9bW1vD391dcjKLrGG6IiIgIwJtpqBUrVuD58+eKmpeXF1q0aCFhV+pjuCEiIiK8ePECy5YtE9XGjh0Le3t7iToqOoYbIiIiI/fnn3/iyJEjiuVy5cph9OjRirvb6xuGGyIiIiMlCAKWLFmCly9fKmpdunRB06ZNJeyq+BhuiIiIjNCzZ8+wYsUKUW3cuHGwtbWVqCPNYbghIiIyMmfPnsXx48cVy05OThg2bJjeTkO9i+GGiIjISOTn5+PHH39EVlaWota9e3c0bNhQuqa0QD8uWCed4efnhx49eiiW27Vrh3HjxhVrn5rYBxERvV9KSgpmz54tCjYBAQEGF2wAjtwYDD8/P2zcuBEAYGZmhkqVKqF///744YcfUKqU9g7znj17YGZmptK6UVFRaN++PV68eAE7O7si7YOIiNR36tQpnDx5UrHs6uqKQYMGGcw01LsYbgxIp06dsGHDBmRnZyM8PByjRo2CmZkZAgMDRevl5OTA3NxcI59Zrlw5ndgHEREVJJfLERwcDLlcrqh9/fXXqF+/voRdaR+npQyIhYUFnJ2dUblyZYwYMQKenp44cOCAYipp7ty5qFixImrVqgUASEhIwH/+8x/Y2dmhXLly6N69O+Lj4xX7k8vlCAgIgJ2dHcqXL4+JEyfi3eesvjullJ2djUmTJsHNzQ0WFhaoXr061q1bh/j4eLRv3x4AYG9vD5lMBj8/P6X7ePHiBfr37w97e3tYWVmhc+fOuHPnjuL9sLAw2NnZISIiAnXq1IG1tTU6deqExMRExTpRUVFo3rw5ypQpAzs7O3z66ad48OCBhv5LExHpvuTkZMyZM0cUbL7//nuDDzYAw41BK126NHJycgAAkZGRuHXrFo4dO4aDBw8iNzcXXl5eKFu2LE6fPo2zZ88qQsLbbRYvXoywsDCsX78eZ86cwfPnz7F37973fmb//v2xbds2LFu2DLGxsfj5559hbW0NNzc37N69GwBw69YtJCYmYunSpUr34efnhwsXLuDAgQOIjo6GIAj48ssvkZubq1gnMzMTixYtwqZNm3Dq1Ck8fPgQ48ePBwDk5eWhR48eaNu2La5cuYLo6GgMHTrUYIdfiYjeFRkZidWrVyuW3d3dERQUBGtrawm7KjmcljJAgiAgMjISERERGDNmDFJSUlCmTBmsXbtWMR21efNm5OfnY+3atYof+hs2bICdnR2ioqLwxRdfIDQ0FIGBgfj6668BAKtXr0ZEREShn3v79m3s3LkTx44dg6enJwCgatWqivffTj85OjqKzrn5tzt37uDAgQM4e/YsWrVqBQDYsmUL3NzcsG/fPnz77bcAgNzcXKxevRrVqlUD8OZJtbNmzQIApKenIy0tDV27dlW8X6dOHfX/QxIR6Rm5XI45c+aIat9++y3q1q0rUUfS4MiNFh04ALRq9eafJeHgwYOwtraGpaUlOnfuDB8fH8yYMQMAUL9+fdF5NpcvX8bdu3dRtmxZWFtbw9raGuXKlUNWVhbu3buHtLQ0JCYmwsPDQ7FNqVKl3nvXypiYGJiamqJt27ZF/g6xsbEoVaqU6HPLly+PWrVqITY2VlGzsrJSBBcAcHFxwZMnTwC8CVF+fn7w8vKCt7c3li5dKpqyIiIyRI8fPy4QbCZMmGB0wQbgyI1WzZ8PREe/+We3btr/vPbt22PVqlUwNzdHxYoVRVdJlSlTRrTuq1ev0KRJE2zZsqXAfhwcHIr0+aVLly7SdkXx7tVVMplMdD7Qhg0bMHbsWBw5cgQ7duzA1KlTcezYMb17si0RkSoiIiLwxx9/KJZr1KiB3r17S9iRtDhyo0WTJwMtW775Z0koU6YMqlevjkqVKn3w8u/GjRvjzp07cHR0RPXq1UUvW1tb2NrawsXFBX/++adim7y8PFy8eLHQfdavXx/5+fn4/ffflb7/duTo3ye3vatOnTrIy8sTfe6zZ89w69YttX/7aNSoEQIDA3Hu3DnUq1cPW7duVWt7IiJdl5eXh5kzZ4qCTa9evYw62AAMN1rVrRtw7lzJjNqoq0+fPqhQoQK6d++O06dPIy4uDlFRURg7diwePXoEAPjuu+8wf/587Nu3Dzdv3sTIkSORmppa6D7d3d3h6+uLgQMHYt++fYp97ty5EwBQuXJlyGQyHDx4ECkpKXj16lWBfdSoUQPdu3fHkCFDcObMGVy+fBl9+/aFq6srunfvrtJ3i4uLQ2BgIKKjo/HgwQMcPXoUd+7c4Xk3RGRQEhISMHfuXFFt0qRJqFmzpkQd6Q6GGyNlZWWFU6dOoVKlSvj6669Rp04dDBo0CFlZWbCxsQHw5pLBfv36wdfXFy1btkTZsmXx1VdfvXe/q1atwjfffIORI0eidu3aGDJkCDIyMgC8uWnUzJkzMXnyZDg5OWH06NFK97FhwwY0adIEXbt2RcuWLSEIAsLDw1W+0Z+VlRVu3ryJnj17ombNmhg6dChGjRqFYcOGqfFfiIhIdx06dAjr169XLNetWxdBQUGwtLSUsCvdIRPevXGJgUtPT4etrS3S0tIUP8TfysrKQlxcHKpUqcL/QYwIjzsR6Yvc3FzMmzdPVOvbt6/oAgtD9b6f3+/iCcVERER64MGDBwgLCxPVJk+eDAsLC2ka0mEMN0RERDpu//79iImJUSx/8sknHzxNwJgx3BAREemonJwcBAcHi2q+vr5wd3eXpiE9wXBDRESkg+7fv49NmzaJaoGBgRp78LEhY7hRwsjOsTZ6PN5EpGt27dqF69evK5YbN24Mb29vCTvSLww3//L2UuPMzMwSvdsuSevtg0JNTU0l7oSIjF1WVhYWLFggqg0YMACVKlWSqCP9xHDzL6amprCzs1M8o8jKyopPkjZw+fn5SElJgZWV1Qfv6kxEpE137twpcCf1H374QeV7fNH/8G/zdzg7OwOAIuCQ4TMxMUGlSpUYZIlIMtu3b8etW7cUyx4eHujUqZOEHek3hpt3yGQyuLi4wNHREbm5uVK3QyXA3NwcJia8WTcRlbzXr19j4cKFotrgwYPh6uoqUUeGgeGmEKampjwHg4iItObmzZvYsWOHqDZlyhROkWsA/wsSERGVsE2bNuH+/fuK5U8//RSenp4SdmRYGG6IiIhKSEZGBhYtWiSqDRs2THG+J2kGww0REVEJuH79Onbt2qVYNjExwQ8//MBTILSA4YaIiEiLBEHAhg0bkJCQoKi1bdsW7dq1k64pA8dwQ0REpCUvX75ESEiIqDZixAg4OjpK1JFxYLghIiLSgsuXL2Pfvn2KZQsLC0ycOJG3nigBDDdEREQaJAgCfvnlFyQlJSlqHTt2ROvWrSXsyrgw3BAREWlIeno6lixZIqqNGjUKFSpUkKgj48RwQ0REpAEXL17EwYMHFcvW1tbw9/fnNJQEGG6IiIiKQRAErFy5Es+ePVPUvLy80KJFCwm7Mm6SxslTp07B29sbFStWhEwmE514VZioqCg0btwYFhYWqF69OsLCwrTeJxERkTKpqamYNWuWKNiMGTOGwUZikoabjIwMNGjQACtXrlRp/bi4OHTp0gXt27dHTEwMxo0bh8GDByMiIkLLnRIREYmdP38eS5cuVSzb29tj+vTpKFeunIRdESDxtFTnzp3RuXNnlddfvXo1qlSpgsWLFwMA6tSpgzNnzmDJkiXw8vLSVptEREQKgiAgNDQU6enpitqXX36JZs2aSdgV/ZtenXMTHR1d4MFiXl5eGDduXKHbZGdnIzs7W7H87/8ZiYiI1PH8+XMsX75cVBs3bhxsbW0l6oiU0atwk5SUBCcnJ1HNyckJ6enpeP36NUqXLl1gm+DgYMycObOkWiQiIgN17tw5HDt2TLHs6OiI4cOHQyaTSdgVKaNX4aYoAgMDERAQoFhOT0+Hm5ubhB0REZE+yc/Px6JFi/D69WtFrVu3bmjUqJGEXdH76FW4cXZ2RnJysqiWnJwMGxsbpaM2wJvbXVtYWJREe0REZGBiY2Oxc+dOUS0gIABly5aVqCNShV6Fm5YtWyI8PFxUO3bsGFq2bClRR0REZKjmzp2LvLw8xXJqqitCQgZxGkoPSHop+KtXrxATE4OYmBgAby71jomJwcOHDwG8mVLq37+/Yv3hw4fj/v37mDhxIm7evImffvoJO3fuhL+/vxTtExGRAcrLy8PMmTNFwebJk5po334wg42ekHTk5sKFC2jfvr1i+e25Mb6+vggLC0NiYqIi6ABAlSpVcOjQIfj7+2Pp0qX46KOPsHbtWl4GTkREGnHlyhXs3btXVBs+fHiBi1lIt8kEQRCkbqIkpaenw9bWFmlpabCxsZG6HSIi0hHKrqwNCgqSoBNSRp2f33p1zg0REZGm5eTkIDg4WFSrV68eevbsKVFHVFwMN0REZLTefZI3AIwaNQoVKlSQqCPSBIYbIiIySpyGMlwMN0REZFSysrKwYMECUa1Ro0bo1q2bRB2RpjHcEBGR0fjjjz8QEREhqo0dOxb29vYSdUTawHBDRERGgdNQxoPhhoiIDFpmZiZ+/PFHUa1Fixa8R5oBY7ghIiKDdfr0aZw4cUJU8/f3533ODBzDDRERGSROQxkvhhsiIjIor169wuLFi0W1Nm3aiB73Q4aN4YaIiAxGZGQkzpw5I6p9//33sLa2lqgjkgLDDRERGQROQ9FbDDdERKTX0tLSEBoaKqp17NgRrVu3lqYhkhzDDRER6a3du3fj2rVrotrEiRNRunRpiToiXcBwQ0REeonTUFQYhhsiItIrjx8/xpo1a0S12NhO2L7dQ6KOSNcw3BARkd5YuHAhXr9+LaqdODEe339fRqKOSBcx3BARkV4obBqKM1H0LoYbIiLSaQ8ePEBYWJio1rx5c3Tu3FmahkjnMdwQEZHOUjZaM2nSJFhaWkrQDekLhhsiItI5giBg1qxZBeq8GopUwXBDREQ65e7du9iyZYuo9tlnn6FDhw4SdUT6huGGiIh0hrJpqMDAQJibm0vQDekrhhsiIpIcp6FIkxhuiIhIUrGxsdi5c6eo5unpiU8//VSijkjfMdwQEZFklE1DTZkyBaVK8ccTFR3/7yEiohKXn5+P2bNnF6hzGoo0geGGiIhK1JkzZxAZGSmqdenSBU2bNpWoIzI0DDdERFRilE1DTZ06FaamphJ0Q4bKROoGiIjI8MnlcqXBJiIiiMGGNI4jN0REpFURERH4448/RDUXl/YIC2uDyZMlaooMGsMNERFpjbLRmmnTpsHExARDh0rQEBkFhhsiItK4vLw8zJ07t0CdV0NRSWC4ISIijVJ2NdTff/tg4MDaEnVExobhhoiINEbZNNT06dMhk8kk6IaMFcMNEREVW05ODoKDgwvUOQ1FUmC4ISKiYomMjMSZM2dEtb59+6JatWoSdUTGjuGGiIiKjNNQpIsYboiISG1ZWVlYsGCBqCaTyTB9+nSJOiL6H4YbIiJSS3h4OP766y9RbcCAAahUqZJEHRGJMdwQEZHKlE1D8aRh0jUMN0RE9EEZGRlYtGiRqGZlZYUJEyZI1BFR4RhuiIjovfbu3YsrV66IakOHDoWLi4tEHRG9H8MNEREVitNQpI8YboiIqID09HQsWbJEVKtQoQJGjRolUUdEqmO4ISIikW3btuH27dui2ogRI+Do6ChRR0TqYbghIiIFTkORIWC4ISIivHjxAsuWLRPV3NzcMHDgQIk6Iio6hhsiIiO3fv16JCQkiGpjxoxBuXLlJOqIqHgYboiIjBinocgQMdwQERmhlJQU/PTTT6JajRo10Lt3b4k6ItIchhsiIiOzcuVKPH36VFTz9/eHjY2NRB0RaRbDDRGREVE2DdWoURCYa8iQMNwQERmBxMRE/PLLL6Ja/fr18fXXX0vUEZH2MNwQERm4RYsWISMjQ1QbP348ypQpI1FHRNrFcENEZMB4NRQZI4YbIiID9PDhQ2zYsEFUa9q0Kbp06SJRR0Qlh+GGiMjAzJo1C4IgiGoTJ05E6dKlJeqIqGQx3BARGQhBEDBr1qwCdU5DkbFhuCEiMgD37t3D5s2bRbXWrVujY8eOEnVEJB2GGyIiPafspOHAwECYm5tL0A2R9BhuiIj0FKehiJRTO9yYmpoiMTERjo6OovqzZ8/g6OgIuVyuseaIiEi5mzdvYseOHaJax44d0bp1a4k6ItIdJupu8O4Z+G9lZ2cXaQh05cqVcHd3h6WlJTw8PHD+/Pn3rh8aGopatWqhdOnScHNzg7+/P7KystT+XCIifTVz5swCwWbKlCkMNkT/R+WRm2XLlgEAZDIZ1q5dC2tra8V7crkcp06dQu3atdX68B07diAgIACrV6+Gh4cHQkND4eXlhVu3bhUYGQKArVu3YvLkyVi/fj1atWqF27dvw8/PDzKZDCEhIWp9NhGRvuE0FJFqZEJhQzHvqFKlCgDgwYMH+Oijj2Bqaqp4z9zcHO7u7pg1axY8PDxU/nAPDw80a9YMK1asAADk5+fDzc0NY8aMweTJkwusP3r0aMTGxiIyMlJR+/777/Hnn3/izJkzKn1meno6bG1tkZaWxifgEpHeuHLlCvbu3Suqde7cGc2bN5eoI6KSpc7Pb5VHbuLi4gAA7du3x549e2Bvb1+sJnNycnDx4kUEBgYqaiYmJvD09ER0dLTSbVq1aoXNmzfj/PnzaN68Oe7fv4/w8HD069evWL0QEekyZVdDTZ06VfRLJhH9j9onFJ88eVIjH/z06VPI5XI4OTmJ6k5OTrh586bSbXr37o2nT5+idevWEAQBeXl5GD58OH744YdCPyc7OxvZ2dmK5fT0dI30T0Skbfn5+Zg9e3aBOqehiN5P7XAzcODA976/fv36IjfzIVFRUZg3bx5++ukneHh44O7du/juu+8we/ZsTJs2Tek2wcHBSn/rISLSZRcuXMChQ4dEtR49eqBBgwYSdUSkP9QONy9evBAt5+bm4tq1a0hNTUWHDh1U3k+FChVgamqK5ORkUT05ORnOzs5Kt5k2bRr69euHwYMHAwDq16+PjIwMDB06FFOmTIGJScGLvwIDAxEQEKBYTk9Ph5ubm8p9EhGVNGW/kE2bNk3p33FEVJDa4ebdE9qAN0OnI0aMQLVq1VTej7m5OZo0aYLIyEj06NFDsZ/IyEiMHj1a6TaZmZkF/nC/nXMu7LxoCwsLWFhYqNwXEZFU8vLyMHfu3AJ1TkMRqUcjdyg2MTFBQEAA2rVrh4kTJ6q8XUBAAHx9fdG0aVM0b94coaGhyMjIwIABAwAA/fv3h6urK4KDgwEA3t7eCAkJQaNGjRTTUtOmTYO3tzdPrCMivXb27FkcP35cVIuJ+RYDBtSVqCMi/aWxxy/cu3cPeXl5am3j4+ODlJQUTJ8+HUlJSWjYsCGOHDmiOMn44cOHopGaqVOnQiaTYerUqfjnn3/g4OAAb29vpb/pEBHpC2XTUNOnT4dMJpOgGyL9p/J9bt769/krwJvpoMTERBw6dAi+vr6Ke9boKt7nhoh0RU5OjmJk+t84DUVUkFbuc/PW33//LVo2MTGBg4MDFi9e/MErqYiI6I0TJ07g9OnTolqfPn1QvXp1iToiMhyS3eeGiMhYcRqKSLuKfM7NkydPcOvWLQBArVq1lD4LioiI/uf169dYuHBhgTqnoYg0S+1wk56ejlGjRmHbtm3Iz88H8OZybB8fH6xcuRK2trYab5KISN/t2rUL169fF9X8/PxQuXJliToiMlxq3xFqyJAh+PPPP3Ho0CGkpqYiNTUVBw8exIULFzBs2DBt9EhEpNdmzpxZINgEBQUx2BBpidojNwcPHkRERARat26tqHl5eWHNmjXo1KmTRpsjItJnr169wuLFiwvUGzXiNBSRNqkdbsqXL6906snW1rbYTwonIjIUmzZtwv3790U1TkMRlQy1p6WmTp2KgIAAJCUlKWpJSUmYMGFCoQ+vJCIyJjNnziwQbDgNRVRy1L6JX6NGjXD37l1kZ2ejUqVKAN7cSdjCwgI1atQQrXvp0iXNdaohvIkfEWlLamoqli5dWqDOq6GIik+rN/Hr3r0778VARPSOn3/+WTSiDby5AKNixYoSdURkvNQeudF3HLkhIk1TdlM+jtYQaZY6P7/VPuematWqePbsWYF6amoqqlatqu7uiIj01tOnTwsEGysrKwYbIompPS0VHx8PuVxeoJ6dnY1Hjx5ppCkiIl23ZMkSpKeni2ojR46Eg4ODRB0R0Vsqh5sDBw4o/j0iIkJ0ObhcLkdkZCSqVKmi2e6IiHQQp6GIdJvK4aZHjx4AAJlMBl9fX9F7ZmZmcHd3V3qzKiIiQ5GUlISff/5ZVHNwcMDIkSMl6oiIlFE53Lx9jlSVKlXw119/oUKFClpriohI18ydOxd5eXmi2tixY3nzUiIdpPY5N3Fxcdrog4hIZ3Eaiki/qB1uZs2a9d73p0+fXuRmiIh0SUJCAtavXy+qVapUCQMGDJCoIyJShdrhZu/evaLl3NxcxMXFoVSpUqhWrRrDDREZBGWjNQEBAShbtqwE3RCROtQON3///XeBWnp6Ovz8/PDVV19ppCkiIilxGopIv2nsDsVXr16Ft7c34uPjNbE7reEdiomoMPfv38emTZtEtVq1auG///2vRB0R0VtafbZUYdLS0pCWlqap3RERlShlozUTJkyAlZWVBN0QUXGoHW6WLVsmWhYEAYmJidi0aRM6d+6sscaIiEoKp6GIDIva4WbJkiWiZRMTEzg4OMDX1xeBgYEaa4yISNtu3ryJHTt2iGoNGzZE9+7dJeqIiDSB97khIqOkbLRm0qRJsLS0lKAbItKkIp1zk5qairt37wIAqlevDjs7O032RESkNYIgKL1fF6ehiAyHWuEmPj4eo0aNQkREBN5eZCWTydCpUyesWLEC7u7u2uiRiEgjrly5UuBeXR4eHujUqZNEHRGRNqgcbhISEtCiRQuYmZlh9uzZqFOnDgDgxo0bWLVqFVq2bIm//voLH330kdaaJSIqKmXTUD/88APMzMwk6IaItEnl+9wMGjQId+/eRURERIE56devX6NTp06oUaMG1q5dq5VGNYX3uSEyLpyGIjIMWrnPzZEjR7Bjxw6lJ9uVLl0as2fP5o2uiEin/PXXXwgPDxfV2rVrh7Zt20rUERGVBJXDzdOnT997Tk3VqlXx/PlzTfRERFRsyqahpk6dClNTUwm6IaKSZKLqii4uLrhx40ah71+7dg3Ozs4aaYqIqKjkcnmhN+VjsCEyDiqP3PTo0QPjx49HZGQkHBwcRO89efIEkyZNQo8ePTTdHxGRys6ePYvjx4+Lal5eXmjRooVEHRGRFFQ+ofjFixfw8PBAUlIS+vbti9q1a0MQBMTGxmLr1q1wdnbGH3/8gXLlymm752LhCcVEhknZaM20adNgYqLyADUR6TCtnFBsb2+PP//8Ez/88AO2b9+O1NRUAICdnR169+6NefPm6XywISLDk5eXh7lz5xao82ooIuOl8sjNvwmCgJSUFACAg4MDZDKZxhvTFo7cEBmOyMhInDlzRlTr1q0bGjVqJFFHRKQtWhm5+TeZTAZHR8ciNUdEpAnKpqGmT5+uV79sEZF2FCncEBFJJScnB8HBwQXqnIYiorcYbohIbxw6dAgXLlwQ1b755ht8/PHHEnVERLqI4YaI9AKnoYhIVQw3RKTTXr9+jYULFxaocxqKiAqjUrhZtmyZyjscO3ZskZshIvq33bt349q1a6Ja7969UaNGDYk6IiJ9oNKl4FWqVFFtZzIZ7t+/X+ymtImXghPpB2XTUI0aBaFbNwmaISLJafxS8Li4OI00RkT0Ia9evcLixYsL1DkNRUSqKvI5Nzk5OYiLi0O1atVQqhRP3SGi4tu8eTPu3bsnqvn6+sLd3V2ahohIL6n90JXMzEwMGjQIVlZW+Pjjj/Hw4UMAwJgxYzB//nyNN0hExmHmzJkFgk1QUBCDDRGpTe1wExgYiMuXLyMqKgqWlpaKuqenJ3bs2KHR5ojI8KWlpSk9v4bTUERUVGrPJ+3btw87duxAixYtRPeX+Pjjjwv81kVE9D5r1qzB48ePRbUhQ4agYsWKEnVERIZA7XCTkpKi9LlSGRkZvJkWEamMozVEpC1qT0s1bdoUhw4dUiy/DTRr165Fy5YtNdcZERmkZ8+eFQg2r1+XRqNGDDZEpBlqj9zMmzcPnTt3xo0bN5CXl4elS5fixo0bOHfuHH7//Xdt9EhEBmLp0qVITU0V1c6cGYExYxx5/xoi0hi1R25at26NmJgY5OXloX79+jh69CgcHR0RHR2NJk2aaKNHIjIAM2fOLBBsgoKCcOwYgw0RaZZKdyg2JLxDMVHJSk5OxurVq0W18uXLY/To0RJ1RET6SON3KE5PT1f5wxkYiOit4OBg5OTkiGpjxoxBuXLlJOqIiIyBSuHGzs5O5Suh5HJ5sRoiIsPAq6GISCoqhZuTJ08q/j0+Ph6TJ0+Gn5+f4uqo6OhobNy4EcHBwdrpkoj0xqNHj7Bu3TpR7aOPPsKgQYMk6oiIjI3a59x07NgRgwcPRq9evUT1rVu34pdffkFUVJQm+9M4nnNDpD3KRmv8/f35Z42Iik2dn99qXy0VHR2Npk2bFqg3bdoU58+fV3d3RGQgCpuGYrAhopKmdrhxc3PDmjVrCtTXrl0LNzc3jTRFRPojLi6uQLCpWbMmz68hIsmofRO/JUuWoGfPnjh8+DA8PDwAAOfPn8edO3ewe/dujTdIRLpL2WjN+PHjUaZMGQm6ISJ6Q+2Rmy+//BJ37tyBt7c3nj9/jufPn8Pb2xu3b9/Gl19+qY0eiUgHFTYNxWBDRFLjTfyISC23bt3C9u3bRbUGDRqgR48e0jREREZB4zfxe1dqairWrVuH2NhYAMDHH3+MgQMHwtbWtii7IyI9oWy0ZtKkSbC0tJSgGyIi5dSelrpw4QKqVauGJUuWKKalQkJCUK1aNVy6dEkbPRKRxARBKHQaisGGiHSN2uHG398f3bp1Q3x8PPbs2YM9e/YgLi4OXbt2xbhx49RuYOXKlXB3d4elpSU8PDw+eDl5amoqRo0aBRcXF1hYWKBmzZoIDw9X+3OJSDVXr17FrFmzRLXmzZvzaigi0llqT0tduHABa9asQalS/9u0VKlSmDhxotL737zPjh07EBAQgNWrV8PDwwOhoaHw8vLCrVu34OjoWGD9nJwcfP7553B0dMSuXbvg6uqKBw8ewM7OTt2vQUQqUDZaExgYCHNzcwm6ISJSjdrhxsbGBg8fPkTt2rVF9YSEBJQtW1atfYWEhGDIkCEYMGAAAGD16tU4dOgQ1q9fj8mTJxdYf/369Xj+/DnOnTsHMzMzAIC7u7u6X4GIPkAQhAKjNQCfDUVE+kHtaSkfHx8MGjQIO3bsQEJCAhISErB9+3alj2R4n5ycHFy8eBGenp7/a8bEBJ6enoiOjla6zYEDB9CyZUuMGjUKTk5OqFevHubNm/feh3VmZ2cjPT1d9CKiwl28eLFAsGnTpg2DDRHpDbVHbhYtWgSZTIb+/fsjLy8PAGBmZoYRI0Zg/vz5Ku/n6dOnkMvlcHJyEtWdnJxw8+ZNpdvcv38fJ06cQJ8+fRAeHo67d+9i5MiRyM3NLfQv3uDgYKVD60RUkLI/K1OmTBFNQxMR6boi3+cmMzMT9+7dAwBUq1YNVlZWam3/+PFjuLq64ty5c4qniwPAxIkT8fvvv+PPP/8ssE3NmjWRlZWFuLg4mJqaAngztfXjjz8iMTFR6edkZ2cjOztbsZyeng43Nzfe54boX/Lz8zF79uwCdY7WEJGu0Pp9bgDAysoK9evXL+rmqFChAkxNTZGcnCyqJycnw9nZWek2Li4uMDMzUwQbAKhTpw6SkpKQk5Oj9CRHCwsLWFhYFLlPIkN37tw5HDt2TFT74osvRL90EBHpE5XDzcCBA1Vab/369SqtZ25ujiZNmiAyMlJxZ9P8/HxERkZi9OjRSrf59NNPsXXrVuTn58PE5M3pQrdv34aLiwuv3iAqAmXTUNOmTVP8+SIi0kcqh5uwsDBUrlwZjRo1gqae2BAQEABfX180bdoUzZs3R2hoKDIyMhRXT/Xv3x+urq4IDg4GAIwYMQIrVqzAd999hzFjxuDOnTuYN28exo4dq5F+iIxFXl4e5s6dW6DOaSgiMgQqh5sRI0Zg27ZtiIuLw4ABA9C3b1+UK1euWB/u4+ODlJQUTJ8+HUlJSWjYsCGOHDmiOMn44cOHot8g3dzcEBERAX9/f3zyySdwdXXFd999h0mTJhWrDyJjcuLECZw+fVpU8/b2RuPGjSXqiIhIs9Q6oTg7Oxt79uzB+vXrce7cOXTp0gWDBg3CF198AZlMps0+NYYPziRjpmwaavr06Xrz55eIjJc6P7+LfLXUgwcPEBYWhl9//RV5eXm4fv06rK2ti9RwSWK4IWOUk5OjmN79N05DEZG+KJGrpUxMTCCTySAIwntvokdE0goPD8dff/0lqvXs2RP16tWTqCMiIu1S65KI7OxsbNu2DZ9//jlq1qyJq1evYsWKFXj48KFejNoQGZuZM2cWCDbTp09nsCEig6byyM3IkSOxfft2uLm5YeDAgdi2bRsqVKigzd6IqIiysrKwYMGCAnVOQxGRMVD5nBsTExNUqlQJjRo1eu/Jh3v27NFYc9rAc27I0O3duxdXrlwR1Xr16oWaNWtK1BERUfFp5Zyb/v3784oKIh2n7GoojtYQkbFR6yZ+RKSbMjIysGjRogJ1BhsiMkZ81C+Rntu6dSvu3Lkjqvn6+sLd3V2ahoiIJMZwQ6THOA1FRFQQww2RHkpPT8eSJUsK1BlsiIgYboj0ztq1a/HPP/+IaoMHD4arq6tEHRER6RaGGyI9wmkoIqIPY7gh0gPPnz/H8uXLRTULCwtMnjxZoo6IiHQXww2Rjlu+fDmeP38uqg0fPhxOTk4SdUREpNsYboh0GKehiIjUx3BDpIOePHmCVatWiWr29vYYO3asRB0REekPhhsiHbNgwQJkZWWJamPGjEG5cuUk6oiISL8w3BDpEE5DEREVH8MNkQ64f/8+Nm3aJKq5urpi8ODBEnVERKS/GG6IJKZstGbcuHGwtbWVoBsiIv1nInUDRMZMWbCJiAhisCEiKgaO3BBJ4MqVK9i7d6+oVqqUFQ4dmgDel4+IqHgYbohKmLLRGn9/f9jY2GDKFAkaIiIyMJyWIipBhU1D2djYSNANEZFh4sgNUQm4fv06du3aJapxGoqISDsYboi0TNlozcmT3yMqyprTUEREWsBwQ6QlgiBg1qxZBeoREUEcrSEi0iKGGyItuHTpEv7f//t/otrHH3+Mb775BrzhMBGRdjHcEGmYsmmoyZMnw8LCQoJuiIiMD8MNkYYUNg3FZ0MREZUshhsiDYiOjsbRo0dFtSZNmqBr164SdUREZLwYboiKSdk01JQpU1CqFP94ERFJgX/7EhVRfn4+Zs+eXaDOaSgiImkx3BAVwcmTJ3Hq1ClRrXXr1ujYsaNEHRER0VsMN0RqUjYNNXXqVJiamkrQDRERvYvhhkhFeXl5mDt3boE6p6GIiHQLww2RCg4fPozz58+Lap6envj0008l6oiIiArDcEP0AcqmoaZPnw6ZTCZBN0RE9CEMN0SFyMnJQXBwcIE6p6GIiHQbww2REnv27MHVq1dFta5du6JJkyYSdURERKpiuCF6B6ehiIj0G8MN0f95/fo1Fi5cWKDOaSgiIv3CcEMEYMuWLbh7966o1rNnT9SrV0+ijoiIqKgYbsjoKZuG4mgNEZH+Yrgho/Xq1SssXry4QJ3BhohIvzHckFFas2YNHj9+LKr16tULNWvWlKgjIiLSFIYbMjqchiIiMmwMN2Q0UlNTsXTp0gJ1BhsiIsPCcENGITQ0FGlpaaKar68v3N3dpWmIiIi0huGGDB6noYiIjAvDDRmsp0+fYuXKlQXqDDZERIaN4YYM0rx585CbmyuqDR48GK6urhJ1REREJYXhhgwOp6GIiIwbww0ZjMTERPzyyy8F6gw2RETGheGGDIKy0ZoRI0bA0dFRgm6IiEhKDDek9zgNRURE/8ZwQ3rr4cOH2LBhg6iWnV0GLVqMl6gjIiLSBQw3pJeUjdaMHTsW9vb2EnRDRES6hOGG9A6noYiI6H0Ybkhv/PPPP1i7dq2o9vKlAxYtGilRR0REpIsYbkgvLFiwAFlZWaLayZPjERBQRqKOiIhIVzHckM4rbBqKM1FERKQMww3prPj4eGzcuFFU8/DwQKdOnSTqiIiI9IGJ1A0AwMqVK+Hu7g5LS0t4eHjg/PnzKm23fft2yGQy9OjRQ7sNUombOXNmgWAzadIkBhsiIvogycPNjh07EBAQgKCgIFy6dAkNGjSAl5cXnjx58t7t4uPjMX78eHz22Wcl1CmVBEEQCp2GsrS0lKAjIiLSNzJBEAQpG/Dw8ECzZs2wYsUKAEB+fj7c3NwwZswYTJ48Wek2crkcbdq0wcCBA3H69GmkpqZi3759Kn1eeno6bG1tkZaWBhsbG019DdKAO3fuYOvWraJamzZt0L59e4k6IiIiXaHOz29Jz7nJycnBxYsXERgYqKiZmJjA09MT0dHRhW43a9YsODo6YtCgQTh9+vR7PyM7OxvZ2dmK5fT09OI3ThqnbLQmMDAQ5ubmEnRDRET6TNJpqadPn0Iul8PJyUlUd3JyQlJSktJtzpw5g3Xr1mHNmjUqfUZwcDBsbW0VLzc3t2L3TZrzvmkoBhsiIioKvbpa6uXLl+jXrx/WrFmDChUqqLRNYGAgAgICFMvp6ekMODrixo0b+O2330S1zz//HK1atZKoIyIiMgSShpsKFSrA1NQUycnJonpycjKcnZ0LrH/v3j3Ex8fD29tbUcvPzwcAlCpVCrdu3UK1atVE21hYWMDCwkIL3VNxKButmTJlCkqV0qu8TUREOkjSaSlzc3M0adIEkZGRilp+fj4iIyPRsmXLAuvXrl0bV69eRUxMjOLVrVs3tG/fHjExMRyR0QP5+fmFTkMx2BARkSZI/tMkICAAvr6+aNq0KZo3b47Q0FBkZGRgwIABAID+/fvD1dUVwcHBsLS0RL169UTb29nZAUCBOumemJgY7N+/X1Tr0qULmjZtKlFHRERkiCQPNz4+PkhJScH06dORlJSEhg0b4siRI4qTjB8+fAgTE8lvx0PFpGy0Ztq0aTy2RESkcZLf56ak8T43JUsul2POnDkF6kF8MBQREalBb+5zQ4bt/PnzOHz4sKj29ddfo379+hJ1RERExoDhhrRC2TTU9OnTIZPJJOiGiIiMCcMNaVReXh7mzp1boM5pKCIiKikMN6Qxp0+fxokTJ0Q1Hx8f1K5dW6KOiIjIGDHckEZwGoqIiHQFww0VS05ODoKDgwvUOQ1FRERSYbihIjt+/DjOnj0rqvXr1w9Vq1aVqCMiIiKGGyoiTkMREZGuYrghtbx+/RoLFy4U1UxMTDBt2jSJOiIiIhJjuCGVHTp0CBcuXBDVBgwYgEqVKknUERERUUEMN6SSwp7kTUREpGsYbui9MjIysGjRIlGtTJkyGD9+vEQdERERvR/DDRVq9+7duHbtmqg2dOhQuLi4SNQRERHRhzHckFKchiIiIn3FcEMimZmZ+PHHH0U1BwcHjBw5UqKOiIiI1MNwQwrKng1Vp85I/Oc/DhJ1REREpD6GGwLAaSgiIjIcDDdG7tWrV1i8eLGodu9eG/z6a3uJOiIiIioehhsjFhkZiTNnzohqJ09+j4AAa4k6IiIiKj6GGyNV2DQUZ6KIiEjfMdwYmbS0NISGhopqHTt2ROvWraVpiIiISMMYbozI4cOHcf78eVFt4sSJKF26tEQdERERaR7DjZHg1VBERGQsGG4M3PPnz7F8+XJRrXPnzmjevLlEHREREWkXw40B279/P2JiYkS1yZMnw8LCQpqGiIiISgDDjYHiNBQRERkrhhsD8/TpU6xcuVJU69atGxo1aiRRR0RERCWL4caA/Pbbb7hx44aoFhgYCHNzc4k6IiIiKnkMNwZAEATMmjWrQJ3TUEREZIwYbvRcUlISfv75Z1GtZ8+eqFevnkQdERERSYvhRo9t3rwZ9+7dE9WmTJmCUqV4WImIyHjxp6AeUjYNZWFhgcmTJ0vUERERke5guNEzjx49wrp160S1//73v6hVq5ZEHREREekWhhs9sm7dOjx69EhUmzp1KkxNTSXqiIiISPcw3OgBZdNQNjY28Pf3l6gjIiIi3cVwo+MePHiAsLAwUa1v376oVq2aNA0RERHpOIYbHXby5EmcOnVKVJs2bRpMTEwk6oiIiEj3MdzoIEEQEBoaivT0dEXt5UtHLFo0QsKuiIiI9APDjY55/vw5li9fLqqdPTsco0c7SdQRERGRfmG40SHnzp3DsWPHFMsODg4YMWIEZDKZhF0RERHpF4YbHZCfn4/FixcjMzNTUeOTvImIiIqG4UZiKSkp+Omnn0Q1f39/2NjYSNQRERGRfmO4kdDp06dx4sQJxXLFihUxePBgTkMREREVA8ONBPLz8zF//nzk5uYqal999RU++eQTCbsiIiIyDAw3JSw5ORmrV68W1b7//ntYW1tL1BEREZFhYbgpQSdOnMDp06cVy5UrV4avry+noYiIiDSI4aYEyOVyzJkzR1T79ttvUbduXYk6IiIiMlwMN1qWmJiIX375RVSbMGECrKysJOqIiIjIsDHcaNHRo0cRHR2tWK5WrRr69u0rYUdERESGj+FGC/Ly8jB37lxRzcfHB7Vr15aoIyIiIuPBcKNhjx49wrp160S1iRMnonTp0hJ1REREZFwYbjTo8OHDOH/+vGK5du3a8PHxkbAjIiIi48NwoyEvX74UBZs+ffqgevXqEnZERERknEykbsBQlC5dGklJdfHypTUiIycx2BAREUmE4UZDSpUqhc6dv8W5c99j/HhLqdshIiIyWpyW0qBu3d68iIiISDocuSEiIiKDwnBDREREBoXhhoiIiAwKww0REREZFIYbIiIiMigMN0RERGRQGG6IiIjIoOhEuFm5ciXc3d1haWkJDw8P0WMM3rVmzRp89tlnsLe3h729PTw9Pd+7PhERERkXycPNjh07EBAQgKCgIFy6dAkNGjSAl5cXnjx5onT9qKgo9OrVCydPnkR0dDTc3NzwxRdf4J9//inhzomIiEgXyQRBEKRswMPDA82aNcOKFSsAAPn5+XBzc8OYMWMwefLkD24vl8thb2+PFStWoH///h9cPz09Hba2tkhLS4ONjU2x+yciIiLtU+fnt6QjNzk5Obh48SI8PT0VNRMTE3h6eiI6OlqlfWRmZiI3NxflypVT+n52djbS09NFLyIiIjJckoabp0+fQi6Xw8nJSVR3cnJCUlKSSvuYNGkSKlasKApI/xYcHAxbW1vFy83Nrdh9ExERke6S/Jyb4pg/fz62b9+OvXv3wtJS+ZO4AwMDkZaWpnglJCSUcJdERERUkiR9KniFChVgamqK5ORkUT05ORnOzs7v3XbRokWYP38+jh8/jk8++aTQ9SwsLGBhYaFYfnuKEaeniIiI9Mfbn9sqnSosSKx58+bC6NGjFctyuVxwdXUVgoODC91mwYIFgo2NjRAdHa325yUkJAgA+OKLL7744osvPXwlJCR88Ge9pCM3ABAQEABfX180bdoUzZs3R2hoKDIyMjBgwAAAQP/+/eHq6org4GAAwIIFCzB9+nRs3boV7u7uinNzrK2tYW1t/cHPq1ixIhISElC2bFm8fPkSbm5uSEhI4JVTOiA9PZ3HQ4fweOgOHgvdwuMhDUEQ8PLlS1SsWPGD60oebnx8fJCSkoLp06cjKSkJDRs2xJEjRxQnGT98+BAmJv87NWjVqlXIycnBN998I9pPUFAQZsyY8cHPMzExwUcffQQAkMlkAAAbGxv+D6pDeDx0C4+H7uCx0C08HiXP1tZWpfUkv8+NlHjPG93C46FbeDx0B4+FbuHx0H16fbUUERER0buMOtxYWFggKChIdDUVSYfHQ7fweOgOHgvdwuOh+4x6WoqIiIgMj1GP3BAREZHhYbghIiIig8JwQ0RERAaF4YaIiIgMisGHm5UrV8Ld3R2Wlpbw8PDA+fPnC113zZo1+Oyzz2Bvbw97e3t4enq+d31SnzrH49+2b98OmUyGHj16aLdBI6LusUhNTcWoUaPg4uICCwsL1KxZE+Hh4SXUreFT93iEhoaiVq1aKF26NNzc3ODv74+srKwS6tZwnTp1Ct7e3qhYsSJkMhn27dv3wW2ioqLQuHFjWFhYoHr16ggLC9N6n/QBaj+cSY9s375dMDc3F9avXy9cv35dGDJkiGBnZyckJycrXb93797CypUrhb///luIjY0V/Pz8BFtbW+HRo0cl3LlhUvd4vBUXFye4uroKn332mdC9e/eSadbAqXsssrOzhaZNmwpffvmlcObMGSEuLk6IiooSYmJiSrhzw6Tu8diyZYtgYWEhbNmyRYiLixMiIiIEFxcXwd/fv4Q7Nzzh4eHClClThD179ggAhL179753/fv37wtWVlZCQECAcOPGDWH58uWCqampcOTIkZJpmJQy6HDTvHlzYdSoUYpluVwuVKxY8b0P5fy3vLw8oWzZssLGjRu11aJRKcrxyMvLE1q1aiWsXbtW8PX1ZbjREHWPxapVq4SqVasKOTk5JdWiUVH3eIwaNUro0KGDqBYQECB8+umnWu3T2KgSbiZOnCh8/PHHopqPj4/g5eWlxc7oQwx2WionJwcXL16Ep6enomZiYgJPT09ER0ertI/MzEzk5uaiXLly2mrTaBT1eMyaNQuOjo4YNGhQSbRpFIpyLA4cOICWLVti1KhRcHJyQr169TBv3jzI5fKSattgFeV4tGrVChcvXlRMXd2/fx/h4eH48ssvS6Rn+p/o6GjRsQMALy8vlX/OkHZI/uBMbXn69CnkcrniAZxvOTk54ebNmyrtY9KkSahYsWKB/3FJfUU5HmfOnMG6desQExNTAh0aj6Ici/v37+PEiRPo06cPwsPDcffuXYwcORK5ubkICgoqibYNVlGOR+/evfH06VO0bt0agiAgLy8Pw4cPxw8//FASLdO/JCUlKT126enpeP36NUqXLi1RZ8bNYEduimv+/PnYvn079u7dC0tLS6nbMTovX75Ev379sGbNGlSoUEHqdoxefn4+HB0d8csvv6BJkybw8fHBlClTsHr1aqlbM0pRUVGYN28efvrpJ1y6dAl79uzBoUOHMHv2bKlbI9IJBjtyU6FCBZiamiI5OVlUT05OhrOz83u3XbRoEebPn4/jx4/jk08+0WabRkPd43Hv3j3Ex8fD29tbUcvPzwcAlCpVCrdu3UK1atW027SBKsqfDRcXF5iZmcHU1FRRq1OnDpKSkpCTkwNzc3Ot9mzIinI8pk2bhn79+mHw4MEAgPr16yMjIwNDhw7FlClTYGLC31tLirOzs9JjZ2Njw1EbCRnsnwBzc3M0adIEkZGRilp+fj4iIyPRsmXLQrdbuHAhZs+ejSNHjqBp06Yl0apRUPd41K5dG1evXkVMTIzi1a1bN7Rv3x4xMTFwc3MryfYNSlH+bHz66ae4e/euImACwO3bt+Hi4sJgU0xFOR6ZmZkFAszb4CnwcYElqmXLlqJjBwDHjh17788ZKgFSn9GsTdu3bxcsLCyEsLAw4caNG8LQoUMFOzs7ISkpSRAEQejXr58wefJkxfrz588XzM3NhV27dgmJiYmK18uXL6X6CgZF3ePxLl4tpTnqHouHDx8KZcuWFUaPHi3cunVLOHjwoODo6CjMmTNHqq9gUNQ9HkFBQULZsmWFbdu2Cffv3xeOHj0qVKtWTfjPf/4j1VcwGC9fvhT+/vtv4e+//xYACCEhIcLff/8tPHjwQBAEQZg8ebLQr18/xfpvLwWfMGGCEBsbK6xcuZKXgusAgw43giAIy5cvFypVqiSYm5sLzZs3F/744w/Fe23bthV8fX0Vy5UrVxYAFHgFBQWVfOMGSp3j8S6GG81S91icO3dO8PDwECwsLISqVasKc+fOFfLy8kq4a8OlzvHIzc0VZsyYIVSrVk2wtLQU3NzchJEjRwovXrwo+cYNzMmTJ5X+HHj739/X11do27ZtgW0aNmwomJubC1WrVhU2bNhQ4n2TmEwQOIZJREREhsNgz7khIiIi48RwQ0RERAaF4YaIiIgMCsMNERERGRSGGyIiIjIoDDdERERkUBhuiIiIyKAw3BARFcLd3R2hoaFSt0FEamK4ISK1pKSkYMSIEahUqRIsLCzg7OwMLy8vnD17FgAgk8mwb98+aZtUUbt27SCTyQq88vLypG6NiIrBYJ8KTkTa0bNnT+Tk5GDjxo2oWrUqkpOTERkZiWfPnkndWpEMGTIEs2bNEtVKleJfjUT6jCM3RKSy1NRUnD59GgsWLED79u1RuXJlNG/eHIGBgejWrRvc3d0BAF999RVkMpliGQD279+Pxo0bw9LSElWrVsXMmTNFIyQhISGoX78+ypQpAzc3N4wcORKvXr1SvB8WFgY7OzscPHgQtWrVgpWVFb755htkZmZi48aNcHd3h729PcaOHQu5XK7yd7KysoKzs7PoVZiHDx+ie/fusLa2ho2NDf7zn/8gOTkZAJCWlgZTU1NcuHABwJsne5crVw4tWrRQbL9582Y+0Z6oBDDcEJHKrK2tYW1tjX379iE7O7vA+3/99RcAYMOGDUhMTFQsnz59Gv3798d3332HGzdu4Oeff0ZYWBjmzp2r2NbExATLli3D9evXsXHjRpw4cQITJ04U7T8zMxPLli3D9u3bceTIEURFReGrr75CeHg4wsPDsWnTJvz888/YtWuXxr97fn4+unfvjufPn+P333/HsWPHcP/+ffj4+AAAbG1t0bBhQ0RFRQEArl69CplMhr///lsR0n7//Xe0bdtW470R0TukfnInEemXXbt2Cfb29oKlpaXQqlUrITAwULh8+bLifQDC3r17Rdt07NhRmDdvnqi2adMmwcXFpdDP+e2334Ty5csrljds2CAAEO7evauoDRs2TLCyshJevnypqHl5eQnDhg1T6bu0bdtWMDMzE8qUKaN4BQQEKN6vXLmysGTJEkEQBOHo0aOCqamp8PDhQ8X7169fFwAI58+fFwRBEAICAoQuXboIgiAIoaGhgo+Pj9CgQQPh8OHDgiAIQvXq1YVffvlFpd6IqOg4ckNEaunZsyceP36MAwcOoFOnToiKikLjxo0RFhZW6DaXL1/GrFmzFCM/1tbWGDJkCBITE5GZmQkAOH78ODp27AhXV1eULVsW/fr1w7NnzxTvA2+mkKpVq6ZYdnJygru7O6ytrUW1J0+eqPx9+vTpg5iYGMUrMDBQ6XqxsbFwc3MTTSvVrVsXdnZ2iI2NBQC0bdsWZ86cgVwux++//4527dqhXbt2iIqKwuPHj3H37l20a9dO5d6IqGgYbohIbZaWlvj8888xbdo0nDt3Dn5+fggKCip0/VevXmHmzJmiEHH16lXcuXMHlpaWiI+PR9euXfHJJ59g9+7duHjxIlauXAkAyMnJUezHzMxMtF+ZTKa0lp+fr/J3sbW1RfXq1RWvChUqqLztu9q0aYOXL1/i0qVLOHXqlCjc/P7776hYsSJq1KhR5P0TkWp4SQARFVvdunUVl3+bmZkVOKG3cePGuHXrFqpXr650+4sXLyI/Px+LFy+Gicmb37l27typ1Z7VVadOHSQkJCAhIUExenPjxg2kpqaibt26AAA7Ozt88sknWLFiBczMzFC7dm04OjrCx8cHBw8e5Pk2RCWEIzdEpLJnz56hQ4cO2Lx5M65cuYK4uDj89ttvWLhwIbp37w7gzY3vIiMjkZSUhBcvXgAApk+fjl9//RUzZ87E9evXERsbi+3bt2Pq1KkAgOrVqyM3NxfLly/H/fv3sWnTJqxevVqy76mMp6cn6tevjz59+uDSpUs4f/48+vfvj7Zt26Jp06aK9dq1a4ctW7Yogky5cuVQp04d7Nixg+GGqIQw3BCRyqytreHh4YElS5agTZs2qFevHqZNm4YhQ4ZgxYoVAIDFixfj2LFjcHNzQ6NGjQAAXl5eOHjwII4ePYpmzZqhRYsWWLJkCSpXrgwAaNCgAUJCQrBgwQLUq1cPW7ZsQXBwsGTfUxmZTIb9+/fD3t4ebdq0gaenJ6pWrYodO3aI1mvbti3kcrno3Jp27doVqBGR9sgEQRCkboKIiIhIUzhyQ0RERAaF4YaIDNLp06dFl56/+yIiw8VpKSIySK9fv8Y///xT6PuFXblFRPqP4YaIiIgMCqeliIiIyKAw3BAREZFBYbghIiIig8JwQ0RERAaF4YaIiIgMCsMNERERGRSGGyIiIjIoDDdERERkUP4/QOkWzDyJRTQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAHHCAYAAABUcOnjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT5RJREFUeJzt3XlYVHX/PvB7QBYRZVEWNRCUcknDHbVcHwyXUMueeNQUt9xXcgEXEDc0d4W0NJdMRbNcMhMVxZWy3DJFDYUkBcSFPVlmzu8Pf8634ww6g8OcWe7XdXHVec85Z97jKeb28zmLTBAEAUREREQmzkLqBoiIiIj0gaGHiIiIzAJDDxEREZkFhh4iIiIyCww9REREZBYYeoiIiMgsMPQQERGRWWDoISIiIrPA0ENERERmgaGHiAySTCbDnDlzpG5DafDgwfDy8pK6DSJ6BQw9RKSxzZs3QyaTKX9sbW3xxhtvYNy4ccjMzKzQ9z579izmzJmD7Oxsne63U6dOos/k7OyMVq1aYePGjVAoFDp5j4ULF2Lv3r062RcRlV8lqRsgIuMzd+5ceHt748mTJzh9+jTWrl2LgwcP4o8//oCdnZ1O3uOff/5BpUr/9yvq7NmziIyMxODBg+Ho6KiT93jmtddeQ1RUFAAgKysLX3/9NYYNG4abN29i0aJFr7z/hQsX4sMPP0SfPn1eeV9EVH4MPUSkte7du6Nly5YAgOHDh6N69epYvnw59u3bh379+pV7vwqFAsXFxbC1tYWtra2u2n0pBwcHfPzxx8rlkSNHon79+oiOjsa8efNgZWWlt16IqOJweouIXlmXLl0AACkpKQCApUuXol27dqhevToqV66MFi1aYPfu3SrbyWQyjBs3Dtu2bcObb74JGxsbHDp0SPnas3N65syZg6lTpwIAvL29lVNRqamp6NixI3x9fdX2Vb9+fQQEBGj9eezs7NCmTRsUFBQgKyurzPUKCgrw6aefwsPDAzY2Nqhfvz6WLl0KQRBEn7GgoABbtmxR9j148GCteyKiV8eRHiJ6Zbdu3QIAVK9eHQCwatUq9OrVCwMGDEBxcTFiY2Px3//+FwcOHEDPnj1F2x47dgy7du3CuHHjUKNGDbUnC3/wwQe4efMmduzYgRUrVqBGjRoAABcXFwwcOBCffPIJ/vjjDzRu3Fi5za+//oqbN29i1qxZ5fpMt2/fhqWlZZlTaYIgoFevXjh+/DiGDRuGpk2bIi4uDlOnTsXdu3exYsUKAMDWrVsxfPhwtG7dGiNGjAAA1KtXr1w9EdErEoiINLRp0yYBgHD06FEhKytLSEtLE2JjY4Xq1asLlStXFv7++29BEAShsLBQtF1xcbHQuHFjoUuXLqI6AMHCwkK4evWqynsBECIiIpTLS5YsEQAIKSkpovWys7MFW1tbYfr06aL6hAkThCpVqgj5+fkv/EwdO3YUGjRoIGRlZQlZWVlCUlKSMGHCBAGAEBgYqFwvODhYqFOnjnJ57969AgBh/vz5ov19+OGHgkwmE5KTk5W1KlWqCMHBwS/sg4gqHqe3iEhr/v7+cHFxgYeHB/73v//B3t4ee/bsQe3atQEAlStXVq77+PFj5OTkoH379rhw4YLKvjp27IhGjRqVuxcHBwf07t0bO3bsUE4ryeVy7Ny5E3369EGVKlVeuo/r16/DxcUFLi4uaNiwIdasWYOePXti48aNZW5z8OBBWFpaYsKECaL6p59+CkEQ8NNPP5X7MxFRxeD0FhFpLSYmBm+88QYqVaoENzc31K9fHxYW//d3qAMHDmD+/Pm4dOkSioqKlHWZTKayL29v71fuZ9CgQdi5cydOnTqFDh064OjRo8jMzMTAgQM12t7Lywvr169XXob/+uuvw9XV9YXb/PXXX6hVqxaqVq0qqjds2FD5OhEZFoYeItJa69atlVdvPe/UqVPo1asXOnTogM8//xw1a9aElZUVNm3ahO3bt6us/+9RofIKCAiAm5sbvvnmG3To0AHffPMN3N3d4e/vr9H2VapU0XhdIjJenN4iIp367rvvYGtri7i4OAwdOhTdu3fXSaBQN0r0jKWlJfr374/du3fj8ePH2Lt3L/r16wdLS8tXft+y1KlTB/fu3UNeXp6ofv36deXrz7yodyLSH4YeItIpS0tLyGQyyOVyZS01NfWV70j87Nycsu7IPHDgQDx+/BgjR45Efn6+6L47FaFHjx6Qy+WIjo4W1VesWAGZTIbu3bsra1WqVNH5naSJSHuc3iIinerZsyeWL1+Obt26oX///rh//z5iYmLg4+OD33//vdz7bdGiBQBg5syZ+N///gcrKysEBgYqw1CzZs3QuHFjfPvtt2jYsCGaN2+uk89TlsDAQHTu3BkzZ85EamoqfH19cfjwYezbtw+TJk0SXZbeokULHD16FMuXL0etWrXg7e0NPz+/Cu2PiFRxpIeIdKpLly746quvkJGRgUmTJmHHjh1YvHgx3n///Vfab6tWrTBv3jxcvnwZgwcPRr9+/VRuHDho0CAA0PgE5ldhYWGB/fv3Y9KkSThw4AAmTZqEa9euYcmSJVi+fLlo3eXLl6NFixaYNWsW+vXrh7Vr11Z4f0SkSiYI/7p1KBGREVu1ahUmT56M1NRUeHp6St0OERkYhh4iMgmCIMDX1xfVq1fH8ePHpW6HiAwQz+khIqNWUFCA/fv34/jx47hy5Qr27dsndUtEZKA40kNERi01NRXe3t5wdHTEmDFjsGDBAqlbIiIDxdBDREREZoFXbxEREZFZYOghIiIisyDpicwnT57EkiVLcP78eaSnp2PPnj3o06dPmet///33WLt2rfIhhm+++SbmzJmDgIAAjd9ToVDg3r17qFq1Km8NT0REZCQEQUBeXh5q1aolesCxNiQNPQUFBfD19cXQoUPxwQcfvHT9kydPomvXrli4cCEcHR2xadMmBAYG4pdffkGzZs00es979+7Bw8PjVVsnIiIiCaSlpeG1114r17YGcyKzTCZ76UiPOm+++SaCgoIQHh6u0fo5OTlwdHREWloaqlWrVo5OiYiISN9yc3Ph4eGB7OxsODg4lGsfRn2fHoVCgby8PDg7O5e5TlFREYqKipTLz56IXK1aNYYeIiIiI/Mqp6YY9YnMS5cuRX5+Pj766KMy14mKioKDg4Pyh1NbRERE5sloQ8/27dsRGRmJXbt2wdXVtcz1wsLCkJOTo/xJS0vTY5dERERkKIxyeis2NhbDhw/Ht99+C39//xeua2NjAxsbGz11RkRERIbK6ELPjh07MHToUMTGxqJnz54V9j5yuRwlJSUVtn8yHNbW1uW+/JGIiIyHpKEnPz8fycnJyuWUlBRcunQJzs7O8PT0RFhYGO7evYuvv/4awNMpreDgYKxatQp+fn7IyMgAAFSuXLncZ3I/TxAEZGRkIDs7Wyf7I8NnYWEBb29vWFtbS90KERFVIEkvWU9ISEDnzp1V6sHBwdi8eTMGDx6M1NRUJCQkAAA6deqEEydOlLm+JnJzc+Hg4ICcnBy1V2+lp6cjOzsbrq6usLOz4w0MTdyzm1VaWVnB09OTx5uIyEC97PtbEwZznx59edEfmlwux82bN+Hq6orq1atL1CHpW05ODu7duwcfHx9YWVlJ3Q4REamhi9DDExn+5dk5PHZ2dhJ3Qvr0bFpLLpdL3AkREVUkhh41OMVhXni8iYjMA0MPERERmQWGHiIiIjILDD0mYvDgwZDJZJDJZLCysoKbmxu6du2KjRs3QqFQaLyfzZs3w9HRseIaJSIikghDjwnp1q0b0tPTkZqaip9++gmdO3fGxIkT8d5776G0tFTq9oiIyAw8fPjQYL9zGHpMiI2NDdzd3VG7dm00b94cM2bMwL59+/DTTz8p72O0fPlyNGnSBFWqVIGHhwfGjBmD/Px8AE/vmzRkyBDk5OQoR43mzJkDANi6dStatmyJqlWrwt3dHf3798f9+/cl+qRERGRoCgsLERkZiejoaIwZ8wP275e6I1UMPS8hCAKKi4sl+dHFLZS6dOkCX19ffP/99wCe3n149erVuHr1KrZs2YJjx45h2rRpAIB27dph5cqVqFatGtLT05Geno4pU6YAeHo5/7x583D58mXs3bsXqampGDx48Cv3R0RExi8pKQlLlixRLicnO2DRIgkbKoPRPXtL30pKShAVFSXJe4eFhenk0QgNGjTA77//DgCYNGmSsu7l5YX58+dj1KhR+Pzzz2FtbQ0HBwfIZDK4u7uL9jF06FDlv9etWxerV69Gq1atkJ+fD3t7+1fukYiIjNPXX3+NlJQU5bKb29t48qQLQkMlbKoMDD1mQBAE5b1ojh49iqioKFy/fh25ubkoLS3FkydPUFhY+MKbMp4/fx5z5szB5cuX8fjxY+XJ0Xfu3EGjRo308jmIiMhwFBQUYOnSpaLayJEj4e7ujlGjJGrqJRh6XsLKygphYWGSvbcuJCUlwdvbG6mpqXjvvfcwevRoLFiwAM7Ozjh9+jSGDRuG4uLiMkNPQUEBAgICEBAQgG3btsHFxQV37txBQEAAiouLddIjEREZjz/++APfffedctnS0hJhYWGwtLSUsKuXY+h5CZlMZtRP3z527BiuXLmCyZMn4/z581AoFFi2bBksLJ6ezrVr1y7R+tbW1iqPY7h+/ToePnyIRYsWwcPDAwDw22+/6ecDEBGRwRAEARs3bsTff/+trHXq1AkdO3aUsCvNMfSYkKKiImRkZEAulyMzMxOHDh1CVFQU3nvvPQwaNAh//PEHSkpKsGbNGgQGBuLMmTNYt26daB9eXl7Iz89HfHw8fH19YWdnB09PT1hbW2PNmjUYNWoU/vjjD8ybN0+iT0lERFLIy8vD8uXLRbXRo0fD1dVVoo60x6u3TMihQ4dQs2ZNeHl5oVu3bjh+/DhWr16Nffv2wdLSEr6+vli+fDkWL16Mxo0bY9u2bSonabdr1w6jRo1CUFAQXFxc8Nlnn8HFxQWbN2/Gt99+i0aNGmHRokUq87hERGS6Ll26JAo8tra2mD17tlEFHgCQCbq4LtqIvOjR9E+ePEFKSgq8vb1ha2srUYekbzzuRETqCYKAL774ApmZmcraf/7zH7zzzjt67+VF39+a4vQWERERqcjJycHKlStFtXHjxqF69erSNKQDDD1EREQkcv78eRw4cEC5bG9vj8mTJysvgjFWDD1EREQE4Ol0VnR0NB49eqSsBQQEoE2bNhJ2pTsMPURERITHjx9j9erVotqECRPg5OQkUUe6x9BDRERk5n755RccOnRIuezs7Ixx48Yp7+ZvKhh6iIiIzJQgCFixYgXy8vKUtZ49e6Jly5YSdlVxGHqIiIjM0MOHDxEdHS2qTZo0CQ4ODhJ1VPEYeoiIiMzMmTNncPToUeWym5sbRo4caXLTWc9j6CEiIjITCoUCS5YswZMnT5S13r17o2nTptI1pUfGfcE96d3gwYPRp08f5XKnTp0wadKkV9qnLvZBREQvlpSUhHnz5okCT0hIiNkEHoAjPSZj8ODB2LJlCwDAysoKnp6eGDRoEGbMmIFKlSruMH///fewsrLSaN2EhAR07twZjx8/hqOjY7n2QURE2ps/fz7kcrlyOTu7NpYvH2by01nPY+gxId26dcOmTZtQVFSEgwcPYuzYsbCyskJYWJhoveLiYlhbW+vkPZ2dnQ1iH0REpKqkpAQLFy4U1e7da4KePT+AmeUdAJzeMik2NjZwd3dHnTp1MHr0aPj7+2P//v3KKakFCxagVq1aqF+/PgAgLS0NH330ERwdHeHs7IzevXsjNTVVuT+5XI6QkBA4OjqievXqmDZtGp5/Pu3zU1NFRUWYPn06PDw8YGNjAx8fH3z11VdITU1F586dAQBOTk6QyWQYPHiw2n08fvwYgwYNgpOTE+zs7NC9e3f8+eefytc3b94MR0dHxMXFoWHDhrC3t0e3bt2Qnp6uXCchIQGtW7dGlSpV4OjoiLfffht//fWXjv6kiYgM3++//64SeEaNGoUvvvgAvXpJ1JTEGHpMWOXKlVFcXAwAiI+Px40bN3DkyBEcOHAAJSUlCAgIQNWqVXHq1CmcOXNGGR6ebbNs2TJs3rwZGzduxOnTp/Ho0SPs2bPnhe85aNAg7NixA6tXr0ZSUhK++OIL2Nvbw8PDA9999x0A4MaNG0hPT8eqVavU7mPw4MH47bffsH//fiQmJkIQBPTo0QMlJSXKdQoLC7F06VJs3boVJ0+exJ07dzBlyhQAQGlpKfr06YOOHTvi999/R2JiIkaMGGF2w7hEZL4iIyNVfl9HRETAzc1Noo4MA6e3TJAgCIiPj0dcXBzGjx+PrKwsVKlSBRs2bFBOa33zzTdQKBTYsGGDMgxs2rQJjo6OSEhIwLvvvouVK1ciLCwMH3zwAQBg3bp1iIuLK/N9b968iV27duHIkSPw9/cHANStW1f5+rNpLFdXV9E5Pf/2559/Yv/+/Thz5gzatWsHANi2bRs8PDywd+9e/Pe//wXwdMh23bp1qFevHoCnT/6dO3cuACA3Nxc5OTl47733lK83bNhQ+z9IIiIjU1xcjKioKFGtSZMmyt/j5o4jPRVo/36gXbun/9SHAwcOwN7eHra2tujevTuCgoIwZ84cAE//o//3eTyXL19GcnIyqlatCnt7e9jb28PZ2RlPnjzBrVu3kJOTg/T0dPj5+Sm3qVSp0gvv0nnp0iVYWlqiY8eO5f4MSUlJqFSpkuh9q1evjvr16yMpKUlZs7OzUwYaAKhZsybu378P4Gm4Gjx4MAICAhAYGIhVq1aJpr6IiEzRb7/9phJ4xo0bx8DzLxzpqUCLFgGJiU//qY/5086dO2Pt2rWwtrZGrVq1RFdtValSRbRufn4+WrRogW3btqnsx8XFpVzvX7ly5XJtVx7PX+0lk8lE5xtt2rQJEyZMwKFDh7Bz507MmjULR44cMZknBRMR/VtkZKRKLSIiQoJODBtHeipQaCjQtu3Tf+pDlSpV4OPjA09Pz5dept68eXP8+eefcHV1hY+Pj+jHwcEBDg4OqFmzJn755RflNqWlpTh//nyZ+2zSpAkUCgVOnDih9vVnI03/vmzyeQ0bNkRpaanofR8+fIgbN26gUaNGL/xMz2vWrBnCwsJw9uxZNG7cGNu3b9dqeyIiQ/fkyROVwNOiRQsGnjIw9FSgXr2As2f1M8qjrQEDBqBGjRro3bs3Tp06hZSUFCQkJGDChAn4+++/AQATJ07EokWLsHfvXly/fh1jxoxBdnZ2mfv08vJCcHAwhg4dir179yr3uWvXLgBAnTp1IJPJcODAAWRlZSE/P19lH6+//jp69+6NTz75BKdPn8bly5fx8ccfo3bt2ujdu7dGny0lJQVhYWFITEzEX3/9hcOHD+PPP//keT1EZFJ+/vlnLF68WFSbOHEi3nvvPYk6MnwMPWbKzs4OJ0+ehKenJz744AM0bNgQw4YNw5MnT1CtWjUAwKeffoqBAwciODgYbdu2RdWqVfH++++/cL9r167Fhx9+iDFjxqBBgwb45JNPUFBQAACoXbs2IiMjERoaCjc3N4wbN07tPjZt2oQWLVrgvffeQ9u2bSEIAg4ePKjxDQzt7Oxw/fp19O3bF2+88QZGjBiBsWPHYuTIkVr8CRERGa7IyEiVC0siIiLKvEiEnpIJz994xcTl5ubCwcEBOTk5yi/3Z548eYKUlBR4e3vD1tZWog5J33jcichYFBYWYsmSJaJa27Zt8e6770rUkf686PtbUzyRmYiIyAicPHkSx48fF9UmT55c7gBgjhh6iIiIDByvztINhh4iIiIDlZ+fj2XLlolqHTt2RKdOnaRpyMgx9BARERmgo0eP4syZM6LalClTVO67Rppj6FHDzM7tNns83kRkaDidVTEYev7l2SXRhYWFer27MEnr2QNWLS0tJe6EiMxdTk4OVq5cKar5+/vj7bfflqYhE8PQ8y+WlpZwdHRUPsPJzs6OT+Y2cQqFAllZWbCzs3vpXayJiCrSwYMH8euvv4pq06ZN41/CdYi/5Z/j7u4OAMrgQ6bPwsICnp6eDLhEJBlOZ+kHQ89zZDIZatasCVdXV5SUlEjdDumBtbU1LCx4c3Ii0r9Hjx5hzZo1olqPHj3QqlUriToybQw9ZbC0tOQ5HkREVGH27t2Ly5cvi2qhoaGwsbGRqCPTx9BDRESkZ5zOkgZDDxERkZ5kZWXh888/F9V69eqFZs2aSdSReWHoISIi0oNdu3YhKSlJVJsxY4bydilU8Rh6iIiIKpAgCJg7d65KndNZ+sfQQ0REVEHS09Px5Zdfimp9+/ZF48aNJerIvDH0EBERVYCtW7fi9u3botrMmTN5I1QJ8U+eiIhIh9RNZ9nY2CA0NFSijugZhh4iIiId+fvvv/HVV1+Jav/73/9Qv359iTqif2PoISIi0oENGzbg7t27otqsWbN4o1sDwtBDRET0CtRNZzk4OGDSpEnSNERlYughIiIqp9TUVGzZskVU+/jjj1GvXj2JOqIXYeghIiIqh5iYGDx48EBUmz17Nh9gbMAYeoiIiLSgUCgwb948Uc3V1RWjR4+WqCPSFEMPERGRhpKTk7Ft2zZRbciQIfD09JSoI9IGQw8REZEGli1bhvz8fFEtPDwcMplMoo5IWww9RERELyCXyzF//nxRzdPTE0OGDJGoIyovSc+2OnnyJAIDA1GrVi3IZDLs3bv3pdskJCSgefPmsLGxgY+PDzZv3lzhfRIRkXk6deqUSuAZPnw4A4+RkjT0FBQUwNfXFzExMRqtn5KSgp49e6Jz5864dOkSJk2ahOHDhyMuLq6COyUiInMTGRmJY8eOiWrh4eGoXbu2RB3Rq5J0eqt79+7o3r27xuuvW7cO3t7eWLZsGQCgYcOGOH36NFasWIGAgICKapOIiMxIcXExoqKiVOrNmkWAp+8YN6M6pycxMRH+/v6iWkBAwAvvellUVISioiLlcm5ubkW1R0RERu7o0aM4c+aMqMabDZoOowo9GRkZcHNzE9Xc3NyQm5uLf/75B5UrV1bZJioqCpGRkfpqkYiIjJS674qIiAgJOqGKYvK3jQwLC0NOTo7yJy0tTeqWiIjIgPzzzz8qgcfCwoKBxwQZ1UiPu7s7MjMzRbXMzExUq1ZN7SgPANjY2MDGxkYf7RERkZE5cOAAzp8/L6rxZoOmy6hCT9u2bXHw4EFR7ciRI2jbtq1EHRERkbFSN53VrFkEmHdMl6ShJz8/H8nJycrllJQUXLp0Cc7OzvD09ERYWBju3r2Lr7/+GgAwatQoREdHY9q0aRg6dCiOHTuGXbt24ccff5TqIxARkZHJz89XXgX8jL29PT799FOJOiJ9kTT0/Pbbb+jcubNyOSQkBAAQHByMzZs3Iz09HXfu3FG+7u3tjR9//BGTJ0/GqlWr8Nprr2HDhg28XJ2IiDTy3Xff4Y8//hDVRowYgZo1a0rUEemTTBAEQeom9Ck3NxcODg7IyclBtWrVpG6HiIj0hFdnGTddfH8b1Tk9RERE2srJycHKlStFNRcXF4wZM0aahkgyDD1ERGSytm3bJjp3FADGjBkDFxcXiToiKTH0EBGRSeJ0Fj2PoYeIiEzKo0ePsGbNGlHN09OTT0Ynhh4iIjIdGzZswN27d0W1CRMmwMnJSaKOyJAw9BARkUngdBa9DEMPEREZtfv372Pt2rWi2htvvIF+/fpJ1BEZKoYeIiIyWmvWrMGjR49EtcmTJ/M+bKQWQw8RERklTmeRthh6iIjIqNy6dQvffPONqPbWW2/h/fffl6gjMhYMPUREZDTUje4cOzYFERFVJOiGjA1DDxERGQV1gScuLgKhoRI0Q0aJoYeIiAxaUlISdu3aJao9u9kgT+EhbTD0EBGRwVI3ujNlyhRUqcLpLNIeQw8RERkcQRAwd+5clTqvzqJXwdBDREQG5fLly9i7d6+o1qBBAwQFBUnTEJkMhh4iIjIY6qazpk+fDltbWwm6IVPD0ENERJLjdBbpA0MPERFJ6pdffsGhQ4dEtaZNm6J3794SdUSmiqGHiIgko246a8aMGbCyspKgGzJ1DD1ERKR3CoUC8+bNU6lzOosqEkMPERHp1cmTJ3H8+HFRrW3btnj33Xcl6ojMBUMPERHpjbrprFmzZsHS0lKCbsjcMPQQEVGFk8vlmD9/vkqd01mkTww9RERUoeLi4vDzzz+Lap07d0aHDh0k6ojMFUMPERFVGHXTWbNnz4aFhYUE3ZC5Y+ghIiKdKykpwcKFC1XqnM4iKTH0EBGRTu3btw+XLl0S1bp3747WrVtL0xDR/8fQQ0REOqNuOis8PBwymUyCbojEGHqIiOiVPXnyBIsXL1apczqLDAlDDxERvZLY2FjcuHFDVOvTpw98fX0l6ohIPYYeIiIqN05nkTFh6CEiIq0VFBRg6dKlKnVOZ5EhY+ghIiKtbNy4EWlpaaJaUFAQGjRoIFFHRJph6CEiIo2pm87i6A4ZC4YeIiJ6qdzcXKxYsUKlzsBDxoShh4iIXig6OhoPHz4U1QYOHIi6detK1BFR+TD0EBFRmTidRaaEoYeIiFQ8fPgQ0dHRKnUGHjJmDD1ERCSyePFiPHnyRFQbOnQoPDw8JOqISDcYeoiISInTWWTKGHqIiAhpaWnYuHGjSp2Bh0wJQw8RkZlTN7pz9uxIxMW5S9ANUcWxkLoBIiKSjrrAExcXgbFjGXjI9HCkh4jIDN26dQvffPONSj0iIgKc0SJTxdBDRGRm1I3ujBo1Cm5ubhJ0Q6Q/DD1ERGaEV2eROWPoISIyA9euXcO3336rUmfgIXPC0ENEZOLUje6MHz8ezs7OEnRDJB2GHiIiE8bpLKL/w9BDRGSCLly4gB9++EFUs7S0xKxZsyTqiEh6DD1ERCZG3ejO5MmTUa1aNQm6ITIcDD1ERCZCEATMnTtXpc7pLKKnGHqIiEzA4cOHkZiYKKo5Ojpi4sSJEnVEZHgYeoiIjJy66axjx6bixAk7CbohMlwMPURERqqs6ay4uAiEhkrQEJGB0zr0WFpaIj09Ha6urqL6w4cP4erqCrlcrrPmiIhIvX379uHSpUuimo2NDUJDQ/nsLKIyaB16BEFQWy8qKoK1tfUrN0RERC+mbjpr+vTpsLW1laAbIuOhcehZvXo1AEAmk2HDhg2wt7dXviaXy3Hy5Ek0aNBA9x0SEREAQKFQYN68eSp1Xp1FpBmNQ8+KFSsAPB3pWbduHSwtLZWvWVtbw8vLC+vWrdN9h0REhG3btiE5OVlUc3FxwZgxYyTqiMj4aBx6UlJSAACdO3fG999/DycnpwprioiI/o+66awZM2bAyspKgm6IjJfW5/QcP368IvogIqLnlJaWYsGCBSp1TmcRlY/WoWfo0KEvfH3jxo1a7S8mJgZLlixBRkYGfH19sWbNGrRu3brM9VeuXIm1a9fizp07qFGjBj788ENERUXxBD4iMinr1q1DZmamqObt7Y1BgwZJ1BGR8dM69Dx+/Fi0XFJSgj/++APZ2dno0qWLVvvauXMnQkJCsG7dOvj5+WHlypUICAjAjRs3VC6JB4Dt27cjNDQUGzduRLt27XDz5k0MHjwYMpkMy5cv1/ajEBEZJHXTWbNmzRKdS0lE2pMJZV2DrgWFQoHRo0ejXr16mDZtmsbb+fn5oVWrVoiOjlbux8PDA+PHj0eomjtrjRs3DklJSYiPj1fWPv30U/zyyy84ffq0Ru+Zm5sLBwcH5OTk8OF7RGRQioqKsGjRIpU6p7OIdPP9baGLRiwsLBASEqK8wksTxcXFOH/+PPz9/UX78ff3V3l+zDPt2rXD+fPnce7cOQDA7du3cfDgQfTo0aPM9ykqKkJubq7oh4jI0CxdulQl8DRp0oSBh0iHdPYYilu3bqG0tFTj9R88eAC5XA43NzdR3c3NDdevX1e7Tf/+/fHgwQO88847EAQBpaWlGDVqFGbMmFHm+0RFRakdKiYiMhTqfkeFh4dDJpNJ0A2R6dI69ISEhIiWBUFAeno6fvzxRwQHB+usMXUSEhKwcOFCfP755/Dz80NycjImTpyIefPmYfbs2Wq3CQsLE/Wcm5sLDw+PCu2TiEgTBQUFWLp0qUqdoztEFUPr0HPx4kXRsoWFBVxcXLBs2bKXXtn1bzVq1IClpaXK1QmZmZlwd3dXu83s2bMxcOBADB8+HMDTod+CggKMGDECM2fOhIWF6mydjY0NbGxsNO6LiEgf1I3u+Pn5oVu3bhJ0Q2QeJLtPj7W1NVq0aIH4+Hj06dMHwNMTmePj4zFu3Di12xQWFqoEm2dXM+jgfGwiIr3gdBaRNMp9Ts/9+/dx48YNAED9+vXVXmL+MiEhIQgODkbLli3RunVrrFy5EgUFBRgyZAgAYNCgQahduzaioqIAAIGBgVi+fDmaNWumnN6aPXs2AgMDeSknERm8nJwcrFy5UqXO6Swi/dA69OTm5mLs2LHYsWMHFAoFgKejLUFBQYiJiYGDg4PG+woKCkJWVhbCw8ORkZGBpk2b4tChQ8qTm+/cuSMa2Zk1axZkMhlmzZqFu3fvwsXFBYGBgWrvWEpEZEjUje507twZHTp0kKAbIvOk9X16goKCcPHiRaxZswZt27YFACQmJmLixIlo2rQpYmNjK6RRXeF9eohI39QFHo7uEGlHF9/fWoeeKlWqIC4uDu+8846ofurUKXTr1g0FBQXlakRfGHqISF8ePHiAmJgYlToDD5H2dPH9rfX0VvXq1dVOYTk4OPDJ60RE/5+60Z0ePXqgVatWEnRDREA57sg8a9YshISEICMjQ1nLyMjA1KlTy7xXDhGROSlrOouBh0haWk9vNWvWDMnJySgqKoKnpyeApycc29jY4PXXXxete+HCBd11qiOc3iKiinLv3j2sX79epc7pLKJXJ8n0Vu/evXkvCSKi56gb3enbty8aN24sQTdEpI5OnrJuTDjSQ0S6pi7wxMVF4OxZCZohMlGSPGW9bt26ePjwoUo9OzsbdevWLVcTRETGKCUlpczAExoqQUNE9EJaT2+lpqZCLper1IuKivD333/rpCkiIkOnLuwMGDAAPj4+4Ck8RIZJ49Czf/9+5b/HxcWJLluXy+WIj4+Ht7e3brsjIjJA6gJPs2YR8PGRoBki0pjGoefZQ0FlMhmCg4NFr1lZWcHLywvLli3TaXNERIYkKSkJu3btUqnz6iwi46Bx6Hn2nC1vb2/8+uuvqFGjRoU1RURkaNSN7gwdOhQeHh4SdENE5aH1OT0pKSkV0QcRkcHis7OITIPWoWfu3LkvfD08PLzczRARGZKLFy+Kzmd8hoGHyDhpHXr27NkjWi4pKUFKSgoqVaqEevXqMfQQkUlQN7ozatQouLm5SdANEemC1qHn4sWLKrXc3FwMHjwY77//vk6aIiKSEqeziEyTzu7IfOXKFQQGBiI1NVUXu6swvCMzEZXl7NmzOHLkiEqdgYdIepI8e6ssOTk5yMnJ0dXuiIj0St3ozoQJE+Dk5CRBN0RUEbQOPatXrxYtC4KA9PR0bN26Fd27d9dZY0RE+sLpLCLzoHXoWbFihWjZwsICLi4uCA4ORlhYmM4aIyKqaEePHsWZM2dU6gw8RKaJ9+khIrOkbnQnJCQEVatWlaAbItKHcp3Tk52djeTkZACAj48PHB0dddkTEVGFEQRB7f3GOLpDZPq0Cj2pqakYO3Ys4uLi8OyiL5lMhm7duiE6OhpeXl4V0SMRkU7s379f5bYbVlZWmDFjhkQdEZE+aRx60tLS0KZNG1hZWWHevHlo2LAhAODatWtYu3Yt2rZti19//RWvvfZahTVLRFRe6qazpk2bhsqVK0vQDRFJQeP79AwbNgzJycmIi4uDra2t6LV//vkH3bp1w+uvv44NGzZUSKO6wvv0EJkXhUKBefPmqdQ5nUVkXPR6n55Dhw5h586dKoEHACpXrox58+bhf//7X7maICKqCD/++CN+++03US0r63W8+25/iToiIilpHHoePHjwwnN26tati0ePHumiJyKiV6ZuOmvmzJmoVEln92QlIiNjoemKNWvWxLVr18p8/Y8//oC7u7tOmiIiKi+5XF7mzQYZeIjMm8a/Afr06YMpU6YgPj4eLi4uotfu37+P6dOno0+fPrruj4hIY7t378bVq1dFNV9fX/5uIiIAWpzI/PjxY/j5+SEjIwMff/wxGjRoAEEQkJSUhO3bt8Pd3R0///wznJ2dK7rnV8ITmYlMk7rRnVmzZsHS0lKCbohI1/R6IrOTkxN++eUXzJgxA7GxscjOzgYAODo6on///li4cKHBBx4iMj3FxcWIiopSqfPqLCJ6nsYjPf8mCAKysrIAAC4uLpDJZDpvrKJwpIfIdGzZsgWpqamiWps2bRAQECBNQ0RUYfQ60vNvMpkMrq6u5XpDIiJdUDedFR4eblR/CSMi/eKlDERkVP755x989tlnKnVOZxHRyzD0EJHRiImJwYMHD0S1Ll26oH379hJ1RETGhKGHiIwCp7OI6FUx9BCRQcvPz8eyZctU6pzOIiJtaRR6Vq9erfEOJ0yYUO5miIj+bfHixXjy5Imo1qNHD7Rq1UqijojImGl0ybq3t7dmO5PJcPv27VduqiLxknUi41DWoySIyDzp7ZL1lJSUcu2ciEhb2dnZWLVqlUqdgYeIXlW5z+kpLi5GSkoK6tWrx4f4EZFOqBvd+eCDD9CkSRMJuiEiU6PxU9afKSwsxLBhw2BnZ4c333wTd+7cAQCMHz8eixYt0nmDRGQeyprOYuAhIl3ROvSEhYXh8uXLSEhIgK2trbLu7++PnTt36rQ5IjJ9WVlZPH+HiPRC63mpvXv3YufOnWjTpo3o/hhvvvkmbt26pdPmiMi0qQs7/fr1wxtvvCFBN0Rk6rQOPVlZWWqfu1VQUMCbhBGRxji6Q0T6pvX0VsuWLfHjjz8ql58FnQ0bNqBt27a664yITFJaWhoDDxFJQuuRnoULF6J79+64du0aSktLsWrVKly7dg1nz57FiRMnKqJHIjIR6sLOr78OxIEDdSXohojMjdYjPe+88w4uXbqE0tJSNGnSBIcPH4arqysSExPRokWLiuiRiEyAusATFxeBESMYeIhIPzS6I7Mp4R2ZifTrzp072LRpk0qd01lEpA293ZE5NzdX4x0ySBDRM+pGd4YNG4bXXntNgm6IyNxpFHocHR01vjJLLpe/UkNEZBrUBZ5mzSLAvENEUtEo9Bw/flz576mpqQgNDcXgwYOVV2slJiZiy5YtiIqKqpguichoJCcnY9u2bSp1TmcRkdS0PqfnP//5D4YPH45+/fqJ6tu3b8eXX36JhIQEXfanczynh6jiqBvdGT9+PJydnSXohohMiS6+v7W+eisxMREtW7ZUqbds2RLnzp0rVxNEZPzKuvcOAw8RGQqtQ4+HhwfWr1+vUt+wYQM8PDx00hQRGY9r166pBJ6qVatyOouIDI7WNydcsWIF+vbti59++gl+fn4AgHPnzuHPP//Ed999p/MGichwqRvdmTx5MqeOicggaT3S06NHD/z5558IDAzEo0eP8OjRIwQGBuLmzZvo0aNHRfRIRAaorOksBh4iMlS8OSERaeXixYvYv3+/qObu7o6RI0dK1BERmQO93ZzwednZ2fjqq6+QlJQEAHjzzTcxdOhQODg4lKsJIjIO6kZ3pk6dCjs7Owm6ISLSjtbTW7/99hvq1auHFStWKKe3li9fjnr16uHChQsV0SMRSUwQhDKnsxh4iMhYaD291b59e/j4+GD9+vWoVOnpQFFpaSmGDx+O27dv4+TJkxXSqK5weotIO4mJiTh8+LCoVrduXQwcOFCijojIHOni+1vr0FO5cmVcvHgRDRo0ENWvXbuGli1borCwsFyN6AtDD5Hm1I3uhIaGwsbGRoJuiMicSXJzwmrVquHOnTsq9bS0NFStWlXrBmJiYuDl5QVbW1v4+fm99AaH2dnZGDt2LGrWrAkbGxu88cYbOHjwoNbvS0Rle9F0FgMPERkrrU9kDgoKwrBhw7B06VK0a9cOAHDmzBlMnTpV5dEUL7Nz506EhIRg3bp18PPzw8qVKxEQEIAbN27A1dVVZf3i4mJ07doVrq6u2L17N2rXro2//voLjo6O2n4MIirDsWPHcOrUKVGtcePG6Nu3r0QdERHphtbTW8XFxZg6dSrWrVuH0tJSAICVlRVGjx6NRYsWafW3QD8/P7Rq1QrR0dEAAIVCAQ8PD4wfPx6hoaEq669btw5LlizB9evXYWVlpU3bSpzeIiqbutGdGTNmlPv/NyIiXZHknJ5nCgsLcevWLQBAvXr1tL6Co7i4GHZ2dti9ezf69OmjrAcHByM7Oxv79u1T2aZHjx5wdnaGnZ0d9u3bBxcXF/Tv3x/Tp0+HpaWlRu/L0EOkSi6XY/78+Sp1PkqCiAyFZPfpAQA7Ozs0adKkvJvjwYMHkMvlcHNzE9Xd3Nxw/fp1tdvcvn0bx44dw4ABA3Dw4EEkJydjzJgxKCkpKfOXc1FREYqKipTLubm55e6ZyBT9+OOP+O2330S1Vq1a8Q7rRGRyNA49Q4cO1Wi9jRs3lruZl1EoFHB1dcWXX34JS0tLtGjRAnfv3sWSJUvKDD1RUVFqh+yJSP101qxZszQeOSUiMiYah57NmzejTp06aNasGXTx5IoaNWrA0tISmZmZonpmZibc3d3VblOzZk1YWVmJfiE3bNgQGRkZKC4uhrW1tco2YWFhCAkJUS7n5ubyafBk9kpKSrBw4UKVOqeziMiUaRx6Ro8ejR07diAlJQVDhgzBxx9/DGdn53K/sbW1NVq0aIH4+HjlOT0KhQLx8fEYN26c2m3efvttbN++HQqFAhYWT6+2v3nzJmrWrKk28ACAjY0NL7El+pfdu3fj6tWrolqHDh3QuXNniToiItIPje/TExMTg/T0dEybNg0//PADPDw88NFHHyEuLq7cIz8hISFYv349tmzZgqSkJIwePRoFBQUYMmQIAGDQoEEICwtTrj969Gg8evQIEydOxM2bN/Hjjz9i4cKFGDt2bLnen8jcREZGqgSe8PBwBh4iMgtanchsY2ODfv36oV+/fvjrr7+wefNmjBkzBqWlpbh69Srs7e21evOgoCBkZWUhPDwcGRkZaNq0KQ4dOqQ8ufnOnTvKER0A8PDwQFxcHCZPnoy33noLtWvXxsSJEzF9+nSt3pfI3BQVFWHRokUqdU5nEZE5Kfcl62lpadi0aRM2b96M4uJiXL9+XevQIwVesk7m5uuvv0ZKSoqo9u6776Jt27YSdUREpD29P4aiqKgIO3bsQNeuXfHGG2/gypUriI6Oxp07d4wi8BCZm8jISJXAEx4ezsBDRGZJ4+mtMWPGIDY2Fh4eHhg6dCh27NiBGjVqVGRvRFROBQUFWLp0qUqd01lEZM40nt6ysLCAp6cnmjVrBplMVuZ633//vc6aqwic3iJTt3btWty/f19U69WrF5o1ayZRR0REr06vd2QeNGjQC8MOEUmvrCejExGRljcnJCLDlJubixUrVqjUGXiIiP5PuZ+9RUSGYenSpSgoKBDVPvroIzRs2FCijoiIDBNDD5ER43QWEZHmGHqIjNCjR4+wZs0alToDDxFR2Rh6iIyMutGdjz/+GPXq1ZOgGyIi48HQQ2REOJ1FRFR+DD1ERiAzMxPr1q1TqTPwEBFpjqGHyMCpG90ZOnQoPDw8JOiGiMh4MfQQGTBOZxER6Q5DD5EBunXrFr755huVOgMPEVH5MfQQGRh1ozsjR46Eu7u7BN0QEZkOC6kbIKL/oy7wxMVFMPAQEekAR3qIDMC1a9fw7bffqtTj4iIQGipBQ0REJoihh0hi6kZ3Ro0aBTc3N/AUHiIi3WHoIZIQr84iItIfhh4iCVy4cAE//PCDSp2Bh4io4jD0EOmZutGdCRMmwMnJSYJuiIjMB0MPkR5xOouISDoMPUR6cObMGRw9elSlzsBDRKQ/DD1EFUzd6E5ISAiqVq0qQTdEROaLoYeoggiCgLlz56rUObpDRCQNhh6iCnD06FGcOXNGVKtSpQqmTJkiUUdERMTQQ6Rj6qazpk2bhsqVK0vQDRERPcPQQ6QjCoUC8+bNU6lzOouIyDAw9BDpwP79+3Hx4kVRzd3dHSNHjpSoIyIieh5DD9ErUjedFRYWBmtrawm6ISKisjD0EJWTXC7H/PnzVeqcziIiMkwMPUTlsGPHDty8eVNU8/HxwYABAyTqiIiIXoahh0hL6qazZs2aBUtLSwm6ISIiTTH0EGmopKQECxcuVKlzOouIyDgw9BBpYP369bh3756o9tZbb+H999+XqCMiItIWQw/RS6ibzmradDZ697aQoBsiIiovhh6iMjx58gSLFy9WqXM6i4jIODH0EKmxYsUK5Obmimpt2rRBQECARB0REdGrYugheo666azw8HDIZDIJuiEiIl1h6CH6//Lz87Fs2TKVOqeziIhMA0MPEYC5c+dCEARRrUuXLmjfvr1EHRERka4x9JDZUzedxdEdIiLTw9BDZis7OxurVq1SqTPwEBGZJoYeMkvqRnd69uyJli1bStANERHpA0MPmR1OZxERmSeGHjIbWVlZ+Pzzz1XqDDxEROaBoYfMgrrRnb59+6Jx48YSdENERFJg6CGTx+ksIiICGHrIhN29excbNmxQqTPwEBGZJ4YeMknqRnf69++P119/XYJuiIjIEDD0kMnhdBYREanD0EMm4/bt29i6datKnYGHiIgAhh4yEepGd4YMGQJPT08JuiEiIkPE0ENGj9NZRESkCYYeMlpJSUnYtWuXSp2Bh4iI1GHoIaOkbnRn5MiRcHd3l6AbIiIyBgw9ZHQ4nUVEROXB0ENG4+LFi9i/f79KnYGHiIg0wdBDRkHd6M748ePh7OwsQTdERGSMGHrI4HE6i4iIdIGhhwxWYmIiDh8+rFJn4CEiovJg6CGDpG50Z/LkyahWrZoE3RARkSmwkLoBAIiJiYGXlxdsbW3h5+eHc+fOabRdbGwsZDIZ+vTpU7ENkt4IglDmdBYDDxERvQrJQ8/OnTsREhKCiIgIXLhwAb6+vggICMD9+/dfuF1qaiqmTJmC9u3b66lTqmi//PIL5s6dK6oVF1fmdBYREemE5KFn+fLl+OSTTzBkyBA0atQI69atg52dHTZu3FjmNnK5HAMGDEBkZCTq1q2rx26pokRGRuLQoUOiWnz8dPj5TZOoIyIiMjWShp7i4mKcP38e/v7+ypqFhQX8/f2RmJhY5nZz586Fq6srhg0b9tL3KCoqQm5uruiHDMeLprNOnrRFr14SNEVERCZJ0hOZHzx4ALlcDjc3N1Hdzc0N169fV7vN6dOn8dVXX+HSpUsavUdUVJTaL1WS3okTJ5CQkCCqNWzYEB999JE0DRERkUkzqqu38vLyMHDgQKxfvx41atTQaJuwsDCEhIQol3Nzc+Hh4VFRLZKG1AXRGTNmwMrKSoJuiIjIHEgaemrUqAFLS0tkZmaK6pmZmWofHHnr1i2kpqYiMDBQWVMoFACASpUq4caNG6hXr55oGxsbG9jY2FRA91QeCoUC8+bNU6nzZGUiIqpokoYea2trtGjRAvHx8crLzhUKBeLj4zFu3DiV9Rs0aIArV66IarNmzUJeXh5WrVrFERwDd+jQIfzyyy+iWvPmzUUhloiIqKJIPr0VEhKC4OBgtGzZEq1bt8bKlStRUFCAIUOGAAAGDRqE2rVrIyoqCra2tmjcuLFoe0dHRwBQqZNhUTedNWvWLFhaWkrQDRERmSPJQ09QUBCysrIQHh6OjIwMNG3aFIcOHVKe3Hznzh1YWEh+ZT2Vk1wux/z581XqnM4iIiJ9kwmCIEjdhD7l5ubCwcEBOTk5vMNvBbty5Qq+//57Ue3IkR6YNq0VL0UnIiKt6OL7W/KRHjJN6qaz4uLCERoqY+AhIiJJMPSQTpWWlmLBggWimrW1NcLCwsAZLSIikhJDD+lMUlISdu3aJaoNGjQI3t7eEnVERET0fxh6SCcWLFiA0tJSUa1p03B4e8sk6oiIiEiMoYdeSUlJCRYuXCiqvf766+jfv79EHREREanH0EPl9vvvv2PPnj2i2qhRo1SepUZERGQIGHqoXMp6MjoREZGhYughrRQXFyMqKkpUa9y4Mfr27StRR0RERJph6CGNnT9/HgcOHBDVxo4dq/ET74mIiKTE0EMa4XQWEREZO4YeeqEnT55g8eLFolqzZs3Qi7dVJiIiI8PQQ2X6+eefERcXJ6pNmDABTk5OEnVERERUfgw9pBans4iIyNQw9JBIYWEhlixZIqq1adMGAQEBEnVERESkGww9pHTq1CkcO3ZMVJs8eTKqVasmUUdERES6w9BDADidRUREpo+hx8ypuzqrQ4cO6Ny5s0QdERERVQyGHjN2+/ZtbN26VVT79NNPYW9vL1FHREREFcdC6gZIGt99951K4ImLi2DgISIik8WRHjOjbjrr9deHIDraE6GhEjVFRESkBww9ZuTPP//E9u3bRbUZM2bAysoK/ftL1BQREZGeMPSYidjYWNy4cUO53Lp1a3Tv3l3CjoiIiPSLocfE/fPPP/jss89EteHDh6N27doSdURERCQNhh4Tdv36dezcuVNUmzlzJipV4mEnIiLzw28/E7V161bcvn1budyuXTt07dpVwo6IiIikxdBjYgoKCrB06VJRbcSIEahZs6ZEHRERERkGhh4TcvXqVezevVu5LJPJMHPmTFhaWkrYFRERkWFg6DEBgiBg06ZNSEtLU9Y6duyITp06SdcUERGRgWHoMXL5+flYtmyZqDZ69Gi4urpK1BEREZFhYugxYpcvX8bevXuVy9bW1pg+fTosLPh0ESIioucx9BghQRCwfv16pKenK2tdunRB+/btJeyKiIjIsDH0GJnc3FysWLFCVBs7dixq1KghUUdERETGgaHHiFy4cAE//PCDcrlKlSoICQnhdBYREZEGGHqMgCAI+Pzzz/HgwQNl7d1330Xbtm0l7IqIiMi4MPQYuOzsbKxatUpUGz9+PJydnSXqiIiIyDgx9Biwc+fO4aefflIuOzo6YsKECZDJZBJ2RUREZJwYegyQIAhYuXIlcnNzlbUePXqgVatWEnZFRERk3Bh6DMyjR4+wZs0aUW3ixIlwdHSUpiEiIiITwdBjQM6ePYsjR44ol11cXDB69GhOZxEREekAQ48BUCgUWLZsGQoLC5W1Xr16oVmzZhJ2RUREZFoYeiSWlZWFzz//XFSbPHkyqlWrJlFHREREpomhR0KnTp3CsWPHlMu1atXC8OHDOZ1FRERUARh6JKBQKLBo0SKUlJQoa++//z7eeustCbsiIiIybQw9epaZmYl169aJap9++ins7e0l6oiIiMg8MPTo0bFjx3Dq1Cnlcp06dRAcHMzpLCIiIj1g6NEDuVyO+fPni2r//e9/0ahRI4k6IiIiMj8MPRUsPT0dX375pag2depU2NnZSdQRERGReWLoqUCHDx9GYmKicrlevXr4+OOPJeyIiIjIfDH0VIDS0lIsWLBAVAsKCkKDBg0k6oiIiIgYenTs77//xldffSWqTZs2DZUrV5aoIyIiIgIYenTqp59+wrlz55TLDRo0QFBQkIQdERER0TMMPTqSl5cnCjwDBgyAj4+PhB0RERHRv1lI3YCpqFy5MjIyGiEvzx7x8dMZeIiIiAwMQ4+OVKpUCd27/xdnz36KKVNspW6HiIiInsPpLR3q1evpDxERERkejvQQERGRWWDoISIiIrPA0ENERERmgaGHiIiIzAJDDxEREZkFhh4iIiIyCww9REREZBYMIvTExMTAy8sLtra28PPzEz3O4Xnr169H+/bt4eTkBCcnJ/j7+79wfSIiIiLAAELPzp07ERISgoiICFy4cAG+vr4ICAjA/fv31a6fkJCAfv364fjx40hMTISHhwfeffdd3L17V8+dExERkTGRCYIgSNmAn58fWrVqhejoaACAQqGAh4cHxo8fj9DQ0JduL5fL4eTkhOjoaAwaNOil6+fm5sLBwQE5OTmoVq3aK/dPREREFU8X39+SjvQUFxfj/Pnz8Pf3V9YsLCzg7++PxMREjfZRWFiIkpISODs7q329qKgIubm5oh8iIiIyP5KGngcPHkAul8PNzU1Ud3NzQ0ZGhkb7mD59OmrVqiUKTv8WFRUFBwcH5Y+Hh8cr901ERETGR/Jzel7FokWLEBsbiz179sDWVv2TzcPCwpCTk6P8SUtL03OXREREZAgkfcp6jRo1YGlpiczMTFE9MzMT7u7uL9x26dKlWLRoEY4ePYq33nqrzPVsbGxgY2OjXH52ChOnuYiIiIzHs+/tVzkVWdLQY21tjRYtWiA+Ph59+vQB8PRE5vj4eIwbN67M7T777DMsWLAAcXFxaNmypVbvmZeXBwCc5iIiIjJCeXl5cHBwKNe2koYeAAgJCUFwcDBatmyJ1q1bY+XKlSgoKMCQIUMAAIMGDULt2rURFRUFAFi8eDHCw8Oxfft2eHl5Kc/9sbe3h729/Uvfr1atWkhLS0PVqlUhk8mQm5sLDw8PpKWl8WouifAYGAYeB8PA4yA9HgPD8PxxEAQBeXl5qFWrVrn3KXnoCQoKQlZWFsLDw5GRkYGmTZvi0KFDypOb79y5AwuL/zv1aO3atSguLsaHH34o2k9ERATmzJnz0vezsLDAa6+9plKvVq0a/+OWGI+BYeBxMAw8DtLjMTAM/z4O5R3heUby0AMA48aNK3M6KyEhQbScmppa8Q0RERGRyTHqq7eIiIiINGX2ocfGxgYRERGiK7xIv3gMDAOPg2HgcZAej4FhqIjjIPljKIiIiIj0wexHeoiIiMg8MPQQERGRWWDoISIiIrPA0ENERERmwSxCT0xMDLy8vGBraws/Pz+cO3euzHXXr1+P9u3bw8nJCU5OTvD393/h+qQZbY7Bv8XGxkImkykfU0KvRtvjkJ2djbFjx6JmzZqwsbHBG2+8gYMHD+qpW9Ok7TFYuXIl6tevj8qVK8PDwwOTJ0/GkydP9NStaTp58iQCAwNRq1YtyGQy7N2796XbJCQkoHnz5rCxsYGPjw82b95c4X2aMm2Pwffff4+uXbvCxcUF1apVQ9u2bREXF6f1+5p86Nm5cydCQkIQERGBCxcuwNfXFwEBAbh//77a9RMSEtCvXz8cP34ciYmJ8PDwwLvvvou7d+/quXPToe0xeCY1NRVTpkxB+/bt9dSpadP2OBQXF6Nr165ITU3F7t27cePGDaxfvx61a9fWc+emQ9tjsH37doSGhiIiIgJJSUn46quvsHPnTsyYMUPPnZuWgoIC+Pr6IiYmRqP1U1JS0LNnT3Tu3BmXLl3CpEmTMHz48HJ96dJT2h6DkydPomvXrjh48CDOnz+Pzp07IzAwEBcvXtTujQUT17p1a2Hs2LHKZblcLtSqVUuIiorSaPvS0lKhatWqwpYtWyqqRZNXnmNQWloqtGvXTtiwYYMQHBws9O7dWw+dmjZtj8PatWuFunXrCsXFxfpq0eRpewzGjh0rdOnSRVQLCQkR3n777Qrt05wAEPbs2fPCdaZNmya8+eabolpQUJAQEBBQgZ2ZD02OgTqNGjUSIiMjtdrGpEd6iouLcf78efj7+ytrFhYW8Pf3R2Jiokb7KCwsRElJCZydnSuqTZNW3mMwd+5cuLq6YtiwYfpo0+SV5zjs378fbdu2xdixY+Hm5obGjRtj4cKFkMvl+mrbpJTnGLRr1w7nz59XToHdvn0bBw8eRI8ePfTSMz2VmJgoOm4AEBAQoPH3COmeQqFAXl6e1t/NBvHsrYry4MEDyOVy5cNLn3Fzc8P169c12sf06dNRq1Ytlf/gSTPlOQanT5/GV199hUuXLumhQ/NQnuNw+/ZtHDt2DAMGDMDBgweRnJyMMWPGoKSkBBEREfpo26SU5xj0798fDx48wDvvvANBEFBaWopRo0ZxekvPMjIy1B633Nxc/PPPP6hcubJEnZmvpUuXIj8/Hx999JFW25n0SM+rWrRoEWJjY7Fnzx7Y2tpK3Y5ZyMvLw8CBA7F+/XrUqFFD6nbMmkKhgKurK7788ku0aNECQUFBmDlzJtatWyd1a2YjISEBCxcuxOeff44LFy7g+++/x48//oh58+ZJ3RqRZLZv347IyEjs2rULrq6uWm1r0iM9NWrUgKWlJTIzM0X1zMxMuLu7v3DbpUuXYtGiRTh69CjeeuutimzTpGl7DG7duoXU1FQEBgYqawqFAgBQqVIl3LhxA/Xq1avYpk1Qef5fqFmzJqysrGBpaamsNWzYEBkZGSguLoa1tXWF9mxqynMMZs+ejYEDB2L48OEAgCZNmqCgoAAjRozAzJkzYWHBv7fqg7u7u9rjVq1aNY7y6FlsbCyGDx+Ob7/9tlwzMCb9f4y1tTVatGiB+Ph4ZU2hUCA+Ph5t27Ytc7vPPvsM8+bNw6FDh9CyZUt9tGqytD0GDRo0wJUrV3Dp0iXlT69evZRXTXh4eOizfZNRnv8X3n77bSQnJytDJwDcvHkTNWvWZOAph/Icg8LCQpVg8yyECnxsot60bdtWdNwA4MiRIy/8HiHd27FjB4YMGYIdO3agZ8+e5duJ1qdLG5nY2FjBxsZG2Lx5s3Dt2jVhxIgRgqOjo5CRkSEIgiAMHDhQCA0NVa6/aNEiwdraWti9e7eQnp6u/MnLy5PqIxg9bY/B83j1lm5oexzu3LkjVK1aVRg3bpxw48YN4cCBA4Krq6swf/58qT6C0dP2GERERAhVq1YVduzYIdy+fVs4fPiwUK9ePeGjjz6S6iOYhLy8POHixYvCxYsXBQDC8uXLhYsXLwp//fWXIAiCEBoaKgwcOFC5/u3btwU7Ozth6tSpQlJSkhATEyNYWloKhw4dkuojGD1tj8G2bduESpUqCTExMaLv5uzsbK3e1+RDjyAIwpo1awRPT0/B2tpaaN26tfDzzz8rX+vYsaMQHBysXK5Tp44AQOUnIiJC/42bEG2OwfMYenRH2+Nw9uxZwc/PT7CxsRHq1q0rLFiwQCgtLdVz16ZFm2NQUlIizJkzR6hXr55ga2sreHh4CGPGjBEeP36s/8ZNyPHjx9X+nn/2Zx8cHCx07NhRZZumTZsK1tbWQt26dYVNmzbpvW9Tou0x6Nix4wvX15RMEDhGSkRERKbPpM/pISIiInqGoYeIiIjMAkMPERERmQWGHiIiIjILDD1ERERkFhh6iIiIyCww9BAREZFZYOghIiqDl5cXVq5cKXUbRKQjDD1EpJWsrCyMHj0anp6esLGxgbu7OwICAnDmzBkAgEwmw969e6VtUkOdOnWCTCZT+SktLZW6NSKqACb9lHUi0r2+ffuiuLgYW7ZsQd26dZGZmYn4+Hg8fPhQ6tbK5ZNPPsHcuXNFtUqV+KuRyBRxpIeINJadnY1Tp05h8eLF6Ny5M+rUqYPWrVsjLCwMvXr1gpeXFwDg/fffh0wmUy4DwL59+9C8eXPY2tqibt26iIyMFI2oLF++HE2aNEGVKlXg4eGBMWPGID8/X/n65s2b4ejoiAMHDqB+/fqws7PDhx9+iMLCQmzZsgVeXl5wcnLChAkTIJfLNf5MdnZ2cHd3F/2U5c6dO+jduzfs7e1RrVo1fPTRR8jMzAQA5OTkwNLSEr/99huAp09Qd3Z2Rps2bZTbf/PNN/Dw8NC4NyLSLYYeItKYvb097O3tsXfvXhQVFam8/uuvvwIANm3ahPT0dOXyqVOnMGjQIEycOBHXrl3DF198gc2bN2PBggXKbS0sLLB69WpcvXoVW7ZswbFjxzBt2jTR/gsLC7F69WrExsbi0KFDSEhIwPvvv4+DBw/i4MGD2Lp1K7744gvs3r1b559doVCgd+/eePToEU6cOIEjR47g9u3bCAoKAgA4ODigadOmSEhIAABcuXIFMpkMFy9eVIa3EydOoGPHjjrvjYg0pKsnphKRedi9e7fg5OQk2NraCu3atRPCwsKEy5cvK18HIOzZs0e0zX/+8x9h4cKFotrWrVuFmjVrlvk+3377rVC9enXl8qZNmwQAQnJysrI2cuRIwc7OTsjLy1PWAgIChJEjR2r0WTp27ChYWVkJVapUUf6EhIQoX69Tp46wYsUKQRAE4fDhw4KlpaVw584d5etXr14VAAjnzp0TBEEQQkJChJ49ewqCIAgrV64UgoKCBF9fX+Gnn34SBEEQfHx8hC+//FKj3ohI9zjSQ0Ra6du3L+7du4f9+/ejW7duSEhIQPPmzbF58+Yyt7l8+TLmzp2rHCmyt7fHJ598gvT0dBQWFgIAjh49iv/85z+oXbs2qlatioEDB+Lhw4fK14GnU1H16tVTLru5ucHLywv29vai2v379zX+PAMGDMClS5eUP2FhYWrXS0pKgoeHh2h6qlGjRnB0dERSUhIAoGPHjjh9+jTkcjlOnDiBTp06oVOnTkhISMC9e/eQnJyMTp06adwbEekWQw8Rac3W1hZdu3bF7NmzcfbsWQwePBgRERFlrp+fn4/IyEhRuLhy5Qr+/PNP2NraIjU1Fe+99x7eeustfPfddzh//jxiYmIAAMXFxcr9WFlZifYrk8nU1hQKhcafxcHBAT4+PsqfGjVqaLzt8zp06IC8vDxcuHABJ0+eFIWeEydOoFatWnj99dfLvX8iejW8RIGIXlmjRo2Ul6lbWVmpnEjcvHlz3LhxAz4+Pmq3P3/+PBQKBZYtWwYLi6d/F9u1a1eF9qythg0bIi0tDWlpacrRnmvXriE7OxuNGjUCADg6OuKtt95CdHQ0rKys0KBBA7i6uiIoKAgHDhzg+TxEEuNIDxFp7OHDh+jSpQu++eYb/P7770hJScG3336Lzz77DL179wbw9IZ+8fHxyMjIwOPHjwEA4eHh+PrrrxEZGYmrV68iKSkJsbGxmDVrFgDAx8cHJSUlWLNmDW7fvo2tW7di3bp1kn1Odfz9/dGkSRMMGDAAFy5cwLlz5zBo0CB07NgRLVu2VK7XqVMnbNu2TRlwnJ2d0bBhQ+zcuZOhh0hiDD1EpDF7e3v4+flhxYoV6NChAxo3bozZs2fjk08+QXR0NABg2bJlOHLkCDw8PNCsWTMAQEBAAA4cOIDDhw+jVatWaNOmDVasWIE6deoAAHx9fbF8+XIsXrwYjRs3xrZt2xAVFSXZ51RHJpNh3759cHJyQocOHeDv74+6deti586dovU6duwIuVwuOnenU6dOKjUi0j+ZIAiC1E0QERERVTSO9BAREZFZYOghIpN06tQp0SXyz/8Qkfnh9BYRmaR//vkHd+/eLfP1sq4kIyLTxdBDREREZoHTW0RERGQWGHqIiIjILDD0EBERkVlg6CEiIiKzwNBDREREZoGhh4iIiMwCQw8RERGZBYYeIiIiMgv/D7os7K/aBZzHAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_26.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgaElEQVR4nO3deVhU5f8+8HtAdhxwYVUQ0kRxFxWx0lQS3JKycitBUVPBVMoFU3FJcUnFLa0stcUlS83cSFE0lVxIVFxwCUIT1I8KCMT+/P7wx/l6ZNABBw7L/bourpr3eebMe06T3J7nnGdUQggBIiIiInomPaUbICIiIqoMGJqIiIiItMDQRERERKQFhiYiIiIiLTA0EREREWmBoYmIiIhICwxNRERERFpgaCIiIiLSAkMTERERkRYYmoioWlGpVJg1a5bSbUj8/Pzg5OSkdBtEpAWGJiJS3IYNG6BSqaQfY2NjNG7cGIGBgbhz506ZvvaJEycwa9YspKSk6HS/r7/+uuw91a5dG+3bt8e3336LgoICnbzG/PnzsXPnTp3si4ier4bSDRARFZozZw6cnZ2RlZWFY8eOYc2aNdi7dy9iY2Nhamqqk9f477//UKPG//3Rd+LECcyePRt+fn6wtLTUyWsUql+/PkJDQwEA9+7dw3fffQd/f39cvXoVCxYseOH9z58/H++88w58fHxeeF9E9HwMTURUYfTs2RPt2rUDAIwYMQJ16tTB0qVL8euvv2LQoEGl3m9BQQFycnJgbGwMY2NjXbX7XBYWFnj//felxx9++CFcXFywatUqzJ07FwYGBuXWCxG9OE7PEVGF1a1bNwBAfHw8AODzzz9Hp06dUKdOHZiYmMDNzQ0///xzkeepVCoEBgbixx9/RLNmzWBkZIT9+/dL2wqvaZo1axYmTZoEAHB2dpam0hISEtClSxe0atVKY18uLi7w8vIq8fsxNTVFx44dkZGRgXv37hU7LiMjAx9//DEcHBxgZGQEFxcXfP755xBCyN5jRkYGNm7cKPXt5+dX4p6ISHs800REFdaNGzcAAHXq1AEALF++HG+++SaGDBmCnJwcbNmyBe+++y52796N3r17y5576NAh/PTTTwgMDETdunU1Xmz99ttv4+rVq9i8eTOWLVuGunXrAgCsrKzwwQcfYOTIkYiNjUXz5s2l55w+fRpXr17F9OnTS/We/v77b+jr6xc7FSiEwJtvvonDhw/D398frVu3Rnh4OCZNmoR///0Xy5YtAwB8//33GDFiBDp06IBRo0YBABo2bFiqnohIS4KISGHr168XAMTBgwfFvXv3xM2bN8WWLVtEnTp1hImJibh165YQQojMzEzZ83JyckTz5s1Ft27dZHUAQk9PT1y8eLHIawEQISEh0uPFixcLACI+Pl42LiUlRRgbG4spU6bI6h999JEwMzMT6enpz3xPXbp0EU2aNBH37t0T9+7dE5cvXxYfffSRACD69u0rjfP19RUNGjSQHu/cuVMAEJ999plsf++8845QqVTi+vXrUs3MzEz4+vo+sw8i0h1OzxFRheHp6QkrKys4ODhg4MCBMDc3x44dO1CvXj0AgImJiTT24cOHSE1NxWuvvYa//vqryL66dOkCV1fXUvdiYWGBfv36YfPmzdK0WH5+PrZu3QofHx+YmZk9dx9XrlyBlZUVrKys0LRpU6xcuRK9e/fGt99+W+xz9u7dC319fXz00Uey+scffwwhBPbt21fq90REL4bTc0RUYaxevRqNGzdGjRo1YGNjAxcXF+jp/d/f7Xbv3o3PPvsMMTExyM7OluoqlarIvpydnV+4n6FDh2Lr1q34448/0LlzZxw8eBB37tzBBx98oNXznZyc8PXXX0vLKLz88suwtrZ+5nP++ecf2Nvbo2bNmrJ606ZNpe1EpAyGJiKqMDp06CDdPfe0P/74A2+++SY6d+6ML774AnZ2djAwMMD69euxadOmIuOfPCtVWl5eXrCxscEPP/yAzp0744cffoCtrS08PT21er6ZmZnWY4mo4uP0HBFVCr/88guMjY0RHh6O4cOHo2fPnjoJJJrOUhXS19fH4MGD8fPPP+Phw4fYuXMnBg0aBH19/Rd+3eI0aNAAt2/fxqNHj2T1K1euSNsLPat3ItI9hiYiqhT09fWhUqmQn58v1RISEl54RezCa5OKWxH8gw8+wMOHD/Hhhx8iPT1dtu5SWejVqxfy8/OxatUqWX3ZsmVQqVTo2bOnVDMzM9P5SuZEVDxOzxFRpdC7d28sXboU3t7eGDx4MO7evYvVq1ejUaNGOH/+fKn36+bmBgD49NNPMXDgQBgYGKBv375SmGrTpg2aN2+Obdu2oWnTpmjbtq1O3k9x+vbti65du+LTTz9FQkICWrVqhd9//x2//vorJkyYIFtWwM3NDQcPHsTSpUthb28PZ2dnuLu7l2l/RNUZzzQRUaXQrVs3fPPNN0hOTsaECROwefNmLFy4EG+99dYL7bd9+/aYO3cuzp07Bz8/PwwaNKjIwpNDhw4FAK0vAH8Renp62LVrFyZMmIDdu3djwoQJuHTpEhYvXoylS5fKxi5duhRubm6YPn06Bg0ahDVr1pR5f0TVmUqIJ5aYJSKiIpYvX46JEyciISEBjo6OSrdDRAphaCIiegYhBFq1aoU6derg8OHDSrdDRAriNU1ERBpkZGRg165dOHz4MC5cuIBff/1V6ZaISGE800REpEFCQgKcnZ1haWmJsWPHYt68eUq3REQKY2giIiIi0gLvniMiIiLSAkMTERERkRZ4IbiOFBQU4Pbt26hZsya/2oCIiKiSEELg0aNHsLe3l31BuCYMTTpy+/ZtODg4KN0GERERlcLNmzdRv379Z45haNKRmjVrAnh80NVqtcLdEBERkTbS0tLg4OAg/R5/FoYmHSmcklOr1QxNRERElYw2l9bwQnAiIiIiLTA0EREREWmBoYmIiIhIC7ymqZzl5+cjNzdX6TaoHBgaGj739lUiIqo8GJrKiRACycnJSElJUboVKid6enpwdnaGoaGh0q0QEZEOMDSVk8LAZG1tDVNTUy6AWcUVLnaalJQER0dH/vcmIqoCGJrKQX5+vhSY6tSpo3Q7VE6srKxw+/Zt5OXlwcDAQOl2iIjoBfGCi3JQeA2Tqampwp1QeSqclsvPz1e4EyIi0gWGpnLEKZrqhf+9iYiqFoYmIiIiIi0wNBERERFpgaGJnsnPzw8qlQoqlQoGBgawsbHBG2+8gW+//RYFBQVa72fDhg2wtLQsu0aJiIjKGEMTPZe3tzeSkpKQkJCAffv2oWvXrhg/fjz69OmDvLw8pdsjIqJqICsrS+kWGJro+YyMjGBra4t69eqhbdu2mDZtGn799Vfs27cPGzZsAAAsXboULVq0gJmZGRwcHDB27Fikp6cDACIjIzFs2DCkpqZKZ61mzZoFAPj+++/Rrl071KxZE7a2thg8eDDu3r2r0DslIqKKJisrC7Nnz8bChQsxePAJ7NqlXC8MTQoRQiAnJ6fcf4QQOum/W7duaNWqFbZv3w7g8erXK1aswMWLF7Fx40YcOnQIkydPBgB06tQJYWFhUKvVSEpKQlJSEj755BMAj5djmDt3Ls6dO4edO3ciISEBfn5+OumRiIgqt6tXr2LhwoVPPDbCggXK9cPFLRWSm5uL0NDQcn/d4OBgnX2tR5MmTXD+/HkAwIQJE6S6k5MTPvvsM4wePRpffPEFDA0NYWFhAZVKBVtbW9k+hg8fLv37Sy+9hBUrVqB9+/ZIT0+Hubm5TvokIqLKZ9OmTbh27Zr02MqqIwwN3TB1qnI9MTRRqQkhpLWIDh48iNDQUFy5cgVpaWnIy8tDVlYWMjMzn7moZ3R0NGbNmoVz587h4cOH0sXliYmJcHV1LZf3QUREFUdmZiYWL14sq40cORL29vYYO1ahpv4/hiaFGBgYIDg4WJHX1ZXLly/D2dkZCQkJ6NOnD8aMGYN58+ahdu3aOHbsGPz9/ZGTk1NsaMrIyICXlxe8vLzw448/wsrKComJifDy8kJOTo7O+iQiosrh0qVL2LZtm6w2ffp06OvrK9SRHEOTQlQqlc6myZRw6NAhXLhwARMnTkR0dDQKCgqwZMkS6Ok9vkzup59+ko03NDQs8nUiV65cwf3797FgwQI4ODgAAM6cOVM+b4CIiCqUjRs3IiEhQXr82muvoVu3bso1pAFDEz1XdnY2kpOTkZ+fjzt37mD//v0IDQ1Fnz59MHToUMTGxiI3NxcrV65E3759cfz4caxdu1a2DycnJ6SnpyMiIgKtWrWCqakpHB0dYWhoiJUrV2L06NGIjY3F3LlzFXqXRESkhPT0dCxZskRWGz16NGxsbBTqqHi8e46ea//+/bCzs4OTkxO8vb1x+PBhrFixAr/++iv09fXRqlUrLF26FAsXLkTz5s3x448/FrnIvVOnThg9ejQGDBgAKysrLFq0CFZWVtiwYQO2bdsGV1dXLFiwAJ9//rlC75KIiMrb+fPnZYGpRo0amD59eoUMTACgErq6B72aS0tLg4WFBVJTU6FWq2XbsrKyEB8fD2dnZxgbGyvUIZU3/ncnItJMCIF169bh9u3bUq1r167o3LlzuffyrN/fT+P0HBEREZWbtLQ0LFu2TFYbO3YsrKysFOpIewxNREREVC7Onj2LXU8s6W1iYoJPPvlEuomoomNoIiIiojIlhMAXX3yB//3vf1LtjTfeQKdOnRTsquQYmoiIiKjMpKSkYPny5bLauHHjULt2bYU6Kj2GJiIiIioTp0+fxt69e6XHFhYWGD9+vPRtEpUNQxMRERHplBACy5cvR2pqqlTr2bMnOnTooGBXL46hiYiIiHTmwYMHWLlypaw2fvx4WFpaKtOQDjE0ERERkU5ERUXh999/lx5bWVlhzJgxlXY67mkMTURERPRCCr9/NDMzU6r17dsXbdu2VbAr3ascCyNQlefn5wcfHx/p8euvv44JEya80D51sQ8iInq2e/fuYe7cubLANHHixCoXmACeaaLn8PPzw8aNGwEABgYGcHR0xNChQzFt2jTUqFF2H5/t27fDwMBAq7GRkZHo2rUrHj58KJszL8k+iIio5P744w8cOnRIemxvb48RI0ZUmem4pzE00XN5e3tj/fr1yM7Oxt69exEQEAADAwMEBwfLxuXk5MDQ0FAnr6mL9Tsq4xogRESVQUFBARYsWIDc3Fyp9tZbb6Fly5YKdlX2OD1Hz2VkZARbW1s0aNAAY8aMgaenJ3bt2iVNqc2bNw/29vZwcXEBANy8eRPvvfceLC0tUbt2bfTr1w8JCQnS/vLz8xEUFARLS0vUqVMHkydPxtPfG/301Fp2djamTJkCBwcHGBkZoVGjRvjmm2+QkJCArl27AgBq1aoFlUoFPz8/jft4+PAhhg4dilq1asHU1BQ9e/bEtWvXpO0bNmyApaUlwsPD0bRpU5ibm8Pb2xtJSUnSmMjISHTo0AFmZmawtLTEK6+8gn/++UdHR5qIqOK7c+cO5s6dKwtMH3/8cZUPTABDE5WCiYkJcnJyAAARERGIi4vDgQMHsHv3buTm5sLLyws1a9bEH3/8gePHj0vho/A5S5YswYYNG/Dtt9/i2LFjePDgAXbs2PHM1xw6dCg2b96MFStW4PLly/jyyy9hbm4OBwcH/PLLLwCAuLg4JCUlFVl5tpCfnx/OnDmDXbt2ISoqCkII9OrVS/Y/fmZmJj7//HN8//33OHr0KBITE/HJJ58AAPLy8uDj44MuXbrg/PnziIqKwqhRo6rsaWgioqcdOnQIa9eulR43aNAAM2fOhLm5uYJdlR9Oz5HWhBCIiIhAeHg4xo0bh3v37sHMzAzr1q2TpuV++OEHFBQUYN26dVKYWL9+PSwtLREZGYkePXogLCwMwcHBePvttwEAa9euRXh4eLGve/XqVfz00084cOAAPD09AQAvvfSStL1wGs7a2rrYdUCuXbuGXbt24fjx49J3Hf34449wcHDAzp078e677wIAcnNzsXbtWjRs2BAAEBgYiDlz5gB4/M3cqamp6NOnj7S9adOmJT+QRESVTH5+Pj777DNZ7d1334Wrq6tCHSmDZ5oqoV27gE6dHv+zPOzevRvm5uYwNjZGz549MWDAAMyaNQsA0KJFC9l1TOfOncP169dRs2ZNmJubw9zcHLVr10ZWVhZu3LiB1NRUJCUlwd3dXXpOjRo10K5du2JfPyYmBvr6+ujSpUup38Ply5dRo0YN2evWqVMHLi4uuHz5slQzNTWVAhEA2NnZ4e7duwAehzM/Pz94eXmhb9++WL58uWzqjoioKrp9+3aRwDRp0qRqF5gAhUPTmjVr0LJlS6jVaqjVanh4eGDfvn3S9tdffx0qlUr2M3r0aNk+EhMT0bt3b5iamsLa2hqTJk1CXl6ebExkZCTatm0rXQuzYcOGIr2sXr0aTk5OMDY2hru7O06dOlUm71kXFiwAoqIe/7M8dO3aFTExMbh27Rr+++8/bNy4EWZmZgAg/bNQeno63NzcEBMTI/u5evUqBg8eXKrXNzExeeH3oK2n77ZTqVSy663Wr1+PqKgodOrUCVu3bkXjxo3x559/llt/RETl6ffff8fXX38tPW7UqBFCQkJgamqqYFfKUTQ01a9fHwsWLEB0dDTOnDmDbt26oV+/frh48aI0ZuTIkUhKSpJ+Fi1aJG3Lz89H7969kZOTgxMnTmDjxo3YsGEDZs6cKY2Jj49H7969pV/8EyZMwIgRI2TTQVu3bkVQUBBCQkLw119/oVWrVvDy8pLOMFQ0U6cCHh6P/1kezMzM0KhRIzg6Oj53mYG2bdvi2rVrsLa2RqNGjWQ/FhYWsLCwgJ2dHU6ePCk9Jy8vD9HR0cXus0WLFigoKMCRI0c0bi8805Wfn1/sPpo2bYq8vDzZ696/fx9xcXEl/ttSmzZtEBwcjBMnTqB58+bYtGlTiZ5PRFTR5eXlYfbs2YiKipJqAwcOxJAhQxTsSnmKhqa+ffuiV69eePnll9G4cWPMmzcP5ubmsr+5m5qawtbWVvpRq9XStt9//x2XLl3CDz/8gNatW6Nnz56YO3cuVq9eLV10vHbtWjg7O2PJkiVo2rQpAgMD8c4772DZsmXSfpYuXYqRI0di2LBhcHV1xdq1a2Fqaopvv/22/A5GCbz5JnDixON/VjRDhgxB3bp10a9fP/zxxx+Ij49HZGQkPvroI9y6dQvA4+8gWrBgAXbu3IkrV65g7NixSElJKXafTk5O8PX1xfDhw7Fz505pnz/99BOAxxciqlQq7N69G/fu3UN6enqRfbz88svo168fRo4ciWPHjuHcuXN4//33Ua9ePfTr10+r9xYfH4/g4GBERUXhn3/+we+//45r167xuiYiqlJu3bqFefPmyWqTJ0+W7pCuzirMNU35+fnYsmULMjIy4OHhIdV//PFH1K1bF82bN0dwcLBsxdGoqCi0aNECNjY2Us3LywtpaWnS2aqoqCjp4uEnxxSm55ycHERHR8vG6OnpwdPTU5awn5adnY20tDTZDz0OuUePHoWjoyPefvttNG3aFP7+/sjKypIC78cff4wPPvgAvr6+8PDwQM2aNfHWW289c79r1qzBO++8g7Fjx6JJkyYYOXIkMjIyAAD16tXD7NmzMXXqVNjY2CAwMFDjPtavXw83Nzf06dMHHh4eEEJg7969Wi+AaWpqiitXrqB///5o3LgxRo0ahYCAAHz44YclOEJERBXXnj178M0330iPXV1dERISUq6XSVRkKvH0Ajnl7MKFC/Dw8EBWVhbMzc2xadMm9OrVCwDw1VdfoUGDBrC3t8f58+cxZcoUdOjQAdu3bwcAjBo1Cv/8849sqi0zMxNmZmbYu3cvevbsicaNG2PYsGGyhRj37t2L3r17IzMzEw8fPkS9evVw4sQJWVibPHkyjhw5IpvOedKsWbMwe/bsIvXU1FTZ2TAAyMrKQnx8PJydnWFsbFz6g0WVCv+7E1FlkZubi/nz58tq77//vuzGmKoqLS0NFhYWGn9/P03xJQdcXFwQExOD1NRU/Pzzz/D19cWRI0fg6uqKUaNGSeNatGgBOzs7dO/eHTdu3FD8P2RwcDCCgoKkx2lpaXBwcFCwIyIiopJLSEiQvi6r0NSpU2FkZKRQRxWX4qHJ0NAQjRo1AgC4ubnh9OnTWL58Ob788ssiYwtvF79+/ToaNmwIW1vbIne53blzBwBga2sr/bOw9uQYtVoNExMT6OvrQ19fX+OYwn1oYmRkxA8UERFVar/++itiYmKkxy1btnzu5RLVWYW5pqlQQUEBsrOzNW4r/A9rZ2cHAPDw8MCFCxdkd7kdOHAAarVauiPKw8MDERERsv0cOHBAmoozNDSEm5ubbExBQQEiIiJk03VERERVRXZ2NmbPni0LTL6+vgxMz6Homabg4GD07NkTjo6OePToETZt2oTIyEiEh4fjxo0b0vVNderUwfnz5zFx4kR07txZ+n6bHj16wNXVFR988AEWLVqE5ORkTJ8+HQEBAdJZoNGjR2PVqlWYPHkyhg8fjkOHDuGnn37Cnj17pD6CgoLg6+uLdu3aoUOHDggLC0NGRgaGDRumyHEhIiIqKzdu3MAPP/wgqwUHB+vsC9erMkVD0927dzF06FAkJSXBwsICLVu2RHh4ON544w3cvHkTBw8elAKMg4MD+vfvj+nTp0vP19fXx+7duzFmzBh4eHjAzMwMvr6+0tdeAICzszP27NmDiRMnYvny5ahfvz7WrVsHLy8vacyAAQNw7949zJw5E8nJyWjdujX2798vuytPFxS+5p7KGf97E1FFs23bNly6dEl6XHhHMWlH8bvnqopnXX2fn5+Pq1evwtraGnXq1FGoQypvqampuH37Nho1aqT1sgZERGUhKysLCxculNWGDx/OG5hQye6eqw709fVhaWkpXXtlamoqfZktVU0FBQW4d+8eTE1Nn7uKOhFRWbp69So2b94sq02bNo1/mSsF/mleTgrvxKuoX81CuqenpwdHR0cGZCJSzKZNm3Dt2jXpcceOHWWXp1DJMDSVE5VKBTs7O1hbWyM3N1fpdqgcGBoaQk+vwt2gSkTVQGZmJhYvXiyrjRw5Evb29gp1VDUwNJWzwnWhiIiIysLly5el7+Ys9Omnn/JSAR3gESQiIqoiNm7ciISEBOnxq6++iu7duyvXUBXD0ERERFTJpaenY8mSJbLahx9++MxvtqCSY2giIiKqxC5cuCB9kT3w+DKQ4OBgXgpSBhiaiIiIKiEhBL755hv8+++/Uu31119Hly5dFOyqamNoIiIiqmQePXqEpUuXympjx46FlZWVQh1VDwxNRERElcjZs2exa9cu6bGJiQk++eQTLnFSDhiaiIiIKgEhBNauXStbJPmNN95Ap06dFOyqemFoIiIiquBSU1MRFhYmqwUGBvL7TMsZQxMREVEFdvr0aezdu1d6bGFhgfHjx/MrmhTA0ERERFQBCSGwYsUKpKSkSLWePXuiQ4cOyjVVzTE0ERERVTAPHjzAypUrZbXx48fD0tJSmYYIAEMTERFRhfLnn38iPDxcely3bl2MHTuW03EVAEMTERFRBVBQUIClS5ciIyNDqvXt2xdt27ZVsCt6EkMTERGRwv73v/9h9erVstrEiROhVqsV6og0YWgiIiJSUGhoKHJycqTHdnZ2GDlyJKfjKiCGJiIiIgXk5eVh3rx5str5828hJKSlQh3R8zA0ERERlbMLFy5g+/btstqJEx8iIMBWoY5IGwxNRERE5Wj27NlFajNnzuR0XCXA0ERERFQOcnJyEBoaKqs1a9YM77zzjkIdUUkxNBEREZWxv/76C7/99pusFhAQgLp16yrUEZUGQxMREVEZ0jQdFxISokAn9KIYmoiIiMpAVlYWFi5cKKu1adMGb775pkId0YtiaCIiItKxp78KBQA++ugj1KpVS6GOSBcYmoiIiHSI03FVF0MTERGRDmRmZmLx4sWyWseOHeHl5aVQR6RrDE1EREQv6OjRozh8+LCsxu+Oq3oYmoiIiF4Ap+OqD4YmIiKiUnj06BGWLl0qq3Xu3Bldu3ZVqCMqawxNREREJXTw4EEcP35cVvvkk09gZmamUEdUHhiaiIiISoDTcdUXQxMREZEWUlNTERYWJqt5enrilVdeUaYhKncMTURERM+xe/duREdHy2qTJ0+GiYmJQh2REhiaiIiInoHTcVSIoYmIiEiDW7du4ZtvvpHVLl3qha1b2yvUESmNoYmIiOgpoaGhyMnJkdUOHZqEjz82VagjqggYmoiIiJ5Q3HQcZ+SIoYmIiAhAbGwsfvnlF1mN3x1HT2JoIiKiak/T2aWDB6ciJMRIgW6oomJoIiKiaksIgTlz5hSph4eHYOpUBRqiCo2hiYiIqqXo6Gjs3r1bVmvevDn69+/P65dII4YmIiKqdjRNxwUHB8PQ0FCBbqiyYGgiIqJqo7jpOC5WSdpgaCIiomrh2LFjiIiIkNXat2+PXr16KdQRVTYMTUREVOVpmo779NNPUaMGfw2S9vhpISKiKis/Px+fffZZkTqn46g0GJqIiKhKOnjwII4fPy6rde7cGV27dlWoI6rsGJqIiKjK0TQdN2PGDOjp6SnQDVUVDE1ERFRl5ObmYv78+UXqnI4jXVA0cq9ZswYtW7aEWq2GWq2Gh4cH9u3bJ23PyspCQEAA6tSpA3Nzc/Tv3x937tyR7SMxMRG9e/eGqakprK2tMWnSJOTl5cnGREZGom3btjAyMkKjRo2wYcOGIr2sXr0aTk5OMDY2hru7O06dOlUm75mIiMrGrl27igQmLy8vBibSGUVDU/369bFgwQJER0fjzJkz6NatG/r164eLFy8CACZOnIjffvsN27Ztw5EjR3D79m28/fbb0vPz8/PRu3dv5OTk4MSJE9i4cSM2bNiAmTNnSmPi4+PRu3dvdO3aFTExMZgwYQJGjBiB8PBwaczWrVsRFBSEkJAQ/PXXX2jVqhW8vLxw9+7d8jsYRERUarNnz8bZs2dltZkzZ6Jjx44KdURVkUoIIZRu4km1a9fG4sWL8c4778DKygqbNm3CO++8AwC4cuUKmjZtiqioKHTs2BH79u1Dnz59cPv2bdjY2AAA1q5diylTpuDevXswNDTElClTsGfPHsTGxkqvMXDgQKSkpGD//v0AAHd3d7Rv3x6rVq0CABQUFMDBwQHjxo3DVC2/fCgtLQ0WFhZITU2FWq3W5SEhIqJiZGVlYeHChUXqPLtE2irJ7+8Kc0Vcfn4+tmzZgoyMDHh4eCA6Ohq5ubnw9PSUxjRp0gSOjo6IiooCAERFRaFFixZSYAIen4pNS0uTzlZFRUXJ9lE4pnAfOTk5iI6Olo3R09ODp6enNIaIiCqerVu3FglMFy70Y2CiMqP4heAXLlyAh4cHsrKyYG5ujh07dsDV1RUxMTEwNDSEpaWlbLyNjQ2Sk5MBAMnJybLAVLi9cNuzxqSlpeG///7Dw4cPkZ+fr3HMlStXiu07Ozsb2dnZ0uO0tLSSvXEiIio1TXfHhYfPxNSpKgW6oepC8dDk4uKCmJgYpKam4ueff4avry+OHDmidFvPFRoaqvF/WiIiKjsZGRn4/PPPi9RDQkLAE0xU1hQPTYaGhmjUqBEAwM3NDadPn8by5csxYMAA5OTkICUlRXa26c6dO7C1tQUA2NraFrnLrfDuuifHPH3H3Z07d6BWq2FiYgJ9fX3o6+trHFO4D02Cg4MRFBQkPU5LS4ODg0MJ3z0REWlr/fr1SExMlNXee+89NG3aVKGOqLqpMNc0FSooKEB2djbc3NxgYGAg+3LFuLg4JCYmwsPDAwDg4eGBCxcuyO5yO3DgANRqNVxdXaUxT39B44EDB6R9GBoaws3NTTamoKAAERER0hhNjIyMpKUSCn+IiKhszJ49u0hgCgkJYWCicqXomabg4GD07NkTjo6OePToETZt2oTIyEiEh4fDwsIC/v7+CAoKQu3ataFWqzFu3Dh4eHhIt5D26NEDrq6u+OCDD7Bo0SIkJydj+vTpCAgIgJGREQBg9OjRWLVqFSZPnozhw4fj0KFD+Omnn7Bnzx6pj6CgIPj6+qJdu3bo0KEDwsLCkJGRgWHDhilyXIiI6LG0tDQsW7asSJ0Xe5MSFA1Nd+/exdChQ5GUlAQLCwu0bNkS4eHheOONNwAAy5Ytg56eHvr374/s7Gx4eXnhiy++kJ6vr6+P3bt3Y8yYMfDw8ICZmRl8fX0xZ84caYyzszP27NmDiRMnYvny5ahfvz7WrVsHLy8vacyAAQNw7949zJw5E8nJyWjdujX2799f5OJwIiIqPytXrsSDBw9ktffffx8NGzZUqCOq7ircOk2VFddpIiLSHU032vDsEpWFkvz+VvxCcCIiokL379+XFhp+EgMTVQQMTUREVCGEhoYiJydHVvP390f9+vUV6ohIjqGJiIgUx+k4qgwYmoiISDHJycn48ssvi9QZmKgiYmgiIiJFaDq7NHr0aN65TBUWQxMREZU7TsdRZcTQRERE5ebu3btYs2aNrGZiYoLJkycr1BGR9hiaiIioXKxYsQIPHz6U1caNG4fatWsr1BFRyTA0ERFRmdM0HdemTQiYl6gyYWgiIqIy8++//2LdunWyWqtWreDj46NMQ0QvgKGJiIjKxIIFC5CdnS2rTZo0Caampgp1RPRiGJqIiEjneHccVUUMTUREpDMJCQnYuHGjrObu7g5vb2+FOiLSHYYmIiLSCU1nl6ZOnQojIyMFuiHSPYYmIiJ6IUIIzJkzp0id03FU1TA0ERFRqV29ehWbN2+W1bp06YLXX39dmYaIyhBDExERlYqm6bhp06bBwMBAgW6Iyh5DExERlQin46i6YmgiIiKtxcbG4pdffpHVvLy80LFjR4U6Iio/DE1ERKQVTdNx06dPh76+vgLdEJU/hiYiInqmgoICzJ07t0id03FU3TA0ERFRsf766y/89ttvslrfvn3Rtm1bhToiUg5DExERaaRpOm7GjBnQ09NToBsi5TE0ERGRTF5eHubNm1ekzuk4qu5KHJr09fWRlJQEa2trWf3+/fuwtrZGfn6+zpojIqLyFRUVhd9//11We+edd9CsWTOFOiKqOEocmoQQGuvZ2dkwNDR84YaIiEgZmqbjZs6cCZVKpUA3RBWP1qFpxYoVAACVSoV169bB3Nxc2pafn4+jR4+iSZMmuu+QiIjKVG5uLubPn1+kzuk4IjmtQ9OyZcsAPD7TtHbtWtm6HIaGhnBycsLatWt13yEREZWZw4cP4+jRo7La4MGD8fLLLyvUEVHFpXVoio+PBwB07doV27dvR61atcqsKSIiKnucjiMqmRJf03T48OGy6IOIiMpJVlYWFi5cWKTO6TiiZytxaBo+fPgzt3/77belboaIiMrWvn37cOrUKVnN19cXTk5OyjREVImUODQ9fPhQ9jg3NxexsbFISUlBt27ddNYYERHplqbpOJ5dItJeiUPTjh07itQKCgowZswYNGzYUCdNERGR7mRmZmLx4sWymrGxMaZMmaJQR0SVk0oUt/BSCcXFxeH1119HUlKSLnZX6aSlpcHCwgKpqalQq9VKt0NEBADYuXMnzp07J6uNGDEC9erVU6gjooqlJL+/dfY1Kjdu3EBeXp6udkdERC+I03FEulXi0BQUFCR7LIRAUlIS9uzZA19fX501RkREpZOWliatrVeoTp06CAwMVKgjoqqhxKHp7Nmzssd6enqwsrLCkiVLnntnHRERla3Nmzfj6tWrstqYMWOKfF8oEZUc12kiIqoiOB1HVLZKfU3T3bt3ERcXBwBwcXHh32KIiBTy4MEDrFy5UlarX78+/P39FeqIqGoqcWhKS0tDQEAANm/ejIKCAgCAvr4+BgwYgNWrV8PCwkLnTRIRkWZLly7Fo0ePZLVx48ahdu3aCnVEVHXplfQJI0eOxMmTJ7Fnzx6kpKQgJSUFu3fvxpkzZ/Dhhx+WRY9ERKTB7NmziwSmkJAQBiaiMlLidZrMzMwQHh6OV199VVb/448/4O3tjYyMDJ02WFlwnSYiKi9JSUn46quvZLWHDx0RFjZMoY6IKq8yXaepTp06GqfgLCwsUKtWrZLujoiISmDOnDl4+u+6R46Mx4QJlso0RFSNlDg0TZ8+HUFBQfj+++9ha2sLAEhOTsakSZMwY8YMnTdIRESP8e44ImWVeHquTZs2uH79OrKzs+Ho6AgASExMhJGREV5++WXZ2L/++kt3nVZwnJ4jorLyzz//YMOGDbKas7Mzhg4dqkxDRFVImU7P9evXDyqVqtTNERGR9jSdXfr4449hbm6uQDdE1ZvOvrC3uuOZJiLSNU7HEZW9kvz+LvGSAy+99BLu379fpJ6SkoKXXnqppLsjIqKnXL9+vUhgcnV1ZWAiUliJp+cSEhKQn59fpJ6dnY1bt27ppCkioupK09mlyZMnw8TERIFuiOhJWoemXbt2Sf8eHh4uW3YgPz8fERERcHZ21m13RETVhBACc+bMKVJv0yYEzEtEFYPWocnHxwcAoFKp4OvrK9tmYGAAJycnLFmyRKfNERFVBxcvXsTPP/8sq7m5uaFPnz4KdUREmmgdmgq/Z87Z2RmnT59G3bp1y6wpIqLqQtN0XHBwMAwNDRXohoiepcTXNMXHx5dFH0RE1Upx03G82Juo4irx3XNz5sx55k9JhIaGon379qhZsyasra3h4+ODuLg42ZjXX38dKpVK9jN69GjZmMTERPTu3RumpqawtrbGpEmTkJeXJxsTGRmJtm3bwsjICI0aNSqyUBwArF69Gk5OTjA2Noa7uztOnTpVovdDRKSNv/76q8ifl6+++ioDE1EFV+IzTTt27JA9zs3NRXx8PGrUqIGGDRti5syZWu/ryJEjCAgIQPv27ZGXl4dp06ahR48euHTpEszMzKRxI0eOlP0BY2pqKv17fn4+evfuDVtbW5w4cQJJSUkYOnQoDAwMMH/+fACPz4717t0bo0ePxo8//oiIiAiMGDECdnZ28PLyAgBs3boVQUFBWLt2Ldzd3REWFgYvLy/ExcXB2tq6pIeJiEgjTdNxn376KWrUKPEfx0RUznSyuGVaWhr8/Pzw1ltv4YMPPij1fu7duwdra2scOXIEnTt3BvD4TFPr1q0RFham8Tn79u1Dnz59cPv2bdjY2AAA1q5diylTpuDevXswNDTElClTsGfPHsTGxkrPGzhwIFJSUrB//34AgLu7O9q3b49Vq1YBeHwNl4ODA8aNG4epU6dqdQy4uCURFaegoABz584tUufZJSJllenilpqo1WrMnj37hb+wNzU1FQBQu3ZtWf3HH39E3bp10bx5cwQHByMzM1PaFhUVhRYtWkiBCQC8vLyQlpaGixcvSmM8PT1l+/Ty8kJUVBQAICcnB9HR0bIxenp68PT0lMY8LTs7G2lpabIfIiJNoqKiigQmT09PBiaiSkZn54NTU1Ol0FMaBQUFmDBhAl555RU0b95cqg8ePBgNGjSAvb09zp8/jylTpiAuLg7bt28HACQnJ8sCEwDpcXJy8jPHpKWl4b///sPDhw+Rn5+vccyVK1c09hsaGqrxNDsR0ZM0/TkxY8YM6Onp5O+sRFSOShyaVqxYIXsshEBSUhK+//579OzZs9SNBAQEIDY2FseOHZPVR40aJf17ixYtYGdnh+7du+PGjRto2LBhqV/vRQUHByMoKEh6nJaWBgcHB8X6IaKKJS8vD/PmzStS59klosqrxKFp2bJlssd6enqwsrKCr68vgoODS9VEYGAgdu/ejaNHj6J+/frPHOvu7g7g8XczNWzYELa2tkXucrtz5w4AwNbWVvpnYe3JMWq1GiYmJtDX14e+vr7GMYX7eJqRkRGMjIy0f5NEVG0cPnwYR48eldUuXuyD9993U6gjItIFRddpEkJg3Lhx2LFjByIjI7X6GpaYmBgAgJ2dHQDAw8MD8+bNw927d6W73A4cOAC1Wg1XV1dpzN69e2X7OXDgADw8PAAAhoaGcHNzQ0REhLTyeUFBASIiIhAYGKiLt0pE1YSm6biZM2dCpVIp0A0R6VKprmlKSUnB9evXAQCNGjWCpaVlqV48ICAAmzZtwq+//oqaNWtK1yBZWFjAxMQEN27cwKZNm9CrVy/UqVMH58+fx8SJE9G5c2e0bNkSANCjRw+4urrigw8+wKJFi5CcnIzp06cjICBAOhM0evRorFq1CpMnT8bw4cNx6NAh/PTTT9izZ4/US1BQEHx9fdGuXTt06NABYWFhyMjIwLBhw0r13oioesnJyUFoaGiROqfjiKqOEi05kJCQgICAAISHh6PwaSqVCt7e3li1ahWcnJxK9uLF/M1r/fr18PPzw82bN/H+++8jNjYWGRkZcHBwwFtvvYXp06fLbgv8559/MGbMGERGRsLMzAy+vr5YsGCBbN2TyMhITJw4EZcuXUL9+vUxY8YM+Pn5yV531apVWLx4MZKTk9G6dWusWLFCmg58Hi45QFR97d27F6dPn5bV+vfvL7uphYgqppL8/tY6NN28eRPt27eHgYEBxo4di6ZNmwIALl26hDVr1iAvLw+nT59+7jVJVRVDE1H1xOk4osqtTEKTv78/rl+/jvDwcBgbG8u2/ffff/D29sbLL7+MdevWlb7zSoyhiah6ycrKwsKFC4vUOR1HVLmU5Pe31tc07d+/H1u3bi0SmADAxMQEc+fOxcCBA0veLRFRJbN9+3ZcuHBBVhs0aBAaN26sUEdEVB60Dk3/+9//nnnN0ksvvYQHDx7ooiciogpL03Qczy4RVQ9aL0lrZ2eHS5cuFbs9Nja22DWNiIgqu/T0dAYmompO6zNNPj4++OSTTxAREQErKyvZtrt372LKlCnSGkdERFXJDz/8gBs3bshqp0754sMPnZRpiIgUofWF4A8fPoS7uzuSk5Px/vvvo0mTJhBC4PLly9i0aRNsbW3x559/Fvmy3eqCF4ITVU08u0RUtZXJheC1atXCyZMnMW3aNGzZsgUpKSkAAEtLSwwePBjz58+vtoGJiKqe1NRUhIWFFakzMBFVXyVa3LKQEAL37t0DAFhZWXE9EvBME1FV8tVXXyEpKUlWGzlyJOzt7RXqiIjKSpmcaXqSSqWSvueNiKgq4XQcERWnVKGJiKiq+d///ofVq1fLajk5Jpg3b7JCHRFRRcPQRETV3rJly5CWliarHTs2FuPGWRXzDCKqjhiaiKha43QcEWmLoYmIqqXk5GR8+eWXspqVlRXGjh2rUEdEVNFpFZpWrFih9Q4/+uijUjdDRFQe5s6di4KCAlnto48+Qq1atRTqiIgqA62WHHB2dtZuZyoV/v777xduqjLikgNElQOn44joSTpfciA+Pl4njRERKeXmzZv49ttvZbUGDRrAz89PmYaIqNIp9TVNOTk5iI+PR8OGDVGjBi+NIqKKS9PZpaCgINSsWVOBboiostIr6RMyMzPh7+8PU1NTNGvWDImJiQCAcePGYcGCBTpvkIjoRRQ3HcfAREQlVeLQFBwcjHPnziEyMhLGxsZS3dPTE1u3btVpc0REpXXjxo0igalp06a8fomISq3E82o7d+7E1q1b0bFjR9l3zjVr1gw3btzQaXNERKWh6ezSpEmTYGpqqkA3RFRVlDg03bt3T+P3zmVkZPCLe4lIUUIIzJkzp0idZ5eISBdKPD3Xrl077NmzR3pcGJTWrVsHDw8P3XVGRFQCly5dKhKY2rZty8BERDpT4jNN8+fPR8+ePXHp0iXk5eVh+fLluHTpEk6cOIEjR46URY9ERM+kaTpu6tSpMDIyUqAbIqqqSnym6dVXX0VMTAzy8vLQokUL/P7777C2tkZUVBTc3NzKokciIo2EEMXeHcfARES6ptWK4PR8XBGcqHydPXsWu3btktU6deqEN954Q6GOiKgy0vmK4GlpaVq/OAMDEZU1TWeXPv30Uy60S0RlSqs/YSwtLbW+My4/P/+FGiIiKk5BQQHmzp1bpM6LvYmoPGgVmg4fPiz9e0JCAqZOnQo/Pz/pbrmoqChs3LgRoaGhZdMlEVV7f/75J8LDw2W17t2749VXX1WoIyKqbkp8TVP37t0xYsQIDBo0SFbftGkTvvrqK0RGRuqyv0qD1zQRlR1N03HTp0+Hvr6+At0QUVVSkt/fJb57LioqCu3atStSb9euHU6dOlXS3RERFSs/P7/Yu+MYmIiovJX4qkkHBwd8/fXXWLRokay+bt06ODg46KwxIqreIiMji6z91rt3b41/aSMiKg8lDk3Lli1D//79sW/fPri7uwMATp06hWvXruGXX37ReYNEVP1oOrs0c+ZMflUTESmqxNNzvXr1wrVr19C3b188ePAADx48QN++fXH16lX06tWrLHokomoiJyen2Ok4BiYiUhoXt9QRXghO9GL279+PkydPympvv/02WrRooVBHRFQd6Hxxy6elpKTgm2++weXLlwEAzZo1w/Dhw2FhYVGa3RFRNcfpOCKqDEo8PXfmzBk0bNgQy5Ytk6bnli5dioYNG+Kvv/4qix6JqIrKysridBwRVRolnp577bXX0KhRI3z99dfSVxbk5eVhxIgR+Pvvv3H06NEyabSi4/QcUcns2LED58+fl9UGDhwIFxcXhToiouqoJL+/SxyaTExMcPbsWTRp0kRWv3TpEtq1a4fMzMySd1wFMDQRaa+4s0tEROWtTBe3VKvVSExMLFK/efMmatasWdLdEVE1kpGRwcBERJVWiS8EHzBgAPz9/fH555+jU6dOAIDjx49j0qRJRb5ahYio0KZNm3Dt2jVZzdfXF05OTso0RERUQiUOTZ9//jlUKhWGDh2KvLw8AICBgQHGjBmDBQsW6LxBIqr8eHaJiKqCUq/TlJmZiRs3bgAAGjZsCFNTU502VtnwmiaiolJTUxEWFlakzsBERBVFma/TBACmpqZcdI6IivX111/j9u3bstqIESNQr149hToiInoxWoem4cOHazXu22+/LXUzRFQ1cDqOiKoirUPThg0b0KBBA7Rp0wb85hUi0uT+/ftYtWqVrGZsbIwpU6Yo1BERke5oHZrGjBmDzZs3Iz4+HsOGDcP777+P2rVrl2VvRFSJLF++HCkpKbLamDFjYG1trUxDREQ6pvU6TatXr0ZSUhImT56M3377DQ4ODnjvvfcQHh7OM09E1dzs2bOLBKaQkBAGJiKqUkp999w///yDDRs24LvvvkNeXh4uXrwIc3NzXfdXafDuOaqO7ty5g7Vr18pqdevWRUBAgEIdERGVTLncPaenpweVSgUhBPLz80u7GyKqpObPn4/c3FxZbdy4cZy2J6Iqq0Rfo5KdnY3NmzfjjTfeQOPGjXHhwgWsWrUKiYmJ1fosE1F1M3v27CKBKSQkhIGJiKo0rc80jR07Flu2bIGDgwOGDx+OzZs3o27dumXZGxFVMDdv3iyyrIijoyOGDRumUEdEROVH62ua9PT04OjoiDZt2kClUhU7bvv27TprrjLhNU1U1WlaeykoKIhf1E1ElVqZXNM0dOjQZ4YlIqq6uFglEVEJF7fUtdDQUGzfvh1XrlyBiYkJOnXqhIULF8LFxUUak5WVhY8//hhbtmxBdnY2vLy88MUXX8DGxkYak5iYiDFjxuDw4cMwNzeHr68vQkNDUaPG/729yMhIBAUF4eLFi3BwcMD06dPh5+cn62f16tVYvHgxkpOT0apVK6xcuRIdOnTQ+fsmqixu3LiBH374QVZr0qQJBgwYoFBHRETKKdGF4Lp25MgRBAQE4M8//8SBAweQm5uLHj16ICMjQxozceJE/Pbbb9i2bRuOHDmC27dv4+2335a25+fno3fv3sjJycGJEyewceNGbNiwATNnzpTGxMfHo3fv3ujatStiYmIwYcIEjBgxAuHh4dKYrVu3IigoCCEhIfjrr7/QqlUreHl54e7du+VzMIgqmNmzZxcJTJMmTWJgIqJqq9TrNJWFe/fuwdraGkeOHEHnzp2RmpoKKysrbNq0Ce+88w4A4MqVK2jatCmioqLQsWNH7Nu3D3369MHt27els09r167FlClTcO/ePRgaGmLKlCnYs2cPYmNjpdcaOHAgUlJSsH//fgCAu7s72rdvL30FREFBARwcHDBu3DhMnTr1ub3zmiaqKoQQmDNnTpE6p+OIqCoqye9vRc80PS01NRUApNuWo6OjkZubC09PT2lMkyZN4OjoiKioKABAVFQUWrRoIZuu8/LyQlpaGi5evCiNeXIfhWMK95GTk4Po6GjZGD09PXh6ekpjnpadnY20tDTZD1Fld/ny5SKBqXXr1gxMRER4gcUtda2goAATJkzAK6+8gubNmwMAkpOTYWhoCEtLS9lYGxsbJCcnS2OeDEyF2wu3PWtMWloa/vvvPzx8+BD5+fkax1y5ckVjv6GhoRovjiWqrDR9nqdOnQojIyMFuiEiqngqzJmmgIAAxMbGYsuWLUq3opXg4GCkpqZKPzdv3lS6JaJSEUIUe3ccAxMR0f+pEGeaAgMDsXv3bhw9ehT169eX6ra2tsjJyUFKSorsbNOdO3dga2srjTl16pRsf3fu3JG2Ff6zsPbkGLVaDRMTE+jr60NfX1/jmMJ9PM3IyIi/UKjS++OPP3Do0CFZzcPDAz169FCoIyKiikvRM01CCAQGBmLHjh04dOgQnJ2dZdvd3NxgYGCAiIgIqRYXF4fExER4eHgAePwH/IULF2R3uR04cABqtRqurq7SmCf3UTimcB+GhoZwc3OTjSkoKEBERIQ0hqiqmT17dpHANG3aNAYmIqJiKHqmKSAgAJs2bcKvv/6KmjVrStcgWVhYwMTEBBYWFvD390dQUBBq164NtVqNcePGwcPDAx07dgQA9OjRA66urvjggw+waNEiJCcnY/r06QgICJDOBI0ePRqrVq3C5MmTMXz4cBw6dAg//fQT9uzZI/USFBQEX19ftGvXDh06dEBYWBgyMjL49RBU5RQUFGDu3LlF6m3ahMDAQIGGiIgqCUWXHChuhfH169dLC08WLm65efNm2eKWT06b/fPPPxgzZgwiIyNhZmYGX19fLFiwoMjilhMnTsSlS5dQv359zJgxo8jilqtWrZIWt2zdujVWrFgBd3d3rd4LlxygyiA8PBx//vmnrNa6dWv069dPoY6IiJRVkt/fFWqdpsqMoYkqOk0Xe3/66aeyv1wQEVU3ZfLdc0RUOeXl5WHevHlF6lx7iYioZBiaiKqwnTt34ty5c7Jap06d8MYbbyjUERFR5cXQRFRFaZqOmzFjBvT0KszybERElQpDE1EVk5OTg9DQ0CJ1TscREb0YhiaiKuTHH3/E9evXZTVPT0+88sorCnVERFR1MDQRVRGapuNmzpxZ7NIeRERUMgxNRJVcZmYmFi9eXKTO6TgiIt1iaCKqxL788ktpJf1Cffr0gZubm0IdERFVXQxNRJWUpuk4nl0iIio7DE1ElcyjR4+wdOnSInUGJiKissXQRFSJaDq79M4776BZs2YKdENEVL0wNBFVEpyOIyJSFkMTUQX3v//9D6tXry5SZ2AiIipfDE1EFZims0t//TUA/v5NFOiGiKh6Y2giqqA4HUdEVLEwNBFVMLdv38bXX39dpM7ARESkLIYmogpE09klX19fODk5lX8zREQkw9BEVEFwOo6IqGJjaCJSGKfjiIgqB4YmIgVpOrsUFTUS+/fbK9ANERE9i57SDRBVV5oCU3h4CMaOZWAiIqqIeKaJqJwlJCRg48aNspparcbEiRPBGTkiooqLoYmoHGk6uzR+/HhYWlqWfzNERFQiDE1E5YR3xxERVW4MTURl7OrVq9i8ebOsZmdnh1GjRinUERERlQZDE1EZ0nR26eOPP4a5ubkC3RAR0YtgaCIqI5yOIyKqWhiaiHTswoUL2L59u6zWqFEjDBkyRKGOiIhIFxiaiHRI09mlyZMnw8TERIFuiIhIlxiaiHRACIE5c+YUqXM6joio6mBoInpBp0+fxt69e2W1li1b4q233lKoIyIiKgsMTUQvQNN0XHBwMAwNDRXohoiIyhJDE1EpFBQUYO7cuUXqnI4jIqq6GJqISuiPP/7AoUOHZDV3d3d4e3sr1BEREZUHhiaiEtA0Hffpp5+iRg3+r0REVNXxT3oiLeTn5+Ozzz4rUud0HBFR9cHQRPQcmu6Ou3btdfzwQxeFOiIiIiUwNBE9g6bpuPDwGZg6VU+BboiISEkMTUQa5OXlYd68eUXqISEh4IwcEVH1xNBE9JRjx44hIiJCVnvvvffQtGlThToiIqKKgKGJ6AmapuNmzpwJlUqlQDdERFSRMDQRAcjJyUFoaGiROu+OIyKiQgxNVO0dPHgQx48fl9Xef/99NGzYUKGOiIioImJoompN891xMxESwuk4IiKSY2iiaum///7DokWLZDWVSg/798/A1KkKNUVERBUaQxNVO7t370Z0dLSsNmzYMDg6OmLmTIWaIiKiCo+hiaoVTdNxvNibiIi0wdBE1UJ6ejqWLFkiq9WsWRNBQUEKdURERJUNQxNVeT///DMuXrwoq40aNQp2dnYKdURERJURQxNVaZyOIyIiXWFooiopNTUVYWFhspq1tTXGjBmjTENERFTpMTRRlfP999/j77//ltUCAgJQt25dhToiIqKqQE/JFz969Cj69u0Le3t7qFQq7Ny5U7bdz88PKpVK9uPt7S0b8+DBAwwZMgRqtRqWlpbw9/dHenq6bMz58+fx2muvwdjYGA4ODkXW5wGAbdu2oUmTJjA2NkaLFi2wd+9enb9fKnuzZ88uEphCQkIYmIiI6IUpGpoyMjLQqlUrrF69utgx3t7eSEpKkn42b94s2z5kyBBcvHgRBw4cwO7du3H06FGMGjVK2p6WloYePXqgQYMGiI6OxuLFizFr1ix89dVX0pgTJ05g0KBB8Pf3x9mzZ+Hj4wMfHx/Exsbq/k1Tmbh//36R65ecnJx4/RIREemMSgghlG4CAFQqFXbs2AEfHx+p5ufnh5SUlCJnoApdvnwZrq6uOH36NNq1awcA2L9/P3r16oVbt27B3t4ea9aswaeffork5GQYGhoCAKZOnYqdO3fiypUrAIABAwYgIyMDu3fvlvbdsWNHtG7dGmvXrtWq/7S0NFhYWCA1NRVqtboUR4BK66uvvkJSUpKsNn78eFhaWirTEBERVRol+f2t6JkmbURGRsLa2houLi4YM2YM7t+/L22LioqCpaWlFJgAwNPTE3p6ejh58qQ0pnPnzlJgAgAvLy/ExcXh4cOH0hhPT0/Z63p5eSEqKqrYvrKzs5GWlib7ofI3e/bsIoEpJCSEgYmIiHSuQocmb29vfPfdd4iIiMDChQtx5MgR9OzZE/n5+QCA5ORkWFtby55To0YN1K5dG8nJydIYGxsb2ZjCx88bU7hdk9DQUFhYWEg/Dg4OL/ZmqUTu3LlTZDquadOmnI4jIqIyU6Hvnhs4cKD07y1atEDLli3RsGFDREZGonv37gp2BgQHB8tWk05LS2NwKidhYWFITU2V1YKCglCzZk2FOiIiouqgQoemp7300kuoW7curl+/ju7du8PW1hZ3796VjcnLy8ODBw9ga2sLALC1tcWdO3dkYwofP29M4XZNjIyMYGRk9MLviUqGi1USEZFSKvT03NNu3bqF+/fvS19/4eHhgZSUFNk31h86dAgFBQVwd3eXxhw9ehS5ubnSmAMHDsDFxQW1atWSxkRERMhe68CBA/Dw8Cjrt0RaunXrVpHA1KZNGwYmIiIqN4qeaUpPT8f169elx/Hx8YiJiUHt2rVRu3ZtzJ49G/3794etrS1u3LiByZMno1GjRvDy8gLw+BoWb29vjBw5EmvXrkVubi4CAwMxcOBA2NvbAwAGDx6M2bNnw9/fH1OmTEFsbCyWL1+OZcuWSa87fvx4dOnSBUuWLEHv3r2xZcsWnDlzRrYsASln/vz5stALAJMmTYKpqalCHRERUXWk6JIDkZGR6Nq1a5G6r68v1qxZAx8fH5w9exYpKSmwt7dHjx49MHfuXNlF2w8ePEBgYCB+++036OnpoX///lixYgXMzc2lMefPn0dAQABOnz6NunXrYty4cZgyZYrsNbdt24bp06cjISEBL7/8MhYtWoRevXpp/V645EDZ4HQcERGVpZL8/q4w6zRVdgxNuhUfH4/vvvtOVvPw8ECPHj0U6oiIiKqikvz+rlQXglP1oOns0tSpU3nhPRERKYqhiSoMIQTmzJlTpM7pOCIiqggYmqhCiIuLw5YtW2S1rl27onPnzgp1REREJMfQRIrTNB03bdo0GBgYKNANERGRZgxNpBhOxxERUWXC0ESKuHDhArZv3y6reXt7S4uSEhERVTQMTVTuNE3HTZ8+Hfr6+gp0Q0REpB2GJio3BQUFmDt3bpE6p+OIiKgyYGiicnHmzBns2bNHVuvXrx9at26tTENEREQlxNBEZU7TdNyMGTOgp1epvi+aiIiqOYYmKjN5eXmYN29ekTqn44iIqDJiaKIycfz4cRw8eFBWe/fdd+Hq6qpQR0RERC+GoYl0TtN03MyZM6FSqRTohoiISDcYmkhncnJyEBoaWqTO6TgiIqoKGJpIJyIiInDs2DFZbciQIWjUqJFCHREREekWQxO9ME7HERFRdcDQRKWWlZWFhQsXymoqlQozZ85UqCMiIqKyw9BEpbJ3716cPn1aVhs2bBgcHR0V6oiIiKhsMTRRiWmajuPF3kREVNUxNJHWNE3HmZmZ4ZNPPlGoIyIiovLD0ERaOXnyJPbv3y+rjRo1CnZ2dgp1REREVL4Ymui5NE3HtWkTAuYlIiKqThiaqFiZmZlYvHixrJaQ0BHr13sp1BEREZFyGJpIoz/++AOHDh2S1SIjJ2LiRLVCHRERESmLoYmKKO7uON4gR0RE1RlDE0nS09OxZMkSWa1z587o2rWrQh0RERFVHAxNBAA4ePAgjh8/Lqt98sknMDMzU6gjIiKiioWhibhYJRERkRYYmqqx1NRUhIWFyWqenp545ZVXlGmIiIioAmNoqqY0fXfc5MmTYWJiolBHREREFRtDUzXE6TgiIqKSY2iqRu7fv49Vq1bJar169UL79u0V6oiIiKjyYGiqJnbs2IHz58/LalOnToWRkZFCHREREVUuDE3VAKfjiIiIXhxDUxV29+5drFmzRlbz8fFBq1atFOqIiIio8mJoqqK2bNmCuLg4WW3atGkwMDBQqCMiIqLKjaGpihFCYM6cObKanp4eZsyYoVBHREREVQNDUxVy+/ZtfP3117Lau+++C1dXV4U6IiIiqjoYmqqIjRs3IiEhQVabPn069PX1lWmIiIioimFoquQ0TceZmppi0qRJCnVERERUNTE0VWKJiYlYv369rDZo0CA0btxYoY6IiIiqLoamSurMmTPYs2ePrDZjxgzo6ekp1BEREVHVxtBUyQghsHLlSjx8+FCqZWTUxqJF4xTsioiIqOpjaKpEHjx4gJUrV8pqR49+hPHjaynUERERUfXB0FRJ/PnnnwgPD5ce16lTBwEBAVCpVAp2RUREVH0wNFVwQgiEhYUhLS1NqvXp0wdubm4KdkVERFT9MDRVcP/++68sME2YMAEWFhYKdkRERFQ98VarCq5OnTr4999WuHy5CcLDZzIwERERKYShqYIzMTFBnz4+SEwcgKlTef0SERGRUjg9Vwm8+ebjHyIiIlIOzzQRERERaYGhiYiIiEgLDE1EREREWlA0NB09ehR9+/aFvb09VCoVdu7cKdsuhMDMmTNhZ2cHExMTeHp64tq1a7IxDx48wJAhQ6BWq2FpaQl/f3+kp6fLxpw/fx6vvfYajI2N4eDggEWLFhXpZdu2bWjSpAmMjY3RokUL7N27V+fvl4iIiCovRUNTRkYGWrVqhdWrV2vcvmjRIqxYsQJr167FyZMnYWZmBi8vL2RlZUljhgwZgosXL+LAgQPYvXs3jh49ilGjRknb09LS0KNHDzRo0ADR0dFYvHgxZs2aha+++koac+LECQwaNAj+/v44e/YsfHx84OPjg9jY2LJ780RERFS5iAoCgNixY4f0uKCgQNja2orFixdLtZSUFGFkZCQ2b94shBDi0qVLAoA4ffq0NGbfvn1CpVKJf//9VwghxBdffCFq1aolsrOzpTFTpkwRLi4u0uP33ntP9O7dW9aPu7u7+PDDD7XuPzU1VQAQqampWj+HiIiIlFWS398V9pqm+Ph4JCcnw9PTU6pZWFjA3d0dUVFRAICoqChYWlqiXbt20hhPT0/o6enh5MmT0pjOnTvD0NBQGuPl5YW4uDg8fPhQGvPk6xSOKXwdTbKzs5GWlib7ISIioqqrwoam5ORkAICNjY2sbmNjI21LTk6GtbW1bHuNGjVQu3Zt2RhN+3jyNYobU7hdk9DQUFhYWEg/Dg4OJX2LREREVIlU2NBU0QUHByM1NVX6uXnzptItERERURmqsKHJ1tYWAHDnzh1Z/c6dO9I2W1tb3L17V7Y9Ly8PDx48kI3RtI8nX6O4MYXbNTEyMoJarZb9EBERUdVVYUOTs7MzbG1tERERIdXS0tJw8uRJeHh4AAA8PDyQkpKC6OhoacyhQ4dQUFAAd3d3aczRo0eRm5srjTlw4ABcXFxQq1YtacyTr1M4pvB1iIiIiBQNTenp6YiJiUFMTAyAxxd/x8TEIDExESqVChMmTMBnn32GXbt24cKFCxg6dCjs7e3h4+MDAGjatCm8vb0xcuRInDp1CsePH0dgYCAGDhwIe3t7AMDgwYNhaGgIf39/XLx4EVu3bsXy5csRFBQk9TF+/Hjs378fS5YswZUrVzBr1iycOXMGgYGB5X1IiIiIqKIqh7v5inX48GEBoMiPr6+vEOLxsgMzZswQNjY2wsjISHTv3l3ExcXJ9nH//n0xaNAgYW5uLtRqtRg2bJh49OiRbMy5c+fEq6++KoyMjES9evXEggULivTy008/icaNGwtDQ0PRrFkzsWfPnhK9Fy45QEREVPmU5Pe3SgghFMxsVUZqaiosLS1x8+ZNXt9ERERUSaSlpcHBwQEpKSmwsLB45tga5dRTlffo0SMA4NIDREREldCjR4+eG5p4pklHCgoKcPv2bdSsWRMqlUrjmMI0y7NRusNjWjZ4XHWPx7Rs8LjqXnU7pkIIPHr0CPb29tDTe/al3jzTpCN6enqoX7++VmO5RIHu8ZiWDR5X3eMxLRs8rrpXnY7p884wFaqwSw4QERERVSQMTURERERaYGgqR0ZGRggJCYGRkZHSrVQZPKZlg8dV93hMywaPq+7xmBaPF4ITERERaYFnmoiIiIi0wNBEREREpAWGJiIiIiItMDQRERERaYGh6TmOHj2Kvn37wt7eHiqVCjt37pRtF0Jg5syZsLOzg4mJCTw9PXHt2jXZmAcPHmDIkCFQq9WwtLSEv78/0tPTZWPOnz+P1157DcbGxnBwcMCiRYuK9LJt2zY0adIExsbGaNGiBfbu3avz91senndM/fz8oFKpZD/e3t6yMTymcqGhoWjfvj1q1qwJa2tr+Pj4IC4uTjYmKysLAQEBqFOnDszNzdG/f3/cuXNHNiYxMRG9e/eGqakprK2tMWnSJOTl5cnGREZGom3btjAyMkKjRo2wYcOGIv2sXr0aTk5OMDY2hru7O06dOqXz91zWtDmmr7/+epHP6ujRo2VjeEzl1qxZg5YtW0oLJ3p4eGDfvn3Sdn5OS+55x5SfUx0qwy8OrhL27t0rPv30U7F9+3YBQOzYsUO2fcGCBcLCwkLs3LlTnDt3Trz55pvC2dlZ/Pfff9IYb29v0apVK/Hnn3+KP/74QzRq1EgMGjRI2p6amipsbGzEkCFDRGxsrNi8ebMwMTERX375pTTm+PHjQl9fXyxatEhcunRJTJ8+XRgYGIgLFy6U+THQtecdU19fX+Ht7S2SkpKknwcPHsjG8JjKeXl5ifXr14vY2FgRExMjevXqJRwdHUV6ero0ZvTo0cLBwUFERESIM2fOiI4dO4pOnTpJ2/Py8kTz5s2Fp6enOHv2rNi7d6+oW7euCA4Olsb8/fffwtTUVAQFBYlLly6JlStXCn19fbF//35pzJYtW4ShoaH49ttvxcWLF8XIkSOFpaWluHPnTvkcDB3R5ph26dJFjBw5UvZZffKb0nlMi9q1a5fYs2ePuHr1qoiLixPTpk0TBgYGIjY2VgjBz2lpPO+Y8nOqOwxNJfD0L/iCggJha2srFi9eLNVSUlKEkZGR2Lx5sxBCiEuXLgkA4vTp09KYffv2CZVKJf79918hhBBffPGFqFWrlsjOzpbGTJkyRbi4uEiP33vvPdG7d29ZP+7u7uLDDz/U6Xssb8WFpn79+hX7HB7T57t7964AII4cOSKEePy5NDAwENu2bZPGXL58WQAQUVFRQojHYVZPT08kJydLY9asWSPUarV0HCdPniyaNWsme60BAwYILy8v6XGHDh1EQECA9Dg/P1/Y29uL0NBQ3b/RcvT0MRXi8S+j8ePHF/scHlPt1KpVS6xbt46fUx0qPKZC8HOqS5yeewHx8fFITk6Gp6enVLOwsIC7uzuioqIAAFFRUbC0tES7du2kMZ6entDT08PJkyelMZ07d4ahoaE0xsvLC3FxcXj48KE05snXKRxT+DpVTWRkJKytreHi4oIxY8bg/v370jYe0+dLTU0FANSuXRsAEB0djdzcXNn7bdKkCRwdHWWf1RYtWsDGxkYa4+XlhbS0NFy8eFEa86xjlpOTg+joaNkYPT09eHp6Vvrj+vQxLfTjjz+ibt26aN68OYKDg5GZmSlt4zF9tvz8fGzZsgUZGRnw8PDg51QHnj6mhfg51Q1+Ye8LSE5OBgDZB63wceG25ORkWFtby7bXqFEDtWvXlo1xdnYuso/CbbVq1UJycvIzX6cq8fb2xttvvw1nZ2fcuHED06ZNQ8+ePREVFQV9fX0e0+coKCjAhAkT8Morr6B58+YAHr9nQ0NDWFpaysY+/VnVdDwKtz1rTFpaGv777z88fPgQ+fn5GsdcuXJFZ++xvGk6pgAwePBgNGjQAPb29jh//jymTJmCuLg4bN++HQCPaXEuXLgADw8PZGVlwdzcHDt27ICrqytiYmL4OS2l4o4pwM+pLjE0UYUzcOBA6d9btGiBli1bomHDhoiMjET37t0V7KxyCAgIQGxsLI4dO6Z0K1VGccd01KhR0r+3aNECdnZ26N69O27cuIGGDRuWd5uVhouLC2JiYpCamoqff/4Zvr6+OHLkiNJtVWrFHVNXV1d+TnWI03MvwNbWFgCK3Nlx584daZutrS3u3r0r256Xl4cHDx7Ixmjax5OvUdyYwu1V2UsvvYS6devi+vXrAHhMnyUwMBC7d+/G4cOHUb9+falua2uLnJwcpKSkyMY//Vkt7TFTq9UwMTFB3bp1oa+vX6WOa3HHVBN3d3cAkH1WeUyLMjQ0RKNGjeDm5obQ0FC0atUKy5cv5+f0BRR3TDXh57T0GJpegLOzM2xtbRERESHV0tLScPLkSWku2cPDAykpKYiOjpbGHDp0CAUFBdIH18PDA0ePHkVubq405sCBA3BxcUGtWrWkMU++TuGYJ+esq6pbt27h/v37sLOzA8BjqokQAoGBgdixYwcOHTpUZGrSzc0NBgYGsvcbFxeHxMRE2Wf1woULskB64MABqNVq6TT/846ZoaEh3NzcZGMKCgoQERFR6Y7r846pJjExMQAg+6zymD5fQUEBsrOz+TnVocJjqgk/py9A6SvRK7pHjx6Js2fPirNnzwoAYunSpeLs2bPin3/+EUI8XnLA0tJS/Prrr+L8+fOiX79+GpccaNOmjTh58qQ4duyYePnll2W3x6ekpAgbGxvxwQcfiNjYWLFlyxZhampa5Pb4GjVqiM8//1xcvnxZhISEVNrb4591TB89eiQ++eQTERUVJeLj48XBgwdF27ZtxcsvvyyysrKkffCYyo0ZM0ZYWFiIyMhI2W3FmZmZ0pjRo0cLR0dHcejQIXHmzBnh4eEhPDw8pO2Ftx336NFDxMTEiP379wsrKyuNtx1PmjRJXL58WaxevVrjbcdGRkZiw4YN4tKlS2LUqFHC0tJSdmdOZfC8Y3r9+nUxZ84ccebMGREfHy9+/fVX8dJLL4nOnTtL++AxLWrq1KniyJEjIj4+Xpw/f15MnTpVqFQq8fvvvwsh+DktjWcdU35OdYuh6TkOHz4sABT58fX1FUI8XnZgxowZwsbGRhgZGYnu3buLuLg42T7u378vBg0aJMzNzYVarRbDhg0Tjx49ko05d+6cePXVV4WRkZGoV6+eWLBgQZFefvrpJ9G4cWNhaGgomjVrJvbs2VNm77ssPeuYZmZmih49eggrKythYGAgGjRoIEaOHFnkfzoeUzlNxxOAWL9+vTTmv//+E2PHjhW1atUSpqam4q233hJJSUmy/SQkJIiePXsKExMTUbduXfHxxx+L3Nxc2ZjDhw+L1q1bC0NDQ/HSSy/JXqPQypUrhaOjozA0NBQdOnQQf/75Z1m87TL1vGOamJgoOnfuLGrXri2MjIxEo0aNxKRJk2Tr3wjBY/q04cOHiwYNGghDQ0NhZWUlunfvLgUmIfg5LY1nHVN+TnVLJYQQ5Xdei4iIiKhy4jVNRERERFpgaCIiIiLSAkMTERERkRYYmoiIiIi0wNBEREREpAWGJiIiIiItMDQRERERaYGhiYgqtOPHj6NFixYwMDCAj4+P0u0QUTXG0EREZcbPzw8qlQoqlQoGBgZwdnbG5MmTkZWVpfU+goKC0Lp1a8THx2PDhg1l12w52rBhg3Rc9PX1UatWLbi7u2POnDlITU0t8f5UKhV27typ+0aJSIahiYjKlLe3N5KSkvD3339j2bJl+PLLLxESEqL182/cuIFu3bqhfv36sLS0LFUPOTk5pXpeaQghkJeX99xxarUaSUlJuHXrFk6cOIFRo0bhu+++Q+vWrXH79u1y6JSISoqhiYjKlJGREWxtbeHg4AAfHx94enriwIEDAB5/C3poaCicnZ1hYmKCVq1a4eeffwYAJCQkQKVS4f79+xg+fDhUKpV0punIkSPo0KEDjIyMYGdnh6lTp8qCyuuvv47AwEBMmDABdevWhZeXFyIjI6FSqRAeHo42bdrAxMQE3bp1w927d7Fv3z40bdoUarUagwcPRmZmprSvZ/UIQNrvvn374ObmBiMjIxw7duy5x0WlUsHW1hZ2dnZo2rQp/P39ceLECaSnp2Py5MnSOCcnJ4SFhcme27p1a8yaNUvaDgBvvfUWVCoVnJyckJCQAD09PZw5c0b2vLCwMDRo0AAFBQXP7Y+IimJoIqJyExsbixMnTsDQ0BAAEBoaiu+++w5r167FxYsXMXHiRLz//vs4cuQIHBwckJSUBLVajbCwMCQlJWHAgAH4999/0atXL7Rv3x7nzp3DmjVr8M033+Czzz6TvdbGjRthaGiI48ePY+3atVJ91qxZWLVqFU6cOIGbN2/ivffeQ1hYGDZt2oQ9e/bg999/x8qVK6Xxz+rxSVOnTsWCBQtw+fJltGzZslTHx9raGkOGDMGuXbuQn5+v1XNOnz4NAFi/fj2SkpJw+vRpODk5wdPTE+vXr5eNXb9+Pfz8/KCnxz/6iUpF4S8MJqIqzNfXV+jr6wszMzNhZGQkAAg9PT3x888/i6ysLGFqaipOnDghe46/v78YNGiQ9NjCwkL2berTpk0TLi4uoqCgQKqtXr1amJubi/z8fCGEEF26dBFt2rSR7ffw4cMCgDh48KBUCw0NFQDEjRs3pNqHH34ovLy8hBBCqx4L97tz506tj8v69euFhYWFxm1r1qwRAMSdO3eEEEI0aNBALFu2TDamVatWIiQkRHoMQOzYsUM2ZuvWraJWrVoiKytLCCFEdHS0UKlUIj4+Xus+iUiuhpKBjYiqvq5du2LNmjXIyMjAsmXLUKNGDfTv3x8XL15EZmYm3njjDdn4nJwctGnTptj9Xb58GR4eHlCpVFLtlVdeQXp6Om7dugVHR0cAgJubm8bnP3kWyMbGBqampnjppZdktVOnTgEArl+/rnWP7dq1e9Zh0JoQAgBk7680fHx8EBAQgB07dmDgwIHYsGEDunbtKk3nEVHJMTQRUZkyMzNDo0aNAADffvstWrVqhW+++QbNmzcHAOzZswf16tWTPcfIyEgnr6uJgYGB9O+Fd/U9SaVSSdf8pKena91jca9XUpcvX4ZarUadOnUAAHp6elKQKpSbm/vc/RgaGmLo0KFYv3493n77bWzatAnLly/XSY9E1RVDExGVGz09PUybNg1BQUG4evUqjIyMkJiYiC5dumi9j6ZNm+KXX36BEEI6G3P8+HHUrFkT9evX12m/rq6upeqxtO7evYtNmzbBx8dHuu7IysoKSUlJ0pi0tDTEx8fLnmdgYKDxGqgRI0agefPm+OKLL5CXl4e33367bN8AURXH0ERE5erdd9/FpEmT8OWXX+KTTz7BxIkTUVBQgFdffRWpqak4fvw41Go1fH19NT5/7NixCAsLw7hx4xAYGIi4uDiEhIQgKChI5xc416xZs1Q9akMIgeTkZAghkJKSgqioKMyfPx8WFhZYsGCBNK5bt27YsGED+vbtC0tLS8ycORP6+vqyfTk5OSEiIgKvvPIKjIyMUKtWLQCPA2bHjh0xZcoUDB8+HCYmJqXul4gYmoionNWoUQOBgYFYtGgR4uPjYWVlhdDQUPz999+wtLRE27ZtMW3atGKfX69ePezduxeTJk1Cq1atULt2bfj7+2P69Oll0u/cuXNL3KM20tLSYGdnB5VKBbVaDRcXF/j6+mL8+PFQq9XSuODgYMTHx6NPnz6wsLDA3Llzi5xpWrJkCYKCgvD111+jXr16SEhIkLYVLmUwfPjwF+qXiACVeHqynIiIqoy5c+di27ZtOH/+vNKtEFV6XKyDiKgKSk9PR2xsLFatWoVx48Yp3Q5RlcDQRESkY82aNYO5ubnGnx9//LFceggMDISbmxtef/11Ts0R6Qin54iIdOyff/4pdlkAGxsb1KxZs5w7IiJdYGgiIiIi0gKn54iIiIi0wNBEREREpAWGJiIiIiItMDQRERERaYGhiYiIiEgLDE1EREREWmBoIiIiItICQxMRERGRFv4fo/3u40URdIAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAX0pJREFUeJzt3XlcVNX/P/DXgAz7gAuropILauKGirRYKYlLKmmf3FJI1DSwlFLETExL+LhrbpWlLe6VS26EKFpKLiQqLpQGYQnoVwUElfX8/vDH/XidQQccuAO8no/HPHLOPXPnPbfJeXXOveeqhBACRERERPRIJkoXQERERFQdMDQRERER6YGhiYiIiEgPDE1EREREemBoIiIiItIDQxMRERGRHhiaiIiIiPTA0ERERESkB4YmIiIiIj0wNBFRraJSqTBr1iyly5AEBgaiadOmSpdBRHpgaCIixa1btw4qlUp6WFhYoGXLlggJCUFmZmalvvfRo0cxa9YsZGVlGXS/L774ouwz1atXD126dMFXX32FkpISg7zH3LlzsX37doPsi4ger47SBRARlZo9ezbc3d1x7949/Prrr1i1ahX27NmDpKQkWFlZGeQ97t69izp1/vdX39GjR/HRRx8hMDAQ9vb2BnmPUo0aNUJkZCQA4Pr16/jmm28QFBSEP/74A1FRUU+8/7lz5+K1116Dv7//E++LiB6PoYmIjEafPn3QuXNnAMCYMWNQv359LFq0CDt27MCwYcMqvN+SkhIUFBTAwsICFhYWhir3sezs7PDGG29Iz9966y14eHhg+fLlmDNnDszMzKqsFiJ6cpyeIyKj1aNHDwBASkoKAGDBggV45plnUL9+fVhaWsLLywvff/+91utUKhVCQkKwfv16PP300zA3N8e+ffukbaXnNM2aNQtTpkwBALi7u0tTaampqXjhhRfQvn17nXV5eHjAz8+v3J/HysoK3bp1Q15eHq5fv15mv7y8PLz33ntwc3ODubk5PDw8sGDBAgghZJ8xLy8PX3/9tVR3YGBguWsiIv1xpImIjNbly5cBAPXr1wcALF26FAMGDMCIESNQUFCATZs24T//+Q927dqFfv36yV574MABbNmyBSEhIWjQoIHOk60HDRqEP/74Axs3bsTixYvRoEEDAICDgwNGjhyJsWPHIikpCW3btpVec+LECfzxxx+YMWNGhT7TX3/9BVNT0zKnAoUQGDBgAA4ePIigoCB06NAB0dHRmDJlCv79918sXrwYAPDtt99izJgx6Nq1K8aNGwcAaNasWYVqIiI9CSIiha1du1YAEPv37xfXr18XV65cEZs2bRL169cXlpaW4p9//hFCCHHnzh3Z6woKCkTbtm1Fjx49ZO0AhImJiTh37pzWewEQERER0vP58+cLACIlJUXWLysrS1hYWIiwsDBZ+zvvvCOsra1Fbm7uIz/TCy+8IFq1aiWuX78url+/Li5cuCDeeecdAUD0799f6hcQECCaNGkiPd++fbsAID7++GPZ/l577TWhUqnEpUuXpDZra2sREBDwyDqIyHA4PUdERsPX1xcODg5wc3PD0KFDYWNjg23btqFhw4YAAEtLS6nvrVu3kJ2djeeffx6///671r5eeOEFtGnTpsK12NnZYeDAgdi4caM0LVZcXIzNmzfD398f1tbWj93HxYsX4eDgAAcHB7Ru3Rqffvop+vXrh6+++qrM1+zZswempqZ45513ZO3vvfcehBDYu3dvhT8TET0ZTs8RkdFYsWIFWrZsiTp16sDJyQkeHh4wMfnf/9vt2rULH3/8MRITE5Gfny+1q1QqrX25u7s/cT2jRo3C5s2b8csvv6B79+7Yv38/MjMzMXLkSL1e37RpU3zxxRfSMgotWrSAo6PjI1/z999/w9XVFba2trL21q1bS9uJSBkMTURkNLp27SpdPfewX375BQMGDED37t2xcuVKuLi4wMzMDGvXrsWGDRu0+j84KlVRfn5+cHJywnfffYfu3bvju+++g7OzM3x9ffV6vbW1td59icj4cXqOiKqFH374ARYWFoiOjsbo0aPRp08fgwQSXaNUpUxNTTF8+HB8//33uHXrFrZv345hw4bB1NT0id+3LE2aNMHVq1dx+/ZtWfvFixel7aUeVTsRGR5DExFVC6amplCpVCguLpbaUlNTn3hF7NJzk8paEXzkyJG4desW3nrrLeTm5srWXaoMffv2RXFxMZYvXy5rX7x4MVQqFfr06SO1WVtbG3wlcyIqG6fniKha6NevHxYtWoTevXtj+PDhuHbtGlasWIHmzZvjzJkzFd6vl5cXAOCDDz7A0KFDYWZmhv79+0thqmPHjmjbti22bt2K1q1bo1OnTgb5PGXp378/XnrpJXzwwQdITU1F+/bt8fPPP2PHjh2YNGmSbFkBLy8v7N+/H4sWLYKrqyvc3d3h7e1dqfUR1WYcaSKiaqFHjx748ssvkZGRgUmTJmHjxo3473//i1dfffWJ9tulSxfMmTMHp0+fRmBgIIYNG6a18OSoUaMAQO8TwJ+EiYkJdu7ciUmTJmHXrl2YNGkSzp8/j/nz52PRokWyvosWLYKXlxdmzJiBYcOGYdWqVZVeH1FtphLigSVmiYhIy9KlSzF58mSkpqaicePGSpdDRAphaCIiegQhBNq3b4/69evj4MGDSpdDRAriOU1ERDrk5eVh586dOHjwIM6ePYsdO3YoXRIRKYwjTUREOqSmpsLd3R329vZ4++238cknnyhdEhEpjKGJiIiISA+8eo6IiIhIDwxNRERERHrgieAGUlJSgqtXr8LW1pa3NiAiIqomhBC4ffs2XF1dZTcI14WhyUCuXr0KNzc3pcsgIiKiCrhy5QoaNWr0yD4MTQZia2sL4P5B12g0CldDRERE+sjJyYGbm5v0O/4oDE0GUjolp9FoGJqIiIiqGX1OreGJ4ERERER6YGgiIiIi0gNDExEREZEeeE5TFSsuLkZhYaHSZVAVUKvVj718lYiIqg+GpioihEBGRgaysrKULoWqiImJCdzd3aFWq5UuhYiIDIChqYqUBiZHR0dYWVlxAcwarnSx0/T0dDRu3Jj/vomIagCGpipQXFwsBab69esrXQ5VEQcHB1y9ehVFRUUwMzNTuhwiInpCPOGiCpSew2RlZaVwJVSVSqfliouLFa6EiIgMgaGpCnGKpnbhv28iopqFoYmIiIhIDwxNRERERHpgaKJHCgwMhEqlgkqlgpmZGZycnPDyyy/jq6++QklJid77WbduHezt7SuvUCIiokrG0ESP1bt3b6SnpyM1NRV79+7FSy+9hHfffRevvPIKioqKlC6PiIhqOCEE/v33XwghFK2DoYkey9zcHM7OzmjYsCE6deqE6dOnY8eOHdi7dy/WrVsHAFi0aBE8PT1hbW0NNzc3vP3228jNzQUAxMXF4c0330R2drY0ajVr1iwAwLfffovOnTvD1tYWzs7OGD58OK5du6bQJyUiImNz+/ZtzJ49G2vWrEFExFzs3KlcLQxNChFCoKCgoMofhkrpPXr0QPv27fHjjz8CuL/69bJly3Du3Dl8/fXXOHDgAKZOnQoAeOaZZ7BkyRJoNBqkp6cjPT0d77//PoD7yzHMmTMHp0+fxvbt25GamorAwECD1EhERNXb6dOnsWjRIun5mTNtERWlXD1c3FIhhYWFiIyMrPL3DQ8PN9htPVq1aoUzZ84AACZNmiS1N23aFB9//DHGjx+PlStXQq1Ww87ODiqVCs7OzrJ9jB49WvrzU089hWXLlqFLly7Izc2FjY2NQeokIqLqRQiBzz//HBkZGVKbi0tPREc/h2nTlKuLoYkqTAghrUW0f/9+REZG4uLFi8jJyUFRURHu3buHO3fuPHJRz4SEBMyaNQunT5/GrVu3pJPL09LS0KZNmyr5HEREZDxycnKwePFiWVtwcDAaNGiAceMUKur/Y2hSiJmZGcLDwxV5X0O5cOEC3N3dkZqaildeeQUTJkzAJ598gnr16uHXX39FUFAQCgoKygxNeXl58PPzg5+fH9avXw8HBwekpaXBz88PBQUFBquTiIiqh4SEBOzatUt6bmNjg8mTJ8PExDjOJmJoUohKpTLYNJkSDhw4gLNnz2Ly5MlISEhASUkJFi5cKH2xt2zZIuuvVqu1bidy8eJF3LhxA1FRUXBzcwMAnDx5smo+ABERGQ0hBJYvX46bN29KbX5+fujWrZuCVWljaKLHys/PR0ZGBoqLi5GZmYl9+/YhMjISr7zyCkaNGoWkpCQUFhbi008/Rf/+/XHkyBGsXr1ato+mTZsiNzcXsbGxaN++PaysrNC4cWOo1Wp8+umnGD9+PJKSkjBnzhyFPiURESnh1q1bWLZsmaztnXfeQd26dRWqqGzGMd5FRm3fvn1wcXFB06ZN0bt3bxw8eBDLli3Djh07YGpqivbt22PRokX473//i7Zt22L9+vVaJ7k/88wzGD9+PIYMGQIHBwfMmzcPDg4OWLduHbZu3Yo2bdogKioKCxYsUOhTEhFRVTt27JgsMNWrVw8zZ840ysAEACqh9EpRNUROTg7s7OyQnZ0NjUYj23bv3j2kpKTA3d0dFhYWClVIVY3/3omIdBNCYPHixbh9+7bU1q9fP3Tu3LnKa3nU7/fDOD1HREREVebGjRtYvny5rG3SpEmws7NTqCL9MTQRERFRlThy5Aj2798vPXdycsJbb70lLV9j7BiaiIiIqFKVlJRg/vz5uHfvntQ2cOBAdOjQQbmiKoChiYiIiCrNtWvXsGrVKllbaGgobG1tFaqo4hiaiIiIqFIcOnQIcXFx0vNGjRph9OjR1WY67mEMTURERGRQxcXFmDt3rnRrLAAYPHgw2rZtq2BVT46hiYiIiAwmIyMDn332mazt/fffh7W1tUIVGQ5DExERERnE/v37ceTIEem5u7s7Ro0apWBFhsXQRERERE+kqKgIn3zyiazt9ddfR+vWrRWqqHLwNipkFAIDA+Hv7y89f/HFFzFp0qQn2qch9kFERI/277//agWmqVOn1rjABCgcmlatWoV27dpBo9FAo9HAx8cHe/fulba/+OKLUKlUssf48eNl+0hLS0O/fv1gZWUFR0dHTJkyBUVFRbI+cXFx6NSpE8zNzdG8eXOsW7dOq5YVK1agadOmsLCwgLe3N44fP14pn7m6CQwMlI69Wq1G8+bNMXv2bK1jbGg//vij3jfvjYuLg0qlQlZWVoX3QURE5bdv3z6sWbNGet6yZUtERETA0tJSwaoqj6LTc40aNUJUVBRatGgBIQS+/vprDBw4EKdOncLTTz8NABg7dixmz54tvcbKykr6c3FxMfr16wdnZ2ccPXoU6enpGDVqFMzMzDB37lwAQEpKCvr164fx48dj/fr1iI2NxZgxY+Di4gI/Pz8AwObNmxEaGorVq1fD29sbS5YsgZ+fH5KTk+Ho6FiFR8Q49e7dG2vXrkV+fj727NmD4OBgmJmZITw8XNavoKAAarXaIO9Zr149o9gHERFpKywslH5nSw0bNgwtW7ZUqKKqoehIU//+/dG3b1+0aNECLVu2xCeffAIbGxv89ttvUh8rKys4OztLjwdvpvfzzz/j/Pnz+O6779ChQwf06dMHc+bMwYoVK1BQUAAAWL16Ndzd3bFw4UK0bt0aISEheO2117B48WJpP4sWLcLYsWPx5ptvok2bNli9ejWsrKzw1VdfVd3BMGLm5uZwdnZGkyZNMGHCBPj6+mLnzp3SlNonn3wCV1dXeHh4AACuXLmC119/Hfb29qhXrx4GDhyI1NRUaX/FxcUIDQ2Fvb096tevj6lTp+Lh+0Y/PLWWn5+PsLAwuLm5SSOGX375JVJTU/HSSy8BAOrWrQuVSoXAwECd+7h16xZGjRqFunXrwsrKCn369MGff/4pbV+3bh3s7e0RHR2N1q1bw8bGBr1790Z6errUJy4uDl27doW1tTXs7e3x7LPP4u+//zbQkSYiMn5paWlagSksLKzGBybAiM5pKi4uxqZNm5CXlwcfHx+pff369WjQoAHatm2L8PBw3LlzR9oWHx8PT09PODk5SW1+fn7IycnBuXPnpD6+vr6y9/Lz80N8fDyA+6MjCQkJsj4mJibw9fWV+uiSn5+PnJwc2aO2sLS0lEJpbGwskpOTERMTg127dqGwsBB+fn6wtbXFL7/8giNHjkjho/Q1CxcuxLp16/DVV1/h119/xc2bN7Ft27ZHvueoUaOwceNGLFu2DBcuXMBnn30GGxsbuLm54YcffgAAJCcnIz09HUuXLtW5j8DAQJw8eRI7d+5EfHw8hBDo27cvCgsLpT537tzBggUL8O233+Lw4cNIS0vD+++/D+D+iY7+/v544YUXcObMGcTHx2PcuHHVdpE2IqLy+umnn7B27Vrpedu2bREREQELCwsFq6o6il89d/bsWfj4+ODevXuwsbHBtm3b0KZNGwDA8OHD0aRJE7i6uuLMmTMICwtDcnIyfvzxRwD314J4MDABkJ5nZGQ8sk9OTg7u3r2LW7duobi4WGefixcvlll3ZGQkPvrooyf78NWMEAKxsbGIjo7GxIkTcf36dVhbW2PNmjXStNx3332HkpISrFmzRgoTa9euhb29PeLi4tCrVy8sWbIE4eHhGDRoEID7o4HR0dFlvu8ff/yBLVu2ICYmRgq3Tz31lLS9dBrO0dER9vb2Ovfx559/YufOnThy5AieeeYZAPcDuZubG7Zv347//Oc/AO4POa9evRrNmjUDAISEhEjTwzk5OcjOzsYrr7wiba+JJzoSET0sLy8PCxYskLWNHDlS9ndxbaB4aPLw8EBiYiKys7Px/fffIyAgAIcOHUKbNm0wbtw4qZ+npydcXFzQs2dPXL58WfrRUkp4eDhCQ0Ol5zk5OXBzc6uS9965E4iKAqZNAwYMqPz327VrF2xsbFBYWIiSkhIMHz4cs2bNQnBwMDw9PWXnMZ0+fRqXLl3SuqfQvXv3cPnyZWRnZyM9PR3e3t7Stjp16qBz585aU3SlEhMTYWpqihdeeKHCn+HChQuoU6eO7H3r168PDw8PXLhwQWqzsrKSfbdcXFxw7do1APfDWWBgIPz8/PDyyy/D19cXr7/+OlxcXCpcFxGRsTt48CAOHz4sa5s2bRrMzc0Vqkg5ioem0iuyAMDLywsnTpzA0qVLtVYTBSD94F26dAnNmjWDs7Oz1lVumZmZAABnZ2fpn6VtD/bRaDSwtLSEqakpTE1NdfYp3Ycu5ubmin1hoqKA+Pj7/6yK0PTSSy9h1apVUKvVcHV1RZ06//vaPLzCa25uLry8vLB+/Xqt/Tg4OFTo/avyKgwzMzPZc5VKJQtza9euxTvvvIN9+/Zh8+bNmDFjBmJiYtCtW7cqq5GIqKromlHp2DECtTAvATCic5pKlZSUID8/X+e2xMREAJD+z97Hxwdnz56VRgIAICYmBhqNRpri8/HxQWxsrGw/MTEx0nlTarUaXl5esj4lJSWIjY2VnVtlTKZNA3x87v+zKlhbW6N58+Zo3LixLDDp0qlTJ/z5559wdHRE8+bNZQ87OzvY2dnBxcUFx44dk15TVFSEhISEMvfp6emJkpISHDp0SOf20pGu4uLiMvfRunVrFBUVyd73xo0bSE5Olr4r+urYsSPCw8Nx9OhRtG3bFhs2bCjX64mIjF1OTo5WYOrRowciIiKq5H/WjZWioSk8PByHDx9Gamoqzp49i/DwcMTFxWHEiBG4fPky5syZg4SEBKSmpmLnzp0YNWoUunfvjnbt2gEAevXqhTZt2mDkyJE4ffo0oqOjMWPGDAQHB0ujQOPHj8dff/2FqVOn4uLFi1i5ciW2bNmCyZMnS3WEhobiiy++wNdff40LFy5gwoQJyMvLw5tvvqnIcXmcAQOAo0erZpSpvEaMGIEGDRpg4MCB+OWXX5CSkoK4uDi88847+OeffwAA7777LqKiorB9+3ZcvHgRb7/9ttYaSw9q2rQpAgICMHr0aGzfvl3a55YtWwAATZo0gUqlwq5du3D9+nXk5uZq7aNFixYYOHAgxo4di19//RWnT5/GG2+8gYYNG2LgwIF6fbaUlBSEh4cjPj4ef//9N37++Wf8+eefPK+JiGqU6Oho2RXmADBlyhQ8//zzClVkPBQNTdeuXcOoUaPg4eGBnj174sSJE4iOjsbLL78MtVqN/fv3o1evXmjVqhXee+89DB48GD/99JP0elNTU+zatQumpqbw8fHBG2+8gVGjRsnWdXJ3d8fu3bsRExOD9u3bY+HChVizZo20RhMADBkyBAsWLMDMmTPRoUMHJCYmYt++fVonh9PjWVlZ4fDhw2jcuDEGDRqE1q1bIygoCPfu3ZOWi3jvvfcwcuRIBAQEwMfHB7a2tnj11Vcfud9Vq1bhtddew9tvv41WrVph7NixyMvLAwA0bNgQH330EaZNmwYnJyeEhITo3MfatWvh5eWFV155BT4+PhBCYM+ePVpTco/6bBcvXsTgwYPRsmVLjBs3DsHBwXjrrbfKcYSIiIzXRx99JFv2BwAiIiJkayTWZipR1tm3VC45OTmws7NDdna2bC0p4P5J0CkpKXB3d681l2US/70TUfVx69YtLFu2TNbWu3dv2cUzNdWjfr8fpviJ4ERERKScnTt34tSpU7K2sLAw/s+eDgxNREREtZSuq+MiIiIUqKR6YGgiIiKqZa5fv46VK1fK2vr3749OnTopVFH1wNBERERUi3z//ffSrcZKhYeHG+yG6zUZQ1MV4jn3tQv/fRORMRFCyK4uL8XpOP0xNFWB0kva79y5U6WrW5OySm9QbGpqqnAlRFTbZWRkaN1pY/DgwWjbtq1CFVVPDE1VwNTUFPb29tLK5VZWVtLNbKlmKikpwfXr12FlZfXYVdSJiCrTd999h8uXL8vaPvjgA/7dVAE8YlWk9D52D97yhWo2ExMTNG7cmAGZiBShazrO3Nwc06rqHlw1EENTFVGpVHBxcYGjoyMKCwuVLoeqgFqthomJ0d3ekYhqgX/++QdffvmlrG3o0KHw8PBQqKKagaGpipmamvIcFyIiqjS61l6aMWMGf3sMgKGJiIioBigpKcGcOXNkbXZ2dpg0aZIyBdVADE1ERETV3KlTp7Bz505Z28mTI/DTT80VqqhmYmgiIiKqxnRNx/3884cIC+M5lYbG0ERERFQNFRcX4+OPP9Zq79gxAlyvsnIwNBEREVUze/fuxfHjx2VtgwYNgqenp0IV1Q4MTURERNWIrum4mTNnck24KsDQREREVA0UFBQgMjJSq71jxwgwL1UNhiYiIiIj9+OPP+Ls2bOytn79+qFz584KVVQ7MTQREREZMU7HGQ+GJiIiIiN09+5dzJs3T6s9gpfGKYahiYiIyMh8++23+Ouvv2RtgwcPRtu2bRWqiACGJiIiIqOiazqOo0vGgaGJiIjICNy+fRuLFi3SamdgMh4MTURERApbvXo1MjMzZW3Dhw9HixYtFKqIdGFoIiIiUhCn46oPhiYiIiIF3Lp1C8uWLdNqZ2AyXgxNREREVWzhwoXIzc2VtQUGBqJJkyYKVUT6YGgiIiKqQpyOq74YmoiIiKrAtWvXsGrVKq12Bqbqg6GJiIiokukaXRo3bhxcXFwUqIYqiqGJiIioEnE6ruZgaCIiIqoE//77L9asWSNrq1OnDj744AOFKqInxdBERERkYLpGl4KDg9GgQQMFqiFDYWgiIiIyIE7H1VwMTURERAaQkpKCb775RtZmb2+Pd999V6GKyNAYmoiIiJ6QrtGlSZMmwc7OToFqqLIwNBERET0BTsfVHgxNREREFXDx4kVs3rxZ1tawYUOMGTNGoYqosjE0ERERlZOu0aX3338f1tbWClRDVYWhiYiISE9CCMyePVurndNxtQNDExERkR5Onz6N7du3y9patmyJYcOGKVMQVTmGJiIiosfQNR0XFhYGCwsLBaohpTA0ERERlYHTcfQghiYiIiIdjh8/jr1798raOnTogIEDBypUESmNoYmIiOghuqbjpk+fDjMzMwWqIWPB0ERERPT/lZSUYM6cOVrtnI4jgKGJiIgIAHDo0CHExcXJ2nx8fNCrVy9lCiKjw9BERES1nq7puBkzZsDU1FSBashYMTQREVGtVVRUhE8++USrndNxpAtDExER1Ur79u3DsWPHZG09evTA888/r1BFZOwYmoiIqNbRNR334YcfwsTERIFqqLpgaCIiolqjoKAAkZGRWu2cjiN9MDQREVGtsG3bNpw5c0bW1rdvX3Tp0kWhiqi6YWgiIqIaT9d03MyZM6FSqRSohqorRSdvV61ahXbt2kGj0UCj0cDHx0e2ZP29e/cQHByM+vXrw8bGBoMHD0ZmZqZsH2lpaejXrx+srKzg6OiIKVOmoKioSNYnLi4OnTp1grm5OZo3b45169Zp1bJixQo0bdoUFhYW8Pb2xvHjxyvlMxMRUdW5e/euzsAUERHBwETlpmhoatSoEaKiopCQkICTJ0+iR48eGDhwIM6dOwcAmDx5Mn766Sds3boVhw4dwtWrVzFo0CDp9cXFxejXrx8KCgpw9OhRfP3111i3bh1mzpwp9UlJSUG/fv3w0ksvITExEZMmTcKYMWMQHR0t9dm8eTNCQ0MRERGB33//He3bt4efnx+uXbtWdQeDiIgMav369Zg3b56sbdCgQTx/iSpMJYQQShfxoHr16mH+/Pl47bXX4ODggA0bNuC1114DAFy8eBGtW7dGfHw8unXrhr179+KVV17B1atX4eTkBABYvXo1wsLCcP36dajVaoSFhWH37t1ISkqS3mPo0KHIysrCvn37AADe3t7o0qULli9fDuD+Mvpubm6YOHEipk2bplfdOTk5sLOzQ3Z2NjQajSEPCRERlVNZo0tEDyvP77fRXFtZXFyMTZs2IS8vDz4+PkhISEBhYSF8fX2lPq1atULjxo0RHx8PAIiPj4enp6cUmADAz88POTk50mhVfHy8bB+lfUr3UVBQgISEBFkfExMT+Pr6Sn10yc/PR05OjuxBRETKys3NZWCiSqP4ieBnz56Fj48P7t27BxsbG2zbtg1t2rRBYmIi1Go17O3tZf2dnJyQkZEBAMjIyJAFptLtpdse1ScnJwd3797FrVu3UFxcrLPPxYsXy6w7MjJS53+YRESkjM8//xzp6emytmHDhqFly5YKVUQ1jeKhycPDA4mJicjOzsb333+PgIAAHDp0SOmyHis8PByhoaHS85ycHLi5uSlYERFR7cXRJaoKiocmtVqN5s2bAwC8vLxw4sQJLF26FEOGDEFBQQGysrJko02ZmZlwdnYGADg7O2td5VZ6dd2DfR6+4i4zMxMajQaWlpYwNTWFqampzj6l+9DF3Nwc5ubmFfvQRERkEFlZWVi6dKlWOwMTVQajOaepVElJCfLz8+Hl5QUzMzPExsZK25KTk5GWlgYfHx8AgI+PD86ePSu7yi0mJgYajQZt2rSR+jy4j9I+pftQq9Xw8vKS9SkpKUFsbKzUh4iIjM+iRYu0AlNAQAADE1UaRUeawsPD0adPHzRu3Bi3b9/Ghg0bEBcXh+joaNjZ2SEoKAihoaGoV68eNBoNJk6cCB8fH3Tr1g0A0KtXL7Rp0wYjR47EvHnzkJGRgRkzZiA4OFgaBRo/fjyWL1+OqVOnYvTo0Thw4AC2bNmC3bt3S3WEhoYiICAAnTt3RteuXbFkyRLk5eXhzTffVOS4EBHRo3E6jpSgaGi6du0aRo0ahfT0dNjZ2aFdu3aIjo7Gyy+/DABYvHgxTExMMHjwYOTn58PPzw8rV66UXm9qaopdu3ZhwoQJ8PHxgbW1NQICAjB79mypj7u7O3bv3o3Jkydj6dKlaNSoEdasWQM/Pz+pz5AhQ3D9+nXMnDkTGRkZ6NChA/bt26d1cjgRESnr+vXrst+BUgxMVBWMbp2m6orrNBERVa7Zs2fj4Z+ssWPHwtXVVaGKqCYoz++34ieCExERPQ6n48gYMDQREZHRunr1Kr744gtZm4mJCT788EOFKqLajKGJiIiMkq7RpeDgYDRo0ECBaogYmoiIyAhxOo6MEUMTEREZjdTUVHz99deyNo1Gg8mTJytUEdH/MDQREZFR0DW69O6772rdg5RIKQxNRESkOE7HUXXA0ERERIpJTk7Gpk2bZG2urq4YO3asQhURlY2hiYiIFKFrdOm9996DjY2NAtUQPR5DExERVSkhhOx2V6U4HUfGjqGJiIiqzJkzZ7Bt2zZZW/PmzTFixAiFKiLSH0MTERFVCV3TcWFhYbCwsFCgGqLyY2giIqJKxek4qikYmoiIqNKcOHECe/bskbW1b98e/v7+yhRE9AQYmoiIqFLomo4LDw+HWq1WoBqiJ8fQREREBlVSUoI5c+ZotXM6jqo7hiYiIjKYw4cP4+DBg7K2bt26wc/PT6GKiAyHoYmIiAxC13TcBx98gDp1+FNDNQO/yURE9ESKi4vx8ccfa7VzOo5qGoYmIiKqsOjoaPz222+ytpdeegndu3dXqCKiysPQREREFaJrOu7DDz+EiYmJAtUQVT6GJiIiKpfCwkLMnTtXq53TcVTTMTQREZHetm/fjtOnT8va+vTpg65duypUEVHVYWgiIiK96JqOmzlzJlQqlQLVEFU9hiYiInqkO3fuYP78+VrtnI6j2oahiYiIyrR48WLk5OTI2s6ceRU//NBOoYqIlMPQREREOumajouOnolp0zgdR7UTQxMREclkZ2djyZIlWu0RERHgjBzVZuUOTaampkhPT4ejo6Os/caNG3B0dERxcbHBiiMioqo1e/ZsCCFkbQMGDEDHjh0VqojIeJQ7ND38H1Op/Px8qNXqJy6IiIiUoWs6jid7E/2P3qFp2bJlAACVSoU1a9bAxsZG2lZcXIzDhw+jVatWhq+QiIgqVWZmJlavXq3VzsBEJKd3aFq8eDGA+yNNq1evhqmpqbRNrVajadOmOv+jIyIi46VrdOnUqSHYvp3/E0z0ML1DU0pKCoD7N2L88ccfUbdu3UorioiIKp/uq+MiMG2aAsUQVQMqUdZJSlQuOTk5sLOzQ3Z2NjQajdLlEBGVKS0tDWvXrtVq53Qc1Ubl+f0u94ngo0ePfuT2r776qry7JCKiKqJrdGno0KHw8PBQoBqi6qXcoenWrVuy54WFhUhKSkJWVhZ69OhhsMKIiMiweHUc0ZMpd2jatm2bVltJSQkmTJiAZs2aGaQoIiIynD/++AMbN27Uau/YkYGJqDwMdk5TcnIyXnzxRaSnpxtid9UOz2kiImOka3QpMDAQTZo0UaAaIuNTqec0leXy5csoKioy1O6IiOgJcTqOyLDKHZpCQ0Nlz4UQSE9Px+7duxEQEGCwwoiIqGJOnz6N7du3a7UzMBE9mXKHplOnTsmem5iYwMHBAQsXLnzslXVERFS5dI0uvfXWW3B2dlagGqKapdyh6eDBg5VRBxERPSFOxxFVrgqf03Tt2jUkJycDADw8PODo6GiwooiISH+//fYboqOjtdoZmIgMq9yhKScnB8HBwdi4cSNKSkoAAKamphgyZAhWrFgBOzs7gxdJRES66RpdmjhxIurVq6dANUQ1m0l5XzB27FgcO3YMu3fvRlZWFrKysrBr1y6cPHkSb731VmXUSEREOpQ1HcfARFQ5yr1Ok7W1NaKjo/Hcc8/J2n/55Rf07t0beXl5Bi2wuuA6TURUVWJjY/Hrr79qtXM6jqj8KnWdpvr16+ucgrOzs0PdunXLuzsiIioHXaNLoaGhsLW1VaAaotql3NNzM2bMQGhoKDIyMqS2jIwMTJkyBR9++KFBiyMiovuEEGVOxzEwEVWNck/PdezYEZcuXUJ+fj4aN24MAEhLS4O5uTlatGgh6/v7778brlIjx+k5IqosO3fu1Fojz8zMDNOnT1eoIqKao1Kn5wYOHAiVSlXh4oiISH+6RpemTp0KS0tLBaohqt0MdsPe2o4jTURkSCUlJZgzZ45WO0/2JjKs8vx+l/ucpqeeego3btzQas/KysJTTz1V3t0REdFDNmzYoBWYcnPrMzARKazc03OpqakoLi7Was/Pz8c///xjkKKIiGorXdNxMTHTMXWqmQLVENGD9A5NO3fulP4cHR0tW3aguLgYsbGxcHd3N2x1RES1RFFRET755BOt9oiICHCAicg46D095+/vD39/f6hUKgQEBEjP/f39MXToUMTExGDhwoXlevPIyEh06dIFtra2cHR0hL+/v3Q/u1IvvvgiVCqV7DF+/HhZn7S0NPTr1w9WVlZwdHTElClTUFRUJOsTFxeHTp06wdzcHM2bN8e6deu06lmxYgWaNm0KCwsLeHt74/jx4+X6PEREFbF69WqtwOTu7s7pOCIjo/dIU+l95tzd3XHixAk0aNDgid/80KFDCA4ORpcuXVBUVITp06ejV69eOH/+PKytraV+Y8eOxezZs6XnVlZW0p+Li4vRr18/ODs74+jRo0hPT8eoUaNgZmaGuXPnAgBSUlLQr18/jB8/HuvXr0dsbCzGjBkDFxcX+Pn5AQA2b96M0NBQrF69Gt7e3liyZAn8/PyQnJzMmxETUaXRNR03Y8YMmJqaKlANET2KUV09d/36dTg6OuLQoUPo3r07gPsjTR06dMCSJUt0vmbv3r145ZVXcPXqVTg5OQG4/39tYWFhuH79OtRqNcLCwrB7924kJSVJrxs6dCiysrKwb98+AIC3tze6dOmC5cuXA7gfEt3c3DBx4kRMmzbtsbXz6jkiKo/8/HxERUVptXN0iahqVeo6TQ+O+Ogyc+bM8u5Skp2dDQBaN5tcv349vvvuOzg7O6N///748MMPpdGm+Ph4eHp6SoEJAPz8/DBhwgScO3cOHTt2RHx8PHx9fWX79PPzw6RJkwAABQUFSEhIQHh4uLTdxMQEvr6+iI+P11lrfn4+8vPzpec5OTkV/txEVLvMmzcPd+/elbV5enpi0KBBClVERPood2jatm2b7HlhYSFSUlJQp04dNGvWrMKhqaSkBJMmTcKzzz6Ltm3bSu3Dhw9HkyZN4OrqijNnziAsLAzJycn48ccfAdy/hcuDgQmA9Lz0Vi9l9cnJycHdu3dx69YtFBcX6+xz8eJFnfVGRkbqHFYnInoUXX9vzJw5k4sGE1UD5Q5NDy/lD9wfZQkMDMSrr75a4UKCg4ORlJSkdefucePGSX/29PSEi4sLevbsicuXL6NZs2YVfr8nFR4ejtDQUOl5Tk4O3NzcFKuHiIxbbm6uzotlOB1HVH2UOzTpotFo8NFHH6F///4YOXJkuV8fEhKCXbt24fDhw2jUqNEj+3p7ewMALl26hGbNmsHZ2VnrKrfMzEwAgLOzs/TP0rYH+2g0GlhaWsLU1BSmpqY6+5Tu42Hm5uYwNzfX/0MSUa2la3TJx8cHvXr1UqAaIqqocq8IXpbs7GzpnCR9CSEQEhKCbdu24cCBA3qt85SYmAgAcHFxAXD/L56zZ8/i2rVrUp+YmBhoNBq0adNG6hMbGyvbT0xMDHx8fAAAarUaXl5esj4lJSWIjY2V+hARVURZ03EMTETVT7lHmpYtWyZ7LoRAeno6vv32W/Tp06dc+woODsaGDRuwY8cO2NraSucg2dnZwdLSEpcvX8aGDRvQt29f1K9fH2fOnMHkyZPRvXt3tGvXDgDQq1cvtGnTBiNHjsS8efOQkZGBGTNmIDg4WBoJGj9+PJYvX46pU6di9OjROHDgALZs2YLdu3dLtYSGhiIgIACdO3dG165dsWTJEuTl5eHNN98s7yEiIkJWVhaWLl2q1c7pOKLqq9xLDjw8GmRiYgIHBwf06NED4eHhsLW11f/Nyzjxce3atQgMDMSVK1fwxhtvICkpCXl5eXBzc8Orr76KGTNmyC4L/PvvvzFhwgTExcXB2toaAQEBiIqKQp06/8uEcXFxmDx5Ms6fP49GjRrhww8/RGBgoOx9ly9fjvnz5yMjIwMdOnTAsmXLpOnAx+GSA0RUStfoUs+ePfHcc88pUA0RPUp5fr+Nap2m6oyhiYgA3YGJo0tExqtS12kC7g87X7p0CQDQvHlz2NvbV2Q3REQ1xo0bN6TFcR/EwERUc5QrNKWmpiI4OBjR0dEoHaBSqVTo3bs3li9fjqZNm1ZGjURERk3X6NKpU69j9OjWClRDRJVF79B05coVdOvWDWZmZpgzZw5at77/l8H58+exatUq+Pj44MSJE49dMoCIqCbhdBxR7aH3OU1BQUG4dOkSoqOjYWFhIdt29+5d9O7dGy1atMCaNWsqpVBjx3OaiGqXf//9V+ffdwxMRNVLpZzTtG/fPmzevFkrMAGApaUl5syZg6FDh5a/WiKiakbX6FJCwnCMGdNCgWqIqKroHZr+7//+75HnLD311FO4efOmIWoiIjJanI4jqr30Dk0uLi7SGke6JCUllXnLESKi6u6vv/7Ct99+q9XOwERUe+gdmvz9/fH+++8jNjYWDg4Osm3Xrl1DWFgY/P39DV0fEZHidI0uvfnmm2jcuLEC1RCRUvQ+EfzWrVvw9vZGRkYG3njjDbRq1QpCCFy4cAEbNmyAs7MzfvvtN9SrV6+yazZKPBGcqGbidBxRzVYpJ4LXrVsXx44dw/Tp07Fp0yZkZWUBAOzt7TF8+HDMnTu31gYmIqp5Lly4gC1btmi1MzAR1V4Vuo2KEALXr18HADg4OJR5D7nahCNNRDWHrtGl8ePHw8nJSYFqiKgyVfptVFQqFRwdHStUHBGRMeN0HBGVpUKhiYiopvn999/x008/abUzMBFRKYYmIqr1dI0uvfPOO6hbt64C1RCRsWJoIqJajdNxRKQvhiYiqpWOHDmC/fv3a7UzMBFRWfQKTcuWLdN7h++8806FiyEiqgq6RpdCQ0Nha2urQDVEVF3oteSAu7u7fjtTqfDXX389cVHVEZccIDJ+QgjMnj1bq52jS0S1l8GXHEhJSTFIYURESvn5558RHx8va7O1tUVoaKhCFRFRdVPhc5oKCgqQkpKCZs2aoU4dnhpFRMZL13RcWFgYLCwsFKiGiKork/K+4M6dOwgKCoKVlRWefvpppKWlAQAmTpyIqKgogxdIRFRRJSUlZV4dx8BEROVV7tAUHh6O06dPIy4uTvaXjq+vLzZv3mzQ4oiIKmrbtm2YM2eOrM3V1ZXnLxFRhZV7Xm379u3YvHkzunXrJrvn3NNPP43Lly8btDgioorQNbo0ffp0mJmZKVANEdUU5Q5N169f13nfuby8PN64l4gUVVRUhE8++USrnaNLRGQI5Q5NnTt3xu7duzFx4kQAkILSmjVr4OPjY9jqiIj09O2332oteeLh4YGhQ4cqVBER1TTlDk1z585Fnz59cP78eRQVFWHp0qU4f/48jh49ikOHDlVGjUREj6RrOm7GjBkwNTVVoBoiqqnKfSL4c889h8TERBQVFcHT0xM///wzHB0dER8fDy8vr8qokYhIp8LCwjKvjmNgIiJD02tFcHo8rghOVLW2bNmCCxcuyNquXOmENWv6K1QREVVHBl8RPCcnR+83Z2Agosqma3QpOnompk3jxShEVHn0Ck329vZ6XxlXXFz8RAUREZXl3r17+O9//6vVHhERAV4gR0SVTa/QdPDgQenPqampmDZtGgIDA6Wr5eLj4/H1118jMjKycqokolrvq6++wpUrV2Rtffr0QdeuXRWqiIhqm3Kf09SzZ0+MGTMGw4YNk7Vv2LABn3/+OeLi4gxZX7XBc5qIKo+u6biZM2dybTgiemLl+f0u99Vz8fHx6Ny5s1Z7586dcfz48fLujoioTLm5uWVeHcfARERVrdzrNLm5ueGLL77AvHnzZO1r1qyBm5ubwQojotrt008/xc2bN2Vtr776Ktq1a6dQRURU25U7NC1evBiDBw/G3r174e3tDQA4fvw4/vzzT/zwww8GL5CIap+yRpeIiJRU7um5vn374s8//0T//v1x8+ZN3Lx5E/3798cff/yBvn37VkaNRFRLZGVlMTARkdHi4pYGwhPBiZ7M3LlzUVhYKGsbNmwYWrZsqVBFRFQbGHxxy4dlZWXhyy+/lFbjffrppzF69GjY2dlVZHdEVMtxdImIqoNyT8+dPHkSzZo1w+LFi6XpuUWLFqFZs2b4/fffK6NGIqqhrl+/zsBERNVGuafnnn/+eTRv3hxffPEF6tS5P1BVVFSEMWPG4K+//sLhw4crpVBjx+k5ovLRFZYCAwPRpEkTBaohotqqPL/f5Q5NlpaWOHXqFFq1aiVrP3/+PDp37ow7d+6Uv+IagKGJSH8cXSIiY1Gpi1tqNBqkpaVptV+5cgW2trbl3R0R1SL//vsvAxMRVVvlPhF8yJAhCAoKwoIFC/DMM88AAI4cOYIpU6Zo3VqFiKiUrrA0btw4uLi4KFANEVH5lTs0LViwACqVCqNGjUJRUREAwMzMDBMmTEBUVJTBCySi6o+jS0RUE1R4naY7d+7g8uXLAIBmzZrBysrKoIVVNzyniUhbSkoKvvnmG612BiYiMhaVvk4TAFhZWcHT07OiLyeiGk7X6FJwcDAaNGigQDVERE9O79A0evRovfp99dVXFS6GiGoGTscRUU2kd2hat24dmjRpgo4dO4J3XiEiXS5evIjNmzfL2iwsLBAWFqZQRUREhqN3aJowYQI2btyIlJQUvPnmm3jjjTdQr169yqyNiKoRXaNLkyZN4u2ViKjG0HudphUrViA9PR1Tp07FTz/9BDc3N7z++uuIjo7myBNRLVfWdBwDExHVJBW+eu7vv//GunXr8M0336CoqAjnzp2DjY2NoeurNnj1HNVGiYmJ2LFjh6zNwcEBb7/9tkIVERGVT5VcPWdiYgKVSgUhBIqLiyu6GyKqpnSNLr3//vuwtrZWoBoiospXrtuo5OfnY+PGjXj55ZfRsmVLnD17FsuXL0daWlqtHmUiqk2EEGVOxzEwEVFNpndoevvtt+Hi4oKoqCi88soruHLlCrZu3Yq+ffvCxKTct7ADAERGRqJLly6wtbWFo6Mj/P39kZycLOtz7949BAcHo379+rCxscHgwYORmZkp65OWloZ+/frBysoKjo6OmDJlirRaeam4uDh06tQJ5ubmaN68OdatW6dVz4oVK9C0aVNYWFjA29sbx48fr9DnIqqp9u/fj9mzZ8vamjZtyuUEiKhW0PucJhMTEzRu3BgdO3aESqUqs9+PP/6o95v37t0bQ4cORZcuXVBUVITp06cjKSkJ58+fl/6PdcKECdi9ezfWrVsHOzs7hISEwMTEBEeOHAEAFBcXo0OHDnB2dsb8+fORnp6OUaNGYezYsZg7dy6A+6sSt23bFuPHj8eYMWMQGxuLSZMmYffu3fDz8wMAbN68GaNGjcLq1avh7e2NJUuWYOvWrUhOToajo+NjPwvPaaKaTtfoUrt20/Dqq+YKVENEZBjl+f3WOzQFBgY+MiyVWrt2rX5V6nD9+nU4Ojri0KFD6N69O7Kzs+Hg4IANGzbgtddeA3B/HZjWrVsjPj4e3bp1w969e/HKK6/g6tWrcHJyAgCsXr0aYWFhuH79OtRqNcLCwrB7924kJSVJ7zV06FBkZWVh3759AABvb2906dIFy5cvBwCUlJTAzc0NEydOxLRp0x5bO0MT1VQlJSWYM2eOVjtHl4ioJqiUE8F1TWcZWnZ2NgBI6z8lJCSgsLAQvr6+Up9WrVqhcePGUmiKj4+Hp6enFJgAwM/PDxMmTMC5c+fQsWNHxMfHy/ZR2mfSpEkAgIKCAiQkJCA8PFzabmJiAl9fX8THx+usNT8/H/n5+dLznJycJ/vwREZox44dSExMlLW5uLhg3LhxyhRERKSgCl89Z2glJSWYNGkSnn32WbRt2xYAkJGRAbVaDXt7e1lfJycnZGRkSH0eDEyl20u3PapPTk4O7t69i1u3bqG4uFhnn4sXL+qsNzIyUud0BVFNoev7HR4eDrVarUA1RETKq9gZ3JUgODgYSUlJ2LRpk9Kl6CU8PBzZ2dnS48qVK0qXRGQQxcXFZV4dx8BERLWZUYw0hYSEYNeuXTh8+DAaNWoktTs7O6OgoABZWVmy0abMzEw4OztLfR6+yq306roH+zx8xV1mZiY0Gg0sLS1hamoKU1NTnX1K9/Ewc3NzmJvzBFiqWdavX49Lly7J2lq2bIlhw4YpVBERkfFQdKRJCIGQkBBs27YNBw4cgLu7u2y7l5cXzMzMEBsbK7UlJycjLS0NPj4+AAAfHx+cPXsW165dk/rExMRAo9GgTZs2Up8H91Hap3QfarUaXl5esj4lJSWIjY2V+hDVdB999JFWYJoxYwYDExHR/6foSFNwcDA2bNiAHTt2wNbWVjoHyc7ODpaWlrCzs0NQUBBCQ0NRr149aDQaTJw4ET4+PujWrRsAoFevXmjTpg1GjhyJefPmISMjAzNmzEBwcLA0EjR+/HgsX74cU6dOxejRo3HgwAFs2bIFu3fvlmoJDQ1FQEAAOnfujK5du2LJkiXIy8vDm2++WfUHhqgKFRQUIDIyUqudV8cREclV+N5zBnnzMpYwWLt2LQIDAwHcX9zyvffew8aNG5Gfnw8/Pz+sXLlSNm32999/Y8KECYiLi4O1tTUCAgIQFRWFOnX+lwnj4uIwefJknD9/Ho0aNcKHH34ovUep5cuXY/78+cjIyECHDh2wbNkyeHt76/VZuOQAVUerV6/Wmpbu2LEjBgwYoFBFRERVq1LWaaJHY2ii6kbXyd4zZ87Uaz02IqKaokpu2EtE1dPdu3cxb948rXZOxxERPRpDE1EtMm/ePNy9e1fW9txzz6Fnz54KVUREVH0wNBHVEpyOIyJ6MgxNRDXc7du3sWjRIq12TscREZUPQxNRDaZrdKlXr15cf4yIqAIYmohqqLJuhUJERBXD0ERUw9y4cQPLly/XamdgIiJ6MgxNRDWIrtGlgQMHokOHDlVfDBFRDcPQRFRDcDqOiKhyMTQRVXPp6en4/PPPtdoZmIiIDIuhiaga0zW6NGTIELRq1UqBaoiIajaGJqJqitNxRERVi6GJqJpJTU3F119/rdXOwEREVLkYmoiqEV2jSwEBAWjatGnVF0NEVMswNBFVE5yOIyJSFkMTkZFLTk7Gpk2btNoZmIiIqhZDE5ER0zW6NG7cOLi4uChQDRFR7cbQRGSkOB1HRGRcGJqIjExiYiJ27Nih1c7ARESkLIYmIiOia3QpJCQE9evXV6AaIiJ6EEMTkZHgdBwRkXFjaCJSWHx8PH7++WetdgYmIiLjwtBEpCBdo0uTJ0+GRqNRoBoiInoUhiYiBQghMHv2bK12ji4RERkvhiaiKhYbG4tff/1V1mZpaYmpU6cqVBEREemDoYmoCumajpsyZQqsrKwUqIaIiMqDoYmoCnA6joio+mNoIqpkO3fuxKlTp2RtOTlOeOGF8QpVREREFcHQRFSJdE3HhYeHQ61WK1ANERE9CYYmokpQXFyMjz/+WKud03FERNUXQxORgW3cuBF//PGHrK158+YYMWKEQhUREZEhMDQRGZCu6bgZM2bA1NRUgWqIiMiQGJqIDKCwsBBz587Vaud0HBFRzcHQRPSEPv/8c6Snp8vaOnTogIEDBypUERERVQaGJqInoGs67sMPP4SJiYkC1RARUWViaCKqgLt372LevHla7ZyOIyKquRiaiMpp4cKFyM3NlbU988wzePnllxWqiIiIqgJDE1E56JqOmzlzJlQqlQLVEBFRVWJoItLD7du3sWjRIq12TscREdUeDE1Ej6FrdMnX1xfPPvusAtUQEZFSGJqIHkFXYOLoEhFR7cTQRKTDzZs38emnn2q1MzAREdVeDE1ED9E1ujRgwAB07NhRgWqIiMhYMDQRPYDTcUREVBaGJiIAGRkZ+Oyzz7TaGZiIiKgUQxPVerpGl4YMGYJWrVopUA0RERkrhiaq1TgdR0RE+mJoolopLS0Na9eu1WpnYCIiorIwNFGto2t0adSoUXB3d1egGiIiqi4YmqhW4XQcERFVFEMT1Qp//PEHNm7cqNXOwERERPpiaKIaT9fo0tixY+Hq6qpANUREVF0xNFGNxuk4IiIyFIYmqpHOnDmDbdu2abUzMBERUUWZKPnmhw8fRv/+/eHq6gqVSoXt27fLtgcGBkKlUskevXv3lvW5efMmRowYAY1GA3t7ewQFBSE3N1fW58yZM3j++edhYWEBNzc3zJs3T6uWrVu3olWrVrCwsICnpyf27Nlj8M9LVeOjjz7SCkzBwcEMTERE9EQUDU15eXlo3749VqxYUWaf3r17Iz09XXo8fDLviBEjcO7cOcTExGDXrl04fPgwxo0bJ23PyclBr1690KRJEyQkJGD+/PmYNWsWPv/8c6nP0aNHMWzYMAQFBeHUqVPw9/eHv78/kpKSDP+hqVKVNR3XoEEDBaohIqKaRCWEEEoXAQAqlQrbtm2Dv7+/1BYYGIisrCytEahSFy5cQJs2bXDixAl07twZALBv3z707dsX//zzD1xdXbFq1Sp88MEHyMjIgFqtBgBMmzYN27dvx8WLFwHcv2VGXl4edu3aJe27W7du6NChA1avXq1X/Tk5ObCzs0N2djY0Gk0FjgA9iWPHjmHfvn1a7RxdIiKiRynP77eiI036iIuLg6OjIzw8PDBhwgTcuHFD2hYfHw97e3spMAGAr68vTExMcOzYMalP9+7dpcAEAH5+fkhOTsatW7ekPr6+vrL39fPzQ3x8fJl15efnIycnR/YgZXz00UdagWnSpEkMTEREZFBGHZp69+6Nb775BrGxsfjvf/+LQ4cOoU+fPiguLgZw/870jo6OstfUqVMH9erVQ0ZGhtTHyclJ1qf0+eP6lG7XJTIyEnZ2dtLDzc3tyT4slZsQoszpODs7OwUqIiKimsyor54bOnSo9GdPT0+0a9cOzZo1Q1xcHHr27KlgZUB4eDhCQ0Ol5zk5OQxOVejo0aOIiYmRtZmbm2PatGkKVURERDWdUYemhz311FNo0KABLl26hJ49e8LZ2RnXrl2T9SkqKsLNmzfh7OwMAHB2dkZmZqasT+nzx/Up3a6Lubk5zM3Nn/gzUfnpGl2aMmUKrKysFKiGiIhqC6OennvYP//8gxs3bsDFxQUA4OPjg6ysLCQkJEh9Dhw4gJKSEnh7e0t9Dh8+jMLCQqlPTEwMPDw8ULduXalPbGys7L1iYmLg4+NT2R+JyqGs6bjo6AgGJiIiqnSKhqbc3FwkJiYiMTERAJCSkoLExESkpaUhNzcXU6ZMwW+//YbU1FTExsZi4MCBaN68Ofz8/AAArVu3Ru/evTF27FgcP34cR44cQUhICIYOHSrdImP48OFQq9UICgrCuXPnsHnzZixdulQ2tfbuu+9i3759WLhwIS5evIhZs2bh5MmTCAkJqfJjQrqdOnUKs2fPlrXZ2bVCdHQEOCNHRERVQdElB+Li4vDSSy9ptQcEBGDVqlXw9/fHqVOnkJWVBVdXV/Tq1Qtz5syRnbR98+ZNhISE4KeffoKJiQkGDx6MZcuWwcbGRupz5swZBAcH48SJE2jQoAEmTpyIsLAw2Xtu3boVM2bMQGpqKlq0aIF58+ahb9++en8WLjlQeXSNLrVvPx3+/mYKVENERDVJeX6/jWadpuqOocnwSkpKMGfOHK12LiVARESGUp7f72p1IjjVHr/99huio6NlbT179sRzzz2nUEVERFTbMTSR0dE1HTdjxgyYmpoqUA0REdF9DE1kNIqLi/Hxxx9rtXM6joiIjAFDExmFuLg4HDp0SNbWr18/2S1yiIiIlMTQRIrTNR03c+ZMqFQqBaohIiLSjaGJFFNYWIi5c+dqtXM6joiIjBFDEyni9OnT2L59u6xt0KBB8PT0VKYgIiKix2Booir38ccfo7i4WNYWHT0TERGcjiMiIuPF0ERVpqzpuI0bIzBvngIFERERlQNDE1UJXdNxEyZMgKOjI3gKExERVQcMTVTpdF0dx5O9iYioumFookpTUFCAyMhIWVu7du3w6quvKlQRERFRxTE0UaU4efIkdu/eLWsLCQlB/fr1FaqIiIjoyTA0kcFxOo6IiGoihiYymLt372LeQ5fBde7cGf369VOoIiIiIsNhaCKDOHr0KGJiYmRt7777Luzt7ZUpiIiIyMAYmuiJcTqOiIhqA4YmqrC8vDwsWLBA1vbss8/C19dXoYqIiIgqD0MTVUhcXBwOHTokawsNDYWtra1CFREREVUuhiYqN07HERFRbcTQRHrLz89HVFSUrO2ll15C9+7dFaqIiIio6jA0kV4uXbqE9evXy9qmTJkCKysrhSoiIiKqWgxN9FhbtmzBhQsXpOf//NMR/fsPAPMSERHVJgxNVCZdi1UGBQWhUaNGClVERESkHIYm0ik5ORmbNm2StX3wwQeoU4dfGSIiqp34C0ha1q9fj0uXLknPfXx80KtXLwUrIiIiUh5DE0nu3LmD+fPny9rGjh0LV1dXhSoiIiIyHgxNBAA4d+4cvv/+e1nbjBkzYGpqqlBFRERExoWhqZYTQuDrr7/G33//LbU9//zz6NGjh4JVERERGR+GplosNzcXCxculLWNHz8eTk5OClVERERkvBiaaqkzZ85g27Zt0nMzMzNMmzYNJiYmClZFRERkvBiaahkhBL744gukp6dLbT169MDzzz+vYFVERETGj6GpFsnJycHixYtlbcHBwWjQoIFCFREREVUfDE21xO+//46ffvpJem5tbY3Q0FBOxxEREemJoamGE0Jg5cqV+L//+z+prVevXvDx8VGwKiIiouqHoakGy8rKwtKlS2VtEydORL169RSqiIiIqPpiaKqhjh8/jr1790rP7e3t8c4770ClUilYFRERUfXF0FTDCCGwZMkS5OTkSG19+/ZFly5dFKyKiIio+mNoqkFu3ryJTz/9VNb27rvvwt7eXpmCiIiIahCGphri6NGjiImJkZ47ODhgwoQJnI4jIiIyEIamaq6kpAQLFizA3bt3pbYBAwagY8eOClZFRERU8zA0VWPXr1/HypUrZW2TJ0+GRqNRqCIiIqKai6Gpmjp8+DAOHjwoPW/YsCGCgoI4HUdERFRJGJqqmeLiYkRFRaGoqEhqGzRoEDw9PRWsioiIqOZjaKpGMjMzsXr1alnbe++9BxsbG4UqIiIiqj0YmqqJ2NhY/Prrr9Lzpk2bIiAgQMGKiIiIaheGJiMnhMDs2bNlbf/5z3/Qpk0bhSoiIiKqnRiajFx8fLzs+ZQpU2BlZaVQNURERLWXidIF0KO1bdsWAJCU9DSioyMYmIiIiBTC0GTkNBoNOnaMwL//voZp05SuhoiIqPbi9Fw1MGDA/QcREREphyNNRERERHpgaCIiIiLSA0MTERERkR4UDU2HDx9G//794erqCpVKhe3bt8u2CyEwc+ZMuLi4wNLSEr6+vvjzzz9lfW7evIkRI0ZAo9HA3t4eQUFByM3NlfU5c+YMnn/+eVhYWMDNzQ3z5s3TqmXr1q1o1aoVLCws4OnpiT179hj88xIREVH1pWhoysvLQ/v27bFixQqd2+fNm4dly5Zh9erVOHbsGKytreHn54d79+5JfUaMGIFz584hJiYGu3btwuHDhzFu3Dhpe05ODnr16oUmTZogISEB8+fPx6xZs/D5559LfY4ePYphw4YhKCgIp06dgr+/P/z9/ZGUlFR5H56IiIiqF2EkAIht27ZJz0tKSoSzs7OYP3++1JaVlSXMzc3Fxo0bhRBCnD9/XgAQJ06ckPrs3btXqFQq8e+//wohhFi5cqWoW7euyM/Pl/qEhYUJDw8P6fnrr78u+vXrJ6vH29tbvPXWW3rXn52dLQCI7OxsvV9DREREyirP77fRntOUkpKCjIwM+Pr6Sm12dnbw9vaWVsmOj4+Hvb09OnfuLPXx9fWFiYkJjh07JvXp3r071Gq11MfPzw/Jycm4deuW1OfB9ynt8/Bq3A/Kz89HTk6O7EFEREQ1l9GGpoyMDACAk5OTrN3JyUnalpGRAUdHR9n2OnXqoF69erI+uvbx4HuU1ad0uy6RkZGws7OTHm5ubuX9iERERFSNGG1oMnbh4eHIzs6WHleuXFG6JCIiIqpERhuanJ2dAQCZmZmy9szMTGmbs7Mzrl27JtteVFSEmzdvyvro2seD71FWn9Ltupibm0Oj0cgeREREVHMZbWhyd3eHs7MzYmNjpbacnBwcO3YMPj4+AAAfHx9kZWUhISFB6nPgwAGUlJTA29tb6nP48GEUFhZKfWJiYuDh4YG6detKfR58n9I+pe9DREREpGhoys3NRWJiIhITEwHcP/k7MTERaWlpUKlUmDRpEj7++GPs3LkTZ8+exahRo+Dq6gp/f38AQOvWrdG7d2+MHTsWx48fx5EjRxASEoKhQ4fC1dUVADB8+HCo1WoEBQXh3Llz2Lx5M5YuXYrQ0FCpjnfffRf79u3DwoULcfHiRcyaNQsnT55ESEhIVR8SIiIiMlZVcDVfmQ4ePCgAaD0CAgKEEPeXHfjwww+Fk5OTMDc3Fz179hTJycmyfdy4cUMMGzZM2NjYCI1GI958801x+/ZtWZ/Tp0+L5557Tpibm4uGDRuKqKgorVq2bNkiWrZsKdRqtXj66afF7t27y/VZuOQAERFR9VOe32+VEEIomNlqjOzsbNjb2+PKlSs8v4mIiKiayMnJgZubG7KysmBnZ/fIvnWqqKYa7/bt2wDApQeIiIiqodu3bz82NHGkyUBKSkpw9epV2NraQqVS6exTmmY5GmV4PLaVh8e28vDYVh4e28pT046tEAK3b9+Gq6srTEwefao3R5oMxMTEBI0aNdKrL5coqDw8tpWHx7by8NhWHh7bylOTju3jRphKGe2SA0RERETGhKGJiIiISA8MTVXI3NwcERERMDc3V7qUGofHtvLw2FYeHtvKw2NbeWrzseWJ4ERERER64EgTERERkR4YmoiIiIj0wNBEREREpAeGJiIiIiI9MDQ9wuHDh9G/f3+4urpCpVJh+/btsu1CCMycORMuLi6wtLSEr68v/vzzT1mfmzdvYsSIEdBoNLC3t0dQUBByc3Nlfc6cOYPnn38eFhYWcHNzw7x587Rq2bp1K1q1agULCwt4enpiz549Bv+8VelxxzYwMBAqlUr26N27t6wPj61ukZGR6NKlC2xtbeHo6Ah/f38kJyfL+ty7dw/BwcGoX78+bGxsMHjwYGRmZsr6pKWloV+/frCysoKjoyOmTJmCoqIiWZ+4uDh06tQJ5ubmaN68OdatW6dVz4oVK9C0aVNYWFjA29sbx48fN/hnrir6HNsXX3xR67s7fvx4WR8eW22rVq1Cu3btpAUTfXx8sHfvXmk7v7MV97hjy+9sOVTijYOrvT179ogPPvhA/PjjjwKA2LZtm2x7VFSUsLOzE9u3bxenT58WAwYMEO7u7uLu3btSn969e4v27duL3377Tfzyyy+iefPmYtiwYdL27Oxs4eTkJEaMGCGSkpLExo0bhaWlpfjss8+kPkeOHBGmpqZi3rx54vz582LGjBnCzMxMnD17ttKPQWV53LENCAgQvXv3Funp6dLj5s2bsj48trr5+fmJtWvXiqSkJJGYmCj69u0rGjduLHJzc6U+48ePF25ubiI2NlacPHlSdOvWTTzzzDPS9qKiItG2bVvh6+srTp06Jfbs2SMaNGggwsPDpT5//fWXsLKyEqGhoeL8+fPi008/FaampmLfvn1Sn02bNgm1Wi2++uorce7cOTF27Fhhb28vMjMzq+ZgGJg+x/aFF14QY8eOlX13H7x7Oo+tbjt37hS7d+8Wf/zxh0hOThbTp08XZmZmIikpSQjB7+yTeNyx5XdWfwxNenr4h72kpEQ4OzuL+fPnS21ZWVnC3NxcbNy4UQghxPnz5wUAceLECanP3r17hUqlEv/++68QQoiVK1eKunXrivz8fKlPWFiY8PDwkJ6//vrrol+/frJ6vL29xVtvvWXQz6iUskLTwIEDy3wNj63+rl27JgCIQ4cOCSHuf0/NzMzE1q1bpT4XLlwQAER8fLwQ4n6oNTExERkZGVKfVatWCY1GIx3PqVOniqefflr2XkOGDBF+fn7S865du4rg4GDpeXFxsXB1dRWRkZGG/6AKePjYCnH/B+jdd98t8zU8tvqrW7euWLNmDb+zlaD02ArB72x5cHquglJSUpCRkQFfX1+pzc7ODt7e3oiPjwcAxMfHw97eHp07d5b6+Pr6wsTEBMeOHZP6dO/eHWq1Wurj5+eH5ORk3Lp1S+rz4PuU9il9n5oqLi4Ojo6O8PDwwIQJE3Djxg1pG4+t/rKzswEA9erVAwAkJCSgsLBQ9rlbtWqFxo0by767np6ecHJykvr4+fkhJycH586dk/o86tgVFBQgISFB1sfExAS+vr415vg+fGxLrV+/Hg0aNEDbtm0RHh6OO3fuSNt4bB+vuLgYmzZtQl5eHnx8fPidNaCHj20pfmf1wxv2VlBGRgYAyL5Epc9Lt2VkZMDR0VG2vU6dOqhXr56sj7u7u9Y+SrfVrVsXGRkZj3yfmqh3794YNGgQ3N3dcfnyZUyfPh19+vRBfHw8TE1NeWz1VFJSgkmTJuHZZ59F27ZtAdz/7Gq1Gvb29rK+D393dR2X0m2P6pOTk4O7d+/i1q1bKC4u1tnn4sWLBvuMStF1bAFg+PDhaNKkCVxdXXHmzBmEhYUhOTkZP/74IwAe20c5e/YsfHx8cO/ePdjY2GDbtm1o06YNEhMT+Z19QmUdW4Df2fJgaCKjNHToUOnPnp6eaNeuHZo1a4a4uDj07NlTwcqql+DgYCQlJeHXX39VupQap6xjO27cOOnPnp6ecHFxQc+ePXH58mU0a9asqsusVjw8PJCYmIjs7Gx8//33CAgIwKFDh5Quq0Yo69i2adOG39ly4PRcBTk7OwOA1tUbmZmZ0jZnZ2dcu3ZNtr2oqAg3b96U9dG1jwffo6w+pdtrg6eeegoNGjTApUuXAPDY6iMkJAS7du3CwYMH0ahRI6nd2dkZBQUFyMrKkvV/+Ltb0WOn0WhgaWmJBg0awNTUtEYe37KOrS7e3t4AIPvu8tjqplar0bx5c3h5eSEyMhLt27fH0qVL+Z01gLKOrS78zpaNoamC3N3d4ezsjNjYWKktJycHx44dk+aJfXx8kJWVhYSEBKnPgQMHUFJSIn0pfXx8cPjwYRQWFkp9YmJi4OHhgbp160p9Hnyf0j4PzkfXdP/88w9u3LgBFxcXADy2jyKEQEhICLZt24YDBw5oTVF6eXnBzMxM9rmTk5ORlpYm++6ePXtWFkxjYmKg0WikIf3HHTu1Wg0vLy9Zn5KSEsTGxlbb4/u4Y6tLYmIiAMi+uzy2+ikpKUF+fj6/s5Wg9Njqwu/sIyh9Jroxu337tjh16pQ4deqUACAWLVokTp06Jf7++28hxP0lB+zt7cWOHTvEmTNnxMCBA3UuOdCxY0dx7Ngx8euvv4oWLVrILovPysoSTk5OYuTIkSIpKUls2rRJWFlZaV0WX6dOHbFgwQJx4cIFERERUe0vi3/Usb19+7Z4//33RXx8vEhJSRH79+8XnTp1Ei1atBD37t2T9sFjq9uECROEnZ2diIuLk11CfOfOHanP+PHjRePGjcWBAwfEyZMnhY+Pj/Dx8ZG2l15i3KtXL5GYmCj27dsnHBwcdF5iPGXKFHHhwgWxYsUKnZcYm5ubi3Xr1onz58+LcePGCXt7e9lVONXJ447tpUuXxOzZs8XJkydFSkqK2LFjh3jqqadE9+7dpX3w2Oo2bdo0cejQIZGSkiLOnDkjpk2bJlQqlfj555+FEPzOPolHHVt+Z8uHoekRDh48KABoPQICAoQQ95cd+PDDD4WTk5MwNzcXPXv2FMnJybJ93LhxQwwbNkzY2NgIjUYj3nzzTXH79m1Zn9OnT4vnnntOmJubi4YNG4qoqCitWrZs2SJatmwp1Gq1ePrpp8Xu3bsr7XNXhUcd2zt37ohevXoJBwcHYWZmJpo0aSLGjh2r9R8Wj61uuo4rALF27Vqpz927d8Xbb78t6tatK6ysrMSrr74q0tPTZftJTU0Vffr0EZaWlqJBgwbivffeE4WFhbI+Bw8eFB06dBBqtVo89dRTsvco9emnn4rGjRsLtVotunbtKn777bfK+NhV4nHHNi0tTXTv3l3Uq1dPmJubi+bNm4spU6bI1rwRgsdWl9GjR4smTZoItVotHBwcRM+ePaXAJAS/s0/iUceW39nyUQkhRNWNaxERERFVTzyniYiIiEgPDE1EREREemBoIiIiItIDQxMRERGRHhiaiIiIiPTA0ERERESkB4YmIiIiIj0wNBGRUTty5Ag8PT1hZmYGf39/pcsholqMoYmIKk1gYCBUKhVUKhXMzMzg7u6OqVOn4t69e3rvIzQ0FB06dEBKSgrWrVtXecVWoXXr1knHxdTUFHXr1oW3tzdmz56N7Ozscu9PpVJh+/bthi+UiGQYmoioUvXu3Rvp6en466+/sHjxYnz22WeIiIjQ+/WXL19Gjx490KhRI9jb21eohoKCggq9riKEECgqKnpsP41Gg/T0dPzzzz84evQoxo0bh2+++QYdOnTA1atXq6BSIiovhiYiqlTm5uZwdnaGm5sb/P394evri5iYGAD373IeGRkJd3d3WFpaon379vj+++8BAKmpqVCpVLhx4wZGjx4NlUoljTQdOnQIXbt2hbm5OVxcXDBt2jRZUHnxxRcREhKCSZMmoUGDBvDz80NcXBxUKhWio6PRsWNHWFpaokePHrh27Rr27t2L1q1bQ6PRYPjw4bhz5460r0fVCEDa7969e+Hl5QVzc3P8+uuvjz0uKpUKzs7OcHFxQevWrREUFISjR48iNzcXU6dOlfo1bdoUS5Yskb22Q4cOmDVrlrQdAF599VWoVCo0bdoUqampMDExwcmTJ2WvW7JkCZo0aYKSkpLH1kdE2hiaiKjKJCUl4ejRo1Cr1QCAyMhIfPPNN1i9ejXOnTuHyZMn44033sChQ4fg5uaG9PR0aDQaLFmyBOnp6RgyZAj+/fdf9O3bF126dMHp06exatUqfPnll/j4449l7/X1119DrVbjyJEjWL16tdQ+a9YsLF++HEePHsWVK1fw+uuvY8mSJdiwYQN2796Nn3/+GZ9++qnU/1E1PmjatGmIiorChQsX0K5duwodH0dHR4wYMQI7d+5EcXGxXq85ceIEAGDt2rVIT0/HiRMn0LRpU/j6+mLt2rWyvmvXrkVgYCBMTPhXP1GFKHzDYCKqwQICAoSpqamwtrYW5ubmAoAwMTER33//vbh3756wsrISR48elb0mKChIDBs2THpuZ2cnu1v69OnThYeHhygpKZHaVqxYIWxsbERxcbEQQogXXnhBdOzYUbbfgwcPCgBi//79UltkZKQAIC5fviy1vfXWW8LPz08IIfSqsXS/27dv1/u4rF27VtjZ2enctmrVKgFAZGZmCiGEaNKkiVi8eLGsT/v27UVERIT0HIDYtm2brM/mzZtF3bp1xb1794QQQiQkJAiVSiVSUlL0rpOI5OooGdiIqOZ76aWXsGrVKuTl5WHx4sWoU6cOBg8ejHPnzuHOnTt4+eWXZf0LCgrQsWPHMvd34cIF+Pj4QKVSSW3PPvsscnNz8c8//6Bx48YAAC8vL52vf3AUyMnJCVZWVnjqqadkbcePHwcAXLp0Se8aO3fu/KjDoDchBADIPl9F+Pv7Izg4GNu2bcPQoUOxbt06vPTSS9J0HhGVH0MTEVUqa2trNG/eHADw1VdfoX379vjyyy/Rtm1bAMDu3bvRsGFD2WvMzc0N8r66mJmZSX8uvarvQSqVSjrnJzc3V+8ay3q/8rpw4QI0Gg3q168PADAxMZGCVKnCwsLH7ketVmPUqFFYu3YtBg0ahA0bNmDp0qUGqZGotmJoIqIqY2JigunTpyM0NBR//PEHzM3NkZaWhhdeeEHvfbRu3Ro//PADhBDSaMyRI0dga2uLRo0aGbTeNm3aVKjGirp27Ro2bNgAf39/6bwjBwcHpKenS31ycnKQkpIie52ZmZnOc6DGjBmDtm3bYuXKlSgqKsKgQYMq9wMQ1XAMTURUpf7zn/9gypQp+Oyzz/D+++9j8uTJKCkpwXPPPYfs7GwcOXIEGo0GAQEBOl//9ttvY8mSJZg4cSJCQkKQnJyMiIgIhIaGGvwEZ1tb2wrVqA8hBDIyMiCEQFZWFuLj4zF37lzY2dkhKipK6tejRw+sW7cO/fv3h729PWbOnAlTU1PZvpo2bYrY2Fg8++yzMDc3R926dQHcD5jdunVDWFgYRo8eDUtLywrXS0QMTURUxerUqYOQkBDMmzcPKSkpcHBwQGRkJP766y/Y29ujU6dOmD59epmvb9iwIfbs2YMpU6agffv2qFevHoKCgjBjxoxKqXfOnDnlrlEfOTk5cHFxgUqlgkajgYeHBwICAvDuu+9Co9FI/cLDw5GSkoJXXnkFdnZ2mDNnjtZI08KFCxEaGoovvvgCDRs2RGpqqrStdCmD0aNHP1G9RASoxMOT5UREVGPMmTMHW7duxZkzZ5Quhaja42IdREQ1UG5uLpKSkrB8+XJMnDhR6XKIagSGJiIiA3v66adhY2Oj87F+/foqqSEkJAReXl548cUXOTVHZCCcniMiMrC///67zGUBnJycYGtrW8UVEZEhMDQRERER6YHTc0RERER6YGgiIiIi0gNDExEREZEeGJqIiIiI9MDQRERERKQHhiYiIiIiPTA0EREREemBoYmIiIhID/8PixhH8i/8n+4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_27.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAHHCAYAAACIiZ3UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmqklEQVR4nO3de1yO9/8H8Nfd+YBCdLCiJWF8ZSE102xtMaTNNuxLRcNOaCEK5ZzzIUzMITPnIb5mYWH2VXLK+Uw538moyBTd1+8Pv67vrt13uUt3V3e9no/H9eh7v6/PdV3vD/vevX0+1/W5FIIgCCAiIiIinTCQOwEiIiKiqozFFhEREZEOsdgiIiIi0iEWW0REREQ6xGKLiIiISIdYbBERERHpEIstIiIiIh1isUVERESkQyy2iIiIiHSIxRYR0UsoFAqMHz9e7jREwcHBaNSokdxpEJGWWGwRkV6Kj4+HQqEQNzMzMzRp0gTffvstMjMzdXrt5ORkjB8/HtnZ2eV63nfeeUfSpzp16qBt27ZYsWIFVCpVuVxj6tSpSEhIKJdzEZF2jOROgIjoVUycOBHOzs54+vQp/vvf/2Lx4sXYuXMnzpw5AwsLi3K5xl9//QUjo/99XSYnJ2PChAkIDg6GtbV1uVyjyGuvvYaYmBgAQFZWFn788UeEhITg0qVLmDZt2iuff+rUqfjkk08QEBDwyuciIu2w2CIivdalSxe0adMGAPDFF1+gbt26mDNnDrZt24Y+ffqU+bwqlQoFBQUwMzODmZlZeaX7UlZWVujbt6/4efDgwXBzc8PChQsxadIkGBsbV1guRFQ+OI1IRFXKu+++CwBIT08HAMyaNQve3t6oW7cuzM3N4eHhgZ9//lntOIVCgW+//RZr1qzBG2+8AVNTUyQmJor7iu7ZGj9+PEaOHAkAcHZ2Fqf8MjIy4OPjg1atWmnMy83NDX5+fqXuj4WFBdq3b4+8vDxkZWUV2y4vLw/Dhw+Ho6MjTE1N4ebmhlmzZkEQBEkf8/LysGrVKjHv4ODgUudERKXDkS0iqlKuXr0KAKhbty4AYP78+fD398e///1vFBQUYP369fj000+xY8cOdO3aVXLs3r17sXHjRnz77bewsbHReBP6xx9/jEuXLmHdunWYO3cubGxsAAD16tVDv379MHDgQJw5cwYtWrQQjzly5AguXbqEsWPHlqlP165dg6GhYbFTloIgwN/fH/v27UNISAjc3d2xa9cujBw5Erdv38bcuXMBAKtXr8YXX3yBdu3aYdCgQQAAFxeXMuVERKUgEBHpoZUrVwoAhN9++03IysoSbt68Kaxfv16oW7euYG5uLty6dUsQBEF48uSJ5LiCggKhRYsWwrvvviuJAxAMDAyEs2fPql0LgBAdHS1+njlzpgBASE9Pl7TLzs4WzMzMhFGjRkniQ4cOFSwtLYXHjx+X2CcfHx+hadOmQlZWlpCVlSWcP39eGDp0qABA6N69u9guKChIaNiwofg5ISFBACBMnjxZcr5PPvlEUCgUwpUrV8SYpaWlEBQUVGIeRFS+OI1IRHrN19cX9erVg6OjI3r37o0aNWpg69ataNCgAQDA3NxcbPvw4UPk5OTg7bffxvHjx9XO5ePjg+bNm5c5FysrK/To0QPr1q0Tp+8KCwuxYcMGBAQEwNLS8qXnuHDhAurVq4d69eqhWbNmWLBgAbp27YoVK1YUe8zOnTthaGiIoUOHSuLDhw+HIAj49ddfy9wnInp1nEYkIr22aNEiNGnSBEZGRrC1tYWbmxsMDP7378gdO3Zg8uTJOHHiBPLz88W4QqFQO5ezs/Mr5xMYGIgNGzbgjz/+QMeOHfHbb78hMzMT/fr10+r4Ro0a4YcffhCXs3B1dUX9+vVLPOb69etwcHBAzZo1JfFmzZqJ+4lIPiy2iEivtWvXTnwa8Z/++OMP+Pv7o2PHjvj+++9hb28PY2NjrFy5EmvXrlVr//dRsLLy8/ODra0tfvrpJ3Ts2BE//fQT7Ozs4Ovrq9XxlpaWWrclIv3AaUQiqrI2b94MMzMz7Nq1CwMGDECXLl3KpZDRNCpWxNDQEJ9//jl+/vlnPHz4EAkJCejTpw8MDQ1f+brFadiwIe7cuYNHjx5J4hcuXBD3FykpdyLSDRZbRFRlGRoaQqFQoLCwUIxlZGS88grqRfdeFbeCfL9+/fDw4UMMHjwYjx8/lqybpQsffvghCgsLsXDhQkl87ty5UCgU6NKlixiztLQs95XviahknEYkoiqra9eumDNnDjp37ozPP/8c9+7dw6JFi9C4cWOcOnWqzOf18PAAAIwZMwa9e/eGsbExunfvLhZhrVu3RosWLbBp0yY0a9YMb775Zrn0pzjdu3dHp06dMGbMGGRkZKBVq1bYvXs3tm3bhtDQUMnyDh4eHvjtt98wZ84cODg4wNnZGZ6enjrNj6i648gWEVVZ7777LpYvXw6lUonQ0FCsW7cO06dPx0cfffRK523bti0mTZqEkydPIjg4GH369FFbcDQwMBAAtL4x/lUYGBhg+/btCA0NxY4dOxAaGopz585h5syZmDNnjqTtnDlz4OHhgbFjx6JPnz5YvHixzvMjqu4UgvC35YWJiKhczJ8/H9999x0yMjLg5OQkdzpEJCMWW0RE5UwQBLRq1Qp169bFvn375E6HiGTGe7aIiMpJXl4etm/fjn379uH06dPYtm2b3CkRUSXAkS0ionKSkZEBZ2dnWFtb4+uvv8aUKVPkTomIKgEWW0REREQ6xKcRiYiIiHSIxRYRERGRDvEGeRmpVCrcuXMHNWvW5Cs0iIiI9IQgCHj06BEcHBwkL74vDostGd25cweOjo5yp0FERERlcPPmTbz22msvbcdiS0Y1a9YE8OIvq1atWjJnQ0RERNrIzc2Fo6Oj+Hv8ZVhsyaho6rBWrVostoiIiPSMtrcAyX6D/KJFi9CoUSOYmZnB09MThw8fLrH9pk2b0LRpU5iZmaFly5bYuXOnZL8gCIiKioK9vT3Mzc3h6+uLy5cvazxXfn4+3N3doVAocOLECTG+f/9+9OjRA/b29rC0tIS7uzvWrFkjOTY+Ph4KhUKymZmZle0PgYiIiKosWYutDRs2ICwsDNHR0Th+/DhatWoFPz8/3Lt3T2P75ORk9OnTByEhIUhLS0NAQAACAgJw5swZsc2MGTMQGxuLuLg4pKamwtLSEn5+fnj69Kna+cLDw+Hg4KDxOv/617+wefNmnDp1Cv3790dgYCB27NghaVerVi3cvXtX3K5fv/6KfyJERERU5QgyateunfDNN9+InwsLCwUHBwchJiZGY/vPPvtM6Nq1qyTm6ekpDB48WBAEQVCpVIKdnZ0wc+ZMcX92drZgamoqrFu3TnLczp07haZNmwpnz54VAAhpaWkl5vrhhx8K/fv3Fz+vXLlSsLKy0qabxcrJyREACDk5Oa90HiIiIqo4pf39Lds9WwUFBTh27BgiIiLEmIGBAXx9fZGSkqLxmJSUFISFhUlifn5+SEhIAACkp6dDqVTC19dX3G9lZQVPT0+kpKSgd+/eAIDMzEwMHDgQCQkJsLCw0CrfnJwcNGvWTBJ7/PgxGjZsCJVKhTfffBNTp07FG2+8Uew58vPzkZ+fL37Ozc3V6tqFhYV49uyZVm1Jv5mYmGj1GDEREekP2Yqt+/fvo7CwELa2tpK4ra0tLly4oPEYpVKpsb1SqRT3F8WKayMIAoKDg/Hll1+iTZs2yMjIeGmuGzduxJEjR7BkyRIx5ubmhhUrVuBf//oXcnJyMGvWLHh7e+Ps2bPFPgYaExODCRMmvPR6RQRBgFKpRHZ2ttbHkH4zMDCAs7MzTExM5E6FiIjKSbV7GnHBggV49OiRZEStJPv27UP//v3xww8/SEatvLy84OXlJX729vZGs2bNsGTJEkyaNEnjuSIiIiQjc0WPjhanqNCqX78+LCwsuPBpFVe0yO3du3fh5OTEv28ioipCtmLLxsYGhoaGyMzMlMQzMzNhZ2en8Rg7O7sS2xf9zMzMhL29vaSNu7s7AGDv3r1ISUmBqamp5Dxt2rTBv//9b6xatUqM/f777+jevTvmzp2LwMDAEvtjbGyM1q1b48qVK8W2MTU1VbtucQoLC8VCq27dulodQ/qvXr16uHPnDp4/fw5jY2O50yEionIg280hJiYm8PDwQFJSkhhTqVRISkqSjBj9nZeXl6Q9AOzZs0ds7+zsDDs7O0mb3NxcpKamim1iY2Nx8uRJnDhxAidOnBCXjtiwYQOmTJkiHrd//3507doV06dPx6BBg17an8LCQpw+fVpS5L2Konu0tL2njKqGounDwsJCmTMhIqLyIus0YlhYGIKCgtCmTRu0a9cO8+bNQ15eHvr37w8ACAwMRIMGDRATEwMAGDZsGHx8fDB79mx07doV69evx9GjR7F06VIALxYXCw0NxeTJk+Hq6gpnZ2eMGzcODg4OCAgIAAA4OTlJcqhRowYAwMXFRbzXat++fejWrRuGDRuGnj17ivd7mZiYoE6dOgCAiRMnon379mjcuDGys7Mxc+ZMXL9+HV988UW5/hlxKql64d83EVHVI2ux1atXL2RlZSEqKgpKpRLu7u5ITEwUb3C/ceOG5Mksb29vrF27FmPHjkVkZCRcXV2RkJCAFi1aiG3Cw8ORl5eHQYMGITs7Gx06dEBiYmKpFhxdtWoVnjx5gpiYGLHQAwAfHx/s378fAPDw4UMMHDgQSqUStWvXhoeHB5KTk9G8efNX/FMhIiKiqkQhCIIgdxLVVW5uLqysrJCTk6P2up6nT58iPT0dzs7OXJm+GuHfOxFR5VfS729NuKAPlbvg4GDxFUbGxsawtbXF+++/jxUrVkClUml9nvj4eFhbW+suUSIiogrAYot0onPnzrh79y4yMjLw66+/olOnThg2bBi6deuG58+fy50eERFRhWGxRTphamoKOzs7NGjQAG+++SYiIyOxbds2/Prrr4iPjwcAzJkzBy1btoSlpSUcHR3x9ddf4/HjxwBePA3av39/5OTkiKNk48ePBwCsXr0abdq0Qc2aNWFnZ4fPP/+82PdpEhFR9ZSRkYFFi3bC1/c+tm+XNxcWW3pEEAQUFBRU+FZet/W9++67aNWqFbZs2QLgxWrpsbGxOHv2LFatWoW9e/ciPDwcwIuHIebNmyd52feIESMAvFgWY9KkSTh58iQSEhKQkZGB4ODgcsmRiIj039atW7Fq1Srcv38EBgbHMW2avPlUuxXk9dmzZ88kT0dWlIiIiHJ7fUzTpk1x6tQpAEBoaKgYb9SoESZPnowvv/wS33//PUxMTGBlZQWFQqG2yO2AAQPE//36668jNjYWbdu2xePHj8WlPIiIqPp5+vQppk+fLompVG9i9GiZEvp/LLaoQgmCIK4l9dtvvyEmJgYXLlxAbm4unj9/jqdPn+LJkyclLuZ67NgxjB8/HidPnsTDhw/Fm+5v3LjBpTeIiKqpS5cuYd26dZJYZGRkpXgbB4stPWJsbKz1Ox3L+7rl5fz583B2dkZGRga6deuGr776ClOmTEGdOnXw3//+FyEhISgoKCi22MrLy4Ofnx/8/PywZs0a1KtXDzdu3ICfnx8KCgrKLU8iItIfa9askbwur127dujSpYuMGUmx2NIjCoWi3Kbz5LB3716cPn0a3333HY4dOwaVSoXZs2eLC9du3LhR0t7ExETttTUXLlzAn3/+iWnTpokv8T569GjFdICIiCqVvLw8zJo1SxIbOHAgHBwcZMpIMxZbpBP5+flQKpUoLCxEZmYmEhMTERMTg27duiEwMBBnzpzBs2fPsGDBAnTv3h0HDx5EXFyc5ByNGjXC48ePkZSUhFatWsHCwgJOTk4wMTHBggUL8OWXX+LMmTOYNGmSTL0kIiK5nDp1Clu3bhU/KxQKjBkzBoaGhjJmpRmfRiSdSExMhL29PRo1aoTOnTtj3759iI2NxbZt22BoaIhWrVphzpw5mD59Olq0aIE1a9ao3fzv7e2NL7/8Er169UK9evUwY8YM1KtXD/Hx8di0aROaN2+OadOmqf2rhoiIqi5BELB06VJJofXOO+8gKiqqUhZaAF/XIyu+rof+iX/vRETFu3nzJlasWCGJff3116hXr16F5lHa1/VwGpGIiIgqvbi4OGRmZoqf8/MtMXlymHjfb2XGYouIiIgqLZVKpXZv7uPHNnj77W+gB3UWABZbREREVEldvHgR69evl8SCgoLQqFEjeRIqIxZbREREVOnExMSorZ8YFRUlLoytT1hsERERUaXx7NkzTJ06VRJzdnZGYGCgTBm9OhZbREREVCmkpaVh+/btktjgwYPV3pGrb1hsERERkewmTJigFouOjpYhk/LHYouIiIhk8+jRI8yZM0cSc3d3R48ePWTKqPyx2CIiIiJZrF27FpcvX5bEmjcfih49asuUkW7oyQoVROqCg4MREBAgfn7nnXcQGhr6Sucsj3MQEdHLTZgwQa3QGj8+GnPnVq1CC+DIFulAcHAwVq1aBQAwNjaGk5MTAgMDERkZCSMj3f0nt2XLFhgbG2vVdv/+/ejUqRMePnwIa2vrMp2DiIhKLysrC99//70k5ujoCBubAfDyAkaPlikxHWKxRTrRuXNnrFy5Evn5+di5cye++eYbGBsbIyIiQtKuoKAAJiYm5XLNOnXqVIpzEBGRZgsXLsSff/4piQ0dOhS1a78YzfL3lyMr3eM0IumEqakp7Ozs0LBhQ3z11Vfw9fXF9u3bxam/KVOmwMHBAW5ubgBevFz0s88+g7W1NerUqYMePXogIyNDPF9hYSHCwsJgbW2NunXrIjw8HP98h/o/pwDz8/MxatQoODo6wtTUFI0bN8by5cuRkZGBTp06AQBq164NhUKB4OBgjed4+PAhAgMDUbt2bVhYWKBLly6SYe/4+HhYW1tj165daNasGWrUqIHOnTvj7t27Ypv9+/ejXbt2sLS0hLW1Nd566y1cv369nP6kiYj0w4QJE9QKrejoaLHQqspYbFGFMDc3F1cCTkpKwsWLF7Fnzx7s2LEDz549g5+fH2rWrIk//vgDBw8eFIuWomNmz56N+Ph4rFixAv/973/x4MEDbN26tcRrBgYGYt26dYiNjcX58+exZMkS1KhRA46Ojti8eTOAF6+CuHv3LubPn6/xHMHBwTh69Ci2b9+OlJQUCIKADz/8EM+ePRPbPHnyBLNmzcLq1atx4MAB3LhxAyNGjAAAPH/+HAEBAfDx8cGpU6eQkpKCQYMG6eUKyEREZXHjxg21ZR1atWpVZZZ10AanEUmnBEFAUlISdu3ahSFDhiArKwuWlpZYtmyZOH34008/QaVSYdmyZWIRsnLlSlhbW2P//v344IMPMG/ePERERODjjz8G8OLt77t27Sr2upcuXcLGjRuxZ88e+Pr6AgBef/11cX/RdGH9+vUl92z93eXLl7F9+3YcPHgQ3t7eAIA1a9bA0dERCQkJ+PTTTwG8WO04Li4OLi4uAIBvv/0WEydOBADk5uYiJycH3bp1E/c3a9as9H+QRER6SNPaWSNHjoSFhYUM2ciHI1vVxPbtgLf3i58VYceOHahRowbMzMzQpUsX9OrVC+PHjwcAtGzZUnKf1smTJ3HlyhXUrFkTNWrUQI0aNVCnTh08ffoUV69eRU5ODu7evQtPT0/xGCMjI7Rp06bY6584cQKGhobw8fEpcx/Onz8PIyMjyXXr1q0LNzc3nD9/XoxZWFiIhRQA2Nvb4969ewBeFHXBwcHw8/ND9+7dMX/+fMkUIxFRVSQIQrGLlFa3QgvgyFa1MW0akJLy4mdF3IDYqVMnLF68GCYmJnBwcJA8hWhpaSlp+/jxY3h4eGDNmjVq56lXr16Zrm9ubl6m48rin08vKhQKyf1kK1euxNChQ5GYmIgNGzZg7Nix2LNnD9q3b19hORIRVZTz589j48aNkljHjh3Fe2WrI45sVROjR6NCH6m1tLRE48aN4eTk9NLlHt58801cvnwZ9evXR+PGjSWblZUVrKysYG9vj9TUVPGY58+f49ixY8Wes2XLllCpVPj999817i8aWSssLCz2HM2aNcPz588l1/3zzz9x8eJFNG/evMQ+/VPr1q0RERGB5ORktGjRAmvXri3V8URE+mDChAlqhVZkZGS1LrQAFlvVhr8/kJxcOR+r/fe//w0bGxv06NEDf/zxB9LT07F//34MHToUt27dAgAMGzYM06ZNQ0JCAi5cuICvv/4a2dnZxZ6zUaNGCAoKwoABA5CQkCCes+hLoGHDhlAoFNixYweysrLw+PFjtXO4urqiR48eGDhwIP773//i5MmT6Nu3Lxo0aKD1ayTS09MRERGBlJQUXL9+Hbt378bly5d53xYRVSmFhYXFThty7UIWW1QJWFhY4MCBA3BycsLHH3+MZs2aISQkBE+fPkWtWrUAAMOHD0e/fv0QFBQELy8v1KxZEx999FGJ5128eDE++eQTfP3112jatCkGDhyIvLw8AECDBg0wYcIEjB49Gra2tvj22281nmPlypXw8PBAt27d4OXlBUEQsHPnTq2/PCwsLHDhwgX07NkTTZo0waBBg/DNN99g8ODBpfgTIiKqvFJTUzF58mRJrHv37tXqacOXUQj/XKyIKkxubi6srKyQk5MjFhVFnj59ivT0dDg7O8PMzEymDKmi8e+diPSJptGscePGwcCgao/llPT7WxPeIE9ERESlUlBQgJiYGLU4R7M0Y7FFREREWtu9ezdSUlIksT59+qBJkyYyZVT5sdgiIiIirWiaNoyKiuJbMV6iak+qEhER0St7/PixWqH17JkRdu2KZqGlBY5sVXJ8fqF64d83EVU2GzdulLw1AwCaNPkCCxY0qLC1G/Udi61KqmhpgSdPnlToaugkr6IXbxsaGsqcCRGR5mnDopvg+/Sp6Gz0F4utSsrQ0BDW1tbiO/YsLCw4VFvFqVQqZGVlwcLC4qWr7hMR6dKff/6JhQsXSmL29vYYNGiQTBnpN36jV2J2dnYAIBZcVPUZGBjAycmJhTURySYuLg6ZmZmS2JAhQ1CnTh2ZMtJ/shdbixYtwsyZM6FUKtGqVSssWLAA7dq1K7b9pk2bMG7cOGRkZMDV1RXTp0/Hhx9+KO4XBAHR0dH44YcfkJ2djbfeeguLFy+Gq6ur2rny8/Ph6emJkydPIi0tDe7u7uK+U6dO4ZtvvsGRI0dQr149DBkyBOHh4aXK5VUpFArY29ujfv36ePbsWbmdlyovExOTKr8YIBFVXiVNG1LZyVpsbdiwAWFhYYiLi4OnpyfmzZsHPz8/XLx4EfXr11drn5ycjD59+iAmJgbdunXD2rVrERAQgOPHj6NFixYAgBkzZiA2NharVq2Cs7Mzxo0bBz8/P5w7d05tRe7w8HA4ODjg5MmTknhubi4++OAD+Pr6Ii4uDqdPn8aAAQNgbW0tDqFqk0t5MTQ05D08RESkM7du3cLy5cslsTNn3sDt25+Atdark/V1PZ6enmjbtq04L6xSqeDo6IghQ4ZgtIZHHHr16oW8vDzs2LFDjLVv3x7u7u6Ii4uDIAhwcHDA8OHDMWLECABATk4ObG1tER8fj969e4vH/frrrwgLC8PmzZvxxhtvSEa2Fi9ejDFjxkCpVMLExAQAMHr0aPElyNrkoo3SLvdPRERU3iZNmgSVSiWJtWgxArNnW2L0aMDfX6bEKrHS/v6Wbb6ioKAAx44dg6+v7/+SMTCAr6+v2sq0RVJSUiTtAcDPz09sn56eDqVSKWljZWUFT09PyTkzMzMxcOBArF69GhYWFhqv07FjR7HQKrrOxYsX8fDhQ61y0SQ/Px+5ubmSjYiISA6CIGDChAlqhVZ0dDR69rREcjILrfIiW7F1//59FBYWwtbWVhK3tbWFUqnUeIxSqSyxfdHPktoIgoDg4GB8+eWXaNOmTamu8/drvCwXTWJiYmBlZSVujo6OxbYlIiLSlYsXL2LixImS2FtvvcX7s3RE9hvkK9qCBQvw6NEjREREVPi1IyIiEBYWJn7Ozc1lwUVERBVK003wERERktkcKl+yjWzZ2NjA0NBQ7fHSzMxMccmDf7KzsyuxfdHPktrs3bsXKSkpMDU1hZGRERo3bgwAaNOmDYKCgkq8zt+v8bJcNDE1NUWtWrUkGxERUUVQqVTFPm3IQku3ZCu2TExM4OHhgaSkJDGmUqmQlJQELy8vjcd4eXlJ2gPAnj17xPbOzs6ws7OTtMnNzUVqaqrYJjY2FidPnsSJEydw4sQJ7Ny5E8CLJyOnTJkiXufAgQOS5Rb27NkDNzc31K5dW6tciIiIKotjx45h0qRJktiHH37IacMKIus0YlhYGIKCgtCmTRu0a9cO8+bNQ15eHvr37w8ACAwMRIMGDRATEwMAGDZsGHx8fDB79mx07doV69evx9GjR7F06VIAL9alCg0NxeTJk+Hq6iou/eDg4ICAgAAAgJOTkySHGjVqAABcXFzw2muvAQA+//xzTJgwASEhIRg1ahTOnDmD+fPnY+7cueJxL8uFiIioMtA0mjVu3Diu6VeBZC22evXqhaysLERFRUGpVMLd3R2JiYnijec3btyQ/Mfg7e2NtWvXYuzYsYiMjISrqysSEhIk61qFh4cjLy8PgwYNQnZ2Njp06IDExES1NbZKYmVlhd27d+Obb76Bh4cHbGxsEBUVJXlNgTa5EBERyeXZs2eYOnWqWpyjWRVP1nW2qjuus0VERLqwd+9e/PHHH5JYr1690LRpU5kyqlpK+/u72j2NSEREVJVpmjaMioriO1dlxGKLiIioCnjy5AlmzpypFue0ofxYbBEREem52NhY8Q0nRQYMGMC1HCsJFltERER6rLi1s6jy4HOfREREeigzM1NjobVrFwutyoYjW0RERHpGU5Hl5jYQsbEOGD1ahoSoRCy2iIiI9EhJ04a9e1d0NqQNFltERER64Nq1a1i9erUkZmFhgZEjR8qUEWmLxRYREVElp2k0a9iwYbC2tq74ZKjUWGwRERFVUoIgYOLEiWpxPm2oX1hsERERVUKHDx/Gr7/+Kok5OzsjMDBQpoyorFhsERERVTKapg3Dw8Nhbm4uQzb0qlhsERERVRIqlQqTJk1Si3PaUL+x2CIiIqoE1q1bh0uXLklid+40gI3NFzJlROWFxRYREZHMNE0bRkZGwtjYWIZsqLyx2CIiIpLJ06dPMX36dLU4pw2rFhZbREREMpg9ezYeP34sibVu3Rr+/v4yZUS6wmKLiIiogmmaNoyKioJCoZAhG9I1FltEREQVJDs7G/Pnz1eLc9qwamOxRUREVAE0jWZ98MEH8PLykiEbqkgstoiIiHRMU6HF0azqg8UWERGRjmRmZiIuLk4tzkKremGxRUREpAOaRrOOHAnEoEHOMmRDcmKxRUREVM44bUh/x2KLiIionFy5cgVr1qxRi7PQqt5YbBEREZUDTaNZ33zzDWxsbGTIhioTFltERESviNOGVBIWW0RERGV07Ngx7NixQxKztrbGsGHDZMqIKiMWW0RERGWgaTRrxIgRsLS0lCEbqsxYbBEREZWCIAiYOHGiWpzThlQcFltERERa2rNnD5KTkyUxNzc39O7dW6aMSB+w2CIiItKCpmnDyMhIGBsby5AN6RMWW0RERCV49uwZpk6dqhbntCFpi8UWERFRMdatW4dLly5JYm+99RZ8fX1lyoj0EYstIiIiDTRNG0ZFRUGhUMiQDekzFltERER/8/jxY8yePVstzmlDKisWW0RERP9v3rx5yMnJkcS6d++ON998U6aMqCpgsUVERAS+cod0h8UWERFVa1lZWfj+++/V4iy0qLyw2CIiompL02hW37594eLiIkM2VFUZyJ3AokWL0KhRI5iZmcHT0xOHDx8usf2mTZvQtGlTmJmZoWXLlti5c6dkvyAIiIqKgr29PczNzeHr64vLly9L2vj7+8PJyQlmZmawt7dHv379cOfOHXH/+PHjoVAo1La/v+8qPj5ebb+ZmVk5/IkQEVFFKG7akIUWlTdZi60NGzYgLCwM0dHROH78OFq1agU/Pz/cu3dPY/vk5GT06dMHISEhSEtLQ0BAAAICAnDmzBmxzYwZMxAbG4u4uDikpqbC0tISfn5+ePr0qdimU6dO2LhxIy5evIjNmzfj6tWr+OSTT8T9I0aMwN27dyVb8+bN8emnn0ryqVWrlqTN9evXy/lPiIiIytuFCxd4fxZVKIUgCIJcF/f09ETbtm2xcOFCAIBKpYKjoyOGDBmC0aNHq7Xv1asX8vLysGPHDjHWvn17uLu7Iy4uDoIgwMHBAcOHD8eIESMAADk5ObC1tUV8fHyx767avn07AgICkJ+fr/G1CydPnoS7uzsOHDiAt99+G8CLka3Q0FBkZ2eXuf+5ubmwsrJCTk4OatWqVebzEBGRdjQVWV9++SVsbW1lyIb0VWl/f8s2slVQUIBjx45JVuE1MDCAr68vUlJSNB6TkpKitmqvn5+f2D49PR1KpVLSxsrKCp6ensWe88GDB1izZg28vb2Lfb/VsmXL0KRJE7HQKvL48WM0bNgQjo6O6NGjB86ePVtin/Pz85GbmyvZiIioYmgqtHbtimahRTonW7F1//59FBYWqv1HbmtrC6VSqfEYpVJZYvuin9qcc9SoUbC0tETdunVx48YNbNu2TeM1nz59ijVr1iAkJEQSd3Nzw4oVK7Bt2zb89NNPUKlU8Pb2xq1bt4rtc0xMDKysrMTN0dGx2LZERFQ+fvghudhCS8MkClG5k/0GebmMHDkSaWlp2L17NwwNDREYGAhNM6pbt27Fo0ePEBQUJIl7eXkhMDAQ7u7u8PHxwZYtW1CvXj0sWbKk2GtGREQgJydH3G7evFnu/SIiov+ZMGEC7tzZI4kNGzYM0dHRSE4G/P1lSoyqFdmWfrCxsYGhoSEyMzMl8czMTNjZ2Wk8xs7OrsT2RT8zMzNhb28vaePu7q52fRsbGzRp0gTNmjWDo6MjDh06BC8vL0m7ZcuWoVu3bi8dZjY2Nkbr1q1x5cqVYtuYmprC1NS0xPMQEdGrEwQBEydOVIvzJniSg2wjWyYmJvDw8EBSUpIYU6lUSEpKUit4inh5eUnaA8CePXvE9s7OzrCzs5O0yc3NRWpqarHnLLou8OKeqr9LT0/Hvn371KYQNSksLMTp06clRR4REVW8ffv2qRVar7/+Ogstko2si5qGhYUhKCgIbdq0Qbt27TBv3jzk5eWhf//+AIDAwEA0aNAAMTExAF4M/fr4+GD27Nno2rUr1q9fj6NHj2Lp0qUAAIVCgdDQUEyePBmurq5wdnbGuHHj4ODggICAAABAamoqjhw5gg4dOqB27dq4evUqxo0bBxcXF7WCbMWKFbC3t0eXLl3Ucp84cSLat2+Pxo0bIzs7GzNnzsT169fxxRdf6PBPjIiISqLp3qyIiAiYmJjIkA3RC7IWW7169UJWVhaioqKgVCrh7u6OxMREccruxo0bMDD43+Cbt7c31q5di7FjxyIyMhKurq5ISEhAixYtxDbh4eHIy8vDoEGDkJ2djQ4dOiAxMVFccNTCwgJbtmxBdHQ08vLyYG9vj86dO2Ps2LGSKT6VSoX4+HgEBwfD0NBQLfeHDx9i4MCBUCqVqF27Njw8PJCcnIzmzZvr6o+LiIiK8fz5c0yZMkUtztEsqgxkXWeruuM6W0REr27Tpk04d+6cJObp6YnOnTvLlBFVdaX9/c13IxIRkd7SNG04btw4yawIkdxYbBERkd558uQJZs6cqRbntCFVRiy2iIhIryxatAj379+XxLp06YJ27drJlBFRyVhsERGR3uALpEkfsdgiIqJK788//8TChQvV4iy0SB+w2CIiokpN02hWnz590KRJExmyISo9FltERFRpcdqQqgIWW0REVOncuHEDK1euVIuz0CJ9xGKLiIgqFU2jWYMGDeK7Z0lvsdgiIqJKg9OGVBWx2CIiItmdOXMGmzdvlsSMjY0RGRkpU0ZE5YfFFhERyUrTaFZoaCisrKxkyIao/LHYIiIiWQiCgIkTJ6rFOW1IVQ2LLSIiqnB//PEH9u7dK4k5OjpiwIABMmVEpDsstoiIqEJpmjYcPXo0TE1NZciGSPdYbBERUYUoLCzE5MmT1eKcNqSqjsUWERHp3NatW3Hq1ClJzMPDA926dZMpI6KKw2KLiIh0StO04dixY2FoaChDNkQVj8UWERHpxNOnTzF9+nS1OKcNqbphsUVEROVu6dKluHv3riT2wQcfwMvLS6aMiOTDYouIiMqVpmnDqKgoKBQKGbIhkh+LLSIiKhcPHz5EbGysWpzThlTdsdgiIqJXpmk067PPPkOzZs1kyIaocjEo7QGGhoa4d++eWvzPP//kkyVERNWQpkIrOjqahRbR/yv1yJYgCBrj+fn5MDExeeWEiIhIP9y+fRvLli1Ti3PakEhK62KraB5eoVBg2bJlqFGjhrivsLAQBw4cQNOmTcs/QyIiqnQ0jWaFhITgtddekyEbospN62Jr7ty5AF6MbMXFxUmmDE1MTNCoUSPExcWVf4ZERFSpFDdtSESaaV1spaenAwA6deqELVu2oHbt2jpLioiIKp/z589j48aNavFdu6LBWouoeKW+Z2vfvn26yIOIiCoxTaNZzZsPw9y51hg9WoaEiPRIqYutAQMGlLh/xYoVZU6GiIgqF0EQMHHiRLV40bThp59WdEZE+qfUxdbDhw8ln589e4YzZ84gOzsb7777brklRkRE8kpJScHu3bslMTs7OwwePFimjIj0U6mLra1bt6rFVCoVvvrqK7i4uJRLUkREJC9N04bh4eEwNzeXIRsi/VbqRU01nsTAAGFhYeITi0REpJ8KCwuLfdqQhRZR2ZTb63quXr2K58+fl9fpiIiogu3YsQPHjh2TxFq1aoWAgAB5EiKqIkpdbIWFhUk+C4KAu3fv4pdffkFQUFC5JUZERBVH02jW2LFj+Ro2onJQ6mIrLS1N8tnAwAD16tXD7NmzX/qkIhERVS75+fmYNm2aWpyLlBKVH66zRURUTa1YsQI3b96UxN599128/fbbMmVEVDWV+Z6te/fu4eLFiwAANzc31K9fv9ySIiIi3dI0bRgVFQWFQiFDNkRVW6mfRszNzUW/fv3g4OAAHx8f+Pj4oEGDBujbty9ycnJ0kSMREZWTR48eaSy0WreOZqFFpCOlHtkaOHAg0tLS8Msvv8DLywvAi4Xvhg0bhsGDB2P9+vXlniQREb26BQsW4MGDB5JY79694ebmJlNGRNVDqUe2duzYgRUrVsDPzw+1atVCrVq14Ofnhx9++AH/+c9/Sp3AokWL0KhRI5iZmcHT0xOHDx8usf2mTZvQtGlTmJmZoWXLlti5c6dkvyAIiIqKgr29PczNzeHr64vLly9L2vj7+8PJyQlmZmawt7dHv379cOfOHXF/RkYGFAqF2nbo0KFS5UJEVFlMmDBBrdCKjo5moUVUAUpdbNWtWxdWVlZqcSsrK9SuXbtU59qwYQPCwsIQHR2N48ePo1WrVvDz88O9e/c0tk9OTkafPn0QEhKCtLQ0BAQEICAgAGfOnBHbzJgxA7GxsYiLi0NqaiosLS3h5+eHp0+fim06deqEjRs34uLFi9i8eTOuXr2KTz75RO16v/32G+7evStuHh4epcqFiEhu9+7dK3aRUiKqGApBEITSHLB06VJs2rQJq1evhp2dHQBAqVQiKCgIH3/8canemeXp6Ym2bdti4cKFAF689sfR0RFDhgzBaA2vke/Vqxfy8vKwY8cOMda+fXu4u7sjLi4OgiDAwcEBw4cPx4gRIwAAOTk5sLW1RXx8PHr37q0xj+3btyMgIAD5+fkwNjZGRkYGnJ2dkZaWBnd3d43HvCwXbeTm5sLKygo5OTmoVauWVscQEWlLU5H1xRdfoEGDBjJkQ1R1lPb3d6lHthYvXoxDhw7ByckJjRs3RuPGjeHk5ITk5GQsWbIEb775priVpKCgAMeOHYOvr+//kjEwgK+vL1JSUjQek5KSImkPAH5+fmL79PR0KJVKSRsrKyt4enoWe84HDx5gzZo18Pb2hrGxsWSfv78/6tevjw4dOmD79u2lyoWISE7FjWax0CKqeKW+Qb5Hjx7l8sTK/fv3UVhYCFtbW0nc1tYWFy5c0HiMUqnU2F6pVIr7i2LFtSkyatQoLFy4EE+ePEH79u0lI1Q1atTA7Nmz8dZbb8HAwACbN29GQEAAEhIS4O/vr1UumuTn5yM/P1/8nJubW2xbIqKyuHbtGlavXi2JmZubIzw8XKaMiKjUxdb48eN1kEbFGzlyJEJCQnD9+nVMmDABgYGB2LFjBxQKBWxsbCSvJWrbti3u3LmDmTNnisVWWcTExGj81yYRUXnQ9P0ydOjQUt9PS0Tlq9TTiK+//jr+/PNPtXh2djZef/11rc9jY2MDQ0NDZGZmSuKZmZnivWD/ZGdnV2L7op/anNPGxgZNmjTB+++/j/Xr12Pnzp1qTxv+naenJ65cuaJ1LppEREQgJydH3P65cjMRUVkVN23IQotIfqUutjIyMlBYWKgWz8/Px61bt7Q+j4mJCTw8PJCUlCTGVCoVkpKSxPW7/snLy0vSHgD27Nkjtnd2doadnZ2kTW5uLlJTU4s9Z9F1i/pQnBMnTsDe3l7rXDQxNTUVl8so2oiIXsWJEyfUCq2GDRvyaUOiSkTracS/3yC+a9cuyfIPhYWFSEpKgrOzc6kuHhYWhqCgILRp0wbt2rXDvHnzkJeXh/79+wMAAgMD0aBBA8TExAAAhg0bBh8fH8yePRtdu3bF+vXrcfToUSxduhQAoFAoEBoaismTJ8PV1RXOzs4YN24cHBwcEBAQAABITU3FkSNH0KFDB9SuXRtXr17FuHHj4OLiIhZKq1atgomJCVq3bg0A2LJlC1asWIFly5aJub8sFyIiXdM0mhUeHg5zc3MZsiGi4mhdbBUVKwqFAkFBQZJ9xsbGaNSoEWbPnl2qi/fq1QtZWVmIioqCUqmEu7s7EhMTxRvPb9y4AQOD/w2+eXt7Y+3atRg7diwiIyPh6uqKhIQEtGjRQmwTHh6OvLw8DBo0CNnZ2ejQoQMSExNhZmYGALCwsMCWLVsQHR2NvLw82Nvbo3Pnzhg7dixMTU3F80yaNAnXr1+HkZERmjZtig0bNkjW4tImFyIiXVCpVJg0aZJanKNZRJVTqdfZcnZ2xpEjR2BjY6OrnKoNrrNFRKW1f/9+/P7775KYh4cHunXrJlNGRNVPaX9/l/ppxPT09DIlRkREr0bTtOGYMWNgZFTqr3IiqkCl/n/oxIkTS9wfFRVV5mSIiEjds2fPMHXqVLU4pw2J9EOpi62tW7dKPj979gzp6ekwMjKCi4sLiy0ionK0efNmtXeufvDBByU++UxElUupi620tDS1WG5uLoKDg/HRRx+VS1JERKR52jAqKqpc3uJBRBWn1DfIF+f06dPo3r07MjIyyuN01QJvkCciTR4/fqzx6W5OGxJVDjq/Qb44RauiExFR2cXFxam9neLTTz9F8+bNZcqIiF5VqYut2NhYyWdBEHD37l2sXr0aXbp0KbfEiIiqm+JeuUNE+q3UxdbcuXMlnw0MDFCvXj0EBQUhIiKi3BIjIqoucnJyMG/ePLU4Cy2iqoHrbBERySg+Ph7Xr1+XxAYMGABHR0eZMiKi8lame7ays7Nx5coVAEDjxo1hbW1dnjkREVULmqYNW7eOBussoqqlVMVWRkYGvvnmG+zatQtFDzEqFAp07twZCxcuRKNGjXSRIxFRlaJUKrFkyRJJ7PXXX0e/fv1kyoiIdEnrYuvmzZto3749jI2NMWnSJDRr1gwAcO7cOSxevBheXl44cuQIXnvtNZ0lS0Sk72bPno3Hjx9LYt999x2XfyGqwrReZyskJARXrlzBrl27YGZmJtn3119/oXPnznB1dcWyZct0kmhVxHW2iKoXPm1IVDXobJ2txMREbNiwQa3QAgBzc3NMmjQJvXv3Ll22RETVwLVr17B69WpJzMPDA926dZMpIyKqSFoXW/fv3y/xnqzXX38dDx48KI+ciIiqDE2jWaNGjdL4D1ciqpoMtG1ob2+Pc+fOFbv/zJkzsLOzK5ekiIj0nSAIxU4bstAiql60HtkKCAjAiBEjkJSUhHr16kn23bt3D6NGjUJAQEB550dEpHdOnTqFrVu3SmLvvfceOnToIFNGRCQnrW+Qf/jwITw9PaFUKtG3b180bdoUgiDg/PnzWLt2Lezs7HDo0CHUqVNH1zlXGbxBnqjq0TSaNWbMGBgZlduraIlIZjq7Qb527dpITU1FZGQk1q9fj+zsbACAtbU1Pv/8c0ydOpWFFhFVW8+fP8eUKVPU4nzakIi0Htn6O0EQkJWVBQCoV68eFApFuSdWHXBki6hqOHjwIH777TdJ7NSpjxAU9C/4+8uUFBHpjM5Gtv5OoVCgfv36ZTmUiKhK0TRtGBUVxX+EEpGINxEQEZXB06dPMX36dLU4pw2J6J9YbBERldIvv/yCo0ePSmL9+vXD66+/LlNGRFSZsdgiIioFvnKHiEqLxRYRkRZyc3Mxd+5cSczS0hIjRoyQKSMi0hdaFVuxsbFan3Do0KFlToaIqDL66aefcPXqVUls8ODBfGsGEWlFq6UfnJ2dtTuZQoFr1669clLVBZd+IKr8OG1IRP+kk6Uf0tPTXzkxIiJ9cu/ePSxevFgSa9iwIYKDg+VJiIj0Vpnv2SooKEB6ejpcXFz4GgoiqlLmz58vviWjSGhoKKysrORJiIj0mkFpD3jy5AlCQkJgYWGBN954Azdu3AAADBkyBNOmTSv3BImIKtKECRPUCq3o6GgWWkRUZqUutiIiInDy5Ens378fZmZmYtzX1xcbNmwo1+SIiCpKRkaG2v1Z7u7uvD+LiF5Zqef/EhISsGHDBrRv317yOoo33nhD7WkdIiJ9oOkm+PDwcJibm8uQDRFVNaUutrKysjS+FzEvL4/vAiMivSIIAiZOnKgW52gWEZWnUk8jtmnTBr/88ov4uajAWrZsGby8vMovMyIiHTp79qxaofXOO++w0CKiclfqka2pU6eiS5cuOHfuHJ4/f4758+fj3LlzSE5Oxu+//66LHImIypWmacMxY8bwyWoi0olSj2x16NABJ06cwPPnz9GyZUvs3r0b9evXR0pKCjw8PHSRIxFRuSgsLCx2kVIWWkSkK1qtIE+6wRXkiSrOoUOHsGvXLknM398frVu3likjItJXOllBPjc3V+sEWDQQUWWjaTRr3LhxMDAo9eA+EVGpaVVsWVtba/2kYWFh4SslRERUXvLz8zUutsyb4ImoImlVbO3bt0/83xkZGRg9ejSCg4PFpw9TUlKwatUqxMTE6CZLIqJSSkxMRGpqqiT273//G40bN5YpIyKqrrQaQ/fx8RG3H3/8EXPmzEFMTAz8/f3h7++PmJgYzJo1CytXrix1AosWLUKjRo1gZmYGT09PHD58uMT2mzZtQtOmTWFmZoaWLVti586dkv2CICAqKgr29vYwNzeHr68vLl++LGnj7+8PJycnmJmZwd7eHv369cOdO3fE/fv370ePHj1gb28PS0tLuLu7Y82aNZJzxMfHQ6FQSLa/r6hPRPKZMGGCWqEVFRXFQouIZFHqGxZSUlLQpk0btXibNm1eWij904YNGxAWFobo6GgcP34crVq1gp+fH+7du6exfXJyMvr06YOQkBCkpaUhICAAAQEBOHPmjNhmxowZiI2NRVxcHFJTU2FpaQk/Pz88ffpUbNOpUyds3LgRFy9exObNm3H16lV88sknkuv861//wubNm3Hq1Cn0798fgYGB2LFjhySfWrVq4e7du+J2/fr1UvWfiMrX48eP1e7PMjU1RXR0NBddJiLZlPppRDc3N/To0QMzZsyQxMPDw7Ft2zZcvHhR63N5enqibdu2WLhwIQBApVLB0dERQ4YMwejRo9Xa9+rVC3l5eZKip3379nB3d0dcXBwEQYCDgwOGDx+OESNGAABycnJga2uL+Ph49O7dW2Me27dvR0BAAPLz82FsbKyxTdeuXWFra4sVK1YAeDGyFRoaqvbC2tLg04hE5Wf9+vVq3z8DBw6Eg4ODTBkRUVWlk6cR/27u3Lno2bMnfv31V3h6egIADh8+jMuXL2Pz5s1an6egoADHjh1DRESEGDMwMICvry9SUlI0HpOSkoKwsDBJzM/PDwkJCQCA9PR0KJVK+Pr6ivutrKzg6emJlJQUjcXWgwcPsGbNGnh7exdbaAEvirZmzZpJYo8fP0bDhg2hUqnw5ptvYurUqXjjjTde2nciKl/FrZ1FRFQZlHoa8cMPP8Tly5fRvXt3PHjwAA8ePED37t1x6dIlfPjhh1qf5/79+ygsLIStra0kbmtrC6VSqfEYpVJZYvuin9qcc9SoUbC0tETdunVx48YNbNu2rdhcN27ciCNHjqB///5izM3NDStWrMC2bdvw008/QaVSwdvbG7du3Sr2PPn5+cjNzZVsRFR29+/fVyu0GjRowEKLiCqVMi2Z/Nprr2Hq1KnlnUuFGjlyJEJCQnD9+nVMmDBBvCfrn/d17Nu3D/3798cPP/wgGbXy8vKSvAvS29sbzZo1w5IlSzBp0iSN14yJidH4L3AiKr1Fixbh/v37ktjQoUNRu3ZtmTIiItKsTMVWdnY2li9fjvPnzwMA3njjDQwYMABWVlZan8PGxgaGhobIzMyUxDMzM2FnZ6fxGDs7uxLbF/3MzMyEvb29pI27u7va9W1sbNCkSRM0a9YMjo6OOHTokKSA+v3339G9e3fMnTsXgYGBJfbH2NgYrVu3xpUrV4ptExERIZkGzc3NhaOjY4nnJSJ1nDYkIn1S6mnEo0ePwsXFBXPnzhWnEefMmQMXFxccP35c6/OYmJjAw8MDSUlJYkylUiEpKUlS8Pydl5eXpD0A7NmzR2zv7OwMOzs7SZvc3FykpqYWe86i6wIvpvmK7N+/H127dsX06dMxaNCgl/ansLAQp0+flhR5/2RqaopatWpJNiLS3s2bN9UKrZYtW7LQIqJKrdQjW9999x38/f3xww8/iC9uff78Ob744guEhobiwIEDWp8rLCwMQUFBaNOmDdq1a4d58+YhLy9PvDcqMDAQDRo0EBdLHTZsGHx8fDB79mx07doV69evx9GjR7F06VIAgEKhQGhoKCZPngxXV1c4Oztj3LhxcHBwQEBAAAAgNTUVR44cQYcOHVC7dm1cvXoV48aNg4uLi1iQ7du3D926dcOwYcPQs2dP8X4vExMT1KlTBwAwceJEtG/fHo0bN0Z2djZmzpyJ69ev44svvijtHykRaUHTaNbIkSNhYWEhQzZERNordbF19OhRSaEFAEZGRggPD9e4/lZJevXqhaysLERFRUGpVMLd3R2JiYniDe43btyQvLvM29sba9euxdixYxEZGQlXV1ckJCSgRYsWYpvw8HDk5eVh0KBByM7ORocOHZCYmCguOGphYYEtW7YgOjoaeXl5sLe3R+fOnTF27FiYmpoCAFatWoUnT54gJiZGsiq+j48P9u/fDwB4+PAhBg4cCKVSidq1a8PDwwPJyclo3rx56f5AiahEgiBg4sSJanGOZhGRvij1Olu2trZYvXo1PvjgA0l8165dCAwMVLuniorHdbaISnb+/Hls3LhREnv77bfx7rvvypQREVEFrLPVq1cvhISEYNasWfD29gYAHDx4ECNHjkSfPn1KnzERkQaapg0jIyNLXA+PiKgyKnWxNWvWLCgUCgQGBuL58+cAXjyJ99VXX2HatGnlniARVS8qlUrj8imcNiQifVXqacQiT548wdWrVwEALi4uvEm1DDiNSCR1+PBh/Prrr5JY165dS30/KBGRLul8GrGIhYUFWrZsWdbDiYgkNE0bjhs3TvKQDBGRPtK62BowYIBW7Ype1ExEpI2CggLJU79FOG1IRFWF1sVWfHw8GjZsiNatW6OMM49ERBJ79uxBcnKyJNa7d2+4ubnJlBERUfnTutj66quvsG7dOqSnp6N///7o27evuMAnEVFpaZo2jIqKUns/KRGRvtP6ZohFixbh7t27CA8Px3/+8x84Ojris88+w65duzjSRURay8vLUyu0DAwMEB0dzUKLiKqkMj+NeP36dcTHx+PHH3/E8+fPcfbsWdSoUaO886vS+DQiVTc///wzzp49K4mFhITgtddekykjIqLSq7CnEQ0MDKBQKCAIAgoLC8t6GiKqJjRNG/ImeCKqDkr1THV+fj7WrVuH999/H02aNMHp06excOFC3Lhxg6NaRKTRgwcP1AotW1tbFlpEVG1oPbL19ddfY/369XB0dMSAAQOwbt062NjY6DI3ItJzS5YsgVKplMS+/fZb1K1bV6aMiIgqntb3bBkYGMDJyQmtW7cu8SbWLVu2lFtyVR3v2aKqjNOGRFRV6eyercDAQD4pREQvdfv2bSxbtkwSa9asGT777DOZMiIiklepFjUlIirJlClTxBfUFxk+fDjv6SSiaq3MTyMSERURBAETJ05Ui3PakIiIxRYRvaJLly5h3bp1kpi3tzfef/99mTIiIqpcWGwRUZlpugk+IiICJiYmMmRDRFQ5sdgiolJTqVSYNGmSWpzThkRE6lhsEVGpHDt2DDt27JDEunTpgnbt2smUERFR5cZii4i0pmnacOzYsTA0NJQhGyIi/cBii4he6tmzZ5g6dapanNOGREQvx2KLiEq0d+9e/PHHH5LYZ599hmbNmsmUERGRfmGxRUTF0jRtGBUVxbdJEBGVAostIlLz5MkTzJw5Uy3OaUMiotJjsUVEElu3bsWpU6cksf79+8PJyUmmjIiI9BuLLSISaZo25GgWEdGrYbFFRHj48CFiY2Mlsbp16+Lbb7+VKSMioqqDxRZRNbd8+XLcunVLEvv6669Rr149mTIiIqpaWGwRVWOcNiQi0j0WW0TV0N27d7F06VJJrEmTJujTp49MGRERVV0stoiqmenTp+Pp06eSWFhYGGrWrClTRkREVRuLLaJqhNOGREQVj8UWUTVw5coVrFmzRhJr164dunTpIlNGRETVB4stoipO02jW6NGjYWpqKkM2RETVD4stoipKEARMnDhRLc5pQyKiisVii6gKOnHiBLZt2yaJvf/++/D29pYpIyKi6ovFFlEVo2nacOzYsTA0NJQhGyIiYrFFVEU8f/4cU6ZMUYtz2pCISF4stoiqgN9//x379++XxHr27IkWLVrIkxAREYlYbBHpOU3ThlFRUVAoFDJkQ0RE/2QgdwKLFi1Co0aNYGZmBk9PTxw+fLjE9ps2bULTpk1hZmaGli1bYufOnZL9giAgKioK9vb2MDc3h6+vLy5fvixp4+/vDycnJ5iZmcHe3h79+vXDnTt3JG1OnTqFt99+G2ZmZnB0dMSMGTNKnQuRLv3111/FLlLKQouIqPKQtdjasGEDwsLCEB0djePHj6NVq1bw8/PDvXv3NLZPTk5Gnz59EBISgrS0NAQEBCAgIABnzpwR28yYMQOxsbGIi4tDamoqLC0t4efnJ3k9SadOnbBx40ZcvHgRmzdvxtWrV/HJJ5+I+3Nzc/HBBx+gYcOGOHbsGGbOnInx48dL3iWnTS5EurJ9+3a1fwAEBQXx/iwiokpIIQiCINfFPT090bZtWyxcuBAAoFKp4OjoiCFDhmD06NFq7Xv16oW8vDzs2LFDjLVv3x7u7u6Ii4uDIAhwcHDA8OHDMWLECABATk4ObG1tER8fj969e2vMY/v27QgICEB+fj6MjY2xePFijBkzBkqlEiYmJgBeLAKZkJCACxcuaJWLNnJzc2FlZYWcnBzUqlVLq2OI+ModIiJ5lfb3t2wjWwUFBTh27Bh8fX3/l4yBAXx9fZGSkqLxmJSUFEl7APDz8xPbp6enQ6lUStpYWVnB09Oz2HM+ePAAa9asgbe3N4yNjcXrdOzYUSy0iq5z8eJFPHz4UKtcNMnPz0dubq5kI9JWTk6OWqFlZWXFQouIqJKTrdi6f/8+CgsLYWtrK4nb2tpCqVRqPEapVJbYvuinNuccNWoULC0tUbduXdy4cUOyAGRx1/n7NV6WiyYxMTGwsrISN0dHx2LbEv1dfHw85s2bJ4l99dVXCA0NlSUfIiLSnuw3yMtl5MiRSEtLw+7du2FoaIjAwEDoekY1IiICOTk54nbz5k2dXo+qhgkTJuD69euSWHR0NOrXry9TRkREVBqyLf1gY2MDQ0NDZGZmSuKZmZmws7PTeIydnV2J7Yt+ZmZmwt7eXtLG3d1d7fo2NjZo0qQJmjVrBkdHRxw6dAheXl7FXufv13hZLpqYmpry5b+ktczMTLX7/15//XX069dPpoyIiKgsZBvZMjExgYeHB5KSksSYSqVCUlISvLy8NB7j5eUlaQ8Ae/bsEds7OzvDzs5O0iY3NxepqanFnrPousCLe6qKrnPgwAE8e/ZMch03NzfUrl1bq1yIXsWcOXPUCq3vvvuOhRYRkR6SdRoxLCwMP/zwA1atWoXz58/jq6++Ql5eHvr37w8ACAwMREREhNh+2LBhSExMxOzZs3HhwgWMHz8eR48exbfffgsAUCgUCA0NxeTJk7F9+3acPn0agYGBcHBwQEBAAAAgNTUVCxcuxIkTJ3D9+nXs3bsXffr0gYuLi1goff755zAxMUFISAjOnj2LDRs2YP78+QgLC9M6F6KymjBhAh49eiSJRUdH84lVIiI9JesK8r169UJWVhaioqKgVCrh7u6OxMRE8cbzGzduwMDgf/Wgt7c31q5di7FjxyIyMhKurq5ISEiQvJIkPDwceXl5GDRoELKzs9GhQwckJibCzMwMAGBhYYEtW7YgOjoaeXl5sLe3R+fOnTF27Fhxis/Kygq7d+/GN998Aw8PD9jY2CAqKgqDBg0qVS5EpXHt2jWsXr1aEvPw8EC3bt1kyoiIiMqDrOtsVXdcZ4uKaFo7a9SoUeI/EoiIqPIo7e9vvhuRSEaCIGDixIlqca6dRURUdbDYIpLJ6dOnsWXLFkns3Xffxdtvvy1TRkREpAsstohkoGnacMyYMTAy4v8liYiqGn6zE1WgwsJCTJ48WS3OaUMioqqLxRZRBTl48CB+++03Seyjjz7Cv/71L5kyIiKiisBii6gCaJo2jIqKgkKhkCEbIiKqSCy2iHTo6dOnmD59ulqc04ZERNUHiy0iHfnll19w9OhRSaxv375wcXGRKSMiIpIDiy0iHdA0bcjRLCKi6onFFlE5ys3Nxdy5cyUxCwsLjBw5UqaMiIhIbiy2iMrJTz/9hKtXr0pigwcPhp2dnUwZERFRZcBii6gccNqQiIiKw2KL6BXcu3cPixcvlsScnJzQv39/mTIiIqLKhsUWURnNnz8f2dnZktiwYcNgbW0tSz5ERFQ5sdgiKgNOGxIRkbZYbBGVwvXr1xEfHy+Jubu7o0ePHvIkRERElR6LLSItaRrNCg8Ph7m5uQzZEBGRvmCxRfQSgiBg4sSJanFOGxIRkTZYbBGV4OzZs/j5558lMR8fH7zzzjvyJERERHqHxRZRMTRNG0ZGRsLY2FiGbIiISF+x2CL6h8LCQkyePFktzmlDIiIqCxZbRH+TmpqKxMRESczf3x+tW7eWKSMiItJ3LLaI/t+0adOQn58vie3aNQ7R0QYyZURERFUBiy2q9p49e4apU6eqxXftisbo0TIkREREVQqLLarWTp48iYSEBEksLm4QnJ3tkZwsT05ERFS1sNiiakvT04bu7lFwdlZwRIuIiMoNiy2qdv766y/MmDFDEmvVqhUCAgIAAHzzDhERlScWW1StHDx4EL/99pskNnToUNSuXVumjIiIqKpjsUXVhqZpQ66dRUREusZii6q8R48eYc6cOZLYW2+9BV9fX5kyIiKi6oTFFlVpu3btwqFDhySx4cOHo0aNGjJlRERE1Q2LLaqyOG1IRESVAYstqnLu37+PRYsWSWJ+fn5o3769TBkREVF1xmKLqpRNmzbh3Llzktjo0aNhamoqU0ZERFTdsdiiKkEQBEycOFEtzmlDIiKSG4st0nu3b9/GsmXLJLGePXuiRYsWMmVERET0Pyy2SK8tX74ct27dksTGjBkDIyP+p01ERJUDfyORXlKpVJg0aZIkVqNGDQwfPlymjIiIiDRjsUV658qVK1izZo0k1rdvX7i4uMiUERERUfFYbJFemTVrFvLy8iSxcePGwcDAQKaMiIiISib7b6hFixahUaNGMDMzg6enJw4fPlxi+02bNqFp06YwMzNDy5YtsXPnTsl+QRAQFRUFe3t7mJubw9fXF5cvXxb3Z2RkICQkBM7OzjA3N4eLiwuio6NRUFAgthk/fjwUCoXaZmlpKbaJj49X229mZlZOfyr0T4WFhZgwYYKk0HJ0dER0dDQLLSIiqtRk/S21YcMGhIWFITo6GsePH0erVq3g5+eHe/fuaWyfnJyMPn36ICQkBGlpaQgICEBAQADOnDkjtpkxYwZiY2MRFxeH1NRUWFpaws/PD0+fPgUAXLhwASqVCkuWLMHZs2cxd+5cxMXFITIyUjzHiBEjcPfuXcnWvHlzfPrpp5J8atWqJWlz/fp1HfwpUWZmJiZPniyJDRw4EAMGDJApIyIiIu0pBEEQ5Lq4p6cn2rZti4ULFwJ4cdOzo6MjhgwZgtGjR6u179WrF/Ly8rBjxw4x1r59e7i7uyMuLg6CIMDBwQHDhw/HiBEjAAA5OTmwtbVFfHw8evfurTGPmTNnYvHixbh27ZrG/SdPnoS7uzsOHDiAt99+G8CLka3Q0FBkZ2eXuf+5ubmwsrJCTk4OatWqVebzVGVJSUn473//K4m5u0ehRw+FTBkREVF1V9rf37KNbBUUFODYsWPw9fX9XzIGBvD19UVKSorGY1JSUiTtgRevYSlqn56eDqVSKWljZWUFT0/PYs8JvCjI6tSpU+z+ZcuWoUmTJmKhVeTx48do2LAhHB0d0aNHD5w9e7b4DgPIz89Hbm6uZCPNnj9/jgkTJkgKrU8//RTR0dEstIiISK/IVmzdv38fhYWFsLW1lcRtbW2hVCo1HqNUKktsX/SzNOe8cuUKFixYgMGDB2vc//TpU6xZswYhISGSuJubG1asWIFt27bhp59+gkqlgre3t9qaT38XExMDKysrcXN0dCy2bXV269YtTJkyRRIbOXIkmjdvLlNGREREZVetn0a8ffs2OnfujE8//RQDBw7U2Gbr1q149OgRgoKCJHEvLy94eXmJn729vdGsWTMsWbJEbf2nIhEREQgLCxM/5+bmsuD6h//85z84fvy4+Llp06bo1auXjBkRERG9GtmKLRsbGxgaGiIzM1MSz8zMhJ2dncZj7OzsSmxf9DMzMxP29vaSNu7u7pLj7ty5g06dOsHb2xtLly4tNs9ly5ahW7duaqNl/2RsbIzWrVvjypUrxbYxNTXlC5GLUVBQgJiYGEmMa2cREVFVINs0oomJCTw8PJCUlCTGVCoVkpKSJCNGf+fl5SVpDwB79uwR2zs7O8POzk7SJjc3F6mpqZJz3r59G++88w48PDywcuXKYpcOSE9Px759+9SmEDUpLCzE6dOnJUUeaefq1atqhdbo0aNZaBERUZUg6zRiWFgYgoKC0KZNG7Rr1w7z5s1DXl4e+vfvDwAIDAxEgwYNxF/Ew4YNg4+PD2bPno2uXbti/fr1OHr0qDgypVAoEBoaismTJ8PV1RXOzs4YN24cHBwcEBAQAOB/hVbDhg0xa9YsZGVlifn8c0RtxYoVsLe3R5cuXdRynzhxItq3b4/GjRsjOzsbM2fOxPXr1/HFF1/o4o+qytq4cSPOnz8vfm7dujX8/f1lzIiIiKh8yVps9erVC1lZWYiKioJSqYS7uzsSExPFKbsbN25IRp28vb2xdu1ajB07FpGRkXB1dUVCQgJatGghtgkPD0deXh4GDRqE7OxsdOjQAYmJieKCo3v27MGVK1dw5coVvPbaa5J8/r4KhkqlQnx8PIKDg2FoaKiW+8OHDzFw4EAolUrUrl0bHh4eSE5O5k3cWvrrr78wY8YMSWzAgAG8h42IiKocWdfZqu6q6zpb586dw6ZNmySxMWPGwMioWj+vQUREeqK0v7/5240qjCAIiI+Px40bN8TYW2+9pbZ2GhERUVXCYosqxKNHjzBnzhxJbPDgwcU+eUpERFRVsNginUtLS8P27dvFzyYmJhg1ahRfIE1ERNUCiy3SGUEQ8P333+P+/fti7L333kOHDh1kzIqIiKhisdginXj48CFiY2MlsW+//RZ169aVKSMiIiJ5sNiicpeSkoLdu3eLn2vXro0hQ4ZAoeALpImIqPphsUXlRqVSYdasWfjrr7/EWNeuXdGmTRsZsyIiIpIXiy0qF/fu3cPixYslse+++65arR9GRESkCYstemX79u3DgQMHxM8NGjRASEgIpw2JiIjAYotewfPnzzFlyhRJrGfPnpLXJxEREVV3LLaoTG7fvo1ly5ZJYiNHjoSFhYVMGREREVVOLLao1H755RccPXpU/NykSRP06dNHxoyIiIgqLxZbpLWCggLExMRIYp9//jlcXV1lyoiIiKjyY7FFWklPT8ePP/4oiY0ePRqmpqYyZURERKQfWGzRS/388884e/as+Nnd3R09evSQMSMiIiL9wWKLivXXX39hxowZklj//v3h5OQkU0ZERET6h8UWaXThwgVs2LBBEouMjISxsbFMGREREeknFluk5scff0R6err42cvLCx988IGMGREREekvFlskevz4MWbPni2JDRo0CPb29jJlREREpP9YbBEA4OTJk0hISBA/GxoaIiIiAoaGhvIlRUREVAWw2KrmBEFAXFwc7t27J8beffddvP322zJmRUREVHWw2KrGsrOzMX/+fEnsm2++gY2NjUwZERERVT0stqqp1NRUJCYmip+trKwwbNgwKBQKGbMiIiKqelhsVTMqlQpz5sxBXl6eGPvwww/Rtm1bGbMiIiKqulhsVSNZWVn4/vvvJbHQ0FBYWVnJlBEREVHVx2Krmvj999+xf/9+8bO9vT0GDhzIaUMiIiIdY7FVxRUWFmLy5MmS2Mcff4yWLVvKlBEREVH1wmKrCrtz5w5++OEHSWzEiBGwtLSUKSMiIqLqh8VWFZWYmIjU1FTxs4uLC/r27StjRkRERNUTi60qKDMzU1Jo9enTB02aNJExIyIiouqLxVYVZG5ujvr16+PevXsYNWoUzMzM5E6JiIio2jKQOwEqf7Vq1UKDBl9h165o7N7NQouIiEhOLLaqqGnTgJSUFz+JiIhIPiy2qqjRowEvrxc/iYiISD68Z6uK8vd/sREREZG8OLJFREREpEMstoiIiIh0iMUWERERkQ6x2CIiIiLSIRZbRERERDoke7G1aNEiNGrUCGZmZvD09MThw4dLbL9p0yY0bdoUZmZmaNmyJXbu3CnZLwgCoqKiYG9vD3Nzc/j6+uLy5cvi/oyMDISEhMDZ2Rnm5uZwcXFBdHQ0CgoKJG0UCoXadujQoVLlQkRERCRrsbVhwwaEhYUhOjoax48fR6tWreDn54d79+5pbJ+cnIw+ffogJCQEaWlpCAgIQEBAAM6cOSO2mTFjBmJjYxEXF4fU1FRYWlrCz88PT58+BQBcuHABKpUKS5YswdmzZzF37lzExcUhMjJS7Xq//fYb7t69K24eHh6lyoWIiIhIIQiCINfFPT090bZtWyxcuBAAoFKp4OjoiCFDhmC0htU4e/Xqhby8POzYsUOMtW/fHu7u7oiLi4MgCHBwcMDw4cMxYsQIAEBOTg5sbW0RHx+P3r17a8xj5syZWLx4Ma5duwbgxciWs7Mz0tLS4O7urvGYl+WijdzcXFhZWSEnJwe1atXS6hgiIiKSV2l/f8s2slVQUIBjx47B19f3f8kYGMDX1xcpKSkaj0lJSZG0BwA/Pz+xfXp6OpRKpaSNlZUVPD09iz0n8KIgq1Onjlrc398f9evXR4cOHbB9+/ZS5aJJfn4+cnNzJRsRERFVbbIVW/fv30dhYSFsbW0lcVtbWyiVSo3HKJXKEtsX/SzNOa9cuYIFCxZg8ODBYqxGjRqYPXs2Nm3ahF9++QUdOnRAQECApOB6WS6axMTEwMrKStwcHR2LbUtERERVQ7V+Xc/t27fRuXNnfPrppxg4cKAYt7GxQVhYmPi5bdu2uHPnDmbOnAn/V3gHTkREhOS8ubm5LLiIiIiqONlGtmxsbGBoaIjMzExJPDMzE3Z2dhqPsbOzK7F90U9tznnnzh106tQJ3t7eWLp06Uvz9fT0xJUrV7TORRNTU1PUqlVLshEREVHVJluxZWJiAg8PDyQlJYkxlUqFpKQkeHl5aTzGy8tL0h4A9uzZI7Z3dnaGnZ2dpE1ubi5SU1Ml57x9+zbeeecdeHh4YOXKlTAwePkfw4kTJ2Bvb691LkRERESAzNOIYWFhCAoKQps2bdCuXTvMmzcPeXl56N+/PwAgMDAQDRo0QExMDABg2LBh8PHxwezZs9G1a1esX78eR48eFUemFAoFQkNDMXnyZLi6usLZ2Rnjxo2Dg4MDAgICAPyv0GrYsCFmzZqFrKwsMZ+iUalVq1bBxMQErVu3BgBs2bIFK1aswLJly8S2L8tFG0UPgvJGeSIiIv1R9Htb6wUdBJktWLBAcHJyEkxMTIR27doJhw4dEvf5+PgIQUFBkvYbN24UmjRpIpiYmAhvvPGG8Msvv0j2q1QqYdy4cYKtra1gamoqvPfee8LFixfF/StXrhQAaNyKxMfHC82aNRMsLCyEWrVqCe3atRM2bdqklvvLcnmZmzdvFpsLN27cuHHjxq1ybzdv3tTq972s62xVdyqVCnfu3EHNmjWhUCgq9NpFN+ffvHmzyt07VpX7BlTt/rFv+qsq949901+66p8gCHj06BEcHBy0uhWpWj+NKDcDAwO89tprsuZQlW/Ur8p9A6p2/9g3/VWV+8e+6S9d9M/KykrrtrK/G5GIiIioKmOxRURERKRDLLaqKVNTU0RHR8PU1FTuVMpdVe4bULX7x77pr6rcP/ZNf1WW/vEGeSIiIiId4sgWERERkQ6x2CIiIiLSIRZbRERERDrEYouIiIhIh1hs6YlFixahUaNGMDMzg6enJw4fPlxi+02bNqFp06YwMzNDy5YtsXPnTsl+QRAQFRUFe3t7mJubw9fXF5cvXxb3Z2RkICQkBM7OzjA3N4eLiwuio6NRUFCgdp5Zs2ahSZMmMDU1RYMGDTBlypQq0bddu3ahffv2qFmzJurVq4eePXsiIyOjUvcNAPz9/eHk5AQzMzPY29ujX79+uHPnjqTNqVOn8Pbbb8PMzAyOjo6YMWNGqfpVmfu3f/9+9OjRA/b29rC0tIS7uzvWrFlTJfr2d1euXEHNmjVhbW1dZfpWHt8nlbl/+vqdUiQ/Px/u7u5QKBQ4ceKEZJ8+f6e8rH/l8p1Sqpf5kSzWr18vmJiYCCtWrBDOnj0rDBw4ULC2thYyMzM1tj948KBgaGgozJgxQzh37pwwduxYwdjYWDh9+rTYZtq0aYKVlZWQkJAgnDx5UvD39xecnZ2Fv/76SxAEQfj111+F4OBgYdeuXcLVq1eFbdu2CfXr1xeGDx8uudaQIUMENzc3Ydu2bcK1a9eEo0ePCrt379b7vl27dk0wNTUVIiIihCtXrgjHjh0TOnbsKLRu3bpS900QBGHOnDlCSkqKkJGRIRw8eFDw8vISvLy8xP05OTmCra2t8O9//1s4c+aMsG7dOsHc3FxYsmSJ1n2rzP2bMmWKMHbsWOHgwYPClStXhHnz5gkGBgbCf/7zH73vW5GCggKhTZs2QpcuXQQrKyut+1XZ+/aq3yeVuX/6/J1SZOjQoUKXLl0EAEJaWpoY1/fvlJf1rzy+U1hs6YF27doJ33zzjfi5sLBQcHBwEGJiYjS2/+yzz4SuXbtKYp6ensLgwYMFQXjxsm47Ozth5syZ4v7s7GzB1NRUWLduXbF5zJgxQ3B2dhY/nzt3TjAyMhIuXLhQpn4JQuXt26ZNmwQjIyOhsLBQjG3fvl1QKBRCQUGBXvVt27Ztkry///57oXbt2kJ+fr7YZtSoUYKbm5tW/ars/dPkww8/FPr3769VvwSh8vctPDxc6Nu3r7By5cpSF1uVtW/l8X0iCJW3f/r+nbJz506hadOmwtmzZ9WKkarwnVJS/zQp7XcKpxEruYKCAhw7dgy+vr5izMDAAL6+vkhJSdF4TEpKiqQ9APj5+Ynt09PToVQqJW2srKzg6elZ7DkBICcnB3Xq1BE//+c//8Hrr7+OHTt2wNnZGY0aNcIXX3yBBw8e6H3fPDw8YGBggJUrV6KwsBA5OTlYvXo1fH19YWxsrDd9e/DgAdasWQNvb28x75SUFHTs2BEmJiaS61y8eBEPHz58ad8qe/80+effrz73be/evdi0aRMWLVqkVX/0pW+v+n1S2funz98pmZmZGDhwIFavXg0LCwuN19Hn75SX9U+T0nynALxnq9K7f/8+CgsLYWtrK4nb2tpCqVRqPEapVJbYvuhnac555coVLFiwAIMHDxZj165dw/Xr17Fp0yb8+OOPiI+Px7Fjx/DJJ5/ofd+cnZ2xe/duREZGwtTUFNbW1rh16xY2btyoF30bNWoULC0tUbduXdy4cQPbtm176XX+fg197t8/bdy4EUeOHEH//v31vm9//vkngoODER8fX6aX6lbmvr3q90ll75++fqcIgoDg4GB8+eWXaNOmTamu8/drvExl7t8/lfY7BWCxRVq4ffs2OnfujE8//RQDBw4U4yqVCvn5+fjxxx/x9ttv45133sHy5cuxb98+XLx4UcaMtVdc35RKJQYOHIigoCAcOXIEv//+O0xMTPDJJ59A0IOXLowcORJpaWnYvXs3DA0NERgYqBd5a0vb/u3btw/9+/fHDz/8gDfeeEOGTEuvpL4NHDgQn3/+OTp27ChzlmVTUt+qwvdJSf3T1++UBQsW4NGjR4iIiJA7FZ0obf/K+p3CYquSs7GxgaGhITIzMyXxzMxM2NnZaTzGzs6uxPZFP7U55507d9CpUyd4e3tj6dKlkn329vYwMjJCkyZNxFizZs0AADdu3NDrvi1atAhWVlaYMWMGWrdujY4dO+Knn35CUlISUlNTK33fbGxs0KRJE7z//vtYv349du7ciUOHDpV4nb9fQ5/7V+T3339H9+7dMXfuXAQGBmrVr8ret71792LWrFkwMjKCkZERQkJCkJOTAyMjI6xYsUKv+/aq3yeVvX/6+p2yd+9epKSkwNTUFEZGRmjcuDEAoE2bNggKCirxOn+/hj73r0hZv1MAFluVnomJCTw8PJCUlCTGVCoVkpKS4OXlpfEYLy8vSXsA2LNnj9je2dkZdnZ2kja5ublITU2VnPP27dt455134OHhgZUrV8LAQPqfy1tvvYXnz5/j6tWrYuzSpUsAgIYNG+p13548eaIWMzQ0FHOszH37p6J88/PzxescOHAAz549k1zHzc0NtWvXfmnfKnv/gBePanft2hXTp0/HoEGDtOqTPvQtJSUFJ06cELeJEyeiZs2aOHHiBD766CO97turfp9U9v7p63dKbGwsTp48Kf43V7S0woYNG8RlOfT5O0Wb/gGv9p0CgEs/6IP169cLpqamQnx8vHDu3Dlh0KBBgrW1taBUKgVBEIR+/foJo0ePFtsfPHhQMDIyEmbNmiWcP39eiI6O1vg4rLW1tbBt2zbh1KlTQo8ePSSPw966dUto3Lix8N577wm3bt0S7t69K25FCgsLhTfffFPo2LGjcPz4ceHo0aOCp6en8P777+t935KSkgSFQiFMmDBBuHTpknDs2DHBz89PaNiwofDkyZNK27dDhw4JCxYsENLS0oSMjAwhKSlJ8Pb2FlxcXISnT58KgvDiaRxbW1uhX79+wpkzZ4T169cLFhYWZXpMuzL2b+/evYKFhYUQEREh+bv9888/9b5v/1SWpxEra9/K4/ukMvdPX79T/ik9PV3taT19/k7Rpn/l8Z3CYktPLFiwQHBychJMTEyEdu3aCYcOHRL3+fj4CEFBQZL2GzduFJo0aSKYmJgIb7zxhvDLL79I9qtUKmHcuHGCra2tYGpqKrz33nvCxYsXxf0rV64UAGjc/u727dvCxx9/LNSoUUOwtbUVgoODS/UfYGXu27p164TWrVsLlpaWQr169QR/f3/h/Pnzlbpvp06dEjp16iTUqVNHMDU1FRo1aiR8+eWXwq1btyTnOXnypNChQwfB1NRUaNCggTBt2rRS9asy9y8oKEjj362Pj4/e9+2fylJsVea+lcf3SWXunz5+p/yTpmJEEPT3O0Wb/pXHd4pCECrxnXlEREREeo73bBERERHpEIstIiIiIh1isUVERESkQyy2iIiIiHSIxRYRERGRDrHYIiIiItIhFltEREREOsRii4iIiEiHWGwREb2ilJQUGBoaomvXrpJ4RkYGFAqFuNWpUwc+Pj74448/ZMqUiOTAYouI6BUtX74cQ4YMwYEDB3Dnzh21/b/99hvu3r2LAwcOwMHBAd26dUNmZqYMmRKRHFhsERG9gsePH2PDhg346quv0LVrV8THx6u1qVu3Luzs7NCiRQtERkYiNzcXqampFZ8sEcmCxRYR0SvYuHEjmjZtCjc3N/Tt2xcrVqxAca+c/euvv/Djjz8CAExMTCoyTSKSkZHcCRAR6bPly5ejb9++AIDOnTsjJycHv//+O9555x2xjbe3NwwMDPDkyRMIggAPDw+89957MmVMRBWNI1tERGV08eJFHD58GH369AEAGBkZoVevXli+fLmk3YYNG5CWlobNmzejcePGiI+Ph7GxsRwpE5EMOLJFRFRGy5cvx/Pnz+Hg4CDGBEGAqakpFi5cKMYcHR3h6uoKV1dXPH/+HB999BHOnDkDU1NTOdImogrGkS0iojJ4/vw5fvzxR8yePRsnTpwQt5MnT8LBwQHr1q3TeNwnn3wCIyMjfP/99xWcMRHJhcUWEVEZ7NixAw8fPkRISAhatGgh2Xr27Kk2lVhEoVBg6NChmDZtGp48eVLBWRORHFhsERGVwfLly+Hr6wsrKyu1fT179sTRo0eRm5ur8digoCA8e/ZMMtVIRFWXQijuGWUiIiIiemUc2SIiIiLSIRZbRERERDrEYouIiIhIh1hsEREREekQiy0iIiIiHWKxRURERKRDLLaIiIiIdIjFFhEREZEOsdgiIiIi0iEWW0REREQ6xGKLiIiISIdYbBERERHp0P8BbUyQ+jTyX2cAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZGJJREFUeJzt3XlYVGX/P/D3sA6ggoqyGCi5P2piqCxfFfWh0HCh9HnQUkBNW8wlXEGEcENJcy+yVNRc0DRUMtBwqRRxQ81UUoNwG9QUUFAQ5vz+8Md5Os5AMA4clvfruuai+cx9zvnc4DXz6b7vuY9CEAQBRERERFQhBnInQERERFQTsYgiIiIi0gGLKCIiIiIdsIgiIiIi0gGLKCIiIiIdsIgiIiIi0gGLKCIiIiIdsIgiIiIi0gGLKCIiIiIdsIgiojpPoVDgk08+kTsNUWBgIFq0aCF3GkT0D1hEEVG1FBMTA4VCIT6USiXatGmDjz76CFlZWZV67WPHjuGTTz5Bdna2Xs/bu3dvSZ8aNWqEbt26Yd26dVCr1Xq5xoIFCxAXF6eXcxFR2YzkToCIqCxz5syBk5MTnjx5gl9++QVffPEF9u3bhwsXLsDc3Fwv13j8+DGMjP73dnjs2DFEREQgMDAQVlZWerlGiZdeegmRkZEAgLt372Ljxo0YM2YMfv/9dyxcuPCFz79gwQIMHToUvr6+L3wuIiobiygiqtb69++Prl27AgDeffddNG7cGJ999hl2796N4cOH63xetVqNwsJCKJVKKJVKfaX7jywtLTFixAjx+XvvvYe2bdti1apVmDt3LoyNjassFyJ6MZzOI6IapW/fvgCA9PR0AMDixYvh4eGBxo0bw8zMDC4uLvj22281jlMoFPjoo4+wefNmdOjQAaampkhISBBfK1kT9cknn2DatGkAACcnJ3HqLSMjA56enujcubPWvNq2bQtvb+8K98fc3Bxubm7Iy8vD3bt3S22Xl5eHKVOmwMHBAaampmjbti0WL14MQRAkfczLy8OGDRvEvAMDAyucExGVD0eiiKhGuXbtGgCgcePGAIDly5dj0KBBeOedd1BYWIht27bhP//5D+Lj4+Hj4yM59uDBg9i+fTs++ugjWFtba128/dZbb+H333/H1q1bsXTpUlhbWwMAmjRpgpEjR2Ls2LG4cOECOnbsKB5z8uRJ/P777wgNDdWpT3/88QcMDQ1LnToUBAGDBg3CoUOHMGbMGDg7OyMxMRHTpk3DzZs3sXTpUgDApk2b8O6776J79+4YN24cAKBly5Y65URE5SAQEVVD69evFwAIP/74o3D37l3h+vXrwrZt24TGjRsLZmZmwo0bNwRBEIT8/HzJcYWFhULHjh2Fvn37SuIABAMDA+G3337TuBYAITw8XHz+6aefCgCE9PR0Sbvs7GxBqVQKM2bMkMQnTpwoWFhYCI8ePSqzT56enkK7du2Eu3fvCnfv3hUuXbokTJw4UQAgDBw4UGwXEBAgNG/eXHweFxcnABDmzZsnOd/QoUMFhUIhXL16VYxZWFgIAQEBZeZBRPrB6Twiqta8vLzQpEkTODg4YNiwYahXrx6+++47NGvWDABgZmYmtn3w4AFycnLQs2dPnDlzRuNcnp6e+Ne//qVzLpaWlhg8eDC2bt0qTqMVFxcjNjYWvr6+sLCw+MdzXL58GU2aNEGTJk3Qvn17rFy5Ej4+Pli3bl2px+zbtw+GhoaYOHGiJD5lyhQIgoAffvhB5z4Rke44nUdE1drq1avRpk0bGBkZwcbGBm3btoWBwf/+/y8+Ph7z5s3D2bNnUVBQIMYVCoXGuZycnF44H39/f8TGxuLnn39Gr1698OOPPyIrKwsjR44s1/EtWrTAV199JW7b0Lp1azRt2rTMY/7880/Y29ujfv36knj79u3F14mo6rGIIqJqrXv37uK38573888/Y9CgQejVqxc+//xz2NnZwdjYGOvXr8eWLVs02v991EpX3t7esLGxwTfffINevXrhm2++ga2tLby8vMp1vIWFRbnbElH1xuk8Iqqxdu7cCaVSicTERIwePRr9+/fXS4GibRSrhKGhId5++218++23ePDgAeLi4jB8+HAYGhq+8HVL07x5c9y6dQsPHz6UxC9fviy+XqKs3IlIv1hEEVGNZWhoCIVCgeLiYjGWkZHxwjt2l6xtKm3H8pEjR+LBgwd477338OjRI8m+T5XhjTfeQHFxMVatWiWJL126FAqFAv379xdjFhYWet9pnYi043QeEdVYPj4++Oyzz9CvXz+8/fbbuHPnDlavXo1WrVrh/PnzOp/XxcUFADBr1iwMGzYMxsbGGDhwoFhcdenSBR07dsSOHTvQvn17vPrqq3rpT2kGDhyIPn36YNasWcjIyEDnzp2xf/9+7N69G5MnT5ZsY+Di4oIff/wRn332Gezt7eHk5ARXV9dKzY+oruJIFBHVWH379sXatWuhUqkwefJkbN26FYsWLcKbb775Quft1q0b5s6di3PnziEwMBDDhw/X2AjT398fAMq9oPxFGBgYYM+ePZg8eTLi4+MxefJkXLx4EZ9++ik+++wzSdvPPvsMLi4uCA0NxfDhw/HFF19Uen5EdZVCEP623S0REZXL8uXL8fHHHyMjIwOOjo5yp0NEMmARRURUQYIgoHPnzmjcuDEOHTokdzpEJBOuiSIiKqe8vDzs2bMHhw4dwq+//ordu3fLnRIRyYgjUURE5ZSRkQEnJydYWVnhww8/xPz58+VOiYhkxCKKiIiISAf8dh4RERGRDlhEEREREemAC8srkVqtxq1bt1C/fn3eioGIiKiGEAQBDx8+hL29veSG589jEVWJbt26BQcHB7nTICIiIh1cv34dL730Uqmvs4iqRPXr1wfw7I/QoEEDmbMhIiKi8sjNzYWDg4P4OV4aFlGVqGQKr0GDBiyiiIiIaph/WorDheVEREREOmARRURERKQDFlFEREREOuCaKJkVFxfj6dOncqdBVcDY2BiGhoZyp0FERHrCIkomgiBApVIhOztb7lSoCllZWcHW1pb7hhER1QIsomRSUkA1bdoU5ubm/FCt5QRBQH5+Pu7cuQMAsLOzkzkjIiJ6USyiZFBcXCwWUI0bN5Y7HaoiZmZmAIA7d+6gadOmnNojIqrhuLBcBiVroMzNzWXOhKpayd+c6+CIiGo+FlEy4hRe3cO/ORFR7cEiioiIiEgHLKKIiIiIdMAiiiokMDAQCoUCCoUCxsbGsLGxwWuvvYZ169ZBrVaX+zwxMTGwsrKqvESJiIgqGYsoqrB+/frh9u3byMjIwA8//IA+ffpg0qRJGDBgAIqKiuROj4iIqEqwiKIKMzU1ha2tLZo1a4ZXX30VISEh2L17N3744QfExMQAAD777DN06tQJFhYWcHBwwIcffohHjx4BAA4fPoxRo0YhJydHHNX65JNPAACbNm1C165dUb9+fdja2uLtt98W91YiIiIqsWcP4OHx7KdcWERVE4IgoLCwUJaHIAgvnH/fvn3RuXNn7Nq1CwBgYGCAFStW4LfffsOGDRtw8OBBTJ8+HQDg4eGBZcuWoUGDBrh9+zZu376NqVOnAnj21f+5c+fi3LlziIuLQ0ZGBgIDA184PyIiqj3UajViY3/BX3+lYeFC+fLgZpvVxNOnTxEZGSnLtYODg2FiYvLC52nXrh3Onz8PAJg8ebIYb9GiBebNm4f3338fn3/+OUxMTGBpaQmFQgFbW1vJOUaPHi3+98svv4wVK1agW7duePToEerVq/fCORIRUc127949rF69Gm3aAG3aAM7OYQDk2T6GRRTpjSAI4j5IP/74IyIjI3H58mXk5uaiqKgIT548QX5+fpmbjJ4+fRqffPIJzp07hwcPHoiL1TMzM/Gvf/2rSvpBRETV088//4yDBw+Kzzt06IDBg+Xbf49FVDVhbGyM4OBg2a6tD5cuXYKTkxMyMjIwYMAAfPDBB5g/fz4aNWqEX375BWPGjEFhYWGpRVReXh68vb3h7e2NzZs3o0mTJsjMzIS3tzcKCwv1kiMREdU8xcXFWLhwoeTLS2+++SZeeeUVGbNiEVVtKBQKvUypyeXgwYP49ddf8fHHH+P06dNQq9VYsmQJDAyeLbvbvn27pL2JiQmKi4slscuXL+Ovv/7CwoUL4eDgAAA4depU1XSAiIiqJZVKhS+//FISmzJlSrVY4sEiiiqsoKAAKpUKxcXFyMrKQkJCAiIjIzFgwAD4+/vjwoULePr0KVauXImBAwfi6NGjiI6OlpyjRYsWePToEZKSktC5c2eYm5vD0dERJiYmWLlyJd5//31cuHABc+fOlamXREQktx9//BFHjx4Vnzs5OcHf31/GjKSqxbfzVq9ejRYtWkCpVMLV1RUnTpwos/2OHTvQrl07KJVKdOrUCfv27ZO8LggCwsLCYGdnBzMzM3h5eeHKlStaz1VQUABnZ2coFAqcPXtWjB8+fBiDBw+GnZ0dLCws4OzsjM2bN79wX2uDhIQE2NnZoUWLFujXrx8OHTqEFStWYPfu3TA0NETnzp3x2WefYdGiRejYsSM2b96ssWjew8MD77//Pvz8/NCkSRNERUWhSZMmiImJwY4dO/Cvf/0LCxcuxOLFi2XqJRERyaWoqAgRERGSAsrPz69aFVAAoBD08f32FxAbGwt/f39ER0fD1dUVy5Ytw44dO5CWloamTZtqtD927Bh69eoljnxs2bIFixYtwpkzZ9CxY0cAwKJFixAZGYkNGzbAyckJs2fPxq+//oqLFy9CqVRKzjdp0iRcuXIFP/zwA1JTU+Hs7AwAWLBgAR4/foz+/fvDxsYG8fHxCAoKwu7duzFgwIBy9S03NxeWlpbIyclBgwYNxPiTJ0+Qnp4OJycnjXyoduPfnoiobDdu3MDatWslsenTp8PMzKzKcijt8/t5shdRrq6u6NatG1atWgXg2d4PDg4OmDBhAmbOnKnR3s/PD3l5eYiPjxdjbm5ucHZ2RnR0NARBgL29PaZMmSLuPZSTkwMbGxvExMRg2LBh4nE//PADgoKCsHPnTnTo0EFSRGnj4+MDGxsbrFu3rlx9YxFFz+PfnoiodN9//71kLWz79u3x3//+t8rzKG8RJet0XmFhIU6fPg0vLy8xZmBgAC8vLyQnJ2s9Jjk5WdIeALy9vcX26enpUKlUkjaWlpZwdXWVnDMrKwtjx47Fpk2byvzK/d/l5OSgUaNG5e4fERER/bPCwkJERERICqgRI0bIUkBVhKwLy+/du4fi4mLY2NhI4jY2Nrh8+bLWY1Qqldb2KpVKfL0kVlobQRAQGBiI999/H127dkVGRsY/5rp9+3acPHlS4xsCf1dQUICCggLxeW5u7j+el4iIqC5LT0/Hxo0bJbGZM2fC1NRUpozKr05+O2/lypV4+PBhufdlOnToEEaNGoWvvvoKHTp0KLVdZGQkIiIi9JUmERFRrbZz505cuHBBfN6lSxcMGjRIxowqRtbpPGtraxgaGiIrK0sSz8rK0rgdSAlbW9sy25f8LKvNwYMHkZycDFNTUxgZGaFVq1YAgK5duyIgIEBy3JEjRzBw4EAsXbr0H78VEBwcjJycHPFx/fr1MtsTERHVRU+ePEFERISkgBo1alSNKqAAmYsoExMTuLi4ICkpSYyp1WokJSXB3d1d6zHu7u6S9gBw4MABsb2TkxNsbW0lbXJzc5GSkiK2WbFiBc6dO4ezZ8/i7Nmz4hYJsbGxmD9/vnjc4cOH4ePjg0WLFmHcuHH/2B9TU1M0aNBA8iAiIqL/+f3337Fo0SJJLCQkBI6OjjJlpDvZp/OCgoIQEBCArl27onv37li2bBny8vIwatQoAIC/vz+aNWsm7jM0adIkeHp6YsmSJfDx8cG2bdtw6tQprFmzBsCznb8nT56MefPmoXXr1uIWB/b29vD19QUAjT9Uya6nLVu2xEsvvQTg2RTegAEDMGnSJAwZMkRcT2ViYsLF5URERDrYvHkzrl69Kj53c3ODt7e3jBm9GNmLKD8/P9y9exdhYWFQqVRwdnZGQkKCuDA8MzNTvHUI8GyTxi1btiA0NBQhISFo3bo14uLixD2igGf7SeTl5WHcuHHIzs5Gjx49kJCQUKGvlG/YsAH5+fmIjIyUbBTp6emJw4cPv3jHiYiI6oi8vDyNzZPHjh0Le3t7mTLSD9n3iarNuE8UPY9/eyKqay5cuICdO3eKzxUKBWbNmgVDQ0MZsypbefeJkn0kikibwMBAZGdnIy4uDgDQu3dvODs7Y9myZTqfUx/nICKi8hEEAWvXrsXNmzfFmKenJ3r37i1fUnrGIooqJDAwEBs2bAAAGBsbw9HREf7+/ggJCYGRUeX9c9q1axeMjY3L1fbw4cPo06cPHjx4ACsrK53OQUREusvNzcXSpUslsQ8//BBNmjSRKaPKwSKKKqxfv35Yv349CgoKsG/fPowfPx7GxsYa+24VFhbCxMREL9fUx2J+fiGAiKjynTlzBnv37hWfm5ubY8qUKZL1zbVF7esRVTpTU1PY2tqiefPm+OCDD+Dl5YU9e/YgMDAQvr6+mD9/Puzt7dG2bVsAwPXr1/Hf//4XVlZWaNSoEQYPHizZJb64uBhBQUGwsrJC48aNMX36dDy/VK93796YPHmy+LygoAAzZsyAg4MDTE1N0apVK6xduxYZGRno06cPAKBhw4ZQKBQIDAzUeo4HDx7A398fDRs2hLm5Ofr3748rV66Ir8fExMDKygqJiYlo37496tWrh379+uH27dtim8OHD6N79+6wsLCAlZUV/u///g9//vmnnn7TREQ1hyAIWLVqlaSAev311zFt2rRaWUABLKJID8zMzFBYWAgASEpKQlpaGg4cOID4+Hg8ffoU3t7eqF+/Pn7++WccPXpULEZKjlmyZAliYmKwbt06/PLLL7h//z6+++67Mq/p7++PrVu3YsWKFbh06RK+/PJL1KtXDw4ODuICxrS0NNy+fRvLly/Xeo7AwECcOnUKe/bsQXJyMgRBwBtvvIGnT5+KbfLz87F48WJs2rQJP/30EzIzM8UbWxcVFcHX1xeenp44f/48kpOTMW7cOCgUihf+nRIR1SQPHjzAnDlz8Ndff4mxCRMmlLrnY23B6TzSmSAISEpKQmJiIiZMmIC7d+/CwsICX3/9tTiN980330CtVuPrr78Wi4v169fDysoKhw8fxuuvv45ly5YhODgYb731FgAgOjoaiYmJpV73999/x/bt23HgwAHxRtMvv/yy+HrJtF3Tpk0la6L+7sqVK9izZw+OHj0KDw8PAM/2L3FwcEBcXBz+85//AACePn2K6OhotGzZEgDw0UcfYc6cOQCezfnn5ORgwIAB4uvt27ev+C+SiKgGO378uOQ9u1GjRvjoo4/qxP9QciSqFtizB/DwePazKsTHx6NevXpQKpXo378//Pz88MknnwAAOnXqJFkHde7cOVy9ehX169dHvXr1UK9ePTRq1AhPnjzBtWvXkJOTg9u3b8PV1VU8xsjICF27di31+mfPnoWhoSE8PT117sOlS5dgZGQkuW7jxo3Rtm1bXLp0SYyZm5uLBRIA2NnZ4c6dOwCevVEEBgbC29sbAwcOxPLlyyVTfUREtZlarcann34qKaAGDBiACRMm1IkCCuBIVK2wcCGQnPzsZ1XcdqhPnz744osvYGJiAnt7e8m38iwsLCRtHz16BBcXF2zevFnjPLp+S8PMzEyn43Tx/Lf5FAqFZL3W+vXrMXHiRCQkJCA2NhahoaE4cOAA3NzcqixHIqKqdvPmTXz99deS2Mcff1znbnfGkahaYOZMwN392c+qYGFhgVatWsHR0fEftzV49dVXceXKFTRt2hStWrWSPCwtLWFpaQk7OzukpKSIxxQVFeH06dOlnrNTp05Qq9U4cuSI1tdLRsKKi4tLPUf79u1RVFQkue5ff/2FtLQ0/Otf/yqzT8/r0qULgoODcezYMXTs2BFbtmyp0PFERDXJ3LlzJQVUs2bNEBYWVucKKIBFVK0waBBw7FjVjEJV1DvvvANra2sMHjwYP//8M9LT03H48GFMnDgRN27cAPDsfogLFy5EXFwcLl++jA8//BDZ2dmlnrNFixYICAjA6NGjERcXJ55z+/btAIDmzZtDoVAgPj4ed+/exaNHjzTO0bp1awwePBhjx47FL7/8gnPnzmHEiBFo1qwZBg8eXK6+paenIzg4GMnJyfjzzz+xf/9+XLlyheuiiKhWevr0KSIiIqBWq8XYb78NwLvvvltnpu+exyKKKpW5uTl++uknODo64q233kL79u0xZswYPHnyRPy/lilTpmDkyJEICAiAu7s76tevjzfffLPM837xxRcYOnQoPvzwQ7Rr1w5jx45FXl4egGf/VxQREYGZM2fCxsYGH330kdZzrF+/Hi4uLhgwYADc3d0hCAL27dtX7g05zc3NcfnyZQwZMgRt2rTBuHHjMH78eLz33nsV+A0REVV/Z86cwYIFCySxX375ACNGuMiUUfXAe+dVIt47j57Hvz0R1TQREREasfDwcBkyqTq8dx4RERHp7PHjx4iKipLEunTpgkHVce2ITFhEERERkcTRo0fx448/SmITJ05Ew4YNZcqoemIRRURERKK6OH2nKxZRREREhEePHmHJkiWS2P/93/+Jd4YgTSyiZMQ1/XUP/+ZEVB0dOHAAx44dk8SmTJmCevXqyZRRzcAiSgYlX6HPz8+v0t23SX75+fkANHdCJyKSC6fvdMciSgaGhoawsrIS78Fmbm5eZzcqqysEQUB+fj7u3LkDKysrGBoayp0SEdVxDx48wIoVKySx1157TbwpO/0zFlEysbW1BQCxkKK6wcrKSvzbExHJZffu3Th79qwkNmPGDO5fV0EsomSiUChgZ2eHpk2b4unTp3KnQ1XA2NiYI1BEJDtO3+kPiyiZGRoa8oOViIgq3Y0bN7B27VpJbNCgQejSpYtMGdV8LKKIiIhqOW2jTyEhIfySywtiEUVERFRLCYKAOXPmaMQ5facfLKKIiIhqod9++w3ffvutJPb7733h59dTpoxqHxZRREREtYy26btZs2bByIgf+/rE3yYREVEtoVarMXfuXI04p+8qB4soIiKiWuDkyZPYt2+fJDZw4EC8+uqrMmVU+7GIIiIiquG0Td/Nnj0bBgYGMmRTd7CIIiIiqqGePn2KBQsWaMQ5fVc1WEQRERHVQIcPH8aRI0ckMT8/P7Rr106mjOoeFlFEREQ1jLbpu7CwMN7MvoqxiCIiIqoh8vLysHjxYo04p+/kwSKKiIioBlizZg1u374tiZ04EYDvv28hT0LEIoqIiKi60zZ9l5gYjpkzZUiGRNXiu4+rV69GixYtoFQq4erqihMnTpTZfseOHWjXrh2USiU6deqksS+GIAgICwuDnZ0dzMzM4OXlhStXrmg9V0FBAZydnaFQKHD27FnJa+fPn0fPnj2hVCrh4OCAqKioF+onERFRRdy/f19rARUeHo5jx4BBg2RIikSyF1GxsbEICgpCeHg4zpw5g86dO8Pb2xt37tzR2v7YsWMYPnw4xowZg9TUVPj6+sLX1xcXLlwQ20RFRWHFihWIjo5GSkoKLCws4O3tjSdPnmicb/r06bC3t9eI5+bm4vXXX0fz5s1x+vRpfPrpp/jkk0+wZs0a/XWeiIioFBEREVi5cqUkFhgYyPVP1YhCEARBzgRcXV3RrVs3rFq1CsCzLesdHBwwYcIEzNQyTunn54e8vDzEx8eLMTc3Nzg7OyM6OhqCIMDe3h5TpkzB1KlTAQA5OTmwsbFBTEwMhg0bJh73ww8/ICgoCDt37kSHDh2QmpoKZ2dnAMAXX3yBWbNmQaVSwcTEBAAwc+ZMxMXF4fLly+XqW25uLiwtLZGTk4MGDRro9PshIqK6p7TRJ6oa5f38lnUkqrCwEKdPn4aXl5cYMzAwgJeXF5KTk7Uek5ycLGkPAN7e3mL79PR0qFQqSRtLS0u4urpKzpmVlYWxY8di06ZNMDc313qdXr16iQVUyXXS0tLw4MEDrbkVFBQgNzdX8iAiIiqvq1evsoCqQWQtou7du4fi4mLY2NhI4jY2NlCpVFqPUalUZbYv+VlWG0EQEBgYiPfffx9du3at0HX+fo3nRUZGwtLSUnw4ODhobUdERPS8iIgIbN68WRI7fvxddOnCAqq6qpPfzlu5ciUePnyI4OBgvZ43ODgYQUFB4vPc3FwWUkRE9I84+lQzyToSZW1tDUNDQ2RlZUniWVlZsLW11XqMra1tme1LfpbV5uDBg0hOToapqSmMjIzQqlUrAEDXrl0REBBQ5nX+fo3nmZqaokGDBpIHERFRaVJTU0vdvoCqP1mLKBMTE7i4uCApKUmMqdVqJCUlwd3dXesx7u7ukvYAcODAAbG9k5MTbG1tJW1yc3ORkpIitlmxYgXOnTuHs2fP4uzZs+IWCbGxsZg/f754nZ9++glPnz6VXKdt27Zo2LChHnpPRER1WUREBPbs2SOJtW8/nvs/1SCyT+cFBQUhICAAXbt2Rffu3bFs2TLk5eVh1KhRAAB/f380a9YMkZGRAIBJkybB09MTS5YsgY+PD7Zt24ZTp06JWw8oFApMnjwZ8+bNQ+vWreHk5ITZs2fD3t4evr6+AABHR0dJDvXq1QMAtGzZEi+99BIA4O2330ZERATGjBmDGTNm4MKFC1i+fDmWLl1aFb8WIiKqpQRBwJw5czTiJdN3//1vVWdEupK9iPLz88Pdu3cRFhYGlUoFZ2dnJCQkiIu4MzMzYWDwvwEzDw8PbNmyBaGhoQgJCUHr1q0RFxeHjh07im2mT5+OvLw8jBs3DtnZ2ejRowcSEhKgVCrLnZelpSX279+P8ePHw8XFBdbW1ggLC8O4ceP013kiIqpTDh06hJ9++kkjzvVPNZPs+0TVZtwnioiISmhb+zRlyhRxNoSqj/J+fss+EkVERFSbqdVqzJ07VyPO0aeaj0UUERFRJfnuu+9w/vx5SezRoybo2fNDmTIifWIRRUREVAm0Td8FBwdL7oRBNRuLKCIiIj16+vQpFixYoBHn9F3twyKKiIhIT7766ivcunVLEmvfvj3+y30LaiUWUURERHqgbfpu9uzZkm16qHZhEUVERPQC8vPz8emnn2rEOX1X+7GIIiIi0tH8+fNRVFQkiXl4eOC1116TKSOqSiyiiIiIdKBt+i4sLAwKhUKGbEgOLKKIiIgq4P79+1i5cqVGnNN3dQ+LKCIionLSNvr0xhtvoFu3bjJkQ3JjEUVERFQO2goojj7VbSyiiIiIynDz5k18/fXXGnEWUMQiioiIqBTaRp+GDRuGtm3bypANVTcsooiIiLTg9B39ExZRREREf5OWloZt27ZpxFlA0fNYRBEREf1/2kaf3n33XTRr1kyGbKi6YxFFREQETt9RxbGIIiKiOu3kyZPYt2+fRpwFFP0TFlFERFRnaRt9mjBhAho1aiRDNlTTsIgiIqI6RxAEzJkzRyPO0SeqCBZRRERUpxw4cADHjh2TxIyMjDBr1iyZMqKaikUUERHVGdqm76ZNmwZzc3MZsqGajkUUERHVemq1GnPnztWIc/qOXgSLKCIiqtW2b9+OS5cuSWL29vYYO3asTBlRbcEiioiIai1t03chISEwNjaWIRuqbVhEERFRrVNYWIjIyEiNOKfvSJ9YRBERUa3y+eef4+7du5LYK6+8gjfffFOmjKi2YhFFRES1hrbpu9mzZ8PAwECGbKi2YxFFREQ13qNHj7BkyRKNOKfvqDKxiCIiohpN2+iTp6cnevfuXfXJUJ3CIoqIiGosbQUUR5+oqrCIIiKiGic7OxvLly/XiLOAoqrEIoqIiGoUbaNPqan/xejR7WXIhuoy2b+usHr1arRo0QJKpRKurq44ceJEme137NiBdu3aQalUolOnTti3b5/kdUEQEBYWBjs7O5iZmcHLywtXrlyRtBk0aBAcHR2hVCphZ2eHkSNH4tatW5I2iYmJcHNzQ/369dGkSRMMGTIEGRkZeukzERHpprTpu7i49hg0SIaEqE6TtYiKjY1FUFAQwsPDcebMGXTu3Bne3t64c+eO1vbHjh3D8OHDMWbMGKSmpsLX1xe+vr64cOGC2CYqKgorVqxAdHQ0UlJSYGFhAW9vbzx58kRs06dPH2zfvh1paWnYuXMnrl27hqFDh4qvp6enY/Dgwejbty/Onj2LxMRE3Lt3D2+99Vbl/TKIiKhUmZmZXP9E1Y5CEARBrou7urqiW7duWLVqFYBnN4h0cHDAhAkTMHPmTI32fn5+yMvLQ3x8vBhzc3ODs7MzoqOjIQgC7O3tMWXKFEydOhUAkJOTAxsbG8TExGDYsGFa89izZw98fX1RUFAAY2NjfPvttxg+fDgKCgrEvUX27t2LwYMHi23KIzc3F5aWlsjJyUGDBg0q9LshIqJntBVPp069g7FjW3H0iSpFeT+/ZRuJKiwsxOnTp+Hl5fW/ZAwM4OXlheTkZK3HJCcnS9oDgLe3t9g+PT0dKpVK0sbS0hKurq6lnvP+/fvYvHkzPDw8xOLIxcUFBgYGWL9+PYqLi5GTk4NNmzbBy8urzAKqoKAAubm5kgcREemutNGnvXtZQJH8ZCui7t27h+LiYtjY2EjiNjY2UKlUWo9RqVRlti/5WZ5zzpgxAxYWFmjcuDEyMzOxe/du8TUnJyfs378fISEhMDU1hZWVFW7cuIHt27eX2afIyEhYWlqKDwcHhzLbExGRdmfOnNFaQCUmcvqOqg/ZF5bLZdq0aUhNTcX+/fthaGgIf39/lMxsqlQqjB07FgEBATh58iSOHDkCExMTDB06FGXNfgYHByMnJ0d8XL9+vaq6Q0RUa0RERGDv3r2SWJs2o5GYGA4tKz2IZCPbFgfW1tYwNDREVlaWJJ6VlQVbW1utx9ja2pbZvuRnVlYW7OzsJG2cnZ01rm9tbY02bdqgffv2cHBwwPHjx+Hu7o7Vq1fD0tISUVFRYvtvvvkGDg4OSElJgZubm9b8TE1NYWpqWr5fABERaShr8fjw4VWdDVHZZBuJMjExgYuLC5KSksSYWq1GUlIS3N3dtR7j7u4uaQ8ABw4cENs7OTnB1tZW0iY3NxcpKSmlnrPkusCzNU0AkJ+fr3GzSkNDQ0lbIiLSn6SkJH77jmocWTfbDAoKQkBAALp27Yru3btj2bJlyMvLw6hRowAA/v7+aNasGSIjIwEAkyZNgqenJ5YsWQIfHx9s27YNp06dwpo1awAACoUCkydPxrx589C6dWs4OTlh9uzZsLe3h6+vLwAgJSUFJ0+eRI8ePdCwYUNcu3YNs2fPRsuWLcVCy8fHB0uXLsWcOXMwfPhwPHz4ECEhIWjevDm6dOlS9b8oIqJaTFvxNGHCBDRq1EiGbIjKT9Yiys/PD3fv3kVYWBhUKhWcnZ2RkJAgLgzPzMyUjAh5eHhgy5YtCA0NRUhICFq3bo24uDh07NhRbDN9+nTk5eVh3LhxyM7ORo8ePZCQkAClUgkAMDc3x65duxAeHo68vDzY2dmhX79+CA0NFafi+vbtiy1btiAqKgpRUVEwNzeHu7s7EhISYGZmVoW/ISKi2ksQBMyZM0cjztEnqilk3SeqtuM+UURE2i1fvgPZ2Rc14iygqDoo7+c3751HRERVStv03bRp02Bubi5DNkS6YxFFRERVori4GPPmzdOIc/SJaioWUUREVOlWr16Ne/fuSWINGjTAxx9/LFNGRC+ORRQREVUqbdN3s2bNgpERP4KoZuO/YCIiqhQFBQVYuHChRpzTd1RbsIgiIiK9W758ObKzsyWxVq1a4Z133pEnIaJKwCKKiIj0SvuNg8MQHq6QIRuiysMiioiI9CI3NxdLly7ViPPGwVRbsYgiIqIXpm30qW/fvujZsye4BIpqKxZRRET0QnjjYKqrWEQREZFO7ty5gy+++EIjzgKK6goWUUREVGHaRp/efPNNvPLKKzJkQyQPFlFERFQhnL4jeoZFFBERlUt6ejo2btyoEWcBRXVVhYsoQ0ND3L59G02bNpXE//rrLzRt2hTFxcV6S46IiKoHbaNP/v7+cHJykiEbouqhwkWUIAha4wUFBTAxMXnhhIiIqHrh9B2RduUuolasWAEAUCgU+Prrr1GvXj3xteLiYvz0009o166d/jMkIiJZ/Prrr9i1a5dGnAUU0TPlLqJKdqEVBAHR0dEwNDQUXzMxMUGLFi0QHR2t/wyJiKjKaRt9+uCDDzSWchDVZeUuotLT0wEAffr0wa5du9CwYcNKS4qIiOTD6Tui8qnwmqhDhw5VRh5ERCSzX375BUlJSRpxFlBE2lW4iBo9enSZr69bt07nZIiISB7aRp8+/vhjNGjQQIZsiGqGChdRDx48kDx/+vQpLly4gOzsbPTt21dviRERUeUTBAFz5szRiHP0ieifVbiI+u677zRiarUaH3zwAVq2bKmXpIiIqPLt3bsXZ86ckcQsLS0xefJkeRIiqmEUQmkbP1VQWloaevfujdu3b+vjdLVCbm4uLC0tkZOTwyFxIqpWtE3fzZw5E6ampjJkQ1S9lPfzW2+3fbl27RqKior0dToiIqoERUVFmD9/vkac03dEFVfhIiooKEjyXBAE3L59G99//z0CAgL0lhgREenXhg0bkJGRIYm1atUK77zzjjwJEdVwFS6iUlNTJc8NDAzQpEkTLFmy5B+/uUdERPLQNn0XGhoq2TiZiCqG+0QREdVijx8/RlRUlEac03dEL07nNVF37txBWloaAKBt27a8FQARUTXz6aefIj8/XxLr3r07+vfvL1NGRLVLhYuo3NxcjB8/Hlu3boVarQYAGBoaws/PD6tXr4alpaXekyQioorRNn0XFhYGhUIhQzZEtZNBRQ8YO3YsUlJS8P333yM7OxvZ2dmIj4/HqVOn8N5771VGjkREVE45OTml3vuOBRSRflV4nygLCwskJiaiR48ekvjPP/+Mfv36IS8vT68J1mTcJ4qIqpK24un111+Hu7u7DNkQ1VyVtk9U48aNtU7ZWVpaomHDhhU9HRER6UFpo09EVHkqPJ0XGhqKoKAgqFQqMaZSqTBt2jTMnj1br8kREVHZbt++zQKKSCYVLqK++OILHD9+HI6OjmjVqhVatWoFR0dHHDt2DF9++SVeffVV8VEeq1evRosWLaBUKuHq6ooTJ06U2X7Hjh1o164dlEolOnXqhH379kleFwQBYWFhsLOzg5mZGby8vHDlyhVJm0GDBsHR0RFKpRJ2dnYYOXIkbt26pXGexYsXo02bNjA1NUWzZs207vJLRCSXiIgIrFmzRhL7z3/+wwKKqIpUeDpv8ODBelucGBsbi6CgIERHR8PV1RXLli2Dt7c30tLStG6ZcOzYMQwfPhyRkZEYMGAAtmzZAl9fX5w5cwYdO3YEAERFRWHFihXYsGEDnJycMHv2bHh7e+PixYtQKpUAgD59+iAkJAR2dna4efMmpk6diqFDh+LYsWPitSZNmoT9+/dj8eLF6NSpE+7fv4/79+/rpd9ERC+Ko09E8tPbDYh14erqim7dumHVqlUAALVaDQcHB0yYMAEzZ87UaO/n54e8vDzEx8eLMTc3Nzg7OyM6OhqCIMDe3h5TpkzB1KlTATz7poqNjQ1iYmIwbNgwrXns2bMHvr6+KCgogLGxMS5duoRXXnkFFy5cQNu2bXXuHxeWE5G+Xbt2Dd98841GnAUUkf6U9/O7wtN5L7/8Mv766y+NeHZ2Nl5++eVyn6ewsBCnT5+Gl5fX/5IxMICXlxeSk5O1HpOcnCxpDwDe3t5i+/T0dKhUKkkbS0tLuLq6lnrO+/fvY/PmzfDw8ICxsTEAYO/evXj55ZcRHx8PJycntGjRAu++++4/jkQVFBQgNzdX8iAi0peIiAiNAmrUqFEsoIhkUuEiKiMjA8XFxRrxgoIC3Lhxo9znuXfvHoqLi2FjYyOJ29jYSBat/51KpSqzfcnP8pxzxowZsLCwQOPGjZGZmYndu3eLr/3xxx/4888/sWPHDmzcuBExMTE4ffo0hg4dWmafIiMjYWlpKT4cHBzKbE9EVF6lTd85OjrKkA0RARVYE7Vnzx7xvxMTEyXbHBQXFyMpKQlOTk76za4STZs2DWPGjMGff/6JiIgI+Pv7Iz4+HgqFAmq1GgUFBdi4cSPatGkDAFi7di1cXFyQlpZW6hRfcHAwgoKCxOe5ubkspIjohaSmpkref0tw9IlIfuUuonx9fQEACoUCAQEBkteMjY3RokULLFmypNwXtra2hqGhIbKysiTxrKws2Nraaj3G1ta2zPYlP7OysmBnZydp4+zsrHF9a2trtGnTBu3bt4eDgwOOHz8Od3d32NnZwcjISCygAKB9+/YAgMzMzFKLKFNTU5iampaj90RE/0zb6NP48eNhbW0tQzZE9LxyT+ep1Wqo1Wo4Ojrizp074vOSUZu0tDQMGDCg3Bc2MTGBi4sLkpKSJNdISkoqdXddd3d3SXsAOHDggNjeyckJtra2kja5ublISUkpc8feknsAFhQUAAD+7//+D0VFRbh27ZrY5vfffwcANG/evNx9JCLSVWnTdyygiKqPCm9xkJ6erreLBwUFISAgAF27dkX37t2xbNky5OXlYdSoUQAAf39/NGvWDJGRkQCebTvg6emJJUuWwMfHB9u2bcOpU6fEfVIUCgUmT56MefPmoXXr1uIWB/b29uJIWkpKCk6ePIkePXqgYcOGuHbtGmbPno2WLVuKhZaXlxdeffVVjB49GsuWLYNarcb48ePx2muvSUaniIj07fDhwzhy5IhGnNN3RNVPhYuoOXPmlPl6WFhYuc/l5+eHu3fvIiwsDCqVCs7OzkhISBAXhmdmZsLA4H+DZR4eHtiyZQtCQ0MREhKC1q1bIy4uTtwjCgCmT5+OvLw8jBs3DtnZ2ejRowcSEhLEPaLMzc2xa9cuhIeHIy8vD3Z2dujXrx9CQ0PFqTgDAwPs3bsXEyZMQK9evWBhYYH+/ftXaLqSiKiitI0+TZkyBfXq1ZMhGyL6JxXeJ6pLly6S50+fPkV6ejqMjIzQsmVLnDlzRq8J1mTcJ4qIykOtVmPu3LkacY4+Ecmj0m5AnJqaqvVigYGBePPNNyt6OiKiOu27777D+fPnJTFra2uMHz9epoyIqLz0tmP5r7/+ioEDByIjI0Mfp6sVOBJFRGXRNn0XHBwMExMTGbIhohKVNhJVmpycHOTk5OjrdEREtdbTp0+xYMECjTin74hqlgoXUStWrJA8FwQBt2/fxqZNm9C/f3+9JUZEVBt99dVXuHXrliTWvn17/Pe//5UpIyLSVYWLqKVLl0qeGxgYoEmTJggICEBwcLDeEiMiqm20Td/Nnj1b8i1kIqo5ZN0nioioLsjPz8enn36qEef0HVHNptOaqOzsbFy9ehUA0KpVK1hZWekzJyKiWmPBggV4+vSpJObh4YHXXntNpoyISF8qVERlZGRg/PjxSExMRMmX+hQKBfr164dVq1ahRYsWlZEjEVGNpG36LiwsDAqFQoZsiEjfyl1EXb9+HW5ubjA2NsbcuXPFG/JevHgRX3zxBdzd3XHy5Em89NJLlZYsEVFNcP/+faxcuVIjzuk7otql3PtEjRkzBlevXkViYqJ4C5USjx8/Rr9+/dC6dWt8/fXXlZJoTcR9oojqHm2jT2+88Qa6desmQzZEpAu97xOVkJCA2NhYjQIKAMzMzDB37lwMGzZMt2yJiGoBbQUUR5+Iaq9yF1H37t0rc83Tyy+/jPv37+sjJyKiGuXmzZtaR+FZQBHVbuUuouzs7HDx4sVS1zxduHABtra2ekuMiKgm0Db6NGzYMLRt21aGbIioKpV7hzdfX19MnToVd+/e1Xjtzp07mDFjBnx9ffWZGxFRtVba9B0LKKK6odwLyx88eABXV1eoVCqMGDEC7dq1gyAIuHTpErZs2QJbW1scP34cjRo1quycawwuLCeqndLS0rBt2zaNOKfviGoHvS8sb9iwIVJSUhASEoJt27YhOzsbAGBlZYW3334bCxYsYAFFRLWettGnMWPGcHsXojqo3CNRfycIgjit16RJE24cVwqORBHVLvz2HVHdoPeRqL9TKBRo2rSpzskREdUkp06dwvfff68RZwFFVLfpVEQREdUV2kafJkyYwOULRMQiiohIG0EQMGfOHI04R5+IqASLKCKi5/z44484evSoJGZkZIRZs2bJlBERVUcsooiI/kbb9N20adNgbm4uQzZEVJ2Vq4hasWJFuU84ceJEnZMhIpKLWq3G3LlzNeKcviOi0pRriwMnJ6fynUyhwB9//PHCSdUW3OKAqGbYsWMHLl68KInZ29tj7NixMmVERHLS6xYH6enpekuMiKg60TZ9FxISAmNjYxmyIaKapNz3znteYWEh0tLSUFRUpM98iIiqRGFhYambZ7KAIqLyqPDC8vz8fEyYMAEbNmwAAPz+++94+eWXMWHCBDRr1gwzZ87Ue5JERPr0+eefa9xMvVOnTnjrrbdkyoiIaqIKj0QFBwfj3LlzOHz4MJRKpRj38vJCbGysXpMjItK3iIgIjQIqMXE2CygiqrAKj0TFxcUhNjYWbm5uknvmdejQAdeuXdNrckRE+vLo0SMsWbJEI56YGA4OoBORLipcRN29e1frffPy8vJ4I2Iiqpa0rX3q1asX+vTpA+5gQES6qvB0XteuXSU34iwpnL7++mu4u7vrLzMiIj3QVkCFhYWhT58+MmRDRLVJhUeiFixYgP79++PixYsoKirC8uXLcfHiRRw7dgxHjhypjByJiCrsr7/+wqpVqzTi3DyTiPSlwkVUjx49cPbsWSxcuBCdOnXC/v378eqrryI5ORmdOnWqjByJiCpE2+jTwIED8eqrr8qQDRHVVuXasZx0wx3LiapeaXs/ERGVV3k/v8u1Jio3N7fcD12sXr0aLVq0gFKphKurK06cOFFm+x07dqBdu3ZQKpXo1KkT9u3bJ3ldEASEhYXBzs4OZmZm8PLywpUrVyRtBg0aBEdHRyiVStjZ2WHkyJG4deuW1utdvXoV9evXh5WVlU79I6LKd/36dRZQRFSlylVEWVlZoWHDhuV6VFRsbCyCgoIQHh6OM2fOoHPnzvD29sadO3e0tj927BiGDx+OMWPGIDU1Fb6+vvD19cWFCxfENlFRUVixYgWio6ORkpICCwsLeHt748mTJ2KbPn36YPv27UhLS8POnTtx7do1DB06VON6T58+xfDhw9GzZ88K942IqkZERATWrVsnib3zzjssoIioUpVrOu/vC8YzMjIwc+ZMBAYGit/GS05OxoYNGxAZGYmAgIAKJeDq6opu3bqJC0DVajUcHBwwYcIErbuf+/n5IS8vD/Hx8WLMzc0Nzs7OiI6OhiAIsLe3x5QpUzB16lQAQE5ODmxsbBATE4Nhw4ZpzWPPnj3w9fVFQUGB5JYPM2bMwK1bt/Dvf/8bkydPRnZ2drn7xuk8osrH0Sci0je93oDY09NT/O85c+bgs88+w/Dhw8XYoEGD0KlTJ6xZs6ZCRVRhYSFOnz6N4OBgMWZgYAAvLy8kJydrPSY5ORlBQUGSmLe3N+Li4gA8u1mySqWCl5eX+LqlpSVcXV2RnJystYi6f/8+Nm/eDA8PD0kBdfDgQezYsQNnz57Frl27yt0vIqp8ly5dwvbt2zXiLKCIqKpU+Nt5ycnJiI6O1oh37doV7777boXOde/ePRQXF8PGxkYSt7GxweXLl7Ueo1KptLZXqVTi6yWx0tqUmDFjBlatWoX8/Hy4ublJRrf++usvBAYG4ptvvin3KFJBQQEKCgrE57quESOismkbfRo3bhzs7OxkyIaI6qoKb7bp4OCAr776SiP+9ddfw8HBQS9JVZVp06YhNTUV+/fvh6GhIfz9/VEyuzl27Fi8/fbb6NWrV7nPFxkZCUtLS/FR034fRDVBadN3LKCIqKpVeCRq6dKlGDJkCH744Qe4uroCAE6cOIErV65g586dFTqXtbU1DA0NkZWVJYlnZWXB1tZW6zG2trZlti/5mZWVJXlTzcrKgrOzs8b1ra2t0aZNG7Rv3x4ODg44fvw43N3dcfDgQezZsweLFy8G8Owbf2q1GkZGRlizZg1Gjx6tkVtwcLBkqjE3N5eFFJGeHD9+HImJiRpxTt8RkVwqPBL1xhtv4MqVKxg4cCDu37+P+/fvY+DAgfj999/xxhtvVOhcJiYmcHFxQVJSkhhTq9VISkoq9RYy7u7ukvYAcODAAbG9k5MTbG1tJW1yc3ORkpJS5m1p1Go1AIjTccnJyTh79qz4mDNnDurXr4+zZ8/izTff1HoOU1NTNGjQQPIgohcXERGhUUBNmjSJBRQRyarCI1EA8NJLL2HBggV6SSAoKAgBAQHo2rUrunfvjmXLliEvLw+jRo0CAPj7+6NZs2aIjIwE8OyN09PTE0uWLIGPjw+2bduGU6dOYc2aNQCe3ctv8uTJmDdvHlq3bg0nJyfMnj0b9vb28PX1BQCkpKTg5MmT6NGjBxo2bIhr165h9uzZaNmypVhotW/fXpLnqVOnYGBggI4dO+ql30T0zwRBwJw5czTiLJ6IqDrQqYjKzs7G2rVrcenSJQBAhw4dMHr0aFhaWlb4XH5+frh79y7CwsKgUqng7OyMhIQEcWF4ZmYmDAz+N2Dm4eGBLVu2IDQ0FCEhIWjdujXi4uIkxc306dORl5eHcePGITs7Gz169EBCQgKUSiUAwNzcHLt27UJ4eDjy8vJgZ2eHfv36ITQ0FKamprr8SohIzxISEpCSkiKJmZmZYfr06TJlREQkVeHbvpw6dQre3t4wMzND9+7dAQAnT57E48ePxfvo0TPcJ4pIN9oWj0+fPh1mZmYyZENEdU15P78rXET17NkTrVq1wldffQUjo2cDWUVFRXj33Xfxxx9/4KeffnqxzGsRFlFEFVNcXIx58+ZpxDl9R0RVqdKKKDMzM6SmpqJdu3aS+MWLF9G1a1fk5+frlnEtxCKKqPy2bNmicY9LR0dHcX0kEVFV0euO5X/XoEEDZGZmahRR169fR/369SueKRHVedqm72bNmiWOdhMRVUcV3uLAz88PY8aMQWxsLK5fv47r169j27ZtePfddyW3giEi+icFBQWlbp7JAoqIqrsKv0stXrwYCoUC/v7+KCoqAgAYGxvjgw8+wMKFC/WeIBHVTitWrMCDBw8ksS5dumDQoEEyZUREVDEVXhNVIj8/H9euXQMAtGzZEubm5npNrDbgmigi7bSNPoWFhUGhUMiQDRGRVKWtiSphbm6OTp066Xo4EdVBDx8+xGeffaYR57fviKgmKncRpe1ecdqsW7dO52SIqPbSNvrUt29f9OzZU4ZsiIheXLmLqJiYGDRv3hxdunSBjjOARFRHlbZ4nIioJit3EfXBBx9g69atSE9Px6hRozBixAg0atSoMnMjohru7t27+PzzzzXiLKCIqDao0MLygoIC7Nq1C+vWrcOxY8fg4+ODMWPG4PXXX+eCUC24sJzqMm2jT2+++SZeeeUVGbIhIiq/StuxvMSff/6JmJgYbNy4EUVFRfjtt99Qr149nROujVhEUV3F6Tsiqskq/dt5BgYGUCgUEAQBxcXFup6GiGqRjIwMbNiwQSPOAoqIaqMKFVF/n8775ZdfMGDAAKxatQr9+vWDgUGFNz8nolpE2+iTv78/nJycZMiGiKjylbuI+vDDD7Ft2zY4ODhg9OjR2Lp1K6ytrSszNyKqITh9R0R1UbnXRBkYGMDR0RFdunQpcxH5rl279JZcTcc1UVTbXbhwATt37tSIs4AioppM72ui/P39+Q08IhJpG316//33YWNjI0M2RERVr0KbbRIRAZy+IyICXuDbeURU9xw9ehQ//vijRpwFFBHVRSyiiKhctI0+ffzxx1zvR0R1FosoIiqTIAiYM2eORpyjT0RU17GIIqJSxcfH4/Tp05JYgwYN8PHHH8uUERFR9cEiioi00jZ9N2PGDCiVShmyISKqflhEEZFEUVER5s+frxHn9B0RkRSLKCISbdiwARkZGZJYy5YtMWLECHkSIiKqxlhEEREA7dN3oaGhMDQ0lCEbIqLqj0UUUR335MkTLFq0SCPO6TsiorKxiCKqw7RN33Xr1g1vvPGGPAkREdUgLKKI6iht03eJiWEID+c9MomIyoNFFFEd8+jRIyxZskQjnpgYjpkzZUiIiKiGYhFFVIcsXboUubm5kpivry86d+4MLoEiIqoYFlFEdYS26TsuHici0h2LKKJa7t69e1i9erVGnAUUEdGLYRFFVItpG30aMWIEWrZsKUM2RES1C4soolqK03dERJXLQO4EAGD16tVo0aIFlEolXF1dceLEiTLb79ixA+3atYNSqUSnTp2wb98+yeuCICAsLAx2dnYwMzODl5cXrly5ImkzaNAgODo6QqlUws7ODiNHjsStW7fE1w8fPozBgwfDzs4OFhYWcHZ2xubNm/XXaaJKcv36dRZQRERVQPYiKjY2FkFBQQgPD8eZM2fQuXNneHt7486dO1rbHzt2DMOHD8eYMWOQmpoKX19f+Pr64sKFC2KbqKgorFixAtHR0UhJSYGFhQW8vb3x5MkTsU2fPn2wfft2pKWlYefOnbh27RqGDh0quc4rr7yCnTt34vz58xg1ahT8/f0RHx9feb8MohcUERGBdevWSWLjxo1jAUVEVAkUgiAIcibg6uqKbt26YdWqVQAAtVoNBwcHTJgwATO1bFrj5+eHvLw8STHj5uYGZ2dnREdHQxAE2NvbY8qUKZg6dSoAICcnBzY2NoiJicGwYcO05rFnzx74+vqioKAAxsbGWtv4+PjAxsZG40OqNLm5ubC0tEROTg4aNGhQrmOIdMXRJyIi/Sjv57esI1GFhYU4ffo0vLy8xJiBgQG8vLyQnJys9Zjk5GRJewDw9vYW26enp0OlUknaWFpawtXVtdRz3r9/H5s3b4aHh0epBRTwrBhr1KhRqa8XFBQgNzdX8iCqbGlpaRoFlEKhYAFFRFTJZF1Yfu/ePRQXF8PGxkYSt7GxweXLl7Ueo1KptLZXqVTi6yWx0tqUmDFjBlatWoX8/Hy4ubmVOVW3fft2nDx5El9++WWpbSIjI7WOBhBVFm3/3iZOnIiGDRvKkA0RUd0i+5ooOU2bNg2pqanYv38/DA0N4e/vD22zm4cOHcKoUaPw1VdfoUOHDqWeLzg4GDk5OeLj+vXrlZk+1XGlTd+xgCIiqhqyjkRZW1vD0NAQWVlZknhWVhZsbW21HmNra1tm+5KfWVlZsLOzk7RxdnbWuL61tTXatGmD9u3bw8HBAcePH4e7u7vY5siRIxg4cCCWLl0Kf3//MvtjamoKU1PTsjtN9IJOnTqF77//XhJr0qQJPvzwQ5kyIiKqm2QdiTIxMYGLiwuSkpLEmFqtRlJSkqSQ+Tt3d3dJewA4cOCA2N7JyQm2traSNrm5uUhJSSn1nCXXBZ6taypx+PBh+Pj4YNGiRRg3blzFO0ikZxERERoF1LRp01hAERHJQPbNNoOCghAQEICuXbuie/fuWLZsGfLy8jBq1CgAgL+/P5o1a4bIyEgAwKRJk+Dp6YklS5bAx8cH27Ztw6lTp7BmzRoAzxbUTp48GfPmzUPr1q3h5OSE2bNnw97eHr6+vgCAlJQUnDx5Ej169EDDhg1x7do1zJ49Gy1bthQLrUOHDmHAgAGYNGkShgwZIq6nMjExKXNxOVFlEAQBc+bM0Yhz8TgRkXxkL6L8/Pxw9+5dhIWFQaVSwdnZGQkJCeLC8MzMTBgY/G/AzMPDA1u2bEFoaChCQkLQunVrxMXFoWPHjmKb6dOnIy8vD+PGjUN2djZ69OiBhIQEKJVKAIC5uTl27dqF8PBw5OXlwc7ODv369UNoaKg4Hbdhwwbk5+cjMjJSLOAAwNPTE4cPH66C3wzRMwcPHsTPP/8sibVt27bU7TqIiKhqyL5PVG3GfaLoRWlbPB4SElLmVhxERPRiyvv5LftIFBFpKioqwvz58zXinL4jIqo+WEQRVTPfffcdzp8/L4m5urqiX79+MmVERETasIgiqka0Td/Nnj1bsi6QiIiqBxZRRNXAkydPsGjRIo04p++IiKovFlFEMlu7di1u3Lghib3++utl7mtGRETyYxFFJCNt03dhYWFQKBQyZENERBXBIopIBrm5uVi6dKlGnNN3REQ1B4sooioWFRWFx48fS2JDhgyRbBhLRETVH4sooiqkbfqOo09ERDUTiyiiKvDgwQOsWLFCI84Cioio5mIRRVTJVq5cifv370tirVr54513nGTKiIiI9IFFFFEl4vQdEVHtxSKKqBKoVCp8+eWXkpiVlRUmTZokU0ZERKRvLKKI9GzOnDkQBEESmzBhAho1aiRTRkREVBlYRBHpEafviIjqDhZRRHqQnp6OjRs3SmJOTk7w9/eXKSMiIqpsLKKIXpC20acpU6agXr16MmRDRERVhUUUkY4EQcCcOXM04py+IyKqG1hEEengt99+w7fffiuJOTs7Y/DgwTJlREREVY1FFFEFaZu+mzlzJkxNTWXIhoiI5MIiiqicOH1HRER/xyKKqBxOnDiBH374QRLr2bMn+vbtK1NGREQkNxZRRP9A2/RdaGgoDA0NZciGiIiqCxZRRKUoKirC/PnzNeKcviMiIoBFFJFWSUlJ+OWXXySxN954A926dZMpIyIiqm5YRBE9R9v0XVhYGBQKhQzZEBFRdWUgdwJE1UVhYaHWAioxMZwFFBERaeBIFBGA/fv3Izk5WRJr2fIdfP55K8ycKVNSRERUrbGIojqvrOm7ESNkSIiIiGoEFlFUZ+Xl5WHx4sWSmJGREWbNmiVTRkREVJOwiKI6adeuXfj1118lsXfffRfNmjWTKSMiIqppWERRnaNt+o57PxERUUWxiKI6Izs7G8uXL5fErK2tMX78eJkyIiKimoxFFNUJ69evR2ZmpiQ2fvx4WFtby5QRERHVdNVin6jVq1ejRYsWUCqVcHV1xYkTJ8psv2PHDrRr1w5KpRKdOnXCvn37JK8LgoCwsDDY2dnBzMwMXl5euHLliqTNoEGD4OjoCKVSCTs7O4wcORK3bt2StDl//jx69uwJpVIJBwcHREVF6afDVKUiIiI0Cqjw8HAWUERE9EJkL6JiY2MRFBSE8PBwnDlzBp07d4a3tzfu3Lmjtf2xY8cwfPhwjBkzBqmpqfD19YWvry8uXLggtomKisKKFSsQHR2NlJQUWFhYwNvbG0+ePBHb9OnTB9u3b0daWhp27tyJa9euYejQoeLrubm5eP3119G8eXOcPn0an376KT755BOsWbOm8n4ZpFdZWVka659atmzJ9U9ERKQXCkEQBDkTcHV1Rbdu3bBq1SoAgFqthoODAyZMmICZWnY59PPzQ15eHuLj48WYm5sbnJ2dER0dDUEQYG9vjylTpmDq1KkAgJycHNjY2CAmJgbDhg3TmseePXvg6+uLgoICGBsb44svvsCsWbOgUqlgYmICAJg5cybi4uJw+fLlcvUtNzcXlpaWyMnJQYMGDSr0e6EXs2zZMuTk5EhiH3/8Mf8ORET0j8r7+S3rSFRhYSFOnz4NLy8vMWZgYAAvLy+N3aNLJCcnS9oDgLe3t9g+PT0dKpVK0sbS0hKurq6lnvP+/fvYvHkzPDw8YGxsLF6nV69eYgFVcp20tDQ8ePBA63kKCgqQm5sreVDVi4iI0CigwsPDWUAREZFeyVpE3bt3D8XFxbCxsZHEbWxsoFKptB6jUqnKbF/yszznnDFjBiwsLNC4cWNkZmZi9+7d/3idv1/jeZGRkbC0tBQfDg4OWttR5cjMzNSYvuvSpQun74iIqFLIviZKTtOmTUNqair2798PQ0ND+Pv740VmN4ODg5GTkyM+rl+/rsdsqSwRERFYv369JDZ9+nQMGjRIpoyIiKi2k3WLA2traxgaGiIrK0sSz8rKgq2trdZjbG1ty2xf8jMrKwt2dnaSNs7OzhrXt7a2Rps2bdC+fXs4ODjg+PHjcHd3L/U6f7/G80xNTWFqavoPvSZ9EgQBc+bM0Yhz9ImIiCqbrCNRJiYmcHFxQVJSkhhTq9VISkqCu7u71mPc3d0l7QHgwIEDYnsnJyfY2tpK2uTm5iIlJaXUc5ZcF3i2rqnkOj/99BOePn0quU7btm3RsGHDCvaUKkNaWppGAdWrVy8WUEREVCVk32wzKCgIAQEB6Nq1K7p3745ly5YhLy8Po0aNAgD4+/ujWbNmiIyMBABMmjQJnp6eWLJkCXx8fLBt2zacOnVK3HpAoVBg8uTJmDdvHlq3bg0nJyfMnj0b9vb28PX1BQCkpKTg5MmT6NGjBxo2bIhr165h9uzZaNmypVhovf3224iIiMCYMWMwY8YMXLhwAcuXL8fSpUur/pdEGrTduiUkJET8YgAREVFlk72I8vPzw927dxEWFgaVSgVnZ2ckJCSIi7gzMzNhYPC/ATMPDw9s2bIFoaGhCAkJQevWrREXF4eOHTuKbaZPn468vDyMGzcO2dnZ6NGjBxISEqBUKgEA5ubm2LVrF8LDw5GXlwc7Ozv069cPoaGh4nScpaUl9u/fj/Hjx8PFxQXW1tYICwvDuHHjqvC3Q89Tq9WYO3euRpyjT0REVNVk3yeqNuM+UfqVmpqKPXv2SGL9+/dH9+7dZcqIiIhqo/J+fss+EkVUHtqm72bPni0ZpSQiIqpKLKKoWisqKsL8+fM14py+IyIiubGIomrrl19+0fgm5tChQ9GhQweZMiIiIvofFlFULWmbvgsLC4NCoZAhGyIiIk0soqhaKSgowMKFCzXinL4jIqLqhkUUVRsJCQlISUmRxEaOHImXX35ZpoyIiIhKxyKKqgVt03ccfSIiouqMRRTJ6smTJ1i0aJEkplQqMWPGDJkyIiIiKh8WUSSb5ORk7N+/XxIbO3Ys7O3tZcqIiIio/LhTIcli7969GgVUYmI4CygiIqoxOBJFVaqwsFC8mXSJS5c8kJn5GmbOlCkpIiIiHbCIoirzxx9/YNOmTZLYjz/OxLRpphg0SKakiIiIdMQiiqrEt99+i99++0183qVLFwwaNAj8Ah4REdVULKKoUmn79t2oUaPg6OgoU0ZERET6wSKKKk1aWhq2bdsmiYWEhMDY2FimjIiIiPSHRRRVim+++QbXrl0Tn7u5ucHb21vGjIiIiPSLRRTpVV5eHhYvXiyJjRs3DnZ2djJlREREVDlYRJHe/Prrr9i1a5f4XKFQYNasWTA0NJQxKyIiosrBIopemCAI+Prrr3Hr1i0x5unpid69e8uXFBERUSVjEUUvJDc3F0uXLpXEPvzwQzRp0kSmjIiIiKoGiyjS2enTpxEfHy8+Nzc3x5QpU2BgwLsJERFR7cciiipMEASsXLkSDx48EGOvv/463N3dZcyKiIioarGIogq5f/8+Vq5cKYlNnDgRDRs2lCkjIiIiebCIonJLTk7G/v37xeeNGjXCRx99BIVCIWNWRERE8mARRf9IrVZj8eLFePz4sRgbMGAAXFxcZMyKiIhIXiyiqEx3797F559/Lol9/PHHaNCggUwZERERVQ8soqhUhw8fxpEjR8TnzZo1w5gxYzh9R0REBBZRpEVxcTHmzZsniQ0ZMgQdO3aUKSMiIqLqh0UUSdy6dQtfffWVJDZ16lRYWFjIlBEREVH1xCKKRImJiTh+/Lj4vGXLlhgxYoSMGREREVVfLKIIT58+xYIFCySxYcOGoW3btjJlREREVP2xiKrjMjMzsX79eklsxowZUCqVMmVERERUM7CIqsN2796Ns2fPis87dOiAoUOHypcQERFRDcIiqg4qKCjAwoULJbGRI0fi5ZdflikjIiKimsdA7gRWr16NFi1aQKlUwtXVFSdOnCiz/Y4dO9CuXTsolUp06tQJ+/btk7wuCALCwsJgZ2cHMzMzeHl54cqVK+LrGRkZGDNmDJycnGBmZoaWLVsiPDwchYWFkvMkJibCzc0N9evXR5MmTTBkyBBkZGTord9yuXbtmkYBFRwczAKKiIiogmQtomJjYxEUFITw8HCcOXMGnTt3hre3N+7cuaO1/bFjxzB8+HCMGTMGqamp8PX1ha+vLy5cuCC2iYqKwooVKxAdHY2UlBRYWFjA29sbT548AQBcvnwZarUaX375JX777TcsXboU0dHRCAkJEc+Rnp6OwYMHo2/fvjh79iwSExNx7949vPXWW5X7C6lk27dvxzfffCM+d3FxQXh4OExMTGTMioiIqGZSCIIgyHVxV1dXdOvWDatWrQLw7B5tDg4OmDBhAmbOnKnR3s/PD3l5eYiPjxdjbm5ucHZ2RnR0NARBgL29PaZMmYKpU6cCAHJycmBjY4OYmBgMGzZMax6ffvopvvjiC/zxxx8AgG+//RbDhw9HQUEBDAye1Zl79+7F4MGDUVBQAGNj43L1Lzc3F5aWlsjJyZH1NimPHz9GVFSUJDZ69Gg4ODjIlBEREVH1Vd7Pb9lGogoLC3H69Gl4eXn9LxkDA3h5eSE5OVnrMcnJyZL2AODt7S22T09Ph0qlkrSxtLSEq6trqecEnhVajRo1Ep+7uLjAwMAA69evR3FxMXJycrBp0yZ4eXmVWUAVFBQgNzdX8pDb5cuXNQqoWbNmsYAiIiJ6QbIVUffu3UNxcTFsbGwkcRsbG6hUKq3HqFSqMtuX/KzIOa9evYqVK1fivffeE2NOTk7Yv38/QkJCYGpqCisrK9y4cQPbt28vs0+RkZGwtLQUH3IXKhs2bEBsbKz43MPDA+Hh4TAy4vcJiIiIXpTsC8vldPPmTfTr1w//+c9/MHbsWDGuUqkwduxYBAQE4OTJkzhy5AhMTEwwdOhQlDX7GRwcjJycHPFx/fr1quiGhkePHiEiIkKyEP69997Da6+9Jks+REREtZFsQxLW1tYwNDREVlaWJJ6VlQVbW1utx9ja2pbZvuRnVlYW7OzsJG2cnZ0lx926dQt9+vSBh4cH1qxZI3lt9erVsLS0lEyDffPNN3BwcEBKSgrc3Ny05mdqagpTU9Myel35zp8/j++++058bmRkhJkzZ8LQ0FDGrIiIiGof2UaiTExM4OLigqSkJDGmVquRlJQEd3d3rce4u7tL2gPAgQMHxPZOTk6wtbWVtMnNzUVKSorknDdv3kTv3r3h4uKC9evXi4vHS+Tn52vESooQtVqtQ28rnyAI+PLLLyUFVJ8+fTBr1iwWUERERJVA1sUxQUFBCAgIQNeuXdG9e3csW7YMeXl5GDVqFADA398fzZo1Q2RkJABg0qRJ8PT0xJIlS+Dj44Nt27bh1KlT4kiSQqHA5MmTMW/ePLRu3RpOTk6YPXs27O3t4evrC+B/BVTz5s2xePFi3L17V8ynZCTLx8cHS5cuxZw5czB8+HA8fPgQISEhaN68Obp06VKFv6HyycnJwbJlyySx8ePHw9raWp6EiIiI6gBZiyg/Pz/cvXsXYWFhUKlUcHZ2RkJCgrgwPDMzUzIi5OHhgS1btiA0NBQhISFo3bo14uLi0LFjR7HN9OnTkZeXh3HjxiE7Oxs9evRAQkKCeC+4AwcO4OrVq7h69SpeeuklST4l65369u2LLVu2ICoqClFRUTA3N4e7uzsSEhJgZmZW2b+WCjl16hS+//578Xm9evXw8ccfa4ykERERkX7Juk9UbVeZ+0QJgoDly5cjJydHjPXr1w+urq56vQ4REVFdU97Pb37XvQbaseM+Ll5cKYlNmjQJVlZW8iRERERUB7GIqoH+XkA1adIEH3zwARQKhYwZERER1T0somowR8dBGDWq+i10JyIiqgu4JqoSVZd75xEREVH5Vft75xERERHVZCyiiIiIiHTAIoqIiIhIByyiiIiIiHTAIoqIiIhIByyiiIiIiHTAIoqIiIhIByyiiIiIiHTAIoqIiIhIByyiiIiIiHTAIoqIiIhIByyiiIiIiHTAIoqIiIhIByyiiIiIiHRgJHcCtZkgCACA3NxcmTMhIiKi8ir53C75HC8Ni6hK9PDhQwCAg4ODzJkQERFRRT18+BCWlpalvq4Q/qnMIp2p1WrcunUL9evXh0KhkC2P3NxcODg44Pr162jQoIFseVQl9pl9rq3YZ/a5tqpOfRYEAQ8fPoS9vT0MDEpf+cSRqEpkYGCAl156Se40RA0aNJD9H2ZVY5/rBva5bmCf64bq0ueyRqBKcGE5ERERkQ5YRBERERHpgEVUHWBqaorw8HCYmprKnUqVYZ/rBva5bmCf64aa2GcuLCciIiLSAUeiiIiIiHTAIoqIiIhIByyiiIiIiHTAIoqIiIhIByyiqpnVq1ejRYsWUCqVcHV1xYkTJ8psv2PHDrRr1w5KpRKdOnXCvn37JK8LgoCwsDDY2dnBzMwMXl5euHLlivh6RkYGxowZAycnJ5iZmaFly5YIDw9HYWGh5DyJiYlwc3ND/fr10aRJEwwZMgQZGRk1tt8AMGjQIDg6OkKpVMLOzg4jR47ErVu3JG3Onz+Pnj17QqlUwsHBAVFRUfrpMKpnnw8fPozBgwfDzs4OFhYWcHZ2xubNm2t1n//u6tWrqF+/PqysrF6onyWqa38FQcDixYvRpk0bmJqaolmzZpg/f75e+gxU335X5vuYHH0uUVBQAGdnZygUCpw9e1byWm17DytRWp8r+z1Mg0DVxrZt2wQTExNh3bp1wm+//SaMHTtWsLKyErKysrS2P3r0qGBoaChERUUJFy9eFEJDQwVjY2Ph119/FdssXLhQsLS0FOLi4oRz584JgwYNEpycnITHjx8LgiAIP/zwgxAYGCgkJiYK165dE3bv3i00bdpUmDJliniOP/74QzA1NRWCg4OFq1evCqdPnxZ69eoldOnSpcb2WxAE4bPPPhOSk5OFjIwM4ejRo4K7u7vg7u4uvp6TkyPY2NgI77zzjnDhwgVh69atgpmZmfDll1/W2j7Pnz9fCA0NFY4ePSpcvXpVWLZsmWBgYCDs3bu31va5RGFhodC1a1ehf//+gqWlZa3u74QJE4S2bdsKu3fvFv744w/h1KlTwv79+1+4z9W535X5PiZXn0tMnDhR6N+/vwBASE1NFeO18T3sn/pcme9h2rCIqka6d+8ujB8/XnxeXFws2NvbC5GRkVrb//e//xV8fHwkMVdXV+G9994TBEEQ1Gq1YGtrK3z66afi69nZ2YKpqamwdevWUvOIiooSnJycxOc7duwQjIyMhOLiYjG2Z88eQaFQCIWFhRXrpBbVpd+7d++W9Onzzz8XGjZsKBQUFIhtZsyYIbRt27binXxOde2zNm+88YYwatSocvWrLNW9z9OnTxdGjBghrF+/Xi9FVHXt78WLFwUjIyPh8uXLOvetLNW135X5PiZnn/ft2ye0a9dO+O233zQKitr6HlZWn7XR13uYNpzOqyYKCwtx+vRpeHl5iTEDAwN4eXkhOTlZ6zHJycmS9gDg7e0ttk9PT4dKpZK0sbS0hKura6nnBICcnBw0atRIfO7i4gIDAwOsX78excXFyMnJwaZNm+Dl5QVjY2Od+luiuvT7/v372Lx5Mzw8PMQ+JScno1evXjAxMZFcJy0tDQ8ePNCtw6jefdbm+X8PuqjufT548CB27NiB1atX69zHv6vO/d27dy9efvllxMfHw8nJCS1atMC7776L+/fvv1Cfgerd78p6H5Ozz1lZWRg7diw2bdoEc3Nzrdepbe9h/9RnbfTxHlYaFlHVxL1791BcXAwbGxtJ3MbGBiqVSusxKpWqzPYlPytyzqtXr2LlypV47733xJiTkxP279+PkJAQmJqawsrKCjdu3MD27dsr1kkt5O73jBkzYGFhgcaNGyMzMxO7d+/+x+v8/Rq6qM59ft727dtx8uRJjBo1qnydK0V17vNff/2FwMBAxMTE6O2mp9W5v3/88Qf+/PNP7NixAxs3bkRMTAxOnz6NoUOH6tbZv6nO/a6s9zG5+iwIAgIDA/H++++ja9euFbrO36+hi+rc5+fp6z2sNCyiSHTz5k3069cP//nPfzB27FgxrlKpMHbsWAQEBODkyZM4cuQITExMMHToUAg1fMP7adOmITU1Ffv374ehoSH8/f1rfJ/+SXn7fOjQIYwaNQpfffUVOnToIEOm+lNWn8eOHYu3334bvXr1kjlL/Smrv2q1GgUFBdi4cSN69uyJ3r17Y+3atTh06BDS0tJkzvzFlNXv2vY+tnLlSjx8+BDBwcFyp1JlKtrnqngPM6qUs1KFWVtbw9DQEFlZWZJ4VlYWbG1ttR5ja2tbZvuSn1lZWbCzs5O0cXZ2lhx369Yt9OnTBx4eHlizZo3ktdWrV8PS0lLyrY5vvvkGDg4OSElJgZubW8U6+zdy99va2hrW1tZo06YN2rdvDwcHBxw/fhzu7u6lXufv19BFde5ziSNHjmDgwIFYunQp/P39de7r369ZXft88OBB7NmzB4sXLwbw7P921Wo1jIyMsGbNGowePbpW9dfOzg5GRkZo06aN2L59+/YAgMzMTLRt27bC/f37datrvyvrfUyuPh88eBDJycka95nr2rUr3nnnHWzYsKHWvYeVp88l9P0eVhqORFUTJiYmcHFxQVJSkhhTq9VISkqSfLj9nbu7u6Q9ABw4cEBs7+TkBFtbW0mb3NxcpKSkSM558+ZN9O7dGy4uLli/fj0MDKT/LPLz8zVihoaGYo4vQs5+P6+kLwUFBeJ1fvrpJzx9+lRynbZt26Jhw4YV7On/VOc+A8++Iuzj44NFixZh3LhxFe+gFtW5z8nJyTh79qz4mDNnDurXr4+zZ8/izTffrHX9/b//+z8UFRXh2rVrYpvff/8dANC8efOKdFNDde53Zb2PydXnFStW4Ny5c+K/25LtAmJjY8XtKmrbe1h5+gxUzntYqSpluTrpZNu2bYKpqakQExMjXLx4URg3bpxgZWUlqFQqQRAEYeTIkcLMmTPF9kePHhWMjIyExYsXC5cuXRLCw8O1fmXUyspK2L17t3D+/Hlh8ODBkq+M3rhxQ2jVqpXw73//W7hx44Zw+/Zt8VEiKSlJUCgUQkREhPD7778Lp0+fFry9vYXmzZsL+fn5NbLfx48fF1auXCmkpqYKGRkZQlJSkuDh4SG0bNlSePLkiSAIz74ZYmNjI4wcOVK4cOGCsG3bNsHc3FxvXw+ujn0+ePCgYG5uLgQHB0v+Lfz111+1ts/P09e386prf4uLi4VXX31V6NWrl3DmzBnh1KlTgqurq/Daa6+9cJ+rc78r831Mjj4/Lz09XeObarXtPaw8fa7M9zBtWERVMytXrhQcHR0FExMToXv37sLx48fF1zw9PYWAgABJ++3btwtt2rQRTExMhA4dOgjff/+95HW1Wi3Mnj1bsLGxEUxNTYV///vfQlpamvj6+vXrBQBaH3+3detWoUuXLoKFhYXQpEkTYdCgQcKlS5dqbL/Pnz8v9OnTR2jUqJFgamoqtGjRQnj//feFGzduSM5z7tw5oUePHoKpqanQrFkzYeHChbW6zwEBAVr/LXh6etbaPj9PX0VUde7vzZs3hbfeekuoV6+eYGNjIwQGBur1Q6a69rsy38equs/P01ZQCELteg97nrY+V/Z72PMUglADV9QRERERyYxrooiIiIh0wCKKiIiISAcsooiIiIh0wCKKiIiISAcsooiIiIh0wCKKiIiISAcsooiIiIh0wCKKiIiISAcsooiIypCcnAxDQ0P4+PhI4hkZGVAoFOKjUaNG8PT0xM8//yxTpkRU1VhEERGVYe3atZgwYQJ++ukn3Lp1S+P1H3/8Ebdv38ZPP/0Ee3t7DBgwQONu9URUO7GIIiIqxaNHjxAbG4sPPvgAPj4+iImJ0WjTuHFj2NraomPHjggJCRHvPE9EtR+LKCKiUmzfvh3t2rVD27ZtMWLECKxbtw6l3W708ePH2LhxIwDAxMSkKtMkIpkYyZ0AEVF1tXbtWowYMQIA0K9fP+Tk5ODIkSPo3bu32MbDwwMGBgbIz8+HIAhwcXHBv//9b5kyJqKqxJEoIiIt0tLScOLECQwfPhwAYGRkBD8/P6xdu1bSLjY2Fqmpqdi5cydatWqFmJgYGBsby5EyEVUxjkQREWmxdu1aFBUVwd7eXowJggBTU1OsWrVKjDk4OKB169Zo3bo1ioqK8Oabb+LChQswNTWVI20iqkIciSIiek5RURE2btyIJUuW4OzZs+Lj3LlzsLe3x9atW7UeN3ToUBgZGeHzzz+v4oyJSA4sooiInhMfH48HDx5gzJgx6Nixo+QxZMgQjSm9EgqFAhMnTsTChQuRn59fxVkTUVVjEUVE9Jy1a9fCy8sLlpaWGq8NGTIEp06dQm5urtZjAwIC8PTpU8mUHxHVTgqhtO/rEhEREVGpOBJFREREpAMWUUREREQ6YBFFREREpAMWUUREREQ6YBFFREREpAMWUUREREQ6YBFFREREpAMWUUREREQ6YBFFREREpAMWUUREREQ6YBFFREREpAMWUUREREQ6+H+/WW0CKO2fvwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_28.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHHCAYAAAB0nLYeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXtUlEQVR4nO3deVhUZf8/8PewL7IoyGYoqCSafqVAEfNJK57AzCSt0DJQySXNJVwSRXAN11xJKsulcolK9EGDlLRFeTQVNfclCLfBFUbHWOf8/vDnPJ1mQBgGzizv13Vx2XzmnsPnHAvenfuc+8gEQRBARERERHVmIXUDRERERMaKQYqIiIhIRwxSRERERDpikCIiIiLSEYMUERERkY4YpIiIiIh0xCBFREREpCMGKSIiIiIdMUgRERER6YhBiohMmkwmw8yZM6VuQ23IkCHw8/OTug0i0hMGKSJqdOvWrYNMJlN/2dnZ4fHHH8e7776LoqKiBv3e+/fvx8yZM1FcXKzX7fbq1Uu0T82aNUOXLl3w+eefQ6VS6eV7fPDBB8jIyNDLtohIP6ykboCIzNfs2bPh7++P0tJS/Prrr1i9ejV27tyJEydOwMHBQS/f46+//oKV1f9+1O3fvx+zZs3CkCFD4Orqqpfv8dBjjz2GlJQUAMCNGzewYcMGxMXF4dy5c5g/f369t//BBx/g1VdfRVRUVL23RUT6wSBFRJLp3bs3QkJCAABvv/023Nzc8OGHH2Lbtm0YNGiQzttVqVQoLy+HnZ0d7Ozs9NXuI7m4uGDw4MHq1yNHjkS7du2watUqzJkzB9bW1o3WCxE1Dk7tEZHBeO655wAA+fn5AIDFixeje/fucHNzg729PYKDg/HNN99ofE4mk+Hdd9/FV199hSeeeAK2trbIyspSv/fwGqmZM2di8uTJAAB/f3/1NFxBQQF69uyJzp07a+2rXbt2iIiIqPP+ODg4oFu3blAqlbhx40a145RKJSZOnAhfX1/Y2tqiXbt2WLx4MQRBEO2jUqnE+vXr1X0PGTKkzj0RkX7xjBQRGYyLFy8CANzc3AAAy5cvx8svv4w333wT5eXl2Lx5M1577TVkZmaiT58+os/++OOP+Prrr/Huu+/C3d1d6wXd/fv3x7lz57Bp0yYsXboU7u7uAIDmzZvjrbfewvDhw3HixAl07NhR/ZnffvsN586dQ2Jiok779Mcff8DS0rLaaURBEPDyyy9jz549iIuLQ1BQELKzszF58mRcuXIFS5cuBQB88cUXePvtt9G1a1eMGDECANCmTRudeiIiPRKIiBrZ2rVrBQDC7t27hRs3bgiXLl0SNm/eLLi5uQn29vbC5cuXBUEQhPv374s+V15eLnTs2FF47rnnRHUAgoWFhXDy5EmN7wVASE5OVr9etGiRAEDIz88XjSsuLhbs7OyE999/X1QfN26c4OjoKNy7d6/GferZs6cQGBgo3LhxQ7hx44Zw+vRpYdy4cQIAoW/fvupxsbGxQqtWrdSvMzIyBADC3LlzRdt79dVXBZlMJly4cEFdc3R0FGJjY2vsg4gaF6f2iEgy4eHhaN68OXx9fTFw4EA0adIEW7duRYsWLQAA9vb26rF37txBSUkJ/vWvf+HIkSMa2+rZsyc6dOigcy8uLi7o168fNm3apJ5Sq6qqwpYtWxAVFQVHR8dHbuPMmTNo3rw5mjdvjvbt22PlypXo06cPPv/882o/s3PnTlhaWmLcuHGi+sSJEyEIAr7//nud94mIGh6n9ohIMqmpqXj88cdhZWUFT09PtGvXDhYW//v/u8zMTMydOxdHjx5FWVmZui6TyTS25e/vX+9+YmJisGXLFvzyyy945plnsHv3bhQVFeGtt96q1ef9/Pzw6aefqpd0CAgIgIeHR42f+fPPP+Hj4wMnJydRvX379ur3ichwMUgRkWS6du2qvmvvn3755Re8/PLLeOaZZ/DRRx/B29sb1tbWWLt2LTZu3Kgx/u9nr3QVEREBT09PfPnll3jmmWfw5ZdfwsvLC+Hh4bX6vKOjY63HEpFp4NQeERmkb7/9FnZ2dsjOzsawYcPQu3dvvYQUbWezHrK0tMQbb7yBb775Bnfu3EFGRgYGDRoES0vLen/f6rRq1QpXr17F3bt3RfUzZ86o33+opt6JSBoMUkRkkCwtLSGTyVBVVaWuFRQU1Htl74fXOlW3svlbb72FO3fuYOTIkbh3755oXaiG8OKLL6KqqgqrVq0S1ZcuXQqZTIbevXura46OjnpfkZ2I6odTe0RkkPr06YMPP/wQkZGReOONN3D9+nWkpqaibdu2OH78uM7bDQ4OBgBMnz4dAwcOhLW1Nfr27asOWE8++SQ6duyI9PR0tG/fHk899ZRe9qc6ffv2xbPPPovp06ejoKAAnTt3xg8//IBt27ZhwoQJoiUOgoODsXv3bnz44Yfw8fGBv78/QkNDG7Q/IqoZz0gRkUF67rnn8Nlnn0Eul2PChAnYtGkTFixYgFdeeaVe2+3SpQvmzJmDY8eOYciQIRg0aJDGYpkxMTEAUOuLzOvDwsIC27dvx4QJE5CZmYkJEybg1KlTWLRoET788EPR2A8//BDBwcFITEzEoEGDsHr16gbvj4hqJhOEvy2dS0REWL58Od577z0UFBSgZcuWUrdDRAaMQYqI6G8EQUDnzp3h5uaGPXv2SN0OERk4XiNFRIQHz7vbvn079uzZg99//x3btm2TuiUiMgI8I0VEhAd3BPr7+8PV1RWjR4/GvHnzpG6JiIwAgxQRERGRjnjXHhEREZGOGKSIiIiIdMSLzXWkUqlw9epVODk58bENRERERkIQBNy9exc+Pj6ih6TrikFKR1evXoWvr6/UbRAREZEOLl26hMcee6ze22GQ0pGTkxOAB38Rzs7OEndDREREtaFQKODr66v+PV5fDFI6ejid5+zszCBFRERkZPR1WQ4vNiciIiLSkeRBKjU1FX5+frCzs0NoaCgOHjxY4/j09HQEBgbCzs4OnTp1ws6dO0Xvf/fdd3jhhRfg5uYGmUyGo0ePit6/ffs2xo4di3bt2sHe3h4tW7bEuHHjUFJSou9dIyIiIhMnaZDasmUL4uPjkZycjCNHjqBz586IiIjA9evXtY7fv38/Bg0ahLi4OOTl5SEqKgpRUVE4ceKEeoxSqUSPHj2wYMECrdu4evUqrl69isWLF+PEiRNYt24dsrKyEBcX1yD7SERERKZL0pXNQ0ND0aVLF6xatQrAgyUFfH19MXbsWEydOlVjfHR0NJRKJTIzM9W1bt26ISgoCGlpaaKxDx/3kJeXh6CgoBr7SE9Px+DBg6FUKmFlVbvLxhQKBVxcXFBSUlLjNVJVVVWoqKio1TbJeFlbW8PS0lLqNoiI6BFq+/u7tiS72Ly8vByHDx9GQkKCumZhYYHw8HDk5uZq/Uxubi7i4+NFtYiICGRkZNSrl4cHs6YQVVZWhrKyMvVrhUJR4zYFQYBcLkdxcXG9eiPj4erqCi8vL64rRkRkRiQLUjdv3kRVVRU8PT1FdU9PT5w5c0brZ+Ryudbxcrm8Xn3MmTMHI0aMqHFcSkoKZs2aVevtPgxRHh4ecHBw4C9XEyYIAu7fv6+ekvb29pa4IyIiaixmvfyBQqFAnz590KFDB8ycObPGsQkJCaKzYQ/XodCmqqpKHaLc3Nz02TIZKHt7ewDA9evX4eHhwWk+IiIzIVmQcnd3h6WlJYqKikT1oqIieHl5af2Ml5dXncbX5O7du4iMjISTkxO2bt0Ka2vrGsfb2trC1ta2Vtt+eE2Ug4NDnfsi4/Xw77uiooJBiojITEh2156NjQ2Cg4ORk5OjrqlUKuTk5CAsLEzrZ8LCwkTjAWDXrl3Vjq+OQqHACy+8ABsbG2zfvh12dnZ134Fa4HSeeeHfNxGR+ZF0ai8+Ph6xsbEICQlB165dsWzZMiiVSgwdOhQAEBMTgxYtWiAlJQUAMH78ePTs2RNLlixBnz59sHnzZhw6dAiffPKJepu3b99GYWEhrl69CgA4e/YsgAdns7y8vNQh6v79+/jyyy+hUCjUF443b96cZxKIiIio1iQNUtHR0bhx4waSkpIgl8sRFBSErKws9QXlhYWFoiczd+/eHRs3bkRiYiKmTZuGgIAAZGRkoGPHjuox27dvVwcxABg4cCAAIDk5GTNnzsSRI0dw4MABAEDbtm1F/eTn58PPz6+hdpeIiIhMjKTrSBmzmtahKC0tRX5+Pvz9/Rts2rChDBkyBOvXrwcAWFlZoVmzZvi///s/DBo0CEOGDBEF25qsW7cOEyZMMKvlH4z5752IyFzoex0pyR8RQ4YnMjIS165dQ0FBAb7//ns8++yzGD9+PF566SVUVlZK3R4REZHBYJAiDba2tvDy8kKLFi3w1FNPYdq0adi2bRu+//57rFu3DgDw4YcfolOnTnB0dISvry9Gjx6Ne/fuAQD27t2LoUOHoqSkBDKZDDKZTL28xBdffIGQkBA4OTnBy8sLb7zxRrWPBCIiIvNTWVmJBQs+wqhR32Dr1nKp23kkBqlGIAgCysvLJfnS18ztc889h86dO+O7774D8GAV+hUrVuDkyZNYv349fvzxR0yZMgXAg2vZli1bBmdnZ1y7dg3Xrl3DpEmTADxYGmDOnDk4duwYMjIyUFBQgCFDhuilRyIiMm6XL1/GvHnzUFp6A97eJ5Gaek/qlh7JrBfkbCwVFRXqOw8bW0JCAmxsbPSyrcDAQBw/fhwAMGHCBHXdz88Pc+fOxahRo/DRRx/BxsYGLi4ukMlkGmt8DRs2TP3PrVu3xooVK9ClSxfcu3cPTZo00UufRERkfHbu3InffvtN/bqoqD3GjWsmYUe1wyBFtSYIgnqtpN27dyMlJQVnzpyBQqFAZWUlSktLcf/+/RoXIj18+DBmzpyJY8eO4c6dO1CpVAAe3KHZoUOHRtkPIiIyHBUVFfjggw9EtTfffFPjznpDxSDVCKytrUUPZ27s760vp0+fhr+/PwoKCvDSSy/hnXfewbx589CsWTP8+uuviIuLQ3l5ebVBSqlUIiIiAhEREfjqq6/QvHlzFBYWIiIiAuXlhj8PTkRE+vXnn3+qr7196P333zeqO58ZpBqBTCbT2/SaVH788Uf8/vvveO+993D48GGoVCosWbJEvRzC119/LRpvY2ODqqoqUe3MmTO4desW5s+fr35O4aFDhxpnB4iIyKBs27YNR48eVb/u1KkT+vfvL11DOmKQIg1lZWWQy+WoqqpCUVERsrKykJKSgpdeegkxMTE4ceIEKioqsHLlSvTt2xf79u1DWlqaaBt+fn64d+8ecnJy0LlzZzg4OKBly5awsbHBypUrMWrUKJw4cQJz5syRaC+JiEgK5eXlGtcNx8TEwN/fX6KO6od37ZGGrKwseHt7w8/PD5GRkdizZw9WrFiBbdu2wdLSEp07d8aHH36IBQsWoGPHjvjqq680/qPo3r07Ro0ahejoaDRv3hwLFy5E8+bNsW7dOqSnp6NDhw6YP38+Fi9eLNFeEhFRY/vjjz80fl8kJCQYbYgCuLK5zkx1ZXPSHf/eiYiq98033+DkyZPq10899RT69u3b6H3oe2VzTu0RERFRgyktLcWCBQtEtaFDh6Jly5YSdaRfDFJERETUIM6fP4+NGzeKatOmTdPrHeVSY5AiIiIivdu0aRPOnTunfh0aGorIyEgJO2oYDFJERESkN/fv38eiRYtEtbfffhstWrSQqKOGxSBFREREenH69GmNdQWnT58OKyvTjRumu2dERETUaNavX4+CggL166effhrh4eHSNdRIGKSIiIhIZ0qlUmNNwJEjR2o8tN5UMUgRERGRTn7//Xd899136teWlpZISEiApaWlhF01LgYpIiIiqhNBEJCSkoKKigp1rVevXujZs6eEXUmDj4ghSQwZMgRRUVHq17169cKECRPqtU19bIOIiGp29epVzJ49WxSiRo8ebZYhCmCQon8YMmQIZDIZZDIZbGxs0LZtW8yePRuVlZUN+n2/++67Wj/AeO/evZDJZCguLtZ5G0REVHdr167Fp59+KqplZ89A8+bNJepIepzaIw2RkZFYu3YtysrKsHPnTowZMwbW1tZISEgQjSsvL4eNjY1evmezZs0MYhtERKRJEATMnj1bVLOyaoIdOyZi6lSJmjIQPCNFGmxtbeHl5YVWrVrhnXfeQXh4OLZv366ejps3bx58fHzQrl07AMClS5fw+uuvw9XVFc2aNUO/fv1Et8BWVVUhPj4erq6ucHNzw5QpU/DPZ2X/c1qurKwM77//Pnx9fWFra4u2bdvis88+Q0FBAZ599lkAQNOmTSGTyTBkyBCt27hz5w5iYmLQtGlTODg4oHfv3jh//rz6/XXr1sHV1RXZ2dlo3749mjRpgsjISFy7dk09Zu/evejatSscHR3h6uqKp59+Gn/++aeejjQRkeH7888/NULUG2+8genTJ2L/fuDllyVqzEAwSNEj2dvbo7y8HACQk5ODs2fPYteuXcjMzERFRQUiIiLg5OSEX375Bfv27VMHkoefWbJkCdatW4fPP/8cv/76K27fvo2tW7fW+D1jYmKwadMmrFixAqdPn8bHH3+MJk2awNfXF99++y0A4OzZs7h27RqWL1+udRtDhgzBoUOHsH37duTm5kIQBLz44ouief379+9j8eLF+OKLL/Dzzz+jsLAQkyZNAgBUVlYiKioKPXv2xPHjx5Gbm4sRI0ZAJpPV+5gSERmD1atXY926daLajBkzEBAQIE1DBohTe1QtQRCQk5OD7OxsjB07Fjdu3ICjoyPWrFmjntL78ssvoVKpsGbNGnXAWLt2LVxdXbF371688MILWLZsGRISEtC/f38AQFpaGrKzs6v9vufOncPXX3+NXbt2qRdza926tfr9h1N4Hh4ecHV11bqN8+fPY/v27di3bx+6d+8OAPjqq6/g6+uLjIwMvPbaawCAiooKpKWloU2bNgCAd999V/1/XgqFAiUlJXjppZfU77dv377uB5KIyMioVCqNa07d3d0xZswYiToyXDwjZeC2bwe6d3/wZ2PJzMxEkyZNYGdnh969eyM6OhozZ84EAHTq1El0XdSxY8dw4cIFODk5oUmTJmjSpAmaNWuG0tJSXLx4ESUlJbh27RpCQ0PVn7GyskJISEi13//o0aOwtLSs1x0gp0+fhpWVlej7urm5oV27djh9+rS65uDgoA5JAODt7Y3r168DeBDYhgwZgoiICPTt2xfLly8XTfsREZmiixcvaoSo2NhYhqhq8IyUgZs/H8jNffBnY81DP/vss1i9ejVsbGzg4+MjekaSo6OjaOy9e/cQHByMr776SmM7ut7FYW9vr9PndGFtbS16LZPJRNdvrV27FuPGjUNWVha2bNmCxMRE7Nq1C926dWu0HomIGsvSpUuhUChEtaSkJF7SUAOekTJwU6cCYWFo1LsiHB0d0bZtW7Rs2fKRD5p86qmncP78eXh4eKBt27aiLxcXF7i4uMDb2xsHDhxQf6ayshKHDx+udpudOnWCSqXCTz/9pPX9h2fEqqqqqt1G+/btUVlZKfq+t27dwtmzZ9GhQ4ca9+mfnnzySSQkJGD//v3o2LEjNm7cWKfPExEZuqqqKsyaNUsUonx9fZGcnMwQ9QgMUgbu5Zdh0HdFvPnmm3B3d0e/fv3wyy+/ID8/H3v37sW4ceNw+fJlAMD48eMxf/58ZGRk4MyZMxg9erTGGlB/5+fnh9jYWAwbNgwZGRnqbT58onirVq0gk8mQmZmJGzdu4N69exrbCAgIQL9+/TB8+HD8+uuvOHbsGAYPHowWLVqgX79+tdq3/Px8JCQkIDc3F3/++Sd++OEHnD9/ntdJEZFJOX36NObOnSuqvf322xg2bJhEHRkXBimqFwcHB/z8889o2bIl+vfvj/bt2yMuLg6lpaVwdnYGAEycOBFvvfUWYmNjERYWBicnJ7zyyis1bnf16tV49dVXMXr0aAQGBmL48OFQKpUAgBYtWmDWrFmYOnUqPD098e6772rdxtq1axEcHIyXXnoJYWFhEAQBO3fu1JjOq2nfzpw5gwEDBuDxxx/HiBEjMGbMGIwcObIOR4iIyHB98MEH6v9JfSgpKQktWrSQqCPjIxP+uaAP1YpCoYCLiwtKSkrUgeGh0tJS5Ofnw9/fH3Z2dhJ1SI2Nf+9EZCwqKysxb948US0gIABvvPGGRB01npp+f+uCF5sTERGZkePHj2us5Tdq1Ch4enpK1JFxY5AiIiIyE7NmzdKo8a68+mGQIiIiMnHl5eVISUkR1Tp27IgBAwZI1JHpYJAiIiIyYYcOHcKOHTtEtTFjxsDd3V2ijkwLg1QD4nX85oV/30RkaLRN5SUnJ0vQielikGoAD2+vv3//fqOu0k3Sun//PgDN1dKJiBpbaWkpFixYIKo9XA6G9ItBqgFYWlrC1dVV/cw2BwcHXshnwgRBwP3793H9+nW4urrC0tJS6paIyIzt378fu3btEtXGjx9f7UPeqX4YpBqIl5cXAKjDFJk+V1dX9d87EZEUOJXX+BikGohMJoO3tzc8PDxQUVEhdTvUwKytrXkmiogko1QqsXjxYlGte/fu+Pe//y1RR+aDQaqBWVpa8hcsERE1mL1792o85D0+Ph5OTk4SdWReGKSIiIiMFKfypMcgRUREZGQUCgWWLl0qqvXq1Qs9e/aUqCPzxSBFRERkRH744Qfk5uaKapMnT4aDg4NEHZk3BikiIiIjwak8w8MgRUREZODu3LmDFStWiGoRERHo1q2bRB3RQwxSREREBmz79u3Iy8sT1d5//33Y2dlJ1BH9HYMUERGRgeJUnuFjkCIiIjIwN2/eRGpqqqjWt29fPPXUUxJ1RNVhkCIiIjIg6enpOHXqlKiWkJAAGxsbiTqimlhI3UBqair8/PxgZ2eH0NBQHDx4sMbx6enpCAwMhJ2dHTp16oSdO3eK3v/uu+/wwgsvwM3NDTKZDEePHtXYRmlpKcaMGQM3Nzc0adIEAwYMQFFRkT53i4iIqE4EQcCsWbM0QlRycjJDlAGTNEht2bIF8fHxSE5OxpEjR9C5c2dERERU+6Df/fv3Y9CgQYiLi0NeXh6ioqIQFRWFEydOqMcolUr06NEDCxYsqPb7vvfee/jPf/6D9PR0/PTTT7h69Sr69++v9/0jIiKqDblcjtmzZ4tq/fv35/VQRkAmCIIg1TcPDQ1Fly5dsGrVKgCASqWCr68vxo4di6lTp2qMj46OhlKpRGZmprrWrVs3BAUFIS0tTTS2oKAA/v7+yMvLQ1BQkLpeUlKC5s2bY+PGjXj11VcBAGfOnEH79u2Rm5tb61tJFQoFXFxcUFJSAmdn57ruOhEREQDgyy+/xMWLF0W16dOnw8qKV980BH3//pbsjFR5eTkOHz6M8PDw/zVjYYHw8HCNFVsfys3NFY0HHqyjUd14bQ4fPoyKigrRdgIDA9GyZcsat1NWVgaFQiH6IiIi0tXDqby/hyhbW1skJyczRBkRyf6mbt68iaqqKnh6eorqnp6eOHPmjNbPyOVyrePlcnmtv69cLoeNjQ1cXV3rtJ2UlBStt6ESERHV1eXLl/HZZ5+JagMHDkS7du0k6oh0xchbSwkJCYiPj1e/VigU8PX1lbAjIiIyRmvWrMGVK1dEtcTERFhaWkrUEdWHZEHK3d0dlpaWGnfLFRUVwcvLS+tnvLy86jS+um2Ul5ejuLhYdFbqUduxtbWFra1trb8PERHR3wmCoHFBuaurK8aPHy9RR6QPkl0jZWNjg+DgYOTk5KhrKpUKOTk5CAsL0/qZsLAw0XgA2LVrV7XjtQkODoa1tbVoO2fPnkVhYWGdtkNERFRb+fn5GiHqrbfeYogyAZJO7cXHxyM2NhYhISHo2rUrli1bBqVSiaFDhwIAYmJi0KJFC6SkpAAAxo8fj549e2LJkiXo06cPNm/ejEOHDuGTTz5Rb/P27dsoLCzE1atXATwIScCDM1FeXl5wcXFBXFwc4uPj0axZMzg7O2Ps2LEICwvjwx+JiEjvVq1ahVu3bolqM2bMgIWF5Es5kh5IGqSio6Nx48YNJCUlQS6XIygoCFlZWeoLygsLC0X/onXv3h0bN25EYmIipk2bhoCAAGRkZKBjx47qMdu3b1cHMeDBxXvAgwXNZs6cCQBYunQpLCwsMGDAAJSVlSEiIgIfffRRI+wxERGZC5VKhTlz5ohqXl5eGDlypEQdUUOQdB0pY8Z1pIiIqDrnzp3Dpk2bRLWhQ4eiZcuWEnVED+n79zfv2iMiItIjbUvlJCUlQSaTSdANNTQGKSIiIj2oqKjABx98IKrduuWHFStiJeqIGgODFBERUT3t3bsXP/30k6iWnT0CU6d6S9QRNRYGKSIionqobiovOZlTeeaAQYqIiEgHpaWlWLBggUY9OTlZgm5IKgxSREREdZSVlYUDBw6IarGxsfDz85OmIZIMgxQREVEdaJvK41ko88UgRUREVAtKpRKLFy8W1ezs7PD+++9L1BEZAgYpIiKiR9i6dSuOHz8uqg0fPhw+Pj4SdUSGgkGKiIioBpzKo5owSBEREWmhUCiwdOlSUc3NzQ3vvvuuRB2RIWKQIiIi+oeNGzfi/Pnzotro0aPRvHlziToiQ8UgRURE9DecyqO6YJAiIiICcPv2baxcuVJU8/X1xbBhwyTqiIwBgxQREZm9NWvW4MqVK6LauHHj0LRpU4k6ImPBIEVERGaNU3lUHwxSRERklq5fv47Vq1eLau3atcPAgQMl6oiMEYMUERGZneXLl6O4uFhUi4+Ph5OTkzQNkdFikCIiIrPCqTzSJwYpIiIyC5cvX8Znn30mqgUFBaFfv34SdUSmgEGKiIhMXkpKCsrLy0W1yZMnw8HBQaKOyFQwSBERkUnjVB41JAYpIiIySfn5+diwYYOo1q1bN0REREjUEZkiBikiIjI52s5CTZ06Fba2thJ0Q6aMQYqIiEyGIAiYPXu2Rp1TedRQGKSIiMgknD17Fps3bxbVnn32WTzzzDMSdUTmgEGKiIiMnrapvGnTpsHa2lqCbsicMEgREZHR4lQeSY1BioiIjNLx48exdetWUS0yMhKhoaESdUTmiEGKiIiMjrapvMTERFhaWkrQDZkzBikiIjIaKpUKc+bM0ahzKo+kwiBFRERG4bfffsPOnTtFtX79+iEoKEiahojAIEVEREZA21TejBkzYGFhIUE3RP/DIEVERAarsrIS8+bN06hzKo8MBYMUEREZpF9//RU5OTmi2uuvv4727dtL1BGRJgYpIiIyONqm8pKSkiCTySTohqh6DFJERGQwysvLkZKSolHnVB4ZKgYpIiIyCLt378a+fftEtcGDB6NNmzYSdUT0aAxSREQkOU7lkbFikCIiIsn89ddfWLhwoahmaWmJxMREiToiqhsGKSIiksR//vMfHDlyRFQbNmwYfH19JeqIqO4YpIiIqNFpm8rjBeVkjBikiIio0dy7dw9LliwR1ZydnfHee+9J1BFR/TBIERFRo0hPT8epU6dEtZEjR8LLy0uijojqj0GKiIgaHKfyyFQxSBERUYMpLi7G8uXLRTUvLy+MHDlSoo6I9ItBioiIGsSGDRuQn58vqr377rtwc3OTqCMi/WOQIiIiveNUHpkLBikiItKbmzdvIjU1VVRr3bo13nrrLYk6ImpYFlI3kJqaCj8/P9jZ2SE0NBQHDx6scXx6ejoCAwNhZ2eHTp06YefOnaL3BUFAUlISvL29YW9vj/DwcJw/f1405ty5c+jXrx/c3d3h7OyMHj16YM+ePXrfNyIic7J69WqNEDVhwgSGKDJpkgapLVu2ID4+HsnJyThy5Ag6d+6MiIgIXL9+Xev4/fv3Y9CgQYiLi0NeXh6ioqIQFRWFEydOqMcsXLgQK1asQFpaGg4cOABHR0dERESgtLRUPeall15CZWUlfvzxRxw+fBidO3fGSy+9BLlc3uD7TERkimbNmqXxszs5ORkuLi4SdUTUOGSCIAhSffPQ0FB06dIFq1atAgCoVCr4+vpi7NixmDp1qsb46OhoKJVKZGZmqmvdunVDUFAQ0tLSIAgCfHx8MHHiREyaNAkAUFJSAk9PT6xbtw4DBw7EzZs30bx5c/z888/417/+BQC4e/cunJ2dsWvXLoSHh9eqd4VCARcXF5SUlMDZ2bm+h4KIyChdu3YNn3zyiajWsWNHDBgwQKKOiGqm79/fkp2RKi8vx+HDh0XBxcLCAuHh4cjNzdX6mdzcXI2gExERoR6fn58PuVwuGuPi4oLQ0FD1GDc3N7Rr1w4bNmyAUqlEZWUlPv74Y3h4eCA4OFjfu0lEZLKWLFmiEaImTpzIEEVmRbKLzW/evImqqip4enqK6p6enjhz5ozWz8jlcq3jH07JPfyzpjEymQy7d+9GVFQUnJycYGFhAQ8PD2RlZaFp06bV9ltWVoaysjL1a4VCUcs9JSIyPbwrj+gBs7trTxAEjBkzBh4eHvjll19gb2+PNWvWoG/fvvjtt9/g7e2t9XMpKSlaf3AQEZmTwsJCrF27VlQLCQlBnz59JOqISFqSBSl3d3dYWlqiqKhIVC8qKqr2uUteXl41jn/4Z1FRkSgQFRUVISgoCADw448/IjMzE3fu3FHPjX700UfYtWsX1q9fr/XaLABISEhAfHy8+rVCoYCvr28d9piIyLjNnj0b/7ysdsqUKbC3t5eoIyLpSXaNlI2NDYKDg5GTk6OuqVQq5OTkICwsTOtnwsLCROMBYNeuXerx/v7+8PLyEo1RKBQ4cOCAesz9+/cBPLge6+8sLCygUqmq7dfW1hbOzs6iLyIicyAIAmbNmqURopKTkxmiyOxJOrUXHx+P2NhYhISEoGvXrli2bBmUSiWGDh0KAIiJiUGLFi2QkpICABg/fjx69uyJJUuWoE+fPti8eTMOHTqkvthRJpNhwoQJmDt3LgICAuDv748ZM2bAx8cHUVFRAB6EsaZNmyI2NhZJSUmwt7fHp59+ivz8fJ6aJiL6hwsXLuCrr74S1Xr06IHnn39eoo6IDIukQSo6Oho3btxAUlIS5HI5goKCkJWVpb5YvLCwUHTmqHv37ti4cSMSExMxbdo0BAQEICMjAx07dlSPmTJlCpRKJUaMGIHi4mL06NEDWVlZsLOzA/BgSjErKwvTp0/Hc889h4qKCjzxxBPYtm0bOnfu3LgHgIjIgGm7LjQhIQE2NjYSdENkmCRdR8qYcR0pIjJVgiBg9uzZGnXelUemQN+/v83urj0iIqreqVOnkJ6eLqqFh4fj6aeflqgjIsPGIEVERAC0T+VNnz4dVlb8VUFUHf7XQURk5lQqFebMmaNR51Qe0aPVOUhZWlri2rVr8PDwENVv3boFDw8PVFVV6a05IiJqWHl5edi+fbuo9tJLL/GRWUS1VOcgVd216WVlZbyTg4jIiGibypsxY4bGOntEVL1aB6kVK1YAeLBW05o1a9CkSRP1e1VVVfj5558RGBio/w6JiEivqqqqMHfuXI06p/KI6q7WQWrp0qUAHpyRSktLg6Wlpfo9Gxsb+Pn5IS0tTf8dEhGR3vz3v/9Fdna2qDZgwADRenxEVHu1DlL5+fkAgGeffRbfffcdmjZt2mBNERGR/mmbyktKSoJMJpOgGyLTUOdrpPbs2dMQfRARUQOpqKjABx98oFHnVB5R/dU5SA0bNqzG9z///HOdmyEiIv3au3cvfvrpJ1Ft0KBBePzxxyXqiMi01DlI3blzR/S6oqICJ06cQHFxMZ577jm9NUZERPXDqTyihlfnILV161aNmkqlwjvvvIM2bdropSkiItJdaWkpFixYoFHnVB6R/untocVnz55Fr169cO3aNX1szuDxocVEZIiysrJw4MABUS02NhZ+fn7SNERkYAz2ocUXL15EZWWlvjZHRER1pG0qj2ehiBpWnYNUfHy86LUgCLh27Rp27NiB2NhYvTVGRES1o1QqsXjxYlHNzs4O77//vkQdEZmPOgepvLw80WsLCws0b94cS5YseeQdfUREpF9bt27F8ePHRbW3334bLVq0kKgjIvPCdaSIiIwUp/KIpKfzNVLXr1/H2bNnAQDt2rWDh4eH3poiIqLqKRQK9WO7HnJzc8O7774rUUdE5qvOQUqhUGDMmDHYtGkTVCoVAMDS0hLR0dFITU2Fi4uL3pskIqIHNm7ciPPnz4tq77zzDv9nlkgiFnX9wPDhw3HgwAHs2LEDxcXFKC4uRmZmJg4dOoSRI0c2RI9ERIQHU3n/DFHJyckMUUQSqvM6Uo6OjsjOzkaPHj1E9V9++QWRkZFQKpV6bdBQcR0pImost2/fxsqVK0U1X19f3uBDpAPJ15Fyc3PTOn3n4uKCpk2b1rshIiL6nzVr1uDKlSui2rhx4/jzlshA1HlqLzExEfHx8ZDL5eqaXC7H5MmTMWPGDL02R0RkzmbNmqURopKTkxmiiAxInaf2nnzySVy4cAFlZWVo2bIlAKCwsBC2trYICAgQjT1y5Ij+OjUwnNojooZy/fp1rF69WlRr164dBg4cKFFHRKZD8qm9fv368cnhREQNZMWKFbhz546oFh8fDycnJ4k6IqKa6O2hxeaGZ6SISN+4wCZRw9P37+86XyPVunVr3Lp1S6NeXFyM1q1b17shIiJzc+XKFY0QFRQUxBBFZATqPLVXUFCAqqoqjXpZWRkuX76sl6aIiMxFSkoKysvLRbXJkyfDwcFBoo6IqC5qHaS2b9+u/ufs7GzREghVVVXIycmBv7+/frsjIjJhnMojMn61DlJRUVEAAJlMhtjYWNF71tbW8PPzw5IlS/TaHBGRKcrPz8eGDRtEtW7duiEiIkKijohIV7UOUg+fq+fv74/ffvsN7u7uDdYUEZGp0nYWaurUqbC1tZWgGyKqrzpfI5Wfn98QfRARmTRBEDB79myNOqfyiIxbnYOUth8Ef5eUlKRzM0REpujs2bPYvHmzqNarVy/07NlToo6ISF/qHKS2bt0qel1RUYH8/HxYWVmhTZs2DFJERH+jbSpv2rRpsLa2lqAbItK3OgepvLw8jZpCocCQIUPwyiuv6KUpIiJjx6k8IvOgt5XNf//9d/Tt2xcFBQX62JzB48rmRFSd33//Hd99952oFhkZidDQUIk6IqKHJH/WXnVKSkpQUlKir80RERklbVN5iYmJsLS0lKAbImpodQ5SK1asEL0WBAHXrl3DF198gd69e+utMSIiY6JSqTBnzhyNOqfyiExbnYPU0qVLRa8tLCzQvHlzxMbGIiEhQW+NEREZi0OHDmHHjh2iWr9+/RAUFCRNQ0TUaLiOFBFRPWibypsxYwYsLOr8THgiMkI6/ZdeXFyMQ4cO4dChQyguLtZzS0REhq+yslJriMrOTmaIIjIjdTojVVBQgDFjxiA7OxsPb/aTyWSIjIzEqlWr4Ofn1xA9EhEZlF9//RU5OTmimr//60hLa4+pUyVqiogkUevlDy5duoQuXbrA2toao0ePRvv27QEAp06dwurVq1FZWYnffvsNjz32WIM2bCi4/AGRedJ2FiopKQkymUyCboiorvT9+7vWQSouLg4XLlxAdnY27OzsRO/99ddfiIyMREBAANasWVPvpowBgxSReSkvL0dKSopGnXflERkXydaRysrKwpYtWzRCFADY29tjzpw5GDhwYL0bIiIyNLt378a+fftEtcGDB6NNmzYSdUREhqLWQermzZs1XgPVunVr3L59Wx89EREZDE7lEVFNan1ribe3N06dOlXt+ydOnICXl5demiIiktpff/2lEaIsLCyQnJzMEEVEarU+IxUVFYVJkyYhJycHzZs3F713/fp1vP/++4iKitJ3f0REjS4zMxOHDx8W1YYNGwZfX1+JOiIiQ1Xri83v3LmD0NBQyOVyDB48GIGBgRAEAadPn8bGjRvh5eWF//73v2jWrFlD92wQeLE5kWnSNpXHC8qJTIdkF5s3bdoUBw4cwLRp07B582b1Qpyurq5444038MEHH5hNiCIi03Pv3j0sWbJEVHNyckJ8fLxEHRGRMajT8rtNmzbF6tWrcevWLcjlcsjlcty6dQtpaWk6h6jU1FT4+fnBzs4OoaGhOHjwYI3j09PTERgYCDs7O3Tq1Ak7d+4UvS8IApKSkuDt7Q17e3uEh4fj/PnzGtvZsWMHQkNDYW9vj6ZNm3JaksiMpaena4SokSNHMkQR0SPp9BwDmUwGDw8PeHh41Ouiyy1btiA+Ph7Jyck4cuQIOnfujIiICFy/fl3r+P3792PQoEGIi4tDXl4eoqKiEBUVhRMnTqjHLFy4ECtWrEBaWhoOHDgAR0dHREREoLS0VD3m22+/xVtvvYWhQ4fi2LFj2LdvH9544w2d94OIjNesWbM0bqRJTk7mzTNEVCu1vkaqIYSGhqJLly5YtWoVAEClUsHX1xdjx47FVC3PWYiOjoZSqURmZqa61q1bNwQFBSEtLQ2CIMDHxwcTJ07EpEmTAAAlJSXw9PTEunXrMHDgQFRWVsLPzw+zZs1CXFyczr3zGiki41ZcXIzly5eLal5eXhg5cqREHRFRY9D372/JnqxZXl6Ow4cPIzw8/H/NWFggPDwcubm5Wj+Tm5srGg8AERER6vH5+fmQy+WiMS4uLggNDVWPOXLkCK5cuQILCws8+eST8Pb2Ru/evUVntbQpKyuDQqEQfRGRcVq/fr1GiBozZgxDFBHVmWRB6ubNm6iqqoKnp6eo7unpCblcrvUzcrm8xvEP/6xpzB9//AEAmDlzJhITE5GZmYmmTZuiV69eNS4ompKSAhcXF/UXb4MmMk6zZs1CQUGBqJacnAx3d3dpGiIioyZZkJKKSqUCAEyfPh0DBgxAcHAw1q5dC5lMhvT09Go/l5CQgJKSEvXXpUuXGqtlItKDmzdvaixt0Lp1ay5tQET1UqvlD1asWFHrDY4bN65W49zd3WFpaYmioiJRvaioqNqLPL28vGoc//DPoqIieHt7i8YEBQUBgLreoUMH9fu2trZo3bo1CgsLq+3X1tYWtra2tdo3IjIsaWlpGj87JkyYABcXF4k6IiJTUasgtXTp0lptTCaT1TpI2djYIDg4GDk5OeqlB1QqFXJycvDuu+9q/UxYWBhycnIwYcIEdW3Xrl0ICwsDAPj7+8PLyws5OTnq4KRQKHDgwAG88847AIDg4GDY2tri7Nmz6NGjBwCgoqICBQUFaNWqVa16JyLjwQU2iagh1SpI5efnN8g3j4+PR2xsLEJCQtC1a1csW7YMSqUSQ4cOBQDExMSgRYsWSElJAQCMHz8ePXv2xJIlS9CnTx9s3rwZhw4dwieffALgQZCbMGEC5s6di4CAAPj7+2PGjBnw8fFRhzVnZ2eMGjUKycnJ8PX1RatWrbBo0SIAwGuvvdYg+0lEje/atWvqnw0PPfHEE3j11Vcl6oiITFGtVzb/p/LycuTn56NNmzawstJtM9HR0bhx4waSkpIgl8sRFBSErKws9cXihYWFsLD432Vc3bt3x8aNG5GYmIhp06YhICAAGRkZ6Nixo3rMlClToFQqMWLECBQXF6NHjx7IysqCnZ2desyiRYtgZWWFt956C3/99RdCQ0Px448/omnTpjoeDSIyJAsXLsRff/0lqk2cOBFNmjSRqCMiMlV1Xkfq/v37GDt2LNavXw8AOHfuHFq3bo2xY8eiRYsWWtd/MkVcR4rIMHEqj4hqIvk6UgkJCTh27Bj27t0rOssTHh6OLVu21LshIiJdnDlzRiNEFRaGMEQRUYOq85xcRkYGtmzZgm7duokeD/PEE0/g4sWLem2OiKg2tJ2F2rNnEuLjHSXohojMSZ2D1I0bN+Dh4aFRVyqV9XruHhFRXQmCgNmzZ2vUk5OTwRNRRNQY6jy1FxISgh07dqhfPwxPa9asUS9DQETU0I4dO6YRotq1a8epPCJqVHU+I/XBBx+gd+/eOHXqFCorK7F8+XKcOnUK+/fvx08//dQQPRIRiWibynv//fdF120SETWGOp+R6tGjB44ePYrKykp06tQJP/zwAzw8PJCbm4vg4OCG6JGICMCDqbzq7spjiCIiKdR5+QN6gMsfEDWuH374Abm5uaJaUFAQ+vXrJ1FHRGSM9P37u1ZTewqFotYbZKggIn3Tdhaqc+dp6NfPWoJuiIj+p1ZBytXVtdZ35FVVVdWrISKih6qqqjB37lyNOi8oJyJDUasgtWfPHvU/FxQUYOrUqRgyZIj6Lr3c3FysX79e/Uw8IqL62rp1K44fPy6qdejQgc/EJCKDUudrpJ5//nm8/fbbGDRokKi+ceNGfPLJJ9i7d68++zNYvEaKqOFom8pLTEyEpaWlBN0QkSmR/BExubm5CAkJ0aiHhITg4MGD9W6IiMxXRUVFtXflMUQRkSGq8zpSvr6++PTTT7Fw4UJRfc2aNfD19dVbY0RkXr788kuNx0x16dIFL774okQdERE9Wp2D1NKlSzFgwAB8//33CA0NBQAcPHgQ58+fx7fffqv3BonI9Gk7CzVjxgxYWNT5pDkRUaOq80+pF198EefPn0ffvn1x+/Zt3L59G3379sW5c+f4f45EVCelpaXVTuUxRBGRMeCCnDrixeZE9bN+/XoUFBSIar169ULPnj2laYiIzIIkC3L+U3FxMT777DOcPn0aAPDEE09g2LBhcHFxqXdDRGT6tJ2Fys5OQnJy7darIyIyFHU+d37o0CG0adMGS5cuVU/tffjhh2jTpg2OHDnSED0SkYlQKpXVhKhkTJ3KEEVExqfOU3v/+te/0LZtW3z66aewsnpwQquyshJvv/02/vjjD/z8888N0qih4dQeUd2kpqbi5s2bolq/fv0QFBQkTUNEZJb0/fu7zkHK3t4eeXl5CAwMFNVPnTqFkJAQ3L9/v95NGQMGKaLaq+6CciKixib5gpzOzs4oLCzUqF+6dAlOTk71boiITEdJSQlDFBGZtDpfbB4dHY24uDgsXrwY3bt3BwDs27cPkydP1nhsDBGZr/nz56OsrExUi46O1jibTURkzOocpBYvXgyZTIaYmBhUVlYCAKytrfHOO+9g/vz5em+QiIwPz0IRkbnQeR2p+/fvqx/n0KZNGzg4OOi1MUPHa6SINN28eROpqakadYYoIjIUBrGOFAA4ODigU6dO9W6AiEyDtrNQMTEx8Pf3l6AbIqLGUesgNWzYsFqN+/zzz3VuhoiME6fyiMhc1TpIrVu3Dq1atcKTTz4JPlWGiADg6tWr+PTTTzXqDFFEZC5qHaTeeecdbNq0Cfn5+Rg6dCgGDx6MZs2aNWRvRGTAtJ2FGj58OHx8fCTohohIGrVeRyo1NRXXrl3DlClT8J///Ae+vr54/fXXkZ2dzTNURGamuqk8higiMjc637X3559/Yt26ddiwYQMqKytx8uRJNGnSRN/9GSzetUfmKD8/Hxs2bNCocyqPiIyFwdy1Z2FhAZlMBkEQUFVVVe9GiMiwaTsLNWbMGLi7u0vQDRGRYajTI2LKysqwadMm/Pvf/8bjjz+O33//HatWrUJhYaFZnY0iMjfVTeUxRBGRuav1GanRo0dj8+bN8PX1xbBhw7Bp0yb+ECUycadPn8bXX38tqtnZ2eH999+XqCMiIsNS62ukLCws0LJlSzz55JOQyWTVjvvuu+/01pwh4zVSZOq0nYWaMGECXFxcJOiGiEg/JLtGKiYmpsYARUSmgwtsEhHVTp0W5CQi05aXl4ft27eLas2bN8fo0aMl6oiIyLDpfNceEZkWbWehJk2aBEdHRwm6ISIyDgxSRGZOEATMnj1bo86pPCKiR2OQIjJj+/fvx65du0Q1f39/xMTESNQREZFxYZAiMlPapvKmTp0KW1tbCbohIjJODFJEZkalUmHOnDkadU7lERHVHYMUkRnZvXs39u3bJ6p16tQJ/fv3l6gjIiLjxiBFZCa0TeVNnz4dVlb8MUBEpCv+BCUycVVVVZg7d65GnVN5RET1xyBFZMK2b9+OvLw8US00NBSRkZESdUREZFoYpIhMlLapvBkzZsDCwkKCboiITBODFJGJKS8vR0pKikadU3lERPrHIEVkQnbt2oX9+/eLas8++yyeeeYZiToiIjJtDFJEJkLbVF52dhKSk2USdENEZB4YpIiMXFlZGebPn69Rz85OxtSpEjRERGRGDOKq09TUVPj5+cHOzg6hoaE4ePBgjePT09MRGBgIOzs7dOrUCTt37hS9LwgCkpKS4O3tDXt7e4SHh+P8+fNat1VWVoagoCDIZDIcPXpUX7tE1Ci2bdumEaJef/11JCcnY/9+4OWXJWqMiMhMSB6ktmzZgvj4eCQnJ+PIkSPo3LkzIiIicP36da3j9+/fj0GDBiEuLg55eXmIiopCVFQUTpw4oR6zcOFCrFixAmlpaThw4AAcHR0RERGB0tJSje1NmTIFPj4+DbZ/RA1l1qxZGuE/KSkJ7du3l6YhIiIzJBMEQZCygdDQUHTp0gWrVq0C8OA5YL6+vhg7diymapmXiI6OhlKpRGZmprrWrVs3BAUFIS0tDYIgwMfHBxMnTsSkSZMAACUlJfD09MS6deswcOBA9ee+//57xMfH49tvv8UTTzyBvLw8BAUF1apvhUIBFxcXlJSUwNnZuR5HgKhu7t+/j0WLFmnUeVceEdGj6fv3t6TXSJWXl+Pw4cNISEhQ1ywsLBAeHo7c3Fytn8nNzUV8fLyoFhERgYyMDABAfn4+5HI5wsPD1e+7uLggNDQUubm56iBVVFSE4cOHIyMjAw4ODo/staysDGVlZerXCoWi1vtJpC+bNm3CuXPnRLXBgwejTZs2EnVERGTeJJ3au3nzJqqqquDp6Smqe3p6Qi6Xa/2MXC6vcfzDP2saIwgChgwZglGjRiEkJKRWvaakpMDFxUX95evrW6vPEenLrFmzNEJUcnIyQxQRkYQkv0ZKCitXrsTdu3dFZ8IeJSEhASUlJeqvS5cuNWCHRP+jUCi0Lm3AqTwiIulJOrXn7u4OS0tLFBUViepFRUXw8vLS+hkvL68axz/8s6ioCN7e3qIxD69/+vHHH5GbmwtbW1vRdkJCQvDmm29i/fr1Gt/X1tZWYzxRQ/vss89w+fJlUS0uLg6PPfaYRB0REdHfSXpGysbGBsHBwcjJyVHXVCoVcnJyEBYWpvUzYWFhovHAg9WcH4739/eHl5eXaIxCocCBAwfUY1asWIFjx47h6NGjOHr0qHr5hC1btmDevHl63UciXc2aNUsjRCUnJzNEEREZEMkX5IyPj0dsbCxCQkLQtWtXLFu2DEqlEkOHDgUAxMTEoEWLFupnh40fPx49e/bEkiVL0KdPH2zevBmHDh3CJ598AgCQyWSYMGEC5s6di4CAAPj7+2PGjBnw8fFBVFQUAKBly5aiHpo0aQIAaNOmDX9JkeRu376NlStXimo2NjZ1moomIqLGIXmQio6Oxo0bN5CUlAS5XI6goCBkZWWpLxYvLCwUPa2+e/fu2LhxIxITEzFt2jQEBAQgIyMDHTt2VI+ZMmUKlEolRowYgeLiYvTo0QNZWVmws7Nr9P0jqosVK1bgzp07otqoUaM0bp4gIiLDIPk6UsaK60iRvvGCciKihmdS60gR0YMbIdLS0kS1Zs2aYezYsRJ1REREtcUgRSShlJQUlJeXi2pjx45Fs2bNJOqIiIjqgkGKSCKcyiMiMn4MUkSN7NKlS/j8889FNV9fXwwbNkyijoiISFcMUkSNSNtZqPfee483LBARGSkGKaJGwqk8IiLTwyBF1MAuXryIL7/8UlRr164dBg4cKFFHRESkLwxSRA1I21moyZMnw8HBQYJuiIhI3xikiBqAIAiYPXu2Rp1TeUREpoVBikjPTp8+ja+//lpUe/LJJ/Hyyy9L1BERETUUBikiPdI2lTd16lTY2tpK0A0RETU0BikiPeBUHhGReWKQIqqnvLw8bN++XVTr3r07/v3vf0vUERERNRYGKaJ60DaVN336dFhZ8T8tIiJzwJ/2RDpQqVSYM2eORp1TeURE5oVBiqiOcnNz8cMPP4hqzz//PHr06CFRR0REJBUGKaI60DaVl5iYCEtLSwm6ISIiqTFIEdVCZWUl5s2bp1HnVB4RkXljkCJ6hG+//RYnTpwQ1fr06YOQkBCJOiIiIkPBIEVUA21TeUlJSZDJZBJ0Q0REhoZBikiLsrIyzJ8/X6P+5JPJYIYiIqKHGKSI/mH9+vUoKCgQ1V544QWEhYVJ0xARERksBimiv+FUHhER1QWDFBEApVKJxYsXa9R5Vx4REdWEQYrMXmpqKm7evCmq9evXD0FBQdI0RERERoNBisyatqk8noUiIqLaYpAis1RSUoJly5Zp1BmiiIioLhikyOzMnz8fZWVlolp0dDQCAwMl6oiIiIwVgxSZFU7lERGRPjFIkVkoLi7G8uXLNeoMUUREVB8MUmTy0tLSUFRUJKq1bRuLN9/0k6YhIiIyGQxSZNI4lUdERA2JQYpM0o0bN/DRRx+Jak2aNMHEiRMl6oiIiEwRgxSZnCVLluDevXui2pgxY+Du7i5RR0REZKoYpMikcCqPiIgaE4MUmYSrV6/i008/FdW8vLwwcuRIiToiIiJzwCBFRk/bWajx48fD1dW18ZshIiKzwiBFRo1TeUREJCUGKTJKV65cwZo1a0S1mzfb4N//HixRR0REZI4YpMjoaHtWXqdOk9G/v4NEHRERkblikCKjwqk8IiIyJAxSZBQKCgqwfv16US00NBSRkZESdURERMQgRUZA21moqVOnwtbWVoJuiIiI/odBigyWIAiYPXu2Rp1TeUREZCgYpMggHT58GJmZmaJar1690LNnT4k6IiIi0sQgRQZH21Te119PQ3KytQTdEBERVY9BigyGSqXCnDlzNOrZ2clISZGgISIiokdgkCKD8OuvvyInJ0dU69KlC1588UXwkigiIjJUDFIkOW1TedOnT4eVFf/1JCIiw2YhdQMAkJqaCj8/P9jZ2SE0NBQHDx6scXx6ejoCAwNhZ2eHTp06YefOnaL3BUFAUlISvL29YW9vj/DwcJw/f179fkFBAeLi4uDv7w97e3u0adMGycnJKC8vb5D9I+2qqqqqXWCTIYqIiIyB5EFqy5YtiI+PR3JyMo4cOYLOnTsjIiIC169f1zp+//79GDRoEOLi4pCXl4eoqChERUXhxIkT6jELFy7EihUrkJaWhgMHDsDR0REREREoLS0FAJw5cwYqlQoff/wxTp48iaVLlyItLQ3Tpk1rlH0mYNeuXZg7d66o1rNnTy5tQERERkUmCIIgZQOhoaHo0qULVq1aBeDBBce+vr4YO3Yspk6dqjE+OjoaSqVSdGt8t27dEBQUhLS0NAiCAB8fH0ycOBGTJk0CAJSUlMDT0xPr1q3DwIEDtfaxaNEirF69Gn/88Uet+lYoFHBxcUFJSQmcnZ3ruttmTdtZqBkzZsDCQvJcT0REJk7fv78l/c1VXl6Ow4cPIzw8XF2zsLBAeHg4cnNztX4mNzdXNB4AIiIi1OPz8/Mhl8tFY1xcXBAaGlrtNoEHYatZs2b12R16hIqKimqn8hiiiIjIGEl6IcrNmzdRVVUFT09PUd3T0xNnzpzR+hm5XK51vFwuV7//sFbdmH+6cOECVq5cicWLF1fba1lZGcrKytSvFQpFtWNJ07Zt23D06FFRLTIyEqGhodI0REREpAdmf0XvlStXEBkZiddeew3Dhw+vdlxKSorWsyn0aNqOW1JSEmQymQTdEBER6Y+k8ynu7u6wtLREUVGRqF5UVAQvLy+tn/Hy8qpx/MM/a7PNq1ev4tlnn0X37t3xySef1NhrQkICSkpK1F+XLl169A6audLS0mqn8hiiiIjIFEgapGxsbBAcHCxaiFGlUiEnJwdhYWFaPxMWFqaxcOOuXbvU4/39/eHl5SUao1AocODAAdE2r1y5gl69eiE4OBhr16595DU6tra2cHZ2Fn1R9TZt2oQFCxaIalFRUbwrj4iITIrkU3vx8fGIjY1FSEgIunbtimXLlkGpVGLo0KEAgJiYGLRo0QIp//8ZIePHj0fPnj2xZMkS9OnTB5s3b8ahQ4fUZ5RkMhkmTJiAuXPnIiAgAP7+/pgxYwZ8fHwQFRUF4H8hqlWrVli8eDFu3Lih7qe6M2FUe5zKIyIicyF5kIqOjsaNGzeQlJQEuVyOoKAgZGVlqS8WLywsFJ0t6t69OzZu3IjExERMmzYNAQEByMjIQMeOHdVjpkyZAqVSiREjRqC4uBg9evRAVlYW7OzsADw4g3XhwgVcuHABjz32mKgfiVeDMGp//fUXFi5cqFHnWSgiIjJVkq8jZay4jpRYZmYmDh8+LKr5+0cjJiZQoo6IiIg06fv3t+RnpMj4VXdBORERkaljkCKd3bt3D0uWLBHVnJycEB8fL1FHREREjYtBinSSnp6OU6dOiWojR47kxfpERGRWGKSozjiVR0RE9ACDFNVacXExli9fLqp5eXlh5MiREnVEREQkLQYpqpUNGzYgPz9fVBszZgzc3d0l6oiIiEh6DFL0SJzKIyIi0o5Biqp18+ZNpKamimr+/v6IiYmRqCMiIiLDwiBFWqWlpWk8+HnChAlwcXGRqCMiIiLDwyBFGjiVR0REVDsMUqR27do19cOfH3riiSfw6quvStQRERGRYWOQIgDAkiVLcO/ePVFt4sSJaNKkiUQdERERGT4GKeJUHhERkY4YpMxYYWEh1q5dK6oFBwfjpZdekqgjIiIi48IgZaZmz54NQRBEtSlTpsDe3l6ijoiIiIwPg5SZEQQBs2fP1qhzKo+IiKjuGKTMiFwux8cffyyq/fFHD6xf/7xEHRERERk3Bikz8eWXX+LixYui2tdfT0NKirVEHRERERk/BikTp20qz8bGBgkJCeBsHhERUf0wSJmwy5cv47PPPhPVoqOjERgYKFFHREREpoVBykStWbMGV65cEdUSExNhaWkpUUdERESmh0HKxGibynNxccGECROkaYiIiMiEMUiZkPz8fGzYsEFUGzx4MNq0aSNRR0RERKaNQcpErFq1Crdu3RLVZsyYAQsLC4k6IiIiMn0MUkZOpVJhzpw5opqXlxdGjhwpUUdERETmg0HKiJ07dw6bNm0S1YYOHYqWLVtK1BEREZF5YZAyUosWLcL9+/dFtaSkJMhkMok6IiIiMj8MUkZG21Sen58fYmNjJeqIiIjIfDFIGZHr169j9erVotrw4cPh4+MjUUdERETmjbd0GYmffvpJI0RlZycxRBEREUmIZ6QMXFVVFT744AOoVCp1zc9vAD7+uCOmTpWwMSIiImKQMmRyuRwff/yxqDZp0iQ4OjqCl0QRERFJj0HKQO3evRv79u1Tv/b390dMTIyEHREREdE/MUgZmMrKSsybN09Ui46ORmBgoEQdERERUXUYpAxMWtr3otdTpkyBvb29RN0QERFRTXjXnoH5+ecHd+EVFbVDcnIyQxQREZEBY5AyMIMHByM7OxmRkQOlboWIiIgegVN7Bubllx98ERERkeHjGSkiIiIiHTFIEREREemIQYqIiIhIRwxSRERERDpikCIiIiLSEYMUERERkY4YpIiIiIh0xCBFREREpCMGKSIiIiIdMUgRERER6YhBioiIiEhHDFJEREREOmKQIiIiItKRldQNGCtBEAAACoVC4k6IiIioth7+3n74e7y+GKR0dPfuXQCAr6+vxJ0QERFRXd29excuLi713o5M0FckMzMqlQpXr16Fk5MTZDKZ1O0YDYVCAV9fX1y6dAnOzs5St2OUeAz1g8ex/ngM9YPHsf7qcgwFQcDdu3fh4+MDC4v6X+HEM1I6srCwwGOPPSZ1G0bL2dmZPzDqicdQP3gc64/HUD94HOuvtsdQH2eiHuLF5kREREQ6YpAiIiIi0hGDFDUqW1tbJCcnw9bWVupWjBaPoX7wONYfj6F+8DjWn5THkBebExEREemIZ6SIiIiIdMQgRURERKQjBikiIiIiHTFIEREREemIQYrqJDU1FX5+frCzs0NoaCgOHjxY4/j09HQEBgbCzs4OnTp1ws6dO0XvC4KApKQkeHt7w97eHuHh4Th//rz6/YKCAsTFxcHf3x/29vZo06YNkpOTUV5e3iD71xga+xj+XVlZGYKCgiCTyXD06FF97ZIkpDqOO3bsQGhoKOzt7dG0aVNERUXpc7calRTH8Ny5c+jXrx/c3d3h7OyMHj16YM+ePXrft8ak7+P43Xff4YUXXoCbm1u1/62WlpZizJgxcHNzQ5MmTTBgwAAUFRXpc7caVWMfw9u3b2Ps2LFo164d7O3t0bJlS4wbNw4lJSV1b14gqqXNmzcLNjY2wueffy6cPHlSGD58uODq6ioUFRVpHb9v3z7B0tJSWLhwoXDq1CkhMTFRsLa2Fn7//Xf1mPnz5wsuLi5CRkaGcOzYMeHll18W/P39hb/++ksQBEH4/vvvhSFDhgjZ2dnCxYsXhW3btgkeHh7CxIkTG2Wf9U2KY/h348aNE3r37i0AEPLy8hpqNxucVMfxm2++EZo2bSqsXr1aOHv2rHDy5Elhy5YtDb6/DUGqYxgQECC8+OKLwrFjx4Rz584Jo0ePFhwcHIRr1641+D43hIY4jhs2bBBmzZolfPrpp9X+tzpq1CjB19dXyMnJEQ4dOiR069ZN6N69e0PtZoOS4hj+/vvvQv/+/YXt27cLFy5cEHJycoSAgABhwIABde6fQYpqrWvXrsKYMWPUr6uqqgQfHx8hJSVF6/jXX39d6NOnj6gWGhoqjBw5UhAEQVCpVIKXl5ewaNEi9fvFxcWCra2tsGnTpmr7WLhwoeDv71+fXZGMlMdw586dQmBgoHDy5EmjD1JSHMeKigqhRYsWwpo1a/S9O5KQ4hjeuHFDACD8/PPP6jEKhUIAIOzatUtv+9aY9H0c/y4/P1/rf6vFxcWCtbW1kJ6erq6dPn1aACDk5ubWY2+kIcUx1Obrr78WbGxshIqKijr1z6k9qpXy8nIcPnwY4eHh6pqFhQXCw8ORm5ur9TO5ubmi8QAQERGhHp+fnw+5XC4a4+LigtDQ0Gq3CQAlJSVo1qxZfXZHElIew6KiIgwfPhxffPEFHBwc9LlbjU6q43jkyBFcuXIFFhYWePLJJ+Ht7Y3evXvjxIkT+t7FBifVMXRzc0O7du2wYcMGKJVKVFZW4uOPP4aHhweCg4P1vZsNriGOY20cPnwYFRUVou0EBgaiZcuWddqOIZDqGGpTUlICZ2dnWFnV7THEDFJUKzdv3kRVVRU8PT1FdU9PT8jlcq2fkcvlNY5/+GddtnnhwgWsXLkSI0eO1Gk/pCTVMRQEAUOGDMGoUaMQEhKil32RklTH8Y8//gAAzJw5E4mJicjMzETTpk3Rq1cv3L59u/471oikOoYymQy7d+9GXl4enJycYGdnhw8//BBZWVlo2rSpXvatMTXEcawNuVwOGxsbuLq61ms7hkCqY6itjzlz5mDEiBF1/iyDFBmNK1euIDIyEq+99hqGDx8udTtGY+XKlbh79y4SEhKkbsWoqVQqAMD06dMxYMAABAcHY+3atZDJZEhPT5e4O+MgCALGjBkDDw8P/PLLLzh48CCioqLQt29fXLt2Ter2yEwpFAr06dMHHTp0wMyZM+v8eQYpqhV3d3dYWlpq3BVSVFQELy8vrZ/x8vKqcfzDP2uzzatXr+LZZ59F9+7d8cknn9RrX6Qi1TH88ccfkZubC1tbW1hZWaFt27YAgJCQEMTGxtZ/xxqZVMfR29sbANChQwf1+7a2tmjdujUKCwvrsUeNT8p/FzMzM7F582Y8/fTTeOqpp/DRRx/B3t4e69ev18u+NaaGOI614eXlhfLychQXF9drO4ZAqmP40N27dxEZGQknJyds3boV1tbWdd4GgxTVio2NDYKDg5GTk6OuqVQq5OTkICwsTOtnwsLCROMBYNeuXerx/v7+8PLyEo1RKBQ4cOCAaJtXrlxBr1691GcALCyM819bqY7hihUrcOzYMRw9ehRHjx5V3ya8ZcsWzJs3T6/72BikOo7BwcGwtbXF2bNn1WMqKipQUFCAVq1a6W3/GoNUx/D+/fsAoPHfsIWFhfqMnzFpiONYG8HBwbC2thZt5+zZsygsLKzTdgyBVMcQePDv5wsvvAAbGxts374ddnZ2dd8BgMsfUO1t3rxZsLW1FdatWyecOnVKGDFihODq6irI5XJBEAThrbfeEqZOnaoev2/fPsHKykpYvHixcPr0aSE5OVnr7dKurq7Ctm3bhOPHjwv9+vUT3S59+fJloW3btsLzzz8vXL58Wbh27Zr6yxhJcQz/qS53sRgqqY7j+PHjhRYtWgjZ2dnCmTNnhLi4OMHDw0O4fft24+28nkhxDG/cuCG4ubkJ/fv3F44ePSqcPXtWmDRpkmBtbS0cPXq0cQ+AnjTEcbx165aQl5cn7NixQwAgbN68WcjLyxP93Bs1apTQsmVL4ccffxQOHTokhIWFCWFhYY2343okxTEsKSkRQkNDhU6dOgkXLlwQ/W6prKysU/8MUlQnK1euFFq2bCnY2NgIXbt2Ff773/+q3+vZs6cQGxsrGv/1118Ljz/+uGBjYyM88cQTwo4dO0Tvq1QqYcaMGYKnp6dga2srPP/888LZs2fV769du1YAoPXLWDX2MfwnUwhSgiDNcSwvLxcmTpwoeHh4CE5OTkJ4eLhw4sSJBtvHhibFMfztt9+EF154QWjWrJng5OQkdOvWTdi5c2eD7WNj0PdxrO7nXnJysnrMX3/9JYwePVpo2rSp4ODgILzyyitG+z+YgtD4x3DPnj3V/m7Jz8+vU+8yQRAE3c5lEREREZk347zYhIiIiMgAMEgRERER6YhBioiIiEhHDFJEREREOmKQIiIiItIRgxQRERGRjhikiIiIiHTEIEVERESkIwYpIjJJcrkcY8eORevWrWFrawtfX1/07dsXOTk5uH37NsaOHYt27drB3t4eLVu2xLhx41BSUqL+fEFBAWQyGY4ePaqx7V69emHChAmi2unTp/Hyyy/DxcUFjo6O6NKli9E9zJiI6s5K6gaIiPStoKAATz/9NFxdXbFo0SJ06tQJFRUVyM7OxpgxY/DNN9/g6tWrWLx4MTp06IA///wTo0aNwtWrV/HNN9/U+ftdvHgRPXr0QFxcHGbNmgVnZ2ecPHlS94egEpHR4CNiiMjkvPjiizh+/DjOnj0LR0dH0XvFxcVwdXXV+Ex6ejoGDx4MpVIJKysrFBQUwN/fH3l5eQgKChKN7dWrF4KCgrBs2TIAwMCBA2FtbY0vvviigfaIiAwVp/aIyKTcvn0bWVlZGDNmjEaIAqA1RAFASUkJnJ2dYWVVtxP1KpUKO3bswOOPP46IiAh4eHggNDQUGRkZOnRPRMaGQYqITMqFCxcgCAICAwNr/ZmbN29izpw5GDFihMZ73bt3R5MmTURfv/zyi/r969ev4969e5g/fz4iIyPxww8/4JVXXkH//v3x008/6WWfiMhw8RopIjIpdb1aQaFQoE+fPujQoQNmzpyp8f6WLVvQvn17Ue3NN99U/7NKpQIA9OvXD++99x4AICgoCPv370daWhp69uxZxz0gImPCIEVEJiUgIAAymQxnzpx55Ni7d+8iMjISTk5O2Lp1K6ytrTXG+Pr6om3btqKavb29+p/d3d1hZWWFDh06iMa0b98ev/76q457QUTGglN7RGRSmjVrhoiICKSmpkKpVGq8X1xcDODBmagXXngBNjY22L59u8532NnY2KBLly44e/asqH7u3Dm0atVKp20SkfFgkCIik5Oamoqqqip07doV3377Lc6fP4/Tp09jxYoVCAsLU4copVKJzz77DAqFAnK5HHK5HFVVVXX+fpMnT8aWLVvw6aef4sKFC1i1ahX+85//YPTo0Q2wd0RkSDi1R0Qmp3Xr1jhy5AjmzZuHiRMn4tq1a2jevDmCg4OxevVqHDlyBAcOHAAAjWm7/Px8+Pn51en7vfLKK0hLS0NKSgrGjRuHdu3a4dtvv0WPHj30tUtEZKC4jhQRERGRjji1R0RERKQjBikiIiIiHTFIEREREemIQYqIiIhIRwxSRERERDpikCIiIiLSEYMUERERkY4YpIiIiIh0xCBFREREpCMGKSIiIiIdMUgRERER6YhBioiIiEhH/w/oMe3FIJLPjQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUrxJREFUeJzt3XlcVPX+P/DXgOzKIshmKLii6RVFRcgu5iXR3LAytZuCkWaaS6gliuCOuYsbqbnkTSXT0IuGKVpufF3RcteEcBvEFEZR2eb8/vDn3A4z0IAznGHm9Xw8eNC85zNn3ueY8PLzOeeMTBAEAURERESkYiZ1A0RERESGhgGJiIiIqAwGJCIiIqIyGJCIiIiIymBAIiIiIiqDAYmIiIioDAYkIiIiojIYkIiIiIjKYEAiIiIiKoMBiYiMmkwmw7Rp06RuQyUiIgLe3t5St0FEf4MBiYiq3YYNGyCTyVRf1tbWaNasGT799FPk5OTo9b2PHTuGadOmIS8vT6fb7dKli2if6tatiw4dOmDdunVQKpU6eY85c+YgOTlZJ9sioorVkroBIjJdM2bMgI+PD549e4YjR45g1apV2LNnD86fPw9bW1udvMfTp09Rq9b/ftQdO3YM06dPR0REBBwdHXXyHi+88soriI+PBwDk5ubim2++QWRkJK5evYq5c+e+9PbnzJmDd999F2FhYS+9LSKqGAMSEUmmR48eaN++PQDgo48+grOzMxYtWoSdO3di0KBBVd6uUqlEUVERrK2tYW1trat2/5aDgwM++OAD1eOPP/4YzZs3x/LlyzFz5kxYWFhUWy9E9HK4xEZEBqNr164AgMzMTADAggULEBQUBGdnZ9jY2MDf3x/ff/+92utkMhk+/fRTfPvtt3j11VdhZWWF1NRU1XMvzkGaNm0aJk6cCADw8fFRLYdlZWUhODgYbdq00dhX8+bNERoaWun9sbW1RadOnVBQUIDc3NxyxxUUFGD8+PHw8vKClZUVmjdvjgULFkAQBNE+FhQUYOPGjaq+IyIiKt0TEWmHM0hEZDB+//13AICzszMAYOnSpejTpw/+/e9/o6ioCFu3bkX//v2RkpKCnj17il574MABfPfdd/j000/h4uKi8UTot99+G1evXsWWLVuwePFiuLi4AADq1auHwYMHY9iwYTh//jxatWqles3Jkydx9epVxMTEVGmfbty4AXNz83KX8wRBQJ8+fXDw4EFERkbCz88Pe/fuxcSJE3H79m0sXrwYALBp0yZ89NFH6NixI4YPHw4AaNy4cZV6IiItCERE1Wz9+vUCAGH//v1Cbm6ucPPmTWHr1q2Cs7OzYGNjI9y6dUsQBEF48uSJ6HVFRUVCq1athK5du4rqAAQzMzPhwoULau8FQIiLi1M9nj9/vgBAyMzMFI3Ly8sTrK2thS+++EJUHzNmjGBnZyc8fvy4wn0KDg4WfH19hdzcXCE3N1e4dOmSMGbMGAGA0Lt3b9W48PBwoWHDhqrHycnJAgBh1qxZou29++67gkwmE65fv66q2dnZCeHh4RX2QUS6wSU2IpJMSEgI6tWrBy8vLwwcOBC1a9fGDz/8gPr16wMAbGxsVGMfPnyI/Px8vP766zhz5ozatoKDg9GyZcsq9+Lg4IC+fftiy5YtqqWt0tJSJCUlISwsDHZ2dn+7jcuXL6NevXqoV68eWrRogWXLlqFnz55Yt25dua/Zs2cPzM3NMWbMGFF9/PjxEAQBP/74Y5X3iYiqjktsRCSZFStWoFmzZqhVqxbc3NzQvHlzmJn9799tKSkpmDVrFs6ePYvCwkJVXSaTqW3Lx8fnpfsZMmQIkpKScPjwYfzzn//E/v37kZOTg8GDB2v1em9vb6xZs0Z164KmTZvC1dW1wtf88ccf8PT0RJ06dUT1Fi1aqJ4nourHgEREkunYsaPqKrayDh8+jD59+uCf//wnVq5cCQ8PD1hYWGD9+vXYvHmz2vi/zjZVVWhoKNzc3PCf//wH//znP/Gf//wH7u7uCAkJ0er1dnZ2Wo8lIsPGJTYiMkjbt2+HtbU19u7diw8//BA9evTQSfjQNPv0grm5Od5//318//33ePjwIZKTkzFo0CCYm5u/9PuWp2HDhrhz5w4ePXokql++fFn1/AsV9U5EusWAREQGydzcHDKZDKWlpapaVlbWS99J+sW5ROXdSXvw4MF4+PAhPv74Yzx+/Fh0XyN9eOutt1BaWorly5eL6osXL4ZMJkOPHj1UNTs7O53fAZyINOMSGxEZpJ49e2LRokXo3r073n//fdy7dw8rVqxAkyZN8Ouvv1Z5u/7+/gCAKVOmYODAgbCwsEDv3r1Vwalt27Zo1aoVtm3bhhYtWqBdu3Y62Z/y9O7dG2+88QamTJmCrKwstGnTBj/99BN27tyJcePGiS7l9/f3x/79+7Fo0SJ4enrCx8cHAQEBeu2PyFRxBomIDFLXrl3x9ddfQy6XY9y4cdiyZQu+/PJL9OvX76W226FDB8ycORPnzp1DREQEBg0apHYTxyFDhgCA1idnvwwzMzPs2rUL48aNQ0pKCsaNG4eLFy9i/vz5WLRokWjsokWL4O/vj5iYGAwaNAirVq3Se39EpkomCH+5VSsREWHp0qX47LPPkJWVhQYNGkjdDhFJgAGJiOgvBEFAmzZt4OzsjIMHD0rdDhFJhOcgERHh+eeh7dq1CwcPHsRvv/2GnTt3St0SEUmIM0hERHh+hZyPjw8cHR0xcuRIzJ49W+qWiEhCDEhEREREZfAqNiIiIqIyGJCIiIiIyuBJ2lWkVCpx584d1KlTh7f/JyIiqiEEQcCjR4/g6ekp+nDsshiQqujOnTvw8vKSug0iIiKqgps3b+KVV14p93kGpCqqU6cOgOcH2N7eXuJuiIiISBsKhQJeXl6q3+PlYUCqohfLavb29gxIRERENczfnR7Dk7SJiIiIymBAIiIiIiqDAYmIiIioDJ6DpGelpaUoLi6Wug3SMwsLC5ibm0vdBhER6QgDkp4IggC5XI68vDypW6Fq4ujoCHd3d94Xi4jICDAg6cmLcOTq6gpbW1v+0jRigiDgyZMnuHfvHgDAw8ND4o6IiOhlMSDpQWlpqSocOTs7S90OVQMbGxsAwL179+Dq6srlNiKiGo4naevBi3OObG1tJe6EqtOLP2+ec0ZEVPMxIOkRl9VMC/+8iYiMBwMSERERURkMSERERERlMCCRSEREBGQyGWQyGSwsLODm5oY333wT69atg1Kp1Ho7GzZsgKOjo/4aJSIi0iMGJFLTvXt33L17F1lZWfjxxx/xxhtvYOzYsejVqxdKSkqkbo+IiIycIAiSX/DCgERqrKys4O7ujvr166Ndu3aYPHkydu7ciR9//BEbNmwAACxatAitW7eGnZ0dvLy8MHLkSDx+/BgA8PPPP2Po0KHIz89XzUZNmzYNALBp0ya0b98ederUgbu7O95//33V/YOIiIiuXbuGGTNmYM6cOfj+e4VkfTAgVQNBEFBUVCTJlyAIOtmHrl27ok2bNtixYwcAwMzMDAkJCbhw4QI2btyIAwcO4PPPPwcABAUFYcmSJbC3t8fdu3dx9+5dTJgwAcDzS+BnzpyJc+fOITk5GVlZWYiIiNBJj0REVLNt2bIFmzdvVj1etky62zXyRpHVoLi4GPHx8ZK8d3R0NCwtLXWyLV9fX/z6668AgHHjxqnq3t7emDVrFkaMGIGVK1fC0tISDg4OkMlkcHd3F23jww8/VP13o0aNkJCQgA4dOuDx48eoXbu2TvokIqKa5cmTJ5g/f76olp7+EcaPl+5+ggxIpDVBEFT3+tm/fz/i4+Nx+fJlKBQKlJSU4NmzZ3jy5EmFN8g8ffo0pk2bhnPnzuHhw4eqE7+zs7PRsmXLatkPIiIyHJcuXcJ3330nqk2ZMgW1akkbURiQqoGFhQWio6Mle29duXTpEnx8fJCVlYVevXrhk08+wezZs1G3bl0cOXIEkZGRKCoqKjcgFRQUIDQ0FKGhofj2229Rr149ZGdnIzQ0FEVFRTrrk4iIaoaNGzciKytL9fi1115DSEiIdA39BQNSNZDJZDpb5pLKgQMH8Ntvv+Gzzz7D6dOnoVQqsXDhQpiZPT+NrWz6t7S0RGlpqah2+fJl/Pnnn5g7dy68vLwAAKdOnaqeHSAiIoPx+PFjLFy4UFT7+OOP1U7LkBIDEqkpLCyEXC5HaWkpcnJykJqaivj4ePTq1QtDhgzB+fPnUVxcjGXLlqF37944evQoEhMTRdvw9vbG48ePkZaWhjZt2sDW1hYNGjSApaUlli1bhhEjRuD8+fOYOXOmRHtJRERS+O2331QX/ACAubk5oqOjDe5DvnkVG6lJTU2Fh4cHvL290b17dxw8eBAJCQnYuXMnzM3N0aZNGyxatAhffvklWrVqhW+//VbtJPSgoCCMGDECAwYMQL169TBv3jzUq1cPGzZswLZt29CyZUvMnTsXCxYskGgviYioOgmCgDVr1ojCUZcuXRATE2Nw4QgAZIKurgM3MQqFAg4ODsjPz4e9vb3ouWfPniEzMxM+Pj6wtraWqEOqbvxzJyLSTKFQYPHixaLayJEjUa9ePUl6Ke/3919xiY2IiIj0JiMjA7t27VI9trGxwYQJE1TnsBoqBiQiIiLSOUEQsGrVKuTm5qpqb775JoKCgiTsSnsMSERERKRTeXl5WLp0qaj26aefwtnZWaKOKo8BiYiIiHTm5MmT2LNnj+qxg4MDxo4dq7rRcE3BgEREREQvTRAELF26FPn5+apajx490LFjRwm7qjoGJCIiInopDx48wLJly0S1sWPHwtHRUZqGdIABiYiIiKrs2LFj2Ldvn+pxvXr18Mknn9S4JbWyGJCIiIio0pRKJRYsWICnT5+qan369EHbtm0l7Ep3GJCIiIioUnJzc7Fy5UpR7bPPPqvwxos1jWHfpYmMVkREBMLCwlSPu3TpgnHjxr3UNnWxDSIiqtihQ4dE4ah+/fqIjY01qnAEcAaJyoiIiMDGjRsBABYWFmjQoAGGDBmCyZMno1Yt/f3vsmPHDlhYWGg19ueff8Ybb7yBhw8fik4ArMw2iIiockpLSxEfH4/S0lJV7e2330br1q0l7Ep/GJBITffu3bF+/XoUFhZiz549GDVqFCwsLBAdHS0aV1RUBEtLS528Z926dQ1iG0REpE4ul+Orr74S1caPH4/atWtL1JH+cYmN1FhZWcHd3R0NGzbEJ598gpCQEOzatUu1LDZ79mx4enqiefPmAICbN2/ivffeg6OjI+rWrYu+ffsiKytLtb3S0lJERUXB0dERzs7O+Pzzz1H2M5LLLo8VFhbiiy++gJeXF6ysrNCkSRN8/fXXyMrKwhtvvAEAcHJygkwmQ0REhMZtPHz4EEOGDIGTkxNsbW3Ro0cPXLt2TfX8hg0b4OjoiL1796JFixaoXbs2unfvjrt376rG/Pzzz+jYsSPs7Ozg6OiI1157DX/88YeOjjQRkeFLS0sThSNvb2/ExcUZdTgCGJBICzY2NigqKgLw/C/KlStXsG/fPqSkpKC4uBihoaGoU6cODh8+jKNHj6qCxovXLFy4EBs2bMC6detw5MgRPHjwAD/88EOF7zlkyBBs2bIFCQkJuHTpEr766ivUrl0bXl5e2L59OwDgypUruHv3rtrt7F+IiIjAqVOnsGvXLqSnp0MQBLz11lsoLi5WjXny5AkWLFiATZs24dChQ8jOzsaECRMAACUlJQgLC0NwcDB+/fVXpKenY/jw4TX+0lUiIm2UlJRg+vTpOHLkiKrWv39/hIeHS9hV9eESG5VLEASkpaVh7969GD16NHJzc2FnZ4e1a9eqltb+85//QKlUYu3atargsH79ejg6OuLnn39Gt27dsGTJEkRHR+Ptt98GACQmJmLv3r3lvu/Vq1fx3XffYd++fQgJCQEANGrUSPX8i6U0V1fXcm9Cdu3aNezatQtHjx5VfTDit99+Cy8vLyQnJ6N///4AgOLiYiQmJqJx48YAnn9W0IwZMwAACoUC+fn56NWrl+r5Fi1aVP5AEhHVMLdv38batWtFtYkTJ8LW1laijqofZ5AM3K5dQFDQ8+/VJSUlBbVr14a1tTV69OiBAQMGYNq0aQCA1q1bi847OnfuHK5fv446deqgdu3aqF27NurWrYtnz57h999/R35+Pu7evYuAgADVa2rVqoX27duX+/5nz56Fubk5goODq7wPly5dQq1atUTv6+zsjObNm+PSpUuqmq2trSr8AICHhwfu3bsH4HkQi4iIQGhoKHr37o2lS5eKlt+IiIxRamqqKBw1a9YMcXFxJhWOAM4gGby5c4H09Off+/Spnvd84403sGrVKlhaWsLT01N09ZqdnZ1o7OPHj+Hv749vv/1WbTv16tWr0vvb2NhU6XVVUfaqN5lMJjo/av369RgzZgxSU1ORlJSEmJgY7Nu3D506daq2HomIqkNxcTHmzJkjqg0aNAjNmjWTqCNpcQbJwE2aBAQGPv9eXezs7NCkSRM0aNDgby/tb9euHa5duwZXV1c0adJE9OXg4AAHBwd4eHjg+PHjqteUlJTg9OnT5W6zdevWUCqV+OWXXzQ+/2IG66+XmpbVokULlJSUiN73zz//xJUrV9CyZcsK96mstm3bIjo6GseOHUOrVq2wefPmSr2eiMjQZWdnq4WjL774wmTDEcCAZPD69AGOHau+2aPK+ve//w0XFxf07dsXhw8fRmZmJn7++WeMGTMGt27dAvD8Awvnzp2L5ORkXL58GSNHjkReXl652/T29kZ4eDg+/PBDJCcnq7b53XffAQAaNmwImUyGlJQU5Obm4vHjx2rbaNq0Kfr27Ythw4bhyJEjOHfuHD744APUr18fffv21WrfMjMzER0djfT0dPzxxx/46aefcO3aNZ6HRERGZdeuXVi/fr3qcatWrRAXFwdra2sJu5IeAxK9FFtbWxw6dAgNGjTA22+/jRYtWiAyMhLPnj1T3VV1/PjxGDx4MMLDwxEYGIg6deqgX79+FW531apVePfddzFy5Ej4+vpi2LBhKCgoAPD8rq3Tp0/HpEmT4Obmhk8//VTjNtavXw9/f3/06tULgYGBEAQBe/bs0fpmkra2trh8+TLeeecdNGvWDMOHD8eoUaPw8ccfV+IIEREZpqKiIkyfPh0ZGRmq2uDBg/HOO+9I2JXhkAllb0hDWlEoFHBwcEB+fr7a7dWfPXuGzMxM+Pj4mHwCNyX8cyeimiIzMxPffPONqBYdHa2zm/8asop+f/8VT9ImIiIyIdu3b8f58+dVj9u2bYs+hnoeh4QYkIiIiEzAs2fP8OWXX4pqERERaNiwoUQdGTYGJCIiIiN37do1tStwJ0+ezA/4roDkJ2mvWLEC3t7esLa2RkBAAE6cOFHh+G3btsHX1xfW1tZo3bo19uzZI3p+x44d6NatG5ydnSGTyXD27Fm1bTx79gyjRo2Cs7MzateujXfeeQc5OTm63C0iIiKDsHXrVlE46tixI+Li4hiO/oakASkpKQlRUVGIi4vDmTNn0KZNG4SGhqruZFzWsWPHMGjQIERGRiIjIwNhYWEICwsTraUWFBSgc+fOatOIf/XZZ5/hv//9L7Zt24ZffvkFd+7cUX0Mhi7x/HfTwj9vIjIkT58+xfTp03HlyhVV7aOPPkKPHj0k7KrmkPQqtoCAAHTo0AHLly8HACiVSnh5eWH06NGYpOHOiAMGDEBBQQFSUlJUtU6dOsHPzw+JiYmisVlZWfDx8UFGRgb8/PxU9fz8fNSrVw+bN2/Gu+++CwC4fPkyWrRogfT0dK3vkFzRWfClpaW4evUqXF1d4ezsrNX2qOb7888/ce/ePTRr1gzm5uZSt0NEJuzy5ctISkoS1aZMmfK3N/81BQZ/FVtRURFOnz6N6OhoVc3MzAwhISFIT0/X+Jr09HRERUWJaqGhoUhOTtb6fU+fPo3i4mLVh6ACgK+vLxo0aFBhQCosLERhYaHqsUKhKPc9zM3N4ejoqJoJs7W15SfAGzFBEPDkyRPcu3cPjo6ODEdEJKlNmzbhxo0bqsdBQUF48803JeyoZpIsIN2/fx+lpaVwc3MT1d3c3HD58mWNr5HL5RrHy+Vyrd9XLpfD0tJS7VPg/2478fHxmD59utbv4+7uDgDlLheS8XF0dFT9uRMRVbeCggIsWLBAVBs+fDg8PDwk6qhm41yblqKjo0WzVwqFAl5eXuWOl8lk8PDwgKurK4qLi6ujRZKQhYUFZ46ISDLnz5/H9u3bVY/NzMwwefJk/lx6CZIFJBcXF5ibm6tdPZaTk1Puv8Ld3d0rNb68bRQVFSEvL080i/R327GysoKVlZXW7/OCubk5/wclIiK9EAQB69atU332JQAEBwejS5cu0jVlJCS7is3S0hL+/v5IS0tT1ZRKJdLS0hAYGKjxNYGBgaLxALBv375yx2vi7+8PCwsL0XauXLmC7OzsSm2HiIhISo8ePcKMGTNE4eiTTz5hONIRSZfYoqKiEB4ejvbt26Njx45YsmQJCgoKMHToUADAkCFDUL9+fcTHxwN4/qnwwcHBWLhwIXr27ImtW7fi1KlTWL16tWqbDx48QHZ2Nu7cuQMAqssb3d3d4e7uDgcHB0RGRiIqKgp169aFvb09Ro8ejcDAQK2vYCMiIpLS2bNnsXPnTtVja2trTJw4EWZmkt/e0GhIGpAGDBiA3NxcxMbGQi6Xw8/PD6mpqaoTsbOzs0V/2EFBQdi8eTNiYmIwefJkNG3aFMnJyWjVqpVqzK5du1QBCwAGDhwIAIiLi8O0adMAAIsXL4aZmRneeecdFBYWIjQ0FCtXrqyGPSYiIqo6QRCQmJgougAoJCQEr732moRdGSdJ74NUk2l7HwUiIiJdyM/Px5IlS0S1Tz/9lPfbqySDvw8SERERaefkyZOij9ayt7fHuHHjeI89PWJAIiIiMlCCICAhIQF5eXmqWo8ePdCxY0fpmjIRDEhEREQG6MGDB1i2bJmoNnbsWLUbHZN+MCAREREZmPT0dPz000+qxy4uLhg5ciSX1KoRAxIREZGBUCqVWLhwIZ48eaKq9e7dG+3atZOwK9PEgERERGQAcnNz1W4589lnn/FKaYkwIBEREUns0KFDOHjwoOqxp6cnPvroIy6pSYgBiYiISCKlpaWYO3cuSkpKVLV+/frhH//4h4RdEcCAREREJImcnBwkJiaKauPHj0ft2rUl6oj+igGJiIiomqWlpeHIkSOqx97e3ggPD5ewIyqLAYmIiKiaFBUVqT6A/YX+/fujZcuWEnVE5WFAIiIiqganTp3C7t27RbWJEyfC1tZWoo6oIgxIREREejZ9+nS1Wtu2cWA2MlwMSERERHry9OlTzJs3T1Rr3749evbsKVFHpC0GJCIiIj04duwY9u3bJ6rxs9RqDgYkIiIiHdO0pBYXFydBJ1RVDEhEREQ6UlBQgAULFohqr732GkJCQiTqiKqKAYmIiEgHDh48iEOHDolqUVFRqFOnjkQd0ctgQCIiInpJXFIzPgxIREREVaRQKLB48WJRrWvXrnj99dcl6oh0hQGJiIioClJTU3H8+HFRjTd+NB4MSERERJXEJTXjx4BERESkpYcPHyIhIUFU6969OwICAiTqiPSFAYmIiEgLO3fuxNmzZ0W1L774AtbW1tI0RHrFgERERPQ3uKRmehiQiIiIyvHHH39gw4YNolqfPn3Qtm1baRqiasOAREREpIGmWaPJkyfDwsJCgm6oujEgERER/YUgCJgxY4ZavW3bODAbmQ4GJCIiov/v2rVr2Lx5s6gWHByMLl26SNMQSYYBiYiICFxSIzEGJCIiMmnlLanxKjXTxoBEREQm6/z589i+fbuoFhoaik6dOknUERkKBiQiIjJJmpbUYmJiYG5uLkE3ZGgYkIiIyKQolUrMnDlTrc4lNforBiQiIjIZp0+fRkpKiqjGGz+SJgxIRERkEjQtqU2dOhVmZmYSdEOGjgGJiIiMWklJCWbPnq1W55IaVYQBiYiIjNbRo0exf/9+Ua1///5o2bKlRB1RTcGARERERknTklpsbCxkMpkE3VBNw4BERERGpaioCPHx8Wp1LqlRZTAgERGR0UhLS8ORI0dEtQ8++ACNGzeWqCOqqRiQiIjIKHBJjXSJAYmIiGq0J0+eYP78+aKamZkZpk6dKlFHZAwYkIiIqMbaunUrrly5Iqo1bjwYH3zQSKKOyFgwIBERUY2kaUmNJ2KTrjAgERFRjaJQKLB48WK1OsMR6RIDEhER1Rhff/01bt26JapFRkbilVdekagjMlYMSEREVCNwSY2qEwMSEREZtAcPHmDZsmWimqWlJaKjoyXqiEwBAxIRERmshIQEPHz4UFQbMWIE3NzcJOqITAUDEhERGSQuqZGUGJCIiMig5OTkIDExUVRzdnbGp59+KlFHZIoYkIiIyGDMmTMHxcXFotro0aNRt25diToiU2UmdQMrVqyAt7c3rK2tERAQgBMnTlQ4ftu2bfD19YW1tTVat26NPXv2iJ4XBAGxsbHw8PCAjY0NQkJCcO3aNdGYq1evom/fvnBxcYG9vT06d+6MgwcP6nzfiIhIe9OnT1cLR3FxcQxHJAlJA1JSUhKioqIQFxeHM2fOoE2bNggNDcW9e/c0jj927BgGDRqEyMhIZGRkICwsDGFhYTh//rxqzLx585CQkIDExEQcP34cdnZ2CA0NxbNnz1RjevXqhZKSEhw4cACnT59GmzZt0KtXL8jlcr3vMxERid28eVPtfKMGDRrwfCOSlEwQBEGqNw8ICECHDh2wfPlyAIBSqYSXlxdGjx6NSZMmqY0fMGAACgoKkJKSoqp16tQJfn5+SExMhCAI8PT0xPjx4zFhwgQAQH5+Ptzc3LBhwwYMHDgQ9+/fR7169XDo0CG8/vrrAIBHjx7B3t4e+/btQ0hIiFa9KxQKODg4ID8/H/b29i97KIiITJKmE7GjoqJQp04dCbohU6Dt72/JZpCKiopw+vRpUSAxMzNDSEgI0tPTNb4mPT1dLcCEhoaqxmdmZkIul4vGODg4ICAgQDXG2dkZzZs3xzfffIOCggKUlJTgq6++gqurK/z9/cvtt7CwEAqFQvRFRERVV95VagxHZAgkO0n7/v37KC0tVbuXhZubGy5fvqzxNXK5XOP4F0tjL75XNEYmk2H//v0ICwtDnTp1YGZmBldXV6SmpsLJyancfuPj4zX+ZSYiosq5fv06vv32W1GtRYsWeO+99yTqiEidyV3FJggCRo0aBVdXVxw+fBg2NjZYu3YtevfujZMnT8LDw0Pj66KjoxEVFaV6rFAo4OXlVV1tExEZBU3/0Jw4cSJsbW0l6IaofJItsbm4uMDc3Bw5OTmiek5ODtzd3TW+xt3dvcLxL75XNObAgQNISUnB1q1b8dprr6Fdu3ZYuXIlbGxssHHjxnL7tbKygr29veiLiIi0IwhCuUtqDEdkiCQLSJaWlvD390daWpqqplQqkZaWhsDAQI2vCQwMFI0HgH379qnG+/j4wN3dXTRGoVDg+PHjqjFPnjwB8Px8p78yMzODUql8+R0jIiKREydOYMaMGaKav78/r1IjgybpEltUVBTCw8PRvn17dOzYEUuWLEFBQQGGDh0KABgyZAjq16+P+Ph4AMDYsWMRHByMhQsXomfPnti6dStOnTqF1atXA3h+ftG4ceMwa9YsNG3aFD4+Ppg6dSo8PT0RFhYG4HnIcnJyQnh4OGJjY2FjY4M1a9YgMzMTPXv2lOQ4EBEZK02zRtHR0bC0tJSgGyLtSRqQBgwYgNzcXMTGxkIul8PPzw+pqamqk6yzs7NFMz1BQUHYvHkzYmJiMHnyZDRt2hTJyclo1aqVasznn3+OgoICDB8+HHl5eejcuTNSU1NhbW0N4PnSXmpqKqZMmYKuXbuiuLgYr776Knbu3Ik2bdpU7wEgIjJSgiCozRoBwN69ceDEEdUEkt4HqSbjfZCIiDT7+eef8csvv4hqjo4tkZTUH5MmAX36SNQYEbT//W1yV7EREZH+aFpSmzx5MiwsLDB2rAQNEVURAxIREb200tJSzJo1S63OE7GppmJAIiKil7Jnzx6cPHlSVOvQoQPeeustiToienkMSEREVGWaltRiYmJgbm4uQTdEusOARERElVZcXIw5c+ao1bmkRsaCAYmIiCpl27ZtuHjxoqgWHByMLl26SNMQkR4wIBERkdY0LanFxsZCJpNJ0A2R/jAgERHR33r27Bm+/PJLtTqX1MhYMSAREVGF1q9fj+zsbFGte/fuCAgIkKgjIv1jQCIionJxSY1MFQMSERGpyc/Px5IlS9TqXFIjU8GAREREIppmjX79tR+2b/+HBN0QScNM6gaIiMhwaApHe/fGITyc4YhMC2eQiIgI9+/fx4oVK9TqcXFx4KoamSIGJCIiE6dp1qhfv374xz84a0Smq9JLbObm5rh3755a/c8//+Rn7xAR1TCawlFcXBzDEZm8Ss8gCYKgsV5YWAhLS8uXboiIiPTv9u3bWLt2rVqdV6kRPad1QEpISAAAyGQyrF27FrVr11Y9V1paikOHDsHX11f3HRIRkU5pmjV6//330bRpUwm6ITJMWgekxYsXA3g+g5SYmChaTrO0tIS3tzcSExN13yEREelMeUtqRCSmdUDKzMwEALzxxhvYsWMHnJyc9NYUERHp1u+//47//Oc/anWGIyLNKn0O0sGDB/XRBxER6YmmWaPIyEi88sorEnRDVDNUOiB9+OGHFT6/bt26KjdDRES6xSU1oqqpdEB6+PCh6HFxcTHOnz+PvLw8dO3aVWeNERFR1Z0/fx7bt29XqzMcEWmn0gHphx9+UKsplUp88sknaNy4sU6aIiKiqtM0azRy5EjUq1dPgm6IaiaZUN6NjSrpypUr6NKlC+7evauLzRk8hUIBBwcH5Ofnw97eXup2iIgAcEmN6O9o+/tbZx818vvvv6OkpERXmyMioko4ceIEfvzxR7U6wxFR1VQ6IEVFRYkeC4KAu3fvYvfu3QgPD9dZY0REpB1Ns0bjxo2Dg4ODBN0QGYdKB6SMjAzRYzMzM9SrVw8LFy782yvciIhIdwRBwIwZM9TqnDUienm8DxIRUQ108OBBHDp0SFSzsLDA5MmTJeqIyLhU+Ryke/fu4cqVKwCA5s2bw9XVVWdNERFR+TQtqU2cOBG2trYSdENknMwq+wKFQoHBgwfD09MTwcHBCA4ORv369fHBBx8gPz9fHz0SERGeL6mVd5UawxGRblU6IA0bNgzHjx/H7t27kZeXh7y8PKSkpODUqVP4+OOP9dEjEZHJS0lJUTvfyNnZmecbEelJpe+DZGdnh71796Jz586i+uHDh9G9e3cUFBTotEFDxfsgEVF10TRrNGnSJFhZWUnQDVHNprf7IDk7O2u8dNTBwQFOTk6V3RwREZWjtLQUs2bNUqtz1ohI/yodkGJiYhAVFYVNmzbB3d0dACCXyzFx4kRMnTpV5w0SEZmiLVu24OrVq6Kaj48PhgwZIlFHRKal0ktsbdu2xfXr11FYWIgGDRoAALKzs2FlZYWmTZuKxp45c0Z3nRoYLrERkb5oWlKbMmUKatXS2YcfEJksvS2x9e3bFzKZ7KWaIyIidcXFxZgzZ45anUtqRNVPZx9Wa2o4g0REurR69Wq1D/v+xz/+gX79+knUEZFx0tsMUqNGjXDy5Ek4OzuL6nl5eWjXrh1u3LhR+W6JiEyYpiW1qVOnwsys0ndiISIdqXRAysrKQmlpqVq9sLAQt27d0klTRESm4OnTp5g3b55anUtqRNLTOiDt2rVL9d979+4VXepfWlqKtLQ0+Pj46LY7IiIjNX/+fDx58kRUCwoKwptvvilRR0T0V1oHpLCwMACATCZDeHi46DkLCwt4e3tj4cKFOm2OiMgYaVpSi42N5QUwRAZE64CkVCoBPL8Px8mTJ+Hi4qK3poiIjJFCocDixYvV6lxSIzI8lT4HKTMzUx99EBEZNU2zRt26dUNgYKAE3RDR36l0QCr7YYllxcbGVrkZIiJjpCkccdaIyLBVOiD98MMPosfFxcXIzMxErVq10LhxYwYkIqL/788//8Ty5cvV6gxHRIav0gEpIyNDraZQKBAREcEbmhER/X+aZo3CwsLQpk0bCbohosrS2Z20f/vtN/Tu3RtZWVm62JzB4520iag8XFIjMlx6u5N2efLz85Gfn6+rzRER1Th37tzBmjVr1OoMR0Q1T6UDUkJCguixIAi4e/cuNm3ahB49euisMSKimkTTrNGgQYPQrFkzCbohopdV6YBU9h4eZmZmqFevHsLDwxEdHa2zxoiIagouqREZH94HiYioim7cuIFNmzap1RmOiGq+Kp2DlJeXh+vXrwMAmjRpAkdHR132RERk8DTNGg0dOhQNGjSQoBsi0jWzygzOyspCz5494eLigoCAAAQEBMDFxQW9evWq8tVrK1asgLe3N6ytrREQEIATJ05UOH7btm3w9fWFtbU1WrdujT179oieFwQBsbGx8PDwgI2NDUJCQnDt2jW17ezevRsBAQGwsbGBk5OT6rPmiIj+TnlLagxHRMZD64B08+ZNdOrUCb/++itmzpyJ7du3Y/v27ZgxYwbOnTuHwMBA3Lp1q1JvnpSUhKioKMTFxeHMmTNo06YNQkNDce/ePY3jjx07hkGDBiEyMhIZGRkICwtDWFgYzp8/rxozb948JCQkIDExEcePH4ednR1CQ0Px7Nkz1Zjt27dj8ODBGDp0KM6dO4ejR4/i/fffr1TvRGR6Ll68yPONiEyE1vdBioyMxPXr17F3715YW1uLnnv69Cm6d++Opk2bYu3atVq/eUBAADp06KC606xSqYSXlxdGjx6NSZMmqY0fMGAACgoKkJKSoqp16tQJfn5+SExMhCAI8PT0xPjx4zFhwgQAz28/4Obmhg0bNmDgwIEoKSmBt7c3pk+fjsjISK17LYv3QSIyLZqC0YgRI+Dm5iZBN0RUVdr+/tZ6Bik1NRWzZ89WC0cAYGNjg5kzZ6otd1WkqKgIp0+fRkhIyP+aMTNDSEgI0tPTNb4mPT1dNB4AQkNDVeMzMzMhl8tFYxwcHBAQEKAac+bMGdy+fRtmZmZo27YtPDw80KNHD9EslCaFhYVQKBSiLyIyDeXNGjEcERkvrQPS/fv34e3tXe7zjRo1woMHD7R+4/v376O0tFTtB4ybmxvkcrnG18jl8grHv/he0ZgbN24AAKZNm4aYmBikpKTAyckJXbp0qbD/+Ph4ODg4qL68vLy03lciqplOnTrFJTUiE6V1QPLw8MDFixfLff78+fNwd3fXSVP6pFQqAQBTpkzBO++8A39/f6xfvx4ymQzbtm0r93XR0dGqu4Xn5+fj5s2b1dUyEUlg+vTp2L17t6g2ZswYhiMiE6F1QAoLC8OECROQm5ur9ty9e/fwxRdfVOpKMBcXF5ibmyMnJ0dUz8nJKTdoubu7Vzj+xfeKxnh4eAAAWrZsqXreysoKjRo1QnZ2drn9WllZwd7eXvRFRMapvFkjJycnCbohIiloHZDi4uLw7NkzNG7cGCNHjkRCQgKWLl2KESNGoEmTJnj69CliY2O1fmNLS0v4+/sjLS1NVVMqlUhLS0NgYKDG1wQGBorGA8C+fftU4318fODu7i4ao1AocPz4cdUYf39/WFlZ4cqVK6oxxcXFyMrKQsOGDbXun4iMzy+//KIWjszMzDhrRGSCtL5RpJOTE44fP47Jkydj69atyMvLAwA4Ojri/fffx5w5c1C3bt1KvXlUVBTCw8PRvn17dOzYEUuWLEFBQQGGDh0KABgyZAjq16+P+Ph4AMDYsWMRHByMhQsXomfPnti6dStOnTqF1atXAwBkMhnGjRuHWbNmoWnTpvDx8cHUqVPh6empmt2yt7fHiBEjEBcXBy8vLzRs2BDz588HAPTv379S/ROR8dA0azRhwgTY2dlJ0A0RSa1Sd9J2cnLCqlWrsHLlStVSW7169SCTyar05gMGDEBubi5iY2Mhl8vh5+eH1NRU1UnW2dnZMDP73yRXUFAQNm/ejJiYGEyePBlNmzZFcnIyWrVqpRrz+eefo6CgAMOHD0deXh46d+6M1NRU0dV38+fPR61atTB48GA8ffoUAQEBOHDgAKfPiUyQIAiYMWOGWp2zRkSmTev7IJEY74NEVPPt2bMHJ0+eFNWePHHCl1+OkagjItI3bX9/V+mz2IiIajpNS2r790/CxIlWEnRDRIaGAYmITIpSqcTMmTPV6nFxceCqGhG9wIBERCbju+++w6VLl0Q1b29vhIeHS9QRERkqBiQiMgmaltSmTJmCWrX4Y5CI1Gn1kyEhIUHrDY4Zw5MbichwFBcXY86cOWp1XqVGRBXR6io2Hx8f7TYmk6k+68zY8So2IsO3du1a3L59W1Rr3bo13n77bYk6IiKp6fQqtszMTJ01RkRUHTQtqU2dOlV0bzUiovJU+SdFUVERrly5gpKSEl32Q0T0Up4+fVruZ6kxHBGRtip9duKTJ08wevRobNy4EQBw9epVNGrUCKNHj0b9+vUxadIknTdJRKSNRYsW4dGjR6JaYGAgunXrJlFHRFRTVfqfU9HR0Th37hx+/vln0cd3hISEICkpSafNERFpa/r06WrhKDY2luGIiKqk0jNIycnJSEpKQqdOnUSfwfbqq6/i999/12lzRER/59GjR1i0aJFanVepEdHLqHRAys3Nhaurq1q9oKCgyh9aS0RUFZrONQoJCcFrr70mQTdEZEwqvcTWvn177N69W/X4RShau3YtAgMDddcZEVEFyjsRm+GIiHSh0jNIc+bMQY8ePXDx4kWUlJRg6dKluHjxIo4dO4ZffvlFHz0SEak8ePAAy5YtU6tzSY2IdKnSAalz5844e/Ys5s6di9atW+Onn35Cu3btkJ6ejtatW+ujRyIiAJpnjfr06YO2bdtK0A0RGTOt7qRN6ngnbaLqVd6SGhFRZej0TtoKhULrN2ZYICJdunv3LlavXq1WZzgiIn3SKiA5OjpqfYVaaWnpSzVERPSCplmjAQMGwNfXV4JuiMiUaBWQDh48qPrvrKwsTJo0CREREaqr1tLT07Fx40bEx8frp0siMjlcUiMiKVX6HKR//etf+OijjzBo0CBRffPmzVi9ejV+/vlnXfZnsHgOEpF+ZGVlqT7K6K8YjohIF7T9/V3pgGRra4tz586hadOmovrVq1fh5+eHJ0+eVK3jGoYBiUj3NM0aRUREoGHDhhJ0Q0TGSNvf35W+UaSXlxfWrFmjVl+7di28vLwquzkiIgDlL6kxHBGRFCp9H6TFixfjnXfewY8//oiAgAAAwIkTJ3Dt2jVs375d5w0SkXG7dOkSvvvuO7U6l9SISEpVug/SrVu3sHLlSly+fBkA0KJFC4wYMcKkZpC4xEb08jTNGn388cdwd3eXoBsiMgV6OweJnmNAIno5vEqNiKSg0xtFlpWXl4evv/4aly5dAgC8+uqr+PDDD+Hg4FC1bonIZJw5cwb//e9/1eoMR0RkSCo9g3Tq1CmEhobCxsYGHTt2BACcPHkST58+VX0umyngDBJR5WmaNRozZgycnJwk6IaITJHelthef/11NGnSBGvWrEGtWs8noEpKSvDRRx/hxo0bOHTo0Mt1XkMwIBFVDpfUiMgQ6C0g2djYICMjQ+1W/xcvXkT79u15HyQiEjly5AjS0tLU6gxHRCQFvZ2DZG9vj+zsbLWAdPPmTdSpU6fynRKR0dI0azR+/HjUrl1bgm6IiLRX6RtFDhgwAJGRkUhKSsLNmzdx8+ZNbN26VePHjxCRaRIEodwlNYYjIqoJKj2DtGDBAshkMgwZMgQlJSUAAAsLC3zyySeYO3euzhskopolNTUVx48fF9UcHBwwbtw4aRoiIqqCKt8H6cmTJ/j9998BAI0bN4atra1OGzN0PAeJSJ2mWaMvvvgC1tbWEnRDRKROr/dBAp5/aG3r1q2r+nIiMiJKpRIzZ85Uq/NEbCKqqbQOSB9++KFW49atW1flZoio5vn+++9x4cIFUa1BgwYYOnSoRB0REb08rQPShg0b0LBhQ7Rt2xb8dBIiAjQvqU2ePBkWFhYSdENEpDtaB6RPPvkEW7ZsQWZmJoYOHYoPPvgAdevW1WdvRGSgiouLMWfOHLU6l9SIyFhU6iTtwsJC7NixA+vWrcOxY8fQs2dPREZGolu3bpDJZPrs0+DwJG0yVevXr0d2drao9uqrr+Ldd9+VqCMiIu3p7U7aL/zxxx/YsGEDvvnmG5SUlODChQsmdX8TBiQyRZqW1KZOnQozs0rfUo2ISBJ6v4rNzMwMMpkMgiCgtLS0qpshohrg2bNn+PLLL9XqXFIjImNVqYD01yW2I0eOoFevXli+fDm6d+/Of0ESGaklS5YgPz9fVAsICED37t0l6oiISP+0DkgjR47E1q1b4eXlhQ8//BBbtmyBi4uLPnsjIolpWlKLjY01uXMOicj0aH0OkpmZGRo0aIC2bdtW+MNxx44dOmvOkPEcJDJmjx8/xsKFC9XqXFIjoppO5+cgDRkyhP9qJDIBmmaNunbtitdff12CboiIpFGpG0USkXHTFI44a0REpqjKV7ERkfF48OABli1bplZnOCIiU8WARGTiNM0a9e7dG+3atZOgGyIiw8CARGTCuKRGRKQZAxKRCZLL5fjqq6/U6gxHRETPMSARmRhNs0bvvfceWrRoIUE3RESGiQGJyIRwSY2ISDsMSEQm4MWHS5fFcEREpBkDEpGR0zRrFB4eDm9v7+pvhoiohjCIT5hdsWIFvL29YW1tjYCAAJw4caLC8du2bYOvry+sra3RunVr7NmzR/S8IAiIjY2Fh4cHbGxsEBISgmvXrmncVmFhIfz8/CCTyXD27Fld7RKRQShvSY3hiIioYpIHpKSkJERFRSEuLg5nzpxBmzZtEBoainv37mkcf+zYMQwaNAiRkZHIyMhAWFgYwsLCcP78edWYefPmISEhAYmJiTh+/Djs7OwQGhqKZ8+eqW3v888/h6enp972j0gKly9f5vlGREQvQesPq9WXgIAAdOjQAcuXLwcAKJVKeHl5YfTo0Zg0aZLa+AEDBqCgoAApKSmqWqdOneDn54fExEQIggBPT0+MHz8eEyZMAADk5+fDzc0NGzZswMCBA1Wv+/HHHxEVFYXt27fj1VdfRUZGBvz8/LTqmx9WS4ZKUzAaPnw4PDw8JOiGiMiwaPv7W9IZpKKiIpw+fRohISGqmpmZGUJCQpCenq7xNenp6aLxABAaGqoan5mZCblcLhrj4OCAgIAA0TZzcnIwbNgwbNq0Cba2tn/ba2FhIRQKheiLyNCUN2vEcEREVDmSBqT79++jtLQUbm5uorqbmxvkcrnG18jl8grHv/he0RhBEBAREYERI0agffv2WvUaHx8PBwcH1ZeXl5dWryOqDhkZGVxSIyLSIZO8im3ZsmV49OgRoqOjtX5NdHQ0oqKiVI8VCgVDEhkETcFo9OjRqFu3rgTdEBEZB0lnkFxcXGBubo6cnBxRPScnB+7u7hpf4+7uXuH4F98rGnPgwAGkp6fDysoKtWrVQpMmTQAA7du3R3h4uMb3tbKygr29veiLSGrlzRoxHBERvRxJA5KlpSX8/f2RlpamqimVSqSlpSEwMFDjawIDA0XjAWDfvn2q8T4+PnB3dxeNUSgUOH78uGpMQkICzp07h7Nnz+Ls2bOq2wQkJSVh9uzZOt1HIn04e/Ysl9SIiPRI8iW2qKgohIeHo3379ujYsSOWLFmCgoICDB06FAAwZMgQ1K9fH/Hx8QCAsWPHIjg4GAsXLkTPnj2xdetWnDp1CqtXrwYAyGQyjBs3DrNmzULTpk3h4+ODqVOnwtPTE2FhYQCABg0aiHqoXbs2AKBx48Z45ZVXqmnPiapGUzA6cGACxo+3k6AbIiLjJHlAGjBgAHJzcxEbGwu5XA4/Pz+kpqaqTrLOzs6Gmdn/JrqCgoKwefNmxMTEYPLkyWjatCmSk5PRqlUr1ZjPP/8cBQUFGD58OPLy8tC5c2ekpqbC2tq62vePSFcEQcCMGTPU6nFxceDEERGRbkl+H6SaivdBoup07Ngx7Nu3T1Rr1KgRBg8eLFFHREQ1k7a/vyWfQSKiimlaUps0aRKsrKwk6IaIyDQwIBEZKKVSiZkzZ6rVeSI2EZH+MSARGaAdO3bgt99+E9X+8Y9/oF+/fhJ1RERkWhiQiAyMpiW1ffumIC6Of12JiKoLf+ISGYiSkhKN9+HauzcOGj63mYiI9IgBicgAbNy4EVlZWaKar68vBgwYwEv4iYgkwIBEJDFNS2pTp04V3f+LiIiqFwMSkUQKCwsxd+5ctTqvUiMikh4DEpEEEhIS8PDhQ1GtQ4cOeOuttyTqiIiI/ooBiaiaaVpSi42NhUwmk6AbIiLShAGJqJoUFBRgwYIFanUuqRERGR4GJKJqMHPmTCiVSlGtS5cuCA4OlqgjIiKqCAMSkZ5pWlLjrBERkWFjQCLSk7y8PCxdulStznBERGT4GJCI9EDTrFHPnj3Rvn17CbohIqLKYkAi0jEuqRER1XwMSEQ6kpOTg8TERLU6wxERUc3DgESkA5pmjfr374+WLVtK0A0REb0sBiSil8QlNSIi48OARFRF2dnZWL9+vVqd4YiIqOZjQCKqAk2zRoMHD0ajRo0k6IaIiHSNAYmokrikRkRk/BiQiLT022+/YceOHWp1hiMiIuPDgESkBU2zRunpw5Ca6ilBN0REpG9mUjdAZOg0haO9e+MwciTDERGRseIMElE5/u///g979+5Vq8fFxYGrakRExo0BiUgDTbNGI0aMgJubmwTdEBFRdWNAIiqDV6kREREDEtH/t3//fhw9elSt3rYtwxERkalhQCKC5lmjsWPHwtHRsfqbISIiyTEgkUkTBAEzZsxQq3NJjYjItDEgkclKTk7GuXPn1OoMR0RExIBEJknTktqECRNgZ2cnQTdERGRoeKNIMilKpbLcGz8yHBER0QucQSKToWlJzczMEj/+GI1JkyRqioiIDBIDEpkETbNG+/dPwuHDVpg6VYKGiIjIoDEgkVErKSnB7Nmz1ep798Zx1oiIiMrFgERGa9OmTbhx44ao1rx5cwwcOJCfpUZERBViQCKjpGlJLSYmBubm5hJ0Q0RENQ0DEhmVoqIixMfHq9Xbto0DsxEREWmLAYmMxrp163Dz5k1RLSgoCG+++aZEHRERUU3FgERGQdOSWmxsLGQymQTdEBFRTceARDXakydPMH/+fLU6Py6EiIheBgMS1VhLly5FXl6eqPbmm28iKChImoaIiMhoMCBRjcQlNSIi0icGJKpRFAoFFi9erFbnkhoREekSAxLVGDNmzIAgCKJanz590LZtW4k6IiIiY8WARDWCpiU1zhoREZG+MCCRQfvzzz+xfPlytTrDERER6RMDEhksTbNGAwYMgK+vrwTdEBGRKWFAIoPEJTUiIpISAxIZlNzcXKxcuVKtznBERETViQGJDIamWaMTJ8Kxe7d39TdDREQmzUzqBgBgxYoV8Pb2hrW1NQICAnDixIkKx2/btg2+vr6wtrZG69atsWfPHtHzgiAgNjYWHh4esLGxQUhICK5du6Z6PisrC5GRkfDx8YGNjQ0aN26MuLg4FBUV6WX/6O9pCkd798bh44+9q78ZIiIyeZIHpKSkJERFRSEuLg5nzpxBmzZtEBoainv37mkcf+zYMQwaNAiRkZHIyMhAWFgYwsLCcP78edWYefPmISEhAYmJiTh+/Djs7OwQGhqKZ8+eAQAuX74MpVKJr776ChcuXMDixYuRmJiIyZMnV8s+0//cvn1bLRzVqlULcXFxOHYM6NNHosaIiMikyYSyd96rZgEBAejQoYPqUm6lUgkvLy+MHj0akyZNUhs/YMAAFBQUICUlRVXr1KkT/Pz8kJiYCEEQ4OnpifHjx2PChAkAgPz8fLi5uWHDhg0YOHCgxj7mz5+PVatW4caNG1r1rVAo4ODggPz8fNjb21d2twmaZ41GjRoFFxcXCbohIiJToO3vb0lnkIqKinD69GmEhISoamZmZggJCUF6errG16Snp4vGA0BoaKhqfGZmJuRyuWiMg4MDAgICyt0m8DxE1a1b92V2hyqhvKvUGI6IiMgQSHqS9v3791FaWgo3NzdR3c3NDZcvX9b4GrlcrnG8XC5XPf+iVt6Ysq5fv45ly5ZhwYIF5fZaWFiIwsJC1WOFQlHuWCpfZmYmvvnmG1HN0dERY8eOlagjIiIidSZ/Fdvt27fRvXt39O/fH8OGDSt3XHx8vMZZD9KepuM3btw4ODg4SNANERFR+SRdYnNxcYG5uTlycnJE9ZycHLi7u2t8jbu7e4XjX3zXZpt37tzBG2+8gaCgIKxevbrCXqOjo5Gfn6/6unnz5t/vIKmUt6TGcERERIZI0oBkaWkJf39/pKWlqWpKpRJpaWkIDAzU+JrAwEDReADYt2+faryPjw/c3d1FYxQKBY4fPy7a5u3bt9GlSxf4+/tj/fr1MDOr+FBYWVnB3t5e9EV/79KlS2rhyMvLizd+JCIigyb5EltUVBTCw8PRvn17dOzYEUuWLEFBQQGGDh0KABgyZAjq16+P+Ph4AMDYsWMRHByMhQsXomfPnti6dStOnTqlmgGSyWQYN24cZs2ahaZNm8LHxwdTp06Fp6cnwsLCAPwvHDVs2BALFixAbm6uqp/yZq6o8jTNGk2YMAF2dnYSdENERKQ9yQPSgAEDkJubi9jYWMjlcvj5+SE1NVV1knV2drZodicoKAibN29GTEwMJk+ejKZNmyI5ORmtWrVSjfn8889RUFCA4cOHIy8vD507d0Zqaiqsra0BPJ9xun79Oq5fv45XXnlF1I/Edz0wCoIgYMaMGWp1zhoREVFNIfl9kGoq3gdJs7Nnz2Lnzp2iWosWLfDee+9J1BEREdH/aPv7W/IZJDIempbUJk2aBCsrKwm6ISIiqjoGJHppXFIjIiJjw4BELyU9PR0//fSTqObv749evXpJ1BEREdHLY0CiKtO0pDZ58mRYWFhI0A0REZHuMCBRpZWWlmLWrFlqdS6pERGRsWBAoko5cOAADh8+LKq9/vrr6Nq1q0QdERER6R4DEmlN05JaTEwMzM3NJeiGiIhIfxiQ6G8VFxdjzpw5anUuqRERkbFiQKIK/fe//8WZM2dEtW7dupX7WXlERETGgAGJyqVpSS02NhYymUyCboiIiKoPAxKpKSwsxNy5c9XqXFIjIiJTwYBEIklJSbh8+bKo1rdvX/j5+UnTEBERkQQYkEiFS2pERETPMSARCgoKsGDBArU6l9SIiMhUMSCZuK+//hq3bt0S1QYMGABfX1+JOiIiIpIeA5IJ07SkxlkjIiIiBiSTlJ+fjyVLlqjVGY6IiIieY0AyMUuXLkVeXp6o1qTJEPz73z7SNERERGSAGJBMCJfUiIiItMOAZAK4pEZERFQ5DEhGbtOmTbhx44aoNmzYMHh6ekrUERERkeFjQDJimpbU2raNA7MRERFRxRiQjNCff/6J5cuXi2re3t4IDw+XqCMiIqKahQHJyHz11VeQy+Wi2tixY+Ho6ChNQ0RERDUQA5IR4VVqREREusGAZAQePnyIhIQEUa1ly5bo37+/RB0RERHVbAxINdy5c+eQnJwsqo0fPx61a9eWpiEiIiIjYCZ1A1R13377rVo42rs3juGIiIjoJXEGqQZ68uQJ5s+fL6odPvwebt1qgXnzJGqKiIjIiDAg1TAXLlzA999/L6rFxMTA3Nxcoo6IiIiMDwNSDSEIAjZs2IDs7GxV7fXXX0fXrl0l7IqIiMg4MSDVAI8fP8bChQtFtREjRsDNzU2ijoiIiIwbA5KB+/XXX/HDDz+oHltaWuKLL76AmRnPryciItIXBiQDJQgC1qxZg7t376pqXbt2xeuvvy5hV0RERKaBAckAKRQKLF68WFQbNWoUXFxcJOqIiIjItDAgGZhLly7hu+++Uz2uXbs2PvvsMy6pERERVSMGJAPz13AUGhqKTp06SdgNERGRaeK0hIE5c2YAHj+2w6FDYxiOiIiIJMKAZGAiI31x9OgEjB3rJHUrREREJotLbAamT5/nX0RERCQdziARERERlcGARERERFQGAxIRERFRGQxIRERERGUwIBERERGVwYBEREREVAYDEhEREVEZDEhEREREZTAgEREREZXBgERERERUBgMSERERURkMSERERERlMCARERERlVFL6gZqKkEQAAAKhULiToiIiEhbL35vv/g9Xh4GpCp69OgRAMDLy0viToiIiKiyHj16BAcHh3Kflwl/F6FII6VSiTt37qBOnTqQyWRSt1PjKBQKeHl54ebNm7C3t5e6HaPB46ofPK76w2OrHzyu5RMEAY8ePYKnpyfMzMo/04gzSFVkZmaGV155Reo2ajx7e3v+5dUDHlf94HHVHx5b/eBx1ayimaMXeJI2ERERURkMSERERERlMCCRJKysrBAXFwcrKyupWzEqPK76weOqPzy2+sHj+vJ4kjYRERFRGZxBIiIiIiqDAYmIiIioDAYkIiIiojIYkIiIiIjKYECiKlmxYgW8vb1hbW2NgIAAnDhxosLx27Ztg6+vL6ytrdG6dWvs2bNH9LwgCIiNjYWHhwdsbGwQEhKCa9euqZ7PyspCZGQkfHx8YGNjg8aNGyMuLg5FRUV62T+pVPdx/avCwkL4+flBJpPh7NmzutolgyHVsd29ezcCAgJgY2MDJycnhIWF6XK3JCfFcb169Sr69u0LFxcX2Nvbo3Pnzjh48KDO901Kuj6uO3bsQLdu3eDs7Fzu3/Fnz55h1KhRcHZ2Ru3atfHOO+8gJydHl7tVswhElbR161bB0tJSWLdunXDhwgVh2LBhgqOjo5CTk6Nx/NGjRwVzc3Nh3rx5wsWLF4WYmBjBwsJC+O2331Rj5s6dKzg4OAjJycnCuXPnhD59+gg+Pj7C06dPBUEQhB9//FGIiIgQ9u7dK/z+++/Czp07BVdXV2H8+PHVss/VQYrj+ldjxowRevToIQAQMjIy9LWbkpDq2H7//feCk5OTsGrVKuHKlSvChQsXhKSkJL3vb3WR6rg2bdpUeOutt4Rz584JV69eFUaOHCnY2toKd+/e1fs+Vwd9HNdvvvlGmD59urBmzZpy/46PGDFC8PLyEtLS0oRTp04JnTp1EoKCgvS1mwaPAYkqrWPHjsKoUaNUj0tLSwVPT08hPj5e4/j33ntP6Nmzp6gWEBAgfPzxx4IgCIJSqRTc3d2F+fPnq57Py8sTrKyshC1btpTbx7x58wQfH5+X2RWDIuVx3bNnj+Dr6ytcuHDBKAOSFMe2uLhYqF+/vrB27Vpd747BkOK45ubmCgCEQ4cOqcYoFAoBgLBv3z6d7ZuUdH1c/yozM1Pj3/G8vDzBwsJC2LZtm6p26dIlAYCQnp7+EntTc3GJjSqlqKgIp0+fRkhIiKpmZmaGkJAQpKena3xNenq6aDwAhIaGqsZnZmZCLpeLxjg4OCAgIKDcbQJAfn4+6tat+zK7YzCkPK45OTkYNmwYNm3aBFtbW13ulkGQ6tieOXMGt2/fhpmZGdq2bQsPDw/06NED58+f1/UuSkKq4+rs7IzmzZvjm2++QUFBAUpKSvDVV1/B1dUV/v7+ut7NaqeP46qN06dPo7i4WLQdX19fNGjQoFLbMSYMSFQp9+/fR2lpKdzc3ER1Nzc3yOVyja+Ry+UVjn/xvTLbvH79OpYtW4aPP/64SvthaKQ6roIgICIiAiNGjED79u11si+GRqpje+PGDQDAtGnTEBMTg5SUFDg5OaFLly548ODBy++YxKQ6rjKZDPv370dGRgbq1KkDa2trLFq0CKmpqXByctLJvklJH8dVG3K5HJaWlnB0dHyp7RgTBiSqcW7fvo3u3bujf//+GDZsmNTt1GjLli3Do0ePEB0dLXUrRkepVAIApkyZgnfeeQf+/v5Yv349ZDIZtm3bJnF3NZcgCBg1ahRcXV1x+PBhnDhxAmFhYejduzfu3r0rdXtkRBiQqFJcXFxgbm6udmVDTk4O3N3dNb7G3d29wvEvvmuzzTt37uCNN95AUFAQVq9e/VL7YkikOq4HDhxAeno6rKysUKtWLTRp0gQA0L59e4SHh7/8jhkAqY6th4cHAKBly5aq562srNCoUSNkZ2e/xB4ZBin/n01JScHWrVvx2muvoV27dli5ciVsbGywceNGneyblPRxXLXh7u6OoqIi5OXlvdR2jAkDElWKpaUl/P39kZaWpqoplUqkpaUhMDBQ42sCAwNF4wFg3759qvE+Pj5wd3cXjVEoFDh+/Lhom7dv30aXLl1U/xI3MzOe/32lOq4JCQk4d+4czp49i7Nnz6ouDU5KSsLs2bN1uo9SkerY+vv7w8rKCleuXFGNKS4uRlZWFho2bKiz/ZOKVMf1yZMnAKD299/MzEw1a1eT6eO4asPf3x8WFhai7Vy5cgXZ2dmV2o5Rkfoscap5tm7dKlhZWQkbNmwQLl68KAwfPlxwdHQU5HK5IAiCMHjwYGHSpEmq8UePHhVq1aolLFiwQLh06ZIQFxen8dJeR0dHYefOncKvv/4q9O3bV3Rp761bt4QmTZoI//rXv4Rbt24Jd+/eVX0ZCymOa1nlXeFS00l1bMeOHSvUr19f2Lt3r3D58mUhMjJScHV1FR48eFB9O69HUhzX3NxcwdnZWXj77beFs2fPCleuXBEmTJggWFhYCGfPnq3eA6An+jiuf/75p5CRkSHs3r1bACBs3bpVyMjIEP0MHTFihNCgQQPhwIEDwqlTp4TAwEAhMDCw+nbcwDAgUZUsW7ZMaNCggWBpaSl07NhR+L//+z/Vc8HBwUJ4eLho/HfffSc0a9ZMsLS0FF599VVh9+7doueVSqUwdepUwc3NTbCyshL+9a9/CVeuXFE9v379egGAxi9jUt3HtSxjDUiCIM2xLSoqEsaPHy+4uroKderUEUJCQoTz58/rbR+lIMVxPXnypNCtWzehbt26Qp06dYROnToJe/bs0ds+SkHXx7W8n6FxcXGqMU+fPhVGjhwpODk5Cba2tkK/fv2M6h+hlSUTBEGQYuaKiIiIyFAZz0kcRERERDrCgERERERUBgMSERERURkMSERERERlMCARERERlcGARERERFQGAxIRERFRGQxIRERERGUwIBGRUZLL5Rg9ejQaNWoEKysreHl5oXfv3khLS8ODBw8wevRoNG/eHDY2NmjQoAHGjBmD/Px81euzsrIgk8lw9uxZtW136dIF48aNE9UuXbqEPn36wMHBAXZ2dujQoYNRfCgtkamqJXUDRES6lpWVhddeew2Ojo6YP38+WrdujeLiYuzduxejRo3C999/jzt37mDBggVo2bIl/vjjD4wYMQJ37tzB999/X+n3+/3339G5c2dERkZi+vTpsLe3x4ULF2Btba2HvSOi6sCPGiEio/PWW2/h119/xZUrV2BnZyd6Li8vD46Ojmqv2bZtGz744AMUFBSgVq1ayMrKgo+PDzIyMuDn5yca26VLF/j5+WHJkiUAgIEDB8LCwgKbNm3S0x4RUXXjEhsRGZUHDx4gNTUVo0aNUgtHADSGIwDIz8+Hvb09atWq3MS6UqnE7t270axZM4SGhsLV1RUBAQFITk6uQvdEZCgYkIjIqFy/fh2CIMDX11fr19y/fx8zZ87E8OHD1Z4LCgpC7dq1RV+HDx9WPX/v3j08fvwYc+fORffu3fHTTz+hX79+ePvtt/HLL7/oZJ+IqPrxHCQiMiqVPWtAoVCgZ8+eaNmyJaZNm6b2fFJSElq0aCGq/fvf/1b9t1KpBAD07dsXn332GQDAz88Px44dQ2JiIoKDgyu5B0RkCBiQiMioNG3aFDKZDJcvX/7bsY8ePUL37t1Rp04d/PDDD7CwsFAb4+XlhSZNmohqNjY2qv92cXFBrVq10LJlS9GYFi1a4MiRI1XcCyKSGpfYiMio1K1bF6GhoVixYgUKCgrUns/LywPwfOaoW7dusLS0xK5du6p8xZmlpSU6dOiAK1euiOpXr15Fw4YNq7RNIpIeAxIRGZ0VK1agtLQUHTt2xPbt23Ht2jVcunQJCQkJCAwMVIWjgoICfP3111AoFJDL5ZDL5SgtLa30+02cOBFJSUlYs2YNrl+/juXLl+O///0vRo4cqYe9I6LqwCU2IjI6jRo1wpkzZzB79myMHz8ed+/eRb169eDv749Vq1bhzJkzOH78OACoLZ9lZmbC29u7Uu/Xr18/JCYmIj4+HmPGjEHz5s2xfft2dO7cWVe7RETVjPdBIiIiIiqDS2xEREREZTAgEREREZXBgERERERUBgMSERERURkMSERERERlMCARERERlcGARERERFQGAxIRERFRGQxIRERERGUwIBERERGVwYBEREREVAYDEhEREVEZ/w8Ti8oYUrQQyQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_29.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABW9ElEQVR4nO3deVhUZf8G8HvYNwEV2QyFFLf0FUNFzFKLQtOUFlMzRXNLzSVccQF33NdI2lyyVPI1kVwgpKwU1Fxzw1wgTB3EEFBMtnl+f/hz3o4zGAwDZ2a4P9fFZfOdZ875zrGYu/Oc84xCCCFARERERBViJncDRERERMaIIYqIiIhIBwxRRERERDpgiCIiIiLSAUMUERERkQ4YooiIiIh0wBBFREREpAOGKCIiIiIdMEQRERER6YAhiohqPIVCgdmzZ8vdhtrgwYPh7e0tdxtE9C8YoojIIG3cuBEKhUL9Y2NjgyZNmuCDDz5AVlZWle47JSUFs2fPRm5url6326VLF8l7qlOnDtq1a4f169dDpVLpZR8LFy5EXFycXrZFRE9mIXcDRERPMnfuXPj4+ODBgwc4ePAg1q1bh7179+Ls2bOws7PTyz7+/vtvWFj879dhSkoK5syZg8GDB8PZ2Vkv+3jkqaeeQlRUFAAgOzsbX375JYYOHYrff/8dixYtqvT2Fy5ciLfeegshISGV3hYRPRlDFBEZtO7du6Nt27YAgGHDhqFu3bpYsWIFdu3ahf79++u8XZVKhaKiItjY2MDGxkZf7f4rJycnvPvuu+rHI0eORNOmTfHRRx9h3rx5sLS0rLZeiKhyOJ1HREblxRdfBACkp6cDAJYtW4aOHTuibt26sLW1hb+/P/773/9qvE6hUOCDDz7A119/jWeeeQbW1tZISEhQP/fomqjZs2dj8uTJAAAfHx/11FtGRgY6d+6M1q1ba+2radOmCA4OrvD7sbOzQ4cOHVBQUIDs7OwyxxUUFGDixInw8vKCtbU1mjZtimXLlkEIIXmPBQUF2LRpk7rvwYMHV7gnIiofnokiIqNy5coVAEDdunUBAKtXr0avXr0wYMAAFBUVYdu2bejTpw92796NHj16SF77ww8/4JtvvsEHH3wAFxcXrRdvv/HGG/j999+xdetWrFy5Ei4uLgCAevXqYeDAgRg+fDjOnj2Lli1bql/z66+/4vfff8fMmTN1ek9Xr16Fubl5mVOHQgj06tULP/74I4YOHQo/Pz8kJiZi8uTJuH79OlauXAkA2Lx5M4YNG4b27dtjxIgRAIBGjRrp1BMRlYMgIjJAGzZsEADE/v37RXZ2trh27ZrYtm2bqFu3rrC1tRV//vmnEEKI+/fvS15XVFQkWrZsKV588UVJHYAwMzMT586d09gXABEZGal+vHTpUgFApKenS8bl5uYKGxsbMXXqVEl93Lhxwt7eXty7d++J76lz586iWbNmIjs7W2RnZ4sLFy6IcePGCQDitddeU48LDQ0VDRs2VD+Oi4sTAMT8+fMl23vrrbeEQqEQly9fVtfs7e1FaGjoE/sgIv3gdB4RGbSgoCDUq1cPXl5e6NevHxwcHLBz507Ur18fAGBra6see+fOHeTl5eH555/HiRMnNLbVuXNntGjRQudenJyc0Lt3b2zdulU9jVZaWorY2FiEhITA3t7+X7eRlpaGevXqoV69emjevDnWrl2LHj16YP369WW+Zu/evTA3N8e4ceMk9YkTJ0IIgX379un8nohId5zOIyKDFh0djSZNmsDCwgJubm5o2rQpzMz+9/9/u3fvxvz583Hq1CkUFhaq6wqFQmNbPj4+le5n0KBBiI2NxS+//IIXXngB+/fvR1ZWFgYOHFiu13t7e+Ozzz5TL9vg6+sLV1fXJ77mjz/+gKenJ2rVqiWpN2/eXP08EVU/higiMmjt27dX3533uF9++QW9evXCCy+8gI8//hgeHh6wtLTEhg0bsGXLFo3x/zxrpavg4GC4ubnhq6++wgsvvICvvvoK7u7uCAoKKtfr7e3tyz2WiAwbp/OIyGjt2LEDNjY2SExMxHvvvYfu3bvrJaBoO4v1iLm5Od555x3897//xZ07dxAXF4f+/fvD3Ny80vstS8OGDXHjxg3cvXtXUk9LS1M//8iTeici/WKIIiKjZW5uDoVCgdLSUnUtIyOj0it2P7q2qawVywcOHIg7d+5g5MiRuHfvnmTdp6rw6quvorS0FB999JGkvnLlSigUCnTv3l1ds7e31/tK60SkHafziMho9ejRAytWrEC3bt3wzjvv4NatW4iOjkbjxo3x22+/6bxdf39/AMCMGTPQr18/WFpa4rXXXlOHqzZt2qBly5bYvn07mjdvjmeffVYv76csr732Grp27YoZM2YgIyMDrVu3xvfff49du3ZhwoQJkmUM/P39sX//fqxYsQKenp7w8fFBQEBAlfZHVFPxTBQRGa0XX3wRX3zxBZRKJSZMmICtW7di8eLFeP311yu13Xbt2mHevHk4ffo0Bg8ejP79+2sshDlo0CAAKPcF5ZVhZmaG+Ph4TJgwAbt378aECRNw/vx5LF26FCtWrJCMXbFiBfz9/TFz5kz0798f69atq/L+iGoqhRD/WO6WiIjKZfXq1fjwww+RkZGBBg0ayN0OEcmAIYqIqIKEEGjdujXq1q2LH3/8Ue52iEgmvCaKiKicCgoKEB8fjx9//BFnzpzBrl275G6JiGTEM1FEROWUkZEBHx8fODs7Y/To0ViwYIHcLRGRjBiiiIiIiHTAu/OIiIiIdMAQRURERKQDXlhehVQqFW7cuIFatWrxqxiIiIiMhBACd+/ehaenp+QLzx/HEFWFbty4AS8vL7nbICIiIh1cu3YNTz31VJnPM0RVoVq1agF4+Jfg6OgoczdERERUHvn5+fDy8lJ/jpeFIaoKPZrCc3R0ZIgiIiIyMv92KQ4vLCciIiLSAUMUERERkQ4YooiIiIh0wGuiZFZaWori4mK526BqYGlpCXNzc7nbICIiPWGIkokQAkqlErm5uXK3QtXI2dkZ7u7uXDeMiMgEMETJ5FGAcnV1hZ2dHT9UTZwQAvfv38etW7cAAB4eHjJ3RERElcUQJYPS0lJ1gKpbt67c7VA1sbW1BQDcunULrq6unNojIjJyvLBcBo+ugbKzs5O5E6puj/7OeR0cEZHxY4iSEafwah7+nRMRmQ6GKCIiIiIdMEQRERER6YAhiipk8ODBUCgUUCgUsLS0hJubG15++WWsX78eKpWq3NvZuHEjnJ2dq65RIiKiKsYQRRXWrVs33Lx5ExkZGdi3bx+6du2K8ePHo2fPnigpKZG7PSIiomrBEEUVZm1tDXd3d9SvXx/PPvsspk+fjl27dmHfvn3YuHEjAGDFihVo1aoV7O3t4eXlhdGjR+PevXsAgAMHDmDIkCHIy8tTn9WaPXs2AGDz5s1o27YtatWqBXd3d7zzzjvqtZWIiIgAICcnBwsXrsCgQcmIj5evD4YoAyGEQFFRkSw/QohK9//iiy+idevW+PbbbwEAZmZmWLNmDc6dO4dNmzbhhx9+wJQpUwAAHTt2xKpVq+Do6IibN2/i5s2bmDRpEoCHt/7PmzcPp0+fRlxcHDIyMjB48OBK90dERKYhJSUFa9euRXHxXTRqdBCLFlX+M0xXXGzTQBQXFyMqKkqWfYeHh8PKyqrS22nWrBl+++03AMCECRPUdW9vb8yfPx/vv/8+Pv74Y1hZWcHJyQkKhQLu7u6Sbbz33nvqf3766aexZs0atGvXDvfu3YODg0OleyQiIuOkUqmwdOlSPHjwQF07c6Y3pk2Tb+kYhijSGyGEeh2k/fv3IyoqCmlpacjPz0dJSQkePHiA+/fvP3GR0ePHj2P27Nk4ffo07ty5o75YPTMzEy1atKiW90FERIYlOzsbH3/8saQWFhaGWrVqydTRQwxRBsLS0hLh4eGy7VsfLly4AB8fH2RkZKBnz54YNWoUFixYgDp16uDgwYMYOnQoioqKygxRBQUFCA4ORnBwML7++mvUq1cPmZmZCA4ORlFRkV56JCIi4/LTTz/hwIED6sf169fH0KFDDWLxYoO4Jio6Ohre3t6wsbFBQEAAjh49+sTx27dvR7NmzWBjY4NWrVph7969kueFEIiIiICHhwdsbW0RFBSES5cuqZ/PyMjA0KFD4ePjA1tbWzRq1AiRkZGSD+qMjAz1Rc///Dl8+LB+3/z/UygUsLKykuVHH/8i/vDDDzhz5gzefPNNHD9+HCqVCsuXL0eHDh3QpEkT3LhxQzLeysoKpaWlklpaWhr++usvLFq0CM8//zyaNWvGi8qJiGqo0tJSzJs3TxKg3njjDQwbNswgAhRgACEqNjYWYWFhiIyMxIkTJ9C6dWsEBweX+eGZkpKC/v37Y+jQoTh58iRCQkIQEhKCs2fPqscsWbIEa9asQUxMDI4cOQJ7e3sEBwer51HT0tKgUqnwySef4Ny5c1i5ciViYmIwffp0jf3t379fffHzzZs34e/vXzUHwogUFhZCqVTi+vXrOHHiBBYuXIjevXujZ8+eGDRoEBo3bozi4mKsXbsWV69exebNmxETEyPZhre3N+7du4fk5GTcvn0b9+/fR4MGDWBlZaV+XXx8PObNmyfTuyQiIrkolUrMnz9fsv7gpEmT0KpVKxm70kLIrH379mLMmDHqx6WlpcLT01NERUVpHf/222+LHj16SGoBAQFi5MiRQgghVCqVcHd3F0uXLlU/n5ubK6ytrcXWrVvL7GPJkiXCx8dH/Tg9PV0AECdPntTlbQkhhMjLyxMARF5enqT+999/i/Pnz4u///5b523LJTQ0VAAQAISFhYWoV6+eCAoKEuvXrxelpaXqcStWrBAeHh7C1tZWBAcHiy+//FIAEHfu3FGPef/990XdunUFABEZGSmEEGLLli3C29tbWFtbi8DAQBEfH1/pvwdDYsx/90RE1WH//v1i9uzZ6p9NmzZVew9lfX4/TiGEHu5v19Gj62P++9//IiQkRF0PDQ1Fbm4udu3apfGaBg0aICwsTHL3V2RkJOLi4nD69GlcvXoVjRo1wsmTJ+Hn56ce07lzZ/j5+WH16tVae5k5cyYSEhJw7NgxAA+n83x8fODl5YUHDx6gSZMmmDJlCnr16lXu95efnw8nJyfk5eXB0dFRXX/w4AHS09Ph4+MDGxubcm+PjB//7omItCspKcGCBQsktbfffhvNmzev9l7K+vx+nKwXlt++fRulpaVwc3OT1N3c3JCWlqb1NUqlUut4pVKpfv5Rrawxj7t8+TLWrl2LZcuWqWsODg5Yvnw5nnvuOZiZmWHHjh0ICQlBXFxcmUGqsLAQhYWF6sf5+flaxxEREdH/XL9+HZ9//rmkNnny5CfezW0IavzdedevX0e3bt3Qp08fDB8+XF13cXFBWFiY+nG7du1w48YNLF26tMwQFRUVhTlz5lR5z0RERKYiISEBR44cUT9u0qQJ+vfvL2NH5SfrheUuLi4wNzdHVlaWpJ6VlaWxCOMj7u7uTxz/6M/ybPPGjRvo2rUrOnbsiE8//fRf+w0ICMDly5fLfD48PBx5eXnqn2vXrv3rNomIiGqi4uJizJkzRxKg+vfvbzQBCpA5RFlZWcHf3x/JycnqmkqlQnJyMgIDA7W+JjAwUDIeAJKSktTjfXx84O7uLhmTn5+PI0eOSLZ5/fp1dOnSBf7+/tiwYQPMzP79UJw6dQoeHh5lPm9tbQ1HR0fJDxEREUllZmZi4cKFktrUqVPRpEkTmTrSjezTeWFhYQgNDUXbtm3Rvn17rFq1CgUFBRgyZAgAYNCgQahfv776K1HGjx+Pzp07Y/ny5ejRowe2bduGY8eOqc8kKRQKTJgwAfPnz4evry98fHwwa9YseHp6qi9efxSgGjZsiGXLliE7O1vdz6OzVZs2bYKVlRXatGkDAPj222+xfv16jTlbIiIiKr/4+HicPHlS/bhly5Z48803ZexId7KHqL59+yI7OxsRERFQKpXw8/NDQkKC+sLwzMxMyVmijh07YsuWLZg5cyamT58OX19fxMXFoWXLluoxU6ZMQUFBAUaMGIHc3Fx06tQJCQkJ6ruhkpKScPnyZVy+fBlPPfWUpJ9/3qw4b948/PHHH7CwsECzZs0QGxuLt956qyoPBxERkUkqKirS+I7YgQMH4umnn5apo8qTdYkDU8clDuhx/LsnopooPT0dX375paQWHh4OKysrmTp6MqNY4oCIiIhM27fffoszZ86oH/v5+aF3794ydqQ/DFFERESkd/fu3cPy5csltcGDB6Nhw4YydaR/sn93HpE2gwcPlqxi36VLF8kq9brQxzaIiOjf7du3TyNATZ8+3aQCFMAzUVRBgwcPxqZNmwAAlpaWaNCgAQYNGoTp06fDwqLq/nX69ttvYWlpWa6xBw4cQNeuXXHnzh04OzvrtA0iItLN44tO37/vjMWLx8vUTdViiKIK69atGzZs2IDCwkLs3bsXY8aMgaWlJcLDwyXjioqK9HbRYJ06dQxiG0REpF1OTg7Wrl0rqV240B3vvNNepo6qHqfzqMKsra3h7u6Ohg0bYtSoUQgKCkJ8fLx6Cm7BggXw9PRE06ZNAQDXrl3D22+/DWdnZ9SpUwe9e/dGRkaGenulpaUICwuDs7Mz6tatiylTpuDxm0Yfn4orLCzE1KlT4eXlBWtrazRu3BhffPEFMjIy0LVrVwBA7dq1oVAoMHjwYK3buHPnDgYNGoTatWvDzs4O3bt3x6VLl9TPb9y4Ec7OzkhMTETz5s3h4OCAbt264ebNm+oxBw4cQPv27WFvbw9nZ2c899xz+OOPP/R0pImIjENcXJxGgJo2bRq2bWuPMr4pzSQwRFGl2draoqioCACQnJyMixcvIikpCbt370ZxcTGCg4NRq1Yt/PLLLzh06JA6jDx6zfLly7Fx40asX78eBw8eRE5ODnbu3PnEfQ4aNAhbt27FmjVrcOHCBXzyySdwcHCAl5cXduzYAQC4ePEibt68idWrV2vdxuDBg3Hs2DHEx8cjNTUVQgi8+uqrKC4uVo+5f/8+li1bhs2bN+Pnn39GZmYmJk2aBODhN46HhISgc+fO+O2335CamooRI0ZAoVBU+pgSERmLOXPm4PTp05JaZGQkrK2tZeqo+nA6j3QmhEBycjISExMxduxYZGdnw97eHp9//rl6Gu+rr76CSqXC559/rg4XGzZsgLOzMw4cOIBXXnkFq1atQnh4ON544w0AQExMDBITE8vc7++//45vvvkGSUlJCAoKAgDJYm2Ppu1cXV0l10T906VLlxAfH49Dhw6hY8eOAICvv/4aXl5eiIuLQ58+fQA8/G6nmJgYNGrUCADwwQcfYO7cuQAeriOSl5eHnj17qp9v3rx5xQ8kEZERunXrFtatWyep9erVS/1NHzUBz0SZgPh4oGPHh39Wh927d8PBwQE2Njbo3r07+vbti9mzZwMAWrVqJbkO6vTp07h8+TJq1aoFBwcHODg4oE6dOnjw4AGuXLmCvLw83Lx5EwEBAerXWFhYoG3btmXu/9SpUzA3N0fnzp11fg8XLlyAhYWFZL9169ZF06ZNceHCBXXNzs5OHZAAwMPDA7du3QLwMKwNHjwYwcHBeO2117B69WrJVB8RkamKjY3VCFDTp0+vUQEK4Jkok7BoEZCa+vDP6ph77tq1K9atWwcrKyt4enpK7sqzt7eXjL137x78/f3x9ddfa2ynXr16Ou3f1tZWp9fp4vG7+RQKheR6rQ0bNmDcuHFISEhAbGwsZs6ciaSkJHTo0KHaeiQiqi5CCPXZ+H+KjIyUoRv58UyUCZg2DQgMfPhndbC3t0fjxo3RoEGDf13W4Nlnn8WlS5fg6uqKxo0bS36cnJzg5OQEDw8PHDlyRP2akpISHD9+vMxttmrVCiqVCj/99JPW5x+dCSstLS1zG82bN0dJSYlkv3/99RcuXryIFi1aPPE9Pa5NmzYIDw9HSkoKWrZsiS1btlTo9URExuDGjRsaAeqtt96qsQEKYIgyCb16ASkp1XMWqqIGDBgAFxcX9O7dG7/88gvS09Nx4MABjBs3Dn/++ScAYPz48Vi0aBHi4uKQlpaG0aNHIzc3t8xtent7IzQ0FO+99x7i4uLU2/zmm28AAA0bNoRCocDu3buRnZ2Ne/fuaWzD19cXvXv3xvDhw3Hw4EGcPn0a7777LurXr1/uryNIT09HeHg4UlNT8ccff+D777/HpUuXeF0UEZmcTZs24bPPPpPUZsyYgWeeeUamjgwDQxRVKTs7O/z8889o0KAB3njjDTRv3hxDhw7FgwcP1F/qOHHiRAwcOBChoaEIDAxErVq18Prrrz9xu+vWrcNbb72F0aNHo1mzZhg+fDgKCgoAAPXr18ecOXMwbdo0uLm54YMPPtC6jQ0bNsDf3x89e/ZEYGAghBDYu3dvuRfktLOzQ1paGt588000adIEI0aMwJgxYzBy5MgKHCEiIsMlhMCcOXMky9LY2toiMjKyShdYNhYK8fiCPKQ3ZX0L9IMHD5Ceng4fHx/Y2NjI2CFVN/7dE5GxyMzMxIYNGyS1/v37o0mTJjJ1VH3K+vx+HGMkERERSXzyySdQKpWS2qxZs2Bmxgmsf2KIIiIiIgCASqXCvHnzJLU6depg7NixMnVk2BiiiIiICFevXsXmzZsltUGDBsHHx0emjgwfQxQREVENt3r1ao27oiMiIvg1Vv+CIUpGvKa/5uHfOREZktLSUsyfP19S8/T0xPDhw2XqyLgwRMng0S309+/fr9bVt0l+9+/fB6C5EjoRUXVLS0tDbGyspDZ06FA89dRTMnVkfBiiZGBubg5nZ2f1d7DZ2dnxlKmJE0Lg/v37uHXrFpydnWFubi53S0RUg0VFRaGoqEhS4/RdxTFEycTd3R0A1EGKagZnZ2f13z0RUXUrKSnBggULJLVGjRrh3Xfflakj48YQJROFQgEPDw+4urqiuLhY7naoGlhaWvIMFBHJ5syZM/j2228ltZEjR/J/7CqBIUpm5ubm/GAlIqIqNWfOHI0ap+8qjyGKiIjIRBUVFSEqKkpSa9GiBfr06SNTR6aFIYqIiMgEnThxAt99952kNmbMGLi4uMjUkelhiCIiIjIx2qbvIiMjZejEtDFEERERmYgHDx5g8eLFklqbNm3Qq1cvmToybQxRREREJuDw4cNITEyU1MaNG4fatWvL1JHpY4giIiIycpy+kwdDFBERkZG6f/8+li5dKql16NABwcHBMnVUszBEERERGaGffvoJBw4ckNQ+/PBDODo6ytNQDcQQRUREZGQ4fWcYGKKIiIiMxN27d7FixQpJrXPnzujSpYs8DdVwDFFERERGICkpCSkpKZLapEmTYG9vL1NHxBBFRERk4Dh9Z5gYooiIiAxUbm4uVq9eLam98sorCAwMlKkj+ieGKCIiIgP03Xff4cSJE5La1KlTYWNjI1NH9DiGKCIiIgPD6TvjwBBFRERkIG7fvo3o6GhJrWfPnvD395epI3oShigiIiIDsGPHDpw9e1ZSCw8Ph5WVlUwd0b9hiCIiIpKREAJz587VqHP6zvAxRBEREckkKysLMTExktrrr7+O//znPzJ1RBXBEEVERCSDr7/+GpcvX5bUZsyYAQsLfjQbC/5NERERVSNt03eWlpaYPn26TB2RrhiiiIiIqsn58+exfft2Se3kyb6Ii2smU0dUGQxRRERE1UDb2k+xsTOxaJG5DN2QPpjJ3QAREZEpU6lUZS6eef68OXr1kqEp0gueiSIiIqoip06dwq5duyS1V199Fe3atZOpI9InhigiIqIqoO3s06xZs2BmxkkgU8EQRUREpEelpaWYP3++Rp2LZ5oehigiIiI9OXLkCBISEiS1N954A61atZKpI6pKDFFERER6oG36LiIiAgqFQoZuqDowRBEREVVCcXExFi5cqFHn9J3pY4giIiLS0U8//YQDBw5Iav369UPTpk3laYiqFUMUERGRDjh9RwxRREREFVBYWIhFixZp1Dl9V/MwRBEREZVTYmIiDh8+LKkNGjQIPj4+MnVEcmKIIiIiKoeyvrqFai6DWDY1Ojoa3t7esLGxQUBAAI4ePfrE8du3b0ezZs1gY2ODVq1aYe/evZLnhRCIiIiAh4cHbG1tERQUhEuXLqmfz8jIwNChQ+Hj4wNbW1s0atQIkZGRKCoqkmznt99+w/PPPw8bGxt4eXlhyZIl+nvTRERkFO7fv68RoKysrBigSP4QFRsbi7CwMERGRuLEiRNo3bo1goODcevWLa3jU1JS0L9/fwwdOhQnT55ESEgIQkJCcPbsWfWYJUuWYM2aNYiJicGRI0dgb2+P4OBgPHjwAACQlpYGlUqFTz75BOfOncPKlSsRExOD6dOnq7eRn5+PV155BQ0bNsTx48exdOlSzJ49G59++mnVHhAiIjIYu3btwtKlSyW1YcOGITw8XKaOyJAohBBCzgYCAgLQrl07fPTRRwAeftu1l5cXxo4di2nTpmmM79u3LwoKCrB79251rUOHDvDz80NMTAyEEPD09MTEiRMxadIkAEBeXh7c3NywceNG9OvXT2sfS5cuxbp163D16lUAwLp16zBjxgwolUpYWVkBAKZNm4a4uDikpaWV673l5+fDyckJeXl5cHR0LP9BISIi2XH6ruYq7+e3rGeiioqKcPz4cQQFBalrZmZmCAoKQmpqqtbXpKamSsYDQHBwsHp8eno6lEqlZIyTkxMCAgLK3CbwMGjVqVNHsp8XXnhBHaAe7efixYu4c+eO1m0UFhYiPz9f8kNERMYlPz9fI0DVrl2bAYo0yHph+e3bt1FaWgo3NzdJ3c3NrcyzPUqlUut4pVKpfv5Rrawxj7t8+TLWrl2LZcuWSfbz+N0Wj7apVCpRu3Ztje1ERUVp/T8XIiIyDtu2bcPFixcltVGjRsHV1VWmjsiQyX5NlNyuX7+Obt26oU+fPhg+fHilthUeHo68vDz1z7Vr1/TUJRERVbU5c+ZoBKjIyEgGKCqTrGeiXFxcYG5ujqysLEk9KysL7u7uWl/j7u7+xPGP/szKyoKHh4dkjJ+fn+R1N27cQNeuXdGxY0eNC8bL2s8/9/E4a2trWFtba32OiIgM0507d7BmzRpJrX79+hg2bJhMHZGxkPVMlJWVFfz9/ZGcnKyuqVQqJCcnIzAwUOtrAgMDJeMBICkpST3ex8cH7u7ukjH5+fk4cuSIZJvXr19Hly5d4O/vjw0bNsDMTHooAgMD8fPPP6O4uFiyn6ZNm2qdyiMiIuOzfv16jQA1duxYBigqF9mn88LCwvDZZ59h06ZNuHDhAkaNGoWCggIMGTIEwMOVYP95K+n48eORkJCA5cuXIy0tDbNnz8axY8fwwQcfAAAUCgUmTJiA+fPnIz4+HmfOnMGgQYPg6emJkJAQAP8LUA0aNMCyZcuQnZ0NpVIpuWbqnXfegZWVFYYOHYpz584hNjYWq1evRlhYWPUdHCIiqjJz5szRuOwiMjJScpMR0ZPIvmJ53759kZ2djYiICCiVSvj5+SEhIUF9EXdmZqbkLFHHjh2xZcsWzJw5E9OnT4evry/i4uLQsmVL9ZgpU6agoKAAI0aMQG5uLjp16oSEhATY2NgAeHhG6fLly7h8+TKeeuopST+PVnxwcnLC999/jzFjxsDf3x8uLi6IiIjAiBEjqvqQEBFRFbp16xbWrVsnqfn6+uKdd96RqSMyVrKvE2XKuE4UEZFhWbt2LXJyciS1Dz/8kL+jSaK8n9+yn4kiIiKqDlw8k/SNIYqIiEza9evX8fnnn0tqrVu3Vl8nS6QrhigiIjJZixcvVn9v6iOTJk2Cvb29TB2RKWGIIiIik8TpO6pqDFFERGRSMjIysGnTJkmtffv26N69u0wdkaliiCIiIpOh7ezT1KlT1UvcEOkTQxQRERk9IQTmzp2rUef0HVUlhigiIjJqv//+O7Zu3Sqpde7cGV26dJGnIaoxGKKIiMhoaZu+mz59OiwtLWXohmoahigiIjI6nL4jQ8AQRURERuXs2bPYsWOHpBYcHIwOHTrI1BHVVAxRRERkNLRN382cORPm5uYydEM1HUMUEREZPJVKhXnz5mnUOX1HcmKIIiIig3b8+HHs3r1bUuvVqxfatGkjU0dEDzFEERGRwdI2fTdr1iyYmZnJ0A2RFEMUEREZnJKSEixYsECjzuk7MiQMUUREZFAOHTqE/fv3S2p9+vRBixYtZOqISDuGKCIiMhjapu8iIiKgUChk6IboyRiiiIhIdkVFRYiKitKoc/qODBlDFBERySo5ORkHDx6U1AYMGIDGjRvL1BFR+TBEERGRbDh9R8aMIYqIiKrdgwcPsHjxYo06p+/ImDBEERFRtdqzZw+OHTsmqQ0ZMgQNGjSQqSMi3TBEERFRtdE2fcezT2SsGKKIiKjK3bt3D8uXL5fU7O3tMWnSJJk6Iqo8higiIqpS//3vf3Hu3DlJbcSIEfDw8JCpIyL9YIgiIqIqw+k7MmUMUUREpHd5eXlYtWqVpObq6opRo0bJ0xBRFWCIIiIivdq8eTOuXr0qqY0ZMwYuLi4ydURUNRiiiIhIbzh9RzUJQxQREVXa7du3ER0dLal5e3sjNDRUpo6Iqh5DFBERVconn3wCpVIpqY0fPx7Ozs7yNERUTRiiiIhIZ5y+o5qMIYqIiCpMqVTik08+kdRatGiBPn36yNQRUfVjiCIiogpZsWIF7t69K6lNnDgRDg4OMnVEJA+GKCIiKjdO3xH9D0MUERH9q2vXrmH9+vWS2rPPPovXXntNpo6I5FfhEGVubo6bN2/C1dVVUv/rr7/g6uqK0tJSvTVHRETymzdvHlQqlaQ2ZcoU2NraytQRkWGocIgSQmitFxYWwsrKqtINERGRYRBCYO7cuRp1Tt8RPVTuELVmzRoAgEKhwOeffy65gLC0tBQ///wzmjVrpv8OiYio2l25cgVfffWVpPbcc88hKChIpo6IDE+5Q9TKlSsBPPw/k5iYGJibm6ufs7Kygre3N2JiYvTfIRERVSttF4+Hh4dztoHoMeUOUenp6QCArl274ttvv0Xt2rWrrCkiIqp+nL4jqpgKXxP1448/VkUfREQkowsXLuCbb76R1F566SV06tRJpo6IDF+FQ9R77733xOcfvwWWiIgMm7bpuxkzZsDCgqvgED1Jhf8LuXPnjuRxcXExzp49i9zcXLz44ot6a4yIiKqWSqXCvHnzNOqcviMqnwqHqJ07d2rUVCoVRo0ahUaNGumlKSIiqlqnTp3Crl27JLVXX30V7dq1k6kjIuOjEGUt/FRBFy9eRJcuXXDz5k19bM4k5Ofnw8nJCXl5eXB0dJS7HSIiANqn72bOnCm565qoJivv57feJryvXLmCkpISfW2OiIj0rLS0FPPnz9eoc/qOSDcVDlFhYWGSx0II3Lx5E3v27EFoaKjeGiMiIv05cuQIEhISJLU33ngDrVq1kqkjIuNX4RB18uRJyWMzMzPUq1cPy5cv/9c794iIqPppm76LiIiAQqGQoRsi08F1ooiITFRxcTEWLlyoUef0HZF+6HxN1K1bt3Dx4kUAQNOmTeHq6qq3poiIqHJ++uknHDhwQFLr168fmjZtKk9DRCaowiEqPz8fY8aMwdatW6FSqQAA5ubm6Nu3L6Kjo+Hk5KT3JomIqPw4fUdUPcwq+oLhw4fjyJEj2LNnD3Jzc5Gbm4vdu3fj2LFjGDlyZFX0SERE5VBYWKg1QEVGRjJAEVWBCq8TZW9vj8TERI3vU/rll1/QrVs3FBQU6LVBY8Z1ooiouiQmJuLw4cOS2qBBg+Dj4yNTR0TGq8rWiapbt67WKTsnJyfUrl27opsjIqJKKuvsExFVrQpP582cORNhYWFQKpXqmlKpxOTJkzFr1iy9NkdERGW7f/++RoCysrJigCKqJhWezmvTpg0uX76MwsJCNGjQAACQmZkJa2tr+Pr6SsaeOHFCf50aIU7nEVFV2bVrF06dOiWpDRs2DPXr15enISITUmXTeb1799brBYrR0dFYunQplEolWrdujbVr16J9+/Zljt++fTtmzZqFjIwM+Pr6YvHixXj11VfVzwshEBkZic8++wy5ubl47rnnsG7dOknAW7BgAfbs2YNTp07BysoKubm5GvvR9h63bt2Kfv36Ve4NExFVEqfviAxDhUPU7Nmz9bbz2NhYhIWFISYmBgEBAVi1ahWCg4Nx8eJFretOpaSkoH///oiKikLPnj2xZcsWhISE4MSJE2jZsiUAYMmSJVizZg02bdoEHx8fzJo1C8HBwTh//jxsbGwAAEVFRejTpw8CAwPxxRdflNnfhg0b0K1bN/VjZ2dnvb13IqKKunv3LlasWCGp1a5dG+PGjZOpI6KarcLTeU8//TR+/fVX1K1bV1LPzc3Fs88+i6tXr5Z7WwEBAWjXrh0++ugjAIBKpYKXlxfGjh2LadOmaYzv27cvCgoKsHv3bnWtQ4cO8PPzQ0xMDIQQ8PT0xMSJEzFp0iQAQF5eHtzc3LBx40aNs0gbN27EhAkTyjwTtXPnToSEhJT7/TyO03lEpC/btm1TL3D8yKhRo7jQMVEVKO/nd4UvLM/IyEBpaalGvbCwEH/++We5t1NUVITjx48jKCjof82YmSEoKAipqalaX5OamioZDwDBwcHq8enp6VAqlZIxTk5OCAgIKHObTzJmzBi4uLigffv2WL9+Pf4tbxYWFiI/P1/yQ0RUWXPmzNEIUJGRkQxQRDIr93RefHy8+p8TExMlyxyUlpYiOTm5QuuR3L59G6WlpXBzc5PU3dzckJaWpvU1SqVS6/hHdwo++vNJY8pr7ty5ePHFF2FnZ4fvv/8eo0ePxr1795542jwqKkrrtQpERLq4c+cO1qxZI6nVr18fw4YNk6kjIvqncoeoR9NaCoUCoaGhkucsLS3h7e2N5cuX67U5Of1zuYY2bdqgoKAAS5cufWKICg8PR1hYmPpxfn4+vLy8qrRPIjJN69evx7Vr1yS1sWPHok6dOjJ1RESPK3eIevQ9eT4+Pvj111/h4uJSqR27uLjA3NwcWVlZknpWVhbc3d21vsbd3f2J4x/9mZWVBQ8PD8kYPz+/SvUbEBCAefPmobCwENbW1lrHWFtbl/kcEVF58e47IuNQ4Wui0tPTKx2ggIcLwvn7+yM5OVldU6lUSE5ORmBgoNbXBAYGSsYDQFJSknq8j48P3N3dJWPy8/Nx5MiRMrdZXqdOnULt2rUZkoioyty6dUsjQPn6+jJAERmoCi9xMHfu3Cc+HxERUe5thYWFITQ0FG3btkX79u2xatUqFBQUYMiQIQAefu9T/fr1ERUVBQAYP348OnfujOXLl6NHjx7Ytm0bjh07hk8//RTAw6nGCRMmYP78+fD19VUvceDp6Sm5yy4zMxM5OTnIzMxEaWmpesG6xo0bw8HBAd999x2ysrLQoUMH2NjYICkpCQsXLlTf8UdEpG8fffQR/vrrL0ntww8/5J29RAaswiFq586dksfFxcVIT0+HhYUFGjVqVKEQ1bdvX2RnZyMiIgJKpRJ+fn5ISEhQXxiemZkJM7P/nSzr2LEjtmzZgpkzZ2L69Onw9fVFXFyceo0oAJgyZQoKCgowYsQI5ObmolOnTkhISFCvEQU8DHqbNm1SP27Tpg0A4Mcff0SXLl1gaWmJ6OhofPjhhxBCoHHjxlixYgWGDx9esYNFRFQOnL4jMk4VXidKm/z8fAwePBivv/46Bg4cqI++TALXiSKiJ7l+/To+//xzSe0///kPXn/9dZk6IiKg/J/feglRAHDmzBm89tpryMjI0MfmTAJDFBGVZfHixXjw4IGkNmnSJNjb28vUERE9UmXfnVeWvLw85OXl6WtzREQmi9N3RKahwiHq8YXfhBC4efMmNm/ejO7du+utMSIiU5ORkSG5HhMA2rdvz9+dREaqwiFq5cqVksdmZmaoV68eQkNDER4errfGiIhMibazT1OnTpXc9EJExqXCISo9Pb0q+iAiMklCCK1Lw3D6jsj46XRNVG5uLi5fvgzg4dpKzs7O+uyJiMgk/P7779i6daukdvlyZ2ze3EWehohIryoUojIyMjBmzBgkJibi0U19CoUC3bp1w0cffQRvb++q6JGIyOhom75LSpqOKVMsZeiGiKpCuZc4uHbtGtq1awdLS0uMHj0azZs3BwCcP38e69atQ0lJCX799Vc89dRTVdqwMeESB0Q1D6fviIyf3teJGjp0KC5fvozExESNCyH//vtvdOvWDb6+vhoLx9VkDFFENcvZs2exY8cOSS04OBgdOnSQqSMi0oXe14lKSEhAbGys1jtJbG1tMW/ePPTr10+3bomIjJy26buZM2fC3Nxchm6IqDqUO0Tdvn37idc8Pf3008jJydFHT0RERkOlUmHevHkadU7fEZm+cocoDw8PnD9/vsxrns6ePQt3d3e9NUZEZOiOHz+O3bt3S2q9evVSf6k5EZm2coeokJAQTJo0CcnJyahXr57kuVu3bmHq1KkICQnRd39ERAZJ2/TdrFmzYGZmJkM3RCSHcl9YfufOHQQEBECpVOLdd99Fs2bNIITAhQsXsGXLFri7u+Pw4cOoU6dOVfdsNHhhOZHpKSkpwYIFCzTqnL4jMh16v7C8du3aOHLkCKZPn45t27YhNzcXAODs7Ix33nkHCxcuZIAiIpOWkpKCpKQkSa1Pnz5o0aKFTB0RkZzKfSbqn4QQyM7OBgDUq1cPCoVC742ZAp6JIjId2qbvIiIi+PuPyATp/UzUPykUCri6uurcHBGRsSgqKkJUVJRGndN3RKRTiCIiqgmSk5Nx8OBBSW3AgAFo3LixTB0RkSFhiCIi0oLTd0T0bxiiiIj+4cGDB1i8eLFGndN3RPQ4higiov+3Z88eHDt2TFIbMmQIGjRoIFNHRGTIyhWi1qxZU+4Njhs3TudmiIjkom36jmefiOhJyrXEgY+PT/k2plDg6tWrlW7KVHCJAyLDd+/ePSxfvlxSs7e3x6RJk2TqiIjkptclDtLT0/XWGBGRodixYwfOnj0rqY0YMQIeHh4ydURExkTna6KKioqQnp6ORo0awcKCl1YRkXHh9B0RVVaFvynz/v37GDp0KOzs7PDMM88gMzMTADB27FgsWrRI7w0SEenT7du3NQJUvXr1GKCIqMIqHKLCw8Nx+vRpHDhwADY2Nup6UFAQYmNj9docEZE+zZ8/H9HR0ZLawYNjMHr0aJk6IiJjVuF5uLi4OMTGxqJDhw6SReeeeeYZXLlyRa/NERHpi7bpu8TESEybJkMzRGQSKhyisrOztX5vXkFBAVfyJSKDc+PGDXz22Wca9cjISHAGj4gqo8Ihqm3bttizZw/Gjh0LAOrg9PnnnyMwMFC/3RERVYK2s0+jR49GvXr1ZOiGiExNhUPUwoUL0b17d5w/fx4lJSVYvXo1zp8/j5SUFPz0009V0SMRUYXx7jsiqmoVvrC8U6dOOHXqFEpKStCqVSt8//33cHV1RWpqKvz9/auiRyKicktLS9MIULVq1WKAIiK9K9eK5aQbrlhOVL20nX0aP348nJ2dq78ZIjJael2xPD8/v9w7ZlggIjloC1Bt2kSC+YmIqkq5QpSzs3O577wrLS2tVENERBVx8uRJxMfHa9Q5fUdEVa1cIerHH39U/3NGRgamTZuGwYMHq+/GS01NxaZNmxAVFVU1XRIRaaHt7NOECRPg5OQkQzdEVNNU+Jqol156CcOGDUP//v0l9S1btuDTTz/FgQMH9NmfUeM1UURVQwiBuXPnatR59omI9KG8n98VvjsvNTUVbdu21ai3bdsWR48erejmiIgqJCUlRSNA8e47IpJDhdeJ8vLywmeffYYlS5ZI6p9//jm8vLz01hgR0eO0Td9NnjwZdnZ2MnRDRDVdhUPUypUr8eabb2Lfvn0ICAgAABw9ehSXLl3Cjh079N4gERGn74jIEOm0TtSff/6Jjz/+GGlpaQCA5s2b4/333+eZqMfwmiiiytu/fz8OHTokqdWvXx/Dhg2TqSMiMnXl/fzmYptViCGKqHK0Td9NmzYN1tbWMnRDRDWFXhfbfFxubi6++OILXLhwAQDwzDPP4L333uNtxUSkFyqVCvPmzdOoc/qOiAxJhe/OO3bsGBo1aoSVK1ciJycHOTk5WLFiBRo1aoQTJ05URY9EVIMkJiZqBKgbN1qhTRsGKCIyLBWeznv++efRuHFjfPbZZ7CweHgiq6SkBMOGDcPVq1fx888/V0mjxojTeUQVo236bsaMGerfNURE1aHKromytbXFyZMn0axZM0n9/PnzaNu2Le7fv69bxyaIIYqofEpKSrBgwQKNOqfviEgOVXZNlKOjIzIzMzVC1LVr11CrVq2Kd0pENdrOnTvx22+/SWrPPfccgoKCZOqIiKh8Khyi+vbti6FDh2LZsmXo2LEjAODQoUOYPHmyxlfBEBE9ibbpu1mzZsHMrMKXaxIRVbsKh6hly5ZBoVBg0KBBKCkpAQBYWlpi1KhRWLRokd4bJCLTU1hYqPX3BafviMiY6LxO1P3793HlyhUAQKNGjfi1C1rwmigiTZs3b8bVq1cltZdffll9ZpuISG5Vuk4UANjZ2aFVq1a6vpyIaiBt03cRERFQKBQydENEVDnlDlHvvfdeucatX79e52aIyDQVFBRg2bJlGnVO3xGRMSt3iNq4cSMaNmyINm3agN8UQ0Tl9fHHHyM7O1tSe+211/Dss8/K1BERkX6UO0SNGjUKW7duRXp6OoYMGYJ3330XderUqcreiMjIaZu+49knIjIV5b6PODo6Gjdv3sSUKVPw3XffwcvLC2+//TYSExN5ZoqIJPLy8higiMjk6Xx33h9//IGNGzfiyy+/RElJCc6dOwcHBwd992fUeHce1URLlizB33//Lam9/fbbaN68uUwdERFVTJXfnWdmZgaFQgEhBEpLS3XdDBGZEJ59IqKapELLAhcWFmLr1q14+eWX0aRJE5w5cwYfffQRMjMzeRaKqAa7ffs2AxQR1TjlDlGjR4+Gh4cHFi1ahJ49e+LatWvYvn07Xn311Up9RUN0dDS8vb1hY2ODgIAAHD169Injt2/fjmbNmsHGxgatWrXC3r17Jc8LIRAREQEPDw/Y2toiKCgIly5dkoxZsGABOnbsCDs7Ozg7O2vdT2ZmJnr06AE7Ozu4urpi8uTJ6hXaieh/5syZg+joaElt4MCBDFBEZPLKPZ0XExODBg0a4Omnn8ZPP/2En376Seu4b7/9ttw7j42NRVhYGGJiYhAQEIBVq1YhODgYFy9ehKurq8b4lJQU9O/fH1FRUejZsye2bNmCkJAQnDhxAi1btgTw8HqMNWvWYNOmTfDx8cGsWbMQHByM8+fPw8bGBgBQVFSEPn36IDAwEF988YXGfkpLS9GjRw+4u7sjJSUFN2/exKBBg2BpaYmFCxeW+/0RmTqefSKimqzcF5YPHjy4XKsKb9iwodw7DwgIQLt27fDRRx8BAFQqFby8vDB27FhMmzZNY3zfvn1RUFCA3bt3q2sdOnSAn58fYmJiIISAp6cnJk6ciEmTJgF4eJeQm5sbNm7ciH79+km2t3HjRkyYMAG5ubmS+r59+9CzZ0/cuHEDbm5uAB6GyKlTpyI7OxtWVlblen+8sJxM1Y0bN/DZZ59p1BmgiMgU6P3C8o0bN+qjL7WioiIcP34c4eHh6pqZmRmCgoKQmpqq9TWpqakICwuT1IKDgxEXFwcASE9Ph1KpRFBQkPp5JycnBAQEIDU1VSNElSU1NRWtWrVSB6hH+xk1ahTOnTuHNm3alPdtEpkcbWefhg0bhvr168vQDRGRfHS+O6+ybt++jdLSUklQAQA3NzekpaVpfY1SqdQ6XqlUqp9/VCtrTHmUtZ9/7kObwsJCFBYWqh/n5+eXe59ExoDTd0RE/6P7FeGkISoqCk5OTuofLy8vuVsi0ouMjAwGKCKix8h2JsrFxQXm5ubIysqS1LOysuDu7q71Ne7u7k8c/+jPrKwseHh4SMb4+fmVuzd3d3eNuwQf7bes3gAgPDxcMt2Yn5/PIEVGT1t4Gj16NOrVqydDN0REhkO2M1FWVlbw9/dHcnKyuqZSqZCcnIzAwECtrwkMDJSMB4CkpCT1eB8fH7i7u0vG5Ofn48iRI2Vus6z9nDlzBrdu3ZLsx9HRES1atCjzddbW1nB0dJT8EBmzss4+MUAREcl4JgoAwsLCEBoairZt26J9+/ZYtWoVCgoKMGTIEADAoEGDUL9+fURFRQEAxo8fj86dO2P58uXo0aMHtm3bhmPHjuHTTz8FACgUCkyYMAHz58+Hr6+veokDT09PhISEqPebmZmJnJwcZGZmorS0FKdOnQIANG7cGA4ODnjllVfQokULDBw4EEuWLIFSqcTMmTMxZswYWFtbV+sxIpJDWloaYmNjJTUrKyvJjSBERDWdrCGqb9++yM7ORkREBJRKJfz8/JCQkKC+iDszM1OykGfHjh2xZcsWzJw5E9OnT4evry/i4uLUa0QBwJQpU1BQUIARI0YgNzcXnTp1QkJCgnqNKACIiIjApk2b1I8f3W33448/okuXLjA3N8fu3bsxatQoBAYGwt7eHqGhoZg7d25VHxIi2Wk7+zR+/PgyF6YlIqqpdP4CYvp3XCeKjA0vHiciqoYvICYi03Hq1Cns2rVLUqtTpw7Gjh0rU0dERIaPIYqohtN29mnSpEmwt7eXoRsiIuPBEEVUQwkhtF7nx+k7IqLyYYgiqoEOHz6MxMRESa1hw4YYPHiwPA0RERkhhiiiGkbb9N3UqVMld7ASEdG/Y4giqiE4fUdEpF8MUUQ1wLFjx7Bnzx5J7cqV5/HWWy/K1BERkfFjiCIycdqm72bMmAELC/7nT0RUGfwtSmSiSktLMX/+fI06p++IiPSDIYrIBB08eFDjy7pfeeWVCn0RNxERPRlDFJGJ0TZ9N2vWLMn3UBIRUeUxRBGZiJKSEixYsECjzuk7IqKqwRBFZAL279+PQ4cOSWq9evVCmzZtZOqIiMj0MUQRGTlt03cRERFQKBQydENEVHMwRBEZqcLCQixatEijzuk7IqLqwRBFZITi4+Nx8uRJSa1Pnz5o0aKFTB0REdU8DFFERobTd0REhoEhishI3L9/H0uXLtWoc/qOiEgeDFFERiA2NhZpaWmS2rvvvotGjRrJ1BERETFEERk4bdN3PPtERCQ/higiA5Wfn4+VK1dq1BmgiIgMA0MUkQHasGEDMjMzJbX33nsPXl5eMnVERESPY4giMjCcviMiMg4MUUQGIicnB2vXrpXULCwsMGPGDJk6IiKiJ2GIIjIAa9euRU5OjqQ2cuRIuLu7y9QRERH9G4YoIplx+o6IyDgxRBHJJCsrCzExMZKas7Mzxo8fL1NHRERUEQxRRDJYtGgRCgsLJbWxY8eiTp06MnVEREQVxRBFVM04fUdEZBoYooiqyZ9//okvvvhCUqtfvz6GDRsmU0dERFQZDFFE1UDb2acPP/wQjo6OMnRDRET6wBBFVMU4fUdEZJoYooiqyNWrV7F582ZJrUmTJujfv79MHRERkT4xRBFVAW1nnyZNmgR7e3sZuiEioqrAEEWkR0IIzJ07V6PO6TsiItPDEEWkJxcuXMA333wjqfn5+aF3794ydURERFWJIYpID7RN302bNg3W1tYydENERNWBIYqoEjh9R0RUczFEEenol19+wQ8//CCp3brli+Dgd2TqiIiIqhNDFJEOtE3fhYeHw8rKSoZuiIhIDgxRRBWgUqkwb948jTqn74iIah6GKKJySkxMxOHDhyU13n1HRFRzMUQRlYO26bsZM2bAwoL/CRER1VT8BCB6gpKSEixYsECjzuk7IiJiiCIqw86dO/Hbb79Jas899xyCgoJk6oiIiAwJQxSRFtqm72bNmgUzMzMZuiEiIkPEEEX0D0VFRYiKitKoc/qOiIgexxBF9P/27duHo0ePSmovv/wyOnbsKFNHRERkyBiiiKB9+s7PLwIdOypk6IaIiIwBQxTVaA8ePMDixYs16py+IyKif8MQRTXWt99+izNnzkhq/fv3R5MmTWTqiIiIjAlDFNVI2qbvePaJiIgqgiGKapR79+5h+fLlGnUGKCIiqiiGKKoxvvrqK1y5ckVSCw0Nhbe3tzwNERGRUWOIohqB03dERKRvDFFk0u7evYsVK1Zo1BmgiIioshiiyGRt27YNFy9elNRSU4dj9GhPmToiIiJTwhBFJknb9F2bNpHgCSgiItIXhigyKXfu3MGaNWsktfr162PYsGEydURERKbKIL6SPjo6Gt7e3rCxsUFAQIDG95c9bvv27WjWrBlsbGzQqlUr7N27V/K8EAIRERHw8PCAra0tgoKCcOnSJcmYnJwcDBgwAI6OjnB2dsbQoUNx79499fMZGRlQKBQaP4cPH9bfGye9Wr9+vUaAGjt2LAMUERFVCdlDVGxsLMLCwhAZGYkTJ06gdevWCA4Oxq1bt7SOT0lJQf/+/TF06FCcPHkSISEhCAkJwdmzZ9VjlixZgjVr1iAmJgZHjhyBvb09goOD8eDBA/WYAQMG4Ny5c0hKSsLu3bvx888/Y8SIERr7279/P27evKn+8ff31/9BoEqbM2cOrl27JqlFRkaiTp06MnVERESmTiGEEHI2EBAQgHbt2uGjjz4CAKhUKnh5eWHs2LGYNm2axvi+ffuioKAAu3fvVtc6dOgAPz8/xMTEQAgBT09PTJw4EZMmTQIA5OXlwc3NDRs3bkS/fv1w4cIFtGjRAr/++ivatm0LAEhISMCrr76KP//8E56ensjIyICPjw9OnjwJPz8/nd5bfn4+nJyckJeXB0dHR522QU927do1rF+/XlLz9fXFO++8I1NHRERk7Mr7+S3rmaiioiIcP34cQUFB6pqZmRmCgoKQmpqq9TWpqamS8QAQHBysHp+eng6lUikZ4+TkhICAAPWY1NRUODs7qwMUAAQFBcHMzAxHjhyRbLtXr15wdXVFp06dEB8f/8T3U1hYiPz8fMkPVZ05c+ZoBKgPP/yQAYqIiKqFrCHq9u3bKC0thZubm6Tu5uYGpVKp9TVKpfKJ4x/9+W9jXF1dJc9bWFigTp066jEODg5Yvnw5tm/fjj179qBTp04ICQl5YpCKioqCk5OT+sfLy+vfDgHpSNvdd1u3RvKMHxERVRvenVcGFxcXhIWFqR+3a9cON27cwNKlS9GrVy+trwkPD5e8Jj8/n0FKz65cuYKvvvpKUrO2rov4+A+wZIlMTRERUY0ka4hycXGBubk5srKyJPWsrCy4u7trfY27u/sTxz/6MysrCx4eHpIxj65tcnd317hwvaSkBDk5OWXuF3h4/VZSUlKZz1tbW8Pa2rrM56lytJ19+vDDD+Ho6Agtl88RERFVKVmn86ysrODv74/k5GR1TaVSITk5GYGBgVpfExgYKBkPAElJSerxPj4+cHd3l4zJz8/HkSNH1GMCAwORm5uL48ePq8f88MMPUKlUCAgIKLPfU6dOSYIZVZ+yvvuO03dERCQX2afzwsLCEBoairZt26J9+/ZYtWoVCgoKMGTIEADAoEGDUL9+fURFRQEAxo8fj86dO2P58uXo0aMHtm3bhmPHjuHTTz8FACgUCkyYMAHz58+Hr68vfHx8MGvWLHh6eiIkJAQA0Lx5c3Tr1g3Dhw9HTEwMiouL8cEHH6Bfv37w9Hz4lSCbNm2ClZUV2rRpAwD49ttvsX79enz++efVfIRqtvPnz2P79u2SWoMGDdT/fhAREclF9hDVt29fZGdnIyIiAkqlEn5+fkhISFBfGJ6ZmQkzs/+dMOvYsSO2bNmCmTNnYvr06fD19UVcXBxatmypHjNlyhQUFBRgxIgRyM3NRadOnZCQkAAbGxv1mK+//hoffPABXnrpJZiZmeHNN9/UWKhx3rx5+OOPP2BhYYFmzZohNjYWb731VhUfEXpE29mnyZMnw87OToZuiIiIpGRfJ8qUcZ0o3QghMHfuXI16JL/4joiIqkF5P79lPxNF9E8nTpzAd999J6m1aNECffr0kakjIiIi7RiiyGBom76bNm0a73gkIiKDxBBFsuP0HRERGSOGKJLVoUOHsH//fkmtbdu26NGjh0wdERERlQ9DFMlG2/TdjBkzYGHBfy2JiMjw8dOKqp1KpcK8efM06py+IyIiY8IQRdXq+PHj2L17t6T2wgsvoGvXrjJ1REREpBuGKKo22qbv/PxmoWtXWb99iIiISCcMUVTlSkpKsGDBAo06p++IiMiYMURRlUpJSUFSUpKk1qdPH7Ro0UKmjoiIiPSDIYqqjLbpu4iICCgUChm6ISIi0i+GKNK7oqIiREVFadQ5fUdERKaEIYr0Kjk5GQcPHpTUBgwYgMaNG8vUERERUdVgiCK94fQdERHVJAxRVGkPHjzA4sWLNeqcviMiIlPGEEWVsmfPHhw7dkxSGzJkCBo0aCBTR0RERNWDIYp0pm36jmefiIiopmCIogq7d+8eli9fLqnZ29tj0qRJMnVERERU/RiiqEJ27NiBs2fPSmojRoyAh4eHTB0RERHJgyGKyo3Td0RERP/DEEX/Ki8vD6tWrZLUXF1dMWrUKHkaIiIiMgAMUfREmzdvxtWrVyW1MWPGwMXFRaaOiIiIDANDFJWJ03dERERlY4giDXfv3sWKFSskNW9vb4SGhsrUERERkeFhiCKJpKQkpKSkSGo//TQekZHO8jRERERkoBiiSE3b9N3WrZFYskSGZoiIiAwcQxQhNzcXq1evltReeeUVBAYGgpdAERERaccQVcPt3r0bx48fl9SmTp0KGxsbmToiIiIyDgxRNRjvviMiItIdQ1QNdPv2bURHR0tqPXv2hL+/v0wdERERGR+GqBpG23ffhYeHw8rKSqaOiIiIjBNDVA0hhMDcuXM16py+IyIi0g1DVA2QlZWFmJgYSe3111/Hf/7zH5k6IiIiMn4MUSbu66+/xuXLlyW1GTNmwMKCf/VERESVwU9SE6Vt+s7S0hLTp0+XqSMiIiLTwhBlgm7duoV169ZJam+//TaaN28uU0dERESmhyHKxJw4cQLfffedpDZz5kyYm5vL1BEREZFpYogyEUIIfPzxx7h9+7a69vffTli0aIJ8TREREZkwhigToO27737+eSzGj68jU0dERESmjyHKyB09ehT79u1TP3Z2dsa4ceOgUChk7IqIiMj0MUQZKSEEVq1ahfz8fHXt1VdfRbt27WTsioiIqOZgiDJCOTk5WLt2raQ2YcIEODk5ydQRERFRzcMQZYT+GaBcXV3x/vvvc/qOiIiomjFEGaHr11ujfv3TOHOmN/77Xz+52yEiIqqRzORugCquZ88QJCZGYtAgP7lbISIiqrF4JsoI9er18IeIiIjkwzNRRERERDpgiCIiIiLSAUMUERERkQ4YooiIiIh0wBBFREREpAOGKCIiIiIdMEQRERER6YAhioiIiEgHDFFEREREOmCIIiIiItIBQxQRERGRDhiiiIiIiHTAEEVERESkAwu5GzBlQggAQH5+vsydEBERUXk9+tx+9DleFoaoKnT37l0AgJeXl8ydEBERUUXdvXsXTk5OZT6vEP8Ws0hnKpUKN27cQK1ataBQKORuxyTl5+fDy8sL165dg6Ojo9zt1Ag85tWPx1wePO7Vz1COuRACd+/ehaenJ8zMyr7yiWeiqpCZmRmeeuopuduoERwdHflLrprxmFc/HnN58LhXP0M45k86A/UILywnIiIi0gFDFBEREZEOGKLIqFlbWyMyMhLW1tZyt1Jj8JhXPx5zefC4Vz9jO+a8sJyIiIhIBzwTRURERKQDhigiIiIiHTBEEREREemAIYqIiIhIBwxRVK2io6Ph7e0NGxsbBAQE4OjRo08cv337djRr1gw2NjZo1aoV9u7dK3leCIGIiAh4eHjA1tYWQUFBuHTpkmRMTk4OBgwYAEdHRzg7O2Po0KG4d++e+vmMjAwoFAqNn8OHD+vvjctIjmO+YMECdOzYEXZ2dnB2dta6n8zMTPTo0QN2dnZwdXXF5MmTUVJSUqn3aigM9Zhr+/d827ZtlXqvhqK6j3lGRgaGDh0KHx8f2NraolGjRoiMjERRUZFkO7/99huef/552NjYwMvLC0uWLNHfmzYAhnjcq/V3uiCqJtu2bRNWVlZi/fr14ty5c2L48OHC2dlZZGVlaR1/6NAhYW5uLpYsWSLOnz8vZs6cKSwtLcWZM2fUYxYtWiScnJxEXFycOH36tOjVq5fw8fERf//9t3pMt27dROvWrcXhw4fFL7/8Iho3biz69++vfj49PV0AEPv37xc3b95U/xQVFVXdwagmch3ziIgIsWLFChEWFiacnJw09lNSUiJatmwpgoKCxMmTJ8XevXuFi4uLCA8P1/sxqG6GesyFEAKA2LBhg+Tf839uw1jJccz37dsnBg8eLBITE8WVK1fErl27hKurq5g4caJ6G3l5ecLNzU0MGDBAnD17VmzdulXY2tqKTz75pGoPSDUx1ONenb/TGaKo2rRv316MGTNG/bi0tFR4enqKqKgorePffvtt0aNHD0ktICBAjBw5UgghhEqlEu7u7mLp0qXq53Nzc4W1tbXYunWrEEKI8+fPCwDi119/VY/Zt2+fUCgU4vr160KI//0Hd/LkSb28T0MixzH/pw0bNmj9QN+7d68wMzMTSqVSXVu3bp1wdHQUhYWFFXqPhsZQj7kQD0PUzp07K/iODJ/cx/yRJUuWCB8fH/Xjjz/+WNSuXVvy7/TUqVNF06ZNK/YGDZShHvfq/J3O6TyqFkVFRTh+/DiCgoLUNTMzMwQFBSE1NVXra1JTUyXjASA4OFg9Pj09HUqlUjLGyckJAQEB6jGpqalwdnZG27Zt1WOCgoJgZmaGI0eOSLbdq1cvuLq6olOnToiPj6/cGzYAch3z8khNTUWrVq3g5uYm2U9+fj7OnTtX7u0YGkM+5o+MGTMGLi4uaN++PdavXw9h5EsFGtIxz8vLQ506dST7eeGFF2BlZSXZz8WLF3Hnzp2KvVEDY8jH/ZHq+J3OEEXV4vbt2ygtLZV8aAKAm5sblEql1tcolconjn/057+NcXV1lTxvYWGBOnXqqMc4ODhg+fLl2L59O/bs2YNOnTohJCTE6IOUXMe8PMrazz/3YYwM+ZgDwNy5c/HNN98gKSkJb775JkaPHo21a9dWaBuGxlCO+eXLl7F27VqMHDnyX/fzz30YK0M+7tX5O91C71skMjIuLi4ICwtTP27Xrh1u3LiBpUuXolevXjJ2RqRfs2bNUv9zmzZtUFBQgKVLl2LcuHEydmX8rl+/jm7duqFPnz4YPny43O3UGGUd9+r8nc4zUVQtXFxcYG5ujqysLEk9KysL7u7uWl/j7u7+xPGP/vy3Mbdu3ZI8X1JSgpycnDL3CwABAQG4fPlyOd6Z4ZLrmJdHWfv55z6MkSEfc20CAgLw559/orCwsFLbkZPcx/zGjRvo2rUrOnbsiE8//bRc+/nnPoyVIR93barqdzpDFFULKysr+Pv7Izk5WV1TqVRITk5GYGCg1tcEBgZKxgNAUlKSeryPjw/c3d0lY/Lz83HkyBH1mMDAQOTm5uL48ePqMT/88ANUKhUCAgLK7PfUqVPw8PCo+Bs1IHId8/IIDAzEmTNnJAE3KSkJjo6OaNGiRbm3Y2gM+Zhrc+rUKdSuXdtovuxVGzmP+fXr19GlSxf4+/tjw4YNMDOTfqQGBgbi559/RnFxsWQ/TZs2Re3atXV/0wbAkI+7NlX2O73KL10n+n/btm0T1tbWYuPGjeL8+fNixIgRwtnZWX2H1sCBA8W0adPU4w8dOiQsLCzEsmXLxIULF0RkZKTW22GdnZ3Frl27xG+//SZ69+6tdYmDNm3aiCNHjoiDBw8KX19fyRIHGzduFFu2bBEXLlwQFy5cEAsWLBBmZmZi/fr11XBUqpZcx/yPP/4QJ0+eFHPmzBEODg7i5MmT4uTJk+Lu3btCiP8tcfDKK6+IU6dOiYSEBFGvXj2TWeLAEI95fHy8+Oyzz8SZM2fEpUuXxMcffyzs7OxERERENR2ZqiPHMf/zzz9F48aNxUsvvST+/PNPya30j+Tm5go3NzcxcOBAcfbsWbFt2zZhZ2dnUkscGOJxr87f6QxRVK3Wrl0rGjRoIKysrET79u3F4cOH1c917txZhIaGSsZ/8803okmTJsLKyko888wzYs+ePZLnVSqVmDVrlnBzcxPW1tbipZdeEhcvXpSM+euvv0T//v2Fg4ODcHR0FEOGDFF/sAjx8D+45s2bCzs7O+Ho6Cjat28vtm/frv83LxM5jnloaKgAoPHz448/qsdkZGSI7t27C1tbW+Hi4iImTpwoiouL9f7+5WCIx3zfvn3Cz89PODg4CHt7e9G6dWsRExMjSktLq+QYVLfqPuYbNmzQerwfPzdx+vRp0alTJ2FtbS3q168vFi1apP83LyNDPO7V+TtdIYSR399KREREJANeE0VERESkA4YoIiIiIh0wRBERERHpgCGKiIiISAcMUUREREQ6YIgiIiIi0gFDFBEREZEOGKKIiIiIdMAQRUQ1klKpxNixY/H000/D2toaXl5eeO2119Tf2zVy5Eg0atQItra2qFevHnr37o20tDT16zMyMqBQKHDq1CmNbXfp0gUTJkxQP7537x4++OADPPXUU7C1tUWLFi0QExNT1W+RiKqYhdwNEBFVt4yMDDz33HNwdnbG0qVL0apVKxQXFyMxMRFjxoxBWloa/P39MWDAADRo0AA5OTmYPXs2XnnlFaSnp8Pc3LxC+wsLC8MPP/yAr776Ct7e3vj+++8xevRoeHp6olevXlX0LomoqjFEEVGNM3r0aCgUChw9ehT29vbq+jPPPIP33nsPADBixAh13dvbG/Pnz0fr1q2RkZGBRo0aVWh/KSkpCA0NRZcuXdTb/uSTT3D06FGGKCIjxuk8IqpRcnJykJCQgDFjxkgC1CPOzs4atYKCAmzYsAE+Pj7w8vKq8D47duyI+Ph4XL9+HUII/Pjjj/j999/xyiuv6PIWiMhAMEQRUY1y+fJlCCHQrFmzfx378ccfw8HBAQ4ODti3bx+SkpJgZWUlGdOxY0f1mEc/v/zyi2TM2rVr0aJFCzz11FOwsrJCt27dEB0djRdeeEGv742Iqhen84ioRhFClHvsgAED8PLLL+PmzZtYtmwZ3n77bRw6dAg2NjbqMbGxsWjevLnG6/5p7dq1OHz4MOLj49GwYUP8/PPPGDNmDDw9PREUFFS5N0REsmGIIqIaxdfXFwqFQnKnXVmcnJzg5OQEX19fdOjQAbVr18bOnTvRv39/9RgvLy80btxY8jpbW1v1P//999+YPn06du7ciR49egAA/vOf/+DUqVNYtmwZQxSREeN0HhHVKHXq1EFwcDCio6NRUFCg8Xxubq7W1wkhIIRAYWFhhfZXXFyM4uJimJlJf92am5tDpVJVaFtEZFgYooioxomOjkZpaSnat2+PHTt24NKlS7hw4QLWrFmDwMBAXL16FVFRUTh+/DgyMzORkpKCPn36wNbWFq+++mqF9uXo6IjOnTtj8uTJOHDgANLT07Fx40Z8+eWXeP3116voHRJRdeB0HhHVOE8//TROnDiBBQsWYOLEibh58ybq1asHf39/rFu3DjY2Nvjll1+watUq3LlzB25ubnjhhReQkpICV1fXCu9v27ZtCA8Px4ABA5CTk4OGDRtiwYIFeP/996vg3RFRdVGIilxlSUREREQAOJ1HREREpBOGKCIiIiIdMEQRERER6YAhioiIiEgHDFFEREREOmCIIiIiItIBQxQRERGRDhiiiIiIiHTAEEVERESkA4YoIiIiIh0wRBERERHpgCGKiIiISAf/BzS4J41xa1AVAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAHHCAYAAAAYmuQbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVoNJREFUeJzt3Xl4TGf/BvB7EtkjCSIbIbGG8koaRFIt2lSoLV00VAlS1J7GmiB2UXspUpToglCEKiFSqiW1U1tsTcSWSEsSgqzn94efU6cz0QyTObPcn+vKpfOdZ875npz3NbfnOXNGIQiCACIiIiLSGhO5GyAiIiIyNgxgRERERFrGAEZERESkZQxgRERERFrGAEZERESkZQxgRERERFrGAEZERESkZQxgRERERFrGAEZERESkZQxgRGT0FAoFpkyZIncbor59+8LDw0PuNoioAjGAEZFOiouLg0KhEH8sLS3RoEEDDBs2DFlZWRW670OHDmHKlCnIycnR6Hbbtm0rOaaqVauiRYsWWL16NUpLSzWyj1mzZiEhIUEj2yKiilNJ7gaIiJ5n2rRp8PT0xOPHj/Hbb79h+fLl2LlzJ86ePQtra2uN7OPRo0eoVOmfvw4PHTqEqVOnom/fvnBwcNDIPp6qWbMmYmJiAADZ2dn45ptvEBYWhkuXLmH27Nkvvf1Zs2bhgw8+QHBw8Etvi4gqDgMYEem0jh07onnz5gCATz75BNWqVcOCBQuwbds29OzZ84W3W1paisLCQlhaWsLS0lJT7f4ne3t7fPzxx+LjQYMGoWHDhvjyyy8xffp0mJmZaa0XIpIPlyCJSK+8+eabAIC0tDQAwLx58xAQEIBq1arBysoKvr6++OGHH5Rep1AoMGzYMHz//fd45ZVXYGFhgcTERPG5p9eATZkyBWPGjAEAeHp6isuF6enpaNOmDZo1a6ayr4YNGyIoKEjt47G2tkarVq2Qn5+P7OzsMsfl5+dj1KhRcHd3h4WFBRo2bIh58+ZBEATJMebn52Pt2rVi33379lW7JyKqeJwBIyK9cvXqVQBAtWrVAABffPEFunbtil69eqGwsBAbNmxA9+7dsWPHDnTq1Eny2p9//hkbN27EsGHD4OjoqPJC9/feew+XLl3C+vXrsXDhQjg6OgIAqlevjt69e2PAgAE4e/YsmjRpIr7m6NGjuHTpEiZOnPhCx/Tnn3/C1NS0zOVOQRDQtWtX7Nu3D2FhYfD29sbu3bsxZswY3Lx5EwsXLgQAfPvtt/jkk0/QsmVLDBw4EABQt27dF+qJiCqYQESkg9asWSMAEPbu3StkZ2cL169fFzZs2CBUq1ZNsLKyEm7cuCEIgiA8fPhQ8rrCwkKhSZMmwptvvimpAxBMTEyEc+fOKe0LgDB58mTx8dy5cwUAQlpammRcTk6OYGlpKYwbN05SHzFihGBjYyM8ePDgucfUpk0bwcvLS8jOzhays7OFCxcuCCNGjBAACF26dBHHhYaGCrVr1xYfJyQkCACEGTNmSLb3wQcfCAqFQrhy5YpYs7GxEUJDQ5/bBxHJj0uQRKTTAgMDUb16dbi7u6NHjx6wtbXF1q1bUaNGDQCAlZWVOPbevXvIzc3F66+/jhMnTihtq02bNmjcuPEL92Jvb49u3bph/fr14tJfSUkJ4uPjERwcDBsbm//cRmpqKqpXr47q1aujUaNGWLJkCTp16oTVq1eX+ZqdO3fC1NQUI0aMkNRHjRoFQRCwa9euFz4mIpIHlyCJSKctXboUDRo0QKVKleDs7IyGDRvCxOSffzvu2LEDM2bMwKlTp1BQUCDWFQqF0rY8PT1fup8+ffogPj4ev/76K9544w3s3bsXWVlZ6N27d7le7+HhgZUrV4q31qhfvz6cnJye+5pr167Bzc0NlStXltQbNWokPk9E+oUBjIh0WsuWLcVPQf7br7/+iq5du+KNN97AsmXL4OrqCjMzM6xZswbr1q1TGv/sbNmLCgoKgrOzM7777ju88cYb+O677+Di4oLAwMByvd7GxqbcY4nIcHEJkoj01ubNm2FpaYndu3ejf//+6Nixo0bCjarZs6dMTU3x0Ucf4YcffsC9e/eQkJCAnj17wtTU9KX3W5batWvj1q1buH//vqSempoqPv/U83onIt3BAEZEesvU1BQKhQIlJSViLT09/aXvBP/0Wq6y7oTfu3dv3Lt3D4MGDcKDBw8k9/WqCO+88w5KSkrw5ZdfSuoLFy6EQqFAx44dxZqNjY3G7+BPRJrHJUgi0ludOnXCggUL0KFDB3z00Ue4c+cOli5dinr16uGPP/544e36+voCACZMmIAePXrAzMwMXbp0EYOZj48PmjRpgk2bNqFRo0Z49dVXNXI8ZenSpQvatWuHCRMmID09Hc2aNcOePXuwbds2hIeHS2414evri71792LBggVwc3ODp6cn/Pz8KrQ/IlIfZ8CISG+9+eab+Prrr5GZmYnw8HCsX78en3/+Od59992X2m6LFi0wffp0nD59Gn379kXPnj2VbpLap08fACj3xfcvw8TEBNu3b0d4eDh27NiB8PBwnD9/HnPnzsWCBQskYxcsWABfX19MnDgRPXv2xPLlyyu8PyJSn0IQnrmNMhERlcsXX3yBzz77DOnp6ahVq5bc7RCRnmEAIyJSkyAIaNasGapVq4Z9+/bJ3Q4R6SFeA0ZEVE75+fnYvn079u3bhzNnzmDbtm1yt0REeoozYERE5ZSeng5PT084ODhgyJAhmDlzptwtEZGeYgAjIiIi0jJ+CpKIiIhIyxjAiIiIiLSMF+FXoNLSUty6dQuVK1fm14MQERHpCUEQcP/+fbi5ucHEpGLmqhjAKtCtW7fg7u4udxtERET0Aq5fv46aNWtWyLYZwCpQ5cqVATw5gXZ2djJ3Q0REROWRl5cHd3d38X28IjCAVaCny452dnYMYERERHqmIi8f0omL8JcuXQoPDw9YWlrCz88PR44cee74TZs2wcvLC5aWlmjatCl27twpeV4QBERHR8PV1RVWVlYIDAzE5cuXxefT09MRFhYGT09PWFlZoW7dupg8eTIKCwslYxQKhdLP77//rtmDJyIiIqMjewCLj49HREQEJk+ejBMnTqBZs2YICgrCnTt3VI4/dOgQevbsibCwMJw8eRLBwcEIDg7G2bNnxTFz5szB4sWLERsbi8OHD8PGxgZBQUF4/PgxACA1NRWlpaX46quvcO7cOSxcuBCxsbGIiopS2t/evXtx+/Zt8cfX17difhFERERkNGS/Eaufnx9atGiBL7/8EsCTTw66u7tj+PDhGD9+vNL4kJAQ5OfnY8eOHWKtVatW8Pb2RmxsLARBgJubG0aNGoXRo0cDAHJzc+Hs7Iy4uDj06NFDZR9z587F8uXL8eeffwL4547XJ0+ehLe39wsdW15eHuzt7ZGbm8slSCIiIj2hjfdvWa8BKywsxPHjxxEZGSnWTExMEBgYiJSUFJWvSUlJQUREhKQWFBSEhIQEAEBaWhoyMzMRGBgoPm9vbw8/Pz+kpKSUGcByc3NRtWpVpXrXrl3x+PFjNGjQAGPHjkXXrl3LPJ6CggIUFBSIj/Py8soc+1RJSQmKior+cxzpPzMzM5iamsrdBhER6QBZA9hff/2FkpISODs7S+rOzs5ITU1V+ZrMzEyV4zMzM8Xnn9bKGvNvV65cwZIlSzBv3jyxZmtri/nz5+O1116DiYkJNm/ejODgYCQkJJQZwmJiYjB16tTnHPE/BEFAZmYmcnJyyjWeDIODgwNcXFx4XzgiIiNn9J+CvHnzJjp06IDu3btjwIABYt3R0VEy09aiRQvcunULc+fOLTOARUZGSl7z9GOsqjwNX05OTrC2tuYbsoETBAEPHz4Ur210dXWVuSMiIpKTrAHM0dERpqamyMrKktSzsrLg4uKi8jUuLi7PHf/0z6ysLMmbXFZWltK1XLdu3UK7du0QEBCAFStW/Ge/fn5+SEpKKvN5CwsLWFhY/Od2SkpKxPBVrVq1/xxPhsHKygoAcOfOHTg5OXE5kojIiMn6KUhzc3P4+voiOTlZrJWWliI5ORn+/v4qX+Pv7y8ZDwBJSUnieE9PT7i4uEjG5OXl4fDhw5Jt3rx5E23btoWvry/WrFlTrq8aOHXqlEZmLp5e82Vtbf3S2yL98vSc87o/IiLjJvsSZEREBEJDQ9G8eXO0bNkSixYtQn5+Pvr16wcA6NOnD2rUqIGYmBgAwMiRI9GmTRvMnz8fnTp1woYNG3Ds2DFxBkuhUCA8PBwzZsxA/fr14enpiUmTJsHNzQ3BwcEA/glftWvXxrx585CdnS3283QGbe3atTA3N4ePjw8AYMuWLVi9ejVWrVqlsWPnsqPx4TknIiJABwJYSEgIsrOzER0djczMTHh7eyMxMVG8iD4jI0MyOxUQEIB169Zh4sSJiIqKQv369ZGQkIAmTZqIY8aOHYv8/HwMHDgQOTk5aN26NRITE2FpaQngyYzZlStXcOXKFaXveHr2rhzTp0/HtWvXUKlSJXh5eSE+Ph4ffPBBRf46iIiIyAjIfh8wQ1bWfUQeP36MtLQ0eHp6iqGQjAPPPRGR7tPGfcBkvxM+6Ze+ffuKX8tkZmYGZ2dnvP3221i9ejVKS0vLvZ24uDg4ODhUXKNEREQ6jAGM1NahQwfcvn0b6enp2LVrF9q1a4eRI0eic+fOKC4ulrs9IiIyAqWlpSgpKZG7jRfGAEZqs7CwgIuLC2rUqIFXX30VUVFR2LZtG3bt2oW4uDgAwIIFC9C0aVPY2NjA3d0dQ4YMwYMHDwAA+/fvR79+/ZCbmyvOpk2ZMgUA8O2336J58+aoXLkyXFxc8NFHH5X5vaBERGScdu3ahenTp2Ps2FXYvl3ubl4MA5iOEAQBhYWFsvxo4jLAN998E82aNcOWLVsAPPlKqcWLF+PcuXNYu3Ytfv75Z4wdOxbAkw9SLFq0CHZ2duKXnD/93s6ioiJMnz4dp0+fRkJCAtLT09G3b9+X7o+IiPRfUVERpk6diiNHjgAA7OwyMXu2fl7KLvunIOmJoqIi8VYb2hYZGQlzc/OX3o6Xlxf++OMPAEB4eLhY9/DwwIwZM/Dpp59i2bJlMDc3h729PRQKhdINd/v37y/+d506dbB48WK0aNECDx48gK2t7Uv3SERE+ikjIwNr1qyR1JKTx2H8eP28vQ8DGGmMIAjifa727t2LmJgYpKamIi8vD8XFxXj8+DEePnz43BvQHj9+HFOmTMHp06dx79498cL+jIwMNG7cWCvHQUREumX79u04efKk+LhJkyZ4//33MXmyjE29JAYwHWFmZobIyEjZ9q0JFy5cgKenJ9LT09G5c2cMHjwYM2fORNWqVfHbb78hLCwMhYWFZQaw/Px8BAUFISgoCN9//z2qV6+OjIwMBAUFobCwUCM9EhGR/igsLFRaHerduzfq1KkjU0eawwCmIxQKhUaWAeXy888/48yZM/jss89w/PhxlJaWYv78+eJNdDdu3CgZb25urvTpldTUVPz999+YPXu2+CXmx44d084BEBGRTvnzzz/x7bffSmqaumRGFzCAkdoKCgqQmZmJkpISZGVlITExETExMejcuTP69OmDs2fPoqioCEuWLEGXLl1w8OBBxMbGSrbh4eGBBw8eIDk5Gc2aNYO1tTVq1aoFc3NzLFmyBJ9++inOnj2L6dOny3SUREQkl82bN+Ps2bPiYx8fH3Tt2lXGjjSPn4IktSUmJsLV1RUeHh7o0KED9u3bh8WLF2Pbtm0wNTVFs2bNsGDBAnz++edo0qQJvv/+e6Up5ICAAHz66acICQlB9erVMWfOHFSvXh1xcXHYtGkTGjdujNmzZ2PevHkyHSUREWnb48ePMXXqVEn46tevn8GFL4BfRVSh+FVE9G8890REql2+fBnr1q2T1KKiojR2nbI6tPFVRFyCJCIiIlmtX78ely5dEh+3bNkSHTt2lLGjiscARkRERLJ49OgR5syZI6l98sknqFGjhkwdaQ8DGBEREWndhQsXlD4hP2HCBFSqZBzRxDiOkoiIiHTGN998g7S0NPHxa6+9hsDAQBk70j4GMCIiItKK/Px8pU+3Dxo0SOlr6YwBAxgRERFVuDNnzmDLli3iY1NTU0RGRsLU1FTGruTDAEZEREQVRhAEfP3117h586ZYa9u2Ldq0aSNjV/JjACMiIqIKcf/+fSxYsEBSGzJkCKpXry5TR7qDAYyIiIg07uTJk9i+fbv42MrKCqNHjxa/I9jYMYCRTurbty9ycnKQkJAA4Ml0tbe3NxYtWvTC29TENoiI6PkEQcDy5cuRnZ0t1t5++20EBATI2JXuYQAjtfTt2xdr164FAJiZmaFWrVro06cPoqKiKvTeLVu2bCn311Hs378f7dq1w7179+Dg4PBC2yAiIvXl5OTgiy++kNSGDRuGatWqydSR7mIAI7V16NABa9asQUFBAXbu3ImhQ4fCzMwMkZGRknGFhYUwNzfXyD6rVq2qE9sgIiLVjh49ip07d4qP7e3tMXLkSCgUChm70l1ciCW1WVhYwMXFBbVr18bgwYMRGBiI7du3o2/fvggODsbMmTPh5uaGhg0bAgCuX7+ODz/8EA4ODqhatSq6deuG9PR0cXslJSWIiIiAg4MDqlWrhrFjx+Lf3xHftm1bhIeHi48LCgowbtw4uLu7w8LCAvXq1cPXX3+N9PR0tGvXDgBQpUoVKBQK9O3bV+U27t27hz59+qBKlSqwtrZGx44dcfnyZfH5uLg4ODg4YPfu3WjUqBFsbW3RoUMH3L59Wxyzf/9+tGzZEjY2NnBwcMBrr72Ga9euaeg3TUSk+wRBwKJFiyThq2PHjggPD2f4eg4GMHppVlZWKCwsBAAkJyfj4sWLSEpKwo4dO1BUVISgoCBUrlwZv/76Kw4ePCgGmaevmT9/PuLi4rB69Wr89ttvuHv3LrZu3frcffbp0wfr16/H4sWLceHCBXz11VewtbWFu7s7Nm/eDAC4ePEibt++rTQd/lTfvn1x7NgxbN++HSkpKRAEAe+88w6KiorEMQ8fPsS8efPw7bff4sCBA8jIyMDo0aMBAMXFxQgODkabNm3wxx9/ICUlBQMHDuRfOERkNO7evYtp06YhNzdXrI0cORItW7aUsSv9wCVIemGCICA5ORm7d+/G8OHDkZ2dDRsbG6xatUpcevzuu+9QWlqKVatWicFkzZo1cHBwwP79+9G+fXssWrQIkZGReO+99wAAsbGx2L17d5n7vXTpEjZu3IikpCTxqyvq1KkjPv90qdHJyUlyDdizLl++jO3bt+PgwYPihaHff/893N3dkZCQgO7duwMAioqKEBsbi7p16wJ4ci3DtGnTAAB5eXnIzc1F586dxecbNWqk/i+SiEgPHTp0CElJSeLj6tWrY/DgwfxHaDlxBswAbN8OBAQ8+VMbduzYAVtbW1haWqJjx44ICQnBlClTAABNmzaVXPd1+vRpXLlyBZUrV4atrS1sbW1RtWpVPH78GFevXkVubi5u374NPz8/8TWVKlVC8+bNy9z/qVOnYGpq+lI38btw4QIqVaok2W+1atXQsGFDXLhwQaxZW1uL4QoAXF1dcefOHQBPgl7fvn0RFBSELl264IsvvpAsTxIRGaLS0lLMmTNHEr66du2KIUOGMHypgTNgBmD2bCAl5cmfXbtW/P7atWuH5cuXw9zcHG5ubpJPP9rY2EjGPnjwAL6+vvj++++VtvOiN+KzsrJ6ode9iH9/alKhUEiuT1uzZg1GjBiBxMRExMfHY+LEiUhKSkKrVq201iMRkbZkZ2dj2bJlktpnn30GOzs7mTrSX5wBMwDjxwP+/k/+1AYbGxvUq1cPtWrV+s9bT7z66qu4fPkynJycUK9ePcmPvb097O3t4erqisOHD4uvKS4uxvHjx8vcZtOmTVFaWopffvlF5fNPZ+BKSkrK3EajRo1QXFws2e/ff/+NixcvonHjxs89pn/z8fFBZGQkDh06hCZNmmDdunVqvZ6ISB8cOHBAEr5q1KiB6Ohohq8XxABmALp2BQ4d0s7sl7p69eoFR0dHdOvWDb/++ivS0tKwf/9+jBgxAjdu3ADw5ILN2bNnIyEhAampqRgyZAhycnLK3KaHhwdCQ0PRv39/JCQkiNvcuHEjAKB27dpQKBTYsWMHsrOz8eDBA6Vt1K9fH926dcOAAQPw22+/4fTp0/j4449Ro0YNdOvWrVzHlpaWhsjISKSkpODatWvYs2cPLl++zOvAiMiglJSUYMaMGdi3b59Ye++99/DJJ59wyfElMIBRhbK2tsaBAwdQq1YtvPfee2jUqBHCwsLw+PFj8V9No0aNQu/evREaGgp/f39UrlwZ77777nO3u3z5cnzwwQcYMmQIvLy8MGDAAOTn5wN48q+yqVOnYvz48XB2dsawYcNUbmPNmjXw9fVF586d4e/vD0EQsHPnznLfrNXa2hqpqal4//330aBBAwwcOBBDhw7FoEGD1PgNERHprszMTMyYMUOyojBq1Cg0bdpUxq4Mg0L49w2XSGPy8vJgb2+P3NxcyRTt48ePkZaWBk9PT1haWsrYIWkbzz0R6Yvk5GT89ttv4uOnqw/GoKz3b03iRfhEREQkKi4uxsyZMyW17t27q319LD0fAxgREREBAG7evIlVq1ZJamPGjIG1tbVMHRkuBjAiIiJCYmKi5JPhDRo0QM+ePWXsyLAxgBERERmxoqIizJo1S1Lr2bMnGjRoIFNHxoEBTEb8/IPx4TknIl2SkZGBNWvWSGrjxo3jh4S0gAFMBk9vc/Dw4UOt3tWd5Pfw4UMAynfYJyLSth9//BEnTpwQH7/yyiv44IMPZOzIuDCAycDU1BQODg7idwpaW1vzZnYGThAEPHz4EHfu3IGDgwNMTU3lbomIjFRhYSFiYmIktd69e6NOnToydWScGMBk4uLiAgBiCCPj4ODgIJ57IiJtS0tLwzfffCOpjR8/HhYWFjJ1ZLwYwGSiUCjg6uoKJycnFBUVyd0OaYGZmRlnvohINlu2bMGZM2fEx97e3uX+6jXSPAYwmZmamvJNmYiIKszjx4/x+eefS2p9+/ZF7dq1ZeqIAAYwIiIig3XlyhV8//33klpUVBQ/CKQDGMCIiIgM0IYNG3Dx4kXxcYsWLfDOO+/I2BE9iwGMiIjIgDx69Ahz5syR1MLCwlCzZk2ZOiJVGMCIiIgMRGpqKuLj4yW1CRMmoFIlvt3rGp4RIiIiA/Dtt9/izz//FB8HBATg7bfflrEjeh4GMCIiIj2Wn5+PefPmSWoDBw6Eq6urTB1ReTCAERER6amzZ89i8+bN4mMTExNERUXx9kZ6gAGMiIhIzwiCgNWrV+PGjRtirU2bNmjbtq18TZFaGMCIiIj0yP3797FgwQJJbfDgwXBycpKpI3oRDGBERER64tSpU9i2bZv42NLSEmPGjIGJiYmMXdGLYAAjIiLScYIgIDY2Fnfu3BFrgYGBeO2112Tsil4GAxgREZEOy83NxaJFiyS1YcOGoVq1avI0RBrBAEZERKSjjh49ip07d4qP7ezsEB4eDoVCIWNXpAkMYERERDpGEAQsXrwYOTk5Yq1jx45o2bKlfE2RRjGAERER6ZCrV6/iu+++k9RGjhwJBwcHeRqiCsEARkREpCMWLlyIvLw88XFJSSVMnRrFJUcDxABGREQks5KSEsyYMUNSu3fPHW++2R/MXoaJAYyIiEhGFy5cwMaNGyW1Tz75BDVq1JCpI9IGBjAiIiKZzJo1C0VFRZJadHQ0lxyNAAMYERGRlhUXF2PmzJmSWr169dCrVy+ZOiJt04nvLli6dCk8PDxgaWkJPz8/HDly5LnjN23aBC8vL1haWqJp06aSe6QATz6+Gx0dDVdXV1hZWSEwMBCXL18Wn09PT0dYWBg8PT1hZWWFunXrYvLkySgsLJRs548//sDrr78OS0tLuLu7Y86cOZo7aCIiMkp//PGHUvj69NNPGb6MjOwBLD4+HhEREZg8eTJOnDiBZs2aISgoSPJ1C886dOgQevbsibCwMJw8eRLBwcEIDg7G2bNnxTFz5szB4sWLERsbi8OHD8PGxgZBQUF4/PgxACA1NRWlpaX46quvcO7cOSxcuBCxsbGIiooSt5GXl4f27dujdu3aOH78OObOnYspU6ZgxYoVFfsLISIigzV16lRs3bpVUouOjoazs7NMHZFcFIIgCHI24OfnhxYtWuDLL78EAJSWlsLd3R3Dhw/H+PHjlcaHhIQgPz8fO3bsEGutWrWCt7c3YmNjIQgC3NzcMGrUKIwePRrAk69xcHZ2RlxcHHr06KGyj7lz52L58uX4888/AQDLly/HhAkTkJmZCXNzcwDA+PHjkZCQgNTU1HIdW15eHuzt7ZGbmws7O7vy/1KIiMigFBYWIiYmRlJr0qQJ3n//fZk6oufRxvu3rDNghYWFOH78OAIDA8WaiYkJAgMDkZKSovI1KSkpkvEAEBQUJI5PS0tDZmamZIy9vT38/PzK3CbwJKRVrVpVsp833nhDDF9P93Px4kXcu3dP5TYKCgqQl5cn+SEiIuN27NgxpfA1dOhQhi8jJ2sA++uvv1BSUqI09ers7IzMzEyVr8nMzHzu+Kd/qrPNK1euYMmSJRg0aNB/7ufZffxbTEwM7O3txR93d3eV44iIyDhMnToVP/30k6Q2efJkODo6ytQR6QrZrwGT282bN9GhQwd0794dAwYMeKltRUZGIjc3V/y5fv26hrokIiJ98vjxY0ydOlVS8/X1xeTJk2XqiHSNrLehcHR0hKmpKbKysiT1rKwsuLi4qHyNi4vLc8c//TMrKwuurq6SMd7e3pLX3bp1C+3atUNAQIDSxfVl7efZffybhYUFLCwsVD5HRETG4dChQ0hKSpLU+F2O9G+yzoCZm5vD19cXycnJYq20tBTJycnw9/dX+Rp/f3/JeABISkoSx3t6esLFxUUyJi8vD4cPH5Zs8+bNm2jbti18fX2xZs0amJhIfxX+/v44cOCA5AZ5SUlJaNiwIapUqfLiB01ERAZr6tSpSuFr8uTJDF+kRPYlyIiICKxcuRJr167FhQsXMHjwYOTn56Nfv34AgD59+iAyMlIcP3LkSCQmJmL+/PlITU3FlClTcOzYMQwbNgwAoFAoEB4ejhkzZmD79u04c+YM+vTpAzc3NwQHBwP4J3zVqlUL8+bNQ3Z2NjIzMyXXdn300UcwNzdHWFgYzp07h/j4eHzxxReIiIjQ3i+HiIj0Qn5+vtKSY0BAAJccqUyy3wk/JCQE2dnZiI6ORmZmJry9vZGYmChe8J6RkSGZnQoICMC6deswceJEREVFoX79+khISECTJk3EMWPHjkV+fj4GDhyInJwctG7dGomJibC0tATwZCbrypUruHLlCmrWrCnp5+ldOezt7bFnzx4MHToUvr6+cHR0RHR0NAYOHFjRvxIiItIjcXFxuHbtmqQWERGBypUry9QR6QPZ7wNmyHgfMCIiw/bvWS8AnPUyANp4/5Z9BoyIiEjfZGdnY9myZf+q1UP79vw6ISofBjAiIiI1LFu2DNnZ2ZJaeHg47O3tZeqI9BEDGBERUTlxyZE0hQGMiIjoP9y6dQsrV66U1Jo2bYr33ntPpo5I3zGAERERPcecOXPw6NEjSW306NGwsbGRqSMyBAxgREREZeCSI1UUBjAiIqJ/uXbtGuLi4iS1li1bomPHjvI0RAaHAYyIiOgZqma9xo0bJ97Mm0gTGMCIiIjw5JtQpk2bplTnkiNVBAYwIiIyepcvX8a6desktTZt2qBt27byNEQGjwGMiIiMmqolx6ioKJiZmcnQDRkLBjAiIjJKXHIkOTGAERGR0Tl79iw2b94sqQUFBaFVq1YydUTGhgGMiIiMiqolx4kTJ8LU1FSGbshYMYAREZFRKC0txfTp05XqXHIkOTCAERGRwTt48CD27t0rqXXt2hU+Pj4ydUTGjgGMiIgMmqolR2/vSfDxMZGhG6InGMCIiMggFRcXY+bMmUp1LjmSLmAAIyIig7N3714cPHhQUuOSI+kSBjAiIjIoqpYco6OjoVAoZOiGSDUGMCIiMggFBQWYPXu2Up1LjqSLGMCIiEjv/fjjjzhx4oSk9uGHH6JRo0YydUT0fAxgRESk17jkSPqIAYyIiPTSw4cPMXfuXKU6lxxJHzCAERGR3omPj0dqaqqk9vHHH6Nu3boydUSkHgYwIiLSK6qWHDnrRfqGAYyIiPRCXl4eFi5cqFRn+CJ9xABGREQ6b/Xq1bh+/bqkFhYWhpo1a8rUEdHLYQAjIiKdxiVHMkQMYEREpJPu3r2LJUuWSGrm5uaIjIyUqSMizWEAIyIinbN48WLcu3dPUvv000/h7OwsU0dEmsUARkREOoVLjmQMGMCIiEgnZGVlITY2VlKrWrUqhg8fLlNHRBWHAYyIiGSnatZr+PDhqFq1qgzdEFU8BjAiIpIVlxzJGDGAERGRLC5fvox169ZJanl5Lpg/f5BMHRFpDwMYERFpnapZrwMHRmDkyCoydEOkfQxgRESkVVxyJGIAIyIiLTlz5gy2bNkiqTk4OGDkyJEydUQkHwYwIiKqcKpmvUaNGgVbW1sZuiGSHwMYERFVGEEQMG3aNKU6lxzJ2DGAERFRhTh69Ch27twpqbm7u6N///4ydUSkOxjAiIhI41QtOY4bNw6WlpYydEOkexjAiIhIY7jkSFQ+DGBERKQRv/zyC/bv3y+pNWrUCB9++KE8DRHpMAYwIiJ6aaqWHKOiomBmZiZDN0S6jwGMiIheWElJCWbMmKFU55Ij0fMxgBER0QtZt24dLl++LKn5+vqic+fOMnVEpD8YwIiISG2qlhwnTpwIU1NTGboh0j8MYEREVG6FhYWIiYlRqvv4TAazF1H5MYAREVG5xMbGIisrS1Lz9vZGt27dZOqISH8xgBER0X9SteQYHR0NhUIhQzdE+s9E3ReYmprizp07SvW///6ba/9ERAbm4cOHKsPX5MmTGb6IXoLaM2CCIKisFxQUwNzc/KUbIiIi3fD555/j8ePHklrr1q3x1ltvydQRkeEodwBbvHgxAEChUGDVqlWwtbUVnyspKcGBAwfg5eWl+Q6JiEjruORIVLHKHcAWLlwI4MkMWGxsrGS50dzcHB4eHoiNjdV8h0REpDV5eXni3/fP4o1ViTSr3AEsLS0NANCuXTts2bIFVapUqbCmiIhI+1TNegUFBaFVq1YydENk2NS+Bmzfvn0V0QcREcmorAvtiahiqB3A+vfv/9znV69e/cLNEBGRdv31119YunSpUp3hi6hiqR3A7t27J3lcVFSEs2fPIicnB2+++abGGiMiooqlatbr3Xffxf/+9z8ZuiEyLmoHsK1btyrVSktLMXjwYNStW1cjTRERUcXikiORvBRCWTf2UtPFixfRtm1b3L59WxObMwh5eXmwt7dHbm4u7Ozs5G6HiAg3b97EqlWrlOoMX0T/0Mb7t9p3wi/L1atXUVxcrPbrli5dCg8PD1haWsLPzw9Hjhx57vhNmzbBy8sLlpaWaNq0KXbu3Cl5XhAEREdHw9XVFVZWVggMDMTly5clY2bOnImAgABYW1vDwcFB5X4UCoXSz4YNG9Q+PiIiXTF16lSl8NWrVy+GLyIZqL0EGRERIXksCAJu376Nn376CaGhoWptKz4+HhEREYiNjYWfnx8WLVqEoKAgXLx4EU5OTkrjDx06hJ49eyImJgadO3fGunXrEBwcjBMnTqBJkyYAgDlz5mDx4sVYu3YtPD09MWnSJAQFBeH8+fOwtLQEABQWFqJ79+7w9/fH119/XWZ/a9asQYcOHcTHZYU1IiJdxyVHIt2i9hJku3btJI9NTExQvXp1vPnmm+jfvz8qVSp/pvPz80OLFi3w5ZdfAnhyLZm7uzuGDx+O8ePHK40PCQlBfn4+duzYIdZatWoFb29vxMbGQhAEuLm5YdSoURg9ejQAIDc3F87OzoiLi0OPHj0k24uLi0N4eDhycnKU9qVQKLB161YEBweX+3j+jUuQRCS3q1ev4rvvvlOqM3wRlU0b79+y3QessLAQx48fR2RkpFgzMTFBYGAgUlJSVL4mJSVFaQYuKCgICQkJAJ7cLDYzMxOBgYHi8/b29vDz80NKSopSAPsvQ4cOxSeffII6derg008/Rb9+/fg1HESkN1TNeoWFhaFmzZoydENEz1I7gD11584dXLx4EQDQsGFDlUuGz/PXX3+hpKQEzs7OkrqzszNSU1NVviYzM1Pl+MzMTPH5p7WyxpTXtGnT8Oabb8La2hp79uzBkCFD8ODBA4wYMaLM1xQUFKCgoEB8nJeXp9Y+iYg0hUuORLpN7QCWl5eHoUOHYv369SgtLQUAmJqaIiQkBEuXLoW9vb3Gm5TDpEmTxP/28fFBfn4+5s6d+9wAFhMTo/IvPSIibTl79iw2b96sVGf4ItItan8KcsCAATh8+DB++ukn5OTkICcnBzt27MCxY8cwaNCgcm/H0dERpqamyMrKktSzsrLg4uKi8jUuLi7PHf/0T3W2WV5+fn64ceOGZIbr3yIjI5Gbmyv+XL9+/aX2SUSkjqlTpyqFr8GDBzN8EekgtQPYjh07sHr1agQFBcHOzg52dnYICgrCypUr8eOPP5Z7O+bm5vD19UVycrJYKy0tRXJyMvz9/VW+xt/fXzIeAJKSksTxnp6ecHFxkYzJy8vD4cOHy9xmeZ06dQpVqlSBhYVFmWMsLCzE38nTHyIibShryVHdy0OISDvUXoKsVq2aymVGe3t7VKlSRa1tRUREIDQ0FM2bN0fLli2xaNEi5Ofno1+/fgCAPn36oEaNGoiJiQEAjBw5Em3atMH8+fPRqVMnbNiwAceOHcOKFSsAPPnkYnh4OGbMmIH69euLt6Fwc3OTfJoxIyMDd+/eRUZGBkpKSnDq1CkAQL169WBra4sff/wRWVlZaNWqFSwtLZGUlIRZs2aJn6wkItIVR48eVbofIsAlRyJdp3YAmzhxIiIiIvDtt9+Ky3qZmZkYM2aM5Lqp8ggJCUF2djaio6ORmZkJb29vJCYmihfRZ2RkwMTkn0m6gIAArFu3DhMnTkRUVBTq16+PhIQE8R5gADB27Fjk5+dj4MCByMnJQevWrZGYmCjeAwwAoqOjsXbtWvGxj48PgCef8Gzbti3MzMywdOlSfPbZZxAEAfXq1cOCBQswYMAAdX9dREQVRtWs18iRI3nPQiI9oPZ9wHx8fHDlyhUUFBSgVq1aAJ4EJQsLC9SvX18y9sSJE5rrVA/xPmBEVBEEQcC0adOU6pz1ItIMnbwPWLdu3XgvLCIimezfvx+//PKLpFapUiVMmDBBpo6I6EVo7Mu4SRlnwIhIk1QtOY4ePRo2NjYydENkuHTyy7jr1KmDv//+W6mek5ODOnXqaKQpIiL6hyAIZX7KkeGLSD+pvQSZnp6OkpISpXpBQQFu3LihkaaIiOiJHTt24Pjx45JatWrVMGzYMJk6IiJNKHcA2759u/jfu3fvltyKoqSkBMnJyfD09NRsd0RERkzVrNf48eOfez9CItIP5Q5gT++jpVAoEBoaKnnOzMwMHh4emD9/vkabIyIyRiUlJZgxY4ZSnZ9yJDIc5Q5gT7/30dPTE0ePHoWjo2OFNUVEZKw2bNiAixcvSmqenp7o06ePTB0RUUVQ+xqwtLS0iuiDiMjoqVpynDBhAipVUvuvaiLScWr/v1rVzf+eFR0d/cLNEBEZo6KiIsyaNUupziVHIsOldgDbunWr5HFRURHS0tJQqVIl1K1blwGMiEgNK1aswO3btyW1//3vf3j33Xdl6oiItEHtAHby5EmlWl5eHvr27cu/MIiI1KBqyXHSpEmS78AlIsOksTvhnzlzBl26dEF6eromNmcQeCd8IlLl0aNHmDNnjlKdS45EukEnvwuyLLm5ucjNzdXU5oiIDNK8efOQn58vqQUEBODtt9+WqSMikoPaAWzx4sWSx4Ig4Pbt2/j222/RsWNHjTVGRGRoVC05RkdHQ6FQyNANEclJ7QC2cOFCyWMTExNUr14doaGhiIyM1FhjRESG4v79+1iwYIFSnUuORMaL9wEjIqpAqma92rdvD39/fxm6ISJd8ULXgOXk5ODKlSsAgHr16sHBwUGTPRERGQRV4YuzXkQEAGp91jk9PR2dOnWCo6Mj/Pz84OfnB0dHR3Tu3JmffiQi+n9///03wxcRPVe5Z8CuX7+OVq1awczMDNOnT0ejRo0AAOfPn8fy5cvh7++Po0ePombNmhXWLBGRrlMVvIKDg9GsWTMZuiEiXVXu+4CFhYXhypUr2L17NywtLSXPPXr0CB06dED9+vWxatWqCmlUH/E+YETGhbNeRIZBp+4DlpiYiPj4eKXwBQBWVlaYPn06evToodHmiIj0wa1bt7By5UqlOsMXEZWl3AHsr7/+goeHR5nP16lTB3fv3tVET0REekPVrFfPnj3RoEEDGbohIn1R7gDm6uqK8+fPl3mN19mzZ+Hi4qKxxoiIdB2XHInoRZX7U5DBwcEYPXo0srOzlZ67c+cOxo0bh+DgYE32RkSkk9LS0hi+iOillPsi/Hv37sHPzw+ZmZn4+OOP4eXlBUEQcOHCBaxbtw4uLi74/fffUbVq1YruWW/wInwiw6MqePXr1w+1atWSoRsiqgg6dRF+lSpVcPjwYURFRWHDhg3IyckBADg4OOCjjz7CrFmzGL6IyKBx1ouINKXcM2DPEgRBXIqsXr06v0i2DJwBIzIM58+fx6ZNm5TqDF9EhkmnZsCepVAo4OTkpOleiIh0jqpZr08//RTOzs4ydENEhuKFAhgRkTFQFb58fCaD2YuIXhYDGBHRvxw/fhw7duxQqnPJkYg0hQGMiOgZqma9RowYgSpVqsjQDREZKgYwIqL/x085EpG2lCuALV68uNwbHDFixAs3Q0QkhwMHDmDfvn2SmomJCSZNmiRTR0Rk6Mp1GwpPT8/ybUyhwJ9//vnSTRkK3oaCSPepmvUaNWoUbG1tZeiGiHSBztyGIi0trUJ2TkQkF0EQMG3aNKU6lxyJSBte+BqwwsJCpKWloW7duqhUiZeSEZH+2LVrF44cOSKpValShZdQEJHWqJ2cHj58iOHDh2Pt2rUAgEuXLqFOnToYPnw4atSogfHjx2u8SSIiTVG15Dh+/HhYWFjI0A0RGSsTdV8QGRmJ06dPY//+/bC0tBTrgYGBiI+P12hzRESaUlpaWuanHBm+iEjb1J4BS0hIQHx8PFq1aiX5DshXXnkFV69e1WhzRESasHHjRly4cEFS8/DwQGhoqEwdEZGxUzuAZWdnq/weyPz8fH4pNxHpHFWzXhMmTOC1q0QkK7WXIJs3b46ffvpJfPw0dK1atQr+/v6a64yI6CUUFRWVueTI8EVEclP7b6FZs2ahY8eOOH/+PIqLi/HFF1/g/PnzOHToEH755ZeK6JGISC1ff/01bty4Iak1bdoU7733nkwdERFJqT0D1rp1a5w6dQrFxcVo2rQp9uzZAycnJ6SkpMDX17cieiQiKrepU6cqha9JkyYxfBGRTinXnfDpxfBO+ETa8+jRI8yZM0epzhurEpG6dOZO+Hl5eeXeIIMGEWnbggULcP/+fUnN398f7du3l6kjIqLnK1cAc3BwKPcnHEtKSl6qISIidai60D46OpqfyiYinVauALZv3z7xv9PT0zF+/Hj07dtX/NRjSkoK1q5di5iYmIrpkojoX+7fv48FCxYo1bnkSET6QO1rwN566y188skn6Nmzp6S+bt06rFixAvv379dkf3qN14ARVQxVs16BgYF47bXXZOiGiAyNNt6/1f4UZEpKCpo3b65Ub968udKX2xIRaVpZ9/Zi+CIifaJ2AHN3d8fKlSuV6qtWrYK7u7tGmiIi+re7d++WGb6IiPSN2jdiXbhwId5//33s2rULfn5+AIAjR47g8uXL2Lx5s8YbJCJSFby6du0KHx8fGbohInp5as+AvfPOO7h8+TK6dOmCu3fv4u7du+jSpQsuXbqEd955pyJ6JCIjVtasF8MXEekz3oi1AvEifKIXd/v2baxYsUKpziVHIqpoOnMj1n/LycnB119/jQsXLgAAXnnlFfTv3x/29vYabY6IjJOqWa+QkBB4eXnJ0A0RkeapvQR57Ngx1K1bFwsXLhSXIBcsWIC6devixIkTFdEjERmRspYcGb6IyJCovQT5+uuvo169eli5ciUqVXoygVZcXIxPPvkEf/75Jw4cOFAhjeojLkESlV96ejrWrl2rVOeSIxFpmzbev9UOYFZWVjh58qTSv0bPnz+P5s2b4+HDhxptUJ8xgBGVj6pZr759+6J27doydENExk4nb8RqZ2eHjIwMpfr169dRuXJljTRFRMajrCVHhi8iMmRqX4QfEhKCsLAwzJs3DwEBAQCAgwcPYsyYMUpfT0REVJYLFy5g48aNSnUuORKRMVA7gM2bNw8KhQJ9+vRBcXExAMDMzAyDBw/G7NmzNd4gERkeVbNegwYNgouLiwzdEBFp3wvfB+zhw4e4evUqAKBu3bqwtrbWaGOGgNeAESnj1wkRka7T2fuAAYC1tTWaNm2qyV6IyICdOHECP/74o1Kd4YuIjFG5A1j//v3LNW716tUv3AwRGSZVs17Dhw9H1apVZeiGiEh+5f4UZFxcHPbt24ecnBzcu3evzB91LV26FB4eHrC0tISfnx+OHDny3PGbNm2Cl5cXLC0t0bRpU+zcuVPyvCAIiI6OhqurK6ysrBAYGIjLly9LxsycORMBAQGwtraGg4ODyv1kZGSgU6dOsLa2hpOTE8aMGSNe80ZE5VfWkiPDFxEZs3LPgA0ePBjr169HWloa+vXrh48//vil/wKNj49HREQEYmNj4efnh0WLFiEoKAgXL16Ek5OT0vhDhw6hZ8+eiImJQefOnbFu3ToEBwfjxIkTaNKkCQBgzpw5WLx4MdauXQtPT09MmjQJQUFBOH/+PCwtLQEAhYWF6N69O/z9/fH1118r7aekpASdOnWCi4sLDh06hNu3b6NPnz4wMzPDrFmzXuqYiYzFb7/9huTkZKU6lxyJiNS8CL+goABbtmzB6tWrcejQIXTq1AlhYWFo3749FAqF2jv38/NDixYt8OWXXwIASktL4e7ujuHDh2P8+PFK40NCQpCfn48dO3aItVatWsHb2xuxsbEQBAFubm4YNWoURo8eDQDIzc2Fs7Mz4uLi0KNHD8n24uLiEB4ejpycHEl9165d6Ny5M27dugVnZ2cAQGxsLMaNG4fs7GyYm5uX6/h4ET4ZK1WzXhEREbxXIBHpBZ27EauFhQV69uyJpKQknD9/Hq+88gqGDBkCDw8PPHjwQK0dFxYW4vjx4wgMDPynGRMTBAYGIiUlReVrUlJSJOMBICgoSByflpaGzMxMyRh7e3v4+fmVuc2y9tO0aVMxfD3dT15eHs6dO1fm6woKCpCXlyf5ITImgiCUueTI8EVE9I8X/hSkiYkJFAoFBEFASUmJ2q//66+/UFJSIgk5AODs7IzU1FSVr8nMzFQ5PjMzU3z+aa2sMeVR1n6e3YcqMTExKt98iIzB7t278fvvv0tq9vb2CA8Pl6chIiIdptYMWEFBAdavX4+3334bDRo0wJkzZ/Dll18iIyMDtra2FdWj3oiMjERubq74c/36dblbItKKqVOnKoWvcePGMXwREZWh3DNgQ4YMwYYNG+Du7o7+/ftj/fr1cHR0fOEdOzo6wtTUFFlZWZJ6VlZWmXfDdnFxee74p39mZWXB1dVVMsbb27vcvbm4uCh9GvPpfp93p24LCwtYWFiUez9E+q60tBTTp09XqvNCeyKi5yt3AIuNjUWtWrVQp04d/PLLL/jll19UjtuyZUu5tmdubg5fX18kJycjODgYwJO/zJOTkzFs2DCVr/H390dycrLkX9VJSUnw9/cHAHh6esLFxQXJycli4MrLy8Phw4cxePDg8h3o/+9n5syZuHPnjvhpzKSkJNjZ2aFx48bl3g6RIdu8eTPOnj0rqT39BxoRET1fuQNYnz59XuiTjs8TERGB0NBQNG/eHC1btsSiRYuQn5+Pfv36ifusUaMGYmJiAAAjR45EmzZtMH/+fHTq1AkbNmzAsWPHsGLFCgCAQqFAeHg4ZsyYgfr164u3oXBzcxNDHvDkHl93795FRkYGSkpKcOrUKQBAvXr1YGtri/bt26Nx48bo3bs35syZg8zMTEycOBFDhw7lDBcRVH/KMSoqCmZmZjJ0Q0Skf8odwOLi4jS+85CQEGRnZyM6OhqZmZnw9vZGYmKieMF7RkYGTEz+uUwtICAA69atw8SJExEVFYX69esjISFBvAcYAIwdOxb5+fkYOHAgcnJy0Lp1ayQmJor3AAOA6OhorF27Vnzs4+MDANi3bx/atm0LU1NT7NixA4MHD4a/vz9sbGwQGhqKadOmafx3QKRPiouLMXPmTKU6lxyJiNTzwl/GTf+N9wEjQ7JmzRpkZGRIaq+88go++OADmToiIqoYOv1l3ERkPFQtOU6aNEkyQ01EROXHAEZEZXr8+DE+//xzpTqXHImIXg4DGBGp9MUXXyh9TZefnx86dOggT0NERAaEAYyIlKhacoyOjtb4J6GJiIwVAxgRiR48eID58+cr1bnkSESkWQxgRARA9azXm2++iddff12GboiIDBsDGBGpDF+c9SIiqjgMYERG7N69e1i8eLFSneGLiKhiMYARGSlVs16dO3eGr6+vDN0QERkXBjAiI8QlRyIieTGAERmRzMxMfPXVV0p1hi8iIu1iACMyEqpmvT788EM0atRIhm6IiIwbAxiREeCSIxGRbmEAIzJgt2/fxooVK5TqDF9ERPJiACMyUKpmvY4e7YMdOzxl6IaIiJ5lIncDRKR5qsLX7t2TMXAgwxcRkS7gDBiRAUlPT8fatWuV6pMnTwZXHYmIdAcDGJGBUDXrNXToUDg6OsrQDRERPQ8DGJEB4KcciYj0CwMYkR47d+4cfvjhB0nNwsIC48ePl6kjIiIqDwYwIj2latYrPDwc9vb2MnRDRETqYAAj0kNcciQi0m8MYER65ODBg9i7d69S3ceH4YuISJ8wgBHpCVWzXhEREahcubIM3RAR0ctgACPScYIgYNq0aUp1LjkSEekvBjAiHbZnzx6kpKRIajY2Nhg9erRMHRERkSYwgBHpKFVLjmPHjoWVlZUM3RARkSYxgBHpmNLSUkyfPl2pziVHIiLDwQBGpEO2bNmCM2fOSGpubm4YMGCATB0REVFFYAAj0hGqlhyjoqJgZmYmQzdERFSRGMCIZFZcXIyZM2cq1bnkSERkuBjAiGS0du1apKenS2peXl4ICQmRpyEiItIKBjAimahacpw4cSJMTU1l6IaIiLSJAYxIywoKCjB79mylOpcciYiMBwMYkRYtWbIEd+/eldSaN2+OTp06ydQRERHJgQGMSEtULTlGR0dDoVDI0A0REcmJAYyoguXn52PevHlKdS45EhEZLwYwogo0Y8YMlJSUSGpt27ZFmzZtZOqIiIh0AQMYUQVRteTIWS8iIgIYwIg07t69e1i8eLFSneGLiIieYgAj0iBVs16dOnVC8+bNZeiGiIh0FQMYkYZwyZGIiMqLAYzoJd26dQsrV65Uqvv4MHwREZFqDGBEL0HVrFeXLl3w6quvytANERHpCwYwohfEJUciInpRDGBEarp69Sq+++47pTrDFxERlRcDGJEaVM16nTwZgv79vWTohoiI9BUDGFE5ccmRiIg0hQGM6D+cPXsWmzdvVqozfBER0YtiACN6DlWzXn379kXt2rVl6IaIiAwFAxhRGbjkSEREFcVE7gaIdM3hw4dVhq/duxm+iIhIMzgDRvQMVcHLy+tTfPGFM8aPl6EhIiIySAxgRP/veUuOISHa7oaIiAwZAxgZvZSUFOzZs0epzu9yJCKiisIARkZN1azXZ599Bjs7Oxm6ISIiY8EARkZJEARMmzZNqc5PORIRkTYwgJHROXDgAPbt2yepFRZawc9vrEwdERGRsWEAI6Oiaslx7NixsLKykqEbIiIyVgxgZBRKS0sxffp0pTqXHImISA4MYGTwdu3ahSNHjkhqderUQe/evWXqiIiIjB0DGBk0VUuOUVFRMDMzk6EbIiKiJ3Tiq4iWLl0KDw8PWFpaws/PT2m24t82bdoELy8vWFpaomnTpti5c6fkeUEQEB0dDVdXV1hZWSEwMBCXL1+WjLl79y569eoFOzs7ODg4ICwsDA8ePBCfT09Ph0KhUPr5/fffNXfgVGFKSkrKvLEqwxcREclN9gAWHx+PiIgITJ48GSdOnECzZs0QFBSEO3fuqBx/6NAh9OzZE2FhYTh58iSCg4MRHByMs2fPimPmzJmDxYsXIzY2FocPH4aNjQ2CgoLw+PFjcUyvXr1w7tw5JCUlYceOHThw4AAGDhyotL+9e/fi9u3b4o+vr6/mfwmkUT/88ANmzJghqf3vf//j9V5ERKQzFIIgCHI24OfnhxYtWuDLL78E8ORiaXd3dwwfPhzjVXz5XkhICPLz87Fjxw6x1qpVK3h7eyM2NhaCIMDNzQ2jRo3C6NGjAQC5ublwdnZGXFwcevTogQsXLqBx48Y4evQomjdvDgBITEzEO++8gxs3bsDNzQ3p6enw9PTEyZMn4e3t/ULHlpeXB3t7e+Tm5vLGnlqiatZr4sSJMDU1laEbIiLSR9p4/5Z1BqywsBDHjx9HYGCgWDMxMUFgYCBSUlJUviYlJUUyHgCCgoLE8WlpacjMzJSMsbe3h5+fnzgmJSUFDg4OYvgCgMDAQJiYmODw4cOSbXft2hVOTk5o3bo1tm/f/tzjKSgoQF5enuSHtKOwsLDMJUeGLyIi0jWyXoT/119/oaSkBM7OzpK6s7MzUlNTVb4mMzNT5fjMzEzx+ae1541xcnKSPF+pUiVUrVpVHGNra4v58+fjtddeg4mJCTZv3ozg4GAkJCSga9euKnuLiYlRGQKoYq1ZswYZGRmSWkBAAN5++22ZOiIiIno+fgqyDI6OjoiIiBAft2jRArdu3cLcuXPLDGCRkZGS1+Tl5cHd3b3CezVmqgJvdHQ0FAqFDN0QERGVj6xLkI6OjjA1NUVWVpaknpWVBRcXF5WvcXFxee74p3/+15h/X+RfXFyMu3fvlrlf4Mn1aleuXCnzeQsLC9jZ2Ul+qGI8fPiwzCVHhi8iItJ1sgYwc3Nz+Pr6Ijk5WayVlpYiOTkZ/v7+Kl/j7+8vGQ8ASUlJ4nhPT0+4uLhIxuTl5eHw4cPiGH9/f+Tk5OD48ePimJ9//hmlpaXw8/Mrs99Tp07B1dVV/QMljVq/fj3mzp0rqb399tv8lCMREekN2ZcgIyIiEBoaiubNm6Nly5ZYtGgR8vPz0a9fPwBAnz59UKNGDcTExAAARo4ciTZt2mD+/Pno1KkTNmzYgGPHjmHFihUAAIVCgfDwcMyYMQP169eHp6cnJk2aBDc3NwQHBwMAGjVqhA4dOmDAgAGIjY1FUVERhg0bhh49esDNzQ0AsHbtWpibm8PHxwcAsGXLFqxevRqrVq3S8m+InsUlRyIiMgSyB7CQkBBkZ2cjOjoamZmZ8Pb2RmJiongRfUZGBkxM/pmoCwgIwLp16zBx4kRERUWhfv36SEhIQJMmTcQxY8eORX5+PgYOHIicnBy0bt0aiYmJsLS0FMd8//33GDZsGN566y2YmJjg/fffx+LFiyW9TZ8+HdeuXUOlSpXg5eWF+Ph4fPDBBxX8GyFV8vPzMW/ePKW6j89kMHsREZG+kf0+YIaM9wHTjJUrV+LWrVuSWkhICLy8vGTqiIiIDJk23r9lnwEjep6yLrQnIiLSZwxgpJNycnLwxRdfKNUZvoiIyBAwgJHOWbhwodK3CISGhsLDw0OehoiIiDSMAYx0CpcciYjIGDCAkU7Izs7GsmXLlOoMX0REZIgYwEh206ZNw78/jDtgwADxnmxERESGhgGMZMUlRyIiMkYMYCSLmzdvKn2rgKmpKSZOnChTR0RERNrDAEZap2rWa+jQoXB0dJShGyIiIu1jACOt4pIjERERAxhpSVpaGr755htJzcHBASNHjpSpIyIiIvkwgFGFUzXrFR4eDnt7exm6ISIikh8DGFUoLjkSEREpYwCjCpGamor4+HhJrWbNmggLC5OpIyIiIt3BAEYap2rWa/To0bCxsZGhGyIiIt3DAEYaIwgCpk2bplTnkiMREZEUAxhpxKlTp7Bt2zZJzcvLCyEhITJ1REREpLsYwOilqVpyHD9+PCwsLGTohoiISPcxgNEL45IjERHRi2EAoxeSkpKCPXv2SGqvvvoqunTpIlNHRERE+oMBjNSmaskxKioKZmZmMnRDRESkfxjAqNxKSkowY8YMpTqXHImIiNTDAEbl8vPPP+PXX3+V1Fq3bo233npLpo6IiIj0FwMY/SdVS44TJ06EqampDN0QERHpPwYwKlNRURFmzZqlVOeSIxER0cthACOVfvzxR5w4cUJSa9++Pfz9/WXqiIiIyHAwgJESVUuO3t7R8PdXyNANERGR4WEAI1FBQQFmz56tVOeSIxERkWYxgBEAYN++fThw4ICk1rVrV/j4+MjUERERkeFiACOVS47R0dFQKLjkSEREVBEYwIzY48eP8fnnnyvVfXwmg9mLiIio4jCAGamdO3fi6NGjklq/fv1Qq1YtmToiIiIyHgxgRkjVkiMvtCciItIeBjAjkp+fj3nz5klqNjY2GD16tEwdERERGScGMCOxZ88epKSkSGoDBw6Eq6urTB0REREZLwYwIzB79lIUFPwlqXHJkYiISD4MYAZM1Xc53r/vjHnzPpWpIyIiIgIYwAxWeno61q5dK6klJERg6tTKMnVERERETzGAGaCEhAScPn1afNysWTMEBweDq45ERES6gQHMgKj6LsfQ0FB4eHjI0xARERGpxABmIK5evYrvvvtOUouMjIS5ublMHREREVFZGMAMwKZNm3D+/Hnxsa+vLzp37ixjR0RERPQ8DGB6TNV3Ofbv3x/u7u4ydURERETlwQCmpy5duoT169dLahMmTEClSjylREREuo7v1npo69at+OOPP8THrVq1QlBQkIwdERERkToYwPTQs+FrwIABcHNzk7EbIiIiUpeJ3A2Q+q5d88O1a7WwZ89Ehi8iIiI9xACmh4KDOyA1tR/GjTOVuxUiIiJ6AVyC1ENduz75ISIiIv3EGTAiIiIiLWMAIyIiItIyBjAiIiIiLWMAIyIiItIyBjAiIiIiLWMAIyIiItIyBjAiIiIiLWMAIyIiItIyBjAiIiIiLWMAIyIiItIyBjAiIiIiLWMAIyIiItIyBjAiIiIiLaskdwOGTBAEAEBeXp7MnRAREVF5PX3ffvo+XhEYwCrQ/fv3AQDu7u4yd0JERETqun//Puzt7Stk2wqhIuOdkSstLcWtW7dQuXJlKBQKudsxeHl5eXB3d8f169dhZ2cndztGjedCN/A86A6eC91Q3vMgCALu378PNzc3mJhUzNVanAGrQCYmJqhZs6bcbRgdOzs7/gWnI3gudAPPg+7gudAN5TkPFTXz9RQvwiciIiLSMgYwIiIiIi1jACODYWFhgcmTJ8PCwkLuVowez4Vu4HnQHTwXukGXzgMvwiciIiLSMs6AEREREWkZAxgRERGRljGAEREREWkZAxgRERGRljGAkWyWLl0KDw8PWFpaws/PD0eOHHnu+E2bNsHLywuWlpZo2rQpdu7cKXleEARER0fD1dUVVlZWCAwMxOXLlyVj7t69i169esHOzg4ODg4ICwvDgwcPxOfT09OhUCiUfn7//XfNHbiOkeM8zJw5EwEBAbC2toaDg4PK/WRkZKBTp06wtraGk5MTxowZg+Li4pc6Vl2nq+dC1f8nNmzY8FLHqsu0fR7S09MRFhYGT09PWFlZoW7dupg8eTIKCwsl2/njjz/w+uuvw9LSEu7u7pgzZ47mDlpH6eK50Nj7hEAkgw0bNgjm5ubC6tWrhXPnzgkDBgwQHBwchKysLJXjDx48KJiamgpz5swRzp8/L0ycOFEwMzMTzpw5I46ZPXu2YG9vLyQkJAinT58WunbtKnh6egqPHj0Sx3To0EFo1qyZ8Pvvvwu//vqrUK9ePaFnz57i82lpaQIAYe/evcLt27fFn8LCwor7ZchIrvMQHR0tLFiwQIiIiBDs7e2V9lNcXCw0adJECAwMFE6ePCns3LlTcHR0FCIjIzX+O9AVunouBEEQAAhr1qyR/H/i2W0YEjnOw65du4S+ffsKu3fvFq5evSps27ZNcHJyEkaNGiVuIzc3V3B2dhZ69eolnD17Vli/fr1gZWUlfPXVVxX7C5GRrp4LTb1PMICRLFq2bCkMHTpUfFxSUiK4ubkJMTExKsd/+OGHQqdOnSQ1Pz8/YdCgQYIgCEJpaang4uIizJ07V3w+JydHsLCwENavXy8IgiCcP39eACAcPXpUHLNr1y5BoVAIN2/eFAThn/9jnTx5UiPHqevkOA/PWrNmjco3/Z07dwomJiZCZmamWFu+fLlgZ2cnFBQUqHWM+kJXz4UgPAlgW7duVfOI9JPc5+GpOXPmCJ6enuLjZcuWCVWqVJH873/cuHFCw4YN1TtAPaKr50JT7xNcgiStKywsxPHjxxEYGCjWTExMEBgYiJSUFJWvSUlJkYwHgKCgIHF8WloaMjMzJWPs7e3h5+cnjklJSYGDgwOaN28ujgkMDISJiQkOHz4s2XbXrl3h5OSE1q1bY/v27S93wDpKrvNQHikpKWjatCmcnZ0l+8nLy8O5c+fKvR19ocvn4qmhQ4fC0dERLVu2xOrVqyEY4C0kdek85ObmomrVqpL9vPHGGzA3N5fs5+LFi7h37556B6oHdPlcPPWy7xMMYKR1f/31F0pKSiRvrgDg7OyMzMxMla/JzMx87vinf/7XGCcnJ8nzlSpVQtWqVcUxtra2mD9/PjZt2oSffvoJrVu3RnBwsEGGMLnOQ3mUtZ9n92FIdPlcAMC0adOwceNGJCUl4f3338eQIUOwZMkStbahD3TlPFy5cgVLlizBoEGD/nM/z+7DkOjyudDU+0QltUYTGThHR0dERESIj1u0aIFbt25h7ty56Nq1q4ydEcln0qRJ4n/7+PggPz8fc+fOxYgRI2TsyjDdvHkTHTp0QPfu3TFgwAC52zFqZZ0LTb1PcAaMtM7R0RGmpqbIysqS1LOysuDi4qLyNS4uLs8d//TP/xpz584dyfPFxcW4e/dumfsFAD8/P1y5cqUcR6Zf5DoP5VHWfp7dhyHR5XOhip+fH27cuIGCgoKX2o6ukfs83Lp1C+3atUNAQABWrFhRrv08uw9DosvnQpUXeZ9gACOtMzc3h6+vL5KTk8VaaWkpkpOT4e/vr/I1/v7+kvEAkJSUJI739PSEi4uLZExeXh4OHz4sjvH390dOTg6OHz8ujvn5559RWloKPz+/Mvs9deoUXF1d1T9QHSfXeSgPf39/nDlzRhKYk5KSYGdnh8aNG5d7O/pCl8+FKqdOnUKVKlV04guNNUnO83Dz5k20bdsWvr6+WLNmDUxMpG/P/v7+OHDgAIqKiiT7adiwIapUqfLiB62jdPlcqPJC7xMvdQk/0QvasGGDYGFhIcTFxQnnz58XBg4cKDg4OIifeuvdu7cwfvx4cfzBgweFSpUqCfPmzRMuXLggTJ48WeXHix0cHIRt27YJf/zxh9CtWzeVt6Hw8fERDh8+LPz2229C/fr1JbehiIuLE9atWydcuHBBuHDhgjBz5kzBxMREWL16tRZ+K9on13m4du2acPLkSWHq1KmCra2tcPLkSeHkyZPC/fv3BUH45zYU7du3F06dOiUkJiYK1atXN/jbUOjiudi+fbuwcuVK4cyZM8Lly5eFZcuWCdbW1kJ0dLSWfjPaJcd5uHHjhlCvXj3hrbfeEm7cuCG5tcFTOTk5grOzs9C7d2/h7NmzwoYNGwRra2uDvw2FLp4LTb1PMICRbJYsWSLUqlVLMDc3F1q2bCn8/vvv4nNt2rQRQkNDJeM3btwoNGjQQDA3NxdeeeUV4aeffpI8X1paKkyaNElwdnYWLCwshLfeeku4ePGiZMzff/8t9OzZU7C1tRXs7OyEfv36iW80gvDk/1iNGjUSrK2tBTs7O6Fly5bCpk2bNH/wOkSO8xAaGioAUPrZt2+fOCY9PV3o2LGjYGVlJTg6OgqjRo0SioqKNH78ukQXz8WuXbsEb29vwdbWVrCxsRGaNWsmxMbGCiUlJRXyO9AF2j4Pa9asUXkO/j1Hcvr0aaF169aChYWFUKNGDWH27NmaP3gdo4vnQlPvEwpBMMDPEhMRERHpMF4DRkRERKRlDGBEREREWsYARkRERKRlDGBEREREWsYARkRERKRlDGBEREREWsYARkRERKRlDGBEREREWsYARkRGKTMzE8OHD0edOnVgYWEBd3d3dOnSRfyeuEGDBqFu3bqwsrJC9erV0a1bN6SmpoqvT09Ph0KhwKlTp5S23bZtW4SHh4uPHzx4gGHDhqFmzZqwsrJC48aNERsbW9GHSEQ6rJLcDRARaVt6ejpee+01ODg4YO7cuWjatCmKioqwe/duDB06FKmpqfD19UWvXr1Qq1Yt3L17F1OmTEH79u2RlpYGU1NTtfYXERGBn3/+Gd999x08PDywZ88eDBkyBG5ubujatWsFHSUR6TIGMCIyOkOGDIFCocCRI0dgY2Mj1l955RX0798fADBw4ECx7uHhgRkzZqBZs2ZIT09H3bp11drfoUOHEBoairZt24rb/uqrr3DkyBEGMCIjxSVIIjIqd+/eRWJiIoYOHSoJX085ODgo1fLz87FmzRp4enrC3d1d7X0GBARg+/btuHnzJgRBwL59+3Dp0iW0b9/+RQ6BiAwAAxgRGZUrV65AEAR4eXn959hly5bB1tYWtra22LVrF5KSkmBubi4ZExAQII55+vPrr79KxixZsgSNGzdGzZo1YW5ujg4dOmDp0qV44403NHpsRKQ/uARJREZFEIRyj+3Vqxfefvtt3L59G/PmzcOHH36IgwcPwtLSUhwTHx+PRo0aKb3uWUuWLMHvv/+O7du3o3bt2jhw4ACGDh0KNzc3BAYGvtwBEZFeYgAjIqNSv359KBQKyScay2Jvbw97e3vUr18frVq1QpUqVbB161b07NlTHOPu7o569epJXmdlZSX+96NHjxAVFYWtW7eiU6dOAID//e9/OHXqFObNm8cARmSkuARJREalatWqCAoKwtKlS5Gfn6/0fE5OjsrXCYIAQRBQUFCg1v6KiopQVFQEExPpX7empqYoLS1Va1tEZDgYwIjI6CxduhQlJSVo2bIlNm/ejMuXL+PChQtYvHgx/P398eeffyImJgbHjx9HRkYGDh06hO7du8PKygrvvPOOWvuys7NDmzZtMGbMGOzfvx9paWmIi4vDN998g3fffbeCjpCIdB2XIInI6NSpUwcnTpzAzJkzMWrUKNy+fRvVq1eHr68vli9fDktLS/z6669YtGgR7t27B2dnZ7zxxhs4dOgQnJyc1N7fhg0bEBkZiV69euHu3buoXbs2Zs6ciU8//bQCjo6I9IFCUOeKVCIiIiJ6aVyCJCIiItIyBjAiIiIiLWMAIyIiItIyBjAiIiIiLWMAIyIiItIyBjAiIiIiLWMAIyIiItIyBjAiIiIiLWMAIyIiItIyBjAiIiIiLWMAIyIiItIyBjAiIiIiLfs/ukRdFLZJvzMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_30.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgDUlEQVR4nO3deVwU9f8H8NcuyKlAiFyKQp6YJgSKUF+PpNAwpcyQNNBIy4MkPBJDyCvMvNJIvpVK5YVWXzMyjPDokFBRzPuE0HTxQEAxQdj5/eHPqWkXBFyYZff1fDx4GO/9zMx7RpOX85lDIQiCACIiIiKqE6XcDRARERE1RQxRRERERPXAEEVERERUDwxRRERERPXAEEVERERUDwxRRERERPXAEEVERERUDwxRRERERPXAEEVERERUDwxRRGT0FAoF3nnnHbnbEI0ePRru7u5yt0FE98EQRUR6KSUlBQqFQvyysLBAp06dMGnSJBQWFjbotvfs2YN33nkHxcXFOl1vv379JPtkb2+Pnj17YvXq1VCr1TrZxrvvvostW7boZF1EVDNTuRsgIqrJnDlz4OHhgdu3b+OXX37BypUrsW3bNhw5cgRWVlY62cZff/0FU9O//zrcs2cPZs+ejdGjR8POzk4n27inTZs2SExMBABcuXIFn3/+OSIjI3Hq1CksWLDggdf/7rvv4oUXXkBISMgDr4uIasYQRUR6bdCgQfD19QUAvPrqq2jZsiWWLFmCb775BmFhYfVer1qtRkVFBSwsLGBhYaGrdu/L1tYWo0aNEr9/7bXX0LlzZ3z44YeYO3cumjVr1mi9ENGD4XQeETUpTz75JAAgLy8PALBo0SIEBASgZcuWsLS0hI+PD7788kuN5RQKBSZNmoR169bhkUcegbm5OdLT08XP7l0T9c4772DatGkAAA8PD3HqLT8/H3379kWPHj209tW5c2cEBQXVeX+srKzQu3dvlJWV4cqVK9WOKysrw5QpU+Dm5gZzc3N07twZixYtgiAIkn0sKyvDZ599JvY9evToOvdERLXDM1FE1KScPXsWANCyZUsAwAcffIAhQ4Zg5MiRqKiowMaNGzF8+HCkpaUhODhYsuyOHTuwadMmTJo0CQ4ODlov3n7++edx6tQpbNiwAUuXLoWDgwMAoFWrVnj55ZcxduxYHDlyBN26dROX2bdvH06dOoW4uLh67dO5c+dgYmJS7dShIAgYMmQIdu7cicjISHh5eWH79u2YNm0a/vzzTyxduhQA8MUXX+DVV19Fr169MG7cOABA+/bt69UTEdWCQESkh9asWSMAEH788UfhypUrwvnz54WNGzcKLVu2FCwtLYULFy4IgiAIt27dkixXUVEhdOvWTXjyyScldQCCUqkUjh49qrEtAEJCQoL4/fvvvy8AEPLy8iTjiouLBQsLC+Gtt96S1N944w3B2tpauHnzZo371LdvX6FLly7ClStXhCtXrgjHjx8X3njjDQGA8Oyzz4rjIiIihHbt2onfb9myRQAgzJs3T7K+F154QVAoFMKZM2fEmrW1tRAREVFjH0SkG5zOIyK9FhgYiFatWsHNzQ0jRoxA8+bN8b///Q+tW7cGAFhaWopjr1+/jpKSEvznP//BgQMHNNbVt29fdO3atd692NraYujQodiwYYM4jVZVVYXU1FSEhITA2tr6vus4ceIEWrVqhVatWsHT0xMrVqxAcHAwVq9eXe0y27Ztg4mJCd544w1JfcqUKRAEAd9//32994mI6o/TeUSk15KSktCpUyeYmprCyckJnTt3hlL597//0tLSMG/ePOTm5qK8vFysKxQKjXV5eHg8cD/h4eFITU3Fzz//jD59+uDHH39EYWEhXn755Vot7+7ujk8++UR8bEPHjh3h6OhY4zJ//PEHXF1d0aJFC0nd09NT/JyIGh9DFBHptV69eol35/3bzz//jCFDhqBPnz746KOP4OLigmbNmmHNmjVYv369xvh/nrWqr6CgIDg5OWHt2rXo06cP1q5dC2dnZwQGBtZqeWtr61qPJSL9xuk8ImqyvvrqK1hYWGD79u145ZVXMGjQIJ0EFG1nse4xMTHBSy+9hC+//BLXr1/Hli1bEBYWBhMTkwfebnXatWuHixcv4saNG5L6iRMnxM/vqal3ItIthigiarJMTEygUChQVVUl1vLz8x/4id33rm2q7onlL7/8Mq5fv47XXnsNN2/elDz3qSE888wzqKqqwocffiipL126FAqFAoMGDRJr1tbWOn/SOhFpx+k8ImqygoODsWTJEgwcOBAvvfQSLl++jKSkJHTo0AG///57vdfr4+MDAHj77bcxYsQINGvWDM8++6wYrry9vdGtWzds3rwZnp6eeOyxx3SyP9V59tln0b9/f7z99tvIz89Hjx498MMPP+Cbb75BdHS05DEGPj4++PHHH7FkyRK4urrCw8MDfn5+DdofkbHimSgiarKefPJJrFq1CiqVCtHR0diwYQPee+89PPfccw+03p49e2Lu3Lk4dOgQRo8ejbCwMI0HYYaHhwNArS8ofxBKpRJbt25FdHQ00tLSEB0djWPHjuH999/HkiVLJGOXLFkCHx8fxMXFISwsDCtXrmzw/oiMlUIQ/vG4WyIiqpUPPvgAb775JvLz89G2bVu52yEiGTBEERHVkSAI6NGjB1q2bImdO3fK3Q4RyYTXRBER1VJZWRm2bt2KnTt34vDhw/jmm2/kbomIZMQzUUREtZSfnw8PDw/Y2dlhwoQJmD9/vtwtEZGMGKKIiIiI6oF35xERERHVA0MUERERUT3wwvIGpFarcfHiRbRo0YKvYiAiImoiBEHAjRs34OrqKnnh+b8xRDWgixcvws3NTe42iIiIqB7Onz+PNm3aVPs5Q1QDatGiBYC7vwk2NjYyd0NERES1UVpaCjc3N/HneHUYohrQvSk8GxsbhigiIqIm5n6X4vDCciIiIqJ6YIgiIiIiqgeGKCIiIqJ64DVRMquqqsKdO3fkboMaQbNmzWBiYiJ3G0REpCMMUTIRBAEqlQrFxcVyt0KNyM7ODs7OznxuGBGRAWCIksm9AOXo6AgrKyv+UDVwgiDg1q1buHz5MgDAxcVF5o6IiOhBMUTJoKqqSgxQLVu2lLsdaiSWlpYAgMuXL8PR0ZFTe0RETRwvLJfBvWugrKysZO6EGtu933NeB0dE1PQxRMmIU3jGh7/nRESGgyGKiIiIqB4YooiIiIjqgSGK6mT06NFQKBRQKBRo1qwZnJyc8NRTT2H16tVQq9W1Xk9KSgrs7OwarlEiIqIGxhBFdTZw4EBcunQJ+fn5+P7779G/f39MnjwZgwcPRmVlpdztERERNQqGKKozc3NzODs7o3Xr1njssccwc+ZMfPPNN/j++++RkpICAFiyZAm6d+8Oa2truLm5YcKECbh58yYAYNeuXRgzZgxKSkrEs1rvvPMOAOCLL76Ar68vWrRoAWdnZ7z00kvis5WIiIgA4Nq1a5g9ezZmz56NrVvl64MhSk8IgoCKigpZvgRBeOD+n3zySfTo0QNff/01AECpVGL58uU4evQoPvvsM+zYsQPTp08HAAQEBGDZsmWwsbHBpUuXcOnSJUydOhXA3Vv/586di0OHDmHLli3Iz8/H6NGjH7g/IiIyDL/++is+/PBD8fsFCx78Z1h98WGbeuLOnTtITEyUZduxsbEwMzN74PV06dIFv//+OwAgOjparLu7u2PevHl4/fXX8dFHH8HMzAy2trZQKBRwdnaWrOOVV14R//vhhx/G8uXL0bNnT9y8eRPNmzd/4B6JiKhpUqvVeP/993H79m2xdvjwUMyYId+jYxiiSGcEQRCfg/Tjjz8iMTERJ06cQGlpKSorK3H79m3cunWrxoeM5uTk4J133sGhQ4dw/fp18WL1goICdO3atVH2g4iI9Mvly5excuVKSS0mJgYtWrSQqaO7GKL0RLNmzRAbGyvbtnXh+PHj8PDwQH5+PgYPHozx48dj/vz5sLe3xy+//ILIyEhUVFRUG6LKysoQFBSEoKAgrFu3Dq1atUJBQQGCgoJQUVGhkx6JiKhp2b17N3bt2iV+36ZNG7zyyit68fBihig9oVAodDKlJpcdO3bg8OHDePPNN5GTkwO1Wo3FixdDqbx72d2mTZsk483MzFBVVSWpnThxAteuXcOCBQvg5uYGANi/f3/j7AAREemVqqoqvPvuu5LH5wwbNgzdunWTsSsphiiqs/LycqhUKlRVVaGwsBDp6elITEzE4MGDER4ejiNHjuDOnTtYsWIFnn32Wfz6669ITk6WrMPd3R03b95EZmYmevToASsrK7Rt2xZmZmZYsWIFXn/9dRw5cgRz586VaS+JiEguKpUK//3vfyW1qVOnwtraWqaOtOPdeVRn6enpcHFxgbu7OwYOHIidO3di+fLl+Oabb2BiYoIePXpgyZIleO+999CtWzesW7dO46L5gIAAvP766wgNDUWrVq2wcOFCtGrVCikpKdi8eTO6du2KBQsWYNGiRTLtJRERyeHHH3+UBCgPDw8kJCToXYACAIWgi/vbSavS0lLY2tqipKQENjY2Yv327dvIy8uDh4cHLCwsZOyQGht/74mItKusrMT8+fMltdDQUHTp0qXRe6nu5/e/cTqPiIiIZHXhwgWsWrVKUps+fTosLS1l6qh2GKKIiIhINt9//z327t0rft+5c2eMGDFCxo5qjyGKiIiIGt2dO3fw7rvvSmovvfQSOnbsKFNHdSf7heVJSUlwd3eHhYUF/Pz8JGlUm82bN6NLly6wsLBA9+7dsW3bNsnngiAgPj4eLi4usLS0RGBgIE6fPi0ZM3/+fAQEBMDKygp2dnY1bu/atWto06YNFAoFiouL67OLRERE9A8FBQUaAeqtt95qUgEKkDlEpaamIiYmBgkJCThw4AB69OiBoKCgal84u2fPHoSFhSEyMhIHDx5ESEgIQkJCcOTIEXHMwoULsXz5ciQnJyM7OxvW1tYICgqSPCa+oqICw4cPx/jx4+/bY2RkJB599NEH31kiIiLC1q1bsWbNGvH7bt26ISEhoUnebCPr3Xl+fn7o2bOn+CJBtVoNNzc3REVFYcaMGRrjQ0NDUVZWhrS0NLHWu3dveHl5ITk5GYIgwNXVFVOmTBFfaFtSUgInJyekpKRozLGmpKQgOjq62jNMK1euRGpqKuLj4zFgwABcv379vmeu/ol359G/8feeiIxVRUWFxuNuXn75ZTz88MMydVS92t6dJ9uZqIqKCuTk5CAwMPDvZpRKBAYGIisrS+syWVlZkvEAEBQUJI7Py8uDSqWSjLG1tYWfn1+166zOsWPHMGfOHHz++efiU7eJiIio7s6dO6cRoGJjY/UyQNWFbBeWX716FVVVVXBycpLUnZyccOLECa3LqFQqreNVKpX4+b1adWNqo7y8HGFhYXj//ffRtm1bnDt3rtbLlZeXi9+XlpbWeptERESG6KuvvpJcduPt7Y0hQ4bI2JHu8O48LWJjY+Hp6YlRo0bVabnExETMnj27gboiIiJqOsrKyjTeOjFmzBi0bdtWpo50T7Z5KgcHB5iYmKCwsFBSLywshLOzs9ZlnJ2daxx/79e6rFObHTt2YPPmzTA1NYWpqSkGDBgg9pyQkFDtcrGxsSgpKRG/zp8/X+ttktTo0aMREhIift+vXz9ER0c/0Dp1sQ4iIrq/bdu2aQSomTNnGlSAAmQMUWZmZvDx8UFmZqZYU6vVyMzMhL+/v9Zl/P39JeMBICMjQxzv4eEBZ2dnyZjS0lJkZ2dXu05tvvrqKxw6dAi5ubnIzc3Fp59+CgD4+eefMXHixGqXMzc3h42NjeTL0IwePRoKhQIKhQJmZmbo0KED5syZg8rKygbd7tdff13rlxHv2rVL6yMp6rIOIiKqn9mzZ2Pfvn3i91eudEBCQgKaNWsmY1cNQ9bpvJiYGERERMDX1xe9evXCsmXLUFZWhjFjxgAAwsPD0bp1a/FitMmTJ6Nv375YvHgxgoODsXHjRuzfvx8ff/wxAEChUCA6Ohrz5s1Dx44d4eHhgVmzZsHV1VVyVqOgoABFRUUoKChAVVUVcnNzAQAdOnRA8+bN0b59e0mfV69eBQB4enrW6e48QzVw4ECsWbMG5eXl2LZtGyZOnIhmzZohNjZWMq6iogJmZmY62aa9vb1erIOIiLQrKirCihUrJLVjx57ByJE9Zeqo4cl621loaCgWLVqE+Ph4eHl5ITc3F+np6eKF4QUFBbh06ZI4PiAgAOvXr8fHH3+MHj164Msvv8SWLVvQrVs3ccz06dMRFRWFcePGoWfPnrh58ybS09Mlt5PHx8fD29sbCQkJuHnzJry9veHt7Y39+/c33s43Yebm5nB2dka7du0wfvx4BAYGYuvWreIU3Pz58+Hq6orOnTsDAM6fP48XX3wRdnZ2sLe3x9ChQ5Gfny+ur6qqCjExMbCzs0PLli0xffp0/PvJG/+eiisvL8dbb70FNzc3mJubo0OHDli1ahXy8/PRv39/AMBDDz0EhUKB0aNHa13H9evXER4ejoceeghWVlYYNGiQ5MGsKSkpsLOzw/bt2+Hp6YnmzZtj4MCBkj+Tu3btQq9evWBtbQ07Ozs8/vjj+OOPP3R0pImImoYtW7ZoBKgZM2YgNbUnDOQacq1kv7B80qRJmDRpktbPdu3apVEbPnw4hg8fXu36FAoF5syZgzlz5lQ7JiUlBSkpKbXusV+/fho/1OlvlpaWuHbtGgAgMzMTNjY2yMjIAHD3sf5BQUHw9/fHzz//DFNTU8ybNw8DBw7E77//DjMzMyxevBgpKSlYvXo1PD09sXjxYvzvf//Dk08+We02w8PDkZWVheXLl6NHjx7Iy8vD1atX4ebmhq+++grDhg3DyZMnYWNjU+0LLEePHo3Tp09j69atsLGxwVtvvYVnnnkGx44dE08737p1C4sWLcIXX3wBpVKJUaNGYerUqVi3bh0qKysREhKCsWPHYsOGDaioqMDevXuhUCh0fISJiPSXthuqarp+2JDIHqKo6RIEAZmZmdi+fTuioqJw5coVWFtb49NPPxWn8dauXQu1Wo1PP/1UDBdr1qyBnZ0ddu3ahaeffhrLli1DbGwsnn/+eQBAcnIytm/fXu12T506hU2bNiEjI0N8Jtg/nzVyb9rO0dGx2unXe+Hp119/RUBAAABg3bp1cHNzw5YtW8SgfufOHSQnJ4tTvJMmTRIDemlpKUpKSjB48GDxc09Pz7ofSCKiJujy5ctYuXKlpDZ06FB4eXnJ05AM+BRJA7B1KxAQcPfXxpCWlobmzZvDwsICgwYNQmhoKN555x0AQPfu3SXXQR06dAhnzpxBixYt0Lx5czRv3hz29va4ffs2zp49i5KSEly6dAl+fn7iMqampvD19a12+7m5uTAxMUHfvn3rvQ/Hjx+HqampZLstW7ZE586dcfz4cbFmZWUluUbOxcVFfC2Rvb09Ro8ejaCgIDz77LP44IMPJFN9RESGauPGjRoBaubMmUYVoACeiTIICxYAWVl3f22Muef+/ftj5cqVMDMzg6urK0xN//5jZG1tLRl78+ZN+Pj4YN26dRrradWqVb22X930XEP4990kCoVCMrW7Zs0avPHGG0hPT0dqairi4uKQkZGB3r17N1qPRESNRRAEjctllEolZs2aJVNH8uKZKAMwYwbg73/318ZgbW2NDh06oG3btpIApc1jjz2G06dPw9HRER06dJB82drawtbWFi4uLsjOzhaXqaysRE5OTrXr7N69O9RqNXbv3q3183tnwqqqqqpdh6enJyorKyXbvXbtGk6ePImuXbvWuE//5u3tjdjYWOzZswfdunXD+vXr67Q8EVFTcPHiRY0ANXz4cKMNUABDlEEYMgTYs6dxzkLV1ciRI+Hg4IChQ4fi559/Rl5eHnbt2oU33ngDFy5cAHD30RULFizAli1bcOLECUyYMKHal0IDgLu7OyIiIvDKK69gy5Yt4jo3bdoEAGjXrh0UCgXS0tJw5coV3Lx5U2MdHTt2xNChQzF27Fj88ssvOHToEEaNGoXWrVtj6NChtdq3vLw8xMbGIisrC3/88Qd++OEHnD59mtdFEZHBSUlJwSeffCKpxcXF1fkfnYaGIYoalJWVFX766Se0bdsWzz//PDw9PREZGYnbt2+LDyOdMmUKXn75ZURERMDf3x8tWrTAc889V+N6V65ciRdeeAETJkxAly5dMHbsWJSVlQEAWrdujdmzZ2PGjBlwcnKq9u7PNWvWwMfHB4MHD4a/vz8EQcC2bdtq/UA4KysrnDhxAsOGDUOnTp0wbtw4TJw4Ea+99lodjhARkf4SBAGzZ8+WPLrF2toaCQkJMDExkbEz/aAQeO9+gyktLYWtrS1KSkokTy+/ffs28vLy4OHhIXl+FRk+/t4TUVNRUFCANWvWSGovvfQSOnbsKFNHjae6n9//xgvLiYiISCI5OVnjPbSzZs2CUskJrH9iiCIiIiIAd99h++93jDo4ONT43lhjxhBFREREOHv2LNauXSupRUREwN3dXZ6GmgCGKCIiIiO3bNkylJSUSGrx8fF8jdV9METJiNf0Gx/+nhORPqmqqsK8efMktTZt2iAyMlKmjpoWhigZ/PPlto359G2S361btwBoPgmdiKixnThxAqmpqZJaZGQk2rRpI1NHTQ9DlAxMTExgZ2cnvoPNysqKp0wNnCAIuHXrFi5fvgw7Ozs+X4WIZJWYmIiKigpJjdN3dccQJRNnZ2cAEIMUGQc7Ozvx956IqLFVVlZi/vz5klqHDh0wcuRImTpq2hiiZKJQKODi4gJHR0fcuXNH7naoETRr1oxnoIhINocPH8bXX38tqb322mv8h90DYIiSmYmJCX+wEhFRg5o9e7ZGjdN3D44hioiIyEBVVFQgMTFRUuvWrRuGDRsmU0eGhSGKiIjIAOXk5CAtLU1SmzhxIhwcHGTqyPAwRBERERkYbdN3CQkJMnRi2BiiiIiIDMTt27fx3nvvSWo+Pj4YPHiwTB0ZNoYoIiIiA5CVlYUffvhBUps8eTLs7OzkacgIMEQRERE1cZy+kwdDFBERURNVVlaGRYsWSWoBAQF46qmnZOrIuDBEERERNUG7d+/Grl27JLWYmBi0aNFCnoaMEEMUERFRE8PpO/3AEEVERNRE3LhxA0uWLJHU+vXrh759+8rUkXFjiCIiImoCfvjhB2RlZUlq06ZNg5WVlUwdEUMUERGRnuP0nX5iiCIiItJT169fx/LlyyW1oKAg9O7dW6aO6J8YooiIiPTQt99+iwMHDkhqb731FiwsLGTqiP6NIYqIiEjPcPquaWCIIiIi0hNXr15FUlKSpPbss8/isccek6kjqglDFBERkR748ssvcfToUUktNjYWZmZmMnVE98MQRUREJCNBEDBnzhyNOqfv9B9DFBERkUxUKhX++9//SmrPP/88unfvLlNHVBcMUURERDJYu3Ytzp49K6m9/fbbMDXlj+amgr9TREREjUjb9J2ZmRliY2Nl6ojqSyl3A0lJSXB3d4eFhQX8/Pywd+/eGsdv3rwZXbp0gYWFBbp3745t27ZJPhcEAfHx8XBxcYGlpSUCAwNx+vRpyZj58+cjICAAVlZWsLOz09jGoUOHEBYWBjc3N1haWsLT0xMffPDBA+8rEREZt2PHjmkEqAMHQhmgmihZQ1RqaipiYmKQkJCAAwcOoEePHggKCsLly5e1jt+zZw/CwsIQGRmJgwcPIiQkBCEhIThy5Ig4ZuHChVi+fDmSk5ORnZ0Na2trBAUF4fbt2+KYiooKDB8+HOPHj9e6nZycHDg6OmLt2rU4evQo3n77bcTGxuLDDz/U7QEgIiKjMXv2bGzevFlSS02NQ2RkF5k6ogelEARBkGvjfn5+6NmzpxhO1Go13NzcEBUVhRkzZmiMDw0NRVlZGdLS0sRa79694eXlheTkZAiCAFdXV0yZMgVTp04FAJSUlMDJyQkpKSkYMWKEZH0pKSmIjo5GcXHxfXudOHEijh8/jh07dtR6/0pLS2Fra4uSkhLY2NjUejkiIjIcarUac+fO1ajz7jv9Vduf37KdiaqoqEBOTg4CAwP/bkapRGBgoMZbqu/JysqSjAfuvkPo3vi8vDyoVCrJGFtbW/j5+VW7ztoqKSmBvb19jWPKy8tRWloq+SIiIuOVm5urEaCCg4MZoAyEbBeWX716FVVVVXBycpLUnZyccOLECa3LqFQqreNVKpX4+b1adWPqY8+ePUhNTcV3331X47jExEStj+onIiLjo+3nwaxZs6BUyn45MukIfyfv48iRIxg6dCgSEhLw9NNP1zg2NjYWJSUl4tf58+cbqUsiItIXVVVV1b77jgHKsMh2JsrBwQEmJiYoLCyU1AsLC+Hs7Kx1GWdn5xrH3/u1sLAQLi4ukjFeXl517vHYsWMYMGAAxo0bh7i4uPuONzc3h7m5eZ23Q0REhuG3337D9u3bJTU+PNNwyRaJzczM4OPjg8zMTLGmVquRmZkJf39/rcv4+/tLxgNARkaGON7DwwPOzs6SMaWlpcjOzq52ndU5evQo+vfvj4iICMyfP79OyxIRkfGZPXu2RoCKj49ngDJgsj5sMyYmBhEREfD19UWvXr2wbNkylJWVYcyYMQCA8PBwtG7dGomJiQCAyZMno2/fvli8eDGCg4OxceNG7N+/Hx9//DEAQKFQIDo6GvPmzUPHjh3h4eGBWbNmwdXVFSEhIeJ2CwoKUFRUhIKCAlRVVSE3NxcA0KFDBzRv3hxHjhzBk08+iaCgIMTExIjXU5mYmKBVq1aNd4CIiEjv3blzB++++65GnRePGz5ZQ1RoaCiuXLmC+Ph4qFQqeHl5IT09XbwwvKCgQDJ/HBAQgPXr1yMuLg4zZ85Ex44dsWXLFnTr1k0cM336dJSVlWHcuHEoLi7GE088gfT0dFhYWIhj4uPj8dlnn4nfe3t7AwB27tyJfv364csvv8SVK1ewdu1arF27VhzXrl075OfnN9ThICKiJmbXrl3YvXu3pBYWFoZOnTrJ1BE1JlmfE2Xo+JwoIiLDpe3i8fj4eCgUChm6IV2q7c9vvjuPiIioDsrLy7FgwQKNOqfvjA9DFBERUS2lp6cjOztbUgsPD4eHh4dMHZGcGKKIiIhqobpnP5HxYogiIiKqwa1bt/D+++9Laubm5lrf8UrGhSGKiIioGlu2bMGhQ4cktVdffRWtW7eWqSPSJwxRREREWnD6ju6HIYqIiOgfSktLsXTpUknN3t4eUVFRMnVE+oohioiI6P9t2LABp06dktTGjx8PR0dHmToifcYQRUREBE7fUd0xRBERkVErKirCihUrJLU2bdogMjJSpo6oqWCIIiIio7Vq1SpcuHBBUouKioK9vb1MHVFTwhBFRERGidN39KAYooiIyKhcvnwZK1eulNQ6deqEsLAwmTqipoohioiIjMaKFStQVFQkqb355puwsbGRqSNqyhiiiIjIKHD6jnSNIYqIiAzan3/+iU8//VRS69GjB0JCQuRpiAwGQxQRERmsBQsWoLy8XFKbNm0arKysZOqIDAlDFBERGSRO31FDY4giIiKDkp+fj88++0xS8/Pzw8CBA2XqiAwVQxQRERkMbWefZsyYAXNzcxm6IUPHEEVERE2eIAiYM2eORp3Td9SQGKKIiKhJO3nyJDZu3Cip9evXD3379pWpIzIWDFFERNRkaZu+mzlzJpo1ayZDN2RsGKKIiKjJ4fQd6QOGKCIialIOHz6Mr7/+WlILCgpC7969ZeqIjBVDFBERNRnapu/i4uJgYmIiQzdk7BiiiIhI76nVasydO1ejzuk7khNDFBER6bX9+/fju+++k9SGDBkCb29vmToiuoshioiI9Ja26btZs2ZBqVTK0A2RFEMUERHpncrKSsyfP1+jzuk70icMUUREpFd++eUXZGZmSmrDhw9H165dZeqISDuGKCIi0hvapu/i4+OhUChk6IaoZgxRREQku4qKCiQmJmrUOX1H+owhioiIZJWZmYlffvlFUhs1ahTat28vU0dEtcMQRUREsuH0HTVlDFFERNTo/vrrLyxcuFBSUygUiI+Pl6kjorpjiCIiokaVlpaGnJwcSW3MmDFo27atTB0R1Y/sTytLSkqCu7s7LCws4Ofnh71799Y4fvPmzejSpQssLCzQvXt3bNu2TfK5IAiIj4+Hi4sLLC0tERgYiNOnT0vGzJ8/HwEBAbCysoKdnZ3W7RQUFCA4OBhWVlZwdHTEtGnTUFlZ+UD7SkRk7GbPnq0RoBISEhigqEmSNUSlpqYiJiYGCQkJOHDgAHr06IGgoCBcvnxZ6/g9e/YgLCwMkZGROHjwIEJCQhASEoIjR46IYxYuXIjly5cjOTkZ2dnZsLa2RlBQEG7fvi2OqaiowPDhwzF+/Hit26mqqkJwcDAqKiqwZ88efPbZZ0hJSeFpZiKierp586bG9U8tWrTg3XfUpCkEQRDk2rifnx969uyJDz/8EMDdF0y6ubkhKioKM2bM0BgfGhqKsrIypKWlibXevXvDy8sLycnJEAQBrq6umDJlCqZOnQoAKCkpgZOTE1JSUjBixAjJ+lJSUhAdHY3i4mJJ/fvvv8fgwYNx8eJFODk5AQCSk5Px1ltv4cqVKzAzM6vV/pWWlsLW1hYlJSWwsbGp9XEhIjIkX375JY4ePSqpjRs3Di4uLjJ1RFSz2v78lu1MVEVFBXJychAYGPh3M0olAgMDkZWVpXWZrKwsyXgACAoKEsfn5eVBpVJJxtja2sLPz6/adVa3ne7du4sB6t52SktLNf4iICKi6s2ePVvj782EhAQGKDIIsl1YfvXqVVRVVUmCCgA4OTnhxIkTWpdRqVRax6tUKvHze7XqxtRGddv55za0KS8vR3l5ufh9aWlprbdJRGRIiouL8cEHH0hqTk5OeP3112XqiEj3eHeeDiUmJmp95gkRkTH5/PPPkZeXJ6lNnDgRDg4OMnVE1DBkm85zcHCAiYkJCgsLJfXCwkI4OztrXcbZ2bnG8fd+rcs667Kdf25Dm9jYWJSUlIhf58+fr/U2iYgMwezZszUCVEJCAgMUGSTZQpSZmRl8fHwkb+pWq9XIzMyEv7+/1mX8/f013uydkZEhjvfw8ICzs7NkTGlpKbKzs6tdZ3XbOXz4sOQuwYyMDNjY2NT4FnFzc3PY2NhIvoiIjMHVq1c1zsR7eHjw7jsyaLJO58XExCAiIgK+vr7o1asXli1bhrKyMowZMwYAEB4ejtatW4svpZw8eTL69u2LxYsXIzg4GBs3bsT+/fvx8ccfA7j7tNvo6GjMmzcPHTt2hIeHB2bNmgVXV1eEhISI2y0oKEBRUREKCgpQVVWF3NxcAECHDh3QvHlzPP300+jatStefvllLFy4ECqVCnFxcZg4cSLMzc0b9RgREem75ORkjbP30dHRsLW1lakjosYha4gKDQ3FlStXEB8fD5VKBS8vL6Snp4sXcRcUFECp/PtkWUBAANavX4+4uDjMnDkTHTt2xJYtW9CtWzdxzPTp01FWVoZx48ahuLgYTzzxBNLT02FhYSGOiY+Px2effSZ+7+3tDQDYuXMn+vXrBxMTE6SlpWH8+PHw9/eHtbU1IiIiMGfOnIY+JERETYq260B59omMhazPiTJ0fE4UERmqS5cuibMA9zzyyCN44YUXZOqISHdq+/Obd+cREVGdLFmyBDdu3JDUpkyZgubNm8vUEZE8GKKIiKjWOH1H9DeGKCIiuq+CggKsWbNGUvPx8cHgwYNl6ohIfnUOUSYmJrh06RIcHR0l9WvXrsHR0RFVVVU6a46IiOQ3d+5cqNVqSW369OmwtLSUqSMi/VDnEFXddejl5eW1fjEvERHpP0EQtN6VzOk7ortqHaKWL18O4O6zmD799FPJBYRVVVX46aef0KVLF913SEREje7MmTNYt26dpPb4449rvASeyJjVOkQtXboUwN1/mSQnJ8PExET8zMzMDO7u7khOTtZ9h0RE1Ki0XTweGxvL2Qaif6l1iLr3LqT+/fvj66+/xkMPPdRgTRERUePj9B1R3dT5mqidO3c2RB9ERCSj48ePY9OmTZLagAED8MQTT8jUEZH+q3OIeuWVV2r8fPXq1fVuhoiIGp+26bu3334bpqZ8Cg5RTer8f8j169cl39+5cwdHjhxBcXExnnzySZ01RkREDUutVmPu3LkadU7fEdVOnUPU//73P42aWq3G+PHj0b59e500RUREDSs3NxfffPONpBYcHAxfX1+ZOiJqenT2AuKTJ0+iX79+uHTpki5WZxD4AmIi0kfapu9mzZoFpVIpQzdE+qfRX0B89uxZVFZW6mp1RESkY1VVVZg3b55GndN3RPVT5xAVExMj+V4QBFy6dAnfffcdIiIidNYYERHpzm+//Ybt27dLas8//zy6d+8uU0dETV+dQ9TBgwcl3yuVSrRq1QqLFy++7517RETU+LRN38XHx0OhUMjQDZHh4HOiiIgM1J07d/Duu+9q1Dl9R6Qb9b4m6vLlyzh58iQAoHPnznB0dNRZU0RE9GB2796NXbt2SWphYWHo1KmTPA0RGaA6h6jS0lJMnDgRGzZsgFqtBgCYmJggNDQUSUlJsLW11XmTRERUe5y+I2ocdb6fdezYscjOzsZ3332H4uJiFBcXIy0tDfv378drr73WED0SEVEtlJeXaw1QCQkJDFBEDaDOz4mytrbG9u3bNd6n9PPPP2PgwIEoKyvTaYNNGZ8TRUSNZfv27fjtt98ktfDwcHh4eMjUEVHT1WDPiWrZsqXWKTtbW1s89NBDdV0dERE9oOrOPhFRw6rzdF5cXBxiYmKgUqnEmkqlwrRp0zBr1iydNkdERNW7deuWRoAyNzdngCJqJHWezvP29saZM2dQXl6Otm3bAgAKCgpgbm6Ojh07SsYeOHBAd502QZzOI6KGsmXLFhw6dEhSe/XVV9G6dWuZOiIyHA02nTd06FBeoEhEJCNO3xHpB529gJg08UwUEelSaWkpli5dKqnZ29sjKipKpo6IDFODnYl6+OGHsW/fPrRs2VJSLy4uxmOPPYZz587VvVsiIqrRhg0bcOrUKUlt/PjxfNAxkYzqHKLy8/NRVVWlUS8vL8eFCxd00hQREf2N03dE+qnWIWrr1q3if2/fvl3ymIOqqipkZmbyeSRERDpUVFSEFStWSGpt2rRBZGSkTB0R0T/VOkSFhIQAABQKBSIiIiSfNWvWDO7u7li8eLFOmyMiMlarVq3SOLsfFRUFe3t7mToion+rdYi69548Dw8P7Nu3Dw4ODg3WFBGRMeP0HVHTUOdrovLy8hqiDyIio3f58mWsXLlSUuvUqRPCwsJk6oiIalLnEDVnzpwaP4+Pj693M0RExmrFihUoKiqS1N58800+HoVIj9U5RP3vf/+TfH/nzh3k5eXB1NQU7du3Z4giIqojTt8RNU11DlEHDx7UqJWWlmL06NF47rnndNIUEZEx+PPPP/Hpp59Kaj169BBv5CEi/aazJ5YfPnwYzz77LPLz83WxOoPAJ5YTUXUWLFiA8vJySW3atGmwsrKSqSMiuqfBnlhenZKSEpSUlOhqdUREBovTd0SGoc4havny5ZLvBUHApUuX8MUXX2DQoEE6a4yIyNDk5+fjs88+k9T8/PwwcOBAmToiogehrOsCS5culXwtX74cu3btQkREBP773//WuYGkpCS4u7vDwsICfn5+2Lt3b43jN2/ejC5dusDCwgLdu3fHtm3bJJ8LgoD4+Hi4uLjA0tISgYGBOH36tGRMUVERRo4cCRsbG9jZ2SEyMhI3b96UjNm+fTt69+6NFi1aoFWrVhg2bBinKomo3mbPnq0RoGbMmMEARdSE1TlE5eXlSb7Onj2L3377De+++y5atGhRp3WlpqYiJiYGCQkJOHDgAHr06IGgoCBcvnxZ6/g9e/YgLCwMkZGROHjwIEJCQhASEoIjR46IYxYuXIjly5cjOTkZ2dnZsLa2RlBQEG7fvi2OGTlyJI4ePYqMjAykpaXhp59+wrhx4yT7OHToUDz55JPIzc3F9u3bcfXqVTz//PN1PFpEZOwEQah2+s7c3FyGjohIV+p1YXlxcTHOnDkDAOjQoQPs7OzqtXE/Pz/07NkTH374IYC7T0V3c3NDVFQUZsyYoTE+NDQUZWVlSEtLE2u9e/eGl5cXkpOTIQgCXF1dMWXKFEydOhXA3Wu1nJyckJKSghEjRuD48ePo2rUr9u3bB19fXwBAeno6nnnmGVy4cAGurq748ssvERYWhvLyciiVd3Pmt99+i6FDh6K8vBzNmjWr1f7xwnIi43bq1Cls2LBBUjtzph+++KKvTB0RUW3U9ud3nc5E5efnIzg4GA4ODvDz84Ofnx8cHBwwePDgOk91VVRUICcnB4GBgX83o1QiMDAQWVlZWpfJysqSjAeAoKAgcXxeXh5UKpVkjK2tLfz8/MQxWVlZsLOzEwMUAAQGBkKpVCI7OxsA4OPjA6VSiTVr1qCqqgolJSX44osvEBgYWGOAKi8vR2lpqeSLiIzT7NmzNQJURsZMDB/OAEVkKGp9Yfn58+fRu3dvNGvWDHPnzoWnpycA4NixY1i5ciX8/f2xb98+tGnTplbru3r1KqqqquDk5CSpOzk54cSJE1qXUalUWserVCrx83u1msY4OjpKPjc1NYW9vb04xsPDAz/88ANefPFFvPbaa6iqqoK/v7/G9Vf/lpiYqPW0PREZD0EQtL7ZISEhAbwBj8iw1PpM1DvvvIPOnTvj9OnTiI2NFa9HmjlzJk6dOoVOnTrhnXfeacBWG49KpcLYsWMRERGBffv2Yffu3TAzM8MLL7yAmmY/Y2NjxUc9lJSU4Pz5843YNRHJ7fDhwxoBKigoiI8vIDJQtT4TlZ6ejtTUVFhYWGh8Zmlpiblz52LEiBG13rCDgwNMTExQWFgoqRcWFsLZ2VnrMs7OzjWOv/drYWEhXFxcJGO8vLzEMf++cL2yshJFRUXi8klJSbC1tcXChQvFMWvXroWbmxuys7PRu3dvrf2Zm5vzQlEiI6XtLHRcXBxMTExk6IaIGkOtz0RdvXoV7u7u1X7+8MMPa7w8syZmZmbw8fFBZmamWFOr1cjMzIS/v7/WZfz9/SXjASAjI0Mc7+HhAWdnZ8mY0tJSZGdni2P8/f1RXFyMnJwcccyOHTugVqvh5+cHALh165Z4Qfk99/4iVKvVtd5HIjJ8arW62rvvGKCIDFutz0S5uLjg2LFj1V7zdOTIkWrPIFUnJiYGERER8PX1Ra9evbBs2TKUlZVhzJgxAIDw8HC0bt0aiYmJAIDJkyejb9++WLx4MYKDg7Fx40bs378fH3/8MQBAoVAgOjoa8+bNQ8eOHeHh4YFZs2bB1dVVfBeVp6cnBg4ciLFjxyI5ORl37tzBpEmTMGLECLi6ugIAgoODsXTpUsyZMwdhYWG4ceMGZs6ciXbt2sHb27tO+0hEhmv//v347rvvJLUhQ4bw7wkiI1HrEBUSEoKpU6ciMzMTrVq1knx2+fJlvPXWW3V+aWZoaCiuXLmC+Ph4qFQqeHl5IT09XbwwvKCgQHJGKCAgAOvXr0dcXBxmzpyJjh07YsuWLejWrZs4Zvr06SgrK8O4ceNQXFyMJ554Aunp6ZJpyHXr1mHSpEkYMGAAlEolhg0bJnkS+5NPPon169dj4cKFWLhwIaysrODv74/09HRYWlrWaR+JyDBpO/s0a9YsjbPYRGS4av2cqOvXr8PPzw8qlQqjRo1Cly5dIAgCjh8/jvXr18PZ2Rm//fYb7O3tG7rnJoPPiSIyPJWVlZg/f75GnRePExkOnb+A+KGHHkJ2djZmzpyJjRs3ori4GABgZ2eHl156Ce+++y4DFBEZtF9//RU//vijpDZ8+HB07dpVpo6ISE71emK5IAi4cuUKAKBVq1ZQKBQ6b8wQ8EwUkeHQNn0XHx/Pv/+IDJDOz0T9k0Kh0HhgJRGRIaqoqBBvbvknTt8RUb1CFBGRMcjMzMQvv/wiqY0aNQrt27eXqSMi0icMUUREWnD6jojuhyGKiOgf/vrrL8nbCoC7lzDEx8fL1BER6SuGKCKi/5eWliZ5mwEAjBkzBm3btpWpIyLSZ7UKUf98EOX9vPHGG/VuhohILtW9uoWIqDq1esSBh4dH7VamUODcuXMP3JSh4CMOiPTfzZs3sXjxYkmtefPmmDJlikwdEZHcdPqIg7y8PJ01RkSkL7788kscPXpUUhs3bhxcXFxk6oiImpJ6XxNVUVGBvLw8tG/fHqamvLSKiJoWTt8R0YOq85syb926hcjISFhZWeGRRx5BQUEBACAqKgoLFizQeYNERLp05coVjQDl5OTEAEVEdVbnEBUbG4tDhw5h165dsLCwEOuBgYFITU3VaXNERLo0d+5cfPTRR5Lazz9PxOuvvy5TR0TUlNV5Hm7Lli1ITU1F7969JQ+de+SRR3D27FmdNkdEpCvapu+2b0/AjBkyNENEBqHOIerKlSta35tXVlbGJ/kSkd65ePEiPvnkE0nt3sMzOYNHRA+iziHK19cX3333HaKiogBADE6ffvop/P39ddsdEdED0Hb2acKECWjVqpUM3RCRoalziHr33XcxaNAgHDt2DJWVlfjggw9w7Ngx7NmzB7t3726IHomI6ox33xFRQ6vzheVPPPEEcnNzUVlZie7du+OHH36Ao6MjsrKy4OPj0xA9EhHV2okTJzQClI2NDQMUEelcrZ5YTvXDJ5YTNS5tZ58mT54MOzu7xm+GiJosnT6xvLS0tNYbZlggIjloC1De3glgfiKihlKrEGVnZ1frO++qqqoeqCEioro4ePAgtm7dqlHn9B0RNbRahaidO3eK/52fn48ZM2Zg9OjR4t14WVlZ+Oyzz5CYmNgwXRIRaaHt7NObb77JM+JE1CjqfE3UgAED8OqrryIsLExSX79+PT7++GPs2rVLl/01abwmiqhhCIKAOXPmaNR59omIdKG2P7/rfHdeVlYWfH19Neq+vr7Yu3dvXVdHRFQne/bs0QhQtra2DFBE1Ojq/JwoNzc3fPLJJ1i4cKGk/umnn8LNzU1njRER/Zu26btp06bByspKhm6IyNjVOUQtXboUw4YNw/fffw8/Pz8AwN69e3H69Gl89dVXOm+QiIjTd0Skj+r1nKgLFy7go48+wokTJwAAnp6eeP3113km6l94TRTRg8vIyMCePXsktTZt2iAyMlKmjojI0NX25zcfttmAGKKIHoy26bvY2FiYmZnJ0A0RGQudPmzz34qLi7Fq1SocP34cAPDII4/glVdega2tbf26JSL6B7Vajblz52rUOX1HRPqkznfn7d+/H+3bt8fSpUtRVFSEoqIiLFmyBO3bt8eBAwcaokciMiLp6ekaAerixUfh7c0ARUT6pc7Tef/5z3/QoUMHfPLJJzA1vXsiq7KyEq+++irOnTuHn376qUEabYo4nUdUN9qm7+Li4mBiYiJDN0RkrBrsmihLS0scPHgQXbp0kdSPHTsGX19f3Lp1q34dGyCGKKLaqaysxPz58zXqnL4jIjk02DVRNjY2KCgo0AhR58+fR4sWLereKREZta+//hqHDx+W1J544gkMGDBApo6IiGqnziEqNDQUkZGRWLRoEQICAgAAv/76K6ZNm6bxKhgioppom76bNWsWlMo6X65JRNTo6hyiFi1aBIVCgfDwcFRWVgIAmjVrhvHjx2PBggU6b5CIDE95ebnWvy84fUdETUm9nxN169YtnD17FgDQvn17vnZBC14TRaTp888/R15enqT21FNPiWe2iYjk1qDPiQIAKysrdO/evb6LE5ER0jZ9Fx8fD4VCIUM3REQPptYXHrzyyiu1+qqrpKQkuLu7w8LCAn5+fti7d2+N4zdv3owuXbrAwsIC3bt3x7Zt2ySfC4KA+Ph4uLi4wNLSEoGBgTh9+rRkTFFREUaOHAkbGxvY2dkhMjISN2/e1FjPokWL0KlTJ5ibm6N169Za7x4iovsrKyvTGqASEhIYoIioyar1maiUlBS0a9cO3t7e0NWbYlJTUxETE4Pk5GT4+flh2bJlCAoKwsmTJ+Ho6Kgxfs+ePQgLC0NiYiIGDx6M9evXIyQkBAcOHEC3bt0AAAsXLsTy5cvx2WefwcPDA7NmzUJQUBCOHTsGCwsLAMDIkSNx6dIlZGRk4M6dOxgzZgzGjRuH9evXi9uaPHkyfvjhByxatAjdu3cXHyxKRHXz0Ucf4cqVK5LakCFD4O3tLVNHRES6UetroiZOnIgNGzagXbt2GDNmDEaNGgV7e/sH2rifnx969uyJDz/8EMDdVz24ubkhKioKM2bM0BgfGhqKsrIypKWlibXevXvDy8sLycnJEAQBrq6umDJlCqZOnQoAKCkpgZOTE1JSUjBixAgcP34cXbt2xb59++Dr6wvg7hOSn3nmGVy4cAGurq44fvw4Hn30URw5cgSdO3eu9/7xmigydtWdfSIi0me1/fld6+m8pKQkXLp0CdOnT8e3334LNzc3vPjii9i+fXu9zkxVVFQgJycHgYGBfzejVCIwMBBZWVlal8nKypKMB4CgoCBxfF5eHlQqlWSMra0t/Pz8xDFZWVmws7MTAxQABAYGQqlUIjs7GwDw7bff4uGHH0ZaWho8PDzg7u6OV199lWeiiGqppKSEAYqIDF6dLiw3NzdHWFgYwsLC8McffyAlJQUTJkxAZWUljh49iubNm9d6XVevXkVVVRWcnJwkdScnJ5w4cULrMiqVSut4lUolfn6vVtOYf08Vmpqawt7eXhxz7tw5/PHHH9i8eTM+//xzVFVV4c0338QLL7yAHTt2VLtP5eXlKC8vF78vLS2tdiyRoXrvvfdw+/ZtSe3FF1+Ep6enTB0RETWMet+dp1QqoVAoIAgCqqqqdNmT7NRqNcrLy/H555+jU6dOAIBVq1bBx8cHJ0+erHaKLzExUeu/vomMBc8+EZExqdNjgcvLy7FhwwY89dRT6NSpEw4fPowPP/wQBQUFdToLBQAODg4wMTFBYWGhpF5YWAhnZ2etyzg7O9c4/t6v9xtz+fJlyeeVlZUoKioSx7i4uMDU1FQMUADEf0UXFBRUu0+xsbEoKSkRv86fP1/tWCJDcvXqVQYoIjI6tQ5REyZMgIuLCxYsWIDBgwfj/Pnz2Lx5M5555pl6vaLBzMwMPj4+yMzMFGtqtRqZmZnw9/fXuoy/v79kPABkZGSI4z08PODs7CwZU1paiuzsbHGMv78/iouLkZOTI47ZsWMH1Go1/Pz8AACPP/44KisrxYeJAsCpU6cAAO3atat2n8zNzWFjYyP5IjJ0s2fPRlJSkqQWHh7OAEVEBq/Wd+cplUq0bdsW3t7eNT7X5euvv671xlNTUxEREYH//ve/6NWrF5YtW4ZNmzbhxIkTcHJyQnh4OFq3bo3ExEQAdx9x0LdvXyxYsADBwcHYuHEj3n33XckjDt577z0sWLBA8oiD33//XfKIg0GDBqGwsBDJycniIw58fX3FRxyo1Wr07NkTzZs3x7Jly6BWqzFx4kTY2Njghx9+qPX+8e48MnQ8+0REhkjnTywPDw/X+UPxQkNDceXKFcTHx0OlUsHLywvp6eniheEFBQWSs1wBAQFYv3494uLiMHPmTHTs2BFbtmwRAxQATJ8+HWVlZRg3bhyKi4vxxBNPID09XQxQALBu3TpMmjQJAwYMgFKpxLBhw7B8+XLxc6VSiW+//RZRUVHo06cPrK2tMWjQICxevFin+0/UVF28eBGffPKJRp0BioiMSb3fnUf3xzNRZIi0nX0aO3YsXF1dZeiGiEj3GvzdeURkfDh9R0T0N4YoIrqvvLw8fP755xp1BigiMmYMUURUI21nnyZMmIBWrVrJ0A0Rkf5giCKianH6joioegxRRKThxIkTSE1NldTMzMwQGxsrU0dERPqHIYqIJLSdfYqOjoatra0M3RAR6S+GKCIScfqOiKj2GKKICLm5ufjmm28ktZYtW2LSpEkydUREpP8YooiMnLazT1OnToW1tbUM3RARNR0MUURGShAEzJkzR6PO6TsiotphiCIyQllZWRov03Z3d0dERIRMHRERNT0MUURGRtv03YwZM2Bubi5DN0RETRdDFJGR4PQdEZFuMUQRGYH9+/fju+++k9TOnu2DF17oL1NHRERNH0MUkYHTNn339ttvw9SU//sTET0I/i1KZKCqqqowb948jTqn74iIdIMhisgA/fLLL8jMzJTUnn76afj7+8vUERGR4WGIIjIw2qbvZs2aBaVSKUM3RESGiyGKyEBUVlZi/vz5GnVO3xERNQyGKCIDkJGRgT179khqQ4YMgbe3t0wdEREZPoYooiZO2/RdfHw8FAqFDN0QERkPhiiiJqq8vBwLFizQqHP6joiocTBEETVBW7duxcGDByW1F198EZ6enjJ1RERkfBiiiJoYTt8REekHhiiiJuLWrVt4//33NeqcviMikgdDFFETkJqaihMnTkhqo0aNQvv27WXqiIiIGKKI9Jy26TuefSIikh9DFJGeKi0txdKlSzXqDFBERPqBIYpID61evRrnz5+X1F555RW4ubnJ1BEREf0bQxSRnuH0HRFR08AQRaQnioqKsGLFCkmtWbNmmDlzpkwdERFRTRiiiPTAihUrUFRUJKm9/vrrcHJykqkjIiK6H4YoIplx+o6IqGliiCKSSWFhIZKTkyU1Ozs7TJ48WaaOiIioLhiiiGSwYMEClJeXS2qTJk1Cy5YtZeqIiIjqiiGKqJFx+o6IyDAwRBE1kgsXLmDVqlWSWps2bRAZGSlTR0RE9CAYoogagbazT2+++SZsbGxk6IaIiHRBKXcDAJCUlAR3d3dYWFjAz88Pe/furXH85s2b0aVLF1hYWKB79+7Ytm2b5HNBEBAfHw8XFxdYWloiMDAQp0+flowpKirCyJEjYWNjAzs7O0RGRuLmzZtat3fmzBm0aNECdnZ2D7SfZJyqm75jgCIiatpkD1GpqamIiYlBQkICDhw4gB49eiAoKAiXL1/WOn7Pnj0ICwtDZGQkDh48iJCQEISEhODIkSPimIULF2L58uVITk5GdnY2rK2tERQUhNu3b4tjRo4ciaNHjyIjIwNpaWn46aefMG7cOI3t3blzB2FhYfjPf/6j+50ng3bu3DmNANW5c2de/0REZCAUgiAIcjbg5+eHnj174sMPPwQAqNVquLm5ISoqCjNmzNAYHxoairKyMqSlpYm13r17w8vLC8nJyRAEAa6urpgyZQqmTp0KACgpKYGTkxNSUlIwYsQIHD9+HF27dsW+ffvg6+sLAEhPT8czzzyDCxcuwNXVVVz3W2+9hYsXL2LAgAGIjo5GcXFxrfettLQUtra2KCkp4VkHI6Pt7NO0adNgZWUlQzdERFQXtf35LeuZqIqKCuTk5CAwMFCsKZVKBAYGIisrS+syWVlZkvEAEBQUJI7Py8uDSqWSjLG1tYWfn584JisrC3Z2dmKAAoDAwEAolUpkZ2eLtR07dmDz5s1ISkqq1f6Ul5ejtLRU8kXGRRCEaqfvGKCIiAyLrBeWX716FVVVVRqvtnBycsKJEye0LqNSqbSOV6lU4uf3ajWNcXR0lHxuamoKe3t7ccy1a9cwevRorF27ttZnkRITE7X+ACXjcPz4cWzatElS8/LywtChQ2XqiIiIGhLvzqvG2LFj8dJLL6FPnz61XiY2NhYxMTHi96WlpXBzc2uI9kjPaAvPM2bMgLm5uQzdEBFRY5B1Os/BwQEmJiYoLCyU1AsLC+Hs7Kx1GWdn5xrH3/v1fmP+feF6ZWUlioqKxDE7duzAokWLYGpqClNTU0RGRqKkpASmpqZYvXq11t7Mzc1hY2Mj+SLDVtP0HQMUEZFhkzVEmZmZwcfHB5mZmWJNrVYjMzMT/v7+Wpfx9/eXjAeAjIwMcbyHhwecnZ0lY0pLS5GdnS2O8ff3R3FxMXJycsQxO3bsgFqthp+fH4C7103l5uaKX3PmzEGLFi2Qm5uL5557TjcHgJq0n376CXPmzJHULl/uBG9v3n1HRGQMZJ/Oi4mJQUREBHx9fdGrVy8sW7YMZWVlGDNmDAAgPDwcrVu3RmJiIgBg8uTJ6Nu3LxYvXozg4GBs3LgR+/fvx8cffwwAUCgUiI6Oxrx589CxY0d4eHhg1qxZcHV1RUhICADA09MTAwcOxNixY5GcnIw7d+5g0qRJGDFihHhnnqenp6TP/fv3Q6lUolu3bo10ZEifaTv7FBsbCzMzMxm6ISIiOcgeokJDQ3HlyhXEx8dDpVLBy8sL6enp4oXhBQUFUCr/PmEWEBCA9evXIy4uDjNnzkTHjh2xZcsWSbiZPn06ysrKMG7cOBQXF+OJJ55Aeno6LCwsxDHr1q3DpEmTMGDAACiVSgwbNgzLly9vvB2nJkmtVmPu3LkadT77iYjI+Mj+nChDxudEGZbt27fjt99+k9S8vb0xZMgQmToiIqKGUNuf37KfiSJqCrRN38XFxcHExESGboiISB8wRBHVoLKyEvPnz9eoc/qOiIgYooiq8b///Q+///67pPb4449rPDGfiIiME0MUkRbapu9mzZolucmBiIiMG0MU0T9UVFSIj9P4J07fERHRvzFEEf2/77//Hnv37pXUnnrqKQQEBMjUERER6TOGKCJon77z8opHQIBChm6IiKgpYIgio3b79m289957GnVO3xER0f0wRJHR+vrrr3H48GFJLSwsDJ06dZKpIyIiakoYosgoaZu+49knIiKqC4YoMio3b97E4sWLNeoMUEREVFcMUWQ01q5di7Nnz0pqERERcHd3l6chIiJq0hiiyChw+o6IiHSNIYoM2o0bN7BkyRKNOgMUERE9KIYoMlgbN27EyZMnJbWsrLGYMMFVpo6IiMiQMESRQdI2feftnQCegCIiIl1hiCKDcv36dSxfvlxSa926NV599VWZOiIiIkPFEEUGY/Xq1Th//rykFhUVBXt7e5k6IiIiQ8YQRQaBd98REVFjY4iiJu38+fNYvXq1pNaxY0e89NJLMnVERETGgiGKmixtZ5/efPNN2NjYyNANEREZG6XcDRDVh7YAtWFDAgMUERE1Gp6Joibl7NmzWLt2raRmbu6ArVsnYuFCmZoiIiKjxBBFTUZN03czZsjQEBERGTWGKGoSePcdERHpG4Yo0mvHjh3D5s2bJbV27dph9OjR8jRERET0/xiiSG9pO/s0bdo0WFlZydANERGRFEMU6R1BEDBnzhyNOqfviIhInzBEkV45cOAAvv32W0mta9euGD58uEwdERERaccQRXpD2/TdjBkzYG5uLkM3RERENWOIItlx+o6IiJoihiiS1a+//ooff/xRUvP19UVwcLBMHREREdUOQxTJRtv03dtvvw1TU/6xJCIi/cefVtTo1Go15s6dq1Hn9B0RETUlDFHUqHJycpCWliap9enTB/3795epIyIiovphiKJGo236zstrFvr3V8rQDRER0YNhiKIGV1lZifnz52vUOX1HRERNGUMUNag9e/YgIyNDUhs+fDi6du0qU0dERES6oRfzKElJSXB3d4eFhQX8/Pywd+/eGsdv3rwZXbp0gYWFBbp3745t27ZJPhcEAfHx8XBxcYGlpSUCAwNx+vRpyZiioiKMHDkSNjY2sLOzQ2RkJG7evCl+vmvXLgwdOhQuLi6wtraGl5cX1q1bp7udNgKzZ8/WCFDx8fEMUEREZBBkD1GpqamIiYlBQkICDhw4gB49eiAoKAiXL1/WOn7Pnj0ICwtDZGQkDh48iJCQEISEhODIkSPimIULF2L58uVITk5GdnY2rK2tERQUhNu3b4tjRo4ciaNHjyIjIwNpaWn46aefMG7cOMl2Hn30UXz11Vf4/fffMWbMGISHh2tcFE2aKioqtF7/lJCQAIVCIUNHREREuqcQBEGQswE/Pz/07NkTH374IYC7t7+7ubkhKioKM2bM0BgfGhqKsrIySZjp3bs3vLy8kJycDEEQ4OrqiilTpmDq1KkAgJKSEjg5OSElJQUjRozA8ePH0bVrV+zbtw++vr4AgPT0dDzzzDO4cOECXF1dtfYaHBwMJycnrF69ulb7VlpaCltbW5SUlMDGxqZOx6WpyszMxC+//CKpjRw5Eh06dJCpIyIiorqp7c9vWc9EVVRUICcnB4GBgWJNqVQiMDAQWVlZWpfJysqSjAeAoKAgcXxeXh5UKpVkjK2tLfz8/MQxWVlZsLOzEwMUAAQGBkKpVCI7O7vafktKSmBvb1/t5+Xl5SgtLZV8GZPZs2drBKj4+HgGKCIiMkiyhqirV6+iqqoKTk5OkrqTkxNUKpXWZVQqVY3j7/16vzGOjo6Sz01NTWFvb1/tdjdt2oR9+/ZhzJgx1e5PYmIibG1txS83N7dqxxqS27dvc/qOiIiMDu/Oq4WdO3dizJgx+OSTT/DII49UOy42NhYxMTHi96WlpQYfpL777jvs379fUhszZgzatm0rU0dERESNQ9YQ5eDgABMTExQWFkrqhYWFcHZ21rqMs7NzjePv/VpYWAgXFxfJGC8vL3HMvy9cr6ysRFFRkcZ2d+/ejWeffRZLly5FeHh4jftjbm4Oc3PzGscYkurOPhERERkDWafzzMzM4OPjg8zMTLGmVquRmZkJf39/rcv4+/tLxgNARkaGON7DwwPOzs6SMaWlpcjOzhbH+Pv7o7i4GDk5OeKYHTt2QK1Ww8/PT6zt2rULwcHBeO+99yR37hm7mzdvagQoa2trBigiIjIqsk/nxcTEICIiAr6+vujVqxeWLVuGsrIy8dqj8PBwtG7dGomJiQCAyZMno2/fvli8eDGCg4OxceNG7N+/Hx9//DEAQKFQIDo6GvPmzUPHjh3h4eGBWbNmwdXVFSEhIQAAT09PDBw4EGPHjkVycjLu3LmDSZMmYcSIEeKdeTt37sTgwYMxefJkDBs2TLxWyszMrMaLyw3dV199JXmcBACMGzdOctaPiIjIGMgeokJDQ3HlyhXEx8dDpVLBy8sL6enp4oXhBQUFUCr/PmEWEBCA9evXIy4uDjNnzkTHjh2xZcsWdOvWTRwzffp0lJWVYdy4cSguLsYTTzyB9PR0WFhYiGPWrVuHSZMmYcCAAVAqlRg2bBiWL18ufv7ZZ5/h1q1bSExMFAMcAPTt2xe7du1qwCOivzh9R0RE9DfZnxNlyAzlOVElJSVYtmyZpObo6Ijx48fL0xAREVEDqu3Pb9nPRJF+++KLL3Du3DlJbeLEiXBwcJCpIyIiIv3AEEXV4vQdERFR9RiiSMONGzewZMkSSc3d3R0REREydURERKR/GKJIIiMjA3v27JHUdu+ejIQEO3kaIiIi0lMMUSTSNn23YUMCFi6UoRkiIiI9xxBFKC4uxgcffCCpPf300/D39wcvgSIiItKOIcrIpaWlSZ7cDgBvvfWW5JlaREREpIkhyojx7jsiIqL6Y4gyQlevXkVSUpKkNnjwYPj4+MjUERERUdPDEGVktL37LjY2FmZmZjJ1RERE1DQxRBkJQRAwZ84cjTqn74iIiOqHIcoIFBYWIjk5WVJ77rnn8Oijj8rUERERUdPHEGXg1q1bhzNnzkhqb7/9NkxN+VtPRET0IPiT1EBpm75r1qwZZs6cKVNHREREhoUhygBdvnwZK1eulNRCQ0PRpUsXmToiIiIyPAxRBubAgQP49ttvJbW4uDiYmJjI1BEREZFhYogyEIIg4KOPPsLVq1fF2l9/2WLBgmj5miIiIjJgDFEGQNu77376KQqTJ9vL1BEREZHhY4hq4vbu3Yvvv/9e/N7Ozg5vvPEGFAqFjF0REREZPoaoJkoQBCxbtgylpaVi7ZlnnkHPnj1l7IqIiMh4MEQ1QUVFRVixYoWkFh0dDVtbW5k6IiIiMj4MUU3QPwOUo6MjXn/9dU7fERERNTKGqCbozz97oHXrQzh8eCi+/NJL7naIiIiMklLuBqjuBg8OwfbtCQgP95K7FSIiIqPFM1FN0JAhd7+IiIhIPjwTRURERFQPDFFERERE9cAQRURERFQPDFFERERE9cAQRURERFQPDFFERERE9cAQRURERFQPDFFERERE9cAQRURERFQPDFFERERE9cAQRURERFQPDFFERERE9cAQRURERFQPpnI3YMgEQQAAlJaWytwJERER1da9n9v3fo5XhyGqAd24cQMA4ObmJnMnREREVFc3btyAra1ttZ8rhPvFLKo3tVqNixcvokWLFlAoFHK30yhKS0vh5uaG8+fPw8bGRu52ZMFjcBePA48BwGMA8BgATe8YCIKAGzduwNXVFUpl9Vc+8UxUA1IqlWjTpo3cbcjCxsamSfyP0pB4DO7iceAxAHgMAB4DoGkdg5rOQN3DC8uJiIiI6oEhioiIiKgeGKJIp8zNzZGQkABzc3O5W5ENj8FdPA48BgCPAcBjABjuMeCF5URERET1wDNRRERERPXAEEVERERUDwxRRERERPXAEEVERERUDwxRRi4pKQnu7u6wsLCAn58f9u7dW+P4zZs3o0uXLrCwsED37t2xbds2yeeCICA+Ph4uLi6wtLREYGAgTp8+LRlTVFSEkSNHwsbGBnZ2doiMjMTNmzfFz3ft2oWhQ4fCxcUF1tbW8PLywrp163S30/+ij8fgn86cOYMWLVrAzs7ugfazJvp6DARBwKJFi9CpUyeYm5ujdevWmD9/vm52Wgt9PQ7bt29H79690aJFC7Rq1QrDhg1Dfn6+Tvb53+Q4BvPnz0dAQACsrKyq/XNeUFCA4OBgWFlZwdHREdOmTUNlZeUD7Wt19PEYHDp0CGFhYXBzc4OlpSU8PT3xwQcfPPC+Vkcfj8E/Xbt2DW3atIFCoUBxcXF9dlE3BDJaGzduFMzMzITVq1cLR48eFcaOHSvY2dkJhYWFWsf/+uuvgomJibBw4ULh2LFjQlxcnNCsWTPh8OHD4pgFCxYItra2wpYtW4RDhw4JQ4YMETw8PIS//vpLHDNw4EChR48ewm+//Sb8/PPPQocOHYSwsDDx8/nz5wtxcXHCr7/+Kpw5c0ZYtmyZoFQqhW+//dZojsE9FRUVgq+vrzBo0CDB1tZW5/svCPp9DKKiooTOnTsL33zzjXDu3Dlh//79wg8//GBUx+HcuXOCubm5EBsbK5w5c0bIyckR+vTpI3h7exvMMYiPjxeWLFkixMTEaP1zXllZKXTr1k0IDAwUDh48KGzbtk1wcHAQYmNjjeYYrFq1SnjjjTeEXbt2CWfPnhW++OILwdLSUlixYoXRHIN/Gjp0qDBo0CABgHD9+nVd7Ha9MEQZsV69egkTJ04Uv6+qqhJcXV2FxMREreNffPFFITg4WFLz8/MTXnvtNUEQBEGtVgvOzs7C+++/L35eXFwsmJubCxs2bBAEQRCOHTsmABD27dsnjvn+++8FhUIh/Pnnn9X2+swzzwhjxoyp+07eh74fg+nTpwujRo0S1qxZ02AhSl+PwbFjxwRTU1PhxIkTutnR+9DX47B582bB1NRUqKqqEsds3bpVUCgUQkVFxQPutZQcx+Cfqvtzvm3bNkGpVAoqlUqsrVy5UrCxsRHKy8vrtI/3o6/HQJsJEyYI/fv3r9XYutD3Y/DRRx8Jffv2FTIzM2UPUZzOM1IVFRXIyclBYGCgWFMqlQgMDERWVpbWZbKysiTjASAoKEgcn5eXB5VKJRlja2sLPz8/cUxWVhbs7Ozg6+srjgkMDIRSqUR2dna1/ZaUlMDe3r7uO1oDfT8GO3bswObNm5GUlPTgO1sNfT4G3377LR5++GGkpaXBw8MD7u7uePXVV1FUVKSbnf8HfT4OPj4+UCqVWLNmDaqqqlBSUoIvvvgCgYGBaNasmW4OAOQ7BrWRlZWF7t27w8nJSbKd0tJSHD16tNbruR99PgbaGNLfi7V17NgxzJkzB59//nmNLwZuLPJ3QLK4evUqqqqqJH8pAYCTkxNUKpXWZVQqVY3j7/16vzGOjo6Sz01NTWFvb1/tdjdt2oR9+/ZhzJgxtdy72tHnY3Dt2jWMHj0aKSkpDfqyTn0+BufOncMff/yBzZs34/PPP0dKSgpycnLwwgsv1HNvq6fPx8HDwwM//PADZs6cCXNzc9jZ2eHChQvYtGlTPfdWO7mOQW1Ut51/bkMX9PkY/NuePXuQmpqKcePG1Xsd2ujzMSgvL0dYWBjef/99tG3bttbLNSSGKNJrO3fuxJgxY/DJJ5/gkUcekbudRjN27Fi89NJL6NOnj9ytyEatVqO8vByff/45/vOf/6Bfv35YtWoVdu7ciZMnT8rdXqNRqVQYO3YsIiIisG/fPuzevRtmZmZ44YUXIPCFE0bpyJEjGDp0KBISEvD000/L3U6jiY2NhaenJ0aNGiV3KyKGKCPl4OAAExMTFBYWSuqFhYVwdnbWuoyzs3ON4+/9er8xly9flnxeWVmJoqIije3u3r0bzz77LJYuXYrw8PA67uH96fMx2LFjBxYtWgRTU1OYmpoiMjISJSUlMDU1xerVq+u5x5r0+Ri4uLjA1NQUnTp1Esd4enoCuHunli7p83FISkqCra0tFi5cCG9vb/Tp0wdr165FZmZmjVPgdSXXMaiN6rbzz23ogj4fg3uOHTuGAQMGYNy4cYiLi6vz8vejz8fg3iUO9/5eHDBggNhzQkJCrdejSwxRRsrMzAw+Pj7IzMwUa2q1GpmZmfD399e6jL+/v2Q8AGRkZIjjPTw84OzsLBlTWlqK7OxscYy/vz+Ki4uRk5MjjtmxYwfUajX8/PzE2q5duxAcHIz33ntP56er79HnY5CVlYXc3Fzxa86cOWjRogVyc3Px3HPP6eYAQL+PweOPP47KykqcPXtWHHPq1CkAQLt27R5ktzXo83G4deuWxrUfJiYmYo+6ItcxqA1/f38cPnxYEjgzMjJgY2ODrl271no996PPxwAAjh49iv79+yMiIqLBHvWhz8fgq6++wqFDh8S/Fz/99FMAwM8//4yJEyfWej06Jdsl7SS7jRs3Cubm5kJKSopw7NgxYdy4cYKdnZ14B8zLL78szJgxQxz/66+/CqampsKiRYuE48ePCwkJCVpvY7WzsxO++eYb4ffffxeGDh2q9ZZub29vITs7W/jll1+Ejh07Sm7p3rFjh2BlZSXExsYKly5dEr+uXbtmNMfg3xry7jx9PQZVVVXCY489JvTp00c4cOCAsH//fsHPz0946qmnjOo4ZGZmCgqFQpg9e7Zw6tQpIScnRwgKChLatWsn3Lp1yyCOwR9//CEcPHhQmD17ttC8eXPh4MGDwsGDB4UbN24IgvD3Iw6efvppITc3V0hPTxdatWrVYI840MdjcPjwYaFVq1bCqFGjJH8vXr582WiOwb/t3LlT9rvzGKKM3IoVK4S2bdsKZmZmQq9evYTffvtN/Kxv375CRESEZPymTZuETp06CWZmZsIjjzwifPfdd5LP1Wq1MGvWLMHJyUkwNzcXBgwYIJw8eVIy5tq1a0JYWJjQvHlzwcbGRhgzZozkf5KIiAgBgMZX3759db7/gqCfx+DfGjJECYL+HoM///xTeP7554XmzZsLTk5OwujRoxskTN+jr8dhw4YNgre3t2BtbS20atVKGDJkiHD8+HHd7vz/k+MYVPf//M6dO8Ux+fn5wqBBgwRLS0vBwcFBmDJlinDnzh2d778g6OcxSEhI0Pp5u3btGuIQ6OUx+Dd9CFEKQeCViURERER1xWuiiIiIiOqBIYqIiIioHhiiiIiIiOqBIYqIiIioHhiiiIiIiOqBIYqIiIioHhiiiIiIiOqBIYqIiIioHhiiiMgoqFQqREVF4eGHH4a5uTnc3Nzw7LPParzzSxAEDBo0CAqFAlu2bBHr+fn5UCgUyM3N1Vh3v379EB0dLX7/9ddf4+mnn0bLli2rXeb27duYOHEiWrZsiebNm2PYsGEaL2glIv3GEEVEBi8/Px8+Pj7YsWMH3n//fRw+fBjp6eno37+/xotLly1bBoVC8UDbKysrwxNPPIH33nuv2jFvvvkmvv32W2zevBm7d+/GxYsX8fzzzz/QdomocZnK3QARUUObMGECFAoF9u7dC2tra7H+yCOP4JVXXhG/z83NxeLFi7F//364uLjUe3svv/wygLvhTZuSkhKsWrUK69evx5NPPgkAWLNmDTw9PfHbb7+hd+/e9d42ETUenokiIoNWVFSE9PR0TJw4URKg7rGzswMA3Lp1Cy+99BKSkpLg7OzcoD3l5OTgzp07CAwMFGtdunRB27ZtkZWV1aDbJiLd4ZkoIjJoZ86cgSAI6NKlS43j3nzzTQQEBGDo0KE1jgsICIBSKf33519//QUvL69a96RSqWBmZiYGuHucnJygUqlqvR4ikhdDFBEZNEEQ7jtm69at2LFjBw4ePHjfsampqfD09JTURo4cWe/+iKjpYogiIoPWsWNHKBQKnDhxotoxO3bswNmzZzXODA0bNgz/+c9/sGvXLrHm5uaGDh06SMZZWlrWqSdnZ2dUVFSguLhYss3CwsIGn0okIt3hNVFEZNDs7e0RFBSEpKQklJWVaXxeXFyMGTNm4Pfff0dubq74BQBLly7FmjVrdN6Tj48PmjVrJnm8wsmTJ1FQUAB/f3+db4+IGgbPRBGRwUtKSsLjjz+OXr16Yc6cOXj00UdRWVmJjIwMrFy5EsePH9d6Bqht27bw8PCo8/aKiopQUFCAixcvArgbkIC7Z6CcnZ1ha2uLyMhIxMTEwN7eHjY2NoiKioK/vz/vzCNqQhiiiMjgPfzwwzhw4ADmz5+PKVOm4NKlS2jVqhV8fHywcuVKnW9v69atGDNmjPj9iBEjAAAJCQl45513ANw9y6VUKjFs2DCUl5cjKCgIH330kc57IaKGoxBqc9UlEREREUnwmigiIiKiemCIIiIiIqoHhigiIiKiemCIIiIiIqoHhigiIiKiemCIIiIiIqoHhigiIiKiemCIIiIiIqoHhigiIiKiemCIIiIiIqoHhigiIiKiemCIIiIiIqqH/wOR8AK+jzEGLAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHHCAYAAAB9dxZkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYAhJREFUeJzt3XtYFGX/BvB7F+SoQCpyMFRUTEwTXxSEfD1SSJhS1qtkIoZanpLQTBQhTUXJU6ZJZYonPL0ZmRnmC1qWhIponkXDsHIRRUBROSzz+8OfU+MuysLCLMv9ua69aJ99ZuY7Y7K3zzMHhSAIAoiIiIioxpRyF0BERERkLBisiIiIiPSEwYqIiIhITxisiIiIiPSEwYqIiIhITxisiIiIiPSEwYqIiIhITxisiIiIiPSEwYqIiIhITxisiKjBUygUeP/99+UuQxQaGoo2bdrIXQYRVQODFREZpISEBCgUCvFlYWGBDh06YNKkScjNza3VbR86dAjvv/8+CgoK9Lrevn37SvapadOm6NGjB9auXYuKigq9bGPBggVISkrSy7qISHemchdARPQoc+fOhaurK+7du4effvoJq1evxp49e3Dq1ClYWVnpZRt3796Fqenfvw4PHTqEOXPmIDQ0FHZ2dnrZxgNPPvkkYmNjAQB5eXnYsGEDwsLCcOHCBSxcuLDG61+wYAFeeeUVBAUF1XhdRKQ7BisiMmgBAQHo3r07AGDMmDFo1qwZli5diq+//hrBwcHVXm9FRQVKS0thYWEBCwsLfZX7WLa2tnj99dfF92+++SaeeuoprFy5Eh988AEaNWpUZ7UQkf5xKpCI6pX+/fsDALKzswEAixcvhq+vL5o1awZLS0t4enriv//9r8ZyCoUCkyZNwubNm/H000/D3NwcycnJ4mcPzrF6//338e677wIAXF1dxWm7y5cvo0+fPujatavWup566in4+/vrvD9WVlbo2bMniouLkZeXV2m/4uJiTJ06FS4uLjA3N8dTTz2FxYsXQxAEyT4WFxdj/fr1Yt2hoaE610RE1ccRKyKqVy5dugQAaNasGQDgo48+wuDBgzFixAiUlpZi69atePXVV7F7924EBgZKlk1NTcX27dsxadIkNG/eXOsJ4i+//DIuXLiALVu2YNmyZWjevDkAwN7eHiNHjsTYsWNx6tQpdO7cWVzmyJEjuHDhAqKioqq1T7/99htMTEwqnXYUBAGDBw/G/v37ERYWBg8PD+zduxfvvvsu/vzzTyxbtgwAsHHjRowZMwZeXl4YN24cAKBdu3bVqomIqkkgIjJA69atEwAI//vf/4S8vDzhypUrwtatW4VmzZoJlpaWwh9//CEIgiDcuXNHslxpaanQuXNnoX///pJ2AIJSqRROnz6tsS0AQkxMjPj+ww8/FAAI2dnZkn4FBQWChYWF8N5770na3377bcHa2lq4ffv2I/epT58+QseOHYW8vDwhLy9POHv2rPD2228LAIQXX3xR7Ddq1CihdevW4vukpCQBgDBv3jzJ+l555RVBoVAIFy9eFNusra2FUaNGPbIOIqo9nAokIoPm5+cHe3t7uLi4YPjw4WjcuDG++uortGzZEgBgaWkp9r158yYKCwvx73//G8eOHdNYV58+fdCpU6dq12Jra4shQ4Zgy5Yt4hScWq3Gtm3bEBQUBGtr68eu49y5c7C3t4e9vT3c3d3x8ccfIzAwEGvXrq10mT179sDExARvv/22pH3q1KkQBAHfffddtfeJiPSLU4FEZNBWrVqFDh06wNTUFA4ODnjqqaegVP79b8Ldu3dj3rx5OH78OEpKSsR2hUKhsS5XV9ca1xMSEoJt27bh4MGD6N27N/73v/8hNzcXI0eOrNLybdq0weeffy7eQsLNzQ0tWrR45DK///47nJ2d0aRJE0m7u7u7+DkRGQYGKyIyaF5eXuJVgQ87ePAgBg8ejN69e+OTTz6Bk5MTGjVqhHXr1iExMVGj/z9Ht6rL398fDg4O2LRpE3r37o1NmzbB0dERfn5+VVre2tq6yn2JqP7hVCAR1VtffvklLCwssHfvXrzxxhsICAjQS2jRNtr1gImJCV577TX897//xc2bN5GUlITg4GCYmJjUeLuVad26Nf766y/cunVL0n7u3Dnx8wceVTsR1T4GKyKqt0xMTKBQKKBWq8W2y5cv1/jO4w/OlarszusjR47EzZs38eabb+L27duS+1LVhhdeeAFqtRorV66UtC9btgwKhQIBAQFim7W1td7vGE9EVcepQCKqtwIDA7F06VIMHDgQr732Gq5du4ZVq1ahffv2+PXXX6u9Xk9PTwDArFmzMHz4cDRq1AgvvviiGLi6deuGzp07Y8eOHXB3d8e//vUvvexPZV588UX069cPs2bNwuXLl9G1a1d8//33+PrrrxEeHi65pYKnpyf+97//YenSpXB2doarqyu8vb1rtT4i+htHrIio3urfvz+++OILqFQqhIeHY8uWLVi0aBFeeumlGq23R48e+OCDD3DixAmEhoYiODhY4+adISEhAFDlk9ZrQqlUYteuXQgPD8fu3bsRHh6OM2fO4MMPP8TSpUslfZcuXQpPT09ERUUhODgYq1evrvX6iOhvCkH4x217iYioSj766CO88847uHz5Mlq1aiV3OURkIBisiIh0JAgCunbtimbNmmH//v1yl0NEBoTnWBERVVFxcTF27dqF/fv34+TJk/j666/lLomIDAxHrIiIqujy5ctwdXWFnZ0dJkyYgPnz58tdEhEZGAYrIiIiIj3hVYFEREREesJgRURERKQnPHm9FlVUVOCvv/5CkyZN+JgJIiKiekIQBNy6dQvOzs6Sh75XBYNVLfrrr7/g4uIidxlERERUDVeuXMGTTz6p0zIMVrWoSZMmAO7/wdjY2MhcDREREVVFUVERXFxcxO9xXTBY1aIH0382NjYMVkRERPVMdU7j4cnrRERERHrCYEVERESkJwxWRERERHrCc6xkplarUVZWJncZVAcaNWoEExMTucsgIqJaxGAlE0EQoFKpUFBQIHcpVIfs7Ozg6OjI+5oRERkpBiuZPAhVLVq0gJWVFb9ojZwgCLhz5w6uXbsGAHBycpK5IiIiqg0MVjJQq9ViqGrWrJnc5VAdsbS0BABcu3YNLVq04LQgEZERkv3k9VWrVqFNmzawsLCAt7c3Dh8+/Mj+O3bsQMeOHWFhYYEuXbpgz549ks8FQUB0dDScnJxgaWkJPz8/ZGVlSfrMnz8fvr6+sLKygp2d3SO3d+PGDTz55JNQKBR6m7Z7cE6VlZWVXtZH9ceDP3OeV0dEZJxkDVbbtm1DREQEYmJicOzYMXTt2hX+/v7idMnDDh06hODgYISFhSEzMxNBQUEICgrCqVOnxD5xcXFYsWIF4uPjkZ6eDmtra/j7++PevXtin9LSUrz66qsYP378Y2sMCwvDM888U/Od1YLTfw0P/8yJiIycICMvLy9h4sSJ4nu1Wi04OzsLsbGxWvv/5z//EQIDAyVt3t7ewptvvikIgiBUVFQIjo6Owocffih+XlBQIJibmwtbtmzRWN+6desEW1vbSuv75JNPhD59+ggpKSkCAOHmzZs67J0gFBYWCgCEwsJCSfvdu3eFM2fOCHfv3tVpfVT/8c+eiMjwVfb9XRWyjViVlpYiIyMDfn5+YptSqYSfnx/S0tK0LpOWlibpDwD+/v5i/+zsbKhUKkkfW1tbeHt7V7rOypw5cwZz587Fhg0bdH6yNRERETVMsiWG69evQ61Ww8HBQdLu4OAAlUqldRmVSvXI/g9+6rJObUpKShAcHIwPP/wQrVq10mm5oqIiycvYhIaGQqFQQKFQoFGjRnBwcMBzzz2HtWvXoqKiosrrSUhIeOz5bURERPUNh2K0iIyMhLu7O15//XWdlouNjYWtra34cnFxqaUK5TVw4EBcvXoVly9fxnfffYd+/fphypQpGDRoEMrLy+Uuj4iIGoCKigqo1Wq5y9AgW7Bq3rw5TExMkJubK2nPzc2Fo6Oj1mUcHR0f2f/BT13WqU1qaip27NgBU1NTmJqaYsCAAWLNMTExlS4XGRmJwsJC8XXlypUqb7M+MTc3h6OjI1q2bIl//etfmDlzJr7++mt89913SEhIAAAsXboUXbp0gbW1NVxcXDBhwgTcvn0bAHDgwAGMHj0ahYWF4ujX+++/DwDYuHEjunfvjiZNmsDR0RGvvfZapRczEBFRw/Tdd9/hgw8+wPTpa7Brl9zVSMkWrMzMzODp6YmUlBSxraKiAikpKfDx8dG6jI+Pj6Q/AOzbt0/s7+rqCkdHR0mfoqIipKenV7pObb788kucOHECx48fx/Hjx7FmzRoAwMGDBzFx4sRKlzM3N4eNjY3kVVWCIKC0tFSWlyAIVa6zMv3790fXrl2xc+dOAPfPl1uxYgVOnz6N9evXIzU1FdOnTwcA+Pr6Yvny5bCxscHVq1dx9epVTJs2DcD92xB88MEHOHHiBJKSknD58mWEhobWuD4iIqr/ysrKMGfOHPHWTDY2KixcWPPvMH2S9QahERERGDVqFLp37w4vLy8sX74cxcXFGD16NAAgJCQELVu2RGxsLABgypQp6NOnD5YsWYLAwEBs3boVR48exWeffQbg/qXs4eHhmDdvHtzc3ODq6orZs2fD2dkZQUFB4nZzcnKQn5+PnJwcqNVqHD9+HADQvn17NG7cGO3atZPUef36dQCAu7t7rZ0XVFZWJu5nXYuMjISZmVmN19OxY0f8+uuvAIDw8HCxvU2bNpg3bx7eeustfPLJJzAzM4OtrS0UCoXGSOIbb7wh/nfbtm2xYsUK9OjRA7dv30bjxo1rXCMREdVPOTk5WLdunaQtJeU9zJhhWLexkTVYDRs2DHl5eYiOjoZKpYKHhweSk5PFk89zcnIkV+T5+voiMTERUVFRmDlzJtzc3JCUlITOnTuLfaZPn47i4mKMGzcOBQUF6NWrF5KTk2FhYSH2iY6Oxvr168X33bp1AwDs378fffv2reW9Nl6CIIj3afrf//6H2NhYnDt3DkVFRSgvL8e9e/dw586dR94YNSMjA++//z5OnDiBmzdviifE5+TkoFOnTnWyH0REZFh27dqFzMxM8X3nzp0xdOhQPOLsHNkoBH3MA5FWRUVFsLW1RWFhoWRa8N69e8jOzoarq6sY+ARBkO1u3I0aNaryjStDQ0NRUFCApKQkjc+eeeYZtGrVCitXrkTHjh0xfvx4DBs2DE2bNsVPP/2EsLAw3Lx5E3Z2dkhISEB4eLjkbvbFxcVo3bo1/P398dZbb8He3h45OTnw9/dHZmYmPDw89LPDMtL2Z09ERNqVlpZqzOaMHDkSbdu2rdXtVvb9XRV8VqCBUCgUepmOk0tqaipOnjyJd955BxkZGaioqMCSJUvEEcft27dL+puZmWlczXHu3DncuHEDCxcuFK+oPHr0aN3sABERGZTffvsNGzdulLTp69SV2sRgRTorKSmBSqWCWq1Gbm4ukpOTERsbi0GDBiEkJASnTp1CWVkZPv74Y7z44ov4+eefER8fL1lHmzZtcPv2baSkpKBr166wsrJCq1atYGZmho8//hhvvfUWTp06hQ8++ECmvSQiIrl8+eWXksfVdevWDYMHD5axoqrjfaxIZ8nJyXByckKbNm0wcOBA7N+/HytWrMDXX38NExMTdO3aFUuXLsWiRYvQuXNnbN68WWMo19fXF2+99RaGDRsGe3t7xMXFwd7eHgkJCdixYwc6deqEhQsXYvHixTLtJRER1bV79+5hzpw5klA1evToehOqAJ5jVat0OceKGgb+2RMRaZeVlYXExERJ28yZM9GoUaM6r4XnWBEREVG9tWXLFly4cEF87+3tjYEDB8pYUfUxWBEREZEs7ty5gw8//FDSNmbMGLRs2VKmimqOwYqIiIjq3NmzZzWuGJ81axZMTet3NKnf1RMREVG9s379ely+fFl8/+yzz8LPz0++gvSIwYqIiIjqxO3bt7FkyRJJ25tvvqnxeLP6jMGKiIiIat3Jkyexc+dO8b2JiQkiIyNhYmIiY1X6x2BFREREtUYQBHzxxRf4888/xba+ffuiT58+MlZVexisiIiIqFbcunULS5culbRNmDAB9vb2MlVU+xisiIiISO8yMzOxa9cu8b2lpSWmTZsmPkPWWDFYkUEKDQ1FQUEBkpKSANwfNvbw8MDy5curvU59rIOIiB5NEASsXr0aeXl5Yttzzz0HX19fGauqOwxWpJPQ0FCsX78eANCoUSO0atUKISEhmDlzZq3ee2Tnzp1VfqzBgQMH0K9fP9y8eRN2dnbVWgcREemuoKAAH330kaRt0qRJaNasmUwV1T0GK9LZwIEDsW7dOpSUlGDPnj2YOHEiGjVqhMjISEm/0tJSmJmZ6WWbTZs2NYh1EBGRdkeOHMGePXvE97a2tpgyZQoUCoWMVdU9457opFphbm4OR0dHtG7dGuPHj4efnx927dqF0NBQBAUFYf78+XB2dsZTTz0FALhy5Qr+85//wM7ODk2bNsWQIUMkN4ZTq9WIiIiAnZ0dmjVrhunTp+PhZ4P37dsX4eHh4vuSkhK89957cHFxgbm5Odq3b48vvvgCly9fRr9+/QAATzzxBBQKBUJDQ7Wu4+bNmwgJCcETTzwBKysrBAQEICsrS/w8ISEBdnZ22Lt3L9zd3dG4cWMMHDgQV69eFfscOHAAXl5esLa2hp2dHZ599ln8/vvvejrSRESGTxAELF++XBKqAgICEB4e3uBCFcBgRXpgaWmJ0tJSAEBKSgrOnz+Pffv2Yffu3SgrK4O/vz+aNGmCgwcP4ueffxYDyoNllixZgoSEBKxduxY//fQT8vPz8dVXXz1ymyEhIdiyZQtWrFiBs2fP4tNPP0Xjxo3h4uKCL7/8EgBw/vx5XL16VWNY+oHQ0FAcPXoUu3btQlpaGgRBwAsvvICysjKxz507d7B48WJs3LgRP/74I3JycjBt2jQAQHl5OYKCgtCnTx/8+uuvSEtLw7hx4xrkLxIiapjy8/Mxd+5cFBYWim1TpkyBl5eXjFXJi1OBVG2CICAlJQV79+7F5MmTkZeXB2tra6xZs0acAty0aRMqKiqwZs0aMXCsW7cOdnZ2OHDgAJ5//nksX74ckZGRePnllwEA8fHx2Lt3b6XbvXDhArZv3459+/aJj0Bo27at+PmDKb8WLVpIzrH6p6ysLOzatQs///yzeELl5s2b4eLigqSkJLz66qsAgLKyMsTHx6Ndu3YA7p8rMHfuXABAUVERCgsLMWjQIPFzd3d33Q8kEVE9dOjQIezbt098b29vj/Hjxzf4f1xyxMoI7NoF+Pre/1kXdu/ejcaNG8PCwgIBAQEYNmwY3n//fQBAly5dJOdVnThxAhcvXkSTJk3QuHFjNG7cGE2bNsW9e/dw6dIlFBYW4urVq/D29haXMTU1Rffu3Svd/vHjx2FiYlKjm8udPXsWpqamku02a9YMTz31FM6ePSu2WVlZiaEJAJycnHDt2jUA9wNcaGgo/P398eKLL+Kjjz6STBMSERmjiooKxMXFSULV4MGDMWHChAYfqgCOWBmFhQuBtLT7PwcPrv3t9evXD6tXr4aZmRmcnZ0lVwNaW1tL+t6+fRuenp7YvHmzxnqqe4M4S0vLai1XHQ9fRahQKCTnf61btw5vv/02kpOTsW3bNkRFRWHfvn3o2bNnndVIRFRX8vLy8Mknn0ja3nnnHdjY2MhUkeHhiJURmDED8PG5/7MuWFtbo3379mjVqtVjb7Hwr3/9C1lZWWjRogXat28vedna2sLW1hZOTk5IT08XlykvL0dGRkal6+zSpQsqKirwww8/aP38wYiZWq2udB3u7u4oLy+XbPfGjRs4f/48OnXq9Mh9eli3bt0QGRmJQ4cOoXPnzkhMTNRpeSKi+uDHH3+UhKqWLVsiOjqaoeohDFZGYPBg4NChuhmt0tWIESPQvHlzDBkyBAcPHkR2djYOHDiAt99+G3/88QeA+yc6Lly4EElJSTh37hwmTJiAgoKCStfZpk0bjBo1Cm+88QaSkpLEdW7fvh0A0Lp1aygUCuzevRt5eXm4ffu2xjrc3NwwZMgQjB07Fj/99BNOnDiB119/HS1btsSQIUOqtG/Z2dmIjIxEWloafv/9d3z//ffIysrieVZEZFTUajXmzZuH/fv3i20vv/wyxowZw6k/LRisqFZZWVnhxx9/RKtWrfDyyy/D3d0dYWFhuHfvnvivnKlTp2LkyJEYNWoUfHx80KRJE7z00kuPXO/q1avxyiuvYMKECejYsSPGjh2L4uJiAPf/FTVnzhzMmDEDDg4OmDRpktZ1rFu3Dp6enhg0aBB8fHwgCAL27NlT5ZuIWllZ4dy5cxg6dCg6dOiAcePGYeLEiXjzzTd1OEJERIZLpVJh3rx5khmAqVOnokuXLjJWZdgUwsM3DCK9KSoqgq2tLQoLCyVDpffu3UN2djZcXV1hYWEhY4VU1/hnT0T1RUpKCn766Sfx/YPZgoagsu/vquDJ60RERCQqLy/H/PnzJW2vvvqqzuefNlQMVkRERAQA+PPPP7FmzRpJ27vvvgsrKyuZKqp/GKyIiIgIycnJkiulO3TogODgYBkrqp8YrIiIiBqwsrIyLFiwQNIWHByMDh06yFRR/cZgJSNeN9Dw8M+ciAxJTk4O1q1bJ2l77733eHFNDTBYyeDB5fx37typ07uIk/zu3LkDQPOO7kREdW3Xrl3IzMwU33fu3BlDhw6VsSLjwGAlAxMTE9jZ2YnPnLOysuJN1oycIAi4c+cOrl27Bjs7O5iYmMhdEhE1UKWlpYiNjZW0jRw5UvIwe6o+BiuZODo6AoAYrqhhsLOzE//siYjqWnZ2NjZs2CBpi4yMFB8FRjXHYCUThUIBJycntGjRAmVlZXKXQ3WgUaNGHKkiItl8+eWXOHXqlPi+W7duGGyIz0Kr5xisZGZiYsIvWyIiqjX37t3DokWLJG2hoaFo3bq1TBUZNwYrIiIiI5WVlYXExERJ28yZM3kBTS1isCIiIjJCW7duxfnz58X3Xl5eCAgIkLGihoHBioiIyIjcvXsXcXFxkrYxY8agZcuWMlXUsDBYERERGYmzZ89i+/btkrZZs2bB1JRf93WFR5qIiMgIbNiwAdnZ2eL7Z599Fn5+fjJW1DAxWBEREdVjxcXFWLx4saTtzTff5D3zZKKUu4BVq1ahTZs2sLCwgLe3Nw4fPvzI/jt27EDHjh1hYWGBLl26YM+ePZLPBUFAdHQ0nJycYGlpCT8/P2RlZUn6zJ8/H76+vrCysoKdnZ3GNk6cOIHg4GC4uLjA0tIS7u7u+Oijj2q8r0RERPp08uRJSagyMTFBVFQUQ5WMZA1W27ZtQ0REBGJiYnDs2DF07doV/v7+ld6N/NChQwgODkZYWBgyMzMRFBSEoKAgyQ3P4uLisGLFCsTHxyM9PR3W1tbw9/fHvXv3xD6lpaV49dVXMX78eK3bycjIQIsWLbBp0yacPn0as2bNQmRkJFauXKnfA0BERFQNgiBgzZo12Llzp9jWt29fREVF8d6IMlMIgiDItXFvb2/06NFDDCwVFRVwcXHB5MmTMWPGDI3+w4YNQ3FxMXbv3i229ezZEx4eHoiPj4cgCHB2dsbUqVMxbdo0AEBhYSEcHByQkJCA4cOHS9aXkJCA8PBwFBQUPLbWiRMn4uzZs0hNTa3y/hUVFcHW1haFhYWwsbGp8nJERESVuXXrFpYuXSppmzBhAuzt7WWqyPjU5PtbthGr0tJSZGRkSE6sUyqV8PPzQ1pamtZl0tLSNE7E8/f3F/tnZ2dDpVJJ+tja2sLb27vSdVZVYWEhmjZt+sg+JSUlKCoqkryIiIj0JTMzUxKqLC0tMXv2bIYqAyLbyevXr1+HWq2Gg4ODpN3BwQHnzp3TuoxKpdLaX6VSiZ8/aKusT3UcOnQI27Ztw7fffvvIfrGxsZgzZ061t0NERKSNIAhYvXo18vLyxLbnnnsOvr6+MlZF2sh+8rqhO3XqFIYMGYKYmBg8//zzj+wbGRmJwsJC8XXlypU6qpKIiIxVYWEh5s6dKwlVkyZNYqgyULKNWDVv3hwmJibIzc2VtOfm5lZ6NYOjo+Mj+z/4mZubCycnJ0kfDw8PnWs8c+YMBgwYgHHjxiEqKuqx/c3NzWFubq7zdoiIiLQ5cuSI5Op3W1tbTJkyBQqFQsaq6FFkG7EyMzODp6cnUlJSxLaKigqkpKTAx8dH6zI+Pj6S/gCwb98+sb+rqyscHR0lfYqKipCenl7pOitz+vRp9OvXD6NGjcL8+fN1WpaIiKgmBEHARx99JAlVAQEBCA8PZ6gycLLeIDQiIgKjRo1C9+7d4eXlheXLl6O4uBijR48GAISEhKBly5aIjY0FAEyZMgV9+vTBkiVLEBgYiK1bt+Lo0aP47LPPAAAKhQLh4eGYN28e3Nzc4OrqitmzZ8PZ2RlBQUHidnNycpCfn4+cnByo1WocP34cANC+fXs0btwYp06dQv/+/eHv74+IiAjx/CwTExOeIEhERLXq4sWL2Lx5s6RtypQpWu+7SIZH1mA1bNgw5OXlITo6GiqVCh4eHkhOThZPPs/JyYFS+fegmq+vLxITExEVFYWZM2fCzc0NSUlJ6Ny5s9hn+vTpKC4uxrhx41BQUIBevXohOTkZFhYWYp/o6GisX79efN+tWzcAwP79+9G3b1/897//RV5eHjZt2oRNmzaJ/Vq3bo3Lly/X1uEgIqIGbunSpbh165b4/t69xliwIIKjVPWIrPexMna8jxUREVWFWq3GvHnzJG03b7qgf/83MHiwTEU1YDX5/uazAomIiGR09uxZbN++XdI2ZswYtGzZUqaKqCYYrIiIiGQyf/58lJeXS9qio6M59VePMVgRERHVsbKyMixYsEDS1r59e4wYMUKmikhfGKyIiIjq0K+//oqvvvpK0vbWW29pPDWE6icGKyIiojqi7bFnMTExMlRCtYXBioiIqJaVlpaK92R8oHPnzhg6dKhMFVFtYbAiIiKqRUePHsW3334raZs0aRKaNWsmU0VUmxisiIiIagmn/hoeBisiIiI9u3v3LuLi4iRt3bt3R2BgoEwVUV1hsCIiItKjQ4cOYd++fZI2Puuv4WCwIiIi0hNO/RGDFRERUQ0VFxdj8eLFkrZnn30Wfn5+MlVEcmGwIiIiqoF169YhJydH0hYREYEmTZrIVBHJicGKiIiomjj1Rw9jsCIiItLRtWvXsHr1aklbXl57PP88n/XX0DFYERER6WDlypW4ceOGpC08PBy2trYyVUSGhMGKiIioijj1R4/DYEVERPQYf/75J9asWSNpe+aZZ/DSSy/JVBEZKgYrIiKiR1i0aBHu3bsnaZs2bRqsra1lqogMGYMVERFRJTj1R7pisCIiInrI5cuXsX79ekmbl5cXAgICZKqI6gsGKyIion/QNkr13nvvwcLCQoZqqL5hsCIiIgIgCALmzp2r0c6pP9IFgxURETV458+fx9atWyVtffr0Qd++feUpiOotBisiImrQtE39zZw5E40aNZKhGqrvGKyIiKhB4tQf1QYGKyIianBOnjyJnTt3Str8/f3Rs2dPmSoiY8FgRUREDYq2qb+oqCiYmJjIUA0ZGwYrIiJqENRqNebNm6fRzqk/0icGKyIiMnoHDx5EamqqpG3IkCHw8PCQpyAyWgxWRERk1LRN/Xl4zIaHh1KGasjYMVgREZFRKisrw4IFCzTaOfVHtYnBioiIjM7333+PtLQ0SRun/qguMFgREZFR0Tb1Fx0dDYVCIUM11NAwWBERkVEoKSnBwoULNdo59Ud1icGKiIjqva+//hrHjx+XtP3nP/+Bu7u7PAVRg8VgRURE9Zq2qT+OUpFcGKyIiKheKi4uxuLFizXaGapITgxWRERU7yQmJiIrK0vSNnLkSLRt21amiojuY7AiIqJ6hVN/ZMhkv+3sqlWr0KZNG1hYWMDb2xuHDx9+ZP8dO3agY8eOsLCwQJcuXbBnzx7J54IgIDo6Gk5OTrC0tISfn5/Gv2rmz58PX19fWFlZwc7OTut2cnJyEBgYCCsrK7Ro0QLvvvsuysvLa7SvRERUfYWFhQxVZPBkDVbbtm1DREQEYmJicOzYMXTt2hX+/v64du2a1v6HDh1CcHAwwsLCkJmZiaCgIAQFBeHUqVNin7i4OKxYsQLx8fFIT0+HtbU1/P39ce/ePbFPaWkpXn31VYwfP17rdtRqNQIDA1FaWopDhw5h/fr1SEhIQHR0tH4PABERVcnnn3+O5cuXS9rCwsIYqsjgKARBEOTauLe3N3r06IGVK1cCACoqKuDi4oLJkydjxowZGv2HDRuG4uJi7N69W2zr2bMnPDw8EB8fD0EQ4OzsjKlTp2LatGkA7v8Lx8HBAQkJCRg+fLhkfQkJCQgPD0dBQYGk/bvvvsOgQYPw119/wcHBAQAQHx+P9957D3l5eTAzM6vS/hUVFcHW1haFhYWwsbGp8nEhIqK/cZSK6lpNvr9lG7EqLS1FRkYG/Pz8/i5GqYSfn5/GYwgeSEtLk/QHAH9/f7F/dnY2VCqVpI+trS28vb0rXWdl2+nSpYsYqh5sp6ioCKdPn650uZKSEhQVFUleRERUPTdu3NAIVRYWFgxVZNBkO3n9+vXrUKvVkvACAA4ODjh37pzWZVQqldb+KpVK/PxBW2V9qqKy7fxzG9rExsZq/ZcVERHpZvny5SgsLJS0jR8/Hi1atJCpIqKqkf3kdWMSGRmJwsJC8XXlyhW5SyIiqnfmzJmjEapiYmIYqqhekG3Eqnnz5jAxMUFubq6kPTc3F46OjlqXcXR0fGT/Bz9zc3Ph5OQk6aPLE80dHR01rk58sN3KagMAc3NzmJubV3k7RET0N5VKhU8//VTS1rx5c0ycOFGmioh0J9uIlZmZGTw9PZGSkiK2VVRUICUlBT4+PlqX8fHxkfQHgH379on9XV1d4ejoKOlTVFSE9PT0StdZ2XZOnjwpuTpx3759sLGxQadOnaq8HiIiqpo5c+ZohKq3336boYrqHVlvEBoREYFRo0ahe/fu8PLywvLly1FcXIzRo0cDAEJCQtCyZUvExsYCAKZMmYI+ffpgyZIlCAwMxNatW3H06FF89tlnAACFQoHw8HDMmzcPbm5ucHV1xezZs+Hs7IygoCBxuzk5OcjPz0dOTg7UarX44M727dujcePGeP7559GpUyeMHDkScXFxUKlUiIqKwsSJEzkiRUSkZ7zqj4yJrMFq2LBhyMvLQ3R0NFQqFTw8PJCcnCyeKJ6TkwOl8u9BNV9fXyQmJiIqKgozZ86Em5sbkpKS0LlzZ7HP9OnTUVxcjHHjxqGgoAC9evVCcnIyLCwsxD7R0dFYv369+L5bt24AgP3796Nv374wMTHB7t27MX78ePj4+MDa2hqjRo3C3Llza/uQEBE1GBcuXMCWLVskbYWFTli6dJxMFRHVnKz3sTJ2vI8VEZF22kapfvhhCsLD7TB4sAwFEf1DTb6/+axAIiKqU5z6I2PGYEVERHXixIkTSEpKkrQ1bdoUkydPlqcgolrAYEVERLVO2yjV1KlT0bhxYxmqIao9DFZERFRrBEHQeuEPp/7IWDFYERFRrfjll1+wd+9eSVvr1q0RGhoqT0FEdYDBioiI9E7b1N97770nufUNkTFisCIiIr3h1B81dAxWRESkF6mpqTh48KCk7emnn8Yrr7wiU0VEdY/BioiIakzb1N/MmTPRqFEjGaohkg+DFRERVZtarca8efM02jn1Rw0VgxUREVXLxo0b8dtvv0navLy8EBAQIFNFRPJjsCIiIp1pm/qbPXs2lEqlDNUQGQ4GKyIiqrKSkhIsXLhQo71btxgwUxExWBERURWtWrUK169fl7R5enpi0KBBMlVEZHgYrIiI6LG0Tf1FR0dDoVDIUA2R4dJ54NbExATXrl3TaL9x4wZMTEz0UhQRERmG4uJiraEqJiaGoYpIC51HrARB0NpeUlICMzOzGhdERESGYcGCBSgrK5O09enTB3379pWnIKJ6oMrBasWKFQAAhUKBNWvWoHHjxuJnarUaP/74Izp27Kj/ComIqM5x6o+oeqocrJYtWwbg/ohVfHy8ZNrPzMwMbdq0QXx8vP4rJCKiOlNYWIjly5drtPOGn0RVU+VglZ2dDQDo168fdu7ciSeeeKLWiiIiorqnbZQqICAAXl5eMlRDVD/pfI7V/v37a6MOIiKSUWUnqBORbnQOVm+88cYjP1+7dm21iyEiorqVl5eHTz75RKOdoYqoenQOVjdv3pS8Lysrw6lTp1BQUID+/fvrrTAiIqpd2kaphg4dis6dO8tQDZFx0DlYffXVVxptFRUVGD9+PNq1a6eXooiIqHZx6o+odiiEym5MpaPz58+jb9++uHr1qj5WZxSKiopga2uLwsJC2NjYyF0OERGuXLmi9ZQNhiqiv9Xk+1tvj7S5dOkSysvL9bU6IiLSM22jVK+//jpnG4j0SOdgFRERIXkvCAKuXr2Kb7/9FqNGjdJbYUREpD+c+iOqGzoHq8zMTMl7pVIJe3t7LFmy5LFXDBIRUd3KyspCYmKiRjtDFVHt4H2siIiMlLZRqjFjxqBly5YyVEPUMFT7HKtr167h/PnzAICnnnoKLVq00FtRRERUM5z6I5KHzsGqqKgIEydOxJYtW1BRUQEAMDExwbBhw7Bq1SrY2trqvUgiIqqakydPYufOnRrtDFVEdUPnYDV27FhkZmbi22+/hY+PDwAgLS0NU6ZMwZtvvomtW7fqvUgiIno8baNUEyZMgL29vQzVEDVMOt/HytraGnv37kWvXr0k7QcPHsTAgQNRXFys1wLrM97HiojqCqf+iPSnTu9j1axZM63Tfba2tnjiiSd0XR0REdXAL7/8gr1792q0M1QRyUPnYBUVFYWIiAhs3LgRjo6OAACVSoV3330Xs2fP1nuBRESknbZRqvDwcJ7rSiQjnacCu3XrhosXL6KkpAStWrUCAOTk5MDc3Bxubm6SvseOHdNfpfUQpwKJqDYIgoC5c+dqtHOUikg/6nQqcMiQIVAoFLouRkREepCamoqDBw9K2szNzTFjxgyZKiKif9LbQ5hJE0esiEiftE39vfvuu7CyspKhGiLjVZPvb6WuG2vbti1u3Lih0V5QUIC2bdvqujoiInoMQRAqveqPoYrIsOg8FXj58mWo1WqN9pKSEvzxxx96KYqIiO77+uuvcfz4cUmbg4MD3nrrLXkKIqJHqvKI1a5du7Br1y4AwN69e8X3u3btwldffYUPPvgArq6uOhewatUqtGnTBhYWFvD29sbhw4cf2X/Hjh3o2LEjLCws0KVLF+zZs0fyuSAIiI6OhpOTEywtLeHn54esrCxJn/z8fIwYMQI2Njaws7NDWFgYbt++Lemzd+9e9OzZE02aNIG9vT2GDh2Ky5cv67x/RETVNWfOHI1QFRkZyVBFZMCqfI6VUnk/gykUCjy8SKNGjdCmTRssWbIEgwYNqvLGt23bhpCQEMTHx8Pb2xvLly/Hjh07cP78ea3PHjx06BB69+6N2NhYDBo0CImJiVi0aBGOHTuGzp07AwAWLVqE2NhYrF+/Hq6urpg9ezZOnjyJM2fOwMLCAgAQEBCAq1ev4tNPP0VZWRlGjx6NHj16iE+Az87Ohru7OyIiIhAWFobCwkK88847uHXrlk5XOvIcKyKqDrVajXnz5mm086o/orpRk+9vnU9ed3V1xZEjR9C8eXOdNqSNt7c3evTogZUrVwIAKioq4OLigsmTJ2u9wmXYsGEoLi7G7t27xbaePXvCw8MD8fHxEAQBzs7OmDp1KqZNmwYAKCwshIODAxISEjB8+HCcPXsWnTp1wpEjR9C9e3cAQHJyMl544QX88ccfcHZ2xn//+18EBwejpKREDJTffPMNhgwZgpKSEjRq1KhK+8dgRUS62rx5My5evChpc3Nzw2uvvSZTRUQNT52evJ6dna2XUFVaWoqMjAz4+fn9XYxSCT8/P6SlpWldJi0tTdIfAPz9/cX+2dnZUKlUkj62trbw9vYW+6SlpcHOzk4MVQDg5+cHpVKJ9PR0AICnpyeUSiXWrVsHtVqNwsJCbNy4EX5+fo8MVSUlJSgqKpK8iIiqas6cORqhKioqiqGKqB7R+eR1bTel+6fo6Ogqref69etQq9VwcHCQtDs4OODcuXNal1GpVFr7q1Qq8fMHbY/q8/A0o6mpKZo2bSr2cXV1xffff4///Oc/ePPNN6FWq+Hj46NxPtfDYmNjtV65Q0T0KKWlpYiNjdVo59QfUf2jc7D66quvJO/LysqQnZ0NU1NTtGvXrsrBypCpVCqMHTsWo0aNQnBwMG7duoXo6Gi88sor2LdvX6U3SI2MjERERIT4vqioCC4uLnVVNhHVQ6tXr8a1a9ckbd26dcPgwYNlqoiIakLnYJWZmanRVlRUhNDQULz00ktVXk/z5s1hYmKC3NxcSXtubq74DMKHOTo6PrL/g5+5ublwcnKS9PHw8BD7PPxLrLy8HPn5+eLyq1atgq2tLeLi4sQ+mzZtgouLC9LT09GzZ0+t9Zmbm8Pc3Pxxu05EBED7DT+jo6P5dAuiekznc6y0sbGxwZw5c3R6CLOZmRk8PT2RkpIitlVUVCAlJQU+Pj5al/Hx8ZH0B4B9+/aJ/V1dXeHo6CjpU1RUhPT0dLGPj48PCgoKkJGRIfZJTU1FRUUFvL29AQB37twRT1p/wMTERKyRiKgm7ty5U+kNPxmqiOo3nUesKlNYWIjCwkKdlomIiMCoUaPQvXt3eHl5Yfny5SguLsbo0aMBACEhIWjZsqV47sGUKVPQp08fLFmyBIGBgdi6dSuOHj2Kzz77DMD9W0GEh4dj3rx5cHNzE2+34OzsjKCgIACAu7s7Bg4ciLFjxyI+Ph5lZWWYNGkShg8fDmdnZwBAYGAgli1bhrlz54pTgTNnzkTr1q3RrVs3PR0xImqIYmNjUVpaKmn797//jf79+8tUERHpk87BasWKFZL3giDg6tWr2LhxIwICAnRa17Bhw5CXl4fo6GioVCp4eHggOTlZPPk8JydHMnLk6+uLxMREREVFYebMmXBzc0NSUpJ4DysAmD59OoqLizFu3DgUFBSgV69eSE5OFu9hBdy/nHnSpEkYMGAAlEolhg4dKtmv/v37IzExEXFxcYiLi4OVlRV8fHyQnJwMS0tLnfaRiOgBTv0RGb9q3cfqn5RKJezt7dG/f39ERkaiSZMmei2wPuN9rIgIuD+iv3z5co12XvVHZJhq8v2t84hVdna2rosQETVY2kapBg4cKJ7TSUTGpVrnWBUUFIg3sWvfvj3s7Oz0WRMRkVGo7AR1IjJeOl0VePnyZQQGBqJ58+bw9vaGt7c3mjdvjkGDBvEBxURE/y8vL4+hiqiBqvKI1ZUrV9CzZ080atQIH3zwAdzd3QEAZ86cwerVq+Hj44MjR47gySefrLViiYgMnbZA9fLLL6NLly4yVENEda3KJ6+HhYXh4sWL2Lt3r+QKOwC4e/cuBg4cCDc3N6xZs6ZWCq2PePI6UcPCUSoi41AnJ68nJydj27ZtGqEKACwtLfHBBx9g+PDhOm2ciMgY/PHHH/jiiy802hmqiBqeKger69evo02bNpV+3rZtW+Tn5+ujJiKiekPbKNWIESPQvn17GaohIrlVOVg5OTnhzJkzlZ5DderUqUqf8UdEZIw49UdED6vyVYFBQUGYNm0a8vLyND67du0a3nvvPfGxMURExuzixYsMVUSkVZVPXr958ya8vb2hUqnw+uuvo2PHjhAEAWfPnkViYiIcHR3xyy+/oGnTprVdc73Bk9eJjI+2QBUWFsYroomMSJ2cvP7EE08gPT0dM2fOxNatW1FQUAAAsLOzw2uvvYYFCxYwVBGRUeMoFRE9js7PCgTuP3j5wZSgvb09HyBaCY5YERmHkydPYufOnRrtDFVExqlOnxUIAAqFAi1atKjOokRE9Yq2UaoJEybA3t5ehmqIyNBVK1gRETUE2kJVt24xYKYiosowWBERPSQ9PR3Jycka7Zz6I6LHYbAiIvoHbaNU4eHhsLW1laEaIqpvGKyIiHD/opy5c+dqtHOUioh0UaVgtWLFiiqv8O233652MUREcti/fz9+/PFHSZuZmRkiIyNlqoiI6qsq3W7B1dW1aitTKPDbb7/VuChjwdstEBk+bVN/7777LqysrGSohogMQa3fbiE7O7tahRERGSpO/RFRbaj2OValpaXIzs5Gu3btYGrKU7WIqP745ptvcOzYMUlb8+bNMXHiRJkqIiJjoXMiunPnDiZPnoz169cDAC5cuIC2bdti8uTJaNmyJWbMmKH3IomI9EXb1F9kZCTMzMxkqIaIjI1S1wUiIyNx4sQJHDhwABYWFmK7n58ftm3bptfiiIj0Ra1WV/qsP4YqItIXnUeskpKSsG3bNvTs2VPyjMCnn34aly5d0mtxRET6kJiYiKysLElbu3bt8Prrr8tUEREZK52DVV5entbnBBYXF/NhzERkcLSNUkVFRcHExESGaojI2Ok8Fdi9e3d8++234vsHYWrNmjXw8fHRX2VERDVQWlpa6dQfQxUR1RadR6wWLFiAgIAAnDlzBuXl5fjoo49w5swZHDp0CD/88ENt1EhEpJP4+Hjk5uZK2jw8PDBkyBCZKiKihkLnEatevXrh+PHjKC8vR5cuXfD999+jRYsWSEtLg6enZ23USERUZXPmzNEIVbNnz2aoIqI6UaU7r1P18M7rRHXnzp07+PDDDzXaecNPItJVrd95vaioqMorZIAgorq2aNEi3Lt3T9LWq1cvDBgwQKaKiKihqlKwsrOzq/IVf2q1ukYFERHpQtsJ6tHR0bxKmYhkUaVgtX//fvG/L1++jBkzZiA0NFS8CjAtLQ3r169HbGxs7VRJRPSQwsJCLF++XKOdU39EJCedz7EaMGAAxowZg+DgYEl7YmIiPvvsMxw4cECf9dVrPMeKqHZoG6Xy9/dHz549ZaiGiIxNTb6/db4qMC0tDd27d9do7969Ow4fPqzr6oiIdFLZvakYqojIEOgcrFxcXPD5559rtK9ZswYuLi56KYqI6GHXr1+vNFQRERkKnW8QumzZMgwdOhTfffcdvL29AQCHDx9GVlYWvvzyS70XSESkLVC99NJLeOaZZ2SohoiocjqPWL3wwgvIysrCiy++iPz8fOTn5+PFF1/EhQsX8MILL9RGjUTUgFU2SsVQRUSGiDcIrUU8eZ2o+v7880+sWbNGo51Tf0RU22r9BqEPKygowBdffIGzZ88CAJ5++mm88cYbsLW1rc7qiIgktI1Svfbaa3Bzc5OhGiKiqtN5KvDo0aNo164dli1bJk4FLl26FO3atcOxY8dqo0YiakAqm/pjqCKi+kDnYPXOO+9g8ODBuHz5Mnbu3ImdO3ciOzsbgwYNQnh4uM4FrFq1Cm3atIGFhQW8vb0fe8uGHTt2oGPHjrCwsECXLl2wZ88eyeeCICA6OhpOTk6wtLSEn58fsrKyJH3y8/MxYsQI2NjYwM7ODmFhYbh9+7bGehYvXowOHTrA3NwcLVu2xPz583XePyKqmkuXLvGqPyKq96o1YvXee+/B1PTvWURTU1NMnz4dR48e1Wld27ZtQ0REBGJiYnDs2DF07doV/v7+uHbtmtb+hw4dQnBwMMLCwpCZmYmgoCAEBQXh1KlTYp+4uDisWLEC8fHxSE9Ph7W1Nfz9/SXPERsxYgROnz6Nffv2Yffu3fjxxx8xbtw4ybamTJmCNWvWYPHixTh37hx27doFLy8vnfaPiKpmzpw52LRpk6TtjTfeYKgionpH55PXHRwcsHHjRjz//POS9r179yIkJAS5ublVXpe3tzd69OiBlStXAgAqKirg4uKCyZMnY8aMGRr9hw0bhuLiYuzevVts69mzJzw8PBAfHw9BEODs7IypU6di2rRpAO4/9sLBwQEJCQkYPnw4zp49i06dOuHIkSPijU6Tk5Pxwgsv4I8//oCzszPOnj2LZ555BqdOncJTTz2ly+GR4MnrRI/HUSoiMjR1euf1YcOGISwsDNu2bcOVK1dw5coVbN26Vetjbh6ltLQUGRkZ8PPz+7sYpRJ+fn5IS0vTukxaWpqkP3D/MRYP+mdnZ0OlUkn62NrawtvbW+yTlpYGOzs7yd3j/fz8oFQqkZ6eDgD45ptv0LZtW+zevRuurq5o06YNxowZg/z8/CrvHxE92qlTpxiqiMjo6HxV4OLFi6FQKBASEoLy8nIAQKNGjTB+/HgsXLiwyuu5fv061Go1HBwcJO0ODg44d+6c1mVUKpXW/iqVSvz8Qduj+rRo0ULyuampKZo2bSr2+e233/D7779jx44d2LBhA9RqNd555x288sorSE1NrXSfSkpKUFJSIr4vKiqqtC9RQ6YtUI0fP17j7yYRUX2jc7AyMzPDRx99hNjYWFy6dAkA0K5dO1hZWem9OLlUVFSgpKQEGzZsQIcOHQAAX3zxBTw9PXH+/PlKpwdjY2O1fmEQ0d84SkVExkznqcAHrKys0KVLF3Tp0qVaoap58+YwMTHROCcrNzcXjo6OWpdxdHR8ZP8HPx/X5+GT48vLy5Gfny/2cXJygqmpqRiqAMDd3R0AkJOTU+k+RUZGorCwUHxduXKl0r5EDc3hw4cZqojI6FV5xOqNN96oUr+1a9dWqZ+ZmRk8PT2RkpKCoKAgAPdHilJSUjBp0iSty/j4+CAlJUVyW4d9+/bBx8cHAODq6gpHR0ekpKTAw8MDwP3puPT0dIwfP15cR0FBATIyMuDp6QkASE1NRUVFhfjsw2effRbl5eW4dOkS2rVrBwC4cOECAKB169aV7pO5uTnMzc2rtP9EDYm2QDVlyhTY2dnVfTFERLWoylcFKpVKtG7dGt26dcOjFvnqq6+qvPFt27Zh1KhR+PTTT+Hl5YXly5dj+/btOHfuHBwcHBASEoKWLVsiNjYWwP3bLfTp0wcLFy5EYGAgtm7digULFuDYsWPo3LkzAGDRokVYuHAh1q9fD1dXV8yePRu//vorzpw5AwsLCwBAQEAAcnNzER8fj7KyMowePRrdu3dHYmIigPsBr0ePHmjcuDGWL1+OiooKTJw4ETY2Nvj++++rvH+8KpAaOkEQMHfuXI12jlIRkSGrk0fajB8/Hlu2bEF2djZGjx6N119/HU2bNtW52H8aNmwY8vLyEB0dDZVKBQ8PDyQnJ4snn+fk5ECp/Hu20tfXF4mJiYiKisLMmTPh5uaGpKQkMVQBwPTp01FcXIxx48ahoKAAvXr1QnJyshiqAGDz5s2YNGkSBgwYAKVSiaFDh2LFihXi50qlEt988w0mT56M3r17w9raGgEBAViyZEmN9peoITlw4AB++OEHSZupqSlmzZolU0VERLVPp/tYlZSUYOfOnVi7di0OHTqEwMBAhIWF4fnnn4dCoajNOusljlhRQ6Vt6m/atGmwtraWoRoiIt3U5Ptb5xuEPvD7778jISEBGzZsQHl5OU6fPo3GjRtXZ1VGi8GKGhpO/RGRMaiTqcCHKZVKKBQKCIIAtVpd3dUQkZHYvXs3MjIyJG3NmjWr9GIUIiJjpFOw+udU4E8//YRBgwZh5cqVGDhwoORcKCJqWLRN/c2YMYNXyRJRg1PlYDVhwgRs3boVLi4ueOONN7BlyxY0b968NmsjIgOnVqsxb948jXZO/RFRQ6XT7RZatWqFbt26PfJE9Z07d+qtuPqO51iRMduyZYt4f7cHXF1dERISIlNFRET6USfnWIWEhPDKPyICoH3qb9asWTA1rfZpm0RERqHKvwUTEhJqsQwiqg/KysqwYMECjXZO/RER3cd/XhJRlXz66adQqVSStmeeeQYvvfSSTBURERkeBisieixtU3+zZ8/m1cBERA9hsCKiSt29exdxcXEa7Zz6IyLSjsGKiLSKi4vD3bt3JW2+vr547rnnZKqIiMjwMVgRkQZtU3/R0dG8MpiI6DEYrIhIVFRUhGXLlmm0c+qPiKhqGKyICID2UarnnnsOvr6+MlRDRFQ/MVgRkdZQxVEqIiLdMVgRNWDXr1/HqlWrNNoZqoiIqofBiqiB0jZKFRQUhK5du8pQDRGRcWCwImqAOPVHRFQ7GKyIGpC//voLn3/+uUY7QxURkX4wWBE1ENpGqYKDg9GhQwcZqiEiMk4MVkQNAKf+iIjqBoMVkRH7448/8MUXX2i0M1QREdUOBisiI6VtlCo9fTT27GklQzVERA2DUu4CiEj/tIWqvXtj8NZbDFVERLWJI1ZERuTSpUvYtGmTRntMTAw4+0dEVPsYrIiMhLZRqkmTJqFZs2YyVENE1DAxWBEZAV71R0RkGBisiOqxEydOICkpSdLWpEkTREREyFMQEVEDx2BFVE9pG6WKiIhAkyZNZKiGiIgABiuiekcQBMydO1ejnVN/RETyY7Aiqkd++OEHHDhwQNJWUaGEp+dseQoiIiIJBiuiekLb1N+0adNgbW0tQzVERKQNgxWRgePUHxFR/cFgRWTAvv32Wxw9elTS1rRpU0yePFmmioiI6FEYrIgMlLapvxkzZsDc3FyGaoiIqCoYrIgMjFqtxrx58zTaOfVHRGT4GKyIDMi2bdtw7tw5SVubNm0watQomSoiIiJdMFgRGQhtU3+zZs2CqSn/mhIR1Rf8jU0ks7KyMixYsECjnVN/RET1D4MVkYzWrFmDP//8U9LWpUsXvPzyyzJVRERENcFgRSQTbVN/s2fPhlKplKEaIiLSB4P4Db5q1Sq0adMGFhYW8Pb2xuHDhx/Zf8eOHejYsSMsLCzQpUsX7NmzR/K5IAiIjo6Gk5MTLC0t4efnh6ysLEmf/Px8jBgxAjY2NrCzs0NYWBhu376tdXsXL15EkyZNYGdnV6P9JAKAu3fvag1VMTExDFVERPWc7L/Ft23bhoiICMTExODYsWPo2rUr/P39ce3aNa39Dx06hODgYISFhSEzMxNBQUEICgrCqVOnxD5xcXFYsWIF4uPjkZ6eDmtra/j7++PevXtinxEjRuD06dPYt28fdu/ejR9//BHjxo3T2F5ZWRmCg4Px73//W/87Tw3OkiVLEBcXJ2nz8fHh+VREREZCIQiCIGcB3t7e6NGjB1auXAkAqKiogIuLCyZPnowZM2Zo9B82bBiKi4uxe/dusa1nz57w8PBAfHw8BEGAs7Mzpk6dimnTpgEACgsL4eDggISEBAwfPhxnz55Fp06dcOTIEXTv3h0AkJycjBdeeAF//PEHnJ2dxXW/9957+OuvvzBgwACEh4ejoKCgyvtWVFQEW1tbFBYWwsbGpjqHh4yItlGq6OhoKBQKGaohIqLK1OT7W9YRq9LSUmRkZMDPz09sUyqV8PPzQ1pamtZl0tLSJP0BwN/fX+yfnZ0NlUol6WNrawtvb2+xT1paGuzs7MRQBQB+fn5QKpVIT08X21JTU7Fjxw6sWrWqSvtTUlKCoqIiyYvo1q1blU79MVQRERkXWU9ev379OtRqNRwcHCTtDg4OGjdJfEClUmntr1KpxM8ftD2qT4sWLSSfm5qaomnTpmKfGzduIDQ0FJs2bapyWo2NjdX6BUoNl7b/H/z8/PDss8/KUA0REdU22c+xMlRjx47Fa6+9ht69e1d5mcjISBQWFoqvK1eu1GKFZOgqG6ViqCIiMl6yBqvmzZvDxMQEubm5kvbc3Fw4OjpqXcbR0fGR/R/8fFyfh0+OLy8vR35+vtgnNTUVixcvhqmpKUxNTREWFobCwkKYmppi7dq1WmszNzeHjY2N5EUNz40bNyoNVUREZNxkDVZmZmbw9PRESkqK2FZRUYGUlBT4+PhoXcbHx0fSHwD27dsn9nd1dYWjo6OkT1FREdLT08U+Pj4+KCgoQEZGhtgnNTUVFRUV8Pb2BnD/PKzjx4+Lr7lz56JJkyY4fvw4XnrpJf0cADI6c+bMES/EeGDw4MEMVUREDYTsNwiNiIjAqFGj0L17d3h5eWH58uUoLi7G6NGjAQAhISFo2bIlYmNjAQBTpkxBnz59sGTJEgQGBmLr1q04evQoPvvsMwCAQqFAeHg45s2bBzc3N7i6umL27NlwdnZGUFAQAMDd3R0DBw7E2LFjER8fj7KyMkyaNAnDhw8Xrwh0d3eX1Hn06FEolUp07ty5jo4M1TccpSIiItmD1bBhw5CXl4fo6GioVCp4eHggOTlZPPk8JydHctNEX19fJCYmIioqCjNnzoSbmxuSkpIkgWf69OkoLi7GuHHjUFBQgF69eiE5ORkWFhZin82bN2PSpEkYMGAAlEolhg4dihUrVtTdjpPRyMnJwbp16zTau3VjqCIiamhkv4+VMeN9rIyftlGql156Cc8884wM1RARkT7U5Ptb9hErovqKU39ERPQwBisiHZ0/fx5bt27VaGeoIiIiBisiHWgbpcrIeA1jxrjJUA0RERkaBiuiKuLUHxERPQ6DFdFjZGZmYteuXRrtDFVERPQwBiuiR9A2ShUWFoYnn3xShmqIiMjQMVgRVYJTf0REpCsGK6KH/PTTTxqPTQJ4w08iIno8Biuif9A2SjVx4kQ0b95chmqIiKi+YbAi+n+c+iMioppisKIG78cff8T+/fslbRUVCnh6RstUERER1VcMVtSgaRulmjp1Kho3bixDNUREVN8xWFGDJAgC5s6dq9HOqT8iIqoJBitqcFJSUvDTTz9J2u7cscOzz06RqSIiIjIWDFbUoGib+psxYwbMzc1lqIaIiIwNgxU1CBUVFfjggw802jn1R0RE+sRgRUZv165dyMzMlLR17NgRw4YNk6kiIiIyVgxWZNS0Tf3NmjULpqb8X5+IiPSP3y5klMrKyrBgwQKNdk79ERFRbWKwIqOTmJiIrKwsSVv37t0RGBgoU0VERNRQMFiRUdE29Td79mwolUoZqiEiooaGwYqMwr1797Bo0SKNdk79ERFRXWKwonovPj4eubm5krY+ffqgb9++8hREREQNFoMV1Wvapv6io6OhUChkqIaIiBo6Biuql27fvo0lS5ZotHPqj4iI5MRgRfXOhg0bkJ2dLWkbOHAgvL29ZaqIiIjoPgYrqle0Tf1xlIqIiAwFgxXVC7du3cLSpUs12rt1Y6giIiLDwWBFBu+TTz5BXl6epG3EiBFo3769TBURERFpx2BFBo1Tf0REVJ8wWJFBys/Px8cff6zRzlBFRESGjMGKDM6iRYtw7949Sdsbb7wBFxcXmSoiIiKqGgYrMiic+iMiovqMwYoMgkqlwqeffqrRzlBFRET1CYMVyU7bKNVbb70FBwcHGaohIiKqPgYrkhWn/oiIyJgwWJEscnJysG7dOkmbpaUlpk+fLlNFRERENcdgRXVO2yjV5MmT0bRpUxmqISIi0h8GK6pTnPojIiJjxmBFdSIrKwuJiYmSthYtWmD8+PEyVURERKR/SrkLAIBVq1ahTZs2sLCwgLe3Nw4fPvzI/jt27EDHjh1hYWGBLl26YM+ePZLPBUFAdHQ0nJycYGlpCT8/P2RlZUn65OfnY8SIEbCxsYGdnR3CwsJw+/Zt8fMDBw5gyJAhcHJygrW1NTw8PLB582b97XQDMmfOHI1QFRERwVBFRERGR/ZgtW3bNkRERCAmJgbHjh1D165d4e/vj2vXrmntf+jQIQQHByMsLAyZmZkICgpCUFAQTp06JfaJi4vDihUrEB8fj/T0dFhbW8Pf319yN+8RI0bg9OnT2LdvH3bv3o0ff/wR48aNk2znmWeewZdffolff/0Vo0ePRkhICHbv3l17B8MIVTb116RJExmqISIiql0KQRAEOQvw9vZGjx49sHLlSgBARUUFXFxcMHnyZMyYMUOj/7Bhw1BcXCwJOD179oSHhwfi4+MhCAKcnZ0xdepUTJs2DQBQWFgIBwcHJCQkYPjw4Th79iw6deqEI0eOoHv37gCA5ORkvPDCC/jjjz/g7OystdbAwEA4ODhg7dq1Vdq3oqIi2NraorCwEDY2Njodl/ru1KlT+PLLLyVtbdu2xciRI2WqiIiIqGpq8v0t64hVaWkpMjIy4OfnJ7YplUr4+fkhLS1N6zJpaWmS/gDg7+8v9s/OzoZKpZL0sbW1hbe3t9gnLS0NdnZ2YqgCAD8/PyiVSqSnp1dab2Fh4SOvXCspKUFRUZHk1RDNmTNHI1RNnz6doYqIiIyerMHq+vXrUKvVGnfYdnBwgEql0rqMSqV6ZP8HPx/Xp0WLFpLPTU1N0bRp00q3u337dhw5cgSjR4+udH9iY2Nha2srvhraQ4MFQah06s/S0lKGioiIiOoWrwqsgv3792P06NH4/PPP8fTTT1faLzIyEhEREeL7oqKiBhOujh49im+//VbS1qVLF7z88ssyVURERFT3ZA1WzZs3h4mJCXJzcyXtubm5cHR01LqMo6PjI/s/+JmbmwsnJydJHw8PD7HPwyfHl5eXIz8/X2O7P/zwA1588UUsW7YMISEhj9wfc3NzmJubP7KPMdI2ShUZGQkzMzMZqiEiIpKPrFOBZmZm8PT0REpKithWUVGBlJQU+Pj4aF3Gx8dH0h8A9u3bJ/Z3dXWFo6OjpE9RURHS09PFPj4+PigoKEBGRobYJzU1FRUVFfD29hbbDhw4gMDAQCxatEhyxSDdV1FRUenUH0MVERE1RLJPBUZERGDUqFHo3r07vLy8sHz5chQXF4vnMoWEhKBly5aIjY0FAEyZMgV9+vTBkiVLEBgYiK1bt+Lo0aP47LPPAAAKhQLh4eGYN28e3Nzc4OrqitmzZ8PZ2RlBQUEAAHd3dwwcOBBjx45FfHw8ysrKMGnSJAwfPly8InD//v0YNGgQpkyZgqFDh4rnXpmZmfHRKwAOHjyI1NRUSZu3tzcGDhwoU0VERETykz1YDRs2DHl5eYiOjoZKpYKHhweSk5PFk89zcnKgVP49sObr64vExERERUVh5syZcHNzQ1JSEjp37iz2mT59OoqLizFu3DgUFBSgV69eSE5OhoWFhdhn8+bNmDRpEgYMGAClUomhQ4dixYoV4ufr16/HnTt3EBsbK4Y6AOjTpw8OHDhQi0fE8GkbpZo1axZMTWX/34mIiEhWst/HypgZ232s1Go15s2bp9HOZ/0REZExqcn3N4cYqEr27t2LX375RdLWr18/9O7dW6aKiIiIDA+DFT2Wtqm/2bNnS6ZoiYiIiMGKHqG0tFRyftkDnPojIiLSjsGKtNq5cydOnjwpaXvhhRfQo0cPmSoiIiIyfAxWpEHb1J+HRzR69FDIUA0REVH9wWBFort37yIuLk6jnVN/REREVcNgRQCA77//HmlpaZK2oUOHSu4PRkRERI/GYEWVPpaGiIiIdMNg1YDduXMHH374oUZ7t24MVURERNXBYNVAff311zh+/LikLSwsDE8++aQ8BRERERkBBqsGiFN/REREtYPBqgEpKirCsmXLJG1PPPEE3n77bZkqIiIiMi4MVg3Et99+i6NHj0raxo8fjxYtWshUERERkfFhsGoAFixYjrKyQkkbp/6IiIj0j8HKiGl71l9BwZNYtixMpoqIiIiMG4OVkcrOzsaGDRskbV99NRVz5zaWqSIiIiLjx2BlhL788kucOnVKfN+tWzcMHjwYnP0jIiKqXQxWRuTevXtYtGiRpC00NBStW7eWqSIiIqKGhcHKSGRlZSExMVHSNnPmTDRq1EimioiIiBoeBisjsHXrVpw/f1587+XlhYCAABkrIiIiapgYrOqxu3fvIi4uTtI2ZswYtGzZUqaKiIiIGjYGq3rq3Llz2LZtm6Rt1qxZMDXlHykREZFc+C1cD+3ZswdHjhwR3z/77LPw8/OTsSIiIiICGKzqpWPHTor//eabb8LR0VHGaoiIiOgBBqt6KD39FRQV/Yny8mcRE2MidzlERET0/5RyF0C6Gzu2HcrKeuO99xiqiIiIDAlHrOqhwYPvv4iIiMiwcMSKiIiISE8YrIiIiIj0hMGKiIiISE8YrIiIiIj0hMGKiIiISE8YrIiIiIj0hMGKiIiISE8YrIiIiIj0hMGKiIiISE8YrIiIiIj0hMGKiIiISE8YrIiIiIj0hMGKiIiISE9M5S7AmAmCAAAoKiqSuRIiIiKqqgff2w++x3XBYFWLbt26BQBwcXGRuRIiIiLS1a1bt2Bra6vTMgqhOnGMqqSiogJ//fUXmjRpAoVCIXc5daqoqAguLi64cuUKbGxs5C7HIPCYSPF4aOIx0cRjoonHRJO+j4kgCLh16xacnZ2hVOp21hRHrGqRUqnEk08+KXcZsrKxseFf/IfwmEjxeGjiMdHEY6KJx0STPo+JriNVD/DkdSIiIiI9YbAiIiIi0hMGK6oV5ubmiImJgbm5udylGAweEykeD008Jpp4TDTxmGgypGPCk9eJiIiI9IQjVkRERER6wmBFREREpCcMVkRERER6wmBFREREpCcMVoRVq1ahTZs2sLCwgLe3Nw4fPvzI/jt27EDHjh1hYWGBLl26YM+ePZLPBUFAdHQ0nJycYGlpCT8/P2RlZUn65OfnY8SIEbCxsYGdnR3CwsJw+/Zt8fMDBw5gyJAhcHJygrW1NTw8PLB582b97fRjGOIx+aeLFy+iSZMmsLOzq9F+6sJQj4kgCFi8eDE6dOgAc3NztGzZEvPnz9fPTj+GoR6TvXv3omfPnmjSpAns7e0xdOhQXL58WS/7/DhyHJP58+fD19cXVlZWlf6dyMnJQWBgIKysrNCiRQu8++67KC8vr9G+VpUhHpMTJ04gODgYLi4usLS0hLu7Oz766KMa72tVGeIx+acbN27gySefhEKhQEFBgW47J1CDtnXrVsHMzExYu3atcPr0aWHs2LGCnZ2dkJubq7X/zz//LJiYmAhxcXHCmTNnhKioKKFRo0bCyZMnxT4LFy4UbG1thaSkJOHEiRPC4MGDBVdXV+Hu3btin4EDBwpdu3YVfvnlF+HgwYNC+/btheDgYPHz+fPnC1FRUcLPP/8sXLx4UVi+fLmgVCqFb775pvYOxv8z1GPyQGlpqdC9e3chICBAsLW11fv+a2PIx2Ty5MnCU089JXz99dfCb7/9Jhw9elT4/vvva+dA/IOhHpPffvtNMDc3FyIjI4WLFy8KGRkZQu/evYVu3brV3sH4f3Idk+joaGHp0qVCRESE1r8T5eXlQufOnQU/Pz8hMzNT2LNnj9C8eXMhMjJS78fgYYZ6TL744gvh7bffFg4cOCBcunRJ2Lhxo2BpaSl8/PHHej8GDzPUY/JPQ4YMEQICAgQAws2bN3XaPwarBs7Ly0uYOHGi+F6tVgvOzs5CbGys1v7/+c9/hMDAQEmbt7e38OabbwqCIAgVFRWCo6Oj8OGHH4qfFxQUCObm5sKWLVsEQRCEM2fOCACEI0eOiH2+++47QaFQCH/++Weltb7wwgvC6NGjdd9JHRn6MZk+fbrw+uuvC+vWrauzYGWox+TMmTOCqampcO7cOf3sqA4M9Zjs2LFDMDU1FdRqtdhn165dgkKhEEpLS2u4148mxzH5p8r+TuzZs0dQKpWCSqUS21avXi3Y2NgIJSUlOu2jrgz1mGgzYcIEoV+/flXqWxOGfkw++eQToU+fPkJKSkq1ghWnAhuw0tJSZGRkwM/PT2xTKpXw8/NDWlqa1mXS0tIk/QHA399f7J+dnQ2VSiXpY2trC29vb7FPWloa7Ozs0L17d7GPn58flEol0tPTK623sLAQTZs21X1HdWDoxyQ1NRU7duzAqlWrar6zVWTIx+Sbb75B27ZtsXv3bri6uqJNmzYYM2YM8vPz9bPzlTDkY+Lp6QmlUol169ZBrVajsLAQGzduhJ+fHxo1aqSfA6CFXMekKtLS0tClSxc4ODhItlNUVITTp09XeT26MuRjoo0x/46tqjNnzmDu3LnYsGGDzg9ffoDBqgG7fv061Gq15JcNADg4OEClUmldRqVSPbL/g5+P69OiRQvJ56ampmjatGml292+fTuOHDmC0aNHV3HvqseQj8mNGzcQGhqKhISEOn3wqiEfk99++w2///47duzYgQ0bNiAhIQEZGRl45ZVXqrm3VWPIx8TV1RXff/89Zs6cCXNzc9jZ2eGPP/7A9u3bq7m3VSPXMamKyrbzz23UBkM+Jg87dOgQtm3bhnHjxlV7HVVhyMekpKQEwcHB+PDDD9GqVasqL/cwBisyePv378fo0aPx+eef4+mnn5a7HNmMHTsWr732Gnr37i13KQajoqICJSUl2LBhA/7973+jb9+++OKLL7B//36cP39e7vJkoVKpMHbsWIwaNQpHjhzBDz/8ADMzM7zyyisQ+KAN0uLUqVMYMmQIYmJi8Pzzz8tdjmwiIyPh7u6O119/vUbrYbBqwJo3bw4TExPk5uZK2nNzc+Ho6Kh1GUdHx0f2f/DzcX2uXbsm+by8vBz5+fka2/3hhx/w4osvYtmyZQgJCdFxD3VnyMckNTUVixcvhqmpKUxNTREWFobCwkKYmppi7dq11dzjxzPkY+Lk5ARTU1N06NBB7OPu7g7g/lVgtcWQj8mqVatga2uLuLg4dOvWDb1798amTZuQkpLyyKn2mpLrmFRFZdv55zZqgyEfkwfOnDmDAQMGYNy4cYiKitJ5eV0Z8jF5cKrFg9+xAwYMEGuOiYmp8noYrBowMzMzeHp6IiUlRWyrqKhASkoKfHx8tC7j4+Mj6Q8A+/btE/u7urrC0dFR0qeoqAjp6eliHx8fHxQUFCAjI0Psk5qaioqKCnh7e4ttBw4cQGBgIBYtWlTrw9MPGPIxSUtLw/Hjx8XX3Llz0aRJExw/fhwvvfSSfg6AFoZ8TJ599lmUl5fj0qVLYp8LFy4AAFq3bl2T3X4kQz4md+7c0Tg3xMTERKyxtsh1TKrCx8cHJ0+elITSffv2wcbGBp06daryenRlyMcEAE6fPo1+/fph1KhRdXaLEkM+Jl9++SVOnDgh/o5ds2YNAODgwYOYOHFildfDqwIbuK1btwrm5uZCQkKCcObMGWHcuHGCnZ2dePXMyJEjhRkzZoj9f/75Z8HU1FRYvHixcPbsWSEmJkbrZa92dnbC119/Lfz666/CkCFDtF4y3q1bNyE9PV346aefBDc3N8kl46mpqYKVlZUQGRkpXL16VXzduHGjwR6Th9XlVYGGekzUarXwr3/9S+jdu7dw7Ngx4ejRo4K3t7fw3HPPNdhjkpKSIigUCmHOnDnChQsXhIyMDMHf319o3bq1cOfOHaM8Jr///ruQmZkpzJkzR2jcuLGQmZkpZGZmCrdu3RIE4e/bLTz//PPC8ePHheTkZMHe3r7ObrdgiMfk5MmTgr29vfD6669Lfsdeu3atwR6Th+3fv5+3W6Dq+fjjj4VWrVoJZmZmgpeXl/DLL7+In/Xp00cYNWqUpP/27duFDh06CGZmZsLTTz8tfPvtt5LPKyoqhNmzZwsODg6Cubm5MGDAAOH8+fOSPjdu3BCCg4OFxo0bCzY2NsLo0aMl/3OPGjVKAKDx6tOnj973XxtDPCYPq8tgJQiGe0z+/PNP4eWXXxYaN24sODg4CKGhoXUSwAXBcI/Jli1bhG7dugnW1taCvb29MHjwYOHs2bP63flKyHFMKvt9sX//frHP5cuXhYCAAMHS0lJo3ry5MHXqVKGsrEzv+6+NIR6TmJgYrZ+3bt26Ng6BBkM8Jg+rbrBSCALPZiQiIiLSB55jRURERKQnDFZEREREesJgRURERKQnDFZEREREesJgRURERKQnDFZEREREesJgRURERKQnDFZEREREesJgRUQNgkqlwuTJk9G2bVuYm5vDxcUFL774osYzyARBQEBAABQKBZKSksT2y5cvQ6FQ4Pjx4xrr7tu3L8LDw8X3O3fuxPPPP49mzZpVusy9e/cwceJENGvWDI0bN8bQoUM1HiJLRPUPgxURGb3Lly/D09MTqamp+PDDD3Hy5EkkJyejX79+Gg9XXb58ORQKRY22V1xcjF69emHRokWV9nnnnXfwzTffYMeOHfjhhx/w119/4eWXX67RdolIfqZyF0BEVNsmTJgAhUKBw4cPw9raWmx/+umn8cYbb4jvjx8/jiVLluDo0aNwcnKq9vZGjhwJ4H6g06awsBBffPEFEhMT0b9/fwDAunXr4O7ujl9++QU9e/as9raJSF4csSIio5afn4/k5GRMnDhREqoesLOzAwDcuXMHr732GlatWgVHR8darSkjIwNlZWXw8/MT2zp27IhWrVohLS2tVrdNRLWLI1ZEZNQuXrwIQRDQsWPHR/Z755134OvriyFDhjyyn6+vL5RK6b9J7969Cw8PjyrXpFKpYGZmJoa6BxwcHKBSqaq8HiIyPAxWRGTUBEF4bJ9du3YhNTUVmZmZj+27bds2uLu7S9pGjBhR7fqIyLgwWBGRUXNzc4NCocC5c+cq7ZOamopLly5pjCANHToU//73v3HgwAGxzcXFBe3bt5f0s7S01KkmR0dHlJaWoqCgQLLN3NzcWp+GJKLaxXOsiMioNW3aFP7+/li1ahWKi4s1Pi8oKMCMGTPw66+/4vjx4+ILAJYtW4Z169bpvSZPT080atRIcquH8+fPIycnBz4+PnrfHhHVHY5YEZHRW7VqFZ599ll4eXlh7ty5eOaZZ1BeXo59+/Zh9erVOHv2rNaRolatWsHV1VXn7eXn5yMnJwd//fUXgPuhCbg/UuXo6AhbW1uEhYUhIiICTZs2hY2NDSZPngwfHx9eEUhUzzFYEZHRa9u2LY4dO4b58+dj6tSpuHr1Kuzt7eHp6YnVq1frfXu7du3C6NGjxffDhw8HAMTExOD9998HcH80TKlUYujQoSgpKYG/vz8++eQTvddCRHVLIVTlzE4iIiIieiyeY0VERESkJwxWRERERHrCYEVERESkJwxWRERERHrCYEVERESkJwxWRERERHrCYEVERESkJwxWRERERHrCYEVERESkJwxWRERERHrCYEVERESkJwxWRERERHryf09tOrlI+44JAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_31.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSd0lEQVR4nO3deVhUdfsG8HsYWRQFVHZCATE1U1EQ0jRLSaBCzSy0BTDTcjc0FRcQUUFFJRO1LJfXSrReUzPFDKMsebNcU5RcIDUBEQUElG3O7w9/Tp1mUAZnOLPcn+viynnmzHeec5yY2/M9i0wQBAFEREREJsRM6gaIiIiIGhsDEBEREZkcBiAiIiIyOQxAREREZHIYgIiIiMjkMAARERGRyWEAIiIiIpPDAEREREQmhwGIiIiITA4DEBEZLJlMhnnz5kndhlJkZCQ8PDykboOI6oEBiIi0auPGjZDJZMofKysrPProo5gwYQIKCgp0+t6HDh3CvHnzUFxcrNVxn376adE6tWrVCj179sT69euhUCi08h6LFi3Cjh07tDIWET1YE6kbICLjNH/+fHh6euLOnTv46aefsGbNGuzZswenTp1Cs2bNtPIet2/fRpMmf/8aO3ToEOLi4hAZGQk7OzutvMc9jzzyCBISEgAAhYWF+M9//oNRo0bhjz/+QGJi4kOPv2jRIgwbNgxDhgx56LGI6MEYgIhIJ0JCQuDn5wcAeOutt9C6dWssX74cO3fuxIgRIxo8rkKhQFVVFaysrGBlZaWtdh/I1tYWr7/+uvLx22+/jQ4dOmDVqlWIj4+Hubl5o/VCRA+PU2BE1Cj69+8PAMjJyQEAJCUloXfv3mjdujWaNm0KX19ffPnllyqvk8lkmDBhAj777DN07twZlpaWSEtLUz537xigefPm4b333gMAeHp6KqercnNz0a9fP3Tr1k1tXx06dEBQUJDG69OsWTM88cQTKC8vR2FhYZ3LlZeXY+rUqXB3d4elpSU6dOiApKQkCIIgWsfy8nJs2rRJ2XdkZKTGPRFR/XEPEBE1igsXLgAAWrduDQB4//33MWjQILz22muoqqpCamoqXn75ZezevRvPP/+86LUHDhzAtm3bMGHCBNjb26s90Hjo0KH4448/sGXLFqxYsQL29vYAAAcHB7zxxhsYPXo0Tp06hccff1z5ml9//RV//PEH5syZ06B1unjxIuRyeZ3TbYIgYNCgQfj+++8xatQo+Pj4YN++fXjvvffw119/YcWKFQCAzZs346233oK/vz/GjBkDAGjXrl2DeiKiehKIiLRow4YNAgDhu+++EwoLC4XLly8LqampQuvWrYWmTZsKV65cEQRBECoqKkSvq6qqEh5//HGhf//+ojoAwczMTDh9+rTKewEQYmNjlY+XLl0qABBycnJEyxUXFwtWVlbCjBkzRPVJkyYJ1tbWQllZ2X3XqV+/fkLHjh2FwsJCobCwUDhz5owwadIkAYAQGhqqXC4iIkJo27at8vGOHTsEAMKCBQtE4w0bNkyQyWTC+fPnlTVra2shIiLivn0QkfZwCoyIdCIwMBAODg5wd3fH8OHD0bx5c3z11Vdwc3MDADRt2lS57M2bN1FSUoK+ffvi6NGjKmP169cPjz32WIN7sbW1xeDBg7Flyxbl1FNtbS22bt2KIUOGwNra+oFjnD17Fg4ODnBwcECnTp3wwQcf4Pnnn8f69evrfM2ePXsgl8sxadIkUX3q1KkQBAF79+5t8DoR0cPhFBgR6URKSgoeffRRNGnSBE5OTujQoQPMzP7+N9fu3buxYMECHD9+HJWVlcq6TCZTGcvT0/Oh+wkPD8fWrVtx8OBBPPXUU/juu+9QUFCAN954o16v9/DwwLp165Sn9rdv3x6Ojo73fc2ff/4JV1dXtGjRQlTv1KmT8nkikgYDEBHphL+/v/IssH87ePAgBg0ahKeeegqrV6+Gi4sLzM3NsWHDBnz++ecqy/9zb1FDBQUFwcnJCZ9++imeeuopfPrpp3B2dkZgYGC9Xm9tbV3vZYlI/3EKjIga3X//+19YWVlh3759ePPNNxESEqKVcKFu79E9crkcr776Kr788kvcvHkTO3bswIgRIyCXyx/6fevStm1bXL16Fbdu3RLVz549q3z+nvv1TkTaxwBERI1OLpdDJpOhtrZWWcvNzX3oKyHfO5anritBv/HGG7h58ybefvttlJWVia7rowvPPfccamtrsWrVKlF9xYoVkMlkCAkJUdasra21fgVrIqobp8CIqNE9//zzWL58OYKDg/Hqq6/i2rVrSElJgbe3N06ePNngcX19fQEAs2fPxvDhw2Fubo7Q0FBlMOrevTsef/xxfPHFF+jUqRN69OihlfWpS2hoKJ555hnMnj0bubm56NatG7799lvs3LkTU6ZMEZ3q7uvri++++w7Lly+Hq6srPD09ERAQoNP+iEwZ9wARUaPr378/PvnkE+Tn52PKlCnYsmULFi9ejBdffPGhxu3Zsyfi4+Nx4sQJREZGYsSIESoXKQwPDweAeh/8/DDMzMywa9cuTJkyBbt378aUKVOQlZWFpUuXYvny5aJlly9fDl9fX8yZMwcjRozAmjVrdN4fkSmTCcI/LkdKRGTk3n//fbz77rvIzc1FmzZtpG6HiCTCAEREJkMQBHTr1g2tW7fG999/L3U7RCQhHgNEREavvLwcu3btwvfff4/ff/8dO3fulLolIpIY9wARkdHLzc2Fp6cn7OzsMG7cOCxcuFDqlohIYgxAREREZHJ4FhgRERGZHAYgIiIiMjk8CFoNhUKBq1evokWLFrw8PRERkYEQBAG3bt2Cq6ur6ObL6jAAqXH16lW4u7tL3QYRERE1wOXLl/HII4/cdxkGIDVatGgB4O4GtLGxkbgbIiIiqo/S0lK4u7srv8fvhwFIjXvTXjY2NgxAREREBqY+h6/wIGgiIiIyOQxAREREZHIYgIiIiMjk8Bigh1BbW4vq6mqp2yAdMzc3h1wul7oNIiLSIgagBhAEAfn5+SguLpa6FWokdnZ2cHZ25nWhiIiMBANQA9wLP46OjmjWrBm/FI2YIAioqKjAtWvXAAAuLi4Sd0RERNrAAKSh2tpaZfhp3bq11O1QI2jatCkA4Nq1a3B0dOR0GBGREeBB0Bq6d8xPs2bNJO6EGtO9v28e80VEZBwYgBqI016mhX/fRETGhQGIiIiITA4DEBEREZkcBiATEhkZCZlMBplMBnNzczg5OeHZZ5/F+vXroVAo6j3Oxo0bYWdnp7tGiYiIdIwByMQEBwcjLy8Pubm52Lt3L5555hlMnjwZL7zwAmpqaqRuj4iIqFEwAJkYS0tLODs7w83NDT169MCsWbOwc+dO7N27Fxs3bgQALF++HF26dIG1tTXc3d0xbtw4lJWVAQAyMjIwcuRIlJSUKPcmzZs3DwCwefNm+Pn5oUWLFnB2dsarr76qvH4OERERAKxcuR1TpqzH1q3Sfj8wAGmBIAioqqpq9B9BELTSf//+/dGtWzds374dAGBmZoaVK1fi9OnT2LRpEw4cOIDp06cDAHr37o3k5GTY2NggLy8PeXl5mDZtGoC7p4jHx8fjxIkT2LFjB3JzcxEZGamVHomIyLDdvn0bcXFxuHnzd7RseRlffvmXpP3wQohaUF1djYSEhEZ/3+joaFhYWGhlrI4dO+LkyZMAgClTpijrHh4eWLBgAd555x2sXr0aFhYWsLW1hUwmg7Ozs2iMN998U/lnLy8vrFy5Ej179kRZWRmaN2+ulT6JiMjwZGdnIzU1VVR77bWuEnVzl17sAUpJSYGHhwesrKwQEBCAw4cP17ns9u3b4efnBzs7O1hbW8PHxwebN28WLfPPg33v/QQHB+t6NQyaIAjKa9189913GDBgANzc3NCiRQu88cYbKCoqQkVFxX3HOHLkCEJDQ9GmTRu0aNEC/fr1AwBcunRJ5/0TEZF++uyzz0Th54knnkBsbCyGDJH2qvqS7wHaunUroqKisHbtWgQEBCA5ORlBQUHIzs6Go6OjyvKtWrXC7Nmz0bFjR1hYWGD37t0YOXIkHB0dERQUpFwuODgYGzZsUD62tLTU2TqYm5sjOjpaZ+Pf73215cyZM/D09ERubi5eeOEFjB07FgsXLkSrVq3w008/YdSoUaiqqqrzCtjl5eUICgpCUFAQPvvsMzg4OODSpUsICgpCVVWV1vokIiLDUFFRgaVLl4pqo0ePhqurq0QdiUkegJYvX47Ro0dj5MiRAIC1a9fim2++wfr16zFz5kyV5Z9++mnR48mTJ2PTpk346aefRAHo3sG+jUEmk2ltKkoKBw4cwO+//453330XR44cgUKhwLJly2BmdncH4bZt20TLW1hYoLa2VlQ7e/YsioqKkJiYCHd3dwDAb7/91jgrQEREeiUrKwtffPGFqDZnzhy9upeipFNgVVVVOHLkCAIDA5U1MzMzBAYGIjMz84GvFwQB6enpyM7OxlNPPSV6LiMjA46OjujQoQPGjh2LoqIirfdviCorK5Gfn4+//voLR48exaJFizB48GC88MILCA8Ph7e3N6qrq/HBBx/g4sWL2Lx5M9auXSsaw8PDA2VlZUhPT8f169dRUVGBNm3awMLCQvm6Xbt2IT4+XqK1JCIiKQiCgI0bN4rCT9++fREbG6tX4QeQOABdv34dtbW1cHJyEtWdnJyQn59f5+tKSkrQvHlzWFhY4Pnnn8cHH3yAZ599Vvl8cHAw/vOf/yA9PR2LFy/GDz/8gJCQEJW9FvdUVlaitLRU9GOs0tLS4OLiAg8PDwQHB+P777/HypUrsXPnTsjlcnTr1g3Lly/H4sWL8fjjj+Ozzz5TOcC7d+/eeOeddxAWFgYHBwcsWbIEDg4Oyg/9Y489hsTERCQlJUm0lkRE1NjKysowf/58/Pnnn8raO++8g/79+0vYVd1kgrbOpW6Aq1evws3NDYcOHUKvXr2U9enTp+OHH37AL7/8ovZ1CoUCFy9eVO6FiI+Px44dO1Smx+65ePEi2rVrpzy499/mzZuHuLg4lXpJSQlsbGxEtTt37iAnJweenp6wsrLSYG3JkPHvnYiobidPnsRXX32lfGxubo6ZM2cqD6VoLKWlpbC1tVX7/f1vkh4DZG9vD7lcjoKCAlG9oKDgvsfvmJmZwdvbGwDg4+ODM2fOICEhoc4A5OXlBXt7e5w/f15tAIqOjkZUVJTycWlpqfI4FiIiIlJPEASsW7cOeXl5ylr//v3Rt29fCbuqH0mnwCwsLODr64v09HRlTaFQID09XbRH6EEUCgUqKyvrfP7KlSsoKiqCi4uL2uctLS1hY2Mj+iEiIqK6lZaWYv78+aLwM378eIMIP4AenAUWFRWFiIgI+Pn5wd/fH8nJySgvL1eeFRYeHg43NzflcSgJCQnw8/NDu3btUFlZiT179mDz5s1Ys2YNgLtzkHFxcXjppZfg7OyMCxcuYPr06fD29hadJUZEREQNc/ToUXz99dfKx9bW1oiKimr0Ka+HIXkACgsLQ2FhIWJiYpCfnw8fHx+kpaUpD4y+dOmSaIOWl5dj3LhxuHLlCpo2bYqOHTvi008/RVhYGABALpfj5MmT2LRpE4qLi+Hq6oqBAwciPj5ep9cCIiIiMnaCICAlJUV0ZvXAgQM1mrXRF5IeBK2v7ncQFQ+GNU38eyciU1dcXIz3339fVJs4cSJatWolUUeqDOYgaCIiItJ/hw8fxt69e5WP7ezsMGnSJOUtlAwRAxARERGpJQgCkpOTRdfHe+6559CzZ08Ju9IOBiAiIiJSUVRUhFWrVolqU6ZMga2trUQdaRcDEBEREYl89dVXOHnypPKxo6Mj3nnnHYOe8vo3wzlfjQxGZGQkhgwZonz89NNPY8qUKQ81pjbGICKi+6utrUVcXJwo/AwePBhjx441qvADMACZlMjISMhkMuXd6729vTF//nzU1NTo9H23b99e7xujZmRkQCaTobi4uMFjEBGR5rKysrBgwQJRLSMjCj4+PtI0pGOcAjMxwcHB2LBhg/IikuPHj4e5uTmio6NFy1VVVcHCwkIr76mNUyT16TRLIiJjEx8fD4VCIart2xeDmTONa6/PP3EPkImxtLSEs7Mz2rZti7FjxyIwMBC7du1STlstXLgQrq6u6NChAwDg8uXLeOWVV2BnZ4dWrVph8ODByM3NVY5XW1uLqKgo2NnZoXXr1pg+fTr+fWmpf09fVVZWYsaMGXB3d4elpSW8vb3xySefIDc3F8888wwAoGXLlpDJZIiMjFQ7xs2bNxEeHo6WLVuiWbNmCAkJwblz55TPb9y4EXZ2dti3bx86deqE5s2bIzg4WHTJ9oyMDPj7+8Pa2hp2dnZ48sknRXcxJiIydtXV1YiLixOFnw4dOiA2NhaHDskwaJCEzekYA5CJa9q0KaqqqgAA6enpyM7Oxv79+7F7925UV1cjKCgILVq0wMGDB/Hzzz8rg8S91yxbtgwbN27E+vXr8dNPP+HGjRuiOwKrEx4eji1btmDlypU4c+YMPvzwQzRv3hzu7u7473//CwDIzs5GXl6eykW37omMjMRvv/2GXbt2ITMzE4Ig4LnnnkN1dbVymYqKCiQlJWHz5s348ccfcenSJUybNg0AUFNTgyFDhqBfv344efIkMjMzMWbMGKOb4yYiqsuJEyewaNEiUW3s2LEYPny4RB01Lk6BmShBEJCeno59+/Zh4sSJKCwshLW1NT7++GPl1Nenn34KhUKBjz/+WBkMNmzYADs7O2RkZGDgwIFITk5GdHQ0hg4dCgBYu3Yt9u3bV+f7/vHHH9i2bRv279+PwMBAAICXl5fy+XtTXY6OjrCzs1M7xrlz57Br1y78/PPP6N27NwDgs88+g7u7O3bs2IGXX34ZwN1/2axduxbt2rUDAEyYMAHz588HcPdqoSUlJXjhhReUz3fq1EnzDUlEZIDi4uJUarGxsRJ0Ih3uAZLQrl1A7953/9tYdu/ejebNm8PKygohISEICwvDvHnzAABdunQRHfdz4sQJnD9/Hi1atEDz5s3RvHlztGrVCnfu3MGFCxdQUlKCvLw8BAQEKF/TpEkT+Pn51fn+x48fh1wuR79+/Rq8DmfOnEGTJk1E79u6dWt06NABZ86cUdaaNWumDDcA4OLigmvXrgG4G7QiIyMRFBSE0NBQvP/++6LpMSIiY1RZWakSfrp162Zy4QfgHiBJJSYCmZl3/9tY86zPPPMM1qxZAwsLC7i6uqJJk78/AtbW1qJly8rK4Ovri88++0xlHAcHhwa9f9OmTRv0uoYwNzcXPZbJZKLjkzZs2IBJkyYhLS0NW7duxZw5c7B//3488cQTjdYjEVFj+fXXX7Fnzx5RTd/u5dWYuAdIQjNnAr163f1vY7G2toa3tzfatGkjCj/q9OjRA+fOnYOjoyO8vb1FP7a2trC1tYWLiwt++eUX5Wtqampw5MiROsfs0qULFAoFfvjhB7XP39sDVVtbW+cYnTp1Qk1Njeh9i4qKkJ2djccee+y+6/Rv3bt3R3R0NA4dOoTHH38cn3/+uUavJyIyBHFxcSrhJzY21mTDD8AAJKlBg4BDhxpv74+mXnvtNdjb22Pw4ME4ePAgcnJykJGRgUmTJuHKlSsAgMmTJyMxMRE7duzA2bNnMW7cOJVr+PyTh4cHIiIi8Oabb2LHjh3KMbdt2wYAaNu2LWQyGXbv3o3CwkKUlZWpjNG+fXsMHjwYo0ePxk8//YQTJ07g9ddfh5ubGwYPHlyvdcvJyUF0dDQyMzPx559/4ttvv8W5c+d4HBARGZXbt2+rTHn5+/ub5JTXvzEAUZ2aNWuGH3/8EW3atMHQoUPRqVMnjBo1Cnfu3IGNjQ0AYOrUqXjjjTcQERGBXr16oUWLFnjxxRfvO+6aNWswbNgwjBs3Dh07dsTo0aNRXl4OAHBzc0NcXBxmzpwJJycnTJgwQe0YGzZsgK+vL1544QX06tULgiBgz549KtNe91u3s2fP4qWXXsKjjz6KMWPGYPz48Xj77bc12EJERPrr559/xpIlS0S1KVOmICQkRKKO9ItM+PdFWwilpaWwtbVFSUmJ8ov+njt37iAnJweenp6wsrKSqENqbPx7JyJDYqpned3v+/vfeBA0ERGRkSgrK8OyZctEtT59+mDAgAESdaS/GICIiIiMwIEDB3Dw4EFRberUqWjevLlEHek3BiAiIiIDZ6pTXg+DAYiIiMhAlZSUIDk5WVQbMGAA+vTpI01DBoQBqIF47Lhp4d83EembvXv34vDhw6La9OnTG/WCs4aMAUhD906zrqio4IfMhFRUVABQvbo0EZEUOOX18BiANCSXy2FnZ6e8p1SzZs14B3EjJggCKioqcO3aNdjZ2UEul0vdEhGZsBs3buCDDz4Q1UJCQuDv7y9RR4aLAagBnJ2dAUAZgsj42dnZKf/eiYiksHPnThw/flxUmzlzJiwtLaVpyMAxADWATCaDi4sLHB0dUV1dLXU7pGPm5ubc80NEkuKUl/YxAD0EuVzOL0YiItKZwsJCrF69WlQbPHgwfHx8pGnIiDAAERER6aFt27bhzJkzotqsWbN4MoaWMAARERHpEUEQMH/+fFFNJpMhJiZGoo6MEwMQERGRnsjLy8NHH30kqg0bNgydO3eWqCPjxQBERESkB/7zn/8gJydHVJs9ezaaNOFXtS5wqxIREUlI3ZRXs2bN8N5770nUkWlgACIiIpLI5cuXsX79elFtxIgRePTRRyXqyHQwABEREUngww8/RH5+vqg2d+5cmJmZSdSRaWEAIiIiakQKhQLx8fGiWuvWrTFhwgSJOjJNDEBERESN5OLFi9i8ebOoFh4eDk9PT4k6Ml0MQERERI3g/fffR3FxsagWExPDG2pLhAGIiIhIh2pra7FgwQJRzc3NDW+99ZZEHRHAAERERKQz2dnZSE1NFdVGjRqFRx55RKKO6B4GICIiIh1ITExEZWWlqMYpL/2hF+fapaSkwMPDA1ZWVggICMDhw4frXHb79u3w8/ODnZ0drK2t4ePjo3JAmSAIiImJgYuLC5o2bYrAwECcO3dO16tBRESEmpoaxMXFicJPu3btEBsby/CjRyQPQFu3bkVUVBRiY2Nx9OhRdOvWDUFBQbh27Zra5Vu1aoXZs2cjMzMTJ0+exMiRIzFy5Ejs27dPucySJUuwcuVKrF27Fr/88gusra0RFBSEO3fuNNZqERGRCTp16hQWLlwoqr399tt4/fXXJeqI6iITBEGQsoGAgAD07NkTq1atAnD3+gju7u6YOHEiZs6cWa8xevTogeeffx7x8fEQBAGurq6YOnUqpk2bBgAoKSmBk5MTNm7ciOHDhz9wvNLSUtja2qKkpAQ2NjYNXzkiIjIZcXFxKjVOeTUuTb6/Jd0DVFVVhSNHjiAwMFBZMzMzQ2BgIDIzMx/4ekEQkJ6ejuzsbDz11FMAgJycHOTn54vGtLW1RUBAQL3GJCIi0kRVVZVK+OncuTOnvPScpAdBX79+HbW1tXBychLVnZyccPbs2TpfV1JSAjc3N1RWVkIul2P16tV49tlnAUB5WXF1Y/77kuP3VFZWiuZqS0tLG7Q+RERkWo4ePYqvv/5aVBs/fjzs7e0l6ojqyyDPAmvRogWOHz+OsrIypKenIyoqCl5eXnj66acbNF5CQoLaXZdERER1Ufe9ERsbK0En1BCSBiB7e3vI5XIUFBSI6gUFBXB2dq7zdWZmZvD29gYA+Pj44MyZM0hISMDTTz+tfF1BQQFcXFxEY/r4+KgdLzo6GlFRUcrHpaWlcHd3b+hqERGREbtz5w4WL14sqnXv3h2DBg2SqCNqCEmPAbKwsICvry/S09OVNYVCgfT0dPTq1ave4ygUCuUUlqenJ5ydnUVjlpaW4pdffqlzTEtLS9jY2Ih+iIiI/m3t2gMq4WfSpEkMPwZI8imwqKgoREREwM/PD/7+/khOTkZ5eTlGjhwJ4O5N4tzc3JCQkADg7nSVn58f2rVrh8rKSuzZswebN2/GmjVrAAAymQxTpkzBggUL0L59e3h6emLu3LlwdXXFkCFDpFpNIiIycJzyMi6SB6CwsDAUFhYiJiYG+fn58PHxQVpamvIg5kuXLsHM7O8dVeXl5Rg3bhyuXLmCpk2bomPHjvj0008RFhamXGb69OkoLy/HmDFjUFxcjD59+iAtLQ1WVlaNvn5ERGTYSkpKkJycLKr98UdPhIU9J01DpBWSXwdIH/E6QEREBACbN2/GxYsXRTWe5aW/NPn+lnwPEBERkT7ilJdxYwAiIiL6h6KiIuXdCe7x8PBARESERB2RLjAAERER/b+PPvoIeXl5otrkyZNhZ2cnTUOkMwxARERE4JSXqWEAIiIik5afn48PP/xQVHvsscfw8ssvS9QRNQYGICIiMlkrVqxQuf/j1KlT0bx5c4k6osbCAERERCaJU16mjQGIiIhMyuXLl7F+/XpRrUePHggNDZWoI5ICAxAREZmMBQsWoLa2VlSbPn06mjZtKlFHJBUGICIiMnqCIGD+/PkqdU55mS4GICIiMmoXLlzAp59+Kqo9+eSTCAwMlKgj0gcMQEREZLTUHegcHR0NCwsLCbohfcIARERERodTXvQgDEBERGRUzpw5g23btolqAwYMQJ8+fSTqiPQRAxARERkNdVNes2fPRpMm/LojMX4iiIjI4CkUCsTHx6vUOeVFdWEAIiIig3bixAns2LFDVHvuuefQs2dPaRoig8AAREREBkvdlNfcuXNhZmYmQTdkSBiAiIjI4NTW1mLBggUqdU55UX0xABERkUE5fPgw9u7dK6oNHToUXbp0kagjMkQMQEREZDDUTXnFxMRAJpNJ0A0ZMgYgIiLSe9XV1Vi0aJFKnVNe1FAMQEREpNd+/PFHfP/996La8OHD0aFDB4k6ImPAAERERHqLU16kKwxARESkdyorK5GYmKhS55QXaQsDEBER6ZVvv/0WmZmZolp4eDg8PT0l6oiMEQMQERHpDXVTXtzrQ7rAAERERJKrqKjA0qVLRTULCwtER0dL1BEZOwYgIiKS1M6dO3H8+HFRbdSoUXjkkUekaYhMAgMQERFJhlNeJBUGICIianS3bt3C8uXLRTU7OztMnjxZoo7I1DAAERFRo0pNTUV2draoNnbsWDg6OkrUEZkiBiAiImo0nPIifcEAREREOnfz5k2sXLlSVHNzc8Nbb70lUUdk6hiAiIhIpzZs2IBLly6JahMnTkSrVq0k6oiIAYiIiHSIU16krxiAiIhI6woLC7F69WpRrX379nj11Vcl6ohIjAGIiIi0KiUlBdevXxfV3n33XdjY2EjUEZEqBiAiItIaTnmRoTCTugHg7r8WPDw8YGVlhYCAABw+fLjOZdetW4e+ffuiZcuWaNmyJQIDA1WWj4yMhEwmE/0EBwfrejWIiEzW1atXVcJP165dGX5Ib0m+B2jr1q2IiorC2rVrERAQgOTkZAQFBSE7O1vtRbEyMjIwYsQI9O7dG1ZWVli8eDEGDhyI06dPw83NTblccHAwNmzYoHxsaWnZKOtDRGRqlixZgtu3b4tq06ZNg7W1tUQdET2YTBAEQcoGAgIC0LNnT6xatQoAoFAo4O7ujokTJ2LmzJkPfH1tbS1atmyJVatWITw8HMDdPUDFxcXYsWNHg3oqLS2Fra0tSkpKOGdNRHQfnPIifaLJ97eke4Cqqqpw5MgRREdHK2tmZmYIDAxEZmZmvcaoqKhAdXW1yvUkMjIy4OjoiJYtW6J///5YsGABWrdurXaMyspKVFZWKh+XlpY2YG2IiExHbm4uNm3aJKr5+/sjJCREoo6INCNpALp+/Tpqa2vh5OQkqjs5OeHs2bP1GmPGjBlwdXVFYGCgshYcHIyhQ4fC09MTFy5cwKxZsxASEoLMzEzI5XKVMRISEtT+K4aIiFSp+305Y8YMWFlZSdANUcNIfgzQw0hMTERqaioyMjJE/+MNHz5c+ecuXbqga9euaNeuHTIyMjBgwACVcaKjoxEVFaV8XFpaCnd3d902T0RkYARBwPz581XqnPIiQyRpALK3t4dcLkdBQYGoXlBQAGdn5/u+NikpCYmJifjuu+/QtWvX+y7r5eUFe3t7nD9/Xm0AsrS05EHSRET3ce7cOXz++eeiWr9+/fD0009L0xDRQ5I0AFlYWMDX1xfp6ekYMmQIgLsHQaenp2PChAl1vm7JkiVYuHAh9u3bBz8/vwe+z5UrV1BUVAQXFxdttU5EZDLUTXnNmjUL5ubmEnRDpB2SXwcoKioK69atw6ZNm3DmzBmMHTsW5eXlGDlyJAAgPDxcdJD04sWLMXfuXKxfvx4eHh7Iz89Hfn4+ysrKAABlZWV477338L///Q+5ublIT0/H4MGD4e3tjaCgIEnWkYjIEAmCUOdZXgw/ZOgkPwYoLCwMhYWFiImJQX5+Pnx8fJCWlqY8MPrSpUswM/s7p61ZswZVVVUYNmyYaJzY2FjMmzcPcrkcJ0+exKZNm1BcXAxXV1cMHDgQ8fHxnOYiIqqn06dP48svvxTVgoKC8MQTT0jUEZF2SX4dIH3E6wARkSlTt9dnzpw5as+iJdInBnMdICIi0h8KhQLx8fEqdZ7lRcaIAYiIiHD06FF8/fXXotqgQYPQvXt3iToi0i0GICIiE6duymvu3Lmi4y+JjA0DEBGRiaqpqcHChQtV6pzyIlPAAEREZIIOHTqE/fv3i2ovv/wyHnvsMYk6ImpcDEBERCZG3ZRXTEwMZDKZBN0QSYMBiIjIRFRVVSEhIUGlzikvMkUMQEREJuDAgQM4ePCgqPbaa6/B29tboo6IpMUARERk5DjlRaRK43Mc5XI5rl27plIvKiriVUKJiPTInTt36ryXF8MPmTqN9wDVdeeMyspKWFhYPHRDRET08Pbs2YNff/1VVBs5ciTatGkjUUdE+qXeAWjlypUAAJlMho8//hjNmzdXPldbW4sff/wRHTt21H6HRESkkbr2+hDR3+odgFasWAHg7h6gtWvXiqa7LCws4OHhgbVr12q/QyIiqpfy8nIkJSWJatbW1pg2bZpEHRHpr3oHoJycHADAM888g+3bt6Nly5Y6a4qIiDSzfft2/P7776LamDFj4OLiIlFHRPpN42OAvv/+e130QUREDcQpLyLNaRyA3nzzzfs+v379+gY3Q0RE9VdSUoLk5GRRzcHBAePGjZOmISIDonEAunnzpuhxdXU1Tp06heLiYvTv319rjRERUd0+/fRTXLhwQVQbP3487O3tJeqIyLBoHIC++uorlZpCocDYsWPRrl07rTRFRER145QX0cOTCXVd2EdD2dnZePrpp5GXl6eN4SRVWloKW1tblJSUwMbGRup2iIgA3L3g7KpVq0S1tm3bIjIyUpqGiPSMJt/fWrsVxoULF1BTU6Ot4YiI6B8++ugjlX9gTp48GXZ2dtI0RGTgNA5AUVFRoseCICAvLw/ffPMNIiIitNYYERHdxSkvIu3TOAAdO3ZM9NjMzAwODg5YtmzZA88QIyKi+isoKFC5wGynTp3wyiuvSNQRkfHgdYCIiPRQcnIySkpKRLWpU6eKbkNERA3X4GOArl27huzsbABAhw4d4OjoqLWmiIhMGae8iHRP4wBUWlqK8ePHY8uWLVAoFAAAuVyOsLAwpKSkwNbWVutNEhGZgitXruCTTz4R1Xr06IHQ0FCJOiIyXhoHoNGjR+PYsWP45ptv0KtXLwBAZmYmJk+ejLfffhupqalab5KIyNgtWLAAtbW1otr06dPRtGlTiToiMm4aXwfI2toa+/btQ58+fUT1gwcPIjg4GOXl5VptUAq8DhARNSZOeRFph06vA9S6dWu101y2tra8QzwRkQYuXryIzZs3i2q9e/fGs88+K1FHRKZD4wA0Z84cREVFYfPmzXB2dgYA5Ofn47333sPcuXO13iARkTFSt9dn5syZsLS0lKAbItOj8RRY9+7dcf78eVRWVqJNmzYAgEuXLsHS0hLt27cXLXv06FHtddqIOAVGRLoiCALmz5+vUueUF9HD0+kU2ODBgyGTyRrcHBGRqTp79iy2bt0qqvXv3x99+/aVqCMi06W1m6EaE+4BIiJtUzflNXv2bDRporVbMhKZPE2+v800HdzLywtFRUUq9eLiYnh5eWk6HBGRUVMoFHWe5cXwQyQdjf/vy83NVblWBQBUVlbiypUrWmmKiMgYnDhxAjt27BDVnnvuOfTs2VOahohIqd4BaNeuXco/79u3T3QqfG1tLdLT0+Hp6and7oiIDJS6vT5z5syBXC6XoBsi+rd6B6AhQ4YAAGQyGSIiIkTPmZubw8PDA8uWLdNqc0REhqa2thYLFixQqfMsLyL9Uu8AdO++X56envj1119hb2+vs6aIiAzR4cOHsXfvXlHtxRdfRNeuXSXqiIjqovExQDk5Obrog4jIoKmb8oqJieFlQ4j0lMYBSN0FvP4pJiamwc0QERma6upqLFq0SKXOKS8i/aZxAPrqq69Ej6urq5GTk4MmTZqgXbt2DQpAKSkpWLp0KfLz89GtWzd88MEH8Pf3V7vsunXr8J///AenTp0CAPj6+mLRokWi5QVBQGxsLNatW4fi4mI8+eSTWLNmjcqVqomIHsbBgwdx4MABUW348OHo0KGDRB0RUX1pHICOHTumUistLUVkZCRefPFFjRvYunUroqKisHbtWgQEBCA5ORlBQUHIzs6Go6OjyvIZGRkYMWIEevfuDSsrKyxevBgDBw7E6dOn4ebmBgBYsmQJVq5ciU2bNsHT0xNz585FUFAQsrKyYGVlpXGPRET/xikvIsOmtStB//777wgNDUVubq5GrwsICEDPnj2xatUqAHcPtnZ3d8fEiRMxc+bMB76+trYWLVu2xKpVqxAeHg5BEODq6oqpU6di2rRpAICSkhI4OTlh48aNGD58+APH5JWgiagulZWVSExMVKlzyotIejq9F1hdSkpKUFJSotFrqqqqcOTIEURHRytrZmZmCAwMRGZmZr3GqKioQHV1NVq1agXg7kHa+fn5CAwMVC5ja2uLgIAAZGZmqg1AlZWVqKysVD4uLS3VaD2IyDR8++23Kr+bwsPDeQ00IgOkcQBauXKl6LEgCMjLy8PmzZsREhKi0VjXr19HbW0tnJycRHUnJyecPXu2XmPMmDEDrq6uysCTn5+vHOPfY9577t8SEhLU7s4mIrqnrttZEJFh0jgArVixQvTYzMwMDg4OiIiIEO3JaQyJiYlITU1FRkbGQx3bEx0djaioKOXj0tJSuLu7a6NFIjJwFRUVWLp0qahmbm6OWbNmSdQREWmDpNcBsre3h1wuR0FBgaheUFAAZ2fn+742KSkJiYmJ+O6770QXGbv3uoKCAri4uIjG9PHxUTuWpaUlLC0tG7gWRGSsdu3apXLix6hRo/DII49I1BERaYvGd4MH7t75/bfffsNvv/2G4uLiBr+5hYUFfH19kZ6erqwpFAqkp6ejV69edb5uyZIliI+PR1paGvz8/ETPeXp6wtnZWTRmaWkpfvnll/uOSUT0T3FxcSrhp3v3WIYfIiOh0R6g3NxcjB8/Hvv27cO9k8dkMhmCg4OxatUqeHh4aNxAVFQUIiIi4OfnB39/fyQnJ6O8vBwjR44EcPcAQzc3NyQkJAAAFi9ejJiYGHz++efw8PBQHtfTvHlzNG/eHDKZDFOmTMGCBQvQvn175Wnwrq6uyvuZERHV5datW1i+fLmoZmdnh8mTJ0vUERHpQr0D0OXLl/HEE0/A3Nwc8fHx6NSpEwAgKysLa9asQa9evfDrr79q/K+jsLAwFBYWIiYmBvn5+fDx8UFaWpryIOZLly7BzOzvHVVr1qxBVVUVhg0bJhonNjYW8+bNAwBMnz4d5eXlGDNmDIqLi9GnTx+kpaXxGkBEdF9bt25VOQHjnXfeUTmpgogMX72vAzRq1CicP38e+/btUwkSt2/fRnBwMNq3b4+PP/5YJ402Jl4HiMj08CwvIsOnk+sApaWlYevWrWr3ojRt2hTx8fH1usggEZE+uXnzpsrlPVxdXTF69GiJOiKixlDvAHT9+vX7HuPj5eWFGzduaKMnIqJGsXHjRvz555+i2sSJE5UXViUi41XvAOTi4oKsrKw6j/E5derUA09dJyLSF5zyIjJt9T4NfsiQIZg2bRoKCwtVnrt27RpmzJjBs6yISO8VFhaqhB9vb2+GHyITU++DoG/evImAgADk5+fj9ddfR8eOHSEIAs6cOYPPP/8czs7O+N///mcUu455EDSRcUpJScH169dFtXfffZf/nxMZCZ0cBN2yZUv88ssvmDVrFlJTU5UXQLSzs8Orr76KRYsWGUX4ISLjxCkvIvqneu8B+idBEJRTYQ4ODpDJZFpvTErcA0RkPK5evYp169aJal27dsWLL74oUUdEpCs62QP0TzKZDI6Ojg1qjoiosSxZsgS3b98W1aZNmwZra2uJOiIifdGgAEREpO845UVE98MARERG5c8//8TGjRtFNX9/f4SEhEjTEBHpJQYgIjIa6vb6zJgxg/cBJCIVDEBEZPAEQcD8+fNV6pzyIqK61CsA/fs+OfczadKkBjdDRKSpc+fO4fPPPxfVnnrqKTzzzDMSdUREhqBep8F7enrWbzCZDBcvXnzopqTG0+CJDIO6Ka9Zs2bB3Nxcgm6ISGpaPw0+JydHK40REWkDp7yI6GE1+Bigqqoq5OTkoF27dmjShIcSEVHjOHnyJL766itRbeDAgejVq5dEHRGRIdI4uVRUVGDixInYtGkTAOCPP/6Al5cXJk6cCDc3N8ycOVPrTRIRAeqnvObMmQO5XC5BN0RkyOp9N/h7oqOjceLECWRkZIhOLQ0MDMTWrVu12hwREQDU1tbWeWFDhh8iagiN9wDt2LEDW7duxRNPPCG6B1jnzp1x4cIFrTZHRHTgwAEcPHhQVLtwoS+GDesvUUdEZAw0DkCFhYVq7wNWXl5udDdFJSJpqdvrM3fuXJiZabzzmohIROPfIn5+fvjmm2+Uj++Fno8//pgHIRKRVtTU1NQ55cXwQ0TaoPEeoEWLFiEkJARZWVmoqanB+++/j6ysLBw6dAg//PCDLnokIhOye/duHDlyRFTjWV5EpG0a/1OqT58+OH78OGpqatClSxd8++23cHR0RGZmJnx9fXXRIxGZiLi4OJXwExMTw/BDRFpXrytBmxpeCZqocd2+fRtLlixRqfPChkSkCa1fCbq0tLTeb87AQESaWLVqFYqKikS17OxADB/+pEQdEZEpqFcAsrOzq/cZXrW1tQ/VEBGZDnUHOsfExPCMUiLSuXoFoO+//17559zcXMycORORkZHKefnMzExs2rQJCQkJuumSiIzKrVu3sHz5cpU6p7yIqLFofAzQgAED8NZbb2HEiBGi+ueff46PPvoIGRkZ2uxPEjwGiEh3EhISUFVVJaq98MILPImCiB6aJt/fGp8FlpmZCT8/P5W6n58fDh8+rOlwRGRC4uLiVMJPbGwsww8RNTqNA5C7uzvWrVunUv/444/h7u6ulaaIyLjcuHGjzgsbEhFJQeMLIa5YsQIvvfQS9u7di4CAAADA4cOHce7cOfz3v//VeoNEZNjUBZ+XX34Zjz32mATdEBHdpfEeoOeeew7nzp1DaGgobty4gRs3biA0NBR//PEHnnvuOV30SEQGqq69Pgw/RCQ1XghRDR4ETfRwCgsLsXr1apU6p7yISJe0fiHEfysuLsYnn3yCM2fOAAA6d+6MN998E7a2tg0ZjoiMiLq9Pr/++gZ27/aSoBsiIvU0ngL77bff0K5dO6xYsUI5BbZ8+XK0a9cOR48e1UWPRGQg1IWffftiMWYMww8R6ReNp8D69u0Lb29vrFu3Dk2a3N2BVFNTg7feegsXL17Ejz/+qJNGGxOnwIg089dff+Hjjz9WqXPKi4gakybf3xoHoKZNm+LYsWPo2LGjqJ6VlQU/Pz9UVFRo3rGeYQAiqj91e33efvttODs7S9ANEZkynV4I0cbGBpcuXVKpX758GS1atNB0OCIyYHWd5cXwQ0T6TuODoMPCwjBq1CgkJSWhd+/eAICff/4Z7733nsrtMYjIOF28eBGbN29WqXPKi4gMhcZ7gJKSkjB06FCEh4fDw8MDHh4eiIyMxLBhw7B48WKNG0hJSYGHhwesrKwQEBBw39tpnD59Gi+99BI8PDwgk8mQnJysssy8efMgk8lEP/+eriOihouLi1MJPxMmTGD4ISKDonEAsrCwwPvvv4+bN2/i+PHjOH78OG7cuIEVK1bA0tJSo7G2bt2KqKgoxMbG4ujRo+jWrRuCgoJw7do1tctXVFTAy8sLiYmJ993F3rlzZ+Tl5Sl/fvrpJ436IiL16pryat26tQTdEBE1XIOuAwQAzZo1Q5cuXR7qzZcvX47Ro0dj5MiRAIC1a9fim2++wfr16zFz5kyV5Xv27ImePXsCgNrn72nSpAmPQSDSoqysLHzxxReiWvPmzTF16lSJOiIiejj1DkBvvvlmvZZbv359vZarqqrCkSNHEB0drayZmZkhMDAQmZmZ9W1LrXPnzsHV1RVWVlbo1asXEhIS0KZNmzqXr6ysRGVlpfJxaWnpQ70/kTFRt9fn3Xff5RmSRGTQ6h2ANm7ciLZt26J79+7Qxt0zrl+/jtraWjg5OYnqTk5OOHv2bIPHDQgIwMaNG9GhQwfk5eUhLi4Offv2xalTp+o8Sy0hIUHtL3kiU8c7uBORsap3ABo7diy2bNmCnJwcjBw5Eq+//jpatWqly94aJCQkRPnnrl27IiAgAG3btsW2bdswatQota+Jjo5GVFSU8nFpaSnc3d113iuRvjp69Ci+/vprUc3Z2Rlvv/22RB0REWlXvQ+CTklJQV5eHqZPn46vv/4a7u7ueOWVV7Bv374G7RGyt7eHXC5HQUGBqF5QUKDV43fs7Ozw6KOP4vz583UuY2lpCRsbG9EPkamKi4tTCT/vvfceww8RGRWNzgKztLTEiBEjsH//fmRlZaFz584YN24cPDw8UFZWptEbW1hYwNfXF+np6cqaQqFAeno6evXqpdFY91NWVoYLFy7AxcVFa2MSGSNBEOqc8mrWrJkEHRER6U6DzwIzMzODTCaDIAiora1t0BhRUVGIiIiAn58f/P39kZycjPLycuVZYeHh4XBzc0NCQgKAuwdOZ2VlKf/8119/4fjx42jevDm8vb0BANOmTUNoaCjatm2Lq1evIjY2FnK5nBdpJLqPn3/+Gd99952o1r59e7z66qsSdUREpFsaBaDKykps374d69evx08//YQXXngBq1atQnBwMMzMNL6kEMLCwlBYWIiYmBjk5+fDx8cHaWlpygOjL126JBr36tWr6N69u/JxUlISkpKS0K9fP2RkZAAArly5ghEjRqCoqAgODg7o06cP/ve//8HBwUHj/ohMgbq9PtHR0bCwsJCgGyKixlHvm6GOGzcOqampcHd3x5tvvonXXnsN9vb2uu5PErwZKpkChUKB+Ph4lTrP8iIiQ6WTu8GbmZmhTZs26N69O2QyWZ3Lbd++XbNu9RADEBm7/fv349ChQ6Kaj48PBg8eLFFHREQPT5Pv73pPgYWHh983+BCRYVA35TV79mw0adLgQwKJiAyORhdCJCLDVVNTg4ULF6rUOeVFRKaI/+QjMgE7d+7E8ePHRbXevXvj2WeflaYhIiKJMQARGTl1U15z585t0JmbRETGggGIyEhVVVUpr6H1T5zyIiJiACIySp999pnK7V8CAwPx5JNPStQREZF+YQAiMjLqprxiYmJ4FicR0T8wABEZiYqKCixdulSlzikvIiJVDEBERuDDDz9Efn6+qBYaGooePXpI1BERkX5jACIycHXdwZ2IiOrGAERkoEpLS7FixQqVOsMPEdGDMQARGaBly5ahrKxMVHvllVfQqVMniToiIjIsDEBEBoZTXkRED48BiMhAlJSUIDk5WaXO8ENEpDkGICIDsG7dOly9elVUa9fuDbz+updEHRERGTYGICI9xykvIiLtYwAi0lNFRUVYtWqVqNa0aVNMnz5doo6IiIwHAxCRHkpOTkZJSYmoNm7cODg4OEjUERGRcWEAItIznPIiItI9BiAiPZGfn48PP/xQVHNwcMC4ceMk6oiIyHgxABHpgQULFqC2tlZUmzRpElq2bClRR0RExo0BiEhinPIiImp8DEBEErl8+TLWr18vqnl4eCAiIkKijoiITAcDEJEE1O31iYqKQosWLSTohojI9DAAETUyTnkREUmPAYiokVy4cAGffvqpqPbYY4/h5ZdflqgjIiLTxQBE1AjU7fWZPn06mjZtKkE3RETEAESkQ4IgYP78+Sp1TnkREUmLAYhIR7KysvDFF1+Iar6+vnjhhRck6oiIiO5hACLSAXVTXtHR0bCwsJCgGyIi+jcGICIt4pQXEZFhYAAi0pKjR4/i66+/FtX69OmDAQMGSNQRERHVhQGISAvUTXnNnj0bTZrwfzEiIn3E385ED0GhUCA+Pl6lzikvIiL9xgBE1ECZmZn49ttvRbVnn30WvXv3lqgjIiKqLwYgogZQN+U1d+5cmJmZSdANERFpigGISAM1NTVYuHChSp1TXkREhoUBiKieDhw4gIMHD4pqoaGh6NGjh0QdERFRQ0m+vz4lJQUeHh6wsrJCQEAADh8+XOeyp0+fxksvvQQPDw/IZDIkJyc/9JhE9REXF6cSfmJiYhh+iIgMlKQBaOvWrYiKikJsbCyOHj2Kbt26ISgoCNeuXVO7fEVFBby8vJCYmAhnZ2etjEl0P1VVVWqP94mNjYVMJpOgIyIi0gaZIAiCVG8eEBCAnj17YtWqVQDunlLs7u6OiRMnYubMmfd9rYeHB6ZMmYIpU6Zobcx7SktLYWtri5KSEtjY2Gi+YmQUvvnmG/z222+i2rBhw9C5c2eJOiIiovvR5PtbsmOAqqqqcOTIEURHRytrZmZmCAwMRGZmZqOOWVlZicrKSuXj0tLSBr0/GQ91e31iYmK414eIyEhINgV2/fp11NbWwsnJSVR3cnJCfn5+o46ZkJAAW1tb5Y+7u3uD3p8M3+3btznlRURkAngWGO7epTsqKkr5uLS0lCHIBH355Zc4ffq0qPbaa6/B29tboo6IiEhXJAtA9vb2kMvlKCgoENULCgrqPMBZV2NaWlrC0tKyQe9JxqGuvT5ERGScJJsCs7CwgK+vL9LT05U1hUKB9PR09OrVS2/GJONWXFzM8ENEZIIknQKLiopCREQE/Pz84O/vj+TkZJSXl2PkyJEAgPDwcLi5uSEhIQHA3YOcs7KylH/+66+/cPz4cTRv3lw5TfGgMYnuWbRoEaqrq0W1X34ZiT172kjUERERNRZJA1BYWBgKCwsRExOD/Px8+Pj4IC0tTXkQ86VLl0T3Vrp69Sq6d++ufJyUlISkpCT069cPGRkZ9RqTCFA/5bVvXyzqeaUEIiIycJJeB0hf8TpAxquwsBCrV69WqXPKi4jI8BnEdYCIGpu6vT6RkZFo27atBN0QEZGUGIDIJPBAZyIi+icGIDJqf/31Fz7++GOVOsMPEZFpYwAio6Vur8+YMWPg4uIiQTdERKRPGIDIKHHKi4iI7ocBiIzKxYsXsXnzZpU6ww8REf0TAxAZDXV7fSZMmIDWrVtL0A0REekzBiAyCpzyIiIiTTAAkUHLzc3Fpk2bRLUbN9piwIBIaRoiIiKDwABEBkvdXp9p06bB2tpagm6IiMiQMACRQeKUFxERPQwGIDIo2dnZSE1NFdW6deuGIUOGSNMQEREZJAYgMhjq9vrMmDEDVlZWEnRDRESGjAGI9J4gCJg/f75KnVNeRETUUAxApNd+//13bN++XVR74oknEBQUJFFHRERkDBiASG+pm/KaNWsWzM3NJeiGiIiMCQMQ6Z26pry6d48Fsw8REWkDAxDplZMnT+Krr74S1bKyQvDaa/4YNEiipoiIyOgwAJHeUDflNWfOHMjlcgm6ISIiY8YARJKrra3FggULVOo8y4uIiHSFAYgk9euvv2LPnj2i2pAhQ9CtWzeJOiIiIlPAAESSUTflFRMTA5lMJkE3RERkShiAqNFVV1dj0aJFKnVOeRERUWNhAKJGtXPnThw/flxU27EjDHFxHaVpiIiITBIDEDUadVNe+/bFIC5OxlPciYioUTEAkc7duXMHixcvVqnHxsaCs15ERCQFBiDSqc8++wznz58X1YYOHYouXbpI1BEREREDEOmQuikvHuhMRET6gAGItK6srAzLli1TqTP8EBGRvmAAIq366KOPkJeXJ6qNGDECjz76qEQdERERqWIAIq3hlBcRERkKBiB6aMXFxXj//fdV6gw/RESkrxiA6KEsX74ct27dEtUiIyPRtm1biToiIiJ6MAYgajBOeRERkaFiACKNFRYWYvXq1Sp1hh8iIjIUDECkkWXLlqGsrExUGzNmDFxcXCTqiIiISHMMQFRvnPIiIiJjwQBED3T9+nWkpKSIajU15oiPnyVRR0RERA+HAYjua82aNbh27Zqo9sMPUzBliq1EHRERET08M6kbAICUlBR4eHjAysoKAQEBOHz48H2X/+KLL9CxY0dYWVmhS5cu2LNnj+j5yMhIyGQy0U9wcLAuV8EoxcXFqYSf2NhYHDhgi0GDJGqKiIhICyQPQFu3bkVUVBRiY2Nx9OhRdOvWDUFBQSpfvPccOnQII0aMwKhRo3Ds2DEMGTIEQ4YMwalTp0TLBQcHIy8vT/mzZcuWxlgdo5CXl6dyvE+XLl14vA8RERkNmSAIgpQNBAQEoGfPnli1ahUAQKFQwN3dHRMnTsTMmTNVlg8LC0N5eTl2796trD3xxBPw8fHB2rVrAdzdA1RcXIwdO3Y0qKfS0lLY2tqipKQENjY2DRrDUCUlJaG8vFxUmzZtGqytrSXqiIiIqH40+f6WdA9QVVUVjhw5gsDAQGXNzMwMgYGByMzMVPuazMxM0fIAEBQUpLJ8RkYGHB0d0aFDB4wdOxZFRUV19lFZWYnS0lLRjymKi4tTCT+xsbEMP0REZHQkPQj6+vXrqK2thZOTk6ju5OSEs2fPqn1Nfn6+2uXz8/OVj4ODgzF06FB4enriwoULmDVrFkJCQpCZmQm5XK4yZkJCgtpTvE3FpUuXsGHDBlGtZ8+eeO655yTqiIiISLeM8iyw4cOHK//cpUsXdO3aFe3atUNGRgYGDBigsnx0dDSioqKUj0tLS+Hu7t4ovUpNXfCbMWMGrKysJOiGiIiocUg6BWZvbw+5XI6CggJRvaCgAM7Ozmpf4+zsrNHyAODl5QV7e3ucP39e7fOWlpawsbER/Rg7QRDqvLAhww8RERk7SQOQhYUFfH19kZ6erqwpFAqkp6ejV69eal/Tq1cv0fIAsH///jqXB4ArV66gqKiIt2v4f+fPn8f8+fNFtb59+/IsLyIiMhmST4FFRUUhIiICfn5+8Pf3R3JyMsrLyzFy5EgAQHh4ONzc3JCQkAAAmDx5Mvr164dly5bh+eefR2pqKn777Td89NFHAICysjLExcXhpZdegrOzMy5cuIDp06fD29sbQUFBkq2nvlC31yc6OhoWFhYSdENERCQNyQNQWFgYCgsLERMTg/z8fPj4+CAtLU15oPOlS5dgZvb3jqrevXvj888/x5w5czBr1iy0b98eO3bswOOPPw4AkMvlOHnyJDZt2oTi4mK4urpi4MCBiI+Ph6WlpSTrqA8EQVDZ6wPwXl5ERGSaJL8OkD4ytusAZWVl4YsvvhDVnn32WfTu3VuijoiIiLRPk+9vyfcAkW6pm/KaPXs2mjThXz0REZkufgsaKYVCgfj4eJU6p7yIiIgYgIzSsWPHsGvXLlEtNDQUPXr0kKgjIiIi/cIAZGSWL1+OW7duiWpz584VHUhORERk6hiAjASnvIiIiOqPAcgI/PHHH9iyZYuotmVLJF56qa1EHREREek3BiADt3TpUlRUVIhqMTExiI2VSdQRERGR/mMAMlA1NTVYuHChqObp6Ynw8HCJOiIiIjIcDEAG6PTp0/jyyy9FtTFjxvBeZ0RERPXEAGRg5s+fj39fvDsmJgYyGae8iIiI6osByEBUV1dj0aJFolqnTp3wyiuvSNQRERGR4WIAMgDHjx/Hzp07RbVx48bBwcFBoo6IiIgMGwOQnlN3Ly9e24eIiOjhMADpqcrKSiQmJopqPj4+GDx4sEQdERERGQ8GID10+PBh7N27V1SbOHEiWrVqJVFHRERExoUBSM9wyouIiEj3GID0hLqzvAICAhAcHCxRR0RERMaLAUgPXLp0CRs2bBDVMjLeRWysjUQdERERGTcGIInt2rULx44dUz5u2bIrUlNfxMyZEjZFRERk5BiAJFJVVYWEhARRLTw8HJ6enpg0SaKmiIiITAQDkAQuXryIzZs3i2rR0dGwsLCQqCMiIiLTwgDUyP773//i1KlTysc9evRAaGiohB0RERGZHgagRnT+/HlR+Bk5ciTatGkjYUdERESmyUzqBkxJs2bNUFNzd5pr//5ZDD9EREQS4R6gRuTq6oqePaORmAie5UVERCQhBqBGNmjQ3R8iIiKSDqfAiIiIyOQwABEREZHJYQAiIiIik8MARERERCaHAYiIiIhMDgMQERERmRwGICIiIjI5DEBERERkchiAiIiIyOQwABEREZHJYQAiIiIik8MARERERCaHAYiIiIhMDu8Gr4YgCACA0tJSiTshIiKi+rr3vX3ve/x+GIDUuHXrFgDA3d1d4k6IiIhIU7du3YKtre19l5EJ9YlJJkahUODq1ato0aIFZDKZ1O00qtLSUri7u+Py5cuwsbGRuh1JcVv8jdvib9wWf+O2+Bu3xd+k3BaCIODWrVtwdXWFmdn9j/LhHiA1zMzM8Mgjj0jdhqRsbGxM/n/ie7gt/sZt8Tdui79xW/yN2+JvUm2LB+35uYcHQRMREZHJYQAiIiIik8MARCKWlpaIjY2FpaWl1K1Ijtvib9wWf+O2+Bu3xd+4Lf5mKNuCB0ETERGRyeEeICIiIjI5DEBERERkchiAiIiIyOQwABEREZHJYQAycikpKfDw8ICVlRUCAgJw+PDh+y7/xRdfoGPHjrCyskKXLl2wZ88e0fORkZGQyWSin+DgYF2ugtZosi1Onz6Nl156CR4eHpDJZEhOTn7oMfWJtrfFvHnzVD4XHTt21OEaaI8m22LdunXo27cvWrZsiZYtWyIwMFBleUEQEBMTAxcXFzRt2hSBgYE4d+6crldDK7S9LUzl98X27dvh5+cHOzs7WFtbw8fHB5s3bxYtYyqfi/psC735XAhktFJTUwULCwth/fr1wunTp4XRo0cLdnZ2QkFBgdrlf/75Z0EulwtLliwRsrKyhDlz5gjm5ubC77//rlwmIiJCCA4OFvLy8pQ/N27caKxVajBNt8Xhw4eFadOmCVu2bBGcnZ2FFStWPPSY+kIX2yI2Nlbo3Lmz6HNRWFio4zV5eJpui1dffVVISUkRjh07Jpw5c0aIjIwUbG1thStXriiXSUxMFGxtbYUdO3YIJ06cEAYNGiR4enoKt2/fbqzVahBdbAtT+X3x/fffC9u3bxeysrKE8+fPC8nJyYJcLhfS0tKUy5jK56I+20JfPhcMQEbM399fGD9+vPJxbW2t4OrqKiQkJKhd/pVXXhGef/55US0gIEB4++23lY8jIiKEwYMH66RfXdJ0W/xT27Zt1X7pP8yYUtLFtoiNjRW6deumxS4bx8P+HdbU1AgtWrQQNm3aJAiCICgUCsHZ2VlYunSpcpni4mLB0tJS2LJli3ab1zJtbwtBMM3fF/d0795dmDNnjiAIpv25EATxthAE/flccArMSFVVVeHIkSMIDAxU1szMzBAYGIjMzEy1r8nMzBQtDwBBQUEqy2dkZMDR0REdOnTA2LFjUVRUpP0V0KKGbAspxmwMuuz73LlzcHV1hZeXF1577TVcunTpYdvVKW1si4qKClRXV6NVq1YAgJycHOTn54vGtLW1RUBAgNF/Lv69Le4xtd8XgiAgPT0d2dnZeOqppwCY7udC3ba4Rx8+F7wZqpG6fv06amtr4eTkJKo7OTnh7Nmzal+Tn5+vdvn8/Hzl4+DgYAwdOhSenp64cOECZs2ahZCQEGRmZkIul2t/RbSgIdtCijEbg676DggIwMaNG9GhQwfk5eUhLi4Offv2xalTp9CiRYuHbVsntLEtZsyYAVdXV+UXxL3/Vx70/5G+0cW2AEzr90VJSQnc3NxQWVkJuVyO1atX49lnnwVgep+L+20LQH8+FwxApJHhw4cr/9ylSxd07doV7dq1Q0ZGBgYMGCBhZySlkJAQ5Z+7du2KgIAAtG3bFtu2bcOoUaMk7Ex3EhMTkZqaioyMDFhZWUndjqTq2ham9PuiRYsWOH78OMrKypCeno6oqCh4eXnh6aeflrq1RvegbaEvnwtOgRkpe3t7yOVyFBQUiOoFBQVwdnZW+xpnZ2eNlgcALy8v2Nvb4/z58w/ftI40ZFtIMWZjaKy+7ezs8Oijjxrt5yIpKQmJiYn49ttv0bVrV2X93utM6XNR17ZQx5h/X5iZmcHb2xs+Pj6YOnUqhg0bhoSEBACm97m437ZQR6rPBQOQkbKwsICvry/S09OVNYVCgfT0dPTq1Uvta3r16iVaHgD2799f5/IAcOXKFRQVFcHFxUU7jetAQ7aFFGM2hsbqu6ysDBcuXDDKz8WSJUsQHx+PtLQ0+Pn5iZ7z9PSEs7OzaMzS0lL88ssvRvm5uN+2UMeUfl8oFApUVlYCML3Pxb/9c1uoI9nnQuqjsEl3UlNTBUtLS2Hjxo1CVlaWMGbMGMHOzk7Iz88XBEEQ3njjDWHmzJnK5X/++WehSZMmQlJSknDmzBkhNjZWdBr8rVu3hGnTpgmZmZlCTk6O8N133wk9evQQ2rdvL9y5c0eSdawvTbdFZWWlcOzYMeHYsWOCi4uLMG3aNOHYsWPCuXPn6j2mvtLFtpg6daqQkZEh5OTkCD///LMQGBgo2NvbC9euXWv09dOEptsiMTFRsLCwEL788kvRKby3bt0SLWNnZyfs3LlTOHnypDB48GCDOd1Zm9vClH5fLFq0SPj222+FCxcuCFlZWUJSUpLQpEkTYd26dcplTOVz8aBtoU+fCwYgI/fBBx8Ibdq0ESwsLAR/f3/hf//7n/K5fv36CREREaLlt23bJjz66KOChYWF0LlzZ+Gbb75RPldRUSEMHDhQcHBwEMzNzYW2bdsKo0eP1vsv/Hs02RY5OTkCAJWffv361XtMfabtbREWFia4uLgIFhYWgpubmxAWFiacP3++Edeo4TTZFm3btlW7LWJjY5XLKBQKYe7cuYKTk5NgaWkpDBgwQMjOzm7ENWo4bW4LU/p9MXv2bMHb21uwsrISWrZsKfTq1UtITU0VjWcqn4sHbQt9+lzIBEEQGnefExEREZG0eAwQERERmRwGICIiIjI5DEBERERkchiAiIiIyOQwABEREZHJYQAiIiIik8MARERERCaHAYiIiIhMDgMQERm8/Px8TJw4EV5eXrC0tIS7uztCQ0OV9zDy8PBAcnKyyuvmzZsHHx8ftWOmpqZCJpNhyJAhumuciCTTROoGiIgeRm5uLp588knY2dlh6dKl6NKlC6qrq7Fv3z6MHz8eZ8+ebdCY06ZNQ9++fXXQMRHpAwYgIjJo48aNg0wmw+HDh2Ftba2sd+7cGW+++abG49XW1uK1115DXFwcDh48iOLiYi12S0T6glNgRGSwbty4gbS0NIwfP14Ufu6xs7PTeMz58+fD0dERo0aN0kKHRKSvuAeIiAzW+fPnIQgCOnbs+MBlZ8yYgTlz5ohqVVVVeOyxx5SPf/rpJ3zyySc4fvy4tlslIj3DAEREBksQhHov+9577yEyMlJUW7lyJX788UcAwK1bt/DGG29g3bp1sLe312abRKSHGICIyGC1b98eMpmsXgc629vbw9vbW1Rr1aqV8s8XLlxAbm4uQkNDlTWFQgEAaNKkCbKzs9GuXTstdU5EUuMxQERksFq1aoWgoCCkpKSgvLxc5XlNDmDu2LEjfv/9dxw/flz5M2jQIDzzzDM4fvw43N3dtdg5EUmNe4CIyKClpKTgySefhL+/P+bPn4+uXbuipqYG+/fvx5o1a3DmzJl6jWNlZYXHH39cVLt3EPW/60Rk+BiAiMigeXl54ejRo1i4cCGmTp2KvLw8ODg4wNfXF2vWrJG6PSLSUzJBk6MIiYiIiIwAjwEiIiIik8MARERERCaHAYiIiIhMDgMQERERmRwGICIiIjI5DEBERERkchiAiIiIyOQwABEREZHJYQAiIiIik8MARERERCaHAYiIiIhMDgMQERERmZz/Azdc3Eq7e5XwAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUiJJREFUeJzt3XlYVGX/P/D3MLKIKIjshLK5bygoaYtZJFi55JJaCahprmm4gQuoqKCi4m5ZLm0ulY/5mIFG8lhJWaaWoqQ8EPrIIKKAYLLN+f3hz/l2mEEZGDizvF/XxZXzmTM3nzmO8O6+zyITBEEAEREREamYSd0AERERkb5hQCIiIiKqhgGJiIiIqBoGJCIiIqJqGJCIiIiIqmFAIiIiIqqGAYmIiIioGgYkIiIiomoYkIiIiIiqYUAiIoMlk8mwZMkSqdtQCQ8Ph6enp9RtEJEOMCARkU7t3r0bMplM9WVlZYV27dph+vTpyMvLa9DvferUKSxZsgSFhYU6Hfe5554TvSd7e3v06tULO3fuhFKp1Mn3WLlyJQ4dOqSTsYio/ppI3QARGadly5bBy8sL9+/fxw8//IBt27bh6NGjuHDhAqytrXXyPf7++280afJ/P8ZOnTqFpUuXIjw8HHZ2djr5Hg898cQTiIuLAwDk5+fjo48+woQJE/Dnn38iPj6+3uOvXLkSI0aMwNChQ+s9FhHVHwMSETWIgQMHIiAgAADw1ltvoVWrVli3bh2++uorjBkzps7jKpVKlJeXw8rKClZWVrpq97FsbW3x5ptvqh6//fbbaN++PTZv3ozY2FiYm5s3Wi9E1PC4xEZEjeL5558HAGRlZQEAEhIS0LdvX7Rq1QpNmzaFv78/vvjiC7XXyWQyTJ8+HZ9++ik6d+4MS0tLJCUlqZ57eAzSkiVLMHfuXACAl5eXajksOzsb/fr1Q/fu3TX21b59ewQHB2v9fqytrfHkk0+itLQU+fn5NW5XWlqK2bNnw8PDA5aWlmjfvj0SEhIgCILoPZaWlmLPnj2qvsPDw7XuiYh0hzNIRNQoMjMzAQCtWrUCAGzYsAGDBw/GG2+8gfLycuzbtw8jR47EkSNH8PLLL4te+9133+HAgQOYPn06HBwcNB4IPWzYMPz555/Yu3cv1q9fDwcHBwCAo6Mjxo4di4kTJ+LChQvo0qWL6jW//PIL/vzzTyxatKhO7+m///0v5HJ5jct5giBg8ODBOHHiBCZMmAA/Pz8kJydj7ty5+N///of169cDAD7++GO89dZb6N27NyZNmgQA8PHxqVNPRKQjAhGRDu3atUsAIHz77bdCfn6+cO3aNWHfvn1Cq1athKZNmwrXr18XBEEQ7t27J3pdeXm50KVLF+H5558X1QEIZmZmwsWLF9W+FwAhJiZG9XjNmjUCACErK0u0XWFhoWBlZSXMnz9fVH/nnXeEZs2aCSUlJY98T/369RM6dOgg5OfnC/n5+cKlS5eEd955RwAgDBo0SLVdWFiY0KZNG9XjQ4cOCQCE5cuXi8YbMWKEIJPJhKtXr6pqzZo1E8LCwh7ZBxE1Hi6xEVGDCAoKgqOjIzw8PDB69GjY2NjgX//6F9zd3QEATZs2VW17584dFBUV4ZlnnsFvv/2mNla/fv3QqVOnOvdia2uLIUOGYO/evaqlraqqKuzfvx9Dhw5Fs2bNHjvG5cuX4ejoCEdHR3Ts2BGbNm3Cyy+/jJ07d9b4mqNHj0Iul+Odd94R1WfPng1BEPDNN9/U+T0RUcPiEhsRNYgtW7agXbt2aNKkCZydndG+fXuYmf3f/5MdOXIEy5cvx7lz51BWVqaqy2QytbG8vLzq3U9oaCj279+P77//Hs8++yy+/fZb5OXlYezYsbV6vaenJ3bs2KG6dEHbtm3h5OT0yNf89ddfcHNzQ/PmzUX1jh07qp4nIv3EgEREDaJ3796qs9iq+/777zF48GA8++yz2Lp1K1xdXWFubo5du3bhs88+U9v+n7NNdRUcHAxnZ2d88sknePbZZ/HJJ5/AxcUFQUFBtXp9s2bNar0tERk+LrERUaP78ssvYWVlheTkZIwfPx4DBw7USfjQNPv0kFwux+uvv44vvvgCd+7cwaFDhzBmzBjI5fJ6f9+atGnTBjdu3MDdu3dF9cuXL6uef+hRvRNR42NAIqJGJ5fLIZPJUFVVpaplZ2fX+0rSD48lqulK2mPHjsWdO3fw9ttvo6SkRHRdo4bw0ksvoaqqCps3bxbV169fD5lMhoEDB6pqzZo10/kVwImo7rjERkSN7uWXX8a6desQEhKC119/HTdv3sSWLVvg6+uL33//vc7j+vv7AwAWLlyI0aNHw9zcHIMGDVIFpx49eqBLly74/PPP0bFjR/Ts2VMn76cmgwYNQv/+/bFw4UJkZ2eje/fuOHbsGL766ivMmjVLdCq/v78/vv32W6xbtw5ubm7w8vJCYGBgg/ZHRDXjDBIRNbrnn38eH374IRQKBWbNmoW9e/di1apVePXVV+s1bq9evRAbG4vz588jPDwcY8aMUbuIY2hoKADU+uDs+jAzM8Phw4cxa9YsHDlyBLNmzUJ6ejrWrFmDdevWibZdt24d/P39sWjRIowZMwbbtm1r8P6IqGYyQfjH5VyJiIzchg0b8O677yI7OxutW7eWuh0i0lMMSERkMgRBQPfu3dGqVSucOHFC6naISI/xGCQiMnqlpaU4fPgwTpw4gT/++ANfffWV1C0RkZ7jDBIRGb3s7Gx4eXnBzs4OU6dOxYoVK6RuiYj0HAMSERERUTU8i42IiIioGgYkIiIiomp4kLYGSqUSN27cQPPmzXn5fyIiIgMhCALu3r0LNzc30c2x64IBSYMbN27Aw8ND6jaIiIioDq5du4YnnniiXmPoRUDasmUL1qxZA4VCge7du2PTpk3o3bu3xm0PHjyIlStX4urVq6ioqEDbtm0xe/Zs0VVxw8PDsWfPHtHrgoODkZSUVKt+mjdvDuDBDm7RokUd3xURERE1puLiYnh4eKh+j9eH5AFp//79iIiIwPbt2xEYGIjExEQEBwcjIyMDTk5Oatvb29tj4cKF6NChAywsLHDkyBGMGzcOTk5OCA4OVm0XEhKCXbt2qR5bWlrWuqeHy2otWrRgQCIiIjIwujg8RvLT/AMDA9GrVy/V3a6VSiU8PDwwY8YMREZG1mqMnj174uWXX0ZsbCyABzNIhYWFdb4zeHFxMWxtbVFUVMSAREREZCB0+ftb0rPYysvLcebMGQQFBalqZmZmCAoKQlpa2mNfLwgCUlJSkJGRgWeffVb0XGpqKpycnNC+fXtMmTIFBQUFNY5TVlaG4uJi0RcRERGZLkmX2G7duoWqqio4OzuL6s7Ozrh8+XKNrysqKoK7uzvKysogl8uxdetWvPjii6rnQ0JCMGzYMHh5eSEzMxMLFizAwIEDkZaWBrlcrjZeXFwcli5dqrs3RkRERAZN8mOQ6qJ58+Y4d+4cSkpKkJKSgoiICHh7e+O5554DAIwePVq1bdeuXdGtWzf4+PggNTUVL7zwgtp4UVFRiIiIUD1+eJDX41RVVaGioqL+b4j0mrm5ucZgTURExkvSgOTg4AC5XI68vDxRPS8vDy4uLjW+zszMDL6+vgAAPz8/XLp0CXFxcaqAVJ23tzccHBxw9epVjQHJ0tJSq4O4BUGAQqFAYWFhrV9Dhs3Ozg4uLi68LhYRkYmQNCBZWFjA398fKSkpGDp0KIAHB2mnpKRg+vTptR5HqVSirKysxuevX7+OgoICuLq61rdlAFCFIycnJ1hbW/OXphETBAH37t3DzZs3AUBnnyEiItJvki+xRUREICwsDAEBAejduzcSExNRWlqKcePGAQBCQ0Ph7u6OuLg4AA+OFwoICICPjw/Kyspw9OhRfPzxx9i2bRsAoKSkBEuXLsXw4cPh4uKCzMxMzJs3D76+vqLLANRVVVWVKhy1atWq3uOR/mvatCkA4ObNm3BycuJyGxGRCZA8II0aNQr5+fmIjo6GQqGAn58fkpKSVAdu5+TkiC4XXlpaiqlTp+L69eto2rQpOnTogE8++QSjRo0CAMjlcvz+++/Ys2cPCgsL4ebmhgEDBiA2NlarZbSaPDzmyNraut5jkeF4+PddUVHBgEREZAIkvw6SPnrUdRTu37+PrKwseHl5wcrKSqIOqbHx752ISP8ZzXWQiIiIiPQRAxIRERFRNQxIJiQ8PBwymQwymQzm5uZwdnbGiy++iJ07d0KpVNZ6nN27d8POzq7hGiUiIpIYA5KJCQkJQW5uLrKzs/HNN9+gf//+mDlzJl555RVUVlZK3R4REZmAv//+W+oWHosBycRYWlrCxcUF7u7u6NmzJxYsWICvvvoK33zzDXbv3g0AWLduHbp27YpmzZrBw8MDU6dORUlJCYAH97gbN24cioqKVLNRS5YsAQB8/PHHCAgIQPPmzeHi4oLXX39ddf0gIiKi4uJiLF26FKtXr8amTYekbueRGJB0QBAElJeXN/qXrk5AfP7559G9e3ccPHgQwIMrlW/cuBEXL17Enj178N1332HevHkAgL59+yIxMREtWrRAbm4ucnNzMWfOHAAPToGPjY3F+fPncejQIWRnZyM8PFwnPRIRkWE7e/Ys1q9fr3r8yy+2EnbzeJJfB8kYVFRUqC5k2ZiioqJgYWGhk7E6dOiA33//HQAwa9YsVd3T0xPLly/H5MmTsXXrVlhYWMDW1hYymUztdjDjx49X/dnb2xsbN25Er169UFJSAhsbG530SUREhkUQBGzduhW3bt1S1TIyXsTo0X0l7OrxGJAIwIMP8MNbpnz77beIi4vD5cuXUVxcjMrKSty/fx/37t175AUyz5w5gyVLluD8+fO4c+eO6sDvnJwcdOrUqVHeBxER6Y/CwkJs2LBBVJsxYwbs7e0l6qj2GJB0wNzcHFFRUZJ8X125dOkSvLy8kJ2djVdeeQVTpkzBihUrYG9vjx9++AETJkxAeXl5jQGptLQUwcHBCA4OxqeffgpHR0fk5OQgODgY5eXlOuuTiIgMw+nTp/HNN9+oHtva2mLmzJkGc/9SBiQdkMlkOlvqksJ3332HP/74A++++y7OnDkDpVKJtWvXqm7xcuDAAdH2FhYWqKqqEtUuX76MgoICxMfHw8PDAwDw66+/Ns4bICIivSEIAhITE1FcXKyqvfTSS+jVq5eEXWmPAcnElJWVQaFQoKqqCnl5eUhKSkJcXBxeeeUVhIaG4sKFC6ioqMCmTZswaNAg/Pjjj9i+fbtoDE9PT5SUlCAlJQXdu3eHtbU1WrduDQsLC2zatAmTJ0/GhQsXEBsbK9G7JCIiKdy+fRubNm0S1WbOnGmQ187jWWwmJikpCa6urvD09ERISAhOnDiBjRs34quvvoJcLkf37t2xbt06rFq1Cl26dMGnn36qdgB63759MXnyZIwaNQqOjo5YvXo1HB0dsXv3bnz++efo1KkT4uPjkZCQING7JCKixnbq1ClROHJ0dER0dLRBhiOAN6vViDerper4905EpJlSqcSaNWtw//59VW3w4MHo0aNHo/eiy5vVcomNiIiI6iQ/Px9bt24V1d599916hxN9wIBEREREWjt58iROnDiheuzu7o4JEyYYzFlqj8OARERERLVWVVWFuLg40dnMw4YNQ9euXSXsSvcYkIiIiKhWFAoF3nvvPVFt9uzZRnm3BAYkIiIieqyUlBT88MMPqseenp4ICwuTsKOGxYBERERENaqsrMSKFStEtZEjRxr9LaQYkIiIiEij//3vf/jggw9Etblz5z7yvpzGggGJiIiI1CQlJeHnn39WPW7Xrh3GjBkjYUeNiwGJiIiIVCoqKrBy5UpRbcyYMWjXrp1EHUmDtxohnQsPD8fQoUNVj5977jnMmjWrXmPqYgwiInq0nJwctXA0f/58kwtHAGeQTEp4eDj27NkDADA3N0fr1q0RGhqKBQsWoEmThvsoHDx4EObm5rXaNjU1Ff3798edO3dE9+/RZgwiItLe4cOHcfbsWdXjLl26YPjw4RJ2JC0GJBMTEhKCXbt2oaysDEePHsW0adNgbm6OqKgo0Xbl5eWwsLDQyfe0t7fXizGIiEhdeXm52k3Jx44dC29vb4k60g9cYjMxlpaWcHFxQZs2bTBlyhQEBQXh8OHDqmWxFStWwM3NDe3btwcAXLt2Da+99hrs7Oxgb2+PIUOGIDs7WzVeVVUVIiIiYGdnh1atWmHevHmofv/j6stjZWVlmD9/Pjw8PGBpaQlfX198+OGHyM7ORv/+/QEALVu2hEwmQ3h4uMYx7ty5g9DQULRs2RLW1tYYOHAgrly5onp+9+7dsLOzQ3JyMjp27AgbGxuEhIQgNzdXtU1qaip69+6NZs2awc7ODk899RT++usvHe1pIiL9l5WVpRaOoqKiTD4cAQxIJq9p06YoLy8H8OAiYBkZGTh+/DiOHDmCiooKBAcHo3nz5vj+++/x448/qoLGw9esXbsWu3fvxs6dO/HDDz/g9u3b+Ne//vXI7xkaGoq9e/di48aNuHTpEt577z3Y2NjAw8MDX375JQAgIyMDubm52LBhg8YxwsPD8euvv+Lw4cNIS0uDIAh46aWXUFFRodrm3r17SEhIwMcff4yTJ08iJycHc+bMAfDguh5Dhw5Fv3798PvvvyMtLQ2TJk0ymnsIERE9zpdffomPPvpI9bhHjx6IiYnR2eqBoeMSm4kSBAEpKSlITk7GjBkzkJ+fj2bNmuGDDz5Q/eP45JNPoFQq8cEHH6iCw65du2BnZ4fU1FQMGDAAiYmJiIqKwrBhwwAA27dvR3Jyco3f988//8SBAwdw/PhxBAUFAYDo/1QeLqU5OTmJjkH6pytXruDw4cP48ccf0bdvXwDAp59+Cg8PDxw6dAgjR44E8OBMjO3bt8PHxwcAMH36dCxbtgwAUFxcjKKiIrzyyiuq5zt27Kj9jiQiMjD379/HqlWrRLXw8HC0adNGoo70E2eQJHT4MNC374P/NpYjR47AxsYGVlZWGDhwIEaNGoUlS5YAALp27Sr6P4fz58/j6tWraN68OWxsbGBjYwN7e3vcv38fmZmZKCoqQm5uLgIDA1WvadKkCQICAmr8/ufOnYNcLke/fv3q/B4uXbqEJk2aiL5vq1at0L59e1y6dElVs7a2VoUfAHB1dcXNmzcBPAhi4eHhCA4OxqBBg7BhwwbR8hsRkTG6cuWKWjhasGABw5EGnEGSUHw8kJb24L+DBzfO9+zfvz+2bdsGCwsLuLm5ic5ea9asmWjbkpIS+Pv749NPP1Ubx9HRsU7fv2nTpnV6XV1UP+tNJpOJjo/atWsX3nnnHSQlJWH//v1YtGgRjh8/jieffLLReiQiaiz79u1DRkaG6nHv3r0xcOBACTvSb5xBklBkJNCnz4P/NpZmzZrB19cXrVu3fuyp/T179sSVK1fg5OQEX19f0ZetrS1sbW3h6uoqutJqZWUlzpw5U+OYXbt2hVKpxH/+8x+Nzz+cwaqqqqpxjI4dO6KyslL0fQsKCpCRkaH1vYF69OiBqKgonDp1Cl26dMFnn32m1euJiPTd33//jaVLl4rC0VtvvcVw9BgMSBIaPBg4darxZo+09cYbb8DBwQFDhgzB999/j6ysLKSmpuKdd97B9evXAQAzZ85EfHw8Dh06hMuXL2Pq1KkoLCysccyHd38eP348Dh06pBrzwIEDAIA2bdpAJpPhyJEjyM/PR0lJidoYbdu2xZAhQzBx4kT88MMPOH/+PN588024u7tjyJAhtXpvWVlZiIqKQlpaGv766y8cO3YMV65c4XFIRGRULl26hNWrV4tqCxcuhLu7u0QdGQ4GJKqRtbU1Tp48idatW2PYsGHo2LEjJkyYgPv376NFixYAgNmzZ2Ps2LEICwtDnz590Lx5c7z66quPHHfbtm0YMWIEpk6dig4dOmDixIkoLS0FALi7u2Pp0qWIjIyEs7Mzpk+frnGMXbt2wd/fH6+88gr69OkDQRBw9OjRWl9M0traGpcvX8bw4cPRrl07TJo0CdOmTcPbb7+txR4iItJfH330kep/PgHgqaeeQkxMTINeGNiYyITqF60hFBcXw9bWFkVFRaog8ND9+/eRlZUFLy8vWFlZSdQhNTb+vRORoSgtLUVCQoKo9vbbb8PFxUWijhrPo35/a4sxkoiIyEhcuHBBdT05ADAzM8OCBQsgl8sl7MowMSAREREZOEEQsHPnTtXxocCDOxDU55Iqpo4BiYiIyIDdvXsX69atE9WmTJkCJycniToyDgxIREREBurcuXP46quvVI+trKwwd+5cmJnxHKz6YkCqIx7bblr4901E+kQQBGzfvl11dwAACAoKwlNPPSVhV8aFAUlLD08jv3fvXqNeFZqkde/ePQDqV+cmImpsRUVFSExMFNWmT5+OVq1aSdOQkWJA0pJcLoednZ0qtVtbW/MO8EZMEATcu3cPN2/ehJ2dHc8EISJJ/fLLLzh69KjqcYsWLTBr1iz+HmoADEh18PBaEv+c2iTjZmdnZxLXECEi/SQIAjZu3Ci6U8HAgQPRu3dv6ZoycnoRkLZs2YI1a9ZAoVCge/fu2LRpU41/6QcPHsTKlStx9epVVFRUoG3btqqrOT8kCAJiYmKwY8cOFBYW4qmnnsK2bdvQtm1bnfQrk8ng6uoKJycnVFRU6GRM0l/m5uacOSIiydy+fRubNm0S1WbOnAk7OztpGjIRkgek/fv3IyIiAtu3b0dgYCASExMRHByMjIwMjaco2tvbY+HChejQoQMsLCxw5MgRjBs3Dk5OTggODgYArF69Ghs3bsSePXvg5eWFxYsXIzg4GOnp6Tq9CrJcLucvTiIiajBpaWk4duyY6rGDgwOmTp3KJbVGIPmtRgIDA9GrVy9s3rwZAKBUKuHh4YEZM2Ygspa3ue/ZsydefvllxMbGQhAEuLm5Yfbs2ZgzZw6ABwe0OTs7Y/fu3Rg9evRjx9PlpcqJiIi0pVQqsXbtWtUJIgAwaNAg9OzZU8Ku9J8uf39LeqGE8vJynDlzBkFBQaqamZkZgoKCkJaW9tjXC4KAlJQUZGRk4NlnnwXw4C7tCoVCNKatrS0CAwNrHLOsrAzFxcWiLyIiIink5+cjNjZWFI7effddhqNGJukS261bt1BVVQVnZ2dR3dnZGZcvX67xdUVFRXB3d0dZWRnkcjm2bt2KF198EQCgUChUY1Qf8+Fz1cXFxWHp0qX1eStERET1dvLkSZw4cUL12M3NDW+99RaX1CQg+TFIddG8eXOcO3cOJSUlSElJQUREBLy9vfHcc8/VabyoqChERESoHhcXF8PDw0NH3RIRET1aVVUV4uPjUVlZqaq9+uqr6Natm4RdmTZJA5KDgwPkcjny8vJE9by8vEeeUm1mZgZfX18AgJ+fHy5duoS4uDg899xzqtfl5eXB1dVVNKafn5/G8SwtLWFpaVnPd0NERKS9vLw8bN++XVSbPXs2bGxsJOqIAImPQbKwsIC/vz9SUlJUNaVSiZSUFPTp06fW4yiVSpSVlQEAvLy84OLiIhqzuLgYP//8s1ZjEhERNbSUlBRROPL09ERMTAzDkR6QfIktIiICYWFhCAgIQO/evZGYmIjS0lKMGzcOABAaGgp3d3fExcUBeHC8UEBAAHx8fFBWVoajR4/i448/xrZt2wA8uEbRrFmzsHz5crRt21Z1mr+bmxuGDh0q1dskIiJSqaqqwvLly0W1kSNHolOnThJ1RNVJHpBGjRqF/Px8REdHQ6FQwM/PD0lJSaqDrHNyckR3JS4tLcXUqVNx/fp1NG3aFB06dMAnn3yCUaNGqbaZN28eSktLMWnSJBQWFuLpp59GUlKSTq+BREREVBc3btzAjh07RLW5c+fC2tpaoo5IE8mvg6SPeB0kIiJqCElJSfj5559Vj9u2bYvXX39dwo6Miy5/f0s+g0RERGTsKioqsHLlSlFtzJgxaNeunUQd0eMwIBERETWga9euYefOnaLa/PnzediHnmNAIiIiaiBHjhzBmTNnVI87deqEkSNHStgR1RYDEhERkY6Vl5erzr5+6M0334SPj49EHZG2GJCIiIh0KCsrCx999JGoFhkZyQsSGxgGJCIiIh2pfl9PPz8/DBkyRKJuqD4kvZI2ERGRMSguLlYLR6dPhzMcGTDOIBEREdVD9WsbAcB3383F7Nm88KMhY0AiIiKqo+qzRgAQExODmBgJmiGdYkAiIiLS0p07d7Bx40ZRLSQkBIGBgRJ1RLrGgERERKSFr776CufOnRPVeOFH48OAREREVEs1LamR8WFAIiIieoz8/Hxs3bpVVBs8eDB69OghUUfU0BiQiIiIHuHAgQO4dOmSqBYVFQULCwuJOqLGwIBERESkgSAIWLZsmVqdS2qmgQGJiIiomtzcXLz//vui2ogRI9C5c2eJOqLGxoBERET0Dx999BGysrJEtYULF6JJE/7KNCX82yYiIoLmJbWmTZti3rx5EnVEUmJAIiIik5eTk4Ndu3aJamPGjEG7du0k6oikxoBEREQm7b333oNCoRDVFi9eDDMz3s/dlDEgERGRSVIqlYiNjRXV7O3tMWPGDIk6In3CgERERCbnzJkzOHLkiKj2yy+hOHLES6KOSN8wIBERkUnRdLuQ5OTFiIzkkhr9HwYkIiIyCZWVlVixYoVaPSYmBrz2I1XHgEREREbv1KlTOH78uKg2cuRIdOrUSaKOSN8xIBERkVHTtKQWHR0NmUwmQTdkKBiQiIjIKJWXlyMuLk6tznupUW0wIBERkdH57rvv8P3334tqb7zxBnx9fSXqiAwNAxIRERkVLqmRLjAgERGRUbh//z5WrVolqslkMkRHR0vUERkyBiQiIjJ4X3/9NX799VdRbdy4cWjdurVEHZGhY0AiIiKDpmlJjQdiU30xIBERkUEqKSnB2rVrRTUbGxvMnj1boo7ImDAgERGRwfniiy9w8eJFUW3SpElwdXWVqCMyNgxIRERkULikRo2BAYmIiAxCYWEhNmzYIKo5Oztj8uTJEnVExowBiYiI9F5c3EaUl98R1aZNmwYHBweJOiJjx4BERER6jUtqJAUGJCIi0kt5eXnYvn27qGZpaY/IyBkSdUSmhAGJiIj0zsqVK1FRUSGqzZgxA/b29hJ1RKaGAYmIiPQKl9RIH5hJ3QAAbNmyBZ6enrCyskJgYCBOnz5d47Y7duzAM888g5YtW6Jly5YICgpS2z48PBwymUz0FRIS0tBvg4iI6uHatWtq4ah169YMRyQJyWeQ9u/fj4iICGzfvh2BgYFITExEcHAwMjIy4OTkpLZ9amoqxowZg759+8LKygqrVq3CgAEDcPHiRbi7u6u2CwkJwa5du1SPLS0tG+X9EBGR9jTNGkVERKB58+YSdEMEyARBEKRsIDAwEL169cLmzZsBAEqlEh4eHpgxYwYiIyMf+/qqqiq0bNkSmzdvRmhoKIAHM0iFhYU4dOhQnXoqLi6Gra0tioqK0KJFizqNQUREtcMlNdIVXf7+lnSJrby8HGfOnEFQUJCqZmZmhqCgIKSlpdVqjHv37qGiokLtwL3U1FQ4OTmhffv2mDJlCgoKCnTaOxER1U9mZqZaOOrQoQPDEekFSZfYbt26haqqKjg7O4vqzs7OuHz5cq3GmD9/Ptzc3EQhKyQkBMOGDYOXlxcyMzOxYMECDBw4EGlpaZDL5WpjlJWVoaysTPW4uLi4ju+IiIhqQ9Os0dy5c2FtbS1BN0TqJD8GqT7i4+Oxb98+pKamwsrKSlUfPXq06s9du3ZFt27d4OPjg9TUVLzwwgtq48TFxWn8x0pERLolCAKWLVumVuesEekbSZfYHBwcIJfLkZeXJ6rn5eXBxcXlka9NSEhAfHw8jh07hm7duj1yW29vbzg4OODq1asan4+KikJRUZHq69q1a9q9ESIieqz09HS1cNSzZ0+GI9JLks4gWVhYwN/fHykpKRg6dCiABwdpp6SkYPr06TW+bvXq1VixYgWSk5MREBDw2O9z/fp1FBQUwNXVVePzlpaWPMuNiKgBaZqlj4yM5M9e0luSXwcpIiICO3bswJ49e3Dp0iVMmTIFpaWlGDduHAAgNDQUUVFRqu1XrVqFxYsXY+fOnfD09IRCoYBCoUBJSQkAoKSkBHPnzsVPP/2E7OxspKSkYMiQIfD19UVwcLAk75GIyFQJglDjWWoMR6TPJD8GadSoUcjPz0d0dDQUCgX8/PyQlJSkOnA7JycHZmb/l+O2bduG8vJyjBgxQjROTEwMlixZArlcjt9//x179uxBYWEh3NzcMGDAAMTGxvIfIxFRIzp79iwOHz4sqj311FOik2qI9JXk10HSR7wOEhFR/WiaNVq4cCGaNJH8/8vJiOny9zc/qUREpDNKpRKxsbFqdR6ITYaGAYmIiHTi1KlTOH78uKgWFBSEp556SqKOiOqOAYmIiOpN05La4sWLRceQEhkSBiQiIqqziooKrFy5Uq3OJTUydAxIRERUJ59//jnS09NFtVdeeQX+/v4SdUSkOwxIRESkNU1LasnJ0YiJkUnQDZHuMSAREVGt3b9/H6tWrVKrJyfHIDJSgoaIGggDEhER1cquXbuQk5MjqoWEhCAwMBA85IiMDQMSERE9lqYltejoaMhkXFIj48SARERENSopKcHatWvV6jxLjYwdAxIREWm0ceNG3LlzR1R79dVX0a1bN4k6Imo8DEhERKRG05IaZ43IlDAgERGRyp07d7Bx40a1OsMRmRoGJCIiAgCsWLEClZWVotqYMWPQrl07iToikg4DEhERcUmNqBoGJCIiE3bz5k1s27ZNrc5wRKaOAYmIyERpmjUKDw9HmzZtJOiGSL8wIBERmSAuqRE9GgMSEZEJyczMxCeffKJWZzgiEmNAIiIyEZpmjX7+eTwmT/aQoBsi/caARERkArikRqQdBiQiIiN28eJFfPHFF2p1hiOiR9M6IMnlcuTm5sLJyUlULygogJOTE6qqqnTWHBER1Z2mWaMpU6ao/fwmInVaByRBEDTWy8rKYGFhUe+GiIio/rikRlQ/tQ5ID+/NI5PJ8MEHH8DGxkb1XFVVFU6ePIkOHTrovkMiIqq1X375BUePHlWrMxwRaafWAWn9+vUAHswgbd++HXK5XPWchYUFPD09sX37dt13SEREtaJp1mjmzJmws7Nr/GaIDFytA1JWVhYAoH///jh48CBatmzZYE0REVHtCYKAZcuWqdU5a0RUd1ofg3TixImG6IOIiOogNTUV//nPf0Q1uVyORYsWSdQRkXHQOiCNHz/+kc/v3Lmzzs0QEVHtaVpSmzNnDpo1ayZBN0TGReuAdOfOHdHjiooKXLhwAYWFhXj++ed11hgREWnGJTWihqd1QPrXv/6lVlMqlZgyZQp8fHx00hQREWl25MgRnDlzRlSzt7fHjBkzJOqIyDjJhJoubKSljIwMPPfcc8jNzdXFcJIqLi6Gra0tioqK0KJFC6nbISICoHlJLTIyEpaWlhJ0Q6R/dPn7W2e3GsnMzERlZaWuhiMiov+vqqoKy5cvV6tzSY2o4WgdkCIiIkSPBUFAbm4uvv76a4SFhemsMSIiAvbt24eMjAxRzdPTkz9viRqY1gHp7NmzosdmZmZwdHTE2rVrH3uGGxER1Z6mJbWFCxeiSRPeZ5yoofE6SEREeqaiogIrV65Uq3NJjajx1Pl/Q27evKma9m3fvj3vDk1EpAM7duzAjRs3RLWuXbti2LBhEnVEZJq0DkjFxcWYNm0a9u7dC6VSCeDBVVtHjRqFLVu2wNbWVudNEhGZAk1LaosXL4aZmZkE3RCZNq3/1U2cOBE///wzvv76axQWFqKwsBBHjhzBr7/+irfffrsheiQiMmp///23xnAUExPDcEQkEa2vg9SsWTMkJyfj6aefFtW///57hISEoLS0VKcNSoHXQSKixpKQkKD2c7NPnz4YMGCARB0RGS5Jr4PUqlUrjctotra2aNmyZb2aISIyJZpmjaKjoyGTySTohoj+Seu520WLFiEiIgIKhUJVUygUmDt3LhYvXqzT5oiIjNHdu3drXFJjOCLSD1oHpG3btuGnn35C69at4evrC19fX7Ru3RqnTp3Ce++9h549e6q+amvLli3w9PSElZUVAgMDcfr06Rq33bFjB5555hm0bNkSLVu2RFBQkNr2giAgOjoarq6uaNq0KYKCgnDlyhVt3yoRkc4tXboU69atE9WCgoJ4Cj+RntF6iW3IkCE6/T+c/fv3IyIiAtu3b0dgYCASExMRHByMjIwMjZcOSE1NxZgxY9C3b19YWVlh1apVGDBgAC5evAh3d3cAwOrVq7Fx40bs2bMHXl5eWLx4MYKDg5Geng4rKyud9U5EpI2aZo2ISP/o7Ga1dRUYGIhevXph8+bNAAClUgkPDw/MmDEDkZGRj319VVUVWrZsic2bNyM0NBSCIMDNzQ2zZ8/GnDlzAABFRUVwdnbG7t27MXr06MeOyYO0iUiXCgoKVD/j/onhiEi3dPn7W+slNm9vbxQUFKjVCwsL4e3trdVY5eXlOHPmDIKCgv6vITMzBAUFIS0trVZj3Lt3DxUVFbC3twcAZGVlQaFQiMa0tbVFYGBgjWOWlZWhuLhY9EVEpAtLly5VC0eDBw9mOCLSc1oHpOzsbFRVVanVy8rKcP36da3GunXrFqqqquDs7CyqOzs7iw4Cf5T58+fDzc1NFYgevk6bMePi4mBra6v68vDw0Op9EBFpUtOSWo8ePSTohoi0UetjkA4fPqz6c3JysuhU/6qqKqSkpMDLy0u33T1GfHw89u3bh9TU1HodWxQVFYWIiAjV4+LiYoYkIqqzGzduYMeOHWp1zhoRGY5aB6ShQ4cCAGQyGcLCwkTPmZubw9PTE2vXrtXqmzs4OEAulyMvL09Uz8vLg4uLyyNfm5CQgPj4eHz77bfo1q2bqv7wdXl5eXB1dRWN6efnp3EsS0tLWFpaatU7EZEmmmaNRo8ejfbt20vQDRHVVa2X2JRKJZRKJVq3bo2bN2+qHiuVSpSVlSEjIwOvvPKKVt/cwsIC/v7+SElJEX2flJQU9OnTp8bXrV69GrGxsUhKSkJAQIDoOS8vL7i4uIjGLC4uxs8///zIMYmI6qumJTWGIyLDo/Vp/llZWTptICIiAmFhYQgICEDv3r2RmJiI0tJSjBs3DgAQGhoKd3d3xMXFAQBWrVqF6OhofPbZZ/D09FQdV2RjYwMbGxvIZDLMmjULy5cvR9u2bVWn+bu5ualmwYiIdCkrKwsfffSRWp1LakSGS+uAtGzZskc+Hx0drdV4o0aNQn5+PqKjo6FQKODn54ekpCTVQdY5OTmimzVu27YN5eXlGDFihGicmJgYLFmyBAAwb948lJaWYtKkSSgsLMTTTz+NpKQkXgOJiHRO06xReHg42rRpI0E3RKQrWl8HqfrZFxUVFcjKykKTJk3g4+OD3377TacNSoHXQSKi2uCFH4n0i6Q3qz179qzGhsLDw/Hqq6/WqxkiIkOQnp6Ozz//XK3OcERkPHR2Je0//vgDgwYNQnZ2ti6GkxRnkIioJppmjd5+++3HnnlLRA1P0hmkmhQVFaGoqEhXwxER6R0uqRGZDq0D0saNG0WPBUFAbm4uPv74YwwcOFBnjRER6YszZ87gyJEjanWGIyLjpXVAWr9+veixmZkZHB0dERYWhqioKJ01RkSkDzTNGr3zzjto2bKlBN0QUWOR/DpIRET6iktqRKarTscgFRYW4urVqwAAX19f2NnZ6bInIiJJff/99/juu+/U6gxHRKZDq4CUnZ2NadOmITk5GQ9PfpPJZAgJCcHmzZvh6enZED0SETUaTbNGs2fPho2NjQTdEJFUah2Qrl27hieffBLm5uaIjY1Fx44dATy4Hsi2bdvQp08f/PLLL3jiiScarFkiooYiCILGOwVw1ojINNX6OkgTJkzA1atXkZycrHbLjr///hshISFo27YtPvjggwZptDHxOkhEpuWbb77B6dOnRTU7OzvMnDlToo6IqC4kuQ5SUlIS9u/fr/F+Zk2bNkVsbCxGjx5dr2aIiBqbpiW1+fPn896NRCau1gHp1q1bjzzGyNvbG7dv39ZFT0REDU6pVCI2NlatziU1IgK0CEiurq5IT0+v8RijCxcu8FL7RGQQPv/8c6Snp4tqrVu3xrhx4yTqiIj0Ta0D0tChQzFnzhykpKTA0dFR9NzNmzcxf/58DB06VNf9ERHplKYltQULFsDc3FyCbohIX9X6IO07d+4gMDAQCoUCb775Jjp06ABBEHDp0iV89tlncHFxwU8//QR7e/uG7rnB8SBtIuNTUVGBlStXqtW5pEZkPCQ5SLtly5b4+eefsWDBAuzbtw+FhYUAHpzp8frrr2PlypVGEY6IyPjs3LkT165dE9U6d+6MESNGSNQREem7Ws8g/ZMgCMjPzwcAODo6QiaT6bwxKXEGich4aFpSW7x4MczMzCTohogakiQzSP8kk8ng5ORUr29MRNSQ7t+/j1WrVqnVuaRGRLVRp4BERKTP1q9fj+LiYlEtOzsQr74aIlFHRGRoGJCIyKhoWlKLjo42ukMBiKhhMSARkVG4e/cu1q1bp1bnkhoR1QUDEhEZPE2zRi+88AKefvppCbohImNQq4C0cePGWg/4zjvv1LkZIiJtaQpHnDUiovqq1Wn+Xl5etRtMJsN///vfejclNZ7mT6T/bt++jU2bNqnVGY6ITFejn+aflZVVr29CRKRLmmaNBg0ahJ49e0rQDREZozofg1ReXo6srCz4+PigSRMeykREjYNLakTUGLS+lOy9e/cwYcIEWFtbo3PnzsjJyQEAzJgxA/Hx8TpvkIgIABQKBcMRETUarQNSVFQUzp8/j9TUVFhZWanqQUFB2L9/v06bIyICHswavffee6Laa6+9xnBERA1G67WxQ4cOYf/+/XjyySdFF17r3LkzMjMzddocERFnjYhICloHpPz8fI33YSstLeWVaolIZ7Kzs7Fnzx61OsMRETUGrQNSQEAAvv76a8yYMQMAVKHogw8+QJ8+fXTbHRGZJE2zRmFhYfD09Gz8ZojIJGkdkFauXImBAwciPT0dlZWV2LBhA9LT03Hq1Cn85z//aYgeiciEcEmNiPSB1gdpP/300zh37hwqKyvRtWtXHDt2DE5OTkhLS4O/v39D9EhEJuDy5csMR0SkN2p1JW1TwytpEzUuTcFo0qRJcHV1laAbIjJUjX4l7eLi4loPyEBBRNrgrBER6aNaBSQ7O7tan6FWVVVVr4aIyDT89ttv+Pe//61WZzgiIn1Qq4B04sQJ1Z+zs7MRGRmJ8PBw1VlraWlp2LNnD+Li4hqmSyIyKppmjWbMmAF7e3sJuiEiUqf1MUgvvPAC3nrrLYwZM0ZU/+yzz/D+++8jNTVVl/1JgscgETUcLqkRUUPR5e9vrc9iS0tLQ0BAgFo9ICAAp0+frlczRGS8fvzxR4YjIjIYWl8HycPDAzt27MDq1atF9Q8++AAeHh46a4yIjIemYBQREYHmzZtL0A0R0eNpHZDWr1+P4cOH45tvvkFgYCAA4PTp07hy5Qq+/PJLnTdIRIZLEAQsW7ZMrc5ZIyLSd3W6DtL169exdetWXL58GQDQsWNHTJ482WhmkHgMElH9JScn46effhLVbGxsMHv2bIk6IiJjJ+kxSADwxBNPYOXKlTh48CAOHjyIFStW1DkcbdmyBZ6enrCyskJgYOAjj2O6ePEihg8fDk9PT8hkMiQmJqpts2TJEshkMtFXhw4d6tQbEdXN0qVL1cLR/PnzGY6IyGBovcQGAIWFhfjwww9x6dIlAEDnzp0xfvx42NraajXO/v37ERERge3btyMwMBCJiYkIDg5GRkYGnJyc1La/d+8evL29MXLkSLz77rs1jtu5c2d8++23qsdNmtTpbRKRlpRKJWJjY9XqXFIjIkOj9QzSr7/+Ch8fH6xfvx63b9/G7du3sW7dOvj4+OC3337Taqx169Zh4sSJGDduHDp16oTt27fD2toaO3fu1Lh9r169sGbNGowePRqWlpY1jtukSRO4uLiovhwcHLTqi4i09+WXX6qFI3d3d4YjIjJIWk+tvPvuuxg8eDB27NihmpmprKzEW2+9hVmzZuHkyZO1Gqe8vBxnzpxBVFSUqmZmZoagoCCkpaVp25bIlStX4ObmBisrK/Tp0wdxcXFo3bp1jduXlZWhrKxM9VibW6sQkeaz1BYsWABzc3MJuiEiqr86zSDNnz9ftGzVpEkTzJs3D7/++mutx7l16xaqqqrg7Owsqjs7O0OhUGjblkpgYCB2796NpKQkbNu2DVlZWXjmmWdw9+7dGl8TFxcHW1tb1ZexHGxO1NAqKytrvLYRwxERGTKtZ5BatGiBnJwctQOfr127phfXNBk4cKDqz926dUNgYCDatGmDAwcOYMKECRpfExUVhYiICNXj4uJihiSix9i9ezf++usvUa1jx4547bXXJOqIiEh3tA5Io0aNwoQJE5CQkIC+ffsCeHCF3Llz56rdfuRRHBwcIJfLkZeXJ6rn5eXBxcVF27ZqZGdnh3bt2uHq1as1bmNpafnIY5qISEzTrNHixYthZlanE2OJiPSO1gEpISEBMpkMoaGhqKysBACYm5tjypQpiI+Pr/U4FhYW8Pf3R0pKCoYOHQrgwRkwKSkpmD59urZt1aikpASZmZkYO3aszsYkMlVlZWUa/53zQGwiMjZaByQLCwts2LABcXFxyMzMBAD4+PjA2tpa628eERGBsLAwBAQEoHfv3khMTERpaSnGjRsHAAgNDYW7uzvi4uIAPDiwOz09XfXn//3vfzh37hxsbGzg6+sLAJgzZw4GDRqENm3a4MaNG4iJiYFcLtdqdouI1G3cuBF37twR1Xr16oWXXnpJoo6IiBpOnS8QZG1tja5du9brm48aNQr5+fmIjo6GQqGAn58fkpKSVAdu5+TkiKbsb9y4gR49eqgeJyQkICEhAf369UNqaiqAB1f5HjNmDAoKCuDo6Iinn34aP/30ExwdHevVK5Ep07SkFh0dDZlMJkE3REQNr9a3Ghk/fnytBqzpGkaGhLcaIXqgpKQEa9euVatzSY2I9JEuf3/XegZp9+7daNOmDXr06IE63L6NiAzMsmXL1P6t9+/fH88++6xEHRERNZ5aB6QpU6Zg7969yMrKwrhx4/Dmm2/C3t6+IXsjIonUdG0jIiJTUetzcrds2YLc3FzMmzcP//73v+Hh4YHXXnsNycnJnFEiMhJ37txhOCIighbHIFX3119/Yffu3fjoo49QWVmJixcvwsbGRtf9SYLHIJEp0hSMXn75ZQQEBEjQDRGR9iQ5Bqk6MzMzyGQyCIKAqqqqejVBRNLirBERkZhWl70tKyvD3r178eKLL6Jdu3b4448/sHnzZuTk5BjN7BGRKcnLy2M4IiLSoNYzSFOnTsW+ffvg4eGB8ePHY+/evXBwcGjI3oioAWkKRiNHjkSnTp0k6IaISL/U+hgkMzMztG7dGj169HjkxeEOHjyos+akwmOQyNhx1oiIjJEkxyCFhobyqrlEBi4nJwe7du1SqzMcERGJaXWhSCIyXJpmjcaOHQtvb28JuiEi0m91PouNiAwHl9SIiLTDgERkxP7880/s3btXrc5wRET0aAxIREZK06zRxIkT4ebmJkE3RESGhQGJyAhxSY2IqH4YkIiMyPnz53Ho0CG1OsMREZF2GJCIjISmWaNp06bxgq5ERHXAgERkBLikRkSkWwxIRAYsLS0Nx44dU6szHBER1Q8DEpGB0jRr9O677/L2OEREOsCARGRgBEHAsmXL1OqcNSIi0h0GJCIDcvz4cZw6dUpUs7a2xty5cyXqiIjIODEgERkITUtq8+bNQ9OmTSXohojIuDEgEek5pVKJ2NhYtTqX1IiIGg4DEpEeO3ToEM6fPy+qubq6YtKkSRJ1RERkGhiQiPSUpiW1qKgoWFhYSNANEZFpYUAi0jNVVVVYvny5Wp1LakREjYcBiUiP/Pvf/8Zvv/0mqv31V28MHTpQoo6IiEwTAxKRntC0pLZ48WKYmZlJ0A0RkWljQCKSWHl5OeLi4tTqXFIjIpIOAxKRhPbt24eMjAxRrX///nj22Wcl6oiIiAAGJCLJaFpSi46Ohkwmk6AbIiL6JwYkokZWWlqKhIQEtTqX1IiI9AcDElEjWrlyJSoqKkS19PSXsH9/L4k6IiIiTRiQiBqJpiW15ORoREZySY2ISN8wIBE1sKKiIiQmJqrVY2JiwFU1IiL9xIBE1IA0zRoNHDgQvXv3lqAbIiKqLQYkogaiKRzxQGwiIsPAgESkY/n5+di6dataneGIiMhwMCAR6ZCmWaPhw4ejS5cuEnRDRER1xYBEpCNcUiMiMh4MSET1dP36dXz44YdqdYYjIiLDxYBEVA+aZo3efPNN+Pj4SNANERHpipnUDWzZsgWenp6wsrJCYGAgTp8+XeO2Fy9exPDhw+Hp6QmZTKbx2jLajklUVzUtqTEcEREZPkkD0v79+xEREYGYmBj89ttv6N69O4KDg3Hz5k2N29+7dw/e3t6Ij4+Hi4uLTsYk0tbVq1d5vBERkZGTCYIgSPXNAwMD0atXL2zevBkAoFQq4eHhgRkzZiAyMvKRr/X09MSsWbMwa9YsnY35UHFxMWxtbVFUVIQWLVpo/8bIaGkKRm+99Rbc3d0l6IaIiP5Jl7+/JZtBKi8vx5kzZxAUFPR/zZiZISgoCGlpaY06ZllZGYqLi0VfRNXVNGvEcEREZHwkC0i3bt1CVVUVnJ2dRXVnZ2coFIpGHTMuLg62traqLw8Pjzp9fzJOv//+O5fUiIhMDM9iAxAVFYWIiAjV4+LiYoYkAqB51mjq1KlwdHSUoBsiImoskgUkBwcHyOVy5OXliep5eXk1HoDdUGNaWlrC0tKyTt+TjBdnjYiITJdkS2wWFhbw9/dHSkqKqqZUKpGSkoI+ffrozZhken766SeGIyIiEyfpEltERATCwsIQEBCA3r17IzExEaWlpRg3bhwAIDQ0FO7u7oiLiwPw4CDs9PR01Z//97//4dy5c7CxsYGvr2+txiR6FE3BaNasWbC1tZWgGyIikoqkAWnUqFHIz89HdHQ0FAoF/Pz8kJSUpDrIOicnB2Zm/zfJdePGDfTo0UP1OCEhAQkJCejXrx9SU1NrNSaRJoIgYNmyZWp1zhoREZkmSa+DpK94HSTTcvjwYZw9e1ZUq6iwxPLltbtuFhER6Qdd/v7mWWxk0jQtqZ04MRsRETYSdENERPqCAYlMklKpRGxsrFo9JiYGXFUjIiIGJDI5n376Ka5evSqqyeVyLFq0SKKOiIhI3zAgkUnRtKQWGRnJ62AREZEIAxKZhMrKSqxYsUKt3qNHDJiNiIioOgYkMnpbt25Ffn6+qNaqVStMnz5doo6IiEjfMSCRUdO0pLZw4UI0acKPPhER1Yy/JcgolZWVIT4+Xq3OCz8SEVFtMCCR0VmxYgUqKytFNR8fH7z55psSdURERIaGAYmMiqYlteTkxTh1SrL7MhMRkQFiQCKjcO/ePaxZs0atnpwcg0jeMYSIiLTEgEQGb9WqVbh//76odv26H3bsGMKrYhMRUZ0wIJFB07ykFo3ISJkE3RARkbFgQCKDVFRUhMTERLU676VGRES6wIBEBkfTWWrBwcF48sknJeqIiIiMDQMSGRRNS2o9esSA2YiIiHSJAYkMQkFBATZv3qxW54UfiYioITAgkd7TNGs0cuRIdOrUSYJuiIjIFDAgkV7TFI44a0RERA2NAYn0Um5uLt5//321OsMRERE1BgYk0juaZo3Gjh0Lb29vCbohIiJTxIBEeoVLakREpA8YkEgvZGdnY8+ePWp1hiMiIpICAxJJTtOs0VtvvQV3d3cJuiEiImJAIolxSY2IiPQRAxJJ4vLly9i/f79aneGIiIj0AQMSNTpNs0bTpk2Dg4ODBN0QERGpY0CiRsUlNSIiMgQMSNQoMjIysG/fPlFNEIAlSxiOiIhI/zAgUYPTNGt04sRsRETYSNANERHR4zEgUYMRBAHLli1Tq8fExICrakREpM8YkKhBnD9/HocOHRLV2rZti9dff12ahoiIiLTAgEQ6p2lJbf78+bCyspKgGyIiIu0xIJHOPGpJjYiIyJAwIJFO/PTTT0hOThbV/Pz8MGTIEIk6IiIiqjsGJKo3TUtqCxYsgLm5uQTdEBER1R8DEtWZUqlEbGysWp1LakREZOgYkKhOTpw4gZMnT4pqffv2xYsvvihRR0RERLrDgERa07SktmjRIsjlcgm6ISIi0j0GJKq1yspKrFixQq3OJTUiIjI2DEhUK0ePHsUvv/wiqr3wwgt4+umnJeqIiIio4ZhJ3QAAbNmyBZ6enrCyskJgYCBOnz79yO0///xzdOjQAVZWVujatSuOHj0qej48PBwymUz0FRIS0pBvwagtXbpULRxFR0czHBERkdGSPCDt378fERERiImJwW+//Ybu3bsjODgYN2/e1Lj9qVOnMGbMGEyYMAFnz57F0KFDMXToUFy4cEG0XUhICHJzc1Vfe/fubYy3Y1TKyso0Hm8UExMDmUwmQUdERESNQyYIgiBlA4GBgejVqxc2b94M4MGp4x4eHpgxYwYiIyPVth81ahRKS0tx5MgRVe3JJ5+En58ftm/fDuDBDFJhYaHavcBqq7i4GLa2tigqKkKLFi3qNIah++KLL3Dx4kVR7ZVXXoG/v79EHRERET2aLn9/SzqDVF5ejjNnziAoKEhVMzMzQ1BQENLS0jS+Ji0tTbQ9AAQHB6ttn5qaCicnJ7Rv3x5TpkxBQUGB7t+AkVq6dKlaOIqOjmY4IiIikyHpQdq3bt1CVVUVnJ2dRXVnZ2dcvnxZ42sUCoXG7RUKhepxSEgIhg0bBi8vL2RmZmLBggUYOHAg0tLSNJ6KXlZWhrKyMtXj4uLi+rwtg3Xv3j2sWbNGrc6z1IiIyNQY5Vlso0ePVv25a9eu6NatG3x8fJCamooXXnhBbfu4uDiNx9qYkt27d+Ovv/4S1UaMGIHOnTtL1BEREZF0JF1ic3BwgFwuR15enqiel5cHFxcXja9xcXHRansA8Pb2hoODA65evarx+aioKBQVFam+rl27puU7MWxLly5VC0cxMTEMR0REZLIkDUgWFhbw9/dHSkqKqqZUKpGSkoI+ffpofE2fPn1E2wPA8ePHa9weAK5fv46CggK4urpqfN7S0hItWrQQfZmC4uLiGs9SIyIiMmWSL7FFREQgLCwMAQEB6N27NxITE1FaWopx48YBAEJDQ+Hu7o64uDgAwMyZM9GvXz+sXbsWL7/8Mvbt24dff/0V77//PgCgpKQES5cuxfDhw+Hi4oLMzEzMmzcPvr6+CA4Olux96pvNmzerHbj+5ptvwsfHR6KOiIiI9IfkAWnUqFHIz89HdHQ0FAoF/Pz8kJSUpDoQOycnB2Zm/zfR1bdvX3z22WdYtGgRFixYgLZt2+LQoUPo0qULAEAul+P333/Hnj17UFhYCDc3NwwYMACxsbGwtLSU5D3qG84aERERPZrk10HSR8Z6HaSCggLV9ab+ieGIiIiMgS5/f0s+g0SNIy4uDuXl5aLa+PHj4eHhIVFHRERE+osByQRwSY2IiEg7DEhGTKFQ4L333lOrMxwRERE9GgOSkdI0azR58mS1q5ATERGROgYkI8QlNSIiovphQDIif/31F3bv3i2qlZU1w8qVc6RpiIiIyEAxIBkJTbNGJ0++g5kzW0rQDRERkWFjQDICXFIjIiLSLQYkA3b9+nV8+OGHopqzszMmT54sUUdERETGgQHJQK1YsQKVlZWiWpcuERg+vLlEHRERERkPBiQDxCU1IiKihsWAZED++9//4uOPPxbV+vTpgwEDBkjUERERkXFiQDIQmmaNIiMjYWlpKUE3RERExo0BSc8JgoBly5ap1bmkRkRE1HAYkPRYYWEhNmzYIKo9//zzeOaZZyTqiIiIyDQwIOmps2fP4vDhw6La8eMLEBNjLlFHREREpoMBSc8IgoCtW7fi1q1bqlpBgRuOHZuI1aslbIyIiMiEMCDpEU1LajNmzIC9vb1EHREREZkmBiQ9cfr0aXzzzTeqx3Z2dnjnnXcgk8kk7IqIiMg0MSBJTBAEJCYmori4WFV76aWX0KtXLwm7IiIiMm0MSBK6ffs2Nm3aJKrNmjULtra2EnVEREREAAOSZE6dOoXjx4+rHjs5OWHy5MlcUiMiItIDDEiNTKlUYs2aNbh//76qNmTIEPj5+UnXFBEREYkwIDWikpISrF27VlSLiIhA8+bNJeqIiIiINGFAakQHDx5U/blZsycwe/Z4LqkRERHpITOpGzAlgwcPRnl5Uxw4MBIHD05gOCIiItJTDEiNyM7ODoGB82Br2wmRkVJ3Q0RERDXhElsjGzz4wRcRERHpL84gEREREVXDgERERERUDQMSERERUTUMSERERETVMCARERERVcOARERERFQNAxIRERFRNQxIRERERNUwIBERERFVw4BEREREVA0DEhEREVE1DEhERERE1TAgEREREVXTROoG9JEgCACA4uJiiTshIiKi2nr4e/vh7/H6YEDS4O7duwAADw8PiTshIiIibd29exe2trb1GkMm6CJmGRmlUokbN26gefPmkMlkUrfT6IqLi+Hh4YFr166hRYsWUrejV7hvasZ9UzPuG824X2rGfVOzR+0bQRBw9+5duLm5wcysfkcRcQZJAzMzMzzxxBNStyG5Fi1a8B9mDbhvasZ9UzPuG824X2rGfVOzmvZNfWeOHuJB2kRERETVMCARERERVcOARGosLS0RExMDS0tLqVvRO9w3NeO+qRn3jWbcLzXjvqlZY+0bHqRNREREVA1nkIiIiIiqYUAiIiIiqoYBiYiIiKgaBiQiIiKiahiQTMSWLVvg6ekJKysrBAYG4vTp04/c/vPPP0eHDh1gZWWFrl274ujRo6Lnw8PDIZPJRF8hISEN+RYajDb75uLFixg+fDg8PT0hk8mQmJhY7zH1la73y5IlS9Q+Mx06dGjAd9BwtNk3O3bswDPPPIOWLVuiZcuWCAoKUtteEARER0fD1dUVTZs2RVBQEK5cudLQb6NB6HrfmOrPmoMHDyIgIAB2dnZo1qwZ/Pz88PHHH4u2MdXPTW32jU4+NwIZvX379gkWFhbCzp07hYsXLwoTJ04U7OzshLy8PI3b//jjj4JcLhdWr14tpKenC4sWLRLMzc2FP/74Q7VNWFiYEBISIuTm5qq+bt++3VhvSWe03TenT58W5syZI+zdu1dwcXER1q9fX+8x9VFD7JeYmBihc+fOos9Mfn5+A78T3dN237z++uvCli1bhLNnzwqXLl0SwsPDBVtbW+H69euqbeLj4wVbW1vh0KFDwvnz54XBgwcLXl5ewt9//91Yb0snGmLfmOrPmhMnTggHDx4U0tPThatXrwqJiYmCXC4XkpKSVNuY6uemNvtGF58bBiQT0Lt3b2HatGmqx1VVVYKbm5sQFxencfvXXntNePnll0W1wMBA4e2331Y9DgsLE4YMGdIg/TYmbffNP7Vp00ZjEKjPmPqiIfZLTEyM0L17dx12KY36/v1WVlYKzZs3F/bs2SMIgiAolUrBxcVFWLNmjWqbwsJCwdLSUti7d69um29gut43gsCfNf/Uo0cPYdGiRYIg8HNT3T/3jSDo5nPDJTYjV15ejjNnziAoKEhVMzMzQ1BQENLS0jS+Ji0tTbQ9AAQHB6ttn5qaCicnJ7Rv3x5TpkxBQUGB7t9AA6rLvpFizMbWkO/hypUrcHNzg7e3N9544w3k5OTUt91GpYt9c+/ePVRUVMDe3h4AkJWVBYVCIRrT1tYWgYGBBvOZARpm3zxk6j9rBEFASkoKMjIy8OyzzwLg5+YhTfvmofp+bnizWiN369YtVFVVwdnZWVR3dnbG5cuXNb5GoVBo3F6hUKgeh4SEYNiwYfDy8kJmZiYWLFiAgQMHIi0tDXK5XPdvpAHUZd9IMWZja6j3EBgYiN27d6N9+/bIzc3F0qVL8cwzz+DChQto3rx5fdtuFLrYN/Pnz4ebm5vqF8LDf1eP+zen7xpi3wCm/bOmqKgI7u7uKCsrg1wux9atW/Hiiy8C4OfmUfsG0M3nhgGJ6mT06NGqP3ft2hXdunWDj48PUlNT8cILL0jYGemrgQMHqv7crVs3BAYGok2bNjhw4AAmTJggYWeNJz4+Hvv27UNqaiqsrKykbkev1LRvTPlnTfPmzXHu3DmUlJQgJSUFERER8Pb2xnPPPSd1a5J73L7RxeeGS2xGzsHBAXK5HHl5eaJ6Xl4eXFxcNL7GxcVFq+0BwNvbGw4ODrh69Wr9m24kddk3UozZ2BrrPdjZ2aFdu3Ym85lJSEhAfHw8jh07hm7duqnqD19nyJ8ZoGH2jSam9LPGzMwMvr6+8PPzw+zZszFixAjExcUB4OfmUftGk7p8bhiQjJyFhQX8/f2RkpKiqimVSqSkpKBPnz4aX9OnTx/R9gBw/PjxGrcHgOvXr6OgoACurq66abwR1GXfSDFmY2us91BSUoLMzEyT+MysXr0asbGxSEpKQkBAgOg5Ly8vuLi4iMYsLi7Gzz//bDCfGaBh9o0mpvyzRqlUoqysDAA/N9X9c99oUqfPTb0O8SaDsG/fPsHS0lLYvXu3kJ6eLkyaNEmws7MTFAqFIAiCMHbsWCEyMlK1/Y8//ig0adJESEhIEC5duiTExMSITvO/e/euMGfOHCEtLU3IysoSvv32W6Fnz55C27Zthfv370vyHutK231TVlYmnD17Vjh79qzg6uoqzJkzRzh79qxw5cqVWo9pCBpiv8yePVtITU0VsrKyhB9//FEICgoSHBwchJs3bzb6+6sPbfdNfHy8YGFhIXzxxReiU47v3r0r2sbOzk746quvhN9//10YMmSIwZ6urct9Y8o/a1auXCkcO3ZMyMzMFNLT04WEhAShSZMmwo4dO1TbmOrn5nH7RlefGwYkE7Fp0yahdevWgoWFhdC7d2/hp59+Uj3Xr18/ISwsTLT9gQMHhHbt2gkWFhZC586dha+//lr13L1794QBAwYIjo6Ogrm5udCmTRth4sSJBhUA/kmbfZOVlSUAUPvq169frcc0FLreL6NGjRJcXV0FCwsLwd3dXRg1apRw9erVRnxHuqPNvmnTpo3GfRMTE6PaRqlUCosXLxacnZ0FS0tL4YUXXhAyMjIa8R3pji73jSn/rFm4cKHg6+srWFlZCS1bthT69Okj7Nu3TzSeqX5uHrdvdPW5kQmCINR+vomIiIjI+PEYJCIiIqJqGJCIiIiIqmFAIiIiIqqGAYmIiIioGgYkIiIiomoYkIiIiIiqYUAiIiIiqoYBiYiIiKgaBiQiMngKhQIzZsyAt7c3LC0t4eHhgUGDBqnu7+Tp6YnExES11y1ZsgR+fn4ax9y3bx9kMhmGDh3acI0Tkd5qInUDRET1kZ2djaeeegp2dnZYs2YNunbtioqKCiQnJ2PatGm4fPlyncacM2cOnnnmmQbomIgMAQMSERm0qVOnQiaT4fTp02jWrJmq3rlzZ4wfP17r8aqqqvDGG29g6dKl+P7771FYWKjDbonIUHCJjYgM1u3bt5GUlIRp06aJwtFDdnZ2Wo+5bNkyODk5YcKECTrokIgMFWeQiMhgXb16FYIgoEOHDo/ddv78+Vi0aJGoVl5ejk6dOqke//DDD/jwww9x7tw5XbdKRAaGAYmIDJYgCLXedu7cuQgPDxfVNm7ciJMnTwIA7t69i7Fjx2LHjh1wcHDQZZtEZIAYkIjIYLVt2xYymaxWB2I7ODjA19dXVLO3t1f9OTMzE9nZ2Rg0aJCqplQqAQBNmjRBRkYGfHx8dNQ5Eek7HoNERAbL3t4ewcHB2LJlC0pLS9We1+YA6w4dOuCPP/7AuXPnVF+DBw9G//79ce7cOXh4eOiwcyLSd5xBIiKDtmXLFjz11FPo3bs3li1bhm7duqGyshLHjx/Htm3bcOnSpVqNY2VlhS5duohqDw/yrl4nIuPHgEREBs3b2xu//fYbVqxYgdmzZyM3NxeOjo7w9/fHtm3bpG6PiAyUTNDmKEciIiIiE8BjkIiIiIiqYUAiIiIiqoYBiYiIiKgaBiQiIiKiahiQiIiIiKphQCIiIiKqhgGJiIiIqBoGJCIiIqJqGJCIiIiIqmFAIiIiIqqGAYmIiIioGgYkIiIiomr+H9big4ycYGosAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_32.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLVklEQVR4nO3deVhUZf8/8PeALIIIIgiiIO64JYSK+FSo8RXNNbUHLRfc9yXSEjMRNzRFcUtLxaVU1CdFHjWtEFOTMtdcUNFAXABxAQSVbc7vD3/O02kGZWBmzizv13Vx2XzmzJnPOZrz9r7PnFsmCIIAIiIiIhNiJnUDRERERLrGAEREREQmhwGIiIiITA4DEBEREZkcBiAiIiIyOQxAREREZHIYgIiIiMjkMAARERGRyWEAIiIiIpPDAEREBksmk2HOnDlSt6EQEhICT09PqdsgonJgACIijdq8eTNkMpnix9raGk2aNMHEiRORlZWl1fc+efIk5syZg5ycHI3ut2PHjqJjcnR0RNu2bRETEwO5XK6R91i4cCHi4uI0si8ier0qUjdARMZp7ty5qF+/Pp4/f44TJ05g7dq1OHjwIC5dugQbGxuNvMezZ89Qpcr//ho7efIkIiIiEBISAgcHB428x0t169ZFZGQkACA7Oxtbt27FiBEjcP36dSxatKjS+1+4cCH69++PPn36VHpfRPR6DEBEpBXdunVDmzZtAAAjR45EzZo1sWzZMuzbtw8DBw6s8H7lcjmKiopgbW0Na2trTbX7Wvb29hg0aJDi8ZgxY9C0aVOsXr0a8+bNg4WFhc56IaLK4xQYEelE586dAQCpqakAgKVLl6JDhw6oWbMmqlatCl9fX/znP/9Rep1MJsPEiROxbds2tGjRAlZWVjh06JDiuZfXAM2ZMwfTp08HANSvX18xXZWWloaAgAC0bt1aZV9NmzZFUFCQ2sdjY2OD9u3bo6CgANnZ2WVuV1BQgE8++QTu7u6wsrJC06ZNsXTpUgiCIDrGgoICbNmyRdF3SEiI2j0RUflxBIiIdOLmzZsAgJo1awIAVqxYgV69euGjjz5CUVERYmNj8cEHH2D//v3o3r276LVHjhzBrl27MHHiRDg5Oam80Lhv3764fv06duzYgeXLl8PJyQkA4OzsjMGDB2PUqFG4dOkSWrZsqXjNH3/8gevXr2PWrFkVOqa//voL5ubmZU63CYKAXr16ITExESNGjIC3tzcOHz6M6dOn4+7du1i+fDkA4Ntvv8XIkSPRrl07jB49GgDQsGHDCvVEROUkEBFp0KZNmwQAws8//yxkZ2cLt2/fFmJjY4WaNWsKVatWFe7cuSMIgiA8ffpU9LqioiKhZcuWQufOnUV1AIKZmZlw+fJlpfcCIISHhyseL1myRAAgpKamirbLyckRrK2thc8++0xUnzx5smBrayvk5+e/8pgCAgIELy8vITs7W8jOzhaSk5OFyZMnCwCEnj17KrYbOnSoUK9ePcXjuLg4AYAwf/580f769+8vyGQy4caNG4qara2tMHTo0Ff2QUSawykwItKKwMBAODs7w93dHQMGDEC1atWwd+9e1KlTBwBQtWpVxbaPHz9Gbm4u3n77bZw9e1ZpXwEBAWjevHmFe7G3t0fv3r2xY8cOxdRTaWkpdu7ciT59+sDW1va1+7h69SqcnZ3h7OyMZs2aYdWqVejevTtiYmLKfM3Bgwdhbm6OyZMni+qffPIJBEHADz/8UOFjIqLK4RQYEWnFmjVr0KRJE1SpUgUuLi5o2rQpzMz+92+u/fv3Y/78+Th//jwKCwsVdZlMprSv+vXrV7qfIUOGYOfOnTh+/Djeeecd/Pzzz8jKysLgwYPL9XpPT0+sX79e8dX+xo0bo1atWq98za1bt+Dm5gY7OztRvVmzZorniUgaDEBEpBXt2rVTfAvsn44fP45evXrhnXfewVdffYXatWvDwsICmzZtwvbt25W2//toUUUFBQXBxcUF3333Hd555x189913cHV1RWBgYLleb2trW+5tiUj/cQqMiHTu+++/h7W1NQ4fPozhw4ejW7duGgkXqkaPXjI3N8eHH36I//znP3j8+DHi4uIwcOBAmJubV/p9y1KvXj3cu3cPT548EdWvXr2qeP6lV/VORJrHAEREOmdubg6ZTIbS0lJFLS0trdJ3Qn55LU9Zd4IePHgwHj9+jDFjxiA/P190Xx9teO+991BaWorVq1eL6suXL4dMJkO3bt0UNVtbW43fwZqIysYpMCLSue7du2PZsmXo2rUrPvzwQ9y/fx9r1qxBo0aN8Oeff1Z4v76+vgCAzz//HAMGDICFhQV69uypCEY+Pj5o2bIldu/ejWbNmuHNN9/UyPGUpWfPnujUqRM+//xzpKWloXXr1vjxxx+xb98+TJ06VfRVd19fX/z8889YtmwZ3NzcUL9+ffj5+Wm1PyJTxhEgItK5zp07Y+PGjcjMzMTUqVOxY8cOLF68GO+//36l9tu2bVvMmzcPFy5cQEhICAYOHKh0k8IhQ4YAQLkvfq4MMzMzxMfHY+rUqdi/fz+mTp2KK1euYMmSJVi2bJlo22XLlsHX1xezZs3CwIEDsXbtWq33R2TKZILwt9uREhEZuRUrVuDjjz9GWloaPDw8pG6HiCTCAEREJkMQBLRu3Ro1a9ZEYmKi1O0QkYR4DRARGb2CggLEx8cjMTERFy9exL59+6RuiYgkxhEgIjJ6aWlpqF+/PhwcHDB+/HgsWLBA6paISGIMQERERGRy+C0wIiIiMjkMQERERGRyeBG0CnK5HPfu3YOdnR1vT09ERGQgBEHAkydP4ObmJlp8WRUGIBXu3bsHd3d3qdsgIiKiCrh9+zbq1q37ym0YgFSws7MD8OIEVq9eXeJuiIiIqDzy8vLg7u6u+Bx/FQYgFV5Oe1WvXp0BiIiIyMCU5/IVXgRNREREJocBiIiIiEwOAxARERGZHF4DVAmlpaUoLi6Wug3SAUtLy9d+pZKIiAwHA1AFCIKAzMxM5OTkSN0K6YiZmRnq168PS0tLqVshIiINYACqgJfhp1atWrCxseHNEo3cyxtjZmRkwMPDg7/fRERGgAFITaWlpYrwU7NmTanbIR1xdnbGvXv3UFJSAgsLC6nbISKiSuJFDWp6ec2PjY2NxJ2QLr2c+iotLZW4EyIi0gQGoAriNIhp4e83EZFxYQAiIiIik8MARERERCaHAciEhISEQCaTQSaTwcLCAi4uLvi///s/xMTEQC6Xl3s/mzdvhoODg/YaJSIi0jIGIBPTtWtXZGRkIC0tDT/88AM6deqEKVOmoEePHigpKZG6PSIiIp1gADIxVlZWcHV1RZ06dfDmm29i5syZ2LdvH3744Qds3rwZALBs2TK0atUKtra2cHd3x/jx45Gfnw8AOHr0KIYNG4bc3FzFaNKcOXMAAN9++y3atGkDOzs7uLq64sMPP8T9+/clOlIiItJX339fgA4dBMTHS9cDA5AGCIKAoqIinf8IgqCR/jt37ozWrVtjz549AF7c9XjlypW4fPkytmzZgiNHjuDTTz8FAHTo0AHR0dGoXr06MjIykJGRgWnTpgF4cYuAefPm4cKFC4iLi0NaWhpCQkI00iMRERm+zMxMRERE4NKlpTA3P4FFi6TrhTdC1IDi4mJERkbq/H3DwsI0tjSDl5cX/vzzTwDA1KlTFXVPT0/Mnz8fY8eOxVdffQVLS0vY29tDJpPB1dVVtI/hw4cr/rtBgwZYuXIl2rZti/z8fFSrVk0jfRIRkWHatGkT0tPTFY+Li+0wc6Z0/TAAEYAXo1gv73Xz888/IzIyElevXkVeXh5KSkrw/PlzPH369JU3gDxz5gzmzJmDCxcu4PHjx4oLq9PT09G8eXOdHAcREekXuVyOefPmiWp5eS6YOdMbvXpJ1BQYgDTCwsICYWFhkryvpiQnJ6N+/fpIS0tDjx49MG7cOCxYsACOjo44ceIERowYgaKiojIDUEFBAYKCghAUFIRt27bB2dkZ6enpCAoKQlFRkcb6JCIiw5GSkoLt27eLah9++CEaN24sUUf/wwCkATKZzKBXCT9y5AguXryIjz/+GGfOnIFcLkdUVBTMzF5cIrZr1y7R9paWlkpLQly9ehUPHz7EokWL4O7uDgA4ffq0bg6AiIj0TmRkpNI/gL/44gvFZ4vUGIBMTGFhITIzM1FaWoqsrCwcOnQIkZGR6NGjB4YMGYJLly6huLgYq1atQs+ePfHrr79i3bp1on14enoiPz8fCQkJaN26NWxsbODh4QFLS0usWrUKY8eOxaVLl5SGPImIyPgVFRUpXRfr4eGBYcOGSdSRavoRw0hnDh06hNq1a8PT0xNdu3ZFYmIiVq5ciX379sHc3BytW7fGsmXLsHjxYrRs2RLbtm1T+oPcoUMHjB07FsHBwXB2dsaXX34JZ2dnbN68Gbt370bz5s2xaNEiLF26VKKjJCIiKfzxxx9KnxljxozRu/ADADJBU9+lNiJ5eXmwt7dHbm4uqlevLnru+fPnSE1NRf369WFtbS1Rh6Rr/H0nInq1iIgIpVp4eLhOe3jV5/c/cQqMiIiIKiw/Px9RUVGiWps2bdC9e3eJOiofBiAiIiKqkEOHDuH3338X1T7++OPXjr7oAwYgIiIiUps+THlVBgMQERERlVtqaiq2bt0qqgUFBaF9+/YSdVQxDEBERERULqpGfd54Ywbat7eSoJvK4dfgiYiI6JXkcrnK8DNnTjiWLDG88ANwBIiIiIhe4fTp0zhw4ICoFhgYiIcP/wV/f2DGDIkaqyQGICIiIlJJ1ajPrFmzYG5uDgCSLmZaWQxAREREJPLs2TN8+eWXSnVD+pbX6zAAkcaFhIQgJycHcXFxAICOHTvC29sb0dHRFd6nJvZBRESvt2HDBty9e1dUGzhwIJo0aSJRR9oh+UXQa9asgaenJ6ytreHn54dTp06Vue3ly5fRr18/eHp6QiaTqfwwPHbsGHr27Ak3NzfIZDLFhzC9CCYymUyxen2jRo0wd+5clJSUaPV99+zZU+6FUY8ePQqZTIacnJwK74OIiComIiJCKfwcPjwbV68aV/gBJA5AO3fuRGhoKMLDw3H27Fm0bt0aQUFBuH//vsrtnz59igYNGmDRokVwdXVVuU1BQQFat26NNWvWaLN1g9W1a1dkZGQgJSUFn3zyCebMmYMlS5YobVdUVKSx93R0dISdnZ3k+yAiItXu37+v8nqfw4fDkZQkw6JFEjSlZZIGoGXLlmHUqFEYNmwYmjdvjnXr1sHGxgYxMTEqt2/bti2WLFmCAQMGwMpK9dfuunXrhvnz5+P999/XZusGy8rKCq6urqhXrx7GjRuHwMBAxMfHIyQkBH369MGCBQvg5uaGpk2bAgBu376Nf//733BwcICjoyN69+6NtLQ0xf5KS0sRGhoKBwcH1KxZE59++in+ub5ux44dMXXqVMXjwsJCfPbZZ3B3d4eVlRUaNWqEjRs3Ii0tDZ06dQIA1KhRAzKZDCEhISr38fjxYwwZMgQ1atSAjY0NunXrhpSUFMXzmzdvhoODAw4fPoxmzZqhWrVqivD30tGjR9GuXTvY2trCwcEB//rXv3Dr1i0NnWkiIsMQERGBtWvXimrDhg1DeHg4ZsyAQX/T61UkC0BFRUU4c+YMAgMD/9eMmRkCAwORlJSk014KCwuRl5cn+jEVVatWVYz2JCQk4Nq1a/jpp5+wf/9+FBcXIygoCHZ2djh+/Dh+/fVXRZB4+ZqoqChs3rwZMTExOHHiBB49eoS9e/e+8j2HDBmCHTt2YOXKlUhOTsbXX3+NatWqwd3dHd9//z0A4Nq1a8jIyMCKFStU7iMkJASnT59GfHw8kpKSIAgC3nvvPRQXFyu2efr0KZYuXYpvv/0Wx44dQ3p6OqZNmwYAKCkpQZ8+fRAQEIA///wTSUlJGD16NGQyWaXPKRGRoShrOQsPDw8AL77ldfKkYX/bqyySXQT94MEDlJaWwsXFRVR3cXHB1atXddpLZGSkyj8ExkwQBCQkJODw4cOYNGkSsrOzYWtriw0bNsDS0hIA8N1330Eul2PDhg2KYLBp0yY4ODjg6NGj6NKlC6KjoxEWFoa+ffsCANatW4fDhw+X+b7Xr1/Hrl278NNPPynCb4MGDRTPOzo6AgBq1aoFBwcHlftISUlBfHw8fv31V3To0AEAsG3bNri7uyMuLg4ffPABAKC4uBjr1q1Dw4YNAQATJ07E3LlzAQB5eXnIzc1Fjx49FM83a9ZM/RNJRGSAkpOTsWvXLlGtShVbfP75NIk60j3JL4LWB2FhYcjNzVX83L59W2fvHR8PdOjw4ldd2L9/P6pVqwZra2t069YNwcHBmDNnDgCgVatWivADABcuXMCNGzdgZ2eHatWqoVq1anB0dMTz589x8+ZN5ObmIiMjA35+forXVKlSBW3atCnz/c+fPw9zc3MEBARU+BiSk5NRpUoV0fvWrFkTTZs2RXJysqJmY2OjCDcAULt2bcX1ZY6OjggJCUFQUBB69uyJFStWiKbHiIiMVUREhFL4mTp1qkmFH0DCESAnJyeYm5sjKytLVM/KyirzAmdtsbKyKvOaIm1btAhISnrxqy6GGDt16oS1a9fC0tISbm5uqFLlf38EbG1tRdvm5+fD19cX27ZtU9qPs7Nzhd6/atWqFXpdRVhYWIgey2Qy0fVJmzZtwuTJk3Ho0CHs3LkTs2bNwk8//WRwC/oREZWHXC5X+W1aY7q3jzokGwGytLSEr68vEhISFDW5XI6EhAT4+/tL1ZbO6foCM1tbWzRq1AgeHh6i8KPKm2++iZSUFNSqVQuNGjUS/djb28Pe3h61a9fG77//rnhNSUkJzpw5U+Y+W7VqBblcjl9++UXl8y9HoEpLS8vcR7NmzVBSUiJ634cPH+LatWto3rz5K4/pn3x8fBAWFoaTJ0+iZcuW2L59u1qvJyIyBImJiUrhp2XLliYbfgCJp8BCQ0Oxfv16bNmyBcnJyRg3bhwKCgowbNgwAC8ulg0LC1NsX1RUhPPnz+P8+fMoKirC3bt3cf78edy4cUOxTX5+vmIbAEhNTcX58+eRnp6u02MrL32+wOyjjz6Ck5MTevfujePHjyM1NRVHjx7F5MmTcefOHQDAlClTsGjRIsTFxeHq1asYP3680j18/s7T0xNDhw7F8OHDERcXp9jny+HYevXqQSaTYf/+/cjOzkZ+fr7SPho3bozevXtj1KhROHHiBC5cuIBBgwahTp066N27d7mOLTU1FWFhYUhKSsKtW7fw448/IiUlhdcBEZHRiYiIwLFjx0S1mTNnol+/fhJ1pB8kDUDBwcFYunQpZs+eDW9vb5w/fx6HDh1SXBidnp4uui7j3r178PHxgY+PDzIyMrB06VL4+Phg5MiRim1Onz6t2AZ4EbJ8fHwwe/Zs3R6cEbCxscGxY8fg4eGBvn37olmzZhgxYgSeP3+O6tWrAwA++eQTDB48GEOHDoW/vz/s7OxeewuCtWvXon///hg/fjy8vLwwatQoFBQUAADq1KmDiIgIzJgxAy4uLpg4caLKfWzatAm+vr7o0aMH/P39IQgCDh48qDTt9apju3r1Kvr164cmTZpg9OjRmDBhAsaMGaPGGSIi0l/Pnz8v81te5f270pjJhH/etIWQl5cHe3t75ObmKj7oX3r+/DlSU1NRv359WFtbS9Qh6Rp/34nIkGzduhWpqamiWteuXUVfHjFGr/r8/ieuBUZERGREVI36zJ49m/c5+wcGICIiIiPw4MEDlctAmfKFzq/CAERERGTgVI36DBkyBPXr15egG8PAAERERGTAyrrQmV6NAaiCeO24aeHvNxHpm+vXr2PHjh2imoWFBWbOnClRR4aFAUhNL786+PTpU53e1Zik9XLxV3Nzc4k7ISJSPeozefJk1KhRQ4JuDBMDkJrMzc3h4OCgWFPKxsaGV9YbOblcjuzsbNjY2Lz27tlERNokCIJiUee/45SX+vi3eQW8XKvsZQgi42dmZgYPDw+GXSKSzPHjx3HkyBFRzcvLC8HBwRJ1ZNgYgCpAJpOhdu3aqFWrFoqLi6Vuh3TA0tISZmaS3jidiEyYqimvsLAwxfqJpD4GoEowNzfnNSFERKQ1z58/x+LFi5XqnPKqPAYgIiIiPRQdHY3c3FxRzc0tEKNG/UuijowLx/SJiIj0TEREhFL4mTNnNjZtYvjRFI4AERER6Yn79+9j7dq1SnUfn3D4+wMzZkjQlJFiACIiItIDqi507tu3L1q1agUA6NVL1x0ZNwYgIiIiiXE5C91jACIiIpJISkoKtm/frlRn+NE+BiAiIiIJqBr1GTt2LFxcXCToxvQwABEREelQWctZ+PiEg9lHdxiAiIiIdCQpKQk//vijqPbgQUOsXj0I/v680FmXGICIiIh0QNWU14wZM3D4sBXOnOFX3HWNAYiIiEiLiouLsXDhQqX6ywude/XiyI8UGICIiIi0ZNeuXUhOThbVOnbsiICAAIk6opcYgIiIiLRA1ZTX7NmzIZPJJOiG/okBiIiISINycnKwYsUKpTrv7aNfGICIiIg0ZPHixXj+/LmoNmDAADRt2lSijqgsDEBEREQawOUsDAsDEBERUSWkpaVhy5YtSnWGH/3GAERERFRBqkZ9xo8fD2dnZwm6IXUwABEREamprOUsOOpjOBiAiIiI1HDq1Cn88MMPolq9evUQEhIiTUNUIQxARERE5aRqyuuzzz6DtbW1BN1QZTAAERERvcbrlrMgw8MARERE9Ap79+7Fn3/+Kaq9/fbb6Ny5s0QdkSYwABEREZVB1ZTXF198ATMzMwm6IU1iACIiIvqHvLw8LF++XKnOKS/jwQBERET0N1FRUcjPzxfVPvjgAzRv3lyijkgbGICIiIj+Py5nYToYgIiIyOTdvn0bMTExSnWGH+PFAERERCZN1ajP2LFj4eLiIkE3pCsMQEREZJK4nIVpYwAiIiKTk5SUhB9//FFUc3Nzw6hRoyTqiHSNAYiIiEyKqimv6dOnw8bGRoJuSCoMQEREZBK4nAX9HQMQEREZva+++grZ2dmi2p073ujZs7dEHZHUGICIiMioqZry8vaehfBwcwm6IX3BAEREREbp8ePHWLlypVJ9zpxw+PsDvTn4Y9IYgIiIyOioGvXp1KkTcnLegb8/MGOGBE2RXmEAIiIio/K65Sx69dJlN6SvGICIiMgopKSkYPv27Up1fsuLVGEAIiIig6dq1GfQoEFo2LChBN2QIWAAIiIig8YV3KkiGICIiMggJSYm4tixY0p1hh8qDwYgIiIyOKpGfaZOnQp7e3sJuiFDxABEREQGo7S0FPPnz1eqc9SH1MUAREREBmHDhg24e/euqFa7dm2MHj1aoo7IkDEAERGR3lM15fX555+jShV+jFHF8E8OERHprby8PCxfvlypzikvqiwGICIi0kuqRn3efvttdO7cWYJuyNiYSd0AAKxZswaenp6wtraGn58fTp06Vea2ly9fRr9+/eDp6QmZTIbo6OhK75OIiPRLWff2YfghTZE8AO3cuROhoaEIDw/H2bNn0bp1awQFBeH+/fsqt3/69CkaNGiARYsWwdXVVSP7JCIi/ZCamsobG5JOyARBEKRswM/PD23btsXq1asBAHK5HO7u7pg0aRJmvGa5Xk9PT0ydOhVTp07V2D6BF3PO9vb2yM3NRfXq1St2YEREpBZVwWfgwIFo0qSJBN2QIVLn81vSEaCioiKcOXMGgYGBipqZmRkCAwORlJSks30WFhYiLy9P9ENERLpT1qgPww9pi6QB6MGDBygtLYWLi4uo7uLigszMTJ3tMzIyEvb29oofd3f3Cr03ERGp58SJE5zyIknwW2AAwsLCEBoaqnicl5fHEEREpGWqgs+kSZPg6OgoQTdkaiQNQE5OTjA3N0dWVpaonpWVVeYFztrYp5WVFaysrCr0fkREpB4uZ0H6QNIpMEtLS/j6+iIhIUFRk8vlSEhIgL+/v97sk4iINGPr1q1K4admzZoMP6Rzkk+BhYaGYujQoWjTpg3atWuH6OhoFBQUYNiwYQCAIUOGoE6dOoiMjATw4iLnK1euKP777t27OH/+PKpVq4ZGjRqVa59ERKR7qqa8Zs6cCQsLCwm6IVMneQAKDg5GdnY2Zs+ejczMTHh7e+PQoUOKi5jT09NhZva/gap79+7Bx8dH8Xjp0qVYunQpAgICcPTo0XLtk4iIdCc/Px9RUVFKdY76kJQkvw+QPuJ9gIiINEPVqI+zc3uMHx8kQTdk7AzmPkBERGS8VIWfOXNm47vvGH5IepJPgRERkXG5efMmvvvuO6W6j084/P2BctyQn0jrGICIiEhjVI36XLzYC0OG+KBXL6BXLwmaIlKBAYiIiDSCd3QmQ8IARERElfL777/j0KFDSnUfH4Yf0l8MQEREVGGqRn0mTJgAJycnCbohKj8GICIiUptcLse8efOU6pzyIkPBAERERGqJjY3FtWvXRDU7OzvRotJE+o4BiIiIyk3VlFdYWBgsLS0l6Iao4hiAiIjotZ4+fYolS5Yo1TnlRYaKAYiIiF5J1aiPr68vevToIUE3RJrBAERERGVSFX5mz54NmUwmQTdEmsMARERESu7evYsNGzYo1TnlRcaCAYiIiERUjfr07dsXrVq1kqAbIu1gACIiIgUuZ0GmggGIiIhw5swZ7N+/X6nO8EPGigGIiMjEqRr1GTduHGrVqiVBN0S6wQBERGSiBEHA3Llzleoc9SFTwABERGSCvv/+e1y6dElUs7KywowZMyTqiEi3GICIiEyMqimvzz77DNbW1hJ0QyQNBiAiIhPx7NkzfPnll0p1TnmRKWIAIiIyAQsWLEBJSYmo9sYbb+D999+XqCMiaTEAEREZOS5nQaSMAYiIyEhlZmbi66+/VqpzyouoAgHI3NwcGRkZSveHePjwIWrVqoXS0lKNNUdERBWjatSnV69e8PHxkaAbIv2jdgASBEFlvbCwEJaWlpVuiIiIKofLWRC9XrkD0MqVKwEAMpkMGzZsQLVq1RTPlZaW4tixY/Dy8tJ8h0REVC7Xrl1DbGysUp3hh0hZuQPQ8uXLAbwYAVq3bh3Mzc0Vz1laWsLT0xPr1q3TfIdERPRaqkZ9xo8fD2dnZwm6IdJ/5Q5AqampAIBOnTphz549qFGjhtaaIiKi8uFyFkQVo/Y1QImJidrog4iI1HT06FH88ssvopqLiwvGjh0rUUdEhkPtADR8+PBXPh8TE1PhZoiIqHy4nAVR5agdgB4/fix6XFxcjEuXLiEnJwedO3fWWGNERKSsqKgIkZGRSnVOeRGpR+0AtHfvXqWaXC7HuHHj0LBhQ400RUREyjZv3oxbt26Jau3bt0dQUJBEHREZLplQ1o191HTt2jV07NgRGRkZmtidpPLy8mBvb4/c3FxUr15d6naIiLicBVE5qPP5rbGlMG7evKm00B4REVXOo0ePsGrVKqU6p7yIKkftABQaGip6LAgCMjIycODAAQwdOlRjjRERmTpVoz79+vVDy5YtJeiGyLioHYDOnTsnemxmZgZnZ2dERUW99htiRERUPlzOgki7eB8gIiI9cuPGDWzbtk2pzvBDpFkVvgbo/v37uHbtGgCgadOmSqvDExGRelSN+owZMwaurq4SdENk3MzUfUFeXh4GDx4MNzc3BAQEICAgAHXq1MGgQYOQm5urjR6JiIyaIAgqw4+PTzjDD5GWqB2ARo0ahd9//x0HDhxATk4OcnJysH//fpw+fRpjxozRRo9EREbr1KlTSmt5eXh4IDw8HL16SdQUkQlQ+z5Atra2OHz4MN566y1R/fjx4+jatSsKCgo02qAUeB8gItIFLmdBpFlavQ9QzZo1YW9vr1S3t7fnCvFEROVQUlKCBQsWKNV5oTOR7qgdgGbNmoXQ0FB8++23irnpzMxMTJ8+HV988YXGGyQiMiZ79+7Fn3/+Kaq99dZbePfddyXqiMg0qT0F5uPjgxs3bqCwsBAeHh4AgPT0dFhZWaFx48aibc+ePau5TnWIU2BEpA2qpry++OILmJmpfTkmEamg1Smw3r17c+0ZIiI15OXlYfny5Up1TnkRSUdji6EaE44AEZGmLFu2DE+ePBHV+vfvjxYtWkjUEZHxUufzW+1x1wYNGuDhw4dK9ZycHDRo0EDd3RERGa2IiAil8BMeHs7wQ6QH1J4CS0tLQ2lpqVK9sLAQd+7c0UhTRESG7Pbt24iJiVGqc8qLSH+UOwDFx8cr/vvw4cOir8KXlpYiISEB9evX12x3REQGRtWFzmPHjoWLi4sE3RBRWcodgPr06QMAkMlkGDp0qOg5CwsLeHp6IioqSqPNEREZEq7gTmQ4yh2A5HI5AKB+/fr4448/4OTkpLWmiIgMydmzZ/Hf//5XVKtduzZGjx4tUUdE9DpqXwOUmpqqjT6IiAySqlGf6dOnw8bGRoJuiKi81A5A/1y0759mz55d4WaIiAxFaWkp5s+fr1TnlBeRYVA7AO3du1f0uLi4GKmpqahSpQoaNmzIAERERu+///2v0p3u27dvj6CgIIk6IiJ1qR2Azp07p1TLy8tDSEgI3n//fY00RUSkr7icBZFx0NidoC9evIiePXsiLS1NE7uTFO8ETUT/lJ+fr/KbrpzyItIfWl0LrCy5ubnIzc3V1O6IiPTGqlWr8OjRI1Gtb9++aNWqlUQdEVFlqT1mu3LlStHPihUrMGPGDAQHB6Nbt24VamLNmjXw9PSEtbU1/Pz8cOrUqVduv3v3bnh5ecHa2hqtWrXCwYMHRc9nZWUhJCQEbm5usLGxQdeuXZGSklKh3ojItEVERCiFn/DwcIYfIgOn9gjQP1c0NjMzg7OzM4YOHYqwsDC1G9i5cydCQ0Oxbt06+Pn5ITo6GkFBQbh27Rpq1aqltP3JkycxcOBAREZGokePHti+fTv69OmDs2fPomXLlhAEAX369IGFhQX27duH6tWrY9myZQgMDMSVK1dga2urdo9EZHru3r2LDRs2KNU55UVkHCRfDd7Pzw9t27bF6tWrAby44aK7uzsmTZqEGTNmKG0fHByMgoIC7N+/X1Fr3749vL29sW7dOly/fh1NmzbFpUuXFAsOyuVyuLq6YuHChRg5cuRre+I1QESmTdWFzqNGjYKbm5sE3RBReWl1NXjgxcrvp0+fxunTp5GTk1ORXQAAioqKcObMGQQGBv6vITMzBAYGIikpSeVrkpKSRNsDQFBQkGL7wsJCAIC1tbVon1ZWVjhx4oTKfRYWFiIvL0/0Q0SmqazlLBh+iIyLWgEoLS0N3bt3h5OTE/z8/ODn5wcnJyf06NGjQt/+evDgAUpLS5UWCXRxcUFmZqbK12RmZr5yey8vL3h4eCAsLAyPHz9GUVERFi9ejDt37iAjI0PlPiMjI2Fvb6/4cXd3V/tYiMiwXbhwQSn85Oc7wceHU15Exqjc1wDdvn0b7du3h4WFBebNm4dmzZoBAK5cuYK1a9fC398ff/zxB+rWrau1ZsvDwsICe/bswYgRI+Do6Ahzc3MEBgaiW7duKGu2LywsDKGhoYrHeXl5DEFEJkTVqM+0adN4zSCRESt3AJozZw6aNm2Kw4cPi6aX+vTpg48//hhdu3bFnDlzVF40WBYnJyeYm5sjKytLVM/KyoKrq6vK17i6ur52e19fX5w/fx65ubkoKiqCs7Mz/Pz80KZNG5X7tLKygpWVVbn7JiLjwOUsiExXuafADh06hAULFojCz0tVq1bFvHnzlL6O/jqWlpbw9fVFQkKCoiaXy5GQkAB/f3+Vr/H39xdtDwA//fSTyu3t7e3h7OyMlJQUnD59Gr1791arPyIyXj/88INS+GnTpg3DD5GJKPcI0IMHD+Dp6Vnm8w0aNFC6V0Z5hIaGYujQoWjTpg3atWuH6OhoFBQUYNiwYQCAIUOGoE6dOoiMjAQATJkyBQEBAYiKikL37t0RGxuL06dP45tvvlHsc/fu3XB2doaHhwcuXryIKVOmoE+fPujSpYva/RGR8VE15TVr1iyYm5tL0A0RSaHcAah27dq4cuVKmdf4XLp0qcxpq1cJDg5GdnY2Zs+ejczMTHh7e+PQoUOKC53T09NFa+x06NAB27dvx6xZszBz5kw0btwYcXFxaNmypWKbjIwMhIaGIisrC7Vr18aQIUPwxRdfqN0bERmX58+fY/HixUp1jvoQmZ5y3wdo6tSpOHLkCBISEuDs7Cx67v79+/i///s/dOrUCdHR0droU6d4HyAi4xMfH6+0mLOHRy8MG+YjUUdEpGnqfH6XOwA9fvwYfn5+yMzMxKBBg+Dl5QVBEJCcnIzt27fD1dUVv/32GxwdHTVyEFJiACIyLmXd24eIjItWFkOtUaMGfv/9d8ycOROxsbGKGyA6ODjgww8/xMKFC40i/BCR8Xj06BFWrVolqlWvXh0ff/yxRB0Rkb6o0FIYgiAgOzsbAODs7AyZTKbxxqTEESAiw/fVV18p/p56afz48UpT+ERkPLQyAvR3MplM5UKlRET6gFNeRPQ6FQpARET6KDU1FVu3bhXVWrRogf79+0vUERHpKwYgIjIKqkZ9pk+fDhsbGwm6ISJ9xwBERAZNLpdj3rx5SnVOeRHRqzAAEZHBOnPmDPbv3y+qvfvuu3jrrbck6oiIDEW5AtDKlSvLvcPJkydXuBkiovLichZEVBnl+hp8/fr1y7czmQx//fVXpZuSGr8GT6S/CgsLsWjRIqU6p7yISONfg09NTdVIY0RElXHgwAGcPn1aVBswYACaNm0qUUdEZKgqfA1QUVERUlNT0bBhQ1SpwkuJiEi7VE15zZ492+huxEpEumH2+k3Enj59ihEjRsDGxgYtWrRAeno6AGDSpEkqh6WJiCojJydHKfzY2NggPDyc4YeIKkztABQWFoYLFy7g6NGjsLa2VtQDAwOxc+dOjTZHRKZt/fr1WLFihag2duxYTJ8+XaKOiMhYqD13FRcXh507d6J9+/aif321aNECN2/e1GhzRGS6uJwFEWmT2gEoOztb5TpgBQUFHI4mokpLT0/Hpk2bRLWmTZtiwIABEnVERMZI7QDUpk0bHDhwAJMmTQIARejZsGED/P39NdsdEZkUVaM+06ZNg62trQTdEJExUzsALVy4EN26dcOVK1dQUlKCFStW4MqVKzh58iR++eUXbfRIREZOEATMnTtXqc4pLyLSFrUvgn7rrbdw/vx5lJSUoFWrVvjxxx9Rq1YtJCUlwdfXVxs9EpERO3funFL46dixI8MPEWlVue4EbWp4J2gi3VA15fX555/z3mJEVCEavxN0Xl5eud+cgYGIXqeoqAiRkZFKdY76EJGulCsAOTg4lPsbXqWlpZVqiIiM2+HDh/Hbb7+Jah988AGaN28uUUdEZIrKFYASExMV/52WloYZM2YgJCRE8a2vpKQkbNmyReW/6IiIXuJyFkSkL9S+Bujdd9/FyJEjMXDgQFF9+/bt+Oabb3D06FFN9icJXgNEpFm5ubmIjo4W1SwsLDBz5kxpGiIio6TO57faAcjGxgYXLlxA48aNRfXr16/D29sbT58+Vb9jPcMARKQ5MTExuH37tqg2evRo1K5dW6KOiMhYqfP5rfbX4N3d3bF+/Xql+oYNG+Du7q7u7ojIiEVERCiFn/DwcIYfIpKc2t81Xb58Ofr164cffvgBfn5+AIBTp04hJSUF33//vcYbJCLDc+fOHWzcuFFUa9iwIQYNGiRRR0REYhW6D9CdO3fw1Vdf4erVqwCAZs2aYezYsUYzAsQpMKKKU3Whc2hoKOzs7CTohohMiVavATIFDEBE6uNyFkQkNY3fCPGfcnJysHHjRiQnJwMAWrRogeHDh8Pe3r4iuyMiA3fx4kXs2bNHVHv77bfRuXNniToiIno1tUeATp8+jaCgIFStWhXt2rUDAPzxxx949uwZfvzxR7z55ptaaVSXOAJEVH6qprxmzpwJCwsLCbohIlOm1Smwt99+G40aNcL69esV6/WUlJRg5MiR+Ouvv3Ds2LGKd64nGICIXq+4uBgLFy5UqnPKi4ikotUAVLVqVZw7dw5eXl6i+pUrV9CmTRveB4jIBCQkJODEiROiWt++fdGqVSuJOiIi0vI1QNWrV0d6erpSALp9+za/5UFkAricBREZA7VvhBgcHIwRI0Zg586duH37Nm7fvo3Y2FiVy2MQkfF48uSJyvATHh7O8ENEBkftEaClS5dCJpNhyJAhKCkpAfBiTZ9x48Zh0aJFGm+QiKT37bff4q+//hLVRo4ciTp16kjUERFR5VT4PkBPnz7FzZs3Aby4w6uNjY1GG5MSrwEi+p+yRn2IiPSN1u8DBLxYFJUXPBIZr3v37imt+1evXj2EhIRI0xARkQaVOwANHz68XNvFxMRUuBki0g8LFixQTHG/9PHHH3NElIiMRrkD0ObNm1GvXj34+PiAq2cQGScuZ0FEpqLcAWjcuHHYsWMHUlNTMWzYMAwaNAiOjo7a7I2IdOjy5cv4z3/+I6r5+/ujS5cuEnVERKQ9al0EXVhYiD179iAmJgYnT55E9+7dMWLECHTp0sWovgbLi6DJ1Ki60DksLAyWlpYSdENEVDE6WQ3+1q1b2Lx5M7Zu3YqSkhJcvnwZ1apVq1DD+oYBiExFSUkJFixYoFTnlBcRGSKdfAvMzMwMMpkMgiCgtLS0orshIokcPXoUv/zyi6jWu3dveHt7S9MQEZEOqRWA/j4FduLECfTo0QOrV69G165dYWam9k2liUgiXM6CiExduQPQ+PHjERsbC3d3dwwfPhw7duyAk5OTNnsjIg3Lz89HVFSUUp1TXkRkasp9DZCZmRk8PDzg4+Pzyn8l7tmzR2PNSYXXAJEx2rFjB65fvy6qDRs2DB4eHhJ1RESkWVq5BmjIkCEcHicyUFzOgohITK0bIRKRYcnMzMTXX38tqtWpUwcjR46UqCMiIv1Q4W+BEZF+W7x4MZ4/fy6qTZkyBQ4ODtI0RESkRxiAiIwMl7MgIno9BiAiI3L16lXs3LlTVGvbti3ee+89iToiItJPDEBERoLLWRARlR8DEJGBKy0txfz585XqnPIiIiobAxCRATt+/DiOHDkiqvXo0QO+vr4SdUREZBgYgIgMFJezICKqOAYgIgPz9OlTLFmyRKnOKS8iovJjACIyILt378aVK1dEtaFDh8LT01OahoiIDJReLOG+Zs0aeHp6wtraGn5+fjh16tQrt9+9eze8vLxgbW2NVq1a4eDBg6Ln8/PzMXHiRNStWxdVq1ZF8+bNsW7dOm0eApHWRUREKIWf8PBwhh8iogqQPADt3LkToaGhCA8Px9mzZ9G6dWsEBQXh/v37Krc/efIkBg4ciBEjRuDcuXPo06cP+vTpg0uXLim2CQ0NxaFDh/Ddd98hOTkZU6dOxcSJExEfH6+rwyLSmPv37ytd7+Pi4sIpLyKiSij3avDa4ufnh7Zt22L16tUAALlcDnd3d0yaNAkzZsxQ2j44OBgFBQXYv3+/ota+fXt4e3srRnlatmyJ4OBgfPHFF4ptfH190a1bN5VfF/4nrgZP+mLZsmV48uSJqDZp0iQ4OjpK1BERkf5S5/Nb0hGgoqIinDlzBoGBgYqamZkZAgMDkZSUpPI1SUlJou0BICgoSLR9hw4dEB8fj7t370IQBCQmJuL69evo0qWLyn0WFhYiLy9P9EMktYiICKXwEx4ezvBDRKQBkl4E/eDBA5SWlsLFxUVUd3FxwdWrV1W+JjMzU+X2mZmZiserVq3C6NGjUbduXVSpUgVmZmZYv3493nnnHZX7jIyMVPmVYiIppKSkYPv27aLam2++iZ49e0rUERGR8THKb4GtWrUKv/32G+Lj41GvXj0cO3YMEyZMgJubm9LoEfBiuYDQ0FDF47y8PLi7u+uyZSIAqu/t89lnn8Ha2lqCboiIjJekAcjJyQnm5ubIysoS1bOysuDq6qryNa6urq/c/tmzZ5g5cyb27t2L7t27AwDeeOMNnD9/HkuXLlUZgKysrGBlZaWJQyKqEC5nQUSkW5JeA2RpaQlfX18kJCQoanK5HAkJCfD391f5Gn9/f9H2APDTTz8pti8uLkZxcTHMzMSHZm5uDrlcruEjIKq8pKQkpfDTrVs3hh8iIi2SfAosNDQUQ4cORZs2bdCuXTtER0ejoKAAw4YNAwAMGTIEderUQWRkJABgypQpCAgIQFRUFLp3747Y2FicPn0a33zzDQCgevXqCAgIwPTp01G1alXUq1cPv/zyC7Zu3Yply5ZJdpxEqqia8vriiy+UAjwREWmW5AEoODgY2dnZmD17NjIzM+Ht7Y1Dhw4pLnROT08XfRh06NAB27dvx6xZszBz5kw0btwYcXFxaNmypWKb2NhYhIWF4aOPPsKjR49Qr149LFiwAGPHjtX58RGp8uzZM3z55ZdKdY76EBHphuT3AdJHvA8QadOePXtw8eJFUW3QoEFo2LChRB0RERkHdT6/JR8BIjIlqqa8OOpDRKR7DEBEOvDgwQOsWbNGVHN0dMSkSZMk6oiIyLQxABFp2cqVK/H48WNRbcKECXBycpKoIyIiYgAi0iJOeRER6ScGICItuHnzJr777jtR7Y033sD7778vUUdERPR3DEBEGqZq1OfTTz9F1apVJeiGiIhUYQAi0hC5XI558+Yp1TnlRUSkfxiAiDTg1KlT+OGHH0S1Ll26lLmkCxERSYsBiKiSVE15zZo1C+bm5hJ0Q0RE5cEARFRBz58/x+LFi5XqnPIiItJ/DEBEFRAfH49z586Jah9++CEaN24sUUdERKQOBiAiNfHePkREho8BiKicHj16hFWrVolqdnZ2CA0NlagjIiKqKAYgonL46quvkJ2dLaqNGzcOtWrVkqgjIiKqDAYgotfglBcRkfFhACIqQ2pqKrZu3SqqtWjRAv3795eoIyIi0hQGICIVVI36TJ8+HTY2NhJ0Q0REmsYARPQ3XM6CiMg0MAAR/X9nzpzB/v37RbV3330Xb731lkQdERGRtjAAEYHLWRARmRoGIDJphYWFWLRokVKdU15ERMaNAYhM1sGDB/HHH3+IagMGDEDTpk0l6oiIiHSFAYhMkqopr9mzZ0Mmk0nQDRER6RoDEJmUnJwcrFixQlSrWrUqPv30U4k6IiIiKTAAkcn45ptvkJGRIaqNHTsWLi4uEnVERERSYQAioxUfDyxaBMyYAZw7x+UsiIjofxiAyGgtWgTcuZOOc+c2iepNmzbFgAEDJOqKiIj0AQMQGa2gIOVRn08++QTVqlWToBsiItInDEBkdARBwNy5c5XqnPIiIqKXGIDIqKSlpWHLli2iWseOHREQECBRR0REpI8YgMhoREdHIzc3V1TjchZERKQKAxAZvJKSEixYsEBUq1WrFsaNGydRR0REpO8YgMigXbhwAXFxcaLa8OHD4e7uLk1DRERkEBiAyGBxOQsiIqooBiAyOE+fPsWSJUtEtVatWqFv374SdURERIaGAYgMSmJiIo4dOyaqTZ48GTVq1JCoIyIiMkQMQGQwVE158d4+RERUEQxApPcePnyI1atXi2qdOnXCO++8I1FHRERk6BiASK/t3r0bV65cEdU+/fRTVK1aVaKOiIjIGDAAkV7ichZERKRNDECkd9LT07Fpk3gF93r1+uKbb1rBxwfo1UuixoiIyGgwAJFe+fnnn/Hrr7+KarNmzcLbb5sjKQlYtIgBiIiIKo8BiPSCXC5HVFQUnj59qqg5Ojpi0qRJAIAZM16EnxkzpOqQiIiMCQMQSS4rKwvr1q0T1caMGQNXV1fF4169OPJDRESaYyZ1A2Tafv75Z1H4qVOnDry9Z6NvX1fEx0vYGBERGTWOAJEkiouLsXDhQlGtf//+aNGiBTp0AK/3ISIirWIAIp27desWNm/eLKpNnz4dNjY2AHi9DxERaR8DEOnU999/j0uXLikeN2/eHB988IFoG17vQ0RE2sYARDrx7NkzfPnll6LakCFDUL9+fYk6IiIiU8YARFqXnJyMXbt2iWozZ86EhYWFRB0REZGpYwAirREEATExMbhz546i5u/vjy5dukjYFREREQMQaUlubi6io6NFtX/e24eIiEgqDECkcX/88QcOHjyoeGxtbY3p06fDzIy3nSIiIv3AAEQaI5fLsXz5cuTn5ytqXbp0gb+/v4RdERERKWMAIo24f/8+1q5dK6pNmTIFDg4O0jRERET0CgxAVGlHjhzB8ePHFY9dXV0xevRoyGQyCbsiIiIqGwMQVVhJSQkWLFggqvXt2xetWrWSqCMiIqLyYQCiCklPT8emTZtEtb8vZ0FERKTP9OJrOWvWrIGnpyesra3h5+eHU6dOvXL73bt3w8vLC9bW1mjVqpXoG0cAIJPJVP4sWbJEm4dhMuLi4kThx8vLC+Hh4Qw/RERkMCQPQDt37kRoaCjCw8Nx9uxZtG7dGkFBQbh//77K7U+ePImBAwdixIgROHfuHPr06YM+ffqI1pfKyMgQ/cTExEAmk6Ffv366Oiyj9Pz5c0RERODChQuK2uDBgxEcHCxhV0REROqTCYIgSNmAn58f2rZti9WrVwN48VVqd3d3TJo0CTNULAceHByMgoIC7N+/X1Fr3749vL29sW7dOpXv0adPHzx58gQJCQnl6ikvLw/29vbIzc1F9erVK3BUxufq1avYuXOnqBYWFgZLS0uJOiIiIhJT5/Nb0muAioqKcObMGYSFhSlqZmZmCAwMRFJSksrXJCUlITQ0VFQLCgpCXFycyu2zsrJw4MABbNmypcw+CgsLUVhYqHicl5enxlEYN0EQsGXLFty6dUtR8/PzQ9euXSXsioiIqHIkDUAPHjxAaWkpXFxcRHUXFxdcvXpV5WsyMzNVbp+Zmaly+y1btsDOzg59+/Yts4/IyEhERESo2b3xy8vLw/Lly0W10aNHo3bt2hJ1REREpBmSXwOkbTExMfjoo49gbW1d5jZhYWHIzc1V/Ny+fVuHHeqnM2fOiMKPpaUlZs2axfBDRERGQdIRICcnJ5ibmyMrK0tUz8rKKnPRTFdX13Jvf/z4cVy7dk3p2pV/srKygpWVlZrdGydBEBAdHS2aBgwMDMS//vUvCbsiIiLSLElHgCwtLeHr6yu6OFkulyMhIaHM9aP8/f2VLmb+6aefVG6/ceNG+Pr6onXr1ppt3EhlZ2dj7ty5ovAzefJkhh8iIjI6kt8IMTQ0FEOHDkWbNm3Qrl07REdHo6CgAMOGDQMADBkyBHXq1EFkZCSAF+tLBQQEICoqCt27d0dsbCxOnz6Nb775RrTfvLw87N69G1FRUTo/JkN09OhR/PLLL4rHtWrVwtixY7mcBRERGSXJA1BwcDCys7Mxe/ZsZGZmwtvbG4cOHVJc6Jyeng4zs/8NVHXo0AHbt2/HrFmzMHPmTDRu3BhxcXFo2bKlaL+xsbEQBAEDBw7U6fEYGlXLWbz//vt44403JOqIiIhI+yS/D5A+MpX7AN2+fRsxMTGi2rRp02BraytRR0RERBVnMPcBIunEx8fj3LlzisdNmjThaBkREZkMBiAT8/z5cyxevFhU++ijj9CoUSOJOiIiItI9BiATcu3aNcTGxopqXM6CiIhMEQOQidi6dStSU1MVj9u2bYv33ntPwo6IiIikwwBk5J48eYJly5aJaqNGjYKbm5tEHREREUmPAciInT17Fv/9738Vj83NzREWFgZzc3MJuyIiIpIeA5AREgQBq1atwuPHjxW1zp074+2335awKyIiIv3BAGRkHjx4gDVr1ohqkyZNgqOjo0QdERER6R8GICPyyy+/4OjRo4rHTk5OGD9+PJezICIi+gcGICNQWlqK+fPni2q9e/eGt7e3NA0RERHpOQYgA3fnzh1s3LhRVPvkk09QrVo1iToiIiLSfwxABmz//v04c+aM4nGjRo3w0UcfSdgRERGRYWAAMkCFhYVYtGiRqPbhhx+icePGEnVERERkWBiADExKSgq2b98uqs2YMQNWVlYSdURERGR4GIAMyLZt23Djxg3FY19fX/To0UPCjoiIiAwTA5AByM/PR1RUlKg2YsQI1K1bV6KOiIiIDBsDkJ47f/489u3bp3gsk8nw+eefczkLIiKiSmAA0lOCIGDNmjV4+PChotapUye88847EnZFRERkHBiA9NCjR4+watUqUW3ixImoWbOmRB0REREZFwYgPXPixAkkJCQoHteoUQOTJk3ichZEREQaxACkJ0pLSxEZGYnS0lJFrWfPnnjzzTcl7IqIiMg4MQDpgXv37mH9+vWiWmhoKOzs7CTqiIiIyLgxAEnswIEDOH36tOJxgwYNMHjwYAk7IiIiMn4MQBIpKipCZGSkqDZw4EA0adJEoo6IiIhMBwOQBG7cuIFt27aJalzOgoiISHcYgHRsx44duH79uuKxt7c3evfuLWFHREREpocBSIcyMjJE4Wf48OFwd3eXsCMiIiLTxACkQ3Z2dqhfvz4ePnyISZMmoUoVnn4iIiIp8BNYh6pVq4YhQ4ZI3QYREZHJM5O6ASIiIiJdYwDSsfh4oEOHF78SERGRNBiAdGzRIiAp6cWvREREJA0GIB2bMQPw93/xKxEREUmDF0HrWK9eL36IiIhIOhwBIiIiIpPDAEREREQmhwGIiIiITA4DEBEREZkcBiAiIiIyOQxAREREZHIYgIiIiMjkMAARERGRyWEAIiIiIpPDAEREREQmhwGIiIiITA4DEBEREZkcBiAiIiIyOVwNXgVBEAAAeXl5EndCRERE5fXyc/vl5/irMACp8OTJEwCAu7u7xJ0QERGRup48eQJ7e/tXbiMTyhOTTIxcLse9e/dgZ2cHmUwmdTt6IS8vD+7u7rh9+zaqV68udTsmg+ddGjzv0uB51z1jO+eCIODJkydwc3ODmdmrr/LhCJAKZmZmqFu3rtRt6KXq1asbxf8khobnXRo879Lgedc9Yzrnrxv5eYkXQRMREZHJYQAiIiIik8MAROViZWWF8PBwWFlZSd2KSeF5lwbPuzR43nXPlM85L4ImIiIik8MRICIiIjI5DEBERERkchiAiIiIyOQwABEREZHJYQAyUWvWrIGnpyesra3h5+eHU6dOvXL73bt3w8vLC9bW1mjVqhUOHjwoel4mk6n8WbJkiTYPw+Bo+rzn5+dj4sSJqFu3LqpWrYrmzZtj3bp12jwEg6Tp856VlYWQkBC4ubnBxsYGXbt2RUpKijYPwSCpc94vX76Mfv36wdPTEzKZDNHR0ZXep6nS9Hk/duwYevbsCTc3N8hkMsTFxWmveV0SyOTExsYKlpaWQkxMjHD58mVh1KhRgoODg5CVlaVy+19//VUwNzcXvvzyS+HKlSvCrFmzBAsLC+HixYuKbTIyMkQ/MTExgkwmE27evKmrw9J72jjvo0aNEho2bCgkJiYKqampwtdffy2Ym5sL+/bt09Vh6T1Nn3e5XC60b99eePvtt4VTp04JV69eFUaPHi14eHgI+fn5ujw0vabueT916pQwbdo0YceOHYKrq6uwfPnySu/TFGnjvB88eFD4/PPPhT179ggAhL1792r3IHSEAcgEtWvXTpgwYYLicWlpqeDm5iZERkaq3P7f//630L17d1HNz89PGDNmTJnv0bt3b6Fz586aadhIaOO8t2jRQpg7d65omzfffFP4/PPPNdi5YdP0eb927ZoAQLh06ZJon87OzsL69eu1cASGSd3z/nf16tVT+UFcmX2aCm2c978zpgDEKTATU1RUhDNnziAwMFBRMzMzQ2BgIJKSklS+JikpSbQ9AAQFBZW5fVZWFg4cOIARI0ZornEDp63z3qFDB8THx+Pu3bsQBAGJiYm4fv06unTpop0DMTDaOO+FhYUAAGtra9E+rayscOLECU0fgkGqyHmXYp/GhudIPQxAJubBgwcoLS2Fi4uLqO7i4oLMzEyVr8nMzFRr+y1btsDOzg59+/bVTNNGQFvnfdWqVWjevDnq1q0LS0tLdO3aFWvWrME777yj+YMwQNo4715eXvDw8EBYWBgeP36MoqIiLF68GHfu3EFGRoZ2DsTAVOS8S7FPY8NzpB4GINK4mJgYfPTRR6J/IZN2rFq1Cr/99hvi4+Nx5swZREVFYcKECfj555+lbs1oWVhYYM+ePbh+/TocHR1hY2ODxMREdOvWDWZm/CuVyFBUkboB0i0nJyeYm5sjKytLVM/KyoKrq6vK17i6upZ7++PHj+PatWvYuXOn5po2Ato478+ePcPMmTOxd+9edO/eHQDwxhtv4Pz581i6dKnSNI4p0tafd19fX5w/fx65ubkoKiqCs7Mz/Pz80KZNG80fhAGqyHmXYp/GhudIPfzniomxtLSEr68vEhISFDW5XI6EhAT4+/urfI2/v79oewD46aefVG6/ceNG+Pr6onXr1ppt3MBp47wXFxejuLhYadTB3Nwccrlcw0dgmLT9593e3h7Ozs5ISUnB6dOn0bt3b80egIGqyHmXYp/GhudITVJfhU26FxsbK1hZWQmbN28Wrly5IowePVpwcHAQMjMzBUEQhMGDBwszZsxQbP/rr78KVapUEZYuXSokJycL4eHhSl/HFgRByM3NFWxsbIS1a9fq9HgMhTbOe0BAgNCiRQshMTFR+Ouvv4RNmzYJ1tbWwldffaXz49NX2jjvu3btEhITE4WbN28KcXFxQr169YS+ffvq/Nj0mbrnvbCwUDh37pxw7tw5oXbt2sK0adOEc+fOCSkpKeXeJ2nnvD958kSxDQBh2bJlwrlz54Rbt27p/Pg0iQHIRK1atUrw8PAQLC0thXbt2gm//fab4rmAgABh6NChou137dolNGnSRLC0tBRatGghHDhwQGmfX3/9tVC1alUhJydH2+0bLE2f94yMDCEkJERwc3MTrK2thaZNmwpRUVGCXC7XxeEYDE2f9xUrVgh169YVLCwsBA8PD2HWrFlCYWGhLg7FoKhz3lNTUwUASj8BAQHl3ie9oOnznpiYqHKbf/5/Y2hkgiAIuh93IiIiIpIOrwEiIiIik8MARERERCaHAYiIiIhMDgMQERERmRwGICIiIjI5DEBERERkchiAiIiIyOQwABEREZHJYQAiIqOUmZmJSZMmoUGDBrCysoK7uzt69uwpWifp5MmTeO+991CjRg1YW1ujVatWWLZsGUpLSyXsnIh0gQGIiIxOWloafH19ceTIESxZsgQXL17EoUOH0KlTJ0yYMAEAsHfvXgQEBKBu3bpITEzE1atXMWXKFMyfPx8DBgwAb5JPZNy4FAYRGZ333nsPf/75J65duwZbW1vRczk5ObCwsEC9evUQEBCA77//XvT8f//7X/Tq1QuxsbEIDg7WZdtEpEMcASIio/Lo0SMcOnQIEyZMUAo/AODg4IAff/wRDx8+xLRp05Se79mzJ5o0aYIdO3bool0ikggDEBEZlRs3bkAQBHh5eZW5zfXr1wEAzZo1U/m8l5eXYhsiMk4MQERkVNSZ1ecVAESmiwGIiIxK48aNIZPJcPXq1TK3adKkCQAgOTlZ5fPJycmKbYjIODEAEZFRcXR0RFBQENasWYOCggKl53NyctClSxc4OjoiKipK6fn4+HikpKRg4MCBumiXiCTCAERERmfNmjUoLS1Fu3bt8P333yMlJQXJyclYuXIl/P39YWtri6+//hr79u3D6NGj8eeffyItLQ0bN25ESEgI+vfvj3//+99SHwYRaRG/Bk9ERikjIwMLFizA/v37kZGRAWdnZ/j6+uLjjz9Gx44dAQDHjx/HggULkJSUhOfPn6Nx48YYNmwYpk6dCnNzc2kPgIi0igGIiIiITA6nwIiIiMjkMAARERGRyWEAIiIiIpPDAEREREQmhwGIiIiITA4DEBEREZkcBiAiIiIyOQxAREREZHIYgIiIiMjkMAARERGRyWEAIiIiIpPDAEREREQm5/8BbzAkW5Nbl0AAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR9pJREFUeJzt3Xd4VGX6xvF7ElIIJQiEEggJvYmAlBh2NcBmDYhAWFFEESLFQlGMoAkiSEelF8GFBSwIyCplUUGNICC4ShORLgRQEooQIkETSM7vD37MOs4AmTDJycx8P9fFBfPMmTPPyRHn5n3PvMdiGIYhAAAAL+JjdgMAAACFjQAEAAC8DgEIAAB4HQIQAADwOgQgAADgdQhAAADA6xCAAACA1yEAAQAAr0MAAgAAXocABMBtWSwWvfLKK2a3YRUfH6+IiAiz2wCQBwQgAC61aNEiWSwW66/AwEDVqVNHAwcO1KlTpwr0vbds2aJXXnlF6enpLt1v69atbY6pbNmyatGihRYsWKDc3FyXvMf48eO1cuVKl+wLwM0VM7sBAJ5p9OjRql69un7//Xdt3rxZc+bM0ccff6w9e/YoKCjIJe/x22+/qVix//1vbMuWLRo1apTi4+NVpkwZl7zHNVWrVtWECRMkSWfOnNHbb7+tPn366ODBg5o4ceIt73/8+PHq2rWr4uLibnlfAG6OAASgQLRv317NmzeXJPXt21flypXTlClTtGrVKnXv3j3f+83NzVV2drYCAwMVGBjoqnZvKjg4WD169LA+fvLJJ1W3bl3NmjVLY8aMkZ+fX6H1AuDWMQUGoFC0bdtWknT06FFJ0qRJk9SqVSuVK1dOxYsXV7NmzfTvf//b7nUWi0UDBw7U4sWL1bBhQwUEBGjt2rXW565dA/TKK69o6NChkqTq1atbp6tSUlIUHR2txo0bO+yrbt26io2Ndfp4goKCdNdddykzM1Nnzpy57naZmZl6/vnnFRYWpoCAANWtW1eTJk2SYRg2x5iZmam33nrL2nd8fLzTPQHIO0aAABSKH3/8UZJUrlw5SdL06dPVqVMnPfroo8rOztbSpUv14IMPas2aNerQoYPNa7/44gu9//77GjhwoMqXL+/wQuN//OMfOnjwoJYsWaKpU6eqfPnykqSQkBA99thj6tevn/bs2aPbb7/d+ppvv/1WBw8e1PDhw/N1TEeOHJGvr+91p9sMw1CnTp20fv169enTR02aNNG6des0dOhQ/fzzz5o6daok6Z133lHfvn3VsmVLPfHEE5KkmjVr5qsnAHlkAIALLVy40JBkfP7558aZM2eMEydOGEuXLjXKlStnFC9e3Pjpp58MwzCMS5cu2bwuOzvbuP322422bdva1CUZPj4+xg8//GD3XpKMkSNHWh+//vrrhiTj6NGjNtulp6cbgYGBxosvvmhTf+aZZ4wSJUoYFy9evOExRUdHG/Xq1TPOnDljnDlzxti3b5/xzDPPGJKMjh07Wrfr1auXER4ebn28cuVKQ5IxduxYm/117drVsFgsxuHDh621EiVKGL169bphHwBchykwAAUiJiZGISEhCgsL08MPP6ySJUtqxYoVqlKliiSpePHi1m3Pnz+vCxcu6O6779aOHTvs9hUdHa0GDRrku5fg4GB17txZS5YssU495eTkaNmyZYqLi1OJEiVuuo/9+/crJCREISEhql+/vmbOnKkOHTpowYIF133Nxx9/LF9fXz3zzDM29eeff16GYeiTTz7J9zEBuDVMgQEoELNnz1adOnVUrFgxVaxYUXXr1pWPz//+zbVmzRqNHTtWu3btUlZWlrVusVjs9lW9evVb7qdnz55atmyZNm3apHvuuUeff/65Tp06pcceeyxPr4+IiNC8efOsX+2vXbu2KlSocMPXHDt2TKGhoSpVqpRNvX79+tbnAZiDAASgQLRs2dL6LbA/27Rpkzp16qR77rlHb7zxhipXriw/Pz8tXLhQ7733nt32fxwtyq/Y2FhVrFhR7777ru655x69++67qlSpkmJiYvL0+hIlSuR5WwBFH1NgAArdBx98oMDAQK1bt069e/dW+/btXRIuHI0eXePr66tHHnlE//73v3X+/HmtXLlS3bt3l6+v7y2/7/WEh4fr5MmT+vXXX23q+/fvtz5/zY16B+B6BCAAhc7X11cWi0U5OTnWWkpKyi2vhHztWp7rrQT92GOP6fz583ryySd18eJFm3V9CsJ9992nnJwczZo1y6Y+depUWSwWtW/f3lorUaKEy1ewBnB9TIEBKHQdOnTQlClT1K5dOz3yyCM6ffq0Zs+erVq1amn37t353m+zZs0kSS+99JIefvhh+fn5qWPHjtZg1LRpU91+++1avny56tevrzvvvNMlx3M9HTt2VJs2bfTSSy8pJSVFjRs31qeffqpVq1Zp8ODBNl91b9asmT7//HNNmTJFoaGhql69uiIjIwu0P8CbMQIEoNC1bdtW//rXv5SWlqbBgwdryZIlevXVV9WlS5db2m+LFi00ZswYfffdd4qPj1f37t3tFins2bOnJOX54udb4ePjo9WrV2vw4MFas2aNBg8erL179+r111/XlClTbLadMmWKmjVrpuHDh6t79+6aM2dOgfcHeDOLYfxhOVIA8HDTp0/Xc889p5SUFFWrVs3sdgCYhAAEwGsYhqHGjRurXLlyWr9+vdntADAR1wAB8HiZmZlavXq11q9fr++//16rVq0yuyUAJmMECIDHS0lJUfXq1VWmTBn1799f48aNM7slACYjAAEAAK/Dt8AAAIDXIQABAACvw0XQDuTm5urkyZMqVaoUy9MDAOAmDMPQr7/+qtDQUJubLztCAHLg5MmTCgsLM7sNAACQDydOnFDVqlVvuA0ByIFSpUpJuvoDLF26tMndAACAvMjIyFBYWJj1c/xGCEAOXJv2Kl26NAEIAAA3k5fLV7gIGgAAeB0CEAAA8DoEIAAA4HW4BugW5OTk6PLly2a3gULg7+9/069UAgDcBwEoHwzDUFpamtLT081uBYXEx8dH1atXl7+/v9mtAABcgACUD9fCT4UKFRQUFMRiiR7u2sKYqampqlatGucbADwAAchJOTk51vBTrlw5s9tBIQkJCdHJkyd15coV+fn5md0OAOAWcVGDk65d8xMUFGRyJyhM16a+cnJyTO4EAOAKBKB8YhrEu3C+AcCzEIAAAIDXIQABAACvQwDyIvHx8bJYLLJYLPLz81PFihX197//XQsWLFBubm6e97No0SKVKVOm4BoFAKCAEYC8TLt27ZSamqqUlBR98sknatOmjZ599lndf//9unLlitntAQBQKAhAXiYgIECVKlVSlSpVdOedd2rYsGFatWqVPvnkEy1atEiSNGXKFDVq1EglSpRQWFiY+vfvr4sXL0qSNmzYoMcff1wXLlywjia98sorkqR33nlHzZs3V6lSpVSpUiU98sgjOn36tElHCgAoqlavllq1uvq7WQhALmAYhrKzswv9l2EYLum/bdu2aty4sT788ENJV1c9njFjhn744Qe99dZb+uKLL/TCCy9Iklq1aqVp06apdOnSSk1NVWpqqoYMGSLp6hIBY8aM0XfffaeVK1cqJSVF8fHxLukRAOA5Jk6Utm69+rtZWAjRBS5fvqwJEyYU+vsmJSW57NYM9erV0+7duyVJgwcPttYjIiI0duxYPfXUU3rjjTfk7++v4OBgWSwWVapUyWYfvXv3tv65Ro0amjFjhlq0aKGLFy+qZMmSLukTAOD+EhOvhp/ERPN6YAQIkq6OYl1b6+bzzz/X3/72N1WpUkWlSpXSY489pl9++UWXLl264T62b9+ujh07qlq1aipVqpSio6MlScePHy/w/gEA7mHbtm1KT39by5f/rE6dzOuDESAX8PPzU1JSkinv6yr79u1T9erVlZKSovvvv19PP/20xo0bp7Jly2rz5s3q06ePsrOzr7sCdmZmpmJjYxUbG6vFixcrJCREx48fV2xsrLKzs13WJwDAPeXm5mr69OnKyMiQdPVzp0qVKqb1QwByAYvF4tZ3Cf/iiy/0/fff67nnntP27duVm5uryZMny8fn6gDh+++/b7O9v7+/3S0h9u/fr19++UUTJ05UWFiYpKspHwCAM2fO6I033rCpRUZGmtTNVQQgL5OVlaW0tDTl5OTo1KlTWrt2rSZMmKD7779fPXv21J49e3T58mXNnDlTHTt21FdffaW5c+fa7CMiIkIXL15UcnKyGjdurKCgIFWrVk3+/v6aOXOmnnrqKe3Zs0djxowx6SgBAEXFhg0b9OWXX1ofV6xYUU8++aTptxjiGiAvs3btWlWuXFkRERFq166d1q9frxkzZmjVqlXy9fVV48aNNWXKFL366qu6/fbbtXjxYrsLvFu1aqWnnnpK3bp1U0hIiF577TWFhIRo0aJFWr58uRo0aKCJEydq0qRJJh0lAMBsV65c0ahRo2zCT5cuXfTUU0+ZHn4kyWK46rvUHiQjI0PBwcG6cOGCSpcubfPc77//rqNHj6p69eoKDAw0qUMUNs47AOTdiRMntGDBApvakCFDVKJEiQJ93xt9fv8ZU2AAAMBlVq9erZ07d1of16lTR927dzexI8cIQAAA4JZlZWVp4p9WNuzRo4dq1qxpUkc3RgACAAC35ODBg1qyZIlNzZWL9RYEAhAAAMi3d955R0eOHLE+btGihe677z4TO8obAhAAAHDaxYsXNXnyZJtav379FBoaalJHziEAAQAAp+zcuVOr/3Ard19fXyUlJcnX19fErpxDAAIAAHliGIZmzZqlc+fOWWtt27bV3XffbWJX+UMAAgAAN/XLL79o1qxZNrWBAweqXLlyJnV0awhAAADghjZt2qQvvvjC+rhcuXIaMGBAkVjROb8IQHC5+Ph4paena+XKlZKk1q1bq0mTJpo2bVq+9+mKfQAAnJOTk6Px48crNzfXWuvcubOaNGliXlMuQgDyIvHx8XrrrbckSX5+fqpWrZp69uypYcOGqVixgvtP4cMPP5Sfn1+ett2wYYPatGmj8+fPq0yZMvnaBwDg1p08eVLz5s2zqT3//PMqWbKkSR25FgHIy7Rr104LFy5UVlaWPv74Yw0YMEB+fn5KSkqy2S47O9tlC1iVLVu2SOwDAJA3H330kbZt22Z9XLNmTfXo0cPEjlyPu8F7mYCAAFWqVEnh4eF6+umnFRMTo9WrVys+Pl5xcXEaN26cQkNDVbduXUlXb2j30EMPqUyZMipbtqw6d+6slJQU6/5ycnKUkJCgMmXKqFy5cnrhhRf05/vrtm7dWoMHD7Y+zsrK0osvvqiwsDAFBASoVq1a+te//qWUlBS1adNGknTbbbfJYrEoPj7e4T7Onz+vnj176rbbblNQUJDat2+vQ4cOWZ9ftGiRypQpo3Xr1ql+/foqWbKk2rVrp9TUVOs2GzZsUMuWLVWiRAmVKVNGf/nLX3Ts2DEX/aQBwP1kZ2dr1KhRNuGne/fuHhd+JAKQ1ytevLiys7MlScnJyTpw4IA+++wzrVmzRpcvX1ZsbKxKlSqlTZs26auvvrIGiWuvmTx5shYtWqQFCxZo8+bNOnfunFasWHHD9+zZs6eWLFmiGTNmaN++fXrzzTdVsmRJhYWF6YMPPpAkHThwQKmpqZo+fbrDfcTHx2vbtm1avXq1tm7dKsMwdN999+ny5cvWbS5duqRJkybpnXfe0caNG3X8+HENGTJEknTlyhXFxcUpOjpau3fv1tatW/XEE0+49QV9AHArDh8+rAkTJtjUEhMTVadOHZM6KlhMgXkpwzCUnJysdevWadCgQTpz5oxKlCih+fPnW6e+3n33XeXm5mr+/PnWYLBw4UKVKVNGGzZs0L333qtp06YpKSlJ//jHPyRJc+fO1bp16677vgcPHtT777+vzz77TDExMZKkGjVqWJ+/NtVVoUIFm2uA/ujQoUNavXq1vvrqK7Vq1UqStHjxYoWFhWnlypV68MEHJUmXL1/W3LlzrTfiGzhwoEaPHi1JysjI0IULF3T//fdbn69fv77zP0gA8ABLlizRwYMHrY+bNm2qTp06mdhRwWMEyGSrV0utWl39vTCsWbNGJUuWVGBgoNq3b69u3brplVdekSQ1atTI5rqf7777TocPH1apUqVUsmRJlSxZUmXLltXvv/+uH3/8URcuXFBqaqoiIyOtrylWrJiaN29+3ffftWuXfH19FR0dne9j2Ldvn4oVK2bzvuXKlVPdunW1b98+ay0oKMjmLsSVK1fW6dOnJV0NWvHx8YqNjVXHjh01ffp0m+kxAPAGmZmZGjVqlE346dOnj8eHH4kRINNNnCht3Xr198L4761NmzaaM2eO/P39FRoaavPtrxIlSthse/HiRTVr1kyLFy+2209ISEi+3r948eL5el1+/PlbYxaLxeb6pIULF+qZZ57R2rVrtWzZMg0fPlyfffaZ7rrrrkLrEQDMsnv3brtLFl566aUC/VZwUcIIkMkSE6WoqKu/F4YSJUqoVq1aqlat2k3/I7/zzjt16NAhVahQQbVq1bL5FRwcrODgYFWuXFn//e9/ra+5cuWKtm/fft19NmrUSLm5ufryyy8dPn9tBConJ+e6+6hfv76uXLli876//PKLDhw4oAYNGtzwmP6sadOmSkpK0pYtW3T77bfrvffec+r1AOBuDMPQnDlzbMJPdHS0Ro4c6TXhRyIAma5TJ2nLlsIZ/XHWo48+qvLly6tz587atGmTjh49qg0bNuiZZ57RTz/9JEl69tlnNXHiRK1cuVL79+9X//79lZ6eft19RkREqFevXurdu7dWrlxp3ef7778vSQoPD5fFYtGaNWt05swZXbx40W4ftWvXVufOndWvXz9t3rxZ3333nXr06KEqVaqoc+fOeTq2o0ePKikpSVu3btWxY8f06aef6tChQ1wHBMCjnT9/XqNHj7ZeDiBJAwYMUOvWrc1ryiQEIFxXUFCQNm7cqGrVqukf//iH6tevrz59+uj3339X6dKlJV1dFOuxxx5Tr169FBUVpVKlSqlLly433O+cOXPUtWtX9e/fX/Xq1VO/fv2UmZkpSapSpYpGjRqlxMREVaxYUQMHDnS4j4ULF6pZs2a6//77FRUVJcMw9PHHH+d5scSgoCDt379fDzzwgOrUqaMnnnhCAwYM0JNPPunETwgA3MeWLVs0Y8YM6+Pg4GCNGDFC5cuXN7Er81iMPy/aAmVkZCg4OFgXLlywftBf8/vvv+vo0aOqXr26AgMDTeoQhY3zDsBd5ebm6tVXX7UuXyJJHTp0uOEXVtzVjT6//8x7JvsAAPAyaWlpevPNN21qzz333E3DgTcgAAEA4IHWrVunr7/+2vo4PDxcvXr1YsHX/0cAAgDAg1y+fFnjx4+3qT300EN8yeNPCEAAAHiIo0eP6u2337apvfDCC4W6Bpu7IADlE9eOexfON4Cibvny5dq7d6/18R133HHTb+V6MwKQk659zfrSpUskai9y7dsTvr6+JncCALYuXbqk119/3aYWHx+v8PBwkzpyDwQgJ/n6+qpMmTLWRaSCgoK4oMzD5ebm6syZMwoKCvKqVVIBFH0//PCD/v3vf9vUvOl2FreCn1A+VKpUSZJsVtKEZ/Px8VG1atUIuwCKBMMwNH/+fJ08edJa+8tf/qKYmBgTu3IvBKB8sFgsqly5sipUqKDLly+b3Q4Kgb+/v3x8WDgdgPkuXLigadOm2dSeeuopVaxY0ZyG3JTpAWj27Nl6/fXXlZaWpsaNG2vmzJlq2bKlw21/+OEHjRgxQtu3b9exY8c0depUDR482GabjRs36vXXX9f27duVmpqqFStWKC4urkB69/X15ZoQAECh+e9//6u1a9daHwcFBen555/nH2j5YOpPbNmyZUpISNDIkSO1Y8cONW7cWLGxsdedWrp06ZJq1KihiRMnWqeh/iwzM1ONGzfW7NmzC7J1AAAKTW5url5//XWb8NOuXTsNHTqU8JNPpt4LLDIyUi1atNCsWbMkXT3BYWFhGjRokBITE2/42oiICA0ePNhuBOiPLBZLvkaAnLmXCAAABen06dOaM2eOTW3w4MEKDg42qaOiyy3uBZadna3t27crKSnJWvPx8VFMTIy2bt1aqL1kZWUpKyvL+jgjI6NQ3x8AAEeSk5O1efNm6+PQ0FD17duXL2S4gGkB6OzZs8rJybG7aKtixYrav39/ofYyYcIEjRo1qlDfEwCA67ly5YrGjRtnU+vatasaNmxoUkeeh4lDSUlJSbpw4YL114kTJ8xuCQDgpY4dO2YXfoYOHUr4cTHTRoDKly8vX19fnTp1yqZ+6tSp617gXFACAgIUEBBQqO8JAMCfrVixQrt377Y+btCggR588EETO/Jcpo0A+fv7q1mzZkpOTrbWcnNzlZycrKioKLPaAgCg0F26dEmjRo2yCT89e/Yk/BQgU9cBSkhIUK9evdS8eXO1bNlS06ZNU2Zmph5//HFJV09+lSpVNGHCBElXL5y+dqO37Oxs/fzzz9q1a5dKliypWrVqSZIuXryow4cPW9/j6NGj2rVrl8qWLatq1aoV8hECAHBjmzdvthkMkKRhw4ZZ7z2JgmHq1+AladasWdaFEJs0aaIZM2YoMjJSktS6dWtFRERo0aJFkqSUlBRVr17dbh/R0dHasGGDJGnDhg1q06aN3Ta9evWy7udm+Bo8AKCgGYah0aNH29RCQiLVv387kzpyf858fpsegIoiAhAAoCAdPXpUb7/9tk3t3XcfUUhIbW3ZYlJTHsAt1gECAMAbOVp2Zdmy4QoJ8dVN1gCGCxGAAAAoBDk5ORo7dqxdfd26kZo4UerUyYSmvBgBCACAArZjxw795z//sak9+OCDatCggUaONKkpL0cAAgCgADma8hoxYgS3szAZAQgAgALw+++/69VXX7WplSxZUs8//7xJHeGPCEAAALjYp59+andj7759+6pKlSomdYQ/IwABAOBCjqa8RnKhT5FDAAIAwAXOnz+vGTNm2NTq1q2rhx9+2KSOcCMEIAAAbtHbb7+to0eP2tQGDx6s4OBgkzrCzRCAAAC4BUx5uScCEAAA+XD8+HEtXLjQpvbXv/5Vf/vb30zqCM4gAAEA4KQxY8YoNzfXppaYmKiAgACTOoKzCEAAAORRbm6uxowZY1dnysv9EIAAAMiDL7/8Uhs2bLCp7d4dpw8+aGxOQ7glBCAAAG7C0YXOn346XC++6GtCN3AFAhAAANfx22+/6bXXXrOrjxw5kpuYujkCEAAADixZskQHDx60qXXt2lUNGzY0qSO4EgEIAIA/YW0fz0cAAgDg/509e1azZ8+2qxN+PA8BCAAASRMmTFB2drZNrV+/fgoNDTWpIxQkAhAAwOsx5eV9CEAAAK91+PBhLV682KZWpUoV9e3b16SOUFgIQAAAr+Ro1CchIUGlSpUyoRsUNgIQAMCrcDsLSAQgAIAX+eSTT/TNN9/Y1Fq2bKn27dub1BHMQgACAHgFR1Nen332kkaO5KPQG3HWAQAe7ffff9err75qV1+3bqQSE01oCEUCAQgA4LHmzJmj06dP29Rat26t6Oho7uXl5QhAAACP5GjKa8SIEbJYLCZ0g6KGAAQA8ChnzpzRG2+8YVfnW174IwIQAMBjOBr16d69u+rUqWNCNyjKCEAAAI/A7SzgDAIQAMCt7d+/X8uWLbOrE35wIwQgAIDbcjTqM2DAAJUvX96EbuBOCEAAALdjGIZGjx5tV2fUB3lFAAIAuJUvvvhCmzZtsqmFhoaqX79+JnUEd0QAAgC4DUdTXi+++KICAwNN6AbujAAEACjysrOzNWHCBLs6U17ILwIQAKBIW7RokY4dO2ZTi4qK0r333mtSR/AEBCAAQJHF7SxQUAhAAIAih9tZoKARgAAARYqjUZ+9e+/To4+2MKEbeCoCEACgyHAUftatG6mtW6UTJ6ROnUxoCh6JAAQAMN3evXu1fPlyu/rIkSPVtKk0caKUmGhCY/BYBCAAgKkcjfr07t1bYWFhkq6O+jDyA1cjAAEATMHtLGAmAhAAoNCtW7dOX3/9tV2d8IPCQgACABQqR1Nezz//vEqWLGlCN/BWBCAAQKG4fPmyxo8fb1dn1AdmIAABAArc7NmzdfbsWZta9erV1bNnT5M6grcjAAEACpSjKa/hw4fL19fXhG6AqwhAAIACcf78ec2YMcOuzpQXigICEADA5RyN+rRt21Z33323Cd0A9ghAAACXchR+GPVBUUMAAgC4xOHDh7V48WK7OuEHRREBCABwyxyN+vTo0UM1a9Y0oRvg5ghAAIBbwpQX3BEBCACQLx9//LG+/fZbuzrhB+6AAAQAcJqjUZ9nn31WZcqUKfxmgHwgAAEA8uzKlSsaN26cXb1p05Ei+8CdEIAAAHkyZcoU/frrrza1nJxiGjPmJUVFSZ06mdQYkA8EIADATTma8ho2bJg++cRPUVFSYqIJTQG3gAAEALiuCxcuaNq0aXb1axc6d+rEyA/cEwEIAOCQo1GfO+64Q126dDGhG8C1CEAAADuOws+IESNksVhM6AZwPQIQAMCK21nAWxCAAACSHI/6dO7cWU2aNCn8ZoACRgACAHA7C3gdAhAAeLGNGzdq/fr1dnXCDzwdAQgAvJSjUZ8nn3xSlSpVMqEboHD5mN2AJM2ePVsREREKDAxUZGSkvvnmm+tu+8MPP+iBBx5QRESELBaLw/UpnN0nAHiT3Nzc6055EX7gLUwPQMuWLVNCQoJGjhypHTt2qHHjxoqNjdXp06cdbn/p0iXVqFFDEydOvO5fVGf3CQDeYtmyZRozZoxN7fffS6ppU6a84F0shmEYZjYQGRmpFi1aaNasWZKu/sskLCxMgwYNUuJN1laPiIjQ4MGDNXjwYJftU5IyMjIUHBysCxcuqHTp0vk7MAAoYhyN+iQmJiogIMCEbgDXc+bz2+kRIF9fX4cjKb/88ot8fX2d2ld2dra2b9+umJiY/zXk46OYmBht3brV2dbyvc+srCxlZGTY/AIAT3Hp0qXrTnkRfuCtnL4I+noDRllZWfL393dqX2fPnlVOTo4qVqxoU69YsaL279/vbGv53ueECRMc/s8BANzd6NGj7f6/feedd6pjx44mdQQUDXkOQDNmzJAkWSwWzZ8/XyVLlrQ+l5OTo40bN6pevXqu77AQJCUlKSEhwfo4IyNDYWFhJnYEALfO0T/smjQZoY4duZ0FkOcANHXqVElXR4Dmzp1rM93l7++viIgIzZ0716k3L1++vHx9fXXq1Cmb+qlTp/L9TYT87DMgIIBhYAAeIzU1Vf/85z/t6q+8MlJRUVLnziY0BRQxeQ5AR48elSS1adNGH374oW677bZbfnN/f381a9ZMycnJiouLk3T1guXk5GQNHDiwyOwTANzF9W5ncfx4E0VFSXn4HgjgFZy+BsjRiqG3IiEhQb169VLz5s3VsmVLTZs2TZmZmXr88cclST179lSVKlU0YcIESVcvct67d6/1zz///LN27dqlkiVLqlatWnnaJwB4ohvdzqJJE6lTp0JuCCjCnA5AvXv3vuHzCxYscGp/3bp105kzZzRixAilpaWpSZMmWrt2rfUi5uPHj8vH539fVjt58qSaNm1qfTxp0iRNmjRJ0dHR2rBhQ572CQCeZNeuXVq1apVdndtZANfn9DpAXbp0sXl8+fJl7dmzR+np6Wrbtq0+/PBDlzZoBtYBAuAuHI36PPHEE6pcubIJ3QDmcubz2+kRoBUrVtjVcnNz9fTTT6tmzZrO7g4AkA+GYWj06NF2dUZ9gLxx2UrQBw4cUOvWrZWamuqK3ZmKESAARdnixYt1+PBhm5rFYtGIESNM6ggoGgp0BOh6fvzxR125csVVuwMAOOBoymvo0KEKCgoyoRvAfTkdgP64YKB0dRg2NTVVH330kXr16uWyxgAA/5OVlaWJEyfa1Zs2HSmyD+A8pwPQzp07bR77+PgoJCREkydPvuk3xAAAzps8ebIuXrxoU7twobKmTHnCpI4A92f6OkAAgOtzNOW1bt3LSkx0+l7WAP4g39cAnT59WgcOHJAk1a1bVxUqVHBZUwDg7c6ePavZs2fb1UeOHCm+6AXcOqcDUEZGhgYMGKAlS5YoNzdXkuTr66tu3bpp9uzZCg4OdnmTAOBNHI36tG/fXi1btjShG8AzOT2G2q9fP/33v//VRx99pPT0dKWnp2vNmjXatm2bnnzyyYLoEQC8xvVuZ0H4AVzL6XWASpQooXXr1umvf/2rTX3Tpk1q166dMjMzXdqgGVgHCEBh27dvn95//327OgsbAnlXoOsAlStXzuE0V3BwsEvuEA8A3sbRqM/jjz+uatWqmdAN4B2cngIbPny4EhISlJaWZq2lpaVp6NChevnll13aHAB4MsMwrjvlRfgBCpbTU2BNmzbV4cOHlZWVZf0Levz4cQUEBKh27do22+7YscN1nRYipsAAFLTPPvtMW7Zssasz5QXkX4FOgXXu3FkWiyXfzQGAt3M06nP77Ql64IFSJnQDeCeX3QzVkzACBKAgXLlyRePGjbOrM+oDuEaBjgDVqFFD3377rcqVK2dTT09P15133qkjR444u0sA8Hhz5szR6dOnbWrh4eGKj483pyHAyzkdgFJSUpSTk2NXz8rK0k8//eSSpgDAkzia8ho+fLh8fX1N6AaA5EQAWr16tfXP69ats/kqfE5OjpKTk1W9enXXdgcAbiw9PV3Tp0+3qzPlBZgvzwEoLi5OkmSxWNSrVy+b5/z8/BQREaHJkye7tDkAcFeORn3atGmje+65x4RuAPxZngPQtft+Va9eXd9++63Kly9fYE0BgDu73to+AIoOp68BOnr0aEH0AQBu78cff9S7775rVyf8AEWP0wFo9OjRN3x+xIgR+W4GANyVo1GfRx99VLVq1TKhGwA343QAWrFihc3jy5cv6+jRoypWrJhq1qxJAALgdZjyAtyP0wFo586ddrWMjAzFx8erS5cuLmkKANzBpk2b9MUXX9jVCT9A0eeylaC///57dezYUSkpKa7YnalYCRrAzTga9XnmmWd02223mdANAKmAV4K+ngsXLujChQuu2h0AFEk5OTkaO3asXZ1RH8C9OB2AZsyYYfPYMAylpqbqnXfeUfv27V3WGAAUNW+//bbdN2FDQkLUv39/kzoCkF9OB6CpU6faPPbx8VFISIh69eqlpKQklzUGAEWJoymvYcOGyc/Pz4RuANwq1gECgBu4ePGiw1XumfIC3Fu+rgFKT0/X4cOHJUm1atVSmTJlXNkTABQJjkZ9oqKidO+995rQDQBXcioApaSkaMCAAVq3bp2ufXnMYrGoXbt2mjVrliIiIgqiRwAodI7Cz4gRI2SxWEzoBoCr5TkAnThxQnfddZf8/Pw0ZswY1a9fX5K0d+9ezZkzR1FRUfr2229VtWrVAmsWAAraiRMntGDBArs6U16AZ8nzOkB9+vTR4cOHtW7dOgUGBto899tvv6ldu3aqXbu25s+fXyCNFibWAQK8z+rV0s6d9qM+Dz74oBo0aGBCRwCcVSDrAK1du1bLli2zCz+SVLx4cY0ZM0YPP/yw890CQBHgKPww6gN4rjwHoLNnz97wGp8aNWro3LlzrugJAArNN998o08++cSuTvgBPFueA1DlypW1d+/e617js2fPHlWqVMlljQFAQXN0oXP//v0VEhJiQjcACpNPXjeMi4vTkCFDdObMGbvnTp8+rRdffFFxcXGu7A0ACkRubu517+BO+AG8Q54vgj5//rwiIyOVlpamHj16qF69ejIMQ/v27dN7772nSpUq6euvv1bZsmULuucCx0XQgOdavny59u7da1MrUaKEhgwZYlJHAFylQC6Cvu222/Tf//5Xw4YN09KlS5Weni5JKlOmjB555BGNHz/eI8IPAM/laNQnMTFRAQEBJnQDwEx5HgH6I8MwrFNhISEhHrcwGCNAgGf57bff9Nprr9nVudAZ8CwFMgL0RxaLRRUqVMhXcwBQmMaOHaucnBybWpMmTdS5c2eTOgJQFOQrAAGAO+B2FgCuhwAEwOOkpaXpzTfftKsz5QXgGgIQAI/iaNSnU6dOatq0qQndACiqCEAAPMb11vYBgD/LUwCaMWNGnnf4zDPP5LsZAMiP3bt3a8WKFXZ1wg+A68nT1+CrV6+et51ZLDpy5MgtN2U2vgYPuA9Hoz79+vVTaGioCd0AMJPLvwZ/9OhRlzQGAK5iGIZGjx5tV2fUB0Be5PsaoOzsbB09elQ1a9ZUsWJcSgSg8KxZs0bbt2+3qxN+AOSV08nl0qVLGjRokN566y1J0sGDB1WjRg0NGjRIVapUUWJiosubBIBrHE15DR06VEFBQSZ0A8Bd5flu8NckJSXpu+++04YNGxQYGGitx8TEaNmyZS5tDgCuyc7Ovu63vAg/AJzl9AjQypUrtWzZMt111102q6k2bNhQP/74o0ubAwBJmjJlin799VebWt26dfXwww+b1BEAd+d0ADpz5ozD+4BlZmayvDwAl3M06vPyyy/Lx8fpAWwAsHL6/yDNmzfXRx99ZH18LfTMnz9fUVFRrusMgFf75ZdfrjvlRfgBcKucHgEaP3682rdvr7179+rKlSuaPn269u7dqy1btujLL78siB4BeBlHwSc2NlZ33XWXCd0A8ERO/zPqr3/9q3bt2qUrV66oUaNG+vTTT1WhQgVt3bpVzZo1K4geAXiR6436EH4AuFKeVoL2NqwEDRS+/fv3O/wmKWv7AMgrl68EnZGRkec3JzAAcJajUZ/4+HiFh4eb0A0Ab5CnAFSmTJk8f8MrJyfnlhoC4F24gzsAM+QpAK1fv97655SUFCUmJio+Pt76ra+tW7fqrbfe0oQJEwqmSwAe5/PPP9dXX31lVyf8ACgMTl8D9Le//U19+/ZV9+7dbervvfee/vnPf2rDhg2u7M8UXAMEFCxHoz7PPfccf98A3BJnPr+d/hbY1q1b1bx5c7t68+bN9c033zi7OwBe5MqVK9ed8iL8AChMTq8DFBYWpnnz5um1116zqc+fP19hYWEuawyAZ3nzzTeVlpZmUwsLC1Pv3r1N6giAN3M6AE2dOlUPPPCAPvnkE0VGRkqSvvnmGx06dEgffPCByxsE4P4cjfoMHz5cvr6+JnQDAPmYArvvvvt06NAhdezYUefOndO5c+fUsWNHHTx4UPfdd19B9AjATV24cOG6U16EHwBmYiFEB7gIGrh1joJPdHS0WrduXfjNAPAKLl8I8c/S09P1r3/9S/v27ZMkNWzYUL1791ZwcHB+dgfAw7C2D4CizukpsG3btqlmzZqaOnWqdQpsypQpqlmzpnbs2FEQPQJwE0eOHHEYfpo2JfwAKFqcngK7++67VatWLc2bN0/Fil0dQLpy5Yr69u2rI0eOaOPGjQXSaGFiCgxwnqPg88gjj6h27domdAPAGznz+e10ACpevLh27typevXq2dT37t2r5s2b69KlS853XMQQgADnMOUFoCgo0IUQS5curePHj9vVT5w4oVKlSjm7O0nS7NmzFRERocDAQEVGRt50QcXly5erXr16CgwMVKNGjfTxxx/bPH/q1CnFx8crNDRUQUFBateunQ4dOpSv3gBc3+bNmwk/ANyS0wGoW7du6tOnj5YtW6YTJ07oxIkTWrp0qcPbY+TFsmXLlJCQoJEjR2rHjh1q3LixYmNjdfr0aYfbb9myRd27d1efPn20c+dOxcXFKS4uTnv27JEkGYahuLg4HTlyRKtWrdLOnTsVHh6umJgYZWZmOt0fAMdGjRql5ORkm9ozzzxD+AHgFpyeAsvOztbQoUM1d+5cXblyRZLk5+enp59+WhMnTlRAQIBTDURGRqpFixaaNWuWJCk3N1dhYWEaNGiQEhMT7bbv1q2bMjMztWbNGmvtrrvuUpMmTTR37lwdPHhQdevW1Z49e9SwYUPrPitVqqTx48erb9++N+2JKTDg+nJycjR27Fi7OsEHgNkKdArM399f06dP1/nz57Vr1y7t2rVL586d09SpU50OP9nZ2dq+fbtiYmL+15CPj2JiYrR161aHr9m6davN9pIUGxtr3T4rK0uSFBgYaLPPgIAAbd682eE+s7KylJGRYfMLgL133nnHLvyUK1eO8APA7eRrHSBJCgoKUqNGjW7pzc+ePaucnBxVrFjRpl6xYkXt37/f4WvS0tIcbn/tHkP16tVTtWrVlJSUpDfffFMlSpTQ1KlT9dNPPyk1NdXhPidMmODwOgYA/+Po78iwYcPk5+dnQjcAcGvyHIDyesPCBQsW5LsZV/Dz89OHH36oPn36qGzZsvL19VVMTIzat2+v6832JSUlKSEhwfo4IyODG7sC/+/ixYuaPHmyXZ1RHwDuLM8BaNGiRQoPD1fTpk2vGyScVb58efn6+urUqVM29VOnTqlSpUoOX1OpUqWbbt+sWTPt2rVLFy5cUHZ2tkJCQhQZGanmzZs73GdAQIDT03eAN3A06hMZGal27dqZ0A0AuE6eA9DTTz+tJUuW6OjRo3r88cfVo0cPlS1b9pbe3N/fX82aNVNycrLi4uIkXb1gOTk5WQMHDnT4mqioKCUnJ2vw4MHW2meffaaoqCi7ba/dmuPQoUPatm2bxowZc0v9At7EUfgZMWKELBaLCd0AgGvl+SLo2bNnKzU1VS+88IL+85//KCwsTA899JDWrVt3SyNCCQkJmjdvnt566y3t27dPTz/9tDIzM/X4449Lknr27KmkpCTr9s8++6zWrl2ryZMna//+/XrllVe0bds2m8C0fPlybdiwwfpV+L///e+Ki4vTvffem+8+AW/x008/XXdtH8IPAE/h1EXQAQEB6t69u7p3765jx45p0aJF6t+/v65cuaIffvhBJUuWdLqBbt266cyZMxoxYoTS0tLUpEkTrV271nqh8/Hjx+Xj87+c1qpVK7333nsaPny4hg0bptq1a2vlypW6/fbbrdukpqYqISFBp06dUuXKldWzZ0+9/PLLTvcGeBtHwadr167WJSUAwFM4vQ7QNSdOnNDChQu1aNEiZWdna//+/fkKQEUR6wDBG7GiMwB3V2DrAGVlZWnJkiX6+9//rjp16uj777/XrFmzdPz4cY8JP4C32bZtG+EHgNfJ8xRY//79tXTpUoWFhal3795asmSJypcvX5C9AShgjoLP008/rQoVKpjQDQAUnjxPgfn4+KhatWpq2rTpDS+E/PDDD13WnFmYAoOnMwxDo0ePtqsz6gPAnTnz+Z3nEaCePXvyDRDAA/z73//WDz/8YFMLDAzUiy++aFJHAFD4nFoIEYB7czTl9eKLL9rcOw8AvEG+7wUGwH389ttveu211+zqTHkB8FYEIMDDjR8/XpcvX7ap3XHHHerSpYtJHQGA+QhAgAfjdhYA4BgBCPBAp06d0ty5c+3qTHkBwFUEIMDDOBr16dixo+68804TugGAookABHgQVnQGgLwhAAEeYPfu3VqxYoVdnfADAI4RgAA352jUp2/fvqpSpYoJ3QCAeyAAAW6K21kAQP4RgAA39NFHH2nbtm12dcIPAOQNAQhwM46mvIYMGaISJUqY0A0AuCcCEOAmsrOzNWHCBLs6oz4A4DwCEOAGpk+frvT0dJtanTp11L17d3MaAgA3RwACijhHU14vv/yyfHx8TOgGADwDAQgootLT0zV9+nS7OlNeAHDrCEBAEeRo1Ofvf/+7WrVqZUI3AOB5GEMHihhH4WfdupGEHwBwIUaAgCIiJSVFb731ll193bqRSkw0oSEA8GAEIKAIcDTq069fP4WGhopLfgDA9QhAgMm4gzsAFD4CEGCSb775Rp988olNrUSJEhoyZIhJHQGA9yAAASZwNOrz/PPPq2TJkiZ0AwDehwAEFKKcnByNHTvWrs6UFwAULgIQUEg+/PBDff/99za1O+64Q126dDGpIwDwXgQgoBA4mvIaPny4fH19TegGAEAAAgrQxYsXNXnyZLs6U14AYC4CEFBAXn/9dV26dMmmdt9996lFixYmdQQAuIYABBQA1vYBgKKNAAS40M8//6z58+fb1Qk/AFC0EIAAF3E06hMfH6/w8HATugEA3AgBCHABprwAwL0QgIBbsGvXLq1atcqmZrFYNGLECJM6AgDkBQEIyCdHoz6DBw9WcHCwCd0AAJxBAAKclJubqzFjxtjVmfICAPdBAAKc8NFHH2nbtm02tdq1a+uRRx4xqSMAQH4QgIA8cjTlNWzYMPn5+ZnQDQDgVhCAgJv47bff9Nprr9nVmfICAPdFAAJuYNasWfrll19sam3bttXdd99tUkcAAFcgAAHX4WjKa8SIEbJYLCZ0AwBwJQIQ8CenT5/WnDlz7OpMeQGA5yAAAX/gaNTnkUceUe3atU3oBgBQUAhAwP/jdhYA4D0IQPB6e/fu1fLly+3qhB8A8FwEIHg1R6M+gwYNUtmyZU3oBgBQWAhA8EqGYWj06NF2dUZ9AMA7EIDgdZKTk7V582abWtWqVdWnTx+TOgIAFDYCELyKoymvxMREBQQEmNANAMAsBCB4haysLE2cONGuzpQXAHgnAhA83oIFC3TixAmb2l/+8hfFxMSY1BEAwGwEIHg0bmcBAHCEAASPdO7cOc2cOdOuzpQXAEAiAMEDORr1efDBB9WgQQMTugEAFEUEIHgUbmcBAMgLAhA8wuHDh7V48WK7OuEHAOAIAQhuz9Goz1NPPaWKFSua0A0AwB0QgOC2uJ0FACC/CEBwS5s3b1ZycrJNrVy5cho4cKBJHQEA3AkBCG7H0ZTXCy+8oOLFi5vQDQDAHRGA4DYuX76s8ePH29WZ8gIAOIsABLewZMkSHTx40KbWrFkz3X///SZ1BABwZwQgFHmOprxefvll+fj4mNANAMATEIBQZF24cEHTpk2zqzPlBQC4VQQgFEnz5s3TyZMnbWqdO3dWkyZNzGkIAOBRCEAocridBQCgoBWJiyhmz56tiIgIBQYGKjIyUt98880Nt1++fLnq1aunwMBANWrUSB9//LHN8xcvXtTAgQNVtWpVFS9eXA0aNNDcuXML8hDgAmlpaQ7DT9OmhB8AgGuZPgK0bNkyJSQkaO7cuYqMjNS0adMUGxurAwcOqEKFCnbbb9myRd27d9eECRN0//3367333lNcXJx27Nih22+/XZKUkJCgL774Qu+++64iIiL06aefqn///goNDVWnTp0K+xCRB46CT//+/RUSEmJCNwAAT2cxDMMws4HIyEi1aNFCs2bNkiTl5uYqLCxMgwYNUmJiot323bp1U2ZmptasWWOt3XXXXWrSpIl1lOf2229Xt27d9PLLL1u3adasmdq3b6+xY8fetKeMjAwFBwfrwoULKl269K0eIm6CKS8AgCs48/lt6hRYdna2tm/frpiYGGvNx8dHMTEx2rp1q8PXbN261WZ7SYqNjbXZvlWrVlq9erV+/vlnGYah9evX6+DBg7r33nsL5kCQL3v37rULP7Vq1SL8AAAKnKlTYGfPnlVOTo7dXbsrVqyo/fv3O3xNWlqaw+3T0tKsj2fOnKknnnhCVatWVbFixeTj46N58+bpnnvucbjPrKwsZWVlWR9nZGTk95CQR9zOAgBgJtOvASoIM2fO1Ndff63Vq1crPDxcGzdu1IABAxQaGmo3eiRJEyZMcPiBDNfLzc3VmDFj7OqM+gAACpOpAah8+fLy9fXVqVOnbOqnTp1SpUqVHL6mUqVKN9z+t99+07Bhw7RixQp16NBBknTHHXdo165dmjRpksMAlJSUpISEBOvjjIwMhYWF3dKxwd6GDRv05Zdf2tTuuecetWnTxqSOAADeytRrgPz9/dWsWTMlJydba7m5uUpOTlZUVJTD10RFRdlsL0mfffaZdfvLly/r8uXLdrdJ8PX1VW5ursN9BgQEqHTp0ja/4FqjRo2yCz/Dhw8n/AAATGH6FFhCQoJ69eql5s2bq2XLlpo2bZoyMzP1+OOPS5J69uypKlWqaMKECZKkZ599VtHR0Zo8ebI6dOigpUuXatu2bfrnP/8pSSpdurSio6M1dOhQFS9eXOHh4fryyy/19ttva8qUKaYdp7f67bff9Nprr9nVmfICAJjJ9ADUrVs3nTlzRiNGjFBaWpqaNGmitWvXWi90Pn78uM1oTqtWrfTee+9p+PDhGjZsmGrXrq2VK1da1wCSpKVLlyopKUmPPvqozp07p/DwcI0bN05PPfVUoR+fN3N0B/euXbuqYcOGJnUEAMBVpq8DVBSxDtCtY20fAEBhc+bz2/QRIHiW8+fPa8aMGXZ1wg8AoCghAMFl5s6da/cNvS1bntCAAZVN6ggAAMcIQHAJprwAAO6EAIRbcuzYMS1atMim1qBBAz344IPmNAQAQB4QgJBvjkZ9hg4dqqCgIBO6AQAg7whAcJphGBo9erRdnSkvAIC7IADBKTt37tTq1attam3bttXdd99tUkcAADiPAIQ8czTlNXz4cPn6+prQDQAA+UcAwk1lZ2dbb0XyR0x5AQDcFQEIN7Ru3Tp9/fXXNrWHHnpI9evXN6kjAABuHQEI1+VoymvEiBGyWCwmdAMAgOsQgGAnIyNDU6dOtan5+/srKSnJpI4AAHAtAhBsLFq0SMeOHbOpPfHEE6pcmdtZAAA8BwEIVtzOAgDgLQhA0M8//6z58+fb1GrWrKkePXqY1BEAAAWLAOTlRo8eLcMwbGoJCQkqVaqUSR0BAFDwCEBeittZAAC8GQHIC+3Zs0cffPCBTe2vf/2r/va3v5nUEQAAhYsA5GUcXeg8bNgw+fn5mdANAADmIAB5iStXrmjcuHF2daa8AADeiADkBdavX6+NGzfa1Lp06aI77rjDpI4AADAXAcjDcTsLAADsEYA81MWLFzV58mS7OlNeAAAQgDzSkiVLdPDgQZta7969FRYWZlJHAAAULQQgD8PtLAAAuDkCkIdIT0/X9OnTbWpVq1ZVnz59TOoIAICiiwDkAVatWqVdu3bZ1Bo2HKyuXYPNaQgAgCKOAOTGrnc7i1deGamoKKlrVxOaAgDADRCA3NTJkyc1b948m1qnTp104kRTRUVJiYkmNQYAgBsgALmhefPm6eTJkza1a7ezaNpU6tTJpMYAAHATBCA3kpubqzFjxtjUSpYsqeeff96kjgAAcE8EIDdx4MABLV261Kb22GOPqUaNGiZ1BACA+yIAuYHRo0fLMAybGrezAAAg/whARdiKFdnavXuCTa1mzZrq0aOHSR0BAOAZCEBFVEpKinbvfsum9vTTT6tChQomdQQAgOcgABVB//nPf7Rjxw6bGrezAADAdQhARUhWVpYmTpxoU4uNjdVdd91lUkcAAHgmAlARcejQIb333ns2taSkJPn7+5vUEQAAnosAVAQsXrxYhw8ftj5u3ry5OnToYGJHAAB4NgKQiS5evKjJkyfb1Pr27asqVaqY1BEAAN6BAGSSXbt2adWqVdbHFotFL730knx9fU3sCgAA70AAKmSGYeiNN97Q2bNnrbU2bdronnvuMbErAAC8CwGoEOXk5Gjs2LE2tYEDB6pcuXImdQQAgHciABWiEydOWP9ctmxZDRw4kNtZAABgAh+zG/AmYWFhqlatk7799jGFhw8i/AAAYBJGgAqRr6+v5s1rqq1bpXPnpE6dzO4IAADvxAhQIUtMlKKirv4OAADMwQhQIevUiZEfAADMxggQAADwOgQgAADgdQhAAADA6xCAAACA1yEAAQAAr0MAAgAAXocABAAAvA4BCAAAeB0CEAAA8DoEIAAA4HUIQAAAwOsQgAAAgNchAAEAAK/D3eAdMAxDkpSRkWFyJwAAIK+ufW5f+xy/EQKQA7/++qskKSwszOROAACAs3799VcFBwffcBuLkZeY5GVyc3N18uRJlSpVShaLxex2PFpGRobCwsJ04sQJlS5d2ux2kEecN/fDOXNPnDfnGIahX3/9VaGhofLxufFVPowAOeDj46OqVaua3YZXKV26NH+53RDnzf1wztwT5y3vbjbycw0XQQMAAK9DAAIAAF6HAARTBQQEaOTIkQoICDC7FTiB8+Z+OGfuifNWcLgIGgAAeB1GgAAAgNchAAEAAK9DAAIAAF6HAAQAALwOAQguNXv2bEVERCgwMFCRkZH65ptvbrj98uXLVa9ePQUGBqpRo0b6+OOPbZ6/ePGiBg4cqKpVq6p48eJq0KCB5s6dW5CH4JVcfd5OnTql+Ph4hYaGKigoSO3atdOhQ4cK8hC8kjPn7YcfftADDzygiIgIWSwWTZs27Zb3ifxx9XnbuHGjOnbsqNDQUFksFq1cubLgmvcgBCC4zLJly5SQkKCRI0dqx44daty4sWJjY3X69GmH22/ZskXdu3dXnz59tHPnTsXFxSkuLk579uyxbpOQkKC1a9fq3Xff1b59+zR48GANHDhQq1evLqzD8niuPm+GYSguLk5HjhzRqlWrtHPnToWHhysmJkaZmZmFeWgezdnzdunSJdWoUUMTJ05UpUqVXLJPOK8gzltmZqYaN26s2bNnF2TrnscAXKRly5bGgAEDrI9zcnKM0NBQY8KECQ63f+ihh4wOHTrY1CIjI40nn3zS+rhhw4bG6NGjbba58847jZdeesmFnXs3V5+3AwcOGJKMPXv22OwzJCTEmDdvXgEcgXdy9rz9UXh4uDF16lSX7hN5UxDn7Y8kGStWrLjFLr0DI0BwiezsbG3fvl0xMTHWmo+Pj2JiYrR161aHr9m6davN9pIUGxtrs32rVq20evVq/fzzzzIMQ+vXr9fBgwd17733FsyBeJmCOG9ZWVmSpMDAQJt9BgQEaPPmza4+BK+Un/Nmxj5hi59x0UIAgkucPXtWOTk5qlixok29YsWKSktLc/iatLS0m24/c+ZMNWjQQFWrVpW/v7/atWun2bNn65577nH9QXihgjhv9erVU7Vq1ZSUlKTz588rOztbr776qn766SelpqYWzIF4mfycNzP2CVv8jIsWAhCKtJkzZ+rrr7/W6tWrtX37dk2ePFkDBgzQ559/bnZruA4/Pz99+OGHOnjwoMqWLaugoCCtX79e7du3l48P/8sBUDQUM7sBeIby5cvL19dXp06dsqmfOnXquhfuVapU6Ybb//bbbxo2bJhWrFihDh06SJLuuOMO7dq1S5MmTbKbhoHzCuK8SVKzZs20a9cuXbhwQdnZ2QoJCVFkZKSaN2/u+oPwQvk5b2bsE7b4GRct/HMMLuHv769mzZopOTnZWsvNzVVycrKioqIcviYqKspme0n67LPPrNtfvnxZly9fths18PX1VW5urouPwDsVxHn7o+DgYIWEhOjQoUPatm2bOnfu7NoD8FL5OW9m7BO2+BkXMWZfhQ3PsXTpUiMgIMBYtGiRsXfvXuOJJ54wypQpY6SlpRmGYRiPPfaYkZiYaN3+q6++MooVK2ZMmjTJ2LdvnzFy5EjDz8/P+P77763bREdHGw0bNjTWr19vHDlyxFi4cKERGBhovPHGG4V+fJ6qIM7b+++/b6xfv9748ccfjZUrVxrh4eHGP/7xj0I/Nk/m7HnLysoydu7caezcudOoXLmyMWTIEGPnzp3GoUOH8rxP3LqCOG+//vqrdRtJxpQpU4ydO3cax44dK/TjcycEILjUzJkzjWrVqhn+/v5Gy5Ytja+//tr6XHR0tNGrVy+b7d9//32jTp06hr+/v9GwYUPjo48+snk+NTXViI+PN0JDQ43AwECjbt26xuTJk43c3NzCOByv4erzNn36dKNq1aqGn5+fUa1aNWP48OFGVlZWYRyKV3HmvB09etSQZPcrOjo6z/uEa7j6vK1fv97hNn/+ewtbFsMwjMIfdwIAADAP1wABAACvQwACAABehwAEAAC8DgEIAAB4HQIQAADwOgQgAADgdQhAAADA6xCAAACA1yEAAfBIaWlpGjRokGrUqKGAgACFhYWpY8eONvdh2rJli+677z7ddtttCgwMVKNGjTRlyhTl5OSY2DmAwkAAAuBxUlJS1KxZM33xxRd6/fXX9f3332vt2rVq06aNBgwYIElasWKFoqOjVbVqVa1fv1779+/Xs88+q7Fjx+rhhx8Wi+QDno1bYQDwOPfdd592796tAwcOqESJEjbPpaeny8/PT+Hh4YqOjtYHH3xg8/x//vMfderUSUuXLlW3bt0Ks20AhYgRIAAe5dy5c1q7dq0GDBhgF34kqUyZMvr000/1yy+/aMiQIXbPd+zYUXXq1NGSJUsKo10AJiEAAfAohw8flmEYqlev3nW3OXjwoCSpfv36Dp+vV6+edRsAnokABMCjODOrzxUAgPciAAHwKLVr15bFYtH+/fuvu02dOnUkSfv27XP4/L59+6zbAPBMBCAAHqVs2bKKjY3V7NmzlZmZafd8enq67r33XpUtW1aTJ0+2e3716tU6dOiQunfvXhjtAjAJAQiAx5k9e7ZycnLUsmVLffDBBzp06JD27dunGTNmKCoqSiVKlNCbb76pVatW6YknntDu3buVkpKif/3rX4qPj1fXrl310EMPmX0YAAoQX4MH4JFSU1M1btw4rVmzRqmpqQoJCVGzZs303HPPqXXr1pKkTZs2ady4cdq6dat+//131a5dW48//rgGDx4sX19fcw8AQIEiAAEAAK/DFBgAAPA6BCAAAOB1CEAAAMDrEIAAAIDXIQABAACvQwACAABehwAEAAC8DgEIAAB4HQIQAADwOgQgAADgdQhAAADA6xCAAACA1/k/PHzDjHhZMqYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_33.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHHCAYAAACWQK1nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABl8klEQVR4nO3deVwVZfs/8M9hVxRQkE1RcANT3FARytTkK6hJ9JSpmYiiuW8oKWogmoILbmmaqWjlgpYSD5mElGmBG2pGbmGiqWwugGKCcOb3hz/maToH5eCBgcPn/XqdV55r7pm5ZjyeczX3PXMrBEEQQEREREQvRE/uBIiIiIh0AYsqIiIiIi1gUUVERESkBSyqiIiIiLSARRURERGRFrCoIiIiItICFlVEREREWsCiioiIiEgLWFQRERERaQGLKiKq0xQKBRYuXCh3GqKAgAA4OjrKnQYRVQKLKiKqcbZv3w6FQiG+TExM0LZtW0yZMgXZ2dlVuu/k5GQsXLgQeXl5Wt1unz59JMfUuHFjdO/eHdu2bYNSqdTKPpYuXYrY2FitbIuINGcgdwJEROVZtGgRnJyc8PjxY/z888/YuHEjDh48iLS0NNSvX18r+/j7779hYPC/r8Lk5GSEh4cjICAAFhYWWtlHmWbNmiEiIgIAkJubi88//xyBgYG4cuUKIiMjX3j7S5cuxdtvvw0/P78X3hYRaY5FFRHVWAMGDEC3bt0AAGPHjoWlpSVWrVqFb775BsOHD6/0dpVKJYqLi2FiYgITExNtpftc5ubmeO+998T348ePh7OzM9avX4/FixfD0NCw2nIhIu1j9x8R1RqvvfYaAODatWsAgJUrV8LT0xOWlpaoV68e3Nzc8NVXX6msp1AoMGXKFOzcuRPt27eHsbExDh06JC4rG1O1cOFCBAcHAwCcnJzErrqMjAz07t0bnTp1UpuXs7MzvL29NT6e+vXro2fPnigsLERubm657QoLCzFr1iw4ODjA2NgYzs7OWLlyJQRBkBxjYWEhduzYIeYdEBCgcU5EVHm8UkVEtcbVq1cBAJaWlgCAtWvXwtfXFyNGjEBxcTH27NmDIUOGID4+HoMGDZKs+8MPP2Dv3r2YMmUKrKys1A4G/89//oMrV65g9+7dWL16NaysrAAATZo0wciRIzFu3DikpaWhQ4cO4jqnTp3ClStXsGDBgkod059//gl9ff1yuxoFQYCvry9+/PFHBAYGonPnzkhISEBwcDBu3bqF1atXAwC++OILjB07Fj169MD7778PAGjVqlWlciKiShKIiGqY6OhoAYBw+PBhITc3V/jrr7+EPXv2CJaWlkK9evWEmzdvCoIgCI8ePZKsV1xcLHTo0EF47bXXJHEAgp6envD777+r7AuAEBYWJr5fsWKFAEC4du2apF1eXp5gYmIizJkzRxKfNm2aYGpqKjx8+PCZx9S7d2/BxcVFyM3NFXJzc4WLFy8K06ZNEwAIgwcPFtuNGjVKaNGihfg+NjZWACB89NFHku29/fbbgkKhENLT08WYqampMGrUqGfmQURVh91/RFRjeXl5oUmTJnBwcMCwYcPQoEEDHDhwAE2bNgUA1KtXT2x7//595Ofno1evXjhz5ozKtnr37o2XXnqp0rmYm5vjjTfewO7du8Vut9LSUsTExMDPzw+mpqbP3calS5fQpEkTNGnSBO3atcPHH3+MQYMGYdu2beWuc/DgQejr62PatGmS+KxZsyAIAr777rtKHxMRaRe7/4ioxtqwYQPatm0LAwMD2NjYwNnZGXp6//t/wfj4eHz00Uc4d+4cioqKxLhCoVDZlpOT0wvn4+/vj5iYGBw7dgyvvvoqDh8+jOzsbIwcObJC6zs6OuKzzz4THxPRpk0bWFtbP3Od69evw97eHg0bNpTE27VrJy4nopqBRRUR1Vg9evQQ7/77t2PHjsHX1xevvvoqPvnkE9jZ2cHQ0BDR0dHYtWuXSvt/XtWqLG9vb9jY2ODLL7/Eq6++ii+//BK2trbw8vKq0PqmpqYVbktEtQ+7/4ioVvr6669hYmKChIQEjBkzBgMGDNBKwaLuKlcZfX19vPvuu/jqq69w//59xMbGYvjw4dDX13/h/ZanRYsWuH37Nh48eCCJX7p0SVxe5lm5E1HVY1FFRLWSvr4+FAoFSktLxVhGRsYLP1G8bGxUeU9UHzlyJO7fv4/x48fj4cOHkudOVYWBAweitLQU69evl8RXr14NhUKBAQMGiDFTU1OtPwmeiCqO3X9EVCsNGjQIq1atgo+PD959913k5ORgw4YNaN26Nc6fP1/p7bq5uQEA5s+fj2HDhsHQ0BCDBw8Wi60uXbqgQ4cO2LdvH9q1a4euXbtq5XjKM3jwYPTt2xfz589HRkYGOnXqhO+//x7ffPMNZsyYIXlsgpubGw4fPoxVq1bB3t4eTk5OcHd3r9L8iOh/eKWKiGql1157DVu3bkVWVhZmzJiB3bt3Y9myZXjzzTdfaLvdu3fH4sWL8euvvyIgIADDhw9XeTCnv78/AFR4gPqL0NPTQ1xcHGbMmIH4+HjMmDEDFy5cwIoVK7Bq1SpJ21WrVsHNzQ0LFizA8OHDsXHjxirPj4j+RyEI/3gkLxERPdfatWsxc+ZMZGRkoHnz5nKnQ0Q1BIsqIiINCIKATp06wdLSEj/++KPc6RBRDcIxVUREFVBYWIi4uDj8+OOP+O233/DNN9/InRIR1TC8UkVEVAEZGRlwcnKChYUFJk2ahCVLlsidEhHVMCyqiIiIiLSAd/8RERERaQGLKiIiIiIt4ED1KqJUKnH79m00bNiQU0cQERHVEoIg4MGDB7C3t5dM4F4RLKqqyO3bt+Hg4CB3GkRERFQJf/31F5o1a6bROiyqqkjDhg0BPP1LMTMzkzkbIiIiqoiCggI4ODiIv+OaYFFVRcq6/MzMzFhUERER1TKVGbrDgepEREREWsCiioiIiEgLWFQRERERaQHHVMmstLQUT548kTsNqgaGhobQ19eXOw0iIqoiLKpkIggCsrKykJeXJ3cqVI0sLCxga2vLZ5cREekgFlUyKSuorK2tUb9+ff7I6jhBEPDo0SPk5OQAAOzs7GTOiIiItI1FlQxKS0vFgsrS0lLudKia1KtXDwCQk5MDa2trdgUSEekYDlSXQdkYqvr168ucCVW3sr9zjqMjItI9LKpkxC6/uod/50REukv2omrDhg1wdHSEiYkJ3N3dcfLkyWe237dvH1xcXGBiYgJXV1ccPHhQsjwgIAAKhULy8vHxEZdnZGQgMDAQTk5OqFevHlq1aoWwsDAUFxdL2vx7GwqFAsePH9fuwRMREZHOkHVMVUxMDIKCgrBp0ya4u7tjzZo18Pb2xuXLl2Ftba3SPjk5GcOHD0dERARef/117Nq1C35+fjhz5gw6dOggtvPx8UF0dLT43tjYWPzzpUuXoFQq8emnn6J169ZIS0vDuHHjUFhYiJUrV0r2d/jwYbRv3158z/FPREREVB5Zr1StWrUK48aNw+jRo/HSSy9h06ZNqF+/PrZt26a2/dq1a+Hj44Pg4GC0a9cOixcvRteuXbF+/XpJO2NjY9ja2oqvRo0aicvKCq7+/fujZcuW8PX1xezZs7F//36V/VlaWkq2Y2hoqN0TUAv980qgoaEhbGxs8H//93/Ytm0blEplhbezfft2WFhYVF2iRERE1Uy2oqq4uBipqanw8vL6XzJ6evDy8kJKSoradVJSUiTtAcDb21ul/ZEjR2BtbQ1nZ2dMnDgRd+/efWYu+fn5aNy4sUrc19cX1tbWeOWVVxAXF/fMbRQVFaGgoEDy0lU+Pj7IzMxERkYGvvvuO/Tt2xfTp0/H66+/jpKSErnTIyIikoVsRdWdO3dQWloKGxsbSdzGxgZZWVlq18nKynpuex8fH3z++edISkrCsmXL8NNPP2HAgAEoLS1Vu8309HR8/PHHGD9+vBhr0KABoqKisG/fPnz77bd45ZVX4Ofn98zCKiIiAubm5uLLwcHhueegtiq7Eti0aVN07doV8+bNwzfffIPvvvsO27dvB/D0KqSrqytMTU3h4OCASZMm4eHDhwCeFr2jR49Gfn6+eNVr4cKFAIAvvvgC3bp1Q8OGDWFra4t3331XfLYTERFRmbg4wNPz6X9rCp17TtWwYcPEP7u6uqJjx45o1aoVjhw5gn79+kna3rp1Cz4+PhgyZAjGjRsnxq2srBAUFCS+7969O27fvo0VK1bA19dX7X5DQkIk6xQUFGhUWAmCINtt9oaGhi98V9prr72GTp06Yf/+/Rg7diz09PSwbt06ODk54c8//8SkSZPwwQcf4JNPPoGnpyfWrFmD0NBQXL58GcDTQhZ4+qiBxYsXw9nZGTk5OQgKCkJAQIDKDQlERFR3PXr0CHFxPyAnxwWRka1Rzk9ztZOtqLKysoK+vj6ys7Ml8ezsbNja2qpdx9bWVqP2ANCyZUtYWVkhPT1dUlTdvn0bffv2haenJzZv3vzcfN3d3ZGYmFjucmNjY8mAeE09efIEERERlV7/RYSEhMDIyOiFt+Pi4oLz588DAGbMmCHGHR0d8dFHH2HChAn45JNPYGRkBHNzcygUCpW/uzFjxoh/btmyJdatW4fu3bvj4cOHYuFFRER11++//46vvvoKDg7Am29moFevKXKnJJKt+8/IyAhubm5ISkoSY0qlEklJSfDw8FC7joeHh6Q9ACQmJpbbHgBu3ryJu3fvSqYFuXXrFvr06QM3NzdER0dDT+/5p+HcuXOcWuQ5BEEQr3gdPnwY/fr1Q9OmTdGwYUOMHDkSd+/exaNHj565jdTUVAwePBjNmzdHw4YN0bt3bwDAjRs3qjx/IiKquQRBwJYtW/DVV1+JsSFDetSYq1SAzN1/QUFBGDVqFLp164YePXpgzZo1KCwsxOjRowEA/v7+aNq0qXgFZ/r06ejduzeioqIwaNAg7NmzB6dPnxavND18+BDh4eF46623YGtri6tXr+KDDz5A69at4e3tDeB/BVWLFi2wcuVK5ObmivmUXTXZsWMHjIyM0KVLFwDA/v37sW3bNmzZsqXKzoWhoSFCQkKqbPvP27c2XLx4EU5OTsjIyMDrr7+OiRMnYsmSJWjcuDF+/vlnBAYGori4uNwnyRcWFsLb2xve3t7YuXMnmjRpghs3bsDb21vyHDEiIqpbCgoKsHr1aklswoQJKuOs5SZrUTV06FDk5uYiNDQUWVlZ6Ny5Mw4dOiSepBs3bkiuInl6emLXrl1YsGAB5s2bhzZt2iA2NlZ8RpW+vj7Onz+PHTt2IC8vD/b29ujfvz8WL14sds0lJiYiPT0d6enpaNasmSQfQRDEPy9evBjXr1+HgYEBXFxcEBMTg7fffrvKzoVCodBKF5xcfvjhB/z222+YOXMmUlNToVQqERUVJf797d27V9LeyMhI5eaBS5cu4e7du4iMjBTHo50+fbp6DoCIiGqkTZs2SYb+1KtXD7Nnz65QL1N1Uwj/rCRIawoKCmBubo78/HyYmZlJlj1+/BjXrl2Dk5MTTExMZMqwcgICApCdnY3o6GiUlpYiOzsbhw4dQkREBPr06YPY2FikpaWhc+fOWLNmDQYPHoxffvkFISEhuHXrFu7fvw8LCwskJyfj5ZdfxuHDh9GpUyfUr18fhYWFaNasGaZPn44JEyYgLS0NwcHBuHLlCs6ePYvOnTvLffgvrDb/3RMRVafS0lJ89NFHktilS/2xe3f5Q3604Vm/389T88o8qvEOHToEOzs7ODo6wsfHBz/++CPWrVuHb775Bvr6+ujUqRNWrVqFZcuWoUOHDti5c6fKIHxPT09MmDABQ4cORZMmTbB8+XI0adIE27dvx759+/DSSy8hMjJS5Sn3RESk+y5evKhSUB0/PgbDh1dtQfWieKWqiujqlSp6Mfy7JyJ6tkWLFuHfpUloaGi1TUj/IleqdO45VURERFT7FBcXq/RqtGrVCu+9955MGWmORRURERHJ6uTJk/juu+8ksYkTJ8La2lqmjCqHRRURERHJJjw8XCUWFhYmQyYvjkUVERERVbuHDx8iKipKEuvevTsGDhwoU0YvjkUVERERVauEhAQcP35cEps5c6bGA8NrGhZVREREVG10qbvv31hUERERUZW7c+cONmzYIIn179//mfP31jYsqoiIiKhKxcTE4NKlS5LY3LlzxSnkdAWLKiIiIqoSgiBg0aJFKnFd6e77NxZVVCMFBAQgLy8PsbGxAIA+ffqI8wlWlja2QUREFXPjxg1ER0dLYm+//Tbat28vU0ZVj0UVaSQgIAA7duwAABgaGqJ58+bw9/fHvHnzYGBQdR+n/fv3w9DQsEJtjxw5gr59+4qTN1dmG0REVHkbNmzAnTt3JLEFCxZAX19fpoyqB4sq0piPjw+io6NRVFSEgwcPYvLkyTA0NERISIikXXFxMYyMjLSyz8aNG9eIbRARUflKS0tVJkJu3Lgxpk6dKlNG1UtP7gSo9jE2NoatrS1atGiBiRMnwsvLC3FxcQgICICfnx+WLFkCe3t7ODs7AwD++usvvPPOO7CwsEDjxo3xxhtvICMjQ9xeaWkpgoKCYGFhAUtLS3zwwQcqk2n26dMHM2bMEN8XFRVhzpw5cHBwgLGxMVq3bo2tW7ciIyMDffv2BQA0atQICoUCAQEBardx//59+Pv7o1GjRqhfvz4GDBiAP/74Q1y+fft2WFhYICEhAe3atUODBg3g4+ODzMxMsc2RI0fQo0cPmJqawsLCAi+//DKuX7+upTNNRFR7XLhwQaWgCggIqDMFFcCiirSgXr16KC4uBgAkJSXh8uXLSExMRHx8PJ48eQJvb280bNgQx44dwy+//CIWJ2XrREVFYfv27di2bRt+/vln3Lt3DwcOHHjmPv39/bF7926sW7cOFy9exKeffooGDRrAwcEBX3/9NQDg8uXLyMzMxNq1a9VuIyAgAKdPn0ZcXBxSUlIgCAIGDhyIJ0+eiG0ePXqElStX4osvvsDRo0dx48YNzJ49GwBQUlICPz8/9O7dG+fPn0dKSgref//9aptJnYiopggPD8e+ffsksdDQULRo0UKmjOTB7j+qNEEQkJSUhISEBEydOhW5ubkwNTXFli1bxG6/L7/8EkqlElu2bBGLjejoaFhYWODIkSPo378/1qxZg5CQEPznP/8BAGzatAkJCQnl7vfKlSvYu3cvEhMT4eXlBQBo2bKluLysm8/a2loypuqf/vjjD8TFxeGXX36Bp6cnAGDnzp1wcHBAbGwshgwZAgB48uQJNm3ahFatWgEApkyZIt7JUlBQgPz8fLz++uvi8nbt2ml+IomIaqmioiJERkZKYm3btsXw4cNlykhevFKlA+LiAE/Pp/+tDvHx8WjQoAFMTEwwYMAADB06FAsXLgQAuLq6SsZR/frrr0hPT0fDhg3RoEEDNGjQAI0bN8bjx49x9epV5OfnIzMzE+7u7uI6BgYG6NatW7n7P3fuHPT19dG7d+9KH8PFixdhYGAg2a+lpSWcnZ1x8eJFMVa/fn2xYAIAOzs75OTkAHhavAUEBMDb2xuDBw/G2rVrJV2DRES6LCUlRaWgmjRpUp0tqABeqdIJkZFASsrT//r6Vv3++vbti40bN8LIyAj29vaSu/5MTU0lbR8+fAg3Nzfs3LlTZTtNmjSp1P7r1atXqfUq4993CyoUCsl4r+joaEybNg2HDh1CTEwMFixYgMTERPTs2bPaciQiqm66PNXMi+CVKh0wdy7g4fH0v9XB1NQUrVu3RvPmzZ/7GIWuXbvijz/+gLW1NVq3bi15mZubw9zcHHZ2djhx4oS4TklJCVJTU8vdpqurK5RKJX766Se1y8uulJWWlpa7jXbt2qGkpESy37t37+Ly5ct46aWXnnlM/9alSxeEhIQgOTkZHTp0wK5duzRan4iotnjw4IFKQdWzZ08WVP8fiyod4OsLJCdXz1UqTY0YMQJWVlZ44403cOzYMVy7dg1HjhzBtGnTcPPmTQDA9OnTERkZidjYWFy6dAmTJk1CXl5eudt0dHTEqFGjMGbMGMTGxorb3Lt3LwCgRYsWUCgUiI+PR25uLh4+fKiyjTZt2uCNN97AuHHj8PPPP+PXX3/Fe++9h6ZNm+KNN96o0LFdu3YNISEhSElJwfXr1/H999/jjz/+4LgqItJJ3333HVatWiWJBQUFwdvbW6aMah4WVVSl6tevj6NHj6J58+b4z3/+g3bt2iEwMBCPHz+GmZkZAGDWrFkYOXIkRo0aBQ8PDzRs2BBvvvnmM7e7ceNGvP3225g0aRJcXFwwbtw4FBYWAgCaNm2K8PBwzJ07FzY2NpgyZYrabURHR8PNzQ2vv/46PDw8IAgCDh48WOEHhNavXx+XLl3CW2+9hbZt2+L999/H5MmTMX78eA3OEBFRzRceHo6TJ09KYmFhYWjYsKFMGdVMCuHfDwQirSgoKIC5uTny8/PF4qHM48ePce3aNTg5OcHExESmDEkO/LsnotokJycHGzdulMR8fHwkN/nommf9fj8PB6oTERGRil27dkkeiAwAHTvOhbu7sUwZ1XwsqoiIiEgkCIL4PL5/4mD052NRRURERACAjIwM7NixQxJ75513eANOBbGoIiIiIqxbtw7379+XxBYsWAB9fX2ZMqp9WFTJiPcI1D38Oyeimqa0tFRlIuQmTZpg0qRJMmVUe7GokkHZLfuPHj2q1qeDk/wePXoEQPVJ7UREckhLSxMnoS8zZswYODg4yJRR7caiSgb6+vqwsLAQ55CrX7++ONkw6SZBEPDo0SPk5OTAwsKCl9OJSHbqppoJDQ3l79ELYFElE1tbWwAQCyuqGywsLMS/eyIiOTx+/BjLli2TxNq1a4d33nlHpox0B4sqmSgUCtjZ2cHa2hpPnjyROx2qBoaGhrxCRUSy+uWXX3D48GFJbMqUKbC0tJQpI93Cokpm+vr6/KElIqIqp667j8+e0i4WVURERDqsoKAAq1evlsRefvlleHl5yZSR7mJRRUREpKO+/fZbnD59WhKbNWsWGjRoIFNGuo1FFRERkQ5id1/1Y1FFRESkQ7Kzs7Fp0yZJbODAgejevbtMGdUdenInsGHDBjg6OsLExATu7u44efLkM9vv27cPLi4uMDExgaurKw4ePChZHhAQAIVCIXn5+PhI2ty7dw8jRoyAmZkZLCwsEBgYiIcPH0ranD9/Hr169YKJiQkcHBywfPly7RwwERFRFfniiy9UCqqQkBAWVNVE1qIqJiYGQUFBCAsLw5kzZ9CpUyd4e3uX++ym5ORkDB8+HIGBgTh79iz8/Pzg5+eHtLQ0STsfHx9kZmaKr927d0uWjxgxAr///jsSExMRHx+Po0eP4v333xeXFxQUoH///mjRogVSU1OxYsUKLFy4EJs3b9b+SSAiInpBgiAgPDwcf/75pxjT19dHWFgYjIyMZMysblEIMk5G5u7uju7du2P9+vUAAKVSCQcHB0ydOhVz585VaT906FAUFhYiPj5ejPXs2ROdO3cWK/OAgADk5eUhNjZW7T4vXryIl156CadOnUK3bt0AAIcOHcLAgQNx8+ZN2NvbY+PGjZg/fz6ysrLED+PcuXMRGxuLS5cuVejYCgoKYG5ujvz8fJiZmVX4nBAREWnizz//xBdffCGJDRs2DM7OzjJlVLu9yO+3bFeqiouLkZqaKrmlU09PD15eXkhJSVG7TkpKisotoN7e3irtjxw5Amtrazg7O2PixIm4e/euZBsWFhZiQQUAXl5e0NPTw4kTJ8Q2r776qqS69/b2xuXLl1Vm8C5TVFSEgoICyYuIiKgqrVq1SqWg+vDDD1lQyUS2ourOnTsoLS2FjY2NJG5jY4OsrCy162RlZT23vY+PDz7//HMkJSVh2bJl+OmnnzBgwACUlpaK27C2tpZsw8DAAI0bNxa3U95+ypapExERAXNzc/HFySiJiKiqFBcXIzw8HA8ePBBjtra2CAsLg56e7MOl6yydu/tv2LBh4p9dXV3RsWNHtGrVCkeOHEG/fv2qbL8hISEICgoS3xcUFLCwIiIirUtMTERycrIkFhgYiGbNmsmUEZWRrZy1srKCvr4+srOzJfHs7OxyJ5y1tbXVqD0AtGzZElZWVkhPTxe38e+B8CUlJbh37564nfL2U7ZMHWNjY5iZmUleRERE2hQeHq5SUCUkhLKgqiFkK6qMjIzg5uaGpKQkMaZUKpGUlAQPDw+163h4eEjaA08r9vLaA8DNmzdx9+5d2NnZidvIy8tDamqq2OaHH36AUqmEu7u72Obo0aOSiY4TExPh7OyMRo0aaX6wREREL+DBgwcqD/NUKPSQkBCGuXMVMmVF/ybr3X8xMTEYNWoUPv30U/To0QNr1qzB3r17cenSJdjY2MDf3x9NmzZFREQEgKePVOjduzciIyMxaNAg7NmzB0uXLsWZM2fQoUMHPHz4EOHh4Xjrrbdga2uLq1ev4oMPPsCDBw/w22+/wdjYGAAwYMAA8eFoT548wejRo9GtWzfs2rULAJCfnw9nZ2f0798fc+bMQVpaGsaMGYPVq1dLHr3wLLz7j4iItGHnzp1ib0uZsWPHomnTpjJlpNte5Pdb1jFVQ4cORW5uLkJDQ5GVlYXOnTvj0KFD4qDwGzduSAbceXp6YteuXViwYAHmzZuHNm3aIDY2Fh06dADw9Jkc58+fx44dO5CXlwd7e3v0798fixcvFgsq4OkHdMqUKejXrx/09PTw1ltvYd26deJyc3NzfP/995g8eTLc3NxgZWWF0NDQChdURERE2sCpZmoXWa9U6TJeqSIiospSN9WMg4MDxowZI1NGdUetvVJFREREUitXrkRhYaEkNn36dFhYWMiTEFUYiyoiIqIagt19tRuLKiIiIpmlp6dj586dkpibmxtef/11mTKiymBRRUREJCN1V6fmzJkDExMTGbKhF8GiioiISAZKpRKLFy9WibO7r/ZiUUVERFTNTp06hYMHD0pi3t7e6Nmzp0wZkTawqCIiIqpG6rr7FixYAH19fRmyIW1iUUVERFQNiouLxRlC/ondfbqDRRUREVEVO3ToEE6cOCGJDRs2DM7OzjJlRFWBRRUREVEVUtfdFxoaCoWCEyHrGhZVREREVaCgoACrV6+WxIyMjBASEiJTRlTVWFQRERFp2eeff45r165JYu+//z7s7OxkyoiqA4sqIiIiLeJUM3UXiyoiIiItyMzMxObNmyWxBg0cMWvWKJkyourGooqIiOgFRUZGoqioSBJbtWom2rc3w6xZMiVF1Y5FFRERUSUJgoBFixapxLt0CUP79sDcuTIkRbJhUUVERFQJly9fxp49eySxJk16YNKkAQAAX185siI5sagiIiLSkLrB6EuXzoWbmzEmTZIhIaoRWFQRERFVkFKpxOLFi1XiXbqEwc2N3X11HYsqIiKiCjhx4gQOHTokiQ0cOBDdu3cHwO4+YlFFRET0XOq6+z788EPo6enJkA3VVCyqiIiIylFUVITIyEiVOB/mSeqwqCIiIlLj22+/xenTpyWxd999F23atJEpI6rpWFQRERH9C6eaocpgUUVERPT/3bt3Dx9//LEkZmpqitmzZ8uUEdUmLKqIiIgArFq1Cg8ePJDEJkyYABsbG5kyotqGty0QEVGdFx4erlJQJSSEsaAijfBKFRER1VnXr1/H9u3bJTETEyt8881kPsiTNMaiioiI6iR1g9FnzJgBc3NzzJkjQ0JU67GoIiKiOkUQBCxatEglzrv76EWxqCIiojrj119/RWxsrCTWsWNHvPnmm/IkRDqFRRUREdUJ6rr75s6dC2NjYxmyIV3EooqIiHRaaWkpPvroI5U4u/tI21hUERGRzjp8+DB++eUXSczLywsvv/yyTBmRLmNRRUREOkldd9+HH34IPT0+opGqBosqIiLSKY8ePcKKFStU4uzuo6ome7m+YcMGODo6wsTEBO7u7jh58uQz2+/btw8uLi4wMTGBq6srDh48WG7bCRMmQKFQYM2aNWLsyJEjUCgUal+nTp0CAGRkZKhdfvz4ca0cMxERVY2dO3eqFFRDhw5lQUXVQtaiKiYmBkFBQQgLC8OZM2fQqVMneHt7IycnR2375ORkDB8+HIGBgTh79iz8/Pzg5+eHtLQ0lbYHDhzA8ePHYW9vL4l7enoiMzNT8ho7diycnJzQrVs3SdvDhw9L2rm5uWnv4ImISKvCw8ORnp4uiYWFhcHFxUWmjKiukbWoWrVqFcaNG4fRo0fjpZdewqZNm1C/fn1s27ZNbfu1a9fCx8cHwcHBaNeuHRYvXoyuXbti/fr1kna3bt3C1KlTsXPnThgaGkqWGRkZwdbWVnxZWlrim2++wejRo6FQKCRtLS0tJW3/vS0iIpLfnTt31I6f4tUpqm6yFVXFxcVITU2Fl5fX/5LR04OXlxdSUlLUrpOSkiJpDwDe3t6S9kqlEiNHjkRwcDDat2//3Dzi4uJw9+5djB49WmWZr68vrK2t8corryAuLq6ih0ZERNVk+fLl2LBhgyT2/vvvs6AiWcg2UP3OnTsoLS1VmQHcxsYGly5dUrtOVlaW2vZZWVni+2XLlsHAwADTpk2rUB5bt26Ft7c3mjVrJsYaNGiAqKgovPzyy9DT08PXX38NPz8/xMbGwtfXV+12ioqKUFRUJL4vKCio0P6JiKhyeHWKahqduvsvNTUVa9euxZkzZ1S68tS5efMmEhISsHfvXkncysoKQUFB4vvu3bvj9u3bWLFiRblFVUREhNp/4EREpF3Xrl3D559/LollZtri/PnxYE1FcpKt+8/Kygr6+vrIzs6WxLOzs2Fra6t2HVtb22e2P3bsGHJyctC8eXMYGBjAwMAA169fx6xZs+Do6KiyvejoaFhaWpZbKP2Tu7u7ygDIfwoJCUF+fr74+uuvv567TSIi0kx4eLhKQdW+/UycPz8ec+fKlBTR/ydbUWVkZAQ3NzckJSWJMaVSiaSkJHh4eKhdx8PDQ9IeABITE8X2I0eOxPnz53Hu3DnxZW9vj+DgYCQkJEjWEwQB0dHR8Pf3r9AA9HPnzsHOzq7c5cbGxjAzM5O8iIhIOwRBKLe77+23zZCcDFTg/4+JqpSs3X9BQUEYNWoUunXrhh49emDNmjUoLCwUB437+/ujadOmiIiIAABMnz4dvXv3RlRUFAYNGoQ9e/bg9OnT2Lx5M4Cnd+tZWlpK9mFoaAhbW1s4OztL4j/88AOuXbuGsWPHquS1Y8cOGBkZoUuXLgCA/fv3Y9u2bdiyZYvWzwERET3bmTNn8N///lcS69KlS4V6GYiqk6xF1dChQ5Gbm4vQ0FBkZWWhc+fOOHTokDgY/caNG5LpBDw9PbFr1y4sWLAA8+bNQ5s2bRAbG4sOHTpovO+tW7fC09Oz3OeXLF68GNevX4eBgQFcXFwQExODt99+u3IHSkRElaLu6lRISAiMjIxkyIbo2RSCIAhyJ6GLCgoKYG5ujvz8fHYFEhFpqKSkBEuWLFGJ8+4+qmov8vutU3f/ERFR7ZeQkKAyLZi3tzd69uwpU0ZEFcOiioiIagx13X2hoaEVekwOkdxYVBERkewKCwuxcuVKlTi7+6g2YVFFRESy2rFjBzIyMiSx4cOHo23btvIkRFRJLKqIiEg2nGqGdAmLKiIiqnY5OTnYuHGjSpwFFdVmLKqIiKhaLVmyBCUlJZLY+PHjy52ijKi2YFFFRETVht19pMtYVBERUZVLT0/Hzp07JbFmzZohMDBQpoyItI9FFRERVSl1V6dmzZqFBg0ayJANUdVhUUVERFVCEAQsWrRIJc7uPtJVLKqIiEjrTp06hYMHD0pi3bt3x8CBA2XKiKjqsagiIiKtUtfdN2/ePBgaGsqQDVH1YVFFRERa8eTJEyxdulQlzu4+qitYVBER0Qv79ttvcfr0aUls4MCB6N69u0wZEVU/FlVERPRC1HX3hYaGQqFQyJANkXxYVBERUaU8fPgQUVFRKnF291FdxaKKiIg0tnXrVty8eVMSe++999CqVSuZMiKSH4sqIiLSCKeaIVKPRRUREVVIdnY2Nm3aJIkZGBhg/vz5MmVEVLOwqCIioudSd3Vq0qRJaNKkiQzZENVMepquoK+vj5ycHJX43bt3oa+vr5WkiIio5iivu48FFZGUxleqBEFQGy8qKoKRkdELJ0RERDXDlStXsHv3bknM0dERo0aNkikjopqtwkXVunXrAAAKhQJbtmyRzC5eWlqKo0ePwsXFRfsZEhFRtVN3dWr27NkwNTWVIRui2qHCRdXq1asBPL1StWnTJklXn5GRERwdHVUGMBIRUe0iCAIWLVqkEufdfUTPV+Gi6tq1awCAvn37Yv/+/WjUqFGVJUVERNXv+PHjSEhIkMR69uwJb29vmTIiql00HlP1448/VkUeREQkI3XdffPnz4eBAW8SJ6oojf+1jBkz5pnLt23bVulkiIioehUXFyMiIkIlzu4+Is1pXFTdv39f8v7JkydIS0tDXl4eXnvtNa0lRkREVSsuLg5nz56VxAYPHoyuXbvKlBFR7aZxUXXgwAGVmFKpxMSJEznnExFRLaGuuy80NBQKhUKGbIh0g8YP/1S7ET09BAUFiXcIEhFRzVRQUFDuwzxZUBG9GK2NQLx69SpKSkq0tTkiItKyTz/9FFlZWZKYv78/nJycZMqISLdoXFQFBQVJ3guCgMzMTHz77bd8yi4RUQ1V3tUpItIejYuqfw9q1NPTQ5MmTRAVFfXcOwOJiKh67dmTicuXN0tiJiYmmDNnjkwZEekuPqeKiEhHqbs6NXnyZFhZWcmQDZHuq/SYqpycHFy+fBkA4OzsDGtra60lRUREL4bdfUTVT+OiqqCgAJMnT8bu3buhVCoBAPr6+hg6dCg2bNgAc3NzrSdJREQVc/HiRezdu1cSa926NUaMGCFTRkR1h8aPVBg3bhxOnDiBb7/9Fnl5ecjLy0N8fDxOnz6N8ePHa5zAhg0b4OjoCBMTE7i7u+PkyZPPbL9v3z64uLjAxMQErq6uOHjwYLltJ0yYAIVCgTVr1kjijo6OUCgUkldkZKSkzfnz59GrVy+YmJjAwcEBy5cv1/jYiIiqU3h4uEpBFRwczIKKqJpoXFTFx8dj27Zt8Pb2hpmZGczMzODt7Y3PPvsM//3vfzXaVkxMDIKCghAWFoYzZ86gU6dO8Pb2Rk5Ojtr2ycnJGD58OAIDA3H27Fn4+fnBz88PaWlpKm0PHDiA48ePw97eXu22Fi1ahMzMTPE1depUcVlBQQH69++PFi1aIDU1FStWrMDChQuxefNmtdsiIpKTUqkst7uvfv36MmREVDdpXFRZWlqq7eIzNzdHo0aNNNrWqlWrMG7cOIwePRovvfQSNm3ahPr165c7f+DatWvh4+OD4OBgtGvXDosXL0bXrl2xfv16Sbtbt25h6tSp2LlzJwwNDdVuq2HDhrC1tRVfpqam4rKdO3eiuLgY27ZtQ/v27TFs2DBMmzYNq1at0uj4iIiqUlwc8O67v2Dx4sWS+Msvv8zxU0Qy0LioWrBgAYKCgiQPkMvKykJwcDA+/PDDCm+nuLgYqamp8PLy+l8yenrw8vJCSkqK2nVSUlIk7QHA29tb0l6pVGLkyJEIDg5G+/bty91/ZGQkLC0t0aVLF6xYsULy4NKUlBS8+uqrMDIykuzn8uXLKnMflikqKkJBQYHkRURUlc6eDYez82FJbMGCBSrfk0RUPTQeqL5x40akp6ejefPmaN68OQDgxo0bMDY2Rm5uLj799FOx7ZkzZ8rdzp07d1BaWgobGxtJ3MbGBpcuXVK7TlZWltr2/yzwli1bBgMDA0ybNq3cfU+bNg1du3ZF48aNkZycjJCQEGRmZopXorKyslSeMFy236ysLLVX5CIiItRefici0raioiKVcaAA7+4jkpvGRdUbb7xRY+eHSk1Nxdq1a3HmzJln5vjPp8J37NgRRkZGGD9+PCIiImBsbFypfYeEhEi2W1BQAAcHh0pti4ioPAcOHMD58+clMT8/P3Tq1EmmjIiojMZF1cKFC7WyYysrK+jr6yM7O1sSz87Ohq2trdp1bG1tn9n+2LFjyMnJEa+gAUBpaSlmzZqFNWvWICMjQ+123d3dUVJSgoyMDDg7O5e7n7Ic1DE2Nq50QUZEVBHqroaHhobW2P/RJaprNB5T1bJlS9y9e1clnpeXh5YtW1Z4O0ZGRnBzc0NSUpIYUyqVSEpKgoeHh9p1PDw8JO0BIDExUWw/cuRInD9/HufOnRNf9vb2CA4ORkJCQrm5nDt3Dnp6euIDTD08PHD06FE8efJEsh9nZ2eNB+MTEb2or77KL/fuPhZURDWHxleqMjIyUFpaqhIvKirCzZs3NdpWUFAQRo0ahW7duqFHjx5Ys2YNCgsLMXr0aABPZ09v2rQpIiIiAADTp09H7969ERUVhUGDBmHPnj04ffq0+KgDS0tLWFpaSvZhaGgIW1tbODs7A3g6CP3EiRPo27cvGjZsiJSUFMycORPvvfeeWDC9++67CA8PR2BgIObMmYO0tDSsXbsWq1ev1uxkERG9oOjoaNy4cUMSCwgIQIsWLWTKiIjKU+GiKi4uTvxzQkKC5LEKpaWlSEpKUhnc/TxDhw5Fbm4uQkNDkZWVhc6dO+PQoUPioPAbN25AT+9/F9M8PT2xa9cuLFiwAPPmzUObNm0QGxuLDh06VHifxsbG2LNnDxYuXIiioiI4OTlh5syZkvFQ5ubm+P777zF58mS4ubnBysoKoaGheP/99zU6PiKiF8GpZohqF4UgCEJFGpYVNwqFAv9exdDQEI6OjoiKisLrr7+u/SxroYKCApibmyM/Px9mZmZyp0NEtcidO3ewYcMGSezx44aIiAgqZw0i0pYX+f2u8JWqsnn+nJyccOrUKc5yTkRUBdR19/34YxCCghrKlBERVVSFr1SRZniliog0xe4+IvlVy5WqMosWLXrm8tDQUE03SURUp12/fh3bt2+XxPr06YPevXvLkxARVYrGRdWBAwck7588eYJr167BwMAArVq1YlFFRKSBiIgIFBcXS2IhISGSabKIqHbQuKg6e/asSqygoAABAQF48803tZIUEZGuUyqVKhMhA+zuI6rNtDam6rfffsPgwYPLfWp5XcMxVURUnlOnTuHgwYOS2JtvvomOHTvKlBERlanWMVXlyc/PR35+vrY2R0Skk9QNRv/++w8RFqbxBBdEVMNoXFStW7dO8l4QBGRmZuKLL77AgAEDtJYYEZEuKSoqQmRkpEo8ISEMc+fKkBARaZ3G3X//fmq6np4emjRpgtdeew0hISFo2JDPUgHY/UdE//Pdd9/h5MmTktiwYcPE6bOIqOao1u6/a9euaboKEVGdpa67LzQ0lBMhE+mgSo2pysvLQ3p6OgCgdevWsLCw0GZORES1XkFBgcok7MbGxpjLvj4inaVRUZWRkYHJkycjISFBnP9PoVDAx8cH69evh6OjY1XkSERUq+zYsUPlTuj3338fdnZ28iRERNWiwkXVX3/9hZ49e8LQ0BCLFy9Gu3btAAAXLlzAxo0b4eHhgVOnTqFZs2ZVliwRUU3HqWaI6q4KD1QPDAxEeno6EhISYGJiIln2999/w8fHB23atMGWLVuqJNHahgPVieqWzMxMbN68WRJzcnKCv7+/TBkRUWVUy0D1Q4cOISYmRqWgAoB69eph8eLFGDZsmEY7JyLSBeqmmpk5cyb/h4qojqlwUXXnzp1njplq2bIl7t27p42ciIhqBUEQ1E4yz+4+orqpwkWVnZ0dLly4UO6YqbS0NNja2motMSKimuzy5cvYs2ePJObu7g4fHx+ZMiIiuVW4qPLz88Ps2bORlJSEJk2aSJbl5ORgzpw58PPz03Z+REQ1jrrB6CEhITAyMpIhGyKqKSo8UP3+/ftwd3dHVlYW3nvvPbi4uEAQBFy8eBG7du2Cra0tjh8/jsaNG1d1zrUCB6oT6Z7S0lJ89NFHKnF29xHpjmoZqN6oUSOcOHEC8+bNw549e5CXlwcAsLCwwLvvvoulS5eyoCIinXX8+HEkJCRIYgMHDkT37t1lyoiIahqN5/4Dng7OzM3NBQA0adKE0y2owStVRLpDXXffhx9+CD09PRmyIaKqVK1z/wFPn6JubW1dmVWJiGqNx48fY9myZSpxdvcRkTqVKqqIiHRdfHw8UlNTJbERI0agdevWMmVERDUdiyoion/hVDNEVBksqoiI/r99++7jwoV1kpipqSlmz54tU0ZEVJuwqCIigvqrUxMmTICNjY0M2RBRbVShomrdunXPb/T/TZs2rdLJEBHJgd19RKQNFXqkgpOTU8U2plDgzz//fOGkdAEfqUBU86Wnp2Pnzp2SmLGxMebOnStTRkQktyp/pMK1a9cqlRgRUU2l7urUtGnT0KhRIxmyISJdUOkn1xUXF+Py5csoKSnRZj5ERFVKEIRyu/tYUBHRi9C4qHr06BECAwNRv359tG/fHjdu3AAATJ06FZGRkVpPkIhIW06cOIFFixZJYq1bt+b4KSLSCo2LqpCQEPz66684cuQITExMxLiXlxdiYmK0mhwRkbaEh4fj0KFDktjcuXMxYsQImTIiIl2j8SMVYmNjERMTg549e0rm/Gvfvj2uXr2q1eSIiF5USUkJlixZohLn1Ski0jaNi6rc3Fy18/4VFhZyYmUiqlHi4uJw9uxZSaxXr1547bXXZMqIiHSZxkVVt27d8O2332Lq1KkAIBZSW7ZsgYeHh3azIyKqJHWD0T/88EPo6VX6/hwiomfSuKhaunQpBgwYgAsXLqCkpARr167FhQsXkJycjJ9++qkqciQiqrDCwkKsXLlSJc7uPiKqahoXVa+88grOnTuHyMhIuLq64vvvv0fXrl2RkpICV1fXqsiRiKhCNm7ciJycHEnszTffRMeOHWXKiIjqkkpdB2/VqhU+++wznDx5EhcuXMCXX35Z6YJqw4YNcHR0hImJCdzd3XHy5Mlntt+3bx9cXFxgYmICV1dXHDx4sNy2EyZMgEKhwJo1a8RYRkYGAgMD4eTkhHr16qFVq1YICwtDcXGxpI1CoVB5HT9+vFLHSERVLzw8XKWgCgsLY0FFRNWmQleqCgoKKrxBTR7pHhMTg6CgIGzatAnu7u5Ys2YNvL29cfnyZbWD4ZOTkzF8+HBERETg9ddfx65du+Dn54czZ86gQ4cOkrYHDhzA8ePHYW9vL4lfunQJSqUSn376KVq3bo20tDSMGzdObZfB4cOH0b59e/G9paVlhY+NiKpHdnY2Nm3apBJndx8RVbcKzf2np6dX4Tv7SktLK7xzd3d3dO/eHevXrwcAKJVKODg4YOrUqWrn3ho6dCgKCwsRHx8vxnr27InOnTtLvlRv3boFd3d3JCQkYNCgQZgxYwZmzJhRbh4rVqzAxo0bxXkLMzIy4OTkhLNnz6Jz584VPp5/4tx/RFVP3WD0wMBANGvWTIZsiEgXVPncfz/++KP454yMDMydOxcBAQHi3X4pKSnYsWMHIiIiKrzj4uJipKamIiQkRIzp6enBy8sLKSkpatdJSUlBUFCQJObt7Y3Y2FjxvVKpxMiRIxEcHCy5yvQs+fn5aNy4sUrc19cXjx8/Rtu2bfHBBx/A19e33G0UFRWhqKhIfK/J1T0i0lx5U80QEcmlQkVV7969xT8vWrQIq1atwvDhw8WYr68vXF1dsXnzZowaNapCO75z5w5KS0thY2MjidvY2ODSpUtq18nKylLbPisrS3y/bNkyGBgYYNq0aRXKIz09HR9//LGk669BgwaIiorCyy+/DD09PXz99dfw8/NDbGxsuYVVRESE2i95ItKuK1euYPfu3ZKYqakpZs+eLVNGRERPaXz3X0pKitrxC926dcPYsWO1klRlpaamYu3atThz5kyFuitv3boFHx8fDBkyBOPGjRPjVlZWkiti3bt3x+3bt7FixYpyi6qQkBDJOgUFBXBwcHiBoyGif1P3Py4zZsyAubm5DNkQEUlpfPefg4MDPvvsM5X4li1bNCoirKysoK+vj+zsbEk8Ozsbtra2atextbV9Zvtjx44hJycHzZs3h4GBAQwMDHD9+nXMmjULjo6OkvVu376Nvn37wtPTE5s3b35uvu7u7khPTy93ubGxMczMzCQvItIOQRDK7e5jQUVENYXGV6pWr16Nt956C9999x3c3d0BACdPnsQff/yBr7/+usLbMTIygpubG5KSkuDn5wfg6XiopKQkTJkyRe06Hh4eSEpKkgw6T0xMFMd2jRw5El5eXpJ1vL29MXLkSIwePVqM3bp1C3379oWbmxuio6Mr9ITlc+fOwc7OrsLHR0TakZycjMTEREnM2dkZw4YNkykjIiL1NC6qBg4ciD/++AOffPKJOPZp8ODBmDBhgsbdXUFBQRg1ahS6deuGHj16YM2aNSgsLBQLIH9/fzRt2lQcAD99+nT07t0bUVFRGDRoEPbs2YPTp0+LV5osLS1VHntgaGgIW1tbODs7A3haUPXp0wctWrTAypUrkZubK7Ytu+K1Y8cOGBkZoUuXLgCA/fv3Y9u2bdiyZYump4uIXoC6q1MhISEwMjKSIRsiomfTuKgCgGbNmmHp0qUvvPOhQ4ciNzcXoaGhyMrKQufOnXHo0CFxMPqNGzckV5E8PT2xa9cuLFiwAPPmzUObNm0QGxur8oyqZ0lMTER6ejrS09NVbrv+59MlFi9ejOvXr8PAwAAuLi6IiYnB22+//YJHTEQV8eTJE7XfMby7j4hqsgo9p+rf8vLysHXrVly8eBEA0L59e4wZM4ZjG/6Bz6kiqpwDBw7g/PnzklifPn0kdyETEVWVF/n91rioOn36NLy9vVGvXj306NEDAHDq1Cn8/fff4jyAxKKKqDLUdfd17hyKN96o2MOHiYheVLUWVb169ULr1q3x2WefwcDgae9hSUkJxo4diz///BNHjx7VKAFdxaKKqOIePHiAVatWqcTZ3UdE1a1ai6p69erh7NmzcHFxkcQvXLiAbt264dGjRxoloKtYVBFVzMcff4x79+5JYm+//XaFZ0QgItKmKp+m5p/MzMxw48YNlaLqr7/+QsOGDTXdHBHVYZxqhoh0icZF1dChQxEYGIiVK1fC09MTAPDLL78gODhYMnUNEVF5MjMz1T50lwUVEdVmGhdVK1euhEKhgL+/P0pKSgA8fRbUxIkTERkZqfUEiUi3qLs6NW7cONjb28uQDRGR9lTqkQoA8OjRI1y9ehUA0KpVK9SvX1+ridV2HFNFpIrdfURU01XrmKoy9evXh6ura2VXJ6I65OLFi9i7d68kZmFhgenTp8uUERGR9lW4qBozZkyF2m3btq3SyRCR7lF3dWrmzJm8gktEOqfCRdX27dvRokULdOnSBZXsMSSiOkQQBCxatEglzu4+ItJVFS6qJk6ciN27d+PatWsYPXo03nvvPTRu3LgqcyOiWurYsWP44YcfJLH27dtz/kwi0mkaDVQvKirC/v37sW3bNiQnJ2PQoEEIDAxE//79oVBwGol/4kB1qqvUdffNmzcPhoaGMmRDRKSZan2iepnr169j+/bt+Pzzz1FSUoLff/8dDRo0qMymdBKLKqpriouLERERoRJndx8R1Say3P2np6cHhUIBQRBQWlpa2c0QkQ7Yt28fLly4IIn169cPr7zyikwZERFVPz1NGhcVFWH37t34v//7P7Rt2xa//fYb1q9fjxs3bvAqFVEdFR4erlJQhYaGsqAiojqnwleqJk2ahD179sDBwQFjxozB7t27YWVlVZW5EVENVlBQgNWrV6vE2d1HRHVVhcdU6enpoXnz5ujSpcszB6Xv379fa8nVZhxTRbps9erVKCgokMSGDh2qMtE6EVFtUy1jqvz9/XmHHxFxqhkionJo9PBPIqq7bt26hS1btqjEWVARET1V6bv/iKjuUHd1avz48bC1tZUhGyKimolFFRE9E7v7iIgqhkUVEan1+++/46uvvpLErKysMHnyZJkyIiKq2VhUEZEKdVenZs2axefRERE9A4sqIhIplUosXrxYJc7uPiKi52NRRUQAgCNHjuCnn36SxDp16gQ/Pz95EiIiqmVYVBGR2u6++fPnw8CAXxFERBXFb0yiOuzJkydYunSpSpzdfUREmmNRRVRHJSUl4eeff5bE+vfvDw8PD5kyIiKq3VhUEdVB6rr7OncOhYcHp6IiIqosFlVEdcjDhw8RFRWlEmd3HxHRi2NRRVRH7NmzB5cvX5bEAgMD0axZM5kyIiLSLSyqiOoATjVDRFT1WFQR6bCcnBxs3LhREmvatCnGjh0rU0ZERLqLRRWRjlq9ejUKCgoksWnTpqFRo0YyZUREpNtYVBHpiLg4IDISmDsXOHuW3X1ERNWNRRWRjoiMBLKzr+Ls2S8l8S5dusDX11emrIiI6g49uRPYsGEDHB0dYWJiAnd3d5w8efKZ7fft2wcXFxeYmJjA1dUVBw8eLLfthAkToFAosGbNGkn83r17GDFiBMzMzGBhYYHAwEA8fPhQ0ub8+fPo1asXTExM4ODggOXLl1f6GImqw8CBy+HvLy2o5syZw4KKiKiayFpUxcTEICgoCGFhYThz5gw6deoEb29v5OTkqG2fnJyM4cOHIzAwEGfPnoWfnx/8/PyQlpam0vbAgQM4fvw47O3tVZaNGDECv//+OxITExEfH4+jR4/i/fffF5cXFBSgf//+aNGiBVJTU7FixQosXLgQmzdv1t7BE2mJIAgIDw9HaenfknhYWBhMTExkyoqIqO5RCIIgyLVzd3d3dO/eHevXrwcAKJVKODg4YOrUqZg7d65K+6FDh6KwsBDx8fFirGfPnujcuTM2bdokxm7dugV3d3ckJCRg0KBBmDFjBmbMmAEAuHjxIl566SWcOnUK3bp1AwAcOnQIAwcOxM2bN2Fvb4+NGzdi/vz5yMrKgpGREQBg7ty5iI2NxaVLlyp0bAUFBTA3N0d+fj7MzMwqdX6InufPP//EF198IYlxqhkiosp7kd9v2a5UFRcXIzU1FV5eXv9LRk8PXl5eSElJUbtOSkqKpD0AeHt7S9orlUqMHDkSwcHBaN++vdptWFhYiAUVAHh5eUFPTw8nTpwQ27z66qtiQVW2n8uXL+P+/fuVO2AiLYuKilIpqD788EMWVEREMpFtoPqdO3dQWloKGxsbSdzGxqbcq0FZWVlq22dlZYnvly1bBgMDA0ybNq3cbVhbW0tiBgYGaNy4sbidrKwsODk5qeynbJm6W9KLiopQVFQkvv/3rexE2hAXByxfXoL/+78lkridnZ2kC5uIiKqfTt39l5qairVr1+LMmTNQKKp3YtiIiAi1T60m0qbPP/8V//d/sZLY2LFj0bRpU3kSIiIikWzdf1ZWVtDX10d2drYknp2dDVtbW7Xr2NraPrP9sWPHkJOTg+bNm8PAwAAGBga4fv06Zs2aBUdHR3Eb/x4IX1JSgnv37onbKW8/ZcvUCQkJQX5+vvj666+/KnAWiCouPDwcrq6xklhoaCgLKiKiGkK2osrIyAhubm5ISkoSY0qlEklJSeWOCfHw8JC0B4DExESx/ciRI3H+/HmcO3dOfNnb2yM4OBgJCQniNvLy8pCamipu44cffoBSqYS7u7vY5ujRo3jy5IlkP87OzuU+jdrY2BhmZmaSF5E2/P333ypXQV1dXREWFlbtV2SJiKh8snb/BQUFYdSoUejWrRt69OiBNWvWoLCwEKNHjwYA+Pv7o2nTpoiIiAAATJ8+Hb1790ZUVBQGDRqEPXv24PTp0+KjDiwtLWFpaSnZh6GhIWxtbeHs7AwAaNeuHXx8fDBu3Dhs2rQJT548wZQpUzBs2DDx8QvvvvsuwsPDERgYiDlz5iAtLQ1r167F6tWrq+vUEAEAjh49ih9//FESmzp1Kho3bixTRkREVB5Zi6qhQ4ciNzcXoaGhyMrKQufOnXHo0CFxUPiNGzegp/e/i2menp7YtWsXFixYgHnz5qFNmzaIjY1Fhw4dNNrvzp07MWXKFPTr1w96enp46623sG7dOnG5ubk5vv/+e0yePBlubm6wsrJCaGgoBwJTtVI3Ro9TzRAR1VyyPqdKl/E5VVRZeXl5WLt2rST26quvom/fvjJlRERUd7zI77dO3f1HVNvFxcXh7NmzklhwcDDq168vU0ZERFRRLKqIagh29xER1W4sqohklpmZqTKv5ODBg9G1a1eZMiIiospgUUUko+joaNy4cUMSmzdvHgwNDWXKiIiIKotFFZEMlEolFi9eLIkZGxurnUiciIhqBxZVRNUsPT0dO3fulMTeffddtGnTRqaMiIhIG1hUEVWj5cuX4++//5bEPvzwQ8nz2IiIqHZiUUVUDZ48eYKlS5dKYg4ODhgzZoxMGRERkbaxqCKqYmfPnkVcXJwkNm7cOHFaJCIi0g0sqoiqkLpnT4WGhnIiZCIiHcSiiqgKPHr0CCtWrJDEOnfujDfeeEOmjIiIqKqxqCLSsiNHjuCnn36SxKZNm4ZGjRrJlBEREVUHFlVEWsSpZoiI6i4WVURacP/+faxbt04S69OnD3r37i1TRkREVN1YVBG9oAMHDuD8+fOS2AcffIB69erJlBEREcmBRRVRJQmCgEWLFqnE2d1HRFQ3sagiqoTbt2/js88+k8TeeOMNdO7cWZ6EiIhIdiyqiDS0ZcsW3Lp1SxKbP38+DAz4z4mIqC7jrwBRBSmVSixevFgSMzU1xezZs2XKiIiIahIWVUQVcOXKFezevVsSe++999CqVSuZMiIiopqGRRXRc0RERKC4uFgS41QzRET0byyqiMrx5MkTLF26VBJr0aIFAgIC5EmIiIhqNBZVRGqkpqYiPj5eEhs/fjxsbW1lyoiIiGo6FlVE/8KpZoiIqDJYVBH9f4WFhVi5cqUk1rVrVwwePFimjIiIqDZhUUUEICkpCT///LMkNmPGDJibm8uUERER1TYsqqjOY3cfERFpA4sqqrPu3buHjz/+WBJ77bXX0KtXL5kyIiKi2oxFFdVJX331FX7//XdJbM6cOTAxMZEpIyIiqu1YVFGdIggCFi1apBJndx8REb0oFlVUZ9y8eRNbt26VxN5880107NhRpoyIiEiXsKiiOuHTTz9FVlaWJDZ//nwYGPCfABERaQd/UUinKZVKLF68WBIzMzPDzJkzZcqIiIh0lZ7cCRBpQ1wc4On59L9lLl++rFJQ+fv7s6AiIqIqwStVpBMiI4GUlKf/9fUFPvroI5SWlkrahIaGQqFQyJQhERHpOl6pIp0wdy7g4QEEBxcjPDxcUlC1bNkSYWFhLKiIiKhK8UoV6QRfX8DO7hQOHjwoiU+cOBHW1tYyZUVERHWJ7FeqNmzYAEdHR5iYmMDd3R0nT558Zvt9+/bBxcUFJiYmcHV1VfkRXbhwIVxcXGBqaopGjRrBy8sLJ06cEJcfOXIECoVC7evUqVMAgIyMDLXLjx8/rv0TQFoRHh6u8lkICwtjQUVERNVG1qIqJiYGQUFBCAsLw5kzZ9CpUyd4e3sjJydHbfvk5GQMHz4cgYGBOHv2LPz8/ODn54e0tDSxTdu2bbF+/Xr89ttv+Pnnn+Ho6Ij+/fsjNzcXAODp6YnMzEzJa+zYsXByckK3bt0k+zt8+LCknZubW9WdDKqU4uJilbn7unXrxod5EhFRtVMIgiDItXN3d3d0794d69evB/D09ncHBwdMnToVc+fOVWk/dOhQFBYWIj4+Xoz17NkTnTt3xqZNm9Tuo6CgAObm5jh8+DD69eunsvzJkydo2rQppk6dig8//BDA0ytVTk5OOHv2LDp37lypYyvbb35+PszMzCq1DXq2q1ev4ssvv5TEZs6cyfNNRESV9iK/37JdqSouLkZqaiq8vLz+l4yeHry8vJCSkqJ2nZSUFEl7APD29i63fXFxMTZv3gxzc3N06tRJbZu4uDjcvXsXo0ePVlnm6+sLa2trvPLKK4j75736ahQVFaGgoEDyoqoTExMjKag6d+6MsLAwFlRERCQb2Qaq37lzB6WlpbCxsZHEbWxscOnSJbXrZGVlqW3/7ydlx8fHY9iwYXj06BHs7OyQmJgIKysrtdvcunUrvL290axZMzHWoEEDREVF4eWXX4aenh6+/vpr+Pn5ITY2Fr6+vmq3ExERodINRdr36NEjrFixQhIbM2YMHBwcZMqIiIjoKZ28+69v3744d+4c7ty5g88++wzvvPMOTpw4oTJo+ebNm0hISMDevXslcSsrKwQFBYnvu3fvjtu3b2PFihXlFlUhISGSdQoKCvhDr2W///47vvrqK0mMU80QEVFNIduvkZWVFfT19ZGdnS2JZ2dnw9bWVu06tra2FWpvamqK1q1bo3Xr1ujZsyfatGmDrVu3IiQkRNIuOjoalpaW5RZK/+Tu7o7ExMRylxsbG8PY2Pi52yHNCYKArVu34tatW2KsV69eeO2112TMioiISEq2MVVGRkZwc3NDUlKSGFMqlUhKSoKHh4fadTw8PCTtASAxMbHc9v/cblFRkSQmCAKio6Ph7+8PQ0PD5+Z77tw52NnZPbcdaVd+fj4WLVokKagmTpzIgoqIiGocWftNgoKCMGrUKHTr1g09evTAmjVrUFhYKA4a9/f3R9OmTREREQEAmD59Onr37o2oqCgMGjQIe/bswenTp7F582YAQGFhIZYsWQJfX1/Y2dnhzp072LBhA27duoUhQ4ZI9v3DDz/g2rVrGDt2rEpeO3bsgJGREbp06QIA2L9/P7Zt24YtW7ZU5emgfzl1SvowT1NTUwQFBUFPT/bHqxEREamQtagaOnQocnNzERoaiqysLHTu3BmHDh0SB6PfuHFD8gPq6emJXbt2YcGCBZg3bx7atGmD2NhYdOjQAQCgr6+PS5cuYceOHbhz5w4sLS3RvXt3HDt2DO3bt5fse+vWrfD09ISLi4va3BYvXozr16/DwMAALi4uiImJwdtvv11FZ4L+SalUYs2aNXjw4IEY8/b2Rs+ePWXMioiI6NlkfU6VLuNzqionNzcXn3zyiSQ2ffp0WFhYyJMQERHVKS/y+83bpqjGOHLkCH766SfxvZ2dHcaNG8eJkImIqFZgUUWyKykpwZIlSySx//znP3B1dZUpIyIiIs2xqCJZ3bx5E1u3bpXEZs+eDVNTU5kyIiIiqhwWVSSb+Ph4pKamiu/btm2L4cOHy5gRERFR5bGoompXVFSEyMhISWzEiBFo3bq1TBkRERG9OBZVVK3S09Oxc+dOSWzu3Ll8Gj0REdV6LKqo2uzevRtXrlwR33ft2hWDBw+WMSMiIiLtYVFFVa6wsBArV66UxAIDA9GsWTOZMiIiItI+FlVUpX777Tfs379fEps/fz4MDPjRIyIi3cJfNqoSgiBg8+bNyMrKEmOvvvoq+vbtK2NWREREVYdFFWldXl4e1q5dK4lNmjQJTZo0kSkjIiKiqseiirTqxIkTOHTokPi+YcOGmDFjhmRibCIiIl3Eooq0QqlUIioqCo8ePRJjAwYMQI8ePWTMioiIqPqwqKIXlpOTg40bN0piM2bMgLm5uUwZERERVT8WVfRCfvjhBxw7dkx8b29vj7Fjx0KhUMiYFRERUfVjUUWVUlJSgiVLlkhib731Fjp06CBTRkRERPJiUUUa++uvv7Bt2zZJLDg4GPXr15cpIyIiIvmxqCKNxMXF4ezZs+J7FxcXDB06VMaMiIiIagYWVVQhRUVFiIyMlMTee+89tGrVSqaMiIiIahYWVfRcf/zxB3bt2iWJhYSEwMjISKaMiIiIah4WVfRMO3fuRHp6uvi+W7duGDRokIwZERER1UwsqkitwsJCrFy5UhIbO3YsmjZtKlNGRERENRuLKlJx/vx5HDhwQHyvUCgwf/586Ovry5gVERFRzcaiikSCIODTTz9Fdna2GOvTpw969+4tY1ZERES1A4sqAgDk5eVh7dq1ktjkyZNhZWUlU0ZERES1C4sqwvHjx5GQkCC+NzMzw4wZMzjVDBERkQZYVNVhSqUSK1euxN9//y3GBg0ahG7dusmYFRERUe3EoqqOys7OxqZNmySxmTNnwszMTKaMiIiIajcWVXXQ4cOH8csvv4jvmzVrhjFjxrC7j4iI6AWwqKpDSkpKsGTJEklsyJAheOmll2TKiIiISHewqKojbty4gejoaEnsgw8+QL169WTKiIiISLewqKoDvvnmG5w7d058/9JLL2HIkCHyJURERKSDWFTpsMePH2PZsmWS2MiRI9GyZUuZMiIiItJdLKp01JUrV7B7925JLCQkBEZGRjJlREREpNtYVOmgL7/8ElevXhXf9+jRAwMGDJAxIyIiIt3HokqHPHz4EFFRUZLYuHHjYG9vL1NGREREdQeLKh1x7tw5fPPNN+J7fX19hISEQF9fX8asiIiI6g49uRPYsGEDHB0dYWJiAnd3d5w8efKZ7fft2wcXFxeYmJjA1dUVBw8elCxfuHAhXFxcYGpqikaNGsHLywsnTpyQtHF0dIRCoZC8IiMjJW3Onz+PXr16wcTEBA4ODli+fLl2DljLBEHAJ598IimoXnvtNSxYsIAFFRERUTWStaiKiYlBUFAQwsLCcObMGXTq1Ane3t7IyclR2z45ORnDhw9HYGAgzp49Cz8/P/j5+SEtLU1s07ZtW6xfvx6//fYbfv75Zzg6OqJ///7Izc2VbGvRokXIzMwUX1OnThWXFRQUoH///mjRogVSU1OxYsUKLFy4EJs3b66aE1FJ9+/fx6JFiyTHNmXKFPTq1UvGrIiIiOomhSAIglw7d3d3R/fu3bF+/XoATyf4dXBwwNSpUzF37lyV9kOHDkVhYSHi4+PFWM+ePdG5c2eVeezKFBQUwNzcHIcPH0a/fv0APL1SNWPGDMyYMUPtOhs3bsT8+fORlZUl3i03d+5cxMbG4tKlSxU6trL95ufnV8l8esnJyUhMTBTfN2rUCFOnTuVUM0RERC/gRX6/ZbtSVVxcjNTUVHh5ef0vGT09eHl5ISUlRe06KSkpkvYA4O3tXW774uJibN68Gebm5ujUqZNkWWRkJCwtLdGlSxesWLECJSUlkv28+uqrkscPeHt74/Lly7h//77afRUVFaGgoEDyqipbtmyRFFSvv/46pk2bxoKKiIhIRrINVL9z5w5KS0thY2MjidvY2JR7NSgrK0tt+6ysLEksPj4ew4YNw6NHj2BnZ4fExERYWVmJy6dNm4auXbuicePGSE5ORkhICDIzM7Fq1SpxP05OTir7KVvWqFEjldwiIiIQHh5ewaOvvNLSUty6dUt8P3PmzCq5EkZERESa0cm7//r27Ytz587hzp07+Oyzz/DOO+/gxIkTsLa2BgAEBQWJbTt27AgjIyOMHz8eERERMDY2rtQ+Q0JCJNstKCiAg4PDix2IGvr6+hgyZAgePnyI7t278+oUERFRDSFb95+VlRX09fWRnZ0tiWdnZ8PW1lbtOra2thVqb2pqitatW6Nnz57YunUrDAwMsHXr1nJzcXd3R0lJCTIyMp65n7Jl6hgbG8PMzEzyqirp6S9hxowe+O9/WVARERHVFLIVVUZGRnBzc0NSUpIYUyqVSEpKgoeHh9p1PDw8JO0BIDExsdz2/9xuUVFRucvPnTsHPT098UqWh4cHjh49iidPnkj24+zsrLbrr7pFRgIpKU//S0RERDWDrI9UCAoKwmeffYYdO3bg4sWLmDhxIgoLCzF69GgAgL+/P0JCQsT206dPx6FDhxAVFYVLly5h4cKFOH36NKZMmQIAKCwsxLx583D8+HFcv34dqampGDNmDG7duoUhQ4YAeDoIfc2aNfj111/x559/YufOnZg5cybee+89sWB69913YWRkhMDAQPz++++IiYnB2rVrJd17cpo7F/DwePpfIiIiqiEEmX388cdC8+bNBSMjI6FHjx7C8ePHxWW9e/cWRo0aJWm/d+9eoW3btoKRkZHQvn174dtvvxWX/f3338Kbb74p2NvbC0ZGRoKdnZ3g6+srnDx5UmyTmpoquLu7C+bm5oKJiYnQrl07YenSpcLjx48l+/n111+FV155RTA2NhaaNm0qREZGanRc+fn5AgAhPz9fo/WIiIhIPi/y+y3rc6p0WVU/p4qIiIi0r1Y+p4qIiIhIl7CoIiIiItICFlVEREREWsCiioiIiEgLWFQRERERaQGLKiIiIiItYFFFREREpAUsqoiIiIi0gEUVERERkRawqCIiIiLSAhZVRERERFrAooqIiIhICwzkTkBXlc1TXVBQIHMmREREVFFlv9tlv+OaYFFVRR48eAAAcHBwkDkTIiIi0tSDBw9gbm6u0ToKoTKlGD2XUqnE7du30bBhQygUCq1vv6CgAA4ODvjrr79gZmam9e3XdHX9+AGeA4DnoK4fP8BzAPAcANo9B4Ig4MGDB7C3t4eenmajpHilqoro6emhWbNmVb4fMzOzOvuPCODxAzwHAM9BXT9+gOcA4DkAtHcONL1CVYYD1YmIiIi0gEUVERERkRawqKqljI2NERYWBmNjY7lTkUVdP36A5wDgOajrxw/wHAA8B0DNOQccqE5ERESkBbxSRURERKQFLKqIiIiItIBFFREREZEWsKgiIiIi0gIWVdVgw4YNcHR0hImJCdzd3XHy5Mlntt+3bx9cXFxgYmICV1dXHDx4ULJ84cKFcHFxgampKRo1agQvLy+cOHFC0sbR0REKhULyioyMlLQ5f/48evXqBRMTEzg4OGD58uXaOWA1qvscHDlyROX4y16nTp0CAGRkZKhdfvz4ce2fAGj/HPzThAkToFAosGbNGkn83r17GDFiBMzMzGBhYYHAwEA8fPhQ0qY2fw7+Sd05yMjIQGBgIJycnFCvXj20atUKYWFhKC4ulrSprs+BHJ8BXf8u+Cd156AufBcEBASo5O7j4yNpU5O+C6r7+Kv1e0CgKrVnzx7ByMhI2LZtm/D7778L48aNEywsLITs7Gy17X/55RdBX19fWL58uXDhwgVhwYIFgqGhofDbb7+JbXbu3CkkJiYKV69eFdLS0oTAwEDBzMxMyMnJEdu0aNFCWLRokZCZmSm+Hj58KC7Pz88XbGxshBEjRghpaWnC7t27hXr16gmffvqpTpyDoqIiybFnZmYKY8eOFZycnASlUikIgiBcu3ZNACAcPnxY0q64uLhWnIMy+/fvFzp16iTY29sLq1evlizz8fEROnXqJBw/flw4duyY0Lp1a2H48OHi8tr+OShT3jn47rvvhICAACEhIUG4evWq8M033wjW1tbCrFmzxDbV9TmQ6zOg698FZco7B3Xhu2DUqFGCj4+PJPd79+5JtlNTvgvkOP7q/B5gUVXFevToIUyePFl8X1paKtjb2wsRERFq27/zzjvCoEGDJDF3d3dh/Pjx5e4jPz9f/DCUadGihcqX6z998sknQqNGjYSioiIxNmfOHMHZ2fl5h6Qxuc7BPxUXFwtNmjQRFi1aJMbK/hGdPXtWg6OpnKo6Bzdv3hSaNm0qpKWlqfydX7hwQQAgnDp1Sox99913gkKhEG7duiUIgm58Dp51DtRZvny54OTkJL6vrs+BXMdfF74LNPkM6OJ3wahRo4Q33nij3H3WpO8COY5fnar6HmD3XxUqLi5GamoqvLy8xJienh68vLyQkpKidp2UlBRJewDw9vYut31xcTE2b94Mc3NzdOrUSbIsMjISlpaW6NKlC1asWIGSkhLJfl599VUYGRlJ9nP58mXcv39f42Mtj9znoExcXBzu3r2L0aNHqyzz9fWFtbU1XnnlFcTFxVX00Cqsqs6BUqnEyJEjERwcjPbt26vdhoWFBbp16ybGvLy8oKenJ3aV1vbPwfPOgTr5+flo3LixSrwqPwdyH78ufxdo+hnQxe8C4Gk3p7W1NZydnTFx4kTcvXtXso2a8F0g1/GrU1XfAyyqqtCdO3dQWloKGxsbSdzGxgZZWVlq18nKyqpQ+/j4eDRo0AAmJiZYvXo1EhMTYWVlJS6fNm0a9uzZgx9//BHjx4/H0qVL8cEHHzx3P2XLtEXOc/BPW7duhbe3t2SS6wYNGiAqKgr79u3Dt99+i1deeQV+fn5a/zKtqnOwbNkyGBgYYNq0aeVuw9raWhIzMDBA48aNxe3U9s/B887Bv6Wnp+Pjjz/G+PHjxVh1fA7kPH5d/y7Q9DOgi98FPj4++Pzzz5GUlIRly5bhp59+woABA1BaWipuoyZ8F8h1/P9Wld8DBhq1phqjb9++OHfuHO7cuYPPPvsM77zzDk6cOCH+wwkKChLbduzYEUZGRhg/fjwiIiJkf4y/tjzvHJS5efMmEhISsHfvXkncyspKcp66d++O27dvY8WKFfD19a2WY6is1NRUrF27FmfOnIFCoZA7HVloeg5u3boFHx8fDBkyBOPGjRPjtfVzUNHj1+XvAk0/A7r4XQAAw4YNE//s6uqKjh07olWrVjhy5Aj69esnY2bVQ5Pjr+rvAV6pqkJWVlbQ19dHdna2JJ6dnQ1bW1u169ja2laovampKVq3bo2ePXti69atMDAwwNatW8vNxd3dHSUlJcjIyHjmfsqWaUtNOAfR0dGwtLSs0D8Md3d3pKenP7edJqriHBw7dgw5OTlo3rw5DAwMYGBggOvXr2PWrFlwdHQUt5GTkyPZRklJCe7duydupzZ/DipyDsrcvn0bffv2haenJzZv3vzcfLX9OZD7+P9Jl74LND0HuvhdoE7Lli1hZWUl5l9TvgvkOv4y1fE9wKKqChkZGcHNzQ1JSUliTKlUIikpCR4eHmrX8fDwkLQHgMTExHLb/3O7RUVF5S4/d+4c9PT0xKs4Hh4eOHr0KJ48eSLZj7OzMxo1avTcY6souc+BIAiIjo6Gv78/DA0Nn5vvuXPnYGdn99x2mqiKczBy5EicP38e586dE1/29vYIDg5GQkKCuI28vDykpqaK2/jhhx+gVCrh7u4utqmtn4OKnAPg6f+Z9unTB25uboiOjoae3vO/9rT9OZDz+P9Nl74LNDkHuvpdoM7Nmzdx9+5dMf+a8l0g1/ED1fg98ELD3Om59uzZIxgbGwvbt28XLly4ILz//vuChYWFkJWVJQiCIIwcOVKYO3eu2P6XX34RDAwMhJUrVwoXL14UwsLCJLePPnz4UAgJCRFSUlKEjIwM4fTp08Lo0aMFY2NjIS0tTRAEQUhOThZWr14tnDt3Trh69arw5ZdfCk2aNBH8/f3F/eTl5Qk2NjbCyJEjhbS0NGHPnj1C/fr1q+w26uo+B2UOHz4sABAuXryoktf27duFXbt2CRcvXhQuXrwoLFmyRNDT0xO2bdtW48+BOuruevLx8RG6dOkinDhxQvj555+FNm3aSG6jrs2fA3X+fQ5u3rwptG7dWujXr59w8+ZNya3SZarrcyDH8ev6d0FFzkEZXf0uePDggTB79mwhJSVFuHbtmnD48GGha9euQps2bYTHjx+L26kp3wVyHH91fg+wqKoGH3/8sdC8eXPByMhI6NGjh3D8+HFxWe/evYVRo0ZJ2u/du1do27atYGRkJLRv31749ttvxWV///238Oabbwr29vaCkZGRYGdnJ/j6+gonT54U26Smpgru7u6Cubm5YGJiIrRr105YunSp5B+YIAjCr7/+KrzyyiuCsbGx0LRpUyEyMrJqToBQ/eegzPDhwwVPT0+1OW3fvl1o166dUL9+fcHMzEzo0aOHsG/fPu0csBraPAfqqPsxuXv3rjB8+HChQYMGgpmZmTB69GjhwYMHkja19XOgzr/PQXR0tABA7atMdX4Oqvv4df27QJ3yiipd/S549OiR0L9/f6FJkyaCoaGh0KJFC2HcuHFikVKmJn0XVPfxV+f3gEIQBEGza1tERERE9G8cU0VERESkBSyqiIiIiLSARRURERGRFrCoIiIiItICFlVEREREWsCiioiIiEgLWFQRERERaQGLKiIiIiItYFFFRAQgKysLU6dORcuWLWFsbAwHBwcMHjxYMu9YcnIyBg4ciEaNGsHExASurq5YtWoVSktLxTYZGRkIDAyEk5MT6tWrh1atWiEsLAzFxcVyHBYRVSMDuRMgIpJbRkYGXn75ZVhYWGDFihVwdXXFkydPkJCQgMmTJ+PSpUs4cOAA3nnnHYwePRo//vgjLCwscPjwYXzwwQdISUnB3r17oVAocOnSJSiVSnz66ado3bo10tLSMG7cOBQWFmLlypVyHyoRVSFOU0NEdd7AgQNx/vx5XL58GaamppJleXl5MDQ0RIsWLdC7d298/fXXkuX//e9/4evriz179mDo0KFqt79ixQps3LgRf/75Z5UdAxHJj91/RFSn3bt3D4cOHcLkyZNVCioAsLCwwPfff4+7d+9i9uzZKssHDx6Mtm3bYvfu3eXuIz8/H40bN9Zq3kRU87CoIqI6LT09HYIgwMXFpdw2V65cAQC0a9dO7XIXFxexjbrtf/zxxxg/fvyLJ0tENRqLKiKq0zQZAaHpaIlbt27Bx8cHQ4YMwbhx4zRNjYhqGRZVRFSntWnTRhxgXp62bdsCAC5evKh2+cWLF8U2ZW7fvo2+ffvC09MTmzdv1l7CRFRjsagiojqtcePG8Pb2xoYNG1BYWKiyPC8vD/3790fjxo0RFRWlsjwuLg5//PEHhg8fLsZu3bqFPn36wM3NDdHR0dDT41ctUV3Au/+IqM77888/8fLLL6Nx48ZYtGgROnbsiJKSEiQmJmLjxo24ePEivvrqKwwbNgxjxozBlClTYGZmhqSkJAQHB6Nfv37iIxXKCqoWLVpgx44d0NfXF/dja2sr41ESUVVjUUVEBCAzMxNLlixBfHw8MjMz0aRJE7i5uWHmzJno06cPAODYsWNYsmQJUlJS8PjxY7Rp0wajR4/GjBkzxOJp+/btGD16tNp98OuWSLexqCIiIiLSAnb0ExEREWkBiyoiIiIiLWBRRURERKQFLKqIiIiItIBFFREREZEWsKgiIiIi0gIWVURERERawKKKiIiISAtYVBERERFpAYsqIiIiIi1gUUVERESkBSyqiIiIiLTg/wF6I533cRIP+wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZUFJREFUeJzt3XlcVGX7P/DPDKsboCAgikJqYGqiqCNoLkmCmcRTGZohIq65Yyqo4Zbhvvto5vpUKpqKfnlMRNLHDTcUlQRLE/cBNyAx2eb8/vDHydMMyiBwYPi8X6951bnOPedc94zjXJ77nvsoBEEQQERERER6UcqdABEREVFlxCKKiIiIqARYRBERERGVAIsoIiIiohJgEUVERERUAiyiiIiIiEqARRQRERFRCbCIIiIiIioBFlFEREREJcAiioiqNIVCgRkzZsidhmjgwIFwcnKSOw0iKgYWUURU4WzatAkKhUJ8mJub480338SoUaOQlpZWpuc+ceIEZsyYgYyMjFI9bteuXSV9qlOnDtq1a4cNGzZAo9GUyjm++eYbREVFlcqxiOjVjOVOgIioKLNmzYKzszOePXuGY8eOYfXq1di3bx+SkpJQvXr1UjnHX3/9BWPjv/8qPHHiBGbOnImBAwfCysqqVM5RqEGDBoiIiAAA3L9/H//5z38QHByM3377DXPnzn3t43/zzTf45JNP4Ofn99rHIqJXYxFFRBVWz5490bZtWwDA4MGDYW1tjcWLF2PPnj3o169fiY+r0WiQm5sLc3NzmJubl1a6r2RpaYnPP/9c3B42bBhcXFywcuVKzJ49GyYmJuWWCxG9Pg7nEVGl8e677wIArl+/DgBYuHAhPD09YW1tjWrVqsHd3R0//fST1vMUCgVGjRqFH3/8Ec2bN4eZmRn2798v7iucEzVjxgxMnDgRAODs7CwOvaWmpqJLly5o1aqVzrxcXFzg7e2td3+qV6+ODh06IDs7G/fv3y+yXXZ2NiZMmABHR0eYmZnBxcUFCxcuhCAIkj5mZ2dj8+bNYt4DBw7UOyciKj5eiSKiSuPatWsAAGtrawDAsmXL4Ovri/79+yM3Nxfbtm1Dnz59EB0djV69ekme+8svv2D79u0YNWoUbGxsdE7e/uijj/Dbb79h69atWLJkCWxsbAAAdevWRUBAAIYMGYKkpCS0aNFCfM6ZM2fw22+/Ydq0aSXq0x9//AEjI6Mihw4FQYCvry8OHTqE4OBguLm5ISYmBhMnTsSdO3ewZMkSAMD333+PwYMHo3379hg6dCgAoHHjxiXKiYiKSSAiqmA2btwoABAOHjwo3L9/X7h165awbds2wdraWqhWrZpw+/ZtQRAE4enTp5Ln5ebmCi1atBDeffddSRyAoFQqhV9//VXrXACE6dOni9sLFiwQAAjXr1+XtMvIyBDMzc2FyZMnS+JjxowRatSoITx58uSlferSpYvg6uoq3L9/X7h//76QnJwsjBkzRgAg9O7dW2wXGBgoNGrUSNyOiooSAAhff/215HiffPKJoFAohKtXr4qxGjVqCIGBgS/Ng4hKD4fziKjC8vLyQt26deHo6Ii+ffuiZs2a2L17N+rXrw8AqFatmtj28ePHyMzMxDvvvINz585pHatLly546623SpyLpaUlPvzwQ2zdulUcRisoKEBkZCT8/PxQo0aNVx4jJSUFdevWRd26ddGsWTOsWLECvXr1woYNG4p8zr59+2BkZIQxY8ZI4hMmTIAgCPj5559L3Cciej0cziOiCmvVqlV48803YWxsDDs7O7i4uECp/PvfftHR0fj666+RmJiInJwcMa5QKLSO5ezs/Nr5DBgwAJGRkTh69Cg6d+6MgwcPIi0tDQEBAcV6vpOTE7777jtx2YamTZvC1tb2pc+5ceMGHBwcUKtWLUm8WbNm4n4ikgeLKCKqsNq3by/+Ou+fjh49Cl9fX3Tu3Bn//ve/Ua9ePZiYmGDjxo3YsmWLVvsXr1qVlLe3N+zs7PDDDz+gc+fO+OGHH2Bvbw8vL69iPb9GjRrFbktEFR+H84ioUtq5cyfMzc0RExODQYMGoWfPnqVSoOi6ilXIyMgIn332GX766Sc8fvwYUVFR6NevH4yMjF77vEVp1KgR7t69iz///FMST0lJEfcXelnuRFT6WEQRUaVkZGQEhUKBgoICMZaamvraK3YXzm0qasXygIAAPH78GMOGDcOTJ08k6z6Vhffffx8FBQVYuXKlJL5kyRIoFAr07NlTjNWoUaPUV1onoqJxOI+IKqVevXph8eLF8PHxwWeffYb09HSsWrUKTZo0wcWLF0t8XHd3dwDA1KlT0bdvX5iYmKB3795icdW6dWu0aNECO3bsQLNmzdCmTZtS6U9RevfujW7dumHq1KlITU1Fq1atcODAAezZswfjxo2TLGPg7u6OgwcPYvHixXBwcICzszNUKlWZ5kdUlfFKFBFVSu+++y7Wr18PtVqNcePGYevWrZg3bx7+9a9/vdZx27Vrh9mzZ+PChQsYOHAg+vXrp7UQ5oABAwCg2BPKX4dSqcTevXsxbtw4REdHY9y4cbh8+TIWLFiAxYsXS9ouXrwY7u7umDZtGvr164fVq1eXeX5EVZlCEF5Y8paIiF5p2bJlGD9+PFJTU9GwYUO50yEimbCIIiLSgyAIaNWqFaytrXHo0CG50yEiGXFOFBFRMWRnZ2Pv3r04dOgQLl26hD179sidEhHJjFeiiIiKITU1Fc7OzrCyssIXX3yBOXPmyJ0SEcmMRRQRERFRCfDXeUREREQlwCKKiIiIqAQ4sbyMaDQa3L17F7Vq1eKtGIiIiCoJQRDw559/wsHBQXLDc11YRJWRu3fvwtHRUe40iIiIqARu3bqFBg0avLQNi6gyUqtWLQDP3wQLCwuZsyEiIqLiyMrKgqOjo/g9/jIsospI4RCehYUFiygiIqJKpjhTcTixnIiIiKgEWEQRERERlQCLKCIiIqIS4JwomRUUFCAvL0/uNKgcmJiYwMjISO40iIiolLCIkokgCFCr1cjIyJA7FSpHVlZWsLe359phREQGgEWUTAoLKFtbW1SvXp1fqgZOEAQ8ffoU6enpAIB69erJnBEREb0uFlEyKCgoEAsoa2trudOhclKtWjUAQHp6OmxtbTm0R0RUyXFiuQwK50BVr15d5kyovBW+55wHR0RU+bGIkhGH8KoevudERIaDRRQRERFRCbCIIiIiIioBFlGkl4EDB0KhUEChUMDExAR2dnZ47733sGHDBmg0mmIfZ9OmTbCysiq7RImIiMoYiyjSm4+PD+7du4fU1FT8/PPP6NatG8aOHYsPPvgA+fn5cqdHRERULlhEkd7MzMxgb2+P+vXro02bNpgyZQr27NmDn3/+GZs2bQIALF68GC1btkSNGjXg6OiIL774Ak+ePAEAHD58GEFBQcjMzBSvas2YMQMA8P3336Nt27aoVasW7O3t8dlnn4lrKxERERXauxfw9Hz+X7mwiKogBEFAbm6uLA9BEF47/3fffRetWrXCrl27AABKpRLLly/Hr7/+is2bN+OXX37BpEmTAACenp5YunQpLCwscO/ePdy7dw9ffvklgOc//Z89ezYuXLiAqKgopKamYuDAga+dHxERGY5nz54hKmo/0tL+wNy58uXBxTYriLy8PERERMhy7rCwMJiamr72cVxdXXHx4kUAwLhx48S4k5MTvv76awwfPhz//ve/YWpqCktLSygUCtjb20uOMWjQIPH/33jjDSxfvhzt2rXDkydPULNmzdfOkYiIKrfffvsNW7duRaNGwEcfXcM774yULRcWUVRqBEEQ10E6ePAgIiIikJKSgqysLOTn5+PZs2d4+vTpSxcZTUhIwIwZM3DhwgU8fvxYnKx+8+ZNvPXWW+XSDyIiqnj27gViY7+Hjc0fYuyjj9rAw0O+nFhEVRAmJiYICwuT7dylITk5Gc7OzkhNTcUHH3yAESNGYM6cOahTpw6OHTuG4OBg5ObmFllEZWdnw9vbG97e3vjxxx9Rt25d3Lx5E97e3sjNzS2VHImIqPJJT0/H+fOrYWPzd2zIkCFwcHCQLymwiKowFApFqQypyeWXX37BpUuXMH78eCQkJECj0WDRokVQKp9Pu9u+fbukvampKQoKCiSxlJQUPHz4EHPnzoWjoyMA4OzZs+XTASIiqpC2bNmC33//XRKbNm1ahbj/KIso0ltOTg7UajUKCgqQlpaG/fv3IyIiAh988AEGDBiApKQk5OXlYcWKFejduzeOHz+ONWvWSI7h5OSEJ0+eIC4uDq1atUL16tXRsGFDmJqaYsWKFRg+fDiSkpIwe/ZsmXpJRERyEgQBs2bNksQUCgXCw8Nlykgbf51Hetu/fz/q1asHJycn+Pj44NChQ1i+fDn27NkDIyMjtGrVCosXL8a8efPQokUL/Pjjj1qT5j09PTF8+HD4+/ujbt26mD9/PurWrYtNmzZhx44deOuttzB37lwsXLhQpl4SEZFcbt26pVVAffrppxWqgAIAhVAav28nLVlZWbC0tERmZiYsLCwk+549e4br16/D2dkZ5ubmMmVIcuB7T0T0cqtXr9ZaH7A8h+9e9v39TxzOIyIiItlpNBqtKRy1a9fGmDFjZMro1VhEERERkawK1356UWBgIJycnORJqJhYRBEREZFs5s6di5ycHEksPDxcXHewImMRRUREROUuLy8P33zzjSTm7OyMAQMGyJSR/lhEERERUblKTEzEnj17JLFhw4Zp3QqsomMRRUREROVm5syZWrHp06fLkMnrYxFFREREZe6vv/7C/PnzJbFWrVrBz89PnoRKgeyLba5atQpOTk4wNzeHSqXC6dOnX9p+x44dcHV1hbm5OVq2bIl9+/ZJ9g8cOBAKhULy8PHxEfenpqYiODgYzs7OqFatGho3bozp06dL7s2WmpqqdQyFQoGTJ0+WbueJiIiqgGPHjmkVUGPGjKnUBRQg85WoyMhIhISEYM2aNVCpVFi6dCm8vb1x5coV2NraarU/ceIE+vXrJ95iZMuWLfDz88O5c+fQokULsZ2Pjw82btwobpuZmYn/n5KSAo1Gg2+//RZNmjRBUlIShgwZguzsbK3VsQ8ePIjmzZuL29bW1qXZfSIiIoNnSMN3/yTriuUqlQrt2rXDypUrATxfaMvR0RGjR49GaGioVnt/f39kZ2cjOjpajHXo0AFubm7ivdkGDhyIjIwMREVFFTuPBQsWYPXq1fjjjz8APL8S5ezsjPPnz8PNza1EfeOK5a/nn+9j165d4ebmhqVLl5b4mKVxjNfF956Iqoo///wTixcvlsQ6deqE7t27y5RR8eizYrlsw3m5ublISEiAl5fX38kolfDy8kJ8fLzO58THx0vaA4C3t7dW+8OHD8PW1hYuLi4YMWIEHj58+NJcMjMzUadOHa24r68vbG1t0alTJ+zdu7e4XTNoLw6XmpqaokmTJpg1axby8/PL9Ly7du0q9s2IDx8+DIVCgYyMjBIfg4iISm7//v1aBdSECRMqfAGlL9mG8x48eICCggLY2dlJ4nZ2dkhJSdH5HLVarbO9Wq0Wt318fPDRRx/B2dkZ165dw5QpU9CzZ0/Ex8frvO/O1atXsWLFCslQXs2aNbFo0SJ07NgRSqUSO3fuhJ+fH6KiouDr66szt5ycHMliYVlZWa9+ESqpwuHSnJwc7Nu3DyNHjoSJiQnCwsIk7XJzc2Fqaloq59RV5MpxDCIiejlDHr77J9knlpe2vn37wtfXFy1btoSfnx+io6Nx5swZHD58WKvtnTt34OPjgz59+mDIkCFi3MbGBiEhIeJw49y5c/H5559jwYIFRZ43IiIClpaW4sPR0bEsulchmJmZwd7eHo0aNcKIESPg5eWFvXv3YuDAgfDz88OcOXPg4OAAFxcXAM/vxv3pp5/CysoKderUwYcffojU1FTxeAUFBQgJCYGVlRWsra0xadIk/HOUuWvXrhg3bpy4nZOTg8mTJ8PR0RFmZmZo0qQJ1q9fj9TUVHTr1g3A83suKRQKDBw4UOcxHj9+jAEDBqB27dqoXr06evbsid9//13cv2nTJlhZWSEmJgbNmjVDzZo14ePjg3v37oltDh8+jPbt26NGjRqwsrJCx44dcePGjVJ6pYmIKo+HDx9qFVDe3t4GW0ABMhZRNjY2MDIyQlpamiSelpZW5GJb9vb2erUHgDfeeAM2Nja4evWqJH737l1069YNnp6eWLt27SvzValUWsd4UVhYGDIzM8XHrVu3XnlMQ1GtWjXx141xcXG4cuUKYmNjER0djby8PHh7e6NWrVo4evQojh8/LhYjhc9ZtGgRNm3ahA0bNuDYsWN49OgRdu/e/dJzDhgwAFu3bsXy5cuRnJyMb7/9FjVr1oSjoyN27twJALhy5Qru3buHZcuW6TzGwIEDcfbsWezduxfx8fEQBAHvv/8+8vLyxDZPnz7FwoUL8f333+PIkSO4efMmvvzySwBAfn4+/Pz80KVLF1y8eBHx8fEYOnRopbhVARFRadqxY4c4v7lQaGgoOnToIFNG5UO24TxTU1O4u7sjLi5O/ImjRqNBXFwcRo0apfM5Hh4eiIuLk1xNiI2NhYeHR5HnuX37Nh4+fIh69eqJsTt37qBbt25wd3fHxo0boVS+upZMTEyUHOOfzMzMJL8CrAoEQUBcXBxiYmIwevRo3L9/HzVq1MC6devEYbwffvgBGo0G69atE4uLjRs3wsrKCocPH0aPHj2wdOlShIWF4aOPPgIArFmzBjExMUWe97fffsP27dsRGxsrzpF74403xP2Fw3a2trawsrLSeYzff/8de/fuxfHjx+Hp6QkA+PHHH+Ho6IioqCj06dMHwPPbEqxZswaNGzcGAIwaNQqzZs0C8HzINjMzEx988IG4v1mzZvq/kERElZQgCOLfiS8y5KtPL5J1iYOQkBAEBgaibdu2aN++PZYuXYrs7GwEBQUBeH61oX79+oiIiAAAjB07Fl26dMGiRYvQq1cvbNu2DWfPnhWvJD158gQzZ87Exx9/DHt7e1y7dg2TJk1CkyZN4O3tDeB5AdW1a1c0atQICxcuxP3798V8Cq9obd68GaampmjdujWA5xOSN2zYgHXr1pXba6OPvXuBuXOB0FCgiClbpSo6Oho1a9ZEXl4eNBoNPvvsM8yYMQMjR45Ey5YtJfOgLly4gKtXr6JWrVqSYzx79gzXrl1DZmYm7t27B5VKJe4zNjZG27ZttYb0CiUmJsLIyAhdunQpcR+Sk5NhbGwsOa+1tTVcXFyQnJwsxqpXry4WSABQr149pKenA3herA0cOBDe3t5477334OXlhU8//fSlxTYRkaG4c+eO1vfiRx99hJYtW8qUUfmTtYjy9/fH/fv3ER4eDrVaDTc3N+zfv1+cPH7z5k3JVSJPT09s2bIF06ZNw5QpU9C0aVNERUWJa0QZGRnh4sWL2Lx5MzIyMuDg4IAePXpg9uzZ4lWi2NhYXL16FVevXkWDBg0k+bz4pT179mzcuHEDxsbGcHV1RWRkJD755JOyfklKZO5cID7++X/Lo4jq1q0bVq9eDVNTUzg4OMDY+O8/RjVq1JC0ffLkCdzd3fHjjz9qHadu3bolOn+1atVK9LySMDExkWwrFArJn5ONGzdizJgx2L9/PyIjIzFt2jTExsYa/CVsIqra1q9fj9u3b0tiU6dOlXwfVAWy93bUqFFFDt/pmgzep08fcajln6pVq/bSYSDg+TyYwonGRQkMDERgYOBL21QkoaF/X4kqDzVq1ECTJk2K1bZNmzaIjIyEra1tkett1KtXD6dOnULnzp0BPJ9rlJCQgDZt2uhs37JlS2g0Gvzvf//TWvICgHglrKCgoMi8mjVrhvz8fJw6dUocznv48CGuXLmCt956q1h9K9S6dWu0bt0aYWFh8PDwwJYtW1hEEZFB0mg0WkvF1KxZExMmTJApI3kZ3K/zqiJfX+DEifK5CqWv/v37w8bGBh9++CGOHj2K69ev4/DhwxgzZoz4r5ixY8di7ty5iIqKQkpKCr744gutNZ5e5OTkhMDAQAwaNAhRUVHiMbdv3w4AaNSoERQKBaKjo3H//n08efJE6xhNmzbFhx9+iCFDhuDYsWO4cOECPv/8c9SvXx8ffvhhsfp2/fp1hIWFIT4+Hjdu3MCBAwfw+++/c14UERmka9euaRVQn3/+eZUtoAAWUVTGqlevjiNHjqBhw4b46KOP0KxZMwQHB+PZs2filakJEyYgICAAgYGB8PDwQK1atfCvf/3rpcddvXo1PvnkE3zxxRdwdXUVb90DAPXr18fMmTMRGhoKOzu7Iq90bty4Ee7u7vjggw/g4eEBQRCwb98+rSG8l/UtJSUFH3/8Md58800MHToUI0eOxLBhw/R4hYiIKr5Fixbhhx9+kMS++uoryZzRqkjW274YMt72hXThe09ElUl+fj7mzJkjidWvXx+DBw+WKaOyp89tX2SfE0VEREQVz6VLl7Br1y5JbPDgwahfv75MGVU8LKKIiIhIQtetW8LDw7mY8D+wiCIiIiIAz2+pNXfuXEnsrbfeKvJX8VUdiygiIiLCqVOnsH//fkls5MiRsLGxkSmjio9FlIw4p7/q4XtORBWRruG7qnLrltfBIkoGhT+hf/r0abmuvk3ye/r0KQDtldCJiOSQnZ2NhQsXSmIqlQo+Pj4yZVS5sIiSgZGREaysrMR7sFWvXp2T9QycIAh4+vQp0tPTYWVlBSMjI7lTIqIqLi4uDseOHZPExo8f/8qf9dPfWETJpPBmx4WFFFUNVlZW4ntPRCQXDt+VDhZRMlEoFKhXrx5sbW2Rl5cndzpUDkxMTHgFiohk9fjxYyxfvlwS6969Ozp16iRTRpUbiyiZGRkZ8YuViIjK3J49e5CYmCiJTZo0iXNzXwOLKCIiIgPH4buywSKKiIjIQKnVanz77beSmK+vL1q3bi1TRoaFRRQREZEB+s9//oPr169LYlOmTOESK6WIRRQREZEBEQQBs2bNksRMTU0RFhYmU0aGi0UUERGRgbhw4QKioqIksb59+8LFxUWehAwciygiIiIDoGvy+FdffQWlUilDNlUDX1kiIqJKLC8vT2cBFRMznQVUGeOVKCIiokpq9+7duHjxoiTm5PQxvv22BUJDZUqqCmERRUREVAnpuvrk5haODz9UIDBQhoSqIBZRRERElUh2djYWLlyoFefimeWPRRQREVElsW7dOty5c0cS+/jjj9GiRQuZMqraWEQRERFVArx1S8XDIoqIiKgCe/jwIVauXKkVZwElPxZRREREFdTXX3+NgoICSWzgwIFo1KiRTBnRi1hEERERVUAcvqv4WEQRERFVILdu3cKGDRu04iygKh4WUURERBWErqtPI0eOhI2NjQzZ0KuwiCIiIqoAOHxX+bCIIiIiklFycjK2b98uidnZ2WH48OEyZUTFxSKKiIhIJrquPk2YMAE1a9aUIRvSF4soIiKiciYIAmbNmqUV5/Bd5aKUO4FVq1bByckJ5ubmUKlUOH369Evb79ixA66urjA3N0fLli2xb98+yf6BAwdCoVBIHj4+PpI2jx49Qv/+/WFhYQErKysEBwfjyZMnkjYXL17EO++8A3Nzczg6OmL+/Pml02EiIqrSYmJitAqo5s2bs4CqhGQtoiIjIxESEoLp06fj3LlzaNWqFby9vZGenq6z/YkTJ9CvXz8EBwfj/Pnz8PPzg5+fH5KSkiTtfHx8cO/ePfGxdetWyf7+/fvj119/RWxsLKKjo3HkyBEMHTpU3J+VlYUePXqgUaNGSEhIwIIFCzBjxgysXbu29F8EIiKqMmbOnImTJ09KYgcPhuGTTz6RKSN6HQpBEAS5Tq5SqdCuXTtxOXuNRgNHR0eMHj0aoaGhWu39/f2RnZ2N6OhoMdahQwe4ublhzZo1AJ5ficrIyEBUVJTOcyYnJ+Ott97CmTNn0LZtWwDA/v378f777+P27dtwcHDA6tWrMXXqVKjVapiamgIAQkNDERUVhZSUlGL1LSsrC5aWlsjMzISFhUWxXxMiIjI8+fn5mDNnjlZ84cLp+PFHwNdXhqRIJ32+v2W7EpWbm4uEhAR4eXn9nYxSCS8vL8THx+t8Tnx8vKQ9AHh7e2u1P3z4MGxtbeHi4oIRI0bg4cOHkmNYWVmJBRQAeHl5QalU4tSpU2Kbzp07iwVU4XmuXLmCx48fl7zTRERU5fzwww9aBVTt2m8jJoYFVGUn28TyBw8eoKCgAHZ2dpK4nZ1dkVd71Gq1zvZqtVrc9vHxwUcffQRnZ2dcu3YNU6ZMQc+ePREfHw8jIyOo1WrY2tpKjmFsbIw6deqIx1Gr1XB2dtY6T+G+2rVra+WWk5ODnJwccTsrK+tVLwERERk4Xb++++qrr6BUKjFmjAwJUakyuF/n9e3bV/z/li1b4u2330bjxo1x+PBhdO/evczOGxERofPDQkREVc/Tp0+xYMECrTgnjxsW2YooGxsbGBkZIS0tTRJPS0uDvb29zufY29vr1R4A3njjDdjY2ODq1avo3r077O3ttSau5+fn49GjR+JxijpP4T5dwsLCEBISIm5nZWXB0dGxyLyIiMgwLVy4ENnZ2ZJYt27d0LlzZ5kyorIi25woU1NTuLu7Iy4uToxpNBrExcXBw8ND53M8PDwk7QEgNja2yPYAcPv2bTx8+BD16tUTj5GRkYGEhASxzS+//AKNRgOVSiW2OXLkCPLy8iTncXFx0TmUBwBmZmawsLCQPIiIqGqZOXOmVgEVHh7OAspAybrEQUhICL777jts3rwZycnJGDFiBLKzsxEUFAQAGDBgAMLCwsT2Y8eOxf79+7Fo0SKkpKRgxowZOHv2LEaNGgUAePLkCSZOnIiTJ08iNTUVcXFx+PDDD9GkSRN4e3sDAJo1awYfHx8MGTIEp0+fxvHjxzFq1Cj07dsXDg4OAIDPPvsMpqamCA4Oxq+//orIyEgsW7ZMcqWJiIio0MOHD4u8951CoZAhIyoPss6J8vf3x/379xEeHg61Wg03Nzfs379fnMR98+ZNKJV/13menp7YsmULpk2bhilTpqBp06aIiopCixYtAABGRka4ePEiNm/ejIyMDDg4OKBHjx6YPXs2zMzMxOP8+OOPGDVqFLp37w6lUomPP/4Yy5cvF/dbWlriwIEDGDlyJNzd3WFjY4Pw8HDJWlJERESA7snjH3/8sfjdRIZL1nWiDBnXiSIiMnxFXX2iykuf72+D+3UeERFRWbtx4wY2bdqkFWcBVbWwiCIiItKDrqtPQUFBaNiwoQzZkJxYRBERERUTh+/oRSyiiIiIXuHixYvYvXu3VpwFVNXGIoqIiOgldF19Gj16NOrUqSNDNlSRsIgiIiLSQRAEzJo1SyvOq09UiEUUERHRP/zvf//D4cOHJbFatWpx0WWSYBFFRET0Al3Dd5MmTUK1atVkyIYqMhZRREREAAoKCvD1119rxTl8R0VhEUVERFXeTz/9hF9//VUSe/PNN9GvXz+ZMqLKgEUUERFVabqG76ZOnQpjY35F0svxTwgREVVJz549w7x587TiHL6j4mIRRUREVc6qVavw4MEDSczT0xPvvfeeTBlRZcQiioiIqhRdw3fh4eFQKBQyZEOVmVLuBIiIiMpDRkaGzgIqJmY6CygqEV6JIiIig6ereHJ07I1169ogNFSGhMggsIgiIiKDpquAKpw8PmhQeWdDhoRFFBERGaS7d+/iu+++04rz13dUWlhEERGRwdF19enzzz9H48aNZciGDBWLKCIiMigvG74jKk0sooiIyCAkJiZiz549WnEWUFRWWEQREVGlp+vqU3z8EHzxhYMM2VBVwSKKiIgqtaLWfoqPB7KyAF9fGZKiKoFFFBERVUoHDx7E8ePHteLTp09H69bA3LngGlBUplhEERFRpaPr6tO4ceNgaWkJ4PnVJ16BorLGIoqIiCoNjUaD2bNna8U5eZzkwCKKiIgqhS1btuD333+XxKpVq4ZJkybJlBFVdSyiiIiowtM1fBcaGgozMzMZsiF6jkUUERFVWLm5uYiIiNCKc/iOKgIWUUREVCEtWLAAT58+lcSaNGmC/v37y5QRkRSLKCIiqnB0Dd999dVXUCqVMmRDpBuLKCIiqjCysrKwZMkSrTiH76giYhFFREQVgq6rTx07doSXl5cM2RC9GosoIiKSna4CilefqKKTfXB51apVcHJygrm5OVQqFU6fPv3S9jt27ICrqyvMzc3RsmVL7Nu3r8i2w4cPh0KhwNKlS8XY4cOHoVAodD7OnDkDAEhNTdW5/+TJk6XSZyIiei49PZ0FFFVashZRkZGRCAkJwfTp03Hu3Dm0atUK3t7eSE9P19n+xIkT6NevH4KDg3H+/Hn4+fnBz88PSUlJWm13796NkydPwsFBegdvT09P3Lt3T/IYPHgwnJ2d0bZtW0nbgwcPStq5u7uXXueJiKq4mTNnYvXq1ZLY+fP+aN2aBRRVDgpBEAS5Tq5SqdCuXTusXLkSwPPl/B0dHTF69GiE6rhrpL+/P7KzsxEdHS3GOnToADc3N6xZs0aM3blzByqVCjExMejVqxfGjRuHcePG6cwhLy8P9evXx+jRo/HVV18BeH4lytnZGefPn4ebm1uJ+paVlQVLS0tkZmbCwsKiRMcgIjJUvPpEFZU+39+yXYnKzc1FQkKCZMKgUqmEl5cX4uPjdT4nPj5ea4Kht7e3pL1Go0FAQAAmTpyI5s2bvzKPvXv34uHDhwgKCtLa5+vrC1tbW3Tq1Al79+4tbteIiKgI165dYwFFBkO2ieUPHjxAQUEB7OzsJHE7OzukpKTofI5ardbZXq1Wi9vz5s2DsbExxowZU6w81q9fD29vbzRo0ECM1axZE4sWLULHjh2hVCqxc+dO+Pn5ISoqCr5F3BY8JycHOTk54nZWVlaxzk9EVFXoKp6GDBmiNe2CqLIwqF/nJSQkYNmyZTh37hwUCsUr29++fRsxMTHYvn27JG5jY4OQkBBxu127drh79y4WLFhQZBEVERGh8y8IIiLi8B0ZJtmG82xsbGBkZIS0tDRJPC0tDfb29jqfY29v/9L2R48eRXp6Oho2bAhjY2MYGxvjxo0bmDBhApycnLSOt3HjRlhbWxdZGL1IpVLh6tWrRe4PCwtDZmam+Lh169Yrj0lEZOjOnTvHAooMlmxXokxNTeHu7o64uDj4+fkBeD6fKS4uDqNGjdL5HA8PD8TFxUkmicfGxsLDwwMAEBAQoHPOVEBAgNacJ0EQsHHjRgwYMAAmJiavzDcxMRH16tUrcr+ZmRnvJk5E9AJdxdPYsWNhZWVV/skQlQFZh/NCQkIQGBiItm3bon379li6dCmys7PFgmfAgAGoX7++eAfvsWPHokuXLli0aBF69eqFbdu24ezZs1i7di0AwNraGtbW1pJzmJiYwN7eHi4uLpL4L7/8guvXr2Pw4MFaeW3evBmmpqZo3bo1AGDXrl3YsGED1q1bV+qvARGRoREEAbNmzdKK8+oTGRpZiyh/f3/cv38f4eHhUKvVcHNzw/79+8XJ4zdv3pTcbNLT0xNbtmzBtGnTMGXKFDRt2hRRUVFo0aKF3udev349PD094erqqnP/7NmzcePGDRgbG8PV1RWRkZH45JNPStZRIqIq4uDBgzh+/LgkZmZmg9DQkTJlRFR2ZF0nypBxnSgiqmp0Dd9NnjwZ5ubmMmRDVDL6fH8b1K/ziIio/OXn52POnDlacQ7fkaFjEUVERCW2detW/Pbbb5JY8+bNOf2BqgQWUUREVCK6hu+mTZsGIyMjGbIhKn8sooiISC9//fUX5s+frxXn8B1VNSyiiIio2JYsWaJ1W6suXbqga9eu8iREJCMWUUREVCy6hu/Cw8OLdZstIkOk921fjIyMkJ6erhV/+PAhx8GJiAzQo0ePirx1Cwsoqsr0vhJV1LJSOTk5MDU1fe2EiIio4tA1fPevf/0Lb7/9tkwZEVUcxS6ili9fDgBQKBRYt24datasKe4rKCjAkSNHilz9m4iIKh/eOJjo5YpdRC1ZsgTA8ytRa9askQzdmZqawsnJCWvWrCn9DImIqFyp1Wp8++23WvHWrVlAEb2o2EXU9evXAQDdunXDrl27ULt27TJLioiI5KHr6tPQoUNRr149GbIhqtj0nhN16NChssiDiIhkxuE7Iv3oXUQNGjTopfs3bNhQ4mSIiKj8Xbt2DT/88IMkVrNmTUyYMEGmjIgqB72LqMePH0u28/LykJSUhIyMDLz77rullhgREZU9XVefxo0bB0tLSxmyIapc9C6idu/erRXTaDQYMWIEGjduXCpJERFR2RIEAbNmzdKKc/iOqPgUQlELP+npypUr6Nq1K+7du1cah6v0srKyYGlpiczMTFhYWMidDhGR6Pz589i7d68k1rhxY3z++ecyZURUcejz/V1qt325du0a8vPzS+twRERUBnQN302ePBnm5uYyZENUueldRIWEhEi2BUHAvXv38N///heBgYGllhgREZUejUaD2bNna8U5fEdUcnoXUefPn5dsK5VK1K1bF4sWLXrlL/eIiKj8HTp0CEeOHJHE2rVrh/fff1+mjIgMA9eJIiIyYLqG76ZOnQpj41KbzUFUZZX4U5Seno4rV64AAFxcXGBra1tqSRER0evJzc1FRESEVpzDd0SlR+8iKisrCyNHjsTWrVuh0WgAAEZGRvD398eqVau4tggRkcx27tyJpKQkSaxHjx7w8PCQKSMiw6TU9wlDhgzBqVOn8N///hcZGRnIyMhAdHQ0zp49i2HDhpVFjkREVEwzZ87UKqDCw8NZQBGVAb3XiapRowZiYmLQqVMnSfzo0aPw8fFBdnZ2qSZYWXGdKCIqT0+ePMGiRYu04hy+I9JPma4TZW1trXPIztLSErVr19b3cERE9JrWrFmDtLQ0SaxPnz546623ZMqIqGrQezhv2rRpCAkJgVqtFmNqtRoTJ07EV199VarJERHRy82cOVOrgJo+fToLKKJyoPdwXuvWrXH16lXk5OSgYcOGAICbN2/CzMwMTZs2lbQ9d+5c6WVayXA4j4jK0oMHD7Bq1SqtOIfviF5PmQ7nffjhh1AoFCVOjoiIXo+utZ8GDRoER0dHGbIhqrpK7QbEJMUrUURUFnQVULz6RFR69Pn+1ntO1BtvvIGHDx9qxTMyMvDGG2/oezgiIiqGGzduaBVQRkZGLKCIZKT3cF5qaioKCgq04jk5Obh9+3apJEVERH/TdfVp1KhRsLa2liEbIipU7CJq79694v/HxMRIljkoKChAXFwcnJ2dSzc7IqIqjsN3RBVXsYsoPz8/AIBCoUBgYKBkn4mJCZycnHQu9EZERPpLSkrCzp07JbH69etj8ODBMmVERP9U7CKq8D55zs7OOHPmDGxsbMosKSKiqkzX1acvv/wSNWrUkCEbIiqK3hPLr1+/XqoF1KpVq+Dk5ARzc3OoVCqcPn36pe137NgBV1dXmJubo2XLlti3b1+RbYcPHw6FQoGlS5dK4k5OTlAoFJLH3LlzJW0uXryId955B+bm5nB0dMT8+fNL3EciouIQBKHI4TsWUEQVj94Ty2fNmvXS/eHh4cU+VmRkJEJCQrBmzRqoVCosXboU3t7euHLlCmxtbbXanzhxAv369UNERAQ++OADbNmyBX5+fjh37hxatGghabt7926cPHkSDg4ORfZjyJAh4natWrXE/8/KykKPHj3g5eWFNWvW4NKlSxg0aBCsrKwwdOjQYvePiKi41qz5BWlpRyWxVq1aiVMpiKjiKdGK5S/Ky8vD9evXYWxsjMaNG+u1SrlKpUK7du2wcuVKAM+HDB0dHTF69GiEhoZqtff390d2djaio6PFWIcOHeDm5oY1a9aIsTt37kClUiEmJga9evXCuHHjMG7cOHG/k5OTVuxFq1evxtSpU6FWq2FqagoACA0NRVRUFFJSUorVN64TRUTFpevq05QpU2BiYiJDNkRVW5muE3X+/HnJIykpCffu3UP37t0xfvz4Yh8nNzcXCQkJ8PLy+jsZpRJeXl6Ij4/X+Zz4+HhJewDw9vaWtNdoNAgICMDEiRPRvHnzIs8/d+5cWFtbo3Xr1liwYAHy8/Ml5+ncubNYQBWe58qVK3j8+HGx+0hE9DL5+flFDt+xgCKq+PQeztPFwsICM2fORO/evREQEFCs5zx48AAFBQWws7OTxO3s7Iq82qNWq3W2f/FmyPPmzYOxsTHGjBlT5LnHjBmDNm3aoE6dOjhx4gTCwsJw7949LF68WDzPP5drKDyvWq1G7dq1tY6Zk5ODnJwccTsrK6vI8xMRbd++HcnJyZKYh4cHevToIVNGRKSvUimiACAzMxOZmZmldbgSSUhIwLJly3Du3LmX3t8vJCRE/P+3334bpqamGDZsGCIiImBmZlaic0dEROj8FyUR0T/p+rviq6++glKp9+AAEclI7yJq+fLlkm1BEHDv3j18//336NmzZ7GPY2NjAyMjI6SlpUniaWlpsLe31/kce3v7l7Y/evQo0tPT0bBhQ3F/QUEBJkyYgKVLlyI1NVXncVUqFfLz85GamgoXF5ciz1OYgy5hYWGS4iwrK4s3AyUiiadPn2LBggVacS6eSVQ56V1ELVmyRLKtVCpRt25dBAYGIiwsrNjHMTU1hbu7O+Li4sRfn2g0GsTFxWHUqFE6n+Ph4YG4uDjJhPDY2Fh4eHgAAAICAnTOmQoICEBQUFCRuSQmJkKpVIq/CPTw8MDUqVORl5cnzkuIjY2Fi4uLzqE8ADAzMyvxVSwiMnwrV67Uuu/o+++/j3bt2smUERG9Lr2LqOvXr5fayUNCQhAYGIi2bduiffv2WLp0KbKzs8WCZ8CAAahfvz4iIiIAAGPHjkWXLl2waNEi9OrVC9u2bcPZs2exdu1aAIC1tbXWvaRMTExgb28PFxcXAM8njZ86dQrdunVDrVq1EB8fj/Hjx+Pzzz8XC6TPPvsMM2fORHBwMCZPnoykpCQsW7ZMq4AkIioO3rqFyDCVaE5URkYGrl69CgBo0qQJrKysSnRyf39/3L9/H+Hh4VCr1XBzc8P+/fvFSdw3b96UzBHw9PTEli1bMG3aNEyZMgVNmzZFVFSU1hpRL2NmZoZt27ZhxowZyMnJgbOzM8aPHy8ZirO0tMSBAwcwcuRIuLu7w8bGBuHh4Vwjioj08vDhQ3EJlxexgCIyDHqtE5WamoqRI0ciJiYGhU9TKBTw8fHBypUr4eTkVFZ5VjpcJ4qoatN19alfv3548803ZciGiIpLn+/vYl+JunXrFjp06AATExPMnj0bzZo1AwBcvnwZq1evhoeHB86cOYMGDRq8XvZERJUch++IqoZiX4kKDg7G1atXERMTA3Nzc8m+v/76Cz4+PmjatCnWrVtXJolWNrwSRVT13Lx5Exs3btSKs4AiqjzK5ErU/v37ERkZqVVAAUC1atUwe/Zs9O3bV/9siYgMgK6rT0OHDkW9evVkyIaIykOxi6gHDx68dM7TG2+8gUePHpVGTkRElQqH74iqpmIXUfXq1cPly5eLnPOUlJRU5EKURESG6Ndff8VPP/0kiRkbG2Pq1KkyZURE5anYRZSfnx++/PJLxMXFoW7dupJ96enpmDx5srhoJhGRodN19WncuHGwtLSUIRsikkOxJ5Y/fvwYKpUKarUan3/+OVxdXSEIApKTk7FlyxbY29vj5MmTqFOnTlnnXClwYjmRYRIEAbNmzdKKc/iOyDCUycTy2rVr49SpU5gyZQq2bduGjIwMAICVlRU+++wzfPPNNyygiMigHTt2DHFxcZJYgwYNEBwcLFNGRCQnvRbbLCQIAu7fvw8AqFu3LhQKRaknVtnxShSRYdE1fDd58mSdv1gmosqrTK5EvUihUIg36yUiMmQFBQX4+uuvteIcviOiEhVRRERVwd69e3H+/HlJrE2bNujdu7dMGRFRRcIiiohIB13Dd9OmTYORkZEM2RBRRcQiiojoBc+ePcO8efO04hy+I6J/YhFFRPT/rVu3Dnfu3JHEvLy80LFjR5kyIqKKrFhF1PLly4t9wDFjxpQ4GSIiuegavgsPD+evj4moSMVa4sDZ2bl4B1Mo8Mcff7x2UoaASxwQVQ6PHj3CihUrtOIcviOqmkp9iYPr16+XSmJERBWJrqtPTk6fIDCwuQzZEFFlU+I5Ubm5ubh+/ToaN24MY2NOrSKiykVXAcWrT0SkD6W+T3j69CmCg4NRvXp1NG/eHDdv3gQAjB49GnPnzi31BImIStONGzdYQBFRqdC7iAoLC8OFCxdw+PBhye0OvLy8EBkZWarJERGVppkzZ2LTpk2SWP/+/VlAEVGJ6D0OFxUVhcjISHTo0EHyq5XmzZvj2rVrpZocEVFp4dUnIiptehdR9+/f13nfvOzsbP4UmIgqnAsXLiAqKkorzgKKiF6X3kVU27Zt8d///hejR48GALFwWrduHTw8PEo3OyKi16Dr6pOr63D4+9vJkA0RGRq9i6hvvvkGPXv2xOXLl5Gfn49ly5bh8uXLOHHiBP73v/+VRY5ERHrj8B0RlTW9J5Z36tQJiYmJyM/PR8uWLXHgwAHY2toiPj4e7u7uZZEjEVGxHTp0iAUUEZWLYq1YTvrjiuVE5U9X8TRhwgTUrFlThmyIqDIq9RXLs7Kyin1yFgxEVN40Gg1mz56tFefVJyIqS8UqoqysrIr9y7uCgoLXSoiISB/bt29HcnKyJGZra4sRI0bIlBERVRXFKqIOHTok/n9qaipCQ0MxcOBA8dd48fHx2Lx5MyIiIsomSyIiHXQN302ZMgUmJiYyZENEVY3ec6K6d++OwYMHo1+/fpL4li1bsHbtWhw+fLg086u0OCeKqOzk5OTovM0Uh++I6HXp8/2tdxFVvXp1XLhwAU2bNpXEf/vtN7i5ueHp06f6Z2yAWEQRlY2lS5ciMzNTEmvVqhX8/PzkSYiIDIo+3996L3Hg6OiI7777Tiu+bt06ODo66ns4IqJimzlzplYBFR4ezgKKiGSh92KbS5Yswccff4yff/4ZKpUKAHD69Gn8/vvv2LlzZ6knSESUmZmJpUuXasU5fEdEcirROlG3b9/Gv//9b6SkpAAAmjVrhuHDh/NK1As4nEdUOnRNHvfy8kLHjh1lyIaIDF2ZDucBQIMGDfDNN99g165d2LVrF+bMmVPiAmrVqlVwcnKCubk5VCoVTp8+/dL2O3bsgKurK8zNzdGyZUvs27evyLbDhw+HQqGQ/As2NTUVwcHBcHZ2RrVq1dC4cWNMnz4dubm5kjYKhULrcfLkyRL1kYhKpqiVx1lAEVFFoPdwHgBkZGRg/fr14toszZs3x6BBg2BpaanXcSIjIxESEoI1a9ZApVJh6dKl8Pb2xpUrV2Bra6vV/sSJE+jXrx8iIiLwwQcfYMuWLfDz88O5c+fQokULSdvdu3fj5MmTcHBwkMRTUlKg0Wjw7bffokmTJkhKSsKQIUOQnZ2NhQsXStoePHgQzZs3F7etra316h8Rlczdu3d1zr3k8B0RVSR6D+edPXsW3t7eqFatGtq3bw8AOHPmDP766y8cOHAAbdq0KfaxVCoV2rVrh5UrVwJ4vuqwo6MjRo8ejdDQUK32/v7+yM7ORnR0tBjr0KED3NzcsGbNGjF2584dqFQqxMTEoFevXhg3bhzGjRtXZB4LFizA6tWr8ccffwB4fiXK2dkZ58+fh5ubW7H78yIO5xGVjK6rT3369MFbb70lQzZEVNWU6XDe+PHj4evri9TUVHE47/r16/jggw9eWqj8U25uLhISEuDl5fV3MkolvLy8EB8fr/M58fHxkvYA4O3tLWmv0WgQEBCAiRMnSq4ivUxmZibq1KmjFff19YWtrS06deqEvXv3FutYRFRyRQ3fsYAioopI7+G8s2fP4rvvvoOx8d9PNTY2xqRJk9C2bdtiH+fBgwcoKCiAnZ2dJG5nZydOWP8ntVqts71arRa3582bB2NjY4wZM6ZYeVy9ehUrVqyQDOXVrFkTixYtQseOHaFUKrFz5074+fkhKioKvr6+Oo+Tk5ODnJwccVuf+w0SVXXJycnYvn27VpzDd0RUkeldRFlYWODmzZtwdXWVxG/duoVatWqVWmIlkZCQgGXLluHcuXPFutffnTt34OPjgz59+mDIkCFi3MbGBiEhIeJ2u3btcPfuXSxYsKDIIioiIkLnv6KJ6OV0fW4GDx6M+vXry5ANEVHx6T2c5+/vj+DgYERGRuLWrVu4desWtm3bpvNWMC9jY2MDIyMjpKWlSeJpaWmwt7fX+Rx7e/uXtj969CjS09PRsGFDGBsbw9jYGDdu3MCECRPg5OQked7du3fRrVs3eHp6Yu3ata/MV6VS4erVq0XuDwsLQ2Zmpvi4devWK49JVNUVNXzHAoqIKgO9r0QtXLgQCoUCAwYMQH5+PgDAxMQEI0aM0Hkvq6KYmprC3d0dcXFx4mrDGo0GcXFxGDVqlM7neHh4IC4uTjL3KjY2VrwRckBAgM45UwEBAQgKChJjd+7cQbdu3eDu7o6NGzdCqXx1LZmYmIh69eoVud/MzAxmZmavPA4RPf+lbWxsrFacw3dEVJnoXUSZmppi2bJliIiIwLVr1wAAjRs3RvXq1fU+eUhICAIDA9G2bVu0b98eS5cuRXZ2tljwDBgwAPXr10dERAQAYOzYsejSpQsWLVqEXr16Ydu2bTh79qx4Jcna2lprGQITExPY29vDxcUFwPMCqmvXrmjUqBEWLlyI+/fvi20Lr2ht3rwZpqamaN26NQBg165d2LBhA9atW6d3H4lIStfVp7Fjx8LKyqr8kyEieg0lWicKeH4j4pYtW77Wyf39/XH//n2Eh4dDrVbDzc0N+/fvFyeP37x5U3KVyNPTE1u2bMG0adMwZcoUNG3aFFFRUVprRL1MbGwsrl69iqtXr6JBgwaSfS+u9jB79mzcuHEDxsbGcHV1RWRkJD755JPX6i9RVSYIAmbNmqUV59UnIqqsir1O1KBBg4p1wA0bNrxWQoaC60QR/e3QoUM4cuSIJPbgwRt4770AFPFbDSIiWejz/V3sK1GbNm1Co0aN0Lp1a5TgdntEVEXpGr4LCwuDqampDNkQEZWeYhdRI0aMwNatW3H9+nUEBQXh888/17lAJRERAOTn52POnDlacQ7fEZGh0Ou2Lzk5OeIk6xMnTqBXr14IDg5Gjx49irUuU1XC4TyqypYt24mMjCRJrH379ujZs6dMGRERFY8+39963zuv0I0bN7Bp0yb85z//QX5+Pn799VfUrFmzRAkbIhZRVFXpGr776quvirWUCBGR3MpkTtQ/KZVKKBQKCIKAgoKCkh6GiAzEs2fPMG/ePK04h++IyFDpVUS9OJx37NgxfPDBB1i5ciV8fHz4r0yiKmzXrl24dOmSJPbJJ58U+ybgRESVUbGLqC+++ALbtm2Do6MjBg0ahK1bt8LGxqYscyOiSkDX8F14eDjnSRKRwSv2nCilUomGDRuidevWL/3LcdeuXaWWXGXGOVFk6LKysrBkyRKtOIfviKgyK5M5UQMGDOC/LIkIAPDdd9/h7t27klhQUBAaNmwoU0ZEROVPr8U2iYh0Dd/x6hMRVUUl/nUeEVUt6enpWL16tSRmbm6OyZMny5QREZG8WEQR0SvNmTMH+fn5ktgXX3yBunXrypQREZH8WEQR0Utx+I6ISDcWUUSk0/Xr1/Gf//xHEmvYsCGCgoJkyoiIqGJhEUVEWnRdfQoJCUGtWrVkyIaIqGJiEUVEIkEQMGvWLK04h++IiLSxiCIiAMClS5e0Fst1c3PDhx9+KFNGREQVG4soItI5fBcWFgZTU1MZsiEiqhxYRBFVYRqNBrNnz9aKc/iOiOjVWEQRVVEJCQmIjo6WxOrV64qhQ7vIlBERUeXCIoqoCtI1fDdt2jQYGRnJkA0RUeXEIoqoComKysOFC99oxTl8R0SkPxZRRFVEUlISLlzYKYl9+umnaNasmUwZERFVbiyiiKoAXcN34eHhUCgUMmRDRGQYWEQRGbCcnBzMnTtXEnNyckJgYKBMGRERGQ4WUUQG6vTp0/j5558lsZEjR8LGxkamjIiIDAuLKCIDpGv4jpPHiYhKF4soIgOSnZ2NhQsXSmLt27dHz549ZcqIiMhwsYgiMhC//PILjh49KomNHz8eFhYWMmVERGTYWEQRGQAO3xERlT8WUUSVWEZGBpYtWyaJde/eHZ06dZIpIyKiqoNFFFEltWfPHiQmJkpikyZNQrVq1eRJiIioimERRVQJcfiOiEh+LKKIKpG0tDSsWbNGEvP19UXr1q1lyoiIqOpSyp3AqlWr4OTkBHNzc6hUKpw+ffql7Xfs2AFXV1eYm5ujZcuW2LdvX5Fthw8fDoVCgaVLl0rijx49Qv/+/WFhYQErKysEBwfjyZMnkjYXL17EO++8A3Nzczg6OmL+/Pkl7iNRafj++++1CqgpU6awgCIikomsRVRkZCRCQkIwffp0nDt3Dq1atYK3tzfS09N1tj9x4gT69euH4OBgnD9/Hn5+fvDz80NSUpJW2927d+PkyZNwcHDQ2te/f3/8+uuviI2NRXR0NI4cOYKhQ4eK+7OystCjRw80atQICQkJWLBgAWbMmIG1a9eWXueJikkQBMycORN//PGHGDMxMcH06dNhYmIiY2ZERFWbQhAEQa6Tq1QqtGvXDitXrgQAaDQaODo6YvTo0QgNDdVq7+/vj+zsbERHR4uxDh06wM3NTfIv9Dt37kClUiEmJga9evXCuHHjMG7cOABAcnIy3nrrLZw5cwZt27YFAOzfvx/vv/8+bt++DQcHB6xevRpTp06FWq2GqakpACA0NBRRUVFISUkpVt+ysrJgaWmJzMxMrtNDJXbjxg1s2rRJEuvbty9cXFzkSYiIyMDp8/0t25Wo3NxcJCQkwMvL6+9klEp4eXkhPj5e53Pi4+Ml7QHA29tb0l6j0SAgIAATJ05E8+bNdR7DyspKLKAAwMvLC0qlEqdOnRLbdO7cWSygCs9z5coVPH78uGQdJtLTypUrtQqor776igUUEVEFIdvE8gcPHqCgoAB2dnaSuJ2dXZFXe9Rqtc72arVa3J43bx6MjY0xZsyYIo9ha2sriRkbG6NOnTricdRqNZydnbXOU7ivdu3aWsfNyclBTk6OuJ2VlaXz/ESvUlBQgK+//loSq1u3Lr744guZMiIiIl0M6td5CQkJWLZsGc6dOweFQlGu546IiND5s3MifaSkpCAyMlISCwoKQsOGDWXKiIiIiiLbcJ6NjQ2MjIyQlpYmiaelpcHe3l7nc+zt7V/a/ujRo0hPT0fDhg1hbGwMY2Nj3LhxAxMmTICTk5N4jH9OXM/Pz8ejR4/E4xR1nsJ9uoSFhSEzM1N83Lp1qxivAtHfZs+erVVAhYeHs4AiIqqgZCuiTE1N4e7ujri4ODGm0WgQFxcHDw8Pnc/x8PCQtAeA2NhYsX1AQAAuXryIxMRE8eHg4ICJEyciJiZGPEZGRgYSEhLEY/zyyy/QaDRQqVRimyNHjiAvL09yHhcXF51DeQBgZmYGCwsLyYOoOPLy8jBz5kxoNBox1qRJE0yfPr3cr6gSEVHxyTqcFxISgsDAQLRt2xbt27fH0qVLkZ2djaCgIADAgAEDUL9+fURERAAAxo4diy5dumDRokXo1asXtm3bhrNnz4pLD1hbW8Pa2lpyDhMTE9jb24uTcZs1awYfHx8MGTIEa9asQV5eHkaNGoW+ffuKyyF89tlnmDlzJoKDgzF58mQkJSVh2bJlWLJkSXm9NFRFnDt3Dv/3f/8niQ0fPlxr7h8REVU8shZR/v7+uH//PsLDw6FWq+Hm5ob9+/eLXyA3b96EUvn3xTJPT09s2bIF06ZNw5QpU9C0aVNERUWhRYsWep33xx9/xKhRo9C9e3colUp8/PHHWL58ubjf0tISBw4cwMiRI+Hu7g4bGxuEh4dL1pIiel28dQsRUeUm6zpRhozrRFFRdu36C5cuSVfAb926NXx9fWXKiIiICunz/W1Qv84jquj++OMPXLr0vSQ2duxYWFlZyZMQERGVGIsoonISFRWFCxcuSGIcviMiqrxYRBGVsWfPnmHevHmS2EcffYSWLVvKlBEREZUGFlFEZej333/Hli1bJLGwsDDJLYWIiKhyYhFFVEa2bNmC33//Xdxu164d3n//fRkzIiKi0sQiiqiUZWdnY+HChZLY4MGDUb9+fZkyIiKissAiiqgUJSUlYefOnZLY1KlTYWzMjxoRkaHh3+xEpUAQBKxfvx537twRY507d0a3bt1kzIqIiMoSiyii15SVlaV1S6ARI0bA1tZWpoyIiKg8sIgieg0JCQmIjo4Wt6tXr44JEyZIbldERESGiUUUUQkIgoDly5cjIyNDjPXo0QMeHh7yJUVEROWKRRSRnh4+fIiVK1dKYmPGjEHt2rVlyoiIiOTAIopID8ePH8fBgwfF7bp162LEiBFQKBQyZkVERHJgEUVUDBqNBnPnzkVeXp4Y8/X1RevWrWXMioiI5MQiiugV1Go1vv32W0ksJCQEtWrVkikjIiKqCFhEEb3EwYMHcfz4cXG7UaNGCAwM5PAdERGxiCLSJT8/H3PmzJHE+vTpg7feekumjIiIqKJhEUX0D7du3cKGDRsksUmTJqFatWoyZURERBURiyiiF/zf//0fzp07J267urrC399fxoyIiKiiYhFFBCA3NxcRERGS2Oeff47GjRvLlBEREVV0LKKoyrt27Rp++OEHSSw0NBRmZmYyZURERJUBiyiq0rZv347k5GRxu02bNujdu7eMGRERUWXBIoqqpL/++gvz58+XxAYNGgRHR0eZMiIiosqGRRRVOZcvX8aOHTsksalTp8LYmB8HIiIqPn5rUJUhCAI2b96MGzduiLGOHTvCy8tLxqyIiKiyYhFFVcKff/6JxYsXS2LDhg2Dvb29TBkREVFlxyKKDF5iYiL27NkjbpuammLy5MlQKpUyZkVERJUdiygyWIIg4N///jcePHggxrp3745OnTrJmBURERkKFlFkkB4/fozly5dLYqNGjYK1tbVMGRERkaFhEUUG5+TJk4iJiRG3raysMGbMGCgUChmzIiIiQ8MiigyGRqPBokWL8PTpUzHWq1cvtG3bVsasiIjIULGIIoOQnp6O1atXS2Ljx4+HhYWFTBkREZGhYxFFld6hQ4dw5MgRcbt+/foIDg7m8B0REZUpFlFUaRUUFODrr7+WxD7++GO0aNFCpoyIiKgqkX2hnFWrVsHJyQnm5uZQqVQ4ffr0S9vv2LEDrq6uMDc3R8uWLbFv3z7J/hkzZsDV1RU1atRA7dq14eXlhVOnTon7Dx8+DIVCofNx5swZAEBqaqrO/SdPniz9F4BK5M6dO1oF1JdffskCioiIyo2sRVRkZCRCQkIwffp0nDt3Dq1atYK3tzfS09N1tj9x4gT69euH4OBgnD9/Hn5+fvDz80NSUpLY5s0338TKlStx6dIlHDt2DE5OTujRowfu378PAPD09MS9e/ckj8GDB8PZ2VlrAvLBgwcl7dzd3cvuxaBi27dvH9atWyduN23aFNOnT0eNGjVkzIqIiKoahSAIglwnV6lUaNeuHVauXAng+a+rHB0dMXr0aISGhmq19/f3R3Z2NqKjo8VYhw4d4ObmhjVr1ug8R1ZWFiwtLXHw4EF0795da39eXh7q16+P0aNH46uvvgLw/EqUs7Mzzp8/Dzc3txL1rfC8mZmZnNxcSnJzcxERESGJffbZZ2jatKlMGRERkaHR5/tbtitRubm5SEhIkNz8ValUwsvLC/Hx8TqfEx8fr3WzWG9v7yLb5+bmYu3atbC0tESrVq10ttm7dy8ePnyIoKAgrX2+vr6wtbVFp06dsHfv3uJ2jcrA9evXtQqo0NBQFlBERCQb2SaWP3jwAAUFBbCzs5PE7ezskJKSovM5arVaZ3u1Wi2JRUdHo2/fvnj69Cnq1auH2NhY2NjY6Dzm+vXr4e3tjQYNGoixmjVrYtGiRejYsSOUSiV27twJPz8/REVFwdfXV+dxcnJykJOTI25nZWUV3XnSy86dOyVDtq1atYKfn598CREREcFAf53XrVs3JCYm4sGDB/juu+/w6aef4tSpU7C1tZW0u337NmJiYrB9+3ZJ3MbGBiEhIeJ2u3btcPfuXSxYsKDIIioiIgIzZ84s/c5UYc+ePcO8efMksYEDB6JRo0YyZURERPQ32YbzbGxsYGRkhLS0NEk8LS0N9vb2Op9jb29frPY1atRAkyZN0KFDB6xfvx7GxsZYv3691vE2btwIa2vrIgujF6lUKly9erXI/WFhYcjMzBQft27deuUxqWhXrlzRKqCmTJnCAoqIiCoM2YooU1NTuLu7Iy4uToxpNBrExcXBw8ND53M8PDwk7QEgNja2yPYvHvfFoTYAEAQBGzduxIABA2BiYvLKfBMTE1GvXr0i95uZmcHCwkLyoJL5/vvvsW3bNnFbpVJh+vTpxXqfiIiIyousw3khISEIDAxE27Zt0b59eyxduhTZ2dniJO8BAwagfv364oTisWPHokuXLli0aBF69eqFbdu24ezZs1i7di0AIDs7G3PmzIGvry/q1auHBw8eYNWqVbhz5w769OkjOfcvv/yC69evY/DgwVp5bd68GaampmjdujUAYNeuXdiwYYPkZ/VU+p48eYJFixZJYkOGDIGDg4NMGRERERVN1iLK398f9+/fR3h4ONRqNdzc3LB//35x8vjNmzehVP59sczT0xNbtmzBtGnTMGXKFDRt2hRRUVHiAotGRkZISUnB5s2b8eDBA1hbW6Ndu3Y4evQomjdvLjn3+vXr4enpCVdXV525zZ49Gzdu3ICxsTFcXV0RGRmJTz75pIxeCbp48SJ2794tbiuVSkyZMgVGRkYyZkVERFQ0WdeJMmRcJ6p4BEHA2rVrJb+w7Nq1K7p06SJjVkREVFXp8/1tkL/Oo8ohMzMTS5culcS++OIL1K1bV56EiIiI9MAiimRx5swZyX0Pa9asifHjx0uGb4mIiCoyFlFUrgRBwNKlSyWLkfr4+EClUsmYFRERkf5YRFG5Kfy15IvGjh0LKysreRIiIiJ6DSyiqFwcPXoUv/zyi7htZ2eHYcOGQaFQyJgVERFRybGIojJVUFCAiIgIFBQUiDE/P78ibwhNRERUWbCIojJz7949cSHUQhMmTEDNmjVlyoiIiKj0sIiiMnHgwAHEx8eL287OzhgwYICMGREREZUuFlFUqvLy8vDNN99IYv7+/kWuDE9ERFRZsYiiUnPjxg1s2rRJEps0aRKqVasmT0JERERliEUUlYqoqChcuHBB3G7evDnvNUhERAaNRRS9lpycHMydO1cSGzBgAJydnWXKiIiIqHywiKIS+/3337FlyxZJLCwsDKampjJlREREVH5YRFGJbN26Fb/99pu43bZtW/Tq1UvGjIiIiMoXiyjSy9OnT7FgwQJJLDg4GA0aNJApIyIiInmwiKJi+/XXX/HTTz9JYlOnToWxMf8YERFR1cNvP3olQRCwYcMG3L59W4y98847ePfdd2XMioiISF4souilsrKysGTJEklsxIgRsLW1lSkjIiKiioFFFBUpISEB0dHR4na1atXw5ZdfQqlUypgVERFRxcAiirQIgoAVK1bg8ePHYuy9996Dp6enjFkRERFVLCyiSOLRo0dYsWKFJDZ69GjUqVNHpoyIiIgqJhZRJDpx4gRiY2PFbWtra4wcORIKhULGrIiIiComFlEEjUaD+fPnIycnR4z17t0bbdq0kTErIiKiio1FVBWXlpaGNWvWSGIhISGoVauWTBkRERFVDiyiqrC4uDgcO3ZM3HZ0dERQUBCH74iIiIqBRVQVlJ+fjzlz5khin3zyCZo3by5TRkRERJUPi6gq5vbt21i/fr0kNnHiRFSvXl2mjIiIiConFlFVSHR0NBISEsRtFxcX9O3bV8aMiIiIKi8WUVVAbm4uIiIiJLH+/fujSZMmMmVERERU+bGIMnB//PEHvv/+e0ksNDQUZmZmMmVERERkGFhEGbAdO3bg8uXL4nbr1q3h6+srY0ZERESGg0WUAfrrr78wf/58SSwoKAgNGzaUKSMiIiLDwyLKwCQnJ2P79u2S2NSpU2FszLeaiIioNPGb1UAIgoDNmzfjxo0bYszT0xPvvfeejFkREREZLqXcCaxatQpOTk4wNzeHSqXC6dOnX9p+x44dcHV1hbm5OVq2bIl9+/ZJ9s+YMQOurq6oUaMGateuDS8vL5w6dUrSxsnJCQqFQvKYO3eupM3FixfxzjvvwNzcHI6OjlrDYxXJn3/+iVmzZkkKqGHDhrGAIiIiKkOyFlGRkZEICQnB9OnTce7cObRq1Qre3t5IT0/X2f7EiRPo168fgoODcf78efj5+cHPzw9JSUlimzfffBMrV67EpUuXcOzYMTg5OaFHjx64f/++5FizZs3CvXv3xMfo0aPFfVlZWejRowcaNWqEhIQELFiwADNmzMDatWvL5oV4DYmJiVi8eLG4bWJigmnTpsHe3l7GrIiIiAyfQhAEQa6Tq1QqtGvXDitXrgQAaDQaODo6YvTo0QgNDdVq7+/vj+zsbERHR4uxDh06wM3NTesmuoWysrJgaWmJgwcPonv37gCeX4kaN24cxo0bp/M5q1evxtSpU6FWq2Fqagrg+bIAUVFRSElJKVbfCs+bmZkJCwuLYj1HH4IgYPXq1ZLisHv37ujUqVOpn4uIiKiq0Of7W7YrUbm5uUhISICXl9ffySiV8PLyQnx8vM7nxMfHS9oDgLe3d5Htc3NzsXbtWlhaWqJVq1aSfXPnzoW1tTVat26NBQsWID8/X3Kezp07iwVU4XmuXLmCx48f693X0paRkYFZs2ZJCqhRo0axgCIiIipHsk0sf/DgAQoKCmBnZyeJ29nZFXm1R61W62yvVqslsejoaPTt2xdPnz5FvXr1EBsbCxsbG3H/mDFj0KZNG9SpUwcnTpxAWFgY7t27Jw6LqdVqODs7a52ncF/t2rW1csvJyUFOTo64nZWV9aqXoETy8/OxbNkycdvS0hJjx46FQqEok/MRERGRbgb567xu3bohMTERDx48wHfffYdPP/0Up06dgq2tLQAgJCREbPv222/D1NQUw4YNQ0RERIlX8o6IiMDMmTNLJf+XUSr/vnjo6NgLgwa1LfNzEhERkTbZhvNsbGxgZGSEtLQ0STwtLa3ISdH29vbFal+jRg00adIEHTp0wPr162FsbIz169cXmYtKpUJ+fj5SU1Nfep7CfbqEhYUhMzNTfNy6davI870OpVKJAwemYcaMcKxbxwKKiIhILrIVUaampnB3d0dcXJwY02g0iIuLg4eHh87neHh4SNoDQGxsbJHtXzzui0Nt/5SYmAilUileqfLw8MCRI0eQl5cnOY+Li4vOoTwAMDMzg4WFheRRViZPNoKHhwI65t4TERFReRFktG3bNsHMzEzYtGmTcPnyZWHo0KGClZWVoFarBUEQhICAACE0NFRsf/z4ccHY2FhYuHChkJycLEyfPl0wMTERLl26JAiCIDx58kQICwsT4uPjhdTUVOHs2bNCUFCQYGZmJiQlJQmCIAgnTpwQlixZIiQmJgrXrl0TfvjhB6Fu3brCgAEDxPNkZGQIdnZ2QkBAgJCUlCRs27ZNqF69uvDtt98Wu2+ZmZkCACEzM7M0XioiIiIqB/p8f8s6J8rf3x/3799HeHg41Go13NzcsH//fnES982bNyVzgDw9PbFlyxZMmzYNU6ZMQdOmTREVFYUWLVoAAIyMjJCSkoLNmzfjwYMHsLa2Rrt27XD06FE0b94cwPMrRtu2bcOMGTOQk5MDZ2dnjB8/XjJPytLSEgcOHMDIkSPh7u4OGxsbhIeHY+jQoeX46hAREVFFJus6UYasrNeJIiIiotJXKdaJIiIiIqrMWEQRERERlQCLKCIiIqISYBFFREREVAIsooiIiIhKgEUUERERUQmwiCIiIiIqARZRRERERCXAIoqIiIioBFhEEREREZUAiygiIiKiEpD1BsSGrPCWhFlZWTJnQkRERMVV+L1dnFsLs4gqI3/++ScAwNHRUeZMiIiISF9//vknLC0tX9pGIRSn1CK9aTQa3L17F7Vq1YJCoSj142dlZcHR0RG3bt165V2mDUFV6y/APrPPhquq9bmq9Reo3H0WBAF//vknHBwcoFS+fNYTr0SVEaVSiQYNGpT5eSwsLCrdH9DXUdX6C7DPVQX7bPiqWn+BytvnV12BKsSJ5UREREQlwCKKiIiIqARYRFVSZmZmmD59OszMzOROpVxUtf4C7HNVwT4bvqrWX6Dq9JkTy4mIiIhKgFeiiIiIiEqARRQRERFRCbCIIiIiIioBFlFEREREJcAiqhysWrUKTk5OMDc3h0qlwunTp1/afseOHXB1dYW5uTlatmyJffv2SfbPmDEDrq6uqFGjBmrXrg0vLy+cOnVK0sbJyQkKhULymDt3rqTNxYsX8c4778Dc3ByOjo6YP39+6XQY5d/nw4cPa/W38HHmzBkAQGpqqs79J0+erJB9ftHw4cOhUCiwdOlSSfzRo0fo378/LCwsYGVlheDgYDx58kTSpjK9zy/S1efU1FQEBwfD2dkZ1apVQ+PGjTF9+nTk5uZK2hja+yzn57m8+2uIn+WBAwdq5erj4yNpY2if5Vf1uSJ8lkuFQGVq27ZtgqmpqbBhwwbh119/FYYMGSJYWVkJaWlpOtsfP35cMDIyEubPny9cvnxZmDZtmmBiYiJcunRJbPPjjz8KsbGxwrVr14SkpCQhODhYsLCwENLT08U2jRo1EmbNmiXcu3dPfDx58kTcn5mZKdjZ2Qn9+/cXkpKShK1btwrVqlUTvv3220rZ55ycHElf7927JwwePFhwdnYWNBqNIAiCcP36dQGAcPDgQUm73NzcCtnnQrt27RJatWolODg4CEuWLJHs8/HxEVq1aiWcPHlSOHr0qNCkSROhX79+4v7K9j6/qs8///yzMHDgQCEmJka4du2asGfPHsHW1laYMGGC2MYQ32e5Ps9y9NcQP8uBgYGCj4+PJNdHjx5JjmNon+VX9Vnuz3JpYRFVxtq3by+MHDlS3C4oKBAcHByEiIgIne0//fRToVevXpKYSqUShg0bVuQ5MjMzxT9ohRo1aqT1F/GL/v3vfwu1a9cWcnJyxNjkyZMFFxeXV3XpleTq84tyc3OFunXrCrNmzRJjhR/I8+fP69Gb4imrPt++fVuoX7++kJSUpPWeXr58WQAgnDlzRoz9/PPPgkKhEO7cuSMIQuV8n1/WZ13mz58vODs7i9uG9j4Lgnyf54rwHhvCZzkwMFD48MMPizynIX6WX9VnXcrzs1xaOJxXhnJzc5GQkAAvLy8xplQq4eXlhfj4eJ3PiY+Pl7QHAG9v7yLb5+bmYu3atbC0tESrVq0k++bOnQtra2u0bt0aCxYsQH5+vuQ8nTt3hqmpqeQ8V65cwePHj/Xu64v5yNnnQnv37sXDhw8RFBSktc/X1xe2trbo1KkT9u7dW9yuFams+qzRaBAQEICJEyeiefPmOo9hZWWFtm3bijEvLy8olUpxqLOyvc+v6rMumZmZqFOnjlbcUN7nQuX9eZa7v4UM4bMMPB+mtLW1hYuLC0aMGIGHDx9KjmFon+VX9VmX8voslyYWUWXowYMHKCgogJ2dnSRuZ2cHtVqt8zlqtbpY7aOjo1GzZk2Ym5tjyZIliI2NhY2Njbh/zJgx2LZtGw4dOoRhw4bhm2++waRJk155nsJ9JSVnn1+0fv16eHt7S24CXbNmTSxatAg7duzAf//7X3Tq1Al+fn6v/aEsqz7PmzcPxsbGGDNmTJHHsLW1lcSMjY1Rp04d8TiV7X1+VZ//6erVq1ixYgWGDRsmxgztfQbk+TxXlPfYED7LPj4++M9//oO4uDjMmzcP//vf/9CzZ08UFBSIxzC0z/Kr+vxP5flZLk3GcidAJdOtWzckJibiwYMH+O677/Dpp5/i1KlT4gcxJCREbPv222/D1NQUw4YNQ0RERKVdhv9VfS50+/ZtxMTEYPv27ZK4jY2N5HVp164d7t69iwULFsDX17dc+lBcCQkJWLZsGc6dOweFQiF3OuVC3z7fuXMHPj4+6NOnD4YMGSLGDfF9NpTPs77vsSF8lgGgb9++4v+3bNkSb7/9Nho3bozDhw+je/fuMmZWdvTpc2X+LPNKVBmysbGBkZER0tLSJPG0tDTY29vrfI69vX2x2teoUQNNmjRBhw4dsH79ehgbG2P9+vVF5qJSqZCfn4/U1NSXnqdwX0lVhD5v3LgR1tbWxfqQqVQqXL169ZXtXqYs+nz06FGkp6ejYcOGMDY2hrGxMW7cuIEJEybAyclJPEZ6errkGPn5+Xj06JF4nMr0Phenz4Xu3r2Lbt26wdPTE2vXrn1lvpX5fS6qP2X9ea4I/TWEz7Iub7zxBmxsbMR8De2zrMs/+1xIjs9yaWIRVYZMTU3h7u6OuLg4MabRaBAXFwcPDw+dz/Hw8JC0B4DY2Ngi27943JycnCL3JyYmQqlUildtPDw8cOTIEeTl5UnO4+Ligtq1a7+yb0WRu8+CIGDjxo0YMGAATExMXplvYmIi6tWr98p2L1MWfQ4ICMDFixeRmJgoPhwcHDBx4kTExMSIx8jIyEBCQoJ4jF9++QUajQYqlUpsU1ne5+L0GXj+r9auXbvC3d0dGzduhFL56r/GKvP7XFR/yvrzLHd/DeWzrMvt27fx8OFDMV9D+yzr8s8+A/J9lkuV3DPbDd22bdsEMzMzYdOmTcLly5eFoUOHClZWVoJarRYEQRACAgKE0NBQsf3x48cFY2NjYeHChUJycrIwffp0yU9Hnzx5IoSFhQnx8fFCamqqcPbsWSEoKEgwMzMTkpKSBEEQhBMnTghLliwREhMThWvXrgk//PCDULduXWHAgAHieTIyMgQ7OzshICBASEpKErZt2yZUr1691H4uW959LnTw4EEBgJCcnKyV16ZNm4QtW7YIycnJQnJysjBnzhxBqVQKGzZsqHB91kXXr5h8fHyE1q1bC6dOnRKOHTsmNG3aVPKz6Mr0Phenz7dv3xaaNGkidO/eXbh9+7bkZ8+FDO19lvPzLNefa0EwnM/yn3/+KXz55ZdCfHy8cP36deHgwYNCmzZthKZNmwrPnj0Tj2NIn+Xi9Fnuz3JpYRFVDlasWCE0bNhQMDU1Fdq3by+cPHlS3NelSxchMDBQ0n779u3Cm2++KZiamgrNmzcX/vvf/4r7/vrrL+Ff//qX4ODgIJiamgr16tUTfH19hdOnT4ttEhISBJVKJVhaWgrm5uZCs2bNhG+++UbygRUEQbhw4YLQqVMnwczMTKhfv74wd+7cStvnQv369RM8PT115rRp0yahWbNmQvXq1QULCwuhffv2wo4dO0qnw0Lp9lkXXV82Dx8+FPr16yfUrFlTsLCwEIKCgoQ///xT0qayvM+6/LPPGzduFADofBQytPdZ7s+zHH+uBcFwPstPnz4VevToIdStW1cwMTERGjVqJAwZMkQsUAoZ0me5OH2uCJ/l0qAQBEGQ4woYERERUWXGOVFEREREJcAiioiIiKgEWEQRERERlQCLKCIiIqISYBFFREREVAIsooiIiIhKgEUUERERUQmwiCIiIiIqARZRREQA1Go1Ro8ejTfeeANmZmZwdHRE7969JfcIO3HiBN5//33Url0b5ubmaNmyJRYvXoyCggKxTWpqKoKDg+Hs7Ixq1aqhcePGmD59OnJzc+XoFhGVIWO5EyAikltqaio6duwIKysrLFiwAC1btkReXh5iYmIwcuRIpKSkYPfu3fj0008RFBSEQ4cOwcrKCgcPHsSkSZMQHx+P7du3Q6FQICUlBRqNBt9++y2aNGmCpKQkDBkyBNnZ2Vi4cKHcXSWiUsTbvhBRlff+++/j4sWLuHLlCmrUqCHZl5GRARMTEzRq1AhdunTBzp07Jfv/7//+D76+vti2bRv8/f11Hn/BggVYvXo1/vjjjzLrAxGVPw7nEVGV9ujRI+zfvx8jR47UKqAAwMrKCgcOHMDDhw/x5Zdfau3v3bs33nzzTWzdurXIc2RmZqJOnTqlmjcRyY9FFBFVaVevXoUgCHB1dS2yzW+//QYAaNasmc79rq6uYhtdx1+xYgWGDRv2+skSUYXCIoqIqjR9ZjToO/vhzp078PHxQZ8+fTBkyBB9UyOiCo5FFBFVaU2bNhUnhBflzTffBAAkJyfr3J+cnCy2KXT37l1069YNnp6eWLt2beklTEQVBosoIqrS6tSpA29vb6xatQrZ2dla+zMyMtCjRw/UqVMHixYt0tq/d+9e/P777+jXr58Yu3PnDrp27Qp3d3ds3LgRSiX/qiUyRPx1HhFVeX/88Qc6duyIOnXqYNasWXj77beRn5+P2NhYrF69GsnJyfjpp5/Qt29fDBo0CKNGjYKFhQXi4uIwceJEdO/eXVzioLCAatSoETZv3gwjIyPxPPb29jL2kohKG4soIiIA9+7dw5w5cxAdHY179+6hbt26cHd3x/jx49G1a1cAwNGjRzFnzhzEx8fj2bNnaNq0KYKCgjBu3DixWNq0aROCgoJ0noN/3RIZFhZRRERERCXAgXoiIiKiEmARRURERFQCLKKIiIiISoBFFBEREVEJsIgiIiIiKgEWUUREREQlwCKKiIiIqARYRBERERGVAIsoIiIiohJgEUVERERUAiyiiIiIiEqARRQRERFRCfw/6PiUeCLZpqEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_34.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSaklEQVR4nO3dfVzN9/8/8McpXSlduColCnM5akTjM8M+Tcy1jw3bdLGNYZhlJFQSKmtELMZcjKFd5OKLxaTMJpfNzFxbue7CUBSVc96/P/yc7e2c0sk5vc/F4367ddvO87zP+zzfb9Sj9+v1fh2ZIAgCiIiIiEyImdQNEBEREdU0BiAiIiIyOQxAREREZHIYgIiIiMjkMAARERGRyWEAIiIiIpPDAEREREQmhwGIiIiITA4DEBEREZkcBiAiMlgymQyzZ8+Wug2loKAgeHh4SN0GEVUBAxARadXatWshk8mUX9bW1mjZsiUmTJiAvLw8nb73wYMHMXv2bNy9e1er++3Zs6fomOrWrYvOnTtj9erVUCgUWnmP+fPnY+vWrVrZFxE9Wy2pGyAi4zRnzhx4enri4cOH+OWXX5CUlIRdu3bh1KlTqF27tlbe48GDB6hV659vYwcPHkRUVBSCgoLg6Oiolfd4onHjxoiJiQEAFBQU4Ouvv8b777+P8+fPIzY29rn3P3/+fAwbNgyDBw9+7n0R0bMxABGRTvTt2xc+Pj4AgA8++AD16tXDwoULsW3bNowcObLa+1UoFCgrK4O1tTWsra211e4zOTg44N1331U+/vDDD9GqVSssXboU0dHRsLCwqLFeiOj5cQiMiGrEa6+9BgDIzs4GAMTHx6Nbt26oV68ebGxs0KlTJ3z//fcqr5PJZJgwYQK++eYbtGvXDlZWVkhNTVU+92QO0OzZszF16lQAgKenp3K4KicnBz169ICXl5favlq1agV/f3+Nj6d27dp4+eWXUVxcjIKCggq3Ky4uxpQpU+Du7g4rKyu0atUK8fHxEARBdIzFxcVYt26dsu+goCCNeyKiquMVICKqEZcuXQIA1KtXDwCwePFiDBw4EO+88w7KysqwefNmvPnmm9ixYwf69esneu2+ffvw7bffYsKECahfv77aicZDhw7F+fPnsWnTJixatAj169cHADRo0ACjRo3C6NGjcerUKbz44ovK1xw9ehTnz5/HrFmzqnVMf/31F8zNzSscbhMEAQMHDkR6ejref/99eHt7Y/fu3Zg6dSquX7+ORYsWAQDWr1+PDz74AF26dMGYMWMAAM2bN69WT0RURQIRkRatWbNGACDs3btXKCgoEK5evSps3rxZqFevnmBjYyNcu3ZNEARBKCkpEb2urKxMePHFF4XXXntNVAcgmJmZCX/++afKewEQIiMjlY8/++wzAYCQnZ0t2u7u3buCtbW1EBoaKqpPmjRJsLW1Fe7fv1/pMfXo0UNo3bq1UFBQIBQUFAhnzpwRJk2aJAAQBgwYoNwuMDBQaNq0qfLx1q1bBQDC3LlzRfsbNmyYIJPJhIsXLyprtra2QmBgYKV9EJH2cAiMiHTCz88PDRo0gLu7O0aMGAE7Ozts2bIFbm5uAAAbGxvltnfu3EFhYSG6d++OrKwslX316NEDbdu2rXYvDg4OGDRoEDZt2qQcepLL5UhOTsbgwYNha2v7zH2cPXsWDRo0QIMGDdCmTRskJiaiX79+WL16dYWv2bVrF8zNzTFp0iRRfcqUKRAEAT/++GO1j4mIng+HwIhIJ5YtW4aWLVuiVq1acHZ2RqtWrWBm9s/vXDt27MDcuXNx4sQJlJaWKusymUxlX56ens/dT0BAAJKTk3HgwAG8+uqr2Lt3L/Ly8jBq1Kgqvd7DwwMrV65U3tr/wgsvoGHDhpW+5vLly3B1dUWdOnVE9TZt2iifJyJpMAARkU506dJFeRfY0w4cOICBAwfi1VdfxRdffIFGjRrBwsICa9aswcaNG1W2//fVoury9/eHs7MzNmzYgFdffRUbNmyAi4sL/Pz8qvR6W1vbKm9LRPqPQ2BEVON++OEHWFtbY/fu3XjvvffQt29frYQLdVePnjA3N8fbb7+N77//Hnfu3MHWrVsxcuRImJubP/f7VqRp06a4ceMG7t27J6qfPXtW+fwTlfVORNrHAERENc7c3BwymQxyuVxZy8nJee6VkJ/M5aloJehRo0bhzp07+PDDD3H//n3Ruj668MYbb0Aul2Pp0qWi+qJFiyCTydC3b19lzdbWVusrWBNRxTgERkQ1rl+/fli4cCH69OmDt99+G/n5+Vi2bBlatGiBkydPVnu/nTp1AgDMnDkTI0aMgIWFBQYMGKAMRi+99BJefPFFfPfdd2jTpg06duyoleOpyIABA9CrVy/MnDkTOTk58PLywp49e7Bt2zZMnjxZdKt7p06dsHfvXixcuBCurq7w9PSEr6+vTvsjMmW8AkRENe61117DV199hdzcXEyePBmbNm1CXFwchgwZ8lz77dy5M6Kjo/H7778jKCgII0eOVFmkMCAgAACqPPn5eZiZmWH79u2YPHkyduzYgcmTJ+P06dP47LPPsHDhQtG2CxcuRKdOnTBr1iyMHDkSSUlJOu+PyJTJBOFfy5ESERm5xYsX45NPPkFOTg6aNGkidTtEJBEGICIyGYIgwMvLC/Xq1UN6errU7RCRhDgHiIiMXnFxMbZv34709HT88ccf2LZtm9QtEZHEeAWIiIxeTk4OPD094ejoiPHjx2PevHlSt0REEmMAIiIiIpPDu8CIiIjI5DAAERERkcnhJGg1FAoFbty4gTp16nB5eiIiIgMhCALu3bsHV1dX0Ycvq8MApMaNGzfg7u4udRtERERUDVevXkXjxo0r3YYBSI06deoAeHwC7e3tJe6GiIiIqqKoqAju7u7Kn+OVYQBS48mwl729PQMQERGRganK9BVOgiYiIiKTwwBEREREJocBiIiIiEwO5wA9B7lcjvLycqnbIB2zsLCAubm51G0QEZEWMQBVgyAIyM3Nxd27d6VuhWqIo6MjXFxcuC4UEZGRYACqhifhp2HDhqhduzZ/KBoxQRBQUlKC/Px8AECjRo0k7oiIiLSBAUhDcrlcGX7q1asndTtUA2xsbAAA+fn5aNiwIYfDiIiMACdBa+jJnJ/atWtL3AnVpCd/3pzzRURkHBiAqonDXqaFf95ERMaFAYiIiIhMDgMQERERmRwGIBMSFBQEmUwGmUwGCwsLODs74/XXX8fq1auhUCiqvJ+1a9fC0dFRd40SERHpGAOQienTpw9u3ryJnJwc/Pjjj+jVqxc+/vhj9O/fH48ePZK6PSIiohrBAGRirKys4OLiAjc3N3Ts2BEzZszAtm3b8OOPP2Lt2rUAgIULF6J9+/awtbWFu7s7xo8fj/v37wMAMjIyEBwcjMLCQuXVpNmzZwMA1q9fDx8fH9SpUwcuLi54++23levnEBERAUBi4lZMnrwGycnS/nxgANICQRBQVlZW41+CIGil/9deew1eXl5ISUkBAJiZmWHJkiX4888/sW7dOuzbtw/Tpk0DAHTr1g0JCQmwt7fHzZs3cfPmTXz66acAHt8iHh0djd9//x1bt25FTk4OgoKCtNIjEREZtocPHyIqKgq3b/8OJ6cr+P77a5L2w4UQtaC8vBwxMTE1/r5hYWGwtLTUyr5at26NkydPAgAmT56srHt4eGDu3LkYO3YsvvjiC1haWsLBwQEymQwuLi6ifbz33nvK/2/WrBmWLFmCzp074/79+7Czs9NKn0REZHjOnTuHzZs3i2rvvNNBom4eYwAiAI+vYj1Z62bv3r2IiYnB2bNnUVRUhEePHuHhw4coKSmpdAHI48ePY/bs2fj9999x584d5cTqK1euoG3btjVyHEREpF+ioqJEj19++WX4+/tL1M0/GIC0wMLCAmFhYZK8r7acOXMGnp6eyMnJQf/+/TFu3DjMmzcPdevWxS+//IL3338fZWVlFQag4uJi+Pv7w9/fH9988w0aNGiAK1euwN/fH2VlZVrrk4iIDEN+fj6SkpJEtdGjR8PV1VWijsQYgLRAJpNpbShKCvv27cMff/yBTz75BMePH4dCocDnn38OM7PHU8S+/fZb0faWlpaQy+Wi2tmzZ/H3338jNjYW7u7uAIBjx47VzAEQEZFe2bx5M86dOyeq7dkzC5GR+vNZigxAJqa0tBS5ubmQy+XIy8tDamoqYmJi0L9/fwQEBODUqVMoLy9HYmIiBgwYgF9//RXLly8X7cPDwwP3799HWloavLy8ULt2bTRp0gSWlpZITEzE2LFjcerUKURHR0t0lEREJAVBEDBnzhyV+u7dkZg+XYKGKsG7wExMamoqGjVqBA8PD/Tp0wfp6elYsmQJtm3bBnNzc3h5eWHhwoWIi4vDiy++iG+++UZlgne3bt0wduxYDB8+HA0aNMCCBQvQoEEDrF27Ft999x3atm2L2NhYxMfHS3SURERU065fv64Sft58801ERkbi4EFg4ECJGquATNDWvdRGpKioCA4ODigsLIS9vb3ouYcPHyI7Oxuenp6wtraWqEOqafxzJyKq2KpVq3D9+nVRbdasWTA3r9khr8p+fj+NQ2BERERULQqFQmW6g729PT755BOJOqo6BiAiIiLS2F9//YX169eLaqNGjUKzZs0k6kgzDEBERESkkUWLFqGoqEhUCw8PV949bAgYgIiIiKhK5HI55s6dK6oVFrpi4cLREnVUfQxARERE9EynT5/Gd999J6odOvQ+xo1rLFFHz4cBiIiIiCr19MdZAEBERITyI5QMEQMQERERqfXw4UPExcWJaq1atcKIESMk6kh7GICIiIhIxc6dO1U+0qhlyw8wYoSbRB1pFwMQERERiagb8oqMjJSgE90xnPvVyGAEBQVh8ODBysc9e/bE5MmTn2uf2tgHERFV7v79+yrhx87OzujCD8ArQCYlKCgI69atAwBYWFigSZMmCAgIwIwZM1Crlu7+KqSkpMDCwqJK22ZkZKBXr164c+cOHB0dq7UPIiLSXHJyMs6ePSuqffjhh3BxcZGoI91iADIxffr0wZo1a1BaWopdu3bho48+goWFBcLCwkTblZWVwdLSUivvWbduXb3YBxERqWcKQ15P4xCYibGysoKLiwuaNm2KcePGwc/PD9u3b1cOW82bNw+urq5o1aoVAODq1at466234OjoiLp162LQoEHIyclR7k8ulyMkJASOjo6oV68epk2bhqc/X/fp4avS0lKEhobC3d0dVlZWaNGiBb766ivk5OSgV69eAAAnJyfIZDIEBQWp3cedO3cQEBAAJycn1K5dG3379sWFCxeUz69duxaOjo7YvXs32rRpAzs7O/Tp0wc3b95UbpORkYEuXbrA1tYWjo6O+M9//oPLly9r6UwTEem/27dvq4QfNzc3ow8/AAOQybOxsUFZWRkAIC0tDefOncNPP/2EHTt2oLy8HP7+/qhTpw4OHDiAX3/9VRkknrzm888/x9q1a7F69Wr88ssvuH37NrZs2VLpewYEBGDTpk1YsmQJzpw5gxUrVsDOzg7u7u744YcfAADnzp3DzZs3sXjxYrX7CAoKwrFjx7B9+3ZkZmZCEAS88cYbKC8vV25TUlKC+Ph4rF+/Hj///DOuXLmCTz/9FADw6NEjDB48GD169MDJkyeRmZmJMWPGGPSaFkREmvjyyy+RmJgoqk2cOBEffPCBRB3VLA6BmShBEJCWlobdu3dj4sSJKCgogK2tLVatWqUc+tqwYQMUCgVWrVqlDAZr1qyBo6MjMjIy0Lt3byQkJCAsLAxDhw4FACxfvhy7d++u8H3Pnz+Pb7/9Fj/99BP8/PwAQPTBeU+Guho2bCiaA/RvFy5cwPbt2/Hrr7+iW7duAIBvvvkG7u7u2Lp1K958800AQHl5OZYvX47mzZsDACZMmIA5c+YAAIqKilBYWIj+/fsrn2/Tpo3mJ5KIyACZ4pDX03gFSELbtwPduj3+b03ZsWMH7OzsYG1tjb59+2L48OGYPXs2AKB9+/aieT+///47Ll68iDp16sDOzg52dnaoW7cuHj58iEuXLqGwsBA3b96Er6+v8jW1atWCj49Phe9/4sQJmJubo0ePHtU+hjNnzqBWrVqi961Xrx5atWqFM2fOKGu1a9dWhhsAaNSoEfLz8wE8DlpBQUHw9/fHgAEDsHjxYtHwGBGRMbp586ZK+GnTpo3JhR+AV4AkFRsLZGY+/u/AgTXznr169UJSUhIsLS3h6uoquvvL1tZWtO39+/fRqVMnfPPNNyr7adCgQbXe38bGplqvq46n7xqTyWSi+Ulr1qzBpEmTkJqaiuTkZMyaNQs//fQTXn755RrrkYiopixYsAAPHjwQ1aZMmQI7OzuJOpIWrwBJaPp0oGvXx/+tKba2tmjRogWaNGnyzFvfO3bsiAsXLqBhw4Zo0aKF6MvBwQEODg5o1KgRDh8+rHzNo0ePcPz48Qr32b59eygUCuzfv1/t80+uQMnl8gr30aZNGzx69Ej0vn///TfOnTuHtm3bVnpMT3vppZcQFhaGgwcP4sUXX8TGjRs1ej0RkSGIiopSCT+RkZEmG34ABiBJDRwIHDxYc1d/NPXOO++gfv36GDRoEA4cOIDs7GxkZGRg0qRJuHbtGgDg448/RmxsLLZu3YqzZ89i/PjxuHv3boX79PDwQGBgIN577z1s3bpVuc9vv/0WANC0aVPIZDLs2LEDBQUFuH//vso+XnjhBQwaNAijR4/GL7/8gt9//x3vvvsu3NzcMGjQoCodW3Z2NsLCwpCZmYnLly9jz549uHDhAucBEZFRyc7OVhny6tKli0kOeT2NAYgqVLt2bfz8889o0qQJhg4dijZt2uD999/Hw4cPYW9vD+Dx5dNRo0YhMDAQXbt2RZ06dTBkyJBK95uUlIRhw4Zh/PjxaN26NUaPHo3i4mIAj2+/jIqKwvTp0+Hs7IwJEyao3ceaNWvQqVMn9O/fH127doUgCNi1a1eVF0usXbs2zp49i//9739o2bIlxowZg48++ggffvihBmeIiEh/RUVF4euvvxbVQkND0bdvX4k60i8y4elFWwhFRUVwcHBAYWGh8gf9Ew8fPkR2djY8PT1hbW0tUYdU0/jnTkSGQhAE5R2v/2YKV30q+/n9NE6CJiIiMhKnT5/Gd999J6q99tpr6N69u0Qd6S+9GAJbtmwZPDw8YG1tDV9fXxw5cqTCbVNSUuDj4wNHR0fY2trC29sb69evVz5fXl6O0NBQtG/fHra2tnB1dUVAQABu3LhRE4dCREQkiaioKJXwM3PmTIafCkgegJKTkxESEoLIyEhkZWXBy8sL/v7+yvVanla3bl3MnDkTmZmZOHnyJIKDgxEcHKxcfK+kpARZWVkIDw9HVlYWUlJScO7cOQzU15nGREREz0GhUFS4sKEuP+ja0Ek+B8jX1xedO3fG0qVLATz+g3R3d8fEiRMxvYr3h3fs2BH9+vVDdHS02uePHj2KLl264PLly2jSpMkz98c5QPQ0/rkTkT46duwYdu7cKaoNGDAAHTt2lKgjaRnMHKCysjIcP35c9EnkZmZm8PPzQ2Zm5jNfLwgC9u3bh3PnziEuLq7C7QoLCyGTySr8aIXS0lKUlpYqHxcVFVXpvcl08M+biPSNuqs+4eHhMDOTfHDHIEh6lm7dugW5XA5nZ2dR3dnZGbm5uRW+rrCwEHZ2drC0tES/fv2QmJiI119/Xe22Dx8+RGhoKEaOHFlhGoyJiVEu7Ofg4AB3d/cK3/vJbdYlJSXPOjwyIk/+vKt6mz0Rka6Ul5dXOOTF8FN1Bjk4WKdOHZw4cQL3799HWloaQkJC0KxZM/Ts2VO0XXl5Od566y0IgoCkpKQK9xcWFoaQkBDl46KiogpDkLm5ORwdHZVzlGrXrs1PEDdigiCgpKQE+fn5cHR0hLm5udQtEZEJy8jIUFlJf/jw4WjdurVEHRkuSQNQ/fr1YW5ujry8PFE9Ly8PLi4uFb7OzMwMLVq0AAB4e3vjzJkziImJEQWgJ+Hn8uXL2LdvX6VjgVZWVrCysqpy3096q2iiNhkfR0fHSv9OEhHpmrqrPhEREfwlvJokDUCWlpbo1KkT0tLSMHjwYACPJ0GnpaVVuAKwOgqFQjSH50n4uXDhAtLT01GvXj2t9i2TydCoUSM0bNgQ5eXlWt036R8LCwte+SEiyTx8+FDtPFdTWNhQlyQfAgsJCUFgYCB8fHzQpUsXJCQkoLi4GMHBwQCAgIAAuLm5ISYmBsDj+To+Pj5o3rw5SktLsWvXLqxfv145xFVeXo5hw4YhKysLO3bsgFwuV84nqlu3rvLDNrXB3NycPxiJiEhnduzYofIB04GBgfDw8JCmISMieQAaPnw4CgoKEBERgdzcXHh7eyM1NVU5MfrKlSuiSV3FxcUYP348rl27BhsbG7Ru3RobNmzA8OHDAQDXr1/H9u3bATweHvu39PR0lXlCRERE+qiiic6kHZKvA6SPNFlHgIiISJvu3buHhQsXimpFRXWQmRmCgwclaspAGMw6QERERPSPTZs24fz586Jaq1YfYskSF1RxbWCqIgYgIiIiPVDZkNeIETXdjfFjACIiIpLQzZs38eWXX4pqjRs3xvvvvy9RR6aBAYiIiEgi6q76TJo0CU5OThJ0Y1oYgIiIiCSgLvy89FIkmH1qBgMQERFRDbp06RI2bNggqhUW2uPQoU/Au9xrDgMQERFRDVF31addu8lYuNCBd3nVMAYgIiKiGlDZXV7DhtV0N8QAREREpEMnT57Eli1bRDUPDw8EBgZK1BEBDEBEREQ6o+6qz7Rp02BjYyNBN/RvDEBERERaJggC5syZo1LnZ3npDwYgIiIiLTp48CB++uknUc3LywuDBw+WpiFSiwGIiIhIS9QNec2YMQMWFhYSdEOVYQAiIiJ6TnK5HHPnzlWpc8hLfzEAERERPYft27fjt99+E9VeffVV9OrVS6KOqCoYgIiIiKpJ3ZDX55+HIzLSTIJuSBMMQERERBp6+PAh4uLiVOpz5kRyRWcDwQBERESkgTVr1uDKlSuimqvr61izphu2bAEGDpSoMdIIAxAREVEVqRvyioiIgEwmw+jREjRE1cYARERE9Az37t3DwoULVeq8y8twMQARERFV4vPPP8f9+/dFtaFDh6J9+/YSdUTawABERERUgco+wZ0MGwMQERHRU27duoVly5ap1Bl+jAcDEBER0b+ou+ozatQoNGvWTIJuSFcYgIiIiP4/DnmZDgYgIiIyeVevXsXq1atV6gw/xosBiIiITJq6qz4ffvghXFxcJOiGagoDEBERmSwOeZkuBiAiIjI5Z8+eRXJysqhmZmaG8PBwiTqimsYAREREJkXdVZ+PP/4Yjo6ONd8MSYYBiIiITIIgCJgzZ45KnUNepokBiIiIjN7Ro0exa9cuUa1hw4YYN26cRB2R1BiAiIjIqKkb8po6dSpq164tQTekLxiAiIjIKHHIiyrDAEREREYnLS0Nv/zyi6jWunVrDB8+XKKOSN8wABERkVFRN+Q1Y8YMWFhYSNAN6SsGICIiMgqPHj3CvHnzVOoc8iJ1GICIiMjgpaSk4I8//hDVXn75Zfj7+0vUEek7BiAiIjJo6oa8wsPDYWZmJkE3ZCgYgIiIyCCVlpYiNjZWpc4hL6oKBiAiIjI427dvx2+//Saq9e7dG127dpWoIzI0DEBERGRQ1A15eXtHoGtXmQTdkKFiACIiIoNQXFyM+Ph4lTqHvKg69GKG2LJly+Dh4QFra2v4+vriyJEjFW6bkpICHx8fODo6wtbWFt7e3li/fr1oG0EQEBERgUaNGsHGxgZ+fn64cOGCrg+DiIh0ZMOGDSrhZ9SoUQw/VG2SB6Dk5GSEhIQgMjISWVlZ8PLygr+/P/Lz89VuX7duXcycOROZmZk4efIkgoODERwcjN27dyu3WbBgAZYsWYLly5fj8OHDsLW1hb+/Px4+fFhTh0VERFoSFRWFS5cuiWqRkZFo1qyZRB2RMZAJgiBI2YCvry86d+6MpUuXAgAUCgXc3d0xceJETJ8+vUr76NixI/r164fo6GgIggBXV1dMmTIFn376KQCgsLAQzs7OWLt2LUaMGPHM/RUVFcHBwQGFhYWwt7ev/sEREVG13blzB0uWLFGp86oPVUSTn9+SzgEqKyvD8ePHERYWpqyZmZnBz88PmZmZz3y9IAjYt28fzp07h7i4OABAdnY2cnNz4efnp9zOwcEBvr6+yMzMVBuASktLUVpaqnxcVFT0PIdFRETPKTExEbdv3xbVxowZg0aNGknUERkbSQPQrVu3IJfL4ezsLKo7Ozvj7NmzFb6usLAQbm5uKC0thbm5Ob744gu8/vrrAIDc3FzlPp7e55PnnhYTE6P2rgIiIqp56r4f86oPaZtB3gVWp04dnDhxAvfv30daWhpCQkLQrFkz9OzZs1r7CwsLQ0hIiPJxUVER3N3dtdQtERFVRW5uLlasWCGqOTo64uOPP5aoIzJmkgag+vXrw9zcHHl5eaJ6Xl4eXFxcKnydmZkZWrRoAQDw9vbGmTNnEBMTg549eypfl5eXJ7pUmpeXB29vb7X7s7KygpWV1XMeDRERVdecOXPw9JTUiRMnom7duhJ1RMZO0rvALC0t0alTJ6SlpSlrCoUCaWlpGq3mqVAolHN4PD094eLiItpnUVERDh8+zBVCiYj0UFRUlEr4iYyMZPghnZJ8CCwkJASBgYHw8fFBly5dkJCQgOLiYgQHBwMAAgIC4ObmhpiYGACP5+v4+PigefPmKC0txa5du7B+/XokJSUBAGQyGSZPnoy5c+fihRdegKenJ8LDw+Hq6orBgwdLdZhERPSU7OxsfP3116Kap6cnAgICJOqITInkAWj48OEoKChAREQEcnNz4e3tjdTUVOUk5itXrog+0be4uBjjx4/HtWvXYGNjg9atW2PDhg0YPny4cptp06ahuLgYY8aMwd27d/HKK68gNTUV1tbWNX58RESkSt1E5ylTpsDOzk6CbsgUSb4OkD7iOkBERLohCALmzJmjUuddXqQNBrMOEBERmY7Tp0/ju+++E9W8vLw4PYEkwQBEREQ6p27Ia/r06bwDlyTDAERERDqjUCgQHR2tUueQF0mNAYiIiHTip59+wsGDB0U1Z+dXMHbsfyXqiOgfDEBERKR16oa85s6dgc6dLTB2rAQNET2FAYiIiLTm0aNHmDdvnkr9pZci0bkzMH26BE0RqcEAREREWvH999/jzz//FNW6deum/LDqgQOl6IpIPQYgIiJ6buqGvMLDw0UL2RLpEwYgIiKqtgcPHmDBggUqdd7lRfqOAYiIiKrlyy+/xM2bN0W1Pn36wNfXV6KOiKqOAYiIiDSmbsgrIiICMplMgm6INMcAREREVVZYWIiEhASVOoe8yNAwABERUZXExMSgrKxMVHvzzTfRtm1biToiqj4GICIieiZ1Q1686kOGjAGIiIgqlJeXh+XLl6vUGX7I0DEAERGRWuqu+gQGBsLDw6PmmyHSMgYgIiJSwSEvMnYMQEREpJSTk4N169ap1Bl+yNgwABEREQD1V33GjRuHhg0bStANkW4xABEREYe8yOQwABERmbBTp07hhx9+ENWsra0RGhoqUUdENYMBiIjIRKm76vPJJ5/A3t5egm6IahYDEBGRiREEAXPmzFGpc8iLTAkDEBGRCTl06BB2794tqrm5ueGDDz6QqCMiaTAAERGZCHVDXqGhobC2tpagGyJpMQARERk5hUKB6OholTqHvMiUMQARERmx3bt349ChQ6Ja+/btMXToUIk6ItIPGgcgc3Nz3Lx5U2VhrL///hsNGzaEXC7XWnNERFR96oa8Zs6ciVq1+Lsvkcb/CgRBUFsvLS2FpaXlczdERETPp7y8HPPnz1epc8iL6B9VDkBLliwBAMhkMqxatQp2dnbK5+RyOX7++We0bt1a+x0SEVGVJScn4+zZs6LaK6+8gv/+978SdUSkn6ocgBYtWgTg8RWg5cuXw9zcXPmcpaUlPDw8sHz5cu13SEREVaJuyCsiIgIymUyCboj0W5UDUHZ2NgCgV69eSElJgZOTk86aIiKiqispKcFnn32mUueQF1HFNJ4DlJ6eros+iIioGpYvX468vDxR7Y033kDnzp0l6ojIMGgcgN57771Kn1+9enW1myEioqrjkBdR9WkcgO7cuSN6XF5ejlOnTuHu3bt47bXXtNYYERGpd/fuXSxevFilziEvoqrTOABt2bJFpaZQKDBu3Dg0b95cK00REZF6c+fOVVlv7a233kKbNm0k6ojIMMmEihb20dC5c+fQs2dP3Lx5Uxu7k1RRUREcHBxQWFgIe3t7qdshIgKgfsiLV32I/qHJz2+tLQd66dIlPHr0SFu7IyKi/y83NxcrVqxQqTP8EFWfxgEoJCRE9FgQBNy8eRM7d+5EYGCg1hojIiL1V32Cg4PRpEkTCbohMh4aB6DffvtN9NjMzAwNGjTA559//sw7xIiIqOo45EWkO1wHiIhIz1y4cAEbN25UqTP8EGlPtecA5efn49y5cwCAVq1aqXw6PBERaU7dVZ/x48ejQYMGEnRDZLzMNH1BUVERRo0aBVdXV/To0QM9evSAm5sb3n33XRQWFuqiRyIik6Au/Lz0UiTDD5EOaByARo8ejcOHD2Pnzp24e/cu7t69ix07duDYsWP48MMPNW5g2bJl8PDwgLW1NXx9fXHkyJEKt125ciW6d+8OJycnODk5wc/PT2X7+/fvY8KECWjcuDFsbGzQtm1bfkgrEem1s2fPqoSfkhJHvPRSJAYOlKgpIiOn8RDYjh07sHv3brzyyivKmr+/P1auXIk+ffpotK/k5GSEhIRg+fLl8PX1RUJCAvz9/XHu3Dm1Q2oZGRkYOXIkunXrBmtra8TFxaF37974888/4ebmBuDxXWr79u3Dhg0b4OHhgT179mD8+PFwdXXFQH4nISI9o+6qz5QpU2BnZydBN0SmQ+MrQPXq1YODg4NK3cHBQeNPiF+4cCFGjx6N4OBg5ZWa2rVrV/h5Yt988w3Gjx8Pb29vtG7dGqtWrYJCoUBaWppym4MHDyIwMBA9e/aEh4cHxowZAy8vr0qvLBER1TRBECq8y4vhh0j3NA5As2bNQkhICHJzc5W13NxcTJ06FeHh4VXeT1lZGY4fPw4/P79/mjEzg5+fHzIzM6u0j5KSEpSXl6Nu3brKWrdu3bB9+3Zcv34dgiAgPT0d58+fR+/evSvcT2lpKYqKikRfRES6cuzYMcyZM0dUa926Ne/yIqpBGg+BJSUl4eLFi2jSpIlyIa4rV67AysoKBQUFotVKs7KyKtzPrVu3IJfL4ezsLKo7Ozvj7NmzVeolNDQUrq6uohCVmJiIMWPGoHHjxqhVqxbMzMywcuVKvPrqqxXuJyYmRu1vYkRE2qbue8306dNhZWUlQTdEpkvjADRo0CDIZDJd9KKR2NhYbN68GRkZGbC2tlbWExMTcejQIWzfvh1NmzbFzz//jI8++kglKP1bWFiYaIXroqIiuLu76/wYiMh0KBQKREdHq9R51YdIGhoHoNmzZ2vljevXrw9zc3Pk5eWJ6nl5eXBxcan0tfHx8YiNjcXevXvRoUMHZf3BgweYMWMGtmzZgn79+gEAOnTogBMnTiA+Pr7CAGRlZcXfvohIZzIyMrB//35RzdfXV+MbR4hIezSeA9SsWTP8/fffKvW7d++iWbNmVd6PpaUlOnXqJJrA/GRCc9euXSt83YIFCxAdHY3U1FT4+PiInisvL0d5eTnMzMSHZW5uDoVCUeXeiIi0JSoqSiX8zJo1i+GHSGIaXwHKycmBXC5XqZeWluLatWsa7SskJASBgYHw8fFBly5dkJCQgOLiYgQHBwMAAgIC4ObmhpiYGABAXFwcIiIisHHjRnh4eCgnYtvZ2cHOzg729vbo0aMHpk6dChsbGzRt2hT79+/H119/jYULF2p6qERE1VZeXo758+er1DnkRaQfqhyAtm/frvz/3bt3i26Fl8vlSEtLg6enp0ZvPnz4cBQUFCAiIgK5ubnw9vZGamqqcmL0lStXRFdzkpKSUFZWhmHDhon2ExkZqRya27x5M8LCwvDOO+/g9u3baNq0KebNm4exY8dq1BsRUXVt27YNJ06cENVef/11dOvWTZqGiEiFTBAEoSobPgkiMpkMT7/EwsICHh4e+Pzzz9G/f3/td1nDioqK4ODggMLCQtjb20vdDhEZEHV3eUVEROjFzSNExk6Tn99VvgL0ZA6Np6cnjh49ivr16z9fl0RERuTBgwdYsGCBSp1DXkT6SeM5QNnZ2brog4jIYK1btw45OTmi2pAhQ0R3qRKRftE4AD29eunTIiIiqt0MEZGhqejjLIhIv2kcgLZs2SJ6XF5ejuzsbNSqVQvNmzdnACIik1BYWIiEhASVOsMPkWHQOAD99ttvKrWioiIEBQVhyJAhWmmKiEifJSQkoLCwUFR799130bx5c4k6IiJNVfkusGf5448/MGDAAJVxcEPEu8CIqCIc8iLSXzq5C+xZCgsLVX4jIiIyFnfu3MGSJUtU6gw/RIZJ4wD09DcAQRBw8+ZNrF+/Hn379tVaY0RE+mL16tW4evWqqHbgwARMmlRPoo6I6HlpHIAWLVokemxmZoYGDRogMDAQYWFhWmuMiEgfcMiLyDhxHSAiIjVyc3OxYsUKUa1ly5YYOXKkRB0RkTZVaw7Q3bt3cfHiRQBAixYt4OjoqM2eiIgktXDhQty7d09UCwkJQZ06dSTqiIi0zezZm/wjJycH/fr1Q/369eHr6wtfX1/Ur18f/fv3N4q7v4iIoqKiVMJPZGQkww+RkanyFaCrV6/i5ZdfhoWFBaKjo9GmTRsAwOnTp5GUlISuXbvi6NGjaNy4sc6aJSLSlcuXL2Pt2rWiWqdOnYziA56JSFWV1wF6//33cfHiRezevRvW1tai5x48eIA+ffrghRdewKpVq3TSaE3iOkBEpkXdROfQ0FCV73VEpN90sg5QamoqkpOT1X5DsLGxQXR0NEaMGKF5t0REEhEEQe3nG/IuLyLjV+UAdOvWLXh4eFT4fLNmzXD79m1t9EREpHNnz55FcnKyqNajRw/07NlTmoaIqEZVOQA1atQIp0+frnCOz6lTp+Di4qK1xoiIdEXdkNeMGTNgYWEhQTdEJIUq3wU2ePBgfPrppygoKFB5Lj8/H6GhoRg8eLA2eyMi0iqFQlHhwoYMP0SmpcqToO/cuQNfX1/k5ubi3XffRevWrSEIAs6cOYONGzfCxcUFhw4dQt26dXXds85xEjSR8cnKysL//d//iWpvvPEGOnfuLFFHRKRtOpkE7eTkhMOHD2PGjBnYvHkz7t69CwBwdHTE22+/jfnz5xtF+CEi46Puqk94eDjMzDRaCo2IjEiVrwD9myAIyqGwBg0aQCaTab0xKfEKEJFxePToEebNm6dS511eRMZJJ1eA/k0mk6Fhw4bVao6IqCYcOHAA+/btE9XefPNNtG3bVqKOiEifVCsAERHpM3VDXhEREUZ3tZqIqo8BiIiMRmlpKWJjY1XqL70UCWYfIvo3BiAiMgo//vgjjhw5IqoFBATA09NToo6ISJ8xABGRwatobR8ioopUKQAtWbKkyjucNGlStZshItLE/fv38fnnn4tqNjY2mDZtmkQdEZGhqNJt8FW9hCyTyfDXX389d1NS423wRPrv22+/xZkzZ0S1MWPGoFGjRhJ1RERS0/pt8NnZ2VppjIhIGzjkRUTPq9pzgMrKypCdnY3mzZujVi1OJSIi3bt9+zYSExNFtUaNGmHMmDESdUREhkrj5FJSUoKJEydi3bp1AIDz58+jWbNmmDhxItzc3DB9+nStN0lEtGrVKly/fl1UmzhxIj+Ch4iqReMPwgkLC8Pvv/+OjIwMWFtbK+t+fn5ITk7WanNERMDjIa+nw09kZCTDDxFVm8ZXgLZu3Yrk5GS8/PLLolVV27Vrh0uXLmm1OSIybbm5uVixYoWo1qpVK4wYMUKijojIWGgcgAoKCtR+DlhxcTGXmScirYmPj0dxcbGoFhISgjp16kjUEREZE42HwHx8fLBz507l4yehZ9WqVejatav2OiMikxUVFaUSfiIjIxl+iEhrNL4CNH/+fPTt2xenT5/Go0ePsHjxYpw+fRoHDx7E/v37ddEjEZmInJwc5Q0WT/j4+KBfv34SdURExkrjAPTKK6/gxIkTiI2NRfv27bFnzx507NgRmZmZaN++vS56JCIToG5tn9DQUNHNFkRE2lKllaBNDVeCJqo5giBgzpw5KnUubEhEmtL6StBFRUVVfnMGBiKqqjNnzuDbb78V1Xr27IkePXpI1BERmYoqBSBHR8cq3+Ell8ufqyEiMg3qhrxmzJgBCwsLCbohIlNTpQCUnp6u/P+cnBxMnz4dQUFByru+MjMzsW7dOsTExOimSyIyGgqFAtHR0Sp1DnkRUU3SeA7Qf//7X3zwwQcYOXKkqL5x40Z8+eWXyMjI0GZ/kuAcICLdOH78OHbs2CGq9e/fH506dZKoIyIyJpr8/NZ4HaDMzEz4+Pio1H18fHDkyBFNd4dly5bBw8MD1tbW8PX1rXQfK1euRPfu3eHk5AQnJyf4+fmp3f7MmTMYOHAgHBwcYGtri86dO+PKlSsa90ZE2hMVFaUSfsLDwxl+iEgSGgcgd3d3rFy5UqW+atUquLu7a7Sv5ORkhISEIDIyEllZWfDy8oK/vz/y8/PVbp+RkYGRI0ciPT0dmZmZcHd3R+/evUWfEXTp0iW88soraN26NTIyMnDy5EmEh4fzVloiiZSXl6ud7xMZGQkzM42/BRERaYXGQ2C7du3C//73P7Ro0QK+vr4AgCNHjuDChQv44Ycf8MYbb1R5X76+vujcuTOWLl0K4PHcAHd3d0ycOLFKnyovl8vh5OSEpUuXIiAgAAAwYsQIWFhYYP369ZoclgiHwIi0Y//+/SrD4m+99RbatGkjTUNEZNR0OgT2xhtv4MKFCxgwYABu376N27dvY8CAATh//rxG4aesrAzHjx+Hn5/fP82YmcHPzw+ZmZlV2kdJSQnKy8uVnwitUCiwc+dOtGzZEv7+/mjYsCF8fX2xdetWjY6RiJ5fVFSUSviJiIhg+CEivaDxStAA0LhxY8yfP/+53vjWrVuQy+VwdnYW1Z2dnXH27Nkq7SM0NBSurq7KEJWfn4/79+8jNjYWc+fORVxcHFJTUzF06FCkp6dXuLZIaWkpSktLlY81WfeIiMQePnyIuLg4lTrv8iIifVKtAHT37l189dVXOHPmDACgXbt2eO+99+Dg4KDV5ioTGxuLzZs3IyMjQzm/R6FQAAAGDRqETz75BADg7e2NgwcPYvny5RUGoJiYGLVzFIhIMzt37sSxY8dEtcDAQHh4eEjTEBFRBTQeAjt27BiaN2+ORYsWKYfAFi5ciObNmyMrK6vK+6lfvz7Mzc2Rl5cnqufl5cHFxaXS18bHxyM2NhZ79uxBhw4dRPusVasW2rZtK9q+TZs2ld4FFhYWhsLCQuXX1atXq3wcRPRYVFSUSviJjIxk+CEivaRxAPrkk08wcOBA5OTkICUlBSkpKcjOzkb//v0xefLkKu/H0tISnTp1QlpamrKmUCiQlpamXGBRnQULFiA6Ohqpqakqt+NbWlqic+fOOHfunKh+/vx5NG3atMJ9WllZwd7eXvRFRFVz7949lSuodnZ2HPIiIr2m8RDYsWPHsHLlStSq9c9La9WqhWnTpqldH6gyISEhCAwMhI+PD7p06YKEhAQUFxcjODgYABAQEAA3NzflCtNxcXGIiIjAxo0b4eHhgdzcXACPv9na2dkBAKZOnYrhw4fj1VdfRa9evZCamor/+7//M4oFGon0zebNm1V+4fjwww+feRWXiEhqGgcge3t7XLlyBa1btxbVr169ijp16mi0r+HDh6OgoAARERHIzc2Ft7c3UlNTlROjr1y5IlonJCkpCWVlZRg2bJhoP5GRkZg9ezYAYMiQIVi+fDliYmIwadIktGrVCj/88ANeeeUVTQ+ViCpR0do+RESGQON1gCZNmoQtW7YgPj4e3bp1AwD8+uuvmDp1Kv73v/8hISFBF33WKK4DRFSx27dvIzExUVRzc3PDBx98IFFHRESPafLzW+MrQPHx8ZDJZAgICMCjR48AABYWFhg3bhxiY2Or1zERGYQvv/wSN2/eFNUmTZoEJycniToiIqoeja8APVFSUoJLly4BAJo3b47atWtrtTEp8QoQkSoOeRGRvtPpFaAnateujfbt21f35URkIG7cuKHy+X9t27bFm2++KVFHRETPr8oB6L333qvSdqtXr652M0SkXxYsWIAHDx6IalOmTFHedUlEZKiqHIDWrl2Lpk2b4qWXXkI1R82IyIBwyIuIjFmVA9C4ceOwadMmZGdnIzg4GO+++67yQ0iJyHhkZ2fj66+/FtW6dOmCvn37StQREZH2aTQJurS0FCkpKVi9ejUOHjyIfv364f3330fv3r0hk8l02WeN4iRoMlXqrvqEhoYqP2+PiEifafLzu9p3gV2+fBlr167F119/jUePHuHPP/80mnkBDEBkagRBwJw5c1TqHPIiIkNSI3eBmZmZQSaTQRAEyOXy6u6GiCR2+vRpfPfdd6Laa6+9hu7du0vUERGR7mkUgP49BPbLL7+gf//+WLp0Kfr06SP6yAoiMgzqhrxmzpwp+qw/IiJjVOXvcuPHj8fmzZvh7u6O9957D5s2bUL9+vV12RsR6YhCoUB0dLRKnUNeRGQqqjwHyMzMDE2aNMFLL71U6YTnlJQUrTUnFc4BImN29OhR7Nq1S1QbMGAAOnbsKFFHRETaoZM5QAEBAUZ1pxeRKVI35BUeHs4hbCIyORothEhEhqm8vBzz589XqXPIi4hMFWc6Ehm5jIwM7N+/X1QbPnw4WrduLVFHRETSYwAiMmLqhrwiIiI4nE1EJo8BiMgIPXjwAAsWLFCpc8iLiOgxBiAiI7Njxw4cP35cVAsKCkLTpk0l6oiISP8wABEZEX6COxFR1TAAERmBoqIiLFq0SFSrU6cOQkJCJOqIiEi/MQARGbiNGzfiwoULotrYsWPh7OwsUUdERPqPAYjIgHHIi4ioehiAiAzQ33//jaVLl4pqjRs3xvvvvy9RR0REhoUBiMjAJCUlIT8/X1SbNGkSnJycJOqIiMjwMAARGRAOeRERaQcDEJEBuH79OlatWiWqtWvXDsOGDZOoIyIiw8YARKTnYmNjUVpaKqp9+umnsLW1lagjIiLDxwBEpMc45EVEpBsMQER66NKlS9iwYYOo9vLLL8Pf31+ijoiIjAsDEJGeUXfVZ/r06bCyspKgGyIi48QARKQnBEHAnDlzVOoc8iIi0j4GICI9cOrUKfzwww+imp+fH/7zn/9I1BERkXFjACKSmLohr5kzZ6JWLf7zJCLSFX6HJZKIXC7H3LlzVeoc8iIi0j0GICIJHDlyBD/++KOoNmjQIHh7e0vTEBGRiWEAIqph6oa8wsPDYWZmJkE3RESmiQGIqIaUl5dj/vz5KnUOeRER1TwGIKIasG/fPhw4cEBUGzFiBFq1aiVRR0REpo0BiEjH1A15RUREQCaTSdANEREBDEBEOvPgwQMsWLBApc4hLyIi6TEAEenAtm3bcOLECVEtODgYTZo0kaYhIiISYQAi0jJ+gjsRkf5jACLSkqKiIixatEhUc3BwwOTJk6VpiIiIKqQXC48sW7YMHh4esLa2hq+vL44cOVLhtitXrkT37t3h5OQEJycn+Pn5Vbr92LFjIZPJkJCQoIPOiR7bsGGDSvgZO3Ysww8RkZ6SPAAlJycjJCQEkZGRyMrKgpeXF/z9/ZGfn692+4yMDIwcORLp6enIzMyEu7s7evfujevXr6tsu2XLFhw6dAiurq66PgwyYVFRUbh06ZKoFhkZCWdnZ4k6IiKiZ5EJgiBI2YCvry86d+6MpUuXAgAUCgXc3d0xceJETJ8+/Zmvl8vlcHJywtKlSxEQEKCsX79+Hb6+vti9ezf69euHyZMnV/m38aKiIjg4OKCwsBD29vbVOi4yfrdu3cKyZctEtSZNmiA4OFiijoiITJsmP78lnQNUVlaG48ePIywsTFkzMzODn58fMjMzq7SPkpISlJeXo27dusqaQqHAqFGjMHXqVLRr1+6Z+ygtLUVpaanycVFRkQZHQaboiy++QEFBgaj28ccfw9HRUZqGiIhII5IOgd26dQtyuVxlqMDZ2Rm5ublV2kdoaChcXV3h5+enrMXFxaFWrVqYNGlSlfYRExMDBwcH5Ze7u3vVD4JMTlRUlEr4iYyMZPghIjIgBn0XWGxsLDZv3oyMjAxYW1sDAI4fP47FixcjKyuryivthoWFISQkRPm4qKiIIYhUXL9+HatWrRLV2rdvj6FDh0rUERERVZekAah+/fowNzdHXl6eqJ6XlwcXF5dKXxsfH4/Y2Fjs3bsXHTp0UNYPHDiA/Px80YJzcrkcU6ZMQUJCAnJyclT2ZWVlBSsrq+c7GDJq8+fPR3l5uaj26aefwtbWVqKOiIjoeUg6BGZpaYlOnTohLS1NWVMoFEhLS0PXrl0rfN2CBQsQHR2N1NRU+Pj4iJ4bNWoUTp48iRMnTii/XF1dMXXqVOzevVtnx0LGSRAEREVFqYSfyMhIhh8iIgMm+RBYSEgIAgMD4ePjgy5duiAhIQHFxcXKO2kCAgLg5uaGmJgYAI/n90RERGDjxo3w8PBQzhWys7ODnZ0d6tWrh3r16onew8LCAi4uLvzkbdLIxYsX8c0334hqXbt2Re/evSXqiIiItEXyADR8+HAUFBQgIiICubm58Pb2RmpqqnJi9JUrV2Bm9s+FqqSkJJSVlWHYsGGi/URGRmL27Nk12ToZMXUfZzF9+nQOlRIRGQnJ1wHSR1wHyHQJgoA5c+ao1PlZXkRE+s9g1gEi0id//PEHUlJSRLXXX38d3bp1k6gjIiLSFQYgIqgf8po1axbMzc0l6IaIiHSNAYhMmlwux9y5c1XqHPIiIjJuDEBksg4dOqSyNMLgwYPh5eUlUUdERFRTGIDIJKkb8oqIiKjy6uFERGTYGIDIpJSVlSnXlPo3DnkREZkWBiAyGXv37sWvv/4qqo0cORItW7aUqCMiIpIKAxCZBA55ERHRvzEAkVErKSnBZ599JqrJZDJERERI1BEREekDBiAyWlu3bsXvv/8uqr333ntwd3eXqCMiItIXDEBklNQNeXGiMxERPcEAREalsLAQCQkJopqTkxMmTZokTUNERKSXGIDIaKxfvx5//fWXqDZ+/Hg0aNBAoo6IiEhfMQCRUeCQFxERaYIBiAxaQUEBvvjiC1HNw8MDgYGBEnVERESGgAGIDFZiYiJu374tqk2ePBkODg4SdURERIaCAYgMEoe8iIjoeTAAkUHJz89HUlKSqNahQwcMGTJEoo6IiMgQMQCRwfjhhx9w6tQpUW3q1KmoXbu2RB0REZGhMpO6AaJnEQQBUVFRKuEnPj6S4YeIiKqFV4BIr928eRNffvmlqPbo0RAkJHQA1zYkIqLqYgAivfX1118jOztbVJs5cyZq1aqF6GiJmiIiIqPAAER6RxAEzJkzR1SztrZGaGioRB0REZGxYQAivXL58mWsXbtWVBs5ciRatmwpTUNERGSUGIBIbyxbtgy3bt0S1cLDw2Fmxrn6RESkXQxAJDmFQoHopyb1NGjQAOPHj5eoIyIiMnYMQCSp8+fPY9OmTaJaUFAQmjZtKlFHRERkChiASDJxcXF4+PChqBYREQGZTCZRR0REZCoYgKjGPXr0CPPmzRPVPD09ERAQIFFHRERkahiAqEadPHkSW7ZsEdXGjBmDRo0aSdQRERGZIgYgqjHqPsGdQ15ERCQFBiDSudLSUsTGxopq7du3x9ChQyXqiIiITB0DEOnU4cOHkZqaKqpNmDAB9erVk6gjIiIiBiDSIXVDXpGRkRJ0QkREJMYARFpXXFyM+Ph4Uc3X1xd9+vSRqCMiIiIxBiDSqoyMDOzfv19U++STT2Bvby9RR0RERKoYgEhrOORFRESGggGInlthYSESEhJEtZ49e6JHjx7SNERERPQMDED0XHbt2oWjR4+KalOnTkXt2rUl6oiIiOjZGICo2jjkRUREhooBiDR269YtLFu2TFR744030LlzZ4k6IiIi0gwDEGnku+++w+nTp0W16dOnw8rKSqKOiIiINMcARFUiCALmzJmjUueQFxERGSIzqRsAgGXLlsHDwwPW1tbw9fXFkSNHKtx25cqV6N69O5ycnODk5AQ/Pz/R9uXl5QgNDUX79u1ha2sLV1dXBAQE4MaNGzVxKEbpxo0bKuFn6NChDD9ERGSwJA9AycnJCAkJQWRkJLKysuDl5QV/f3/k5+er3T4jIwMjR45Eeno6MjMz4e7ujt69e+P69esAgJKSEmRlZSE8PBxZWVlISUnBuXPnMHDgwJo8LKOxdu1arFy5UlSbOXMm2rdvL1FHREREz08mCIIgZQO+vr7o3Lkzli5dCgBQKBRwd3fHxIkTMX369Ge+Xi6Xw8nJCUuXLkVAQIDabY4ePYouXbrg8uXLaNKkyTP3WVRUBAcHBxQWFprsCsbqhrxq166NqVOnStQRERFR5TT5+S3pHKCysjIcP34cYWFhypqZmRn8/PyQmZlZpX2UlJSgvLwcdevWrXCbwsJCyGQyODo6qn2+tLQUpaWlysdFRUVVOwAjlZOTg3Xr1olqb7/9Nl544QWJOiIiItIuSQPQrVu3IJfL4ezsLKo7Ozvj7NmzVdpHaGgoXF1d4efnp/b5hw8fIjQ0FCNHjqwwDcbExKhd08YUJSYm4vbt26JaeHg4zMwkHy0lIiLSGoP+qRYbG4vNmzdjy5YtsLa2Vnm+vLwcb731FgRBQFJSUoX7CQsLQ2FhofLr6tWrumxbL8nlckRFRYnCT8OGDREZGcnwQ0RERkfSK0D169eHubk58vLyRPW8vDy4uLhU+tr4+HjExsZi79696NChg8rzT8LP5cuXsW/fvkrHAq2srEx6HZtz585h8+bNolpwcHCV5ksREREZIkl/tbe0tESnTp2QlpamrCkUCqSlpaFr164Vvm7BggWIjo5GamoqfHx8VJ5/En4uXLiAvXv3ol69ejrp3xjEx69RCT8REREMP0REZNQkXwgxJCQEgYGB8PHxQZcuXZCQkIDi4mIEBwcDAAICAuDm5oaYmBgAQFxcHCIiIrBx40Z4eHggNzcXAGBnZwc7OzuUl5dj2LBhyMrKwo4dOyCXy5Xb1K1bF5aWltIcqJ6Ry+WIjY3Fo0ePlLVmzZph1KhREnZFRERUMyQPQMOHD0dBQQEiIiKQm5sLb29vpKamKidGX7lyRTQHJSkpCWVlZRg2bJhoP5GRkZg9ezauX7+O7du3AwC8vb1F26Snp6Nnz546PR5DkJubixUrVohqrVuPxfDhzhW8goiIyLhIvg6QPjLmdYD27t2LX3/9VfnYw8MDAQEBkMlkEnZFRET0/AxmHSCqOY8ePcK8efNEtbfeegtt2rSRqCMiIiLpMACZgGvXruGrr74S1aZNmwYbGxuJOiIiIpIWA5CR27lzJ44dO6Z83Lp1awwfPlzCjoiIiKTHAGSkysrKlHfOPfHOO++gRYsWEnVERESkPxiAjFB2dja+/vprUW369OkmvdgjERHRvzEAGZmUlBT88ccfysdeXl4YPHiwdA0RERHpIQYgI/Hw4UPExcWJakFBQWjatKlEHREREekvBiAjcP78eWzatElUmzFjBiwsLCTqiIiISL8xABm4jRs34sKFC8rHXbp0Qd++fSXsiIiISP8xABmo4uJixMfHi2offPAB3NzcJOqIiIjIcDAAGaA///wT33//vag2a9YsmJubS9QRERGRYWEAMiCCIGD16tW4du2asta9e3e89tprEnZFRERkeBiADMS9e/ewcOFCUW3cuHFo2LChRB0REREZLgYgA/Dbb79h+/btysdWVlaYNm0azMzMJOyKiIjIcDEA6TFBEPDFF1/g1q1bypqfnx/+85//SNgVERGR4WMA0lN3797F4sWLRbUJEyagXr16EnVERERkPBiA9NDhw4eRmpqqfOzg4ICPP/4YMplMwq6IiIiMBwOQHlEoFFi4cCGKi4uVtX79+sHHx0fCroiIiIwPA5CeuHXrFpYtWyaqTZ48GQ4ODhJ1REREZLwYgPTAzz//jPT0dOVjFxcXjBkzhkNeREREOsIAJCG5XI6YmBjI5XJlbciQIejQoYOEXRERERk/BiCJ5ObmYsWKFaLalClTYGdnJ1FHREREpoMBSAI//fQTDh48qHzs6emJgIAACTsiIiIyLQxANUihUCA6OlpUe+utt9CmTRuJOiIiIjJNDEA16MyZM6LH06ZNg42NjUTdEBERmS4GoBrk6uoKe/uWOHPGGv37DwGzDxERkTQYgGqQk5MTvvtuJDIzgVOngIEDpe6IiIjINPHjxGvY9OlA166P/0tERETS4BWgGjZwIK/8EBERSY1XgIiIiMjkMAARERGRyWEAIiIiIpPDAEREREQmhwGIiIiITA4DEBEREZkcBiAiIiIyOQxAREREZHIYgIiIiMjkMAARERGRyWEAIiIiIpPDAEREREQmhwGIiIiITA4/DV4NQRAAAEVFRRJ3QkRERFX15Of2k5/jlWEAUuPevXsAAHd3d4k7ISIiIk3du3cPDg4OlW4jE6oSk0yMQqHAjRs3UKdOHchkMqnbkURRURHc3d1x9epV2NvbS92OXuI5qhzPz7PxHFWO56dyPD+qBEHAvXv34OrqCjOzymf58AqQGmZmZmjcuLHUbegFe3t7/sN6Bp6jyvH8PBvPUeV4firH8yP2rCs/T3ASNBEREZkcBiAiIiIyOQxApJaVlRUiIyNhZWUldSt6i+eocjw/z8ZzVDmen8rx/DwfToImIiIik8MrQERERGRyGICIiIjI5DAAERERkclhACIiIiKTwwBkQpYtWwYPDw9YW1vD19cXR44cqXDblStXonv37nBycoKTkxP8/PxE25eXlyM0NBTt27eHra0tXF1dERAQgBs3btTEoeiENs/P08aOHQuZTIaEhAQddF5zdHGOzpw5g4EDB8LBwQG2trbo3Lkzrly5osvD0Bltn5/79+9jwoQJaNy4MWxsbNC2bVssX75c14ehU5qco5SUFPj4+MDR0RG2trbw9vbG+vXrRdsIgoCIiAg0atQINjY28PPzw4ULF3R9GDqjzfNjjN+ntUogk7B582bB0tJSWL16tfDnn38Ko0ePFhwdHYW8vDy127/99tvCsmXLhN9++004c+aMEBQUJDg4OAjXrl0TBEEQ7t69K/j5+QnJycnC2bNnhczMTKFLly5Cp06davKwtEbb5+ffUlJSBC8vL8HV1VVYtGiRjo9Ed3Rxji5evCjUrVtXmDp1qpCVlSVcvHhR2LZtW4X71Ge6OD+jR48WmjdvLqSnpwvZ2dnCihUrBHNzc2Hbtm01dVhapek5Sk9PF1JSUoTTp08LFy9eFBISEgRzc3MhNTVVuU1sbKzg4OAgbN26Vfj999+FgQMHCp6ensKDBw9q6rC0Rtvnx9i+T2sbA5CJ6NKli/DRRx8pH8vlcsHV1VWIiYmp0usfPXok1KlTR1i3bl2F2xw5ckQAIFy+fPm5+61pujo/165dE9zc3IRTp04JTZs2NegApItzNHz4cOHdd9/Veq9S0MX5adeunTBnzhzRdh07dhRmzpypnaZr2POeI0EQhJdeekmYNWuWIAiCoFAoBBcXF+Gzzz5TPn/37l3ByspK2LRpk/YaryHaPj/qGPL3aW3jEJgJKCsrw/Hjx+Hn56esmZmZwc/PD5mZmVXaR0lJCcrLy1G3bt0KtyksLIRMJoOjo+PztlyjdHV+FAoFRo0ahalTp6Jdu3Za77sm6eIcKRQK7Ny5Ey1btoS/vz8aNmwIX19fbN26VReHoFO6+jvUrVs3bN++HdevX4cgCEhPT8f58+fRu3dvrR+Drj3vORIEAWlpaTh37hxeffVVAEB2djZyc3NF+3RwcICvr2+Vz7u+0MX5UcdQv0/rAgOQCbh16xbkcjmcnZ1FdWdnZ+Tm5lZpH6GhoXB1dRX94/y3hw8fIjQ0FCNHjjS4D+XT1fmJi4tDrVq1MGnSJK32KwVdnKP8/Hzcv38fsbGx6NOnD/bs2YMhQ4Zg6NCh2L9/v9aPQZd09XcoMTERbdu2RePGjWFpaYk+ffpg2bJllf6A01fVPUeFhYWws7ODpaUl+vXrh8TERLz++usAoHzd85x3faGL8/M0Q/4+rQv8NHh6ptjYWGzevBkZGRmwtrZWeb68vBxvvfUWBEFAUlKSBB1KS935OX78OBYvXoysrCzIZDKJO5SeunOkUCgAAIMGDcInn3wCAPD29sbBgwexfPly9OjRQ7J+a1pF/8YSExNx6NAhbN++HU2bNsXPP/+Mjz76qNJfRoxNnTp1cOLECdy/fx9paWkICQlBs2bN0LNnT6lb0wtVPT+m/n1aHQYgE1C/fn2Ym5sjLy9PVM/Ly4OLi0ulr42Pj0dsbCz27t2LDh06qDz/5B/V5cuXsW/fPoP8rUIX5+fAgQPIz89HkyZNlDW5XI4pU6YgISEBOTk5Wj0GXdPFOapfvz5q1aqFtm3birZv06YNfvnlF+01XwN0cX4ePHiAGTNmYMuWLejXrx8AoEOHDjhx4gTi4+MNLgBV9xyZmZmhRYsWAB4H5DNnziAmJgY9e/ZUvi4vLw+NGjUS7dPb21v7B6FDujg/TxjD92ld4BCYCbC0tESnTp2QlpamrCkUCqSlpaFr164Vvm7BggWIjo5GamoqfHx8VJ5/8o/qwoUL2Lt3L+rVq6eT/nVNF+dn1KhROHnyJE6cOKH8cnV1xdSpU7F7926dHYuu6OIcWVpaonPnzjh37pyofv78eTRt2lS7B6Bjujg/5eXlKC8vh5mZ+Nu0ubm58uqZIanuOXqaQqFAaWkpAMDT0xMuLi6ifRYVFeHw4cMa7VMf6OL8AMbzfVonJJ2CTTVm8+bNgpWVlbB27Vrh9OnTwpgxYwRHR0chNzdXEARBGDVqlDB9+nTl9rGxsYKlpaXw/fffCzdv3lR+3bt3TxAEQSgrKxMGDhwoNG7cWDhx4oRom9LSUkmO8Xlo+/yoY+h3geniHKWkpAgWFhbCl19+KVy4cEFITEwUzM3NhQMHDtT48T0vXZyfHj16CO3atRPS09OFv/76S1izZo1gbW0tfPHFFzV+fNqg6TmaP3++sGfPHuHSpUvC6dOnhfj4eKFWrVrCypUrldvExsYKjo6OwrZt24STJ08KgwYNMujb4LV5fozt+7S2MQCZkMTERKFJkyaCpaWl0KVLF+HQoUPK53r06CEEBgYqHzdt2lQAoPIVGRkpCIIgZGdnq30egJCenl6zB6Yl2jw/6hh6ABIE3Zyjr776SmjRooVgbW0teHl5CVu3bq2ho9E+bZ+fmzdvCkFBQYKrq6tgbW0ttGrVSvj8888FhUJRg0elXZqco5kzZyr/bjg5OQldu3YVNm/eLNqfQqEQwsPDBWdnZ8HKykr473//K5w7d66mDkfrtHl+jPH7tDbJBEEQdH+diYiIiEh/cA4QERERmRwGICIiIjI5DEBERERkchiAiIiIyOQwABEREZHJYQAiIiIik8MARERERCaHAYiIiIhMDgMQERmdoKAgDB48WKWekZEBmUyGu3fvIiMjA4MGDUKjRo1ga2sLb29vfPPNNzXfLBFJggGIiEzSwYMH0aFDB/zwww84efIkgoODERAQgB07dkjdGhHVgFpSN0BEJIUZM2aIHn/88cfYs2cPUlJS0L9/f4m6IqKawitARET/X2FhIerWrSt1G0RUA3gFiIiM0o4dO2BnZyeqyeXyCrf/9ttvcfToUaxYsULXrRGRHmAAIiKj1KtXLyQlJYlqhw8fxrvvvquybXp6OoKDg7Fy5Uq0a9euplokIgkxABGRUbK1tUWLFi1EtWvXrqlst3//fgwYMACLFi1CQEBATbVHRBLjHCAiMlkZGRno168f4uLiMGbMGKnbIaIaxCtARGSS0tPT0b9/f3z88cf43//+h9zcXACApaUlJ0ITmQBeASIik7Ru3TqUlJQgJiYGjRo1Un4NHTpU6taIqAbIBEEQpG6CiIiIqCbxChARERGZHAYgIiIiMjkMQERERGRyGICIiIjI5DAAERERkclhACIiIiKTwwBEREREJocBiIiIiEwOAxARERGZHAYgIiIiMjkMQERERGRyGICIiIjI5Pw/3A2E6D6p1MsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVFxJREFUeJzt3XlcVOX+B/DPMOyLgCIgCGKaayoqQnozzYuhF7e83ohKhKw0txQ1xAVUVKBcMDe6lvtGXddrBl4R0pLUJOyaiEvgDmIJKCTLzPn94c+5jTMggzOcWT7v14vXvfOdM2e+54jNx+c58xyJIAgCiIiIiEgtM7EbICIiItJnDEtEREREdWBYIiIiIqoDwxIRERFRHRiWiIiIiOrAsERERERUB4YlIiIiojowLBERERHVgWGJiIiIqA4MS0RksCQSCebPny92Gwrh4eHw8fERuw0i0jKGJSLSqk2bNkEikSh+rK2t0a5dO0yaNAlFRUU6fe8TJ05g/vz5KCkp0ep++/fvr3RMTZs2Ra9evbBhwwbI5XKtvMeSJUuwb98+reyLiLTLXOwGiMg4LVy4EK1bt8bDhw/x3XffYd26dTh06BDOnTsHW1tbrbzHH3/8AXPz//1n7MSJE1iwYAHCw8Ph5OSklfd4rGXLloiPjwcAFBcXY8uWLRg7diwuXryIhISEZ97/kiVLMGrUKIwYMeKZ90VE2sWwREQ6MXjwYPj5+QEA3n33XTRr1gzLly/H/v37ERoa2uD9yuVyVFVVwdraGtbW1tpq96kcHR3x9ttvKx6PGzcO7du3x+rVqxEXFwcLC4tG64WIGhen4YioUQwYMAAAkJ+fDwBYunQp+vTpg2bNmsHGxgY9e/bEv/71L5XXSSQSTJo0Cdu3b0fnzp1hZWWF1NRUxXOPr1maP38+Zs6cCQBo3bq1YsqsoKAA/fr1Q7du3dT21b59ewQFBWl8PLa2tnjxxRdRXl6O4uLiWrcrLy/H9OnT4eXlBSsrK7Rv3x5Lly6FIAhKx1heXo7Nmzcr+g4PD9e4JyLSDY4sEVGjuHLlCgCgWbNmAICVK1di2LBheOutt1BVVYVdu3bhH//4Bw4ePIjg4GCl1x49ehRffvklJk2aBBcXF7UXUY8cORIXL17Ezp07sWLFCri4uAAAmjdvjtGjR+O9997DuXPn8MILLyhec/r0aVy8eBFz585t0DH9+uuvkEqltU75CYKAYcOGISMjA2PHjoWvry/S0tIwc+ZM3Lx5EytWrAAAbN26Fe+++y78/f3x/vvvAwDatGnToJ6ISAcEIiIt2rhxowBAOHLkiFBcXCxcv35d2LVrl9CsWTPBxsZGuHHjhiAIglBRUaH0uqqqKuGFF14QBgwYoFQHIJiZmQm//PKLynsBEGJjYxWPP/nkEwGAkJ+fr7RdSUmJYG1tLURFRSnVp0yZItjZ2QkPHjyo85j69esndOjQQSguLhaKi4uF3NxcYcqUKQIAYejQoYrtxowZI7Rq1UrxeN++fQIAYdGiRUr7GzVqlCCRSITLly8ranZ2dsKYMWPq7IOIxMFpOCLSicDAQDRv3hxeXl544403YG9vj71798LT0xMAYGNjo9j23r17KC0tRd++fZGdna2yr379+qFTp04N7sXR0RHDhw/Hzp07FdNfMpkMKSkpGDFiBOzs7J66jwsXLqB58+Zo3rw5OnbsiFWrViE4OBgbNmyo9TWHDh2CVCrFlClTlOrTp0+HIAj45ptvGnxMRNR4OA1HRDqxZs0atGvXDubm5nBzc0P79u1hZva/f58dPHgQixYtQk5ODiorKxV1iUSisq/WrVs/cz9hYWFISUnB8ePH8fLLL+PIkSMoKirC6NGj6/V6Hx8frF+/XrEcwvPPPw9XV9c6X3P16lV4eHjAwcFBqd6xY0fF80Sk/xiWiEgn/P39Fd+Ge9Lx48cxbNgwvPzyy1i7di1atGgBCwsLbNy4ETt27FDZ/s+jUA0VFBQENzc3bNu2DS+//DK2bdsGd3d3BAYG1uv1dnZ29d6WiIwLp+GIqNHt3r0b1tbWSEtLwzvvvIPBgwdrJYioG5V6TCqV4s0338S//vUv3Lt3D/v27UNoaCikUukzv29tWrVqhVu3buH+/ftK9QsXLiief6yu3olIXAxLRNTopFIpJBIJZDKZolZQUPDMK1g/vvaothW8R48ejXv37mHcuHF48OCB0rpJuvC3v/0NMpkMq1evVqqvWLECEokEgwcPVtTs7Oy0vvI4EWkHp+GIqNEFBwdj+fLlGDRoEN58803cuXMHa9asQdu2bfHzzz83eL89e/YEAMyZMwdvvPEGLCwsMHToUEWI6t69O1544QV89dVX6NixI3r06KGV46nN0KFD8corr2DOnDkoKChAt27dcPjwYezfvx9Tp05VWh6gZ8+eOHLkCJYvXw4PDw+0bt0aAQEBOu2PiOqHI0tE1OgGDBiAL774AoWFhZg6dSp27tyJxMREvPbaa8+03169eiEuLg5nz55FeHg4QkNDVRaMDAsLA4B6X9j9LMzMzHDgwAFMnToVBw8exNSpU3H+/Hl88sknWL58udK2y5cvR8+ePTF37lyEhoZi3bp1Ou+PiOpHIgh/WkaWiMjIrVy5EtOmTUNBQQG8vb3FboeIDADDEhGZDEEQ0K1bNzRr1gwZGRlit0NEBoLXLBGR0SsvL8eBAweQkZGB//73v9i/f7/YLRGRAeHIEhEZvYKCArRu3RpOTk6YMGECFi9eLHZLRGRAGJaIiIiI6sBvwxERERHVgWGJiIiIqA68wFsNuVyOW7duwcHBgbcgICIiMhCCIOD+/fvw8PBQunG3NnYsutWrVwutWrUSrKysBH9/f+HkyZO1brt7926hZ8+egqOjo2Brayt069ZN2LJlS63bjxs3TgAgrFixot79XL9+XQDAH/7whz/84Q9/DPDn+vXrmsSQpxJ9ZCklJQWRkZFITk5GQEAAkpKSEBQUhLy8PLi6uqps37RpU8yZMwcdOnSApaUlDh48iIiICLi6uiIoKEhp27179+KHH36Ah4eHRj05ODgAAK5fv44mTZo0/OCIiIio0ZSVlcHLy0vxOa4ton8bLiAgAL169VLcaFIul8PLywuTJ0/GrFmz6rWPHj16IDg4GHFxcYrazZs3ERAQgLS0NAQHB2Pq1KmYOnVqvfZXVlYGR0dHlJaWMiwREREZCF19fot6gXdVVRXOnDmDwMBARc3MzAyBgYHIysp66usFQUB6ejry8vLw8ssvK+pyuRyjR4/GzJkz0blz56fup7KyEmVlZUo/RERERIDIYenu3buQyWRwc3NTqru5uaGwsLDW15WWlsLe3h6WlpYIDg7GqlWrMHDgQMXziYmJMDc3x5QpU+rVR3x8PBwdHRU/Xl5eDTsgIiIiMjqiX7PUEA4ODsjJycGDBw+Qnp6OyMhIPPfcc+jfvz/OnDmDlStXIjs7u97fZIuOjkZkZKTi8eM5TyIiIiJRw5KLiwukUimKioqU6kVFRXB3d6/1dWZmZmjbti0AwNfXF7m5uYiPj0f//v1x/Phx3LlzR+lu4jKZDNOnT0dSUhIKCgpU9mdlZQUrKyuN+5fJZKiurtb4dWRYLCwsIJVKxW6DiIhEImpYsrS0RM+ePZGeno4RI0YAeHS9UXp6OiZNmlTv/cjlclRWVgIARo8erXQNFAAEBQVh9OjRiIiI0ErfgiCgsLAQJSUlWtkf6T8nJye4u7tz3S0iIhMk+jRcZGQkxowZAz8/P/j7+yMpKQnl5eWKYBMWFgZPT0/Ex8cDeHR9kZ+fH9q0aYPKykocOnQIW7duxbp16wAAzZo1Q7NmzZTew8LCAu7u7mjfvr1Wen4clFxdXWFra8sPUCMmCAIqKipw584dAECLFi1E7oiIiBqb6GEpJCQExcXFiImJQWFhIXx9fZGamqq46PvatWtKq3CWl5djwoQJuHHjBmxsbNChQwds27YNISEhjdKvTCZTBKUnQxkZJxsbGwDAnTt34Orqyik5IiITI/o6S/qornUaHj58iPz8fPj4+Cg+RMn4/fHHHygoKEDr1q1hbW0tdjtERKSGUa6zZMg49WZa+OdNRGS6GJaIiIiI6sCwRERERFQHhiUTEh4eDolEAolEAgsLC7i5uWHgwIHYsGED5HJ5vfezadMmODk56a5RIiIiPcKwZGIGDRqE27dvo6CgAN988w1eeeUVfPjhhxgyZAhqamrEbo+IiEjvMCyZGCsrK7i7u8PT0xM9evTA7NmzsX//fnzzzTfYtGkTAGD58uXo0qUL7Ozs4OXlhQkTJuDBgwcAgMzMTERERKC0tFQxSjV//nwAwNatW+Hn5wcHBwe4u7vjzTffVKxPREREBAD798sxcOBd7N9vOF/GZ1jSAkEQUFVV1eg/2lr1YcCAAejWrRv27NkD4NHtZD799FP88ssv2Lx5M44ePYqPPvoIANCnTx8kJSWhSZMmuH37Nm7fvo0ZM2YAAKqrqxEXF4ezZ89i3759KCgoQHh4uFZ6JCIiw3f9+nXk5MThpZfWYNu2HLHbqTfRF6U0BtXV1YoVxhtTdHQ0LC0ttbKvDh064OeffwYATJ06VVH38fHBokWLMH78eKxduxaWlpZwdHSERCJRuX/fO++8o/j/zz33HD799FP06tULDx48gL29vVb6JCIiw/Tvf/8b2dnZisd//7ubiN1ohmGJADwaHXu8ltCRI0cQHx+PCxcuoKysDDU1NXj48CEqKipga2tb6z7OnDmD+fPn4+zZs7h3757iovFr166hU6dOjXIcRESkX6qqqlQGFEaPHo3nnvMQqSPNMSxpgYWFBaKjo0V5X23Jzc1F69atUVBQgCFDhuCDDz7A4sWL0bRpU3z33XcYO3Ysqqqqag1L5eXlCAoKQlBQELZv347mzZvj2rVrCAoKQlVVldb6JCIiw5Gfn48tW7Yo1WbNmgUrKyuROmoYhiUtkEgkWpsOE8PRo0fx3//+F9OmTcOZM2cgl8uxbNkyxT35vvzyS6XtLS0tIZPJlGoXLlzAb7/9hoSEBHh5eQEAfvzxx8Y5ACIi0ju7d+/GuXPnFI+7d++OYcOGidhRwzEsmZjKykoUFhZCJpOhqKgIqampiI+Px5AhQxAWFoZz586huroaq1atwtChQ/H9998jOTlZaR8+Pj548OAB0tPT0a1bN9ja2sLb2xuWlpZYtWoVxo8fj3PnziEuLk6koyQiIrE8fPgQiYmJSrXw8HC0atVKpI6eHb8NZ2JSU1PRokUL+Pj4YNCgQcjIyMCnn36K/fv3QyqVolu3bli+fDkSExPxwgsvYPv27SpzzX369MH48eMREhKC5s2b4+OPP0bz5s2xadMmfPXVV+jUqRMSEhKwdOlSkY6SiIjEcPHiRZWgNHv2bIMOSgAgEbT1/XMjUtddix8+fIj8/Hzefd7E8M+diKhuO3bswKVLlxSPAwICMGjQoEbtoa7P72fBaTgiIiJqsIqKCnzyySdKtXfffReenp4idaR9DEtERETUIOfPn8dXX32lVJszZw7MzY0rXhjX0RAREZHOCYKAzZs34+rVq4raSy+9hL/+9a8idqU7DEtERERUbw8ePMCyZcuUauPHj4ebm+GsyK0phiUiIiKql8f3/nzMwsICs2bNUqzLZ6wYloiIiKhOgiDgs88+Q1FRkaI2YMAA9O3bV8SuGg/DEhEREdWqtLQUSUlJSrWJEyfCxcVFnIZEwLBEREREan366W7cu/e/W5bY29tj2rRpRj/t9iSGJSIiIlIil8tVblkVFBSEF198UaSOxGVa0ZAaRXh4OEaMGKF43L9/f0ydOvWZ9qmNfRAR0dNduXJFJSh16jTZZIMSwJElkxIeHo7NmzcDePQNBm9vb4SFhWH27Nk6XUBsz549sLCwqNe2mZmZeOWVV3Dv3j04OTk1aB9ERNQwK1asQFlZmVItJiYGEolEpI70A8OSiRk0aBA2btyIyspKHDp0CBMnToSFhQWio6OVtquqqoKlpaVW3rNp06Z6sQ8iIlJPJpNh0aJFSjVPT0+8++67InWkXzgNZ2KsrKzg7u6OVq1a4YMPPkBgYCAOHDigmDpbvHgxPDw80L59ewDA9evX8frrr8PJyQlNmzbF8OHDUVBQoNifTCZDZGQknJyc0KxZM3z00Ud48t7MT06hVVZWIioqCl5eXrCyskLbtm3xxRdfoKCgAK+88goAwNnZGRKJBOHh4Wr3ce/ePYSFhcHZ2Rm2trYYPHiw0g0cN23aBCcnJ6SlpaFjx46wt7fHoEGDcPv2bcU2mZmZ8Pf3h52dHZycnPCXv/xFaTVaIiJTkJubqxKU3n33XQalP2FYMnE2NjaoqqoCAKSnpyMvLw//+c9/cPDgQVRXVyMoKAgODg44fvw4vv/+e0XoePyaZcuWYdOmTdiwYQO+++47/P7779i7d2+d7xkWFoadO3fi008/RW5uLj777DPY29vDy8sLu3fvBgDk5eXh9u3bWLlypdp9hIeH48cff8SBAweQlZUFQRDwt7/9DdXV1YptKioqsHTpUmzduhXHjh3DtWvXMGPGDABATU0NRowYgX79+uHnn39GVlYW3n//fZMfaiYi07Jo0SJ8+eWXSrWYmBijugmuNnAazkQJgoD09HSkpaVh8uTJKC4uhp2dHT7//HPF9Nu2bdsgl8vx+eefK0LExo0b4eTkhMzMTLz66qtISkpCdHQ0Ro4cCQBITk5GWlpare978eJFfPnll/jPf/6DwMBAAMBzzz2neP7xdJurq6vSNUt/dunSJRw4cADff/89+vTpAwDYvn07vLy8sG/fPvzjH/8AAFRXVyM5ORlt2rQBAEyaNAkLFy4EAJSVlaG0tBRDhgxRPN+xY0fNTyQRkQGqrq7GkiVLlGrPP/883nzzTZE60m8cWRLRgQNAnz6P/rexHDx4EPb29rC2tsbgwYMREhKC+fPnAwC6dOmidJ3S2bNncfnyZTg4OMDe3h729vZo2rQpHj58iCtXrqC0tBS3b99GQECA4jXm5ubw8/Or9f1zcnIglUrRr1+/Bh9Dbm4uzM3Nld63WbNmaN++PXJzcxU1W1tbRRACgBYtWuDOnTsAHoWy8PBwBAUFYejQoVi5cqXSFB0RkbHKyclRCUrjx49nUKoDR5ZElJAAZGU9+t9hwxrnPV955RWsW7cOlpaW8PDwUPoWnJ2dndK2Dx48QM+ePbF9+3aV/TRv3rxB729jY9Og1zXEk9+ek0gkStdTbdy4EVOmTEFqaipSUlIwd+5c/Oc//zHpr8cSkXFbsGCBSi02NlaETgwLR5ZENGsW0Lv3o/9tLHZ2dmjbti28vb2fulxAjx49cOnSJbi6uqJt27ZKP46OjnB0dESLFi1w8uRJxWtqampw5syZWvfZpUsXyOVyfPvtt2qffzyyJZPJat1Hx44dUVNTo/S+v/32G/Ly8tCpU6c6j+lJ3bt3R3R0NE6cOIEXXngBO3bs0Oj1RESG4MGDBypBqVu3bgxK9cSwJKJhw4ATJxpvVElTb731FlxcXDB8+HAcP34c+fn5yMzMxJQpU3Djxg0AwIcffoiEhATs27cPFy5cwIQJE1BSUlLrPn18fDBmzBi888472Ldvn2Kfjy8wbNWqFSQSCQ4ePIji4mI8ePBAZR/PP/88hg8fjvfeew/fffcdzp49i7fffhuenp4YPnx4vY4tPz8f0dHRyMrKwtWrV3H48GFcunSJ1y0RkdFZvXo1li1bplSbPHmy0uLBVDeGJaqVra0tjh07Bm9vb4wcORIdO3bE2LFj8fDhQzRp0gQAMH36dIwePRpjxoxB79694eDggNdee63O/a5btw6jRo3ChAkT0KFDB7z33nsoLy8H8GhdjwULFmDWrFlwc3PDpEmT1O5j48aN6NmzJ4YMGYLevXtDEAQcOnSo3gtX2tra4sKFC/j73/+Odu3a4f3338fEiRMxbtw4Dc4QEZF+W7BgAX777Tel2s6dsVy7TkMS4clFcQhlZWVwdHREaWmpIhQ89vDhQ+Tn56N169awtrYWqUNqbPxzJyJDcvfuXaxZs0alnpYWi1mz9HdG41nV9fn9LHiBNxERkRFZvHgxampqlGpjx45Fy5YtwUuUGoZhiYiIyEjw2266wbBERERk4G7duoX169er1BmUtINhiYiIyICpG02aMGFCg9fDI1UMSw3E6+JNC/+8iUgfcdqtcTAsaejxV9MrKioadTVqEldFRQUA1VXBiYjE8Ouvv2Lr1q1KNScnJ3z44YcidWTcGJY0JJVK4eTkpLjHmK2tLe9Ub8QEQUBFRQXu3LkDJycnSKVSsVsiIhOnbjRp6tSpcHR0FKEb08Cw1ADu7u4AoAhMZPycnJwUf+5ERGLhtJs4GJYaQCKRoEWLFnB1dUV1dbXY7ZCOWVhYcESJiET1yy+/4F//+pdSzdvbGxERESJ1ZFoYlp6BVCrlhygREemUutGkmTNnwtbWVoRuTBPDEhERkR4SBAELFy5UqXParfHpxY1016xZAx8fH1hbWyMgIACnTp2qdds9e/bAz88PTk5OsLOzg6+vr9I3AqqrqxEVFYUuXbrAzs4OHh4eCAsLw61btxrjUIiIiJ7Zjz/+qBKUbt9+Ad27MyiJQfSRpZSUFERGRiI5ORkBAQFISkpCUFAQ8vLy4OrqqrJ906ZNMWfOHHTo0AGWlpY4ePAgIiIi4OrqiqCgIFRUVCA7Oxvz5s1Dt27dcO/ePXz44YcYNmwYfvzxRxGOkIiIqP7UTbtFR0fD0tJShG4IACSCyKvtBQQEoFevXli9ejUAQC6Xw8vLC5MnT8asWbPqtY8ePXogODgYcXFxap8/ffo0/P39cfXqVXh7ez91f7q6azEREVFt5HK52s8xTrvVn64+v0UdWaqqqsKZM2cQHR2tqJmZmSEwMBBZWVlPfb0gCDh69Cjy8vKQmJhY63alpaWQSCRwcnLSRttERERa9e233yIzM1Op9uKLLyIoKEichkiJqGHp7t27kMlkcHNzU6q7ubnhwoULtb6utLQUnp6eqKyshFQqxdq1azFw4EC12z58+BBRUVEIDQ2tNWVWVlaisrJS8bisrKwBR0NERKQ5ddNuc+fO5bet9Yjo1yw1hIODA3JycvDgwQOkp6cjMjISzz33HPr376+0XXV1NV5//XUIgoB169bVur/4+Hi1v6xERES6UlNTg8WLF6vUOe2mf0QNSy4uLpBKpSgqKlKqFxUV1blaspmZGdq2bQsA8PX1RW5uLuLj45XC0uOgdPXqVRw9erTOucvo6GhERkYqHpeVlcHLy6uBR0VERFS3r7/+WuVLR3/961/x0ksvidQR1UXUsGRpaYmePXsiPT0dI0aMAPDoArf09HRMmjSp3vuRy+VK02iPg9KlS5eQkZGBZs2a1fl6KysrWFlZNegYiIiINKFuJiMmJob3GdVjok/DRUZGYsyYMfDz84O/vz+SkpJQXl6uWMI9LCwMnp6eiI+PB/BoyszPzw9t2rRBZWUlDh06hK1btyqm2aqrqzFq1ChkZ2fj4MGDkMlkKCwsBPBo2QF+9ZKIiMRQWVmJhIQElTqn3fSf6GEpJCQExcXFiImJQWFhIXx9fZGamqq46PvatWswM/vf2pnl5eWYMGECbty4ARsbG3To0AHbtm1DSEgIAODmzZs4cOAAgEdTdH+WkZGhcl0TERGRrqWkpKh8cWno0KHo0aOHSB2RJkRfZ0kfcZ0lIiLSFk67NR6jXGeJiIjIWJWVlWHFihUqdU67GR6GJSIiIi1buHAhnpy4OXduKEaP5rSbIWJYIiIi0iJ1024cTTJsDEtERERaUFxcjLVr16rUGZQMH8MSERHRM1I3mvTGG2+gffv2InRD2sawRERE9Aw47Wb8GJaIiIga4Pr169iwYYNKnUHJ+DAsERERaUjdaFJERAS8vb1F6IZ0jWGJiIhIA5x2Mz0MS0RERPWQm5uLL7/8UqXOoGT8GJaIiIieQt1o0okT45CW5i5CN9TYzJ6+CRERkelSF5TS0mIxcSKDkqngyBIREZEap0+fxqFDh1TqsbGx4MybaWFYIiIieoK60aQpU6bA2dlZhG5IbAxLRERE/08QBCxcuFClzou4TRvDEhEREYCMjAwcO3ZMqSaVSjF37lyROiJ9wbBEREQmT92024wZM2BnZydCN6RvGJaIiMhkyeVyxMXFqdQ57UZ/xrBEREQmaf/+/cjJyVGqNW/eHBMmTBCnIdJbDEtERGRy1E27RUdHw9LSUoRuSN8xLBERkcmoqanB4sWLVeqcdqO6MCwREZFJ2LJlC/Lz85Vq7dq1Q2hoqEgdkaFgWCIiIqOnbtpt7ty5kEqlInRDhoZhiYiIjNbDhw+RmJioUue0G2mCYYmIiIzSypUrUVJSolTz8/NDcHCwOA2RwWJYIiIio6Nu2i0mJgYSiUSEbsjQMSwREZHRuH//PpYvX65S57QbPQuGJSIiMgrqRpMGDBiAvn37itANGROGJSIiMnjqghJHk0hbGJaIiMhg3blzB+vWrVOpd+/OoETaw7BEREQGSd1o0sCBA9GnTx8RuiFjxrBEREQGh9Nu1JgYloiIyGAUFBRg8+bNKnUGJdIlhiUiIjII6kaTfv55JHbv7iJCN2RKzMRugIiI6GnUBaW0tFiMGcOgRLrHkSUiItJbly9fxvbt21Xq3bvHgjNv1FgYloiISC+pG0364Yd38MEHXhg2TISGyGQxLBERkd7ht91InzAsERGR3jh79iz27dunUmdQIjExLBERkV5QN5o0YcIENG/eXIRuiP6HYYmIiETHaTfSZwxLREQkmu+//x5HjhxRqTMokT5hWCIiIlGoG02aNm0amjRpIkI3RLVjWCIiokYlCAIWLlyoUudoEukrhiUiImo0qampOHnypFLN3t4e06dPF6kjoqdjWCIiokahbtotKioK1tbWInRDVH8MS0REpFNyuRxxcXEqdU67kaHQixvprlmzBj4+PrC2tkZAQABOnTpV67Z79uyBn58fnJycYGdnB19fX2zdulVpG0EQEBMTgxYtWsDGxgaBgYG4dOmSrg+DiIiekJKSohKUvL29GZTIoIgellJSUhAZGYnY2FhkZ2ejW7duCAoKwp07d9Ru37RpU8yZMwdZWVn4+eefERERgYiICKSlpSm2+fjjj/Hpp58iOTkZJ0+ehJ2dHYKCgvDw4cPGOiwiIpO3YMECXLhwQak2e/ZsREREiNQRUcNIBEEQxGwgICAAvXr1wurVqwE8Gq718vLC5MmTMWvWrHrto0ePHggODkZcXBwEQYCHhwemT5+OGTNmAABKS0vh5uaGTZs24Y033njq/srKyuDo6IjS0lJ+hZWISENVVVWIj49XqXM0iXRNV5/foo4sVVVV4cyZMwgMDFTUzMzMEBgYiKysrKe+XhAEpKenIy8vDy+//DIAID8/H4WFhUr7dHR0REBAQK37rKysRFlZmdIPERFp7rPPPlMJSl26dGFQIoMm6gXed+/ehUwmg5ubm1Ldzc1NZej2z0pLS+Hp6YnKykpIpVKsXbsWAwcOBAAUFhYq9vHkPh8/96T4+Hi139IgIqL6U/ff0Xnz5sHMTPQrPoieiUH+Bjs4OCAnJwenT5/G4sWLERkZiczMzAbvLzo6GqWlpYqf69eva69ZIiIjV1FRUeu93RiUyBiIOrLk4uICqVSKoqIipXpRURHc3d1rfZ2ZmRnatm0LAPD19UVubi7i4+PRv39/xeuKiorQokULpX36+vqq3Z+VlRWsrKye8WiIiExPQkICKisrlWo5Od1QVDQCnHkjYyFq5Le0tETPnj2Rnp6uqMnlcqSnp6N379713o9cLlf8ZW3dujXc3d2V9llWVoaTJ09qtE8iIqrbggULVIJSVVUMiopGoJ7fzyEyCKIvShkZGYkxY8bAz88P/v7+SEpKQnl5ueKrpWFhYfD09FRcMBgfHw8/Pz+0adMGlZWVOHToELZu3Yp169YBACQSCaZOnYpFixbh+eefR+vWrTFv3jx4eHhgxIgRYh0mEZHRKC0tRVJSkkqdF3GTsRI9LIWEhKC4uBgxMTEoLCyEr68vUlNTFRdoX7t2TWnOu7y8HBMmTMCNGzdgY2ODDh06YNu2bQgJCVFs89FHH6G8vBzvv/8+SkpK8NJLLyE1NZVL6hMRPSN11yYNGjQIAQEBInRD1DhEX2dJH3GdJSIiVbVdxE2kL3T1+S36yBIREem3oqIiJCcnq9QZlMhUMCwREVGt1I0mjRo1Cp07dxahGyJxMCwREZFanHYjeoRhiYiIlBQUFGDz5s0qdQYlMlUMS0REpKBuNCksLAytW7cWoRsi/cCwREREADjtRlQbhiUiIhOXm5uLL7/8UqXOoET0CMMSEZEJUzeaNG7cuDrvz0lkahiWiIhMFKfdiOqHYYmIyMScPn0ahw4dUqkzKBGpx7BERGRC1I0mTZkyBc7OziJ0Q2QYGJaIiEyAIAhYuHChSp2jSURPx7BERGTkMjIycOzYMaWaVCrF3LlzReqIyLBoHJakUilu374NV1dXpfpvv/0GV1dXyGQyrTVHRETPRt2024wZM2BnZydCN0SGSeOwJAiC2nplZSUsLS2fuSEiInp2crkccXFxKnVOuxFprt5h6dNPPwUASCQSfP7557C3t1c8J5PJcOzYMXTo0EH7HRIRkUb279+PnJwcpVrz5s0xYcIEcRoiMnD1DksrVqwA8GhkKTk5GVKpVPGcpaUlfHx8kJycrP0OiYio3tRNu0VHR3Pkn+gZ1Dss5efnAwBeeeUV7Nmzh18zJSLSIzU1NVi8eLFKndNuRM9O42uWMjIydNEHERE10JYtWxT/oH2sXbt2CA0NFakjIuOicVh655136nx+w4YNDW6GiIg0o27abe7cuUqXShDRs9E4LN27d0/pcXV1Nc6dO4eSkhIMGDBAa40REVHtHj58iMTERJU6p92ItE/jsLR3716VmlwuxwcffIA2bdpopSkiIqrdypUrUVJSolTz8/NDcHCwOA0RGTmJUNvCSRrKy8tD//79cfv2bW3sTlRlZWVwdHREaWkpmjRpInY7REQK6qbdYmJiIJFIROiGSL/o6vNba7c7uXLlCmpqarS1OyIi+pP79+9j+fLlKnVOuxHpnsZhKTIyUumxIAi4ffs2vv76a4wZM0ZrjRER0SPqRpMGDBiAvn37itANkenROCz99NNPSo/NzMzQvHlzLFu27KnflCMiIs2oC0ocTSJqXFxniYhID/32229YvXq1Sp1BiajxNfiapTt37iAvLw8A0L59e7i6umqtKSIiU6ZuNGnYsGHo3r27CN0QkcZhqaysDBMnTsTOnTshl8sBAFKpFCEhIVizZg0cHR213iQRkangtBuR/jHT9AXvvfceTp48ia+//holJSUoKSnBwYMH8eOPP2LcuHG66JGIyOjdvHmTQYlIT2m8zpKdnR3S0tLw0ksvKdWPHz+OQYMGoby8XKsNioHrLBFRY1IXkkJDQ9GuXTsRuiEyXHqzzlKzZs3UTrU5OjrC2dlZK00REZkKjiYR6T+Np+Hmzp2LyMhIFBYWKmqFhYWYOXMm5s2bp9XmiIiM1eXLlxmUiAyExtNw3bt3x+XLl1FZWQlvb28AwLVr12BlZYXnn39eadvs7GztddqIOA1HRLqkLiSNHTsWLVu2FKEbIuOhN9Nww4cP5z2IiIgaiKNJRIZHazfSNSYcWSIibTt79iz27dunUmdQItIevRlZeu6553D69Gk0a9ZMqV5SUoIePXrg119/1VpzRETGQN1o0sSJE+Hi4iJCN0SkKY3DUkFBAWQymUq9srISN27c0EpTRETGgtNuRIav3mHpwIEDiv+flpamtHyATCZDeno6Wrdurd3uiIgM1Pfff48jR46o1BmUiAxPvcPSiBEjAAASiQRjxoxRes7CwgI+Pj5YtmyZVpsjIjJE6kaTpk2bxmsgiQxUvcPS4/vAtW7dGqdPn+ZcOxHREwRBwMKFC1XqHE0iMmwaX7OUn5+viz6IiAxaamoqTp48qVSzt7fH9OnTReqIiLRF47Ck7l9NfxYTE9PgZoiIDJG6abeoqChYW1uL0A0RaZvGYWnv3r1Kj6urq5Gfnw9zc3O0adOGYYmITIZcLkdcXJxKndNuRMZF47D0008/qdTKysoQHh6O1157TStNERHpu5SUFFy4cEGp5u3tjYiICJE6IiJd0doK3v/9738xdOhQFBQUaGN3ouIK3kRUF3XTbnPmzIG5ucb//iQiLdLV57eZtnZUWlqK0tJSjV+3Zs0a+Pj4wNraGgEBATh16lSt265fvx59+/aFs7MznJ2dERgYqLL9gwcPMGnSJLRs2RI2Njbo1KkTkpOTNe6LiOhJVVVVtS4yyaBEZLw0/tv96aefKj0WBAG3b9/G1q1bMXjwYI32lZKSgsjISCQnJyMgIABJSUkICgpCXl4eXF1dVbbPzMxEaGgo+vTpA2trayQmJuLVV1/FL7/8Ak9PTwBAZGQkjh49im3btsHHxweHDx/GhAkT4OHhgWHDhml6uEREAIDPPvsMhYWFSrWuXbvy8gMiE6DxNNyTq3SbmZmhefPmGDBgAKKjo+Hg4FDvfQUEBKBXr15YvXo1gEcXS3p5eWHy5MmYNWvWU18vk8ng7OyM1atXIywsDADwwgsvICQkBPPmzVNs17NnTwwePBiLFi2qV1+chiOiP1M3mjRv3jyYmWltcJ6ItEBvbqSrrXWWqqqqcObMGURHRytqZmZmCAwMRFZWVr32UVFRgerqajRt2lRR69OnDw4cOIB33nkHHh4eyMzMxMWLF7FixYpa91NZWYnKykrF47KysgYcEREZm4qKCnzyyScqdX7bjci0NGiSvaSkBJcvXwYAtG3bFk5OThrv4+7du5DJZHBzc1Oqu7m5qXzDpDZRUVHw8PBAYGCgorZq1Sq8//77aNmyJczNzWFmZob169fj5ZdfrnU/8fHxav/lSESmKyEhQekfUQDwl7/8Rem/N0RkGjQaQy4oKEBwcDBcXFwQEBCAgIAAuLi4YMiQIY3+LbiEhATs2rULe/fuVVr4bdWqVfjhhx9w4MABnDlzBsuWLcPEiRPV3tDysejoaMUF6qWlpbh+/XpjHAIR6akFCxaoBKWYmBgGJSITVe+RpevXr+PFF1+EhYUF4uLi0LFjRwDA+fPnsW7dOvTu3RunT59Gy5Yt67U/FxcXSKVSFBUVKdWLiorg7u5e52uXLl2KhIQEHDlyBF27dlXU//jjD8yePRt79+5FcHAwgEcXYObk5GDp0qW1/ofOysoKVlZW9eqbiIxXSUkJVq5cqVLntBuRaat3WJo/fz7at2+PtLQ0pZGcESNGYNq0aRg0aBDmz5+Pzz//vF77s7S0RM+ePZGeno4RI0YAeHSBd3p6OiZNmlTr6z7++GMsXrwYaWlp8PPzU3quuroa1dXVKhddSqVSxY2AiYjUUTcVP2jQIAQEBIjQDRHpk3qHpdTUVKSkpKi915GNjQ3i4uLwxhtvaPTmkZGRGDNmDPz8/ODv74+kpCSUl5crVsANCwuDp6cn4uPjAQCJiYmIiYnBjh074OPjo/gar729Pezt7dGkSRP069cPM2fOhI2NDVq1aoVvv/0WW7ZswfLlyzXqjYhMR21rJxERARqEpbt378LHx6fW55977jn8/vvvGr15SEgIiouLERMTg8LCQvj6+iI1NVVx0fe1a9eURonWrVuHqqoqjBo1Smk/sbGxmD9/PgBg165diI6OxltvvYXff/8drVq1wuLFizF+/HiNeiMi41dUVKR20VoGJSL6s3qvs+Tj44N//vOfePXVV9U+n5qaivHjx/N2J0RkENSNJo0aNQqdO3cWoRsi0gbRb3cyYsQIzJgxA8XFxSrP3blzB1FRUYprj4iI9Flt024MSkSkTr1Hlu7du4eAgAAUFhbi7bffRocOHSAIAnJzc7Fjxw64u7vjhx9+UFog0lBxZInIOBUUFGDz5s0qdU67ERkH0VfwdnZ2xsmTJzF79mzs2rULJSUlAAAnJye8+eabWLJkiVEEJSIyTupGk8LCwlRu4URE9CSN7w0HPLp57uPpuObNm0MikWi9MTFxZInIuPDbbkSmQfSRpT+TSCRwdXXVWhNERLqQm5uLL7/8UqXOoEREmmhQWCIi0nfqRpPGjRv31DsEEBE9iWGJiIyOuqDUvXssmJOIqCEYlojIaJw+fRqHDh1SqXPajYieBcMSERkFdaNJU6ZMgbOzswjdEJExqVdY+vTTT+u9wylTpjS4GSIiTQmCgIULF6rUOZpERNpSr6UD6rsOiUQiwa+//vrMTYmNSwcQGYaMjAwcO3ZMqWZubo45c+aI1BERiUnUpQPy8/O19oZERNqgbtptxowZsLOzE6EbIjJm9b433JOqqqqQl5eHmpoabfZDRFQnuVxe6yKTDEpEpAsah6WKigqMHTsWtra26Ny5M65duwYAmDx5MhISErTeIBHRY/v370dcXJxSzdXVldcnEZFOaRyWoqOjcfbsWWRmZsLa2lpRDwwMREpKilabIyJ6bMGCBcjJyVGqRUdH44MPPhCnISIyGRovHbBv3z6kpKTgxRdfVLonXOfOnXHlyhWtNkdEVFNTg8WLF6vUOZpERI1F47BUXFys9r5w5eXlRndDXSIS15YtW1S+YNKuXTuEhoaK1BERmSKNw5Kfnx++/vprTJ48GQAUAenzzz9H7969tdsdEZksdRdxz507F1KpVIRuiMiUaRyWlixZgsGDB+P8+fOoqanBypUrcf78eZw4cQLffvutLnokIhPy8OFDJCYmqtQ57UZEYtE4LL300kvIyclBQkICunTpgsOHD6NHjx7IyspCly5ddNEjEZmIlStXoqSkRKnm5+eH4OBgcRoiIkI9V/A2NVzBm6jxqZt2i4mJ4bWQRFRvoq7gXVZWVu8dMlwQkSbu37+P5cuXq9Q57UZE+qJeYcnJyane/7qTyWTP1BARmQ51o0kDBgxA3759ReiGiEi9eoWljIwMxf8vKCjArFmzEB4ervj2W1ZWFjZv3oz4+HjddElERqe2W5YQEekbja9Z+utf/4p3331XZZ2THTt24J///CcyMzO12Z8oeM0Ske789ttvWL16tUqdQYmInpWuPr81Dku2trY4e/Ysnn/+eaX6xYsX4evri4qKCq01JxaGJSLdUDeaNGzYMHTv3l2EbojI2Ojq81vje8N5eXlh/fr1KvXPP/8cXl5eWmmKiIxPbdNuDEpEpO80XmdpxYoV+Pvf/45vvvkGAQEBAIBTp07h0qVL2L17t9YbJCLDdvPmTXz++ecqdU67EZGhaNA6Szdu3MDatWtx4cIFAEDHjh0xfvx4oxlZ4jQckXaoG00KDQ1Fu3btROiGiIyd3lyzZAoYloieHb/tRkSNTdRFKZ9UUlKCL774Arm5uQCAzp0745133oGjo6PWGiMiw3T58mVs375dpc6gRESGSuORpR9//BFBQUGwsbGBv78/AOD06dP4448/FPeJM3QcWSJqGHWjSWPHjkXLli1F6IaITI3eTMP17dsXbdu2xfr162Fu/mhgqqamBu+++y5+/fVXHDt2TGvNiYVhiUhznHYjIrHpTViysbHBTz/9hA4dOijVz58/Dz8/P66zRGRizp49i3379qnUGZSIqLHpzTVLTZo0wbVr11TC0vXr1+Hg4KC1xohI/6kbTZo4cSJcXFxE6IaISDc0DkshISEYO3Ysli5dij59+gAAvv/+e8ycOVPlFihEZLw47UZEpkLjsLR06VJIJBKEhYWhpqYGAGBhYYEPPvgACQkJWm+QiPTL999/jyNHjqjUGZSIyFg1eJ2liooKXLlyBQDQpk0b2NraarUxMfGaJSL11I0mTZs2jX9PiEgv6M01S4/Z2tqiS5cuWmuEiPSXIAhYuHChSp2jSURkCuodlt555516bbdhw4YGN0NE+ic1NRUnT55Uqtnb22P69OkidURE1LjqHZY2bdqEVq1aoXv37uAdUohMg7ppt6ioKFhbW4vQDRGROOodlj744APs3LkT+fn5iIiIwNtvv42mTZvqsjciEolcLkdcXJxKndNuRGSKNLrAu7KyEnv27MGGDRtw4sQJBAcHY+zYsXj11VchkUh02Wej4gXeZMpSUlJw4cIFpZq3tzciIiJE6oiIqH70ZgXvx65evYpNmzZhy5YtqKmpwS+//AJ7e3utNSYmhiUyVeqm3ebMmaO4tRERkT7Tu2/DmZmZQSKRQBAEyGQyrTVERI2vqqoK8fHxKnVOuxERaRiW/jwN991332HIkCFYvXo1Bg0aBDMzM131SEQ69Nlnn6GwsFCp1qVLF4wcOVKkjoiI9Eu9E86ECRPQokULJCQkYMiQIbh+/Tq++uor/O1vf3umoLRmzRr4+PjA2toaAQEBOHXqVK3brl+/Hn379oWzszOcnZ0RGBiodvvc3FwMGzYMjo6OsLOzQ69evXDt2rUG90hkrBYsWKASlObNm8egRET0J/W+ZsnMzAze3t7o3r17nRdz79mzp95vnpKSgrCwMCQnJyMgIABJSUn46quvkJeXB1dXV5Xt33rrLfzlL39Bnz59YG1tjcTEROzduxe//PILPD09AQBXrlyBv78/xo4di9DQUDRp0gS//PILXnzxRbX7VIfXLJGxq6iowCeffKJS57QbERky0S/wDg8Pr9c33jZu3FjvNw8ICECvXr2wevVqAI++ruzl5YXJkydj1qxZT329TCaDs7MzVq9ejbCwMADAG2+8AQsLC2zdurXefTyJYYmMWUJCAiorK5Vqf/nLXxAYGChSR0RE2iH6Bd6bNm3S2psCjy4oPXPmDKKjoxU1MzMzBAYGIisrq177qKioQHV1tWK9J7lcjq+//hofffQRgoKC8NNPP6F169aIjo7GiBEjtNo/kSFS9223mJgYo1r6g4hI20S7Kvvu3buQyWRwc3NTqru5ualcQ1GbqKgoeHh4KP5FfOfOHTx48AAJCQkYNGgQDh8+jNdeew0jR47Et99+W+t+KisrUVZWpvRDZExKSkrUBqXY2FgGJSKipzDYxVMSEhKwa9cuZGZmKm69IJfLAQDDhw/HtGnTAAC+vr44ceIEkpOT0a9fP7X7io+PV/tBQmQM1P1uDxo0CAEBASJ0Q0RkeEQbWXJxcYFUKkVRUZFSvaioCO7u7nW+dunSpUhISMDhw4fRtWtXpX2am5ujU6dOStt37Nixzm/DRUdHo7S0VPFz/fr1BhwRkf6pbTSJQYmIqP5EC0uWlpbo2bMn0tPTFTW5XI709HT07t271td9/PHHiIuLQ2pqKvz8/FT22atXL+Tl5SnVL168iFatWtW6TysrKzRp0kTph8iQFRUV1RqUiIhIM6JOw0VGRmLMmDHw8/ODv78/kpKSUF5errgHVVhYGDw9PRUrCycmJiImJgY7duyAj4+P4tome3t7xa1WZs6ciZCQELz88st45ZVXkJqain//+9/IzMwU5RiJGpu6kDRq1Ch07txZhG6IiAyfqGEpJCQExcXFiImJQWFhIXx9fZGamqq46PvatWtKC16uW7cOVVVVGDVqlNJ+YmNjMX/+fADAa6+9huTkZMTHx2PKlClo3749du/ejZdeeqnRjotILBxNIiLSvgbfSNeYcZ0lMjS3bt3C+vXrVerdu8di2DARGiIiEoHo6ywRkX5SN5r07rvvKla1JyKiZ8OwRGTAOO1GRKR7DEtEBujXX39Ve0sfBiUiIu1jWCIyMOpGkyZOnAgXFxcRuiEiMn4MS0QGhNNuRESNj2GJyACcO3cOu3fvVqrZ2dlhxowZInVERGQ6GJaI9Jy60aRp06ZxWQsiokbCsESkpwRBwMKFC1XqnHYjImpcDEtEeuj06dM4dOiQUs3DwwPvvfeeSB0REZkuhiUiPaNu2u2jjz6CjY2NCN0QERHDEpGe4LQbEZF+Ylgi0gMZGRk4duyYUq1jx454/fXXReqIiIgeY1giEpm6abfZs2fDwsJChG6IiOhJDEtEIpHJZFi0aJFKndNuRET6hWGJSAQHDhzATz/9pFTz9/fH4MGDReqIiIhqw7BE1MjUTbvNmzcPZmZmInRDRERPw7BE1Eiqq6uxZMkSlTqn3YiI9BvDElEjSEtLww8//KBUGzBgAPr27StSR0REVF8MS0Q6pm7aLS0tBrGxEhG6ISIiTTEsEenIw4cPkZiYqFJPS4vFrFkiNERERA3CsESkA7t378a5c+eUam+88Qbat28PXqJERGRYGJaItEzdtBsv4iYiMlwMS0Ra8uDBAyxbtkylzqBERGTYGJaItGDz5s0oKChQqoWHh6NVq1biNERERFrDsET0jDjtRkRk3BiWiBro999/x6pVq5RqZmZmmDdvnkgdERGRLjAsETXAqlWr8PvvvyvVxo0bB3d3d5E6IiIiXWFYItIQp92IiEwLwxJRPRUVFSE5OVmp5uTkhA8//FCkjoiIqDEwLBHVw+LFi1FTU6NUmzx5Mpo2bSpSR0RE1FgYloiegtNuRESmjWGJqBbXrl3Dxo0blWre3t6IiIgQqSMiIhIDwxKRGupGkyIjI+Hg4CBCN0REJCaGJaIncNqNiIj+jGGJ6P9dvHgRO3fuVKp16tQJ//jHP0TqiIiI9AHDEhHUjyZ99NFHsLGxEaEbIiLSJwxLZNIEQcDChQtV6t27x4I5iYiIAIYlMmEXLlxASkqKUq1///7o16+fSB0REZE+Ylgik6Ru2m327NmwsLAQoRsiItJnDEtkUuRyOeLi4lTq/LYbERHVhmGJTEZOTg7279+vVPvb3/6GXr16idQREREZAoYlMgnqpt3mzp0LqVQqQjdERGRIGJbIqMlkMixatEilzmk3IiKqL4YlMlpZWVk4fPiwUm3kyJHo0qWLSB0REZEhYlgio6Ru2i0mJgYSiUSEboiIyJAxLJFRqaqqQnx8vEqd025ERNRQDEtkNNLT0/Hdd98p1d588008//zzInVERETGwEzsBgBgzZo18PHxgbW1NQICAnDq1Klat12/fj369u0LZ2dnODs7IzAwsM7tx48fD4lEgqSkJB10TvpiwYIFKkEpJiaGQYmIiJ6Z6GEpJSUFkZGRiI2NRXZ2Nrp164agoCDcuXNH7faZmZkIDQ1FRkYGsrKy4OXlhVdffRU3b95U2Xbv3r344Ycf4OHhoevDIJH88ccfaq9Pio2N5fVJRESkFRJBEAQxGwgICECvXr2wevVqAI9WWPby8sLkyZMxa9asp75eJpPB2dkZq1evRlhYmKJ+8+ZNBAQEIC0tDcHBwZg6dSqmTp1ar57Kysrg6OiI0tJSNGnSpEHHRbr373//G9nZ2Uq1iIgIeHt7i9QRERGJSVef36Jes1RVVYUzZ84gOjpaUTMzM0NgYCCysrLqtY+KigpUV1ejadOmippcLsfo0aMxc+ZMdO7c+an7qKysRGVlpeJxWVmZBkdBYqhtNImIiEjbRJ2Gu3v3LmQyGdzc3JTqbm5uKCwsrNc+oqKi4OHhgcDAQEUtMTER5ubmmDJlSr32ER8fD0dHR8WPl5dX/Q+CGtX9+/dVgpKDgwODEhER6YxBfxsuISEBu3btQmZmJqytrQEAZ86cwcqVK5GdnV3va1aio6MRGRmpeFxWVsbApIdSUlJw4cIFpdq4cePg7u4uUkdERGQKRA1LLi4ukEqlKCoqUqoXFRU99QNw6dKlSEhIwJEjR9C1a1dF/fjx47hz547SdSsymQzTp09HUlISCgoKVPZlZWUFKyurZzsY0ilOuxERkVhEnYaztLREz549kZ6erqjJ5XKkp6ejd+/etb7u448/RlxcHFJTU+Hn56f03OjRo/Hzzz8jJydH8ePh4YGZM2ciLS1NZ8dCuvH777+rBCUPDw8GJSIiajSiT8NFRkZizJgx8PPzg7+/P5KSklBeXo6IiAgAQFhYGDw9PRWrMicmJiImJgY7duyAj4+P4tome3t72Nvbo1mzZmjWrJnSe1hYWMDd3R3t27dv3IOjZ/LFF1/gxo0bSrXJkycrXcxPRESka6KHpZCQEBQXFyMmJgaFhYXw9fVFamqq4qLva9euwczsfwNg69atQ1VVFUaNGqW0n9jYWMyfP78xWycd4rQbERHpC9HXWdJHXGdJPKWlpSqrrbdr1w6hoaHiNERERAbDKNdZIvqzr7/+Gj/++KNSLTMzErGxDiJ1RERExLBEekLdtFtaWizqsYg7ERGRTjEskaju3r2LNWvWKNWCg4Ph5+cHXqJERET6gGGJRLN7926cO3dOqRYdHQ1LS0uROiIiIlLFsESNThAELFy4UKXOb7sREZE+YliiRlVYWIjPPvtMqTZy5Eh06dJFpI6IiIjqxrBEjWbbtm24cuWKUm3OnDkwN+evIRER6S9+SpHOCYKANWvW4LffflPUrKysMItfdSMiIgPAsEQ6pW6RyezsN7B/P289Q0REhoFhiXTmxx9/xNdff614bGHhgIMHp2LWLFHv30xERKQRhiXSOkEQsGrVKty7d09RGzRoEAICAjB7toiNERERNQDDEmnV77//jlWrVinVpkyZAmdnZ5E6IiIiejYMS6Q1WVlZOHz4sOKxi4sLJkyYAIlEImJXREREz4ZhiZ6ZXC7HsmXLUFFRoagNHToUPXr0ELErIiIi7WBYomdSXFyMtWvXKtWmTZuGJk2aiNQRERGRdjEsUYMdO3YMGRkZiseenp4YO3Ysp92IiMioMCyRxmQyGeLj4yGTyRQ13rKEiIiMFcMSaUTdvd1mzJgBOzs7kToiIiLSLYYlqrcjR47g+++/Vzxu3bo1wsLCROyIiIhI9xiW6KlqamqwePFipVpISAg6dOggUkdERESNh2GJ6nTjxg188cUXSrWPPvoINjY2InVERETUuBiWqFaHDh3C6dOnFY87dOiAkJAQETsiIiJqfAxLpKK6uhpLlixRqr311lto27atSB0RERGJh2GJlBQUFGDz5s1KtVmzZsHKykqkjoiIiMTFsEQK+/btw9mzZxWPu3btitdee03EjoiIiMTHsESorKxEQkKCUm3MmDHw8fERpyEiIiI9wrBk4i5fvozt27cr1WbPng0LCwuROiIiItIvDEsmLCUlBRcuXFA89vPzQ3BwsIgdERER6R+GJRP0xx9/4OOPP1aqjR07Fi1bthSpIyIiIv3FsGRiLly4gJSUFKXanDlzYG7OXwUiIiJ1+AlpQrZu3Ypff/1V8bhPnz4YOHCgiB0RERHpP4YlE1BeXo6lS5cq1d5//320aNFCpI6IiIgMB8OSkfvvf/+LPXv2KB6bmZlh9uzZkEqlInZFRERkOBiWjJQgCPjiiy9w8+ZNRa1///7o16+fiF0REREZHoYlI1RWVoYVK1Yo1SZMmIDmzZuL1BEREZHhYlgyMj/99BMOHDigeGxjY4MZM2bAzMxMxK6IiIgMF8OSkRAEAWvXrsXdu3cVtYEDB6JPnz4idkVERGT4GJaMQElJCVauXKlUmzx5Mpo2bSpSR0RERMaDYcnAnTp1Ct98843isZOTE6ZMmQKJRCJiV0RERMaDYclACYKAFStW4P79+4pacHAw/Pz8ROyKiIjI+DAsGaDffvsNq1evVqpNnToVjo6OInVERERkvBiWDMx3332H9PR0xWM3NzeMGzeO025EREQ6wrBkIORyORITE1FVVaWojRgxAt26dROxKyIiIuPHsGQAioqKkJycrFSLjIyEg4ODSB0RERGZDoYlPXf06FEcP35c8djb2xvh4eGcdiMiImokDEt6SiaTYdGiRUq1UaNGoXPnziJ1REREZJr04h4Ya9asgY+PD6ytrREQEIBTp07Vuu369evRt29fODs7w9nZGYGBgUrbV1dXIyoqCl26dIGdnR08PDwQFhaGW7duNcahaMWtW7dUgtLMmTMZlIiIiEQgelhKSUlBZGQkYmNjkZ2djW7duiEoKAh37txRu31mZiZCQ0ORkZGBrKwseHl54dVXX8XNmzcBABUVFcjOzsa8efOQnZ2NPXv2IC8vD8OGDWvMw2qwtLQ0rF+/XvG4bdu2iI2Nha2trYhdERERmS6JIAiCmA0EBASgV69einWD5HI5vLy8MHnyZMyaNeupr5fJZHB2dsbq1asRFhamdpvTp0/D398fV69ehbe391P3WVZWBkdHR5SWlqJJkyaaHVADVVdXY8mSJUq10NBQtGvXrlHen4iIyNDp6vNb1GuWqqqqcObMGURHRytqZmZmCAwMRFZWVr32UVFRgerq6jrvg1ZaWgqJRAInJye1z1dWVqKyslLxuKysrH4HoCXXr1/Hhg0blGpRUVGwtrZu1D6IiIhIlahh6e7du5DJZHBzc1Oqu7m54cKFC/XaR1RUFDw8PBAYGKj2+YcPHyIqKgqhoaG1psz4+HgsWLBAs+a15N///jeys7MVjzt37oxRo0aJ0gsRERGpMuhvwyUkJGDXrl3IzMxUOwpTXV2N119/HYIgYN26dbXuJzo6GpGRkYrHZWVl8PLy0knPj1VVVSE+Pl6pNnr0aDz33HM6fV8iIiLSjKhhycXFBVKpFEVFRUr1oqIiuLu71/napUuXIiEhAUeOHEHXrl1Vnn8clK5evYqjR4/WOXdpZWUFKyurhh1EA+Tn52PLli1KtejoaFhaWjZaD0RERFQ/on4bztLSEj179lS615lcLkd6ejp69+5d6+s+/vhjxMXFITU1FX5+firPPw5Kly5dwpEjR9CsWTOd9N8Qu3fvVgpK3bt3R2xsLIMSERGRnhJ9Gi4yMhJjxoyBn58f/P39kZSUhPLyckRERAAAwsLC4OnpqZiySkxMRExMDHbs2AEfHx8UFhYCAOzt7WFvb4/q6mqMGjUK2dnZOHjwIGQymWKbpk2bihpKLl++jHPnzikeR0RE1OvbeURERCQe0cNSSEgIiouLERMTg8LCQvj6+iI1NVVx0fe1a9dgZva/AbB169ahqqpK5SLo2NhYzJ8/Hzdv3sSBAwcAAL6+vkrbZGRkoH///jo9nrrY2tqipsYS5uZV+M9/ZiM21kK0XoiIiKh+RF9nSR/pcp2lAweAhARg1izAQNbJJCIiMghGuc6SKRo2jCGJiIjIkIh+uxMiIiIifcawRERERFQHhiUiIiKiOjAsEREREdWBYYmIiIioDgxLRERERHVgWCIiIiKqA8MSERERUR0YloiIiIjqwLBEREREVAeGJSIiIqI6MCwRERER1YFhiYiIiKgO5mI3oI8EQQAAlJWVidwJERER1dfjz+3Hn+PawrCkxv379wEAXl5eIndCREREmrp//z4cHR21tj+JoO34ZQTkcjlu3boFBwcHSCSSRnnPsrIyeHl54fr162jSpEmjvKeh4znTHM+Z5njONMdz1jA8b5p78pwJgoD79+/Dw8MDZmbau9KII0tqmJmZoWXLlqK8d5MmTfiXREM8Z5rjOdMcz5nmeM4ahudNc38+Z9ocUXqMF3gTERER1YFhiYiIiKgODEt6wsrKCrGxsbCyshK7FYPBc6Y5njPN8ZxpjuesYXjeNNdY54wXeBMRERHVgSNLRERERHVgWCIiIiKqA8MSERERUR0YloiIiIjqwLCkI2vWrIGPjw+sra0REBCAU6dO1brt+vXr0bdvXzg7O8PZ2RmBgYFK21dXVyMqKgpdunSBnZ0dPDw8EBYWhlu3bjXGoTQabZ6zJ40fPx4SiQRJSUk66Fxcujhvubm5GDZsGBwdHWFnZ4devXrh2rVrujyMRqXtc/bgwQNMmjQJLVu2hI2NDTp16oTk5GRdH0aj0uSc7dmzB35+fnBycoKdnR18fX2xdetWpW0EQUBMTAxatGgBGxsbBAYG4tKlS7o+jEalzXPGzwFV9fk9+7Nn+hwQSOt27dolWFpaChs2bBB++eUX4b333hOcnJyEoqIitdu/+eabwpo1a4SffvpJyM3NFcLDwwVHR0fhxo0bgiAIQklJiRAYGCikpKQIFy5cELKysgR/f3+hZ8+ejXlYOqXtc/Zne/bsEbp16yZ4eHgIK1as0PGRNC5dnLfLly8LTZs2FWbOnClkZ2cLly9fFvbv31/rPg2NLs7Ze++9J7Rp00bIyMgQ8vPzhc8++0yQSqXC/v37G+uwdErTc5aRkSHs2bNHOH/+vHD58mUhKSlJkEqlQmpqqmKbhIQEwdHRUdi3b59w9uxZYdiwYULr1q2FP/74o7EOS6e0fc74OaCqPr9njz3r5wDDkg74+/sLEydOVDyWyWSCh4eHEB8fX6/X19TUCA4ODsLmzZtr3ebUqVMCAOHq1avP3K8+0NU5u3HjhuDp6SmcO3dOaNWqldGFJV2ct5CQEOHtt9/Weq/6QhfnrHPnzsLChQuVtuvRo4cwZ84c7TQtsmc9Z4IgCN27dxfmzp0rCIIgyOVywd3dXfjkk08Uz5eUlAhWVlbCzp07tde4iLR9ztTh54AqdedMG58DnIbTsqqqKpw5cwaBgYGKmpmZGQIDA5GVlVWvfVRUVKC6uhpNmzatdZvS0lJIJBI4OTk9a8ui09U5k8vlGD16NGbOnInOnTtrvW+x6eK8yeVyfP3112jXrh2CgoLg6uqKgIAA7Nu3TxeH0Oh09bvWp08fHDhwADdv3oQgCMjIyMDFixfx6quvav0YGtuznjNBEJCeno68vDy8/PLLAID8/HwUFhYq7dPR0REBAQH1/nPQZ7o4Z+rwc+B/ajtn2vocYFjSsrt370Imk8HNzU2p7ubmhsLCwnrtIyoqCh4eHkq/NH/28OFDREVFITQ01Chutqirc5aYmAhzc3NMmTJFq/3qC12ctzt37uDBgwdISEjAoEGDcPjwYbz22msYOXIkvv32W60fQ2PT1e/aqlWr0KlTJ7Rs2RKWlpYYNGgQ1qxZU+cHnaFo6DkrLS2Fvb09LC0tERwcjFWrVmHgwIEAoHjds/w56DNdnLMn8XPgkaedM219Dpg/06tJ6xISErBr1y5kZmbC2tpa5fnq6mq8/vrrEAQB69atE6FD/aPunJ05cwYrV65EdnY2JBKJyB3qJ3XnTS6XAwCGDx+OadOmAQB8fX1x4sQJJCcno1+/fqL1qw9q+/u5atUq/PDDDzhw4ABatWqFY8eOYeLEiXX+o8fYOTg4ICcnBw8ePEB6ejoiIyPx3HPPoX///mK3prfqe874OfA/dZ0zbX4OMCxpmYuLC6RSKYqKipTqRUVFcHd3r/O1S5cuRUJCAo4cOYKuXbuqPP/4L8jVq1dx9OhRo/jXBKCbc3b8+HHcuXMH3t7eippMJsP06dORlJSEgoICrR6DGHRx3lxcXGBubo5OnTopbd+xY0d899132mteJLo4Z3/88Qdmz56NvXv3Ijg4GADQtWtX5OTkYOnSpQYflhp6zszMzNC2bVsAjwJ3bm4u4uPj0b9/f8XrioqK0KJFC6V9+vr6av8gGpkuztlj/BxQVtc50+bnAKfhtMzS0hI9e/ZEenq6oiaXy5Geno7evXvX+rqPP/4YcXFxSE1NhZ+fn8rzj/+CXLp0CUeOHEGzZs100r8YdHHORo8ejZ9//hk5OTmKHw8PD8ycORNpaWk6O5bGpIvzZmlpiV69eiEvL0+pfvHiRbRq1Uq7ByACXZyz6upqVFdXw8xM+T+nUqlUMVJnyBp6zp4kl8tRWVkJAGjdujXc3d2V9llWVoaTJ09qtE99pYtzBvBzoD7+fM60+jmg8SXh9FS7du0SrKyshE2bNgnnz58X3n//fcHJyUkoLCwUBEEQRo8eLcyaNUuxfUJCgmBpaSn861//Em7fvq34uX//viAIglBVVSUMGzZMaNmypZCTk6O0TWVlpSjHqG3aPmfqGOO34XRx3vbs2SNYWFgI//znP4VLly4Jq1atEqRSqXD8+PFGPz5d0MU569evn9C5c2chIyND+PXXX4WNGzcK1tbWwtq1axv9+HRB03O2ZMkS4fDhw8KVK1eE8+fPC0uXLhXMzc2F9evXK7ZJSEgQnJychP379ws///yzMHz4cKNbOkCb54yfAw37PXtSQz8HGJZ0ZNWqVYK3t7dgaWkp+Pv7Cz/88IPiuX79+gljxoxRPG7VqpUAQOUnNjZWEARByM/PV/s8ACEjI6NxD0yHtHnO1DHGsCQIujlvX3zxhdC2bVvB2tpa6Natm7Bv375GOprGoe1zdvv2bSE8PFzw8PAQrK2thfbt2wvLli0T5HJ5Ix6VbmlyzubMmaP4/XF2dhZ69+4t7Nq1S2l/crlcmDdvnuDm5iZYWVkJf/3rX4W8vLzGOpxGoc1zxs+Bhv2ePamhnwMSQRAEzcaiiIiIiEwHr1kiIiIiqgPDEhEREVEdGJaIiIiI6sCwRERERFQHhiUiIiKiOjAsEREREdWBYYmIiIioDgxLRERERHVgWCIioxMeHo4RI0ao1DMzMyGRSFBSUoLMzEwMHz4cLVq0gJ2dHXx9fbF9+/bGb5aI9B7DEhGZpBMnTqBr167YvXs3fv75Z0RERCAsLAwHDx4UuzUi0jPmYjdARCSG2bNnKz3+8MMPcfjwYezZswdDhgwRqSsi0kccWSIi+n+lpaVo2rSp2G0QkZ7hyBIRGaWDBw/C3t5eqSaTyWrd/ssvv8Tp06fx2Wef6bo1IjIwDEtEZJReeeUVrFu3Tql28uRJvP322yrbZmRkICIiAuvXr0fnzp0bq0UiMhAMS0RklOzs7NC2bVul2o0bN1S2+/bbbzF06FCsWLECYWFhjdUeERkQXrNERCYrMzMTwcHBSExMxPvvvy92O0SkpziyREQmKSMjA0OGDMGHH36Iv//97ygsLAQAWFpa8iJvIlLCkSUiMkmbN29GRUUF4uPj0aJFC8XPyJEjxW6NiPSMRBAEQewmiIiIiPQVR5aIiIiI6sCwRERERFQHhiUiIiKiOjAsEREREdWBYYmIiIioDgxLRERERHVgWCIiIiKqA8MSERERUR0YloiIiIjqwLBEREREVAeGJSIiIqI6MCwRERER1eH/AKa69GQUKtCEAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_35.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRw0lEQVR4nO3deVwU9f8H8NeCHAKKKQgiIF55C8oVfPtKFolmKmV5dACKmooHkRWYSmQGFt6i9tU80hQ7FPmZSkriSXli4pEXqKkcpoKCcu38/vDrfhtZlIXdnT1ez8eDR857Z2ffM5r7cuYz85EJgiCAiIiIyIiYSN0AERERkbYxABEREZHRYQAiIiIio8MAREREREaHAYiIiIiMDgMQERERGR0GICIiIjI6DEBERERkdBiAiIiIyOgwABGR3pLJZPj000+lbkMhLCwMbm5uUrdBRLXAAEREarV69WrIZDLFj6WlJZ599llMmDAB+fn5Gv3sgwcP4tNPP8WdO3fUut0XXnhBtE9NmzaFt7c3Vq5cCblcrpbP+OKLL5CSkqKWbRHR0zWQugEiMkyfffYZWrdujQcPHmD//v1YunQptm3bhuzsbFhZWanlM+7fv48GDf7319jBgwcRFxeHsLAwNGnSRC2f8YizszPi4+MBAIWFhfj2228RHh6Oc+fOISEhod7b/+KLL/DGG28gODi43tsioqdjACIijejXrx+8vLwAAKNGjUKzZs0wd+5cbNmyBcOHD6/zduVyOcrLy2FpaQlLS0t1tftUtra2eOeddxTL7733Hjp06IDFixdj5syZMDMz01ovRFR/vARGRFrx4osvAgBycnIAAImJifD390ezZs3QsGFDeHp64scff6z2PplMhgkTJuC7775Dly5dYGFhgR07diheezQG6NNPP8WHH34IAGjdurXiclVubi4CAgLg7u6utK8OHTogKChI5f2xsrLCc889h5KSEhQWFta4XklJCT744AO4uLjAwsICHTp0QGJiIgRBEO1jSUkJ1qxZo+g7LCxM5Z6IqPZ4BoiItOLixYsAgGbNmgEAFixYgIEDB+Ltt99GeXk5kpOT8eabb2Lr1q3o37+/6L2//vorvv/+e0yYMAF2dnZKBxq//vrrOHfuHDZs2IB58+bBzs4OAGBvb493330Xo0ePRnZ2Nrp27ap4z+HDh3Hu3DlMmzatTvt06dIlmJqa1ni5TRAEDBw4ELt370Z4eDg8PDyQlpaGDz/8ENeuXcO8efMAAGvXrsWoUaPg4+ODMWPGAADatm1bp56IqJYEIiI1WrVqlQBA2LVrl1BYWChcvXpVSE5OFpo1ayY0bNhQ+OuvvwRBEITS0lLR+8rLy4WuXbsKL774oqgOQDAxMRFOnTpV7bMACLGxsYrlr776SgAg5OTkiNa7c+eOYGlpKXz88cei+qRJkwRra2vh3r17T9yngIAAoWPHjkJhYaFQWFgonDlzRpg0aZIAQBgwYIBivdDQUKFVq1aK5ZSUFAGA8Pnnn4u298YbbwgymUy4cOGComZtbS2EhoY+sQ8iUh9eAiMijQgMDIS9vT1cXFwwbNgw2NjYYPPmzWjZsiUAoGHDhop1b9++jaKiIvz73//GsWPHqm0rICAAnTt3rnMvtra2GDRoEDZs2KC49FRVVYWNGzciODgY1tbWT93G2bNnYW9vD3t7e3Tq1AmLFi1C//79sXLlyhrfs23bNpiammLSpEmi+gcffABBELB9+/Y67xMR1Q8vgRGRRiQlJeHZZ59FgwYN4ODggA4dOsDE5H//5tq6dSs+//xzZGVloaysTFGXyWTVttW6det69xMSEoKNGzdi37596NWrF3bt2oX8/Hy8++67tXq/m5sbli9frri1v3379mjevPkT33P58mU4OTmhUaNGonqnTp0UrxORNBiAiEgjfHx8FHeBPW7fvn0YOHAgevXqhSVLlqBFixYwMzPDqlWrsH79+mrr//NsUV0FBQXBwcEB69atQ69evbBu3To4OjoiMDCwVu+3trau9bpEpPt4CYyItO6nn36CpaUl0tLSMHLkSPTr108t4ULZ2aNHTE1N8dZbb+HHH3/E7du3kZKSguHDh8PU1LTen1uTVq1a4fr167h7966ofvbsWcXrjzypdyJSPwYgItI6U1NTyGQyVFVVKWq5ubn1fhLyo7E8NT0J+t1338Xt27fx3nvv4d69e6Ln+mjCK6+8gqqqKixevFhUnzdvHmQyGfr166eoWVtbq/0J1kRUM14CIyKt69+/P+bOnYu+ffvirbfeQkFBAZKSktCuXTv88ccfdd6up6cnAOCTTz7BsGHDYGZmhgEDBiiCUY8ePdC1a1f88MMP6NSpE3r27KmW/anJgAED0Lt3b3zyySfIzc2Fu7s7fvnlF2zZsgWRkZGiW909PT2xa9cuzJ07F05OTmjdujV8fX012h+RMeMZICLSuhdffBHffPMN8vLyEBkZiQ0bNmD27Nl47bXX6rVdb29vzJw5EydOnEBYWBiGDx9e7SGFISEhAFDrwc/1YWJigtTUVERGRmLr1q2IjIzE6dOn8dVXX2Hu3LmidefOnQtPT09MmzYNw4cPx9KlSzXeH5ExkwnCPx5HSkRk4BYsWID3338fubm5cHV1lbodIpIIAxARGQ1BEODu7o5mzZph9+7dUrdDRBLiGCAiMnglJSVITU3F7t27cfLkSWzZskXqlohIYjwDREQGLzc3F61bt0aTJk0wfvx4zJo1S+qWiEhiDEBERERkdHgXGBERERkdBiAiIiIyOhwErYRcLsf169fRqFEjPp6eiIhITwiCgLt378LJyUk0+bIyDEBKXL9+HS4uLlK3QURERHVw9epVODs7P3EdBiAlGjVqBODhAWzcuLHE3RAREVFtFBcXw8XFRfE9/iQMQEo8uuzVuHFjBiAiIiI9U5vhKxwETUREREaHAYiIiIiMDgMQERERGR2OAaqHqqoqVFRUSN0GaYG5uflTb6kkIiL9wQBUB4IgIC8vD3fu3JG6FdISExMTtG7dGubm5lK3QkREasAAVAePwk/z5s1hZWXFhyUauEcPxrxx4wZcXV35+01EZAAYgFRUVVWlCD/NmjWTuh3SEnt7e1y/fh2VlZUwMzOTuh0iIqonDmpQ0aMxP1ZWVhJ3Qtr06NJXVVWVxJ0QEZE6MADVES+DGBf+fhMRGRYGICIiIjI6DEBERERkdBiAjEhYWBhkMhlkMhnMzMzg4OCAl19+GStXroRcLq/1dlavXo0mTZporlEiIiINYwAyMn379sWNGzeQm5uL7du3o3fv3pg8eTJeffVVVFZWSt0eERGRVjAAGRkLCws4OjqiZcuW6NmzJ6ZOnYotW7Zg+/btWL16NQBg7ty56NatG6ytreHi4oLx48fj3r17AICMjAyMGDECRUVFirNJn376KQBg7dq18PLyQqNGjeDo6Ii33noLBQUFEu0pERHpop07dyIhYRFefTUHqanS9cEApAaCIKC8vFzrP4IgqKX/F198Ee7u7ti0aROAh089XrhwIU6dOoU1a9bg119/xUcffQQA8Pf3x/z589G4cWPcuHEDN27cwJQpUwA8fETAzJkzceLECaSkpCA3NxdhYWFq6ZGIiPRbRUUF4uLicPDgQZSV3cKDBxeRkCBdP3wQohpUVFQgPj5e658bExOjtqkZOnbsiD/++AMAEBkZqai7ubnh888/x9ixY7FkyRKYm5vD1tYWMpkMjo6Oom2MHDlS8es2bdpg4cKF8Pb2xr1792BjY6OWPomISP9cvnxZcZXhkfLyfyE6Wpp+AAYg+i9BEBTPutm1axfi4+Nx9uxZFBcXo7KyEg8ePEBpaekTHwB59OhRfPrppzhx4gRu376tGFh95coVdO7cWSv7QUREuiUlJQUnTpxQLHfq1AlDhgxBbKyETYEBSC3MzMwQExMjyeeqy5kzZ9C6dWvk5ubi1Vdfxbhx4zBr1iw0bdoU+/fvR3h4OMrLy2sMQCUlJQgKCkJQUBC+++472Nvb48qVKwgKCkJ5ebna+iQiIv3w4MEDzJ49W1R799130aZNG4k6EmMAUgOZTKbXs4T/+uuvOHnyJN5//30cPXoUcrkcc+bMgYnJwyFi33//vWh9c3PzalNCnD17Fn///TcSEhLg4uICADhy5Ih2doCIiHTKn3/+ieTkZFFNncM21IEByMiUlZUhLy8PVVVVyM/Px44dOxAfH49XX30VISEhyM7ORkVFBRYtWoQBAwbgwIEDWLZsmWgbbm5uuHfvHtLT0+Hu7g4rKyu4urrC3NwcixYtwtixY5GdnY2ZM2dKtJdERCSVtWvX4tKlS4plb29vvPLKKxJ2pBzvAjMyO3bsQIsWLeDm5oa+ffti9+7dWLhwIbZs2QJTU1O4u7tj7ty5mD17Nrp27Yrvvvuu2gBvf39/jB07FkOHDoW9vT2+/PJL2NvbY/Xq1fjhhx/QuXNnJCQkIDExUaK9JCIibbt37x7i4uJE4Wf06NE6GX4AQCao615qA1JcXAxbW1sUFRWhcePGotcePHiAnJwctG7dGpaWlhJ1SNrG33ciopplZWVhy5YtimUTExNMnToVpqamWu3jSd/fj+MlMCIiIqoTQRCwdOlSFBYWKmovvPACAgICJOyqdhiAiIiISGW3b9/GwoULRbWIiAjY2dlJ1JFqGICIiIioVlJTgYQEYOTITFy79ouibmtri8mTJyueJ6cPGICIiIioVmbPliMg4Etcu1amqPXv3x9eXl4SdlU3DEBERET0VCdPnkSfPptEtffff/+pg411FQMQERERPVFcXJxo2draGh988IFeXfJ6HAMQERERKaVsOosuXbrgjTfekKgj9WEAIiIiomoOHDiAXbt2iWoTJkxAs2bNJOpIvRiAiIiISOTxS14AECv19O1qxqkwSO3CwsIQHBysWH7hhRcQGRlZr22qYxtERPRkxcXF1cLP888/b3DhB+AZIKMSFhaGNWvWAADMzMzg6uqKkJAQTJ06FQ0aaO6PwqZNm2BmZlardTMyMtC7d2/cvn0bTZo0qdM2iIhIdT///DOOHDkiqk2ZMgXW1tYSdaRZDEBGpm/fvli1ahXKysqwbds2REREwMzMDDExMaL1ysvLYW5urpbPbNq0qU5sg4iIlDOGS16P4yUwI2NhYQFHR0e0atUK48aNQ2BgIFJTUxWXrWbNmgUnJyd06NABAHD16lUMGTIETZo0QdOmTTFo0CDk5uYqtldVVYWoqCg0adIEzZo1w0cffYTH59d9/PJVWVkZPv74Y7i4uMDCwgLt2rXDN998g9zcXPTu3RsA8Mwzz0AmkyEsLEzpNm7fvo2QkBA888wzsLKyQr9+/XD+/HnF66tXr0aTJk2QlpaGTp06wcbGBn379sWNGzcU62RkZMDHxwfW1tZo0qQJ/vWvf+Hy5ctqOtJERLovPz+/Wvjp37+/wYcfgAHI6DVs2BDl5eUAgPT0dPz555/YuXMntm7dioqKCgQFBaFRo0bYt28fDhw4oAgSj94zZ84crF69GitXrsT+/ftx69YtbN68+YmfGRISgg0bNmDhwoU4c+YMvv76a9jY2MDFxQU//fQTAODPP//EjRs3sGDBAqXbCAsLw5EjR5CamorMzEwIgoBXXnkFFRUVinVKS0uRmJiItWvXYu/evbhy5QqmTJkCAKisrERwcDACAgLwxx9/IDMzE2PGjNHrZ1oQEali3bp1WLZsmagWExOjl091rgteAjNSgiAgPT0daWlpmDhxIgoLC2FtbY0VK1YoLn2tW7cOcrkcK1asUASDVatWoUmTJsjIyECfPn0wf/58xMTE4PXXXwcALFu2DGlpaTV+7rlz5/D9999j586dCAwMBAC0adNG8fqjS13NmzcXjQH6p/PnzyM1NRUHDhyAv78/AOC7776Di4sLUlJS8OabbwIAKioqsGzZMrRt2xbAw9s3P/vsMwAPB/oVFRXh1VdfVbzeqVMn1Q8kEZGeEQRB8XfhIyYmJpg+fbpEHUmDZ4AklpoK+Ps//K82bN26FTY2NrC0tES/fv0wdOhQfPrppwCAbt26icb9nDhxAhcuXECjRo1gY2MDGxsbNG3aFA8ePMDFixdRVFSEGzduwNfXV/GeBg0aPPFfD1lZWTA1NUVAQECd9+HMmTNo0KCB6HObNWuGDh064MyZM4qalZWVItwAQIsWLVBQUADgYdAKCwtDUFAQBgwYgAULFogujxERGaKcnJxq4WfYsGFGF34AngGSXEICkJn58L8DB2r+83r37o2lS5fC3NwcTk5Ooru/Hh/pf+/ePXh6euK7776rth17e/s6fX7Dhg3r9L66ePyuMZlMJhqftGrVKkyaNAk7duzAxo0bMW3aNOzcuRPPPfec1nokItKWBQsW4M6dO6La9OnTYWJinOdCdGKvk5KS4ObmBktLS/j6+uLQoUM1rnvq1CkMHjwYbm5ukMlkmD9//hO3nZCQAJlMprPPkImOBvz8Hv5XG6ytrdGuXTu4uro+9db3nj174vz582jevDnatWsn+rG1tYWtrS1atGiB33//XfGeyspKHD16tMZtduvWDXK5HHv27FH6+qMzUFVVVTVuo1OnTqisrBR97t9//40///wTnTt3fuI+Pa5Hjx6IiYnBwYMH0bVrV6xfv16l9xMR6brKykrExcWJwo+DgwNiY2ONNvwAOhCANm7ciKioKMTGxuLYsWNwd3dHUFCQ4lLF40pLS9GmTRskJCTA0dHxids+fPgwvv76a3Tv3l0TravFwIHAwYPaOfujqrfffht2dnYYNGgQ9u3bh5ycHGRkZGDSpEn466+/AACTJ09GQkICUlJScPbsWYwfP77avzD+yc3NDaGhoRg5ciRSUlIU2/z+++8BAK1atYJMJsPWrVtRWFiIe/fuVdtG+/btMWjQIIwePRr79+/HiRMn8M4776Bly5YYNGhQrfYtJycHMTExyMzMxOXLl/HLL7/g/PnzHAdERAYlOzsbs2bNEtXCw8MxduxYiTrSHZIHoLlz52L06NEYMWIEOnfujGXLlsHKygorV65Uur63tze++uorDBs2DBYWFjVu9969e3j77bexfPlyPPPMM5pq36BZWVlh7969cHV1xeuvv45OnTohPDwcDx48QOPGjQEAH3zwAd59912EhobCz88PjRo1wmuvvfbE7S5duhRvvPEGxo8fj44dO2L06NEoKSkBALRs2RJxcXGIjo6Gg4MDJkyYoHQbq1atgqenJ1599VX4+flBEARs27at1g9LtLKywtmzZzF48GA8++yzGDNmDCIiIvDee++pcISIiHRXXFyc4s7aR2bMmAFnZ2eJOtItMuHxh7ZoUXl5OaysrPDjjz+Kpk4IDQ3FnTt3sGXLlie+383NDZGRkUovb4WGhqJp06aYN28eXnjhBXh4eNR4uaysrAxlZWWK5eLiYri4uKCoqEjxRf/IgwcPkJOTg9atW8PS0rLW+0r6jb/vRKQvlM3gnpfXGUuXvilRR9pTXFwMW1tbpd/fj5N0EPTNmzdRVVUFBwcHUd3BwQFnz56t83aTk5Nx7NgxHD58uFbrx8fHK30KJhERkT45ePAgdu7cKart2zcBkyYZxgzu6mRwd4FdvXoVkydPxs6dO2v9L/WYmBhERUUplh+dASIiItIXxjidRX1IGoDs7OxgamqK/Px8UT0/P/+pA5xrcvToURQUFKBnz56KWlVVFfbu3YvFixejrKwMpqamovdYWFg8cTwRERGRriouLsa8efNENX9/f7z88ssSdaQfJA1A5ubm8PT0RHp6umIMkFwuR3p6eo2DX5/mpZdewsmTJ0W1ESNGoGPHjvj444+rhR8iIiJ9tW3btmrDPT744APY2NhI1JH+kPwSWFRUFEJDQ+Hl5QUfHx/Mnz8fJSUlGDFiBICH80a1bNkS8fHxAB4OnD59+rTi19euXUNWVhZsbGzQrl07NGrUCF27dhV9hrW1NZo1a1atXh8Sjh0nCfD3m4h0DS951Y/kAWjo0KEoLCzEjBkzkJeXBw8PD+zYsUMxMPrKlSuiBzVdv34dPXr0UCwnJiYiMTERAQEByMjI0Hi/j26zLi0t1epTjUlajyZ/5RlEIpJaQUEBli5dKqq98sor8Pb2lqgj/STpbfC66mm30d24cQN37txB8+bNYWVlxRnEDZxcLsf169dhZmYGV1dX/n4TkWS+++47XLhwQVSLiYkRzeNozPTmNnh99WiAdk1PqybDY2JiwvBDRJJRNoO7TCbDjBkzJOpI/zEA1YFMJkOLFi3QvHlzVFRUSN0OaYG5ublRz5lDRNLJzc3FmjVrRLWhQ4eiY8eOEnVkGBiA6sHU1JRjQoiISGMWLlyI27dvi2rGPIO7OjEAERER6Ziqqip8/vnnolrz5s0xbtw4iToyPAxAREREOiQ7O7vaJKYjR47kDAVqxgBERESkI5Q922fGjBm8AUMDGICIiIgkpmwG906dOmHIkCESdWT4GICIiIgk9P333+PMmTOiWkREBOzs7CTqyDgwABEREUmE01lIh/fRERERadnNmzerhZ+8PAekpTH8aAvPABEREWnRokWLcOvWLVGtc+eJSEtriuhoiZoyQgxAREREWvKkS15vvqntbowbAxAREZGGKZvOonv37njttdck6ogYgIiIiDRI2VmfDz/8EFZWVhJ0Q48wABEREWmAshncAd7lpSsYgIiIiNTsxIkTSElJEdV69+6NXr16SdMQVcMAREREpEbKLnl98sknaNCAX7m6hL8bREREalBZWYlZs2ZVq/OSl25iACIiIqqnjIwM7NmzR1R7/fXX0a1bN4k6oqdhACIiIqoHzuCunxiAiIiI6qCkpASJiYnV6rzkpR8YgIiIiFT0448/4tSpU6LaiBEj4OrqKlFHpCoGICIiIhVwBnfDwABERERUC3///TcWL14sqtnb22P8+PESdUT1wQBERET0FIsXL8bff/8tqk2YMAHNmjWTqCOqLwYgIiKiJ+AlL8PEAERERKTE5cuXsXr1alGta9euGDx4sDQNkVoxABERET2GM7gbPgYgIiKi/+IM7saDAYiIiAjAH3/8gc2bN4tqL7zwAgICAiTqiDSJAYiIiIweZ3A3PvydJSIio8UZ3I0XAxARERmlPXv2ICMjQ1R77bXX0L17d2kaIq1iACIiIqPDGdyJAYiIiIxGaWkpvvrqq2p1XvIyPgxARERkFH766SdkZ2eLamFhYWjVqpVEHZGUGICIiMjgcToLehwDEBERGSxlM7jb2dkhIiJCoo5IVzAAERGRQVqyZAkKCwtFNc7gTo8wABERkcHhJS96GgYgIiIyGFeuXMGqVatEtS5duuCNN96QqCPSVSZSNwAASUlJcHNzg6WlJXx9fXHo0KEa1z116hQGDx4MNzc3yGQyzJ8/v9o6S5cuRffu3dG4cWM0btwYfn5+2L59uwb3gIiIpBYXF1ct/EyZMoXhh5SSPABt3LgRUVFRiI2NxbFjx+Du7o6goCAUFBQoXb+0tBRt2rRBQkICHB0dla7j7OyMhIQEHD16FEeOHMGLL76IQYMG4dSpU5rcFSIikoAgCDVe8rK2tpagI9IHMkEQBCkb8PX1hbe3t2KUvlwuh4uLCyZOnIjo6OgnvtfNzQ2RkZGIjIx86uc0bdoUX331FcLDw5+6bnFxMWxtbVFUVITGjRvXaj+IiEj7Tp48iU2bNolqAQEBeOGFF6RpiCSlyve3pGOAysvLcfToUcTExChqJiYmCAwMRGZmplo+o6qqCj/88ANKSkrg5+endJ2ysjKUlZUplouLi9Xy2UREpDmcwZ3qQ9JLYDdv3kRVVRUcHBxEdQcHB+Tl5dVr2ydPnoSNjQ0sLCwwduxYbN68GZ07d1a6bnx8PGxtbRU/Li4u9fpsIiLSnMrKyhoveTH8UG0Z7J+UDh06ICsrC0VFRfjxxx8RGhqKPXv2KA1BMTExiIqKUiwXFxczBBER6aC9e/di9+7dohpncKe6kDQA2dnZwdTUFPn5+aJ6fn5+jQOca8vc3Bzt2rUDAHh6euLw4cNYsGABvv7662rrWlhYwMLCol6fR0REmsUZ3EmdJL0EZm5uDk9PT6Snpytqcrkc6enpNY7XqSu5XC4a50NERPqhtLS0xkteDD9UV5JfAouKikJoaCi8vLzg4+OD+fPno6SkBCNGjAAAhISEoGXLloiPjwfwcOD06dOnFb++du0asrKyYGNjozjjExMTg379+sHV1RV3797F+vXrkZGRgbS0NGl2koiI6mTTpk04efKkqBYaGgo3NzdpGiKDIXkAGjp0KAoLCzFjxgzk5eXBw8MDO3bsUAyMvnLlCkxM/nei6vr16+jRo4diOTExEYmJiQgICEBGRgYAoKCgACEhIbhx4wZsbW3RvXt3pKWl4eWXX9bqvhERUd1xOgvSJMmfA6SL+BwgIiLp3Lp1C4sWLRLVmjZtiokTJ0rUEekLvXkOEBER0T8tW7as2o0xERERsLOzk6gjMlQMQEREpBN4yYu0iQGIiIgkpWwG986dO+PNN9+UqCMyBgxAREQkGWVnfaZMmcJJTEnjGICIiEjrBEHAZ599Vq3OS16kLQxARESkVdnZ2fjpp59EtV69eqF3794SdUTGiAGIiIi0Rtklr6lTp8LMzEyCbsiYSToVBhERGYeaZnBPS4tl+CFJ8AwQERFpVFpaGn777TdRzdV1EJYv90B0tERNkdFjACIiIo1RdtbHw2MGBg2S4b9TPhJJggGIiIjUrqSkBImJidXqvMuLdAUDEBERqdXatWtx6dIlUW348OF49tlnJeqIqDoGICIiUhtOZ0H6ggGIiIjq7ebNm0hKSqpWZ/ghXcUARERE9TJ79mw8ePBAVOvQ4T0MG+YoUUdET8fnABERUZ3FxcVVCz+ffhqLhQsZfki38QwQERGpLCcnB99++62o5uTkBAeH0fDzA5/vQzqPAYiIiFSibKBzVFQUGjVqBAAYOFDbHRGpjgGIiIhqhTO4kyFhACIioqc6duwY/u///k9U69GjBwbydA/pKQYgIiJ6ImWXvGJiYmBubi5BN0TqwQBERERKVVZWYtasWdXqvORFhoABiIiIqtm5cycOHjwoqvXp0wd+fn4SdUSkXgxAREQkouyS1/Tp02FiwkfHkeFgACIiIgBAaWkpvvrqq2p1XvIiQ8QAREREWLduHS5evCiqDRs2DB06dJCoIyLNYgAiIjJynMGdjBEDEBGRkeIM7mTMGICIiIzQl19+ifv374tqY8aMQYsWLSTqiEi7GICIiIwML3kRMQARERmN3NxcrFmzRlRzdHTEe++9J1FHRNJhACIiMgLKzvq8//77aNy4sQTdEEmPAYiIyIBxBnci5RiAiIgMVFZWFrZs2SKqeXh4YNCgQRJ1RKQ7VA5ApqamuHHjBpo3by6q//3332jevDmqqqrU1hwREdUNZ3AnejKVA5AgCErrZWVl/B+LiEhiVVVV+Pzzz6vVecmLSKzWAWjhwoUAAJlMhhUrVsDGxkbxWlVVFfbu3YuOHTuqv0MiIqqVXbt24cCBA6Layy+/DH9/f4k6ItJdtQ5A8+bNA/DwDNCyZctgamqqeM3c3Bxubm5YtmyZ+jskIqKn4gzuRKqpdQDKyckBAPTu3RubNm3CM888o7GmiIiodu7fv48vv/yyWp2XvIieTOUxQLt379ZEH0REpKL169fj/PnzotrQoUM5HIGoFlQOQCNHjnzi6ytXrlS5iaSkJHz11VfIy8uDu7s7Fi1aBB8fH6Xrnjp1CjNmzMDRo0dx+fJlzJs3D5GRkaJ14uPjsWnTJpw9exYNGzaEv78/Zs+ejQ4dOqjcGxGRLlJ2yatHj1gw+xDVjsoXh2/fvi36KSgowK+//opNmzbhzp07KjewceNGREVFITY2FseOHYO7uzuCgoJQUFCgdP3S0lK0adMGCQkJcHR0VLrOnj17EBERgd9++w07d+5ERUUF+vTpg5KSEpX7IyLSJX///bfS8PPpp7FISJCgISI9JRNquq9dBXK5HOPGjUPbtm3x0UcfqfReX19feHt7Y/HixYptubi4YOLEiYiOjn7ie93c3BAZGVntDNDjCgsL0bx5c+zZswe9evV6ak/FxcWwtbVFUVERHxNPRDojMTGx2j/kRo8ejSNHnJCQAERHAwMHStQckQ5Q5ftbLbcHmJiYICoqSnGnWG2Vl5fj6NGjCAwMFG0rMDAQmZmZ6mgNAFBUVAQAaNq0qdLXy8rKUFxcLPohItIlcXFx1cJPbGwsnJycMHAgcPAgww+RKtR2f+TFixdRWVmp0ntu3ryJqqoqODg4iOoODg7Iy8tTS19yuRyRkZH417/+ha5duypdJz4+Hra2toofFxcXtXw2EVF9Xb58udolLwcHB97lRVRPKg+CjoqKEi0LgoAbN27g559/RmhoqNoaU5eIiAhkZ2dj//79Na4TExMj2q/i4mKGICKSHGdwJ9IclQPQ8ePHRcsmJiawt7fHnDlznnqH2OPs7OxgamqK/Px8UT0/P7/GAc6qmDBhArZu3Yq9e/fC2dm5xvUsLCxgYWFR788jIlIHzuBOpHmSPgfI3Nwcnp6eSE9PR3BwMICHl6zS09MxYcKEOm9XEARMnDgRmzdvRkZGBlq3bq2mjomINOvEiRNISUkR1dzd3RV/RxKReqgcgB4pKCjAn3/+CQDo0KFDtdnhaysqKgqhoaHw8vKCj48P5s+fj5KSEowYMQIAEBISgpYtWyI+Ph7Aw4HTp0+fVvz62rVryMrKgo2NDdq1awfg4WWv9evXY8uWLWjUqJFiPJGtrS0aNmxY110mItIozuBOpD0q3wZfXFyMiIgIbNiwAXK5HABgamqKoUOHIikpCba2tio3sXjxYsWDED08PLBw4UL4+voCAF544QW4ublh9erVAIDc3FylZ3QCAgKQkZHxcKdkMqWfs2rVKoSFhdVqH3kbPBFpC2dwJ1IPVb6/VQ5AQ4cOxfHjx7Fo0SL4+fkBADIzMzF58mR4eHggOTm57p3rCAYgItKWX3/9Ffv27RPVAgMD8a9//Uuijoj0l0YDkLW1NdLS0vD888+L6vv27UPfvn0N4mnLDEBEpA2cwZ1IvVT5/lZ5DFCzZs2UXuaytbXlDPFERLXAGdyJpKdyAJo2bRqioqKwdu1axa3qeXl5+PDDDzF9+nS1N0hEZEiSk5MVN5A8MmTIEHTq1EmijoiMk8qXwHr06IELFy6grKwMrq6uAIArV67AwsIC7du3F6177Ngx9XWqRbwERkSaoOySF8/6EKmPRi+BDRo0qMa7rIiIqLpbt25h0aJF1eoMP0TSUcts8IaGZ4CISF3mzp2Lu3fvimqjRo1Cy5YtJeqIyHBpdDb4Nm3a4O+//65Wv3PnDtq0aaPq5oiIDFZcXFy18BMbG8vwQ6QDVL4Elpubi6qqqmr1srIy/PXXX2ppiohIn125cgWrVq0S1ezt7TF+/HiJOiKix9U6AKWmpip+nZaWJroVvqqqCunp6Zxzi4iM3pw5c3Dv3j1RLTIysk5PyScizal1AHo0EZ9MJkNoaKjoNTMzM7i5uWHOnDlqbY6ISF9wBnci/VLrAPRo3q/WrVvj8OHDsLOz01hTRET6JCcnB99++62oduyYBwoLB4H5h0g3qTwGKCcnRxN9EBHppZkzZyr+gfiIu/tUpKWZITpaoqaI6KlUDkDKTvH+04wZM+rcDBGRvpDL5Zg5c2a1+qNLXv8dNUBEOkrlALR582bRckVFBXJyctCgQQO0bduWAYiIDN6JEyeQkpIiqr3xxhvo0qWLNA0RkcpUDkDHjx+vVisuLkZYWBhee+01tTRFRKSrOIM7kWFQ25OgT548iQEDBiA3N1cdm5MUnwRNRI8rLy9HfHy8qGZhYYFoDvQh0hkanQusJkVFRSgqKlLX5oiIdMbevXuxe/duUW3EiBGKCaGJSP+oHIAWLlwoWhYEATdu3MDatWvRr18/tTVGRKQLOIM7kWFSOQDNmzdPtGxiYgJ7e3uEhoYiJiZGbY0REUnp7t27mDt3rqjm6uqKESNGSNQREakTnwNERPSYlJQUnDhxQlSLiIjgA2CJDEidxgDduXMHFy5cAAC0a9cOTZo0UWdPRESS4SUvIuOgUgDKzc1FREQE0tLS8OjmMZlMhr59+2Lx4sVwc3PTRI9ERBpXWFiIJUuWiGo9evTAwIEDJeqIiDSp1gHo6tWreO6552BmZoaZM2eiU6dOAIDTp09j6dKl8PPzw+HDh+Hs7KyxZomINGH58uW4fv26qDZlyhRYW1tL1BERaVqtnwMUHh6OCxcuIC0tDZaWlqLX7t+/j759+6J9+/ZYsWKFRhrVJj4HiMg4cAZ3IsOikecA7dixAxs3bqwWfgCgYcOGmDlzJoYNG6Z6t0REWpaaCnzzzZ/o2TNZVH/ppZfw/PPPS9QVEWlTrQPQzZs3nzjGp02bNrh165Y6eiIi0qjjx+PQs6e4NnXqVJiZmUnTEBFpXa0nr2nRogVOnz5d4+vZ2dlwdHRUS1NERJogl8uV3uWVlhbL8ENkZGodgIKDgzFlyhQUFhZWe62goAAff/wxgoOD1dkbEZHa/P7775g5c6ao5uz8CtLSYsHpvIiMT60HQd++fRu+vr7Iy8vDO++8g44dO0IQBJw5cwbr16+Ho6MjfvvtNzRt2lTTPWscB0ETGRbO4E5kHDQyCPqZZ57B77//jqlTpyI5ORl37twBADRp0gRvvfUWvvjiC4MIP0RkOMrKypCQkFCtzru8iKjWZ4D+SRAExaUwe3t7yGQytTcmJZ4BItJ/27Ztw+HDh0W1t956C+3bt5eoIyLSNI2cAfonmUyG5s2b16k5IiJNU3bJa8aMGQb3jzUiqrs6BSAiIl1UXFyMefPmiWoNGzbERx99JFFHRKSrGICIyCCsWbMGubm5otp7773Hx3MQkVIMQESk9ziDOxGpigGIiPRSaiqQlJQHf/+vRfXWrVsjJCREoq6ISF/UKgAtXLiw1hucNGlSnZshIqqtQ4dmw9//gaj2/vvv885NIqqVWt0G37p169ptTCbDpUuX6t2U1HgbPJHu4gzuRFQTtd8Gn5OTo5bGiIjq4/z581i/fr2o5uPjg379+knUERHpqzqPASovL0dOTg7atm2LBg04lIiINCc19eEM7o+Ljo6GhYWFBB0Rkb5TeSKc0tJShIeHw8rKCl26dMGVK1cAABMnTlT6yHkiovqQy+VKw09sbCzDDxHVmcoBKCYmBidOnEBGRgYsLS0V9cDAQGzcuFHlBpKSkuDm5gZLS0v4+vri0KFDNa576tQpDB48GG5ubpDJZJg/f361dfbu3YsBAwbAyckJMpkMKSkpKvdERLrh0KFD1WZw79evH8f7EFG9qRyAUlJSsHjxYjz//POix8p36dIFFy9eVGlbGzduRFRUFGJjY3Hs2DG4u7sjKCgIBQUFStcvLS1FmzZtkJCQUOPDzUpKSuDu7o6kpCSVeiEi3RIXF4ft27eLatOnT4ePj49EHRGRIVF58E5hYaHSecBKSkpUnmdn7ty5GD16NEaMGAEAWLZsGX7++WesXLkS0dHR1db39vaGt7c3ACh9HXj4r0MOiCTSX5zBnYi0QeUA5OXlhZ9//hkTJ04EAEXoWbFiBfz8/Gq9nfLychw9ehQxMTGKmomJCQIDA5GZmalqW/VSVlaGsrIyxXJxcbFWP5+IHtqxYwd+//13UW348OF49tlnJeqIiAyVygHoiy++QL9+/XD69GlUVlZiwYIFOH36NA4ePIg9e/bUejs3b95EVVUVHBwcRHUHBwecPXtW1bbqJT4+Xumj9IlIeziDOxFpk8pjgJ5//nlkZWWhsrIS3bp1wy+//ILmzZsjMzMTnp6emuhR42JiYlBUVKT4uXr1qtQtERmN4uLiauHHwsICsbGxDD9EpDF1eoBP27ZtsXz58np9sJ2dHUxNTZGfny+q5+fna332ZgsLC95OSySBtWvXVnt6/JgxY9CiRQuJOiIiY1GrAKTKmJjaTh1hbm4OT09PpKenIzg4GMDD532kp6djwoQJtf48ItJPnMGdiKRUqwDUpEmTWp+KrqqqqvWHR0VFITQ0FF5eXvDx8cH8+fNRUlKiuCssJCQELVu2RHx8PICHA6dPnz6t+PW1a9eQlZUFGxsbtGvXDgBw7949XLhwQfEZOTk5yMrKQtOmTeHq6lrr3ohIM/Ly8vD11+IZ3N3c3BAaGipRR0RkjGoVgHbv3q34dW5uLqKjoxEWFqa46yszMxNr1qxRBJXaGjp0KAoLCzFjxgzk5eXBw8MDO3bsUAyMvnLlCkxM/jdM6fr16+jRo4diOTExEYmJiQgICEBGRgYA4MiRI+jdu7dinaioKABAaGgoVq9erVJ/RKReX375Je7fvy+qRUZGwtbWVqKOiMhY1Wo2+H966aWXMGrUKAwfPlxUX79+Pf7zn/8ogog+42zwROrHS15EpGmqfH+rfBdYZmYmvLy8qtW9vLyeOI0FERmn8+fPVws/3t7eDD9EJCmV7wJzcXHB8uXL8eWXX4rqK1asgIuLi9oaIyL9p+ysD2dwJyJdoHIAmjdvHgYPHozt27fD19cXwMMJC8+fP4+ffvpJ7Q0Skf6Ry+XVJjEFeMmLiHSHymOAAOCvv/7CkiVLFE9s7tSpE8aOHWswZ4A4Boio7o4cOYKff/5ZVOvbt6/iH0xERJqiyvd3nQKQoWMAIqobZZe8pk+fLrqbk4hIU1T5/q7Tk6Dv3LmDb775BmfOnAEAdOnSBSNHjuStrERGqry8XOljMHjJi4h0lcpngI4cOYKgoCA0bNgQPj4+AIDDhw/j/v37+OWXX9CzZ0+NNKpNPANEVDupqcDmzWlwc/tNVB82bBg6dOggUVdEZKw0egns3//+N9q1a4fly5ejQYOHJ5AqKysxatQoXLp0CXv37q175zqCAYiodjiDOxHpEo0GoIYNG+L48ePo2LGjqH769Gl4eXmhtLRU9Y51DAMQ0ZPdvn0bCxcuFNXMzc0RExMjUUdERBoeA9S4cWNcuXKlWgC6evUqGjVqpOrmiEjPfPHFF6ioqBDVRo8eDScnJ4k6IiJSncoBaOjQoQgPD0diYiL8/f0BAAcOHMCHH35YbXoMIjIsnM6CiAyFygEoMTERMpkMISEhqKysBACYmZlh3LhxSEhIUHuDRCS9y5cvK51MmOGHiPRVnZ8DVFpaiosXLwIA2rZtCysrK7U2JiWOASL6H2VnfSIiImBnZydBN0RENdP4c4AAwMrKCt26davr24lID/CSFxEZqloHoJEjR9ZqvZUrV9a5GSLSDVlZWdiyZYuo5uzsjPDwcIk6IiJSr1oHoNWrV6NVq1bo0aMHOHsGkeFSdtbnww8/NKjL3EREtQ5A48aNw4YNG5CTk4MRI0bgnXfeQdOmTTXZGxFpUU0zuPfoEQtmHyIyNCoNgi4rK8OmTZuwcuVKHDx4EP3790d4eDj69OljUE9+5SBoMja7du3CgQMHRDUvLy/0799foo6IiFSnldngH90W++2336KyshKnTp2CjY1NnRrWNQxAZEyUXfKaNm0aTE1NJeiGiKjutHIXmImJCWQyGQRBQFVVVV03Q0QSefDgAWbPnl2tzru8iMgYqBSA/nkJbP/+/Xj11VexePFi9O3bFyYmJprqkYjUbN26dYrneD3yyiuvwNvbW6KOiIi0q9YBaPz48UhOToaLiwtGjhyJDRs28EFoRHogNRVISACio4GBAzmDOxERoMIYIBMTE7i6uqJHjx5P/Ity06ZNamtOKhwDRIbE3x/IzARefPE2evVaWO11XvIiIkOhkTFAISEh/BcikR6KjgYOH45Hgwblovo777yDtm3bStQVEZG0VHoQIhHpn+PH49Dgsf/TedaHiIxdne8CIyLdVlBQgKVLl1arM/wQETEAERmkuXPn4u7du6IaZ3AnIvofBiAiA8MZ3ImIno4BiMhAXLx4EevWrRPVevbsiQEDBkjUERGR7mIAIjIAys76fPzxx7C0tJSgGyIi3cfHNxPpodTUh8/32bJFXuMlL4YfIqKa8QwQkR5KSAAePDiGrKz/E9X79OkDPz8/iboiItIfDEBEeigoiDO4ExHVBwMQkR4pLy9HfHx8tTrv8iIiUg0DEJGe2LVrFw4cOCCqDRkyBJ06dZKoIyIi/cUARKQHOIM7EZF6MQAR6bB79+5hzpw5opqJiQmmT58uUUdERIaBAYhIR23YsAHnzp0T1UaNGoWWLVtK1BERkeFgACLSQZzOgohIsxiAiHSIshncW7ZsiVGjRknUERGRYdKJJ0EnJSXBzc0NlpaW8PX1xaFDh2pc99SpUxg8eDDc3Nwgk8kwf/78em+TSBfMnz+/WviZPHkyww8RkQZIHoA2btyIqKgoxMbG4tixY3B3d0dQUBAKCgqUrl9aWoo2bdogISEBjo6OatkmkdTi4uJQVFQkqsXGxqJJkybSNEREZOBkgiAIUjbg6+sLb29vLF68GAAgl8vh4uKCiRMnIjo6+onvdXNzQ2RkJCIjI9W2TQAoLi6Gra0tioqK0Lhx47rtGFEtXLp0CWvXrhXVevTogYEDB0rUERGR/lLl+1vSMUDl5eU4evQoYmJiFDUTExMEBgYiMzNTa9ssKytDWVmZYrm4uLhOn02kCs7gTkQkHUkvgd28eRNVVVVwcHAQ1R0cHJCXl6e1bcbHx8PW1lbx4+LiUqfPJqoNuZwzuBMRSY13gQGIiYlBVFSUYrm4uJghiDTi+PHjSE1NFdVefvll+Pv7S9QREZFxkjQA2dnZwdTUFPn5+aJ6fn5+jQOcNbFNCwsLWFhY1OnziGpL2VkfzuBORCQNSS+BmZubw9PTE+np6YqaXC5Heno6/Pz8dGabRPVRUVFR4yUvhh8iImlIfgksKioKoaGh8PLygo+PD+bPn4+SkhKMGDECABASEoKWLVsiPj4ewMNBzqdPn1b8+tq1a8jKyoKNjQ3atWtXq20SaUt6ejr2798vqr355pvo3LmzRB0RERGgAwFo6NChKCwsxIwZM5CXlwcPDw/s2LFDMYj5ypUrMDH534mq69evo0ePHorlxMREJCYmIiAgABkZGbXaJpE2cAZ3IiLdJflzgHQRnwNE9aFsBneAc3kREWma3jwHiMjQbNy4EWfPnhXVwsPD4ezsLFFHRESkDAMQkZpwBnciIv3BAERUT4WFhViyZImo1qJFC4wZM0aijoiI6GkYgIjqKDUVOHBgAays7ojqkyZNwjPPPCNNU0REVCsMQER1dPx4HKysxDVe8iIi0g8MQEQqKigowNKlS0U1Dw8PDBo0SKKOiIhIVQxARCpYt24dLl68KKp99NFHaNiwoUQdERFRXUg6FQaRLklNBfz9H/73cYIgIC4uThR+TExMEBsby/BDRKSHeAaI6L8SEoDMzIf/HTjwf/Xc3FysWbNGtO7QoUPRsWNHLXdIRETqwgBE9F/R0Q/DT3T0/2oLFizAnTt3ROtNnz5dND0LERHpHwYgov8aOPB/Z36qqqrw+eefi153cHDA2LFjJeiMiIjUjQGI6DHZ2dn46aefRLWRI0fCxcVFoo6IiEjdGICI/oEzuBMRGQcGICIAlZWVmDVrlqjWqVMnDBkyRKKOiIhIkxiAyOhdvXoVK1euFNUiIiJgZ2cnUUdERKRpDEBk1FJTU3H8+HFRjdNZEBEZPgYgMkplZWVISEgQ1d555x20bdtWoo6IiEibGIDI6Jw/fx7r168X1WJiYmBubi5RR0REpG0MQGRU1q9fj/PnzyuWvby80L9/fwk7IiIiKTAAkVEoKSlBYmKiqDZq1Ci0bNlSoo6IiEhKDEBk8P744w9s3rxZVJs2bRpMTU0l6oiIiKTGAEQGSxAE/Oc//0FeXp6iFhAQgBdeeEG6poiISCcwAJFBunPnDhYsWCCqjR8/Hvb29hJ1REREuoQBiAzO77//jh07diiWGzVqhMjISM7gTkRECgxAZDDkcjnmzJmD0tJSRe2VV16Bt7e3hF0REZEuYgAig1BQUIClS5eKapGRkbC1tZWoIyIi0mUMQKT3fv31V+zbt0+x7OTkhFGjRnEGdyIiqhEDEOktZTO4Dx48GF27dpWoIyIi0hcMQKSXlM3g/uGHH8LKykqijoiISJ8wAJHeeXwG9w4dOmDYsGESdkRERPqGAYj0BmdwJyIidWEAIr3AGdyJiEidGIBI523YsAHnzp1TLHt6euLVV1+VsCMiItJ3DECks5TN4B4eHg5nZ2eJOiIiIkPBAEQ66eTJk9i0aZOo9sknn6BBA/6RJSKi+uO3CekUZTO49+rVC71795awKyIiMjQMQKQzOIM7ERFpCwMQ6YTHZ3C3sbHB+++/zxnciYhIIxiASFJyuRxz585FSUmJotavXz/4+PhI2BURERk6BiCSDGdwJyIiqejE9YWkpCS4ubnB0tISvr6+OHTo0BPX/+GHH9CxY0dYWlqiW7du2LZtm+j1/Px8hIWFwcnJCVZWVujbty/Onz+vyV0gFf3666+i8NOiRQvMmDGD4YeIiLRC8gC0ceNGREVFITY2FseOHYO7uzuCgoJQUFCgdP2DBw9i+PDhCA8Px/HjxxEcHIzg4GBkZ2cDeHgXUXBwMC5duoQtW7bg+PHjaNWqFQIDA0WXWUgalZWViIuLw759+xS1119/HWPGjIFMJpOwMyIiMiYyQRAEKRvw9fWFt7c3Fi9eDODhmBAXFxdMnDgR0dHR1dYfOnQoSkpKsHXrVkXtueeeg4eHB5YtW4Zz586hQ4cOyM7ORpcuXRTbdHR0xBdffIFRo0Y9tafi4mLY2tqiqKgIjRs3VtOe0l9//YVvvvlGVJsyZQqsra0l6oiIiAyJKt/fkp4BKi8vx9GjRxEYGKiomZiYIDAwEJmZmUrfk5mZKVofAIKCghTrl5WVAQAsLS1F27SwsMD+/fvVvQtUS//3f/8nCj/PPvssYmNjGX6IiEgSkg6CvnnzJqqqquDg4CCqOzg44OzZs0rfk5eXp3T9Rw/O69ixI1xdXRETE4Ovv/4a1tbWmDdvHv766y/cuHFD6TbLysoUwQl4mCBJPZTN4P7222+jXbt2EnVERESkA2OA1M3MzAybNm3CuXPn0LRpU1hZWWH37t3o169fjc+UiY+Ph62treLHxcVFy10bpgsXLlQLP9HR0Qw/REQkOUnPANnZ2cHU1BT5+fmien5+PhwdHZW+x9HR8anre3p6IisrC0VFRSgvL4e9vT18fX3h5eWldJsxMTGIiopSLBcXFzME1dPjM7j37NkTAwYMkLAjIiKi/5H0DJC5uTk8PT2Rnp6uqMnlcqSnp8PPz0/pe/z8/ETrA8DOnTuVrm9rawt7e3ucP38eR44cwaBBg5Ru08LCAo0bNxb9UN2UlJQgLi5OFH7Cw8MZfoiISKdI/iDEqKgohIaGwsvLCz4+Ppg/fz5KSkowYsQIAEBISAhatmyJ+Ph4AMDkyZMREBCAOXPmoH///khOTsaRI0fwn//8R7HNH374Afb29nB1dcXJkycxefJkBAcHo0+fPpLso7HgDO5ERKQvJP9mGjp0KAoLCzFjxgzk5eXBw8MDO3bsUAx0vnLlimjsjr+/P9avX49p06Zh6tSpaN++PVJSUtC1a1fFOjdu3EBUVBTy8/PRokULhISEYPr06VrfN2MhCAKWL18uGmTOGdyJiEiXSf4cIF3E5wDVXlFREebPny+qjRs3Ds2bN5emISIiMlqqfH9LfgaI9NehQ4ewfft2xbK1tTWioqI4gzsREek8BiBSmVwux7x583Dv3j1FrW/fvvD19ZWwKyIiotpjACKVFBYWYsmSJaLa5MmT0aRJE2kaIiIiqgMGIKq13bt3Y+/evYrlFi1aYPTo0ZzElIiI9A4DED1VZWUlZs2aJaq9/vrr6Natm0QdERER1Q8DED0RZ3AnIiJDxABENdq6dSuOHj2qWG7fvj3eeustCTsiIiJSDwYgqqa8vFzx5O1HOIM7EREZEgYgErl48SLWrVsnqkVHR8PCwkKijoiIiNSPAYgUkpOT8eeffyqWe/TogYEDB0rYERERkWYwABFKS0vx1VdfiWojR46Ei4uLRB0RERFpFgOQkcvOzsZPP/0kqnEGdyIiMnT8ljNSgiBgxYoVuH79uqL273//Gy+++KKEXREREWkHA5AR4gzuRERk7BiAjAxncCciImIAMhpyuRzz58/H3bt3FbWgoCA899xzEnZFREQkDQYgI8AZ3ImIiMQYgAxcRkYG9uzZo1h2dHTEmDFjOIM7EREZNQYgA1VVVYXPP/9cVHvttdfQvXt3iToiIiLSHQxABujatWtYsWKFqMYZ3ImIiP6HAcjA/Pzzzzhy5IhiuV27dnj77bcl7IiIiEj3MAAZCGUzuL/11lto3769RB0RERHpLgYgA8AZ3ImIiFTDAKTnNm7ciLNnzyqWOYM7ERHR0zEA6SnO4E5ERFR3DEB66NSpU/jxxx9FNc7gTkREVHv8xtQjgiDgm2++wbVr1xS1559/Hi+99JKEXREREekfBiA9oWwG97Fjx8LBwUGahoiIiPQYA5AeOHz4MLZt26ZYtrKywgcffMAZ3ImIiOqIAUiHcQZ3IiIizWAA0lE3b95EUlKSqMYZ3ImIiNSDAUgH7dmzBxkZGYplBwcHvPfee5zBnYiISE0YgHSIshncg4OD4e7uLlFHREREhokBSEdwBnciIiLtYQDSAZzBnYiISLsYgCSkbAb34cOH49lnn5WoIyIiIuPAACSRS5cuYe3ataIaZ3AnIiLSDgYgCTw+g7uHhwcGDRokYUdERETGhQFIiwRBwGeffSaqjRgxAq6urhJ1REREZJwYgLToypUromXO4E5ERCQNfvtqkZOTE1566SU0bNgQnp6eUrdDRERktHRiNs2kpCS4ubnB0tISvr6+OHTo0BPX/+GHH9CxY0dYWlqiW7duoolCAeDevXuYMGECnJ2d0bBhQ3Tu3BnLli3T5C7UipmZGZ5//nmGHyIiIolJHoA2btyIqKgoxMbG4tixY3B3d0dQUBAKCgqUrn/w4EEMHz4c4eHhOH78OIKDgxEcHIzs7GzFOlFRUdixYwfWrVuHM2fOIDIyEhMmTEBqaqq2dqtGqamAv//D/xIREZE0ZIIgCFI24OvrC29vbyxevBjAwxnQXVxcMHHiRERHR1dbf+jQoSgpKcHWrVsVteeeew4eHh6Kszxdu3bF0KFDMX36dMU6np6e6NevX7WpJpQpLi6Gra0tioqK0Lhx4/ruooi/P5CZCfj5AQcPqnXTRERERk2V729JzwCVl5fj6NGjCAwMVNRMTEwQGBiIzMxMpe/JzMwUrQ8AQUFBovX9/f2RmpqKa9euQRAE7N69G+fOnUOfPn2UbrOsrAzFxcWiH02Jjn4YfpRkOyIiItISSQPQzZs3UVVVBQcHB1HdwcEBeXl5St+Tl5f31PUXLVqEzp07w9nZGebm5ujbty+SkpLQq1cvpduMj4+Hra2t4sfFxaWee1azgQMfnvkZOFBjH0FERERPIfkYIE1YtGgRfvvtN6SmpuLo0aOYM2cOIiIisGvXLqXrx8TEoKioSPFz9epVLXdMRERE2iTpbfB2dnYwNTVFfn6+qJ6fnw9HR0el73F0dHzi+vfv38fUqVOxefNm9O/fHwDQvXt3ZGVlITExsdrlMwCwsLDgFBRERERGRNIzQObm5vD09ER6erqiJpfLkZ6eDj8/P6Xv8fPzE60PADt37lSsX1FRgYqKCpiYiHfN1NQUcrlczXtARERE+kjyByFGRUUhNDQUXl5e8PHxwfz581FSUoIRI0YAAEJCQtCyZUvFrOmTJ09GQEAA5syZg/79+yM5ORlHjhzBf/7zHwBA48aNERAQgA8//BANGzZEq1atsGfPHnz77beYO3euZPtJREREukPyADR06FAUFhZixowZyMvLg4eHB3bs2KEY6HzlyhXR2Rx/f3+sX78e06ZNw9SpU9G+fXukpKSga9euinWSk5MRExODt99+G7du3UKrVq0wa9YsjB07Vuv7R0RERLpH8ucA6SJNPgeIiIiINENvngNEREREJAUGICIiIjI6DEBERERkdBiAiIiIyOgwABEREZHRYQAiIiIio8MAREREREZH8gch6qJHj0YqLi6WuBMiIiKqrUff27V5xCEDkBJ3794FALi4uEjcCREREanq7t27sLW1feI6fBK0EnK5HNevX0ejRo0gk8lUem9xcTFcXFxw9epVPkX6H3hclONxUY7HpToeE+V4XJQz1uMiCALu3r0LJyenapOiP45ngJQwMTGBs7NzvbbRuHFjo/pDV1s8LsrxuCjH41Idj4lyPC7KGeNxedqZn0c4CJqIiIiMDgMQERERGR0GIDWzsLBAbGwsLCwspG5Fp/C4KMfjohyPS3U8JsrxuCjH4/J0HARNRERERodngIiIiMjoMAARERGR0WEAIiIiIqPDAERERERGhwHoKZKSkuDm5gZLS0v4+vri0KFDT1z/hx9+QMeOHWFpaYlu3bph27Ztotfv3buHCRMmwNnZGQ0bNkTnzp2xbNkyTe6CRqj7uOTn5yMsLAxOTk6wsrJC3759cf78eU3ugkaoclxOnTqFwYMHw83NDTKZDPPnz6/3NnWVuo/L3r17MWDAADg5OUEmkyElJUVzzWuQuo9LfHw8vL290ahRIzRv3hzBwcH4888/NbgHmqHu47J06VJ0795d8VBAPz8/bN++XYN7oBma+PvlkYSEBMhkMkRGRqq3aR3GAPQEGzduRFRUFGJjY3Hs2DG4u7sjKCgIBQUFStc/ePAghg8fjvDwcBw/fhzBwcEIDg5Gdna2Yp2oqCjs2LED69atw5kzZxAZGYkJEyYgNTVVW7tVb+o+LoIgIDg4GJcuXcKWLVtw/PhxtGrVCoGBgSgpKdHmrtWLqseltLQUbdq0QUJCAhwdHdWyTV2kieNSUlICd3d3JCUlabJ1jdLEcdmzZw8iIiLw22+/YefOnaioqECfPn2M/v8jZ2dnJCQk4OjRozhy5AhefPFFDBo0CKdOndLkrqiVJo7LI4cPH8bXX3+N7t27a6J13SVQjXx8fISIiAjFclVVleDk5CTEx8crXX/IkCFC//79RTVfX1/hvffeUyx36dJF+Oyzz0Tr9OzZU/jkk0/U2Llmqfu4/PnnnwIAITs7W7RNe3t7Yfny5RrYA81Q9bj8U6tWrYR58+apdZu6QhPH5Z8ACJs3b65nl9qn6eMiCIJQUFAgABD27NlTn1a1ShvHRRAE4ZlnnhFWrFhR1za1TlPH5e7du0L79u2FnTt3CgEBAcLkyZPV1LHu4xmgGpSXl+Po0aMIDAxU1ExMTBAYGIjMzEyl78nMzBStDwBBQUGi9f39/ZGamopr165BEATs3r0b586dQ58+fTSzI2qmieNSVlYGALC0tBRt08LCAvv371f3LmhEXY6LFNvUNkPYB03Q1nEpKioCADRt2lRt29QkbRyXqqoqJCcno6SkBH5+fmrZpqZp8rhERESgf//+1f6ONgYMQDW4efMmqqqq4ODgIKo7ODggLy9P6Xvy8vKeuv6iRYvQuXNnODs7w9zcHH379kVSUhJ69eql/p3QAE0cl44dO8LV1RUxMTG4ffs2ysvLMXv2bPz111+4ceOGZnZEzepyXKTYprYZwj5ogjaOi1wuR2RkJP71r3+ha9euatmmpmnyuJw8eRI2NjawsLDA2LFjsXnzZnTu3Lle29QWTR2X5ORkHDt2DPHx8fVtUS9xNngtW7RoEX777TekpqaiVatW2Lt3LyIiIuDk5GSUCRwAzMzMsGnTJoSHh6Np06YwNTVFYGAg+vXrB4EPKieqk4iICGRnZ+vNWVRN69ChA7KyslBUVIQff/wRoaGh2LNnj96EIHW7evUqJk+ejJ07d4rOvhsTBqAa2NnZwdTUFPn5+aJ6fn5+jQPKHB0dn7j+/fv3MXXqVGzevBn9+/cHAHTv3h1ZWVlITEzUiwCkieMCAJ6enoq/nMrLy2Fvbw9fX194eXmpfyc0oC7HRYptapsh7IMmaPq4TJgwAVu3bsXevXvh7Oxc7+1piyaPi7m5Odq1awfg4d83hw8fxoIFC/D111/Xa7vaoInjcvToURQUFKBnz56KWlVVFfbu3YvFixejrKwMpqam9epb1/ESWA3Mzc3h6emJ9PR0RU0ulyM9Pb3G68Z+fn6i9QFg586divUrKipQUVEBExPxYTc1NYVcLlfzHmiGJo7LP9na2sLe3h7nz5/HkSNHMGjQIPXugIbU5bhIsU1tM4R90ARNHRdBEDBhwgRs3rwZv/76K1q3bq2OdrVGm39e5HK5YvyhrtPEcXnppZdw8uRJZGVlKX68vLzw9ttvIysry+DDDwDeBfYkycnJgoWFhbB69Wrh9OnTwpgxY4QmTZoIeXl5giAIwrvvvitER0cr1j9w4IDQoEEDITExUThz5owQGxsrmJmZCSdPnlSsExAQIHTp0kXYvXu3cOnSJWHVqlWCpaWlsGTJEq3vX11p4rh8//33wu7du4WLFy8KKSkpQqtWrYTXX39d6/tWH6oel7KyMuH48ePC8ePHhRYtWghTpkwRjh8/Lpw/f77W29QHmjgud+/eVawDQJg7d65w/Phx4fLly1rfv7rSxHEZN26cYGtrK2RkZAg3btxQ/JSWlmp9/+pKE8clOjpa2LNnj5CTkyP88ccfQnR0tCCTyYRffvlF6/tXV5o4Lo8ztrvAGICeYtGiRYKrq6tgbm4u+Pj4CL/99pvitYCAACE0NFS0/vfffy88++yzgrm5udClSxfh559/Fr1+48YNISwsTHBychIsLS2FDh06CHPmzBHkcrk2dkdt1H1cFixYIDg7OwtmZmaCq6urMG3aNKGsrEwbu6JWqhyXnJwcAUC1n4CAgFpvU1+o+7js3r1b6TqP/7nTdeo+LspeByCsWrVKezulBuo+LiNHjhRatWolmJubC/b29sJLL72kV+HnEU38/fJPxhaAZILAUaZERERkXDgGiIiIiIwOAxAREREZHQYgIiIiMjoMQERERGR0GICIiIjI6DAAERERkdFhACIiIiKjwwBERERERocBiIj0WlhYGIKDg6vVMzIyIJPJcOfOHWRkZGDQoEFo0aIFrK2t4eHhge+++67ae27duoXIyEi0atUK5ubmcHJywsiRI3HlyhUt7AkRaRMDEBEZvIMHD6J79+746aef8Mcff2DEiBEICQnB1q1bFevcunULzz33HHbt2oVly5bhwoULSE5OxoULF+Dt7Y1Lly5JuAdEpG6cCoOI9FpYWBju3LmDlJQUUT0jIwO9e/fG7du30aRJk2rv69+/PxwcHLBy5UoAwLhx47B27VpcuHABjo6OivXu37+P9u3bo1u3bti+fbsmd4WItIhngIjIKBUVFaFp06YAALlcjuTkZLz99tui8AMADRs2xPjx45GWloZbt25J0SoRaUADqRsgIqqvrVu3wsbGRlSrqqqqcf3vv/8ehw8fxtdffw0AKCwsxJ07d9CpUyel63fq1AmCIODChQvw8fFRX+NEJBkGICLSe71798bSpUtFtd9//x3vvPNOtXV3796NESNGYPny5ejSpYvoNY4IIDIeDEBEpPesra3Rrl07Ue2vv/6qtt6ePXswYMAAzJs3DyEhIYq6vb09mjRpgjNnzijd/pkzZyCTyap9BhHpL44BIiKjkJGRgf79+2P27NkYM2aM6DUTExMMGTIE69evR15enui1+/fvY8mSJQgKClKMGSIi/ccAREQGb/fu3ejfvz8mTZqEwYMHIy8vD3l5eaJBzV988QUcHR3x8ssvY/v27bh69Sr27t2LoKAgVFRUICkpScI9ICJ1YwAiIoO3Zs0alJaWIj4+Hi1atFD8vP7664p1mjVrht9++w29e/fGe++9h7Zt22LIkCFo27YtDh8+jDZt2ki4B0SkbnwOEBERERkdngEiIiIio8MAREREREaHAYiIiIiMDgMQERERGR0GICIiIjI6DEBERERkdBiAiIiIyOgwABEREZHRYQAiIiIio8MAREREREaHAYiIiIiMDgMQERERGZ3/B1b9plph3o4zAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVrhJREFUeJzt3XlYVOX/PvB7QFbZRBBEWdzFXUEJW9Ci0EwlTc0sQElzFykLzCBXsFBxISlNKUtFP7llKhmKS2IqSrmvuKSAuIGiscyc3x/+nG8nBmVgZs4wc7+uiyvnzZln3udYcPc8Z5EJgiCAiIiIyIiYSN0AERERka4xABEREZHRYQAiIiIio8MAREREREaHAYiIiIiMDgMQERERGR0GICIiIjI6DEBERERkdBiAiIiIyOgwABFRrSWTyfD5559L3YZSWFgYvLy8pG6DiKqAAYiINColJQUymUz5ZWlpiZYtW2L8+PHIz8/X6mcfOHAAn3/+Oe7du6fRcXv06CHaJ0dHR3Tt2hUrVqyAQqHQyGfMmTMHmzZt0shYRPRsdaRugIgM04wZM9CkSRP8888/2L9/P5YuXYpt27bhxIkTsLa21shnPHr0CHXq/N+PsQMHDmD69OkICwuDg4ODRj7jicaNGyMuLg4AUFBQgO+//x7h4eE4d+4c4uPjazz+nDlz8NZbbyE4OLjGYxHRszEAEZFW9O7dG76+vgCA999/H/Xr18f8+fOxefNmDB06tNrjKhQKlJaWwtLSEpaWlppq95ns7e3x7rvvKl9/8MEHaNWqFZYsWYKZM2fCzMxMZ70QUc1xCYyIdOLll18GAOTk5AAAEhIS0L17d9SvXx9WVlbw8fHB//73vwrvk8lkGD9+PH788Ue0bdsWFhYW2LFjh/J7T84B+vzzzzFlyhQAQJMmTZTLVZcvX0ZAQAA6duyosq9WrVohKChI7f2xtrbGc889h+LiYhQUFFS6XXFxMT788EO4u7vDwsICrVq1QkJCAgRBEO1jcXExvvvuO2XfYWFhavdERFXHGSAi0omLFy8CAOrXrw8AWLhwIfr164dhw4ahtLQUa9euxaBBg7B161b06dNH9N5du3Zh3bp1GD9+PJycnFSeaDxgwACcO3cOa9aswYIFC+Dk5AQAcHZ2xnvvvYeRI0fixIkTaNeunfI9hw8fxrlz5zBt2rRq7dOlS5dgampa6XKbIAjo168fdu/ejfDwcHTq1AlpaWmYMmUKrl+/jgULFgAAVq1ahffffx/dunXDqFGjAADNmjWrVk9EVEUCEZEGrVy5UgAg/Pbbb0JBQYFw7do1Ye3atUL9+vUFKysr4e+//xYEQRAePnwoel9paanQrl074eWXXxbVAQgmJibCyZMnK3wWACE2Nlb5+ssvvxQACDk5OaLt7t27J1haWgqffPKJqD5x4kShbt26woMHD566TwEBAULr1q2FgoICoaCgQDh9+rQwceJEAYDQt29f5XahoaGCp6en8vWmTZsEAMKsWbNE47311luCTCYTLly4oKzVrVtXCA0NfWofRKQ5XAIjIq0IDAyEs7Mz3N3d8fbbb8PGxgYbN25Eo0aNAABWVlbKbe/evYvCwkK8+OKLOHr0aIWxAgIC0KZNm2r3Ym9vj/79+2PNmjXKpSe5XI7U1FQEBwejbt26zxzjzJkzcHZ2hrOzM7y9vbF48WL06dMHK1asqPQ927Ztg6mpKSZOnCiqf/jhhxAEAdu3b6/2PhFRzXAJjIi0IikpCS1btkSdOnXg4uKCVq1awcTk//6fa+vWrZg1axays7NRUlKirMtksgpjNWnSpMb9hISEIDU1Ffv27cNLL72E3377Dfn5+Xjvvfeq9H4vLy8sW7ZMeWl/ixYt0KBBg6e+58qVK3Bzc4Otra2o7u3trfw+EUmDAYiItKJbt27Kq8D+a9++fejXrx9eeuklfPXVV2jYsCHMzMywcuVKrF69usL2/54tqq6goCC4uLjghx9+wEsvvYQffvgBrq6uCAwMrNL769atW+VtiUj/cQmMiHTup59+gqWlJdLS0jBixAj07t1bI+FC1ezRE6ampnjnnXfwv//9D3fv3sWmTZswdOhQmJqa1vhzK+Pp6YkbN27g/v37ovqZM2eU33/iab0TkeYxABGRzpmamkImk0Eulytrly9frvGdkJ+cy1PZnaDfe+893L17Fx988AEePHgguq+PNrz++uuQy+VYsmSJqL5gwQLIZDL07t1bWatbt67G72BNRJXjEhgR6VyfPn0wf/589OrVC++88w5u3ryJpKQkNG/eHH/99Ve1x/Xx8QEAfPrpp3j77bdhZmaGvn37KoNR586d0a5dO6xfvx7e3t7o0qWLRvanMn379kXPnj3x6aef4vLly+jYsSN+/fVXbN68GREREaJL3X18fPDbb79h/vz5cHNzQ5MmTeDn56fV/oiMGWeAiEjnXn75ZXz77bfIy8tDREQE1qxZg7lz5+LNN9+s0bhdu3bFzJkz8eeffyIsLAxDhw6tcJPCkJAQAKjyyc81YWJigi1btiAiIgJbt25FREQETp06hS+//BLz588XbTt//nz4+Phg2rRpGDp0KJYuXar1/oiMmUwQ/nU7UiIiA7dw4UJMnjwZly9fhoeHh9TtEJFEGICIyGgIgoCOHTuifv362L17t9TtEJGEeA4QERm84uJibNmyBbt378bx48exefNmqVsiIolxBoiIDN7ly5fRpEkTODg4YOzYsZg9e7bULRGRxBiAiIiIyOjwKjAiIiIyOgxAREREZHR4ErQKCoUCN27cgK2tLW9PT0REVEsIgoD79+/Dzc1N9PBlVRiAVLhx4wbc3d2lboOIiIiq4dq1a2jcuPFTt2EAUsHW1hbA4wNoZ2cncTdERERUFUVFRXB3d1f+Hn8aBiAVnix72dnZMQARERHVMlU5fYUnQRMREZHRYQAiIiIio8MAREREREaH5wDVgFwuR1lZmdRtkA6Ym5s/85JKIiKqPRiAqkEQBOTl5eHevXtSt0I6YmJigiZNmsDc3FzqVoiISAMYgKrhSfhp0KABrK2tebNEA/fkxpi5ubnw8PDg3zcRkQFgAFKTXC5Xhp/69etL3Q7piLOzM27cuIHy8nKYmZlJ3Q4REdUQT2pQ05NzfqytrSXuhHTpydKXXC6XuBMiItIEBqBq4jKIceHfNxGRYWEAIiIiIqPDAERERERGhwHIiISFhUEmk0Emk8HMzAwuLi549dVXsWLFCigUiiqPk5KSAgcHB+01SkREpGUMQEamV69eyM3NxeXLl7F9+3b07NkTkyZNwhtvvIHy8nKp2yMiItIJBiAjY2FhAVdXVzRq1AhdunTB1KlTsXnzZmzfvh0pKSkAgPnz56N9+/aoW7cu3N3dMXbsWDx48AAAkJGRgeHDh6OwsFA5m/T5558DAFatWgVfX1/Y2trC1dUV77zzDm7evCnRnhIRkb7asgXo3v3xP6WiFwEoKSkJXl5esLS0hJ+fHw4dOlTptidPnsTAgQPh5eUFmUyGxMTECtt8/vnnyl/OT75at26ttf4FQUBpaanOvwRB0Ej/L7/8Mjp27IgNGzYAeHzX40WLFuHkyZP47rvvsGvXLnz88ccAgO7duyMxMRF2dnbIzc1Fbm4uPvroIwCPbxEwc+ZM/Pnnn9i0aRMuX76MsLAwjfRIRESGobS0FMuXn8eRI6WIj5euD8lvhJiamorIyEgkJyfDz88PiYmJCAoKwtmzZ9GgQYMK2z98+BBNmzbFoEGDMHny5ErHbdu2LX777Tfl6zp1tLerZWVliIuL09r4lYmOjtbYoxlat26Nv/76CwAQERGhrHt5eWHWrFkYPXo0vvrqK5ibm8Pe3h4ymQyurq6iMUaMGKH8c9OmTbFo0SJ07doVDx48gI2NjUb6JCKi2mnLFmDZsovw9f0BPj6Ao6M/Bgx4TbJ+JJ8Bmj9/PkaOHInhw4ejTZs2SE5OhrW1NVasWKFy+65du+LLL7/E22+/DQsLi0rHrVOnDlxdXZVfTk5O2toFgyAIgvJeN7/99hteeeUVNGrUCLa2tnjvvfdw+/ZtPHz48KljZGVloW/fvvDw8ICtrS0CAgIAAFevXtV6/0REpN+OHZsOX98flK9jYpqjXz/p+pF0Bqi0tBRZWVmIjo5W1kxMTBAYGIjMzMwajX3+/Hm4ubnB0tIS/v7+iIuLg4eHh8ptS0pKUFJSonxdVFSk1meZmZmJ9kFXNPlIhtOnT6NJkya4fPky3njjDYwZMwazZ8+Go6Mj9u/fj/DwcJSWllZ6B+zi4mIEBQUhKCgIP/74I5ydnXH16lUEBQWhtLRUY30SEVHtcvv2bSxZskRUGzFiBNzd3SXq6DFJA9CtW7cgl8vh4uIiqru4uODMmTPVHtfPzw8pKSlo1aoVcnNzMX36dLz44os4ceIEbG1tK2wfFxeH6dOnV/vzZDJZrX5K+K5du3D8+HFMnjwZWVlZUCgUmDdvHkxMHk8Qrlu3TrS9ubl5hUdCnDlzBrdv30Z8fLzyX+ojR47oZgeIiEgvrV+/HqdOnRLVPv30U62ellJV0negBb1791b+uUOHDvDz84OnpyfWrVuH8PDwCttHR0cjMjJS+bqoqEjyZKotJSUlyMvLg1wuR35+Pnbs2IG4uDi88cYbCAkJwYkTJ1BWVobFixejb9+++P3335GcnCwaw8vLCw8ePEB6ejo6duwIa2treHh4wNzcHIsXL8bo0aNx4sQJzJw5U6K9JCIiKQmCgBkzZlSox8bGStCNapKeA+Tk5ARTU1Pk5+eL6vn5+RVOsK0JBwcHtGzZEhcuXFD5fQsLC9jZ2Ym+DNWOHTvQsGFDeHl5oVevXti9ezcWLVqEzZs3w9TUFB07dsT8+fMxd+5ctGvXDj/++GOFE7y7d++O0aNHY8iQIXB2dsYXX3wBZ2dnpKSkYP369WjTpg3i4+ORkJAg0V4SEZFU/v777wrhZ8CAAXoVfgBAJmjqWupq8vPzQ7du3bB48WIAgEKhgIeHB8aPH4+oqKinvtfLywsRERGiq5ZUefDgATw8PPD5559j4sSJz+ypqKgI9vb2KCwsrBCG/vnnH+Tk5KBJkyawtLR85lhkGPj3TkT0bN988w1yc3NFNV0ueT3t9/d/Sb4EFhkZidDQUPj6+qJbt25ITExEcXExhg8fDgAICQlBo0aNlLMQpaWlyvXE0tJSXL9+HdnZ2bCxsUHz5s0BAB999BH69u0LT09P3LhxA7GxsTA1NcXQoUOl2UkiIiIDplAoKpz2YGdn99Tb1UhN8gA0ZMgQFBQUICYmBnl5eejUqRN27NihPDH66tWrypNxAeDGjRvo3Lmz8nVCQgISEhIQEBCAjIwMAI+n34YOHYrbt2/D2dkZL7zwAg4ePAhnZ2ed7hsREZGhO3fuHNasWSOqhYSEoEmTJhJ1VDWSL4HpIy6B0X/x752IqKI5c+agrKxMVIuJiVHeV07XatUSGBEREdUuZWVlmDNnjqjm5eWF0NBQiTpSHwMQERERVdnRo0fx888/i2offPCBRq/e1gUGICIiIqoSVTcN1rfL26uKAYiIiIie6uHDh/jyyy9Ftc6dO6OflA/zqiEGICIiIqpURkYG9uzZI6pNmjQJDg4O0jSkIQxAREREpJIhLXn9l6SPwiDDFBYWhuDgYOXrHj16PPNu3c+iiTGIiKhq7t27VyH89OjRw2DCD8AZIKMSFhaG7777DgBgZmYGDw8PhISEYOrUqVq9TfmGDRtgZmZWpW0zMjLQs2dP3L17VzS9qs4YRERUfZs3b0Z2draoNmXKFFhbW0vTkJYwABmZXr16YeXKlSgpKcG2bdswbtw4mJmZITo6WrRdaWkpzM3NNfKZjo6OejEGERE9nSEvef0Xl8CMjIWFBVxdXeHp6YkxY8YgMDAQW7ZsUS5bzZ49G25ubmjVqhUA4Nq1axg8eDAcHBzg6OiI/v374/Lly8rx5HI5IiMj4eDggPr16+Pjjz/Gf28u/t/lq5KSEnzyySdwd3eHhYUFmjdvjm+//RaXL19Gz549AQD16tWDTCZDWFiYyjHu3r2LkJAQ1KtXD9bW1ujduzfOnz+v/H5KSgocHByQlpYGb29v2NjYoFevXqKH9GVkZKBbt26oW7cuHBwc8Pzzz+PKlSsaOtJERLVHbm5uhfDTt29fgw0/AAOQ0bOyskJpaSkAID09HWfPnsXOnTuxdetWlJWVISgoCLa2tti3bx9+//13ZZB48p558+YhJSUFK1aswP79+3Hnzh1s3LjxqZ8ZEhKCNWvWYNGiRTh9+jS+/vpr2NjYwN3dHT/99BMA4OzZs8jNzcXChQtVjhEWFoYjR45gy5YtyMzMhCAIeP3110W3ZH/48CESEhKwatUq7N27F1evXsVHH30EACgvL0dwcDACAgLw119/ITMzE6NGjZLs9u1ERFL57rvv8M0334hqU6dORZcuXSTqSDe4BGakBEFAeno60tLSMGHCBBQUFKBu3bpYvny5cunrhx9+gEKhwPLly5XBYOXKlXBwcEBGRgZee+01JCYmIjo6GgMGDAAAJCcnIy0trdLPPXfuHNatW4edO3ciMDAQANC0aVPl958sdTVo0KDSSyzPnz+PLVu24Pfff0f37t0BAD/++CPc3d2xadMmDBo0CMDjW7UnJyejWbNmAIDx48djxowZAB4/L6awsBBvvPGG8vve3t7qH0giolpKEATlz8QnzM3NK5wSYag4AySxLVuA7t0f/1MXtm7dChsbG1haWqJ3794YMmQIPv/8cwBA+/btRef9/Pnnn7hw4QJsbW1hY2MDGxsbODo64p9//sHFixdRWFiI3Nxc+Pn5Kd9Tp04d+Pr6Vvr52dnZMDU1RUBAQLX34fTp06hTp47oc+vXr49WrVrh9OnTypq1tbUy3ABAw4YNcfPmTQCPg1ZYWBiCgoLQt29fLFy4ULQ8RkRkyC5dulQh/AwdOtRowg/AGSDJxccDmZmP/6mLG2r27NkTS5cuhbm5Odzc3ERXf9WtW1e07YMHD+Dj44Mff/yxwjjOzs7V+nwrK6tqva86/nvVmEwmE52ftHLlSkycOBE7duxAamoqpk2bhp07d+K5557TWY9ERLo2f/583L9/X1T77LPPYGJiXHMixrW3eigqCvD3f/xPXahbty6aN28ODw+PZ1763qVLF5w/fx4NGjRA8+bNRV/29vawt7dHw4YN8ccffyjfU15ejqysrErHbN++PRQKRYW7ij7xZAZKLpdXOoa3tzfKy8tFn3v79m2cPXsWbdq0eeo+/Vfnzp0RHR2NAwcOoF27dli9erVa7yciqi3Ky8sxffp0Ufhxc3NDbGys0YUfgAFIcv36AQcO6Gb2R13Dhg2Dk5MT+vfvj3379iEnJwcZGRmYOHEi/v77bwCPb4ceHx+PTZs24cyZMxg7dizu3btX6ZheXl4IDQ3FiBEjsGnTJuWY69atAwB4enpCJpNh69atKCgowIMHDyqM0aJFC/Tv3x8jR47E/v378eeff+Ldd99Fo0aN0L9//yrtW05ODqKjo5GZmYkrV67g119/xfnz53keEBEZpOPHj2P27Nmi2vvvv4+RI0dK1JH0GICoUtbW1ti7dy88PDwwYMAAeHt7Izw8HP/88w/s7OwAAB9++CHee+89hIaGwt/fH7a2tnjzzTefOu7SpUvx1ltvYezYsWjdujVGjhyJ4uJiAECjRo0wffp0REVFwcXFBePHj1c5xsqVK+Hj44M33ngD/v7+EAQB27Ztq/LNEq2trXHmzBkMHDgQLVu2xKhRozBu3Dh88MEHahwhIiL9N336dGzYsEFUi4mJQaNGjSTqSD/IhP/etIVQVFQEe3t7FBYWKn/RP/HPP/8gJycHTZo0gaWlpUQdkq7x752Iapt//vkHc+fOFdXatm2Lt956S6KOtO9pv7//iydBExERGZgDBw5g586dotr48eNRv359iTrSPwxAREREBsSYHmdREwxAREREBqCoqAgLFiwQ1Z5//nnlTWdJjAGIiIioltu+fTsOHTokqn344YewsbGRqCP9xwBUTTx33Ljw75uI9BWXvKqHAUhNTy6zfvjwoU7vakzSevLwV1NTU4k7ISJ6rKCgAF999ZWo1qtXL9FjgqhyDEBqMjU1hYODg/KZUtbW1nyCuIFTKBQoKCiAtbX1M++eTUSkC2vWrMG5c+dEtaioKFhYWEjUUe3Dn+bV4OrqCgDKEESGz8TEBB4eHgy7RCQpVU9wB7jkVR0MQNUgk8nQsGFDNGjQAGVlZVK3Qzpgbm5ulM/KISL9cfz48Qp3dB40aJDaz0CkxxiAasDU1JTnhBARkdapOtF52rRp/B1UAwxAREREeqq8vLzCQ0wBoHPnWDD71AwDEBERkR7at28fdu3aJar99VcwNmzoCH9/oF8/iRozEAxAREREekbVkldMTAx+/lmG3FwgKkqCpgwMAxAREZGeePToEb744osK9SdXefXrx5kfTWEAIiIi0gObN29Gdna2qBYSEoImTZpI05CBYwAiIiKSGB9noXsMQERERBK5e/cuFi1aJKo5ODhg0qRJEnVkPBiAiIiIJLB8+XJcv35dVBs7diycnZ0l6si4MAARERHpGJe8pKcX9/ZPSkqCl5cXLC0t4efnh0OHDlW67cmTJzFw4EB4eXlBJpMhMTHxqWPHx8dDJpMhIiJCs00TERGp6fr16xXCT8uWLRl+JCD5DFBqaioiIyORnJwMPz8/JCYmIigoCGfPnkWDBg0qbP/w4UM0bdoUgwYNwuTJk5869uHDh/H111+jQ4cO2mqfiIioSmbPno3y8nJRLTIyEra2thJ1ZNwknwGaP38+Ro4cieHDh6NNmzZITk6GtbU1VqxYoXL7rl274ssvv8Tbb78NCwuLSsd98OABhg0bhmXLlqFevXraap+IiOipBEHA9OnTK4Sf2NhYhh8JSRqASktLkZWVhcDAQGXNxMQEgYGByMzMrNHY48aNQ58+fURjV6akpARFRUWiLyIiopo6e/YsZsyYIar5+/tzyUsPSLoEduvWLcjlcri4uIjqLi4uOHPmTLXHXbt2LY4ePYrDhw9Xafu4uDiVJ6QRERFVl6rfK9HR0TA3N5egG/ovyZfANO3atWuYNGkSfvzxR1haWlbpPdHR0SgsLFR+Xbt2TctdEhGRoVIoFJVe5cXwoz8knQFycnKCqakp8vPzRfX8/Hy4urpWa8ysrCzcvHkTXbp0Udbkcjn27t2LJUuWoKSkBKampqL3WFhYPPV8IiIioqo4dOgQtm/fLqq9/vrr6Nq1q0QdUWUkDUDm5ubw8fFBeno6goODATxOzunp6Rg/fny1xnzllVdw/PhxUW348OFo3bo1Pvnkkwrhh4iISBNUzfp89tlnMDExuMUWgyD5ZfCRkZEIDQ2Fr68vunXrhsTERBQXF2P48OEAHj8IrlGjRoiLiwPw+MTpU6dOKf98/fp1ZGdnw8bGBs2bN4etrS3atWsn+oy6deuifv36FepEREQ1VVJSgvj4+Ap1nuis3yQPQEOGDEFBQQFiYmKQl5eHTp06YceOHcoTo69evSpKzzdu3EDnzp2VrxMSEpCQkICAgABkZGToun0iIjJiO3bswB9//CGqDR06FC1btpSoI6oqmSAIgtRN6JuioiLY29ujsLAQdnZ2UrdDRER6SNWSV0xMDGQymQTdEKDe72/JZ4CIiIhqk/v372P+/Pmimrm5OaKjoyXqiKqDAYiIiKiKfvzxR1y4cEFUGzlyJNzc3CTqiKqLAYiIiKgK+AR3w8IARERE9BT5+flITk4W1dzd3TFixAiJOiJNYAAiIiKqhKpZn0mTJsHBwUH3zZBGMQARERGpwCUvw8YARERE9C8HDx5EWlqaqFZY6IYePUZK1BFpAwMQERHR/6dq1icjIxKTJ9uiXz8JGiKtYQAiIiKjp1AoMHPmzAr1tLRYZGYCJSVgADIwDEBERGTUNm3ahD///FNUe3KVV+fOQHw8EBUlUXOkNQxARERktFQteU2dOhVmZmYAHs/6cObHMDEAERGR0eET3IkBiIiIjMqSJUtw+/ZtUc3Pzw+9evWSqCOSAgMQEREZDT7BnZ5gACIiIoN39+5dLFq0qEKdS17GiwGIiIgMmqpZn759+6JLly4SdEP6ggGIiIgMFh9nQZVhACIiIoNz5coVpKSkVKgz/NATDEBERGRQVM36hIaGwsvLS/fNkN5iACIiIoPBJS+qKgYgIiKq9bKzs7F58+YKdYYfqgwDEBER1WqqZn0mTJgAR0dHCbqh2oIBiIiIaiVBEDBjxowKdc76UFUwABERUa2TlpaGgwcPimqOjo6YMGGCRB1RbcMAREREtYqqJa9PPvkElpaWEnRDtRUDEBER1QplZWWYM2dOhTqXvKg6GICIiEjvpaSk4MqVK6Jahw4d8Oabb0rUEdV2DEBERKTXVC15/frrZ4iNNZGgGzIUDEBERKSX7t+/j/nz51eop6XFIipKgobIoDAAERGR3pkxYwYEQRDVXn31VXTv3h085Yc0gQGIiIj0Ch9nQbrAAERERHohNzcX33zzTYU6ww9pAwMQERFJTtWsz9ChQ9GyZUsJuiFjwABERESS4pIXSYEBiIiIJHH69GmsW7euQp3hh3SBAYiIiHRO1azP6NGj4eLiIkE3ZIx4FykiItIZQRBUhp+0tFiGH9IpvQhASUlJ8PLygqWlJfz8/HDo0KFKtz158iQGDhwILy8vyGQyJCYmVthm6dKl6NChA+zs7GBnZwd/f39s375di3tARETPsm/fPsyYMUNUMzGx4I0NSRKSL4GlpqYiMjISycnJ8PPzQ2JiIoKCgnD27Fk0aNCgwvYPHz5E06ZNMWjQIEyePFnlmI0bN0Z8fDxatGgBQRDw3XffoX///jh27Bjatm2r7V0iIqL/UDXr89FHH6Fu3br47DMJGiKjJxP+e6tNHfPz80PXrl2xZMkSAIBCoYC7uzsmTJiAqGf8L4GXlxciIiIQERHxzM9xdHTEl19+ifDw8GduW1RUBHt7exQWFsLOzq5K+0FERBXJ5XLMmjWrQp0nOpM2qPP7W9IZoNLSUmRlZSE6OlpZMzExQWBgIDIzMzXyGXK5HOvXr0dxcTH8/f1VblNSUoKSkhLl66KiIo18NhGRMVu/fj1OnTolqjVv3hzDhg2TqCOi/yNpALp16xbkcnmFE99cXFxw5syZGo19/Phx+Pv7459//oGNjQ02btyINm3aqNw2Li5O5fQsERFVj6qfqZ9++inq1JH8zAsiAHpyErQ2tGrVCtnZ2fjjjz8wZswYhIaGVvg/kSeio6NRWFio/Lp27ZqOuyUiMgyPHj2q9MaGDD+kTyT9t9HJyQmmpqbIz88X1fPz8+Hq6lqjsc3NzdG8eXMAgI+PDw4fPoyFCxfi66+/rrCthYUFLCwsavR5RETGbv78+bh//76o9uKLL+Lll1+WqCOiykk6A2Rubg4fHx+kp6crawqFAunp6ZWer1NdCoVCdJ4PERFpzvTp0yuEn5iYGIYf0luSz0dGRkYiNDQUvr6+6NatGxITE1FcXIzhw4cDAEJCQtCoUSPExcUBeHzi9JOlrNLSUly/fh3Z2dmwsbFRzvhER0ejd+/e8PDwwP3797F69WpkZGQgLS1Nmp0kIjJQt27dQlJSUoU6r/IifSd5ABoyZAgKCgoQExODvLw8dOrUCTt27FCeGH316lWYmPzfRNWNGzfQuXNn5euEhAQkJCQgICAAGRkZAICbN28iJCQEubm5sLe3R4cOHZCWloZXX31Vp/tGRGTIVJ3r8+abb6JDhw4SdEOkHsnvA6SPeB8gIqKn4xPcSR/VmvsAERFR7XLp0iWsWrWqQp3hh2obBiAiIqoSVbM+4eHhaNy4sQTdENUMAxARET0Tl7zI0DAAERFRpQ4fPoxt27ZVqDP8UG3HAERERCqpmvWJiIiAvb29BN0QaRYDEBERiQiCgBkzZlSoc9aHDAkDEBERKW3duhVZWVmiWsOGDTFq1CiJOiLSDgYgIiICoHrJKzo6Gubm5hJ0Q6RdDEBEREautLRU+bihf+OSFxkyBiAiIiP2zTffIDc3V1Tz8fHBG2+8IVFHRLrBAEREZKRULXnFxMRAJpNJ0A2RbjEAEREZmcLCQiQmJlaoc8mLjAkDEBGREVE16/P666+ja9euEnRDJB0GICIiI8HHWRD9HwYgIiIDl5+fj+Tk5Ap1hh8yZmoHIFNTU+Tm5qJBgwai+u3bt9GgQQPI5XKNNUdERDWjatanefP3MGxYUwm6IdIfagcgQRBU1ktKSnizLCIiPcIlL6LKVTkALVq0CAAgk8mwfPly2NjYKL8nl8uxd+9etG7dWvMdEhGRWs6fP4/Vq1eLatbW1pgyZYpEHRHpnyoHoAULFgB4PAOUnJwMU1NT5ffMzc3h5eWlco2ZiIh0R9Wsz6RJk+Dg4KD7Zoj0WJUDUE5ODgCgZ8+e2LBhA+rVq6e1poiISD18gjuRetQ+B2j37t3a6IOIiKopPT0d+/fvF9WcnZ0xduxYiToi0n9qB6ARI0Y89fsrVqyodjNERKQeVUteH3/8MaysrCTohqj2MFH3DXfv3hV93bx5E7t27cKGDRtw7949LbRIRET/VV5eXulVXjt3WqF7d2DLFgkaI6ol1J4B2rhxY4WaQqHAmDFj0KxZM400RURElfvhhx9w8eJFUa1NmzYYNGgQACA+HsjMfPzPfv2k6JBI/8mEym7so6azZ8+iR48eyM3N1cRwkioqKoK9vT0KCwthZ2cndTtEREqqZn2mTZsmujJ3y5bH4ScqigGIjIs6v7819iiMixcvory8XFPDERHRvxQXFyMhIaFCXdVVXv36MfgQPYvaASgyMlL0WhAE5Obm4pdffkFoaKjGGiMiosfi4uJQWloqqr388st48cUXJeqIqPZTOwAdO3ZM9NrExATOzs6YN2/eM68QIyIi9aha8oqJiYFMJpOgGyLDwfsAERHpIT7BnUi7qn0O0M2bN3H27FkAQKtWrSo8HZ6IiKpH1azP4MGD4e3tLUE3RIZJ7QBUVFSEcePGYc2aNVAoFAAAU1NTDBkyBElJSbC3t9d4k0RExoJPcCfSDbVvhDhy5Ej88ccf+OWXX3Dv3j3cu3cPW7duxZEjR/DBBx9oo0ciIoN37tw5hh8iHVL7PkB169ZFWloaXnjhBVF937596NWrF4qLizXaoBR4HyAi0iVVwWfUqFFo2LChBN0Q1V5avQ9Q/fr1VS5z2dvb8wnxRERqUhV+OneOBbMPkXapHYCmTZuGyMhIrFq1Cq6urgCAvLw8TJkyBZ999pnGGyQiMkR//vknNm3aJKrJZDLExMRI0xCRkVF7Caxz5864cOECSkpK4OHhAQC4evUqLCws0KJFC9G2R48e1VynOsQlMCLSJlWzPu3aRWLgQFsJuiEyHFpdAuvfvz9vwEVEVA0KhQIzZ86sUOeJzkS6p7GHodZEUlISvvzyS+Tl5aFjx45YvHgxunXrpnLbkydPIiYmBllZWbhy5QoWLFiAiIgI0TZxcXHYsGEDzpw5AysrK3Tv3h1z585Fq1atqtQPZ4CISNN27dqFffv2iWpdunRB3759JeqIyPCo8/tb7cvgmzZtitu3b1eo37t3D02bNlV3OKSmpiIyMhKxsbE4evQoOnbsiKCgINy8eVPl9g8fPkTTpk0RHx+vPAfpv/bs2YNx48bh4MGD2LlzJ8rKyvDaa68ZxBVqRFT7TJ8+vUL4+fTTTxl+iCSk9gyQiYkJ8vLyKtz5OT8/H+7u7hUe2Pcsfn5+6Nq1K5YsWQLg8RSxu7s7JkyYgKioqKe+18vLCxERERVmgP6roKAADRo0wJ49e/DSSy89syfOABGRJpSUlCA+Pr5CnUteRNqhlXOAtmzZovxzWlqa6FJ4uVyO9PR0NGnSRK1GS0tLkZWVhejoaGXNxMQEgYGByMzMVGuspyksLAQAODo6qvx+SUkJSkpKlK+Lioo09tlEZJzWrl2rfFzQE6+99hr8/f0l6oiI/q3KASg4OBjA48s0Q0NDRd8zMzODl5cX5s2bp9aH37p1C3K5HC4uLqK6i4sLzpw5o9ZYlVEoFIiIiMDzzz+Pdu3aqdwmLi5O5VUZRETVwSe4E+m/KgegJ8/9atKkCQ4fPgwnJyetNaVJ48aNw4kTJ7B///5Kt4mOjkZkZKTydVFREdzd3XXRHhEZkMLCQiQmJlaoc8mLSP+ofRl8Tk6Oxj7cyckJpqamyM/PF9Xz8/MrPcFZHePHj8fWrVuxd+9eNG7cuNLtLCwsYGFhUePPIyLjtWDBggrL52+//XaVrz4lIt1SOwDNmDHjqd9X5y6m5ubm8PHxQXp6unKJTaFQID09HePHj1e3NSVBEDBhwgRs3LgRGRkZap+bRESkDj7ElKj2UTsAbdy4UfS6rKwMOTk5qFOnDpo1a6b2bdwjIyMRGhoKX19fdOvWDYmJiSguLsbw4cMBACEhIWjUqBHi4uIAPD5x+tSpU8o/X79+HdnZ2bCxsUHz5s0BPF72Wr16NTZv3gxbW1vk5eUBePy8MisrK3V3mYhIpRs3bmDZsmUV6gw/RPpPIzdCLCoqQlhYGN5880289957ar9/yZIlyhshdurUCYsWLYKfnx8AoEePHvDy8kJKSgoA4PLlyypndAICApCRkQEAlZ5ouHLlSoSFhVVpf3gZPBE9DZ/gTqR/1Pn9rbE7QR8/fhx9+/bF5cuXNTGcpBiAiOhpuORFpJ+0+iywyhQWFirvt0NEZIjOnDmD1NRUUc3BwQGTJk2SqCMiqi61A9CiRYtErwVBQG5uLlatWoXevXtrrDEiIn2iatZn8uTJnCUmqqXUDkALFiwQvTYxMYGzszNCQ0NFd3QmIjIEgiCovPqVS15EtZuk9wEiItJnBw4cwM6dO0U1b29vDB48WKKOiEhTqnUO0L1793DhwgUAQPPmzeHg4KDJnoiIJKdqySs6Ohrm5uYSdENEmmaizsaXL19Gnz594OTkBD8/P/j5+cHJyQlvvPGGQVz9RURUXl5e6VVeDD9EhqPKM0DXrl3Dc889BzMzM8ycORPe3t4AgFOnTmHp0qXw9/fH4cOHn/rICSIifbZ582ZkZ2eLagEBAejRo4ck/RCR9lT5PkDh4eG4cOEC0tLSYGlpKfreo0eP0KtXL7Ro0QLLly/XSqO6xPsAERkfVbM+n332GUxM1JooJyIJaeU+QDt27EBqamqF8AMAVlZWmDlzJt5++231uyUiklBxcTESEhIq1HmVF5Fhq3IAunXrFry8vCr9ftOmTXHnzh1N9EREpBNff/218lmBTwwYMADt27eXqCMi0pUqB6CGDRvi1KlTlZ7jc+LECbi6umqsMSIibeLjLIiMW5UXt4ODg/HRRx+hoKCgwvdu3ryJTz75BMHBwZrsjYhI4woKChh+iKjqJ0HfvXsXfn5+yMvLw7vvvovWrVtDEAScPn0aq1evhqurKw4ePAhHR0dt96x1PAmayDCpCj7Dhw+Hh4eHBN0QkaZp5SToevXq4Y8//sDUqVOxdu1a3Lt3D8DjBwG+8847mDNnjkGEHyIyTJz1IaJ/q/IM0L8JgqBcCnN2doZMJtN4Y1LiDBCR4bh06RJWrVolqpmbm/PZhUQGSCszQP8mk8nQoEGDajVHRKQrqmZ9Jk6ciHr16knQDRHpk2oFICIifcYnuBPRszAAEZFBycrKwtatW0U1Ly8vhIaGStQREekjBiAiMhiqlrw+/vhjWFlZSdANEekzBiAiqvXkcjlmzZpVoc4lLyKqTJUC0KJFi6o84MSJE6vdDBGRutLS0nDw4EFRzc/PD7169ZKoIyKqDap0GXyTJk2qNphMhkuXLtW4KanxMnii2kHVkte0adNgamoqQTdEJDWNXwafk5OjkcaIiDThn3/+wdy5cyvUueRFRFVV7XOASktLkZOTg2bNmqFOHZ5KRES6sWrVqgozzX369IGvr69EHRFRbVTlh6E+8fDhQ4SHh8Pa2hpt27bF1atXAQATJkxAfHy8xhskInpi+vTpFcJPTEwMww8RqU3tABQdHY0///wTGRkZsLS0VNYDAwORmpqq0eaIiIDHD2Ou7FlehvYoHiLSDbXXrjZt2oTU1FQ899xzoh88bdu2xcWLFzXaHBFRfHw8SkpKRLV3330XzZo1k6gjIjIEageggoIClc8BKy4u5v+JEZFG8QnuRKQtai+B+fr64pdfflG+fhJ6li9fDn9/f811RkRG68cfLzP8EJFWqT0DNGfOHPTu3RunTp1CeXk5Fi5ciFOnTuHAgQPYs2ePNnokIiOiKviMGTNG5cwzEVF1qT0D9MILLyA7Oxvl5eVo3749fv31VzRo0ACZmZnw8fHRRo9EZCQqm/Vh+CEiTavWDXyaNWuGZcuWaboXIjJS+/fvR3p6eoV6585c8iIi7ahSACoqKqrygHx0BBGpQ9Wsz6RJk+Dg4KD7ZojIaFQpADk4OFT5Ci+5XF6jhojIOGzerEB29swKdZ7oTES6UKUAtHv3buWfL1++jKioKISFhSmv+srMzMR3332HuLg47XRJRAbl119/RXZ2pqhWr149TJw4UaKOiMjYVOlp8P/2yiuv4P3338fQoUNF9dWrV+Obb75BRkaGJvuTBJ8GT6Q9qpa8oqOjYW5uLkE3RGRI1Pn9rfZVYJmZmSqfu+Pr64tDhw6pOxwRGYnS0tJKr/Ji+CEiXVM7ALm7u6u8Amz58uVwd3dXu4GkpCR4eXnB0tISfn5+Tw1RJ0+exMCBA+Hl5QWZTIbExMQK2+zduxd9+/aFm5sbZDIZNm3apHZPRKRZ33//fYUl8hdeeIHn+xCRZNS+DH7BggUYOHAgtm/fDj8/PwDAoUOHcP78efz0009qjZWamorIyEgkJyfDz88PiYmJCAoKwtmzZ1Xe9+Phw4do2rQpBg0ahMmTJ6scs7i4GB07dsSIESMwYMAAdXePiDRM1axPTEwMH51DRJJS+xwgAPj777/x1Vdf4cyZMwAAb29vjB49Wu0ZID8/P3Tt2hVLliwBACgUCri7u2PChAmIiop66nu9vLwQERGBiIiISreRyWTYuHEjgoOD1eqL5wAR1VxRUREWLFhQoc5ZHyLSFnV+f1frRoiNGzfGnDlzqtXcE6WlpcjKykJ0dLSyZmJigsDAQGRmZj7lnZpXUlIietq0Ovc9IqKKZs+ejfLyclHtzTffRIcOHSTqiIhIrFoB6N69e/j2229x+vRpAEDbtm0xYsQI2NvbV3mMW7duQS6Xw8XFRVR3cXFRzizpSlxcnMppeiJSHx9iSkS1gdonQR85cgTNmjXDggULcOfOHdy5cwfz589Hs2bNcPToUW30qHXR0dEoLCxUfl27dk3qlohqnYKCAoYfIqo11J4Bmjx5Mvr164dly5ahTp3Hby8vL8f777+PiIgI7N27t0rjODk5wdTUFPn5+aJ6fn4+XF1d1W2rRiwsLGBhYaHTzyQyJPHx8aJlZAD444/h2LbNQ6KOiIierlozQJ988oky/ABAnTp18PHHH+PIkSNVHsfc3Bw+Pj6iByAqFAqkp6cr7zBNRPpv+vTpFcJPWlosRo9m+CEi/aX2DJCdnR2uXr2K1q1bi+rXrl2Dra2tWmNFRkYiNDQUvr6+6NatGxITE1FcXIzhw4cDAEJCQtCoUSPl/UNKS0tx6tQp5Z+vX7+O7Oxs2NjYoHnz5gCABw8e4MKFC8rPyMnJQXZ2NhwdHeHhwR/IRJqSk5OD77//XlRzc3PDyJEjwVUvItJ3agegIUOGIDw8HAkJCejevTsA4Pfff8eUKVMqPB6jKmMVFBQgJiYGeXl56NSpE3bs2KE8Mfrq1aswMfm/SaobN26gc+fOytcJCQlISEhAQECA8hEcR44cQc+ePZXbREZGAgBCQ0ORkpKi7u4SkQqqzvWJjIxU+3+CiIikovZ9gEpLSzFlyhQkJycrL3M1MzPDmDFjEB8fbxDn0vA+QESqCYKAGTNmVKjzRGci0gfq/P6u1o0Qgcd3Zb548SIAoFmzZrC2tq7OMHqJAYioouzsbGzevFlU69y5M/r16ydRR0REYlq/ESIAWFtbo3379tV9OxHVInyCOxEZmioHoBEjRlRpuxUrVlS7GSLSL3K5HLNmzapQ55IXEdV2VQ5AKSkp8PT0ROfOnVHNVTMiqkV27dqFffv2iWqvvvqq8uIHIqLarMoBaMyYMVizZg1ycnIwfPhwvPvuu3B0dNRmb0SkY1u2APHxQFBQxSWvzz77THRVJhFRbVbln2ZJSUnIzc3Fxx9/jJ9//hnu7u4YPHgw0tLSOCNEZCASEh6pDD+xsbEMP0RkUKp9FdiVK1eQkpKC77//HuXl5Th58iRsbGw03Z8keBUYGaN169YpH3D8xKBBg9CmTRuJOiIiUo9OrgIzMTGBTCaDIAiQy+XVHYaI9AAfYkpExkatOe2SkhKsWbMGr776Klq2bInjx49jyZIluHr1qsHM/hAZk7t37zL8EJFRqvIM0NixY7F27Vq4u7tjxIgRWLNmDZycnLTZGxFp0aJFi3D37l1RLTw8HI0bN5aoIyIi3anyOUAmJibw8PBA586dIZPJKt1uw4YNGmtOKjwHiAwdZ32IyBBp5RygkJCQpwYfItJ/f//9N7799ltRrV69epg4caJEHRERSUOtGyESUe2latZn4sSJqFevngTdEBFJq9pXgRFR7cElLyIiMQYgIgN26tQprF+/XlTz9vbG4MGDJeqIiEg/MAARGShVsz6ffPIJLC0tJeiGiEi/MAARGRiFQoGZM2dWqHPJi4jo/zAAERmQo0eP4ueffxbVLl58EW+99bJEHRER6ScGICIDoWrJa9q0aTA1NZWgGyIi/cYARFTLlZWVYc6cORXqXPIiIqocAxBRLZaeno79+/eLaoMHD4a3t7dEHRER1Q4MQES1lKolr5iYGN6xnYioChiAiGqZ4uJiJCQkiGoymQwxMTESdUREVPswABHVIqmpqThz5oyoxie4ExGpjwGIqJbg4yyIiDSHAYhIz926dQtJSUmimqurKz744AOJOiIiqv0YgIj02JIlS3D79m1RbcKECXB0dJSoIyIiw8AARKSnuORFRKQ9DEBEeubKlStISUkR1Tp06IA333xTmoaIiAwQAxCRHlE16zNlyhRYW1tL0A0RkeFiACLSA4IgYMaMGRXqXPIiItIOBiAiiZ04cQI//fSTqNajRw8EBARI1BERkeFjACKSkKolr08//RR16vA/TSIibeJPWSIJyOVyzJo1q0KdS15ERLrBAESkY2fOnEFqaqqo5un5JsLCOkjUERGR8WEAItKhmTNnQqFQiGp8gjsRke4xABHpQGlpKeLi4kS1Fi1a4J133pGoIyIi42YidQMAkJSUBC8vL1haWsLPzw+HDh2qdNuTJ09i4MCB8PLygkwmQ2JiYo3HJNKmI0eOVAg/Y8aMYfghIpKQ5AEoNTUVkZGRiI2NxdGjR9GxY0cEBQXh5s2bKrd/+PAhmjZtivj4eLi6umpkTCJtmT59On755RdRLTY2Fg0aNJCoIyIiAgCZIAiClA34+fmha9euWLJkCQBAoVDA3d0dEyZMQFRU1FPf6+XlhYiICERERGhsTAAoKiqCvb09CgsLYWdnV70dI6NWXFyMhIQEUa1r1654/fXXJeqIiMjwqfP7W9JzgEpLS5GVlYXo6GhlzcTEBIGBgcjMzNTZmCUlJSgpKVG+LioqqtZnEwFAcnI68vP3i2qTJ09mmCYi0iOSLoHdunULcrkcLi4uorqLiwvy8vJ0NmZcXBzs7e2VX+7u7tX6bKLly5dXCD+xsbEMP0REekbyc4D0QXR0NAoLC5Vf165dk7olqmUePXqE6dOn4/r168qam9srvLEhEZGeknQJzMnJCaampsjPzxfV8/PzKz3BWRtjWlhYwMLColqfR3T69GmsW7dOVJs6dSrMzMwk6oiIiJ5F0hkgc3Nz+Pj4ID09XVlTKBRIT0+Hv7+/3oxJpIogCFi5cqUo/HTv3h2xsbEMP0REek7yGyFGRkYiNDQUvr6+6NatGxITE1FcXIzhw4cDAEJCQtCoUSPlfVRKS0tx6tQp5Z+vX7+O7Oxs2NjYoHnz5lUak6im7t+/j/nz54tqH3zwQbVnLomISLckD0BDhgxBQUEBYmJikJeXh06dOmHHjh3Kk5ivXr0KE5P/m6i6ceMGOnfurHydkJCAhIQEBAQEICMjo0pjEtXE0aNH8fPPPytfm5ub45NPPhH9e0pERPpN8vsA6SPeB4hUEQQBS5YswZ07d5S1wMBAPP/88xJ2RURET9Sa+wAR1RZ37tzB4sWLRbUJEybA0dFRoo6IiKgmGICInmH//v2ik+rr16+PcePG8QnuRES1GAMQUSXkcjnmzp2LsrIyZa1fv36ic9CIiKh2YgAiUiEvLw9ff/21qBYZGQlbW1uJOiIiIk1iACL6j19//VX03DhPT0+EhoZyyYuIyIAwABH9f2VlZZgzZ46oNnjwYHh7e0vUERERaQsDEBGAK1euICUlRVT7+OOPYWVlJU1DRESkVQxAZPQ2btyIv/76S/m6bdu2eOuttyTsiIiItI0BiIzWP//8g7lz54pqISEhaNKkiUQdERGRrjAAkVE6d+4c1qxZI6pFR0fD3Nxcoo6IiEiXGIDI6Pzwww+4ePGi8nW3bt3Qu3dvCTsiIiJdYwAio/HgwQPMmzdPVBs5ciTc3Nwk6oiIiKTCAERG4c8//8SmTZuUr01MTDB16lSYmppK1xQREUmGAYgMmiAISE5Oxs2bN5W1Hj16ICAgQMKuiIhIagxAZLDu3buHhQsXimrjxo2Dk5OTRB0REZG+YAAig/THH39gx44dytd2dnaIiIjg4yyIiAgAAxAZGIVCgXnz5uHhw4fK2uuvv46uXbtK2BUREekbBiAyGDdv3sTSpUtFtYiICNjb20vUERER6SsGIDIIu3btwr59+5SvGzVqhPDwcC55ERGRSgxAVKuVl5dj9uzZotrAgQPRrl07iToiIqLagAGIaq2///4b3377rag2ZcoUWFtbS9QRERHVFgxAVCtt3boVWVlZytetWrXC22+/LWFHRERUmzAAUa1SWlqKuLg4UW3YsGFo3ry5RB0REVFtxABEtcbFixfxww8/iGpRUVGwsLCQqCMiIqqtGICoVkhNTcWZM2eUr7t06YK+fftK2BEREdVmDECk1x4+fIgvv/xSVBsxYgTc3d0l6oiIiAwBAxDprZMnT+J///ufqPbpp5+iTh3+a0tERDXD3ySkdwRBwLfffovr168ray+++CJefvllCbsiIiJDwgBEeqWoqAgLFiwQ1caMGYMGDRpI1BERERkiBiDSG0eOHMEvv/yifG1lZYWPPvoIJiYmEnZFRESGiAGIJCcIAhYuXIjCwkJl7bXXXoO/v7+EXRERkSFjACJJ3bp1C0lJSaLaxIkTUa9ePYk6IiIiY8AARJLZu3cvdu/erXzdoEEDjB49mk9wJyIirWMAIp2Ty+WYM2cOFAqFsta/f3906tRJuqaIiMioMACRTt24cQPLli0T1T788EPY2NhI1BERERkjBiDSmR07duCPP/5Qvm7SpAlCQkIk7IiIiIyVXlxfnJSUBC8vL1haWsLPzw+HDh166vbr169H69atYWlpifbt22Pbtm2i7+fn5yMsLAxubm6wtrZGr169cP78eW3uAj1FWVkZpk+fLgo/b7/9NsMPERFJRvIAlJqaisjISMTGxuLo0aPo2LEjgoKCcPPmTZXbHzhwAEOHDkV4eDiOHTuG4OBgBAcH48SJEwAeX1IdHByMS5cuYfPmzTh27Bg8PT0RGBiI4uJiXe4aAbh8+TLmzJkjqn3yySdo1aqVRB0REREBMkEQBCkb8PPzQ9euXbFkyRIAgEKhgLu7OyZMmICoqKgK2w8ZMgTFxcXYunWrsvbcc8+hU6dOSE5Oxrlz59CqVSucOHECbdu2VY7p6uqKOXPm4P33339mT0VFRbC3t0dhYSHs7Ow0tKfG56efflIGUwDo0KED3nzzTQk7IiIiQ6bO729JZ4BKS0uRlZWFwMBAZc3ExASBgYHIzMxU+Z7MzEzR9gAQFBSk3L6kpAQAYGlpKRrTwsIC+/fv1/QukAqPHj3C9OnTReEnNDSU4YeIiPSGpAHo1q1bkMvlcHFxEdVdXFyQl5en8j15eXlP3b5169bw8PBAdHQ07t69i9LSUsydOxd///03cnNzVY5ZUlKCoqIi0RdVz5kzZ/DFF1+IalOnToWXl5c0DREREalgcFeBmZmZYcOGDQgPD4ejoyNMTU0RGBiI3r17o7LVvri4OEyfPl3HnRqe77//Hjk5OcrXzz33HIKCgiTsiIiISDVJA5CTkxNMTU2Rn58vqufn58PV1VXle1xdXZ+5vY+PD7Kzs1FYWIjS0lI4OzvDz88Pvr6+KseMjo5GZGSk8nVRURHc3d2ru1tG5/79+5g/f76oNmrUKDRs2FCijoiIiJ5O0iUwc3Nz+Pj4ID09XVlTKBRIT0+v9EGY/v7+ou0BYOfOnSq3t7e3h7OzM86fP48jR46gf//+Kse0sLCAnZ2d6IuqJjs7WxR+zMzMMG3aNIYfIiLSa5IvgUVGRiI0NBS+vr7o1q0bEhMTUVxcjOHDhwMAQkJC0KhRI8TFxQEAJk2ahICAAMybNw99+vTB2rVrceTIEXzzzTfKMdevXw9nZ2d4eHjg+PHjmDRpEoKDg/Haa69Jso+GSBAEfPXVV7h165ay9sorr+CFF16QsCsiIqKqkTwADRkyBAUFBYiJiUFeXh46deqEHTt2KE90vnr1KkxM/m+iqnv37li9ejWmTZuGqVOnokWLFti0aRPatWun3CY3NxeRkZHIz89Hw4YNERISgs8++0zn+2ao7t69i0WLFolq48ePR/369SXqiIiISD2S3wdIH/E+QJU7cOAAdu7cqXxdr149TJgwgU9wJyIiyanz+1vyGSCqHRQKBb744gvlfZYA4I033oCPj4+EXREREVUPAxA9U35+PpKTk0W1yZMnc3aMiIhqLQYgeqrffvsNv//+u/K1h4cHwsLCuORFRES1GgMQqVReXo7Zs2eLaoMGDUKbNm0k6oiIiEhzGICogqtXr2LlypWi2scffwwrKyuJOiIiItIsBiAS2bx5M7Kzs5Wvvb29MXjwYOkaIiIi0gIGIALw+IGw8fHxotp7772Hpk2bStQRERGR9jAAEc6fP4/Vq1eLatHR0TA3N5eoIyIiIu1iADJyq1evxvnz55WvfX190adPHwk7IiIi0j4GICNVXFyMhIQEUS08PByNGzeWqCMiIiLdYQAyQsePH8eGDRtEtWnTpsHU1FSijoiIiHSLAciICIKAb775Bnl5ecpaQEAAevToIV1TREREEmAAMhL37t3DwoULRbWxY8fC2dlZoo6IiIikwwBkBA4dOoTt27crX9vY2GDy5MkwMTGRsCsiIiLpMAAZMIVCgQULFuDBgwfKWq9eveDn5ydhV0RERNJjADJQBQUF+Oqrr0S1SZMmwcHBQZqGiIiI9AgDkAHKyMjAnj17lK8bNmyIkSNH8gnuRERE/x8DkAGRy+WYNWuWqDZgwAC0b99eoo6IiIj0EwOQgbh+/TqWL18uqn300UeoW7euRB0RERHpLwYgA7Bt2zYcPnxY+bp58+YYNmyYhB0RERHpNwagWqy0tBRxcXGi2jvvvIMWLVpI1BEREVHtwABUS126dAmrVq0S1aKiomBhYSFRR0RERLUHA1AttH79epw6dUr5ulOnTujfv7+EHREREdUuDEC1yKNHj/DFF1+IasOHD4eHh4dEHREREdVODEC1xKlTp7B+/XpR7dNPP0WdOvwrJCIiUhd/e+o5QRCQkpKCq1evKmvPP/88AgMDJeyKiIiodmMA0mNFRUVYsGCBqDZ69Gi4uLhI1BEREZFhYADSU1lZWdi6davytaWlJaZMmcInuBMREWkAA5CeEQQBixcvxt27d5W1V199Fd27d5ewKyIiIsPCAKRHbt++jSVLlohqEyZMgKOjo0QdERERGSYGID2xf/9+pKenK187OTlh7NixfII7ERGRFjAASUwulyM+Ph7l5eXKWr9+/dC5c2cJuyIiIjJsDEASys3NxTfffCOqRUZGwtbWVqKOiIiIjAMDkETS0tJw8OBB5WsvLy+EhoZK2BEREZHxYADSsbKyMsyZM0dUGzx4MLy9vSXqiIiIyPgwAOmQqvDz8ccfw8rKSqKOiIiIjBMDkA7duHFD+ed27dph4MCBEnZDRERkvPTitsJJSUnw8vKCpaUl/Pz8cOjQoaduv379erRu3RqWlpZo3749tm3bJvr+gwcPMH78eDRu3BhWVlZo06YNkpOTtbkLVeLh4YFmzYZh377xMDNj+CEiIpKK5AEoNTUVkZGRiI2NxdGjR9GxY0cEBQXh5s2bKrc/cOAAhg4divDwcBw7dgzBwcEIDg7GiRMnlNtERkZix44d+OGHH3D69GlERERg/Pjx2LJli652SyWZTIavvmqO9PT6iI+XtBUiIiKjJhMEQZCyAT8/P3Tt2lV5B2SFQgF3d3dMmDABUVFRFbYfMmQIiouLRc/Jeu6559CpUyflLE+7du0wZMgQfPbZZ8ptfHx80Lt3b8yaNeuZPRUVFcHe3h6FhYWws7Or6S6KbNkCxMcDUVFAv34aHZqIiMioqfP7W9IZoNLSUmRlZSEwMFBZMzExQWBgIDIzM1W+JzMzU7Q9AAQFBYm27969O7Zs2YLr169DEATs3r0b586dw2uvvaadHVFDv37AgQMMP0RERFKS9CToW7duQS6Xw8XFRVR3cXHBmTNnVL4nLy9P5fZ5eXnK14sXL8aoUaPQuHFj1KlTByYmJli2bBleeukllWOWlJSgpKRE+bqoqKi6u0RERES1gOTnAGnD4sWLcfDgQWzZsgVZWVmYN28exo0bh99++03l9nFxcbC3t1d+ubu767hjIiIi0iVJZ4CcnJxgamqK/Px8UT0/Px+urq4q3+Pq6vrU7R89eoSpU6di48aN6NOnDwCgQ4cOyM7ORkJCQoXlMwCIjo5GZGSk8nVRURFDEBERkQGTdAbI3NwcPj4+oqegKxQKpKenw9/fX+V7/P39RdsDwM6dO5Xbl5WVoaysDCYm4l0zNTWFQqFQOaaFhQXs7OxEX0RERGS4JL8RYmRkJEJDQ+Hr64tu3bohMTERxcXFGD58OAAgJCQEjRo1QlxcHABg0qRJCAgIwLx589CnTx+sXbsWR44cUT5U1M7ODgEBAZgyZQqsrKzg6emJPXv24Pvvv8f8+fMl208iIiLSH5IHoCFDhqCgoAAxMTHIy8tDp06dsGPHDuWJzlevXhXN5nTv3h2rV6/GtGnTMHXqVLRo0QKbNm1Cu3btlNusXbsW0dHRGDZsGO7cuQNPT0/Mnj0bo0eP1vn+ERERkf6R/D5A+kib9wEiIiIi7ag19wEiIiIikgIDEBERERkdBiAiIiIyOgxAREREZHQYgIiIiMjoMAARERGR0ZH8PkD66MmdAfhQVCIiotrjye/tqtzhhwFIhfv37wMAnwdGRERUC92/fx/29vZP3YY3QlRBoVDgxo0bsLW1hUwmU/v9Tx6meu3aNaO8kaKx7z/AYwDwGAA8BgCPAcBjAOjuGAiCgPv378PNza3CM0H/izNAKpiYmKBx48Y1HsfYH6xq7PsP8BgAPAYAjwHAYwDwGAC6OQbPmvl5gidBExERkdFhACIiIiKjwwCkBRYWFoiNjYWFhYXUrUjC2Pcf4DEAeAwAHgOAxwDgMQD08xjwJGgiIiIyOpwBIiIiIqPDAERERERGhwGIiIiIjA4DEBERERkdBqAqSEpKgpeXFywtLeHn54dDhw49dfv169ejdevWsLS0RPv27bFt2zbR9x88eIDx48ejcePGsLKyQps2bZCcnKzNXagxTR+D/Px8hIWFwc3NDdbW1ujVqxfOnz+vzV2oMXWOwcmTJzFw4EB4eXlBJpMhMTGxxmPqA00fg71796Jv375wc3ODTCbDpk2btNe8hmj6GMTFxaFr166wtbVFgwYNEBwcjLNnz2pxD2pO08dg6dKl6NChg/Imef7+/ti+fbsW96DmtPHz4In4+HjIZDJERERotmkN0/Qx+PzzzyGTyURfrVu31lr/DEDPkJqaisjISMTGxuLo0aPo2LEjgoKCcPPmTZXbHzhwAEOHDkV4eDiOHTuG4OBgBAcH48SJE8ptIiMjsWPHDvzwww84ffo0IiIiMH78eGzZskVXu6UWTR8DQRAQHByMS5cuYfPmzTh27Bg8PT0RGBiI4uJiXe5alal7DB4+fIimTZsiPj4erq6uGhlTato4BsXFxejYsSOSkpK02brGaOMY7NmzB+PGjcPBgwexc+dOlJWV4bXXXjOq/xYaN26M+Ph4ZGVl4ciRI3j55ZfRv39/nDx5Upu7Um3aOAZPHD58GF9//TU6dOigjdY1RlvHoG3btsjNzVV+7d+/X1u7AAj0VN26dRPGjRunfC2XywU3NzchLi5O5faDBw8W+vTpI6r5+fkJH3zwgfJ127ZthRkzZoi26dKli/Dpp59qsHPN0fQxOHv2rABAOHHihGhMZ2dnYdmyZVrYg5pT9xj8m6enp7BgwQKNjikFbRyDfwMgbNy4sYZdape2j4EgCMLNmzcFAMKePXtq0qrW6OIYCIIg1KtXT1i+fHl129QqbR2D+/fvCy1atBB27twpBAQECJMmTdJQx5qnjWMQGxsrdOzYUYNdPh1ngJ6itLQUWVlZCAwMVNZMTEwQGBiIzMxMle/JzMwUbQ8AQUFBou27d++OLVu24Pr16xAEAbt378a5c+fw2muvaWdHakAbx6CkpAQAYGlpKRrTwsJCu2m/mqpzDKQYU5tqW7/aoKtjUFhYCABwdHTU2JiaootjIJfLsXbtWhQXF8Pf318jY2qSNo/BuHHj0KdPnwo/P/WNNo/B+fPn4ebmhqZNm2LYsGG4evVqTdutFAPQU9y6dQtyuRwuLi6iuouLC/Ly8lS+Jy8v75nbL168GG3atEHjxo1hbm6OXr16ISkpCS+99JLmd6KGtHEMWrduDQ8PD0RHR+Pu3bsoLS3F3Llz8ffffyM3N1c7O1ID1TkGUoypTbWtX23QxTFQKBSIiIjA888/j3bt2mlkTE3S5jE4fvw4bGxsYGFhgdGjR2Pjxo1o06ZNjcbUBm0dg7Vr1+Lo0aOIi4uraYtap61j4Ofnh5SUFOzYsQNLly5FTk4OXnzxRdy/f7+mLavEp8FLYPHixTh48CC2bNkCT09P7N27F+PGjYObm5veJ39NMDMzw4YNGxAeHg5HR0eYmpoiMDAQvXv3hsAbk5MRGzduHE6cOKGXM6Ha1qpVK2RnZ6OwsBD/+9//EBoaij179uhlCNK0a9euYdKkSdi5c6doZtzY9O7dW/nnDh06wM/PD56enli3bh3Cw8M1/nkMQE/h5OQEU1NT5Ofni+r5+fmVnsTl6ur61O0fPXqEqVOnYuPGjejTpw+Ax3/R2dnZSEhI0LsApI1jAAA+Pj7KH3alpaVwdnaGn58ffH19Nb8TNVSdYyDFmNpU2/rVBm0fg/Hjx2Pr1q3Yu3cvGjduXOPxtEGbx8Dc3BzNmzcH8Pjnw+HDh7Fw4UJ8/fXXNRpX07RxDLKysnDz5k106dJFWZPL5di7dy+WLFmCkpISmJqa1qhvTdLVzwMHBwe0bNkSFy5c0NiY/8YlsKcwNzeHj48P0tPTlTWFQoH09PRK16b9/f1F2wPAzp07lduXlZWhrKwMJibiQ29qagqFQqHhPag5bRyDf7O3t4ezszPOnz+PI0eOoH///prdAQ2ozjGQYkxtqm39aoO2joEgCBg/fjw2btyIXbt2oUmTJppoVyt0+e+BQqFQni+oT7RxDF555RUcP34c2dnZyi9fX18MGzYM2dnZehV+AN39e/DgwQNcvHgRDRs21NiYIjo73bqWWrt2rWBhYSGkpKQIp06dEkaNGiU4ODgIeXl5giAIwnvvvSdERUUpt//999+FOnXqCAkJCcLp06eF2NhYwczMTDh+/Lhym4CAAKFt27bC7t27hUuXLgkrV64ULC0tha+++krn+1cV2jgG69atE3bv3i1cvHhR2LRpk+Dp6SkMGDBA5/tWVeoeg5KSEuHYsWPCsWPHhIYNGwofffSRcOzYMeH8+fNVHlPfaOMY3L9/X7kNAGH+/PnCsWPHhCtXruh8/6pCG8dgzJgxgr29vZCRkSHk5uYqvx4+fKjz/asKbRyDqKgoYc+ePUJOTo7w119/CVFRUYJMJhN+/fVXne9fVWjjGPyXvl8Fpo1j8OGHHwoZGRlCTk6O8PvvvwuBgYGCk5OTcPPmTa3sAwNQFSxevFjw8PAQzM3NhW7dugkHDx5Ufi8gIEAIDQ0Vbb9u3TqhZcuWgrm5udC2bVvhl19+EX0/NzdXCAsLE9zc3ARLS0uhVatWwrx58wSFQqGL3akWTR+DhQsXCo0bNxbMzMwEDw8PYdq0aUJJSYkudqXa1DkGOTk5AoAKXwEBAVUeUx9p+hjs3r1b5Tb//fdJn2j6GKj6PgBh5cqVutspNWn6GIwYMULw9PQUzM3NBWdnZ+GVV17R2/DzhDZ+HvybvgcgQdD8MRgyZIjQsGFDwdzcXGjUqJEwZMgQ4cKFC1rrXyYIPOuUiIiIjAvPASIiIiKjwwBERERERocBiIiIiIwOAxAREREZHQYgIiIiMjoMQERERGR0GICIiIjI6DAAERERkdFhACKiWi0sLAzBwcEV6hkZGZDJZLh37x4yMjLQv39/NGzYEHXr1kWnTp3w448/VnjPnTt3EBERAU9PT5ibm8PNzQ0jRozA1atXdbAnRKRLDEBEZPAOHDiADh064KeffsJff/2F4cOHIyQkBFu3blVuc+fOHTz33HP47bffkJycjAsXLmDt2rW4cOECunbtikuXLkm4B0SkaXwUBhHVamFhYbh37x42bdokqmdkZKBnz564e/cuHBwcKryvT58+cHFxwYoVKwAAY8aMwapVq3DhwgW4uroqt3v06BFatGiB9u3bY/v27drcFSLSIc4AEZFRKiwshKOjIwBAoVBg7dq1GDZsmCj8AICVlRXGjh2LtLQ03LlzR4pWiUgL6kjdABFRTW3duhU2Njaimlwur3T7devW4fDhw/j6668BAAUFBbh37x68vb1Vbu/t7Q1BEHDhwgV069ZNc40TkWQYgIio1uvZsyeWLl0qqv3xxx949913K2y7e/duDB8+HMuWLUPbtm1F3+MZAUTGgwGIiGq9unXronnz5qLa33//XWG7PXv2oG/fvliwYAFCQkKUdWdnZzg4OOD06dMqxz99+jRkMlmFzyCi2ovnABGRUcjIyECfPn0wd+5cjBo1SvQ9ExMTDB48GKtXr0ZeXp7oe48ePcJXX32FoKAg5TlDRFT7MQARkcHbvXs3+vTpg4kTJ2LgwIHIy8tDXl6e6KTmOXPmwNXVFa+++iq2b9+Oa9euYe/evQgKCkJZWRmSkpIk3AMi0jQGICIyeN999x0ePnyIuLg4NGzYUPk1YMAA5Tb169fHwYMH0bNnT3zwwQdo1qwZBg8ejGbNmuHw4cNo2rSphHtARJrG+wARERGR0eEMEBERERkdBiAiIiIyOgxAREREZHQYgIiIiMjoMAARERGR0WEAIiIiIqPDAERERERGhwGIiIiIjA4DEBERERkdBiAiIiIyOgxAREREZHQYgIiIiMjo/D/jgD6lB6TMFQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_36.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVgElEQVR4nO3deVhUdd8/8PfMyCYoICCIorjkmoqCkP5y6yHR3M0iKhE0vd0z1BQNUFFBw30tlzRXWnB5TMFEKE1cklutRNRucWexFAQScOb8/vBxbo8zKIMznGHm/bourprPnDnzOUedeXO+33OOTBAEAURERERmRC51A0RERERVjQGIiIiIzA4DEBEREZkdBiAiIiIyOwxAREREZHYYgIiIiMjsMAARERGR2WEAIiIiIrPDAERERERmhwGIiKotmUyG2bNnS92GWkhICDw9PaVug4gqgAGIiPRq8+bNkMlk6h9ra2s0b94cEyZMQE5OjkHf+/jx45g9ezbu37+v1/X26NFDtE116tRBp06dsGnTJqhUKr28x4IFC7Bnzx69rIuIXqyG1A0QkWmaO3cuGjdujIcPH+LYsWNYu3YtDhw4gN9//x01a9bUy3v8888/qFHjvx9jx48fx5w5cxASEgIHBwe9vMcTDRo0QExMDAAgLy8PX3/9NUaOHIlLly4hNjb2pde/YMECDB06FIMGDXrpdRHRizEAEZFB9OnTBz4+PgCAjz76CE5OTliyZAn27t2LoKCgSq9XpVKhtLQU1tbWsLa21le7L2Rvb48PP/xQ/fhf//oXWrRogVWrViE6OhoWFhZV1gsRvTwOgRFRlXjjjTcAAFevXgUAxMXFoUuXLnBycoKNjQ28vb3x3XffabxOJpNhwoQJ2L59O9q0aQMrKyskJiaqn3syB2j27NmYNm0aAKBx48bq4aqsrCx0794d7du319pXixYtEBAQoPP21KxZE6+99hqKioqQl5dX7nJFRUWYMmUKPDw8YGVlhRYtWiAuLg6CIIi2saioCFu2bFH3HRISonNPRFRxPAJERFXizz//BAA4OTkBAJYvX44BAwbggw8+QGlpKXbt2oV33nkH+/fvR9++fUWvPXLkCL755htMmDABzs7OWicaDxkyBJcuXcLOnTuxdOlSODs7AwBcXFwwbNgwjBo1Cr///jteffVV9WtOnz6NS5cu4bPPPqvUNv3nP/+BQqEod7hNEAQMGDAAKSkpGDlyJLy8vJCUlIRp06bh1q1bWLp0KQBg69at+Oijj+Dr64vRo0cDAJo2bVqpnoioggQiIj366quvBADC4cOHhby8POHGjRvCrl27BCcnJ8HGxka4efOmIAiCUFxcLHpdaWmp8OqrrwpvvPGGqA5AkMvlwh9//KHxXgCEqKgo9ePPP/9cACBcvXpVtNz9+/cFa2trYfr06aL6pEmTBFtbW6GwsPC529S9e3ehZcuWQl5enpCXlydkZGQIkyZNEgAI/fv3Vy83fPhwoVGjRurHe/bsEQAI8+bNE61v6NChgkwmE65cuaKu2draCsOHD39uH0SkPxwCIyKD8Pf3h4uLCzw8PPDee+/Bzs4Ou3fvRv369QEANjY26mXv3buH/Px8dO3aFenp6Rrr6t69O1q3bl3pXuzt7TFw4EDs3LlTPfSkVCoRHx+PQYMGwdbW9oXruHjxIlxcXODi4oJWrVph5cqV6Nu3LzZt2lTuaw4cOACFQoFJkyaJ6lOmTIEgCDh48GClt4mIXg6HwIjIIFavXo3mzZujRo0acHV1RYsWLSCX//d3rv3792PevHk4e/YsSkpK1HWZTKaxrsaNG790P8HBwYiPj8fRo0fRrVs3HD58GDk5ORg2bFiFXu/p6Yn169erT+1/5ZVXULdu3ee+5tq1a3B3d0etWrVE9VatWqmfJyJpMAARkUH4+vqqzwJ71tGjRzFgwAB069YNa9asQb169WBhYYGvvvoKO3bs0Fj+6aNFlRUQEABXV1ds27YN3bp1w7Zt2+Dm5gZ/f/8Kvd7W1rbCyxKR8eMQGBFVue+//x7W1tZISkrCiBEj0KdPH72EC21Hj55QKBR4//338d133+HevXvYs2cPgoKCoFAoXvp9y9OoUSPcvn0bDx48ENUvXryofv6J5/VORPrHAEREVU6hUEAmk0GpVKprWVlZL30l5Cdzecq7EvSwYcNw7949/Otf/0JhYaHouj6G8NZbb0GpVGLVqlWi+tKlSyGTydCnTx91zdbWVu9XsCai8nEIjIiqXN++fbFkyRL07t0b77//PnJzc7F69Wo0a9YM58+fr/R6vb29AQCzZs3Ce++9BwsLC/Tv318djDp06IBXX30V3377LVq1aoWOHTvqZXvK079/f/Ts2ROzZs1CVlYW2rdvj0OHDmHv3r2YPHmy6FR3b29vHD58GEuWLIG7uzsaN24MPz8/g/ZHZM54BIiIqtwbb7yBjRs3Ijs7G5MnT8bOnTuxcOFCDB48+KXW26lTJ0RHR+PcuXMICQlBUFCQxkUKg4ODAaDCk59fhlwux759+zB58mTs378fkydPxoULF/D5559jyZIlomWXLFkCb29vfPbZZwgKCsLatWsN3h+ROZMJwlOXIyUiMnHLly/HJ598gqysLDRs2FDqdohIIgxARGQ2BEFA+/bt4eTkhJSUFKnbISIJcQ4QEZm8oqIi7Nu3DykpKfjtt9+wd+9eqVsiIonxCBARmbysrCw0btwYDg4OGDduHObPny91S0QkMQYgIiIiMjs8C4yIiIjMDgMQERERmR1OgtZCpVLh9u3bqFWrFi9PT0REVE0IgoAHDx7A3d1ddPNlbRiAtLh9+zY8PDykboOIiIgq4caNG2jQoMFzl2EA0qJWrVoAHu/A2rVrS9wNERERVURBQQE8PDzU3+PPwwCkxZNhr9q1azMAERERVTMVmb7CSdBERERkdhiAiIiIyOwwABEREZHZ4Rygl6BUKlFWViZ1G2RgFhYWUCgUUrdBRER6xABUCYIgIDs7G/fv35e6FaoiDg4OcHNz43WhiIhMBANQJTwJP3Xr1kXNmjX5pWjCBEFAcXExcnNzAQD16tWTuCMiItIHBiAdKZVKdfhxcnKSuh2qAjY2NgCA3Nxc1K1bl8NhREQmgJOgdfRkzk/NmjUl7oSq0pM/b875IiIyDQxAlcRhL/PCP28iItPCAERERERmhwGIiIiIzA4DkBkJCQmBTCaDTCaDhYUFXF1d8eabb2LTpk1QqVQVXs/mzZvh4OBguEaJiIgMjAHIzPTu3Rt37txBVlYWDh48iJ49e+Ljjz9Gv3798OjRI6nbIyIiqhIMQGbGysoKbm5uqF+/Pjp27IiZM2di7969OHjwIDZv3gwAWLJkCdq2bQtbW1t4eHhg3LhxKCwsBACkpqYiNDQU+fn56qNJs2fPBgBs3boVPj4+qFWrFtzc3PD++++rr59DREQEAF9/fRHBwUfw/feFkvbBAKQHgiCgtLS0yn8EQdBL/2+88Qbat2+PhIQEAIBcLseKFSvwxx9/YMuWLThy5Ag+/fRTAECXLl2wbNky1K5dG3fu3MGdO3cwdepUAI9PEY+Ojsa5c+ewZ88eZGVlISQkRC89EhFR9SYIAjZu3IirV+PRtOlRfPvtBUn74YUQ9aCsrAwxMTFV/r7h4eGwtLTUy7patmyJ8+fPAwAmT56srnt6emLevHkYM2YM1qxZA0tLS9jb20Mmk8HNzU20jhEjRqj/v0mTJlixYgU6deqEwsJC2NnZ6aVPIiKqfgoKCrB06VJR7d1320rUzWMMQATgcTJ/cq2bw4cPIyYmBhcvXkRBQQEePXqEhw8fori4+LkXgDxz5gxmz56Nc+fO4d69e+qJ1devX0fr1q2rZDuIiMi4nDlzBvv371c/trGxwdSpUyGXSzsIxQCkBxYWFggPD5fkffUlIyMDjRs3RlZWFvr164exY8di/vz5qFOnDo4dO4aRI0eitLS03ABUVFSEgIAABAQEYPv27XBxccH169cREBCA0tJSvfVJRETVgyAIWLlyJe7du6eu9erVC507d5awq/9iANIDmUymt6EoKRw5cgS//fYbPvnkE5w5cwYqlQqLFy9Wp/NvvvlGtLylpSWUSqWodvHiRfz111+IjY2Fh4cHAODXX3+tmg0gIiKj8tdff2HVqlWi2qRJk+Do6ChRR5oYgMxMSUkJsrOzoVQqkZOTg8TERMTExKBfv34IDg7G77//jrKyMqxcuRL9+/fHL7/8gnXr1onW4enpicLCQiQnJ6N9+/aoWbMmGjZsCEtLS6xcuRJjxozB77//jujoaIm2koiIpHLs2DEkJyerHzs7O2PcuHFGd0shngVmZhITE1GvXj14enqid+/eSElJwYoVK7B3714oFAq0b98eS5YswcKFC/Hqq69i+/btGhO8u3TpgjFjxiAwMBAuLi5YtGgRXFxcsHnzZnz77bdo3bo1YmNjERcXJ9FWEhFRVVOpVFiwYIEo/AwYMADjx483uvADADJBX+dSm5CCggLY29sjPz8ftWvXFj338OFDXL16FY0bN4a1tbVEHVJV4587EVH5zp8/j927d4tqYWFhqFWrVpX28bzv72dxCIyIiIgqbc6cOaLHhYUuWLRorFEe9XkaAxARERHp7OHDh1i4cKGodvt2W/TtOwRGnn0AMAARERGRjo4fP44ff/xRVJs4cSLq1KkjUUe6YwAiIiKiCnt2yAsAoqKiJOjk5TAAERER0Qs9ePAAS5YsEdW6dOmCN998U6KOXg4DEBERET1XUlISTpw4IapNmTKlWt/nkQGIiIiIymUqQ17PYgAiIiIiDbt23UFm5peiWkBAAF577TWJOtIvo7gS9OrVq+Hp6Qlra2v4+fnh1KlT5S6bkJAAHx8fODg4wNbWFl5eXti6dWu5y48ZMwYymQzLli0zQOdERESmZ+7cuRrhZ8aMGSYTfgAjCEDx8fEICwtDVFQU0tPT0b59ewQEBCA3N1fr8nXq1MGsWbOQlpaG8+fPIzQ0FKGhoUhKStJYdvfu3Thx4gTc3d0NvRn0lJCQEAwaNEj9uEePHpg8efJLrVMf6yAioucTBAFz5szBszeJiIqKgpWVlURdGYbkAWjJkiUYNWoUQkND0bp1a6xbtw41a9bEpk2btC7fo0cPDB48GK1atULTpk3x8ccfo127djh27JhouVu3bmHixInYvn07LCwsqmJTjF5ISAhkMpn67vXNmjXD3Llz8ejRI4O+b0JCQoVvjJqamgqZTIb79+9Xeh1ERKS7ixcvYu7cuaLa0aOvIymp+s/30UbSOUClpaU4c+YMwsPD1TW5XA5/f3+kpaW98PWCIODIkSPIzMwUXY1SpVJh2LBhmDZtGtq0afPC9ZSUlKCkpET9uKCgQMctqT569+6Nr776CiUlJThw4ADGjx8PCwsL0Z8B8PjPxtLSUi/vqY8LY1Wni2sREVU32iY6t2sXjqQkS8yYIUFDVUDSI0B3796FUqmEq6urqO7q6ors7OxyX5efnw87OztYWlqib9++WLlypeg6BAsXLkSNGjUwadKkCvURExMDe3t79Y+Hh0flNqgasLKygpubGxo1aoSxY8fC398f+/btUw9bzZ8/H+7u7mjRogUA4MaNG3j33Xfh4OCAOnXqYODAgcjKylKvT6lUIiwsDA4ODnBycsKnn36qcej02eGrkpISTJ8+HR4eHrCyskKzZs2wceNGZGVloWfPngAAR0dHyGQyhISEaF3HvXv3EBwcDEdHR9SsWRN9+vTB5cuX1c9v3rwZDg4OSEpKQqtWrWBnZ4fevXvjzp076mVSU1Ph6+sLW1tbODg44P/9v/+Ha9eu6WlPExEZP5VKVe5ZXoMHW+L4cWDAAAkaqwKSD4FVRq1atXD27FmcPn0a8+fPR1hYGFJTUwEAZ86cwfLly7F58+YK34gtPDwc+fn56p8bN24YsHvjYmNjg9LSUgBAcnIyMjMz8eOPP2L//v0oKytDQEAAatWqhaNHj+KXX35RB4knr1m8eDE2b96MTZs24dixY/j777817gj8rODgYOzcuRMrVqxARkYGvvjiC9jZ2cHDwwPff/89ACAzMxN37tzB8uXLta4jJCQEv/76K/bt24e0tDQIgoC33noLZWVl6mWKi4sRFxeHrVu34ueff8b169cxdepUAMCjR48waNAgdO/eHefPn0daWhpGjx5t9DfvIyLSl9OnT2tMLXjrrbdM4hT3ipB0CMzZ2RkKhQI5OTmiek5ODtzc3Mp9nVwuR7NmzQAAXl5eyMjIQExMDHr06IGjR48iNzcXDRs2VC+vVCoxZcoULFu2THT04gkrKyuTm9z1IoIgIDk5GUlJSZg4cSLy8vJga2uLDRs2qIe+tm3bBpVKhQ0bNqiDwVdffQUHBwekpqaiV69eWLZsGcLDwzFkyBAAwLp167ROSH/i0qVL+Oabb/Djjz/C398fANCkSRP180+GuurWrQsHBwet67h8+TL27duHX375BV26dAEAbN++HR4eHtizZw/eeecdAEBZWRnWrVuHpk2bAgAmTJigHt8uKChAfn4++vXrp36+VatWuu9IIqJqSNtRn4iICMjl1fK4SKVIuqWWlpbw9vZGcnKyuqZSqZCcnIzOnTtXeD0qlUo9h2fYsGE4f/48zp49q/5xd3fHtGnTnvvFLIV9+4AuXR7/t6rs378fdnZ2sLa2Rp8+fRAYGIjZs2cDANq2bSua93Pu3DlcuXIFtWrVgp2dHezs7FCnTh08fPgQf/75J/Lz83Hnzh34+fmpX1OjRg34+PiU+/5nz56FQqFA9+7dK70NGRkZqFGjhuh9nZyc0KJFC2RkZKhrNWvWVIcbAKhXr5767MI6deogJCQEAQEB6N+/P5YvXy4aHiMiMkWlpaXlDnmZU/gBjOBCiGFhYRg+fDh8fHzg6+uLZcuWoaioCKGhoQAeD5fUr18fMTExAB7P1/Hx8UHTpk3VE3m3bt2KtWvXAnj8Rejk5CR6DwsLC7i5uanntRiL2FggLe3xf6tqjLVnz55Yu3YtLC0t4e7ujho1/vtXwNbWVrRsYWEhvL29sX37do31uLi4VOr9bWxsKvW6ynj27D+ZTCaan/TVV19h0qRJSExMRHx8PD777DP8+OOPJnWdCyKiJw4fPoxffvlFVHvvvfeM7ruxqkgegAIDA5GXl4fIyEhkZ2fDy8sLiYmJ6onR169fF6XSoqIijBs3Djdv3oSNjQ1atmyJbdu2ITAwUKpNqLQZMx6Hn6qcYW9ra6sePnyRjh07Ij4+HnXr1kXt2rW1LlOvXj2cPHkS3bp1A/B4bs2ZM2fQsWNHrcu3bdsWKpUKP/30k3oI7GlPjkAplcpy+2rVqhUePXqEkydPqofA/vrrL2RmZqJ169YV2rYnOnTogA4dOiA8PBydO3fGjh07GICIyORoO+oTGRlp1vMeJQ9AwOO5GRMmTND63JPJzU/MmzcP8+bN02n92ub9GIMBA4x7dv0HH3yAzz//HAMHDsTcuXPRoEEDXLt2DQkJCfj000/RoEEDfPzxx4iNjcUrr7yCli1bYsmSJRrX8Hmap6cnhg8fjhEjRmDFihVo3749rl27htzcXLz77rto1KgRZDIZ9u/fj7feegs2NjYaN9t75ZVXMHDgQIwaNQpffPEFatWqhRkzZqB+/foYOHBghbbt6tWr+PLLLzFgwAC4u7sjMzMTly9fRnBw8MvsMiIio1JUVIS4uDhRTS6XIyIiQqKOjId5DfiRTmrWrImff/4ZDRs2xJAhQ9CqVSuMHDkSDx8+VB8RmjJlCoYNG4bhw4ejc+fOqFWrFgYPHvzc9a5duxZDhw7FuHHj0LJlS4waNQpFRUUAgPr162POnDmYMWMGXF1dyw3GX331Fby9vdGvXz907twZgiDgwIEDFb7oZc2aNXHx4kW8/fbbaN68OUaPHo3x48fjX//6lw57iIjIeH377bca4WfkyJEMP/9HJjx70RZCQUEB7O3tkZ+frzH08/DhQ1y9ehWNGzeGtbW1RB1SVeOfOxFVJ6Z6B/cXed7397OMYgiMiIiIXt7ff/+NlStXimqurq4YM2aMRB0ZLwYgIiIiE/DFF19o3EVhwoQJGmdG02OcA0RERFTNzZkzRyP8JCVFMfw8B48AERERVVM3b97Exo0bRTUHh9aIj3/HZG9iqi8MQJXEuePmhX/eRGRsoqOjoVKpRLWpU6fC1tYWH38sUVPVCAOQjp6cZl1cXFylVzUmaRUXFwPQvLo0EVFVEwRBfV/Dp5nDWV76xACkI4VCAQcHB/U9pWrWrGnWV9I0dYIgoLi4GLm5uXBwcIBCoZC6JSIyY5mZmdi1a5eo1qVLF7z55psSdVR9MQBVwpM71T8JQWT6HBwc1H/uRERS0HZtn/DwcNFNrKniGIAqQSaToV69eqhbty7KysqkbocMzMLCgkd+iEgyKpUK0dHRGvWkpChw1KvyGIBegkKh4BcjEREZzK+//ooffvhBVGvQoA82bvTlWV4viQGIiIjICGkb8oqIiIBcLsfIkRI0ZGIYgIiIiIxIWVkZFixYoFHnWV76xQBERERkJJKTk3Hs2DFRLTAwEC1btpSoI9PFAERERGQEtA15RUZG8lIrBsIAREREJKHi4mJ8/vnnGnUOeRkWAxAREZFEvv/+e/z++++i2ogRI+Dh4SFRR+aDAYiIiEgC2oa8eNSn6jAAERERVaG///4bK1euFNVcXFwwbtw4iToyTwxAREREVeTLL7/EnTt3RLUJEybAyclJoo7MFwMQERFRFeCQl3FhACIiIjKgW7duYcOGDaJay5YtERgYKFFHBDAAERERGYy2oz5TpkyBnZ2dBN3Q0xiAiIiI9EwQBMydO1ejziEv4yGXugEiIiJTkp6erhF+/vyzCZKSGH6MCY8AERER6Ym2Ia+2bacjKckaM2ZI0BCViwGIiIjoJalUKkRHR2vUnwx5DRlS1R3RizAAERERvQRtd3D39fVFnz59JOqIKoIBiIiIqJK0DXl99tlnUCgUEnRDumAAIiIi0lFpaSliYmI06jzLq/pgACIiItJBfHw8Ll68KKr17t0bfn5+EnVElcEAREREVEHahrwiIyMhk8kk6IZeBgMQERHRC2i7gzvAIa/qjAGIiIjoObQd9Tl37m0kJLwqQTekLwxARERE5dAWfuLiorB9uwTNkF4xABERET3j2rVr2Lx5s0Y9Kelx+BkwoOp7Iv1iACIiInqKtqM+H3zwAZo1awZO+TEdDEBERET/R1v44URn08QAREREZu/cuXPYs2ePRp3hx3QxABERkVnTdtRnzJgxcHV1laAbqipyqRsAgNWrV8PT0xPW1tbw8/PDqVOnyl02ISEBPj4+cHBwgK2tLby8vLB161b182VlZZg+fTratm0LW1tbuLu7Izg4GLdv366KTSEiompCEIRyh7wYfkyf5AEoPj4eYWFhiIqKQnp6Otq3b4+AgADk5uZqXb5OnTqYNWsW0tLScP78eYSGhiI0NBRJSUkAgOLiYqSnpyMiIgLp6elISEhAZmYmBnDKPhER/Z+TJ09i7ty5GnUOeZkPmSAIgpQN+Pn5oVOnTli1ahUAQKVSwcPDAxMnTsSMGTMqtI6OHTuib9++iI6O1vr86dOn4evri2vXrqFhw4YvXF9BQQHs7e2Rn5+P2rVrV3xjiIjI6Gk76jNlyhTY2dlJ0A3pky7f35IeASotLcWZM2fg7++vrsnlcvj7+yMtLe2FrxcEAcnJycjMzES3bt3KXS4/Px8ymQwODg5any8pKUFBQYHoh4iITItKpdIafjp0iGL4MUOSToK+e/culEqlxlirq6urxp12n5afn4/69eujpKQECoUCa9aswZtvvql12YcPH2L69OkICgoqNw3GxMRo/UdBRESm4cCBAzh9+rSo9uqrr+Ltt9+WqCOSWrU8C6xWrVo4e/YsCgsLkZycjLCwMDRp0gQ9evQQLVdWVoZ3330XgiBg7dq15a4vPDwcYWFh6scFBQXw8PAwVPtERFSFtP2CO2vWLNSoUS2/AklPJP3Td3Z2hkKhQE5Ojqiek5MDNze3cl8nl8vRrFkzAICXlxcyMjIQExMjCkBPws+1a9dw5MiR544FWllZwcrK6uU2hoiIjEpJSQliY2M16pzoTIDEAcjS0hLe3t5ITk7GoEGDADweo01OTsaECRMqvB6VSoWSkhL14yfh5/Lly0hJSYGTk5O+WyciIiO2ZcsWZGVliWo9evRA9+7dpWmIjI7kx//CwsIwfPhw+Pj4wNfXF8uWLUNRURFCQ0MBAMHBwahfvz5iYmIAPJ6v4+Pjg6ZNm6KkpAQHDhzA1q1b1UNcZWVlGDp0KNLT07F//34olUpkZ2cDeHwKvaWlpTQbSkREVULbkFdkZCRkMpkE3ZCxkjwABQYGIi8vD5GRkcjOzoaXlxcSExPVE6OvX78Oufy/J6sVFRVh3LhxuHnzJmxsbNCyZUts27YNgYGBAIBbt25h3759AB4Pjz0tJSVFY54QERGZhoKCAixdulSjziEv0kby6wAZI14HiIioeomNjRVNhQCAwYMHo127dhJ1RFLQ5ftb8iNAREREL4N3cKfKYAAiIqJqKTs7G1988YVGneGHKoIBiIiIqh1tR31CQkLQqFEjCbqh6ogBiIiIqhUOeZE+MAAREVG1cPnyZezYsUOjzvBDlcEARERERk/bUZ8JEybwQrdUaQxARERk1DjkRYbAAEREREbp9OnTOHDggKjm5OSk062SiMrDAEREREZH21GfadOmoWbNmhJ0Q6aIAYiIiIyGSqVCdHS0Rp1DXqRvDEBERGQU4uPjcfHiRVGtdevWeOeddyTqiEwZAxAREUlO25DXrFmzUKMGv6bIMOQvXoSIiMgwSkpKtIafpKQohh8yKP7tIiIiSSxZsgQPHjwQ1erU8cLOnQMxY4ZETZHZYAAiIqIqp+2oT2RkJGQyGSZOlKAhMjsMQEREVGUePHiAJUuWaNR5lhdVNQYgIiKqEosWLcI///wjqtWv3wsffdRZoo7InDEAERGRwfF2FmRsGICIiMhgcnJysG7dOo06ww9JjQGIiIgMQttRn+HDh8PT07PqmyF6BgMQERHpHYe8yNgxABERkd5cuXIF27dv16gz/JCxYQAiIiK90HbUZ/z48XB2dpagG6LnYwAiIqKXxiEvqm4YgIiIqNJ+/fVX/PDDD6Kao6MjJk2aJFFHRBXDAERERJWi7ajP1KlTYWtrK0E3RLphACIiIp2oVCpER0dr1DnkRdUJAxAREVXYoUOHkJaWJqq1bNkSgYGBEnVEVDkMQEREVCHahrxmzpwJCwsLCbohejkMQERE9FylpaWIiYnRqHPIi6ozBiAiIirX9u3bceXKFVGta9eueOONNyTqiEg/GICIiEgrbUNekZGRkMlkEnRDpF8MQEREJFJYWIjFixdr1DnkRaaEAYiIiNQWL16MwsJCUW3gwIHw8vKSpiEiA2EAIiIiALydBZkXBiAiIjOXm5uLtWvXatQZfsiUMQAREZkxbUd9goOD0bhxYwm6Iao6DEBERGaKQ15kzhiAiIjMzJ9//olt27Zp1Bl+yJwwABERmRFtR33GjRsHFxcXCbohko5c6gYAYPXq1fD09IS1tTX8/Pxw6tSpcpdNSEiAj48PHBwcYGtrCy8vL2zdulW0jCAIiIyMRL169WBjYwN/f39cvnzZ0JtBRGTUyhvyYvghcyR5AIqPj0dYWBiioqKQnp6O9u3bIyAgALm5uVqXr1OnDmbNmoW0tDScP38eoaGhCA0NRVJSknqZRYsWYcWKFVi3bh1OnjwJW1tbBAQE4OHDh1W1WURERiM9PV0j/NSuXZtDXmTWZIIgCFI24Ofnh06dOmHVqlUAAJVKBQ8PD0ycOBEzZsyo0Do6duyIvn37Ijo6GoIgwN3dHVOmTMHUqVMBAPn5+XB1dcXmzZvx3nvvvXB9BQUFsLe3R35+PmrXrl35jSMikpi2oz5TpkyBnZ2dBN0QGZYu3986HwFSKBRaj8789ddfUCgUOq2rtLQUZ86cgb+//38bksvh7++PtLS0F75eEAQkJycjMzMT3bp1AwBcvXoV2dnZonXa29vDz8+vQuskIjIFgiCUO+TF8ENUiUnQ5R0wKikpgaWlpU7runv3LpRKJVxdXUV1V1dXXLx4sdzX5efno379+igpKYFCocCaNWvw5ptvAgCys7PV63h2nU+e09Z7SUmJ+nFBQYFO20FEZEwOHz6MX375RVRr3rw5goKCJOqIyPhUOACtWLECACCTybBhwwbRbxBKpRI///wzWrZsqf8OtahVqxbOnj2LwsJCJCcnIywsDE2aNEGPHj0qtb6YmBitvykREVU32j7LZs6cCQsLCwm6ITJeFQ5AS5cuBfD4CNC6detEw12Wlpbw9PTEunXrdHpzZ2dnKBQK5OTkiOo5OTlwc3Mr93VyuRzNmjUDAHh5eSEjIwMxMTHo0aOH+nU5OTmoV6+eaJ3l3cwvPDwcYWFh6scFBQXw8PDQaVuIiKRUVlaGBQsWaNSTkqLAuc5EmiocgK5evQoA6NmzJxISEuDo6PjSb25paQlvb28kJydj0KBBAB5Pgk5OTsaECRMqvB6VSqUewmrcuDHc3NyQnJysDjwFBQU4efIkxo4dq/X1VlZWsLKyeqltISKSys6dO3Hp0iVRrW7d/4etW/1RwXNJiMyOznOAUlJS9NpAWFgYhg8fDh8fH/j6+mLZsmUoKipCaGgogMf3pKlfvz5iYmIAPB6u8vHxQdOmTVFSUoIDBw5g69at6hv5yWQyTJ48GfPmzcMrr7yCxo0bIyIiAu7u7uqQRURkKrQNeUVGRkImk6Gc3/mICJUIQCNGjHju85s2bdJpfYGBgcjLy0NkZCSys7Ph5eWFxMRE9STm69evQy7/78lqRUVFGDduHG7evAkbGxu0bNkS27ZtQ2BgoHqZTz/9FEVFRRg9ejTu37+P119/HYmJibC2ttapNyIiY1VYWIjFixdr1HltH6KK0fk6QIMHDxY9Lisrw++//4779+/jjTfeQEJCgl4blAKvA0RExmzp0qUaZ6v2798fHTt2lKgjIuOgy/e3zkeAdu/erVFTqVQYO3YsmjZtquvqiIhIB7yDO5F+6O1K0JmZmejRowfu3Lmjj9VJikeAiMjY5OXlYc2aNRp1hh+i/zLoEaDy/Pnnn3j06JG+VkdERP9H21GfYcOGoUmTJhJ0Q2QadA5AT18vB3h8XaA7d+7ghx9+wPDhw/XWGBERcciLyFB0DkD//ve/RY/lcjlcXFywePHiF54hRkREFXP16lV8/fXXGnWGHyL9kPw6QEREJKbtqM/YsWNRt25dCbohMk2VngOUm5uLzMxMAECLFi34D5OISA845EVUNXQOQAUFBRg/fjx27twJlUoFAFAoFAgMDMTq1athb2+v9yaJiEzdH3/8ge+++05UKymxw2uvTZGoIyLTpnMAGjVqFP7973/jhx9+QOfOnQEAaWlp+Pjjj/Gvf/0Lu3bt0nuTRESmTNtRn6lTp8LW1laCbojMg87XAbK1tUVSUhJef/11Uf3o0aPo3bs3ioqK9NqgFHgdICKqCoIgYO7cuRp1DnkRVY5BrwPk5OSkdZjL3t5eL3eIJyIyB7/88gsOHz4sqrVv3543bSaqIjoHoM8++wxhYWHYunUr3NzcAADZ2dmYNm0aIiIi9N4gEZGp0TbkNXPmTFhYWEjQDZF50nkIrEOHDrhy5QpKSkrQsGFDAI/v2G5lZYVXXnlFtGx6err+Oq1CHAIjIkN49OgR5s+fr1HnkBeRfhh0CGzgwIGQyWSVbo6IyBzt27dP40KyPXv2RLdu3STqiMi86e1mqKaER4CISJ+0DXlFRkbyl0kiPdPl+1uu68qbNGmCv/76S6N+//593piPiOgpxcXF5V7YkOGHSFo6D4FlZWVBqVRq1EtKSnDz5k29NEVEVN1t3LhR4zNx8ODBaNeunUQdEdHTKhyA9u3bp/7/pKQk0anwSqUSycnJaNy4sX67IyKqhng7CyLjV+EA9OTaFDKZDMOHDxc9Z2FhAU9PTyxevFivzRERVSd///03Vq5cqVFn+CEyPhUOQE/u+9W4cWOcPn0azs7OBmuKiKi6mT9/Ph49eiSqDR8+HJ6entI0RETPpfMcoKtXrxqiDyKiaotDXkTVj84BSNt9a54WGRlZ6WaIiKqTGzduYNOmTRp1hh8i46dzANq9e7focVlZGa5evYoaNWqgadOmDEBEZBa0HfUZP348pwcQVRM6B6Bnr2QKPL7wUEhICAYPHqyXpoiIjBmHvIiqP71dCfq3335D//79kZWVpY/VSYpXgiYibS5cuIBvv/1WVHN1dcWYMWMk6oiInmbQe4GVJz8/H/n5+fpaHRGRUdF21GfKlCmws7OToBsielk6B6AVK1aIHguCgDt37mDr1q3o06eP3hojIjIGgiBoPfmDQ15E1ZvOAWjp0qWix3K5HC4uLhg+fDjCw8P11hgRkdR+++03JCQkiGpt27bFkCFDJOqIiPSF1wEiItJC25DXzJkzYWFhIUE3RKRvlZoDdP/+fVy5cgUA0KxZMzg4OOizJyIiySiVSsybN0+j3qFDFJh9iEyHTgEoKysL48ePR1JSEp6cPCaTydC7d2+sWrWKl3wnomotLS0Nhw4dEtUGDhwILy8vaRoiIoOpcAC6ceMGXnvtNVhYWCA6OhqtWrUC8Pi00LVr16Jz5844ffo0GjRoYLBmiYgMRduQV2RkJGQymQTdEJGhVfg6QCNHjsSVK1eQlJQEa2tr0XP//PMPevfujVdeeQUbNmwwSKNVidcBIjIfJSUliI2N1ajzLC+i6scg1wFKTExEfHy8RvgBABsbG0RHR+O9997TvVsiIokcPHgQp06dEtU+/PBDNG3aVKKOiKiqVDgA3b1797lzfJo0aYK///5bHz0RERkcb2dBZN7kFV2wXr16uHDhQrnP//7773Bzc9NLU0REhvLgwQON8GNjY8PwQ2RmKnwEaNCgQZg6dSqSk5Ph4uIiei43NxfTp0/HoEGD9N0fEZHe7NixA5cvXxbVRo8ejXr16knUERFJpcKToO/duwc/Pz9kZ2fjww8/RMuWLSEIAjIyMrBjxw64ubnhxIkTqFOnjqF7NjhOgiYyPRzyIjJ9BpkE7ejoiJMnT2LmzJnYtWsX7t+/DwBwcHDA+++/jwULFphE+CEi05KXl4c1a9aIavfuNcQbb4RK1BERGYMKHwF6miAIyMvLAwC4uLiY3HUyeASIyDSsXLlS4+SMjz/+mFevJzJRBjkC9DSZTIa6detWqjkioqrAIS8iep4KnwVmKKtXr4anpyesra3h5+encU2Op61fvx5du3aFo6MjHB0d4e/vr7F8YWEhJkyYgAYNGsDGxgatW7fGunXrDL0ZRGQkrl27phF+vLy8GH6ISKRSR4D0JT4+HmFhYVi3bh38/PywbNkyBAQEIDMzU+sRptTUVAQFBaFLly6wtrbGwoUL0atXL/zxxx+oX78+ACAsLAxHjhzBtm3b4OnpiUOHDmHcuHFwd3fHgAEDqnoTiagKaTvq8+mnn8LGxkaCbojImFVqDpC++Pn5oVOnTli1ahUAQKVSwcPDAxMnTsSMGTNe+HqlUglHR0esWrUKwcHBAIBXX30VgYGBiIiIUC/n7e2NPn36aL3DszacA0RUvQiCgLlz52rUedSHyLzo8v0t2RBYaWkpzpw5A39///82I5fD398faWlpFVpHcXExysrKRGefdenSBfv27cOtW7cgCAJSUlJw6dIl9OrVq9z1lJSUoKCgQPRDRNXDH3/8oRF+unfvzvBDRM9VoSGwFStWVHiFkyZNqtByd+/ehVKphKurq6ju6uqKixcvVmgd06dPh7u7uyhErVy5EqNHj0aDBg1Qo0YNyOVyrF+/Ht26dSt3PTExMVoPnRORcdP273bWrFmoUUPS0X0iqgYq9CmxdOnSCq1MJpNVOAC9rNjYWOzatQupqamiG7SuXLkSJ06cwL59+9CoUSP8/PPPGD9+vEZQelp4eDjCwsLUjwsKCuDh4WHwbSCiylEqlVqHtHnUh4gqqkIB6OrVq3p/Y2dnZygUCuTk5IjqOTk5L7ynWFxcHGJjY3H48GG0a9dOXf/nn38wc+ZM7N69G3379gUAtGvXDmfPnkVcXFy5AcjKygpWVlYvuUVEVBVOnDiBpKQkUW3AgAHo0KGDRB0RUXVU6TlApaWlyMzMxKNHjyr1ektLS3h7eyM5OVldU6lUSE5ORufOnct93aJFixAdHY3ExET4+PiInisrK0NZWRnkcvFmKRQKqFSqSvVJRMZjzpw5GuEnIiKC4YeIdKZzACouLsbIkSNRs2ZNtGnTBtevXwcATJw4EbGxsTqtKywsDOvXr8eWLVuQkZGBsWPHoqioCKGhjy9RHxwcjPDwcPXyCxcuREREBDZt2gRPT09kZ2cjOzsbhYWFAIDatWuje/fumDZtGlJTU3H16lVs3rwZX3/9NQYPHqzrphKRkSgpKSn3wobP/sJDRFQROs8UDA8Px7lz55CamorevXur6/7+/pg9e3aFTl9/IjAwEHl5eYiMjER2dja8vLyQmJionhh9/fp10Yfb2rVrUVpaiqFDh4rWExUVhdmzZwMAdu3ahfDwcHzwwQf4+++/0ahRI8yfPx9jxozRdVOJyAgkJSXhxIkTotoHH3yAZs2aSdQREZkCna8D1KhRI8THx+O1115DrVq1cO7cOTRp0gRXrlxBx44dTeIUcl4HiMg48HYWRKQLg94LLC8vT+tVmouKikzupqhEJI3CwkIsXrxYVLOystLpCDMR0fPoHIB8fHzwww8/YOLEiQCgDj0bNmx47uRlIqKK2LlzJy5duiSqjRo1Cu7u7hJ1RESmSOcAtGDBAvTp0wcXLlzAo0ePsHz5cly4cAHHjx/HTz/9ZIgeichMcMiLiKqKzqdPvP766zh79iwePXqEtm3b4tChQ6hbty7S0tLg7e1tiB6JyMTdvXtXI/w0aNCA4YeIDEbSm6EaK06CJqo6q1atwl9//SWqTZo0CY6OjhJ1RETVld4nQetyZhcDAxFVFIe8iEgqFQpADg4OFT7DS6lUvlRDRGT6rl+/jq+++kpUa9euHS9YSkRVpkIBKCUlRf3/WVlZmDFjBkJCQtRnfaWlpWHLli2IiYkxTJdEZDK0HfWZNm0aatasKUE3RGSudJ4D9D//8z/46KOPEBQUJKrv2LEDX375JVJTU/XZnyQ4B4hI/wRBwNy5czXqHPIiIn3R5ftb5wBUs2ZNnDt3Dq+88oqofunSJXh5eaG4uFj3jo0MAxCRfmVkZOCbb74R1bp164aePXtK1BERmSKDXgnaw8MD69evx6JFi0T1DRs2wMPDQ9fVEZGJ0zbkNXPmTFhYWEjQDRHRYzoHoKVLl+Ltt9/GwYMH4efnBwA4deoULl++jO+//17vDRJR9aRUKjFv3jyNOoe8iMgYVOo6QDdv3sSaNWtw8eJFAECrVq0wZswYkzkCxCEwopdz8uRJJCYmimr9+/dHx44dJeqIiMyBQecAmQMGIKLK0zbkFRERAblc5wvPExHpxKBzgADg/v372LhxIzIyMgAAbdq0wYgRI2Bvb1+Z1RGRCSgtLdV6KQwOeRGRMdL5CNCvv/6KgIAA2NjYwNfXFwBw+vRp/PPPPzh06JBJHOLmESAi3Rw6dAhpaWmi2vvvv69xtigRkSEZdAisa9euaNasGdavX48aNR4fQHr06BE++ugj/Oc//8HPP/9c+c6NBAMQUcVpG/KKjIys8NXjiYj0xaAByMbGBv/+97/RsmVLUf3ChQvw8fHhdYCIzERhYSEWL14sqllYWGDmzJkSdURE5s6gc4Bq166N69evawSgGzduoFatWrqujoiqofj4ePVZoE+MGjUK7u7uEnVERKQbnQNQYGAgRo4cibi4OHTp0gUA8Msvv2DatGkat8cgItPDO7gTkSnQOQDFxcVBJpMhODgYjx49AvD4sPfYsWMRGxur9waJyDj89ddfWLVqlajm7u6OUaNGSdQREVHlVfo6QMXFxfjzzz8BAE2bNjWpOzlzDhCR2Jo1a5CXlyeqTZo0CY6OjhJ1RESkyeDXAQIe3xS1bdu2lX05EVUTHPIiIlNU4QA0YsSICi23adOmSjdDRMbjxo0bGv+eX331Vbz99tsSdUREpD8VDkCbN29Go0aN0KFDB/DuGUSmTdtRn2nTppnUUDcRmbcKB6CxY8di586duHr1KkJDQ/Hhhx+iTp06huyNiKqYIAiYO3euRp1DXkRkanSaBF1SUoKEhARs2rQJx48fR9++fTFy5Ej06tXLpK76yknQZI4uXryI+Ph4Ua1r16544403JOqIiEg3VXI3+GvXrmHz5s34+uuv8ejRI/zxxx+ws7OrVMPGhgGIzI22Ia+ZM2fCwsJCgm6IiCqnSs4Ck8vlkMlkEAQBSqWysqshIgmpVCpER0dr1DnkRUSmTqcA9PQQ2LFjx9CvXz+sWrUKvXv3hlwuN1SPRGQAp06dwsGDB0W1fv36wdvbW6KOiIiqToUD0Lhx47Br1y54eHhgxIgR2LlzJ5ydnQ3ZGxEZiLYhr4iICP4iQ0Rmo8JzgORyORo2bIgOHTo8d8JzQkKC3pqTCucAkakqLS1FTEyMRp1DXkRkCgwyByg4ONikzvQiMjc//vgjjh8/LqoFBQWhefPmEnVERCQdnS6ESETVk7Yhr8jISP5SQ0Rmq9JngRGR8SsqKkJcXJyoplAo8Nlnn0nUERGRcWAAIjJR33zzDTIyMkS1jz76CPXr15eoIyIi48EARGSCeAd3IqLnYwAiMiF//fUXVq1aJarVq1cPo0ePlqgjIiLjxABEZCLWrVuHnJwcUW3ixIm8aTERkRYMQEQmgENeRES6kfyyr6tXr4anpyesra3h5+eHU6dOlbvs+vXr0bVrVzg6OsLR0RH+/v5al8/IyMCAAQNgb28PW1tbdOrUCdevXzfkZhBJ4ubNmxrhp02bNgw/REQvIGkAio+PR1hYGKKiopCeno727dsjICAAubm5WpdPTU1FUFAQUlJSkJaWBg8PD/Tq1Qu3bt1SL/Pnn3/i9ddfR8uWLZGamorz588jIiIC1tbWVbVZRFUiOjoaGzduFNWmTp2KoUOHStQREVH1UeFbYRiCn58fOnXqpJ60qVKp4OHhgYkTJ2LGjBkvfL1SqYSjoyNWrVqF4OBgAMB7770HCwsLbN26tdJ98VYYZMwEQcDcuXM16jzqQ0TmTpfvb8mOAJWWluLMmTPw9/f/bzNyOfz9/ZGWllahdRQXF6OsrEw9yVOlUuGHH35A8+bNERAQgLp168LPzw979uwxxCYQVbnMzEyN8PP6668z/BAR6UiySdB3796FUqmEq6urqO7q6oqLFy9WaB3Tp0+Hu7u7OkTl5uaisLAQsbGxmDdvHhYuXIjExEQMGTIEKSkp6N69u9b1lJSUoKSkRP24oKCgkltFZDjaJjqHh4fD0tJSgm6IiKq3ansWWGxsLHbt2oXU1FT1/B6VSgUAGDhwID755BMAgJeXF44fP45169aVG4BiYmK0frkQGQOVSoXo6GiNOo/6EBFVnmQByNnZGQqFQuO6JTk5OXBzc3vua+Pi4hAbG4vDhw+jXbt2onXWqFEDrVu3Fi3fqlUrHDt2rNz1hYeHIywsTP24oKAAHh4eumwOkUH8+uuv+OGHH0S1vn37wsfHR6KOiIhMg2QByNLSEt7e3khOTsagQYMAPP5NNzk5GRMmTCj3dYsWLcL8+fORlJSk8SVgaWmJTp06ITMzU1S/dOkSGjVqVO46raysYGVlVfmNITIAbUclIyIiIJdLfvUKIqJqT9IhsLCwMAwfPhw+Pj7w9fXFsmXLUFRUhNDQUABAcHAw6tevj5iYGADAwoULERkZiR07dsDT0xPZ2dkAADs7O9jZ2QEApk2bhsDAQHTr1g09e/ZEYmIi/vd//xepqamSbCORrkpLS9V/55/GIS8iIv2RNAAFBgYiLy8PkZGRyM7OhpeXFxITE9UTo69fvy76bXft2rUoLS3VuM5JVFQUZs+eDQAYPHgw1q1bh5iYGEyaNAktWrTA999/j9dff73KtouospKTkzWGa9977z20aNFCoo6IiEyTpNcBMla8DhBJQduQV2RkJGQymQTdEBFVP7p8f1fbs8CITEVRURHi4uJENblcjoiICIk6IiIyfQxARBL67rvv8Mcff4hqI0eORIMGDSTqiIjIPDAAEUmEd3AnIpIOAxBRFfv777+xcuVKUa1u3boYO3asRB0REZkfBiCiKvTFF1+oL9/wxIQJE+Dk5CRRR0RE5okBiKiKcMiLiMh4MAARGditW7ewYcMGUa1169Z45513JOqIiIgYgIgMaP78+Xj06JGoNnXqVNja2krUERERAQxARAYhCALmzp2rUeeQFxGRcWAAItKzS5cuYefOnaJaly5d8Oabb0rUERERPYsBiEiPtE10Dg8Ph6WlpQTdEBFReRiAiPRApVIhOjpao84hLyIi48QARPSSzpw5g/3794tqffr0ga+vr0QdERHRizAAEb0EbUNeERERkMvlEnRDREQVxQBEVAllZWVYsGCBRp1DXkRE1QMDEJGOjhw5gqNHj4pq7777Llq1aiVRR0REpCsGICIdaBvyioyMhEwmk6AbIiKqLAYgogooLi7G559/rlHnkBcRUfXEAET0AgkJCfjtt99EtREjRsDDw0OijoiI6GUxABE9B+/gTkRkmhiAiLS4d+8eVqxYIaq5uLhg3LhxEnVERET6xABE9Iz169fj9u3botr48ePh7OwsUUdERKRvDEBET+GQFxGReWAAIgJw+/ZtrF+/XlRr2bIlAgMDJeqIiIgMiQGIzF5MTAxKS0tFtSlTpsDOzk6ijoiIyNAYgMhsCYKAuXPnatQ55EVEZPoYgMgsXb58GTt27BDVOnfujF69eknUERERVSUGIDI72iY6h4eHw9LSUoJuiIhICgxAZDZUKhWio6M16hzyIiIyPwxAZBbS09Pxv//7v6Ja79694efnJ1FHREQkJQYgMnnahrw+++wzKBQKCbohIiJjwABEJqusrAwLFizQqHPIi4iIGIDIJKWkpODnn38W1d555x20bt1aoo6IiMiYMACRydE25BUZGQmZTCZBN0REZIwYgMhkFBcX4/PPP9eoc8iLiIiexQBEJmHPnj04d+6cqBYaGoqGDRtK1BERERkzBiCq9ngHdyIi0hUDEFVb9+7dw4oVK0Q1JycnTJgwQaKOiIioumAAompp48aNuHnzpqg2fvx4ODs7S9QRERFVJwxAVO1wyIuIiF4WAxBVG3fu3MGXX34pqjVv3hxBQUESdURERNWVXOoGAGD16tXw9PSEtbU1/Pz8cOrUqXKXXb9+Pbp27QpHR0c4OjrC39//ucuPGTMGMpkMy5YtM0DnVFUWLlyoEX6mTJnC8ENERJUieQCKj49HWFgYoqKikJ6ejvbt2yMgIAC5ublal09NTUVQUBBSUlKQlpYGDw8P9OrVC7du3dJYdvfu3Thx4gTc3d0NvRlkQHPmzMHDhw9FtaSkKNjZ2UnUERERVXeSB6AlS5Zg1KhRCA0NRevWrbFu3TrUrFkTmzZt0rr89u3bMW7cOHh5eaFly5bYsGEDVCoVkpOTRcvdunULEydOxPbt22FhYVEVm0J6lp2drTHfR6n0Q1JSFGbMkKgpIiIyCZLOASotLcWZM2cQHh6ursnlcvj7+yMtLa1C6yguLkZZWRnq1KmjrqlUKgwbNgzTpk1DmzZtXriOkpISlJSUqB8XFBTosBVkCFu2bEFWVpaoNm/eTHTqZIHjx6XpiYiITIekR4Du3r0LpVIJV1dXUd3V1RXZ2dkVWsf06dPh7u4Of39/dW3hwoWoUaMGJk2aVKF1xMTEwN7eXv3j4eFR8Y0gvRIEAXPmzBGFH2tra3ToEIVOnSx45IeIiPSiWp8FFhsbi127diE1NRXW1tYAgDNnzmD58uVIT0+v8M0vw8PDERYWpn5cUFDAECSBrKwsbNmyRVQLCgpC8+bNAQADBkjRFRERmSJJA5CzszMUCgVycnJE9ZycHLi5uT33tXFxcYiNjcXhw4fRrl07df3o0aPIzc0V3QNKqVRiypQpWLZsmcawCgBYWVnBysrq5TaGXsqKFStw7949US0iIgJyueTT1IiIyARJ+u1iaWkJb29v0QTmJxOaO3fuXO7rFi1ahOjoaCQmJsLHx0f03LBhw3D+/HmcPXtW/ePu7o5p06YhKSnJYNtClaNUKjFnzhxR+HFzc0NUVBTDDxERGYzkQ2BhYWEYPnw4fHx84Ovri2XLlqGoqAihoaEAgODgYNSvXx8xMTEAHs/viYyMxI4dO+Dp6ameK2RnZwc7Ozs4OTnByclJ9B4WFhZwc3NDixYtqnbj6LkuXLiAb7/9VlQbOXIkGjRoIFFHRERkLiQPQIGBgcjLy0NkZCSys7Ph5eWFxMRE9cTo69evi44ErF27FqWlpRg6dKhoPVFRUZg9e3ZVtk4vQdvtLCIjIys8b4uIiOhlyARBEKRuwtgUFBTA3t4e+fn5qF27ttTtmJTS0lL10bwnWrZsicDAQIk6IiIiU6HL97fkR4DIfJw+fRoHDhwQ1caNGwcXFxeJOiIiInPFAERVgndwJyIiY8IARAZVVFSEuLg4Ua1Tp0546623JOqIiIiIAYgMKCUlBT///LOo9sknn3BeFRERSY4BiAyCQ15ERGTMGIBIr+7fv4/ly5eLam+88Qa6du0qUUdERESaGIBIb/bu3YuzZ8+Kap9++ilsbGykaYiIiKgcDECkFxzyIiKi6oQBiF5KYWEhFi9eLKoNGDAAHTp0kKgjIiKiF2MAoko7d+4c9uzZI6q1bz8THTpYSNMQERFRBTEAkc4EQcC6deuQm5urrnGiMxERVScMQKQTbWd5jR8/Hs7OzhJ1REREpDsGIKqwkydPIjExUf3Y3t4eH3/8Me/gTkRE1Q4DEL2QSqXCkiVLUFRUpK699dZb6NSpk4RdERERVR4DED1XXl4e1qxZI6pNnjwZ9vb2EnVERET08hiAqFypqan46aef1I/d3d3x0UcfcciLiIiqPQYg0qBUKjFv3jxRbciQIWjbtq1EHREREekXAxCJ3L59G+vXrxfVpk6dCltbW4k6IiIi0j8GIFI7ePAgTp06pX7crFkzfPDBBxJ2REREZBgMQISysjIsWLBAVAsKCkLz5s0l6oiIiMiwGIDMXFZWFrZs2SKqTZ8+HdbW1hJ1REREZHgMQGYsISEBv/32m/pxu3btMHjwYAk7IiIiqhoMQGbo4cOHWLhwoagWEhKCRo0aSdQRERFR1WIAMjOZmZnYtWuXqDZz5kxYWPAO7kREZD4YgMzI1q1b8Z///Ef9+LXXXkNAQICEHREREUmDAcgMFBYWYvHixaLa6NGjUa9ePYk6IiIikhYDkIk7f/48du/erX6sUCgQHh4OhUIhYVdERETSYgAyUYIg4IsvvkBOTo661rNnT3Tr1k3CroiIiIwDA5AJun//PpYvXy6qjR8/Hs7OzhJ1REREZFwYgEzMqVOncPDgQfXj2rVrY/LkybyDOxER0VMYgEyESqXC0qVLUVhYqK716dMHvr6+EnZFRERknBiATEBeXh7WrFkjqk2ePBn29vYSdURERGTcGICquZ9++gmpqanqx/Xq1cOoUaM45EVERPQcDEDVlFKpxPz58yEIgro2ZMgQtG3bVsKuiIiIqgcGoGro9u3bWL9+vag2depU2NraStQRERFR9cIAVM0kJibi5MmT6sdNmzbFhx9+KGFHRERE1Q8DUDVRVlaGBQsWiGpBQUFo3ry5RB0RERFVXwxA1UBWVha2bNkiqk2fPh3W1tYSdURERFS9MQAZud27d+P8+fPqx23btsWQIUMk7IiIiKj6YwAyUg8fPsTChQtFteHDh8PT01OahoiIiEwIA5ARunTpEnbu3CmqzZw5ExYWFhJ1REREZFrkUjcAAKtXr4anpyesra3h5+eHU6dOlbvs+vXr0bVrVzg6OsLR0RH+/v6i5cvKyjB9+nS0bdsWtra2cHd3R3BwMG7fvl0Vm/LStm3bJgo/fn5+iIqKYvghIiLSI8kDUHx8PMLCwhAVFYX09HS0b98eAQEByM3N1bp8amoqgoKCkJKSgrS0NHh4eKBXr164desWAKC4uBjp6emIiIhAeno6EhISkJmZiQEDBlTlZumssLAQc+bMwZ9//qmujRo1Cr1795awKyIiItMkE56+lLAE/Pz80KlTJ6xatQrA45t6enh4YOLEiZgxY8YLX69UKuHo6IhVq1YhODhY6zKnT5+Gr68vrl27hoYNG75wnQUFBbC3t0d+fj5q166t2wZVwvnz57F79271Y7lcjpkzZ0KhUBj8vYmIiEyFLt/fks4BKi0txZkzZxAeHq6uyeVy+Pv7Iy0trULrKC4uRllZGerUqVPuMvn5+ZDJZHBwcND6fElJCUpKStSPCwoKKrYBL0kQBHz55ZfIzs5W13r06IHu3btXyfsTERGZK0kD0N27d6FUKuHq6iqqu7q64uLFixVax/Tp0+Hu7g5/f3+tzz98+BDTp09HUFBQuWkwJiYGc+bM0a35l5Sfn49ly5aJauPGjYOLi0uV9kFERGSOqvVZYLGxsdi1axdSU1O1XhSwrKwM7777LgRBwNq1a8tdT3h4OMLCwtSPCwoK4OHhYZCeAeDUqVM4ePCg+rGdnR0++eQTyOWST8kiIiIyC5IGIGdnZygUCuTk5IjqOTk5cHNze+5r4+LiEBsbi8OHD6Ndu3Yazz8JP9euXcORI0eeOxZoZWUFKyurym2EDgRBwNKlS/HgwQN1rXfv3vDz8zP4exMREdF/SXrIwdLSEt7e3khOTlbXVCoVkpOT0blz53Jft2jRIkRHRyMxMRE+Pj4azz8JP5cvX8bhw4fh5ORkkP51dfHiRVH4+fjjjxl+iIiIJCD5EFhYWBiGDx8OHx8f+Pr6YtmyZSgqKkJoaCgAIDg4GPXr10dMTAwAYOHChYiMjMSOHTvg6empnkBsZ2cHOzs7lJWVYejQoUhPT8f+/fuhVCrVy9SpUweWlpbSbCgAFxcXuLu7Q6FQIDQ0FDKZTLJeiIiIzJnkASgwMBB5eXmIjIxEdnY2vLy8kJiYqJ4Yff36ddHcmLVr16K0tBRDhw4VrScqKgqzZ8/GrVu3sG/fPgCAl5eXaJmUlBT06NHDoNvzPM7OznB1HYXYWMDZGTDySxMRERGZLMmvA2SMDHkdoC5dgLQ0oHNn4Phxva6aiIjIrOny/c3TjqrYjBmPw08FrvFIREREBiL5EJi5GTCAQ19ERERS4xEgIiIiMjsMQERERGR2GICIiIjI7DAAERERkdlhACIiIiKzwwBEREREZocBiIiIiMwOAxARERGZHQYgIiIiMjsMQERERGR2GICIiIjI7DAAERERkdlhACIiIiKzw7vBayEIAgCgoKBA4k6IiIioop58bz/5Hn8eBiAtHjx4AADw8PCQuBMiIiLS1YMHD2Bvb//cZWRCRWKSmVGpVLh9+zZq1aoFmUxm8PcrKCiAh4cHbty4gdq1axv8/aoL7hdN3Cfacb9ox/2iHfeLJlPZJ4Ig4MGDB3B3d4dc/vxZPjwCpIVcLkeDBg2q/H1r165drf/iGQr3iybuE+24X7TjftGO+0WTKeyTFx35eYKToImIiMjsMAARERGR2WEAMgJWVlaIioqClZWV1K0YFe4XTdwn2nG/aMf9oh33iyZz3CecBE1ERERmh0eAiIiIyOwwABEREZHZYQAiIiIis8MARERERGaHAcgAVq9eDU9PT1hbW8PPzw+nTp0qd9n169eja9eucHR0hKOjI/z9/UXLl5WVYfr06Wjbti1sbW3h7u6O4OBg3L59uyo2Ra/0uV+eNWbMGMhkMixbtswAnRuWIfZLRkYGBgwYAHt7e9ja2qJTp064fv26ITdD7/S9XwoLCzFhwgQ0aNAANjY2aN26NdatW2fozdArXfZJQkICfHx84ODgAFtbW3h5eWHr1q2iZQRBQGRkJOrVqwcbGxv4+/vj8uXLht4MvdPnfjHXz9yK/H15WnX+zFUTSK927dolWFpaCps2bRL++OMPYdSoUYKDg4OQk5Ojdfn3339fWL16tfDvf/9byMjIEEJCQgR7e3vh5s2bgiAIwv379wV/f38hPj5euHjxopCWlib4+voK3t7eVblZL03f++VpCQkJQvv27QV3d3dh6dKlBt4S/TLEfrly5YpQp04dYdq0aUJ6erpw5coVYe/eveWu0xgZYr+MGjVKaNq0qZCSkiJcvXpV+OKLLwSFQiHs3bu3qjbrpei6T1JSUoSEhAThwoULwpUrV4Rly5YJCoVCSExMVC8TGxsr2NvbC3v27BHOnTsnDBgwQGjcuLHwzz//VNVmvTR97xdz/cytyN+XJ6rzZ+7TGID0zNfXVxg/frz6sVKpFNzd3YWYmJgKvf7Ro0dCrVq1hC1btpS7zKlTpwQAwrVr116636piqP1y8+ZNoX79+sLvv/8uNGrUqNr9YzTEfgkMDBQ+/PBDvfdalQyxX9q0aSPMnTtXtFzHjh2FWbNm6adpA3vZfSIIgtChQwfhs88+EwRBEFQqleDm5iZ8/vnn6ufv378vWFlZCTt37tRf4wam7/2ijTl+5gqC9v1S3T9zn8YhMD0qLS3FmTNn4O/vr67J5XL4+/sjLS2tQusoLi5GWVkZ6tSpU+4y+fn5kMlkcHBweNmWq4Sh9otKpcKwYcMwbdo0tGnTRu99G5oh9otKpcIPP/yA5s2bIyAgAHXr1oWfnx/27NljiE0wCEP9fenSpQv27duHW7duQRAEpKSk4NKlS+jVq5fet0HfXnafCIKA5ORkZGZmolu3bgCAq1evIjs7W7ROe3t7+Pn5VXg/S80Q+0Ubc/vMLW+/VPfP3GcxAOnR3bt3oVQq4erqKqq7uroiOzu7QuuYPn063N3dRX9xn/bw4UNMnz4dQUFB1eaGdYbaLwsXLkSNGjUwadIkvfZbVQyxX3Jzc1FYWIjY2Fj07t0bhw4dwuDBgzFkyBD89NNPet8GQzDU35eVK1eidevWaNCgASwtLdG7d2+sXr36uV98xqKy+yQ/Px92dnawtLRE3759sXLlSrz55psAoH7dy+xnqRlivzzLnD5zX7Rfqvtn7rN4N3gjEhsbi127diE1NRXW1tYaz5eVleHdd9+FIAhYu3atBB1KQ9t+OXPmDJYvX4709HTIZDKJO5SGtv2iUqkAAAMHDsQnn3wCAPDy8sLx48exbt06dO/eXbJ+q0p5/45WrlyJEydOYN++fWjUqBF+/vlnjB8//rm/cFR3tWrVwtmzZ1FYWIjk5GSEhYWhSZMm6NGjh9StSaqi+8XcPnOft19M8TOXAUiPnJ2doVAokJOTI6rn5OTAzc3tua+Ni4tDbGwsDh8+jHbt2mk8/+Qf4rVr13DkyJFq85sIYJj9cvToUeTm5qJhw4bqmlKpxJQpU7Bs2TJkZWXpdRsMwRD7xdnZGTVq1EDr1q1Fy7dq1QrHjh3TX/MGZIj98s8//2DmzJnYvXs3+vbtCwBo164dzp49i7i4OKMPQJXdJ3K5HM2aNQPwOAhnZGQgJiYGPXr0UL8uJycH9erVE63Ty8tL/xthAIbYL0+Y42fu8/aLKXzmPotDYHpkaWkJb29vJCcnq2sqlQrJycno3Llzua9btGgRoqOjkZiYCB8fH43nn/xDvHz5Mg4fPgwnJyeD9G8ohtgvw4YNw/nz53H27Fn1j7u7O6ZNm4akpCSDbYs+GWK/WFpaolOnTsjMzBTVL126hEaNGul3AwzEEPulrKwMZWVlkMvFH3kKhUJ91MyYVXafPEulUqGkpAQA0LhxY7i5uYnWWVBQgJMnT+q0TikZYr8A5vuZ+6yn94spfOZqkHIGtinatWuXYGVlJWzevFm4cOGCMHr0aMHBwUHIzs4WBEEQhg0bJsyYMUO9fGxsrGBpaSl89913wp07d9Q/Dx48EARBEEpLS4UBAwYIDRo0EM6ePStapqSkRJJtrAx97xdtquMZCYbYLwkJCYKFhYXw5ZdfCpcvXxZWrlwpKBQK4ejRo1W+fZVliP3SvXt3oU2bNkJKSorwn//8R/jqq68Ea2trYc2aNVW+fZWh6z5ZsGCBcOjQIeHPP/8ULly4IMTFxQk1atQQ1q9fr14mNjZWcHBwEPbu3SucP39eGDhwYLU8DV6f+8VcP3Mr8vflWdXxM/dpDEAGsHLlSqFhw4aCpaWl4OvrK5w4cUL9XPfu3YXhw4erHzdq1EgAoPETFRUlCIIgXL16VevzAISUlJSq3bCXpM/9ok11/cdoiP2yceNGoVmzZoK1tbXQvn17Yc+ePVW0Nfqj7/1y584dISQkRHB3dxesra2FFi1aCIsXLxZUKlUVbtXL0WWfzJo1S/13wNHRUejcubOwa9cu0fpUKpUQEREhuLq6ClZWVsL//M//CJmZmVW1OXqjz/1irp+5Ffn78qzq+pn7hEwQBMHwx5mIiIiIjAfnABEREZHZYQAiIiIis8MARERERGaHAYiIiIjMDgMQERERmR0GICIiIjI7DEBERERkdhiAiIiIyOwwABGRyQkJCYFMJkNsbKyovmfPHvWdrFNTUzFw4EDUq1cPtra28PLywvbt26Vol4gkwABERCbJ2toaCxcuxL1797Q+f/z4cbRr1w7ff/89zp8/j9DQUAQHB2P//v1V3CkRSYG3wiAikxMSEoK//voLV65cQf/+/bFo0SIAj48ADR48GOV97PXt2xeurq7YtGlTVbZLRBLgESAiMkkKhQILFizAypUrcfPmzQq9Jj8/H3Xq1DFwZ0RkDBiAiMhkDR48GF5eXoiKinrhst988w1Onz6N0NDQKuiMiKTGAEREJm3hwoXYsmULMjIyyl0mJSUFoaGhWL9+Pdq0aVOF3RGRVBiAiMikdevWDQEBAQgPD9f6/E8//YT+/ftj6dKlCA4OruLuiEgqNaRugIjI0GJjY+Hl5YUWLVqI6qmpqejXrx8WLlyI0aNHS9QdEUmBAYiITF7btm3xwQcfYMWKFepaSkoK+vXrh48//hhvv/02srOzAQCWlpacCE1kBjgERkRmYe7cuVCpVOrHW7ZsQXFxMWJiYlCvXj31z5AhQyTskoiqCq8DRERERGaHR4CIiIjI7DAAERERkdlhACIiIiKzwwBEREREZocBiIiIiMwOAxARERGZHQYgIiIiMjsMQERERGR2GICIiIjI7DAAERERkdlhACIiIiKzwwBEREREZuf/AzdZFSqiCwsDAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUZFJREFUeJzt3XlYVHX7BvB72DcFRAVBFNyXVAyUNLeMwn3pNc2KzS0ztzAXMsEdUEPcLcsl995yywx6RUgr0pLMTEQtcGcxBQRygJnz+8OfU6cZlMGZOcPM/bkur5pnzjnznCM6t9/vWWSCIAggIiIiMiMWUjdAREREZGgMQERERGR2GICIiIjI7DAAERERkdlhACIiIiKzwwBEREREZocBiIiIiMwOAxARERGZHQYgIiIiMjsMQERUa8lkMsyfP1/qNlTCw8Ph4+MjdRtEVA0MQESkU1u3boVMJlP9srOzQ6tWrTB58mTk5eXp9bO///57zJ8/H4WFhTrdbp8+fUT7VK9ePXTp0gWbN2+GUqnUyWcsXboUBw4c0Mm2iOjxrKRugIhM08KFC+Hr64v79+/j22+/xYYNG3DkyBGcO3cODg4OOvmMv/76C1ZWf/819v3332PBggUIDw+Hi4uLTj7jocaNGyM2NhYAUFBQgE8++QRjx47FxYsXERcX98TbX7p0KUaMGIFhw4Y98baI6PEYgIhIL/r374+AgAAAwLhx4+Dm5oaEhAQcPHgQo0ePrvF2lUolysvLYWdnBzs7O121+1jOzs54/fXXVa/feOMNtG7dGmvXrsWiRYtgbW1tsF6I6MlxCoyIDKJv374AgOzsbADAihUr0L17d7i5ucHe3h7+/v747LPP1NaTyWSYPHkydu7cifbt28PW1hZJSUmq9x6eAzR//nzMnDkTAODr66uarsrJyUHv3r3RqVMnjX21bt0awcHBWu+Pg4MDnnnmGZSWlqKgoKDK5UpLSzFjxgx4e3vD1tYWrVu3xooVKyAIgmgfS0tLsW3bNlXf4eHhWvdERNXHESAiMojff/8dAODm5gYAWLVqFYYMGYLXXnsN5eXl2LNnD15++WUcPnwYAwcOFK177NgxfPrpp5g8eTLq16+v8UTjl156CRcvXsTu3buxcuVK1K9fHwDQoEEDhISEYPz48Th37hyeeuop1To//vgjLl68iPfee69G+/THH3/A0tKyyuk2QRAwZMgQpKamYuzYsfDz80NycjJmzpyJGzduYOXKlQCA7du3Y9y4cejatSsmTJgAAGjevHmNeiKiahKIiHRoy5YtAgDh6NGjQkFBgXDt2jVhz549gpubm2Bvby9cv35dEARBKCsrE61XXl4uPPXUU0Lfvn1FdQCChYWF8Ntvv6l9FgAhJiZG9Xr58uUCACE7O1u0XGFhoWBnZyfMnj1bVJ86darg6OgolJSUPHKfevfuLbRp00YoKCgQCgoKhMzMTGHq1KkCAGHw4MGq5cLCwoSmTZuqXh84cEAAICxevFi0vREjRggymUy4fPmyqubo6CiEhYU9sg8i0h1OgRGRXgQFBaFBgwbw9vbGK6+8AicnJ+zfvx9eXl4AAHt7e9Wyd+/eRVFREXr27ImMjAy1bfXu3Rvt2rWrcS/Ozs4YOnQodu/erZp6UigU2Lt3L4YNGwZHR8fHbuPChQto0KABGjRogLZt22LNmjUYOHAgNm/eXOU6R44cgaWlJaZOnSqqz5gxA4Ig4KuvvqrxPhHRk+EUGBHpxbp169CqVStYWVnB3d0drVu3hoXF3//mOnz4MBYvXowzZ85ALper6jKZTG1bvr6+T9xPaGgo9u7dixMnTqBXr144evQo8vLyEBISUq31fXx8sGnTJtWl/S1btkTDhg0fuc6VK1fg6emJOnXqiOpt27ZVvU9E0mAAIiK96Nq1q+oqsH87ceIEhgwZgl69emH9+vVo1KgRrK2tsWXLFuzatUtt+X+OFtVUcHAw3N3dsWPHDvTq1Qs7duyAh4cHgoKCqrW+o6NjtZclIuPHKTAiMrjPP/8cdnZ2SE5OxpgxY9C/f3+dhAtNo0cPWVpa4tVXX8Vnn32Gu3fv4sCBAxg9ejQsLS2f+HOr0rRpU9y8eRP37t0T1S9cuKB6/6FH9U5EuscAREQGZ2lpCZlMBoVCoarl5OQ88Z2QH57LU9WdoENCQnD37l288cYbKCkpEd3XRx8GDBgAhUKBtWvXiuorV66ETCZD//79VTVHR0ed38GaiKrGKTAiMriBAwciISEB/fr1w6uvvor8/HysW7cOLVq0wNmzZ2u8XX9/fwDA3Llz8corr8Da2hqDBw9WBaPOnTvjqaeewn//+1+0bdsWTz/9tE72pyqDBw/Gc889h7lz5yInJwedOnXC119/jYMHD2L69OmiS939/f1x9OhRJCQkwNPTE76+vggMDNRrf0TmjCNARGRwffv2xccff4zc3FxMnz4du3fvRnx8PIYPH/5E2+3SpQsWLVqEX375BeHh4Rg9erTaTQpDQ0MBoNonPz8JCwsLHDp0CNOnT8fhw4cxffp0nD9/HsuXL0dCQoJo2YSEBPj7++O9997D6NGjsWHDBr33R2TOZILwj9uREhGZuFWrVuHtt99GTk4OmjRpInU7RCQRBiAiMhuCIKBTp05wc3NDamqq1O0QkYR4DhARmbzS0lIcOnQIqamp+PXXX3Hw4EGpWyIiiXEEiIhMXk5ODnx9feHi4oJJkyZhyZIlUrdERBJjACIiIiKzw6vAiIiIyOwwABEREZHZ4UnQGiiVSty8eRN16tTh7emJiIhqCUEQcO/ePXh6eooevqwJA5AGN2/ehLe3t9RtEBERUQ1cu3YNjRs3fuQyDEAa1KlTB8CDA1i3bl2JuyEiIqLqKC4uhre3t+p7/FEYgDR4OO1Vt25dBiAiIqJapjqnr/AkaCIiIjI7DEBERERkdhiAiIiIyOzwHKAnoFAoUFFRIXUbpGfW1tawtLSUug0iItIhBqAaEAQBubm5KCwslLoVMhAXFxd4eHjwvlBERCaCAagGHoafhg0bwsHBgV+KJkwQBJSVlSE/Px8A0KhRI4k7IiIiXWAA0pJCoVCFHzc3N6nbIQOwt7cHAOTn56Nhw4acDiMiMgE8CVpLD8/5cXBwkLgTMqSHv98854uIyDQwANUQp73MC3+/iYhMCwMQERERmR0GICIiIjI7DEBmJDw8HDKZDDKZDNbW1nB3d8cLL7yAzZs3Q6lUVns7W7duhYuLi/4aJSIi0jMGIDPTr18/3Lp1Czk5Ofjqq6/w3HPPYdq0aRg0aBAqKyulbo+IiMggGIDMjK2tLTw8PODl5YWnn34a7777Lg4ePIivvvoKW7duBQAkJCSgQ4cOcHR0hLe3NyZNmoSSkhIAQFpaGiIiIlBUVKQaTZo/fz4AYPv27QgICECdOnXg4eGBV199VXX/HCIiIgA4dAjo3v3Bf6XEAKQDgiCgvLzc4L8EQdBJ/3379kWnTp2wb98+AICFhQVWr16N3377Ddu2bcOxY8cwa9YsAED37t2RmJiIunXr4tatW7h16xbeeecdAA8uEV+0aBF++eUXHDhwADk5OQgPD9dJj0REZBrWrctFeflpLF8ul7QP3ghRByoqKhAbG2vwz42KioKNjY1OttWmTRucPXsWADB9+nRV3cfHB4sXL8bEiROxfv162NjYwNnZGTKZDB4eHqJtjBkzRvX/zZo1w+rVq9GlSxeUlJTAyclJJ30SEVHtdeTIEXTv/iMAoHHjSgCBkvXCAEQAHoxiPbzXzdGjRxEbG4sLFy6guLgYlZWVuH//PsrKyh55A8jTp09j/vz5+OWXX3D37l3VidVXr15Fu3btDLIfRERkfCoqKrB06VJRbeRIab8XGIB0wNraGlFRUZJ8rq5kZmbC19cXOTk5GDRoEN58800sWbIE9erVw7fffouxY8eivLy8ygBUWlqK4OBgBAcHY+fOnWjQoAGuXr2K4OBglJeX66xPIiKqXXJycrBt2zZRbc6cObC1tZWoowcYgHRAJpPpbCpKCseOHcOvv/6Kt99+G6dPn4ZSqcT7778PC4sHp4h9+umnouVtbGygUChEtQsXLuDPP/9EXFwcvL29AQA//fSTYXaAiIiM0v79+1WnVwBAx44dMXz4cAk7+hsDkJmRy+XIzc2FQqFAXl4ekpKSEBsbi0GDBiE0NBTnzp1DRUUF1qxZg8GDB+O7777Dxo0bRdvw8fFBSUkJUlJS0KlTJzg4OKBJkyawsbHBmjVrMHHiRJw7dw6LFi2SaC+JiEhK9+/fR3x8vKgWFhYGHx8faRrSgFeBmZmkpCQ0atQIPj4+6NevH1JTU7F69WocPHgQlpaW6NSpExISEhAfH4+nnnoKO3fuVDvBu3v37pg4cSJGjRqFBg0aYNmyZWjQoAG2bt2K//73v2jXrh3i4uKwYsUKifaSiIikcunSJbXw8+677xpV+AEAmaCra6lNSHFxMZydnVFUVIS6deuK3rt//z6ys7Ph6+sLOzs7iTokQ+PvOxHR4+3atQuXLl1Sve7atSv69+9vsM9/1Pf3v3EKjIiIiJ5IWVkZli9fLqqNGzcOXl5eEnX0eAxAREREVGO//fYbPvvsM1Ft7ty5sLIy7ohh3N0RERGRURIEAVu2bMG1a9dUtZ49e6Jv374SdlV9DEBERESklXv37iEhIUFUmzhxItzd3SXqSHsMQERERFRtP//8Mw7940mmtra2mDVrlurecbUFAxARERE9liAIWL9+PW7fvq2qBQUF4dlnn5Wwq5pjACIiIqJHKiwsxKpVq0S1yZMnw83NTaKOnhwDEBEREVXp5MmTSEpKUr12dnbGtGnTVA/Qrq0YgIiIiEiNUqnEypUrUVJSoqoNHDgQAQEBEnalO7XrjCWqFcLDwzFs2DDV6z59+mD69OlPtE1dbIOIiKrn9u3bWLRokSj8TJ8+3WTCD8ARILMSHh6Obdu2AQCsra3RpEkThIaG4t1339XrDav27dsHa2vrai2blpaG5557Dnfv3oWLi0uNtkFERDV3/PhxpKamql57eHhgwoQJtX7K698YgMxMv379sGXLFsjlchw5cgRvvfUWrK2tERUVJVquvLwcNjY2OvnMevXqGcU2iIioagqFArGxsVAoFKra8OHD0bFjRwm70h9OgZkZW1tbeHh4oGnTpnjzzTcRFBSEQ4cOqaatlixZAk9PT7Ru3RoAcO3aNYwcORIuLi6oV68ehg4dipycHNX2FAoFIiMj4eLiAjc3N8yaNQv/fr7uv6ev5HI5Zs+eDW9vb9ja2qJFixb4+OOPkZOTg+eeew4A4OrqCplMhvDwcI3buHv3LkJDQ+Hq6goHBwf0799f9AC+rVu3wsXFBcnJyWjbti2cnJzQr18/3Lp1S7VMWloaunbtCkdHR7i4uODZZ5/FlStXdHSkiYhqj9zcXCxevFgUfmbMmGGy4QdgADJ79vb2KC8vBwCkpKQgKysL//vf/3D48GFUVFQgODgYderUwYkTJ/Ddd9+pgsTDdd5//31s3boVmzdvxrfffos7d+5g//79j/zM0NBQ7N69G6tXr0ZmZiY++OADODk5wdvbG59//jkAICsrC7du3VK77PKh8PBw/PTTTzh06BDS09MhCAIGDBiAiooK1TJlZWVYsWIFtm/fjuPHj+Pq1at45513AACVlZUYNmwYevfujbNnzyI9Pd0kh3iJiB7nf//7Hz744APVa19fX8TExMDJyUnCrvSPU2BmShAEpKSkIDk5GVOmTEFBQQEcHR3x0Ucfqaa+duzYAaVSiY8++kgVDLZs2QIXFxekpaXhxRdfRGJiIqKiovDSSy8BADZu3Ijk5OQqP/fixYv49NNP8b///Q9BQUEAgGbNmqnefzjV1bBhQ9E5QP906dIlHDp0CN999x26d+8OANi5cye8vb1x4MABvPzyywCAiooKbNy4Ec2bNwfw4J4VCxcuBAAUFxejqKgIgwYNUr3ftm1b7Q8kEVEtVVlZiSVLlohqI0eONJu/CzkCJKFDh4Du3R/811AOHz4MJycn2NnZoX///hg1ahTmz58PAOjQoYPovJ9ffvkFly9fRp06deDk5AQnJyfUq1cP9+/fx++//46ioiLcunULgYGBqnWsrKweeZXAmTNnYGlpid69e9d4HzIzM2FlZSX6XDc3N7Ru3RqZmZmqmoODgyrcAECjRo2Qn58P4EHQCg8PR3BwMAYPHoxVq1aJpseIiEzZtWvX1MLPrFmzzCb8ABwBklRcHJCe/uC/Q4YY5jOfe+45bNiwATY2NvD09BRd/eXo6ChatqSkBP7+/ti5c6fadho0aFCjz7e3t6/RejXx76vGZDKZ6PykLVu2YOrUqUhKSsLevXvx3nvv4X//+x+eeeYZg/VIRGRoX3zxBTIyMlSv27Zti5EjR0rYkTQ4AiShOXOAbt0e/NdQHB0d0aJFCzRp0uSxl74//fTTuHTpEho2bIgWLVqIfjk7O8PZ2RmNGjXCyZMnVetUVlbi9OnTVW6zQ4cOUCqV+OabbzS+/3AE6p8n4v1b27ZtUVlZKfrcP//8E1lZWWjXrt0j9+nfOnfujKioKHz//fd46qmnsGvXLq3WJyKqLUpKSrBgwQJR+Hn99dfNMvwADECSGjIE+P57w43+aOu1115D/fr1MXToUJw4cQLZ2dlIS0vD1KlTcf36dQDAtGnTEBcXhwMHDuDChQuYNGkSCgsLq9ymj48PwsLCMGbMGBw4cEC1zU8//RQA0LRpU8hkMhw+fBgFBQWim3A91LJlSwwdOhTjx4/Ht99+i19++QWvv/46vLy8MHTo0GrtW3Z2NqKiopCeno4rV67g66+/xqVLl8xq+JeIzEdKSgref/99UW3OnDmi0wTMDQMQVcnBwQHHjx9HkyZN8NJLL6Ft27YYO3Ys7t+/j7p16wJ4cJlkSEgIwsLC0K1bN9SpUwfDhw9/5HY3bNiAESNGYNKkSWjTpg3Gjx+P0tJSAICXlxcWLFiAOXPmwN3dHZMnT9a4jS1btsDf3x+DBg1Ct27dIAgCjhw5Uu2bJTo4OODChQv4z3/+g1atWmHChAl466238MYbb2hxhIiIjN+CBQvw7bffimqdO8fA1tZWoo6Mg0z4901bCMXFxXB2dkZRUZHqi/6h+/fvIzs7G76+vrCzs5OoQzI0/r4TUW2j6Qnuzz//PHr06CFRR/r3qO/vfzOKEaB169bBx8cHdnZ2CAwMxKlTp6pcdt++fQgICICLiwscHR3h5+eH7du3V7n8xIkTIZPJkJiYqIfOiYiIjM+hQ4fUws+sWbNMOvxoS/KrwPbu3YvIyEhs3LgRgYGBSExMRHBwMLKystCwYUO15evVq4e5c+eiTZs2sLGxweHDhxEREYGGDRsiODhYtOz+/fvxww8/wNPT01C7Q0REJKkFCxao1WJiYiToxLhJPgKUkJCA8ePHIyIiAu3atcPGjRvh4OCAzZs3a1y+T58+GD58ONq2bYvmzZtj2rRp6Nixo9r85o0bNzBlyhTs3LmTD9EkIiKTl5+frxZ+Bg8ezPBTBUlHgMrLy3H69GnRgzgtLCwQFBSE9PT0x64vCAKOHTuGrKwsxMfHq+pKpRIhISGYOXMm2rdv/9jtyOVyyOVy1evi4mIt94SIiEg6e/bsQVZWlqgWFRWls4damyJJA9Dt27ehUCjg7u4uqru7u+PChQtVrldUVAQvLy/I5XJYWlpi/fr1eOGFF1Tvx8fHw8rKClOnTq1WH7GxsRqHDB+F546bF/5+E5ExEgRB9Yifh2QyGaKjoyXqqPaQ/BygmqhTpw7OnDmDkpISpKSkIDIyEs2aNUOfPn1w+vRprFq1ChkZGdV+sGVUVBQiIyNVr4uLi+Ht7a1x2YfTaWVlZQa9qzFJq6ysDID63aWJiKRy/fp1fPzxx6Layy+/rPUNYc2VpAGofv36sLS0RF5enqiel5cHDw+PKtezsLBAixYtAAB+fn7IzMxEbGws+vTpgxMnTiA/Px9NmjRRLa9QKDBjxgwkJiYiJydHbXu2trbVvh+CpaUlXFxcVM+UcnBw4BPETZggCCgrK0N+fj5cXFxgaWkpdUtERNi0aRNu3rwpqr333nv8O0oLkgYgGxsb+Pv7IyUlBcOGDQPw4PydlJSUKm+Ap4lSqVSdwxMSEqJ6yvhDwcHBCAkJQUREhE76fhjOHoYgMn0uLi6PDOVERIagVCqxaNEiUa1u3bp4++23Jeqo9pJ8CiwyMhJhYWEICAhA165dkZiYiNLSUlVYCQ0NhZeXF2JjYwE8OF8nICAAzZs3h1wux5EjR7B9+3Zs2LABwIOngru5uYk+w9raGh4eHmjdurVOepbJZGjUqBEaNmyIiooKnWyTjJe1tTX/VUVEkvv999+xY8cOUS0kJATNmjWTqKPaTfIANGrUKBQUFCA6Ohq5ubnw8/NDUlKS6sToq1evwsLi76v1S0tLMWnSJFy/fh329vZo06YNduzYgVGjRhm8d0tLS34xEhGR3iUkJODevXui2rx580Tfj6QdPgpDA21upU1ERKQvFRUVWLp0qajm5eWFcePGSdSRcdPm+1vyESAiIiJSl5aWhm+++UZUGzduHLy8vCTqyLQwABERERkZTfemS06ORkwMrzrWFQYgIiIiI3H//n3Rkw0eSk6OwZw5EjRkwhiAiIiIjMDhw4dx+vRpUS0sLAw+Pj7g47x0jwGIiIhIYnyCu+ExABEREUnk3r17SEhIENXq1KkjejwT6QcDEBERkQR27dqFS5cuiWpvvPEG7zpvIAxAREREBsYpL+kxABERERnIn3/+ibVr14pq3t7eGDNmjEQdmS8GICIiIgPYsGGD2kO0p06dCldXV4k6Mm8MQERERHrGKS/jwwBERESkJ5cvX8bOnTtFtfbt22PEiBESdUQPMQARERHpgaZRn7S0txETw4dsGwMLqRsgIiIyNZqf5RWDt99m+DEWHAEiIiLSke+++w5Hjx4V1Zo1a4aQkBA+zsLIMAARERHpgKZRn5SUWYiJsZegG3ocBiAiIqInoFQqsWjRIrU6n+Bu3BiAiIiIamj//v04e/asqHb3rjcSE8dwysvIMQARERHVgKYpr6NHozBzpo0E3ZC2GICIiIi0UFFRgaVLl6rVY2JiOOpTizAAERERVdOmTZtw8+ZNUa1du3Z4+eWXJeqIaooBiIiIqBo0TXnNmzcPFha8pV5txABERET0CGVlZVi+fLlanc/yqt0YgIiIiKqwePFiKBQKUe3ZZ59FUFCQRB2RrjAAERERaaBpyis6OhoymUyCbkjXGICIiIj+4c6dO1izZo1anVNepoUBiIiI6P9pGvX57beBeP31AAm6IX1iACIiIoLm8MNRH9PFAERERGbt+vXr+Pjjj9XqDD+mjQGIiIjMlqZRn9GjR6NVq1YSdEOGxABERERmiVNe5o0BiIiIzMqFCxewd+9etTrDj3lhACIiIrOhadRn/Pjx8PT0lKAbkhIDEBERmQVOedE/MQAREZFJO3XqFL766iu1OsOPeWMAIiIik6Vp1Gfq1KlwdXWVoBsyJgxARERkcgRBwMKFC9XqHPWhhxiAiIjIpCQnJ+OHH34Q1WxtbTFnzhyJOiJjxABEREQmQ9OU18yZM+Hg4CBBN2TMGICIiKjWUygUWLx4sVqdU15UFQYgIiKq1fbs2YOsrCxRrXHjxhg7dqxEHVFtwABERES1lqYpr7lz58LKil9v9Gj8CSEiolpHLpcjLi5Orc4pL6ouBiAiIqpV1qxZgzt37ohqfn5+GDp0qEQdUW3EAERERLWGpimv6OhoyGQyCbqh2owBiIiIjN69e/eQkJCgVueUF9WUhdQNAMC6devg4+MDOzs7BAYG4tSpU1Uuu2/fPgQEBMDFxQWOjo7w8/PD9u3bVe9XVFRg9uzZ6NChAxwdHeHp6YnQ0FDcvHnTELtCREQ6tmDBArXw89xzzzH80BORPADt3bsXkZGRiImJQUZGBjp16oTg4GDk5+drXL5evXqYO3cu0tPTcfbsWURERCAiIgLJyckAgLKyMmRkZGDevHnIyMjAvn37kJWVhSFDhhhyt4iISAeqeoJ7r169JOiGTIlMEARBygYCAwPRpUsXrF27FgCgVCrh7e2NKVOmVPu25U8//TQGDhyIRYsWaXz/xx9/RNeuXXHlyhU0adLksdsrLi6Gs7MzioqKULdu3ervDBER6URBQQHWr1+vVueoDz2KNt/fkp4DVF5ejtOnTyMqKkpVs7CwQFBQENLT0x+7viAIOHbsGLKyshAfH1/lckVFRZDJZHBxcdH4vlwuh1wuV70uLi6u/k4QEZFOaRr1GTZsGDp16iRBN2SqJA1At2/fhkKhgLu7u6ju7u6OCxcuVLleUVERvLy8IJfLYWlpifXr1+OFF17QuOz9+/cxe/ZsjB49uso0GBsbq/EPHBERGVZVU15EulYrrwKrU6cOzpw5g5KSEqSkpCAyMhLNmjVDnz59RMtVVFRg5MiREAQBGzZsqHJ7UVFRiIyMVL0uLi6Gt7e3vtonIqJ/ycnJwbZt29TqDD+kL5IGoPr168PS0hJ5eXmiel5eHjw8PKpcz8LCAi1atADw4OZXmZmZiI2NFQWgh+HnypUrOHbs2CPnAm1tbWFra/tkO0NERDWiadQnJCQEzZo1k6AbMheSXgVmY2MDf39/pKSkqGpKpRIpKSno1q1btbejVCpF5/A8DD+XLl3C0aNH4ebmptO+iYhIN6qa8mL4IX2TfAosMjISYWFhCAgIQNeuXZGYmIjS0lJEREQAAEJDQ+Hl5YXY2FgAD87XCQgIQPPmzSGXy3HkyBFs375dNcVVUVGBESNGICMjA4cPH4ZCoUBubi6AB5fQ29jYSLOjRESkcu7cOXz++edqdU55kaFIHoBGjRqFgoICREdHIzc3F35+fkhKSlKdGH316lVYWPw9UFVaWopJkybh+vXrsLe3R5s2bbBjxw6MGjUKAHDjxg0cOnQIwIPpsX9KTU1VO0+IiIgMS9Ooz8SJE9UuiCHSJ8nvA2SMeB8gIiL94FVepE+15j5ARERkHn7++WfV6PxDZWUuePbZaRJ1ROaOAYiIiPRK06jPjBkz4OTkJEE3RA8wABERkV4IgoCFCxeq1TnlRcaAAYiIiHRu9+7duHjxoqhWVFQX9vZvS9QRkRgDEBER6ZSmKa+4uFno3Nke338vQUNEGjAAERGRTlRWVmLJkiVq9c6dY9C5MzBnjgRNEVWBAYiIiJ5YYmIiioqKRDU3NzdMnjwZADBkiBRdEVWNAYiIiJ6IpimvuXPnwsqKXzFkvPjTSURENVJWVobly5er1XmVF9UGDEBERKQ1TaM+bdu2xciRIyXohkh7DEBERKQVTeEnOjoaMplMgm6IaoYBiIiIquXOnTtYs2aNWp1TXlQbMQAREdFjaRr16dGjB55//nkJuiF6cgxARET0SHyCO5kiBiAiItLo2rVr2Lx5s1q9c2eGH6r9GICIiEiNplGfwYMH4+mnn5agGyLdYwAiIiIRTnmROWAAIiIiAMDly5exc+dOtTrDD5kiBiAiItI46nPyZAQmTmwiQTdE+scARERk5jjlReaIAYiIyEz9/PPPOHTokFqd4YfMAQMQEZEZ0jTq89Zbb6F+/foSdENkeAxARERmRBAELFy4UK3OUR8yNwxARERmIjU1FcePH1erM/yQOWIAIiIyA5qmvGbMmAEnJycJuiGSnoW2K1haWiI/P1+t/ueff8LS0lInTRERkW4olcoqr/Ji+CFzpvUIkCAIGutyuRw2NjZP3BAREenGvn378Ouvv4pqDRs2xJtvvilRR0TGo9oBaPXq1QAAmUyGjz76SPQvB4VCgePHj6NNmza675CIiLSmadQnKiqK/1Al+n/VDkArV64E8GAEaOPGjaLpLhsbG/j4+GDjxo2675CIiKqtoqICS5cuVavzRGcisWoHoOzsbADAc889h3379sHV1VVvTRERkfY+/PBD3Lp1S1Rr164dXn75ZYk6IjJeWp8DlJqaqo8+iIjoCWia8po3bx4sLLS+1oXILGgdgMaMGfPI9zdv3lzjZoiISDulpaVYsWKFWp1TXkSPpnUAunv3ruh1RUUFzp07h8LCQvTt21dnjRER0aMtWrQISqVSVOvRoweef/55iToiqj20DkD79+9XqymVSrz55pto3ry5TpoiIqJH0zTlFR0dDZlMJkE3RLWPTKjqxj5aysrKQp8+fdROwKuNiouL4ezsjKKiItStW1fqdoiIVO7cuYM1a9ao1TnlRaTd97fOHoXx+++/o7KyUlebIyKif9E06jNo0CD4+/tL0A1R7aZ1AIqMjBS9FgQBt27dwpdffomwsDCdNUZERH+r6nEWRFQzWgegn3/+WfTawsICDRo0wPvvv//YK8SIiEg7169fx8cff6xWZ/ghejK8DxARkZHSNOozevRotGrVSoJuiExLjc8Bys/PR1ZWFgCgdevWaNiwoc6aIiIyd5zyItIvrQNQcXEx3nrrLezevVt1/wlLS0uMGjUK69atg7Ozs86bJCIyFxcuXMDevXvV6gw/RLqldQAaP348fv75Z3z55Zfo1q0bACA9PR3Tpk3DG2+8gT179ui8SSIic6Bp1Gf8+PHw9PSUoBsi06b1fYAcHR2RnJyMHj16iOonTpxAv379UFpaqtMGpcD7ABGRoXHKi+jJ6fU+QG5ubhqnuZydnfmEeCIiLZ08eRJJSUlqdYYfIv3SOgC99957iIyMxPbt2+Hh4QEAyM3NxcyZMzFv3jydN0hEZKo0jfpMnTqV/5gkMgCtp8A6d+6My5cvQy6Xo0mTJgCAq1evwtbWFi1bthQtm5GRobtODYhTYESkT4IgYOHChWp1jvoQPRm9ToENHTpU5w/bW7duHZYvX47c3Fx06tQJa9asQdeuXTUuu2/fPixduhSXL19GRUUFWrZsiRkzZiAkJES1jCAIiImJwaZNm1BYWIhnn30WGzZsUAtoRESGlpycjB9++EFUs7W1xZw5cyTqiMg86exhqDW1d+9ehIaGYuPGjQgMDERiYiL++9//IisrS+O9hdLS0nD37l20adMGNjY2OHz4MGbMmIEvv/wSwcHBAID4+HjExsZi27Zt8PX1xbx58/Drr7/i/PnzsLOze2xPHAEiIn3QNOU1a9Ys2NvbS9ANkenR5vtb6wDUrFkz/Pjjj3BzcxPVCwsL8fTTT+OPP/7QqtnAwEB06dIFa9euBQAolUp4e3tjypQp1f4X0dNPP42BAwdi0aJFEAQBnp6emDFjBt555x0AQFFREdzd3bF161a88sorj90eAxAR6ZJCocDixYvV6pzyItItbb6/LbTdeE5ODhQKhVpdLpfj+vXrWm2rvLwcp0+fRlBQ0N8NWVggKCgI6enpj11fEASkpKQgKysLvXr1AgBkZ2cjNzdXtE1nZ2cEBgZWuU25XI7i4mLRLyIiXdi9e7da+PH29mb4IZJYtc8BOnTokOr/k5OTRZfCKxQKpKSkwNfXV6sPv337NhQKBdzd3UV1d3d3XLhwocr1ioqK4OXlBblcDktLS6xfvx4vvPACgAdXpD3cxr+3+fC9f4uNjdU4NE1E9CQ0/b0yd+5cWFnV+ClERKQj1f5TOGzYMACATCZDWFiY6D1ra2v4+Pjg/fff12lzValTpw7OnDmDkpISpKSkIDIyEs2aNUOfPn1qtL2oqChERkaqXhcXF8Pb21tH3RKRuZHL5YiLi1Orc9SHyHhUOwA9fO6Xr68vfvzxR9SvX/+JP7x+/fqwtLREXl6eqJ6Xl6e6x5AmFhYWaNGiBQDAz88PmZmZiI2NRZ8+fVTr5eXloVGjRqJt+vn5adyera0tbG1tn3BviIiA1atX4+7du6Kan58fhg4dKlFHRKSJ1ucAZWdn6yT8AICNjQ38/f2RkpKiqimVSqSkpKieM1YdSqUScrkcwIOA5uHhIdpmcXExTp48qdU2iYi0tWDBArXwEx0dzfBDZIS0nojWdPOuf4qOjtZqe5GRkQgLC0NAQAC6du2KxMRElJaWIiIiAgAQGhoKLy8vxMbGAnhwvk5AQACaN28OuVyOI0eOYPv27diwYQOAB1N006dPx+LFi9GyZUvVZfCenp6qaTwiIl26d+8eEhIS1Oqc8iIyXloHoP3794teV1RUIDs7G1ZWVmjevLnWAWjUqFEoKChAdHQ0cnNz4efnh6SkJNVJzFevXoWFxd8DVaWlpZg0aRKuX78Oe3t7tGnTBjt27MCoUaNUy8yaNQulpaWYMGECCgsL0aNHDyQlJVXrHkBERNrQdKJz37590bNnTwm6IaLq0smNEIuLixEeHo7hw4eL7shcW/E+QERUHXyCO5Fx0euNEKvy66+/YvDgwcjJydHF5iTFAEREj1JQUID169er1Rl+iKSl12eBVaWoqAhFRUW62hwRkVHSNOozfPhwdOzYUYJuiKimtA5Aq1evFr0WBAG3bt3C9u3b0b9/f501RkRkbDjlRWQ6tA5AK1euFL22sLBAgwYNEBYWhqioKJ01RkRkLHJycrBt2za1OsMPUe2ldQDKzs7WRx9EREZJ06hPaGio1o/+ISLjUqNzgAoLC3H58mUAQIsWLeDi4qLLnoiIjAKnvIhMl1Z3gs7JycHAgQNRv359BAYGIjAwEPXr18egQYNM4uovIiLgwVWtDD9Epq3aI0DXrl3DM888A2trayxatAht27YFAJw/fx4bNmxAt27d8OOPP6Jx48Z6a5aISN80BZ+JEyeqbs5KRKah2vcBGjt2LC5fvozk5GS1Oyr/9ddf6NevH1q2bImPPvpIL40aEu8DRGSeOOpDVLvp5T5ASUlJ2Lt3r8bHSdjb22PRokV45ZVXtO+WiEhi3377regByg8x/BCZrmoHoNu3b8PHx6fK95s1a4Y7d+7ooiciIoPRNOrz9ttvc/SXyMRV+yToRo0a4fz581W+f+7cOXh4eOikKSIifRMEocopL4YfItNX7RGgYcOG4Z133kFKSgoaNGggei8/Px+zZ8/GsGHDdN0fEZHOffHFF8jIyBDVXFxcMG3aNIk6IiJDq/ZJ0Hfv3kVgYCByc3Px+uuvo02bNhAEAZmZmdi1axc8PDzwww8/oF69evruWe94EjSR6dI06jNnzhzY2tpK0A0R6ZJeToJ2dXXFyZMn8e6772LPnj0oLCwE8OBfTa+++iqWLl1qEuGHiExTZWUllixZolbnic5E5qnaI0D/JAgCCgoKAAANGjSATCbTeWNS4ggQkWnZunUrrly5Iqq1aNECr732mkQdEZE+6GUE6J9kMhkaNmxYo+aIiAxJ05TXe++9B0tLSwm6ISJjUaMARERk7P766y8sW7ZMrc4pLyICGICIyAQtX74cZWVlolpgYCD69esnUUdEZGwYgIjIpGia8oqOjja5cxWJ6MkwABGRSSgsLMSqVavU6pzyIiJNqhWAVq9eXe0NTp06tcbNEBHVhKZRn+DgYDzzzDMSdENEtUG1LoP39fWt3sZkMvzxxx9P3JTUeBk8Ue3BJ7gT0UM6vww+OztbJ40REenKrVu38OGHH6rVGX6IqDpqfA5QeXk5srOz0bx5c1hZ8VQiIjIcTaM+I0eORNu2bSXohohqo2o/Df6hsrIyjB07Fg4ODmjfvj2uXr0KAJgyZQri4uJ03iAR0T9VNeXF8ENE2tA6AEVFReGXX35BWloa7OzsVPWgoCDs3btXp80RET10+fJlnu9DRDqj9dzVgQMHsHfvXjzzzDOi+2q0b98ev//+u06bIyICNI/6tGw5Bq++6i1BN0RkCrQOQAUFBRqfA1ZaWsobjRGRznHUh4j0QespsICAAHz55Zeq1w9Dz0cffYRu3brprjMiMmsZGRkMP0SkN1qPAC1duhT9+/fH+fPnUVlZiVWrVuH8+fP4/vvv8c033+ijRyIyM5qCz+TJk+Hm5iZBN0RkirQeAerRowfOnDmDyspKdOjQAV9//TUaNmyI9PR0+Pv766NHIjITgiBUOerD8ENEulStO0GbG94JmsjwUlNTcfz4cVFNJpMhOjpaoo6IqLbR+Z2gi4uLq/3hDAxEpC1Noz7vvPMOHB0dJeiGiMxBtQKQi4tLta/wUigUT9QQEZkPpVKJRYsWqdV5ojMR6Vu1AlBqaqrq/3NycjBnzhyEh4errvpKT0/Htm3bEBsbq58uicjkfP755zh37pyo5u7ujokTJ0rUERGZE63PAXr++ecxbtw4jB49WlTftWsXPvzwQ6SlpemyP0nwHCAi/dI05RUVFQUbGxsJuiEiU6HN97fWV4Glp6cjICBArR4QEIBTp05puzkiMiMVFRVVXuXF8ENEhqT1fYC8vb2xadMmLFu2TFT/6KOP4O3N29ITkWYffPABcnNzRbX27dtjxIgREnVEROZM6wC0cuVK/Oc//8FXX32FwMBAAMCpU6dw6dIlfP755zpvkIhqP02jPvPmzYOFhdaD0EREOqH13z4DBgzApUuXMHjwYNy5cwd37tzB4MGDcfHiRQwYMEAfPRJRLVVaWlrllBfDDxFJiTdC1IAnQRM9uUWLFkGpVIpqPXv2RN++fSXqiIhMnc5vhPhvhYWF+Pjjj5GZmQngwTz+mDFj4OzsXJPNEZGJ0TTqEx0dXe37iRER6ZvWY9A//fQTmjdvjpUrV6qmwBISEtC8eXNkZGToo0ciqiX+/PPPKqe8GH6IyJhoPQXWs2dPtGjRAps2bYKV1YMBpMrKSowbNw5//PGH2rN8aiNOgRFpT1PwGTRoEB+STEQGo833t9YByN7eHj///DPatGkjqp8/fx4BAQEoKyvTvmMjwwBEpJ2qRn2IiAxJrzdCrFu3Lq5evapWv3btGurUqaPt5rBu3Tr4+PjAzs4OgYGBj7yZ4qZNm9CzZ0+4urrC1dUVQUFBasuXlJRg8uTJaNy4Mezt7dGuXTts3LhR676I6PGuXbvG8ENEtZLWJ0GPGjUKY8eOxYoVK9C9e3cAwHfffYeZM2eqPR7jcfbu3YvIyEhs3LgRgYGBSExMRHBwMLKystCwYUO15dPS0jB69Gh0794ddnZ2iI+Px4svvojffvsNXl5eAIDIyEgcO3YMO3bsgI+PD77++mtMmjQJnp6eGDJkiLa7S0RV0BR8Xn31VbRs2VKCboiItKP1FFh5eTlmzpyJjRs3orKyEgBgbW2NN998E3FxcbC1ta32tgIDA9GlSxesXbsWwIMnQ3t7e2PKlCmYM2fOY9dXKBRwdXXF2rVrERoaCgB46qmnMGrUKMybN0+1nL+/P/r374/FixdXqy9OgRE9Gkd9iMgY6XUKzMbGBqtWrcLdu3dx5swZnDlzBnfu3MHKlSu1Cj/l5eU4ffo0goKC/m7GwgJBQUFIT0+v1jbKyspQUVGBevXqqWrdu3fHoUOHcOPGDQiCgNTUVFy8eBEvvvhi9XeSiDTKzMxk+CEik1Cj+wABgIODAzp06FDjD759+zYUCgXc3d1FdXd3d1y4cKFa25g9ezY8PT1FIWrNmjWYMGECGjduDCsrK1hYWGDTpk3o1atXlduRy+WQy+Wq18XFxVruDZHp0xR8JkyYgEaNGknQDRHRk6l2ABozZky1ltu8eXONm9FGXFwc9uzZg7S0NNjZ2anqa9aswQ8//IBDhw6hadOmOH78ON566y21oPRPsbGxGv9yJ6IHOOpDRKam2ucAWVhYoGnTpujcuTMetcr+/fur9cHl5eVwcHDAZ599hmHDhqnqYWFhKCwsxMGDB6tcd8WKFVi8eDGOHj2KgIAAVf2vv/6Cs7Mz9u/fj4EDB6rq48aNw/Xr15GUlKRxe5pGgLy9vXkOEJm9kydPavxzw/BDRMZIL4/CePPNN7F7925kZ2cjIiICr7/+uujcG23Z2NjA398fKSkpqgCkVCqRkpKCyZMnV7nesmXLsGTJEiQnJ4vCDwBUVFSgoqJC7SGLlpaWas8k+idbW1utzl8iMgeaRn2mTZsGFxcXwzdDRKRj1T4Jet26dbh16xZmzZqFL774At7e3hg5ciSSk5MfOSL0KJGRkdi0aRO2bduGzMxMvPnmmygtLUVERAQAIDQ0FFFRUarl4+PjMW/ePGzevBk+Pj7Izc1Fbm4uSkpKADy4R1Hv3r0xc+ZMpKWlITs7G1u3bsUnn3yC4cOH16hHInMjCEKVU14MP0RkKmr8NPgrV66owkVlZSV+++03ODk5ab2dtWvXYvny5cjNzYWfnx9Wr16NwMBAAECfPn3g4+ODrVu3AgB8fHxw5coVtW3ExMRg/vz5AIDc3FxERUXh66+/xp07d9C0aVNMmDABb7/9drWfRcTL4MlcJSUl4eTJk6Kavb09Zs2aJVFHRETVp9dHYTx07do1bNmyBVu3bkV5eTkuXLhQowBkjBiAyBxpGvWZNWsW7O3tJeiGiEh7ersPkFwux+7du/HCCy+gVatW+PXXX7F27VpcvXrVZMIPkblRKBRVTnkx/BCRqar2SdCTJk3Cnj174O3tjTFjxmD37t2oX7++PnsjIj3btWsXLl26JKo1adJEdR4eEZGp0uoy+CZNmqBz586PPJdm3759OmtOKpwCI3OgadRn7ty5sLKq8f1RiYgkpZfL4ENDQ6t9EjERGS+5XI64uDi1Ou/tQ0TmpNoB6OGVWERUe61atQqFhYWiWufOnTFkyBBpGiIikgjHuonMhKYpr+joaI7sEpFZYgAiMnH37t1DQkKCWp1TXkRkzhiAiEyYplGfvn37omfPnhJ0Q0RkPBiAiEwUn+BORFQ1BiAiE5Ofn48NGzao1Rl+iIj+xgBEZEI0jfoMHz4cHTt2lKAbIiLjxQBEZCI45UVEVH0MQES1XHZ2Nj755BO1OsMPEVHVGICIajFNoz6hoaHw9fWVoBsiotqDAYioluKUFxFRzTEAEdUyFy9exO7du9XqDD9ERNXHAERUi2ga9TlxYgqmTq0nQTdERLUXAxBRLcEpLyIi3WEAIjJyGRkZ+OKLL0S1evXqYcqUKRJ1RERU+zEAERkxTaM+77zzDhwdHSXohojIdDAAERkhQRCwcOFCtTqnvIiIdIMBiMjIpKWl4ZtvvhHVWrRogddee02ijoiITA8DEJER0TTlFRUVBRsbGwm6ISIyXQxAREZAoVBg8eLFanVOeRER6QcDEJHEDh48iDNnzohqXbp0wYABA6RpiIjIDDAAEUlI05TXvHnzYGFhIUE3RETmgwGISAJyuRxxcXFqdU55EREZBgMQkYFt2bIFV69eFdWCgoLw7LPPStQREZH5YQAiMiBNU17R0dGQyWQSdENEZL4YgIgM4N69e0hISFCrc8qLiEgaDEBEerZixQqUlpaKai+99BI6dOggUUdERMQARKRHfII7EZFxYgAi0oOCggKsX79erc7wQ0RkHBiAiHRM06hPaGgofH19JeiGiIg0YQAi0iFOeRER1Q4MQEQ6cOXKFWzdulWtzvBDRGScGICInpCmUZ833ngDHh4eEnRDRETVwQBE9AQ45UVEVDsxABHVwPnz5/Hf//5XVLO2tsa7774rUUdERKQNBiAiLWka9Zk2bRpcXFwM3wwREdUIAxBRNQmCgIULF6rVOeVFRFT7MAARVcPJkyeRlJQkqnl4eOCNN96QqCMiInoSDEBEj6FpymvWrFmwt7eXoBsiItIFBiCiKnDKi4jIdDEAEWlw6tQpfPXVV6La9eudMXjwEIk6IiIiXWIAIvoXTVNe7733HiwtLSXohoiI9MFC6gbWrVsHHx8f2NnZITAwEKdOnapy2U2bNqFnz55wdXWFq6srgoKCNC6fmZmJIUOGwNnZGY6OjujSpQuuXr2qz90gE1BZWVnljQ0ZfoiITIukAWjv3r2IjIxETEwMMjIy0KlTJwQHByM/P1/j8mlpaRg9ejRSU1ORnp4Ob29vvPjii7hx44Zqmd9//x09evRAmzZtkJaWhrNnz2LevHmws7Mz1G5RLZSSkoIlS5aIagMGDOD5PkREJkomCIIg1YcHBgaiS5cuWLt2LQBAqVTC29sbU6ZMwZw5cx67vkKhgKurK9auXYvQ0FAAwCuvvAJra2ts3769xn0VFxfD2dkZRUVFqFu3bo23Q7WDplGf6OhoyGQyCbohIqKa0ub7W7IRoPLycpw+fRpBQUF/N2NhgaCgIKSnp1drG2VlZaioqEC9evUAPAhQX375JVq1aoXg4GA0bNgQgYGBOHDggD52gWo5uVxe5ZQXww8RkWmT7CTo27dvQ6FQwN3dXVR3d3fHhQsXqrWN2bNnw9PTUxWi8vPzUVJSgri4OCxevBjx8fFISkrCSy+9hNTUVPTu3VvjduRyOeRyuep1cXFxDfeKaov9+/fj7NmzotrLL7+Mdu3aSdQREREZUq29CiwuLg579uxBWlqa6vwepVIJABg6dCjefvttAICfnx++//57bNy4scoAFBsbq3EkgEwTp7yIiEiyKbD69evD0tISeXl5onpeXh48PDweue6KFSsQFxeHr7/+Gh07dhRt08rKSu1f8W3btn3kVWBRUVEoKipS/bp27VoN9oiMXUlJCae8iIgIgIQjQDY2NvD390dKSgqGDRsG4MEITkpKCiZPnlzlesuWLcOSJUuQnJyMgIAAtW126dIFWVlZovrFixfRtGnTKrdpa2sLW1vbmu8MGb2tW7fiypUrolpYWBh8fHykaYiIiCQl6RRYZGQkwsLCEBAQgK5duyIxMRGlpaWIiIgAAISGhsLLywuxsbEAgPj4eERHR2PXrl3w8fFBbm4uAMDJyQlOTk4AgJkzZ2LUqFHo1asXnnvuOSQlJeGLL75AWlqaJPtI0qtq1IeIiMyXpAFo1KhRKCgoQHR0NHJzc+Hn54ekpCTVidFXr16FhcXfs3QbNmxAeXk5RowYIdpOTEwM5s+fDwAYPnw4Nm7ciNjYWEydOhWtW7fG559/jh49ehhsv8g4/Pnnn6pbLDxkZWWFuXPnStQREREZC0nvA2SseB+g2m/lypVqV/NNnDhR7apDIiIyHdp8f9faq8CIqsIpLyIiehwGIDIZN27cwEcffSSqNWjQAJMmTZKoIyIiMlYMQGQSNE15TZs2DS4uLtI0RERERk3yp8ETPakFCxaohZ/k5BiGHyIiqhJHgKjWunLlCrZu3Sqqubk9jV27BqMaz9IlIiIzxgBEtZKmE51nzZoFe3t7POI+mkRERAAYgKiWEQQBCxcuVKvzKi8iItIGAxDVGhcuXMDevXtFtd69e6NPnz7SNERERLUWAxDVCpqmvN59911YW1tL0A0REdV2DEBk1JRKJRYtWqRW55QXERE9CQYgMloZGRn44osvRLUBAwagS5cuEnVERESmggGIjJKmKa958+aJHo5LRERUUwxAZFQqKyuxZMkStTqnvIiISJcYgMhoHD9+HKmpqaLayy+/jHbt2knUERERmSoGIDIKmqa8oqOjIZPJJOiGiIhMHQMQSer+/fuIj49Xq3PKi4iI9IkBiCRz5MgR/Pjjj6JaaGgofH19JeqIiIjMBQMQSULTlBdHfYiIyFAYgMig7t27h4SEBFHN0dER77zzjkQdERGROWIAIoPZs2cPsrKyRLUJEyagUaNGEnVERETmigGIDIJTXkREZEwYgEiv7ty5gzVr1ohqXl5eGDdunEQdERERMQCRHn344Ye4deuWqDZ16lS4urpK1BEREdEDDECkF5zyIiIiY8YARDp18+ZNbNq0SVRr27YtRo4cKVFHRERE6hiASGfi4+Nx//59UW3GjBlwcnKSqCMiIiLNGIBIJzjlRUREtQkDED2RP/74A9u3bxfVAgMD0a9fP4k6IiIiejwGIKoxTaM+c+bMga2trQTdEBERVR8DEGlNEAQsXLhQrc4pLyIiqi0YgEgrf/75J9auXSuqPf/88+jRo4dEHREREWmPAYiq7aeffsKXX34pqs2dOxdWVvwxIiKi2oXfXPRYgiBg9erVKCwsVNVyc92xY8dEcNaLiIhqIwYgeiRNz/IqL5+KHTtcMXWqRE0RERE9IQYgqtJ3332Ho0ePql43aNAAb775JmQyGZYskbAxIiKiJ8QARGqUSiWWLVsGuVyuqg0ZMgSdO3eWsCsiIiLdYQAikfz8fGzYsEFUi4yMRJ06dSTqiIiISPcYgEglNTUVx48fV7329vZGREQEZDKZhF0RERHpHgMQQaFQYPHixaLaiBEj0L59e4k6IiIi0i8GIDN348YNfPTRR6LazJkz4eDgIFFHRERE+scAZMa++uornDp1SvW6VatWGD16tIQdERERGQYDkBmqqKjA0qVLRbVXX30VLVu2lKgjIiIiw2IAMjM5OTnYtm2bqDZ79mzY2dlJ1BEREZHhMQCZkQMHDuCXX35Rve7QoQNeeuklCTsiIiKSBgOQGZDL5YiLixPVwsLC4OPjI01DREREEmMAMnGXL1/Gzp07RbV3330X1tbWEnVEREQkPQYgE7Znzx5kZWWpXnfp0gUDBgyQsCMiIiLjYCF1AwCwbt06+Pj4wM7ODoGBgaJLs/9t06ZN6NmzJ1xdXeHq6oqgoKBHLj9x4kTIZDIkJibqoXPjVFZWhgULFojCz9ixYxl+iIiI/p/kAWjv3r2IjIxETEwMMjIy0KlTJwQHByM/P1/j8mlpaRg9ejRSU1ORnp4Ob29vvPjii7hx44basvv378cPP/wAT09Pfe+G0Th//jyWL18uqs2dOxeNGzeWqCMiIiLjIxMEQZCygcDAQHTp0gVr164F8OBJ5N7e3pgyZQrmzJnz2PUVCgVcXV2xdu1ahIaGquo3btxAYGAgkpOTMXDgQEyfPh3Tp0+vVk/FxcVwdnZGUVER6tatW6P9MjRBELB161ZcvXpVVevRoweef/55CbsiIiIyHG2+vyU9B6i8vBynT59GVFSUqmZhYYGgoCCkp6dXaxtlZWWoqKhAvXr1VDWlUomQkBDMnDmzWs+zksvlkMvlqtfFxcVa7IX07t27h4SEBFFt4sSJcHd3l6gjIiIi4ybpFNjt27ehUCjUvqjd3d2Rm5tbrW3Mnj0bnp6eCAoKUtXi4+NhZWWFqVOnVmsbsbGxcHZ2Vv3y9vau/k5I7MyZM6LwY2Njg3nz5jH8EBERPUKtvgosLi4Oe/bsQVpamupOxqdPn8aqVauQkZEBmUxWre1ERUUhMjJS9bq4uNjoQ5AgCNiwYQMKCgpUteeffx49evSQsCsiIqLaQdIAVL9+fVhaWiIvL09Uz8vLg4eHxyPXXbFiBeLi4nD06FF07NhRVT9x4gTy8/PRpEkTVU2hUGDGjBlITExETk6O2rZsbW1ha2v7ZDtjQIWFhVi1apWoNnnyZLi5uUnUERERUe0iaQCysbGBv78/UlJSMGzYMAAPzt9JSUnB5MmTq1xv2bJlWLJkCZKTkxEQECB6LyQkRDQdBgDBwcEICQlBRESEzvfB0E6dOoWvvvpK9drZ2RnTpk2r9mgXERERGcEUWGRkJMLCwhAQEICuXbsiMTERpaWlqrASGhoKLy8vxMbGAnhwfk90dDR27doFHx8f1blCTk5OcHJygpubm9pIiLW1NTw8PNC6dWvD7pwOCYKAlStX4t69e6ragAED0KVLFwm7IiIiqp0kD0CjRo1CQUEBoqOjkZubCz8/PyQlJalO4r169SosLP4+V3vDhg0oLy/HiBEjRNuJiYnB/PnzDdm6wdy+fRvr1q0T1aZPnw5nZ2eJOiIiIqrdJL8PkDEypvsAnThxAseOHVO9dnd3xxtvvMEpLyIion+pNfcBoqopFArExcWhsrJSVRs2bBg6deokYVdERESmgQHICOXm5uKDDz4Q1WbMmAEnJyeJOiIiIjItDEBG5ujRo/juu+9Ur318fBAWFiZhR0RERKaHAchIVFZWYsmSJaLayJEj0bZtW4k6IiIiMl0MQEbg+vXr+Pjjj0W1WbNmwd7eXqKOiIiITBsDkMS+/PJL/PTTT6rXbdq0wahRoyTsiIiIyPQxAEmkvLxcdXPHh1577TW0aNFCoo6IiIjMBwOQBLKzs/HJJ5+IanPmzKlVzyMjIiKqzRiADGzVqs9RWHhO9drPzw9Dhw6VsCMiIiLzwwBkQJcvXxaFn4iICNFT64mIiMgwGIAMyMHBARYWNlAqy9Gp07to0sRa6paIiIjMEp8FpoExPQuMiIiIqkeb72+LR75LREREZIIYgIiIiMjsMAARERGR2WEAIiIiIrPDAERERERmhwGIiIiIzA4DEBEREZkdBiAiIiIyOwxAREREZHYYgIiIiMjsMAARERGR2WEAIiIiIrPDAERERERmhwGIiIiIzI6V1A0YI0EQAADFxcUSd0JERETV9fB7++H3+KMwAGlw7949AIC3t7fEnRAREZG27t27B2dn50cuIxOqE5PMjFKpxM2bN1GnTh3IZDKp26m24uJieHt749q1a6hbt67U7dQKPGba4zHTHo+Z9njMtMdj9mDk5969e/D09ISFxaPP8uEIkAYWFhZo3Lix1G3UWN26dc32h7+meMy0x2OmPR4z7fGYac/cj9njRn4e4knQREREZHYYgIiIiMjsMACZEFtbW8TExMDW1lbqVmoNHjPt8Zhpj8dMezxm2uMx0w5PgiYiIiKzwxEgIiIiMjsMQERERGR2GICIiIjI7DAAERERkdlhADJi69atg4+PD+zs7BAYGIhTp05VueymTZvQs2dPuLq6wtXVFUFBQY9cfuLEiZDJZEhMTNRD59LRxzHLzMzEkCFD4OzsDEdHR3Tp0gVXr17V524YlK6PWUlJCSZPnozGjRvD3t4e7dq1w8aNG/W9GwalzTHbt28fAgIC4OLiAkdHR/j5+WH79u2iZQRBQHR0NBo1agR7e3sEBQXh0qVL+t4Ng9LlMauoqMDs2bPRoUMHODo6wtPTE6Ghobh586YhdsVgdP1z9k+m+h2gFYGM0p49ewQbGxth8+bNwm+//SaMHz9ecHFxEfLy8jQu/+qrrwrr1q0Tfv75ZyEzM1MIDw8XnJ2dhevXr6stu2/fPqFTp06Cp6ensHLlSj3vieHo45hdvnxZqFevnjBz5kwhIyNDuHz5snDw4MEqt1nb6OOYjR8/XmjevLmQmpoqZGdnCx988IFgaWkpHDx40FC7pVfaHrPU1FRh3759wvnz54XLly8LiYmJgqWlpZCUlKRaJi4uTnB2dhYOHDgg/PLLL8KQIUMEX19f4a+//jLUbumVro9ZYWGhEBQUJOzdu1e4cOGCkJ6eLnTt2lXw9/c35G7plT5+zh4y1e8AbTEAGamuXbsKb731luq1QqEQPD09hdjY2GqtX1lZKdSpU0fYtm2bqH79+nXBy8tLOHfunNC0aVOT+uHXxzEbNWqU8Prrr+u8V2Ohj2PWvn17YeHChaLlnn76aWHu3Lm6aVpiT3rMBEEQOnfuLLz33nuCIAiCUqkUPDw8hOXLl6veLywsFGxtbYXdu3frrnEJ6fqYaXLq1CkBgHDlypUn6tVY6OuYmfJ3gLY4BWaEysvLcfr0aQQFBalqFhYWCAoKQnp6erW2UVZWhoqKCtSrV09VUyqVCAkJwcyZM9G+fXud9y0lfRwzpVKJL7/8Eq1atUJwcDAaNmyIwMBAHDhwQB+7YHD6+jnr3r07Dh06hBs3bkAQBKSmpuLixYt48cUXdb4Phvakx0wQBKSkpCArKwu9evUCAGRnZyM3N1e0TWdnZwQGBlb798GY6eOYaVJUVASZTAYXFxddtC0pfR0zU/4OqAkGICN0+/ZtKBQKuLu7i+ru7u7Izc2t1jZmz54NT09P0R+g+Ph4WFlZYerUqTrt1xjo45jl5+ejpKQEcXFx6NevH77++msMHz4cL730Er755hud74Oh6evnbM2aNWjXrh0aN24MGxsb9OvXD+vWrXvkl1dtUdNjVlRUBCcnJ9jY2GDgwIFYs2YNXnjhBQBQrfckvw/GTB/H7N/u37+P2bNnY/To0SbxEFB9HTNT/g6oCT4N3gTFxcVhz549SEtLg52dHQDg9OnTWLVqFTIyMiCTySTu0PhoOmZKpRIAMHToULz99tsAAD8/P3z//ffYuHEjevfuLVm/xkDTMQMeBKAffvgBhw4dQtOmTXH8+HG89dZbakHJnNSpUwdnzpxBSUkJUlJSEBkZiWbNmqFPnz5St2a0qnvMKioqMHLkSAiCgA0bNkjTrJF41DHjd4A6BiAjVL9+fVhaWiIvL09Uz8vLg4eHxyPXXbFiBeLi4nD06FF07NhRVT9x4gTy8/PRpEkTVU2hUGDGjBlITExETk6OTvfB0PRxzOrXrw8rKyu0a9dOtHzbtm3x7bff6q55iejjmP3111949913sX//fgwcOBAA0LFjR5w5cwYrVqyo9QGopsfMwsICLVq0APAgRGdmZiI2NhZ9+vRRrZeXl4dGjRqJtunn56f7nTAwfRyzhx6GnytXruDYsWMmMfoD6OeYmfp3QE1wCswI2djYwN/fHykpKaqaUqlESkoKunXrVuV6y5Ytw6JFi5CUlISAgADReyEhITh79izOnDmj+uXp6YmZM2ciOTlZb/tiKPo4ZjY2NujSpQuysrJE9YsXL6Jp06a63QEJ6OOYVVRUoKKiAhYW4r9aLC0tVSNqtVlNj9m/KZVKyOVyAICvry88PDxE2ywuLsbJkye12qax0scxA/4OP5cuXcLRo0fh5uam076lpI9jZurfATUi6SnYVKU9e/YItra2wtatW4Xz588LEyZMEFxcXITc3FxBEAQhJCREmDNnjmr5uLg4wcbGRvjss8+EW7duqX7du3evys8wtSsA9HHM9u3bJ1hbWwsffvihcOnSJWHNmjWCpaWlcOLECYPvnz7o45j17t1baN++vZCamir88ccfwpYtWwQ7Ozth/fr1Bt8/fdD2mC1dulT4+uuvhd9//104f/68sGLFCsHKykrYtGmTapm4uDjBxcVFOHjwoHD27Flh6NChJncZvC6PWXl5uTBkyBChcePGwpkzZ0Q/i3K5XJJ91DV9/Jz9m6l9B2iLAciIrVmzRmjSpIlgY2MjdO3aVfjhhx9U7/Xu3VsICwtTvW7atKkAQO1XTExMlds3xR9+fRyzjz/+WGjRooVgZ2cndOrUSThw4ICB9sYwdH3Mbt26JYSHhwuenp6CnZ2d0Lp1a+H9998XlEqlAfdKv7Q5ZnPnzlX9/Li6ugrdunUT9uzZI9qeUqkU5s2bJ7i7uwu2trbC888/L2RlZRlqdwxCl8csOztb488hACE1NdWAe6Vfuv45+zdT/A7QhkwQBMGgQ05EREREEuM5QERERGR2GICIiIjI7DAAERERkdlhACIiIiKzwwBEREREZocBiIiIiMwOAxARERGZHQYgIiIiMjsMQERkcsLDwyGTyRAXFyeqHzhwQPUk7LS0NAwdOhSNGjWCo6Mj/Pz8sHPnTinaJSIJMAARkUmys7NDfHw87t69q/H977//Hh07dsTnn3+Os2fPIiIiAqGhoTh8+LCBOyUiKfBRGERkcsLDw/Hnn3/i8uXLGDx4MJYtWwbgwQjQ8OHDUdVfewMHDoS7uzs2b95syHaJSAIcASIik2RpaYmlS5dizZo1uH79erXWKSoqQr169fTcGREZAwYgIjJZw4cPh5+fH2JiYh677Keffooff/wRERERBuiMiKTGAEREJi0+Ph7btm1DZmZmlcukpqYiIiICmzZtQvv27Q3YHRFJhQGIiExar169EBwcjKioKI3vf/PNNxg8eDBWrlyJ0NBQA3dHRFKxkroBIiJ9i4uLg5+fH1q3bi2qp6WlYdCgQYiPj8eECRMk6o6IpMAAREQmr0OHDnjttdewevVqVS01NRWDBg3CtGnT8J///Ae5ubkAABsbG54ITWQGOAVGRGZh4cKFUCqVqtfbtm1DWVkZYmNj0ahRI9Wvl156ScIuichQeB8gIiIiMjscASIiIiKzwwBEREREZocBiIiIiMwOAxARERGZHQYgIiIiMjsMQERERGR2GICIiIjI7DAAERERkdlhACIiIiKzwwBEREREZocBiIiIiMwOAxARERGZnf8DAUnDwa8qwmsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_37.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHHCAYAAAC4BYz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAyUlEQVR4nO3deVxU9f7H8feALMoqiqKJippLuWQuBGkueVNTEdus3EizMi1tFere1Lw36WZaVle7qejt5tKmkaWmJppJm2a5ryjkSqagmKBwfn9wmZ+jqAPOMAzn9Xw8zmOcs36+nk7z9pzvOcdiGIYhAAAAk/FwdQEAAACuQAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCUO5YLBaNHz/e1WVYxcXFqX79+q4uA4CDEYIA2GXOnDmyWCzWwdfXV40bN9aoUaN09OhRp257/fr1Gj9+vE6ePOnQ9Xbu3NmmTSEhIWrXrp1mz56tgoICh2zjlVde0eLFix2yLgCOVcnVBQBwLy+//LIiIiJ09uxZrVu3TtOnT9eXX36pLVu2qEqVKg7Zxp9//qlKlf7/f0/r16/XhAkTFBcXp+DgYIdso0idOnU0adIkSVJmZqb+85//aNiwYdq1a5cSExOvef2vvPKK7rnnHsXGxl7zugA4FiEIQIn07NlTbdu2lSQ9/PDDqlatmqZMmaLPPvtMDzzwQKnXW1BQoLy8PPn6+srX19dR5V5VUFCQBg4caP3+6KOPqkmTJnr77bc1ceJEeXl5lVktAMoWl8MAXJOuXbtKktLS0iRJkydPVnR0tKpVq6bKlSurTZs2+vjjjy9ZzmKxaNSoUfrggw904403ysfHR8uWLbNOK+oTNH78eD333HOSpIiICOulq/3796tTp05q1apVsXU1adJE3bt3L3F7qlSpoltuuUU5OTnKzMy87Hw5OTl65plnFB4eLh8fHzVp0kSTJ0+WYRg2bczJydHcuXOtdcfFxZW4JgDOwZkgANdk7969kqRq1apJkt58803FxMRowIABysvL04IFC3TvvfdqyZIl6tWrl82yX3/9tT788EONGjVK1atXL7bz8V133aVdu3Zp/vz5mjp1qqpXry5JCg0N1aBBgzR8+HBt2bJFzZs3ty7z448/ateuXfrrX/9aqjbt27dPnp6el730ZhiGYmJitHr1ag0bNkw33XSTli9frueee04HDx7U1KlTJUnvv/++Hn74YbVv316PPPKIJKlhw4alqgmAExgAYIekpCRDkrFy5UojMzPTyMjIMBYsWGBUq1bNqFy5svHbb78ZhmEYZ86csVkuLy/PaN68udG1a1eb8ZIMDw8PY+vWrZdsS5Ixbtw46/fXXnvNkGSkpaXZzHfy5EnD19fXGDt2rM34J5980vDz8zNOnz59xTZ16tTJaNq0qZGZmWlkZmYa27dvN5588klDktGnTx/rfEOGDDHq1atn/b548WJDkvH3v//dZn333HOPYbFYjD179ljH+fn5GUOGDLliHQBcg8thAEqkW7duCg0NVXh4uO6//375+/tr0aJFuu666yRJlStXts574sQJZWVlqWPHjtq4ceMl6+rUqZNuuOGGUtcSFBSkvn37av78+dbLUPn5+Vq4cKFiY2Pl5+d31XXs2LFDoaGhCg0NVbNmzfTWW2+pV69emj179mWX+fLLL+Xp6aknn3zSZvwzzzwjwzC0dOnSUrcJQNkxZQhau3at+vTpo9q1a8tisTj99lV7t7d9+3bFxMQoKChIfn5+ateundLT051aG1BS77zzjlasWKHVq1dr27Zt2rdvn03fmyVLluiWW26Rr6+vQkJCFBoaqunTpysrK+uSdUVERFxzPYMHD1Z6erq++eYbSdLKlSt19OhRDRo0yK7l69evrxUrVmjlypVat26djhw5oiVLllgvuxXnwIEDql27tgICAmzGN2vWzDodQPlnyj5BOTk5atWqlYYOHaq77rqrXGxv79696tChg4YNG6YJEyYoMDBQW7duLdO7ZAB7tG/f3np32MW++eYbxcTE6LbbbtO//vUv1apVS15eXkpKStK8efMumf/Cs0al1b17d9WsWVP//e9/ddttt+m///2vwsLC1K1bN7uW9/Pzs3teABWLKUNQz5491bNnz8tOz83N1Ysvvqj58+fr5MmTat68uV599VV17tzZKduTpBdffFF33nmn/vnPf1rH0YES7uaTTz6Rr6+vli9fLh8fH+v4pKSka1qvxWK57DRPT089+OCDmjNnjl599VUtXrxYw4cPl6en5zVt80rq1aunlStX6tSpUzZng3bs2GGdbk/tAFzLlJfDrmbUqFFKTU3VggUL9Ouvv+ree+9Vjx49tHv3bqdsr6CgQF988YUaN26s7t27q0aNGoqMjOQps3A7np6eslgsys/Pt47bv3//Nf+3XNS353JPjB40aJBOnDihRx99VKdPn7Z57o8z3HnnncrPz9fbb79tM37q1KmyWCw2/+jx8/Nz+JOuATgGIegi6enpSkpK0kcffaSOHTuqYcOGevbZZ9WhQ4dr/tfs5Rw7dkynT59WYmKievTooa+++kr9+vXTXXfdpTVr1jhlm4Az9OrVS2fOnFGPHj00Y8YMvfzyy4qMjFSjRo2uab1t2rSRVHjG9P3339eCBQuUk5Njnd66dWs1b95cH330kZo1a6abb775mrZ3NX369FGXLl304osv6tFHH9W//vUvxcbGauHChRo9erTNWdw2bdpo5cqVmjJlihYsWKDvv//eqbUBsB8h6CKbN29Wfn6+GjduLH9/f+uwZs0a6/NQduzYYfO+oeKG+Ph4u7dZ9I6ivn376qmnntJNN92k+Ph49e7dWzNmzHBKOwFn6Nq1q2bNmqUjR45ozJgxmj9/vl599VX169fvmtbbrl07TZw4Ub/88ovi4uL0wAMPXPIgw8GDB0uS3R2ir4WHh4eSk5M1ZswYLVmyRGPGjNG2bdv02muvacqUKTbzTpkyRW3atNFf//pXPfDAA5o+fbrT6wNgH4thXPB4UxOyWCxatGiR9b0+Cxcu1IABA7R169ZL+hT4+/srLCxMeXl52rdv3xXXW61aNYWGhl51e5KUl5cnPz8/jRs3zubhbmPHjtW6dev07bfflr6BgEm8+eabeuqpp7R//37VrVvX1eUAcAOm7Bh9Ja1bt1Z+fr6OHTumjh07FjuPt7e3mjZt6rBtent7q127dtq5c6fN+F27dtl0sARQPMMwNGvWLHXq1IkABMBupgxBp0+f1p49e6zf09LStGnTJoWEhKhx48YaMGCABg8erNdff12tW7dWZmamVq1apZYtW17y2P9r3V7R/7Cfe+459e/fX7fddpu6dOmiZcuW6fPPP1dKSso1txeoqHJycpScnKzVq1dr8+bN+uyzz1xdEgB34tLnVbvI6tWrDUmXDEWPts/LyzNeeuklo379+oaXl5dRq1Yto1+/fsavv/7qlO0VmTVrltGoUSPD19fXaNWqlbF48eJrbClQsaWlpRmSjODgYOOFF15wdTkA3Izp+wQBAABz4u4wAABgSoQgAABgSqbqGF1QUKBDhw4pICCAR9kDAOAmDMPQqVOnVLt2bXl4OO78jalC0KFDhxQeHu7qMgAAQClkZGSoTp06DlufqUJQ0YsOMzIyFBgY6OJqAACAPbKzsxUeHm7zwmJHMFUIKroEFhgYSAgCAMDNOLorCx2jAQCAKRGCAACAKRGCAACAKZmqT5C98vPzde7cOVeXASfz8vKSp6enq8sAALgIIegChmHoyJEjOnnypKtLQRkJDg5WWFgYz40CABMiBF2gKADVqFFDVapU4YexAjMMQ2fOnNGxY8ckSbVq1XJxRQCAskYI+p/8/HxrAKpWrZqry0EZqFy5siTp2LFjqlGjBpfGAMBk6Bj9P0V9gKpUqeLiSlCWivY3fcAAwHwIQRfhEpi5sL8BwLwIQQAAwJQIQQAAwJQIQRVAXFycLBaLLBaLvLy8VLNmTf3lL3/R7NmzVVBQYPd65syZo+DgYOcVCgBAOUIIqiB69Oihw4cPa//+/Vq6dKm6dOmi0aNHq3fv3jp//ryrywMAoNwhBFUQPj4+CgsL03XXXaebb75ZL7zwgj777DMtXbpUc+bMkSRNmTJFLVq0kJ+fn8LDw/X444/r9OnTkqSUlBQ99NBDysrKsp5VGj9+vCTp/fffV9u2bRUQEKCwsDA9+OCD1ufrAAAgScnJUnR04ae7IARdhmEYysvLc8lgGIZD2tC1a1e1atVKn376qSTJw8ND06ZN09atWzV37lx9/fXXev755yVJ0dHReuONNxQYGKjDhw/r8OHDevbZZyUV3j4+ceJE/fLLL1q8eLH279+vuLg4h9QIAKgYEhOl1NTCT3fBwxIv49y5c5o0aZJLtp2QkCBvb2+HrKtp06b69ddfJUljxoyxjq9fv77+/ve/67HHHtO//vUveXt7KygoSBaLRWFhYTbrGDp0qPXPDRo00LRp09SuXTudPn1a/v7+DqkTAODe4uMLA1B8vKsrsR8hqIIzDMP6LJyVK1dq0qRJ2rFjh7Kzs3X+/HmdPXtWZ86cueJDIjds2KDx48frl19+0YkTJ6ydrdPT03XDDTeUSTsAAOVbTEzh4E4IQZfh5eWlhIQEl23bUbZv366IiAjt379fvXv31ogRI/SPf/xDISEhWrdunYYNG6a8vLzLhqCcnBx1795d3bt31wcffKDQ0FClp6ere/fuysvLc1idAACUNULQZVgsFoddknKVr7/+Wps3b9ZTTz2lDRs2qKCgQK+//ro8PAq7gn344Yc283t7eys/P99m3I4dO3T8+HElJiYqPDxckvTTTz+VTQMAAHAiOkZXELm5uTpy5IgOHjyojRs36pVXXlHfvn3Vu3dvDR48WI0aNdK5c+f01ltvad++fXr//fc1Y8YMm3XUr19fp0+f1qpVq/T777/rzJkzqlu3rry9va3LJScna+LEiS5qJQAAjkMIqiCWLVumWrVqqX79+urRo4dWr16tadOm6bPPPpOnp6datWqlKVOm6NVXX1Xz5s31wQcfXNLxOzo6Wo899pj69++v0NBQ/fOf/1RoaKjmzJmjjz76SDfccIMSExM1efJkF7USAADHsRiOuh/bDWRnZysoKEhZWVkKDAy0mXb27FmlpaUpIiJCvr6+LqoQZY39DuBaJSf//11R7tYx2F1c6ff7WnAmCACAa+COz8dBIUIQAADXID5eiopyr+fjoBB3hwEAcA3c8fk4KMSZIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEINgtLi5OsbGx1u+dO3fWmDFjrmmdjlgHAAClQQiqAOLi4mSxWGSxFL75vlGjRnr55Zd1/vx5p273008/tftlqikpKbJYLDp58mSp1wEAgCPxsMQKokePHkpKSlJubq6+/PJLjRw5Ul5eXkpISLCZLy8vT97e3g7ZZkhISLlYBwAApeFWZ4IOHjyogQMHqlq1aqpcubJatGihn376ydVllQs+Pj4KCwtTvXr1NGLECHXr1k3JycnWS1j/+Mc/VLt2bTVp0kSSlJGRofvuu0/BwcEKCQlR3759tX//fuv68vPz9fTTTys4OFjVqlXT888/r4vftXvxpazc3FyNHTtW4eHh8vHxUaNGjTRr1izt379fXbp0kSRVrVpVFotFcXFxxa7jxIkTGjx4sKpWraoqVaqoZ8+e2r17t3X6nDlzFBwcrOXLl6tZs2by9/dXjx49dPjwYes8KSkpat++vfz8/BQcHKxbb71VBw4ccNDfNACgonCbEHTixAndeuut8vLy0tKlS7Vt2za9/vrrqlq1qqtLK5cqV66svLw8SdKqVau0c+dOrVixQkuWLNG5c+fUvXt3BQQE6JtvvtG3335rDRNFy7z++uuaM2eOZs+erXXr1umPP/7QokWLrrjNwYMHa/78+Zo2bZq2b9+ud999V/7+/goPD9cnn3wiSdq5c6cOHz6sN998s9h1xMXF6aefflJycrJSU1NlGIbuvPNOnTt3zjrPmTNnNHnyZL3//vtau3at0tPT9eyzz0qSzp8/r9jYWHXq1Em//vqrUlNT9cgjj8hisVzz3ykAoGJxm8thr776qsLDw5WUlGQdFxER4cKKyifDMLRq1SotX75cTzzxhDIzM+Xn56eZM2daL4P997//VUFBgWbOnGkNB0lJSQoODlZKSoruuOMOvfHGG0pISNBdd90lSZoxY4aWL19+2e3u2rVLH374oVasWKFu3bpJkho0aGCdXnTZq0aNGgoODi52Hbt371ZycrK+/fZbRUdHS5I++OADhYeHa/Hixbr33nslSefOndOMGTPUsGFDSdKoUaP08ssvS5Kys7OVlZWl3r17W6c3a9as5H+RAIAKz23OBCUnJ6tt27a69957VaNGDbVu3VrvvffeFZfJzc1Vdna2zVA2tUrR0YWfZWXJkiXy9/eXr6+vevbsqf79+2v8+PGSpBYtWtj0A/rll1+0Z88eBQQEyN/fX/7+/goJCdHZs2e1d+9eZWVl6fDhw4qMjLQuU6lSJbVt2/ay29+0aZM8PT3VqVOnUrdh+/btqlSpks12q1WrpiZNmmj79u3WcVWqVLEGHEmqVauWjh07JqkwbMXFxal79+7q06eP3nzzTZtLZQAAFHGbELRv3z5Nnz5d119/vZYvX64RI0boySef1Ny5cy+7zKRJkxQUFGQdwsPDy6TWxEQpNbXws6x06dJFmzZt0u7du/Xnn39q7ty58vPzkyTrZ5HTp0+rTZs22rRpk82wa9cuPfjgg6XafuXKla+5Dfby8vKy+W6xWGz6KyUlJSk1NVXR0dFauHChGjdurO+++67M6gMAuAe3CUEFBQW6+eab9corr6h169Z65JFHNHz4cM2YMeOyyyQkJCgrK8s6ZGRklEmt8fFSVFThZ1nx8/NTo0aNVLduXVWqdOWrnDfffLN2796tGjVqqFGjRjZDUWCsVauWvv/+e+sy58+f14YNGy67zhYtWqigoEBr1qwpdnrRmaj8/PzLrqNZs2Y6f/68zXaPHz+unTt36oYbbrhimy7WunVrJSQkaP369WrevLnmzZtXouUBABWf24SgWrVqXfJD2KxZM6Wnp192GR8fHwUGBtoMZSEmRlq/vvCzPBowYICqV6+uvn376ptvvlFaWppSUlL05JNP6rfffpMkjR49WomJiVq8eLF27Nihxx9//JJn/Fyofv36GjJkiIYOHarFixdb1/nhhx9KkurVqyeLxaIlS5YoMzNTp0+fvmQd119/vfr27avhw4dr3bp1+uWXXzRw4EBdd9116tu3r11tS0tLU0JCglJTU3XgwAF99dVX2r17N/2CAACXcJsQdOutt2rnzp0243bt2qV69eq5qCL3VaVKFa1du1Z169bVXXfdpWbNmmnYsGE6e/asNSg+88wzGjRokIYMGaKoqCgFBASoX79+V1zv9OnTdc899+jxxx9X06ZNNXz4cOXk5EiSrrvuOk2YMEHx8fGqWbOmRo0aVew6kpKS1KZNG/Xu3VtRUVEyDENffvnlJZfArtS2HTt26O6771bjxo31yCOPaOTIkXr00UdL8DcEADADi3Hxw1/KqR9//FHR0dGaMGGC7rvvPv3www8aPny4/v3vf2vAgAF2rSM7O1tBQUHKysq65KzQ2bNnlZaWpoiICPn6+jqjCSiH2O8AUP5d6ff7WrjNmaB27dpp0aJFmj9/vpo3b66JEyfqjTfesDsAAQAAXMhtnhMkSb1791bv3r1dXQYAAKgA3OZMEAAAgCMRggAAgCkRgi7iJv3E4SDsbwAwL0LQ/xTdgn3mzBkXV4KyVLS/7b0FHwBQcbhVx2hn8vT0VHBwsPUdVFWqVOHN4xWYYRg6c+aMjh07puDgYHl6erq6JABAGSMEXSAsLEySrEEIFV9wcLB1vwMAzIUQdAGLxaJatWqpRo0aOnfunKvLgZN5eXlxBggATIwQVAxPT09+HAEAqODoGA0AAEyJEAQAAEyJEAQAAEyJEAQAAEyJEAQAAEyJEAQAAEyJEAQAAEyJEAQAAEyJEAQAgIslJ0vR0YWfKDuEIAAAXCwxUUpNLfxE2SEEAQDgYvHxUlRU4SfKDu8OAwDAxWJiCgeULc4EAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIEAQDgJMnJUnR04SfKH7cNQYmJibJYLBozZoyrSwEAoFiJiVJqauEnyh+3DEE//vij3n33XbVs2dLVpQAAcFnx8VJUVOEnyh+3C0GnT5/WgAED9N5776lq1aquLgcAgMuKiZHWry/8RPnjdiFo5MiR6tWrl7p163bVeXNzc5WdnW0zAAAASFIlVxdQEgsWLNDGjRv1448/2jX/pEmTNGHCBCdXBQAA3JHbnAnKyMjQ6NGj9cEHH8jX19euZRISEpSVlWUdMjIynFwlAABwFxbDMAxXF2GPxYsXq1+/fvL09LSOy8/Pl8VikYeHh3Jzc22mFSc7O1tBQUHKyspSYGCgs0sGAAAO4Kzfb7e5HHb77bdr8+bNNuMeeughNW3aVGPHjr1qAAIAALiQ24SggIAANW/e3Gacn5+fqlWrdsl4AACAq3GbPkEAAACO5DZngoqTkpLi6hIAAICb4kwQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwJUIQAAAwpRKHIE9PTx07duyS8cePH5enp6dDigIAAHC2EocgwzCKHZ+bmytvb+9rLggAAKAsVLJ3xmnTpkmSLBaLZs6cKX9/f+u0/Px8rV27Vk2bNnV8hQAAAE5gdwiaOnWqpMIzQTNmzLC59OXt7a369etrxowZjq8QAADACewOQWlpaZKkLl266NNPP1XVqlWdVhQAAICzlbhP0OrVq10SgCZNmqR27dopICBANWrUUGxsrHbu3FnmdQAAgIrB7jNBRYYOHXrF6bNnzy51MVeyZs0ajRw5Uu3atdP58+f1wgsv6I477tC2bdvk5+fnlG0CAICKq8Qh6MSJEzbfz507py1btujkyZPq2rWrwwq72LJly2y+z5kzRzVq1NCGDRt02223OW27AACgYipxCFq0aNEl4woKCjRixAg1bNjQIUXZIysrS5IUEhJy2Xlyc3OVm5tr/Z6dne30ugAAgHuwGJd78E8J7dy5U507d9bhw4cdsborKigoUExMjE6ePKl169Zddr7x48drwoQJl4zPyspSYGCgM0sEAAAOkp2draCgIIf/fjvstRl79+7V+fPnHbW6Kxo5cqS2bNmiBQsWXHG+hIQEZWVlWYeMjIwyqQ8AAJR/Jb4c9vTTT9t8NwxDhw8f1hdffKEhQ4Y4rLDLGTVqlJYsWaK1a9eqTp06V5zXx8dHPj4+Tq8JAAC4nxKHoJ9//tnmu4eHh0JDQ/X6669f9c6xa2EYhp544gktWrRIKSkpioiIcNq2AABAxVfiELR69Wpn1HFVI0eO1Lx58/TZZ58pICBAR44ckSQFBQWpcuXKLqkJAAC4r1J3jD527Jj1YYVNmjRRjRo1HFrYxSwWS7Hjk5KSFBcXZ9c6nNWxCgAAOI+zfr9LfCYoOztbI0eO1Pz581VQUCBJ8vT0VP/+/fXOO+8oKCjIYcVdyEE3sQEAAEgqxd1hw4cP1/fff68vvvhCJ0+e1MmTJ7VkyRL99NNPevTRR51RIwAAgMOV+HKYn5+fli9frg4dOtiM/+abb9SjRw/l5OQ4tEBH4nIYAADup9w8J6hatWrFXvIKCgrizfIAAMBtlDgE/fWvf9XTTz9tvTtLko4cOaLnnntOf/vb3xxaHAAAgLOU+HJY69attWfPHuXm5qpu3bqSpPT0dPn4+Oj666+3mXfjxo2Oq9QBuBwGAID7KTd3h/Xt2/eyt6sDAAC4C4e9QNUdcCYIAAD3U246Rjdo0EDHjx+/ZPzJkyfVoEEDhxQFAADgbCUOQfv371d+fv4l43Nzc/Xbb785pCgAAABns7tPUHJysvXPy5cvt7lNPj8/X6tWreKlpgAAwG3YHYJiY2MlFb7Da8iQITbTvLy8VL9+fb3++usOLQ4AAMBZ7A5BRe8Ji4iI0I8//qjq1as7rSgAAABnK/Et8mlpac6oAwAAoEyVOAS9/PLLV5z+0ksvlboYAACAslLiELRo0SKb7+fOnVNaWpoqVaqkhg0bEoIAAIBbKHEI+vnnny8Zl52drbi4OPXr188hRQEAADhbiZ8TVJzAwEBNmDCBF6gCAAC34ZAQJElZWVnKyspy1OoAAACcqsSXw6ZNm2bz3TAMHT58WO+//7569uzpsMIAwB0lJ0uJiVJ8vBQT4+pqAFxJiV+gevFToT08PBQaGqquXbsqISFBAQEBDi3QkXiBKmA+ZR1KoqOl1FQpKkpav9752wPMwFm/3zwnCECFlphYGEoSE8smBMXH/3/oAlC+lTgESYVvjN+zZ48kqVGjRgoODnZkTQDgMGUdSmJiuAwGuIsSdYzev3+/evXqperVqysyMlKRkZGqXr26evfurf379zupRAAovZiYwstSBBMAF7P7TFBGRoZuueUWeXl5aeLEiWrWrJkkadu2bZo+fbqioqL0448/qk6dOk4rFgAAwFHs7hg9bNgw7dmzR8uXL5evr6/NtD///FM9evTQ9ddfr5kzZzqlUEegYzQAAO7H5R2jly1bpoULF14SgCSpcuXKmjhxou6//36HFQYAAOBMdvcJ+v3331W/fv3LTm/QoIH++OMPR9QEAADgdHaHoFq1amnbtm2Xnb5lyxaFhYU5pCgAAABnszsExcbG6tlnn1VmZuYl044dO6axY8cqNjbWkbUBAAA4jd0do0+cOKHIyEgdOXJEAwcOVNOmTWUYhrZv36558+YpLCxM3333nUJCQpxdc6nRMRoAAPfj8o7RVatW1ffff68XXnhBCxYs0MmTJyVJwcHBevDBB/XKK6+U6wAEAABwoRK/O0wqfGlq0WWx0NBQWSwWhxfmDJwJAgDA/bj8TNCFLBaLatSo4bAiAAAAylqJXpsBAI6WnFz45vXkZFdXAsBsCEEAXOrCt7wDQFkiBAFwqfh4KSqq7N7yDgBFStUnCAAcJSaGN7wDcA27QtC0adPsXuGTTz5Z6mIAAADKil23yEdERNi3MotF+/btu+ainIVb5AEAcD8uvUU+LS3NYRsEAAAoD0rdMTovL087d+7U+fPnHVkPAABAmShxCDpz5oyGDRumKlWq6MYbb1R6erok6YknnlAi97gCAAA3UeIQlJCQoF9++UUpKSny9fW1ju/WrZsWLlzo0OKK884776h+/fry9fVVZGSkfvjhB6dvEwAAVDwlDkGLFy/W22+/rQ4dOti8M+zGG2/U3r17HVrcxRYuXKinn35a48aN08aNG9WqVSt1795dx44dc+p2AQBAxVPiEJSZmVnse8NycnKc/iLVKVOmaPjw4XrooYd0ww03aMaMGapSpYpmz57t1O0CAICKp8QPS2zbtq2++OILPfHEE5JkDT4zZ85UVFSUY6u7QF5enjZs2KCEhATrOA8PD3Xr1k2pqanFLpObm6vc3Fzr9+zsbKfUdujQIb333ntOWTcAAO6iWbNmuueee+Th4R4vpChxCHrllVfUs2dPbdu2TefPn9ebb76pbdu2af369VqzZo0zapQk/f7778rPz1fNmjVtxtesWVM7duwodplJkyZpwoQJTqupyI8//uj0bQAAUN5t375dx48fV2hoqKtLsUuJQ1CHDh20adMmJSYmqkWLFvrqq6908803KzU1VS1atHBGjaWWkJCgp59+2vo9Oztb4eHhDt/O7bffrtOnTyszM9Ph63a0rKwsV5cAAKYTHBzs6hLKRHR0tKpXr+7qMuxWqneHNWzYsMwv/1SvXl2enp46evSozfijR48qLCys2GV8fHzk4+Pj9Nr8/f01YMAAp28HAAA4jl0X7bKzs+0enMXb21tt2rTRqlWrrOMKCgq0atUqp/ZFAgAAFZNdZ4KCg4PtvvMrPz//mgq6kqefflpDhgxR27Zt1b59e73xxhvKycnRQw895LRtAgCAismuELR69Wrrn/fv36/4+HjFxcVZz8CkpqZq7ty5mjRpknOq/J/+/fsrMzNTL730ko4cOaKbbrpJy5Ytu6SzNAAAwNXY9Rb5C91+++16+OGH9cADD9iMnzdvnv79738rJSXFkfU5FG+RBwDA/Tjr97vEN/Knpqaqbdu2l4xv27Ytr7AAAABuo8QhKDw8vNg7w2bOnOmU288BAACcocS3yE+dOlV33323li5dqsjISEnSDz/8oN27d+uTTz5xeIEAAADOUOIzQXfeead2796tPn366I8//tAff/yhPn36aNeuXbrzzjudUSMAAIDDlbhjtDujYzQAAO7HWb/fpXpi9MmTJzVr1ixt375dknTjjTdq6NChCgoKclhhAOAMyclSYqIUHy/FxLi6GgCuVOLLYT/99JMaNmyoqVOnWi+HTZkyRQ0bNtTGjRudUSMAOExiopSaWvgJwNxKfDmsY8eOatSokd577z1VqlR4Iun8+fN6+OGHtW/fPq1du9YphToCl8MAcCYIcD/O+v0ucQiqXLmyfv75ZzVt2tRm/LZt29S2bVudOXPGYcU5GiEIAAD3U24elhgYGKj09PRLxmdkZCggIMAhRQEAADhbiUNQ//79NWzYMC1cuFAZGRnKyMjQggULin2VBgAAQHlV4rvDJk+eLIvFosGDB+v8+fOSJC8vL40YMUKJ9DQEAABuotTPCTpz5oz27t0rSWrYsKGqVKni0MKcgT5BAAC4n3L1nCBJqlKlilq0aOGwQgAAAMqS3SFo6NChds03e/bsUhcDAABQVuwOQXPmzFG9evXUunVrmehNGwAAoIKyOwSNGDFC8+fPV1pamh566CENHDhQISEhzqwNAADAaey+Rf6dd97R4cOH9fzzz+vzzz9XeHi47rvvPi1fvpwzQwAAwO2U+u6wAwcOaM6cOfrPf/6j8+fPa+vWrfL393d0fQ7F3WEAALifcvPEaOuCHh6yWCwyDEP5+fkOKwgAAKAslCgE5ebmav78+frLX/6ixo0ba/PmzXr77beVnp5e7s8CAQAAXMjujtGPP/64FixYoPDwcA0dOlTz589X9erVnVkbAACA09jdJ8jDw0N169ZV69atZbFYLjvfp59+6rDiHI0+QQAAuB+XPzF68ODBVww/AHA1yclSYqIUHy/FxLi6GgBmV+q7w9wRZ4JgZuUhgERHS6mpUlSUtH69a2oA4H7K3d1hANxLYmJhAElMdF0N8fGFASg+3nU1AEARQhBgEuUhgMTEFJ4B4lIYgPKg1G+RB+BeYmIIHwBwIc4EAQAAUyIEASaWnFzYWTk52dWVAEDZIwQBJlYeOksDgKsQggATKw+dpQHAVegYDZgYnaUBmBlnggDYjT5EACoSQhAAu9GHCEBFQggCYLeiPkRdunBGCID7IwQBsFvRE59Xr+aMEAD3RwgCUGLcVQagIuDuMAAlxl1lACoCzgQBAABTIgQBAABTIgQBAABTIgQBAABTcosQtH//fg0bNkwRERGqXLmyGjZsqHHjxikvL8/VpQEAADflFneH7dixQwUFBXr33XfVqFEjbdmyRcOHD1dOTo4mT57s6vIAAIAbshiGYbi6iNJ47bXXNH36dO3bt8/uZbKzsxUUFKSsrCwFBgY6sToAAOAozvr9doszQcXJyspSSEjIFefJzc1Vbm6u9Xt2drazywIAAG7CLfoEXWzPnj1666239Oijj15xvkmTJikoKMg6hIeHl1GFAACgvHNpCIqPj5fFYrnisGPHDptlDh48qB49eujee+/V8OHDr7j+hIQEZWVlWYeMjAxnNgcAALgRl/YJyszM1PHjx684T4MGDeTt7S1JOnTokDp37qxbbrlFc+bMkYdHyTIcfYIAAHA/FbJPUGhoqEJDQ+2a9+DBg+rSpYvatGmjpKSkEgcgAACAC7lFx+iDBw+qc+fOqlevniZPnqzMzEzrtLCwMBdWBgAA3JVbhKAVK1Zoz5492rNnj+rUqWMzzU3v8AcAAC7mFteU4uLiZBhGsQMAAEBpuEUIAgAAcDRCEAAAMCVCEAAAMCVCEAAAMCVCEAAAMCVCEAAAMCVCEAAAMCVCEAAAMCVCEAAAMCVCEAAAMCVCEAAAMCVCEAAAMCVCEAAAMCVCEAAAMCVCEAAAMCVCEAAAMCVCEOAEyclSdHThJwCgfCIEAU6QmCilphZ+AgDKJ0IQ4ATx8VJUVOGnxJkhACiPLIZhGK4uoqxkZ2crKChIWVlZCgwMdHU5MJHo6MIzQ1FR0vr1rq4GANyLs36/ORMElIGLzwwBAFyvkqsLAMwgJqZwAACUH5wJAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIQoWXnCxFRxd+AgBQhBCECi8xUUpNLfwEAKCI24Wg3Nxc3XTTTbJYLNq0aZOry4EbiI+XoqIKPwEAKOJ2Iej5559X7dq1XV0GyqniLn3FxEjr1xd+AgBQxK1C0NKlS/XVV19p8uTJri4F5RSXvgAA9qrk6gLsdfToUQ0fPlyLFy9WlSpV7FomNzdXubm51u/Z2dnOKg/lRHx8YQDi0hcA4Grc4kyQYRiKi4vTY489prZt29q93KRJkxQUFGQdwsPDnVglygMufQEA7OXSEBQfHy+LxXLFYceOHXrrrbd06tQpJSQklGj9CQkJysrKsg4ZGRlOagnKC26HBwDYy2IYhuGqjWdmZur48eNXnKdBgwa677779Pnnn8tisVjH5+fny9PTUwMGDNDcuXPt2l52draCgoKUlZWlwMDAa6od5VN0dGGfoKiowjNCAAD356zfb5eGIHulp6fb9Oc5dOiQunfvro8//liRkZGqU6eOXeshBFV8ycn/3yeIS2IAUDE46/fbLTpG161b1+a7v7+/JKlhw4Z2ByCYQ0wM4QcAYB+36BgNAADgaG5xJuhi9evXlxtcxQMAAOUYZ4IAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIAAIApEYIcIDlZio4u/Czv3KlWAACciRDkAImJUmpq4Wd55061AgDgTIQgB4iPl6KiCj/LO3eqFQAAZ7IYhmG4uoiykp2draCgIGVlZSkwMNDV5QAAADs46/ebM0EAAMCUCEEAAMCU3CoEffHFF4qMjFTlypVVtWpVxcbGurokAADgpiq5ugB7ffLJJxo+fLheeeUVde3aVefPn9eWLVtcXRYAAHBTbhGCzp8/r9GjR+u1117TsGHDrONvuOEGF1YFAADcmVtcDtu4caMOHjwoDw8PtW7dWrVq1VLPnj2veiYoNzdX2dnZNgMAAIDkJiFo3759kqTx48frr3/9q5YsWaKqVauqc+fO+uOPPy673KRJkxQUFGQdwsPDy6pkAABQzrk0BMXHx8tisVxx2LFjhwoKCiRJL774ou6++261adNGSUlJslgs+uijjy67/oSEBGVlZVmHjIyMsmoaAAAo51zaJ+iZZ55RXFzcFedp0KCBDh8+LMm2D5CPj48aNGig9PT0yy7r4+MjHx8fh9QKAAAqFpeGoNDQUIWGhl51vjZt2sjHx0c7d+5Uhw4dJEnnzp3T/v37Va9ePWeXCQAAKiC3uDssMDBQjz32mMaNG6fw8HDVq1dPr732miTp3nvvdXF1AADAHblFCJKk1157TZUqVdKgQYP0559/KjIyUl9//bWqVq3q6tIAAIAb4gWqAACgXHPW77fbnAlyhKK8x/OCAABwH0W/244+b2OqEHTq1ClJ4nlBAAC4oVOnTikoKMhh6zPV5bCCggIdOnRIAQEBslgs17y+7OxshYeHKyMjo8JfXqOtFRNtrZhoa8Vk5rYahqFTp06pdu3a8vBw3CMOTXUmyMPDQ3Xq1HH4egMDAyv8f5BFaGvFRFsrJtpaMZm1rY48A1TELV6bAQAA4GiEIAAAYEqEoGvg4+OjcePGmeLVHLS1YqKtFRNtrZhoq+OZqmM0AABAEc4EAQAAUyIEAQAAUyIEAQAAUyIEAQAAUyIE/c/atWvVp08f1a5dWxaLRYsXL77i/CkpKbJYLJcMR44csZnvnXfeUf369eXr66vIyEj98MMPTmyFfUra1ri4uGLbeuONN1rnGT9+/CXTmzZt6uSWXN2kSZPUrl07BQQEqEaNGoqNjdXOnTuvutxHH32kpk2bytfXVy1atNCXX35pM90wDL300kuqVauWKleurG7dumn37t3OaoZdStPW9957Tx07dlTVqlVVtWpVdevW7ZL/Rovb/z169HBmU66qNG2dM2fOJe3w9fW1maei7NfOnTsXe8z26tXLOk953K/Tp09Xy5YtrQ/Ii4qK0tKlS6+4jDseq1LJ2+qux6pU8raW5bFKCPqfnJwctWrVSu+8806Jltu5c6cOHz5sHWrUqGGdtnDhQj399NMaN26cNm7cqFatWql79+46duyYo8svkZK29c0337RpY0ZGhkJCQnTvvffazHfjjTfazLdu3TpnlF8ia9as0ciRI/Xdd99pxYoVOnfunO644w7l5ORcdpn169frgQce0LBhw/Tzzz8rNjZWsbGx2rJli3Wef/7zn5o2bZpmzJih77//Xn5+furevbvOnj1bFs0qVmnampKSogceeECrV69WamqqwsPDdccdd+jgwYM28/Xo0cNm386fP9/Zzbmi0rRVKnz67IXtOHDggM30irJfP/30U5t2btmyRZ6enpccs+Vtv9apU0eJiYnasGGDfvrpJ3Xt2lV9+/bV1q1bi53fXY9VqeRtdddjVSp5W6UyPFYNXEKSsWjRoivOs3r1akOSceLEicvO0759e2PkyJHW7/n5+Ubt2rWNSZMmOajSa2dPWy+2aNEiw2KxGPv377eOGzdunNGqVSvHFucEx44dMyQZa9asuew89913n9GrVy+bcZGRkcajjz5qGIZhFBQUGGFhYcZrr71mnX7y5EnDx8fHmD9/vnMKLwV72nqx8+fPGwEBAcbcuXOt44YMGWL07dvXCRU6jj1tTUpKMoKCgi47vSLv16lTpxoBAQHG6dOnrePcYb8ahmFUrVrVmDlzZrHTKsqxWuRKbb2Yux6rRa7U1rI8VjkTdI1uuukm1apVS3/5y1/07bffWsfn5eVpw4YN6tatm3Wch4eHunXrptTUVFeU6jCzZs1St27dVK9ePZvxu3fvVu3atdWgQQMNGDBA6enpLqrw8rKysiRJISEhl50nNTXVZr9JUvfu3a37LS0tTUeOHLGZJygoSJGRkeVq39rT1oudOXNG586du2SZlJQU1ahRQ02aNNGIESN0/Phxh9Z6rext6+nTp1WvXj2Fh4df8i/RirxfZ82apfvvv19+fn4248vzfs3Pz9eCBQuUk5OjqKioYuepKMeqPW29mLseq/a2tayOVVO9QNWRatWqpRkzZqht27bKzc3VzJkz1blzZ33//fe6+eab9fvvvys/P181a9a0Wa5mzZrasWOHi6q+docOHdLSpUs1b948m/GRkZGaM2eOmjRposOHD2vChAnq2LGjtmzZooCAABdVa6ugoEBjxozRrbfequbNm192viNHjhS734r6exV9XmkeV7O3rRcbO3asateubfM/lx49euiuu+5SRESE9u7dqxdeeEE9e/ZUamqqPD09nVF+idjb1iZNmmj27Nlq2bKlsrKyNHnyZEVHR2vr1q2qU6dOhd2vP/zwg7Zs2aJZs2bZjC+v+3Xz5s2KiorS2bNn5e/vr0WLFumGG24odl53P1ZL0taLuduxWpK2luWxSggqpSZNmqhJkybW79HR0dq7d6+mTp2q999/34WVOdfcuXMVHBys2NhYm/E9e/a0/rlly5aKjIxUvXr19OGHH2rYsGFlXGXxRo4cqS1btpSLvkrOVpq2JiYmasGCBUpJSbHphHj//fdb/9yiRQu1bNlSDRs2VEpKim6//XaH1l0a9rY1KirK5l+e0dHRatasmd59911NnDjR2WU6RGn266xZs9SiRQu1b9/eZnx53a9NmjTRpk2blJWVpY8//lhDhgzRmjVr7A4H7qS0bXXHY7UkbS3LY5XLYQ7Uvn177dmzR5JUvXp1eXp66ujRozbzHD16VGFhYa4o75oZhqHZs2dr0KBB8vb2vuK8wcHBaty4sfXvw9VGjRqlJUuWaPXq1apTp84V5w0LC7vifiv6LK/7tiRtLTJ58mQlJibqq6++UsuWLa84b4MGDVS9evVysW9L09YiXl5eat26tbUdFXG/5uTkaMGCBXb9Q6S87Fdvb281atRIbdq00aRJk9SqVSu9+eabxc7r7sdqSdpaxF2P1dK0tYgzj1VCkANt2rRJtWrVklS4w9u0aaNVq1ZZpxcUFGjVqlV2X/Mtb9asWaM9e/bY9T/U06dPa+/evda/D1cxDEOjRo3SokWL9PXXXysiIuKqy0RFRdnsN0lasWKFdb9FREQoLCzMZp7s7Gx9//33Lt23pWmrVHiXxcSJE7Vs2TK1bdv2qvP/9ttvOn78uEv3bWnbeqH8/Hxt3rzZ2o6Ktl+lwtvHc3NzNXDgwKvOWx72a3EKCgqUm5tb7DR3PVYv50ptldzzWL2cq7X1Qk49VkvUjboCO3XqlPHzzz8bP//8syHJmDJlivHzzz8bBw4cMAzDMOLj441BgwZZ5586daqxePFiY/fu3cbmzZuN0aNHGx4eHsbKlSut8yxYsMDw8fEx5syZY2zbts145JFHjODgYOPIkSNl3r4LlbStRQYOHGhERkYWu85nnnnGSElJMdLS0oxvv/3W6Natm1G9enXj2LFjTm3L1YwYMcIICgoyUlJSjMOHD1uHM2fOWOcZNGiQER8fb/3+7bffGpUqVTImT55sbN++3Rg3bpzh5eVlbN682TpPYmKiERwcbHz22WfGr7/+avTt29eIiIgw/vzzzzJt34VK09bExETD29vb+Pjjj22WOXXqlGEYhf+tPPvss0ZqaqqRlpZmrFy50rj55puN66+/3jh79myZt7FIado6YcIEY/ny5cbevXuNDRs2GPfff7/h6+trbN261TpPRdmvRTp06GD079//kvHldb/Gx8cba9asMdLS0oxff/3ViI+PNywWi/HVV18ZhlFxjlXDKHlb3fVYNYySt7Usj1VC0P8U3fJ+8TBkyBDDMApvPezUqZN1/ldffdVo2LCh4evra4SEhBidO3c2vv7660vW+9Zbbxl169Y1vL29jfbt2xvfffddGbXo8kraVsMovP2wcuXKxr///e9i19m/f3+jVq1ahre3t3HdddcZ/fv3N/bs2ePkllxdce2UZCQlJVnn6dSpk7XtRT788EOjcePGhre3t3HjjTcaX3zxhc30goIC429/+5tRs2ZNw8fHx7j99tuNnTt3lkGLLq80ba1Xr16xy4wbN84wDMM4c+aMcccddxihoaGGl5eXUa9ePWP48OEuD/KlaeuYMWOsx2LNmjWNO++809i4caPNeivKfjUMw9ixY4chyfpDc6Hyul+HDh1q1KtXz/D29jZCQ0ON22+/3ab+inKsGkbJ2+qux6phlLytZXmsWgzDMEp27ggAAMD90ScIAACYEiEIAACYEiEIAACYEiEIAACYEiEIAACYEiEIAACYEiEIAACYEiEIAACTWbt2rfr06aPatWvLYrFo8eLFTt3epEmT1K5dOwUEBKhGjRqKjY3Vzp07beY5e/asRo4cqWrVqsnf31933333Je8HczRCEAC3kpGRoaFDh6p27dry9vZWvXr1NHr0aB0/flySdO7cOY0dO1YtWrSQn5+fateurcGDB+vQoUMurhwoP3JyctSqVSu98847ZbK9NWvWaOTIkfruu++0YsUKnTt3TnfccYdycnKs8zz11FP6/PPP9dFHH2nNmjU6dOiQ7rrrLqfWxROjAbiNffv2KSoqSo0bN9bf//53RUREaOvWrXruueeUl5en7777Tp6enrrnnns0fPhwtWrVSidOnNDo0aOVn5+vn376ydVNAModi8WiRYsWKTY21jouNzdXL774oubPn6+TJ0+qefPmevXVV9W5c2eHbDMzM1M1atTQmjVrdNtttykrK0uhoaGaN2+e7rnnHknSjh071KxZM6WmpuqWW25xyHYvVskpawUAJxg5cqS8vb311VdfqXLlypKkunXrqnXr1mrYsKFefPFFTZ8+XStWrLBZ7u2331b79u2Vnp6uunXruqJ0wK2MGjVK27Zt04IFC1S7dm0tWrRIPXr00ObNm3X99ddf8/qzsrIkSSEhIZKkDRs26Ny5c+rWrZt1nqZNm6pu3bpODUFcDgPgFv744w8tX75cjz/+uDUAFQkLC9OAAQO0cOFCFXdyOysrSxaLRcHBwWVULeC+0tPTlZSUpI8++kgdO3ZUw4YN9eyzz6pDhw5KSkq65vUXFBRozJgxuvXWW9W8eXNJ0pEjR+Tt7X3JMVqzZk0dOXLkmrd5OYQgAG5h9+7dMgxDzZo1K3Z6s2bNdOLECWVmZtqMP3v2rMaOHasHHnhAgYGBZVEq4NY2b96s/Px8NW7cWP7+/tZhzZo12rt3r6TCS1UWi+WKQ3x8fLHrHzlypLZs2aIFCxaUZbOKxeUwAG6lJN0Yz507p/vuu0+GYWj69OlOrAqoOE6fPi1PT09t2LBBnp6eNtP8/f0lSQ0aNND27duvuJ5q1apdMm7UqFFasmSJ1q5dqzp16ljHh4WFKS8vTydPnrQ5G3T06FGFhYVdQ2uujBAEwC00atRIFotF27dvV79+/S6Zvn37dlWtWlWhoaGS/j8AHThwQF9//TVngQA7tW7dWvn5+Tp27Jg6duxY7Dze3t5q2rSp3es0DENPPPGEFi1apJSUFEVERNhMb9Omjby8vLRq1SrdfffdkqSdO3cqPT1dUVFRpW/MVXB3GAC30b17d23dulW7d++26Rd05MgRNWzYUIMHD9b06dOtAWj37t1avXq1NRgBKHT69Gnt2bNHUmHomTJlirp06aKQkBDVrVtXAwcO1LfffqvXX39drVu3VmZmplatWqWWLVuqV69eJd7e448/rnnz5umzzz5TkyZNrOODgoKsx/KIESP05Zdfas6cOQoMDNQTTzwhSVq/fr0DWnwZBgC4iV27dhnVq1c3OnbsaKxZs8ZIT083li5dajRv3ty4/vrrjePHjxt5eXlGTEyMUadOHWPTpk3G4cOHrUNubq6rmwCUC6tXrzYkXTIMGTLEMAzDyMvLM1566SWjfv36hpeXl1GrVi2jX79+xq+//lqq7RW3LUlGUlKSdZ4///zTePzxx42qVasaVapUMfr162ccPnzYAa29PM4EAXArBw4c0Lhx47Rs2TL98ccfCgsLU2xsrMaNG6dq1app//79l5xqL7J69WqHPecEgPsjBAEAAFPiFnkAAGBKhCAAAGBKhCAAAGBKhCAAAGBKhCAAAGBKhCAAAGBKhCAAAGBKhCAAAGBKhCAAAGBKhCAAAGBKhCAAAGBKhCAAAGBK/wdTvLB7SmpV2AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAO7lJREFUeJzt3XlYlXX+//HXAVkEBERRMMEFcynNyMygRW2c1FLE1mlyYTTHUiuzRagmW2YCJ9NpG+03pjQtak1pZKWZKWZSk2tuuIVCCcq4HALzoHD//uDyfMOFzoFzOJyb5+O67ut03+e+P/f7eHs6Lz/3575vi2EYhgAAALycj6cLAAAAcAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDQAAMAVCDYAGx2Kx6Omnn/Z0GXYpKSlq3769p8sA8BsINQAckpmZKYvFYp8CAwPVuXNnTZo0SYcOHXLrvtetW6enn35ax48fd2m7/fr1q/aZIiIi1Lt3b82bN0+VlZUu2cfzzz+vJUuWuKQtADVr4ukCAHiXZ599Vh06dNDJkye1du1azZ49W59++qm2bdumoKAgl+zjl19+UZMm//e/p3Xr1umZZ55RSkqKwsPDXbKPM9q2bav09HRJUnFxsf79739r7Nix2r17tzIyMurc/vPPP6/bbrtNycnJdW4LQM0INQCcMnjwYF155ZWSpHvuuUctWrTQzJkz9dFHH+muu+6qdbuVlZUqLy9XYGCgAgMDXVXubwoLC9OIESPs8+PHj1eXLl306quv6rnnnpOfn1+91QKgbjj9BKBObrjhBklSXl6eJGnGjBlKTExUixYt1LRpU/Xq1Uv/+c9/ztnOYrFo0qRJeuedd3TppZcqICBAy5Yts793ZkzN008/rUcffVSS1KFDB/upov3796tv377q2bPneevq0qWLBg4c6PTnCQoK0tVXX62ysjIVFxdfcL2ysjI9/PDDiomJUUBAgLp06aIZM2bIMIxqn7GsrExvvvmmve6UlBSnawLgGHpqANTJvn37JEktWrSQJL300ktKSkrS3XffrfLyci1cuFC33367li5dqptvvrnatl9++aXee+89TZo0SS1btjzvYNxbbrlFu3fv1oIFCzRr1iy1bNlSkhQZGamRI0dq3Lhx2rZtm7p3727f5rvvvtPu3bv15JNP1uoz/fDDD/L19b3gqS7DMJSUlKRVq1Zp7Nixuvzyy7V8+XI9+uij+umnnzRr1ixJ0ltvvaV77rlHV111lf785z9LkuLi4mpVEwAHGADggPnz5xuSjC+++MIoLi42CgoKjIULFxotWrQwmjZtavz444+GYRjGiRMnqm1XXl5udO/e3bjhhhuqLZdk+Pj4GNu3bz9nX5KMadOm2edfeOEFQ5KRl5dXbb3jx48bgYGBxtSpU6stf+CBB4zg4GCjtLS0xs/Ut29fo2vXrkZxcbFRXFxs7Ny503jggQcMScbQoUPt640ePdpo166dfX7JkiWGJOOvf/1rtfZuu+02w2KxGHv37rUvCw4ONkaPHl1jHQBcg9NPAJwyYMAARUZGKiYmRn/4wx8UEhKixYsX66KLLpIkNW3a1L7usWPHZLVadd1112njxo3ntNW3b19dcsklta4lLCxMw4YN04IFC+ynfSoqKrRo0SIlJycrODj4N9vIzc1VZGSkIiMj1a1bN73yyiu6+eabNW/evAtu8+mnn8rX11cPPPBAteUPP/ywDMPQZ599VuvPBKD2GmWoWbNmjYYOHao2bdrIYrG4/XJLR/e3c+dOJSUlKSwsTMHBwerdu7fy8/PdWhvgrNdee00rVqzQqlWrtGPHDv3www/Vxq4sXbpUV199tQIDAxUREaHIyEjNnj1bVqv1nLY6dOhQ53pGjRql/Px8ffXVV5KkL774QocOHdLIkSMd2r59+/ZasWKFvvjiC61du1ZFRUVaunSp/TTX+Rw4cEBt2rRRs2bNqi3v1q2b/X0A9a9RjqkpKytTz549NWbMGN1yyy0NYn/79u3Ttddeq7Fjx+qZZ55RaGiotm/fXq9XgQCOuOqqq+xXP53tq6++UlJSkq6//nr985//VHR0tPz8/DR//ny9++6756z/616d2ho4cKBat26tt99+W9dff73efvttRUVFacCAAQ5tHxwc7PC6ABq2RhlqBg8erMGDB1/wfZvNpieeeEILFizQ8ePH1b17d02fPl39+vVzy/4k6YknntBNN92kv//97/ZlDCiEt/nggw8UGBio5cuXKyAgwL58/vz5dWrXYrFc8D1fX1/98Y9/VGZmpqZPn64lS5Zo3Lhx8vX1rdM+a9KuXTt98cUX+vnnn6v11uTm5trfd6R2AK7VKE8//ZZJkyYpJydHCxcu1Pfff6/bb79dgwYN0p49e9yyv8rKSn3yySfq3LmzBg4cqFatWqlPnz7chRRex9fXVxaLRRUVFfZl+/fvr/Pf5TNjYy50R+GRI0fq2LFjGj9+vEpLS6vdd8YdbrrpJlVUVOjVV1+ttnzWrFmyWCzV/hETHBzs8jshAzg/Qs1Z8vPzNX/+fL3//vu67rrrFBcXp0ceeUTXXnttnf+1eSGHDx9WaWmpMjIyNGjQIH3++ecaPny4brnlFmVnZ7tln4A73HzzzTpx4oQGDRqkOXPm6Nlnn1WfPn3UqVOnOrXbq1cvSVU9mm+99ZYWLlyosrIy+/vx8fHq3r273n//fXXr1k1XXHFFnfb3W4YOHar+/fvriSee0Pjx4/XPf/5TycnJWrRokR588MFqvay9evXSF198oZkzZ2rhwoX69ttv3Vob0JgRas6ydetWVVRUqHPnzgoJCbFP2dnZ9vtx5ObmVntezPmm1NRUh/d55hkzw4YN00MPPaTLL79cqampGjJkiObMmeOWzwm4ww033KA33nhDRUVFmjx5shYsWKDp06dr+PDhdWq3d+/eeu6557RlyxalpKTorrvuOufGeKNGjZIkhwcI14WPj4+ysrI0efJkLV26VJMnT9aOHTv0wgsvaObMmdXWnTlzpnr16qUnn3xSd911l2bPnu32+oDGymIYv7r9ZSNksVi0ePFi+3NZFi1apLvvvlvbt28/55x8SEiIoqKiVF5erh9++KHGdlu0aKHIyMjf3J8klZeXKzg4WNOmTat2s7CpU6dq7dq1+vrrr2v/AYFG4qWXXtJDDz2k/fv3KzY21tPlAPCARjlQuCbx8fGqqKjQ4cOHdd111513HX9/f3Xt2tVl+/T391fv3r21a9euast3795dbcAhgPMzDENvvPGG+vbtS6ABGrFGGWpKS0u1d+9e+3xeXp42b96siIgIde7cWXfffbdGjRqlF198UfHx8SouLtbKlSt12WWXnXOb97ru78z/gB999FHdeeeduv7669W/f38tW7ZMH3/8sVavXl3nzwuYVVlZmbKysrRq1Spt3bpVH330kadLAuBJHr2fsYesWrXKkHTOdOZW5uXl5cZTTz1ltG/f3vDz8zOio6ON4cOHG99//71b9nfGG2+8YXTq1MkIDAw0evbsaSxZsqSOnxQwt7y8PEOSER4ebjz++OOeLgeAhzX6MTUAAMAcuPoJAACYAqEGAACYQqMaKFxZWamDBw+qWbNm3LocAAAvYRiGfv75Z7Vp00Y+Phfuj2lUoebgwYOKiYnxdBkAAKAWCgoK1LZt2wu+36hCzZkHzxUUFCg0NNTD1QAAAEeUlJQoJiam2gNkz6dRhZozp5xCQ0MJNQAAeJnfGjrCQGEAAGAKhBoAAGAKhBoAAGAKXjOmJj09XR9++KFyc3PVtGlTJSYmavr06erSpYunSwMAuEFlZaXKy8s9XQbqgZ+fn3x9fevcjteEmuzsbE2cOFG9e/fW6dOn9fjjj+vGG2/Ujh07FBwc7OnyAAAuVF5erry8PFVWVnq6FNST8PBwRUVF1ek+cl4TapYtW1ZtPjMzU61atdKGDRt0/fXXe6gqAICrGYahwsJC+fr6KiYmpsabrcH7GYahEydO6PDhw5Kk6OjoWrflNaHmbFarVZIUERFxwXVsNptsNpt9vqSkxO11AQDq5vTp0zpx4oTatGmjoKAgT5eDetC0aVNJ0uHDh9WqVatan4ryyvhbWVmpyZMn65prrlH37t0vuF56errCwsLsE3cTBoCGr6KiQpLk7+/v4UpQn84E2FOnTtW6Da8MNRMnTtS2bdu0cOHCGtdLS0uT1Wq1TwUFBfVUIQCgrnhGX+PiiuPtdaefJk2apKVLl2rNmjU1Pv9BkgICAhQQEFBPlQEAAE/ymlBjGIbuv/9+LV68WKtXr1aHDh08XRIAAGhAvOb008SJE/X222/r3XffVbNmzVRUVKSioiL98ssvni4NAAClpKTIYrHIYrHIz89PrVu31u9//3vNmzfPqUvTMzMzFR4e7r5CTcxrQs3s2bNltVrVr18/RUdH26dFixZ5ujQAACRJgwYNUmFhofbv36/PPvtM/fv314MPPqghQ4bo9OnTni7P9Lwm1BiGcd4pJSXF06XBjbKypMTEqteG1BYAnE9AQICioqJ00UUX6YorrtDjjz+ujz76SJ999pkyMzMlSTNnzlSPHj0UHBysmJgYTZgwQaWlpZKk1atX609/+pOsVqu91+fpp5+WJL311lu68sor1axZM0VFRemPf/yj/d4uqOI1oaYh48fSfTIypJycqteG1BaA+mMYhsrLyz0yGYZR5/pvuOEG9ezZUx9++KEkycfHRy+//LK2b9+uN998U19++aUee+wxSVJiYqL+8Y9/KDQ0VIWFhSosLNQjjzwiqepS5+eee05btmzRkiVLtH//fv5hfxavGSjckP36xzIpydPVmEtqatWfa2pqw2oLQP05deqU0tPTPbLvtLQ0l9wvp2vXrvr+++8lSZMnT7Yvb9++vf7617/q3nvv1T//+U/5+/srLCxMFotFUVFR1doYM2aM/b87duyol19+Wb1791ZpaalCQkLqXKMZEGpcgB9L90lKcl1QdGVbAOAMwzDs92H54osvlJ6ertzcXJWUlOj06dM6efKkTpw4UeMdlDds2KCnn35aW7Zs0bFjx+yDj/Pz83XJJZfUy+do6Ag1LsCPJQC4j5+fn9LS0jy2b1fYuXOnOnTooP3792vIkCG677779Le//U0RERFau3atxo4dq/Ly8guGmrKyMg0cOFADBw7UO++8o8jISOXn52vgwIE8yfxXCDUAgAbNYrF49SMTvvzyS23dulUPPfSQNmzYoMrKSr344ov2B3W+99571db39/e3PyrijNzcXB05ckQZGRn2R/6sX7++fj6AF2GgMAAALmKz2VRUVKSffvpJGzdu1PPPP69hw4ZpyJAhGjVqlDp16qRTp07plVde0Q8//KC33npLc+bMqdZG+/btVVpaqpUrV+p///ufTpw4odjYWPn7+9u3y8rK0nPPPeehT9lwEWoAAHCRZcuWKTo6Wu3bt9egQYO0atUqvfzyy/roo4/k6+urnj17aubMmZo+fbq6d++ud95555xB0ImJibr33nt15513KjIyUn//+98VGRmpzMxMvf/++7rkkkuUkZGhGTNmeOhTNlwWwxXXq3mJkpIShYWFyWq1KjQ01NPlAADO4+TJk8rLy1OHDh0UGBjo6XJQT2o67o7+ftNTAwAATIFQAwAATIFQAwAATIFQAwAATIFQAwAATIFQAwAATIFQAwAATIFQA9STrCwpMbHqFQDgeoQaoJ5kZEg5OVWvAADXI9QA9SQ1VUpIqHoFgNpKSUlRcnKyfb5fv36aPHlyndp0RRsNAU/pBupJUlLVBMCcUlJS9Oabb0qS/Pz8FBsbq1GjRunxxx9Xkybu+7n98MMP5efn59C6q1evVv/+/XXs2DGFh4fXqo2GjFADAICLDBo0SPPnz5fNZtOnn36qiRMnys/PT2lpadXWKy8vl7+/v0v2GRER0SDaaAg4/QQAgIsEBAQoKipK7dq103333acBAwYoKyvLfsrob3/7m9q0aaMuXbpIkgoKCnTHHXcoPDxcERERGjZsmPbv329vr6KiQlOmTFF4eLhatGihxx57TGc/h/rsU0c2m01Tp05VTEyMAgIC1KlTJ73xxhvav3+/+vfvL0lq3ry5LBaLUlJSztvGsWPHNGrUKDVv3lxBQUEaPHiw9uzZY38/MzNT4eHhWr58ubp166aQkBANGjRIhYWF9nVWr16tq666SsHBwQoPD9c111yjAwcOuOhP+vwINWh0uAoJQH1p2rSpysvLJUkrV67Url27tGLFCi1dulSnTp3SwIED1axZM3311Vf6+uuv7eHgzDYvvviiMjMzNW/ePK1du1ZHjx7V4sWLa9znqFGjtGDBAr388svauXOnXn/9dYWEhCgmJkYffPCBJGnXrl0qLCzUSy+9dN42UlJStH79emVlZSknJ0eGYeimm27SqVOn7OucOHFCM2bM0FtvvaU1a9YoPz9fjzzyiCTp9OnTSk5OVt++ffX9998rJydHf/7zn2WxWOr8Z1oTTj+h0fn1VUiMcQHgDoZhaOXKlVq+fLnuv/9+FRcXKzg4WHPnzrWfdnr77bdVWVmpuXPn2n/s58+fr/DwcK1evVo33nij/vGPfygtLU233HKLJGnOnDlavnz5Bfe7e/duvffee1qxYoUGDBggSerYsaP9/TOnmVq1alVtTM2v7dmzR1lZWfr666+VmJgoSXrnnXcUExOjJUuW6Pbbb5cknTp1SnPmzFFcXJwkadKkSXr22WclSSUlJbJarRoyZIj9/W7dujn/B+kkemrQ6HAVEtB41HfP7NKlSxUSEqLAwEANHjxYd955p55++mlJUo8ePaqNo9myZYv27t2rZs2aKSQkRCEhIYqIiNDJkye1b98+Wa1WFRYWqk+fPvZtmjRpoiuvvPKC+9+8ebN8fX3Vt2/fWn+GnTt3qkmTJtX226JFC3Xp0kU7d+60LwsKCrIHFkmKjo7W4cOHJVWFp5SUFA0cOFBDhw7VSy+9VO3UlLvQU4NGh6uQgMajvntm+/fvr9mzZ8vf319t2rSpdtVTcHBwtXVLS0vVq1cvvfPOO+e0ExkZWav9N23atFbb1cbZV0tZLJZq433mz5+vBx54QMuWLdOiRYv05JNPasWKFbr66qvdVhM9NQAA06rvntng4GB16tRJsbGxv3kZ9xVXXKE9e/aoVatW6tSpU7UpLCxMYWFhio6O1rfffmvf5vTp09qwYcMF2+zRo4cqKyuVnZ193vfP9BRVVFRcsI1u3brp9OnT1fZ75MgR7dq1S5dcckmNn+ls8fHxSktL07p169S9e3e9++67Tm3vLEINAMC0kpKkdesaZu/s3XffrZYtW2rYsGH66quvlJeXp9WrV+uBBx7Qjz/+KEl68MEHlZGRoSVLlig3N1cTJkzQ8ePHL9hm+/btNXr0aI0ZM0ZLliyxt/nee+9Jktq1ayeLxaKlS5equLhYpaWl57Rx8cUXa9iwYRo3bpzWrl2rLVu2aMSIEbrooos0bNgwhz5bXl6e0tLSlJOTowMHDujzzz/Xnj173D6uhlADmBRXeQENW1BQkNasWaPY2Fjdcsst6tatm8aOHauTJ08qNDRUkvTwww9r5MiRGj16tBISEtSsWTMNHz68xnZnz56t2267TRMmTFDXrl01btw4lZWVSZIuuugiPfPMM0pNTVXr1q01adKk87Yxf/589erVS0OGDFFCQoIMw9Cnn37q8A36goKClJubq1tvvVWdO3fWn//8Z02cOFHjx4934k/IeRbj7AveTaykpERhYWGyWq32vzCAWSUmVo0lSEio+pcq4C1OnjypvLw8dejQQYGBgZ4uB/WkpuPu6O83PTWASXGVF4DGhqufAJPiKi8AjQ09NQBQA8YmAd6DUAMANfj1fU4ANGyEGgCoAWOTPKcRXccCueZ4M6YGAGrA2KT65+vrK0kqLy+v1zvkwrNOnDgh6dw7FTuDUAMAaFCaNGmioKAgFRcXy8/PTz4+nFQwM8MwdOLECR0+fFjh4eH2UFsbXhVq1qxZoxdeeEEbNmxQYWGhFi9erOTkZE+XBQBwIYvFoujoaOXl5enAgQOeLgf1JDw8XFFRUXVqw6tCTVlZmXr27KkxY8bYH8MOADAff39/XXzxxSovL/d0KagHfn5+deqhOcOrQs3gwYM1ePBgT5cB4DdkZVVdLZSayngU1J6Pjw93FIZTOFEJwOW4DBqAJ5g61NhsNpWUlFSbALgfl0ED8ARTh5r09HSFhYXZp5iYGE+XBDQKSUlVD9Hk1BOA+mTqUJOWliar1WqfCgoKPF0SAABwE68aKOysgIAABQQEeLoMAABQD7wq1JSWlmrv3r32+by8PG3evFkRERGKjY31YGUAAMDTvCrUrF+/Xv3797fPT5kyRZI0evRoZWZmeqgqAADQEHhVqOnXrx8POAMAAOdl6oHCAACg8SDUAI1IVpaUmFj1CgBmQ6gBGpGz7/RLyAFgJoQaoBE5+06/PM4AgJkQaoBG5Ow7/fI4AwBm4lVXPwFwraQkHmUAwDzoqQEAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqAEAAKZAqAHA4xIAmAKhBgCPSwBgCoQaADwuAYAp8JgEADwuAYAp0FMDAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADAABMgVADoEHKypISE6teAcARXhdqXnvtNbVv316BgYHq06eP/vvf/3q6JABukJEh5eRUvQKAI7wq1CxatEhTpkzRtGnTtHHjRvXs2VMDBw7U4cOHPV0aABdLTZUSEqpeAcARFsMwDE8X4ag+ffqod+/eevXVVyVJlZWViomJ0f33369UB/7PV1JSorCwMFmtVoWGhrq7XAAA4AKO/n43qcea6qS8vFwbNmxQWlqafZmPj48GDBignJyc825js9lks9ns8yUlJW6pbd++fXr77bfd0jYAAN4iMjJS48aNk5+fn0f27zWnn/73v/+poqJCrVu3rra8devWKioqOu826enpCgsLs08xMTFuqW3Hjh1uaRcAAG9SXFzstg4ER3hNT01tpKWlacqUKfb5kpIStwSbgQMHKjg4WFar1eVtN2aGYWjr1q2eLgMAGpXWrVsrOjq6VttedtllatGihYsrcpzXhJqWLVvK19dXhw4dqrb80KFDioqKOu82AQEBCggIcHtt/v7+uuGGG9y+n8bolltu8XQJAAAv4TWnn/z9/dWrVy+tXLnSvqyyslIrV65UQkKCBysDAAANgdf01EjSlClTNHr0aF155ZW66qqr9I9//ENlZWX605/+5OnSAACAh3lVqLnzzjtVXFysp556SkVFRbr88su1bNmycwYPAwCAxser7lNTV9ynBgAA7+Po77fXjKkBAACoCaEGAACYAqEGAACYAqEGAACYAqEGAACYAqEGAACYAqEGAACYAqEGAACYAqEGAACYAqEGQKORlSUlJla9AjAfQg2ARiMjQ8rJqXoFYD6EGgCNRmqqlJBQ9QrAfLzqKd0AUBdJSVUTAHOipwYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJiC06HG19dXhw8fPmf5kSNH5Ovr65KiAAAAnOV0qDEM47zLbTab/P3961wQAABAbTRxdMWXX35ZkmSxWDR37lyFhITY36uoqNCaNWvUtWtX11cIAADgAIdDzaxZsyRV9dTMmTOn2qkmf39/tW/fXnPmzHF9hQAAAA5wONTk5eVJkvr3768PP/xQzZs3d1tRAAAAznI41JyxatUqd9QBAABQJ06HmjFjxtT4/rx582pdDAAAQG05HWqOHTtWbf7UqVPatm2bjh8/rhtuuMFlhQEAADjD6VCzePHic5ZVVlbqvvvuU1xcnEuKAgAAcJZL7ijs4+OjKVOm2K+QAgAAqG8ue0zCvn37dPr0aVc1d46//e1vSkxMVFBQkMLDw922HwAA4J2cPv00ZcqUavOGYaiwsFCffPKJRo8e7bLCzlZeXq7bb79dCQkJeuONN9y2HwAA4J2cDjWbNm2qNu/j46PIyEi9+OKLv3llVF0888wzkqTMzEy37QMAAHgvU9+nxmazyWaz2edLSko8WA0AAHCnWo+pOXz4sL766it99dVX531qd0OQnp6usLAw+xQTE+PpkgAAgJs4HWpKSko0cuRItWnTRn379lXfvn110UUXacSIEbJarU61lZqaKovFUuOUm5vrbIl2aWlpslqt9qmgoKDWbQEAgIbN6dNP48aN06ZNm/TJJ58oISFBkpSTk6MHH3xQ48eP18KFCx1u6+GHH1ZKSkqN63Ts2NHZEu0CAgIUEBBQ6+0BAID3cDrULF26VMuXL9e1115rXzZw4ED961//0qBBg5xqKzIyUpGRkc6WAAAAcA6nQ02LFi0UFhZ2zvKwsDC3Prk7Pz9fR48eVX5+vioqKrR582ZJUqdOnRQSEuK2/QIAAO/g9JiaJ598UlOmTFFRUZF9WVFRkR599FH95S9/cWlxv/bUU08pPj5e06ZNU2lpqeLj4xUfH6/169e7bZ8AAMB7WAzDMJzZID4+Xnv37pXNZlNsbKykql6UgIAAXXzxxdXW3bhxo+sqdYGSkhKFhYXJarUqNDTU0+UAgEtkZUkZGVJqqpSU5OlqANdz9Pfb6dNPw4YNk8ViqVNxAADXyciQcnKqXgk1aMycDjVPP/20G8oAANRWaur/9dQAjZnTY2o6duyoI0eOnLP8+PHjdbr8GgBQO0lJ0rp19NIAToea/fv3q6Ki4pzlNptNP/74o0uKAgAAcJbDp5+ysrLs/718+fJql3VXVFRo5cqV6tChg2urAwAAcJDDoSY5OVmSZLFYNHr06Grv+fn5qX379nrxxRddWhwAAICjHD79VFlZqcrKSsXGxurw4cP2+crKStlsNu3atUtDhgxxZ60A0KBlZUmJiVWvAOqf02Nq8vLy1LJlS3fUAgBe7deXVgOof05f0v3ss8/W+P5TTz1V62IAwJtxaTXgWbW6o/CvnTp1Snl5eWrSpIni4uIa3F2Ef407CgMA4H3cdkfhTZs2nXdnKSkpGj58uLPNAQAAuITTY2rOJzQ0VM8884xbH2gJAABQE5eEGkmyWq2yWq2uag4AAMApTp9+evnll6vNG4ahwsJCvfXWWxo8eLDLCgMAAHCG06Fm1qxZ1eZ9fHwUGRmp0aNHKy0tzWWFAQAAOMPpUJOXl+eOOgAAAOrE6VAjVT2Re+/evZKkTp06KTw83JU1AQAAOM2pgcL79+/XzTffrJYtW6pPnz7q06ePWrZsqSFDhmj//v1uKhEAAOC3OdxTU1BQoKuvvlp+fn567rnn1K1bN0nSjh07NHv2bCUkJOi7775T27Zt3VYsAADAhTh8R+GxY8dq7969Wr58uQIDA6u998svv2jQoEG6+OKLNXfuXLcU6grcURgAAO/j8jsKL1u2TIsWLTon0EhS06ZN9dxzz+kPf/hD7aoFAACoI4fH1Pzvf/9T+/btL/h+x44ddfToUVfUBAAA4DSHQ010dLR27Nhxwfe3bdumqKgolxQFAADgLIdDTXJysh555BEVFxef897hw4c1depUJScnu7I2AAAAhzk8UPjYsWPq06ePioqKNGLECHXt2lWGYWjnzp169913FRUVpW+++UYRERHurrnWGCgMAID3cflA4ebNm+vbb7/V448/roULF+r48eOSpPDwcP3xj3/U888/36ADDQAAMDeHe2p+zTAM+2moyMhIWSwWlxfmDvTUAADgfVzeU/NrFotFrVq1qnVxAAAArubUYxIAAAAaKkINAAAwBUINAAAwBUINAAAwBYcGCr/88ssON/jAAw/UuhgAAIDacuiS7g4dOjjWmMWiH374oc5FuQuXdAMA4H1cekl3Xl6eywoDAABwh1qPqSkvL9euXbt0+vRpV9YDAABQK06HmhMnTmjs2LEKCgrSpZdeqvz8fEnS/fffr4yMDJcXKEn79+/X2LFj1aFDBzVt2lRxcXGaNm2aysvL3bI/AADgfZwONWlpadqyZYtWr16twMBA+/IBAwZo0aJFLi3ujNzcXFVWVur111/X9u3bNWvWLM2ZM0ePP/64W/YHAAC8j9OPSViyZIkWLVqkq6++utozny699FLt27fPpcWdMWjQIA0aNMg+37FjR+3atUuzZ8/WjBkz3LJPAADgXZwONcXFxed97lNZWVm9PtjSarX+5lPBbTabbDabfb6kpMTdZQEAAA9x+vTTlVdeqU8++cQ+fybIzJ07VwkJCa6rrAZ79+7VK6+8ovHjx9e4Xnp6usLCwuxTTExMvdQHAADqn0P3qfm1tWvXavDgwRoxYoQyMzM1fvx47dixQ+vWrVN2drZ69erlcFupqamaPn16jevs3LlTXbt2tc//9NNP6tu3r/r166e5c+fWuO35empiYmK4Tw0AAF7E0fvUOB1qJGnfvn3KyMjQli1bVFpaqiuuuEJTp05Vjx49nGqnuLhYR44cqXGdjh07yt/fX5J08OBB9evXT1dffbUyMzPl4+NcRxM33wMAwPu4NdR4wk8//aT+/furV69eevvtt+Xr6+t0G4QaAAC8j0vvKOzMAFt3hIWffvpJ/fr1U7t27TRjxgwVFxfb34uKinL5/gAAgPdxKNSEh4c7fGVTRUVFnQo6nxUrVmjv3r3au3ev2rZtW+09L+loAgC4QFaWlJEhpaZKSUmergYNjUOnn7Kzs+3/vX//fqWmpiolJcV+tVNOTo7efPNNpaena/To0e6rto44/QQA3i0xUcrJkRISpHXrPF0N6ovbxtT87ne/0z333KO77rqr2vJ3331X/+///T+tXr26VgXXB0INAHg3emoaJ7eFmqCgIG3ZskUXX3xxteW7d+/W5ZdfrhMnTtSu4npAqAEAwPs4+vvt9M33YmJi9K9//euc5XPnzuXmdgAAwGOcfkzCrFmzdOutt+qzzz5Tnz59JEn//e9/tWfPHn3wwQcuLxAAAMARTvfU3HTTTdqzZ4+GDh2qo0eP6ujRoxo6dKh2796tm266yR01AgAA/CavufmeKzCmBgAA7+PSm++d7fjx43rjjTe0c+dOSdKll16qMWPGKCwsrHbVAgAA1JHTp5/Wr1+vuLg4zZo1y376aebMmYqLi9PGjRvdUSMAoB5kZVXdByYry9OVALXj9Omn6667Tp06ddK//vUvNWlS1dFz+vRp3XPPPfrhhx+0Zs0atxTqCpx+AoAL48Z2aKjcdkn3+vXrNXXqVHugkaQmTZroscce0/r162tXLQDA41JTqwJNaqqnKwFqx+lQExoaqvz8/HOWFxQUqFmzZi4pCgBQ/5KSqnpouFMvvJXToebOO+/U2LFjtWjRIhUUFKigoEALFy4876MTAAAA6ovTVz/NmDFDFotFo0aN0unTpyVJfn5+uu+++5SRkeHyAgEAABxR6/vUnDhxQvv27ZMkxcXFKSgoyKWFuQMDhQEA8D5uvU+NVPVgyx49etR2cwAAAJdyONSMGTPGofXmzZtX62IAAABqy+FQk5mZqXbt2ik+Pl6N6MkKAADASzgcau677z4tWLBAeXl5+tOf/qQRI0YoIiLCnbUBAAA4zOFLul977TUVFhbqscce08cff6yYmBjdcccdWr58OT03AADA42p99dOBAweUmZmpf//73zp9+rS2b9+ukJAQV9fnUlz9BACA93HbYxLsG/r4yGKxyDAMVVRU1LYZAAAAl3Aq1NhsNi1YsEC///3v1blzZ23dulWvvvqq8vPzG3wvDQAAMDeHBwpPmDBBCxcuVExMjMaMGaMFCxaoZcuW7qwNAADAYQ6PqfHx8VFsbKzi4+NlsVguuN6HH37osuJcjTE1AAB4H5ffUXjUqFE1hhkAAABPcurmewAAAA1Vra9+AgAAaEgINQAAwBQINQAAwBQINQAAwBQINQAAwBQINQAAwBQINQAAwBQINQAAwBQINQAAwBQINQAAwBQINQAAwBS8JtQkJSUpNjZWgYGBio6O1siRI3Xw4EFPlwUAgNtlZUmJiVWvuDCvCTX9+/fXe++9p127dumDDz7Qvn37dNttt3m6LAAA3C4jQ8rJqXrFhVkMwzA8XURtZGVlKTk5WTabTX5+fg5tU1JSorCwMFmtVoWGhrq5QgAAXCMrqyrQpKZKSUmerqb+Ofr73aQea3KZo0eP6p133lFiYmKNgcZms8lms9nnS0pK6qM8AABcKimpcYYZZ3nN6SdJmjp1qoKDg9WiRQvl5+fro48+qnH99PR0hYWF2aeYmJh6qhQAANQ3j4aa1NRUWSyWGqfc3Fz7+o8++qg2bdqkzz//XL6+vho1apRqOnuWlpYmq9VqnwoKCurjYwEAAA/w6Jia4uJiHTlypMZ1OnbsKH9//3OW//jjj4qJidG6deuUkJDg0P4YUwMAgPfxijE1kZGRioyMrNW2lZWVklRtzAwAAGi8vGKg8LfffqvvvvtO1157rZo3b659+/bpL3/5i+Li4hzupQEAAObmFQOFg4KC9OGHH+p3v/udunTporFjx+qyyy5Tdna2AgICPF0eAABoALyip6ZHjx768ssvPV0GAABowLyipwYAAOC3EGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApEGoAAIApeF2osdlsuvzyy2WxWLR582ZPlwMAABoIrws1jz32mNq0aePpMgAAQAPjVaHms88+0+eff64ZM2Z4uhQAANDANPF0AY46dOiQxo0bpyVLligoKMihbWw2m2w2m32+pKTEXeUBAAAP84qeGsMwlJKSonvvvVdXXnmlw9ulp6crLCzMPsXExLixSgAA4EkeDTWpqamyWCw1Trm5uXrllVf0888/Ky0tzan209LSZLVa7VNBQYGbPgkAAPA0i2EYhqd2XlxcrCNHjtS4TseOHXXHHXfo448/lsVisS+vqKiQr6+v7r77br355psO7a+kpERhYWGyWq0KDQ2tU+0AAKB+OPr77dFQ46j8/Pxq42EOHjyogQMH6j//+Y/69Omjtm3bOtQOoQYAAO/j6O+3VwwUjo2NrTYfEhIiSYqLi3M40AAAAHPzioHCAAAAv8UremrO1r59e3nBWTMAAFCP6KkBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACmQKgBAACm4DWhpn379rJYLNWmjIwMT5cFAAAaiCaeLsAZzz77rMaNG2efb9asmQerAQAADYlXhZpmzZopKirK02UAAIAGyGtOP0lSRkaGWrRoofj4eL3wwgs6ffp0jevbbDaVlJRUmwAAgDl5TU/NAw88oCuuuEIRERFat26d0tLSVFhYqJkzZ15wm/T0dD3zzDP1WCUAAPAUi2EYhqd2npqaqunTp9e4zs6dO9W1a9dzls+bN0/jx49XaWmpAgICzrutzWaTzWazz5eUlCgmJkZWq1WhoaF1Kx4AANSLkpIShYWF/ebvt0dDTXFxsY4cOVLjOh07dpS/v/85y7dv367u3bsrNzdXXbp0cWh/jv6hAAAA52RlSRkZUmqqlJTk2rYd/f326OmnyMhIRUZG1mrbzZs3y8fHR61atXJxVQAAwFkZGVJOTtWrq0ONo7xiTE1OTo6+/fZb9e/fX82aNVNOTo4eeughjRgxQs2bN/d0eQAANHqpqf/XU+MpHj395KiNGzdqwoQJys3Nlc1mU4cOHTRy5EhNmTLlguNpzofTTwAAeB+vOP3kqCuuuELffPONp8sAAAANmFfdpwYAAOBCCDUAAMAUCDUAAEBS1WXZiYlVr96IUAMAACRVvyzbGxFqAACApKrLsRMSPHtZdl14xdVPAADA/ZKSPHfjPFegpwYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJgCoQYAAJhCo3pKt2EYkqSSkhIPVwIAABx15nf7zO/4hTSqUPPzzz9LkmJiYjxcCQAAcNbPP/+ssLCwC75vMX4r9phIZWWlDh48qGbNmslisdS5vZKSEsXExKigoEChoaEuqBDuxPHyLhwv78Lx8i7edrwMw9DPP/+sNm3ayMfnwiNnGlVPjY+Pj9q2bevydkNDQ73iLwWqcLy8C8fLu3C8vIs3Ha+aemjOYKAwAAAwBUINAAAwBUJNHQQEBGjatGkKCAjwdClwAMfLu3C8vAvHy7uY9Xg1qoHCAADAvOipAQAApkCoAQAApkCoAQAApkCoAQAApkCoqcGaNWs0dOhQtWnTRhaLRUuWLKlx/dWrV8tisZwzFRUV1U/BjVh6erp69+6tZs2aqVWrVkpOTtauXbt+c7v3339fXbt2VWBgoHr06KFPP/20HqpFbY5XZmbmOd+twMDAeqq4cZs9e7Yuu+wy+43aEhIS9Nlnn9W4Dd8tz3H2eJnpu0WoqUFZWZl69uyp1157zantdu3apcLCQvvUqlUrN1WIM7KzszVx4kR98803WrFihU6dOqUbb7xRZWVlF9xm3bp1uuuuuzR27Fht2rRJycnJSk5O1rZt2+qx8sapNsdLqrr76a+/WwcOHKinihu3tm3bKiMjQxs2bND69et1ww03aNiwYdq+fft51+e75VnOHi/JRN8tAw6RZCxevLjGdVatWmVIMo4dO1YvNeHCDh8+bEgysrOzL7jOHXfcYdx8883VlvXp08cYP368u8vDWRw5XvPnzzfCwsLqryjUqHnz5sbcuXPP+x7frYanpuNlpu8WPTVucPnllys6Olq///3v9fXXX3u6nEbJarVKkiIiIi64Tk5OjgYMGFBt2cCBA5WTk+PW2nAuR46XJJWWlqpdu3aKiYn5zX95wj0qKiq0cOFClZWVKSEh4bzr8N1qOBw5XpJ5vluEGheKjo7WnDlz9MEHH+iDDz5QTEyM+vXrp40bN3q6tEalsrJSkydP1jXXXKPu3btfcL2ioiK1bt262rLWrVszBqqeOXq8unTponnz5umjjz7S22+/rcrKSiUmJurHH3+sx2obr61btyokJEQBAQG69957tXjxYl1yySXnXZfvluc5c7zM9N1qVE/pdrcuXbqoS5cu9vnExETt27dPs2bN0ltvveXByhqXiRMnatu2bVq7dq2nS4EDHD1eCQkJ1f6lmZiYqG7duun111/Xc8895+4yG70uXbpo8+bNslqt+s9//qPRo0crOzv7gj+U8CxnjpeZvluEGje76qqr+HGtR5MmTdLSpUu1Zs0atW3btsZ1o6KidOjQoWrLDh06pKioKHeWiF9x5nidzc/PT/Hx8dq7d6+bqsOv+fv7q1OnTpKkXr166bvvvtNLL72k119//Zx1+W55njPH62ze/N3i9JObbd68WdHR0Z4uw/QMw9CkSZO0ePFiffnll+rQocNvbpOQkKCVK1dWW7ZixYoazzvDNWpzvM5WUVGhrVu38v3ykMrKStlstvO+x3er4anpeJ3Nq79bnh6p3JD9/PPPxqZNm4xNmzYZkoyZM2camzZtMg4cOGAYhmGkpqYaI0eOtK8/a9YsY8mSJcaePXuMrVu3Gg8++KDh4+NjfPHFF576CI3GfffdZ4SFhRmrV682CgsL7dOJEyfs64wcOdJITU21z3/99ddGkyZNjBkzZhg7d+40pk2bZvj5+Rlbt271xEdoVGpzvJ555hlj+fLlxr59+4wNGzYYf/jDH4zAwEBj+/btnvgIjUpqaqqRnZ1t5OXlGd9//72RmppqWCwW4/PPPzcMg+9WQ+Ps8TLTd4tQU4Mzl2ifPY0ePdowDMMYPXq00bdvX/v606dPN+Li4ozAwEAjIiLC6Nevn/Hll196pvhG5nzHSZIxf/58+zp9+/a1H7sz3nvvPaNz586Gv7+/cemllxqffPJJ/RbeSNXmeE2ePNmIjY01/P39jdatWxs33XSTsXHjxvovvhEaM2aM0a5dO8Pf39+IjIw0fve739l/IA2D71ZD4+zxMtN3y2IYhlHfvUMAAACuxpgaAABgCoQaAABgCoQaAABgCoQaAABgCoQaAABgCoQaAABgCoQaAABgCoQaAAAamTVr1mjo0KFq06aNLBaLlixZ4tb9paenq3fv3mrWrJlatWql5ORk7dq1q9o6J0+e1MSJE9WiRQuFhITo1ltvPecZYr+FUAPAqxQUFGjMmDFq06aN/P391a5dOz344IM6cuSIJOnUqVOaOnWqevTooeDgYLVp00ajRo3SwYMHPVw50HCUlZWpZ8+eeu211+plf9nZ2Zo4caK++eYbrVixQqdOndKNN96osrIy+zoPPfSQPv74Y73//vvKzs7WwYMHdcsttzi1H+4oDMBr/PDDD0pISFDnzp3117/+VR06dND27dv16KOPqry8XN988418fX112223ady4cerZs6eOHTumBx98UBUVFVq/fr2nPwLQ4FgsFi1evFjJycn2ZTabTU888YQWLFig48ePq3v37po+fbr69evnkn0WFxerVatWys7O1vXXXy+r1arIyEi9++67uu222yRJubm56tatm3JycnT11Vc71G4Tl1QHAPVg4sSJ8vf31+eff66mTZtKkmJjYxUfH6+4uDg98cQTmj17tlasWFFtu1dffVVXXXWV8vPzFRsb64nSAa8yadIk7dixQwsXLlSbNm20ePFiDRo0SFu3btXFF19c5/atVqskKSIiQpK0YcMGnTp1SgMGDLCv07VrV8XGxjoVajj9BMArHD16VMuXL9eECRPsgeaMqKgo3X333Vq0aJHO1/lstVplsVgUHh5eT9UC3is/P1/z58/X+++/r+uuu05xcXF65JFHdO2112r+/Pl1br+yslKTJ0/WNddco+7du0uSioqK5O/vf853tHXr1ioqKnK4bUINAK+wZ88eGYahbt26nff9bt266dixYyouLq62/OTJk5o6daruuusuhYaG1kepgFfbunWrKioq1LlzZ4WEhNin7Oxs7du3T1LVqSGLxVLjlJqaet72J06cqG3btmnhwoUur53TTwC8ijPDAE+dOqU77rhDhmFo9uzZbqwKMI/S0lL5+vpqw4YN8vX1rfZeSEiIJKljx47auXNnje20aNHinGWTJk3S0qVLtWbNGrVt29a+PCoqSuXl5Tp+/Hi13ppDhw4pKirK4doJNQC8QqdOnWSxWLRz504NHz78nPd37typ5s2bKzIyUtL/BZoDBw7oyy+/pJcGcFB8fLwqKip0+PBhXXfddeddx9/fX127dnW4TcMwdP/992vx4sVavXq1OnToUO39Xr16yc/PTytXrtStt94qSdq1a5fy8/OVkJDg8H64+gmA1xg4cKC2b9+uPXv2VBtXU1RUpLi4OI0aNUqzZ8+2B5o9e/Zo1apV9qADoEppaan27t0rqSrEzJw5U/3791dERIRiY2M1YsQIff3113rxxRcVHx+v4uJirVy5Updddpluvvlmp/c3YcIEvfvuu/roo4/UpUsX+/KwsDD7d/m+++7Tp59+qszMTIWGhur++++XJK1bt87xHRkA4CV2795ttGzZ0rjuuuuM7OxsIz8/3/jss8+M7t27GxdffLFx5MgRo7y83EhKSjLatm1rbN682SgsLLRPNpvN0x8BaBBWrVplSDpnGj16tGEYhlFeXm489dRTRvv27Q0/Pz8jOjraGD58uPH999/Xan/n25ckY/78+fZ1fvnlF2PChAlG8+bNjaCgIGP48OFGYWGhU/uhpwaAVzlw4ICmTZumZcuW6ejRo4qKilJycrKmTZumFi1aaP/+/ed0bZ+xatUql91nA0DDQ6gBAACmwCXdAADAFAg1AADAFAg1AADAFAg1AADAFAg1AADAFAg1AADAFAg1AADAFAg1AADAFAg1AADAFAg1AADAFAg1AADAFAg1AADAFP4/x+hhI9NoFs4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_38.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJvElEQVR4nO3deVhUZf8/8Pcw7KCjyCqhKGhiIu6IGqBipGWZ9URqbo/ar7JcqFTMNRfUUqk0NXPfII3K1EdTFMvl+1VRyr1UCFNA0RxkEXDm/v3hl/M0gcoMMxw4vF/XNdfl3HOfmc+5L3De3Oc+56iEEAJERERECmEldwFERERE5sRwQ0RERIrCcENERESKwnBDREREisJwQ0RERIrCcENERESKwnBDREREisJwQ0RERIrCcENERESKwnBDRLKYMWMGVCpVhfqqVCrMmDHDovWEh4cjPDy82r4fEVUcww1RLbd27VqoVCrpYW1tDW9vbwwbNgzXrl2Tu7xqx9fX12C83N3d8fTTT+Pbb781y/sXFBRgxowZSE5ONsv7EdVGDDdEBAD46KOPsGHDBixfvhy9e/fGxo0bERYWhnv37lnk86ZMmYLCwkKLvLeltWnTBhs2bMCGDRvw/vvv4/r16+jfvz+WL19e6fcuKCjAzJkzGW6IKsFa7gKIqHro3bs3OnToAAAYOXIkXF1dMX/+fGzfvh2vvvqq2T/P2toa1tY1878gb29vvP7669LzIUOGwN/fH4sXL8abb74pY2VEBHDmhoge4umnnwYAXL582aD9woULeOWVV+Di4gJ7e3t06NAB27dvN+hTUlKCmTNnolmzZrC3t0eDBg3QrVs37N27V+pT3pqboqIijB8/Hm5ubqhTpw5eeOEF/Pnnn2VqGzZsGHx9fcu0l/eea9asQY8ePeDu7g47Ozu0bNkSy5YtM2osHsfT0xMBAQFIS0t7ZL8bN25gxIgR8PDwgL29PYKCgrBu3Trp9fT0dLi5uQEAZs6cKR36svR6IyKlqZl/NhGRxaWnpwMA6tevL7WdPXsWXbt2hbe3NyZNmgQnJyd8/fXX6NevH7755hu89NJLAB6EjNjYWIwcORKdOnVCbm4uTpw4gZMnT6JXr14P/cyRI0di48aNGDhwILp06YL9+/fjueeeq9R+LFu2DE899RReeOEFWFtb44cffsDbb78NvV6P0aNHV+q9S5WUlODq1ato0KDBQ/sUFhYiPDwcly5dwjvvvIMmTZpg69atGDZsGO7cuYOxY8fCzc0Ny5Ytw1tvvYWXXnoJ/fv3BwC0bt3aLHUS1RqCiGq1NWvWCABi37594ubNm+Lq1ati27Ztws3NTdjZ2YmrV69KfXv27CkCAwPFvXv3pDa9Xi+6dOkimjVrJrUFBQWJ55577pGfO336dPH3/4JSU1MFAPH2228b9Bs4cKAAIKZPny61DR06VDRu3Pix7ymEEAUFBWX6RUZGiqZNmxq0hYWFibCwsEfWLIQQjRs3Fs8884y4efOmuHnzpvjll1/Ea6+9JgCId99996HvFxcXJwCIjRs3Sm3FxcUiJCREODs7i9zcXCGEEDdv3iyzv0RkHB6WIiIAQEREBNzc3ODj44NXXnkFTk5O2L59O5544gkAwO3bt7F//368+uqruHv3LnJycpCTk4Nbt24hMjISv//+u3R2Vb169XD27Fn8/vvvFf78Xbt2AQDGjBlj0D5u3LhK7ZeDg4P0b61Wi5ycHISFheHKlSvQarUmveePP/4INzc3uLm5ISgoCFu3bsXgwYMxf/78h26za9cueHp6YsCAAVKbjY0NxowZg7y8PBw8eNCkWoiorFodbn766Sf07dsXDRs2hEqlwnfffWfRz7t79y7GjRuHxo0bw8HBAV26dMHx48ct+plEFbV06VLs3bsX27ZtQ58+fZCTkwM7Ozvp9UuXLkEIgalTp0pf7KWP6dOnA3iwpgR4cObVnTt30Lx5cwQGBuKDDz7Ar7/++sjP/+OPP2BlZQU/Pz+D9ieffLJS+3X48GFERETAyckJ9erVg5ubGyZPngwAJoeb4OBg7N27F/v27cORI0eQk5OD9evXGwSpf/rjjz/QrFkzWFkZ/rcbEBAgvU5E5lGr19zk5+cjKCgI//73v6Vj25Y0cuRInDlzBhs2bEDDhg2xceNGRERE4Ny5c/D29rb45xM9SqdOnaSzpfr164du3bph4MCBuHjxIpydnaHX6wEA77//PiIjI8t9D39/fwBAaGgoLl++jO+//x4//vgjvvrqKyxevBjLly/HyJEjK13rwy7+p9PpDJ5fvnwZPXv2RIsWLbBo0SL4+PjA1tYWu3btwuLFi6V9MparqysiIiJM2paILK9Wh5vevXujd+/eD329qKgIH374IbZs2YI7d+6gVatWmD9/vklXHS0sLMQ333yD77//HqGhoQAeLLr84YcfsGzZMsyePdvU3SAyO7VajdjYWHTv3h1LlizBpEmT0LRpUwAPDqVU5IvdxcUFw4cPx/Dhw5GXl4fQ0FDMmDHjoeGmcePG0Ov1uHz5ssFszcWLF8v0rV+/Pu7cuVOm/Z+zHz/88AOKioqwfft2NGrUSGo/cODAY+s3t8aNG+PXX3+FXq83mL25cOGC9Drw8OBGRBVXqw9LPc4777yDo0ePIj4+Hr/++iv+9a9/4dlnnzVqHUGp+/fvQ6fTwd7e3qDdwcEBhw4dMlfJRGYTHh6OTp06IS4uDvfu3YO7uzvCw8OxYsUKZGZmlul/8+ZN6d+3bt0yeM3Z2Rn+/v4oKip66OeV/qHx2WefGbTHxcWV6evn5wetVmtwqCszM7PMVYLVajUAQAghtWm1WqxZs+ahdVhKnz59kJWVhYSEBKnt/v37+Pzzz+Hs7IywsDAAgKOjIwCUG96IqGJq9czNo2RkZGDNmjXIyMhAw4YNATyYjt+9ezfWrFmDuXPnGvV+derUQUhICGbNmoWAgAB4eHhgy5YtOHr0qDSVT1TdfPDBB/jXv/6FtWvX4s0338TSpUvRrVs3BAYGYtSoUWjatCmys7Nx9OhR/Pnnn/jll18AAC1btkR4eDjat28PFxcXnDhxAtu2bcM777zz0M9q06YNBgwYgC+++AJarRZdunRBUlISLl26VKbva6+9hokTJ+Kll17CmDFjUFBQgGXLlqF58+Y4efKk1O+ZZ56Bra0t+vbti//3//4f8vLysHLlSri7u5cb0CzpjTfewIoVKzBs2DCkpKTA19cX27Ztw+HDhxEXF4c6deoAePAHT8uWLZGQkIDmzZvDxcUFrVq1QqtWraq0XqIaTe7TtaoLAOLbb7+Vnu/YsUMAEE5OTgYPa2tr8eqrrwohhDh//rwA8MjHxIkTpfe8dOmSCA0NFQCEWq0WHTt2FIMGDRItWrSo6t0lkpSeCn78+PEyr+l0OuHn5yf8/PzE/fv3hRBCXL58WQwZMkR4enoKGxsb4e3tLZ5//nmxbds2abvZs2eLTp06iXr16gkHBwfRokULMWfOHFFcXCz1Ke+07cLCQjFmzBjRoEED4eTkJPr27SuuXr1a7qnRP/74o2jVqpWwtbUVTz75pNi4cWO577l9+3bRunVrYW9vL3x9fcX8+fPF6tWrBQCRlpYm9TPmVPDHneb+sPfLzs4Ww4cPF66ursLW1lYEBgaKNWvWlNn2yJEjon379sLW1panhROZQCXE3+ZrazGVSoVvv/0W/fr1AwAkJCRg0KBBOHv2rDS1XcrZ2Rmenp4oLi7GlStXHvm+DRo0kK44Wio/Px+5ubnw8vJCVFQU8vLysHPnTrPuDxERUW3Fw1IP0bZtW+h0Oty4cUO6DP0/2draokWLFka/t5OTE5ycnPDXX39hz549WLBgQWXLJSIiov9Tq8NNXl6ewfH8tLQ0pKamwsXFBc2bN8egQYMwZMgQLFy4EG3btsXNmzeRlJSE1q1bm3RJ+D179kAIgSeffBKXLl3CBx98gBYtWmD48OHm3C0iIqJarVYflkpOTkb37t3LtA8dOhRr165FSUkJZs+ejfXr1+PatWtwdXVF586dMXPmTAQGBhr9eV9//TViYmLw559/wsXFBS+//DLmzJkDjUZjjt0hIiIi1PJwQ0RERMrD69wQERGRojDcEBERkaLUugXFer0e169fR506dXiZcyIiohpCCIG7d++iYcOGZW5A+0+1Ltxcv34dPj4+cpdBREREJrh69SqeeOKJR/apdeGm9BLnV69eRd26dWWuhoiIiCoiNzcXPj4+0vf4o8gabn766Sd8/PHHSElJkW56V3qF4PIkJiZi2bJlSE1NRVFREZ566inMmDEDkZGRFf7M0kNRdevWZbghIiKqYSqypETWBcX5+fkICgrC0qVLK9T/p59+Qq9evbBr1y6kpKSge/fu6Nu3L06dOmXhSomIiKimqDbXufnnvZ0q6qmnnkJUVBSmTZtWof65ubnQaDTQarWcuSEiIqohjPn+rtFrbvR6Pe7evQsXF5eH9ikqKkJRUZH0PDc3typKIyIiIpnU6HDzySefIC8vD6+++upD+8TGxmLmzJlVWBURERlLp9OhpKRE7jJIZra2to89zbsiamy42bx5M2bOnInvv/8e7u7uD+0XExOD6Oho6XnpamsiIpKfEAJZWVm4c+eO3KVQNWBlZYUmTZrA1ta2Uu9TI8NNfHw8Ro4cia1btyIiIuKRfe3s7GBnZ1dFlRERkTFKg427uzscHR15cdVarPQiu5mZmWjUqFGlfhZqXLjZsmUL/v3vfyM+Ph7PPfec3OUQEZGJdDqdFGwaNGggdzlUDbi5ueH69eu4f/8+bGxsTH4fWcNNXl4eLl26JD1PS0tDamoqXFxc0KhRI8TExODatWtYv349gAeHooYOHYpPP/0UwcHByMrKAgA4ODhAo9HIsg9ERGSa0jU2jo6OMldC1UXp4SidTlepcCPrdW5OnDiBtm3bom3btgCA6OhotG3bVjqtOzMzExkZGVL/L7/8Evfv38fo0aPh5eUlPcaOHStL/UREVHk8FEWlzPWzIOvMTXh4OB51mZ21a9caPE9OTrZsQURERFTjyTpzQ0RERNWbr68v4uLi5C7DKAw3RNVUprYQRy7nIFNbKHcpRPQPN2/exFtvvYVGjRrBzs4Onp6eiIyMxOHDhwE8OLzy3XffyVtkBYWHh0OlUpV53L9/X+7STFbjzpYiqg0SjmcgJvE09AKwUgGx/QMR1bGR3GUR0f95+eWXUVxcjHXr1qFp06bIzs5GUlISbt26JXdpJhk1ahQ++ugjgzZr65obEThzQ1TNZGoLpWADAHoBTE48wxkcomrizp07+PnnnzF//nx0794djRs3RqdOnRATE4MXXngBvr6+AICXXnoJKpVKeg4A33//Pdq1awd7e3s0bdoUM2fONJghWbRoEQIDA+Hk5AQfHx+8/fbbyMvLk15fu3Yt6tWrhx07duDJJ5+Eo6MjXnnlFRQUFGDdunXw9fVF/fr1MWbMGOh0ugrvk6OjIzw9PQ0eD5ORkYEXX3wRzs7OqFu3Ll599VVkZ2cDALRaLdRqNU6cOAHgwbVrXFxc0LlzZ2n7jRs3Wvxiugw3RNVMWk6+FGxK6YRAek6BPAUR1QBVeRjX2dkZzs7O+O677wzuXVjq+PHjAIA1a9YgMzNTev7zzz9jyJAhGDt2LM6dO4cVK1Zg7dq1mDNnjrStlZUVPvvsM5w9exbr1q3D/v37MWHCBIP3LygowGeffYb4+Hjs3r0bycnJeOmll7Br1y7s2rULGzZswIoVK7Bt2zaz77ter8eLL76I27dv4+DBg9i7dy+uXLmCqKgoAIBGo0GbNm2kE4BOnz4NlUqFU6dOSSHt4MGDCAsLM3ttf8dwQ1TNNHF1gtU/zoZUq1TwdeW1QIjKk3A8A13n7cfAlf+LrvP2I+F4xuM3qgRra2usXbsW69atQ7169dC1a1dMnjwZv/76K4AHF6IDgHr16sHT01N6PnPmTEyaNAlDhw5F06ZN0atXL8yaNQsrVqyQ3nvcuHHo3r07fH190aNHD8yePRtff/21weeXlJRg2bJlaNu2LUJDQ/HKK6/g0KFDWLVqFVq2bInnn38e3bt3x4EDByq8T1988YUU2pydnfHee++V2y8pKQmnT5/G5s2b0b59ewQHB2P9+vU4ePCgFOLCw8OlcJOcnIxevXohICAAhw4dktoYbohqGS+NA2L7B0L9f9d7UKtUmNu/Fbw0DjJXRlT9yHUY9+WXX8b169exfft2PPvss0hOTka7du3KXMLk73755Rd89NFHBiFi1KhRyMzMREHBg5nZffv2oWfPnvD29kadOnUwePBg3Lp1S3odeHAIyc/PT3ru4eEBX19fODs7G7TduHGjwvszaNAgpKamSo+YmJhy+50/fx4+Pj4Gh5VatmyJevXq4fz58wCAsLAwHDp0CDqdDgcPHkR4eLgUeK5fv45Lly4hPDy8wrWZouauFiJSsKiOjRDa3A3pOQXwdXVksCF6iEcdxrX07429vT169eqFXr16YerUqRg5ciSmT5+OYcOGlds/Ly8PM2fORP/+/ct9r/T0dDz//PN46623MGfOHLi4uODQoUMYMWIEiouLpSs5//PKvSqVqtw2vV5f4X3RaDTw9/evcP9HCQ0Nxd27d3Hy5En89NNPmDt3Ljw9PTFv3jwEBQWhYcOGaNasmVk+62EYboiqKS+NA0MN0WOUHsb9e8CR6zBuy5YtpdO/bWxsyizobdeuHS5evPjQEJGSkgK9Xo+FCxfCyurBgZV/HpKSW0BAAK5evYqrV69Kszfnzp3DnTt30LJlSwAPDse1bt0aS5YsgY2NDVq0aAF3d3dERUVhx44dFj8kBfCwFBER1WByHMa9desWevTogY0bN+LXX39FWloatm7digULFuDFF18E8ODCd0lJScjKysJff/0FAJg2bRrWr1+PmTNn4uzZszh//jzi4+MxZcoUAIC/vz9KSkrw+eef48qVK9iwYQOWL19usf0wRUREBAIDAzFo0CCcPHkSx44dw5AhQxAWFoYOHTpI/cLDw7Fp0yYpyLi4uCAgIAAJCQkMN0RERI8T1bERDk3qji2jOuPQpO4WvyaUs7MzgoODsXjxYoSGhqJVq1aYOnUqRo0ahSVLlgAAFi5ciL1798LHx0e6f2JkZCR27NiBH3/8ER07dkTnzp2xePFiNG7cGAAQFBSERYsWYf78+WjVqhU2bdqE2NhYi+6LsVQqFb7//nvUr18foaGhiIiIQNOmTZGQkGDQLywsDDqdzmBtTXh4eJk2i9UpHnVzJwXKzc2FRqOBVqtF3bp15S6HiKjWunfvHtLS0tCkSRPY29vLXQ5VA4/6mTDm+5szN0RERKQoDDdEREQK9fPPPxucev7Ph1LxbCkiIiKF6tChA1JTU+Uuo8ox3BARESmUg4OD2a5fU5PwsBQREcmqlp3XQo9grp8FhhsiIpJF6VV1/35rAardiouLAQBqtbpS78PDUkREJAu1Wo169epJ90BydHSESqV6zFakVHq9Hjdv3oSjoyOsrSsXTxhuiIhINp6engBg1E0eSbmsrKzQqFGjSodchhsiIpKNSqWCl5cX3N3dUVJSInc5JDNbW1vpvlqVwXBDRESyU6vVlV5nQVSKC4qJiIhIURhuiIiISFEYboiIiEhRGG6IiIhIURhuiIiISFEYboiIiEhRGG6IiIhIURhuiIiISFEYboiIiEhRGG6IiIhIURhuiIiISFEYboiIiEhRGG6IiIhIURhuiIiISFEYboiIiEhRGG6IiIhIURhuiIiISFEYboiIiEhRGG6IiIhIURhuiIiISFEYboiIiEhRGG6IiIhIURhuiIiISFEYboiIiEhRGG6IiIhIUWQNNz/99BP69u2Lhg0bQqVS4bvvvnvsNsnJyWjXrh3s7Ozg7++PtWvXWrxOIiIiqjlkDTf5+fkICgrC0qVLK9Q/LS0Nzz33HLp3747U1FSMGzcOI0eOxJ49eyxcKREREdUU1nJ+eO/evdG7d+8K91++fDmaNGmChQsXAgACAgJw6NAhLF68GJGRkZYqk4iIiGqQGrXm5ujRo4iIiDBoi4yMxNGjRx+6TVFREXJzcw0eREREpFw1KtxkZWXBw8PDoM3DwwO5ubkoLCwsd5vY2FhoNBrp4ePjUxWlEhERkUxqVLgxRUxMDLRarfS4evWq3CURERGRBcm65sZYnp6eyM7ONmjLzs5G3bp14eDgUO42dnZ2sLOzq4ryiIiIqBqoUTM3ISEhSEpKMmjbu3cvQkJCZKqIiIiIqhtZw01eXh5SU1ORmpoK4MGp3qmpqcjIyADw4JDSkCFDpP5vvvkmrly5ggkTJuDChQv44osv8PXXX2P8+PFylE9ERETVkKzh5sSJE2jbti3atm0LAIiOjkbbtm0xbdo0AEBmZqYUdACgSZMm2LlzJ/bu3YugoCAsXLgQX331FU8DJyIiIolKCCHkLqIq5ebmQqPRQKvVom7dunKXQ0RERBVgzPd3jVpzQ0RERPQ4DDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0REtUCmthBHLucgU1sodylEFmctdwFERGRZCcczEJN4GnoBWKmA2P6BiOrYSO6yiCyGMzdERAqWqS2Ugg0A6AUwOfEMZ3BI0RhuiIgULC0nXwo2pXRCID2nQJ6CiKoAww0RkYI1cXWClcqwTa1SwdfVUZ6CiKoAww0RkYJ5aRwQ2z8QatWDhKNWqTC3fyt4aRxkrozIcrigmIhI4aI6NkJoczek5xTA19WRwYYUj+GGiKgW8NI4MNRQrcHDUkRERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCjVItwsXboUvr6+sLe3R3BwMI4dO/bI/nFxcXjyySfh4OAAHx8fjB8/Hvfu3auiaomIiKg6kz3cJCQkIDo6GtOnT8fJkycRFBSEyMhI3Lhxo9z+mzdvxqRJkzB9+nScP38eq1atQkJCAiZPnlzFlRMREVF1JHu4WbRoEUaNGoXhw4ejZcuWWL58ORwdHbF69epy+x85cgRdu3bFwIED4evri2eeeQYDBgx47GwPERER1Q6yhpvi4mKkpKQgIiJCarOyskJERASOHj1a7jZdunRBSkqKFGauXLmCXbt2oU+fPuX2LyoqQm5ursGDiIiIlEvW2y/k5ORAp9PBw8PDoN3DwwMXLlwod5uBAwciJycH3bp1gxAC9+/fx5tvvvnQw1KxsbGYOXOm2WsnIiKi6kn2w1LGSk5Oxty5c/HFF1/g5MmTSExMxM6dOzFr1qxy+8fExECr1UqPq1evVnHFREREVJVknblxdXWFWq1Gdna2QXt2djY8PT3L3Wbq1KkYPHgwRo4cCQAIDAxEfn4+3njjDXz44YewsjLMa3Z2drCzs7PMDhAREVG1I+vMja2tLdq3b4+kpCSpTa/XIykpCSEhIeVuU1BQUCbAqNVqAIAQwnLFEhERUY0g68wNAERHR2Po0KHo0KEDOnXqhLi4OOTn52P48OEAgCFDhsDb2xuxsbEAgL59+2LRokVo27YtgoODcenSJUydOhV9+/aVQg4RERHVXrKHm6ioKNy8eRPTpk1DVlYW2rRpg927d0uLjDMyMgxmaqZMmQKVSoUpU6bg2rVrcHNzQ9++fTFnzhy5doGIiIiqEZWoZcdycnNzodFooNVqUbduXbnLISIiogow5vu7xp0tRURERPQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdEVKUytYU4cjkHmdpCuUshIoWS/caZRFR7JBzPQEziaegFYKUCYvsHIqpjI7nLIiKF4cwNEVWJTG2hFGwAQC+AyYlnOINDRGbHcENEVSItJ18KNqV0QiA9p0CegohIsRhuiKhKNHF1gpXKsE2tUsHX1VGegohIsRhuiKhKeGkcENs/EGrVg4SjVqkwt38reGkcZK6MiJSGC4qJqMpEdWyE0OZuSM8pgK+rI4MNEVmESeGmUaNGCA8PR1hYGMLDw+Hn52fuuohIobw0Dgw1RGRRJh2Wmjt3Luzt7TF//nw0a9YMPj4+eP3117Fy5Ur8/vvv5q6RiIiIqMJUQgjx+G4Pl5mZiYMHD2LHjh1ISEiAXq+HTqczV31ml5ubC41GA61Wi7p168pdDhEREVWAMd/fJq+5KSgowKFDh5CcnIwDBw7g1KlTaNWqFcLDw019SyIiIqJKMyncdOnSBadOnUJAQADCw8MxadIkhIaGon79+uauj4iIiMgoJq25uXDhApycnNCiRQu0aNECAQEBDDZERERULZgUbm7duoX9+/ejc+fO2LNnD7p27Qpvb28MHDgQK1euNHeNRERERBVW6QXFQgikpKRgyZIl2LRpExcU1zKZ2kKk5eSjiasTT+8lIiKLsfiC4pMnTyI5ORnJyck4dOgQ7t69i8DAQLz77rsICwszqWiqeXiHZyIiqo5MmrmxtrZG27ZtERYWhrCwMISGhkKj0ViiPrPjzI15ZGoL0XXefoMbIapVKhya1J0zOEREZHYWn7m5ffs2g0Et96g7PDPcEBGRnEwKN6XBJiUlBefPnwcAtGzZEu3atTNfZVStld7h+Z8zN7zDMxERyc2kcHPjxg1ERUXh4MGDqFevHgDgzp076N69O+Lj4+Hm5mbOGqkaKr3D8+TEM9AJwTs8ExFRtWFSuHn33XeRl5eHs2fPIiAgAABw7tw5DB06FGPGjMGWLVvMWiRVT7zDMxERVUcmLSjWaDTYt28fOnbsaNB+7NgxPPPMM7hz54656jM7LigmIiKqeYz5/jbpIn56vR42NjZl2m1sbKDX6015SyIiIiKzMCnc9OjRA2PHjsX169eltmvXrmH8+PHo2bOn2YojIiIiMpZJ4WbJkiXIzc2Fr68v/Pz84OfnhyZNmiA3Nxeff/65uWskIqJqJlNbiCOXc5CpLZS7FKIyTFpQ7OPjg5MnT2Lfvn24cOECACAgIAARERFmLY6IiKofXp2cqrtK31uqpuGCYiIi0/Hq5CQXi1yh+LPPPqtwAWPGjKlwXyIiqjl4dXKqCSocbhYvXlyhfiqViuGGiEiheHVyqgkqHG7S0tIsWQcREdUAvDo51QRGLSjW6/WwsjLpBCsiIlIIXp2cqjujkoqNjQ1u3LghPf/ggw9w+/ZtsxdFRETVm5fGASF+DRhsqFoyKtz888SqFStWVOtbLRAREVHtU6ljTLXsLHIiIiKqAbiAhoiIiBTF6CsUT5s2DY6OD075Ky4uxpw5c6DRaAz6LFq0yDzVERERERnJqHATGhqKixcvSs+7dOmCK1euGPRRqVTmqYyIiIjIBEaFm+TkZIsUsXTpUnz88cfIyspCUFAQPv/8c3Tq1Omh/e/cuYMPP/wQiYmJuH37Nho3boy4uDj06dPHIvURERFRzWHRNTd169YtM7PzTwkJCYiOjsb06dNx8uRJBAUFITIy0uCU878rLi5Gr169kJ6ejm3btuHixYtYuXIlvL29LbELREREVMOYdFfwiqrI2VSLFi3CqFGjMHz4cADA8uXLsXPnTqxevRqTJk0q03/16tW4ffs2jhw5AhsbGwCAr6+vWesmIiKimkvWs6WKi4uRkpKCiIgIqc3KygoRERE4evRoudts374dISEhGD16NDw8PNCqVSvMnTsXOp2u3P5FRUXIzc01eBAREZFyyRpucnJyoNPp4OHhYdDu4eGBrKyscre5cuUKtm3bBp1Oh127dmHq1KlYuHAhZs+eXW7/2NhYaDQa6eHj42P2/SAiIqLqo8Zd50av18Pd3R1ffvkl2rdvj6ioKHz44YdYvnx5uf1jYmKg1Wqlx9WrV6u4YiIiIqpKFl1z87jTwl1dXaFWq5GdnW3Qnp2dDU9Pz3K38fLygo2NDdRqtdQWEBCArKwsFBcXw9bW1qC/nZ0d7OzsTNwDIiIiqmksOnPzuAXFtra2aN++PZKSkqQ2vV6PpKQkhISElLtN165dcenSJej1eqntt99+g5eXV5lgQ0RERLWPRcPNf/7zn8eeoh0dHY2VK1di3bp1OH/+PN566y3k5+dLZ08NGTIEMTExUv+33noLt2/fxtixY/Hbb79h586dmDt3LkaPHm3JXSGqVjK1hThyOQeZ2kK5SyEiqnZMOiwlhMC2bdtw4MAB3Lhxw2AWBQASExMBAN26dXvse0VFReHmzZuYNm0asrKy0KZNG+zevVtaZJyRkQErq/9mMB8fH+zZswfjx49H69at4e3tjbFjx2LixImm7ApRjZNwPAMxiaehF4CVCojtH4iojo3kLouIqNpQCRNu7T127FisWLEC3bt3h4eHR5m1NWvWrDFbgeaWm5sLjUYDrVaLunXryl0OkVEytYXoOm8/9H/7rVWrVDg0qTu8NA7yFUZEZGHGfH+bNHOzYcMGJCYm8nYHRFUsLSffINgAgE4IpOcUMNwQEf0fk9bcaDQaNG3a1Ny1ENFjNHF1gtU/TkJUq1TwdXWUpyAiomrIpHAzY8YMzJw5E4WFXMxIVJW8NA6I7R8I9f8dClarVJjbvxVnbYiI/sakNTeFhYV46aWXcPjwYfj6+kr3eCp18uRJsxVoblxzQ0qQqS1Eek4BfF0dGWyIqFaw+JqboUOHIiUlBa+//nq5C4qJyLK8NA4MNURED2FSuNm5cyf27NlToVO9iYiIiKqSSWtufHx8eEiHiGodXjyRqGYwKdwsXLgQEyZMQHp6upnLISKqnhKOZ6DrvP0YuPJ/0XXefiQcz5C7JCJ6CJMWFNevXx8FBQW4f/8+HB0dyywovn37ttkKNDcuKCYiY/HiiUTys/iC4ri4OFM2IyKqkXjxRKKaxeSzpYiIaovSiyf+c+aGF08kqp4qfVfwe/fuITc31+BBRKQkvHgiUc1i0sxNfn4+Jk6ciK+//hq3bt0q87pOp6t0YURE1UlUx0YIbe7GiycS1QAmzdxMmDAB+/fvx7Jly2BnZ4evvvoKM2fORMOGDbF+/Xpz10hEVC14aRwQ4teAwYaomjNp5uaHH37A+vXrER4ejuHDh+Ppp5+Gv78/GjdujE2bNmHQoEHmrpOIiIioQkyaubl9+7Z0V/C6detKp35369YNP/30k/mqIyIiIjKSSeGmadOmSEtLAwC0aNECX3/9NYAHMzr16tUzW3FERERExjIp3AwfPhy//PILAGDSpElYunQp7O3tMX78eHzwwQdmLZCIiIjIGCZdofif/vjjD6SkpMDf3x+tW7c2R10WwysUExER1TwWv0Lx3927dw+NGzdG48aNK/tWRFRJmdpCpOXko4mrE8/oIaJay6TDUjqdDrNmzYK3tzecnZ1x5coVAMDUqVOxatUqsxZIRBXDGzsSET1gUriZM2cO1q5diwULFsDW1lZqb9WqFb766iuzFUdEFZOpLURM4mnp9gB6AUxOPINMbaG8hRERycCkcLN+/Xp8+eWXGDRoENRqtdQeFBSECxcumK04IqqYR93YkYiotjEp3Fy7dg3+/v5l2vV6PUpKSipdFBEZp/TGjn/HGzsSUW1lUrhp2bIlfv755zLt27ZtQ9u2bStdFBEZhzd2JCL6L5POlpo2bRqGDh2Ka9euQa/XIzExERcvXsT69euxY8cOc9dIRBXAGzsSET1g8nVufv75Z3z00Uf45ZdfkJeXh3bt2mHatGl45plnzF2jWfE6N0RERDWPMd/fZrmIX03CcENERFTzGPP9bfK9pW7dulWm/c6dO9INNYmIiIjkYFK4SU9Ph06nK9NeVFSEa9euVbooIiIiIlMZtaB4+/bt0r/37NkDjUYjPdfpdEhKSoKvr6/ZiiMiIiIyllHhpl+/fgAAlUqFoUOHGrxmY2MDX19fLFy40GzFERERERnLqHCj1+sBAE2aNMHx48fh6upqkaKIiIiITGXUmpujR49ix44dSEtLk4LN+vXr0aRJE7i7u+ONN95AUVGRRQolIiIiqgijws3MmTNx9uxZ6fnp06cxYsQIREREYNKkSfjhhx8QGxtr9iKJiIiIKsqocPPLL7+gZ8+e0vP4+HgEBwdj5cqViI6OxmeffYavv/7a7EUSERERVZRR4eavv/6Ch4eH9PzgwYPo3bu39Lxjx464evWq+aojIiIiMpJR4cbDwwNpaWkAgOLiYpw8eRKdO3eWXr979y5sbGzMWyERERGREYwKN3369MGkSZPw888/IyYmBo6Ojnj66ael13/99Vf4+fmZvUgiIiKiijLqVPBZs2ahf//+CAsLg7OzM9atWwdbW1vp9dWrV1f7G2cSERGRspl040ytVgtnZ2eo1WqD9tu3b8PZ2dkg8FQ3vHEmERFRzWPM97dRMzel/n7bhb9zcXEx5e2IiIiIzMakG2dS+TK1hThyOQeZ2kK5SyEiIqq1TJq5obISjmcgJvE09AKwUgGx/QMR1bGR3GURERHVOpy5MYNMbaEUbABAL4DJiWc4g0NERCQDhhszSMvJl4JNKZ0QSM8pkKcgIiKiWozhxgyauDrBSmXYplap4OvqKE9BREREtVi1CDdLly6Fr68v7O3tERwcjGPHjlVou/j4eKhUKvTr18+yBT6Gl8YBsf0DoVY9SDhqlQpz+7eCl8ZB1rqIiIhqI9kXFCckJCA6OhrLly9HcHAw4uLiEBkZiYsXL8Ld3f2h26Wnp+P99983uEKynKI6NkJoczek5xTA19WRwYaIiEgmss/cLFq0CKNGjcLw4cPRsmVLLF++HI6Ojli9evVDt9HpdBg0aBBmzpyJpk2bVmG1j+alcUCIXwMGGyIiIhnJGm6Ki4uRkpKCiIgIqc3KygoRERE4evToQ7f76KOP4O7ujhEjRlRFmURERFSDyHpYKicnBzqdDh4eHgbtHh4euHDhQrnbHDp0CKtWrUJqamqFPqOoqAhFRUXS89zcXJPrJSIioupP9sNSxrh79y4GDx6MlStXwtXVtULbxMbGQqPRSA8fHx8LV0lERERyknXmxtXVFWq1GtnZ2Qbt2dnZ8PT0LNP/8uXLSE9PR9++faU2vV4PALC2tsbFixfh5+dnsE1MTAyio6Ol57m5uQw4RERECiZruLG1tUX79u2RlJQknc6t1+uRlJSEd955p0z/Fi1a4PTp0wZtU6ZMwd27d/Hpp5+WG1rs7OxgZ2dnkfqJiIio+pH9VPDo6GgMHToUHTp0QKdOnRAXF4f8/HwMHz4cADBkyBB4e3sjNjYW9vb2aNWqlcH29erVA4Ay7URERFQ7yR5uoqKicPPmTUybNg1ZWVlo06YNdu/eLS0yzsjIgJVVjVoaRERERDJSCSHE47spR25uLjQaDbRaLerWrSt3OURERFQBxnx/c0qEiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiISAEytYU4cjkHmdpCuUuRnexXKCYiIqLKSTiegZjE09ALwEoFxPYPRFTHRnKXJRvO3BAREdVgmdpCKdgAgF4AkxPP1OoZHIYbIiKiGiwtJ18KNqV0QiA9p0CegqoBhhsiIqIarImrE6xUhm1qlQq+ro7yFFQNMNwQERHVYF4aB8T2D4Ra9SDhqFUqzO3fCl4aB1nqqQ4Lm7mgmIiIqIaL6tgIoc3dkJ5TAF9XR9mCTXVZ2MyZGyIiIgXw0jggxK+BrDM21WVhM8MNERERVVp1WtjMcENERESVVp0WNjPcEBERUaVVp4XNXFBMREREZlFdFjYz3BAREZHZeGkcZAs1pXhYioiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUheGGiIhIATK1hThyOQeZ2kK5S5GdtdwFEBERUeUkHM9ATOJp6AVgpQJi+wciqmMjucuSDWduiIiIarBMbaEUbABAL4DJiWdq9QwOww0REVENlpaTLwWbUjohkJ5TIE9B1QDDDRERUQ3WxNUJVirDNrVKBV9XR3kKqgYYboiIiGowL40DYvsHQq16kHDUKhXm9m8FL42DzJXJhwuKiYiIariojo0Q2twN6TkF8HV1rNXBBmC4ISIiUgQvjUOtDzWleFiKiIiIFIXhhoiIiBSF4YaIiIgUheGGiIiIFIXhhoiIiBSF4YaIiIgUpVqEm6VLl8LX1xf29vYIDg7GsWPHHtp35cqVePrpp1G/fn3Ur18fERERj+xPREREtYvs4SYhIQHR0dGYPn06Tp48iaCgIERGRuLGjRvl9k9OTsaAAQNw4MABHD16FD4+PnjmmWdw7dq1Kq6ciIiIqiOVEEI8vpvlBAcHo2PHjliyZAkAQK/Xw8fHB++++y4mTZr02O11Oh3q16+PJUuWYMiQIY/tn5ubC41GA61Wi7p161a6fiIiIrI8Y76/ZZ25KS4uRkpKCiIiIqQ2KysrRERE4OjRoxV6j4KCApSUlMDFxaXc14uKipCbm2vwICIiIuWSNdzk5ORAp9PBw8PDoN3DwwNZWVkVeo+JEyeiYcOGBgHp72JjY6HRaKSHj49PpesmZcvUFuLI5RxkagvlLoWIiExQo+8tNW/ePMTHxyM5ORn29vbl9omJiUF0dLT0PDc3lwGHHirheAZiEk9DLwArFRDbPxBRHRvJXRYRERlB1nDj6uoKtVqN7Oxsg/bs7Gx4eno+cttPPvkE8+bNw759+9C6deuH9rOzs4OdnZ1Z6iVly9QWSsEGAPQCmJx4BqHN3XgzOiKiGkTWw1K2trZo3749kpKSpDa9Xo+kpCSEhIQ8dLsFCxZg1qxZ2L17Nzp06FAVpVItkJaTLwWbUjohkJ5TIE9BRERkEtkPS0VHR2Po0KHo0KEDOnXqhLi4OOTn52P48OEAgCFDhsDb2xuxsbEAgPnz52PatGnYvHkzfH19pbU5zs7OcHZ2lm0/qOZr4uoEKxUMAo5apYKvq6N8RRERkdFkv85NVFQUPvnkE0ybNg1t2rRBamoqdu/eLS0yzsjIQGZmptR/2bJlKC4uxiuvvAIvLy/p8cknn8i1C6QQXhoHxPYPhFqlAvAg2Mzt34qHpIiIahjZr3NT1XidG3qcTG0h0nMK4OvqyGBDRFRNGPP9LfthKaLqxkvjwFBDRFSDyX5YioiIiMicGG6IiEh2vHgmmRMPS1VjmdpCpOXko4mrEw+TEJFi8eKZZG4MN9UUf9mJqDbgxTPJEnhYqhp62C87p2uJSGl48UyyBIabaoi/7ERUW5RePPPvePFMqiyGm2qIv+xEVFvw4plkCVxzUw2V/rJPTjwDnRD8ZSciRYvq2Aihzd148UwyG4abaoq/7ERUm/DimWRODDfVGH/ZiYiIjMc1N0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERESkKAw3REREpCgMN0RERKQoDDdERLVcprYQRy7nIFNbKHcpRGZhLXcBREQkn4TjGYhJPA29AKxUQGz/QER1bCR3WUSVwpkbIhnxL2aSU6a2UAo2AKAXwOTEM/x5pBqPMzdEMuFfzCS3tJx8KdiU0gmB9JwCeGkc5CmKyAw4c0MkA/7FTNVBE1cnWKkM29QqFXxdHeUpiMhMGG6IZPCov5iJqoqXxgGx/QOhVj1IOGqVCnP7t+KsDdV4PCxFJIPSv5j/HnD4FzPJIapjI4Q2d0N6TgF8XR0ZbEgROHNDJAP+xUzViZfGASF+DfjzR4rBmRuqlExtIdJy8tHE1Yn/MRqJfzETEVkGww2ZjGf7VJ6XxoGhhojIzHhYikzCs32IiKi6Yrghk/BsHyIiqq4YbsgkvD4GERFVVww3ZBKe7UNERNUVFxSTyXi2DxERVUcMN1QpPNtHGXhKPxEpCcMNUS3HU/qJSGm45oaoFuMp/USkRAw3RLUYT+knIiViuCGqxXhKPxE9TKa2EEcu59TImdxqEW6WLl0KX19f2NvbIzg4GMeOHXtk/61bt6JFixawt7dHYGAgdu3aVUWVEikLT+knovIkHM9A13n7MXDl/6LrvP1IOJ4hd0lGkT3cJCQkIDo6GtOnT8fJkycRFBSEyMhI3Lhxo9z+R44cwYABAzBixAicOnUK/fr1Q79+/XDmzJkqrpxIGaI6NsKhSd2xZVRnHJrUnYuJiWo5JazFUwkhxOO7WU5wcDA6duyIJUuWAAD0ej18fHzw7rvvYtKkSWX6R0VFIT8/Hzt27JDaOnfujDZt2mD58uWP/bzc3FxoNBpotVrUrVvXfDtCRESkAEcu52Dgyv8t075lVGeE+DWQoaIHjPn+lnXmpri4GCkpKYiIiJDarKysEBERgaNHj5a7zdGjRw36A0BkZORD+xcVFSE3N9fgQUREROVTwlo8WcNNTk4OdDodPDw8DNo9PDyQlZVV7jZZWVlG9Y+NjYVGo5EePj4+5imeiIhIgZSwFk/xF/GLiYlBdHS09Dw3N5cBh4iI6BFq+u11ZA03rq6uUKvVyM7ONmjPzs6Gp6dnudt4enoa1d/Ozg52dnbmKZiIiKiWqMm315H1sJStrS3at2+PpKQkqU2v1yMpKQkhISHlbhMSEmLQHwD27t370P5ERERUu8h+WCo6OhpDhw5Fhw4d0KlTJ8TFxSE/Px/Dhw8HAAwZMgTe3t6IjY0FAIwdOxZhYWFYuHAhnnvuOcTHx+PEiRP48ssv5dwNIiIiqiZkDzdRUVG4efMmpk2bhqysLLRp0wa7d++WFg1nZGTAyuq/E0xdunTB5s2bMWXKFEyePBnNmjXDd999h1atWsm1C0RERFSNyH6dm6rG69wQERHVPDXmOjdERERE5sZwQ0RERIrCcENERESKwnBDREREisJwQ0RERIrCcENERESKwnBDREREiiL7RfyqWullfXJzc2WuhIiIiCqq9Hu7Ipfnq3Xh5u7duwDAO4MTERHVQHfv3oVGo3lkn1p3hWK9Xo/r16+jTp06UKlUD+2Xm5sLHx8fXL16tVZfyZjj8ADH4b84Fg9wHB7gOPwXx+IBS42DEAJ3795Fw4YNDW7LVJ5aN3NjZWWFJ554osL969atW6t/SEtxHB7gOPwXx+IBjsMDHIf/4lg8YIlxeNyMTSkuKCYiIiJFYbghIiIiRWG4eQg7OztMnz4ddnZ2cpciK47DAxyH/+JYPMBxeIDj8F8ciweqwzjUugXFREREpGycuSEiIiJFYbghIiIiRWG4ISIiIkVhuCEiIiJFqbXhZunSpfD19YW9vT2Cg4Nx7Nixh/Y9e/YsXn75Zfj6+kKlUiEuLq7qCq0CxozFypUr8fTTT6N+/fqoX78+IiIiHtm/JjFmHBITE9GhQwfUq1cPTk5OaNOmDTZs2FCF1VqOMePwd/Hx8VCpVOjXr59lC6xCxozF2rVroVKpDB729vZVWK3lGPszcefOHYwePRpeXl6ws7ND8+bNsWvXriqq1nKMGYfw8PAyPw8qlQrPPfdcFVZsOcb+TMTFxeHJJ5+Eg4MDfHx8MH78eNy7d89yBYpaKD4+Xtja2orVq1eLs2fPilGjRol69eqJ7OzscvsfO3ZMvP/++2LLli3C09NTLF68uGoLtiBjx2LgwIFi6dKl4tSpU+L8+fNi2LBhQqPRiD///LOKKzcvY8fhwIEDIjExUZw7d05cunRJxMXFCbVaLXbv3l3FlZuXseNQKi0tTXh7e4unn35avPjii1VTrIUZOxZr1qwRdevWFZmZmdIjKyuriqs2P2PHoaioSHTo0EH06dNHHDp0SKSlpYnk5GSRmppaxZWbl7HjcOvWLYOfhTNnzgi1Wi3WrFlTtYVbgLFjsWnTJmFnZyc2bdok0tLSxJ49e4SXl5cYP368xWqsleGmU6dOYvTo0dJznU4nGjZsKGJjYx+7bePGjRUVbiozFkIIcf/+fVGnTh2xbt06S5VYJSo7DkII0bZtWzFlyhRLlFdlTBmH+/fviy5duoivvvpKDB06VDHhxtixWLNmjdBoNFVUXdUxdhyWLVsmmjZtKoqLi6uqxCpR2f8jFi9eLOrUqSPy8vIsVWKVMXYsRo8eLXr06GHQFh0dLbp27WqxGmvdYani4mKkpKQgIiJCarOyskJERASOHj0qY2VVzxxjUVBQgJKSEri4uFiqTIur7DgIIZCUlISLFy8iNDTUkqValKnj8NFHH8Hd3R0jRoyoijKrhKljkZeXh8aNG8PHxwcvvvgizp49WxXlWowp47B9+3aEhIRg9OjR8PDwQKtWrTB37lzodLqqKtvszPF/5apVq/Daa6/BycnJUmVWCVPGokuXLkhJSZEOXV25cgW7du1Cnz59LFZnrbtxZk5ODnQ6HTw8PAzaPTw8cOHCBZmqkoc5xmLixIlo2LChwQ96TWPqOGi1Wnh7e6OoqAhqtRpffPEFevXqZelyLcaUcTh06BBWrVqF1NTUKqiw6pgyFk8++SRWr16N1q1bQ6vV4pNPPkGXLl1w9uxZo27WW52YMg5XrlzB/v37MWjQIOzatQuXLl3C22+/jZKSEkyfPr0qyja7yv5feezYMZw5cwarVq2yVIlVxpSxGDhwIHJyctCtWzcIIXD//n28+eabmDx5ssXqrHXhhsxn3rx5iI+PR3JysmIWThqjTp06SE1NRV5eHpKSkhAdHY2mTZsiPDxc7tKqxN27dzF48GCsXLkSrq6ucpcju5CQEISEhEjPu3TpgoCAAKxYsQKzZs2SsbKqpdfr4e7uji+//BJqtRrt27fHtWvX8PHHH9fYcFNZq1atQmBgIDp16iR3KbJITk7G3Llz8cUXXyA4OBiXLl3C2LFjMWvWLEydOtUin1nrwo2rqyvUajWys7MN2rOzs+Hp6SlTVfKozFh88sknmDdvHvbt24fWrVtbskyLM3UcrKys4O/vDwBo06YNzp8/j9jY2Bobbowdh8uXLyM9PR19+/aV2vR6PQDA2toaFy9ehJ+fn2WLthBz/D9hY2ODtm3b4tKlS5YosUqYMg5eXl6wsbGBWq2W2gICApCVlYXi4mLY2tpatGZLqMzPQ35+PuLj4/HRRx9ZssQqY8pYTJ06FYMHD8bIkSMBAIGBgcjPz8cbb7yBDz/8EFZW5l8hU+vW3Nja2qJ9+/ZISkqS2vR6PZKSkgz+6qoNTB2LBQsWYNasWdi9ezc6dOhQFaValLl+JvR6PYqKiixRYpUwdhxatGiB06dPIzU1VXq88MIL6N69O1JTU+Hj41OV5ZuVOX4mdDodTp8+DS8vL0uVaXGmjEPXrl1x6dIlKegCwG+//QYvL68aGWyAyv08bN26FUVFRXj99dctXWaVMGUsCgoKygSY0vArLHV7S4stVa7G4uPjhZ2dnVi7dq04d+6ceOONN0S9evWk0zYHDx4sJk2aJPUvKioSp06dEqdOnRJeXl7i/fffF6dOnRK///67XLtgNsaOxbx584Stra3Ytm2bwWmOd+/elWsXzMLYcZg7d6748ccfxeXLl8W5c+fEJ598IqytrcXKlSvl2gWzMHYc/klJZ0sZOxYzZ84Ue/bsEZcvXxYpKSnitddeE/b29uLs2bNy7YJZGDsOGRkZok6dOuKdd94RFy9eFDt27BDu7u5i9uzZcu2CWZj6u9GtWzcRFRVV1eValLFjMX36dFGnTh2xZcsWceXKFfHjjz8KPz8/8eqrr1qsxloZboQQ4vPPPxeNGjUStra2olOnTuJ//ud/pNfCwsLE0KFDpedpaWkCQJlHWFhY1RduAcaMRePGjcsdi+nTp1d94WZmzDh8+OGHwt/fX9jb24v69euLkJAQER8fL0PV5mfMOPyTksKNEMaNxbhx46S+Hh4eok+fPuLkyZMyVG1+xv5MHDlyRAQHBws7OzvRtGlTMWfOHHH//v0qrtr8jB2HCxcuCADixx9/rOJKLc+YsSgpKREzZswQfn5+wt7eXvj4+Ii3335b/PXXXxarTyWEpeaEiIiIiKperVtzQ0RERMrGcENERESKwnBDREREisJwQ0RERIrCcENERESKwnBDREREisJwQ0RERIrCcENEZEHDhg1Dv3795C6DqFZhuCGqpYYNGwaVSiU9GjRogGeffRa//vqr3KWZxd/3rfTRrVs3i31eeno6VCoVUlNTDdo//fRTrF271mKfS0RlMdwQ1WLPPvssMjMzkZmZiaSkJFhbW+P555+XuyyzWbNmjbR/mZmZ2L59e7n9SkpKLFaDRqNBvXr1LPb+RFQWww1RLWZnZwdPT094enqiTZs2mDRpEq5evYqbN2+iR48eeOeddwz637x5E7a2ttIdgX19fTFr1iwMGDAATk5O8Pb2xtKlSw22WbRoEQIDA+Hk5AQfHx+8/fbbyMvLk17/448/0LdvX9SvXx9OTk546qmnsGvXLgDAX3/9hUGDBsHNzQ0ODg5o1qwZ1qxZU+H9q1evnrR/np6ecHFxkWZYEhISEBYWBnt7e2zatAm3bt3CgAED4O3tDUdHRwQGBmLLli0G76fX67FgwQL4+/vDzs4OjRo1wpw5cwAATZo0AQC0bdsWKpUK4eHhAMoelioqKsKYMWPg7u4Oe3t7dOvWDcePH5deT05OhkqlQlJSEjp06ABHR0d06dIFFy9erPB+E9V2DDdEBADIy8vDxo0b4e/vjwYNGmDkyJHYvHkzioqKpD4bN26Et7c3evToIbV9/PHHCAoKwqlTpzBp0iSMHTsWe/fulV63srLCZ599hrNnz2LdunXYv38/JkyYIL0+evRoFBUV4aeffsLp06cxf/58ODs7AwCmTp2Kc+fO4T//+Q/Onz+PZcuWwdXV1Sz7W1rr+fPnERkZiXv37qF9+/bYuXMnzpw5gzfeeAODBw/GsWPHpG1iYmIwb948qa7NmzfDw8MDAKR++/btQ2ZmJhITE8v93AkTJuCbb77BunXrcPLkSfj7+yMyMhK3b9826Pfhhx9i4cKFOHHiBKytrfHvf//bLPtNVCtY7JacRFStDR06VKjVauHk5CScnJwEAOHl5SVSUlKEEEIUFhaK+vXri4SEBGmb1q1bixkzZkjPGzduLJ599lmD942KihK9e/d+6Odu3bpVNGjQQHoeGBho8J5/17dvXzF8+HCT9g+AsLe3l/bPyclJfPvttyItLU0AEHFxcY99j+eee0689957QgghcnNzhZ2dnVi5cmW5fUvf99SpUwbtf79Tel5enrCxsRGbNm2SXi8uLhYNGzYUCxYsEEIIceDAAQFA7Nu3T+qzc+dOAUAUFhYaMwREtRZnbohqse7duyM1NRWpqak4duwYIiMj0bt3b/zxxx+wt7fH4MGDsXr1agDAyZMncebMGQwbNszgPUJCQso8P3/+vPR837596NmzJ7y9vVGnTh0MHjwYt27dQkFBAQBgzJgxmD17Nrp27Yrp06cbLGh+6623EB8fjzZt2mDChAk4cuSIUfu3ePFiaf9SU1PRq1cv6bUOHToY9NXpdJg1axYCAwPh4uICZ2dn7NmzBxkZGQCA8+fPo6ioCD179jSqhr+7fPkySkpK0LVrV6nNxsYGnTp1MhgzAGjdurX0by8vLwDAjRs3TP5sotqE4YaoFnNycoK/vz/8/f3RsWNHfPXVV8jPz8fKlSsBACNHjsTevXvx559/Ys2aNejRowcaN25c4fdPT0/H888/j9atW+Obb75BSkqKtCanuLhY+owrV65g8ODBOH36NDp06IDPP/8cAKSgNX78eFy/fh09e/bE+++/X+HP9/T0lPbP398fTk5OBvv+dx9//DE+/fRTTJw4EQcOHEBqaioiIyOlOh0cHCr8ueZgY2Mj/VulUgF4sOaHiB6P4YaIJCqVClZWVigsLAQABAYGokOHDli5ciU2b95c7rqP//mf/ynzPCAgAACQkpICvV6PhQsXonPnzmjevDmuX79e5j18fHzw5ptvIjExEe+9954UrgDAzc0NQ4cOxcaNGxEXF4cvv/zSnLssOXz4MF588UW8/vrrCAoKQtOmTfHbb79Jrzdr1gwODg7SYup/srW1BfBgBuhh/Pz8YGtri8OHD0ttJSUlOH78OFq2bGmmPSEia7kLICL5FBUVISsrC8CDM5OWLFmCvLw89O3bV+ozcuRIvPPOO3BycsJLL71U5j0OHz6MBQsWoF+/fti7dy+2bt2KnTt3AgD8/f1RUlKCzz//HH379sXhw4exfPlyg+3HjRuH3r17o3nz5vjrr79w4MABKRxNmzYN7du3x1NPPYWioiLs2LFDes3cmjVrhm3btuHIkSOoX78+Fi1ahOzsbCl02NvbY+LEiZgwYQJsbW3RtWtX3Lx5E2fPnsWIESPg7u4OBwcH7N69G0888QTs7e2h0WgMPsPJyQlvvfUWPvjgA7i4uKBRo0ZYsGABCgoKMGLECIvsF1FtxJkbolps9+7d8PLygpeXF4KDg3H8+HFs3bpVOo0ZAAYMGABra2sMGDAA9vb2Zd7jvffew4kTJ9C2bVvMnj0bixYtQmRkJAAgKCgIixYtwvz589GqVSts2rQJsbGxBtvrdDqMHj0aAQEBePbZZ9G8eXN88cUXAB7MhsTExKB169YIDQ2FWq1GfHy8RcZiypQpaNeuHSIjIxEeHg5PT88yVxaeOnUq3nvvPUybNg0BAQGIioqS1sFYW1vjs88+w4oVK9CwYUO8+OKL5X7OvHnz8PLLL2Pw4MFo164dLl26hD179qB+/foW2S+i2kglhBByF0FE1Vd6ejr8/Pxw/PhxtGvXzuA1X19fjBs3DuPGjZOnOCKicvCwFBGVq6SkBLdu3cKUKVPQuXPnMsGGiKi64mEpIirX4cOH4eXlhePHj5dZJyO3uXPnwtnZudxH79695S6PiGTGw1JEVOPcvn27zBV9Szk4OMDb27uKKyKi6oThhoiIiBSFh6WIiIhIURhuiIiISFEYboiIiEhRGG6IiIhIURhuiIiISFEYboiIiEhRGG6IiIhIURhuiIiISFH+PzlcDxO7OfGGAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHHCAYAAABdm0mZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARslJREFUeJzt3X18zvX////7sbFzhmYn1hhGeJuTnCwnMTUtlZJ6t7fk7B19K52gMxSSGAp7FyEVibJ46/0W3sRQOfn8aKwQ3mEiZoxs2NrY8fr94eP4dLTRdjiOHdtrt+vlclwujtfxOnm8nnZy3+v5fD1fFsMwDAEAAJiMh7sLAAAAcAVCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCVCDgC3eP3112WxWEq0rsVi0euvv+7SemJjYxUbG1tu9weg9Ag5QCW3YMECWSwW26tKlSoKDw/XwIEDdfz4cXeXV+5ERkbatVdwcLBuv/12ffHFF07Zf25url5//XVt2rTJKfsDKjNCDgBJ0htvvKFPPvlEc+bMUY8ePbRo0SJ17dpVv/32m0uO99prrykvL88l+3a1Vq1a6ZNPPtEnn3yiF198USdOnFDv3r01Z86cG953bm6uxo8fT8gBnKCKuwsAUD706NFDbdu2lSQNHjxYQUFBmjJlilasWKFHHnnE6cerUqWKqlSpmD+CwsPD9dhjj9ne9+/fX1FRUZoxY4aefPJJN1YG4Pe4kgOgWLfffrsk6dChQ3bL9+/fr4cffli1atWSj4+P2rZtqxUrVtitc+nSJY0fP16NGjWSj4+PbrrpJnXu3Fnr1q2zrVPcmJz8/HwNHz5ctWvXVrVq1XT//ffrl19+KVLbwIEDFRkZWWR5cfucP3++7rjjDgUHB8vb21vNmjXT7NmzS9UWfyY0NFRNmzZVenr6ddc7deqUHn/8cYWEhMjHx0ctW7bUxx9/bPv8yJEjql27tiRp/Pjxti4xV49HAsyqYv4ZBcDljhw5IkmqWbOmbdnevXvVqVMnhYeHa+TIkfL399fnn3+uXr166Z///KcefPBBSVfCRmJiogYPHqz27dsrJydH3333nXbu3Knu3btf85iDBw/WokWL9Oijj6pjx47asGGD7r333hs6j9mzZ+svf/mL7r//flWpUkVffvmlnn76aVmtVg0dOvSG9n3VpUuXdOzYMd10003XXCcvL0+xsbE6ePCgnnnmGdWvX19Lly7VwIEDde7cOT3//POqXbu2Zs+eraeeekoPPvigevfuLUlq0aKFU+oEKh0DQKU2f/58Q5Kxfv164/Tp08axY8eMZcuWGbVr1za8vb2NY8eO2da98847jejoaOO3336zLbNarUbHjh2NRo0a2Za1bNnSuPfee6973HHjxhm//xGUlpZmSDKefvppu/UeffRRQ5Ixbtw427IBAwYY9erV+9N9GoZh5ObmFlkvPj7eaNCggd2yrl27Gl27dr1uzYZhGPXq1TPuuusu4/Tp08bp06eN77//3vjb3/5mSDKeffbZa+4vKSnJkGQsWrTItqygoMDo0KGDERAQYOTk5BiGYRinT58ucr4AHEN3FQBJUlxcnGrXrq2IiAg9/PDD8vf314oVK3TzzTdLks6ePasNGzbokUce0fnz55WVlaWsrCydOXNG8fHx+umnn2x3Y9WoUUN79+7VTz/9VOLjr169WpL03HPP2S0fNmzYDZ2Xr6+v7d/Z2dnKyspS165ddfjwYWVnZzu0z6+++kq1a9dW7dq11bJlSy1dulT9+vXTlClTrrnN6tWrFRoaqj59+tiWVa1aVc8995wuXLigr7/+2qFaAFxbpQ4533zzjXr27Kk6derIYrHoX//6l0uPd/78eQ0bNkz16tWTr6+vOnbsqB07drj0mEBJzZo1S+vWrdOyZct0zz33KCsrS97e3rbPDx48KMMwNGbMGNsv+KuvcePGSboy5kS6cqfWuXPn1LhxY0VHR+ull17SDz/8cN3j//zzz/Lw8FDDhg3tlt9yyy03dF5btmxRXFyc/P39VaNGDdWuXVujR4+WJIdDTkxMjNatW6f169dr69atysrK0sKFC+0C1R/9/PPPatSokTw87H/sNm3a1PY5AOeq1GNyLl68qJYtW+rvf/+7re/blQYPHqw9e/bok08+UZ06dbRo0SLFxcXpxx9/VHh4uMuPD1xP+/btbXdX9erVS507d9ajjz6qAwcOKCAgQFarVZL04osvKj4+vth9REVFSZK6dOmiQ4cO6d///re++uorffDBB5oxY4bmzJmjwYMH33Ct15pEsLCw0O79oUOHdOedd6pJkyaaPn26IiIi5OXlpdWrV2vGjBm2cyqtoKAgxcXFObQtgLJTqUNOjx491KNHj2t+np+fr1dffVWfffaZzp07p+bNm2vKlCkOzWKal5enf/7zn/r3v/+tLl26SLoyOPPLL7/U7Nmz9eabbzp6GoDTeXp6KjExUd26ddPMmTM1cuRINWjQQNKVLpaS/IKvVauWBg0apEGDBunChQvq0qWLXn/99WuGnHr16slqterQoUN2V28OHDhQZN2aNWvq3LlzRZb/8WrIl19+qfz8fK1YsUJ169a1Ld+4ceOf1u9s9erV0w8//CCr1Wp3NWf//v22z6VrBzgApVepu6v+zDPPPKNt27ZpyZIl+uGHH/TXv/5Vd999d6nGGVx1+fJlFRYWysfHx265r6+vNm/e7KySAaeJjY1V+/btlZSUpN9++03BwcGKjY3V3LlzlZGRUWT906dP2/595swZu88CAgIUFRWl/Pz8ax7v6h8c77zzjt3ypKSkIus2bNhQ2dnZdl1gGRkZRWYd9vT0lCQZhmFblp2drfnz51+zDle55557dPLkSSUnJ9uWXb58We+++64CAgLUtWtXSZKfn58kFRviAJROpb6Scz1Hjx7V/PnzdfToUdWpU0fSlcv0a9as0fz58zVp0qRS7a9atWrq0KGDJkyYoKZNmyokJESfffaZtm3bZrvED5Q3L730kv76179qwYIFevLJJzVr1ix17txZ0dHRGjJkiBo0aKDMzExt27ZNv/zyi77//ntJUrNmzRQbG6s2bdqoVq1a+u6777Rs2TI988wz1zxWq1at1KdPH7333nvKzs5Wx44dlZKSooMHDxZZ929/+5teeeUVPfjgg3ruueeUm5ur2bNnq3Hjxtq5c6dtvbvuukteXl7q2bOn/t//+3+6cOGC5s2bp+Dg4GKDmis98cQTmjt3rgYOHKjU1FRFRkZq2bJl2rJli5KSklStWjVJV/7wadasmZKTk9W4cWPVqlVLzZs3V/Pmzcu0XsAU3H17V3khyfjiiy9s71euXGlIMvz9/e1eVapUMR555BHDMAxj3759hqTrvl555RXbPg8ePGh06dLFkGR4enoa7dq1M/r27Ws0adKkrE8XsLl6C/mOHTuKfFZYWGg0bNjQaNiwoXH58mXDMAzj0KFDRv/+/Y3Q0FCjatWqRnh4uHHfffcZy5Yts2335ptvGu3btzdq1Khh+Pr6Gk2aNDEmTpxoFBQU2NYp7nbvvLw847nnnjNuuukmw9/f3+jZs6dx7NixYm+p/uqrr4zmzZsbXl5exi233GIsWrSo2H2uWLHCaNGiheHj42NERkYaU6ZMMT766CNDkpGenm5brzS3kP/Z7fHX2l9mZqYxaNAgIygoyPDy8jKio6ON+fPnF9l269atRps2bQwvLy9uJwdugMUwfncdtxKzWCz64osv1KtXL0lScnKy+vbtq71799oueV8VEBCg0NBQFRQU6PDhw9fd70033WSbwfSqixcvKicnR2FhYUpISNCFCxe0atUqp54PAACVHd1V19C6dWsVFhbq1KlTtunt/8jLy0tNmjQp9b79/f3l7++vX3/9VWvXrtXUqVNvtFwAAPAHlTrkXLhwwa6/Pz09XWlpaapVq5YaN26svn37qn///po2bZpat26t06dPKyUlRS1atHBoqvm1a9fKMAzdcsstOnjwoF566SU1adJEgwYNcuZpAQAASZW6u2rTpk3q1q1bkeUDBgzQggULdOnSJb355ptauHChjh8/rqCgIN12220aP368oqOjS328zz//XKNGjdIvv/yiWrVq6aGHHtLEiRMVGBjojNMBAAC/U6lDDgAAMC/myQEAAKZEyAEAAKZU6QYeW61WnThxQtWqVWP6dAAAKgjDMHT+/HnVqVOnyINur6XShZwTJ04oIiLC3WUAAAAHHDt2TDfffHOJ1q10Iefq1OnHjh1T9erV3VwNAAAoiZycHEVERNh+j5dEpQs5V7uoqlevTsgBAKCCKc1QEwYeAwAAUyLkAAAAUyLkAAAAU6p0Y3IAAOVPYWGhLl265O4y4GZeXl4lvj28JAg5AAC3MQxDJ0+e1Llz59xdCsoBDw8P1a9fX15eXk7ZHyEHAOA2VwNOcHCw/Pz8mKS1Ers6WW9GRobq1q3rlK8FQg4AwC0KCwttAeemm25ydzkoB2rXrq0TJ07o8uXLqlq16g3vj4HHAAC3uDoGx8/Pz82VoLy42k1VWFjolP0RcgAAbkUXFa5y9tcCIQcAAJgSIQcAAFxTZGSkkpKS3F2GQwg5gBtkZOdp66EsZWTnubsUAA44ffq0nnrqKdWtW1fe3t4KDQ1VfHy8tmzZIulKt8u//vUv9xZZQrGxsbJYLEVely9fdndpN4y7q4AylrzjqEYt3y2rIXlYpMTe0UpoV9fdZQEohYceekgFBQX6+OOP1aBBA2VmZiolJUVnzpxxd2kOGTJkiN544w27ZVWqVPyIwJUcoAxlZOfZAo4kWQ1p9PI9XNEBKpBz587p22+/1ZQpU9StWzfVq1dP7du316hRo3T//fcrMjJSkvTggw/KYrHY3kvSv//9b916663y8fFRgwYNNH78eLsrJtOnT1d0dLT8/f0VERGhp59+WhcuXLB9vmDBAtWoUUMrV67ULbfcIj8/Pz388MPKzc3Vxx9/rMjISNWsWVPPPfdcqe5Q8vPzU2hoqN3rWo4ePaoHHnhAAQEBql69uh555BFlZmZKkrKzs+Xp6anvvvtO0pW5b2rVqqXbbrvNtv2iRYsUERFR4tpuBCEHKEPpWRdtAeeqQsPQkaxc9xQEmERZdgEHBAQoICBA//rXv5Sfn1/k8x07dkiS5s+fr4yMDNv7b7/9Vv3799fzzz+vH3/8UXPnztWCBQs0ceJE27YeHh565513tHfvXn388cfasGGDXn75Zbv95+bm6p133tGSJUu0Zs0abdq0SQ8++KBWr16t1atX65NPPtHcuXO1bNkyp5+71WrVAw88oLNnz+rrr7/WunXrdPjwYSUkJEiSAgMD1apVK23atEmStHv3blksFu3atcsW1r7++mt17drV6bUVh5ADlKH6Qf7y+MMdkp4WiyKDmCcEcFTyjqPqNHmDHp33/6nT5A1K3nHUpcerUqWKFixYoI8//lg1atRQp06dNHr0aP3www+SrkxoJ0k1atRQaGio7f348eM1cuRIDRgwQA0aNFD37t01YcIEzZ0717bvYcOGqVu3boqMjNQdd9yhN998U59//rnd8S9duqTZs2erdevW6tKlix5++GFt3rxZH374oZo1a6b77rtP3bp108aNG0t8Tu+9954tvAUEBOiFF14odr2UlBTt3r1bn376qdq0aaOYmBgtXLhQX3/9tS3MxcbG2kLOpk2b1L17dzVt2lSbN2+2LSPkACYUFuirxN7R8vzfuSA8LRZN6t1cYYG+bq4MqJjc1QX80EMP6cSJE1qxYoXuvvtubdq0SbfeeqsWLFhwzW2+//57vfHGG3ZhYsiQIcrIyFBu7pWruevXr9edd96p8PBwVatWTf369dOZM2dsn0tXupYaNmxoex8SEqLIyEgFBATYLTt16lSJz6dv375KS0uzvUaNGlXsevv27VNERIRdd1OzZs1Uo0YN7du3T5LUtWtXbd68WYWFhfr6668VGxtrCz4nTpzQwYMHFRsbW+LabkTFH1UEVDAJ7eqqS+PaOpKVq8ggPwIOcAOu1wXs6u8tHx8fde/eXd27d9eYMWM0ePBgjRs3TgMHDix2/QsXLmj8+PHq3bt3sfs6cuSI7rvvPj311FOaOHGiatWqpc2bN+vxxx9XQUGBbWboPz7uwGKxFLvMarWW+FwCAwMVFRVV4vWvp0uXLjp//rx27typb775RpMmTVJoaKgmT56sli1bqk6dOmrUqJFTjvVnCDmAG4QF+hJuACe42gX8+6Djri7gZs2a2W4br1q1apGBv7feeqsOHDhwzTCRmpoqq9WqadOmycPjSkfLH7uq3K1p06Y6duyYjh07Zrua8+OPP+rcuXNq1qyZpCvddC1atNDMmTNVtWpVNWnSRMHBwUpISNDKlSvLrKtKorsKAFCBuaML+MyZM7rjjju0aNEi/fDDD0pPT9fSpUs1depUPfDAA5KuTKCXkpKikydP6tdff5UkjR07VgsXLtT48eO1d+9e7du3T0uWLNFrr70mSYqKitKlS5f07rvv6vDhw/rkk080Z84cl52HI+Li4hQdHa2+fftq586d2r59u/r376+uXbuqbdu2tvViY2O1ePFiW6CpVauWmjZtquTk5MoTcr755hv17NlTderUKfHESVf7Pb29vRUVFXXd/k8ArsFkhihPEtrV1eaR3fTZkNu0eWQ3l887FRAQoJiYGM2YMUNdunRR8+bNNWbMGA0ZMkQzZ86UJE2bNk3r1q1TRESEWrduLUmKj4/XypUr9dVXX6ldu3a67bbbNGPGDNWrV0+S1LJlS02fPl1TpkxR8+bNtXjxYiUmJrr0XErLYrHo3//+t2rWrKkuXbooLi5ODRo0UHJyst16Xbt2VWFhod3Ym9jY2CLLXF6vYRjGn6/mGv/5z3+0ZcsWtWnTRr1799YXX3yhXr16XXP99PR0NW/eXE8++aQGDx6slJQUDRs2TKtWrVJ8fHyJjpmTk6PAwEBlZ2erevXqTjoToPJgMkM4y2+//ab09HTVr19fPj4+7i4H5cD1viYc+f3t1jE5PXr0UI8ePUq8/pw5c1S/fn1NmzZNkmy3pM2YMaPEIQeA4651J0uXxrUZYwSg3KlQY3K2bdumuLg4u2Xx8fHatm3bNbfJz89XTk6O3QuAY5jMEKhYvv32W7tb1v/4MrsKdXfVyZMnFRISYrcsJCREOTk5ysvLk69v0b8kExMTNX78+LIqETC18nQnC4A/17ZtW6Wlpbm7DLepUCHHEaNGjdKIESNs73NycsrsmRmA2Vy9k2X08j0qNAwmMwTKOV9fX6fNf1MRVaiQExoaansI2FWZmZmqXr16sVdxJMnb21ve3t5lUR5QKTCZIZzNjfe/oJxx9tdChQo5HTp00OrVq+2WrVu3Th06dHBTRUDlxGSGcIars/Tm5uZe8w9VVC4FBQWSJE9PT6fsz60h58KFCzp48KDtfXp6utLS0lSrVi3VrVtXo0aN0vHjx7Vw4UJJ0pNPPqmZM2fq5Zdf1t///ndt2LBBn3/+uVatWuWuUwAAOMjT01M1atSwPWPJz89PFovlT7aCWVmtVp0+fVp+fn6qUsU58cStIee7775Tt27dbO+vjp0ZMGCAFixYoIyMDB09+n9Pk61fv75WrVql4cOH6x//+IduvvlmffDBB9w+DgAVVGhoqCSV6mGSMC8PDw/VrVvXaWHXrZMBugOTAQJA+VNYWKhLly65uwy4mZeXl+25XX9U4SYDBABAutJ15axxGMBVFWoyQAAAgJIi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMi5AAAAFMqFyFn1qxZioyMlI+Pj2JiYrR9+/brrp+UlKRbbrlFvr6+ioiI0PDhw/Xbb7+VUbUAAKAicHvISU5O1ogRIzRu3Djt3LlTLVu2VHx8vE6dOlXs+p9++qlGjhypcePGad++ffrwww+VnJys0aNHl3HlAACgPHN7yJk+fbqGDBmiQYMGqVmzZpozZ478/Pz00UcfFbv+1q1b1alTJz366KOKjIzUXXfdpT59+vzp1R8AAFC5uDXkFBQUKDU1VXFxcbZlHh4eiouL07Zt24rdpmPHjkpNTbWFmsOHD2v16tW65557il0/Pz9fOTk5di8AAGB+Vdx58KysLBUWFiokJMRueUhIiPbv31/sNo8++qiysrLUuXNnGYahy5cv68knn7xmd1ViYqLGjx/v9NoBAED55vbuqtLatGmTJk2apPfee087d+7U8uXLtWrVKk2YMKHY9UeNGqXs7Gzb69ixY2VcMQAAcAe3XskJCgqSp6enMjMz7ZZnZmYqNDS02G3GjBmjfv36afDgwZKk6OhoXbx4UU888YReffVVeXjY5zZvb295e3u75gQAAEC55dYrOV5eXmrTpo1SUlJsy6xWq1JSUtShQ4dit8nNzS0SZDw9PSVJhmG4rlgAAFChuPVKjiSNGDFCAwYMUNu2bdW+fXslJSXp4sWLGjRokCSpf//+Cg8PV2JioiSpZ8+emj59ulq3bq2YmBgdPHhQY8aMUc+ePW1hBwAAwO0hJyEhQadPn9bYsWN18uRJtWrVSmvWrLENRj569KjdlZvXXntNFotFr732mo4fP67atWurZ8+emjhxortOAQAAlEMWo5L18eTk5CgwMFDZ2dmqXr26u8sBAAAl4Mjv7wp3dxUAAEBJEHIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApVXFko7p16yo2NlZdu3ZVbGysGjZs6Oy6AAAAbohDV3ImTZokHx8fTZkyRY0aNVJERIQee+wxzZs3Tz/99JOzawQAACg1i2EYxo3sICMjQ19//bVWrlyp5ORkWa1WFRYWOqs+p8vJyVFgYKCys7NVvXp1d5cDAABKwJHf3w51V0lSbm6uNm/erE2bNmnjxo3atWuXmjdvrtjYWEd3CQAA4DQOhZyOHTtq165datq0qWJjYzVy5Eh16dJFNWvWdHZ9AAAADnFoTM7+/fvl7++vJk2aqEmTJmratCkBBwAAlCsOhZwzZ85ow4YNuu2227R27Vp16tRJ4eHhevTRRzVv3jxn1wgAAFBqNzzw2DAMpaamaubMmVq8eDEDjwEAgNOV2cDjnTt3atOmTdq0aZM2b96s8+fPKzo6Ws8++6y6du3qyC4BAACcyqGQ0759e7Vu3Vpdu3bVkCFD1KVLFwUGBjq7NgAAAIc5NCbn7Nmz2rFjh95++2317NnzhgPOrFmzFBkZKR8fH8XExGj79u3XXf/cuXMaOnSowsLC5O3trcaNG2v16tU3VAMAADAXh67kXO0LS01N1b59+yRJzZo106233lrqfSUnJ2vEiBGaM2eOYmJilJSUpPj4eB04cEDBwcFF1i8oKFD37t0VHBysZcuWKTw8XD///LNq1KjhyKkAAACTcmjg8alTp5SQkKCvv/7aFi7OnTunbt26acmSJapdu3aJ9xUTE6N27dpp5syZkiSr1aqIiAg9++yzGjlyZJH158yZo7feekv79+9X1apVS1s6A48BAKiAHPn97VB31bPPPqsLFy5o7969Onv2rM6ePas9e/YoJydHzz33XIn3U1BQoNTUVMXFxf1fQR4eiouL07Zt24rdZsWKFerQoYOGDh2qkJAQNW/eXJMmTbrmHV35+fnKycmxewEAAPNzKOSsWbNG7733npo2bWpb1qxZM82aNUv/+c9/SryfrKwsFRYWKiQkxG55SEiITp48Wew2hw8f1rJly1RYWKjVq1drzJgxmjZtmt58881i109MTFRgYKDtFRERUeL6AJhXRnaeth7KUkZ2nrtLAeAiDo3JsVqtxXYVVa1aVVar9YaL+rNjBwcH6/3335enp6fatGmj48eP66233tK4ceOKrD9q1CiNGDHC9j4nJ6dSBJ2M7DylZ11U/SB/hQX6urscoFxJ3nFUo5bvltWQPCxSYu9oJbSr6+6yADiZQyHnjjvu0PPPP6/PPvtMderUkSQdP35cw4cP15133lni/QQFBcnT01OZmZl2yzMzMxUaGlrsNmFhYapatao8PT1ty5o2baqTJ0+qoKBAXl5edut7e3vL29u7xDWZAT/AgWvLyM6zfX9IktWQRi/foy6Na/MHAWAyDnVXzZw5Uzk5OYqMjFTDhg3VsGFD1a9fXzk5OXr33XdLvB8vLy+1adNGKSkptmVWq1UpKSnq0KFDsdt06tRJBw8etLti9N///ldhYWFFAk5ldK0f4FySB65Iz7po+/64qtAwdCQr1z0FAXAZh67kREREaOfOnVq/fr32798v6crVlN8PIC6pESNGaMCAAWrbtq3at2+vpKQkXbx4UYMGDZIk9e/fX+Hh4UpMTJQkPfXUU5o5c6aef/55Pfvss/rpp580adKkUg14NrPr/QDnr1RAqh/kLw+L7L5PPC0WRQb5ua8oAC7hUMiRJIvFou7du6t79+43VEBCQoJOnz6tsWPH6uTJk2rVqpXWrFljG4x89OhReXj83wWniIgIrV27VsOHD1eLFi0UHh6u559/Xq+88soN1WEW/AAHri8s0FeJvaM1evkeFRqGPC0WTerdnD8CABMq8Tw577zzTol3Wp6vqlSGeXKSdxwt8gOcMTmAvYzsPB3JylVkkB8BB6gAHPn9XeKQU79+/ZLt0GLR4cOHS7SuO1SGkCPxAxwAYC4ufQp5enq6w4Wh7IUF+hJuAACVWqnurnL1HDgAAADOUqqQU7VqVZ06dcr2/qWXXtLZs2edXhQAAMCNKlXI+ePwnblz5+rcuXPOrAcAAMApHJoM8CoHHmAOAABQJm4o5AAAAJRXpZ4McOzYsfLzuzKxXEFBgSZOnKjAwEC7daZPn+6c6gAAABxUqpDTpUsXHThwwPa+Y8eORebEsVgszqkMAADgBpQq5GzatMlFZQAAADiXS8fkVK9evVzPfgwAAMzLpSGHu68AAIC7cHcVAAAwJUIOAAAwJUIOAAAwJZeGHG4nBwAA7sLAYwAAYEouDTn/+c9/FB4e7spDAAAAFKvUj3WQrlyhWbZsmTZu3KhTp07JarXafb58+XJJUufOnW+8QgAAAAc4FHKGDRumuXPnqlu3bgoJCWHsDQAAKHccCjmffPKJli9frnvuucfZ9QAAADiFQ2NyAgMD1aBBA2fXAgAA4DQOhZzXX39d48ePV15enrPrAQAAcAqHuqseeeQRffbZZwoODlZkZKSqVq1q9/nOnTudUhwAAPhzGdl5Ss+6qPpB/goL9HV3OeWGQyFnwIABSk1N1WOPPcbAYwAA3Ch5x1GNWr5bVkPysEiJvaOV0K6uu8sqFxwKOatWrdLatWu5RRwAADfKyM6zBRxJshrS6OV71KVxba7oyMExOREREapevbqzawEAAKWQnnXRFnCuKjQMHcnKdU9B5YxDIWfatGl6+eWXdeTIESeXAwAASqp+kL88/jBixNNiUWSQn3sKKmcc6q567LHHlJubq4YNG8rPz6/IwOOzZ886pTgAAHBtYYG+SuwdrdHL96jQMORpsWhS7+Z0Vf0vh0JOUlKSk8sAAACOSGhXV10a19aRrFxFBvkRcH7HYlSyR4Xn5OQoMDBQ2dnZjCsCAKCCcOT3t0NXcn7vt99+U0FBgd0ywgMAAHA3hwYeX7x4Uc8884yCg4Pl7++vmjVr2r0AAADczaGQ8/LLL2vDhg2aPXu2vL299cEHH2j8+PGqU6eOFi5c6OwaAQAASs2h7qovv/xSCxcuVGxsrAYNGqTbb79dUVFRqlevnhYvXqy+ffs6u04AAIBScehKztmzZ21PIa9evbrtlvHOnTvrm2++cV51AAAADnIo5DRo0EDp6emSpCZNmujzzz+XdOUKT40aNZxWHAAAgKMcCjmDBg3S999/L0kaOXKkZs2aJR8fHw0fPlwvvfSSUwsEAABwhFPmyfn555+VmpqqqKgotWjRwhl1uQzz5AAAUPG4bZ6cevXqqV69eje6KwAAAKdxqLuqsLBQEyZMUHh4uAICAnT48GFJ0pgxY/Thhx86tUAAAABHOBRyJk6cqAULFmjq1Kny8vKyLW/evLk++OADpxUHAADgKIdCzsKFC/X++++rb9++8vT0tC1v2bKl9u/f77TiAAAAHOVQyDl+/LiioqKKLLdarbp06dINFwUAAHCjHAo5zZo107fffltk+bJly9S6desbLgoAAOBGOXR31dixYzVgwAAdP35cVqtVy5cv14EDB7Rw4UKtXLnS2TUCAACUmkNXch544AF9+eWXWr9+vfz9/TV27Fjt27dPX375pbp37+7sGgEAAErNKZMBViRMBggAQMXjyO9vh59ddebMmSLLz507Z3twJwAAgDs5FHKOHDmiwsLCIsvz8/N1/PjxGy4KAADgRpVq4PGKFSts/167dq0CAwNt7wsLC5WSkqLIyEinFQcAAOCoUoWcXr16SZIsFosGDBhg91nVqlUVGRmpadOmOa04AAAAR5Uq5FitVklS/fr1tWPHDgUFBbmkKAAAgBtVqjE527Zt08qVK5Wenm4LOAsXLlT9+vUVHBysJ554Qvn5+S4pFAAAoDRKFXLGjx+vvXv32t7v3r1bjz/+uOLi4jRy5Eh9+eWXSkxMdHqRAAAApVWqkPP999/rzjvvtL1fsmSJYmJiNG/ePI0YMULvvPOOPv/8c6cXCQAAUFqlCjm//vqrQkJCbO+//vpr9ejRw/a+Xbt2OnbsWKmLmDVrliIjI+Xj46OYmBht3769RNstWbJEFovFNiAaAADgqlKFnJCQEKWnp0uSCgoKtHPnTt122222z8+fP6+qVauWqoDk5GSNGDFC48aN086dO9WyZUvFx8fr1KlT193uyJEjevHFF3X77beX6ngAAKByKFXIueeeezRy5Eh9++23GjVqlPz8/OxCxg8//KCGDRuWqoDp06dryJAhGjRokJo1a6Y5c+bIz89PH3300TW3KSwsVN++fTV+/HhmWAYAAMUqVciZMGGCqlSpoq5du2revHmaN2+evLy8bJ9/9NFHuuuuu0q8v4KCAqWmpiouLu7/CvLwUFxcnLZt23bN7d544w0FBwfr8ccf/9Nj5OfnKycnx+4FAADMr1Tz5AQFBembb75Rdna2AgIC5Onpaff50qVLFRAQUOL9ZWVlqbCw0G6cj3SlW2z//v3FbrN582Z9+OGHSktLK9ExEhMTNX78+BLXBAAAzMGhZ1cFBgYWCTiSVKtWLbsrO852/vx59evXT/PmzSvxRISjRo1Sdna27eXIwGgAAFDxlOpKjrMFBQXJ09NTmZmZdsszMzMVGhpaZP1Dhw7pyJEj6tmzp23Z1VmYq1SpogMHDhQZE+Tt7S1vb28XVA8AAMozh67kOIuXl5fatGmjlJQU2zKr1aqUlBR16NChyPpNmjTR7t27lZaWZnvdf//96tatm9LS0hQREVGW5QMAgHLMrVdyJGnEiBEaMGCA2rZtq/bt2yspKUkXL17UoEGDJEn9+/dXeHi4EhMT5ePjo+bNm9ttX6NGDUkqshwAAFRubg85CQkJOn36tMaOHauTJ0+qVatWWrNmjW0w8tGjR+Xh4dYLTgAAoAKyGIZhuLuIspSTk6PAwEBlZ2erevXq7i4HAACUgCO/v7lEAgAATImQAwAATImQAwAAnCYjO09bD2UpIzvP3aW4f+AxAAAwh+QdRzVq+W5ZDcnDIiX2jlZCu7puq4crOQAA4IZlZOfZAo4kWQ1p9PI9br2iQ8gBAAA3LD3roi3gXFVoGDqSleuegkTIAQAATlA/yF8eFvtlnhaLIoP83FOQCDkAAMAJwgJ9ldg7Wp6WK0nH02LRpN7NFRbo67aaGHgMAACcIqFdXXVpXFtHsnIVGeTn1oAjEXIAAIAThQX6uj3cXEV3FQAAMCVCDlyqPE0KBQCoXOiugsuUt0mhAACVC1dy4BLlcVIoAEDlQsiBS5THSaEAAJULIQcuUR4nhQIAVC6EHLhEeZwUCgBQuTDwGC5T3iaFAgBULoQcuFR5mhQKAFC50F0FAABMiZADAABMiZADAABMiZADAABMiZADoFg8dwxARcfdVQCKqOzPHcvIzlN61kXVD/Ln7kCgAiPkALBzreeOdWlcu1L8wq/sAQ8wE7qrANipzM8d48GygLkQcgDYqczPHavMAQ8wI0IOADuV+bljlTngAWbEmBwARVTW545dDXijl+9RoWFUqoAHmBEhB0CxKutzxyprwAPMiJADAH9QWQMeYDaMyQEAAKZEyAEAAKZEyAEAAKZEyAEAAKZEyAEAAKZEyAEAAKZEyAEAAKZEyAEAAKZEyAEAAKZEyAEAAKZEyAEAAKZEyAEAAKZEyAEAAKZEyAEAoJzIyM7T1kNZysjOc3cpplDF3QUAAAApecdRjVq+W1ZD8rBIib2jldCurrvLqtC4kgMAgJtlZOfZAo4kWQ1p9PI9XNG5QYQcAADcLD3roi3gXFVoGDqSleuegkyCkAMAgJvVD/KXh8V+mafFosggP/cUZBKEHAAA3Cws0FeJvaPlabmSdDwtFk3q3Vxhgb5urqxiY+AxAADlQEK7uurSuLaOZOUqMsiPgOMEhBwAAMqJsEBfwo0T0V0FAABMiZADAABMqVyEnFmzZikyMlI+Pj6KiYnR9u3br7nuvHnzdPvtt6tmzZqqWbOm4uLirrs+AAConNwecpKTkzVixAiNGzdOO3fuVMuWLRUfH69Tp04Vu/6mTZvUp08fbdy4Udu2bVNERITuuusuHT9+vIwrBwAA5ZnFMAzjz1dznZiYGLVr104zZ86UJFmtVkVEROjZZ5/VyJEj/3T7wsJC1axZUzNnzlT//v3/dP2cnBwFBgYqOztb1atXv+H6AQCA6zny+9utV3IKCgqUmpqquLg42zIPDw/FxcVp27ZtJdpHbm6uLl26pFq1ahX7eX5+vnJycuxeAADA/NwacrKyslRYWKiQkBC75SEhITp58mSJ9vHKK6+oTp06dkHp9xITExUYGGh7RURE3HDdAK6NpygDKC8q9Dw5kydP1pIlS7Rp0yb5+PgUu86oUaM0YsQI2/ucnByCDuAiPEUZQHni1pATFBQkT09PZWZm2i3PzMxUaGjodbd9++23NXnyZK1fv14tWrS45nre3t7y9vZ2Sr0Aru1aT1Hu0rg2k5sBcAu3dld5eXmpTZs2SklJsS2zWq1KSUlRhw4drrnd1KlTNWHCBK1Zs0Zt27Yti1IB/AmeogygvHF7d9WIESM0YMAAtW3bVu3bt1dSUpIuXryoQYMGSZL69++v8PBwJSYmSpKmTJmisWPH6tNPP1VkZKRt7E5AQIACAgLcdh5AZXf1Kcq/Dzo8RRmAO7l9npyEhAS9/fbbGjt2rFq1aqW0tDStWbPGNhj56NGjysjIsK0/e/ZsFRQU6OGHH1ZYWJjt9fbbb7vrFACIpygDKH/cPk9OWWOeHMC1MrLzeIoyAKdz5Pe327urAJgLT1EGUF64vbsKAADAFQg5AAA4GZNilg90VwEA4ERMill+cCUHAAAnudakmFzRcQ9CDgAATsKkmOULIQcAACe5Oinm7zEppvsQcgAAcBImxSxfGHgMAIATJbSrqy6NazMpZjlAyAEAwMmYFLN8oLsKAACYEiEHAACYEiEHAACYEiEHAACYEiEHAACYEiEHAACYEiEHAACYEiEHAACYEiEHAACYEiEHAACYEiEHAACYEiEHMLmM7DxtPZSljOw8d5cCAGWKB3QCJpa846hGLd8tqyF5WKTE3tFKaFfX3WUBQJngSg5gUhnZebaAI0lWQxq9fA9XdABUGoQcwKTSsy7aAs5VhYahI1m57ikIAMoYIQcwqfpB/vKw2C/ztFgUGeTnnoIAoIwRcgCTCgv0VWLvaHlariQdT4tFk3o3V1igr5srA4CywcBjk8rIzlN61kXVD/Lnl1olltCurro0rq0jWbmKDPLjawFljp9F7leZ/w8IOSbEHTX4vbBA30r3gw3lAz+L3K+y/x/QXWUyrrqjhrlWAJQGd/e5H/8HXMkxnevdUePoX/OV/S8BAKXnip9FKB3+D7iSYzrOvqOGvwQAOIK7+9yP/wNCjuk4+44a5loB4Agz3d1XUbvrzfR/4Ci6q0zImXfUXP1L4PdBp7L9JQDAMWa4u6+id9eb4f/gRlgMwzD+fDXzyMnJUWBgoLKzs1W9enV3l1MhJO84qtHL96jQMGx/CVSkb3IAcERGdp46Td5Q5I+8zSO7VbqwUB448vubKzn4U5X9LwEAlRMDdys+Qg5KhLlWAFQ2dNdXfAw8BgCgGAzcrfi4kgMAwDXQXV+xEXIAALgOuusrLrqrAACAKRFyAACAKRFyAACAKRFyAACAKRFyAACAKRFyAACAKRFyAACAKRFynCgjO09bD2UpIzvP3aUAAFDpMRmgkyTvOKpRy3fLakgeFimxdzRP6gYAwI24kuMEGdl5toAjXXmY2+jle7iiAwCAGxFynCA966LdU2olqdAwdCQr1z0FAeUUXboAyhLdVU5QP8hfHhbZBR1Pi0WRQX7uKwooZ+jSBVDWuJLjBGGBvkrsHS1Pi0XSlYAzqXdzHugG/C+6dAG4A1dynCShXV11aVxbR7JyFRnkR8ABfud6Xbp8rwBwFUKOE4UF+vIDGygGXboA3IHuKgAuR5cuAHcoFyFn1qxZioyMlI+Pj2JiYrR9+/brrr906VI1adJEPj4+io6O1urVq8uoUgCOSmhXV5tHdtNnQ27T5pHdGHQMwOXcHnKSk5M1YsQIjRs3Tjt37lTLli0VHx+vU6dOFbv+1q1b1adPHz3++OPatWuXevXqpV69emnPnj1lXDmA0goL9FWHhjdxBQdAmbAYhmH8+WquExMTo3bt2mnmzJmSJKvVqoiICD377LMaOXJkkfUTEhJ08eJFrVy50rbstttuU6tWrTRnzpw/PV5OTo4CAwOVnZ2t6tWrO+9EAACAyzjy+9utV3IKCgqUmpqquLg42zIPDw/FxcVp27ZtxW6zbds2u/UlKT4+/prr5+fnKycnx+4FAADMz60hJysrS4WFhQoJCbFbHhISopMnTxa7zcmTJ0u1fmJiogIDA22viIgI5xQPAADKNbePyXG1UaNGKTs72/Y6duyYu0sCAABlwK3z5AQFBcnT01OZmZl2yzMzMxUaGlrsNqGhoaVa39vbW97e3s4pGAAAVBhuvZLj5eWlNm3aKCUlxbbMarUqJSVFHTp0KHabDh062K0vSevWrbvm+gAAoHJy+4zHI0aM0IABA9S2bVu1b99eSUlJunjxogYNGiRJ6t+/v8LDw5WYmChJev7559W1a1dNmzZN9957r5YsWaLvvvtO77//vjtPAwAAlDNuDzkJCQk6ffq0xo4dq5MnT6pVq1Zas2aNbXDx0aNH5eHxfxecOnbsqE8//VSvvfaaRo8erUaNGulf//qXmjdv7q5TAAAA5ZDb58kpa8yTAwBAxVPh5skBAABwFUIOAAAwJbePySlrV3vnmPkYAICK4+rv7dKMsql0Ief8+fOSxMzHAABUQOfPn1dgYGCJ1q10A4+tVqtOnDihatWqyWKxFLtOTk6OIiIidOzYMQYni/YoDm1ij/YoijaxR3vYoz2K+rM2MQxD58+fV506dezuur6eSnclx8PDQzfffHOJ1q1evTpffL9DexRFm9ijPYqiTezRHvZoj6Ku1yYlvYJzFQOPAQCAKRFyAACAKRFyiuHt7a1x48bxYM//RXsURZvYoz2Kok3s0R72aI+iXNEmlW7gMQAAqBy4kgMAAEyJkAMAAEyJkAMAAEyJkAMAAEyp0oacWbNmKTIyUj4+PoqJidH27duvue7evXv10EMPKTIyUhaLRUlJSWVXaBkpTXvMmzdPt99+u2rWrKmaNWsqLi7uuutXVKVpk+XLl6tt27aqUaOG/P391apVK33yySdlWK3rlaY9fm/JkiWyWCzq1auXawt0g9K0yYIFC2SxWOxePj4+ZVit65X2a+TcuXMaOnSowsLC5O3trcaNG2v16tVlVK3rlaY9YmNji3x9WCwW3XvvvWVYseuV9mskKSlJt9xyi3x9fRUREaHhw4frt99+K/kBjUpoyZIlhpeXl/HRRx8Ze/fuNYYMGWLUqFHDyMzMLHb97du3Gy+++KLx2WefGaGhocaMGTPKtmAXK217PProo8asWbOMXbt2Gfv27TMGDhxoBAYGGr/88ksZV+46pW2TjRs3GsuXLzd+/PFH4+DBg0ZSUpLh6elprFmzpowrd43StsdV6enpRnh4uHH77bcbDzzwQNkUW0ZK2ybz5883qlevbmRkZNheJ0+eLOOqXae07ZGfn2+0bdvWuOeee4zNmzcb6enpxqZNm4y0tLQyrtw1StseZ86csfva2LNnj+Hp6WnMnz+/bAt3odK2yeLFiw1vb29j8eLFRnp6urF27VojLCzMGD58eImPWSlDTvv27Y2hQ4fa3hcWFhp16tQxEhMT/3TbevXqmS7k3Eh7GIZhXL582ahWrZrx8ccfu6rEMnejbWIYhtG6dWvjtddec0V5Zc6R9rh8+bLRsWNH44MPPjAGDBhgupBT2jaZP3++ERgYWEbVlb3Stsfs2bONBg0aGAUFBWVVYpm60Z8hM2bMMKpVq2ZcuHDBVSWWudK2ydChQ4077rjDbtmIESOMTp06lfiYla67qqCgQKmpqYqLi7Mt8/DwUFxcnLZt2+bGytzDGe2Rm5urS5cuqVatWq4qs0zdaJsYhqGUlBQdOHBAXbp0cWWpZcLR9njjjTcUHBysxx9/vCzKLFOOtsmFCxdUr149RURE6IEHHtDevXvLolyXc6Q9VqxYoQ4dOmjo0KEKCQlR8+bNNWnSJBUWFpZV2S7jjJ+rH374of72t7/J39/fVWWWKUfapGPHjkpNTbV1aR0+fFirV6/WPffcU+LjVroHdGZlZamwsFAhISF2y0NCQrR//343VeU+zmiPV155RXXq1LH74q3IHG2T7OxshYeHKz8/X56ennrvvffUvXt3V5frco60x+bNm/Xhhx8qLS2tDCose460yS233KKPPvpILVq0UHZ2tt5++2117NhRe/fuLfFDg8srR9rj8OHD2rBhg/r27avVq1fr4MGDevrpp3Xp0iWNGzeuLMp2mRv9ubp9+3bt2bNHH374oatKLHOOtMmjjz6qrKwsde7cWYZh6PLly3ryySc1evToEh+30oUcONfkyZO1ZMkSbdq0yXSDKEurWrVqSktL04ULF5SSkqIRI0aoQYMGio2NdXdpZer8+fPq16+f5s2bp6CgIHeXU2506NBBHTp0sL3v2LGjmjZtqrlz52rChAlurMw9rFargoOD9f7778vT01Nt2rTR8ePH9dZbb1X4kHOjPvzwQ0VHR6t9+/buLsWtNm3apEmTJum9995TTEyMDh48qOeff14TJkzQmDFjSrSPShdygoKC5OnpqczMTLvlmZmZCg0NdVNV7nMj7fH2229r8uTJWr9+vVq0aOHKMsuUo23i4eGhqKgoSVKrVq20b98+JSYmVviQU9r2OHTokI4cOaKePXvallmtVklSlSpVdODAATVs2NC1RbuYM36OVK1aVa1bt9bBgwddUWKZcqQ9wsLCVLVqVXl6etqWNW3aVCdPnlRBQYG8vLxcWrMr3cjXx8WLF7VkyRK98cYbriyxzDnSJmPGjFG/fv00ePBgSVJ0dLQuXryoJ554Qq+++qo8PP58xE2lG5Pj5eWlNm3aKCUlxbbMarUqJSXF7q+sysLR9pg6daomTJigNWvWqG3btmVRaplx1teI1WpVfn6+K0osU6VtjyZNmmj37t1KS0uzve6//35169ZNaWlpioiIKMvyXcIZXyOFhYXavXu3wsLCXFVmmXGkPTp16qSDBw/aArAk/fe//1VYWFiFDjjSjX19LF26VPn5+XrsscdcXWaZcqRNcnNziwSZq6HYKOljNx0YIF3hLVmyxPD29jYWLFhg/Pjjj8YTTzxh1KhRw3Y7Z79+/YyRI0fa1s/Pzzd27dpl7Nq1ywgLCzNefPFFY9euXcZPP/3krlNwqtK2x+TJkw0vLy9j2bJldrc8nj9/3l2n4HSlbZNJkyYZX331lXHo0CHjxx9/NN5++22jSpUqxrx589x1Ck5V2vb4IzPeXVXaNhk/fryxdu1a49ChQ0Zqaqrxt7/9zfDx8TH27t3rrlNwqtK2x9GjR41q1aoZzzzzjHHgwAFj5cqVRnBwsPHmm2+66xScytHvmc6dOxsJCQllXW6ZKG2bjBs3zqhWrZrx2WefGYcPHza++uoro2HDhsYjjzxS4mNWypBjGIbx7rvvGnXr1jW8vLyM9u3bG//zP/9j+6xr167GgAEDbO/T09MNSUVeXbt2LfvCXaQ07VGvXr1i22PcuHFlX7gLlaZNXn31VSMqKsrw8fExatasaXTo0MFYsmSJG6p2ndK0xx+ZMeQYRunaZNiwYbZ1Q0JCjHvuucfYuXOnG6p2ndJ+jWzdutWIiYkxvL29jQYNGhgTJ040Ll++XMZVu05p22P//v2GJOOrr74q40rLTmna5NKlS8brr79uNGzY0PDx8TEiIiKMp59+2vj1119LfDyLYZT0mg8AAEDFUenG5AAAgMqBkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMALjRw4ED16tXL3WUAlRIhB6ikBg4cKIvFYnvddNNNuvvuu/XDDz+4uzSn+P25XX117tzZZcc7cuSILBaL0tLS7Jb/4x//0IIFC1x2XADXRsgBKrG7775bGRkZysjIUEpKiqpUqaL77rvP3WU5zfz5823nl5GRoRUrVhS73qVLl1xWQ2BgoGrUqOGy/QO4NkIOUIl5e3srNDRUoaGhatWqlUaOHKljx47p9OnTuuOOO/TMM8/YrX/69Gl5eXnZniQcGRmpCRMmqE+fPvL391d4eLhmzZplt8306dMVHR0tf39/RURE6Omnn9aFCxdsn//888/q2bOnatasKX9/f/3lL3/R6tWrJUm//vqr+vbtq9q1a8vX11eNGjXS/PnzS3x+NWrUsJ1faGioatWqZbvikpycrK5du8rHx0eLFy/WmTNn1KdPH4WHh8vPz0/R0dH67LPP7PZntVo1depURUVFydvbW3Xr1tXEiRMlSfXr15cktW7dWhaLRbGxsZKKdlfl5+frueeeU3BwsHx8fNS5c2ft2LHD9vmmTZtksViUkpKitm3bys/PTx07dtSBAwdKfN4AriDkAJAkXbhwQYsWLVJUVJRuuukmDR48WJ9++qny8/Nt6yxatEjh4eG64447bMveeusttWzZUrt27dLIkSP1/PPPa926dbbPPTw89M4772jv3r36+OOPtWHDBr388su2z4cOHar8/Hx988032r17t6ZMmaKAgABJ0pgxY/Tjjz/qP//5j/bt26fZs2crKCjIKed7tdZ9+/YpPj5ev/32m9q0aaNVq1Zpz549euKJJ9SvXz9t377dts2oUaM0efJkW12ffvqpQkJCJMm23vr165WRkaHly5cXe9yXX35Z//znP/Xxxx9r586dioqKUnx8vM6ePWu33quvvqpp06bpu+++U5UqVfT3v//dKecNVCpOe7QogAplwIABhqenp+Hv72/4+/sbkoywsDAjNTXVMAzDyMvLM2rWrGkkJyfbtmnRooXx+uuv297Xq1fPuPvuu+32m5CQYPTo0eOax126dKlx00032d5HR0fb7fP3evbsaQwaNMih85Nk+Pj42M7P39/f+OKLL4z09HRDkpGUlPSn+7j33nuNF154wTAMw8jJyTG8vb2NefPmFbvu1f3u2rXLbvnvn8B+4cIFo2rVqsbixYttnxcUFBh16tQxpk6dahiGYWzcuNGQZKxfv962zqpVqwxJRl5eXmmaAKj0uJIDVGLdunVTWlqa0tLStH37dsXHx6tHjx76+eef5ePjo379+umjjz6SJO3cuVN79uzRwIED7fbRoUOHIu/37dtne79+/XrdeeedCg8PV7Vq1dSvXz+dOXNGubm5kqTnnntOb775pjp16qRx48bZDXx+6qmntGTJErVq1Uovv/yytm7dWqrzmzFjhu380tLS1L17d9tnbdu2tVu3sLBQEyZMUHR0tGrVqqWAgACtXbtWR48elSTt27dP+fn5uvPOO0tVw+8dOnRIly5dUqdOnWzLqlatqvbt29u1mSS1aNHC9u+wsDBJ0qlTpxw+NlAZEXKASszf319RUVGKiopSu3bt9MEHH+jixYuaN2+eJGnw4MFat26dfvnlF82fP1933HGH6tWrV+L9HzlyRPfdd59atGihf/7zn0pNTbWN2SkoKLAd4/Dhw+rXr592796ttm3b6t1335UkW+AaPny4Tpw4oTvvvFMvvvhiiY8fGhpqO7+oqCj5+/vbnfvvvfXWW/rHP/6hV155RRs3blRaWpri4+Ntdfr6+pb4uM5QtWpV278tFoukK2OCAJQcIQeAjcVikYeHh/Ly8iRJ0dHRatu2rebNm6dPP/202HEh//M//1PkfdOmTSVJqampslqtmjZtmm677TY1btxYJ06cKLKPiIgIPfnkk1q+fLleeOEFW8iSpNq1a2vAgAFatGiRkpKS9P777zvzlG22bNmiBx54QI899phatmypBg0a6L///a/t80aNGsnX19c26PqPvLy8JF25InQtDRs2lJeXl7Zs2WJbdunSJe3YsUPNmjVz0pkAuKqKuwsA4D75+fk6efKkpCt3Ms2cOVMXLlxQz549besMHjxYzzzzjPz9/fXggw8W2ceWLVs0depU9erVS+vWrdPSpUu1atUqSVJUVJQuXbqkd999Vz179tSWLVs0Z84cu+2HDRumHj16qHHjxvr111+1ceNGW0gaO3as2rRpo7/85S/Kz8/XypUrbZ85W6NGjbRs2TJt3bpVNWvW1PTp05WZmWkLHz4+PnrllVf08ssvy8vLS506ddLp06e1d+9ePf744woODpavr6/WrFmjm2++WT4+PgoMDLQ7hr+/v5566im99NJLqlWrlurWraupU6cqNzdXjz/+uEvOC6jMuJIDVGJr1qxRWFiYwsLCFBMTox07dmjp0qW2258lqU+fPqpSpYr69OkjHx+fIvt44YUX9N1336l169Z68803NX36dMXHx0uSWrZsqenTp2vKlClq3ry5Fi9erMTERLvtCwsLNXToUDVt2lR33323GjdurPfee0/Slasjo0aNUosWLdSlSxd5enpqyZIlLmmL1157Tbfeeqvi4+MVGxur0NDQIjMVjxkzRi+88ILGjh2rpk2bKiEhwTZOpkqVKnrnnXc0d+5c1alTRw888ECxx5k8ebIeeugh9evXT7feeqsOHjyotWvXqmbNmi45L6AysxiGYbi7CADl15EjR9SwYUPt2LFDt956q91nkZGRGjZsmIYNG+ae4gDgOuiuAlCsS5cu6cyZM3rttdd02223FQk4AFDe0V0FoFhbtmxRWFiYduzYUWQcjbtNmjRJAQEBxb569Ojh7vIAlBN0VwGocM6ePVtkhuCrfH19FR4eXsYVASiPCDkAAMCU6K4CAACmRMgBAACmRMgBAACmRMgBAACmRMgBAACmRMgBAACmRMgBAACmRMgBAACm9P8DCuaGqQBAYMsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_39.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQN0lEQVR4nO3de1wU5f4H8M+wwHIRFpU7IRdvaCIW3hDzkhZ6OibaxagUTe1XamlkKZaX1MTspFaalifR8nos7eqxFG8H8Y6c1NQEQTQXFItdubgi+/z+8Di1Acouu+zCft6v17xezswzs995zh7208wzM5IQQoCIiIjIjjhYuwAiIiKi+sYARERERHaHAYiIiIjsDgMQERER2R0GICIiIrI7DEBERERkdxiAiIiIyO4wABEREZHdYQAiIiIiu8MAREQ2a9asWZAkqVZtJUnCrFmzLFpPnz590KdPH5vdHxHVHgMQEd3VqlWrIEmSPDk6OiIoKAgjR47Er7/+au3ybE5oaKhBf/n6+uKBBx7Ali1bzLL/srIyzJo1C7t37zbL/ojsEQMQEdXa7Nmz8fnnn2P58uUYOHAg1qxZg969e+P69esW+bw333wT5eXlFtm3pXXq1Amff/45Pv/8c0yePBmXLl3C0KFDsXz58jrvu6ysDG+99RYDEFEdOFq7ACJqOAYOHIjOnTsDAMaMGQNvb2+88847+Oabb/Dkk0+a/fMcHR3h6Ngw/0wFBQXh2WefledHjBiBVq1aYdGiRXjhhResWBkRATwDRER18MADDwAAcnJyDJafPn0ajz/+OJo1awYXFxd07twZ33zzjUGbiooKvPXWW2jdujVcXFzQvHlz9OzZE9u3b5fbVDcGSKfT4ZVXXoGPjw88PDzw6KOP4uLFi1VqGzlyJEJDQ6ssr26fqampePDBB+Hr6wulUon27dtj2bJlRvXF3fj7+6Ndu3bIzc29Y7vLly9j9OjR8PPzg4uLC6KiorB69Wp5fV5eHnx8fAAAb731lnyZzdLjn4gam4b5n1ZEZBPy8vIAAE2bNpWXnTx5ErGxsQgKCsLUqVPh7u6Of/3rX4iPj8eXX36JIUOGALgVRFJSUjBmzBh07doVWq0WR44cQWZmJh566KEaP3PMmDFYs2YNnn76afTo0QM7d+7EI488UqfjWLZsGe699148+uijcHR0xLfffotx48ZBr9dj/Pjxddr3bRUVFbhw4QKaN29eY5vy8nL06dMH2dnZmDBhAsLCwrBp0yaMHDkSxcXFmDhxInx8fLBs2TK8+OKLGDJkCIYOHQoA6Nixo1nqJLIbgojoLlJTUwUAsWPHDnHlyhVx4cIF8cUXXwgfHx+hVCrFhQsX5Lb9+vUTkZGR4vr16/IyvV4vevToIVq3bi0vi4qKEo888sgdP3fmzJniz3+msrKyBAAxbtw4g3ZPP/20ACBmzpwpL0tMTBQhISF33acQQpSVlVVpFxcXJ8LDww2W9e7dW/Tu3fuONQshREhIiHj44YfFlStXxJUrV8R///tf8dRTTwkA4qWXXqpxf4sXLxYAxJo1a+RlN27cEDExMaJJkyZCq9UKIYS4cuVKleMlIuPwEhgR1Vr//v3h4+OD4OBgPP7443B3d8c333yDe+65BwDw22+/YefOnXjyySdx7do1FBUVoaioCFevXkVcXBzOnj0r3zXm5eWFkydP4uzZs7X+/K1btwIAXn75ZYPlkyZNqtNxubq6yv/WaDQoKipC7969ce7cOWg0GpP2+eOPP8LHxwc+Pj6IiorCpk2bMHz4cLzzzjs1brN161b4+/sjISFBXubk5ISXX34ZJSUl2LNnj0m1EFFVvARGRLW2dOlStGnTBhqNBitXrsTevXuhVCrl9dnZ2RBCYPr06Zg+fXq1+7h8+TKCgoIwe/ZsDB48GG3atEGHDh0wYMAADB8+/I6Xcs6fPw8HBwe0bNnSYHnbtm3rdFz79u3DzJkzsX//fpSVlRms02g0UKlURu+zW7dumDt3LiRJgpubG9q1awcvL687bnP+/Hm0bt0aDg6G/23arl07eT0RmQcDEBHVWteuXeW7wOLj49GzZ088/fTTOHPmDJo0aQK9Xg8AmDx5MuLi4qrdR6tWrQAAvXr1Qk5ODr7++mv8+OOP+Oc//4lFixZh+fLlGDNmTJ1rrekBipWVlQbzOTk56NevHyIiIrBw4UIEBwfD2dkZW7duxaJFi+RjMpa3tzf69+9v0rZEZHkMQERkEoVCgZSUFPTt2xdLlizB1KlTER4eDuDWZZva/Pg3a9YMo0aNwqhRo1BSUoJevXph1qxZNQagkJAQ6PV65OTkGJz1OXPmTJW2TZs2RXFxcZXlfz2L8u2330Kn0+Gbb75BixYt5OW7du26a/3mFhISgp9++gl6vd7gLNDp06fl9UDN4Y6Iao9jgIjIZH369EHXrl2xePFiXL9+Hb6+vujTpw8+/vhjqNXqKu2vXLki//vq1asG65o0aYJWrVpBp9PV+HkDBw4EAHzwwQcGyxcvXlylbcuWLaHRaPDTTz/Jy9RqdZWnMSsUCgCAEEJeptFokJqaWmMdlvK3v/0NBQUF2Lhxo7zs5s2b+PDDD9GkSRP07t0bAODm5gYA1QY8IqodngEiojp57bXX8MQTT2DVqlV44YUXsHTpUvTs2RORkZEYO3YswsPDUVhYiP379+PixYv473//CwBo3749+vTpg+joaDRr1gxHjhzBF198gQkTJtT4WZ06dUJCQgI++ugjaDQa9OjRA2lpacjOzq7S9qmnnsKUKVMwZMgQvPzyyygrK8OyZcvQpk0bZGZmyu0efvhhODs7Y9CgQfi///s/lJSUYMWKFfD19a02xFnS888/j48//hgjR47E0aNHERoaii+++AL79u3D4sWL4eHhAeDWoO327dtj48aNaNOmDZo1a4YOHTqgQ4cO9VovUYNm7dvQiMj23b4N/vDhw1XWVVZWipYtW4qWLVuKmzdvCiGEyMnJESNGjBD+/v7CyclJBAUFib///e/iiy++kLebO3eu6Nq1q/Dy8hKurq4iIiJCvP322+LGjRtym+puWS8vLxcvv/yyaN68uXB3dxeDBg0SFy5cqPa28B9//FF06NBBODs7i7Zt24o1a9ZUu89vvvlGdOzYUbi4uIjQ0FDxzjvviJUrVwoAIjc3V25nzG3wd7vFv6b9FRYWilGjRglvb2/h7OwsIiMjRWpqapVtMzIyRHR0tHB2duYt8UQmkIT403lfIiIiIjvAMUBERERkdxiAiIiIyO4wABEREZHdYQAiIiIiu8MARERERHaHAYiIiIjsDh+EWA29Xo9Lly7Bw8ODj5wnIiJqIIQQuHbtGgIDA6u8VPivGICqcenSJQQHB1u7DCIiIjLBhQsXcM8999yxDQNQNW4/bv7ChQvw9PS0cjVERERUG1qtFsHBwfLv+J0wAFXj9mUvT09PBiAiIqIGpjbDVzgImoiIiOwOAxARERHZHQYgIiIisjscA1QHlZWVqKiosHYZ1Ag5OTlBoVBYuwwiokaLAcgEQggUFBSguLjY2qVQI+bl5QV/f38+i4qIyAIYgExwO/z4+vrCzc2NP1BkVkIIlJWV4fLlywCAgIAAK1dERNT4MAAZqbKyUg4/zZs3t3Y51Ei5uroCAC5fvgxfX19eDiMiMjMOgjbS7TE/bm5uVq6EGrvb3zGOMyMiMj8GIBPxshdZGr9jRESWwwBEREREdocBiIyyb98+REZGwsnJCfHx8dYuh4iIyCQMQHZk5MiRkCQJkiTByckJYWFheP3113H9+vVa7yMpKQmdOnVCbm4uVq1aZbli69GqVavkflEoFGjatCm6deuG2bNnQ6PRGL0/SZLw1Vdfmb9QIqJGQq0pR0ZOEdSacqvVYNUAlJKSgi5dusDDwwO+vr6Ij4/HmTNnDNpcv34d48ePR/PmzdGkSRM89thjKCwsvON+hRCYMWMGAgIC4Orqiv79++Ps2bOWPJQGY8CAAVCr1Th37hwWLVqEjz/+GDNnzqz19jk5OXjwwQdxzz33wMvLy6Qabty4YdJ2phBC4ObNm3dt5+npCbVajYsXLyIjIwPPP/88PvvsM3Tq1AmXLl2qh0qJiOzDxsP5iJ2/E0+vOIjY+Tux8XC+VeqwagDas2cPxo8fjwMHDmD79u2oqKjAww8/jNLSUrnNK6+8gm+//RabNm3Cnj17cOnSJQwdOvSO+12wYAE++OADLF++HAcPHoS7uzvi4uKMOtPRWCmVSvj7+yM4OBjx8fHo378/tm/fDgDQ6/VISUlBWFgYXF1dERUVhS+++AIAkJeXB0mScPXqVTz33HOQJEk+A7Rnzx507doVSqUSAQEBmDp1qkHo6NOnDyZMmIBJkybB29sbcXFx2L17NyRJwg8//ID77rsPrq6uePDBB3H58mX8+9//Rrt27eDp6Ymnn34aZWVl8r7uVCMAeb///ve/ER0dDaVSifT09Lv2iyRJ8Pf3R0BAANq1a4fRo0cjIyMDJSUleP311+V2oaGhWLx4scG2nTp1wqxZs+T1ADBkyBBIkoTQ0FDk5eXBwcEBR44cMdhu8eLFCAkJgV6vv2t9RESNgVpTjuTNx6EXt+b1Api2+YR1zgQJG3L58mUBQOzZs0cIIURxcbFwcnISmzZtktucOnVKABD79++vdh96vV74+/uLd999V15WXFwslEqlWL9+fa3q0Gg0AoDQaDRV1pWXl4uff/5ZlJeXG3NoNbpUXCb2ZV8Rl4rLzLK/O0lMTBSDBw+W548fPy78/f1Ft27dhBBCzJ07V0RERIht27aJnJwckZqaKpRKpdi9e7e4efOmUKvVwtPTUyxevFio1WpRVlYmLl68KNzc3MS4cePEqVOnxJYtW4S3t7eYOXOm/Dm9e/cWTZo0Ea+99po4ffq0OH36tNi1a5cAILp37y7S09NFZmamaNWqlejdu7d4+OGHRWZmpti7d69o3ry5mD9/vryvO9UohJD327FjR/Hjjz+K7OxscfXq1Tv2S2pqqlCpVNWumzhxovDw8BA3b94UQggREhIiFi1aZNAmKipKPt7b3+HU1FShVqvF5cuXhRBCPPTQQ2LcuHEG23Xs2FHMmDGjxrrM/V0jIrK2fdlXRMiU76pMGdlFZtn/nX6//8qmHoR4e7xFs2bNAABHjx5FRUUF+vfvL7eJiIhAixYtsH//fnTv3r3KPnJzc1FQUGCwjUqlQrdu3bB//3489dRTVbbR6XTQ6XTyvFarNdsx3cnGw/lyEnaQgJShkRjWpYVFP/O7775DkyZNcPPmTeh0Ojg4OGDJkiXQ6XSYN28eduzYgZiYGABAeHg40tPT8fHHH6N3797yaxlUKhX8/f0BAB999BGCg4OxZMkSSJKEiIgIXLp0CVOmTMGMGTPg4HDrJGPr1q2xYMECuQ61Wg0AmDt3LmJjYwEAo0ePRnJyMnJychAeHg4AePzxx7Fr1y5MmTKlVjXeNnv2bDz00EN17q+IiAhcu3YNV69eha+v713b+/j4APjjNRa3jRkzBi+88AIWLlwIpVKJzMxMHD9+HF9//XWdayQiaijCvN3hIEE+AwQACklCqHf9P1vPZgZB6/V6TJo0CbGxsejQoQOAW6+ccHZ2rjLWxM/PDwUFBdXu5/ZyPz+/Wm+TkpIClUolT8HBwXU8mruz1mnAvn37IisrCwcPHkRiYiJGjRqFxx57DNnZ2SgrK8NDDz2EJk2ayNNnn32GnJycGvd36tQpxMTEGDyzJjY2FiUlJbh48aK8LDo6utrtO3bsKP/bz88Pbm5ucvi5vez2KyGMqbFz587GdUwNhLj1P1Bdn8kTHx8PhUKBLVu2ALg18Lpv377yJTMiInsQoHJFytBIKP73N1UhSZg3tAMCVK71XovNnAEaP348Tpw4UavxGuaWnJyMpKQkeV6r1Vo8BOUWlRokYACoFAJ5RWUW/SK4u7ujVatWAICVK1ciKioKn376qRw6v//+ewQFBRlso1QqzfK51XFycpL/ffvutD+TJEkeI1NSUlLrGmv6PGOdOnUKnp6e8mtPHBwc5FB0W22e1Ozs7IwRI0YgNTUVQ4cOxbp16/D++++bpUYiooZkWJcW6NXGB3lFZQj1drNK+AFsJABNmDAB3333Hfbu3Yt77rlHXu7v748bN26guLjY4CxQYWGhweWFP7u9vLCw0OAlkoWFhejUqVO12yiVSrP8yBvDFk4DOjg4YNq0aUhKSsIvv/wCpVKJ/Px8g0tJd9OuXTt8+eWXEELIZ0n27dsHDw8Pg/8tzaF9+/Ym1Wiqy5cvY926dYiPj5cv5fn4+MiX74BbYTk3N9dgOycnJ1RWVlbZ35gxY9ChQwd89NFHuHnz5l0H8xMRNVYBKlerBZ/brHoJTAiBCRMmYMuWLdi5cyfCwsIM1kdHR8PJyQlpaWnysjNnziA/P18eA/JXYWFh8Pf3N9hGq9Xi4MGDNW5jDbZyGvCJJ56AQqHAxx9/jMmTJ+OVV17B6tWrkZOTg8zMTHz44YdYvXp1jduPGzcOFy5cwEsvvYTTp0/j66+/xsyZM5GUlCSHBnPx8PAwqcbaEEKgoKAAarUap06dwsqVK9GjRw+oVCrMnz9fbvfggw/i888/x3/+8x8cP34ciYmJVV5UGhoairS0NBQUFOD333+Xl7dr1w7du3fHlClTkJCQIL/wlIiI6p9VzwCNHz8e69atw9dffw0PDw95jI5KpYKrqytUKhVGjx6NpKQkNGvWDJ6ennjppZcQExNjMAA6IiICKSkp8q3HkyZNwty5c9G6dWuEhYVh+vTpCAwMtLknF9vCaUBHR0dMmDABCxYsQG5uLnx8fJCSkoJz587By8sL999/P6ZNm1bj9kFBQdi6dStee+01REVFoVmzZhg9ejTefPNNi9Q7Z84co2usDa1Wi4CAAEiSBE9PT7Rt2xaJiYmYOHEiPD095XbJycnIzc3F3//+d6hUKsyZM6fKGaD33nsPSUlJWLFiBYKCgpCXlyevu317/XPPPVeneomIqI7Mct+ZiQBUO6WmpsptysvLxbhx40TTpk2Fm5ubGDJkiFCr1VX28+dt9Hq9mD59uvDz8xNKpVL069dPnDlzptZ11edt8GRfZs+eLSIjI2vVlt81IiLjGHMbvCTEX0Z0ErRaLVQqFTQajcF//QO3nkydm5uLsLAwuLi4WKlCamhKSkqQl5eHfv36Ye7cuRg7duxdt+F3jYjIOHf6/f4rm7kNnshS7r33XoPb5v88rV27tl5qmDBhAqKjo9GnTx9e/iIisgE2cRcYkSVt3bq1xlvV//q8KEtZtWpVo3l5LBFRY8AARI1eSEiItUsgIiIbw0tgJuLQKbI0fseIiCyHAchIt59U/Oc3lBNZwu3v2F+fjk1ERHXHS2BGUigU8PLykt9P5ebmVuf3RBH9mRACZWVluHz5Mry8vKo8aJGIiOqOAcgEt1+3cTsEEVnCX98oT0RE5sMAZAJJkhAQEABfX99avQiTyFhOTk4880NEZEEMQHWgUCj4I0VERNQAcRA0ERER2R0GICIiIrI7DEBERERkdxiAiIiIyO4wABEREZHdYQAiIiIiu8MARERERHaHAYiIiIjsDgMQERER2R0GICIiIrI7DEBERERkdxiAiIiIyO4wABEREZHdYQAiIiIiu8MARERERHaHAYiIiIjsDgMQERER2R0GICIiIrI7DEBERERkdxiAiIiIyO4wABEREZHdYQAiIiIiu2PVALR3714MGjQIgYGBkCQJX331lcF6SZKqnd59990a9zlr1qwq7SMiIix8JERERNSQWDUAlZaWIioqCkuXLq12vVqtNphWrlwJSZLw2GOP3XG/9957r8F26enpliifiIiIGihHa374wIEDMXDgwBrX+/v7G8x//fXX6Nu3L8LDw++4X0dHxyrbEhEREd3WYMYAFRYW4vvvv8fo0aPv2vbs2bMIDAxEeHg4nnnmGeTn59+xvU6ng1arNZiIiIio8WowAWj16tXw8PDA0KFD79iuW7duWLVqFbZt24Zly5YhNzcXDzzwAK5du1bjNikpKVCpVPIUHBxs7vKJiIjIhkhCCGHtIoBbA563bNmC+Pj4atdHRETgoYcewocffmjUfouLixESEoKFCxfWePZIp9NBp9PJ81qtFsHBwdBoNPD09DTq84iIiMg6tFotVCpVrX6/rToGqLb+85//4MyZM9i4caPR23p5eaFNmzbIzs6usY1SqYRSqaxLiURERNSANIhLYJ9++imio6MRFRVl9LYlJSXIyclBQECABSojIiKihsiqAaikpARZWVnIysoCAOTm5iIrK8tg0LJWq8WmTZswZsyYavfRr18/LFmyRJ6fPHky9uzZg7y8PGRkZGDIkCFQKBRISEiw6LEQERFRw2HVS2BHjhxB37595fmkpCQAQGJiIlatWgUA2LBhA4QQNQaYnJwcFBUVyfMXL15EQkICrl69Ch8fH/Ts2RMHDhyAj4+P5Q6EiIiIGhSbGQRtS4wZREVERES2wZjf7wYxBoiIiIjInBiAiIiIyO4wABEREZHdYQAiIiIiu8MARERERHaHAYiIiIjsDgMQERER2R0GICIiIrI7DEBERERkdxiAiIiIyO4wABEREZHdYQAiIiIiu8MARERERHaHAYiIiIjsDgMQERER2R0GICIiIrI7DEBERERkdxiAiIiIyO4wABEREZHdYQAiIiIiu8MARERERHaHAYiIiIjsDgMQERER2R0GICIiIrI7DEBERERkdxiAiIiIyO4wABEREZHdYQAiIiIiu8MARERERHaHAYiIiIjsDgMQERGRnVBrypGRUwS1ptzapVidVQPQ3r17MWjQIAQGBkKSJHz11VcG60eOHAlJkgymAQMG3HW/S5cuRWhoKFxcXNCtWzccOnTIQkdARETUMGw8nI/Y+Tvx9IqDiJ2/ExsP51u7JKuyagAqLS1FVFQUli5dWmObAQMGQK1Wy9P69evvuM+NGzciKSkJM2fORGZmJqKiohAXF4fLly+bu3wiIqIGQa0pR/Lm49CLW/N6AUzbfMKuzwQ5WvPDBw4ciIEDB96xjVKphL+/f633uXDhQowdOxajRo0CACxfvhzff/89Vq5cialTp9apXiIiooYot6hUDj+3VQqBvKIyBKhcrVOUldn8GKDdu3fD19cXbdu2xYsvvoirV6/W2PbGjRs4evQo+vfvLy9zcHBA//79sX///hq30+l00Gq1BhMREVFjEebtDgfJcJlCkhDq7WadgmyATQegAQMG4LPPPkNaWhreeecd7NmzBwMHDkRlZWW17YuKilBZWQk/Pz+D5X5+figoKKjxc1JSUqBSqeQpODjYrMdBRERkTQEqV6QMjYRCupWCFJKEeUM72O3ZH8DKl8Du5qmnnpL/HRkZiY4dO6Jly5bYvXs3+vXrZ7bPSU5ORlJSkjyv1WoZgoiIqFEZ1qUFerXxQV5RGUK93ew6/AA2HoD+Kjw8HN7e3sjOzq42AHl7e0OhUKCwsNBgeWFh4R3HESmVSiiVSrPXS0REZEsCVK52H3xus+lLYH918eJFXL16FQEBAdWud3Z2RnR0NNLS0uRler0eaWlpiImJqa8yiYiIyMZZNQCVlJQgKysLWVlZAIDc3FxkZWUhPz8fJSUleO2113DgwAHk5eUhLS0NgwcPRqtWrRAXFyfvo1+/fliyZIk8n5SUhBUrVmD16tU4deoUXnzxRZSWlsp3hRERERFZ9RLYkSNH0LdvX3n+9jicxMRELFu2DD/99BNWr16N4uJiBAYG4uGHH8acOXMMLlfl5OSgqKhInh82bBiuXLmCGTNmoKCgAJ06dcK2bduqDIwmIiIi+yUJIcTdm9kXrVYLlUoFjUYDT09Pa5dDREREtWDM73eDGgNEREREZA4MQERERGR3GICIiIjI7jAAERERkd1hACIiIiK7wwBEREREdocBiIiIiOwOAxARERHZHQYgIiIisjsMQERERGR3GICIiIjI7jAAERERkd1hACIiIiK7wwBEREREdocBiIiIiOwOAxARERHZHQYgIiIisjsMQERERGR3GICIiIjI7jAAERERkd1hACIiIiK7wwBEREREdocBiIiIiOwOAxARERHZHQYgIiIisjsMQERERGR3TA5AoaGhmD17NvLz881ZDxEREZHFmRyAJk2ahM2bNyM8PBwPPfQQNmzYAJ1OZ87aiIiIiCyiTgEoKysLhw4dQrt27fDSSy8hICAAEyZMQGZmpjlrJCIiIjIrSQghzLGjiooKfPTRR5gyZQoqKioQGRmJl19+GaNGjYIkSeb4iHqj1WqhUqmg0Wjg6elp7XKIiIioFoz5/Xas64dVVFRgy5YtSE1Nxfbt29G9e3eMHj0aFy9exLRp07Bjxw6sW7eurh9DREREZDYmXwLLzMw0uOx177334sSJE0hPT8eoUaMwffp07NixA1u2bKlxH3v37sWgQYMQGBgISZLw1VdfyesqKiowZcoUREZGwt3dHYGBgRgxYgQuXbp0x7pmzZoFSZIMpoiICFMPk4iIiBohkwNQly5dcPbsWSxbtgy//vor/vGPf1QJGmFhYXjqqadq3EdpaSmioqKwdOnSKuvKysqQmZmJ6dOnIzMzE5s3b8aZM2fw6KOP3rW2e++9F2q1Wp7S09ONP0AiIiJqtEy+BHbu3DmEhITcsY27uztSU1NrXD9w4EAMHDiw2nUqlQrbt283WLZkyRJ07doV+fn5aNGiRY37dXR0hL+//x1rIyIiIvtl8hmgvn374urVq1WWFxcXIzw8vE5F1USj0UCSJHh5ed2x3dmzZxEYGIjw8HA888wzd31WkU6ng1arNZiIiIio8TI5AOXl5aGysrLKcp1Oh19//bVORVXn+vXrmDJlChISEu44srtbt25YtWoVtm3bhmXLliE3NxcPPPAArl27VuM2KSkpUKlU8hQcHGz2+omIiMh2GH0J7JtvvpH//cMPP0ClUsnzlZWVSEtLQ2hoqFmKu62iogJPPvkkhBBYtmzZHdv++ZJax44d0a1bN4SEhOBf//oXRo8eXe02ycnJSEpKkue1Wi1DEBERUSNmdACKj48HAEiShMTERIN1Tk5OCA0NxXvvvWeW4oA/ws/58+exc+dOo5/L4+XlhTZt2iA7O7vGNkqlEkqlsq6lEhERUQNhdADS6/UAbt3hdfjwYXh7e5u9qNtuh5+zZ89i165daN68udH7KCkpQU5ODoYPH26BComIiKghMnkMUG5ubp3DT0lJCbKyspCVlSXvMysrC/n5+aioqMDjjz+OI0eOYO3ataisrERBQQEKCgpw48YNeR/9+vXDkiVL5PnJkydjz549yMvLQ0ZGBoYMGQKFQoGEhIQ61UpERESNh8m3wc+ePfuO62fMmHHXfRw5cgR9+/aV52+Pw0lMTMSsWbPk8UadOnUy2G7Xrl3o06cPACAnJwdFRUXyuosXLyIhIQFXr16Fj48PevbsiQMHDsDHx6c2h0VERER2wOR3gd13330G8xUVFcjNzYWjoyNatmzZoF+IyneBERERNTz18i6wY8eOVfvBI0eOxJAhQ0zdLREREZHFmTwGqDqenp546623MH36dHPuloiIiMiszBqAgFtPa9ZoNObeLREREZHZmHwJ7IMPPjCYF0JArVbj888/r/H9XkRERES2wOQAtGjRIoN5BwcH+Pj4IDExEcnJyXUujIiIiMhSTA5Aubm55qyDiIiIqN7UaQyQEAJFRUXVvhWeiIiIyFaZFIAKCgowYsQING3aFH5+fvD19UXTpk3x3HPPobCw0Nw1EhEREZmV0ZfAtFotevTogZKSEowaNQoREREQQuDnn3/G+vXrkZ6ejszMTDRp0sQS9RIRERHVmdEB6P3334dCocDJkyervF7izTffRGxsLD744ANMmzbNbEUSERERmZPRl8C+//57TJs2rdp3a/n6+iI5ORnffvutWYojIiIisgSjA9Avv/yCHj161Li+R48eOHPmTJ2KIiIiIrIkowOQVquFl5dXjeu9vLyg1WrrUhMRERGRRRkdgIQQcHCoeTNJkmDiC+aJiIiI6oXRg6CFEGjTpg0kSapxPREREZEtMzoApaamWqIOIiIionpjdABKTEw0qv369evx6KOPwt3d3diPIiIiIrKIOr0Kozb+7//+j0+HJiIiIpti8QDEMUFERERkaywegIiIiIhsDQMQEdWKWlOOjJwiqDXl1i6FiKjOjB4ETUT2Z+PhfCRvPg69ABwkIGVoJIZ1aWHtsoiITMYzQER0R2pNuRx+AEAvgGmbT/BMEBE1aCYFoMrKSuzduxfFxcV3bRsSEgInJydTPoaIbEBuUakcfm6rFAJ5RWXWKYiIyAxMCkAKhQIPP/wwfv/997u2PXHiBIKDg035GCKyAWHe7nD4y4PfFZKEUG836xRERGQGJl8C69ChA86dO2fOWojIBgWoXJEyNBKK/73+RiFJmDe0AwJUrlaujIjIdJIw8UE927ZtQ3JyMubMmYPo6OgqT3r29PQ0S4HWoNVqoVKpoNFoGvRxEJmTWlOOvKIyhHq7MfwQkU0y5vfb5AD05zfC//nFqEIISJKEyspKU3ZrExiAiIiIGh5jfr9Nvg1+165dpm5KREREZFUmB6DevXubsw4iIiKielOn5wD95z//wbPPPosePXrg119/BQB8/vnnSE9Pr9X2e/fuxaBBgxAYGAhJkvDVV18ZrBdCYMaMGQgICICrqyv69++Ps2fP3nW/S5cuRWhoKFxcXNCtWzccOnTI6GMjIiKixsvkAPTll18iLi4Orq6uyMzMhE6nAwBoNBrMmzevVvsoLS1FVFQUli5dWu36BQsW4IMPPsDy5ctx8OBBuLu7Iy4uDtevX69xnxs3bkRSUhJmzpyJzMxMREVFIS4uDpcvXzb+IImIiKhxEibq1KmTWL16tRBCiCZNmoicnBwhhBCZmZnCz8/P6P0BEFu2bJHn9Xq98Pf3F++++668rLi4WCiVSrF+/foa99O1a1cxfvx4eb6yslIEBgaKlJSUWtei0WgEAKHRaIw7CCIiIrIaY36/TT4DdObMGfTq1avKcpVKVasnRN9Nbm4uCgoK0L9/f4N9d+vWDfv37692mxs3buDo0aMG2zg4OKB///41bgMAOp0OWq3WYCIiIqLGy+QA5O/vj+zs7CrL09PTER4eXqeiAKCgoAAA4OfnZ7Dcz89PXvdXRUVFqKysNGobAEhJSYFKpZInPrmaiIiocTM5AI0dOxYTJ07EwYMHIUkSLl26hLVr12Ly5Ml48cUXzVmjxSUnJ0Oj0cjThQsXrF0SERGR2ak15cjIKeLLjFGH2+CnTp0KvV6Pfv36oaysDL169YJSqcTkyZPx0ksv1bkwf39/AEBhYSECAgLk5YWFhejUqVO123h7e0OhUKCwsNBgeWFhoby/6iiVSiiVyjrXTEREZKs2Hs5H8ubj0AvAQQJShkZiWJcW1i7Lakw+AyRJEt544w389ttvOHHiBA4cOIArV65gzpw5ZiksLCwM/v7+SEtLk5dptVocPHgQMTEx1W7j7OyM6Ohog230ej3S0tJq3IaIiKixU2vK5fADAHoBTNt8wq7PBJl8Bug2Z2dntG/f3qRtS0pKDMYR5ebmIisrC82aNUOLFi0wadIkzJ07F61bt0ZYWBimT5+OwMBAxMfHy9v069cPQ4YMwYQJEwAASUlJSExMROfOndG1a1csXrwYpaWlGDVqVJ2Ok4iIqKHKLSqVw89tlUIgr6jMbt/tZ3IAun79Oj788EPs2rULly9fhl6vN1ifmZl5130cOXIEffv2leeTkpIAAImJiVi1ahVef/11lJaW4vnnn0dxcTF69uyJbdu2wcXFRd4mJycHRUVF8vywYcNw5coVzJgxAwUFBejUqRO2bdtWZWA0ERGRvQjzdoeDBIMQpJAkhHq7Wa8oKzP5ZajPPPMMfvzxRzz++OPw8/MzeCEqAMycOdMsBVoDX4ZKjYFaU47colKEebvb7X/hEdEfNh7Ox7TNJ1ApBBSShHlDOzS6MUD18jZ4lUqFrVu3IjY21qQibRkDEDV0HOxIRNVRa8qRV1SGUG+3RvkfRsb8fps8CDooKAgeHh6mbk5EFsLBjkRUkwCVK2JaNm+U4cdYJgeg9957D1OmTMH58+fNWQ8R1dGdBjsSEdEtJg+C7ty5M65fv47w8HC4ubnBycnJYP1vv/1W5+KIyHgc7EhEdHcmB6CEhAT8+uuvmDdvXrWDoInIOgJUrkgZGlllsCNPeRMR/cHkQdBubm7Yv38/oqKizF2T1XEQNDUGjX2wIxHRXxnz+23yGaCIiAiUl3NQJZGtClC5MvgQEdXA5EHQ8+fPx6uvvordu3fj6tWr0Gq1BhMRERGRrTL5EpiDw63s9NexP0IISJKEysrKuldnJbwERkRE1PDUyyWwXbt2mbopERERkVWZFIAqKiowe/ZsLF++HK1btzZ3TUREREQWZdIYICcnJ/z000/mroWIiIioXpg8CPrZZ5/Fp59+as5aiIiIiOqFyWOAbt68iZUrV2LHjh2Ijo6Gu7u7wfqFCxfWuTgiIiIiSzA5AJ04cQL3338/AOCXX34xWMenQhMREZEt411gREREZHdMHgP0ZxcvXsTFixfNsatGT60pR0ZOEdQaPkWbiIjIWkwOQHq9HrNnz4ZKpUJISAhCQkLg5eWFOXPmQK/Xm7PGRmPj4XzEzt+Jp1ccROz8ndh4ON/aJREREdklky+BvfHGG/j0008xf/58xMbGAgDS09Mxa9YsXL9+HW+//bbZimwM1JpyJG8+Dv3/nrutF8C0zSfQq40P39dERERUz0wOQKtXr8Y///lPPProo/Kyjh07IigoCOPGjWMA+ovcolI5/NxWKQTyisoYgIiIiOqZyZfAfvvtN0RERFRZHhERgd9++61ORTVGYd7ucPjLzXEKSUKot5t1CiIiIrJjJgegqKgoLFmypMryJUuWICoqqk5FNUYBKlekDI2E4n+PCFBIEuYN7cCzP0RERFZg8iWwBQsW4JFHHsGOHTsQExMDANi/fz8uXLiArVu3mq3AxmRYlxbo1cYHeUVlCPV2Y/ghIiKyEkkIIe7erHqXLl3C0qVLcfr0aQBAu3btMG7cOAQGBpqtQGvQarVQqVTQaDTw9PS0djlERERUC8b8fht1Bmjo0KFYtWoVPD098dlnn2HYsGEc7ExEREQNjlFjgL777juUlpYCAEaNGgWNRmORooiIiIgsyagzQBEREUhOTkbfvn0hhMC//vWvGk8xjRgxwiwFEhEREZmbUWOAMjIykJSUhJycHPz222/w8PCo9sWnkiQ16FvhOQaIiIio4THm99vkQdAODg4oKCiAr6+vSUXaMgYgIiKihseY32+TnwOUm5sLHx8fUzcnIiIishqTA1BISAjS09Px7LPPIiYmBr/++isA4PPPP0d6errZCiQiIiIyN5MD0Jdffom4uDi4urri2LFj0Ol0AACNRoN58+aZrcDQ0FBIklRlGj9+fLXtV61aVaWti4uL2eohIiKihs/kADR37lwsX74cK1asgJOTk7w8NjYWmZmZZikOAA4fPgy1Wi1P27dvBwA88cQTNW7j6elpsM358+fNVg8RERE1fCa/CuPMmTPo1atXleUqlQrFxcV1qcnAX8cZzZ8/Hy1btkTv3r1r3EaSJPj7+5utBiJrUmvKkVtUijBvd74+hYjITEw+A+Tv74/s7Owqy9PT0xEeHl6nompy48YNrFmzBs8991y1t9/fVlJSgpCQEAQHB2Pw4ME4efLkHfer0+mg1WoNJiJbsPFwPmLn78TTKw4idv5ObDycb+2SiIgaBZMD0NixYzFx4kQcPHgQkiTh0qVLWLt2LV599VW8+OKL5qxR9tVXX6G4uBgjR46ssU3btm2xcuVKfP3111izZg30ej169OiBixcv1rhNSkoKVCqVPAUHB1ugeiLjqDXlSN58HPr/PahCL4Bpm09ArSm3bmFERI2Ayc8BEkJg3rx5SElJQVlZGQBAqVTitddeQ3JyMlxdzX+qPi4uDs7Ozvj2229rvU1FRQXatWuHhIQEzJkzp9o2Op1OHsQN3HqOQHBwMJ8DRFaVkVOEp1ccrLJ8/djuiGnZ3AoVERHZtnp5DpAkSXjjjTfw22+/4cSJEzhw4ACuXLkClUqFsLAwU3dbo/Pnz2PHjh0YM2aMUds5OTnhvvvuq/Zy3W1KpRKenp4GE5G1hXm7w+EvV3oVkoRQbzfrFERE1IgYHYB0Oh2Sk5PRuXNnxMbGYuvWrWjfvj1OnjyJtm3b4v3338crr7xi9kJTU1Ph6+uLRx55xKjtKisrcfz4cQQEBJi9JiJLClC5ImVoJBT/G++mkCTMG9qBA6GJiMzA6LvAZsyYgY8//hj9+/dHRkYGnnjiCYwaNQoHDhzAe++9hyeeeAIKhcKsRer1eqSmpiIxMRGOjoYljxgxAkFBQUhJSQEAzJ49G927d0erVq1QXFyMd999F+fPnzf6zBGRLRjWpQV6tfFBXlEZQr3dGH6IiMzE6AC0adMmfPbZZ3j00Udx4sQJdOzYETdv3sR///vfO96ZVRc7duxAfn4+nnvuuSrr8vPz4eDwx4ms33//HWPHjkVBQQGaNm2K6OhoZGRkoH379hapjcjSAlSuDD5ERGZm9CBoZ2dn5ObmIigoCADg6uqKQ4cOITIy0iIFWgNfhkpERNTwWHQQdGVlJZydneV5R0dHNGnSxPgqiYiIiKzE6EtgQgiMHDkSSqUSAHD9+nW88MILcHd3N2i3efNm81RIREREZGZGB6DExESD+WeffdZsxRARERHVB6MDUGpqqiXqICIiIqo3Jj8IkYiIiKihYgAiIiIiu8MAREREAG69gDcjp4gv3CW7YPQYICIianw2Hs5H8ubj0AvAQQJShkZiWJcW1i6LyGJ4BoiIyM6pNeVy+AEAvQCmbT7BM0HUqDEAERHZudyiUjn83FYpBPKKyqxTEFE9YAAiIrJzYd7ucPjLqxwVkoRQbzfrFERUDxiAiIjsXIDKFSlDI6H43wutFZKEeUM78CW81KhxEDQREWFYlxbo1cYHeUVlCPV2Y/ihRo8BiIiIANw6E8TgQ8ZQa8qRW1SKMG/3BvfdYQAiIiIiozX0RydwDBAREREZpTE8OoEBiIiIiIzSGB6dwABERERERmkMj05gACIiIiKjNIZHJ3AQNBERERmtoT86gQGIiIiITNKQH53AS2BERERkdxiAiIiIyO4wABEREZHdYQAiIiIiu8MARERERHaHAYiIiIjsDgMQERER2R0GICIiIrI7DEBERERkdxiAiIiIyO7YfACaNWsWJEkymCIiIu64zaZNmxAREQEXFxdERkZi69at9VQtERERNQQ2H4AA4N5774VarZan9PT0GttmZGQgISEBo0ePxrFjxxAfH4/4+HicOHGiHismIiIiW9YgApCjoyP8/f3lydvbu8a277//PgYMGIDXXnsN7dq1w5w5c3D//fdjyZIl9VgxERER2bIGEYDOnj2LwMBAhIeH45lnnkF+fn6Nbffv34/+/fsbLIuLi8P+/ftr3Ean00Gr1RpMRERE1HjZfADq1q0bVq1ahW3btmHZsmXIzc3FAw88gGvXrlXbvqCgAH5+fgbL/Pz8UFBQUONnpKSkQKVSyVNwcLBZj4GIiIhsi80HoIEDB+KJJ55Ax44dERcXh61bt6K4uBj/+te/zPYZycnJ0Gg08nThwgWz7ZuIiIhsj6O1CzCWl5cX2rRpg+zs7GrX+/v7o7Cw0GBZYWEh/P39a9ynUqmEUqk0a51ERERku2z+DNBflZSUICcnBwEBAdWuj4mJQVpamsGy7du3IyYmpj7KIyKi/1FrypGRUwS1ptzapRBVYfNngCZPnoxBgwYhJCQEly5dwsyZM6FQKJCQkAAAGDFiBIKCgpCSkgIAmDhxInr37o333nsPjzzyCDZs2IAjR47gk08+seZhEBHZlY2H85G8+Tj0AnCQgJShkRjWpYW1yyKS2fwZoIsXLyIhIQFt27bFk08+iebNm+PAgQPw8fEBAOTn50OtVsvte/TogXXr1uGTTz5BVFQUvvjiC3z11Vfo0KGDtQ6BiMiuqDXlcvgBAL0Apm0+wTNBZFMkIYSwdhG2RqvVQqVSQaPRwNPT09rlEBE1KBk5RXh6xcEqy9eP7Y6Yls2tUBHZC2N+v23+DBARUUPCcS9AmLc7HCTDZQpJQqi3m3UKIqoGAxARkZlsPJyP2Pk78fSKg4idvxMbD9f80NbGLEDlipShkVBIt1KQQpIwb2gHBKhcrVwZ0R94CawavARGRMZSa8oRO3+nPO4FuPXDnz61r93+8Ks15cgrKkOot5vd9gHVL2N+v23+LjAiooYgt6jUIPwAQKUQyCsqs9sf/wCVq90eO9k+XgIjIjIDjnshalgYgIiIzIDjXogaFl4CIyIyk2FdWqBXGx+OeyFqABiAiIjMiONeiBoGXgIjIiIiu8MARERERHaHAYiIiIjsDgMQERER2R0GICIiIrI7DEBERERkdxiAiIiIyO4wABEREZHdYQAii1JrypGRUwS1ptzapRAREcn4JGiymI2H85G8+Tj0AnCQgJShkRjWpYW1yyIiIuIZILIMtaZcDj8AoBfAtM0neCaIiIhsAgMQWURuUakcfm6rFAJ5RWXWKYiIiOhPGIDIIsK83eEgGS5TSBJCvd2sUxAREdGfMACRRQSoXJEyNBIK6VYKUkgS5g3twLdkExGRTeAgaLKYYV1aoFcbH+QVlSHU243hh4iIbAYDEFlUgMqVwYeIiGwOL4ER2Rk+m4mIiGeAiOwKn81ERHQLzwAR2Qk+m4mI6A8MQER2gs9mIiL6AwMQkZ3gs5mIiP7AAERkJ/hsJiKiP3AQNJEd4bOZiIhusfkzQCkpKejSpQs8PDzg6+uL+Ph4nDlz5o7brFq1CpIkGUwuLi71VDGRbQtQuSKmZXOGHyKyazYfgPbs2YPx48fjwIED2L59OyoqKvDwww+jtLT0jtt5enpCrVbL0/nz5+upYiIiIrJ1Nn8JbNu2bQbzq1atgq+vL44ePYpevXrVuJ0kSfD397d0eURERNQA2fwZoL/SaDQAgGbNmt2xXUlJCUJCQhAcHIzBgwfj5MmTNbbV6XTQarUGExERETVeDSoA6fV6TJo0CbGxsejQoUON7dq2bYuVK1fi66+/xpo1a6DX69GjRw9cvHix2vYpKSlQqVTyFBwcbKlDICIiIhsgCSHE3ZvZhhdffBH//ve/kZ6ejnvuuafW21VUVKBdu3ZISEjAnDlzqqzX6XTQ6XTyvFarRXBwMDQaDTw9Pc1SOxEREVmWVquFSqWq1e+3zY8Bum3ChAn47rvvsHfvXqPCDwA4OTnhvvvuQ3Z2drXrlUollEqlOcokIiKiBsDmL4EJITBhwgRs2bIFO3fuRFhYmNH7qKysxPHjxxEQEGCBComIiKihsfkzQOPHj8e6devw9ddfw8PDAwUFBQAAlUoFV9dbzzEZMWIEgoKCkJKSAgCYPXs2unfvjlatWqG4uBjvvvsuzp8/jzFjxljtOIgsQa0pR25RKcK83flcHyIiI9h8AFq2bBkAoE+fPgbLU1NTMXLkSABAfn4+HBz+OJn1+++/Y+zYsSgoKEDTpk0RHR2NjIwMtG/fvr7KJrK4jYfz5be7O0hAytBIDOvSwtplERE1CA1qEHR9MWYQFZE1qDXliJ2/0+Dt7gpJQvrUvjwTRER2y5jfb5sfA0REVeUWlRqEHwCoFAJ5RWXWKYiIqIFhACJqgMK83eEgGS5TSBJCvd2sUxARUQPDAETUAAWoXJEyNBIK6VYKUkgS5g3twMtfRES1ZPODoKlh411KljOsSwv0auODvKIyhHq7sX+JiIzAAEQWw7uULC9A5crgQ0RkAl4CI4tQa8rl8AMAegFM23wCak25dQsjIiICAxBZCO9SIiIiW8YARBbBu5SIiMiWMQCRRfAuJSIismUcBE0Ww7uUiIjIVjEAkUXxLiUiIrJFvARGREREdocBiIiIiOwOAxARERHZHQYgIiIisjsMQERERGR3GICIiIjI7jAAERHRXak15cjIKeL7/KjR4HOAiIjojjYezpdfbuwgASlDIzGsSwtrl0VUJzwDRERENVJryuXwAwB6AUzbfIJngqjBYwAiIqIa5RaVyuHntkohkFdUZp2CiMyEAYiIiGoU5u0OB8lwmUKSEOrtZp2CiMyEAYiIiGoUoHJFytBIKKRbKUghSZg3tAPf8UcNHgdBExHRHQ3r0gK92vggr6gMod5uDD/UKDAAERHRXQWoXK0efNSacuQWlSLM293qtVDDxwDUwPEPAhHZA96KT+bGANSA8Q8CNVYM9vRnNd2K36uND78fZDIGoAaKfxCosWKwp7+60634/HtHpuJdYA0Un81BjREfukfV4a34ZAkMQA0U/yBQY8RgT9XhrfhkCQ0iAC1duhShoaFwcXFBt27dcOjQoTu237RpEyIiIuDi4oLIyEhs3bq1niqtP/yDQI0Rgz3VZFiXFkif2hfrx3ZH+tS+vCxKdWbzAWjjxo1ISkrCzJkzkZmZiaioKMTFxeHy5cvVts/IyEBCQgJGjx6NY8eOIT4+HvHx8Thx4kQ9V255/INgPXwztmUw2NOdBKhcEdOyOb8PZBaSEELcvZn1dOvWDV26dMGSJUsAAHq9HsHBwXjppZcwderUKu2HDRuG0tJSfPfdd/Ky7t27o1OnTli+fHmtPlOr1UKlUkGj0cDT09M8B0KNBgfpWp5aU86H7hGR0Yz5/bbpM0A3btzA0aNH0b9/f3mZg4MD+vfvj/3791e7zf79+w3aA0BcXFyN7YmMwUG69YP/pU9ElmbTt8EXFRWhsrISfn5+Bsv9/Pxw+vTparcpKCiotn1BQUGNn6PT6aDT6eR5rVZbh6qpMePtuEREjYNNnwGqLykpKVCpVPIUHBxs7ZLIRnGQLhFR42DTAcjb2xsKhQKFhYUGywsLC+Hv71/tNv7+/ka1B4Dk5GRoNBp5unDhQt2Lp0aJg3SJiBoHm74E5uzsjOjoaKSlpSE+Ph7ArUHQaWlpmDBhQrXbxMTEIC0tDZMmTZKXbd++HTExMTV+jlKphFKpNGfp1IjxzdhERA2fTQcgAEhKSkJiYiI6d+6Mrl27YvHixSgtLcWoUaMAACNGjEBQUBBSUlIAABMnTkTv3r3x3nvv4ZFHHsGGDRtw5MgRfPLJJ9Y8DGpkbOHN2EREZDqbD0DDhg3DlStXMGPGDBQUFKBTp07Ytm2bPNA5Pz8fDg5/XMnr0aMH1q1bhzfffBPTpk1D69at8dVXX6FDhw7WOgQiIiKyMTb/HCBr4HOAiIiIGp5G8xwgIiIiIktgACIiIiK7wwBEREREdocBiIiIiOwOAxARERHZHQYgIiIisjsMQERERGR3GICIiIjI7jAAERERkd2x+VdhWMPth2NrtVorV0JERES1dft3uzYvuWAAqsa1a9cAAMHBwVauhIiIiIx17do1qFSqO7bhu8CqodfrcenSJXh4eECSpGrbaLVaBAcH48KFC3b/vjD2xS3sh1vYD39gX9zCfriF/fAHS/WFEALXrl1DYGCgwYvSq8MzQNVwcHDAPffcU6u2np6edv9Fvo19cQv74Rb2wx/YF7ewH25hP/zBEn1xtzM/t3EQNBEREdkdBiAiIiKyOwxAJlIqlZg5cyaUSqW1S7E69sUt7Idb2A9/YF/cwn64hf3wB1voCw6CJiIiIrvDM0BERERkdxiAiIiIyO4wABEREZHdYQAiIiIiu8MAdAdLly5FaGgoXFxc0K1bNxw6dKjGtidPnsRjjz2G0NBQSJKExYsX11+h9cCYvlixYgUeeOABNG3aFE2bNkX//v3v2L4hMaYfNm/ejM6dO8PLywvu7u7o1KkTPv/883qs1nKM6Yc/27BhAyRJQnx8vGULrEfG9MWqVasgSZLB5OLiUo/VWo6x34ni4mKMHz8eAQEBUCqVaNOmDbZu3VpP1VqOMf3Qp0+fKt8HSZLwyCOP1GPFlmHs92Hx4sVo27YtXF1dERwcjFdeeQXXr1+3bJGCqrVhwwbh7OwsVq5cKU6ePCnGjh0rvLy8RGFhYbXtDx06JCZPnizWr18v/P39xaJFi+q3YAsyti+efvppsXTpUnHs2DFx6tQpMXLkSKFSqcTFixfruXLzMrYfdu3aJTZv3ix+/vlnkZ2dLRYvXiwUCoXYtm1bPVduXsb2w225ubkiKChIPPDAA2Lw4MH1U6yFGdsXqampwtPTU6jVankqKCio56rNz9h+0Ol0onPnzuJvf/ubSE9PF7m5uWL37t0iKyurnis3L2P74erVqwbfhRMnTgiFQiFSU1Prt3AzM7Yf1q5dK5RKpVi7dq3Izc0VP/zwgwgICBCvvPKKRetkAKpB165dxfjx4+X5yspKERgYKFJSUu66bUhISKMKQHXpCyGEuHnzpvDw8BCrV6+2VIn1oq79IIQQ9913n3jzzTctUV69MaUfbt68KXr06CH++c9/isTExEYTgIzti9TUVKFSqeqpuvpjbD8sW7ZMhIeHixs3btRXifWirn8jFi1aJDw8PERJSYmlSqwXxvbD+PHjxYMPPmiwLCkpScTGxlq0Tl4Cq8aNGzdw9OhR9O/fX17m4OCA/v37Y//+/VasrP6Zoy/KyspQUVGBZs2aWapMi6trPwghkJaWhjNnzqBXr16WLNWiTO2H2bNnw9fXF6NHj66PMuuFqX1RUlKCkJAQBAcHY/DgwTh58mR9lGsxpvTDN998g5iYGIwfPx5+fn7o0KED5s2bh8rKyvoq2+zM8bfy008/xVNPPQV3d3dLlWlxpvRDjx49cPToUfky2blz57B161b87W9/s2itfBlqNYqKilBZWQk/Pz+D5X5+fjh9+rSVqrIOc/TFlClTEBgYaPB/iIbG1H7QaDQICgqCTqeDQqHARx99hIceesjS5VqMKf2Qnp6OTz/9FFlZWfVQYf0xpS/atm2LlStXomPHjtBoNPjHP/6BHj164OTJk7V+AbOtMaUfzp07h507d+KZZ57B1q1bkZ2djXHjxqGiogIzZ86sj7LNrq5/Kw8dOoQTJ07g008/tVSJ9cKUfnj66adRVFSEnj17QgiBmzdv4oUXXsC0adMsWisDEFnU/PnzsWHDBuzevbvRDPY0hoeHB7KyslBSUoK0tDQkJSUhPDwcffr0sXZp9eLatWsYPnw4VqxYAW9vb2uXY3UxMTGIiYmR53v06IF27drh448/xpw5c6xYWf3S6/Xw9fXFJ598AoVCgejoaPz666949913G2wAqqtPP/0UkZGR6Nq1q7VLqXe7d+/GvHnz8NFHH6Fbt27Izs7GxIkTMWfOHEyfPt1in8sAVA1vb28oFAoUFhYaLC8sLIS/v7+VqrKOuvTFP/7xD8yfPx87duxAx44dLVmmxZnaDw4ODmjVqhUAoFOnTjh16hRSUlIabAAyth9ycnKQl5eHQYMGycv0ej0AwNHREWfOnEHLli0tW7SFmOPvhJOTE+677z5kZ2dbosR6YUo/BAQEwMnJCQqFQl7Wrl07FBQU4MaNG3B2drZozZZQl+9DaWkpNmzYgNmzZ1uyxHphSj9Mnz4dw4cPx5gxYwAAkZGRKC0txfPPP4833ngDDg6WGa3DMUDVcHZ2RnR0NNLS0uRler0eaWlpBv/1Zg9M7YsFCxZgzpw52LZtGzp37lwfpVqUub4Ter0eOp3OEiXWC2P7ISIiAsePH0dWVpY8Pfroo+jbty+ysrIQHBxcn+WblTm+E5WVlTh+/DgCAgIsVabFmdIPsbGxyM7OlsMwAPzyyy8ICAhokOEHqNv3YdOmTdDpdHj22WctXabFmdIPZWVlVULO7XAsLPm6UosOsW7ANmzYIJRKpVi1apX4+eefxfPPPy+8vLzkW1aHDx8upk6dKrfX6XTi2LFj4tixYyIgIEBMnjxZHDt2TJw9e9Zah2A2xvbF/PnzhbOzs/jiiy8MbvG8du2atQ7BLIzth3nz5okff/xR5OTkiJ9//ln84x//EI6OjmLFihXWOgSzMLYf/qox3QVmbF+89dZb4ocffhA5OTni6NGj4qmnnhIuLi7i5MmT1joEszC2H/Lz84WHh4eYMGGCOHPmjPjuu++Er6+vmDt3rrUOwSxM/f9Gz549xbBhw+q7XIsxth9mzpwpPDw8xPr168W5c+fEjz/+KFq2bCmefPJJi9bJAHQHH374oWjRooVwdnYWXbt2FQcOHJDX9e7dWyQmJsrzubm5AkCVqXfv3vVfuAUY0xchISHV9sXMmTPrv3AzM6Yf3njjDdGqVSvh4uIimjZtKmJiYsSGDRusULX5GdMPf9WYApAQxvXFpEmT5LZ+fn7ib3/7m8jMzLRC1eZn7HciIyNDdOvWTSiVShEeHi7efvttcfPmzXqu2vyM7YfTp08LAOLHH3+s50oty5h+qKioELNmzRItW7YULi4uIjg4WIwbN078/vvvFq1REsKS55eIiIiIbA/HABEREZHdYQAiIiIiu8MARERERHaHAYiIiIjsDgMQERER2R0GICIiIrI7DEBERERkdxiAiIisaOTIkYiPj7d2GUR2hwGIiKo1cuRISJIkT82bN8eAAQPw008/Wbs0s/jzsd2eevbsabHPy8vLgyRJyMrKMlj+/vvvY9WqVRb7XCKqHgMQEdVowIABUKvVUKvVSEtLg6OjI/7+979buyyzSU1NlY9PrVbjm2++qbZdRUWFxWpQqVTw8vKy2P6JqHoMQERUI6VSCX9/f/j7+6NTp06YOnUqLly4gCtXruDBBx/EhAkTDNpfuXIFzs7O8pugQ0NDMWfOHCQkJMDd3R1BQUFYunSpwTYLFy5EZGQk3N3dERwcjHHjxqGkpERef/78eQwaNAhNmzaFu7s77r33XmzduhUA8Pvvv+OZZ56Bj48PXF1d0bp1a6Smptb6+Ly8vOTj8/f3R7NmzeQzNRs3bkTv3r3h4uKCtWvX4urVq0hISEBQUBDc3NwQGRmJ9evXG+xPr9djwYIFaNWqFZRKJVq0aIG3334bABAWFgYAuO+++yBJEvr06QOg6iUwnU6Hl19+Gb6+vnBxcUHPnj1x+PBhef3u3bshSRLS0tLQuXNnuLm5oUePHjhz5kytj5uIGICIqJZKSkqwZs0atGrVCs2bN8eYMWOwbt066HQ6uc2aNWsQFBSEBx98UF727rvvIioqCseOHcPUqVMxceJEbN++XV7v4OCADz74ACdPnsTq1auxc+dOvP766/L68ePHQ6fTYe/evTh+/DjeeecdNGnSBAAwffp0/Pzzz/j3v/+NU6dOYdmyZfD29jbL8d6u9dSpU4iLi8P169cRHR2N77//HidOnMDzzz+P4cOH49ChQ/I2ycnJmD9/vlzXunXr4OfnBwByux07dkCtVmPz5s3Vfu7rr7+OL7/8EqtXr0ZmZiZatWqFuLg4/Pbbbwbt3njjDbz33ns4cuQIHB0d8dxzz5nluInshkVftUpEDVZiYqJQKBTC3d1duLu7CwAiICBAHD16VAghRHl5uWjatKnYuHGjvE3Hjh3FrFmz5PmQkBAxYMAAg/0OGzZMDBw4sMbP3bRpk2jevLk8HxkZabDPPxs0aJAYNWqUSccHQLi4uMjH5+7uLrZs2SJyc3MFALF48eK77uORRx4Rr776qhBCCK1WK5RKpVixYkW1bW/v99ixYwbLExMTxeDBg4UQQpSUlAgnJyexdu1aef2NGzdEYGCgWLBggRBCiF27dgkAYseOHXKb77//XgAQ5eXlxnQBkV3jGSAiqlHfvn2RlZWFrKwsHDp0CHFxcRg4cCDOnz8PFxcXDB8+HCtXrgQAZGZm4sSJExg5cqTBPmJiYqrMnzp1Sp7fsWMH+vXrh6CgIHh4eGD48OG4evUqysrKAAAvv/wy5s6di9jYWMycOdNgEPaLL76IDRs2oFOnTnj99deRkZFh1PEtWrRIPr6srCw89NBD8rrOnTsbtK2srMScOXMQGRmJZs2aoUmTJvjhhx+Qn58PADh16hR0Oh369etnVA1/lpOTg4qKCsTGxsrLnJyc0LVrV4M+A4COHTvK/w4ICAAAXL582eTPJrI3DEBEVCN3d3e0atUKrVq1QpcuXfDPf/4TpaWlWLFiBQBgzJgx2L59Oy5evIjU1FQ8+OCDCAkJqfX+8/Ly8Pe//x0dO3bEl19+iaNHj8pjhG7cuCF/xrlz5zB8+HAcP34cnTt3xocffggAchh75ZVXcOnSJfTr1w+TJ0+u9ef7+/vLx9eqVSu4u7sbHPufvfvuu3j//fcxZcoU7Nq1C1lZWYiLi5PrdHV1rfXnmoOTk5P8b0mSANwag0REtcMARES1JkkSHBwcUF5eDgCIjIxE586dsWLFCqxbt67acSgHDhyoMt+uXTsAwNGjR6HX6/Hee++he/fuaNOmDS5dulRlH8HBwXjhhRewefNmvPrqq3IAAwAfHx8kJiZizZo1WLx4MT755BNzHrJs3759GDx4MJ599llERUUhPDwcv/zyi7y+devWcHV1lQeA/5WzszOAW2eSatKyZUs4Oztj37598rKKigocPnwY7du3N9OREBEAOFq7ACKyXTqdDgUFBQBu3XG1ZMkSlJSUYNCgQXKbMWPGYMKECXB3d8eQIUOq7GPfvn1YsGAB4uPjsX37dmzatAnff/89AKBVq1aoqKjAhx9+iEGDBmHfvn1Yvny5wfaTJk3CwIED0aZNG/z+++/YtWuXHKBmzJiB6Oho3HvvvdDpdPjuu+/kdebWunVrfPHFF8jIyEDTpk2xcOFCFBYWysHExcUFU6ZMweuvvw5nZ2fExsbiypUrOHnyJEaPHg1fX1+4urpi27ZtuOeee+Di4gKVSmXwGe7u7njxxRfx2muvoVmzZmjRogUWLFiAsrIyjB492iLHRWSveAaIiGq0bds2BAQEICAgAN26dcPhw4exadMm+RZuAEhISICjoyMSEhLg4uJSZR+vvvoqjhw5gvvuuw9z587FwoULERcXBwCIiorCwoUL8c4776BDhw5Yu3YtUlJSDLavrKzE+PHj0a5dOwwYMABt2rTBRx99BODWWZXk5GR07NgRvXr1gkKhwIYNGyzSF2+++Sbuv/9+xMXFoU+fPvD396/yBOfp06fj1VdfxYwZM9CuXTsMGzZMHpfj6OiIDz74AB9//DECAwMxePDgaj9n/vz5eOyxxzB8+HDcf//9yM7Oxg8//ICmTZta5LiI7JUkhBDWLoKIGq68vDy0bNkShw8fxv3332+wLjQ0FJMmTcKkSZOsUxwRUQ14CYyITFJRUYGrV6/izTffRPfu3auEHyIiW8ZLYERkkn379iEgIACHDx+uMm7H2ubNm4cmTZpUOw0cONDa5RGRDeAlMCJqdH777bcqT06+zdXVFUFBQfVcERHZGgYgIiIisju8BEZERER2hwGIiIiI7A4DEBEREdkdBiAiIiKyOwxAREREZHcYgIiIiMjuMAARERGR3WEAIiIiIrvz/54a+Tn3rnT2AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARaFJREFUeJzt3Xl4VOXdxvF7soeQTFgSEjAk7IuEoCwWgmxiERUFWkVUBAStCiIgyqIIAhLEKrggWCqBCghVwVLFDQQtoBVZqiCigaAsYVOZGBJCSJ73D8u8TMOSTCYzk5Pv57rmupiz/s7jOHPnnOc8x2aMMQIAAKjgAnxdAAAAgCcQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagAAgCUQagB4xeTJk2Wz2Uq0rM1m0+TJk8u1ni5duqhLly5+uz0ApUeoASqZhQsXymazOV9BQUGqU6eOBg0apIMHD/q6PL+TlJTk0l6xsbG6+uqrtXLlSo9sPzc3V5MnT9b69es9sj2gMiPUAJXUlClT9Nprr2nevHnq2bOnFi9erM6dO+vUqVPlsr/HH39ceXl55bLt8taqVSu99tpreu211zRmzBgdOnRIffv21bx588q87dzcXD355JOEGsADgnxdAADf6Nmzp9q0aSNJGjp0qGrWrKmnn35aq1at0q233urx/QUFBSkoqGJ+5dSpU0d33nmn8/1dd92lhg0batasWbrvvvt8WBmAc3GmBoAk6eqrr5Yk7dmzx2X6t99+qz/+8Y+qXr26wsLC1KZNG61atcplmYKCAj355JNq1KiRwsLCVKNGDXXs2FEfffSRc5nz9anJz8/XqFGjFBMTo8jISN100006cOBAsdoGDRqkpKSkYtPPt8309HR169ZNsbGxCg0NVfPmzTV37txStcWlxMXFqVmzZsrMzLzockePHtWQIUNUq1YthYWFKSUlRYsWLXLO37dvn2JiYiRJTz75pPMSV3n3JwKsqmL+2QTA4/bt2ydJqlatmnPazp07lZqaqjp16mjcuHGKiIjQ3//+d/Xu3VtvvfWW+vTpI+m3cJGWlqahQ4eqXbt2ys7O1pdffqmtW7fq2muvveA+hw4dqsWLF+v2229Xhw4d9PHHH+uGG24o03HMnTtXl19+uW666SYFBQXpn//8px544AEVFRVp2LBhZdr2WQUFBdq/f79q1KhxwWXy8vLUpUsXZWRkaPjw4apXr57eeOMNDRo0SCdOnNBDDz2kmJgYzZ07V/fff7/69Omjvn37SpJatmzpkTqBSscAqFTS09ONJLNmzRpz7Ngxs3//fvPmm2+amJgYExoaavbv3+9c9pprrjHJycnm1KlTzmlFRUWmQ4cOplGjRs5pKSkp5oYbbrjofidNmmTO/crZvn27kWQeeOABl+Vuv/12I8lMmjTJOW3gwIEmMTHxkts0xpjc3Nxiy/Xo0cPUr1/fZVrnzp1N586dL1qzMcYkJiaa3//+9+bYsWPm2LFj5j//+Y+57bbbjCTz4IMPXnB7s2fPNpLM4sWLndNOnz5t2rdvb6pWrWqys7ONMcYcO3as2PECcA+Xn4BKqnv37oqJiVFCQoL++Mc/KiIiQqtWrdJll10mSfr555/18ccf69Zbb9Wvv/6q48eP6/jx4/rpp5/Uo0cPff/99867paKjo7Vz5059//33Jd7/6tWrJUkjRoxwmT5y5MgyHVd4eLjz3w6HQ8ePH1fnzp21d+9eORwOt7b54YcfKiYmRjExMUpJSdEbb7yhAQMG6Omnn77gOqtXr1ZcXJz69+/vnBYcHKwRI0YoJydHn3zyiVu1ALgwLj8BldScOXPUuHFjORwOLViwQJ9++qlCQ0Od8zMyMmSM0cSJEzVx4sTzbuPo0aOqU6eOpkyZoptvvlmNGzdWixYtdN1112nAgAEXvYzyww8/KCAgQA0aNHCZ3qRJkzId18aNGzVp0iR99tlnys3NdZnncDhkt9tLvc2rrrpK06ZNk81mU5UqVdSsWTNFR0dfdJ0ffvhBjRo1UkCA69+OzZo1c84H4FmEGqCSateunfPup969e6tjx466/fbbtXv3blWtWlVFRUWSpDFjxqhHjx7n3UbDhg0lSZ06ddKePXv0j3/8Qx9++KH++te/atasWZo3b56GDh1a5lovNGhfYWGhy/s9e/bommuuUdOmTfXcc88pISFBISEhWr16tWbNmuU8ptKqWbOmunfv7ta6ALyHUANAgYGBSktLU9euXfXSSy9p3Lhxql+/vqTfLpmU5Ae9evXqGjx4sAYPHqycnBx16tRJkydPvmCoSUxMVFFRkfbs2eNydmb37t3Flq1WrZpOnDhRbPr/nu345z//qfz8fK1atUp169Z1Tl+3bt0l6/e0xMREffXVVyoqKnI5W/Ptt98650sXDmwASo8+NQAk/TbMf7t27TR79mydOnVKsbGx6tKli1555RVlZWUVW/7YsWPOf//0008u86pWraqGDRsqPz//gvvr2bOnJOmFF15wmT579uxiyzZo0EAOh0NfffWVc1pWVlaxUX0DAwMlScYY5zSHw6H09PQL1lFerr/+eh0+fFjLly93Tjtz5oxefPFFVa1aVZ07d5YkValSRZLOG9oAlA5nagA4PfLII7rlllu0cOFC3XfffZozZ446duyo5ORk3XPPPapfv76OHDmizz77TAcOHNB//vMfSVLz5s3VpUsXtW7dWtWrV9eXX36pN998U8OHD7/gvlq1aqX+/fvr5ZdflsPhUIcOHbR27VplZGQUW/a2227T2LFj1adPH40YMUK5ubmaO3euGjdurK1btzqX+/3vf6+QkBD16tVLf/rTn5STk6P58+crNjb2vMGsPN1777165ZVXNGjQIG3ZskVJSUl68803tXHjRs2ePVuRkZGSfuvY3Lx5cy1fvlyNGzdW9erV1aJFC7Vo0cKr9QKW4OvbrwB419lbujdv3lxsXmFhoWnQoIFp0KCBOXPmjDHGmD179pi77rrLxMXFmeDgYFOnTh1z4403mjfffNO53rRp00y7du1MdHS0CQ8PN02bNjVPPfWUOX36tHOZ891+nZeXZ0aMGGFq1KhhIiIiTK9evcz+/fvPe4vzhx9+aFq0aGFCQkJMkyZNzOLFi8+7zVWrVpmWLVuasLAwk5SUZJ5++mmzYMECI8lkZmY6lyvNLd2Xul39Qts7cuSIGTx4sKlZs6YJCQkxycnJJj09vdi6mzZtMq1btzYhISHc3g2Ugc2Yc87TAgAAVFD0qQEAAJZAqAEAAJZAqAEAAJZAqAEAAJZAqAEAAJZAqAEAAJZg+cH3ioqKdOjQIUVGRjIcOQAAFYQxRr/++qtq165d7MGwF2L5UHPo0CElJCT4ugwAAOCG/fv367LLLivRspYPNWeHIt+/f7+ioqJ8XA0AACiJ7OxsJSQkOH/HS8LyoebsJaeoqChCDQAAFUxpuo7QURgAAFgCoQYAAFgCoQYAAFiC5fvUlFRhYaEKCgp8XQYsKDg4WIGBgb4uAwAsr9KHGmOMDh8+rBMnTvi6FFhYdHS04uLiGCsJAMpRpQ81ZwNNbGysqlSpwo8OPMoYo9zcXB09elSSFB8f7+OKAMC6fBpqPv30Uz3zzDPasmWLsrKytHLlSvXu3dtlmV27dmns2LH65JNPdObMGTVv3lxvvfWW6tatW+b9FxYWOgNNjRo1yrw94HzCw8MlSUePHlVsbCyXogCgnPi0o/DJkyeVkpKiOXPmnHf+nj171LFjRzVt2lTr16/XV199pYkTJyosLMwj+z/bh6ZKlSoe2R5wIWc/Y/TbAoDy49MzNT179lTPnj0vOP+xxx7T9ddfr5kzZzqnNWjQwON1cMkJ5Y3PGACUP7+9pbuoqEjvvvuuGjdurB49eig2NlZXXXWV3n77bV+XBgAA/JDfhpqjR48qJydHM2bM0HXXXacPP/xQffr0Ud++ffXJJ59ccL38/HxlZ2e7vHB+GzduVHJysoKDg4v1ZQIAoKLx21BTVFQkSbr55ps1atQotWrVSuPGjdONN96oefPmXXC9tLQ02e1258uqT+geNGiQbDabbDabgoODVa9ePT366KM6depUibcxevRotWrVSpmZmVq4cGH5FetFCxcudLZLYGCgqlWrpquuukpTpkyRw+Eo9fZsNhtnBwH4nSxHnjbtOa4sR56vS/ErfhtqatasqaCgIDVv3txlerNmzfTjjz9ecL3x48fL4XA4X/v37y/vUn3muuuuU1ZWlvbu3atZs2bplVde0aRJk0q8/p49e9StWzdddtllio6OdquG06dPu7WeO4wxOnPmzCWXi4qKUlZWlg4cOKBNmzbp3nvv1d/+9je1atVKhw4d8kKlAFB+lm/+UakzPtbt8/+t1Bkfa/nmC/8mVjZ+G2pCQkLUtm1b7d6922X6d999p8TExAuuFxoa6nwit9WfzB0aGqq4uDglJCSod+/e6t69uz766CNJv53pSktLU7169RQeHq6UlBS9+eabkqR9+/bJZrPpp59+0t133y2bzeY8U/PJJ5+oXbt2Cg0NVXx8vMaNG+cSJLp06aLhw4dr5MiRqlmzpnr06KH169fLZrPpgw8+0BVXXKHw8HB169ZNR48e1XvvvadmzZopKipKt99+u3Jzc53buliNkpzbfe+999S6dWuFhoZqw4YNl2wXm82muLg4xcfHq1mzZhoyZIg2bdqknJwcPfroo87lkpKSNHv2bJd1W7VqpcmTJzvnS1KfPn1ks9mUlJSkffv2KSAgQF9++aXLerNnz1ZiYqLzDCMAlIcsR57Gr/haRea390VGmrBiB2ds/sundz/l5OQoIyPD+T4zM1Pbt29X9erVVbduXT3yyCPq16+fOnXqpK5du+r999/XP//5T61fv953RV9EliNPmcdPql7NCMXbw7267x07dmjTpk3OwJeWlqbFixdr3rx5atSokT799FPdeeediomJUceOHZWVlaUmTZpoypQp6tevn+x2uw4ePKjrr79egwYN0t/+9jd9++23uueeexQWFub8oZekRYsW6f7779fGjRt/O+6sLEnS5MmT9dJLL6lKlSq69dZbdeuttyo0NFRLly5VTk6O+vTpoxdffFFjx469ZI2dO3d27m/cuHH685//rPr166tatWputU9sbKzuuOMOLViwQIWFhSUaK2bz5s2KjY1Venq6rrvuOgUGBiomJkbdu3dXenq62rRp41w2PT1dgwYNUkCA3/6dAMACMo+fdAaaswqN0b7juV7/3fFLxofWrVtnJBV7DRw40LnMq6++aho2bGjCwsJMSkqKefvtt0u1D4fDYSQZh8NRbF5eXp755ptvTF5eXlkPxSz74gdTb9w7JnHsO6beuHfMsi9+KPM2L2bgwIEmMDDQREREmNDQUCPJBAQEmDfffNOcOnXKVKlSxWzatMllnSFDhpj+/fs739vtdpOenu58P2HCBNOkSRNTVFTknDZnzhxTtWpVU1hYaIwxpnPnzuaKK65w2e7Z/45r1qxxTktLSzOSzJ49e5zT/vSnP5kePXoYY0yJajy73dL8N09PTzd2u/288+bOnWskmSNHjhhjjElMTDSzZs1yWSYlJcVMmjTJ+V6SWblypcsyy5cvN9WqVTOnTp0yxhizZcsWY7PZTGZm5gXr8uRnDUDldehErvO35uyr/rh3zaETub4uzeMu9vt9IT49U9OlSxcZYy66zN133627777bSxW550KnAzs1jinX5Ny1a1fNnTtXJ0+e1KxZsxQUFKQ//OEP2rlzp3Jzc3Xttde6LH/69GldccUVF9zerl271L59e5cxVVJTU5WTk6MDBw44R3Fu3br1eddv2bKl89+1atVSlSpVVL9+fZdpX3zxhSQpIyOjxDWee0akLM5+1so6Zkzv3r01bNgwrVy5UrfddpsWLlyorl27Oi9XAUB5ibeHK61vsias2KFCYxRos2l63xacpfmvSv/sJ0/w1enAiIgINWzYUJK0YMECpaSk6NVXX1WLFi0kSe+++67q1Knjsk5oaKhH9ns+wcHBzn+fvSvrXDabzdnnJCcnp8Q1Xmh/pbVr1y5FRUU5H4kREBBQLFSXZMTfkJAQ3XXXXUpPT1ffvn21dOlSPf/88x6pEQAupV/buurUOEb7jucqqWYVAs05CDUeUK9mhAJscgk2gTabkmp67/ELAQEBmjBhgkaPHq3vvvtOoaGh+vHHH136plxKs2bN9NZbb8kY4zybsXHjRkVGRuqyyy7zaL3Nmzd3q0Z3HT16VEuXLlXv3r2d/V5iYmKc/YEkKTs7W5mZmS7rBQcHq7CwsNj2hg4dqhYtWujll1/WmTNn1Ldv3/I9AAA4R7w9nDBzHvRq9ICzpwMD/xsEfHU68JZbblFgYKBeeeUVjRkzRqNGjdKiRYu0Z88ebd26VS+++KIWLVp0wfUfeOAB7d+/Xw8++KC+/fZb/eMf/9CkSZM0evRoj3eAjYyMdKvGkjDG6PDhw8rKytKuXbu0YMECdejQQXa7XTNmzHAu161bN7322mv617/+pa+//loDBw4s1oE4KSlJa9eu1eHDh/XLL784pzdr1ky/+93vNHbsWPXv39/50EoAgO9wpsZD/OF0YFBQkIYPH66ZM2cqMzNTMTExSktL0969exUdHa0rr7xSEyZMuOD6derU0erVq/XII48oJSVF1atX15AhQ/T444+XS71Tp04tdY0lkZ2drfj4eNlsNkVFRalJkyYaOHCgHnroIZdb/MePH6/MzEzdeOONstvtmjp1arEzNc8++6xGjx6t+fPnq06dOtq3b59z3tlbxf29zxcAVBY2c6meuhVcdna27Ha7HA5HsTFrTp06pczMTNWrV89jT/5G5TF16lS98cYb+uqrry65LJ81ACidi/1+XwiXn4BSysnJ0Y4dO/TSSy/pwQcf9HU5AID/ItSgQrn88stVtWrV876WLFnilRqGDx+u1q1bq0uXLlx6AgA/Qp8aVCirV6++4G3XtWrV8koNCxcutMwDQAHASgg1qFAu9twvAEDlxuUn6ZKjGgNlxWcMAMpfpQ41Z0e8PffJ0UB5OPsZ+99RlgEAnlOpLz8FBgYqOjpaR48elSRVqVKlzM8FAs5ljFFubq6OHj2q6OjoEj0dHADgnkodaiQpLi5OkpzBBigP0dHRzs8aAKB8VPpQY7PZFB8fr9jY2BI9zBAoreDgYM7QAIAXVPpQc1ZgYCA/PAAAVGCVuqMwAACwDkINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINAACwBEINAACwBJ+Gmk8//VS9evVS7dq1ZbPZ9Pbbb19w2fvuu082m02zZ8/2Wn0AAKDi8GmoOXnypFJSUjRnzpyLLrdy5Up9/vnnql27tpcqAwAAFU2QL3fes2dP9ezZ86LLHDx4UA8++KA++OAD3XDDDV6qDAAAVDQ+DTWXUlRUpAEDBuiRRx7R5ZdfXqJ18vPzlZ+f73yfnZ1dXuUBAAA/4tcdhZ9++mkFBQVpxIgRJV4nLS1Ndrvd+UpISCjHCgEAgL/w21CzZcsWPf/881q4cKFsNluJ1xs/frwcDofztX///nKsEgAA+Au/DTX/+te/dPToUdWtW1dBQUEKCgrSDz/8oIcfflhJSUkXXC80NFRRUVEuLwAAYH1+26dmwIAB6t69u8u0Hj16aMCAARo8eLCPqgIAAP7Kp6EmJydHGRkZzveZmZnavn27qlevrrp166pGjRouywcHBysuLk5NmjTxdqkAAMDP+TTUfPnll+ratavz/ejRoyVJAwcO1MKFC31UFQAAqIh8Gmq6dOkiY0yJl9+3b1/5FQMAACo0v+0oDAAAUBqEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAmEGgAAYAk+DTWffvqpevXqpdq1a8tms+ntt992zisoKNDYsWOVnJysiIgI1a5dW3fddZcOHTrku4IBAIDf8mmoOXnypFJSUjRnzpxi83Jzc7V161ZNnDhRW7du1YoVK7R7927ddNNNPqgUAAD4O5sxxvi6CEmy2WxauXKlevfufcFlNm/erHbt2umHH35Q3bp1S7Td7Oxs2e12ORwORUVFeahaAABQntz5/Q4q55o8yuFwyGazKTo6+oLL5OfnKz8/3/k+OzvbC5UBAABfqzAdhU+dOqWxY8eqf//+F01saWlpstvtzldCQoIXqwQAAL5SIUJNQUGBbr31VhljNHfu3IsuO378eDkcDudr//79XqoSAAD4kt9ffjobaH744Qd9/PHHl7yuFhoaqtDQUC9VBwAA/IVfh5qzgeb777/XunXrVKNGDV+XBAAA/JRPQ01OTo4yMjKc7zMzM7V9+3ZVr15d8fHx+uMf/6itW7fqnXfeUWFhoQ4fPixJql69ukJCQnxVNgAA8EM+vaV7/fr16tq1a7HpAwcO1OTJk1WvXr3zrrdu3Tp16dKlRPvglm4AACqeCndLd5cuXXSxTOUnQ+gAAIAKoELc/QQAAHAphBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAAGAJhBoAlV6WI0+b9hxXliPP16UAKIMgXxcAAL60fPOPGr/iaxUZKcAmpfVNVr+2dX1dFgA3cKYGQKWV5chzBhpJKjLShBU7OGMDVFBuh5qkpCRNmTJFP/74oyfrAQCvyTx+0hlozio0RvuO5/qmIABl4naoGTlypFasWKH69evr2muv1bJly5Sfn+/J2gCgXNWrGaEAm+u0QJtNSTWr+KYgAGVSplCzfft2ffHFF2rWrJkefPBBxcfHa/jw4dq6dasnawSAchFvD1da32QF2n5LNoE2m6b3baF4e7iPKwPgDpsxxlx6sUsrKCjQyy+/rLFjx6qgoEDJyckaMWKEBg8eLJvNdukNlJPs7GzZ7XY5HA5FRUX5rA4A/ivLkad9x3OVVLMKgQbwE+78fpf57qeCggKtXLlS6enp+uijj/S73/1OQ4YM0YEDBzRhwgStWbNGS5cuLetuAKDcxNvDCTOABbgdarZu3ar09HS9/vrrCggI0F133aVZs2apadOmzmX69Omjtm3beqRQAACAi3E71LRt21bXXnut5s6dq969eys4OLjYMvXq1dNtt91WpgIBAABKwu1Qs3fvXiUmJl50mYiICKWnp7u7C7+X5chT5vGTqlczglPXAAD4mNt3P3Xt2lU//fRTseknTpxQ/fr1y1RURbB8849KnfGxbp//b6XO+FjLNzNeDwAAvuR2qNm3b58KCwuLTc/Pz9fBgwfLVJS/YxRSAAD8T6kvP61atcr57w8++EB2u935vrCwUGvXrlVSUlKJtvXpp5/qmWee0ZYtW5SVlaWVK1eqd+/ezvnGGE2aNEnz58/XiRMnlJqaqrlz56pRo0alLdujLjYKKZehAACViT91xSh1qDkbOmw2mwYOHOgyLzg4WElJSXr22WdLtK2TJ08qJSVFd999t/r27Vts/syZM/XCCy9o0aJFqlevniZOnKgePXrom2++UVhYWGlL95izo5CeG2wYhRQAUNn42wNh3R58r169etq8ebNq1qzpmUJsNpczNcYY1a5dWw8//LDGjBkjSXI4HKpVq5YWLlxY4ruqymvwveWbf9SEFTtUaIxzFFKe7AsAqCyyHHlKnfFxsT/wN4zr6pEzNl4dfC8zM9PdVUu8/cOHD6t79+7OaXa7XVdddZU+++yzC4aa/Px8l2dQZWdnl0t9/drWVafGMYxCCgColPyxK4bboWbKlCkXnf/EE0+4u2lJ0uHDhyVJtWrVcpleq1Yt57zzSUtL05NPPlmmfZcUo5ACACorf+yK4XaoWblypcv7goICZWZmKigoSA0aNChzqHHX+PHjNXr0aOf77OxsJSQk+KQWAACs6uwDYf+3K4Yv/9h3O9Rs27at2LTs7GwNGjRIffr0KVNRkhQXFydJOnLkiOLj453Tjxw5olatWl1wvdDQUIWGhpZ5/wAA4OL8rSuG2+PUnE9UVJSefPJJTZw4sczbqlevnuLi4rR27VrntOzsbP373/9W+/bty7x9AABQdvH2cLVvUMPngUbywFO6/5fD4ZDD4SjRsjk5OcrIyHC+z8zM1Pbt21W9enXVrVtXI0eO1LRp09SoUSPnLd21a9d2GcsGAABAKkOoeeGFF1zeG2OUlZWl1157TT179izRNr788kt17drV+f5sX5iBAwdq4cKFevTRR3Xy5Ende++9OnHihDp27Kj333/fp2PUAAAA/1SmcWrOFRAQoJiYGHXr1k3jx49XZGSkRwosq/IapwYAAJQfS41TAwAAUBpl6ihsjNHx48fP+7RuAAAAb3Ir1Bw+fFh33XWXqlWrplq1aik2NlbVqlXT3XffrSNHjni6RgAAgEsq9eWn7OxsdejQQTk5ORo8eLCaNm0qY4y++eYbvf7669qwYYO2bt2qqlWrlke9AAAA51XqUPP8888rMDBQO3fuVExMjMu8xx9/XKmpqXrhhRc0YcIEjxUJAABwKaW+/PTuu+9qwoQJxQKNJMXGxmr8+PH65z//6ZHiAAAASqrUoea7775Thw4dLji/Q4cO2r17d5mKAgAAKK1Sh5rs7GxFR0dfcH50dLSys7PLUhMAABVKliNPm/YcV5Yjz9elVGql7lNjjFFAwIWzkM1mk5vj+QEAUOEs3/yjxq/4WkVGCrBJaX2T1a9tXV+XVSm5FWoaN24sm812wfkAAFQGWY48Z6CRpCIjTVixQ50ax/jFAx4rm1KHmvT09PKoAwCACifz+ElnoDmr0BjtO55LqPGBUoeagQMHlmr5119/XTfddJMiIiJKuysAAPxavZoRCrDJJdgE2mxKqlnFd0VVYmV6TEJJ/OlPf2KUYcCL6LAIeE+8PVxpfZMV+N8uGYE2m6b3bcFZGh9x+4GWJUUfG8B76LAIeF+/tnXVqXGM9h3PVVLNKgQaHyr3MzUAvONCHRY5YwOUv3h7uNo3qEGg8TFCDWARF+uwCACVAaEGsIizHRbPRYdFAJUJoQawCDosAqjs3OooXFhYqI0bN6ply5YXfWSCJCUmJio4ONid3QAoJTosAqjMbMbN25PCwsK0a9cu1atXz9M1eVR2drbsdrscDoeioqJ8XQ4AACgBd36/3b781KJFC+3du9fd1QEAADzK7VAzbdo0jRkzRu+8846ysrKUnZ3t8gIAAPAmty8/nfuk7nMfbmmMkc1mU2FhYdmr8wAuPwEAUPG48/vt9ojC69atc3dVAAAAj3M71HTu3NmTdQAAAJRJmcap+de//qU777xTHTp00MGDByVJr732mjZs2OCR4gAAAErK7VDz1ltvqUePHgoPD9fWrVuVn58vSXI4HJo+fbrHCgQAACiJMt39NG/ePM2fP99lcL3U1FRt3brVI8UBAACUlNuhZvfu3erUqVOx6Xa7XSdOnChLTQAAAKXmdqiJi4tTRkZGsekbNmxQ/fr1y1QUAABAabkdau655x499NBD+ve//y2bzaZDhw5pyZIlGjNmjO6//35P1ggAAHBJbt/SPW7cOBUVFemaa65Rbm6uOnXqpNDQUI0ZM0YPPvigJ2sEAAC4JLdHFD7r9OnTysjIUE5Ojpo3b66qVat6qjaPYERhAAAqHq+OKHxWSEiImjdvXtbNAAAAlInboebUqVN68cUXtW7dOh09elRFRUUu87mtGwAAeJPboWbIkCH68MMP9cc//lHt2rVzeailJxUWFmry5MlavHixDh8+rNq1a2vQoEF6/PHHy22fAACg4nE71LzzzjtavXq1UlNTPVlPMU8//bTmzp2rRYsW6fLLL9eXX36pwYMHy263a8SIEeW6bwAAUHG4HWrq1KmjyMhIT9ZyXps2bdLNN9+sG264QZKUlJSk119/XV988UW57xsAAFQcbo9T8+yzz2rs2LH64YcfPFlPMR06dNDatWv13XffSZL+85//aMOGDerZs+d5l8/Pz1d2drbLCwAAWJ/bZ2ratGmjU6dOqX79+qpSpYrL858k6eeffy5zcdJv4+FkZ2eradOmCgwMVGFhoZ566indcccd510+LS1NTz75pEf2DQAAKg63Q03//v118OBBTZ8+XbVq1Sq3Trt///vftWTJEi1dulSXX365tm/frpEjR6p27doaOHBgseXHjx+v0aNHO99nZ2crISGhXGoDAAD+w+3B96pUqaLPPvtMKSkpnq7JRUJCgsaNG6dhw4Y5p02bNk2LFy/Wt99+e8n1GXwPAICKx53fb7f71DRt2lR5eXnurl5iubm5CghwLTMwMLDYuDgAAKByc/vy04wZM/Twww/rqaeeUnJycrE+NZ46K9KrVy899dRTqlu3ri6//HJt27ZNzz33nO6++26PbB8AAFiD25efzp49+d++NMYY2Ww2FRYWlr06Sb/++qsmTpyolStX6ujRo6pdu7b69++vJ554QiEhIZdcn8tPAABUPO78frsdaj755JOLzu/cubM7m/U4Qg0AABWP1x5oWVBQoClTpmjevHlq1KiRO5sAAADwKLc6CgcHB+urr77ydC0AAABuc/vupzvvvFOvvvqqJ2sBAABwm9t3P505c0YLFizQmjVr1Lp1a0VERLjMf+6558pcHAAAQEm5HWp27NihK6+8UpKcz2U6q7xGFwYAALgQt0PNunXrPFkHAABAmbjdp+ZcBw4c0IEDBzyxKQAAALe4HWqKioo0ZcoU2e12JSYmKjExUdHR0Zo6dSqPMAAAAF7n9uWnxx57TK+++qpmzJih1NRUSdKGDRs0efJknTp1Sk899ZTHigQAALgUt0cUrl27tubNm6ebbrrJZfo//vEPPfDAAzp48KBHCiwrRhQGAKDi8epTun/++Wc1bdq02PSmTZvq559/dnezAAAAbnE71KSkpOill14qNv2ll15SSkpKmYoCAAAoLbf71MycOVM33HCD1qxZo/bt20uSPvvsM+3fv1+rV6/2WIEAAAAl4faZms6dO+u7775Tnz59dOLECZ04cUJ9+/bV7t27dfXVV3uyRgAAgEsq1Zmavn37auHChYqKitLf/vY39evXj7ucAACAXyjVmZp33nlHJ0+elCQNHjxYDoejXIoCAAAorVKdqWnatKnGjx+vrl27yhijv//97xe8zequu+7ySIEAAAAlUapxajZt2qTRo0drz549+vnnnxUZGXneh1fabDa/ua2bcWoAAKh43Pn9dnvwvYCAAB0+fFixsbHurO41hBoAACoerw6+l5mZqZiYGHdXBwAA8Ci3Q01iYqI2bNigO++8U+3bt3c+FuG1117Thg0bPFYgAABASbgdat566y316NFD4eHh2rZtm/Lz8yVJDodD06dP91iBAAAAJeF2qJk2bZrmzZun+fPnKzg42Dk9NTVVW7du9UhxAAAAJeV2qNm9e7c6depUbLrdbteJEyfKUhMAAECpuR1q4uLilJGRUWz6hg0bVL9+/TIVBQAAUFpuh5p77rlHDz30kP7973/LZrPp0KFDWrJkiR5++GHdf//9nqwRAADgktx+Sve4ceNUVFSka665Rrm5uerUqZNCQ0P1yCOPaOjQoZ6sEQAA4JLcPlNjs9n02GOP6eeff9aOHTv0+eef69ixY7Lb7apXr54nawQAALikUoea/Px8jR8/Xm3atFFqaqpWr16t5s2ba+fOnWrSpImef/55jRo1qjxqBQAAuKBSX3564okn9Morr6h79+7atGmTbrnlFg0ePFiff/65nn32Wd1yyy0KDAwsj1oBAAAuqNSh5o033tDf/vY33XTTTdqxY4datmypM2fO6D//+c95H24JAADgDaW+/HTgwAG1bt1aktSiRQuFhoZq1KhRBBoAAOBTpQ41hYWFCgkJcb4PCgpS1apVPVoUAABAaZX68pMxRoMGDVJoaKgk6dSpU7rvvvsUERHhstyKFSs8UyEAAEAJlDrUDBw40OX9nXfe6bFiAAAA3FXqUJOenl4edVzUwYMHNXbsWL333nvKzc1Vw4YNlZ6erjZt2ni9FgAA4J/cHlHYW3755Relpqaqa9eueu+99xQTE6Pvv/9e1apV83VpAADAj/h9qHn66aeVkJDgcoaIEYsBAMD/cvsxCd6yatUqtWnTRrfccotiY2N1xRVXaP78+RdcPj8/X9nZ2S4vAABgfX4favbu3au5c+eqUaNG+uCDD3T//fdrxIgRWrRo0XmXT0tLk91ud74SEhK8XDEAACWT5cjTpj3HleXI83UplmAzxhhfF3ExISEhatOmjTZt2uScNmLECG3evFmfffZZseXz8/OVn5/vfJ+dna2EhAQ5HA5FRUV5pWbgXFmOPGUeP6l6NSMUbw/3dTluscIxAP5m+eYfNX7F1yoyUoBNSuubrH5t6/q6LL+RnZ0tu91eqt9vv+9TEx8fr+bNm7tMa9asmd56663zLh8aGuocQwfwNSt8aVnhGAB/k+XIc/5/JUlFRpqwYoc6NY7hD4cy8PvLT6mpqdq9e7fLtO+++06JiYk+qggomQt9aVWk08xWOAbAH2UeP+n8/+qsQmO073iubwqyCL8PNaNGjdLnn3+u6dOnKyMjQ0uXLtVf/vIXDRs2zNelARdlhS8tKxwD4I/q1YxQwP88MjHQZlNSzSq+Kcgi/D7UtG3bVitXrtTrr7+uFi1aaOrUqZo9e7buuOMOX5cGXJQVvrSscAyAP4q3hyutb7IC//sw6ECbTdP7tuDSUxn5fUfhsnKnoxHgKcs3/6gJK3ao0Bjnl1ZF649ihWMA/FWWI0/7jucqqWYVAs3/cOf3m1ADlDMrfGlZ4RgAVCyWvPsJqOji7eEVPghY4RgAWJ/f96kBAAAoCUINAACwBEINAACwBEINPIrnmAAAfIWOwvAYhtMHAPgSZ2rgEQynDwDwNUINPILh9AEAvkaogUcwnD4AwNcINfAInmMCAPA1OgrDY/q1ratOjWMYTh8A4BOEGngUw+kDAHyFy08AAMASCDUAAMASCDUAyg0jTAPwJvrUACgXjDANwNs4UwPA4xhhGoAvEGoAeBwjTAPwBUINAI9jhGkAvkCoAeBxjDANwBfoKAygXDDCNABvI9QAKDeMMA3Am7j8BAAALIFQAwAALIFQYwGM2goAAH1qKjxGbQUA4DecqanAGLUVAID/R6ipwBi1FQCA/0eoqcAYtRUAgP9HqKnAGLUVAID/R0fhCo5RWwEA+A2hxgIYtRUAAC4/AQAAi6hQoWbGjBmy2WwaOXKkr0sBAAB+psKEms2bN+uVV15Ry5YtfV0KAADwQxUi1OTk5OiOO+7Q/PnzVa1aNV+XAwAA/FCFCDXDhg3TDTfcoO7du19y2fz8fGVnZ7u8AACA9fn93U/Lli3T1q1btXnz5hItn5aWpieffLKcqwIAAP7Gr8/U7N+/Xw899JCWLFmisLCwEq0zfvx4ORwO52v//v3lXCUAAPAHNmOMufRivvH222+rT58+CgwMdE4rLCyUzWZTQECA8vPzXeadT3Z2tux2uxwOh6Kiosq7ZAAA4AHu/H779eWna665Rl9//bXLtMGDB6tp06YaO3bsJQMNAMC7shx5yjx+UvVqRjAoKLzOr0NNZGSkWrRo4TItIiJCNWrUKDa9MuNLBIA/WL75R41f8bWKjBRgk9L6Jqtf27q+LguViF+HGlwaXyIA/EGWI8/5XSRJRUaasGKHOjWO4Y8teE2FCzXr16/3dQl+gy8RAP4i8/hJ53fRWYXGaN/xXL6P4DV+ffcTLu5iXyIA4E31akYowOY6LdBmU1LNKr4pCJUSoaYC40sEgL+It4crrW+yAm2/fSkF2mya3rcFZ2ngVRXu8hP+39kvkQkrdqjQGL5EAPhUv7Z11alxjPYdz1VSzSp8F8HrCDUVHF8iAPxJvD2c7yH4DKHGAvgSAQCAPjUAAMAiCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAAMASCDUAyiTLkadNe44ry5Hn61IAVHIMvgfAbcs3/+h8UnyATUrrm6x+bev6uiwAlRRnagC4JcuR5ww0klRkpAkrdnDGBoDPEGoAuCXz+ElnoDmr0BjtO57rm4IAVHqEGgBuqVczQgE212mBNpuSalbxTUEAKj1CDQC3xNvDldY3WYG235JNoM2m6X1b+O3DVenQDFgfHYUBuK1f27rq1DhG+47nKqlmFb8NNHRoBioHztQAKJN4e7jaN6jht4GGDs1A5UGoAWBpdGgGKg9CDQBLo0MzUHkQagBYWkXr0AzAfXQUBmB5FaVDM4CyIdQAqBTi7eGEGcDiuPwEAAAsgVADAAAsgVADAAAsgVADAMB/8TiNio2OwgAAiMdpWAFnagAAlR6P07AGQg0AoNLjcRrWQKgBAFR6PE7DGgg1AIBKj8dpWAMdhXFeWY48ZR4/qXo1I/ifGkClwOM0Kj6/P1OTlpamtm3bKjIyUrGxserdu7d2797t67IsbfnmH5U642PdPv/fSp3xsZZv/tHXJQGAV8Tbw9W+QQ0CTQXl96Hmk08+0bBhw/T555/ro48+UkFBgX7/+9/r5MmTvi7NkrgDAABQUfn95af333/f5f3ChQsVGxurLVu2qFOnTj6qyroudgcAf7kAAPyZ34ea/+VwOCRJ1atXP+/8/Px85efnO99nZ2d7pS6rOHsHwLnBhjsAAAAVgd9ffjpXUVGRRo4cqdTUVLVo0eK8y6SlpclutztfCQkJXq6yYuMOAABARWUzxphLL+Yf7r//fr333nvasGGDLrvssvMuc74zNQkJCXI4HIqKivJWqRVeliOPOwAAAD6TnZ0tu91eqt/vCnP5afjw4XrnnXf06aefXjDQSFJoaKhCQ0O9WJk1xdvDCTMAgArF7y8/GWM0fPhwrVy5Uh9//LHq1avn65IAAPBblflJ435/pmbYsGFaunSp/vGPfygyMlKHDx+WJNntdoWHcyYBAICzKvuTxv2+T43NZjvv9PT0dA0aNOiS67tzTQ4AgIomy5Gn1BkfF7t7dcO4rhWyO4El+9T4eeYCAMAvMM5YBehTAwAALo0njRNqAACwBMYZqwCXnwAAQMlU9ieNE2oAALCQyjzOGJefAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAACAJRBqAEiq3E/2BWANjFMDoNI/2ReANXCmBqjkshx5zkAjSUVGmrBiB2dsAFQ4hBqgkrvYk30BoCIh1ACVHE/2BWAVhBqgkuPJvgCsgo7CACr9k30BWAOhBoCkyv1kXwDWwOUnAABgCYQaAABgCYQaAABgCYQaAABgCYQaAABgCYQaAABgCYQaAABgCYQaAABgCYQaAABgCYQaAABgCYQaAABgCZZ/9pMxRpKUnZ3t40oAAEBJnf3dPvs7XhKWDzW//vqrJCkhIcHHlQAAgNL69ddfZbfbS7SszZQmAlVARUVFOnTokCIjI2Wz2c67THZ2thISErR//35FRUV5uUL/Q3sUR5u4oj1c0R7F0SauaA9XJWkPY4x+/fVX1a5dWwEBJestY/kzNQEBAbrssstKtGxUVBQftnPQHsXRJq5oD1e0R3G0iSvaw9Wl2qOkZ2jOoqMwAACwBEINAACwBEKNpNDQUE2aNEmhoaG+LsUv0B7F0SauaA9XtEdxtIkr2sNVebWH5TsKAwCAyoEzNQAAwBIINQAAwBIINQAAwBIINQAAwBIqTaiZM2eOkpKSFBYWpquuukpffPHFBZfduXOn/vCHPygpKUk2m02zZ8/2XqFeUpr2mD9/vq6++mpVq1ZN1apVU/fu3S+6fEVVmjZZsWKF2rRpo+joaEVERKhVq1Z67bXXvFht+StNe5xr2bJlstls6t27d/kW6GWlaY+FCxfKZrO5vMLCwrxYrXeU9jNy4sQJDRs2TPHx8QoNDVXjxo21evVqL1Vb/krTHl26dCn2GbHZbLrhhhu8WHH5Ku3nY/bs2WrSpInCw8OVkJCgUaNG6dSpU6XbqakEli1bZkJCQsyCBQvMzp07zT333GOio6PNkSNHzrv8F198YcaMGWNef/11ExcXZ2bNmuXdgstZadvj9ttvN3PmzDHbtm0zu3btMoMGDTJ2u90cOHDAy5WXn9K2ybp168yKFSvMN998YzIyMszs2bNNYGCgef/9971cefkobXuclZmZaerUqWOuvvpqc/PNN3unWC8obXukp6ebqKgok5WV5XwdPnzYy1WXr9K2SX5+vmnTpo25/vrrzYYNG0xmZqZZv3692b59u5crLx+lbY+ffvrJ5fOxY8cOExgYaNLT071beDkpbXssWbLEhIaGmiVLlpjMzEzzwQcfmPj4eDNq1KhS7bdShJp27dqZYcOGOd8XFhaa2rVrm7S0tEuum5iYaLlQU5b2MMaYM2fOmMjISLNo0aLyKtHrytomxhhzxRVXmMcff7w8yvM6d9rjzJkzpkOHDuavf/2rGThwoKVCTWnbIz093djtdi9V5xulbZO5c+ea+vXrm9OnT3urRK8q63fIrFmzTGRkpMnJySmvEr2qtO0xbNgw061bN5dpo0ePNqmpqaXar+UvP50+fVpbtmxR9+7dndMCAgLUvXt3ffbZZz6szDc80R65ubkqKChQ9erVy6tMryprmxhjtHbtWu3evVudOnUqz1K9wt32mDJlimJjYzVkyBBvlOk17rZHTk6OEhMTlZCQoJtvvlk7d+70Rrle4U6brFq1Su3bt9ewYcNUq1YttWjRQtOnT1dhYaG3yi43nvheffXVV3XbbbcpIiKivMr0Gnfao0OHDtqyZYvzEtXevXu1evVqXX/99aXat+UfaHn8+HEVFhaqVq1aLtNr1aqlb7/91kdV+Y4n2mPs2LGqXbu2ywe2InO3TRwOh+rUqaP8/HwFBgbq5Zdf1rXXXlve5ZY7d9pjw4YNevXVV7V9+3YvVOhd7rRHkyZNtGDBArVs2VIOh0N//vOf1aFDB+3cubPED9j1Z+60yd69e/Xxxx/rjjvu0OrVq5WRkaEHHnhABQUFmjRpkjfKLjdl/V794osvtGPHDr366qvlVaJXudMet99+u44fP66OHTvKGKMzZ87ovvvu04QJE0q1b8uHGnjWjBkztGzZMq1fv96SHR9LIzIyUtu3b1dOTo7Wrl2r0aNHq379+urSpYuvS/OqX3/9VQMGDND8+fNVs2ZNX5fjF9q3b6/27ds733fo0EHNmjXTK6+8oqlTp/qwMt8pKipSbGys/vKXvygwMFCtW7fWwYMH9cwzz1T4UFNWr776qpKTk9WuXTtfl+Iz69ev1/Tp0/Xyyy/rqquuUkZGhh566CFNnTpVEydOLPF2LB9qatasqcDAQB05csRl+pEjRxQXF+ejqnynLO3x5z//WTNmzNCaNWvUsmXL8izTq9xtk4CAADVs2FCS1KpVK+3atUtpaWkVPtSUtj327Nmjffv2qVevXs5pRUVFkqSgoCDt3r1bDRo0KN+iy5EnvkOCg4N1xRVXKCMjozxK9Dp32iQ+Pl7BwcEKDAx0TmvWrJkOHz6s06dPKyQkpFxrLk9l+YycPHlSy5Yt05QpU8qzRK9ypz0mTpyoAQMGaOjQoZKk5ORknTx5Uvfee68ee+wxBQSUrLeM5fvUhISEqHXr1lq7dq1zWlFRkdauXevyl1Rl4W57zJw5U1OnTtX777+vNm3aeKNUr/HUZ6SoqEj5+fnlUaJXlbY9mjZtqq+//lrbt293vm666SZ17dpV27dvV0JCgjfL9zhPfD4KCwv19ddfKz4+vrzK9Cp32iQ1NVUZGRnOwCtJ3333neLj4yt0oJHK9hl54403lJ+frzvvvLO8y/Qad9ojNze3WHA5G4BNaR5RWcoOzRXSsmXLTGhoqFm4cKH55ptvzL333muio6Odt1gOGDDAjBs3zrl8fn6+2bZtm9m2bZuJj483Y8aMMdu2bTPff/+9rw7Bo0rbHjNmzDAhISHmzTffdLkF8ddff/XVIXhcadtk+vTp5sMPPzR79uwx33zzjfnzn/9sgoKCzPz58311CB5V2vb4X1a7+6m07fHkk0+aDz74wOzZs8ds2bLF3HbbbSYsLMzs3LnTV4fgcaVtkx9//NFERkaa4cOHm927d5t33nnHxMbGmmnTpvnqEDzK3f9nOnbsaPr16+ftcstdadtj0qRJJjIy0rz++utm79695sMPPzQNGjQwt956a6n2WylCjTHGvPjii6Zu3bomJCTEtGvXznz++efOeZ07dzYDBw50vs/MzDSSir06d+7s/cLLSWnaIzEx8bztMWnSJO8XXo5K0yaPPfaYadiwoQkLCzPVqlUz7du3N8uWLfNB1eWnNO3xv6wWaowpXXuMHDnSuWytWrXM9ddfb7Zu3eqDqstXaT8jmzZtMldddZUJDQ019evXN0899ZQ5c+aMl6suP6Vtj2+//dZIMh9++KGXK/WO0rRHQUGBmTx5smnQoIEJCwszCQkJ5oEHHjC//PJLqfZpM6Y053UAAAD8k+X71AAAgMqBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAACyBUAMAHjJo0CD17t3b12UAlRahBqgEBg0aJJvN5nzVqFFD1113nb766itfl+YR5x7b2VfHjh3LbX/79u2TzWbT9u3bXaY///zzWrhwYbntF8DFEWqASuK6665TVlaWsrKytHbtWgUFBenGG2/0dVkek56e7jy+rKwsrVq16rzLFRQUlFsNdrtd0dHR5bZ9ABdHqAEqidDQUMXFxSkuLk6tWrXSuHHjtH//fh07dkzdunXT8OHDXZY/duyYQkJCnE/aTUpK0tSpU9W/f39FRESoTp06mjNnjss6zz33nJKTkxUREaGEhAQ98MADysnJcc7/4Ycf1KtXL1WrVk0RERG6/PLLtXr1aknSL7/8ojvuuEMxMTEKDw9Xo0aNlJ6eXuLji46Odh5fXFycqlev7jyjsnz5cnXu3FlhYWFasmSJfvrpJ/Xv31916tRRlSpVlJycrNdff91le0VFRZo5c6YaNmyo0NBQ1a1bV0899ZQkqV69epKkK664QjabTV26dJFU/PJTfn6+RowYodjYWIWFhaljx47avHmzc/769etls9m0du1atWnTRlWqVFGHDh20e/fuEh83gP9HqAEqoZycHC1evFgNGzZUjRo1NHToUC1dulT5+fnOZRYvXqw6deqoW7duzmnPPPOMUlJStG3bNo0bN04PPfSQPvroI+f8gIAAvfDCC9q5c6cWLVqkjz/+WI8++qhz/rBhw5Sfn69PP/1UX3/9tZ5++mlVrVpVkjRx4kR98803eu+997Rr1y7NnTtXNWvW9Mjxnq11165d6tGjh06dOqXWrVvr3Xff1Y4dO3TvvfdqwIAB+uKLL5zrjB8/XjNmzHDWtXTpUtWqVUuSnMutWbNGWVlZWrFixXn3++ijj+qtt97SokWLtHXrVjVs2FA9evTQzz//7LLcY489pmeffVZffvmlgoKCdPfdd3vkuIFKxyOP4gTg1wYOHGgCAwNNRESEiYiIMJJMfHy82bJlizHGmLy8PFOtWjWzfPly5zotW7Y0kydPdr5PTEw01113nct2+/XrZ3r27HnB/b7xxhumRo0azvfJycku2zxXr169zODBg906PkkmLCzMeXwRERFm5cqVJjMz00gys2fPvuQ2brjhBvPwww8bY4zJzs42oaGhZv78+edd9ux2t23b5jL93KeT5+TkmODgYLNkyRLn/NOnT5vatWubmTNnGmOMWbdunZFk1qxZ41zm3XffNZJMXl5eaZoAgDGGMzVAJdG1a1dt375d27dv1xdffKEePXqoZ8+e+uGHHxQWFqYBAwZowYIFkqStW7dqx44dGjRokMs22rdvX+z9rl27nO/XrFmja665RnXq1FFkZKQGDBign376Sbm5uZKkESNGaNq0aUpNTdWkSZNcOirff//9WrZsmVq1aqVHH31UmzZtKtXxzZo1y3l827dv17XXXuuc16ZNG5dlCwsLNXXqVCUnJ6t69eqqWrWqPvjgA/3444+SpF27dik/P1/XXHNNqWo41549e1RQUKDU1FTntODgYLVr186lzSSpZcuWzn/Hx8dLko4ePer2voHKilADVBIRERFq2LChGjZsqLZt2+qvf/2rTp48qfnz50uShg4dqo8++kgHDhxQenq6unXrpsTExBJvf9++fbrxxhvVsmVLvfXWW9qyZYuzz83p06ed+9i7d68GDBigr7/+Wm3atNGLL74oSc6ANWrUKB06dEjXXHONxowZU+L9x8XFOY+vYcOGioiIcDn2cz3zzDN6/vnnNXbsWK1bt07bt29Xjx49nHWGh4eXeL+eEBwc7Py3zWaT9FufHgClQ6gBKimbzaaAgADl5eVJkpKTk9WmTRvNnz9fS5cuPW+/js8//7zY+2bNmkmStmzZoqKiIj377LP63e9+p8aNG+vQoUPFtpGQkKD77rtPK1as0MMPP+wMVZIUExOjgQMHavHixZo9e7b+8pe/ePKQnTZu3Kibb75Zd955p1JSUlS/fn199913zvmNGjVSeHi4s5P0/woJCZH02xmfC2nQoIFCQkK0ceNG57SCggJt3rxZzZs399CRADhXkK8LAOAd+fn5Onz4sKTf7jR66aWXlJOTo169ejmXGTp0qIYPH66IiAj16dOn2DY2btyomTNnqnfv3vroo4/0xhtv6N1335UkNWzYUAUFBXrxxRfVq1cvbdy4UfPmzXNZf+TIkerZs6caN26sX375RevWrXOGoieeeEKtW7fW5Zdfrvz8fL3zzjvOeZ7WqFEjvfnmm9q0aZOqVaum5557TkeOHHGGjbCwMI0dO1aPPvqoQkJClJqaqmPHjmnnzp0aMmSIYmNjFR4ervfff1+XXXaZwsLCZLfbXfYRERGh+++/X4888oiqV6+uunXraubMmcrNzdWQIUPK5biAyo4zNUAl8f777ys+Pl7x8fG66qqrtHnzZr3xxhvO25ElqX///goKClL//v0VFhZWbBsPP/ywvvzyS11xxRWaNm2annvuOfXo0UOSlJKSoueee05PP/20WrRooSVLligtLc1l/cLCQg0bNkzNmjXTddddp8aNG+vll1+W9NvZj/Hjx6tly5bq1KmTAgMDtWzZsnJpi8cff1xXXnmlevTooS5duiguLq7YSMATJ07Uww8/rCeeeELNmjVTv379nP1cgoKC9MILL+iVV15R7dq1dfPNN593PzNmzNAf/vAHDRgwQFdeeaUyMjL0wQcfqFq1auVyXEBlZzPGGF8XAcA/7Nu3Tw0aNNDmzZt15ZVXusxLSkrSyJEjNXLkSN8UBwCXwOUnACooKNBPP/2kxx9/XL/73e+KBRoAqAi4/ARAGzduVHx8vDZv3lysH4yvTZ8+XVWrVj3vq2fPnr4uD4Af4fITAL/2888/FxuB96zw8HDVqVPHyxUB8FeEGgAAYAlcfgIAAJZAqAEAAJZAqAEAAJZAqAEAAJZAqAEAAJZAqAEAAJZAqAEAAJZAqAEAAJbwf9gY96o9mTZ+AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_40.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9vElEQVR4nO3deVyVZf7/8ffhIKuKCzuhuC+JS6KEWmpRZEaZ00RabpM1lWVlTanl1iK2aMyUZRlqqzKZ9XPKsZRy+pbOuDKpmeWWlkBQCQoECNfvD8eTBCooh3O4eT0fj/N4dO5z3ff9ua9h4O11X9d9bMYYIwAAAIvwcHUBAAAAtYlwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwA8AlZs6cKZvNVq22NptNM2fOdGo9gwYN0qBBg9z2eACqj3ADNHBLliyRzWZzvDw9PRUREaGxY8fqhx9+cHV5bicqKqpCfwUHB+uSSy7Re++9VyvHLyws1MyZM7Vu3bpaOR7QEBFuAEiSHnvsMb3xxhtasGCBhgwZojfffFMDBw7Ur7/+6pTzPfrooyoqKnLKsZ2tZ8+eeuONN/TGG2/owQcf1OHDhzV8+HAtWLDgvI9dWFioWbNmEW6A8+Dp6gIAuIchQ4YoJiZGkjR+/HgFBgbqqaee0sqVK3XjjTfW+vk8PT3l6Vk/fwVFRETolltucbwfPXq02rdvr+eee0533HGHCysDIDFyA+A0LrnkEknS3r17K2z/+uuvdcMNN6hFixby8fFRTEyMVq5cWaFNaWmpZs2apQ4dOsjHx0ctW7bUgAEDtGbNGkebqubcFBcX6/7771dQUJCaNGmia6+9Vt9//32l2saOHauoqKhK26s65uLFi3XZZZcpODhY3t7e6tq1q1566aUa9cXZhIaGqkuXLtq/f/8Z2/3444+69dZbFRISIh8fH/Xo0UOvvfaa4/MDBw4oKChIkjRr1izHrS9nzzcCrKZ+/rMJgNMdOHBAktS8eXPHtp07d6p///6KiIjQ5MmT5e/vr7///e8aNmyY3n33XV1//fWSToSM5ORkjR8/Xn379lV+fr42b96srVu36oorrjjtOcePH68333xTI0eOVL9+/fTJJ59o6NCh53UdL730ki688EJde+218vT01D/+8Q/dddddKi8v14QJE87r2CeVlpbq0KFDatmy5WnbFBUVadCgQdqzZ4/uvvtutWnTRu+8847Gjh2rI0eO6N5771VQUJBeeukl3Xnnnbr++us1fPhwSVL37t1rpU6gwTAAGrTFixcbSWbt2rUmJyfHHDp0yCxfvtwEBQUZb29vc+jQIUfbyy+/3ERHR5tff/3Vsa28vNz069fPdOjQwbGtR48eZujQoWc874wZM8ypv4IyMjKMJHPXXXdVaDdy5EgjycyYMcOxbcyYMaZ169ZnPaYxxhQWFlZql5CQYNq2bVth28CBA83AgQPPWLMxxrRu3dpceeWVJicnx+Tk5Jj//ve/5qabbjKSzD333HPa46WkpBhJ5s0333RsKykpMXFxcaZx48YmPz/fGGNMTk5OpesFUDPclgIgSYqPj1dQUJAiIyN1ww03yN/fXytXrtQFF1wgSfr555/1ySef6MYbb9TRo0eVm5ur3Nxc/fTTT0pISNC3337rWF3VrFkz7dy5U99++221z79q1SpJ0sSJEytsv++++87runx9fR3/nZeXp9zcXA0cOFD79u1TXl7eOR3z448/VlBQkIKCgtSjRw+98847GjVqlJ566qnT7rNq1SqFhoZqxIgRjm2NGjXSxIkTdezYMf3rX/86p1oAVNagw81nn32mxMREhYeHy2az6f3333fq+U7OBzj11blzZ6eeE6iu+fPna82aNVq+fLmuvvpq5ebmytvb2/H5nj17ZIzRtGnTHH/YT75mzJgh6cScEunEyqsjR46oY8eOio6O1l/+8hd9+eWXZzz/d999Jw8PD7Vr167C9k6dOp3XdX3xxReKj4+Xv7+/mjVrpqCgIE2dOlWSzjncxMbGas2aNVq7dq3Wr1+v3Nxcvf766xWC1O9999136tChgzw8Kv7a7dKli+NzALWjQc+5KSgoUI8ePfSnP/3JcW/b2S688EKtXbvW8b6+rhaB9fTt29exWmrYsGEaMGCARo4cqd27d6tx48YqLy+XJD344INKSEio8hjt27eXJF166aXau3ev/t//+3/6+OOP9eqrr+q5557TggULNH78+POu9XQP/ysrK6vwfu/evbr88svVuXNnzZs3T5GRkfLy8tKqVav03HPPOa6ppgIDAxUfH39O+wJwvgb9l3XIkCEaMmTIaT8vLi7WI488oqVLl+rIkSPq1q2bnnrqqfN66qinp6dCQ0PPeX+gLtjtdiUnJ2vw4MF64YUXNHnyZLVt21bSiVsp1fnD3qJFC40bN07jxo3TsWPHdOmll2rmzJmnDTetW7dWeXm59u7dW2G0Zvfu3ZXaNm/eXEeOHKm0/fejH//4xz9UXFyslStXqlWrVo7tn3766Vnrr22tW7fWl19+qfLy8gqjN19//bXjc+n0wQ1A9TXo21Jnc/fdd2vDhg1atmyZvvzyS/3xj3/UVVddVaN5BL/37bffKjw8XG3bttXNN9+sgwcP1mLFQO0ZNGiQ+vbtq5SUFP36668KDg7WoEGD9PLLLyszM7NS+5ycHMd///TTTxU+a9y4sdq3b6/i4uLTnu/kPzT+9re/VdiekpJSqW27du2Ul5dX4VZXZmZmpacE2+12SZIxxrEtLy9PixcvPm0dznL11VcrKytLaWlpjm3Hjx/X888/r8aNG2vgwIGSJD8/P0mqMrwBqJ4GPXJzJgcPHtTixYt18OBBhYeHSzoxHL969WotXrxYs2fPrvExY2NjtWTJEnXq1EmZmZmaNWuWLrnkEu3YsUNNmjSp7UsAzttf/vIX/fGPf9SSJUt0xx13aP78+RowYICio6N12223qW3btsrOztaGDRv0/fff67///a8kqWvXrho0aJB69+6tFi1aaPPmzVq+fLnuvvvu056rZ8+eGjFihF588UXl5eWpX79+Sk9P1549eyq1vemmm/Twww/r+uuv18SJE1VYWKiXXnpJHTt21NatWx3trrzySnl5eSkxMVF//vOfdezYMS1cuFDBwcFVBjRnuv322/Xyyy9r7Nix2rJli6KiorR8+XJ98cUXSklJcfwO8PX1VdeuXZWWlqaOHTuqRYsW6tatm7p161an9QL1mquXa7kLSea9995zvP/ggw+MJOPv71/h5enpaW688UZjjDG7du0yks74evjhh097zl9++cU0bdrUvPrqq86+POC0Ti4F37RpU6XPysrKTLt27Uy7du3M8ePHjTHG7N2714wePdqEhoaaRo0amYiICHPNNdeY5cuXO/Z74oknTN++fU2zZs2Mr6+v6dy5s3nyySdNSUmJo01Vy7aLiorMxIkTTcuWLY2/v79JTEw0hw4dqnJp9Mcff2y6detmvLy8TKdOncybb75Z5TFXrlxpunfvbnx8fExUVJR56qmnzKJFi4wks3//fke7miwFP9sy99MdLzs724wbN84EBgYaLy8vEx0dbRYvXlxp3/Xr15vevXsbLy8vloUD58BmzCnjtQ2YzWbTe++9p2HDhkmS0tLSdPPNN2vnzp2Ooe2TGjdurNDQUJWUlGjfvn1nPG7Lli0dTxytSp8+fRQfH6/k5OTzvgYAAMBtqdPq1auXysrK9OOPPzoeQ/97Xl5e57WU+9ixY9q7d69GjRp1zscAAAAVNehwc+zYsQr38/fv36+MjAy1aNFCHTt21M0336zRo0dr7ty56tWrl3JycpSenq7u3buf0yPhH3zwQSUmJqp169Y6fPiwZsyYIbvdXuGhXgAA4Pw06NtS69at0+DBgyttHzNmjJYsWaLS0lI98cQTev311/XDDz8oMDBQF198sWbNmqXo6Ogan++mm27SZ599pp9++klBQUEaMGCAnnzyyUoPLQMAAOeuQYcbAABgPTznBgAAWArhBgAAWEqDm1BcXl6uw4cPq0mTJjzmHACAesIYo6NHjyo8PLzSF9D+XoMLN4cPH1ZkZKSrywAAAOfg0KFDuuCCC87YpsGFm5OPOD906JCaNm3q4moAAEB15OfnKzIyslpfV9Tgws3JW1FNmzYl3AAAUM9UZ0oJE4oBAIClEG4AAIClEG4AAIClNLg5N9VVVlam0tJSV5fhcl5eXmddcgcAgDsh3PyOMUZZWVk6cuSIq0txCx4eHmrTpo28vLxcXQoAANVCuPmdk8EmODhYfn5+DfpBfycfeJiZmalWrVo16L4AANQfhJtTlJWVOYJNy5YtXV2OWwgKCtLhw4d1/PhxNWrUyNXlAABwVkymOMXJOTZ+fn4ursR9nLwdVVZW5uJKAACoHsJNFbj98hv6AgBQ37g03Hz22WdKTExUeHi4bDab3n///bPus27dOl100UXy9vZW+/bttWTJEqfXCQAA6g+XhpuCggL16NFD8+fPr1b7/fv3a+jQoRo8eLAyMjJ03333afz48froo4+cXCkAAKgvXBpuhgwZoieeeELXX399tdovWLBAbdq00dy5c9WlSxfdfffduuGGG/Tcc885udL6Y8OGDbLb7Ro6dGiF7QcOHJDNZnO8WrRooYEDB+r//u//XFQpAMCKMvOKtH5vrjLzilxWQ72ac7NhwwbFx8dX2JaQkKANGza4qCL3k5qaqnvuuUefffaZDh8+XOnztWvXKjMzU5999pnCw8N1zTXXKDs72wWVAgCsJm3TQfWf84lGLvyP+s/5RGmbDrqkjnoVbrKyshQSElJhW0hIiPLz81VUVHVCLC4uVn5+foWXVR07dkxpaWm68847NXTo0CrnI7Vs2VKhoaHq1q2bpk6dqvz8fP3nP/+p+2IBAJaSmVekKSu2q9yceF9upKkrdrhkBKdehZtzkZycrICAAMcrMjKyzs5d10Nzf//739W5c2d16tRJt9xyixYtWiRjTJVti4qK9Prrr0sSTx8GAJy3/bkFjmBzUpkxOpBbWOe11KuH+IWGhla6hZKdna2mTZvK19e3yn2mTJmiSZMmOd7n5+fXScBJ23TQkWA9bFLy8Ggl9Wnl1HOmpqbqlltukSRdddVVysvL07/+9S8NGjTI0aZfv37y8PBQYWGhjDHq3bu3Lr/8cqfWBQCwvjaB/vKwqULAsdtsigqs+2fH1auRm7i4OKWnp1fYtmbNGsXFxZ12H29vbzVt2rTCy9lcMTS3e/dubdy4USNGjJAkeXp6KikpSampqRXapaWladu2bXr33XcdS+l58jAA4HyFBfgqeXi07P97PprdZtPs4d0UFlD14IMzuXTk5tixY9qzZ4/j/f79+5WRkaEWLVqoVatWmjJlin744QfH7ZM77rhDL7zwgh566CH96U9/0ieffKK///3v+vDDD111CVU609Ccs/5HTk1N1fHjxxUeHu7YZoyRt7e3XnjhBce2yMhIdejQQR06dNDx48d1/fXXa8eOHfL29nZKXQCAhiOpTytd2jFIB3ILFRXo55JgI7l45Gbz5s3q1auXevXqJUmaNGmSevXqpenTp0uSMjMzdfDgbzOt27Rpow8//FBr1qxRjx49NHfuXL366qtKSEhwSf2nc3Jo7lTOHJo7fvy4Xn/9dc2dO1cZGRmO13//+1+Fh4dr6dKlVe53ww03yNPTUy+++KJT6gIANDxhAb6Ka9fSZcFGcvHIzaBBg0474VVSlat9Bg0apG3btjmxqvN3cmhu6oodKjPG6UNzH3zwgX755RfdeuutCggIqPDZH/7wB6Wmpuqqq66qtJ/NZtPEiRM1c+ZM/fnPf+Y7tQAAllCv5tzUJ0l9WunzyYO19LaL9fnkwU6dTJyamqr4+PhKwUY6EW42b9582iXwY8aMUWlpaYVbVwAA1Gf1arVUfRMW4Fsnw3L/+Mc/TvtZ3759HaNjVY2S+fn56eeff3ZabQAA1DVGbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbqpwpuXpDQ19AQCobwg3pzj5NQSFhXX/JV/uqqSkRJJkt9tdXAkAANXDUvBT2O12NWvWTD/++KOkE8ukbTbbWfayrvLycuXk5MjPz0+envyoAADqB/5i/U5oaKgkOQJOQ+fh4aFWrVo16JAHAKhfCDe/Y7PZFBYWpuDgYJWWlrq6HJfz8vKShwd3LwEA9Qfh5jTsdjvzTAAAqIf4JzkAALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUl4eb+fPnKyoqSj4+PoqNjdXGjRvP2D4lJUWdOnWSr6+vIiMjdf/99+vXX3+to2oBAIC7c2m4SUtL06RJkzRjxgxt3bpVPXr0UEJCgn788ccq27/99tuaPHmyZsyYoV27dik1NVVpaWmaOnVqHVcOAADclUvDzbx583Tbbbdp3Lhx6tq1qxYsWCA/Pz8tWrSoyvbr169X//79NXLkSEVFRenKK6/UiBEjzjraAwAAGg6XhZuSkhJt2bJF8fHxvxXj4aH4+Hht2LChyn369eunLVu2OMLMvn37tGrVKl199dWnPU9xcbHy8/MrvAAAgHV5uurEubm5KisrU0hISIXtISEh+vrrr6vcZ+TIkcrNzdWAAQNkjNHx48d1xx13nPG2VHJysmbNmlWrtQMAAPfl8gnFNbFu3TrNnj1bL774orZu3aoVK1boww8/1OOPP37afaZMmaK8vDzH69ChQ3VYMQAAqGsuG7kJDAyU3W5XdnZ2he3Z2dkKDQ2tcp9p06Zp1KhRGj9+vCQpOjpaBQUFuv322/XII4/Iw6NyVvP29pa3t3ftXwAAAHBLLhu58fLyUu/evZWenu7YVl5ervT0dMXFxVW5T2FhYaUAY7fbJUnGGOcVCwAA6g2XjdxI0qRJkzRmzBjFxMSob9++SklJUUFBgcaNGydJGj16tCIiIpScnCxJSkxM1Lx589SrVy/FxsZqz549mjZtmhITEx0hBwAANGwuDTdJSUnKycnR9OnTlZWVpZ49e2r16tWOScYHDx6sMFLz6KOPymaz6dFHH9UPP/ygoKAgJSYm6sknn3TVJQAAADdjMw3sfk5+fr4CAgKUl5enpk2burocAABQDTX5+12vVksBAACcDeEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAAALyMwr0vq9ucrMK3J1KS7n6eoCAADA+UnbdFBTVmxXuZE8bFLy8Ggl9Wnl6rJchpEbAADqscy8IkewkaRyI01dsaNBj+AQbgAAqMf25xY4gs1JZcboQG6hawpyA4QbAADqsTaB/vKwVdxmt9kUFejnmoLcAOEGAIB6LCzAV8nDo2W3nUg4dptNs4d3U1iAr4srcx2Xh5v58+crKipKPj4+io2N1caNG8/Y/siRI5owYYLCwsLk7e2tjh07atWqVXVULQAA7iepTyt9Pnmwlt52sT6fPLhBTyaWXLxaKi0tTZMmTdKCBQsUGxurlJQUJSQkaPfu3QoODq7UvqSkRFdccYWCg4O1fPlyRURE6LvvvlOzZs3qvngAANxIWIBvgx6tOZXNGGPO3sw5YmNj1adPH73wwguSpPLyckVGRuqee+7R5MmTK7VfsGCBnnnmGX399ddq1KjROZ0zPz9fAQEBysvLU9OmTc+rfgAAUDdq8vfbZbelSkpKtGXLFsXHx/9WjIeH4uPjtWHDhir3WblypeLi4jRhwgSFhISoW7dumj17tsrKyk57nuLiYuXn51d4AQAA63JZuMnNzVVZWZlCQkIqbA8JCVFWVlaV++zbt0/Lly9XWVmZVq1apWnTpmnu3Ll64oknTnue5ORkBQQEOF6RkZG1eh0AAMC9uHxCcU2Ul5crODhYr7zyinr37q2kpCQ98sgjWrBgwWn3mTJlivLy8hyvQ4cO1WHFAACgrrlsQnFgYKDsdruys7MrbM/OzlZoaGiV+4SFhalRo0ay2+2ObV26dFFWVpZKSkrk5eVVaR9vb295e3vXbvEAAMBtuWzkxsvLS71791Z6erpjW3l5udLT0xUXF1flPv3799eePXtUXl7u2PbNN98oLCysymADAAAaHpfelpo0aZIWLlyo1157Tbt27dKdd96pgoICjRs3TpI0evRoTZkyxdH+zjvv1M8//6x7771X33zzjT788EPNnj1bEyZMcNUlAAAAN+PS59wkJSUpJydH06dPV1ZWlnr27KnVq1c7JhkfPHhQHh6/5a/IyEh99NFHuv/++9W9e3dFRETo3nvv1cMPP+yqSwAAAG7Gpc+5cQWecwMAQP1TL55zAwAA4AyEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAUElmXpHW781VZl6Rq0upMU9XFwAAANxL2qaDmrJiu8qN5GGTkodHK6lPK1eXVW2M3AAAAIfMvCJHsJGkciNNXbGjXo3gEG4AAIDD/twCR7A5qcwYHcgtdE1B54BwAwAAHNoE+svDVnGb3WZTVKCfawo6B7UWbn799Vc9++yztXU4AADgAmEBvkoeHi277UTCsdtsmj28m8ICfF1cWfXZjDHm7M1OyMnJ0X/+8x95eXnp8ssvl91uV2lpqV588UUlJyfr+PHjys3NdWa95y0/P18BAQHKy8tT06ZNXV0OAABuKTOvSAdyCxUV6OcWwaYmf7+rvVrq888/1zXXXKP8/HzZbDbFxMRo8eLFGjZsmDw9PTVz5kyNGTPmvIsHAAA1l5lXpP25BWoT6F8rYSQswNctQs25qPbIzaBBgxQeHq6pU6fqtdde09y5c9WhQwc9+eSTuuGGG5xdZ61h5AYAYDX1fel2ddTk73e1w03Lli31f//3f+ratauKiorUuHFjrVixQtddd12tFF1XCDcAACvJzCtS/zmfVFjhZLfZ9PnkwfV25KUqNfn7Xe0Jxb/88osCAwMlSb6+vvLz81O3bt3Or1IAAHBerLB0u7bV6AnFX331lbKysiRJxhjt3r1bBQUFFdp079699qoDAABndHLp9u9HburT0u3aVu3bUh4eHrLZbDpTc5vNprKyslorzhm4LQUAsJq0TQc1dcUOlRnjWLrdkOfcVHvkZv/+/Wdtc/To0eoeDgAA1JKkPq10accgt1q67UrVDjetW7eucvvRo0e1dOlSpaamavPmzW4/cgMAgBXV56Xbte2cn1D82WefacyYMQoLC9Ozzz6rwYMH69///ndt1gYAAFBjNZpQnJWVpSVLlig1NVX5+fm68cYbVVxcrPfff19du3Z1Vo0AAADVVu2Rm8TERHXq1ElffvmlUlJSdPjwYT3//PPOrA0AAKDGqj1y889//lMTJ07UnXfeqQ4dOjizJgAAgHNW7ZGbzz//XEePHlXv3r0VGxurF154we2/JBMAADQ81Q43F198sRYuXKjMzEz9+c9/1rJlyxQeHq7y8nKtWbOGZeAAAMAtVPshflXZvXu3UlNT9cYbb+jIkSO64oortHLlytqsr9bxED8AAOofp3y3VFU6deqkp59+Wt9//72WLl16PocCAACoFec1clMfMXIDAED9U2cjNwAAAO6GcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACzFLcLN/PnzFRUVJR8fH8XGxmrjxo3V2m/ZsmWy2WwaNmyYcwsEAAD1hsvDTVpamiZNmqQZM2Zo69at6tGjhxISEvTjjz+ecb8DBw7owQcf1CWXXFJHlQIAgPrA5eFm3rx5uu222zRu3Dh17dpVCxYskJ+fnxYtWnTafcrKynTzzTdr1qxZatu2bR1WCwAA3J1Lw01JSYm2bNmi+Ph4xzYPDw/Fx8drw4YNp93vscceU3BwsG699daznqO4uFj5+fkVXgAAwLpcGm5yc3NVVlamkJCQCttDQkKUlZVV5T6ff/65UlNTtXDhwmqdIzk5WQEBAY5XZGTkedcNAADcl8tvS9XE0aNHNWrUKC1cuFCBgYHV2mfKlCnKy8tzvA4dOuTkKgEAgCt5uvLkgYGBstvtys7OrrA9OztboaGhldrv3btXBw4cUGJiomNbeXm5JMnT01O7d+9Wu3btKuzj7e0tb29vJ1QPAADckUtHbry8vNS7d2+lp6c7tpWXlys9PV1xcXGV2nfu3Fnbt29XRkaG43Xttddq8ODBysjI4JYTAABw7ciNJE2aNEljxoxRTEyM+vbtq5SUFBUUFGjcuHGSpNGjRysiIkLJycny8fFRt27dKuzfrFkzSaq0HQAANEwuDzdJSUnKycnR9OnTlZWVpZ49e2r16tWOScYHDx6Uh0e9mhoEAABcyGaMMa4uoi7l5+crICBAeXl5atq0qavLAQAA1VCTv98MiQAAAEsh3AAAAEsh3AD1UGZekdbvzVVmXpGrSwEAt+PyCcUAaiZt00FNWbFd5UbysEnJw6OV1KeVq8sCALfByA1Qj2TmFTmCjSSVG2nqih2M4ADAKQg3tYhbBXC2/bkFjmBzUpkxOpBb6JqCAMANcVuqlnCrAHWhTaC/PGyqEHDsNpuiAv1cVxQAuBlGbmoBtwpQV8ICfJU8PFp2m03SiWAze3g3hQX4urgyAHAfjNzUgjPdKuCPDmpbUp9WurRjkA7kFioq0I+fMQD4HcJNLeBWAepaWIAvoQYAToPbUrWAWwVAw8CiAaB+YOSmlnCrALA2Fg0A9QcjN7UoLMBXce1aEmwAi2HRAFC/EG4A4Cx4vhBQvxBuAOAsTi4aOBWLBgD3RbgBwETZs2DRAFC/MKEYaOCYKFs9LBoA6g9GbgAXcvWICRNla4ZFA0D9wMgN4CLuMGLC07UBWBEjN4ALuMuICRNlAVgR4QZwAXdZWsxEWQBWxG0pwAXc6fvImCgLwGoYuQFcwN1GTJgoC8BKGLkBXIQREwBwDsIN4EJhAb6EGgCoZdyWAgAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4cWOZeUVavzdXmXlFri4FAIB6w9PVBaBqaZsOasqK7So3kodNSh4eraQ+rVxdFgAAbo+RGzeUmVfkCDaSVG6kqSt2MIIDAEA1EG7c0P7cAkewOanMGB3ILXRNQQAA1COEGzfUJtBfHraK2+w2m6IC/VxTEAAA9Qjhxg2FBfgqeXi07LYTCcdus2n28G4KC/B1cWUAALg/JhS7qaQ+rXRpxyAdyC1UVKAfwQYAgGoi3LixsABfQg0AADXEbSkAAGAphBsAAGAphBsAAGAphBsAAGAphBsAdYrvTAPgbKyWAlBn+M40AHWBkRsAdYLvTHNfjKbBatwi3MyfP19RUVHy8fFRbGysNm7ceNq2Cxcu1CWXXKLmzZurefPmio+PP2N7AO6B70xzT2mbDqr/nE80cuF/1H/OJ0rbdNDVJQHnzeXhJi0tTZMmTdKMGTO0detW9ejRQwkJCfrxxx+rbL9u3TqNGDFCn376qTZs2KDIyEhdeeWV+uGHH+q4cgA1wXemuR9G02BVLg838+bN02233aZx48apa9euWrBggfz8/LRo0aIq27/11lu666671LNnT3Xu3FmvvvqqysvLlZ6eXseVA6gJvjPN/TCaBqty6YTikpISbdmyRVOmTHFs8/DwUHx8vDZs2FCtYxQWFqq0tFQtWrSo8vPi4mIVFxc73ufn559f0QDOGd+Z5l5OjqadGnAYTYMVuHTkJjc3V2VlZQoJCamwPSQkRFlZWdU6xsMPP6zw8HDFx8dX+XlycrICAgIcr8jIyPOuG8C5CwvwVVy7lgQbN8BoGqyqXi8FnzNnjpYtW6Z169bJx8enyjZTpkzRpEmTHO/z8/MJOADwP4ymwYpcGm4CAwNlt9uVnZ1dYXt2drZCQ0PPuO+zzz6rOXPmaO3aterevftp23l7e8vb27tW6gUAKwoL8CXUwFJcelvKy8tLvXv3rjAZ+OTk4Li4uNPu9/TTT+vxxx/X6tWrFRMTUxelAgCAesLlt6UmTZqkMWPGKCYmRn379lVKSooKCgo0btw4SdLo0aMVERGh5ORkSdJTTz2l6dOn6+2331ZUVJRjbk7jxo3VuHFjl10HAABwDy4PN0lJScrJydH06dOVlZWlnj17avXq1Y5JxgcPHpSHx28DTC+99JJKSkp0ww03VDjOjBkzNHPmzLosHQAAuCGbMcacvZl15OfnKyAgQHl5eWratKmrywEAANVQk7/fLn+IHwAAQG0i3AAAAEsh3AAAAEsh3AAAAEsh3OCcZeYVaf3eXL5BGADgVly+FBz1U9qmg5qyYrvKjeRhk5KHRyupTytXlwUAACM3qLnMvCJHsJFOfKPw1BU7GMEBALgFwg1qbH9ugSPYnFRmjA7kFrqmIAAATkG4QY21CfSXh63iNrvNpqhAP9cUBADAKQg3qLGwAF9d3yuiwrZhvcL5VmEAgFsg3KDGMvOK9N62Hypse3/bYebcAA0IqyXhzlgthRo705wbRm8A62O1JNwdIzeoMebcAA0XqyVRHxBuUGNhAb5KHh4tu+1EwrHbbJo9vBujNkADwGpJ1AfclsI5SerTSpd2DNKB3EJFBfoRbIAG4uTI7akBh5FbuBtGbnDOwgJ8FdeuJcEGaEAYuUV9wMgNAKBGGLmFuyPcAABqLCzAl1ADt8VtKQAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEG8BNZeYVaf3eXGXmFbm6FACoVzxdXQCAytI2HdSUFdtVbiQPm5Q8PFpJfVq5uiwAqBcYuQHcTGZekSPYSFK5kaau2MEIDgBUE+EGcDP7cwscweakMmN0ILfQNQUBQD1DuAHcTJtAf3nYKm6z22yKCvRzTUEAUM8QboDfcfVE3rAAXyUPj5bddiLh2G02zR7eTWEBvi6pBwDqGyYUA6dwl4m8SX1a6dKOQTqQW6ioQD+CDQDUACM3wP+420TesABfxbVrSbABgBoi3AD/w0ReALAGwg3wP0zkBQBrINwA/8NEXgCwBiYUA6eo7xN5M/OKtD+3QG0C/etd7QBQWwg3wO+EBfjWy2DgLiu9AMDVuC0FWIC7rfQCAFci3AAWwEovAPgN4QawAFZ6AcBvCDeABbDSCwB+w4RiwCLq+0ovNGys9ENtItwAFlJfV3qhYWOlH2obt6UAAC7DSj84A+EGABqAzLwird+b63ahgZV+cAZuSwGAxbnzbZ+TK/1ODTis9MP5YuQGACzM3W/7sNIPzsDIDQBY2Jlu+7hLgGClH2ob4QYALKy+3PZhpR9qk1vclpo/f76ioqLk4+Oj2NhYbdy48Yzt33nnHXXu3Fk+Pj6Kjo7WqlWr6qhSAKhfuO2DhsjlIzdpaWmaNGmSFixYoNjYWKWkpCghIUG7d+9WcHBwpfbr16/XiBEjlJycrGuuuUZvv/22hg0bpq1bt6pbt24uuAIAcG/c9kFDYzPGmLM3c57Y2Fj16dNHL7zwgiSpvLxckZGRuueeezR58uRK7ZOSklRQUKAPPvjAse3iiy9Wz549tWDBgrOeLz8/XwEBAcrLy1PTpk1r70IAAIDT1OTvt0tvS5WUlGjLli2Kj493bPPw8FB8fLw2bNhQ5T4bNmyo0F6SEhISTtu+uLhY+fn5FV4AAMC6XBpucnNzVVZWppCQkArbQ0JClJWVVeU+WVlZNWqfnJysgIAAxysyMrJ2igcAAG7JLSYUO9OUKVOUl5fneB06dMjVJQEAACdy6YTiwMBA2e12ZWdnV9ienZ2t0NDQKvcJDQ2tUXtvb295e3vXTsEAAMDtuXTkxsvLS71791Z6erpjW3l5udLT0xUXF1flPnFxcRXaS9KaNWtO2x4AADQsLl8KPmnSJI0ZM0YxMTHq27evUlJSVFBQoHHjxkmSRo8erYiICCUnJ0uS7r33Xg0cOFBz587V0KFDtWzZMm3evFmvvPKKKy8DAAC4CZeHm6SkJOXk5Gj69OnKyspSz549tXr1asek4YMHD8rD47cBpn79+untt9/Wo48+qqlTp6pDhw56//33ecYNAACQ5AbPualrPOcGAID6p9485wYAAKC2EW4AAIClEG4AAICluHxCcV07OcWIr2EAAKD+OPl3uzpThRtcuDl69Kgk8TUMAADUQ0ePHlVAQMAZ2zS41VLl5eU6fPiwmjRpIpvNVmWb/Px8RUZG6tChQw1+RRV9cQL9cAL98Bv64gT64QT64TfO6gtjjI4eParw8PAKj4ipSoMbufHw8NAFF1xQrbZNmzZt8D+kJ9EXJ9APJ9APv6EvTqAfTqAffuOMvjjbiM1JTCgGAACWQrgBAACWQripgre3t2bMmMG3iYu+OIl+OIF++A19cQL9cAL98Bt36IsGN6EYAABYGyM3AADAUgg3AADAUgg3AADAUgg3AADAUhpsuJk/f76ioqLk4+Oj2NhYbdy48bRtd+7cqT/84Q+KioqSzWZTSkpK3RVaB2rSFwsXLtQll1yi5s2bq3nz5oqPjz9j+/qkJv2wYsUKxcTEqFmzZvL391fPnj31xhtv1GG1zlOTfjjVsmXLZLPZNGzYMOcWWIdq0hdLliyRzWar8PLx8anDap2npj8TR44c0YQJExQWFiZvb2917NhRq1atqqNqnacm/TBo0KBKPw82m01Dhw6tw4qdp6Y/EykpKerUqZN8fX0VGRmp+++/X7/++qvzCjQN0LJly4yXl5dZtGiR2blzp7nttttMs2bNTHZ2dpXtN27caB588EGzdOlSExoaap577rm6LdiJatoXI0eONPPnzzfbtm0zu3btMmPHjjUBAQHm+++/r+PKa1dN++HTTz81K1asMF999ZXZs2ePSUlJMXa73axevbqOK69dNe2Hk/bv328iIiLMJZdcYq677rq6KdbJatoXixcvNk2bNjWZmZmOV1ZWVh1XXftq2g/FxcUmJibGXH311ebzzz83+/fvN+vWrTMZGRl1XHntqmk//PTTTxV+Fnbs2GHsdrtZvHhx3RbuBDXti7feest4e3ubt956y+zfv9989NFHJiwszNx///1Oq7FBhpu+ffuaCRMmON6XlZWZ8PBwk5ycfNZ9W7dubalwcz59YYwxx48fN02aNDGvvfaas0qsE+fbD8YY06tXL/Poo486o7w6cy79cPz4cdOvXz/z6quvmjFjxlgm3NS0LxYvXmwCAgLqqLq6U9N+eOmll0zbtm1NSUlJXZVYJ873d8Rzzz1nmjRpYo4dO+asEutMTftiwoQJ5rLLLquwbdKkSaZ///5Oq7HB3ZYqKSnRli1bFB8f79jm4eGh+Ph4bdiwwYWV1b3a6IvCwkKVlpaqRYsWzirT6c63H4wxSk9P1+7du3XppZc6s1SnOtd+eOyxxxQcHKxbb721LsqsE+faF8eOHVPr1q0VGRmp6667Tjt37qyLcp3mXPph5cqViouL04QJExQSEqJu3bpp9uzZKisrq6uya11t/K5MTU3VTTfdJH9/f2eVWSfOpS/69eunLVu2OG5d7du3T6tWrdLVV1/ttDob3Bdn5ubmqqysTCEhIRW2h4SE6Ouvv3ZRVa5RG33x8MMPKzw8vMIPen1zrv2Ql5eniIgIFRcXy26368UXX9QVV1zh7HKd5lz64fPPP1dqaqoyMjLqoMK6cy590alTJy1atEjdu3dXXl6enn32WfXr1087d+6s9pf1uptz6Yd9+/bpk08+0c0336xVq1Zpz549uuuuu1RaWqoZM2bURdm17nx/V27cuFE7duxQamqqs0qsM+fSFyNHjlRubq4GDBggY4yOHz+uO+64Q1OnTnVanQ0u3KD2zJkzR8uWLdO6dessM3GyJpo0aaKMjAwdO3ZM6enpmjRpktq2batBgwa5urQ6cfToUY0aNUoLFy5UYGCgq8txubi4OMXFxTne9+vXT126dNHLL7+sxx9/3IWV1a3y8nIFBwfrlVdekd1uV+/evfXDDz/omWeeqbfh5nylpqYqOjpaffv2dXUpLrFu3TrNnj1bL774omJjY7Vnzx7de++9evzxxzVt2jSnnLPBhZvAwEDZ7XZlZ2dX2J6dna3Q0FAXVeUa59MXzz77rObMmaO1a9eqe/fuzizT6c61Hzw8PNS+fXtJUs+ePbVr1y4lJyfX23BT037Yu3evDhw4oMTERMe28vJySZKnp6d2796tdu3aObdoJ6mN3xONGjVSr169tGfPHmeUWCfOpR/CwsLUqFEj2e12x7YuXbooKytLJSUl8vLycmrNznA+Pw8FBQVatmyZHnvsMWeWWGfOpS+mTZumUaNGafz48ZKk6OhoFRQU6Pbbb9cjjzwiD4/anyHT4ObceHl5qXfv3kpPT3dsKy8vV3p6eoV/dTUE59oXTz/9tB5//HGtXr1aMTExdVGqU9XWz0R5ebmKi4udUWKdqGk/dO7cWdu3b1dGRobjde2112rw4MHKyMhQZGRkXZZfq2rjZ6KsrEzbt29XWFiYs8p0unPph/79+2vPnj2OoCtJ33zzjcLCwuplsJHO7+fhnXfeUXFxsW655RZnl1knzqUvCgsLKwWYk+HXOOvrLZ02VdmNLVu2zHh7e5slS5aYr776ytx+++2mWbNmjmWbo0aNMpMnT3a0Ly4uNtu2bTPbtm0zYWFh5sEHHzTbtm0z3377rasuodbUtC/mzJljvLy8zPLlyyssczx69KirLqFW1LQfZs+ebT7++GOzd+9e89VXX5lnn33WeHp6moULF7rqEmpFTfvh96y0WqqmfTFr1izz0Ucfmb1795otW7aYm266yfj4+JidO3e66hJqRU374eDBg6ZJkybm7rvvNrt37zYffPCBCQ4ONk888YSrLqFWnOv/NwYMGGCSkpLqulynqmlfzJgxwzRp0sQsXbrU7Nu3z3z88cemXbt25sYbb3RajQ0y3BhjzPPPP29atWplvLy8TN++fc2///1vx2cDBw40Y8aMcbzfv3+/kVTpNXDgwLov3Alq0hetW7eusi9mzJhR94XXspr0wyOPPGLat29vfHx8TPPmzU1cXJxZtmyZC6qufTXph9+zUrgxpmZ9cd999znahoSEmKuvvtps3brVBVXXvpr+TKxfv97ExsYab29v07ZtW/Pkk0+a48eP13HVta+m/fD1118bSebjjz+u40qdryZ9UVpaambOnGnatWtnfHx8TGRkpLnrrrvML7/84rT6bMY4a0wIAACg7jW4OTcAAMDaCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcA4ERjx47VsGHDXF0G0KAQboAGauzYsbLZbI5Xy5YtddVVV+nLL790dWm14tRrO/kaMGCA08534MAB2Ww2ZWRkVNj+17/+VUuWLHHaeQFURrgBGrCrrrpKmZmZyszMVHp6ujw9PXXNNde4uqxas3jxYsf1ZWZmauXKlVW2Ky0tdVoNAQEBatasmdOOD6Aywg3QgHl7eys0NFShoaHq2bOnJk+erEOHDiknJ0eXXXaZ7r777grtc3Jy5OXl5fhG4KioKD3++OMaMWKE/P39FRERofnz51fYZ968eYqOjpa/v78iIyN111136dixY47Pv/vuOyUmJqp58+by9/fXhRdeqFWrVkmSfvnlF918880KCgqSr6+vOnTooMWLF1f7+po1a+a4vtDQULVo0cIxwpKWlqaBAwfKx8dHb731ln766SeNGDFCERER8vPzU3R0tJYuXVrheOXl5Xr66afVvn17eXt7q1WrVnryySclSW3atJEk9erVSzabTYMGDZJU+bZUcXGxJk6cqODgYPn4+GjAgAHatGmT4/N169bJZrMpPT1dMTEx8vPzU79+/bR79+5qXzfQ0BFuAEiSjh07pjfffFPt27dXy5YtNX78eL399tsqLi52tHnzzTcVERGhyy67zLHtmWeeUY8ePbRt2zZNnjxZ9957r9asWeP43MPDQ3/729+0c+dOvfbaa/rkk0/00EMPOT6fMGGCiouL9dlnn2n79u166qmn1LhxY0nStGnT9NVXX+mf//yndu3apZdeekmBgYG1cr0na921a5cSEhL066+/qnfv3vrwww+1Y8cO3X777Ro1apQ2btzo2GfKlCmaM2eOo663335bISEhkuRot3btWmVmZmrFihVVnvehhx7Su+++q9dee01bt25V+/btlZCQoJ9//rlCu0ceeURz587V5s2b5enpqT/96U+1ct1Ag+C0r+QE4NbGjBlj7Ha78ff3N/7+/kaSCQsLM1u2bDHGGFNUVGSaN29u0tLSHPt0797dzJw50/G+devW5qqrrqpw3KSkJDNkyJDTnvedd94xLVu2dLyPjo6ucMxTJSYmmnHjxp3T9UkyPj4+juvz9/c37733ntm/f7+RZFJSUs56jKFDh5oHHnjAGGNMfn6+8fb2NgsXLqyy7cnjbtu2rcL2U78p/dixY6ZRo0bmrbfecnxeUlJiwsPDzdNPP22MMebTTz81kszatWsdbT788EMjyRQVFdWkC4AGi5EboAEbPHiwMjIylJGRoY0bNyohIUFDhgzRd999Jx8fH40aNUqLFi2SJG3dulU7duzQ2LFjKxwjLi6u0vtdu3Y53q9du1aXX365IiIi1KRJE40aNUo//fSTCgsLJUkTJ07UE088of79+2vGjBkVJjTfeeedWrZsmXr27KmHHnpI69evr9H1Pffcc47ry8jI0BVXXOH4LCYmpkLbsrIyPf7444qOjlaLFi3UuHFjffTRRzp48KAkadeuXSouLtbll19eoxpOtXfvXpWWlqp///6ObY0aNVLfvn0r9Jkkde/e3fHfYWFhkqQff/zxnM8NNCSEG6AB8/f3V/v27dW+fXv16dNHr776qgoKCrRw4UJJ0vjx47VmzRp9//33Wrx4sS677DK1bt262sc/cOCArrnmGnXv3l3vvvuutmzZ4piTU1JS4jjHvn37NGrUKG3fvl0xMTF6/vnnJckRtO6//34dPnxYl19+uR588MFqnz80NNRxfe3bt5e/v3+Faz/VM888o7/+9a96+OGH9emnnyojI0MJCQmOOn19fat93trQqFEjx3/bbDZJJ+b8ADg7wg0AB5vNJg8PDxUVFUmSoqOjFRMTo4ULF+rtt9+uct7Hv//970rvu3TpIknasmWLysvLNXfuXF188cXq2LGjDh8+XOkYkZGRuuOOO7RixQo98MADjnAlSUFBQRozZozefPNNpaSk6JVXXqnNS3b44osvdN111+mWW25Rjx491LZtW33zzTeOzzt06CBfX1/HZOrf8/LyknRiBOh02rVrJy8vL33xxReObaWlpdq0aZO6du1aS1cCwNPVBQBwneLiYmVlZUk6sTLphRde0LFjx5SYmOhoM378eN19993y9/fX9ddfX+kYX3zxhZ5++mkNGzZMa9as0TvvvKMPP/xQktS+fXuVlpbq+eefV2Jior744gstWLCgwv733XefhgwZoo4dO+qXX37Rp59+6ghH06dPV+/evXXhhRequLhYH3zwgeOz2tahQwctX75c69evV/PmzTVv3jxlZ2c7QoePj48efvhhPfTQQ/Ly8lL//v2Vk5OjnTt36tZbb1VwcLB8fX21evVqXXDBBfLx8VFAQECFc/j7++vOO+/UX/7yF7Vo0UKtWrXS008/rcLCQt16661OuS6gIWLkBmjAVq9erbCwMIWFhSk2NlabNm3SO++841jGLEkjRoyQp6enRowYIR8fn0rHeOCBB7R582b16tVLTzzxhObNm6eEhARJUo8ePTRv3jw99dRT6tatm9566y0lJydX2L+srEwTJkxQly5ddNVVV6ljx4568cUXJZ0YDZkyZYq6d++uSy+9VHa7XcuWLXNKXzz66KO66KKLlJCQoEGDBik0NLTSk4WnTZumBx54QNOnT1eXLl2UlJTkmAfj6empv/3tb3r55ZcVHh6u6667rsrzzJkzR3/4wx80atQoXXTRRdqzZ48++ugjNW/e3CnXBTRENmOMcXURANzXgQMH1K5dO23atEkXXXRRhc+ioqJ033336b777nNNcQBQBW5LAahSaWmpfvrpJz366KO6+OKLKwUbAHBX3JYCUKUvvvhCYWFh2rRpU6V5Mq42e/ZsNW7cuMrXkCFDXF0eABfjthSAeufnn3+u9ETfk3x9fRUREVHHFQFwJ4QbAABgKdyWAgAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlvL/ATmg9aux6ek0AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHHCAYAAACcHAM1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOlpJREFUeJzt3Xl0FFXe//FPJyELgTSQhQQMhH0xYRk2IciiICIyAo4iKoIj+ogoIjoqqAOODgEXZEYRFTGoKDAg+DAMyio6gg4BycgmyiYoYQlCh5DQhOT+/vChf7QJkIR0VyV5v86pc+jqm6pv3RO6P7l1q8phjDECAACwsQCrCwAAALgUAgsAALA9AgsAALA9AgsAALA9AgsAALA9AgsAALA9AgsAALA9AgsAALA9AgsAALA9AguAyzZx4kQ5HI5itXU4HJo4caJP6+nRo4d69Ohh2+0BKDkCC1CBzJ49Ww6Hw7MEBQWpbt26Gj58uH7++Wery7OdhIQEr/6KiYnR1VdfrcWLF5fJ9nNycjRx4kStXbu2TLYHVGYEFqAC+stf/qL3339fb7zxhvr27as5c+aoe/fuOn36tE/29/TTTys3N9cn2/a1Nm3a6P3339f777+vxx57TAcPHtSgQYP0xhtvXPa2c3Jy9OyzzxJYgDIQZHUBAMpe37591b59e0nSiBEjFBUVpSlTpmjJkiW69dZby3x/QUFBCgoqnx8ndevW1Z133ul5fdddd6lx48Z65ZVXdP/991tYGYDzMcICVAJXX321JGn37t1e67/77jv94Q9/UK1atRQaGqr27dtryZIlXm3y8vL07LPPqkmTJgoNDVVkZKS6du2qlStXetoUNYfF7XbrkUceUXR0tKpXr67f//73+umnnwrVNnz4cCUkJBRaX9Q2U1NTdc011ygmJkYhISFq2bKlZsyYUaK+uJTY2Fi1aNFCe/fuvWi7I0eO6J577lHt2rUVGhqq1q1b69133/W8v2/fPkVHR0uSnn32Wc9pJ1/P3wEqqvL5JxGAEtm3b58kqWbNmp5127ZtU3JysurWrasnn3xS4eHh+sc//qEBAwboo48+0sCBAyX9GhxSUlI0YsQIdezYUVlZWdq4caO++eYb9e7d+4L7HDFihObMmaPbb79dXbp00Zo1a9SvX7/LOo4ZM2boyiuv1O9//3sFBQXpn//8px544AEVFBRo1KhRl7Xtc/Ly8nTgwAFFRkZesE1ubq569OihXbt26cEHH1SDBg20YMECDR8+XCdOnNDDDz+s6OhozZgxQyNHjtTAgQM1aNAgSVKrVq3KpE6g0jEAKozU1FQjyaxatcocPXrUHDhwwCxcuNBER0ebkJAQc+DAAU/ba6+91iQlJZnTp0971hUUFJguXbqYJk2aeNa1bt3a9OvX76L7nTBhgjn/4yQ9Pd1IMg888IBXu9tvv91IMhMmTPCsGzZsmKlfv/4lt2mMMTk5OYXa9enTxzRs2NBrXffu3U337t0vWrMxxtSvX99cd9115ujRo+bo0aPmv//9r7ntttuMJPPQQw9dcHvTpk0zksycOXM8686cOWM6d+5sqlWrZrKysowxxhw9erTQ8QIoHU4JARVQr169FB0drfj4eP3hD39QeHi4lixZoiuuuEKS9Msvv2jNmjW69dZbdfLkSWVmZiozM1PHjh1Tnz599MMPP3iuKqpRo4a2bdumH374odj7X7ZsmSRp9OjRXuvHjBlzWccVFhbm+bfL5VJmZqa6d++uPXv2yOVylWqbK1asUHR0tKKjo9W6dWstWLBAQ4cO1ZQpUy74M8uWLVNsbKyGDBniWVelShWNHj1a2dnZ+vzzz0tVC4ALqzCB5YsvvlD//v1Vp04dORwOffzxxz7f588//6w777xTkZGRCgsLU1JSkjZu3Ojz/QKXMn36dK1cuVILFy7UDTfcoMzMTIWEhHje37Vrl4wxeuaZZzxf1ueWCRMmSPp1job06xVHJ06cUNOmTZWUlKQ//elP+vbbby+6/x9//FEBAQFq1KiR1/pmzZpd1nGtW7dOvXr1Unh4uGrUqKHo6GiNHz9ekkodWDp16qSVK1dq1apVWr9+vTIzM/Xee+95haPf+vHHH9WkSRMFBHh/hLZo0cLzPoCyVWHmsJw6dUqtW7fWH//4R8+5Yl86fvy4kpOT1bNnT33yySeKjo7WDz/84DVHALBKx44dPVcJDRgwQF27dtXtt9+unTt3qlq1aiooKJAkPfbYY+rTp0+R22jcuLEkqVu3btq9e7f+93//VytWrNDbb7+tV155RW+88YZGjBhx2bVe6IZz+fn5Xq93796ta6+9Vs2bN9fUqVMVHx+v4OBgLVu2TK+88ornmEoqKipKvXr1KtXPAvCfChNY+vbtq759+17wfbfbraeeekpz587ViRMnlJiYqClTppT67pVTpkxRfHy8UlNTPesaNGhQqm0BvhQYGKiUlBT17NlTr732mp588kk1bNhQ0q+nMYrzZV2rVi3dfffduvvuu5Wdna1u3bpp4sSJFwws9evXV0FBgXbv3u01qrJz585CbWvWrKkTJ04UWv/bUYp//vOfcrvdWrJkierVq+dZ/9lnn12y/rJWv359ffvttyooKPAaZfnuu+8870sXDmMASq7CnBK6lAcffFBfffWV5s2bp2+//Va33HKLrr/++hKdlz/fkiVL1L59e91yyy2KiYlR27ZtNXPmzDKuGigbPXr0UMeOHTVt2jSdPn1aMTEx6tGjh958801lZGQUan/06FHPv48dO+b1XrVq1dS4cWO53e4L7u/cHw9///vfvdZPmzatUNtGjRrJ5XJ5nWbKyMgodLfZwMBASZIxxrPO5XJ5/dHgLzfccIMOHTqk+fPne9adPXtWr776qqpVq6bu3btLkqpWrSpJRQYyACVTYUZYLmb//v1KTU3V/v37VadOHUm/DoV/+umnSk1N1aRJk0q8zT179mjGjBkaO3asxo8fr7S0NI0ePVrBwcEaNmxYWR8CcNn+9Kc/6ZZbbtHs2bN1//33a/r06eratauSkpJ07733qmHDhjp8+LC++uor/fTTT/rvf/8rSWrZsqV69Oihdu3aqVatWtq4caMWLlyoBx988IL7atOmjYYMGaLXX39dLpdLXbp00erVq7Vr165CbW+77TY98cQTGjhwoEaPHq2cnBzNmDFDTZs21TfffONpd9111yk4OFj9+/fX//zP/yg7O1szZ85UTExMkaHLl+677z69+eabGj58uDZt2qSEhAQtXLhQ69at07Rp01S9enVJv04SbtmypebPn6+mTZuqVq1aSkxMVGJiol/rBSoEqy9T8gVJZvHixZ7XS5cuNZJMeHi41xIUFGRuvfVWY4wxO3bsMJIuujzxxBOebVapUsV07tzZa78PPfSQueqqq/xyjEBRzl3WnJaWVui9/Px806hRI9OoUSNz9uxZY4wxu3fvNnfddZeJjY01VapUMXXr1jU33nijWbhwoefnnn/+edOxY0dTo0YNExYWZpo3b27++te/mjNnznjaFHUJcm5urhk9erSJjIw04eHhpn///ubAgQNFXua7YsUKk5iYaIKDg02zZs3MnDlzitzmkiVLTKtWrUxoaKhJSEgwU6ZMMe+8846RZPbu3etpV5LLmi91yfaFtnf48GFz9913m6ioKBMcHGySkpJMampqoZ9dv369adeunQkODuYSZ+AyOIw5b3y1gnA4HFq8eLEGDBggSZo/f77uuOMObdu2zTOsfE61atUUGxurM2fOaM+ePRfdbmRkpOfOlfXr11fv3r319ttve96fMWOGnn/+eR4yBwBAGasUp4Tatm2r/Px8HTlyxHOL8t8KDg5W8+bNi73N5OTkQhMIv//+e89kOwAAUHYqTGDJzs72Oj++d+9epaenq1atWmratKnuuOMO3XXXXXr55ZfVtm1bHT16VKtXr1arVq1KdbvwRx55RF26dNGkSZN06623asOGDXrrrbf01ltvleVhAQAASRXmlNDatWvVs2fPQuuHDRum2bNnKy8vT88//7zee+89/fzzz4qKitJVV12lZ599VklJSaXa59KlSzVu3Dj98MMPatCggcaOHat77733cg8FAAD8RoUJLAAAoOKqNPdhAQAA5ReBBQAA2F65nnRbUFCggwcPqnr16twCGwCAcsIYo5MnT6pOnTqFHiJ6IeU6sBw8eFDx8fFWlwEAAErhwIEDuuKKK4rVtlwHlnO3vz5w4IAiIiIsrgYAABRHVlaW4uPjPd/jxVGuA8u500AREREEFgAAypmSTOdg0i0AALA9AgsAALA9AgsAALC9cj2HBQAAu8nPz1deXp7VZViqSpUqCgwMLNNtElgAACgDxhgdOnRIJ06csLoUW6hRo4ZiY2PL7D5pBBYAAMrAubASExOjqlWrVtobmhpjlJOToyNHjkiS4uLiymS7BBYAAC5Tfn6+J6xERkZaXY7lwsLCJElHjhxRTExMmZwesnTSbUJCghwOR6Fl1KhRVpYFAECJnJuzUrVqVYsrsY9zfVFW83ksHWFJS0tTfn6+5/XWrVvVu3dv3XLLLRZWBQBA6VTW00BFKeu+sDSwREdHe72ePHmyGjVqpO7du1tUEQAAsCPbzGE5c+aM5syZo7Fjx14wlbndbrndbs/rrKwsf5UHAAAsZJsbx3388cc6ceKEhg8ffsE2KSkpcjqdnsWXT2rOcOVq/e5MZbhyfbYPAADs4quvvlJgYKD69evntX7fvn1e80xr1aql7t2769///rdf67NNYJk1a5b69u2rOnXqXLDNuHHj5HK5PMuBAwd8Usv8tP1KnrxGt8/8j5Inr9H8tP0+2Q8AAHYxa9YsPfTQQ/riiy908ODBQu+vWrVKGRkZ+uKLL1SnTh3deOONOnz4sN/qs0Vg+fHHH7Vq1SqNGDHiou1CQkI8T2b21ROaM1y5GrdoiwrMr68LjDR+0VZGWgAAFVZ2drbmz5+vkSNHql+/fpo9e3ahNpGRkYqNjVViYqLGjx+vrKws/ec///FbjbYILKmpqYqJiSk0DGWFvZmnPGHlnHxjtC8zx5qCAACVjr+nJfzjH/9Q8+bN1axZM91555165513ZIwpsm1ubq7ee+89SVJwcLBf6pNsMOm2oKBAqampGjZsmIKCLC9HDaLCFeCQV2gJdDiUEMW19QAA35uftt8z0h/gkFIGJWlwh3o+3eesWbN05513SpKuv/56uVwuff755+rRo4enTZcuXRQQEKCcnBwZY9SuXTtde+21Pq3rfJaPsKxatUr79+/XH//4R6tLkSTFOcOUMihJgf93pVKgw6FJgxIV5wyzuDIAQEVnxbSEnTt3asOGDRoyZIgkKSgoSIMHD9asWbO82s2fP1+bN2/WRx99pMaNG2v27NmqUqWKz+r6LcuHNK677roLDjtZZXCHeurWNFr7MnOUEFWVsAIA8IuLTUvw1XfRrFmzdPbsWa+LXowxCgkJ0WuvveZZFx8fryZNmqhJkyY6e/asBg4cqK1btyokJMQndf2W5SMsdhXnDFPnRpGEFQCA35yblnA+X05LOHv2rN577z29/PLLSk9P9yz//e9/VadOHc2dO7fIn/vDH/6goKAgvf766z6pqygEFgAAbMLf0xKWLl2q48eP65577lFiYqLXcvPNNxc6LXSOw+HQ6NGjNXnyZOXk+OeiFAILAAA2MrhDPX35ZE/NvfcqfflkT59OuJ01a5Z69eolp9NZ6L2bb75ZGzduvOBd5YcNG6a8vDyv00a+ZPkcFgAA4C3OGeaXKQn//Oc/L/hex44dPXNMi5prWrVqVf3yyy8+q+23GGEBAAC2R2ABAAC2R2ABAAC2R2ABAAC2R2ABAKCM2O1GqFYq674gsAAAcJnO3aLeX/ckKQ/O9UVZ3b6fy5oBALhMgYGBqlGjho4cOSLp10t+HQ7HJX6qYjLGKCcnR0eOHFGNGjUUGBhYJtslsAAAUAZiY2MlyRNaKrsaNWp4+qQsEFgAACgDDodDcXFxiomJUV5entXlWKpKlSplNrJyDoEFAIAyFBgYWOZf1mDSLQAAKAcILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYsDyw///yz7rzzTkVGRiosLExJSUnauHGj1WUBAAAbCbJy58ePH1dycrJ69uypTz75RNHR0frhhx9Us2ZNK8sCAAA2Y2lgmTJliuLj45WamupZ16BBAwsrAgAAdmTpKaElS5aoffv2uuWWWxQTE6O2bdtq5syZF2zvdruVlZXltQAAgIrP0sCyZ88ezZgxQ02aNNHy5cs1cuRIjR49Wu+++26R7VNSUuR0Oj1LfHy8nysGAABWcBhjjFU7Dw4OVvv27bV+/XrPutGjRystLU1fffVVofZut1tut9vzOisrS/Hx8XK5XIqIiPBLzQAA4PJkZWXJ6XSW6Pvb0hGWuLg4tWzZ0mtdixYttH///iLbh4SEKCIiwmsBAAAVn6WBJTk5WTt37vRa9/3336t+/foWVQQAAOzI0sDyyCOP6Ouvv9akSZO0a9cuffjhh3rrrbc0atQoK8sCAAA2Y2lg6dChgxYvXqy5c+cqMTFRzz33nKZNm6Y77rjDyrIAAIDNWDrp9nKVZtIOAACwVrmbdAsAAFAcBBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7BBYAAGB7lgaWiRMnyuFweC3Nmze3siQAAGBDQVYXcOWVV2rVqlWe10FBlpcEAABsxvJ0EBQUpNjYWKvLAAAANmb5HJYffvhBderUUcOGDXXHHXdo//79F2zrdruVlZXltQAAgIrP0sDSqVMnzZ49W59++qlmzJihvXv36uqrr9bJkyeLbJ+SkiKn0+lZ4uPj/VwxAACwgsMYY6wu4pwTJ06ofv36mjp1qu65555C77vdbrndbs/rrKwsxcfHy+VyKSIiwp+lAgCAUsrKypLT6SzR97flc1jOV6NGDTVt2lS7du0q8v2QkBCFhIT4uSoAAGA1y+ewnC87O1u7d+9WXFyc1aUAAAAbsTSwPPbYY/r888+1b98+rV+/XgMHDlRgYKCGDBliZVkAAMBmLD0l9NNPP2nIkCE6duyYoqOj1bVrV3399deKjo62siwAAGAzlgaWefPmWbl7AABQTthqDgsAAEBRCCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2CCwAAMD2bBNYJk+eLIfDoTFjxlhdCgAAsBlbBJa0tDS9+eabatWqldWlAKhAMly5Wr87UxmuXKtLAXCZLA8s2dnZuuOOOzRz5kzVrFnT6nIAVBDz0/YrefIa3T7zP0qevEbz0/ZbXRKAy2B5YBk1apT69eunXr16XbKt2+1WVlaW1wIAv5XhytW4RVtUYH59XWCk8Yu2MtIClGOWBpZ58+bpm2++UUpKSrHap6SkyOl0epb4+HgfVwigPNqbecoTVs7JN0b7MnOsKQjAZbMssBw4cEAPP/ywPvjgA4WGhhbrZ8aNGyeXy+VZDhw44OMqrcc5eKDkGkSFK8DhvS7Q4VBCVFVrCgJw2RzGGHPpZmXv448/1sCBAxUYGOhZl5+fL4fDoYCAALndbq/3ipKVlSWn0ymXy6WIiAhfl+x389P2e4a1AxxSyqAkDe5Qz+qygHJhftp+jV+0VfnGKNDh0KRBifz/AWyiNN/flgWWkydP6scff/Rad/fdd6t58+Z64oknlJiYeMltVOTAkuHKVfLkNV7D2oEOh758sqfinGHWFQaUIxmuXO3LzFFCVFX+3wA2Uprv7yAf13RB1atXLxRKwsPDFRkZWaywUtFd7Bw8H7xA8cQ5w/j/AlQQll8lhKJxDh4AgP/PshGWoqxdu9bqEmwjzhmmlEFJhc7B89ciAKAyslVggbfBHeqpW9NozsEDACo9AovNcQ4eAADmsAAAgHKAwAIAAGyPwAIAAGyPwAIAAGyPwAIAAGyPwAIAAGyPwAIAAGyPwAIAAGyPwAIAAGyvzALL6dOn9dJLL5XV5gAAADxKFFiOHj2qpUuXasWKFcrPz5ck5eXl6W9/+5sSEhI0efJknxQJAAAqt2I/S+jLL7/UjTfeqKysLDkcDrVv316pqakaMGCAgoKCNHHiRA0bNsyXtQIAgEqq2CMsTz/9tG644QZ9++23Gjt2rNLS0jRw4EBNmjRJ27dv1/3336+wMB7SBwAAyp7DGGOK0zAyMlL//ve/1bJlS+Xm5qpatWpatGiRbrrpJl/XeEFZWVlyOp1yuVyKiIiwrA4AAFB8pfn+LvYIy/HjxxUVFSVJCgsLU9WqVZWYmFi6SgEAQJEyXLlavztTGa5cq0uxlWLPYZGk7du369ChQ5IkY4x27typU6dOebVp1apV2VUHAEAlMj9tv8Yt2qICIwU4pJRBSRrcoZ7VZdlCsU8JBQQEyOFw6GLNHQ6H5+ohf+CUEACgoshw5Sp58hoVnPc1G+hw6MsneyrOWbHmiJbm+7vYIyx79+69ZJuTJ08Wd3MAAOA8ezNPeYUVSco3RvsycypcYCmNYgeW+vXrF7n+5MmTmjt3rmbNmqWNGzf6dYQFAICKokFUuAIcKjTCkhBV1bqibKTUd7r94osvNGzYMMXFxemll15Sz5499fXXX5dlbQAAVBpxzjClDEpSoMMh6dewMmlQIqMr/6dEk24PHTqk2bNna9asWcrKytKtt94qt9utjz/+WC1btvRVjQAAVAqDO9RTt6bR2peZo4SoqoSV8xR7hKV///5q1qyZvv32W02bNk0HDx7Uq6++6svaAACodOKcYercKJKw8hvFHmH55JNPNHr0aI0cOVJNmjTxZU0AAABeij3C8uWXX+rkyZNq166dOnXqpNdee02ZmZm+rA0AAEBSCQLLVVddpZkzZyojI0P/8z//o3nz5qlOnToqKCjQypUruaQZKKe4qyaA8qDYN44rys6dOzVr1iy9//77OnHihHr37q0lS5aUZX0XxY3jgMvDXTUBWMGnzxIqSrNmzfTCCy/op59+0ty5cy9nUwD8LMOV6wkr0q/3fhi/aCsjLQBs6bICyzmBgYEaMGCAX0dXAFyei91VEwDspkwCC4Dy59xdNc/HXTUB2BWBBaikuKsmgPKkRHe6BVCxcFdNAOUFgQWo5OKcYQQVALbHKSEAAGB7BBYAAGB7BBYAAGB7lgaWGTNmqFWrVoqIiFBERIQ6d+6sTz75xMqSAACADVkaWK644gpNnjxZmzZt0saNG3XNNdfopptu0rZt26wsCwAA2MxlPUvIF2rVqqUXX3xR99xzzyXb8iwhAADKn9J8f9vmsub8/HwtWLBAp06dUufOna0uBwAA2IjlgWXLli3q3LmzTp8+rWrVqmnx4sVq2bJlkW3dbrfcbrfndVZWlr/KBAAAFrL8KqFmzZopPT1d//nPfzRy5EgNGzZM27dvL7JtSkqKnE6nZ4mPj/dztQAAwAq2m8PSq1cvNWrUSG+++Wah94oaYYmPj2cOCwAA5Ui5nsNyTkFBgVcoOV9ISIhCQkL8XBEAALCapYFl3Lhx6tu3r+rVq6eTJ0/qww8/1Nq1a7V8+XIrywIAADZjaWA5cuSI7rrrLmVkZMjpdKpVq1Zavny5evfubWVZAADAZiwNLLNmzbJy9wAAoJyw/CohAACASyGwAAAA2yOwAAAA2yOwAAAA2yOwAAAA2yOwAAAA2yOwAAAA2yOwAAAA2yOwAAAA2yOwAAAA2yOwAAAA2yOwAAAA2yOwAAAA2yOwAAAA2yOwAAAA2yOwAABQTmS4crV+d6YyXLlWl+J3QVYXAAAALm1+2n6NW7RFBUYKcEgpg5I0uEM9q8vyG0ZYAACwuQxXriesSFKBkcYv2lqpRloILAAA2NzezFOesHJOvjHal5ljTUEWILAAAGBzDaLCFeDwXhfocCghqqo1BVmAwAIAgM3FOcOUMihJgY5fU0ugw6FJgxIV5wyzuDL/YdItii3Dlau9mafUICq8Uv0nAQA7GNyhnro1jda+zBwlRFWtdJ/DBBYUS2WfnQ4AdhDnDKt0QeUcTgnhkpidDgCwGoEFl8TsdACA1QgsuCRmpwMArEZgwSUxOx0AYDUm3aJYKvvsdACAtQgsKLbKPDsdAGAtTgkBAADbI7AAAADbI7AAAADbI7AAAADbI7AAAADbI7AAAADbI7AAAADbI7AAAADbI7AAAADbszSwpKSkqEOHDqpevbpiYmI0YMAA7dy508qSAACADVkaWD7//HONGjVKX3/9tVauXKm8vDxdd911OnXqlJVlARVOhitX63dnKsOVa3UpAFAqDmOMsbqIc44ePaqYmBh9/vnn6tat2yXbZ2Vlyel0yuVyKSIiwg8VAuXP/LT9GrdoiwqMFOCQUgYlaXCHelaXBaASK833t63msLhcLklSrVq1inzf7XYrKyvLawFwYRmuXE9YkaQCI41ftJWRFgDFYqfRWds8rbmgoEBjxoxRcnKyEhMTi2yTkpKiZ5991s+VAfaR4crV3sxTahAVXqwnZ+/NPOUJK+fkG6N9mTk8eRvARdltdNY2IyyjRo3S1q1bNW/evAu2GTdunFwul2c5cOCAHysErDU/bb+SJ6/R7TP/o+TJazQ/bf8lf6ZBVLgCHN7rAh0OJURV9VGVACoCO47O2iKwPPjgg1q6dKk+++wzXXHFFRdsFxISooiICK8FqAxK++ER5wxTyqAkBTp+TS2BDocmDUpkdAXARV1sdNYqlp4SMsbooYce0uLFi7V27Vo1aNDAynIA27qcUzuDO9RTt6bR2peZo4SoqoQVAJd0bnT2/M8dq0dnLR1hGTVqlObMmaMPP/xQ1atX16FDh3To0CHl5lo/uQewk8s9tRPnDFPnRpGEFQDFYsfRWUsva3Y4HEWuT01N1fDhwy/581zWjMpkftp+jV+0VfnGeD48uDwZgC9luHJ9Mjpbmu9vy08JASgeTu0A8Lc4Z5htPmtsc1kzgEuz04cHAPiTLa4SAgAAuBgCCwAAsD0CCwAAsD0CCwAAsD0CCwAAsD0CCwAAsD0CCwAAsD0CCwAAsD0CCwAAsD0CCwAAsD0CCwAAsD0CCwAAsD0CCwAAsD0CCwAAsD0CCwAAsD0CCwAAsD0CCwAAsD0CC4ALynDlav3uTGW4cq0uBUAlF2R1AQDsaX7afo1btEUFRgpwSCmDkjS4Qz2rywJQSTHCAqCQDFeuJ6xIUoGRxi/aykgLAMsQWAAUsjfzlCesnJNvjPZl5lhTEIBKj8ACoJAGUeEKcHivC3Q4lBBV1ZqCAFR6BBYAhcQ5w5QyKEmBjl9TS6DDoUmDEhXnDLO4MgCVFZNuARRpcId66tY0Wvsyc5QQVZWwAsBSBBYAFxTnDCOoALAFTgkBAADbI7AAAADbI7AAAADbI7AAAADbI7AAAADbI7AAAADbI7AAAADbI7AAAADbI7AAAADbI7AAlyHDlav1uzOV4cq1uhQAqNC4NT9QSvPT9mvcoi0qMFKAQ0oZlKTBHepZXRYAVEiMsAClkOHK9YQVSSow0vhFWxlpAQAfsTSwfPHFF+rfv7/q1Kkjh8Ohjz/+2MpygGLbm3nKE1bOyTdG+zJzrCkIACo4SwPLqVOn1Lp1a02fPt3KMoASaxAVrgCH97pAh0MJUVWtKQgAKjhL57D07dtXffv2tbIEoFTinGFKGZSk8Yu2Kt8YBTocmjQoUXHOMKtLA4AKqVxNunW73XK73Z7XWVlZFlaDym5wh3rq1jRa+zJzlBBVlbACAD5UribdpqSkyOl0epb4+HirS0IlF+cMU+dGkYQVAPCxchVYxo0bJ5fL5VkOHDhgdUkAbID74QAVX7k6JRQSEqKQkBCrywBgI9wPB6gcytUICwCcj/vhAJWHpSMs2dnZ2rVrl+f13r17lZ6erlq1aqlePf5CAnBxF7sfDvOKgIrF0sCyceNG9ezZ0/N67NixkqRhw4Zp9uzZFlUFoLw4dz+c80ML98MBKiZLA0uPHj1kjLl0QwAoAvfDASqPcjXpFgB+i/vhAJUDgQVAuRfnDCOoABUcVwkBAADbI7AAAADbI7AAAADbI7AAAADbI7DYHM9IAYDyic/vssVVQjbGM1IAoHzi87vsMcJiUzwjBQDKJz6/fYPAYlMXe0YKAMC++Pz2DQKLTZ17Rsr5eEYKANgfn9++QWCxqXPPSAl0/PpbzzNSAKB84PPbNxymHD99MCsrS06nUy6XSxEREVaX4xMZrlyekQIA5RCf3xdWmu9vrhKyOZ6RAgDlE5/fZYtTQgAAwPYILAAAwPYILAAAwPYILACASoFb5ZdvTLoFAFR43Cq//GOEBQBQoXGr/IqBwAIAqNC4VX7FQGABAFRo3Cq/YiCwAAAqNG6VXzEw6RYAUOEN7lBP3ZpGl+pW+RmuXO3NPKUGUeGEHAsRWAAAlUJpbpXP1UX2wSkhAACKwNVF9kJgAQCgCFxdZC8EFgAAisDVRfZCYAEAoAhcXWQvTLoFAOACLufqIpQtAguAUuFST1QWpbm6CGWPwAKgxLjUE4C/MYcFQIlwqScAKxBYAJQIl3oCsAKBpRLKcOVq/e5M/iJGqXCpJwArEFgqmflp+5U8eY1un/kfJU9eo/lp+60uCeUMl3oCsILDGGMu3cyesrKy5HQ65XK5FBERYXU5tpfhylXy5DVew/mBDoe+fLInXzYosQxXLpd6AiiV0nx/22KEZfr06UpISFBoaKg6deqkDRs2WF1ShcTcA5SlOGeYOjeKJKxUIpxOhpUsDyzz58/X2LFjNWHCBH3zzTdq3bq1+vTpoyNHjlhdWoXD3AMApcXpZFjN8sAydepU3Xvvvbr77rvVsmVLvfHGG6patareeecdq0urcJh7AKA0uJQddmDpjePOnDmjTZs2ady4cZ51AQEB6tWrl7766qtC7d1ut9xut+d1VlaWX+qsSLjNNICSutjpZD5D4C+WjrBkZmYqPz9ftWvX9lpfu3ZtHTp0qFD7lJQUOZ1OzxIfH++vUisU5h4AKAlOJ8MOLD8lVBLjxo2Ty+XyLAcOHLC6JACo8DidDDuw9JRQVFSUAgMDdfjwYa/1hw8fVmxsbKH2ISEhCgkJ8Vd5AID/w+lkWM3SEZbg4GC1a9dOq1ev9qwrKCjQ6tWr1blzZwsrAwD8FqeTYSXLn9Y8duxYDRs2TO3bt1fHjh01bdo0nTp1SnfffbfVpQEAAJuwPLAMHjxYR48e1Z///GcdOnRIbdq00aefflpoIi4AAKi8uDU/AADwq3J7a34AAICLIbAAAADbI7AAAADbI7AAAADbI7AAAADbI7AAAADbI7AAAADbI7AAAADbs/xOt5fj3D3vsrKyLK4EAAAU17nv7ZLcu7ZcB5aTJ09KkuLj4y2uBAAAlNTJkyfldDqL1bZc35q/oKBABw8eVPXq1eVwOIpsk5WVpfj4eB04cIDb94v+KAp94o3+8EZ/FEafeKM/vBWnP4wxOnnypOrUqaOAgOLNTinXIywBAQG64ooritU2IiKCX6Tz0B+F0Sfe6A9v9Edh9Ik3+sPbpfqjuCMr5zDpFgAA2B6BBQAA2F6FDywhISGaMGGCQkJCrC7FFuiPwugTb/SHN/qjMPrEG/3hzVf9Ua4n3QIAgMqhwo+wAACA8o/AAgAAbI/AAgAAbI/AAgAAbK9CBJbp06crISFBoaGh6tSpkzZs2HDBttu2bdPNN9+shIQEORwOTZs2zX+F+klJ+mPmzJm6+uqrVbNmTdWsWVO9evW6aPvyqiR9smjRIrVv3141atRQeHi42rRpo/fff9+P1fpeSfrjfPPmzZPD4dCAAQN8W6CflaQ/Zs+eLYfD4bWEhob6sVr/KOnvyIkTJzRq1CjFxcUpJCRETZs21bJly/xUre+VpD969OhR6HfE4XCoX79+fqzYt0r6+zFt2jQ1a9ZMYWFhio+P1yOPPKLTp0+XbKemnJs3b54JDg4277zzjtm2bZu59957TY0aNczhw4eLbL9hwwbz2GOPmblz55rY2Fjzyiuv+LdgHytpf9x+++1m+vTpZvPmzWbHjh1m+PDhxul0mp9++snPlftOSfvks88+M4sWLTLbt283u3btMtOmTTOBgYHm008/9XPlvlHS/jhn7969pm7duubqq682N910k3+K9YOS9kdqaqqJiIgwGRkZnuXQoUN+rtq3StonbrfbtG/f3txwww3myy+/NHv37jVr16416enpfq7cN0raH8eOHfP6/di6dasJDAw0qamp/i3cR0raHx988IEJCQkxH3zwgdm7d69Zvny5iYuLM4888kiJ9lvuA0vHjh3NqFGjPK/z8/NNnTp1TEpKyiV/tn79+hUusFxOfxhjzNmzZ0316tXNu+++66sS/e5y+8QYY9q2bWuefvppX5Tnd6Xpj7Nnz5ouXbqYt99+2wwbNqxCBZaS9kdqaqpxOp1+qs4aJe2TGTNmmIYNG5ozZ874q0S/utzPkFdeecVUr17dZGdn+6pEvyppf4waNcpcc801XuvGjh1rkpOTS7Tfcn1K6MyZM9q0aZN69erlWRcQEKBevXrpq6++srAya5RFf+Tk5CgvL0+1atXyVZl+dbl9YozR6tWrtXPnTnXr1s2XpfpFafvjL3/5i2JiYnTPPff4o0y/KW1/ZGdnq379+oqPj9dNN92kbdu2+aNcvyhNnyxZskSdO3fWqFGjVLt2bSUmJmrSpEnKz8/3V9k+Uxafq7NmzdJtt92m8PBwX5XpN6Xpjy5dumjTpk2e00Z79uzRsmXLdMMNN5Ro3+X64YeZmZnKz89X7dq1vdbXrl1b3333nUVVWacs+uOJJ55QnTp1vH4Zy7PS9onL5VLdunXldrsVGBio119/Xb179/Z1uT5Xmv748ssvNWvWLKWnp/uhQv8qTX80a9ZM77zzjlq1aiWXy6WXXnpJXbp00bZt24r9MFY7K02f7NmzR2vWrNEdd9yhZcuWadeuXXrggQeUl5enCRMm+KNsn7ncz9UNGzZo69atmjVrlq9K9KvS9Mftt9+uzMxMde3aVcYYnT17Vvfff7/Gjx9fon2X68CCsjV58mTNmzdPa9eurZCTCEuievXqSk9PV3Z2tlavXq2xY8eqYcOG6tGjh9Wl+dXJkyc1dOhQzZw5U1FRUVaXYwudO3dW586dPa+7dOmiFi1a6M0339Rzzz1nYWXWKSgoUExMjN566y0FBgaqXbt2+vnnn/Xiiy+W+8ByuWbNmqWkpCR17NjR6lIss3btWk2aNEmvv/66OnXqpF27dunhhx/Wc889p2eeeabY2ynXgSUqKkqBgYE6fPiw1/rDhw8rNjbWoqqsczn98dJLL2ny5MlatWqVWrVq5csy/aq0fRIQEKDGjRtLktq0aaMdO3YoJSWl3AeWkvbH7t27tW/fPvXv39+zrqCgQJIUFBSknTt3qlGjRr4t2ofK4jOkSpUqatu2rXbt2uWLEv2uNH0SFxenKlWqKDAw0LOuRYsWOnTokM6cOaPg4GCf1uxLl/M7curUKc2bN09/+ctffFmiX5WmP5555hkNHTpUI0aMkCQlJSXp1KlTuu+++/TUU08pIKB4s1PK9RyW4OBgtWvXTqtXr/asKygo0OrVq73+AqosStsfL7zwgp577jl9+umnat++vT9K9Zuy+h0pKCiQ2+32RYl+VdL+aN68ubZs2aL09HTP8vvf/149e/ZUenq64uPj/Vl+mSuL34/8/Hxt2bJFcXFxvirTr0rTJ8nJydq1a5cnzErS999/r7i4uHIdVqTL+x1ZsGCB3G637rzzTl+X6Tel6Y+cnJxCoeRcuDUleZxhCScH2868efNMSEiImT17ttm+fbu57777TI0aNTyXGQ4dOtQ8+eSTnvZut9ts3rzZbN682cTFxZnHHnvMbN682fzwww9WHUKZKml/TJ482QQHB5uFCxd6XYZ38uRJqw6hzJW0TyZNmmRWrFhhdu/ebbZv325eeuklExQUZGbOnGnVIZSpkvbHb1W0q4RK2h/PPvusWb58udm9e7fZtGmTue2220xoaKjZtm2bVYdQ5kraJ/v37zfVq1c3Dz74oNm5c6dZunSpiYmJMc8//7xVh1CmSvt/pmvXrmbw4MH+LtfnStofEyZMMNWrVzdz5841e/bsMStWrDCNGjUyt956a4n2W+4DizHGvPrqq6ZevXomODjYdOzY0Xz99dee97p3726GDRvmeb13714jqdDSvXt3/xfuIyXpj/r16xfZHxMmTPB/4T5Ukj556qmnTOPGjU1oaKipWbOm6dy5s5k3b54FVftOSfrjtypaYDGmZP0xZswYT9vatWubG264wXzzzTcWVO1bJf0dWb9+venUqZMJCQkxDRs2NH/961/N2bNn/Vy175S0P7777jsjyaxYscLPlfpHSfojLy/PTJw40TRq1MiEhoaa+Ph488ADD5jjx4+XaJ8OY0oyHgMAAOB/5XoOCwAAqBwILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILABQDMOHD9eAAQOsLgOotAgsQDk3fPhwORwOzxIZGanrr79e3377rdWllYnzj+3c0rVrV5/tb9++fXI4HEpPT/da/7e//U2zZ8/22X4BXByBBagArr/+emVkZCgjI0OrV69WUFCQbrzxRqvLKjOpqame48vIyNCSJUuKbJeXl+ezGpxOp2rUqOGz7QO4OAILUAGEhIQoNjZWsbGxatOmjZ588kkdOHBAR48e1TXXXKMHH3zQq/3Ro0cVHBzseeJqQkKCnnvuOQ0ZMkTh4eGqW7eupk+f7vUzU6dOVVJSksLDwxUfH68HHnhA2dnZnvd//PFH9e/fXzVr1lR4eLiuvPJKLVu2TJJ0/Phx3XHHHYqOjlZYWJiaNGmi1NTUYh9fjRo1PMcXGxurWrVqeUZC5s+fr+7duys0NFQffPCBjh07piFDhqhu3bqqWrWqkpKSNHfuXK/tFRQU6IUXXlDjxo0VEhKievXq6a9//askqUGDBpKktm3byuFwqEePHpIKnxJyu90aPXq0YmJiFBoaqq5duyotLc3z/tq1a+VwOLR69Wq1b99eVatWVZcuXbRz585iHzeA/4/AAlQw2dnZmjNnjho3bqzIyEiNGDFCH374odxut6fNnDlzVLduXV1zzTWedS+++KJat26tzZs368knn9TDDz+slStXet4PCAjQ3//+d23btk3vvvuu1qxZo8cff9zz/qhRo+R2u/XFF19oy5YtmjJliqpVqyZJeuaZZ7R9+3Z98skn2rFjh2bMmKGoqKgyOd5zte7YsUN9+vTR6dOn1a5dO/3rX//S1q1bdd9992no0KHasGGD52fGjRunyZMne+r68MMPVbt2bUnytFu1apUyMjK0aNGiIvf7+OOP66OPPtK7776rb775Ro0bN1afPn30yy+/eLV76qmn9PLLL2vjxo0KCgrSH//4xzI5bqDSKZPHNgKwzLBhw0xgYKAJDw834eHhRpKJi4szmzZtMsYYk5uba2rWrGnmz5/v+ZlWrVqZiRMnel7Xr1/fXH/99V7bHTx4sOnbt+8F97tgwQITGRnpeZ2UlOS1zfP179/f3H333aU6PkkmNDTUc3zh4eFm8eLFnievT5s27ZLb6Nevn3n00UeNMcZkZWWZkJAQM3PmzCLbntvu5s2bvdaf/5Tq7OxsU6VKFfPBBx943j9z5oypU6eOeeGFF4wxxnz22WdGklm1apWnzb/+9S8jyeTm5pakCwAYYxhhASqAnj17Kj09Xenp6dqwYYP69Omjvn376scff1RoaKiGDh2qd955R5L0zTffaOvWrRo+fLjXNjp37lzo9Y4dOzyvV61apWuvvVZ169ZV9erVNXToUB07dkw5OTmSpNGjR+v5559XcnKyJkyY4DXpd+TIkZo3b57atGmjxx9/XOvXry/R8b3yyiue40tPT1fv3r0977Vv396rbX5+vp577jklJSWpVq1aqlatmpYvX679+/dLknbs2CG3261rr722RDWcb/fu3crLy1NycrJnXZUqVdSxY0evPpOkVq1aef4dFxcnSTpy5Eip9w1UVgQWoAIIDw9X48aN1bhxY3Xo0EFvv/22Tp06pZkzZ0qSRowYoZUrV+qnn35SamqqrrnmGtWvX7/Y29+3b59uvPFGtWrVSh999JE2bdrkmeNy5swZzz727NmjoUOHasuWLWrfvr1effVVSfKEp0ceeUQHDx7Utddeq8cee6zY+4+NjfUcX+PGjRUeHu517Od78cUX9be//U1PPPGEPvvsM6Wnp6tPnz6eOsPCwoq937JQpUoVz78dDoekX+fQACgZAgtQATkcDgUEBCg3N1eSlJSUpPbt22vmzJn68MMPi5xH8fXXXxd63aJFC0nSpk2bVFBQoJdffllXXXWVmjZtqoMHDxbaRnx8vO6//34tWrRIjz76qCcwSVJ0dLSGDRumOXPmaNq0aXrrrbfK8pA91q1bp5tuukl33nmnWrdurYYNG+r777/3vN+kSROFhYV5Jhz/VnBwsKRfR2oupFGjRgoODta6des86/Ly8pSWlqaWLVuW0ZEAOF+Q1QUAuHxut1uHDh2S9OsVOa+99pqys7PVv39/T5sRI0bowQcfVHh4uAYOHFhoG+vWrdMLL7ygAQMGaOXKlVqwYIH+9a9/SZIaN26svLw8vfrqq+rfv7/WrVunN954w+vnx4wZo759+6pp06Y6fvy4PvvsM0/g+fOf/6x27drpyiuvlNvt1tKlSz3vlbUmTZpo4cKFWr9+vWrWrKmpU6fq8OHDniARGhqqJ554Qo8//riCg4OVnJyso0ePatu2bbrnnnsUExOjsLAwffrpp7riiisUGhoqp9PptY/w8HCNHDlSf/rTn1SrVi3Vq1dPL7zwgnJycnTPPff45LiAyo4RFqAC+PTTTxUXF6e4uDh16tRJaWlpWrBggeeSXEkaMmSIgoKCNGTIEIWGhhbaxqOPPqqNGzeqbdu2ev755zV16lT16dNHktS6dWtNnTpVU6ZMUWJioj744AOlpKR4/Xx+fr5GjRqlFi1a6Prrr1fTpk31+uuvS/p11GLcuHFq1aqVunXrpsDAQM2bN88nffH000/rd7/7nfr06aMePXooNja20B1qn3nmGT366KP685//rBYtWmjw4MGeeSVBQUH6+9//rjfffFN16tTRTTfdVOR+Jk+erJtvvllDhw7V7373O+3atUvLly9XzZo1fXJcQGXnMMYYq4sA4Hv79u1To0aNlJaWpt/97nde7yUkJGjMmDEaM2aMNcUBwCVwSgio4PLy8nTs2DE9/fTTuuqqqwqFFQAoDzglBFRw69atU1xcnNLS0grNO7HapEmTVK1atSKXvn37Wl0eABvhlBAAy/zyyy+F7gx7TlhYmOrWrevnigDYFYEFAADYHqeEAACA7RFYAACA7RFYAACA7RFYAACA7RFYAACA7RFYAACA7RFYAACA7RFYAACA7f0/tESbf4fHJjQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_41.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCqUlEQVR4nO3deVyVZf7/8fcBZBEVVFYZFPc0ccmFcEkrirShzGkiNbfJ+la2WlNqKdoitpnNZNlYWdMmo1k55U9TymlKZzSVSR21VAhLQGg5yBIY5/r94XjqBC4HORy4eT0fj/N4eK5z3ed87uuBnDfXfd33bTPGGAEAAFiEj7cLAAAAqEuEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwBeMXfuXNlstjPqa7PZNHfuXI/WM2LECI0YMaLBvh+AM0e4AZq4l19+WTabzfnw8/NTTEyMJk+erG+++cbb5TU4cXFxLuMVERGhYcOG6e23366T9y8rK9PcuXO1cePGOnk/oCki3ACQJD344IN69dVXtWTJEo0cOVKvvfaahg8frh9//NEjn/fAAw+ovLzcI+/taX379tWrr76qV199Vffcc48OHz6sMWPGaMmSJWf93mVlZZo3bx7hBjgLft4uAEDDMHLkSA0YMECSNHXqVIWFhenRRx/V6tWrdc0119T55/n5+cnPr3H+CoqJidF1113nfD5x4kR16dJFTz31lG666SYvVgZAYuYGwEkMGzZMknTgwAGX9r179+rqq69WmzZtFBgYqAEDBmj16tUufY4dO6Z58+apa9euCgwMVNu2bTV06FCtX7/e2aemNTcVFRW66667FB4erpYtW+qKK67Q119/Xa22yZMnKy4urlp7Te+5bNkyXXTRRYqIiFBAQIB69uyp5557zq2xOJ2oqCj16NFD2dnZp+x35MgRXX/99YqMjFRgYKD69OmjV155xfl6Tk6OwsPDJUnz5s1zHvry9HojwGoa559NADwuJydHktS6dWtn2+7duzVkyBDFxMRoxowZCg4O1t/+9jeNHj1ab731lq666ipJx0NGenq6pk6dqkGDBqm4uFifffaZtm/frksuueSknzl16lS99tprGjdunAYPHqwPP/xQl19++Vntx3PPPadzzz1XV1xxhfz8/PT3v/9dt9xyixwOh6ZNm3ZW733CsWPHdOjQIbVt2/akfcrLyzVixAjt379ft956qzp27KgVK1Zo8uTJ+uGHH3THHXcoPDxczz33nG6++WZdddVVGjNmjCSpd+/edVIn0GQYAE3asmXLjCSzYcMGU1hYaA4dOmRWrlxpwsPDTUBAgDl06JCz78UXX2zi4+PNjz/+6GxzOBxm8ODBpmvXrs62Pn36mMsvv/yUn5uWlmZ++SsoKyvLSDK33HKLS79x48YZSSYtLc3ZNmnSJNOhQ4fTvqcxxpSVlVXrl5ycbDp16uTSNnz4cDN8+PBT1myMMR06dDCXXnqpKSwsNIWFheY///mPufbaa40kc9ttt530/RYtWmQkmddee83ZVllZaRITE02LFi1McXGxMcaYwsLCavsLwD0clgIgSUpKSlJ4eLhiY2N19dVXKzg4WKtXr9ZvfvMbSdJ3332nDz/8UNdcc42OHj2qoqIiFRUV6dtvv1VycrK+/PJL59lVoaGh2r17t7788ssz/vw1a9ZIkm6//XaX9jvvvPOs9isoKMj5b7vdrqKiIg0fPlwHDx6U3W6v1Xt+8MEHCg8PV3h4uPr06aMVK1ZowoQJevTRR0+6zZo1axQVFaWxY8c625o1a6bbb79dJSUl+sc//lGrWgBU16TDzccff6yUlBS1a9dONptN77zzjkc/78R6gF8+zjnnHI9+JnCmFi9erPXr12vlypUaNWqUioqKFBAQ4Hx9//79MsZo9uzZzi/2E4+0tDRJx9eUSMfPvPrhhx/UrVs3xcfH649//KM+//zzU37+V199JR8fH3Xu3NmlvXv37me1X59++qmSkpIUHBys0NBQhYeHa9asWZJU63CTkJCg9evXa8OGDdq0aZOKior017/+1SVI/dpXX32lrl27ysfH9ddujx49nK8DqBtNes1NaWmp+vTpoz/84Q/OY9uedu6552rDhg3O5431bBFYz6BBg5xnS40ePVpDhw7VuHHjtG/fPrVo0UIOh0OSdM899yg5ObnG9+jSpYsk6YILLtCBAwf07rvv6oMPPtALL7ygp556SkuWLNHUqVPPutaTXfyvqqrK5fmBAwd08cUX65xzztHChQsVGxsrf39/rVmzRk899ZRzn9wVFhampKSkWm0LwPOa9DfryJEjNXLkyJO+XlFRofvvv19vvvmmfvjhB/Xq1UuPPvroWV111M/PT1FRUbXeHqgPvr6+Sk9P14UXXqhnnnlGM2bMUKdOnSQdP5RyJl/sbdq00ZQpUzRlyhSVlJToggsu0Ny5c08abjp06CCHw6EDBw64zNbs27evWt/WrVvrhx9+qNb+69mPv//976qoqNDq1avVvn17Z/tHH3102vrrWocOHfT555/L4XC4zN7s3bvX+bp08uAG4Mw16cNSp3Prrbdq8+bNWr58uT7//HP9/ve/12WXXebWOoJf+/LLL9WuXTt16tRJ48ePV25ubh1WDNSdESNGaNCgQVq0aJF+/PFHRUREaMSIEXr++eeVl5dXrX9hYaHz399++63Lay1atFCXLl1UUVFx0s878YfGn/70J5f2RYsWVevbuXNn2e12l0NdeXl51a4S7OvrK0kyxjjb7Ha7li1bdtI6PGXUqFHKz89XRkaGs+2nn37Sn//8Z7Vo0ULDhw+XJDVv3lySagxvAM5Mk565OZXc3FwtW7ZMubm5ateunaTj0/Fr167VsmXLNH/+fLffMyEhQS+//LK6d++uvLw8zZs3T8OGDdOuXbvUsmXLut4F4Kz98Y9/1O9//3u9/PLLuummm7R48WINHTpU8fHxuuGGG9SpUycVFBRo8+bN+vrrr/Wf//xHktSzZ0+NGDFC/fv3V5s2bfTZZ59p5cqVuvXWW0/6WX379tXYsWP17LPPym63a/DgwcrMzNT+/fur9b322mt133336aqrrtLtt9+usrIyPffcc+rWrZu2b9/u7HfppZfK399fKSkp+r//+z+VlJRo6dKlioiIqDGgedKNN96o559/XpMnT9a2bdsUFxenlStX6tNPP9WiRYucvwOCgoLUs2dPZWRkqFu3bmrTpo169eqlXr161Wu9QKPm7dO1GgpJ5u2333Y+f++994wkExwc7PLw8/Mz11xzjTHGmD179hhJp3zcd999J/3M77//3rRq1cq88MILnt494KROnAq+devWaq9VVVWZzp07m86dO5uffvrJGGPMgQMHzMSJE01UVJRp1qyZiYmJMb/97W/NypUrnds9/PDDZtCgQSY0NNQEBQWZc845xzzyyCOmsrLS2aem07bLy8vN7bffbtq2bWuCg4NNSkqKOXToUI2nRn/wwQemV69ext/f33Tv3t289tprNb7n6tWrTe/evU1gYKCJi4szjz76qHnppZeMJJOdne3s586p4Kc7zf1k71dQUGCmTJliwsLCjL+/v4mPjzfLli2rtu2mTZtM//79jb+/P6eFA7VgM+YX87VNmM1m09tvv63Ro0dLkjIyMjR+/Hjt3r3bObV9QosWLRQVFaXKykodPHjwlO/btm1b5xVHazJw4EAlJSUpPT39rPcBAABwWOqk+vXrp6qqKh05csR5Gfpf8/f3P6tTuUtKSnTgwAFNmDCh1u8BAABcNelwU1JS4nI8Pzs7W1lZWWrTpo26deum8ePHa+LEiXryySfVr18/FRYWKjMzU717967VJeHvuecepaSkqEOHDjp8+LDS0tLk6+vrclEvAABwdpr0YamNGzfqwgsvrNY+adIkvfzyyzp27Jgefvhh/fWvf9U333yjsLAwnX/++Zo3b57i4+Pd/rxrr71WH3/8sb799luFh4dr6NCheuSRR6pdtAwAANRekw43AADAerx6nRt3b3+watUqXXLJJQoPD1erVq2UmJiodevW1U+xAACgUfBquDlx+4PFixefUf+PP/5Yl1xyidasWaNt27bpwgsvVEpKinbs2OHhSgEAQGPRYA5L/fpU7DN17rnnKjU1VXPmzDmj/g6HQ4cPH1bLli25zDkAAI2EMUZHjx5Vu3btqt2A9tca9dlSDodDR48eVZs2bU7ap6KiwuWS799884169uxZH+UBAIA6dujQIf3mN785ZZ9GHW6eeOIJlZSU6Jprrjlpn/T0dM2bN69a+6FDh9SqVStPlgcAAOpIcXGxYmNjz+h2RY023LzxxhuaN2+e3n33XUVERJy038yZMzV9+nTn8xOD06pVK8INAACNzJksKWmU4Wb58uWaOnWqVqxYoaSkpFP2DQgIUEBAQD1VBgAAvM2rZ0vVxptvvqkpU6bozTffrNVVggEAgLV5debmVLc/aN++vWbOnKlvvvlGf/3rXyUdPxQ1adIkPf3000pISFB+fr4kKSgoSCEhIV7ZBwAA0LB49VTw093+YPLkycrJydHGjRslSSNGjNA//vGPk/Y/E8XFxQoJCZHdbj/lmpuqqiodO3bsjN4Tp9esWbNqd1cHAOBMnen3t9SArnNTX043OMYY5efn64cffqj/4iwuNDRUUVFRXF8IAOA2d8JNo1xQ7Ekngk1ERISaN2/OF3EdMMaorKxMR44ckSRFR0d7uSIAgJURbn6hqqrKGWzatm3r7XIsJSgoSJJ05MgRRUREcIgKAOAxje5sKU86scamefPmXq7Emk6MK2uZAACeRLipAYeiPINxBQDUB8INAACwFMINAACwFMKNheTn5+u2225Tp06dFBAQoNjYWKWkpCgzM1PfffedbrvtNnXv3l1BQUFq3769br/9dtntduf2OTk5stlsysrKqvbeI0aM0J133unStmfPHl1xxRUKCQlRcHCwBg4cqNzcXA/vJQCgJnn2cm06UKQ8e7m3S/E6zpayiJycHA0ZMkShoaF6/PHHFR8fr2PHjmndunWaNm2aVq5cqcOHD+uJJ55Qz5499dVXX+mmm27S4cOHtXLlSrc/78CBAxo6dKiuv/56zZs3T61atdLu3bsVGBjogb0DAJxKxtZczVy1Uw4j+dik9DHxSh3Y3ttleQ3hxiJuueUW2Ww2bdmyRcHBwc72c889V3/4wx8UGhqqt956y9neuXNnPfLII7ruuuv0008/yc/PvR+F+++/X6NGjdJjjz3m8p4AgPqVZy93BhtJchhp1qpduqBbuKJDgrxbnJdwWMqD6muK8LvvvtPatWs1bdo0l2BzQmhoaI3bnbjKo7vBxuFw6P3331e3bt2UnJysiIgIJSQk6J133qlF9QCAs5FdVOoMNidUGaOcojLvFNQAEG48JGNrroYs+FDjlv5bQxZ8qIytnluLsn//fhljdM4555zxNkVFRXrooYd04403Vntt8ODBatGihcvjn//8p/P1I0eOqKSkRAsWLNBll12mDz74QFdddZXGjBlT472/AACe0zEsWD6/utKGr82muLCme802Dkt5QH1PEbp7e7Di4mJdfvnl6tmzp+bOnVvt9YyMDPXo0cOlbfz48c5/OxwOSdKVV16pu+66S5LUt29fbdq0SUuWLNHw4cPd3AMAQG1FhwQpfUy8Zq3apSpj5Guzaf6YXk32kJREuPGIU00ReuKHrWvXrrLZbNq7d+9p+x49elSXXXaZWrZsqbffflvNmjWr1ic2NlZdunRxaTtx+wRJCgsLk5+fn3r27OnSp0ePHvrkk09quRcAgNpKHdheF3QLV05RmeLCmjfpYCNxWMoj6nuKsE2bNkpOTtbixYtVWlpa7fUTdzgvLi7WpZdeKn9/f61evbrWZzb5+/tr4MCB2rdvn0v7F198oQ4dOtTqPQEAZyc6JEiJnds2+WAjEW484sQUoe//bjdQH1OEixcvVlVVlQYNGqS33npLX375pfbs2aM//elPSkxMdAab0tJSvfjiiyouLlZ+fr7y8/NVVVXl9uf98Y9/VEZGhpYuXar9+/frmWee0d///nfdcsstHtg7AADOHIelPKS+pwg7deqk7du365FHHtHdd9+tvLw8hYeHq3///nruuee0fft2/fvf/5akaoecsrOzFRcX59bnXXXVVVqyZInS09N1++23q3v37nrrrbc0dOjQutolAABqxWbcXY3ayBUXFyskJMR5GvQv/fjjj8rOzlbHjh25GJ0HML4AgNo61ff3r3FYCgAAWArhBgAAWArhBgAAWArhBgAAWArhpgZNbI11vWFcAQD1gXDzCyeu1ltW1nRvNuZJJ8a1pqsiAwBQV7jOzS/4+voqNDRUR44ckSQ1b95cNpvtNFvhdIwxKisr05EjRxQaGipfX19vlwQAsDDCza9ERUVJkjPgoO6EhoY6xxcAAE8h3PyKzWZTdHS0IiIidOzYMW+XYxnNmjVjxgYAUC8INyfh6+vLlzEAAI0QC4oBAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAECdybOXa9OBIuXZy71WA9e5AQAAdSJja65mrtoph5F8bFL6mHilDmxf73UwcwMAAM5anr3cGWwkyWGkWat2eWUGh3ADAADOWnZRqTPYnFBljHKKyuq9FsINAAA4ax3DguVjc23ztdkUF9a83msh3AAAgLMWHRKk9DHx8rUdTzi+Npvmj+ml6JCgeq+FBcUAAKBOpA5srwu6hSunqExxYc29Emwkwg0AAKhD0SFBXgs1J3BYCgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWIpXw83HH3+slJQUtWvXTjabTe+8885pt9m4caPOO+88BQQEqEuXLnr55Zc9XicAAGg8vBpuSktL1adPHy1evPiM+mdnZ+vyyy/XhRdeqKysLN15552aOnWq1q1b5+FKAQBAY+HV2y+MHDlSI0eOPOP+S5YsUceOHfXkk09Kknr06KFPPvlETz31lJKTkz1VJgAAaEQa1ZqbzZs3KykpyaUtOTlZmzdvPuk2FRUVKi4udnkAAADralThJj8/X5GRkS5tkZGRKi4uVnl5eY3bpKenKyQkxPmIjY2tj1IBAICXNKpwUxszZ86U3W53Pg4dOuTtkgAAgAd5dc2Nu6KiolRQUODSVlBQoFatWikoqObbqwcEBCggIKA+ygMAAA1Ao5q5SUxMVGZmpkvb+vXrlZiY6KWKAABAQ+PVcFNSUqKsrCxlZWVJOn6qd1ZWlnJzcyUdP6Q0ceJEZ/+bbrpJBw8e1L333qu9e/fq2Wef1d/+9jfddddd3igfAAA0QF4NN5999pn69eunfv36SZKmT5+ufv36ac6cOZKkvLw8Z9CRpI4dO+r999/X+vXr1adPHz355JN64YUXOA0cAAA42YwxxttF1Kfi4mKFhITIbrerVatW3i4HAACcAXe+vxvVmhsAAIDTIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAGABefZybTpQpDx7ubdL8To/bxcAAADOTsbWXM1ctVMOI/nYpPQx8Uod2N7bZXkNMzcAADRiefZyZ7CRJIeRZq3a1aRncAg3AAA0YtlFpc5gc0KVMcopKvNOQQ0A4QYAgEasY1iwfGyubb42m+LCmnunoAaAcAMAQCMWHRKk9DHx8rUdTzi+Npvmj+ml6JAgL1fmPSwoBgCgkUsd2F4XdAtXTlGZ4sKaN+lgIxFuAACwhOiQoCYfak7gsBQAALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUr4ebxYsXKy4uToGBgUpISNCWLVtO2X/RokXq3r27goKCFBsbq7vuuks//vhjPVULAAAaOq+Gm4yMDE2fPl1paWnavn27+vTpo+TkZB05cqTG/m+88YZmzJihtLQ07dmzRy+++KIyMjI0a9aseq4cAAA0VF4NNwsXLtQNN9ygKVOmqGfPnlqyZImaN2+ul156qcb+mzZt0pAhQzRu3DjFxcXp0ksv1dixY0872wMAAJoOr4WbyspKbdu2TUlJST8X4+OjpKQkbd68ucZtBg8erG3btjnDzMGDB7VmzRqNGjXqpJ9TUVGh4uJilwcAALAuP299cFFRkaqqqhQZGenSHhkZqb1799a4zbhx41RUVKShQ4fKGKOffvpJN9100ykPS6Wnp2vevHl1WjsAAGi4vL6g2B0bN27U/Pnz9eyzz2r79u1atWqV3n//fT300EMn3WbmzJmy2+3Ox6FDh+qxYgAAUN+8NnMTFhYmX19fFRQUuLQXFBQoKiqqxm1mz56tCRMmaOrUqZKk+Ph4lZaW6sYbb9T9998vH5/qWS0gIEABAQF1vwMAAKBB8trMjb+/v/r376/MzExnm8PhUGZmphITE2vcpqysrFqA8fX1lSQZYzxXLAAAaDS8NnMjSdOnT9ekSZM0YMAADRo0SIsWLVJpaammTJkiSZo4caJiYmKUnp4uSUpJSdHChQvVr18/JSQkaP/+/Zo9e7ZSUlKcIQcAADRtXg03qampKiws1Jw5c5Sfn6++fftq7dq1zkXGubm5LjM1DzzwgGw2mx544AF98803Cg8PV0pKih555BFv7QLgFXn2cmUXlapjWLCiQ4K8XQ4ANCg208SO5xQXFyskJER2u12tWrXydjmA2zK25mrmqp1yGMnHJqWPiVfqwPbeLgsAPMqd7+9GdbYU0NTl2cudwUaSHEaatWqX8uzl3i0MABoQwg3QiGQXlTqDzQlVxiinqMw7BQFAA0S4ARqRjmHB8rG5tvnabIoLa+6dggCgASLcAI1IdEiQ0sfEy9d2POH42myaP6YXi4oB4Be8erYUAPelDmyvC7qFK6eoTHFhzQk2APArhBugEYoOCSLUAMBJcFgKAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEG8KI8e7k2HSji9gkAUIc4FRzwEm6ACQCewcwN4AXcABMAPIdwA3gBN8AEAM8h3ABewA0wAcBzCDeAF3ADTADwHBYUA17CDTABwDMIN4AXcQNMAKh7HJYCAACWQrgBAACWQrgBAACWQrgBAACWQrgBAADVNOZ733G2FAAAcNHY733HzA0AAHCywr3vCDcAAMDJCve+I9wAAAAnK9z7jnADAACcrHDvOxYUAwAAF4393neEGwAAUE1jvvcdh6UA4Aw15ut+AE0JMzcAcAYa+3U/gKaEmZs6xF91gDVZ4bofQFPCzE0d4a86wLpOdd2PxromAbAyZm7qAH/VAdZmhet+AE0J4aYOWOFqjgBOzgrX/QCaEg5L1YETf9X9MuDwVx1gLY39uh9AU8LMTR3grzqgaYgOCVJi57b83wYaOGZu6gh/1QEA0DAQbupQY76aIwAAVsFhKQAAYCluhZuvv/5aRUVFzuf//Oc/NX78eA0bNkzXXXedNm/eXOcFAgAAuMOtcPO73/1O//rXvyRJ7777rkaMGKGSkhINGTJEZWVlGj58uN577z2PFNoUccVjAADcZzPGmNN3O65FixbauXOnOnbsqPPPP19XXXWV7rvvPufrzzzzjF566SVt377dI8XWheLiYoWEhMhut6tVq1beLuekuOIxAAA/c+f7262ZGz8/Px09elSSlJ2drZEjR7q8PnLkSO3bt8/NcvFrXPEYAIDacyvcDB8+XG+++aYkqV+/ftq4caPL6x999JFiYmLqrLimiiseAwBQe26dCr5gwQINGzZMhw8f1tChQ3X//fdr69at6tGjh/bt26eMjAwtWbLEU7U2GVzxGACA2nNr5qZHjx7697//rcrKSj322GMqLS3V66+/rrlz52r//v1avny5Jk+e7FYBixcvVlxcnAIDA5WQkKAtW7acsv8PP/ygadOmKTo6WgEBAerWrZvWrFnj1mc2dFzxGACA2nNrQfEvGWN05MgRORwOhYWFqVmzZm6/R0ZGhiZOnKglS5YoISFBixYt0ooVK7Rv3z5FRERU619ZWakhQ4YoIiJCs2bNUkxMjL766iuFhoaqT58+Z/SZjWVBsXR87Q1XPAYAwL3v71qHm7qQkJCggQMH6plnnpEkORwOxcbG6rbbbtOMGTOq9V+yZIkef/xx7d27t1ZhSmpc4QYAABznzve3W2tupk+ffkb9Fi5ceNo+lZWV2rZtm2bOnOls8/HxUVJS0kkvBrh69WolJiZq2rRpevfddxUeHq5x48bpvvvuk6+vb43bVFRUqKKiwvm8uLj4jPYBAAA0Tm6Fmx07drg8/+STT9S/f38FBf18yMT2v3Uip1NUVKSqqipFRka6tEdGRmrv3r01bnPw4EF9+OGHGj9+vNasWaP9+/frlltu0bFjx5SWllbjNunp6Zo3b94Z1QQAABo/t8LNRx995PK8ZcuWeuONN9SpU6c6LepkHA6HIiIi9Je//EW+vr7q37+/vvnmGz3++OMnDTczZ850mXEqLi5WbGxsvdQLAADqn9fuCh4WFiZfX18VFBS4tBcUFCgqKqrGbaKjo9WsWTOXQ1A9evRQfn6+Kisr5e/vX22bgIAABQQE1G3xAACgwfLaXcH9/f3Vv39/ZWZmOtscDocyMzOVmJhY4zZDhgzR/v375XA4nG1ffPGFoqOjaww2AACg6fFauJGOL1BeunSpXnnlFe3Zs0c333yzSktLNWXKFEnSxIkTXRYc33zzzfruu+90xx136IsvvtD777+v+fPna9q0ad7aBQAA0MC4dVjq888/d3lujNHevXtVUlLi0t67d+8zer/U1FQVFhZqzpw5ys/PV9++fbV27VrnIuPc3Fz5+Pycv2JjY7Vu3Trddddd6t27t2JiYnTHHXe43LwTAAA0bW5d58bHx0c2m001bXKi3Wazqaqqqk6LrEtc5wYAgMbHY9e5yc7OPqvCAAAAPM2tcNOhQwdP1QEAAFAnarWg+JdnK/26PTc396wKAgAAOBtuhZvi4mJdc801Cg4OVmRkpObMmeOyvqawsFAdO3as8yIBAADOlFuHpWbPnq3//Oc/evXVV/XDDz/o4Ycf1vbt27Vq1SrndWa8eB9OAAAA92Zu3nnnHT3//PO6+uqrNXXqVH322WcqLCxUSkqK8+aUZ3pvKQAAAE9wK9wUFha6LCoOCwvThg0bdPToUY0aNUplZWV1XiAAz8uzl2vTgSLl2cu9XQoAnDW3wk379u21Z88el7aWLVvqgw8+UHl5ua666qo6LQ6A52VszdWQBR9q3NJ/a8iCD5WxlZMCADRuboWbSy65RMuWLavW3qJFC61bt06BgYF1VhgAz8uzl2vmqp1y/G+pnMNIs1btYgYHQKPm1oLiBx98UHl5eTW+1rJlS61fv17bt2+vk8IAeF52Uakz2JxQZYxyisoUHRLknaIA4Cy5NXOzY8cOXX311SouLq72mt1u1/nnn8+CYqAR6RgWLJ9f/Zf1tdkUF9bcOwUBQB1wK9wsWrRIN9xwQ433dAgJCdH//d//6amnnqqz4gB4VnRIkNLHxMv3f3+U+Npsmj+mF7M2ABo1t26c2aFDB61du1Y9evSo8fW9e/fq0ksvbdBXKebGmUB1efZy5RSVKS6sOcEGQIPksRtnFhQUqFmzZid/Mz8/FRYWuvOWABqA6JAgQg0Ay3DrsFRMTIx27dp10tc///xzRUdHn3VRAAAAteVWuBk1apRmz56tH3/8sdpr5eXlSktL029/+9s6Kw4AAMBdbq25KSgo0HnnnSdfX1/deuut6t69u6Tja20WL16sqqoqbd++XZGRkR4r+Gyx5gYAgMbHY2tuIiMjtWnTJt18882aOXOm8yaZNptNycnJWrx4cYMONgAAwPrcCjfS8TOm1qxZo++//1779++XMUZdu3ZV69atPVEfAIvJs5cru6hUHcOCWcQMwCPcDjcntG7dWgMHDqzLWgBYXMbWXOftHnxsUvqYeKUObO/tsgBYjFsLigGgtriPFYD6QrgBUC9OdR8rAKhLhBsA9YL7WAGoL4QbAPWC+1gBqC+1XlAMAO5KHdheF3QL5z5WADyKcAOgXnEfKwCexmEpAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAGji8uzl2nSgSHn2cm+XAtQJP28XAADwnoytuZq5aqccRvKxSelj4pU6sL23ywLOCjM3ANBE5dnLncFGkhxGmrVqFzM4aPQINwDQRGUXlTqDzQlVxiinqMw7BQF1hHADAE1Ux7Bg+dhc23xtNsWFNfdOQUAdIdwAQBMVHRKk9DHx8rUdTzi+Npvmj+ml6JAgL1cGnB0WFANAE5Y6sL0u6BaunKIyxYU1J9jAEhrEzM3ixYsVFxenwMBAJSQkaMuWLWe03fLly2Wz2TR69GjPFggAFhYdEqTEzm0JNrAMr4ebjIwMTZ8+XWlpadq+fbv69Omj5ORkHTly5JTb5eTk6J577tGwYcPqqVIAANAYeD3cLFy4UDfccIOmTJminj17asmSJWrevLleeumlk25TVVWl8ePHa968eerUqVM9VgsAABo6r4abyspKbdu2TUlJSc42Hx8fJSUlafPmzSfd7sEHH1RERISuv/76+igTAAA0Il5dUFxUVKSqqipFRka6tEdGRmrv3r01bvPJJ5/oxRdfVFZW1hl9RkVFhSoqKpzPi4uLa10vAABo+Lx+WModR48e1YQJE7R06VKFhYWd0Tbp6ekKCQlxPmJjYz1cJQAA8CavztyEhYXJ19dXBQUFLu0FBQWKioqq1v/AgQPKyclRSkqKs83hcEiS/Pz8tG/fPnXu3Nllm5kzZ2r69OnO58XFxQQcAAAszKvhxt/fX/3791dmZqbzdG6Hw6HMzEzdeuut1fqfc8452rlzp0vbAw88oKNHj+rpp5+uMbQEBAQoICDAI/UDAICGx+sX8Zs+fbomTZqkAQMGaNCgQVq0aJFKS0s1ZcoUSdLEiRMVExOj9PR0BQYGqlevXi7bh4aGSlK1dgAA0DR5PdykpqaqsLBQc+bMUX5+vvr27au1a9c6Fxnn5ubKx6dRLQ0CAABeZDPGmNN3s47i4mKFhITIbrerVatW3i4HAACcAXe+v5kSAQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4ARqoPHu5Nh0oUp693NulAECj4uftAgBUl7E1VzNX7ZTDSD42KX1MvFIHtvd2WQDQKDBzAzQwefZyZ7CRJIeRZq3axQwOAJwhwg3QwGQXlTqDzQlVxiinqMw7BQFAI0O4Qa2xJsQzOoYFy8fm2uZrsykurLl3CgKARoZwg1rJ2JqrIQs+1Lil/9aQBR8qY2uut0uyjOiQIKWPiZev7XjC8bXZNH9ML0WHBHm5MgBoHGzGGHP6btZRXFyskJAQ2e12tWrVytvlNEp59nINWfChy6ETX5tNn8y4kC/gOpRnL1dOUZniwpozrgCaPHe+vzlbCm471ZoQvoTrTnRIEOMJALXAYSm4jTUhAICGjHADt7EmBADQkHFYCrWSOrC9LugWzpoQAECDQ7hBrbEmBADQEHFYCgAAWArhBgAAWArhBgAAWArhBrXG7RcAAA0RC4pRKxlbc513rvaxSelj4pU6sL23ywIAgJkbuC/PXu4MNpLkMNKsVbuYwQEANAiEG7jtVLdfAADA2wg3cBu3XwAANGSEG7iN2y8AABoyFhSjVrj9AgCgoSLcoNa4/QIAoCHisBQAALAUwg0AALCUBhFuFi9erLi4OAUGBiohIUFbtmw5ad+lS5dq2LBhat26tVq3bq2kpKRT9gcAAE2L18NNRkaGpk+frrS0NG3fvl19+vRRcnKyjhw5UmP/jRs3auzYsfroo4+0efNmxcbG6tJLL9U333xTz5UDAICGyGaMMafv5jkJCQkaOHCgnnnmGUmSw+FQbGysbrvtNs2YMeO021dVVal169Z65plnNHHixNP2Ly4uVkhIiOx2u1q1anXW9QMAAM9z5/vbqzM3lZWV2rZtm5KSkpxtPj4+SkpK0ubNm8/oPcrKynTs2DG1adOmxtcrKipUXFzs8gAAANbl1XBTVFSkqqoqRUZGurRHRkYqPz//jN7jvvvuU7t27VwC0i+lp6crJCTE+YiNjT3rugEAQMPl9TU3Z2PBggVavny53n77bQUGBtbYZ+bMmbLb7c7HoUOH6rlKAABQn7x6Eb+wsDD5+vqqoKDApb2goEBRUVGn3PaJJ57QggULtGHDBvXu3fuk/QICAhQQEFAn9QIAgIbPqzM3/v7+6t+/vzIzM51tDodDmZmZSkxMPOl2jz32mB566CGtXbtWAwYMqI9SAQBAI+H12y9Mnz5dkyZN0oABAzRo0CAtWrRIpaWlmjJliiRp4sSJiomJUXp6uiTp0Ucf1Zw5c/TGG28oLi7OuTanRYsWatGihdf2AwAANAxeDzepqakqLCzUnDlzlJ+fr759+2rt2rXORca5ubny8fl5gum5555TZWWlrr76apf3SUtL09y5c+uzdAAA0AB5/To39Y3r3AAA0Pg0muvcAAAA1DXCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDfArefZybTpQpDx7ubdLAQDUgtevcwM0JBlbczVz1U45jORjk9LHxCt1YHtvlwUAcAMzN8D/5NnLncFGkhxGmrVqFzM4ANDIEG6A/8kuKnUGmxOqjFFOUZl3CgIaMA7foiHjsBTwPx3DguVjk0vA8bXZFBfW3HtFAQ0Qh2/R0DFzA/xPdEiQ0sfEy9dmk3Q82Mwf00vRIUFergxoODh8i8aAmRvgF1IHttcF3cKVU1SmuLDmBBvgV051+Jb/L2goCDfAr0SHBPFLGjgJDt+iMeCwFADgjHH4Fo0BMzcAALdw+BYNHeEGAOA2Dt+iIeOwFAAAsBTCDQA0AVx0D00Jh6UAwOK46B6aGmZuAMDCuOgemiLCDQBYGPdMQ1NEuAEACztx0b1f4qJ7sDrCDQBYGBfdQ1PEgmIAsDguuoemhnADAE0AF91DU8JhKQAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwCA1+XZy7XpQJHy7OXeLgUW4OftAgAATVvG1lzNXLVTDiP52KT0MfFKHdje22WhEWPmBgDgNXn2cmewkSSHkWat2sUMDs4K4QYA4DXZRaXOYHNClTHKKSrzTkGwBMINAMBrOoYFy8fm2uZrsykurLl3CoIlEG4AAF4THRKk9DHx8rUdTzi+Npvmj+ml6JAgL1eGxowFxYCF5NnLlV1Uqo5hwXw5oNFIHdheF3QLV05RmeLCmvOzi7NGuAEsgjNO0JhFhwQRalBnOCwFWABnnADAzxpEuFm8eLHi4uIUGBiohIQEbdmy5ZT9V6xYoXPOOUeBgYGKj4/XmjVr6qlSoGHijBMA+JnXw01GRoamT5+utLQ0bd++XX369FFycrKOHDlSY/9NmzZp7Nixuv7667Vjxw6NHj1ao0eP1q5du+q5cqDh4IwTAPiZzRhjTt/NcxISEjRw4EA988wzkiSHw6HY2FjddtttmjFjRrX+qampKi0t1XvvvedsO//889W3b18tWbLktJ9XXFyskJAQ2e12tWrVqu52BPCyjK25mrVql6qMcZ5xwpobAFbhzve3VxcUV1ZWatu2bZo5c6azzcfHR0lJSdq8eXON22zevFnTp093aUtOTtY777xTY/+KigpVVFQ4nxcXF5994UADxBknAHCcVw9LFRUVqaqqSpGRkS7tkZGRys/Pr3Gb/Px8t/qnp6crJCTE+YiNja2b4oEGKDokSImd2xJsADRpXl9z42kzZ86U3W53Pg4dOuTtkgAAgAd59bBUWFiYfH19VVBQ4NJeUFCgqKioGreJiopyq39AQIACAgLqpmAAANDgeXXmxt/fX/3791dmZqazzeFwKDMzU4mJiTVuk5iY6NJfktavX3/S/gAAoGnx+hWKp0+frkmTJmnAgAEaNGiQFi1apNLSUk2ZMkWSNHHiRMXExCg9PV2SdMcdd2j48OF68skndfnll2v58uX67LPP9Je//MWbuwEAABoIr4eb1NRUFRYWas6cOcrPz1ffvn21du1a56Lh3Nxc+fj8PME0ePBgvfHGG3rggQc0a9Ysde3aVe+884569erlrV0AAAANiNevc1PfuM4NAACNjzvf35Y/WwoAADQthBsAAGAphBsAAGAphBsAAGAphBsAAGApXj8VvL6dODmMG2gCANB4nPjePpOTvJtcuDl69KgkcQNNAAAaoaNHjyokJOSUfZrcdW4cDocOHz6sli1bymaz1dinuLhYsbGxOnToUJO/Fg5jcRzjcBzj8DPG4jjG4TjG4WeeGgtjjI4ePap27dq5XNy3Jk1u5sbHx0e/+c1vzqhvq1atmvwP6QmMxXGMw3GMw88Yi+MYh+MYh595YixON2NzAguKAQCApRBuAACApRBuahAQEKC0tDQFBAR4uxSvYyyOYxyOYxx+xlgcxzgcxzj8rCGMRZNbUAwAAKyNmRsAAGAphBsAAGAphBsAAGAphBsAAGApTTbcLF68WHFxcQoMDFRCQoK2bNly0r67d+/W7373O8XFxclms2nRokX1V2g9cGcsli5dqmHDhql169Zq3bq1kpKSTtm/MXFnHFatWqUBAwYoNDRUwcHB6tu3r1599dV6rNZz3BmHX1q+fLlsNptGjx7t2QLrkTtj8fLLL8tms7k8AgMD67Faz3H3Z+KHH37QtGnTFB0drYCAAHXr1k1r1qypp2o9x51xGDFiRLWfB5vNpssvv7weK/Ycd38mFi1apO7duysoKEixsbG666679OOPP3quQNMELV++3Pj7+5uXXnrJ7N6929xwww0mNDTUFBQU1Nh/y5Yt5p577jFvvvmmiYqKMk899VT9FuxB7o7FuHHjzOLFi82OHTvMnj17zOTJk01ISIj5+uuv67nyuuXuOHz00Udm1apV5r///a/Zv3+/WbRokfH19TVr166t58rrlrvjcEJ2draJiYkxw4YNM1deeWX9FOth7o7FsmXLTKtWrUxeXp7zkZ+fX89V1z13x6GiosIMGDDAjBo1ynzyyScmOzvbbNy40WRlZdVz5XXL3XH49ttvXX4Wdu3aZXx9fc2yZcvqt3APcHcsXn/9dRMQEGBef/11k52dbdatW2eio6PNXXfd5bEam2S4GTRokJk2bZrzeVVVlWnXrp1JT08/7bYdOnSwVLg5m7EwxpiffvrJtGzZ0rzyyiueKrFenO04GGNMv379zAMPPOCJ8upNbcbhp59+MoMHDzYvvPCCmTRpkmXCjbtjsWzZMhMSElJP1dUfd8fhueeeM506dTKVlZX1VWK9ONvfEU899ZRp2bKlKSkp8VSJ9cbdsZg2bZq56KKLXNqmT59uhgwZ4rEam9xhqcrKSm3btk1JSUnONh8fHyUlJWnz5s1erKz+1cVYlJWV6dixY2rTpo2nyvS4sx0HY4wyMzO1b98+XXDBBZ4s1aNqOw4PPvigIiIidP3119dHmfWitmNRUlKiDh06KDY2VldeeaV2795dH+V6TG3GYfXq1UpMTNS0adMUGRmpXr16af78+aqqqqqvsutcXfyufPHFF3XttdcqODjYU2XWi9qMxeDBg7Vt2zbnoauDBw9qzZo1GjVqlMfqbHI3ziwqKlJVVZUiIyNd2iMjI7V3714vVeUddTEW9913n9q1a+fyg97Y1HYc7Ha7YmJiVFFRIV9fXz377LO65JJLPF2ux9RmHD755BO9+OKLysrKqocK609txqJ79+566aWX1Lt3b9ntdj3xxBMaPHiwdu/efcY3621oajMOBw8e1Icffqjx48drzZo12r9/v2655RYdO3ZMaWlp9VF2nTvb35VbtmzRrl279OKLL3qqxHpTm7EYN26cioqKNHToUBlj9NNPP+mmm27SrFmzPFZnkws3qDsLFizQ8uXLtXHjRsssnHRHy5YtlZWVpZKSEmVmZmr69Onq1KmTRowY4e3S6sXRo0c1YcIELV26VGFhYd4ux+sSExOVmJjofD548GD16NFDzz//vB566CEvVla/HA6HIiIi9Je//EW+vr7q37+/vvnmGz3++OONNtycrRdffFHx8fEaNGiQt0vxio0bN2r+/Pl69tlnlZCQoP379+uOO+7QQw89pNmzZ3vkM5tcuAkLC5Ovr68KCgpc2gsKChQVFeWlqrzjbMbiiSee0IIFC7Rhwwb17t3bk2V6XG3HwcfHR126dJEk9e3bV3v27FF6enqjDTfujsOBAweUk5OjlJQUZ5vD4ZAk+fn5ad++fercubNni/aQuvg90axZM/Xr10/79+/3RIn1ojbjEB0drWbNmsnX19fZ1qNHD+Xn56uyslL+/v4erdkTzubnobS0VMuXL9eDDz7oyRLrTW3GYvbs2ZowYYKmTp0qSYqPj1dpaaluvPFG3X///fLxqfsVMk1uzY2/v7/69++vzMxMZ5vD4VBmZqbLX11NQW3H4rHHHtNDDz2ktWvXasCAAfVRqkfV1c+Ew+FQRUWFJ0qsF+6OwznnnKOdO3cqKyvL+bjiiit04YUXKisrS7GxsfVZfp2qi5+Jqqoq7dy5U9HR0Z4q0+NqMw5DhgzR/v37nUFXkr744gtFR0c3ymAjnd3Pw4oVK1RRUaHrrrvO02XWi9qMRVlZWbUAcyL8Gk/d3tJjS5UbsOXLl5uAgADz8ssvm//+97/mxhtvNKGhoc7TNidMmGBmzJjh7F9RUWF27NhhduzYYaKjo80999xjduzYYb788ktv7UKdcXcsFixYYPz9/c3KlStdTnM8evSot3ahTrg7DvPnzzcffPCBOXDggPnvf/9rnnjiCePn52eWLl3qrV2oE+6Ow69Z6Wwpd8di3rx5Zt26debAgQNm27Zt5tprrzWBgYFm9+7d3tqFOuHuOOTm5pqWLVuaW2+91ezbt8+89957JiIiwjz88MPe2oU6Udv/G0OHDjWpqan1Xa5HuTsWaWlppmXLlubNN980Bw8eNB988IHp3LmzueaaazxWY5MMN8YY8+c//9m0b9/e+Pv7m0GDBpl//etfzteGDx9uJk2a5HyenZ1tJFV7DB8+vP4L9wB3xqJDhw41jkVaWlr9F17H3BmH+++/33Tp0sUEBgaa1q1bm8TERLN8+XIvVF333BmHX7NSuDHGvbG48847nX0jIyPNqFGjzPbt271Qdd1z92di06ZNJiEhwQQEBJhOnTqZRx55xPz000/1XHXdc3cc9u7daySZDz74oJ4r9Tx3xuLYsWNm7ty5pnPnziYwMNDExsaaW265xXz//fceq89mjKfmhAAAAOpfk1tzAwAArI1wAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAeNHnyZI0ePdrbZQBNCuEGaKImT54sm83mfLRt21aXXXaZPv/8c2+XVid+uW8nHkOHDvXY5+Xk5MhmsykrK8ul/emnn9bLL7/ssc8FUB3hBmjCLrvsMuXl5SkvL0+ZmZny8/PTb3/7W2+XVWeWLVvm3L+8vDytXr26xn7Hjh3zWA0hISEKDQ312PsDqI5wAzRhAQEBioqKUlRUlPr27asZM2bo0KFDKiws1EUXXaRbb73VpX9hYaH8/f2ddwSOi4vTQw89pLFjxyo4OFgxMTFavHixyzYLFy5UfHy8goODFRsbq1tuuUUlJSXO17/66iulpKSodevWCg4O1rnnnqs1a9ZIkr7//nuNHz9e4eHhCgoKUteuXbVs2bIz3r/Q0FDn/kVFRalNmzbOGZaMjAwNHz5cgYGBev311/Xtt99q7NixiomJUfPmzRUfH68333zT5f0cDocee+wxdenSRQEBAWrfvr0eeeQRSVLHjh0lSf369ZPNZtOIESMkVT8sVVFRodtvv10REREKDAzU0KFDtXXrVufrGzdulM1mU2ZmpgYMGKDmzZtr8ODB2rdv3xnvN9DUEW4ASJJKSkr02muvqUuXLmrbtq2mTp2qN954QxUVFc4+r732mmJiYnTRRRc52x5//HH16dNHO3bs0IwZM3THHXdo/fr1ztd9fHz0pz/9Sbt379Yrr7yiDz/8UPfee6/z9WnTpqmiokIff/yxdu7cqUcffVQtWrSQJM2ePVv//e9/9f/+3//Tnj179NxzzyksLKxO9vdErXv27FFycrJ+/PFH9e/fX++//7527dqlG2+8URMmTNCWLVuc28ycOVMLFixw1vXGG28oMjJSkpz9NmzYoLy8PK1atarGz7333nv11ltv6ZVXXtH27dvVpUsXJScn67vvvnPpd//99+vJJ5/UZ599Jj8/P/3hD3+ok/0GmgSP3ZITQIM2adIk4+vra4KDg01wcLCRZKKjo822bduMMcaUl5eb1q1bm4yMDOc2vXv3NnPnznU+79Chg7nssstc3jc1NdWMHDnypJ+7YsUK07ZtW+fz+Ph4l/f8pZSUFDNlypRa7Z8kExgY6Ny/4OBg8/bbb5vs7GwjySxatOi073H55Zebu+++2xhjTHFxsQkICDBLly6tse+J992xY4dL+y/vlF5SUmKaNWtmXn/9defrlZWVpl27duaxxx4zxhjz0UcfGUlmw4YNzj7vv/++kWTKy8vdGQKgyWLmBmjCLrzwQmVlZSkrK0tbtmxRcnKyRo4cqa+++kqBgYGaMGGCXnrpJUnS9u3btWvXLk2ePNnlPRITE6s937Nnj/P5hg0bdPHFFysmJkYtW7bUhAkT9O2336qsrEySdPvtt+vhhx/WkCFDlJaW5rKg+eabb9by5cvVt29f3Xvvvdq0aZNb+/fUU0859y8rK0uXXHKJ87UBAwa49K2qqtJDDz2k+Ph4tWnTRi1atNC6deuUm5srSdqzZ48qKip08cUXu1XDLx04cEDHjh3TkCFDnG3NmjXToEGDXMZMknr37u38d3R0tCTpyJEjtf5soCkh3ABNWHBwsLp06aIuXbpo4MCBeuGFF1RaWqqlS5dKkqZOnar169fr66+/1rJly3TRRRepQ4cOZ/z+OTk5+u1vf6vevXvrrbfe0rZt25xrciorK52fcfDgQU2YMEE7d+7UgAED9Oc//1mSnEHrrrvu0uHDh3XxxRfrnnvuOePPj4qKcu5fly5dFBwc7LLvv/T444/r6aef1n333aePPvpIWVlZSk5OdtYZFBR0xp9bF5o1a+b8t81mk3R8zQ+A0yPcAHCy2Wzy8fFReXm5JCk+Pl4DBgzQ0qVL9cYbb9S47uNf//pXtec9evSQJG3btk0Oh0NPPvmkzj//fHXr1k2HDx+u9h6xsbG66aabtGrVKt19993OcCVJ4eHhmjRpkl577TUtWrRIf/nLX+pyl50+/fRTXXnllbruuuvUp08fderUSV988YXz9a5duyooKMi5mPrX/P39JR2fATqZzp07y9/fX59++qmz7dixY9q6dat69uxZR3sCwM/bBQDwnoqKCuXn50s6fmbSM888o5KSEqWkpDj7TJ06VbfeequCg4N11VVXVXuPTz/9VI899phGjx6t9evXa8WKFXr//fclSV26dNGxY8f05z//WSkpKfr000+1ZMkSl+3vvPNOjRw5Ut26ddP333+vjz76yBmO5syZo/79++vcc89VRUWF3nvvPedrda1r165auXKlNm3apNatW2vhwoUqKChwho7AwEDdd999uvfee+Xv768hQ4aosLBQu3fv1vXXX6+IiAgFBQVp7dq1+s1vfqPAwECFhIS4fEZwcLBuvvlm/fGPf1SbNm3Uvn17PfbYYyorK9P111/vkf0CmiJmboAmbO3atYqOjlZ0dLQSEhK0detWrVixwnkasySNHTtWfn5+Gjt2rAIDA6u9x913363PPvtM/fr108MPP6yFCxcqOTlZktSnTx8tXLhQjz76qHr16qXXX39d6enpLttXVVVp2rRp6tGjhy677DJ169ZNzz77rKTjsyEzZ85U7969dcEFF8jX11fLly/3yFg88MADOu+885ScnKwRI0YoKiqq2pWFZ8+erbvvvltz5sxRjx49lJqa6lwH4+fnpz/96U96/vnn1a5dO1155ZU1fs6CBQv0u9/9ThMmTNB5552n/fv3a926dWrdurVH9gtoimzGGOPtIgA0XDk5OercubO2bt2q8847z+W1uLg43Xnnnbrzzju9UxwA1IDDUgBqdOzYMX377bd64IEHdP7551cLNgDQUHFYCkCNPv30U0VHR2vr1q3V1sl42/z589WiRYsaHyNHjvR2eQC8jMNSABqd7777rtoVfU8ICgpSTExMPVcEoCEh3AAAAEvhsBQAALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALCU/w9qKpaPxDurDgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHHCAYAAABdm0mZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQhNJREFUeJzt3XtcVVX+//H3AeQiKl5AQAbFe5p4yQvhJa0ovAxlznwzNTUn61vZlW5aKZkldjNnJsvJ0ppu8s2scSZ/mmJOUzqjqUzpqIViWAJCJcglUM76/dF4pjOgcpBzDuzzej4e5/Ho7LP2Pp+9hpE3e629ts0YYwQAAGAxft4uAAAAwB0IOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQC84tFHH5XNZqtTW5vNpkcffdSt9YwaNUqjRo1qtMcD4DpCDuDjXn31VdlsNscrICBAMTExuuGGG/Ttt996u7xGJy4uzqm/2rdvrxEjRui9995rkOOXl5fr0Ucf1ZYtWxrkeIAvI+QAkCQ99thjev3117Vs2TKNGTNGb7zxhkaOHKkff/zRLd/3yCOPqKKiwi3Hdrf+/fvr9ddf1+uvv6777rtPR48e1YQJE7Rs2bLzPnZ5ebnmz59PyAEaQIC3CwDQOIwZM0aDBg2SJM2cOVPh4eF68skntXbtWl177bUN/n0BAQEKCGia/wTFxMTo+uuvd7yfNm2aunXrpueee0633HKLFysD8HNcyQFQqxEjRkiSDh486LR9//79+vWvf622bdsqODhYgwYN0tq1a53anDx5UvPnz1f37t0VHBysdu3aafjw4dq4caOjTW1zciorK3XPPfcoIiJCLVu21FVXXaVvvvmmRm033HCD4uLiamyv7ZgrV67UZZddpvbt2ysoKEi9e/fWiy++6FJfnEtUVJR69eqlnJycs7Y7duyYbrzxRkVGRio4OFj9+vXTa6+95vj88OHDioiIkCTNnz/fMSTm7vlIgFU1zT+jALjd4cOHJUlt2rRxbNu7d6+GDRummJgYzZ49W6Ghofq///s/jR8/Xu+++66uueYaST+FjfT0dM2cOVNDhgxRSUmJPvvsM+3atUtXXHHFGb9z5syZeuONNzR58mQNHTpUmzdv1rhx487rPF588UVdeOGFuuqqqxQQEKA///nPuu2222S32zVr1qzzOvZpJ0+e1JEjR9SuXbsztqmoqNCoUaOUnZ2t22+/XZ07d9Y777yjG264QcePH9ddd92liIgIvfjii7r11lt1zTXXaMKECZKkvn37NkidgM8xAHzaypUrjSSzadMmU1hYaI4cOWJWr15tIiIiTFBQkDly5Iij7eWXX27i4+PNjz/+6Nhmt9vN0KFDTffu3R3b+vXrZ8aNG3fW701LSzM//ycoKyvLSDK33XabU7vJkycbSSYtLc2xbfr06aZTp07nPKYxxpSXl9dol5ycbLp06eK0beTIkWbkyJFnrdkYYzp16mSuvPJKU1hYaAoLC80///lPc9111xlJ5o477jjj8ZYsWWIkmTfeeMOxraqqyiQmJpoWLVqYkpISY4wxhYWFNc4XQP0wXAVAkpSUlKSIiAjFxsbq17/+tUJDQ7V27Vr94he/kCR9//332rx5s6699lqdOHFCRUVFKioq0nfffafk5GR99dVXjruxWrdurb179+qrr76q8/evW7dOknTnnXc6bb/77rvP67xCQkIc/11cXKyioiKNHDlShw4dUnFxcb2O+eGHHyoiIkIRERHq16+f3nnnHU2dOlVPPvnkGfdZt26doqKiNGnSJMe2Zs2a6c4771Rpaan++te/1qsWAGfm0yHn448/VkpKijp06CCbzab333/frd93er7Az18XXHCBW78TqKulS5dq48aNWr16tcaOHauioiIFBQU5Ps/OzpYxRnPnznX8gj/9SktLk/TTnBPppzu1jh8/rh49eig+Pl7333+/Pv/887N+/9dffy0/Pz917drVaXvPnj3P67w+/fRTJSUlKTQ0VK1bt1ZERIQeeughSap3yElISNDGjRu1adMmbd26VUVFRfrjH//oFKj+29dff63u3bvLz8/5n91evXo5PgfQsHx6Tk5ZWZn69eun3/zmN46xb3e78MILtWnTJsf7pnp3CaxnyJAhjrurxo8fr+HDh2vy5Mk6cOCAWrRoIbvdLkm67777lJycXOsxunXrJkm65JJLdPDgQf3pT3/Shx9+qJdfflnPPfecli1bppkzZ553rWdaRLC6utrp/cGDB3X55Zfrggsu0OLFixUbG6vAwECtW7dOzz33nOOcXBUeHq6kpKR67QvAc3z6N+yYMWM0ZsyYM35eWVmphx9+WG+//baOHz+uPn366MknnzyvVUwDAgIUFRVV7/0BT/D391d6erouvfRSPf/885o9e7a6dOki6achlrr8gm/btq1mzJihGTNmqLS0VJdccokeffTRM4acTp06yW636+DBg05Xbw4cOFCjbZs2bXT8+PEa2//7asif//xnVVZWau3aterYsaNj+0cffXTO+htap06d9Pnnn8tutztdzdm/f7/jc+nMAQ6A63x6uOpcbr/9dm3btk2rVq3S559/rv/5n//R6NGjXZpn8N+++uordejQQV26dNGUKVOUm5vbgBUDDWfUqFEaMmSIlixZoh9//FHt27fXqFGj9Ic//EF5eXk12hcWFjr++7vvvnP6rEWLFurWrZsqKyvP+H2n/+D43e9+57R9yZIlNdp27dpVxcXFTkNgeXl5NVYd9vf3lyQZYxzbiouLtXLlyjPW4S5jx45Vfn6+MjIyHNtOnTql3//+92rRooVGjhwpSWrevLkk1RriALjGp6/knE1ubq5Wrlyp3NxcdejQQdJPl+nXr1+vlStXauHChS4fMyEhQa+++qp69uypvLw8zZ8/XyNGjNCePXvUsmXLhj4F4Lzdf//9+p//+R+9+uqruuWWW7R06VINHz5c8fHxuummm9SlSxcVFBRo27Zt+uabb/TPf/5TktS7d2+NGjVKAwcOVNu2bfXZZ59p9erVuv3228/4Xf3799ekSZP0wgsvqLi4WEOHDlVmZqays7NrtL3uuuv04IMP6pprrtGdd96p8vJyvfjii+rRo4d27drlaHfllVcqMDBQKSkp+t///V+VlpZq+fLlat++fa1BzZ1uvvlm/eEPf9ANN9ygnTt3Ki4uTqtXr9ann36qJUuWOP4NCAkJUe/evZWRkaEePXqobdu26tOnj/r06ePRegFL8PbtXY2FJPPee+853v/lL38xkkxoaKjTKyAgwFx77bXGGGP27dtnJJ319eCDD57xO3/44QfTqlUr8/LLL7v79IAzOn0L+Y4dO2p8Vl1dbbp27Wq6du1qTp06ZYwx5uDBg2batGkmKirKNGvWzMTExJhf/vKXZvXq1Y79Hn/8cTNkyBDTunVrExISYi644ALzxBNPmKqqKkeb2m73rqioMHfeeadp166dCQ0NNSkpKebIkSO13lL94Ycfmj59+pjAwEDTs2dP88Ybb9R6zLVr15q+ffua4OBgExcXZ5588kmzYsUKI8nk5OQ42rlyC/m5bo8/0/EKCgrMjBkzTHh4uAkMDDTx8fFm5cqVNfbdunWrGThwoAkMDOR2cuA82Iz52XVcH2az2fTee+9p/PjxkqSMjAxNmTJFe/fudVzyPq1FixaKiopSVVWVDh06dNbjtmvXzrGCaW0GDx6spKQkpaenn/c5AACA/2C46gwGDBig6upqHTt2zLG8/X8LDAw8r1vAS0tLdfDgQU2dOrXexwAAALXz6ZBTWlrqNN6fk5OjrKwstW3bVj169NCUKVM0bdo0PfvssxowYIAKCwuVmZmpvn371mup+fvuu08pKSnq1KmTjh49qrS0NPn7+zstDgYAABqGTw9XbdmyRZdeemmN7dOnT9err76qkydP6vHHH9cf//hHffvttwoPD9fFF1+s+fPnKz4+3uXvu+666/Txxx/ru+++U0REhIYPH64nnniixuJnAADg/Pl0yAEAANbFOjkAAMCSCDkAAMCSfG7isd1u19GjR9WyZUuWTwcAoIkwxujEiRPq0KFDjQfdnonPhZyjR48qNjbW22UAAIB6OHLkiH7xi1/Uqa3PhZzTS6cfOXJErVq18nI1AACgLkpKShQbG+vSY5B8LuScHqJq1aoVIQcAgCbGlakmTDwGAACWRMgBAACWRMgBAACW5HNzcgAAaAh2u11VVVXeLsNSAgMD63x7eF0QcgAAcFFVVZVycnJkt9u9XYql+Pn5qXPnzgoMDGyQ4xFyAABwgTFGeXl58vf3V2xsbINeefBlpxfrzcvLU8eOHRtkwV5CDgAALjh16pTKy8vVoUMHNW/e3NvlWEpERISOHj2qU6dOqVmzZud9POInAAAuqK6ulqQGG1LBf5zu09N9fL4IOQAA1APPP2x4Dd2nhBwAAGBJhBwAAGBJhJwGlFdcoa0Hi5RXXOHtUgAAqFV+fr7uuOMOdenSRUFBQYqNjVVKSooyMzP1/fff64477lDPnj0VEhKijh076s4771RxcbFj/8OHD8tmsykrK6vGsUeNGqW7777badu+fft01VVXKSwsTKGhoRo8eLByc3PdfJY/4e6qBpKxI1dz1nwhu5H8bFL6hHhNHNzR22UBAOBw+PBhDRs2TK1bt9bTTz+t+Ph4nTx5Uhs2bNCsWbO0evVqHT16VM8884x69+6tr7/+WrfccouOHj2q1atXu/x9Bw8e1PDhw3XjjTdq/vz5atWqlfbu3avg4GA3nF1NhJwGkFdc4Qg4kmQ30kNr9uiSHhGKDgvxbnEAAPzbbbfdJpvNpu3btys0NNSx/cILL9RvfvMbtW7dWu+++65je9euXfXEE0/o+uuv16lTpxQQ4FpsePjhhzV27Fg99dRTTsf0FIarGkBOUZkj4JxWbYwOF5V7pyAAQJPgyWkO33//vdavX69Zs2Y5BZzTWrduXet+xcXFatWqlcsBx26364MPPlCPHj2UnJys9u3bKyEhQe+//349qq8fQk4D6BweKr//uuvN32ZTXDiLRAEAapexI1fDFm3W5OX/0LBFm5Wxw73zVLKzs2WM0QUXXFDnfYqKirRgwQLdfPPNNT4bOnSoWrRo4fT629/+5vj82LFjKi0t1aJFizR69Gh9+OGHuuaaazRhwgT99a9/bZBzOheGqxpAdFiI0ifE66E1e1RtjPxtNi2c0IehKgBArbwxzcEYc+5GP1NSUqJx48apd+/eevTRR2t8npGRoV69ejltmzJliuO/Tz/X6+qrr9Y999wjSerfv7+2bt2qZcuWaeTIkS6egesIOQ1k4uCOuqRHhA4XlSsuvDkBBwBwRmeb5uCu3x/du3eXzWbT/v37z9n2xIkTGj16tFq2bKn33nuv1kcsxMbGqlu3bk7bQkL+U3t4eLgCAgLUu3dvpza9evXSJ598Us+zcA3DVQ0oOixEiV3bEXAAAGfljWkObdu2VXJyspYuXaqysrIanx8/flzST1dwrrzySgUGBmrt2rX1vhMqMDBQgwcP1oEDB5y2f/nll+rUqVO9jukqQg4AAB52epqD/78fY+CpaQ5Lly5VdXW1hgwZonfffVdfffWV9u3bp9/97ndKTEx0BJyysjK98sorKikpUX5+vvLz8+v1PKn7779fGRkZWr58ubKzs/X888/rz3/+s2677TY3nF1NDFcBAOAF3pjm0KVLF+3atUtPPPGE7r33XuXl5SkiIkIDBw7Uiy++qF27dukf//iHJNUYisrJyVFcXJxL33fNNddo2bJlSk9P15133qmePXvq3Xff1fDhwxvqlM7KZlydidTElZSUKCwszHFLHAAArvjxxx+Vk5Ojzp07e2xRO19xtr6tz+9vhqsAAIAlEXIAAIAleTXkfPzxx0pJSVGHDh1ks9nOuQrimjVrdMUVVygiIkKtWrVSYmKiNmzY4JliAQBAk+LVkFNWVqZ+/fpp6dKldWr/8ccf64orrtC6deu0c+dOXXrppUpJSdHu3bvdXCkAAGhqvHp31ZgxYzRmzJg6t1+yZInT+4ULF+pPf/qT/vznP2vAgAENXB0AAGfmY/fteERD92mTvoXcbrfrxIkTatu27RnbVFZWqrKy0vG+pKTEE6UBACzK399fklRVVeW0wi/OX1VVlaT/9PH5atIh55lnnlFpaamuvfbaM7ZJT0/X/PnzPVgVAMDKAgIC1Lx5cxUWFqpZs2by8+MenoZgt9tVWFio5s2bu/zE8zNpsiHnrbfe0vz58/WnP/1J7du3P2O7OXPmKDU11fG+pKREsbGxnigRAGBBNptN0dHRysnJ0ddff+3tcizFz89PHTt2lM1mO3fjOmiSIWfVqlWaOXOm3nnnHSUlJZ21bVBQkIKCgjxUGQDAFwQGBqp79+6O4RU0jMDAwAa9MtbkQs7bb7+t3/zmN1q1apXGjRvn7XIAAD7Kz8+PFY8bOa+GnNLSUmVnZzve5+TkKCsrS23btlXHjh01Z84cffvtt/rjH/8o6achqunTp+u3v/2tEhISlJ+fL+mnR7uHhYV55RwAAEDj5NXZUp999pkGDBjguP07NTVVAwYM0Lx58yRJeXl5ys3NdbR/6aWXdOrUKc2aNUvR0dGO11133eWV+gEAQOPFAzoBAECjxwM6AQAA/o2QAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALMmrIefjjz9WSkqKOnToIJvNpvfff/+c+2zZskUXXXSRgoKC1K1bN7366qturxMAADQ9Xg05ZWVl6tevn5YuXVqn9jk5ORo3bpwuvfRSZWVl6e6779bMmTO1YcMGN1cKAACamgBvfvmYMWM0ZsyYOrdftmyZOnfurGeffVaS1KtXL33yySd67rnnlJyc7K4yAQBAE9Sk5uRs27ZNSUlJTtuSk5O1bdu2M+5TWVmpkpISpxcAALC+JhVy8vPzFRkZ6bQtMjJSJSUlqqioqHWf9PR0hYWFOV6xsbGeKBUAAHhZkwo59TFnzhwVFxc7XkeOHPF2SQAAwAO8OifHVVFRUSooKHDaVlBQoFatWikkJKTWfYKCghQUFOSJ8gAAQCPSpK7kJCYmKjMz02nbxo0blZiY6KWKAABAY+XVkFNaWqqsrCxlZWVJ+ukW8aysLOXm5kr6aahp2rRpjva33HKLDh06pAceeED79+/XCy+8oP/7v//TPffc443yAQBAI+bVkPPZZ59pwIABGjBggCQpNTVVAwYM0Lx58yRJeXl5jsAjSZ07d9YHH3ygjRs3ql+/fnr22Wf18ssvc/s4AACowWaMMd4uwpNKSkoUFham4uJitWrVytvlAACAOqjP7+8mNScHAACgrgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AFyWV1yhrQeLlFdc4e1SAOCMArxdAICmJWNHruas+UJ2I/nZpPQJ8Zo4uKO3ywKAGrx+JWfp0qWKi4tTcHCwEhIStH379rO2X7JkiXr27KmQkBDFxsbqnnvu0Y8//uihagHflldc4Qg4kmQ30kNr9nBFB0Cj5NWQk5GRodTUVKWlpWnXrl3q16+fkpOTdezYsVrbv/XWW5o9e7bS0tK0b98+vfLKK8rIyNBDDz3k4coB35RTVOYIOKdVG6PDReXeKQgAzsKrIWfx4sW66aabNGPGDPXu3VvLli1T8+bNtWLFilrbb926VcOGDdPkyZMVFxenK6+8UpMmTTrn1R8ADaNzeKj8bM7b/G02xYU3905BAHAWXgs5VVVV2rlzp5KSkv5TjJ+fkpKStG3btlr3GTp0qHbu3OkINYcOHdK6des0duzYM35PZWWlSkpKnF4A6ic6LETpE+Llb/sp6fjbbFo4oY+iw0K8XBkA1OS1icdFRUWqrq5WZGSk0/bIyEjt37+/1n0mT56soqIiDR8+XMYYnTp1SrfccstZh6vS09M1f/78Bq0d8GUTB3fUJT0idLioXHHhzQk4ABotr088dsWWLVu0cOFCvfDCC9q1a5fWrFmjDz74QAsWLDjjPnPmzFFxcbHjdeTIEQ9WDFhTdFiIEru2I+AAaNS8diUnPDxc/v7+KigocNpeUFCgqKioWveZO3eupk6dqpkzZ0qS4uPjVVZWpptvvlkPP/yw/PxqZragoCAFBQU1/AkAANBI5BVXKKeoTJ3DQ/nj42e8diUnMDBQAwcOVGZmpmOb3W5XZmamEhMTa92nvLy8RpDx9/eXJBljatsFAABLy9iRq2GLNmvy8n9o2KLNytiR6+2SGg2vLgaYmpqq6dOna9CgQRoyZIiWLFmisrIyzZgxQ5I0bdo0xcTEKD09XZKUkpKixYsXa8CAAUpISFB2drbmzp2rlJQUR9gBAMBXnGntqkt6RHBFR14OORMnTlRhYaHmzZun/Px89e/fX+vXr3dMRs7NzXW6cvPII4/IZrPpkUce0bfffquIiAilpKToiSee8NYpAADgNWdbu4qQI9mMj43zlJSUKCwsTMXFxWrVqpW3ywHQCDG/AU1FXnGFhi3a7BR0/G02fTL7Usv97Nbn93eTursKANyN+Q1oSli76uy4kgMA/+ZLfxXDWvKKKyy/dlV9fn/zFHIA+DfmN6Cpig4L4We0FgxXAcC/8WwuwFoIOQDwb8xvAKyF4SoA+BmezQVYByEHAP4L8xsAa2C4CgAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWJJLIeebb75RUVGR4/3f/vY3TZkyRSNGjND111+vbdu2NXiBAAAA9eFSyPnVr36lv//975KkP/3pTxo1apRKS0s1bNgwlZeXa+TIkfrLX/7ilkIBAABcYTPGmLo2btGihb744gt17txZF198sa655ho9+OCDjs+ff/55rVixQrt27XJLsQ2hpKREYWFhKi4uVqtWrbxdDgAAqIP6/P526UpOQECATpw4IUnKycnRmDFjnD4fM2aMDhw44MohAQAA3MKlkDNy5Ei9/fbbkqQBAwZoy5YtTp9/9NFHiomJabDiAAAA6ivAlcaLFi3SiBEjdPToUQ0fPlwPP/ywduzYoV69eunAgQPKyMjQsmXL3FUrAABAnbk0J0eSDh48qEceeUQffPCBSktLJf00jDV48GDdf//9Gj9+vDvqbDDMyQEAoOmpz+9vl0POacYYHTt2THa7XeHh4WrWrFl9DuNxhBwAAJqe+vz+dmm46udsNpsiIyPruzsAAIBbuRRyUlNT69Ru8eLF9SoGAACgobgUcnbv3u30/pNPPtHAgQMVEhLi2Gaz2RqmMgAAgPPgUsj56KOPnN63bNlSb731lrp06dKgRQEAAJwvHtAJAAAsiZADAAAsiZADAAAsyaU5OZ9//rnTe2OM9u/f71gU8LS+ffuef2UAAADnwaXFAP38/GSz2VTbLqe322w2VVdXN2iRDYnFAAEAaHrcvhhgTk5OvQoDAADwNJdCTqdOndxVBxpYXnGFcorK1Dk8VNFhIefeAQAAi6nXYx3sdrv8/GrOWbbb7frmm2/UsWPH8y4M9ZexI1dz1nwhu5H8bFL6hHhNHMz/JgAA3+LS3VUlJSW69tprFRoaqsjISM2bN89p/k1hYaE6d+7sUgFLly5VXFycgoODlZCQoO3bt5+1/fHjxzVr1ixFR0crKChIPXr00Lp161z6TivLK65wBBxJshvpoTV7lFdc4d3CAADwMJeu5MydO1f//Oc/9frrr+v48eN6/PHHtWvXLq1Zs0aBgYGSVOuk5DPJyMhQamqqli1bpoSEBC1ZskTJyck6cOCA2rdvX6N9VVWVrrjiCrVv316rV69WTEyMvv76a7Vu3dqV07C0nKIyR8A5rdoYHS4qZ9gKAOBTXLq7qlOnTnrttdc0atQoSVJRUZHGjRun1q1ba+3atTp+/Lg6dOhQ57urEhISNHjwYD3//POSfhruio2N1R133KHZs2fXaL9s2TI9/fTT2r9/v5o1a1bXsp1Y/e6qvOIKDVu02Sno+Nts+mT2pYQcAECTVZ/f3y4NVxUWFjpNPg4PD9emTZt04sQJjR07VuXl5XU+VlVVlXbu3KmkpKT/FOPnp6SkJG3btq3WfdauXavExETNmjVLkZGR6tOnjxYuXHjWUFVZWamSkhKnl5VFh4UofUK8/P/9oFR/m00LJ/Qh4AAAfI5Lw1UdO3bUvn37nObdtGzZUh9++KGuvPJKXXPNNXU+VlFRkaqrqxUZGem0PTIyUvv37691n0OHDmnz5s2aMmWK1q1bp+zsbN122206efKk0tLSat0nPT1d8+fPr3NdVjBxcEdd0iNCh4vKFRfenIADAPBJLl3JueKKK7Ry5coa21u0aKENGzYoODi4wQqrjd1uV/v27fXSSy9p4MCBmjhxoh5++GEtW7bsjPvMmTNHxcXFjteRI0fcWmNjER0WosSu7Qg4AACf5dKVnMcee0x5eXm1ftayZUtt3LhRu3btqtOxwsPD5e/vr4KCAqftBQUFioqKqnWf6OhoNWvWTP7+/o5tvXr1Un5+vqqqqhyTn38uKChIQUFBdaoJAABYh0tXcnbv3q1f//rXtc5rKS4u1sUXXyzbv+eCnEtgYKAGDhyozMxMxza73a7MzEwlJibWus+wYcOUnZ0tu93u2Pbll18qOjq61oADAAB8l0shZ8mSJbrppptqndUcFham//3f/9Vzzz1X5+OlpqZq+fLleu2117Rv3z7deuutKisr04wZMyRJ06ZN05w5cxztb731Vn3//fe666679OWXX+qDDz7QwoULNWvWLFdOAwAA+ACXhqv++c9/6sknnzzj51deeaWeeeaZOh9v4sSJKiws1Lx585Sfn6/+/ftr/fr1jsnIubm5Tisrx8bGasOGDbrnnnvUt29fxcTE6K677tKDDz7oymkAAAAf4NI6OcHBwdqzZ4+6detW6+fZ2dmKj49XRUXjXV3X6uvkAABgRW5fJycmJkZ79uw54+eff/65oqOjXTkkAABwo7ziCm09WOSTj/dxabhq7Nixmjt3rkaPHl3jdvGKigqlpaXpl7/8ZYMWCAAA6sfXH9js0nBVQUGBLrroIvn7++v2229Xz549JUn79+/X0qVLVV1drV27dtVY4K8xYbgKAOALrPaYn/r8/nbpSk5kZKS2bt2qW2+9VXPmzHE8jNNmsyk5OVlLly5t1AEHAABfwQObXQw50k8P6Vy3bp1++OEHZWdnyxij7t27q02bNu6oDwAA1EPn8FD52VTjSk5ceHPvFeVhLk08/rk2bdpo8ODBGjJkCAEHAIBGhgc21+NKDgAAaBp8/YHNhBwAACwsOizE58LNafUergIAAGjMCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAapVXXKGtB4uUV1zh7VIAoF4CvF0AAPfKK65QTlGZOoeHKjospE77ZOzI1Zw1X8huJD+blD4hXhMHd3RzpQDQsAg5gIXVJ6zkFVc49pEku5EeWrNHl/SIqHNIAoDGgOEqwKLOFFbONfyUU1Tm2Oe0amN0uKjcTZUCgHsQcgCLqm9Y6RweKj+b8zZ/m01x4c0buEIAcC9CDmBR9Q0r0WEhSp8QL3+bzbHPwgl9GKoC0OQwJwewqNNh5aE1e1RtjEthZeLgjrqkR4QOF5UrLrw5AQdAk0TIASzsfMJKdFgI4QZAk9YohquWLl2quLg4BQcHKyEhQdu3b6/TfqtWrZLNZtP48ePdWyDQhEWHhSixazsCCwCf4/WQk5GRodTUVKWlpWnXrl3q16+fkpOTdezYsbPud/jwYd13330aMWKEhyoFAABNiddDzuLFi3XTTTdpxowZ6t27t5YtW6bmzZtrxYoVZ9ynurpaU6ZM0fz589WlSxcPVgsAAJoKr4acqqoq7dy5U0lJSY5tfn5+SkpK0rZt286432OPPab27dvrxhtvPOd3VFZWqqSkxOkFAACsz6shp6ioSNXV1YqMjHTaHhkZqfz8/Fr3+eSTT/TKK69o+fLldfqO9PR0hYWFOV6xsbHnXTcAAGj8vD5c5YoTJ05o6tSpWr58ucLDw+u0z5w5c1RcXOx4HTlyxM1VAgCAxsCrt5CHh4fL399fBQUFTtsLCgoUFRVVo/3Bgwd1+PBhpaSkOLbZ7XZJUkBAgA4cOKCuXbs67RMUFKSgoCA3VA8AABozr17JCQwM1MCBA5WZmenYZrfblZmZqcTExBrtL7jgAn3xxRfKyspyvK666ipdeumlysrKYigKAAA4eH0xwNTUVE2fPl2DBg3SkCFDtGTJEpWVlWnGjBmSpGnTpikmJkbp6ekKDg5Wnz59nPZv3bq1JNXYDgAAfJvXQ87EiRNVWFioefPmKT8/X/3799f69esdk5Fzc3Pl59ekpg4BAIBGwGaMMeduZh0lJSUKCwtTcXGxWrVq5e1yAABAHdTn9zeXSAAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcuBWecUV2nqwSHnFFd4uBQDgYwK8XQCsK2NHruas+UJ2I/nZpPQJ8Zo4uKO3ywIA+Aiu5MAt8oorHAFHkuxGemjNHq7oAAA8hpADt8gpKnMEnNOqjdHhonLvFAQA8DmEHLhF5/BQ+dmct/nbbIoLb+6dggAAPoeQA7eIDgtR+oR4+dt+Sjr+NpsWTuij6LAQL1cGAPAVTDyG20wc3FGX9IjQ4aJyxYU3J+AAADyKkAO3ig4LIdz4mLziCuUUlalzeCj/2wPwKkIOgAbDsgEAGhPm5ABoECwbAKCxIeQAaBAsGwCgsSHkAGgQLBsAoLEh5ABoECwbAKCxYeIxgAbDsgEAGhNCDoAGxbIBABoLhqsAL8grrtDWg0XceQQAbsSVHMDDWEsGADyDKzmAB7GWDAB4DiEH8CDWkgEAzyHkAB7EWjIA4DmEHMCDWEsGADyHiceAh7GWDAB4BiEH8ALWkgEA92O4CgAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhx6J4NhIAwNdxd5UF8WwkAAAayZWcpUuXKi4uTsHBwUpISND27dvP2Hb58uUaMWKE2rRpozZt2igpKems7X0Nz0YCAOAnXg85GRkZSk1NVVpamnbt2qV+/fopOTlZx44dq7X9li1bNGnSJH300Ufatm2bYmNjdeWVV+rbb7/1cOWNE89GAgDgJzZjjDl3M/dJSEjQ4MGD9fzzz0uS7Ha7YmNjdccdd2j27Nnn3L+6ulpt2rTR888/r2nTpp2zfUlJicLCwlRcXKxWrVqdd/2NTV5xhYYt2uwUdPxtNn0y+1IWnwMANFn1+f3t1Ss5VVVV2rlzp5KSkhzb/Pz8lJSUpG3bttXpGOXl5Tp58qTatm1b6+eVlZUqKSlxelkZz0YCAOAnXp14XFRUpOrqakVGRjptj4yM1P79++t0jAcffFAdOnRwCko/l56ervnz5593rU0Jz0YCAKARzMk5H4sWLdKqVav03nvvKTg4uNY2c+bMUXFxseN15MgRD1fpHdFhIUrs2o6AAwDwWV69khMeHi5/f38VFBQ4bS8oKFBUVNRZ933mmWe0aNEibdq0SX379j1ju6CgIAUFBTVIvQAAuFNecYVyisrUOTyUP1IbgFev5AQGBmrgwIHKzMx0bLPb7crMzFRiYuIZ93vqqae0YMECrV+/XoMGDfJEqQAAuFXGjlwNW7RZk5f/Q8MWbVbGjlxvl9TkeX24KjU1VcuXL9drr72mffv26dZbb1VZWZlmzJghSZo2bZrmzJnjaP/kk09q7ty5WrFiheLi4pSfn6/8/HyVlpZ66xQAADgvrHHmHl5f8XjixIkqLCzUvHnzlJ+fr/79+2v9+vWOyci5ubny8/tPFnvxxRdVVVWlX//6107HSUtL06OPPurJ0gEAaBBnW+OMYav68/o6OZ5m9XVyAABND2ucnVuTWycHAIDGzFMPO2aNM/fw+nAVAACNkacfdswaZw2PKzkAAPwXb00EZo2zhkXIAeCTPDUMgaaJhx1bA8NVAHyOp4ch0PR0Dg+Vn001JgLHhTf3XlFwGVdyAPgU1iNBXTAR2Bq4kgPAp7AeCeqKicBNHyEHgE9hGAKuiA4LIdw0YQxXAfApDEMAvoMrOQB8DsMQgG8g5ADwSQxDANbHcBUAALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AwG3yiiu09WCR8oorvF0KfBAP6AQAuEXGjlzNWfOF7Ebys0npE+I1cXBHb5cFH8KVHABAg8srrnAEHEmyG+mhNXu4ogOPIuQAABpcTlGZI+CcVm2MDheVe6cgeExjGqJkuAoA0OA6h4fKzyanoONvsykuvLn3ioLbNbYhSq7kAAAaXHRYiNInxMvfZpP0U8BZOKGPosNCvFwZ3KUxDlFyJQcA4BYTB3fUJT0idLioXHHhzQk4Fne2IUpv/W9PyAEAuE10WAjhxkc0xiFKhqsAAMB5a4xDlFzJAQAADaKxDVEScgAAQINpTEOUDFcBAABLIuQAAABLIuQAAABLIuQA8JjGtNw7AOtj4jEAj2hsy70DsD6u5ABwu8a43DsA6yPkAHA7nkgNwBsIOQDc7vRy7z/n7eXeAXdi/lnjQMgB4HaNcbl3wF0yduRq2KLNmrz8Hxq2aLMyduR6uySfZTPGmHM3s46SkhKFhYWpuLhYrVq18nY5TUZecYVyisrUOTyUX0yot7ziikaz3DvgDnnFFRq2aHONh1R+MvtSfubPU31+fzeKKzlLly5VXFycgoODlZCQoO3bt5+1/TvvvKMLLrhAwcHBio+P17p16zxUqW/irxI0lOiwECV2bcc/9rAs5p81Ll4PORkZGUpNTVVaWpp27dqlfv36KTk5WceOHau1/datWzVp0iTdeOON2r17t8aPH6/x48drz549Hq7cN3BXDADUHfPPGhevh5zFixfrpptu0owZM9S7d28tW7ZMzZs314oVK2pt/9vf/lajR4/W/fffr169emnBggW66KKL9Pzzz3u4ct/AXyUAUHfMP2tcvLoYYFVVlXbu3Kk5c+Y4tvn5+SkpKUnbtm2rdZ9t27YpNTXVaVtycrLef//9WttXVlaqsrLS8b6kpOT8C/chp/8q+e/xZf4qAYDaTRzcUZf0iGD+WSPg1Ss5RUVFqq6uVmRkpNP2yMhI5efn17pPfn6+S+3T09MVFhbmeMXGxjZM8T6Cv0oAwHXMP2scLP9Yhzlz5jhd+SkpKSHouIi/SgAATZFXQ054eLj8/f1VUFDgtL2goEBRUVG17hMVFeVS+6CgIAUFBTVMwT4sOiyEcAMAaFK8OlwVGBiogQMHKjMz07HNbrcrMzNTiYmJte6TmJjo1F6SNm7ceMb2AADAN3l9uCo1NVXTp0/XoEGDNGTIEC1ZskRlZWWaMWOGJGnatGmKiYlRenq6JOmuu+7SyJEj9eyzz2rcuHFatWqVPvvsM7300kvePA0AANDIeD3kTJw4UYWFhZo3b57y8/PVv39/rV+/3jG5ODc3V35+/7ngNHToUL311lt65JFH9NBDD6l79+56//331adPH2+dAgAAaIR4rAMAAGj0muxjHQAAABoaIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFiS1xcD9LTTywKVlJR4uRIAAFBXp39vu7K8n8+FnBMnTkgSTyIHAKAJOnHihMLCwurU1udWPLbb7Tp69Khatmwpm81Wa5uSkhLFxsbqyJEjrIos+qM29Ikz+sMZ/VETfeKM/qjpXH1ijNGJEyfUoUMHp8c9nY3PXcnx8/PTL37xizq1bdWqFT98P0N/1ESfOKM/nNEfNdEnzuiPms7WJ3W9gnMaE48BAIAlEXIAAIAlEXJqERQUpLS0NAUFBXm7lEaB/qiJPnFGfzijP2qiT5zRHzW5o098buIxAADwDVzJAQAAlkTIAQAAlkTIAQAAlkTIAQAAluSzIWfp0qWKi4tTcHCwEhIStH379jO23bt3r371q18pLi5ONptNS5Ys8VyhHuJKfyxfvlwjRoxQmzZt1KZNGyUlJZ21fVPlSp+sWbNGgwYNUuvWrRUaGqr+/fvr9ddf92C17udKf/zcqlWrZLPZNH78ePcW6GGu9Merr74qm83m9AoODvZgtZ7h6s/I8ePHNWvWLEVHRysoKEg9evTQunXrPFSt+7nSH6NGjarxM2Kz2TRu3DgPVuxerv58LFmyRD179lRISIhiY2N1zz336Mcff3TtS40PWrVqlQkMDDQrVqwwe/fuNTfddJNp3bq1KSgoqLX99u3bzX333WfefvttExUVZZ577jnPFuxmrvbH5MmTzdKlS83u3bvNvn37zA033GDCwsLMN9984+HK3cfVPvnoo4/MmjVrzL/+9S+TnZ1tlixZYvz9/c369es9XLl7uNofp+Xk5JiYmBgzYsQIc/XVV3umWA9wtT9WrlxpWrVqZfLy8hyv/Px8D1ftXq72SWVlpRk0aJAZO3as+eSTT0xOTo7ZsmWLycrK8nDl7uFqf3z33XdOPx979uwx/v7+ZuXKlZ4t3E1c7Y8333zTBAUFmTfffNPk5OSYDRs2mOjoaHPPPfe49L0+GXKGDBliZs2a5XhfXV1tOnToYNLT08+5b6dOnSwXcs6nP4wx5tSpU6Zly5bmtddec1eJHne+fWKMMQMGDDCPPPKIO8rzuPr0x6lTp8zQoUPNyy+/bKZPn26pkONqf6xcudKEhYV5qDrvcLVPXnzxRdOlSxdTVVXlqRI96nz/DXnuuedMy5YtTWlpqbtK9ChX+2PWrFnmsssuc9qWmppqhg0b5tL3+txwVVVVlXbu3KmkpCTHNj8/PyUlJWnbtm1erMw7GqI/ysvLdfLkSbVt29ZdZXrU+faJMUaZmZk6cOCALrnkEneW6hH17Y/HHntM7du314033uiJMj2mvv1RWlqqTp06KTY2VldffbX27t3riXI9oj59snbtWiUmJmrWrFmKjIxUnz59tHDhQlVXV3uqbLdpiH9XX3nlFV133XUKDQ11V5keU5/+GDp0qHbu3OkY0jp06JDWrVunsWPHuvTdPveAzqKiIlVXVysyMtJpe2RkpPbv3++lqrynIfrjwQcfVIcOHZx+gJuy+vZJcXGxYmJiVFlZKX9/f73wwgu64oor3F2u29WnPz755BO98sorysrK8kCFnlWf/ujZs6dWrFihvn37qri4WM8884yGDh2qvXv31vmBwY1Zffrk0KFD2rx5s6ZMmaJ169YpOztbt912m06ePKm0tDRPlO025/vv6vbt27Vnzx698sor7irRo+rTH5MnT1ZRUZGGDx8uY4xOnTqlW265RQ899JBL3+1zIQcNa9GiRVq1apW2bNliyYmUrmjZsqWysrJUWlqqzMxMpaamqkuXLho1apS3S/OoEydOaOrUqVq+fLnCw8O9XU6jkJiYqMTERMf7oUOHqlevXvrDH/6gBQsWeLEy77Hb7Wrfvr1eeukl+fv7a+DAgfr222/19NNPN/mQc75eeeUVxcfHa8iQId4uxWu2bNmihQsX6oUXXlBCQoKys7N11113acGCBZo7d26dj+NzISc8PFz+/v4qKChw2l5QUKCoqCgvVeU959MfzzzzjBYtWqRNmzapb9++7izTo+rbJ35+furWrZskqX///tq3b5/S09ObfMhxtT8OHjyow4cPKyUlxbHNbrdLkgICAnTgwAF17drVvUW7UUP8G9KsWTMNGDBA2dnZ7ijR4+rTJ9HR0WrWrJn8/f0d23r16qX8/HxVVVUpMDDQrTW70/n8jJSVlWnVqlV67LHH3FmiR9WnP+bOnaupU6dq5syZkqT4+HiVlZXp5ptv1sMPPyw/v7rNtvG5OTmBgYEaOHCgMjMzHdvsdrsyMzOd/tLyFfXtj6eeekoLFizQ+vXrNWjQIE+U6jEN9TNit9tVWVnpjhI9ytX+uOCCC/TFF18oKyvL8brqqqt06aWXKisrS7GxsZ4sv8E1xM9HdXW1vvjiC0VHR7urTI+qT58MGzZM2dnZjgAsSV9++aWio6ObdMCRzu9n5J133lFlZaWuv/56d5fpMfXpj/Ly8hpB5nQgNq48ctPFCdKWsGrVKhMUFGReffVV869//cvcfPPNpnXr1o5bOqdOnWpmz57taF9ZWWl2795tdu/ebaKjo819991ndu/ebb766itvnUKDcrU/Fi1aZAIDA83q1audbnk8ceKEt06hwbnaJwsXLjQffvihOXjwoPnXv/5lnnnmGRMQEGCWL1/urVNoUK72x3+z2t1VrvbH/PnzzYYNG8zBgwfNzp07zXXXXWeCg4PN3r17vXUKDc7VPsnNzTUtW7Y0t99+uzlw4ID5y1/+Ytq3b28ef/xxb51Cg6rv/2eGDx9uJk6c6Oly3c7V/khLSzMtW7Y0b7/9tjl06JD58MMPTdeuXc21117r0vf6ZMgxxpjf//73pmPHjiYwMNAMGTLE/P3vf3d8NnLkSDN9+nTH+5ycHCOpxmvkyJGeL9xNXOmPTp061dofaWlpni/cjVzpk4cffth069bNBAcHmzZt2pjExESzatUqL1TtPq70x3+zWsgxxrX+uPvuux1tIyMjzdixY82uXbu8ULV7ufozsnXrVpOQkGCCgoJMly5dzBNPPGFOnTrl4ardx9X+2L9/v5FkPvzwQw9X6hmu9MfJkyfNo48+arp27WqCg4NNbGysue2228wPP/zg0nfajHHlug8AAEDT4HNzcgAAgG8g5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5ACAG91www0aP368t8sAfBIhB/BRN9xwg2w2m+PVrl07jR49Wp9//rm3S2sQPz+306/hw4e77fsOHz4sm82mrKwsp+2//e1v9eqrr7rtewGcGSEH8GGjR49WXl6e8vLylJmZqYCAAP3yl7/0dlkNZuXKlY7zy8vL09q1a2ttd/LkSbfVEBYWptatW7vt+ADOjJAD+LCgoCBFRUUpKipK/fv31+zZs3XkyBEVFhbqsssu0+233+7UvrCwUIGBgY6nCcfFxWnBggWaNGmSQkNDFRMTo6VLlzrts3jxYsXHxys0NFSxsbG67bbbVFpa6vj866+/VkpKitq0aaPQ0FBdeOGFWrdunSTphx9+0JQpUxQREaGQkBB1795dK1eurPP5tW7d2nF+UVFRatu2reOKS0ZGhkaOHKng4GC9+eab+u677zRp0iTFxMSoefPmio+P19tvv+10PLvdrqeeekrdunVTUFCQOnbsqCeeeEKS1LlzZ0nSgAEDZLPZNGrUKEk1h6sqKyt15513qn379goODtbw4cO1Y8cOx+dbtmyRzWZTZmamBg0apObNm2vo0KE6cOBAnc8bwE8IOQAkSaWlpXrjjTfUrVs3tWvXTjNnztRbb72lyspKR5s33nhDMTExuuyyyxzbnn76afXr10+7d+/W7Nmzddddd2njxo2Oz/38/PS73/1Oe/fu1WuvvabNmzfrgQcecHw+a9YsVVZW6uOPP9YXX3yhJ598Ui1atJAkzZ07V//617/0//7f/9O+ffv04osvKjw8vEHO93St+/btU3Jysn788UcNHDhQH3zwgfbs2aObb75ZU6dO1fbt2x37zJkzR4sWLXLU9dZbbykyMlKSHO02bdqkvLw8rVmzptbvfeCBB/Tuu+/qtdde065du9StWzclJyfr+++/d2r38MMP69lnn9Vnn32mgIAA/eY3v2mQ8wZ8SoM8WhRAkzN9+nTj7+9vQkNDTWhoqJFkoqOjzc6dO40xxlRUVJg2bdqYjIwMxz59+/Y1jz76qON9p06dzOjRo52OO3HiRDNmzJgzfu8777xj2rVr53gfHx/vdMyfS0lJMTNmzKjX+UkywcHBjvMLDQ017733nsnJyTGSzJIlS855jHHjxpl7773XGGNMSUmJCQoKMsuXL6+17enj7t6922n7z5/AXlpaapo1a2befPNNx+dVVVWmQ4cO5qmnnjLGGPPRRx8ZSWbTpk2ONh988IGRZCoqKlzpAsDncSUH8GGXXnqpsrKylJWVpe3btys5OVljxozR119/reDgYE2dOlUrVqyQJO3atUt79uzRDTfc4HSMxMTEGu/37dvneL9p0yZdfvnliomJUcuWLTV16lR99913Ki8vlyTdeeedevzxxzVs2DClpaU5TXy+9dZbtWrVKvXv318PPPCAtm7d6tL5Pffcc47zy8rK0hVXXOH4bNCgQU5tq6urtWDBAsXHx6tt27Zq0aKFNmzYoNzcXEnSvn37VFlZqcsvv9ylGn7u4MGDOnnypIYNG+bY1qxZMw0ZMsSpzySpb9++jv+Ojo6WJB07dqze3w34IkIO4MNCQ0PVrVs3devWTYMHD9bLL7+ssrIyLV++XJI0c+ZMbdy4Ud98841Wrlypyy67TJ06darz8Q8fPqxf/vKX6tu3r959913t3LnTMWenqqrK8R2HDh3S1KlT9cUXX2jQoEH6/e9/L0mOwHXPPffo6NGjuvzyy3XffffV+fujoqIc59etWzeFhoY6nfvPPf300/rtb3+rBx98UB999JGysrKUnJzsqDMkJKTO39sQmjVr5vhvm80m6ac5QQDqjpADwMFms8nPz08VFRWSpPj4eA0aNEjLly/XW2+9Veu8kL///e813vfq1UuStHPnTtntdj377LO6+OKL1aNHDx09erTGMWJjY3XLLbdozZo1uvfeex0hS5IiIiI0ffp0vfHGG1qyZIleeumlhjxlh08//VRXX321rr/+evXr109dunTRl19+6fi8e/fuCgkJcUy6/m+BgYGSfroidCZdu3ZVYGCgPv30U8e2kydPaseOHerdu3cDnQmA0wK8XQAA76msrFR+fr6kn+5kev7551VaWqqUlBRHm5kzZ+r2229XaGiorrnmmhrH+PTTT/XUU09p/Pjx2rhxo9555x198MEHkqRu3brp5MmT+v3vf6+UlBR9+umnWrZsmdP+d999t8aMGaMePXrohx9+0EcffeQISfPmzdPAgQN14YUXqrKyUn/5y18cnzW07t27a/Xq1dq6davatGmjxYsXq6CgwBE+goOD9eCDD+qBBx5QYGCghg0bpsLCQu3du1c33nij2rdvr5CQEK1fv16/+MUvFBwcrLCwMKfvCA0N1a233qr7779fbdu2VceOHfXUU0+pvLxcN954o1vOC/BlXMkBfNj69esVHR2t6OhoJSQkaMeOHXrnnXcctz9L0qRJkxQQEKBJkyYpODi4xjHuvfdeffbZZxowYIAef/xxLV68WMnJyZKkfv36afHixXryySfVp08fvfnmm0pPT3fav7q6WrNmzVKvXr00evRo9ejRQy+88IKkn66OzJkzR3379tUll1wif39/rVq1yi198cgjj+iiiy5ScnKyRo0apaioqBorFc+dO1f33nuv5s2bp169emnixImOeTIBAQH63e9+pz/84Q/q0KGDrr766lq/Z9GiRfrVr36lqVOn6qKLLlJ2drY2bNigNm3auOW8AF9mM8YYbxcBoPE6fPiwunbtqh07duiiiy5y+iwuLk5333237r77bu8UBwBnwXAVgFqdPHlS3333nR555BFdfPHFNQIOADR2DFcBqNWnn36q6Oho7dixo8Y8Gm9buHChWrRoUetrzJgx3i4PQCPBcBWAJuf777+vsULwaSEhIYqJifFwRQAaI0IOAACwJIarAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJf1/YAn0dPt2bgcAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_42.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBN0lEQVR4nO3deVxVdf7H8fcFZRERF1YVxbU0cd/QRrFMUjPNmTIrl0qbUiuzVVu0TbRymcrUrLQyk9HRxjHH3GsSG1d+qaWloZgBSuklFhHh+/vD8RaJy8V7uXB4PR+P83h0z/mecz/nG8G77/mec2zGGCMAAACL8PJ0AQAAAK5EuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAHgEZMmTZLNZrustjabTZMmTXJrPbGxsYqNjS2zxwNw+Qg3QAW3YMEC2Ww2x1KpUiXVqVNHw4cP19GjRz1dXpkTFRVVpL9CQ0P1pz/9ScuXL3fJ8XNycjRp0iRt2rTJJccDKiLCDQBJ0gsvvKAPP/xQc+bMUe/evbVw4UJ1795dp06dcsv3PfPMM8rNzXXLsd2tdevW+vDDD/Xhhx/qscce008//aSBAwdqzpw5V3zsnJwcPf/884Qb4ApU8nQBAMqG3r17q3379pKkESNGKDg4WFOnTtWKFSt02223ufz7KlWqpEqVyuevoDp16uiuu+5yfB46dKgaN26sGTNm6P777/dgZQAkRm4AXMCf/vQnSdLBgweLrN+3b5/+8pe/qGbNmvLz81P79u21YsWKIm3y8/P1/PPPq0mTJvLz81OtWrV07bXXau3atY42xc25ycvL0yOPPKKQkBAFBgbq5ptv1o8//nhebcOHD1dUVNR564s75vz583XdddcpNDRUvr6+at68uWbPnu1UX1xKeHi4mjVrpuTk5Iu2O3bsmO69916FhYXJz89PrVq10vvvv+/YfujQIYWEhEiSnn/+ecelL3fPNwKspnz+bxMAtzt06JAkqUaNGo51e/fuVdeuXVWnTh099dRTCggI0N///ncNGDBA//jHP3TLLbdIOhsy4uPjNWLECHXs2FGZmZnavn27du7cqRtuuOGC3zlixAgtXLhQd9xxh7p06aINGzaob9++V3Qes2fP1jXXXKObb75ZlSpV0r/+9S+NGjVKhYWFGj169BUd+5z8/HwdOXJEtWrVumCb3NxcxcbG6sCBAxozZowaNGigJUuWaPjw4Tp58qQefvhhhYSEaPbs2XrggQd0yy23aODAgZKkli1buqROoMIwACq0+fPnG0lm3bp15vjx4+bIkSNm6dKlJiQkxPj6+pojR4442l5//fUmOjranDp1yrGusLDQdOnSxTRp0sSxrlWrVqZv374X/d6JEyea3/8KSkpKMpLMqFGjirS74447jCQzceJEx7phw4aZ+vXrX/KYxhiTk5NzXru4uDjTsGHDIuu6d+9uunfvftGajTGmfv36plevXub48ePm+PHj5v/+7//M7bffbiSZBx988ILHmzlzppFkFi5c6Fh3+vRpExMTY6pWrWoyMzONMcYcP378vPMF4BwuSwGQJPXs2VMhISGKjIzUX/7yFwUEBGjFihWqW7euJOmXX37Rhg0bdNttt+nXX39VRkaGMjIy9PPPPysuLk7ff/+94+6q6tWra+/evfr+++8v+/tXrVolSXrooYeKrB87duwVnZe/v7/jn+12uzIyMtS9e3f98MMPstvtJTrmmjVrFBISopCQELVq1UpLlizRkCFDNHXq1Avus2rVKoWHh2vw4MGOdZUrV9ZDDz2krKwsff755yWqBcD5KnS4+eKLL9SvXz/Vrl1bNptNn3zyidu/8+jRo7rrrrtUq1Yt+fv7Kzo6Wtu3b3f79wKXMmvWLK1du1ZLly5Vnz59lJGRIV9fX8f2AwcOyBijZ5991vGH/dwyceJESWfnlEhn77w6efKkmjZtqujoaD3++OP6+uuvL/r9hw8flpeXlxo1alRk/VVXXXVF57V582b17NlTAQEBql69ukJCQjRhwgRJKnG46dSpk9auXat169YpMTFRGRkZ+uCDD4oEqT86fPiwmjRpIi+vor92mzVr5tgOwDUq9Jyb7OxstWrVSvfcc4/j2rY7nThxQl27dlWPHj3073//WyEhIfr++++LzGkAPKVjx46Ou6UGDBiga6+9VnfccYf279+vqlWrqrCwUJL02GOPKS4urthjNG7cWJLUrVs3HTx4UP/85z+1Zs0avfPOO5oxY4bmzJmjESNGXHGtF3r4X0FBQZHPBw8e1PXXX6+rr75a06dPV2RkpHx8fLRq1SrNmDHDcU7OCg4OVs+ePUu0LwD3q9Dhpnfv3urdu/cFt+fl5enpp5/Wxx9/rJMnT6pFixaaOnVqiZ86OnXqVEVGRmr+/PmOdQ0aNCjRsQB38vb2Vnx8vHr06KE333xTTz31lBo2bCjp7KWUy/nDXrNmTd199926++67lZWVpW7dumnSpEkXDDf169dXYWGhDh48WGS0Zv/+/ee1rVGjhk6ePHne+j+OfvzrX/9SXl6eVqxYoXr16jnWb9y48ZL1u1r9+vX19ddfq7CwsMjozb59+xzbpQsHNwCXr0JflrqUMWPGaMuWLVq8eLG+/vpr3XrrrbrxxhudmkfweytWrFD79u116623KjQ0VG3atNG8efNcXDXgGrGxserYsaNmzpypU6dOKTQ0VLGxsZo7d65SU1PPa3/8+HHHP//8889FtlWtWlWNGzdWXl7eBb/v3P9ovP7660XWz5w587y2jRo1kt1uL3KpKzU19bynBHt7e0uSjDGOdXa7vcj/YJSWPn36KC0tTQkJCY51Z86c0RtvvKGqVauqe/fukqQqVapIUrHhDcDlqdAjNxeTkpKi+fPnKyUlRbVr15Z0djh+9erVmj9/viZPnuz0MX/44QfNnj1b48aN04QJE7Rt2zY99NBD8vHx0bBhw1x9CsAVe/zxx3XrrbdqwYIFuv/++zVr1ixde+21io6O1siRI9WwYUOlp6dry5Yt+vHHH/V///d/kqTmzZsrNjZW7dq1U82aNbV9+3YtXbpUY8aMueB3tW7dWoMHD9Zbb70lu92uLl26aP369Tpw4MB5bW+//XY9+eSTuuWWW/TQQw8pJydHs2fPVtOmTbVz505Hu169esnHx0f9+vXTX//6V2VlZWnevHkKDQ0tNqC503333ae5c+dq+PDh2rFjh6KiorR06VJt3rxZM2fOVGBgoKSzE6CbN2+uhIQENW3aVDVr1lSLFi3UokWLUq0XKNc8fbtWWSHJLF++3PF55cqVRpIJCAgoslSqVMncdtttxhhjvv32WyPposuTTz7pOGblypVNTExMke998MEHTefOnUvlHIHinLsVfNu2bedtKygoMI0aNTKNGjUyZ86cMcYYc/DgQTN06FATHh5uKleubOrUqWNuuukms3TpUsd+L730kunYsaOpXr268ff3N1dffbV5+eWXzenTpx1tirttOzc31zz00EOmVq1aJiAgwPTr188cOXKk2Fuj16xZY1q0aGF8fHzMVVddZRYuXFjsMVesWGFatmxp/Pz8TFRUlJk6dap57733jCSTnJzsaOfMreCXus39QsdLT083d999twkODjY+Pj4mOjrazJ8//7x9ExMTTbt27YyPjw+3hQMlYDPmd+O1FZjNZtPy5cs1YMAASVJCQoLuvPNO7d271zG0fU7VqlUVHh6u06dP64cffrjocWvVquV44mj9+vV1ww036J133nFsnz17tl566SVeUAgAgItwWeoC2rRpo4KCAh07dszxGPo/8vHx0dVXX33Zx+zatet5kyO/++47x0RCAABw5Sp0uMnKyipyPT85OVlJSUmqWbOmmjZtqjvvvFNDhw7VtGnT1KZNGx0/flzr169Xy5YtS/RI+EceeURdunTR5MmTddttt2nr1q16++239fbbb7vytAAAqNAq9GWpTZs2qUePHuetHzZsmBYsWKD8/Hy99NJL+uCDD3T06FEFBwerc+fOev755xUdHV2i71y5cqXGjx+v77//Xg0aNNC4ceM0cuTIKz0VAADwPxU63AAAAOvhOTcAAMBSCDcAAMBSKtyE4sLCQv30008KDAzkMecAAJQTxhj9+uuvql279nkvoP2jChdufvrpJ0VGRnq6DAAAUAJHjhxR3bp1L9qmwoWbc484P3LkiKpVq+bhagAAwOXIzMxUZGSk4+/4xVS4cHPuUlS1atUINwAAlDOXM6WECcUAAMBSCDcAAMBSCDcAAMBSKtycm8tVUFCg/Px8T5dhGZUrVz7v7eoAALgD4eYPjDFKS0vTyZMnPV2K5VSvXl3h4eE8XwgA4FaEmz84F2xCQ0NVpUoV/hC7gDFGOTk5OnbsmCQpIiLCwxUBAKyMcPM7BQUFjmBTq1YtT5djKf7+/pKkY8eOKTQ0lEtUAAC3YULx75ybY1OlShUPV2JN5/qVuUwAAHci3BSDS1HuQb8CAEqDR8NNfHy8OnTooMDAQIWGhmrAgAHav3//RfdZsGCBbDZbkcXPz6+UKgYAAGWdR8PN559/rtGjR+urr77S2rVrlZ+fr169eik7O/ui+1WrVk2pqamO5fDhw6VUMQAAKOs8Gm5Wr16t4cOH65prrlGrVq20YMECpaSkaMeOHRfdz2azKTw83LGEhYWVUsVlW1pamh588EE1bNhQvr6+ioyMVL9+/bR+/XpJ0l//+lc1atRI/v7+CgkJUf/+/bVv3z7H/ocOHZLNZlNSUtJ5x46NjdXYsWMdn7OysjRmzBjVrVtX/v7+at68uebMmePuUwQAXECqPVeJBzOUas/1dCkeV6bulrLb7ZKkmjVrXrRdVlaW6tevr8LCQrVt21aTJ0/WNddcUxolllmHDh1S165dVb16db366quKjo5Wfn6+PvvsM40ePVr79u1Tu3btdOedd6pevXr65ZdfNGnSJPXq1UvJyclO3700btw4bdiwQQsXLlRUVJTWrFmjUaNGqXbt2rr55pvddJYAgOIkbEvR+GW7VWgkL5sUPzBagzrU83RZHlNmwk1hYaHGjh2rrl27qkWLFhdsd9VVV+m9995Ty5YtZbfb9dprr6lLly7au3ev6tate177vLw85eXlOT5nZma6pX5PGzVqlGw2m7Zu3aqAgADH+muuuUb33HOPJOm+++5zrI+KitJLL72kVq1a6dChQ2rUqJFT35eYmKhhw4YpNjbWcey5c+dq69athBsAKEWp9lxHsJGkQiNNWLZH3ZqGKCLI37PFeUiZuVtq9OjR2rNnjxYvXnzRdjExMRo6dKhat26t7t27a9myZQoJCdHcuXOLbR8fH6+goCDHEhkZ6Y7yi1VaQ4S//PKLVq9erdGjRxcJNudUr179vHXZ2dmaP3++GjRoUKI+6dKli1asWKGjR4/KGKONGzfqu+++U69evUpyCgCAEkrOyHYEm3MKjNGhjBzPFFQGlIlwM2bMGK1cuVIbN24sdvTlYipXrqw2bdrowIEDxW4fP3687Ha7Yzly5IgrSr6khG0p6jplg+6Y9191nbJBCdtS3PZdBw4ckDFGV1999SXbvvXWW6pataqqVq2qf//731q7dq18fHyKtOnSpYujzbnlP//5T5E2b7zxhpo3b666devKx8dHN954o2bNmqVu3bq59NwAABfXIDhAXn940oa3zaao4Ir7zDaPhhtjjMaMGaPly5drw4YNatCggdPHKCgo0O7duy/4SH9fX19Vq1atyOJuFxoidNcIjjHm0o3+584779SuXbv0+eefq2nTprrtttt06tSpIm0SEhKUlJRUZGnfvn2RNm+88Ya++uorrVixQjt27NC0adM0evRorVu3ziXnBAC4PBFB/oofGC3v/z1LzNtm0+SBLSrsJSnJw3NuRo8erUWLFumf//ynAgMDlZaWJkkKCgpyPK5/6NChqlOnjuLj4yVJL7zwgjp37qzGjRvr5MmTevXVV3X48GGNGDHCY+fxRxcbInTHD1uTJk1ks9mK3Pl0IecuzzVp0kSdO3dWjRo1tHz5cg0ePNjRJjIyUo0bNy6y37l/H5KUm5urCRMmaPny5erbt68kqWXLlkpKStJrr72mnj17uujMAACXY1CHeurWNESHMnIUFVylQgcbycMjN7Nnz5bdbldsbKwiIiIcS0JCgqNNSkqKUlNTHZ9PnDihkSNHqlmzZurTp48yMzOVmJio5s2be+IUilXaQ4Q1a9ZUXFycZs2aVewzgi70hnNjjIwxRSZcX478/Hzl5+fLy6voj4+3t7cKCwudOhYAwDUigvwV06hWhQ82kodHbi7ncsqmTZuKfJ4xY4ZmzJjhpopc49wQ4YRle1RgTKkMEc6aNUtdu3ZVx44d9cILL6hly5Y6c+aM1q5dq9mzZ+vTTz9VQkKCevXqpZCQEP3444+aMmWK/P391adPH6e+q1q1aurevbsef/xx+fv7q379+vr888/1wQcfaPr06W46QwAALk+ZuRXcakp7iLBhw4bauXOnXn75ZT366KNKTU1VSEiI2rVrp9mzZ8vPz0//+c9/NHPmTJ04cUJhYWHq1q2bEhMTFRoa6vT3LV68WOPHj9edd96pX375RfXr19fLL7+s+++/3w1nBwDA5bMZZ2ajWkBmZqaCgoJkt9vPm1x86tQpJScnq0GDBryvyg3oXwBASV3s7/cflYlbwQEAAFyFcAMAACyFcAMAACyFcAMAACyFcFOMCjbHutTQrwCA0kC4+Z3KlStLknJyKu7LxtzpXL+e62cAANyB59z8jre3t6pXr65jx45JkqpUqSKbzXaJvXApxhjl5OTo2LFjql69ury9vT1dEgDAwgg3fxAeHi5JjoAD16levbqjfwEAcBfCzR/YbDZFREQoNDRU+fn5ni7HMipXrsyIDQCgVBBuLsDb25s/xgAAlENMKAYAAJZCuAEAAJZCuAEAAC6Tas9V4sEMpdpzPVYDc24AAIBLJGxL0fhlu1VoJC+bFD8wWoM61Cv1Ohi5AQAAVyzVnusINpJUaKQJy/Z4ZASHcAMAAK5Ycka2I9icU2CMDmWU/lP/CTcAAOCKNQgOkNcfHurvbbMpKrhKqddCuAEAAFcsIshf8QOj5f2/1xZ522yaPLCFIoL8S70WJhQDAACXGNShnro1DdGhjBxFBVfxSLCRCDcAAMCFIoL8PRZqzuGyFAAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBSPhpv4+Hh16NBBgYGBCg0N1YABA7R///5L7rdkyRJdffXV8vPzU3R0tFatWlUK1QIAgPLAo+Hm888/1+jRo/XVV19p7dq1ys/PV69evZSdnX3BfRITEzV48GDde++92rVrlwYMGKABAwZoz549pVg5AAAoq2zGGOPpIs45fvy4QkND9fnnn6tbt27Fthk0aJCys7O1cuVKx7rOnTurdevWmjNnziW/IzMzU0FBQbLb7apWrZrLagcAAO7jzN/vMjXnxm63S5Jq1qx5wTZbtmxRz549i6yLi4vTli1bim2fl5enzMzMIgsAALCuMhNuCgsLNXbsWHXt2lUtWrS4YLu0tDSFhYUVWRcWFqa0tLRi28fHxysoKMixREZGurRuAABQtpSZcDN69Gjt2bNHixcvdulxx48fL7vd7liOHDni0uMDAFAWpNpzlXgwQ6n2XE+X4nGVPF2AJI0ZM0YrV67UF198obp16160bXh4uNLT04usS09PV3h4eLHtfX195evr67JaAQAoaxK2pWj8st0qNJKXTYofGK1BHep5uiyP8ejIjTFGY8aM0fLly7VhwwY1aNDgkvvExMRo/fr1RdatXbtWMTEx7ioTAIAyK9We6wg2klRopAnL9lToERyPhpvRo0dr4cKFWrRokQIDA5WWlqa0tDTl5v72L2To0KEaP3684/PDDz+s1atXa9q0adq3b58mTZqk7du3a8yYMZ44BQAAPCo5I9sRbM4pMEaHMnI8U1AZ4NFwM3v2bNntdsXGxioiIsKxJCQkONqkpKQoNTXV8blLly5atGiR3n77bbVq1UpLly7VJ598ctFJyAAAWFWD4AB52Yqu87bZFBVcxTMFlQFl6jk3pYHn3AAArCZhW4omLNujAmPkbbNp8sAWlptz48zf7zIxoRgAAJTcoA711K1piA5l5CgquIoigvw9XZJHEW4AALCAiCD/Ch9qzikzz7kBAABwBcINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINUA6l2nOVeDBDqfZcT5cCAGVOJU8XAMA5CdtSNH7ZbhUaycsmxQ+M1qAO9TxdFgCUGYzcAOVIqj3XEWwkqdBIE5btYQQHAH6HcAOUI8kZ2Y5gc06BMTqUkeOZggCgDCLcAOVIg+AAedmKrvO22RQVXMUzBQFAGUS4AcqRiCB/xQ+MlrftbMLxttk0eWALRQT5e7gyACg7mFAMlDODOtRTt6YhOpSRo6jgKgQbAPgDwg1QDkUE+RNqAOACuCwFAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADeBAvwAQA1+NWcMBDeAEmALgHIzeAB/ACTABwH8IN4AG8ABMA3IdwA3gAL8AEAPch3AAewAswAcB9mFAMeAgvwAQA9yDcAB7ECzABwPW4LAUAACyFcAMAACyFcAMAACyFcAMAACyFcAMAAM5Tnt99x91SAACgiPL+7juPjtx88cUX6tevn2rXri2bzaZPPvnkou03bdokm8123pKWllY6BQMAYHFWePedR8NNdna2WrVqpVmzZjm13/79+5WamupYQkND3VQhAAAVixXefefRy1K9e/dW7969nd4vNDRU1atXd31BAABUcOfefff7gFPe3n1XLicUt27dWhEREbrhhhu0efPmi7bNy8tTZmZmkQUAABTPCu++K1cTiiMiIjRnzhy1b99eeXl5eueddxQbG6v//ve/atu2bbH7xMfH6/nnny/lSgEAKL/K+7vvbMYYc+lm7mez2bR8+XINGDDAqf26d++uevXq6cMPPyx2e15envLy8hyfMzMzFRkZKbvdrmrVql1JyQAAoJRkZmYqKCjosv5+l6uRm+J07NhRX3755QW3+/r6ytfXtxQrAgAAnlQu59z8XlJSkiIiIjxdBoAKoDw/1AyoSDw6cpOVlaUDBw44PicnJyspKUk1a9ZUvXr1NH78eB09elQffPCBJGnmzJlq0KCBrrnmGp06dUrvvPOONmzYoDVr1njqFABUEOX9oWZAReLRcLN9+3b16NHD8XncuHGSpGHDhmnBggVKTU1VSkqKY/vp06f16KOP6ujRo6pSpYpatmypdevWFTkGALjahR5q1q1pSLmbaAlUBGVmQnFpcWZCEgBIUuLBDN0x77/nrf94ZGfFNKrlgYqAiseZv9/lfs5NWcL1eMCazj3U7PfK20PNgIqEcOMiCdtS1HXKBt0x77/qOmWDEralXHonAOWCFR5qBlQkXJZygVR7rrpO2XDeo6q/fKoHv/wAC0m155bbh5oB5V2Fes5NWXCxl4zxCxCwjoggf/6bBsoBLku5ANfjAQAoOwg3LsD1eAAAyg4uS7lIeX/JGAAAVkG4cSGuxwMA4HlclirDeG4OAADOc3rkZuXKldq6davi4uLUtWtXbdiwQa+99poKCws1cOBA3Xfffe6os8LhPTYAAJSMUyM3c+fO1S233KJVq1apT58+WrhwoQYMGKA6deooKipKY8eO1d/+9jd31VphXOg9NozgAABwaU6N3Lz++ut66623NHLkSG3cuFF9+vTRtGnTNGrUKElS586d9corr+jhhx92S7EVBc/NAQCg5JwauUlOTlZcXJwkqUePHiooKFC3bt0c22NjY3X48GHXVlgB8dwcAABKzqlwU6tWLUd4+emnn3TmzBmlpPz2DqXDhw+rZs2arq2wAuK5OQAAlJxTl6X69++ve++9V8OGDdOKFSs0dOhQPfroo/Ly8pLNZtPjjz+uXr16uavWCoXn5gAAUDJOhZupU6fq9OnTWrx4sbp06aI33nhDr7/+uvr376/8/Hx1795d8fHx7qq1wuG5OQAAOM8lbwU/deqU8vPzFRgY6Iqa3ModbwUHAADuVepvBffz85Ofn58rDgUAAHBFnAo348aNu6x206dPL1ExAAAAV8qpcLNr164in7/88ku1a9dO/v6/zQux2Wx/3A0AAKDUOBVuNm7cWORzYGCgFi1apIYNG7q0KAAAgJLixZkAAMBSCDcAAMBSCDcAAMBSnJpz8/XXXxf5bIzRvn37lJWVVWR9y5Ytr7wyAACAEnDqIX7nXrNQ3C7n1ttsNhUUFLi0SFfiIX4AAJQ/bnuIX3Jy8hUVBgAA4G5OhZv69eu7qw4AAACXcHpCsTFGycnJOnPmjCTp9OnTSkhI0AcffKCMjAyXFwgAAOAMp0Zu9u/fr7i4OB05ckQNGzbUmjVrdOutt2rfvn0yxqhKlSpKTExUkyZN3FUvAADARTk1cvPkk0+qVatWSkpK0k033aS+ffuqbt26OnHihH755RfFxMTohRdecFetAAAAl+TU3VKhoaFas2aNWrdurezsbAUGBuqLL77QtddeK0lKTEzU4MGDdfjwYbcVfKW4WwoAgPLHmb/fTo3cZGVlqWbNmpKkgIAABQQEKCIiwrE9MjJS6enpJSgZgCel2nOVeDBDqfZcT5cCAFfMqTk3tWvXVkpKiurVqydJeuWVVxQaGurYfvz4cdWoUcO1FQJwq4RtKRq/bLcKjeRlk+IHRmtQh3qeLgsASsypkZuePXtq3759js8PPPCAAgMDHZ/XrFmjtm3buq46AG6Vas91BBtJKjTShGV7GMEBUK45NXIzZ86ci26//fbbNWzYsCsqCEDpSc7IdgSbcwqM0aGMHEUE+XumKAC4Qk6N3GzYsEHNmzdXZmbmedvsdrv69u2rAwcOuKw4AO7VIDhAXrai67xtNkUFV/FMQQDgAk6Fm5kzZ2rkyJHFzlIOCgrSX//6V02fPt1lxQFwr4ggf8UPjJa37WzC8bbZNHlgC0ZtAJRrTt0KXr9+fa1evVrNmjUrdvu+ffvUq1cvpaSkuKxAV+NWcOB8qfZcHcrIUVRwFYINgDLJbS/OTE9PV+XKlS98sEqVdPz4cWcOCaAMiAjyJ9QAsAynLkvVqVNHe/bsueD2r7/+ushzbwAAAEqbU+GmT58+evbZZ3Xq1KnztuXm5mrixIm66aabXFYcAACAs5yac5Oenq62bdvK29tbY8aM0VVXXSXp7FybWbNmqaCgQDt37lRYWJjbCr5SzLkBAKD8cducm7CwMCUmJuqBBx7Q+PHjdS4X2Ww2xcXFadasWWU62ADwvFR7rpIzstUgOIB5PgDcwqlwI529Y2rVqlU6ceKEDhw4IGOMmjRpwmsXAFwSr3oAUBqcDjfn1KhRQx06dHBlLQAs7EKveujWNIQRHAAu5dSEYgAoqYu96gEAXIlwA6BU8KoHAKWFcAOgVPCqBwClpcRzbgDAWYM61FO3piG86gGAWxFuAJQqXvUAwN24LAUAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACzFo+Hmiy++UL9+/VS7dm3ZbDZ98sknl9xn06ZNatu2rXx9fdW4cWMtWLDA7XUCAIDyw6PhJjs7W61atdKsWbMuq31ycrL69u2rHj16KCkpSWPHjtWIESP02WefublSAABQXnj0IX69e/dW7969L7v9nDlz1KBBA02bNk2S1KxZM3355ZeaMWOG4uLi3FUmAAAoR8rVnJstW7aoZ8+eRdbFxcVpy5YtF9wnLy9PmZmZRRYAAGBd5SrcpKWlKSwsrMi6sLAwZWZmKjc3t9h94uPjFRQU5FgiIyNLo1QAAOAh5SrclMT48eNlt9sdy5EjRzxdEgAAcKNy9eLM8PBwpaenF1mXnp6uatWqyd+/+Bfx+fr6ytfXtzTKAwAAZUC5GrmJiYnR+vXri6xbu3atYmJiPFQRAJR/qfZcJR7MUKq9+Mv7QHnj0ZGbrKwsHThwwPE5OTlZSUlJqlmzpurVq6fx48fr6NGj+uCDDyRJ999/v95880098cQTuueee7Rhwwb9/e9/16effuqpUwCAci1hW4rGL9utQiN52aT4gdEa1KGep8sCrohHR262b9+uNm3aqE2bNpKkcePGqU2bNnruueckSampqUpJSXG0b9CggT799FOtXbtWrVq10rRp0/TOO+9wGzgAlECqPdcRbCSp0EgTlu1hBAflnkdHbmJjY2WMueD24p4+HBsbq127drmxKgCoGJIzsh3B5pwCY3QoI0cRQcXPYwTKg3I15wYA4DoNggPkZSu6zttmU1RwFc8UBLgI4QYAKqiIIH/FD4yWt+1swvG22TR5YAtGbVDulatbwQEArjWoQz11axqiQxk5igquQrCBJRBuAKCCiwjyJ9TAUrgsBQAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwA5RRqfZcJR7MUKo919OlAEC5UsnTBQA4X8K2FI1ftluFRvKySfEDozWoQz1PlwUA5QIjN0AZk2rPdQQbSSo00oRlexjBAYDLRLgBypjkjGxHsDmnwBgdysjxTEEAUM4QboAypkFwgLxsRdd522yKCq7imYIAoJwh3ABlTESQv+IHRsvbdjbheNtsmjywhSKC/D1cGQCUD0woRoml2nOVnJGtBsEB/OF1sUEd6qlb0xAdyshRVHAV+hcAnEC4QYlwN4/7RQT5E2oAoAS4LAWncTcPAKAsI9zAadzNAwAoywg3cBp38wAAyjLCDZzG3TwAgLKMCcUoEe7mAQCUVYQblBh38wAAyiIuSwEAAEsh3AAAAEsh3KDEUu25SjyYwfNtAABlCnNuUCI8oRgAUFaViZGbWbNmKSoqSn5+furUqZO2bt16wbYLFiyQzWYrsvj5+ZViteAJxQCAsszj4SYhIUHjxo3TxIkTtXPnTrVq1UpxcXE6duzYBfepVq2aUlNTHcvhw4dLsWLwhGIAQFnm8XAzffp0jRw5UnfffbeaN2+uOXPmqEqVKnrvvfcuuI/NZlN4eLhjCQsLK8WKwROKAQBlmUfDzenTp7Vjxw717NnTsc7Ly0s9e/bUli1bLrhfVlaW6tevr8jISPXv31979+69YNu8vDxlZmYWWXBleEIxAKAs8+iE4oyMDBUUFJw38hIWFqZ9+/YVu89VV12l9957Ty1btpTdbtdrr72mLl26aO/evapbt+557ePj4/X888+7pf6KjCcUAwDKKo9flnJWTEyMhg4dqtatW6t79+5atmyZQkJCNHfu3GLbjx8/Xna73bEcOXKklCu2roggf8U0qkWwAQCUKR4duQkODpa3t7fS09OLrE9PT1d4ePhlHaNy5cpq06aNDhw4UOx2X19f+fr6XnGtAACgfPDoyI2Pj4/atWun9evXO9YVFhZq/fr1iomJuaxjFBQUaPfu3YqIiHBXmQAAoBzx+EP8xo0bp2HDhql9+/bq2LGjZs6cqezsbN19992SpKFDh6pOnTqKj4+XJL3wwgvq3LmzGjdurJMnT+rVV1/V4cOHNWLECE+eBgAAKCM8Hm4GDRqk48eP67nnnlNaWppat26t1atXOyYZp6SkyMvrtwGmEydOaOTIkUpLS1ONGjXUrl07JSYmqnnz5p46BQAAUIbYjDHm0s2sIzMzU0FBQbLb7apWrZqnywEAAJfBmb/f5e5uKQAAgIsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AB/kGrPVeLBDKXacz1dCgCgBCp5ugCgLEnYlqLxy3ar0EheNil+YLQGdajn6bIAAE5g5Ab4n1R7riPYSFKhkSYs28MIDgCUM4Qb4H+SM7IdweacAmN0KCPHMwUBAEqEcAP8T4PgAHnZiq7zttkUFVzFMwUBZRhz01CWEW6A/4kI8lf8wGh5284mHG+bTZMHtlBEkL+HKwPKloRtKeo6ZYPumPdfdZ2yQQnbUjxdElCEzRhjLt3MOjIzMxUUFCS73a5q1ap5uhyUQan2XB3KyFFUcBWCDfAHqfZcdZ2yocglXG+bTV8+1YP/XuBWzvz95m4p4A8igvz5JQ1cwMXmpvHfDcoKLksBAC4bc9NQHhBuAACXjblpKA+4LAUAcMqgDvXUrWkIc9NQZhFuAABOY24ayjIuSwFABcBzaVCRMHIDABbHO9NQ0TByAwAWxjvTUBERbgDAwnhnGioiwg0AWBjPpUFFRLgBAAvjuTSoiJhQDAAWx3NpUNEQbgCgAuC5NKhIuCwFAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAPC4VHuuEg9mKNWe6+lSYAGVPF0AAKBiS9iWovHLdqvQSF42KX5gtAZ1qOfpslCOMXIDAPCYVHuuI9hIUqGRJizbwwgOrgjhBgDgMckZ2Y5gc06BMTqUkeOZgmAJhBsAgMc0CA6Ql63oOm+bTVHBVTxTECyBcAMA8JiIIH/FD4yWt+1swvG22TR5YAtFBPl7uDKUZ0woBiwk1Z6r5IxsNQgO4I8Dyo1BHeqpW9MQHcrIUVRwFX52ccUIN4BFcMcJyrOIIH9CDVyGy1KABXDHCQD8hnADWAB3nADAb8pEuJk1a5aioqLk5+enTp06aevWrRdtv2TJEl199dXy8/NTdHS0Vq1aVUqVAmUTd5wAwG88Hm4SEhI0btw4TZw4UTt37lSrVq0UFxenY8eOFds+MTFRgwcP1r333qtdu3ZpwIABGjBggPbs2VPKlQNlB3ecAMBvbMYYc+lm7tOpUyd16NBBb775piSpsLBQkZGRevDBB/XUU0+d137QoEHKzs7WypUrHes6d+6s1q1ba86cOZf8vszMTAUFBclut6tatWquOxGgDEi153LHCQBLcubvt0dHbk6fPq0dO3aoZ8+ejnVeXl7q2bOntmzZUuw+W7ZsKdJekuLi4i7YPi8vT5mZmUUWwKoigvwV06gWwQZAhebRcJORkaGCggKFhYUVWR8WFqa0tLRi90lLS3OqfXx8vIKCghxLZGSka4oHAABlksfn3Ljb+PHjZbfbHcuRI0c8XRIAAHAjjz7ELzg4WN7e3kpPTy+yPj09XeHh4cXuEx4e7lR7X19f+fr6uqZgAABQ5nl05MbHx0ft2rXT+vXrHesKCwu1fv16xcTEFLtPTExMkfaStHbt2gu2BwAAFYvHX78wbtw4DRs2TO3bt1fHjh01c+ZMZWdn6+6775YkDR06VHXq1FF8fLwk6eGHH1b37t01bdo09e3bV4sXL9b27dv19ttve/I0AABAGeHxcDNo0CAdP35czz33nNLS0tS6dWutXr3aMWk4JSVFXl6/DTB16dJFixYt0jPPPKMJEyaoSZMm+uSTT9SiRQtPnQIAAChDPP6cm9LGc24AACh/ys1zbgAAAFyNcAMAACyFcAMAACyFcAMAACzF43dLlbZz86d5xxQAAOXHub/bl3MfVIULN7/++qsk8Y4pAADKoV9//VVBQUEXbVPhbgUvLCzUTz/9pMDAQNlstmLbZGZmKjIyUkeOHKnwt4vTF2fRD2fRD7+hL86iH86iH37jrr4wxujXX39V7dq1izz/rjgVbuTGy8tLdevWvay21apVq/A/pOfQF2fRD2fRD7+hL86iH86iH37jjr641IjNOUwoBgAAlkK4AQAAlkK4KYavr68mTpwoX19fT5ficfTFWfTDWfTDb+iLs+iHs+iH35SFvqhwE4oBAIC1MXIDAAAshXADAAAshXADAAAshXADAAAspcKGm1mzZikqKkp+fn7q1KmTtm7desG2e/fu1Z///GdFRUXJZrNp5syZpVdoKXCmL+bNm6c//elPqlGjhmrUqKGePXtetH154kw/LFu2TO3bt1f16tUVEBCg1q1b68MPPyzFat3HmX74vcWLF8tms2nAgAHuLbAUOdMXCxYskM1mK7L4+fmVYrXu4+zPxMmTJzV69GhFRETI19dXTZs21apVq0qpWvdxph9iY2PP+3mw2Wzq27dvKVbsPs7+TMycOVNXXXWV/P39FRkZqUceeUSnTp1yX4GmAlq8eLHx8fEx7733ntm7d68ZOXKkqV69uklPTy+2/datW81jjz1mPv74YxMeHm5mzJhRugW7kbN9cccdd5hZs2aZXbt2mW+//dYMHz7cBAUFmR9//LGUK3ctZ/th48aNZtmyZeabb74xBw4cMDNnzjTe3t5m9erVpVy5aznbD+ckJyebOnXqmD/96U+mf//+pVOsmznbF/PnzzfVqlUzqampjiUtLa2Uq3Y9Z/shLy/PtG/f3vTp08d8+eWXJjk52WzatMkkJSWVcuWu5Ww//Pzzz0V+Fvbs2WO8vb3N/PnzS7dwN3C2Lz766CPj6+trPvroI5OcnGw+++wzExERYR555BG31Vghw03Hjh3N6NGjHZ8LCgpM7dq1TXx8/CX3rV+/vqXCzZX0hTHGnDlzxgQGBpr333/fXSWWiivtB2OMadOmjXnmmWfcUV6pKUk/nDlzxnTp0sW88847ZtiwYZYJN872xfz5801QUFApVVd6nO2H2bNnm4YNG5rTp0+XVoml4kp/R8yYMcMEBgaarKwsd5VYapzti9GjR5vrrruuyLpx48aZrl27uq3GCndZ6vTp09qxY4d69uzpWOfl5aWePXtqy5YtHqys9LmiL3JycpSfn6+aNWu6q0y3u9J+MMZo/fr12r9/v7p16+bOUt2qpP3wwgsvKDQ0VPfee29plFkqStoXWVlZql+/viIjI9W/f3/t3bu3NMp1m5L0w4oVKxQTE6PRo0crLCxMLVq00OTJk1VQUFBaZbucK35Xvvvuu7r99tsVEBDgrjJLRUn6okuXLtqxY4fj0tUPP/ygVatWqU+fPm6rs8K9ODMjI0MFBQUKCwsrsj4sLEz79u3zUFWe4Yq+ePLJJ1W7du0iP+jlTUn7wW63q06dOsrLy5O3t7feeust3XDDDe4u121K0g9ffvml3n33XSUlJZVChaWnJH1x1VVX6b333lPLli1lt9v12muvqUuXLtq7d+9lv6y3rClJP/zwww/asGGD7rzzTq1atUoHDhzQqFGjlJ+fr4kTJ5ZG2S53pb8rt27dqj179ujdd991V4mlpiR9cccddygjI0PXXnutjDE6c+aM7r//fk2YMMFtdVa4cAPXmTJlihYvXqxNmzZZZuKkMwIDA5WUlKSsrCytX79e48aNU8OGDRUbG+vp0krFr7/+qiFDhmjevHkKDg72dDkeFxMTo5iYGMfnLl26qFmzZpo7d65efPFFD1ZWugoLCxUaGqq3335b3t7eateunY4ePapXX3213IabK/Xuu+8qOjpaHTt29HQpHrFp0yZNnjxZb731ljp16qQDBw7o4Ycf1osvvqhnn33WLd9Z4cJNcHCwvL29lZ6eXmR9enq6wsPDPVSVZ1xJX7z22muaMmWK1q1bp5YtW7qzTLcraT94eXmpcePGkqTWrVvr22+/VXx8fLkNN872w8GDB3Xo0CH169fPsa6wsFCSVKlSJe3fv1+NGjVyb9Fu4orfE5UrV1abNm104MABd5RYKkrSDxEREapcubK8vb0d65o1a6a0tDSdPn1aPj4+bq3ZHa7k5yE7O1uLFy/WCy+84M4SS01J+uLZZ5/VkCFDNGLECElSdHS0srOzdd999+npp5+Wl5frZ8hUuDk3Pj4+ateundavX+9YV1hYqPXr1xf5v66KoKR98corr+jFF1/U6tWr1b59+9Io1a1c9TNRWFiovLw8d5RYKpzth6uvvlq7d+9WUlKSY7n55pvVo0cPJSUlKTIysjTLdylX/EwUFBRo9+7dioiIcFeZbleSfujatasOHDjgCLqS9N133ykiIqJcBhvpyn4elixZory8PN11113uLrNUlKQvcnJyzgsw58KvcdfrLd02VbkMW7x4sfH19TULFiww33zzjbnvvvtM9erVHbdtDhkyxDz11FOO9nl5eWbXrl1m165dJiIiwjz22GNm165d5vvvv/fUKbiMs30xZcoU4+PjY5YuXVrkNsdff/3VU6fgEs72w+TJk82aNWvMwYMHzTfffGNee+01U6lSJTNv3jxPnYJLONsPf2Slu6Wc7Yvnn3/efPbZZ+bgwYNmx44d5vbbbzd+fn5m7969njoFl3C2H1JSUkxgYKAZM2aM2b9/v1m5cqUJDQ01L730kqdOwSVK+t/GtddeawYNGlTa5bqVs30xceJEExgYaD7++GPzww8/mDVr1phGjRqZ2267zW01VshwY4wxb7zxhqlXr57x8fExHTt2NF999ZVjW/fu3c2wYcMcn5OTk42k85bu3buXfuFu4Exf1K9fv9i+mDhxYukX7mLO9MPTTz9tGjdubPz8/EyNGjVMTEyMWbx4sQeqdj1n+uGPrBRujHGuL8aOHetoGxYWZvr06WN27tzpgapdz9mficTERNOpUyfj6+trGjZsaF5++WVz5syZUq7a9Zzth3379hlJZs2aNaVcqfs50xf5+flm0qRJplGjRsbPz89ERkaaUaNGmRMnTritPpsx7hoTAgAAKH0Vbs4NAACwNsINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINALjR8OHDNWDAAE+XAVQohBuggho+fLhsNptjqVWrlm688UZ9/fXXni7NJX5/bueWa6+91m3fd+jQIdlsNiUlJRVZ/7e//U0LFixw2/cCOB/hBqjAbrzxRqWmpio1NVXr169XpUqVdNNNN3m6LJeZP3++4/xSU1O1YsWKYtvl5+e7rYagoCBVr17dbccHcD7CDVCB+fr6Kjw8XOHh4WrdurWeeuopHTlyRMePH9d1112nMWPGFGl//Phx+fj4ON4IHBUVpRdffFGDBw9WQECA6tSpo1mzZhXZZ/r06YqOjlZAQIAiIyM1atQoZWVlObYfPnxY/fr1U40aNRQQEKBrrrlGq1atkiSdOHFCd955p0JCQuTv768mTZpo/vz5l31+1atXd5xfeHi4atas6RhhSUhIUPfu3eXn56ePPvpIP//8swYPHqw6deqoSpUqio6O1scff1zkeIWFhXrllVfUuHFj+fr6ql69enr55ZclSQ0aNJAktWnTRjabTbGxsZLOvyyVl5enhx56SKGhofLz89O1116rbdu2ObZv2rRJNptN69evV/v27VWlShV16dJF+/fvv+zzBio6wg0ASVJWVpYWLlyoxo0bq1atWhoxYoQWLVqkvLw8R5uFCxeqTp06uu666xzrXn31VbVq1Uq7du3SU089pYcfflhr1651bPfy8tLrr7+uvXv36v3339eGDRv0xBNPOLaPHj1aeXl5+uKLL7R7925NnTpVVatWlSQ9++yz+uabb/Tvf/9b3377rWbPnq3g4GCXnO+5Wr/99lvFxcXp1KlTateunT799FPt2bNH9913n4YMGaKtW7c69hk/frymTJniqGvRokUKCwuTJEe7devWKTU1VcuWLSv2e5944gn94x//0Pvvv6+dO3eqcePGiouL0y+//FKk3dNPP61p06Zp+/btqlSpku655x6XnDdQIbjtlZwAyrRhw4YZb29vExAQYAICAowkExERYXbs2GGMMSY3N9fUqFHDJCQkOPZp2bKlmTRpkuNz/fr1zY033ljkuIMGDTK9e/e+4PcuWbLE1KpVy/E5Ojq6yDF/r1+/fubuu+8u0flJMn5+fo7zCwgIMMuXLzfJyclGkpk5c+Ylj9G3b1/z6KOPGmOMyczMNL6+vmbevHnFtj133F27dhVZ//s3pWdlZZnKlSubjz76yLH99OnTpnbt2uaVV14xxhizceNGI8msW7fO0ebTTz81kkxubq4zXQBUWIzcABVYjx49lJSUpKSkJG3dulVxcXHq3bu3Dh8+LD8/Pw0ZMkTvvfeeJGnnzp3as2ePhg8fXuQYMTEx533+9ttvHZ/XrVun66+/XnXq1FFgYKCGDBmin3/+WTk5OZKkhx56SC+99JK6du2qiRMnFpnQ/MADD2jx4sVq3bq1nnjiCSUmJjp1fjNmzHCcX1JSkm644QbHtvbt2xdpW1BQoBdffFHR0dGqWbOmqlatqs8++0wpKSmSpG+//VZ5eXm6/vrrnarh9w4ePKj8/Hx17drVsa5y5crq2LFjkT6TpJYtWzr+OSIiQpJ07NixEn83UJEQboAKLCAgQI0bN1bjxo3VoUMHvfPOO8rOzta8efMkSSNGjNDatWv1448/av78+bruuutUv379yz7+oUOHdNNNN6lly5b6xz/+oR07djjm5Jw+fdrxHT/88IOGDBmi3bt3q3379nrjjTckyRG0HnnkEf3000+6/vrr9dhjj13294eHhzvOr3HjxgoICChy7r/36quv6m9/+5uefPJJbdy4UUlJSYqLi3PU6e/vf9nf6wqVK1d2/LPNZpN0ds4PgEsj3ABwsNls8vLyUm5uriQpOjpa7du317x587Ro0aJi53189dVX531u1qyZJGnHjh0qLCzUtGnT1LlzZzVt2lQ//fTTeceIjIzU/fffr2XLlunRRx91hCtJCgkJ0bBhw7Rw4ULNnDlTb7/9titP2WHz5s3q37+/7rrrLrVq1UoNGzbUd99959jepEkT+fv7OyZT/5GPj4+ksyNAF9KoUSP5+Pho8+bNjnX5+fnatm2bmjdv7qIzAVDJ0wUA8Jy8vDylpaVJOntn0ptvvqmsrCz169fP0WbEiBEaM2aMAgICdMstt5x3jM2bN+uVV17RgAEDtHbtWi1ZskSffvqpJKlx48bKz8/XG2+8oX79+mnz5s2aM2dOkf3Hjh2r3r17q2nTpjpx4oQ2btzoCEfPPfec2rVrp2uuuUZ5eXlauXKlY5urNWnSREuXLlViYqJq1Kih6dOnKz093RE6/Pz89OSTT+qJJ56Qj4+PunbtquPHj2vv3r269957FRoaKn9/f61evVp169aVn5+fgoKCinxHQECAHnjgAT3++OOqWbOm6tWrp1deeUU5OTm699573XJeQEXEyA1Qga1evVoRERGKiIhQp06dtG3bNi1ZssRxG7MkDR48WJUqVdLgwYPl5+d33jEeffRRbd++XW3atNFLL72k6dOnKy4uTpLUqlUrTZ8+XVOnTlWLFi300UcfKT4+vsj+BQUFGj16tJo1a6Ybb7xRTZs21VtvvSXp7GjI+PHj1bJlS3Xr1k3e3t5avHixW/rimWeeUdu2bRUXF6fY2FiFh4ef92ThZ599Vo8++qiee+45NWvWTIMGDXLMg6lUqZJef/11zZ07V7Vr11b//v2L/Z4pU6boz3/+s4YMGaK2bdvqwIED+uyzz1SjRg23nBdQEdmMMcbTRQAouw4dOqRGjRpp27Ztatu2bZFtUVFRGjt2rMaOHeuZ4gCgGFyWAlCs/Px8/fzzz3rmmWfUuXPn84INAJRVXJYCUKzNmzcrIiJC27ZtO2+ejKdNnjxZVatWLXbp3bu3p8sD4GFclgJQ7vzyyy/nPdH3HH9/f9WpU6eUKwJQlhBuAACApXBZCgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWMr/A33a4LWZZYT6AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHHCAYAAABdm0mZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQEdJREFUeJzt3XlcVmX+//H3DcgiIi6sKoh7mrjkUmjjUiYumeZMmZVLpU2pU2arbbaYZKXZYpqWWpnpaFqOOeaW9S3s58qUphaKSwUkZRCIiHD9/mi8pztwufFe4Nyv5+NxHo/uc1/nnM+5hpE317nOOTZjjBEAAIDF+Hm7AAAAAHcg5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5ADwiieeeEI2m+282tpsNj3xxBNuradHjx7q0aNHpd0fAOcRcgAft2DBAtlsNvsSEBCg+vXra+TIkfrhhx+8XV6lk5CQ4NBfUVFR+stf/qIVK1a4ZP/Hjx/XE088oU2bNrlkf4AvI+QAkCQ99dRTeueddzR79mz17dtXCxcuVPfu3XXixAm3HO/RRx9VYWGhW/btbu3atdM777yjd955R/fdd59+/PFHDR48WLNnz77gfR8/flxPPvkkIQdwgQBvFwCgcujbt686duwoSRo1apQiIiI0depUrVy5Utdff73LjxcQEKCAgKr5T1D9+vV188032z8PHz5cTZs21Ysvvqg77rjDi5UB+CNGcgCU6y9/+Yskaf/+/Q7r9+7dq7/97W+qU6eOgoOD1bFjR61cudKhTXFxsZ588kk1a9ZMwcHBqlu3ri6//HKtW7fO3qa8OTlFRUW65557FBkZqbCwMF1zzTX6/vvvy9Q2cuRIJSQklFlf3j7nz5+vK664QlFRUQoKClKrVq00a9Ysp/riXGJiYtSyZUtlZGSctd1PP/2k2267TdHR0QoODlbbtm311ltv2b8/ePCgIiMjJUlPPvmk/ZKYu+cjAVZVNf+MAuB2Bw8elCTVrl3bvm737t3q2rWr6tevr4ceekihoaH65z//qUGDBun999/XtddeK+n3sJGSkqJRo0apc+fOysvL07Zt27Rjxw5dddVVZzzmqFGjtHDhQt14443q0qWLNm7cqP79+1/QecyaNUsXX3yxrrnmGgUEBOhf//qXxowZo9LSUo0dO/aC9n1acXGxjhw5orp1656xTWFhoXr06KH09HSNGzdOjRo10tKlSzVy5Ej9+uuvuvvuuxUZGalZs2bpzjvv1LXXXqvBgwdLktq0aeOSOgGfYwD4tPnz5xtJZv369ebo0aPmyJEjZtmyZSYyMtIEBQWZI0eO2NteeeWVJjEx0Zw4ccK+rrS01HTp0sU0a9bMvq5t27amf//+Zz3upEmTzB//CUpLSzOSzJgxYxza3XjjjUaSmTRpkn3diBEjTMOGDc+5T2OMOX78eJl2ycnJpnHjxg7runfvbrp3737Wmo0xpmHDhqZ3797m6NGj5ujRo+Y///mPueGGG4wk849//OOM+5sxY4aRZBYuXGhfd/LkSZOUlGRq1Khh8vLyjDHGHD16tMz5AqgYLlcBkCT16tVLkZGRiouL09/+9jeFhoZq5cqVatCggSTpl19+0caNG3X99dfrt99+U05OjnJycvTzzz8rOTlZ3333nf1urFq1amn37t367rvvzvv4q1evliTdddddDuvHjx9/QecVEhJi/+/c3Fzl5OSoe/fuOnDggHJzcyu0z7Vr1yoyMlKRkZFq27atli5dqmHDhmnq1Kln3Gb16tWKiYnR0KFD7euqVaumu+66S/n5+fr0008rVAuAM/PpkPPZZ59pwIABqlevnmw2mz744AO3H/OHH37QzTffrLp16yokJESJiYnatm2b248LnMvMmTO1bt06LVu2TP369VNOTo6CgoLs36enp8sYo8cee8z+C/70MmnSJEm/zzmRfr9T69dff1Xz5s2VmJio+++/X1999dVZj3/o0CH5+fmpSZMmDutbtGhxQef1xRdfqFevXgoNDVWtWrUUGRmphx9+WJIqHHIuvfRSrVu3TuvXr1dqaqpycnL09ttvOwSqPzt06JCaNWsmPz/Hf3Zbtmxp/x6Aa/n0nJyCggK1bdtWt956q/3atzsdO3ZMXbt2Vc+ePfXvf/9bkZGR+u677xzmPADe0rlzZ/vdVYMGDdLll1+uG2+8Ufv27VONGjVUWloqSbrvvvuUnJxc7j6aNm0qSerWrZv279+vDz/8UGvXrtUbb7yhF198UbNnz9aoUaMuuNYzPUSwpKTE4fP+/ft15ZVX6qKLLtL06dMVFxenwMBArV69Wi+++KL9nJwVERGhXr16VWhbAJ7j0yGnb9++6tu37xm/Lyoq0iOPPKL33ntPv/76q1q3bq2pU6dW+CmmU6dOVVxcnObPn29f16hRowrtC3Anf39/paSkqGfPnnr11Vf10EMPqXHjxpJ+v8RyPr/g69Spo1tuuUW33HKL8vPz1a1bNz3xxBNnDDkNGzZUaWmp9u/f7zB6s2/fvjJta9eurV9//bXM+j+PhvzrX/9SUVGRVq5cqfj4ePv6Tz755Jz1u1rDhg311VdfqbS01GE0Z+/evfbvpTMHOADO8+nLVecybtw4bd68WYsXL9ZXX32l6667Tn369HFqnsEfrVy5Uh07dtR1112nqKgotW/fXnPnznVx1YBr9OjRQ507d9aMGTN04sQJRUVFqUePHnr99deVmZlZpv3Ro0ft//3zzz87fFejRg01bdpURUVFZzze6T84Xn75ZYf1M2bMKNO2SZMmys3NdbgElpmZWeapw/7+/pIkY4x9XW5ursMfGp7Sr18/ZWVlacmSJfZ1p06d0iuvvKIaNWqoe/fukqTq1atLUrkhDoBzfHok52wOHz6s+fPn6/Dhw6pXr56k34fp16xZo/nz52vKlClO7/PAgQOaNWuWJkyYoIcfflhbt27VXXfdpcDAQI0YMcLVpwBcsPvvv1/XXXedFixYoDvuuEMzZ87U5ZdfrsTERI0ePVqNGzdWdna2Nm/erO+//17/+c9/JEmtWrVSjx491KFDB9WpU0fbtm3TsmXLNG7cuDMeq127dho6dKhee+015ebmqkuXLtqwYYPS09PLtL3hhhv04IMP6tprr9Vdd92l48ePa9asWWrevLl27Nhhb9e7d28FBgZqwIAB+vvf/678/HzNnTtXUVFR5QY1d7r99tv1+uuva+TIkdq+fbsSEhK0bNkyffHFF5oxY4bCwsIk/T5RulWrVlqyZImaN2+uOnXqqHXr1mrdurVH6wUswdu3d1UWksyKFSvsn1etWmUkmdDQUIclICDAXH/99cYYY/bs2WMknXV58MEH7fusVq2aSUpKcjjuP/7xD3PZZZd55ByB8py+hXzr1q1lvispKTFNmjQxTZo0MadOnTLGGLN//34zfPhwExMTY6pVq2bq169vrr76arNs2TL7dpMnTzadO3c2tWrVMiEhIeaiiy4yzzzzjDl58qS9TXm3excWFpq77rrL1K1b14SGhpoBAwaYI0eOlHtL9dq1a03r1q1NYGCgadGihVm4cGG5+1y5cqVp06aNCQ4ONgkJCWbq1Klm3rx5RpLJyMiwt3PmFvJz3R5/pv1lZ2ebW265xURERJjAwECTmJho5s+fX2bb1NRU06FDBxMYGMjt5MAFsBnzh3FcH2az2bRixQoNGjRIkrRkyRLddNNN2r17t33I+7QaNWooJiZGJ0+e1IEDB86637p169qfYNqwYUNdddVVeuONN+zfz5o1S5MnT+ZFiAAAuBiXq86gffv2Kikp0U8//WR/vP2fBQYG6qKLLjrvfXbt2rXMJMpvv/3WPuEQAAC4jk+HnPz8fIfr/RkZGUpLS1OdOnXUvHlz3XTTTRo+fLimTZum9u3b6+jRo9qwYYPatGlToUfN33PPPerSpYumTJmi66+/Xlu2bNGcOXM0Z84cV54WAACQ5NOXqzZt2qSePXuWWT9ixAgtWLBAxcXFmjx5st5++2398MMPioiI0GWXXaYnn3xSiYmJFTrmqlWrNHHiRH333Xdq1KiRJkyYoNGjR1/oqQAAgD/x6ZADAACsi+fkAAAASyLkAAAAS/K5icelpaX68ccfFRYWxuPTAQCoIowx+u2331SvXr0yL7o9E58LOT/++KPi4uK8XQYAAKiAI0eOqEGDBufV1udCzulHpx85ckQ1a9b0cjUAAOB85OXlKS4uzv57/Hz4XMg5fYmqZs2ahBwAAKoYZ6aaMPEYAABYEiEHAABYEiEHAABYks/NyQEAwBVKS0t18uRJb5dhKYGBged9e/j5IOQAAOCkkydPKiMjQ6Wlpd4uxVL8/PzUqFEjBQYGumR/hBwAAJxgjFFmZqb8/f0VFxfn0pEHX3b6Yb2ZmZmKj493yQN7CTkAADjh1KlTOn78uOrVq6fq1at7uxxLiYyM1I8//qhTp06pWrVqF7w/4icAAE4oKSmRJJddUsH/nO7T0318oQg5AABUAO8/dD1X9ykhBwAAWBIhBwAAWBIhx4UycwuVuj9HmbmF3i4FAIByZWVl6R//+IcaN26soKAgxcXFacCAAdqwYYMk6e9//7uaNGmikJAQRUZGauDAgdq7d699+4MHD8pmsyktLa3Mvnv06KHx48fbP+fn52vcuHFq0KCBQkJC1KpVK82ePdvdp2jH3VUusmTrYU1c/rVKjeRnk1IGJ2pIp3hvlwUAgN3BgwfVtWtX1apVS88//7wSExNVXFysjz/+WGPHjtXevXvVoUMH3XTTTYqPj9cvv/yiJ554Qr1791ZGRob8/f2dOt6ECRO0ceNGLVy4UAkJCVq7dq3GjBmjevXq6ZprrnHTWf4PIccFMnML7QFHkkqN9PDyXerWPFKx4SHeLQ4AgP8aM2aMbDabtmzZotDQUPv6iy++WLfeeqsk6fbbb7evT0hI0OTJk9W2bVsdPHhQTZo0cep4qampGjFihHr06GHf9+uvv64tW7Z4JORwucoFMnIK7AHntBJjdDDnuHcKAgBUCZ6c5vDLL79ozZo1Gjt2rEPAOa1WrVpl1hUUFGj+/Plq1KiR4uLinD5mly5dtHLlSv3www8yxuiTTz7Rt99+q969e1fkFJzGSI4LNIoIlZ9NDkHH32ZTQgQPiQIAlM/T0xzS09NljNFFF110zravvfaaHnjgARUUFKhFixZat25dmecCdenSpczTngsLC9WuXTv751deeUW33367GjRooICAAPn5+Wnu3Lnq1q2bS87pXBjJcYHY8BClDE6U/3/v7/e32TRlcGsuVQEAynWmaQ7uHNExxpy70X/ddNNN2rlzpz799FM1b95c119/vU6cOOHQZsmSJUpLS3NYOnbs6NDmlVde0ZdffqmVK1dq+/btmjZtmsaOHav169e75JzOhZEcFxnSKV7dmkfqYM5xJURUJ+AAAM7obNMc3PX7o1mzZrLZbA53Sp1JeHi4wsPD1axZM1122WWqXbu2VqxYoaFDh9rbxMXFqWnTpg7bhYT8r/bCwkI9/PDDWrFihfr37y9JatOmjdLS0vTCCy+oV69eLjqzM2Mkx4Viw0OU1KQuAQcAcFanpzn8kbunOdSpU0fJycmaOXOmCgoKynz/66+/lrudMUbGGBUVFTl1vOLiYhUXF5e5pOXv7++xt7cTcgAA8DBvTXOYOXOmSkpK1LlzZ73//vv67rvvtGfPHr388stKSkrSgQMHlJKSou3bt+vw4cNKTU3Vddddp5CQEPXr18+pY9WsWVPdu3fX/fffr02bNikjI0MLFizQ22+/rWuvvdZNZ+iIy1UAAHiBN6Y5NG7cWDt27NAzzzyje++9V5mZmYqMjFSHDh00a9YsBQcH6//+7/80Y8YMHTt2TNHR0erWrZtSU1MVFRXl9PEWL16siRMn6qabbtIvv/yihg0b6plnntEdd9zhhrMry2acmYlkAXl5eQoPD1dubq5q1qzp7XIAAFXMiRMnlJGRoUaNGik4ONjb5VjK2fq2Ir+/uVwFAAAsiZADAAAsiZADAAAsiZADAAAsiZADAEAF+Nh9Ox7h6j4l5AAA4AR/f39J0smTJ71cifWc7tPTfXyheE4OAABOCAgIUPXq1XX06FFVq1atzBN9UTGlpaU6evSoqlevroAA18QTQg4AAE6w2WyKjY1VRkaGDh065O1yLMXPz0/x8fGy2WznbnweCDkAADgpMDBQzZo145KViwUGBrp0ZIyQAwBABfj5+fHE40qOC4kAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSvBpyUlJS1KlTJ4WFhSkqKkqDBg3Svn37zrrNggULZLPZHBaeUwAAAP7MqyHn008/1dixY/Xll19q3bp1Ki4uVu/evVVQUHDW7WrWrKnMzEz7wmO1AQDAn3n1icdr1qxx+LxgwQJFRUVp+/bt6tat2xm3s9lsiomJcXd5AACgCqtUc3Jyc3MlSXXq1Dlru/z8fDVs2FBxcXEaOHCgdu/efca2RUVFysvLc1gAAID1VZqQU1paqvHjx6tr165q3br1Gdu1aNFC8+bN04cffqiFCxeqtLRUXbp00ffff19u+5SUFIWHh9uXuLg4d50CAACoRGzGGOPtIiTpzjvv1L///W99/vnnatCgwXlvV1xcrJYtW2ro0KF6+umny3xfVFSkoqIi++e8vDzFxcUpNzdXNWvWdEntAADAvfLy8hQeHu7U7+9K8RbycePGadWqVfrss8+cCjiSVK1aNbVv317p6enlfh8UFKSgoCBXlAkAAKoQr16uMsZo3LhxWrFihTZu3KhGjRo5vY+SkhJ9/fXXio2NdUOFAACgqvLqSM7YsWO1aNEiffjhhwoLC1NWVpYkKTw8XCEhIZKk4cOHq379+kpJSZEkPfXUU7rsssvUtGlT/frrr3r++ed16NAhjRo1ymvnAQAAKh+vhpxZs2ZJknr06OGwfv78+Ro5cqQk6fDhw/Lz+9+A07FjxzR69GhlZWWpdu3a6tChg1JTU9WqVStPlQ0AAKqASjPx2FMqMnEJAAB4V0V+f1eaW8gBAABciZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsyashJyUlRZ06dVJYWJiioqI0aNAg7du375zbLV26VBdddJGCg4OVmJio1atXe6BaAABQlXg15Hz66acaO3asvvzyS61bt07FxcXq3bu3CgoKzrhNamqqhg4dqttuu007d+7UoEGDNGjQIO3atcuDlQMAgMrOZowx3i7itKNHjyoqKkqffvqpunXrVm6bIUOGqKCgQKtWrbKvu+yyy9SuXTvNnj37nMfIy8tTeHi4cnNzVbNmTZfVDgAA3Kciv78r1Zyc3NxcSVKdOnXO2Gbz5s3q1auXw7rk5GRt3ry53PZFRUXKy8tzWAAAgPVVmpBTWlqq8ePHq2vXrmrduvUZ22VlZSk6OtphXXR0tLKyssptn5KSovDwcPsSFxfn0roBAEDlVGlCztixY7Vr1y4tXrzYpfudOHGicnNz7cuRI0dcun8AAFA5BXi7AEkaN26cVq1apc8++0wNGjQ4a9uYmBhlZ2c7rMvOzlZMTEy57YOCghQUFOSyWgEAQNXg1ZEcY4zGjRunFStWaOPGjWrUqNE5t0lKStKGDRsc1q1bt05JSUnuKhMAAFRBXh3JGTt2rBYtWqQPP/xQYWFh9nk14eHhCgkJkSQNHz5c9evXV0pKiiTp7rvvVvfu3TVt2jT1799fixcv1rZt2zRnzhyvnQcAAKh8vDqSM2vWLOXm5qpHjx6KjY21L0uWLLG3OXz4sDIzM+2fu3TpokWLFmnOnDlq27atli1bpg8++OCsk5UBAIDvqVTPyfEEnpMDAEDVU+WfkwMAAOAqhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwATsvMLVTq/hxl5hZ6uxQAOKMAbxcAoGpZsvWwJi7/WqVG8rNJKYMTNaRTvLfLAoAyGMkBcN4ycwvtAUeSSo308PJdjOgAqJQIOQDOW0ZOgT3gnFZijA7mHPdOQQBwFoQcAOetUUSo/GyO6/xtNiVEVPdOQQBwFoQcAOctNjxEKYMT5W/7Pen422yaMri1YsNDvFwZAJTFxGMAThnSKV7dmkfqYM5xJURUJ+AAqLQIOQCcFhseQrgBUOlxuQoAgCqOZ1eVj5EcAACqMJ5ddWaM5AAAUEXx7KqzI+QAAFBF8eyqsyPkAABQRfHsqrMj5ADAnzCJE1UFz646OyYeA8AfMIkTVQ3PrjozRnIA4L+YxImqKjY8RElN6hJw/oSQAwD/xSROwFoIOQDwX0ziBKyFkAMA/8UkTsBamHgMAH/AJE7AOgg5APAnvIAUsAYuVwEAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEvyasj57LPPNGDAANWrV082m00ffPDBWdtv2rRJNputzJKVleWZggEAQJXh1ZBTUFCgtm3baubMmU5tt2/fPmVmZtqXqKgoN1UIAACqqgBvHrxv377q27ev09tFRUWpVq1ari8IAABYhtMjOatWrdLjjz+uL774QpK0ceNG9evXT3369NGcOXNcXmB52rVrp9jYWF111VX2Os6kqKhIeXl5DgsAALA+p0LO66+/rmuvvVarV69Wv379tHDhQg0aNEj169dXQkKCxo8fr5deesldtSo2NlazZ8/W+++/r/fff19xcXHq0aOHduzYccZtUlJSFB4ebl/i4uLcVh8AAKg8bMYYc76NL774Yo0fP16jR4/WJ598on79+mnatGkaM2aMJGnBggV67rnn9M033zhfiM2mFStWaNCgQU5t1717d8XHx+udd94p9/uioiIVFRXZP+fl5SkuLk65ubmqWbOm03UCAADPy8vLU3h4uFO/v50aycnIyFBycrIkqWfPniopKVG3bt3s3/fo0UOHDh1yZpcXrHPnzkpPTz/j90FBQapZs6bDAgAArM+pkFO3bl17iPnxxx916tQpHT582P79oUOHVKdOHddWeA5paWmKjY316DEBAEDl59TdVQMHDtRtt92mESNGaOXKlRo+fLjuvfde+fn5yWaz6f7771fv3r3Pe3/5+fkOozAZGRlKS0tTnTp1FB8fr4kTJ+qHH37Q22+/LUmaMWOGGjVqpIsvvlgnTpzQG2+8oY0bN2rt2rXOnAYAAPABToWcqVOn6uTJk1q8eLG6dOmiV155RS+//LIGDhyo4uJide/eXSkpKee9v23btqlnz572zxMmTJAkjRgxQgsWLFBmZqbDSNHJkyd177336ocfflD16tXVpk0brV+/3mEfAAAAkpMTj8/kxIkTKi4uVlhYmCtqcquKTFwCAADeVZHf3y55GGBwcLCCg4NdsSsAAACXcCrknL6cdC7Tp0+vUDEAAACu4lTI2blzp8Pnzz//XB06dFBISIh9nc1mc01lAAAAF8CpkPPJJ584fA4LC9OiRYvUuHFjlxYFAABwobz6FnIAAAB3IeQAAABLIuQAAABLcmpOzldffeXw2RijvXv3Kj8/32F9mzZtLrwyAACAC+DUwwBPv76hvE1Or7fZbCopKXFpka7EwwABAKh63P4wwIyMjAoVBgAA4GlOhZyGDRu6qw64WGZuoTJyCtQoIlSx4SHn3gAAAItx+rUOxhgdPHhQcXFxCggI0MmTJ7VixQoVFRWpX79+ioiIcEedcMKSrYc1cfnXKjWSn01KGZyoIZ3ivV0WAAAe5VTI2bdvn5KTk3XkyBE1btxYa9eu1XXXXae9e/fKGKPq1asrNTVVzZo1c1e9OIfM3EJ7wJGkUiM9vHyXujWPZEQHAOBTnLqF/MEHH1Tbtm2Vlpamq6++Wv3791eDBg107Ngx/fLLL0pKStJTTz3lrlpxHjJyCuwB57QSY3Qw57h3CgIAwEucCjmpqal68sknlZiYqMmTJ2vv3r267777VK1aNQUFBemhhx7SZ5995q5acR4aRYTK70+vD/O32ZQQUd07BQEA4CVOhZz8/HzVqVNHkhQaGqrQ0FDFxsbav4+Li1N2drZrK4RTYsNDlDI4Uf7/fVGqv82mKYNbc6kKAOBznJqTU69ePR0+fFjx8b9PYn3uuecUFRVl//7o0aOqXbu2ayuE04Z0ile35pE6mHNcCRHVCTgAAJ/k1EhOr169tHfvXvvnO++8U2FhYfbPa9eu1SWXXOK66lBhseEhSmpSl4ADAPBZTj3x+FwOHjyooKAgh0tYlQ1PPAYAoOqpyO9vp0ZyNm7cqFatWikvL6/Md7m5uerfv7/S09Od2SUAAIBbOBVyZsyYodGjR5eboMLDw/X3v/9d06dPd1lxAAAAFeVUyPnPf/6jPn36nPH73r17a/v27RdcFAAAwIVyKuRkZ2erWrVqZ/w+ICBAR48eveCiAAAALpRTIad+/fratWvXGb//6quvKvWkYwAAfE1mbqFS9+coM7fQ26V4nFPPyenXr58ee+wx9enTR8HBwQ7fFRYWatKkSbr66qtdWiAAAKgYX39hs1O3kGdnZ+uSSy6Rv7+/xo0bpxYtWkiS9u7dq5kzZ6qkpEQ7duxQdHS02wq+UNxCDgDwBZm5her67EaH9xn622z6/KGeVfIZahX5/e3USE50dLRSU1N15513auLEiTqdj2w2m5KTkzVz5sxKHXAAAPAVZ3thc1UMORXhVMiRpIYNG2r16tU6duyY0tPTZYxRs2bNeJ0DAACVyOkXNv95JMeXXtjs1MTjP6pdu7Y6deqkzp07E3AAAKhkeGFzBUZyAABA1eDrL2wm5AAAYGGx4SE+F25Oq/DlKgAAgMqMkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACzJqyHns88+04ABA1SvXj3ZbDZ98MEH59xm06ZNuuSSSxQUFKSmTZtqwYIFbq8TAABUPV4NOQUFBWrbtq1mzpx5Xu0zMjLUv39/9ezZU2lpaRo/frxGjRqljz/+2M2VAgCAqibAmwfv27ev+vbte97tZ8+erUaNGmnatGmSpJYtW+rzzz/Xiy++qOTkZHeVCQAAqqAqNSdn8+bN6tWrl8O65ORkbd68+YzbFBUVKS8vz2EBAADWV6VCTlZWlqKjox3WRUdHKy8vT4WFheVuk5KSovDwcPsSFxfniVIBAICXVamQUxETJ05Ubm6ufTly5Ii3SwIAAB7g1Tk5zoqJiVF2drbDuuzsbNWsWVMhISHlbhMUFKSgoCBPlAcAACqRKjWSk5SUpA0bNjisW7dunZKSkrxUEWBdmbmFSt2fo8zc8i8FA0Bl59WRnPz8fKWnp9s/Z2RkKC0tTXXq1FF8fLwmTpyoH374QW+//bYk6Y477tCrr76qBx54QLfeeqs2btyof/7zn/roo4+8dQpApZeZW6iMnAI1ighVbHj5I55/tmTrYU1c/rVKjeRnk1IGJ2pIp3g3VwoAruXVkLNt2zb17NnT/nnChAmSpBEjRmjBggXKzMzU4cOH7d83atRIH330ke655x699NJLatCggd544w1uHwfOoCJhJTO30L6NJJUa6eHlu9SteeR5hyQAqAxsxhjj7SI8KS8vT+Hh4crNzVXNmjW9XQ7gNpm5her67EZ7WJEkf5tNnz/U86xhJXV/jm6c+//KrH9v9GVKalLXHaUCwDlV5Pd3lZqTA+D8ZeQUOAQcSSoxRgdzjp91u0YRofKzOa7zt9mUEFHdxRUCgHsRcgCLqmhYiQ0PUcrgRPnbbPZtpgxuzaUqAFVOlbqFHMD5Ox1WHl6+SyXGOBVWhnSKV7fmkTqYc1wJEdUJOACqJEIOYGEXElZiw0MINwCqNEIOYHGEFQC+ijk5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5cKvM3EKl7s9RZm6ht0sBAPiYAG8XAOtasvWwJi7/WqVG8rNJKYMTNaRTvLfLAgD4CEZy4BaZuYX2gCNJpUZ6ePkuRnQAAB5DyIFbZOQU2APOaSXG6GDOce8UBADwOYQcuEWjiFD52RzX+dtsSoio7p2CAAA+h5ADt4gND1HK4ET5235POv42m6YMbq3Y8BAvVwYA8BVMPIbbDOkUr27NI3Uw57gSIqoTcHxEZm6hMnIK1CgilP/NAXgVIQduFRsewi86H8IddQAqEy5XAXAJ7qgDUNkQcgC4BHfUAahsCDkAXII76gBUNoQcAC7BHXUAKhsmHgNwGe6oA1CZEHIAuBR31AGoLLhcBQAALImQA3hBZm6hUvfncHs1ALgRl6sAD+OBeQDgGYzkAB7EA/MAwHMIOYAH8cA8APAcQg7gQTwwDwA8h5ADeBAPzAMAz6kUIWfmzJlKSEhQcHCwLr30Um3ZsuWMbRcsWCCbzeawBAcHe7Ba4MIM6RSvzx/qqfdGX6bPH+rJpGMAcBOv3121ZMkSTZgwQbNnz9all16qGTNmKDk5Wfv27VNUVFS529SsWVP79u2zf7bZbOW2AyorHpgHAO7n9ZGc6dOna/To0brlllvUqlUrzZ49W9WrV9e8efPOuI3NZlNMTIx9iY6O9mDFAACgKvBqyDl58qS2b9+uXr162df5+fmpV69e2rx58xm3y8/PV8OGDRUXF6eBAwdq9+7dZ2xbVFSkvLw8hwUAAFifV0NOTk6OSkpKyozEREdHKysrq9xtWrRooXnz5unDDz/UwoULVVpaqi5duuj7778vt31KSorCw8PtS1xcnMvPAwAAVD5ev1zlrKSkJA0fPlzt2rVT9+7dtXz5ckVGRur1118vt/3EiROVm5trX44cOeLhigEAgDd4deJxRESE/P39lZ2d7bA+OztbMTEx57WPatWqqX379kpPTy/3+6CgIAUFBV1wrVVNZm6hMnIK1CgilAmuAACf5NWRnMDAQHXo0EEbNmywrystLdWGDRuUlJR0XvsoKSnR119/rdjYWHeVWeUs2XpYXZ/dqBvn/j91fXajlmw97O2SAADwOK9frpowYYLmzp2rt956S3v27NGdd96pgoIC3XLLLZKk4cOHa+LEifb2Tz31lNauXasDBw5ox44duvnmm3Xo0CGNGjXKW6dQqfBuJAAAfuf15+QMGTJER48e1eOPP66srCy1a9dOa9assU9GPnz4sPz8/pfFjh07ptGjRysrK0u1a9dWhw4dlJqaqlatWnnrFCqVs70bictWAABfYjPGmHM3s468vDyFh4crNzdXNWvW9HY5LpeZW6iuz250CDr+Nps+f6gnIQcAUGVV5Pe31y9XwbV4NxIAAL/z+uUquN6QTvHq1jxSB3OOKyGiOgEHAOCTCDkWxbuRAAC+jstVAABUEpm5hUrdn8MdsS7CSA4AAJXAkq2H7Y8A8bNJKYMTNaRTvLfLqtIYyQEAwMt4xpl7EHIAAPCysz3jDBVHyAEAwMsaRYTKz+a4zt9mU0JEde8UZBGEHAAAzsBTE4F5xpl7MPEYAIByeHoiMM84cz1GcgAA+BNvTQSODQ9RUpO6BBwXIeQA8Ek8jwRnw0Rga+ByFQCfw/NIcC6nJwL/+WXHTASuWhjJAeBTeB4JzgcTga2BkRwAPuVslyH4BYY/YiJw1UfIAeBTuAwBZ/Cy46qNy1UAfAqXIQDfwUgOAJ/DZQjANxByAPgkLkMA1sflKgAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHACA22TmFip1f44ycwu9XQp8EC/oBAC4xZKthzVx+dcqNZKfTUoZnKghneK9XRZ8CCM5AACXy8wttAccSSo10sPLdzGi4wMq0+gdIzkAAJfLyCmwB5zTSozRwZzjig0P8U5RcLvKNnrHSA4AwOUaRYTKz+a4zt9mU0JEde8UBLerjKN3hBwAgMvFhocoZXCi/G2/Jx1/m01TBrdmFMfCzjZ65y1crgIAuMWQTvHq1jxSB3OOKyGiOgHH4k6P3v0x6Hh79I6RHACA28SGhyipSV0Cjg+ojKN3jOQAAACXqGyjd4QcAADgMrHhIV4PN6dxuQoAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQeAx1Smd9oAsD7urgLgEZXtnTYArI+RHABuVxnfaQPA+gg5ANyuMr7TBoD1EXIAuB1vpIavYf5Z5UDIAeB2lfGdNoC7LNl6WF2f3agb5/4/dX12o5ZsPeztknyWzRhjzt3MOvLy8hQeHq7c3FzVrFnT2+VUGZm5hcrIKVCjiFB+MaHCMnMLK807bQB3yMwtVNdnN5Z5E/fnD/XkZ/4CVeT3d6UYyZk5c6YSEhIUHBysSy+9VFu2bDlr+6VLl+qiiy5ScHCwEhMTtXr1ag9V6pv4qwSuwhupYXXMP6tcvB5ylixZogkTJmjSpEnasWOH2rZtq+TkZP3000/ltk9NTdXQoUN12223aefOnRo0aJAGDRqkXbt2ebhy38BdMQBw/ph/Vrl4PeRMnz5do0eP1i233KJWrVpp9uzZql69uubNm1du+5deekl9+vTR/fffr5YtW+rpp5/WJZdcoldffdXDlfsG/ioBgPPH/LPKxasPAzx58qS2b9+uiRMn2tf5+fmpV69e2rx5c7nbbN68WRMmTHBYl5ycrA8++KDc9kVFRSoqKrJ/zsvLu/DCfcjpv0r+fH2Zv0oAoHxDOsWrW/NI5p9VAl4dycnJyVFJSYmio6Md1kdHRysrK6vcbbKyspxqn5KSovDwcPsSFxfnmuJ9BH+VAIDzmH9WOVj+tQ4TJ050GPnJy8sj6DiJv0oAAFWRV0NORESE/P39lZ2d7bA+OztbMTEx5W4TExPjVPugoCAFBQW5pmAfFhseQrgBAFQpXr1cFRgYqA4dOmjDhg32daWlpdqwYYOSkpLK3SYpKcmhvSStW7fujO0BAIBv8vrlqgkTJmjEiBHq2LGjOnfurBkzZqigoEC33HKLJGn48OGqX7++UlJSJEl33323unfvrmnTpql///5avHixtm3bpjlz5njzNAAAQCXj9ZAzZMgQHT16VI8//riysrLUrl07rVmzxj65+PDhw/Lz+9+AU5cuXbRo0SI9+uijevjhh9WsWTN98MEHat26tbdOAQAAVEK81gEAAFR6Vfa1DgAAAK5GyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJbk9YcBetrpxwLl5eV5uRIAAHC+Tv/edubxfj4Xcn777TdJ4k3kAABUQb/99pvCw8PPq63PPfG4tLRUP/74o8LCwmSz2cptk5eXp7i4OB05coSnIov+KA994oj+cER/lEWfOKI/yjpXnxhj9Ntvv6levXoOr3s6G58byfHz81ODBg3Oq23NmjX54fsD+qMs+sQR/eGI/iiLPnFEf5R1tj453xGc05h4DAAALImQAwAALImQU46goCBNmjRJQUFB3i6lUqA/yqJPHNEfjuiPsugTR/RHWe7oE5+beAwAAHwDIzkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSfDbkzJw5UwkJCQoODtall16qLVu2nLHt7t279de//lUJCQmy2WyaMWOG5wr1EGf6Y+7cufrLX/6i2rVrq3bt2urVq9dZ21dVzvTJ8uXL1bFjR9WqVUuhoaFq166d3nnnHQ9W637O9McfLV68WDabTYMGDXJvgR7mTH8sWLBANpvNYQkODvZgtZ7h7M/Ir7/+qrFjxyo2NlZBQUFq3ry5Vq9e7aFq3c+Z/ujRo0eZnxGbzab+/ft7sGL3cvbnY8aMGWrRooVCQkIUFxene+65RydOnHDuoMYHLV682AQGBpp58+aZ3bt3m9GjR5tatWqZ7Ozscttv2bLF3Hfffea9994zMTEx5sUXX/RswW7mbH/ceOONZubMmWbnzp1mz549ZuTIkSY8PNx8//33Hq7cfZztk08++cQsX77cfPPNNyY9Pd3MmDHD+Pv7mzVr1ni4cvdwtj9Oy8jIMPXr1zd/+ctfzMCBAz1TrAc42x/z5883NWvWNJmZmfYlKyvLw1W7l7N9UlRUZDp27Gj69etnPv/8c5ORkWE2bdpk0tLSPFy5ezjbHz///LPDz8euXbuMv7+/mT9/vmcLdxNn++Pdd981QUFB5t133zUZGRnm448/NrGxseaee+5x6rg+GXI6d+5sxo4da/9cUlJi6tWrZ1JSUs65bcOGDS0Xci6kP4wx5tSpUyYsLMy89dZb7irR4y60T4wxpn379ubRRx91R3keV5H+OHXqlOnSpYt54403zIgRIywVcpztj/nz55vw8HAPVecdzvbJrFmzTOPGjc3Jkyc9VaJHXei/IS+++KIJCwsz+fn57irRo5ztj7Fjx5orrrjCYd2ECRNM165dnTquz12uOnnypLZv365evXrZ1/n5+alXr17avHmzFyvzDlf0x/Hjx1VcXKw6deq4q0yPutA+McZow4YN2rdvn7p16+bOUj2iov3x1FNPKSoqSrfddpsnyvSYivZHfn6+GjZsqLi4OA0cOFC7d+/2RLkeUZE+WblypZKSkjR27FhFR0erdevWmjJlikpKSjxVttu44t/VN998UzfccINCQ0PdVabHVKQ/unTpou3bt9svaR04cECrV69Wv379nDq2z72gMycnRyUlJYqOjnZYHx0drb1793qpKu9xRX88+OCDqlevnsMPcFVW0T7Jzc1V/fr1VVRUJH9/f7322mu66qqr3F2u21WkPz7//HO9+eabSktL80CFnlWR/mjRooXmzZunNm3aKDc3Vy+88IK6dOmi3bt3n/cLgyuzivTJgQMHtHHjRt10001avXq10tPTNWbMGBUXF2vSpEmeKNttLvTf1S1btmjXrl1688033VWiR1WkP2688Ubl5OTo8ssvlzFGp06d0h133KGHH37YqWP7XMiBaz377LNavHixNm3aZMmJlM4ICwtTWlqa8vPztWHDBk2YMEGNGzdWjx49vF2aR/32228aNmyY5s6dq4iICG+XUykkJSUpKSnJ/rlLly5q2bKlXn/9dT399NNerMx7SktLFRUVpTlz5sjf318dOnTQDz/8oOeff77Kh5wL9eabbyoxMVGdO3f2diles2nTJk2ZMkWvvfaaLr30UqWnp+vuu+/W008/rccee+y89+NzISciIkL+/v7Kzs52WJ+dna2YmBgvVeU9F9IfL7zwgp599lmtX79ebdq0cWeZHlXRPvHz81PTpk0lSe3atdOePXuUkpJS5UOOs/2xf/9+HTx4UAMGDLCvKy0tlSQFBARo3759atKkiXuLdiNX/BtSrVo1tW/fXunp6e4o0eMq0iexsbGqVq2a/P397etatmyprKwsnTx5UoGBgW6t2Z0u5GekoKBAixcv1lNPPeXOEj2qIv3x2GOPadiwYRo1apQkKTExUQUFBbr99tv1yCOPyM/v/Gbb+NycnMDAQHXo0EEbNmywrystLdWGDRsc/tLyFRXtj+eee05PP/201qxZo44dO3qiVI9x1c9IaWmpioqK3FGiRznbHxdddJG+/vprpaWl2ZdrrrlGPXv2VFpamuLi4jxZvsu54uejpKREX3/9tWJjY91VpkdVpE+6du2q9PR0ewCWpG+//VaxsbFVOuBIF/YzsnTpUhUVFenmm292d5keU5H+OH78eJkgczoQG2deuenkBGlLWLx4sQkKCjILFiww33zzjbn99ttNrVq17Ld0Dhs2zDz00EP29kVFRWbnzp1m586dJjY21tx3331m586d5rvvvvPWKbiUs/3x7LPPmsDAQLNs2TKHWx5/++03b52CyznbJ1OmTDFr1641+/fvN99884154YUXTEBAgJk7d663TsGlnO2PP7Pa3VXO9seTTz5pPv74Y7N//36zfft2c8MNN5jg4GCze/dub52CyznbJ4cPHzZhYWFm3LhxZt++fWbVqlUmKirKTJ482Vun4FIV/f/M5ZdfboYMGeLpct3O2f6YNGmSCQsLM++99545cOCAWbt2rWnSpIm5/vrrnTquT4YcY4x55ZVXTHx8vAkMDDSdO3c2X375pf277t27mxEjRtg/Z2RkGElllu7du3u+cDdxpj8aNmxYbn9MmjTJ84W7kTN98sgjj5imTZua4OBgU7t2bZOUlGQWL17shardx5n++DOrhRxjnOuP8ePH29tGR0ebfv36mR07dnihavdy9mckNTXVXHrppSYoKMg0btzYPPPMM+bUqVMertp9nO2PvXv3Gklm7dq1Hq7UM5zpj+LiYvPEE0+YJk2amODgYBMXF2fGjBljjh075tQxbcY4M+4DAABQNfjcnBwAAOAbCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkA4EYjR47UoEGDvF0G4JMIOYCPGjlypGw2m32pW7eu+vTpo6+++srbpbnEH8/t9HL55Ze77XgHDx6UzWZTWlqaw/qXXnpJCxYscNtxAZwZIQfwYX369FFmZqYyMzO1YcMGBQQE6Oqrr/Z2WS4zf/58+/llZmZq5cqV5bYrLi52Ww3h4eGqVauW2/YP4MwIOYAPCwoKUkxMjGJiYtSuXTs99NBDOnLkiI4ePaorrrhC48aNc2h/9OhRBQYG2t8mnJCQoKefflpDhw5VaGio6tevr5kzZzpsM336dCUmJio0NFRxcXEaM2aM8vPz7d8fOnRIAwYMUO3atRUaGqqLL75Yq1evliQdO3ZMN910kyIjIxUSEqJmzZpp/vz5531+tWrVsp9fTEyM6tSpYx9xWbJkibp3767g4GC9++67+vnnnzV06FDVr19f1atXV2Jiot577z2H/ZWWluq5555T06ZNFRQUpPj4eD3zzDOSpEaNGkmS2rdvL5vNph49ekgqe7mqqKhId911l6KiohQcHKzLL79cW7dutX+/adMm2Ww2bdiwQR07dlT16tXVpUsX7du377zPG8DvCDkAJEn5+flauHChmjZtqrp162rUqFFatGiRioqK7G0WLlyo+vXr64orrrCve/7559W2bVvt3LlTDz30kO6++26tW7fO/r2fn59efvll7d69W2+99ZY2btyoBx54wP792LFjVVRUpM8++0xff/21pk6dqho1akiSHnvsMX3zzTf697//rT179mjWrFmKiIhwyfmernXPnj1KTk7WiRMn1KFDB3300UfatWuXbr/9dg0bNkxbtmyxbzNx4kQ9++yz9roWLVqk6OhoSbK3W79+vTIzM7V8+fJyj/vAAw/o/fff11tvvaUdO3aoadOmSk5O1i+//OLQ7pFHHtG0adO0bds2BQQE6NZbb3XJeQM+xSWvFgVQ5YwYMcL4+/ub0NBQExoaaiSZ2NhYs337dmOMMYWFhaZ27dpmyZIl9m3atGljnnjiCfvnhg0bmj59+jjsd8iQIaZv375nPO7SpUtN3bp17Z8TExMd9vlHAwYMMLfcckuFzk+SCQ4Otp9faGioWbFihcnIyDCSzIwZM865j/79+5t7773XGGNMXl6eCQoKMnPnzi237en97ty502H9H9/Anp+fb6pVq2beffdd+/cnT5409erVM88995wxxphPPvnESDLr16+3t/noo4+MJFNYWOhMFwA+j5EcwIf17NlTaWlpSktL05YtW5ScnKy+ffvq0KFDCg4O1rBhwzRv3jxJ0o4dO7Rr1y6NHDnSYR9JSUllPu/Zs8f+ef369bryyitVv359hYWFadiwYfr55591/PhxSdJdd92lyZMnq2vXrpo0aZLDxOc777xTixcvVrt27fTAAw8oNTXVqfN78cUX7eeXlpamq666yv5dx44dHdqWlJTo6aefVmJiourUqaMaNWro448/1uHDhyVJe/bsUVFRka688kqnavij/fv3q7i4WF27drWvq1atmjp37uzQZ5LUpk0b+3/HxsZKkn766acKHxvwRYQcwIeFhoaqadOmatq0qTp16qQ33nhDBQUFmjt3riRp1KhRWrdunb7//nvNnz9fV1xxhRo2bHje+z948KCuvvpqtWnTRu+//762b99un7Nz8uRJ+zEOHDigYcOG6euvv1bHjh31yiuvSJI9cN1zzz368ccfdeWVV+q+++477+PHxMTYz69p06YKDQ11OPc/ev755/XSSy/pwQcf1CeffKK0tDQlJyfb6wwJCTnv47pCtWrV7P9ts9kk/T4nCMD5I+QAsLPZbPLz81NhYaEkKTExUR07dtTcuXO1aNGicueFfPnll2U+t2zZUpK0fft2lZaWatq0abrsssvUvHlz/fjjj2X2ERcXpzvuuEPLly/Xvffeaw9ZkhQZGakRI0Zo4cKFmjFjhubMmePKU7b74osvNHDgQN18881q27atGjdurG+//db+fbNmzRQSEmKfdP1ngYGBkn4fETqTJk2aKDAwUF988YV9XXFxsbZu3apWrVq56EwAnBbg7QIAeE9RUZGysrIk/X4n06uvvqr8/HwNGDDA3mbUqFEaN26cQkNDde2115bZxxdffKHnnntOgwYN0rp167R06VJ99NFHkqSmTZuquLhYr7zyigYMGKAvvvhCs2fPdth+/Pjx6tu3r5o3b65jx47pk08+sYekxx9/XB06dNDFF1+soqIirVq1yv6dqzVr1kzLli1TamqqateurenTpys7O9sePoKDg/Xggw/qgQceUGBgoLp27aqjR49q9+7duu222xQVFaWQkBCtWbNGDRo0UHBwsMLDwx2OERoaqjvvvFP333+/6tSpo/j4eD333HM6fvy4brvtNrecF+DLGMkBfNiaNWsUGxur2NhYXXrppdq6dauWLl1qv/1ZkoYOHaqAgAANHTpUwcHBZfZx7733atu2bWrfvr0mT56s6dOnKzk5WZLUtm1bTZ8+XVOnTlXr1q317rvvKiUlxWH7kpISjR07Vi1btlSfPn3UvHlzvfbaa5J+Hx2ZOHGi2rRpo27dusnf31+LFy92S188+uijuuSSS5ScnKwePXooJiamzJOKH3vsMd177716/PHH1bJlSw0ZMsQ+TyYgIEAvv/yyXn/9ddWrV08DBw4s9zjPPvus/vrXv2rYsGG65JJLlJ6ero8//li1a9d2y3kBvsxmjDHeLgJA5XXw4EE1adJEW7du1SWXXOLwXUJCgsaPH6/x48d7pzgAOAsuVwEoV3FxsX7++Wc9+uijuuyyy8oEHACo7LhcBaBcX3zxhWJjY7V169Yy82i8bcqUKapRo0a5S9++fb1dHoBKgstVAKqcX375pcwTgk8LCQlR/fr1PVwRgMqIkAMAACyJy1UAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCS/j/Or9TkZ5C81QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_43.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEhklEQVR4nO3de1wWZf7/8fcNyEFUPHCURfFYlnhYVMRDalFkLeXabqStp83ayk5SW2Kp2UG0g7K7kW5W1m6Zrq71c8u1DHPb0l0VZVNXLRXCTUCpBAVE5b5+f/j1rjvAvIGbG4bX8/GYx6P7uq+Z+cwVytuZa2ZsxhgjAAAAi/DydAEAAAD1iXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADwCMef/xx2Wy2i+prs9n0+OOPu7WekSNHauTIkY12ewAuHuEGaOZee+012Ww2x+Lj46PIyEhNnjxZX331lafLa3Sio6Odxis0NFTDhw/X22+/XS/bLysr0+OPP65NmzbVy/aA5ohwA0CS9MQTT+jPf/6zlixZotGjR+uNN97QiBEjdOrUKbfs77HHHlN5eblbtu1u/fr105///Gf9+c9/1kMPPaQjR45o7NixWrJkSZ23XVZWprlz5xJugDrw8XQBABqH0aNHa8CAAZKkqVOnKjg4WAsWLNDatWt188031/v+fHx85OPTNP8KioyM1K9+9SvH54kTJ6p79+5atGiR7rzzTg9WBkDizA2AGgwfPlySdPDgQaf2ffv26Re/+IXat28vf39/DRgwQGvXrnXqc+bMGc2dO1c9evSQv7+/OnTooGHDhmnDhg2OPtXNuamoqND06dMVEhKi1q1b64YbbtD//ve/KrVNnjxZ0dHRVdqr2+ayZct05ZVXKjQ0VH5+frrsssu0ePFil8bix4SHh6tXr17Kycm5YL+jR4/qtttuU1hYmPz9/dW3b1+9/vrrju9zc3MVEhIiSZo7d67j0pe75xsBVtM0/9kEwO1yc3MlSe3atXO07dmzR0OHDlVkZKRmzJihwMBA/eUvf9GYMWP017/+VT//+c8lnQsZaWlpmjp1qgYNGqSSkhJt375dO3bs0NVXX13jPqdOnao33nhD48eP15AhQ7Rx40Zdf/31dTqOxYsX6/LLL9cNN9wgHx8f/e1vf9Pdd98tu92uadOm1Wnb5505c0aHDx9Whw4dauxTXl6ukSNH6sCBA7rnnnvUpUsXrVq1SpMnT9bx48d1//33KyQkRIsXL9Zdd92ln//85xo7dqwkqU+fPvVSJ9BsGADN2rJly4wk8+GHH5pjx46Zw4cPm9WrV5uQkBDj5+dnDh8+7Oh71VVXmZiYGHPq1ClHm91uN0OGDDE9evRwtPXt29dcf/31F9zvnDlzzPf/CsrOzjaSzN133+3Ub/z48UaSmTNnjqNt0qRJpnPnzj+6TWOMKSsrq9IvMTHRdO3a1altxIgRZsSIERes2RhjOnfubK655hpz7Ngxc+zYMfOf//zH3HLLLUaSuffee2vcXnp6upFk3njjDUfb6dOnTXx8vGnVqpUpKSkxxhhz7NixKscLwDVclgIgSUpISFBISIiioqL0i1/8QoGBgVq7dq1+8pOfSJK++eYbbdy4UTfffLNOnDihoqIiFRUV6euvv1ZiYqK++OILx91Vbdu21Z49e/TFF19c9P7XrVsnSbrvvvuc2h944IE6HVdAQIDjv4uLi1VUVKQRI0bo0KFDKi4urtU2P/jgA4WEhCgkJER9+/bVqlWrNGHCBC1YsKDGddatW6fw8HCNGzfO0daiRQvdd999OnnypP7xj3/UqhYAVTXrcPPxxx8rKSlJHTt2lM1m0zvvvOP2fX711Vf61a9+pQ4dOiggIEAxMTHavn272/cL/JiMjAxt2LBBq1ev1nXXXaeioiL5+fk5vj9w4ICMMZo1a5bjF/v5Zc6cOZLOzSmRzt15dfz4cfXs2VMxMTH67W9/q88+++yC+//yyy/l5eWlbt26ObVfcskldTquTz/9VAkJCQoMDFTbtm0VEhKimTNnSlKtw01cXJw2bNigDz/8UJs3b1ZRUZH+9Kc/OQWpH/ryyy/Vo0cPeXk5/7Xbq1cvx/cA6keznnNTWlqqvn376te//rXj2rY7ffvttxo6dKhGjRqlv//97woJCdEXX3zhNKcB8JRBgwY57pYaM2aMhg0bpvHjx2v//v1q1aqV7Ha7JOmhhx5SYmJitdvo3r27JOmKK67QwYMH9f/+3//TBx98oJdfflmLFi3SkiVLNHXq1DrXWtPD/yorK50+Hzx4UFdddZUuvfRSLVy4UFFRUfL19dW6deu0aNEixzG5Kjg4WAkJCbVaF4D7NetwM3r0aI0ePbrG7ysqKvToo4/qrbfe0vHjx9W7d28tWLCg1k8dXbBggaKiorRs2TJHW5cuXWq1LcCdvL29lZaWplGjRumFF17QjBkz1LVrV0nnLqVczC/29u3ba8qUKZoyZYpOnjypK664Qo8//niN4aZz586y2+06ePCg09ma/fv3V+nbrl07HT9+vEr7D89+/O1vf1NFRYXWrl2rTp06Odo/+uijH62/vnXu3FmfffaZ7Ha709mbffv2Ob6Xag5uAC5es74s9WPuuecebdmyRStWrNBnn32mX/7yl7r22mtdmkfwfWvXrtWAAQP0y1/+UqGhoerfv7+WLl1az1UD9WPkyJEaNGiQ0tPTderUKYWGhmrkyJH64x//qPz8/Cr9jx075vjvr7/+2um7Vq1aqXv37qqoqKhxf+f/ofH73//eqT09Pb1K327duqm4uNjpUld+fn6VpwR7e3tLkowxjrbi4mKnf2A0lOuuu04FBQVauXKlo+3s2bP6wx/+oFatWmnEiBGSpJYtW0pSteENwMVp1mduLiQvL0/Lli1TXl6eOnbsKOnc6fj169dr2bJlmjdvnsvbPHTokBYvXqyUlBTNnDlT27Zt03333SdfX19NmjSpvg8BqLPf/va3+uUvf6nXXntNd955pzIyMjRs2DDFxMTo9ttvV9euXVVYWKgtW7bof//7n/7zn/9Iki677DKNHDlSsbGxat++vbZv367Vq1frnnvuqXFf/fr107hx4/Tiiy+quLhYQ4YMUWZmpg4cOFCl7y233KJHHnlEP//5z3XfffeprKxMixcvVs+ePbVjxw5Hv2uuuUa+vr5KSkrSb37zG508eVJLly5VaGhotQHNne644w798Y9/1OTJk5WVlaXo6GitXr1an376qdLT09W6dWtJ5yZAX3bZZVq5cqV69uyp9u3bq3fv3urdu3eD1gs0aZ6+XauxkGTefvttx+d3333XSDKBgYFOi4+Pj7n55puNMcbs3bvXSLrg8sgjjzi22aJFCxMfH++033vvvdcMHjy4QY4RqM75W8G3bdtW5bvKykrTrVs3061bN3P27FljjDEHDx40EydONOHh4aZFixYmMjLS/OxnPzOrV692rPfUU0+ZQYMGmbZt25qAgABz6aWXmqefftqcPn3a0ae627bLy8vNfffdZzp06GACAwNNUlKSOXz4cLW3Rn/wwQemd+/extfX11xyySXmjTfeqHaba9euNX369DH+/v4mOjraLFiwwLz66qtGksnJyXH0c+VW8B+7zb2m7RUWFpopU6aY4OBg4+vra2JiYsyyZcuqrLt582YTGxtrfH19uS0cqAWbMd87X9uM2Ww2vf322xozZowkaeXKlbr11lu1Z88ex6nt81q1aqXw8HCdPn1ahw4duuB2O3To4HjiaOfOnXX11Vfr5Zdfdny/ePFiPfXUU7ygEACAesJlqRr0799flZWVOnr0qOMx9D/k6+urSy+99KK3OXTo0CqTIz///HPHREIAAFB3zTrcnDx50ul6fk5OjrKzs9W+fXv17NlTt956qyZOnKjnn39e/fv317Fjx5SZmak+ffrU6pHw06dP15AhQzRv3jzdfPPN2rp1q1566SW99NJL9XlYAAA0a836stSmTZs0atSoKu2TJk3Sa6+9pjNnzuipp57Sn/70J3311VcKDg7W4MGDNXfuXMXExNRqn++++65SU1P1xRdfqEuXLkpJSdHtt99e10MBAAD/p1mHGwAAYD085wYAAFgK4QYAAFhKs5tQbLfbdeTIEbVu3ZrHnAMA0EQYY3TixAl17Nixygtof6jZhZsjR44oKirK02UAAIBaOHz4sH7yk59csE+zCzfnH3F++PBhtWnTxsPVAACAi1FSUqKoqCjH7/ELaXbh5vylqDZt2hBuAABoYi5mSgkTigEAgKUQbgAAgKUQbgAAgKU0uzk3F6uyslJnzpzxdBnNSosWLaq8gR0AAFcRbn7AGKOCggIdP37c06U0S23btlV4eDjPIAIA1Brh5gfOB5vQ0FC1bNmSX7INxBijsrIyHT16VJIUERHh4YoAAE0V4eZ7KisrHcGmQ4cOni6n2QkICJAkHT16VKGhoVyiAgDUChOKv+f8HJuWLVt6uJLm6/zYM98JAFBbhJtqcCnKcxh7AEBdEW4AAIClEG4AAIClEG4spKCgQPfee6+6du0qPz8/RUVFKSkpSZmZmU79jDEaPXq0bDab3nnnHUd7bm6ubDabsrOzq2x75MiReuCBBxyf16xZo2uuuUYdOnSocZ1Tp05p2rRp6tChg1q1aqWbbrpJhYWF9XS0AIDvyy8u1+aDRcovLvd0KR5HuLGI3NxcxcbGauPGjXr22We1a9curV+/XqNGjdK0adOc+qanp9d5bktpaamGDRumBQsW1Nhn+vTp+tvf/qZVq1bpH//4h44cOaKxY8fWab8AgKpWbsvT0PkbNX7pvzV0/kat3Jbn6ZI8ilvBLeLuu++WzWbT1q1bFRgY6Gi//PLL9etf/9rxOTs7W88//7y2b99ep2fJTJgwQdK5UFWd4uJivfLKK1q+fLmuvPJKSdKyZcvUq1cv/etf/9LgwYNrvW8AwHfyi8uVumaX7ObcZ7uRZq7ZrSt6higiKMCzxXkIZ27cqKFOEX7zzTdav369pk2b5hRszmvbtq0kqaysTOPHj1dGRobCw8PdWlNWVpbOnDmjhIQER9ull16qTp06acuWLW7dNwA0JzlFpY5gc16lMcotKvNMQY2AR8PNxx9/rKSkJHXs2LHK/I8f8+mnn8rHx0f9+vVzW3110ZCnCA8cOCBjjC699NIL9ps+fbqGDBmiG2+88YL9hgwZolatWjkt//znP12qqaCgQL6+vo5gdV5YWJgKCgpc2hYAoGZdggPl9YOZBt42m6KDm+8z2zwabkpLS9W3b19lZGS4tN7x48c1ceJEXXXVVW6qrG5qOkXorjM4xpgf7bN27Vpt3LhR6enpP9p35cqVys7OdloGDBhQD5UCAOpbRFCA0sbGyPv/5lJ622yaN7Z3s70kJXl4zs3o0aM1evRol9e78847NX78eHl7e7t0tqehXOgUoTt+2Hr06CGbzaZ9+/bV2Gfjxo06ePBglTMpN910k4YPH65NmzY52qKiotS9e3enfudfjXCxwsPDdfr0aR0/ftxpn4WFhW6/JAYAzU3ywE66omeIcovKFB3cslkHG6kJzrlZtmyZDh06pDlz5lxU/4qKCpWUlDgt7tbQpwjbt2+vxMREZWRkqLS0tMr3x48f14wZM/TZZ585nY2RpEWLFmnZsmX1XlNsbKxatGjhdBv6/v37lZeXp/j4+HrfHwA0dxFBAYrv1qHZBxupid0t9cUXX2jGjBn65z//KR+fiys9LS1Nc+fOdXNlzs6fIpy5ZrcqjWmQU4QZGRkaOnSoBg0apCeeeEJ9+vTR2bNntWHDBi1evFh79+6t9oxJp06d1KVLF5f398033ygvL09HjhyRdC64SOfO2ISHhysoKEi33XabUlJS1L59e7Vp00b33nuv4uPjuVMKAOBWTSbcVFZWavz48Zo7d6569ux50eulpqYqJSXF8bmkpERRUVHuKNFJQ58i7Nq1q3bs2KGnn35aDz74oPLz8xUSEqLY2FgtXry43ve3du1aTZkyxfH5lltukSTNmTNHjz/+uKRzZ4W8vLx00003qaKiQomJiXrxxRfrvRYAAL7PZi5mNmoDsNlsevvttzVmzJhqvz9+/LjatWsnb29vR5vdbpcxRt7e3vrggw8cz1O5kJKSEgUFBam4uFht2rRx+u7UqVPKyclRly5d5O/vX6fjQe3w/wAAUJ0L/f7+oSZz5qZNmzbatWuXU9uLL76ojRs3avXq1bW6tAIAAKzHo+Hm5MmTOnDggONzTk6OsrOz1b59e3Xq1Empqan66quv9Kc//UleXl7q3bu30/qhoaHy9/ev0g4AAJovj4ab7du3a9SoUY7P5+fGTJo0Sa+99pry8/OVl9e8348BAABc02jm3DQU5tw0bvw/AABUx5U5N03uOTcNoZnlvUaFsQcA1BXh5ntatGgh6dwLJuEZ58f+/P8LAABc1WTulmoI3t7eatu2rY4ePSpJatmypWw224+shfpgjFFZWZmOHj2qtm3bOt3yDwCAKwg3P3D+Kb7nAw4aVtu2bXn3FACgTgg3P2Cz2RQREaHQ0FCdOXPG0+U0Ky1atOCMDQCgzgg3NfD29uYXLQAATRATigEAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAQL3JLy7X5oNFyi8u91gN3C0FAADqxcpteUpds0t2I3nZpLSxMUoe2KnB6+DMDQAAqLP84nJHsJEku5FmrtntkTM4hBsAAFBnOUWljmBzXqUxyi1q+Pc1Em4AAECddQkOlNcPXsfobbMpOrhlg9dCuAEAAHUWERSgtLEx8v6/F05722yaN7a3IoICGrwWJhQDAIB6kTywk67oGaLcojJFB7f0SLCRCDcAAKAeRQQFeCzUnMdlKQAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCkeDTcff/yxkpKS1LFjR9lsNr3zzjsX7L9mzRpdffXVCgkJUZs2bRQfH6/333+/YYoFAABNgkfDTWlpqfr27auMjIyL6v/xxx/r6quv1rp165SVlaVRo0YpKSlJO3fudHOlAACgqbAZY4yni5Akm82mt99+W2PGjHFpvcsvv1zJycmaPXv2RfUvKSlRUFCQiouL1aZNm1pUCgAAGporv799Gqgmt7Db7Tpx4oTat29fY5+KigpVVFQ4PpeUlDREaQAAwEOa9ITi5557TidPntTNN99cY5+0tDQFBQU5lqioqAasEAAANLQmG26WL1+uuXPn6i9/+YtCQ0Nr7Jeamqri4mLHcvjw4QasEgAANLQmeVlqxYoVmjp1qlatWqWEhIQL9vXz85Ofn18DVQYAADytyZ25eeuttzRlyhS99dZbuv766z1dDgAAaGQ8eubm5MmTOnDggONzTk6OsrOz1b59e3Xq1Empqan66quv9Kc//UnSuUtRkyZN0u9+9zvFxcWpoKBAkhQQEKCgoCCPHAMAAGhcPHrmZvv27erfv7/69+8vSUpJSVH//v0dt3Xn5+crLy/P0f+ll17S2bNnNW3aNEVERDiW+++/3yP1AwCAxqfRPOemofCcGwAAmh5Xfn83uTk3AAAAF0K4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQDAAvKLy7X5YJHyi8s9XYrHefTFmQAAoO5WbstT6ppdshvJyyaljY1R8sBOni7LYzhzAwBAE5ZfXO4INpJkN9LMNbub9Rkcwg0AAE1YTlGpI9icV2mMcovKPFNQI0C4AQCgCesSHCgvm3Obt82m6OCWnimoESDcAADQhEUEBShtbIy8becSjrfNpnljeysiKMDDlXkOE4oBAGjikgd20hU9Q5RbVKbo4JbNOthIhBsAACwhIiig2Yea87gsBQAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALMWj4ebjjz9WUlKSOnbsKJvNpnfeeedH19m0aZN++tOfys/PT927d9drr73m9joBAEDT4dFwU1paqr59+yojI+Oi+ufk5Oj666/XqFGjlJ2drQceeEBTp07V+++/7+ZKAQBAU+HjyZ2PHj1ao0ePvuj+S5YsUZcuXfT8889Lknr16qVPPvlEixYtUmJiorvKBAAATUiTmnOzZcsWJSQkOLUlJiZqy5YtNa5TUVGhkpISpwUAAFhXkwo3BQUFCgsLc2oLCwtTSUmJysvLq10nLS1NQUFBjiUqKqohSgUAAB7SpMJNbaSmpqq4uNixHD582NMlAQAAN/LonBtXhYeHq7Cw0KmtsLBQbdq0UUBAQLXr+Pn5yc/PryHKAwAAjUCTOnMTHx+vzMxMp7YNGzYoPj7eQxUBAIDGxqPh5uTJk8rOzlZ2drakc7d6Z2dnKy8vT9K5S0oTJ0509L/zzjt16NAhPfzww9q3b59efPFF/eUvf9H06dM9UT4AAGiEPBputm/frv79+6t///6SpJSUFPXv31+zZ8+WJOXn5zuCjiR16dJF7733njZs2KC+ffvq+eef18svv8xt4AAAwMFmjDGeLqIhlZSUKCgoSMXFxWrTpo2nywFqJb+4XDlFpeoSHKiIoOrnmwGAlbjy+7tJTSgGIK3clqfUNbtkN5KXTUobG6PkgZ08XRYANBpNakIx0NzlF5c7go0k2Y00c81u5RdX/5wnAGiOCDdAE5JTVOoINudVGqPcojLPFAQAjRDhBmhCugQHysvm3OZtsyk6uKVnCgKARohwAzQhEUEBShsbI2/buYTjbbNp3tjeTCoGgO9hQjHQxCQP7KQreoYot6hM0cEtCTYA8AOEG6AJiggKINQAQA24LAUAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAN4UH5xuTYfLOLdUABQj3jODeAhvN0bANyDMzeAB/B2bwBwH8IN4AG83RsA3IdwA3gAb/cGAPch3AAewNu9AcB9mFAMeAhv9wYA9yDcAB7E270BoP5xWQoAAFgK4QYAAFgK4QYAAFTRlJ+gzpwbAADgpKk/QZ0zNwAAwMEKT1An3AAAAAcrPEGdcAMAABys8AR1wg0AAHCwwhPUmVAMAACcNPUnqBNuAABAFU35CepclgIAAJZCuKlHTfmBRwB+HH/GgaaBy1L1pKk/8AjAhfFnHGg6OHNTD6zwwCMANePPONC0EG7qgRUeeASgZvwZB5oWwk09sMIDjwDUjD/jQNPi8XCTkZGh6Oho+fv7Ky4uTlu3br1g//T0dF1yySUKCAhQVFSUpk+frlOnTjVQtdWzwgOPANSMP+NA0+LRCcUrV65USkqKlixZori4OKWnpysxMVH79+9XaGholf7Lly/XjBkz9Oqrr2rIkCH6/PPPNXnyZNlsNi1cuNADR/Cdpv7AIwAXxp9xoOmwGWPMj3dztnXrVm3ZskUFBQWSpPDwcMXHx2vQoEEubScuLk4DBw7UCy+8IEmy2+2KiorSvffeqxkzZlTpf88992jv3r3KzMx0tD344IP697//rU8++eSi9llSUqKgoCAVFxerTZs2LtULAAA8w5Xf3y5dljp69KiGDx+uwYMHa9GiRdq4caM2btyoRYsWafDgwRo+fLiOHj16Uds6ffq0srKylJCQ8F0xXl5KSEjQli1bql1nyJAhysrKcly6OnTokNatW6frrruuxv1UVFSopKTEaQEAANblUri5++67VVlZqb179yo3N1f//ve/9e9//1u5ubnau3ev7Ha7pk2bdlHbKioqUmVlpcLCwpzaw8LCHGeEfmj8+PF64oknNGzYMLVo0ULdunXTyJEjNXPmzBr3k5aWpqCgIMcSFRV18QcMAACaHJfCzfvvv6+MjAxdcsklVb675JJL9Pvf/17r16+vt+J+aNOmTZo3b55efPFF7dixQ2vWrNF7772nJ598ssZ1UlNTVVxc7FgOHz7stvoAAIDnuTSh2M/P74KXdU6cOCE/P7+L2lZwcLC8vb1VWFjo1F5YWKjw8PBq15k1a5YmTJigqVOnSpJiYmJUWlqqO+64Q48++qi8vKpmNT8/v4uuCQAANH0unblJTk7WpEmT9PbbbzuFnJKSEr399tuaMmWKxo0bd1Hb8vX1VWxsrNPkYLvdrszMTMXHx1e7TllZWZUA4+3tLUmqxbzoRo/32AAA4DqXztwsXLhQdrtdt9xyi86ePStfX19J5yYH+/j46LbbbtNzzz130dtLSUnRpEmTNGDAAA0aNEjp6ekqLS3VlClTJEkTJ05UZGSk0tLSJElJSUlauHCh+vfvr7i4OB04cECzZs1SUlKSI+RYBe+xAQCgdly+LLV48WItWLBAWVlZTreCx8bGunxrdXJyso4dO6bZs2eroKBA/fr10/r16x2TjPPy8pzO1Dz22GOy2Wx67LHH9NVXXykkJERJSUl6+umnXdpvY1fTe2yu6BnCszUAAPgRtXrOTVPWFJ5zs/lgkcYv/XeV9rduH6z4bh08UBEAAJ7ltufc/JjCwkI98cQT9bnJZon32AAAUHv1Gm4KCgo0d+7c+txks8R7bAAAqD2X5tx89tlnF/x+//79dSoG3+E9NgAA1I5L4aZfv36y2WzV3nZ9vt1ms1WzJmojIiiAUAMAgItcCjft27fXM888o6uuuqra7/fs2aOkpKR6KQwAAKA2XAo3sbGxOnLkiDp37lzt98ePH7fkw/QAAEDT4VK4ufPOO1VaWlrj9506ddKyZcvqXBQAAEBt8ZwbAADQ6HnsOTcAAACe5tJlqZSUlIvqt3DhwloVAwAAUFcuhZudO3c6ff7kk08UGxurgIDvblfmVnAAAOBJLoWbjz76yOlz69attXz5cnXt2rVeiwIAAKgt5twAAABLIdwAAABLIdwAAABLqdOLM40x2rdvn06ePOnU3qdPn7pXBgAAUAsuPcTPy8vrol6cWVlZWa9F1ice4gcAQNPjyu9vl87c5OTk1KkwAAAAd3Mp3NT0wkwAAIDGol4mFF955ZX68ssv62NTADwgv7hcmw8WKb+43NOlAECduXTmZu3atdW2f/zxx3r33XcVFRUlSbrhhhvqXhmABrFyW55S1+yS3UheNiltbIySB3bydFkAUGv1NqHYsUEmFANNRn5xuYbO3yj79/5Ie9ts+mTGKEUEBdS8IgA0MLe9FTwxMVGjR49WQUGB7Ha7Y/H29tbu3btlt9sbdbAB4CynqNQp2EhSpTHKLSrzTEEAUA9cCjd///vfddVVV2nAgAF699133VUTgAbSJThQXj941623zabo4JaeKQgA6oHLE4qnT5+utWvX6pFHHtFvfvMblZXxLzygqYoIClDa2Bh5284lHG+bTfPG9uaSFIAmzaUJxef169dP27dv1/Tp09WvX78LzsEB0LglD+ykK3qGKLeoTNHBLQk2AJq8WoUbSQoICNCSJUu0du1affTRRwoODq7PugA0oIigAEINAMtw6bLUxo0bddlll6mkpMTRdsMNN2jRokXy8/PT5Zdfrn/+85/1XiQAAMDFcincpKen6/bbb6/2FqygoCD95je/0cKFC+utOAAAAFe5FG7+85//6Nprr63x+2uuuUZZWVl1LgoAAKC2XAo3hYWFatGiRY3f+/j46NixY3UuCoB18aoHAO7m0oTiyMhI7d69W927d6/2+88++0wRERH1UhgA6+FVDwAagktnbq677jrNmjVLp06dqvJdeXm55syZo5/97Gf1VhwA68gvLncEG0myG2nmmt2cwQFQ71w6c/PYY49pzZo16tmzp+655x5dcsklkqR9+/YpIyNDlZWVevTRR91SKICm7UKveuA2dAD1yaVwExYWps2bN+uuu+5Samqq4+F9NptNiYmJysjIUFhYmFsKBdC0nX/Vww9f0smrHgDUN5cf4te5c2etW7dO3377rQ4cOCBjjHr06KF27dq5oz4AFnH+VQ8z1+xWpTG86gGA29hMM3t3giuvTAdQ//KLy3nVAwCXufL72+UXZ9a3jIwMRUdHy9/fX3Fxcdq6desF+x8/flzTpk1TRESE/Pz81LNnT61bt66BqgVQVxFBAYrv1oFgA8Btav1uqfqwcuVKpaSkaMmSJYqLi1N6eroSExO1f/9+hYaGVul/+vRpXX311QoNDdXq1asVGRmpL7/8Um3btm344gEAQKPk0ctScXFxGjhwoF544QVJkt1uV1RUlO69917NmDGjSv8lS5bo2Wef1b59+y74MMEL4bIUAABNT5O4LHX69GllZWUpISHhu2K8vJSQkKAtW7ZUu87atWsVHx+vadOmKSwsTL1799a8efNUWVlZ434qKipUUlLitAAAAOvyWLgpKipSZWVllVvHw8LCVFBQUO06hw4d0urVq1VZWal169Zp1qxZev755/XUU0/VuJ+0tDQFBQU5lqioqHo9DgAA0Lh4fEKxK+x2u0JDQ/XSSy8pNjZWycnJevTRR7VkyZIa10lNTVVxcbFjOXz4cANWDAAAGprHJhQHBwfL29tbhYWFTu2FhYUKDw+vdp2IiAi1aNFC3t7ejrZevXqpoKBAp0+flq+vb5V1/Pz85OfnV7/FAwCARstjZ258fX0VGxurzMxMR5vdbldmZqbi4+OrXWfo0KE6cOCA7Ha7o+3zzz9XREREtcEGAAA0Px69LJWSkqKlS5fq9ddf1969e3XXXXeptLRUU6ZMkSRNnDhRqampjv533XWXvvnmG91///36/PPP9d5772nevHmaNm2apw4BAAA0Mh59zk1ycrKOHTum2bNnq6CgQP369dP69esdk4zz8vLk5fVd/oqKitL777+v6dOnq0+fPoqMjNT999+vRx55xFOHAAAAGhlevwAAABq9JvGcGwAAAHcg3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3ABAM5dfXK7NB4uUX1zu6VKAeuHRh/gBADxr5bY8pa7ZJbuRvGxS2tgYJQ/s5OmygDrhzA0ANFP5xeWOYCNJdiPNXLObMzho8gg3ANBM5RSVOoLNeZXGKLeozDMFAfWEcAMAzVSX4EB52ZzbvG02RQe39ExBQD0h3ABAMxURFKC0sTHytp1LON42m+aN7a2IoAAPVwbUDROKAaAZSx7YSVf0DFFuUZmig1sSbGAJhBsAaOYiggIINbAULksBAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLaRThJiMjQ9HR0fL391dcXJy2bt16UeutWLFCNptNY8aMcW+BAACgyfB4uFm5cqVSUlI0Z84c7dixQ3379lViYqKOHj16wfVyc3P10EMPafjw4Q1UKQAAaAo8Hm4WLlyo22+/XVOmTNFll12mJUuWqGXLlnr11VdrXKeyslK33nqr5s6dq65duzZgtQAAoLHzaLg5ffq0srKylJCQ4Gjz8vJSQkKCtmzZUuN6TzzxhEJDQ3Xbbbf96D4qKipUUlLitAAAAOvyaLgpKipSZWWlwsLCnNrDwsJUUFBQ7TqffPKJXnnlFS1duvSi9pGWlqagoCDHEhUVVee6AQBA4+Xxy1KuOHHihCZMmKClS5cqODj4otZJTU1VcXGxYzl8+LCbqwQAAJ7k48mdBwcHy9vbW4WFhU7thYWFCg8Pr9L/4MGDys3NVVJSkqPNbrdLknx8fLR//35169bNaR0/Pz/5+fm5oXoAANAYefTMja+vr2JjY5WZmelos9vtyszMVHx8fJX+l156qXbt2qXs7GzHcsMNN2jUqFHKzs7mkhMAAPDsmRtJSklJ0aRJkzRgwAANGjRI6enpKi0t1ZQpUyRJEydOVGRkpNLS0uTv76/evXs7rd+2bVtJqtIOAACaJ4+Hm+TkZB07dkyzZ89WQUGB+vXrp/Xr1zsmGefl5cnLq0lNDQIAAB5kM8YYTxfRkEpKShQUFKTi4mK1adPG0+UANcovLldOUam6BAcqIijA0+UAgEe58vvb42duAFS1clueUtfskt1IXjYpbWyMkgd28nRZANAkcL0HaGTyi8sdwUaS7EaauWa38ovLPVsYADQRhBugkckpKnUEm/MqjVFuUZlnCgKAJoZwg1rLLy7X5oNFnFGoZ12CA+Vlc27zttkUHdzSMwUBQBNDuEGtrNyWp6HzN2r80n9r6PyNWrktz9MlWUZEUIDSxsbI23Yu4XjbbJo3tjeTigHgInG3FFyWX1yuofM3Ol068bbZ9MmMUfwCrkf5xeXKLSpTdHBLxhVAs8fdUnCrC80J4Zdw/YkICmA8AaAWuCwFlzEnBADQmBFu4DLmhAAAGjMuS6FWkgd20hU9Q5gTAgBodAg3qDXmhAAAGiMuSwEAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3KDWeLcUAKAx4m4p1MrKbXlKXbNLdiN52aS0sTFKHtjJ02UBAMCZG7guv7jcEWwkyW6kmWt2cwYHANAoEG7gsgu9WwoAAE8j3MBlvFsKANCYEW7gMt4tBQBozJhQjFrh3VIAgMaKcINa491SAIDGiMtSAADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUhpFuMnIyFB0dLT8/f0VFxenrVu31th36dKlGj58uNq1a6d27dopISHhgv0BAEDz4vFws3LlSqWkpGjOnDnasWOH+vbtq8TERB09erTa/ps2bdK4ceP00UcfacuWLYqKitI111yjr776qoErBwAAjZHNGGM8WUBcXJwGDhyoF154QZJkt9sVFRWle++9VzNmzPjR9SsrK9WuXTu98MILmjhx4o/2LykpUVBQkIqLi9WmTZs61w8AANzPld/fHj1zc/r0aWVlZSkhIcHR5uXlpYSEBG3ZsuWitlFWVqYzZ86offv21X5fUVGhkpISpwUAAFiXR8NNUVGRKisrFRYW5tQeFhamgoKCi9rGI488oo4dOzoFpO9LS0tTUFCQY4mKiqpz3bC2/OJybT5YpPzick+XAgCoBR9PF1AX8+fP14oVK7Rp0yb5+/tX2yc1NVUpKSmOzyUlJQQc1Gjltjylrtklu5G8bFLa2BglD+zk6bIAAC7waLgJDg6Wt7e3CgsLndoLCwsVHh5+wXWfe+45zZ8/Xx9++KH69OlTYz8/Pz/5+fnVS72wtvzickewkSS7kWau2a0reoYoIijAs8UBAC6aRy9L+fr6KjY2VpmZmY42u92uzMxMxcfH17jeM888oyeffFLr16/XgAEDGqJUNAM5RaWOYHNepTHKLSrzTEFAI8blWzRmHr8slZKSokmTJmnAgAEaNGiQ0tPTVVpaqilTpkiSJk6cqMjISKWlpUmSFixYoNmzZ2v58uWKjo52zM1p1aqVWrVq5bHjQNPXJThQXjY5BRxvm03RwS09VxTQCHH5Fo2dx59zk5ycrOeee06zZ89Wv379lJ2drfXr1zsmGefl5Sk/P9/Rf/HixTp9+rR+8YtfKCIiwrE899xznjoEWEREUIDSxsbI22aTdC7YzBvbm0tSwPfUdPmWMzhoTDz+nJuGxnNu8GPyi8uVW1Sm6OCWBBvgBzYfLNL4pf+u0v7W7YMV362DBypCc+HK72+PX5YCGpuIoABCDVADLt+iKfD4ZSkAQNPB5Vs0BZy5AQC4JHlgJ13RM4TLt2i0CDcAAJdx+RaNGZelAKAZ4Lk0aE44cwMAFsdzadDccOYGACyM59KgOSLcAICF8VoRNEeEGwCwsPPPpfk+nksDqyPcAICF8VwaNEdMKAYAi+O5NGhuCDcA0AzwXBo0J1yWAgAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQB4XH5xuTYfLFJ+cbmnS4EF+Hi6AABA87ZyW55S1+yS3UheNiltbIySB3bydFlowjhzAwDwmPzickewkSS7kWau2c0ZHNQJ4QYA4DE5RaWOYHNepTHKLSrzTEGwBMINAMBjugQHysvm3OZtsyk6uKVnCoIlEG4AAB4TERSgtLEx8radSzjeNpvmje2tiKAAD1eGpowJxYCF5BeXK6eoVF2CA/nlgCYjeWAnXdEzRLlFZYoObsnPLuqMcANYBHecoCmLCAog1KDecFkKsADuOAGA7xBuAAvgjhMA+E6jCDcZGRmKjo6Wv7+/4uLitHXr1gv2X7VqlS699FL5+/srJiZG69ata6BKgcaJO04A4DseDzcrV65USkqK5syZox07dqhv375KTEzU0aNHq+2/efNmjRs3Trfddpt27typMWPGaMyYMdq9e3cDVw40HtxxAgDfsRljzI93c5+4uDgNHDhQL7zwgiTJbrcrKipK9957r2bMmFGlf3JyskpLS/Xuu+862gYPHqx+/fppyZIlP7q/kpISBQUFqbi4WG3atKm/AwEagfzicu44AWBJrvz+9uiZm9OnTysrK0sJCQmONi8vLyUkJGjLli3VrrNlyxan/pKUmJhYY3+gOYkIClB8tw4EGwDNmkdvBS8qKlJlZaXCwsKc2sPCwrRv375q1ykoKKi2f0FBQbX9KyoqVFFR4fhcUlJSx6oBAEBj5vE5N+6WlpamoKAgxxIVFeXpkgAAgBt5NNwEBwfL29tbhYWFTu2FhYUKDw+vdp3w8HCX+qempqq4uNixHD58uH6KBwAAjZJHw42vr69iY2OVmZnpaLPb7crMzFR8fHy168THxzv1l6QNGzbU2N/Pz09t2rRxWgAAgHV5/PULKSkpmjRpkgYMGKBBgwYpPT1dpaWlmjJliiRp4sSJioyMVFpamiTp/vvv14gRI/T888/r+uuv14oVK7R9+3a99NJLnjwMAADQSHg83CQnJ+vYsWOaPXu2CgoK1K9fP61fv94xaTgvL09eXt+dYBoyZIiWL1+uxx57TDNnzlSPHj30zjvvqHfv3p46BAAA0Ih4/Dk3DY3n3AAA0PQ0mefcAAAA1DfCDQAAsBTCDQAAsBTCDQAAsBSP3y3V0M7Pn+Y1DAAANB3nf29fzH1QzS7cnDhxQpJ4DQMAAE3QiRMnFBQUdME+ze5WcLvdriNHjqh169ay2WzV9ikpKVFUVJQOHz7c7G8XZyzOYRzOYRy+w1icwzicwzh8x11jYYzRiRMn1LFjR6fn31Wn2Z258fLy0k9+8pOL6svrGr7DWJzDOJzDOHyHsTiHcTiHcfiOO8bix87YnMeEYgAAYCmEGwAAYCmEm2r4+flpzpw58vPz83QpHsdYnMM4nMM4fIexOIdxOIdx+E5jGItmN6EYAABYG2duAACApRBuAACApRBuAACApRBuAACApTTbcJORkaHo6Gj5+/srLi5OW7durbHvnj17dNNNNyk6Olo2m03p6ekNV2gDcGUsli5dquHDh6tdu3Zq166dEhISLti/KXFlHNasWaMBAwaobdu2CgwMVL9+/fTnP/+5Aat1H1fG4ftWrFghm82mMWPGuLfABuTKWLz22muy2WxOi7+/fwNW6z6u/kwcP35c06ZNU0REhPz8/NSzZ0+tW7eugap1H1fGYeTIkVV+Hmw2m66//voGrNh9XP2ZSE9P1yWXXKKAgABFRUVp+vTpOnXqlPsKNM3QihUrjK+vr3n11VfNnj17zO23327atm1rCgsLq+2/detW89BDD5m33nrLhIeHm0WLFjVswW7k6liMHz/eZGRkmJ07d5q9e/eayZMnm6CgIPO///2vgSuvX66Ow0cffWTWrFlj/vvf/5oDBw6Y9PR04+3tbdavX9/AldcvV8fhvJycHBMZGWmGDx9ubrzxxoYp1s1cHYtly5aZNm3amPz8fMdSUFDQwFXXP1fHoaKiwgwYMMBcd9115pNPPjE5OTlm06ZNJjs7u4Err1+ujsPXX3/t9LOwe/du4+3tbZYtW9awhbuBq2Px5ptvGj8/P/Pmm2+anJwc8/7775uIiAgzffp0t9XYLMPNoEGDzLRp0xyfKysrTceOHU1aWtqPrtu5c2dLhZu6jIUxxpw9e9a0bt3avP766+4qsUHUdRyMMaZ///7msccec0d5DaY243D27FkzZMgQ8/LLL5tJkyZZJty4OhbLli0zQUFBDVRdw3F1HBYvXmy6du1qTp8+3VAlNoi6/h2xaNEi07p1a3Py5El3ldhgXB2LadOmmSuvvNKpLSUlxQwdOtRtNTa7y1KnT59WVlaWEhISHG1eXl5KSEjQli1bPFhZw6uPsSgrK9OZM2fUvn17d5XpdnUdB2OMMjMztX//fl1xxRXuLNWtajsOTzzxhEJDQ3Xbbbc1RJkNorZjcfLkSXXu3FlRUVG68cYbtWfPnoYo121qMw5r165VfHy8pk2bprCwMPXu3Vvz5s1TZWVlQ5Vd7+rj78pXXnlFt9xyiwIDA91VZoOozVgMGTJEWVlZjktXhw4d0rp163Tddde5rc5m9+LMoqIiVVZWKiwszKk9LCxM+/bt81BVnlEfY/HII4+oY8eOTj/oTU1tx6G4uFiRkZGqqKiQt7e3XnzxRV199dXuLtdtajMOn3zyiV555RVlZ2c3QIUNpzZjcckll+jVV19Vnz59VFxcrOeee05DhgzRnj17LvplvY1Nbcbh0KFD2rhxo2699VatW7dOBw4c0N13360zZ85ozpw5DVF2vavr35Vbt27V7t279corr7irxAZTm7EYP368ioqKNGzYMBljdPbsWd15552aOXOm2+psduEG9Wf+/PlasWKFNm3aZJmJk65o3bq1srOzdfLkSWVmZiolJUVdu3bVyJEjPV1agzhx4oQmTJigpUuXKjg42NPleFx8fLzi4+Mdn4cMGaJevXrpj3/8o5588kkPVtaw7Ha7QkND9dJLL8nb21uxsbH66quv9OyzzzbZcFNXr7zyimJiYjRo0CBPl+IRmzZt0rx58/Tiiy8qLi5OBw4c0P33368nn3xSs2bNcss+m124CQ4Olre3twoLC53aCwsLFR4e7qGqPKMuY/Hcc89p/vz5+vDDD9WnTx93lul2tR0HLy8vde/eXZLUr18/7d27V2lpaU023Lg6DgcPHlRubq6SkpIcbXa7XZLk4+Oj/fv3q1u3bu4t2k3q4++JFi1aqH///jpw4IA7SmwQtRmHiIgItWjRQt7e3o62Xr16qaCgQKdPn5avr69ba3aHuvw8lJaWasWKFXriiSfcWWKDqc1YzJo1SxMmTNDUqVMlSTExMSotLdUdd9yhRx99VF5e9T9DptnNufH19VVsbKwyMzMdbXa7XZmZmU7/6moOajsWzzzzjJ588kmtX79eAwYMaIhS3aq+fibsdrsqKircUWKDcHUcLr30Uu3atUvZ2dmO5YYbbtCoUaOUnZ2tqKiohiy/XtXHz0RlZaV27dqliIgId5XpdrUZh6FDh+rAgQOOoCtJn3/+uSIiIppksJHq9vOwatUqVVRU6Fe/+pW7y2wQtRmLsrKyKgHmfPg17nq9pdumKjdiK1asMH5+fua1114z//3vf80dd9xh2rZt67htc8KECWbGjBmO/hUVFWbnzp1m586dJiIiwjz00ENm586d5osvvvDUIdQbV8di/vz5xtfX16xevdrpNscTJ0546hDqhavjMG/ePPPBBx+YgwcPmv/+97/mueeeMz4+Pmbp0qWeOoR64eo4/JCV7pZydSzmzp1r3n//fXPw4EGTlZVlbrnlFuPv72/27NnjqUOoF66OQ15enmndurW55557zP79+827775rQkNDzVNPPeWpQ6gXtf2zMWzYMJOcnNzQ5bqVq2MxZ84c07p1a/PWW2+ZQ4cOmQ8++MB069bN3HzzzW6rsVmGG2OM+cMf/mA6depkfH19zaBBg8y//vUvx3cjRowwkyZNcnzOyckxkqosI0aMaPjC3cCVsejcuXO1YzFnzpyGL7yeuTIOjz76qOnevbvx9/c37dq1M/Hx8WbFihUeqLr+uTIOP2SlcGOMa2PxwAMPOPqGhYWZ6667zuzYscMDVdc/V38mNm/ebOLi4oyfn5/p2rWrefrpp83Zs2cbuOr65+o47Nu3z0gyH3zwQQNX6n6ujMWZM2fM448/brp162b8/f1NVFSUufvuu823337rtvpsxrjrnBAAAEDDa3ZzbgAAgLURbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgDAjSZPnqwxY8Z4ugygWSHcAM3U5MmTZbPZHEuHDh107bXX6rPPPvN0afXi+8d2fhk2bJjb9pebmyubzabs7Gyn9t/97nd67bXX3LZfAFURboBm7Nprr1V+fr7y8/OVmZkpHx8f/exnP/N0WfVm2bJljuPLz8/X2rVrq+135swZt9UQFBSktm3bum37AKoi3ADNmJ+fn8LDwxUeHq5+/fppxowZOnz4sI4dO6Yrr7xS99xzj1P/Y8eOydfX1/FG4OjoaD355JMaN26cAgMDFRkZqYyMDKd1Fi5cqJiYGAUGBioqKkp33323Tp486fj+yy+/VFJSktq1a6fAwEBdfvnlWrdunSTp22+/1a233qqQkBAFBASoR48eWrZs2UUfX9u2bR3HFx4ervbt2zvOsKxcuVIjRoyQv7+/3nzzTX399dcaN26cIiMj1bJlS8XExOitt95y2p7dbtczzzyj7t27y8/PT506ddLTTz8tSerSpYskqX///rLZbBo5cqSkqpelKioqdN999yk0NFT+/v4aNmyYtm3b5vh+06ZNstlsyszM1IABA9SyZUsNGTJE+/fvv+jjBpo7wg0ASdLJkyf1xhtvqHv37urQoYOmTp2q5cuXq6KiwtHnjTfeUGRkpK688kpH27PPPqu+fftq586dmjFjhu6//35t2LDB8b2Xl5d+//vfa8+ePXr99de1ceNGPfzww47vp02bpoqKCn388cfatWuXFixYoFatWkmSZs2apf/+97/6+9//rr1792rx4sUKDg6ul+M9X+vevXuVmJioU6dOKTY2Vu+99552796tO+64QxMmTNDWrVsd66Smpmr+/PmOupYvX66wsDBJcvT78MMPlZ+frzVr1lS734cfflh//etf9frrr2vHjh3q3r27EhMT9c033zj1e/TRR/X8889r+/bt8vHx0a9//et6OW6gWXDbKzkBNGqTJk0y3t7eJjAw0AQGBhpJJiIiwmRlZRljjCkvLzft2rUzK1eudKzTp08f8/jjjzs+d+7c2Vx77bVO201OTjajR4+ucb+rVq0yHTp0cHyOiYlx2ub3JSUlmSlTptTq+CQZf39/x/EFBgaat99+2+Tk5BhJJj09/Ue3cf3115sHH3zQGGNMSUmJ8fPzM0uXLq227/nt7ty506n9+29KP3nypGnRooV58803Hd+fPn3adOzY0TzzzDPGGGM++ugjI8l8+OGHjj7vvfeekWTKy8tdGQKg2eLMDdCMjRo1StnZ2crOztbWrVuVmJio0aNH68svv5S/v78mTJigV199VZK0Y8cO7d69W5MnT3baRnx8fJXPe/fudXz+8MMPddVVVykyMlKtW7fWhAkT9PXXX6usrEySdN999+mpp57S0KFDNWfOHKcJzXfddZdWrFihfv366eGHH9bmzZtdOr5FixY5ji87O1tXX32147sBAwY49a2srNSTTz6pmJgYtW/fXq1atdL777+vvLw8SdLevXtVUVGhq666yqUavu/gwYM6c+aMhg4d6mhr0aKFBg0a5DRmktSnTx/Hf0dEREiSjh49Wut9A80J4QZoxgIDA9W9e3d1795dAwcO1Msvv6zS0lItXbpUkjR16lRt2LBB//vf/7Rs2TJdeeWV6ty580VvPzc3Vz/72c/Up08f/fWvf1VWVpZjTs7p06cd+zh06JAmTJigXbt2acCAAfrDH/4gSY6gNX36dB05ckRXXXWVHnrooYvef3h4uOP4unfvrsDAQKdj/75nn31Wv/vd7/TII4/oo48+UnZ2thITEx11BgQEXPR+60OLFi0c/22z2SSdm/MD4McRbgA42Gw2eXl5qby8XJIUExOjAQMGaOnSpVq+fHm18z7+9a9/Vfncq1cvSVJWVpbsdruef/55DR48WD179tSRI0eqbCMqKkp33nmn1qxZowcffNARriQpJCREkyZN0htvvKH09HS99NJL9XnIDp9++qluvPFG/epXv1Lfvn3VtWtXff75547ve/TooYCAAMdk6h/y9fWVdO4MUE26desmX19fffrpp462M2fOaNu2bbrsssvq6UgA+Hi6AACeU1FRoYKCAknn7kx64YUXdPLkSSUlJTn6TJ06Vffcc48CAwP185//vMo2Pv30Uz3zzDMaM2aMNmzYoFWrVum9996TJHXv3l1nzpzRH/7wByUlJenTTz/VkiVLnNZ/4IEHNHr0aPXs2VPffvutPvroI0c4mj17tmJjY3X55ZeroqJC7777ruO7+tajRw+tXr1amzdvVrt27bRw4UIVFhY6Qoe/v78eeeQRPfzww/L19dXQoUN17Ngx7dmzR7fddptCQ0MVEBCg9evX6yc/+Yn8/f0VFBTktI/AwEDddddd+u1vf6v27durU6dOeuaZZ1RWVqbbbrvNLccFNEecuQGasfXr1ysiIkIRERGKi4vTtm3btGrVKsdtzJI0btw4+fj4aNy4cfL396+yjQcffFDbt29X//799dRTT2nhwoVKTEyUJPXt21cLFy7UggUL1Lt3b7355ptKS0tzWr+yslLTpk1Tr169dO2116pnz5568cUXJZ07G5Kamqo+ffroiiuukLe3t1asWOGWsXjsscf005/+VImJiRo5cqTCw8OrPFl41qxZevDBBzV79mz16tVLycnJjnkwPj4++v3vf68//vGP6tixo2688cZq9zN//nzddNNNmjBhgn7605/qwIEDev/999WuXTu3HBfQHNmMMcbTRQBovHJzc9WtWzdt27ZNP/3pT52+i46O1gMPPKAHHnjAM8UBQDW4LAWgWmfOnNHXX3+txx57TIMHD64SbACgseKyFIBqffrpp4qIiNC2bduqzJPxtHnz5qlVq1bVLqNHj/Z0eQA8jMtSAJqcb775psoTfc8LCAhQZGRkA1cEoDEh3AAAAEvhshQAALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALCU/w+ZHmPpfx1z0wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHHCAYAAABdm0mZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARgJJREFUeJzt3X1cVHX+///nADIgCopcSiBepiZehBehlloUWVGutZm2XpW1lXYhXUmlZpZoF0pbqJuldq2rq33dcjXD3H6puyrKpq5aKoQpkFSCIIHC+f3hOp9mQWWQmYHD4367ze3mnHmfc17nLThP3+d9zrEYhmEIAADAZDzcXQAAAIAzEHIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAAIApEXIAuMXzzz8vi8VSo7YWi0XPP/+8U+sZPHiwBg8eXG+3B8BxhBygkVu6dKksFovt5eXlpYiICI0bN05Hjx51d3n1TnR0tF1/hYSE6Oqrr9bq1avrZPunTp3S888/r02bNtXJ9oDGjJADQJL0wgsv6P3339fChQs1dOhQffDBBxo0aJB+/fVXp+zvueeeU2lpqVO27Ww9e/bU+++/r/fff19PPPGEjh07puHDh2vhwoWXvO1Tp05pxowZhBygDni5uwAA9cPQoUPVu3dvSdKECRMUFBSkOXPmaM2aNbrzzjvrfH9eXl7y8mqY/wRFREToD3/4g+39mDFj1KFDB82bN08PPPCAGysD8FuM5ACo1tVXXy1JOnTokN3y/fv364477lBgYKB8fHzUu3dvrVmzxq7N6dOnNWPGDHXs2FE+Pj5q1aqVBg4cqA0bNtjaVDcnp6ysTJMnT1ZwcLCaN2+uW2+9VT/88EOV2saNG6fo6Ogqy6vb5pIlS3TttdcqJCREVqtVXbt21YIFCxzqi4sJCwtTly5dlJWVdcF2P/74o+69916FhobKx8dHPXr00Lvvvmv7PDs7W8HBwZKkGTNm2E6JOXs+EmBWDfO/UQCcLjs7W5LUsmVL27K9e/dqwIABioiI0JQpU+Tn56e//OUvGjZsmP7617/qd7/7naSzYSMlJUUTJkxQ3759VVRUpB07dmjnzp26/vrrz7vPCRMm6IMPPtCoUaPUv39/bdy4UTfffPMlHceCBQt0xRVX6NZbb5WXl5f+9re/6aGHHlJlZaUmTpx4Sds+5/Tp0zpy5IhatWp13jalpaUaPHiwDh48qEmTJqlt27ZasWKFxo0bpxMnTujRRx9VcHCwFixYoAcffFC/+93vNHz4cElS9+7d66ROoNExADRqS5YsMSQZX3zxhXH8+HHjyJEjxsqVK43g4GDDarUaR44csbW97rrrjJiYGOPXX3+1LausrDT69+9vdOzY0basR48exs0333zB/U6fPt347T9BmZmZhiTjoYcesms3atQoQ5Ixffp027KxY8cabdq0ueg2DcMwTp06VaVdQkKC0a5dO7tlgwYNMgYNGnTBmg3DMNq0aWPccMMNxvHjx43jx48b//73v4277rrLkGQ8/PDD591eamqqIcn44IMPbMvKy8uNuLg4o1mzZkZRUZFhGIZx/PjxKscLoHY4XQVAkhQfH6/g4GBFRkbqjjvukJ+fn9asWaPLLrtMkvTzzz9r48aNuvPOO3Xy5EkVFBSooKBAP/30kxISEvTdd9/ZrsZq0aKF9u7dq++++67G+1+7dq0k6ZFHHrFb/thjj13Scfn6+tr+XFhYqIKCAg0aNEiHDx9WYWFhrbb5+eefKzg4WMHBwerRo4dWrFih0aNHa86cOeddZ+3atQoLC9PIkSNty5o0aaJHHnlExcXF+sc//lGrWgCcX6MOOV999ZUSExPVunVrWSwWffLJJ07f59GjR/WHP/xBrVq1kq+vr2JiYrRjxw6n7xe4mLS0NG3YsEErV67UTTfdpIKCAlmtVtvnBw8elGEYmjp1qu0L/txr+vTpks7OOZHOXql14sQJderUSTExMXryySf1zTffXHD/33//vTw8PNS+fXu75ZdffvklHdfmzZsVHx8vPz8/tWjRQsHBwXrmmWckqdYhp1+/ftqwYYO++OILbdmyRQUFBXrvvffsAtX/+v7779WxY0d5eNj/s9ulSxfb5wDqVqOek1NSUqIePXronnvusZ37dqZffvlFAwYM0JAhQ/T3v/9dwcHB+u677+zmPADu0rdvX9vVVcOGDdPAgQM1atQoHThwQM2aNVNlZaUk6YknnlBCQkK12+jQoYMk6ZprrtGhQ4f0//7f/9Pnn3+ut99+W/PmzdPChQs1YcKES671fDcRrKiosHt/6NAhXXfddercubPmzp2ryMhIeXt7a+3atZo3b57tmBwVFBSk+Pj4Wq0LwHUadcgZOnSohg4det7Py8rK9Oyzz+rjjz/WiRMn1K1bN82ZM6fWdzGdM2eOIiMjtWTJEtuytm3b1mpbgDN5enoqJSVFQ4YM0ZtvvqkpU6aoXbt2ks6eYqnJF3xgYKDGjx+v8ePHq7i4WNdcc42ef/7584acNm3aqLKyUocOHbIbvTlw4ECVti1bttSJEyeqLP/f0ZC//e1vKisr05o1axQVFWVb/uWXX160/rrWpk0bffPNN6qsrLQbzdm/f7/tc+n8AQ6A4xr16aqLmTRpkrZu3aply5bpm2++0e9//3vdeOONDs0z+K01a9aod+/e+v3vf6+QkBD16tVLixYtquOqgboxePBg9e3bV6mpqfr1118VEhKiwYMH689//rNyc3OrtD9+/Ljtzz/99JPdZ82aNVOHDh1UVlZ23v2d+w/Hn/70J7vlqampVdq2b99ehYWFdqfAcnNzq9x12NPTU5JkGIZtWWFhod1/NFzlpptuUl5enpYvX25bdubMGb3xxhtq1qyZBg0aJElq2rSpJFUb4gA4plGP5FxITk6OlixZopycHLVu3VrS2WH6devWacmSJZo1a5bD2zx8+LAWLFigpKQkPfPMM9q+fbseeeQReXt7a+zYsXV9CMAle/LJJ/X73/9eS5cu1QMPPKC0tDQNHDhQMTExuu+++9SuXTvl5+dr69at+uGHH/Tvf/9bktS1a1cNHjxYsbGxCgwM1I4dO7Ry5UpNmjTpvPvq2bOnRo4cqfnz56uwsFD9+/dXenq6Dh48WKXtXXfdpaefflq/+93v9Mgjj+jUqVNasGCBOnXqpJ07d9ra3XDDDfL29lZiYqL++Mc/qri4WIsWLVJISEi1Qc2Z7r//fv35z3/WuHHjlJGRoejoaK1cuVKbN29WamqqmjdvLunsROmuXbtq+fLl6tSpkwIDA9WtWzd169bNpfUCpuDuy7vqC0nG6tWrbe8//fRTQ5Lh5+dn9/Ly8jLuvPNOwzAMY9++fYakC76efvpp2zabNGlixMXF2e334YcfNq666iqXHCNQnXOXkG/fvr3KZxUVFUb79u2N9u3bG2fOnDEMwzAOHTpkjBkzxggLCzOaNGliREREGLfccouxcuVK23ovvvii0bdvX6NFixaGr6+v0blzZ+Oll14yysvLbW2qu9y7tLTUeOSRR4xWrVoZfn5+RmJionHkyJFqL6n+/PPPjW7duhne3t7G5ZdfbnzwwQfVbnPNmjVG9+7dDR8fHyM6OtqYM2eOsXjxYkOSkZWVZWvnyCXkF7s8/nzby8/PN8aPH28EBQUZ3t7eRkxMjLFkyZIq627ZssWIjY01vL29uZwcuAQWw/jNOG4jZrFYtHr1ag0bNkyStHz5ct19993au3evbcj7nGbNmiksLEzl5eU6fPjwBbfbqlUr2x1M27Rpo+uvv15vv/227fMFCxboxRdf5EGIAADUMU5XnUevXr1UUVGhH3/80XZ7+//l7e2tzp0713ibAwYMqDKJ8ttvv7VNOAQAAHWnUYec4uJiu/P9WVlZyszMVGBgoDp16qS7775bY8aM0WuvvaZevXrp+PHjSk9PV/fu3Wt1q/nJkyerf//+mjVrlu68805t27ZNb731lt566626PCwAACCpUZ+u2rRpk4YMGVJl+dixY7V06VKdPn1aL774ot577z0dPXpUQUFBuuqqqzRjxgzFxMTUap+ffvqpkpOT9d1336lt27ZKSkrSfffdd6mHAgAA/kejDjkAAMC8uE8OAAAwJUIOAAAwpUY38biyslLHjh1T8+bNuX06AAANhGEYOnnypFq3bl3lQbfn0+hCzrFjxxQZGenuMgAAQC0cOXJEl112WY3aNrqQc+7W6UeOHJG/v7+bqwEAADVRVFSkyMhI2/d4TTS6kHPuFJW/vz8hBwCABsaRqSZMPAYAAKZEyAEAAKZEyAEAAKbU6ObkAABQExUVFTp9+rS7y2hUvL29a3x5eE0QcgAA+A3DMJSXl6cTJ064u5RGx8PDQ23btpW3t3edbI+QAwDAb5wLOCEhIWratCk3jnWRczfrzc3NVVRUVJ30OyEHAID/qqiosAWcVq1aubucRic4OFjHjh3TmTNn1KRJk0veHhOPAQD4r3NzcJo2bermShqnc6epKioq6mR7hBwAAP4Hp6jco677nZADAABMiZADAABMiZBTh3ILS7XlUIFyC0vdXQoAoBHKy8vTww8/rHbt2slqtSoyMlKJiYlKT0+3a2cYhoYOHSqLxaJPPvnEtjw7O1sWi0WZmZlVtj148GA99thjtverVq3SDTfcoFatWp13nV9//VUTJ05Uq1at1KxZM91+++3Kz8+vo6O9OLeGnK+++kqJiYlq3bp1lY4+n7KyMj377LNq06aNrFaroqOjtXjxYucXexHLt+dowOyNGrXoXxowe6OWb89xd0kAgEYkOztbsbGx2rhxo1555RXt3r1b69at05AhQzRx4kS7tqmpqZc8/6WkpEQDBw7UnDlzzttm8uTJ+tvf/qYVK1boH//4h44dO6bhw4df0n4d4dZLyEtKStSjRw/dc889NT7oO++8U/n5+XrnnXfUoUMH5ebmqrKy0smVXlhuYamSV+1WpXH2faUhPbNqj67pFKzwAF+31gYAaBweeughWSwWbdu2TX5+frblV1xxhe655x7b+8zMTL322mvasWOHwsPDa72/0aNHSzobrqpTWFiod955Rx999JGuvfZaSdKSJUvUpUsX/fOf/9RVV11V633XlFtDztChQzV06NAat1+3bp3+8Y9/6PDhwwoMDJQkRUdHO6m6mssqKLEFnHMqDEPZBacIOQDQSOUWliqroERtg/yc/l3w888/a926dXrppZfsAs45LVq0kCSdOnVKo0aNUlpamsLCwpxaU0ZGhk6fPq34+Hjbss6dOysqKkpbt241f8hx1Jo1a9S7d2+9/PLLev/99+Xn56dbb71VM2fOlK9v9T9AZWVlKisrs70vKiqq87raBvnJwyK7oONpsSg6iPssAEBjtHx7jm2E38MipQyP0Yg+UU7b38GDB2UYhjp37nzBdpMnT1b//v112223XbBd//79qzxDqrS0VD179qxxTXl5efL29rYFrHNCQ0OVl5dX4+1cigYVcg4fPqyvv/5aPj4+Wr16tQoKCvTQQw/pp59+0pIlS6pdJyUlRTNmzHBqXeEBvkoZHqNnVu1RhWHI02LRrOHdGMUBgEbIHVMYDMO4aJs1a9Zo48aN2rVr10XbLl++XF26dLFbdvfdd9e6PndpUCGnsrJSFotFH374oQICAiRJc+fO1R133KH58+dXO5qTnJyspKQk2/uioiJFRkbWeW0j+kTpmk7Byi44peigpgQcAGik3DGFoWPHjrJYLNq/f/9522zcuFGHDh2qMrJy++236+qrr9amTZtsyyIjI9WhQwe7duc7Y3I+YWFhKi8v14kTJ+z2mZ+f7/RTZec0qEvIw8PDFRERYQs4ktSlSxcZhqEffvih2nWsVqv8/f3tXk6rL8BXce1bEXAAoBE7N4Xht5w9hSEwMFAJCQlKS0tTSUlJlc9PnDihKVOm6JtvvlFmZqbtJUnz5s0779mQSxEbG6smTZrYXb5+4MAB5eTkKC4urs73V50GNZIzYMAArVixQsXFxWrWrJkk6dtvv5WHh4cuu+wyN1cHAID7pjCkpaVpwIAB6tu3r1544QV1795dZ86c0YYNG7RgwQLt27ev2hGUqKgotW3b1uH9/fzzz8rJydGxY8cknQ0w0tkRnLCwMAUEBOjee+9VUlKSAgMD5e/vr4cfflhxcXEumXQsuTnkFBcX6+DBg7b3WVlZyszMVGBgoKKiopScnKyjR4/qvffekySNGjVKM2fO1Pjx4zVjxgwVFBToySef1D333OPwMBoAAM7ijikM7dq1086dO/XSSy/p8ccfV25uroKDgxUbG6sFCxbU+f7WrFmj8ePH297fddddkqTp06fr+eefl3R2lMjDw0O33367ysrKlJCQoPnz59d5LedjMWoyW8lJNm3apCFDhlRZPnbsWC1dulTjxo1Tdna23XnC/fv36+GHH9bmzZvVqlUr3XnnnXrxxRdrHHKKiooUEBCgwsJCp566AgA0PL/++quysrLUtm1b+fj4uLucRudC/V+b72+3juQMHjz4gjPCly5dWmVZ586dtWHDBidWBQAAzKBBTTwGAACoKUIOAAAwJUIOAAAwJUIOAAD/w43X5DRqdd3vhBwAAP6rSZMmks4+yBKuV15eLkny9PSsk+01qJsBAgDgTJ6enmrRooV+/PFHSVLTpk1lsVgushbqQmVlpY4fP66mTZvKy6tu4gkhBwCA3zh3V+BzQQeu4+HhoaioqDoLloQcAAB+w2KxKDw8XCEhITp9+rS7y2lUvL295eFRdzNpCDkAAFTD09OzzuaGwD2YeAwAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEyJkAMAAEzJrSHnq6++UmJiolq3bi2LxaJPPvmkxutu3rxZXl5e6tmzp9PqAwAADZdbQ05JSYl69OihtLQ0h9Y7ceKExowZo+uuu85JlQEAgIbOy507Hzp0qIYOHerweg888IBGjRolT09Ph0Z/AABA49Hg5uQsWbJEhw8f1vTp02vUvqysTEVFRXYvAABgfg0q5Hz33XeaMmWKPvjgA3l51WwQKiUlRQEBAbZXZGSkk6sEAAD1QYMJORUVFRo1apRmzJihTp061Xi95ORkFRYW2l5HjhxxYpUAAKC+cOucHEecPHlSO3bs0K5duzRp0iRJUmVlpQzDkJeXlz7//HNde+21VdazWq2yWq2uLhcAALhZgwk5/v7+2r17t92y+fPna+PGjVq5cqXatm3rpsoAAEB95NaQU1xcrIMHD9reZ2VlKTMzU4GBgYqKilJycrKOHj2q9957Tx4eHurWrZvd+iEhIfLx8amyHAAAwK0hZ8eOHRoyZIjtfVJSkiRp7NixWrp0qXJzc5WTk+Ou8gAAQANmMQzDcHcRrlRUVKSAgAAVFhbK39/f3eUAAIAaqM33d4O5ugoAAMARhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKhBwAAGBKbg05X331lRITE9W6dWtZLBZ98sknF2y/atUqXX/99QoODpa/v7/i4uK0fv161xQLAAAaFLeGnJKSEvXo0UNpaWk1av/VV1/p+uuv19q1a5WRkaEhQ4YoMTFRu3btcnKlAACgobEYhmG4uwhJslgsWr16tYYNG+bQeldccYVGjBihadOm1ah9UVGRAgICVFhYKH9//1pUCgAAXK02399eTq7JqSorK3Xy5EkFBgaet01ZWZnKysps74uKilxRGgAAcLMGPfH41VdfVXFxse68887ztklJSVFAQIDtFRkZ6cIKAQCAuzTYkPPRRx9pxowZ+stf/qKQkJDztktOTlZhYaHtdeTIERdWCQAA3KVBnq5atmyZJkyYoBUrVig+Pv6Cba1Wq6xWq4sqAwAA9UWDG8n5+OOPNX78eH388ce6+eab3V0OAACop9w6klNcXKyDBw/a3mdlZSkzM1OBgYGKiopScnKyjh49qvfee0/S2VNUY8eO1euvv65+/fopLy9PkuTr66uAgAC3HAMAAKif3DqSs2PHDvXq1Uu9evWSJCUlJalXr162y8Fzc3OVk5Nja//WW2/pzJkzmjhxosLDw22vRx991C31AwCA+qve3CfHVbhPDgAADU9tvr8b3JwcAACAmiDkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAAAAUyLkAHBYbmGpthwqUG5hqbtLAYDzcmvI+eqrr5SYmKjWrVvLYrHok08+ueg6mzZt0pVXXimr1aoOHTpo6dKlTq8TwP9Zvj1HA2Zv1KhF/9KA2Ru1fHuOu0sCgGq5NeSUlJSoR48eSktLq1H7rKws3XzzzRoyZIgyMzP12GOPacKECVq/fr2TKwUgnR3BSV61W5XG2feVhvTMqj2M6ACol7zcufOhQ4dq6NChNW6/cOFCtW3bVq+99pokqUuXLvr66681b948JSQkOKtMAP+VVVBiCzjnVBiGsgtOKTzA1z1FAcB5NKg5OVu3blV8fLzdsoSEBG3duvW865SVlamoqMjuBaB22gb5ycNiv8zTYlF0UFP3FAQAF9CgQk5eXp5CQ0PtloWGhqqoqEilpdUPl6ekpCggIMD2ioyMdEWpgCmFB/gqZXiMPC1nk46nxaJZw7sxigOgXnLr6SpXSE5OVlJSku19UVERQQe4BCP6ROmaTsHKLjil6KCmBBwA9VaDCjlhYWHKz8+3W5afny9/f3/5+lb/D63VapXVanVFeUCjER7gS7gB6pHcwlJlFZSobZAfv5u/0aBCTlxcnNauXWu3bMOGDYqLi3NTRQAAuNfy7Tm2qx49LFLK8BiN6BPl7rLqBbfOySkuLlZmZqYyMzMlnb1EPDMzUzk5Z++7kZycrDFjxtjaP/DAAzp8+LCeeuop7d+/X/Pnz9df/vIXTZ482R3lAwDgVtzW4cLcGnJ27NihXr16qVevXpKkpKQk9erVS9OmTZMk5ebm2gKPJLVt21afffaZNmzYoB49eui1117T22+/zeXjAIBG6UK3dYBkMQzDuHgz8ygqKlJAQIAKCwvl7+/v7nIAAKi13MJSDZi90S7oeFos+nrKENPNzanN93eDuoQcAFyBZ3OhoeC2DhfWoCYeA4CzMYkTDQ23dTg/RnIA4L+YxImGKjzAV3HtWxFw/gchBwD+i0mcgLkQcgDgv3g2F2AuhBwA+C8mcQLmwsRjAPgNJnEC5kHIAYD/wbO5AHPgdBUAADAlQg4AADAlQg4AADAlQg4AADClWk083rZtm7Zu3aq8vDxJUlhYmOLi4tS3b986LQ4AAKC2HAo5P/74o26//XZt3rxZUVFRCg0NlSTl5+dr8uTJGjBggP76178qJCTEKcUCAADUlEOnqx566CFVVFRo3759ys7O1r/+9S/961//UnZ2tvbt26fKykpNnDjRWbUCAADUmMUwDOPizc5q3ry5vvrqK/Xq1avazzMyMjR48GCdPHmyzgqsa0VFRQoICFBhYaH8/f3dXQ4AAKiB2nx/OzSSY7VaVVRUdN7PT548KavV6sgmAQAAnMKhkDNixAiNHTtWq1evtgs7RUVFWr16tcaPH6+RI0fWeZEAAACOcmji8dy5c1VZWam77rpLZ86ckbe3tySpvLxcXl5euvfee/Xqq686pVAAAABHODQn55yioiJlZGTYXUIeGxvbIOa4MCcHAICGpzbf37W6T46/v7+GDBlSm1UBAABcok7veJyfn68XXnihLjcJAABQK3UacvLy8jRjxoy63CQAAECtOHS66ptvvrng5wcOHLikYgAAAOqKQyGnZ8+eslgsqm6u8rnlFoulzooDAACoLYdCTmBgoF5++WVdd9111X6+d+9eJSYm1klhAAAAl8KhkBMbG6tjx46pTZs21X5+4sSJakd5AAAAXM2hkPPAAw+opKTkvJ9HRUVpyZIll1wUAADAparVzQAbMm4GCABAw+P0B3QCAAA0FA6drkpKSqpRu7lz59aqGAAAgLriUMjZtWuX3fuvv/5asbGx8vX1tS2rzSXkaWlpeuWVV5SXl6cePXrojTfeUN++fc/bPjU1VQsWLFBOTo6CgoJ0xx13KCUlRT4+Pg7vGwAAmJNDIefLL7+0e9+8eXN99NFHateuXa0LWL58uZKSkrRw4UL169dPqampSkhI0IEDBxQSElKl/UcffaQpU6Zo8eLF6t+/v7799luNGzdOFouFESQAAGDj9jk5c+fO1X333afx48era9euWrhwoZo2barFixdX237Lli0aMGCARo0apejoaN1www0aOXKktm3b5uLKAQBAfebWkFNeXq6MjAzFx8fblnl4eCg+Pl5bt26tdp3+/fsrIyPDFmoOHz6stWvX6qabbqq2fVlZmYqKiuxeAADA/Bw6XVXXCgoKVFFRodDQULvloaGh2r9/f7XrjBo1SgUFBRo4cKAMw9CZM2f0wAMP6Jlnnqm2fUpKCg8NBQCgEbqkB3QahqH9+/eruLjYbnn37t0vvbLz2LRpk2bNmqX58+erX79+OnjwoB599FHNnDlTU6dOrdI+OTnZ7qqwoqIiRUZGOq0+AABQP1zyAzpvueUWSfYP6KyoqKjR9oKCguTp6an8/Hy75fn5+QoLC6t2nalTp2r06NGaMGGCJCkmJkYlJSW6//779eyzz8rDw/4MnNVqldVqrfExmkVuYamyCkrUNshP4QG+F18BAACTcSjkZGVl1enOvb29FRsbq/T0dA0bNkySVFlZqfT0dE2aNKnadU6dOlUlyHh6ekoSz836r+Xbc5S8arcqDcnDIqUMj9GIPlHuLgsAAJdyKOSc78GclyIpKUljx45V79691bdvX6WmpqqkpETjx4+XJI0ZM0YRERFKSUmRJCUmJmru3Lnq1auX7XTV1KlTlZiYaAs7jVluYakt4EhSpSE9s2qPrukUzIgOAKBRqZOJx9dee62WLFlSqxA0YsQIHT9+XNOmTVNeXp569uypdevW2SYj5+Tk2I3cPPfcc7JYLHruued09OhRBQcHKzExUS+99FJdHEqDl1VQYgs451QYhrILThFyAACNikMP6FyzZk21y4cPH67XX3/dNqH31ltvrZvqnMDsD+jMLSzVgNkb7YKOp8Wir6cMIeQAABqs2nx/OxRyPDw8qkw8rrJBByYeu4PZQ450dk7OM6v2qMIw5GmxaNbwbszJAQA0aLX5/nbodFVCQoI8PT21ePFiu0cuNGnSRP/+97/VtWtXxyqGU4zoE6VrOgUru+CUooOaMoIDAGiUHLrj8d///nddd9116t27tz799FNn1YQ6EB7gq7j2rQg4AIBGy+HHOkyePFlr1qzR008/rT/+8Y86deqUM+oCAAC4JLV6dlXPnj21Y8cOWSwW9ezZk/vTAACAeqfWl5D7+vpq4cKFWrNmjb788ksFBQXVZV0AAACXxKGRnI0bN6pr1652T/K+9dZbNW/ePFmtVl1xxRX6//6//6/OiwQAAHCUQyEnNTVV9913X7WXbgUEBOiPf/yj5s6dW2fFAQAA1JZDIeff//63brzxxvN+fsMNNygjI+OSiwIAALhUDoWc/Px8NWnS5Lyfe3l56fjx45dcFAAAwKVyKORERERoz5495/38m2++UXh4+CUXBQAAcKkcCjk33XSTpk6dql9//bXKZ6WlpZo+fbpuueWWOisOAABcmtzCUm05VKDcwlJ3l+JyDj27Kj8/X1deeaU8PT01adIkXX755ZKk/fv3Ky0tTRUVFdq5c6ftCeL1UWN4dhUAANLZZxkmr9qtSkPysEgpw2Ma7LMMnf6ATkn6/vvv9eCDD2r9+vW2mwBaLBYlJCQoLS1Nbdu2dbxyFyLkAAAag9zCUg2YvVGVv/mW97RY9PWUIQ3ykT9Of0CnJLVp00Zr167VL7/8ooMHD8owDHXs2FEtW7Z0uGAAAOAcWQUldgFHkioMQ9kFpxpkyKmNWt/xuGXLlurTp09d1gIAAOpI2yA/eVhUZSQnOqip+4pysVo9uwoAANRv4QG+ShkeI0+LRdLZgDNreLdGM4ojXcJIDgAAqN9G9InSNZ2ClV1wStFBTRtVwJEIOQAAmFp4gG+jCzfncLoKAACYEiEHAACYEiEHAACYEiEHAACYEiEHAACYEiEHAACYEiEHAACYEiEHAACYEiEHAACYEiEHAACYEiEHAACYEiEHAACYUr0IOWlpaYqOjpaPj4/69eunbdu2XbD9iRMnNHHiRIWHh8tqtapTp05au3ati6oFAAANgdufQr58+XIlJSVp4cKF6tevn1JTU5WQkKADBw4oJCSkSvvy8nJdf/31CgkJ0cqVKxUREaHvv/9eLVq0cH3xAACg3rIYhmG4s4B+/fqpT58+evPNNyVJlZWVioyM1MMPP6wpU6ZUab9w4UK98sor2r9/v5o0aeLw/oqKihQQEKDCwkL5+/tfcv0AAMD5avP97dbTVeXl5crIyFB8fLxtmYeHh+Lj47V169Zq11mzZo3i4uI0ceJEhYaGqlu3bpo1a5YqKiqqbV9WVqaioiK7FwAAMD+3hpyCggJVVFQoNDTUbnloaKjy8vKqXefw4cNauXKlKioqtHbtWk2dOlWvvfaaXnzxxWrbp6SkKCAgwPaKjIys8+MAAAD1T72YeOyIyspKhYSE6K233lJsbKxGjBihZ599VgsXLqy2fXJysgoLC22vI0eOuLhiAADgDm6deBwUFCRPT0/l5+fbLc/Pz1dYWFi164SHh6tJkyby9PS0LevSpYvy8vJUXl4ub29vu/ZWq1VWq7XuiwcAAPWaW0dyvL29FRsbq/T0dNuyyspKpaenKy4urtp1BgwYoIMHD6qystK27Ntvv1V4eHiVgAMAABovt5+uSkpK0qJFi/Tuu+9q3759evDBB1VSUqLx48dLksaMGaPk5GRb+wcffFA///yzHn30UX377bf67LPPNGvWLE2cONFdhwAAAOoht98nZ8SIETp+/LimTZumvLw89ezZU+vWrbNNRs7JyZGHx/9lscjISK1fv16TJ09W9+7dFRERoUcffVRPP/20uw4BAADUQ26/T46rcZ8cAAAangZ3nxwAAABnIeQAAABTIuQAqFZuYam2HCpQbmGpu0sBgFpx+8RjAPXP8u05Sl61W5WG5GGRUobHaESfKHeXBQAOYSQHMDlHR2RyC0ttAUeSKg3pmVV7GNEB0OAwkgOYWG1GZLIKSmwB55wKw1B2wSmFB/g6sVoAqFuM5AAmVdsRmbZBfvKw2C/ztFgUHdTUSZUCgHMQcgCTutCIzIWEB/gqZXiMPC1nk46nxaJZw7sxigOgweF0FWBS50Zkfht0ajoiM6JPlK7pFKzsglOKDmpKwAHQIDGSA5jUpY7IhAf4Kq59KwIOgAaLkRzAxBiRAdCYEXIAkwsP8CXcAGiUOF0FAABMiZADAABMiZADAABMiZADAABMiZADAABMiZADAABMiZADAABMiZADAABMiZADAABMiZADAABMiZADAABMiZADAABMiZADAABMiZADAABMiZADAABMiZADAABMiZADAABMiZADAABMiZADAABMqV6EnLS0NEVHR8vHx0f9+vXTtm3barTesmXLZLFYNGzYMOcWCAAAGhy3h5zly5crKSlJ06dP186dO9WjRw8lJCToxx9/vOB62dnZeuKJJ3T11Ve7qFIAANCQuD3kzJ07V/fdd5/Gjx+vrl27auHChWratKkWL1583nUqKip09913a8aMGWrXrp0Lq4WjcgtLteVQgXILS91dCgCgkXFryCkvL1dGRobi4+Ntyzw8PBQfH6+tW7eed70XXnhBISEhuvfeey+6j7KyMhUVFdm94BrLt+dowOyNGrXoXxowe6OWb89xd0kAgEbErSGnoKBAFRUVCg0NtVseGhqqvLy8atf5+uuv9c4772jRokU12kdKSooCAgJsr8jIyEuuGxeXW1iq5FW7VWmcfV9pSM+s2sOIDgDAZdx+usoRJ0+e1OjRo7Vo0SIFBQXVaJ3k5GQVFhbaXkeOHHFylZCkrIISW8A5p8IwlF1wyj0FAQAaHS937jwoKEienp7Kz8+3W56fn6+wsLAq7Q8dOqTs7GwlJiballVWVkqSvLy8dODAAbVv395uHavVKqvV6oTqcSFtg/zkYZFd0PG0WBQd1NR9RQEAGhW3juR4e3srNjZW6enptmWVlZVKT09XXFxclfadO3fW7t27lZmZaXvdeuutGjJkiDIzMzkVVY+EB/gqZXiMPC0WSWcDzqzh3RQe4OvmygAAjYVbR3IkKSkpSWPHjlXv3r3Vt29fpaamqqSkROPHj5ckjRkzRhEREUpJSZGPj4+6detmt36LFi0kqcpyuN+IPlG6plOwsgtOKTqoKQEHAOBSbg85I0aM0PHjxzVt2jTl5eWpZ8+eWrdunW0yck5Ojjw8GtTUIfxGeIAv4aaRyS0sVVZBidoG+fF3D8CtLIZhGBdvZh5FRUUKCAhQYWGh/P393V0OYCrLt+fYrqrzsEgpw2M0ok+Uu8sCYAK1+f5miARAneC2AQDqG0IOgDrBbQMA1DeEHAB14txtA36L2wYAcCdCDoA6wW0DANQ3br+6CoB5cNsAAPUJIQdAneK2AQDqC05XAQAAUyLkAAAAUyLkAG6QW1iqLYcKuIcMADgRc3IAF+OuwADgGozkAC7EXYEBwHUIOYALcVdgAHAdQg7gQtwVGABch5ADuBB3BQYA12HiMeBi3BUYAFyDkAO4AXcFBgDn43QVAAAwJUIOAAAwJUIOAAAwJUKOSfHYAABAY8fEYxPisQEAADCSYzo8NgAAgLMIOSbDYwMAADiLkGMyPDYAAICzCDkmw2MDAAA4i4nHJsRjAwAAIOSYFo8NAAA0dpyuAgAApkTIAQCgnuBGrnWL01UAANQD3Mi17jGSAwCAm3EjV+eoFyEnLS1N0dHR8vHxUb9+/bRt27bztl20aJGuvvpqtWzZUi1btlR8fPwF2wMAUN9xI1fncHvIWb58uZKSkjR9+nTt3LlTPXr0UEJCgn788cdq22/atEkjR47Ul19+qa1btyoyMlI33HCDjh496uLKAQCNgSvmyXAjV+ewGIZhXLyZ8/Tr1099+vTRm2++KUmqrKxUZGSkHn74YU2ZMuWi61dUVKhly5Z68803NWbMmIu2LyoqUkBAgAoLC+Xv73/J9QMAzMuV82SWb8/RM6v2qMIwbDdyZU7O/6nN97dbJx6Xl5crIyNDycnJtmUeHh6Kj4/X1q1ba7SNU6dO6fTp0woMDKz287KyMpWVldneFxUVXVrRAEwht7BUWQUlahvkxz2lUK3zzZO5plOwU35muJFr3XNryCkoKFBFRYVCQ0PtloeGhmr//v012sbTTz+t1q1bKz4+vtrPU1JSNGPGjEuuFYB5cBULauJC82ScFUC4kWvdcvucnEsxe/ZsLVu2TKtXr5aPj0+1bZKTk1VYWGh7HTlyxMVVAqhPuIoFNcU8mYbPrSEnKChInp6eys/Pt1uen5+vsLCwC6776quvavbs2fr888/VvXv387azWq3y9/e3ewFovLiKBTXFA48bPreervL29lZsbKzS09M1bNgwSWcnHqenp2vSpEnnXe/ll1/WSy+9pPXr16t3794uqhaAGZz73/lvgw7/O8f5ME+mYXP76aqkpCQtWrRI7777rvbt26cHH3xQJSUlGj9+vCRpzJgxdhOT58yZo6lTp2rx4sWKjo5WXl6e8vLyVFxc7K5DANCA8L9zOCo8wFdx7VvxM9IAuf2xDiNGjNDx48c1bdo05eXlqWfPnlq3bp1tMnJOTo48PP4viy1YsEDl5eW644477LYzffp0Pf/8864sHUADxf/OgcbB7ffJcTXukwMAQMNTm+9vt5+uAgAAcAZCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCVCDgDAaXILS7XlUIFyC0vdXQpcpD79nXu5uwAAgDkt356j5FW7VWlIHhYpZXiMRvSJcndZcKL69nfOSA4AoM7lFpbavuwkqdKQnlm1p1787x7OUR//zgk5AIA6l1VQYvuyO6fCMJRdcMo9BcHp6uPfOSEHAFDn2gb5ycNiv8zTYlF0UFP3FASnq49/54QcAECdCw/wVcrwGHlazn7reVosmjW8m8IDfN1cGZylPv6dWwzDMC7ezDyKiooUEBCgwsJC+fv7u7scADC13MJSZRecUnRQUwJOI+Gsv/PafH9zdRUAwGnCA3wJN41Mffo753QVAAAwJUIOAAAwJUIOAAAwJUIOAAAwJUIOAAAwJUIOAJepTw/uA2B+XEIOwCXq24P7AJgfIzkAnK4+PrgPgPkRcgA4XX18cB8A8yPkAHC6+vjgPsCZmH9WPxByUCP8wuJS1McH9wHOsnx7jgbM3qhRi/6lAbM3avn2HHeX1GjVi5CTlpam6Oho+fj4qF+/ftq2bdsF269YsUKdO3eWj4+PYmJitHbtWhdV2jjxC4u6MKJPlL6eMkQf33eVvp4yhEnHMCXmn9Uvbg85y5cvV1JSkqZPn66dO3eqR48eSkhI0I8//lht+y1btmjkyJG69957tWvXLg0bNkzDhg3Tnj17XFx548AvLOpSeICv4tq3YgQHpsX8s/rF7SFn7ty5uu+++zR+/Hh17dpVCxcuVNOmTbV48eJq27/++uu68cYb9eSTT6pLly6aOXOmrrzySr355psurrxx4BcWAGqO+Wf1i1tDTnl5uTIyMhQfH29b5uHhofj4eG3durXadbZu3WrXXpISEhLO276srExFRUV2L9Qcv7AAUHPMP6tf3HozwIKCAlVUVCg0NNRueWhoqPbv31/tOnl5edW2z8vLq7Z9SkqKZsyYUTcFN0LnfmGfWbVHFYbBLywAXMSIPlG6plOwsgtOKTqoKf9eupHp73icnJyspKQk2/uioiJFRka6saKGh19YAHBMeIAv/1bWA24NOUFBQfL09FR+fr7d8vz8fIWFhVW7TlhYmEPtrVarrFZr3RTciPELCwBoaNw6J8fb21uxsbFKT0+3LausrFR6erri4uKqXScuLs6uvSRt2LDhvO0BAEDj5PbTVUlJSRo7dqx69+6tvn37KjU1VSUlJRo/frwkacyYMYqIiFBKSook6dFHH9WgQYP02muv6eabb9ayZcu0Y8cOvfXWW+48DAAAUM+4PeSMGDFCx48f17Rp05SXl6eePXtq3bp1tsnFOTk58vD4vwGn/v3766OPPtJzzz2nZ555Rh07dtQnn3yibt26uesQAABAPWQxDMO4eDPzKCoqUkBAgAoLC+Xv7+/ucgAAQA3U5vvb7TcDBAAAcAZCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCVCDgAAMCW33wzQ1c7dFqioqMjNlQAAgJo6973tyO39Gl3IOXnypCTxJHIAABqgkydPKiAgoEZtG90djysrK3Xs2DE1b95cFoul2jZFRUWKjIzUkSNHuCuy6I/q0Cf26I+q6BN79Ic9+qOqi/WJYRg6efKkWrdubfe4pwtpdCM5Hh4euuyyy2rU1t/fnx++36A/qqJP7NEfVdEn9ugPe/RHVRfqk5qO4JzDxGMAAGBKhBwAAGBKhJxqWK1WTZ8+XVar1d2l1Av0R1X0iT36oyr6xB79YY/+qMoZfdLoJh4DAIDGgZEcAABgSoQcAABgSoQcAABgSoQcAABgSo025KSlpSk6Olo+Pj7q16+ftm3bdt62e/fu1e23367o6GhZLBalpqa6rlAXcaQ/Fi1apKuvvlotW7ZUy5YtFR8ff8H2DZUjfbJq1Sr17t1bLVq0kJ+fn3r27Kn333/fhdU6nyP98VvLli2TxWLRsGHDnFugGzjSJ0uXLpXFYrF7+fj4uLBa53P0Z+TEiROaOHGiwsPDZbVa1alTJ61du9ZF1TqfI/0xePDgKj8fFotFN998swsrdj5Hf0ZSU1N1+eWXy9fXV5GRkZo8ebJ+/fXXmu/QaISWLVtmeHt7G4sXLzb27t1r3HfffUaLFi2M/Pz8attv27bNeOKJJ4yPP/7YCAsLM+bNm+fagp3M0f4YNWqUkZaWZuzatcvYt2+fMW7cOCMgIMD44YcfXFy58zjaJ19++aWxatUq4z//+Y9x8OBBIzU11fD09DTWrVvn4sqdw9H+OCcrK8uIiIgwrr76auO2225zTbEu4mifLFmyxPD39zdyc3Ntr7y8PBdX7TyO9kdZWZnRu3dv46abbjK+/vprIysry9i0aZORmZnp4sqdw9H++Omnn+x+Nvbs2WN4enoaS5YscW3hTuRon3z44YeG1Wo1PvzwQyMrK8tYv369ER4ebkyePLnG+2yUIadv377GxIkTbe8rKiqM1q1bGykpKRddt02bNqYLOZfSH4ZhGGfOnDGaN29uvPvuu84q0eUutU8MwzB69eplPPfcc84oz+Vq0x9nzpwx+vfvb7z99tvG2LFjTRdyHO2TJUuWGAEBAS6qzvUc7Y8FCxYY7dq1M8rLy11Voktd6r8h8+bNM5o3b24UFxc7q0SXc7RPJk6caFx77bV2y5KSkowBAwbUeJ+N7nRVeXm5MjIyFB8fb1vm4eGh+Ph4bd261Y2VuUdd9MepU6d0+vRpBQYGOqtMl7rUPjEMQ+np6Tpw4ICuueYaZ5bqErXtjxdeeEEhISG69957XVGmS9W2T4qLi9WmTRtFRkbqtttu0969e11RrtPVpj/WrFmjuLg4TZw4UaGhoerWrZtmzZqliooKV5XtNHXx7+o777yju+66S35+fs4q06Vq0yf9+/dXRkaG7ZTW4cOHtXbtWt1000013m+je0BnQUGBKioqFBoaarc8NDRU+/fvd1NV7lMX/fH000+rdevWdj+8DVlt+6SwsFAREREqKyuTp6en5s+fr+uvv97Z5Tpdbfrj66+/1jvvvKPMzEwXVOh6temTyy+/XIsXL1b37t1VWFioV199Vf3799fevXtr/NDg+qo2/XH48GFt3LhRd999t9auXauDBw/qoYce0unTpzV9+nRXlO00l/rv6rZt27Rnzx698847zirR5WrTJ6NGjVJBQYEGDhwowzB05swZPfDAA3rmmWdqvN9GF3JQt2bPnq1ly5Zp06ZNpptE6ajmzZsrMzNTxcXFSk9PV1JSktq1a6fBgwe7uzSXOnnypEaPHq1FixYpKCjI3eXUG3FxcYqLi7O979+/v7p06aI///nPmjlzphsrc4/KykqFhITorbfekqenp2JjY3X06FG98sorDT7kXKp33nlHMTEx6tu3r7tLcatNmzZp1qxZmj9/vvr166eDBw/q0Ucf1cyZMzV16tQabaPRhZygoCB5enoqPz/fbnl+fr7CwsLcVJX7XEp/vPrqq5o9e7a++OILde/e3ZllulRt+8TDw0MdOnSQJPXs2VP79u1TSkpKgw85jvbHoUOHlJ2drcTERNuyyspKSZKXl5cOHDig9u3bO7doJ6uLf0eaNGmiXr166eDBg84o0aVq0x/h4eFq0qSJPD09bcu6dOmivLw8lZeXy9vb26k1O9Ol/HyUlJRo2bJleuGFF5xZosvVpk+mTp2q0aNHa8KECZKkmJgYlZSU6P7779ezzz4rD4+Lz7hpdHNyvL29FRsbq/T0dNuyyspKpaen2/0vq7GobX+8/PLLmjlzptatW6fevXu7olSXqaufkcrKSpWVlTmjRJdytD86d+6s3bt3KzMz0/a69dZbNWTIEGVmZioyMtKV5TtFXfyMVFRUaPfu3QoPD3dWmS5Tm/4YMGCADh48aAvAkvTtt98qPDy8QQcc6dJ+PlasWKGysjL94Q9/cHaZLlWbPjl16lSVIHMuFBs1fexmLSZIN3jLli0zrFarsXTpUuM///mPcf/99xstWrSwXc45evRoY8qUKbb2ZWVlxq5du4xdu3YZ4eHhxhNPPGHs2rXL+O6779x1CHXK0f6YPXu24e3tbaxcudLukseTJ0+66xDqnKN9MmvWLOPzzz83Dh06ZPznP/8xXn31VcPLy8tYtGiRuw6hTjnaH//LjFdXOdonM2bMMNavX28cOnTIyMjIMO666y7Dx8fH2Lt3r7sOoU452h85OTlG8+bNjUmTJhkHDhwwPv30UyMkJMR48cUX3XUIdaq2vzMDBw40RowY4epyXcLRPpk+fbrRvHlz4+OPPzYOHz5sfP7550b79u2NO++8s8b7bJQhxzAM44033jCioqIMb29vo2/fvsY///lP22eDBg0yxo4da3uflZVlSKryGjRokOsLdxJH+qNNmzbV9sf06dNdX7gTOdInzz77rNGhQwfDx8fHaNmypREXF2csW7bMDVU7jyP98b/MGHIMw7E+eeyxx2xtQ0NDjZtuusnYuXOnG6p2Hkd/RrZs2WL069fPsFqtRrt27YyXXnrJOHPmjIurdh5H+2P//v2GJOPzzz93caWu40ifnD592nj++eeN9u3bGz4+PkZkZKTx0EMPGb/88kuN92cxjJqO+QAAADQcjW5ODgAAaBwIOQAAwJQIOQAAwJQIOQAAwJQIOQAAwJQIOQAAwJQIOQAAwJQIOQDgROPGjdOwYcPcXQbQKBFygEZq3LhxslgstlerVq1044036ptvvnF3aXXit8d27jVw4ECn7S87O1sWi0WZmZl2y19//XUtXbrUafsFcH6EHKARu/HGG5Wbm6vc3Fylp6fLy8tLt9xyi7vLqjNLliyxHV9ubq7WrFlTbbvTp087rYaAgAC1aNHCadsHcH6EHKARs1qtCgsLU1hYmHr27KkpU6boyJEjOn78uK699lpNmjTJrv3x48fl7e1te5JwdHS0Zs6cqZEjR8rPz08RERFKS0uzW2fu3LmKiYmRn5+fIiMj9dBDD6m4uNj2+ffff6/ExES1bNlSfn5+uuKKK7R27VpJ0i+//KK7775bwcHB8vX1VceOHbVkyZIaH1+LFi1sxxcWFqbAwEDbiMvy5cs1aNAg+fj46MMPP9RPP/2kkSNHKiIiQk2bNlVMTIw+/vhju+1VVlbq5ZdfVocOHWS1WhUVFaWXXnpJktS2bVtJUq9evWSxWDR48GBJVU9XlZWV6ZFHHlFISIh8fHw0cOBAbd++3fb5pk2bZLFYlJ6ert69e6tp06bq37+/Dhw4UOPjBnAWIQeAJKm4uFgffPCBOnTooFatWmnChAn66KOPVFZWZmvzwQcfKCIiQtdee61t2SuvvKIePXpo165dmjJlih599FFt2LDB9rmHh4f+9Kc/ae/evXr33Xe1ceNGPfXUU7bPJ06cqLKyMn311VfavXu35syZo2bNmkmSpk6dqv/85z/6+9//rn379mnBggUKCgqqk+M9V+u+ffuUkJCgX3/9VbGxsfrss8+0Z88e3X///Ro9erS2bdtmWyc5OVmzZ8+21fXRRx8pNDRUkmztvvjiC+Xm5mrVqlXV7vepp57SX//6V7377rvauXOnOnTooISEBP3888927Z599lm99tpr2rFjh7y8vHTPPffUyXEDjUqdPVoUQIMyduxYw9PT0/Dz8zP8/PwMSUZ4eLiRkZFhGIZhlJaWGi1btjSWL19uW6d79+7G888/b3vfpk0b48Ybb7Tb7ogRI4yhQ4eed78rVqwwWrVqZXsfExNjt83fSkxMNMaPH1+r45Nk+Pj42I7Pz8/PWL16tZGVlWVIMlJTUy+6jZtvvtl4/PHHDcMwjKKiIsNqtRqLFi2qtu257e7atctu+W+fwF5cXGw0adLE+PDDD22fl5eXG61btzZefvllwzAM48svvzQkGV988YWtzWeffWZIMkpLSx3pAqDRYyQHaMSGDBmizMxMZWZmatu2bUpISNDQoUP1/fffy8fHR6NHj9bixYslSTt37tSePXs0btw4u23ExcVVeb9v3z7b+y+++ELXXXedIiIi1Lx5c40ePVo//fSTTp06JUl65JFH9OKLL2rAgAGaPn263cTnBx98UMuWLVPPnj311FNPacuWLQ4d37x582zHl5mZqeuvv972We/eve3aVlRUaObMmYqJiVFgYKCaNWum9evXKycnR5K0b98+lZWV6brrrnOoht86dOiQTp8+rQEDBtiWNWnSRH379rXrM0nq3r277c/h4eGSpB9//LHW+wYaI0IO0Ij5+fmpQ4cO6tChg/r06aO3335bJSUlWrRokSRpwoQJ2rBhg3744QctWbJE1157rdq0aVPj7WdnZ+uWW25R9+7d9de//lUZGRm2OTvl5eW2fRw+fFijR4/W7t271bt3b73xxhuSZAtckydP1rFjx3TdddfpiSeeqPH+w8LCbMfXoUMH+fn52R37b73yyit6/fXX9fTTT+vLL79UZmamEhISbHX6+vrWeL91oUmTJrY/WywWSWfnBAGoOUIOABuLxSIPDw+VlpZKkmJiYtS7d28tWrRIH330UbXzQv75z39Wed+lSxdJUkZGhiorK/Xaa6/pqquuUqdOnXTs2LEq24iMjNQDDzygVatW6fHHH7eFLEkKDg7W2LFj9cEHHyg1NVVvvfVWXR6yzebNm3XbbbfpD3/4g3r06KF27drp22+/tX3esWNH+fr62iZd/y9vb29JZ0eEzqd9+/by9vbW5s2bbctOnz6t7du3q2vXrnV0JADO8XJ3AQDcp6ysTHl5eZLOXsn05ptvqri4WImJibY2EyZM0KRJk+Tn56ff/e53VbaxefNmvfzyyxo2bJg2bNigFStW6LPPPpMkdejQQadPn9Ybb7yhxMREbd68WQsXLrRb/7HHHtPQoUPVqVMn/fLLL/ryyy9tIWnatGmKjY3VFVdcobKyMn366ae2z+pax44dtXLlSm3ZskUtW7bU3LlzlZ+fbwsfPj4+evrpp/XUU0/J29tbAwYM0PHjx7V3717de++9CgkJka+vr9atW6fLLrtMPj4+CggIsNuHn5+fHnzwQT355JMKDAxUVFSUXn75ZZ06dUr33nuvU44LaMwYyQEasXXr1ik8PFzh4eHq16+ftm/frhUrVtguf5akkSNHysvLSyNHjpSPj0+VbTz++OPasWOHevXqpRdffFFz585VQkKCJKlHjx6aO3eu5syZo27duunDDz9USkqK3foVFRWaOHGiunTpohtvvFGdOnXS/PnzJZ0dHUlOTlb37t11zTXXyNPTU8uWLXNKXzz33HO68sorlZCQoMGDByssLKzKnYqnTp2qxx9/XNOmTVOXLl00YsQI2zwZLy8v/elPf9Kf//xntW7dWrfddlu1+5k9e7Zuv/12jR49WldeeaUOHjyo9evXq2XLlk45LqAxsxiGYbi7CAD1V3Z2ttq3b6/t27fryiuvtPssOjpajz32mB577DH3FAcAF8DpKgDVOn36tH766Sc999xzuuqqq6oEHACo7zhdBaBamzdvVnh4uLZv315lHo27zZo1S82aNav2NXToUHeXB6Ce4HQVgAbn559/rnKH4HN8fX0VERHh4ooA1EeEHAAAYEqcrgIAAKZEyAEAAKZEyAEAAKZEyAEAAKZEyAEAAKZEyAEAAKZEyAEAAKZEyAEAAKb0/wNPaVpMVv3QpAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_44.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVxUlEQVR4nO3de1hU9do//vdwmkGUGQlhBkNBxTOKqRCmoklhmluy/U2J7YEHo4NuM+2gbRU7bDG1dFuW5S7tyhNZPtWjphLmdquEBJqKxlbD1GJQRAYRRJy5f3/4c+1G8ACyGA7v13WtC1nrXmvd87nMebfmM2tpRERARERERLXOydENEBERETVWDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUMWkTU5M2dOxcajeaOajUaDebOnatqP4MGDcKgQYPq7fGI6M4xaBFRvbFq1SpoNBplcXFxQevWrTFhwgT89ttvjm6v3gkICLAbLx8fHwwYMAD/+7//WyvHLy0txdy5c7Fz585aOR5RU8SgRUT1zuuvv47PPvsMy5cvxyOPPILVq1cjIiICly9fVuV8s2bNQllZmSrHVltISAg+++wzfPbZZ3jxxRfx+++/Y9SoUVi+fPldH7u0tBSvvfYagxbRXXBxdANERDd65JFH0KdPHwDAxIkT4e3tjbfeegvffPMNnnjiiVo/n4uLC1xcGuY/h61bt8Zf/vIX5fdx48ahQ4cOWLx4MZ555hkHdkZEAK9oEVEDMGDAAADAiRMn7Nb//PPP+POf/wwvLy/odDr06dMH33zzjV1NRUUFXnvtNQQFBUGn0+Gee+5B//79kZKSotRUNUervLwcL7zwAlq1aoUWLVrgT3/6E86cOVOptwkTJiAgIKDS+qqOuXLlSjz44IPw8fGBVqtF165d8cEHH1RrLG7HaDSiS5cuyM3NvWXd2bNnER8fD19fX+h0OvTs2ROffvqpsv3kyZNo1aoVAOC1115TPp5Ue34aUWPTMP8XjoialJMnTwIAWrZsqazLzs7GAw88gNatW2PGjBnw8PDA559/jujoaHz55Zd47LHHAFwLPElJSZg4cSJCQ0NRXFyMH3/8EVlZWXjooYdues6JEydi9erVePLJJ9GvXz/s2LEDw4cPv6vX8cEHH6Bbt27405/+BBcXF/zf//0fnnvuOdhsNkyaNOmujn1dRUUFTp8+jXvuueemNWVlZRg0aBCOHz+OyZMnIzAwEBs2bMCECRNQVFSE559/Hq1atcIHH3yAZ599Fo899hhGjRoFAOjRo0et9EnUZAgRUT2xcuVKASDfffednDt3Tk6fPi1ffPGFtGrVSrRarZw+fVqpHTJkiAQHB8vly5eVdTabTfr16ydBQUHKup49e8rw4cNved7ExET54z+HBw4cEADy3HPP2dU9+eSTAkASExOVdePHj5e2bdve9pgiIqWlpZXqoqKipF27dnbrIiIiJCIi4pY9i4i0bdtWHn74YTl37pycO3dOfvrpJxkzZowAkL/+9a83Pd6SJUsEgKxevVpZd+XKFQkPD5fmzZtLcXGxiIicO3eu0uslourhR4dEVO9ERkaiVatW8Pf3x5///Gd4eHjgm2++wb333gsAKCwsxI4dO/DEE0/g4sWLKCgoQEFBAc6fP4+oqCgcO3ZM+ZaiwWBAdnY2jh07dsfn37JlCwBgypQpduunTp16V6/L3d1d+bPFYkFBQQEiIiLwyy+/wGKx1OiY27dvR6tWrdCqVSv07NkTGzZswNixY/HWW2/ddJ8tW7bAaDQiJiZGWefq6oopU6agpKQE//rXv2rUCxFVxo8OiajeWbZsGTp27AiLxYJPPvkEu3btglarVbYfP34cIoLZs2dj9uzZVR7j7NmzaN26NV5//XWMHDkSHTt2RPfu3TF06FCMHTv2lh+B/frrr3ByckL79u3t1nfq1OmuXteePXuQmJiItLQ0lJaW2m2zWCzQ6/XVPmZYWBjefPNNaDQaNGvWDF26dIHBYLjlPr/++iuCgoLg5GT//9pdunRRthNR7WDQIqJ6JzQ0VPnWYXR0NPr3748nn3wSOTk5aN68OWw2GwDgxRdfRFRUVJXH6NChAwBg4MCBOHHiBL7++mts374d//znP7F48WIsX74cEydOvOteb3ajU6vVavf7iRMnMGTIEHTu3BnvvPMO/P394ebmhi1btmDx4sXKa6oub29vREZG1mhfIlIfgxYR1WvOzs5ISkrC4MGD8d5772HGjBlo164dgGsfd91JyPDy8kJcXBzi4uJQUlKCgQMHYu7cuTcNWm3btoXNZsOJEyfsrmLl5ORUqm3ZsiWKiooqrb/xqtD//d//oby8HN988w3atGmjrP/+++9v239ta9u2LQ4ePAibzWZ3Vevnn39WtgM3D5FEdOc4R4uI6r1BgwYhNDQUS5YsweXLl+Hj44NBgwbhww8/RF5eXqX6c+fOKX8+f/683bbmzZujQ4cOKC8vv+n5HnnkEQDA0qVL7dYvWbKkUm379u1hsVhw8OBBZV1eXl6lu7M7OzsDAEREWWexWLBy5cqb9qGWYcOGwWw2Izk5WVl39epVvPvuu2jevDkiIiIAAM2aNQOAKoMkEd0ZXtEiogbhpZdewv/7f/8Pq1atwjPPPINly5ahf//+CA4OxlNPPYV27dohPz8faWlpOHPmDH766ScAQNeuXTFo0CD07t0bXl5e+PHHH/HFF19g8uTJNz1XSEgIYmJi8P7778NisaBfv35ITU3F8ePHK9WOGTMGr7zyCh577DFMmTIFpaWl+OCDD9CxY0dkZWUpdQ8//DDc3NwwYsQIPP300ygpKcGKFSvg4+NTZVhUU0JCAj788ENMmDABmZmZCAgIwBdffIE9e/ZgyZIlaNGiBYBrk/e7du2K5ORkdOzYEV5eXujevTu6d+9ep/0SNWiO/tojEdF112/vkJGRUWmb1WqV9u3bS/v27eXq1asiInLixAkZN26cGI1GcXV1ldatW8ujjz4qX3zxhbLfm2++KaGhoWIwGMTd3V06d+4sf//73+XKlStKTVW3YigrK5MpU6bIPffcIx4eHjJixAg5ffp0lbc72L59u3Tv3l3c3NykU6dOsnr16iqP+c0330iPHj1Ep9NJQECAvPXWW/LJJ58IAMnNzVXqqnN7h9vduuJmx8vPz5e4uDjx9vYWNzc3CQ4OlpUrV1bad+/evdK7d29xc3PjrR6IakAj8ofr2ERERERUazhHi4iIiEglDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEt6w1IFsNht+//13tGjRgo+6ICIiaiBEBBcvXoSfn1+lh7PfiEHLgX7//Xf4+/s7ug0iIiKqgdOnT+Pee++9ZQ2DlgNdf8zF6dOn4enp6eBuiIiI6E4UFxfD399feR+/FQYtB7r+caGnpyeDFhERUQNzJ9N+OBmeiIiISCUMWkREREQqYdAiIiIiUkm9CFrLli1DQEAAdDodwsLCsG/fvlvWb9iwAZ07d4ZOp0NwcDC2bNlit11EMGfOHJhMJri7uyMyMhLHjh2zqyksLERsbCw8PT1hMBgQHx+PkpISZXtOTg4GDx4MX19f6HQ6tGvXDrNmzUJFRYVSs2rVKmg0GrtFp9PVwojYs1qtuHz5Mpc7WKxWa62PPxERUU05fDJ8cnIypk2bhuXLlyMsLAxLlixBVFQUcnJy4OPjU6l+7969iImJQVJSEh599FGsXbsW0dHRyMrKQvfu3QEACxYswNKlS/Hpp58iMDAQs2fPRlRUFI4cOaIEodjYWOTl5SElJQUVFRWIi4tDQkIC1q5dCwBwdXXFuHHjcN9998FgMOCnn37CU089BZvNhnnz5in9eHp6IicnR/m9Nu+HJSIwm80oKiqqtWM2BQaDAUajkfcmIyIih9OIiDiygbCwMPTt2xfvvfcegGs38fT398df//pXzJgxo1L96NGjcenSJWzatElZd//99yMkJATLly+HiMDPzw/Tp0/Hiy++CACwWCzw9fXFqlWrMGbMGBw9ehRdu3ZFRkYG+vTpAwDYunUrhg0bhjNnzsDPz6/KXqdNm4aMjAz8+9//BnDtitbUqVNrHISKi4uh1+thsViq/NZhXl4eioqK4OPjg2bNmjE43IaIoLS0FGfPnoXBYIDJZHJ0S0RE1Ajd7v37jxx6RevKlSvIzMzEzJkzlXVOTk6IjIxEWlpalfukpaVh2rRpduuioqLw1VdfAQByc3NhNpsRGRmpbNfr9QgLC0NaWhrGjBmDtLQ0GAwGJWQBQGRkJJycnJCeno7HHnus0nmPHz+OrVu3YtSoUXbrS0pK0LZtW9hsNtx3332YN28eunXrVmXv5eXlKC8vV34vLi6+ychc+7jwesi65557blpH9tzd3QEAZ8+ehY+PD5ydnR3cERERNWUOnaNVUFAAq9UKX19fu/W+vr4wm81V7mM2m29Zf/3n7Wpu/FjSxcUFXl5elc7br18/6HQ6BAUFYcCAAXj99deVbZ06dcInn3yCr7/+GqtXr4bNZkO/fv1w5syZKntPSkqCXq9XllvdFf76XLBmzZrdtIaqdn3M/jifjoiIyBHqxWT4+iw5ORlZWVlYu3YtNm/ejEWLFinbwsPDMW7cOISEhCAiIgIbN25Eq1at8OGHH1Z5rJkzZ8JisSjL6dOnb3t+flxYfRwzIiKqLxz60aG3tzecnZ2Rn59vtz4/Px9Go7HKfYxG4y3rr//Mz8+3m6OTn5+PkJAQpebs2bN2x7h69SoKCwsrnff6VaeuXbvCarUiISEB06dPr/IjKVdXV/Tq1QvHjx+vsnetVgutVlvlNiIiImp8HHpFy83NDb1790ZqaqqyzmazITU1FeHh4VXuEx4eblcPACkpKUp9YGAgjEajXU1xcTHS09OVmvDwcBQVFSEzM1Op2bFjB2w2G8LCwm7ar81mQ0VFBWw2W5XbrVYrDh06xEnYREREdI042Pr160Wr1cqqVavkyJEjkpCQIAaDQcxms4iIjB07VmbMmKHU79mzR1xcXGTRokVy9OhRSUxMFFdXVzl06JBSM3/+fDEYDPL111/LwYMHZeTIkRIYGChlZWVKzdChQ6VXr16Snp4uu3fvlqCgIImJiVG2r169WpKTk+XIkSNy4sQJSU5OFj8/P4mNjVVqXnvtNdm2bZucOHFCMjMzZcyYMaLT6SQ7O/uOXrvFYhEAYrFYKm0rKyuTI0eO2PXckOTl5cnkyZMlMDBQ3Nzc5N5775VHH31UvvvuOxERadu2rSxevLjSfomJidKzZ88qj7lu3ToBICNHjrzluRv62BERNXS/F5XKnuPn5PeiUke3oopbvX/fyOH30Ro9ejTOnTuHOXPmwGw2IyQkBFu3blUms586dQpOTv+98NavXz+sXbsWs2bNwquvvoqgoCB89dVXyj20AODll1/GpUuXkJCQgKKiIvTv3x9bt261u5nomjVrMHnyZAwZMgROTk54/PHHsXTpUmW7i4sL3nrrLfznP/+BiKBt27aYPHkyXnjhBaXmwoULeOqpp2A2m9GyZUv07t0be/fuRdeuXdUcsnrv5MmTeOCBB2AwGLBw4UIEBwejoqIC27Ztw6RJk/Dzzz/X6JgvvvgiBgwYoELHRERUW5IzTmHmxkOwCeCkAZJGBWN03zaObsthHH4frabsVvfhuHz5MnJzcxEYGKjK3ebVNGzYMBw8eBA5OTnw8PCw21ZUVASDwYCAgABMnToVU6dOtds+d+5cfPXVVzhw4ICyzmq1YuDAgfif//kf/Pvf/0ZRUZFyO4+qNOSxIyJqyPIsZXhg/g7Y/pAsnDUa7J4xGCa9u+Maq2XVuY8Wv3XYRORZyrD3RAHyLGWqnqewsBBbt27FpEmTKoUs4Npd26vr9ddfh4+PD+Lj42uhQyIiUktuwSW7kAUAVhGcLCh1TEP1gMM/OiT11eVl3OPHj0NE0Llz59vWvvLKK5g1a5bduitXrth99Lp79258/PHHdle4iIiofgr09oCTBpWuaAV4N917QvKKViOXZylTQhZw7S//qxsPq3ZlqzqfRL/00ks4cOCA3fLMM88o2y9evIixY8dixYoV8Pb2VqNdIiKqRSa9O5JGBcP5/7+fobNGg3mjujeqjw2ri1e0GrlbXcZV4y9+UFAQNBrNHU149/b2RocOHezWeXl5KX8+ceIETp48iREjRijrrt9aw8XFBTk5OWjfvn0tdU5ERLVhdN82GNixFU4WlCLAu1mTDlkAr2g1etcv4/6Rmpdxvby8EBUVhWXLluHSpUuVtlfnAdydO3fGoUOH7K54/elPf8LgwYNx4MCBWz7CiIiIHMekd0d4+3uafMgCGLQaPUdcxl22bBmsVitCQ0Px5Zdf4tixYzh69CiWLl160xvRVkWn06F79+52i8FgQIsWLdC9e3e4ubmp9hqIiIhqAz86bALq+jJuu3btkJWVhb///e+YPn068vLy0KpVK/Tu3RsffPCBqucmIiKqT3gfLQdqrPfRcjSOHRERqYn30SIiIiKqBxi0iIiIiFTCoEVERESkEgYtIiIiIpUwaNVz/K5C9XHMiIiovmDQqqdcXV0BAKWlTfdBnDV1fcyujyEREZGj8D5a9ZSzszMMBgPOnj0LAGjWrBk0Gs1t9mraRASlpaU4e/YsDAYDnJ2dHd0SERE1cQxa9ZjRaAQAJWzRnTEYDMrYERERORKDVj2m0WhgMpng4+ODiooKR7fTILi6uvJKFhER1RsMWg2As7MzwwMREVEDxMnwRERERCph0CIiIiJSCYMWERERkUoYtIiIiIhUwqBFREREjVKepQx7TxQgz1LmsB74rUMiIiJqdJIzTmHmxkOwCeCkAZJGBWN03zZ13gevaBEREVGjkmcpU0IWANgEeHXjYYdc2WLQIiIiokYlt+CSErKus4rgZEHdPz+YQYuIiIgalUBvDzjd8HhgZ40GAd7N6rwXBi0iIiJqVEx6dySNCoaz5lractZoMG9Ud5j07nXeCyfDExERUaMzum8bDOzYCicLShHg3cwhIQtg0CIiIqJGyqR3d1jAuo4fHRIRERGphEGLiIiISCUMWkREREQqYdAiIiIiUgmDFhEREZFKGLSIiIiIVMKgRURERKQSBi0iIiIildSLoLVs2TIEBARAp9MhLCwM+/btu2X9hg0b0LlzZ+h0OgQHB2PLli1220UEc+bMgclkgru7OyIjI3Hs2DG7msLCQsTGxsLT0xMGgwHx8fEoKSlRtufk5GDw4MHw9fWFTqdDu3btMGvWLFRUVFSrFyIiImq6HB60kpOTMW3aNCQmJiIrKws9e/ZEVFQUzp49W2X93r17ERMTg/j4eOzfvx/R0dGIjo7G4cOHlZoFCxZg6dKlWL58OdLT0+Hh4YGoqChcvnxZqYmNjUV2djZSUlKwadMm7Nq1CwkJCcp2V1dXjBs3Dtu3b0dOTg6WLFmCFStWIDExsVq9EBERURMmDhYaGiqTJk1SfrdareLn5ydJSUlV1j/xxBMyfPhwu3VhYWHy9NNPi4iIzWYTo9EoCxcuVLYXFRWJVquVdevWiYjIkSNHBIBkZGQoNd9++61oNBr57bffbtrrCy+8IP3797/jXm7HYrEIALFYLHdUT0RERI5Xnfdvh17RunLlCjIzMxEZGamsc3JyQmRkJNLS0qrcJy0tza4eAKKiopT63NxcmM1muxq9Xo+wsDClJi0tDQaDAX369FFqIiMj4eTkhPT09CrPe/z4cWzduhURERF33AsRERE1bQ4NWgUFBbBarfD19bVb7+vrC7PZXOU+ZrP5lvXXf96uxsfHx267i4sLvLy8Kp23X79+0Ol0CAoKwoABA/D666/fcS83Ki8vR3Fxsd1CREREjZfD52jVd8nJycjKysLatWuxefNmLFq0qMbHSkpKgl6vVxZ/f/9a7JSIiIjqG4cGLW9vbzg7OyM/P99ufX5+PoxGY5X7GI3GW9Zf/3m7mhsn21+9ehWFhYWVzuvv74+uXbsiJiYG8+fPx9y5c2G1Wu+olxvNnDkTFotFWU6fPl1lHRERETUODg1abm5u6N27N1JTU5V1NpsNqampCA8Pr3Kf8PBwu3oASElJUeoDAwNhNBrtaoqLi5Genq7UhIeHo6ioCJmZmUrNjh07YLPZEBYWdtN+bTYbKioqYLPZ7qiXG2m1Wnh6etotRERE1IjVweT8W1q/fr1otVpZtWqVHDlyRBISEsRgMIjZbBYRkbFjx8qMGTOU+j179oiLi4ssWrRIjh49KomJieLq6iqHDh1SaubPny8Gg0G+/vprOXjwoIwcOVICAwOlrKxMqRk6dKj06tVL0tPTZffu3RIUFCQxMTHK9tWrV0tycrIcOXJETpw4IcnJyeLn5yexsbHV6uVW+K1DIiKihqc6798OD1oiIu+++660adNG3NzcJDQ0VH744QdlW0REhIwfP96u/vPPP5eOHTuKm5ubdOvWTTZv3my33WazyezZs8XX11e0Wq0MGTJEcnJy7GrOnz8vMTEx0rx5c/H09JS4uDi5ePGisn39+vVy3333SfPmzcXDw0O6du0q8+bNswtrd9LLrTBoERERNTzVef/WiIg49ppa01VcXAy9Xg+LxcKPEYmIiBqI6rx/81uHRERERCph0CIiIiJSCYMWERERkUoYtIiIiIhUwqBFREREpBIGLSIiIiKVMGgRERERqYRBi4iIiEglDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUMWkREREQqYdAiIiIiUgmDFhEREZFKGLSIiIiIVMKgRURERKQSBi0iIiKqVXmWMuw9UYA8S5mjW3E4F0c3QERERI1HcsYpzNx4CDYBnDRA0qhgjO7bxtFtOQyvaBEREVGtyLOUKSELAGwCvLrxcJO+ssWgRURERLUit+CSErKus4rgZEGpYxqqBxi0iIiIqFYEenvASWO/zlmjQYB3M8c0VA8waBEREVGtMOndkTQqGM6aa2nLWaPBvFHdYdK7O7gzx+FkeCIiIqo1o/u2wcCOrXCyoBQB3s2adMgCGLSIiIiolpn07k0+YF3Hjw6JiIiIVMKgRURERKQSBi0iIiIilTBoEREREamEQYuIiIhIJQxaRERERCph0CIiIiJSCYMWERERkUoYtIiIiIhUwqBFREREpJJ6EbSWLVuGgIAA6HQ6hIWFYd++fbes37BhAzp37gydTofg4GBs2bLFbruIYM6cOTCZTHB3d0dkZCSOHTtmV1NYWIjY2Fh4enrCYDAgPj4eJSUlyvadO3di5MiRMJlM8PDwQEhICNasWWN3jFWrVkGj0dgtOp3uLkeDiIiIGguHB63k5GRMmzYNiYmJyMrKQs+ePREVFYWzZ89WWb93717ExMQgPj4e+/fvR3R0NKKjo3H48GGlZsGCBVi6dCmWL1+O9PR0eHh4ICoqCpcvX1ZqYmNjkZ2djZSUFGzatAm7du1CQkKC3Xl69OiBL7/8EgcPHkRcXBzGjRuHTZs22fXj6emJvLw8Zfn1119reYSIiIiowRIHCw0NlUmTJim/W61W8fPzk6SkpCrrn3jiCRk+fLjdurCwMHn66adFRMRms4nRaJSFCxcq24uKikSr1cq6detEROTIkSMCQDIyMpSab7/9VjQajfz222837XXYsGESFxen/L5y5UrR6/V3/mJvYLFYBIBYLJYaH4OIiIjqVnXevx16RevKlSvIzMxEZGSkss7JyQmRkZFIS0urcp+0tDS7egCIiopS6nNzc2E2m+1q9Ho9wsLClJq0tDQYDAb06dNHqYmMjISTkxPS09Nv2q/FYoGXl5fdupKSErRt2xb+/v4YOXIksrOzb7p/eXk5iouL7RYiIiJqvBwatAoKCmC1WuHr62u33tfXF2azucp9zGbzLeuv/7xdjY+Pj912FxcXeHl53fS8n3/+OTIyMhAXF6es69SpEz755BN8/fXXWL16NWw2G/r164czZ85UeYykpCTo9Xpl8ff3r7KOiIiIGgeHz9FqCL7//nvExcVhxYoV6Natm7I+PDwc48aNQ0hICCIiIrBx40a0atUKH374YZXHmTlzJiwWi7KcPn26rl4CEREROYBDg5a3tzecnZ2Rn59vtz4/Px9Go7HKfYxG4y3rr/+8Xc2Nk+2vXr2KwsLCSuf917/+hREjRmDx4sUYN27cLV+Pq6srevXqhePHj1e5XavVwtPT024hIiKixsuhQcvNzQ29e/dGamqqss5msyE1NRXh4eFV7hMeHm5XDwApKSlKfWBgIIxGo11NcXEx0tPTlZrw8HAUFRUhMzNTqdmxYwdsNhvCwsKUdTt37sTw4cPx1ltv2X0j8WasVisOHToEk8l0B6+eiIiIGr06mJx/S+vXrxetViurVq2SI0eOSEJCghgMBjGbzSIiMnbsWJkxY4ZSv2fPHnFxcZFFixbJ0aNHJTExUVxdXeXQoUNKzfz588VgMMjXX38tBw8elJEjR0pgYKCUlZUpNUOHDpVevXpJenq67N69W4KCgiQmJkbZvmPHDmnWrJnMnDlT8vLylOX8+fNKzWuvvSbbtm2TEydOSGZmpowZM0Z0Op1kZ2ff0Wvntw6JiIganuq8fzs8aImIvPvuu9KmTRtxc3OT0NBQ+eGHH5RtERERMn78eLv6zz//XDp27Chubm7SrVs32bx5s912m80ms2fPFl9fX9FqtTJkyBDJycmxqzl//rzExMRI8+bNxdPTU+Li4uTixYvK9vHjxwuASktERIRSM3XqVKVvX19fGTZsmGRlZd3x62bQIiIianiq8/6tERFx2OW0Jq64uBh6vR4Wi4XztYiIiBqI6rx/81uHRERERCph0CIiIiJSCYMWERERkUoYtIiIiIhUwqBFREREpBIGLSK6K3mWMuw9UYA8S5mjWyEiqndcHN0AETVcyRmnMHPjIdgEcNIASaOCMbpvG0e3RURUb/CKFhHVSJ6lTAlZAGAT4NWNh3lli4joDxi0iKhGcgsuKSHrOqsIThaUOqYhIqJ6iEGLiGok0NsDThr7dc4aDQK8mzmmISKieohBi4hqxKR3R9KoYDhrrqUtZ40G80Z1h0nv7uDOiIjqD06GJ6IaG923DQZ2bIWTBaUI8G7GkEVEdAMGLSK6Kya9OwMWEdFN8KNDIiIiIpUwaBERERGphEGLiIiISCUMWkREREQqYdAiIiIiUgmDFhEB4MOhiYjUwNs7EBEfDk1EpBJe0SJq4vhwaCIi9TBoETVxfDg0EZF6GLSImjg+HJqISD0MWkRNHB8OTUSkHk6GJyI+HJqISCUMWkQEgA+HJiJSAz86JCIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiI6rU8Sxn2nihokM9g5X20iIiIqN5KzjilPPjeSQMkjQrG6L5tHN3WHeMVLSIiIqqX8ixlSsgCAJsAr2483KCubDFoERERUb2UW3BJCVnXWUVwsqDUMQ3VAIMWERER1UuB3h5w0tivc9ZoEODdzDEN1QCDFhEREdVLJr07kkYFw1lzLW05azSYN6p7g3ouKyfDExERUb01um8bDOzYCicLShHg3axBhSygnlzRWrZsGQICAqDT6RAWFoZ9+/bdsn7Dhg3o3LkzdDodgoODsWXLFrvtIoI5c+bAZDLB3d0dkZGROHbsmF1NYWEhYmNj4enpCYPBgPj4eJSUlCjbd+7ciZEjR8JkMsHDwwMhISFYs2ZNtXshIiKiu2PSuyO8/T0NLmQB9SBoJScnY9q0aUhMTERWVhZ69uyJqKgonD17tsr6vXv3IiYmBvHx8di/fz+io6MRHR2Nw4cPKzULFizA0qVLsXz5cqSnp8PDwwNRUVG4fPmyUhMbG4vs7GykpKRg06ZN2LVrFxISEuzO06NHD3z55Zc4ePAg4uLiMG7cOGzatKlavRARqaEh31eIqCnRiIjcvkw9YWFh6Nu3L9577z0AgM1mg7+/P/76179ixowZlepHjx6NS5cu2QWe+++/HyEhIVi+fDlEBH5+fpg+fTpefPFFAIDFYoGvry9WrVqFMWPG4OjRo+jatSsyMjLQp08fAMDWrVsxbNgwnDlzBn5+flX2Onz4cPj6+uKTTz65o15up7i4GHq9HhaLBZ6ennc4YkTU1DX0+woRNXTVef926BWtK1euIDMzE5GRkco6JycnREZGIi0trcp90tLS7OoBICoqSqnPzc2F2Wy2q9Hr9QgLC1Nq0tLSYDAYlJAFAJGRkXByckJ6evpN+7VYLPDy8rrjXm5UXl6O4uJiu4WIqDoaw32FiJoShwatgoICWK1W+Pr62q339fWF2Wyuch+z2XzL+us/b1fj4+Njt93FxQVeXl43Pe/nn3+OjIwMxMXF3XEvN0pKSoJer1cWf3//KuuIiG6mMdxXiKgpcfgcrYbg+++/R1xcHFasWIFu3brV+DgzZ86ExWJRltOnT9dil/Y4f4OocWoM9xUiakocGrS8vb3h7OyM/Px8u/X5+fkwGo1V7mM0Gm9Zf/3n7WpunGx/9epVFBYWVjrvv/71L4wYMQKLFy/GuHHjqtXLjbRaLTw9Pe0WNSRnnMID83fgyRXpeGD+DiRnnFLlPERU9xrDfYWImhKHBi03Nzf07t0bqampyjqbzYbU1FSEh4dXuU94eLhdPQCkpKQo9YGBgTAajXY1xcXFSE9PV2rCw8NRVFSEzMxMpWbHjh2w2WwICwtT1u3cuRPDhw/HW2+9ZfeNxDvtxRE4f4Oo8Rvdtw12zxiMdU/dj90zBnMiPFE95vAblk6bNg3jx49Hnz59EBoaiiVLluDSpUvKXKhx48ahdevWSEpKAgA8//zziIiIwNtvv43hw4dj/fr1+PHHH/HRRx8BADQaDaZOnYo333wTQUFBCAwMxOzZs+Hn54fo6GgAQJcuXTB06FA89dRTWL58OSoqKjB58mSMGTNG+cbh999/j0cffRTPP/88Hn/8cWXelZubmzIh/na9OMKt5m/w/3iJGg+T3p3/TRM1BFIPvPvuu9KmTRtxc3OT0NBQ+eGHH5RtERERMn78eLv6zz//XDp27Chubm7SrVs32bx5s912m80ms2fPFl9fX9FqtTJkyBDJycmxqzl//rzExMRI8+bNxdPTU+Li4uTixYvK9vHjxwuASktERES1erkVi8UiAMRisdzxPrfze1GpBM7YJG1f+e/SbsZm+b2otNbOQURE1JRV5/3b4ffRasrUuo9WcsYpvLrxMKwiyvwNfrRARERUO6rz/u3wjw6p9jX050IRERE1FgxajVRtz9/Is5Qht+ASAr09GNyIiIjuEIMW3RYf90FERFQzvGEp3RJvF0FERFRzDFp0S3zcBxERUc0xaNEt8XEfRERENcegRbfEx30QERHVXK1Mhs/NzYW/vz9cXDi3vjHi7SKIiIhqplauaHXq1AnHjh2rjUNRPWXSuyO8/T0MWURERNVQrUtQo0aNqnK91WrFlClT0KJFCwDAxo0b774zIiIiogauWle0vvrqKxQWFkKv19stANC8eXO734mIiIiaumo963D9+vV46aWX8PrrryMuLk5Z7+rqip9++gldu3ZVpcnGSq1nHRIREZF6qvP+Xa0rWmPGjMG///1vfPzxx3j88cdx4cKFu2qUiIiIqDGr9mT4gIAA7Nq1C927d0fPnj2xbds2aDSa2+9IRERE1MTU6H4MTk5OeO211/DQQw9h3LhxsFqttd0XERERUYN3Vze+6t+/Pw4ePIgTJ06gffv2tdUTERERUaNw13cYbd68OXr27FkbvRARERE1KtUKWr169bqj+VhZWVk1boiIiIiosahW0IqOjlb+LCJISkrCM888Ay8vr9rui4iIiKjBq9Z9tG7UokUL/PTTT2jXrl1t9tRk8D5aREREDY9q99EiIiIiojvHoEVERESkEgYtIiIiIpVUazL80qVL7X6/evUqVq1aBW9vb7v1U6ZMufvOiIiIiBq4ak2GDwwMvP0BNRr88ssvd9VUU8HJ8ERERA1Pdd6/q3VFKzc3964aIyIiImpKqjVHa8eOHejatSuKi4srbbNYLOjWrRv+/e9/11pzRNT05FnKsPdEAfIsZY5uhYjorlXritaSJUvw1FNPVXmZTK/X4+mnn8Y777yDAQMG1FqDRNR0JGecwsyNh2ATwEkDJI0Kxui+bRzdFhFRjVXritZPP/2EoUOH3nT7ww8/jMzMzLtuioianjxLmRKyAMAmwKsbD/PKFhE1aNUKWvn5+XB1db3pdhcXF5w7d+6umyKipie34JISsq6ziuBkQaljGiIiqgXVClqtW7fG4cOHb7r94MGDMJlMd90UETU9gd4ecLrhmfXOGg0CvJs5piEiolpQraA1bNgwzJ49G5cvX660raysDImJiXj00UdrrTkiajpMenckjQqGs+Za2nLWaDBvVHeY9O4O7oyIqOaqdR+t/Px83HfffXB2dsbkyZPRqVMnAMDPP/+MZcuWwWq1IisrC76+vqo13JjwPlpEleVZynCyoBQB3s0YsoioXqrO+3e1ghYA/Prrr3j22Wexbds2XN9Vo9EgKioKy5Ytu6ObmtI1DFpEREQNj2o3LAWAtm3bYsuWLbhw4QKOHz8OEUFQUBBatmxZ44aJiIiIGqNqB63rWrZsib59+9ZmL0RERESNSrUmwxMRNSa8Cz0Rqa3GV7SIiBoy3oWeiOoCr2gRUZPDu9ATUV1xeNBatmwZAgICoNPpEBYWhn379t2yfsOGDejcuTN0Oh2Cg4OxZcsWu+0igjlz5sBkMsHd3R2RkZE4duyYXU1hYSFiY2Ph6ekJg8GA+Ph4lJSUKNsvX76MCRMmIDg4GC4uLoiOjq7Ux86dO6HRaCotZrO55oNBRHWCd6Enorri0KCVnJyMadOmITExEVlZWejZsyeioqJw9uzZKuv37t2LmJgYxMfHY//+/YiOjkZ0dLTd3eoXLFiApUuXYvny5UhPT4eHhweioqLsbrIaGxuL7OxspKSkYNOmTdi1axcSEhKU7VarFe7u7pgyZQoiIyNv+RpycnKQl5enLD4+Pnc5KkSkNt6FnojqSrXvo1WbwsLC0LdvX7z33nsAAJvNBn9/f/z1r3/FjBkzKtWPHj0aly5dwqZNm5R1999/P0JCQrB8+XKICPz8/DB9+nS8+OKLAACLxQJfX1+sWrUKY8aMwdGjR9G1a1dkZGSgT58+AICtW7di2LBhOHPmDPz8/OzOOWHCBBQVFeGrr76yW79z504MHjwYFy5cgMFgqNHr5320iBwnOeMUXt14GFYR5S70nKNFRHeiOu/fDruideXKFWRmZtpdMXJyckJkZCTS0tKq3CctLa3SFaaoqCilPjc3F2az2a5Gr9cjLCxMqUlLS4PBYFBCFgBERkbCyckJ6enp1X4dISEhMJlMeOihh7Bnz55b1paXl6O4uNhuISLHGN23DXbPGIx1T92P3TMGM2QRkSocFrQKCgpgtVorPa7H19f3pvOczGbzLeuv/7xdzY0f77m4uMDLy6ta86tMJhOWL1+OL7/8El9++SX8/f0xaNAgZGVl3XSfpKQk6PV6ZfH397/j8xFR7TPp3RHe/h4+6oeIVMPbO9RQp06dlGc9AkC/fv1w4sQJLF68GJ999lmV+8ycORPTpk1Tfi8uLmbYIiIiasQcdkXL29sbzs7OyM/Pt1ufn58Po9FY5T5Go/GW9dd/3q7mxsn2V69eRWFh4U3Pe6dCQ0Nx/Pjxm27XarXw9PS0W4iIiKjxcljQcnNzQ+/evZGamqqss9lsSE1NRXh4eJX7hIeH29UDQEpKilIfGBgIo9FoV1NcXIz09HSlJjw8HEVFRcjMzFRqduzYAZvNhrCwsLt6TQcOHIDJZLqrYxAREVHj4dCPDqdNm4bx48ejT58+CA0NxZIlS3Dp0iXExcUBAMaNG4fWrVsjKSkJAPD8888jIiICb7/9NoYPH47169fjxx9/xEcffQQA0Gg0mDp1Kt58800EBQUhMDAQs2fPhp+fn3IvrC5dumDo0KF46qmnsHz5clRUVGDy5MkYM2aM3TcOjxw5gitXrqCwsBAXL17EgQMHAFyb/A4AS5YsQWBgILp164bLly/jn//8J3bs2IHt27fXzeARERFRvefQoDV69GicO3cOc+bMgdlsRkhICLZu3apMZj916hScnP570a1fv35Yu3YtZs2ahVdffRVBQUH46quv0L17d6Xm5ZdfxqVLl5CQkICioiL0798fW7duhU6nU2rWrFmDyZMnY8iQIXBycsLjjz+OpUuX2vU2bNgw/Prrr8rvvXr1AnDthqjAtW9NTp8+Hb/99huaNWuGHj164LvvvsPgwYNrf6CIiIioQXLofbSaOt5Hi4iIqOFpEPfRIiIiImrsGLSIiIiIVMKgRURERKQSBi0iIiIilTBoEREREamEQYuIiIhIJQxaRERERCph0CIionojz1KGvScKkGcpc3QrRLXCoXeGJyIiui454xRmbjwEmwBOGiBpVDBG923j6LaI7gqvaBERkcPlWcqUkAUANgFe3XiYV7aowWPQIiIih8stuKSErOusIjhZUOqYhohqCYMWERE5XKC3B5w09uucNRoEeDdzTENEtYRBi4iIHM6kd0fSqGA4a66lLWeNBvNGdYdJ7+7gzojuDifDExFRvTC6bxsM7NgKJwtKEeDdjCGLGgUGLSIiqjdMencGLGpU+NEhERERkUoYtIiIiIhUwqBFREREpBIGLSIiIiKVMGgRERERqYRBi4iIiEglDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUMWkREREQqYdAiIiIiUgmDFhEREZFKGLSIiIiIVMKgRURERKQSBi0iIiIilTBoEREREamEQYuIiIhIJQxaRERERCpxeNBatmwZAgICoNPpEBYWhn379t2yfsOGDejcuTN0Oh2Cg4OxZcsWu+0igjlz5sBkMsHd3R2RkZE4duyYXU1hYSFiY2Ph6ekJg8GA+Ph4lJSUKNsvX76MCRMmIDg4GC4uLoiOjq6yl507d+K+++6DVqtFhw4dsGrVqhqNARERETVODg1aycnJmDZtGhITE5GVlYWePXsiKioKZ8+erbJ+7969iImJQXx8PPbv34/o6GhER0fj8OHDSs2CBQuwdOlSLF++HOnp6fDw8EBUVBQuX76s1MTGxiI7OxspKSnYtGkTdu3ahYSEBGW71WqFu7s7pkyZgsjIyCp7yc3NxfDhwzF48GAcOHAAU6dOxcSJE7Ft27ZaGh0iIiJq8MSBQkNDZdKkScrvVqtV/Pz8JCkpqcr6J554QoYPH263LiwsTJ5++mkREbHZbGI0GmXhwoXK9qKiItFqtbJu3ToRETly5IgAkIyMDKXm22+/FY1GI7/99lulc44fP15GjhxZaf3LL78s3bp1s1s3evRoiYqKus2r/i+LxSIAxGKx3PE+RERE5FjVef922BWtK1euIDMz0+6KkZOTEyIjI5GWllblPmlpaZWuMEVFRSn1ubm5MJvNdjV6vR5hYWFKTVpaGgwGA/r06aPUREZGwsnJCenp6Xfc/+16qUp5eTmKi4vtFiIiImq8HBa0CgoKYLVa4evra7fe19cXZrO5yn3MZvMt66//vF2Nj4+P3XYXFxd4eXnd9LzV6aW4uBhlZWVV7pOUlAS9Xq8s/v7+d3w+IiIiangcPhm+KZk5cyYsFouynD592tEtERERkYocFrS8vb3h7OyM/Px8u/X5+fkwGo1V7mM0Gm9Zf/3n7WpunGx/9epVFBYW3vS81enF09MT7u7uVe6j1Wrh6elptxAREVHj5bCg5ebmht69eyM1NVVZZ7PZkJqaivDw8Cr3CQ8Pt6sHgJSUFKU+MDAQRqPRrqa4uBjp6elKTXh4OIqKipCZmanU7NixAzabDWFhYXfc/+16ISIiInLotw7Xr18vWq1WVq1aJUeOHJGEhAQxGAxiNptFRGTs2LEyY8YMpX7Pnj3i4uIiixYtkqNHj0piYqK4urrKoUOHlJr58+eLwWCQr7/+Wg4ePCgjR46UwMBAKSsrU2qGDh0qvXr1kvT0dNm9e7cEBQVJTEyMXW/Z2dmyf/9+GTFihAwaNEj2798v+/fvV7b/8ssv0qxZM3nppZfk6NGjsmzZMnF2dpatW7fe8evntw6JiIganuq8fzs0aImIvPvuu9KmTRtxc3OT0NBQ+eGHH5RtERERMn78eLv6zz//XDp27Chubm7SrVs32bx5s912m80ms2fPFl9fX9FqtTJkyBDJycmxqzl//rzExMRI8+bNxdPTU+Li4uTixYt2NW3bthUAlZY/+v777yUkJETc3NykXbt2snLlymq9dgYtIiKihqc6798aERGHXU5r4oqLi6HX62GxWDhfi4iIqIGozvs3v3VIREREpBIGLSIiIiKVMGgR0W3lWcqw90QB8ixV34yXiIiq5uLoBoiofkvOOIWZGw/BJoCTBkgaFYzRfds4ui0iogaBV7SI6KbyLGVKyAIAmwCvbjzMK1tERHeIQYuIbiq34JISsq6ziuBkQaljGiIiamAYtIjopgK9PeCksV/nrNEgwLuZYxoiImpgGLSoUeBkbXWY9O5IGhUMZ821tOWs0WDeqO4w6at+nicREdnjZHhq8DhZW12j+7bBwI6tcLKgFAHezRiyiIiqgVe0qEHjZO26YdK7I7z9PQxZRETVxKBFDRonaxMRUX3GoEUNGidrExFRfcagRQ0aJ2sTEVF9xsnw1OBxsjYREdVXDFrUKJj07gxYRERU7/CjQyIiIiKVMGgRERERqYRBi4iIiEglDFrUKPARPEREVB9xMjw1eHwEDxER1Ve8okUNGh/BQ0RE9RmDFjVofAQPERHVZwxa1KDxETxERFSfMWhRg8ZH8BARUX3GyfDU4PERPEREVF8xaFGjwEfwEBFRfcSPDomIiIhUwqBFREREpBIGLSIiIiKVMGgRERERqYRBi4iIiEglDFpEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiISCX1ImgtW7YMAQEB0Ol0CAsLw759+25Zv2HDBnTu3Bk6nQ7BwcHYsmWL3XYRwZw5c2AymeDu7o7IyEgcO3bMrqawsBCxsbHw9PSEwWBAfHw8SkpK7GoOHjyIAQMGQKfTwd/fHwsWLLDbvmrVKmg0GrtFp9PdxUgQERFRY+LwoJWcnIxp06YhMTERWVlZ6NmzJ6KionD27Nkq6/fu3YuYmBjEx8dj//79iI6ORnR0NA4fPqzULFiwAEuXLsXy5cuRnp4ODw8PREVF4fLly0pNbGwssrOzkZKSgk2bNmHXrl1ISEhQthcXF+Phhx9G27ZtkZmZiYULF2Lu3Ln46KOP7Prx9PREXl6esvz666+1PEJERETUYImDhYaGyqRJk5TfrVar+Pn5SVJSUpX1TzzxhAwfPtxuXVhYmDz99NMiImKz2cRoNMrChQuV7UVFRaLVamXdunUiInLkyBEBIBkZGUrNt99+KxqNRn777TcREXn//felZcuWUl5ertS88sor0qlTJ+X3lStXil6vr+ErF7FYLAJALBZLjY9BREREdas6798OvaJ15coVZGZmIjIyUlnn5OSEyMhIpKWlVblPWlqaXT0AREVFKfW5ubkwm812NXq9HmFhYUpNWloaDAYD+vTpo9RERkbCyckJ6enpSs3AgQPh5uZmd56cnBxcuHBBWVdSUoK2bdvC398fI0eORHZ29k1fb3l5OYqLi+0WIiIiarwcGrQKCgpgtVrh6+trt97X1xdms7nKfcxm8y3rr/+8XY2Pj4/ddhcXF3h5ednVVHWMP56jU6dO+OSTT/D1119j9erVsNls6NevH86cOVNl70lJSdDr9cri7+9fZR0RERE1Dg6fo9WQhYeHY9y4cQgJCUFERAQ2btyIVq1a4cMPP6yyfubMmbBYLMpy+vTpOu6YGpo8Sxn2nihAnqXM0a0QEVENuDjy5N7e3nB2dkZ+fr7d+vz8fBiNxir3MRqNt6y//jM/Px8mk8muJiQkRKm5cbL91atXUVhYaHecqs7zx3PcyNXVFb169cLx48er3K7VaqHVaqvcRnSj5IxTmLnxEGwCOGmApFHBGN23jaPbIiKianDoFS03Nzf07t0bqampyjqbzYbU1FSEh4dXuU94eLhdPQCkpKQo9YGBgTAajXY1xcXFSE9PV2rCw8NRVFSEzMxMpWbHjh2w2WwICwtTanbt2oWKigq783Tq1AktW7assjer1YpDhw7ZBTyimsizlCkhCwBsAry68TCvbBERNTAO/+hw2rRpWLFiBT799FMcPXoUzz77LC5duoS4uDgAwLhx4zBz5kyl/vnnn8fWrVvx9ttv4+eff8bcuXPx448/YvLkyQAAjUaDqVOn4s0338Q333yDQ4cOYdy4cfDz80N0dDQAoEuXLhg6dCieeuop7Nu3D3v27MHkyZMxZswY+Pn5AQCefPJJuLm5IT4+HtnZ2UhOTsY//vEPTJs2Tenl9ddfx/bt2/HLL78gKysLf/nLX/Drr79i4sSJdTR61FjlFlxSQtZ1VhGcLCh1TENERFQjDv3oEABGjx6Nc+fOYc6cOTCbzQgJCcHWrVuVieenTp2Ck9N/82C/fv2wdu1azJo1C6+++iqCgoLw1VdfoXv37krNyy+/jEuXLiEhIQFFRUXo378/tm7dancz0TVr1mDy5MkYMmQInJyc8Pjjj2Pp0qXKdr1ej+3bt2PSpEno3bs3vL29MWfOHLt7bV24cAFPPfUUzGYzWrZsid69e2Pv3r3o2rWrmkNGTUCgtwecNLALW84aDQK8mzmuKaJ6Ks9ShtyCSwj09oBJ7+7odojsaEREbl9GaiguLoZer4fFYoGnp6ej26F6JjnjFF7deBhWEThrNJg3qjvnaBHdgHMZyRGq8/7NoOVADFp0O3mWMpwsKEWAdzP+nzrRDfIsZXhg/o5KV353zxjM/15IVdV5/3b4R4dEdHMmvTvfMIhu4lZzGfnfDdUXDp8MT0REVBPX5zL+EecyUn3DoEVERA2SSe+OpFHBcNZcS1vX5zLyahbVJ/zokIiIGqzRfdtgYMdWnMtI9RaDFhER1anavh0D5zJSfcagRUREdYa3Y6CmhnO0iIioTvDRUtQUMWgREVGd4KOlqCli0CIiojrB2zFQU8SgRUREdYK3Y6CmiJPhiYiozvB2DNTUMGgREVGd4u0YqCnhR4dEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUMWkREREQqYdAiIiIiUgmDFhEREZFKGLSIiIiIVMKgRURERKQSBi0iIiIilTBoEREREamEQYuIiIhIJQxaRERERCph0CIiIvqDPEsZ9p4oQJ6lzNGtUCPg4ugGiIiI6ovkjFOYufEQbAI4aYCkUcEY3beNo9uiBoxXtIiIiHDtStb1kAUANgFe3XiYV7borjBoERERAcgtuKSErOusIjhZUOqYhqhRYNAiIiICEOjtASeN/TpnjQYB3s0c0xA1CgxaRKQKTiimhsakd0fSqGA4a66lLWeNBvNGdYdJ7+7gzqgh42R4Iqp1nFBMDdXovm0wsGMrnCwoRYB3M4Ysumu8okVEtYoTiqmhM+ndEd7+HoYsqhUMWkRUqzihmIjov+pF0Fq2bBkCAgKg0+kQFhaGffv23bJ+w4YN6Ny5M3Q6HYKDg7Flyxa77SKCOXPmwGQywd3dHZGRkTh27JhdTWFhIWJjY+Hp6QmDwYD4+HiUlJTY1Rw8eBADBgyATqeDv78/FixYUO1eiJoaTigmIvovhwet5ORkTJs2DYmJicjKykLPnj0RFRWFs2fPVlm/d+9exMTEID4+Hvv370d0dDSio6Nx+PBhpWbBggVYunQpli9fjvT0dHh4eCAqKgqXL19WamJjY5GdnY2UlBRs2rQJu3btQkJCgrK9uLgYDz/8MNq2bYvMzEwsXLgQc+fOxUcffVStXoiaGk4oJiL6A3Gw0NBQmTRpkvK71WoVPz8/SUpKqrL+iSeekOHDh9utCwsLk6efflpERGw2mxiNRlm4cKGyvaioSLRaraxbt05ERI4cOSIAJCMjQ6n59ttvRaPRyG+//SYiIu+//760bNlSysvLlZpXXnlFOnXqdMe93I7FYhEAYrFY7qieqCH5vahU9h4vkN+LSh3dChFRrarO+7dDr2hduXIFmZmZiIyMVNY5OTkhMjISaWlpVe6TlpZmVw8AUVFRSn1ubi7MZrNdjV6vR1hYmFKTlpYGg8GAPn36KDWRkZFwcnJCenq6UjNw4EC4ubnZnScnJwcXLly4o15uVF5ejuLiYruFqLHihGIiIgd/dFhQUACr1QpfX1+79b6+vjCbzVXuYzabb1l//eftanx8fOy2u7i4wMvLy66mqmP88Ry36+VGSUlJ0Ov1yuLv719lHRERETUODp+j1ZTMnDkTFotFWU6fPu3oloiIiEhFDg1a3t7ecHZ2Rn5+vt36/Px8GI3GKvcxGo23rL/+83Y1N062v3r1KgoLC+1qqjrGH89xu15upNVq4enpabcQERFR4+XQoOXm5obevXsjNTVVWWez2ZCamorw8PAq9wkPD7erB4CUlBSlPjAwEEaj0a6muLgY6enpSk14eDiKioqQmZmp1OzYsQM2mw1hYWFKza5du1BRUWF3nk6dOqFly5Z31AsRERE1cXUwOf+W1q9fL1qtVlatWiVHjhyRhIQEMRgMYjabRURk7NixMmPGDKV+z5494uLiIosWLZKjR49KYmKiuLq6yqFDh5Sa+fPni8FgkK+//loOHjwoI0eOlMDAQCkrK1Nqhg4dKr169ZL09HTZvXu3BAUFSUxMjLK9qKhIfH19ZezYsXL48GFZv369NGvWTD788MNq9XIr/NYhERFRw1Od92+HBy0RkXfffVfatGkjbm5uEhoaKj/88IOyLSIiQsaPH29X//nnn0vHjh3Fzc1NunXrJps3b7bbbrPZZPbs2eLr6ytarVaGDBkiOTk5djXnz5+XmJgYad68uXh6ekpcXJxcvHjRruann36S/v37i1arldatW8v8+fMr9X67Xm6FQYuIiKjhqc77t0ZE5NbXvEgtxcXF0Ov1sFgsnK9FRETUQFTn/ZvfOiQiIiJSCYMWERERkUoYtIiIiIhUwqBFREREpBIXRzfQlF3/HgKfeUhERNRwXH/fvpPvEzJoOdDFixcBgM88JCIiaoAuXrwIvV5/yxre3sGBbDYbfv/9d7Ro0QIajabKmuLiYvj7++P06dNN/hYQHItrOA7XcBz+i2NxDcfhGo7Df6k1FiKCixcvws/PD05Ot56FxStaDuTk5IR77733jmr5bMT/4lhcw3G4huPwXxyLazgO13Ac/kuNsbjdlazrOBmeiIiISCUMWkREREQqYdCq57RaLRITE6HVah3disNxLK7hOFzDcfgvjsU1HIdrOA7/VR/GgpPhiYiIiFTCK1pEREREKmHQIiIiIlIJgxYRERGRShi0iIiIiFTCoFUPLFu2DAEBAdDpdAgLC8O+fftuWpudnY3HH38cAQEB0Gg0WLJkSd01WgeqMxYrVqzAgAED0LJlS7Rs2RKRkZG3rG9IqjMOGzduRJ8+fWAwGODh4YGQkBB89tlndditeqozDn+0fv16aDQaREdHq9tgHarOWKxatQoajcZu0el0dditeqr7d6KoqAiTJk2CyWSCVqtFx44dsWXLljrqVj3VGYdBgwZV+vug0WgwfPjwOuxYPdX9O7FkyRJ06tQJ7u7u8Pf3xwsvvIDLly+r16CQQ61fv17c3Nzkk08+kezsbHnqqafEYDBIfn5+lfX79u2TF198UdatWydGo1EWL15ctw2rqLpj8eSTT8qyZctk//79cvToUZkwYYLo9Xo5c+ZMHXdeu6o7Dt9//71s3LhRjhw5IsePH5clS5aIs7OzbN26tY47r13VHYfrcnNzpXXr1jJgwAAZOXJk3TSrsuqOxcqVK8XT01Py8vKUxWw213HXta+641BeXi59+vSRYcOGye7duyU3N1d27twpBw4cqOPOa1d1x+H8+fN2fxcOHz4szs7OsnLlyrptXAXVHYs1a9aIVquVNWvWSG5urmzbtk1MJpO88MILqvXIoOVgoaGhMmnSJOV3q9Uqfn5+kpSUdNt927Zt26iC1t2MhYjI1atXpUWLFvLpp5+q1WKduNtxEBHp1auXzJo1S4326kxNxuHq1avSr18/+ec//ynjx49vNEGrumOxcuVK0ev1ddRd3anuOHzwwQfSrl07uXLlSl21WCfu9t+IxYsXS4sWLaSkpEStFutMdcdi0qRJ8uCDD9qtmzZtmjzwwAOq9ciPDh3oypUryMzMRGRkpLLOyckJkZGRSEtLc2Bnda82xqK0tBQVFRXw8vJSq03V3e04iAhSU1ORk5ODgQMHqtmqqmo6Dq+//jp8fHwQHx9fF23WiZqORUlJCdq2bQt/f3+MHDkS2dnZddGuamoyDt988w3Cw8MxadIk+Pr6onv37pg3bx6sVmtdtV3rauPfyo8//hhjxoyBh4eHWm3WiZqMRb9+/ZCZmal8vPjLL79gy5YtGDZsmGp98qHSDlRQUACr1QpfX1+79b6+vvj5558d1JVj1MZYvPLKK/Dz87P7j66hqek4WCwWtG7dGuXl5XB2dsb777+Phx56SO12VVOTcdi9ezc+/vhjHDhwoA46rDs1GYtOnTrhk08+QY8ePWCxWLBo0SL069cP2dnZd/wg+/qmJuPwyy+/YMeOHYiNjcWWLVtw/PhxPPfcc6ioqEBiYmJdtF3r7vbfyn379uHw4cP4+OOP1WqxztRkLJ588kkUFBSgf//+EBFcvXoVzzzzDF599VXV+mTQokZh/vz5WL9+PXbu3NloJv1WR4sWLXDgwAGUlJQgNTUV06ZNQ7t27TBo0CBHt1YnLl68iLFjx2LFihXw9vZ2dDsOFx4ejvDwcOX3fv36oUuXLvjwww/xxhtvOLCzumWz2eDj44OPPvoIzs7O6N27N3777TcsXLiwwQatu/Xxxx8jODgYoaGhjm7FIXbu3Il58+bh/fffR1hYGI4fP47nn38eb7zxBmbPnq3KORm0HMjb2xvOzs7Iz8+3W5+fnw+j0eigrhzjbsZi0aJFmD9/Pr777jv06NFDzTZVV9NxcHJyQocOHQAAISEhOHr0KJKSkhps0KruOJw4cQInT57EiBEjlHU2mw0A4OLigpycHLRv317dplVSG/9OuLq6olevXjh+/LgaLdaJmoyDyWSCq6srnJ2dlXVdunSB2WzGlStX4ObmpmrParibvw+XLl3C+vXr8frrr6vZYp2pyVjMnj0bY8eOxcSJEwEAwcHBuHTpEhISEvC3v/0NTk61P6OKc7QcyM3NDb1790ZqaqqyzmazITU11e7/RpuCmo7FggUL8MYbb2Dr1q3o06dPXbSqqtr6O2Gz2VBeXq5Gi3WiuuPQuXNnHDp0CAcOHFCWP/3pTxg8eDAOHDgAf3//umy/VtXG3wmr1YpDhw7BZDKp1abqajIODzzwAI4fP66EbgD4z3/+A5PJ1CBDFnB3fx82bNiA8vJy/OUvf1G7zTpRk7EoLS2tFKauB3FR69HPqk2zpzuyfv160Wq1smrVKjly5IgkJCSIwWBQvoo9duxYmTFjhlJfXl4u+/fvl/3794vJZJIXX3xR9u/fL8eOHXPUS6g11R2L+fPni5ubm3zxxRd2X12+ePGio15CrajuOMybN0+2b98uJ06ckCNHjsiiRYvExcVFVqxY4aiXUCuqOw43akzfOqzuWLz22muybds2OXHihGRmZsqYMWNEp9NJdna2o15CrajuOJw6dUpatGghkydPlpycHNm0aZP4+PjIm2++6aiXUCtq+t9G//79ZfTo0XXdrqqqOxaJiYnSokULWbdunfzyyy+yfft2ad++vTzxxBOq9cigVQ+8++670qZNG3Fzc5PQ0FD54YcflG0REREyfvx45ffc3FwBUGmJiIio+8ZVUJ2xaNu2bZVjkZiYWPeN17LqjMPf/vY36dChg+h0OmnZsqWEh4fL+vXrHdB17avOONyoMQUtkeqNxdSpU5VaX19fGTZsmGRlZTmg69pX3b8Te/fulbCwMNFqtdKuXTv5+9//LlevXq3jrmtfdcfh559/FgCyffv2Ou5UfdUZi4qKCpk7d660b99edDqd+Pv7y3PPPScXLlxQrT+NiFrXyoiIiIiaNs7RIiIiIlIJgxYRERGRShi0iIiIiFTCoEVERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUMWkRETcSECRMQHR3t6DaImhQGLSJyuAkTJkCj0SjLPffcg6FDh+LgwYOObq1W/PG1XV/69++v2vlOnjwJjUaDAwcO2K3/xz/+gVWrVql2XiKqjEGLiOqFoUOHIi8vD3l5eUhNTYWLiwseffRRR7dVa1auXKm8vry8PHzzzTdV1lVUVKjWg16vh8FgUO34RFQZgxYR1QtarRZGoxFGoxEhISGYMWMGTp8+jXPnzuHBBx/E5MmT7erPnTsHNzc3pKamAgACAgLwxhtvICYmBh4eHmjdujWWLVtmt88777yD4OBgeHh4wN/fH8899xxKSkqU7b/++itGjBiBli1bwsPDA926dcOWLVsAABcuXEBsbCxatWoFd3d3BAUFYeXKlXf8+gwGg/L6jEYjvLy8lCtPycnJiIiIgE6nw5o1a3D+/HnExMSgdevWaNasGYKDg7Fu3Tq749lsNixYsAAdOnSAVqtFmzZt8Pe//x0AEBgYCADo1asXNBoNBg0aBKDyR4fl5eWYMmUKfHx8oNPp0L9/f2RkZCjbd+7cCY1Gg9TUVPTp0wfNmjVDv379kJOTc8evm6ipY9AionqnpKQEq1evRocOHXDPPfdg4sSJWLt2LcrLy5Wa1atXo3Xr1njwwQeVdQsXLkTPnj2xf/9+zJgxA88//zxSUlKU7U5OTli6dCmys7Px6aefYseOHXj55ZeV7ZMmTUJ5eTl27dqFQ4cO4a233kLz5s0BALNnz8aRI0fw7bff4ujRo/jggw/g7e1dK6/3eq9Hjx5FVFQULl++jN69e2Pz5s04fPgwEhISMHbsWOzbt0/ZZ+bMmZg/f77S19q1a+Hr6wsASt13332HvLw8bNy4scrzvvzyy/jyyy/x6aefIisrCx06dEBUVBQKCwvt6v72t7/h7bffxo8//ggXFxf8z//8T628bqImQbXHVRMR3aHx48eLs7OzeHh4iIeHhwAQk8kkmZmZIiJSVlYmLVu2lOTkZGWfHj16yNy5c5Xf27ZtK0OHDrU77ujRo+WRRx656Xk3bNgg99xzj/J7cHCw3TH/aMSIERIXF1ej1wdAdDqd8vo8PDzkf//3fyU3N1cAyJIlS257jOHDh8v06dNFRKS4uFi0Wq2sWLGiytrrx92/f7/d+vHjx8vIkSNFRKSkpERcXV1lzZo1yvYrV66In5+fLFiwQEREvv/+ewEg3333nVKzefNmASBlZWXVGQKiJotXtIioXhg8eDAOHDiAAwcOYN++fYiKisIjjzyCX3/9FTqdDmPHjsUnn3wCAMjKysLhw4cxYcIEu2OEh4dX+v3o0aPK79999x2GDBmC1q1bo0WLFhg7dizOnz+P0tJSAMCUKVPw5ptv4oEHHkBiYqLdZPxnn30W69evR0hICF5++WXs3bu3Wq9v8eLFyus7cOAAHnroIWVbnz597GqtViveeOMNBAcHw8vLC82bN8e2bdtw6tQpAMDRo0dRXl6OIUOGVKuHPzpx4gQqKirwwAMPKOtcXV0RGhpqN2YA0KNHD+XPJpMJAHD27Nkan5uoKWHQIqJ6wcPDAx06dECHDh3Qt29f/POf/8SlS5ewYsUKAMDEiRORkpKCM2fOYOXKlXjwwQfRtm3bOz7+yZMn8eijj6JHjx748ssvkZmZqczhunLlinKOX375BWPHjsWhQ4fQp08fvPvuuwCghL4XXngBv//+O4YMGYIXX3zxjs9vNBqV19ehQwd4eHjYvfY/WrhwIf7xj3/glVdewffff48DBw4gKipK6dPd3f2Oz1sbXF1dlT9rNBoA1+aIEdHtMWgRUb2k0Wjg5OSEsrIyAEBwcDD69OmDFStWYO3atVXOE/rhhx8q/d6lSxcAQGZmJmw2G95++23cf//96NixI37//fdKx/D398czzzyDjRs3Yvr06UrQA4BWrVph/PjxWL16NZYsWYKPPvqoNl+yYs+ePRg5ciT+8pe/oGfPnmjXrh3+85//KNuDgoLg7u6ufBHgRm5ubgCuXRm7mfbt28PNzQ179uxR1lVUVCAjIwNdu3atpVdCRC6OboCICLj2DTiz2Qzg2jf83nvvPZSUlGDEiBFKzcSJEzF58mR4eHjgscceq3SMPXv2YMGCBYiOjkZKSgo2bNiAzZs3AwA6dOiAiooKvPvuuxgxYgT27NmD5cuX2+0/depUPPLII+jYsSMuXLiA77//Xglqc+bMQe/evdGtWzeUl5dj06ZNyrbaFhQUhC+++AJ79+5Fy5Yt8c477yA/P18JQDqdDq+88gpefvlluLm54YEHHsC5c+eQnZ2N+Ph4+Pj4wN3dHVu3bsW9994LnU4HvV5vdw4PDw88++yzeOmll+Dl5YU2bdpgwYIFKC0tRXx8vCqvi6gp4hUtIqoXtm7dCpPJBJPJhLCwMGRkZGDDhg3KrQkAICYmBi4uLoiJiYFOp6t0jOnTp+PHH39Er1698Oabb+Kdd95BVFQUAKBnz55455138NZbb6F79+5Ys2YNkpKS7Pa3Wq2YNGkSunTpgqFDh6Jjx454//33AVy7SjRz5kz06NEDAwcOhLOzM9avX6/KWMyaNQv33XcfoqKiMGjQIBiNxkp3dJ89ezamT5+OOXPmoEuXLhg9erQyb8rFxQVLly7Fhx9+CD8/P4wcObLK88yfPx+PP/44xo4di/vuuw/Hjx/Htm3b0LJlS1VeF1FTpBERcXQTRER34uTJk2jfvj0yMjJw33332W0LCAjA1KlTMXXqVMc0R0RUBX50SET1XkVFBc6fP49Zs2bh/vvvrxSyiIjqK350SET13p49e2AymZCRkVFpXpWjzZs3D82bN69yeeSRRxzdHhE5GD86JCK6C4WFhZXupH6du7s7WrduXccdEVF9wqBFREREpBJ+dEhERESkEgYtIiIiIpUwaBERERGphEGLiIiISCUMWkREREQqYdAiIiIiUgmDFhEREZFKGLSIiIiIVPL/AXOlUhCO1mKmAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAHHCAYAAABqVYatAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVDNJREFUeJzt3XtcVHX+P/DXDDAziDJICDMYCireUQxiwhuas2GZK2v704j1wheli66ZtaatitkFU0vX1rLc0h55I8utvmYkoa5fhRBBV0VzxfCSMSgiM6KIOPP5/dGX821kVAY5DJfX8/GYB3LO+5zzns/DnFfnfM4ZhRBCgIiIiIhko3R1A0REREQtHQMXERERkcwYuIiIiIhkxsBFREREJDMGLiIiIiKZMXARERERyYyBi4iIiEhmDFxEREREMmPgIiIiIpIZAxcRtXoLFy6EQqGoU61CocDChQtl7WfYsGEYNmxYk90fETmPgYuImox169ZBoVBIL3d3d3Ts2BGTJ0/G+fPnXd1ekxMcHGw3Xv7+/hgyZAj++c9/Nsj+r127hoULF2L37t0Nsj+i1oyBi4ianEWLFuHTTz/F6tWr8eijj2L9+vWIiYnB9evXZTnevHnzUFlZKcu+5RYeHo5PP/0Un376KV566SX88ssvGDt2LFavXn3P+7527RpeffVVBi6iBuDu6gaIiG716KOPIjIyEgAwZcoU+Pn54a233sLXX3+NcePGNfjx3N3d4e7ePP857NixI/70pz9Jv0+cOBHdunXD8uXL8cwzz7iwMyL6LZ7hIqImb8iQIQCAU6dO2S3/8ccf8cc//hG+vr7QaDSIjIzE119/bVdTXV2NV199FaGhodBoNLjvvvswePBgZGRkSDWO5nBVVVXhhRdeQIcOHdCuXTv8/ve/x88//1yrt8mTJyM4OLjWckf7XLt2LR5++GH4+/tDrVajd+/eeP/9950ai7vR6XTo1asXioqK7lh34cIFJCUlISAgABqNBv3798cnn3wirT99+jQ6dOgAAHj11Vely5Zyz18jaqma5//SEVGrcvr0aQBA+/btpWUFBQUYNGgQOnbsiDlz5sDLywufffYZ4uLi8MUXX+APf/gDgF+DT2pqKqZMmYKoqChYLBYcOHAA+fn5+N3vfnfbY06ZMgXr16/HU089hYEDB2Lnzp0YNWrUPb2P999/H3369MHvf/97uLu747//+7/x3HPPwWazYdq0afe07xrV1dU4d+4c7rvvvtvWVFZWYtiwYSgsLMT06dMREhKCLVu2YPLkySgvL8fzzz+PDh064P3338ezzz6LP/zhDxg7diwAoF+/fg3SJ1GrI4iImoi1a9cKAOL7778XFy9eFOfOnROff/656NChg1Cr1eLcuXNS7YgRI0RYWJi4fv26tMxms4mBAweK0NBQaVn//v3FqFGj7njclJQU8dt/Dg8dOiQAiOeee86u7qmnnhIAREpKirRs0qRJonPnznfdpxBCXLt2rVZdbGys6NKli92ymJgYERMTc8eehRCic+fO4pFHHhEXL14UFy9eFP/+97/Fk08+KQCIP//5z7fd34oVKwQAsX79emnZjRs3RHR0tGjbtq2wWCxCCCEuXrxY6/0SUf3wkiIRNTlGoxEdOnRAUFAQ/vjHP8LLywtff/017r//fgBAWVkZdu7ciXHjxuHKlSsoLS1FaWkpLl26hNjYWJw8eVK6q9HHxwcFBQU4efJknY+/fft2AMCMGTPsls+cOfOe3penp6f0Z7PZjNLSUsTExOCnn36C2Wyu1z537NiBDh06oEOHDujfvz+2bNmCCRMm4K233rrtNtu3b4dOp0N8fLy0zMPDAzNmzEBFRQX+9a9/1asXIro9XlIkoiZn1apV6N69O8xmMz7++GPs2bMHarVaWl9YWAghBObPn4/58+c73MeFCxfQsWNHLFq0CGPGjEH37t3Rt29fjBw5EhMmTLjjpbEzZ85AqVSia9eudst79OhxT+9r3759SElJQXZ2Nq5du2a3zmw2Q6vVOr1Pg8GA119/HQqFAm3atEGvXr3g4+Nzx23OnDmD0NBQKJX2/8/dq1cvaT0RNSwGLiJqcqKioqS7FOPi4jB48GA89dRTOHHiBNq2bQubzQYAeOmllxAbG+twH926dQMADB06FKdOncJXX32FHTt24B//+AeWL1+O1atXY8qUKffc6+0emGq1Wu1+P3XqFEaMGIGePXvinXfeQVBQEFQqFbZv347ly5dL78lZfn5+MBqN9dqWiBoPAxcRNWlubm5ITU3F8OHD8fe//x1z5sxBly5dAPx6GawuYcPX1xeJiYlITExERUUFhg4dioULF942cHXu3Bk2mw2nTp2yO6t14sSJWrXt27dHeXl5reW3niX67//+b1RVVeHrr79Gp06dpOW7du26a/8NrXPnzjh8+DBsNpvdWa4ff/xRWg/cPkwSkfM4h4uImrxhw4YhKioKK1aswPXr1+Hv749hw4bhgw8+QHFxca36ixcvSn++dOmS3bq2bduiW7duqKqquu3xHn30UQDAypUr7ZavWLGiVm3Xrl1hNptx+PBhaVlxcXGtp727ubkBAIQQ0jKz2Yy1a9fetg+5PPbYYzCZTEhLS5OW3bx5E++++y7atm2LmJgYAECbNm0AwGGgJCLn8AwXETULf/nLX/D//t//w7p16/DMM89g1apVGDx4MMLCwjB16lR06dIFJSUlyM7Oxs8//4x///vfAIDevXtj2LBhiIiIgK+vLw4cOIDPP/8c06dPv+2xwsPDER8fj/feew9msxkDBw5EZmYmCgsLa9U++eSTePnll/GHP/wBM2bMwLVr1/D++++je/fuyM/Pl+oeeeQRqFQqjB49Gk8//TQqKiqwZs0a+Pv7OwyNckpOTsYHH3yAyZMnIy8vD8HBwfj888+xb98+rFixAu3atQPw6yT/3r17Iy0tDd27d4evry/69u2Lvn37Nmq/RC2Cq2+TJCKqUfNYiNzc3FrrrFar6Nq1q+jatau4efOmEEKIU6dOiYkTJwqdTic8PDxEx44dxeOPPy4+//xzabvXX39dREVFCR8fH+Hp6Sl69uwp3njjDXHjxg2pxtEjHCorK8WMGTPEfffdJ7y8vMTo0aPFuXPnHD4mYceOHaJv375CpVKJHj16iPXr1zvc59dffy369esnNBqNCA4OFm+99Zb4+OOPBQBRVFQk1TnzWIi7PfLidvsrKSkRiYmJws/PT6hUKhEWFibWrl1ba9usrCwREREhVCoVHxFBdA8UQvzm/DYRERERNTjO4SIiIiKSGQMXERERkcwYuIiIiIhkxsBFREREJDMGLiIiIiKZMXARERERyYwPPnUhm82GX375Be3ateNXaBARETUTQghcuXIFgYGBtb4E/nYYuFzol19+QVBQkKvbICIiono4d+4c7r///jrVMnC5UM3XZ5w7dw7e3t4u7oaIiIjqwmKxICgoSPocrwsGLhequYzo7e3NwEVERNTMODMdiJPmiYiIiGTGwEVEREQkMwYuIiIiIplxDhcREVErYLVaUV1d7eo2mg2VSlXnRz7UBQMXERFRCyaEgMlkQnl5uatbaVaUSiVCQkKgUqkaZH8MXERERC1YTdjy9/dHmzZt+KDtOqh5MHlxcTE6derUIGPGwEVERNRCWa1WKWzdd999rm6nWenQoQN++eUX3Lx5Ex4eHve8P06aJyIiaqFq5my1adPGxZ00PzWXEq1Wa4Psj4GLiIioheNlROc19JgxcBERERHJjIGLiIiISGYMXC1UsbkSWadKUWyudHUrRERE9WYymfDnP/8ZXbp0gVqtRlBQEEaPHo3MzEwAQHBwMFasWFFru4ULFyI8PNzhPjdv3gyFQoG4uDj5Gr8F71JsgdJyz2Lu1iOwCUCpAFLHhmH8g51c3RYREZFTTp8+jUGDBsHHxwdLly5FWFgYqqur8d1332HatGn48ccf67XPl156CUOGDJGh49tj4Gphis2VUtgCAJsAXtl6FEO7d4Be6+na5oiIiJzw3HPPQaFQYP/+/fDy8pKW9+nTB//1X//l9P6sVisSEhLw6quv4n/+538a9WGwvKTYwhSVXpXCVg2rEDhdes01DRERUYvRmNNVysrKkJ6ejmnTptmFrRo+Pj5O73PRokXw9/dHUlJSA3ToHJ7hamFC/LygVMAudLkpFAj24zNYiIio/hp7ukphYSGEEOjZs+dda19++WXMmzfPbtmNGzfQu3dv6fe9e/fio48+wqFDhxq61TrhGa4WRq/1ROrYMLj97/ND3BQKvDm2Ly8nEhFRvd1uuoqcZ7qEEHcv+l9/+ctfcOjQIbvXM888I62/cuUKJkyYgDVr1sDPz0+Odu+KZ7haoPEPdsLQ7h1wuvQagv3aMGwREdE9udN0Fbk+Y0JDQ6FQKOo0Md7Pzw/dunWzW+br6yv9+dSpUzh9+jRGjx4tLbPZbAAAd3d3nDhxAl27dm2gzh3jGa4WSq/1RHTX+xi2iIjontVMV/ktuaer+Pr6IjY2FqtWrcLVq1drrXdmwnvPnj1x5MgRuzNgv//97zF8+HAcOnQIQUFBDdi5YwxcREREdEeumq6yatUqWK1WREVF4YsvvsDJkydx/PhxrFy5EtHR0XXej0ajQd++fe1ePj4+aNeuHfr27St9b6KceEmRiIiI7soV01W6dOmC/Px8vPHGG3jxxRdRXFyMDh06ICIiAu+//77sx29ICuHMrDRqUBaLBVqtFmazGd7e3q5uh4iIWpjr16+jqKgIISEh0Gg0rm6nWbnT2NXn85uXFImIiIhkxsBFREREJDMGLiIiIiKZMXARERERyYyBi4iIqIXj/XHOa+gxY+AiIiJqoTw8PAAA165dc3Enzc+NGzcAAG5ubg2yPz6Hi4iIqIVyc3ODj48PLly4AABo06YNFArFXbYim82Gixcvok2bNnB3b5ioxMBFRETUgul0OgCQQhfVjVKpRKdOnRosoDJwERERtWAKhQJ6vR7+/v6orq52dTvNhkqlglLZcDOvGLiIiIhaATc3twabj0TOaxKT5letWoXg4GBoNBoYDAbs37//jvVbtmxBz549odFoEBYWhu3bt9utF0JgwYIF0Ov18PT0hNFoxMmTJ+1qysrKkJCQAG9vb/j4+CApKQkVFRXS+hMnTmD48OEICAiARqNBly5dMG/ePLv/O1i3bh0UCoXdi1+dQERERLdyeeBKS0vDrFmzkJKSgvz8fPTv3x+xsbG3vdaclZWF+Ph4JCUl4eDBg4iLi0NcXByOHj0q1SxZsgQrV67E6tWrkZOTAy8vL8TGxuL69etSTUJCAgoKCpCRkYFt27Zhz549SE5OltZ7eHhg4sSJ2LFjB06cOIEVK1ZgzZo1SElJsevH29sbxcXF0uvMmTMNPEJERETU7AkXi4qKEtOmTZN+t1qtIjAwUKSmpjqsHzdunBg1apTdMoPBIJ5++mkhhBA2m03odDqxdOlSaX15eblQq9Vi06ZNQgghjh07JgCI3Nxcqebbb78VCoVCnD9//ra9vvDCC2Lw4MHS72vXrhVarbbub/YWZrNZABBms7ne+yAiIqLGVZ/Pb5ee4bpx4wby8vJgNBqlZUqlEkajEdnZ2Q63yc7OtqsHgNjYWKm+qKgIJpPJrkar1cJgMEg12dnZ8PHxQWRkpFRjNBqhVCqRk5Pj8LiFhYVIT09HTEyM3fKKigp07twZQUFBGDNmDAoKCm77fquqqmCxWOxeRERE1PK5NHCVlpbCarUiICDAbnlAQABMJpPDbUwm0x3ra37ercbf399uvbu7O3x9fWsdd+DAgdBoNAgNDcWQIUOwaNEiaV2PHj3w8ccf46uvvsL69eths9kwcOBA/Pzzzw57T01NhVarlV5BQUEO64iIiKhlcfkcrqYuLS0N+fn52LhxI7755hssW7ZMWhcdHY2JEyciPDwcMTEx2Lp1Kzp06IAPPvjA4b7mzp0Ls9ksvc6dO9dYb4OIiIhcyKWPhfDz84ObmxtKSkrslpeUlEgParuVTqe7Y33Nz5KSEuj1erua8PBwqebWSfk3b95EWVlZrePWnIXq3bs3rFYrkpOT8eKLLzq8tdbDwwMDBgxAYWGhw97VajXUarXDdURERNRyufQMl0qlQkREBDIzM6VlNpsNmZmZiI6OdrhNdHS0XT0AZGRkSPUhISHQ6XR2NRaLBTk5OVJNdHQ0ysvLkZeXJ9Xs3LkTNpsNBoPhtv3abDZUV1fDZrM5XG+1WnHkyBG7oEdERETk8gefzpo1C5MmTUJkZCSioqKwYsUKXL16FYmJiQCAiRMnomPHjkhNTQUAPP/884iJicHbb7+NUaNGYfPmzThw4AA+/PBDAL8+UXfmzJl4/fXXERoaipCQEMyfPx+BgYGIi4sDAPTq1QsjR47E1KlTsXr1alRXV2P69Ol48sknERgYCADYsGEDPDw8EBYWBrVajQMHDmDu3LkYP3689GWgixYtwkMPPYRu3bqhvLwcS5cuxZkzZzBlypRGHkUiIiJqylweuMaPH4+LFy9iwYIFMJlMCA8PR3p6ujTp/ezZs3aP1h84cCA2btyIefPm4ZVXXkFoaCi+/PJL9O3bV6qZPXs2rl69iuTkZJSXl2Pw4MFIT0+3eyjphg0bMH36dIwYMQJKpRJPPPEEVq5cKa13d3fHW2+9hf/85z8QQqBz586YPn06XnjhBanm8uXLmDp1KkwmE9q3b4+IiAhkZWWhd+/ecg4ZERERNTMKIYRwdROtlcVigVarhdlshre3t6vbISIiojqoz+c371IkIiIikhkDFxEREZHMGLiIiIiIZMbARURERCQzBi4iIiIimTFwEREREcmMgYuIiIhIZgxcRERERDJj4CIiIiKSGQMXERERkcwYuIiIiIhkxsBFREREJDMGLiIiIiKZMXARERERyYyBi4iIiEhmDFxEREREMmPgIiIiIpIZAxcRERGRzBi4iIiIiGTGwEVEREQkMwYuIiIiIpkxcBERERHJjIGLiIiISGYMXEREREQyY+AiIiIikhkDFxEREZHMGLiIiIiIZMbARURERCQzBi4iIiIimTFwEREREcmMgYuIiIhIZgxcRERERDJj4CIiIiKSGQMXERERkcyaROBatWoVgoODodFoYDAYsH///jvWb9myBT179oRGo0FYWBi2b99ut14IgQULFkCv18PT0xNGoxEnT560qykrK0NCQgK8vb3h4+ODpKQkVFRUSOtPnDiB4cOHIyAgABqNBl26dMG8efNQXV3tVC9ERERELg9caWlpmDVrFlJSUpCfn4/+/fsjNjYWFy5ccFiflZWF+Ph4JCUl4eDBg4iLi0NcXByOHj0q1SxZsgQrV67E6tWrkZOTAy8vL8TGxuL69etSTUJCAgoKCpCRkYFt27Zhz549SE5OltZ7eHhg4sSJ2LFjB06cOIEVK1ZgzZo1SElJcaoXIiIiIggXi4qKEtOmTZN+t1qtIjAwUKSmpjqsHzdunBg1apTdMoPBIJ5++mkhhBA2m03odDqxdOlSaX15eblQq9Vi06ZNQgghjh07JgCI3Nxcqebbb78VCoVCnD9//ra9vvDCC2Lw4MF17uVuzGazACDMZnOd6omIiMj16vP57dIzXDdu3EBeXh6MRqO0TKlUwmg0Ijs72+E22dnZdvUAEBsbK9UXFRXBZDLZ1Wi1WhgMBqkmOzsbPj4+iIyMlGqMRiOUSiVycnIcHrewsBDp6emIiYmpcy+3qqqqgsVisXsRERFRy+fSwFVaWgqr1YqAgAC75QEBATCZTA63MZlMd6yv+Xm3Gn9/f7v17u7u8PX1rXXcgQMHQqPRIDQ0FEOGDMGiRYvq3MutUlNTodVqpVdQUJDDOiIiImpZXD6Hq6lLS0tDfn4+Nm7ciG+++QbLli2r977mzp0Ls9ksvc6dO9eAnRIREVFT5e7Kg/v5+cHNzQ0lJSV2y0tKSqDT6Rxuo9Pp7lhf87OkpAR6vd6uJjw8XKq5dVL+zZs3UVZWVuu4NWehevfuDavViuTkZLz44otwc3O7ay+3UqvVUKvVDtcRERFRy+XSM1wqlQoRERHIzMyUltlsNmRmZiI6OtrhNtHR0Xb1AJCRkSHVh4SEQKfT2dVYLBbk5ORINdHR0SgvL0deXp5Us3PnTthsNhgMhtv2a7PZUF1dDZvNVqdeiIiIiAC4/i7FzZs3C7VaLdatWyeOHTsmkpOThY+PjzCZTEIIISZMmCDmzJkj1e/bt0+4u7uLZcuWiePHj4uUlBTh4eEhjhw5ItUsXrxY+Pj4iK+++kocPnxYjBkzRoSEhIjKykqpZuTIkWLAgAEiJydH7N27V4SGhor4+Hhp/fr160VaWpo4duyYOHXqlEhLSxOBgYEiISHBqV7uhHcpEhERNT/1+fx2eeASQoh3331XdOrUSahUKhEVFSV++OEHaV1MTIyYNGmSXf1nn30munfvLlQqlejTp4/45ptv7NbbbDYxf/58ERAQINRqtRgxYoQ4ceKEXc2lS5dEfHy8aNu2rfD29haJiYniypUr0vrNmzeLBx54QLRt21Z4eXmJ3r17izfffNMutNWllzth4CIiImp+6vP5rRBCCNeeY2u9LBYLtFotzGYzvL29Xd0OERER1UF9Pr95lyIRERGRzBi4iIiIiGTGwEVEREQkMwYuIiIiIpkxcBERERHJjIGLiIiISGYMXEREREQyY+AiIiIikhkDFxEREZHMGLiIiIiIZMbARURERCQzBi4iIiIimTFwEREREcmMgYuIiIhIZgxcRERERDJj4CIiIiKSGQMXERERkcwYuIiIiIhkxsBFREREJDMGLiIiIiKZMXARERERyYyBi4iIiEhmDFxEREREMmPgIiIiIpIZAxcRERGRzBi4iIiIiGTGwEVEREQkMwYuIiIiIpkxcBERERHJjIGLiIiISGYMXEREREQyY+AiIiIikhkDFxEREZHMGLiIiIiIZNYkAteqVasQHBwMjUYDg8GA/fv337F+y5Yt6NmzJzQaDcLCwrB9+3a79UIILFiwAHq9Hp6enjAajTh58qRdTVlZGRISEuDt7Q0fHx8kJSWhoqJCWr97926MGTMGer0eXl5eCA8Px4YNG+z2sW7dOigUCruXRqO5x9EgIiKilsblgSstLQ2zZs1CSkoK8vPz0b9/f8TGxuLChQsO67OyshAfH4+kpCQcPHgQcXFxiIuLw9GjR6WaJUuWYOXKlVi9ejVycnLg5eWF2NhYXL9+XapJSEhAQUEBMjIysG3bNuzZswfJycl2x+nXrx+++OILHD58GImJiZg4cSK2bdtm14+3tzeKi4ul15kzZxp4hIiIiKjZEy4WFRUlpk2bJv1utVpFYGCgSE1NdVg/btw4MWrUKLtlBoNBPP3000IIIWw2m9DpdGLp0qXS+vLycqFWq8WmTZuEEEIcO3ZMABC5ublSzbfffisUCoU4f/78bXt97LHHRGJiovT72rVrhVarrfubvYXZbBYAhNlsrvc+iIiIqHHV5/PbpWe4bty4gby8PBiNRmmZUqmE0WhEdna2w22ys7Pt6gEgNjZWqi8qKoLJZLKr0Wq1MBgMUk12djZ8fHwQGRkp1RiNRiiVSuTk5Ny2X7PZDF9fX7tlFRUV6Ny5M4KCgjBmzBgUFBTcdvuqqipYLBa7FxEREbV8Lg1cpaWlsFqtCAgIsFseEBAAk8nkcBuTyXTH+pqfd6vx9/e3W+/u7g5fX9/bHvezzz5Dbm4uEhMTpWU9evTAxx9/jK+++grr16+HzWbDwIED8fPPPzvcR2pqKrRarfQKCgpyWEdEREQti8vncDUHu3btQmJiItasWYM+ffpIy6OjozFx4kSEh4cjJiYGW7duRYcOHfDBBx843M/cuXNhNpul17lz5xrrLRAREZELuTRw+fn5wc3NDSUlJXbLS0pKoNPpHG6j0+nuWF/z8241t07Kv3nzJsrKymod91//+hdGjx6N5cuXY+LEiXd8Px4eHhgwYAAKCwsdrler1fD29rZ7EdG9KTZXIutUKYrNla5uhYjotlwauFQqFSIiIpCZmSkts9lsyMzMRHR0tMNtoqOj7eoBICMjQ6oPCQmBTqezq7FYLMjJyZFqoqOjUV5ejry8PKlm586dsNlsMBgM0rLdu3dj1KhReOutt+zuYLwdq9WKI0eOQK/X1+HdE9G9Sss9i0GLd+KpNTkYtHgn0nLPurolIiKH3F3dwKxZszBp0iRERkYiKioKK1aswNWrV6W5UhMnTkTHjh2RmpoKAHj++ecRExODt99+G6NGjcLmzZtx4MABfPjhhwAAhUKBmTNn4vXXX0doaChCQkIwf/58BAYGIi4uDgDQq1cvjBw5ElOnTsXq1atRXV2N6dOn48knn0RgYCCAXy8jPv7443j++efxxBNPSHO7VCqVNHF+0aJFeOihh9CtWzeUl5dj6dKlOHPmDKZMmdKYQ0jUKhWbKzF36xHYxK+/2wTwytajGNq9A/RaT9c2R0R0C5cHrvHjx+PixYtYsGABTCYTwsPDkZ6eLk16P3v2LJTK/zsRN3DgQGzcuBHz5s3DK6+8gtDQUHz55Zfo27evVDN79mxcvXoVycnJKC8vx+DBg5Genm73UNINGzZg+vTpGDFiBJRKJZ544gmsXLlSWv/JJ5/g2rVrSE1NlcIeAMTExGD37t0AgMuXL2Pq1KkwmUxo3749IiIikJWVhd69e8s1XET0v4pKr0phq4ZVCJwuvcbARURNjkIIIe5eRnKwWCzQarUwm82cz0XkpGJzJQYt3mkXutwUCuydM5yBi4hkVZ/Pb96lSETNkl7ridSxYXBTKAD8GrbeHNuXYYuImiSXX1IkIqqv8Q92wtDuHXC69BqC/dowbBFRk8XARUTNml7ryaBFRE0eLykSERFRg+Gz8RzjGS4iIiJqEGm5Z6XHtSgVQOrYMIx/sJOr22oSeIaLiIiI7tntno3HM12/YuAiIiKie3anZ+MRAxcRERE1gBA/LygV9svcFAoE+7VxTUNNDAMXEVETxgnI1Fzw2Xh3xknzRERNFCcgU3PDZ+PdHs9wERE1QZyATM2VXuuJ6K73MWzdgoGLiKgJ4gRkopaFgYuIqAniBGSiloWBi4ioCeIEZKKWhZPmiYiaKE5AJmo5GLiIiJowfjk3UcvAS4pEREREMmPgIiIiIpIZAxcRERGRzBi4iIiIiGTGwEVEREQkMwYuIiIiIpkxcBERERHJjIGLiIiISGYMXEREREQyY+AiIiIikhkDFxEREZHMGLiIiIiIZMbARURERCQzBi4iIiIimTFwEREREcmMgYuIiIhIZgxcRERERDJj4CIiIiKSWZMIXKtWrUJwcDA0Gg0MBgP2799/x/otW7agZ8+e0Gg0CAsLw/bt2+3WCyGwYMEC6PV6eHp6wmg04uTJk3Y1ZWVlSEhIgLe3N3x8fJCUlISKigpp/e7duzFmzBjo9Xp4eXkhPDwcGzZscLoXIiIiIpcHrrS0NMyaNQspKSnIz89H//79ERsbiwsXLjisz8rKQnx8PJKSknDw4EHExcUhLi4OR48elWqWLFmClStXYvXq1cjJyYGXlxdiY2Nx/fp1qSYhIQEFBQXIyMjAtm3bsGfPHiQnJ9sdp1+/fvjiiy9w+PBhJCYmYuLEidi2bZtTvRARERFBuFhUVJSYNm2a9LvVahWBgYEiNTXVYf24cePEqFGj7JYZDAbx9NNPCyGEsNlsQqfTiaVLl0rry8vLhVqtFps2bRJCCHHs2DEBQOTm5ko13377rVAoFOL8+fO37fWxxx4TiYmJde7lbsxmswAgzGZzneqJiIjI9erz+d0gZ7iKiopw8+ZNp7e7ceMG8vLyYDQapWVKpRJGoxHZ2dkOt8nOzrarB4DY2FipvqioCCaTya5Gq9XCYDBINdnZ2fDx8UFkZKRUYzQaoVQqkZOTc9t+zWYzfH1969zLraqqqmCxWOxeRERE1PI1SODq0aNHrTlSdVFaWgqr1YqAgAC75QEBATCZTA63MZlMd6yv+Xm3Gn9/f7v17u7u8PX1ve1xP/vsM+Tm5iIxMbHOvdwqNTUVWq1WegUFBTmsIyIiopbF3ZnisWPHOlxutVoxY8YMtGvXDgCwdevWe++sCdm1axcSExOxZs0a9OnTp977mTt3LmbNmiX9brFYGLqIiIhaAafOcH355ZcoKyuzO0uj1WoBAG3btrX7vS78/Pzg5uaGkpISu+UlJSXQ6XQOt9HpdHesr/l5t5pbJ+XfvHkTZWVltY77r3/9C6NHj8by5csxceJEp3q5lVqthre3t92LiIiIWj6nAtfGjRtx6tQpDB06FGvXrpVeSqUSb7zxhvR7XalUKkRERCAzM1NaZrPZkJmZiejoaIfbREdH29UDQEZGhlQfEhICnU5nV2OxWJCTkyPVREdHo7y8HHl5eVLNzp07YbPZYDAYpGW7d+/GqFGj8NZbb9ndwVjXXoiIiIgAOH+XYlFRkRg0aJAYO3asKCsrE0II4e7uLgoKCpzdlRBCiM2bNwu1Wi3WrVsnjh07JpKTk4WPj48wmUxCCCEmTJgg5syZI9Xv27dPuLu7i2XLlonjx4+LlJQU4eHhIY4cOSLVLF68WPj4+IivvvpKHD58WIwZM0aEhISIyspKqWbkyJFiwIABIicnR+zdu1eEhoaK+Ph4af3OnTtFmzZtxNy5c0VxcbH0unTpklO93AnvUiQiImp+6vP5Xa/HQlitVrFgwQIRFBQk0tPThYeHR70DlxBCvPvuu6JTp05CpVKJqKgo8cMPP0jrYmJixKRJk+zqP/vsM9G9e3ehUqlEnz59xDfffGO33mazifnz54uAgAChVqvFiBEjxIkTJ+xqLl26JOLj40Xbtm2Ft7e3SExMFFeuXJHWT5o0SQCo9YqJiXGqlzth4CIiImp+6vP5rRBCiPqeHdu7dy8mTpyIM2fO4MiRI+jdu3cDnHNrPSwWC7RaLcxmM+dzERERNRP1+fx26i7FWw0ePBiHDx/GqVOn0LVr13vZFREREVGLdU+BC/j17sT+/fs3RC9ERERELZJTgWvAgAFQKBR3rcvPz693Q0REREQtjVOBKy4uTvqzEAKpqal45pln7L7uhoiIiIjs3dOk+Xbt2uHf//43unTp0pA9tRqcNE9ERNT81Ofzu0G+S5GIiIiIbo+Bi4iIiEhmDFwku2JzJbJOlaLYXOnqVoiIiFzCqUnzK1eutPv95s2bWLduHfz8/OyWz5gx4947oxYhLfcs5m49ApsAlAogdWwYxj/YydVtERERNSqnJs2HhITcfYcKBX766ad7aqq1aOmT5ovNlRi0eCdsv/kb5qZQYO+c4dBrPV3XGBER0T2Q/UnzRUVF9WqMWqei0qt2YQsArELgdOk1Bi4iImpVnJrDtXPnTvTu3RsWi6XWOrPZjD59+uB//ud/Gqw5at5C/LygvOU5uW4KBYL92rimISIiIhdxKnCtWLECU6dOdXj6TKvV4umnn8Y777zTYM1R86bXeiJ1bBjc/vfbCdwUCrw5ti/PbhERUavj1Byuzp07Iz09Hb169XK4/scff8QjjzyCs2fPNliDLVlLn8NVo9hcidOl1xDs14Zhi4iImj3Z53CVlJTAw8Pj9jtzd8fFixed2SW1AnqtJ4MWERG1ak5dUuzYsSOOHj162/WHDx+GXq+/56aIiIiIWhKnAtdjjz2G+fPn4/r167XWVVZWIiUlBY8//niDNUdERETUEjg1h6ukpAQPPPAA3NzcMH36dPTo0QPAr3O3Vq1aBavVivz8fAQEBMjWcEvSWuZwERERtSSyz+EKCAhAVlYWnn32WcydOxc1WU2hUCA2NharVq1i2CIiIiK6hVOBC/j1TsXt27fj8uXLKCwshBACoaGhaN++vRz9ERERUQtRbK5EUelVhPh5tbqbqZwOXDXat2+PBx98sCF7ISIiohaqtX+3rlOT5omIiIicVWyulMIWANgE8MrWoyg2V7q2sUbEwEVERESyutN367YWDFxEREQkK363LgMXERERyYzfrXsPk+aJiIiI6mr8g50wtHuHVvvdugxcRERE1Cha83fr8pIiERERkcwYuIiIiIhkxsBFREREJDMGLiIiIiKZMXARERERyYyBi4iIiEhmDFxEREREMnN54Fq1ahWCg4Oh0WhgMBiwf//+O9Zv2bIFPXv2hEajQVhYGLZv3263XgiBBQsWQK/Xw9PTE0ajESdPnrSrKSsrQ0JCAry9veHj44OkpCRUVFRI669fv47JkycjLCwM7u7uiIuLq9XH7t27oVAoar1MJlP9B4OIiIhaJJcGrrS0NMyaNQspKSnIz89H//79ERsbiwsXLjisz8rKQnx8PJKSknDw4EHExcUhLi4OR48elWqWLFmClStXYvXq1cjJyYGXlxdiY2Nx/fp1qSYhIQEFBQXIyMjAtm3bsGfPHiQnJ0vrrVYrPD09MWPGDBiNxju+hxMnTqC4uFh6+fv73+OoEBERUYsjXCgqKkpMmzZN+t1qtYrAwECRmprqsH7cuHFi1KhRdssMBoN4+umnhRBC2Gw2odPpxNKlS6X15eXlQq1Wi02bNgkhhDh27JgAIHJzc6Wab7/9VigUCnH+/Plax5w0aZIYM2ZMreW7du0SAMTly5fr/H5vZTabBQBhNpvrvQ8iIiJqXPX5/HbZGa4bN24gLy/P7gySUqmE0WhEdna2w22ys7NrnXGKjY2V6ouKimAymexqtFotDAaDVJOdnQ0fHx9ERkZKNUajEUqlEjk5OU6/j/DwcOj1evzud7/Dvn37nN6eiIiIWj6XBa7S0lJYrVYEBATYLQ8ICLjtPCiTyXTH+pqfd6u59bKfu7s7fH19nZp/pdfrsXr1anzxxRf44osvEBQUhGHDhiE/P/+221RVVcFisdi9iIiIqOXjl1fXU48ePdCjRw/p94EDB+LUqVNYvnw5Pv30U4fbpKam4tVXX22sFomIiKiJcNkZLj8/P7i5uaGkpMRueUlJCXQ6ncNtdDrdHetrft6t5tZJ+Tdv3kRZWdltj1tXUVFRKCwsvO36uXPnwmw2S69z587d0/GIiIioeXBZ4FKpVIiIiEBmZqa0zGazITMzE9HR0Q63iY6OtqsHgIyMDKk+JCQEOp3OrsZisSAnJ0eqiY6ORnl5OfLy8qSanTt3wmazwWAw3NN7OnToEPR6/W3Xq9VqeHt7272IiIio5XPpJcVZs2Zh0qRJiIyMRFRUFFasWIGrV68iMTERADBx4kR07NgRqampAIDnn38eMTExePvttzFq1Chs3rwZBw4cwIcffggAUCgUmDlzJl5//XWEhoYiJCQE8+fPR2BgoPQsrV69emHkyJGYOnUqVq9ejerqakyfPh1PPvkkAgMDpd6OHTuGGzduoKysDFeuXMGhQ4cA/DpJHgBWrFiBkJAQ9OnTB9evX8c//vEP7Ny5Ezt27GicwSMiIqJmw6WBa/z48bh48SIWLFgAk8mE8PBwpKenS5Pez549C6Xy/07CDRw4EBs3bsS8efPwyiuvIDQ0FF9++SX69u0r1cyePRtXr15FcnIyysvLMXjwYKSnp0Oj0Ug1GzZswPTp0zFixAgolUo88cQTWLlypV1vjz32GM6cOSP9PmDAAAC/PlgV+PUuyxdffBHnz59HmzZt0K9fP3z//fcYPnx4ww8UERERNWsKUZMgqNFZLBZotVqYzWZeXiQiImom6vP57fKv9iEiIiJq6Ri4iIiIiGTGwEVEREQkMwYuIiIiIpkxcBERERHJjIGLiIiISGYMXEREREQyY+AiIiIikhkDFxEREZHMGLiIqMkrNlci61Qpis2Vrm6FiKheXPpdikTUuhSbK1FUehUhfl7Qaz3rtE1a7lnM3XoENgEoFUDq2DCMf7CTzJ0SETUsBi4iahT1CU7F5kppGwCwCeCVrUcxtHuHOgc2IqKmgJcUiUh2twtOd7tEWFR6VdqmhlUInC69JlOnRETyYOAiItnVNziF+HlBqbBf5qZQINivTQN3SEQkLwYuIpJdfYOTXuuJ1LFhcFMopG3eHNuXlxOJqNnhHC4ikl1NcHpl61FYhXAqOI1/sBOGdu+A06XXEOzXhmGLiJolBi4iahT3Epz0Wk8GLSJq1hi4iKjRMDgRUWvFOVxEREREMmPgIiIiIpIZAxcRERGRzBi4iIiIiGTGwEVEREQkMwYuIiIiIpkxcBERERHJjIGLiIiISGYMXEREREQyY+AiIiIikhkDFxEREZHMGLiIiIiIZMbARURERCQzBi4iIiIimTFwEREREcmMgYuIiIhIZgxcRERERDJzeeBatWoVgoODodFoYDAYsH///jvWb9myBT179oRGo0FYWBi2b99ut14IgQULFkCv18PT0xNGoxEnT560qykrK0NCQgK8vb3h4+ODpKQkVFRUSOuvX7+OyZMnIywsDO7u7oiLi3PYy+7du/HAAw9ArVajW7duWLduXb3GgIiIiFo2lwautLQ0zJo1CykpKcjPz0f//v0RGxuLCxcuOKzPyspCfHw8kpKScPDgQcTFxSEuLg5Hjx6VapYsWYKVK1di9erVyMnJgZeXF2JjY3H9+nWpJiEhAQUFBcjIyMC2bduwZ88eJCcnS+utVis8PT0xY8YMGI1Gh70UFRVh1KhRGD58OA4dOoSZM2diypQp+O677xpodIiIiKjFEC4UFRUlpk2bJv1utVpFYGCgSE1NdVg/btw4MWrUKLtlBoNBPP3000IIIWw2m9DpdGLp0qXS+vLycqFWq8WmTZuEEEIcO3ZMABC5ublSzbfffisUCoU4f/58rWNOmjRJjBkzptby2bNniz59+tgtGz9+vIiNjb3Lu/4/ZrNZABBms7nO2xAREZFr1efz22VnuG7cuIG8vDy7M0hKpRJGoxHZ2dkOt8nOzq51xik2NlaqLyoqgslksqvRarUwGAxSTXZ2Nnx8fBAZGSnVGI1GKJVK5OTk1Ln/u/XiSFVVFSwWi92LiIiIWj6XBa7S0lJYrVYEBATYLQ8ICIDJZHK4jclkumN9zc+71fj7+9utd3d3h6+v722P60wvFosFlZWVDrdJTU2FVquVXkFBQXU+HhERETVfLp8035rMnTsXZrNZep07d87VLREREVEjcFng8vPzg5ubG0pKSuyWl5SUQKfTOdxGp9Pdsb7m591qbp2Uf/PmTZSVld32uM704u3tDU9PT4fbqNVqeHt7272IiIio5XNZ4FKpVIiIiEBmZqa0zGazITMzE9HR0Q63iY6OtqsHgIyMDKk+JCQEOp3OrsZisSAnJ0eqiY6ORnl5OfLy8qSanTt3wmazwWAw1Ln/u/VCREREJJFxEv9dbd68WajVarFu3Tpx7NgxkZycLHx8fITJZBJCCDFhwgQxZ84cqX7fvn3C3d1dLFu2TBw/flykpKQIDw8PceTIEalm8eLFwsfHR3z11Vfi8OHDYsyYMSIkJERUVlZKNSNHjhQDBgwQOTk5Yu/evSI0NFTEx8fb9VZQUCAOHjwoRo8eLYYNGyYOHjwoDh48KK3/6aefRJs2bcRf/vIXcfz4cbFq1Srh5uYm0tPT6/z+eZciERFR81Ofz2+XBi4hhHj33XdFp06dhEqlElFRUeKHH36Q1sXExIhJkybZ1X/22Weie/fuQqVSiT59+ohvvvnGbr3NZhPz588XAQEBQq1WixEjRogTJ07Y1Vy6dEnEx8eLtm3bCm9vb5GYmCiuXLliV9O5c2cBoNbrt3bt2iXCw8OFSqUSXbp0EWvXrnXqvTNwNa5fyq+JfYUXxS/l11zdChERNWP1+fxWCCGEy06vtXIWiwVarRZms5nzuWSWlnsWc7cegU0ASgWQOjYM4x/s5Oq2iIioGarP5zfvUqQWr9hcKYUtALAJ4JWtR1Fsdvz4DiIioobGwEUtXlHpVSls1bAKgdOl11zTEBERtToMXNTihfh5QamwX+amUCDYr41rGiIiolaHgYtaPL3WE6ljw+Cm+DV1uSkUeHNsX+i1jp+XRi1HsbkSWadKefmYiFzO3dUNEDWG8Q92wtDuHXC69BqC/dowbLUCvFGCiJoSnuGiVkOv9UR01/sYtloB3ihBRE0NAxcRtTi8UYKImhoGLiJqcXijBBE1NQxcRNTi8EYJImpqOGmeqJUrNleiqPQqQvy8WlQg4Y0SRNSUMHARtWIt/U4+vdaTQYuImgReUiRqpXgnHxFR42HgImqleCcfEVHjYeAiaqV4Jx8RUeNh4CJqpXgnHxFR4+GkeaJWjHfyERE1DgYuolaOd/IREcmPlxSJiIiIZMbARURERCQzBi4iIiIimTFwEREREcmMgYuIiIhIZgxcJLticyWyTpXyK2OIiKjV4mMhSFYt/cuRiYiI6oJnuEg2/HJkIiKiXzFwkWz45chERES/YuAi2fDLkYmIiH7FwEWy4ZcjExER/YqT5klW/HJkIiIiBi5qBPxyZCIiau14SZGIiIhIZgxcREREVAsfWt2weEmRiIiI7PCh1Q2PZ7iIiIhIwodWy6NJBK5Vq1YhODgYGo0GBoMB+/fvv2P9li1b0LNnT2g0GoSFhWH79u1264UQWLBgAfR6PTw9PWE0GnHy5Em7mrKyMiQkJMDb2xs+Pj5ISkpCRUWFXc3hw4cxZMgQaDQaBAUFYcmSJXbr161bB4VCYffSaDT3MBJERESONdYlPj60Wh4uD1xpaWmYNWsWUlJSkJ+fj/79+yM2NhYXLlxwWJ+VlYX4+HgkJSXh4MGDiIuLQ1xcHI4ePSrVLFmyBCtXrsTq1auRk5MDLy8vxMbG4vr161JNQkICCgoKkJGRgW3btmHPnj1ITk6W1lssFjzyyCPo3Lkz8vLysHTpUixcuBAffvihXT/e3t4oLi6WXmfOnGngESIiotYuLfcsBi3eiafW5GDQ4p1Iyz0r27H40Gp5KIQQ4u5l8jEYDHjwwQfx97//HQBgs9kQFBSEP//5z5gzZ06t+vHjx+Pq1avYtm2btOyhhx5CeHg4Vq9eDSEEAgMD8eKLL+Kll14CAJjNZgQEBGDdunV48skncfz4cfTu3Ru5ubmIjIwEAKSnp+Oxxx7Dzz//jMDAQLz//vv461//CpPJBJVKBQCYM2cOvvzyS/z4448Afj3DNXPmTJSXl9frvVssFmi1WpjNZnh7e9drH0RE1LIVmysxaPFOu7NObgoF9s4ZLtsjd9Jyz+KVrUdhFUJ6aDXncP2f+nx+u/QM140bN5CXlwej0SgtUyqVMBqNyM7OdrhNdna2XT0AxMbGSvVFRUUwmUx2NVqtFgaDQarJzs6Gj4+PFLYAwGg0QqlUIicnR6oZOnSoFLZqjnPixAlcvnxZWlZRUYHOnTsjKCgIY8aMQUFBwW3fb1VVFSwWi92LiIjoTlxxiW/8g52wd85wbJr6EPbOGc6w1QBcGrhKS0thtVoREBBgtzwgIAAmk8nhNiaT6Y71NT/vVuPv72+33t3dHb6+vnY1jvbx22P06NEDH3/8Mb766iusX78eNpsNAwcOxM8//+yw99TUVGi1WukVFBTksI6IiKiGqy7x6bWeiO56Hx9c3UBcPoerOYuOjsbEiRMRHh6OmJgYbN26FR06dMAHH3zgsH7u3Lkwm83S69y5c43cMRE1RXzeEd0Jv5e2ZXDpc7j8/Pzg5uaGkpISu+UlJSXQ6XQOt9HpdHesr/lZUlICvV5vVxMeHi7V3Dop/+bNmygrK7Pbj6Pj/PYYt/Lw8MCAAQNQWFjocL1arYZarXa4johaJz7viOqC30vb/Ln0DJdKpUJERAQyMzOlZTabDZmZmYiOjna4TXR0tF09AGRkZEj1ISEh0Ol0djUWiwU5OTlSTXR0NMrLy5GXlyfV7Ny5EzabDQaDQarZs2cPqqur7Y7To0cPtG/f3mFvVqsVR44csQt6RES3w+cdkTN4ia95c/klxVmzZmHNmjX45JNPcPz4cTz77LO4evUqEhMTAQATJ07E3Llzpfrnn38e6enpePvtt/Hjjz9i4cKFOHDgAKZPnw4AUCgUmDlzJl5//XV8/fXXOHLkCCZOnIjAwEDExcUBAHr16oWRI0di6tSp2L9/P/bt24fp06fjySefRGBgIADgqaeegkqlQlJSEgoKCpCWloa//e1vmDVrltTLokWLsGPHDvz000/Iz8/Hn/70J5w5cwZTpkxppNEjouaMzzsiaj1c/tU+48ePx8WLF7FgwQKYTCaEh4cjPT1dmqB+9uxZKJX/lwsHDhyIjRs3Yt68eXjllVcQGhqKL7/8En379pVqZs+ejatXryI5ORnl5eUYPHgw0tPT7R5KumHDBkyfPh0jRoyAUqnEE088gZUrV0rrtVotduzYgWnTpiEiIgJ+fn5YsGCB3bO6Ll++jKlTp8JkMqF9+/aIiIhAVlYWevfuLeeQEVELUTMZ+tbb/fm8I6KWx+XP4WrN+BwuIuLzjoian/p8frv8DBcRUWvGydBErQMDFxGRi+m1ngxaRC2cyyfNExEREbV0DFxEREREMmPgIiIiIpIZAxcRERGRzBi4iIiIiGTGwEVEREQkMwYuIiIiIpkxcBERERHJjIGLiIiISGYMXERE1CoUmyuRdaoUxeZKV7dCrRC/2oeIiFq8tNyzmLv1CGwCUCqA1LFh/JJwalQ8w0VERC1asblSClsAYBPAK1uP8kwXNSoGLiIiatGKSq9KYauGVQicLr3mmoaoVWLgIiKiFi3EzwtKhf0yN4UCwX5tXNMQtUoMXERE1KLptZ5IHRsGN8WvqctNocCbY/tCr/V0cWckt6Z0owQnzRMRUYs3/sFOGNq9A06XXkOwXxuGrVagqd0owTNcRETUKui1nojueh/DVivQFG+UYOAiIiKiFqUp3ijBwEVEREQtSlO8UYKBi4iIiFqUpnijBCfNExERUYvT1G6UYOAiIiKiFkmv9XR50KrBS4pEREREMmPgIiIiIpIZAxcRERGRzBi4iKhVakpf+UFELR8nzRNRq9PUvvKDiFo+nuEiolalKX7lBxG1fAxcRNSqNMWv/CCSEy+fNw28pEhErUrNV378NnS5+is/iOTCy+dNB89wEVGr0hS/8oNIDrx83rTwDBc1O8XmShSVXkWInxc/JKlemtpXfhDJ4U6Xz/l3vvE1iTNcq1atQnBwMDQaDQwGA/bv33/H+i1btqBnz57QaDQICwvD9u3b7dYLIbBgwQLo9Xp4enrCaDTi5MmTdjVlZWVISEiAt7c3fHx8kJSUhIqKCruaw4cPY8iQIdBoNAgKCsKSJUuc7oUaVlruWQxavBNPrcnBoMU7kZZ71tUtUTOl13oiuut9/OChFqvm8vlv8fK567g8cKWlpWHWrFlISUlBfn4++vfvj9jYWFy4cMFhfVZWFuLj45GUlISDBw8iLi4OcXFxOHr0qFSzZMkSrFy5EqtXr0ZOTg68vLwQGxuL69evSzUJCQkoKChARkYGtm3bhj179iA5OVlab7FY8Mgjj6Bz587Iy8vD0qVLsXDhQnz44YdO9UINh6fHiYjqjpfPmxjhYlFRUWLatGnS71arVQQGBorU1FSH9ePGjROjRo2yW2YwGMTTTz8thBDCZrMJnU4nli5dKq0vLy8XarVabNq0SQghxLFjxwQAkZubK9V8++23QqFQiPPnzwshhHjvvfdE+/btRVVVlVTz8ssvix49etS5l7sxm80CgDCbzXWqb+32FV4UnV/eVuuVVVjq6taIiJqsX8qviazCUvFL+TVXt9Ji1Ofz26VnuG7cuIG8vDwYjUZpmVKphNFoRHZ2tsNtsrOz7eoBIDY2VqovKiqCyWSyq9FqtTAYDFJNdnY2fHx8EBkZKdUYjUYolUrk5ORINUOHDoVKpbI7zokTJ3D58uU69XKrqqoqWCwWuxfVHU+PExE5j5fPmwaXBq7S0lJYrVYEBATYLQ8ICIDJZHK4jclkumN9zc+71fj7+9utd3d3h6+vr12No3389hh36+VWqamp0Gq10isoKMhhHTnG0+NERNRc8S7FRjR37lzMmjVL+t1isTB0OYl3lxERUXPk0sDl5+cHNzc3lJSU2C0vKSmBTqdzuI1Op7tjfc3PkpIS6PV6u5rw8HCp5tZJ+Tdv3kRZWZndfhwd57fHuFsvt1Kr1VCr1Q7XUd3ptZ4MWkRE1Ky49JKiSqVCREQEMjMzpWU2mw2ZmZmIjo52uE10dLRdPQBkZGRI9SEhIdDpdHY1FosFOTk5Uk10dDTKy8uRl5cn1ezcuRM2mw0Gg0Gq2bNnD6qrq+2O06NHD7Rv375OvRAREREBcP1dips3bxZqtVqsW7dOHDt2TCQnJwsfHx9hMpmEEEJMmDBBzJkzR6rft2+fcHd3F8uWLRPHjx8XKSkpwsPDQxw5ckSqWbx4sfDx8RFfffWVOHz4sBgzZowICQkRlZWVUs3IkSPFgAEDRE5Ojti7d68IDQ0V8fHx0vry8nIREBAgJkyYII4ePSo2b94s2rRpIz744AOnerkT3qVIRETU/NTn89vlgUsIId59913RqVMnoVKpRFRUlPjhhx+kdTExMWLSpEl29Z999pno3r27UKlUok+fPuKbb76xW2+z2cT8+fNFQECAUKvVYsSIEeLEiRN2NZcuXRLx8fGibdu2wtvbWyQmJoorV67Y1fz73/8WgwcPFmq1WnTs2FEsXry4Vu936+VOGLiIiIian/p8fiuEEOLO58BILhaLBVqtFmazGd7e3q5uh4iIiOqgPp/fLn/SPBEREVFLx8BFREREJDMGLiIiIiKZMXARERERyYyBi4iIiEhmDFxEREREMmPgIiIiIpIZv7zahWoegWaxWFzcCREREdVVzee2M48yZeByoStXrgAAgoKCXNwJEREROevKlSvQarV1quWT5l3IZrPhl19+Qbt27aBQKBzWWCwWBAUF4dy5c3waPTgejnBM7HE87HE8auOY2ON41Ha3MRFC4MqVKwgMDIRSWbfZWTzD5UJKpRL3339/nWq9vb35H8JvcDxq45jY43jY43jUxjGxx/Go7U5jUtczWzU4aZ6IiIhIZgxcRERERDJj4Gri1Go1UlJSoFarXd1Kk8DxqI1jYo/jYY/jURvHxB7HozY5xoST5omIiIhkxjNcRERERDJj4CIiIiKSGQMXERERkcwYuIiIiIhkxsDVBKxatQrBwcHQaDQwGAzYv3//bWsLCgrwxBNPIDg4GAqFAitWrGi8RhuJM+OxZs0aDBkyBO3bt0f79u1hNBrvWN9cOTMmW7duRWRkJHx8fODl5YXw8HB8+umnjdit/JwZj9/avHkzFAoF4uLi5G2wkTkzHuvWrYNCobB7aTSaRuy2cTj7d6S8vBzTpk2DXq+HWq1G9+7dsX379kbqVn7OjMewYcNq/R1RKBQYNWpUI3YsL2f/fqxYsQI9evSAp6cngoKC8MILL+D69evOHVSQS23evFmoVCrx8ccfi4KCAjF16lTh4+MjSkpKHNbv379fvPTSS2LTpk1Cp9OJ5cuXN27DMnN2PJ566imxatUqcfDgQXH8+HExefJkodVqxc8//9zIncvH2THZtWuX2Lp1qzh27JgoLCwUK1asEG5ubiI9Pb2RO5eHs+NRo6ioSHTs2FEMGTJEjBkzpnGabQTOjsfatWuFt7e3KC4ull4mk6mRu5aXs2NSVVUlIiMjxWOPPSb27t0rioqKxO7du8WhQ4cauXN5ODsely5dsvv7cfToUeHm5ibWrl3buI3LxNnx2LBhg1Cr1WLDhg2iqKhIfPfdd0Kv14sXXnjBqeMycLlYVFSUmDZtmvS71WoVgYGBIjU19a7bdu7cucUFrnsZDyGEuHnzpmjXrp345JNP5Gqx0d3rmAghxIABA8S8efPkaK/R1Wc8bt68KQYOHCj+8Y9/iEmTJrWowOXseKxdu1ZotdpG6s41nB2T999/X3Tp0kXcuHGjsVpsVPf6b8jy5ctFu3btREVFhVwtNipnx2PatGni4Ycftls2a9YsMWjQIKeOy0uKLnTjxg3k5eXBaDRKy5RKJYxGI7Kzs13YmWs0xHhcu3YN1dXV8PX1lavNRnWvYyKEQGZmJk6cOIGhQ4fK2WqjqO94LFq0CP7+/khKSmqMNhtNfcejoqICnTt3RlBQEMaMGYOCgoLGaLdR1GdMvv76a0RHR2PatGkICAhA37598eabb8JqtTZW27JpiH9XP/roIzz55JPw8vKSq81GU5/xGDhwIPLy8qTLjj/99BO2b9+Oxx57zKlj88urXai0tBRWqxUBAQF2ywMCAvDjjz+6qCvXaYjxePnllxEYGGj3H1NzVt8xMZvN6NixI6qqquDm5ob33nsPv/vd7+RuV3b1GY+9e/fio48+wqFDhxqhw8ZVn/Ho0aMHPv74Y/Tr1w9msxnLli3DwIEDUVBQgPvvv78x2pZVfcbkp59+ws6dO5GQkIDt27ejsLAQzz33HKqrq5GSktIYbcvmXv9d3b9/P44ePYqPPvpIrhYbVX3G46mnnkJpaSkGDx4MIQRu3ryJZ555Bq+88opTx2bgohZj8eLF2Lx5M3bv3t0iJwE7o127djh06BAqKiqQmZmJWbNmoUuXLhg2bJirW2tUV65cwYQJE7BmzRr4+fm5up0mITo6GtHR0dLvAwcORK9evfDBBx/gtddec2FnrmOz2eDv748PP/wQbm5uiIiIwPnz57F06dJmH7ju1UcffYSwsDBERUW5uhWX2b17N95880289957MBgMKCwsxPPPP4/XXnsN8+fPr/N+GLhcyM/PD25ubigpKbFbXlJSAp1O56KuXOdexmPZsmVYvHgxvv/+e/Tr10/ONhtVfcdEqVSiW7duAIDw8HAcP34cqampzT5wOTsep06dwunTpzF69Ghpmc1mAwC4u7vjxIkT6Nq1q7xNy6gh/g3x8PDAgAEDUFhYKEeLja4+Y6LX6+Hh4QE3NzdpWa9evWAymXDjxg2oVCpZe5bTvfwduXr1KjZv3oxFixbJ2WKjqs94zJ8/HxMmTMCUKVMAAGFhYbh69SqSk5Px17/+FUpl3WZncQ6XC6lUKkRERCAzM1NaZrPZkJmZafd/oK1FfcdjyZIleO2115Ceno7IyMjGaLXRNNTfEZvNhqqqKjlabFTOjkfPnj1x5MgRHDp0SHr9/ve/x/Dhw3Ho0CEEBQU1ZvsNriH+flitVhw5cgR6vV6uNhtVfcZk0KBBKCwslMI4APznP/+BXq9v1mELuLe/I1u2bEFVVRX+9Kc/yd1mo6nPeFy7dq1WqKoJ58KZr6N2cnI/NbDNmzcLtVot1q1bJ44dOyaSk5OFj4+PdJv2hAkTxJw5c6T6qqoqcfDgQXHw4EGh1+vFSy+9JA4ePChOnjzpqrfQoJwdj8WLFwuVSiU+//xzu9uYr1y54qq30OCcHZM333xT7NixQ5w6dUocO3ZMLFu2TLi7u4s1a9a46i00KGfH41Yt7S5FZ8fj1VdfFd999504deqUyMvLE08++aTQaDSioKDAVW+hwTk7JmfPnhXt2rUT06dPFydOnBDbtm0T/v7+4vXXX3fVW2hQ9f1vZvDgwWL8+PGN3a7snB2PlJQU0a5dO7Fp0ybx008/iR07doiuXbuKcePGOXVcBq4m4N133xWdOnUSKpVKREVFiR9++EFaFxMTIyZNmiT9XlRUJADUesXExDR+4zJxZjw6d+7scDxSUlIav3EZOTMmf/3rX0W3bt2ERqMR7du3F9HR0WLz5s0u6Fo+zozHrVpa4BLCufGYOXOmVBsQECAee+wxkZ+f74Ku5eXs35GsrCxhMBiEWq0WXbp0EW+88Ya4efNmI3ctH2fH48cffxQAxI4dOxq508bhzHhUV1eLhQsXiq5duwqNRiOCgoLEc889Jy5fvuzUMRVCOHM+jIiIiIicxTlcRERERDJj4CIiIiKSGQMXERERkcwYuIiIiIhkxsBFREREJDMGLiIiIiKZMXARERERyYyBi4iolZg8eTLi4uJc3QZRq8TARUQuN3nyZCgUCul13333YeTIkTh8+LCrW2sQv31vNa/BgwfLdrzTp09DoVDg0KFDdsv/9re/Yd26dbIdl4huj4GLiJqEkSNHori4GMXFxcjMzIS7uzsef/xxV7fVYNauXSu9v+LiYnz99dcO66qrq2XrQavVwsfHR7b9E9HtMXARUZOgVquh0+mg0+kQHh6OOXPm4Ny5c7h48SIefvhhTJ8+3a7+4sWLUKlUyMzMBAAEBwfjtddeQ3x8PLy8vNCxY0esWrXKbpt33nkHYWFh8PLyQlBQEJ577jlUVFRI68+cOYPRo0ejffv28PLyQp8+fbB9+3YAwOXLl5GQkIAOHTrA09MToaGhWLt2bZ3fn4+Pj/T+dDodfH19pTNRaWlpiImJgUajwYYNG3Dp0iXEx8ejY8eOaNOmDcLCwrBp0ya7/dlsNixZsgTdunWDWq1Gp06d8MYbbwAAQkJCAAADBgyAQqHAsGHDANS+pFhVVYUZM2bA398fGo0GgwcPRm5urrR+9+7dUCgUyMzMRGRkJNq0aYOBAwfixIkTdX7fRPQrBi4ianIqKiqwfv16dOvWDffddx+mTJmCjRs3oqqqSqpZv349OnbsiIcfflhatnTpUvTv3x8HDx7EnDlz8PzzzyMjI0Nar1QqsXLlShQUFOCTTz7Bzp07MXv2bGn9tGnTUFVVhT179uDIkSN466230LZtWwDA/PnzcezYMXz77bc4fvw43n//ffj5+TXI+63p9fjx44iNjcX169cRERGBb775BkePHkVycjImTJiA/fv3S9vMnTsXixcvlvrauHEjAgICAECq+/7771FcXIytW7c6PO7s2bPxxRdf4JNPPkF+fj66deuG2NhYlJWV2dX99a9/xdtvv40DBw7A3d0d//Vf/9Ug75uoVWmQr90mIroHkyZNEm5ubsLLy0t4eXkJAEKv14u8vDwhhBCVlZWiffv2Ii0tTdqmX79+YuHChdLvnTt3FiNHjrTb7/jx48Wjjz562+Nu2bJF3HfffdLvYWFhdvv8rdGjR4vExMR6vT8AQqPRSO/Py8tL/POf/xRFRUUCgFixYsVd9zFq1Cjx4osvCiGEsFgsQq1WizVr1jisrdnvwYMH7ZZPmjRJjBkzRgghREVFhfDw8BAbNmyQ1t+4cUMEBgaKJUuWCCGE2LVrlwAgvv/+e6nmm2++EQBEZWWlM0NA1OrxDBcRNQnDhw/HoUOHcOjQIezfvx+xsbF49NFHcebMGWg0GkyYMAEff/wxACA/Px9Hjx7F5MmT7fYRHR1d6/fjx49Lv3///fcYMWIEOnbsiHbt2mHChAm4dOkSrl27BgCYMWMGXn/9dQwaNAgpKSl2k/afffZZbN68GeHh4Zg9ezaysrKcen/Lly+X3t+hQ4fwu9/9TloXGRlpV2u1WvHaa68hLCwMvr6+aNu2Lb777jucPXsWAHD8+HFUVVVhxIgRTvXwW6dOnUJ1dTUGDRokLfPw8EBUVJTdmAFAv379pD/r9XoAwIULF+p9bKLWiIGLiJoELy8vdOvWDd26dcODDz6If/zjH7h69SrWrFkDAJgyZQoyMjLw888/Y+3atXj44YfRuXPnOu//9OnTePzxx9GvXz988cUXyMvLk+Z43bhxQzrGTz/9hAkTJuDIkSOIjIzEu+++CwBS+HvhhRfwyy+/YMSIEXjppZfqfHydTie9v27dusHLy8vuvf/W0qVL8be//Q0vv/wydu3ahUOHDiE2Nlbq09PTs87HbQgeHh7SnxUKBYBf55ARUd0xcBFRk6RQKKBUKlFZWQkACAsLQ2RkJNasWYONGzc6nEf0ww8/1Pq9V69eAIC8vDzYbDa8/fbbeOihh9C9e3f88ssvtfYRFBSEZ555Blu3bsWLL74oBT4A6NChAyZNmoT169djxYoV+PDDDxvyLUv27duHMWPG4E9/+hP69++PLl264D//+Y+0PjQ0FJ6entINA7dSqVQAfj1Tdjtdu3aFSqXCvn37pGXV1dXIzc1F7969G+idEFENd1c3QEQE/HrHnMlkAvDrHYF///vfUVFRgdGjR0s1U6ZMwfTp0+Hl5YU//OEPtfaxb98+LFmyBHFxccjIyMCWLVvwzTffAAC6deuG6upqvPvuuxg9ejT27duH1atX220/c+ZMPProo+jevTsuX76MXbt2SYFtwYIFiIiIQJ8+fVBVVYVt27ZJ6xpaaGgoPv/8c2RlZaF9+/Z45513UFJSIgUhjUaDl19+GbNnz4ZKpcKgQYNw8eJFFBQUICkpCf7+/vD09ER6ejruv/9+aDQaaLVau2N4eXnh2WefxV/+8hf4+vqiU6dOWLJkCa5du4akpCRZ3hdRa8YzXETUJKSnp0Ov10Ov18NgMCA3NxdbtmyRHmkAAPHx8XB3d0d8fDw0Gk2tfbz44os4cOAABgwYgNdffx3vvPMOYmNjAQD9+/fHO++8g7feegt9+/bFhg0bkJqaare91WrFtGnT0KtXL4wcORLdu3fHe++9B+DXs0Zz585Fv379MHToULi5uWHz5s2yjMW8efPwwAMPIDY2FsOGDYNOp6v1hPj58+fjxRdfxIIFC9CrVy+MHz9emlfl7u6OlStX4oMPPkBgYCDGjBnj8DiLFy/GE088gQkTJuCBBx5AYWEhvvvuO7Rv316W90XUmimEEMLVTRAR1cXp06fRtWtX5Obm4oEHHrBbFxwcjJkzZ2LmzJmuaY6I6A54SZGImrzq6mpcunQJ8+bNw0MPPVQrbBERNXW8pEhETd6+ffug1+uRm5tba96Vq7355pto27atw9ejjz7q6vaIqIngJUUiontQVlZW68nsNTw9PdGxY8dG7oiImiIGLiIiIiKZ8ZIiERERkcwYuIiIiIhkxsBFREREJDMGLiIiIiKZMXARERERyYyBi4iIiEhmDFxEREREMmPgIiIiIpLZ/wdHRCbTS8ryJAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_45.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMyklEQVR4nO3de1hVZd7/8c8G5CAKaCinUPCUmqglQqilJROaHch6UnM8jYdm0srMKa3UDhamWY5l2dF6Jk2zaRrHzDK0x2uSUFErDzlqmlaCorFRVET2/fvDn2tmJyos2WzA9+u69sWw1net9V33mPvjWvde22GMMQIAAECF+Hi7AQAAgJqIEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFoFZ74okn5HA4ylXrcDj0xBNPeLSfHj16qEePHtV2fwDKjxAFoEq88847cjgc1svPz08xMTEaOnSofv75Z2+3V+3ExcW5jVfjxo117bXX6u9//3ul7P/YsWN64okn9OWXX1bK/oBLESEKQJV66qmn9Ne//lVz585V79699d5776l79+46ceKER473+OOP6/jx4x7Zt6d17NhRf/3rX/XXv/5V48eP1y+//KK+fftq7ty5F73vY8eO6cknnyREARfBz9sNALi09O7dW4mJiZKkESNGKDw8XM8995yWLFmiu+66q9KP5+fnJz+/mvlXXUxMjH7/+99bvw8ePFgtWrTQiy++qD/+8Y9e7AyAxJUoAF527bXXSpJ27drltvz777/XnXfeqYYNGyowMFCJiYlasmSJW01JSYmefPJJtWzZUoGBgbrsssvUrVs3rVixwqopa05UcXGxHnzwQTVq1Ej169fXrbfeqp9++ums3oYOHaq4uLizlpe1z3nz5umGG25Q48aNFRAQoLZt2+rVV1+t0FhcSGRkpNq0aaPdu3eft+7AgQMaPny4IiIiFBgYqA4dOujdd9+11u/Zs0eNGjWSJD355JPWLUNPzwcDapua+c8zALXGnj17JEkNGjSwlm3ZskVdu3ZVTEyMJkyYoODgYH3wwQdKT0/X3/72N91+++2SToeZjIwMjRgxQklJSSosLNT69eu1YcMG/e53vzvnMUeMGKH33ntPd999t7p06aKVK1eqT58+F3Uer776qq688krdeuut8vPz0z//+U/de++9crlcGj169EXt+4ySkhLt27dPl1122Tlrjh8/rh49emjnzp0aM2aM4uPjtXjxYg0dOlQFBQV64IEH1KhRI7366qv605/+pNtvv119+/aVJLVv375S+gQuGQYAqsC8efOMJPPFF1+YgwcPmn379pkPP/zQNGrUyAQEBJh9+/ZZtT179jQJCQnmxIkT1jKXy2W6dOliWrZsaS3r0KGD6dOnz3mPO2XKFPPff9Vt2rTJSDL33nuvW93dd99tJJkpU6ZYy4YMGWKaNm16wX0aY8yxY8fOqktLSzPNmjVzW9a9e3fTvXv38/ZsjDFNmzY1N954ozl48KA5ePCg+eabb0z//v2NJHPfffedc3+zZs0yksx7771nLTt58qRJSUkx9erVM4WFhcYYYw4ePHjW+QKoGG7nAahSqampatSokWJjY3XnnXcqODhYS5Ys0eWXXy5JOnz4sFauXKm77rpLR44cUX5+vvLz83Xo0CGlpaVpx44d1qf5wsLCtGXLFu3YsaPcx1+2bJkk6f7773dbPnbs2Is6r6CgIOt/O51O5efnq3v37vrhhx/kdDpt7fPzzz9Xo0aN1KhRI3Xo0EGLFy/WoEGD9Nxzz51zm2XLlikyMlIDBgywltWpU0f333+/jh49qv/7v/+z1QuAs3E7D0CVmjNnjlq1aiWn06m3335bq1evVkBAgLV+586dMsZo0qRJmjRpUpn7OHDggGJiYvTUU0/ptttuU6tWrdSuXTv16tVLgwYNOu9tqR9//FE+Pj5q3ry52/Irrrjios7rq6++0pQpU5SVlaVjx465rXM6nQoNDa3wPpOTkzV16lQ5HA7VrVtXbdq0UVhY2Hm3+fHHH9WyZUv5+Lj/G7lNmzbWegCVgxAFoEolJSVZn85LT09Xt27ddPfdd2v79u2qV6+eXC6XJGn8+PFKS0srcx8tWrSQJF133XXatWuX/vGPf+jzzz/Xm2++qRdffFFz587ViBEjLrrXcz2ks7S01O33Xbt2qWfPnmrdurVeeOEFxcbGyt/fX8uWLdOLL75onVNFhYeHKzU11da2ADyPEAXAa3x9fZWRkaHrr79eL7/8siZMmKBmzZpJOn0LqjwBomHDhho2bJiGDRumo0eP6rrrrtMTTzxxzhDVtGlTuVwu7dq1y+3q0/bt28+qbdCggQoKCs5a/turOf/85z9VXFysJUuWqEmTJtbyVatWXbD/yta0aVN9++23crlcblejvv/+e2u9dO6ACKD8mBMFwKt69OihpKQkzZo1SydOnFDjxo3Vo0cPvfbaa9q/f/9Z9QcPHrT+96FDh9zW1atXTy1atFBxcfE5j9e7d29J0uzZs92Wz5o166za5s2by+l06ttvv7WW7d+//6ynhvv6+kqSjDHWMqfTqXnz5p2zD0+56aablJubq0WLFlnLTp06pZdeekn16tVT9+7dJUl169aVpDJDIoDy4UoUAK/785//rP/5n//RO++8oz/+8Y+aM2eOunXrpoSEBI0cOVLNmjVTXl6esrKy9NNPP+mbb76RJLVt21Y9evRQp06d1LBhQ61fv14ffvihxowZc85jdezYUQMGDNArr7wip9OpLl26KDMzUzt37jyrtn///nrkkUd0++236/7779exY8f06quvqlWrVtqwYYNVd+ONN8rf31+33HKL7rnnHh09elRvvPGGGjduXGYQ9KRRo0bptdde09ChQ5WTk6O4uDh9+OGH+uqrrzRr1izVr19f0umJ8G3bttWiRYvUqlUrNWzYUO3atVO7du2qtF+gRvP2xwMBXBrOPOJg3bp1Z60rLS01zZs3N82bNzenTp0yxhiza9cuM3jwYBMZGWnq1KljYmJizM0332w+/PBDa7upU6eapKQkExYWZoKCgkzr1q3NM888Y06ePGnVlPU4guPHj5v777/fXHbZZSY4ONjccsstZt++fWV+5P/zzz837dq1M/7+/uaKK64w7733Xpn7XLJkiWnfvr0JDAw0cXFx5rnnnjNvv/22kWR2795t1VXkEQcXenzDufaXl5dnhg0bZsLDw42/v79JSEgw8+bNO2vbNWvWmE6dOhl/f38edwDY4DDmv64/AwAAoFyYEwUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABs4GGbHuRyufTLL7+ofv36fMUCAAA1hDFGR44cUXR09Flf5v3fCFEe9Msvvyg2NtbbbQAAABv27dunyy+//JzrCVEedObrFfbt26eQkBAvdwMAAMqjsLBQsbGx1vv4uRCiPOjMLbyQkBBCFAAANcyFpuIwsRwAAMAGQhQAAIANhCgAAAAbmBPlZaWlpSopKfF2G9VCnTp15Ovr6+02AAAoF0KUlxhjlJubq4KCAm+3Uq2EhYUpMjKS52oBAKo9QpSXnAlQjRs3Vt26dS/50GCM0bFjx3TgwAFJUlRUlJc7AgDg/AhRXlBaWmoFqMsuu8zb7VQbQUFBkqQDBw6ocePG3NoDAFRrTCz3gjNzoOrWrevlTqqfM2PCPDEAQHVHiPKiS/0WXlkYEwBATeH1EDVnzhzFxcUpMDBQycnJWrt27XnrFy9erNatWyswMFAJCQlatmyZ23pjjCZPnqyoqCgFBQUpNTVVO3bscKs5fPiwBg4cqJCQEIWFhWn48OE6evToWft5/vnn1apVKwUEBCgmJkbPPPNM5Zw0AACo8bwaohYtWqRx48ZpypQp2rBhgzp06KC0tDRrcvFvrVmzRgMGDNDw4cO1ceNGpaenKz09XZs3b7Zqpk+frtmzZ2vu3LnKzs5WcHCw0tLSdOLECatm4MCB2rJli1asWKGlS5dq9erVGjVqlNuxHnjgAb355pt6/vnn9f3332vJkiVKSkryzEAAAICax3hRUlKSGT16tPV7aWmpiY6ONhkZGWXW33XXXaZPnz5uy5KTk80999xjjDHG5XKZyMhIM2PGDGt9QUGBCQgIMO+//74xxpitW7caSWbdunVWzaeffmocDof5+eefrRo/Pz/z/fffX9T5OZ1OI8k4nU635cePHzdbt241x48fv6j9e9P+/fvNmDFjTHx8vPH39zeXX365ufnmm80XX3xh1Xz11Vemd+/eJiwszAQEBJh27dqZmTNnmlOnTp1zv7VhbAAAnvdLwTHz1c6D5peCY5W+73O9f/+W165EnTx5Ujk5OUpNTbWW+fj4KDU1VVlZWWVuk5WV5VYvSWlpaVb97t27lZub61YTGhqq5ORkqyYrK0thYWFKTEy0alJTU+Xj46Ps7GxJ0j//+U81a9ZMS5cuVXx8vOLi4jRixAgdPnz4vOdUXFyswsJCt1dttGfPHnXq1EkrV67UjBkz9N1332n58uW6/vrrNXr0aEnS3//+d3Xv3l2XX365Vq1ape+//14PPPCApk6dqv79+8sY4+WzAADUVIvW7VXXaSt19xvZ6jptpRat2+uVPrz2iIP8/HyVlpYqIiLCbXlERIS+//77MrfJzc0tsz43N9daf2bZ+WoaN27stt7Pz08NGza0an744Qf9+OOPWrx4sf73f/9XpaWlevDBB3XnnXdq5cqV5zynjIwMPfnkkxc69Rrv3nvvlcPh0Nq1axUcHGwtv/LKK/WHP/xBRUVFGjlypG699Va9/vrr1voRI0YoIiJCt956qz744AP169fPG+0DAGqw/c7jmvjRd3L9/3+Lu4z06EebdV2rRooKDarSXrw+sbw6crlcKi4u1v/+7//q2muvVY8ePfTWW29p1apV2r59+zm3mzhxopxOp/Xat29flfS733lca3bla7/zuMePdfjwYS1fvlyjR492C1BnhIWF6fPPP9ehQ4c0fvz4s9bfcsstatWqld5//32P9woAqH125xdZAeqMUmO0J/9YlffitStR4eHh8vX1VV5entvyvLw8RUZGlrlNZGTkeevP/MzLy3N74nVeXp46duxo1fx24vqpU6d0+PBha/uoqCj5+fmpVatWVk2bNm0kSXv37tUVV1xRZn8BAQEKCAg473lXtkXr9lqJ3MchZfRNUL/OTTx2vJ07d8oYo9atW5+z5t///rek/4zZb7Vu3dqqAQCgIuLDg+XjkFuQ8nU4FBde9c9e9NqVKH9/f3Xq1EmZmZnWMpfLpczMTKWkpJS5TUpKilu9JK1YscKqj4+PV2RkpFtNYWGhsrOzrZqUlBQVFBQoJyfHqlm5cqVcLpeSk5MlSV27dtWpU6e0a9cuq+bMm37Tpk0v5rQr1bkuaXryilRF5jIx7wkAUNmiQoOU0TdBvv//uYK+Doee7duuym/lSV7+2pdx48ZpyJAhSkxMVFJSkmbNmqWioiINGzZMkjR48GDFxMQoIyND0unHDnTv3l0zZ85Unz59tHDhQq1fv96ad+NwODR27FhNnTpVLVu2VHx8vCZNmqTo6Gilp6dLOn11pFevXho5cqTmzp2rkpISjRkzRv3791d0dLSk0xPNr776av3hD3/QrFmz5HK5NHr0aP3ud79zuzrlbee7pOmpP0wtW7aUw+E457w1SdYYbdu2TV26dDlr/bZt29S2bVuP9AcAqP36dW6i61o10p78Y4oLr+uVACV5eU5Uv3799Pzzz2vy5Mnq2LGjNm3apOXLl1sTw/fu3av9+/db9V26dNGCBQv0+uuvq0OHDvrwww/18ccfq127dlbNww8/rPvuu0+jRo1S586ddfToUS1fvlyBgYFWzfz589W6dWv17NlTN910k7p16+Y2AdrHx0f//Oc/FR4eruuuu059+vRRmzZttHDhwioYlfI7c0nzv3n6kmbDhg2VlpamOXPmqKio6Kz1BQUFuvHGG9WwYUPNnDnzrPVLlizRjh07NGDAAI/1CACo/aJCg5TS/DKvBShJchjuuXhMYWGhQkND5XQ6FRISYi0/ceKEdu/erfj4eLdwZ8eidXv16EebVWqMdUnTk3OipNOfXuzatasaNmyop556Su3bt9epU6e0YsUKvfrqq9q2bZs+/PBD9e/fX3/4wx80ZswYhYSEKDMzU3/+85/Vs2dPffDBB2V+xUtljg0AAHac6/37t7x6Ow8XzxuXNJs1a6YNGzbomWee0UMPPaT9+/erUaNG6tSpk1599VVJ0p133qlVq1bpmWee0bXXXqsTJ06oZcuWeuyxxzR27Fi+Iw8AUONxJcqDquJKVG3D2AAAvK28V6J4ThQAAIANhCgAAAAbCFEAAAA2EKIAAABsIER5EXP6z8aYAABqCkKUF9SpU0eSdOxY1X9ZYnV3ZkzOjBEAANUVz4nyAl9fX4WFhVlfhFy3bt1L/rlJxhgdO3ZMBw4cUFhYmHx9fb3dEgAA50WI8pLIyEhJsoIUTgsLC7PGBgCA6owQ5SUOh0NRUVFq3LixSkpKvN1OtVCnTh2uQAEAagxClJf5+voSHAAAqIGYWA4AAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADAhmoRoubMmaO4uDgFBgYqOTlZa9euPW/94sWL1bp1awUGBiohIUHLli1zW2+M0eTJkxUVFaWgoCClpqZqx44dbjWHDx/WwIEDFRISorCwMA0fPlxHjx611u/Zs0cOh+Os19dff115Jw4AAGosr4eoRYsWady4cZoyZYo2bNigDh06KC0tTQcOHCizfs2aNRowYICGDx+ujRs3Kj09Xenp6dq8ebNVM336dM2ePVtz585Vdna2goODlZaWphMnTlg1AwcO1JYtW7RixQotXbpUq1ev1qhRo8463hdffKH9+/dbr06dOlX+IAAAgJrHeFlSUpIZPXq09XtpaamJjo42GRkZZdbfddddpk+fPm7LkpOTzT333GOMMcblcpnIyEgzY8YMa31BQYEJCAgw77//vjHGmK1btxpJZt26dVbNp59+ahwOh/n555+NMcbs3r3bSDIbN260fW5Op9NIMk6n0/Y+AABA1Srv+7dXr0SdPHlSOTk5Sk1NtZb5+PgoNTVVWVlZZW6TlZXlVi9JaWlpVv3u3buVm5vrVhMaGqrk5GSrJisrS2FhYUpMTLRqUlNT5ePjo+zsbLd933rrrWrcuLG6deumJUuWnPd8iouLVVhY6PYCAAC1k1dDVH5+vkpLSxUREeG2PCIiQrm5uWVuk5ube976Mz8vVNO4cWO39X5+fmrYsKFVU69ePc2cOVOLFy/WJ598om7duik9Pf28QSojI0OhoaHWKzY29kJDAAAAaig/bzdQXYWHh2vcuHHW7507d9Yvv/yiGTNm6NZbby1zm4kTJ7ptU1hYSJACAKCW8uqVqPDwcPn6+iovL89teV5eniIjI8vcJjIy8rz1Z35eqOa3E9dPnTqlw4cPn/O4kpScnKydO3eec31AQIBCQkLcXgAAoHbyaojy9/dXp06dlJmZaS1zuVzKzMxUSkpKmdukpKS41UvSihUrrPr4+HhFRka61RQWFio7O9uqSUlJUUFBgXJycqyalStXyuVyKTk5+Zz9btq0SVFRURU/UQAAUOt4/XbeuHHjNGTIECUmJiopKUmzZs1SUVGRhg0bJkkaPHiwYmJilJGRIUl64IEH1L17d82cOVN9+vTRwoULtX79er3++uuSJIfDobFjx2rq1Klq2bKl4uPjNWnSJEVHRys9PV2S1KZNG/Xq1UsjR47U3LlzVVJSojFjxqh///6Kjo6WJL377rvy9/fXVVddJUn66KOP9Pbbb+vNN9+s4hECAADVkddDVL9+/XTw4EFNnjxZubm56tixo5YvX25NDN+7d698fP5zwaxLly5asGCBHn/8cT366KNq2bKlPv74Y7Vr186qefjhh1VUVKRRo0apoKBA3bp10/LlyxUYGGjVzJ8/X2PGjFHPnj3l4+OjO+64Q7Nnz3br7emnn9aPP/4oPz8/tW7dWosWLdKdd97p4REBAAA1gcMYY7zdRG1VWFio0NBQOZ1O5kcBAFBDlPf92+tPLAcAAKiJCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMCGahGi5syZo7i4OAUGBio5OVlr1649b/3ixYvVunVrBQYGKiEhQcuWLXNbb4zR5MmTFRUVpaCgIKWmpmrHjh1uNYcPH9bAgQMVEhKisLAwDR8+XEePHi3zeDt37lT9+vUVFhZ2UecJAABqD6+HqEWLFmncuHGaMmWKNmzYoA4dOigtLU0HDhwos37NmjUaMGCAhg8fro0bNyo9PV3p6enavHmzVTN9+nTNnj1bc+fOVXZ2toKDg5WWlqYTJ05YNQMHDtSWLVu0YsUKLV26VKtXr9aoUaPOOl5JSYkGDBiga6+9tvJPHgAA1FgOY4zxZgPJycnq3LmzXn75ZUmSy+VSbGys7rvvPk2YMOGs+n79+qmoqEhLly61ll1zzTXq2LGj5s6dK2OMoqOj9dBDD2n8+PGSJKfTqYiICL3zzjvq37+/tm3bprZt22rdunVKTEyUJC1fvlw33XSTfvrpJ0VHR1v7fuSRR/TLL7+oZ8+eGjt2rAoKCsp9boWFhQoNDZXT6VRISIid4QEAAFWsvO/fXr0SdfLkSeXk5Cg1NdVa5uPjo9TUVGVlZZW5TVZWllu9JKWlpVn1u3fvVm5urltNaGiokpOTrZqsrCyFhYVZAUqSUlNT5ePjo+zsbGvZypUrtXjxYs2ZM6dc51NcXKzCwkK3FwAAqJ28GqLy8/NVWlqqiIgIt+URERHKzc0tc5vc3Nzz1p/5eaGaxo0bu6338/NTw4YNrZpDhw5p6NCheuedd8p9FSkjI0OhoaHWKzY2tlzbAQCAmsfrc6Kqq5EjR+ruu+/WddddV+5tJk6cKKfTab327dvnwQ4BAIA3eTVEhYeHy9fXV3l5eW7L8/LyFBkZWeY2kZGR560/8/NCNb+duH7q1CkdPnzYqlm5cqWef/55+fn5yc/PT8OHD5fT6ZSfn5/efvvtMnsLCAhQSEiI2wsAANROXg1R/v7+6tSpkzIzM61lLpdLmZmZSklJKXOblJQUt3pJWrFihVUfHx+vyMhIt5rCwkJlZ2dbNSkpKSooKFBOTo5Vs3LlSrlcLiUnJ0s6PW9q06ZN1uupp55S/fr1tWnTJt1+++2VMwAAAKDG8vN2A+PGjdOQIUOUmJiopKQkzZo1S0VFRRo2bJgkafDgwYqJiVFGRoYk6YEHHlD37t01c+ZM9enTRwsXLtT69ev1+uuvS5IcDofGjh2rqVOnqmXLloqPj9ekSZMUHR2t9PR0SVKbNm3Uq1cvjRw5UnPnzlVJSYnGjBmj/v37W5/Ma9OmjVuf69evl4+Pj9q1a1dFIwMAAKozr4eofv366eDBg5o8ebJyc3PVsWNHLV++3JoYvnfvXvn4/OeCWZcuXbRgwQI9/vjjevTRR9WyZUt9/PHHbuHm4YcfVlFRkUaNGqWCggJ169ZNy5cvV2BgoFUzf/58jRkzRj179pSPj4/uuOMOzZ49u+pOHAAA1Ghef05UbcZzogAAqHlqxHOiAAAAaipCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAACU237nca3Zla/9zuPebsXr/LzdAAAAqBkWrduriR99J5eRfBxSRt8E9evcxNtteQ1XogAAwAXtdx63ApQkuYz06EebL+krUoQoAABwQbvzi6wAdUapMdqTf8w7DVUDhCgAAHBB8eHB8nG4L/N1OBQXXtc7DVUDhCgAAHBBUaFByuibIF/H6STl63Do2b7tFBUa5OXOvIeJ5QAAoFz6dW6i61o10p78Y4oLr3tJByiJEAUAACogKjTokg9PZ3A7DwAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAgFfV1O/j49N5AADAa2ry9/FxJQoAAHhFTf8+PkIUAADwipr+fXyEKAAA4BU1/fv4CFEAAMAravr38TGxHAAAeE1N/j4+QhQAAPCqmvp9fNzOAwAAsIEQBQAAYAMhCgAAwAZbIWrx4sXq27ev2rVrp3bt2qlv37768MMPK7s3AACAaqtCIcrlcqlfv37q16+ftm7dqhYtWqhFixbasmWL+vXrp/79+8sYc+EdAQAA1HAV+nTeX/7yF33xxRdasmSJbr75Zrd1S5Ys0bBhw/SXv/xFY8eOrcweAQAAqp0KXYmaN2+eZsyYcVaAkqRbb71V06dP19tvv11pzQEAAFRXFQpRO3bsUGpq6jnXp6amaseOHRfdFAAAQHVXoRAVFBSkgoKCc64vLCxUYGDgxfYEAABQ7VUoRKWkpOjVV1895/o5c+YoJSXlopsCAACo7io0sfyxxx5Tjx49dOjQIY0fP16tW7eWMUbbtm3TzJkz9Y9//EOrVq3yVK8AAADVRoWuRHXp0kWLFi3SqlWrlJKSogYNGqhhw4bq2rWrVq1apffff19du3atcBNz5sxRXFycAgMDlZycrLVr1563fvHixWrdurUCAwOVkJCgZcuWua03xmjy5MmKiopSUFBQmXO1Dh8+rIEDByokJERhYWEaPny4jh49aq3fvn27rr/+ekVERCgwMFDNmjXT448/rpKSkgqfHwAAtcV+53Gt2ZWv/c7j3m7F6yr8BcS333670tLS9Nlnn1nBpFWrVrrxxhtVt27dCjewaNEijRs3TnPnzlVycrJmzZqltLQ0bd++XY0bNz6rfs2aNRowYIAyMjJ08803a8GCBUpPT9eGDRvUrl07SdL06dM1e/Zsvfvuu4qPj9ekSZOUlpamrVu3WnO2Bg4cqP3792vFihUqKSnRsGHDNGrUKC1YsECSVKdOHQ0ePFhXX321wsLC9M0332jkyJFyuVx69tlnK3yeAADUdIvW7dXEj76Ty0g+Dimjb4L6dW7i7ba8x1RAZmamadOmjXE6nWetKygoMG3btjWrV6+uyC5NUlKSGT16tPV7aWmpiY6ONhkZGWXW33XXXaZPnz5uy5KTk80999xjjDHG5XKZyMhIM2PGDLfeAgICzPvvv2+MMWbr1q1Gklm3bp1V8+mnnxqHw2F+/vnnc/b64IMPmm7dupX73JxOp5FU5ngBAFCT/FJwzMRPWGqaPvKfV7MJn5hfCo55u7VKV9737wrdzps1a5ZGjhypkJCQs9aFhobqnnvu0QsvvFDu/Z08eVI5OTluj03w8fFRamqqsrKyytwmKyvrrMcspKWlWfW7d+9Wbm6uW01oaKiSk5OtmqysLIWFhSkxMdGqSU1NlY+Pj7Kzs8s87s6dO7V8+XJ17979nOdTXFyswsJCtxcAALXB7vwiuX7zpSSlxmhP/jHvNFQNVChEffPNN+rVq9c51994443Kyckp9/7y8/NVWlqqiIgIt+URERHKzc0tc5vc3Nzz1p/5eaGa394q9PPzU8OGDc86bpcuXRQYGKiWLVvq2muv1VNPPXXO88nIyFBoaKj1io2NPWctAAA1SXx4sHwc7st8HQ7FhVd8Kk9tUaEQlZeXpzp16pxzvZ+fnw4ePHjRTVUnixYt0oYNG7RgwQJ98sknev75589ZO3HiRDmdTuu1b9++KuwUAADPiQoNUkbfBPk6TicpX4dDz/Ztp6jQIC935j0VmlgeExOjzZs3q0WLFmWu//bbbxUVFVXu/YWHh8vX11d5eXluy/Py8hQZGVnmNpGRkeetP/MzLy/PrZe8vDx17NjRqjlw4IDbPk6dOqXDhw+fddwzV5Patm2r0tJSjRo1Sg899JB8fX3P6i0gIEABAQEXOm0AAGqkfp2b6LpWjbQn/5jiwute0gFKquCVqJtuukmTJk3SiRMnzlp3/PhxTZkypczv1TsXf39/derUSZmZmdYyl8ulzMzMcz60MyUlxa1eklasWGHVx8fHKzIy0q2msLBQ2dnZVk1KSooKCgrcbj2uXLlSLpdLycnJ5+zX5XKppKRELper3OcIAEBtEhUapJTml13yAUqSHMYYc+Gy0/Ly8nT11VfL19dXY8aM0RVXXCFJ+v777zVnzhyVlpZqw4YNZ81HOp9FixZpyJAheu2115SUlKRZs2bpgw8+0Pfff6+IiAgNHjxYMTExysjIkHT6EQfdu3fXtGnT1KdPHy1cuFDPPvus2yMOnnvuOU2bNs3tEQfffvut2yMOevfurby8PM2dO9d6xEFiYqL1iIP58+erTp06SkhIUEBAgNavX68HH3xQ119/vd57771ynVthYaFCQ0PldDrLnIwPAACqn3K/f1f0Y3979uwxvXv3Nj4+PsbhcBiHw2F8fHxM7969zQ8//GDro4QvvfSSadKkifH39zdJSUnm66+/ttZ1797dDBkyxK3+gw8+MK1atTL+/v7myiuvNJ988onbepfLZSZNmmQiIiJMQECA6dmzp9m+fbtbzaFDh8yAAQNMvXr1TEhIiBk2bJg5cuSItX7hwoXm6quvNvXq1TPBwcGmbdu25tlnnzXHjx8v93nxiAMAAGqe8r5/V+hK1H/79ddftXPnThlj1LJlSzVo0MBe3KvFuBIFAEDNU9737wo/sfyMBg0aqHPnznY3BwAAqNEqNLEcAAAApxGiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhSAc9rvPK41u/K133nc260AQLXj5+0GAFRPi9bt1cSPvpPLSD4OKaNvgvp1buLttgCg2uBKFICz7HcetwKUJLmM9OhHm7kiBQD/hRAF4Cy784usAHVGqTHak3/MOw0BQDVEiAJwlvjwYPk43Jf5OhyKC6/rnYYAoBoiRAE4S1RokDL6JsjXcTpJ+TocerZvO0WFBnm5MwCoPphYDqBM/To30XWtGmlP/jHFhdclQAHAb1SLK1Fz5sxRXFycAgMDlZycrLVr1563fvHixWrdurUCAwOVkJCgZcuWua03xmjy5MmKiopSUFCQUlNTtWPHDreaw4cPa+DAgQoJCVFYWJiGDx+uo0ePWuu//PJL3XbbbYqKilJwcLA6duyo+fPnV95JXwQ+do6qEhUapJTmlxGgAKAMXg9RixYt0rhx4zRlyhRt2LBBHTp0UFpamg4cOFBm/Zo1azRgwAANHz5cGzduVHp6utLT07V582arZvr06Zo9e7bmzp2r7OxsBQcHKy0tTSdOnLBqBg4cqC1btmjFihVaunSpVq9erVGjRrkdp3379vrb3/6mb7/9VsOGDdPgwYO1dOlSzw1GOSxat1ddp63U3W9kq+u0lVq0bq9X+wEA4FLlMMaYC5d5TnJysjp37qyXX35ZkuRyuRQbG6v77rtPEyZMOKu+X79+Kioqcgsz11xzjTp27Ki5c+fKGKPo6Gg99NBDGj9+vCTJ6XQqIiJC77zzjvr3769t27apbdu2WrdunRITEyVJy5cv10033aSffvpJ0dHRZfbap08fRURE6O233y7XuRUWFio0NFROp1MhISEVGpey7HceV9dpK90+NeXrcOhfE67nSgFQi+x3Htfu/CLFhwfz3zbgBeV9//bqlaiTJ08qJydHqamp1jIfHx+lpqYqKyurzG2ysrLc6iUpLS3Nqt+9e7dyc3PdakJDQ5WcnGzVZGVlKSwszApQkpSamiofHx9lZ2efs1+n06mGDRuec31xcbEKCwvdXpWJj50DtR9Xm4Gaw6shKj8/X6WlpYqIiHBbHhERodzc3DK3yc3NPW/9mZ8XqmncuLHbej8/PzVs2PCcx/3ggw+0bt06DRs27Jznk5GRodDQUOsVGxt7zlo7+Ng5ULvxkFOgZvH6nKiaYNWqVRo2bJjeeOMNXXnlleesmzhxopxOp/Xat29fpfbBx85R0/GhiPPjajNQs3j1EQfh4eHy9fVVXl6e2/K8vDxFRkaWuU1kZOR568/8zMvLU1RUlFtNx44drZrfTlw/deqUDh8+fNZx/+///k+33HKLXnzxRQ0ePPi85xMQEKCAgIDz1lwsPnaOmorv4ruwM1ebfzvvkavNQPXk1StR/v7+6tSpkzIzM61lLpdLmZmZSklJKXOblJQUt3pJWrFihVUfHx+vyMhIt5rCwkJlZ2dbNSkpKSooKFBOTo5Vs3LlSrlcLiUnJ1vLvvzyS/Xp00fPPfec2yf3vI2PnaOm4TZV+XC1GahZvP6wzXHjxmnIkCFKTExUUlKSZs2apaKiImvu0eDBgxUTE6OMjAxJ0gMPPKDu3btr5syZ6tOnjxYuXKj169fr9ddflyQ5HA6NHTtWU6dOVcuWLRUfH69JkyYpOjpa6enpkqQ2bdqoV69eGjlypObOnauSkhKNGTNG/fv3tz6Zt2rVKt1888164IEHdMcdd1hzpfz9/c87uRzA2c53m4qA4I6rzUDN4fUQ1a9fPx08eFCTJ09Wbm6uOnbsqOXLl1sTw/fu3Ssfn/9cMOvSpYsWLFigxx9/XI8++qhatmypjz/+WO3atbNqHn74YRUVFWnUqFEqKChQt27dtHz5cgUGBlo18+fP15gxY9SzZ0/5+Pjojjvu0OzZs6317777ro4dO6aMjAwrwElS9+7d9eWXX3pwRIDK5+2PzHObqmKiQoMIT0AN4PXnRNVmlf2cKMCO6jIXadG6vXr0o80qNca6TcWcKADVUXnfvwlRHkSIgrdVtwe07nce5zYVgGqvvO/fXr+dB8BzqttcJG5TAahNeE4UUIvxgFYA8BxCFFCL8ZF5APAcbucBtRwfmQcAzyBEAZcA5iIBQOXjdh4AAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAXtdx7Xml352u887u1WAACoMfy83QC8a9G6vZr40XdyGcnHIWX0TVC/zk283RYAANUeV6IuYfudx60AJUkuIz360WauSAEAUA6EqEvY7vwiK0CdUWqM9uQf805DAADUIISoS1h8eLB8HO7LfB0OxYXX9U5DAADUIISoS1hUaJAy+ibI13E6Sfk6HHq2bztFhQZ5uTMAAKo/JpZf4vp1bqLrWjXSnvxjiguvS4ACAKCcCFFQVGgQ4QkAgAridh4AAIANhCgAtRIPkQXgadzOA1Dr8BBZAFWBK1EAahUeIgugqhCiANQqPES2+uIWK2obbucBqFXOPET2v4MUD5H1Pm6xojbiShSAWoWHyFY/3GJFbcWVKAC1Dg+RrV7Od4uV/29QkxGiANRKPES2+uAWK2orbucBADyKW6yorbgSBQDwOG6xojby+pWoOXPmKC4uToGBgUpOTtbatWvPW7948WK1bt1agYGBSkhI0LJly9zWG2M0efJkRUVFKSgoSKmpqdqxY4dbzeHDhzVw4ECFhIQoLCxMw4cP19GjR631J06c0NChQ5WQkCA/Pz+lp6dX2vkCwKUqKjRIKc0vI0Ch1vBqiFq0aJHGjRunKVOmaMOGDerQoYPS0tJ04MCBMuvXrFmjAQMGaPjw4dq4caPS09OVnp6uzZs3WzXTp0/X7NmzNXfuXGVnZys4OFhpaWk6ceKEVTNw4EBt2bJFK1as0NKlS7V69WqNGjXKWl9aWqqgoCDdf//9Sk1N9dwAAACAGsthjDEXLvOM5ORkde7cWS+//LIkyeVyKTY2Vvfdd58mTJhwVn2/fv1UVFSkpUuXWsuuueYadezYUXPnzpUxRtHR0XrooYc0fvx4SZLT6VRERITeeecd9e/fX9u2bVPbtm21bt06JSYmSpKWL1+um266ST/99JOio6Pdjjl06FAVFBTo448/rvD5FRYWKjQ0VE6nUyEhIRXeHgAAVL3yvn977UrUyZMnlZOT43alx8fHR6mpqcrKyipzm6ysrLOuDKWlpVn1u3fvVm5urltNaGiokpOTrZqsrCyFhYVZAUqSUlNT5ePjo+zs7Is6p+LiYhUWFrq9AABA7eS1EJWfn6/S0lJFRES4LY+IiFBubm6Z2+Tm5p63/szPC9U0btzYbb2fn58aNmx4zuOWV0ZGhkJDQ61XbGzsRe0P/8HXRQAAqhuvTyyvTSZOnCin02m99u3b5+2WaoVF6/aq67SVuvuNbHWdtlKL1u31dksAAHgvRIWHh8vX11d5eXluy/Py8hQZGVnmNpGRkeetP/PzQjW/nbh+6tQpHT58+JzHLa+AgACFhIS4vXBx+LoIAEB15bUQ5e/vr06dOikzM9Na5nK5lJmZqZSUlDK3SUlJcauXpBUrVlj18fHxioyMdKspLCxUdna2VZOSkqKCggLl5ORYNStXrpTL5VJycnKlnR8qx/m+LgIAAG/y6sM2x40bpyFDhigxMVFJSUmaNWuWioqKNGzYMEnS4MGDFRMTo4yMDEnSAw88oO7du2vmzJnq06ePFi5cqPXr1+v111+XJDkcDo0dO1ZTp05Vy5YtFR8fr0mTJik6Otp61lObNm3Uq1cvjRw5UnPnzlVJSYnGjBmj/v37u30yb+vWrTp58qQOHz6sI0eOaNOmTZKkjh07Vtn4QAr29y1zeV1/7kQDALzLqyGqX79+OnjwoCZPnqzc3Fx17NhRy5cvtyaG7927Vz4+/3mz7NKlixYsWKDHH39cjz76qFq2bKmPP/5Y7dq1s2oefvhhFRUVadSoUSooKFC3bt20fPlyBQYGWjXz58/XmDFj1LNnT/n4+OiOO+7Q7Nmz3Xq76aab9OOPP1q/X3XVVZJOP8wTVafoZGmZy4+ddFVxJwAAuPPqc6JqO54TdfH2O4+r67SVZ31x6b8mXM9Tj4FLwH7nce3OL1J8eDD/zaPKVPvnRAHlwReXApcuPpmL6o4rUR7ElajKs995nC8uBS4hXIWGN5X3/durc6KA8ooKDeIvTuAScr5P5vJ3AaoLbucBAKqd+PBg+Tjcl/k6HIoLr+udhoAyEKIAANUO8yFRE3A7DwBQLfXr3ETXtWrEfEhUW4QoAEC1xXxIVGfczgMAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCvCS/c7jWrMrX/udx73dCgDABj9vNwBcihat26uJH30nl5F8HFJG3wT169zEK73sdx7X7vwixYcHKyo0yCs9AEBNRIgCqth+53ErQEmSy0iPfrRZ17VqVOUhpjqFOQCoabidB1Sx3flFVoA6o9QY7ck/VqV9nCvMcXsRAMqHEAVUsfjwYPk43Jf5OhyKC69bpX1UlzAHADUVIQqoYlGhQcromyBfx+kk5etw6Nm+7ar8Vl51CXMAUFMxJwrwgn6dm+i6Vo20J/+Y4sLremVC95kw9+hHm1VqjNfCHADUVIQowEuiQoO8HliqQ5gDgJqKEAVc4uyGOR6NAOBSR4gCUGE8GgE1Gf8AQGUhRAGokOr0nCugovgHACoTn84DUCE8GgE1Fc9GQ2UjRAGoEB6NgJqKfwCgshGiAFRIdXnOFVBR/AMAlY05UQAqjEcj4Fyq86Rtno2GykaIAmBLdXjOFaqXmjBpm38AoDJxOw8AcNFq0qTtqNAgpTS/jACFi0aIAgBcNCZt41JEiAIAXDQmbeNSRIgCAFw0PrWJSxETywEAlYJJ27jUEKIAAJWGT23iUlItbufNmTNHcXFxCgwMVHJystauXXve+sWLF6t169YKDAxUQkKCli1b5rbeGKPJkycrKipKQUFBSk1N1Y4dO9xqDh8+rIEDByokJERhYWEaPny4jh496lbz7bff6tprr1VgYKBiY2M1ffr0yjlhAABQ43k9RC1atEjjxo3TlClTtGHDBnXo0EFpaWk6cOBAmfVr1qzRgAEDNHz4cG3cuFHp6elKT0/X5s2brZrp06dr9uzZmjt3rrKzsxUcHKy0tDSdOHHCqhk4cKC2bNmiFStWaOnSpVq9erVGjRplrS8sLNSNN96opk2bKicnRzNmzNATTzyh119/3XODAQAAag7jZUlJSWb06NHW76WlpSY6OtpkZGSUWX/XXXeZPn36uC1LTk4299xzjzHGGJfLZSIjI82MGTOs9QUFBSYgIMC8//77xhhjtm7daiSZdevWWTWffvqpcTgc5ueffzbGGPPKK6+YBg0amOLiYqvmkUceMVdccUW5z83pdBpJxul0lnsbAADgXeV9//bqlaiTJ08qJydHqamp1jIfHx+lpqYqKyurzG2ysrLc6iUpLS3Nqt+9e7dyc3PdakJDQ5WcnGzVZGVlKSwsTImJiVZNamqqfHx8lJ2dbdVcd9118vf3dzvO9u3b9euvv5bZW3FxsQoLC91eAACgdvJqiMrPz1dpaakiIiLclkdERCg3N7fMbXJzc89bf+bnhWoaN27stt7Pz08NGzZ0qylrH/99jN/KyMhQaGio9YqNjS37xAEAQI3n9TlRtcnEiRPldDqt1759+7zdEgAA8BCvhqjw8HD5+voqLy/PbXleXp4iIyPL3CYyMvK89Wd+XqjmtxPXT506pcOHD7vVlLWP/z7GbwUEBCgkJMTtBQAAaievhih/f3916tRJmZmZ1jKXy6XMzEylpKSUuU1KSopbvSStWLHCqo+Pj1dkZKRbTWFhobKzs62alJQUFRQUKCcnx6pZuXKlXC6XkpOTrZrVq1erpKTE7ThXXHGFGjRocJFnDgAAarwqmuh+TgsXLjQBAQHmnXfeMVu3bjWjRo0yYWFhJjc31xhjzKBBg8yECROs+q+++sr4+fmZ559/3mzbts1MmTLF1KlTx3z33XdWzbRp00xYWJj5xz/+Yb799ltz2223mfj4eHP8+HGrplevXuaqq64y2dnZ5l//+pdp2bKlGTBggLW+oKDAREREmEGDBpnNmzebhQsXmrp165rXXnut3OfGp/MAAKh5yvv+7fUQZYwxL730kmnSpInx9/c3SUlJ5uuvv7bWde/e3QwZMsSt/oMPPjCtWrUy/v7+5sorrzSffPKJ23qXy2UmTZpkIiIiTEBAgOnZs6fZvn27W82hQ4fMgAEDTL169UxISIgZNmyYOXLkiFvNN998Y7p162YCAgJMTEyMmTZtWoXOixAFAEDNU973b4cxxnj3WljtVVhYqNDQUDmdTuZHAQBQQ5T3/ZvvzvOgM/mU50UBAFBznHnfvtB1JkKUBx05ckSSeF4UAAA10JEjRxQaGnrO9dzO8yCXy6VffvlF9evXl8PhKLOmsLBQsbGx2rdv3yV9y49xOI1x+A/G4jTG4TTG4T8Yi9M8OQ7GGB05ckTR0dHy8Tn3gwy4EuVBPj4+uvzyy8tVy3OlTmMcTmMc/oOxOI1xOI1x+A/G4jRPjcP5rkCdwRPLAQAAbCBEAQAA2ECI8rKAgABNmTJFAQEB3m7FqxiH0xiH/2AsTmMcTmMc/oOxOK06jAMTywEAAGzgShQAAIANhCgAAAAbCFEAAAA2EKIAAABsIER52Jw5cxQXF6fAwEAlJydr7dq156zdsmWL7rjjDsXFxcnhcGjWrFlV12gVqMhYvPHGG7r22mvVoEEDNWjQQKmpqeetr0kqMg4fffSREhMTFRYWpuDgYHXs2FF//etfq7Bbz6rIWPy3hQsXyuFwKD093bMNVpGKjMM777wjh8Ph9goMDKzCbj2non8eCgoKNHr0aEVFRSkgIECtWrXSsmXLqqhbz6rIWPTo0eOsPxMOh0N9+vSpwo49o6J/JmbNmqUrrrhCQUFBio2N1YMPPqgTJ054rkEDj1m4cKHx9/c3b7/9ttmyZYsZOXKkCQsLM3l5eWXWr1271owfP968//77JjIy0rz44otV27AHVXQs7r77bjNnzhyzceNGs23bNjN06FATGhpqfvrppyruvHJVdBxWrVplPvroI7N161azc+dOM2vWLOPr62uWL19exZ1XvoqOxRm7d+82MTEx5tprrzW33XZb1TTrQRUdh3nz5pmQkBCzf/9+65Wbm1vFXVe+io5DcXGxSUxMNDfddJP517/+ZXbv3m2+/PJLs2nTpiruvPJVdCwOHTrk9udh8+bNxtfX18ybN69qG69kFR2H+fPnm4CAADN//nyze/du89lnn5moqCjz4IMPeqxHQpQHJSUlmdGjR1u/l5aWmujoaJORkXHBbZs2bVqrQtTFjIUxxpw6dcrUr1/fvPvuu55qsUpc7DgYY8xVV11lHn/8cU+0V6XsjMWpU6dMly5dzJtvvmmGDBlSK0JURcdh3rx5JjQ0tIq6qzoVHYdXX33VNGvWzJw8ebKqWqwyF/v3xIsvvmjq169vjh496qkWq0RFx2H06NHmhhtucFs2btw407VrV4/1yO08Dzl58qRycnKUmppqLfPx8VFqaqqysrK82FnVq4yxOHbsmEpKStSwYUNPtelxFzsOxhhlZmZq+/btuu666zzZqsfZHYunnnpKjRs31vDhw6uiTY+zOw5Hjx5V06ZNFRsbq9tuu01btmypinY9xs44LFmyRCkpKRo9erQiIiLUrl07PfvssyotLa2qtj2iMv6+fOutt9S/f38FBwd7qk2PszMOXbp0UU5OjnXL74cfftCyZct00003eaxPvoDYQ/Lz81VaWqqIiAi35REREfr++++91JV3VMZYPPLII4qOjnb7D6qmsTsOTqdTMTExKi4ulq+vr1555RX97ne/83S7HmVnLP71r3/prbfe0qZNm6qgw6phZxyuuOIKvf3222rfvr2cTqeef/55denSRVu2bCn3F55XN3bG4YcfftDKlSs1cOBALVu2TDt37tS9996rkpISTZkypSra9oiL/fty7dq12rx5s9566y1PtVgl7IzD3Xffrfz8fHXr1k3GGJ06dUp//OMf9eijj3qsT0IUqr1p06Zp4cKF+vLLL2vNBNqKqF+/vjZt2qSjR48qMzNT48aNU7NmzdSjRw9vt1Zljhw5okGDBumNN95QeHi4t9vxqpSUFKWkpFi/d+nSRW3atNFrr72mp59+2oudVS2Xy6XGjRvr9ddfl6+vrzp16qSff/5ZM2bMqNEh6mK99dZbSkhIUFJSkrdbqXJffvmlnn32Wb3yyitKTk7Wzp079cADD+jpp5/WpEmTPHJMQpSHhIeHy9fXV3l5eW7L8/LyFBkZ6aWuvONixuL555/XtGnT9MUXX6h9+/aebNPj7I6Dj4+PWrRoIUnq2LGjtm3bpoyMjBodoio6Frt27dKePXt0yy23WMtcLpckyc/PT9u3b1fz5s0927QHVMbfE3Xq1NFVV12lnTt3eqLFKmFnHKKiolSnTh35+vpay9q0aaPc3FydPHlS/v7+Hu3ZUy7mz0RRUZEWLlyop556ypMtVgk74zBp0iQNGjRII0aMkCQlJCSoqKhIo0aN0mOPPSYfn8qfwcScKA/x9/dXp06dlJmZaS1zuVzKzMx0+1fkpcDuWEyfPl1PP/20li9frsTExKpo1aMq68+Ey+VScXGxJ1qsMhUdi9atW+u7777Tpk2brNett96q66+/Xps2bVJsbGxVtl9pKuPPRGlpqb777jtFRUV5qk2PszMOXbt21c6dO60wLUn//ve/FRUVVWMDlHRxfyYWL16s4uJi/f73v/d0mx5nZxyOHTt2VlA6E7KNp74m2GNT1mEWLlxoAgICzDvvvGO2bt1qRo0aZcLCwqyPIw8aNMhMmDDBqi8uLjYbN240GzduNFFRUWb8+PFm48aNZseOHd46hUpT0bGYNm2a8ff3Nx9++KHbR3ePHDnirVOoFBUdh2effdZ8/vnnZteuXWbr1q3m+eefN35+fuaNN97w1ilUmoqOxW/Vlk/nVXQcnnzySfPZZ5+ZXbt2mZycHNO/f38TGBhotmzZ4q1TqBQVHYe9e/ea+vXrmzFjxpjt27ebpUuXmsaNG5upU6d66xQqjd3/Nrp162b69etX1e16TEXHYcqUKaZ+/frm/fffNz/88IP5/PPPTfPmzc1dd93lsR4JUR720ksvmSZNmhh/f3+TlJRkvv76a2td9+7dzZAhQ6zfd+/ebSSd9erevXvVN+4BFRmLpk2bljkWU6ZMqfrGK1lFxuGxxx4zLVq0MIGBgaZBgwYmJSXFLFy40Atde0ZFxuK3akuIMqZi4zB27FirNiIiwtx0001mw4YNXui68lX0z8OaNWtMcnKyCQgIMM2aNTPPPPOMOXXqVBV37RkVHYvvv//eSDKff/55FXfqWRUZh5KSEvPEE0+Y5s2bm8DAQBMbG2vuvfde8+uvv3qsP4cxnrrGBQAAUHsxJwoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFALXA0KFDlZ6e7u02gEsKIQqARw0dOlQOh8N6XXbZZerVq5e+/fZbb7dWKf773M68unXr5rHj7dmzRw6HQ5s2bXJb/pe//EXvvPOOx44L4GyEKAAe16tXL+3fv1/79+9XZmam/Pz8dPPNN3u7rUozb9486/z279+vJUuWlFlXUlLisR5CQ0MVFhbmsf0DOBshCoDHBQQEKDIyUpGRkerYsaMmTJigffv26eDBg7rhhhs0ZswYt/qDBw/K39/f+gb3uLg4Pf300xowYICCg4MVExOjOXPmuG3zwgsvKCEhQcHBwYqNjdW9996ro0ePWut//PFH3XLLLWrQoIGCg4N15ZVXatmyZZKkX3/9VQMHDlSjRo0UFBSkli1bat68eeU+v7CwMOv8IiMj1bBhQ+uK0aJFi9S9e3cFBgZq/vz5OnTokAYMGKCYmBjVrVtXCQkJev/9993253K5NH36dLVo0UIBAQFq0qSJnnnmGUlSfHy8JOmqq66Sw+FQjx49JJ19O6+4uFj333+/GjdurMDAQHXr1k3r1q2z1n/55ZdyOBzKzMxUYmKi6tatqy5dumj79u3lPm/gUkeIAlCljh49qvfee08tWrTQZZddphEjRmjBggUqLi62at577z3FxMTohhtusJbNmDFDHTp00MaNGzVhwgQ98MADWrFihbXex8dHs2fP1pYtW/Tuu+9q5cqVevjhh631o0ePVnFxsVavXq3vvvtOzz33nOrVqydJmjRpkrZu3apPP/1U27Zt06uvvqrw8PBKOd8zvW7btk1paWk6ceKEOnXqpE8++USbN2/WqFGjNGjQIK1du9baZuLEiZo2bZrV14IFCxQRESFJVt0XX3yh/fv366OPPirzuA8//LD+9re/6d1339WGDRvUokULpaWl6fDhw251jz32mGbOnKn169fLz89Pf/jDHyrlvIFLgse+2hgAjDFDhgwxvr6+Jjg42AQHBxtJJioqyuTk5BhjjDl+/Lhp0KCBWbRokbVN+/btzRNPPGH93rRpU9OrVy+3/fbr18/07t37nMddvHixueyyy6zfExIS3Pb532655RYzbNgwW+cnyQQGBlrnFxwcbP7+97+b3bt3G0lm1qxZF9xHnz59zEMPPWSMMaawsNAEBASYN954o8zaM/vduHGj2/IhQ4aY2267zRhjzNGjR02dOnXM/PnzrfUnT5400dHRZvr06cYYY1atWmUkmS+++MKq+eSTT4wkc/z48YoMAXDJ4koUAI+7/vrrtWnTJm3atElr165VWlqaevfurR9//FGBgYEaNGiQ3n77bUnShg0btHnzZg0dOtRtHykpKWf9vm3bNuv3L774Qj179lRMTIzq16+vQYMG6dChQzp27Jgk6f7779fUqVPVtWtXTZkyxW1i+5/+9CctXLhQHTt21MMPP6w1a9ZU6PxefPFF6/w2bdqk3/3ud9a6xMREt9rS0lI9/fTTSkhIUMOGDVWvXj199tln2rt3ryRp27ZtKi4uVs+ePSvUw3/btWuXSkpK1LVrV2tZnTp1lJSU5DZmktS+fXvrf0dFRUmSDhw4YPvYwKWEEAXA44KDg9WiRQu1aNFCnTt31ptvvqmioiK98cYbkqQRI0ZoxYoV+umnnzRv3jzdcMMNatq0abn3v2fPHt18881q3769/va3vyknJ8eaM3Xy5EnrGD/88IMGDRqk7777TomJiXrppZckyQp0Dz74oH755Rf17NlT48ePL/fxIyMjrfNr0aKFgoOD3c79v82YMUN/+ctf9Mgjj2jVqlXatGmT0tLSrD6DgoLKfdzKUKdOHet/OxwOSafnZAG4MEIUgCrncDjk4+Oj48ePS5ISEhKUmJioN954QwsWLChzXs7XX3991u9t2rSRJOXk5MjlcmnmzJm65ppr1KpVK/3yyy9n7SM2NlZ//OMf9dFHH+mhhx6yQpwkNWrUSEOGDNF7772nWbNm6fXXX6/MU7Z89dVXuu222/T73/9eHTp0ULNmzfTvf//bWt+yZUsFBQVZk+p/y9/fX9LpK1rn0rx5c/n7++urr76ylpWUlGjdunVq27ZtJZ0JAD9vNwCg9isuLlZubq6k05+Ee/nll3X06FHdcsstVs2IESM0ZswYBQcH6/bbbz9rH1999ZWmT5+u9PR0rVixQosXL9Ynn3wiSWrRooVKSkr00ksv6ZZbbtFXX32luXPnum0/duxY9e7dW61atdKvv/6qVatWWSFs8uTJ6tSpk6688koVFxdr6dKl1rrK1rJlS3344Ydas2aNGjRooBdeeEF5eXlWuAkMDNQjjzyihx9+WP7+/uratasOHjyoLVu2aPjw4WrcuLGCgoK0fPlyXX755QoMDFRoaKjbMYKDg/WnP/1Jf/7zn9WwYUM1adJE06dP17FjxzR8+HCPnBdwKeJKFACPW758uaKiohQVFaXk5GStW7dOixcvtj6eL0kDBgyQn5+fBgwYoMDAwLP28dBDD2n9+vW66qqrNHXqVL3wwgtKS0uTJHXo0EEvvPCCnnvuObVr107z589XRkaG2/alpaUaPXq02rRpo169eqlVq1Z65ZVXJJ2+ujNx4kS1b99e1113nXx9fbVw4UKPjMXjjz+uq6++WmlpaerRo4ciIyPPetL4pEmT9NBDD2ny5Mlq06aN+vXrZ81T8vPz0+zZs/Xaa68pOjpat912W5nHmTZtmu644w4NGjRIV199tXbu3KnPPvtMDRo08Mh5AZcihzHGeLsJANizZ4+aN2+udevW6eqrr3ZbFxcXp7Fjx2rs2LHeaQ4AysDtPABeVVJSokOHDunxxx/XNddcc1aAAoDqitt5ALzqq6++UlRUlNatW3fWPCZve/bZZ1WvXr0yX7179/Z2ewC8jNt5AHAOhw8fPusJ32cEBQUpJiamijsCUJ0QogAAAGzgdh4AAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADAhv8H8pe93A8piKkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHHCAYAAACbXt0gAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARK1JREFUeJzt3XtcVXW+//H3BuQiKqjIzUHxAqmJ0nghvKQlE6Zjks0JzTH1WM5MWpl6SstLd8xujuVIOaXzmCzNcsoxj2Vop19KqKhjXlPTsglQNEBBEdnf3x8d12kHmrjYbMDX8/HgYaz13Wt91ncYeftd3/VdDmOMEQAAAK6Il6cLAAAAqMsIUwAAADYQpgAAAGwgTAEAANhAmAIAALCBMAUAAGADYQoAAMAGwhQAAIANhCkAAAAbCFMA6rXHHntMDofjsto6HA499thjbq2nf//+6t+/f609HoCqI0wBqBFLliyRw+Gwvnx8fNSyZUuNGTNG//73vz1dXq0THR3t0l+hoaHq27ev/vGPf1TL8UtKSvTYY4/p008/rZbjAVczwhSAGvXEE0/o73//u9LT03XLLbfozTffVL9+/XT27Fm3nG/GjBk6c+aMW47tbvHx8fr73/+uv//975o6daq+//57DRs2TOnp6baPXVJSoscff5wwBVQDH08XAODqcsstt6h79+6SpLvvvlshISF69tlntWrVKt1xxx3Vfj4fHx/5+NTNv+patmyp3//+99b3d911l9q3b6+XXnpJf/zjHz1YGYCfYmQKgEf17dtXknTo0CGX7fv27dPvfvc7NWvWTP7+/urevbtWrVrl0qasrEyPP/64YmJi5O/vr+bNm6tPnz5at26d1aayOVOlpaV68MEH1aJFCzVu3Fi33nqrvvvuuwq1jRkzRtHR0RW2V3bMxYsX66abblJoaKj8/PzUqVMnLVy4sEp98UvCw8PVsWNHHT58+JLtjh07pnHjxiksLEz+/v7q2rWr/va3v1n7jxw5ohYtWkiSHn/8cetWorvniwH1Vd385xqAeuPIkSOSpKZNm1rbdu/erd69e6tly5aaNm2aAgMD9c477yglJUXvvfeebrvtNkk/hpq0tDTdfffd6tmzp4qKirR161Zt27ZNv/nNby56zrvvvltvvvmm7rzzTvXq1Uvr16/X4MGDbV3HwoULde211+rWW2+Vj4+P/vnPf+ree++V0+nUhAkTbB37grKyMh09elTNmze/aJszZ86of//+OnjwoCZOnKg2bdpoxYoVGjNmjAoKCvTAAw+oRYsWWrhwof70pz/ptttu07BhwyRJXbp0qZY6gauOAYAasHjxYiPJfPLJJ+b48ePm6NGj5t133zUtWrQwfn5+5ujRo1bbAQMGmLi4OHP27Flrm9PpNL169TIxMTHWtq5du5rBgwdf8ryzZ882P/2rbseOHUaSuffee13a3XnnnUaSmT17trVt9OjRpnXr1r94TGOMKSkpqdAuOTnZtG3b1mVbv379TL9+/S5ZszHGtG7d2tx8883m+PHj5vjx4+Zf//qXGT58uJFk7rvvvoseb968eUaSefPNN61t586dM4mJiaZRo0amqKjIGGPM8ePHK1wvgCvDbT4ANSopKUktWrRQVFSUfve73ykwMFCrVq3Sr371K0nSyZMntX79et1xxx06deqU8vPzlZ+frxMnTig5OVkHDhywnv4LDg7W7t27deDAgcs+/5o1ayRJ999/v8v2SZMm2bqugIAA678LCwuVn5+vfv366euvv1ZhYeEVHfPjjz9WixYt1KJFC3Xt2lUrVqzQqFGj9Oyzz170M2vWrFF4eLhGjBhhbWvQoIHuv/9+nT59Wv/zP/9zRbUAuDhu8wGoUQsWLFBsbKwKCwv1xhtv6LPPPpOfn5+1/+DBgzLGaObMmZo5c2alxzh27JhatmypJ554QkOHDlVsbKw6d+6sgQMHatSoUZe8XfXNN9/Iy8tL7dq1c9l+zTXX2LqujRs3avbs2crMzFRJSYnLvsLCQgUFBVX5mAkJCXrqqafkcDjUsGFDdezYUcHBwZf8zDfffKOYmBh5ebn+W7ljx47WfgDVizAFoEb17NnTepovJSVFffr00Z133qn9+/erUaNGcjqdkqSpU6cqOTm50mO0b99eknTDDTfo0KFD+uCDD/Txxx/rr3/9q1566SWlp6fr7rvvtl3rxRb7LC8vd/n+0KFDGjBggDp06KAXX3xRUVFR8vX11Zo1a/TSSy9Z11RVISEhSkpKuqLPAqg5hCkAHuPt7a20tDTdeOONeuWVVzRt2jS1bdtW0o+3pi4nSDRr1kxjx47V2LFjdfr0ad1www167LHHLhqmWrduLafTqUOHDrmMRu3fv79C26ZNm6qgoKDC9p+P7vzzn/9UaWmpVq1apVatWlnbN2zY8Iv1V7fWrVtr586dcjqdLqNT+/bts/ZLFw+KAKqOOVMAPKp///7q2bOn5s2bp7Nnzyo0NFT9+/fXq6++qpycnArtjx8/bv33iRMnXPY1atRI7du3V2lp6UXPd8stt0iS5s+f77J93rx5Fdq2a9dOhYWF2rlzp7UtJyenwirk3t7ekiRjjLWtsLBQixcvvmgd7jJo0CDl5uZq+fLl1rbz58/r5ZdfVqNGjdSvXz9JUsOGDSWp0rAIoGoYmQLgcf/1X/+l//iP/9CSJUv0xz/+UQsWLFCfPn0UFxene+65R23btlVeXp4yMzP13Xff6V//+pckqVOnTurfv7+6deumZs2aaevWrXr33Xc1ceLEi54rPj5eI0aM0F/+8hcVFhaqV69eysjI0MGDByu0HT58uB5++GHddtttuv/++1VSUqKFCxcqNjZW27Zts9rdfPPN8vX11ZAhQ/SHP/xBp0+f1qJFixQaGlppIHSn8ePH69VXX9WYMWOUnZ2t6Ohovfvuu9q4caPmzZunxo0bS/pxwnynTp20fPlyxcbGqlmzZurcubM6d+5co/UC9YKnHycEcHW4sDTCli1bKuwrLy837dq1M+3atTPnz583xhhz6NAhc9ddd5nw8HDToEED07JlS/Pb3/7WvPvuu9bnnnrqKdOzZ08THBxsAgICTIcOHczTTz9tzp07Z7WpbBmDM2fOmPvvv980b97cBAYGmiFDhpijR49WulTAxx9/bDp37mx8fX3NNddcY958881Kj7lq1SrTpUsX4+/vb6Kjo82zzz5r3njjDSPJHD582GpXlaURfmnZh4sdLy8vz4wdO9aEhIQYX19fExcXZxYvXlzhs5s2bTLdunUzvr6+LJMA2OAw5ifj0gAAAKgS5kwBAADYQJgCAACwgTAFAABgA2EKAADABsIUAACADYQpAAAAG1i0042cTqe+//57NW7cmFc3AABQRxhjdOrUKUVGRlZ4aXhlCFNu9P333ysqKsrTZQAAgCtw9OhR/epXv/rFdoQpN7rw2oajR4+qSZMmHq4GAABcjqKiIkVFRVm/x38JYcqNLtzaa9KkCWEKAIA65nKn6DABHQAAwAbCFAAAgA2EKQAAABuYMwUAwFWgvLxcZWVlni6jVmjQoIG8vb2r7XiEKQAA6jFjjHJzc1VQUODpUmqV4OBghYeHV8s6kIQpAADqsQtBKjQ0VA0bNrzqF5E2xqikpETHjh2TJEVERNg+JmEKAIB6qry83ApSzZs393Q5tUZAQIAk6dixYwoNDbV9y48J6AAA1FMX5kg1bNjQw5XUPhf6pDrmkRGmAACo5672W3uVqc4+IUwBAADYQJgCAACwgTBVB+UUntGmQ/nKKTzj6VIAAHCb3Nxc3XfffWrbtq38/PwUFRWlIUOGKCMjw2qzadMmDRo0SE2bNpW/v7/i4uL04osvqry8vMbq5Gm+Omb5lm81feWXchrJyyGlDYtTao9Wni4LAIBqdeTIEfXu3VvBwcF67rnnFBcXp7KyMn300UeaMGGC9u3bp3/84x+64447NHbsWG3YsEHBwcH65JNP9NBDDykzM1PvvPNOjcwXcxhjjNvPcpUqKipSUFCQCgsL1aRJE9vHyyk8o95z1sv5k//FvB0OfT7tRkUEBdg+PgCgfjl79qwOHz6sNm3ayN/f39PlVMmgQYO0c+dO7d+/X4GBgS77CgoK1KBBA7Vu3Vr9+vXTe++957L/n//8p2699VYtW7ZMqamplR7/Un1T1d/f3OarQw7nF7sEKUkqN0ZH8ks8UxAA4KpRk1NMTp48qbVr12rChAkVgpT04+rlH3/8sU6cOKGpU6dW2D9kyBDFxsbq7bffdnutErf56pQ2IYHycqjCyFR0COuHAADcp6anmBw8eFDGGHXo0OGibb766itJUseOHSvd36FDB6uNuzEyVYdEBAUobVicvP/3/q+3w6FnhnXmFh8AwG1yCs9YQUr68R/0j6zc5dYRqqrMQKoNs5UYmapjUnu00g2xLXQkv0TRIQ0JUgAAt7rUFBN3/Q6KiYmRw+HQvn37LtomNjZWkrR371716tWrwv69e/eqU6dObqnv5xiZqoMiggKU2K45QQoA4HYXppj8lLunmDRr1kzJyclasGCBiouLK+wvKCjQzTffrGbNmumFF16osH/VqlU6cOCARowY4bYaf4owBQAALspTU0wWLFig8vJy9ezZU++9954OHDigvXv3av78+UpMTFRgYKBeffVVffDBBxo/frx27typI0eO6PXXX9eYMWP0u9/9TnfccYdba7yA23wAAOCSPDHFpG3bttq2bZuefvppTZkyRTk5OWrRooW6deumhQsXSpJ+97vfacOGDXr66afVt29fnT17VjExMXr00Uc1adKkGnsnIetMuVF1rzMFAEBV1OV1ptyNdaYAAABqCcIUAACADYQpAAAAG2pFmFqwYIGio6Pl7++vhIQEbd68+ZLtV6xYoQ4dOlhvh16zZo3LfmOMZs2apYiICAUEBCgpKUkHDhxwaXPy5EmNHDlSTZo0UXBwsMaNG6fTp09Xer6DBw+qcePGCg4OtnWdAACg/vF4mFq+fLkmT56s2bNna9u2beratauSk5N17NixSttv2rRJI0aM0Lhx47R9+3alpKQoJSVFu3btstrMnTtX8+fPV3p6urKyshQYGKjk5GSdPXvWajNy5Ejt3r1b69at0+rVq/XZZ59p/PjxFc5XVlamESNGqG/fvtV/8QAA1ACeNauoOvvE40/zJSQkqEePHnrllVckSU6nU1FRUbrvvvs0bdq0Cu1TU1NVXFys1atXW9uuv/56xcfHKz09XcYYRUZGasqUKdbLDwsLCxUWFqYlS5Zo+PDh1qqoW7ZsUffu3SVJa9eu1aBBg/Tdd98pMjLSOvbDDz+s77//XgMGDNCkSZNUUFBw2dfG03wAAE8qLy/XV199pdDQUDVv3tzT5dQqJ06c0LFjxxQbGytvb2+XfVX9/e3RdabOnTun7OxsTZ8+3drm5eWlpKQkZWZmVvqZzMxMTZ482WVbcnKy3n//fUnS4cOHlZubq6SkJGt/UFCQEhISlJmZqeHDhyszM1PBwcFWkJKkpKQkeXl5KSsrS7fddpskaf369VqxYoV27NihlStX/uL1lJaWqrS01Pq+qKjolzsBAAA38fb2VnBwsHW3p2HDhjW29lJtZYxRSUmJjh07puDg4ApB6kp4NEzl5+ervLxcYWFhLtvDwsIu+j6e3NzcStvn5uZa+y9su1Sb0NBQl/0+Pj5q1qyZ1ebEiRMaM2aM3nzzzcseVUpLS9Pjjz9+WW0BAKgJ4eHhknTR6TNXq+DgYKtv7GIF9Iu45557dOedd+qGG2647M9Mnz7dZdSsqKhIUVFR7igPAIDL4nA4FBERodDQUJWVlXm6nFqhQYMG1TIidYFHw1RISIi8vb2Vl5fnsj0vL++iaTE8PPyS7S/8mZeXp4iICJc28fHxVpufJ/Tz58/r5MmT1ufXr1+vVatW6fnnn5f047Cg0+mUj4+PXnvtNf3nf/5nhdr8/Pzk5+d3uZcPAECN8fb2rtYAgf/j0af5fH191a1bN2VkZFjbnE6nMjIylJiYWOlnEhMTXdpL0rp166z2bdq0UXh4uEuboqIiZWVlWW0SExNVUFCg7Oxsq8369evldDqVkJAg6ce5WTt27LC+nnjiCTVu3Fg7duyw5lQBAAB4/Dbf5MmTNXr0aHXv3l09e/bUvHnzVFxcrLFjx0qS7rrrLrVs2VJpaWmSpAceeED9+vXTCy+8oMGDB2vZsmXaunWrXnvtNUk/DmdOmjRJTz31lGJiYtSmTRvNnDlTkZGRSklJkSR17NhRAwcO1D333KP09HSVlZVp4sSJGj58uPUkX8eOHV3q3Lp1q7y8vNS5c+ca6hkAAFAXeDxMpaam6vjx45o1a5Zyc3MVHx+vtWvXWhPIv/32W3l5/d8AWq9evfTWW29pxowZeuSRRxQTE6P333/fJeQ89NBDKi4u1vjx41VQUKA+ffpo7dq1Li8yXLp0qSZOnKgBAwbIy8tLt99+u+bPn19zFw4AAOoFj68zVZ+xzhQAAHVPVX9/e3wFdAAAgLqMMAUAAGADYQoAAMAGwhQAAIANhCkAAAAbCFMAAAA2EKYAAABsIEwBAADYQJgCAACwgTAFAABgA2EKAADABsIUAACADYQpAAAAGwhTAAAANhCmAAAAbCBMAQAA2ECYAgAAsIEwBQAAYANhCgAAwAbCFAAAgA2EKQAAABsIUwAAADYQpgAAAGwgTAEAANhAmAIAALCBMAUAAGADYQoAAMAGwhQAAIANhCkAAAAbCFMAAAA2EKYAAABsIEwBAADYQJgCAACwgTAFAABgA2EKAADABsIUAACADYQpAAAAGwhTAAAANhCmAAAAbCBMAQAA2ECYAgAAsIEwBQAAYANhCgAAwAbCFAAAgA2EKQAAABsIUwAAADYQpgAAAGwgTAEAANhAmAIAALCBMAUAAGADYQoAAMAGwhQAAIANhCkAAAAbCFMAAAA2EKYAAABsIEwBAADYQJgCAACwgTAFAABgA2EKAADABsIUAACADYQpAAAAGwhTAAAANhCmAAAAbCBMAQAA2ECYAgAAsIEwBQAAYANhCgAAwAbCFAAAgA2EKQAAABsIUwAAADbUijC1YMECRUdHy9/fXwkJCdq8efMl269YsUIdOnSQv7+/4uLitGbNGpf9xhjNmjVLERERCggIUFJSkg4cOODS5uTJkxo5cqSaNGmi4OBgjRs3TqdPn7b279+/XzfeeKPCwsLk7++vtm3basaMGSorK6u+CwcAAHWex8PU8uXLNXnyZM2ePVvbtm1T165dlZycrGPHjlXaftOmTRoxYoTGjRun7du3KyUlRSkpKdq1a5fVZu7cuZo/f77S09OVlZWlwMBAJScn6+zZs1abkSNHavfu3Vq3bp1Wr16tzz77TOPHj7f2N2jQQHfddZc+/vhj7d+/X/PmzdOiRYs0e/Zs93UGAACocxzGGOPJAhISEtSjRw+98sorkiSn06moqCjdd999mjZtWoX2qampKi4u1urVq61t119/veLj45Weni5jjCIjIzVlyhRNnTpVklRYWKiwsDAtWbJEw4cP1969e9WpUydt2bJF3bt3lyStXbtWgwYN0nfffafIyMhKa508ebK2bNmi//f//t9lXVtRUZGCgoJUWFioJk2aVKlfAACAZ1T197dHR6bOnTun7OxsJSUlWdu8vLyUlJSkzMzMSj+TmZnp0l6SkpOTrfaHDx9Wbm6uS5ugoCAlJCRYbTIzMxUcHGwFKUlKSkqSl5eXsrKyKj3vwYMHtXbtWvXr1++i11NaWqqioiKXLwAAUL95NEzl5+ervLxcYWFhLtvDwsKUm5tb6Wdyc3Mv2f7Cn7/UJjQ01GW/j4+PmjVrVuG8vXr1kr+/v2JiYtS3b1898cQTF72etLQ0BQUFWV9RUVEXbQsAAOoHj8+Zqu2WL1+ubdu26a233tKHH36o559//qJtp0+frsLCQuvr6NGjNVgpAADwBB9PnjwkJETe3t7Ky8tz2Z6Xl6fw8PBKPxMeHn7J9hf+zMvLU0REhEub+Ph4q83PJ7ifP39eJ0+erHDeC6NLnTp1Unl5ucaPH68pU6bI29u7Qm1+fn7y8/P7pcsGAAD1iEdHpnx9fdWtWzdlZGRY25xOpzIyMpSYmFjpZxITE13aS9K6deus9m3atFF4eLhLm6KiImVlZVltEhMTVVBQoOzsbKvN+vXr5XQ6lZCQcNF6nU6nysrK5HQ6q36xAACgXvLoyJT04xNyo0ePVvfu3dWzZ0/NmzdPxcXFGjt2rCTprrvuUsuWLZWWliZJeuCBB9SvXz+98MILGjx4sJYtW6atW7fqtddekyQ5HA5NmjRJTz31lGJiYtSmTRvNnDlTkZGRSklJkSR17NhRAwcO1D333KP09HSVlZVp4sSJGj58uPUk39KlS9WgQQPFxcXJz89PW7du1fTp05WamqoGDRrUfEcBAIBayeNhKjU1VcePH9esWbOUm5ur+Ph4rV271ppA/u2338rL6/8G0Hr16qW33npLM2bM0COPPKKYmBi9//776ty5s9XmoYceUnFxscaPH6+CggL16dNHa9eulb+/v9Vm6dKlmjhxogYMGCAvLy/dfvvtmj9/vrXfx8dHzz77rL766isZY9S6dWtNnDhRDz74YA30CgAAqCs8vs5UfcY6UwAA1D11ap0pAACAuo4wBQAAYANhCgAAwAbCFAAAgA2EKQAAABsIUwAAADYQpgAAAGwgTAEAANhAmAIAALCBMAUAAGADYQoAAMAGwhQAAIANhCkAAAAbCFMAAAA2EKYAAABsIEwBAADYQJgCAACwgTAFAABgA2EKAADABsIUAACADYQpAAAAGwhTAAAANhCmAAAAbCBMAQAA2ECYAgAAsIEwBQAAYANhCgAAwAbCFAAAgA2EKQAAABsIUwAAADYQpgAAAGwgTAEAANhAmAIAALCBMAUAAGADYQoAAMAGwhRsySk8o02H8pVTeMbTpQAA4BE+ni4AddfyLd9q+sov5TSSl0NKGxan1B6tPF0WAAA1ipEpXJGcwjNWkJIkp5EeWbmLESoAwFWHMIUrcji/2ApSF5QboyP5JZ4pCAAADyFM4Yq0CQmUl8N1m7fDoeiQhp4pCAAADyFM4YpEBAUobVicvB0/Jipvh0PPDOusiKAAD1cGAEDNYgI6rlhqj1a6IbaFjuSXKDqkIUEKAHBVIkzBloigAEIUAOCqxm0+AAAAGwhTAAAANhCmAAAAbCBMAQAA2ECYAgAAsIEwBQAAYANhCgA8JKfwjDYdyuedlkAdxzpTAOABy7d8a70s3MshpQ2LU2qPVp4uC8AVYGQKAGpYTuEZK0hJktNIj6zcxQgVUEcRpgCghh3OL7aC1AXlxuhIfolnCgJgC2EKAGpYm5BAeTlct3k7HIoOaeiZggDYQpgCgBoWERSgtGFx8nb8mKi8HQ49M6wz77kE6igmoAOAB6T2aKUbYlvoSH6JokMaEqSAOowwBQAeEhEUQIgC6oErus23YsUKDRs2TJ07d1bnzp01bNgwvfvuu9VdGwAAQK1XpTDldDqVmpqq1NRU7dmzR+3bt1f79u21e/dupaamavjw4TLG/PKBAAAA6okq3eb785//rE8++USrVq3Sb3/7W5d9q1at0tixY/XnP/9ZkyZNqs4aAQAAaq0qjUwtXrxYzz33XIUgJUm33nqr5s6dqzfeeKPaigMAAKjtqhSmDhw4oKSkpIvuT0pK0oEDB2wXBQAAUFdUKUwFBASooKDgovuLiork7+9vtyYAAIA6o0phKjExUQsXLrzo/gULFigxMdF2UQAAAHVFlSagP/roo+rfv79OnDihqVOnqkOHDjLGaO/evXrhhRf0wQcfaMOGDe6qFQAAoNapUpjq1auXli9frvHjx+u9995z2de0aVO9/fbb6t27d7UWCAAAUJs5zBUsDFVSUqKPPvrImmweGxurm2++WQ0b8pLOnyoqKlJQUJAKCwvVpEkTT5cDAAAuQ1V/f1dpZGr9+vWaOHGivvjiC912220u+woLC3XttdcqPT1dffv2rVrVAAAAdVSVJqDPmzdP99xzT6UpLSgoSH/4wx/04osvVltxAAAAtV2VwtS//vUvDRw48KL7b775ZmVnZ9suCgAAoK6oUpjKy8tTgwYNLrrfx8dHx48fr3IRCxYsUHR0tPz9/ZWQkKDNmzdfsv2KFSvUoUMH+fv7Ky4uTmvWrHHZb4zRrFmzFBERoYCAgEoXEz158qRGjhypJk2aKDg4WOPGjdPp06et/Z9++qmGDh2qiIgIBQYGKj4+XkuXLq3ytQEAgPqtSmGqZcuW2rVr10X379y5UxEREVUqYPny5Zo8ebJmz56tbdu2qWvXrkpOTtaxY8cqbb9p0yaNGDFC48aN0/bt25WSkqKUlBSXuubOnav58+crPT1dWVlZCgwMVHJyss6ePWu1GTlypHbv3q1169Zp9erV+uyzzzR+/HiX83Tp0kXvvfeedu7cqbFjx+quu+7S6tWrq3R9AACgnjNVMHHiRNO5c2dz5syZCvtKSkpM586dzX333VeVQ5qePXuaCRMmWN+Xl5ebyMhIk5aWVmn7O+64wwwePNhlW0JCgvnDH/5gjDHG6XSa8PBw89xzz1n7CwoKjJ+fn3n77beNMcbs2bPHSDJbtmyx2vz3f/+3cTgc5t///vdFax00aJAZO3bsZV9bYWGhkWQKCwsv+zMAAMCzqvr7u0ojUzNmzNDJkycVGxuruXPn6oMPPtAHH3ygZ599Vtdcc41OnjypRx999LKPd+7cOWVnZ7u878/Ly0tJSUnKzMys9DOZmZkV3g+YnJxstT98+LByc3Nd2gQFBSkhIcFqk5mZqeDgYHXv3t1qk5SUJC8vL2VlZV203sLCQjVr1uyi+0tLS1VUVOTyBQAA6rcqLY0QFhamTZs26U9/+pOmT58u879LVDkcDiUnJ2vBggUKCwu77OPl5+ervLy8wmfCwsK0b9++Sj+Tm5tbafvc3Fxr/4Vtl2oTGhrqst/Hx0fNmjWz2vzcO++8oy1btujVV1+96PWkpaXp8ccfv+h+AABQ/1QpTElS69attWbNGv3www86ePCgjDGKiYlR06ZN3VFfrbBhwwaNHTtWixYt0rXXXnvRdtOnT9fkyZOt74uKihQVFVUTJQIAAA+pcpi6oGnTpurRo4etk4eEhMjb21t5eXku2/Py8hQeHl7pZ8LDwy/Z/sKfeXl5LpPh8/LyFB8fb7X5+QT38+fP6+TJkxXO+z//8z8aMmSIXnrpJd11112XvB4/Pz/5+fldsg0AAKhfqjRnqrr5+vqqW7duysjIsLY5nU5lZGQoMTGx0s8kJia6tJekdevWWe3btGmj8PBwlzZFRUXKysqy2iQmJqqgoMBlTaz169fL6XQqISHB2vbpp59q8ODBevbZZ12e9AMAALC4dTr8ZVi2bJnx8/MzS5YsMXv27DHjx483wcHBJjc31xhjzKhRo8y0adOs9hs3bjQ+Pj7m+eefN3v37jWzZ882DRo0MF9++aXVZs6cOSY4ONh88MEHZufOnWbo0KGmTZs2Lk8hDhw40Fx33XUmKyvLfP755yYmJsaMGDHC2r9+/XrTsGFDM336dJOTk2N9nThx4rKvjaf5AACoe6r6+9vjYcoYY15++WXTqlUr4+vra3r27Gm++OILa1+/fv3M6NGjXdq/8847JjY21vj6+pprr73WfPjhhy77nU6nmTlzpgkLCzN+fn5mwIABZv/+/S5tTpw4YUaMGGEaNWpkmjRpYsaOHWtOnTpl7R89erSRVOGrX79+l31dhCkAAOqeqv7+dhjzv4/kodpV9a3TAADA86r6+9ujc6YAAADqOsIUAACADYQpAAAAGwhTAAAANhCmAAAAbCBMAQCAy5JTeEabDuUrp/CMp0upVa74dTIAAODqsXzLt5q+8ks5jeTlkNKGxSm1RytPl1UrMDIFAAAuKafwjBWkJMlppEdW7mKE6n8RpgAAwCUdzi+2gtQF5cboSH6JZwqqZQhTAADgktqEBMrL4brN2+FQdEhDzxRUyxCmANRaTHYFaoeIoAClDYuTt+PHROXtcOiZYZ0VERTg4cpqByagA6iVmOwK1C6pPVrphtgWOpJfouiQhgSpn2BkCkCtw2RXoHaKCApQYrvmBKmfIUwBqHWY7AqgLiFMAah1mOwKoC4hTKFeYKJy/cJkVwB1CRPQUecxUbl+YrIrgLqCkSnUaUxUrt+Y7AqgLiBMoU5jojIAwNMIU6jTmKgMAPA0whTqNCYqAwA8jQnoqPOYqAwA8CTCFOqFiKAAQhQAwCO4zQcAAGADYQoAAMAGwhQAAIANhCkAAAAbCFMAAAA2EKYAAABsIEwBAADbcgrPaNOh/Kvy3aisMwUAAGxZvuVb66XzXg4pbVicUnu08nRZNYaRKQAAcMVyCs9YQUqSnEZ6ZOWuq2qEijAFAACu2OH8YitIXVBujI7kl3imIA8gTAEAgCvWJiRQXg7Xbd4Oh6JDGnqmIA8gTAEAgCsWERSgtGFx8nb8mKi8HQ49M6zzVfW+VCagAwAAW1J7tNINsS10JL9E0SENr6ogJRGmAABANYgICrjqQtQF3OYDAACwgTAFAABgA2EKAADABsIUAACADYQpAAAAGwhTAAAANhCmAAAAbCBMAQAA2ECYAgAAsIEwBcCjcgrPaNOhfOUUnvF0KQBwRXidDACPWb7lW01f+aWcRvJySGnD4pTao5WnywKAKmFkCoBH5BSesYKUJDmN9MjKXYxQAahzCFMAPOJwfrEVpC4oN0ZH8ks8UxCAOqU2TRHgNh8Aj2gTEigvh1wClbfDoeiQhp4rCkCdUNumCDAyBcAjIoIClDYsTt4Oh6Qfg9QzwzorIijAw5UBqM1q4xQBRqYAeExqj1a6IbaFjuSXKDqkIUEKwC+61BQBT/0dQpgC4FERQQGEKACXrTZOEeA2HwAAqDNq4xQBRqYAAECdUtumCBCmAABAnVObpghwmw8AAMAGwhQAAIANhCkAAAAbCFMAAAA2EKYAVJva9K4sAKgpPM0HoFrUtndlAUBNYWQKgG218V1ZAFBTCFMAbLvUu7IAoL4jTAGw7cK7sn7K0+/KAoCaQpgCYFttfFcWANQUJqADqBa17V1ZAFBTCFMAqk1telcWANQUj9/mW7BggaKjo+Xv76+EhARt3rz5ku1XrFihDh06yN/fX3FxcVqzZo3LfmOMZs2apYiICAUEBCgpKUkHDhxwaXPy5EmNHDlSTZo0UXBwsMaNG6fTp09b+8+ePasxY8YoLi5OPj4+SklJqbbrBQAA9YtHw9Ty5cs1efJkzZ49W9u2bVPXrl2VnJysY8eOVdp+06ZNGjFihMaNG6ft27crJSVFKSkp2rVrl9Vm7ty5mj9/vtLT05WVlaXAwEAlJyfr7NmzVpuRI0dq9+7dWrdunVavXq3PPvtM48ePt/aXl5crICBA999/v5KSktzXAQAAoM5zGGPMLzdzj4SEBPXo0UOvvPKKJMnpdCoqKkr33Xefpk2bVqF9amqqiouLtXr1amvb9ddfr/j4eKWnp8sYo8jISE2ZMkVTp06VJBUWFiosLExLlizR8OHDtXfvXnXq1ElbtmxR9+7dJUlr167VoEGD9N133ykyMtLlnGPGjFFBQYHef//9Kl9fUVGRgoKCVFhYqCZNmlT58wAAoOZV9fe3x0amzp07p+zsbJeRHy8vLyUlJSkzM7PSz2RmZlYYKUpOTrbaHz58WLm5uS5tgoKClJCQYLXJzMxUcHCwFaQkKSkpSV5eXsrKyqq26wMAAFcHj01Az8/PV3l5ucLCwly2h4WFad++fZV+Jjc3t9L2ubm51v4L2y7VJjQ01GW/j4+PmjVrZrW5UqWlpSotLbW+LyoqsnU8ABeXU3hGh/OL1SYkkEnvADyKp/mqUVpamh5//HFPlwHUe7wHEEBt4rHbfCEhIfL29lZeXp7L9ry8PIWHh1f6mfDw8Eu2v/DnL7X5+QT38+fP6+TJkxc97+WaPn26CgsLra+jR4/aOh6AingPIIDaxmNhytfXV926dVNGRoa1zel0KiMjQ4mJiZV+JjEx0aW9JK1bt85q36ZNG4WHh7u0KSoqUlZWltUmMTFRBQUFys7OttqsX79eTqdTCQkJtq7Jz89PTZo0cfkCUL14DyCA2sajt/kmT56s0aNHq3v37urZs6fmzZun4uJijR07VpJ01113qWXLlkpLS5MkPfDAA+rXr59eeOEFDR48WMuWLdPWrVv12muvSZIcDocmTZqkp556SjExMWrTpo1mzpypyMhIa62ojh07auDAgbrnnnuUnp6usrIyTZw4UcOHD3d5km/Pnj06d+6cTp48qVOnTmnHjh2SpPj4+BrrHwAVXXgP4E8DFe8BBOBJHg1TqampOn78uGbNmqXc3FzFx8dr7dq11gTyb7/9Vl5e/zd41qtXL7311luaMWOGHnnkEcXExOj9999X586drTYPPfSQiouLNX78eBUUFKhPnz5au3at/P39rTZLly7VxIkTNWDAAHl5een222/X/PnzXWobNGiQvvnmG+v76667TtKPi4IC8JwL7wF8ZOUulRvDewABeJxH15mq71hnCnCfnMIzvAcQgFtU9fc3T/MBqJN4DyCA2sLj7+YDAACoywhTAAAANhCmAAAAbCBMAQAA2ECYAgAAsIEwBQAAYANhCgAAwAbCFAAAgA2EKQAAABsIUwAAADYQpgAAAGwgTAEAANhAmAIAALCBMAUAAGADYQoAAMAGwhQAAIANhCkAAAAbCFMAAAA2EKYAAABsIEwBAADYQJgCAKAWyCk8o02H8pVTeMbTpaCKfDxdAAAAV7vlW77V9JVfymkkL4eUNixOqT1aebosXCZGpgAA8KCcwjNWkJIkp5EeWbmLEao6hDAFAIAHHc4vtoLUBeXG6Eh+iWcKQpURpgAA8KA2IYHycrhu83Y4FB3S0DMFocoIUwAAeFBEUIDShsXJ2/FjovJ2OPTMsM6KCArwcGW4XExABwDAw1J7tNINsS10JL9E0SENCVJ1DGEKANwop/CMDucXq01IIL8gcUkRQQH8jNRRhCkAcBMedweuDsyZAuoxFgH0HB53B64ejEwB9RSjIp51qcfduZUD1C+MTAH1EKMinsfj7sDVgzAF1EMsAuh5PO4OXD24zQfUQxdGRX4aqBgVqXk87g5cHRiZAuohRkVqj4igACW2a07fA/UYI1NAPcWoCADUDMIUUI+xCCCAyrCYbPUiTAEAcBVh2ZTqx5wpAACuEiyb4h6EKQAArhIsm+IehCkAAK4SLCbrHoQpAACuEiyb4h5MQIctPBECAHULy6ZUP8IUrhhPhABA3cSyKdWL23y4IjwRAqA2ySk8o02H8vk7CB7ByBSuyKWeCOFfOwBqEqPk8DRGpnBFeCIEQG3AKDlqA8IUrghPhACoDVg3CbUBt/lwxXgiBICnXRgl/2mgYpQcNY2RKdgSERSgxHbNCVIAPIJRctQGjEwBAOo0RsnhaYQpAECdx7pJ8CRu8wEAANhAmAIAoA5jwVLP4zYfAAB1FAuW1g6MTAEAUAexYGntQZgCAKAOYsHS2oMwBQBAHcRrvWoPwhQAAHUQC5bWHkxABwCgjmLB0tqBMAUAQB3GgqWex20+APUO6+4AqEmMTAGoV1h3B0BNY2QKQL3BujsAPIEwBaDeYN0dAJ5AmAJQb7DuDgBPIEwBqDdYdweAJzABHUC9wro7AGoaYQq1Tk7hGR3OL1abkEB+EeKKsO4OgJpUK27zLViwQNHR0fL391dCQoI2b958yfYrVqxQhw4d5O/vr7i4OK1Zs8ZlvzFGs2bNUkREhAICApSUlKQDBw64tDl58qRGjhypJk2aKDg4WOPGjdPp06dd2uzcuVN9+/aVv7+/oqKiNHfu3Oq5YFzU8i3fqvec9bpzUZZ6z1mv5Vu+9XRJAABcksfD1PLlyzV58mTNnj1b27ZtU9euXZWcnKxjx45V2n7Tpk0aMWKExo0bp+3btyslJUUpKSnatWuX1Wbu3LmaP3++0tPTlZWVpcDAQCUnJ+vs2bNWm5EjR2r37t1at26dVq9erc8++0zjx4+39hcVFenmm29W69atlZ2dreeee06PPfaYXnvtNfd1xlWOx9oBAHWRwxhjfrmZ+yQkJKhHjx565ZVXJElOp1NRUVG67777NG3atArtU1NTVVxcrNWrV1vbrr/+esXHxys9PV3GGEVGRmrKlCmaOnWqJKmwsFBhYWFasmSJhg8frr1796pTp07asmWLunfvLklau3atBg0apO+++06RkZFauHChHn30UeXm5srX11eSNG3aNL3//vvat2/fZV1bUVGRgoKCVFhYqCZNmtjqp6vBpkP5unNRVoXtb99zvRLbNfdARQCAq1FVf397dGTq3Llzys7OVlJSkrXNy8tLSUlJyszMrPQzmZmZLu0lKTk52Wp/+PBh5ebmurQJCgpSQkKC1SYzM1PBwcFWkJKkpKQkeXl5KSsry2pzww03WEHqwnn279+vH374odLaSktLVVRU5PKFy8dj7QCAusijYSo/P1/l5eUKCwtz2R4WFqbc3NxKP5Obm3vJ9hf+/KU2oaGhLvt9fHzUrFkzlzaVHeOn5/i5tLQ0BQUFWV9RUVGVXzgqxWPtAIC6iKf5qtH06dM1efJk6/uioiICVRXxWDsAoK7xaJgKCQmRt7e38vLyXLbn5eUpPDy80s+Eh4dfsv2FP/Py8hQREeHSJj4+3mrz8wnu58+f18mTJ12OU9l5fnqOn/Pz85Ofn99FrxeXh8faAQB1iUdv8/n6+qpbt27KyMiwtjmdTmVkZCgxMbHSzyQmJrq0l6R169ZZ7du0aaPw8HCXNkVFRcrKyrLaJCYmqqCgQNnZ2Vab9evXy+l0KiEhwWrz2WefqayszOU811xzjZo2bWrzygEAQL1hPGzZsmXGz8/PLFmyxOzZs8eMHz/eBAcHm9zcXGOMMaNGjTLTpk2z2m/cuNH4+PiY559/3uzdu9fMnj3bNGjQwHz55ZdWmzlz5pjg4GDzwQcfmJ07d5qhQ4eaNm3amDNnzlhtBg4caK677jqTlZVlPv/8cxMTE2NGjBhh7S8oKDBhYWFm1KhRZteuXWbZsmWmYcOG5tVXX73sayssLDSSTGFhoZ0uAgAANaiqv789HqaMMebll182rVq1Mr6+vqZnz57miy++sPb169fPjB492qX9O++8Y2JjY42vr6+59tprzYcffuiy3+l0mpkzZ5qwsDDj5+dnBgwYYPbv3+/S5sSJE2bEiBGmUaNGpkmTJmbs2LHm1KlTLm3+9a9/mT59+hg/Pz/TsmVLM2fOnCpdF2EKAIC6p6q/vz2+zlR9xjpTAADUPXVqnSkAAIC6jjAFAABgA2EKAADABsIUAACADYQpAAAAGwhTAAAANhCmAAAAbOBFx250YQmvoqIiD1cCAAAu14Xf25e7FCdhyo1OnTolSYqKivJwJQAAoKpOnTqloKCgX2zHCuhu5HQ69f3336tx48ZyOBwV9hcVFSkqKkpHjx5lhfT/RZ+4oj9c0R8V0Seu6A9X9EdFl9MnxhidOnVKkZGR8vL65RlRjEy5kZeXl371q1/9YrsmTZrwQ/4z9Ikr+sMV/VERfeKK/nBFf1T0S31yOSNSFzABHQAAwAbCFAAAgA2EKQ/y8/PT7Nmz5efn5+lSag36xBX94Yr+qIg+cUV/uKI/KnJHnzABHQAAwAZGpgAAAGwgTAEAANhAmAIAALCBMAUAAGADYcrNFixYoOjoaPn7+yshIUGbN2++aNvdu3fr9ttvV3R0tBwOh+bNm1dzhdagqvTJokWL1LdvXzVt2lRNmzZVUlLSJdvXRVXpj5UrV6p79+4KDg5WYGCg4uPj9fe//70Gq3W/qvTHTy1btkwOh0MpKSnuLdADqtInS5YskcPhcPny9/evwWrdr6o/IwUFBZowYYIiIiLk5+en2NhYrVmzpoaqdb+q9Ef//v0r/Hw4HA4NHjy4Bit2v6r+jMybN0/XXHONAgICFBUVpQcffFBnz569/BMauM2yZcuMr6+veeONN8zu3bvNPffcY4KDg01eXl6l7Tdv3mymTp1q3n77bRMeHm5eeumlmi24BlS1T+68806zYMECs337drN3714zZswYExQUZL777rsartw9qtofGzZsMCtXrjR79uwxBw8eNPPmzTPe3t5m7dq1NVy5e1S1Py44fPiwadmypenbt68ZOnRozRRbQ6raJ4sXLzZNmjQxOTk51ldubm4NV+0+Ve2P0tJS0717dzNo0CDz+eefm8OHD5tPP/3U7Nixo4Yrd4+q9seJEydcfjZ27dplvL29zeLFi2u2cDeqap8sXbrU+Pn5maVLl5rDhw+bjz76yERERJgHH3zwss9JmHKjnj17mgkTJljfl5eXm8jISJOWlvaLn23dunW9DFN2+sQYY86fP28aN25s/va3v7mrxBpltz+MMea6664zM2bMcEd5Ne5K+uP8+fOmV69e5q9//asZPXp0vQtTVe2TxYsXm6CgoBqqruZVtT8WLlxo2rZta86dO1dTJdYou3+HvPTSS6Zx48bm9OnT7iqxxlW1TyZMmGBuuukml22TJ082vXv3vuxzcpvPTc6dO6fs7GwlJSVZ27y8vJSUlKTMzEwPVuY51dEnJSUlKisrU7NmzdxVZo2x2x/GGGVkZGj//v264YYb3FlqjbjS/njiiScUGhqqcePG1USZNepK++T06dNq3bq1oqKiNHToUO3evbsmynW7K+mPVatWKTExURMmTFBYWJg6d+6sZ555RuXl5TVVtttUx9+pr7/+uoYPH67AwEB3lVmjrqRPevXqpezsbOtW4Ndff601a9Zo0KBBl31eXnTsJvn5+SovL1dYWJjL9rCwMO3bt89DVXlWdfTJww8/rMjISJf/o9RVV9ofhYWFatmypUpLS+Xt7a2//OUv+s1vfuPuct3uSvrj888/1+uvv64dO3bUQIU170r65JprrtEbb7yhLl26qLCwUM8//7x69eql3bt3X9aL12uzK+mPr7/+WuvXr9fIkSO1Zs0aHTx4UPfee6/Kyso0e/bsmijbbez+nbp582bt2rVLr7/+urtKrHFX0id33nmn8vPz1adPHxljdP78ef3xj3/UI488ctnnJUyhzpgzZ46WLVumTz/9tN5NqK2Kxo0ba8eOHTp9+rQyMjI0efJktW3bVv379/d0aTXq1KlTGjVqlBYtWqSQkBBPl1NrJCYmKjEx0fq+V69e6tixo1599VU9+eSTHqzMM5xOp0JDQ/Xaa6/J29tb3bp107///W8999xzdT5M2fX6668rLi5OPXv29HQpHvXpp5/qmWee0V/+8hclJCTo4MGDeuCBB/Tkk09q5syZl3UMwpSbhISEyNvbW3l5eS7b8/LyFB4e7qGqPMtOnzz//POaM2eOPvnkE3Xp0sWdZdaYK+0PLy8vtW/fXpIUHx+vvXv3Ki0trc6Hqar2x6FDh3TkyBENGTLE2uZ0OiVJPj4+2r9/v9q1a+feot2sOv4eadCgga677jodPHjQHSXWqCvpj4iICDVo0EDe3t7Wto4dOyo3N1fnzp2Tr6+vW2t2Jzs/H8XFxVq2bJmeeOIJd5ZY466kT2bOnKlRo0bp7rvvliTFxcWpuLhY48eP16OPPiovr1+eEcWcKTfx9fVVt27dlJGRYW1zOp3KyMhw+Vfj1eRK+2Tu3Ll68skntXbtWnXv3r0mSq0R1fUz4nQ6VVpa6o4Sa1RV+6NDhw768ssvtWPHDuvr1ltv1Y033qgdO3YoKiqqJst3i+r4GSkvL9eXX36piIgId5VZY66kP3r37q2DBw9aQVuSvvrqK0VERNTpICXZ+/lYsWKFSktL9fvf/97dZdaoK+mTkpKSCoHpQvg2l/v64iuYKI/LtGzZMuPn52eWLFli9uzZY8aPH2+Cg4Otx5RHjRplpk2bZrUvLS0127dvN9u3bzcRERFm6tSpZvv27ebAgQOeuoRqV9U+mTNnjvH19TXvvvuuy+O8p06d8tQlVKuq9sczzzxjPv74Y3Po0CGzZ88e8/zzzxsfHx+zaNEiT11Ctapqf/xcfXyar6p98vjjj5uPPvrIHDp0yGRnZ5vhw4cbf39/s3v3bk9dQrWqan98++23pnHjxmbixIlm//79ZvXq1SY0NNQ89dRTnrqEanWl/5/p06ePSU1Nrelya0RV+2T27NmmcePG5u233zZff/21+fjjj027du3MHXfccdnnJEy52csvv2xatWplfH19Tc+ePc0XX3xh7evXr58ZPXq09f3hw4eNpApf/fr1q/nC3agqfdK6detK+2T27Nk1X7ibVKU/Hn30UdO+fXvj7+9vmjZtahITE82yZcs8ULX7VKU/fq4+hiljqtYnkyZNstqGhYWZQYMGmW3btnmgavep6s/Ipk2bTEJCgvHz8zNt27Y1Tz/9tDl//nwNV+0+Ve2Pffv2GUnm448/ruFKa05V+qSsrMw89thjpl27dsbf399ERUWZe++91/zwww+XfT6HMZc7hgUAAICfY84UAACADYQpAAAAGwhTAAAANhCmAAAAbCBMAQAA2ECYAgAAsIEwBQAAYANhCgDqgTFjxiglJcXTZQBXJcIUALcaM2aMHA6H9dW8eXMNHDhQO3fu9HRp1eKn13bhq0+fPm4735EjR+RwOLRjxw6X7X/+85+1ZMkSt50XwMURpgC43cCBA5WTk6OcnBxlZGTIx8dHv/3tbz1dVrVZvHixdX05OTlatWpVpe3KysrcVkNQUJCCg4PddnwAF0eYAuB2fn5+Cg8PV3h4uOLj4zVt2jQdPXpUx48f10033aSJEye6tD9+/Lh8fX2tN79HR0frySef1IgRIxQYGKiWLVtqwYIFLp958cUXFRcXp8DAQEVFRenee+/V6dOnrf3ffPONhgwZoqZNmyowMFDXXnut1qxZI0n64YcfNHLkSLVo0UIBAQGKiYnR4sWLL/v6goODresLDw9Xs2bNrBGk5cuXq1+/fvL399fSpUt14sQJjRgxQi1btlTDhg0VFxent99+2+V4TqdTc+fOVfv27eXn56dWrVrp6aefliS1adNGknTdddfJ4XCof//+kire5istLdX999+v0NBQ+fv7q0+fPtqyZYu1/9NPP5XD4VBGRoa6d++uhg0bqlevXtq/f/9lXzeAHxGmANSo06dP680331T79u3VvHlz3X333XrrrbdUWlpqtXnzzTfVsmVL3XTTTda25557Tl27dtX27ds1bdo0PfDAA1q3bp2138vLS/Pnz9fu3bv1t7/9TevXr9dDDz1k7Z8wYYJKS0v12Wef6csvv9Szzz6rRo0aSZJmzpypPXv26L//+7+1d+9eLVy4UCEhIdVyvRdq3bt3r5KTk3X27Fl169ZNH374oXbt2qXx48dr1KhR2rx5s/WZ6dOna86cOVZdb731lsLCwiTJavfJJ58oJydHK1eurPS8Dz30kN577z397W9/07Zt29S+fXslJyfr5MmTLu0effRRvfDCC9q6dat8fHz0n//5n9Vy3cBVpdpe0QwAlRg9erTx9vY2gYGBJjAw0EgyERERJjs72xhjzJkzZ0zTpk3N8uXLrc906dLFPPbYY9b3rVu3NgMHDnQ5bmpqqrnlllsuet4VK1aY5s2bW9/HxcW5HPOnhgwZYsaOHXtF1yfJ+Pv7W9cXGBho/vGPf5jDhw8bSWbevHm/eIzBgwebKVOmGGOMKSoqMn5+fmbRokWVtr1w3O3bt7tsHz16tBk6dKgxxpjTp0+bBg0amKVLl1r7z507ZyIjI83cuXONMcZs2LDBSDKffPKJ1ebDDz80ksyZM2eq0gXAVY+RKQBud+ONN2rHjh3asWOHNm/erOTkZN1yyy365ptv5O/vr1GjRumNN96QJG3btk27du3SmDFjXI6RmJhY4fu9e/da33/yyScaMGCAWrZsqcaNG2vUqFE6ceKESkpKJEn333+/nnrqKfXu3VuzZ892mQD/pz/9ScuWLVN8fLweeughbdq0qUrX99JLL1nXt2PHDv3mN7+x9nXv3t2lbXl5uZ588knFxcWpWbNmatSokT766CN9++23kqS9e/eqtLRUAwYMqFINP3Xo0CGVlZWpd+/e1rYGDRqoZ8+eLn0mSV26dLH+OyIiQpJ07NixKz43cDUiTAFwu8DAQLVv317t27dXjx499Ne//lXFxcVatGiRJOnuu+/WunXr9N1332nx4sW66aab1Lp168s+/pEjR/Tb3/5WXbp00Xvvvafs7GxrTtW5c+esc3z99dcaNWqUvvzyS3Xv3l0vv/yyJFnB7sEHH9T333+vAQMGaOrUqZd9/vDwcOv62rdvr8DAQJdr/6nnnntOf/7zn/Xwww9rw4YN2rFjh5KTk606AwICLvu81aFBgwbWfzscDkk/ztkCcPkIUwBqnMPhkJeXl86cOSNJiouLU/fu3bVo0SK99dZblc7b+eKLLyp837FjR0lSdna2nE6nXnjhBV1//fWKjY3V999/X+EYUVFR+uMf/6iVK1dqypQpVpiTpBYtWmj06NF68803NW/ePL322mvVecmWjRs3aujQofr973+vrl27qm3btvrqq6+s/TExMQoICLAm3/+cr6+vpB9HuC6mXbt28vX11caNG61tZWVl2rJlizp16lRNVwLgAh9PFwCg/istLVVubq6kH5+ce+WVV3T69GkNGTLEanP33Xdr4sSJCgwM1G233VbhGBs3btTcuXOVkpKidevWacWKFfrwww8lSe3bt1dZWZlefvllDRkyRBs3blR6errL5ydNmqRbbrlFsbGx+uGHH7RhwwYrjM2aNUvdunXTtddeq9LSUq1evdraV91iYmL07rvvatOmTWratKlefPFF5eXlWSHH399fDz/8sB566CH5+vqqd+/eOn78uHbv3q1x48YpNDRUAQEBWrt2rX71q1/J399fQUFBLucIDAzUn/70J/3Xf/2XmjVrplatWmnu3LkqKSnRuHHj3HJdwNWMkSkAbrd27VpFREQoIiJCCQkJ2rJli1asWGE91i9JI0aMkI+Pj0aMGCF/f/8Kx5gyZYq2bt2q6667Tk899ZRefPFFJScnS5K6du2qF198Uc8++6w6d+6spUuXKi0tzeXz5eXlmjBhgjp27KiBAwcqNjZWf/nLXyT9ONozffp0denSRTfccIO8vb21bNkyt/TFjBkz9Otf/1rJycnq37+/wsPDK6xcPnPmTE2ZMkWzZs1Sx44dlZqaas1j8vHx0fz58/Xqq68qMjJSQ4cOrfQ8c+bM0e23365Ro0bp17/+tQ4ePKiPPvpITZs2dct1AVczhzHGeLoIADhy5IjatWunLVu26Ne//rXLvujoaE2aNEmTJk3yTHEAcAnc5gPgUWVlZTpx4oRmzJih66+/vkKQAoDajtt8ADxq48aNioiI0JYtWyrMc/K0Z555Ro0aNar065ZbbvF0eQBqCW7zAcBFnDx5ssKK4RcEBASoZcuWNVwRgNqIMAUAAGADt/kAAABsIEwBAADYQJgCAACwgTAFAABgA2EKAADABsIUAACADYQpAAAAGwhTAAAANvx/SFJcLmWoc+IAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_46.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHdklEQVR4nO3de3hNZ/738c9OIgchiWMSaYhTUOIwNJmgpZVplFFqZmhqFA/VTvl1Otppaatpp4co2hp+ip6YpwdUmalp9aDBuEoaGhRxGJRWNQmh2UEiyL6fPzxWuysOm6zsHN6v69pXutf67r2+675S+5N7rb2WwxhjBAAAgHLn4+0GAAAAqiuCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWgBrvqaeeksPhuKJah8Ohp556ytZ+evfurd69e1fa9wNw5QhaACqNBQsWyOFwWA8/Pz9FRUVp5MiROnTokLfbq3RiYmLcxqtx48a68cYb9c9//rNc3r+oqEhPPfWU1qxZUy7vB9REBC0Alc7f/vY3vfXWW5o7d65uu+02vf322+rVq5dOnTply/aeeOIJFRcX2/LeduvcubPeeustvfXWW3r44Yf1ww8/aPDgwZo7d+41v3dRUZGefvppghZwDfy83QAA/NJtt92mbt26SZLGjBmjhg0b6oUXXtDy5cs1ZMiQct+en5+f/Pyq5j+HUVFR+uMf/2g9v/vuu9WqVSu9/PLLuu+++7zYGQCJGS0AVcCNN94oSdq3b5/b8l27dun3v/+96tevr8DAQHXr1k3Lly93qzlz5oyefvpptW7dWoGBgWrQoIF69uyplStXWjVlnaNVUlKiv/zlL2rUqJHq1q2r22+/Xd9///0FvY0cOVIxMTEXLC/rPefPn69bbrlFjRs3VkBAgK6//nrNmTPHo7G4nIiICLVr10779++/ZN3hw4c1evRohYeHKzAwUJ06ddI//vEPa/2BAwfUqFEjSdLTTz9tHZ60+/w0oLqpmn/CAahRDhw4IEmqV6+etSw7O1s9evRQVFSUJk6cqODgYL333nsaNGiQli5dqjvuuEPSucCTlpamMWPGKD4+XoWFhfrqq6+0adMm/eY3v7noNseMGaO3335bd911l7p3765Vq1apf//+17Qfc+bMUfv27XX77bfLz89P//73v3X//ffL5XJp3Lhx1/Te5505c0YHDx5UgwYNLlpTXFys3r17a+/evRo/fryaN2+uJUuWaOTIkSooKNCf//xnNWrUSHPmzNGf/vQn3XHHHRo8eLAkqWPHjuXSJ1BjGACoJObPn28kmc8//9wcOXLEHDx40Lz//vumUaNGJiAgwBw8eNCq7dOnj4mLizOnTp2ylrlcLtO9e3fTunVra1mnTp1M//79L7nd1NRU8/N/Drds2WIkmfvvv9+t7q677jKSTGpqqrVsxIgRplmzZpd9T2OMKSoquqAuOTnZtGjRwm1Zr169TK9evS7ZszHGNGvWzNx6663myJEj5siRI+brr782d955p5Fk/ud//uei7zdjxgwjybz99tvWstOnT5vExERTp04dU1hYaIwx5siRIxfsLwDPcOgQQKWTlJSkRo0aKTo6Wr///e8VHBys5cuX67rrrpMkHTt2TKtWrdKQIUN0/Phx5efnKz8/X0ePHlVycrL27NljfUsxLCxM2dnZ2rNnzxVvf8WKFZKkBx54wG35gw8+eE37FRQUZP230+lUfn6+evXqpW+++UZOp/Oq3vOzzz5To0aN1KhRI3Xq1ElLlizR8OHD9cILL1z0NStWrFBERIRSUlKsZbVq1dIDDzygEydO6D//+c9V9QLgQhw6BFDpzJ49W7GxsXI6nXrzzTe1du1aBQQEWOv37t0rY4wmT56syZMnl/kehw8fVlRUlP72t79p4MCBio2NVYcOHdS3b18NHz78kofAvv32W/n4+Khly5Zuy9u0aXNN+7Vu3TqlpqYqIyNDRUVFbuucTqdCQ0M9fs+EhAQ9++yzcjgcql27ttq1a6ewsLBLvubbb79V69at5ePj/rd2u3btrPUAygdBC0ClEx8fb33rcNCgQerZs6fuuusu7d69W3Xq1JHL5ZIkPfzww0pOTi7zPVq1aiVJuummm7Rv3z598MEH+uyzz/T666/r5Zdf1ty5czVmzJhr7vViFzotLS11e75v3z716dNHbdu21UsvvaTo6Gj5+/trxYoVevnll6198lTDhg2VlJR0Va8FYD+CFoBKzdfXV2lpabr55pv1v//7v5o4caJatGgh6dzhrisJGfXr19eoUaM0atQonThxQjfddJOeeuqpiwatZs2ayeVyad++fW6zWLt3776gtl69eiooKLhg+S9nhf7973+rpKREy5cvV9OmTa3lq1evvmz/5a1Zs2baunWrXC6X26zWrl27rPXSxUMkgCvHOVoAKr3evXsrPj5eM2bM0KlTp9S4cWP17t1b8+bNU05OzgX1R44csf776NGjbuvq1KmjVq1aqaSk5KLbu+222yRJM2fOdFs+Y8aMC2pbtmwpp9OprVu3WstycnIuuDq7r6+vJMkYYy1zOp2aP3/+RfuwS79+/ZSbm6vFixdby86ePatZs2apTp066tWrlySpdu3aklRmkARwZZjRAlAl/PWvf9Uf/vAHLViwQPfdd59mz56tnj17Ki4uTvfcc49atGihvLw8ZWRk6Pvvv9fXX38tSbr++uvVu3dvde3aVfXr19dXX32l999/X+PHj7/otjp37qyUlBS98sorcjqd6t69u9LT07V3794Lau+88049+uijuuOOO/TAAw+oqKhIc+bMUWxsrDZt2mTV3XrrrfL399eAAQN077336sSJE3rttdfUuHHjMsOincaOHat58+Zp5MiRysrKUkxMjN5//32tW7dOM2bMUN26dSWdO3n/+uuv1+LFixUbG6v69eurQ4cO6tChQ4X2C1Rp3v7aIwCcd/7yDhs3brxgXWlpqWnZsqVp2bKlOXv2rDHGmH379pm7777bREREmFq1apmoqCjz29/+1rz//vvW65599lkTHx9vwsLCTFBQkGnbtq157rnnzOnTp62asi7FUFxcbB544AHToEEDExwcbAYMGGAOHjxY5uUOPvvsM9OhQwfj7+9v2rRpY95+++0y33P58uWmY8eOJjAw0MTExJgXXnjBvPnmm0aS2b9/v1XnyeUdLnfpiou9X15enhk1apRp2LCh8ff3N3FxcWb+/PkXvHb9+vWma9euxt/fn0s9AFfBYczP5rEBAABQbjhHCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbcMFSL3K5XPrhhx9Ut25dbnUBAEAVYYzR8ePH1aRJkwtuzv5LBC0v+uGHHxQdHe3tNgAAwFU4ePCgrrvuukvWELS86PxtLg4ePKiQkBAvdwMAAK5EYWGhoqOjrc/xSyFoedH5w4UhISEELQAAqpgrOe2Hk+EBAABsQtACAACwCUELAADAJpyjVQWUlpbqzJkz3m6jyqhVq5Z8fX293QYAAAStyswYo9zcXBUUFHi7lSonLCxMERERXJ8MAOBVBK1K7HzIaty4sWrXrk1ouALGGBUVFenw4cOSpMjISC93BACoyQhalVRpaakVsho0aODtdqqUoKAgSdLhw4fVuHFjDiMCALyGk+ErqfPnZNWuXdvLnVRN58eNc9sAAN5E0KrkOFx4dRg3AEBlQNACAACwCUELAADAJgQt2CI3N1f/8z//oxYtWiggIEDR0dEaMGCA0tPTrZr169erX79+qlevngIDAxUXF6eXXnpJpaWlVs2BAwc0evRoNW/eXEFBQWrZsqVSU1N1+vRpb+wWAKAKyXEWa/2+fOU4i73WA986RLk7cOCAevToobCwME2bNk1xcXE6c+aMPv30U40bN067du3SP//5Tw0ZMkSjRo3S6tWrFRYWps8//1yPPPKIMjIy9N5778nhcGjXrl1yuVyaN2+eWrVqpe3bt+uee+7RyZMnNX36dG/vKgCgklq88TtNWrZNLiP5OKS0wXEaekPTCu/DYYwxFb5VSJIKCwsVGhoqp9OpkJAQt3WnTp3S/v371bx5cwUGBnqpw6vTr18/bd26Vbt371ZwcLDbuoKCAtWqVUvNmjVTr169tHTpUrf1//73v3X77bdr0aJFGjp0aJnvP23aNM2ZM0fffPPNRXuoyuMHALg2Oc5i9ZiySq6fJRxfh0NfTLxZkaFB1/z+l/r8/iUOHdYQFTV9euzYMX3yyScaN27cBSFLOnfF9s8++0xHjx7Vww8/fMH6AQMGKDY2VgsXLrzoNpxOp+rXr1+ufQMAqo/9+SfdQpYklRqjA/lFFd4Lhw5rgIqcPt27d6+MMWrbtu1Fa/773/9Kktq1a1fm+rZt21o1Zb3/rFmzOGwIALio5g2D5ePQBTNaMQ0r/tqUzGhVcznOYitkSed+6R5btt22mS1PjkR7etT60KFD6tu3r/7whz/onnvu8bQ1AEANERkapLTBcfL9/9dU9HU49PzgDuVy2NBTzGhVc5eaPrXjF65169bWSewXExsbK0nauXOnunfvfsH6nTt36vrrr3db9sMPP+jmm29W9+7d9eqrr5Zv0wCAamfoDU11U2wjHcgvUkzD2l4JWRIzWtXe+enTn7Nz+rR+/fpKTk7W7NmzdfLkyQvWFxQU6NZbb1X9+vX14osvXrB++fLl2rNnj1JSUqxlhw4dUu/evdW1a1fNnz9fPj782gIALi8yNEiJLRt4LWRJBK1qzxvTp7Nnz1Zpaani4+O1dOlS7dmzRzt37tTMmTOVmJio4OBgzZs3Tx988IHGjh2rrVu36sCBA3rjjTc0cuRI/f73v9eQIUMk/RSymjZtqunTp+vIkSPKzc1Vbm6ubf0DAFBeOHRYA1T09GmLFi20adMmPffcc3rooYeUk5OjRo0aqWvXrpozZ44k6fe//71Wr16t5557TjfeeKNOnTql1q1b6/HHH9eDDz5o3atw5cqV2rt3r/bu3avrrrvObTtcmQQAUNlxHS0vqq7X0aoMGD8AgF24jhYAAEAlQNACAACwCUELAADAJgQtAAAAmxC0Kjm+q3B1GDcAQGVA0KqkatWqJUkqKqr4G2BWB+fH7fw4AgDgDVxHq5Ly9fVVWFiYDh8+LEmqXbu2dW0pXJwxRkVFRTp8+LDCwsLk6+vr7ZYAADUYQasSi4iIkCQrbOHKhYWFWeMHAIC3ELQqMYfDocjISDVu3FhnzpzxdjtVRq1atZjJAgBUCgStKsDX15fgAABAFcTJ8AAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATSpF0Jo9e7ZiYmIUGBiohIQEbdiw4ZL1S5YsUdu2bRUYGKi4uDitWLHCbb0xRk8++aQiIyMVFBSkpKQk7dmzx63m2LFjGjZsmEJCQhQWFqbRo0frxIkT1vo1a9Zo4MCBioyMVHBwsDp37qx33nnH414AAEDN5fWgtXjxYk2YMEGpqanatGmTOnXqpOTkZB0+fLjM+vXr1yslJUWjR4/W5s2bNWjQIA0aNEjbt2+3aqZOnaqZM2dq7ty5yszMVHBwsJKTk3Xq1CmrZtiwYcrOztbKlSv14Ycfau3atRo7dqzbdjp27KilS5dq69atGjVqlO6++259+OGHHvUCAABqMONl8fHxZty4cdbz0tJS06RJE5OWllZm/ZAhQ0z//v3dliUkJJh7773XGGOMy+UyERERZtq0adb6goICExAQYBYuXGiMMWbHjh1Gktm4caNV8/HHHxuHw2EOHTp00V779etnRo0adcW9XI7T6TSSjNPpvKJ6AADgfZ58fnt1Ruv06dPKyspSUlKStczHx0dJSUnKyMgo8zUZGRlu9ZKUnJxs1e/fv1+5ubluNaGhoUpISLBqMjIyFBYWpm7dulk1SUlJ8vHxUWZm5kX7dTqdql+//hX38kslJSUqLCx0ewAAgOrLq0ErPz9fpaWlCg8Pd1seHh6u3NzcMl+Tm5t7yfrzPy9X07hxY7f1fn5+ql+//kW3+95772njxo0aNWrUFffyS2lpaQoNDbUe0dHRZdYBAIDqwevnaFUFq1ev1qhRo/Taa6+pffv2V/0+kyZNktPptB4HDx4sxy4BAEBl49Wg1bBhQ/n6+iovL89teV5eniIiIsp8TURExCXrz/+8XM0vT7Y/e/asjh07dsF2//Of/2jAgAF6+eWXdffdd3vUyy8FBAQoJCTE7QEAAKovrwYtf39/de3aVenp6dYyl8ul9PR0JSYmlvmaxMREt3pJWrlypVXfvHlzRUREuNUUFhYqMzPTqklMTFRBQYGysrKsmlWrVsnlcikhIcFatmbNGvXv318vvPCC2zcSr7QXAABQw1XAyfmXtGjRIhMQEGAWLFhgduzYYcaOHWvCwsJMbm6uMcaY4cOHm4kTJ1r169atM35+fmb69Olm586dJjU11dSqVcts27bNqpkyZYoJCwszH3zwgdm6dasZOHCgad68uSkuLrZq+vbta7p06WIyMzPNF198YVq3bm1SUlKs9atWrTK1a9c2kyZNMjk5Odbj6NGjHvVyKXzrEACAqseTz2+vBy1jjJk1a5Zp2rSp8ff3N/Hx8ebLL7+01vXq1cuMGDHCrf69994zsbGxxt/f37Rv39589NFHbutdLpeZPHmyCQ8PNwEBAaZPnz5m9+7dbjVHjx41KSkppk6dOiYkJMSMGjXKHD9+3Fo/YsQII+mCR69evTzq5VIIWgAAVD2efH47jDHGa9NpNVxhYaFCQ0PldDo5XwsAgCrCk89vvnUIAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE68HrdmzZysmJkaBgYFKSEjQhg0bLlm/ZMkStW3bVoGBgYqLi9OKFSvc1htj9OSTTyoyMlJBQUFKSkrSnj173GqOHTumYcOGKSQkRGFhYRo9erROnDhhrT916pRGjhypuLg4+fn5adCgQRf0sWbNGjkcjgseubm5Vz8YAACgWvFq0Fq8eLEmTJig1NRUbdq0SZ06dVJycrIOHz5cZv369euVkpKi0aNHa/PmzRo0aJAGDRqk7du3WzVTp07VzJkzNXfuXGVmZio4OFjJyck6deqUVTNs2DBlZ2dr5cqV+vDDD7V27VqNHTvWWl9aWqqgoCA98MADSkpKuuQ+7N69Wzk5OdajcePG1zgqAACg2jBeFB8fb8aNG2c9Ly0tNU2aNDFpaWll1g8ZMsT079/fbVlCQoK59957jTHGuFwuExERYaZNm2atLygoMAEBAWbhwoXGGGN27NhhJJmNGzdaNR9//LFxOBzm0KFDF2xzxIgRZuDAgRcsX716tZFkfvzxxyve319yOp1GknE6nVf9HgAAoGJ58vnttRmt06dPKysry23GyMfHR0lJScrIyCjzNRkZGRfMMCUnJ1v1+/fvV25urltNaGioEhISrJqMjAyFhYWpW7duVk1SUpJ8fHyUmZnp8X507txZkZGR+s1vfqN169ZdsrakpESFhYVuDwAAUH15LWjl5+ertLRU4eHhbsvDw8Mvep5Tbm7uJevP/7xczS8P7/n5+al+/foenV8VGRmpuXPnaunSpVq6dKmio6PVu3dvbdq06aKvSUtLU2hoqPWIjo6+4u0BAICqx8/bDVRVbdq0UZs2bazn3bt31759+/Tyyy/rrbfeKvM1kyZN0oQJE6znhYWFhC0AAKoxr81oNWzYUL6+vsrLy3NbnpeXp4iIiDJfExERccn68z8vV/PLk+3Pnj2rY8eOXXS7Vyo+Pl579+696PqAgACFhIS4PQAAQPXltaDl7++vrl27Kj093VrmcrmUnp6uxMTEMl+TmJjoVi9JK1eutOqbN2+uiIgIt5rCwkJlZmZaNYmJiSooKFBWVpZVs2rVKrlcLiUkJFzTPm3ZskWRkZHX9B4AAKD68OqhwwkTJmjEiBHq1q2b4uPjNWPGDJ08eVKjRo2SJN19992KiopSWlqaJOnPf/6zevXqpRdffFH9+/fXokWL9NVXX+nVV1+VJDkcDj344IN69tln1bp1azVv3lyTJ09WkyZNrGthtWvXTn379tU999yjuXPn6syZMxo/frzuvPNONWnSxOptx44dOn36tI4dO6bjx49ry5Ytks6d/C5JM2bMUPPmzdW+fXudOnVKr7/+ulatWqXPPvusYgYPAABUel4NWkOHDtWRI0f05JNPKjc3V507d9Ynn3xincz+3Xffycfnp0m37t27691339UTTzyhxx57TK1bt9a//vUvdejQwap55JFHdPLkSY0dO1YFBQXq2bOnPvnkEwUGBlo177zzjsaPH68+ffrIx8dHv/vd7zRz5ky33vr166dvv/3Wet6lSxdJ5y6IKp371uRDDz2kQ4cOqXbt2urYsaM+//xz3XzzzeU/UAAAoEpymPPJARWusLBQoaGhcjqdnK8FAEAV4cnnt9dvwQMAAFBdEbQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAAJVajrNY6/flK8dZ7O1WPObn7QYAAAAuZvHG7zRp2Ta5jOTjkNIGx2noDU293dYV82hG68yZM3rkkUfUqlUrxcfH680333Rbn5eXJ19f33JtEAAA1Ew5zmIrZEmSy0iPLdtepWa2PApazz33nP7v//2/uu+++3TrrbdqwoQJuvfee91qjDHl2iAAAKiZ9ueftELWeaXG6EB+kXcaugoeHTp855139Prrr+u3v/2tJGnkyJG67bbbNGrUKGt2y+FwlH+XAACgxmneMFg+DrmFLV+HQzENa3uvKQ95NKN16NAhdejQwXreqlUrrVmzRuvXr9fw4cNVWlpa7g0CAICaKTI0SGmD4+T7/ydxfB0OPT+4gyJDg7zc2ZXzaEYrIiJC+/btU0xMjLUsKipKq1ev1s0336yRI0eWc3sAAKAmG3pDU90U20gH8osU07B2lQpZkoczWrfccovefffdC5Y3adJEq1at0v79+8utMQAAAOnczFZiywZVLmRJHs5oTZ48Wbt27SpzXVRUlP7zn/9o5cqV5dIYAABAVecwfE3QawoLCxUaGiqn06mQkBBvtwMAAK6AJ5/fV3Vl+CVLlmjw4MHq0KGDOnTooMGDB+v999+/qmYBAED1UpWv5F7ePDp06HK5lJKSoiVLlig2NlZt27aVJGVnZ2vo0KH6wx/+oIULF3KJBwAAaqiqfiX38ubRjNbf//53ff7551q+fLl27dqlf/3rX/rXv/6l3bt365///KdWrlypv//973b1CgAAKrHqcCX38uZR0Jo/f76mTZtmXbD0526//XZNnTr1gtvyAACAmqE6XMm9vHkUtPbs2aOkpKSLrk9KStKePXuuuSkAAFD1nL+S+89VtSu5lzePglZQUJAKCgouur6wsFCBgYHX2hMAAKiCqsOV3MubRyfDJyYmas6cOZozZ06Z62fPnq3ExMRyaQwAAFQ9Vf1K7uXNo6D1+OOPq3fv3jp69KgefvhhtW3bVsYY7dy5Uy+++KI++OADrV692q5eAQBAFRAZGlTjA9Z5HgWt7t27a/HixRo7dqyWLl3qtq5evXpauHChevToUa4NAgAAVFVXdWX4oqIiffrpp9aJ77Gxsbr11ltVu3bNPdntanBleAAAqh5PPr89mtFatWqVxo8fry+//FJ33HGH2zqn06n27dtr7ty5uvHGGz3vGgAAoJrx6FuHM2bM0D333FNmegsNDdW9996rl156qdyaAwAAqMo8Clpff/21+vbte9H1t956q7Kysq65KQAAUHVxr8OfeHToMC8vT7Vq1br4m/n56ciRI9fcFAAAqJq416E7j2a0oqKitH379ouu37p1qyIjI6+5KQAAUPVwr8MLeRS0+vXrp8mTJ+vUqVMXrCsuLlZqamqZ90EEAADVH/c6vJBHhw6feOIJLVu2TLGxsRo/frzatGkjSdq1a5dmz56t0tJSPf7447Y0CgAAKrfz9zr8ediq6fc69ChohYeHa/369frTn/6kSZMm6fwluBwOh5KTkzV79myFh4fb0igAAKjczt/r8LFl21VqDPc61FVesFSSfvzxR+3du1fGGLVu3Vr16tUr796qPS5YCgCojnKcxdX6Xoe2XbD05+rVq6cbbrjhal8OAACqKe51+BOPToYHAADAlSNoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA28XrQmj17tmJiYhQYGKiEhARt2LDhkvVLlixR27ZtFRgYqLi4OK1YscJtvTFGTz75pCIjIxUUFKSkpCTt2bPHrebYsWMaNmyYQkJCFBYWptGjR+vEiRPW+lOnTmnkyJGKi4uTn5+fBg0aVGYva9as0a9+9SsFBASoVatWWrBgwVWNAQAAqJ68GrQWL16sCRMmKDU1VZs2bVKnTp2UnJysw4cPl1m/fv16paSkaPTo0dq8ebMGDRqkQYMGafv27VbN1KlTNXPmTM2dO1eZmZkKDg5WcnKyTp06ZdUMGzZM2dnZWrlypT788EOtXbtWY8eOtdaXlpYqKChIDzzwgJKSksrsZf/+/erfv79uvvlmbdmyRQ8++KDGjBmjTz/9tJxGBwAAVHnGi+Lj4824ceOs56WlpaZJkyYmLS2tzPohQ4aY/v37uy1LSEgw9957rzHGGJfLZSIiIsy0adOs9QUFBSYgIMAsXLjQGGPMjh07jCSzceNGq+bjjz82DofDHDp06IJtjhgxwgwcOPCC5Y888ohp376927KhQ4ea5OTky+z1T5xOp5FknE7nFb8GAAB4lyef316b0Tp9+rSysrLcZox8fHyUlJSkjIyMMl+TkZFxwQxTcnKyVb9//37l5ua61YSGhiohIcGqycjIUFhYmLp162bVJCUlycfHR5mZmVfc/+V6KUtJSYkKCwvdHgAAoPryWtDKz89XaWmpwsPD3ZaHh4crNze3zNfk5uZesv78z8vVNG7c2G29n5+f6tevf9HtetJLYWGhiouLy3xNWlqaQkNDrUd0dPQVbw8AAFQ9Xj8ZviaZNGmSnE6n9Th48KC3WwIAADbyWtBq2LChfH19lZeX57Y8Ly9PERERZb4mIiLikvXnf16u5pcn2589e1bHjh276HY96SUkJERBQUFlviYgIEAhISFuDwAAUH15LWj5+/ura9euSk9Pt5a5XC6lp6crMTGxzNckJia61UvSypUrrfrmzZsrIiLCraawsFCZmZlWTWJiogoKCpSVlWXVrFq1Si6XSwkJCVfc/+V6AQAA8Oq3DhctWmQCAgLMggULzI4dO8zYsWNNWFiYyc3NNcYYM3z4cDNx4kSrft26dcbPz89Mnz7d7Ny506SmpppatWqZbdu2WTVTpkwxYWFh5oMPPjBbt241AwcONM2bNzfFxcVWTd++fU2XLl1MZmam+eKLL0zr1q1NSkqKW2/Z2dlm8+bNZsCAAaZ3795m8+bNZvPmzdb6b775xtSuXdv89a9/NTt37jSzZ882vr6+5pNPPrni/edbhwAAVD2efH57NWgZY8ysWbNM06ZNjb+/v4mPjzdffvmlta5Xr15mxIgRbvXvvfeeiY2NNf7+/qZ9+/bmo48+clvvcrnM5MmTTXh4uAkICDB9+vQxu3fvdqs5evSoSUlJMXXq1DEhISFm1KhR5vjx4241zZo1M5IuePzc6tWrTefOnY2/v79p0aKFmT9/vkf7TtACAKDq8eTz22GMMV6bTqvhCgsLFRoaKqfTyflaAABUEZ58fvOtQwAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUGrmspxFmv9vnzlOIu93QoAADWWn7cbQPlbvPE7TVq2TS4j+TiktMFxGnpDU2+3BQBAjcOMVjWT4yy2QpYkuYz02LLtzGwBAOAFBK1qZn/+SStknVdqjA7kF3mnIQAAajCCVjXTvGGwfBzuy3wdDsU0rO2dhgAAqMEIWtVMZGiQ0gbHyddxLm35Ohx6fnAHRYYGebkzAABqHk6Gr4aG3tBUN8U20oH8IsU0rE3IAgDASwha1VRkaBABCwAAL+PQIQAAgE0IWgAAADYhaAEAANiEoAUAAGATghaAa1Le99XkPp0AqhO+dQjgqpX3fTW5TyeA6oYZLQBXpbzvq8l9OgFURwQtAFelvO+ryX06AVRHBC0AV6W876vJfToBVEcELQBXpbzvq8l9OgFURw5jjLl8GexQWFio0NBQOZ1OhYSEeLsd4KrkOIvL9b6a5f1+AFDePPn85luHAK5Jed9Xk/t0AqhOOHQIAABgE4IWAACATQhaAAAANiFoAZDErW8AwA6cDA+AW98AgE2Y0QJqOG59UzUxAwlUDcxoATXcpW59w2UWKidmIIGqgxktoIbj1jdVCzOQQNVC0AJqOG59U7Vw822gauHQIQANvaGpboptxK1vqoDzM5A/D1vMQAKVFzNaACSdm9lKbNmAkFXJMQMJVC3MaAFAFcMMJFB1ELQAoAri5ttA1cChQwAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJpUiaM2ePVsxMTEKDAxUQkKCNmzYcMn6JUuWqG3btgoMDFRcXJxWrFjhtt4YoyeffFKRkZEKCgpSUlKS9uzZ41Zz7NgxDRs2TCEhIQoLC9Po0aN14sQJt5qtW7fqxhtvVGBgoKKjozV16lS39QsWLJDD4XB7BAYGXsNIVF45zmKt35evHGext1sBAKDK8HrQWrx4sSZMmKDU1FRt2rRJnTp1UnJysg4fPlxm/fr165WSkqLRo0dr8+bNGjRokAYNGqTt27dbNVOnTtXMmTM1d+5cZWZmKjg4WMnJyTp16pRVM2zYMGVnZ2vlypX68MMPtXbtWo0dO9ZaX1hYqFtvvVXNmjVTVlaWpk2bpqeeekqvvvqqWz8hISHKycmxHt9++205j5D3Ld74nXpMWaW7XstUjymrtHjjd95uCQCAqsF4WXx8vBk3bpz1vLS01DRp0sSkpaWVWT9kyBDTv39/t2UJCQnm3nvvNcYY43K5TEREhJk2bZq1vqCgwAQEBJiFCxcaY4zZsWOHkWQ2btxo1Xz88cfG4XCYQ4cOGWOMeeWVV0y9evVMSUmJVfPoo4+aNm3aWM/nz59vQkNDr3LPjXE6nUaScTqdV/0edvuhoMg0n/ihafboT48WEz8yPxQUebs1AAC8wpPPb6/OaJ0+fVpZWVlKSkqylvn4+CgpKUkZGRllviYjI8OtXpKSk5Ot+v379ys3N9etJjQ0VAkJCVZNRkaGwsLC1K1bN6smKSlJPj4+yszMtGpuuukm+fv7u21n9+7d+vHHH61lJ06cULNmzRQdHa2BAwcqOzv7ovtbUlKiwsJCt0dltz//pFzGfVmpMTqQX+SdhgAAqEK8GrTy8/NVWlqq8PBwt+Xh4eHKzc0t8zW5ubmXrD//83I1jRs3dlvv5+en+vXru9WU9R4/30abNm305ptv6oMPPtDbb78tl8ul7t276/vvvy+z97S0NIWGhlqP6OjoMusqk+YNg+XjcF/m63AopmFt7zQEAEAV4vVztKqyxMRE3X333ercubN69eqlZcuWqVGjRpo3b16Z9ZMmTZLT6bQeBw8erOCOPRcZGqS0wXHydZxLW74Oh54f3EGRoUFe7gwAgMrPz5sbb9iwoXx9fZWXl+e2PC8vTxEREWW+JiIi4pL153/m5eUpMjLSraZz585WzS9Ptj979qyOHTvm9j5lbefn2/ilWrVqqUuXLtq7d2+Z6wMCAhQQEFDmusps6A1NdVNsIx3IL1JMw9qELAAArpBXZ7T8/f3VtWtXpaenW8tcLpfS09OVmJhY5msSExPd6iVp5cqVVn3z5s0VERHhVlNYWKjMzEyrJjExUQUFBcrKyrJqVq1aJZfLpYSEBKtm7dq1OnPmjNt22rRpo3r16pXZW2lpqbZt2+YW8KqLyNAgJbZsQMgCAMATFXBy/iUtWrTIBAQEmAULFpgdO3aYsWPHmrCwMJObm2uMMWb48OFm4sSJVv26deuMn5+fmT59utm5c6dJTU01tWrVMtu2bbNqpkyZYsLCwswHH3xgtm7dagYOHGiaN29uiouLrZq+ffuaLl26mMzMTPPFF1+Y1q1bm5SUFGt9QUGBCQ8PN8OHDzfbt283ixYtMrVr1zbz5s2zap5++mnz6aefmn379pmsrCxz5513msDAQJOdnX1F+14VvnUIAADcefL57fWgZYwxs2bNMk2bNjX+/v4mPj7efPnll9a6Xr16mREjRrjVv/feeyY2Ntb4+/ub9u3bm48++shtvcvlMpMnTzbh4eEmICDA9OnTx+zevdut5ujRoyYlJcXUqVPHhISEmFGjRpnjx4+71Xz99demZ8+eJiAgwERFRZkpU6a4rX/wwQetvsPDw02/fv3Mpk2brni/CVoAAFQ9nnx+O4wx5tJzXrBLYWGhQkND5XQ6FRIS4u12AADAFfDk85tvHQIAANiEoAUAAGATghYAAIBNCFoAaqwcZ7HW78tXjrPY260AqKa8esFSAPCWxRu/06Rl2+Qyko9DShscp6E3NPV2WwCqGWa0ANQ4Oc5iK2RJkstIjy3bzswWgHJH0EK1wCEgeGJ//kkrZJ1XaowO5Bd5pyEA1RaHDlHlcQgInmreMFg+DrmFLV+HQzENa3uvKQDVEjNaqNI4BISrERkapLTBcfJ1OCSdC1nPD+7AvTwBlDtmtFClXeoQEB+auJShNzTVTbGNdCC/SDENa/P7AsAWBC1UaRwCwrWIDA0iYAGwFYcOUaVxCAgAUJkxo4Uqj0NAAIDKiqCFaoFDQACAyohDhwAAADYhaAEAANiEoAUAAGATghYAoNLgdlqobjgZHgBQKXA7LVRHzGihWuCvYKBq43ZaqK6Y0UKVx1/BQNXH7bRQXTGjhSqNv4KB6uH87bR+jttpoTogaKFKu9RfwQCqDm6nheqKQ4eo0ripNFB9cDstVEfMaKFK469goHqJDA1SYssG/D+MaoMZLVR5/BUMAKisCFqoFripNACgMuLQIQAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBlViOs1jr9+Vz70YAqKK4jhZQSS3e+J11w2wfh5Q2OE5Db2jq7baASifHWaz9+SfVvGEw19NDpUPQAiqhHGexFbKkc/dyfGzZdt0U24gPEuBn+IMElR2HDoFKaH/+SbcbZUtSqTE6kF/knYaASuhif5BwqB2VCUELqISaNwyWj8N9ma/DoZiGtb3TEFAJ2fUHCedGojwRtIBKKDI0SGmD4+TrOJe2fB0OPT+4A4cNgZ+x4w+SxRu/U48pq3TXa5nqMWWVFm/87hq7RE3nMMaYy5fBDoWFhQoNDZXT6VRISIi320EllOMs1oH8IsU0rE3IAsqweON3emzZdpUaY/1BcrXnaOU4i9Vjyiq3WTJfh0NfTLyZ///gxpPPb06GByqxyNAg/oEHLmHoDU11U2yjcvmD5FKHIvn/EFeLoAUAqNLK6w+S84cifzmjxbmRuBacowUAgDg3EvZgRgsAgP+vPA9FAhJBCwAAN5wbifLEoUMAAACbELQAAABsQtACAFQorryOmoRztAAAFYabQKOmYUYLAFAhuAk0aiKCFgCgQth1E2igMiNoAQAqhB03gQYqO4IWAKBCcOV11EScDA8AqDBceR01DUELAFChuPI6ahIOHQKwBddKAgBmtADYgGslAcA5zGgBuCxPZqe4VhIA/IQZLQCX5Ons1KWulcR5OQBqGma0AFzU1cxOca0kAPgJQQvARV3Nlby5VhIA/KRSBK3Zs2crJiZGgYGBSkhI0IYNGy5Zv2TJErVt21aBgYGKi4vTihUr3NYbY/Tkk08qMjJSQUFBSkpK0p49e9xqjh07pmHDhikkJERhYWEaPXq0Tpw44VazdetW3XjjjQoMDFR0dLSmTp3qcS9AVXa1s1NDb2iqLyberIX3/FpfTLyZE+EB1FheD1qLFy/WhAkTlJqaqk2bNqlTp05KTk7W4cOHy6xfv369UlJSNHr0aG3evFmDBg3SoEGDtH37dqtm6tSpmjlzpubOnavMzEwFBwcrOTlZp06dsmqGDRum7OxsrVy5Uh9++KHWrl2rsWPHWusLCwt16623qlmzZsrKytK0adP01FNP6dVXX/WoF6Aqu5bZqcjQICW2bMBMFoCazXhZfHy8GTdunPW8tLTUNGnSxKSlpZVZP2TIENO/f3+3ZQkJCebee+81xhjjcrlMRESEmTZtmrW+oKDABAQEmIULFxpjjNmxY4eRZDZu3GjVfPzxx8bhcJhDhw4ZY4x55ZVXTL169UxJSYlV8+ijj5o2bdpccS+X43Q6jSTjdDqvqB7wlh8Kisz6vfnmh4Iib7cCAF7nyee3V2e0Tp8+raysLCUlJVnLfHx8lJSUpIyMjDJfk5GR4VYvScnJyVb9/v37lZub61YTGhqqhIQEqyYjI0NhYWHq1q2bVZOUlCQfHx9lZmZaNTfddJP8/f3dtrN79279+OOPV9TLL5WUlKiwsNDtAVQFzE4BwNXxatDKz89XaWmpwsPD3ZaHh4crNze3zNfk5uZesv78z8vVNG7c2G29n5+f6tev71ZT1nv8fBuX6+WX0tLSFBoaaj2io6PLrAMAANWD18/RqkkmTZokp9NpPQ4ePOjtlgAAgI28GrQaNmwoX19f5eXluS3Py8tTREREma+JiIi4ZP35n5er+eXJ9mfPntWxY8fcasp6j59v43K9/FJAQIBCQkLcHgAAoPryatDy9/dX165dlZ6ebi1zuVxKT09XYmJima9JTEx0q5eklStXWvXNmzdXRESEW01hYaEyMzOtmsTERBUUFCgrK8uqWbVqlVwulxISEqyatWvX6syZM27badOmjerVq3dFvQAAgBquAk7Ov6RFixaZgIAAs2DBArNjxw4zduxYExYWZnJzc40xxgwfPtxMnDjRql+3bp3x8/Mz06dPNzt37jSpqammVq1aZtu2bVbNlClTTFhYmPnggw/M1q1bzcCBA03z5s1NcXGxVdO3b1/TpUsXk5mZab744gvTunVrk5KSYq0vKCgw4eHhZvjw4Wb79u1m0aJFpnbt2mbevHke9XIpfOsQAICqx5PPb68HLWOMmTVrlmnatKnx9/c38fHx5ssvv7TW9erVy4wYMcKt/r333jOxsbHG39/ftG/f3nz00Udu610ul5k8ebIJDw83AQEBpk+fPmb37t1uNUePHjUpKSmmTp06JiQkxIwaNcocP37crebrr782PXv2NAEBASYqKspMmTLlgt4v18ulELQAAKh6PPn8dhhjzKXnvGCXwsJChYaGyul0cr4WAABVhCef33zrEAAAwCYELQAAAJsQtAAAAGxC0AIAALCJn7cbqMnOfw+Bex4CAFB1nP/cvpLvExK0vOj48eOSxD0PAQCogo4fP67Q0NBL1nB5By9yuVz64YcfVLduXTkcjjJrCgsLFR0drYMHD9b4S0AwFucwDucwDj9hLM5hHM5hHH5i11gYY3T8+HE1adJEPj6XPguLGS0v8vHx0XXXXXdFtdwb8SeMxTmMwzmMw08Yi3MYh3MYh5/YMRaXm8k6j5PhAQAAbELQAgAAsAlBq5ILCAhQamqqAgICvN2K1zEW5zAO5zAOP2EszmEczmEcflIZxoKT4QEAAGzCjBYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4JWJTB79mzFxMQoMDBQCQkJ2rBhw0Vrs7Oz9bvf/U4xMTFyOByaMWNGxTVaATwZi9dee0033nij6tWrp3r16ikpKemS9VWJJ+OwbNkydevWTWFhYQoODlbnzp311ltvVWC39vFkHH5u0aJFcjgcGjRokL0NViBPxmLBggVyOBxuj8DAwArs1j6e/k4UFBRo3LhxioyMVEBAgGJjY7VixYoK6tY+noxD7969L/h9cDgc6t+/fwV2bB9PfydmzJihNm3aKCgoSNHR0frLX/6iU6dO2deggVctWrTI+Pv7mzfffNNkZ2ebe+65x4SFhZm8vLwy6zds2GAefvhhs3DhQhMREWFefvnlim3YRp6OxV133WVmz55tNm/ebHbu3GlGjhxpQkNDzffff1/BnZcvT8dh9erVZtmyZWbHjh1m7969ZsaMGcbX19d88sknFdx5+fJ0HM7bv3+/iYqKMjfeeKMZOHBgxTRrM0/HYv78+SYkJMTk5ORYj9zc3Aruuvx5Og4lJSWmW7dupl+/fuaLL74w+/fvN2vWrDFbtmyp4M7Ll6fjcPToUbffhe3btxtfX18zf/78im3cBp6OxTvvvGMCAgLMO++8Y/bv328+/fRTExkZaf7yl7/Y1iNBy8vi4+PNuHHjrOelpaWmSZMmJi0t7bKvbdasWbUKWtcyFsYYc/bsWVO3bl3zj3/8w64WK8S1joMxxnTp0sU88cQTdrRXYa5mHM6ePWu6d+9uXn/9dTNixIhqE7Q8HYv58+eb0NDQCuqu4ng6DnPmzDEtWrQwp0+frqgWK8S1/hvx8ssvm7p165oTJ07Y1WKF8XQsxo0bZ2655Ra3ZRMmTDA9evSwrUcOHXrR6dOnlZWVpaSkJGuZj4+PkpKSlJGR4cXOKl55jEVRUZHOnDmj+vXr29Wm7a51HIwxSk9P1+7du3XTTTfZ2aqtrnYc/va3v6lx48YaPXp0RbRZIa52LE6cOKFmzZopOjpaAwcOVHZ2dkW0a5urGYfly5crMTFR48aNU3h4uDp06KDnn39epaWlFdV2uSuPfyvfeOMN3XnnnQoODrarzQpxNWPRvXt3ZWVlWYcXv/nmG61YsUL9+vWzrU9uKu1F+fn5Ki0tVXh4uNvy8PBw7dq1y0tdeUd5jMWjjz6qJk2auP1PV9Vc7Tg4nU5FRUWppKREvr6+euWVV/Sb3/zG7nZtczXj8MUXX+iNN97Qli1bKqDDinM1Y9GmTRu9+eab6tixo5xOp6ZPn67u3bsrOzv7im9kX9lczTh88803WrVqlYYNG6YVK1Zo7969uv/++3XmzBmlpqZWRNvl7lr/rdywYYO2b9+uN954w64WK8zVjMVdd92l/Px89ezZU8YYnT17Vvfdd58ee+wx2/okaKFamDJlihYtWqQ1a9ZUm5N+PVG3bl1t2bJFJ06cUHp6uiZMmKAWLVqod+/e3m6tQhw/flzDhw/Xa6+9poYNG3q7Ha9LTExUYmKi9bx79+5q166d5s2bp2eeecaLnVUsl8ulxo0b69VXX5Wvr6+6du2qQ4cOadq0aVU2aF2rN954Q3FxcYqPj/d2K16xZs0aPf/883rllVeUkJCgvXv36s9//rOeeeYZTZ482ZZtErS8qGHDhvL19VVeXp7b8ry8PEVERHipK++4lrGYPn26pkyZos8//1wdO3a0s03bXe04+Pj4qFWrVpKkzp07a+fOnUpLS6uyQcvTcdi3b58OHDigAQMGWMtcLpckyc/PT7t371bLli3tbdom5fHvRK1atdSlSxft3bvXjhYrxNWMQ2RkpGrVqiVfX19rWbt27ZSbm6vTp0/L39/f1p7tcC2/DydPntSiRYv0t7/9zc4WK8zVjMXkyZM1fPhwjRkzRpIUFxenkydPauzYsXr88cfl41P+Z1RxjpYX+fv7q2vXrkpPT7eWuVwupaenu/01WhNc7VhMnTpVzzzzjD755BN169atIlq1VXn9TrhcLpWUlNjRYoXwdBzatm2rbdu2acuWLdbj9ttv180336wtW7YoOjq6ItsvV+XxO1FaWqpt27YpMjLSrjZtdzXj0KNHD+3du9cK3ZL03//+V5GRkVUyZEnX9vuwZMkSlZSU6I9//KPdbVaIqxmLoqKiC8LU+SBu7Lr1s22n2eOKLFq0yAQEBJgFCxaYHTt2mLFjx5qwsDDrq9jDhw83EydOtOpLSkrM5s2bzebNm01kZKR5+OGHzebNm82ePXu8tQvlxtOxmDJlivH39zfvv/++21eXjx8/7q1dKBeejsPzzz9vPvvsM7Nv3z6zY8cOM336dOPn52dee+01b+1CufB0HH6pOn3r0NOxePrpp82nn35q9u3bZ7Kyssydd95pAgMDTXZ2trd2oVx4Og7fffedqVu3rhk/frzZvXu3+fDDD03jxo3Ns88+661dKBdX+/9Gz549zdChQyu6XVt5Ohapqammbt26ZuHCheabb74xn332mWnZsqUZMmSIbT0StCqBWbNmmaZNmxp/f38THx9vvvzyS2tdr169zIgRI6zn+/fvN5IuePTq1aviG7eBJ2PRrFmzMsciNTW14hsvZ56Mw+OPP25atWplAgMDTb169UxiYqJZtGiRF7ouf56Mwy9Vp6BljGdj8eCDD1q14eHhpl+/fmbTpk1e6Lr8efo7sX79epOQkGACAgJMixYtzHPPPWfOnj1bwV2XP0/HYdeuXUaS+eyzzyq4U/t5MhZnzpwxTz31lGnZsqUJDAw00dHR5v777zc//vijbf05jLFrrgwAAKBm4xwtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAaoiRI0dq0KBB3m4DqFEIWgC8buTIkXI4HNajQYMG6tu3r7Zu3ert1srFz/ft/KNnz562be/AgQNyOBzasmWL2/K///3vWrBggW3bBXAhghaASqFv377KyclRTk6O0tPT5efnp9/+9rfebqvczJ8/39q/nJwcLV++vMy6M2fO2NZDaGiowsLCbHt/ABciaAGoFAICAhQREaGIiAh17txZEydO1MGDB3XkyBHdcsstGj9+vFv9kSNH5O/vr/T0dElSTEyMnnnmGaWkpCg4OFhRUVGaPXu222teeuklxcXFKTg4WNHR0br//vt14sQJa/23336rAQMGqF69egoODlb79u21YsUKSdKPP/6oYcOGqVGjRgoKClLr1q01f/78K96/sLAwa/8iIiJUv359a+Zp8eLF6tWrlwIDA/XOO+/o6NGjSklJUVRUlGrXrq24uDgtXLjQ7f1cLpemTp2qVq1aKSAgQE2bNtVzzz0nSWrevLkkqUuXLnI4HOrdu7ekCw8dlpSU6IEHHlDjxo0VGBionj17auPGjdb6NWvWyOFwKD09Xd26dVPt2rXVvXt37d69+4r3G6jpCFoAKp0TJ07o7bffVqtWrdSgQQONGTNG7777rkpKSqyat99+W1FRUbrlllusZdOmTVOnTp20efNmTZw4UX/+85+1cuVKa72Pj49mzpyp7Oxs/eMf/9CqVav0yCOPWOvHjRunkpISrV27Vtu2bdMLL7ygOnXqSJImT56sHTt26OOPP9bOnTs1Z84cNWzYsFz293yvO3fuVHJysk6dOqWuXbvqo48+0vbt2zV27FgNHz5cGzZssF4zadIkTZkyxerr3XffVXh4uCRZdZ9//rlycnK0bNmyMrf7yCOPaOnSpfrHP/6hTZs2qVWrVkpOTtaxY8fc6h5//HG9+OKL+uqrr+Tn56f/83/+T7nsN1Aj2Ha7agC4QiNGjDC+vr4mODjYBAcHG0kmMjLSZGVlGWOMKS4uNvXq1TOLFy+2XtOxY0fz1FNPWc+bNWtm+vbt6/a+Q4cONbfddttFt7tkyRLToEED63lcXJzbe/7cgAEDzKhRo65q/ySZwMBAa/+Cg4PNP//5T7N//34jycyYMeOy79G/f3/z0EMPGWOMKSwsNAEBAea1114rs/b8+27evNlt+YgRI8zAgQONMcacOHHC1KpVy7zzzjvW+tOnT5smTZqYqVOnGmOMWb16tZFkPv/8c6vmo48+MpJMcXGxJ0MA1FjMaAGoFG6++WZt2bJFW7Zs0YYNG5ScnKzbbrtN3377rQIDAzV8+HC9+eabkqRNmzZp+/btGjlypNt7JCYmXvB8586d1vPPP/9cffr0UVRUlOrWravhw4fr6NGjKioqkiQ98MADevbZZ9WjRw+lpqa6nYz/pz/9SYsWLVLnzp31yCOPaP369R7t38svv2zt35YtW/Sb3/zGWtetWze32tLSUj3zzDOKi4tT/fr1VadOHX366af67rvvJEk7d+5USUmJ+vTp41EPP7dv3z6dOXNGPXr0sJbVqlVL8fHxbmMmSR07drT+OzIyUpJ0+PDhq942UJMQtABUCsHBwWrVqpVatWqlG264Qa+//rpOnjyp1157TZI0ZswYrVy5Ut9//73mz5+vW265Rc2aNbvi9z9w4IB++9vfqmPHjlq6dKmysrKsc7hOnz5tbeObb77R8OHDtW3bNnXr1k2zZs2SJCv0/eUvf9EPP/ygPn366OGHH77i7UdERFj716pVKwUHB7vt+89NmzZNf//73/Xoo49q9erV2rJli5KTk60+g4KCrni75aFWrVrWfzscDknnzhEDcHkELQCVksPhkI+Pj4qLiyVJcXFx6tatm1577TW9++67ZZ4n9OWXX17wvF27dpKkrKwsuVwuvfjii/r1r3+t2NhY/fDDDxe8R3R0tO677z4tW7ZMDz30kBX0JKlRo0YaMWKE3n77bc2YMUOvvvpqee6yZd26dRo4cKD++Mc/qlOnTmrRooX++9//Wutbt26toKAg64sAv+Tv7y/p3MzYxbRs2VL+/v5at26dtezMmTPauHGjrr/++nLaEwB+3m4AAKRz34DLzc2VdO4bfv/7v/+rEydOaMCAAVbNmDFjNH78eAUHB+uOO+644D3WrVunqVOnatCgQVq5cqWWLFmijz76SJLUqlUrnTlzRrNmzdKAAQO0bt06zZ071+31Dz74oG677TbFxsbqxx9/1OrVq62g9uSTT6pr165q3769SkpK9OGHH1rrylvr1q31/vvva/369apXr55eeukl5eXlWQEoMDBQjz76qB555BH5+/urR48eOnLkiLKzszV69Gg1btxYQUFB+uSTT3TdddcpMDBQoaGhbtsIDg7Wn/70J/31r39V/fr11bRpU02dOlVFRUUaPXq0LfsF1ETMaAGoFD755BNFRkYqMjJSCQkJ2rhxo5YsWWJdmkCSUlJS5Ofnp5SUFAUGBl7wHg899JC++uordenSRc8++6xeeuklJScnS5I6deqkl156SS+88II6dOigd955R2lpaW6vLy0t1bhx49SuXTv17dtXsbGxeuWVVySdmyWaNGmSOnbsqJtuukm+vr5atGiRLWPxxBNP6Fe/+pWSk5PVu3dvRUREXHBF98mTJ+uhhx7Sk08+qXbt2mno0KHWeVN+fn6aOXOm5s2bpyZNmmjgwIFlbmfKlCn63e9+p+HDh+tXv/qV9u7dq08//VT16tWzZb+AmshhjDHebgIArsSBAwfUsmVLbdy4Ub/61a/c1sXExOjBBx/Ugw8+6J3mAKAMHDoEUOmdOXNGR48e1RNPPKFf//rXF4QsAKisOHQIoNJbt26dIiMjtXHjxgvOq/K2559/XnXq1Cnzcdttt3m7PQBexqFDALgGx44du+BK6ucFBQUpKiqqgjsCUJkQtAAAAGzCoUMAAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCb/D46Td/eWQbmUAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAHHCAYAAABqVYatAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV3NJREFUeJzt3X1cVHXeP/7XAM4MosxACAOEgiJqSmoqLN6bJKZrktulokvqF8UKt8za1EqxsjC0Ml3vstKuzcQst1w101AvLxXRUFPAyBssVxkUiUEFAZn3749+nssJVCAOw83r+XjMg+V83uec9/msOS/POXNGIyICIiIiIlKNg70bICIiImrsGLiIiIiIVMbARURERKQyBi4iIiIilTFwEREREamMgYuIiIhIZQxcRERERCpj4CIiIiJSGQMXERERkcoYuIioyZs3bx40Gk2VajUaDebNm6dqPwMHDsTAgQPr7faIqPoYuIio3li7di00Go3ycnJygq+vLyZOnIgLFy7Yu716x9/f32a+PD090a9fP/zrX/+qle0XFRVh3rx52LNnT61sj6gpY+Aionrn9ddfxz//+U+sXLkSjz76KD799FMMGDAAN27cUGV/r776KoqLi1XZttq6deuGf/7zn/jnP/+JF198ERcvXsSoUaOwcuXKP7ztoqIivPbaawxcRLXAyd4NEBH93qOPPoqePXsCACZPngwPDw+8/fbb2Lx5M0aPHl3r+3NycoKTU8P869DX1xd//etfld+ffPJJBAYG4r333sNTTz1lx86I6HY8w0VE9V6/fv0AAGfOnLFZ/uOPP+KJJ56Au7s79Ho9evbsic2bN9vUlJWV4bXXXkP79u2h1+tx3333oW/fvti5c6dSU9k9XCUlJXj++efRqlUrtGzZEo899hj+85//VOht4sSJ8Pf3r7C8sm2uWbMGDz/8MDw9PaHT6fDAAw9gxYoV1ZqLezGZTOjUqROys7PvWnfp0iXExMTAy8sLer0eXbt2xSeffKKMnzt3Dq1atQIAvPbaa8plS7XvXyNqrBrmP+mIqEk5d+4cAMDNzU1ZlpGRgT59+sDX1xezZs2Ci4sLPv/8c0RGRuLLL7/E448/DuC34JOQkIDJkycjJCQEhYWF+P7773HkyBE88sgjd9zn5MmT8emnn2LcuHHo3bs3du3aheHDh/+h41ixYgU6d+6Mxx57DE5OTvj3v/+NZ555BlarFXFxcX9o27eUlZXh/PnzuO++++5YU1xcjIEDB+L06dOYNm0aAgICsHHjRkycOBEFBQV47rnn0KpVK6xYsQJPP/00Hn/8cYwaNQoA8OCDD9ZKn0RNjhAR1RNr1qwRAPLdd9/J5cuX5fz58/LFF19Iq1atRKfTyfnz55XawYMHS3BwsNy4cUNZZrVapXfv3tK+fXtlWdeuXWX48OF33W98fLzc/tfhsWPHBIA888wzNnXjxo0TABIfH68smzBhgrRp0+ae2xQRKSoqqlAXEREhbdu2tVk2YMAAGTBgwF17FhFp06aNDBkyRC5fviyXL1+WH374QcaOHSsA5G9/+9sdt7d48WIBIJ9++qmyrLS0VMLCwqRFixZSWFgoIiKXL1+ucLxEVDO8pEhE9U54eDhatWoFPz8/PPHEE3BxccHmzZtx//33AwDy8/Oxa9cujB49GlevXkVeXh7y8vJw5coVRERE4NSpU8qnGo1GIzIyMnDq1Kkq73/btm0AgGeffdZm+fTp0//QcTk7Oyv/22KxIC8vDwMGDMDZs2dhsVhqtM0dO3agVatWaNWqFbp27YqNGzciOjoab7/99h3X2bZtG0wmE6KiopRlzZo1w7PPPotr167hf/7nf2rUCxHdGS8pElG9s2zZMgQFBcFiseDjjz/G3r17odPplPHTp09DRDBnzhzMmTOn0m1cunQJvr6+eP311zFy5EgEBQWhS5cuGDp0KKKjo+96aeznn3+Gg4MD2rVrZ7O8Q4cOf+i49u/fj/j4eKSkpKCoqMhmzGKxwGAwVHuboaGhmD9/PjQaDZo3b45OnTrBaDTedZ2ff/4Z7du3h4OD7b+5O3XqpIwTUe1i4CKieickJET5lGJkZCT69u2LcePGISsrCy1atIDVagUAvPjii4iIiKh0G4GBgQCA/v3748yZM/j666+xY8cOfPjhh3jvvfewcuVKTJ48+Q/3eqcHppaXl9v8fubMGQwePBgdO3bEu+++Cz8/P2i1Wmzbtg3vvfeeckzV5eHhgfDw8BqtS0R1h4GLiOo1R0dHJCQkYNCgQfjHP/6BWbNmoW3btgB+uwxWlbDh7u6OSZMmYdKkSbh27Rr69++PefPm3TFwtWnTBlarFWfOnLE5q5WVlVWh1s3NDQUFBRWW//4s0b///W+UlJRg8+bNaN26tbJ89+7d9+y/trVp0wbHjx+H1Wq1Ocv1448/KuPAncMkEVUf7+Eionpv4MCBCAkJweLFi3Hjxg14enpi4MCBWLVqFXJycirUX758WfnfV65csRlr0aIFAgMDUVJScsf9PfroowCAJUuW2CxfvHhxhdp27drBYrHg+PHjyrKcnJwKT3t3dHQEAIiIssxisWDNmjV37EMtw4YNg9lsxoYNG5RlN2/exNKlS9GiRQsMGDAAANC8eXMAqDRQElH18AwXETUIf//73/Ff//VfWLt2LZ566iksW7YMffv2RXBwMKZMmYK2bdsiNzcXKSkp+M9//oMffvgBAPDAAw9g4MCB6NGjB9zd3fH999/jiy++wLRp0+64r27duiEqKgrLly+HxWJB7969kZycjNOnT1eoHTt2LGbOnInHH38czz77LIqKirBixQoEBQXhyJEjSt2QIUOg1WoxYsQITJ06FdeuXcPq1avh6elZaWhUU2xsLFatWoWJEyciLS0N/v7++OKLL7B//34sXrwYLVu2BPDbTf4PPPAANmzYgKCgILi7u6NLly7o0qVLnfZL1CjY+2OSRES33HosxOHDhyuMlZeXS7t27aRdu3Zy8+ZNERE5c+aMPPnkk2IymaRZs2bi6+srf/7zn+WLL75Q1ps/f76EhISI0WgUZ2dn6dixo7z55ptSWlqq1FT2CIfi4mJ59tln5b777hMXFxcZMWKEnD9/vtLHJOzYsUO6dOkiWq1WOnToIJ9++mml29y8ebM8+OCDotfrxd/fX95++235+OOPBYBkZ2crddV5LMS9Hnlxp+3l5ubKpEmTxMPDQ7RarQQHB8uaNWsqrHvgwAHp0aOHaLVaPiKC6A/QiNx2fpuIiIiIah3v4SIiIiJSGQMXERERkcoYuIiIiIhUxsBFREREpDIGLiIiIiKVMXARERERqYwPPrUjq9WKixcvomXLlvwKDSIiogZCRHD16lX4+PhU+BL4O2HgsqOLFy/Cz8/P3m0QERFRDZw/fx73339/lWoZuOzo1tdnnD9/Hq6urnbuhoiIiKqisLAQfn5+yvt4VTBw2dGty4iurq4MXERERA1MdW4H4k3zRERERCpj4CIiIiJSGQMXERERkcp4DxcREVETUF5ejrKyMnu30WBotdoqP/KhKhi4iIiIGjERgdlsRkFBgb1baVAcHBwQEBAArVZbK9tj4CIiImrEboUtT09PNG/enA/aroJbDybPyclB69ata2XOGLiIiIgaqfLyciVs3XffffZup0Fp1aoVLl68iJs3b6JZs2Z/eHu8aZ6IiKiRunXPVvPmze3cScNz61JieXl5rWyPgYuIiKiR42XE6qvtOWPgIiIiIlIZAxcRERGRyhi4GqkcSzEOnMlDjqXY3q0QERHViNlsxt/+9je0bdsWOp0Ofn5+GDFiBJKTk5WaAwcOYNiwYXBzc4Ner0dwcDDeffddm3uvzp07h5iYGAQEBMDZ2Rnt2rVDfHw8SktL6+xY+CnFRmjD4V8we9MJWAVw0AAJo4Ixpldre7dFRERUZefOnUOfPn1gNBqxcOFCBAcHo6ysDN9++y3i4uLw448/4l//+hdGjx6NSZMmYffu3TAajfjuu+/w0ksvISUlBZ9//jk0Gg1+/PFHWK1WrFq1CoGBgUhPT8eUKVNw/fp1LFq0qE6ORyMiUid7ogoKCwthMBhgsVjg6upaK9vMsRSjz4JdsN72/6qjRoN9swbB2+BcK/sgIqKG4caNG8jOzkZAQAD0er2926mWYcOG4fjx48jKyoKLi4vNWEFBAZo1a4Y2bdpgwIAB+PLLL23G//3vf+Oxxx5DUlISxowZU+n2Fy5ciBUrVuDs2bOVjt9t7mry/s1Lio1Mdt51m7AFAOUiOJdXZJ+GiIioUajLW1Xy8/Oxfft2xMXFVQhbAGA0GrFjxw5cuXIFL774YoXxESNGICgoCOvXr7/jPiwWC9zd3Wu177vhJcVGJsDDBQ4aVDjD5e/BZ7AQEVHN1PWtKqdPn4aIoGPHjnes+emnnwAAnTp1qnS8Y8eOSk1l21+6dGmdXU4EeIar0fE2OCNhVDAc///nhzhqNHhrVBdeTiQiohrJsRQrYQv47R/0L29KV/VMV3XudqrunVEXLlzA0KFD8V//9V+YMmVKdVurMZ7haoTG9GqN/kGtcC6vCP4ezRm2iIioxu52q4pa7y/t27dXbna/k6CgIADAyZMn0bt37wrjJ0+exAMPPGCz7OLFixg0aBB69+6NDz74oHabvgee4WqkvA3OCGt3H8MWERH9IbduVbmd2requLu7IyIiAsuWLcP169crjBcUFGDIkCFwd3fHO++8U2F88+bNOHXqFKKiopRlFy5cwMCBA9GjRw+sWbMGDg51G4EYuIiIiOiO7HWryrJly1BeXo6QkBB8+eWXOHXqFE6ePIklS5YgLCwMLi4uWLVqFb7++mvExsbi+PHjOHfuHD766CNMnDgRTzzxBEaPHg3g/8JW69atsWjRIly+fBlmsxlms1nVY7gdLykSERHRXdnjVpW2bdviyJEjePPNN/HCCy8gJycHrVq1Qo8ePbBixQoAwBNPPIHdu3fjzTffRL9+/XDjxg20b98er7zyCqZPn658H+LOnTtx+vRpnD59Gvfff7/Nfurq6Vh8DpcdqfEcLiIiolsa8nO47I3P4SIiIiJqYBi4iIiIiFTGwEVERESkMgYuIiIiIpUxcBERETVy/Hxc9dX2nDFwERERNVLNmjUDABQVFdm5k4antLQUAODo6Fgr2+NzuIiIiBopR0dHGI1GXLp0CQDQvHlz5dlUdGdWqxWXL19G8+bN4eRUO1GJgYuIiKgRM5lMAKCELqoaBwcHtG7dutYCKgMXERFRI6bRaODt7Q1PT0+UlZXZu50GQ6vV1ur3Ldr9Hq5ly5bB398fer0eoaGhOHTo0F3rN27ciI4dO0Kv1yM4OBjbtm2zGRcRzJ07F97e3nB2dkZ4eDhOnTplU5Ofn4/x48fD1dUVRqMRMTExuHbtmjJ+48YNTJw4EcHBwXByckJkZORde9q/fz+cnJzQrVu3ah07ERFRXXF0dIRer+eriq/a/nJruwauDRs2YMaMGYiPj8eRI0fQtWtXRERE3PG054EDBxAVFYWYmBgcPXoUkZGRiIyMRHp6ulKTmJiIJUuWYOXKlUhNTYWLiwsiIiJw48YNpWb8+PHIyMjAzp07sWXLFuzduxexsbHKeHl5OZydnfHss88iPDz8rsdQUFCAJ598EoMHD/6Ds0FERESNlV2/SzE0NBS9evXCP/7xDwC/3aTm5+eHv/3tb5g1a1aF+jFjxuD69evYsmWLsuxPf/oTunXrhpUrV0JE4OPjgxdeeAEvvvgiAMBiscDLywtr167F2LFjcfLkSTzwwAM4fPgwevbsCQDYvn07hg0bhv/85z/w8fGx2efEiRNRUFCAr776qtJjGDt2LNq3bw9HR0d89dVXOHbsWJWPn9+lSERE1PA0qO9SLC0tRVpams0ZJAcHB4SHhyMlJaXSdVJSUiqccYqIiFDqs7OzYTabbWoMBgNCQ0OVmpSUFBiNRiVsAUB4eDgcHByQmpparWNYs2YNzp49i/j4+CrVl5SUoLCw0OZFREREjZ/dAldeXh7Ky8vh5eVls9zLywtms7nSdcxm813rb/28V42np6fNuJOTE9zd3e+438qcOnUKs2bNwqefflrlj4wmJCTAYDAoLz8/vyrvj4iIiBouu9803xCVl5dj3LhxeO211xAUFFTl9WbPng2LxaK8zp8/r2KXREREVF/Y7bEQHh4ecHR0RG5urs3y3Nxc5Zkhv2cyme5af+tnbm4uvL29bWpufYLQZDJVuCn/5s2byM/Pv+N+f+/q1av4/vvvcfToUUybNg3Ab/efiQicnJywY8cOPPzwwxXW0+l00Ol0VdoHERERNR52O8Ol1WrRo0cPJCcnK8usViuSk5MRFhZW6TphYWE29QCwc+dOpT4gIAAmk8mmprCwEKmpqUpNWFgYCgoKkJaWptTs2rULVqsVoaGhVerd1dUVJ06cwLFjx5TXU089hQ4dOuDYsWNV3g4RERE1DXZ98OmMGTMwYcIE9OzZEyEhIVi8eDGuX7+OSZMmAQCefPJJ+Pr6IiEhAQDw3HPPYcCAAXjnnXcwfPhwJCUl4fvvv8cHH3wA4LeHu02fPh3z589H+/btERAQgDlz5sDHx0d5llanTp0wdOhQTJkyBStXrkRZWRmmTZuGsWPH2nxCMTMzE6WlpcjPz8fVq1eVTx9269YNDg4O6NKli82xeHp6Qq/XV1hOREREZNfANWbMGFy+fBlz586F2WxGt27dsH37duWm919++cXmwWO9e/fGZ599hldffRUvv/wy2rdvj6+++som5Lz00ku4fv06YmNjUVBQgL59+2L79u3Q6/VKzbp16zBt2jQMHjwYDg4O+Mtf/oIlS5bY9DZs2DD8/PPPyu/du3cHwG9cJyIiouqz63O4mjo+h4uIiKjhaVDP4SIiIiJqKhi4iIiIiFTGwEVERESkMgYuIiIiIpUxcBERERGpjIGLiIiISGUMXEREREQqY+AiIiIiUhkDFxEREZHKGLiIiIiIVMbARURERKQyBi4iIiIilTFwEREREamMgYuIiIhIZQxcRERERCpj4CIiIiJSGQMXERERkcoYuIiIiIhUxsBFREREpDIGLiIiIiKVMXARERERqYyBi4iIiEhlDFxEREREKmPgIiIiIlIZAxcRERGRyhi4iIiIiFTGwEVERESkMgYuIiIiIpUxcBERERGpjIGLiIiISGUMXEREREQqY+AiIiIiUhkDFxEREZHKGLiIiIiIVMbARURERKQyuweuZcuWwd/fH3q9HqGhoTh06NBd6zdu3IiOHTtCr9cjODgY27ZtsxkXEcydOxfe3t5wdnZGeHg4Tp06ZVOTn5+P8ePHw9XVFUajETExMbh27ZoyfuPGDUycOBHBwcFwcnJCZGRkhT42bdqERx55BK1atYKrqyvCwsLw7bff1nwiiIiIqNGya+DasGEDZsyYgfj4eBw5cgRdu3ZFREQELl26VGn9gQMHEBUVhZiYGBw9ehSRkZGIjIxEenq6UpOYmIglS5Zg5cqVSE1NhYuLCyIiInDjxg2lZvz48cjIyMDOnTuxZcsW7N27F7Gxscp4eXk5nJ2d8eyzzyI8PLzSXvbu3YtHHnkE27ZtQ1paGgYNGoQRI0bg6NGjtTQ7RERE1GiIHYWEhEhcXJzye3l5ufj4+EhCQkKl9aNHj5bhw4fbLAsNDZWpU6eKiIjVahWTySQLFy5UxgsKCkSn08n69etFRCQzM1MAyOHDh5Wab775RjQajVy4cKHCPidMmCAjR46s0vE88MAD8tprr1WpVkTEYrEIALFYLFVeh4iIiOyrJu/fdjvDVVpairS0NJszSA4ODggPD0dKSkql66SkpFQ44xQREaHUZ2dnw2w229QYDAaEhoYqNSkpKTAajejZs6dSEx4eDgcHB6Smptb4eKxWK65evQp3d/c71pSUlKCwsNDmRURERI2f3QJXXl4eysvL4eXlZbPcy8sLZrO50nXMZvNd62/9vFeNp6enzbiTkxPc3d3vuN+qWLRoEa5du4bRo0ffsSYhIQEGg0F5+fn51Xh/RERE1HDY/ab5xuCzzz7Da6+9hs8//7xCmLvd7NmzYbFYlNf58+frsEsiIiKyFyd77djDwwOOjo7Izc21WZ6bmwuTyVTpOiaT6a71t37m5ubC29vbpqZbt25Kze9vyr958yby8/PvuN+7SUpKwuTJk7Fx48Y73mB/i06ng06nq/Y+iIiIqGGz2xkurVaLHj16IDk5WVlmtVqRnJyMsLCwStcJCwuzqQeAnTt3KvUBAQEwmUw2NYWFhUhNTVVqwsLCUFBQgLS0NKVm165dsFqtCA0NrdYxrF+/HpMmTcL69esxfPjwaq1LRERETYfdznABwIwZMzBhwgT07NkTISEhWLx4Ma5fv45JkyYBAJ588kn4+voiISEBAPDcc89hwIABeOeddzB8+HAkJSXh+++/xwcffAAA0Gg0mD59OubPn4/27dsjICAAc+bMgY+Pj/IsrU6dOmHo0KGYMmUKVq5cibKyMkybNg1jx46Fj4+P0ltmZiZKS0uRn5+Pq1ev4tixYwCgnCn77LPPMGHCBLz//vsIDQ1V7v9ydnaGwWCog9kjIiKiBkPFT01WydKlS6V169ai1WolJCREDh48qIwNGDBAJkyYYFP/+eefS1BQkGi1WuncubNs3brVZtxqtcqcOXPEy8tLdDqdDB48WLKysmxqrly5IlFRUdKiRQtxdXWVSZMmydWrV21q2rRpIwAqvG7vrbLx3/d7N3wsBBERUcNTk/dvjYiIfaIeFRYWwmAwwGKxwNXV1d7tEBERURXU5P2bn1IkIiIiUhkDFxEREZHKGLiIiIiIVMbARURERKQyBi4iIiIilTFwEREREamMgYuIiIhIZQxcRERERCpj4CIiIiJSGQMXERERkcoYuIiIiIhUxsBFREREpDIGLiIiIiKVMXARERERqYyBi4iIiEhlDFxEREREKmPgIiIiIlIZAxcRERGRyhi4iIiIiFTGwEVERESkMgYuIiIiIpUxcBERERGpjIGLiIiISGUMXEREREQqY+AiIiIiUhkDFxEREZHKGLiIiIiIVMbARURERKQyBi4iIiIilTFwEREREamMgYuIiIhIZQxcRERERCpj4CIiIiJSGQMXERERkcoYuIiIiIhUZvfAtWzZMvj7+0Ov1yM0NBSHDh26a/3GjRvRsWNH6PV6BAcHY9u2bTbjIoK5c+fC29sbzs7OCA8Px6lTp2xq8vPzMX78eLi6usJoNCImJgbXrl1Txm/cuIGJEyciODgYTk5OiIyMrLSXPXv24KGHHoJOp0NgYCDWrl1bozkgIiKixs2ugWvDhg2YMWMG4uPjceTIEXTt2hURERG4dOlSpfUHDhxAVFQUYmJicPToUURGRiIyMhLp6elKTWJiIpYsWYKVK1ciNTUVLi4uiIiIwI0bN5Sa8ePHIyMjAzt37sSWLVuwd+9exMbGKuPl5eVwdnbGs88+i/Dw8Ep7yc7OxvDhwzFo0CAcO3YM06dPx+TJk/Htt9/W0uwQERFRoyF2FBISInFxccrv5eXl4uPjIwkJCZXWjx49WoYPH26zLDQ0VKZOnSoiIlarVUwmkyxcuFAZLygoEJ1OJ+vXrxcRkczMTAEghw8fVmq++eYb0Wg0cuHChQr7nDBhgowcObLC8pdeekk6d+5ss2zMmDESERFxj6P+PxaLRQCIxWKp8jpERERkXzV5/7bbGa7S0lKkpaXZnEFycHBAeHg4UlJSKl0nJSWlwhmniIgIpT47Oxtms9mmxmAwIDQ0VKlJSUmB0WhEz549lZrw8HA4ODggNTW1yv3fq5fKlJSUoLCw0OZFREREjZ/dAldeXh7Ky8vh5eVls9zLywtms7nSdcxm813rb/28V42np6fNuJOTE9zd3e+43+r0UlhYiOLi4krXSUhIgMFgUF5+fn5V3h8RERE1XHa/ab4pmT17NiwWi/I6f/68vVsiIiKiOmC3wOXh4QFHR0fk5ubaLM/NzYXJZKp0HZPJdNf6Wz/vVfP7m/Jv3ryJ/Pz8O+63Or24urrC2dm50nV0Oh1cXV1tXkRERNT42S1wabVa9OjRA8nJycoyq9WK5ORkhIWFVbpOWFiYTT0A7Ny5U6kPCAiAyWSyqSksLERqaqpSExYWhoKCAqSlpSk1u3btgtVqRWhoaJX7v1cvRERERAoVb+K/p6SkJNHpdLJ27VrJzMyU2NhYMRqNYjabRUQkOjpaZs2apdTv379fnJycZNGiRXLy5EmJj4+XZs2ayYkTJ5SaBQsWiNFolK+//lqOHz8uI0eOlICAACkuLlZqhg4dKt27d5fU1FTZt2+ftG/fXqKiomx6y8jIkKNHj8qIESNk4MCBcvToUTl69KgyfvbsWWnevLn8/e9/l5MnT8qyZcvE0dFRtm/fXuXj56cUiYiIGp6avH/bNXCJiCxdulRat24tWq1WQkJC5ODBg8rYgAEDZMKECTb1n3/+uQQFBYlWq5XOnTvL1q1bbcatVqvMmTNHvLy8RKfTyeDBgyUrK8um5sqVKxIVFSUtWrQQV1dXmTRpkly9etWmpk2bNgKgwut2u3fvlm7duolWq5W2bdvKmjVrqnXsDFxEREQNT03evzUiInY7vdbEFRYWwmAwwGKx8H4uIiKiBqIm79/8lCIRERGRyhi4iIiIiFTGwEVERESkMgYuIiIiIpUxcBERERGpjIGLiIiISGUMXEREREQqY+AiIiIiUhkDFxEREZHKGLiIiIiIVMbARURERKQyBi4iIiIilTFwEREREamMgYuIiIhIZQxcRERERCpj4CIiIiJSGQMXERERkcoYuIiIiIhUxsBFREREpDIGLiIiIiKVMXARERERqYyBi4iIiEhlDFxEREREKmPgIiIiIlIZAxepLsdSjANn8pBjKbZ3K0RERHbhZO8GqHHbcPgXzN50AlYBHDRAwqhgjOnV2t5tERER1Sme4SLV5FiKlbAFAFYBXt6UzjNdRETU5DBwkWqy864rYeuWchGcyyuyT0NERER2wsBFqgnwcIGDxnaZo0YDf4/m9mmIiIjIThi4SDXeBmckjAqGo+a31OWo0eCtUV3gbXC2c2dERER1izfNk6rG9GqN/kGtcC6vCP4eze0atnIsxcjOu44ADxeGPiIiqlMMXKQ6b4Oz3QMOPy1JRET2xEuK1Ojx05JERGRvDFzU6PHTkkREZG8MXNTo8dOSRERkb3YPXMuWLYO/vz/0ej1CQ0Nx6NChu9Zv3LgRHTt2hF6vR3BwMLZt22YzLiKYO3cuvL294ezsjPDwcJw6dcqmJj8/H+PHj4erqyuMRiNiYmJw7do1m5rjx4+jX79+0Ov18PPzQ2JiYoVeFi9ejA4dOsDZ2Rl+fn54/vnncePGjRrOBKmFn5YkIiK7EztKSkoSrVYrH3/8sWRkZMiUKVPEaDRKbm5upfX79+8XR0dHSUxMlMzMTHn11VelWbNmcuLECaVmwYIFYjAY5KuvvpIffvhBHnvsMQkICJDi4mKlZujQodK1a1c5ePCg/O///q8EBgZKVFSUMm6xWMTLy0vGjx8v6enpsn79enF2dpZVq1YpNevWrROdTifr1q2T7Oxs+fbbb8Xb21uef/75Kh+/xWIRAGKxWKozbVRDFwuK5MDpPLlYUGTvVoiIqAGryft3tQJXaWmp/P3vf5d27dpJr1695KOPPrIZN5vN4uDgUOXthYSESFxcnPJ7eXm5+Pj4SEJCQqX1o0ePluHDh9ssCw0NlalTp4qIiNVqFZPJJAsXLlTGCwoKRKfTyfr160VEJDMzUwDI4cOHlZpvvvlGNBqNXLhwQUREli9fLm5ublJSUqLUzJw5Uzp06KD8HhcXJw8//LBNLzNmzJA+ffpU+fgZuIiIiBqemrx/V+uS4ptvvon//u//xlNPPYUhQ4ZgxowZmDp16u/PmFVpW6WlpUhLS0N4eLiyzMHBAeHh4UhJSal0nZSUFJt6AIiIiFDqs7OzYTabbWoMBgNCQ0OVmpSUFBiNRvTs2VOpCQ8Ph4ODA1JTU5Wa/v37Q6vV2uwnKysLv/76KwCgd+/eSEtLUy6Bnj17Ftu2bcOwYcPueMwlJSUoLCy0eREREVHjV63ncK1btw4ffvgh/vznPwMAJk6ciEcffRSTJk3Cxx9/DADQaDR324QiLy8P5eXl8PLyslnu5eWFH3/8sdJ1zGZzpfVms1kZv7XsbjWenp42405OTnB3d7epCQgIqLCNW2Nubm4YN24c8vLy0LdvX4gIbt68iaeeegovv/zyHY85ISEBr7322h3HiYiIqHGq1hmuCxcuoEuXLsrvgYGB2LNnDw4cOIDo6GiUl5fXeoP11Z49e/DWW29h+fLlOHLkCDZt2oStW7fijTfeuOM6s2fPhsViUV7nz5+vw46JiIjIXqp1hstkMuHMmTPw9/dXlvn6+mL37t0YNGgQJk6cWOVteXh4wNHREbm5uTbLc3NzYTKZ7rj/u9Xf+pmbmwtvb2+bmm7duik1ly5dstnGzZs3kZ+fb7OdyvZz+z7mzJmD6OhoTJ48GQAQHByM69evIzY2Fq+88gocHCpmWZ1OB51Od4cZISIiosaqWme4Hn74YXz22WcVlvv4+GDXrl3Izs6u8ra0Wi169OiB5ORkZZnVakVycjLCwsIqXScsLMymHgB27typ1AcEBMBkMtnUFBYWIjU1VakJCwtDQUEB0tLSlJpdu3bBarUiNDRUqdm7dy/Kysps9tOhQwe4ubkBAIqKiiqEKkdHRwBVv4+NiIiImojq3JV/7tw52b59+x3HL1y4IGvXrq3y9pKSkkSn08natWslMzNTYmNjxWg0itlsFhGR6OhomTVrllK/f/9+cXJykkWLFsnJkyclPj6+0sdCGI1G+frrr+X48eMycuTISh8L0b17d0lNTZV9+/ZJ+/btbR4LUVBQIF5eXhIdHS3p6emSlJQkzZs3t3ksRHx8vLRs2VLWr18vZ8+elR07dki7du1k9OjRVT5+fkqRiIio4VH9sRBqWLp0qbRu3Vq0Wq2EhITIwYMHlbEBAwbIhAkTbOo///xzCQoKEq1WK507d5atW7fajFutVpkzZ454eXmJTqeTwYMHS1ZWlk3NlStXJCoqSlq0aCGurq4yadIkuXr1qk3NDz/8IH379hWdTie+vr6yYMECm/GysjKZN2+etGvXTvR6vfj5+ckzzzwjv/76a5WPnYGLiIio4anJ+7dGpPrXvzZu3Ij169fjp59+AgAEBQVh3LhxeOKJJ2r17FtjV1hYCIPBAIvFAldXV3u3Q0RERFVQk/fvat3DZbVaMWbMGIwZMwaZmZkIDAxEYGAgMjIyMGbMGIwdO5b3LxERERH9TrU+pfj+++/ju+++w+bNm5Vncd2yefNmTJo0Ce+//z6mT59emz0SERERNWjVOsO1Zs0aLFy4sELYAoDHHnsMiYmJygNQiYiIiOg31Qpcp06dqvDVOrcLDw/HqVOn/nBTRERERI1JtQKXs7MzCgoK7jheWFgIvV7/R3siIiIialSqFbjCwsKwYsWKO44vW7bsjg8tJSIiImqqqnXT/CuvvIKBAwfiypUrePHFF9GxY0eICE6ePIl33nkHX3/9NXbv3q1Wr0RETU6OpRjZedcR4OECb4OzvdshohqqVuDq3bs3NmzYgNjYWHz55Zc2Y25ubli/fj369OlTqw0SETVVGw7/gtmbTsAqgIMGSBgVjDG9Wtu7LSKqgRo9+LSoqAjffvutcoN8UFAQhgwZgubNm9d6g40ZH3xKRHeSYylGnwW7YL3tb2hHjQb7Zg3imS4iO6vJ+3e1znDt2rUL06ZNw8GDB/H444/bjFksFnTu3BkrV65Ev379qrNZIiL6ney86zZhCwDKRXAur4iBi6gBqtZN84sXL8aUKVMqTXMGgwFTp07Fu+++W2vNERE1VQEeLnDQ2C5z1Gjg78ErCUQNUbUC1w8//IChQ4fecXzIkCFIS0v7w00RETV13gZnJIwKhqPmt9TlqNHgrVFdeHaLqIGq1iXF3NxcNGvW7M4bc3LC5cuX/3BTREQEjOnVGv2DWuFcXhH8PZozbBE1YNUKXL6+vkhPT0dgYGCl48ePH4e3t3etNEZERL+d6WLQImr4qnVJcdiwYZgzZw5u3LhRYay4uBjx8fGVfs8iERERUVNWrcdC5Obm4qGHHoKjoyOmTZuGDh06AAB+/PFHLFu2DOXl5Thy5Ai8vLxUa7gx4WMhiIiIGh7VHwvh5eWFAwcO4Omnn8bs2bNxK6tpNBpERERg2bJlDFtEREREv1OtwAUAbdq0wbZt2/Drr7/i9OnTEBG0b98ebm5uavRHRERE1OBVO3Dd4ubmhl69etVmL0RERESNUrVumiciIiKi6mPgIiIiIlIZAxcRERGRyhi4iIiIiFTGwEVERESkMgYuIiIiIpUxcBERERGpjIGLiIiISGUMXEREREQqY+AiIiIiUhkDFxEREZHKGLiIiIiIVMbARURERKQyBi4iIiIilTFwEREREamMgYuIiIhIZXYPXMuWLYO/vz/0ej1CQ0Nx6NChu9Zv3LgRHTt2hF6vR3BwMLZt22YzLiKYO3cuvL294ezsjPDwcJw6dcqmJj8/H+PHj4erqyuMRiNiYmJw7do1m5rjx4+jX79+0Ov18PPzQ2JiYoVeCgoKEBcXB29vb+h0OgQFBVXoh4iIiMiugWvDhg2YMWMG4uPjceTIEXTt2hURERG4dOlSpfUHDhxAVFQUYmJicPToUURGRiIyMhLp6elKTWJiIpYsWYKVK1ciNTUVLi4uiIiIwI0bN5Sa8ePHIyMjAzt37sSWLVuwd+9exMbGKuOFhYUYMmQI2rRpg7S0NCxcuBDz5s3DBx98oNSUlpbikUcewblz5/DFF18gKysLq1evhq+vrwozRURERA2a2FFISIjExcUpv5eXl4uPj48kJCRUWj969GgZPny4zbLQ0FCZOnWqiIhYrVYxmUyycOFCZbygoEB0Op2sX79eREQyMzMFgBw+fFip+eabb0Sj0ciFCxdERGT58uXi5uYmJSUlSs3MmTOlQ4cOyu8rVqyQtm3bSmlpaU0PXywWiwAQi8VS420QERFR3arJ+7fdznCVlpYiLS0N4eHhyjIHBweEh4cjJSWl0nVSUlJs6gEgIiJCqc/OzobZbLapMRgMCA0NVWpSUlJgNBrRs2dPpSY8PBwODg5ITU1Vavr37w+tVmuzn6ysLPz6668AgM2bNyMsLAxxcXHw8vJCly5d8NZbb6G8vPyOx1xSUoLCwkKbFxERETV+dgtceXl5KC8vh5eXl81yLy8vmM3mStcxm813rb/18141np6eNuNOTk5wd3e3qalsG7fv4+zZs/jiiy9QXl6Obdu2Yc6cOXjnnXcwf/78Ox5zQkICDAaD8vLz87tjLRERETUedr9pvqGyWq3w9PTEBx98gB49emDMmDF45ZVXsHLlyjuuM3v2bFgsFuV1/vz5OuyYiIiI7MXJXjv28PCAo6MjcnNzbZbn5ubCZDJVuo7JZLpr/a2fubm58Pb2tqnp1q2bUvP7m/Jv3ryJ/Px8m+1Utp/b9+Ht7Y1mzZrB0dFRqenUqRPMZjNKS0ttLkfeotPpoNPpKj02IiIiarzsdoZLq9WiR48eSE5OVpZZrVYkJycjLCys0nXCwsJs6gFg586dSn1AQABMJpNNTWFhIVJTU5WasLAwFBQUIC0tTanZtWsXrFYrQkNDlZq9e/eirKzMZj8dOnSAm5sbAKBPnz44ffo0rFarUvPTTz/B29u70rBFRDWXYynGgTN5yLEU27sVIqKaUfEm/ntKSkoSnU4na9eulczMTImNjRWj0Shms1lERKKjo2XWrFlK/f79+8XJyUkWLVokJ0+elPj4eGnWrJmcOHFCqVmwYIEYjUb5+uuv5fjx4zJy5EgJCAiQ4uJipWbo0KHSvXt3SU1NlX379kn79u0lKipKGS8oKBAvLy+Jjo6W9PR0SUpKkubNm8uqVauUml9++UVatmwp06ZNk6ysLNmyZYt4enrK/Pnzq3z8/JQi0b0lHfpZAmZtkTYzt0jArC2SdOhne7dERE1cTd6/7Rq4RESWLl0qrVu3Fq1WKyEhIXLw4EFlbMCAATJhwgSb+s8//1yCgoJEq9VK586dZevWrTbjVqtV5syZI15eXqLT6WTw4MGSlZVlU3PlyhWJioqSFi1aiKurq0yaNEmuXr1qU/PDDz9I3759RafTia+vryxYsKBC7wcOHJDQ0FDR6XTStm1befPNN+XmzZtVPnYGLqK7u1hQpIStW6+2s7bKxYIie7dGRE1YTd6/NSIi9j3H1nQVFhbCYDDAYrHA1dXV3u0Q1TsHzuRh3OrUCsvXT/kTwtrdZ4eOiIhq9v7NTykSUb0V4OECB43tMkeNBv4eze3TEBFRDTFwEVG95W1wRsKoYDhqfktdjhoN3hrVBd4GZzt3RkRUPXZ7LAQRUVWM6dUa/YNa4VxeEfw9mjNsEVGDxMBFRPWet8H5jkErx1KM7LzrCPBwYRgjonqLgYuIGqwNh3/B7E0nYBXAQQMkjArGmF6t7d0WEVEFvIeLiBqkHEuxErYAwCrAy5vS+XBUIqqXGLiIqEHKzruuhK1bykVwLq/IPg0R0T015W+N4CVFImqQbj0y4vbQxUdGENVfTf0WAJ7hIqIGiY+MIGo4eAsAz3ARUQPGR0YQNQx3uwWgqfx3y8BFRA3a3R4ZQUT1A28B4CVFIiIiUhlvAeAZLiIiogahoT/kt6nfAsDARUREVM81lk/4NeVbAHhJkYiIqB7jJ/xqrj4994tnuIiIiOoxfsKvZurbWUGe4SIiIqrHbn3C73ZN7RN+1VUfzwoycBEREdVj/IRf9dXHr/7iJUUiIqJ6rql/wq+66uNzv3iGi4iIqAHwNjgjrN19DFtVUB/PCvIMFxERETU69e2sIAMXERERNUr16blfvKRIREREpDIGLiIiIiKVMXARERERqYyBi4iIiEhlDFxEREREKmPgIiIiIlIZAxcRNVo5lmIcOJNn1+9PIyIC+BwuImqkNhz+RfnyWgcNkDAqGGN6tbZ3W0TURPEMFxE1OjmWYiVsAb99n9rLm9J5pouI7IaBi4ganey86zZfWgsA5SI4l1dkn4aIqMlj4CKiRifAwwUOGttljhoN/D2a26choiaE905WjoGLiBodb4MzEkYFw1HzW+py1Gjw1qgu9eY71Ygaqw2Hf0GfBbswbnUq+izYhQ2Hf7F3S/WGRkTk3mWkhsLCQhgMBlgsFri6utq7HaJGJ8dSjHN5RfD3aM6wRaSyHEsx+izYZXM531Gjwb5Zgxrdf381ef+uF2e4li1bBn9/f+j1eoSGhuLQoUN3rd+4cSM6duwIvV6P4OBgbNu2zWZcRDB37lx4e3vD2dkZ4eHhOHXqlE1Nfn4+xo8fD1dXVxiNRsTExODatWs2NcePH0e/fv2g1+vh5+eHxMTEO/aUlJQEjUaDyMjI6h08EanG2+CMsHb3Nbq/7InqI947eXd2D1wbNmzAjBkzEB8fjyNHjqBr166IiIjApUuXKq0/cOAAoqKiEBMTg6NHjyIyMhKRkZFIT09XahITE7FkyRKsXLkSqampcHFxQUREBG7cuKHUjB8/HhkZGdi5cye2bNmCvXv3IjY2VhkvLCzEkCFD0KZNG6SlpWHhwoWYN28ePvjggwo9nTt3Di+++CL69etXizNDRETUcPDeyXsQOwsJCZG4uDjl9/LycvHx8ZGEhIRK60ePHi3Dhw+3WRYaGipTp04VERGr1Somk0kWLlyojBcUFIhOp5P169eLiEhmZqYAkMOHDys133zzjWg0Grlw4YKIiCxfvlzc3NykpKREqZk5c6Z06NDBZt83b96U3r17y4cffigTJkyQkSNHVvnYLRaLABCLxVLldYiIiOqrpEM/S9tZW6XNzC3SdtZWSTr0s71bUkVN3r/teoartLQUaWlpCA8PV5Y5ODggPDwcKSkpla6TkpJiUw8AERERSn12djbMZrNNjcFgQGhoqFKTkpICo9GInj17KjXh4eFwcHBAamqqUtO/f39otVqb/WRlZeHXX39Vlr3++uvw9PRETEzMPY+3pKQEhYWFNi8iIqLGYkyv1tg3axDWT/kT9s0axIcN38augSsvLw/l5eXw8vKyWe7l5QWz2VzpOmaz+a71t37eq8bT09Nm3MnJCe7u7jY1lW3j9n3s27cPH330EVavXl2l401ISIDBYFBefn5+VVqPiIiooeC9k5Wz+z1cDdXVq1cRHR2N1atXw8PDo0rrzJ49GxaLRXmdP39e5S6JiIioPrDrdyl6eHjA0dERubm5Nstzc3NhMpkqXcdkMt21/tbP3NxceHt729R069ZNqfn9Tfk3b95Efn6+zXYq28+tsTNnzuDcuXMYMWKEMm61WgH8drYsKysL7dq1s1lfp9NBp9PdYTaIGr8cSzGy864jwMOF//oloibFrme4tFotevTogeTkZGWZ1WpFcnIywsLCKl0nLCzMph4Adu7cqdQHBATAZDLZ1BQWFiI1NVWpCQsLQ0FBAdLS0pSaXbt2wWq1IjQ0VKnZu3cvysrKbPbToUMHuLm5oWPHjjhx4gSOHTumvB577DEMGjQIx44d4+VCot/hAxGJqElT8Sb+KklKShKdTidr166VzMxMiY2NFaPRKGazWUREoqOjZdasWUr9/v37xcnJSRYtWiQnT56U+Ph4adasmZw4cUKpWbBggRiNRvn666/l+PHjMnLkSAkICJDi4mKlZujQodK9e3dJTU2Vffv2Sfv27SUqKkoZLygoEC8vL4mOjpb09HRJSkqS5s2by6pVq+54LPyUIlHlLhYUScCsLdJm5v+92s7aKhcLiuzdGhFRtdXk/duulxQBYMyYMbh8+TLmzp0Ls9mMbt26Yfv27coN6r/88gscHP7vRFzv3r3x2Wef4dVXX8XLL7+M9u3b46uvvkKXLl2UmpdeegnXr19HbGwsCgoK0LdvX2zfvh16vV6pWbduHaZNm4bBgwfDwcEBf/nLX7BkyRJl3GAwYMeOHYiLi0OPHj3g4eGBuXPn2jyri4iq5m4PROSlRSJqCvjVPnbEr/ahpqIpfeUHETV+DfarfYioceOXSVN9kGMpxoEzecixFNu7FWqC7H5JkYiahjG9WqN/UCt+mTTZxYbDv2D2phOwCuCgARJGBfOhnFSneIaLiOoMH4hI9pBjKVbCFgBYBXh5UzrPdFGdYuAiIqJG7W4f2iCqKwxcRETUqAV4uMBBY7vMUaOBv0dz+zRETRIDFxERNWr80AbVB7xpnoiIGj1+aIPsjYGLiIiaBG+DM4MW2Q0vKRIRERGpjIGLiIiISGUMXEREREQqY+AiIiIiUhkDFxEREZHKGLiIiIiIVMbARURERKQyBi4iIiIilTFwEREREamMgYuIiIhIZQxcRERERCpj4CIiIiJSGQMXERERkcoYuIiIiIhUxsBFREREpDIGLiIiIiKVMXARERERqYyBi4iIiEhlDFxEREREKmPgIiIiIlIZAxcRERGRyhi4iIiIiFTGwEWqy7EU48CZPORYiu3dChERkV042bsBatw2HP4FszedgFUABw2QMCoYY3q1tndbREREdYpnuEg1OZZiJWwBgFWAlzel80wXERE1OQxcpJrsvOtK2LqlXATn8ors0xAREZGd1IvAtWzZMvj7+0Ov1yM0NBSHDh26a/3GjRvRsWNH6PV6BAcHY9u2bTbjIoK5c+fC29sbzs7OCA8Px6lTp2xq8vPzMX78eLi6usJoNCImJgbXrl2zqTl+/Dj69esHvV4PPz8/JCYm2oyvXr0a/fr1g5ubG9zc3BAeHn7P3puSAA8XOGhslzlqNPD3aG6fhoiIiOzE7oFrw4YNmDFjBuLj43HkyBF07doVERERuHTpUqX1Bw4cQFRUFGJiYnD06FFERkYiMjIS6enpSk1iYiKWLFmClStXIjU1FS4uLoiIiMCNGzeUmvHjxyMjIwM7d+7Eli1bsHfvXsTGxirjhYWFGDJkCNq0aYO0tDQsXLgQ8+bNwwcffKDU7NmzB1FRUdi9ezdSUlLg5+eHIUOG4MKFCyrMVMPjbXBGwqhgOGp+S12OGg3eGtUF3gZnO3dGRERUx8TOQkJCJC4uTvm9vLxcfHx8JCEhodL60aNHy/Dhw22WhYaGytSpU0VExGq1islkkoULFyrjBQUFotPpZP369SIikpmZKQDk8OHDSs0333wjGo1GLly4ICIiy5cvFzc3NykpKVFqZs6cKR06dLjjsdy8eVNatmwpn3zySZWO3WKxCACxWCxVqm+oLhYUyYHTeXKxoMjerRAREf1hNXn/tusZrtLSUqSlpSE8PFxZ5uDggPDwcKSkpFS6TkpKik09AERERCj12dnZMJvNNjUGgwGhoaFKTUpKCoxGI3r27KnUhIeHw8HBAampqUpN//79odVqbfaTlZWFX3/9tdLeioqKUFZWBnd39+pMQ6PnbXBGWLv7eGaLiIiaLLsGrry8PJSXl8PLy8tmuZeXF8xmc6XrmM3mu9bf+nmvGk9PT5txJycnuLu729RUto3b9/F7M2fOhI+PT4VAeEtJSQkKCwttXkRERPURn6FYu/gcrlqyYMECJCUlYc+ePdDr9ZXWJCQk4LXXXqvjzoiIiKqHz1CsfXY9w+Xh4QFHR0fk5ubaLM/NzYXJZKp0HZPJdNf6Wz/vVfP7m/Jv3ryJ/Px8m5rKtnH7Pm5ZtGgRFixYgB07duDBBx+84/HOnj0bFotFeZ0/f/6OtURERPbAZyiqw66BS6vVokePHkhOTlaWWa1WJCcnIywsrNJ1wsLCbOoBYOfOnUp9QEAATCaTTU1hYSFSU1OVmrCwMBQUFCAtLU2p2bVrF6xWK0JDQ5WavXv3oqyszGY/HTp0gJubm7IsMTERb7zxBrZv325zT1hldDodXF1dbV5E9sbLBkR0Oz5DUR12fyzEjBkzsHr1anzyySc4efIknn76aVy/fh2TJk0CADz55JOYPXu2Uv/cc89h+/bteOedd/Djjz9i3rx5+P777zFt2jQAgEajwfTp0zF//nxs3rwZJ06cwJNPPgkfHx9ERkYCADp16oShQ4diypQpOHToEPbv349p06Zh7Nix8PHxAQCMGzcOWq0WMTExyMjIwIYNG/D+++9jxowZSi9vv/025syZg48//hj+/v4wm80wm80VnudFVF9tOPwL+izYhXGrU9FnwS5sOPyLvVsiIjvjMxRVouKnJqts6dKl0rp1a9FqtRISEiIHDx5UxgYMGCATJkywqf/8888lKChItFqtdO7cWbZu3WozbrVaZc6cOeLl5SU6nU4GDx4sWVlZNjVXrlyRqKgoadGihbi6usqkSZPk6tWrNjU//PCD9O3bV3Q6nfj6+sqCBQtsxtu0aSMAKrzi4+OrdNxN5bEQVD9dLCiSgFlbpM3M/3u1nbWVj+8gIkk69LO0nbVV+Xsh6dDP9m6pXqnJ+7dGROQueYxUVFhYCIPBAIvFwsuLVOcOnMnDuNWpFZavn/InhLW7zw4dEVF9kmMpxrm8Ivh7NOdjfX6nJu/f/JQiURN167LB7fdq8LIBEd3ibXBm0KpFdr+Hi4jsg1+9RERUd3iGi6gJG9OrNfoHteJlAyIilTFwETVxvGxARKQ+XlIkIiIiUhkDFxEREZHKGLiIiIiIVMbARURERKQyBi4iIiIilTFwEREREamMgYuIyM5yLMU4cCYPOZZie7dCRCrhc7iIiOxow+FfMHvTCVgFcNAACaOCMaZXa3u3RUS1jGe4iIjsJMdSrIQt4LfvtXx5UzrPdBE1QgxcRER2kp133ebLwwGgXATn8ors0xARqYaBi4jITgI8XOCgsV3mqNHA36O5fRoiItUwcBER2Ym3wRkJo4LhqPktdTlqNHhrVBd+tyVRI8Sb5omI7GhMr9boH9QK5/KK4O/RnGGLqJFi4CIisjNvgzODFlEjx0uKRERERCpj4CIiIiJSGQMXERERkcoYuIiIiIhUxsBFREREpDIGLiIiIiKVMXARERERqYyBi4iIiEhlDFxEREREKmPgIiIiasRyLMU4cCYPOZZie7fSpPGrfYiIiBqpDYd/wexNJ2AVwEEDJIwKxphere3dVpPEM1zU4PBfa0RE95ZjKVbCFgBYBXh5Uzr/7rQTnuGiBoX/WqPakmMpRnbedQR4uPCLo6lRys67roStW8pFcC6viH/m7YCBixqMO/1rrX9QK/7lQdXC4E5NQYCHCxw0sAldjhoN/D2a26+pJoyXFKnBuNu/1oiqipdZqKnwNjgjYVQwHDUaAL+FrbdGdeE/UO2EZ7ioweC/1qg28DILNSVjerVG/6BWOJdXBH+P5vwzbkc8w0UNBv+1RrXhVnC/HYM7NWbeBmeEtbuPf1faWb0IXMuWLYO/vz/0ej1CQ0Nx6NChu9Zv3LgRHTt2hF6vR3BwMLZt22YzLiKYO3cuvL294ezsjPDwcJw6dcqmJj8/H+PHj4erqyuMRiNiYmJw7do1m5rjx4+jX79+0Ov18PPzQ2JiYrV7odo1pldr7Js1COun/An7Zg3ifTdUbQzuRGQXYmdJSUmi1Wrl448/loyMDJkyZYoYjUbJzc2ttH7//v3i6OgoiYmJkpmZKa+++qo0a9ZMTpw4odQsWLBADAaDfPXVV/LDDz/IY489JgEBAVJcXKzUDB06VLp27SoHDx6U//3f/5XAwECJiopSxi0Wi3h5ecn48eMlPT1d1q9fL87OzrJq1apq9XI3FotFAIjFYqnutBHRH3SxoEgOnM6TiwVF9m6FiBqYmrx/2z1whYSESFxcnPJ7eXm5+Pj4SEJCQqX1o0ePluHDh9ssCw0NlalTp4qIiNVqFZPJJAsXLlTGCwoKRKfTyfr160VEJDMzUwDI4cOHlZpvvvlGNBqNXLhwQUREli9fLm5ublJSUqLUzJw5Uzp06FDlXu6FgYuIiKjhqcn7t10vKZaWliItLQ3h4eHKMgcHB4SHhyMlJaXSdVJSUmzqASAiIkKpz87OhtlstqkxGAwIDQ1ValJSUmA0GtGzZ0+lJjw8HA4ODkhNTVVq+vfvD61Wa7OfrKws/Prrr1Xq5fdKSkpQWFho8yIiIqLGz66BKy8vD+Xl5fDy8rJZ7uXlBbPZXOk6ZrP5rvW3ft6rxtPT02bcyckJ7u7uNjWVbeP2fdyrl99LSEiAwWBQXn5+fpXWERERUeNSL26abypmz54Ni8WivM6fP2/vloiIiKgO2DVweXh4wNHREbm5uTbLc3NzYTKZKl3HZDLdtf7Wz3vVXLp0yWb85s2byM/Pt6mpbBu37+NevfyeTqeDq6urzYuIiIgaP7sGLq1Wix49eiA5OVlZZrVakZycjLCwsErXCQsLs6kHgJ07dyr1AQEBMJlMNjWFhYVITU1VasLCwlBQUIC0tDSlZteuXbBarQgNDVVq9u7di7KyMpv9dOjQAW5ublXqhYiIiAhA/XgshE6nk7Vr10pmZqbExsaK0WgUs9ksIiLR0dEya9YspX7//v3i5OQkixYtkpMnT0p8fHylj4UwGo3y9ddfy/Hjx2XkyJGVPhaie/fukpqaKvv27ZP27dvbPBaioKBAvLy8JDo6WtLT0yUpKUmaN29e4bEQ9+rlbvgpRSIiooanQT4WQkRk6dKl0rp1a9FqtRISEiIHDx5UxgYMGCATJkywqf/8888lKChItFqtdO7cWbZu3WozbrVaZc6cOeLl5SU6nU4GDx4sWVlZNjVXrlyRqKgoadGihbi6usqkSZPk6tWrNjU//PCD9O3bV3Q6nfj6+sqCBQsq9H6vXu6GgYuIiKjhqcn7t0ZE5O7nwEgthYWFMBgMsFgsvJ+LiIiogajJ+zc/pUhERESkMgYuIiIiIpUxcBERERGpzMneDTRlt26f41f8EBERNRy33rercxs8A5cdXb16FQD4FT9EREQN0NWrV2EwGKpUy08p2pHVasXFixfRsmVLaDSaSmsKCwvh5+eH8+fP85OM4HxUhnNii/Nhi/NREefEFuejonvNiYjg6tWr8PHxgYND1e7O4hkuO3JwcMD9999fpVp+FZAtzkdFnBNbnA9bnI+KOCe2OB8V3W1Oqnpm6xbeNE9ERESkMgYuIiIiIpUxcNVzOp0O8fHx0Ol09m6lXuB8VMQ5scX5sMX5qIhzYovzUZEac8Kb5omIiIhUxjNcRERERCpj4CIiIiJSGQMXERERkcoYuIiIiIhUxsBVDyxbtgz+/v7Q6/UIDQ3FoUOH7libkZGBv/zlL/D394dGo8HixYvrrtE6Up35WL16Nfr16wc3Nze4ubkhPDz8rvUNVXXmZNOmTejZsyeMRiNcXFzQrVs3/POf/6zDbtVXnfm4XVJSEjQaDSIjI9VtsI5VZz7Wrl0LjUZj89Lr9XXYbd2o7p+RgoICxMXFwdvbGzqdDkFBQdi2bVsddau+6szHwIEDK/wZ0Wg0GD58eB12rK7q/vlYvHgxOnToAGdnZ/j5+eH555/HjRs3qrdTIbtKSkoSrVYrH3/8sWRkZMiUKVPEaDRKbm5upfWHDh2SF198UdavXy8mk0nee++9um1YZdWdj3HjxsmyZcvk6NGjcvLkSZk4caIYDAb5z3/+U8edq6e6c7J7927ZtGmTZGZmyunTp2Xx4sXi6Ogo27dvr+PO1VHd+bglOztbfH19pV+/fjJy5Mi6abYOVHc+1qxZI66urpKTk6O8zGZzHXetrurOSUlJifTs2VOGDRsm+/btk+zsbNmzZ48cO3asjjtXR3Xn48qVKzZ/PtLT08XR0VHWrFlTt42rpLrzsW7dOtHpdLJu3TrJzs6Wb7/9Vry9veX555+v1n4ZuOwsJCRE4uLilN/Ly8vFx8dHEhIS7rlumzZtGl3g+iPzISJy8+ZNadmypXzyySdqtVjn/uiciIh0795dXn31VTXaq3M1mY+bN29K79695cMPP5QJEyY0qsBV3flYs2aNGAyGOurOPqo7JytWrJC2bdtKaWlpXbVYp/7o3yHvvfeetGzZUq5du6ZWi3WquvMRFxcnDz/8sM2yGTNmSJ8+faq1X15StKPS0lKkpaUhPDxcWebg4IDw8HCkpKTYsTP7qI35KCoqQllZGdzd3dVqs0790TkRESQnJyMrKwv9+/dXs9U6UdP5eP311+Hp6YmYmJi6aLPO1HQ+rl27hjZt2sDPzw8jR45ERkZGXbRbJ2oyJ5s3b0ZYWBji4uLg5eWFLl264K233kJ5eXldta2a2vh79aOPPsLYsWPh4uKiVpt1pibz0bt3b6SlpSmXHc+ePYtt27Zh2LBh1do3v7zajvLy8lBeXg4vLy+b5V5eXvjxxx/t1JX91MZ8zJw5Ez4+Pjb/MTVkNZ0Ti8UCX19flJSUwNHREcuXL8cjjzyidruqq8l87Nu3Dx999BGOHTtWBx3WrZrMR4cOHfDxxx/jwQcfhMViwaJFi9C7d29kZGTg/vvvr4u2VVWTOTl79ix27dqF8ePHY9u2bTh9+jSeeeYZlJWVIT4+vi7aVs0f/Xv10KFDSE9Px0cffaRWi3WqJvMxbtw45OXloW/fvhAR3Lx5E0899RRefvnlau2bgYsajQULFiApKQl79uxplDcBV0fLli1x7NgxXLt2DcnJyZgxYwbatm2LgQMH2ru1OnX16lVER0dj9erV8PDwsHc79UJYWBjCwsKU33v37o1OnTph1apVeOONN+zYmf1YrVZ4enrigw8+gKOjI3r06IELFy5g4cKFDT5w/VEfffQRgoODERISYu9W7GbPnj146623sHz5coSGhuL06dN47rnn8MYbb2DOnDlV3g4Dlx15eHjA0dERubm5Nstzc3NhMpns1JX9/JH5WLRoERYsWIDvvvsODz74oJpt1qmazomDgwMCAwMBAN26dcPJkyeRkJDQ4ANXdefjzJkzOHfuHEaMGKEss1qtAAAnJydkZWWhXbt26jatotr4O6RZs2bo3r07Tp8+rUaLda4mc+Lt7Y1mzZrB0dFRWdapUyeYzWaUlpZCq9Wq2rOa/sifkevXryMpKQmvv/66mi3WqZrMx5w5cxAdHY3JkycDAIKDg3H9+nXExsbilVdegYND1e7O4j1cdqTVatGjRw8kJycry6xWK5KTk23+BdpU1HQ+EhMT8cYbb2D79u3o2bNnXbRaZ2rrz4jVakVJSYkaLdap6s5Hx44dceLECRw7dkx5PfbYYxg0aBCOHTsGPz+/umy/1tXGn4/y8nKcOHEC3t7earVZp2oyJ3369MHp06eVMA4AP/30E7y9vRt02AL+2J+RjRs3oqSkBH/961/VbrPO1GQ+ioqKKoSqW+FcqvN11NW8uZ9qWVJSkuh0Olm7dq1kZmZKbGysGI1G5WPa0dHRMmvWLKW+pKREjh49KkePHhVvb2958cUX5ejRo3Lq1Cl7HUKtqu58LFiwQLRarXzxxRc2H2O+evWqvQ6h1lV3Tt566y3ZsWOHnDlzRjIzM2XRokXi5OQkq1evttch1KrqzsfvNbZPKVZ3Pl577TX59ttv5cyZM5KWliZjx44VvV4vGRkZ9jqEWlfdOfnll1+kZcuWMm3aNMnKypItW7aIp6enzJ8/316HUKtq+t9M3759ZcyYMXXdruqqOx/x8fHSsmVLWb9+vZw9e1Z27Ngh7dq1k9GjR1drvwxc9cDSpUuldevWotVqJSQkRA4ePKiMDRgwQCZMmKD8np2dLQAqvAYMGFD3jaukOvPRpk2bSucjPj6+7htXUXXm5JVXXpHAwEDR6/Xi5uYmYWFhkpSUZIeu1VOd+fi9xha4RKo3H9OnT1dqvby8ZNiwYXLkyBE7dK2u6v4ZOXDggISGhopOp5O2bdvKm2++KTdv3qzjrtVT3fn48ccfBYDs2LGjjjutG9WZj7KyMpk3b560a9dO9Hq9+Pn5yTPPPCO//vprtfapEanO+TAiIiIiqi7ew0VERESkMgYuIiIiIpUxcBERERGpjIGLiIiISGUMXEREREQqY+AiIiIiUhkDFxEREZHKGLiIiJqIiRMnIjIy0t5tEDVJDFxEZHcTJ06ERqNRXvfddx+GDh2K48eP27u1WnH7sd169e3bV7X9nTt3DhqNBseOHbNZ/v7772Pt2rWq7ZeI7oyBi4jqhaFDhyInJwc5OTlITk6Gk5MT/vznP9u7rVqzZs0a5fhycnKwefPmSuvKyspU68FgMMBoNKq2fSK6MwYuIqoXdDodTCYTTCYTunXrhlmzZuH8+fO4fPkyHn74YUybNs2m/vLly9BqtUhOTgYA+Pv744033kBUVBRcXFzg6+uLZcuW2azz7rvvIjg4GC4uLvDz88MzzzyDa9euKeM///wzRowYATc3N7i4uKBz587Ytm0bAODXX3/F+PHj0apVKzg7O6N9+/ZYs2ZNlY/PaDQqx2cymeDu7q6cidqwYQMGDBgAvV6PdevW4cqVK4iKioKvry+aN2+O4OBgrF+/3mZ7VqsViYmJCAwMhE6nQ+vWrfHmm28CAAICAgAA3bt3h0ajwcCBAwFUvKRYUlKCZ599Fp6entDr9ejbty8OHz6sjO/ZswcajQbJycno2bMnmjdvjt69eyMrK6vKx01Ev2HgIqJ659q1a/j0008RGBiI++67D5MnT8Znn32GkpISpebTTz+Fr68vHn74YWXZwoUL0bVrVxw9ehSzZs3Cc889h507dyrjDg4OWLJkCTIyMvDJJ59g165deOmll5TxuLg4lJSUYO/evThx4gTefvtttGjRAgAwZ84cZGZm4ptvvsHJkyexYsUKeHh41Mrx3ur15MmTiIiIwI0bN9CjRw9s3boV6enpiI2NRXR0NA4dOqSsM3v2bCxYsEDp67PPPoOXlxcAKHXfffcdcnJysGnTpkr3+9JLL+HLL7/EJ598giNHjiAwMBARERHIz8+3qXvllVfwzjvv4Pvvv4eTkxP+3//7f7Vy3ERNSq187TYR0R8wYcIEcXR0FBcXF3FxcREA4u3tLWlpaSIiUlxcLG5ubrJhwwZlnQcffFDmzZun/N6mTRsZOnSozXbHjBkjjz766B33u3HjRrnvvvuU34ODg222ebsRI0bIpEmTanR8AESv1yvH5+LiIv/6178kOztbAMjixYvvuY3hw4fLCy+8ICIihYWFotPpZPXq1ZXW3tru0aNHbZZPmDBBRo4cKSIi165dk2bNmsm6deuU8dLSUvHx8ZHExEQREdm9e7cAkO+++06p2bp1qwCQ4uLi6kwBUZPHM1xEVC8MGjQIx44dw7Fjx3Do0CFERETg0Ucfxc8//wy9Xo/o6Gh8/PHHAIAjR44gPT0dEydOtNlGWFhYhd9Pnjyp/P7dd99h8ODB8PX1RcuWLREdHY0rV66gqKgIAPDss89i/vz56NOnD+Lj421u2n/66aeRlJSEbt264aWXXsKBAweqdXzvvfeecnzHjh3DI488ooz17NnTpra8vBxvvPEGgoOD4e7ujhYtWuDbb7/FL7/8AgA4efIkSkpKMHjw4Gr1cLszZ86grKwMffr0UZY1a9YMISEhNnMGAA8++KDyv729vQEAly5dqvG+iZoiBi4iqhdcXFwQGBiIwMBA9OrVCx9++CGuX7+O1atXAwAmT56MnTt34j//+Q/WrFmDhx9+GG3atKny9s+dO4c///nPePDBB/Hll18iLS1NucertLRU2cfZs2cRHR2NEydOoGfPnli6dCkAKOHv+eefx8WLFzF48GC8+OKLVd6/yWRSji8wMBAuLi42x367hQsX4v3338fMmTOxe/duHDt2DBEREUqfzs7OVd5vbWjWrJnyvzUaDYDf7iEjoqpj4CKiekmj0cDBwQHFxcUAgODgYPTs2ROrV6/GZ599Vul9RAcPHqzwe6dOnQAAaWlpsFqteOedd/CnP/0JQUFBuHjxYoVt+Pn54amnnsKmTZvwwgsvKIEPAFq1aoUJEybg008/xeLFi/HBBx/U5iEr9u/fj5EjR+Kvf/0runbtirZt2+Knn35Sxtu3bw9nZ2flAwO/p9VqAfx2puxO2rVrB61Wi/379yvLysrKcPjwYTzwwAO1dCREdIuTvRsgIgJ++8Sc2WwG8NsnAv/xj3/g2rVrGDFihFIzefJkTJs2DS4uLnj88ccrbGP//v1ITExEZGQkdu7ciY0bN2Lr1q0AgMDAQJSVlWHp0qUYMWIE9u/fj5UrV9qsP336dDz66KMICgrCr7/+it27dyuBbe7cuejRowc6d+6MkpISbNmyRRmrbe3bt8cXX3yBAwcOwM3NDe+++y5yc3OVIKTX6zFz5ky89NJL0Gq16NOnDy5fvoyMjAzExMTA09MTzs7O2L59O+6//37o9XoYDAabfbi4uODpp5/G3//+d7i7u6N169ZITExEUVERYmJiVDkuoqaMZ7iIqF7Yvn07vL294e3tjdDQUBw+fBgbN25UHmkAAFFRUXByckJUVBT0en2Fbbzwwgv4/vvv0b17d8yfPx/vvvsuIiIiAABdu3bFu+++i7fffhtdunTBunXrkJCQYLN+eXk54uLi0KlTJwwdOhRBQUFYvnw5gN/OGs2ePRsPPvgg+vfvD0dHRyQlJakyF6+++ioeeughREREYODAgTCZTBWeED9nzhy88MILmDt3Ljp16oQxY8Yo91U5OTlhyZIlWLVqFXx8fDBy5MhK97NgwQL85S9/QXR0NB566CGcPn0a3377Ldzc3FQ5LqKmTCMiYu8miIiq4ty5c2jXrh0OHz6Mhx56yGbM398f06dPx/Tp0+3THBHRXfCSIhHVe2VlZbhy5QpeffVV/OlPf6oQtoiI6jteUiSiem///v3w9vbG4cOHK9x3ZW9vvfUWWrRoUenr0UcftXd7RFRP8JIiEdEfkJ+fX+HJ7Lc4OzvD19e3jjsiovqIgYuIiIhIZbykSERERKQyBi4iIiIilTFwEREREamMgYuIiIhIZQxcRERERCpj4CIiIiJSGQMXERERkcoYuIiIiIhU9v8BitPCLoVlpOYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_47.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDJ0lEQVR4nO3de3hU5bn+8XuSkAOBJGDIiQYSTgoSCCUQgggoaYMgEnHvQqScfiDbKioCW8EKeKpBPFGUiqKCV8WCWLa1SKnIoVZIQwhQBZECgsCWBAIygQRCyLy/P9isOhIOWWQymeT7ua65YN71zMyz3kZy911r1nIYY4wAAABQJX7ebgAAAMAXEaIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiANRpTzzxhBwOx1XVOhwOPfHEEx7tp2/fvurbt2+tfT8AV48QBaBGLFq0SA6Hw3oEBASoefPmGj16tP73f//X2+3VOgkJCW7zFRUVpZtvvln/8z//Uy3vX1paqieeeELr16+vlvcD6iNCFIAa9dRTT+n3v/+95s+fr9tuu03vvvuu+vTpozNnznjk8x5//HGdPn3aI+/tacnJyfr973+v3//+95oyZYq+++47DRkyRPPnz7/m9y4tLdWTTz5JiAKuQYC3GwBQv9x2221KSUmRJI0bN06RkZF67rnn9NFHH+kXv/hFtX9eQECAAgJ885+65s2b65e//KX1fOTIkWrTpo1efvll3XvvvV7sDIDEShQAL7v55pslSXv37nUb//rrr/Uf//Efatq0qYKDg5WSkqKPPvrIraa8vFxPPvmk2rZtq+DgYF133XXq1auXVq9ebdVUdk5UWVmZHn74YTVr1kyNGzfWHXfcoUOHDl3U2+jRo5WQkHDReGXvuXDhQt16662KiopSUFCQOnTooNdee61Kc3ElMTExat++vfbt23fZuiNHjmjs2LGKjo5WcHCwOnfurHfeecfavn//fjVr1kyS9OSTT1qHDD19PhhQ1/jm/z0DUGfs379fktSkSRNrbMeOHbrpppvUvHlzTZ06VaGhoXr//feVmZmpP/7xj7rzzjslnQ8z2dnZGjdunLp3767i4mJt3rxZW7Zs0c9+9rNLfua4ceP07rvv6u6771bPnj21du1aDRw48Jr247XXXtONN96oO+64QwEBAfrzn/+s++67Ty6XS/fff/81vfcF5eXlOnjwoK677rpL1pw+fVp9+/bVnj17NGHCBCUmJmrZsmUaPXq0Tpw4oYceekjNmjXTa6+9pl/96le68847NWTIEElSp06dqqVPoN4wAFADFi5caCSZTz/91Bw9etQcPHjQfPDBB6ZZs2YmKCjIHDx40Krt16+fSUpKMmfOnLHGXC6X6dmzp2nbtq011rlzZzNw4MDLfu7MmTPND/+p27Ztm5Fk7rvvPre6u+++20gyM2fOtMZGjRplWrZsecX3NMaY0tLSi+oyMjJMq1at3Mb69Olj+vTpc9mejTGmZcuW5uc//7k5evSoOXr0qPnnP/9phg0bZiSZBx544JLvN2fOHCPJvPvuu9bY2bNnTVpammnUqJEpLi42xhhz9OjRi/YXQNVwOA9AjUpPT1ezZs0UHx+v//iP/1BoaKg++ugj/eQnP5EkHT9+XGvXrtUvfvELnTx5UkVFRSoqKtKxY8eUkZGh3bt3W9/mi4iI0I4dO7R79+6r/vyVK1dKkh588EG38YkTJ17TfoWEhFh/dzqdKioqUp8+ffTNN9/I6XTaes9PPvlEzZo1U7NmzdS5c2ctW7ZMI0aM0HPPPXfJ16xcuVIxMTHKysqyxho0aKAHH3xQp06d0t/+9jdbvQC4GIfzANSoefPmqV27dnI6nXr77bf12WefKSgoyNq+Z88eGWM0ffp0TZ8+vdL3OHLkiJo3b66nnnpKgwcPVrt27dSxY0f1799fI0aMuOxhqW+//VZ+fn5q3bq12/j1119/Tfu1YcMGzZw5Uzk5OSotLXXb5nQ6FR4eXuX3TE1N1TPPPCOHw6GGDRuqffv2ioiIuOxrvv32W7Vt21Z+fu7/H7l9+/bWdgDVgxAFoEZ1797d+nZeZmamevXqpbvvvlu7du1So0aN5HK5JElTpkxRRkZGpe/Rpk0bSVLv3r21d+9e/elPf9Inn3yiN998Uy+//LLmz5+vcePGXXOvl7pIZ0VFhdvzvXv3ql+/frrhhhv00ksvKT4+XoGBgVq5cqVefvlla5+qKjIyUunp6bZeC8DzCFEAvMbf31/Z2dm65ZZb9Oqrr2rq1Klq1aqVpPOHoK4mQDRt2lRjxozRmDFjdOrUKfXu3VtPPPHEJUNUy5Yt5XK5tHfvXrfVp127dl1U26RJE504ceKi8R+v5vz5z39WWVmZPvroI7Vo0cIaX7du3RX7r24tW7bUF198IZfL5bYa9fXXX1vbpUsHRABXj3OiAHhV37591b17d82ZM0dnzpxRVFSU+vbtq9dff12HDx++qP7o0aPW348dO+a2rVGjRmrTpo3Kysou+Xm33XabJGnu3Llu43PmzLmotnXr1nI6nfriiy+sscOHD1901XB/f39JkjHGGnM6nVq4cOEl+/CUAQMGqKCgQEuXLrXGzp07p1deeUWNGjVSnz59JEkNGzaUpEpDIoCrw0oUAK/77//+b/3nf/6nFi1apHvvvVfz5s1Tr169lJSUpHvuuUetWrVSYWGhcnJydOjQIf3zn/+UJHXo0EF9+/ZV165d1bRpU23evFkffPCBJkyYcMnPSk5OVlZWln73u9/J6XSqZ8+eWrNmjfbs2XNR7bBhw/Too4/qzjvv1IMPPqjS0lK99tprateunbZs2WLV/fznP1dgYKAGDRqk//qv/9KpU6e0YMECRUVFVRoEPWn8+PF6/fXXNXr0aOXn5yshIUEffPCBNmzYoDlz5qhx48aSzp8I36FDBy1dulTt2rVT06ZN1bFjR3Xs2LFG+wV8mre/HgigfrhwiYO8vLyLtlVUVJjWrVub1q1bm3PnzhljjNm7d68ZOXKkiYmJMQ0aNDDNmzc3t99+u/nggw+s1z3zzDOme/fuJiIiwoSEhJgbbrjB/OY3vzFnz561aiq7HMHp06fNgw8+aK677joTGhpqBg0aZA4ePFjpV/4/+eQT07FjRxMYGGiuv/568+6771b6nh999JHp1KmTCQ4ONgkJCea5554zb7/9tpFk9u3bZ9VV5RIHV7p8w6Xer7Cw0IwZM8ZERkaawMBAk5SUZBYuXHjRazdu3Gi6du1qAgMDudwBYIPDmB+sPwMAAOCqcE4UAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIGLbXqQy+XSd999p8aNG3OLBQAAfIQxRidPnlRcXNxFN/P+IUKUB3333XeKj4/3dhsAAMCGgwcP6ic/+ckltxOiPOjC7RUOHjyosLAwL3cDAACuRnFxseLj463f45dCiPKgC4fwwsLCCFEAAPiYK52Kw4nlAAAANhCiAAAAbCBEAQAA2MA5UV5WUVGh8vJyb7fhdQ0aNJC/v7+32wAA4KoRorzEGKOCggKdOHHC263UGhEREYqJieGaWgAAn0CI8pILASoqKkoNGzas18HBGKPS0lIdOXJEkhQbG+vljgAAuDJClBdUVFRYAeq6667zdju1QkhIiCTpyJEjioqK4tAeAKDW48RyL7hwDlTDhg293EntcmE+OEcMAOALCFFeVJ8P4VWG+QAA+BJCFAAAgA2EKAAAABsIUaiS0aNHKzMz86Lx9evXy+Fw6MSJE1q/fr0GDx6s2NhYhYaGKjk5WYsXL675ZgEAddZh52lt3Fukw87TXuuBb+eh2m3cuFGdOnXSo48+qujoaK1YsUIjR45UeHi4br/9dm+3BwDwcUvzDmja8i/lMpKfQ8oekqSh3VrUeB+EKFS7xx57zO35Qw89pE8++UTLly8nRAEArslh52krQEmSy0iPLd+u3u2aKTY8pEZ74XBeHVAbljSvxOl0qmnTpt5uAwDg4/YVlVgB6oIKY7S/qLTGe2Elysd5Y0lzxYoVatSokdtYRUXFJevff/995eXl6fXXX/doXwCAui8xMlR+DrkFKX+HQwmRNX/tRVaifNilljQ9vSJ1yy23aNu2bW6PN998s9LadevWacyYMVqwYIFuvPFGj/YFAKj7YsNDlD0kSf7/d21Bf4dDzw7pWOOH8iRWonza5ZY0PfnDFBoaqjZt2riNHTp06KK6v/3tbxo0aJBefvlljRw50mP9AADql6HdWqh3u2baX1SqhMiGXglQEiHKp9WmJc0fW79+vW6//XY999xzGj9+vLfbAQDUMbHhIV4LTxdwOM+H1aYlzR9at26dBg4cqAcffFB33XWXCgoKVFBQoOPHj3u1LwAAqhMrUT6utixp/tA777yj0tJSZWdnKzs72xrv06eP1q9f773GAACoRg5jjLlyGewoLi5WeHi4nE6nwsLCrPEzZ85o3759SkxMVHBwsBc7rF2YFwBAbXCp398/xuE8AAAAGwhRAAAANhCiAAAAbCBEAQAA2ECI8iLO6XfHfAAAfAkhygsaNGggSSotrfmbJdZmF+bjwvwAAFCbcZ0oL/D391dERISOHDkiSWrYsKEc/3fBzPrIGKPS0lIdOXJEERER8vf393ZLAABcESHKS2JiYiTJClKQIiIirHkBAKC2I0R5icPhUGxsrKKiolReXu7tdryuQYMGrEABAHwKIcrL/P39CQ8AAPggTiwHAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwIZaEaLmzZunhIQEBQcHKzU1VZs2bbps/bJly3TDDTcoODhYSUlJWrlypdt2Y4xmzJih2NhYhYSEKD09Xbt373arOX78uIYPH66wsDBFRERo7NixOnXqVKWft2fPHjVu3FgRERHXtJ8AAKDu8HqIWrp0qSZNmqSZM2dqy5Yt6ty5szIyMnTkyJFK6zdu3KisrCyNHTtWW7duVWZmpjIzM7V9+3arZvbs2Zo7d67mz5+v3NxchYaGKiMjQ2fOnLFqhg8frh07dmj16tVasWKFPvvsM40fP/6izysvL1dWVpZuvvnm6t95AADgsxzGGOPNBlJTU9WtWze9+uqrkiSXy6X4+Hg98MADmjp16kX1Q4cOVUlJiVasWGGN9ejRQ8nJyZo/f76MMYqLi9PkyZM1ZcoUSZLT6VR0dLQWLVqkYcOGaefOnerQoYPy8vKUkpIiSVq1apUGDBigQ4cOKS4uznrvRx99VN9995369euniRMn6sSJE1e9b8XFxQoPD5fT6VRYWJid6QEAADXsan9/e3Ul6uzZs8rPz1d6ero15ufnp/T0dOXk5FT6mpycHLd6ScrIyLDq9+3bp4KCArea8PBwpaamWjU5OTmKiIiwApQkpaeny8/PT7m5udbY2rVrtWzZMs2bN+/adxYAANQpAd788KKiIlVUVCg6OtptPDo6Wl9//XWlrykoKKi0vqCgwNp+YexyNVFRUW7bAwIC1LRpU6vm2LFjGj16tN59992rXkUqKytTWVmZ9by4uPiqXgcAAHyP18+Jqq3uuece3X333erdu/dVvyY7O1vh4eHWIz4+3oMdAgAAb/JqiIqMjJS/v78KCwvdxgsLCxUTE1Ppa2JiYi5bf+HPK9X8+MT1c+fO6fjx41bN2rVr9cILLyggIEABAQEaO3asnE6nAgIC9Pbbb1fa27Rp0+R0Oq3HwYMHr2YaAACAD/JqiAoMDFTXrl21Zs0aa8zlcmnNmjVKS0ur9DVpaWlu9ZK0evVqqz4xMVExMTFuNcXFxcrNzbVq0tLSdOLECeXn51s1a9eulcvlUmpqqqTz501t27bNejz11FNq3Lixtm3bpjvvvLPS3oKCghQWFub2AAAAdZNXz4mSpEmTJmnUqFFKSUlR9+7dNWfOHJWUlGjMmDGSpJEjR6p58+bKzs6WJD300EPq06ePXnzxRQ0cOFBLlizR5s2b9cYbb0iSHA6HJk6cqGeeeUZt27ZVYmKipk+frri4OGVmZkqS2rdvr/79++uee+7R/PnzVV5ergkTJmjYsGHWN/Pat2/v1ufmzZvl5+enjh071tDMAACA2szrIWro0KE6evSoZsyYoYKCAiUnJ2vVqlXWieEHDhyQn9+/F8x69uyp9957T48//rgee+wxtW3bVh9++KFbuHnkkUdUUlKi8ePH68SJE+rVq5dWrVql4OBgq2bx4sWaMGGC+vXrJz8/P911112aO3duze04AADwaV6/TlRdxnWiAADwPT5xnSgAAABfRYgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhQK0LUvHnzlJCQoODgYKWmpmrTpk2XrV+2bJluuOEGBQcHKykpSStXrnTbbozRjBkzFBsbq5CQEKWnp2v37t1uNcePH9fw4cMVFhamiIgIjR07VqdOnbK279q1S7fccouio6MVHBysVq1a6fHHH1d5eXn17TgAAPBZXg9RS5cu1aRJkzRz5kxt2bJFnTt3VkZGho4cOVJp/caNG5WVlaWxY8dq69atyszMVGZmprZv327VzJ49W3PnztX8+fOVm5ur0NBQZWRk6MyZM1bN8OHDtWPHDq1evVorVqzQZ599pvHjx1vbGzRooJEjR+qTTz7Rrl27NGfOHC1YsEAzZ8703GQAAACf4TDGGG82kJqaqm7duunVV1+VJLlcLsXHx+uBBx7Q1KlTL6ofOnSoSkpKtGLFCmusR48eSk5O1vz582WMUVxcnCZPnqwpU6ZIkpxOp6Kjo7Vo0SINGzZMO3fuVIcOHZSXl6eUlBRJ0qpVqzRgwAAdOnRIcXFxlfY6adIk5eXl6e9///tV7VtxcbHCw8PldDoVFhZWpXkBAADecbW/v726EnX27Fnl5+crPT3dGvPz81N6erpycnIqfU1OTo5bvSRlZGRY9fv27VNBQYFbTXh4uFJTU62anJwcRUREWAFKktLT0+Xn56fc3NxKP3fPnj1atWqV+vTpY29nAQBAneLVEFVUVKSKigpFR0e7jUdHR6ugoKDS1xQUFFy2/sKfV6qJiopy2x4QEKCmTZte9Lk9e/ZUcHCw2rZtq5tvvllPPfXUJfenrKxMxcXFbg8AAFA3ef2cqNpu6dKl2rJli9577z19/PHHeuGFFy5Zm52drfDwcOsRHx9fg50CAICa5NUQFRkZKX9/fxUWFrqNFxYWKiYmptLXxMTEXLb+wp9Xqvnxievnzp3T8ePHL/rc+Ph4dejQQVlZWZo1a5aeeOIJVVRUVNrbtGnT5HQ6rcfBgwcvt/sAAMCHeTVEBQYGqmvXrlqzZo015nK5tGbNGqWlpVX6mrS0NLd6SVq9erVVn5iYqJiYGLea4uJi5ebmWjVpaWk6ceKE8vPzrZq1a9fK5XIpNTX1kv26XC6Vl5fL5XJVuj0oKEhhYWFuDwAAUDcFeLuBSZMmadSoUUpJSVH37t01Z84clZSUaMyYMZKkkSNHqnnz5srOzpYkPfTQQ+rTp49efPFFDRw4UEuWLNHmzZv1xhtvSJIcDocmTpyoZ555Rm3btlViYqKmT5+uuLg4ZWZmSpLat2+v/v3765577tH8+fNVXl6uCRMmaNiwYdY38xYvXqwGDRooKSlJQUFB2rx5s6ZNm6ahQ4eqQYMGNT9RAACgVvF6iBo6dKiOHj2qGTNmqKCgQMnJyVq1apV1YviBAwfk5/fvBbOePXvqvffe0+OPP67HHntMbdu21YcffqiOHTtaNY888ohKSko0fvx4nThxQr169dKqVasUHBxs1SxevFgTJkxQv3795Ofnp7vuuktz5861tgcEBOi5557Tv/71Lxlj1LJlS02YMEEPP/xwDcwKAAC102Hnae0rKlFiZKhiw0O83Y5Xef06UXUZ14kCANQlS/MOaNryL+Uykp9Dyh6SpKHdWni7rWrnE9eJAgAAvuGw87QVoCTJZaTHlm/XYedp7zbmRYQoAABwRfuKSqwAdUGFMdpfVOqdhmoBQhQAALiixMhQ+Tncx/wdDiVENvROQ7UAIQoAAFxRbHiIsockyd9xPkn5Oxx6dkjHen1yude/nQcAAHzD0G4t1LtdM+0vKlVCZMN6HaAkQhQAAKiC2PCQeh+eLuBwHgAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAACu2mHnaW3cW6TDztPebsXrArzdAAAA8A1L8w5o2vIv5TKSn0PKHpKkod1aeLstr2ElCgAAXNFh52krQEmSy0iPLd9er1ekqhyiVq5cqXHjxumRRx7R119/7bbt+++/16233lptzQEAgNphX1GJFaAuqDBG+4tKvdNQLVClEPXee+/pjjvuUEFBgXJyctSlSxctXrzY2n727Fn97W9/q/YmAQCAdyVGhsrP4T7m73AoIbKhdxqqBaoUop5//nm99NJLWrFihf7+97/rnXfe0X/913/prbfe8lR/AACgFogND1H2kCT5O84nKX+HQ88O6ajY8BAvd+Y9VTqxfPfu3Ro0aJD1/Be/+IWaNWumO+64Q+Xl5brzzjurvUEAAFA7DO3WQr3bNdP+olIlRDas1wFKqmKICgsLU2FhoRITE62xW265RStWrNDtt9+uQ4cOVXuDAACg9ogND6n28HTYeVr7ikqUGBnqU8GsSiGqe/fu+stf/qIePXq4jffp00d//vOfdfvtt1drcwAAoG7z5csmVOmcqIcffljBwcGVbuvbt6/+/Oc/a+TIkdXSGAAAqNt8/bIJVVqJ6tKli7p06aLi4uJKt3ft2lVdu3atlsYAAEDddrnLJvjCYb0qhaiIiAg5HI4r1lVUVNhuCAAA1A8XLpvwwyDlS5dNqFKIWrdunfV3Y4wGDBigN998U82bN6/2xgAAQN124bIJjy3frgpjfO6yCQ5jjLlyWeUaN26sf/7zn2rVqlV19lRnFBcXKzw8XE6nU2FhYd5uBwCAWumw83StumzC1f7+5gbEAADAqzxx2YSawA2IAQAAbLjmEHU1J5oDAADUNVU6nDdkyBC352fOnNG9996r0NBQt/Hly5dfe2cAAAC1WJVCVHh4uNvzX/7yl9XaDAAAgK+oUohauHChp/oAAADwKZxYDgAAYEOtCFHz5s1TQkKCgoODlZqaqk2bNl22ftmyZbrhhhsUHByspKQkrVy50m27MUYzZsxQbGysQkJClJ6ert27d7vVHD9+XMOHD1dYWJgiIiI0duxYnTp1ytq+fv16DR48WLGxsQoNDVVycrIWL15cfTsNAAB8mtdD1NKlSzVp0iTNnDlTW7ZsUefOnZWRkaEjR45UWr9x40ZlZWVp7Nix2rp1qzIzM5WZmant27dbNbNnz9bcuXM1f/585ebmKjQ0VBkZGTpz5oxVM3z4cO3YsUOrV6/WihUr9Nlnn2n8+PFun9OpUyf98Y9/1BdffKExY8Zo5MiRWrFihecmAwAA+IxrumJ5dUhNTVW3bt306quvSpJcLpfi4+P1wAMPaOrUqRfVDx06VCUlJW5hpkePHkpOTtb8+fNljFFcXJwmT56sKVOmSJKcTqeio6O1aNEiDRs2TDt37lSHDh2Ul5enlJQUSdKqVas0YMAAHTp0SHFxcZX2OnDgQEVHR+vtt9++qn3jiuUAAPieq/397dWVqLNnzyo/P1/p6enWmJ+fn9LT05WTk1Ppa3JyctzqJSkjI8Oq37dvnwoKCtxqwsPDlZqaatXk5OQoIiLCClCSlJ6eLj8/P+Xm5l6yX6fTqaZNm1Z9RwEAQJ3j1du+FBUVqaKiQtHR0W7j0dHR+vrrryt9TUFBQaX1BQUF1vYLY5eriYqKctseEBCgpk2bWjU/9v777ysvL0+vv/76JfenrKxMZWVl1vPi4uJL1gIAAN/m9XOifMG6des0ZswYLViwQDfeeOMl67KzsxUeHm494uPja7BLAABQk7waoiIjI+Xv76/CwkK38cLCQsXExFT6mpiYmMvWX/jzSjU/PnH93LlzOn78+EWf+7e//U2DBg3Syy+/rJEjR152f6ZNmyan02k9Dh48eNl6AADgu7waogIDA9W1a1etWbPGGnO5XFqzZo3S0tIqfU1aWppbvSStXr3aqk9MTFRMTIxbTXFxsXJzc62atLQ0nThxQvn5+VbN2rVr5XK5lJqaao2tX79eAwcO1HPPPef2zb1LCQoKUlhYmNsDAADUUcbLlixZYoKCgsyiRYvMV199ZcaPH28iIiJMQUGBMcaYESNGmKlTp1r1GzZsMAEBAeaFF14wO3fuNDNnzjQNGjQwX375pVUza9YsExERYf70pz+ZL774wgwePNgkJiaa06dPWzX9+/c3Xbp0Mbm5uebzzz83bdu2NVlZWdb2tWvXmoYNG5pp06aZw4cPW49jx45d9b45nU4jyTidzmuZIgAAUIOu9ve310OUMca88sorpkWLFiYwMNB0797d/OMf/7C29enTx4waNcqt/v333zft2rUzgYGB5sYbbzQff/yx23aXy2WmT59uoqOjTVBQkOnXr5/ZtWuXW82xY8dMVlaWadSokQkLCzNjxowxJ0+etLaPGjXKSLro0adPn6veL0IUAAC+52p/f3v9OlF1GdeJAgDA9/jEdaIAAAB8FSEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIcoHHXae1sa9RTrsPO3tVgAAqLcCvN0AqmZp3gFNW/6lXEbyc0jZQ5I0tFsLb7eFOuqw87T2FZUoMTJUseEh3m4HAGoVQpQPOew8bQUoSXIZ6bHl29W7XTN+waHaEdgB4PI4nOdD9hWVWAHqggpjtL+o1DsNoc66VGDnEDIA/BshyockRobKz+E+5u9wKCGyoXcaQp1FYAeAKyNE+ZDY8BBlD0mSv+N8kvJ3OPTskI4cykO1I7ADwJVxTpSPGdqthXq3a6b9RaVKiGxIgIJHXAjsjy3frgpjCOw1jBP6Ad9AiPJBseEh/MMKjyOwewcn9AO+g8N5AC4pNjxEaa2vI0DVEE7oB3wLIQoAaglO6Ad8CyEKAGoJTugHfAshCgBqCb6BC/gWTiwHgFqEE/oB30GIAoBahm/gAr6Bw3kAAAA2EKIAAABsIEQB9cBh52lt3Fvk9esN1ZY+AKA6cE4UUMfVlitg15Y+AKC6sBIF1GG15QrYtaUPAKhOhCigDqstV8CuLX0AQHUiRAF1WG25AnZt6QMAqhMhCqjDassVsGtLHwBQnRzGGHPlMthRXFys8PBwOZ1OhYWFebsd1GOHnadrxRWwa0sfAHA5V/v7m2/nAfVAbbkCdm3pAwCqA4fzAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUddp7Wxr1FOuw87e1WAADwGdyAuJ5bmndA05Z/KZeR/BxS9pAkDe3WwtttAQBQ67ESVY8ddp62ApQkuYz02PLtrEgBAHAVCFH12L6iEitAXVBhjPYXlXqnIQAAfAghqh5LjAyVn8N9zN/hUEJkQ+80BACADyFE1WOx4SHKHpIkf8f5JOXvcOjZIR0VGx7i5c4AAKj9OLG8nhvarYV6t2um/UWlSohsSIACAOAqEaKg2PAQwhMAAFXE4TwAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCANQI7tOJusbrIWrevHlKSEhQcHCwUlNTtWnTpsvWL1u2TDfccIOCg4OVlJSklStXum03xmjGjBmKjY1VSEiI0tPTtXv3brea48ePa/jw4QoLC1NERITGjh2rU6dOWdvPnDmj0aNHKykpSQEBAcrMzKy2/QWA+mhp3gHdNGut7l6Qq5tmrdXSvAPebgm4Zl4NUUuXLtWkSZM0c+ZMbdmyRZ07d1ZGRoaOHDlSaf3GjRuVlZWlsWPHauvWrcrMzFRmZqa2b99u1cyePVtz587V/PnzlZubq9DQUGVkZOjMmTNWzfDhw7Vjxw6tXr1aK1as0Geffabx48db2ysqKhQSEqIHH3xQ6enpnpsAAB7DqkftwX06UVc5jDHmymWekZqaqm7duunVV1+VJLlcLsXHx+uBBx7Q1KlTL6ofOnSoSkpKtGLFCmusR48eSk5O1vz582WMUVxcnCZPnqwpU6ZIkpxOp6Kjo7Vo0SINGzZMO3fuVIcOHZSXl6eUlBRJ0qpVqzRgwAAdOnRIcXFxbp85evRonThxQh9++GGV96+4uFjh4eFyOp0KCwur8usB2LM074D1S9vPIWUPSdLQbi283Va9tXFvke5ekHvR+B/u6aG01td5oSPg8q7297fXVqLOnj2r/Px8t5UePz8/paenKycnp9LX5OTkXLQylJGRYdXv27dPBQUFbjXh4eFKTU21anJychQREWEFKElKT0+Xn5+fcnMv/o8cgG9h1aP24T6dqKu8FqKKiopUUVGh6Ohot/Ho6GgVFBRU+pqCgoLL1l/480o1UVFRbtsDAgLUtGnTS37u1SorK1NxcbHbA0DN2ldUYgWoCyqM0f6iUu80BO7TiTqL275Uo+zsbD355JPebgOo1y6sevwwSLHq4X3cpxN1kddWoiIjI+Xv76/CwkK38cLCQsXExFT6mpiYmMvWX/jzSjU/PnH93LlzOn78+CU/92pNmzZNTqfTehw8ePCa3g9A1bHqUXvFhocorfV1/G+BOsNrISowMFBdu3bVmjVrrDGXy6U1a9YoLS2t0tekpaW51UvS6tWrrfrExETFxMS41RQXFys3N9eqSUtL04kTJ5Sfn2/VrF27Vi6XS6mpqde0T0FBQQoLC3N7AKh5Q7u10OdTb9Ef7umhz6fewknlADzCq4fzJk2apFGjRiklJUXdu3fXnDlzVFJSojFjxkiSRo4cqebNmys7O1uS9NBDD6lPnz568cUXNXDgQC1ZskSbN2/WG2+8IUlyOByaOHGinnnmGbVt21aJiYmaPn264uLirGs9tW/fXv3799c999yj+fPnq7y8XBMmTNCwYcPcvpn31Vdf6ezZszp+/LhOnjypbdu2SZKSk5NrbH4A2BcbHsKKBwCP8mqIGjp0qI4ePaoZM2aooKBAycnJWrVqlXVi+IEDB+Tn9+/Fsp49e+q9997T448/rscee0xt27bVhx9+qI4dO1o1jzzyiEpKSjR+/HidOHFCvXr10qpVqxQcHGzVLF68WBMmTFC/fv3k5+enu+66S3PnznXrbcCAAfr222+t5126dJF0/mKeAAAAXr1OVF3HdaIAAPA9tf46UQAAAL6MEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKPuGw87Q27i3SYedpb7cCAIAkL9+AGLgaS/MOaNryL+Uykp9Dyh6SpKHdWni7LQBAPcdKFGq1w87TVoCSJJeRHlu+nRUpAIDXEaJQq+0rKrEC1AUVxmh/Ual3GgIA4P8QolCrJUaGys/hPubvcCghsqF3GgIA4P8QolCrxYaHKHtIkvwd55OUv8OhZ4d0VGx4iJc7AwDUd5xYjlpvaLcW6t2umfYXlSohsiEBCgBQKxCi4BNiw0MITwCAWoXDeQAAADYQogAAtRYX2kVtxuE8AECtxIV2UduxEgUAqHW40C58ASEKPoElfaB+4UK78AUczkOtx5I+UP9cuNDuD4MUF9pFbcNKFGo1lvSB+okL7cIXsBKFWu1yS/r8YwrUbVxoF7UdIQq1Gkv6QP3GhXZRm3E4D7UaS/oAgNqKlSjUeizpAwBqI0IUfAJL+gCA2obDeQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQqo57i5MwDYwyUOgHqMmzsDgH2sRAH1FDd3BoBrQ4gC6qnL3dwZAHBlhCignrpwc+cf4ubOAHD1CFFAPcXNnQHg2nBiOVCPcXNnALCPEAXUc9zcGQDs4XAeAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAV7CPesAwLfx7TzAC7hnHQD4PlaigBrGPesAoG4gRAE1rK7cs47DkQDqOw7nATXswj3rfhikfO2edRyOBABWooAa5+v3rONwJACcx0oU4AW+fM+6yx2O9KX9AIBrRYgCvMRX71lXFw5HAkB14HAegCrx9cORAFBdWIkCUGW+fDgSAKoLIQqALb56OBIAqguH8wAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAoNpwY2rUJ1ziAABQLbgxNeqbWrESNW/ePCUkJCg4OFipqanatGnTZeuXLVumG264QcHBwUpKStLKlSvdthtjNGPGDMXGxiokJETp6enavXu3W83x48c1fPhwhYWFKSIiQmPHjtWpU6fcar744gvdfPPNCg4OVnx8vGbPnl09OwwAdYwv3Zia1TJUF6+HqKVLl2rSpEmaOXOmtmzZos6dOysjI0NHjhyptH7jxo3KysrS2LFjtXXrVmVmZiozM1Pbt2+3ambPnq25c+dq/vz5ys3NVWhoqDIyMnTmzBmrZvjw4dqxY4dWr16tFStW6LPPPtP48eOt7cXFxfr5z3+uli1bKj8/X88//7yeeOIJvfHGG56bDADwUZe7MXVtsjTvgG6atVZ3L8jVTbPWamneAW+3BB/mMMaYK5d5Tmpqqrp166ZXX31VkuRyuRQfH68HHnhAU6dOvah+6NChKikp0YoVK6yxHj16KDk5WfPnz5cxRnFxcZo8ebKmTJkiSXI6nYqOjtaiRYs0bNgw7dy5Ux06dFBeXp5SUlIkSatWrdKAAQN06NAhxcXF6bXXXtOvf/1rFRQUKDAwUJI0depUffjhh/r666+vat+Ki4sVHh4up9OpsLCwa5onAKjNDjtP66ZZay+6MfXnU2+pNVe294UeUTtc7e9vr65EnT17Vvn5+UpPT7fG/Pz8lJ6erpycnEpfk5OT41YvSRkZGVb9vn37VFBQ4FYTHh6u1NRUqyYnJ0cRERFWgJKk9PR0+fn5KTc316rp3bu3FaAufM6uXbv0/fffX+OeA0Dd4gs3pvaV1TL4Dq+eWF5UVKSKigpFR0e7jUdHR19ytaegoKDS+oKCAmv7hbHL1URFRbltDwgIUNOmTd1qEhMTL3qPC9uaNGlyUW9lZWUqKyuznhcXF1e6DwBQF9X2G1MnRobKz6GLVqISIht6ryn4NK+fE1WXZGdnKzw83HrEx8d7uyUAqFGx4SFKa31drQtQkm+slsG3eHUlKjIyUv7+/iosLHQbLywsVExMTKWviYmJuWz9hT8LCwsVGxvrVpOcnGzV/PjE9XPnzun48eNu71PZ5/zwM35s2rRpmjRpkvW8uLiYIAUAtUhtXy2Db/HqSlRgYKC6du2qNWvWWGMul0tr1qxRWlpapa9JS0tzq5ek1atXW/WJiYmKiYlxqykuLlZubq5Vk5aWphMnTig/P9+qWbt2rVwul1JTU62azz77TOXl5W6fc/3111d6KE+SgoKCFBYW5vYAANQutXm1DD7GeNmSJUtMUFCQWbRokfnqq6/M+PHjTUREhCkoKDDGGDNixAgzdepUq37Dhg0mICDAvPDCC2bnzp1m5syZpkGDBubLL7+0ambNmmUiIiLMn/70J/PFF1+YwYMHm8TERHP69Gmrpn///qZLly4mNzfXfP7556Zt27YmKyvL2n7ixAkTHR1tRowYYbZv326WLFliGjZsaF5//fWr3jen02kkGafTeS1TBAAAatDV/v72eogyxphXXnnFtGjRwgQGBpru3bubf/zjH9a2Pn36mFGjRrnVv//++6Zdu3YmMDDQ3Hjjjebjjz922+5yucz06dNNdHS0CQoKMv369TO7du1yqzl27JjJysoyjRo1MmFhYWbMmDHm5MmTbjX//Oc/Ta9evUxQUJBp3ry5mTVrVpX2ixAFAIDvudrf316/TlRdxnWiAADwPT5xnSgAAABfRYgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbPDqDYjrugvXMS0uLvZyJwAA4Gpd+L19peuRE6I86OTJk5Kk+Ph4L3cCAACq6uTJkwoPD7/kdm774kEul0vfffedGjduLIfDUWlNcXGx4uPjdfDgwXp9axjm4Tzm4d+Yi/OYh/OYh39jLs7z5DwYY3Ty5EnFxcXJz+/SZz6xEuVBfn5++slPfnJVtWFhYfX6P4YLmIfzmId/Yy7OYx7OYx7+jbk4z1PzcLkVqAs4sRwAAMAGQhQAAIANhCgvCwoK0syZMxUUFOTtVryKeTiPefg35uI85uE85uHfmIvzasM8cGI5AACADaxEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZClIfNmzdPCQkJCg4OVmpqqjZt2nTJ2h07duiuu+5SQkKCHA6H5syZU3ON1oCqzMWCBQt08803q0mTJmrSpInS09MvW+9LqjIPy5cvV0pKiiIiIhQaGqrk5GT9/ve/r8FuPasqc/FDS5YskcPhUGZmpmcbrCFVmYdFixbJ4XC4PYKDg2uwW8+p6s/DiRMndP/99ys2NlZBQUFq166dVq5cWUPdelZV5qJv374X/Uw4HA4NHDiwBjv2jKr+TMyZM0fXX3+9QkJCFB8fr4cfflhnzpzxXIMGHrNkyRITGBho3n77bbNjxw5zzz33mIiICFNYWFhp/aZNm8yUKVPMH/7wBxMTE2Nefvnlmm3Yg6o6F3fffbeZN2+e2bp1q9m5c6cZPXq0CQ8PN4cOHarhzqtXVedh3bp1Zvny5earr74ye/bsMXPmzDH+/v5m1apVNdx59avqXFywb98+07x5c3PzzTebwYMH10yzHlTVeVi4cKEJCwszhw8fth4FBQU13HX1q+o8lJWVmZSUFDNgwADz+eefm3379pn169ebbdu21XDn1a+qc3Hs2DG3n4ft27cbf39/s3DhwpptvJpVdR4WL15sgoKCzOLFi82+ffvMX//6VxMbG2sefvhhj/VIiPKg7t27m/vvv996XlFRYeLi4kx2dvYVX9uyZcs6FaKuZS6MMebcuXOmcePG5p133vFUizXiWufBGGO6dOliHn/8cU+0V6PszMW5c+dMz549zZtvvmlGjRpVJ0JUVedh4cKFJjw8vIa6qzlVnYfXXnvNtGrVypw9e7amWqwx1/rvxMsvv2waN25sTp065akWa0RV5+H+++83t956q9vYpEmTzE033eSxHjmc5yFnz55Vfn6+0tPTrTE/Pz+lp6crJyfHi53VvOqYi9LSUpWXl6tp06aeatPjrnUejDFas2aNdu3apd69e3uyVY+zOxdPPfWUoqKiNHbs2Jpo0+PszsOpU6fUsmVLxcfHa/DgwdqxY0dNtOsxdubho48+Ulpamu6//35FR0erY8eOevbZZ1VRUVFTbXtEdfx7+dZbb2nYsGEKDQ31VJseZ2ceevbsqfz8fOuQ3zfffKOVK1dqwIABHuuTGxB7SFFRkSoqKhQdHe02Hh0dra+//tpLXXlHdczFo48+qri4OLf/oHyN3XlwOp1q3ry5ysrK5O/vr9/97nf62c9+5ul2PcrOXHz++ed66623tG3bthrosGbYmYfrr79eb7/9tjp16iSn06kXXnhBPXv21I4dO676hue1jZ15+Oabb7R27VoNHz5cK1eu1J49e3TfffepvLxcM2fOrIm2PeJa/73ctGmTtm/frrfeestTLdYIO/Nw9913q6ioSL169ZIxRufOndO9996rxx57zGN9EqJQ682aNUtLlizR+vXr68wJtFXRuHFjbdu2TadOndKaNWs0adIktWrVSn379vV2azXm5MmTGjFihBYsWKDIyEhvt+NVaWlpSktLs5737NlT7du31+uvv66nn37ai53VLJfLpaioKL3xxhvy9/dX165d9b//+796/vnnfTpEXau33npLSUlJ6t69u7dbqXHr16/Xs88+q9/97ndKTU3Vnj179NBDD+npp5/W9OnTPfKZhCgPiYyMlL+/vwoLC93GCwsLFRMT46WuvONa5uKFF17QrFmz9Omnn6pTp06ebNPj7M6Dn5+f2rRpI0lKTk7Wzp07lZ2d7dMhqqpzsXfvXu3fv1+DBg2yxlwulyQpICBAu3btUuvWrT3btAdUx78TDRo0UJcuXbRnzx5PtFgj7MxDbGysGjRoIH9/f2usffv2Kigo0NmzZxUYGOjRnj3lWn4mSkpKtGTJEj311FOebLFG2JmH6dOna8SIERo3bpwkKSkpSSUlJRo/frx+/etfy8+v+s9g4pwoDwkMDFTXrl21Zs0aa8zlcmnNmjVu/y+yPrA7F7Nnz9bTTz+tVatWKSUlpSZa9ajq+plwuVwqKyvzRIs1pqpzccMNN+jLL7/Utm3brMcdd9yhW265Rdu2bVN8fHxNtl9tquNnoqKiQl9++aViY2M91abH2ZmHm266SXv27LHCtCT961//UmxsrM8GKOnafiaWLVumsrIy/fKXv/R0mx5nZx5KS0svCkoXQrbx1G2CPXbKOsySJUtMUFCQWbRokfnqq6/M+PHjTUREhPV15BEjRpipU6da9WVlZWbr1q1m69atJjY21kyZMsVs3brV7N6921u7UG2qOhezZs0ygYGB5oMPPnD76u7Jkye9tQvVoqrz8Oyzz5pPPvnE7N2713z11VfmhRdeMAEBAWbBggXe2oVqU9W5+LG68u28qs7Dk08+af7617+avXv3mvz8fDNs2DATHBxsduzY4a1dqBZVnYcDBw6Yxo0bmwkTJphdu3aZFStWmKioKPPMM894axeqjd3/Nnr16mWGDh1a0+16TFXnYebMmaZx48bmD3/4g/nmm2/MJ598Ylq3bm1+8YtfeKxHQpSHvfLKK6ZFixYmMDDQdO/e3fzjH/+wtvXp08eMGjXKer5v3z4j6aJHnz59ar5xD6jKXLRs2bLSuZg5c2bNN17NqjIPv/71r02bNm1McHCwadKkiUlLSzNLlizxQteeUZW5+LG6EqKMqdo8TJw40aqNjo42AwYMMFu2bPFC19Wvqj8PGzduNKmpqSYoKMi0atXK/OY3vzHnzp2r4a49o6pz8fXXXxtJ5pNPPqnhTj2rKvNQXl5unnjiCdO6dWsTHBxs4uPjzX333We+//57j/XnMMZTa1wAAAB1F+dEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogCgDhg9erQyMzO93QZQrxCiAHjU6NGj5XA4rMd1112n/v3764svvvB2a9Xih/t24dGrVy+Pfd7+/fvlcDi0bds2t/Hf/va3WrRokcc+F8DFCFEAPK5///46fPiwDh8+rDVr1iggIEC33367t9uqNgsXLrT27/Dhw/roo48qrSsvL/dYD+Hh4YqIiPDY+wO4GCEKgMcFBQUpJiZGMTExSk5O1tSpU3Xw4EEdPXpUt956qyZMmOBWf/ToUQUGBlp3cE9ISNDTTz+trKwshYaGqnnz5po3b57ba1566SUlJSUpNDRU8fHxuu+++3Tq1Clr+7fffqtBgwapSZMmCg0N1Y033qiVK1dKkr7//nsNHz5czZo1U0hIiNq2bauFCxde9f5FRERY+xcTE6OmTZtaK0ZLly5Vnz59FBwcrMWLF+vYsWPKyspS8+bN1bBhQyUlJekPf/iD2/u5XC7Nnj1bbdq0UVBQkFq0aKHf/OY3kqTExERJUpcuXeRwONS3b19JFx/OKysr04MPPqioqCgFBwerV69eysvLs7avX79eDodDa9asUUpKiho2bKiePXtq165dV73fQH1HiAJQo06dOqV3331Xbdq00XXXXadx48bpvffeU1lZmVXz7rvvqnnz5rr11lutseeff16dO3fW1q1bNXXqVD300ENavXq1td3Pz09z587Vjh079M4772jt2rV65JFHrO3333+/ysrK9Nlnn+nLL7/Uc889p0aNGkmSpk+frq+++kp/+ctftHPnTr322muKjIyslv290OvOnTuVkZGhM2fOqGvXrvr444+1fft2jR8/XiNGjNCmTZus10ybNk2zZs2y+nrvvfcUHR0tSVbdp59+qsOHD2v58uWVfu4jjzyiP/7xj3rnnXe0ZcsWtWnTRhkZGTp+/Lhb3a9//Wu9+OKL2rx5swICAvT//t//q5b9BuoFj93aGACMMaNGjTL+/v4mNDTUhIaGGkkmNjbW5OfnG2OMOX36tGnSpIlZunSp9ZpOnTqZJ554wnresmVL079/f7f3HTp0qLntttsu+bnLli0z1113nfU8KSnJ7T1/aNCgQWbMmDG29k+SCQ4OtvYvNDTU/M///I/Zt2+fkWTmzJlzxfcYOHCgmTx5sjHGmOLiYhMUFGQWLFhQae2F9926davb+KhRo8zgwYONMcacOnXKNGjQwCxevNjafvbsWRMXF2dmz55tjDFm3bp1RpL59NNPrZqPP/7YSDKnT5+uyhQA9RYrUQA87pZbbtG2bdu0bds2bdq0SRkZGbrtttv07bffKjg4WCNGjNDbb78tSdqyZYu2b9+u0aNHu71HWlraRc937txpPf/000/Vr18/NW/eXI0bN9aIESN07NgxlZaWSpIefPBBPfPMM7rppps0c+ZMtxPbf/WrX2nJkiVKTk7WI488oo0bN1Zp/15++WVr/7Zt26af/exn1raUlBS32oqKCj399NNKSkpS06ZN1ahRI/31r3/VgQMHJEk7d+5UWVmZ+vXrV6Uefmjv3r0qLy/XTTfdZI01aNBA3bt3d5szSerUqZP199jYWEnSkSNHbH82UJ8QogB4XGhoqNq0aaM2bdqoW7duevPNN1VSUqIFCxZIksaNG6fVq1fr0KFDWrhwoW699Va1bNnyqt9///79uv3229WpUyf98Y9/VH5+vnXO1NmzZ63P+OabbzRixAh9+eWXSklJ0SuvvCJJVqB7+OGH9d1336lfv36aMmXKVX9+TEyMtX9t2rRRaGio277/0PPPP6/f/va3evTRR7Vu3Tpt27ZNGRkZVp8hISFX/bnVoUGDBtbfHQ6HpPPnZAG4MkIUgBrncDjk5+en06dPS5KSkpKUkpKiBQsW6L333qv0vJx//OMfFz1v3769JCk/P18ul0svvviievTooXbt2um777676D3i4+N17733avny5Zo8ebIV4iSpWbNmGjVqlN59913NmTNHb7zxRnXusmXDhg0aPHiwfvnLX6pz585q1aqV/vWvf1nb27Ztq5CQEOuk+h8LDAyUdH5F61Jat26twMBAbdiwwRorLy9XXl6eOnToUE17AiDA2w0AqPvKyspUUFAg6fw34V599VWdOnVKgwYNsmrGjRunCRMmKDQ0VHfeeedF77FhwwbNnj1bmZmZWr16tZYtW6aPP/5YktSmTRuVl5frlVde0aBBg7RhwwbNnz/f7fUTJ07Ubbfdpnbt2un777/XunXrrBA2Y8YMde3aVTfeeKPKysq0YsUKa1t1a9u2rT744ANt3LhRTZo00UsvvaTCwkIr3AQHB+vRRx/VI488osDAQN100006evSoduzYobFjxyoqKkohISFatWqVfvKTnyg4OFjh4eFunxEaGqpf/epX+u///m81bdpULVq00OzZs1VaWqqxY8d6ZL+A+oiVKAAet2rVKsXGxio2NlapqanKy8vTsmXLrK/nS1JWVpYCAgKUlZWl4ODgi95j8uTJ2rx5s7p06aJnnnlGL730kjIyMiRJnTt31ksvvaTnnntOHTt21OLFi5Wdne32+oqKCt1///1q3769+vfvr3bt2ul3v/udpPOrO9OmTVOnTp3Uu3dv+fv7a8mSJR6Zi8cff1w//elPlZGRob59+yomJuaiK41Pnz5dkydP1owZM9S+fXsNHTrUOk8pICBAc+fO1euvv664uDgNHjy40s+ZNWuW7rrrLo0YMUI//elPtWfPHv31r39VkyZNPLJfQH3kMMYYbzcBAPv371fr1q2Vl5enn/70p27bEhISNHHiRE2cONE7zQFAJTicB8CrysvLdezYMT3++OPq0aPHRQEKAGorDucB8KoNGzYoNjZWeXl5F53H5G3PPvusGjVqVOnjtttu83Z7ALyMw3kAcAnHjx+/6ArfF4SEhKh58+Y13BGA2oQQBQAAYAOH8wAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2/H9EbZ7+AKj07QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAHHCAYAAABqVYatAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATYhJREFUeJzt3XtcVXW+//H3BmSDKKChgA4q3k3xkgaDWlgyg2mO1JxjkeOFo2NN9jOzprTJsMuEaZOOHsuySXtkeSvPqTG7GOr4SAkNNa951LTMAEVjo4mo7O/vj47rtAMVkMXm8no+HutBe63PWuuzvg9yv1l7rbUdxhgjAAAA2MbH2w0AAADUdQQuAAAAmxG4AAAAbEbgAgAAsBmBCwAAwGYELgAAAJsRuAAAAGxG4AIAALAZgQsAAMBmBC4A9d706dPlcDjKVetwODR9+nRb+xkwYIAGDBhQY7cHoOIIXABqjMWLF8vhcFiTn5+fWrZsqTFjxujYsWPebq/GadOmjcd4NW/eXDfddJP+67/+q0q2f/bsWU2fPl0bNmyoku0B9RmBC0CN8/TTT+vNN9/UggULdNttt2nJkiVKSEjQuXPnbNnfE088oaKiIlu2bbeePXvqzTff1JtvvqlHHnlE33//ve68804tWLDgmrd99uxZPfXUUwQuoAr4ebsBAPil2267TX369JEkjRs3TmFhYXr++ef1/vvva/jw4VW+Pz8/P/n51c5/Dlu2bKk//OEP1utRo0apffv2mj17tu677z4vdgbg5zjDBaDGu+mmmyRJhw4d8pj/1Vdf6d/+7d/UtGlTBQQEqE+fPnr//fc9ai5cuKCnnnpKHTp0UEBAgK677jr1799fa9eutWrKuoaruLhYDz30kJo1a6bGjRvrd7/7nb777rtSvY0ZM0Zt2rQpNb+sbS5atEi33nqrmjdvLqfTqeuvv14vv/xyhcbiaiIiItSlSxcdPnz4inXHjx/X2LFjFR4eroCAAPXo0UNvvPGGtfzIkSNq1qyZJOmpp56yPra0+/o1oK6qnX/SAahXjhw5Iklq0qSJNW/Pnj3q16+fWrZsqSlTpigoKEgrVqxQcnKy3n33Xd1xxx2Sfgo+6enpGjdunGJjY1VYWKgvvvhC27Zt029+85vL7nPcuHFasmSJ7rnnHvXt21fr1q3TkCFDruk4Xn75ZXXt2lW/+93v5Ofnp3/+85+6//775Xa7NWHChGva9iUXLlzQ0aNHdd111122pqioSAMGDNDBgwf1wAMPKDo6WitXrtSYMWNUUFCgBx98UM2aNdPLL7+sP/3pT7rjjjt05513SpK6d+9eJX0C9Y4BgBpi0aJFRpL59NNPzYkTJ8zRo0fNO++8Y5o1a2acTqc5evSoVTtw4EATExNjzp07Z81zu92mb9++pkOHDta8Hj16mCFDhlxxv2lpaebn/xzu2LHDSDL333+/R90999xjJJm0tDRr3ujRo03r1q2vuk1jjDl79mypuqSkJNO2bVuPeQkJCSYhIeGKPRtjTOvWrc1vf/tbc+LECXPixAnz5ZdfmrvvvttIMv/v//2/y25vzpw5RpJZsmSJNe/8+fMmPj7eNGrUyBQWFhpjjDlx4kSp4wVQOXykCKDGSUxMVLNmzRQVFaV/+7d/U1BQkN5//3396le/kiSdOnVK69at0/Dhw3X69Gnl5+crPz9fJ0+eVFJSkg4cOGDd1RgaGqo9e/bowIED5d7/mjVrJEkTJ070mD9p0qRrOq7AwEDrv10ul/Lz85WQkKCvv/5aLperUtv85JNP1KxZMzVr1kw9evTQypUrNXLkSD3//POXXWfNmjWKiIhQSkqKNa9BgwaaOHGizpw5o3/961+V6gXA5fGRIoAaZ/78+erYsaNcLpdef/11bdy4UU6n01p+8OBBGWM0bdo0TZs2rcxtHD9+XC1bttTTTz+tYcOGqWPHjurWrZsGDRqkkSNHXvGjsW+++UY+Pj5q166dx/xOnTpd03Ft2rRJaWlpyszM1NmzZz2WuVwuhYSEVHibcXFxevbZZ+VwONSwYUN16dJFoaGhV1znm2++UYcOHeTj4/k3d5cuXazlAKoWgQtAjRMbG2vdpZicnKz+/fvrnnvu0f79+9WoUSO53W5J0iOPPKKkpKQyt9G+fXtJ0s0336xDhw7pvffe0yeffKLXXntNs2fP1oIFCzRu3Lhr7vVyD0wtKSnxeH3o0CENHDhQnTt31osvvqioqCj5+/trzZo1mj17tnVMFRUWFqbExMRKrQug+hC4ANRovr6+Sk9P1y233KL//M//1JQpU9S2bVtJP30MVp6w0bRpU6Wmpio1NVVnzpzRzTffrOnTp182cLVu3Vput1uHDh3yOKu1f//+UrVNmjRRQUFBqfm/PEv0z3/+U8XFxXr//ffVqlUra/769euv2n9Va926tXbu3Cm32+1xluurr76ylkuXD5MAKo5ruADUeAMGDFBsbKzmzJmjc+fOqXnz5howYIBeeeUV5eTklKo/ceKE9d8nT570WNaoUSO1b99excXFl93fbbfdJkmaO3eux/w5c+aUqm3Xrp1cLpd27txpzcvJySn1tHdfX19JkjHGmudyubRo0aLL9mGXwYMHKzc3V8uXL7fmXbx4UfPmzVOjRo2UkJAgSWrYsKEklRkoAVQMZ7gA1Ap//vOf9e///u9avHix7rvvPs2fP1/9+/dXTEyM/vjHP6pt27bKy8tTZmamvvvuO3355ZeSpOuvv14DBgxQ79691bRpU33xxRd655139MADD1x2Xz179lRKSopeeukluVwu9e3bVxkZGTp48GCp2rvvvluPPfaY7rjjDk2cOFFnz57Vyy+/rI4dO2rbtm1W3W9/+1v5+/tr6NChuvfee3XmzBktXLhQzZs3LzM02mn8+PF65ZVXNGbMGGVnZ6tNmzZ65513tGnTJs2ZM0eNGzeW9NNF/tdff72WL1+ujh07qmnTpurWrZu6detWrf0CdYK3b5MEgEsuPRZi69atpZaVlJSYdu3amXbt2pmLFy8aY4w5dOiQGTVqlImIiDANGjQwLVu2NLfffrt55513rPWeffZZExsba0JDQ01gYKDp3Lmz+etf/2rOnz9v1ZT1CIeioiIzceJEc91115mgoCAzdOhQc/To0TIfk/DJJ5+Ybt26GX9/f9OpUyezZMmSMrf5/vvvm+7du5uAgADTpk0b8/zzz5vXX3/dSDKHDx+26iryWIirPfLictvLy8szqampJiwszPj7+5uYmBizaNGiUutu3rzZ9O7d2/j7+/OICOAaOIz52fltAAAAVDmu4QIAALAZgQsAAMBmBC4AAACbEbgAAABsRuACAACwGYELAADAZjz41Ivcbre+//57NW7cmK/QAACgljDG6PTp02rRokWpL4G/HAKXF33//feKiorydhsAAKASjh49ql/96lflqiVwedGlr884evSogoODvdwNAAAoj8LCQkVFRVnv4+VB4PKiSx8jBgcHE7gAAKhlKnI5EBfNAwAA2IzABQAAYDMCFwAAgM24hgsAAFhKSkp04cIFb7fhdf7+/uV+5EN5ELgAAICMMcrNzVVBQYG3W6kRfHx8FB0dLX9//yrZHoELAABYYat58+Zq2LBhvX4g96UHk+fk5KhVq1ZVMhYELgAA6rmSkhIrbF133XXebqdGaNasmb7//ntdvHhRDRo0uObtcdE8AAD13KVrtho2bOjlTmqOSx8llpSUVMn2CFwAAEBSxR7kWddV9VgQuAAAAGxG4AIAALAZgauOynEVafOhfOW4irzdCgAAthkzZoySk5NLzd+wYYMcDocKCgq0YcMGDRs2TJGRkQoKClLPnj311ltvVWufNSJwzZ8/X23atFFAQIDi4uK0ZcuWK9avXLlSnTt3VkBAgGJiYrRmzRqP5cYYPfnkk4qMjFRgYKASExN14MABj5pTp05pxIgRCg4OVmhoqMaOHaszZ85Yy/fv369bbrlF4eHhCggIUNu2bfXEE0+Uehjc1XrxhuVbv1W/Get0z8Is9ZuxTsu3fuvtlgAA8JrNmzere/fuevfdd7Vz506lpqZq1KhRWr16dbX14PXAtXz5ck2ePFlpaWnatm2bevTooaSkJB0/frzM+s2bNyslJUVjx47V9u3blZycrOTkZO3evduqmTlzpubOnasFCxYoKytLQUFBSkpK0rlz56yaESNGaM+ePVq7dq1Wr16tjRs3avz48dbyBg0aaNSoUfrkk0+0f/9+zZkzRwsXLlRaWlqFeqluOa4iTV21S27z02u3kR5ftZszXQCAeuvxxx/XM888o759+6pdu3Z68MEHNWjQIK1atar6mjBeFhsbayZMmGC9LikpMS1atDDp6ell1g8fPtwMGTLEY15cXJy59957jTHGuN1uExERYWbNmmUtLygoME6n0yxdutQYY8zevXuNJLN161ar5sMPPzQOh8McO3bssr0+9NBDpn///uXu5WpcLpeRZFwuV7nqy2PTwROm9WOrS02bD+ZX2T4AAHVLUVGR2bt3rykqKqqS7X1fcNZsOnjCfF9wtkq2dyWjR482w4YNKzV//fr1RpL54YcfylyvX79+5uGHH77sdq80JpV5//bqGa7z588rOztbiYmJ1jwfHx8lJiYqMzOzzHUyMzM96iUpKSnJqj98+LByc3M9akJCQhQXF2fVZGZmKjQ0VH369LFqEhMT5ePjo6ysrDL3e/DgQX300UdKSEgody+/VFxcrMLCQo+pqkWHBcnnF3ey+jocahPGs1UAAPbzxmUtq1evVqNGjTym22677bL1K1as0NatW5Wammp7b5d4NXDl5+erpKRE4eHhHvPDw8OVm5tb5jq5ublXrL/082o1zZs391ju5+enpk2bltpv3759FRAQoA4dOuimm27S008/Xe5efik9PV0hISHWFBUVVWbdtYgMCVT6nTHy/d/nh/g6HHruzm6KDAms8n0BAPBz3rqs5ZZbbtGOHTs8ptdee63M2vXr1ys1NVULFy5U165dbe3r5/hqn6tYvny5Tp8+rS+//FJ//vOf9cILL+jRRx+t1LamTp2qyZMnW68LCwttCV133dhKN3dspiP5Z9UmrCFhCwBQLQ7n/2iFrUtKjNGR/LO2vhcFBQWpffv2HvO+++67UnX/+te/NHToUM2ePVujRo2yrZ+yeDVwhYWFydfXV3l5eR7z8/LyFBERUeY6ERERV6y/9DMvL0+RkZEeNT179rRqfnlR/sWLF3Xq1KlS+70UiK6//nqVlJRo/Pjxevjhh+Xr63vVXn7J6XTK6XSWuayqRYYEErQAANXq0mUtPw9dNeWylg0bNuj222/X888/73GTXHXx6keK/v7+6t27tzIyMqx5brdbGRkZio+PL3Od+Ph4j3pJWrt2rVUfHR2tiIgIj5rCwkJlZWVZNfHx8SooKFB2drZVs27dOrndbsXFxV22X7fbrQsXLsjtdperFwAA6pOaelnL+vXrNWTIEE2cOFG///3vlZubq9zcXJ06dar6mij35fU2WbZsmXE6nWbx4sVm7969Zvz48SY0NNTk5uYaY4wZOXKkmTJlilW/adMm4+fnZ1544QWzb98+k5aWZho0aGB27dpl1cyYMcOEhoaa9957z+zcudMMGzbMREdHe9xpMGjQINOrVy+TlZVlPvvsM9OhQweTkpJiLV+yZIlZvny52bt3rzl06JBZvny5adGihRkxYkSFerkSO+5SBACgouy4S3Hzwfwac5fi6NGjjaRSU0JCwmW3W9V3KXo9cBljzLx580yrVq2Mv7+/iY2NNZ9//rm1LCEhwYwePdqjfsWKFaZjx47G39/fdO3a1XzwwQcey91ut5k2bZoJDw83TqfTDBw40Ozfv9+j5uTJkyYlJcU0atTIBAcHm9TUVHP69Glr+bJly8wNN9xgGjVqZIKCgsz1119vnnvuuVIDf7VeroTABQCoCao6cNUFVR24HMYYc7mzX7BXYWGhQkJC5HK5FBwc7O12AAD11Llz53T48GFFR0crICDA2+3UCFcak8q8f3v9SfMAAAB1HYELAADAZgQuAAAAmxG4AACAJInLuv9PVY8FgQsAgHquQYMGkqSzZ896uZOa4/z585IkX1/fKtkeX+0DAEA95+vrq9DQUOtbWBo2bCjH/z68tD5yu906ceKEGjZsKD+/qolKBC4AAGB9Ld0vv/quvvLx8VGrVq2qLHgSuAAAgBwOhyIjI9W8eXNduHDB2+14nb+/v3x8qu7KKwIXAACw+Pr6Vtl1S/g/XDQPAABgMwIXAACAzQhcAAAANiNwAQAA2IzABQAAYDMCFwAAgM0IXAAAADYjcAEAANiMwAUAAGAzAhcAAIDNCFwAAAA2I3ABAADYjMAFAABgMwIXAACAzQhcAAAANiNwAQAA2IzABQAAYDMCFwAAgM0IXAAAADYjcAEAANiMwAUAAGAzAhcAAIDNCFwAAAA2I3ABAADYjMAFAABgMwIXAACAzQhcAAAANiNwAQAA2IzABQAAYDMCFwAAgM0IXAAAADYjcAEAANiMwAUAAGAzAhcAAIDNCFwAAAA2I3ABAADYjMAFAABgsxoRuObPn682bdooICBAcXFx2rJlyxXrV65cqc6dOysgIEAxMTFas2aNx3JjjJ588klFRkYqMDBQiYmJOnDggEfNqVOnNGLECAUHBys0NFRjx47VmTNnrOUbNmzQsGHDFBkZqaCgIPXs2VNvvfWWxzYWL14sh8PhMQUEBFzjaAAAgLrG64Fr+fLlmjx5stLS0rRt2zb16NFDSUlJOn78eJn1mzdvVkpKisaOHavt27crOTlZycnJ2r17t1Uzc+ZMzZ07VwsWLFBWVpaCgoKUlJSkc+fOWTUjRozQnj17tHbtWq1evVobN27U+PHjPfbTvXt3vfvuu9q5c6dSU1M1atQorV692qOf4OBg5eTkWNM333xTxSMEAABqPeNlsbGxZsKECdbrkpIS06JFC5Oenl5m/fDhw82QIUM85sXFxZl7773XGGOM2+02ERERZtasWdbygoIC43Q6zdKlS40xxuzdu9dIMlu3brVqPvzwQ+NwOMyxY8cu2+vgwYNNamqq9XrRokUmJCSk/Af7Cy6Xy0gyLper0tsAAADVqzLv3149w3X+/HllZ2crMTHRmufj46PExERlZmaWuU5mZqZHvSQlJSVZ9YcPH1Zubq5HTUhIiOLi4qyazMxMhYaGqk+fPlZNYmKifHx8lJWVddl+XS6XmjZt6jHvzJkzat26taKiojRs2DDt2bPnsusXFxersLDQYwIAAHWfVwNXfn6+SkpKFB4e7jE/PDxcubm5Za6Tm5t7xfpLP69W07x5c4/lfn5+atq06WX3u2LFCm3dulWpqanWvE6dOun111/Xe++9pyVLlsjtdqtv37767rvvytxGenq6QkJCrCkqKqrMOgAAULd4/Rqu2mD9+vVKTU3VwoUL1bVrV2t+fHy8Ro0apZ49eyohIUGrVq1Ss2bN9Morr5S5nalTp8rlclnT0aNHq+sQAACAF3k1cIWFhcnX11d5eXke8/Py8hQREVHmOhEREVesv/TzajW/vCj/4sWLOnXqVKn9/utf/9LQoUM1e/ZsjRo16orH06BBA/Xq1UsHDx4sc7nT6VRwcLDHBAAA6j6vBi5/f3/17t1bGRkZ1jy3262MjAzFx8eXuU58fLxHvSStXbvWqo+OjlZERIRHTWFhobKysqya+Ph4FRQUKDs726pZt26d3G634uLirHkbNmzQkCFD9Pzzz3vcwXg5JSUl2rVrlyIjI8tx9AAAoN6w8SL+clm2bJlxOp1m8eLFZu/evWb8+PEmNDTU5ObmGmOMGTlypJkyZYpVv2nTJuPn52deeOEFs2/fPpOWlmYaNGhgdu3aZdXMmDHDhIaGmvfee8/s3LnTDBs2zERHR5uioiKrZtCgQaZXr14mKyvLfPbZZ6ZDhw4mJSXFWr5u3TrTsGFDM3XqVJOTk2NNJ0+etGqeeuop8/HHH5tDhw6Z7Oxsc/fdd5uAgACzZ8+ech07dykCAFD7VOb92+uByxhj5s2bZ1q1amX8/f1NbGys+fzzz61lCQkJZvTo0R71K1asMB07djT+/v6ma9eu5oMPPvBY7na7zbRp00x4eLhxOp1m4MCBZv/+/R41J0+eNCkpKaZRo0YmODjYpKammtOnT1vLR48ebSSVmhISEqyaSZMmWX2Hh4ebwYMHm23btpX7uAlcAADUPpV5/3YYY4zXTq/Vc4WFhQoJCZHL5eJ6LgAAaonKvH9zlyIAAIDNCFwAAAA2I3ABAADYjMAFAABgMwIXAACAzQhcAAAANiNwAQAA2IzABQAAYDMCFwAAgM0IXAAAADYjcAEAANiMwAUAAGAzAhcAAIDNCFwAAAA2I3ABAADYjMAFAABgMwIXAACAzQhcAAAANiNwAQAA2IzABQAAYDMCFwAAgM0IXAAAADYjcAEAANiMwAUAAGAzAhcAAIDNCFwAAAA2I3ABAADYjMAFAABgMwIXAACAzQhcAAAANiNwAQAA2IzABQAAYDMCFwAAgM0IXAAAADYjcAEAANiMwAUAAGAzAhcAAIDNCFwAAAA2I3ABAADYjMAFAABgMwIXAACAzQhcAAAANiNwAQAA2IzABQAAYDMCFwAAgM0IXAAAADarEYFr/vz5atOmjQICAhQXF6ctW7ZcsX7lypXq3LmzAgICFBMTozVr1ngsN8boySefVGRkpAIDA5WYmKgDBw541Jw6dUojRoxQcHCwQkNDNXbsWJ05c8ZavmHDBg0bNkyRkZEKCgpSz5499dZbb1W4FwAAAK8HruXLl2vy5MlKS0vTtm3b1KNHDyUlJen48eNl1m/evFkpKSkaO3astm/fruTkZCUnJ2v37t1WzcyZMzV37lwtWLBAWVlZCgoKUlJSks6dO2fVjBgxQnv27NHatWu1evVqbdy4UePHj/fYT/fu3fXuu+9q586dSk1N1ahRo7R69eoK9QIAACDjZbGxsWbChAnW65KSEtOiRQuTnp5eZv3w4cPNkCFDPObFxcWZe++91xhjjNvtNhEREWbWrFnW8oKCAuN0Os3SpUuNMcbs3bvXSDJbt261aj788EPjcDjMsWPHLtvr4MGDTWpqarl7uRqXy2UkGZfLVa56AADgfZV5//bqGa7z588rOztbiYmJ1jwfHx8lJiYqMzOzzHUyMzM96iUpKSnJqj98+LByc3M9akJCQhQXF2fVZGZmKjQ0VH369LFqEhMT5ePjo6ysrMv263K51LRp03L38kvFxcUqLCz0mAAAQN3n1cCVn5+vkpIShYeHe8wPDw9Xbm5umevk5uZesf7Sz6vVNG/e3GO5n5+fmjZtetn9rlixQlu3blVqamq5e/ml9PR0hYSEWFNUVFSZdQAAoG7x+jVctcH69euVmpqqhQsXqmvXrpXeztSpU+Vyuazp6NGjVdglAACoqbwauMLCwuTr66u8vDyP+Xl5eYqIiChznYiIiCvWX/p5tZpfXpR/8eJFnTp1qtR+//Wvf2no0KGaPXu2Ro0aVaFefsnpdCo4ONhjAgAAdZ9XA5e/v7969+6tjIwMa57b7VZGRobi4+PLXCc+Pt6jXpLWrl1r1UdHRysiIsKjprCwUFlZWVZNfHy8CgoKlJ2dbdWsW7dObrdbcXFx1rwNGzZoyJAhev755z3uYCxvLwAAAJK8f5fismXLjNPpNIsXLzZ79+4148ePN6GhoSY3N9cYY8zIkSPNlClTrPpNmzYZPz8/88ILL5h9+/aZtLQ006BBA7Nr1y6rZsaMGSY0NNS89957ZufOnWbYsGEmOjraFBUVWTWDBg0yvXr1MllZWeazzz4zHTp0MCkpKdbydevWmYYNG5qpU6eanJwcazp58mSFerkS7lIEAKD2qcz7t9cDlzHGzJs3z7Rq1cr4+/ub2NhY8/nnn1vLEhISzOjRoz3qV6xYYTp27Gj8/f1N165dzQcffOCx3O12m2nTppnw8HDjdDrNwIEDzf79+z1qTp48aVJSUkyjRo1McHCwSU1NNadPn7aWjx492kgqNSUkJFSolyshcAEAUPtU5v3bYYwxXju9Vs8VFhYqJCRELpeL67kAAKglKvP+zV2KAAAANiNwAQAA2IzABQAAYDMCFwAAqDI5riJtPpSvHFeRt1upUfy83QAAAKgblm/9VlNX7ZLbSD4OKf3OGN11Yytvt1UjcIYLAABcsxxXkRW2JMltpMdX7eZM1/8icAEAgGt2OP9HK2xdUmKMjuSf9U5DNQyBCwAAXLPosCD5ODzn+TocahPW0DsN1TAELgAAcM0iQwKVfmeMfB0/pS5fh0PP3dlNkSGBXu6sZuCieQAAUCXuurGVbu7YTEfyz6pNWEPC1s8QuACgBstxFelw/o+KDgvizQu1QmRIIL+rZSBwAUANxS32QN3BNVwAUANxiz1QtxC4AKAG4hZ7oG4hcAFADcQt9kDdQuACgBqIW+yBuoWL5gGghuIWe6DuIHABQA3GLfZA3cBHigAAADYjcAEAANiMwAUAAGAzAhcAAIDNCFwAAAA2I3ABAADYjMAFAABgMwIXAACAzQhcAAAANiNwAajVclxF2nwoXzmuIm+3AgCXxVf7AKi1lm/9VlNX7ZLbSD4OKf3OGN11YytvtwUApXCGC0CtlOMqssKWJLmN9Piq3ZzpAlAjEbgA1EqH83+0wtYlJcboSP5Z7zQEAFdA4AJQK0WHBcnH4TnP1+FQm7CG3mkIAK6AwAWgVooMCVT6nTHydfyUunwdDj13ZzdFhgR6uTMAKI2L5gHUWnfd2Eo3d2ymI/ln1SasIWELQI1F4AJQq0WGBBK0ANR4fKQI2/GcJABAfccZLtiK5yQBAMAZLtiI5yQBAPATAhdsw3OSAAD4CYELtuE5SQAA/KTCgWvNmjUaN26cHn30UX311Vcey3744QfdeuutVdYcajeekwQAwE8cxhhz9bKfvP322xo1apQGDRokl8ulL774Qq+99ppGjBghScrLy1OLFi1UUlJiW8N1SWFhoUJCQuRyuRQcHOztdmyT4yriOUkAgDqjMu/fFbpLcdasWXrxxRc1ceJESdKKFSv0H//xHzp37pzGjh1b8Y5RL/CcJABAfVehwHXgwAENHTrUej18+HA1a9ZMv/vd73ThwgXdcccdVd4gAABAbVehwBUcHKy8vDxFR0db82655RatXr1at99+u7777rsqbxAAAKC2q9BF87Gxsfrwww9LzU9ISNA///lPzZkzp6r6AgAAqDMqFLgeeughBQQElLlswIAB+uc//6lRo0ZVqIH58+erTZs2CggIUFxcnLZs2XLF+pUrV6pz584KCAhQTEyM1qxZ47HcGKMnn3xSkZGRCgwMVGJiog4cOOBRc+rUKY0YMULBwcEKDQ3V2LFjdebMGWv5uXPnNGbMGMXExMjPz0/Jycml+tiwYYMcDkepKTc3t0LHDwAA6r4KBa5evXppwoQJKiwsLHPq3bu3/v73v5d7e8uXL9fkyZOVlpambdu2qUePHkpKStLx48fLrN+8ebNSUlI0duxYbd++XcnJyUpOTtbu3butmpkzZ2ru3LlasGCBsrKyFBQUpKSkJJ07d86qGTFihPbs2aO1a9dq9erV2rhxo8aPH28tLykpUWBgoCZOnKjExMQrHsP+/fuVk5NjTc2bNy/38QMAgHrCVIDD4TA+Pj5XncorNjbWTJgwwXpdUlJiWrRoYdLT08usHz58uBkyZIjHvLi4OHPvvfcaY4xxu90mIiLCzJo1y1peUFBgnE6nWbp0qTHGmL179xpJZuvWrVbNhx9+aBwOhzl27FipfY4ePdoMGzas1Pz169cbSeaHH34o9/H+ksvlMpKMy+Wq9DYAAED1qsz7d4Uuml+/fv3Pg5oGDx6s1157TS1btqxw0Dt//ryys7M1depUa56Pj48SExOVmZlZ5jqZmZmaPHmyx7ykpCT993//tyTp8OHDys3N9TgrFRISori4OGVmZuruu+9WZmamQkND1adPH6smMTFRPj4+ysrKqvCdlj179lRxcbG6deum6dOnq1+/fpetLS4uVnFxsfW6sLCwQvsCAAC1U4UCV0JCgsdrX19f/frXv1bbtm0rvOP8/HyVlJQoPDzcY354eHipJ9hfkpubW2b9peumLv28Ws0vP/bz8/NT06ZNK3T9VWRkpBYsWKA+ffqouLhYr732mgYMGKCsrCzdcMMNZa6Tnp6up556qtz7AAAAdUOFAhf+T6dOndSpUyfrdd++fXXo0CHNnj1bb775ZpnrTJ061eMMXWFhoaKiomzvFQAAeJfXvrw6LCxMvr6+ysvL85ifl5eniIiIMteJiIi4Yv2ln1er+eVF+RcvXtSpU6cuu9/yio2N1cGDBy+73Ol0Kjg42GMCAAB13zUHLsf/fjFxRfn7+6t3797KyMiw5rndbmVkZCg+Pr7MdeLj4z3qJWnt2rVWfXR0tCIiIjxqCgsLlZWVZdXEx8eroKBA2dnZVs26devkdrsVFxdXqWO5ZMeOHYqMjLymbQAAgLqnQh8p3nnnnR6vz507p/vuu09BQUEe81etWlWu7U2ePFmjR49Wnz59FBsbqzlz5ujHH39UamqqJGnUqFFq2bKl0tPTJUkPPvigEhIS9Le//U1DhgzRsmXL9MUXX+jVV1+V9FP4mzRpkp599ll16NBB0dHRmjZtmlq0aGE9S6tLly4aNGiQ/vjHP2rBggW6cOGCHnjgAd19991q0aKF1dvevXt1/vx5nTp1SqdPn9aOHTsk/XSRvCTNmTNH0dHR6tq1q86dO6fXXntN69at0yeffFKRIQUAAPVAhQJXSEiIx+s//OEP17Tzu+66SydOnNCTTz6p3Nxc9ezZUx999JF10fu3334rH5//OwnXt29fvf3223riiSf0+OOPq0OHDvrv//5vdevWzap59NFH9eOPP2r8+PEqKChQ//799dFHH3k8sPWtt97SAw88oIEDB8rHx0e///3vNXfuXI/eBg8erG+++cZ63atXL0k/3Z0p/XSX5cMPP6xjx46pYcOG6t69uz799FPdcsst1zQmAACg7nGYSwkC1a6wsFAhISFyuVxczwUAQC1Rmfdvr100DwAAUF8QuAAAAGxG4AIAALAZgQsAAMBmBC4AAACbEbgAAABsRuACAACwGYELAADAZgQuAAAAmxG4AAAAbEbgAgAAsBmBCwAAwGYELgAAAJsRuAAAAGxG4AIAALAZgQsAAMBmBC4AAACbEbgAAABsRuACAACwGYELAADAZgQuAAAAmxG4AAAAbEbgAgAAsBmBCwAAwGYELgAAAJsRuAAAAGxG4AIAALAZgQsAAMBmBC4AAACbEbgAAABsRuACAACwGYELAADAZgQuAAAAmxG4AAAAbEbgAgAAsBmBCwAAwGYELgAAAJsRuAAAAGxG4AIAALAZgQsAAMBmBC4AAACbEbgAAABsRuACAACwGYELAADAZgQuAAAAmxG4AAAAbOb1wDV//ny1adNGAQEBiouL05YtW65Yv3LlSnXu3FkBAQGKiYnRmjVrPJYbY/Tkk08qMjJSgYGBSkxM1IEDBzxqTp06pREjRig4OFihoaEaO3aszpw5Yy0/d+6cxowZo5iYGPn5+Sk5ObnMXjZs2KAbbrhBTqdT7du31+LFiys1BgAAoG7zauBavny5Jk+erLS0NG3btk09evRQUlKSjh8/Xmb95s2blZKSorFjx2r79u1KTk5WcnKydu/ebdXMnDlTc+fO1YIFC5SVlaWgoCAlJSXp3LlzVs2IESO0Z88erV27VqtXr9bGjRs1fvx4a3lJSYkCAwM1ceJEJSYmltnL4cOHNWTIEN1yyy3asWOHJk2apHHjxunjjz+uotEBAAB1hvGi2NhYM2HCBOt1SUmJadGihUlPTy+zfvjw4WbIkCEe8+Li4sy9995rjDHG7XabiIgIM2vWLGt5QUGBcTqdZunSpcYYY/bu3Wskma1bt1o1H374oXE4HObYsWOl9jl69GgzbNiwUvMfffRR07VrV495d911l0lKSrrKUf8fl8tlJBmXy1XudQAAgHdV5v3ba2e4zp8/r+zsbI8zSD4+PkpMTFRmZmaZ62RmZpY645SUlGTVHz58WLm5uR41ISEhiouLs2oyMzMVGhqqPn36WDWJiYny8fFRVlZWufu/Wi9lKS4uVmFhoccEAEB9keMq0uZD+cpxFXm7lWrntcCVn5+vkpIShYeHe8wPDw9Xbm5umevk5uZesf7Sz6vVNG/e3GO5n5+fmjZtetn9VqSXwsJCFRWV/YuUnp6ukJAQa4qKiir3/gAAqM2Wb/1W/Was0z0Ls9Rvxjot3/qtt1uqVl6/aL4+mTp1qlwulzUdPXrU2y0BAGC7HFeRpq7aJbf56bXbSI+v2l2vznR5LXCFhYXJ19dXeXl5HvPz8vIUERFR5joRERFXrL/082o1v7wo/+LFizp16tRl91uRXoKDgxUYGFjmOk6nU8HBwR4TAAB13eH8H62wdUmJMTqSf9Y7DXmB1wKXv7+/evfurYyMDGue2+1WRkaG4uPjy1wnPj7eo16S1q5da9VHR0crIiLCo6awsFBZWVlWTXx8vAoKCpSdnW3VrFu3Tm63W3FxceXu/2q9AACAn0SHBcnH4TnP1+FQm7CG3mnIC7z6keLkyZO1cOFCvfHGG9q3b5/+9Kc/6ccff1RqaqokadSoUZo6dapV/+CDD+qjjz7S3/72N3311VeaPn26vvjiCz3wwAOSJIfDoUmTJunZZ5/V+++/r127dmnUqFFq0aKF9SytLl26aNCgQfrjH/+oLVu2aNOmTXrggQd09913q0WLFta+9u7dqx07dujUqVNyuVzasWOHduzYYS2/77779PXXX+vRRx/VV199pZdeekkrVqzQQw89ZP/AAQBQi0SGBCr9zhj5On5KXb4Oh567s5siQ8r+RKhOsvGuyXKZN2+eadWqlfH39zexsbHm888/t5YlJCSY0aNHe9SvWLHCdOzY0fj7+5uuXbuaDz74wGO52+0206ZNM+Hh4cbpdJqBAwea/fv3e9ScPHnSpKSkmEaNGpng4GCTmppqTp8+7VHTunVrI6nU9HPr1683PXv2NP7+/qZt27Zm0aJFFTp2HgsBAKhPvi84azYfzDffF5z1divXpDLv3w5jjLlCHoONCgsLFRISIpfLxfVcAADUEpV5/+YuRQAAAJsRuAAAAGxG4AIAALAZgQtAtanPX+sBoH7z83YDAOqH5Vu/tZ407eOQ0u+M0V03tirXujmuIh3O/1HRYUH16zZyAHUGgQuA7S73tR43d2x21QB1LUENQP1Wk/5YI3ABsN2VvtbjSv8IXktQA1C/1bQ/1riGC4DtKvu1Hnz/GoDKqIlflk3gAmC7yn6tB9+/BqAyauIfa3ykCKBa3HVjK93csZmO5J9Vm7CG5fpI8FJQe3zVbpUYUz+/fw1AhV36Y+3nocvbf6wRuABUm8iQwAqHpcoENQD1W038Y43ABaDGq0xQA1C/1bQ/1ghcAACgTqpJf6xx0TwAAIDNCFwAAAA2I3Ch3uB7/AAA3sI1XKgXatoThwEA9QtnuFDn1cQnDgMA6hcCF+q8mvjEYQBA/ULgQp3H18MAALyNwIU6r7Lf4wcAQFXhonnUCzXticMAgPqFwIV6oyY9cRgAUL/wkSIAAIDNCFwAAAA2I3ABAADYjMAFAABgMwIXAACAzQhcAAAANiNwAQAA2IzABQAAYDMCFwAAgM0IXAAAADYjcAEAANiMwAXUczmuIm0+lK8cV5G3W6lydfnYANQufHk1UI8t3/qtpq7aJbeRfBxS+p0xuuvGVt5uq0rU5WMDUPtwhguop3JcRVYgkSS3kR5ftbtOnA2qy8cGoHYicAH11OH8H61AckmJMTqSf9Y7DVWhunxsAGonAhdQT0WHBcnH4TnP1+FQm7CG3mmoCtXlYwNQOxG4gHoqMiRQ6XfGyNfxUzLxdTj03J3dFBkS6OXOrl1dPjYAtZPDGGOuXgY7FBYWKiQkRC6XS8HBwd5uB/VUjqtIR/LPqk1YwzoXSOrysQHwnsq8f3OXIlDPRYYE1tkwUpePDUDtwkeKAAAANiNwAQAA2IzABQAAYDMCFwAAgM1qROCaP3++2rRpo4CAAMXFxWnLli1XrF+5cqU6d+6sgIAAxcTEaM2aNR7LjTF68sknFRkZqcDAQCUmJurAgQMeNadOndKIESMUHBys0NBQjR07VmfOnPGo2blzp2666SYFBAQoKipKM2fO9Fi+ePFiORwOjykgIOAaRgIAANRFXg9cy5cv1+TJk5WWlqZt27apR48eSkpK0vHjx8us37x5s1JSUjR27Fht375dycnJSk5O1u7du62amTNnau7cuVqwYIGysrIUFBSkpKQknTt3zqoZMWKE9uzZo7Vr12r16tXauHGjxo8fby0vLCzUb3/7W7Vu3VrZ2dmaNWuWpk+frldffdWjn+DgYOXk5FjTN998U8UjBAAAaj3jZbGxsWbChAnW65KSEtOiRQuTnp5eZv3w4cPNkCFDPObFxcWZe++91xhjjNvtNhEREWbWrFnW8oKCAuN0Os3SpUuNMcbs3bvXSDJbt261aj788EPjcDjMsWPHjDHGvPTSS6ZJkyamuLjYqnnsscdMp06drNeLFi0yISEhlTxyY1wul5FkXC5XpbcBAACqV2Xev716huv8+fPKzs5WYmKiNc/Hx0eJiYnKzMwsc53MzEyPeklKSkqy6g8fPqzc3FyPmpCQEMXFxVk1mZmZCg0NVZ8+fayaxMRE+fj4KCsry6q5+eab5e/v77Gf/fv364cffrDmnTlzRq1bt1ZUVJSGDRumPXv2XPZ4i4uLVVhY6DEBAIC6z6uBKz8/XyUlJQoPD/eYHx4ertzc3DLXyc3NvWL9pZ9Xq2nevLnHcj8/PzVt2tSjpqxt/HwfnTp10uuvv6733ntPS5YskdvtVt++ffXdd9+V2Xt6erpCQkKsKSoqqsw6AABQt3j9Gq7aLD4+XqNGjVLPnj2VkJCgVatWqVmzZnrllVfKrJ86dapcLpc1HT16tJo7BgAA3uDVwBUWFiZfX1/l5eV5zM/Ly1NERESZ60RERFyx/tLPq9X88qL8ixcv6tSpUx41ZW3j5/v4pQYNGqhXr146ePBgmcudTqeCg4M9JgAAUPd5NXD5+/urd+/eysjIsOa53W5lZGQoPj6+zHXi4+M96iVp7dq1Vn10dLQiIiI8agoLC5WVlWXVxMfHq6CgQNnZ2VbNunXr5Ha7FRcXZ9Vs3LhRFy5c8NhPp06d1KRJkzJ7Kykp0a5duxQZGVmRYQAAAHWdjRfxl8uyZcuM0+k0ixcvNnv37jXjx483oaGhJjc31xhjzMiRI82UKVOs+k2bNhk/Pz/zwgsvmH379pm0tDTToEEDs2vXLqtmxowZJjQ01Lz33ntm586dZtiwYSY6OtoUFRVZNYMGDTK9evUyWVlZ5rPPPjMdOnQwKSkp1vKCggITHh5uRo4caXbv3m2WLVtmGjZsaF555RWr5qmnnjIff/yxOXTokMnOzjZ33323CQgIMHv27CnXsXOXIgAAtU9l3r+9HriMMWbevHmmVatWxt/f38TGxprPP//cWpaQkGBGjx7tUb9ixQrTsWNH4+/vb7p27Wo++OADj+Vut9tMmzbNhIeHG6fTaQYOHGj279/vUXPy5EmTkpJiGjVqZIKDg01qaqo5ffq0R82XX35p+vfvb5xOp2nZsqWZMWOGx/JJkyZZfYeHh5vBgwebbdu2lfu4CVwAANQ+lXn/dhhjjHfPsdVfhYWFCgkJkcvl4nouAABqicq8f3OXIgB4WY6rSJsP5SvHVeTtVgDYxM/bDQBAfbZ867eaumqX3EbycUjpd8borhtbebstAFWMM1wA4CU5riIrbEmS20iPr9rNmS6gDiJwAYCXHM7/0Qpbl5QYoyP5Z73TEADbELgAwEuiw4Lk4/Cc5+twqE1YQ+80BMA2BC4A8JLIkECl3xkjX8dPqcvX4dBzd3ZTZEiglzsDUNW4aB4AvOiuG1vp5o7NdCT/rNqENSRsAXUUgQsAvCwyJJCgBdRxfKQIAABgMwIXAACAzQhcAAAANiNwAQAA2IzABQAAYDMCFwAAgM0IXAAAADYjcAEAANiMwAUAAGAzAhdsl+Mq0uZD+cpxFXm7FQAAvIKv9oGtlm/9VlNX7ZLbSD4OKf3OGN11YytvtwUAQLXiDBdsk+MqssKWJLmN9Piq3ZzpAgDUOwQu2OZw/o9W2LqkxBgdyT/rnYYAAPASAhdsEx0WJB+H5zxfh0Ntwhp6pyEAALyEwAXbRIYEKv3OGPk6fkpdvg6HnruzmyJDAr3cGQAA1YuL5mGru25spZs7NtOR/LNqE9aQsAUAqJcIXLBdZEggQQsAUK/xkSIAACiFZyhWLc5wAQDqhRxXkQ7n/6josCDOul8Fz1CsegQuAECdR4Aov8s9Q/Hmjs0IqteAjxQBAHVafX8Ic0U/GuQZivbgDBcAoE67UoCo62dsKnNm79IzFH8+ZjxD8dpxhgsAUKfV14cwV/bMHs9QtAdnuAAAddqlAPH4qt0qMabeBIhrObPHMxSrHoELAFDn1ccAca0fDfIMxarFR4oAgHohMiRQ8e2uqzchgo8GaxbOcAEAUAtU5jli9fHMXk1F4AIAoIa7lueI8dFgzcBHigAA1GD1/TlidQWBCwCAGowHkdYNBC7UOnyhKoD6pL4+R6yuIXChVlm+9Vv1m7FO9yzMUr8Z67R867febgm1FMEdtQV3G9YNDmOMuXoZ7FBYWKiQkBC5XC4FBwd7u50aL8dVpH4z1pV6psxnU27hHx5UCF9kjNoox1XE3YY1RGXevznDhVqD6xhQFbgAGbVVfXuOWF1D4EKtwXUMqAoEdwDeQOBCrcF1DKgKBHcA3sCDT1Gr8NRkXKv6+kXGALyLwIVah6cm41oR3AFUtxrxkeL8+fPVpk0bBQQEKC4uTlu2bLli/cqVK9W5c2cFBAQoJiZGa9as8VhujNGTTz6pyMhIBQYGKjExUQcOHPCoOXXqlEaMGKHg4GCFhoZq7NixOnPmjEfNzp07ddNNNykgIEBRUVGaOXNmhXsBUDNxATKA6uT1wLV8+XJNnjxZaWlp2rZtm3r06KGkpCQdP368zPrNmzcrJSVFY8eO1fbt25WcnKzk5GTt3r3bqpk5c6bmzp2rBQsWKCsrS0FBQUpKStK5c+esmhEjRmjPnj1au3atVq9erY0bN2r8+PHW8sLCQv32t79V69atlZ2drVmzZmn69Ol69dVXK9QLAACAjJfFxsaaCRMmWK9LSkpMixYtTHp6epn1w4cPN0OGDPGYFxcXZ+69915jjDFut9tERESYWbNmWcsLCgqM0+k0S5cuNcYYs3fvXiPJbN261ar58MMPjcPhMMeOHTPGGPPSSy+ZJk2amOLiYqvmscceM506dSp3L1fjcrmMJONyucpVDwAAvK8y799ePcN1/vx5ZWdnKzEx0Zrn4+OjxMREZWZmlrlOZmamR70kJSUlWfWHDx9Wbm6uR01ISIji4uKsmszMTIWGhqpPnz5WTWJionx8fJSVlWXV3HzzzfL39/fYz/79+/XDDz+Uq5dfKi4uVmFhoccEAADqPq8Grvz8fJWUlCg8PNxjfnh4uHJzc8tcJzc394r1l35eraZ58+Yey/38/NS0aVOPmrK28fN9XK2XX0pPT1dISIg1RUVFlVkHAADqFq9fw1WfTJ06VS6Xy5qOHj3q7ZYAAEA18GrgCgsLk6+vr/Ly8jzm5+XlKSIiosx1IiIirlh/6efVan55Uf7Fixd16tQpj5qytvHzfVytl19yOp0KDg72mAAAQN3n1cDl7++v3r17KyMjw5rndruVkZGh+Pj4MteJj4/3qJektWvXWvXR0dGKiIjwqCksLFRWVpZVEx8fr4KCAmVnZ1s169atk9vtVlxcnFWzceNGXbhwwWM/nTp1UpMmTcrVCwAAgCTv36W4bNky43Q6zeLFi83evXvN+PHjTWhoqMnNzTXGGDNy5EgzZcoUq37Tpk3Gz8/PvPDCC2bfvn0mLS3NNGjQwOzatcuqmTFjhgkNDTXvvfee2blzpxk2bJiJjo42RUVFVs2gQYNMr169TFZWlvnss89Mhw4dTEpKirW8oKDAhIeHm5EjR5rdu3ebZcuWmYYNG5pXXnmlQr1cCXcpAgBQ+1Tm/dvrgcsYY+bNm2datWpl/P39TWxsrPn888+tZQkJCWb06NEe9StWrDAdO3Y0/v7+pmvXruaDDz7wWO52u820adNMeHi4cTqdZuDAgWb//v0eNSdPnjQpKSmmUaNGJjg42KSmpprTp0971Hz55Zemf//+xul0mpYtW5oZM2aU6v1qvVwJgQsAgNqnMu/fDmOM8e45tvqrsLBQISEhcrlcXM8FAEAtUZn3b+5SBAAAsBlfXu1Fl04u8gBUAABqj0vv2xX5kJDA5UWnT5+WJB6ACgBALXT69GmFhISUq5ZruLzI7Xbr+++/V+PGjeVwOMqsKSwsVFRUlI4ePcp1XmI8ysKYeGI8PDEepTEmnhiP0q42JsYYnT59Wi1atJCPT/muzuIMlxf5+PjoV7/6VblqeVCqJ8ajNMbEE+PhifEojTHxxHiUdqUxKe+ZrUu4aB4AAMBmBC4AAACbEbhqOKfTqbS0NDmdTm+3UiMwHqUxJp4YD0+MR2mMiSfGozQ7xoSL5gEAAGzGGS4AAACbEbgAAABsRuACAACwGYELAADAZgSuGmD+/Plq06aNAgICFBcXpy1btly2ds+ePfr973+vNm3ayOFwaM6cOdXXaDWpyHgsXLhQN910k5o0aaImTZooMTHxivW1VUXGZNWqVerTp49CQ0MVFBSknj176s0336zGbu1XkfH4uWXLlsnhcCg5OdneBqtZRcZj8eLFcjgcHlNAQEA1dls9Kvo7UlBQoAkTJigyMlJOp1MdO3bUmjVrqqlb+1VkPAYMGFDqd8ThcGjIkCHV2LG9Kvr7MWfOHHXq1EmBgYGKiorSQw89pHPnzlVspwZetWzZMuPv729ef/11s2fPHvPHP/7RhIaGmry8vDLrt2zZYh555BGzdOlSExERYWbPnl29DdusouNxzz33mPnz55vt27ebffv2mTFjxpiQkBDz3XffVXPn9qnomKxfv96sWrXK7N271xw8eNDMmTPH+Pr6mo8++qiaO7dHRcfjksOHD5uWLVuam266yQwbNqx6mq0GFR2PRYsWmeDgYJOTk2NNubm51dy1vSo6JsXFxaZPnz5m8ODB5rPPPjOHDx82GzZsMDt27Kjmzu1R0fE4efKkx+/H7t27ja+vr1m0aFH1Nm6Tio7HW2+9ZZxOp3nrrbfM4cOHzccff2wiIyPNQw89VKH9Eri8LDY21kyYMMF6XVJSYlq0aGHS09Ovum7r1q3rXOC6lvEwxpiLFy+axo0bmzfeeMOuFqvdtY6JMcb06tXLPPHEE3a0V+0qMx4XL140ffv2Na+99poZPXp0nQpcFR2PRYsWmZCQkGrqzjsqOiYvv/yyadu2rTl//nx1tVitrvXfkNmzZ5vGjRubM2fO2NVitaroeEyYMMHceuutHvMmT55s+vXrV6H98pGiF50/f17Z2dlKTEy05vn4+CgxMVGZmZle7Mw7qmI8zp49qwsXLqhp06Z2tVmtrnVMjDHKyMjQ/v37dfPNN9vZarWo7Hg8/fTTat68ucaOHVsdbVabyo7HmTNn1Lp1a0VFRWnYsGHas2dPdbRbLSozJu+//77i4+M1YcIEhYeHq1u3bnruuedUUlJSXW3bpir+Xf3HP/6hu+++W0FBQXa1WW0qMx59+/ZVdna29bHj119/rTVr1mjw4MEV2jdfXu1F+fn5KikpUXh4uMf88PBwffXVV17qynuqYjwee+wxtWjRwuN/ptqssmPicrnUsmVLFRcXy9fXVy+99JJ+85vf2N2u7SozHp999pn+8Y9/aMeOHdXQYfWqzHh06tRJr7/+urp37y6Xy6UXXnhBffv21Z49e/SrX/2qOtq2VWXG5Ouvv9a6des0YsQIrVmzRgcPHtT999+vCxcuKC0trTrats21/ru6ZcsW7d69W//4xz/sarFaVWY87rnnHuXn56t///4yxujixYu677779Pjjj1do3wQu1BkzZszQsmXLtGHDhjp5EXBFNG7cWDt27NCZM2eUkZGhyZMnq23bthowYIC3W6tWp0+f1siRI7Vw4UKFhYV5u50aIT4+XvHx8dbrvn37qkuXLnrllVf0zDPPeLEz73G73WrevLleffVV+fr6qnfv3jp27JhmzZpV6wPXtfrHP/6hmJgYxcbGersVr9mwYYOee+45vfTSS4qLi9PBgwf14IMP6plnntG0adPKvR0ClxeFhYXJ19dXeXl5HvPz8vIUERHhpa6851rG44UXXtCMGTP06aefqnv37na2Wa0qOyY+Pj5q3769JKlnz57at2+f0tPTa33gquh4HDp0SEeOHNHQoUOteW63W5Lk5+en/fv3q127dvY2baOq+DekQYMG6tWrlw4ePGhHi9WuMmMSGRmpBg0ayNfX15rXpUsX5ebm6vz58/L397e1Zztdy+/Ijz/+qGXLlunpp5+2s8VqVZnxmDZtmkaOHKlx48ZJkmJiYvTjjz9q/Pjx+stf/iIfn/JdncU1XF7k7++v3r17KyMjw5rndruVkZHh8RdofVHZ8Zg5c6aeeeYZffTRR+rTp091tFptqup3xO12q7i42I4Wq1VFx6Nz587atWuXduzYYU2/+93vdMstt2jHjh2KioqqzvarXFX8fpSUlGjXrl2KjIy0q81qVZkx6devnw4ePGiFcUn6n//5H0VGRtbqsCVd2+/IypUrVVxcrD/84Q92t1ltKjMeZ8+eLRWqLoVzU5Gvo67gxf2oYsuWLTNOp9MsXrzY7N2714wfP96EhoZat2mPHDnSTJkyxaovLi4227dvN9u3bzeRkZHmkUceMdu3bzcHDhzw1iFUqYqOx4wZM4y/v7955513PG5jPn36tLcOocpVdEyee+4588knn5hDhw6ZvXv3mhdeeMH4+fmZhQsXeusQqlRFx+OX6tpdihUdj6eeesp8/PHH5tChQyY7O9vcfffdJiAgwOzZs8dbh1DlKjom3377rWncuLF54IEHzP79+83q1atN8+bNzbPPPuutQ6hSlf1/pn///uauu+6q7nZtV9HxSEtLM40bNzZLly41X3/9tfnkk09Mu3btzPDhwyu0XwJXDTBv3jzTqlUr4+/vb2JjY83nn39uLUtISDCjR4+2Xh8+fNhIKjUlJCRUf+M2qch4tG7duszxSEtLq/7GbVSRMfnLX/5i2rdvbwICAkyTJk1MfHy8WbZsmRe6tk9FxuOX6lrgMqZi4zFp0iSrNjw83AwePNhs27bNC13bq6K/I5s3bzZxcXHG6XSatm3bmr/+9a/m4sWL1dy1fSo6Hl999ZWRZD755JNq7rR6VGQ8Lly4YKZPn27atWtnAgICTFRUlLn//vvNDz/8UKF9OoypyPkwAAAAVBTXcAEAANiMwAUAAGAzAhcAAIDNCFwAAAA2I3ABAADYjMAFAABgMwIXAACAzQhcAFBPjBkzRsnJyd5uA6iXCFwAvG7MmDFyOBzWdN1112nQoEHauXOnt1urEj8/tktT//79bdvfkSNH5HA4tGPHDo/5f//737V48WLb9gvg8ghcAGqEQYMGKScnRzk5OcrIyJCfn59uv/12b7dVZRYtWmQdX05Ojt5///0y6y5cuGBbDyEhIQoNDbVt+wAuj8AFoEZwOp2KiIhQRESEevbsqSlTpujo0aM6ceKEbr31Vj3wwAMe9SdOnJC/v78yMjIkSW3atNEzzzyjlJQUBQUFqWXLlpo/f77HOi+++KJiYmIUFBSkqKgo3X///Tpz5oy1/JtvvtHQoUPVpEkTBQUFqWvXrlqzZo0k6YcfftCIESPUrFkzBQYGqkOHDlq0aFG5jy80NNQ6voiICDVt2tQ6E7V8+XIlJCQoICBAb731lk6ePKmUlBS1bNlSDRs2VExMjJYuXeqxPbfbrZkzZ6p9+/ZyOp1q1aqV/vrXv0qSoqOjJUm9evWSw+HQgAEDJJX+SLG4uFgTJ05U8+bNFRAQoP79+2vr1q3W8g0bNsjhcCgjI0N9+vRRw4YN1bdvX+3fv7/cxw3gJwQuADXOmTNntGTJErVv317XXXedxo0bp7ffflvFxcVWzZIlS9SyZUvdeuut1rxZs2apR48e2r59u6ZMmaIHH3xQa9eutZb7+Pho7ty52rNnj9544w2tW7dOjz76qLV8woQJKi4u1saNG7Vr1y49//zzatSokSRp2rRp2rt3rz788EPt27dPL7/8ssLCwqrkeC/1um/fPiUlJencuXPq3bu3PvjgA+3evVvjx4/XyJEjtWXLFmudqVOnasaMGVZfb7/9tsLDwyXJqvv000+Vk5OjVatWlbnfRx99VO+++67eeOMNbdu2Te3bt1dSUpJOnTrlUfeXv/xFf/vb3/TFF1/Iz89P//Ef/1Elxw3UK1XytdsAcA1Gjx5tfH19TVBQkAkKCjKSTGRkpMnOzjbGGFNUVGSaNGlili9fbq3TvXt3M336dOt169atzaBBgzy2e9ddd5nbbrvtsvtduXKlue6666zXMTExHtv8uaFDh5rU1NRKHZ8kExAQYB1fUFCQ+a//+i9z+PBhI8nMmTPnqtsYMmSIefjhh40xxhQWFhqn02kWLlxYZu2l7W7fvt1j/ujRo82wYcOMMcacOXPGNGjQwLz11lvW8vPnz5sWLVqYmTNnGmOMWb9+vZFkPv30U6vmgw8+MJJMUVFRRYYAqPc4wwWgRrjlllu0Y8cO7dixQ1u2bFFSUpJuu+02ffPNNwoICNDIkSP1+uuvS5K2bdum3bt3a8yYMR7biI+PL/V637591utPP/1UAwcOVMuWLdW4cWONHDlSJ0+e1NmzZyVJEydO1LPPPqt+/fopLS3N46L9P/3pT1q2bJl69uypRx99VJs3b67Q8c2ePds6vh07dug3v/mNtaxPnz4etSUlJXrmmWcUExOjpk2bqlGjRvr444/17bffSpL27dun4uJiDRw4sEI9/NyhQ4d04cIF9evXz5rXoEEDxcbGeoyZJHXv3t3678jISEnS8ePHK71voD4icAGoEYKCgtS+fXu1b99eN954o1577TX9+OOPWrhwoSRp3LhxWrt2rb777jstWrRIt956q1q3bl3u7R85ckS33367unfvrnfffVfZ2dnWNV7nz5+39vH1119r5MiR2rVrl/r06aN58+ZJkhX+HnroIX3//fcaOHCgHnnkkXLvPyIiwjq+9u3bKygoyOPYf27WrFn6+9//rscee0zr16/Xjh07lJSUZPUZGBhY7v1WhQYNGlj/7XA4JP10DRmA8iNwAaiRHA6HfHx8VFRUJEmKiYlRnz59tHDhQr399ttlXkf0+eefl3rdpUsXSVJ2drbcbrf+9re/6de//rU6duyo77//vtQ2oqKidN9992nVqlV6+OGHrcAnSc2aNdPo0aO1ZMkSzZkzR6+++mpVHrJl06ZNGjZsmP7whz+oR48eatu2rf7nf/7HWt6hQwcFBgZaNwz8kr+/v6SfzpRdTrt27eTv769NmzZZ8y5cuKCtW7fq+uuvr6IjAXCJn7cbAADppzvmcnNzJf10R+B//ud/6syZMxo6dKhVM27cOD3wwAMKCgrSHXfcUWobmzZt0syZM5WcnKy1a9dq5cqV+uCDDyRJ7du314ULFzRv3jwNHTpUmzZt0oIFCzzWnzRpkm677TZ17NhRP/zwg9avX28FtieffFK9e/dW165dVVxcrNWrV1vLqlqHDh30zjvvaPPmzWrSpIlefPFF5eXlWUEoICBAjz32mB599FH5+/urX79+OnHihPbs2aOxY8eqefPmCgwM1EcffaRf/epXCggIUEhIiMc+goKC9Kc//Ul//vOf1bRpU7Vq1UozZ87U2bNnNXbsWFuOC6jPOMMFoEb46KOPFBkZqcjISMXFxWnr1q1auXKl9UgDSUpJSZGfn59SUlIUEBBQahsPP/ywvvjiC/Xq1UvPPvusXnzxRSUlJUmSevTooRdffFHPP/+8unXrprfeekvp6eke65eUlGjChAnq0qWLBg0apI4dO+qll16S9NNZo6lTp6p79+66+eab5evrq2XLltkyFk888YRuuOEGJSUlacCAAYqIiCj1hPhp06bp4Ycf1pNPPqkuXbrorrvusq6r8vPz09y5c/XKK6+oRYsWGjZsWJn7mTFjhn7/+99r5MiRuuGGG3Tw4EF9/PHHatKkiS3HBdRnDmOM8XYTAFAeR44cUbt27bR161bdcMMNHsvatGmjSZMmadKkSd5pDgCugI8UAdR4Fy5c0MmTJ/XEE0/o17/+damwBQA1HR8pAqjxNm3apMjISG3durXUdVfe9txzz6lRo0ZlTrfddpu32wNQQ/CRIgBcg1OnTpV6MvslgYGBatmyZTV3BKAmInABAADYjI8UAQAAbEbgAgAAsBmBCwAAwGYELgAAAJsRuAAAAGxG4AIAALAZgQsAAMBmBC4AAACb/X9NgtdpewPJFgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_48.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNm0lEQVR4nO3de1hVZd7/8c8G5CDKRkM5GAqmpilpaSBWakmDZSXZTGrmaSw7aGXWlDYeOmN2cirLstKeTpqNz2RmlqHWkyIqannKUdO0cqNobDwgKvv+/eHPNe0RFZZsNuD7dV37Itb6rrW+676I/XHtey0cxhgjAAAAlEuAvxsAAACojghRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQBqtMcee0wOh6NMtQ6HQ4899phP++natau6du1aZfcHoOwIUQAqxfTp0+VwOKxXUFCQGjVqpEGDBunXX3/1d3tVTkJCgtd4NWzYUFdeeaX+93//t0L2f+jQIT322GNavHhxhewPOBcRogBUqieeeELvvfeepkyZomuvvVbvv/++unTposOHD/vkeGPGjFFRUZFP9u1r7dq103vvvaf33ntPDz30kH777Tf16tVLU6ZMOet9Hzp0SI8//jghCjgLQf5uAMC55dprr1WHDh0kSbfffruioqL07LPPas6cObrlllsq/HhBQUEKCqqev+oaNWqk2267zfp+wIABatasmV566SXdddddfuwMgMSVKAB+duWVV0qStm7d6rX8xx9/1J///GfVr19foaGh6tChg+bMmeNVc/ToUT3++ONq3ry5QkNDdd555+mKK67QggULrJrS5kQVFxfrgQceUIMGDVS3bl3deOON+uWXX07qbdCgQUpISDhpeWn7nDZtmq6++mo1bNhQISEhuuiii/T666+XayzOJCYmRq1atdK2bdtOW7d7924NGTJE0dHRCg0NVdu2bfXuu+9a67dv364GDRpIkh5//HHrI0NfzwcDaprq+c8zADXG9u3bJUn16tWzlq1fv16XX365GjVqpFGjRik8PFwff/yxMjIy9M9//lM33XSTpONhJjMzU7fffruSk5NVWFiolStXatWqVbrmmmtOeczbb79d77//vm699VZ16tRJCxcuVI8ePc7qPF5//XW1bt1aN954o4KCgvTZZ5/pnnvukcfj0bBhw85q3yccPXpUO3fu1HnnnXfKmqKiInXt2lVbtmzR8OHDlZiYqFmzZmnQoEEqKCjQ/fffrwYNGuj111/X3XffrZtuukm9evWSJF188cUV0idwzjAAUAmmTZtmJJmvv/7a7Nmzx+zcudN88sknpkGDBiYkJMTs3LnTqu3WrZtJSkoyhw8ftpZ5PB7TqVMn07x5c2tZ27ZtTY8ePU573PHjx5s//qpbs2aNkWTuuecer7pbb73VSDLjx4+3lg0cONA0adLkjPs0xphDhw6dVJeenm6aNm3qtaxLly6mS5cup+3ZGGOaNGli/vSnP5k9e/aYPXv2mO+//9706dPHSDL33nvvKfc3adIkI8m8//771rIjR46Y1NRUU6dOHVNYWGiMMWbPnj0nnS+A8uHjPACVKi0tTQ0aNFB8fLz+/Oc/Kzw8XHPmzNH5558vSdq3b58WLlyoW265Rfv371d+fr7y8/O1d+9epaena/PmzdbdfJGRkVq/fr02b95c5uPPmzdPknTfffd5LR8xYsRZnVdYWJj13263W/n5+erSpYt++uknud1uW/v86quv1KBBAzVo0EBt27bVrFmz1L9/fz377LOn3GbevHmKiYlR3759rWW1atXSfffdpwMHDuibb76x1QuAk/FxHoBKNXnyZLVo0UJut1vvvPOOvv32W4WEhFjrt2zZImOMxo4dq7Fjx5a6j927d6tRo0Z64okn1LNnT7Vo0UJt2rRR9+7d1b9//9N+LPXzzz8rICBAF1xwgdfyCy+88KzOa8mSJRo/fryys7N16NAhr3Vut1tOp7Pc+0xJSdFTTz0lh8Oh2rVrq1WrVoqMjDztNj///LOaN2+ugADvfyO3atXKWg+gYhCiAFSq5ORk6+68jIwMXXHFFbr11lu1adMm1alTRx6PR5L00EMPKT09vdR9NGvWTJLUuXNnbd26VZ9++qm++uorvfXWW3rppZc0ZcoU3X777Wfd66ke0llSUuL1/datW9WtWze1bNlSL774ouLj4xUcHKx58+bppZdess6pvKKiopSWlmZrWwC+R4gC4DeBgYHKzMzUVVddpVdffVWjRo1S06ZNJR3/CKosAaJ+/foaPHiwBg8erAMHDqhz58567LHHThmimjRpIo/Ho61bt3pdfdq0adNJtfXq1VNBQcFJy//7as5nn32m4uJizZkzR40bN7aWL1q06Iz9V7QmTZrohx9+kMfj8boa9eOPP1rrpVMHRABlx5woAH7VtWtXJScna9KkSTp8+LAaNmyorl276o033tCuXbtOqt+zZ4/133v37vVaV6dOHTVr1kzFxcWnPN61114rSXr55Ze9lk+aNOmk2gsuuEBut1s//PCDtWzXrl0nPTU8MDBQkmSMsZa53W5NmzbtlH34ynXXXSeXy6WZM2day44dO6ZXXnlFderUUZcuXSRJtWvXlqRSQyKAsuFKFAC/+9vf/qa//OUvmj59uu666y5NnjxZV1xxhZKSknTHHXeoadOmysvLU3Z2tn755Rd9//33kqSLLrpIXbt2Vfv27VW/fn2tXLlSn3zyiYYPH37KY7Vr1059+/bVa6+9JrfbrU6dOikrK0tbtmw5qbZPnz565JFHdNNNN+m+++7ToUOH9Prrr6tFixZatWqVVfenP/1JwcHBuuGGG3TnnXfqwIEDmjp1qho2bFhqEPSloUOH6o033tCgQYOUm5urhIQEffLJJ1qyZIkmTZqkunXrSjo+Ef6iiy7SzJkz1aJFC9WvX19t2rRRmzZtKrVfoFrz9+2BAM4NJx5xsGLFipPWlZSUmAsuuMBccMEF5tixY8YYY7Zu3WoGDBhgYmJiTK1atUyjRo3M9ddfbz755BNru6eeesokJyebyMhIExYWZlq2bGmefvppc+TIEaumtMcRFBUVmfvuu8+cd955Jjw83Nxwww1m586dpd7y/9VXX5k2bdqY4OBgc+GFF5r333+/1H3OmTPHXHzxxSY0NNQkJCSYZ5991rzzzjtGktm2bZtVV55HHJzp8Q2n2l9eXp4ZPHiwiYqKMsHBwSYpKclMmzbtpG2XLl1q2rdvb4KDg3ncAWCDw5g/XH8GAABAmTAnCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANjAwzZ9yOPx6LffflPdunX5EwsAAFQTxhjt379fcXFxJ/0x7z8iRPnQb7/9pvj4eH+3AQAAbNi5c6fOP//8U64nRPnQiT+vsHPnTkVERPi5GwAAUBaFhYWKj4+33sdPhRDlQyc+wouIiCBEAQBQzZxpKg4TywEAAGwgRAEAANhAiAIAALCBOVF+VlJSoqNHj/q7jWolODj4tLecAgBQGQhRfmKMkcvlUkFBgb9bqXYCAgKUmJio4OBgf7cCADiHEaL85ESAatiwoWrXrs3DOMvoxANMd+3apcaNGzNuAAC/IUT5QUlJiRWgzjvvPH+3U+00aNBAv/32m44dO6ZatWr5ux0AwDmKiSV+cGIOVO3atf3cSfV04mO8kpISP3cCADiXEaL8iI+i7GHcAABVASEKAADABkIUAACADYQolMugQYOUkZFx0vLFixfL4XCooKBAixcvVs+ePRUbG6vw8HC1a9dOH3zwwUnb7Nu3TyNGjFCTJk0UHBysuLg4/fWvf9WOHTsq4UwAANXZLneRlm7N1y53kd964O48VLilS5fq4osv1iOPPKLo6GjNnTtXAwYMkNPp1PXXXy/peIDq2LGjgoODNWXKFLVu3Vrbt2/XmDFjdNlllyk7O1tNmzb185kAAKqimSt2aPTstfIYKcAhZfZKUu/LGld6H4QoVLhHH33U6/v7779fX331lWbPnm2FqL///e/67bfftGXLFsXExEiSGjdurC+//FLNmzfXsGHD9MUXX1R67wCAqm2Xu8gKUJLkMdKjs9epc4sGinWGVWovfJxXA1SFS5pn4na7Vb9+fUnHH5g5Y8YM9evXzwpQJ4SFhemee+7Rl19+qX379vmjVQBAFbYt/6AVoE4oMUbb8w9Vei9ciarm/HFJc+7cuapTp47XstM9s+njjz/WihUr9MYbb0iS9uzZo4KCArVq1arU+latWskYoy1btig5ObniGgcAVHuJUeEKcMgrSAU6HEqIqvxnL3Ilqho71SVNX1+Ruuqqq7RmzRqv11tvvVVq7aJFizR48GBNnTpVrVu39lpnjCl1GwAATiXWGabMXkkK/P/PDAx0OPRMrzaV/lGexJWoau10lzR9+cMUHh6uZs2aeS375ZdfTqr75ptvdMMNN+ill17SgAEDrOUNGjRQZGSkNm7cWOr+N27cKIfDcdIxAACQpN6XNVbnFg20Pf+QEqJq+yVASVyJqtZOXNL8I39d0vxvixcvVo8ePfTss89q6NChXusCAgJ0yy236MMPP5TL5fJaV1RUpNdee03p6enWHCoAAP5brDNMqRec57cAJRGiqrWqdEnzjxYtWqQePXrovvvu08033yyXyyWXy+U1UfyZZ55RTEyMrrnmGn3xxRfauXOnvv32W6Wnp+vo0aOaPHmyH88AAIAz4+O8aq6qXNL8o3fffVeHDh1SZmamMjMzreVdunTR4sWLJUnnnXeeli1bpieeeEJ33nmnXC6X6tevr2uvvVbvv/++Gjeu/Od9AABQHg7D7F6fKSwslNPplNvtVkREhLX88OHD2rZtmxITExUaGurHDqsnxg8A4Eunev/+b3ycBwAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUX7EnH57GDcAQFVAiPKDWrVqSZIOHar8P5ZYExw5ckSSFBgY6OdOAADnMp4T5QeBgYGKjIzU7t27JUm1a9eWw+E4w1aQJI/Hoz179qh27doKCuLHFwDgP7wL+UlMTIwkWUEKZRcQEKDGjRsTPAEAfkWI8hOHw6HY2Fg1bNhQR48e9Xc71UpwcLACAvgkGgDgX4QoPwsMDGRuDwAA1RD/nAcAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgg99D1OTJk5WQkKDQ0FClpKRo+fLlp62fNWuWWrZsqdDQUCUlJWnevHle640xGjdunGJjYxUWFqa0tDRt3rzZq+bpp59Wp06dVLt2bUVGRp50jO+//159+/ZVfHy8wsLC1KpVK/3jH/8463MFAAA1h19D1MyZMzVy5EiNHz9eq1atUtu2bZWenq7du3eXWr906VL17dtXQ4YM0erVq5WRkaGMjAytW7fOqpk4caJefvllTZkyRTk5OQoPD1d6eroOHz5s1Rw5ckR/+ctfdPfdd5d6nNzcXDVs2FDvv/++1q9fr7///e8aPXq0Xn311YodAAAAUG05jDHGXwdPSUnRZZddZoUTj8ej+Ph43XvvvRo1atRJ9b1799bBgwc1d+5ca1nHjh3Vrl07TZkyRcYYxcXF6cEHH9RDDz0kSXK73YqOjtb06dPVp08fr/1Nnz5dI0aMUEFBwRl7HTZsmDZu3KiFCxeW+fwKCwvldDrldrsVERFR5u0AAID/lPX9229Xoo4cOaLc3FylpaX9p5mAAKWlpSk7O7vUbbKzs73qJSk9Pd2q37Ztm1wul1eN0+lUSkrKKfdZVm63W/Xr1z9tTXFxsQoLC71eAACgZvJbiMrPz1dJSYmio6O9lkdHR8vlcpW6jcvlOm39ia/l2WdZLF26VDNnztTQoUNPW5eZmSmn02m94uPjbR8TAABUbX6fWF7VrVu3Tj179tT48eP1pz/96bS1o0ePltvttl47d+6spC4BAEBl81uIioqKUmBgoPLy8ryW5+XlKSYmptRtYmJiTlt/4mt59nk6GzZsULdu3TR06FCNGTPmjPUhISGKiIjwegEAgJrJbyEqODhY7du3V1ZWlrXM4/EoKytLqamppW6TmprqVS9JCxYssOoTExMVExPjVVNYWKicnJxT7vNU1q9fr6uuukoDBw7U008/Xa5tAQBAzRfkz4OPHDlSAwcOVIcOHZScnKxJkybp4MGDGjx4sCRpwIABatSokTIzMyVJ999/v7p06aIXXnhBPXr00IwZM7Ry5Uq9+eabkiSHw6ERI0boqaeeUvPmzZWYmKixY8cqLi5OGRkZ1nF37Nihffv2aceOHSopKdGaNWskSc2aNVOdOnW0bt06XX311UpPT9fIkSOt+VSBgYFq0KBB5Q0QAACouoyfvfLKK6Zx48YmODjYJCcnm2XLllnrunTpYgYOHOhV//HHH5sWLVqY4OBg07p1a/P55597rfd4PGbs2LEmOjrahISEmG7duplNmzZ51QwcONBIOum1aNEiY4wx48ePL3V9kyZNynVubrfbSDJut7tc2wEAAP8p6/u3X58TVdPxnCgAAKqfKv+cKAAAgOqMEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsMHvIWry5MlKSEhQaGioUlJStHz58tPWz5o1Sy1btlRoaKiSkpI0b948r/XGGI0bN06xsbEKCwtTWlqaNm/e7FXz9NNPq1OnTqpdu7YiIyNLPc6OHTvUo0cP1a5dWw0bNtTf/vY3HTt27KzOFQAA1Bx+DVEzZ87UyJEjNX78eK1atUpt27ZVenq6du/eXWr90qVL1bdvXw0ZMkSrV69WRkaGMjIytG7dOqtm4sSJevnllzVlyhTl5OQoPDxc6enpOnz4sFVz5MgR/eUvf9Hdd99d6nFKSkrUo0cPHTlyREuXLtW7776r6dOna9y4cRU7AAAAoPoyfpScnGyGDRtmfV9SUmLi4uJMZmZmqfW33HKL6dGjh9eylJQUc+eddxpjjPF4PCYmJsY899xz1vqCggITEhJiPvroo5P2N23aNON0Ok9aPm/ePBMQEGBcLpe17PXXXzcRERGmuLi4zOfndruNJON2u8u8DQAA8K+yvn/77UrUkSNHlJubq7S0NGtZQECA0tLSlJ2dXeo22dnZXvWSlJ6ebtVv27ZNLpfLq8bpdColJeWU+zzVcZKSkhQdHe11nMLCQq1fv/6U2xUXF6uwsNDrBQAAaia/haj8/HyVlJR4BRVJio6OlsvlKnUbl8t12voTX8uzz/Ic54/HKE1mZqacTqf1io+PL/MxAQBA9eL3ieU1yejRo+V2u63Xzp07/d0SAADwEb+FqKioKAUGBiovL89reV5enmJiYkrdJiYm5rT1J76WZ5/lOc4fj1GakJAQRUREeL0AAEDN5LcQFRwcrPbt2ysrK8ta5vF4lJWVpdTU1FK3SU1N9aqXpAULFlj1iYmJiomJ8aopLCxUTk7OKfd5quOsXbvW6y7BBQsWKCIiQhdddFGZ9wMAAGquIH8efOTIkRo4cKA6dOig5ORkTZo0SQcPHtTgwYMlSQMGDFCjRo2UmZkpSbr//vvVpUsXvfDCC+rRo4dmzJihlStX6s0335QkORwOjRgxQk899ZSaN2+uxMREjR07VnFxccrIyLCOu2PHDu3bt087duxQSUmJ1qxZI0lq1qyZ6tSpoz/96U+66KKL1L9/f02cOFEul0tjxozRsGHDFBISUqljBAAAqqhKulvwlF555RXTuHFjExwcbJKTk82yZcusdV26dDEDBw70qv/4449NixYtTHBwsGndurX5/PPPvdZ7PB4zduxYEx0dbUJCQky3bt3Mpk2bvGoGDhxoJJ30WrRokVWzfft2c+2115qwsDATFRVlHnzwQXP06NFynRuPOAAAoPop6/u3wxhj/JjharTCwkI5nU653W7mRwEAUE2U9f2bu/MAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADb4PURNnjxZCQkJCg0NVUpKipYvX37a+lmzZqlly5YKDQ1VUlKS5s2b57XeGKNx48YpNjZWYWFhSktL0+bNm71q9u3bp379+ikiIkKRkZEaMmSIDhw44FXz5ZdfqmPHjqpbt64aNGigm2++Wdu3b6+QcwYAANWfX0PUzJkzNXLkSI0fP16rVq1S27ZtlZ6ert27d5dav3TpUvXt21dDhgzR6tWrlZGRoYyMDK1bt86qmThxol5++WVNmTJFOTk5Cg8PV3p6ug4fPmzV9OvXT+vXr9eCBQs0d+5cffvttxo6dKi1ftu2berZs6euvvpqrVmzRl9++aXy8/PVq1cv3w0GAACoXowfJScnm2HDhlnfl5SUmLi4OJOZmVlq/S233GJ69OjhtSwlJcXceeedxhhjPB6PiYmJMc8995y1vqCgwISEhJiPPvrIGGPMhg0bjCSzYsUKq+aLL74wDofD/Prrr8YYY2bNmmWCgoJMSUmJVTNnzhzjcDjMkSNHynx+brfbSDJut7vM2wAAAP8q6/u3365EHTlyRLm5uUpLS7OWBQQEKC0tTdnZ2aVuk52d7VUvSenp6Vb9tm3b5HK5vGqcTqdSUlKsmuzsbEVGRqpDhw5WTVpamgICApSTkyNJat++vQICAjRt2jSVlJTI7XbrvffeU1pammrVqnXKcyouLlZhYaHXCwAA1Ex+C1H5+fkqKSlRdHS01/Lo6Gi5XK5St3G5XKetP/H1TDUNGzb0Wh8UFKT69etbNYmJifrqq6/06KOPKiQkRJGRkfrll1/08ccfn/acMjMz5XQ6rVd8fPxp6wEAQPXl94nlVZHL5dIdd9yhgQMHasWKFfrmm28UHBysP//5zzLGnHK70aNHy+12W6+dO3dWYtcAAKAyBfnrwFFRUQoMDFReXp7X8ry8PMXExJS6TUxMzGnrT3zNy8tTbGysV027du2smv+euH7s2DHt27fP2n7y5MlyOp2aOHGiVfP+++8rPj5eOTk56tixY6n9hYSEKCQk5EynDgAAagC/XYkKDg5W+/btlZWVZS3zeDzKyspSampqqdukpqZ61UvSggULrPrExETFxMR41RQWFionJ8eqSU1NVUFBgXJzc62ahQsXyuPxKCUlRZJ06NAhBQR4D01gYKDVIwAAgF/vzpsxY4YJCQkx06dPNxs2bDBDhw41kZGRxuVyGWOM6d+/vxk1apRVv2TJEhMUFGSef/55s3HjRjN+/HhTq1Yts3btWqtmwoQJJjIy0nz66afmhx9+MD179jSJiYmmqKjIqunevbu55JJLTE5Ojvnuu+9M8+bNTd++fa31WVlZxuFwmMcff9z8+9//Nrm5uSY9Pd00adLEHDp0qMznx915AABUP2V9//ZriDLGmFdeecU0btzYBAcHm+TkZLNs2TJrXZcuXczAgQO96j/++GPTokULExwcbFq3bm0+//xzr/Uej8eMHTvWREdHm5CQENOtWzezadMmr5q9e/eavn37mjp16piIiAgzePBgs3//fq+ajz76yFxyySUmPDzcNGjQwNx4441m48aN5To3QhQAANVPWd+/HcacZqY0zkphYaGcTqfcbrciIiL83Q4AACiDsr5/c3ceAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALAhyO6GBQUF2rJliySpWbNmioyMrKieAAAAqrxyX4navn27evTooaioKKWkpCglJUVRUVG6/vrrtX37dh+0CAAAUPWU60rUzp071bFjR9WqVUtPPvmkWrVqJUnasGGDXn/9daWmpmrFihU6//zzfdIsAABAVeEwxpiyFg8ZMkRbtmzRl19+qdDQUK91RUVF6t69u5o3b6633nqrwhutjgoLC+V0OuV2uxUREeHvdgAAQBmU9f27XFei5s+fr5kzZ54UoCQpLCxMTz75pPr06VP+bgEAAKqZcs2Jys/PV0JCwinXN23aVPv27TvbngAAAKq8coWo2NhYbdiw4ZTr161bp5iYmLNuCgAAoKorV4jKyMjQQw89pD179py0bvfu3XrkkUeUkZFRUb0BAABUWeWaWP77778rJSVFLpdLt912m1q2bCljjDZu3KgPP/xQMTExWrZsmerXr+/LnqsNJpYDAFD9+GRieb169ZSTk6NHH31UM2bMUEFBgSQpMjJSt956q5555hkCFAAAOCeU60rUHxljrI/1GjRoIIfDUaGN1QRciQIA1DS73EXaln9QiVHhinWG+bsdn/DJlag/cjgcatiwod3NAQBANTNzxQ6Nnr1WHiMFOKTMXknqfVljf7flN+X+sy/z5s3T7bffrocfflgbN270Wvf777/r6quvrrDmAABA1bDLXWQFKEnyGOnR2eu0y13k38b8qFwh6sMPP9SNN94ol8ul7OxsXXrppfrggw+s9UeOHNE333xT4U0CAAD/2pZ/0ApQJ5QYo+35h/zTUBVQro/znnvuOb344ou67777JEkff/yx/vrXv+rw4cMaMmSITxoEAAD+lxgVrgCHvIJUoMOhhKjaZ73v6jrPqlwhavPmzbrhhhus72+55RY1aNBAN954o44ePaqbbrqpwhsEAAD+F+sMU2avJD06e51KjFGgw6FnerU569BTnedZlStERUREKC8vT4mJidayq666SnPnztX111+vX375pcIbBAAAVUPvyxqrc4sG2p5/SAlRtc86QJ1qnlXnFg2qxRWpcoWo5ORkffHFF+rYsaPX8i5duuizzz7T9ddfX6HNAQCAqiXWGVZhAed086yqQ4gq18TyBx54QKGhoaWu69q1qz777DMNGDCgQhoDAAA124l5Vn9UUfOsKkO5HrZZWFhYpjoeLHkcD9sEAOD0Zq7YcdI8K3/PifLJwzYjIyPL9GTykpKS8uwWAACcoyp6nlVlKleIWrRokfXfxhhdd911euutt9SoUaMKbwwAAJwbKnKeVWUqV4jq0qWL1/eBgYHq2LGjmjZtWqFNAQAAVHXl/rMvAAAAIEQBAADYctYhqiwTzQEAAGqacs2J6tWrl9f3hw8f1l133aXw8HCv5bNnzz77zgAAAKqwcl2JcjqdXq/bbrtNcXFxJy0vj8mTJyshIUGhoaFKSUnR8uXLT1s/a9YstWzZUqGhoUpKStK8efO81htjNG7cOMXGxiosLExpaWnavHmzV82+ffvUr18/RUREKDIyUkOGDNGBAwdO2s/zzz+vFi1aKCQkRI0aNdLTTz9drnMDAAA1mPGjGTNmmODgYPPOO++Y9evXmzvuuMNERkaavLy8UuuXLFliAgMDzcSJE82GDRvMmDFjTK1atczatWutmgkTJhin02n+9a9/me+//97ceOONJjEx0RQVFVk13bt3N23btjXLli0z//d//2eaNWtm+vbt63Wse++911x44YXm008/NT/99JNZuXKl+eqrr8p1fm6320gybre7XNsBAAD/Kev7t19DVHJyshk2bJj1fUlJiYmLizOZmZml1t9yyy2mR48eXstSUlLMnXfeaYwxxuPxmJiYGPPcc89Z6wsKCkxISIj56KOPjDHGbNiwwUgyK1assGq++OIL43A4zK+//mrVBAUFmR9//PGszo8QBQBA9VPW92+/3Z135MgR5ebmKi0tzVoWEBCgtLQ0ZWdnl7pNdna2V70kpaenW/Xbtm2Ty+XyqnE6nUpJSbFqsrOzFRkZqQ4dOlg1aWlpCggIUE5OjiTps88+U9OmTTV37lwlJiYqISFBt99+u/bt23facyouLlZhYaHXCwAA1Ex+C1H5+fkqKSlRdHS01/Lo6Gi5XK5St3G5XKetP/H1TDUNGzb0Wh8UFKT69etbNT/99JN+/vlnzZo1S//zP/+j6dOnKzc3V3/+859Pe06ZmZlec8Pi4+NPWw8AAKovnhNVCo/Ho+LiYv3P//yPrrzySnXt2lVvv/22Fi1apE2bNp1yu9GjR8vtdluvnTt3VmLXAACgMvktREVFRSkwMFB5eXley/Py8hQTE1PqNjExMaetP/H1TDW7d+/2Wn/s2DHt27fPqomNjVVQUJBatGhh1bRq1UqStGPHjlOeU0hIiCIiIrxeAACgZvJbiAoODlb79u2VlZVlLfN4PMrKylJqamqp26SmpnrVS9KCBQus+sTERMXExHjVFBYWKicnx6pJTU1VQUGBcnNzrZqFCxfK4/EoJSVFknT55Zfr2LFj2rp1q1Xz73//W5LUpEmTszltAABQU1TSRPdSzZgxw4SEhJjp06ebDRs2mKFDh5rIyEjjcrmMMcb079/fjBo1yqpfsmSJCQoKMs8//7zZuHGjGT9+fKmPOIiMjDSffvqp+eGHH0zPnj1LfcTBJZdcYnJycsx3331nmjdv7vWIg5KSEnPppZeazp07m1WrVpmVK1ealJQUc80115Tr/Lg7DwCA6qdaPOLAGGNeeeUV07hxYxMcHGySk5PNsmXLrHVdunQxAwcO9Kr/+OOPTYsWLUxwcLBp3bq1+fzzz73WezweM3bsWBMdHW1CQkJMt27dzKZNm7xq9u7da/r27Wvq1KljIiIizODBg83+/fu9an799VfTq1cvU6dOHRMdHW0GDRpk9u7dW65zI0QBAFD9lPX922GMMf69FlZzFRYWyul0yu12Mz8KAIBqoqzv39ydBwAAYAMhCgAAlNkud5GWbs3XLneRv1vxuyB/NwAAAKqHmSt2aPTstfIYKcAhZfZKUu/LGvu7Lb/hShQAADijXe4iK0BJksdIj85ed05fkSJEAQCAM9qWf9AKUCeUGKPt+Yf801AVQIgCAABnlBgVrgCH97JAh0MJUbX901AVQIgCAABnFOsMU2avJAU6jiepQIdDz/Rqo1hnmJ878x8mlgMAgDLpfVljdW7RQNvzDykhqvY5HaAkQhQAACiHWGfYOR+eTuDjPAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANVSJETZ48WQkJCQoNDVVKSoqWL19+2vpZs2apZcuWCg0NVVJSkubNm+e13hijcePGKTY2VmFhYUpLS9PmzZu9avbt26d+/fopIiJCkZGRGjJkiA4cOFDq8bZs2aK6desqMjLyrM4TAADUHH4PUTNnztTIkSM1fvx4rVq1Sm3btlV6erp2795dav3SpUvVt29fDRkyRKtXr1ZGRoYyMjK0bt06q2bixIl6+eWXNWXKFOXk5Cg8PFzp6ek6fPiwVdOvXz+tX79eCxYs0Ny5c/Xtt99q6NChJx3v6NGj6tu3r6688sqKP3kAAFBtOYwxxp8NpKSk6LLLLtOrr74qSfJ4PIqPj9e9996rUaNGnVTfu3dvHTx4UHPnzrWWdezYUe3atdOUKVNkjFFcXJwefPBBPfTQQ5Ikt9ut6OhoTZ8+XX369NHGjRt10UUXacWKFerQoYMkaf78+bruuuv0yy+/KC4uztr3I488ot9++03dunXTiBEjVFBQUOZzKywslNPplNvtVkREhJ3hAQAAlays799+vRJ15MgR5ebmKi0tzVoWEBCgtLQ0ZWdnl7pNdna2V70kpaenW/Xbtm2Ty+XyqnE6nUpJSbFqsrOzFRkZaQUoSUpLS1NAQIBycnKsZQsXLtSsWbM0efLkMp1PcXGxCgsLvV4AAKBm8muIys/PV0lJiaKjo72WR0dHy+VylbqNy+U6bf2Jr2eqadiwodf6oKAg1a9f36rZu3evBg0apOnTp5f5KlJmZqacTqf1io+PL9N2AACg+vH7nKiq6o477tCtt96qzp07l3mb0aNHy+12W6+dO3f6pLdd7iIt3ZqvXe4in+wfAACcWZA/Dx4VFaXAwEDl5eV5Lc/Ly1NMTEyp28TExJy2/sTXvLw8xcbGetW0a9fOqvnvievHjh3Tvn37rO0XLlyoOXPm6Pnnn5d0/I4/j8ejoKAgvfnmm/rrX/96Um8hISEKCQkp6+nbMnPFDo2evVYeIwU4pMxeSep9WWOfHhMAAJzMr1eigoOD1b59e2VlZVnLPB6PsrKylJqaWuo2qampXvWStGDBAqs+MTFRMTExXjWFhYXKycmxalJTU1VQUKDc3FyrZuHChfJ4PEpJSZF0fN7UmjVrrNcTTzyhunXras2aNbrpppsqZgDKaZe7yApQkuQx0qOz13FFCgAAP/DrlShJGjlypAYOHKgOHTooOTlZkyZN0sGDBzV48GBJ0oABA9SoUSNlZmZKku6//3516dJFL7zwgnr06KEZM2Zo5cqVevPNNyVJDodDI0aM0FNPPaXmzZsrMTFRY8eOVVxcnDIyMiRJrVq1Uvfu3XXHHXdoypQpOnr0qIYPH64+ffpYd+a1atXKq8+VK1cqICBAbdq0qaSROdm2/INWgDqhxBhtzz+kWGeYf5oCAOAc5fcQ1bt3b+3Zs0fjxo2Ty+VSu3btNH/+fGti+I4dOxQQ8J8LZp06ddKHH36oMWPG6NFHH1Xz5s31r3/9yyvcPPzwwzp48KCGDh2qgoICXXHFFZo/f75CQ0Otmg8++EDDhw9Xt27dFBAQoJtvvlkvv/xy5Z24DYlR4QpwyCtIBTocSoiq7b+mAAA4R/n9OVE1mS+eEzVzxQ49OnudSoxRoMOhZ3q1YU4UfGaXu0jb8g8qMSq8Qq52VvT+AMAXyvr+7fcrUSif3pc1VucWDbQ9/5ASomrzRgSfqeibGLgpouwIm0D1QIiqhmKdYfxihU+d6iaGzi0a2PrZq+j91WSETaD64DlRAE5yupsYqsL+airuwAWqF0IUgJOcuInhj87mJoaK3l9NRdgEqhdCFICTxDrDlNkrSYGO48nnxE0Mdj96q+j91VSETaB64e48H/LF3XlAZdrlLqrQmxgqen81EXfgAv5X1vdvQpQPEaIA2EHYBPyLRxwAQDXFHbhA9cCcKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhRwDtjlLtLSrfn8IVsAqEA8bBOo4Wau2KHRs9fKY6QAh5TZK4k/IwIAFYArUUANtstdZAUoSfIY6dHZ67giBQAVgBAF1GDb8g9aAeqEEmO0Pf+QfxoCgBqEEAXUYIlR4QpweC8LdDiUEFXbPw0BQA1CiAJqsFhnmDJ7JSnQcTxJBToceqZXG/64LQBUACaWAzVc78saq3OLBtqef0gJUbUJUABQQQhRwDkg1hlGeAKACsbHeQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEK2uUu0tKt+drlLvJ3KwBqMH7XoKYJ8ncD8K+ZK3Zo9Oy18hgpwCFl9kpS78sa+7stADUMv2tQE3El6hy2y11k/VKTJI+RHp29jn8lAqhQ/K5BTUWIOodtyz9o/VI7ocQYbc8/5J+GANRI/K5BTVUlQtTkyZOVkJCg0NBQpaSkaPny5aetnzVrllq2bKnQ0FAlJSVp3rx5XuuNMRo3bpxiY2MVFhamtLQ0bd682atm37596tevnyIiIhQZGakhQ4bowIED1vrFixerZ8+eio2NVXh4uNq1a6cPPvig4k66CkiMCleAw3tZoMOhhKja/mkIQI3E7xrUVH4PUTNnztTIkSM1fvx4rVq1Sm3btlV6erp2795dav3SpUvVt29fDRkyRKtXr1ZGRoYyMjK0bt06q2bixIl6+eWXNWXKFOXk5Cg8PFzp6ek6fPiwVdOvXz+tX79eCxYs0Ny5c/Xtt99q6NChXse5+OKL9c9//lM//PCDBg8erAEDBmju3Lm+G4xKFusMU2avJAU6jv92C3Q49EyvNop1hvm5MwA1Cb9rUFM5jDHmzGW+k5KSossuu0yvvvqqJMnj8Sg+Pl733nuvRo0adVJ97969dfDgQa8w07FjR7Vr105TpkyRMUZxcXF68MEH9dBDD0mS3G63oqOjNX36dPXp00cbN27URRddpBUrVqhDhw6SpPnz5+u6667TL7/8ori4uFJ77dGjh6Kjo/XOO++U6dwKCwvldDrldrsVERFRrnGpTLvcRdqef0gJUbX5pQbAZ/hdg+qirO/ffr0SdeTIEeXm5iotLc1aFhAQoLS0NGVnZ5e6TXZ2tle9JKWnp1v127Ztk8vl8qpxOp1KSUmxarKzsxUZGWkFKElKS0tTQECAcnJyTtmv2+1W/fr1y3+iVVysM0ypF5zHLzXUKNxOX/XwuwY1jV8fcZCfn6+SkhJFR0d7LY+OjtaPP/5Y6jYul6vUepfLZa0/sex0NQ0bNvRaHxQUpPr161s1/+3jjz/WihUr9MYbb5zyfIqLi1VcXGx9X1hYeMpaAL7D7fQ1xy53kbblH1RiVDjhC1WO3+dEVQeLFi3S4MGDNXXqVLVu3fqUdZmZmXI6ndYrPj6+ErsEIHE7fU0yc8UOXT5hoW6dmqPLJyzUzBU7/N0S4MWvISoqKkqBgYHKy8vzWp6Xl6eYmJhSt4mJiTlt/YmvZ6r574nrx44d0759+0467jfffKMbbrhBL730kgYMGHDa8xk9erTcbrf12rlz52nrUXZ8NIOy4nb6moEwjOrAryEqODhY7du3V1ZWlrXM4/EoKytLqamppW6TmprqVS9JCxYssOoTExMVExPjVVNYWKicnByrJjU1VQUFBcrNzbVqFi5cKI/Ho5SUFGvZ4sWL1aNHDz377LNed+6dSkhIiCIiIrxeOHv8axTlwe30NQNhGNWB3z/OGzlypKZOnap3331XGzdu1N13362DBw9q8ODBkqQBAwZo9OjRVv3999+v+fPn64UXXtCPP/6oxx57TCtXrtTw4cMlSQ6HQyNGjNBTTz2lOXPmaO3atRowYIDi4uKUkZEhSWrVqpW6d++uO+64Q8uXL9eSJUs0fPhw9enTx7ozb9GiRerRo4fuu+8+3XzzzXK5XHK5XNq3b1/lDtA5jn+Nory4nb5mIAyjOvD7387r3bu39uzZo3Hjxsnlcqldu3aaP3++NTF8x44dCgj4T9br1KmTPvzwQ40ZM0aPPvqomjdvrn/9619q06aNVfPwww/r4MGDGjp0qAoKCnTFFVdo/vz5Cg0NtWo++OADDR8+XN26dVNAQIBuvvlmvfzyy9b6d999V4cOHVJmZqYyMzOt5V26dNHixYt9OCL4o9P9a5Q3RZxK78saq3OLBtxOX42dCMOPzl6nEmMIw6iS/P6cqJqsujwnqirb5S7S5RMWegWpQIdD3426il+mwDmAZ0vBH6rFc6KAMznxr9ETP6gBEv8aBc4hPFsKVRkhCtWD47++AgDgZ4QoVGlMLAcAVFWEKFRp3OYMAKiqCFGo0rjNGQBQVRGiUKXxzB8AQFXl9+dEAWfCM38AAFURIQrVQqwzjPAEAKhS+DgPAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAXAll3uIi3dmq9d7iJ/twIAfhHk7wYAVD8zV+zQ6Nlr5TFSgEPK7JWk3pc19ndbAFCpuBIFoFx2uYusACVJHiM9OnsdV6QAnHMIUQDKZVv+QStAnVBijLbnH/JPQ6hS+JgX5xI+zgP8ZJe7SNvyDyoxKlyxzjB/t1NmiVHhCnDIK0gFOhxKiKrtv6ZQJfAxL841XIkC/GDmih26fMJC3To1R5dPWKiZK3b4u6Uyi3WGKbNXkgIdDknHA9QzvdpUqyCIisfHvDgXcSUKqGSnerPp3KJBtQkivS9rrM4tGmh7/iElRNWuNn3Dd073MS8/H6ipCFFAJaspbzaxzrBq1S98i495cS7i4zygkp14s/kjf77ZMBEYFYGPeXEu4koUUMlOvNk8OnudSozx65sNE4FRkfiYF+cahzHGnLkMdhQWFsrpdMrtdisiIsLf7aCK2eUu8uubzS53kS6fsPCkj1++G3UVb34Azmllff/mShTgJ/6eU1RT5mYBgL8wJwo4R1W1uVkAUN0QooBzFBOBca7iZgpUFD7OA85hTATGuYabKVCRuBIFnONinWFKveA8AhRqPJ6qjopGiAIAnBP449moaIQoAMA5gZspUNGqRIiaPHmyEhISFBoaqpSUFC1fvvy09bNmzVLLli0VGhqqpKQkzZs3z2u9MUbjxo1TbGyswsLClJaWps2bN3vV7Nu3T/369VNERIQiIyM1ZMgQHThwwKvmhx9+0JVXXqnQ0FDFx8dr4sSJFXPCAIBKx80UqHDGz2bMmGGCg4PNO++8Y9avX2/uuOMOExkZafLy8kqtX7JkiQkMDDQTJ040GzZsMGPGjDG1atUya9eutWomTJhgnE6n+de//mW+//57c+ONN5rExERTVFRk1XTv3t20bdvWLFu2zPzf//2fadasmenbt6+13u12m+joaNOvXz+zbt0689FHH5mwsDDzxhtvlPnc3G63kWTcbreNkQEA+MJvBYfM0i355reCQ/5uBVVUWd+//R6ikpOTzbBhw6zvS0pKTFxcnMnMzCy1/pZbbjE9evTwWpaSkmLuvPNOY4wxHo/HxMTEmOeee85aX1BQYEJCQsxHH31kjDFmw4YNRpJZsWKFVfPFF18Yh8Nhfv31V2OMMa+99pqpV6+eKS4utmoeeeQRc+GFF5b53AhRAABUP2V9//brx3lHjhxRbm6u0tLSrGUBAQFKS0tTdnZ2qdtkZ2d71UtSenq6Vb9t2za5XC6vGqfTqZSUFKsmOztbkZGR6tChg1WTlpamgIAA5eTkWDWdO3dWcHCw13E2bdqk33//vdTeiouLVVhY6PUCAAA1k19DVH5+vkpKShQdHe21PDo6Wi6Xq9RtXC7XaetPfD1TTcOGDb3WBwUFqX79+l41pe3jj8f4b5mZmXI6ndYrPj6+9BMHAADVXpWYWF5TjB49Wm6323rt3LnT3y0BAAAf8WuIioqKUmBgoPLy8ryW5+XlKSYmptRtYmJiTlt/4uuZanbv3u21/tixY9q3b59XTWn7+OMx/ltISIgiIiK8XgAAoGbya4gKDg5W+/btlZWVZS3zeDzKyspSampqqdukpqZ61UvSggULrPrExETFxMR41RQWFionJ8eqSU1NVUFBgXJzc62ahQsXyuPxKCUlxar59ttvdfToUa/jXHjhhapXr95ZnjkAAKj2Kmmi+ynNmDHDhISEmOnTp5sNGzaYoUOHmsjISONyuYwxxvTv39+MGjXKql+yZIkJCgoyzz//vNm4caMZP358qY84iIyMNJ9++qn54YcfTM+ePUt9xMEll1xicnJyzHfffWeaN2/u9YiDgoICEx0dbfr372/WrVtnZsyYYWrXrs0jDgAAqOGqzSMOjDHmlVdeMY0bNzbBwcEmOTnZLFu2zFrXpUsXM3DgQK/6jz/+2LRo0cIEBweb1q1bm88//9xrvcfjMWPHjjXR0dEmJCTEdOvWzWzatMmrZu/evaZv376mTp06JiIiwgwePNjs37/fq+b77783V1xxhQkJCTGNGjUyEyZMKNd5EaIAAKh+yvr+7TDGmNNfq4JdhYWFcjqdcrvdzI8CAKCaKOv7N3fnAQAA2ECIAgAAsIEQBQAAYEOQvxuoyU5MN+PPvwAAUH2ceN8+07RxQpQP7d+/X5L48y8AAFRD+/fvl9PpPOV67s7zIY/Ho99++01169aVw+EotaawsFDx8fHauXPnOX0HH+NwHOPwH4zFcYzDcYzDfzAWx/lyHIwx2r9/v+Li4hQQcOqZT1yJ8qGAgACdf/75Zarlz8Qcxzgcxzj8B2NxHONwHOPwH4zFcb4ah9NdgTqBieUAAAA2EKIAAABsIET5WUhIiMaPH6+QkBB/t+JXjMNxjMN/MBbHMQ7HMQ7/wVgcVxXGgYnlAAAANnAlCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQonxs8uTJSkhIUGhoqFJSUrR8+fJT1q5fv14333yzEhIS5HA4NGnSpMprtBKUZyymTp2qK6+8UvXq1VO9evWUlpZ22vrqpDzjMHv2bHXo0EGRkZEKDw9Xu3bt9N5771Vit75VnrH4oxkzZsjhcCgjI8O3DVaS8ozD9OnT5XA4vF6hoaGV2K3vlPfnoaCgQMOGDVNsbKxCQkLUokULzZs3r5K69a3yjEXXrl1P+plwOBzq0aNHJXbsG+X9mZg0aZIuvPBChYWFKT4+Xg888IAOHz7suwYNfGbGjBkmODjYvPPOO2b9+vXmjjvuMJGRkSYvL6/U+uXLl5uHHnrIfPTRRyYmJsa89NJLlduwD5V3LG699VYzefJks3r1arNx40YzaNAg43Q6zS+//FLJnVes8o7DokWLzOzZs82GDRvMli1bzKRJk0xgYKCZP39+JXde8co7Fids27bNNGrUyFx55ZWmZ8+eldOsD5V3HKZNm2YiIiLMrl27rJfL5arkriteecehuLjYdOjQwVx33XXmu+++M9u2bTOLFy82a9asqeTOK155x2Lv3r1ePw/r1q0zgYGBZtq0aZXbeAUr7zh88MEHJiQkxHzwwQdm27Zt5ssvvzSxsbHmgQce8FmPhCgfSk5ONsOGDbO+LykpMXFxcSYzM/OM2zZp0qRGhaizGQtjjDl27JipW7eueffdd33VYqU423EwxphLLrnEjBkzxhftVSo7Y3Hs2DHTqVMn89Zbb5mBAwfWiBBV3nGYNm2acTqdldRd5SnvOLz++uumadOm5siRI5XVYqU5298TL730kqlbt645cOCAr1qsFOUdh2HDhpmrr77aa9nIkSPN5Zdf7rMe+TjPR44cOaLc3FylpaVZywICApSWlqbs7Gw/dlb5KmIsDh06pKNHj6p+/fq+atPnznYcjDHKysrSpk2b1LlzZ1+26nN2x+KJJ55Qw4YNNWTIkMpo0+fsjsOBAwfUpEkTxcfHq2fPnlq/fn1ltOszdsZhzpw5Sk1N1bBhwxQdHa02bdromWeeUUlJSWW17RMV8fvy7bffVp8+fRQeHu6rNn3Ozjh06tRJubm51kd+P/30k+bNm6frrrvOZ33yB4h9JD8/XyUlJYqOjvZaHh0drR9//NFPXflHRYzFI488ori4OK//oaobu+PgdrvVqFEjFRcXKzAwUK+99pquueYaX7frU3bG4rvvvtPbb7+tNWvWVEKHlcPOOFx44YV65513dPHFF8vtduv5559Xp06dtH79+jL/wfOqxs44/PTTT1q4cKH69eunefPmacuWLbrnnnt09OhRjR8/vjLa9omz/X25fPlyrVu3Tm+//bavWqwUdsbh1ltvVX5+vq644goZY3Ts2DHdddddevTRR33WJyEKVd6ECRM0Y8YMLV68uMZMoC2PunXras2aNTpw4ICysrI0cuRINW3aVF27dvV3a5Vm//796t+/v6ZOnaqoqCh/t+NXqampSk1Ntb7v1KmTWrVqpTfeeENPPvmkHzurXB6PRw0bNtSbb76pwMBAtW/fXr/++quee+65ah2iztbbb7+tpKQkJScn+7uVSrd48WI988wzeu2115SSkqItW7bo/vvv15NPPqmxY8f65JiEKB+JiopSYGCg8vLyvJbn5eUpJibGT135x9mMxfPPP68JEybo66+/1sUXX+zLNn3O7jgEBASoWbNmkqR27dpp48aNyszMrNYhqrxjsXXrVm3fvl033HCDtczj8UiSgoKCtGnTJl1wwQW+bdoHKuL3RK1atXTJJZdoy5YtvmixUtgZh9jYWNWqVUuBgYHWslatWsnlcunIkSMKDg72ac++cjY/EwcPHtSMGTP0xBNP+LLFSmFnHMaOHav+/fvr9ttvlyQlJSXp4MGDGjp0qP7+978rIKDiZzAxJ8pHgoOD1b59e2VlZVnLPB6PsrKyvP4VeS6wOxYTJ07Uk08+qfnz56tDhw6V0apPVdTPhMfjUXFxsS9arDTlHYuWLVtq7dq1WrNmjfW68cYbddVVV2nNmjWKj4+vzPYrTEX8TJSUlGjt2rWKjY31VZs+Z2ccLr/8cm3ZssUK05L073//W7GxsdU2QEln9zMxa9YsFRcX67bbbvN1mz5nZxwOHTp0UlA6EbKNr/5MsM+mrMPMmDHDhISEmOnTp5sNGzaYoUOHmsjISOt25P79+5tRo0ZZ9cXFxWb16tVm9erVJjY21jz00ENm9erVZvPmzf46hQpT3rGYMGGCCQ4ONp988onXrbv79+/31ylUiPKOwzPPPGO++uors3XrVrNhwwbz/PPPm6CgIDN16lR/nUKFKe9Y/Leacndeecfh8ccfN19++aXZunWryc3NNX369DGhoaFm/fr1/jqFClHecdixY4epW7euGT58uNm0aZOZO3euadiwoXnqqaf8dQoVxu7/G1dccYXp3bt3ZbfrM+Udh/Hjx5u6deuajz76yPz000/mq6++MhdccIG55ZZbfNYjIcrHXnnlFdO4cWMTHBxskpOTzbJly6x1Xbp0MQMHDrS+37Ztm5F00qtLly6V37gPlGcsmjRpUupYjB8/vvIbr2DlGYe///3vplmzZiY0NNTUq1fPpKammhkzZviha98oz1j8t5oSoowp3ziMGDHCqo2OjjbXXXedWbVqlR+6rnjl/XlYunSpSUlJMSEhIaZp06bm6aefNseOHavkrn2jvGPx448/Gknmq6++quROfas843D06FHz2GOPmQsuuMCEhoaa+Ph4c88995jff//dZ/05jPHVNS4AAICaizlRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKACoAQYNGqSMjAx/twGcUwhRAHxq0KBBcjgc1uu8885T9+7d9cMPP/i7tQrxx3M78briiit8drzt27fL4XBozZo1Xsv/8Y9/aPr06T47LoCTEaIA+Fz37t21a9cu7dq1S1lZWQoKCtL111/v77YqzLRp06zz27Vrl+bMmVNq3dGjR33Wg9PpVGRkpM/2D+BkhCgAPhcSEqKYmBjFxMSoXbt2GjVqlHbu3Kk9e/bo6quv1vDhw73q9+zZo+DgYOsvuCckJOjJJ59U3759FR4erkaNGmny5Mle27z44otKSkpSeHi44uPjdc899+jAgQPW+p9//lk33HCD6tWrp/DwcLVu3Vrz5s2TJP3+++/q16+fGjRooLCwMDVv3lzTpk0r8/lFRkZa5xcTE6P69etbV4xmzpypLl26KDQ0VB988IH27t2rvn37qlGjRqpdu7aSkpL00Ucfee3P4/Fo4sSJatasmUJCQtS4cWM9/fTTkqTExERJ0iWXXCKHw6GuXbtKOvnjvOLiYt13331q2LChQkNDdcUVV2jFihXW+sWLF8vhcCgrK0sdOnRQ7dq11alTJ23atKnM5w2c6whRACrVgQMH9P7776tZs2Y677zzdPvtt+vDDz9UcXGxVfP++++rUaNGuvrqq61lzz33nNq2bavVq1dr1KhRuv/++7VgwQJrfUBAgF5++WWtX79e7777rhYuXKiHH37YWj9s2DAVFxfr22+/1dq1a/Xss8+qTp06kqSxY8dqw4YN+uKLL7Rx40a9/vrrioqKqpDzPdHrxo0blZ6ersOHD6t9+/b6/PPPtW7dOg0dOlT9+/fX8uXLrW1Gjx6tCRMmWH19+OGHio6OliSr7uuvv9auXbs0e/bsUo/78MMP65///KfeffddrVq1Ss2aNVN6err27dvnVff3v/9dL7zwglauXKmgoCD99a9/rZDzBs4JPvvTxgBgjBk4cKAJDAw04eHhJjw83EgysbGxJjc31xhjTFFRkalXr56ZOXOmtc3FF19sHnvsMev7Jk2amO7du3vtt3fv3ubaa6895XFnzZplzjvvPOv7pKQkr33+0Q033GAGDx5s6/wkmdDQUOv8wsPDzf/+7/+abdu2GUlm0qRJZ9xHjx49zIMPPmiMMaawsNCEhISYqVOnllp7Yr+rV6/2Wj5w4EDTs2dPY4wxBw4cMLVq1TIffPCBtf7IkSMmLi7OTJw40RhjzKJFi4wk8/XXX1s1n3/+uZFkioqKyjMEwDmLK1EAfO6qq67SmjVrtGbNGi1fvlzp6em69tpr9fPPPys0NFT9+/fXO++8I0latWqV1q1bp0GDBnntIzU19aTvN27caH3/9ddfq1u3bmrUqJHq1q2r/v37a+/evTp06JAk6b777tNTTz2lyy+/XOPHj/ea2H733XdrxowZateunR5++GEtXbq0XOf30ksvWee3Zs0aXXPNNda6Dh06eNWWlJToySefVFJSkurXr686deroyy+/1I4dOyRJGzduVHFxsbp161auHv5o69atOnr0qC6//HJrWa1atZScnOw1ZpJ08cUXW/8dGxsrSdq9e7ftYwPnEkIUAJ8LDw9Xs2bN1KxZM1122WV66623dPDgQU2dOlWSdPvtt2vBggX65ZdfNG3aNF199dVq0qRJmfe/fft2XX/99br44ov1z3/+U7m5udacqSNHjljH+Omnn9S/f3+tXbtWHTp00CuvvCJJVqB74IEH9Ntvv6lbt2566KGHynz8mJgY6/yaNWum8PBwr3P/o+eee07/+Mc/9Mgjj2jRokVas2aN0tPTrT7DwsLKfNyKUKtWLeu/HQ6HpONzsgCcGSEKQKVzOBwKCAhQUVGRJCkpKUkdOnTQ1KlT9eGHH5Y6L2fZsmUnfd+qVStJUm5urjwej1544QV17NhRLVq00G+//XbSPuLj43XXXXdp9uzZevDBB60QJ0kNGjTQwIED9f7772vSpEl68803K/KULUuWLFHPnj112223qW3btmratKn+/e9/W+ubN2+usLAwa1L9fwsODpZ0/IrWqVxwwQUKDg7WkiVLrGVHjx7VihUrdNFFF1XQmQAI8ncDAGq+4uJiuVwuScfvhHv11Vd14MAB3XDDDVbN7bffruHDhys8PFw33XTTSftYsmSJJk6cqIyMDC1YsECzZs3S559/Lklq1qyZjh49qldeeUU33HCDlixZoilTpnhtP2LECF177bVq0aKFfv/9dy1atMgKYePGjVP79u3VunVrFRcXa+7cuda6ita8eXN98sknWrp0qerVq6cXX3xReXl5VrgJDQ3VI488oocffljBwcG6/PLLtWfPHq1fv15DhgxRw4YNFRYWpvnz5+v8889XaGionE6n1zHCw8N19913629/+5vq16+vxo0ba+LEiTp06JCGDBnik/MCzkVciQLgc/Pnz1dsbKxiY2OVkpKiFStWaNasWdbt+ZLUt29fBQUFqW/fvgoNDT1pHw8++KBWrlypSy65RE899ZRefPFFpaenS5Latm2rF198Uc8++6zatGmjDz74QJmZmV7bl5SUaNiwYWrVqpW6d++uFi1a6LXXXpN0/OrO6NGjdfHFF6tz584KDAzUjBkzfDIWY8aM0aWXXqr09HR17dpVMTExJz1pfOzYsXrwwQc1btw4tWrVSr1797bmKQUFBenll1/WG2+8obi4OPXs2bPU40yYMEE333yz+vfvr0svvVRbtmzRl19+qXr16vnkvIBzkcMYY/zdBABs375dF1xwgVasWKFLL73Ua11CQoJGjBihESNG+Kc5ACgFH+cB8KujR49q7969GjNmjDp27HhSgAKAqoqP8wD41ZIlSxQbG6sVK1acNI/J35555hnVqVOn1Ne1117r7/YA+Bkf5wHAKezbt++kJ3yfEBYWpkaNGlVyRwCqEkIUAACADXycBwAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALDh/wG5+CuoCvZ5jgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHHCAYAAACbXt0gAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUbxJREFUeJzt3X1cFOXeBvBrF4RFlF0JYRdCQcXURDGRFd+w3A6+ZJKeExL5dlDqpKmhj6lHxcoTplY+lkVqaeekQXY8HSOjCDWflBBRT76QqWFqsigSi7wIyN7PHz3O0wai67AsC9f385kP7cxvZu65Nfdi5p4ZhRBCgIiIiIjuitLeDSAiIiJyZAxTRERERDIwTBERERHJwDBFREREJAPDFBEREZEMDFNEREREMjBMEREREcnAMEVEREQkA8MUERERkQwMU0TUoi1fvhwKheKOahUKBZYvX27T9gwfPhzDhw9vttsjIusxTBFRk9iyZQsUCoU0OTs7w8/PD1OnTsXPP/9s7+Y1OwEBARb95e3tjaFDh+Jf//pXo2y/oqICy5cvx969extle0StGcMUETWpF198Ef/4xz+QnJyMUaNG4YMPPkBERASuX79uk/0tWbIElZWVNtm2rYWEhOAf//gH/vGPf2D+/Pm4dOkSxo8fj+TkZNnbrqiowAsvvMAwRdQInO3dACJqXUaNGoXQ0FAAwPTp0+Hl5YVXXnkFO3fuxOOPP97o+3N2doazs2P+U+fn54cnn3xS+jx58mR069YNr7/+Op5++mk7toyIfotnpojIroYOHQoAOHv2rMX877//Hn/84x/h6ekJlUqF0NBQ7Ny506KmpqYGL7zwAoKCgqBSqXDPPfdgyJAhyMjIkGrqGzNVVVWF5557Dh07dkT79u3x6KOP4uLFi3XaNnXqVAQEBNSZX982N2/ejIceegje3t5wdXVFr1698Pbbb1vVF7ej1WrRs2dP5OfnN1h3+fJlxMXFwcfHByqVCn379sX7778vLT937hw6duwIAHjhhRekS4m2Hi9G1FI55q9rRNRinDt3DgDQoUMHad6JEycwePBg+Pn5YeHChXB3d8dHH32EqKgo/POf/8Rjjz0G4NdQk5SUhOnTpyMsLAylpaU4dOgQDh8+jIcffviW+5w+fTo++OADPPHEExg0aBB2796NMWPGyDqOt99+G/fffz8effRRODs749NPP8UzzzwDs9mMmTNnytr2TTU1Nbhw4QLuueeeW9ZUVlZi+PDhOHPmDGbNmoXAwEBs374dU6dORUlJCebMmYOOHTvi7bffxl/+8hc89thjGD9+PACgT58+jdJOolZHEBE1gc2bNwsA4quvvhJXrlwRFy5cEB9//LHo2LGjcHV1FRcuXJBqR4wYIYKDg8X169eleWazWQwaNEgEBQVJ8/r27SvGjBnT4H4TExPFb/+pO3r0qAAgnnnmGYu6J554QgAQiYmJ0rwpU6aIzp0733abQghRUVFRpy4yMlJ06dLFYl5ERISIiIhosM1CCNG5c2fxhz/8QVy5ckVcuXJF/Oc//xETJ04UAMSzzz57y+2tXbtWABAffPCBNK+6ulqEh4eLdu3aidLSUiGEEFeuXKlzvER0d3iZj4ialMFgQMeOHeHv748//vGPcHd3x86dO3HvvfcCAIqLi7F79248/vjjuHbtGoqKilBUVISrV68iMjISp0+flu7+02g0OHHiBE6fPn3H+9+1axcAYPbs2Rbz586dK+u43NzcpP82mUwoKipCREQEfvzxR5hMprva5pdffomOHTuiY8eO6Nu3L7Zv345JkybhlVdeueU6u3btglarRUxMjDSvTZs2mD17NsrKyvD111/fVVuI6NZ4mY+ImtT69evRvXt3mEwmvPfee9i3bx9cXV2l5WfOnIEQAkuXLsXSpUvr3cbly5fh5+eHF198EePGjUP37t3Ru3dvjBw5EpMmTWrwctVPP/0EpVKJrl27Wsy/7777ZB3X/v37kZiYiKysLFRUVFgsM5lMUKvVVm9Tr9djxYoVUCgUaNu2LXr27AmNRtPgOj/99BOCgoKgVFr+rtyzZ09pORE1LoYpImpSYWFh0t18UVFRGDJkCJ544gmcOnUK7dq1g9lsBgDMnz8fkZGR9W6jW7duAIBhw4bh7Nmz+Pe//40vv/wSmzZtwuuvv47k5GRMnz5ddltv9bDP2tpai89nz57FiBEj0KNHD7z22mvw9/eHi4sLdu3ahddff106Jmt5eXnBYDDc1bpE1HQYpojIbpycnJCUlIQHH3wQb775JhYuXIguXboA+PXS1J0ECU9PT0ybNg3Tpk1DWVkZhg0bhuXLl98yTHXu3Blmsxlnz561OBt16tSpOrUdOnRASUlJnfm/P7vz6aefoqqqCjt37kSnTp2k+Xv27Llt+xtb586d8d1338FsNlucnfr++++l5cCtgyIRWY9jpojIroYPH46wsDCsXbsW169fh7e3N4YPH4533nkHBQUFdeqvXLki/ffVq1ctlrVr1w7dunVDVVXVLfc3atQoAMC6dess5q9du7ZObdeuXWEymfDdd99J8woKCuo8hdzJyQkAIISQ5plMJmzevPmW7bCV0aNHw2g0IjU1VZp348YNvPHGG2jXrh0iIiIAAG3btgWAesMiEVmHZ6aIyO7+67/+C3/605+wZcsWPP3001i/fj2GDBmC4OBgzJgxA126dEFhYSGysrJw8eJF/Oc//wEA9OrVC8OHD0f//v3h6emJQ4cO4eOPP8asWbNuua+QkBDExMTgrbfegslkwqBBg5CZmYkzZ87UqZ04cSKef/55PPbYY5g9ezYqKirw9ttvo3v37jh8+LBU94c//AEuLi4YO3YsnnrqKZSVlWHjxo3w9vauNxDaUnx8PN555x1MnToVubm5CAgIwMcff4z9+/dj7dq1aN++PYBfB8z36tULqamp6N69Ozw9PdG7d2/07t27SdtL1CLY+3ZCImodbj4aIScnp86y2tpa0bVrV9G1a1dx48YNIYQQZ8+eFZMnTxZarVa0adNG+Pn5iUceeUR8/PHH0norVqwQYWFhQqPRCDc3N9GjRw/xt7/9TVRXV0s19T3GoLKyUsyePVvcc889wt3dXYwdO1ZcuHCh3kcFfPnll6J3797CxcVF3HfffeKDDz6od5s7d+4Uffr0ESqVSgQEBIhXXnlFvPfeewKAyM/Pl+qseTTC7R77cKvtFRYWimnTpgkvLy/h4uIigoODxebNm+use+DAAdG/f3/h4uLCxyQQyaAQ4jfnpYmIiIjIKhwzRURERCQDwxQRERGRDAxTRERERDIwTBERERHJwDBFREREJAPDFBEREZEMfGinDZnNZly6dAnt27fnqxuIiIgchBAC165dg6+vb52XhteHYcqGLl26BH9/f3s3g4iIiO7ChQsXcO+99962jmHKhm6+tuHChQvw8PCwc2uIiIjoTpSWlsLf31/6Hr8dhikbunlpz8PDg2GKiIjIwdzpEB0OQCciIiKSgWGKiIiISAaGKSIiIiIZOGaKiIjIgZnNZlRXV9u7GQ6lTZs2cHJyarTtMUwRERE5qOrqauTn58NsNtu7KQ5Ho9FAq9U2ynMgGaaIiIgckBACBQUFcHJygr+//x09XJJ+7beKigpcvnwZAKDT6WRvk2GKiIjIAd24cQMVFRXw9fVF27Zt7d0ch+Lm5gYAuHz5Mry9vWVf8mOMJSIickC1tbUAABcXFzu3xDHdDKA1NTWyt8UwRURE5MD47te705j9xjBFREREJAPDFBEREZEMDFMOqMBUiQNni1BgqrR3U4iIiKwydepUREVF1Zm/d+9eKBQKlJSUYO/evRg3bhx0Oh3c3d0REhKCrVu31lmnuLgYc+fORefOneHi4gJfX1/8+c9/xvnz55vgSP4f7+ZzMKk557FoxzGYBaBUAEnjgxE9oJO9m0VERNRoDhw4gD59+uD555+Hj48P0tLSMHnyZKjVajzyyCMAfg1SAwcOhIuLC5KTk3H//ffj3LlzWLJkCQYMGICsrCx06dKlSdrLMOVACkyVUpACALMAFu84jmHdO0KndrNv44iIiBrJ4sWLLT7PmTMHX375JXbs2CGFqb/+9a+4dOkSzpw5A61WCwDo1KkTvvjiCwQFBWHmzJn4/PPPm6S9vMznQPKLyqUgdVOtEDhXVGGfBhERUYvgCMNHTCYTPD09Afz6Cp2UlBTExsZKQeomNzc3PPPMM/jiiy9QXFzcJG3jmSkHEujlDqUCFoHKSaFAgBcf1kZERHfHHsNH0tLS0K5dO4t5N5+bVZ+PPvoIOTk5eOeddwAAV65cQUlJCXr27Flvfc+ePSGEwJkzZxAWFtZ4Db8FnplyIDq1G5LGB8Pp/56N4aRQ4OXxvXmJj4iI7sqtho/Y+gzVgw8+iKNHj1pMmzZtqrd2z549mDZtGjZu3Ij777/fYpkQot51mhrPTDmY6AGdMKx7R5wrqkCAV1sGKSIiumsNDR+x5feLu7s7unXrZjHv4sWLdeq+/vprjB07Fq+//jomT54sze/YsSM0Gg3y8vLq3X5eXh4UCkWdfdgKz0w5IJ3aDeFd72GQIiIiWW4OH/mt5jJ8ZO/evRgzZgxeeeUVxMfHWyxTKpV4/PHHsW3bNhiNRotllZWVeOuttxAZGSmNsbI1hikiIqJWqrkOH9mzZw/GjBmD2bNnY8KECTAajTAajRYDyl9++WVotVo8/PDD+Pzzz3HhwgXs27cPkZGRqKmpwfr165usvbzMR0RE1Io1x+Ej77//PioqKpCUlISkpCRpfkREBPbu3QsAuOeee/Dtt9/ixRdfxFNPPQWj0QhPT0+MGjUKH3zwATp1arpnMCpEcxm91QKVlpZCrVbDZDLBw8PD3s0hIqIW5Pr168jPz0dgYCBUKpW9m+NwGuo/a7+/eZmPiIiISAaGKSIiIiIZGKaIiIiIZGCYIiIiIpKhWYSp9evXIyAgACqVCnq9HgcPHmywfvv27ejRowdUKhWCg4Oxa9cui+VCCCxbtgw6nQ5ubm4wGAw4ffq0RU1xcTFiY2Ph4eEBjUaDuLg4lJWVScuXL18OhUJRZ3J3d2+8AyciIpKJ95HdncbsN7uHqdTUVCQkJCAxMRGHDx9G3759ERkZicuXL9dbf+DAAcTExCAuLg5HjhxBVFQUoqKicPz4calm1apVWLduHZKTk5GdnQ13d3dERkbi+vXrUk1sbCxOnDiBjIwMpKWlYd++fRYPBZs/fz4KCgospl69euFPf/qT7TqDiIjoDjk5OQEAqqur7dwSx1RRUQEAaNOmjext2f3RCHq9HgMGDMCbb74J4Nc3Qfv7++PZZ5/FwoUL69RHR0ejvLwcaWlp0ryBAwciJCQEycnJEELA19cX8+bNw/z58wH8+qZpHx8fbNmyBRMnTkReXh569eqFnJwchIaGAgDS09MxevRoXLx4Eb6+vnX2+5///AchISHYt28fhg4dekfHxkcjEBGRrQghcP78edTU1MDX1xdKpd3PjzgEIQQqKipw+fJlaDQa6HS6OjXWfn/b9aGd1dXVyM3NxaJFi6R5SqUSBoMBWVlZ9a6TlZWFhIQEi3mRkZH45JNPAAD5+fkwGo0wGAzScrVaDb1ej6ysLEycOBFZWVnQaDRSkAIAg8EApVKJ7OxsPPbYY3X2u2nTJnTv3v2OgxQREZEtKRQK6HQ65Ofn46effrJ3cxyORqOBVqttlG3ZNUwVFRWhtrYWPj4+FvN9fHzw/fff17uO0Wist/7mu3lu/rxdjbe3t8VyZ2dneHp61nnHD/Drg722bt1a75my36qqqkJVVZX0ubS0tMF6IiIiOVxcXBAUFMRLfVZq06aNdJm0MfB1MnfgX//6F65du4YpU6Y0WJeUlIQXXnihiVpFRET06xUdPgHdvux6gdXLywtOTk4oLCy0mF9YWHjLU29arbbB+ps/b1fz+wHuN27cQHFxcb373bRpEx555JE6Z7t+b9GiRTCZTNJ04cKFBuuJiIjI8dk1TLm4uKB///7IzMyU5pnNZmRmZiI8PLzedcLDwy3qASAjI0OqDwwMhFartagpLS1Fdna2VBMeHo6SkhLk5uZKNbt374bZbIZer7fYdn5+Pvbs2YO4uLjbHo+rqys8PDwsJiIiImrZ7H6ZLyEhAVOmTEFoaCjCwsKwdu1alJeXY9q0aQCAyZMnw8/PT3pr9Jw5cxAREYFXX30VY8aMQUpKCg4dOoQNGzYA+HVA3ty5c7FixQoEBQUhMDAQS5cuha+vL6KiogAAPXv2xMiRIzFjxgwkJyejpqYGs2bNwsSJE+vcyffee+9Bp9Nh1KhRTdcpRERE5DDsHqaio6Nx5coVLFu2DEajESEhIUhPT5cuqZ0/f97ids9BgwZh27ZtWLJkCRYvXoygoCB88skn6N27t1SzYMEClJeXIz4+HiUlJRgyZAjS09Mtrilv3boVs2bNwogRI6BUKjFhwgSsW7fOom1msxlbtmzB1KlTG3WgGhEREbUcdn/OVEvG50wRERE5Hmu/v/mELyIiIiIZGKaIiIiIZGCYIiIiIpKBYYqIiIhIBoYpIiIiIhkYpoiIiIhkYJgiIiIikoFhioiIiEgGhikiIiIiGRimiIiIiGRgmCIiIiKSgWGKiIiISAaGKSIiIiIZGKaIiIiIZGCYIiIiIpKBYYqIiIhIBoYpIiIiIhkYpoiIiIhkYJgiIiIikoFhioiIiEgGhikiIiIiGRimiIiIiGRgmCIiIiKSgWGKiIiISAaGKSIiIiIZGKaIiIiIZGCYIiIiIpKBYYqIiIhIBoYpIiIiIhkYpoiIiIhkYJgiIiIikoFhioiIiEgGhikiIiIiGRimiIiIiGRgmCIiIiKSgWGKiIiISAa7h6n169cjICAAKpUKer0eBw8ebLB++/bt6NGjB1QqFYKDg7Fr1y6L5UIILFu2DDqdDm5ubjAYDDh9+rRFTXFxMWJjY+Hh4QGNRoO4uDiUlZXV2c6aNWvQvXt3uLq6ws/PD3/7298a56CJiIioxbBrmEpNTUVCQgISExNx+PBh9O3bF5GRkbh8+XK99QcOHEBMTAzi4uJw5MgRREVFISoqCsePH5dqVq1ahXXr1iE5ORnZ2dlwd3dHZGQkrl+/LtXExsbixIkTyMjIQFpaGvbt24f4+HiLfc2ZMwebNm3CmjVr8P3332Pnzp0ICwuzTUcQERGR4xJ2FBYWJmbOnCl9rq2tFb6+viIpKane+scff1yMGTPGYp5erxdPPfWUEEIIs9kstFqtWL16tbS8pKREuLq6ig8//FAIIcTJkycFAJGTkyPVfP7550KhUIiff/5ZqnF2dhbff/+9rOMzmUwCgDCZTLK2Q0RERE3H2u9vu52Zqq6uRm5uLgwGgzRPqVTCYDAgKyur3nWysrIs6gEgMjJSqs/Pz4fRaLSoUavV0Ov1Uk1WVhY0Gg1CQ0OlGoPBAKVSiezsbADAp59+ii5duiAtLQ2BgYEICAjA9OnTUVxc3OAxVVVVobS01GIiIiKils1uYaqoqAi1tbXw8fGxmO/j4wOj0VjvOkajscH6mz9vV+Pt7W2x3NnZGZ6enlLNjz/+iJ9++gnbt2/H3//+d2zZsgW5ubn44x//2OAxJSUlQa1WS5O/v3+D9UREROT47D4AvTkym82oqqrC3//+dwwdOhTDhw/Hu+++iz179uDUqVO3XG/RokUwmUzSdOHChSZsNREREdmD3cKUl5cXnJycUFhYaDG/sLAQWq223nW0Wm2D9Td/3q7m9wPcb9y4geLiYqlGp9PB2dkZ3bt3l2p69uwJADh//vwtj8nV1RUeHh4WExEREbVsdgtTLi4u6N+/PzIzM6V5ZrMZmZmZCA8Pr3ed8PBwi3oAyMjIkOoDAwOh1WotakpLS5GdnS3VhIeHo6SkBLm5uVLN7t27YTabodfrAQCDBw/GjRs3cPbsWanmhx9+AAB07txZzmETERFRS2PjAfENSklJEa6urmLLli3i5MmTIj4+Xmg0GmE0GoUQQkyaNEksXLhQqt+/f79wdnYWa9asEXl5eSIxMVG0adNGHDt2TKpZuXKl0Gg04t///rf47rvvxLhx40RgYKCorKyUakaOHCn69esnsrOzxTfffCOCgoJETEyMtLy2tlY88MADYtiwYeLw4cPi0KFDQq/Xi4cfftiq4+PdfERERI7H2u9vu4YpIYR44403RKdOnYSLi4sICwsT3377rbQsIiJCTJkyxaL+o48+Et27dxcuLi7i/vvvF5999pnFcrPZLJYuXSp8fHyEq6urGDFihDh16pRFzdWrV0VMTIxo166d8PDwENOmTRPXrl2zqPn555/F+PHjRbt27YSPj4+YOnWquHr1qlXHxjBFRETkeKz9/lYIIYR9z421XKWlpVCr1TCZTBw/RURE5CCs/f7m3XxEREREMjBMEREREcnAMEVEREQkA8MUERERkQwMU0REREQyMEwRERERycAwRURERCQDwxQRERGRDAxTRERERDIwTBERERHJwDBFREREJAPDFBEREZEMDFNEREREMjBMEREREcnAMEVEREQkA8MUERERkQwMU0REREQyMEwRERERycAwRURERCQDwxQRERGRDAxTRERERDIwTBERERHJwDBFREREJAPDFBEREZEMDFNEREREMjBMEREREcnAMEVEREQkA8MUERERkQwMU0REREQyMEwRERERycAwRURERCQDwxQRERGRDAxTRERERDIwTBERERHJwDBFREREJEOzCFPr169HQEAAVCoV9Ho9Dh482GD99u3b0aNHD6hUKgQHB2PXrl0Wy4UQWLZsGXQ6Hdzc3GAwGHD69GmLmuLiYsTGxsLDwwMajQZxcXEoKyuTlp87dw4KhaLO9O233zbegRMREZHDs3uYSk1NRUJCAhITE3H48GH07dsXkZGRuHz5cr31Bw4cQExMDOLi4nDkyBFERUUhKioKx48fl2pWrVqFdevWITk5GdnZ2XB3d0dkZCSuX78u1cTGxuLEiRPIyMhAWloa9u3bh/j4+Dr7++qrr1BQUCBN/fv3b/xOICIiIscl7CwsLEzMnDlT+lxbWyt8fX1FUlJSvfWPP/64GDNmjMU8vV4vnnrqKSGEEGazWWi1WrF69WppeUlJiXB1dRUffvihEEKIkydPCgAiJydHqvn888+FQqEQP//8sxBCiPz8fAFAHDly5K6PzWQyCQDCZDLd9TaIiIioaVn7/W3XM1PV1dXIzc2FwWCQ5imVShgMBmRlZdW7TlZWlkU9AERGRkr1+fn5MBqNFjVqtRp6vV6qycrKgkajQWhoqFRjMBigVCqRnZ1tse1HH30U3t7eGDJkCHbu3Nng8VRVVaG0tNRiIiIiopbNrmGqqKgItbW18PHxsZjv4+MDo9FY7zpGo7HB+ps/b1fj7e1tsdzZ2Rmenp5STbt27fDqq69i+/bt+OyzzzBkyBBERUU1GKiSkpKgVqulyd/f/3ZdQERERA7O2d4NaK68vLyQkJAgfR4wYAAuXbqE1atX49FHH613nUWLFlmsU1paykBFRETUwtn1zJSXlxecnJxQWFhoMb+wsBBarbbedbRabYP1N3/erub3A9xv3LiB4uLiW+4XAPR6Pc6cOXPL5a6urvDw8LCYiIiIqGWza5hycXFB//79kZmZKc0zm83IzMxEeHh4veuEh4db1ANARkaGVB8YGAitVmtRU1paiuzsbKkmPDwcJSUlyM3NlWp2794Ns9kMvV5/y/YePXoUOp3O+gMlIiKiFsvul/kSEhIwZcoUhIaGIiwsDGvXrkV5eTmmTZsGAJg8eTL8/PyQlJQEAJgzZw4iIiLw6quvYsyYMUhJScGhQ4ewYcMGAIBCocDcuXOxYsUKBAUFITAwEEuXLoWvry+ioqIAAD179sTIkSMxY8YMJCcno6amBrNmzcLEiRPh6+sLAHj//ffh4uKCfv36AQB27NiB9957D5s2bWriHiIiIqLmzO5hKjo6GleuXMGyZctgNBoREhKC9PR0aQD5+fPnoVT+/wm0QYMGYdu2bViyZAkWL16MoKAgfPLJJ+jdu7dUs2DBApSXlyM+Ph4lJSUYMmQI0tPToVKppJqtW7di1qxZGDFiBJRKJSZMmIB169ZZtO2ll17CTz/9BGdnZ/To0QOpqan44x//aOMeISIiIkeiEEIIezeipSotLYVarYbJZOL4KSIiIgdh7fe33Z+ATkREROTIGKaIiIiIZGCYIiIiIpKBYYqIiIhIBoYpIiIiIhkYpoiIiIhkYJgiIiIikoFhioiIiEgGhikiIiIiGRimiIiIiGRgmCIiIiKSgWGKiIiISAaGKSIiIiIZGKaIiIiIZGCYIiIiIpKBYYqIiIhIBoYpIiIiIhkYpoiIiIhkYJgiIiIikoFhioiIiEgGhikiIiIiGRimiIiIiGRgmCIispMCUyUOnC1CganS3k0hIhmc7d0AIqLWKDXnPBbtOAazAJQKIGl8MKIHdLJ3s4joLvDMFBFREyswVUpBCgDMAli84zjPUBE5KIYpIqImll9ULgWpm2qFwLmiCvs0iIhkYZgiImpigV7uUCos5zkpFAjwamufBhGRLAxTRERNTKd2Q9L4YDgpfk1UTgoFXh7fGzq1m51bRkR3gwPQiYjsIHpAJwzr3hHniioQ4NWWQYrIgTFMERHZiU7txhBF1ALwMh8RERGRDAxTRERERDIwTBERERHJwDBFREREJAPDFBEREZEMDFNEREREMjSLMLV+/XoEBARApVJBr9fj4MGDDdZv374dPXr0gEqlQnBwMHbt2mWxXAiBZcuWQafTwc3NDQaDAadPn7aoKS4uRmxsLDw8PKDRaBAXF4eysrJ693fmzBm0b98eGo1G1nESERFRy2P3MJWamoqEhAQkJibi8OHD6Nu3LyIjI3H58uV66w8cOICYmBjExcXhyJEjiIqKQlRUFI4fPy7VrFq1CuvWrUNycjKys7Ph7u6OyMhIXL9+XaqJjY3FiRMnkJGRgbS0NOzbtw/x8fF19ldTU4OYmBgMHTq08Q+eiIiIHJ5CCCFuX2Y7er0eAwYMwJtvvgkAMJvN8Pf3x7PPPouFCxfWqY+OjkZ5eTnS0tKkeQMHDkRISAiSk5MhhICvry/mzZuH+fPnAwBMJhN8fHywZcsWTJw4EXl5eejVqxdycnIQGhoKAEhPT8fo0aNx8eJF+Pr6Stt+/vnncenSJYwYMQJz585FSUnJHR9baWkp1Go1TCYTPDw87qZ7iIiIqIlZ+/1t1zNT1dXVyM3NhcFgkOYplUoYDAZkZWXVu05WVpZFPQBERkZK9fn5+TAajRY1arUaer1eqsnKyoJGo5GCFAAYDAYolUpkZ2dL83bv3o3t27dj/fr1d3Q8VVVVKC0ttZiIiIioZbvrMFVSUoJDhw7h0KFDVp2t+a2ioiLU1tbCx8fHYr6Pjw+MRmO96xiNxgbrb/68XY23t7fFcmdnZ3h6eko1V69exdSpU7Fly5Y7PquUlJQEtVotTf7+/ne0HhERETkuq8PUuXPnMGbMGHh5eUGv10Ov18PLywuPPPIIzp07Z4Mm2seMGTPwxBNPYNiwYXe8zqJFi2AymaTpwoULNmwhERERNQdWvej4woULGDhwINq0aYOXXnoJPXv2BACcPHkSb7/9NsLDw5GTk4N77733jrbn5eUFJycnFBYWWswvLCyEVqutdx2tVttg/c2fhYWF0Ol0FjUhISFSze8HuN+4cQPFxcXS+rt378bOnTuxZs0aAL/eIWg2m+Hs7IwNGzbgz3/+c522ubq6wtXV9Y6OnYiIiFoGq85MLV++HPfddx9Onz6NRYsWSXfSLV68GD/88AO6d++O5cuX3/H2XFxc0L9/f2RmZkrzzGYzMjMzER4eXu864eHhFvUAkJGRIdUHBgZCq9Va1JSWliI7O1uqCQ8PR0lJCXJzc6Wa3bt3w2w2Q6/XA/h1XNXRo0el6cUXX0T79u1x9OhRPPbYY3d8jERERNTCCSv4+vqK//mf/7nl8q+//lrodDprNilSUlKEq6ur2LJlizh58qSIj48XGo1GGI1GIYQQkyZNEgsXLpTq9+/fL5ydncWaNWtEXl6eSExMFG3atBHHjh2TalauXCk0Go3497//Lb777jsxbtw4ERgYKCorK6WakSNHin79+ons7GzxzTffiKCgIBETE3PLdm7evFmo1Wqrjs1kMgkAwmQyWbUeERER2Y+1399WXeYrKipCQEDALZd36dIFxcXFVoW56OhoXLlyBcuWLYPRaERISAjS09OlAeTnz5+HUvn/J9AGDRqEbdu2YcmSJVi8eDGCgoLwySefoHfv3lLNggULUF5ejvj4eJSUlGDIkCFIT0+HSqWSarZu3YpZs2ZhxIgRUCqVmDBhAtatW2dV24mIiIises5UQEAANmzYgD/84Q/1Lk9PT8fTTz/dogaiy8HnTBERETkemz5nKioqCvPnz8eVK1fqLLt8+TKef/55REVFWbNJIiIiIodm1ZmpX375BXq9HkajEU8++SR69OgBIQTy8vKwbds2aLVafPvtt/D09LRlmx0Gz0wRERE5Hmu/v60aM9WhQwdkZ2dj8eLFSElJkR7WqdFo8MQTT+Dll19mkCIiIqJW5a7fzSeEkC73dezYEQqFolEb1hLwzBQREZHjsemZqd9SKBR1XslCRERE1NpY/TqZXbt2Yfr06ViwYAHy8vIslv3yyy946KGHGq1xRERERM2dVWFq27ZtePTRR2E0GpGVlYUHHngAW7dulZZXV1fj66+/bvRGUvNVYKrEgbNFKDBV2rspREREdmHVZb7Vq1fjtddew+zZswEAH330Ef785z/j+vXriIuLs0kDqflKzTmPRTuOwSwApQJIGh+M6AGd7NKWAlMl8ovKEejlDp3azS5tICKi1smqMHX69GmMHTtW+vz444+jY8eOePTRR1FTU8N31rUiBaZKKUgBgFkAi3ccx7DuHZs8zDSnUEdERK2PVWHKw8MDhYWFCAwMlOY9+OCDSEtLwyOPPIKLFy82egOpecovKpeC1E21QuBcUUWThqnmFOqIiKh1smrMVFhYGD7//PM68yMiIvDpp59i7dq1jdUuauYCvdyh/N3TMJwUCgR4tW3SdjQU6oiIiJqCVWHqueees3hZ8G8NHz4cn376KSZPntwoDaPmTad2Q9L4YDj93/PFnBQKvDy+d5OfDWouoY6IqDXgTUf1s+qhnaWlpXdUxwdU/qo1PLSzwFSJc0UVCPBqa7fLaqk557F4x3HUCiGFOo6ZIiJqXK1pfKq1399WhSmlUnlHTzqvra290022aK0hTDUXzSHUERG1VAWmSgxeudtiWIWTQoFvFj7YIv/NtekT0Pfs2SP9txACo0ePxqZNm+Dn52d9S4kakU7t1iL/hyYiag6ay01HzZVVYSoiIsLis5OTEwYOHIguXbo0aqOIiIio+bg5PvX3Z6Y4PvVXVr9OhoiIiFqX5nLTUXN11y86JiIiotYjekAnDOvekeNT6yE7TN3JgHQiIiJyfByfWj+rwtT48eMtPl+/fh1PP/003N3dLebv2LFDfsuIiIiIHIBVYUqtVlt8fvLJJxu1MURERESOxqowtXnzZlu1g4haqQJTJfKLyhHo5c7LB0TkkDgAnYjspjU9UZmIWi4+GoGI7KLAVCkFKeDX59cs3nHc4p1ffA8YETkCnpkiIru43ROVedaKiBrSnIYIMEwRkV009ETlW521Gta9o93/0SQi+2tuv2zxMh8R2UVDT1Ru6KwVEbVudzJEoKnxzBQR2c2tnqjM94AR0a00x5cu88wUEdmVTu2G8K73WPwjyPeAEdGt3Pxl67fs/csWz0wRUbPE94ARUX1u/rK1eMdx1ArRLH7ZYpgiomaL7wEjovo0t1+2GKaIiIjI4TSnX7Y4ZoqIiIhIBoYpIiIiIhkYpoiIiIhkaBZhav369QgICIBKpYJer8fBgwcbrN++fTt69OgBlUqF4OBg7Nq1y2K5EALLli2DTqeDm5sbDAYDTp8+bVFTXFyM2NhYeHh4QKPRIC4uDmVlZdLyU6dO4cEHH4SPjw9UKhW6dOmCJUuWoKampvEOnIiIiBye3cNUamoqEhISkJiYiMOHD6Nv376IjIzE5cuX660/cOAAYmJiEBcXhyNHjiAqKgpRUVE4fvy4VLNq1SqsW7cOycnJyM7Ohru7OyIjI3H9+nWpJjY2FidOnEBGRgbS0tKwb98+xMfHS8vbtGmDyZMn48svv8SpU6ewdu1abNy4EYmJibbrDCIiInI4CiGEuH2Z7ej1egwYMABvvvkmAMBsNsPf3x/PPvssFi5cWKc+Ojoa5eXlSEtLk+YNHDgQISEhSE5OhhACvr6+mDdvHubPnw8AMJlM8PHxwZYtWzBx4kTk5eWhV69eyMnJQWhoKAAgPT0do0ePxsWLF+Hr61tvWxMSEpCTk4P/+Z//uaNjKy0thVqthslkgoeHh1X9QkRERPZh7fe3Xc9MVVdXIzc3FwaDQZqnVCphMBiQlZVV7zpZWVkW9QAQGRkp1efn58NoNFrUqNVq6PV6qSYrKwsajUYKUgBgMBigVCqRnZ1d737PnDmD9PR0RERE3PJ4qqqqUFpaajERERFRy2bXMFVUVITa2lr4+PhYzPfx8YHRaKx3HaPR2GD9zZ+3q/H29rZY7uzsDE9Pzzr7HTRoEFQqFYKCgjB06FC8+OKLtzyepKQkqNVqafL3979lLREREbUMdh8z1dylpqbi8OHD2LZtGz777DOsWbPmlrWLFi2CyWSSpgsXLjRhS4mIiMge7PoEdC8vLzg5OaGwsNBifmFhIbRabb3raLXaButv/iwsLIROp7OoCQkJkWp+P8D9xo0bKC4urrPfm2eXevXqhdraWsTHx2PevHlwcnKq0zZXV1e4urre7rCJiIioBbHrmSkXFxf0798fmZmZ0jyz2YzMzEyEh4fXu054eLhFPQBkZGRI9YGBgdBqtRY1paWlyM7OlmrCw8NRUlKC3NxcqWb37t0wm83Q6/W3bK/ZbEZNTQ3MZrP1B0tEREQtkt3fzZeQkIApU6YgNDQUYWFhWLt2LcrLyzFt2jQAwOTJk+Hn54ekpCQAwJw5cxAREYFXX30VY8aMQUpKCg4dOoQNGzYAABQKBebOnYsVK1YgKCgIgYGBWLp0KXx9fREVFQUA6NmzJ0aOHIkZM2YgOTkZNTU1mDVrFiZOnCjdybd161a0adMGwcHBcHV1xaFDh7Bo0SJER0ejTZs2Td9RRERE1CzZPUxFR0fjypUrWLZsGYxGI0JCQpCeni4NID9//jyUyv8/gTZo0CBs27YNS5YsweLFixEUFIRPPvkEvXv3lmoWLFiA8vJyxMfHo6SkBEOGDEF6ejpUKpVUs3XrVsyaNQsjRoyAUqnEhAkTsG7dOmm5s7MzXnnlFfzwww8QQqBz586YNWsWnnvuuSboFSIiInIUdn/OVEvG50wRERE5Hod6zhQRERGRo2OYIiIiIpKBYYqIiIhIBoYpIiIiIhkYpoiIiIhkYJgiIiIikoFhioiIiEgGhikiIiIiGRimiIiIiGRgmCIiIiKSgWGKiIiISAaGKSIiIiIZGKaIiIiIZGCYIiIiIpKBYYqIiIhIBoYpIiIiIhkYpoiIiIhkYJgiIiIikoFhioiIiEgGhikiIiIiGRimiIiIiGRgmCIiIiKSgWGKiIiISAaGKSIiIiIZGKaIiIiIZGCYIiIiIpKBYYqIiIhIBoYpIiIiIhkYpoiIiIhkYJgiIiIikoFhiogaTYGpEgfOFqHAVGnvphARNRlnezeAiFqG1JzzWLTjGMwCUCqApPHBiB7Qyd7NIiKyOZ6ZIiLZCkyVUpACALMAFu84zjNURNQqMEwRkWz5ReVSkLqpVgicK6qwT4OIqMm15sv8vMxHRLIFerlDqYBFoHJSKBDg1dZ+jSKiJtPaL/PzzBQRyaZTuyFpfDCcFAoAvwapl8f3hk7tZueWEZGt8TJ/MwlT69evR0BAAFQqFfR6PQ4ePNhg/fbt29GjRw+oVCoEBwdj165dFsuFEFi2bBl0Oh3c3NxgMBhw+vRpi5ri4mLExsbCw8MDGo0GcXFxKCsrk5bv3bsX48aNg06ng7u7O0JCQrB169bGO2iiFiZ6QCd8s/BBfDhjIL5Z+GCr+q2UqDXjZf5mEKZSU1ORkJCAxMREHD58GH379kVkZCQuX75cb/2BAwcQExODuLg4HDlyBFFRUYiKisLx48elmlWrVmHdunVITk5GdnY23N3dERkZievXr0s1sbGxOHHiBDIyMpCWloZ9+/YhPj7eYj99+vTBP//5T3z33XeYNm0aJk+ejLS0NNt1BpGD06ndEN71Hp6RImpFbl7m/63WdplfIYQQty+zHb1ejwEDBuDNN98EAJjNZvj7++PZZ5/FwoUL69RHR0ejvLzcItQMHDgQISEhSE5OhhACvr6+mDdvHubPnw8AMJlM8PHxwZYtWzBx4kTk5eWhV69eyMnJQWhoKAAgPT0do0ePxsWLF+Hr61tvW8eMGQMfHx+89957d3RspaWlUKvVMJlM8PDwsKpfiIiIHEVqznks3nEctUJIl/kd+ey0td/fdj0zVV1djdzcXBgMBmmeUqmEwWBAVlZWvetkZWVZ1ANAZGSkVJ+fnw+j0WhRo1arodfrpZqsrCxoNBopSAGAwWCAUqlEdnb2LdtrMpng6el5y+VVVVUoLS21mIiIiFq61n6Z365hqqioCLW1tfDx8bGY7+PjA6PRWO86RqOxwfqbP29X4+3tbbHc2dkZnp6et9zvRx99hJycHEybNu2Wx5OUlAS1Wi1N/v7+t6wlIiJqSVrzZX67j5lyBHv27MG0adOwceNG3H///besW7RoEUwmkzRduHChCVtJRERE9mDXMOXl5QUnJycUFhZazC8sLIRWq613Ha1W22D9zZ+3q/n9APcbN26guLi4zn6//vprjB07Fq+//jomT57c4PG4urrCw8PDYiIi22jNDwgkoubFrmHKxcUF/fv3R2ZmpjTPbDYjMzMT4eHh9a4THh5uUQ8AGRkZUn1gYCC0Wq1FTWlpKbKzs6Wa8PBwlJSUIDc3V6rZvXs3zGYz9Hq9NG/v3r0YM2YMXnnlFYs7/YjIvlJzzmPwyt14YmM2Bq/cjdSc8/ZuEhG1YnZ/AnpCQgKmTJmC0NBQhIWFYe3atSgvL5fGJk2ePBl+fn5ISkoCAMyZMwcRERF49dVXMWbMGKSkpODQoUPYsGEDAEChUGDu3LlYsWIFgoKCEBgYiKVLl8LX1xdRUVEAgJ49e2LkyJGYMWMGkpOTUVNTg1mzZmHixInSnXx79uzBI488gjlz5mDChAnSWCoXF5cGB6ETkW3d6gGBw7p3bJVjNYjI/uwepqKjo3HlyhUsW7YMRqMRISEhSE9PlwaQnz9/Hkrl/59AGzRoELZt24YlS5Zg8eLFCAoKwieffILevXtLNQsWLEB5eTni4+NRUlKCIUOGID09HSqVSqrZunUrZs2ahREjRkCpVGLChAlYt26dtPz9999HRUUFkpKSpCAHABEREdi7d68Ne4SIGtLQAwIZpojIHuz+nKmWjM+ZImp8BaZKDF65u857AL9Z+CDDFBE1Cod6zhQRkbX4HkAiam7sfpmPiMha0QM6YVj3jjhXVIEAr7YMUkRkVwxTROSQdGo3higiahZ4mY+IiIhIBoYpIiIiIhkYpoiIiIhkYJgiIiIikoFhioiIiEgGhikiIiIiGRimiIiIiGRgmCIiIiKSgWGKiIiISAaGKSIiIiIZGKaIiIiIZGCYIiIiIpKBYYqIiIhIBoYpIiIiIhkYpoiIiIhkYJgiIiIikoFhioiIiEgGhikiIiIiGRimiIiIiGRgmCIiIiKSgWGKiIgcXoGpEgfOFqHAVGnvplAr5GzvBhAREcmRmnMei3Ycg1kASgWQND4Y0QM62btZ1IrwzBQRETmsAlOlFKQAwCyAxTuO8wwVNSmGKSIiclj5ReVSkLqpVgicK6qwT4OoVWKYIiIihxXo5Q6lwnKek0KBAK+29mkQtUoMU0RE5LB0ajckjQ+Gk+LXROWkUODl8b2hU7vZuWXUmnAAOhERObToAZ0wrHtHnCuqQIBXW4cNUgWmSuQXlSPQy91hj6G1YpgiIiKHp1O7OXQA4R2Jjo2X+YiIiOyIdyQ6PoYpIiIiO+IdiY6PYYqIiMiOeEei42OYIiIisiPekej47B6m1q9fj4CAAKhUKuj1ehw8eLDB+u3bt6NHjx5QqVQIDg7Grl27LJYLIbBs2TLodDq4ubnBYDDg9OnTFjXFxcWIjY2Fh4cHNBoN4uLiUFZWJi2/fv06pk6diuDgYDg7OyMqKqrRjpeIiOj3ogd0wjcLH8SHMwbim4UPcvC5g7FrmEpNTUVCQgISExNx+PBh9O3bF5GRkbh8+XK99QcOHEBMTAzi4uJw5MgRREVFISoqCsePH5dqVq1ahXXr1iE5ORnZ2dlwd3dHZGQkrl+/LtXExsbixIkTyMjIQFpaGvbt24f4+HhpeW1tLdzc3DB79mwYDAbbdQAREdH/0andEN71Hp6RckAKIYS4fZlt6PV6DBgwAG+++SYAwGw2w9/fH88++ywWLlxYpz46Ohrl5eVIS0uT5g0cOBAhISFITk6GEAK+vr6YN28e5s+fDwAwmUzw8fHBli1bMHHiROTl5aFXr17IyclBaGgoACA9PR2jR4/GxYsX4evra7HPqVOnoqSkBJ988onVx1daWgq1Wg2TyQQPDw+r1yciIqKmZ+33t93OTFVXVyM3N9fizI9SqYTBYEBWVla962RlZdU5UxQZGSnV5+fnw2g0WtSo1Wro9XqpJisrCxqNRgpSAGAwGKBUKpGdnS3rmKqqqlBaWmoxERERUctmtzBVVFSE2tpa+Pj4WMz38fGB0Wisdx2j0dhg/c2ft6vx9va2WO7s7AxPT89b7vdOJSUlQa1WS5O/v7+s7REREVHzZ/cB6C3JokWLYDKZpOnChQv2bpJDKjBV4sDZIj6wjoiIHILdXifj5eUFJycnFBYWWswvLCyEVqutdx2tVttg/c2fhYWF0Ol0FjUhISFSze8HuN+4cQPFxcW33O+dcnV1haurq6xttHZ8pQIRETkau52ZcnFxQf/+/ZGZmSnNM5vNyMzMRHh4eL3rhIeHW9QDQEZGhlQfGBgIrVZrUVNaWors7GypJjw8HCUlJcjNzZVqdu/eDbPZDL1e32jHR9bjKxWIiMgR2fVFxwkJCZgyZQpCQ0MRFhaGtWvXory8HNOmTQMATJ48GX5+fkhKSgIAzJkzBxEREXj11VcxZswYpKSk4NChQ9iwYQMAQKFQYO7cuVixYgWCgoIQGBiIpUuXwtfXV3pWVM+ePTFy5EjMmDEDycnJqKmpwaxZszBx4kSLO/lOnjyJ6upqFBcX49q1azh69CgASGe4qPE19EoF3ipMRETNlV3DVHR0NK5cuYJly5bBaDQiJCQE6enp0gDy8+fPQ6n8/5NngwYNwrZt27BkyRIsXrwYQUFB+OSTT9C7d2+pZsGCBSgvL0d8fDxKSkowZMgQpKenQ6VSSTVbt27FrFmzMGLECCiVSkyYMAHr1q2zaNvo0aPx008/SZ/79esH4NeHgpJt3Hylwm8DFV+pQEREzZ1dnzPV0vE5U9ZLzTmPxTuOo1YI6ZUKHDNFRERNydrvb7uemSL6vegBnTCse0ecK6pAgFdbXt4jIqJmj2GKmh2d2o0hioiIHAafM0VEREQkA8MUERERkQwMU0REREQyMEwRERERycAwRURERCQDwxQREVErwxfKNy4+GoGIiKgV4QvlGx/PTBEREbUSfKG8bTBMERERtRINvVCe7h7DFBERUStx84Xyv8UXysvHMEVERNRK6NRuSBofDCfFr4nq5gvl+QoveTgAnYiIqBXhC+UbH8MUUQtWYKpEflE5Ar3c+Q+mnfDPgJojvlC+cTFMEbVQvP3Z/vhnQNQ6cMwUUQvE25/tj38GRK0HwxRRC8Tbn+2PfwZErQfDFMnCVxI0T7z92f74Z0DUejBM0V1LzTmPwSt344mN2Ri8cjdSc87bu0n0f3j7s/3xz4Co9VAIIcTty+hulJaWQq1Ww2QywcPDw97NaVQFpkoMXrnb4jKGk0KBbxY+yC+LZqTAVMnbn+2MfwZka7xjtPFZ+/3Nu/norjQ0HoT/MzcfvP3Z/vhnQLbEO0abB17mo7vC8SBERPbFO0abD4YpuiscD0JEZF+8Y7T54GU+umt8JQERkf3cvELw+7GrvELQ9HhmimTRqd0Q3vUeBikioibGKwTNB89MEREROSheIWgeGKaIiIgcGO8YtT9e5iMiIiKSgWGKiIiISAaGKSIiIiIZGKaIqMXhC7iJqClxADoRtSh8vQYRNTWemSKiFoOv1yAie2CYIqIWg6/XICJ7aBZhav369QgICIBKpYJer8fBgwcbrN++fTt69OgBlUqF4OBg7Nq1y2K5EALLli2DTqeDm5sbDAYDTp8+bVFTXFyM2NhYeHh4QKPRIC4uDmVlZRY13333HYYOHQqVSgV/f3+sWrWqcQ6YiGyCL+AmInuwe5hKTU1FQkICEhMTcfjwYfTt2xeRkZG4fPlyvfUHDhxATEwM4uLicOTIEURFRSEqKgrHjx+XalatWoV169YhOTkZ2dnZcHd3R2RkJK5fvy7VxMbG4sSJE8jIyEBaWhr27duH+Ph4aXlpaSn+8Ic/oHPnzsjNzcXq1auxfPlybNiwwXadQUSy8PUaRGQXws7CwsLEzJkzpc+1tbXC19dXJCUl1Vv/+OOPizFjxljM0+v14qmnnhJCCGE2m4VWqxWrV6+WlpeUlAhXV1fx4YcfCiGEOHnypAAgcnJypJrPP/9cKBQK8fPPPwshhHjrrbdEhw4dRFVVlVTz/PPPi/vuu++Oj81kMgkAwmQy3fE6RCTfpZIKceBMkbhUUmHvphCRA7L2+9uuZ6aqq6uRm5sLg8EgzVMqlTAYDMjKyqp3naysLIt6AIiMjJTq8/PzYTQaLWrUajX0er1Uk5WVBY1Gg9DQUKnGYDBAqVQiOztbqhk2bBhcXFws9nPq1Cn88ssvMo+ciGyJL+AmoqZk1zBVVFSE2tpa+Pj4WMz38fGB0Wisdx2j0dhg/c2ft6vx9va2WO7s7AxPT0+Lmvq28dt9/F5VVRVKS0stJiIiImrZ7D5mqiVJSkqCWq2WJn9/f3s3iYiIiGzMrmHKy8sLTk5OKCwstJhfWFgIrVZb7zparbbB+ps/b1fz+wHuN27cQHFxsUVNfdv47T5+b9GiRTCZTNJ04cKF+g+ciIiIWgy7hikXFxf0798fmZmZ0jyz2YzMzEyEh4fXu054eLhFPQBkZGRI9YGBgdBqtRY1paWlyM7OlmrCw8NRUlKC3NxcqWb37t0wm83Q6/VSzb59+1BTU2Oxn/vuuw8dOnSot22urq7w8PCwmIiIiKiFs/GA+NtKSUkRrq6uYsuWLeLkyZMiPj5eaDQaYTQahRBCTJo0SSxcuFCq379/v3B2dhZr1qwReXl5IjExUbRp00YcO3ZMqlm5cqXQaDTi3//+t/juu+/EuHHjRGBgoKisrJRqRo4cKfr16yeys7PFN998I4KCgkRMTIy0vKSkRPj4+IhJkyaJ48ePi5SUFNG2bVvxzjvv3PGx8W4+IiIix2Pt97fdw5QQQrzxxhuiU6dOwsXFRYSFhYlvv/1WWhYRESGmTJliUf/RRx+J7t27CxcXF3H//feLzz77zGK52WwWS5cuFT4+PsLV1VWMGDFCnDp1yqLm6tWrIiYmRrRr1054eHiIadOmiWvXrlnU/Oc//xFDhgwRrq6uws/PT6xcudKq42KYIiIicjzWfn8rhBCi4XNXdLdKS0uhVqthMpl4yY+IiMhBWPv9zbv5iIiIiGRgmCIiIiKSgWGKiIiISAaGKSIiIiIZnO3dgJbs5th+vlaGiIjIcdz83r7Te/QYpmzo2rVrAMDXyhARETmga9euQa1W37aOj0awIbPZjEuXLqF9+/ZQKBR1lpeWlsLf3x8XLlzgoxP+D/vEEvvDEvujLvaJJfaHJfZHXXfSJ0IIXLt2Db6+vlAqbz8iimembEipVOLee++9bR1fPVMX+8QS+8MS+6Mu9okl9ocl9kddt+uTOzkjdRMHoBMRERHJwDBFREREJAPDlB25uroiMTERrq6u9m5Ks8E+scT+sMT+qIt9Yon9YYn9UZct+oQD0ImIiIhk4JkpIiIiIhkYpoiIiIhkYJgiIiIikoFhioiIiEgGhikbW79+PQICAqBSqaDX63Hw4MFb1p44cQITJkxAQEAAFAoF1q5d23QNbULW9MnGjRsxdOhQdOjQAR06dIDBYGiw3hFZ0x87duxAaGgoNBoN3N3dERISgn/84x9N2Frbs6Y/fislJQUKhQJRUVG2baAdWNMnW7ZsgUKhsJhUKlUTttb2rP07UlJSgpkzZ0Kn08HV1RXdu3fHrl27mqi1tmdNfwwfPrzO3w+FQoExY8Y0YYttz9q/I2vXrsV9990HNzc3+Pv747nnnsP169fvfIeCbCYlJUW4uLiI9957T5w4cULMmDFDaDQaUVhYWG/9wYMHxfz588WHH34otFqteP3115u2wU3A2j554oknxPr168WRI0dEXl6emDp1qlCr1eLixYtN3HLbsLY/9uzZI3bs2CFOnjwpzpw5I9auXSucnJxEenp6E7fcNqztj5vy8/OFn5+fGDp0qBg3blzTNLaJWNsnmzdvFh4eHqKgoECajEZjE7fadqztj6qqKhEaGipGjx4tvvnmG5Gfny/27t0rjh492sQttw1r++Pq1asWfzeOHz8unJycxObNm5u24TZkbZ9s3bpVuLq6iq1bt4r8/HzxxRdfCJ1OJ5577rk73ifDlA2FhYWJmTNnSp9ra2uFr6+vSEpKuu26nTt3bpFhSk6fCCHEjRs3RPv27cX7779vqyY2Kbn9IYQQ/fr1E0uWLLFF85rc3fTHjRs3xKBBg8SmTZvElClTWlyYsrZPNm/eLNRqdRO1rulZ2x9vv/226NKli6iurm6qJjYpuf+GvP7666J9+/airKzMVk1sctb2ycyZM8VDDz1kMS8hIUEMHjz4jvfJy3w2Ul1djdzcXBgMBmmeUqmEwWBAVlaWHVtmP43RJxUVFaipqYGnp6etmtlk5PaHEAKZmZk4deoUhg0bZsumNom77Y8XX3wR3t7eiIuLa4pmNqm77ZOysjJ07twZ/v7+GDduHE6cONEUzbW5u+mPnTt3Ijw8HDNnzoSPjw969+6Nl19+GbW1tU3VbJtpjH9T3333XUycOBHu7u62amaTups+GTRoEHJzc6VLgT/++CN27dqF0aNH3/F++aJjGykqKkJtbS18fHws5vv4+OD777+3U6vsqzH65Pnnn4evr6/F/yiO6m77w2Qywc/PD1VVVXBycsJbb72Fhx9+2NbNtbm76Y9vvvkG7777Lo4ePdoELWx6d9Mn9913H9577z306dMHJpMJa9aswaBBg3DixIk7evF6c3Y3/fHjjz9i9+7diI2Nxa5du3DmzBk888wzqKmpQWJiYlM022bk/pt68OBBHD9+HO+++66tmtjk7qZPnnjiCRQVFWHIkCEQQuDGjRt4+umnsXjx4jveL8MUOYyVK1ciJSUFe/fubXEDaq3Rvn17HD16FGVlZcjMzERCQgK6dOmC4cOH27tpTeratWuYNGkSNm7cCC8vL3s3p9kIDw9HeHi49HnQoEHo2bMn3nnnHbz00kt2bJl9mM1meHt7Y8OGDXByckL//v3x888/Y/Xq1Q4fpuR69913ERwcjLCwMHs3xa727t2Ll19+GW+99Rb0ej3OnDmDOXPm4KWXXsLSpUvvaBsMUzbi5eUFJycnFBYWWswvLCyEVqu1U6vsS06frFmzBitXrsRXX32FPn362LKZTeZu+0OpVKJbt24AgJCQEOTl5SEpKcnhw5S1/XH27FmcO3cOY8eOleaZzWYAgLOzM06dOoWuXbvattE21hj/jrRp0wb9+vXDmTNnbNHEJnU3/aHT6dCmTRs4OTlJ83r27Amj0Yjq6mq4uLjYtM22JOfvR3l5OVJSUvDiiy/asolN7m76ZOnSpZg0aRKmT58OAAgODkZ5eTni4+Px17/+FUrl7UdEccyUjbi4uKB///7IzMyU5pnNZmRmZlr81tia3G2frFq1Ci+99BLS09MRGhraFE1tEo31d8RsNqOqqsoWTWxS1vZHjx49cOzYMRw9elSaHn30UTz44IM4evQo/P39m7L5NtEYf0dqa2tx7Ngx6HQ6WzWzydxNfwwePBhnzpyRgjYA/PDDD9DpdA4dpAB5fz+2b9+OqqoqPPnkk7ZuZpO6mz6pqKioE5huhm9xp68vvouB8nSHUlJShKurq9iyZYs4efKkiI+PFxqNRrpNedKkSWLhwoVSfVVVlThy5Ig4cuSI0Ol0Yv78+eLIkSPi9OnT9jqERmdtn6xcuVK4uLiIjz/+2OJ23mvXrtnrEBqVtf3x8ssviy+//FKcPXtWnDx5UqxZs0Y4OzuLjRs32usQGpW1/fF7LfFuPmv75IUXXhBffPGFOHv2rMjNzRUTJ04UKpVKnDhxwl6H0Kis7Y/z58+L9u3bi1mzZolTp06JtLQ04e3tLVasWGGvQ2hUd/v/zJAhQ0R0dHRTN7dJWNsniYmJon379uLDDz8UP/74o/jyyy9F165dxeOPP37H+2SYsrE33nhDdOrUSbi4uIiwsDDx7bffSssiIiLElClTpM/5+fkCQJ0pIiKi6RtuQ9b0SefOnevtk8TExKZvuI1Y0x9//etfRbdu3YRKpRIdOnQQ4eHhIiUlxQ6tth1r+uP3WmKYEsK6Ppk7d65U6+PjI0aPHi0OHz5sh1bbjrV/Rw4cOCD0er1wdXUVXbp0EX/729/EjRs3mrjVtmNtf3z//fcCgPjyyy+buKVNx5o+qampEcuXLxddu3YVKpVK+Pv7i2eeeUb88ssvd7w/hRB3eg6LiIiIiH6PY6aIiIiIZGCYIiIiIpKBYYqIiIhIBoYpIiIiIhkYpoiIiIhkYJgiIiIikoFhioiIiEgGhikiohZg6tSpiIqKsncziFolhikisqmpU6dCoVBI0z333IORI0fiu+++s3fTGsVvj+3mNGTIEJvt79y5c1AoFDh69KjF/P/+7//Gli1bbLZfIro1hikisrmRI0eioKAABQUFyMzMhLOzMx555BF7N6vRbN68WTq+goIC7Ny5s966mpoam7VBrVZDo9HYbPtEdGsMU0Rkc66urtBqtdBqtQgJCcHChQtx4cIFXLlyBQ899BBmzZplUX/lyhW4uLhIb34PCAjASy+9hJiYGLi7u8PPzw/r16+3WOe1115DcHAw3N3d4e/vj2eeeQZlZWXS8p9++gljx45Fhw4d4O7ujvvvvx+7du0CAPzyyy+IjY1Fx44d4ebmhqCgIGzevPmOj0+j0UjHp9Vq4enpKZ1BSk1NRUREBFQqFbZu3YqrV68iJiYGfn5+aNu2LYKDg/Hhhx9abM9sNmPVqlXo1q0bXF1d0alTJ/ztb38DAAQGBgIA+vXrB4VCgeHDhwOoe5mvqqoKs2fPhre3N1QqFYYMGYKcnBxp+d69e6FQKJCZmYnQ0FC0bdsWgwYNwqlTp+74uInoVwxTRNSkysrK8MEHH6Bbt2645557MH36dGzbtg1VVVVSzQcffAA/Pz889NBD0rzVq1ejb9++OHLkCBYuXIg5c+YgIyNDWq5UKrFu3TqcOHEC77//Pnbv3o0FCxZIy2fOnImqqirs27cPx44dwyuvvIJ27doBAJYuXYqTJ0/i888/R15eHt5++214eXk1yvHebGteXh4iIyNx/fp19O/fH5999hmOHz+O+Ph4TJo0CQcPHpTWWbRoEVauXCm1a9u2bfDx8QEAqe6rr75CQUEBduzYUe9+FyxYgH/+8594//33cfjwYXTr1g2RkZEoLi62qPvrX/+KV199FYcOHYKzszP+/Oc/N8pxE7UqjfaKZiKiekyZMkU4OTkJd3d34e7uLgAInU4ncnNzhRBCVFZWig4dOojU1FRpnT59+ojly5dLnzt37ixGjhxpsd3o6GgxatSoW+53+/bt4p577pE+BwcHW2zzt8aOHSumTZt2V8cHQKhUKun43N3dxb/+9S+Rn58vAIi1a9fedhtjxowR8+bNE0IIUVpaKlxdXcXGjRvrrb253SNHjljMnzJlihg3bpwQQoiysjLRpk0bsXXrVml5dXW18PX1FatWrRJCCLFnzx4BQHz11VdSzWeffSYAiMrKSmu6gKjV45kpIrK5Bx98EEePHsXRo0dx8OBBREZGYtSoUfjpp5+gUqkwadIkvPfeewCAw4cP4/jx45g6darFNsLDw+t8zsvLkz5/9dVXGDFiBPz8/NC+fXtMmjQJV69eRUVFBQBg9uzZWLFiBQYPHozExESLAfB/+ctfkJKSgpCQECxYsAAHDhyw6vhef/116fiOHj2Khx9+WFoWGhpqUVtbW4uXXnoJwcHB8PT0RLt27fDFF1/g/PnzAIC8vDxUVVVhxIgRVrXht86ePYuamhoMHjxYmtemTRuEhYVZ9BkA9OnTR/pvnU4HALh8+fJd75uoNWKYIiKbc3d3R7du3dCtWzcMGDAAmzZtQnl5OTZu3AgAmD59OjIyMnDx4kVs3rwZDz30EDp37nzH2z937hweeeQR9OnTB//85z+Rm5srjamqrq6W9vHjjz9i0qRJOHbsGEJDQ/HGG28AgBTsnnvuOVy6dAkjRozA/Pnz73j/Wq1WOr5u3brB3d3d4th/a/Xq1fjv//5vPP/889izZw+OHj2KyMhIqZ1ubm53vN/G0KZNG+m/FQoFgF/HbBHRnWOYIqImp1AooFQqUVlZCQAIDg5GaGgoNm7ciG3bttU7bufbb7+t87lnz54AgNzcXJjNZrz66qsYOHAgunfvjkuXLtXZhr+/P55++mns2LED8+bNk8IcAHTs2BFTpkzBBx98gLVr12LDhg2NeciS/fv3Y9y4cXjyySfRt29fdOnSBT/88IO0PCgoCG5ubtLg+99zcXEB8OsZrlvp2rUrXFxcsH//fmleTU0NcnJy0KtXr0Y6EiK6ydneDSCilq+qqgpGoxHAr3fOvfnmmygrK8PYsWOlmunTp2PWrFlwd3fHY489Vmcb+/fvx6pVqxAVFYWMjAxs374dn332GQCgW7duqKmpwRtvvIGxY8di//79SE5Otlh/7ty5GDVqFLp3745ffvkFe/bskcLYsmXL0L9/f9x///2oqqpCWlqatKyxBQUF4eOPP8aBAwfQoUMHvPbaaygsLJRCjkqlwvPPP48FCxbAxcUFgwcPxpUrV3DixAnExcXB29sbbm5uSE9Px7333guVSgW1Wm2xD3d3d/zlL3/Bf/3Xf8HT0xOdOnXCqlWrUFFRgbi4OJscF1FrxjNTRGRz6enp0Ol00Ol00Ov1yMnJwfbt26Xb+gEgJiYGzs7OiImJgUqlqrONefPm4dChQ+jXrx9WrFiB1157DZGRkQCAvn374rXXXsMrr7yC3r17Y+vWrUhKSrJYv7a2FjNnzkTPnj0xcuRIdO/eHW+99RaAX8/2LFq0CH369MGwYcPg5OSElJQUm/TFkiVL8MADDyAyMhLDhw+HVqut8+TypUuXYt68eVi2bBl69uyJ6OhoaRyTs7Mz1q1bh3feeQe+vr4YN25cvftZuXIlJkyYgEmTJuGBBx7AmTNn8MUXX6BDhw42OS6i1kwhhBD2bgQR0blz59C1a1fk5OTggQcesFgWEBCAuXPnYu7cufZpHBFRA3iZj4jsqqamBlevXsWSJUswcODAOkGKiKi542U+IrKr/fv3Q6fTIScnp844J3t7+eWX0a5du3qnUaNG2bt5RNRM8DIfEdEtFBcX13li+E1ubm7w8/Nr4hYRUXPEMEVEREQkAy/zEREREcnAMEVEREQkA8MUERERkQwMU0REREQyMEwRERERycAwRURERCQDwxQRERGRDAxTRERERDL8L7ryqh9FN6DVAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_49.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUjUlEQVR4nO3dfVhUdd4/8PfMADOIMiMhzMCioGJqorgiE2qiObtoZpJ2h8T6tCjtpqWZa+qq9OCGopW3ZVGW2l0qRrlmZhSB5aaEiJoKZmqYDzEoEoM8CMh8f3/482yTiHBkGMD367rORXPO58z5nK8s897zNAohhAARERERNYrS0Q0QERERtUYMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFE1KY999xzUCgUDapVKBR47rnn7NrPsGHDMGzYsBb7fkTUcAxRRNQsNmzYAIVCIU1OTk7w9fXFlClTcP78eUe31+L4+/vbjJeXlxfuu+8+/Pvf/26S96+oqMBzzz2Hr7/+uknej+hOxBBFRM3qhRdewPvvv4+kpCSMGjUKH3zwAcLDw3HlyhW7bG/RokWorKy0y3vbW3BwMN5//328//77mDt3Ln755ReMGzcOSUlJt/3eFRUVeP755xmiiG6Dk6MbIKI7y6hRoxASEgIAmDZtGjw9PbF8+XJs374djz76aJNvz8nJCU5OrfNPna+vL/7yl79IrydNmoTu3bvj1Vdfxd/+9jcHdkZEAI9EEZGD3XfffQCAU6dO2cz/4Ycf8Mgjj8DDwwMajQYhISHYvn27TU1NTQ2ef/55BAYGQqPR4K677sKQIUOQlpYm1dR1TVRVVRWefvppdOrUCR06dMBDDz2Ec+fO3dDblClT4O/vf8P8ut5z/fr1uP/+++Hl5QW1Wo3evXvjzTffbNRY3Iper0evXr2Qn59fb92FCxcQGxsLb29vaDQa9OvXD++99560/PTp0+jUqRMA4Pnnn5dOGdr7ejCitqZ1/t8zImozTp8+DQDo2LGjNC83NxeDBw+Gr68v5s+fDzc3N3z44YeIjIzExx9/jIcffhjAtTCTkJCAadOmITQ0FKWlpdi/fz8OHDiAP/3pTzfd5rRp0/DBBx/gsccew6BBg5CRkYHRo0ff1n68+eabuOeee/DQQw/ByckJn376KZ544glYrVbMmDHjtt77upqaGpw9exZ33XXXTWsqKysxbNgwnDx5EjNnzkRAQABSUlIwZcoUlJSUYNasWejUqRPefPNN/P3vf8fDDz+McePGAQD69u3bJH0S3TEEEVEzWL9+vQAgvvrqK3Hx4kVx9uxZ8dFHH4lOnToJtVotzp49K9WOGDFCBAUFiStXrkjzrFarGDRokAgMDJTm9evXT4wePbre7cbHx4vf/qk7dOiQACCeeOIJm7rHHntMABDx8fHSvMmTJ4suXbrc8j2FEKKiouKGuoiICNG1a1ebeeHh4SI8PLzenoUQokuXLuLPf/6zuHjxorh48aL4/vvvxYQJEwQA8eSTT970/VatWiUAiA8++ECaV11dLcLCwkT79u1FaWmpEEKIixcv3rC/RNQ4PJ1HRM3KZDKhU6dO8PPzwyOPPAI3Nzds374df/jDHwAAxcXFyMjIwKOPPorLly+jqKgIRUVFuHTpEiIiInDixAnpbj6dTofc3FycOHGiwdvfuXMnAOCpp56ymT979uzb2i9XV1fpvy0WC4qKihAeHo6ffvoJFotF1nt++eWX6NSpEzp16oR+/fohJSUFEydOxPLly2+6zs6dO6HX6xEdHS3Nc3Z2xlNPPYWysjJ88803snohohvxdB4RNas1a9agR48esFgsWLduHXbv3g21Wi0tP3nyJIQQWLx4MRYvXlzne1y4cAG+vr544YUXMHbsWPTo0QN9+vTByJEjMXHixHpPS/38889QKpXo1q2bzfy77777tvZrz549iI+PR2ZmJioqKmyWWSwWaLXaRr+n0WjE0qVLoVAo0K5dO/Tq1Qs6na7edX7++WcEBgZCqbT9/8i9evWSlhNR02CIIqJmFRoaKt2dFxkZiSFDhuCxxx7D8ePH0b59e1itVgDA3LlzERERUed7dO/eHQAwdOhQnDp1Cp988gm+/PJLvPPOO3j11VeRlJSEadOm3XavN3tIZ21trc3rU6dOYcSIEejZsydeeeUV+Pn5wcXFBTt37sSrr74q7VNjeXp6wmQyyVqXiOyPIYqIHEalUiEhIQHDhw/H66+/jvnz56Nr164Arp2CakiA8PDwwNSpUzF16lSUlZVh6NCheO65524aorp06QKr1YpTp07ZHH06fvz4DbUdO3ZESUnJDfN/fzTn008/RVVVFbZv347OnTtL83ft2nXL/ptaly5dcPjwYVitVpujUT/88IO0HLh5QCSihuM1UUTkUMOGDUNoaChWrVqFK1euwMvLC8OGDcNbb72FgoKCG+ovXrwo/felS5dslrVv3x7du3dHVVXVTbc3atQoAMDq1att5q9ateqG2m7dusFiseDw4cPSvIKCghueGq5SqQAAQghpnsViwfr162/ah7088MADMJvN2LJlizTv6tWreO2119C+fXuEh4cDANq1awcAdYZEImoYHokiIof7xz/+gf/5n//Bhg0b8Le//Q1r1qzBkCFDEBQUhOnTp6Nr164oLCxEZmYmzp07h++//x4A0Lt3bwwbNgwDBgyAh4cH9u/fj48++ggzZ8686baCg4MRHR2NN954AxaLBYMGDUJ6ejpOnjx5Q+2ECRPw7LPP4uGHH8ZTTz2FiooKvPnmm+jRowcOHDgg1f35z3+Gi4sLxowZg8cffxxlZWVYu3YtvLy86gyC9hQXF4e33noLU6ZMQU5ODvz9/fHRRx9hz549WLVqFTp06ADg2oXwvXv3xpYtW9CjRw94eHigT58+6NOnT7P2S9SqOfr2QCK6M1x/xEF2dvYNy2pra0W3bt1Et27dxNWrV4UQQpw6dUpMmjRJ6PV64ezsLHx9fcWDDz4oPvroI2m9pUuXitDQUKHT6YSrq6vo2bOn+Ne//iWqq6ulmroeR1BZWSmeeuopcddddwk3NzcxZswYcfbs2Tpv+f/yyy9Fnz59hIuLi7j77rvFBx98UOd7bt++XfTt21doNBrh7+8vli9fLtatWycAiPz8fKmuMY84uNXjG272foWFhWLq1KnC09NTuLi4iKCgILF+/fob1t27d68YMGCAcHFx4eMOiGRQCPGb489ERERE1CC8JoqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGfiwTTuyWq345Zdf0KFDB37FAhERUSshhMDly5fh4+Nzw5d5/xZDlB398ssv8PPzc3QbREREJMPZs2fxhz/84abLGaLs6PrXK5w9exbu7u4O7oaIiIgaorS0FH5+ftLn+M0wRNnR9VN47u7uDFFEREStzK0uxeGF5UREREQyMEQRERERycAQRURERCQDr4lysNraWtTU1Di6DYdzdnaGSqVydBtEREQNxhDlIEIImM1mlJSUOLqVFkOn00Gv1/OZWkRE1CowRDnI9QDl5eWFdu3a3dHBQQiBiooKXLhwAQBgMBgc3BEREdGtMUQ5QG1trRSg7rrrLke30yK4uroCAC5cuAAvLy+e2iMiohaPF5Y7wPVroNq1a+fgTlqW6+PBa8SIiKg1YIhyoDv5FF5dOB5ERNSaMEQRERERycAQRURERCQDQxQ1ypQpU6BQKLBs2TKb+du2bZNOx3399dcYO3YsDAYD3NzcEBwcjI0bNzqiXSIiaqMKLJXYe6oIBZZKh/XAEEWNptFosHz5cvz66691Lt+7dy/69u2Ljz/+GIcPH8bUqVMxadIk7Nixo5k7JSKitmhL9hkMXpaBx9ZmYfCyDGzJPuOQPhiiqNFMJhP0ej0SEhLqXL5w4UK8+OKLGDRoELp164ZZs2Zh5MiR2Lp1azN3SkREbU2BpRILth6BVVx7bRXAwq1HHXJEiiGqDWjuQ5oqlQovvfQSXnvtNZw7d65B61gsFnh4eNi5MyIiauvyi8qlAHVdrRA4XVTR7L0wRLVyjjqk+fDDDyM4OBjx8fG3rP3www+RnZ2NqVOnNkNnRETUlgV4ukH5uyfiqBQK+Hs2/7MXGaJaMUcf0ly+fDnee+89HDt27KY1u3btwtSpU7F27Vrcc889zdIXERG1XQatKxLGBUH1/29mUikUeGlcHxi0rs3eC7/2pRWr75Bmc/wyDR06FBEREViwYAGmTJlyw/JvvvkGY8aMwauvvopJkybZvR8iIrozRA3sjKE9OuF0UQX8Pds5JEABDFGt2vVDmr8NUs19SHPZsmUIDg7G3XffbTP/66+/xoMPPojly5cjLi6u2fohIqI7g0Hr6rDwdJ3DT+etWbMG/v7+0Gg0MBqN2LdvX731KSkp6NmzJzQaDYKCgrBz506b5UIILFmyBAaDAa6urjCZTDhx4oRNTXFxMWJiYuDu7g6dTofY2FiUlZXZ1HzxxRe499570aFDB3Tq1Anjx4/H6dOnm2Sfm0pLOKQZFBSEmJgYrF69Wpq3a9cujB49Gk899RTGjx8Ps9kMs9mM4uLiZuuLiIjI3hwaorZs2YI5c+YgPj4eBw4cQL9+/RAREYELFy7UWb93715ER0cjNjYWBw8eRGRkJCIjI3H06FGpJjExEatXr0ZSUhKysrLg5uaGiIgIXLlyRaqJiYlBbm4u0tLSsGPHDuzevdvmaEl+fj7Gjh2L+++/H4cOHcIXX3yBoqIijBs3zn6DIVPUwM74dv5wbJ5+L76dPxxRAzs3ew8vvPACrFar9Pq9995DRUUFEhISYDAYpKkljh8REZFswoFCQ0PFjBkzpNe1tbXCx8dHJCQk1Fn/6KOPitGjR9vMMxqN4vHHHxdCCGG1WoVerxcrVqyQlpeUlAi1Wi02b94shBAiLy9PABDZ2dlSzeeffy4UCoU4f/68EEKIlJQU4eTkJGpra6Wa7du3C4VCIaqrqxu8fxaLRQAQFovFZn5lZaXIy8sTlZWVDX6vOwHHhYiIWoKbfX7/nsOORFVXVyMnJwcmk0map1QqYTKZkJmZWec6mZmZNvUAEBERIdXn5+fDbDbb1Gi1WhiNRqkmMzMTOp0OISEhUo3JZIJSqURWVhYAYMCAAVAqlVi/fj1qa2thsVjw/vvvw2QywdnZuWkGgIiIiFo1h4WooqIi1NbWwtvb22a+t7c3zGZzneuYzeZ666//vFWNl5eXzXInJyd4eHhINQEBAfjyyy+xcOFCqNVq6HQ6nDt3Dh9++GG9+1RVVYXS0lKbiYiIiNomh19Y3hKZzWZMnz4dkydPRnZ2Nr755hu4uLjgkUcegRDipuslJCRAq9VKk5+fXzN2TURERM3JYSHK09MTKpUKhYWFNvMLCwuh1+vrXEev19dbf/3nrWp+f+H61atXUVxcLNWsWbMGWq0WiYmJ6N+/P4YOHYoPPvgA6enp0im/uixYsAAWi0Wazp49e6thICIiolbKYSHKxcUFAwYMQHp6ujTParUiPT0dYWFhda4TFhZmUw8AaWlpUn1AQAD0er1NTWlpKbKysqSasLAwlJSUICcnR6rJyMiA1WqF0WgEAFRUVECptB0alUol9XgzarUa7u7uNlN96juqdSfieBARUavSHFe530xycrJQq9Viw4YNIi8vT8TFxQmdTifMZrMQQoiJEyeK+fPnS/V79uwRTk5OYuXKleLYsWMiPj5eODs7iyNHjkg1y5YtEzqdTnzyySfi8OHDYuzYsSIgIMDmjq+RI0eK/v37i6ysLPHtt9+KwMBAER0dLS1PT08XCoVCPP/88+LHH38UOTk5IiIiQnTp0kVUVFQ0eP9udnX/1atXRV5enigqKmr0mLVlRUVFIi8vT1y9etXRrRAR0R2soXfnOfSJ5VFRUbh48SKWLFkCs9mM4OBgpKamSheGnzlzxuaI0KBBg7Bp0yYsWrQICxcuRGBgILZt24Y+ffpINfPmzUN5eTni4uJQUlKCIUOGIDU1FRqNRqrZuHEjZs6ciREjRkCpVGL8+PE2D4u8//77sWnTJiQmJiIxMRHt2rVDWFgYUlNT4ep6+w+yVKlU0Ol00mnFdu3aQaFQ3GKttksIgYqKCly4cAE6nU466kdERNSSKYTgORR7KS0thVarhcViueHUnhACZrMZJSUljmmuBdLpdNDr9Xd0oCQiIser7/P7t/jdeQ6iUChgMBjg5eWFmpoaR7fjcM7OzjwCRURErQpDlIOpVCqGByIiolaIz4kiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSoUWEqDVr1sDf3x8ajQZGoxH79u2rtz4lJQU9e/aERqNBUFAQdu7cabNcCIElS5bAYDDA1dUVJpMJJ06csKkpLi5GTEwM3N3dodPpEBsbi7KyMmn5c889B4VCccPk5ubWdDtORERErZbDQ9SWLVswZ84cxMfH48CBA+jXrx8iIiJw4cKFOuv37t2L6OhoxMbG4uDBg4iMjERkZCSOHj0q1SQmJmL16tVISkpCVlYW3NzcEBERgStXrkg1MTExyM3NRVpaGnbs2IHdu3cjLi5OWj537lwUFBTYTL1798b//M//2G8wiIiIqPUQDhYaGipmzJghva6trRU+Pj4iISGhzvpHH31UjB492mae0WgUjz/+uBBCCKvVKvR6vVixYoW0vKSkRKjVarF582YhhBB5eXkCgMjOzpZqPv/8c6FQKMT58+fr3O6hQ4cEALF79+4G75vFYhEAhMViafA6RERE5FgN/fx26JGo6upq5OTkwGQySfOUSiVMJhMyMzPrXCczM9OmHgAiIiKk+vz8fJjNZpsarVYLo9Eo1WRmZkKn0yEkJESqMZlMUCqVyMrKqnO777zzDnr06IH77rvvpvtTVVWF0tJSm4mIiIjaJoeGqKKiItTW1sLb29tmvre3N8xmc53rmM3meuuv/7xVjZeXl81yJycneHh41LndK1euYOPGjYiNja13fxISEqDVaqXJz8+v3noiIiJqvRx+TVRr8O9//xuXL1/G5MmT661bsGABLBaLNJ09e7aZOiQiIqLm5tAQ5enpCZVKhcLCQpv5hYWF0Ov1da6j1+vrrb/+81Y1v79w/erVqyguLq5zu++88w4efPDBG45u/Z5arYa7u7vNRERERG2TQ0OUi4sLBgwYgPT0dGme1WpFeno6wsLC6lwnLCzMph4A0tLSpPqAgADo9XqbmtLSUmRlZUk1YWFhKCkpQU5OjlSTkZEBq9UKo9Fo8975+fnYtWvXLU/lERER0Z3FydENzJkzB5MnT0ZISAhCQ0OxatUqlJeXY+rUqQCASZMmwdfXFwkJCQCAWbNmITw8HC+//DJGjx6N5ORk7N+/H2+//TYAQKFQYPbs2Vi6dCkCAwMREBCAxYsXw8fHB5GRkQCAXr16YeTIkZg+fTqSkpJQU1ODmTNnYsKECfDx8bHpb926dTAYDBg1alTzDQoRERG1eA4PUVFRUbh48SKWLFkCs9mM4OBgpKamSqfOzpw5A6XyvwfMBg0ahE2bNmHRokVYuHAhAgMDsW3bNvTp00eqmTdvHsrLyxEXF4eSkhIMGTIEqamp0Gg0Us3GjRsxc+ZMjBgxAkqlEuPHj8fq1atterNardiwYQOmTJkClUpl55EgIiKi1kQhhBCObqKtKi0thVarhcVi4fVRRERErURDP795dx4RERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcng8BC1Zs0a+Pv7Q6PRwGg0Yt++ffXWp6SkoGfPntBoNAgKCsLOnTttlgshsGTJEhgMBri6usJkMuHEiRM2NcXFxYiJiYG7uzt0Oh1iY2NRVlZ2w/usXLkSPXr0gFqthq+vL/71r381zU4TERFRq+fQELVlyxbMmTMH8fHxOHDgAPr164eIiAhcuHChzvq9e/ciOjoasbGxOHjwICIjIxEZGYmjR49KNYmJiVi9ejWSkpKQlZUFNzc3RERE4MqVK1JNTEwMcnNzkZaWhh07dmD37t2Ii4uz2dasWbPwzjvvYOXKlfjhhx+wfft2hIaG2mcgiIiIqPURDhQaGipmzJghva6trRU+Pj4iISGhzvpHH31UjB492mae0WgUjz/+uBBCCKvVKvR6vVixYoW0vKSkRKjVarF582YhhBB5eXkCgMjOzpZqPv/8c6FQKMT58+elGicnJ/HDDz/c1v5ZLBYBQFgsltt6HyIiImo+Df38dtiRqOrqauTk5MBkMknzlEolTCYTMjMz61wnMzPTph4AIiIipPr8/HyYzWabGq1WC6PRKNVkZmZCp9MhJCREqjGZTFAqlcjKygIAfPrpp+jatSt27NiBgIAA+Pv7Y9q0aSguLq53n6qqqlBaWmozERERUdvksBBVVFSE2tpaeHt728z39vaG2Wyucx2z2Vxv/fWft6rx8vKyWe7k5AQPDw+p5qeffsLPP/+MlJQU/N///R82bNiAnJwcPPLII/XuU0JCArRarTT5+fnVW09EREStl8MvLG+JrFYrqqqq8H//93+47777MGzYMLz77rvYtWsXjh8/ftP1FixYAIvFIk1nz55txq6JiIioOTksRHl6ekKlUqGwsNBmfmFhIfR6fZ3r6PX6euuv/7xVze8vXL969SqKi4ulGoPBACcnJ/To0UOq6dWrFwDgzJkzN90ntVoNd3d3m4mIiIjaJoeFKBcXFwwYMADp6enSPKvVivT0dISFhdW5TlhYmE09AKSlpUn1AQEB0Ov1NjWlpaXIysqSasLCwlBSUoKcnBypJiMjA1arFUajEQAwePBgXL16FadOnZJqfvzxRwBAly5dbme3iYiIqK1opgvd65ScnCzUarXYsGGDyMvLE3FxcUKn0wmz2SyEEGLixIli/vz5Uv2ePXuEk5OTWLlypTh27JiIj48Xzs7O4siRI1LNsmXLhE6nE5988ok4fPiwGDt2rAgICBCVlZVSzciRI0X//v1FVlaW+Pbbb0VgYKCIjo6WltfW1oo//vGPYujQoeLAgQNi//79wmg0ij/96U+N2j/enUdERNT6NPTz26EhSgghXnvtNdG5c2fh4uIiQkNDxXfffSctCw8PF5MnT7ap//DDD0WPHj2Ei4uLuOeee8Rnn31ms9xqtYrFixcLb29voVarxYgRI8Tx48dtai5duiSio6NF+/bthbu7u5g6daq4fPmyTc358+fFuHHjRPv27YW3t7eYMmWKuHTpUqP2jSGKiIio9Wno57dCCCEceyys7SotLYVWq4XFYuH1UURERK1EQz+/eXceERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERE1GAFlkrsPVWEAkulo1txuBYRotasWQN/f39oNBoYjUbs27ev3vqUlBT07NkTGo0GQUFB2Llzp81yIQSWLFkCg8EAV1dXmEwmnDhxwqamuLgYMTExcHd3h06nQ2xsLMrKyqTlp0+fhkKhuGH67rvvmm7HiYiIWpEt2WcweFkGHlubhcHLMrAl+4yjW3Ioh4eoLVu2YM6cOYiPj8eBAwfQr18/RERE4MKFC3XW7927F9HR0YiNjcXBgwcRGRmJyMhIHD16VKpJTEzE6tWrkZSUhKysLLi5uSEiIgJXrlyRamJiYpCbm4u0tDTs2LEDu3fvRlxc3A3b++qrr1BQUCBNAwYMaPpBICIiauEKLJVYsPUIrOLaa6sAFm49ekcfkVIIIYQjGzAajRg4cCBef/11AIDVaoWfnx+efPJJzJ8//4b6qKgolJeXY8eOHdK8e++9F8HBwUhKSoIQAj4+PnjmmWcwd+5cAIDFYoG3tzc2bNiACRMm4NixY+jduzeys7MREhICAEhNTcUDDzyAc+fOwcfHB6dPn0ZAQAAOHjyI4OBgWftWWloKrVYLi8UCd3d3We9BRETUEuw9VYTH1mbdMH/z9HsR1u0uB3RkPw39/Hbokajq6mrk5OTAZDJJ85RKJUwmEzIzM+tcJzMz06YeACIiIqT6/Px8mM1mmxqtVguj0SjVZGZmQqfTSQEKAEwmE5RKJbKybH9BHnroIXh5eWHIkCHYvn17vftTVVWF0tJSm4mIiKgtCPB0g1JhO0+lUMDfs51jGmoBHBqiioqKUFtbC29vb5v53t7eMJvNda5jNpvrrb/+81Y1Xl5eNsudnJzg4eEh1bRv3x4vv/wyUlJS8Nlnn2HIkCGIjIysN0glJCRAq9VKk5+f362GgIiIqFUwaF2RMC4IKsW1JKVSKPDSuD4waF0d3JnjODm6gZbK09MTc+bMkV4PHDgQv/zyC1asWIGHHnqoznUWLFhgs05paSmDFBERtRlRAztjaI9OOF1UAX/Pdnd0gAIcHKI8PT2hUqlQWFhoM7+wsBB6vb7OdfR6fb31138WFhbCYDDY1Fy/tkmv199w4frVq1dRXFx80+0C167fSktLu+lytVoNtVp90+VEREStnUHreseHp+scejrPxcUFAwYMQHp6ujTParUiPT0dYWFhda4TFhZmUw8AaWlpUn1AQAD0er1NTWlpKbKysqSasLAwlJSUICcnR6rJyMiA1WqF0Wi8ab+HDh2yCWZERER053L46bw5c+Zg8uTJCAkJQWhoKFatWoXy8nJMnToVADBp0iT4+voiISEBADBr1iyEh4fj5ZdfxujRo5GcnIz9+/fj7bffBgAoFArMnj0bS5cuRWBgIAICArB48WL4+PggMjISANCrVy+MHDkS06dPR1JSEmpqajBz5kxMmDABPj4+AID33nsPLi4u6N+/PwBg69atWLduHd55551mHiEiIiJqiRweoqKionDx4kUsWbIEZrMZwcHBSE1NlS4MP3PmDJTK/x4wGzRoEDZt2oRFixZh4cKFCAwMxLZt29CnTx+pZt68eSgvL0dcXBxKSkowZMgQpKamQqPRSDUbN27EzJkzMWLECCiVSowfPx6rV6+26e3FF1/Ezz//DCcnJ/Ts2RNbtmzBI488YucRISIiotbA4c+Jasv4nCgiIqLWp1U8J4qIiIiotWKIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIgcqsBSib2nilBgqXR0K43i5OgGiIiI6M61JfsMFmw9AqsAlAogYVwQogZ2dnRbDcIjUUREROQQBZZKKUABgFUAC7cebTVHpBiiiIiIyCHyi8qlAHVdrRA4XVThmIYaiSGKiIiIHCLA0w1Khe08lUIBf892jmmokRiiiIiIyCEMWlckjAuCSnEtSakUCrw0rg8MWlcHd9YwvLCciIiIHCZqYGcM7dEJp4sq4O/ZrtUEKIAhioiIiBzMoHVtVeHpukafztu5cyemTZuGefPm4YcffrBZ9uuvv+L+++9vsuaIiIiIWqpGhahNmzbhoYcegtlsRmZmJvr374+NGzdKy6urq/HNN980eZNERERELU2jTuetWLECr7zyCp566ikAwIcffoi//vWvuHLlCmJjY+3SIBEREVFL1KgQdeLECYwZM0Z6/eijj6JTp0546KGHUFNTg4cffrjJGyQiIqKWo8BSifyicgR4urXK65iaUqNClLu7OwoLCxEQECDNGz58OHbs2IEHH3wQ586da/IGiYiIqGVozV/RYg+NuiYqNDQUn3/++Q3zw8PD8emnn2LVqlVN1RcRERG1IK39K1rsoVEh6umnn4ZGo6lz2bBhw/Dpp59i0qRJTdIYERERtRyt/Sta7KFRp/PCw8MRHh5+0+XDhw/H8OHDb7spIiIialmuf0XLb4NUa/qKFnto1JEopVIJlUpV7+TkxOd3EhERtTWt/Sta7KFRIerf//43tm7dWuf0j3/8A2q1WlaIWrNmDfz9/aHRaGA0GrFv375661NSUtCzZ09oNBoEBQVh586dNsuFEFiyZAkMBgNcXV1hMplw4sQJm5ri4mLExMTA3d0dOp0OsbGxKCsrq3N7J0+eRIcOHaDT6Rq9b0RERG1F1MDO+Hb+cGyefi++nT/8jr6oHAAgbtMPP/wgIiMjhUqlEpMmTRKnT59u1PrJycnCxcVFrFu3TuTm5orp06cLnU4nCgsL66zfs2ePUKlUIjExUeTl5YlFixYJZ2dnceTIEalm2bJlQqvVim3btonvv/9ePPTQQyIgIEBUVlZKNSNHjhT9+vUT3333nfjPf/4junfvLqKjo2/YXnV1tQgJCRGjRo0SWq22UftmsVgEAGGxWBq1HhERETlOQz+/ZYeo8+fPi2nTpglnZ2fx4IMP2oSYxggNDRUzZsyQXtfW1gofHx+RkJBQZ/2jjz4qRo8ebTPPaDSKxx9/XAghhNVqFXq9XqxYsUJaXlJSItRqtdi8ebMQQoi8vDwBQGRnZ0s1n3/+uVAoFOL8+fM27z1v3jzxl7/8Raxfv54hioiI6A7Q0M/vRn93nsViwbPPPovu3bsjNzcX6enp+PTTT9GnT59GHwWrrq5GTk4OTCaTNE+pVMJkMiEzM7POdTIzM23qASAiIkKqz8/Ph9lstqnRarUwGo1STWZmJnQ6HUJCQqQak8kEpVKJrKwsaV5GRgZSUlKwZs2aBu1PVVUVSktLbSYiIiJqmxoVohITE9G1a1fs2LEDmzdvxt69e3HffffJ3nhRURFqa2vh7e1tM9/b2xtms7nOdcxmc73113/eqsbLy8tmuZOTEzw8PKSaS5cuYcqUKdiwYQPc3d0btD8JCQnQarXS5Ofn16D1iIiIqPVp1FXg8+fPh6urK7p374733nsP7733Xp11W7dubZLmHGn69Ol47LHHMHTo0Aavs2DBAsyZM0d6XVpayiBFRETURjUqRE2aNAmK/39rY1Pw9PSESqVCYWGhzfzCwkLo9fo619Hr9fXWX/9ZWFgIg8FgUxMcHCzVXLhwweY9rl69iuLiYmn9jIwMbN++HStXrgRw7Y4/q9UKJycnvP322/jrX/96Q29qtRpqtbqhu09EREStWKNC1IYNG5p04y4uLhgwYADS09MRGRkJALBarUhPT8fMmTPrXCcsLAzp6emYPXu2NC8tLQ1hYWEAgICAAOj1eqSnp0uhqbS0FFlZWfj73/8uvUdJSQlycnIwYMAAANdCk9VqhdFoBHDtuqna2lppG5988gmWL1+OvXv3wtfXtymHgYiIiFohhz8Zc86cOZg8eTJCQkIQGhqKVatWoby8HFOnTgVw7eiXr68vEhISAACzZs1CeHg4Xn75ZYwePRrJycnYv38/3n77bQCAQqHA7NmzsXTpUgQGBiIgIACLFy+Gj4+PFNR69eqFkSNHYvr06UhKSkJNTQ1mzpyJCRMmwMfHR6r5rf3790OpVMq6gJ6IiIjaHoeHqKioKFy8eBFLliyB2WxGcHAwUlNTpQvDz5w5A6Xyv9e/Dxo0CJs2bcKiRYuwcOFCBAYGYtu2bTbhZt68eSgvL0dcXBxKSkowZMgQpKam2nzv38aNGzFz5kyMGDECSqUS48ePx+rVq5tvx4mIiKhVUwghxK3LSI7S0lJotVpYLJYG3+FHREREjtXQz+9GPyeKiIiIiBiiiIiIiGRhiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGgRIWrNmjXw9/eHRqOB0WjEvn376q1PSUlBz549odFoEBQUhJ07d9osF0JgyZIlMBgMcHV1hclkwokTJ2xqiouLERMTA3d3d+h0OsTGxqKsrExafvz4cQwfPhze3t7QaDTo2rUrFi1ahJqamqbbcaIWrsBSib2nilBgqXR0K0RELY7DQ9SWLVswZ84cxMfH48CBA+jXrx8iIiJw4cKFOuv37t2L6OhoxMbG4uDBg4iMjERkZCSOHj0q1SQmJmL16tVISkpCVlYW3NzcEBERgStXrkg1MTExyM3NRVpaGnbs2IHdu3cjLi5OWu7s7IxJkybhyy+/xPHjx7Fq1SqsXbsW8fHx9hsMohZkS/YZDF6WgcfWZmHwsgxsyT7j6JaIiFoUhRBCOLIBo9GIgQMH4vXXXwcAWK1W+Pn54cknn8T8+fNvqI+KikJ5eTl27Nghzbv33nsRHByMpKQkCCHg4+ODZ555BnPnzgUAWCwWeHt7Y8OGDZgwYQKOHTuG3r17Izs7GyEhIQCA1NRUPPDAAzh37hx8fHzq7HXOnDnIzs7Gf/7znwbtW2lpKbRaLSwWC9zd3Rs1LkSOVGCpxOBlGbD+5q+DSqHAt/OHw6B1dVxjRETNoKGf3w49ElVdXY2cnByYTCZpnlKphMlkQmZmZp3rZGZm2tQDQEREhFSfn58Ps9lsU6PVamE0GqWazMxM6HQ6KUABgMlkglKpRFZWVp3bPXnyJFJTUxEeHn7T/amqqkJpaanNRNQa5ReV2wQoAKgVAqeLKhzTEBFRC+TQEFVUVITa2lp4e3vbzPf29obZbK5zHbPZXG/99Z+3qvHy8rJZ7uTkBA8Pjxu2O2jQIGg0GgQGBuK+++7DCy+8cNP9SUhIgFarlSY/P7+b1hK1ZAGeblAqbOepFAr4e7ZzTENERC2Qw6+Jaum2bNmCAwcOYNOmTfjss8+wcuXKm9YuWLAAFotFms6ePduMnRI1HYPWFQnjgqBSXEtSKoUCL43rw1N5RES/4eTIjXt6ekKlUqGwsNBmfmFhIfR6fZ3r6PX6euuv/ywsLITBYLCpCQ4Olmp+f+H61atXUVxcfMN2rx9N6t27N2praxEXF4dnnnkGKpXqht7UajXUavWtdvu2FVgqkV9UjgBPN36okd1EDeyMoT064XRRBfw92/F3jYjodxx6JMrFxQUDBgxAenq6NM9qtSI9PR1hYWF1rhMWFmZTDwBpaWlSfUBAAPR6vU1NaWkpsrKypJqwsDCUlJQgJydHqsnIyIDVaoXRaLxpv1arFTU1NbBarY3f2SbCO6aoORm0rgjrdhcDFBFRHRx6JAq4dsfb5MmTERISgtDQUKxatQrl5eWYOnUqAGDSpEnw9fVFQkICAGDWrFkIDw/Hyy+/jNGjRyM5ORn79+/H22+/DQBQKBSYPXs2li5disDAQAQEBGDx4sXw8fFBZGQkAKBXr14YOXIkpk+fjqSkJNTU1GDmzJmYMGGCdGfexo0b4ezsjKCgIKjVauzfvx8LFixAVFQUnJ2dm3+gcO0I1IKtR6QLfq0CWLj1KIb26MQPOSIiombm8BAVFRWFixcvYsmSJTCbzQgODkZqaqp0YfiZM2egVP73gNmgQYOwadMmLFq0CAsXLkRgYCC2bduGPn36SDXz5s1DeXk54uLiUFJSgiFDhiA1NRUajUaq2bhxI2bOnIkRI0ZAqVRi/PjxWL16tbTcyckJy5cvx48//gghBLp06YKZM2fi6aefboZRqVt9d0wxRBG1HTxlT9Q6OPw5UW1ZUz8nis/uIWr7tmSfkY44KxVAwrggRA3s7Oi2iO4oreI5UdQ4vGOKqG272Sl7fu0OUcvk8NN51Di8Y4qo7eIpe6LWhSGqFTJoXfkHlagNuv6Q09+fsudDTolaJp7OIyJqIXjKnqh14ZEoImo2vOvs1njKnqj1YIgiugO0hPDCu84ajqfsiVoHhiiiNq4lhBc+KJaI2iJeE0XUhrWUW+bru+uMiKi1YogiasNaSni5ftfZb/GuMyJq7RiiiNqwlhJeeNcZEbVFvCaKqA27Hl4Wbj2KWiEcGl541xkRtTUMUURtXEsKL7zrjIjaEoYoojsAwwsRUdPjNVFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERydAiQtSaNWvg7+8PjUYDo9GIffv21VufkpKCnj17QqPRICgoCDt37rRZLoTAkiVLYDAY4OrqCpPJhBMnTtjUFBcXIyYmBu7u7tDpdIiNjUVZWZm0/Ouvv8bYsWNhMBjg5uaG4OBgbNy4sel2ugUpsFRi76kiFFgqHd0KERFRq+HwELVlyxbMmTMH8fHxOHDgAPr164eIiAhcuHChzvq9e/ciOjoasbGxOHjwICIjIxEZGYmjR49KNYmJiVi9ejWSkpKQlZUFNzc3RERE4MqVK1JNTEwMcnNzkZaWhh07dmD37t2Ii4uz2U7fvn3x8ccf4/Dhw5g6dSomTZqEHTt22G8wHGBL9hkMXpaBx9ZmYfCyDGzJPuPoloiIiFoFhRBCOLIBo9GIgQMH4vXXXwcAWK1W+Pn54cknn8T8+fNvqI+KikJ5eblNmLn33nsRHByMpKQkCCHg4+ODZ555BnPnzgUAWCwWeHt7Y8OGDZgwYQKOHTuG3r17Izs7GyEhIQCA1NRUPPDAAzh37hx8fHzq7HX06NHw9vbGunXrGrRvpaWl0Gq1sFgscHd3b9S4NIcCSyUGL8uA9Te/ASqFAt/OHw6D1tVxjRERETlQQz+/HXokqrq6Gjk5OTCZTNI8pVIJk8mEzMzMOtfJzMy0qQeAiIgIqT4/Px9ms9mmRqvVwmg0SjWZmZnQ6XRSgAIAk8kEpVKJrKysm/ZrsVjg4eFx0+VVVVUoLS21mVqy/KJymwAFALVC4HRRhWMaIiIiakUcGqKKiopQW1sLb29vm/ne3t4wm811rmM2m+utv/7zVjVeXl42y52cnODh4XHT7X744YfIzs7G1KlTb7o/CQkJ0Gq10uTn53fT2pYgwNMNSoXtPJVCAX/Pdo5piIiIqBVx+DVRrcGuXbswdepUrF27Fvfcc89N6xYsWACLxSJNZ8+ebcYuG8+gdUXCuCCoFNeSlEqhwEvj+vBUHhERUQM4OXLjnp6eUKlUKCwstJlfWFgIvV5f5zp6vb7e+us/CwsLYTAYbGqCg4Olmt9fuH716lUUFxffsN1vvvkGY8aMwauvvopJkybVuz9qtRpqtbrempYmamBnDO3RCaeLKuDv2Y4BioiIqIEceiTKxcUFAwYMQHp6ujTParUiPT0dYWFhda4TFhZmUw8AaWlpUn1AQAD0er1NTWlpKbKysqSasLAwlJSUICcnR6rJyMiA1WqF0WiU5n399dcYPXo0li9fbnPnXltj0LoirNtdDFBERESNIRwsOTlZqNVqsWHDBpGXlyfi4uKETqcTZrNZCCHExIkTxfz586X6PXv2CCcnJ7Fy5Upx7NgxER8fL5ydncWRI0ekmmXLlgmdTic++eQTcfjwYTF27FgREBAgKisrpZqRI0eK/v37i6ysLPHtt9+KwMBAER0dLS3PyMgQ7dq1EwsWLBAFBQXSdOnSpQbvm8ViEQCExWK5nSEiIiKiZtTQz2+HhyghhHjttddE586dhYuLiwgNDRXfffedtCw8PFxMnjzZpv7DDz8UPXr0EC4uLuKee+4Rn332mc1yq9UqFi9eLLy9vYVarRYjRowQx48ft6m5dOmSiI6OFu3btxfu7u5i6tSp4vLly9LyyZMnCwA3TOHh4Q3eL4YoIiKi1qehn98Of05UW9bSnxNFREREN2oVz4kiIiIiaq0YooioTeJ3QrY8/DehtsahjzggIrKHLdlnsGDrEVgFoFQACeOCEDWws6PbuqPx34TaIh6JIqI2pcBSKX1YA4BVAAu3HuXRDwfivwm1VQxRRNSm8DshWx7+m1BbxRBFRG0KvxOy5eG/CbVVDFFE1KbwOyFbHv6bUFvF50TZEZ8TReQ4BZZKfidkC8N/E2otGvr5zbvziKhNMmhd+UHdwvDfhNoans4jIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYpahQJLJfaeKkKBpdLRrRAREQHg175QK7Al+wwWbD0CqwCUCiBhXBCiBnZ2dFtERHSH45EoatEKLJVSgAIAqwAWbj3KI1JERORwDFHUouUXlUsB6rpaIXC6qMIxDREREf1/DFHUogV4ukGpsJ2nUijg79nOMQ0RERH9fwxR1KIZtK54uL+vzbzI/j4waF0d1BEREdE1DFHUohVYKvHvg+dt5m07+AuviSIiIodjiKIWjddEEd3Z+HgTasn4iANq0a5fE/XbIMVroojuDHy8CbV0PBJFLZpB64qEcUFQKa5dXa5SKPDSuD68JoqojePjTag14JEoavGiBnbG0B6dcLqoAv6e7RigiO4A9Z3K598AaikYoqhVMGhd+YeT6A7CU/nUGjj8dN6aNWvg7+8PjUYDo9GIffv21VufkpKCnj17QqPRICgoCDt37rRZLoTAkiVLYDAY4OrqCpPJhBMnTtjUFBcXIyYmBu7u7tDpdIiNjUVZWZm0/MqVK5gyZQqCgoLg5OSEyMjIJttfIiK6NZ7Kp9bAoSFqy5YtmDNnDuLj43HgwAH069cPERERuHDhQp31e/fuRXR0NGJjY3Hw4EFERkYiMjISR48elWoSExOxevVqJCUlISsrC25uboiIiMCVK1ekmpiYGOTm5iItLQ07duzA7t27ERcXJy2vra2Fq6srnnrqKZhMJvsNABER3VTUwM74dv5wbJ5+L76dP5wXlVOLoxBCiFuX2YfRaMTAgQPx+uuvAwCsViv8/Pzw5JNPYv78+TfUR0VFoby8HDt27JDm3XvvvQgODkZSUhKEEPDx8cEzzzyDuXPnAgAsFgu8vb2xYcMGTJgwAceOHUPv3r2RnZ2NkJAQAEBqaioeeOABnDt3Dj4+PjbbnDJlCkpKSrBt27ZG719paSm0Wi0sFgvc3d0bvT4RERE1v4Z+fjvsSFR1dTVycnJsjvQolUqYTCZkZmbWuU5mZuYNR4YiIiKk+vz8fJjNZpsarVYLo9Eo1WRmZkKn00kBCgBMJhOUSiWysrJua5+qqqpQWlpqMxEREVHb5LAQVVRUhNraWnh7e9vM9/b2htlsrnMds9lcb/31n7eq8fLyslnu5OQEDw+Pm263oRISEqDVaqXJz8/vtt6PiIiIWi6HX1jelixYsAAWi0Wazp496+iWiIiIyE4cFqI8PT2hUqlQWFhoM7+wsBB6vb7OdfR6fb3113/equb3F65fvXoVxcXFN91uQ6nVari7u9tMRERE1DY5LES5uLhgwIABSE9Pl+ZZrVakp6cjLCysznXCwsJs6gEgLS1Nqg8ICIBer7epKS0tRVZWllQTFhaGkpIS5OTkSDUZGRmwWq0wGo1Ntn9ERETUtjn0YZtz5szB5MmTERISgtDQUKxatQrl5eWYOnUqAGDSpEnw9fVFQkICAGDWrFkIDw/Hyy+/jNGjRyM5ORn79+/H22+/DQBQKBSYPXs2li5disDAQAQEBGDx4sXw8fGRnvXUq1cvjBw5EtOnT0dSUhJqamowc+ZMTJgwwebOvLy8PFRXV6O4uBiXL1/GoUOHAADBwcHNNj5ERETUcjk0REVFReHixYtYsmQJzGYzgoODkZqaKl0YfubMGSiV/z1YNmjQIGzatAmLFi3CwoULERgYiG3btqFPnz5Szbx581BeXo64uDiUlJRgyJAhSE1NhUajkWo2btyImTNnYsSIEVAqlRg/fjxWr15t09sDDzyAn3/+WXrdv39/ANce5klERETk0OdEtXV8ThQREVHr0+KfE0VERETUmjFEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRXSHK7BUYu+pIhRYKh3dChFRq+LQh20SkWNtyT6DBVuPwCoApQJIGBeEqIGdHd0WEVGrwCNRRHeoAkulFKAAwCqAhVuP8ogUEVEDMUQROYijT6PlF5VLAeq6WiFwuqjCIf0QEbU2PJ1H5AAt4TRagKcblArYBCmVQgF/z3bN2gcRUWvFI1FEzaylnEYzaF2RMC4IKoUCwLUA9dK4PjBoXZu1DyKi1opHooiaWX2n0Zo7wEQN7IyhPTrhdFEF/D3bMUARETUCQxRRM2tpp9EMWleGJyIiGXg6j6iZ8TQaEVHbwCNRRA7A02hERK0fQxSRg7T202gFlkrkF5UjwNOtVe8HEZFcDFFE1Ggt4RENRESOxmuiiKhRWsojGoiIHI0hiogahU86JyK6hiGKiBrl+iMafotPOieiOxFDFBE1Ch/RQER0DS8sJ6JG4yMaqDXjnaXUVBiiiEiW1v6IBroz8c5Sako8nUdERHcE3llKTY0hioiI7gi8s5SaGkMUERE1mQJLJfaeKmqRR3d4Zyk1NYYoIiJqEluyz2Dwsgw8tjYLg5dlYEv2GUe3ZIN3llJTUwghxK3LSI7S0lJotVpYLBa4u7s7uh0iIrspsFRi8LIMm9NlKoUC384f3uJCSoGlkneWUr0a+vnNu/OIiOi21Xe9UUsLKryzlJoKT+cREdFt4/VGdCdqESFqzZo18Pf3h0ajgdFoxL59++qtT0lJQc+ePaHRaBAUFISdO3faLBdCYMmSJTAYDHB1dYXJZMKJEydsaoqLixETEwN3d3fodDrExsairKzMpubw4cO47777oNFo4Ofnh8TExKbZYSKiNobXG9EdSThYcnKycHFxEevWrRO5ubli+vTpQqfTicLCwjrr9+zZI1QqlUhMTBR5eXli0aJFwtnZWRw5ckSqWbZsmdBqtWLbtm3i+++/Fw899JAICAgQlZWVUs3IkSNFv379xHfffSf+85//iO7du4vo6GhpucViEd7e3iImJkYcPXpUbN68Wbi6uoq33nqrwftmsVgEAGGxWGSMDBFR6/NLSYXYe7JI/FJS4ehWiGRr6Oe3w0NUaGiomDFjhvS6trZW+Pj4iISEhDrrH330UTF69GibeUajUTz++ONCCCGsVqvQ6/VixYoV0vKSkhKhVqvF5s2bhRBC5OXlCQAiOztbqvn888+FQqEQ58+fF0II8cYbb4iOHTuKqqoqqebZZ58Vd999d4P3jSGKiIio9Wno57dDT+dVV1cjJycHJpNJmqdUKmEymZCZmVnnOpmZmTb1ABARESHV5+fnw2w229RotVoYjUapJjMzEzqdDiEhIVKNyWSCUqlEVlaWVDN06FC4uLjYbOf48eP49ddf6+ytqqoKpaWlNhMRERG1TQ4NUUVFRaitrYW3t7fNfG9vb5jN5jrXMZvN9dZf/3mrGi8vL5vlTk5O8PDwsKmp6z1+u43fS0hIgFarlSY/P7+6d5yIiIhavRZxYXlbsWDBAlgsFmk6e/aso1siIiIiO3FoiPL09IRKpUJhYaHN/MLCQuj1+jrX0ev19dZf/3mrmgsXLtgsv3r1KoqLi21q6nqP327j99RqNdzd3W0mIiIiapscGqJcXFwwYMAApKenS/OsVivS09MRFhZW5zphYWE29QCQlpYm1QcEBECv19vUlJaWIisrS6oJCwtDSUkJcnJypJqMjAxYrVYYjUapZvfu3aipqbHZzt13342OHTve5p4TERFRq9dMF7rfVHJyslCr1WLDhg0iLy9PxMXFCZ1OJ8xmsxBCiIkTJ4r58+dL9Xv27BFOTk5i5cqV4tixYyI+Pr7ORxzodDrxySefiMOHD4uxY8fW+YiD/v37i6ysLPHtt9+KwMBAm0cclJSUCG9vbzFx4kRx9OhRkZycLNq1a8dHHBAREbVxreYRB0II8dprr4nOnTsLFxcXERoaKr777jtpWXh4uJg8ebJN/Ycffih69OghXFxcxD333CM+++wzm+VWq1UsXrxYeHt7C7VaLUaMGCGOHz9uU3Pp0iURHR0t2rdvL9zd3cXUqVPF5cuXbWq+//57MWTIEKFWq4Wvr69YtmxZo/aLIYqIiKj1aejnN7+A2I74BcREREStT0M/v3l3HhEREZEMDFFEREREMjBEEREREcng5OgG2rLrl5vx61+IiIhaj+uf27e6bJwhyo4uX74MAPz6FyIiolbo8uXL0Gq1N13Ou/PsyGq14pdffkGHDh2gUCjqrCktLYWfnx/Onj17R9/Bx3G4huPwXxyLazgO13Ac/otjcY09x0EIgcuXL8PHxwdK5c2vfOKRKDtSKpX4wx/+0KBafk3MNRyHazgO/8WxuIbjcA3H4b84FtfYaxzqOwJ1HS8sJyIiIpKBIYqIiIhIBoYoB1Or1YiPj4darXZ0Kw7FcbiG4/BfHItrOA7XcBz+i2NxTUsYB15YTkRERCQDj0QRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRNnZmjVr4O/vD41GA6PRiH379t20Njc3F+PHj4e/vz8UCgVWrVrVfI02g8aMxdq1a3HfffehY8eO6NixI0wmU731rUljxmHr1q0ICQmBTqeDm5sbgoOD8f777zdjt/bVmLH4reTkZCgUCkRGRtq3wWbSmHHYsGEDFAqFzaTRaJqxW/tp7O9DSUkJZsyYAYPBALVajR49emDnzp3N1K19NWYshg0bdsPvhEKhwOjRo5uxY/to7O/EqlWrcPfdd8PV1RV+fn54+umnceXKFfs1KMhukpOThYuLi1i3bp3Izc0V06dPFzqdThQWFtZZv2/fPjF37lyxefNmodfrxauvvtq8DdtRY8fiscceE2vWrBEHDx4Ux44dE1OmTBFarVacO3eumTtvWo0dh127domtW7eKvLw8cfLkSbFq1SqhUqlEampqM3fe9Bo7Ftfl5+cLX19fcd9994mxY8c2T7N21NhxWL9+vXB3dxcFBQXSZDabm7nrptfYcaiqqhIhISHigQceEN9++63Iz88XX3/9tTh06FAzd970GjsWly5dsvl9OHr0qFCpVGL9+vXN23gTa+w4bNy4UajVarFx40aRn58vvvjiC2EwGMTTTz9ttx4ZouwoNDRUzJgxQ3pdW1srfHx8REJCwi3X7dKlS5sKUbczFkIIcfXqVdGhQwfx3nvv2avFZnG74yCEEP379xeLFi2yR3vNSs5YXL16VQwaNEi88847YvLkyW0iRDV2HNavXy+0Wm0zddd8GjsOb775pujatauorq5urhabze3+nXj11VdFhw4dRFlZmb1abBaNHYcZM2aI+++/32benDlzxODBg+3WI0/n2Ul1dTVycnJgMpmkeUqlEiaTCZmZmQ7srPk1xVhUVFSgpqYGHh4e9mrT7m53HIQQSE9Px/HjxzF06FB7tmp3csfihRdegJeXF2JjY5ujTbuTOw5lZWXo0qUL/Pz8MHbsWOTm5jZHu3YjZxy2b9+OsLAwzJgxA97e3ujTpw9eeukl1NbWNlfbdtEUfy/fffddTJgwAW5ubvZq0+7kjMOgQYOQk5MjnfL76aefsHPnTjzwwAN265NfQGwnRUVFqK2thbe3t818b29v/PDDDw7qyjGaYiyeffZZ+Pj42PwPqrWROw4WiwW+vr6oqqqCSqXCG2+8gT/96U/2bteu5IzFt99+i3fffReHDh1qhg6bh5xxuPvuu7Fu3Tr07dsXFosFK1euxKBBg5Cbm9vgLzxvaeSMw08//YSMjAzExMRg586dOHnyJJ544gnU1NQgPj6+Odq2i9v9e7lv3z4cPXoU7777rr1abBZyxuGxxx5DUVERhgwZAiEErl69ir/97W9YuHCh3fpkiKIWb9myZUhOTsbXX3/dZi6gbYwOHTrg0KFDKCsrQ3p6OubMmYOuXbti2LBhjm6t2Vy+fBkTJ07E2rVr4enp6eh2HCosLAxhYWHS60GDBqFXr15466238OKLLzqws+ZltVrh5eWFt99+GyqVCgMGDMD58+exYsWKVh2ibte7776LoKAghIaGOrqVZvf111/jpZdewhtvvAGj0YiTJ09i1qxZePHFF7F48WK7bJMhyk48PT2hUqlQWFhoM7+wsBB6vd5BXTnG7YzFypUrsWzZMnz11Vfo27evPdu0O7njoFQq0b17dwBAcHAwjh07hoSEhFYdoho7FqdOncLp06cxZswYaZ7VagUAODk54fjx4+jWrZt9m7aDpvg74ezsjP79++PkyZP2aLFZyBkHg8EAZ2dnqFQqaV6vXr1gNptRXV0NFxcXu/ZsL7fzO1FeXo7k5GS88MIL9myxWcgZh8WLF2PixImYNm0aACAoKAjl5eWIi4vDP//5TyiVTX8FE6+JshMXFxcMGDAA6enp0jyr1Yr09HSb/xd5J5A7FomJiXjxxReRmpqKkJCQ5mjVrprqd8JqtaKqqsoeLTabxo5Fz549ceTIERw6dEiaHnroIQwfPhyHDh2Cn59fc7bfZJrid6K2thZHjhyBwWCwV5t2J2ccBg8ejJMnT0phGgB+/PFHGAyGVhuggNv7nUhJSUFVVRX+8pe/2LtNu5MzDhUVFTcEpeshW9jra4Ltdsk6ieTkZKFWq8WGDRtEXl6eiIuLEzqdTrodeeLEiWL+/PlSfVVVlTh48KA4ePCgMBgMYu7cueLgwYPixIkTjtqFJtPYsVi2bJlwcXERH330kc2tu5cvX3bULjSJxo7DSy+9JL788ktx6tQpkZeXJ1auXCmcnJzE2rVrHbULTaaxY/F7beXuvMaOw/PPPy+++OILcerUKZGTkyMmTJggNBqNyM3NddQuNInGjsOZM2dEhw4dxMyZM8Xx48fFjh07hJeXl1i6dKmjdqHJyP3fxpAhQ0RUVFRzt2s3jR2H+Ph40aFDB7F582bx008/iS+//FJ069ZNPProo3brkSHKzl577TXRuXNn4eLiIkJDQ8V3330nLQsPDxeTJ0+WXufn5wsAN0zh4eHN37gdNGYsunTpUudYxMfHN3/jTawx4/DPf/5TdO/eXWg0GtGxY0cRFhYmkpOTHdC1fTRmLH6vrYQoIRo3DrNnz5Zqvb29xQMPPCAOHDjggK6bXmN/H/bu3SuMRqNQq9Wia9eu4l//+pe4evVqM3dtH40dix9++EEAEF9++WUzd2pfjRmHmpoa8dxzz4lu3boJjUYj/Pz8xBNPPCF+/fVXu/WnEMJex7iIiIiI2i5eE0VEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERtQFTpkxBZGSko9sguqMwRBGRXU2ZMgUKhUKa7rrrLowcORKHDx92dGtN4rf7dn0aMmSI3bZ3+vRpKBQKHDp0yGb+//7v/2LDhg122y4R3YghiojsbuTIkSgoKEBBQQHS09Ph5OSEBx980NFtNZn169dL+1dQUIDt27fXWVdTU2O3HrRaLXQ6nd3en4huxBBFRHanVquh1+uh1+sRHByM+fPn4+zZs7h48SLuv/9+zJw506b+4sWLcHFxkb7B3d/fHy+++CKio6Ph5uYGX19frFmzxmadV155BUFBQXBzc4Ofnx+eeOIJlJWVSct//vlnjBkzBh07doSbmxvuuece7Ny5EwDw66+/IiYmBp06dYKrqysCAwOxfv36Bu+fTqeT9k+v18PDw0M6YrRlyxaEh4dDo9Fg48aNuHTpEqKjo+Hr64t27dohKCgImzdvtnk/q9WKxMREdO/eHWq1Gp07d8a//vUvAEBAQAAAoH///lAoFBg2bBiAG0/nVVVV4amnnoKXlxc0Gg2GDBmC7OxsafnXX38NhUKB9PR0hISEoF27dhg0aBCOHz/e4P0mutMxRBFRsyorK8MHH3yA7t2746677sK0adOwadMmVFVVSTUffPABfH19cf/990vzVqxYgX79+uHgwYOYP38+Zs2ahbS0NGm5UqnE6tWrkZubi/feew8ZGRmYN2+etHzGjBmoqqrC7t27ceTIESxfvhzt27cHACxevBh5eXn4/PPPcezYMbz55pvw9PRskv293uuxY8cQERGBK1euYMCAAfjss89w9OhRxMXFYeLEidi3b5+0zoIFC7Bs2TKpr02bNsHb2xsApLqvvvoKBQUF2Lp1a53bnTdvHj7++GO89957OHDgALp3746IiAgUFxfb1P3zn//Eyy+/jP3798PJyQl//etfm2S/ie4IdvtqYyIiIcTkyZOFSqUSbm5uws3NTQAQBoNB5OTkCCGEqKysFB07dhRbtmyR1unbt6947rnnpNddunQRI0eOtHnfqKgoMWrUqJtuNyUlRdx1113S66CgIJv3/K0xY8aIqVOnyto/AEKj0Uj75+bmJv7973+L/Px8AUCsWrXqlu8xevRo8cwzzwghhCgtLRVqtVqsXbu2ztrr73vw4EGb+ZMnTxZjx44VQghRVlYmnJ2dxcaNG6Xl1dXVwsfHRyQmJgohhNi1a5cAIL766iup5rPPPhMARGVlZWOGgOiOxSNRRGR3w4cPx6FDh3Do0CHs27cPERERGDVqFH7++WdoNBpMnDgR69atAwAcOHAAR48exZQpU2zeIyws7IbXx44dk15/9dVXGDFiBHx9fdGhQwdMnDgRly5dQkVFBQDgqaeewtKlSzF48GDEx8fbXNj+97//HcnJyQgODsa8efOwd+/eRu3fq6++Ku3foUOH8Kc//UlaFhISYlNbW1uLF198EUFBQfDw8ED79u3xxRdf4MyZMwCAY8eOoaqqCiNGjGhUD7916tQp1NTUYPDgwdI8Z2dnhIaG2owZAPTt21f6b4PBAAC4cOGC7G0T3UkYoojI7tzc3NC9e3d0794dAwcOxDvvvIPy8nKsXbsWADBt2jSkpaXh3LlzWL9+Pe6//3506dKlwe9/+vRpPPjgg+jbty8+/vhj5OTkSNdMVVdXS9v46aefMHHiRBw5cgQhISF47bXXAEAKdE8//TR++eUXjBgxAnPnzm3w9vV6vbR/3bt3h5ubm82+/9aKFSvwv//7v3j22Wexa9cuHDp0CBEREVKfrq6uDd5uU3B2dpb+W6FQALh2TRYR3RpDFBE1O4VCAaVSicrKSgBAUFAQQkJCsHbtWmzatKnO63K+++67G1736tULAJCTkwOr1YqXX34Z9957L3r06IFffvnlhvfw8/PD3/72N2zduhXPPPOMFOIAoFOnTpg8eTI++OADrFq1Cm+//XZT7rJkz549GDt2LP7yl7+gX79+6Nq1K3788UdpeWBgIFxdXaWL6n/PxcUFwLUjWjfTrVs3uLi4YM+ePdK8mpoaZGdno3fv3k20J0Tk5OgGiKjtq6qqgtlsBnDtTrjXX38dZWVlGDNmjFQzbdo0zJw5E25ubnj44YdveI89e/YgMTERkZGRSEtLQ0pKCj777DMAQPfu3VFTU4PXXnsNY8aMwZ49e5CUlGSz/uzZszFq1Cj06NEDv/76K3bt2iWFsCVLlmDAgAG45557UFVVhR07dkjLmlpgYCA++ugj7N27Fx07dsQrr7yCwsJCKdxoNBo8++yzmDdvHlxcXDB48GBcvHgRubm5iI2NhZeXF1xdXZGamoo//OEP0Gg00Gq1Nttwc3PD3//+d/zjH/+Ah4cHOnfujMTERFRUVCA2NtYu+0V0J+KRKCKyu9TUVBgMBhgMBhiNRmRnZyMlJUW6PR8AoqOj4eTkhOjoaGg0mhve45lnnsH+/fvRv39/LF26FK+88goiIiIAAP369cMrr7yC5cuXo0+fPti4cSMSEhJs1q+trcWMGTPQq1cvjBw5Ej169MAbb7wB4NrRnQULFqBv374YOnQoVCoVkpOT7TIWixYtwh//+EdERERg2LBh0Ov1NzxpfPHixXjmmWewZMkS9OrVC1FRUdJ1Sk5OTli9ejXeeust+Pj4YOzYsXVuZ9myZRg/fjwmTpyIP/7xjzh58iS++OILdOzY0S77RXQnUgghhKObICI6ffo0unXrhuzsbPzxj3+0Webv74/Zs2dj9uzZjmmOiKgOPJ1HRA5VU1ODS5cuYdGiRbj33ntvCFBERC0VT+cRkUPt2bMHBoMB2dnZN1zH5GgvvfQS2rdvX+c0atQoR7dHRA7G03lERDdRXFx8wxO+r3N1dYWvr28zd0RELQlDFBEREZEMPJ1HREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERyfD/AEsQe97l06LAAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHHCAYAAACbXt0gAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR+NJREFUeJzt3X1YVXXe7/HPBoSNKKAhTw4K+ZCaKI0oYSaWzGBaSTVn1ByfjuU9U1am3qVNalNOqD05lhNlk3ZNlmQ5TZnjZKjTKQkJdVIz7zRMnQRFc6OoiOzf+aPjOu3EB1hsNuD7dV37Qtb6rr2+63cB++Nav722wxhjBAAAgFrx83UDAAAAjRlhCgAAwAbCFAAAgA2EKQAAABsIUwAAADYQpgAAAGwgTAEAANhAmAIAALCBMAUAAGADYQpAk/bYY4/J4XBcUq3D4dBjjz3m1X4GDBigAQMGNNjnA1BzhCkA9WLJkiVyOBzWIyAgQG3bttXYsWP1n//8x9ftNTjx8fEe4xUZGanrr79ef/vb3+rk+U+cOKHHHntM69evr5PnAy5nhCkA9erxxx/XX//6V2VnZ+umm27S66+/rrS0NJ06dcor+3v00Ud18uRJrzy3tyUlJemvf/2r/vrXv2rq1Kn67rvvdPvttys7O9v2c584cUJ/+MMfCFNAHQjwdQMALi833XSTkpOTJUl33XWXIiIiNHfuXL333nv69a9/Xef7CwgIUEBA4/xT17ZtW/3mN7+xvh89erQ6duyo5557Tr/97W992BmAH+PMFACfuv766yVJu3fv9lj+1Vdf6Ve/+pVat24tp9Op5ORkvffeex41lZWV+sMf/qBOnTrJ6XTqiiuuUL9+/bRmzRqrpro5UxUVFXrwwQfVpk0btWzZUrfeeqv2799/Tm9jx45VfHz8Ocure87FixfrxhtvVGRkpIKCgtStWze9+OKLNRqLi4mOjlbXrl1VVFR0wbqDBw9q/PjxioqKktPpVM+ePfXaa69Z6/fs2aM2bdpIkv7whz9YlxK9PV8MaKoa53/XADQZe/bskSS1atXKWrZ9+3Zdd911atu2raZNm6aQkBC99dZbyszM1DvvvKPbbrtN0g+hJisrS3fddZf69OmjsrIyff7559q0aZN+8YtfnHefd911l15//XXdeeed6tu3r9auXashQ4bYOo4XX3xRV199tW699VYFBATo/fff1z333CO32617773X1nOfVVlZqX379umKK644b83Jkyc1YMAA7dq1SxMnTlRCQoKWL1+usWPH6ujRo3rggQfUpk0bvfjii/rd736n2267TbfffrskqUePHnXSJ3DZMQBQDxYvXmwkmY8++sgcOnTI7Nu3z7z99tumTZs2JigoyOzbt8+qHThwoElMTDSnTp2ylrndbtO3b1/TqVMna1nPnj3NkCFDLrjfWbNmmR//qduyZYuRZO655x6PujvvvNNIMrNmzbKWjRkzxrRv3/6iz2mMMSdOnDinLiMjw1x55ZUey9LS0kxaWtoFezbGmPbt25tf/vKX5tChQ+bQoUPm3//+txk+fLiRZO67777zPt/8+fONJPP6669by06fPm1SU1NNixYtTFlZmTHGmEOHDp1zvABqh8t8AOpVenq62rRpo7i4OP3qV79SSEiI3nvvPf3sZz+TJB05ckRr167Vr3/9ax07dkylpaUqLS3V4cOHlZGRoa+//tp69194eLi2b9+ur7/++pL3v2rVKknS/fff77F80qRJto4rODjY+rfL5VJpaanS0tL0zTffyOVy1eo5P/zwQ7Vp00Zt2rRRz549tXz5co0aNUpz58497zarVq1SdHS0RowYYS1r1qyZ7r//fh0/flz/+te/atULgPPjMh+AerVw4UJ17txZLpdLr776qj7++GMFBQVZ63ft2iVjjGbMmKEZM2ZU+xwHDx5U27Zt9fjjj2vo0KHq3LmzunfvrkGDBmnUqFEXvFz17bffys/PTx06dPBYftVVV9k6rk8//VSzZs1SXl6eTpw44bHO5XIpLCysxs+ZkpKi2bNny+FwqHnz5uratavCw8MvuM23336rTp06yc/P8//KXbt2tdYDqFuEKQD1qk+fPta7+TIzM9WvXz/deeed2rlzp1q0aCG32y1Jmjp1qjIyMqp9jo4dO0qS+vfvr927d+vvf/+7PvzwQ73yyit67rnnlJ2drbvuust2r+e72WdVVZXH97t379bAgQPVpUsXPfvss4qLi1NgYKBWrVql5557zjqmmoqIiFB6enqttgVQfwhTAHzG399fWVlZuuGGG/TCCy9o2rRpuvLKKyX9cGnqUoJE69atNW7cOI0bN07Hjx9X//799dhjj503TLVv315ut1u7d+/2OBu1c+fOc2pbtWqlo0ePnrP8p2d33n//fVVUVOi9995Tu3btrOXr1q27aP91rX379vriiy/kdrs9zk599dVX1nrp/EERQM0xZwqATw0YMEB9+vTR/PnzderUKUVGRmrAgAF66aWXdODAgXPqDx06ZP378OHDHutatGihjh07qqKi4rz7u+mmmyRJCxYs8Fg+f/78c2o7dOggl8ulL774wlp24MCBc+5C7u/vL0kyxljLXC6XFi9efN4+vGXw4MEqLi5WTk6OtezMmTN6/vnn1aJFC6WlpUmSmjdvLknVhkUANcOZKQA+99///d/6X//rf2nJkiX67W9/q4ULF6pfv35KTEzU3XffrSuvvFIlJSXKy8vT/v379e9//1uS1K1bNw0YMEC9evVS69at9fnnn+vtt9/WxIkTz7uvpKQkjRgxQn/+85/lcrnUt29f5ebmateuXefUDh8+XA8//LBuu+023X///Tpx4oRefPFFde7cWZs2bbLqfvnLXyowMFC33HKL/uu//kvHjx/XokWLFBkZWW0g9KYJEybopZde0tixY1VYWKj4+Hi9/fbb+vTTTzV//ny1bNlS0g8T5rt166acnBx17txZrVu3Vvfu3dW9e/d67RdoEnz9dkIAl4ezt0YoKCg4Z11VVZXp0KGD6dChgzlz5owxxpjdu3eb0aNHm+joaNOsWTPTtm1bc/PNN5u3337b2m727NmmT58+Jjw83AQHB5suXbqYP/7xj+b06dNWTXW3MTh58qS5//77zRVXXGFCQkLMLbfcYvbt21ftrQI+/PBD0717dxMYGGiuuuoq8/rrr1f7nO+9957p0aOHcTqdJj4+3sydO9e8+uqrRpIpKiqy6mpya4SL3fbhfM9XUlJixo0bZyIiIkxgYKBJTEw0ixcvPmfbDRs2mF69epnAwEBukwDY4DDmR+elAQAAUCPMmQIAALCBMAUAAGADYQoAAMAGwhQAAIANhCkAAAAbCFMAAAA2cNNOL3K73fruu+/UsmVLProBAIBGwhijY8eOKTY29pwPDa8OYcqLvvvuO8XFxfm6DQAAUAv79u3Tz372s4vWEaa86OzHNuzbt0+hoaE+7gYAAFyKsrIyxcXFWa/jF0OY8qKzl/ZCQ0MJUwAANDKXOkWHCegAAAA2EKYAAABsIEwBAADYwJwpAAAuE1VVVaqsrPR1Gz7XrFkz+fv719nzEaYAAGjijDEqLi7W0aNHfd1KgxEeHq7o6Og6uQ8kYQoAgCbubJCKjIxU8+bNL+sbSRtjdOLECR08eFCSFBMTY/s5CVMAADRhVVVVVpC64oorfN1OgxAcHCxJOnjwoCIjI21f8mMCOgAATdjZOVLNmzf3cScNy9nxqIs5ZIQpAAAuA5fzpb3q1OV4EKYAAABsIEwBAADYQJhqhA64TmrD7lIdcJ30dSsAAHjN2LFj5XA4NGfOHI/l7777rnWZbv369Ro6dKhiYmIUEhKipKQkLV26tF77JEw1MjkFe3XdnLW6c1G+rpuzVjkFe33dEgAAXuN0OjV37lx9//331a7fsGGDevTooXfeeUdffPGFxo0bp9GjR2vlypX11iNhqhE54Dqp6Su2ym1++N5tpEdWbOMMFQCgyUpPT1d0dLSysrKqXf/II4/oiSeeUN++fdWhQwc98MADGjRokFasWFFvPRKmGpGi0nIrSJ1VZYz2lJ7wTUMAgMtOfU818ff315NPPqnnn39e+/fvv6RtXC6XWrdu7eXO/j/CVCOSEBEiv5+8k9Pf4VB8BPcOAQB4n6+mmtx2221KSkrSrFmzLlr71ltvqaCgQOPGjauHzn5AmGpEYsKClXV7ovz/36Q7f4dDT97eXTFhwT7uDADQ1Pl6qsncuXP12muvaceOHeetWbduncaNG6dFixbp6quvrpe+JD5OptEZ1rud+nduoz2lJxQf0ZwgBQCoFxeaalIfr0X9+/dXRkaGpk+frrFjx56z/l//+pduueUWPffccxo9erTX+/kxwlQjFBMWTIgCANSrs1NNfhyo6nuqyZw5c5SUlKSrrrrKY/n69et18803a+7cuZowYUK99XMWl/kAAMBFNYSpJomJiRo5cqQWLFhgLVu3bp2GDBmi+++/X3fccYeKi4tVXFysI0eO1FtfnJkCAACXpCFMNXn88ceVk5Njff/aa6/pxIkTysrK8rh9QlpamtavX18vPTmMMebiZaiNsrIyhYWFyeVyKTQ01NftAAAuQ6dOnVJRUZESEhLkdDp93U6DcaFxqenrN5f5AAAAbCBMAQAA2ECYAgAAsIEwBQAAYANhCgCAywDvN/NUl+NBmAIAoAlr1qyZJOnEiRM+7qRhOTseZ8fHDu4zBQBAE+bv76/w8HAdPHhQktS8eXM5/t+NNy9HxhidOHFCBw8eVHh4uPz9/W0/J2EKAIAmLjo6WpKsQAUpPDzcGhe7CFMAADRxDodDMTExioyMVGVlpa/b8blmzZrVyRmpswhTAABcJvz9/es0ROAHTEAHAACwgTAFAABgA2EKAADABsIUAACADYQpAAAAGwhTAAAANhCmAAAAbCBMAQAA2ECYAgAAsIEwBQAAYANhCgAAwAbCFAAAgA2EKQAAABsIUwAAADYQpgAAAGwgTAEAANhAmAIAALCBMAUAAGADYQoAAMCGBhGmFi5cqPj4eDmdTqWkpGjjxo0XrF++fLm6dOkip9OpxMRErVq1ymO9MUYzZ85UTEyMgoODlZ6erq+//tqj5siRIxo5cqRCQ0MVHh6u8ePH6/jx49b6PXv2yOFwnPP47LPP6u7AAQBAo+fzMJWTk6PJkydr1qxZ2rRpk3r27KmMjAwdPHiw2voNGzZoxIgRGj9+vDZv3qzMzExlZmZq27ZtVs28efO0YMECZWdnKz8/XyEhIcrIyNCpU6esmpEjR2r79u1as2aNVq5cqY8//lgTJkw4Z38fffSRDhw4YD169epV94MAAAAaL+Njffr0Mffee6/1fVVVlYmNjTVZWVnV1v/61782Q4YM8ViWkpJi/uu//ssYY4zb7TbR0dHmqaeestYfPXrUBAUFmTfffNMYY8yXX35pJJmCggKr5h//+IdxOBzmP//5jzHGmKKiIiPJbN68udbH5nK5jCTjcrlq/RwAAKB+1fT126dnpk6fPq3CwkKlp6dby/z8/JSenq68vLxqt8nLy/Ool6SMjAyrvqioSMXFxR41YWFhSklJsWry8vIUHh6u5ORkqyY9PV1+fn7Kz8/3eO5bb71VkZGR6tevn957770LHk9FRYXKyso8HgAAoGnzaZgqLS1VVVWVoqKiPJZHRUWpuLi42m2Ki4svWH/268VqIiMjPdYHBASodevWVk2LFi30zDPPaPny5frggw/Ur18/ZWZmXjBQZWVlKSwszHrExcVdbAgAAEAjF+DrBhqqiIgITZ482fq+d+/e+u677/TUU0/p1ltvrXab6dOne2xTVlZGoAIAoInz6ZmpiIgI+fv7q6SkxGN5SUmJoqOjq90mOjr6gvVnv16s5qcT3M+cOaMjR46cd7+SlJKSol27dp13fVBQkEJDQz0eAACgafNpmAoMDFSvXr2Um5trLXO73crNzVVqamq126SmpnrUS9KaNWus+oSEBEVHR3vUlJWVKT8/36pJTU3V0aNHVVhYaNWsXbtWbrdbKSkp5+13y5YtiomJqfmBAgCAJsvnl/kmT56sMWPGKDk5WX369NH8+fNVXl6ucePGSZJGjx6ttm3bKisrS5L0wAMPKC0tTc8884yGDBmiZcuW6fPPP9fLL78sSXI4HJo0aZJmz56tTp06KSEhQTNmzFBsbKwyMzMlSV27dtWgQYN09913Kzs7W5WVlZo4caKGDx+u2NhYSdJrr72mwMBAXXPNNZKkFStW6NVXX9Urr7xSzyMEAAAaMp+HqWHDhunQoUOaOXOmiouLlZSUpNWrV1sTyPfu3Ss/v/9/Aq1v375644039Oijj+qRRx5Rp06d9O6776p79+5WzUMPPaTy8nJNmDBBR48eVb9+/bR69Wo5nU6rZunSpZo4caIGDhwoPz8/3XHHHVqwYIFHb0888YS+/fZbBQQEqEuXLsrJydGvfvUrL48IAABoTBzGGOPrJpqqsrIyhYWFyeVyMX8KAIBGoqav3z6/AzoAAEBjRpgCAACwgTAFAABgA2EKAADABsIUAACADYQpAAAAGwhTAAAANhCmAAAAbCBMAQAA2ECYAgAAsIEwBQAAYANhCgAAwAbCFAAAgA2EKQAAABsIUwAAADYQpgAAAGwgTAEAANhAmAIAALCBMAUAAGADYQoAAMAGwhQAAIANhCkAAAAbCFMAAAA2EKYAAABsIEwBAADYQJgCAACwgTAFAABgA2EKAADABsIUAACADYQpAAAAGwhTAAAANhCmAAAAbCBMAQAA2ECYAgAAsIEwBQAAYANhCgAAwAbCFAAAgA2EKQAAABsIUwAAADYQpgAAAGwgTAEAANhAmAIAALCBMAUAAGADYQoAAMAGwhQAAIANhCkAAAAbCFMAAAA2EKYAAABsaBBhauHChYqPj5fT6VRKSoo2btx4wfrly5erS5cucjqdSkxM1KpVqzzWG2M0c+ZMxcTEKDg4WOnp6fr66689ao4cOaKRI0cqNDRU4eHhGj9+vI4fP17t/nbt2qWWLVsqPDzc1nECAICmx+dhKicnR5MnT9asWbO0adMm9ezZUxkZGTp48GC19Rs2bNCIESM0fvx4bd68WZmZmcrMzNS2bdusmnnz5mnBggXKzs5Wfn6+QkJClJGRoVOnTlk1I0eO1Pbt27VmzRqtXLlSH3/8sSZMmHDO/iorKzVixAhdf/31dX/wAACg0XMYY4wvG0hJSVHv3r31wgsvSJLcbrfi4uJ03333adq0aefUDxs2TOXl5Vq5cqW17Nprr1VSUpKys7NljFFsbKymTJmiqVOnSpJcLpeioqK0ZMkSDR8+XDt27FC3bt1UUFCg5ORkSdLq1as1ePBg7d+/X7GxsdZzP/zww/ruu+80cOBATZo0SUePHr3kYysrK1NYWJhcLpdCQ0NrMzwAAKCe1fT126dnpk6fPq3CwkKlp6dby/z8/JSenq68vLxqt8nLy/Ool6SMjAyrvqioSMXFxR41YWFhSklJsWry8vIUHh5uBSlJSk9Pl5+fn/Lz861la9eu1fLly7Vw4cJLOp6KigqVlZV5PAAAQNPm0zBVWlqqqqoqRUVFeSyPiopScXFxtdsUFxdfsP7s14vVREZGeqwPCAhQ69atrZrDhw9r7NixWrJkySWfVcrKylJYWJj1iIuLu6TtAABA4+XzOVMN1d13360777xT/fv3v+Rtpk+fLpfLZT327dvnxQ4BAEBD4NMwFRERIX9/f5WUlHgsLykpUXR0dLXbREdHX7D+7NeL1fx0gvuZM2d05MgRq2bt2rV6+umnFRAQoICAAI0fP14ul0sBAQF69dVXq+0tKChIoaGhHg8AANC0+TRMBQYGqlevXsrNzbWWud1u5ebmKjU1tdptUlNTPeolac2aNVZ9QkKCoqOjPWrKysqUn59v1aSmpuro0aMqLCy0atauXSu3262UlBRJP8yr2rJli/V4/PHH1bJlS23ZskW33XZb3QwAAABo9AJ83cDkyZM1ZswYJScnq0+fPpo/f77Ky8s1btw4SdLo0aPVtm1bZWVlSZIeeOABpaWl6ZlnntGQIUO0bNkyff7553r55ZclSQ6HQ5MmTdLs2bPVqVMnJSQkaMaMGYqNjVVmZqYkqWvXrho0aJDuvvtuZWdnq7KyUhMnTtTw4cOtd/J17drVo8/PP/9cfn5+6t69ez2NDAAAaAx8HqaGDRumQ4cOaebMmSouLlZSUpJWr15tTSDfu3ev/Pz+/wm0vn376o033tCjjz6qRx55RJ06ddK7777rEXIeeughlZeXa8KECTp69Kj69eun1atXy+l0WjVLly7VxIkTNXDgQPn5+emOO+7QggUL6u/AAQBAk+Dz+0w1ZdxnCgCAxqdR3WcKAACgsSNMAQAA2ECYAgAAsIEwBQAAYANhCgAAwAbCFAAAgA2EKQAAABsIUwAAADYQpgAAAGwgTAEAANhAmAIAALCBMAUAAGADYQoAAMAGwhQAAIANhCkAAAAbCFMAAAA2EKYAAABsIEwBAADYQJgCAACwgTAFAABgA2EKAADABsIUAACADYQpAAAAGwhTAAAANhCmAAAAbCBMAQAA2ECYAgAAsIEwBQAAYANhCgAAwAbCFAAAgA2EKQAAABsIUwAAADYQpgAAAGwgTAEAANhAmAIAHzngOqkNu0t1wHXS160AsCHA1w0AwOUop2Cvpq/YKreR/BxS1u2JGta7na/bAlALnJkCgHp2wHXSClKS5DbSIyu2cYYKaKQIU7CFyxRAzRWVlltB6qwqY7Sn9IRvGgJgC5f5UGtcpgBqJyEiRH4OeQQqf4dD8RHNfdcUgFrjzBRqhcsUQO3FhAUr6/ZE+Tsckn4IUk/e3l0xYcE+7gxAbXBmCrVyocsUvCAAFzesdzv179xGe0pPKD6iOb83QCNGmEKtcJkCsC8mLJgQBTQBXOZDrXCZAgCAH3BmCrXGZQoAAAhTsInLFACAyx2X+QAAAGwgTAEAANhAmAIAALCBMAUAAGBDgwhTCxcuVHx8vJxOp1JSUrRx48YL1i9fvlxdunSR0+lUYmKiVq1a5bHeGKOZM2cqJiZGwcHBSk9P19dff+1Rc+TIEY0cOVKhoaEKDw/X+PHjdfz4cWv9zp07dcMNNygqKkpOp1NXXnmlHn30UVVWVtbdgQMAgEbP52EqJydHkydP1qxZs7Rp0yb17NlTGRkZOnjwYLX1GzZs0IgRIzR+/Hht3rxZmZmZyszM1LZt26yaefPmacGCBcrOzlZ+fr5CQkKUkZGhU6dOWTUjR47U9u3btWbNGq1cuVIff/yxJkyYYK1v1qyZRo8erQ8//FA7d+7U/PnztWjRIs2aNct7gwEAABodhzHGXLzMe1JSUtS7d2+98MILkiS32624uDjdd999mjZt2jn1w4YNU3l5uVauXGktu/baa5WUlKTs7GwZYxQbG6spU6Zo6tSpkiSXy6WoqCgtWbJEw4cP144dO9StWzcVFBQoOTlZkrR69WoNHjxY+/fvV2xsbLW9Tp48WQUFBfo//+f/XNKxlZWVKSwsTC6XS6GhoTUaFwAA4Bs1ff326Zmp06dPq7CwUOnp6dYyPz8/paenKy8vr9pt8vLyPOolKSMjw6ovKipScXGxR01YWJhSUlKsmry8PIWHh1tBSpLS09Pl5+en/Pz8ave7a9curV69Wmlpaec9noqKCpWVlXk8AABA0+bTMFVaWqqqqipFRUV5LI+KilJxcXG12xQXF1+w/uzXi9VERkZ6rA8ICFDr1q3P2W/fvn3ldDrVqVMnXX/99Xr88cfPezxZWVkKCwuzHnFxceetBQAATYPP50w1dDk5Odq0aZPeeOMNffDBB3r66afPWzt9+nS5XC7rsW/fvnrsFAAA+IJPP04mIiJC/v7+Kikp8VheUlKi6OjoareJjo6+YP3ZryUlJYqJifGoSUpKsmp+OsH9zJkzOnLkyDn7PXt2qVu3bqqqqtKECRM0ZcoU+fv7n9NbUFCQgoKCLnbYAACgCanxmalVq1bprrvu0kMPPaSvvvrKY93333+vG2+88ZKfKzAwUL169VJubq61zO12Kzc3V6mpqdVuk5qa6lEvSWvWrLHqExISFB0d7VFTVlam/Px8qyY1NVVHjx5VYWGhVbN27Vq53W6lpKSct1+3263Kykq53e5LPkYAANDEmRpYunSp8ff3N0OGDDH9+vUzTqfTvP7669b64uJi4+fnV5OnNMuWLTNBQUFmyZIl5ssvvzQTJkww4eHhpri42BhjzKhRo8y0adOs+k8//dQEBASYp59+2uzYscPMmjXLNGvWzGzdutWqmTNnjgkPDzd///vfzRdffGGGDh1qEhISzMmTJ62aQYMGmWuuucbk5+ebTz75xHTq1MmMGDHCWv/666+bnJwc8+WXX5rdu3ebnJwcExsba0aOHHnJx+ZyuYwk43K5ajQmAADAd2r6+l2jMJWUlGT+9Kc/Wd/n5OSYkJAQ88orrxhjahemjDHm+eefN+3atTOBgYGmT58+5rPPPrPWpaWlmTFjxnjUv/XWW6Zz584mMDDQXH311eaDDz7wWO92u82MGTNMVFSUCQoKMgMHDjQ7d+70qDl8+LAZMWKEadGihQkNDTXjxo0zx44ds9YvW7bM/PznPzctWrQwISEhplu3bubJJ5/0CGQXQ5gCAKDxqenrd43uM9WiRQtt3bpVCQkJ1rJ169bp1ltv1VNPPaXbbrtNsbGxqqqqqvMzaI0R95kCADQlB1wnVVRaroSIEMWEBfu6Ha+p6et3jSagh4aGqqSkxCNM3XDDDVq5cqVuvvlm7d+/v+YdAwCABi+nYK+mr9gqt5H8HFLW7Yka1rudr9tqEGo0Ab1Pnz76xz/+cc7ytLQ0vf/++5o/f35d9QUAABqIA66TVpCSJLeRHlmxTQdcJ33bWANRozD14IMPyul0VrtuwIABev/99zV69Og6aQwAADQMRaXlVpA6q8oY7Sk94ZuGGpgaXeZLS0u74Mep3HDDDbrhhhtsNwUAABqOhIgQ+TnkEaj8HQ7FRzT3XVMNSI3OTPn5+cnf3/+Cj4AAn94HFAAA1LGYsGBl3Z4of4dD0g9B6snbuzfpSeg1UaPk87e//e286/Ly8rRgwQJuaAkAQBM0rHc79e/cRntKTyg+ojlB6kdqFKaGDh16zrKdO3dq2rRpev/99zVy5MgLfhAwAABovGLCgglR1aj1Bx1/9913uvvuu5WYmKgzZ85oy5Yteu2119S+ffu67A8AAKBBq3GYcrlcevjhh9WxY0dt375dubm5ev/999W9e3dv9AcAANCg1egy37x58zR37lxFR0frzTffrPayHwAAwOWkRh8n4+fnp+DgYKWnp8vf3/+8dStWrKiT5ho7Pk4GsOdy+egKAA2LVz9OZvTo0XL8v7dFAoA38dEVABqLGp2ZQs1wZgqonQOuk7puztpzbhD4ybQbOEMFwOtq+vpd63fzAYC38NEVABoTwhSABufsR1f8GB9dAaChIkwBaHD46AoAjQkfpAegQeKjKwA0FoQpAA0WH10BoDHgMh8AAIANhCkAAAAbCFMAAAA2EKYAAABsIEwBAADYQJgCAACwgTAFAABgA2EKAADABsIUAACADYQpAAAAGwhTAAAANhCmAAAAbCBMAQAA2ECYAgAAsIEwBQAAYANhCgAAwAbCFAAAgA2EKQAAABsIUwAAADYQpgAAAGwgTAEAANhAmAIAALCBMAUAAGADYQoAAMAGwhQAAIANhCkAAAAbCFMAAAA2EKYAAABsIEwBAADYQJgCAAC2HXCd1IbdpTrgOunrVupdgwhTCxcuVHx8vJxOp1JSUrRx48YL1i9fvlxdunSR0+lUYmKiVq1a5bHeGKOZM2cqJiZGwcHBSk9P19dff+1Rc+TIEY0cOVKhoaEKDw/X+PHjdfz4cWv9+vXrNXToUMXExCgkJERJSUlaunRp3R00AABNRE7BXl03Z63uXJSv6+asVU7BXl+3VK98HqZycnI0efJkzZo1S5s2bVLPnj2VkZGhgwcPVlu/YcMGjRgxQuPHj9fmzZuVmZmpzMxMbdu2zaqZN2+eFixYoOzsbOXn5yskJEQZGRk6deqUVTNy5Eht375da9as0cqVK/Xxxx9rwoQJHvvp0aOH3nnnHX3xxRcaN26cRo8erZUrV3pvMAAAaGQOuE5q+oqtcpsfvncb6ZEV2y6rM1QOY4zxZQMpKSnq3bu3XnjhBUmS2+1WXFyc7rvvPk2bNu2c+mHDhqm8vNwj1Fx77bVKSkpSdna2jDGKjY3VlClTNHXqVEmSy+VSVFSUlixZouHDh2vHjh3q1q2bCgoKlJycLElavXq1Bg8erP379ys2NrbaXocMGaKoqCi9+uqrl3RsZWVlCgsLk8vlUmhoaI3GBQCAxmDD7lLduSj/nOVv3n2tUjtc4YOO7Kvp67dPz0ydPn1ahYWFSk9Pt5b5+fkpPT1deXl51W6Tl5fnUS9JGRkZVn1RUZGKi4s9asLCwpSSkmLV5OXlKTw83ApSkpSeni4/Pz/l55/7A3GWy+VS69atz7u+oqJCZWVlHg8AAJqyhIgQ+Tk8l/k7HIqPaO6bhnzAp2GqtLRUVVVVioqK8lgeFRWl4uLiarcpLi6+YP3ZrxeriYyM9FgfEBCg1q1bn3e/b731lgoKCjRu3LjzHk9WVpbCwsKsR1xc3HlrUbcu54mPAOBLMWHByro9Uf6OHxKVv8OhJ2/vrpiwYB93Vn8CfN1AY7Bu3TqNGzdOixYt0tVXX33euunTp2vy5MnW92VlZQSqepBTsNe6Xu/nkLJuT9Sw3u183RYAXDaG9W6n/p3baE/pCcVHNL+sgpTk4zNTERER8vf3V0lJicfykpISRUdHV7tNdHT0BevPfr1YzU8nuJ85c0ZHjhw5Z7//+te/dMstt+i5557T6NGjL3g8QUFBCg0N9XjAu5j4CAANQ0xYsFI7XHHZBSnJx2EqMDBQvXr1Um5urrXM7XYrNzdXqamp1W6TmprqUS9Ja9asseoTEhIUHR3tUVNWVqb8/HyrJjU1VUePHlVhYaFVs3btWrndbqWkpFjL1q9fryFDhmju3Lke7/RDw1FUWm4FqbOqjNGe0hO+aQgAcNnx+WW+yZMna8yYMUpOTlafPn00f/58lZeXW3OTRo8erbZt2yorK0uS9MADDygtLU3PPPOMhgwZomXLlunzzz/Xyy+/LElyOByaNGmSZs+erU6dOikhIUEzZsxQbGysMjMzJUldu3bVoEGDdPfddys7O1uVlZWaOHGihg8fbr2Tb926dbr55pv1wAMP6I477rDmUgUGBl5wEjrq19mJjz8OVJfbxEcAgI+ZBuD555837dq1M4GBgaZPnz7ms88+s9alpaWZMWPGeNS/9dZbpnPnziYwMNBcffXV5oMPPvBY73a7zYwZM0xUVJQJCgoyAwcONDt37vSoOXz4sBkxYoRp0aKFCQ0NNePGjTPHjh2z1o8ZM8ZIOueRlpZ2ycflcrmMJONyuS59MFBjyzZ+a66c9oFp//BKc+W0D8yyjd/6uiUAQCNW09dvn99nqinjPlP154Dr5GU78REAULdq+vrt88t8QF2ICQsmRAEAfMLnHycDAADQmBGmAAAAbCBMAQAA2ECYAgAAsIEwBQAAYANhCgAAwAbCFAAAgA2EKQAAABsIUwAAADYQpgAAAGwgTAEAANhAmALgUwdcJ7Vhd6kOuE76uhUAjUhD+tvBBx0D8Jmcgr2avmKr3Ebyc0hZtydqWO92vm4LQAPX0P52cGYKgE8ccJ20/hhKkttIj6zY1iD+lwmg4WqIfzsIUwDqTE1OuxeVllt/DM+qMkZ7Sk94qTsATUFD/NvBZT4AdaKmp90TIkLk55DHH0V/h0PxEc3roVsAjVVD/NvBmSkAttXmtHtMWLCybk+Uv8Mh6Yc/hk/e3l0xYcH10TKARqoh/u3gzBQA2y502v1Cf+CG9W6n/p3baE/pCcVHNCdIAbgkDe1vB2EKgG12TrvHhAX7/A8hgManIf3t4DIfANsa4ml3AKgvnJkCUCca2ml3AKgvhCkAdaYhnXYHgPrCZT4AAAAbCFMAAAA2EKYAAABsIEwBAADYQJgCAACwgTAFAABgA2EKAADABsIUAACADYQpAAAAGwhTAAAANhCmAAAAbCBMAQAA2ECYAgAAsIEwBQAAYANhCgAAwAbCFAAAgA2EKQAAABsIUwAapQOuk9qwu1QHXCd93QqAy1yArxsAgJrKKdir6Su2ym0kP4eUdXuihvVu5+u2AFymODMFoFE54DppBSlJchvpkRXbOEMFwGcIUwAalaLScitInVVljPaUnvBNQwAue4QpAI1KQkSI/Byey/wdDsVHNPdNQwAue4QpAI1KTFiwsm5PlL/jh0Tl73Doydu7KyYs2MedAbhcMQEdQKMzrHc79e/cRntKTyg+ojlBCoBPEaYANEoxYcGEKAANApf5AAAAbPB5mFq4cKHi4+PldDqVkpKijRs3XrB++fLl6tKli5xOpxITE7Vq1SqP9cYYzZw5UzExMQoODlZ6erq+/vprj5ojR45o5MiRCg0NVXh4uMaPH6/jx49b60+dOqWxY8cqMTFRAQEByszMrLPjBQAATYtPw1ROTo4mT56sWbNmadOmTerZs6cyMjJ08ODBaus3bNigESNGaPz48dq8ebMyMzOVmZmpbdu2WTXz5s3TggULlJ2drfz8fIWEhCgjI0OnTp2yakaOHKnt27drzZo1WrlypT7++GNNmDDBWl9VVaXg4GDdf//9Sk9P994AAACARs9hjDEXL/OOlJQU9e7dWy+88IIkye12Ky4uTvfdd5+mTZt2Tv2wYcNUXl6ulStXWsuuvfZaJSUlKTs7W8YYxcbGasqUKZo6daokyeVyKSoqSkuWLNHw4cO1Y8cOdevWTQUFBUpOTpYkrV69WoMHD9b+/fsVGxvrsc+xY8fq6NGjevfdd2t8fGVlZQoLC5PL5VJoaGiNtwcAAPWvpq/fPjszdfr0aRUWFnqc+fHz81N6erry8vKq3SYvL++cM0UZGRlWfVFRkYqLiz1qwsLClJKSYtXk5eUpPDzcClKSlJ6eLj8/P+Xn59s6poqKCpWVlXk8AABA0+azMFVaWqqqqipFRUV5LI+KilJxcXG12xQXF1+w/uzXi9VERkZ6rA8ICFDr1q3Pu99LlZWVpbCwMOsRFxdn6/kAAEDD5/MJ6E3J9OnT5XK5rMe+fft83RIAAPAyn4WpiIgI+fv7q6SkxGN5SUmJoqOjq90mOjr6gvVnv16s5qcT3M+cOaMjR46cd7+XKigoSKGhoR4PAADQtPksTAUGBqpXr17Kzc21lrndbuXm5io1NbXabVJTUz3qJWnNmjVWfUJCgqKjoz1qysrKlJ+fb9Wkpqbq6NGjKiwstGrWrl0rt9utlJSUOjs+AABwefDpHdAnT56sMWPGKDk5WX369NH8+fNVXl6ucePGSZJGjx6ttm3bKisrS5L0wAMPKC0tTc8884yGDBmiZcuW6fPPP9fLL78sSXI4HJo0aZJmz56tTp06KSEhQTNmzFBsbKx1r6iuXbtq0KBBuvvuu5Wdna3KykpNnDhRw4cP93gn35dffqnTp0/ryJEjOnbsmLZs2SJJSkpKqrfxAQAADZ9Pw9SwYcN06NAhzZw5U8XFxUpKStLq1autCeR79+6Vn9//P3nWt29fvfHGG3r00Uf1yCOPqFOnTnr33XfVvXt3q+ahhx5SeXm5JkyYoKNHj6pfv35avXq1nE6nVbN06VJNnDhRAwcOlJ+fn+644w4tWLDAo7fBgwfr22+/tb6/5pprJP1wU1CgsTjgOqmi0nIlRITw0SsA4CU+vc9UU8d9puBLOQV7NX3FVrmN5OeQsm5P1LDe7XzdFgA0eI3mPlMAvOeA66QVpCTJbaRHVmzTAddJ3zYGAE0QYQpogopKy60gdVaVMdpTesI3DQFAE0aYApqghIgQ+Tk8l/k7HIqPaO6bhgCgCSNMAU1QTFiwsm5PlL/jh0Tl73Doydu7MwkdALzAp+/mA+A9w3q3U//ObbSn9ITiI5oTpHyEd1QCTR9hCmjCYsKCeQH3Id5RCVweuMwHAF7AOyqBywdhCgC8gHdUApcPwhQAeAHvqAQuH4QpAPAC3lEJXD6YgA4AXsI7KoHLA2EKALyId1QCTR+X+QAAAGwgTAEAANhAmAIAALCBMAUAAGADYQoAAMAGwhQAAJeZA66T2rC7lI83qiPcGgG2HHCdVFFpuRIiQnj7NwA0AnwAd90jTKHW+IUEgMblfB/A3b9zG/5DbAOX+VAr5/uF5JQxADRcfAC3dxCmUCv8QgJA48MHcHsHYQq1wi8kADQ+fAC3dzBnCrVy9hfykRXbVGUMv5AA0EjwAdx1jzCFWuMXEgAaJz6Au24RpmALv5AAgMsdc6YAAGgAuJFm48WZKQAAfIz79jVunJkCAMCHuG9f40eYAgDAh7hvX+NHmAIAwIe4b1/jR5gCAMCHuJFm48cEdAAAfIz79jVuhCkAABqA2t6374DrpIpKy5UQEUII8xHCFAAAjRS3VGgYmDMFAEAjxC0VGg7CFAAAjRC3VGg4CFMAADRC3FKh4SBMAQDQCHFLhYaDCegAADRS3FKhYSBMAWhyeKs4Lie1vaUC6g5hCkCTwlvFAdQ35kwBaDJ4qzgAXyBMAWgyeKs4AF8gTAFoMnirOABfIEyhwTngOqkNu0u5NIMa463iAHyBCehoUJg8DLt4qziA+saZKTQYTB5GXYkJC1ZqhysIUpcRzmjDlxpEmFq4cKHi4+PldDqVkpKijRs3XrB++fLl6tKli5xOpxITE7Vq1SqP9cYYzZw5UzExMQoODlZ6erq+/vprj5ojR45o5MiRCg0NVXh4uMaPH6/jx4971HzxxRe6/vrr5XQ6FRcXp3nz5tXNAaNaTB4GUBs5BXt13Zy1unNRvq6bs1Y5BXt93RIuMz4PUzk5OZo8ebJmzZqlTZs2qWfPnsrIyNDBgwerrd+wYYNGjBih8ePHa/PmzcrMzFRmZqa2bdtm1cybN08LFixQdna28vPzFRISooyMDJ06dcqqGTlypLZv3641a9Zo5cqV+vjjjzVhwgRrfVlZmX75y1+qffv2Kiws1FNPPaXHHntML7/8svcG4zLH5GEANcUZbTQEDmOMuXiZ96SkpKh379564YUXJElut1txcXG67777NG3atHPqhw0bpvLycq1cudJadu211yopKUnZ2dkyxig2NlZTpkzR1KlTJUkul0tRUVFasmSJhg8frh07dqhbt24qKChQcnKyJGn16tUaPHiw9u/fr9jYWL344ov6/e9/r+LiYgUGBkqSpk2bpnfffVdfffXVJR1bWVmZwsLC5HK5FBoaamucLhc5BXv1yIptqjLGmjzMnCkA57Nhd6nuXJR/zvI3775WqR2u8EFHaApq+vrt0zNTp0+fVmFhodLT061lfn5+Sk9PV15eXrXb5OXledRLUkZGhlVfVFSk4uJij5qwsDClpKRYNXl5eQoPD7eClCSlp6fLz89P+fn5Vk3//v2tIHV2Pzt37tT3339fbW8VFRUqKyvzeKBmhvVup0+m3aA3775Wn0y7gSAF4II4o42GwKdhqrS0VFVVVYqKivJYHhUVpeLi4mq3KS4uvmD92a8Xq4mMjPRYHxAQoNatW3vUVPccP97HT2VlZSksLMx6xMXFVX/guCAmDwO4VNwOAw0Bt0aoQ9OnT9fkyZOt78vKyghUAOBl3A4DvubTMBURESF/f3+VlJR4LC8pKVF0dHS120RHR1+w/uzXkpISxcTEeNQkJSVZNT+d4H7mzBkdOXLE43mq28+P9/FTQUFBCgoKOu/xAgC8IyYsmBAFn/HpZb7AwED16tVLubm51jK3263c3FylpqZWu01qaqpHvSStWbPGqk9ISFB0dLRHTVlZmfLz862a1NRUHT16VIWFhVbN2rVr5Xa7lZKSYtV8/PHHqqys9NjPVVddpVatWtk8cgAA0GQYH1u2bJkJCgoyS5YsMV9++aWZMGGCCQ8PN8XFxcYYY0aNGmWmTZtm1X/66acmICDAPP3002bHjh1m1qxZplmzZmbr1q1WzZw5c0x4eLj5+9//br744gszdOhQk5CQYE6ePGnVDBo0yFxzzTUmPz/ffPLJJ6ZTp05mxIgR1vqjR4+aqKgoM2rUKLNt2zazbNky07x5c/PSSy9d8rG5XC4jybhcLjtDBAAA6lFNX799HqaMMeb555837dq1M4GBgaZPnz7ms88+s9alpaWZMWPGeNS/9dZbpnPnziYwMNBcffXV5oMPPvBY73a7zYwZM0xUVJQJCgoyAwcONDt37vSoOXz4sBkxYoRp0aKFCQ0NNePGjTPHjh3zqPn3v/9t+vXrZ4KCgkzbtm3NnDlzanRchCkAABqfmr5++/w+U00Z95kCAKDxaVT3mQIAAGjsCFMAAAA2EKYAAABsIEwBAADYQJgCAACwgTAFAABgA2EKAADABj7o2IvO3sKrrKzMx50AAIBLdfZ1+1JvxUmY8qJjx45JkuLi4nzcCQAAqKljx44pLCzsonXcAd2L3G63vvvuO7Vs2VIOh+Oc9WVlZYqLi9O+ffu4Q/r/w5h4Yjw8MR7nYkw8MR6eGI9zXcqYGGN07NgxxcbGys/v4jOiODPlRX5+fvrZz3520brQ0FB+yH+CMfHEeHhiPM7FmHhiPDwxHue62Jhcyhmps5iADgAAYANhCgAAwAbClA8FBQVp1qxZCgoK8nUrDQZj4onx8MR4nIsx8cR4eGI8zuWNMWECOgAAgA2cmQIAALCBMAUAAGADYQoAAMAGwhQAAIANhCkvW7hwoeLj4+V0OpWSkqKNGzeet3b79u264447FB8fL4fDofnz59dfo/WoJmOyaNEiXX/99WrVqpVatWql9PT0C9Y3RjUZjxUrVig5OVnh4eEKCQlRUlKS/vrXv9Zjt95Xk/H4sWXLlsnhcCgzM9O7DfpATcZkyZIlcjgcHg+n01mP3XpfTX9Gjh49qnvvvVcxMTEKCgpS586dtWrVqnrq1vtqMh4DBgw45+fD4XBoyJAh9dix99X0Z2T+/Pm66qqrFBwcrLi4OD344IM6derUpe/QwGuWLVtmAgMDzauvvmq2b99u7r77bhMeHm5KSkqqrd+4caOZOnWqefPNN010dLR57rnn6rfhelDTMbnzzjvNwoULzebNm82OHTvM2LFjTVhYmNm/f389d+4dNR2PdevWmRUrVpgvv/zS7Nq1y8yfP9/4+/ub1atX13Pn3lHT8TirqKjItG3b1lx//fVm6NCh9dNsPanpmCxevNiEhoaaAwcOWI/i4uJ67tp7ajoeFRUVJjk52QwePNh88sknpqioyKxfv95s2bKlnjv3jpqOx+HDhz1+NrZt22b8/f3N4sWL67dxL6rpmCxdutQEBQWZpUuXmqKiIvPPf/7TxMTEmAcffPCS90mY8qI+ffqYe++91/q+qqrKxMbGmqysrItu2759+yYZpuyMiTHGnDlzxrRs2dK89tpr3mqxXtkdD2OMueaaa8yjjz7qjfbqXW3G48yZM6Zv377mlVdeMWPGjGlyYaqmY7J48WITFhZWT93Vv5qOx4svvmiuvPJKc/r06fpqsV7Z/Rvy3HPPmZYtW5rjx497q8V6V9Mxuffee82NN97osWzy5Mnmuuuuu+R9cpnPS06fPq3CwkKlp6dby/z8/JSenq68vDwfduY7dTEmJ06cUGVlpVq3bu2tNuuN3fEwxig3N1c7d+5U//79vdlqvajteDz++OOKjIzU+PHj66PNelXbMTl+/Ljat2+vuLg4DR06VNu3b6+Pdr2uNuPx3nvvKTU1Vffee6+ioqLUvXt3Pfnkk6qqqqqvtr2mLv6m/uUvf9Hw4cMVEhLirTbrVW3GpG/fviosLLQuBX7zzTdatWqVBg8efMn75YOOvaS0tFRVVVWKioryWB4VFaWvvvrKR135Vl2MycMPP6zY2FiPX5TGqrbj4XK51LZtW1VUVMjf319//vOf9Ytf/MLb7Xpdbcbjk08+0V/+8hdt2bKlHjqsf7UZk6uuukqvvvqqevToIZfLpaefflp9+/bV9u3bL+mD1xuy2ozHN998o7Vr12rkyJFatWqVdu3apXvuuUeVlZWaNWtWfbTtNXb/pm7cuFHbtm3TX/7yF2+1WO9qMyZ33nmnSktL1a9fPxljdObMGf32t7/VI488csn7JUyh0ZgzZ46WLVum9evXN7kJtTXRsmVLbdmyRcePH1dubq4mT56sK6+8UgMGDPB1a/Xq2LFjGjVqlBYtWqSIiAhft9NgpKamKjU11fq+b9++6tq1q1566SU98cQTPuzMN9xutyIjI/Xyyy/L399fvXr10n/+8x899dRTjT5M2fWXv/xFiYmJ6tOnj69b8an169frySef1J///GelpKRo165deuCBB/TEE09oxowZl/QchCkviYiIkL+/v0pKSjyWl5SUKDo62kdd+ZadMXn66ac1Z84cffTRR+rRo4c326w3tR0PPz8/dezYUZKUlJSkHTt2KCsrq9GHqZqOx+7du7Vnzx7dcsst1jK32y1JCggI0M6dO9WhQwfvNu1ldfF3pFmzZrrmmmu0a9cub7RYr2ozHjExMWrWrJn8/f2tZV27dlVxcbFOnz6twMBAr/bsTXZ+PsrLy7Vs2TI9/vjj3myx3tVmTGbMmKFRo0bprrvukiQlJiaqvLxcEyZM0O9//3v5+V18RhRzprwkMDBQvXr1Um5urrXM7XYrNzfX43+Nl5Pajsm8efP0xBNPaPXq1UpOTq6PVutFXf2MuN1uVVRUeKPFelXT8ejSpYu2bt2qLVu2WI9bb71VN9xwg7Zs2aK4uLj6bN8r6uJnpKqqSlu3blVMTIy32qw3tRmP6667Trt27bKCtiT9z//8j2JiYhp1kJLs/XwsX75cFRUV+s1vfuPtNutVbcbkxIkT5wSms+HbXOrHF9diojwu0bJly0xQUJBZsmSJ+fLLL82ECRNMeHi49TblUaNGmWnTpln1FRUVZvPmzWbz5s0mJibGTJ061WzevNl8/fXXvjqEOlfTMZkzZ44JDAw0b7/9tsfbeY8dO+arQ6hTNR2PJ5980nz44Ydm9+7d5ssvvzRPP/20CQgIMIsWLfLVIdSpmo7HTzXFd/PVdEz+8Ic/mH/+859m9+7dprCw0AwfPtw4nU6zfft2Xx1CnarpeOzdu9e0bNnSTJw40ezcudOsXLnSREZGmtmzZ/vqEOpUbX9n+vXrZ4YNG1bf7daLmo7JrFmzTMuWLc2bb75pvvnmG/Phhx+aDh06mF//+teXvE/ClJc9//zzpl27diYwMND06dPHfPbZZ9a6tLQ0M2bMGOv7oqIiI+mcR1paWv037kU1GZP27dtXOyazZs2q/8a9pCbj8fvf/9507NjROJ1O06pVK5OammqWLVvmg669pybj8VNNMUwZU7MxmTRpklUbFRVlBg8ebDZt2uSDrr2npj8jGzZsMCkpKSYoKMhceeWV5o9//KM5c+ZMPXftPTUdj6+++spIMh9++GE9d1p/ajImlZWV5rHHHjMdOnQwTqfTxMXFmXvuucd8//33l7w/hzGXeg4LAAAAP8WcKQAAABsIUwAAADYQpgAAAGwgTAEAANhAmAIAALCBMAUAAGADYQoAAMAGwhQANAFjx45VZmamr9sALkuEKQBeNXbsWDkcDutxxRVXaNCgQfriiy983Vqd+PGxnX3069fPa/vbs2ePHA6HtmzZ4rH8T3/6k5YsWeK1/QI4P8IUAK8bNGiQDhw4oAMHDig3N1cBAQG6+eabfd1WnVm8eLF1fAcOHNB7771XbV1lZaXXeggLC1N4eLjXnh/A+RGmAHhdUFCQoqOjFR0draSkJE2bNk379u3ToUOHdOONN2rixIke9YcOHVJgYKD1ye/x8fF64oknNGLECIWEhKht27ZauHChxzbPPvusEhMTFRISori4ON1zzz06fvy4tf7bb7/VLbfcolatWikkJERXX321Vq1aJUn6/vvvNXLkSLVp00bBwcHq1KmTFi9efMnHFx4ebh1fdHS0WrdubZ1BysnJUVpampxOp5YuXarDhw9rxIgRatu2rZo3b67ExES9+eabHs/ndrs1b948dezYUUFBQWrXrp3++Mc/SpISEhIkSddcc40cDocGDBgg6dzLfBUVFbr//vsVGRkpp9Opfv36qaCgwFq/fv16ORwO5ebmKjk5Wc2bN1ffvn21c+fOSz5uAD8gTAGoV8ePH9frr7+ujh076oorrtBdd92lN954QxUVFVbN66+/rrZt2+rGG2+0lj311FPq2bOnNm/erGnTpumBBx7QmjVrrPV+fn5asGCBtm/frtdee01r167VQw89ZK2/9957VVFRoY8//lhbt27V3Llz1aJFC0nSjBkz9OWXX+of//iHduzYoRdffFERERF1crxne92xY4cyMjJ06tQp9erVSx988IG2bdumCRMmaNSoUdq4caO1zfTp0zVnzhyrrzfeeENRUVGSZNV99NFHOnDggFasWFHtfh966CG98847eu2117Rp0yZ17NhRGRkZOnLkiEfd73//ez3zzDP6/PPPFRAQoP/9v/93nRw3cFmps49oBoBqjBkzxvj7+5uQkBATEhJiJJmYmBhTWFhojDHm5MmTplWrViYnJ8fapkePHuaxxx6zvm/fvr0ZNGiQx/MOGzbM3HTTTefd7/Lly80VV1xhfZ+YmOjxnD92yy23mHHjxtXq+CQZp9NpHV9ISIj529/+ZoqKiowkM3/+/Is+x5AhQ8yUKVOMMcaUlZWZoKAgs2jRomprzz7v5s2bPZaPGTPGDB061BhjzPHjx02zZs3M0qVLrfWnT582sbGxZt68ecYYY9atW2ckmY8++siq+eCDD4wkc/LkyZoMAXDZ48wUAK+74YYbtGXLFm3ZskUbN25URkaGbrrpJn377bdyOp0aNWqUXn31VUnSpk2btG3bNo0dO9bjOVJTU8/5fseOHdb3H330kQYOHKi2bduqZcuWGjVqlA4fPqwTJ05Iku6//37Nnj1b1113nWbNmuUxAf53v/udli1bpqSkJD300EPasGFDjY7vueees45vy5Yt+sUvfmGtS05O9qitqqrSE088ocTERLVu3VotWrTQP//5T+3du1eStGPHDlVUVGjgwIE16uHHdu/ercrKSl133XXWsmbNmqlPnz4eYyZJPXr0sP4dExMjSTp48GCt9w1cjghTALwuJCREHTt2VMeOHdW7d2+98sorKi8v16JFiyRJd911l9asWaP9+/dr8eLFuvHGG9W+fftLfv49e/bo5ptvVo8ePfTOO++osLDQmlN1+vRpax/ffPONRo0apa1btyo5OVnPP/+8JFnB7sEHH9R3332ngQMHaurUqZe8/+joaOv4OnbsqJCQEI9j/7GnnnpKf/rTn/Twww9r3bp12rJlizIyMqw+g4ODL3m/daFZs2bWvx0Oh6Qf5mwBuHSEKQD1zuFwyM/PTydPnpQkJSYmKjk5WYsWLdIbb7xR7bydzz777Jzvu3btKkkqLCyU2+3WM888o2uvvVadO3fWd999d85zxMXF6be//a1WrFihKVOmWGFOktq0aaMxY8bo9ddf1/z58/Xyyy/X5SFbPv30Uw0dOlS/+c1v1LNnT1155ZX6n//5H2t9p06dFBwcbE2+/6nAwEBJP5zhOp8OHTooMDBQn376qbWssrJSBQUF6tatWx0dCYCzAnzdAICmr6KiQsXFxZJ+eOfcCy+8oOPHj+uWW26xau666y5NnDhRISEhuu222855jk8//VTz5s1TZmam1qxZo+XLl+uDDz6QJHXs2FGVlZV6/vnndcstt+jTTz9Vdna2x/aTJk3STTfdpM6dO+v777/XunXrrDA2c+ZM9erVS1dffbUqKiq0cuVKa11d69Spk95++21t2LBBrVq10rPPPquSkhIr5DidTj388MN66KGHFBgYqOuuu06HDh3S9u3bNX78eEVGRio4OFirV6/Wz372MzmdToWFhXnsIyQkRL/73e/03//932rdurXatWunefPm6cSJExo/frxXjgu4nHFmCoDXrV69WjExMYqJiVFKSooKCgq0fPly6239kjRixAgFBARoxIgRcjqd5zzHlClT9Pnnn+uaa67R7Nmz9eyzzyojI0OS1LNnTz377LOaO3euunfvrqVLlyorK8tj+6qqKt17773q2rWrBg0apM6dO+vPf/6zpB/O9kyfPl09evRQ//795e/vr2XLlnllLB599FH9/Oc/V0ZGhgYMGKDo6Ohz7lw+Y8YMTZkyRTNnzlTXrl01bNgwax5TQECAFixYoJdeekmxsbEaOnRotfuZM2eO7rjjDo0aNUo///nPtWvXLv3zn/9Uq1atvHJcwOXMYYwxvm4CAPbs2aMOHTqooKBAP//5zz3WxcfHa9KkSZo0aZJvmgOAC+AyHwCfqqys1OHDh/Xoo4/q2muvPSdIAUBDx2U+AD716aefKiYmRgUFBefMc/K1J598Ui1atKj2cdNNN/m6PQANBJf5AOA8jhw5cs4dw88KDg5W27Zt67kjAA0RYQoAAMAGLvMBAADYQJgCAACwgTAFAABgA2EKAADABsIUAACADYQpAAAAGwhTAAAANhCmAAAAbPi/PyQxx4kioeoAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_50.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5kElEQVR4nO3deXQUVd7/8U8nIQuBdIAkJEBIgBBBCcsQYFhkE0RUFJhRRERQGH8KDOKKiA64EcAFxg2VweAjKDww4DCK7KBH0DGAjGwihLBJEMKSEBKbkNzfHzy0xrAF0l3Vyft1Tp9jV1eqvnWnp+vDvbeqHMYYIwAAABvys7oAAACACyGoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoALhq48ePl8PhuKx1HQ6Hxo8f79F6OnfurM6dO9t2ewAuH0EFKEdmzpwph8PhfgUEBKh27doaPHiwfvrpJ6vLs534+Phi7RUVFaXrr79eCxcuLJPt5+Xlafz48VqzZk2ZbA+oiAgqQDn0/PPP68MPP9Q777yjnj17atasWerUqZN++eUXj+zvmWeeUX5+vke27WnNmzfXhx9+qA8//FCPP/64Dh48qL59++qdd9656m3n5eXpueeeI6gAVyHA6gIAlL2ePXsqOTlZkjR06FBFRERo0qRJWrRoke68884y319AQIACAnzz56R27dq655573O/vvfdeJSQkaMqUKXrwwQctrAyARI8KUCFcf/31kqT09PRiy3/44Qf9+c9/VvXq1RUcHKzk5GQtWrSo2DoFBQV67rnn1LBhQwUHB6tGjRrq0KGDli9f7l7nfHNUXC6XHnnkEUVGRqpq1aq67bbbdODAgRK1DR48WPHx8SWWn2+bqamp6tq1q6KiohQUFKRrr71W06ZNK1VbXEp0dLQaN26sjIyMi653+PBhDRkyRDVr1lRwcLCaNWumDz74wP35nj17FBkZKUl67rnn3MNLnp6fA5Q3vvlPIAClsmfPHklStWrV3Mu2bt2q9u3bq3bt2nrqqacUGhqq//3f/1Xv3r31z3/+U3369JF0NjCkpKRo6NChat26tXJycrR+/Xpt3LhR3bt3v+A+hw4dqlmzZunuu+9Wu3bttGrVKt1yyy1XdRzTpk3Tddddp9tuu00BAQH697//rWHDhqmoqEjDhw+/qm2fU1BQoP3796tGjRoXXCc/P1+dO3fWrl27NGLECNWrV0/z5s3T4MGDdeLECT388MOKjIzUtGnT9NBDD6lPnz7q27evJKlp06ZlUidQYRgA5UZqaqqRZFasWGGOHDli9u/fb+bPn28iIyNNUFCQ2b9/v3vdG264wSQlJZlffvnFvayoqMi0a9fONGzY0L2sWbNm5pZbbrnofseNG2d++3OyadMmI8kMGzas2Hp33323kWTGjRvnXjZo0CATFxd3yW0aY0xeXl6J9Xr06GHq169fbFmnTp1Mp06dLlqzMcbExcWZG2+80Rw5csQcOXLE/Pe//zV33XWXkWT++te/XnB7U6dONZLMrFmz3MtOnz5t2rZta6pUqWJycnKMMcYcOXKkxPECKB2GfoByqFu3boqMjFRsbKz+/Oc/KzQ0VIsWLVKdOnUkSceOHdOqVat055136uTJk8rKylJWVpaOHj2qHj16aOfOne6rhMLDw7V161bt3Lnzsve/ePFiSdLIkSOLLR81atRVHVdISIj7v7Ozs5WVlaVOnTpp9+7dys7OvqJtLlu2TJGRkYqMjFSzZs00b948DRw4UJMmTbrg3yxevFjR0dHq37+/e1mlSpU0cuRI5ebm6osvvriiWgCUVG6CypdffqlevXqpVq1acjgc+uSTT2yxv+3bt+u2226T0+lUaGioWrVqpX379nm0NuCtt97S8uXLNX/+fN18883KyspSUFCQ+/Ndu3bJGKNnn33WfZI+9xo3bpyks3MwpLNXEJ04cUKJiYlKSkrSE088oe+///6i+9+7d6/8/PzUoEGDYsuvueaaqzqutWvXqlu3bgoNDVV4eLgiIyP19NNPS9IVB5U2bdpo+fLlWrFihdatW6esrCz9z//8T7FQ9Ht79+5Vw4YN5edX/Ce0cePG7s8BlI1yM0fl1KlTatasme6//373WLDV+0tPT1eHDh00ZMgQPffccwoLC9PWrVsVHBzs8fpQsbVu3dp91U/v3r3VoUMH3X333dqxY4eqVKmioqIiSdLjjz+uHj16nHcbCQkJkqSOHTsqPT1d//rXv7Rs2TL94x//0JQpU/TOO+9o6NChV13rhW4UV1hYWOx9enq6brjhBjVq1EivvfaaYmNjFRgYqMWLF2vKlCnuYyqtiIgIdevW7Yr+FoDnlZug0rNnT/Xs2fOCn7tcLo0dO1Yff/yxTpw4oSZNmmjSpElXfLfJS+1PksaOHaubb75ZkydPdi/7/b8wAU/z9/dXSkqKunTpojfffFNPPfWU6tevL+nscMXlnKSrV6+u++67T/fdd59yc3PVsWNHjR8//oJBJS4uTkVFRUpPTy/Wi7Jjx44S61arVk0nTpwosfz3vRL//ve/5XK5tGjRItWtW9e9fPXq1Zesv6zFxcXp+++/V1FRUbFelR9++MH9uXThEAbg8pWboZ9LGTFihL7++mvNmTNH33//ve644w7ddNNNpRp3L42ioiJ99tlnSkxMVI8ePRQVFaU2bdp4fEgKOJ/OnTurdevWmjp1qn755RdFRUWpc+fOevfdd5WZmVli/SNHjrj/++jRo8U+q1KlihISEuRyuS64v3Mh/vXXXy+2fOrUqSXWbdCggbKzs4sNJ2VmZpa4O6y/v78kyRjjXpadna3U1NQL1uEpN998sw4dOqS5c+e6l505c0ZvvPGGqlSpok6dOkmSKleuLEnnDWIALk+56VG5mH379ik1NVX79u1TrVq1JJ3t8l6yZIlSU1M1YcKEMt/n4cOHlZubq4kTJ+rFF1/UpEmTtGTJEvXt21erV692/5AB3vLEE0/ojjvu0MyZM/Xggw/qrbfeUocOHZSUlKS//OUvql+/vn7++Wd9/fXXOnDggP773/9Kkq699lp17txZLVu2VPXq1bV+/XrNnz9fI0aMuOC+mjdvrv79++vtt99Wdna22rVrp5UrV2rXrl0l1r3rrrs0evRo9enTRyNHjlReXp6mTZumxMREbdy40b3ejTfeqMDAQPXq1Uv/7//9P+Xm5mr69OmKioo6b9jypAceeEDvvvuuBg8erA0bNig+Pl7z58/X2rVrNXXqVFWtWlXS2cm/1157rebOnavExERVr15dTZo0UZMmTbxaL+DTrL7syBMkmYULF7rff/rpp0aSCQ0NLfYKCAgwd955pzHGmO3btxtJF32NHj36svZnjDE//fSTkWT69+9fbHmvXr3MXXfdVabHC5xz7vLktLS0Ep8VFhaaBg0amAYNGpgzZ84YY4xJT0839957r4mOjjaVKlUytWvXNrfeequZP3++++9efPFF07p1axMeHm5CQkJMo0aNzEsvvWROnz7tXud8lxLn5+ebkSNHmho1apjQ0FDTq1cvs3///vNerrts2TLTpEkTExgYaK655hoza9as825z0aJFpmnTpiY4ONjEx8ebSZMmmffff99IMhkZGe71SnN58qUuvb7Q9n7++Wdz3333mYiICBMYGGiSkpJMampqib9dt26dadmypQkMDORSZeAKOIz5TT9qOeFwOLRw4UL17t1bkjR37lwNGDBAW7dudXcfn1OlShVFR0fr9OnT2r1790W3W6NGDfedJi+2P0k6ffq0QkNDNW7cOD3zzDPu5aNHj9ZXX32ltWvXXvkBAgBQQVSIoZ8WLVqosLBQhw8fdt9K/PcCAwPVqFGjMttnYGCgWrVqVWLy4I8//uieaAcAAC6u3ASV3NzcYuPfGRkZ2rRpk6pXr67ExEQNGDBA9957r1599VW1aNFCR44c0cqVK9W0adMruq33xfZ37oqEJ554Qv369VPHjh3VpUsXLVmyRP/+9795kioAAJfL6rGnsrJ69erzzisZNGiQMebs7a3/9re/mfj4eFOpUiUTExNj+vTpY77//nuP7O+cGTNmmISEBBMcHGyaNWtmPvnkk6s8UgAAKo5yOUcFAACUDxXmPioAAMD3EFQAAIBt+fRk2qKiIh08eFBVq1blVtUAAPgIY4xOnjypWrVqlXi45+/5dFA5ePCgYmNjrS4DAABcgf3796tOnToXXceng8q521Tv379fYWFhFlcDAAAuR05OjmJjY93n8Yvx6aBybrgnLCyMoAIAgI+5nGkbTKYFAAC2RVABAAC2RVABAAC25dNzVAAAsJOioiKdPn3a6jIsV6lSJfn7+5fJtiwNKvHx8dq7d2+J5cOGDdNbb71lQUUAAFyZ06dPKyMjQ0VFRVaXYgvh4eGKjo6+6vucWRpU0tLSVFhY6H6/ZcsWde/eXXfccYeFVQEAUDrGGGVmZsrf31+xsbGXvIlZeWaMUV5eng4fPixJiomJuartWRpUIiMji72fOHGiGjRooE6dOllUEQAApXfmzBnl5eWpVq1aqly5stXlWC4kJESSdPjwYUVFRV3VMJBt5qicPn1as2bN0qOPPnrBbiKXyyWXy+V+n5OT463yAAC4oHOjA4GBgRZXYh/nAltBQcFVBRXb9E198sknOnHihAYPHnzBdVJSUuR0Ot0vbp8PALATnjv3q7JqC9sElRkzZqhnz56qVavWBdcZM2aMsrOz3a/9+/d7sUIAAOBtthj62bt3r1asWKEFCxZcdL2goCAFBQV5qSoAAGA1W/SopKamKioqSrfccovVpaCcyczO17r0LGVm51tdCgDY1v79+3X//ferVq1aCgwMVFxcnB5++GEdPXpU0tl5JqNHj1ZSUpJCQ0NVq1Yt3XvvvTp48KDHa7M8qBQVFSk1NVWDBg1SQIAtOnhQTsxN26f2E1fp7un/UfuJqzQ3bZ/VJQGA7ezevVvJycnauXOnPv74Y+3atUvvvPOOVq5cqbZt2+rYsWPKy8vTxo0b9eyzz2rjxo1asGCBduzYodtuu83j9VmeDFasWKF9+/bp/vvvt7oUlCOZ2fkas2CziszZ90VGenrBFnVMjFSMM8Ta4gDARoYPH67AwEAtW7bMfVlx3bp11aJFCzVo0EBjx47VtGnTtHz58mJ/9+abb6p169bat2+f6tat67H6LO9RufHGG2WMUWJiotWloBzJyDrlDinnFBqjPVl51hQEAJfJm0PWx44d09KlSzVs2DB3SDknOjpaAwYM0Ny5c2WMKfG32dnZcjgcCg8P92iNlveoAJ5QLyJUfg4VCyv+DofiI7gREwD7mpu2z90b7OeQUvomqV8rz/VW7Ny5U8YYNW7c+LyfN27cWMePH9eRI0cUFRXlXv7LL79o9OjR6t+/v8LCwjxWn2SDHhXAE2KcIUrpmyT//7uO39/h0IS+TRj2AWBbFxqy9kbPyvl6TC6koKBAd955p4wxmjZtmgerOoseFZRb/VrVVcfESO3JylN8RGVCCgBbu9iQtad+vxISEuRwOLR9+3b16dOnxOfbt29XtWrV3I+8ORdS9u7dq1WrVnm8N0WiRwXlXIwzRG0b1CCkALC9c0PWv+XpIesaNWqoe/fuevvtt5WfX7zn5tChQ5o9e7b69esnh8PhDik7d+7UihUrVKNGDY/V9VsEFQAAbMCqIes333xTLpdLPXr00Jdffqn9+/dryZIl6t69u2rXrq2XXnpJBQUF+vOf/6z169dr9uzZKiws1KFDh3To0CGdPn3ao/Ux9AMAgE1YMWTdsGFDrV+/XuPGjdOdd96pY8eOKTo6Wr1799a4ceNUvXp17dmzR4sWLZIkNW/evNjfr169Wp07d/ZYfQQVAABsJMYZ4vXh6ri4OM2cOfOCn8fHx5dqwm1ZYugHAADYFkEFAADYFkEFAADYFkEFAADYFkEFAIAyYtWEUzsqq7YgqFyANx8KBQDwbf7+/pLk8XuK+JK8vLMPga1UqdJVbYfLk8/D2w+FAgD4toCAAFWuXFlHjhxRpUqV5OdXcfsBjDHKy8vT4cOHFR4e7g5xV4qg8jsXeihUx8RIbsMOADgvh8OhmJgYZWRkaO/evVaXYwvh4eGKjo6+6u0QVH7HiodCAQB8X2BgoBo2bMjwj84O91xtT8o5BJXfOfdQqN+GFU8/FAoAUD74+fkpODjY6jLKlYo7iHYBVj0UCgAAlESPynlY8VAoAABQEkHlAqx4KBQAACiOoR8AAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBbBBUAAGBblgeVn376Sffcc49q1KihkJAQJSUlaf369VaXBQAAbCDAyp0fP35c7du3V5cuXfT5558rMjJSO3fuVLVq1awsCwAA2ISlQWXSpEmKjY1Vamqqe1m9evUsrAgAANiJpUM/ixYtUnJysu644w5FRUWpRYsWmj59+gXXd7lcysnJKfYCAADll6VBZffu3Zo2bZoaNmyopUuX6qGHHtLIkSP1wQcfnHf9lJQUOZ1O9ys2NtbLFQMAAG9yGGOMVTsPDAxUcnKy1q1b5142cuRIpaWl6euvvy6xvsvlksvlcr/PyclRbGyssrOzFRYW5pWaAQDA1cnJyZHT6bys87elPSoxMTG69tpriy1r3Lix9u3bd971g4KCFBYWVuwFAADKL0uDSvv27bVjx45iy3788UfFxcVZVBEAALATS4PKI488om+++UYTJkzQrl279NFHH+m9997T8OHDrSwLAADYhKVBpVWrVlq4cKE+/vhjNWnSRC+88IKmTp2qAQMGWFkWAACwCUsn016t0kzGAQAA9uAzk2kBAAAuhqACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAOVIZna+1qVnKTM73+pSYCO+/L0IsLoAAEDZmJu2T2MWbFaRkfwcUkrfJPVrVdfqsmAxX/9e0KMCAOVAZna++2QkSUVGenrBFp/8FzTKTnn4XhBUAKAcyMg65T4ZnVNojPZk5VlTEGyhPHwvCCoAUA7UiwiVn6P4Mn+HQ/ERla0pCLZQHr4XBBUAKAdinCFK6Zskf8fZs5K/w6EJfZsoxhlicWWwUnn4XvD0ZAAoRzKz87UnK0/xEZV96mQEz7Lb96I052+u+gGAciTGGWKLExHsxZe/Fwz9AAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAAAA2yKoAF6QmZ2vdelZyszOt7oUAPApAVYXAJR3c9P2acyCzSoykp9DSumbpH6t6lpdFgD4BHpUAA/KzM53hxRJKjLS0wu20LMCAJeJoAJ4UEbWKXdIOafQGO3JyrOmIADwMQQVwIPqRYTKz1F8mb/DofiIytYUBAA+xtKgMn78eDkcjmKvRo0aWVkSUKZinCFK6Zskf8fZtOLvcGhC3yaKcYZYXBkA+AbLJ9Ned911WrFihft9QIDlJQFlql+ruuqYGKk9WXmKj6hMSAGAUrA8FQQEBCg6OtrqMgCPinGGEFAA4ApYPkdl586dqlWrlurXr68BAwZo3759F1zX5XIpJyen2AsAAJRflgaVNm3aaObMmVqyZImmTZumjIwMXX/99Tp58uR5109JSZHT6XS/YmNjvVwxAADwJocxxlx6Ne84ceKE4uLi9Nprr2nIkCElPne5XHK5XO73OTk5io2NVXZ2tsLCwrxZKgAAuEI5OTlyOp2Xdf62fI7Kb4WHhysxMVG7du067+dBQUEKCgryclUAAMAqls9R+a3c3Fylp6crJibG6lIAAIANWBpUHn/8cX3xxRfas2eP1q1bpz59+sjf31/9+/e3siwAAGATlg79HDhwQP3799fRo0cVGRmpDh066JtvvlFkZKSVZQEAAJuwNKjMmTPHyt0DAACbs9UcFQAAgN8iqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAC4YpnZ+VqXnqXM7HyrSwFQTgVYXQAA3zQ3bZ/GLNisIiP5OaSUvknq16qu1WUBKGfoUQFQapnZ+e6QIklFRnp6wRZ6VgCUOYIKgFLLyDrlDinnFBqjPVl51hQEoNwiqAAotXoRofJzFF/m73AoPqKyNQUBKLcIKgBKLcYZopS+SfJ3nE0r/g6HJvRtohhniMWVAShvmEwL4Ir0a1VXHRMjtScrT/ERlX0upGRm5ysj65TqRYT6XO1ARWKbHpWJEyfK4XBo1KhRVpcC4DLFOEPUtkENnzvRz03bp/YTV+nu6f9R+4mrNDdtn9UlAbgAWwSVtLQ0vfvuu2ratKnVpQAo57hiCfAtlgeV3NxcDRgwQNOnT1e1atWsLgdAOccVS4BvsTyoDB8+XLfccou6det2yXVdLpdycnKKvQCgNLhiCfAtlgaVOXPmaOPGjUpJSbms9VNSUuR0Ot2v2NhYD1cIoLzhiiXAtziMMebSq5W9/fv3Kzk5WcuXL3fPTencubOaN2+uqVOnnvdvXC6XXC6X+31OTo5iY2OVnZ2tsLAwb5QNoJzIzM732SuWAF+Xk5Mjp9N5Wedvy4LKJ598oj59+sjf39+9rLCwUA6HQ35+fnK5XMU+O5/SHChgR1wiC6AiKs3527L7qNxwww3avHlzsWX33XefGjVqpNGjR18ypAC+jof6AcClWRZUqlatqiZNmhRbFhoaqho1apRYDpQ3F7pEtmNiJD0rAPAbll/1A1REXCILAJfHVrfQX7NmjdUlAF5x7hLZ34YVLpEFgJLoUQEswCWyAHB5bNWjAlQkvv5QPwDwBoIKUEau5FLjGGcIAQUALuKKgsqBAwcUHh6uKlWqFFteUFCgr7/+Wh07diyT4gBfwaXGAOAZpZqjkpmZqdatWysuLk7h4eG69957lZub6/782LFj6tKlS5kXCdgZT+MFAM8pVVB56qmn5Ofnp//85z9asmSJtm3bpi5duuj48ePudSy60S1gGS41BgDPKVVQWbFihV5//XUlJyerW7duWrt2rWJiYtS1a1cdO3ZMkuRwOC6xFaB84Wm8AOA5pQoq2dnZqlatmvt9UFCQFixYoPj4eHXp0kWHDx8u8wIBu+NSYwDwnFJNpq1fv76+//57NWzY8NcNBARo3rx5uuOOO3TrrbeWeYGAL+BSYwDwjFL1qPTs2VPvvfdeieXnwkrz5s3Lqi7A58Q4Q9S2QQ1CCgCUIYcpxezXM2fOKC8vz/1I5qysLElSRESE+/OffvpJcXFxHii1pNI8JhoAANhDac7fpepRCQgIUFFRkYYPH66IiAjVrFlTNWvWVEREhEaMGKHc3FyvhRQAAFD+lWqOyrFjx9S2bVv99NNPGjBggBo3bixJ2rZtm2bOnKmVK1dq3bp1xSbcAgAAXKlSBZXnn39egYGBSk9PV82aNUt8duONN+r555/XlClTyrRIAABQMZVq6OeTTz7RK6+8UiKkSFJ0dLQmT56shQsXlllxAACgYiv1LfSvu+66C37epEkTHTp06KqLAgAAkEoZVCIiIrRnz54Lfp6RkaHq1atfbU0AAACSShlUevToobFjx+r06dMlPnO5XHr22Wd10003lVlxAACgYivVfVQOHDig5ORkBQUFafjw4WrUqJGMMdq+fbvefvttuVwurV+/XrGxsZ6s2Y37qAAA4HtKc/4u1VU/derU0ddff61hw4ZpzJgx7iclOxwOde/eXW+++abXQgoAACj/ShVUJKlevXr6/PPPdfz4ce3cuVOSlJCQwNwUAABQ5kodVM6pVq2aWrduXZa1AAAAFFOqybQAAADeRFABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2ZWlQmTZtmpo2baqwsDCFhYWpbdu2+vzzz60sCQAA2IilQaVOnTqaOHGiNmzYoPXr16tr1666/fbbtXXrVivLAgAANuEwxhiri/it6tWr6+WXX9aQIUMuuW5OTo6cTqeys7MVFhbmheoAAJeSmZ2vjKxTqhcRqhhniNXlwIZKc/4O8FJNl1RYWKh58+bp1KlTatu27XnXcblccrlc7vc5OTneKg8AcBnmpu3TmAWbVWQkP4eU0jdJ/VrVtbos+DDLJ9Nu3rxZVapUUVBQkB588EEtXLhQ11577XnXTUlJkdPpdL9iY2O9XC0A4EIys/PdIUWSioz09IItyszOt7Yw+DTLg8o111yjTZs26T//+Y8eeughDRo0SNu2bTvvumPGjFF2drb7tX//fi9XCwC4kIysU+6Qck6hMdqTlWdNQSgXLB/6CQwMVEJCgiSpZcuWSktL09///ne9++67JdYNCgpSUFCQt0sEfArzA2CVehGh8nOoWFjxdzgUH1HZuqLg8yzvUfm9oqKiYvNQAFy+uWn71H7iKt09/T9qP3GV5qbts7okVCAxzhCl9E2Sv8Mh6WxImdC3CYEZV8XSHpUxY8aoZ8+eqlu3rk6ePKmPPvpIa9as0dKlS60sC/BJF5of0DExkhMFvKZfq7rqmBipPVl5io+ozHcPV83SoHL48GHde++9yszMlNPpVNOmTbV06VJ1797dyrIAn3Sx+QGcLOBNMc4QvnMoM5YGlRkzZli5e6BcYX4AgPLIdnNUAFwZ5gcAKI8sv+oHQNlhfgCA8oagApQzzA8AUJ4w9AMAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGzL0qCSkpKiVq1aqWrVqoqKilLv3r21Y8cOK0sCAAA2YmlQ+eKLLzR8+HB98803Wr58uQoKCnTjjTfq1KlTVpYFAABswmGMMVYXcc6RI0cUFRWlL774Qh07drzk+jk5OXI6ncrOzlZYWJgXKgQAAFerNOfvAC/VdFmys7MlSdWrVz/v5y6XSy6Xy/0+JyfHK3UBAABr2GYybVFRkUaNGqX27durSZMm510nJSVFTqfT/YqNjfVylQAAwJtsM/Tz0EMP6fPPP9dXX32lOnXqnHed8/WoxMbGMvQDAIAP8bmhnxEjRujTTz/Vl19+ecGQIklBQUEKCgryYmUAAMBKlgYVY4z++te/auHChVqzZo3q1atnZTkAAMBmLA0qw4cP10cffaR//etfqlq1qg4dOiRJcjqdCgkJsbI0AABgA5bOUXE4HOddnpqaqsGDB1/y77k8GQAA3+Mzc1RsMo8XAADYlG0uTwYAAPg9ggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoA+JjM7HytS89SZna+1aUAHmfp05MBAKUzN22fxizYrCIj+TmklL5J6teqrtVlAR5DjwoA+IjM7Hx3SJGkIiM9vWALPSso1wgqAOAjMrJOuUPKOYXGaE9WnjUFwWMY3vsVQz8A4CPqRYTKz6FiYcXf4VB8RGXrikKZY3ivOHpUAMBHxDhDlNI3Sf4Oh6SzIWVC3yaKcYZYXBnKCsN7JdGjAgA+pF+ruuqYGKk9WXmKj6hMSClnLja8V1H/tyaoAICPiXGGVNiTVnnH8F5JDP0AAGATDO+VRI8KAAA2wvBecQQVAABshuG9XzH0AwAAzssO93OhRwUAAJRgl/u50KMCAACKsdP9XAgqAACgGDs9roGgAgAAijl3P5ffsup+LgQVAABQjJ3u58JkWgAAUIJd7udCUAEAAOdlh/u5MPQDAABsi6ACAABsi6ACAABsi6ACSfa4TTIAAL/HZFrY5jbJAAD8Hj0qFZydbpMMADiLXu5f0aNSwV3sNslWX5IGABURvdzF0aNSwdnpNskAUNHRy10SQaWCs9NtkgGgorPTwwDtgqEf2OY2yQBQ0Z3r5f5tWKnovdyW9qh8+eWX6tWrl2rVqiWHw6FPPvnEynIqtBhniNo2qEFIsREm0wEVD73cJVnao3Lq1Ck1a9ZM999/v/r27WtlKRVeZna+MrJOqV5EaIX+P4RdMJkOqLjo5S7O0qDSs2dP9ezZ08oSIE6KdnOhyXQdEyMr/A8WUFHY4WGAduFTk2ldLpdycnKKvXB1mGFuP0ymA4Bf+VRQSUlJkdPpdL9iY2OtLsnncVK0Hy4ZB4Bf+VRQGTNmjLKzs92v/fv3W12Sz+OkaD9MpgOAX/nU5clBQUEKCgqyuoxy5dxJ8ekFW1RoDCdFm2AyHQCc5VNBBZ7BSdGemEwHABYHldzcXO3atcv9PiMjQ5s2bVL16tVVty5XnXgTJ0UAgB1ZGlTWr1+vLl26uN8/+uijkqRBgwZp5syZFlUFAADswtKg0rlzZxljLr0iAACokHzqqh8AAFCxEFQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVS8JDM7X+vSs5SZnW91KQBQDL9PsLMAqwuoCOam7dOYBZtVZCQ/h5TSN0n9WtW1uiwA4PcJtkePiodlZue7fwQkqchITy/Ywr9cAFiO3yf4AoKKh2VknXL/CJxTaIz2ZOVZUxAA/B9+n+ALCCoeVi8iVH6O4sv8HQ7FR1S2piAA+D/8PsEXEFQ8LMYZopS+SfJ3nP018Hc4NKFvE8U4QyyuDEBFx+8TfIHDGGMuvZo95eTkyOl0Kjs7W2FhYVaXc1GZ2fnak5Wn+IjK/AgAsBV+n+BtpTl/c9WPl8Q4Q/gBAGBL/D7Bzhj6AQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtuXTz/o59zzFnJwciysBAACX69x5+3Kei+zTQeXkyZOSpNjYWIsrAQAApXXy5Ek5nc6LruMwlxNnbKqoqEgHDx5U1apV5XA4zrtOTk6OYmNjtX///ks+Srq8oy3Ooh3Ooh1+RVucRTucRTv8ylNtYYzRyZMnVatWLfn5XXwWik/3qPj5+alOnTqXtW5YWFiF/8KdQ1ucRTucRTv8irY4i3Y4i3b4lSfa4lI9KecwmRYAANgWQQUAANhWuQ8qQUFBGjdunIKCgqwuxXK0xVm0w1m0w69oi7Noh7Noh1/ZoS18ejItAAAo38p9jwoAAPBdBBUAAGBbBBUAAGBbBBUAAGBb5SKovPXWW4qPj1dwcLDatGmjb7/99oLrbt26VX/6058UHx8vh8OhqVOneq9QLyhNW0yfPl3XX3+9qlWrpmrVqqlbt24XXd+XlKYdFixYoOTkZIWHhys0NFTNmzfXhx9+6MVqPac07fBbc+bMkcPhUO/evT1boBeVpi1mzpwph8NR7BUcHOzFaj2ntN+JEydOaPjw4YqJiVFQUJASExO1ePFiL1XrOaVph86dO5f4PjgcDt1yyy1erNgzSvt9mDp1qq655hqFhIQoNjZWjzzyiH755RfPFml83Jw5c0xgYKB5//33zdatW81f/vIXEx4ebn7++efzrv/tt9+axx9/3Hz88ccmOjraTJkyxbsFe1Bp2+Luu+82b731lvnuu+/M9u3bzeDBg43T6TQHDhzwcuVlq7TtsHr1arNgwQKzbds2s2vXLjN16lTj7+9vlixZ4uXKy1Zp2+GcjIwMU7t2bXP99deb22+/3TvFelhp2yI1NdWEhYWZzMxM9+vQoUNerrrslbYdXC6XSU5ONjfffLP56quvTEZGhlmzZo3ZtGmTlysvW6Vth6NHjxb7LmzZssX4+/ub1NRU7xZexkrbDrNnzzZBQUFm9uzZJiMjwyxdutTExMSYRx55xKN1+nxQad26tRk+fLj7fWFhoalVq5ZJSUm55N/GxcWVq6ByNW1hjDFnzpwxVatWNR988IGnSvSKq20HY4xp0aKFeeaZZzxRntdcSTucOXPGtGvXzvzjH/8wgwYNKjdBpbRtkZqaapxOp5eq857StsO0adNM/fr1zenTp71Voldc7W/ElClTTNWqVU1ubq6nSvSK0rbD8OHDTdeuXYste/TRR0379u09WqdPD/2cPn1aGzZsULdu3dzL/Pz81K1bN3399dcWVuZ9ZdEWeXl5KigoUPXq1T1VpsddbTsYY7Ry5Urt2LFDHTt29GSpHnWl7fD8888rKipKQ4YM8UaZXnGlbZGbm6u4uDjFxsbq9ttv19atW71RrsdcSTssWrRIbdu21fDhw1WzZk01adJEEyZMUGFhobfKLnNl8Vs5Y8YM3XXXXQoNDfVUmR53Je3Qrl07bdiwwT08tHv3bi1evFg333yzR2v16YcSZmVlqbCwUDVr1iy2vGbNmvrhhx8sqsoaZdEWo0ePVq1atYp9cX3NlbZDdna2ateuLZfLJX9/f7399tvq3r27p8v1mCtph6+++kozZszQpk2bvFCh91xJW1xzzTV6//331bRpU2VnZ+uVV15Ru3bttHXr1st+EKrdXEk77N69W6tWrdKAAQO0ePFi7dq1S8OGDVNBQYHGjRvnjbLL3NX+Vn777bfasmWLZsyY4akSveJK2uHuu+9WVlaWOnToIGOMzpw5owcffFBPP/20R2v16aCCsjNx4kTNmTNHa9asKTeTBkujatWq2rRpk3Jzc7Vy5Uo9+uijql+/vjp37mx1aV5x8uRJDRw4UNOnT1dERITV5Viubdu2atu2rft9u3bt1LhxY7377rt64YUXLKzMu4qKihQVFaX33ntP/v7+atmypX766Se9/PLLPhtUrtaMGTOUlJSk1q1bW12K161Zs0YTJkzQ22+/rTZt2mjXrl16+OGH9cILL+jZZ5/12H59OqhERETI399fP//8c7HlP//8s6Kjoy2qyhpX0xavvPKKJk6cqBUrVqhp06aeLNPjrrQd/Pz8lJCQIElq3ry5tm/frpSUFJ8NKqVth/T0dO3Zs0e9evVyLysqKpIkBQQEaMeOHWrQoIFni/aQsvidqFSpklq0aKFdu3Z5okSvuJJ2iImJUaVKleTv7+9e1rhxYx06dEinT59WYGCgR2v2hKv5Ppw6dUpz5szR888/78kSveJK2uHZZ5/VwIEDNXToUElSUlKSTp06pQceeEBjx46Vn59nZpP49ByVwMBAtWzZUitXrnQvKyoq0sqVK4v9a6giuNK2mDx5sl544QUtWbJEycnJ3ijVo8rqO1FUVCSXy+WJEr2itO3QqFEjbd68WZs2bXK/brvtNnXp0kWbNm1SbGysN8svU2XxnSgsLNTmzZsVExPjqTI97kraoX379tq1a5c7tErSjz/+qJiYGJ8MKdLVfR/mzZsnl8ule+65x9NletyVtENeXl6JMHIuxBpPPjbQo1N1vWDOnDkmKCjIzJw502zbts088MADJjw83H0p4cCBA81TTz3lXt/lcpnvvvvOfPfddyYmJsY8/vjj5rvvvjM7d+606hDKTGnbYuLEiSYwMNDMnz+/2KV3J0+etOoQykRp22HChAlm2bJlJj093Wzbts288sorJiAgwEyfPt2qQygTpW2H3ytPV/2Uti2ee+45s3TpUpOenm42bNhg7rrrLhMcHGy2bt1q1SGUidK2w759+0zVqlXNiBEjzI4dO8ynn35qoqKizIsvvmjVIZSJK/3/RocOHUy/fv28Xa7HlLYdxo0bZ6pWrWo+/vhjs3v3brNs2TLToEEDc+edd3q0Tp8PKsYY88Ybb5i6deuawMBA07p1a/PNN9+4P+vUqZMZNGiQ+31GRoaRVOLVqVMn7xfuAaVpi7i4uPO2xbhx47xfeBkrTTuMHTvWJCQkmODgYFOtWjXTtm1bM2fOHAuqLnulaYffK09BxZjStcWoUaPc69asWdPcfPPNZuPGjRZUXfZK+51Yt26dadOmjQkKCjL169c3L730kjlz5oyXqy57pW2HH374wUgyy5Yt83KlnlWadigoKDDjx483DRo0MMHBwSY2NtYMGzbMHD9+3KM1OozxZH8NAADAlfPpOSoAAKB8I6gAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAwGUYPHiwevfubXUZQIVDUAF83ODBg+VwONyvGjVq6KabbtL3339vdWll4rfHdu7VoUMHj+1vz549cjgc2rRpU7Hlf//73zVz5kyP7RfA+RFUgHLgpptuUmZmpjIzM7Vy5UoFBATo1ltvtbqsMpOamuo+vszMTC1atOi86xUUFHisBqfTqfDwcI9tH8D5EVSAciAoKEjR0dGKjo5W8+bN9dRTT2n//v06cuSIunbtqhEjRhRb/8iRIwoMDHQ/OTU+Pl4vvPCC+vfvr9DQUNWuXVtvvfVWsb957bXXlJSUpNDQUMXGxmrYsGHKzc11f75371716tVL1apVU2hoqK677jotXrxYknT8+HENGDBAkZGRCgkJUcOGDZWamnrZxxceHu4+vujoaFWvXt3d8zF37lx16tRJwcHBmj17to4ePar+/furdu3aqly5spKSkvTxxx8X215RUZEmT56shIQEBQUFqW7dunrppZckSfXq1ZMktWjRQg6HQ507d5ZUcujH5XJp5MiRioqKUnBwsDp06KC0tDT352vWrJHD4dDKlSuVnJysypUrq127dtqxY8dlHzcAggpQ7uTm5mrWrFlKSEhQjRo1NHToUH300UdyuVzudWbNmqXatWura9eu7mUvv/yymjVrpu+++05PPfWUHn74YS1fvtz9uZ+fn15//XVt3bpVH3zwgVatWqUnn3zS/fnw4cPlcrn05ZdfavPmzZo0aZKqVKkiSXr22We1bds2ff7559q+fbumTZumiIiIMjnec7Vu375dPXr00C+//KKWLVvqs88+05YtW/TAAw9o4MCB+vbbb91/M2bMGE2cONFd10cffaSaNWtKknu9FStWKDMzUwsWLDjvfp988kn985//1AcffKCNGzcqISFBPXr00LFjx4qtN3bsWL366qtav369AgICdP/995fJcQMVhkcfeQjA4wYNGmT8/f1NaGioCQ0NNZJMTEyM2bBhgzHGmPz8fFOtWjUzd+5c9980bdrUjB8/3v0+Li7O3HTTTcW2269fP9OzZ88L7nfevHmmRo0a7vdJSUnFtvlbvXr1Mvfdd98VHZ8kExwc7D6+0NBQs3DhQveT0KdOnXrJbdxyyy3mscceM8YYk5OTY4KCgsz06dPPu+657X733XfFlv/2adK5ubmmUqVKZvbs2e7PT58+bWrVqmUmT55sjDFm9erVRpJZsWKFe53PPvvMSDL5+fmlaQKgQqNHBSgHunTpok2bNmnTpk369ttv1aNHD/Xs2VN79+5VcHCwBg4cqPfff1+StHHjRm3ZskWDBw8uto22bduWeL99+3b3+xUrVuiGG25Q7dq1VbVqVQ0cOFBHjx5VXl6eJGnkyJF68cUX1b59e40bN67YZN6HHnpIc+bMUfPmzfXkk09q3bp1pTq+KVOmuI9v06ZN6t69u/uz5OTkYusWFhbqhRdeUFJSkqpXr64qVapo6dKl2rdvnyRp+/btcrlcuuGGG0pVw2+lp6eroKBA7du3dy+rVKmSWrduXazNJKlp06bu/46JiZEkHT58+Ir3DVQ0BBWgHAgNDVVCQoISEhLUqlUr/eMf/9CpU6c0ffp0SdLQoUO1fPlyHThwQKmpqeratavi4uIue/t79uzRrbfeqqZNm+qf//ynNmzY4J7Dcvr0afc+du/erYEDB2rz5s1KTk7WG2+8IUnu0PTII4/o4MGDuuGGG/T4449f9v6jo6Pdx5eQkKDQ0NBix/5bL7/8sv7+979r9OjRWr16tTZt2qQePXq46wwJCbns/ZaFSpUquf/b4XBIOjtHBsDlIagA5ZDD4ZCfn5/y8/MlSUlJSUpOTtb06dP10UcfnXeexDfffFPifePGjSVJGzZsUFFRkV599VX98Y9/VGJiog4ePFhiG7GxsXrwwQe1YMECPfbYY+6gJEmRkZEaNGiQZs2apalTp+q9994ry0N2W7t2rW6//Xbdc889atasmerXr68ff/zR/XnDhg0VEhLinkj8e4GBgZLO9sxcSIMGDRQYGKi1a9e6lxUUFCgtLU3XXnttGR0JAEkKsLoAAFfP5XLp0KFDks5eYfPmm28qNzdXvXr1cq8zdOhQjRgxQqGhoerTp0+Jbaxdu1aTJ09W7969tXz5cs2bN0+fffaZJCkhIUEFBQV644031KtXL61du1bvvPNOsb8fNWqUevbsqcTERB0/flyrV692B52//e1vatmypa677jq5XC59+umn7s/KWsOGDTV//nytW7dO1apV02uvvaaff/7ZHSCCg4M1evRoPfnkkwoMDFT79u115MgRbd26VUOGDFFUVJRCQkK0ZMkS1alTR8HBwXI6ncX2ERoaqoceekhPPPGEqlevrrp162ry5MnKy8vTkCFDPHJcQEVFjwpQDixZskQxMTGKiYlRmzZtlJaWpnnz5rkvrZWk/v37KyAgQP3791dwcHCJbTz22GNav369WrRooRdffFGvvfaaevToIUlq1qyZXnvtNU2aNElNmjTR7NmzlZKSUuzvCwsLNXz4cDVu3Fg33XSTEhMT9fbbb0s620sxZswYNW3aVB07dpS/v7/mzJnjkbZ45pln9Ic//EE9evRQ586dFR0dXeKOss8++6wee+wx/e1vf1Pjxo3Vr18/97yRgIAAvf7663r33XdVq1Yt3X777efdz8SJE/WnP/1JAwcO1B/+8Aft2rVLS5cuVbVq1TxyXEBF5TDGGKuLAOB5e/bsUYMGDZSWlqY//OEPxT6Lj4/XqFGjNGrUKGuKA4ALYOgHKOcKCgp09OhRPfPMM/rjH/9YIqQAgJ0x9AOUc2vXrlVMTIzS0tJKzCux2oQJE1SlSpXzvnr27Gl1eQBsgKEfAJY5duxYiTu5nhMSEqLatWt7uSIAdkNQAQAAtsXQDwAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsC2CCgAAsK3/DyDLT9Lsmp3vAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHHCAYAAACcHAM1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAONBJREFUeJzt3Xl0FGW+//FPJyELAQIhgQQICRA2JSzDdllkR0RFgZkRkUFwYPwpMIorICrgQgAdYVREBxW8gsLAgMMosoMeQa8sMgIiAyEISFgC2iEkdkLy/P7g0pc2YemQ7qp03q9z+hy6qlL1reeE7k+e56kqhzHGCAAAwMaCrC4AAADgaggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAK7b5MmT5XA4rmlbh8OhyZMn+7Sebt26qVu3brbdHwDvEViAADJ//nw5HA73KyQkRLVr19bw4cP1448/Wl2e7SQlJXm0V40aNXTTTTdp+fLlpbL/nJwcTZ48WZs2bSqV/QHlGYEFCEDPPfec3n//fb355pvq27evFixYoK5du+qXX37xyfGefvpp5ebm+mTfvtayZUu9//77ev/99/X444/r2LFjGjhwoN58883r3ndOTo6mTJlCYAFKQYjVBQAofX379lWbNm0kSSNHjlRMTIymT5+uFStW6K677ir144WEhCgkpGx+nNSuXVt/+MMf3O/vvfdeJScna+bMmXrggQcsrAzApehhAcqBm266SZKUlpbmsfz777/X7373O0VHRys8PFxt2rTRihUrPLbJz8/XlClT1LBhQ4WHh6t69erq3Lmz1q5d696muDksLpdLjzzyiGJjY1W5cmXdcccdOnr0aJHahg8frqSkpCLLi9vnvHnz1KNHD9WoUUNhYWG64YYbNGfOHK/a4mri4uLUtGlTpaenX3G7kydPasSIEapZs6bCw8PVokULvffee+71hw4dUmxsrCRpypQp7mEnX8/fAQJV2fyTCIBXDh06JEmqVq2ae9mePXvUqVMn1a5dW+PHj1dkZKT+/ve/q3///vrHP/6hAQMGSLoQHFJTUzVy5Ei1a9dOWVlZ2rZtm3bs2KHevXtf9pgjR47UggULdM8996hjx47asGGDbrvttus6jzlz5ujGG2/UHXfcoZCQEP3rX//SqFGjVFhYqNGjR1/Xvi/Kz8/XkSNHVL169ctuk5ubq27duunAgQMaM2aM6tWrpyVLlmj48OH6+eef9fDDDys2NlZz5szRgw8+qAEDBmjgwIGSpObNm5dKnUC5YwAEjHnz5hlJZt26debUqVPmyJEjZunSpSY2NtaEhYWZI0eOuLft2bOnSUlJMb/88ot7WWFhoenYsaNp2LChe1mLFi3MbbfddsXjTpo0yVz6cbJz504jyYwaNcpju3vuucdIMpMmTXIvGzZsmElMTLzqPo0xJicnp8h2ffr0MfXr1/dY1rVrV9O1a9cr1myMMYmJiebmm282p06dMqdOnTL//ve/zd13320kmT//+c+X3d+sWbOMJLNgwQL3sry8PNOhQwdTqVIlk5WVZYwx5tSpU0XOF0DJMCQEBKBevXopNjZWCQkJ+t3vfqfIyEitWLFCderUkSSdOXNGGzZs0F133aWzZ88qMzNTmZmZOn36tPr06aP9+/e7ryqqWrWq9uzZo/3791/z8VeuXClJeuihhzyWjx079rrOKyIiwv1vp9OpzMxMde3aVQcPHpTT6SzRPtesWaPY2FjFxsaqRYsWWrJkiYYOHarp06df9mdWrlypuLg4DR482L2sQoUKeuihh5Sdna3PPvusRLUAuLyACSyff/65+vXrp1q1asnhcOijjz6yxfH27t2rO+64Q1FRUYqMjFTbtm11+PBhn9YGzJ49W2vXrtXSpUt16623KjMzU2FhYe71Bw4ckDFGzzzzjPvL+uJr0qRJki7M0ZAuXHH0888/q1GjRkpJSdETTzyhb7/99orH/+GHHxQUFKQGDRp4LG/cuPF1ndfmzZvVq1cvRUZGqmrVqoqNjdVTTz0lSSUOLO3bt9fatWu1bt06bdmyRZmZmfrv//5vj3D0az/88IMaNmyooCDPj9CmTZu61wMoXQEzh+XcuXNq0aKF/vjHP7rHiq0+Xlpamjp37qwRI0ZoypQpqlKlivbs2aPw8HCf14fyrV27du6rhPr376/OnTvrnnvu0b59+1SpUiUVFhZKkh5//HH16dOn2H0kJydLkrp06aK0tDT985//1Jo1a/T2229r5syZevPNNzVy5MjrrvVyN5wrKCjweJ+WlqaePXuqSZMmeuWVV5SQkKDQ0FCtXLlSM2fOdJ+Tt2JiYtSrV68S/SwA/wmYwNK3b1/17dv3sutdLpcmTpyoDz/8UD///LOaNWum6dOnl/julVc7niRNnDhRt956q2bMmOFe9uu/OAFfCw4OVmpqqrp3767XX39d48ePV/369SVdGMa4li/r6Oho3XfffbrvvvuUnZ2tLl26aPLkyZcNLImJiSosLFRaWppHr8q+ffuKbFutWjX9/PPPRZb/upfiX//6l1wul1asWKG6deu6l2/cuPGq9Ze2xMREffvttyosLPToZfn+++/d66XLhzEA3guYIaGrGTNmjL788kstWrRI3377rX7/+9/rlltu8Wpc3huFhYX65JNP1KhRI/Xp00c1atRQ+/btfT5UBRSnW7duateunWbNmqVffvlFNWrUULdu3fTWW28pIyOjyPanTp1y//v06dMe6ypVqqTk5GS5XK7LHu9imH/11Vc9ls+aNavItg0aNJDT6fQYZsrIyChyt9ng4GBJkjHGvczpdGrevHmXrcNXbr31Vh0/flyLFy92Lzt//rxee+01VapUSV27dpUkVaxYUZKKDWQAvBMwPSxXcvjwYc2bN0+HDx9WrVq1JF3oCl+1apXmzZunqVOnlvoxT548qezsbE2bNk0vvPCCpk+frlWrVmngwIHauHGj+wMN8JcnnnhCv//97zV//nw98MADmj17tjp37qyUlBT96U9/Uv369XXixAl9+eWXOnr0qP79739Lkm644QZ169ZNrVu3VnR0tLZt26alS5dqzJgxlz1Wy5YtNXjwYL3xxhtyOp3q2LGj1q9frwMHDhTZ9u6779a4ceM0YMAAPfTQQ8rJydGcOXPUqFEj7dixw73dzTffrNDQUPXr10//7//9P2VnZ2vu3LmqUaNGsaHLl+6//3699dZbGj58uLZv366kpCQtXbpUmzdv1qxZs1S5cmVJFyYJ33DDDVq8eLEaNWqk6OhoNWvWTM2aNfNrvUBAsPoyJV+QZJYvX+5+//HHHxtJJjIy0uMVEhJi7rrrLmOMMXv37jWSrvgaN27cNR3PGGN+/PFHI8kMHjzYY3m/fv3M3XffXarnC1x08bLmrVu3FllXUFBgGjRoYBo0aGDOnz9vjDEmLS3N3HvvvSYuLs5UqFDB1K5d29x+++1m6dKl7p974YUXTLt27UzVqlVNRESEadKkiXnxxRdNXl6ee5viLkHOzc01Dz30kKlevbqJjIw0/fr1M0eOHCn2Mt81a9aYZs2amdDQUNO4cWOzYMGCYve5YsUK07x5cxMeHm6SkpLM9OnTzbvvvmskmfT0dPd23lzWfLVLti+3vxMnTpj77rvPxMTEmNDQUJOSkmLmzZtX5Ge3bNliWrdubUJDQ7nEGbgODmMu6V8NEA6HQ8uXL1f//v0lSYsXL9aQIUO0Z88ed7fyRZUqVVJcXJzy8vJ08ODBK+63evXq7jtXXul4kpSXl6fIyEhNmjRJTz/9tHv5uHHj9MUXX2jz5s0lP0EAAMqZcjEk1KpVKxUUFOjkyZPuW5T/WmhoqJo0aVJqxwwNDVXbtm2LTDL8z3/+456QBwAArk3ABJbs7GyP8fH09HTt3LlT0dHRatSokYYMGaJ7771Xf/nLX9SqVSudOnVK69evV/PmzUt0u/ArHe/iFQxPPPGEBg0apC5duqh79+5atWqV/vWvf/HkVgAAvGX1mFRp2bhxY7HzToYNG2aMuXDb7GeffdYkJSWZChUqmPj4eDNgwADz7bff+uR4F73zzjsmOTnZhIeHmxYtWpiPPvroOs8UAIDyJyDnsAAAgMBSbu7DAgAAyi4CCwAAsL0yPem2sLBQx44dU+XKlbkFNgAAZYQxRmfPnlWtWrWKPET0csp0YDl27JgSEhKsLgMAAJTAkSNHVKdOnWvatkwHlou3vz5y5IiqVKlicTUAAOBaZGVlKSEhwf09fi3KdGC5OAxUpUoVAgsAAGWMN9M5mHQLAABsj8ACAABsj8ACAABsr0zPYQEAwE4KCwuVl5dndRmWq1ChgoKDg0t1nwQWAABKQV5entLT01VYWGh1KbZQtWpVxcXFldp90ggsAABcJ2OMMjIyFBwcrISEhGu+GVogMsYoJydHJ0+elCTFx8eXyn4JLAAAXKfz588rJydHtWrVUsWKFa0ux3IRERGSpJMnT6pGjRqlMjxUfiMgAAClpKCgQJIUGhpqcSX2cTG45efnl8r+CCwAAJQSnmv3f0q7LQgsAADA9ggsAADA9ggsNpfhzNWWtExlOHOtLgUAEKCOHDmiP/7xj6pVq5ZCQ0OVmJiohx9+WKdPn5Z0YR7KuHHjlJKSosjISNWqVUv33nuvjh075rcaCSw2tnjrYXWatkH3zP0fdZq2QYu3Hra6JABAgDl48KDatGmj/fv368MPP9SBAwf05ptvav369erQoYPOnDmjnJwc7dixQ88884x27NihZcuWad++fbrjjjv8VieXNdtUhjNXE5btUqG58L7QSE8t260ujWIVHxVhbXEAgIAxevRohYaGas2aNe7LkevWratWrVqpQYMGmjhxoubMmaO1a9d6/Nzrr7+udu3a6fDhw6pbt67P66SHxabSM8+5w8pFBcboUGaONQUBAPzCn1MBzpw5o9WrV2vUqFHusHJRXFychgwZosWLF8sYU+RnnU6nHA6Hqlat6vM6JXpYbKteTKSCHPIILcEOh5JiuCERAASqxVsPu3vXgxxS6sAUDWrru96L/fv3yxijpk2bFru+adOm+umnn3Tq1CnVqFHDvfyXX37RuHHjNHjwYFWpUsVn9V2KHhabio+KUOrAFAX/73XswQ6Hpg5sxnAQAASoy00F8EdPS3E9KJeTn5+vu+66S8YYzZkzx4dVeaKHxcYGta2rLo1idSgzR0kxFQkrABDArjQVwFef/8nJyXI4HNq7d68GDBhQZP3evXtVrVo1xcbGSvq/sPLDDz9ow4YNfutdkehhsb34qAh1aFCdsAIAAe7iVIBL+XoqQPXq1dW7d2+98cYbys317Mk5fvy4Fi5cqEGDBsnhcLjDyv79+7Vu3TpVr17dZ3UVh8ACAIANWDUV4PXXX5fL5VKfPn30+eef68iRI1q1apV69+6t2rVr68UXX1R+fr5+97vfadu2bVq4cKEKCgp0/PhxHT9+XHl5eT6t7yKGhHDNMpy5Ss88p3oxkfT4AIAPWDEVoGHDhtq2bZsmTZqku+66S2fOnFFcXJz69++vSZMmKTo6WocOHdKKFSskSS1btvT4+Y0bN6pbt24+r5PAgmvi75nrAFBexUdF+P2PwsTERM2fP/+y65OSkryamOsLDAnhqqycuQ4AgGRxYJk8ebIcDofHq0mTJlaWhGJwEzsAgNUsHxK68cYbtW7dOvf7kBDLS8KvcBM7AIDVLB8SCgkJUVxcnPsVExNjdUn4FW5iBwCwmuXdGfv371etWrUUHh6uDh06KDU11S8PUYJ3uIkdAFyd1RNT7aS028LSwNK+fXvNnz9fjRs3VkZGhqZMmaKbbrpJu3fvVuXKlYts73K55HK53O+zsrL8WW65Z8XMdQAoC4KDgyVJeXl5RR4iWF7l5FyY51ihQoVS2Z+lgaVv377ufzdv3lzt27dXYmKi/v73v2vEiBFFtk9NTdWUKVP8WSIAAFcVEhKiihUr6tSpU6pQoYKCgiyfcWEZY4xycnJ08uRJVa1a1R3mrpfD2Kz/qm3bturVq5dSU1OLrCuuhyUhIUFOp9OvzzMAAODX8vLylJ6ersLCQqtLsYWqVasqLi5ODoejyLqsrCxFRUV59f1t+RyWS2VnZystLU1Dhw4tdn1YWJjCwsL8XBUAAFcXGhqqhg0b+u1W9XZWoUKFUutZucjSwPL444+rX79+SkxM1LFjxzRp0iQFBwdr8ODBVpYFAECJBAUFKTw83OoyApKlgeXo0aMaPHiwTp8+rdjYWHXu3FlfffWV+zHWAAAAksWBZdGiRVYeHgAAlBHldxozAAAoMwgsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9ggsAADA9mwTWKZNmyaHw6GxY8daXQoAALAZWwSWrVu36q233lLz5s2tLgUAANiQ5YElOztbQ4YM0dy5c1WtWjWrywEAADZkeWAZPXq0brvtNvXq1euq27pcLmVlZXm8AABA4Aux8uCLFi3Sjh07tHXr1mvaPjU1VVOmTPFxVQAAwG4s62E5cuSIHn74YS1cuFDh4eHX9DMTJkyQ0+l0v44cOeLjKgEAgB04jDHGigN/9NFHGjBggIKDg93LCgoK5HA4FBQUJJfL5bGuOFlZWYqKipLT6VSVKlV8XTIAACgFJfn+tmxIqGfPntq1a5fHsvvuu09NmjTRuHHjrhpWAABA+WFZYKlcubKaNWvmsSwyMlLVq1cvshwAAJRvll8lBAAAcDWWXiX0a5s2bbK6BAAAYEP0sAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANuzNLDMmTNHzZs3V5UqVVSlShV16NBBn376qZUlAQAAG7I0sNSpU0fTpk3T9u3btW3bNvXo0UN33nmn9uzZY2VZAADAZhzGGGN1EZeKjo7WSy+9pBEjRlx126ysLEVFRcnpdKpKlSp+qA4AAFyvknx/h/i4pmtWUFCgJUuW6Ny5c+rQoUOx27hcLrlcLvf7rKwsf5UHAAAsZPmk2127dqlSpUoKCwvTAw88oOXLl+uGG24odtvU1FRFRUW5XwkJCX6uFgg8Gc5cbUnLVIYz1+pSAOCyLB8SysvL0+HDh+V0OrV06VK9/fbb+uyzz4oNLcX1sCQkJDAkBJTQ4q2HNWHZLhUaKcghpQ5M0aC2da0uC0CAK8mQkOWB5dd69eqlBg0a6K233rrqtsxhAUouw5mrTtM2qPCST4Bgh0NfjO+u+KgI6woDEPBK8v1t+ZDQrxUWFnr0ogDwjfTMcx5hRZIKjNGhzBxrCgKAK7B00u2ECRPUt29f1a1bV2fPntUHH3ygTZs2afXq1VaWBZQL9WIiFeRQkR6WpJiK1hUFAJdhaQ/LyZMnde+996px48bq2bOntm7dqtWrV6t3795WlgWUC/FREUodmKJgh0PShbAydWAzhoMA2JLt5rB4gzkswPXLcObqUGaOkmIqElYA+EWZvg8LAGvER0UQVADYnu0m3QIAAPwagQUAANgegQUAANgegQUAANgegQUAANgegQUAANgegQUAANgegQUAANheiQLL0aNHlZ2dXWR5fn6+Pv/88+suCgAA4FJeBZaMjAy1a9dOiYmJqlq1qu69916P4HLmzBl179691IsEAADlm1eBZfz48QoKCtL//M//aNWqVfruu+/UvXt3/fTTT+5tyvCjiQAAgE15FVjWrVunV199VW3atFGvXr20efNmxcfHq0ePHjpz5owkyfG/T34FAAAoLV4FFqfTqWrVqrnfh4WFadmyZUpKSlL37t118uTJUi8QAADAq8BSv359ffvttx7LQkJCtGTJEtWvX1+33357qRYHAAAgeRlY+vbtq7/97W9Fll8MLS1btiytugAAANwcxotZsufPn1dOTo6qVKkiScrMzJQkxcTEuNf/+OOPSkxM9EGpRWVlZSkqKkpOp9NdEwAAsLeSfH971cMSEhKiwsJCjR49WjExMapZs6Zq1qypmJgYjRkzRtnZ2X4LKwAAoPwI8WbjM2fOqEOHDvrxxx81ZMgQNW3aVJL03Xffaf78+Vq/fr22bNniMTEXAADgenkVWJ577jmFhoYqLS1NNWvWLLLu5ptv1nPPPaeZM2eWapEAAKB882pI6KOPPtLLL79cJKxIUlxcnGbMmKHly5eXWnEAAABSCW7Nf+ONN152fbNmzXT8+PHrLgoAAOBSXgWWmJgYHTp06LLr09PTFR0dfb01AQAAePAqsPTp00cTJ05UXl5ekXUul0vPPPOMbrnlllIrDgAAQPLyPixHjx5VmzZtFBYWptGjR6tJkyYyxmjv3r1644035HK5tG3bNiUkJPiyZjfuwwIAQNlTku9vr64SqlOnjr788kuNGjVKEyZMcD+Z2eFwqHfv3nr99df9FlYAAED54VVgkaR69erp008/1U8//aT9+/dLkpKTk5m7AgAAfMbrwHJRtWrV1K5du9KsBQAAoFheTboFAACwAoEFAADYHoEFAADYHoEFAADYHoEFAADYHoEFAADYHoEFAADYHoGlHMpw5mpLWqYynLlWlwIAwDUp8Y3jUDYt3npYE5btUqGRghxS6sAUDWpb1+qyAAC4InpYypEMZ647rEhSoZGeWrabnhYAgO0RWMqR9Mxz7rByUYExOpSZY01BAABcIwJLOVIvJlJBDs9lwQ6HkmIqWlMQAADXiMBSjsRHRSh1YIqCHRdSS7DDoakDmyk+KsLiygAAuDIm3ZYzg9rWVZdGsTqUmaOkmIqEFQBAmUBgKYfioyIIKgCAMoUhIQAAYHsEFgAAYHsEFgAAYHsEFgAAYHsEFgAAYHsEFqAc4IGXAMo6LmsGAhwPvAQQCOhhAQIYD7wEECgILEAA44GXAAIFgQUIYDzwEkCgILAAAYwHXgIIFJZOuk1NTdWyZcv0/fffKyIiQh07dtT06dPVuHFjK8sCAgoPvAQQCCztYfnss880evRoffXVV1q7dq3y8/N1880369y5c1aWBQSc+KgIdWhQnbACoMxyGGPM1Tfzj1OnTqlGjRr67LPP1KVLl6tun5WVpaioKDmdTlWpUsUPFQIAgOtVku9vW92Hxel0SpKio6OLXe9yueRyudzvs7Ky/FIXAACwlm0m3RYWFmrs2LHq1KmTmjVrVuw2qampioqKcr8SEhL8XCUAALCCbYaEHnzwQX366af64osvVKdOnWK3Ka6HJSEhgSEhAADKkDI7JDRmzBh9/PHH+vzzzy8bViQpLCxMYWFhfqwMAADYgaWBxRijP//5z1q+fLk2bdqkevXqWVkOAACwKUsDy+jRo/XBBx/on//8pypXrqzjx49LkqKiohQRweWXAADgAkvnsDgcjmKXz5s3T8OHD7/qz3NZMwAAZU+Zm8Nik/m+QJmR4cxVeuY51YuJ5CZwAMoVW0y6BXB1i7ce1oRlu1RopCCHlDowRYPa1rW6LFsj4AGBg8AClAEZzlx3WJGkQiM9tWy3ujSK5Yv4Mgh4wPWzU+gnsABlQHrmOXdYuajAGB3KzLH8Q8SOCHjA9bNb6LfNnW4BXF69mEgF/WqOerDDoaSYitYUZHNXCngAru5yoT/DmWtZTQQWoAyIj4pQ6sAUBf/vlXXBDoemDmxGb8FlEPCA62PH0M+QEFBGDGpbV10axepQZo6SYioSVq7gYsB7atluFRhDwAO8dDH0XxparA79BBagDImPiuBL9xoR8ICSs2PoJ7AACFgEPKDk7Bb6CSwAAKBYdgr9TLoFAAC2R2ABAAC2R2ABAAC2R2ABAAC2R2ABAAC2R2ABAAC2R2ABAAC2R2ABAAC2R2ABAAC2R2ABAAC2R2ABAAC2R2ABAAC2R2ABAAC2R2ABAKCMyHDmaktapjKcuVaX4nchVhcAAACubvHWw5qwbJcKjRTkkFIHpmhQ27pWl+U39LAAAGBzGc5cd1iRpEIjPbVsd7nqaSGwAABgc+mZ59xh5aICY3QoM8eagixAYAEAwObqxUQqyOG5LNjhUFJMRWsKsgCBBQAAm4uPilDqwBQFOy6klmCHQ1MHNlN8VITFlfkPk24BACgDBrWtqy6NYnUoM0dJMRXLVViRCCwAAJQZ8VER5S6oXMSQEACgXCjP9zAJBPSwAAACXnm/h0kgoIcFABDQuIdJYCCwAAACGvcwCQwEFgBAQOMeJoGBwAIACGjcwyQwMOnW5jKcuUrPPKd6MZH85wKAEirv9zAJBAQWG2NWOwCUnvJ8D5NAwJCQTTGrHQCA/0NgsSlmtQNA2caN6koXQ0I2dXFW+6WhhVntAFA2MKRf+uhhsSlmtQNA2cSQvm/Qw2JjzGoHgLLnSkP6fI6XHIHF5pjVDgBly/UO6XM7i+IxJAQAQCm6niH9xVsPq9O0Dbpn7v+o07QNWrz1sK/LLTMcxhhz9c3sKSsrS1FRUXI6napSpYrV5QABh7/0gJLLcOZ6NaSf4cxVp2kbivTMfDG+e8D9/yvJ9zdDQgCKxVUOwPXxdkifuS9XxpAQgCK4ygHwPx7SeGUEFgBFcONCwP+4ncWVMSQEoAhuXAhYg9tZXB49LACK4C89wDrxURHq0KA6/99+hR4WAMXiLz0AdkJgAXBZ3LgQgF0wJAQAAGyPwAIAwBVkOHO1JS2Ty/otZmlg+fzzz9WvXz/VqlVLDodDH330kZXlAADggVvl24elgeXcuXNq0aKFZs+ebWUZAAAUwQ0U7cXSSbd9+/ZV3759rSwBAIBicat8eylTVwm5XC65XC73+6ysLAurAQAEMm6gaC9latJtamqqoqKi3K+EhASrSwIABChuoGgvDmOMufpmvudwOLR8+XL179//stsU18OSkJDg1eOpAQDwRoYzlxsolrKsrCxFRUV59f1dpoaEwsLCFBYWZnUZAIByhBso2kOZGhICAADlk6U9LNnZ2Tpw4ID7fXp6unbu3Kno6GjVrVvXwsoAAICdWBpYtm3bpu7du7vfP/roo5KkYcOGaf78+RZVBQAA7MbSwNKtWzfZZM4vAACwMeawAAAA2yOwAAAA2yOwXAZP5wQAT3wuwkpl6j4s/rJ462H3A6+CHFLqwBQNastVSwDKLz4XYTV6WH6Fp3MCgCc+F2EHBJZfudLTOQGgPOJzEXZAYPmVi0/nvBRP5wRQnvG5CDsgsPwKT+cEAE98LsIObPO05pIoydMerxVP5wQAT3wuorQE/NOa/YmncwKAJz4XYSWGhAAAgO0RWAAAgO0RWAAAgO0RWAAAgO0RWAAAgO0RWAAAgO0RWAAAgO0RWIDrkOHM1Za0TB4CBwA+xo3jgBJavPWw+wm2QQ4pdWCKBrWta3VZABCQ6GEBSiDDmesOK5JUaKSnlu2mpwUAfITAApRAeuY5d1i5qMAYHcrMsaYgAAhwBBagBOrFRCrI4bks2OFQUkxFawoCgABHYAFKID4qQqkDUxTsuJBagh0OTR3YjAfDAYCPMOkWKKFBbeuqS6NYHcrMUVJMRcIKAPgQgQW4DvFREQQVAPADhoQAAIDtEVgAAIDtEVgAAIDtEVgAAIDtEVgAAIDtEVgAAIDtEVgAAIDtEVgAAIDtEVgAlEiGM1db0jJ5QjUAv+BOtwC8tnjrYU1YtkuFRgpySKkDUzSobV2rywIQwOhhAeCVDGeuO6xIUqGRnlq2m54WAD5FYAHglfTMc+6wclGBMTqUmWNNQQDKBQILAK/Ui4lUkMNzWbDDoaSYitYUBKBcILAA8Ep8VIRSB6Yo2HEhtQQ7HJo6sBlPrQbgU0y6BeC1QW3rqkujWB3KzFFSTEXCCgCfI7AAKJH4qAiCCgC/YUgIAADYHoEFAADYHoEFAADYHoEFAADYHoEFAADYHoEFAADYHoEFAADYHoEFAADYHoEFAADYHoEFQJmX4czVlrRMZThzrS4FgI9wa34AZdrirYc1YdkuFRopyCGlDkzRoLZ1rS4LQCmjhwVAmZXhzHWHFUkqNNJTy3bT0wIEIAILgDIrPfOcO6xcVGCMDmXmWFMQAJ+xRWCZPXu2kpKSFB4ervbt2+vrr7+2uiQAZUC9mEgFOTyXBTscSoqpaE1BAHzG8sCyePFiPfroo5o0aZJ27NihFi1aqE+fPjp58qTVpQGwufioCKUOTFGw40JqCXY4NHVgM8VHRVhcGYDS5jDGmKtv5jvt27dX27Zt9frrr0uSCgsLlZCQoD//+c8aP378FX82KytLUVFRcjqdqlKlij/KBWBDGc5cHcrMUVJMRcIKUAaU5Pvb0quE8vLytH37dk2YMMG9LCgoSL169dKXX35ZZHuXyyWXy+V+n5WV5Zc6AdhbfFQEQQUIcJYOCWVmZqqgoEA1a9b0WF6zZk0dP368yPapqamKiopyvxISEvxVKgAAsJDlc1i8MWHCBDmdTvfryJEjVpcEAAD8wNIhoZiYGAUHB+vEiRMey0+cOKG4uLgi24eFhSksLMxf5QEAAJuwtIclNDRUrVu31vr1693LCgsLtX79enXo0MHCygAAgJ1Yfmv+Rx99VMOGDVObNm3Url07zZo1S+fOndN9991ndWkAAMAmLA8sgwYN0qlTp/Tss8/q+PHjatmypVatWlVkIi4AACi/LL8Py/XgPiwAAJQ9Jfn+LlNXCQEAgPKJwAIAAGyPwAIAAGyPwAIAAGzP8quErsfF+cI8UwgAgLLj4ve2N9f9lOnAcvbsWUnimUIAAJRBZ8+eVVRU1DVtW6Yvay4sLNSxY8dUuXJlORyOYrfJyspSQkKCjhw5wqXPoj2KQ5t4oj080R5F0SaeaA9P19IexhidPXtWtWrVUlDQtc1OKdM9LEFBQapTp841bVulShV+kS5BexRFm3iiPTzRHkXRJp5oD09Xa49r7Vm5iEm3AADA9ggsAADA9gI+sISFhWnSpEkKCwuzuhRboD2Kok080R6eaI+iaBNPtIcnX7VHmZ50CwAAyoeA72EBAABlH4EFAADYHoEFAADYHoEFAADYXkAEltmzZyspKUnh4eFq3769vv7668tuu2fPHv32t79VUlKSHA6HZs2a5b9C/cSb9pg7d65uuukmVatWTdWqVVOvXr2uuH1Z5U2bLFu2TG3atFHVqlUVGRmpli1b6v333/djtb7nTXtcatGiRXI4HOrfv79vC/Qzb9pj/vz5cjgcHq/w8HA/Vusf3v6O/Pzzzxo9erTi4+MVFhamRo0aaeXKlX6q1ve8aY9u3boV+R1xOBy67bbb/Fixb3n7+zFr1iw1btxYERERSkhI0COPPKJffvnFu4OaMm7RokUmNDTUvPvuu2bPnj3mT3/6k6latao5ceJEsdt//fXX5vHHHzcffvihiYuLMzNnzvRvwT7mbXvcc889Zvbs2eabb74xe/fuNcOHDzdRUVHm6NGjfq7cd7xtk40bN5ply5aZ7777zhw4cMDMmjXLBAcHm1WrVvm5ct/wtj0uSk9PN7Vr1zY33XSTufPOO/1TrB942x7z5s0zVapUMRkZGe7X8ePH/Vy1b3nbJi6Xy7Rp08bceuut5osvvjDp6elm06ZNZufOnX6u3De8bY/Tp097/H7s3r3bBAcHm3nz5vm3cB/xtj0WLlxowsLCzMKFC016erpZvXq1iY+PN4888ohXxy3zgaVdu3Zm9OjR7vcFBQWmVq1aJjU19ao/m5iYGHCB5Xrawxhjzp8/bypXrmzee+89X5Xod9fbJsYY06pVK/P000/7ojy/K0l7nD9/3nTs2NG8/fbbZtiwYQEVWLxtj3nz5pmoqCg/VWcNb9tkzpw5pn79+iYvL89fJfrV9X6GzJw501SuXNlkZ2f7qkS/8rY9Ro8ebXr06OGx7NFHHzWdOnXy6rhlekgoLy9P27dvV69evdzLgoKC1KtXL3355ZcWVmaN0miPnJwc5efnKzo62ldl+tX1tokxRuvXr9e+ffvUpUsXX5bqFyVtj+eee041atTQiBEj/FGm35S0PbKzs5WYmKiEhATdeeed2rNnjz/K9YuStMmKFSvUoUMHjR49WjVr1lSzZs00depUFRQU+KtsnymNz9V33nlHd999tyIjI31Vpt+UpD06duyo7du3u4eNDh48qJUrV+rWW2/16thl+uGHmZmZKigoUM2aNT2W16xZU99//71FVVmnNNpj3LhxqlWrlscvY1lW0jZxOp2qXbu2XC6XgoOD9cYbb6h3796+LtfnStIeX3zxhd555x3t3LnTDxX6V0nao3Hjxnr33XfVvHlzOZ1Ovfzyy+rYsaP27NlzzQ9jtbOStMnBgwe1YcMGDRkyRCtXrtSBAwc0atQo5efna9KkSf4o22eu93P166+/1u7du/XOO+/4qkS/Kkl73HPPPcrMzFTnzp1ljNH58+f1wAMP6KmnnvLq2GU6sKB0TZs2TYsWLdKmTZsCchKhNypXrqydO3cqOztb69ev16OPPqr69eurW7duVpfmV2fPntXQoUM1d+5cxcTEWF2OLXTo0EEdOnRwv+/YsaOaNm2qt956S88//7yFlVmnsLBQNWrU0N/+9jcFBwerdevW+vHHH/XSSy+V+cByvd555x2lpKSoXbt2VpdimU2bNmnq1Kl644031L59ex04cEAPP/ywnn/+eT3zzDPXvJ8yHVhiYmIUHBysEydOeCw/ceKE4uLiLKrKOtfTHi+//LKmTZumdevWqXnz5r4s069K2iZBQUFKTk6WJLVs2VJ79+5VampqmQ8s3rZHWlqaDh06pH79+rmXFRYWSpJCQkK0b98+NWjQwLdF+1BpfIZUqFBBrVq10oEDB3xRot+VpE3i4+NVoUIFBQcHu5c1bdpUx48fV15enkJDQ31asy9dz+/IuXPntGjRIj333HO+LNGvStIezzzzjIYOHaqRI0dKklJSUnTu3Dndf//9mjhxooKCrm12SpmewxIaGqrWrVtr/fr17mWFhYVav369x19A5UVJ22PGjBl6/vnntWrVKrVp08YfpfpNaf2OFBYWyuVy+aJEv/K2PZo0aaJdu3Zp586d7tcdd9yh7t27a+fOnUpISPBn+aWuNH4/CgoKtGvXLsXHx/uqTL8qSZt06tRJBw4ccIdZSfrPf/6j+Pj4Mh1WpOv7HVmyZIlcLpf+8Ic/+LpMvylJe+Tk5BQJJRfDrfHmcYZeTg62nUWLFpmwsDAzf/58891335n777/fVK1a1X2Z4dChQ8348ePd27tcLvPNN9+Yb775xsTHx5vHH3/cfPPNN2b//v1WnUKp8rY9pk2bZkJDQ83SpUs9LsM7e/asVadQ6rxtk6lTp5o1a9aYtLQ0891335mXX37ZhISEmLlz51p1CqXK2/b4tUC7Ssjb9pgyZYpZvXq1SUtLM9u3bzd33323CQ8PN3v27LHqFEqdt21y+PBhU7lyZTNmzBizb98+8/HHH5saNWqYF154wapTKFUl/T/TuXNnM2jQIH+X63PetsekSZNM5cqVzYcffmgOHjxo1qxZYxo0aGDuuusur45b5gOLMca89tprpm7duiY0NNS0a9fOfPXVV+51Xbt2NcOGDXO/T09PN5KKvLp27er/wn3Em/ZITEwstj0mTZrk/8J9yJs2mThxoklOTjbh4eGmWrVqpkOHDmbRokUWVO073rTHrwVaYDHGu/YYO3ase9uaNWuaW2+91ezYscOCqn3L29+RLVu2mPbt25uwsDBTv3598+KLL5rz58/7uWrf8bY9vv/+eyPJrFmzxs+V+oc37ZGfn28mT55sGjRoYMLDw01CQoIZNWqU+emnn7w6psMYb/pjAAAA/K9Mz2EBAADlA4EFAADYHoEFAADYHoEFAADYHoEFAADYHoEFAADYHoEFAADYHoEFAK7B8OHD1b9/f6vLAMotAgtQxg0fPlwOh8P9ql69um655RZ9++23VpdWKi49t4uvzp07++x4hw4dksPh0M6dOz2W//Wvf9X8+fN9dlwAV0ZgAQLALbfcooyMDGVkZGj9+vUKCQnR7bffbnVZpWbevHnu88vIyNCKFSuK3S4/P99nNURFRalq1ao+2z+AKyOwAAEgLCxMcXFxiouLU8uWLTV+/HgdOXJEp06dUo8ePTRmzBiP7U+dOqXQ0FD3E1eTkpL0/PPPa/DgwYqMjFTt2rU1e/Zsj5955ZVXlJKSosjISCUkJGjUqFHKzs52r//hhx/Ur18/VatWTZGRkbrxxhu1cuVKSdJPP/2kIUOGKDY2VhEREWrYsKHmzZt3zedXtWpV9/nFxcUpOjra3ROyePFide3aVeHh4Vq4cKFOnz6twYMHq3bt2qpYsaJSUlL04YcfeuyvsLBQM2bMUHJyssLCwlS3bl29+OKLkqR69epJklq1aiWHw6Fu3bpJKjok5HK59NBDD6lGjRoKDw9X586dtXXrVvf6TZs2yeFwaP369WrTpo0qVqyojh07at++fdd83gD+D4EFCDDZ2dlasGCBkpOTVb16dY0cOVIffPCBXC6Xe5sFCxaodu3a6tGjh3vZSy+9pBYtWuibb77R+PHj9fDDD2vt2rXu9UFBQXr11Ve1Z88evffee9qwYYOefPJJ9/rRo0fL5XLp888/165duzR9+nRVqlRJkvTMM8/ou+++06effqq9e/dqzpw5iomJKZXzvVjr3r171adPH/3yyy9q3bq1PvnkE+3evVv333+/hg4dqq+//tr9MxMmTNC0adPcdX3wwQeqWbOmJLm3W7dunTIyMrRs2bJij/vkk0/qH//4h9577z3t2LFDycnJ6tOnj86cOeOx3cSJE/WXv/xF27ZtU0hIiP74xz+WynkD5U6pPLYRgGWGDRtmgoODTWRkpImMjDSSTHx8vNm+fbsxxpjc3FxTrVo1s3jxYvfPNG/e3EyePNn9PjEx0dxyyy0e+x00aJDp27fvZY+7ZMkSU716dff7lJQUj31eql+/fua+++4r0flJMuHh4e7zi4yMNMuXL3c/eX3WrFlX3cdtt91mHnvsMWOMMVlZWSYsLMzMnTu32G0v7vebb77xWH7pU6qzs7NNhQoVzMKFC93r8/LyTK1atcyMGTOMMcZs3LjRSDLr1q1zb/PJJ58YSSY3N9ebJgBgjKGHBQgA3bt3186dO7Vz5059/fXX6tOnj/r27asffvhB4eHhGjp0qN59911J0o4dO7R7924NHz7cYx8dOnQo8n7v3r3u9+vWrVPPnj1Vu3ZtVa5cWUOHDtXp06eVk5MjSXrooYf0wgsvqFOnTpo0aZLHpN8HH3xQixYtUsuWLfXkk09qy5YtXp3fzJkz3ee3c+dO9e7d272uTZs2HtsWFBTo+eefV0pKiqKjo1WpUiWtXr1ahw8fliTt3btXLpdLPXv29KqGS6WlpSk/P1+dOnVyL6tQoYLatWvn0WaS1Lx5c/e/4+PjJUknT54s8bGB8orAAgSAyMhIJScnKzk5WW3bttXbb7+tc+fOae7cuZKkkSNHau3atTp69KjmzZunHj16KDEx8Zr3f+jQId1+++1q3ry5/vGPf2j79u3uOS55eXnuYxw8eFBDhw7Vrl271KZNG7322muS5A5PjzzyiI4dO6aePXvq8ccfv+bjx8XFuc8vOTlZkZGRHud+qZdeekl//etfNW7cOG3cuFE7d+5Unz593HVGRERc83FLQ4UKFdz/djgcki7MoQHgHQILEIAcDoeCgoKUm5srSUpJSVGbNm00d+5cffDBB8XOo/jqq6+KvG/atKkkafv27SosLNRf/vIX/dd//ZcaNWqkY8eOFdlHQkKCHnjgAS1btkyPPfaYOzBJUmxsrIYNG6YFCxZo1qxZ+tvf/laap+y2efNm3XnnnfrDH/6gFi1aqH79+vrPf/7jXt+wYUNFRES4Jxz/WmhoqKQLPTWX06BBA4WGhmrz5s3uZfn5+dq6datuuOGGUjoTAJcKsboAANfP5XLp+PHjki5ckfP6668rOztb/fr1c28zcuRIjRkzRpGRkRowYECRfWzevFkzZsxQ//79tXbtWi1ZskSffPKJJCk5OVn5+fl67bXX1K9fP23evFlvvvmmx8+PHTtWffv2VaNGjfTTTz9p48aN7sDz7LPPqnXr1rrxxhvlcrn08ccfu9eVtoYNG2rp0qXasmWLqlWrpldeeUUnTpxwB4nw8HCNGzdOTz75pEJDQ9WpUyedOnVKe/bs0YgRI1SjRg1FRERo1apVqlOnjsLDwxUVFeVxjMjISD344IN64oknFB0drbp162rGjBnKycnRiBEjfHJeQHlHDwsQAFatWqX4+HjFx8erffv22rp1q5YsWeK+JFeSBg8erJCQEA0ePFjh4eFF9vHYY49p27ZtatWqlV544QW98sor6tOnjySpRYsWeuWVVzR9+nQ1a9ZMCxcuVGpqqsfPFxQUaPTo0WratKluueUWNWrUSG+88YakC70WEyZMUPPmzdWlSxcFBwdr0aJFPmmLp59+Wr/5zW/Up08fdevWTXFxcUXuUPvMM8/oscce07PPPqumTZtq0KBB7nklISEhevXVV/XWW2+pVq1auvPOO4s9zrRp0/Tb3/5WQ4cO1W9+8xsdOHBAq1evVrVq1XxyXkB55zDGGKuLAOB7hw4dUoMGDbR161b95je/8ViXlJSksWPHauzYsdYUBwBXwZAQEODy8/N1+vRpPf300/qv//qvImEFAMoChoSAALd582bFx8dr69atReadWG3q1KmqVKlSsa++fftaXR4AG2FICIBlzpw5U+TOsBdFRESodu3afq4IgF0RWAAAgO0xJAQAAGyPwAIAAGyPwAIAAGyPwAIAAGyPwAIAAGyPwAIAAGyPwAIAAGyPwAIAAGzv/wOtFVojmPx3bwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_51.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJAklEQVR4nO3deVyU5f7/8feArCKjBgIaimJuibibmoJFcapjmXUk9ah50pbTonFaxMy1RDu5lJp6POXSJuYxtfSnGYX7ORkumamlQpghiiYo4Mbcvz/8OjmJCuPgMMPr+XjM4+Fcc933fO67O+ftdV/3fZsMwzAEAADgJjycXQAAAIAjEW4AAIBbIdwAAAC3QrgBAABuhXADAADcCuEGAAC4FcINAABwK4QbAADgVgg3AADArRBuADjF6NGjZTKZStXXZDJp9OjR5VpPbGysYmNjK+z6AJQe4Qao5ObNmyeTyWR9ValSRXXq1NGjjz6qQ4cOObu8CiciIsJmf9WqVUtdunTRp59+6pD1FxYWavTo0UpLS3PI+oDKiHADQJI0duxYvf/++5o1a5buueceffDBB4qJidHp06fL5ftGjBihoqKicll3eWvZsqXef/99vf/++3rhhRf066+/qmfPnpo1a9Z1r7uwsFBjxowh3ADXoYqzCwBQMdxzzz1q27atJGnQoEEKCgrSxIkTtXz5cvXq1cvh31elShVVqeKafwXVqVNHf/3rX63v+/fvr4YNG2rKlCl68sknnVgZAImRGwBX0KVLF0nS/v37bdr37Nmjhx9+WDVr1pSvr6/atm2r5cuX2/Q5d+6cxowZo1tuuUW+vr666aabdPvtt2vNmjXWPiXNuTlz5oyef/55BQcHq1q1arr//vv1yy+/XFbbo48+qoiIiMvaS1rn3Llzdccdd6hWrVry8fFRs2bNNHPmzDLti2sJDQ1V06ZNlZGRcdV+R44c0WOPPaaQkBD5+voqOjpa8+fPt36emZmp4OBgSdKYMWOsp77Ke74R4G5c859NAMpdZmamJKlGjRrWtl27dqlz586qU6eOhg0bpqpVq2rRokXq0aOH/vOf/+jBBx+UdCFkJCcna9CgQWrfvr3y8/P17bffauvWrbrrrruu+J2DBg3SBx98oD59+qhTp0766quvdN99913XdsycOVO33nqr7r//flWpUkWfffaZ/v73v8tisejpp5++rnVfdO7cOR08eFA33XTTFfsUFRUpNjZW+/bt0zPPPKP69evrk08+0aOPPqoTJ05oyJAhCg4O1syZM/XUU0/pwQcfVM+ePSVJLVq0cEidQKVhAKjU5s6da0gyvvzyS+Po0aPGwYMHjcWLFxvBwcGGj4+PcfDgQWvfO++804iKijJOnz5tbbNYLEanTp2MW265xdoWHR1t3HfffVf93lGjRhmX/hW0fft2Q5Lx97//3aZfnz59DEnGqFGjrG0DBgww6tWrd811GoZhFBYWXtYvPj7eaNCggU1bTEyMERMTc9WaDcMw6tWrZ9x9993G0aNHjaNHjxo7duwwHnnkEUOS8eyzz15xfVOnTjUkGR988IG17ezZs0bHjh2NgIAAIz8/3zAMwzh69Ohl2wugbDgtBUCSFBcXp+DgYIWHh+vhhx9W1apVtXz5ct18882SpOPHj+urr75Sr169dPLkSeXm5io3N1fHjh1TfHy8fvrpJ+vVVdWrV9euXbv0008/lfr7V65cKUl67rnnbNqHDh16Xdvl5+dn/XNeXp5yc3MVExOjAwcOKC8vz651fvHFFwoODlZwcLCio6P1ySefqF+/fpo4ceIVl1m5cqVCQ0PVu3dva5uXl5eee+45nTp1SmvXrrWrFgCXq9ThZt26derevbtq164tk8mkpUuXluv3nTx5UkOHDlW9evXk5+enTp06acuWLeX6nUBpzZgxQ2vWrNHixYt17733Kjc3Vz4+PtbP9+3bJ8Mw9Oqrr1p/2C++Ro0aJenCnBLpwpVXJ06cUKNGjRQVFaUXX3xR33333VW//+eff5aHh4ciIyNt2hs3bnxd27Vx40bFxcWpatWqql69uoKDgzV8+HBJsjvcdOjQQWvWrNGXX36pTZs2KTc3VwsWLLAJUn/0888/65ZbbpGHh+1fu02bNrV+DsAxKvWcm4KCAkVHR+tvf/ub9dx2eRo0aJC+//57vf/++6pdu7Y++OADxcXF6YcfflCdOnXK/fuBq2nfvr31aqkePXro9ttvV58+fbR3714FBATIYrFIkl544QXFx8eXuI6GDRtKkrp27ar9+/dr2bJl+uKLL/Tvf/9bU6ZM0axZszRo0KDrrvVKN/8rLi62eb9//37deeedatKkiSZPnqzw8HB5e3tr5cqVmjJlinWbyiooKEhxcXF2LQug/FXqcHPPPffonnvuueLnZ86c0SuvvKKPP/5YJ06cUPPmzTVx4kS77jpaVFSk//znP1q2bJm6du0q6cKky88++0wzZ87Ua6+9Zu9mAA7n6emp5ORkdevWTdOnT9ewYcPUoEEDSRdOpZTmh71mzZoaOHCgBg4cqFOnTqlr164aPXr0FcNNvXr1ZLFYtH//fpvRmr17917Wt0aNGjpx4sRl7X8c/fjss8905swZLV++XHXr1rW2f/3119es39Hq1aun7777ThaLxWb0Zs+ePdbPpSsHNwClV6lPS13LM888o82bN2vhwoX67rvv9Je//EV/+tOfyjSP4KLz58+ruLhYvr6+Nu1+fn7asGGDo0oGHCY2Nlbt27fX1KlTdfr0adWqVUuxsbGaPXu2srOzL+t/9OhR65+PHTtm81lAQIAaNmyoM2fOXPH7Lv5D4+2337Zpnzp16mV9IyMjlZeXZ3OqKzs7+7K7BHt6ekqSDMOwtuXl5Wnu3LlXrKO83HvvvTp8+LBSUlKsbefPn9e0adMUEBCgmJgYSZK/v78klRjeAJROpR65uZqsrCzNnTtXWVlZql27tqQLw/GrVq3S3LlzNX78+DKtr1q1aurYsaPGjRunpk2bKiQkRB9//LE2b95sHcoHKpoXX3xRf/nLXzRv3jw9+eSTmjFjhm6//XZFRUVp8ODBatCggXJycrR582b98ssv2rFjhySpWbNmio2NVZs2bVSzZk19++23Wrx4sZ555pkrflfLli3Vu3dvvfPOO8rLy1OnTp2Umpqqffv2Xdb3kUce0csvv6wHH3xQzz33nAoLCzVz5kw1atRIW7dutfa7++675e3tre7du+uJJ57QqVOnNGfOHNWqVavEgFaeHn/8cc2ePVuPPvqo0tPTFRERocWLF2vjxo2aOnWqqlWrJunCP3iaNWumlJQUNWrUSDVr1lTz5s3VvHnzG1ov4NKcfblWRSHJ+PTTT63vP//8c0OSUbVqVZtXlSpVjF69ehmGYRi7d+82JF319fLLL1vXuW/fPqNr166GJMPT09No166d0bdvX6NJkyY3enMBq4uXgm/ZsuWyz4qLi43IyEgjMjLSOH/+vGEYhrF//36jf//+RmhoqOHl5WXUqVPH+POf/2wsXrzYutxrr71mtG/f3qhevbrh5+dnNGnSxHj99deNs2fPWvuUdNl2UVGR8dxzzxk33XSTUbVqVaN79+7GwYMHS7w0+osvvjCaN29ueHt7G40bNzY++OCDEte5fPlyo0WLFoavr68RERFhTJw40XjvvfcMSUZGRoa1X1kuBb/WZe5XWl9OTo4xcOBAIygoyPD29jaioqKMuXPnXrbspk2bjDZt2hje3t5cFg7YwWQYl4zXVmImk0mffvqpevToIUlKSUlR3759tWvXLuvQ9kUBAQEKDQ3V2bNndeDAgauu96abbrLecfSigoIC5efnKywsTAkJCTp16pRWrFjh0O0BAKCy4rTUFbRq1UrFxcU6cuSI9Tb0f+Tt7a0mTZqUed1Vq1ZV1apV9dtvv2n16tV64403rrdcAADwfyp1uDl16pTN+fyMjAxt375dNWvWVKNGjdS3b1/1799fkyZNUqtWrXT06FGlpqaqRYsWdt0SfvXq1TIMQ40bN9a+ffv04osvqkmTJho4cKAjNwsAgEqtUp+WSktLU7du3S5rHzBggObNm6dz587ptdde04IFC3To0CEFBQXptttu05gxYxQVFVXm71u0aJGSkpL0yy+/qGbNmnrooYf0+uuvy2w2O2JzAACAKnm4AQAA7of73AAAALdCuAEAAG6l0k0otlgs+vXXX1WtWjVucw4AgIswDEMnT55U7dq1L3sA7R9VunDz66+/Kjw83NllAAAAOxw8eFA333zzVftUunBz8RbnBw8eVGBgoJOrAQAApZGfn6/w8HDr7/jVODXcrFu3Tv/85z+Vnp5ufejdxTsEl2TJkiWaOXOmtm/frjNnzujWW2/V6NGjFR8fX+rvvHgqKjAwkHADAICLKc2UEqdOKC4oKFB0dLRmzJhRqv7r1q3TXXfdpZUrVyo9PV3dunVT9+7dtW3btnKuFAAAuIoKc5+bPz7bqbRuvfVWJSQkaOTIkaXqn5+fL7PZrLy8PEZuAABwEWX5/XbpOTcWi0UnT55UzZo1r9jnzJkzOnPmjPV9fn7+jSgNAAA4iUuHmzfffFOnTp1Sr169rtgnOTlZY8aMKfO6i4uLde7cuespD27Ay8vrsqfCAwAqNpcNNx999JHGjBmjZcuWqVatWlfsl5SUpMTEROv7i7Otr8QwDB0+fFgnTpxwZLlwYdWrV1doaCj3RQIAF+GS4WbhwoUaNGiQPvnkE8XFxV21r4+Pj3x8fEq97ovBplatWvL39+cHrRIzDEOFhYU6cuSIJCksLMzJFQEASsPlws3HH3+sv/3tb1q4cKHuu+8+h667uLjYGmxuuukmh64brsnPz0+SdOTIEdWqVYtTVADgApwabk6dOqV9+/ZZ32dkZGj79u2qWbOm6tatq6SkJB06dEgLFiyQdOFU1IABA/TWW2+pQ4cOOnz4sKQLP0Bms/m667k4x8bf3/+61wX3cfF4OHfuHOEGAFyAU+9z8+2336pVq1Zq1aqVJCkxMVGtWrWyXtadnZ2trKwsa/9//etfOn/+vJ5++mmFhYVZX0OGDHFoXZyKwqU4HgDAtTh15CY2NlZXu83OvHnzbN6npaWVb0EAAMDlOXXkBrBXRESEpk6d6uwyAAAVEOHGjRw9elRPPfWU6tatKx8fH4WGhio+Pl4bN26UdOH0ytKlS51bZCnFxsbKZDJd9jp//ryzSwMAp8jOK9Km/bnKzitydikVnstdLYUre+ihh3T27FnNnz9fDRo0UE5OjlJTU3Xs2DFnl2aXwYMHa+zYsTZtVapwyAKofFK2ZClpyU5ZDMnDJCX3jFJCu7rOLqvCYuTGTZw4cULr16/XxIkT1a1bN9WrV0/t27dXUlKS7r//fkVEREiSHnzwQZlMJut7SVq2bJlat24tX19fNWjQQGPGjLEZIZk8ebKioqJUtWpVhYeH6+9//7tOnTpl/XzevHmqXr26Pv/8czVu3Fj+/v56+OGHVVhYqPnz5ysiIkI1atTQc889p+Li4lJvk7+/v0JDQ21eV5KVlaUHHnhAAQEBCgwMVK9evZSTkyNJysvLk6enp7799ltJFx7bUbNmTd12223W5T/44IOr3twRAJwlO6/IGmwkyWJIw5d8zwjOVRBuytGNHEIMCAhQQECAli5davMsrYu2bNkiSZo7d66ys7Ot79evX6/+/ftryJAh+uGHHzR79mzNmzdPr7/+unVZDw8Pvf3229q1a5fmz5+vr776Si+99JLN+gsLC/X2229r4cKFWrVqldLS0vTggw9q5cqVWrlypd5//33Nnj1bixcvdvi2WywWPfDAAzp+/LjWrl2rNWvW6MCBA0pISJAkmc1mtWzZ0johfefOnTKZTNq2bZs1pK1du1YxMTEOrw0ArldGboE12FxUbBjKzC10TkEugHBTTlK2ZKnzhK/UZ87/1HnCV0rZknXtha5DlSpVNG/ePM2fP1/Vq1dX586dNXz4cH333XeSpODgYEm/P0rg4vsxY8Zo2LBhGjBggBo0aKC77rpL48aN0+zZs63rHjp0qLp166aIiAjdcccdeu2117Ro0SKb7z937pxmzpypVq1aqWvXrnr44Ye1YcMGvfvuu2rWrJn+/Oc/q1u3bvr6669LvU3vvPOONbQFBAToH//4R4n9UlNTtXPnTn300Udq06aNOnTooAULFmjt2rXWEBcbG2sNN2lpabrrrrvUtGlTbdiwwdpGuAFQEdUPqiqPP9yRwtNkUkQQ92S7EsJNOXDWEOJDDz2kX3/9VcuXL9ef/vQnpaWlqXXr1pddUn+pHTt2aOzYsTYhYvDgwcrOzlZh4YV/FXz55Ze68847VadOHVWrVk39+vXTsWPHrJ9LF04hRUZGWt+HhIQoIiJCAQEBNm0XH2VQGn379tX27dutr6SkpBL77d69W+Hh4TanlZo1a6bq1atr9+7dkqSYmBht2LBBxcXFWrt2rWJjY62B59dff9W+ffsUGxtb6toA4EYJM/spuWeUPP/vnlueJpPG92yuMLOfkyuruJidWQ6uNoRY3gejr6+v7rrrLt1111169dVXNWjQII0aNUqPPvpoif1PnTqlMWPGqGfPniWuKzMzU3/+85/11FNP6fXXX1fNmjW1YcMGPfbYYzp79qz17r1eXl42y5pMphLbLBZLqbfFbDarYcOGpe5/NV27dtXJkye1detWrVu3TuPHj1doaKgmTJig6Oho1a5dW7fccotDvgsAHC2hXV11bRSszNxCRQT5E2yugXBTDi4OIV4acJw1hNisWTPr5d9eXl6XTeht3bq19u7de8UQkZ6eLovFokmTJsnD48JA3x9PSTlb06ZNdfDgQR08eNA6evPDDz/oxIkTatasmaQLp+NatGih6dOny8vLS02aNFGtWrWUkJCgzz//nFNSACq8MLMfoaaUOC1VDpwxhHjs2DHdcccd+uCDD/Tdd98pIyNDn3zyid544w098MADki7c+C41NVWHDx/Wb7/9JkkaOXKkFixYoDFjxmjXrl3avXu3Fi5cqBEjRkiSGjZsqHPnzmnatGk6cOCA3n//fc2aNavctsMecXFxioqKUt++fbV161Z988036t+/v2JiYtS2bVtrv9jYWH344YfWIFOzZk01bdpUKSkphBsAcCOEm3KS0K6uNgzrpo8H36YNw7qV+/0IAgIC1KFDB02ZMkVdu3ZV8+bN9eqrr2rw4MGaPn26JGnSpElas2aNwsPDrc/zio+P1+eff64vvvhC7dq102233aYpU6aoXr16kqTo6GhNnjxZEydOVPPmzfXhhx8qOTm5XLelrEwmk5YtW6YaNWqoa9euiouLU4MGDZSSkmLTLyYmRsXFxTZza2JjYy9rAwC4NpNxtYc7uaH8/HyZzWbl5eUpMDDQ5rPTp08rIyND9evXl6+vr5MqREXDcQEAzne13+8/YuQGAAC4FcINbrj169fbXHr+xxcAANeDq6Vww7Vt21bbt293dhkAADdFuMEN5+fn57D71wAA8EeclipBJZtjjWvgeAAA10K4ucTFO+pe+lgB4OLx8Mc7LgMAKiZOS13C09NT1atXtz7/yN/fXyaT6RpLwV0ZhqHCwkIdOXJE1atXl6enp7NLAgCUAuHmD0JDQyWpTA94hHu7+CR1AIBrINz8gclkUlhYmGrVqqVz5845uxw4mZeXFyM2AOBiCDdX4OnpyY8aAAAuiAnFAADArRBuAACAWyHcAAAAt0K4AQAAboVwAwAA3ArhBgAAuBXCDQAAcCuEGwAA4FYINwAAwK0QbgAAgFsh3AAAALdCuAEAAG6FcAMAANwK4QYAALgVwg0AAHArhBsAAOBWCDcAAMCtEG4AAIBbIdwAAAC3QrgBAABuhXADAADcCuEGAAC4FcINAABwK4QbAADgVgg3AADArTg13Kxbt07du3dX7dq1ZTKZtHTp0msuk5aWptatW8vHx0cNGzbUvHnzyr1OAADgOpwabgoKChQdHa0ZM2aUqn9GRobuu+8+devWTdu3b9fQoUM1aNAgrV69upwrBQAArqKKM7/8nnvu0T333FPq/rNmzVL9+vU1adIkSVLTpk21YcMGTZkyRfHx8eVVJgAAcCEuNedm8+bNiouLs2mLj4/X5s2br7jMmTNnlJ+fb/MCAADuy6XCzeHDhxUSEmLTFhISovz8fBUVFZW4THJyssxms/UVHh5+I0oFAABO4lLhxh5JSUnKy8uzvg4ePOjskgAAQDly6pybsgoNDVVOTo5NW05OjgIDA+Xn51fiMj4+PvLx8bkR5QEAgArApUZuOnbsqNTUVJu2NWvWqGPHjk6qCAAAVDRODTenTp3S9u3btX37dkkXLvXevn27srKyJF04pdS/f39r/yeffFIHDhzQSy+9pD179uidd97RokWL9PzzzzujfAAAUAE5Ndx8++23atWqlVq1aiVJSkxMVKtWrTRy5EhJUnZ2tjXoSFL9+vW1YsUKrVmzRtHR0Zo0aZL+/e9/cxk4AACwMhmGYTi7iBspPz9fZrNZeXl5CgwMdHY5AACgFMry++1Sc24AAACuhXADAADcCuEGAAC4FcINAABwK4QbAADgVgg3AADArRBuAACAWyHcAAAAt0K4AQAAboVwAwAA3ArhBgAAuBXCDQAAcCuEGwAA4FYINwAAwK0QbgAAgFsh3AAAALdCuAEAAG6FcAMAANwK4QYAALgVwg0AAHArhBsAAOBWCDcAAMCtEG4AAIBbIdwAAAC3QrgBAABuhXADAADcCuEGAAC4FcINAABwK4QbAADgVgg3AADArRBuAACAWyHcAAAAt0K4AQAAboVwA8BtZOcVadP+XGXnFTm7FABOVMXZBQCAI6RsyVLSkp2yGJKHSUruGaWEdnWdXRYAJ2DkBoDLy84rsgYbSbIY0vAl3zOCA1RShBsALi8jt8AabC4qNgxl5hY6pyAATkW4AeDy6gdVlYfJts3TZFJEkL9zCgLgVIQbAC4vzOyn5J5R8jRdSDieJpPG92yuMLOfkysD4AxMKAbgFhLa1VXXRsHKzC1URJA/wQaoxAg3ANxGmNmPUAOA01IAAMC9EG4AAIBbIdwAAAC3QrgBAABuhXADAADcCuEGAAC4lQoRbmbMmKGIiAj5+vqqQ4cO+uabb67af+rUqWrcuLH8/PwUHh6u559/XqdPn75B1QIAgIrM6eEmJSVFiYmJGjVqlLZu3aro6GjFx8fryJEjJfb/6KOPNGzYMI0aNUq7d+/Wu+++q5SUFA0fPvwGVw4AACoip4ebyZMna/DgwRo4cKCaNWumWbNmyd/fX++9916J/Tdt2qTOnTurT58+ioiI0N13363evXtfc7QHAABUDk4NN2fPnlV6erri4uKsbR4eHoqLi9PmzZtLXKZTp05KT0+3hpkDBw5o5cqVuvfee0vsf+bMGeXn59u8AACA+3Lq4xdyc3NVXFyskJAQm/aQkBDt2bOnxGX69Omj3Nxc3X777TIMQ+fPn9eTTz55xdNSycnJGjNmjMNrBwAAFZPTT0uVVVpamsaPH6933nlHW7du1ZIlS7RixQqNGzeuxP5JSUnKy8uzvg4ePHiDKwYAADeSU0dugoKC5OnpqZycHJv2nJwchYaGlrjMq6++qn79+mnQoEGSpKioKBUUFOjxxx/XK6+8Ig8P27zm4+MjHx+f8tkAAABQ4Th15Mbb21tt2rRRamqqtc1isSg1NVUdO3YscZnCwsLLAoynp6ckyTCM8isWAAC4BKeO3EhSYmKiBgwYoLZt26p9+/aaOnWqCgoKNHDgQElS//79VadOHSUnJ0uSunfvrsmTJ6tVq1bq0KGD9u3bp1dffVXdu3e3hhwAAFB5OT3cJCQk6OjRoxo5cqQOHz6sli1batWqVdZJxllZWTYjNSNGjJDJZNKIESN06NAhBQcHq3v37nr99dedtQkAAKACMRmV7FxOfn6+zGaz8vLyFBgY6OxyAABAKZTl99vlrpYCAAC4GsINAABwK4QbAADgVgg3AADArRBuAACAWyHcAAAAt0K4AQAAboVwAwAA3ArhBgAAuBXCDQAAcCuEGwAA3Fh2XpE27c9Vdl6Rs0u5YZz+4EwAAFA+UrZkKWnJTlkMycMkJfeMUkK7us4uq9wxcgMAgBvKziuyBhtJshjS8CXfV4oRHMINAABuKCO3wBpsLio2DGXmFjqnoBuIcAMAgBuqH1RVHibbNk+TSRFB/s4p6AYi3AAA4IbCzH5K7hklT9OFhONpMml8z+YKM/s5ubLyx4RiAADcVEK7uuraKFiZuYWKCPKvFMFGsjPc1K1bV7GxsYqJiVFsbKwiIyMdXRcAAHCAMLNfpQk1F9l1Wmr8+PHy9fXVxIkTdcsttyg8PFx//etfNWfOHP3000+OrhEAAKDUTIZhGNfudmXZ2dlau3atPv/8c6WkpMhisai4uNhR9Tlcfn6+zGaz8vLyFBgY6OxyAABAKZTl99vuOTeFhYXasGGD0tLS9PXXX2vbtm1q3ry5YmNj7V0lAADAdbMr3HTq1Enbtm1T06ZNFRsbq2HDhqlr166qUaOGo+sDAAAoE7vm3OzZs0dVq1ZVkyZN1KRJEzVt2pRgAwAAKgS7ws2xY8f01Vdf6bbbbtPq1avVuXNn1alTR3369NGcOXMcXSMAAECpXfeEYsMwlJ6erunTp+vDDz9kQjFQgWXnFSkjt0D1g6pWuktDAbi2cp9QvHXrVqWlpSktLU0bNmzQyZMnFRUVpWeffVYxMTF2FQ2gfFXWpwMDqHzsGrmpUqWKWrVqpZiYGMXExKhr164ym83lUZ/DMXKDyig7r0idJ3xl8xA9T5NJG4Z1YwQHgEso95Gb48ePEwwAF3K1pwMTbgC4G7vCzcVgk56ert27d0uSmjVrptatWzuuMgAOc/HpwH8cuakMTwcGUPnYFW6OHDmihIQErV27VtWrV5cknThxQt26ddPChQsVHBzsyBoBXKeLTwcevuR7FRtGpXo6MIDKx65w8+yzz+rUqVPatWuXmjZtKkn64YcfNGDAAD333HP6+OOPHVokgOtXWZ8ODKDysWtCsdls1pdffql27drZtH/zzTe6++67deLECUfV53BMKAYAwPWU5ffbrpv4WSwWeXl5Xdbu5eUli8VizyoBAAAcwq5wc8cdd2jIkCH69ddfrW2HDh3S888/rzvvvNNhxQEAAJSVXeFm+vTpys/PV0REhCIjIxUZGan69esrPz9f06ZNc3SNAAAnyc4r0qb9ucrOK3J2KUCp2TWhODw8XFu3btWXX36pPXv2SJKaNm2quLg4hxYHAHAe7moNV3Xdz5ZyNUwoBoBr467WqGjK5Q7Fb7/9dqkLeO6550rdFwBQ8XBXa7iyUoebKVOmlKqfyWQi3ACAi+Ou1nBlpQ43GRkZ5VkHAKAC4a7WcGVlmlBssVjk4WHXBVYAABfDXa3hqsqUVLy8vHTkyBHr+xdffFHHjx93eFEAgIohzOynjpE3EWzgUsoUbv54YdXs2bMr9KMWAABA5XNd55gq2VXkAADABTCBBgAAuJUy36F45MiR8ve/cCng2bNn9frrr8tsNtv0mTx5smOqAwAAKKMyhZuuXbtq79691vedOnXSgQMHbPqYTCbHVAYAAGCHMoWbtLS0cilixowZ+uc//6nDhw8rOjpa06ZNU/v27a/Y/8SJE3rllVe0ZMkSHT9+XPXq1dPUqVN17733lkt9AADAdZTrnJvAwMDLRnb+KCUlRYmJiRo1apS2bt2q6OhoxcfH21xyfqmzZ8/qrrvuUmZmphYvXqy9e/dqzpw5qlOnTnlsAgAAcDF2PRW8tEpzNdXkyZM1ePBgDRw4UJI0a9YsrVixQu+9956GDRt2Wf/33ntPx48f16ZNm+Tl5SVJioiIcGjdAADAdTn1aqmzZ88qPT1dcXFx1jYPDw/FxcVp8+bNJS6zfPlydezYUU8//bRCQkLUvHlzjR8/XsXFxSX2P3PmjPLz821eAADAfTk13OTm5qq4uFghISE27SEhITp8+HCJyxw4cECLFy9WcXGxVq5cqVdffVWTJk3Sa6+9VmL/5ORkmc1m6ys8PNzh2wEAACoOl7vPjcViUa1atfSvf/1Lbdq0UUJCgl555RXNmjWrxP5JSUnKy8uzvg4ePHiDKwYAADdSuc65udZl4UFBQfL09FROTo5Ne05OjkJDQ0tcJiwsTF5eXvL09LS2NW3aVIcPH9bZs2fl7e1t09/Hx0c+Pj52bgEAAHA15Tpyc60Jxd7e3mrTpo1SU1OtbRaLRampqerYsWOJy3Tu3Fn79u2TxWKxtv34448KCwu7LNgAAIDKp1zDzf/7f//vmpdoJyYmas6cOZo/f752796tp556SgUFBdarp/r376+kpCRr/6eeekrHjx/XkCFD9OOPP2rFihUaP368nn766fLclHKVnVekTftzlZ1X5OxSAABweXadljIMQ4sXL9bXX3+tI0eO2IyiSNKSJUskSbfffvs115WQkKCjR49q5MiROnz4sFq2bKlVq1ZZJxlnZWXJw+P3DBYeHq7Vq1fr+eefV4sWLVSnTh0NGTJEL7/8sj2b4nQpW7KUtGSnLIbkYZKSe0YpoV1dZ5cFAIDLMhl2PNp7yJAhmj17trp166aQkJDL5tbMnTvXYQU6Wn5+vsxms/Ly8hQYGOjUWrLzitR5wleyXPJfwNNk0oZh3RRm9nNeYQAAVDBl+f22a+Tm/fff15IlS3jcwXXKyC2wCTaSVGwYyswtJNwAAGAnu+bcmM1mNWjQwNG1VDr1g6rK4w8XlHmaTIoI8ndOQQAAuAG7ws3o0aM1ZswYFRUxAfZ6hJn9lNwzSp7/d1rP02TS+J7NGbUBAOA62DXnpqioSA8++KA2btyoiIgI6zOeLtq6davDCnS0ijTn5qLsvCJl5hYqIsifYAMAQAnKfc7NgAEDlJ6err/+9a8lTihG2YSZ/Qg1AAA4iF3hZsWKFVq9enWpLvUGAAC4keyacxMeHl5hTungxuFmgwAAV2BXuJk0aZJeeuklZWZmOrgcVFQpW7LUecJX6jPnf+o84SulbMlydkkAAJTIrgnFNWrUUGFhoc6fPy9/f//LJhQfP37cYQU6WkWcUFzRcbNBAICzlfuE4qlTp9qzGFwUNxsEALgSu6+WQuVx8WaDfxy54WaDAICK6LqfCn769Gnl5+fbvOBeuNkgAMCV2DVyU1BQoJdfflmLFi3SsWPHLvu8uLj4ugtDxZLQrq66NgrmZoMAgArPrpGbl156SV999ZVmzpwpHx8f/fvf/9aYMWNUu3ZtLViwwNE1ooIIM/upY+RNBBsAQIVm18jNZ599pgULFig2NlYDBw5Uly5d1LBhQ9WrV08ffvih+vbt6+g6AQAASsWukZvjx49bnwoeGBhovfT79ttv17p16xxXHQAAQBnZFW4aNGigjIwMSVKTJk20aNEiSRdGdKpXr+6w4gAAAMrKrnAzcOBA7dixQ5I0bNgwzZgxQ76+vnr++ef14osvOrRAAACAsrDrDsV/9PPPPys9PV0NGzZUixYtHFFXueEOxQAAuJ5yv0PxpU6fPq169eqpXr1617sqAHCa7LwiZeQWqH5QVa4IBFycXaeliouLNW7cONWpU0cBAQE6cOCAJOnVV1/Vu+++69ACAaC88WBYwL3YFW5ef/11zZs3T2+88Ya8vb2t7c2bN9e///1vhxUHAOUtO69ISUt2Wh8vYjGk4Uu+V3ZekXMLA2A3u8LNggUL9K9//Ut9+/aVp6entT06Olp79uxxWHEAUN6u9mBYAK7JrnBz6NAhNWzY8LJ2i8Wic+fOXXdRAHCjXHww7KV4MCzg2uwKN82aNdP69esva1+8eLFatWp13UUBwI3Cg2EB92PX1VIjR47UgAEDdOjQIVksFi1ZskR79+7VggUL9Pnnnzu6RgAoVzwYFnAvdt/nZv369Ro7dqx27NihU6dOqXXr1ho5cqTuvvtuR9foUNznBgAA11OW32+H3MTPlRBuAABwPWX5/bb72VLHjh27rP3EiRPWB2oCAAA4g13hJjMzU8XFxZe1nzlzRocOHbruogAAAOxVpgnFy5cvt/559erVMpvN1vfFxcVKTU1VRESEw4oDAAAoqzKFmx49ekiSTCaTBgwYYPOZl5eXIiIiNGnSJIcVBwAAUFZlCjcWi0WSVL9+fW3ZskVBQUHlUhQAAIC9yjTnZvPmzfr888+VkZFhDTYLFixQ/fr1VatWLT3++OM6c+ZMuRQKAABQGmUKN2PGjNGuXbus73fu3KnHHntMcXFxGjZsmD777DMlJyc7vEgAAIDSKlO42bFjh+68807r+4ULF6pDhw6aM2eOEhMT9fbbb2vRokUOLxIAAKC0yhRufvvtN4WEhFjfr127Vvfcc4/1fbt27XTw4EHHVQcAAFBGZQo3ISEhysjIkCSdPXtWW7du1W233Wb9/OTJk/Ly8nJshQAAAGVQpnBz7733atiwYVq/fr2SkpLk7++vLl26WD//7rvvFBkZ6fAiAQAASqtMl4KPGzdOPXv2VExMjAICAjR//nx5e3tbP3/vvfcq/IMzAQCAe7PrwZl5eXkKCAiQp6enTfvx48cVEBBgE3gqGh6cCQCA6ynL73eZRm4uuvSxC5eqWbOmPasDAABwGLsenAkAQHnIzivSpv25ys4rcnYpcGF2jdwAAOBoKVuylLRkpyyG5GGSkntGKaFdXWeXBRfEyA0AwOmy84qswUaSLIY0fMn3jODALoQbAIDTZeQWWIPNRcWGoczcQucUBJdGuAEAOF39oKryMNm2eZpMigjyd05BcGkVItzMmDFDERER8vX1VYcOHfTNN9+UarmFCxfKZDKpR48e5VsgAKBchZn9lNwzSp6mCwnH02TS+J7NFWb2c3JlcEVOn1CckpKixMREzZo1Sx06dNDUqVMVHx+vvXv3qlatWldcLjMzUy+88ILNHZIBAK4roV1ddW0UrMzcQkUE+RNsYDenj9xMnjxZgwcP1sCBA9WsWTPNmjVL/v7+eu+99664THFxsfr27asxY8aoQYMGN7BaAEB5CjP7qWPkTQQbXBenhpuzZ88qPT1dcXFx1jYPDw/FxcVp8+bNV1xu7NixqlWrlh577LEbUSYAAHAhTj0tlZubq+LiYoWEhNi0h4SEaM+ePSUus2HDBr377rvavn17qb7jzJkzOnPmjPV9fn6+3fUCAICKz+mnpcri5MmT6tevn+bMmaOgoKBSLZOcnCyz2Wx9hYeHl3OVAADAmZw6chMUFCRPT0/l5OTYtOfk5Cg0NPSy/vv371dmZqa6d+9ubbNYLJKkKlWqaO/evYqMjLRZJikpSYmJidb3+fn5BBwAANyYU8ONt7e32rRpo9TUVOvl3BaLRampqXrmmWcu69+kSRPt3LnTpm3EiBE6efKk3nrrrRJDi4+Pj3x8fMqlfgAAUPE4/VLwxMREDRgwQG3btlX79u01depUFRQUaODAgZKk/v37q06dOkpOTpavr6+aN29us3z16tUl6bJ2AABQOTk93CQkJOjo0aMaOXKkDh8+rJYtW2rVqlXWScZZWVny8HCpqUEAAMCJTIZhGNfu5j7y8/NlNpuVl5enwMBAZ5cDAABKoSy/3wyJAAAAt0K4AQAAboVwAwAA3ArhBgAAuBXCDQAAcCuEGwAA4FYINwAAwK0QbgAAKKPsvCJt2p+r7LwiZ5eCEjj9DsUAALiSlC1ZSlqyUxZD8jBJyT2jlNCurrPLwiUYuQEAoJSy84qswUaSLIY0fMn3jOBUMIQbAABKKSO3wBpsLio2DGXmFjqnIJSIcAMAQCnVD6oqD5Ntm6fJpIggf+cUhBIRbgAAKKUws5+Se0bJ03Qh4XiaTBrfs7nCzH5OrqziqAiTrZlQDABAGSS0q6uujYKVmVuoiCB/gs0lKspka0ZuAAAoozCznzpG3kSwuURFmmxNuAEAANetIk22JtwAAIDrVpEmWxNuAADAdatIk62ZUAwAAByioky2JtwAAACHCTP7OX2iNaelAACAWyHcAAAAt0K4AQAAboVwAwAA3ArhBgAAuBXCDQAAcCuEGwAA4FYINwAAwK0QbgAAgFsh3AAAALdCuAEAAG6FcAMAANwK4QYAALgVwg0AAHArhBsAAFxAdl6RNu3PVXZekbNLqfCqOLsAAABwdSlbspS0ZKcshuRhkpJ7RimhXV1nl1VhMXIDAEAFlp1XZA02kmQxpOFLvmcE5yoINwAAVGAZuQXWYHNRsWEoM7fQOQW5AMINAAAVWP2gqvIw2bZ5mkyKCPJ3TkEugHADAEAFFmb2U3LPKHmaLiQcT5NJ43s2V5jZz8mVVVxMKAYAoIJLaFdXXRsFKzO3UBFB/gSbayDcAADgAsLMfoSaUuK0FAAAcCuEGwAA4FYINwAAwK0QbgAAgFsh3AAAALdCuAEAAG6lQoSbGTNmKCIiQr6+vurQoYO++eabK/adM2eOunTpoho1aqhGjRqKi4u7an8AAFC5OD3cpKSkKDExUaNGjdLWrVsVHR2t+Ph4HTlypMT+aWlp6t27t77++mtt3rxZ4eHhuvvuu3Xo0KEbXDkAAKiITIZhGNfuVn46dOigdu3aafr06ZIki8Wi8PBwPfvssxo2bNg1ly8uLlaNGjU0ffp09e/f/5r98/PzZTablZeXp8DAwOuuHwAAlL+y/H47deTm7NmzSk9PV1xcnLXNw8NDcXFx2rx5c6nWUVhYqHPnzqlmzZolfn7mzBnl5+fbvAAAgPtyarjJzc1VcXGxQkJCbNpDQkJ0+PDhUq3j5ZdfVu3atW0C0qWSk5NlNputr/Dw8OuuGwAAlCw7r0ib9ucqO6/IaTW49LOlJkyYoIULFyotLU2+vr4l9klKSlJiYqL1fX5+PgEHAIBykLIlS0lLdspiSB4mKblnlBLa1b3hdTg13AQFBcnT01M5OTk27Tk5OQoNDb3qsm+++aYmTJigL7/8Ui1atLhiPx8fH/n4+DikXgAAULLsvCJrsJEkiyENX/K9ujYKvuEP/HTqaSlvb2+1adNGqamp1jaLxaLU1FR17Njxisu98cYbGjdunFatWqW2bdveiFIBAMBVZOQWWIPNRcWGoczcwhtei9NPSyUmJmrAgAFq27at2rdvr6lTp6qgoEADBw6UJPXv31916tRRcnKyJGnixIkaOXKkPvroI0VERFjn5gQEBCggIMBp2wEAQGVWP6iqPEyyCTieJpMigvxveC1Ov89NQkKC3nzzTY0cOVItW7bU9u3btWrVKusk46ysLGVnZ1v7z5w5U2fPntXDDz+ssLAw6+vNN9901iYAAFDphZn9lNwzSp4mk6QLwWZ8z+Y3/JSUVAHuc3OjcZ8bAADKT3ZekTJzCxUR5O/QYFOW32+nn5YCAADuI8zs55TRmks5/bQUAACAIxFuAFxTRbgpFwCUFqelAAfIzitSRm6B6gdVdfpwrKNVlJtyAUBpEW6A6+TOP/4V6aZcAFBanJYCrsOVfvzd5fRNRbopFwCUFuEGuA7u/uN/8aZcl3LWTbkAoLQIN8B1cPcf/4p0Uy4AKC3m3ADX4eKP//Al36vYMNzyxz+hXV11bRRcLjflAoDyQLgBrlNl+PGvCDflAoDSItwADsCPPwBUHMy5AQAAboVwAwAA3ArhBgAAuBXCDQAAcCuEGwAA4FYINwAAwK0QbgAAgFsh3AAAALdCuAEAAG6FcAMAANwK4QYAALgVwg0AAHArhBsAAOBWCDcAAMCtEG4AAIBbIdwAAAC3QrhxoOy8Im3an6vsvCJnlwIAQKVVxdkFuIuULVlKWrJTFkPyMEnJPaOU0K6us8sCAKDSYeTGAbLziqzBRpIshjR8yfelHsFhxAcAAMdh5MYBMnILrMHmomLDUGZuocLMflddlhEfAAAci5EbB6gfVFUeJts2T5NJEUH+V13uekd8AADA5Qg3DhBm9lNyzyh5mi4kHE+TSeN7Nr/mqM3VRnwAAIB9OC3lIAnt6qpro2Bl5hYqIsj/msFG+n3E59KAU5oRHwAAcGWM3DhQmNlPHSNvKlWwudjfnhEfAABwZYzcOJk9Iz6VSXZekTJyC1Q/qCr7BgBQKoSbCiDM7McPdwm4kgwAYA9OS6FC4koyAIC9CDeokLiSDABgL8INKiR77x0EAADhBhUSV5IBAOzFhGJUWFxJBgCwB+EG5e56LufmSjIAQFkRblCuuJwbAHCjMecG5YbLuQEAzkC4Qbnhcm4AgDMQblBunHk5d3ZekTbtz2WUCAAqoQoRbmbMmKGIiAj5+vqqQ4cO+uabb67a/5NPPlGTJk3k6+urqKgorVy58gZVirJw1uXcKVuy1HnCV+oz53/qPOErpWzJKtfvAwBULE4PNykpKUpMTNSoUaO0detWRUdHKz4+XkeOHCmx/6ZNm9S7d2899thj2rZtm3r06KEePXro+++/v8GVozQS2tXVhmHd9PHg27RhWLdyn0zMPB8AgMkwDOPa3cpPhw4d1K5dO02fPl2SZLFYFB4ermeffVbDhg27rH9CQoIKCgr0+eefW9tuu+02tWzZUrNmzbrm9+Xn58tsNisvL0+BgYGO2xBUCJv256rPnP9d1v7x4NvUMfImJ1QEAHCEsvx+O3Xk5uzZs0pPT1dcXJy1zcPDQ3Fxcdq8eXOJy2zevNmmvyTFx8dfsf+ZM2eUn59v84L74rENAACnhpvc3FwVFxcrJCTEpj0kJESHDx8ucZnDhw+XqX9ycrLMZrP1FR4e7pjiUSHx2AYAgNvfxC8pKUmJiYnW9/n5+QQcN8djGwCgcnNquAkKCpKnp6dycnJs2nNychQaGlriMqGhoWXq7+PjIx8fH8cUDJfBYxsAoPJy6mkpb29vtWnTRqmpqdY2i8Wi1NRUdezYscRlOnbsaNNfktasWXPF/gAAoHJx+mmpxMREDRgwQG3btlX79u01depUFRQUaODAgZKk/v37q06dOkpOTpYkDRkyRDExMZo0aZLuu+8+LVy4UN9++63+9a9/OXMzAABABeH0cJOQkKCjR49q5MiROnz4sFq2bKlVq1ZZJw1nZWXJw+P3AaZOnTrpo48+0ogRIzR8+HDdcsstWrp0qZo3b+6sTQAAABWI0+9zc6NxnxsAAFyPy9znBgAAwNEINwAAwK0QbgAAgFsh3AAAALdCuAEAAG6FcAMAANwK4QYAALgVp9/E70a7eFuf/Px8J1cCAABK6+Lvdmluz1fpws3JkycliSeDAwDggk6ePCmz2XzVPpXuDsUWi0W//vqrqlWrJpPJ5Oxybpj8/HyFh4fr4MGDlf7OzOyL37Evfse+uID98Dv2xe8qwr4wDEMnT55U7dq1bR7LVJJKN3Lj4eGhm2++2dllOE1gYGCl/5/0IvbF79gXv2NfXMB++B374nfO3hfXGrG5iAnFAADArRBuAACAWyHcVBI+Pj4aNWqUfHx8nF2K07Evfse++B374gL2w+/YF79ztX1R6SYUAwAA98bIDQAAcCuEGwAA4FYINwAAwK0QbgAAgFsh3LioGTNmKCIiQr6+vurQoYO++eabq/afOnWqGjduLD8/P4WHh+v555/X6dOnrZ+PHj1aJpPJ5tWkSZPy3gyHKMu+OHfunMaOHavIyEj5+voqOjpaq1atuq51ViSO3heuelysW7dO3bt3V+3atWUymbR06dJrLpOWlqbWrVvLx8dHDRs21Lx58y7r44rHRXnsC1c8Lsq6H7Kzs9WnTx81atRIHh4eGjp0aIn9PvnkEzVp0kS+vr6KiorSypUrHV+8g5XHvpg3b95lx4Svr2/5bEApEG5cUEpKihITEzVq1Cht3bpV0dHRio+P15EjR0rs/9FHH2nYsGEaNWqUdu/erXfffVcpKSkaPny4Tb9bb71V2dnZ1teGDRtuxOZcl7LuixEjRmj27NmaNm2afvjhBz355JN68MEHtW3bNrvXWVGUx76QXPO4KCgoUHR0tGbMmFGq/hkZGbrvvvvUrVs3bd++XUOHDtWgQYO0evVqax9XPS7KY19IrndclHU/nDlzRsHBwRoxYoSio6NL7LNp0yb17t1bjz32mLZt26YePXqoR48e+v777x1ZusOVx76QLty9+NJj4ueff3ZUyWVnwOW0b9/eePrpp63vi4uLjdq1axvJyckl9n/66aeNO+64w6YtMTHR6Ny5s/X9qFGjjOjo6HKptzyVdV+EhYUZ06dPt2nr2bOn0bdvX7vXWVGUx75w1ePiUpKMTz/99Kp9XnrpJePWW2+1aUtISDDi4+Ot7131uLiUo/aFqx8XpdkPl4qJiTGGDBlyWXuvXr2M++67z6atQ4cOxhNPPHGdFd44jtoXc+fONcxms8Pqul6M3LiYs2fPKj09XXFxcdY2Dw8PxcXFafPmzSUu06lTJ6Wnp1uH0A8cOKCVK1fq3nvvten3008/qXbt2mrQoIH69u2rrKys8tsQB7BnX5w5c+ayoVI/Pz/rvzrtWWdFUB774iJXOy7ssXnzZpt9J0nx8fHWfeeqx4U9rrUvLqoMx8W1lHZfVRanTp1SvXr1FB4ergceeEC7du1yWi2EGxeTm5ur4uJihYSE2LSHhITo8OHDJS7Tp08fjR07Vrfffru8vLwUGRmp2NhYm9NSHTp00Lx587Rq1SrNnDlTGRkZ6tKli06ePFmu23M97NkX8fHxmjx5sn766SdZLBatWbNGS5YsUXZ2tt3rrAjKY19Irnlc2OPw4cMl7rv8/HwVFRW57HFhj2vtC6nyHBfXcqV95W7HRGk0btxY7733npYtW6YPPvhAFotFnTp10i+//OKUegg3lUBaWprGjx+vd955R1u3btWSJUu0YsUKjRs3ztrnnnvu0V/+8he1aNFC8fHxWrlypU6cOKFFixY5sXLHe+utt3TLLbeoSZMm8vb21jPPPKOBAwfKw6Py/a9Qmn1RWY4LlA3HBf6oY8eO6t+/v1q2bKmYmBgtWbJEwcHBmj17tlPqqXx/o7u4oKAgeXp6Kicnx6Y9JydHoaGhJS7z6quvql+/fho0aJCioqL04IMPavz48UpOTpbFYilxmerVq6tRo0bat2+fw7fBUezZF8HBwVq6dKkKCgr0888/a8+ePQoICFCDBg3sXmdFUB77oiSucFzYIzQ0tMR9FxgYKD8/P5c9LuxxrX1REnc9Lq7lSvvK3Y4Je3h5ealVq1ZOOyYINy7G29tbbdq0UWpqqrXNYrEoNTVVHTt2LHGZwsLCy0YmPD09JUnGFR4tdurUKe3fv19hYWEOqtzx7NkXF/n6+qpOnTo6f/68/vOf/+iBBx647nU6U3nsi5K4wnFhj44dO9rsO0las2aNdd+56nFhj2vti5K463FxLfbsq8qiuLhYO3fudN4x4ewZzSi7hQsXGj4+Psa8efOMH374wXj88ceN6tWrG4cPHzYMwzD69etnDBs2zNp/1KhRRrVq1YyPP/7YOHDggPHFF18YkZGRRq9evax9/vGPfxhpaWlGRkaGsXHjRiMuLs4ICgoyjhw5csO3ryzKui/++9//Gv/5z3+M/fv3G+vWrTPuuOMOo379+sZvv/1W6nVWVOWxL1z1uDh58qSxbds2Y9u2bYYkY/Lkyca2bduMn3/+2TAMwxg2bJjRr18/a/8DBw4Y/v7+xosvvmjs3r3bmDFjhuHp6WmsWrXK2sdVj4vy2BeueFyUdT8YhmHt36ZNG6NPnz7Gtm3bjF27dlk/37hxo1GlShXjzTffNHbv3m2MGjXK8PLyMnbu3HlDt62symNfjBkzxli9erWxf/9+Iz093XjkkUcMX19fmz43EuHGRU2bNs2oW7eu4e3tbbRv397473//a/0sJibGGDBggPX9uXPnjNGjRxuRkZGGr6+vER4ebvz973+3+RFLSEgwwsLCDG9vb6NOnTpGQkKCsW/fvhu4RfYry75IS0szmjZtavj4+Bg33XST0a9fP+PQoUNlWmdF5uh94arHxddff21Iuux1cfsHDBhgxMTEXLZMy5YtDW9vb6NBgwbG3LlzL1uvKx4X5bEvXPG4sGc/lNS/Xr16Nn0WLVpkNGrUyPD29jZuvfVWY8WKFTdmg65DeeyLoUOHWv/fCAkJMe69915j69atN26j/sBkGFc4LwEAAOCCmHMDAADcCuEGAAC4FcINAABwK4QbAADgVgg3AADArRBuAACAWyHcAAAAt0K4AYAKIC0tTSaTSSdOnHB2KYDLI9wAlcyjjz4qk8mkCRMm2LQvXbpUJpPJ+t4wDM2ZM0cdO3ZUYGCgAgICdOutt2rIkCGlfhheYWGhkpKSFBkZKV9fXwUHBysmJkbLli2z9omIiNDUqVMdsm3l7eK+M5lM8vLyUv369fXSSy/p9OnTZVpPbGyshg4datPWqVMnZWdny2w2O7BioHIi3ACVkK+vryZOnKjffvutxM8Nw1CfPn303HPP6d5779UXX3yhH374Qe+++658fX312muvlep7nnzySS1ZskTTpk3Tnj17tGrVKj388MM6duyYIzfnhvrTn/6k7OxsHThwQFOmTNHs2bM1atSo616vt7e3QkNDbQImADs57cEPAJxiwIABxp///GejSZMmxosvvmht//TTT42LfyV8/PHHhiRj2bJlJa7DYrGU6rvMZrMxb968K34eExNz2fNqLlq/fr1x++23G76+vsbNN99sPPvss8apU6esny9YsMBo06aNERAQYISEhBi9e/c2cnJyrJ9ffH7OqlWrjJYtWxq+vr5Gt27djJycHGPlypVGkyZNjGrVqhm9e/c2CgoKSrU9AwYMMB544AGbtp49exqtWrWyvs/NzTUeeeQRo3bt2oafn5/RvHlz46OPPrJZxx+3OSMjw1rvpc98W7x4sdGsWTPD29vbqFevnvHmm2+Wqk6gsmPkBqiEPD09NX78eE2bNk2//PLLZZ9//PHHaty4se6///4Sly/t6EJoaKhWrlypkydPlvj5kiVLdPPNN2vs2LHKzs5Wdna2JGn//v3605/+pIceekjfffedUlJStGHDBj3zzDPWZc+dO6dx48Zpx44dWrp0qTIzM/Xoo49e9h2jR4/W9OnTtWnTJh08eFC9evXS1KlT9dFHH2nFihX64osvNG3atFJtzx99//332rRpk7y9va1tp0+fVps2bbRixQp9//33evzxx9WvXz998803kqS33npLHTt21ODBg63bHB4eftm609PT1atXLz3yyCPauXOnRo8erVdffVXz5s2zq1agUnF2ugJwY106+nDbbbcZf/vb3wzDsB25adKkiXH//ffbLDdkyBCjatWqRtWqVY06deqU6rvWrl1r3HzzzYaXl5fRtm1bY+jQocaGDRts+tSrV8+YMmWKTdtjjz1mPP744zZt69evNzw8PIyioqISv2vLli2GJOPkyZOGYfw+cvPll19a+yQnJxuSjP3791vbnnjiCSM+Pr5U2zNgwADD09PTqFq1quHj42NIMjw8PIzFixdfdbn77rvP+Mc//mF9HxMTYwwZMsSmzx9Hbvr06WPcddddNn1efPFFo1mzZqWqFajMGLkBKrGJEydq/vz52r179zX7vvLKK9q+fbtGjhypU6dOlWr9Xbt21YEDB5SamqqHH35Yu3btUpcuXTRu3LirLrdjxw7NmzdPAQEB1ld8fLwsFosyMjIkXRjZ6N69u+rWratq1aopJiZGkpSVlWWzrhYtWlj/HBISIn9/fzVo0MCm7ciRI6XaHknq1q2btm/frv/9738aMGCABg4cqIceesj6eXFxscaNG6eoqCjVrFlTAQEBWr169WV1Xcvu3bvVuXNnm7bOnTvrp59+UnFxcZnWBVQ2hBugEuvatavi4+OVlJRk037LLbdo7969Nm3BwcFq2LChatWqVabv8PLyUpcuXfTyyy/riy++0NixYzVu3DidPXv2isucOnVKTzzxhLZv32597dixQz/99JMiIyNVUFCg+Ph4BQYG6sMPP9SWLVv06aefStJl6/Xy8rL++eJVTpcymUyyWCyl3p6qVauqYcOGio6O1nvvvaf//e9/evfdd62f//Of/9Rbb72ll19+WV9//bW2b9+u+Pj4q24vAMeq4uwCADjXhAkT1LJlSzVu3Nja1rt3b/Xp00fLli3TAw884NDva9asmc6fP6/Tp0/L29tb3t7el41EtG7dWj/88IMaNmxY4jp27typY8eOacKECdb5Kt9++61D6ywNDw8PDR8+XImJierTp4/8/Py0ceNGPfDAA/rrX/8qSbJYLPrxxx/VrFkz63IlbfMfNW3aVBs3brRp27hxoxo1aiRPT0/HbwzgRhi5ASq5qKgo9e3bV2+//ba17ZFHHtHDDz+sRx55RGPHjtX//vc/ZWZmau3atUpJSSn1j2tsbKxmz56t9PR0ZWZmauXKlRo+fLi6deumwMBASRfuc7Nu3TodOnRIubm5kqSXX35ZmzZt0jPPPKPt27frp59+0rJly6wTiuvWrStvb29NmzZNBw4c0PLly695qqu8/OUvf5Gnp6dmzJgh6cKo15o1a7Rp0ybt3r1bTzzxhHJycmyWiYiIsO7T3NzcEkeO/vGPfyg1NVXjxo3Tjz/+qPnz52v69Ol64YUXbsh2Aa6McANAY8eOtfmBNZlMSklJ0dSpU7Vy5Urdeeedaty4sf72t78pPDxcGzZsKNV64+PjNX/+fN19991q2rSpnn32WcXHx2vRokU2352ZmanIyEgFBwdLujBPZu3atfrxxx/VpUsXtWrVSiNHjlTt2rUlXThFNm/ePH3yySdq1qyZJkyYoDfffNOBe6T0qlSpomeeeUZvvPGGCgoKNGLECLVu3Vrx8fGKjY1VaGioevToYbPMCy+8IE9PTzVr1kzBwcElzsdp3bq1Fi1apIULF6p58+YaOXKkxo4dW+IVYQBsmQzDMJxdBAAAgKMwcgMAANwK4QaA3S69VPuPr/Xr1zu7vDLJysq66vaU9VJuAM7DaSkAdrvaAzTr1KkjPz+/G1jN9Tl//rwyMzOv+HlERISqVOECU8AVEG4AAIBb4bQUAABwK4QbAADgVgg3AADArRBuAACAWyHcAAAAt0K4AQAAboVwAwAA3ArhBgAAuJX/DzA2GRmUts3nAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARgtJREFUeJzt3XlcVXX+x/H3BVkEBDUQlVBcckvcl7QULIqpxjRrJDU1J1tm0jSmRZ1yLcmmjEktHac028TM1NRxicIy/Y3mlpo6LphmiGIJijv3+/vD8U43UOFy4cLh9Xw87uMh3/s9537OeRy5b77ne86xGWOMAAAALMLL0wUAAAC4E+EGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGgEeMHTtWNputUH1tNpvGjh1bovXExsYqNja2zK4PQOERboAKbvbs2bLZbI5XpUqVFBERoYceekiHDx/2dHllTlRUlNP+qlGjhrp06aJPP/3ULes/ffq0xo4dq7S0NLesD6iICDcAJEnjx4/Xe++9p+nTp+vOO+/U+++/r5iYGJ09e7ZEPu/555/XmTNnSmTdJa1Vq1Z677339N577+npp5/WTz/9pF69emn69OnFXvfp06c1btw4wg1QDJU8XQCAsuHOO+9Uu3btJEmDBw9WaGioJk2apMWLF6t3795u/7xKlSqpUqXy+SsoIiJCDz74oOPnAQMGqGHDhnr99df1+OOPe7AyABIjNwCuoEuXLpKkffv2ObXv2rVL999/v6pXry5/f3+1a9dOixcvdupz4cIFjRs3TjfccIP8/f113XXX6ZZbbtGqVascfQqac3Pu3Dk99dRTCgsLU5UqVXTPPffoxx9/zFfbQw89pKioqHztBa1z1qxZuvXWW1WjRg35+fmpWbNmeuutt4q0L66lZs2aatq0qdLT06/a7+jRo3r44YcVHh4uf39/tWzZUu+++67j/QMHDigsLEySNG7cOMepr5KebwRYTfn8swlAiTtw4IAkqVq1ao62HTt26Oabb1ZERIRGjBihwMBAzZs3Tz179tQnn3yie++9V9KlkJGUlKTBgwerQ4cOysnJ0bfffqtNmzbp9ttvv+JnDh48WO+//7769u2rzp0764svvtDdd99drO146623dOONN+qee+5RpUqV9Nlnn+nPf/6z7Ha7nnjiiWKt+7ILFy7o0KFDuu66667Y58yZM4qNjdXevXs1ZMgQ1atXTx9//LEeeughnThxQsOGDVNYWJjeeust/elPf9K9996rXr16SZJatGjhljqBCsMAqNBmzZplJJnPP//cHDt2zBw6dMjMnz/fhIWFGT8/P3Po0CFH39tuu81ER0ebs2fPOtrsdrvp3LmzueGGGxxtLVu2NHffffdVP3fMmDHm17+CtmzZYiSZP//5z079+vbtaySZMWPGONoGDhxo6tate811GmPM6dOn8/WLj4839evXd2qLiYkxMTExV63ZGGPq1q1r7rjjDnPs2DFz7Ngxs3XrVvPAAw8YSWbo0KFXXF9ycrKRZN5//31H2/nz502nTp1MUFCQycnJMcYYc+zYsXzbC6BoOC0FQJIUFxensLAwRUZG6v7771dgYKAWL16s66+/XpL0888/64svvlDv3r118uRJZWVlKSsrS8ePH1d8fLz27NnjuLqqatWq2rFjh/bs2VPoz1+2bJkk6cknn3RqHz58eLG2q3Llyo5/Z2dnKysrSzExMdq/f7+ys7NdWufKlSsVFhamsLAwtWzZUh9//LH69++vSZMmXXGZZcuWqWbNmurTp4+jzcfHR08++aROnTql1atXu1QLgPwqdLj56quv1L17d9WuXVs2m00LFy4s0c87efKkhg8frrp166py5crq3LmzNmzYUKKfCRTWtGnTtGrVKs2fP1933XWXsrKy5Ofn53h/7969MsbohRdecHyxX36NGTNG0qU5JdKlK69OnDihRo0aKTo6Ws8884y+++67q37+Dz/8IC8vLzVo0MCpvXHjxsXarm+++UZxcXEKDAxU1apVFRYWplGjRkmSy+GmY8eOWrVqlT7//HOtXbtWWVlZmjNnjlOQ+q0ffvhBN9xwg7y8nH/tNm3a1PE+APeo0HNucnNz1bJlS/3xj390nNsuSYMHD9b27dv13nvvqXbt2nr//fcVFxen77//XhERESX++cDVdOjQwXG1VM+ePXXLLbeob9++2r17t4KCgmS32yVJTz/9tOLj4wtcR8OGDSVJXbt21b59+7Ro0SKtXLlS//znP/X6669r+vTpGjx4cLFrvdLN//Ly8px+3rdvn2677TY1adJEkydPVmRkpHx9fbVs2TK9/vrrjm0qqtDQUMXFxbm0LICSV6HDzZ133qk777zziu+fO3dOf/3rX/XRRx/pxIkTat68uSZNmuTSXUfPnDmjTz75RIsWLVLXrl0lXZp0+dlnn+mtt97Siy++6OpmAG7n7e2tpKQkdevWTVOnTtWIESNUv359SZdOpRTmi7169eoaNGiQBg0apFOnTqlr164aO3bsFcNN3bp1ZbfbtW/fPqfRmt27d+frW61aNZ04cSJf+29HPz777DOdO3dOixcvVp06dRztX3755TXrd7e6devqu+++k91udxq92bVrl+N96crBDUDhVejTUtcyZMgQrVu3TnPnztV3332nP/zhD/rd735XpHkEl128eFF5eXny9/d3aq9cubLWrFnjrpIBt4mNjVWHDh2UnJyss2fPqkaNGoqNjdWMGTOUkZGRr/+xY8cc/z5+/LjTe0FBQWrYsKHOnTt3xc+7/IfGG2+84dSenJycr2+DBg2UnZ3tdKorIyMj312Cvb29JUnGGEdbdna2Zs2adcU6Sspdd92lI0eOKCUlxdF28eJFTZkyRUFBQYqJiZEkBQQESFKB4Q1A4VTokZurOXjwoGbNmqWDBw+qdu3aki4Nxy9fvlyzZs3SxIkTi7S+KlWqqFOnTpowYYKaNm2q8PBwffTRR1q3bp1jKB8oa5555hn94Q9/0OzZs/X4449r2rRpuuWWWxQdHa1HHnlE9evXV2ZmptatW6cff/xRW7dulSQ1a9ZMsbGxatu2rapXr65vv/1W8+fP15AhQ674Wa1atVKfPn305ptvKjs7W507d1Zqaqr27t2br+8DDzyg5557Tvfee6+efPJJnT59Wm+99ZYaNWqkTZs2Ofrdcccd8vX1Vffu3fXYY4/p1KlTmjlzpmrUqFFgQCtJjz76qGbMmKGHHnpIGzduVFRUlObPn69vvvlGycnJqlKliqRLf/A0a9ZMKSkpatSokapXr67mzZurefPmpVovUK55+nKtskKS+fTTTx0/L1myxEgygYGBTq9KlSqZ3r17G2OM2blzp5F01ddzzz3nWOfevXtN165djSTj7e1t2rdvb/r162eaNGlS2psLOFy+FHzDhg353svLyzMNGjQwDRo0MBcvXjTGGLNv3z4zYMAAU7NmTePj42MiIiLM73//ezN//nzHci+++KLp0KGDqVq1qqlcubJp0qSJeemll8z58+cdfQq6bPvMmTPmySefNNddd50JDAw03bt3N4cOHSrw0uiVK1ea5s2bG19fX9O4cWPz/vvvF7jOxYsXmxYtWhh/f38TFRVlJk2aZN555x0jyaSnpzv6FeVS8Gtd5n6l9WVmZppBgwaZ0NBQ4+vra6Kjo82sWbPyLbt27VrTtm1b4+vry2XhgAtsxvxqvLYCs9ls+vTTT9WzZ09JUkpKivr166cdO3Y4hrYvCwoKUs2aNXX+/Hnt37//quu97rrrHHccvSw3N1c5OTmqVauWEhISdOrUKS1dutSt2wMAQEXFaakraN26tfLy8nT06FHHbeh/y9fXV02aNCnyugMDAxUYGKhffvlFK1as0CuvvFLccgEAwH9V6HBz6tQpp/P56enp2rJli6pXr65GjRqpX79+GjBggF577TW1bt1ax44dU2pqqlq0aOHSLeFXrFghY4waN26svXv36plnnlGTJk00aNAgd24WAAAVWoU+LZWWlqZu3brlax84cKBmz56tCxcu6MUXX9ScOXN0+PBhhYaG6qabbtK4ceMUHR1d5M+bN2+eRo4cqR9//FHVq1fXfffdp5deekkhISHu2BwAAKAKHm4AAID1cJ8bAABgKYQbAABgKRVuQrHdbtdPP/2kKlWqcJtzAADKCWOMTp48qdq1a+d7AO1vVbhw89NPPykyMtLTZQAAABccOnRI119//VX7VLhwc/kW54cOHVJwcLCHqwEAAIWRk5OjyMhIx/f41VS4cHP5VFRwcDDhBgCAcqYwU0qYUAwAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAPLy8g+o7X7spSRfcbTpQAASkGFe3AmKpaUDQc1csE22Y3kZZOSekUroX0dT5cFAChBjNzAsjKyzziCjSTZjTRqwXZGcADA4gg3sKz0rFxHsLkszxgdyDrtmYIAAKWCcAPLqhcaKC+bc5u3zaao0ADPFAQAKBWEG1hWrZDKSuoVLW/bpYTjbbNpYq/mqhVS2cOVAQBKEhOKYWkJ7euoa6MwHcg6rajQAIINAFQAhBtYXq2QyoQaAKhAOC0FAAAsxaPh5quvvlL37t1Vu3Zt2Ww2LVy48JrLpKWlqU2bNvLz81PDhg01e/bsEq8TAAAUTlm4capHw01ubq5atmypadOmFap/enq67r77bnXr1k1btmzR8OHDNXjwYK1YsaKEKwUAANeSsuGgbn75C/Wd+W/d/PIXStlw0CN12Iwx5trdSp7NZtOnn36qnj17XrHPc889p6VLl2r79u2OtgceeEAnTpzQ8uXLC/U5OTk5CgkJUXZ2toKDg4tbNgAA0KURm5tf/sLp/mLeNpvWjOjmlnmPRfn+LldzbtatW6e4uDintvj4eK1bt+6Ky5w7d045OTlOLwAA4F5l6cap5SrcHDlyROHh4U5t4eHhysnJ0ZkzBZ/bS0pKUkhIiOMVGRlZGqUCAFChlKUbp5arcOOKkSNHKjs72/E6dOiQp0sCAMByytKNU8vVfW5q1qypzMxMp7bMzEwFBwercuWCd56fn5/8/PxKozwAACq0snLj1HIVbjp16qRly5Y5ta1atUqdOnXyUEUAAODXysKNUz16WurUqVPasmWLtmzZIunSpd5btmzRwYOXLh0bOXKkBgwY4Oj/+OOPa//+/Xr22We1a9cuvfnmm5o3b56eeuopT5QPAADKII+Gm2+//VatW7dW69atJUmJiYlq3bq1Ro8eLUnKyMhwBB1JqlevnpYuXapVq1apZcuWeu211/TPf/5T8fHxHqkfAACUPWXmPjelhfvcAABQ/lj2PjcAAADXQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWUibCzbRp0xQVFSV/f3917NhR69evv2r/5ORkNW7cWJUrV1ZkZKSeeuopnT17tpSqBQAAZZnHw01KSooSExM1ZswYbdq0SS1btlR8fLyOHj1aYP8PP/xQI0aM0JgxY7Rz5069/fbbSklJ0ahRo0q5cgAAUBZ5PNxMnjxZjzzyiAYNGqRmzZpp+vTpCggI0DvvvFNg/7Vr1+rmm29W3759FRUVpTvuuEN9+vS55mgPAACoGDwabs6fP6+NGzcqLi7O0ebl5aW4uDitW7euwGU6d+6sjRs3OsLM/v37tWzZMt11110F9j937pxycnKcXgAAwLoqefLDs7KylJeXp/DwcKf28PBw7dq1q8Bl+vbtq6ysLN1yyy0yxujixYt6/PHHr3haKikpSePGjXN77QAAoGzy+GmpokpLS9PEiRP15ptvatOmTVqwYIGWLl2qCRMmFNh/5MiRys7OdrwOHTpUyhUDAIDS5NGRm9DQUHl7eyszM9OpPTMzUzVr1ixwmRdeeEH9+/fX4MGDJUnR0dHKzc3Vo48+qr/+9a/y8nLOa35+fvLz8yuZDQAAAGWOR0dufH191bZtW6Wmpjra7Ha7UlNT1alTpwKXOX36dL4A4+3tLUkyxpRcsQAAoFzw6MiNJCUmJmrgwIFq166dOnTooOTkZOXm5mrQoEGSpAEDBigiIkJJSUmSpO7du2vy5Mlq3bq1OnbsqL179+qFF15Q9+7dHSEHAABUXB4PNwkJCTp27JhGjx6tI0eOqFWrVlq+fLljkvHBgwedRmqef/552Ww2Pf/88zp8+LDCwsLUvXt3vfTSS57aBAAAUIbYTAU7l5OTk6OQkBBlZ2crODjY0+UAAIBCKMr3d7m7WgoAAOBqCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSKrmyUJ06dRQbG6uYmBjFxsaqQYMG7q4LAADAJS6N3EycOFH+/v6aNGmSbrjhBkVGRurBBx/UzJkztWfPHnfXCAAAUGg2Y4wpzgoyMjK0evVqLVmyRCkpKbLb7crLy3NXfW6Xk5OjkJAQZWdnKzg42NPlAACAQijK97dLp6Uk6fTp01qzZo3S0tL05ZdfavPmzWrevLliY2NdXSUAAECxuRRuOnfurM2bN6tp06aKjY3ViBEj1LVrV1WrVs3d9QEAABSJS3Nudu3apcDAQDVp0kRNmjRR06ZNCTYAAKBMcCncHD9+XF988YVuuukmrVixQjfffLMiIiLUt29fzZw50901AgAAFFqxJxQbY7Rx40ZNnTpVH3zwAROKAQCA25X4hOJNmzYpLS1NaWlpWrNmjU6ePKno6GgNHTpUMTExLhUNAADgDi6Fmw4dOqh169aKiYnRI488oq5duyokJMTdtQEAABSZS3Nufv75Z23YsEGvvvqqunfvXuxgM23aNEVFRcnf318dO3bU+vXrr9r/xIkTeuKJJ1SrVi35+fmpUaNGWrZsWbFqAAAA1uDSyM3lc10bN27Uzp07JUnNmjVTmzZtiryulJQUJSYmavr06erYsaOSk5MVHx+v3bt3q0aNGvn6nz9/Xrfffrtq1Kih+fPnKyIiQj/88IOqVq3qyqYAAACLcWlC8dGjR5WQkKDVq1c7QsWJEyfUrVs3zZ07V2FhYYVeV8eOHdW+fXtNnTpVkmS32xUZGamhQ4dqxIgR+fpPnz5df/vb37Rr1y75+PgUtXQmFAMAUA4V5fvbpdNSQ4cO1alTp7Rjxw79/PPP+vnnn7V9+3bl5OToySefLPR6zp8/r40bNyouLu5/BXl5KS4uTuvWrStwmcWLF6tTp0564oknFB4erubNm2vixIlXvELr3LlzysnJcXoBAADrcincLF++XG+++aaaNm3qaGvWrJmmTZumf/3rX4VeT1ZWlvLy8hQeHu7UHh4eriNHjhS4zP79+zV//nzl5eVp2bJleuGFF/Taa6/pxRdfLLB/UlKSQkJCHK/IyMhC1weg5GRkn9HafVnKyD7j6VIAWIxLc27sdnuBp4R8fHxkt9uLXdS1PrtGjRr6xz/+IW9vb7Vt21aHDx/W3/72N40ZMyZf/5EjRyoxMdHxc05ODgEHcJOM7DNKz8pVvdBA1QqpXOjlUjYc1MgF22Q3kpdNSuoVrYT2dUqwUgAViUvh5tZbb9WwYcP00UcfqXbt2pKkw4cP66mnntJtt91W6PWEhobK29tbmZmZTu2ZmZmqWbNmgcvUqlVLPj4+8vb2drQ1bdpUR44c0fnz5+Xr6+vU38/PT35+foWuCUDhuBpQMrLPOJaTJLuRRi3Yrq6NwooUkADgSlw6LTV16lTl5OQoKipKDRo0UIMGDVSvXj3l5ORoypQphV6Pr6+v2rZtq9TUVEeb3W5XamqqOnXqVOAyN998s/bu3es0QvSf//xHtWrVyhdsAJSMKwWUwpxiSs/KdSx3WZ4xOpB1ugQqBVARuTRyExkZqU2bNunzzz/Xrl27JF0aPfn1xODCSkxM1MCBA9WuXTt16NBBycnJys3N1aBBgyRJAwYMUEREhJKSkiRJf/rTnzR16lQNGzZMQ4cO1Z49ezRx4sQiTWQGUDxXCyjXGn2pFxooL5uclve22RQVGlAClQKoiFwKN5Jks9l0++236/bbby9WAQkJCTp27JhGjx6tI0eOqFWrVlq+fLljkvHBgwfl5fW/AabIyEitWLFCTz31lFq0aKGIiAgNGzZMzz33XLHqAFB4xQkotUIqK6lXtEYt2K48Y+Rts2lir+ackgLgNoW+z80bb7xR6JWW5VEU7nMDuEfKhoP5AkpRJgVnZJ/RgazTigoNINgAuKaifH8XOtzUq1evUB9us9m0f//+QvX1BMIN4D4EFAClpUSeCp6enl7swgBYS62QyoQaAGVOka6WKul72AAAABRXkcKNj4+Pjh496vj5mWee0c8//+z2ogAAAFxVpHDz2+k5M2bM0IkTJ9xZDwAAQLG4dBO/y1x4oDgAAECJKla4AQAAKGuKfBO/0aNHKyDg0o26zp8/r5deekkhISFOfSZPnuye6gAAAIqoSOGma9eu2r17t+Pnzp0757unjc1mc09lAAAALihSuElLSyuhMgAAANyjROfcBAcHl+m7FQMAAOsp0XDD1VQAAKC0cbUUAACwFMINAACwFMINAACwlBINN1wWDgAAShsTigEAgKWUaLj517/+pYiIiJL8CAAAACdFfvyCdGlEZv78+fryyy919OhR2e12p/cXLFggSbrllluKXyEAAEARuBRuhg8frhkzZqhbt24KDw9nbg0AACgzXAo37733nhYsWKC77rrL3fUAAAAUi0tzbkJCQlS/fn131wIAAFBsLoWbsWPHaty4cTpz5oy76wEAACgWl05L9e7dWx999JFq1KihqKgo+fj4OL2/adMmtxQHAADKl4zsM0rPylW90EDVCqnskRpcCjcDBw7Uxo0b9eCDDzKhGAAASJJSNhzUyAXbZDeSl01K6hWthPZ1Sr0Ol8LN0qVLtWLFCi71BgAAki6N2FwONpJkN9KoBdvVtVFYqY/guDTnJjIyUsHBwe6uBQAAlFPpWbmOYHNZnjE6kHW61GtxKdy89tprevbZZ3XgwAE3lwMAAMqjeqGB8vrNLBVvm01RoQGlXotLp6UefPBBnT59Wg0aNFBAQEC+CcU///yzW4oDAADlQ62QykrqFa1RC7Yrzxh522ya2Ku5RyYVuxRukpOT3VwGAAAo7xLa11HXRmE6kHVaUaEBHrtaymYq2KO7c3JyFBISouzsbOYNAQBQThTl+9ulkZtfO3v2rM6fP+/URmgAAACe4tKE4tzcXA0ZMkQ1atRQYGCgqlWr5vQCAADwFJfCzbPPPqsvvvhCb731lvz8/PTPf/5T48aNU+3atTVnzhx31wgAAFBoLp2W+uyzzzRnzhzFxsZq0KBB6tKlixo2bKi6devqgw8+UL9+/dxdJwAAQKG4NHLz888/O54KHhwc7Lj0+5ZbbtFXX33lvuoAAACKyKVwU79+faWnp0uSmjRponnz5km6NKJTtWpVtxUHAABQVC6Fm0GDBmnr1q2SpBEjRmjatGny9/fXU089pWeeecatBQIAABSFW+5z88MPP2jjxo1q2LChWrRo4Y66Sgz3uQEAoPwp9fvc1K1bV3Xr1i3uqgAAAIrNpdNSeXl5mjBhgiIiIhQUFKT9+/dLkl544QW9/fbbbi0QAACgKFwKNy+99JJmz56tV155Rb6+vo725s2b65///KfbigMAACgql8LNnDlz9I9//EP9+vWTt7e3o71ly5batWuX24oDAAAoKpfCzeHDh9WwYcN87Xa7XRcuXCh2UQAAAK5yKdw0a9ZMX3/9db72+fPnq3Xr1sUuCgAAwFUuXS01evRoDRw4UIcPH5bdbteCBQu0e/duzZkzR0uWLHF3jQAAAIXm0shNjx499Nlnn+nzzz9XYGCgRo8erZ07d+qzzz7T7bff7u4aAQAACs0tN/ErT7iJHwAA5U9Rvr9dfrbU8ePH87WfOHHC8UBNAAAAT3Ap3Bw4cEB5eXn52s+dO6fDhw8XuygAAABXFWlC8eLFix3/XrFihUJCQhw/5+XlKTU1VVFRUW4rDgAAoKiKFG569uwpSbLZbBo4cKDTez4+PoqKitJrr73mtuIAAACKqkjhxm63S5Lq1aunDRs2KDQ0tESKAgAAcFWR5tysW7dOS5YsUXp6uiPYzJkzR/Xq1VONGjX06KOP6ty5cyVSKAAAQGEUKdyMGzdOO3bscPy8bds2Pfzww4qLi9OIESP02WefKSkpye1FAgAAFFaRws3WrVt12223OX6eO3euOnbsqJkzZyoxMVFvvPGG5s2b5/YiAQAACqtI4eaXX35ReHi44+fVq1frzjvvdPzcvn17HTp0qMhFTJs2TVFRUfL391fHjh21fv36Qi03d+5c2Ww2x0RnAACAIoWb8PBwpaenS5LOnz+vTZs26aabbnK8f/LkSfn4+BSpgJSUFCUmJmrMmDHatGmTWrZsqfj4eB09evSqyx04cEBPP/20unTpUqTPAwAA1lakcHPXXXdpxIgR+vrrrzVy5EgFBAQ4hYvvvvtODRo0KFIBkydP1iOPPKJBgwapWbNmmj59ugICAvTOO+9ccZm8vDz169dP48aN447IAADASZHCzYQJE1SpUiXFxMRo5syZmjlzpnx9fR3vv/POO7rjjjsKvb7z589r48aNiouL+19BXl6Ki4vTunXrrrjc+PHjVaNGDT388MPX/Ixz584pJyfH6QUAAKyrSPe5CQ0N1VdffaXs7GwFBQXJ29vb6f2PP/5YQUFBhV5fVlaW8vLynObxSJdOf+3atavAZdasWaO3335bW7ZsKdRnJCUlady4cYWuCQAAlG8uPVsqJCQkX7CRpOrVqzuN5LjbyZMn1b9/f82cObPQNxAcOXKksrOzHS9XJjwDAIDyo0gjN+4WGhoqb29vZWZmOrVnZmaqZs2a+frv27dPBw4cUPfu3R1tl++aXKlSJe3evTvfnB8/Pz/5+fmVQPUAAKAscmnkxl18fX3Vtm1bpaamOtrsdrtSU1PVqVOnfP2bNGmibdu2acuWLY7XPffco27dumnLli2KjIwszfIBAEAZ5NGRG0lKTEzUwIED1a5dO3Xo0EHJycnKzc3VoEGDJEkDBgxQRESEkpKS5O/vr+bNmzstX7VqVUnK1w4AAComj4ebhIQEHTt2TKNHj9aRI0fUqlUrLV++3DHJ+ODBg/Ly8ugAEwAAKEdsxhjj6SJKU05OjkJCQpSdna3g4GBPlwMAAAqhKN/fDIkAAABLIdwAAABLIdygyDKyz2jtvixlZJ/xdCkAAOTj8QnFKF9SNhzUyAXbZDeSl01K6hWthPZ1PF0WAAAOjNyg0DKyzziCjSTZjTRqwXZGcAAAZQrhBoWWnpXrCDaX5RmjA1mnPVMQAAAFINyg0OqFBsrL5tzmbbMpKjTAMwUBAFAAwg0KrVZIZSX1ipa37VLC8bbZNLFXc9UKqezhygAA+B8mFKNIEtrXUddGYTqQdVpRoQEEGwBAmUO4QZHVCqlMqAEAlFmclgIAAJZCuAEAAG5TFm70ymkpAADgFmXlRq+M3AAAgGIrSzd6JdwAAIBiK0s3eiXcAACAYitLN3ol3AAAgGIrSzd6ZUIxAABwi7Jyo1fCDQAAcJuycKNXTksBAABLIdwAAABLIdwAAABLIdwAAABLIdwAACqcsvD8I5QcrpZyo4zsM0rPylW90ECPzxQHABSsrDz/CCWHcOMm/GcBgLLvSs8/6toojD9KLYTTUm5Qlh4WBgC4srL0/COUHMKNG/CfBQDKh7L0/COUHMKNG/CfBQDKh7L0/COUHObcuMHl/yyjFmxXnjH8ZwGAMqysPP8IJYdw4yb8ZwGA8qMsPP8IJYdw40b8ZwEAwPOYcwMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAFpORfUZr92UpI/uMp0sBPKKSpwsAALhPyoaDGrlgm+xG8rJJSb2ildC+jqfLAkoVIzcAYBEZ2WccwUaS7EYatWA7IziocAg3AGAR6Vm5jmBzWZ4xOpB12jMFAR5CuAEAi6gXGigvm3Obt82mqNAAzxQEeAjhBgAsolZIZSX1ipa37VLC8bbZNLFXc9UKqezhyoDSxYRiALCQhPZ11LVRmA5knVZUaADBBhUS4QYALKZWSGVCDSo0TksBAABLIdwAAABLKRPhZtq0aYqKipK/v786duyo9evXX7HvzJkz1aVLF1WrVk3VqlVTXFzcVfsDAICKxePhJiUlRYmJiRozZow2bdqkli1bKj4+XkePHi2wf1pamvr06aMvv/xS69atU2RkpO644w4dPny4lCsHAABlkc0YY67dreR07NhR7du319SpUyVJdrtdkZGRGjp0qEaMGHHN5fPy8lStWjVNnTpVAwYMuGb/nJwchYSEKDs7W8HBwcWuHwAAlLyifH97dOTm/Pnz2rhxo+Li4hxtXl5eiouL07p16wq1jtOnT+vChQuqXr16ge+fO3dOOTk5Ti8AAGBdHg03WVlZysvLU3h4uFN7eHi4jhw5Uqh1PPfcc6pdu7ZTQPq1pKQkhYSEOF6RkZHFrhsAyjKeCo6Krlzf5+bll1/W3LlzlZaWJn9//wL7jBw5UomJiY6fc3JyCDgALIunggMeDjehoaHy9vZWZmamU3tmZqZq1qx51WVfffVVvfzyy/r888/VokWLK/bz8/OTn5+fW+oFgLLsSk8F79oojJv6oULx6GkpX19ftW3bVqmpqY42u92u1NRUderU6YrLvfLKK5owYYKWL1+udu3alUapAFDm8VRw4BKPn5ZKTEzUwIED1a5dO3Xo0EHJycnKzc3VoEGDJEkDBgxQRESEkpKSJEmTJk3S6NGj9eGHHyoqKsoxNycoKEhBQUEe2w4A8LTLTwX/dcDhqeCoiDx+n5uEhAS9+uqrGj16tFq1aqUtW7Zo+fLljknGBw8eVEZGhqP/W2+9pfPnz+v+++9XrVq1HK9XX33VU5sAAGUCTwUHLvH4fW5KG/e5AWB1GdlneCo4LKco398ePy0FAHAvngqOis7jp6UAAADciXADACg2bhyIsoTTUgCAYuHGgShrGLkBALjsSjcOZAQHnkS4AQC4jBsHoiwi3AAAXHb5xoG/xo0D4WmEGwCAy7hxIMoiJhQDAIoloX0ddW0Uxo0DUWYQbgAAxcaNA1GWcFoKAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuHGjTKyz2jtvixlZJ/xdCkAAFRYPDjTTVI2HNTIBdtkN5KXTUrqFa2E9nU8XRYAABUOIzdukJF9xhFsJMlupFELtjOCAwCABxBu3CA9K9cRbC7LM0YHsk57piAAACowwo0b1AsNlJfNuc3bZlNUaIBnCgIAoAIj3LhBrZDKSuoVLW/bpYTjbbNpYq/mqhVS2cOVAQBQ8TCh2E0S2tdR10ZhOpB1WlGhAQQb4Boyss8oPStX9UID+f9SAPYP3KGiHkeEGzeqFVK5Qh08gKu4uvDq2D9wh4p8HHFaCkCpqmhXFxb1/lcVbf+gZFT044iRGwCl6mpXF1pt5NOVv5wr0v5ByanoxxEjNwBKVUW5utDVv5wryv5ByaroxxHhBihDKsIjPCrK1YWu3v+qouwflKyKfhxxWgooIyrS5L+KcHXh5b+cfx1wCvuXc0XYPyh5Ffk4shljzLW7WUdOTo5CQkKUnZ2t4OBgT5cDSLo0YnPzy1/k+yJcM6JbhfqFZDUpGw5q1ILtyjPG8ZezVQMrUNKK8v3NyA1QBlT0yX9WVZH/cgY8iXADlAHFOYWBso37XxVOXl6eLly44Oky4GG+vr7y8ir+dGDCDVAGXJ7899tTGHwpwuqMMTpy5IhOnDjh6VJQBnh5ealevXry9fUt1noIN0AZwSkMVESXg02NGjUUEBAgm8127YVgSXa7XT/99JMyMjJUp06dYh0LhBugDOEUBiqSvLw8R7C57rrrPF0OyoCwsDD99NNPunjxonx8fFxeD/e5AQB4xOU5NgEBzC3DJZdPR+Xl5RVrPYQbAIBHcSoKl7nrWCDcAAAASyHcAACAK4qKilJycrKnyygSwg0AAEV07Ngx/elPf1KdOnXk5+enmjVrKj4+Xt98842kS6dXFi5c6NkiCyk2NlY2my3f6+LFi54uzWVcLQUAQBHdd999On/+vN59913Vr19fmZmZSk1N1fHjxz1dmkseeeQRjR8/3qmtUqXyGxEYuQEAoAhOnDihr7/+WpMmTVK3bt1Ut25ddejQQSNHjtQ999yjqKgoSdK9994rm83m+FmSFi1apDZt2sjf31/169fXuHHjnEZIJk+erOjoaAUGBioyMlJ//vOfderUKcf7s2fPVtWqVbVkyRI1btxYAQEBuv/++3X69Gm9++67ioqKUrVq1fTkk08W6YqjgIAA1axZ0+l1JQcPHlSPHj0UFBSk4OBg9e7dW5mZmZKk7OxseXt769tvv5V06d411atX10033eRY/v3331dkZGSha3MF4QZFlpF9Rmv3ZSkj+4ynSwEASaX7eykoKEhBQUFauHChzp07l+/9DRs2SJJmzZqljIwMx89ff/21BgwYoGHDhun777/XjBkzNHv2bL300kuOZb28vPTGG29ox44devfdd/XFF1/o2WefdVr/6dOn9cYbb2ju3Llavny50tLSdO+992rZsmVatmyZ3nvvPc2YMUPz5893+7bb7Xb16NFDP//8s1avXq1Vq1Zp//79SkhIkCSFhISoVatWSktLkyRt27ZNNptNmzdvdoS01atXKyYmxu21OTEVTHZ2tpFksrOzPV1KuTR3/Q+m3oglpu5zS0y9EUvM3PU/eLokAOXUmTNnzPfff2/OnDlTrPV44vfS/PnzTbVq1Yy/v7/p3LmzGTlypNm6davjfUnm008/dVrmtttuMxMnTnRqe++990ytWrWu+Dkff/yxue666xw/z5o1y0gye/fudbQ99thjJiAgwJw8edLRFh8fbx577LFCbUtMTIzx8fExgYGBjldiYqLj/bp165rXX3/dGGPMypUrjbe3tzl48KDj/R07dhhJZv369cYYYxITE83dd99tjDEmOTnZJCQkmJYtW5p//etfxhhjGjZsaP7xj38UWMvVjomifH8zcoNCy8g+o5ELtjke7mg30qgF2xnBAeAxnvq9dN999+mnn37S4sWL9bvf/U5paWlq06aNZs+efcVltm7dqvHjxztGfoKCgvTII48oIyNDp0+fliR9/vnnuu222xQREaEqVaqof//+On78uON96dIppAYNGjh+Dg8PV1RUlIKCgpzajh49Wujt6devn7Zs2eJ4jRw5ssB+O3fuVGRkpNNppWbNmqlq1arauXOnJCkmJkZr1qxRXl6eVq9erdjYWMXGxiotLU0//fST9u7dq9jY2ELX5grCDQotPSvX6anVkpRnjA5knS54AaAEcFoUv+bJ30v+/v66/fbb9cILL2jt2rV66KGHNGbMmCv2P3XqlMaNG+cUIrZt26Y9e/bI399fBw4c0O9//3u1aNFCn3zyiTZu3Khp06ZJks6fP+9Yz28fS2Cz2Qpss9vthd6WkJAQNWzY0PEKDQ0t9LK/1bVrV508eVKbNm3SV1995RRuVq9erdq1a+uGG25wef2FUX6nQqPU1QsNlJdNTr9IvG02RYVy63SUjpQNBx1/pXvZpKRe0UpoX8fTZcGDytLvpWbNmjku//bx8ck3obdNmzbavXu3GjZsWODyGzdulN1u12uvvSYvr0tjD/PmzSvRmouqadOmOnTokA4dOuQYvfn+++914sQJNWvWTJJUtWpVtWjRQlOnTpWPj4+aNGmiGjVqKCEhQUuWLCn5+TZi5AZFUCukspJ6Rcv7v7fH9rbZNLFXcx70iFLBaVEUxBO/l44fP65bb71V77//vr777julp6fr448/1iuvvKIePXpIunTju9TUVB05ckS//PKLJGn06NGaM2eOxo0bpx07dmjnzp2aO3eunn/+eUlSw4YNdeHCBU2ZMkX79+/Xe++9p+nTp5fYdrgiLi5O0dHR6tevnzZt2qT169drwIABiomJUbt27Rz9YmNj9cEHHziCTPXq1dW0aVOlpKQQblD2JLSvozUjuumjR27SmhHd+KsZpYbToriS0v69FBQUpI4dO+r1119X165d1bx5c73wwgt65JFHNHXqVEnSa6+9plWrVikyMlKtW7eWJMXHx2vJkiVauXKl2rdvr5tuukmvv/666tatK0lq2bKlJk+erEmTJql58+b64IMPlJSUVKLbUlQ2m02LFi1StWrV1LVrV8XFxal+/fpKSUlx6hcTE6O8vDynuTWxsbH52kqsTmOMuXY368jJyVFISIiys7MVHBzs6XIAFFJG9hnd/PIX+U4/rBnRjdHDcurs2bNKT09XvXr15O/v7+lyUAZc7Zgoyvc3IzcAygVOiwIorDIRbqZNm6aoqCj5+/urY8eOWr9+/VX7f/zxx2rSpIn8/f0VHR2tZcuWlVKlADyJ06JA0Xz99ddOl57/9mVVHr9aKiUlRYmJiZo+fbo6duyo5ORkxcfHa/fu3apRo0a+/mvXrlWfPn2UlJSk3//+9/rwww/Vs2dPbdq0Sc2bN/fAFgAoTbVCKjNaAxRSu3bttGXLFk+XUeo8PuemY8eOat++vWMSlt1uV2RkpIYOHaoRI0bk65+QkKDc3FwtWbLE0XbTTTepVatWhZpVzpwbACgbmHOD37LEnJvz589r48aNiouLc7R5eXkpLi5O69atK3CZdevWOfWXLs1Av1L/c+fOKScnx+kFAACsy6PhJisrS3l5eQoPD3dqDw8P15EjRwpc5siRI0Xqn5SUpJCQEMerpJ9ECgAomgp20S6uwl3HQpmYUFySRo4cqezsbMfr0KFDni4JAKD/PUbg189NQsV2+TET3t7exVqPRycUh4aGytvbW5mZmU7tmZmZqlmzZoHL1KxZs0j9/fz85Ofn556CAQBu4+3trapVqzoe8BgQECDbfy/1R8Vjt9t17NgxBQQEqFKl4sUTj4YbX19ftW3bVqmpqerZs6ekSxuXmpqqIUOGFLhMp06dlJqaquHDhzvaVq1apU6dOpVCxQAAd7r8h2lRnmAN6/Ly8lKdOnWKHXI9fil4YmKiBg4cqHbt2qlDhw5KTk5Wbm6uBg0aJEkaMGCAIiIiHLegHjZsmGJiYvTaa6/p7rvv1ty5c/Xtt9/qH//4hyc3AwDgApvNplq1aqlGjRq6cOGCp8uBh/n6+joeGlocHg83CQkJOnbsmEaPHq0jR46oVatWWr58uWPS8MGDB502tHPnzvrwww/1/PPPa9SoUbrhhhu0cOFC7nEDAOWYt7d3sedZAJd5/D43pY373AAAUP6Um/vcAAAAuBvhBgAAWIrH59yUtstn4bhTMQAA5cfl7+3CzKapcOHm5MmTksSdigEAKIdOnjypkJCQq/apcBOK7Xa7fvrpJ1WpUqXY19Hn5OQoMjJShw4dYnLyf7FPCsZ+yY99kh/7JD/2SX4VdZ8YY3Ty5EnVrl37mpeLV7iRGy8vL11//fVuXWdwcHCFOsAKg31SMPZLfuyT/Ngn+bFP8quI++RaIzaXMaEYAABYCuEGAABYCuGmGPz8/DRmzBgezPkr7JOCsV/yY5/kxz7Jj32SH/vk2irchGIAAGBtjNwAAABLIdwAAABLIdwAAABLIdwAAABLIdz8xrRp0xQVFSV/f3917NhR69evv2r/5ORkNW7cWJUrV1ZkZKSeeuopnT171vH+2LFjZbPZnF5NmjQp6c1wq6LskwsXLmj8+PFq0KCB/P391bJlSy1fvrxY6yyL3L1Pyvtx8tVXX6l79+6qXbu2bDabFi5ceM1l0tLS1KZNG/n5+alhw4aaPXt2vj7l+TgpiX1S0Y6TjIwM9e3bV40aNZKXl5eGDx9eYL+PP/5YTZo0kb+/v6Kjo7Vs2TL3F19CSmKfzJ49O99x4u/vXzIbUEYRbn4lJSVFiYmJGjNmjDZt2qSWLVsqPj5eR48eLbD/hx9+qBEjRmjMmDHauXOn3n77baWkpGjUqFFO/W688UZlZGQ4XmvWrCmNzXGLou6T559/XjNmzNCUKVP0/fff6/HHH9e9996rzZs3u7zOsqYk9olUvo+T3NxctWzZUtOmTStU//T0dN19993q1q2btmzZouHDh2vw4MFasWKFo095P05KYp9IFes4OXfunMLCwvT888+rZcuWBfZZu3at+vTpo4cfflibN29Wz5491bNnT23fvt2dpZeYktgn0qW7F//6OPnhhx/cVXL5YODQoUMH88QTTzh+zsvLM7Vr1zZJSUkF9n/iiSfMrbfe6tSWmJhobr75ZsfPY8aMMS1btiyRektDUfdJrVq1zNSpU53aevXqZfr16+fyOsuaktgn5f04+TVJ5tNPP71qn2effdbceOONTm0JCQkmPj7e8XN5P05+zV37pKIdJ78WExNjhg0blq+9d+/e5u6773Zq69ixo3nssceKWWHpc9c+mTVrlgkJCXFbXeURIzf/df78eW3cuFFxcXGONi8vL8XFxWndunUFLtO5c2dt3LjRMVS+f/9+LVu2THfddZdTvz179qh27dqqX7+++vXrp4MHD5bchriRK/vk3Llz+YY/K1eu7Pjr0pV1liUlsU8uK6/HiSvWrVvntA8lKT4+3rEPy/tx4opr7ZPLKtJxUhiF3W8VzalTp1S3bl1FRkaqR48e2rFjh6dLKlWEm//KyspSXl6ewsPDndrDw8N15MiRApfp27evxo8fr1tuuUU+Pj5q0KCBYmNjnU5LdezYUbNnz9by5cv11ltvKT09XV26dNHJkydLdHvcwZV9Eh8fr8mTJ2vPnj2y2+1atWqVFixYoIyMDJfXWZaUxD6Ryvdx4oojR44UuA9zcnJ05syZcn+cuOJa+0SqeMdJYVxpv1n1OCmMxo0b65133tGiRYv0/vvvy263q3Pnzvrxxx89XVqpIdwUQ1pamiZOnKg333xTmzZt0oIFC7R06VJNmDDB0efOO+/UH/7wB7Vo0ULx8fFatmyZTpw4oXnz5nmw8pLz97//XTfccIOaNGkiX19fDRkyRIMGDbrm4+mtrDD7pKIdJ3ANxwkKo1OnThowYIBatWqlmJgYLViwQGFhYZoxY4anSys1Ffcb5zdCQ0Pl7e2tzMxMp/bMzEzVrFmzwGVeeOEF9e/fX4MHD1Z0dLTuvfdeTZw4UUlJSbLb7QUuU7VqVTVq1Eh79+51+za4myv7JCwsTAsXLlRubq5++OEH7dq1S0FBQapfv77L6yxLSmKfFKQ8HSeuqFmzZoH7MDg4WJUrVy73x4krrrVPCmL146QwrrTfrHqcuMLHx0etW7euUMcJ4ea/fH191bZtW6Wmpjra7Ha7UlNT1alTpwKXOX36dL4RCW9vb0mSucIju06dOqV9+/apVq1abqq85LiyTy7z9/dXRESELl68qE8++UQ9evQo9jrLgpLYJwUpT8eJKzp16uS0DyVp1apVjn1Y3o8TV1xrnxTE6sdJYbiy3yqavLw8bdu2rWIdJ56e0VyWzJ071/j5+ZnZs2eb77//3jz66KOmatWq5siRI8YYY/r3729GjBjh6D9mzBhTpUoV89FHH5n9+/eblStXmgYNGpjevXs7+vzlL38xaWlpJj093XzzzTcmLi7OhIaGmqNHj5b69rmiqPvk//7v/8wnn3xi9u3bZ7766itz6623mnr16plffvml0Oss60pin5T34+TkyZNm8+bNZvPmzUaSmTx5stm8ebP54YcfjDHGjBgxwvTv39/Rf//+/SYgIMA888wzZufOnWbatGnG29vbLF++3NGnvB8nJbFPKtpxYoxx9G/btq3p27ev2bx5s9mxY4fj/W+++cZUqlTJvPrqq2bnzp1mzJgxxsfHx2zbtq1Ut81VJbFPxo0bZ1asWGH27dtnNm7caB544AHj7+/v1MfqCDe/MWXKFFOnTh3j6+trOnToYP7v//7P8V5MTIwZOHCg4+cLFy6YsWPHmgYNGhh/f38TGRlp/vznPzt9aSUkJJhatWoZX19fExERYRISEszevXtLcYuKryj7JC0tzTRt2tT4+fmZ6667zvTv398cPny4SOssD9y9T8r7cfLll18aSflel/fDwIEDTUxMTL5lWrVqZXx9fU39+vXNrFmz8q23PB8nJbFPKuJxUlD/unXrOvWZN2+eadSokfH19TU33nijWbp0aelskBuUxD4ZPny44/9NeHi4ueuuu8ymTZtKb6PKAJsxVzh/AgAAUA4x5wYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAyoC0tDTZbDadOHHC06UA5R7hBqhgHnroIdlsNr388stO7QsXLpTNZnP8bIzRzJkz1alTJwUHBysoKEg33nijhg0bVugH8J0+fVojR45UgwYN5O/vr7CwMMXExGjRokWOPlFRUUpOTnbLtpW0y/vOZrPJx8dH9erV07PPPquzZ88WaT2xsbEaPny4U1vnzp2VkZGhkJAQN1YMVEyEG6AC8vf316RJk/TLL78U+L4xRn379tWTTz6pu+66SytXrtT333+vt99+W/7+/nrxxRcL9TmPP/64FixYoClTpmjXrl1avny57r//fh0/ftydm1Oqfve73ykjI0P79+/X66+/rhkzZmjMmDHFXq+vr69q1qzpFDABuMizT38AUNoGDhxofv/735smTZqYZ555xtH+6aefmsu/Ej766CMjySxatKjAddjt9kJ9VkhIiJk9e/YV34+Jicn3jJzLvv76a3PLLbcYf39/c/3115uhQ4eaU6dOOd6fM2eOadu2rQkKCjLh4eGmT58+JjMz0/H+5Wf2LF++3LRq1cr4+/ubbt26mczMTLNs2TLTpEkTU6VKFdOnTx+Tm5tbqO0ZOHCg6dGjh1Nbr169TOvWrR0/Z2VlmQceeMDUrl3bVK5c2TRv3tx8+OGHTuv47Tanp6c76v31s+nmz59vmjVrZnx9fU3dunXNq6++Wqg6gYqOkRugAvL29tbEiRM1ZcoU/fjjj/ne/+ijj9S4cWPdc889BS5f2NGFmjVratmyZTp58mSB7y9YsEDXX3+9xo8fr4yMDGVkZEiS9u3bp9/97ne677779N133yklJUVr1qzRkCFDHMteuHBBEyZM0NatW7Vw4UIdOHBADz30UL7PGDt2rKZOnaq1a9fq0KFD6t27t5KTk/Xhhx9q6dKlWrlypaZMmVKo7fmt7du3a+3atfL19XW0nT17Vm3bttXSpUu1fft2Pfroo+rfv7/Wr18vSfr73/+uTp066ZFHHnFsc2RkZL51b9y4Ub1799YDDzygbdu2aezYsXrhhRc0e/Zsl2oFKhRPpysApevXow833XST+eMf/2iMcR65adKkibnnnnuclhs2bJgJDAw0gYGBJiIiolCftXr1anP99dcbHx8f065dOzN8+HCzZs0apz5169Y1r7/+ulPbww8/bB599FGntq+//tp4eXmZM2fOFPhZGzZsMJLMyZMnjTH/G7n5/PPPHX2SkpKMJLNv3z5H22OPPWbi4+MLtT0DBw403t7eJjAw0Pj5+RlJxsvLy8yfP/+qy919993mL3/5i+PnmJgYM2zYMKc+vx256du3r7n99tud+jzzzDOmWbNmhaoVqMgYuQEqsEmTJundd9/Vzp07r9n3r3/9q7Zs2aLRo0fr1KlThVp/165dtX//fqWmpur+++/Xjh071KVLF02YMOGqy23dulWzZ89WUFCQ4xUfHy+73a709HRJl0Y2unfvrjp16qhKlSqKiYmRJB08eNBpXS1atHD8Ozw8XAEBAapfv75T29GjRwu1PZLUrVs3bdmyRf/+9781cOBADRo0SPfdd5/j/by8PE2YMEHR0dGqXr26goKCtGLFinx1XcvOnTt18803O7XdfPPN2rNnj/Ly8oq0LqCiIdwAFVjXrl0VHx+vkSNHOrXfcMMN2r17t1NbWFiYGjZsqBo1ahTpM3x8fNSlSxc999xzWrlypcaPH68JEybo/PnzV1zm1KlTeuyxx7RlyxbHa+vWrdqzZ48aNGig3NxcxcfHKzg4WB988IE2bNigTz/9VJLyrdfHx8fx78tXOf2azWaT3W4v9PYEBgaqYcOGatmypd555x39+9//1ttvv+14/29/+5v+/ve/67nnntOXX36pLVu2KD4+/qrbC8C9Knm6AACe9fLLL6tVq1Zq3Lixo61Pnz7q27evFi1apB49erj185o1a6aLFy/q7Nmz8vX1la+vb76RiDZt2uj7779Xw4YNC1zHtm3bdPz4cb388suO+SrffvutW+ssDC8vL40aNUqJiYnq27evKleurG+++UY9evTQgw8+KEmy2+36z3/+o2bNmjmWK2ibf6tp06b65ptvnNq++eYbNWrUSN7e3u7fGMBCGLkBKrjo6Gj169dPb7zxhqPtgQce0P33368HHnhA48eP17///W8dOHBAq1evVkpKSqG/XGNjYzVjxgxt3LhRBw4c0LJlyzRq1Ch169ZNwcHBki7d5+arr77S4cOHlZWVJUl67rnntHbtWg0ZMkRbtmzRnj17tGjRIseE4jp16sjX11dTpkzR/v37tXjx4mue6iopf/jDH+Tt7a1p06ZJujTqtWrVKq1du1Y7d+7UY489pszMTKdloqKiHPs0KyurwJGjv/zlL0pNTdWECRP0n//8R++++66mTp2qp59+ulS2CyjPCDcANH78eKcvWJvNppSUFCUnJ2vZsmW67bbb1LhxY/3xj39UZGSk1qxZU6j1xsfH691339Udd9yhpk2baujQoYqPj9e8efOcPvvAgQNq0KCBwsLCJF2aJ7N69Wr95z//UZcuXdS6dWuNHj1atWvXlnTpFNns2bP18ccfq1mzZnr55Zf16quvunGPFF6lSpU0ZMgQvfLKK8rNzdXzzz+vNm3aKD4+XrGxsapZs6Z69uzptMzTTz8tb29vNWvWTGFhYQXOx2nTpo3mzZunuXPnqnnz5ho9erTGjx9f4BVhAJzZjDHG00UAAAC4CyM3AADAUgg3AFz260u1f/v6+uuvPV1ekRw8ePCq21PUS7kBeA6npQC47GoP0IyIiFDlypVLsZriuXjxog4cOHDF96OiolSpEheYAuUB4QYAAFgKp6UAAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAICl/D/cLaMLHGr4VQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_52.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPNUlEQVR4nO3deVxU9f4/8NdhhGFRxhRkE1nccEEsckFTNCnyek20RbESTW1RSyNN8aYY+hWrW1lq6u2XYItmlksL11TcQtRUpNTUFEE0BxSLGVlEZD6/P7xMjSwyw8DMcF7Px+M8Hs45n/OZ9zmdnJfnfM45khBCgIiIiEhG7CxdABEREVFjYwAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiq7VgwQJIklSntpIkYcGCBQ1az6BBgzBo0CCr7Y+I6o4BiIjuKjk5GZIk6admzZrBx8cH48ePx++//27p8qyOv7+/wf5q06YNBgwYgM2bN5ul/5KSEixYsAB79uwxS39EcsQARER1lpCQgE8//RSrVq3C0KFD8dlnnyE8PBw3btxokO97/fXXUVpa2iB9N7SePXvi008/xaeffoqZM2fi8uXLGDVqFFatWlXvvktKSvDGG28wABHVQzNLF0BEtmPo0KG4//77AQCTJk2Cm5sb3nzzTXzzzTd48sknzf59zZo1Q7NmtvnXlI+PD55++mn953HjxqFDhw5477338MILL1iwMiICeAaIiOphwIABAICsrCyD+adPn8bjjz+OVq1awdHREffffz+++eYbgzbl5eV444030LFjRzg6OqJ169Z44IEHsGPHDn2b6sYAlZWV4ZVXXoG7uztatGiBRx99FJcuXapS2/jx4+Hv719lfnV9JiUl4cEHH0SbNm2gVCrRtWtXrFy50qh9cTeenp7o0qULsrOza2135coVTJw4ER4eHnB0dERISAjWrl2rX56TkwN3d3cAwBtvvKG/zNbQ45+Imhrb/KcVEVmFnJwcAMA999yjn3fy5En0798fPj4+mDNnDlxcXPDll18iKioKX3/9NUaOHAngdhBJTEzEpEmT0Lt3b2i1Whw5cgQZGRl46KGHavzOSZMm4bPPPsPYsWPRr18/7Nq1C8OGDavXdqxcuRLdunXDo48+imbNmuHbb7/FlClToNPpMHXq1Hr1Xam8vBwXL15E69ata2xTWlqKQYMG4dy5c5g2bRoCAgKwceNGjB8/HoWFhZg+fTrc3d2xcuVKvPjiixg5ciRGjRoFAOjRo4dZ6iSSDUFEdBdJSUkCgNi5c6e4evWquHjxovjqq6+Eu7u7UCqV4uLFi/q2Q4YMEcHBweLGjRv6eTqdTvTr10907NhRPy8kJEQMGzas1u+Nj48Xf/9rKjMzUwAQU6ZMMWg3duxYAUDEx8fr58XExAg/P7+79imEECUlJVXaRUZGisDAQIN54eHhIjw8vNaahRDCz89PPPzww+Lq1avi6tWr4ueffxZjxowRAMRLL71UY39Lly4VAMRnn32mn3fz5k0RFhYmmjdvLrRarRBCiKtXr1bZXiIyDi+BEVGdRUREwN3dHb6+vnj88cfh4uKCb775Bm3btgUA/PHHH9i1axeefPJJXL9+HQUFBSgoKMC1a9cQGRmJs2fP6u8aa9myJU6ePImzZ8/W+ftTUlIAAC+//LLB/BkzZtRru5ycnPR/1mg0KCgoQHh4OM6fPw+NRmNSn9u3b4e7uzvc3d0REhKCjRs34plnnsGbb75Z4zopKSnw9PREdHS0fp69vT1efvllFBUVYe/evSbVQkRV8RIYEdXZihUr0KlTJ2g0GqxZswb79u2DUqnULz937hyEEJg3bx7mzZtXbR9XrlyBj48PEhISMGLECHTq1Andu3fHI488gmeeeabWSzkXLlyAnZ0d2rdvbzC/c+fO9dqu/fv3Iz4+HgcOHEBJSYnBMo1GA5VKZXSfffr0waJFiyBJEpydndGlSxe0bNmy1nUuXLiAjh07ws7O8N+mXbp00S8nIvNgACKiOuvdu7f+LrCoqCg88MADGDt2LM6cOYPmzZtDp9MBAGbOnInIyMhq++jQoQMAYODAgcjKysLWrVuxfft2/L//9//w3nvvYdWqVZg0aVK9a63pAYoVFRUGn7OysjBkyBAEBQXh3Xffha+vLxwcHJCSkoL33ntPv03GcnNzQ0REhEnrElHDYwAiIpMoFAokJiZi8ODBWL58OebMmYPAwEAAty/b1OXHv1WrVpgwYQImTJiAoqIiDBw4EAsWLKgxAPn5+UGn0yErK8vgrM+ZM2eqtL3nnntQWFhYZf6dZ1G+/fZblJWV4ZtvvkG7du3083fv3n3X+s3Nz88Pv/zyC3Q6ncFZoNOnT+uXAzWHOyKqO44BIiKTDRo0CL1798bSpUtx48YNtGnTBoMGDcLq1auhVqurtL969ar+z9euXTNY1rx5c3To0AFlZWU1ft/QoUMBAB988IHB/KVLl1Zp2759e2g0Gvzyyy/6eWq1usrTmBUKBQBACKGfp9FokJSUVGMdDeUf//gH8vLysGHDBv28W7duYdmyZWjevDnCw8MBAM7OzgBQbcAjorrhGSAiqpdZs2bhiSeeQHJyMl544QWsWLECDzzwAIKDgzF58mQEBgYiPz8fBw4cwKVLl/Dzzz8DALp27YpBgwYhNDQUrVq1wpEjR/DVV19h2rRpNX5Xz549ER0djQ8//BAajQb9+vVDamoqzp07V6XtmDFjMHv2bIwcORIvv/wySkpKsHLlSnTq1AkZGRn6dg8//DAcHBwwfPhwPP/88ygqKsJHH32ENm3aVBviGtJzzz2H1atXY/z48Th69Cj8/f3x1VdfYf/+/Vi6dClatGgB4Pag7a5du2LDhg3o1KkTWrVqhe7du6N79+6NWi+RTbP0bWhEZP0qb4M/fPhwlWUVFRWiffv2on379uLWrVtCCCGysrLEuHHjhKenp7C3txc+Pj7in//8p/jqq6/06y1atEj07t1btGzZUjg5OYmgoCDxf//3f+LmzZv6NtXdsl5aWipefvll0bp1a+Hi4iKGDx8uLl68WO1t4du3bxfdu3cXDg4OonPnzuKzzz6rts9vvvlG9OjRQzg6Ogp/f3/x5ptvijVr1ggAIjs7W9/OmNvg73aLf0395efniwkTJgg3Nzfh4OAggoODRVJSUpV109PTRWhoqHBwcOAt8UQmkIT423lfIiIiIhngGCAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdPgixGjqdDpcvX0aLFi34yHkiIiIbIYTA9evX4e3tXeWlwndiAKrG5cuX4evra+kyiIiIyAQXL15E27Zta23DAFSNysfNX7x4Ea6urhauhoiIiOpCq9XC19dX/zteGwagalRe9nJ1dWUAIiIisjF1Gb7CQdBEREQkOwxAREREJDsMQERERCQ7HANUDxUVFSgvL7d0GdQE2dvbQ6FQWLoMIqImiwHIBEII5OXlobCw0NKlUBPWsmVLeHp68llUREQNgAHIBJXhp02bNnB2duYPFJmVEAIlJSW4cuUKAMDLy8vCFRERNT0MQEaqqKjQh5/WrVtbuhxqopycnAAAV65cQZs2bXg5jIjIzDgI2kiVY36cnZ0tXAk1dZXHGMeZERGZHwOQiXjZixoajzEioobDAERERESywwBERtm/fz+Cg4Nhb2+PqKgoS5dDRERkEgYgGRk/fjwkSYIkSbC3t0dAQABee+013Lhxo859xMbGomfPnsjOzkZycnLDFduIkpOT9ftFoVDgnnvuQZ8+fZCQkACNRmN0f5IkYcuWLeYvlIioiVBrSpGeVQC1ptRiNVg0ACUmJqJXr15o0aIF2rRpg6ioKJw5c8agzY0bNzB16lS0bt0azZs3x2OPPYb8/Pxa+xVCYP78+fDy8oKTkxMiIiJw9uzZhtwUm/HII49ArVbj/PnzeO+997B69WrEx8fXef2srCw8+OCDaNu2LVq2bGlSDTdv3jRpPVMIIXDr1q27tnN1dYVarcalS5eQnp6O5557Dp988gl69uyJy5cvN0KlRETysOFwLvov2YWxHx1C/yW7sOFwrkXqsGgA2rt3L6ZOnYqDBw9ix44dKC8vx8MPP4zi4mJ9m1deeQXffvstNm7ciL179+Ly5csYNWpUrf2+9dZb+OCDD7Bq1SocOnQILi4uiIyMNOpMR1OlVCrh6ekJX19fREVFISIiAjt27AAA6HQ6JCYmIiAgAE5OTggJCcFXX30FAMjJyYEkSbh27RqeffZZSJKkPwO0d+9e9O7dG0qlEl5eXpgzZ45B6Bg0aBCmTZuGGTNmwM3NDZGRkdizZw8kScIPP/yAe++9F05OTnjwwQdx5coV/Pe//0WXLl3g6uqKsWPHoqSkRN9XbTUC0Pf73//+F6GhoVAqlUhLS7vrfpEkCZ6envDy8kKXLl0wceJEpKeno6ioCK+99pq+nb+/P5YuXWqwbs+ePbFgwQL9cgAYOXIkJEmCv78/cnJyYGdnhyNHjhist3TpUvj5+UGn0921PiKipkCtKUXcpuPQidufdQKYu+mEZc4ECSty5coVAUDs3btXCCFEYWGhsLe3Fxs3btS3OXXqlAAgDhw4UG0fOp1OeHp6irfffls/r7CwUCiVSrF+/fo61aHRaAQAodFoqiwrLS0Vv/76qygtLTVm02p0ubBE7D93VVwuLDFLf7WJiYkRI0aM0H8+fvy48PT0FH369BFCCLFo0SIRFBQktm3bJrKyskRSUpJQKpViz5494tatW0KtVgtXV1exdOlSoVarRUlJibh06ZJwdnYWU6ZMEadOnRKbN28Wbm5uIj4+Xv894eHhonnz5mLWrFni9OnT4vTp02L37t0CgOjbt69IS0sTGRkZokOHDiI8PFw8/PDDIiMjQ+zbt0+0bt1aLFmyRN9XbTUKIfT99ujRQ2zfvl2cO3dOXLt2rdb9kpSUJFQqVbXLpk+fLlq0aCFu3bolhBDCz89PvPfeewZtQkJC9NtbeQwnJSUJtVotrly5IoQQ4qGHHhJTpkwxWK9Hjx5i/vz5NdZl7mONiMjS9p+7Kvxmf1dlSj9XYJb+a/v9vpNVPQixcrxFq1atAABHjx5FeXk5IiIi9G2CgoLQrl07HDhwAH379q3SR3Z2NvLy8gzWUalU6NOnDw4cOIAxY8ZUWaesrAxlZWX6z1qt1mzbVJsNh3P1SdhOAhJHBWN0r3YN+p3fffcdmjdvjlu3bqGsrAx2dnZYvnw5ysrKsHjxYuzcuRNhYWEAgMDAQKSlpWH16tUIDw/Xv5ZBpVLB09MTAPDhhx/C19cXy5cvhyRJCAoKwuXLlzF79mzMnz8fdna3TzJ27NgRb731lr4OtVoNAFi0aBH69+8PAJg4cSLi4uKQlZWFwMBAAMDjjz+O3bt3Y/bs2XWqsVJCQgIeeuiheu+voKAgXL9+HdeuXUObNm3u2t7d3R3AX6+xqDRp0iS88MILePfdd6FUKpGRkYHjx49j69at9a6RiMhWBLi5wE6C/gwQACgkCf5ujf9sPasZBK3T6TBjxgz0798f3bt3B3D7lRMODg5Vxpp4eHggLy+v2n4q53t4eNR5ncTERKhUKv3k6+tbz625O0udBhw8eDAyMzNx6NAhxMTEYMKECXjsscdw7tw5lJSU4KGHHkLz5s310yeffIKsrKwa+zt16hTCwsIMnlnTv39/FBUV4dKlS/p5oaGh1a7fo0cP/Z89PDzg7OysDz+V8ypfCWFMjffff79xO6YGQtz+D1TfZ/JERUVBoVBg8+bNAG4PvB48eLD+khkRkRx4qZyQOCoYiv/9naqQJCwe1R1eKqdGr8VqzgBNnToVJ06cqNN4DXOLi4tDbGys/rNWq23wEJRdUGyQgAGgQgjkFJQ06IHg4uKCDh06AADWrFmDkJAQfPzxx/rQ+f3338PHx8dgHaVSaZbvrY69vb3+z5V3p/2dJEn6MTJFRUV1rrGm7zPWqVOn4Orqqn/tiZ2dnT4UVarLk5odHBwwbtw4JCUlYdSoUVi3bh3ef/99s9RIRGRLRvdqh4Gd3JFTUAJ/N2eLhB/ASgLQtGnT8N1332Hfvn1o27atfr6npydu3ryJwsJCg7NA+fn5BpcX/q5yfn5+vsFLJPPz89GzZ89q11EqlWb5kTeGNZwGtLOzw9y5cxEbG4vffvsNSqUSubm5BpeS7qZLly74+uuvIYTQnyXZv38/WrRoYfDf0hy6du1qUo2munLlCtatW4eoqCj9pTx3d3f95TvgdljOzs42WM/e3h4VFRVV+ps0aRK6d++ODz/8ELdu3brrYH4ioqbKS+VkseBTyaKXwIQQmDZtGjZv3oxdu3YhICDAYHloaCjs7e2Rmpqqn3fmzBnk5ubqx4DcKSAgAJ6engbraLVaHDp0qMZ1LMFaTgM+8cQTUCgUWL16NWbOnIlXXnkFa9euRVZWFjIyMrBs2TKsXbu2xvWnTJmCixcv4qWXXsLp06exdetWxMfHIzY2Vh8azKVFixYm1VgXQgjk5eVBrVbj1KlTWLNmDfr16weVSoUlS5bo2z344IP49NNP8eOPP+L48eOIiYmp8qJSf39/pKamIi8vD3/++ad+fpcuXdC3b1/Mnj0b0dHR+heeEhFR47PoGaCpU6di3bp12Lp1K1q0aKEfo6NSqeDk5ASVSoWJEyciNjYWrVq1gqurK1566SWEhYUZDIAOCgpCYmKi/tbjGTNmYNGiRejYsSMCAgIwb948eHt7W92Ti63hNGCzZs0wbdo0vPXWW8jOzoa7uzsSExNx/vx5tGzZEvfddx/mzp1b4/o+Pj5ISUnBrFmzEBISglatWmHixIl4/fXXG6TehQsXGl1jXWi1Wnh5eUGSJLi6uqJz586IiYnB9OnT4erqqm8XFxeH7Oxs/POf/4RKpcLChQurnAF65513EBsbi48++gg+Pj7IycnRL6u8vf7ZZ5+tV71ERFRPZrnvzEQAqp2SkpL0bUpLS8WUKVPEPffcI5ydncXIkSOFWq2u0s/f19HpdGLevHnCw8NDKJVKMWTIEHHmzJk619WYt8GTvCQkJIjg4OA6teWxRkRkHGNug5eEuGNEJ0Gr1UKlUkGj0Rj86x+4/WTq7OxsBAQEwNHR0UIVkq0pKipCTk4OhgwZgkWLFmHy5Ml3XYfHGhGRcWr7/b6T1dwGT9RQunXrZnDb/N+nzz//vFFqmDZtGkJDQzFo0CBe/iIisgJWcRcYUUNKSUmp8Vb1O58X1VCSk5ObzMtjiYiaAgYgavL8/PwsXQIREVkZXgIzEYdOUUPjMUZE1HAYgIxU+aTiv7+hnKghVB5jdz4dm4iI6o+XwIykUCjQsmVL/fupnJ2d6/2eKKK/E0KgpKQEV65cQcuWLas8aJGIiOqPAcgEla/bqAxBRA3hzjfKExGR+TAAmUCSJHh5eaFNmzZ1ehEmkbHs7e155oeIqAExANWDQqHgjxQREZEN4iBoIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh2LBqB9+/Zh+PDh8Pb2hiRJ2LJli8FySZKqnd5+++0a+1ywYEGV9kFBQQ28JURERGRLLBqAiouLERISghUrVlS7XK1WG0xr1qyBJEl47LHHau23W7duBuulpaU1RPlERERko5pZ8suHDh2KoUOH1rjc09PT4PPWrVsxePBgBAYG1tpvs2bNqqxLREREVMlmxgDl5+fj+++/x8SJE+/a9uzZs/D29kZgYCCeeuop5Obm1tq+rKwMWq3WYCIiIqKmy2YC0Nq1a9GiRQuMGjWq1nZ9+vRBcnIytm3bhpUrVyI7OxsDBgzA9evXa1wnMTERKpVKP/n6+pq7fCIiIrIikhBCWLoI4PaA582bNyMqKqra5UFBQXjooYewbNkyo/otLCyEn58f3n333RrPHpWVlaGsrEz/WavVwtfXFxqNBq6urkZ9HxEREVmGVquFSqWq0++3RccA1dWPP/6IM2fOYMOGDUav27JlS3Tq1Annzp2rsY1SqYRSqaxPiURERGRDbOIS2Mcff4zQ0FCEhIQYvW5RURGysrLg5eXVAJURERGRLbJoACoqKkJmZiYyMzMBANnZ2cjMzDQYtKzVarFx40ZMmjSp2j6GDBmC5cuX6z/PnDkTe/fuRU5ODtLT0zFy5EgoFApER0c36LYQERGR7bDoJbAjR45g8ODB+s+xsbEAgJiYGCQnJwMAvvjiCwghagwwWVlZKCgo0H++dOkSoqOjce3aNbi7u+OBBx7AwYMH4e7u3nAbQkRERDbFagZBWxNjBlERERGRdTDm99smxgARERERmRMDEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERERyQ4DEBEREckOAxARERHJDgMQERFRE6DWlCI9qwBqTamlS7EJFg1A+/btw/Dhw+Ht7Q1JkrBlyxaD5ePHj4ckSQbTI488ctd+V6xYAX9/fzg6OqJPnz746aefGmgLiIiILG/D4Vz0X7ILYz86hP5LdmHD4VxLl2T1LBqAiouLERISghUrVtTY5pFHHoFardZP69evr7XPDRs2IDY2FvHx8cjIyEBISAgiIyNx5coVc5dPRERkcWpNKeI2HYdO3P6sE8DcTSd4Jugumlnyy4cOHYqhQ4fW2kapVMLT07POfb777ruYPHkyJkyYAABYtWoVvv/+e6xZswZz5sypV71ERETWJrugWB9+KlUIgZyCEnipnCxTlA2w+jFAe/bsQZs2bdC5c2e8+OKLuHbtWo1tb968iaNHjyIiIkI/z87ODhEREThw4ECN65WVlUGr1RpMREREtiDAzQV2kuE8hSTB383ZMgXZCKsOQI888gg++eQTpKam4s0338TevXsxdOhQVFRUVNu+oKAAFRUV8PDwMJjv4eGBvLy8Gr8nMTERKpVKP/n6+pp1O4iIiBqKl8oJiaOCoZBupyCFJGHxqO48+3MXFr0EdjdjxozR/zk4OBg9evRA+/btsWfPHgwZMsRs3xMXF4fY2Fj9Z61WyxBEREQ2Y3SvdhjYyR05BSXwd3Nm+KkDqw5AdwoMDISbmxvOnTtXbQByc3ODQqFAfn6+wfz8/PxaxxEplUoolUqz10tERNRYvFRODD5GsOpLYHe6dOkSrl27Bi8vr2qXOzg4IDQ0FKmpqfp5Op0OqampCAsLa6wyiYiIyMpZNAAVFRUhMzMTmZmZAIDs7GxkZmYiNzcXRUVFmDVrFg4ePIicnBykpqZixIgR6NChAyIjI/V9DBkyBMuXL9d/jo2NxUcffYS1a9fi1KlTePHFF1FcXKy/K4yIiIjIopfAjhw5gsGDB+s/V47DiYmJwcqVK/HLL79g7dq1KCwshLe3Nx5++GEsXLjQ4HJVVlYWCgoK9J9Hjx6Nq1evYv78+cjLy0PPnj2xbdu2KgOjiYiISL4kIYS4ezN50Wq1UKlU0Gg0cHV1tXQ5REREVAfG/H7b1BggIiIiInNgACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZMTkA+fv7IyEhAbm5ueash4iIiKjBmRyAZsyYgU2bNiEwMBAPPfQQvvjiC5SVlZmzNiIiIqIGUa8AlJmZiZ9++gldunTBSy+9BC8vL0ybNg0ZGRnmrJGIiIjIrCQhhDBHR+Xl5fjwww8xe/ZslJeXIzg4GC+//DImTJgASZLM8RWNRqvVQqVSQaPRwNXV1dLlEBERUR0Y8/vdrL5fVl5ejs2bNyMpKQk7duxA3759MXHiRFy6dAlz587Fzp07sW7duvp+DREREZHZmHwJLCMjw+CyV7du3XDixAmkpaVhwoQJmDdvHnbu3InNmzfX2Me+ffswfPhweHt7Q5IkbNmyRb+svLwcs2fPRnBwMFxcXODt7Y1x48bh8uXLtda1YMECSJJkMAUFBZm6mURERNQEmRyAevXqhbNnz2LlypX4/fff8e9//7tK0AgICMCYMWNq7KO4uBghISFYsWJFlWUlJSXIyMjAvHnzkJGRgU2bNuHMmTN49NFH71pbt27doFar9VNaWprxG0hERERNlsmXwM6fPw8/P79a27i4uCApKanG5UOHDsXQoUOrXaZSqbBjxw6DecuXL0fv3r2Rm5uLdu3a1dhvs2bN4OnpWWttREREJF8mnwEaPHgwrl27VmV+YWEhAgMD61VUTTQaDSRJQsuWLWttd/bsWXh7eyMwMBBPPfXUXZ9VVFZWBq1WazARERFR02VyAMrJyUFFRUWV+WVlZfj999/rVVR1bty4gdmzZyM6OrrWkd19+vRBcnIytm3bhpUrVyI7OxsDBgzA9evXa1wnMTERKpVKP/n6+pq9fiIiIrIeRl8C++abb/R//uGHH6BSqfSfKyoqkJqaCn9/f7MUV6m8vBxPPvkkhBBYuXJlrW3/fkmtR48e6NOnD/z8/PDll19i4sSJ1a4TFxeH2NhY/WetVssQRERE1IQZHYCioqIAAJIkISYmxmCZvb09/P398c4775ilOOCv8HPhwgXs2rXL6OfytGzZEp06dcK5c+dqbKNUKqFUKutbKhEREdkIowOQTqcDcPsOr8OHD8PNzc3sRVWqDD9nz57F7t270bp1a6P7KCoqQlZWFp555pkGqJCIiIhskcljgLKzs+sdfoqKipCZmYnMzEx9n5mZmcjNzUV5eTkef/xxHDlyBJ9//jkqKiqQl5eHvLw83Lx5U9/HkCFDsHz5cv3nmTNnYu/evcjJyUF6ejpGjhwJhUKB6OjoetVKRERETYfJt8EnJCTUunz+/Pl37ePIkSMYPHiw/nPlOJyYmBgsWLBAP96oZ8+eBuvt3r0bgwYNAgBkZWWhoKBAv+zSpUuIjo7GtWvX4O7ujgceeAAHDx6Eu7t7XTaLiIiIZMDkd4Hde++9Bp/Ly8uRnZ2NZs2aoX379jb9QlS+C4yIiMj2NMq7wI4dO1btF48fPx4jR440tVsiIiKiBmfyGKDquLq64o033sC8efPM2S0RERGRWZk1AAG3n9as0WjM3S0RERGR2Zh8CeyDDz4w+CyEgFqtxqefflrj+72IiIiIrIHJAei9994z+GxnZwd3d3fExMQgLi6u3oURERERNRSTA1B2drY56yAiIiJqNPUaAySEQEFBQbVvhSciIiKyViYFoLy8PIwbNw733HMPPDw80KZNG9xzzz149tlnkZ+fb+4aiYiIiMzK6EtgWq0W/fr1Q1FRESZMmICgoCAIIfDrr79i/fr1SEtLQ0ZGBpo3b94Q9RIRERHVm9EB6P3334dCocDJkyervF7i9ddfR//+/fHBBx9g7ty5ZiuSiIiIyJyMvgT2/fffY+7cudW+W6tNmzaIi4vDt99+a5biiIiIiBqC0QHot99+Q79+/Wpc3q9fP5w5c6ZeRRERERE1JKMDkFarRcuWLWtc3rJlS2i12vrURERERNSgjA5AQgjY2dW8miRJMPEF80RERESNwuhB0EIIdOrUCZIk1biciIiIyJoZHYCSkpIaog4iIiKiRmN0AIqJiTGq/fr16/Hoo4/CxcXF2K8iIiIiahD1ehVGXTz//PN8OjQRERFZlQYPQBwTRERERNamwQMQERERkbVhACKroNaUIj2rAGpNqaVLISIiGTB6EDSRuW04nIu4TcehE4CdBCSOCsboXu0sXRYRETVhPANEFqXWlOrDDwDoBDB30wmeCSIiogZlUgCqqKjAvn37UFhYeNe2fn5+sLe3N+VrSAayC4r14adShRDIKSixTEFERCQLJgUghUKBhx9+GH/++edd2544cQK+vr6mfA3JQICbC+zueKi4QpLg7+ZsmYKIiEgWTL4E1r17d5w/f96ctZAMeamckDgqGIr/vVpFIUlYPKo7vFROFq6MiIiaMkmY+KCebdu2IS4uDgsXLkRoaGiVJz27urqapUBL0Gq1UKlU0Gg0Nr0dtkStKUVOQQn83ZwZfoiIyCTG/H6bHID+/kb4v78YVQgBSZJQUVFhSrdWgQGIiIjI9hjz+23ybfC7d+82dVUiIiIiizI5AIWHh5uzDiIiIqJGU6/nAP344494+umn0a9fP/z+++8AgE8//RRpaWl1Wn/fvn0YPnw4vL29IUkStmzZYrBcCIH58+fDy8sLTk5OiIiIwNmzZ+/a74oVK+Dv7w9HR0f06dMHP/30k9HbRkRERE2XyQHo66+/RmRkJJycnJCRkYGysjIAgEajweLFi+vUR3FxMUJCQrBixYpql7/11lv44IMPsGrVKhw6dAguLi6IjIzEjRs3auxzw4YNiI2NRXx8PDIyMhASEoLIyEhcuXLF+I0kIiKipkmYqGfPnmLt2rVCCCGaN28usrKyhBBCZGRkCA8PD6P7AyA2b96s/6zT6YSnp6d4++239fMKCwuFUqkU69evr7Gf3r17i6lTp+o/V1RUCG9vb5GYmFjnWjQajQAgNBqNcRtBREREFmPM77fJZ4DOnDmDgQMHVpmvUqnq9ITou8nOzkZeXh4iIiIM+u7Tpw8OHDhQ7To3b97E0aNHDdaxs7NDREREjesAQFlZGbRarcFERERETZfJAcjT0xPnzp2rMj8tLQ2BgYH1KgoA8vLyAAAeHh4G8z08PPTL7lRQUICKigqj1gGAxMREqFQq/cQnVxMRETVtJgegyZMnY/r06Th06BAkScLly5fx+eefY+bMmXjxxRfNWWODi4uLg0aj0U8XL160dElERGTj1JpSpGcV8OXOVsrk2+DnzJkDnU6HIUOGoKSkBAMHDoRSqcTMmTPx0ksv1bswT09PAEB+fj68vLz08/Pz89GzZ89q13Fzc4NCoUB+fr7B/Pz8fH1/1VEqlVAqlfWumYiICAA2HM5F3Kbj0AnATgISRwVjdK92li6L/sbkM0CSJOFf//oX/vjjD5w4cQIHDx7E1atXsXDhQrMUFhAQAE9PT6SmpurnabVaHDp0CGFhYdWu4+DggNDQUIN1dDodUlNTa1yHiIjInNSaUn34AQCdAOZuOsEzQVbG5DNAlRwcHNC1a1eT1i0qKjIYR5SdnY3MzEy0atUK7dq1w4wZM7Bo0SJ07NgRAQEBmDdvHry9vREVFaVfZ8iQIRg5ciSmTZsGAIiNjUVMTAzuv/9+9O7dG0uXLkVxcTEmTJhQr+0kIiKqi+yCYn34qVQhBHIKSviuQyticgC6ceMGli1bht27d+PKlSvQ6XQGyzMyMu7ax5EjRzB48GD959jYWABATEwMkpOT8dprr6G4uBjPPfccCgsL8cADD2Dbtm1wdHTUr5OVlYWCggL959GjR+Pq1auYP38+8vLy0LNnT2zbtq3KwGgiIqKGEODmAjsJBiFIIUnwd3O2XFFUhckvQ33qqaewfft2PP744/Dw8DB4ISoAxMfHm6VAS7DGl6GqNaXILihGgJsL/wVBRGTlNhzOxdxNJ1AhBBSShMWjunMMUCNolLfBq1QqpKSkoH///iYVac2sLQBxMB0Rke1Ra0qRU1ACfzdn/sO1kRjz+23yIGgfHx+0aNHC1NWpjjiYjojINnmpnBDWvjXDj5UyOQC98847mD17Ni5cuGDOeugOtQ2mIyIiItOYPAj6/vvvx40bNxAYGAhnZ2fY29sbLP/jjz/qXRxxMB0REVFDMDkARUdH4/fff8fixYurHQRN5uGlckLiqOAqg+l4SpWIiMh0Jg+CdnZ2xoEDBxASEmLumizO2gZBAxxMR0REdDfG/H6bfAYoKCgIpaUciNtYvFRODD5ERERmYvIg6CVLluDVV1/Fnj17cO3aNWi1WoOJiIiIyFqZfAnMzu52drpz7I8QApIkoaKiov7VWYg1XgIjIiKi2jXKJbDdu3ebuioRERGRRZkUgMrLy5GQkIBVq1ahY8eO5q6JiIiIqEGZNAbI3t4ev/zyi7lrISIiImoUJg+Cfvrpp/Hxxx+bsxYiIiKiRmHyGKBbt25hzZo12LlzJ0JDQ+Hi4mKw/N133613cUREREQNweQAdOLECdx3330AgN9++81gGZ8KTURERNaMd4ERERGR7Jg8BujvLl26hEuXLpmjKyIiolqpNaVIzyqAWsO3EZDpTA5AOp0OCQkJUKlU8PPzg5+fH1q2bImFCxdCp9OZs0YiIiIAwIbDuei/ZBfGfnQI/ZfswobDuZYuiWyUyZfA/vWvf+Hjjz/GkiVL0L9/fwBAWloaFixYgBs3buD//u//zFYkERGRWlOKuE3Hofvf+wt0Api76QQGdnLnuxLJaCYHoLVr1+L//b//h0cffVQ/r0ePHvDx8cGUKVMYgIiIyKyyC4r14adShRDIKShhACKjmXwJ7I8//kBQUFCV+UFBQfjjjz/qVRQREdGdAtxcYHfHTcYKSYK/m7NlCiKbZnIACgkJwfLly6vMX758OUJCQupVFBER0Z28VE5IHBUMxf8etaKQJCwe1Z1nf8gkJl8Ce+uttzBs2DDs3LkTYWFhAIADBw7g4sWLSElJMVuBRERElUb3aoeBndyRU1ACfzdnhh8ymSSEEHdvVr3Lly9jxYoVOH36NACgS5cumDJlCry9vc1WoCVotVqoVCpoNBq4urpauhwiIiKqA2N+v406AzRq1CgkJyfD1dUVn3zyCUaPHs3BzkRERGRzjBoD9N1336G4uBgAMGHCBGg0mgYpioiIiKghGXUGKCgoCHFxcRg8eDCEEPjyyy9rPMU0btw4sxRIREREZG5GjQFKT09HbGwssrKy8Mcff6BFixbVvvhUkiSbvhWeY4CIiIhsjzG/3yYPgrazs0NeXh7atGljUpHWjAGIiIjI9hjz+23yc4Cys7Ph7u5u6upEREREFmNyAPLz80NaWhqefvpphIWF4ffffwcAfPrpp0hLSzNbgURERETmZnIA+vrrrxEZGQknJyccO3YMZWVlAACNRoPFixebrUB/f39IklRlmjp1arXtk5OTq7R1dHQ0Wz1ERERk+0wOQIsWLcKqVavw0Ucfwd7eXj+/f//+yMjIMEtxAHD48GGo1Wr9tGPHDgDAE088UeM6rq6uButcuHDBbPUQERGR7TP5VRhnzpzBwIEDq8xXqVQoLCysT00G7hxntGTJErRv3x7h4eE1riNJEjw9Pc1WgzVQa0qRXVCMADcXPvqdiIionkw+A+Tp6Ylz585VmZ+WlobAwMB6FVWTmzdv4rPPPsOzzz5b7e33lYqKiuDn5wdfX1+MGDECJ0+erLXfsrIyaLVag8mabDici/5LdmHsR4fQf8kubDica+mSiIiIbJrJAWjy5MmYPn06Dh06BEmScPnyZXz++ed49dVX8eKLL5qzRr0tW7agsLAQ48ePr7FN586dsWbNGmzduhWfffYZdDod+vXrh0uXLtW4TmJiIlQqlX7y9fVtgOpNo9aUIm7Tcej+97ACnQDmbjoBtabUsoURERHZMJOfAySEwOLFi5GYmIiSkhIAgFKpxKxZsxAXFwcnJ/NfpomMjISDgwO+/fbbOq9TXl6OLl26IDo6GgsXLqy2TVlZmX4QN3D7OQK+vr5W8Ryg9KwCjP3oUJX56yf3RVj71haoiIiIyDo1ynOAJEnCv/71L/zxxx84ceIEDh48iKtXr0KlUiEgIMDUbmt04cIF7Ny5E5MmTTJqPXt7e9x7773VXq6rpFQq4erqajBZiwA3F9jdcbVPIUnwd3O2TEFERERNgNEBqKysDHFxcbj//vvRv39/pKSkoGvXrjh58iQ6d+6M999/H6+88orZC01KSkKbNm0wbNgwo9arqKjA8ePH4eXlZfaaGoOXygmJo4Kh+N+YJ4UkYfGo7hwITUREVA9G3wU2f/58rF69GhEREUhPT8cTTzyBCRMm4ODBg3jnnXfwxBNPQKFQmLVInU6HpKQkxMTEoFkzw5LHjRsHHx8fJCYmAgASEhLQt29fdOjQAYWFhXj77bdx4cIFo88cWZPRvdphYCd35BSUwN/NmeGHiIionowOQBs3bsQnn3yCRx99FCdOnECPHj1w69Yt/Pzzz7XemVUfO3fuRG5uLp599tkqy3Jzc2Fn99eJrD///BOTJ09GXl4e7rnnHoSGhiI9PR1du3ZtkNoai5fKicGHiIjITIweBO3g4IDs7Gz4+PgAAJycnPDTTz8hODi4QQq0BL4MlYiIyPY06CDoiooKODg46D83a9YMzZs3N75KIiIiIgsx+hKYEALjx4+HUqkEANy4cQMvvPACXFxcDNpt2rTJPBUSERERmZnRASgmJsbg89NPP222YoiIiIgag9EBKCkpqSHqICIiImo0Jj8IkYiIiMhWMQARERGR7DAAEZGsqDWlSM8q4AuFiWTO6DFARES2asPhXMRtOg6dAOwkIHFUMEb3amfpsojIAngGiIhkQa0p1YcfANAJYO6mEzwTRCRTDEBEJAvZBcX68FOpQgjkFJRYpiAisigGICKShQA3F9jd8bpChSTB383ZMgURkUUxABGRLHipnJA4KhiK/720WSFJWDyqO18yTCRTHARNRLIxulc7DOzkjpyCEvi7OTP8EMkYAxDJklpTiuyCYgS4ufBHUGa8VE78b05EDEAkP7wVmoiIOAaIZIW3QhMREcAARDLDW6GJiAhgACKZ4a3QREQEMACRzPBWaCIiAjgImmSIt0ITEREDEMkSb4UmIpI3XgIjIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2WEAIiIiItlhACIiIiLZYQAiIiIi2bH6ALRgwQJIkmQwBQUF1brOxo0bERQUBEdHRwQHByMlJaWRqiUiIiJbYPUBCAC6desGtVqtn9LS0mpsm56ejujoaEycOBHHjh1DVFQUoqKicOLEiUasmIiIiKyZTQSgZs2awdPTUz+5ubnV2Pb999/HI488glmzZqFLly5YuHAh7rvvPixfvrwRKyYiIiJrZhMB6OzZs/D29kZgYCCeeuop5Obm1tj2wIEDiIiIMJgXGRmJAwcO1LhOWVkZtFqtwURERERNl9UHoD59+iA5ORnbtm3DypUrkZ2djQEDBuD69evVts/Ly4OHh4fBPA8PD+Tl5dX4HYmJiVCpVPrJ19fXrNtARERE1sXqA9DQoUPxxBNPoEePHoiMjERKSgoKCwvx5Zdfmu074uLioNFo9NPFixfN1jcRERFZn2aWLsBYLVu2RKdOnXDu3Llql3t6eiI/P99gXn5+Pjw9PWvsU6lUQqlUmrVOIiIisl5WfwboTkVFRcjKyoKXl1e1y8PCwpCammowb8eOHQgLC2uM8oiIZEetKUV6VgHUmlJLl0JUZ1Z/BmjmzJkYPnw4/Pz8cPnyZcTHx0OhUCA6OhoAMG7cOPj4+CAxMREAMH36dISHh+Odd97BsGHD8MUXX+DIkSP4z3/+Y8nNICJqkjYczkXcpuPQCcBOAhJHBWN0r3aWLovorqz+DNClS5cQHR2Nzp0748knn0Tr1q1x8OBBuLu7AwByc3OhVqv17fv164d169bhP//5D0JCQvDVV19hy5Yt6N69u6U2gYioSVJrSvXhBwB0Api76QTPBJFNkIQQwtJFWButVguVSgWNRgNXV1dLl0NEZJXSswow9qNDVeavn9wXYe1bW6Aikjtjfr+t/gwQ2RaOBSCSjwA3F9hJhvMUkgR/N2fLFERkBAYgMpsNh3PRf8kujP3oEPov2YUNh2t+YCUR2T4vlRMSRwVDId1OQQpJwuJR3eGlcrJwZUR3x0tg1eAlMOOpNaXov2SXfiwAcPsvw7Q5g/mXIVETp9aUIqegBP5uzvz/nSzKmN9vq78LjGxDdkGxQfgBgAohkFNQwr8QiZo4L5UT/z8nm8NLYGQWHAtARES2hAGIzIJjAYiIyJbwEhiZzehe7TCwkzvHAhARkdVjACKz4lgAIiKyBbwERkRERLLDAERERESywwBEREREssMARERERLLDAERERESywwBEREREssMARERERLLDAERERESywwBENk2tKUV6VgHUmlJLl0JERDaET4Imm7XhcC7iNh2HTgB2EpA4Khije7WzdFlERGQDeAaIbJJaU6oPPwCgE8DcTSd4JoiIiOqEAYhsUnZBsT78VKoQAjkFJZYpiIiIbAoDENmkADcX2EmG8xSSBH83Z8sURERENoUBiGySl8oJiaOCoZBupyCFJGHxqO58Ez0REdUJB0GTzRrdqx0GdnJHTkEJ/N2cGX6IiKjOGIDIpnmpnBh8iIjIaLwERkRUB3zmFFHTwjNARER3wWdOETU9PANERFQLPnOKqGliACIiqgWfOUXUNDEAERHVgs+cImqaGICIiGrBZ04RNU0cBE1EdBd85hRR02P1Z4ASExPRq1cvtGjRAm3atEFUVBTOnDlT6zrJycmQJMlgcnR0bKSKiagp8lI5Iax9a4YfoibC6gPQ3r17MXXqVBw8eBA7duxAeXk5Hn74YRQXF9e6nqurK9RqtX66cOFCI1VMRERE1s7qL4Ft27bN4HNycjLatGmDo0ePYuDAgTWuJ0kSPD09G7o8IiIiskFWfwboThqNBgDQqlWrWtsVFRXBz88Pvr6+GDFiBE6ePFlj27KyMmi1WoOJiIiImi6bCkA6nQ4zZsxA//790b179xrbde7cGWvWrMHWrVvx2WefQafToV+/frh06VK17RMTE6FSqfSTr69vQ20CERERWQFJCCHu3sw6vPjii/jvf/+LtLQ0tG3bts7rlZeXo0uXLoiOjsbChQurLC8rK0NZWZn+s1arha+vLzQaDVxdXc1SOxERETUsrVYLlUpVp99vqx8DVGnatGn47rvvsG/fPqPCDwDY29vj3nvvxblz56pdrlQqoVQqzVEmERER2QCrvwQmhMC0adOwefNm7Nq1CwEBAUb3UVFRgePHj8PLy6sBKiQiIiJbY/VngKZOnYp169Zh69ataNGiBfLy8gAAKpUKTk63n8cxbtw4+Pj4IDExEQCQkJCAvn37okOHDigsLMTbb7+NCxcuYNKkSRbbDiIiooak1pQiu6AYAW4ufF5VHVh9AFq5ciUAYNCgQQbzk5KSMH78eABAbm4u7Oz+Opn1559/YvLkycjLy8M999yD0NBQpKeno2vXro1VNhERUaPZcDgXcZuOQycAOwlIHBWM0b3aWbosq2ZTg6AbizGDqIiIiCxJrSlF/yW7oPvbr7lCkpA2Z7DszgQZ8/tt9WOAiIiIqGbZBcUG4QcAKoRATkGJZQqyEQxARERENizAzQV2kuE8hSTB383ZMgXZCAYgIiIiG+alckLiqGAopNspSCFJWDyqu+wufxnL6gdBE1Hj4p0kRLZndK92GNjJHTkFJfB3c+b/u3XAAEREeryThMh2eamcGHyMwEtgRATg9pmfyvADADoBzN10AmpNqWULIyJqAAxARASAd5IQkbwwABERAN5JQkTywgBERAB4JwkRyQsHQRORHu8kISK5YAAiIgO8k4SI5ICXwIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgBqZWlOK9KwCvl+JiIjIgvgcoEbEN20TERFZB54BaiR80zYREZH1YABqJHzTNhERkfVgAGokfNM2ERGR9WAAaiR80zYREZH14CDoRsQ3bRMREVkHBqBGxjdtU1Ol1pQiu6AYAW4uPMaJyOoxABE1kqYcEPiIByKyNQxARI2gKQeEmh7xMLCTe5MLekRNUVP+x1ltGICIGlhTDwi1PeKhKWwfUVPWlP9xdje8C4yogTX1Z0DxEQ9EtknuD+hlACJqYE09IPARD0S2qan/4+xubCIArVixAv7+/nB0dESfPn3w008/1dp+48aNCAoKgqOjI4KDg5GSktJIlRJVJYeAMLpXO6TNGYz1k/sibc5g2ZxCJ7JlTf0fZ3dj9QFow4YNiI2NRXx8PDIyMhASEoLIyEhcuXKl2vbp6emIjo7GxIkTcezYMURFRSEqKgonTpxo5MqJ/iKHgOClckJY+9ZNKtgRNWWW/MeZWlOK9KwCi15uk4QQ4u7NLKdPnz7o1asXli9fDgDQ6XTw9fXFSy+9hDlz5lRpP3r0aBQXF+O7777Tz+vbty969uyJVatW1ek7tVotVCoVNBoNXF1dzbMhREREVkitKW3UB/Q25MBrY36/rfoM0M2bN3H06FFERETo59nZ2SEiIgIHDhyodp0DBw4YtAeAyMjIGtsTERHJWWOevbWmgddWfRt8QUEBKioq4OHhYTDfw8MDp0+frnadvLy8atvn5eXV+D1lZWUoKyvTf9ZqtfWomoiIiKpjTY/NsOozQI0lMTERKpVKP/n6+lq6JCIioibHmgZeW3UAcnNzg0KhQH5+vsH8/Px8eHp6VruOp6enUe0BIC4uDhqNRj9dvHix/sUTERGRAWu6K9aqL4E5ODggNDQUqampiIqKAnB7EHRqaiqmTZtW7TphYWFITU3FjBkz9PN27NiBsLCwGr9HqVRCqVSas3QiIiKqxuhe7TCwk3ujDryujlUHIACIjY1FTEwM7r//fvTu3RtLly5FcXExJkyYAAAYN24cfHx8kJiYCACYPn06wsPD8c4772DYsGH44osvcOTIEfznP/+x5GYQERHR/3ipnCz+yAyrD0CjR4/G1atXMX/+fOTl5aFnz57Ytm2bfqBzbm4u7Oz+upLXr18/rFu3Dq+//jrmzp2Ljh07YsuWLejevbulNoGIiIisjNU/B8gS+BwgIiIi29NkngNERERE1BAYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICIiIhIdqz+VRiWUPlwbK1Wa+FKiIiIqK4qf7fr8pILBqBqXL9+HQDg6+tr4UqIiIjIWNevX4dKpaq1Dd8FVg2dTofLly+jRYsWkCTJ0uU0Cq1WC19fX1y8eFH27z/jvvgL98VfuC/+wn3xF+6Lv1jDvhBC4Pr16/D29jZ4UXp1eAaoGnZ2dmjbtq2ly7AIV1dX2f9PXIn74i/cF3/hvvgL98VfuC/+Yul9cbczP5U4CJqIiIhkhwGIiIiIZIcBiAAASqUS8fHxUCqVli7F4rgv/sJ98Rfui79wX/yF++IvtrYvOAiaiIiIZIdngIiIiEh2GICIiIhIdhiAiIiISHYYgIiIiEh2GICasBUrVsDf3x+Ojo7o06cPfvrpp1rbL126FJ07d4aTkxN8fX3xyiuv4MaNG/rlCxYsgCRJBlNQUFBDb4ZZGLMvysvLkZCQgPbt28PR0REhISHYtm1bvfq0JubeF7Z4XOzbtw/Dhw+Ht7c3JEnCli1b7rrOnj17cN9990GpVKJDhw5ITk6u0sYWj4mG2Be2eEwAxu8LtVqNsWPHolOnTrCzs8OMGTOqbbdx40YEBQXB0dERwcHBSElJMX/xZtYQ+yI5ObnKceHo6NgwG1AHDEBN1IYNGxAbG4v4+HhkZGQgJCQEkZGRuHLlSrXt161bhzlz5iA+Ph6nTp3Cxx9/jA0bNmDu3LkG7bp16wa1Wq2f0tLSGmNz6sXYffH6669j9erVWLZsGX799Ve88MILGDlyJI4dO2Zyn9aiIfYFYHvHRXFxMUJCQrBixYo6tc/OzsawYcMwePBgZGZmYsaMGZg0aRJ++OEHfRtbPSYaYl8AtndMAMbvi7KyMri7u+P1119HSEhItW3S09MRHR2NiRMn4tixY4iKikJUVBROnDhhztLNriH2BXD7KdF/Py4uXLhgrpKNJ6hJ6t27t5g6dar+c0VFhfD29haJiYnVtp86dap48MEHDebFxsaK/v376z/Hx8eLkJCQBqm3IRm7L7y8vMTy5csN5o0aNUo89dRTJvdpLRpiX9jqcVEJgNi8eXOtbV577TXRrVs3g3mjR48WkZGR+s+2ekz8nbn2ha0fE0LUbV/8XXh4uJg+fXqV+U8++aQYNmyYwbw+ffqI559/vp4VNh5z7YukpCShUqnMVld98QxQE3Tz5k0cPXoUERER+nl2dnaIiIjAgQMHql2nX79+OHr0qP6U/fnz55GSkoJ//OMfBu3Onj0Lb29vBAYG4qmnnkJubm7DbYgZmLIvysrKqpyWdXJy0v8L1pQ+rUFD7ItKtnZcGOvAgQMG+w0AIiMj9fvNVo8JU9xtX1Rq6sdEXdV1f8lFUVER/Pz84OvrixEjRuDkyZMWq4UBqAkqKChARUUFPDw8DOZ7eHggLy+v2nXGjh2LhIQEPPDAA7C3t0f79u0xaNAgg0tgffr0QXJyMrZt24aVK1ciOzsbAwYMwPXr1xt0e+rDlH0RGRmJd999F2fPnoVOp8OOHTuwadMmqNVqk/u0Bg2xLwDbPC6MlZeXV+1+02q1KC0ttdljwhR32xeAPI6JuqppfzW146IuOnfujDVr1mDr1q347LPPoNPp0K9fP1y6dMki9TAAEYDbgxoXL16MDz/8EBkZGdi0aRO+//57LFy4UN9m6NCheOKJJ9CjRw9ERkYiJSUFhYWF+PLLLy1Yufm9//776NixI4KCguDg4IBp06ZhwoQJsLOT3/8uddkXcjkuqO54TFB1wsLCMG7cOPTs2RPh4eHYtGkT3N3dsXr1aovUI7+/0WXAzc0NCoUC+fn5BvPz8/Ph6elZ7Trz5s3DM888g0mTJiE4OBgjR47E4sWLkZiYCJ1OV+06LVu2RKdOnXDu3Dmzb4O5mLIv3N3dsWXLFhQXF+PChQs4ffo0mjdvjsDAQJP7tAYNsS+qYwvHhbE8PT2r3W+urq5wcnKy2WPCFHfbF9VpisdEXdW0v5racWEKe3t73HvvvRY7LhiAmiAHBweEhoYiNTVVP0+n0yE1NRVhYWHVrlNSUlLlDIdCoQAAiBpeF1dUVISsrCx4eXmZqXLzM2VfVHJ0dISPjw9u3bqFr7/+GiNGjKh3n5bUEPuiOrZwXBgrLCzMYL8BwI4dO/T7zVaPCVPcbV9UpykeE3Vlyv6Si4qKChw/ftxyx4WlR2FTw/jiiy+EUqkUycnJ4tdffxXPPfecaNmypcjLyxNCCPHMM8+IOXPm6NvHx8eLFi1aiPXr14vz58+L7du3i/bt24snn3xS3+bVV18Ve/bsEdnZ2WL//v0iIiJCuLm5iStXrjT69hnD2H1x8OBB8fXXX4usrCyxb98+8eCDD4qAgADx559/1rlPa9UQ+8IWj4vr16+LY8eOiWPHjgkA4t133xXHjh0TFy5cEEIIMWfOHPHMM8/o258/f144OzuLWbNmiVOnTokVK1YIhUIhtm3bpm9jq8dEQ+wLWzwmhDB+Xwgh9O1DQ0PF2LFjxbFjx8TJkyf1y/fv3y+aNWsm/v3vf4tTp06J+Ph4YW9vL44fP96o22ashtgXb7zxhvjhhx9EVlaWOHr0qBgzZoxwdHQ0aNOYGICasGXLlol27doJBwcH0bt3b3Hw4EH9svDwcBETE6P/XF5eLhYsWCDat28vHB0dha+vr5gyZYrBD93o0aOFl5eXcHBwED4+PmL06NHi3LlzjbhFpjNmX+zZs0d06dJFKJVK0bp1a/HMM8+I33//3ag+rZm594UtHhe7d+8WAKpMldseExMjwsPDq6zTs2dP4eDgIAIDA0VSUlKVfm3xmGiIfWGLx4QQpu2L6tr7+fkZtPnyyy9Fp06dhIODg+jWrZv4/vvvG2eD6qEh9sWMGTP0/394eHiIf/zjHyIjI6PxNuoOkhA1XN8gIiIiaqI4BoiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiIiIZIcBiIiIiGSHAYiIiIhkhwGIiMhG7NmzB5IkobCw0NKlENk8BiAiqmL8+PGQJAlLliwxmL9lyxZIkqT/LITARx99hLCwMLi6uqJ58+bo1q0bpk+fXucXHJaUlCAuLg7t27eHo6Mj3N3dER4ejq1bt+rb+Pv7Y+nSpWbZtoZWue8kSYK9vT0CAgLw2muv4caNG0b1M2jQIMyYMcNgXr9+/aBWq6FSqcxYMZE8MQARUbUcHR3x5ptv4s8//6x2uRACY8eOxcsvv4x//OMf2L59O3799Vd8/PHHcHR0xKJFi+r0PS+88AI2bdqEZcuW4fTp09i2bRsef/xxXLt2zZyb06geeeQRqNVqnD9/Hu+99x5Wr16N+Pj4evfr4OAAT09PgxBKRCay2Es4iMhqxcTEiH/+858iKChIzJo1Sz9/8+bNovKvjfXr1wsAYuvWrdX2odPp6vRdKpVKJCcn17g8PDy8yvuFKv3444/igQceEI6OjqJt27bipZdeEkVFRfrln3zyiQgNDRXNmzcXHh4eIjo6WuTn5+uXV77vaNu2baJnz57C0dFRDB48WOTn54uUlBQRFBQkWrRoIaKjo0VxcXGdticmJkaMGDHCYN6oUaPEvffeq/9cUFAgxowZI7y9vYWTk5Po3r27WLdunUEfd25zdna2vt6/v6Pvq6++El27dhUODg7Cz89P/Pvf/65TnURyxzNARFQthUKBxYsXY9myZbh06VKV5evXr0fnzp3x6KOPVrt+Xc9SeHp6IiUlBdevX692+aZNm9C2bVskJCRArVZDrVYDALKysvDII4/gsccewy+//IINGzYgLS0N06ZN069bXl6OhQsX4ueff8aWLVuQk5OD8ePHV/mOBQsWYPny5UhPT8fFixfx5JNPYunSpVi3bh2+//57bN++HcuWLavT9tzpxIkTSE9Ph4ODg37ejRs3EBoaiu+//x4nTpzAc889h2eeeQY//fQTAOD9999HWFgYJk+erN9mX1/fKn0fPXoUTz75JMaMGYPjx49jwYIFmDdvHpKTk02qlUhWLJ3AiMj6/P0sRt++fcWzzz4rhDA8AxQUFCQeffRRg/WmT58uXFxchIuLi/Dx8anTd+3du1e0bdtW2Nvbi/vvv1/MmDFDpKWlGbTx8/MT7733nsG8iRMniueee85g3o8//ijs7OxEaWlptd91+PBhAUBcv35dCPHXGaCdO3fq2yQmJgoAIisrSz/v+eefF5GRkXXanpiYGKFQKISLi4tQKpUCgLCzsxNfffVVresNGzZMvPrqq/rP4eHhYvr06QZt7jwDNHbsWPHQQw8ZtJk1a5bo2rVrnWolkjOeASKiWr355ptYu3YtTp06dde2//rXv5CZmYn58+ejqKioTv0PHDgQ58+fR2pqKh5//HGcPHkSAwYMwMKFC2td7+eff0ZycjKaN2+unyIjI6HT6ZCdnQ3g9hmS4cOHo127dmjRogXCw8MBALm5uQZ99ejRQ/9nDw8PODs7IzAw0GDelStX6rQ9ADB48GBkZmbi0KFDiImJwYQJE/DYY4/pl1dUVGDhwoUIDg5Gq1at0Lx5c/zwww9V6rqbU6dOoX///gbz+vfvj7Nnz6KiosKovojkhgGIiGo1cOBAREZGIi4uzmB+x44dcebMGYN57u7u6NChA9q0aWPUd9jb22PAgAGYPXs2tm/fjoSEBCxcuBA3b96scZ2ioiI8//zzyMzM1E8///wzzp49i/bt26O4uBiRkZFwdXXF559/jsOHD2Pz5s0AUKVfe3t7/Z8r7976O0mSoNPp6rw9Li4u6NChA0JCQrBmzRocOnQIH3/8sX7522+/jffffx+zZ8/G7t27kZmZicjIyFq3l4jMq5mlCyAi67dkyRL07NkTnTt31s+Ljo7G2LFjsXXrVowYMcKs39e1a1fcunULN27cgIODAxwcHKqc0bjvvvvw66+/okOHDtX2cfz4cVy7dg1LlizRj585cuSIWeusCzs7O8ydOxexsbEYO3YsnJycsH//fowYMQJPP/00AECn0+G3335D165d9etVt8136tKlC/bv328wb//+/ejUqRMUCoX5N4aoCeEZICK6q+DgYDz11FP44IMP9PPGjBmDxx9/HGPGjEFCQgIOHTqEnJwc7N27Fxs2bKjzD/CgQYOwevVqHD16FDk5OUhJScHcuXMxePBguLq6Arj9HKB9+/bh999/R0FBAQBg9uzZSE9Px7Rp05CZmYmzZ89i69at+kHQ7dq1g4ODA5YtW4bz58/jm2++uetltYbyxBNPQKFQYMWKFQBunz3bsWMH0tPTcerUKTz//PPIz883WMff31+/TwsKCqo9A/Xqq68iNTUVCxcuxG+//Ya1a9di+fLlmDlzZqNsF5EtYwAiojpJSEgw+BGWJAkbNmzA0qVLkZKSgiFDhqBz58549tln4evri7S0tDr1GxkZibVr1+Lhhx9Gly5d8NJLLyEyMhJffvmlwXfn5OSgffv2cHd3B3B73M7evXvx22+/YcCAAbj33nsxf/58eHt7A7h9OS45ORkbN25E165dsWTJEvz73/824x6pu2bNmmHatGl46623UFxcjNdffx333XcfIiMjMWjQIHh6eiIqKspgnZkzZ0KhUKBr165wd3evdnzQfffdhy+//BJffPEFunfvjvnz5yMhIaHaO92IyJAkhBCWLoKIiIioMfEMEBEREckOAxARNai/36Z+5/Tjjz9aujyj5Obm1ro9xt7GTkSWw0tgRNSganspqo+PD5ycnBqxmvq5desWcnJyalzu7++PZs14cy2RLWAAIiIiItnhJTAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikh0GICIiIpIdBiAiIiKSHQYgIiIikp3/DwCQAvRV2gnhAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARLxJREFUeJzt3Xl4FFUe9v27E7IRSLMlJEBIwho2g7I4ECWgOBEZZRllUwy4KwiIC8uIIChBZ0ZQZICHRxNcUFxYHEVFkUXABVlUFFnDHsDo0CEEIiTn/cOHfm2TQNLppLuS7+e6+rroU6eqf11Tk76tOnXKZowxAgAAsCg/bxcAAABQFoQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZABViypQpstlsJeprs9k0ZcqUcq2ne/fu6t69u89uD0DJEWaAKiY9PV02m835qlatmho2bKhhw4bpyJEj3i7P58TGxrrsr4iICF199dVaunSpR7afm5urKVOmaM2aNR7ZHlAVEWaAKmrq1Kl69dVXNW/ePPXq1UuvvfaakpKSdPbs2XL5vMcff1xnzpwpl22Xt/bt2+vVV1/Vq6++qkceeURHjx5V//79NW/evDJvOzc3V08++SRhBiiDat4uAIB39OrVSx07dpQk3XXXXapXr56eeeYZvffeexowYIDHP69atWqqVs2af3IaNmyo2267zfn+9ttvV7NmzTRz5kzdd999XqwMgMSZGQD/z9VXXy1J2rt3r0v7Tz/9pJtvvll16tRRcHCwOnbsqPfee8+lz7lz5/Tkk0+qefPmCg4OVt26dXXVVVfpk08+cfYpasxMXl6eHnroIYWHh6tmzZq66aabdPjw4UK1DRs2TLGxsYXai9pmWlqarrnmGkVERCgoKEitW7fW3LlzS7UvLiUyMlKtWrVSRkbGRfudOHFCd955p+rXr6/g4GAlJCRo4cKFzuX79+9XeHi4JOnJJ590Xsoq7/FCQGVjzf9MAuBx+/fvlyTVrl3b2fbDDz8oMTFRDRs21Pjx4xUaGqq33npLffv21bvvvqt+/fpJ+j1UpKam6q677lLnzp2VnZ2tb775Rlu2bNF1111X7Gfeddddeu211zRkyBB17dpVn332mXr37l2m7zF37ly1adNGN910k6pVq6b//ve/euCBB1RQUKARI0aUadsXnDt3TocOHVLdunWL7XPmzBl1795de/bs0ciRIxUXF6e3335bw4YN08mTJzV69GiFh4dr7ty5uv/++9WvXz/1799fknTZZZd5pE6gyjAAqpS0tDQjyXz66afm559/NocOHTLvvPOOCQ8PN0FBQebQoUPOvtdee61p166dOXv2rLOtoKDAdO3a1TRv3tzZlpCQYHr37n3Rz508ebL545+cbdu2GUnmgQcecOk3ZMgQI8lMnjzZ2ZaSkmJiYmIuuU1jjMnNzS3ULzk52TRp0sSlLSkpySQlJV20ZmOMiYmJMX/961/Nzz//bH7++Wfz7bffmkGDBhlJ5sEHHyx2e7NmzTKSzGuvveZs++2330yXLl1MjRo1THZ2tjHGmJ9//rnQ9wVQOlxmAqqonj17Kjw8XNHR0br55psVGhqq9957T40aNZIk/frrr/rss880YMAAnTp1SllZWcrKytIvv/yi5ORk7d6923n3U61atfTDDz9o9+7dJf78FStWSJJGjRrl0j5mzJgyfa+QkBDnvx0Oh7KyspSUlKR9+/bJ4XC4tc2VK1cqPDxc4eHhSkhI0Ntvv62hQ4fqmWeeKXadFStWKDIyUoMHD3a2BQQEaNSoUcrJydHatWvdqgVAYVxmAqqoOXPmqEWLFnI4HHr55Ze1bt06BQUFOZfv2bNHxhhNmjRJkyZNKnIbJ06cUMOGDTV16lT16dNHLVq0UNu2bXX99ddr6NChF71ccuDAAfn5+alp06Yu7S1btizT99qwYYMmT56sL774Qrm5uS7LHA6H7HZ7qbd55ZVX6qmnnpLNZlP16tXVqlUr1apV66LrHDhwQM2bN5efn+t/M7Zq1cq5HIBnEGaAKqpz587Ou5n69u2rq666SkOGDNHOnTtVo0YNFRQUSJIeeeQRJScnF7mNZs2aSZK6deumvXv3avny5Vq5cqX+7//9v5o5c6bmzZunu+66q8y1FjfZXn5+vsv7vXv36tprr1V8fLyee+45RUdHKzAwUCtWrNDMmTOd36m06tWrp549e7q1LoDyR5gBIH9/f6WmpqpHjx568cUXNX78eDVp0kTS75dGSvJDXqdOHQ0fPlzDhw9XTk6OunXrpilTphQbZmJiYlRQUKC9e/e6nI3ZuXNnob61a9fWyZMnC7X/+ezGf//7X+Xl5em9995T48aNne2rV6++ZP2eFhMTo++++04FBQUuZ2d++ukn53Kp+KAGoOQYMwNA0u/T8Xfu3FmzZs3S2bNnFRERoe7du2v+/PnKzMws1P/nn392/vuXX35xWVajRg01a9ZMeXl5xX5er169JEkvvPCCS/usWbMK9W3atKkcDoe+++47Z1tmZmahWXj9/f0lScYYZ5vD4VBaWlqxdZSXG264QceOHdPixYudbefPn9fs2bNVo0YNJSUlSZKqV68uSUWGNQAlw5kZAE6PPvqobrnlFqWnp+u+++7TnDlzdNVVV6ldu3a6++671aRJEx0/flxffPGFDh8+rG+//VaS1Lp1a3Xv3l0dOnRQnTp19M033+idd97RyJEji/2s9u3ba/DgwfrPf/4jh8Ohrl27atWqVdqzZ0+hvoMGDdK4cePUr18/jRo1Srm5uZo7d65atGihLVu2OPv99a9/VWBgoG688Ubde++9ysnJ0YIFCxQREVFkICtP99xzj+bPn69hw4Zp8+bNio2N1TvvvKMNGzZo1qxZqlmzpqTfByy3bt1aixcvVosWLVSnTh21bdtWbdu2rdB6AUvz9u1UACrWhVuzN23aVGhZfn6+adq0qWnatKk5f/68McaYvXv3mttvv91ERkaagIAA07BhQ/O3v/3NvPPOO871nnrqKdO5c2dTq1YtExISYuLj483TTz9tfvvtN2efom6jPnPmjBk1apSpW7euCQ0NNTfeeKM5dOhQkbcqr1y50rRt29YEBgaali1bmtdee63Ibb733nvmsssuM8HBwSY2NtY888wz5uWXXzaSTEZGhrNfaW7NvtRt58Vt7/jx42b48OGmXr16JjAw0LRr186kpaUVWnfjxo2mQ4cOJjAwkNu0ATfYjPnD+VgAAACLYcwMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwtEo/aV5BQYGOHj2qmjVrMm04AAAWYYzRqVOn1KBBg0IPbP2zSh9mjh49qujoaG+XAQAA3HDo0CE1atToon0qfZi5MGX4oUOHFBYW5uVqAABASWRnZys6Otr5O34xlT7MXLi0FBYWRpgBAMBiSjJEhAHAAADA0ggzAADA0ggzAADA0ir9mJmSys/P17lz57xdBiqhgIAA+fv7e7sMAKi0qnyYMcbo2LFjOnnypLdLQSVWq1YtRUZGMtcRAJSDKh9mLgSZiIgIVa9enR8beJQxRrm5uTpx4oQkKSoqyssVAUDl49Uws27dOv3zn//U5s2blZmZqaVLl6pv374ufXbs2KFx48Zp7dq1On/+vFq3bq13331XjRs3LvPn5+fnO4NM3bp1y7w9oCghISGSpBMnTigiIoJLTgDgYV4dAHz69GklJCRozpw5RS7fu3evrrrqKsXHx2vNmjX67rvvNGnSJAUHB3vk8y+MkalevbpHtgcU58IxxrgsAPA8r56Z6dWrl3r16lXs8n/84x+64YYb9OyzzzrbmjZt6vE6uLSE8sYxBgDlx2dvzS4oKNAHH3ygFi1aKDk5WREREbryyiu1bNkyb5cGAAB8iM+GmRMnTignJ0czZszQ9ddfr5UrV6pfv37q37+/1q5dW+x6eXl5ys7OdnmhaBs2bFC7du0UEBBQaKwSAABW4bNhpqCgQJLUp08fPfTQQ2rfvr3Gjx+vv/3tb5o3b16x66WmpsputztflfWJ2cOGDZPNZpPNZlNAQIDi4uL02GOP6ezZsyXextixY9W+fXtlZGQoPT29/IqtQOnp6c794u/vr9q1a+vKK6/U1KlT5XA4Sr09m83G2UAAuIhMxxlt3JulTMcZr9Xgs2GmXr16qlatmlq3bu3S3qpVKx08eLDY9SZMmCCHw+F8HTp0qLxL9Zrrr79emZmZ2rdvn2bOnKn58+dr8uTJJV5/7969uuaaa9SoUSPVqlXLrRp+++03t9ZzhzFG58+fv2S/sLAwZWZm6vDhw9q4caPuuecevfLKK2rfvr2OHj1aAZUCQNWweNNBJc74TEMWfKXEGZ9p8abif5/Lk8+GmcDAQHXq1Ek7d+50ad+1a5diYmKKXS8oKMj5hOzK/qTsoKAgRUZGKjo6Wn379lXPnj31ySefSPr9zFZqaqri4uIUEhKihIQEvfPOO5Kk/fv3y2az6ZdfftEdd9whm83mPDOzdu1ade7cWUFBQYqKitL48eNdAkT37t01cuRIjRkzRvXq1VNycrLWrFkjm82mjz/+WJdffrlCQkJ0zTXX6MSJE/rwww/VqlUrhYWFaciQIcrNzXVu62I1SnJu98MPP1SHDh0UFBSk9evXX3K/2Gw2RUZGKioqSq1atdKdd96pjRs3KicnR4899pizX2xsrGbNmuWybvv27TVlyhTncknq16+fbDabYmNjtX//fvn5+embb75xWW/WrFmKiYlxnlEEgMou03FGE5Z8rwLz+/sCI01cst0rZ2i8ejdTTk6O9uzZ43yfkZGhbdu2qU6dOmrcuLEeffRRDRw4UN26dVOPHj300Ucf6b///a/WrFnjvaIvItNxRhlZpxVXL1RR9pAK/ezt27dr48aNzqCXmpqq1157TfPmzVPz5s21bt063XbbbQoPD9dVV12lzMxMtWzZUlOnTtXAgQNlt9t15MgR3XDDDRo2bJheeeUV/fTTT7r77rsVHBzs/IGXpIULF+r+++/Xhg0bfv/emZmSpClTpujFF19U9erVNWDAAA0YMEBBQUFatGiRcnJy1K9fP82ePVvjxo27ZI1JSUnOzxs/frz+9a9/qUmTJqpdu7Zb+yciIkK33nqrXn75ZeXn55dorpdNmzYpIiJCaWlpuv766+Xv76/w8HD17NlTaWlp6tixo7NvWlqahg0bJj8/n/3vAwDwqIys084gc0G+MdqflVvhv4EyXrR69WojqdArJSXF2eell14yzZo1M8HBwSYhIcEsW7asVJ/hcDiMJONwOAotO3PmjPnxxx/NmTNnyvpVzJtfHzBx4983MePeN3Hj3zdvfn2gzNu8mJSUFOPv729CQ0NNUFCQkWT8/PzMO++8Y86ePWuqV69uNm7c6LLOnXfeaQYPHux8b7fbTVpamvP9xIkTTcuWLU1BQYGzbc6cOaZGjRomPz/fGGNMUlKSufzyy122e+F/x08//dTZlpqaaiSZvXv3Otvuvfdek5ycbIwxJarxwnZL8795WlqasdvtRS6bO3eukWSOHz9ujDEmJibGzJw506VPQkKCmTx5svO9JLN06VKXPosXLza1a9c2Z8+eNcYYs3nzZmOz2UxGRkaxdXnyWAMAX3D0ZK7zd+/Cq8n4D8zRk7ke2f7Ffr//zKtnZrp37y5jzEX73HHHHbrjjjsqqCL3FHeqrVuL8HJNpz169NDcuXN1+vRpzZw5U9WqVdPf//53/fDDD8rNzdV1113n0v+3337T5ZdfXuz2duzYoS5durjMiZKYmKicnBwdPnzYOetyhw4dilz/sssuc/67fv36ql69upo0aeLS9vXXX0uS9uzZU+Ia/3gGpCwuHGtlnfOlb9++GjFihJYuXapBgwYpPT1dPXr0cF6WAoCqIMoeotT+7TRxyXblGyN/m03T+7et+LMy4tlMHuGtU22hoaFq1qyZJOnll19WQkKCXnrpJbVt21aS9MEHH6hhw4Yu6wQFBXnkc4sSEBDg/PeFu6z+yGazOceU5OTklLjG4j6vtHbs2KGwsDDnoyv8/PwKhemSzNAbGBio22+/XWlpaerfv78WLVqk559/3iM1AoCVDOzUWN1ahGt/Vq5i61X3SpCRCDMeEVcvVH42uQQaf5tNsfUq7jEJfn5+mjhxosaOHatdu3YpKChIBw8edBl7cimtWrXSu+++K2OM8+zFhg0bVLNmTTVq1Mij9bZu3dqtGt114sQJLVq0SH379nWOawkPD3eO95Gk7OxsZWRkuKwXEBCg/Pz8Qtu766671LZtW/3nP//R+fPn1b9///L9AgDgo6LsIV4LMRcwWtEDLpxq8/9/AcBbp9puueUW+fv7a/78+XrkkUf00EMPaeHChdq7d6+2bNmi2bNna+HChcWu/8ADD+jQoUN68MEH9dNPP2n58uWaPHmyxo4d6/GBrTVr1nSrxpIwxujYsWPKzMzUjh079PLLL6tr166y2+2aMWOGs98111yjV199VZ9//rm+//57paSkFBoYHBsbq1WrVunYsWP63//+52xv1aqV/vKXv2jcuHEaPHiw82GSAICKx5kZD/GFU23VqlXTyJEj9eyzzyojI0Ph4eFKTU3Vvn37VKtWLV1xxRWaOHFises3bNhQK1as0KOPPqqEhATVqVNHd955px5//PFyqXfatGmlrrEksrOzFRUVJZvNprCwMLVs2VIpKSkaPXq0y636EyZMUEZGhv72t7/Jbrdr2rRphc7M/Pvf/9bYsWO1YMECNWzYUPv373cuu3DLt6+P6QKAys5mLjUC1+Kys7Nlt9vlcDgKzTlz9uxZZWRkKC4uzmNP4kbVMW3aNL399tv67rvvLtmXYw0ASudiv99/xmUmoJRycnK0fft2vfjii3rwwQe9XQ4AVHmEGVhKmzZtVKNGjSJfr7/+eoXUMHLkSHXo0EHdu3fnEhMA+ADGzMBSVqxYUezt0/Xr16+QGtLT0yvNgzkBoDIgzMBSLvZcLgBA1cRlJumSsxADZcUxBgDlp0qHmQsz1P7xSc5AebhwjP15VmQAQNlV6ctM/v7+qlWrlk6cOCFJql69epmf2wP8kTFGubm5OnHihGrVqlWip3UDAEqnSocZSYqMjJQkZ6ABykOtWrWcxxoAwLOqfJix2WyKiopSREREiR4yCJRWQEAAZ2QAoBxV+TBzgb+/Pz84AABYUJUeAAwAAKyPMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACzNq2Fm3bp1uvHGG9WgQQPZbDYtW7as2L733XefbDabZs2aVWH1AQAA3+fVMHP69GklJCRozpw5F+23dOlSffnll2rQoEEFVQYAAKyimjc/vFevXurVq9dF+xw5ckQPPvigPv74Y/Xu3buCKgMAAFbh1TBzKQUFBRo6dKgeffRRtWnTpkTr5OXlKS8vz/k+Ozu7vMoDAAA+wKcHAD/zzDOqVq2aRo0aVeJ1UlNTZbfbna/o6OhyrBAAAHibz4aZzZs36/nnn1d6erpsNluJ15swYYIcDofzdejQoXKsEgAAeJvPhpnPP/9cJ06cUOPGjVWtWjVVq1ZNBw4c0MMPP6zY2Nhi1wsKClJYWJjLCwAAVF4+O2Zm6NCh6tmzp0tbcnKyhg4dquHDh3upKgAA4Gu8GmZycnK0Z88e5/uMjAxt27ZNderUUePGjVW3bl2X/gEBAYqMjFTLli0rulQAAOCjvBpmvvnmG/Xo0cP5fuzYsZKklJQUpaene6kqAABgJV4NM927d5cxpsT99+/fX37FAAAAS/LZAcAAAAAlQZgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACW5tUws27dOt14441q0KCBbDabli1b5lx27tw5jRs3Tu3atVNoaKgaNGig22+/XUePHvVewQAAwOd4NcycPn1aCQkJmjNnTqFlubm52rJliyZNmqQtW7ZoyZIl2rlzp2666SYvVAoAAHyVzRhjvF2EJNlsNi1dulR9+/Ytts+mTZvUuXNnHThwQI0bNy7RdrOzs2W32+VwOBQWFuahagEAQHkqze93tQqqySMcDodsNptq1apVbJ+8vDzl5eU532dnZ1dAZQAAwFssMwD47NmzGjdunAYPHnzRhJaamiq73e58RUdHV2CVAACgolkizJw7d04DBgyQMUZz5869aN8JEybI4XA4X4cOHaqgKgEAgDf4/GWmC0HmwIED+uyzzy553SwoKEhBQUEVVB0AAPA2nw4zF4LM7t27tXr1atWtW9fbJQEAAB/j1TCTk5OjPXv2ON9nZGRo27ZtqlOnjqKionTzzTdry5Ytev/995Wfn69jx45JkurUqaPAwEBvlQ0AAHyIV2/NXrNmjXr06FGoPSUlRVOmTFFcXFyR661evVrdu3cv0WdwazYAANZjmVuzu3fvrotlKR+ZAgcAAPgwS9zNBAAAUBzCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCTBlkOs5o494sZTrOeLsUAACqrGreLsCqFm86qAlLvleBkfxsUmr/dhrYqbG3ywIAoMrhzIwbMh1nnEFGkgqMNHHJds7QAADgBW6HmdjYWE2dOlUHDx70ZD2WkJF12hlkLsg3Rvuzcr1TEAAAVZjbYWbMmDFasmSJmjRpouuuu05vvvmm8vLyPFmbz4qrFyo/m2ubv82m2HrVvVMQAABVWJnCzLZt2/T111+rVatWevDBBxUVFaWRI0dqy5YtnqzR50TZQ5Tav538bb8nGn+bTdP7t1WUPcTLlQEAUPXYjDHm0t0u7dy5c/rPf/6jcePG6dy5c2rXrp1GjRql4cOHy2azXXoD5SQ7O1t2u10Oh0NhYWEe3Xam44z2Z+Uqtl51ggwAAB5Umt/vMt/NdO7cOS1dulRpaWn65JNP9Je//EV33nmnDh8+rIkTJ+rTTz/VokWLyvoxPinKHkKIAQDAy9wOM1u2bFFaWpreeOMN+fn56fbbb9fMmTMVHx/v7NOvXz916tTJI4UCAAAUxe0w06lTJ1133XWaO3eu+vbtq4CAgEJ94uLiNGjQoDIVCAAAcDFuh5l9+/YpJibmon1CQ0OVlpbm7kfAR2Q6zigj67Ti6oVyWQ0A4HPcvpupR48e+uWXXwq1nzx5Uk2aNClTUfAdizcdVOKMzzRkwVdKnPGZFm+qevMKAQB8m9thZv/+/crPzy/UnpeXpyNHjpSpKPgGZjoGAFhBqS8zvffee85/f/zxx7Lb7c73+fn5WrVqlWJjY0u0rXXr1umf//ynNm/erMzMTC1dulR9+/Z1LjfGaPLkyVqwYIFOnjypxMREzZ07V82bNy9t2XDDxWY65nITAMBXlDrMXAgbNptNKSkpLssCAgIUGxurf//73yXa1unTp5WQkKA77rhD/fv3L7T82Wef1QsvvKCFCxcqLi5OkyZNUnJysn788UcFBweXtnSUUly9UNkk/THP2GxipmMAgE8pdZgpKCiQ9PudSps2bVK9evXc/vBevXqpV69eRS4zxmjWrFl6/PHH1adPH0nSK6+8ovr162vZsmXcJeUtHpliEQAAz3F7zExGRkaZgkxJtn/s2DH17NnT2Wa323XllVfqiy++KHa9vLw8ZWdnu7zgnoys04Wyi5F4oCYAwKe4fWv21KlTL7r8iSeecHfTkqRjx45JkurXr+/SXr9+feeyoqSmpurJJ58s02fjdxceqPnHcTM8UBMA4GvcDjNLly51eX/u3DllZGSoWrVqatq0aZnDjLsmTJigsWPHOt9nZ2crOjraK7VY3YUHak5csl35xvBATQCAT3I7zGzdurVQW3Z2toYNG6Z+/fqVqShJioyMlCQdP35cUVFRzvbjx4+rffv2xa4XFBSkoKCgMn8+fjewU2N1axHOAzUBAD7L7TEzRQkLC9OTTz6pSZMmlXlbcXFxioyM1KpVq5xt2dnZ+uqrr9SlS5cybx8lF2UPUZemdQkyAACfVOanZv+Zw+GQw+EoUd+cnBzt2bPH+T4jI0Pbtm1TnTp11LhxY40ZM0ZPPfWUmjdv7rw1u0GDBi5z0QAAgKrN7TDzwgsvuLw3xigzM1Ovvvpqsbdb/9k333yjHj16ON9fGOuSkpKi9PR0PfbYYzp9+rTuuecenTx5UldddZU++ugj5pgBAABONmOMWzOHxMXFubz38/NTeHi4rrnmGk2YMEE1a9b0SIFllZ2dLbvdLofDobCwMG+XAwAASqA0v99un5nJyMhwd1UAAACPKdMAYGOMsrKyinx6NgAAQEVwK8wcO3ZMt99+u2rXrq369esrIiJCtWvX1h133KHjx497ukYAAIBilfoyU3Z2trp27aqcnBwNHz5c8fHxMsboxx9/1BtvvKH169dry5YtqlGjRnnUCwAA4KLUYeb555+Xv7+/fvjhB4WHh7sse/zxx5WYmKgXXnhBEydO9FiRAAAAxSn1ZaYPPvhAEydOLBRkJCkiIkITJkzQf//7X48UBwAAcCmlDjO7du1S165di13etWtX7dy5s0xFAQAAlFSpw0x2drZq1apV7PJatWopOzu7LDUBAHxcpuOMNu7NUqbjjLdLAUo/ZsYYIz+/4jOQzWaTm/PwAQAsYPGmg5qw5HsVGMnPJqX2b6eBnRp7uyxUYW6FmRYtWshmsxW7HABQOWU6zjiDjCQVGGniku3q1iKch9HCa0odZtLS0sqjDgCABWRknXYGmQvyjdH+rFzCDLym1GEmJSWlVP3feOMN3XTTTQoNDS3tRwEAfExcvVD52eQSaPxtNsXWq+69olDllelxBiVx7733VtpZgRkAB6CqibKHKLV/O/n/v6EG/jabpvdvy1kZeJXbD5osqco6hoYBcACqqoGdGqtbi3Dtz8pVbL3qBBl4XbmfmamMihsAxxkaAFVFlD1EXZrWJcjAJxBm3HCxAXAAAKBiEWbccGEA3B8xAA4AAO8gzLiBAXAAAPgOtwYA5+fna8OGDbrssssu+mgDSYqJiVFAQIA7H+PTGAAHAIBvsBk3bzcKDg7Wjh07FBcX5+maPCo7O1t2u10Oh0NhYWHeLgcAAJRAaX6/3b7M1LZtW+3bt8/d1QEAADzC7TDz1FNP6ZFHHtH777+vzMxMZWdnu7wAAAAqgtuXmf745Ow/PnTSGCObzab8/PyyV+cBXGYCAMB6SvP77fYMwKtXr3Z3VQAAAI9xO8wkJSV5sg4AAAC3lGmemc8//1y33XabunbtqiNHjkiSXn31Va1fv94jxQEAAFyK22Hm3XffVXJyskJCQrRlyxbl5eVJkhwOh6ZPn+6xAgEAAC6mTHczzZs3TwsWLHCZFC8xMVFbtmzxSHEAAACX4naY2blzp7p161ao3W636+TJk2WpCQAAoMTcDjORkZHas2dPofb169erSZMmZSoKAACgpNwOM3fffbdGjx6tr776SjabTUePHtXrr7+uRx55RPfff78nawQAACiW27dmjx8/XgUFBbr22muVm5urbt26KSgoSI888ogefPBBT9YIAABQLLdnAL7gt99+0549e5STk6PWrVurRo0anqrNI5gBGAAA66mQGYAvCAwMVOvWrcu6GQAAALe4HWbOnj2r2bNna/Xq1Tpx4oQKCgpclnN7NgAAqAhuh5k777xTK1eu1M0336zOnTu7PGzSk/Lz8zVlyhS99tprOnbsmBo0aKBhw4bp8ccfL7fPBAAA1uF2mHn//fe1YsUKJSYmerKeQp555hnNnTtXCxcuVJs2bfTNN99o+PDhstvtGjVqVLl+NgAA8H1uh5mGDRuqZs2anqylSBs3blSfPn3Uu3dvSVJsbKzeeOMNff311+X+2QAAwPe5Pc/Mv//9b40bN04HDhzwZD2FdO3aVatWrdKuXbskSd9++63Wr1+vXr16Fdk/Ly9P2dnZLi8AAFB5uX1mpmPHjjp79qyaNGmi6tWruzyfSZJ+/fXXMhcn/T6fTXZ2tuLj4+Xv76/8/Hw9/fTTuvXWW4vsn5qaqieffNIjnw0AAHyf22Fm8ODBOnLkiKZPn6769euX22Dct956S6+//roWLVqkNm3aaNu2bRozZowaNGiglJSUQv0nTJigsWPHOt9nZ2crOjq6XGoDAADe5/akedWrV9cXX3yhhIQET9fkIjo6WuPHj9eIESOcbU899ZRee+01/fTTT5dcn0nzAACwntL8frs9ZiY+Pl5nzpxxd/USy83NlZ+fa5n+/v6F5rUBAABVk9uXmWbMmKGHH35YTz/9tNq1a1dozIynzoLceOONevrpp9W4cWO1adNGW7du1XPPPac77rjDI9sHAADW5vZlpgtnS/48VsYYI5vNpvz8/LJXJ+nUqVOaNGmSli5dqhMnTqhBgwYaPHiwnnjiCQUGBl5yfS4zAQBgPaX5/XY7zKxdu/aiy5OSktzZrMcRZgAAsJ5yf9DkuXPnNHXqVM2bN0/Nmzd3q0gAAABPcGsAcEBAgL777jtP1wIAAFBqbt/NdNttt+mll17yZC0AAACl5vbdTOfPn9fLL7+sTz/9VB06dFBoaKjL8ueee67MxQEAAFyK22Fm+/btuuKKKyTJ+dykC8prNmAAAIA/czvMrF692pN1AAAAuMXtMTN/dPjwYR0+fNgTmwIAACgVt8NMQUGBpk6dKrvdrpiYGMXExKhWrVqaNm0ajxoAAAAVxu3LTP/4xz/00ksvacaMGUpMTJQkrV+/XlOmTNHZs2f19NNPe6xIAACA4rg9A3CDBg00b9483XTTTS7ty5cv1wMPPKAjR454pMCyYgZgAACsp0Kemv3rr78qPj6+UHt8fLx+/fVXdzcLAABQKm6HmYSEBL344ouF2l988UUlJCSUqSgAAICScnvMzLPPPqvevXvr008/VZcuXSRJX3zxhQ4dOqQVK1Z4rEAAAICLcfvMTFJSknbt2qV+/frp5MmTOnnypPr376+dO3fq6quv9mSNAAAAxSrVmZn+/fsrPT1dYWFheuWVVzRw4EDuWgIAAF5VqjMz77//vk6fPi1JGj58uBwOR7kUBQAAUFKlOjMTHx+vCRMmqEePHjLG6K233ir2dqnbb7/dIwUCAABcTKnmmdm4caPGjh2rvXv36tdff1XNmjWLfKikzWbzmduzmWcGAADrKc3vt9uT5vn5+enYsWOKiIhwq8iKQpgBAMB6KmTSvIyMDIWHh7u7OgAAgEe4HWZiYmK0fv163XbbberSpYvz8QWvvvqq1q9f77ECAQAALsbtMPPuu+8qOTlZISEh2rp1q/Ly8iRJDodD06dP91iBAAAAF+N2mHnqqac0b948LViwQAEBAc72xMREbdmyxSPFAQAAXIrbYWbnzp3q1q1boXa73a6TJ0+WpSYAAIASczvMREZGas+ePYXa169fryZNmpSpKAAAgJJyO8zcfffdGj16tL766ivZbDYdPXpUr7/+uh5++GHdf//9nqwRAACgWG4/NXv8+PEqKCjQtddeq9zcXHXr1k1BQUF69NFHddddd3myRgAAgGK5fWbGZrPpH//4h3799Vdt375dX375pX7++WfZ7XbFxcV5skYAAIBilTrM5OXlacKECerYsaMSExO1YsUKtW7dWj/88INatmyp559/Xg899FB51AoAAFBIqS8zPfHEE5o/f7569uypjRs36pZbbtHw4cP15Zdf6t///rduueUW+fv7l0etAAAAhZQ6zLz99tt65ZVXdNNNN2n79u267LLLdP78eX377bdFPnQSAACgPJX6MtPhw4fVoUMHSVLbtm0VFBSkhx56iCADAAC8otRhJj8/X4GBgc731apVU40aNTxaFAAAQEmV+jKTMUbDhg1TUFCQJOns2bO67777FBoa6tJvyZIlnqkQAADgIkodZlJSUlze33bbbR4rBgAAoLRKHWbS0tLKo46LOnLkiMaNG6cPP/xQubm5atasmdLS0tSxY8cKrwUAAPgWt2cArij/+9//lJiYqB49eujDDz9UeHi4du/erdq1a3u7NAAA4AN8Psw888wzio6OdjkjxAzDAADgArcfZ1BR3nvvPXXs2FG33HKLIiIidPnll2vBggXF9s/Ly1N2drbLCwAAVF4+H2b27dunuXPnqnnz5vr44491//33a9SoUVq4cGGR/VNTU2W3252v6OjoCq4YACpWpuOMNu7NUqbjjLdLAbzCZowx3i7iYgIDA9WxY0dt3LjR2TZq1Cht2rRJX3zxRaH+eXl5ysvLc77Pzs5WdHS0HA6HwsLCKqRmeFem44wysk4rrl6oouwh3i4HKFeLNx3UhCXfq8BIfjYptX87DezU2NtloQopr7+52dnZstvtJfr99vkxM1FRUWrdurVLW6tWrfTuu+8W2T8oKMg5Bw6qHv6woyrJdJxxHu+SVGCkiUu2q1uLcII8KoSv/M31+ctMiYmJ2rlzp0vbrl27FBMT46WK4KuK+8POqXdUVhlZp53H+wX5xmh/Vq53CkKV4kt/c30+zDz00EP68ssvNX36dO3Zs0eLFi3S//k//0cjRozwdmnwMfxhR1UTVy9Ufn96LJ6/zabYetW9UxCqFF/6m+vzYaZTp05aunSp3njjDbVt21bTpk3TrFmzdOutt3q7NPgY/rCjqomyhyi1fzv5/78H/frbbJrevy2XmFAhfOlvrs8PAC6r0gwggvUt3nRQE5dsV74xzj/sjJlBZZfpOKP9WbmKrVedIIMKVZ5/c0vz+02YQaXDH3YAqDjl9Te3Ut3NBJRWlD2EEAMAFcQX/ub6/JgZAACAiyHMAAAASyPMAAAASyPMAAAAt/nCs8EYAAwAANzC4wwAAIBl8TgDAABgaTzOAAAAWJovPc6AMAMAAErNl54NxgBgAADgloGdGqtbi3CvP0KGMAMAANzG4wwAAADKiDADAAAsjTADwKf5wuyiAHwbY2YA+CxfmV0UgG/jzAwAn+RLs4sC8G2EGQA+yZdmFwXg2wgzAHySL80uCsC3EWYA+CRfml0UgG9jADAAn+Urs4sC8G2EGQA+zRdmFwXg27jMBAAALI0wAwAALI0wAwBAJVFVZ8xmzAwAAJVAVZ4xmzMzAABYXFWfMZswAwCAxVX1GbMJMwAAWFxVnzGbMAMAgMVV9RmzGQAMAEAlUJVnzCbMAABQSVTVGbO5zAQAACzNUmFmxowZstlsGjNmjLdLAQAAPsIyYWbTpk2aP3++LrvsMm+XAgAAfIglwkxOTo5uvfVWLViwQLVr1/Z2OQAAwIdYIsyMGDFCvXv3Vs+ePS/ZNy8vT9nZ2S4vAABQefn83UxvvvmmtmzZok2bNpWof2pqqp588slyrgoAAPgKnz4zc+jQIY0ePVqvv/66goODS7TOhAkT5HA4nK9Dhw6Vc5UAAMCbbMYYc+lu3rFs2TL169dP/v7+zrb8/HzZbDb5+fkpLy/PZVlRsrOzZbfb5XA4FBYWVt4lAwAADyjN77dPX2a69tpr9f3337u0DR8+XPHx8Ro3btwlgwwA35DpOKOMrNOKqxdaJSf0AlC+fDrM1KxZU23btnVpCw0NVd26dQu1Ayh/7oSSxZsOasKS71VgJD+blNq/nQZ2alzOlQKoSnw6zADwHe6EkkzHGec6klRgpIlLtqtbi3DO0ADwGMuFmTVr1ni7BKDKcTeUZGSddq5zQb4x2p+VS5gB4DE+fTcTAN9wsVByMXH1QuVnc23zt9kUW6+6hysEUJURZgBckruhJMoeotT+7eRvsznXmd6/LWdlAHiU5S4zAah4F0LJxCXblW9MqULJwE6N1a1FuPZn5Sq2XnWCDACPI8wAKJGyhJIoewghBkC5IcwAKDFCCQBfxJgZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZALC4TMcZbdybpUzHGW+XAngFk+YBgIUt3nTQ+URzP5uU2r+dBnZq7O2ygArFmRkAsKhMxxlnkJGkAiNNXLKdMzSocggzAGBRGVmnnUHmgnxjtD8r1zsFAV5CmAEAi4qrFyo/m2ubv82m2HrVvVMQ4CWEGQDljgGq5SPKHqLU/u3kb/s90fjbbJrevy0PA0WVwwBgAOWKAarla2CnxurWIlz7s3IVW686QQZVEmdmAJQbBqhWjCh7iLo0rUuQQZVFmAFQbhigCqAiEGYAlBsGqAKoCIQZAOWGAaoAKgIDgAGUKwaoAihvhBkA5S7KHkKIAVBuuMwEAAAsjTADAAAsjTADAAAsjTADeBHT/ANA2TEAGPASpvkHAM/gzAzgBUzzDwCeQ5gBvIBp/gHAcwgzgBcwzT8AeA5hBvACpvkHAM9hADDgJUzzXzllOs4oI+u04uqF8r8pUEF8/sxMamqqOnXqpJo1ayoiIkJ9+/bVzp07vV0W4BFR9hB1aVqXH71KYvGmg0qc8ZmGLPhKiTM+0+JNB71dElAl+HyYWbt2rUaMGKEvv/xSn3zyic6dO6e//vWvOn36tLdLAwAn7lADvMfnLzN99NFHLu/T09MVERGhzZs3q1u3bl6qCgBcXewONc68AeXL58PMnzkcDklSnTp1ilyel5envLw85/vs7OwKqQtA1XbhDrU/BhruUAMqhs9fZvqjgoICjRkzRomJiWrbtm2RfVJTU2W3252v6OjoCq4SQFXEHWqA99iMMebS3XzD/fffrw8//FDr169Xo0aNiuxT1JmZ6OhoORwOhYWFVVSpAKqoTMcZ7lADPCA7O1t2u71Ev9+Wucw0cuRIvf/++1q3bl2xQUaSgoKCFBQUVIGVAcD/L8oeQogBKpjPX2YyxmjkyJFaunSpPvvsM8XFxXm7JADwOJ6gDrjP58/MjBgxQosWLdLy5ctVs2ZNHTt2TJJkt9sVEsJ//QCwPp6gDpSNz4+ZsdlsRbanpaVp2LBhl1y/NNfcAKCiZTrOKHHGZ4Xuglo/vgeXq1ClVaoxMz6etQCgTJifBig7nx8zAwCVGU9QB8qOMAMAXsT8NEDZ+fxlJgCo7HiCOlA2hBkA8AHMTwO4j8tMAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAIBKjSeSV37MMwMAqLR4InnVwJkZAECllOk44wwyklRgpIlLtnOGphIizAAAKqWLPZEclQthBgBQKfFE8qqDMAMAqJR4InnVwQBgAEClxRPJqwbCDACgUuOJ5JUfl5kAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClEWYAAIClVfpnMxljJEnZ2dlergQAAJTUhd/tC7/jF1Ppw8ypU6ckSdHR0V6uBAAAlNapU6dkt9sv2sdmShJ5LKygoEBHjx5VzZo1ZbPZyrSt7OxsRUdH69ChQwoLC/NQhdbGPimMfVIY+6Qw9knR2C+FVdV9YozRqVOn1KBBA/n5XXxUTKU/M+Pn56dGjRp5dJthYWFV6oAqCfZJYeyTwtgnhbFPisZ+Kawq7pNLnZG5gAHAAADA0ggzAADA0ggzpRAUFKTJkycrKCjI26X4DPZJYeyTwtgnhbFPisZ+KYx9cmmVfgAwAACo3DgzAwAALI0wAwAALI0wAwAALI0wAwAALK3Kh5k5c+YoNjZWwcHBuvLKK/X1119ftP+sWbPUsmVLhYSEKDo6Wg899JDOnj3rXD5lyhTZbDaXV3x8fHl/DY8qzT45d+6cpk6dqqZNmyo4OFgJCQn66KOPyrRNX+TpfWL142TdunW68cYb1aBBA9lsNi1btuyS66xZs0ZXXHGFgoKC1KxZM6WnpxfqY+XjpDz2SVU7TjIzMzVkyBC1aNFCfn5+GjNmTJH93n77bcXHxys4OFjt2rXTihUrPF98OSmPfZKenl7oOAkODi6fL+CjqnSYWbx4scaOHavJkydry5YtSkhIUHJysk6cOFFk/0WLFmn8+PGaPHmyduzYoZdeekmLFy/WxIkTXfq1adNGmZmZztf69esr4ut4RGn3yeOPP6758+dr9uzZ+vHHH3XfffepX79+2rp1q9vb9DXlsU8kax8np0+fVkJCgubMmVOi/hkZGerdu7d69Oihbdu2acyYMbrrrrv08ccfO/tY/Tgpj30iVa3jJC8vT+Hh4Xr88ceVkJBQZJ+NGzdq8ODBuvPOO7V161b17dtXffv21fbt2z1Zerkpj30i/T478B+PkwMHDniqZGswVVjnzp3NiBEjnO/z8/NNgwYNTGpqapH9R4wYYa655hqXtrFjx5rExETn+8mTJ5uEhIRyqbcilHafREVFmRdffNGlrX///ubWW291e5u+pjz2idWPkz+SZJYuXXrRPo899php06aNS9vAgQNNcnKy873Vj5M/8tQ+qWrHyR8lJSWZ0aNHF2ofMGCA6d27t0vblVdeae69994yVljxPLVP0tLSjN1u91hdVlRlz8z89ttv2rx5s3r27Ols8/PzU8+ePfXFF18UuU7Xrl21efNm56nvffv2acWKFbrhhhtc+u3evVsNGjRQkyZNdOutt+rgwYPl90U8yJ19kpeXV+h0ZkhIiPO/Ht3Zpi8pj31ygVWPE3d88cUXLvtQkpKTk5370OrHiTsutU8uqErHSUmUdL9VNTk5OYqJiVF0dLT69OmjH374wdslVagqG2aysrKUn5+v+vXru7TXr19fx44dK3KdIUOGaOrUqbrqqqsUEBCgpk2bqnv37i6Xma688kqlp6fro48+0ty5c5WRkaGrr75ap06dKtfv4wnu7JPk5GQ999xz2r17twoKCvTJJ59oyZIlyszMdHubvqQ89olk7ePEHceOHStyH2ZnZ+vMmTOWP07ccal9IlW946QkittvlfU4KYmWLVvq5Zdf1vLly/Xaa6+poKBAXbt21eHDh71dWoWpsmHGHWvWrNH06dP1n//8R1u2bNGSJUv0wQcfaNq0ac4+vXr10i233KLLLrtMycnJWrFihU6ePKm33nrLi5WXn+eff17NmzdXfHy8AgMDNXLkSA0fPvySj2uvzEqyT6racQL3cJygJLp06aLbb79d7du3V1JSkpYsWaLw8HDNnz/f26VVmCr7i1OvXj35+/vr+PHjLu3Hjx9XZGRkketMmjRJQ4cO1V133aV27dqpX79+mj59ulJTU1VQUFDkOrVq1VKLFi20Z88ej38HT3Nnn4SHh2vZsmU6ffq0Dhw4oJ9++kk1atRQkyZN3N6mLymPfVIUKx0n7oiMjCxyH4aFhSkkJMTyx4k7LrVPilLZj5OSKG6/VdbjxB0BAQG6/PLLq9RxUmXDTGBgoDp06KBVq1Y52woKCrRq1Sp16dKlyHVyc3MLnXHw9/eXJJliHnGVk5OjvXv3KioqykOVlx939skFwcHBatiwoc6fP693331Xffr0KfM2fUF57JOiWOk4cUeXLl1c9qEkffLJJ859aPXjxB2X2idFqezHSUm4s9+qmvz8fH3//fdV6zjx9ghkb3rzzTdNUFCQSU9PNz/++KO55557TK1atcyxY8eMMcYMHTrUjB8/3tl/8uTJpmbNmuaNN94w+/btMytXrjRNmzY1AwYMcPZ5+OGHzZo1a0xGRobZsGGD6dmzp6lXr545ceJEhX8/d5R2n3z55Zfm3XffNXv37jXr1q0z11xzjYmLizP/+9//SrxNX1ce+8Tqx8mpU6fM1q1bzdatW40k89xzz5mtW7eaAwcOGGOMGT9+vBk6dKiz/759+0z16tXNo48+anbs2GHmzJlj/P39zUcffeTsY/XjpDz2SVU7Towxzv4dOnQwQ4YMMVu3bjU//PCDc/mGDRtMtWrVzL/+9S+zY8cOM3nyZBMQEGC+//77Cv1u7iqPffLkk0+ajz/+2Ozdu9ds3rzZDBo0yAQHB7v0qeyqdJgxxpjZs2ebxo0bm8DAQNO5c2fz5ZdfOpclJSWZlJQU5/tz586ZKVOmmKZNm5rg4GATHR1tHnjgAZcfqYEDB5qoqCgTGBhoGjZsaAYOHGj27NlTgd+o7EqzT9asWWNatWplgoKCTN26dc3QoUPNkSNHSrVNK/D0PrH6cbJ69WojqdDrwn5ISUkxSUlJhdZp3769CQwMNE2aNDFpaWmFtmvl46Q89klVPE6K6h8TE+PS56233jItWrQwgYGBpk2bNuaDDz6omC/kAeWxT8aMGeP8/039+vXNDTfcYLZs2VJxX8oH2Iwp5voIAACABVTZMTMAAKByIMwAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAgBesWbNGNptNJ0+e9HYpgOURZoBKbtiwYbLZbJoxY4ZL+7Jly2Sz2ZzvjTFasGCBunTporCwMNWoUUNt2rTR6NGjS/zAutzcXE2YMEFNmzZVcHCwwsPDlZSUpOXLlzv7xMbGatasWR75buXtwr6z2WwKCAhQXFycHnvsMZ09e7ZU2+nevbvGjBnj0ta1a1dlZmbKbrd7sGKgaiLMAFVAcHCwnnnmGf3vf/8rcrkxRkOGDNGoUaN0ww03aOXKlfrxxx/10ksvKTg4WE899VSJPue+++7TkiVLNHv2bP3000/66KOPdPPNN+uXX37x5NepUNdff70yMzO1b98+zZw5U/Pnz9fkyZPLvN3AwEBFRka6BEoAbvLu0xQAlLeUlBTzt7/9zcTHx5tHH33U2b506VJz4U/AG2+8YSSZ5cuXF7mNgoKCEn2W3W436enpxS5PSkoq9IyZCz7//HNz1VVXmeDgYNOoUSPz4IMPmpycHOfyV155xXTo0MHUqFHD1K9f3wwePNgcP37cufzCM28++ugj0759exMcHGx69Ohhjh8/blasWGHi4+NNzZo1zeDBg83p06dL9H1SUlJMnz59XNr69+9vLr/8cuf7rKwsM2jQINOgQQMTEhJi2rZtaxYtWuSyjT9/54yMDGe9f3y22zvvvGNat25tAgMDTUxMjPnXv/5VojqBqo4zM0AV4O/vr+nTp2v27Nk6fPhwoeVvvPGGWrZsqZtuuqnI9Ut69iAyMlIrVqzQqVOnily+ZMkSNWrUSFOnTlVmZqYyMzMlSXv37tX111+vv//97/ruu++0ePFirV+/XiNHjnSue+7cOU2bNk3ffvutli1bpv3792vYsGGFPmPKlCl68cUXtXHjRh06dEgDBgzQrFmztGjRIn3wwQdauXKlZs+eXaLv82fbt2/Xxo0bFRgY6Gw7e/asOnTooA8++EDbt2/XPffco6FDh+rrr7+WJD3//PPq0qWL7r77bud3jo6OLrTtzZs3a8CAARo0aJC+//57TZkyRZMmTVJ6erpbtQJVirfTFIDy9cezC3/5y1/MHXfcYYxxPTMTHx9vbrrpJpf1Ro8ebUJDQ01oaKhp2LBhiT5r7dq1plGjRiYgIMB07NjRjBkzxqxfv96lT0xMjJk5c6ZL25133mnuuecel7bPP//c+Pn5mTNnzhT5WZs2bTKSzKlTp4wx//+ZmU8//dTZJzU11Ugye/fudbbde++9Jjk5uUTfJyUlxfj7+5vQ0FATFBRkJBk/Pz/zzjvvXHS93r17m4cfftj5PikpyYwePdqlz5/PzAwZMsRcd911Ln0effRR07p16xLVClRlnJkBqpBnnnlGCxcu1I4dOy7Z9x//+Ie2bdumJ554Qjk5OSXafrdu3bRv3z6tWrVKN998s3744QddffXVmjZt2kXX+/bbb5Wenq4aNWo4X8nJySooKFBGRoak389c3HjjjWrcuLFq1qyppKQkSdLBgwddtnXZZZc5/12/fn1Vr15dTZo0cWk7ceJEib6PJPXo0UPbtm3TV199pZSUFA0fPlx///vfncvz8/M1bdo0tWvXTnXq1FGNGjX08ccfF6rrUnbs2KHExESXtsTERO3evVv5+fml2hZQ1RBmgCqkW7duSk5O1oQJE1zamzdvrp07d7q0hYeHq1mzZoqIiCjVZwQEBOjqq6/WuHHjtHLlSk2dOlXTpk3Tb7/9Vuw6OTk5uvfee7Vt2zbn69tvv9Xu3bvVtGlTnT59WsnJyQoLC9Prr7+uTZs2aenSpZJUaLsBAQHOf1+4C+mPbDabCgoKSvx9QkND1axZMyUkJOjll1/WV199pZdeesm5/J///Keef/55jRs3TqtXr9a2bduUnJx80e8LwLOqebsAABVrxowZat++vVq2bOlsGzx4sIYMGaLly5erT58+Hv281q1b6/z58zp79qwCAwMVGBhY6EzDFVdcoR9//FHNmjUrchvff/+9fvnlF82YMcM53uSbb77xaJ0l4efnp4kTJ2rs2LEaMmSIQkJCtGHDBvXp00e33XabJKmgoEC7du1S69atnesV9Z3/rFWrVtqwYYNL24YNG9SiRQv5+/t7/ssAlQhnZoAqpl27drr11lv1wgsvONsGDRqkm2++WYMGDdLUqVP11Vdfaf/+/Vq7dq0WL15c4h/T7t27a/78+dq8ebP279+vFStWaOLEierRo4fCwsIk/T7PzLp163TkyBFlZWVJksaNG6eNGzdq5MiR2rZtm3bv3q3ly5c7BwA3btxYgYGBmj17tvbt26f33nvvkpeuysstt9wif39/zZkzR9LvZ7U++eQTbdy4UTt27NC9996r48ePu6wTGxvr3KdZWVlFnhl6+OGHtWrVKk2bNk27du3SwoUL9eKLL+qRRx6pkO8FWBlhBqiCpk6d6vKDarPZtHjxYs2aNUsrVqzQtddeq5YtW+qOO+5QdHS01q9fX6LtJicna+HChfrrX/+qVq1a6cEHH1RycrLeeustl8/ev3+/mjZtqvDwcEm/j3NZu3atdu3apauvvlqXX365nnjiCTVo0EDS75e80tPT9fbbb6t169aaMWOG/vWvf3lwj5RctWrVNHLkSD377LM6ffq0Hn/8cV1xxRVKTk5W9+7dFRkZqb59+7qs88gjj8jf31+tW7dWeHh4keNprrjiCr311lt688031bZtWz3xxBOaOnVqkXdsAXBlM8YYbxcBAADgLs7MAAAASyPMACixP946/efX559/7u3ySuXgwYMX/T6lvbUagPdwmQlAiV3sgZMNGzZUSEhIBVZTNufPn9f+/fuLXR4bG6tq1bjhE7ACwgwAALA0LjMBAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABL+/8AJ8iRgin2DTMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_53.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9GklEQVR4nO3de1yUdf7//+cwyEENTEEOhuLZTETzQGimbhSVWeaaqKVk2dmy2NrUSjyU2G4HdtWyNdMOn4wyM3f1axllZrppHirLzGNYAkqboIgn5v37w59jk6Agh5m55nG/3eZ2i/e8r2te17tLefq+3tc1NmOMEQAAgEX4ubsAAACA6kS4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AeAWEydOlM1mq1Bfm82miRMn1mg9ffr0UZ8+fTx2fwAqjnAD+Lh58+bJZrM5X/7+/mrSpIluu+02/fLLL+4uz+PExsa6jFfjxo3Vq1cvvf/++9Wy/8OHD2vixIlasWJFtewP8EWEGwCSpMmTJ+uNN97QrFmzdO211+rNN99U7969deTIkRr5vCeeeEIlJSU1su+a1qlTJ73xxht644039Mgjj2jv3r0aOHCgZs2aVeV9Hz58WJMmTSLcAFXg7+4CAHiGa6+9Vl27dpUkjRo1SmFhYXrmmWe0ePFiDR48uNo/z9/fX/7+3vlXUJMmTXTrrbc6fx4xYoRatWqlF154Qffcc48bKwMgMXMDoBy9evWSJO3YscOl/YcfftCgQYPUsGFDBQUFqWvXrlq8eLFLn+PHj2vSpElq3bq1goKC1KhRI11++eVavny5s09Za26OHj2qhx9+WOHh4brgggt0ww036Oeffz6jtttuu02xsbFntJe1z7lz5+pPf/qTGjdurMDAQLVv314vvfRSpcbiXCIjI3XxxRdr165dZ+23b98+3XHHHYqIiFBQUJDi4+P12muvOd/fvXu3wsPDJUmTJk1yXvqq6fVGgNV45z+bANS43bt3S5IuvPBCZ9t3332nnj17qkmTJho7dqzq1aund955RwMGDNB7772nm266SdLJkJGRkaFRo0ape/fuKioq0ldffaUNGzboqquuKvczR40apTfffFPDhg1Tjx499Mknn6hfv35VOo6XXnpJl1xyiW644Qb5+/vr3//+t+677z45HA7df//9Vdr3KcePH9eePXvUqFGjcvuUlJSoT58+2r59u0aPHq3mzZvr3Xff1W233aYDBw5ozJgxCg8P10svvaR7771XN910kwYOHChJ6tixY7XUCfgMA8CnzZ0710gyH3/8sdm/f7/Zs2ePWbBggQkPDzeBgYFmz549zr5XXnmliYuLM0eOHHG2ORwO06NHD9O6dWtnW3x8vOnXr99ZPzc9Pd38/q+gTZs2GUnmvvvuc+k3bNgwI8mkp6c721JTU02zZs3OuU9jjDl8+PAZ/ZKTk02LFi1c2nr37m169+591pqNMaZZs2bm6quvNvv37zf79+83X3/9tRkyZIiRZB544IFy95eZmWkkmTfffNPZduzYMZOYmGjq169vioqKjDHG7N+//4zjBVA5XJYCIElKSkpSeHi4YmJiNGjQINWrV0+LFy/WRRddJEn63//+p08++USDBw/WwYMHVVBQoIKCAv36669KTk7Wtm3bnHdXNWjQQN999522bdtW4c9funSpJOnBBx90aX/ooYeqdFzBwcHO/y4sLFRBQYF69+6tnTt3qrCw8Lz2+dFHHyk8PFzh4eGKj4/Xu+++q+HDh+uZZ54pd5ulS5cqMjJSQ4cOdbbVqVNHDz74oA4dOqTPPvvsvGoBcCafDjcrV65U//79FR0dLZvNpkWLFtXo551aD/D7V7t27Wr0M4GKmjlzppYvX64FCxbouuuuU0FBgQIDA53vb9++XcYYPfnkk85f7Kde6enpkk6uKZFO3nl14MABtWnTRnFxcXr00Uf1zTffnPXzf/rpJ/n5+ally5Yu7W3btq3ScX3xxRdKSkpSvXr11KBBA4WHh2v8+PGSdN7hJiEhQcuXL9fHH3+s1atXq6CgQK+//rpLkPqjn376Sa1bt5afn+tfuxdffLHzfQDVw6fX3BQXFys+Pl63336789p2Tbvkkkv08ccfO3/21rtFYD3du3d33i01YMAAXX755Ro2bJi2bt2q+vXry+FwSJIeeeQRJScnl7mPVq1aSZKuuOIK7dixQx988IE++ugjvfLKK3rhhRc0a9YsjRo1qsq1lvfwv9LSUpefd+zYoSuvvFLt2rXT888/r5iYGAUEBGjp0qV64YUXnMdUWWFhYUpKSjqvbQHUPJ/+zXrttdfq2muvLff9o0eP6vHHH9f8+fN14MABdejQQc8880yVnjrq7++vyMjI894eqA12u10ZGRnq27evZsyYobFjx6pFixaSTl5Kqcgv9oYNG2rkyJEaOXKkDh06pCuuuEITJ04sN9w0a9ZMDodDO3bscJmt2bp16xl9L7zwQh04cOCM9j/Ofvz73//W0aNHtXjxYjVt2tTZ/umnn56z/urWrFkzffPNN3I4HC6zNz/88IPzfan84Aag4nz6stS5jB49WmvWrNHbb7+tb775RjfffLOuueaaSq0j+KNt27YpOjpaLVq00C233KKcnJxqrBioPn369FH37t2VmZmpI0eOqHHjxurTp49efvll5ebmntF///79zv/+9ddfXd6rX7++WrVqpaNHj5b7eaf+ofHPf/7TpT0zM/OMvi1btlRhYaHLpa7c3NwznhJst9slScYYZ1thYaHmzp1bbh015brrrlNeXp6ysrKcbSdOnND06dNVv3599e7dW5JUt25dSSozvAGoGJ+euTmbnJwczZ07Vzk5OYqOjpZ0cjp+2bJlmjt3rqZOnVrpfSYkJGjevHlq27atcnNzNWnSJPXq1UubN2/WBRdcUN2HAFTZo48+qptvvlnz5s3TPffco5kzZ+ryyy9XXFyc7rzzTrVo0UL5+flas2aNfv75Z3399deSpPbt26tPnz7q0qWLGjZsqK+++koLFizQ6NGjy/2sTp06aejQoXrxxRdVWFioHj16KDs7W9u3bz+j75AhQ/TYY4/ppptu0oMPPqjDhw/rpZdeUps2bbRhwwZnv6uvvloBAQHq37+/7r77bh06dEizZ89W48aNywxoNemuu+7Syy+/rNtuu03r169XbGysFixYoC+++EKZmZnOvwOCg4PVvn17ZWVlqU2bNmrYsKE6dOigDh061Gq9gFdz9+1ankKSef/9950//+c//zGSTL169Vxe/v7+ZvDgwcYYY7Zs2WIknfX12GOPlfuZv/32mwkJCTGvvPJKTR8eUK5Tt4KvW7fujPdKS0tNy5YtTcuWLc2JEyeMMcbs2LHDjBgxwkRGRpo6deqYJk2amOuvv94sWLDAud1TTz1lunfvbho0aGCCg4NNu3btzNNPP22OHTvm7FPWbdslJSXmwQcfNI0aNTL16tUz/fv3N3v27Cnz1uiPPvrIdOjQwQQEBJi2bduaN998s8x9Ll682HTs2NEEBQWZ2NhY88wzz5hXX33VSDK7du1y9qvMreDnus29vP3l5+ebkSNHmrCwMBMQEGDi4uLM3Llzz9h29erVpkuXLiYgIIDbwoHzYDPmd/O1Psxms+n999/XgAEDJElZWVm65ZZb9N133zmntk+pX7++IiMjdezYMe3cufOs+23UqJHziaNl6datm5KSkpSRkVHlYwAAAFyWKlfnzp1VWlqqffv2OR9D/0cBAQFVupX70KFD2rFjh4YPH37e+wAAAK58OtwcOnTI5Xr+rl27tGnTJjVs2FBt2rTRLbfcohEjRui5555T586dtX//fmVnZ6tjx47n9Uj4Rx55RP3791ezZs20d+9epaeny263uzzUCwAAVI1PX5ZasWKF+vbte0Z7amqq5s2bp+PHj+upp57S66+/rl9++UVhYWG67LLLNGnSJMXFxVX684YMGaKVK1fq119/VXh4uC6//HI9/fTTZzy0DAAAnD+fDjcAAMB6eM4NAACwFMINAACwFJ9bUOxwOLR3715dcMEFPOYcAAAvYYzRwYMHFR0dfcYX0P6Rz4WbvXv3KiYmxt1lAACA87Bnzx5ddNFFZ+3jc+Hm1CPO9+zZo5CQEDdXAwAAKqKoqEgxMTEV+roinws3py5FhYSEEG4AAPAyFVlSwoJiAABgKYQbAABgKYQbAABgKT635qaiSktLdfz4cXeX4XYBAQHnvOUOAABPQrj5A2OM8vLydODAAXeX4hH8/PzUvHlzBQQEuLsUAAAqhHDzB6eCTePGjVW3bl2fftDfqQce5ubmqmnTpj49FgAA70G4+Z3S0lJnsGnUqJG7y/EI4eHh2rt3r06cOKE6deq4uxwAAM6JxRS/c2qNTd26dd1ciec4dTmqtLTUzZUAAFAxhJsycPnlNMYCAOBt3BpuVq5cqf79+ys6Olo2m02LFi065zYrVqzQpZdeqsDAQLVq1Urz5s2r8ToBAID3cGu4KS4uVnx8vGbOnFmh/rt27VK/fv3Ut29fbdq0SQ899JBGjRqlDz/8sIYrBQAA3sKt4ebaa6/VU089pZtuuqlC/WfNmqXmzZvrueee08UXX6zRo0dr0KBBeuGFF2q4Uu+xZs0a2e129evXz6V99+7dstlszlfDhg3Vu3dvff75526qFABgRbmFJVq9o0C5hSVuq8Gr1tysWbNGSUlJLm3Jyclas2aNmyryPHPmzNEDDzyglStXau/evWe8//HHHys3N1crV65UdHS0rr/+euXn57uhUgCA1WSty1HPaZ9o2Owv1XPaJ8pal+OWOrwq3OTl5SkiIsKlLSIiQkVFRSopKTshHj16VEVFRS4vqzp06JCysrJ07733ql+/fmWuR2rUqJEiIyPVoUMHjR8/XkVFRfryyy9rv1gAgKXkFpZo3MJv5TAnf3YYafzCzW6ZwfGqcHM+MjIyFBoa6nzFxMTU2mfX9tTcO++8o3bt2qlt27a69dZb9eqrr8oYU2bfkpISvf7665LE04cBAFW2q6DYGWxOKTVGuwsO13otXvUQv8jIyDMuoeTn5yskJETBwcFlbjNu3DilpaU5fy4qKqqVgJO1LseZYP1sUsbAOKV0a1qjnzlnzhzdeuutkqRrrrlGhYWF+uyzz9SnTx9nnx49esjPz0+HDx+WMUZdunTRlVdeWaN1AQCsr3lYPfnZ5BJw7DabYsNq/9lxXjVzk5iYqOzsbJe25cuXKzExsdxtAgMDFRIS4vKqae6Ymtu6davWrl2roUOHSpL8/f2VkpKiOXPmuPTLysrSxo0b9d577zlvpefJwwCAqooKDVbGwDjZ///no9ltNk0d2EFRoWVPPtQkt87cHDp0SNu3b3f+vGvXLm3atEkNGzZU06ZNNW7cOP3yyy/Oyyf33HOPZsyYob/+9a+6/fbb9cknn+idd97RkiVL3HUIZTrb1FxN/U+eM2eOTpw4oejoaGebMUaBgYGaMWOGsy0mJkatW7dW69atdeLECd10003avHmzAgMDa6QuAIDvSOnWVFe0CdfugsOKDavrlmAjuXnm5quvvlLnzp3VuXNnSVJaWpo6d+6sCRMmSJJyc3OVk3N6pXXz5s21ZMkSLV++XPHx8Xruuef0yiuvKDk52S31l+fU1Nzv1eTU3IkTJ/T666/rueee06ZNm5yvr7/+WtHR0Zo/f36Z2w0aNEj+/v568cUXa6QuAIDviQoNVmLLRm4LNpKbZ2769OlT7oJXSWXe7dOnTx9t3LixBququlNTc+MXblapMTU+Nfef//xHv/32m+644w6Fhoa6vPfnP/9Zc+bM0TXXXHPGdjabTQ8++KAmTpyou+++m+/UAgBYgletufEmKd2aatXYvpp/52VaNbZvjS4mnjNnjpKSks4INtLJcPPVV1+Vewt8amqqjh8/7nLpCgAAb+ZVd0t5m6jQ4FqZlvv3v/9d7nvdu3d3zo6VNUtWt25d/e9//6ux2gAAqG3M3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3JThbLen+xrGAgDgbQg3v3PqawgOH679L/nyVMeOHZMk2e12N1cCAEDFcCv479jtdjVo0ED79u2TdPI2aZvNdo6trMvhcGj//v2qW7eu/P05VQAA3oHfWH8QGRkpSc6A4+v8/PzUtGlTnw55AADvQrj5A5vNpqioKDVu3FjHjx93dzluFxAQID8/rl4CALwH4aYcdruddSYAAHgh/kkOAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAsxe3hZubMmYqNjVVQUJASEhK0du3as/bPzMxU27ZtFRwcrJiYGD388MM6cuRILVULAAA8nVvDTVZWltLS0pSenq4NGzYoPj5eycnJ2rdvX5n933rrLY0dO1bp6enasmWL5syZo6ysLI0fP76WKwcAAJ7KreHm+eef15133qmRI0eqffv2mjVrlurWratXX321zP6rV69Wz549NWzYMMXGxurqq6/W0KFDzznbAwAAfIfbws2xY8e0fv16JSUlnS7Gz09JSUlas2ZNmdv06NFD69evd4aZnTt3aunSpbruuuvK/ZyjR4+qqKjI5QUAAKzL310fXFBQoNLSUkVERLi0R0RE6Icffihzm2HDhqmgoECXX365jDE6ceKE7rnnnrNelsrIyNCkSZOqtXYAAOC53L6guDJWrFihqVOn6sUXX9SGDRu0cOFCLVmyRFOmTCl3m3HjxqmwsND52rNnTy1WDAAAapvbZm7CwsJkt9uVn5/v0p6fn6/IyMgyt3nyySc1fPhwjRo1SpIUFxen4uJi3XXXXXr88cfl53dmVgsMDFRgYGD1HwAAAPBIbpu5CQgIUJcuXZSdne1sczgcys7OVmJiYpnbHD58+IwAY7fbJUnGmJorFgAAeA23zdxIUlpamlJTU9W1a1d1795dmZmZKi4u1siRIyVJI0aMUJMmTZSRkSFJ6t+/v55//nl17txZCQkJ2r59u5588kn179/fGXIAAIBvc2u4SUlJ0f79+zVhwgTl5eWpU6dOWrZsmXORcU5OjstMzRNPPCGbzaYnnnhCv/zyi8LDw9W/f389/fTT7joEAADgYWzGx67nFBUVKTQ0VIWFhQoJCXF3OQAAoAIq8/vbq+6WAgAAOBfCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAHi63sESrdxQot7DE3aV4BX93FwAAAMqXtS5H4xZ+K4eR/GxSxsA4pXRr6u6yPBozNwAAeKjcwhJnsJEkh5HGL9zMDM45EG4AAPBQuwqKncHmlFJjtLvgsHsK8hKEGwAAPFTzsHrys7m22W02xYbVdU9BXoJwAwCAh4oKDVbGwDjZbScTjt1m09SBHRQVGuzmyjyb28PNzJkzFRsbq6CgICUkJGjt2rVn7X/gwAHdf//9ioqKUmBgoNq0aaOlS5fWUrUAANSulG5NtWpsX82/8zKtGtuXxcQV4Na7pbKyspSWlqZZs2YpISFBmZmZSk5O1tatW9W4ceMz+h87dkxXXXWVGjdurAULFqhJkyb66aef1KBBg9ovHgCAWhIVGsxsTSXYjDHm3N1qRkJCgrp166YZM2ZIkhwOh2JiYvTAAw9o7NixZ/SfNWuW/v73v+uHH35QnTp1zuszi4qKFBoaqsLCQoWEhFSpfgAAUDsq8/vbbZeljh07pvXr1yspKel0MX5+SkpK0po1a8rcZvHixUpMTNT999+viIgIdejQQVOnTlVpaWm5n3P06FEVFRW5vAAAgHW5LdwUFBSotLRUERERLu0RERHKy8src5udO3dqwYIFKi0t1dKlS/Xkk0/queee01NPPVXu52RkZCg0NNT5iomJqdbjAAAAnsXtC4orw+FwqHHjxvrXv/6lLl26KCUlRY8//rhmzZpV7jbjxo1TYWGh87Vnz55arBgAANQ2ty0oDgsLk91uV35+vkt7fn6+IiMjy9wmKipKderUkd1ud7ZdfPHFysvL07FjxxQQEHDGNoGBgQoMDKze4gEAgMdy28xNQECAunTpouzsbGebw+FQdna2EhMTy9ymZ8+e2r59uxwOh7Ptxx9/VFRUVJnBBgAA+B63XpZKS0vT7Nmz9dprr2nLli269957VVxcrJEjR0qSRowYoXHjxjn733vvvfrf//6nMWPG6Mcff9SSJUs0depU3X///e46BAAA4GHc+pyblJQU7d+/XxMmTFBeXp46deqkZcuWORcZ5+TkyM/vdP6KiYnRhx9+qIcfflgdO3ZUkyZNNGbMGD322GPuOgQAAOBh3PqcG3fgOTcAAHgfr3jODQAAQE0g3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3MBycgtLtHpHgXILS9xdCgDADfzdXQBQnbLW5Wjcwm/lMJKfTcoYGKeUbk3dXRYAoBYxcwPLyC0scQYbSXIYafzCzczgAICPIdzAMnYVFDuDzSmlxmh3wWH3FAQAcAvCDSyjeVg9+dlc2+w2m2LD6rqnIACAW1RbuDly5IieffbZ6todUGlRocHKGBgnu+1kwrHbbJo6sIOiQoPdXBkAoDbZjDHm3N1O2r9/v7788ksFBAToyiuvlN1u1/Hjx/Xiiy8qIyNDJ06cUEFBQU3WW2VFRUUKDQ1VYWGhQkJC3F0OakBuYYl2FxxWbFhdgg0AWERlfn9X+G6pVatW6frrr1dRUZFsNpu6du2quXPnasCAAfL399fEiROVmppa5eKBqooKDSbUAKhRuYUl2lVQrOZh9fj7xgNVeOamT58+io6O1vjx4/Xaa6/pueeeU+vWrfX0009r0KBBNV1ntWHmBgBQFTxywj0q8/u7wuGmUaNG+vzzz9W+fXuVlJSofv36WrhwoW688cZqKbq2EG4AAOcrt7BEPad94nJnpt1m06qxfZnBqWGV+f1d4QXFv/32m8LCwiRJwcHBqlu3rjp06FC1SgEA8CI8csI7VOoJxd9//73y8vIkScYYbd26VcXFxS59OnbsWH3VAQDgQU49cuKPMzc8csKzVPiylJ+fn2w2m87W3WazqbS0tNqKqwlclgIAVEXWuhyNX7hZpcY4HznBmpuaVyN3S+3ateucfQ4ePFjR3QEA4JVSujXVFW3CeeSEB6twuGnWrFmZ7QcPHtT8+fM1Z84cffXVVx4/cwMAQFXxyAnPdt5PKF65cqVSU1MVFRWlZ599Vn379tV///vf6qwNAACg0iq1oDgvL0/z5s3TnDlzVFRUpMGDB+vo0aNatGiR2rdvX1M1AgAAVFiFZ2769++vtm3b6ptvvlFmZqb27t2r6dOn12RtAAAAlVbhmZv/9//+nx588EHde++9at26dU3WBAAAcN4qPHOzatUqHTx4UF26dFFCQoJmzJjh8V+SCQAAfE+Fw81ll12m2bNnKzc3V3fffbfefvttRUdHy+FwaPny5dwGDgAAPEKFH+JXlq1bt2rOnDl64403dODAAV111VVavHhxddZX7XiIHwAA3qdGvluqLG3bttXf/vY3/fzzz5o/f35VdgUAAFAtqjRz442YuQEAwPvU2swNAACApyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAAS/GIcDNz5kzFxsYqKChICQkJWrt2bYW2e/vtt2Wz2TRgwICaLRAAAHgNt4ebrKwspaWlKT09XRs2bFB8fLySk5O1b9++s263e/duPfLII+rVq1ctVQoAALyB28PN888/rzvvvFMjR45U+/btNWvWLNWtW1evvvpquduUlpbqlltu0aRJk9SiRYtarBYAAHg6t4abY8eOaf369UpKSnK2+fn5KSkpSWvWrCl3u8mTJ6tx48a64447zvkZR48eVVFRkcsLAABYl1vDTUFBgUpLSxUREeHSHhERoby8vDK3WbVqlebMmaPZs2dX6DMyMjIUGhrqfMXExFS5bgAA4LncflmqMg4ePKjhw4dr9uzZCgsLq9A248aNU2FhofO1Z8+eGq4SAAC4k787PzwsLEx2u135+fku7fn5+YqMjDyj/44dO7R7927179/f2eZwOCRJ/v7+2rp1q1q2bOmyTWBgoAIDA2ugegAA4IncOnMTEBCgLl26KDs729nmcDiUnZ2txMTEM/q3a9dO3377rTZt2uR83XDDDerbt682bdrEJScAAODemRtJSktLU2pqqrp27aru3bsrMzNTxcXFGjlypCRpxIgRatKkiTIyMhQUFKQOHTq4bN+gQQNJOqMdAAD4JreHm5SUFO3fv18TJkxQXl6eOnXqpGXLljkXGefk5MjPz6uWBgEAADeyGWOMu4uoTUVFRQoNDVVhYaFCQkLcXQ4AAKiAyvz+ZkoEAABYCuEGAABYCuHGA+QWlmj1jgLlFpa4uxQAALye2xcU+7qsdTkat/BbOYzkZ5MyBsYppVtTd5cFAIDXYubGjXILS5zBRpIcRhq/cDMzOAAAVAHhxo12FRQ7g80ppcZod8Fh9xQEAG7GZXpUBy5LuVHzsHrys8kl4NhtNsWG1XVfUQDgJlymR3Vh5saNokKDlTEwTnabTdLJYDN1YAdFhQa7uTIAqF1cpkd1YubGzVK6NdUVbcK1u+CwYsPqEmwA+KSzXabn70VUFuHGA0SFBvOHF4BP4zI9qhOXpVBhLPQDUFO4TI/qxMwNKoSFfgBqGpfpUV2YucE5sdAPQG2JCg1WYstGBBtUCeEG58TzeAAA3oRwg3M6tdDv91joBwDwVIQbnFNVF/qxEBkAUJtYUIwKOd+FfixEBgDUNmZuPIC3zGxUdqEfC5EBAO7AzI2bWXlmgyeOAgDcgZkbN7L6zAYLkQEA7kC4cSOr32LNE0cBAO7AZSk38oXvUuGJowCA2sbMjRv5yswGTxwFANQmZm7cjJkNAACqF+HGA0SFBhNqAACoJlyWAgAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AapBbmGJVu8oUG5hibtLAQCf5+/uAgBvl7UuR+MWfiuHkfxsUsbAOKV0a+rusgDAZzFzA1RBbmGJM9hIksNI4xduZgYHANyIcANUwa6CYmewOaXUGO0uOOyeggAAhBugKpqH1ZOfzbXNbrMpNqyuewoCABBugKqICg1WxsA42W0nE47dZtPUgR0UFRrs5soAwHexoBioopRuTXVFm3DtLjis2LC6BBsAcDPCDVANokKDCTUA4CG4LAUAACyFcAMAACyFcAMAACyFcAMAACyFcAMAgIX54nffcbcUAAAW5avffcfMTTXyxXQMAPBMvvzddx4RbmbOnKnY2FgFBQUpISFBa9euLbfv7Nmz1atXL1144YW68MILlZSUdNb+tSVrXY56TvtEw2Z/qZ7TPlHWuhx3lwQA8GG+/N13bg83WVlZSktLU3p6ujZs2KD4+HglJydr3759ZfZfsWKFhg4dqk8//VRr1qxRTEyMrr76av3yyy+1XPlpvpyOAQCeyZe/+87t4eb555/XnXfeqZEjR6p9+/aaNWuW6tatq1dffbXM/v/3f/+n++67T506dVK7du30yiuvyOFwKDs7u5YrP82X0zEAwDP58nffuXVB8bFjx7R+/XqNGzfO2ebn56ekpCStWbOmQvs4fPiwjh8/roYNG5b5/tGjR3X06FHnz0VFRVUrugyn0vHvA46vpGMAgOfy1e++c+vMTUFBgUpLSxUREeHSHhERoby8vArt47HHHlN0dLSSkpLKfD8jI0OhoaHOV0xMTJXr/iNfTscAAM8WFRqsxJaNfOp3klffCj5t2jS9/fbbWrFihYKCgsrsM27cOKWlpTl/LioqqpGA46vpGAAAT+PWcBMWFia73a78/HyX9vz8fEVGRp5122effVbTpk3Txx9/rI4dO5bbLzAwUIGBgdVS77nwzdAAALifWy9LBQQEqEuXLi6LgU8tDk5MTCx3u7/97W+aMmWKli1bpq5du9ZGqQAAwEu4/bJUWlqaUlNT1bVrV3Xv3l2ZmZkqLi7WyJEjJUkjRoxQkyZNlJGRIUl65plnNGHCBL311luKjY11rs2pX7++6tev77bjAAAAnsHt4SYlJUX79+/XhAkTlJeXp06dOmnZsmXORcY5OTny8zs9wfTSSy/p2LFjGjRokMt+0tPTNXHixNosHQAAeCCbMcacu5t1FBUVKTQ0VIWFhQoJCXF3OQAAoAIq8/vb7Q/xAwAAqE6EGwAAYCmEGwAAYCmEGwAAYCmEG3is3MISrd5RwLerAwAqxe23ggNlyVqXo3ELv5XDSH42KWNgnFK6NXV3WQAAL8DMDTxObmGJM9hIJ79tffzCzczgAAAqhHADj7OroNgZbE4pNUa7Cw67pyAAgFch3MDjNA+rJz+ba5vdZlNsWF33FGQhrGMC4AsIN/A4UaHByhgYJ7vtZMKx22yaOrAD37heRVnrctRz2icaNvtL9Zz2ibLW5bi7JACoEXz9AjxWbmGJdhccVmxYXYJNFeUWlqjntE9cLvfZbTatGtuXscVZ5RaWaFdBsZqH1eNcgVtV5vc3d0vBY0WFBvOXaTU52zomxhjl4a5FeCsuSwE+gHVMqCzuWoQ3I9wAPoB1TKgs7lqEN+OyFOAjUro11RVtwlnHhAo5Ndv3x3VazPbBGzBzA/iQqNBgJbZsRLDBOTHbB2/GzA0AoEzM9sFbEW4AAOXirkV4Iy5LAQAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAADg4XILS7R6R4FyC0vcXYpX8Hd3AQAAoHxZ63I0buG3chjJzyZlDIxTSrem7i7LozFzAwCAh8otLHEGG0lyGGn8ws3M4JwD4QYAAA+1q6DYGWxOKTVGuwsOu6cgL0G4AQDAQzUPqyc/m2ub3WZTbFhd9xTkJQg3AAB4qKjQYGUMjJPddjLh2G02TR3YQVGhwW6urHyesPiZBcUAAHiwlG5NdUWbcO0uOKzYsLoeHWw8ZfEzMzcAAHi4qNBgJbZs5NHBxpMWPxNuAABAlXnS4mfCDQAAqDJPWvxMuAEAAFXmSYufWVAMwOflFpZoV0GxmofV8+g1DYCn85TFz4QbAD7NU+7uAKwiKjTY7f9I4LIUAJ/lSXd3AKg+hBsAPsuT7u4AUH0INwB8lifd3QGg+hBuAPgsT7q7A0D1YUExgHOy8t1EnnJ3B4DqQ7gBcFa+cDeRJ9zdAaD6cFkKQLm4mwiANyLcACiXt91NlFtYotU7CghfgI/jshSAcp26m+j3AcdT7ybyhctnACqGmRsA5fKWu4m4fAbg95i5AXBW3nA30dkun3livQBqFuEGwDl5+t1E3nT5DEDN84jLUjNnzlRsbKyCgoKUkJCgtWvXnrX/u+++q3bt2ikoKEhxcXFaunRpLVUKwBN5y+UzALXD7TM3WVlZSktL06xZs5SQkKDMzEwlJydr69ataty48Rn9V69eraFDhyojI0PXX3+93nrrLQ0YMEAbNmxQhw4d3HAEADyBN1w+A1A7bMYYc+5uNSchIUHdunXTjBkzJEkOh0MxMTF64IEHNHbs2DP6p6SkqLi4WP/5z3+cbZdddpk6deqkWbNmnfPzioqKFBoaqsLCQoWEhFTfgQAAgBpTmd/fbr0sdezYMa1fv15JSUnONj8/PyUlJWnNmjVlbrNmzRqX/pKUnJxcbv+jR4+qqKjI5QUAAKzLreGmoKBApaWlioiIcGmPiIhQXl5emdvk5eVVqn9GRoZCQ0Odr5iYmOopHgAAeCSPWFBck8aNG6fCwkLna8+ePe4uCQAA1CC3LigOCwuT3W5Xfn6+S3t+fr4iIyPL3CYyMrJS/QMDAxUYGFg9BQMAAI/n1pmbgIAAdenSRdnZ2c42h8Oh7OxsJSYmlrlNYmKiS39JWr58ebn9AQCAb3H7reBpaWlKTU1V165d1b17d2VmZqq4uFgjR46UJI0YMUJNmjRRRkaGJGnMmDHq3bu3nnvuOfXr109vv/22vvrqK/3rX/9y52EAAAAP4fZwk5KSov3792vChAnKy8tTp06dtGzZMuei4ZycHPn5nZ5g6tGjh9566y098cQTGj9+vFq3bq1FixbxjBsAACDJA55zU9t4zg0AAN7Ha55zAwAAUN0INwAAwFIINwAAwFLcvqC4tp1aYsTXMAAA4D1O/d6uyFJhnws3Bw8elCS+hgEAAC908OBBhYaGnrWPz90t5XA4tHfvXl1wwQWy2WzuLqfWFBUVKSYmRnv27PH5u8QYi5MYh9MYi9MYi9MYi9M8YSyMMTp48KCio6NdHhFTFp+bufHz89NFF13k7jLcJiQkxOf/kJ7CWJzEOJzGWJzGWJzGWJzm7rE414zNKSwoBgAAlkK4AQAAlkK48RGBgYFKT0/nG9LFWJzCOJzGWJzGWJzGWJzmbWPhcwuKAQCAtTFzAwAALIVwAwAALIVwAwAALIVwAwAALIVw46Vmzpyp2NhYBQUFKSEhQWvXrj1r/8zMTLVt21bBwcGKiYnRww8/rCNHjjjfnzhxomw2m8urXbt2NX0Y1aIyY3H8+HFNnjxZLVu2VFBQkOLj47Vs2bIq7dOTVPdYeOt5sXLlSvXv31/R0dGy2WxatGjRObdZsWKFLr30UgUGBqpVq1aaN2/eGX287byoiXHwlXMiNzdXw4YNU5s2beTn56eHHnqozH7vvvuu2rVrp6CgIMXFxWnp0qXVX3w1q4mxmDdv3hnnRVBQUM0cQAUQbrxQVlaW0tLSlJ6erg0bNig+Pl7Jycnat29fmf3feustjR07Vunp6dqyZYvmzJmjrKwsjR8/3qXfJZdcotzcXOdr1apVtXE4VVLZsXjiiSf08ssva/r06fr+++91zz336KabbtLGjRvPe5+eoibGQvLO86K4uFjx8fGaOXNmhfrv2rVL/fr1U9++fbVp0yY99NBDGjVqlD788ENnH288L2piHCTfOCeOHj2q8PBwPfHEE4qPjy+zz+rVqzV06FDdcccd2rhxowYMGKABAwZo8+bN1Vl6tauJsZBOPr349+fFTz/9VF0lV56B1+nevbu5//77nT+Xlpaa6Ohok5GRUWb/+++/3/zpT39yaUtLSzM9e/Z0/pyenm7i4+NrpN6aVNmxiIqKMjNmzHBpGzhwoLnlllvOe5+eoibGwlvPi9+TZN5///2z9vnrX/9qLrnkEpe2lJQUk5yc7PzZW8+LU6prHHzlnPi93r17mzFjxpzRPnjwYNOvXz+XtoSEBHP33XdXscLaU11jMXfuXBMaGlptdVUVMzde5tixY1q/fr2SkpKcbX5+fkpKStKaNWvK3KZHjx5av369cwp9586dWrp0qa677jqXftu2bVN0dLRatGihW265RTk5OTV3INXgfMbi6NGjZ0yVBgcHO//leT779AQ1MRaneNt5cT7WrFnjMnaSlJyc7Bw7bz0vKutc43CKL5wTFVHR8fIVhw4dUrNmzRQTE6Mbb7xR3333ndtqIdx4mYKCApWWlioiIsKlPSIiQnl5eWVuM2zYME2ePFmXX3656tSpo5YtW6pPnz4ul6USEhI0b948LVu2TC+99JJ27dqlXr166eDBgzV6PFVxPmORnJys559/Xtu2bZPD4dDy5cu1cOFC5ebmnvc+PUFNjIXknefF+cjLyytz7IqKilRSUuK150VlnWscJN85JyqivPGy0jlRUW3bttWrr76qDz74QG+++aYcDod69Oihn3/+2S31EG58wIoVKzR16lS9+OKL2rBhgxYuXKglS5ZoypQpzj7XXnutbr75ZnXs2FHJyclaunSpDhw4oHfeeceNlVe/f/zjH2rdurXatWungIAAjR49WiNHjpSfn+/9UajIWPjKeYGK45xAWRITEzVixAh16tRJvXv31sKFCxUeHq6XX37ZLfX43t/oXi4sLEx2u135+fku7fn5+YqMjCxzmyeffFLDhw/XqFGjFBcXp5tuuklTp05VRkaGHA5Hmds0aNBAbdq00fbt26v9GKrL+YxFeHi4Fi1apOLiYv3000/64YcfVL9+fbVo0eK89+kJamIsyuIN58X5iIyMLHPsQkJCFBwc7LXnRWWdaxzKYtVzoiLKGy8rnRPnq06dOurcubPbzgvCjZcJCAhQly5dlJ2d7WxzOBzKzs5WYmJimdscPnz4jJkJu90uSTLlfLXYoUOHtGPHDkVFRVVT5dXvfMbilKCgIDVp0kQnTpzQe++9pxtvvLHK+3SnmhiLsnjDeXE+EhMTXcZOkpYvX+4cO289LyrrXONQFqueExVxPuPlK0pLS/Xtt9+677xw94pmVN7bb79tAgMDzbx588z3339v7rrrLtOgQQOTl5dnjDFm+PDhZuzYsc7+6enp5oILLjDz5883O3fuNB999JFp2bKlGTx4sLPPX/7yF7NixQqza9cu88UXX5ikpCQTFhZm9u3bV+vHVxmVHYv//ve/5r333jM7duwwK1euNH/6059M8+bNzW+//VbhfXqqmhgLbz0vDh48aDZu3Gg2btxoJJnnn3/ebNy40fz000/GGGPGjh1rhg8f7uy/c+dOU7duXfPoo4+aLVu2mJkzZxq73W6WLVvm7OON50VNjIOvnBPGGGf/Ll26mGHDhpmNGzea7777zvn+F198Yfz9/c2zzz5rtmzZYtLT002dOnXMt99+W6vHVlk1MRaTJk0yH374odmxY4dZv369GTJkiAkKCnLpU5sIN15q+vTppmnTpiYgIMB0797d/Pe//3W+17t3b5Oamur8+fjx42bixImmZcuWJigoyMTExJj77rvP5ZdYSkqKiYqKMgEBAaZJkyYmJSXFbN++vRaP6PxVZixWrFhhLr74YhMYGGgaNWpkhg8fbn755ZdK7dOTVfdYeOt58emnnxpJZ7xOHX9qaqrp3bv3Gdt06tTJBAQEmBYtWpi5c+eesV9vOy9qYhx86Zwoq3+zZs1c+rzzzjumTZs2JiAgwFxyySVmyZIltXNAVVATY/HQQw85/2xERESY6667zmzYsKH2DuoPbMaUc10CAADAC7HmBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgA8wIoVK2Sz2XTgwAF3lwJ4PcIN4GNuu+022Ww2TZs2zaV90aJFstlszp+NMZo9e7YSExMVEhKi+vXr65JLLtGYMWMq/GV4hw8f1rhx49SyZUsFBQUpPDxcvXv31gcffODsExsbq8zMzGo5tpp2auxsNpvq1Kmj5s2b669//auOHDlSqf306dNHDz30kEtbjx49lJubq9DQ0GqsGPBNhBvABwUFBemZZ57Rb7/9Vub7xhgNGzZMDz74oK677jp99NFH+v777zVnzhwFBQXpqaeeqtDn3HPPPVq4cKGmT5+uH374QcuWLdOgQYP066+/Vufh1KprrrlGubm52rlzp1544QW9/PLLSk9Pr/J+AwICFBkZ6RIwAZwnt33xAwC3SE1NNddff71p166defTRR53t77//vjn1V8L8+fONJPPBBx+UuQ+Hw1GhzwoNDTXz5s0r9/3evXuf8X01p3z++efm8ssvN0FBQeaiiy4yDzzwgDl06JDz/ddff9106dLF1K9f30RERJihQ4ea/Px85/unvj9n2bJlplOnTiYoKMj07dvX5Ofnm6VLl5p27dqZCy64wAwdOtQUFxdX6HhSU1PNjTfe6NI2cOBA07lzZ+fPBQUFZsiQISY6OtoEBwebDh06mLfeestlH3885l27djnr/f13vi1YsMC0b9/eBAQEmGbNmplnn322QnUCvo6ZG8AH2e12TZ06VdOnT9fPP/98xvvz589X27ZtdcMNN5S5fUVnFyIjI7V06VIdPHiwzPcXLlyoiy66SJMnT1Zubq5yc3MlSTt27NA111yjP//5z/rmm2+UlZWlVatWafTo0c5tjx8/rilTpujrr7/WokWLtHv3bt12221nfMbEiRM1Y8YMrV69Wnv27NHgwYOVmZmpt956S0uWLNFHH32k6dOnV+h4/mjz5s1avXq1AgICnG1HjhxRly5dtGTJEm3evFl33XWXhg8frrVr10qS/vGPfygxMVF33nmn85hjYmLO2Pf69es1ePBgDRkyRN9++60mTpyoJ598UvPmzTuvWgGf4u50BaB2/X724bLLLjO33367McZ15qZdu3bmhhtucNluzJgxpl69eqZevXqmSZMmFfqszz77zFx00UWmTp06pmvXruahhx4yq1atcunTrFkz88ILL7i03XHHHeauu+5yafv888+Nn5+fKSkpKfOz1q1bZySZgwcPGmNOz9x8/PHHzj4ZGRlGktmxY4ez7e677zbJyckVOp7U1FRjt9tNvXr1TGBgoJFk/Pz8zIIFC866Xb9+/cxf/vIX58+9e/c2Y8aMcenzx5mbYcOGmauuusqlz6OPPmrat29foVoBX8bMDeDDnnnmGb322mvasmXLOfs+/vjj2rRpkyZMmKBDhw5VaP9XXHGFdu7cqezsbA0aNEjfffedevXqpSlTppx1u6+//lrz5s1T/fr1na/k5GQ5HA7t2rVL0smZjf79+6tp06a64IIL1Lt3b0lSTk6Oy746duzo/O+IiAjVrVtXLVq0cGnbt29fhY5Hkvr27atNmzbpyy+/VGpqqkaOHKk///nPzvdLS0s1ZcoUxcXFqWHDhqpfv74+/PDDM+o6ly1btqhnz54ubT179tS2bdtUWlpaqX0BvoZwA/iwK664QsnJyRo3bpxLe+vWrbV161aXtvDwcLVq1UqNGzeu1GfUqVNHvXr10mOPPaaPPvpIkydP1pQpU3Ts2LFytzl06JDuvvtubdq0yfn6+uuvtW3bNrVs2VLFxcVKTk5WSEiI/u///k/r1q3T+++/L0ln7LdOnTrO/z51l9Pv2Ww2ORyOCh9PvXr11KpVK8XHx+vVV1/Vl19+qTlz5jjf//vf/65//OMfeuyxx/Tpp59q06ZNSk5OPuvxAqhe/u4uAIB7TZs2TZ06dVLbtm2dbUOHDtWwYcP0wQcf6MYbb6zWz2vfvr1OnDihI0eOKCAgQAEBAWfMRFx66aX6/vvv1apVqzL38e233+rXX3/VtGnTnOtVvvrqq2qtsyL8/Pw0fvx4paWladiwYQoODtYXX3yhG2+8UbfeeqskyeFw6Mcff1T79u2d25V1zH908cUX64svvnBp++KLL9SmTRvZ7fbqPxjAQpi5AXxcXFycbrnlFv3zn/90tg0ZMkSDBg3SkCFDNHnyZH355ZfavXu3PvvsM2VlZVX4l2ufPn308ssva/369dq9e7eWLl2q8ePHq2/fvgoJCZF08jk3K1eu1C+//KKCggJJ0mOPPabVq1dr9OjR2rRpk7Zt26YPPvjAuaC4adOmCggI0PTp07Vz504tXrz4nJe6asrNN98su92umTNnSjo567V8+XKtXr1aW7Zs0d133638/HyXbWJjY51jWlBQUObM0V/+8hdlZ2drypQp+vHHH/Xaa69pxowZeuSRR2rluABvRrgBoMmTJ7v8grXZbMrKylJmZqaWLl2qK6+8Um3bttXtt9+umJgYrVq1qkL7TU5O1muvvaarr75aF198sR544AElJyfrnXfecfns3bt3q2XLlgoPD5d0cp3MZ599ph9//FG9evVS586dNWHCBEVHR0s6eYls3rx5evfdd9W+fXtNmzZNzz77bDWOSMX5+/tr9OjR+tvf/qbi4mI98cQTuvTSS5WcnKw+ffooMjJSAwYMcNnmkUcekd1uV/v27RUeHl7mepxLL71U77zzjt5++2116NBBEyZM0OTJk8u8IwyAK5sxxri7CAAAgOrCzA0AALAUwg2A8/b7W7X/+Pr888/dXV6l5OTknPV4KnsrNwD34bIUgPN2ti/QbNKkiYKDg2uxmqo5ceKEdu/eXe77sbGx8vfnBlPAGxBuAACApXBZCgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWMr/B9LdI6XU9ZtYAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOX5JREFUeJzt3XtclGX+//H3AHLwwJiCCoqieMrAQx5KTdGyyOyglppaoWWn1czc2tJt07Sf6G5btuaa65pUbkqZmltmmqXmofJYamUeMKnwQJsDAqLC9fvDZb7OgorCcN8Dr+fjcT8ezj3X3PO5L26ZN9d93fc4jDFGAAAANuRndQEAAADnQ1ABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABUGoTJ06Uw+EoUVuHw6GJEyd6tZ4ePXqoR48ett0egJIjqAAVSHJyshwOh3sJCAhQ/fr1NWzYMP38889Wl2c70dHRHv1Vp04ddevWTUuWLCmT7efk5GjixIlas2ZNmWwPqIwIKkAFNGnSJL311lt67bXX1Lt3b82fP1/x8fE6efKkV97v2WefVW5urle27W1t27bVW2+9pbfeektPPvmkfvnlF/Xv31+vvfZaqbedk5Oj559/nqAClEKA1QUAKHu9e/dWhw4dJEkjRoxQWFiYpk2bpmXLlmngwIFl/n4BAQEKCPDNXyf169fXPffc43583333qWnTpnr55Zf1yCOPWFgZAIkRFaBS6NatmyRp//79Huu///573XXXXapVq5aCg4PVoUMHLVu2zKPN6dOn9fzzz6tZs2YKDg5W7dq1dd1112nVqlXuNsXNUcnLy9MTTzyh8PBw1ahRQ7fffrt++umnIrUNGzZM0dHRRdYXt8158+bp+uuvV506dRQUFKRWrVpp1qxZl9QXF1OvXj1deeWVSk1NvWC7o0eP6oEHHlDdunUVHBysNm3a6I033nA/f/DgQYWHh0uSnn/+effpJW/PzwEqGt/8EwjAJTl48KAk6YorrnCv2717t7p27ar69evrmWeeUbVq1fTOO++ob9++eu+999SvXz9JZwNDUlKSRowYoU6dOikzM1NbtmzRtm3bdOONN573PUeMGKH58+dryJAh6tKliz799FP16dOnVPsxa9YsXXXVVbr99tsVEBCgf//73/rd736ngoICjRw5slTbLnT69GmlpaWpdu3a522Tm5urHj16aN++fRo1apQaN26sd999V8OGDdPx48f1+OOPKzw8XLNmzdKjjz6qfv36qX///pKk1q1bl0mdQKVhAFQY8+bNM5LMJ598Yo4dO2bS0tLMokWLTHh4uAkKCjJpaWnutjfccIOJi4szJ0+edK8rKCgwXbp0Mc2aNXOva9OmjenTp88F33fChAnm3F8nO3bsMJLM7373O492Q4YMMZLMhAkT3OsSExNNo0aNLrpNY4zJyckp0i4hIcE0adLEY118fLyJj4+/YM3GGNOoUSNz0003mWPHjpljx46Zr7/+2tx9991GknnsscfOu73p06cbSWb+/PnudadOnTKdO3c21atXN5mZmcYYY44dO1ZkfwFcGk79ABVQr169FB4erqioKN11112qVq2ali1bpgYNGkiS/vOf/+jTTz/VwIEDlZWVpYyMDGVkZOjXX39VQkKC9u7d675KqGbNmtq9e7f27t1b4vdfvny5JGn06NEe68eMGVOq/QoJCXH/2+VyKSMjQ/Hx8Tpw4IBcLtdlbXPlypUKDw9XeHi42rRpo3fffVf33nuvpk2bdt7XLF++XPXq1dPgwYPd66pUqaLRo0frxIkTWrt27WXVAqCoChNU1q1bp9tuu02RkZFyOBxaunSp19/z559/1j333KPatWsrJCREcXFx2rJli9ffF7iYmTNnatWqVVq0aJFuueUWZWRkKCgoyP38vn37ZIzRn/70J/eHdOEyYcIESWfnYEhnryA6fvy4mjdvrri4OD311FP65ptvLvj+P/74o/z8/BQTE+OxvkWLFqXarw0bNqhXr16qVq2aatasqfDwcI0fP16SLjuoXHPNNVq1apU++eQTbdy4URkZGXrzzTc9QtH/+vHHH9WsWTP5+Xn+Cr3yyivdzwMoGxVmjkp2drbatGmj+++/330u2Jt+++03de3aVT179tRHH32k8PBw7d2712MOAGCVTp06ua/66du3r6677joNGTJEe/bsUfXq1VVQUCBJevLJJ5WQkFDsNpo2bSpJ6t69u/bv36/3339fK1eu1D//+U+9/PLLeu211zRixIhS13q+G8Xl5+d7PN6/f79uuOEGtWzZUi+99JKioqIUGBio5cuX6+WXX3bv06UKCwtTr169Luu1ALyvwgSV3r17q3fv3ud9Pi8vT3/84x+1YMECHT9+XLGxsZo2bdpl321y2rRpioqK0rx589zrGjdufFnbArzJ399fSUlJ6tmzp1599VU988wzatKkiaSzpytK8iFdq1YtDR8+XMOHD9eJEyfUvXt3TZw48bxBpVGjRiooKND+/fs9RlH27NlTpO0VV1yh48ePF1n/v6MS//73v5WXl6dly5apYcOG7vWfffbZResva40aNdI333yjgoICj1GV77//3v28dP4QBqDkKsypn4sZNWqUNm3apIULF+qbb77RgAEDdPPNN1/SefdzLVu2TB06dNCAAQNUp04dtWvXTnPmzCnjqoGy0aNHD3Xq1EnTp0/XyZMnVadOHfXo0UOzZ89Wenp6kfbHjh1z//vXX3/1eK569epq2rSp8vLyzvt+hX80/O1vf/NYP3369CJtY2Ji5HK5PE4npaenF7k7rL+/vyTJGONe53K5PP5YKC+33HKLDh8+rJSUFPe6M2fOaMaMGapevbri4+MlSVWrVpWkYoMYgJKpMCMqF3Lo0CHNmzdPhw4dUmRkpKSzQ94rVqzQvHnzNGXKlEve5oEDBzRr1iyNHTtW48eP1+bNmzV69GgFBgYqMTGxrHcBKLWnnnpKAwYMUHJysh555BHNnDlT1113neLi4vTggw+qSZMmOnLkiDZt2qSffvpJX3/9tSSpVatW6tGjh9q3b69atWppy5YtWrRokUaNGnXe92rbtq0GDx6sv//973K5XOrSpYtWr16tffv2FWl799136+mnn1a/fv00evRo5eTkaNasWWrevLm2bdvmbnfTTTcpMDBQt912mx5++GGdOHFCc+bMUZ06dYoNW9700EMPafbs2Ro2bJi2bt2q6OhoLVq0SBs2bND06dNVo0YNSWcn/7Zq1UopKSlq3ry5atWqpdjYWMXGxpZrvYBPs/qyI2+QZJYsWeJ+/MEHHxhJplq1ah5LQECAGThwoDHGmO+++85IuuDy9NNPu7dZpUoV07lzZ4/3feyxx8y1115bLvsIFKfw8uTNmzcXeS4/P9/ExMSYmJgYc+bMGWOMMfv37zf33XefqVevnqlSpYqpX7++ufXWW82iRYvcr3vhhRdMp06dTM2aNU1ISIhp2bKl+X//7/+ZU6dOudsUdylxbm6uGT16tKldu7apVq2aue2220xaWlqxl+uuXLnSxMbGmsDAQNOiRQszf/78Yre5bNky07p1axMcHGyio6PNtGnTzOuvv24kmdTUVHe7S7k8+WKXXp9ve0eOHDHDhw83YWFhJjAw0MTFxZl58+YVee3GjRtN+/btTWBgIJcqA5fBYcw546gVhMPh0JIlS9S3b19JUkpKioYOHardu3e7h48LVa9eXfXq1dOpU6d04MCBC263du3a7jtNNmrUSDfeeKP++c9/up+fNWuWXnjhBb78DQCAMlIpTv20a9dO+fn5Onr0qPtW4v8rMDBQLVu2LPE2u3btWmRi4A8//OCeRAcAAEqvwgSVEydOeJz/Tk1N1Y4dO1SrVi01b95cQ4cO1X333ae//vWvateunY4dO6bVq1erdevWl3Vb7yeeeEJdunTRlClTNHDgQH311Vf6xz/+oX/84x9luVsAAFRqFebUz5o1a9SzZ88i6xMTE5WcnKzTp0/rhRde0Jtvvqmff/5ZYWFhuvbaa/X8888rLi7ust7zgw8+0Lhx47R37141btxYY8eO1YMPPljaXQEAAP9VYYIKAACoeCrNfVQAAIDvIagAAADb8unJtAUFBfrll19Uo0YNblUNAICPMMYoKytLkZGRRb7c83/5dFD55ZdfFBUVZXUZAADgMqSlpalBgwYXbOPTQaXwNtVpaWkKDQ21uBoAAFASmZmZioqKcn+OX4hPB5XC0z2hoaEEFQAAfExJpm0wmRYAANgWQQUAANgWQQUAANiWT89RAQDAbvLz83X69Gmry7BUlSpV5O/vXybbIqgAAFAGjDE6fPiwjh8/bnUptlCzZk3Vq1ev1Pc5I6gAAFAGCkNKnTp1VLVq1Up7I1JjjHJycnT06FFJUkRERKm2R1ABAKCU8vPz3SGldu3aVpdjuZCQEEnS0aNHVadOnVKdBrJ0Mm10dLQcDkeRZeTIkVaWBQDAJSmck1K1alWLK7GPwr4o7XwdS0dUNm/erPz8fPfjXbt26cYbb9SAAQMsrAoAgMtTWU/3FKes+sLSoBIeHu7xeOrUqYqJiVF8fLxFFQEAADuxzRyVU6dOaf78+Ro7dux5U1heXp7y8vLcjzMzM8urPAAAYAHb3PBt6dKlOn78uIYNG3beNklJSXI6ne6Fb04uvXRXrjbuz1C6K9fqUgAAFtq0aZP8/f3Vp08fj/UHDx70mEdaq1YtxcfH6/PPPy+XumwTVObOnavevXsrMjLyvG3GjRsnl8vlXtLS0sqxwoonZfMhdZ36qYbM+VJdp36qlM2HrC4JAGCRuXPn6rHHHtO6dev0yy+/FHn+k08+UXp6utatW6fIyEjdeuutOnLkiNfrskVQ+fHHH/XJJ59oxIgRF2wXFBTk/qZkvjG5dNJduRq3eKcKzNnHBUYav3gXIysAUAmdOHFCKSkpevTRR9WnTx8lJycXaVO7dm3Vq1dPsbGxGj9+vDIzM/Xll196vTZbBJV58+apTp06RYab4D2pGdnukFIo3xgdzMixpiAAgFt5n5Z/55131LJlS7Vo0UL33HOPXn/9dRljim2bm5urN998U5IUGBjo9dosn0xbUFCgefPmKTExUQEBlpdTaTQOqyY/hzzCir/Doegw7gEAAFZK2XzIPeLt55CS+sdpUMeGXn3PuXPn6p577pEk3XzzzXK5XFq7dq169OjhbtOlSxf5+fkpJydHxhi1b99eN9xwg1frkmwwovLJJ5/o0KFDuv/++60upVKJcIYoqX+c/P97hZW/w6Ep/WMV4QyxuDIAqLysOC2/Z88effXVVxo8eLAkKSAgQIMGDdLcuXM92qWkpGj79u1677331LRpUyUnJ6tKlSpeq6uQ5UMYN91003mHl+Bdgzo2VPfm4TqYkaPosKqEFACw2IVOy3vrd/TcuXN15swZj4tZjDEKCgrSq6++6l4XFRWlZs2aqVmzZjpz5oz69eunXbt2KSgoyCt1FbJ8RAXWinCGqHNMbUIKANhA4Wn5c3nztPyZM2f05ptv6q9//at27NjhXr7++mtFRkZqwYIFxb7urrvuUkBAgP7+9797pa5zEVQAALCJ8j4t/8EHH+i3337TAw88oNjYWI/lzjvvLHL6p5DD4dDo0aM1depU5eR49yIMggoAADYyqGNDrX+mpxY8eK3WP9PTqxNp586dq169esnpdBZ57s4779SWLVvOexf4xMREnT592uP0kDdYPkcFAAB4inCGlMsp+X//+9/nfa5Tp07uOaTFzSWtWrWq/vOf/3ittkKMqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAUEa4gen/Kau+IKgAAFBKhbeS9/Y9RXxJYV+U9jb7XJ4MAEAp+fv7q2bNmjp69Kiks5fuOhyOi7yqYjLGKCcnR0ePHlXNmjXl7+9fqu0RVAAAKAP16tWTJHdYqexq1qzp7pPSIKgAAFAGHA6HIiIiVKdOHZ0+fdrqcixVpUqVUo+kFCKoAABQhvz9/cvsQxpMpgUAADZGUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZleVD5+eefdc8996h27doKCQlRXFyctmzZYnVZAADABgKsfPPffvtNXbt2Vc+ePfXRRx8pPDxce/fu1RVXXGFlWQAAwCYsDSrTpk1TVFSU5s2b517XuHFjCysCAAB2Yumpn2XLlqlDhw4aMGCA6tSpo3bt2mnOnDnnbZ+Xl6fMzEyPBQAAVFyWBpUDBw5o1qxZatasmT7++GM9+uijGj16tN54441i2yclJcnpdLqXqKiocq4YAACUJ4cxxlj15oGBgerQoYM2btzoXjd69Ght3rxZmzZtKtI+Ly9PeXl57seZmZmKioqSy+VSaGhoudQMAABKJzMzU06ns0Sf35aOqERERKhVq1Ye66688kodOnSo2PZBQUEKDQ31WAAAQMVlaVDp2rWr9uzZ47Huhx9+UKNGjSyqCAAA2ImlQeWJJ57QF198oSlTpmjfvn16++239Y9//EMjR460siwAAGATlgaVjh07asmSJVqwYIFiY2M1efJkTZ8+XUOHDrWyLAAAYBOWTqYtrUuZjAMAAOzBZybTAgAAXAhBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2BZBBQAA2JalQWXixIlyOBweS8uWLa0sCQAA2EiA1QVcddVV+uSTT9yPAwIsLwkAANiE5akgICBA9erVs7oMAABgQ5bPUdm7d68iIyPVpEkTDR06VIcOHTpv27y8PGVmZnosAACg4rI0qFxzzTVKTk7WihUrNGvWLKWmpqpbt27Kysoqtn1SUpKcTqd7iYqKKueKAQBAeXIYY4zVRRQ6fvy4GjVqpJdeekkPPPBAkefz8vKUl5fnfpyZmamoqCi5XC6FhoaWZ6kAAOAyZWZmyul0lujz2/I5KueqWbOmmjdvrn379hX7fFBQkIKCgsq5KgAAYBXL56ic68SJE9q/f78iIiKsLgUAANiApUHlySef1Nq1a3Xw4EFt3LhR/fr1k7+/vwYPHmxlWQAAwCYsPfXz008/afDgwfr1118VHh6u6667Tl988YXCw8OtLAsAANiEpUFl4cKFVr49AACwOVvNUQEAADgXQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANiWbYLK1KlT5XA4NGbMGKtLAQAANmGLoLJ582bNnj1brVu3troUt3RXrjbuz1C6K9fqUgAAqLQsDyonTpzQ0KFDNWfOHF1xxRVWlyNJStl8SF2nfqohc75U16mfKmXzIatLAgCgUrI8qIwcOVJ9+vRRr169Lto2Ly9PmZmZHktZS3flatzinSowZx8XGGn84l2MrAAAYAFLg8rChQu1bds2JSUllah9UlKSnE6ne4mKiirzmlIzst0hpVC+MTqYkVPm7wUAAC7MsqCSlpamxx9/XP/6178UHBxcoteMGzdOLpfLvaSlpZV5XY3DqsnP4bnO3+FQdFjVMn8vAABKqrLOnXQYY8zFm5W9pUuXql+/fvL393evy8/Pl8PhkJ+fn/Ly8jyeK05mZqacTqdcLpdCQ0PLrLaUzYc0fvEu5Rsjf4dDU/rHalDHhmW2fQAALkXK5kPuaQl+Dimpf5xPfy5dyue3ZUElKytLP/74o8e64cOHq2XLlnr66acVGxt70W14K6hIZ5PrwYwcRYdVVYQzpEy3DQBASaW7ctV16qce0xL8HQ6tf6anz34+Xcrnd0A51VREjRo1ioSRatWqqXbt2iUKKd4W4Qzx2QMAAFBxXGjuZGX4nLL8qh8AAHB+lX3upGUjKsVZs2aN1SUAAGArEc4QJfWPKzJ3sjKMpkg2CyoAAKCoQR0bqnvz8Eo5d5KgAgCAD6iscyeZowIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyLoAIAAGyrzILKyZMn9eKLL5bV5gAAAC4tqBw7dkwffPCBVq5cqfz8fEnS6dOn9corryg6OlpTp071SpEAAKByKvF3/axfv1633nqrMjMz5XA41KFDB82bN099+/ZVQECAJk6cqMTERG/WCgAAKpkSj6g8++yzuuWWW/TNN99o7Nix2rx5s/r166cpU6bo22+/1SOPPKKQkMr3ZUkAAMB7HMYYU5KGtWvX1ueff65WrVopNzdX1atX1+LFi3XHHXd4u8bzyszMlNPplMvlUmhoqGV1AACAkruUz+8Sj6j89ttvCgsLkySFhISoatWqio2NLV2lAADAttJdudq4P0PprlzLaijxHBVJ+vbbb3X48GFJkjFGe/bsUXZ2tkeb1q1bl111AADAEimbD2nc4p0qMJKfQ0rqH6dBHRuWex0lPvXj5+cnh8OhCzV3OBzuq4HKA6d+AAAoe+muXHWd+qkKzvnI93c4tP6Znopwln4+6qV8fpd4RCU1NfWibbKyskq6OQAAYFOpGdkeIUWS8o3RwYycMgkql6LEQaVRo0bFrs/KytKCBQs0d+5cbdmypVxHVAAAQNlrHFZNfg4VGVGJDqta7rVc9p1p161bp8TEREVEROjFF19Uz5499cUXX5RlbQAAwAIRzhAl9Y+Tv8Mh6WxImdI/ttxHU6RLnEx7+PBhJScna+7cucrMzNTAgQOVl5enpUuXqlWrVt6qEQAAlLNBHRuqe/NwHczIUXRYVUtCinQJIyq33XabWrRooW+++UbTp0/XL7/8ohkzZnizNgAAYKEIZ4g6x9S2LKRIlzCi8tFHH2n06NF69NFH1axZM2/WBAAAIOkSRlTWr1+vrKwstW/fXtdcc41effVVZWRkeLM2AABQyZU4qFx77bWaM2eO0tPT9fDDD2vhwoWKjIxUQUGBVq1axaXJAABUMHa4M22Jb/hWnD179mju3Ll66623dPz4cd14441atmxZWdZ3QdzwDQAA7/DmnWm98l0/xWnRooX+/Oc/66efftKCBQtKsykAAGAT6a5cd0iRzt5PZfziXZaMrJQqqBTy9/dX3759y3U0BQAAeMeF7kxb3sokqAAAgIqj8M605/K5O9MCAICKyWfvTAsAACoHu9yZlqACAACKFeEMsfSutBKnfgAAgI0RVAAAgG0RVAAAgG1ZGlRmzZql1q1bKzQ0VKGhoercubM++ugjK0sCAAA2YmlQadCggaZOnaqtW7dqy5Ytuv7663XHHXdo9+7dVpYFAABsolTf9eMNtWrV0l/+8hc98MADF23Ld/0AAOB7LuXz2zaXJ+fn5+vdd99Vdna2OnfubHU5AADABiwPKjt37lTnzp118uRJVa9eXUuWLFGrVq2KbZuXl6e8vDz348zMzPIqEwAAWMDyq35atGihHTt26Msvv9Sjjz6qxMREffvtt8W2TUpKktPpdC9RUVHlXC0AAChPtpuj0qtXL8XExGj27NlFnituRCUqKoo5KgAA+BCfnKNSqKCgwCOMnCsoKEhBQUHlXBEAALCKpUFl3Lhx6t27txo2bKisrCy9/fbbWrNmjT7++GMrywIAADZhaVA5evSo7rvvPqWnp8vpdKp169b6+OOPdeONN1pZFgAAsAlLg8rcuXOtfHsAAGBzll/1AwAAcD4EFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQDwsnRXrjbuz1C6K9fqUgCfE2B1AQBQkaVsPqRxi3eqwEh+Dimpf5wGdWxodVmAz2BEBQC8JN2V6w4pklRgpPGLdzGyAlwCggoAeElqRrY7pBTKN0YHM3KsKQjwQQQVAPCSxmHV5OfwXOfvcCg6rKo1BQE+iKACAF4S4QxRUv84+TvOphV/h0NT+scqwhlicWWA72AyLQB40aCODdW9ebgOZuQoOqwqIQU+Jd2Vq9SMbDUOq2bZsUtQAQAvi3CGEFDgc+xyxRqnfgAAgAc7XbFGUAEAAB7sdMUaQQUAAHiw0xVrBBUAAODBTlesMZkWAAAUYZcr1ggqAACgWHa4Yo1TPwAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYsDSpJSUnq2LGjatSooTp16qhv377as2ePlSUBAAAbsTSorF27ViNHjtQXX3yhVatW6fTp07rpppuUnZ1tZVkAAB+R7srVxv0ZSnflWl0KvMRhjDFWF1Ho2LFjqlOnjtauXavu3btftH1mZqacTqdcLpdCQ0PLoUIAgF2kbD6kcYt3qsBIfg4pqX+cBnVsaHVZKIFL+fy21RwVl8slSapVq1axz+fl5SkzM9NjQenw1wgAX5TuynWHFEkqMNL4xbv4XVYB2ebbkwsKCjRmzBh17dpVsbGxxbZJSkrS888/Xy71pLtylZqRrcZh1Sz/5khv4a8RAL4qNSPbHVIK5Rujgxk5FfZ3dmVlmxGVkSNHateuXVq4cOF524wbN04ul8u9pKWleaWWlM2H1HXqpxoy50t1nfqpUjYf8sr7WIm/RgD4ssZh1eTn8Fzn73AoOqyqNQXBa2wRVEaNGqUPPvhAn332mRo0aHDedkFBQQoNDfVYylpl+QC/0F8jAGB3Ec4QJfWPk7/jbFrxdzg0pX8soykVkKWnfowxeuyxx7RkyRKtWbNGjRs3trIcSZVnOLHwr5Fz95W/RgD4kkEdG6p783AdzMhRdFjVCvU7Gv/H0hGVkSNHav78+Xr77bdVo0YNHT58WIcPH1ZurnWjF5VlOJG/RgBUBBHOEHWOqc3vrgrM0suTHQ5HsevnzZunYcOGXfT13ro8OWXzIY1fvEv5xrg/wCvqJNN0Vy5/jQAAytWlfH5bfurHjirTcGKEM6RC7x8AwLfZ5vJku+EDHAAA69niqh8AAIDiEFQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAAIBtEVQAwMbSXbnauD9D6a5cq0sBLBFgdQEAgOKlbD6kcYt3qsBIfg4pqX+cBnVsaHVZQLliRAUAbCjdlesOKZJUYKTxi3cxsoJKh6ACADaUmpHtDimF8o3RwYwcawoCLEJQAQAbahxWTX4Oz3X+Doeiw6paUxBgEYIKANhQhDNESf3j5O84m1b8HQ5N6R+rCGeIxZUB5YvJtABgU4M6NlT35uE6mJGj6LCqhBRUSgQVALCxCGcIAQWVGqd+AACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFU4FPSXbnauD+Dr7oHgEqCW+jDZ6RsPqRxi3eqwEh+Dimpf5wGdWxodVkAAC9iRAU+Id2V6w4pklRgpPGLdzGyAgAVnKVBZd26dbrtttsUGRkph8OhpUuXWlkObCw1I9sdUgrlG6ODGTnWFAQAKBeWBpXs7Gy1adNGM2fOtLIM+IDGYdXk5/Bc5+9wKDqsqjUFAQDKhaVzVHr37q3evXtbWQJ8RIQzREn94zR+8S7lGyN/h0NT+scqwhlidWkAAC/yqcm0eXl5ysvLcz/OzMy0sBqUt0EdG6p783AdzMhRdFhVQgoAVAI+NZk2KSlJTqfTvURFRVldEspZhDNEnWNqE1IAoJLwqaAybtw4uVwu95KWlmZ1SUClx71tAHiTT536CQoKUlBQkNVlAPgv7m0DwNt8akQFgH1wbxsA5cHSEZUTJ05o37597sepqanasWOHatWqpYYN+asMsLML3duGOUQAyoqlQWXLli3q2bOn+/HYsWMlSYmJiUpOTraoKgAlUXhvm3PDCve2AVDWLA0qPXr0kDHm4g0B2A73tgFQHnxqMi0Ae+HeNgC8jaACoFQinCEEFABew1U/AADAtggqAADAtggqAADAtggqAADAtggqACTxnT12xc8FlR1X/QDgO3tsip8LwIgKUOnxnT32xM8FOIugAlRyF/rOHliHnwtwFkEFqOQKv7PnXHxnj/X4uQBnEVSASq7wO3v8HWc/FfnOHnvg5wKc5TA+/K2AmZmZcjqdcrlcCg0NtbocwKelu3L5zh4b4ueCiuhSPr+56geAJL6zx674uaCy49QPAACwLYIKAACwLYIKAACwLYIK4CXc+hwASo/JtIAXcOtzACgbjKgAZYxbnwNA2SGoAGWMW58DQNkhqABljFufA0DZIagAZYxbnwNA2WEyLeAFgzo2VPfm4dz6HD4p3ZWr1IxsNQ6rxrELyxFUAC/h1ufwRVyxBrvh1A8AQBJXrMGeCCoAAElcsQZ7IqgAACRxxRrsiaACAJDEFWuwJybTAgDcuGINdkNQAWAZLoO1J65Yg50QVABYgstgAZQEc1QAlDsugwVQUgQVAOWOy2ABlBRBBUC589XLYNNdudq4P4ORH6AcEVQAlDtfvAw2ZfMhdZ36qYbM+VJdp36qlM2HrC4JqBQcxhhz8Wb2lJmZKafTKZfLpdDQUKvLAXCJ0l25PnEZbLorV12nfupxusrf4dD6Z3raum7Ari7l89sWIyozZ85UdHS0goODdc011+irr76yuiQAJVSa0yERzhB1jqlt+w975tQA1rE8qKSkpGjs2LGaMGGCtm3bpjZt2ighIUFHjx61ujQAF1FZTof46pwaoCKwPKi89NJLevDBBzV8+HC1atVKr732mqpWrarXX3/d6tIAXEBlusTYF+fUABWFpTd8O3XqlLZu3apx48a51/n5+alXr17atGlTkfZ5eXnKy8tzP87MzCyXOgEUdaHTIRXxA5xbywPWsHREJSMjQ/n5+apbt67H+rp16+rw4cNF2iclJcnpdLqXqKio8ioVwP+ojKdDfGVODVCRWH7q51KMGzdOLpfLvaSlpVldElBpcToEQHmw9NRPWFiY/P39deTIEY/1R44cUb169Yq0DwoKUlBQUHmVB+AiOB0CwNssHVEJDAxU+/bttXr1ave6goICrV69Wp07d7awMgAlxekQAN5k+bcnjx07VomJierQoYM6deqk6dOnKzs7W8OHD7e6NAAAYDHLg8qgQYN07NgxPffcczp8+LDatm2rFStWFJlgCwAAKh9uoQ8AAMqVz91CHwAAoDgEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFsEFQAAYFuW35m2NArvVZeZmWlxJQAAoKQKP7dLcs9Znw4qWVlZkqSoqCiLKwEAAJcqKytLTqfzgm18+hb6BQUF+uWXX1SjRg05HI5SbSszM1NRUVFKS0vjdvz/RZ8URZ8URZ8URZ8Uj34pqrL2iTFGWVlZioyMlJ/fhWeh+PSIip+fnxo0aFCm2wwNDa1UB0tJ0CdF0SdF0SdF0SfFo1+Kqox9crGRlEJMpgUAALZFUAEAALZFUPmvoKAgTZgwQUFBQVaXYhv0SVH0SVH0SVH0SfHol6Lok4vz6cm0AACgYmNEBQAA2BZBBQAA2BZBBQAA2BZBBQAA2FaFDiozZ85UdHS0goODdc011+irr766YPvp06erRYsWCgkJUVRUlJ544gmdPHnS/fzEiRPlcDg8lpYtW3p7N8rUpfTJ6dOnNWnSJMXExCg4OFht2rTRihUrSrVNOyrrPvH142TdunW67bbbFBkZKYfDoaVLl170NWvWrNHVV1+toKAgNW3aVMnJyUXa+PJx4o0+qWzHSXp6uoYMGaLmzZvLz89PY8aMKbbdu+++q5YtWyo4OFhxcXFavnx52RfvJd7ok+Tk5CLHSXBwsHd2wKYqbFBJSUnR2LFjNWHCBG3btk1t2rRRQkKCjh49Wmz7t99+W88884wmTJig7777TnPnzlVKSorGjx/v0e6qq65Senq6e1m/fn157E6ZuNQ+efbZZzV79mzNmDFD3377rR555BH169dP27dvv+xt2o03+kTy7eMkOztbbdq00cyZM0vUPjU1VX369FHPnj21Y8cOjRkzRiNGjNDHH3/sbuPrx4k3+kSqXMdJXl6ewsPD9eyzz6pNmzbFttm4caMGDx6sBx54QNu3b1ffvn3Vt29f7dq1qyxL9xpv9Il09q615x4nP/74Y1mV7BtMBdWpUyczcuRI9+P8/HwTGRlpkpKSim0/cuRIc/3113usGzt2rOnatav78YQJE0ybNm28Um95uNQ+iYiIMK+++qrHuv79+5uhQ4de9jbtxht94uvHybkkmSVLllywzR/+8Adz1VVXeawbNGiQSUhIcD/29ePkXGXVJ5XtODlXfHy8efzxx4usHzhwoOnTp4/HumuuucY8/PDDpayw/JVVn8ybN884nc4yq8sXVcgRlVOnTmnr1q3q1auXe52fn5969eqlTZs2FfuaLl26aOvWre7h6AMHDmj58uW65ZZbPNrt3btXkZGRatKkiYYOHapDhw55b0fK0OX0SV5eXpEhxpCQEPdffZezTTvxRp8U8tXj5HJs2rTJow8lKSEhwd2Hvn6cXI6L9UmhynSclERJ+62yOXHihBo1aqSoqCjdcccd2r17t9UllasKGVQyMjKUn5+vunXreqyvW7euDh8+XOxrhgwZokmTJum6665TlSpVFBMTox49enic+rnmmmuUnJysFStWaNasWUpNTVW3bt2UlZXl1f0pC5fTJwkJCXrppZe0d+9eFRQUaNWqVVq8eLHS09Mve5t24o0+kXz7OLkchw8fLrYPMzMzlZub6/PHyeW4WJ9Ile84KYnz9VtFPU5KokWLFnr99df1/vvva/78+SooKFCXLl30008/WV1auamQQeVyrFmzRlOmTNHf//53bdu2TYsXL9aHH36oyZMnu9v07t1bAwYMUOvWrZWQkKDly5fr+PHjeueddyys3HteeeUVNWvWTC1btlRgYKBGjRql4cOHX/QruSuykvRJZTtOcHk4TlASnTt31n333ae2bdsqPj5eixcvVnh4uGbPnm11aeWmQn7ihIWFyd/fX0eOHPFYf+TIEdWrV6/Y1/zpT3/SvffeqxEjRiguLk79+vXTlClTlJSUpIKCgmJfU7NmTTVv3lz79u0r830oa5fTJ+Hh4Vq6dKmys7P1448/6vvvv1f16tXVpEmTy96mnXijT4rjS8fJ5ahXr16xfRgaGqqQkBCfP04ux8X6pDgV/TgpifP1W0U9Ti5HlSpV1K5du0p1nFTIoBIYGKj27dtr9erV7nUFBQVavXq1OnfuXOxrcnJyiowU+Pv7S5LMeb4O6cSJE9q/f78iIiLKqHLvuZw+KRQcHKz69evrzJkzeu+993THHXeUept24I0+KY4vHSeXo3Pnzh59KEmrVq1y96GvHyeX42J9UpyKfpyUxOX0W2WTn5+vnTt3Vq7jxOrZvN6ycOFCExQUZJKTk823335rHnroIVOzZk1z+PBhY4wx9957r3nmmWfc7SdMmGBq1KhhFixYYA4cOGBWrlxpYmJizMCBA91tfv/735s1a9aY1NRUs2HDBtOrVy8TFhZmjh49Wu77dzkutU+++OIL895775n9+/ebdevWmeuvv940btzY/PbbbyXept15o098/TjJysoy27dvN9u3bzeSzEsvvWS2b99ufvzxR2OMMc8884y599573e0PHDhgqlatap566inz3XffmZkzZxp/f3+zYsUKdxtfP0680SeV7Tgxxrjbt2/f3gwZMsRs377d7N692/38hg0bTEBAgHnxxRfNd999ZyZMmGCqVKlidu7cWa77drm80SfPP/+8+fjjj83+/fvN1q1bzd13322Cg4M92lR0FTaoGGPMjBkzTMOGDU1gYKDp1KmT+eKLL9zPxcfHm8TERPfj06dPm4kTJ5qYmBgTHBxsoqKizO9+9zuPD6BBgwaZiIgIExgYaOrXr28GDRpk9u3bV457VHqX0idr1qwxV155pQkKCjK1a9c29957r/n5558vaZu+oKz7xNePk88++8xIKrIU9kNiYqKJj48v8pq2bduawMBA06RJEzNv3rwi2/Xl48QbfVIZj5Pi2jdq1MijzTvvvGOaN29uAgMDzVVXXWU+/PDD8tmhMuCNPhkzZoz7/03dunXNLbfcYrZt21Z+O2UDDmPOc14DAADAYhVyjgoAAKgYCCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAUMbWrFkjh8Oh48ePW10K4PMIKoAPGzZsmBwOh6ZOneqxfunSpXI4HO7HxhjNmTNHnTt3VmhoqKpXr66rrrpKjz/+eIm/3CwnJ0fjxo1TTEyMgoODFR4ervj4eL3//vvuNtHR0Zo+fXqZ7Ju3Ffadw+FQlSpV1LhxY/3hD3/QyZMnL2k7PXr00JgxYzzWdenSRenp6XI6nWVYMVA5EVQAHxccHKxp06bpt99+K/Z5Y4yGDBmi0aNH65ZbbtHKlSv17bffau7cuQoODtYLL7xQovd55JFHtHjxYs2YMUPff/+9VqxYobvuuku//vprWe5Oubr55puVnp6uAwcO6OWXX9bs2bM1YcKEUm83MDBQ9erV8wiLAC6TtXfwB1AaiYmJ5tZbbzUtW7Y0Tz31lHv9kiVLTOF/7wULFhhJ5v333y92GwUFBSV6L6fTaZKTk8/7fHx8fJHvLCn0+eefm+uuu84EBwebBg0amMcee8ycOHHC/fybb75p2rdvb6pXr27q1q1rBg8ebI4cOeJ+vvA7VFasWGHatm1rgoODTc+ePc2RI0fM8uXLTcuWLU2NGjXM4MGDTXZ2don2JzEx0dxxxx0e6/r372/atWvnfpyRkWHuvvtuExkZaUJCQkxsbKx5++23Pbbxv/ucmprqrvfc7wpbtGiRadWqlQkMDDSNGjUyL774YonqBCo7RlQAH+fv768pU6ZoxowZ+umnn4o8v2DBArVo0UK33357sa8v6V/99erV0/Lly5WVlVXs84sXL1aDBg00adIkpaenKz09XZK0f/9+3Xzzzbrzzjv1zTffKCUlRevXr9eoUaPcrz19+rQmT56sr7/+WkuXLtXBgwc1bNiwIu8xceJEvfrqq9q4caPS0tI0cOBATZ8+XW+//bY+/PBDrVy5UjNmzCjR/vyvXbt2aePGjQoMDHSvO3nypNq3b68PP/xQu3bt0kMPPaR7771XX331lSTplVdeUefOnfXggw+69zkqKqrItrdu3aqBAwfq7rvv1s6dOzVx4kT96U9/UnJy8mXVClQqViclAJfv3FGBa6+91tx///3GGM8RlZYtW5rbb7/d43WPP/64qVatmqlWrZqpX79+id5r7dq1pkGDBqZKlSqmQ4cOZsyYMWb9+vUebRo1amRefvllj3UPPPCAeeihhzzWff7558bPz8/k5uYW+16bN282kkxWVpYx5v9GVD755BN3m6SkJCPJ7N+/373u4YcfNgkJCSXan8TEROPv72+qVatmgoKCjCTj5+dnFi1adMHX9enTx/z+9793P46PjzePP/64R5v/HVEZMmSIufHGGz3aPPXUU6ZVq1YlqhWozBhRASqIadOm6Y033tB333130bZ//OMftWPHDj333HM6ceJEibbfvXt3HThwQKtXr9Zdd92l3bt3q1u3bpo8efIFX/f1118rOTlZ1atXdy8JCQkqKChQamqqpLMjDrfddpsaNmyoGjVqKD4+XpJ06NAhj221bt3a/e+6deuqatWqatKkice6o0ePlmh/JKlnz57asWOHvvzySyUmJmr48OG688473c/n5+dr8uTJiouLU61atVS9enV9/PHHReq6mO+++05du3b1WNe1a1ft3btX+fn5l7QtoLIhqAAVRPfu3ZWQkKBx48Z5rG/WrJn27NnjsS48PFxNmzZVnTp1Luk9qlSpom7duunpp5/WypUrNWnSJE2ePFmnTp0672tOnDihhx9+WDt27HAvX3/9tfbu3auYmBhlZ2crISFBoaGh+te//qXNmzdryZIlklRku1WqVHH/u/BqnXM5HA4VFBSUeH+qVaumpk2bqk2bNnr99df15Zdfau7cue7n//KXv+iVV17R008/rc8++0w7duxQQkLCBfcXQNkKsLoAAGVn6tSpatu2rVq0aOFeN3jwYA0ZMkTvv/++7rjjjjJ9v1atWunMmTM6efKkAgMDFRgYWGSE4Oqrr9a3336rpk2bFruNnTt36tdff9XUqVPd8zu2bNlSpnWWhJ+fn8aPH6+xY8dqyJAhCgkJ0YYNG3THHXfonnvukSQVFBTohx9+UKtWrdyvK26f/9eVV16pDRs2eKzbsGGDmjdvLn9//7LfGaACYUQFqEDi4uI0dOhQ/e1vf3Ovu/vuu3XXXXfp7rvv1qRJk/Tll1/q4MGDWrt2rVJSUkr8QdmjRw/Nnj1bW7du1cGDB7V8+XKNHz9ePXv2VGhoqKSz91FZt26dfv75Z2VkZEiSnn76aW3cuFGjRo3Sjh07tHfvXr3//vvuybQNGzZUYGCgZsyYoQMHDmjZsmUXPZ3kLQMGDJC/v79mzpwp6exo1KpVq7Rx40Z99913evjhh3XkyBGP10RHR7v7NCMjo9gRnd///vdavXq1Jk+erB9++EFvvPGGXn31VT355JPlsl+ALyOoABXMpEmTPD4sHQ6HUlJSNH36dC1fvlw33HCDWrRoofvvv19RUVFav359ibabkJCgN954QzfddJOuvPJKPfbYY0pISNA777zj8d4HDx5UTEyMwsPDJZ2dV7J27Vr98MMP6tatm9q1a6fnnntOkZGRks6ehkpOTta7776rVq1aaerUqXrxxRfLsEdKLiAgQKNGjdKf//xnZWdn69lnn9XVV1+thIQE9ejRQ/Xq1VPfvn09XvPkk0/K399frVq1Unh4eLHzV66++mq98847WrhwoWJjY/Xcc89p0qRJxV7ZBMCTwxhjrC4CAACgOIyoAAAA2yKoAJAkj8uH/3f5/PPPrS7vkhw6dOiC+3OplxcDsA6nfgBI0gW/nLB+/foKCQkpx2pK58yZMzp48OB5n4+OjlZAABc9Ar6AoAIAAGyLUz8AAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2/j8Wp21jnDQeJwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_54.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBw0lEQVR4nO3deViU9f7/8deAsriAGQhoKC65JaG5EC6h51CkHks9JampWbaqaVbHpRKXEtvtJGWnU9ryrShzO0cvlygr05PmUlpqLhBmgFIJCojGfH5/+HNqAhR0YJib5+O65rqcz3zue97357p1Xn7uzWaMMQIAALAIL3cXAAAA4EqEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwBuMWPGDNlstnL1tdlsmjFjRqXW07t3b/Xu3bvarg9A+RFugBpu0aJFstlsjletWrXUpEkT3XbbbTp8+LC7y6t2IiIinMarUaNG6tWrl5YuXeqS9RcUFGjGjBlav369S9YH1ESEGwCSpFmzZumtt97SggUL1LdvX7399tuKjY3VyZMnK+X7Hn30URUWFlbKuitbx44d9dZbb+mtt97SQw89pJ9++kmDBw/WggULLnrdBQUFmjlzJuEGuAi13F0AgOqhb9++6tKliyRpzJgxCgoK0pNPPqkVK1ZoyJAhLv++WrVqqVYtz/wnqEmTJrr11lsd70eOHKlWrVrp+eef1z333OPGygBIzNwAKEOvXr0kSQcOHHBq37Nnj2666SY1bNhQfn5+6tKli1asWOHU5/Tp05o5c6Yuv/xy+fn56dJLL1XPnj21bt06R5/SzrkpKirSAw88oODgYNWvX1833HCDfvzxxxK13XbbbYqIiCjRXto6Fy5cqL/85S9q1KiRfH191b59e7388ssVGovzCQ0NVbt27ZSWlnbOfkeOHNEdd9yhkJAQ+fn5KSoqSm+88Ybj8/T0dAUHB0uSZs6c6Tj0VdnnGwFW45n/bQJQ6dLT0yVJl1xyiaPt22+/VY8ePdSkSRNNmTJFdevW1fvvv6+BAwfqww8/1KBBgySdCRlJSUkaM2aMunXrpry8PH311Vfatm2brr322jK/c8yYMXr77bc1bNgwde/eXR9//LH69+9/Udvx8ssv64orrtANN9ygWrVq6T//+Y/uu+8+2e12jR079qLWfdbp06d16NAhXXrppWX2KSwsVO/evbV//36NGzdOzZs31wcffKDbbrtNx44d04QJExQcHKyXX35Z9957rwYNGqTBgwdLkq688kqX1AnUGAZAjbZw4UIjyXz00Ufm6NGj5tChQ2bx4sUmODjY+Pr6mkOHDjn6/vWvfzWRkZHm5MmTjja73W66d+9uLr/8ckdbVFSU6d+//zm/NzEx0fzxn6AdO3YYSea+++5z6jds2DAjySQmJjraRo0aZZo1a3bedRpjTEFBQYl+8fHxpkWLFk5tsbGxJjY29pw1G2NMs2bNzHXXXWeOHj1qjh49ar7++mtzyy23GElm/PjxZa5v3rx5RpJ5++23HW2nTp0yMTExpl69eiYvL88YY8zRo0dLbC+AiuGwFABJUlxcnIKDgxUeHq6bbrpJdevW1YoVK3TZZZdJkn755Rd9/PHHGjJkiI4fP66cnBzl5OTo559/Vnx8vPbt2+e4uqpBgwb69ttvtW/fvnJ//6pVqyRJ999/v1P7xIkTL2q7/P39HX/Ozc1VTk6OYmNjdfDgQeXm5l7QOteuXavg4GAFBwcrKipKH3zwgUaMGKEnn3yyzGVWrVql0NBQDR061NFWu3Zt3X///Tpx4oQ+/fTTC6oFQEk1Otx89tlnGjBggBo3biybzaZly5ZV6vedPR/gj6+2bdtW6ncC5ZWcnKx169Zp8eLF6tevn3JycuTr6+v4fP/+/TLG6LHHHnP8sJ99JSYmSjpzTol05sqrY8eOqXXr1oqMjNTDDz+sb7755pzf/8MPP8jLy0stW7Z0am/Tps1FbdcXX3yhuLg41a1bVw0aNFBwcLCmTZsmSRccbqKjo7Vu3Tp99NFH2rhxo3JycvTmm286Bak/++GHH3T55ZfLy8v5n9127do5PgfgGjX6nJv8/HxFRUXp9ttvdxzbrmxXXHGFPvroI8d7T71aBNbTrVs3x9VSAwcOVM+ePTVs2DDt3btX9erVk91ulyQ99NBDio+PL3UdrVq1kiRdc801OnDggJYvX661a9fq3//+t55//nktWLBAY8aMuehay7r5X3FxsdP7AwcO6K9//avatm2r5557TuHh4fLx8dGqVav0/PPPO7apooKCghQXF3dBywKofDX6l7Vv377q27dvmZ8XFRXpkUce0bvvvqtjx46pQ4cOevLJJy/qrqO1atVSaGjoBS8PVAVvb28lJSWpT58+mj9/vqZMmaIWLVpIOnMopTw/7A0bNtTo0aM1evRonThxQtdcc41mzJhRZrhp1qyZ7Ha7Dhw44DRbs3fv3hJ9L7nkEh07dqxE+59nP/7zn/+oqKhIK1asUNOmTR3tn3zyyXnrd7VmzZrpm2++kd1ud5q92bNnj+NzqezgBqD8avRhqfMZN26cNm3apPfee0/ffPONbr75Zl1//fUVOo/gz/bt26fGjRurRYsWGj58uDIyMlxYMeA6vXv3Vrdu3TRv3jydPHlSjRo1Uu/evfXKK68oMzOzRP+jR486/vzzzz87fVavXj21atVKRUVFZX7f2f9o/POf/3RqnzdvXom+LVu2VG5urtOhrszMzBJ3Cfb29pYkGWMcbbm5uVq4cGGZdVSWfv36KSsrSykpKY623377TS+++KLq1aun2NhYSVKdOnUkqdTwBqB8avTMzblkZGRo4cKFysjIUOPGjSWdmY5fvXq1Fi5cqDlz5lR4ndHR0Vq0aJHatGmjzMxMzZw5U7169dKuXbtUv359V28CcNEefvhh3XzzzVq0aJHuueceJScnq2fPnoqMjNSdd96pFi1aKDs7W5s2bdKPP/6or7/+WpLUvn179e7dW507d1bDhg311VdfafHixRo3blyZ39WxY0cNHTpUL730knJzc9W9e3elpqZq//79Jfrecsstmjx5sgYNGqT7779fBQUFevnll9W6dWtt27bN0e+6666Tj4+PBgwYoLvvvlsnTpzQq6++qkaNGpUa0CrTXXfdpVdeeUW33Xabtm7dqoiICC1evFhffPGF5s2b5/g3wN/fX+3bt1dKSopat26thg0bqkOHDurQoUOV1gt4NHdfrlVdSDJLly51vP/vf/9rJJm6des6vWrVqmWGDBlijDFm9+7dRtI5X5MnTy7zO3/99VcTEBBg/v3vf1f25gFlOnsp+JYtW0p8VlxcbFq2bGlatmxpfvvtN2OMMQcOHDAjR440oaGhpnbt2qZJkybmb3/7m1m8eLFjuccff9x069bNNGjQwPj7+5u2bduaJ554wpw6dcrRp7TLtgsLC839999vLr30UlO3bl0zYMAAc+jQoVIvjV67dq3p0KGD8fHxMW3atDFvv/12qetcsWKFufLKK42fn5+JiIgwTz75pHn99deNJJOWluboV5FLwc93mXtZ68vOzjajR482QUFBxsfHx0RGRpqFCxeWWHbjxo2mc+fOxsfHh8vCgQtgM+YP87U1mM1m09KlSzVw4EBJUkpKioYPH65vv/3WMbV9Vr169RQaGqpTp07p4MGD51zvpZde6rjjaGm6du2quLg4JSUlXfQ2AAAADkuVqVOnTiouLtaRI0cct6H/Mx8fn4u6lPvEiRM6cOCARowYccHrAAAAzmp0uDlx4oTT8fy0tDTt2LFDDRs2VOvWrTV8+HCNHDlSzz77rDp16qSjR48qNTVVV1555QXdEv6hhx7SgAED1KxZM/30009KTEyUt7e30029AADAxanRh6XWr1+vPn36lGgfNWqUFi1apNOnT+vxxx/Xm2++qcOHDysoKEhXX321Zs6cqcjIyAp/3y233KLPPvtMP//8s4KDg9WzZ0898cQTJW5aBgAALlyNDjcAAMB63Hqfm4o+/mDJkiW69tprFRwcrICAAMXExGjNmjVVUywAAPAIbg03Zx9/kJycXK7+n332ma699lqtWrVKW7duVZ8+fTRgwABt3769kisFAACeotoclvrzpdjldcUVVyghIUHTp08vV3+73a6ffvpJ9evX5zbnAAB4CGOMjh8/rsaNG5d4AO2fefTVUna7XcePH1fDhg3L7FNUVOR0y/fDhw+rffv2VVEeAABwsUOHDumyyy47Zx+PDjfPPPOMTpw4oSFDhpTZJykpSTNnzizRfujQIQUEBFRmeQAAwEXy8vIUHh5erscVeWy4eeeddzRz5kwtX75cjRo1KrPf1KlTNWnSJMf7s4MTEBBAuAEAwMOU55QSjww37733nsaMGaMPPvhAcXFx5+zr6+srX1/fKqoMAAC4m1uvlroQ7777rkaPHq133333gu4SDAAArM2tMzfnevxB06ZNNXXqVB0+fFhvvvmmpDOHokaNGqUXXnhB0dHRysrKkiT5+/srMDDQLdsAAACqF7deCn6+xx/cdtttSk9P1/r16yVJvXv31qefflpm//LIy8tTYGCgcnNzz3nOTXFxsU6fPl2udeL8ateuXeLp6gAAlFd5f7+lanSfm6pyvsExxigrK0vHjh2r+uIsrkGDBgoNDeX+QgCACqtIuPHIE4or09lg06hRI9WpU4cfYhcwxqigoEBHjhyRJIWFhbm5IgCAlRFu/qC4uNgRbC699FJ3l2Mp/v7+kqQjR46oUaNGHKICAFQaj7taqjKdPcemTp06bq7Ems6OK+cyAQAqE+GmFByKqhyMKwCgKhBuAACApRBuAACApRBuLCQrK0vjx49XixYt5Ovrq/DwcA0YMECpqan65ZdfNH78eLVp00b+/v5q2rSp7r//fuXm5jqWT09Pl81m044dO0qsu3fv3po4caJT2+7du3XDDTcoMDBQdevWVdeuXZWRkVHJWwkANU9mbqE2HshRZm6hu0vxCFwtZRHp6enq0aOHGjRooKefflqRkZE6ffq01qxZo7Fjx2rx4sX66aef9Mwzz6h9+/b64YcfdM899+inn37S4sWLK/x9Bw4cUM+ePXXHHXdo5syZCggI0Lfffis/P79K2DoAqLlStmRo6pKdshvJyyYlDY5UQtem7i6rWiPcWMR9990nm82mzZs3q27duo72K664QrfffrsaNGigDz/80NHesmVLPfHEE7r11lv122+/qVatiu0KjzzyiPr166ennnrKaZ0AANfJzC10BBtJshtp2pJduqZ1sMIC/d1bXDXGYalKVFXTiL/88otWr16tsWPHOgWbsxo0aFDqcmfv8ljRYGO327Vy5Uq1bt1a8fHxatSokaKjo7Vs2bILqB4AUJa0nHxHsDmr2Bil5xS4pyAPQbipJClbMtRj7sca9uqX6jH3Y6VsqbxzUfbv3y9jjNq2bVvuZXJycjR79mzdddddJT7r3r276tWr5/T6/PPPHZ8fOXJEJ06c0Ny5c3X99ddr7dq1GjRokAYPHlzqs78AABemeVBdef3pLhreNpsigrgf27lwWKoSVPU0YkUfD5aXl6f+/furffv2mjFjRonPU1JS1K5dO6e24cOHO/5st9slSTfeeKMeeOABSVLHjh21ceNGLViwQLGxsRXcAgBAacIC/ZU0OFLTluxSsTHyttk0Z3AHDkmdB+GmEpxrGrEydsjLL79cNptNe/bsOW/f48eP6/rrr1f9+vW1dOlS1a5du0Sf8PBwtWrVyqnt7OMTJCkoKEi1atVS+/btnfq0a9dOGzZsuMCtAACUJqFrU13TOljpOQWKCKpDsCkHDktVgqqeRmzYsKHi4+OVnJys/Pz8Ep+ffcJ5Xl6errvuOvn4+GjFihUXfGWTj4+Punbtqr179zq1f//992rWrNkFrRMAULawQH/FtLyUYFNOhJtKcHYa0fv/P26gKqYRk5OTVVxcrG7duunDDz/Uvn37tHv3bv3zn/9UTEyMI9jk5+frtddeU15enrKyspSVlaXi4uIKf9/DDz+slJQUvfrqq9q/f7/mz5+v//znP7rvvvsqYesAACg/DktVkqqeRmzRooW2bdumJ554Qg8++KAyMzMVHByszp076+WXX9a2bdv05ZdfSlKJQ05paWmKiIio0PcNGjRICxYsUFJSku6//361adNGH374oXr27OmqTQIA4ILYTEXPRvVweXl5CgwMdFwG/UcnT55UWlqamjdvzs3oKgHjCwC4UOf6/f4zDksBAABLIdwAAABLIdwAAABLIdwAAABLIdyUooadY11lGFcAQFUg3PzB2bv1FhTwQLLKcHZcS7srMgAArsJ9bv7A29tbDRo00JEjRyRJderUkc1mO89SOB9jjAoKCnTkyBE1aNBA3t7e7i4JAGBhhJs/CQ0NlSRHwIHrNGjQwDG+AABUFsLNn9hsNoWFhalRo0Y6ffq0u8uxjNq1azNjAwCoEoSbMnh7e/NjDACAB+KEYgAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAA4DKZuYXaeCBHmbmFbquB+9wAAACXSNmSoalLdspuJC+blDQ4Ugldm1Z5HczcAACAi5aZW+gINpJkN9K0JbvcMoNDuAEAABctLSffEWzOKjZG6TkFVV4L4QYAAFy05kF15WVzbvO22RQRVKfKayHcAACAixYW6K+kwZHytp1JON42m+YM7qCwQP8qr4UTigEAgEskdG2qa1oHKz2nQBFBddwSbCTCDQAAcKGwQH+3hZqzOCwFAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAsxa3h5rPPPtOAAQPUuHFj2Ww2LVu27LzLrF+/XldddZV8fX3VqlUrLVq0qNLrBAAAnsOt4SY/P19RUVFKTk4uV/+0tDT1799fffr00Y4dOzRx4kSNGTNGa9asqeRKAQCAp3Dr4xf69u2rvn37lrv/ggUL1Lx5cz377LOSpHbt2mnDhg16/vnnFR8fX1llAgAAD+JR59xs2rRJcXFxTm3x8fHatGlTmcsUFRUpLy/P6QUAAKzLo8JNVlaWQkJCnNpCQkKUl5enwsLCUpdJSkpSYGCg4xUeHl4VpQIAADfxqHBzIaZOnarc3FzH69ChQ+4uCQAAVCK3nnNTUaGhocrOznZqy87OVkBAgPz9S3+8uq+vr3x9fauiPAAAUA141MxNTEyMUlNTndrWrVunmJgYN1UEAACqG7eGmxMnTmjHjh3asWOHpDOXeu/YsUMZGRmSzhxSGjlypKP/Pffco4MHD+of//iH9uzZo5deeknvv/++HnjgAXeUDwAAqiG3hpuvvvpKnTp1UqdOnSRJkyZNUqdOnTR9+nRJUmZmpiPoSFLz5s21cuVKrVu3TlFRUXr22Wf173//m8vAAQCAg80YY9xdRFXKy8tTYGCgcnNzFRAQ4O5yAABAOVTk99ujzrkBAAA4H8INAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAAAVlJlbqI0HcpSZW+juUlCKWu4uAAAAT5KyJUNTl+yU3UheNilpcKQSujZ1d1n4A2ZuAAAop8zcQkewkSS7kaYt2cUMTjVDuAEAoJzScvIdweasYmOUnlPgnoJQKsINAADl1Dyorrxszm3eNpsiguq4pyCUinADAEA5hQX6K2lwpLxtZxKOt82mOYM7KCzQ382V4Y84oRgAgApI6NpU17QOVnpOgSKC6hBsqiHCDQAAFRQW6E+oqcY4LAUAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACzF7eEmOTlZERER8vPzU3R0tDZv3nzO/vPmzVObNm3k7++v8PBwPfDAAzp58mQVVQsAAKo7t4ablJQUTZo0SYmJidq2bZuioqIUHx+vI0eOlNr/nXfe0ZQpU5SYmKjdu3frtddeU0pKiqZNm1bFlQMAgOrKreHmueee05133qnRo0erffv2WrBggerUqaPXX3+91P4bN25Ujx49NGzYMEVEROi6667T0KFDzzvbAwAAag63hZtTp05p69atiouL+70YLy/FxcVp06ZNpS7TvXt3bd261RFmDh48qFWrVqlfv35lfk9RUZHy8vKcXgAAwLpqueuLc3JyVFxcrJCQEKf2kJAQ7dmzp9Rlhg0bppycHPXs2VPGGP3222+65557znlYKikpSTNnznRp7QAAoPpy+wnFFbF+/XrNmTNHL730krZt26YlS5Zo5cqVmj17dpnLTJ06Vbm5uY7XoUOHqrBiAABQ1dw2cxMUFCRvb29lZ2c7tWdnZys0NLTUZR577DGNGDFCY8aMkSRFRkYqPz9fd911lx555BF5eZXMar6+vvL19XX9BgAAgGrJbTM3Pj4+6ty5s1JTUx1tdrtdqampiomJKXWZgoKCEgHG29tbkmSMqbxiAQCAx3DbzI0kTZo0SaNGjVKXLl3UrVs3zZs3T/n5+Ro9erQkaeTIkWrSpImSkpIkSQMGDNBzzz2nTp06KTo6Wvv379djjz2mAQMGOEIOAACo2dwabhISEnT06FFNnz5dWVlZ6tixo1avXu04yTgjI8NppubRRx+VzWbTo48+qsOHDys4OFgDBgzQE0884a5NcInM3EKl5eSreVBdhQX6u7scAAA8ms3UsOM5eXl5CgwMVG5urgICAtxdjlK2ZGjqkp2yG8nLJiUNjlRC16buLgsAgGqlIr/fHnW1lNVk5hY6go0k2Y00bckuZeYWurcwAAA8GOHGjdJy8h3B5qxiY5SeU+CeggAAsADCjRs1D6orL5tzm7fNpoigOu4pCAAACyDcuFFYoL+SBkfK23Ym4XjbbJozuAMnFQMAcBHcerUUpISuTXVN62Cl5xQoIqgOwQYAgItEuKkGwgL9CTUAALgIh6UAAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG6qgczcQm08kMNjFwAAcAEuBXczHpwJAIBrMXPjRjw4EwAA1yPcuBEPzgQAwPUIN27EgzMBAHA9wo0b8eBMAABcjxOK3YwHZwIA4FqEm2qAB2cCAOA6HJYCAACWQrgBAACWQrgBAACWQrgBAACWQriB5fCsLgCo2bhaCpbCs7oAAMzcwDJ4VhcAQCLcwEJ4VhcAQCLcwEJ4VhcAQCLcwEJ4VhcAQOKEYlgMz+oCABBuYDk8qwsAajYOS6HcuH8MAMATMHODcuH+MQAAT8HMDc6L+8cAqCrMEMMVmLnBeZ3r/jGc2wLAVZghhqswc4Pz4v4xACobM8RwJcINzov7xwCobNxhHK7EYSmUC/ePAVCZzs4Q/zHgMEOMC8XMDcotLNBfMS0vJdgAcDlmiOFKzNwAAKoFZojhKoQbAEC1wR3G4QoclgIAAJZSoXDz448/Kicnx/H+888/1/Dhw9WrVy/deuut2rRpk8sLBAAAqIgKhZu///3v+t///idJWr58uXr37q0TJ06oR48eKigoUGxsrP773/9WSqFAdcZdVQGg+rAZY8z5u51Rr1497dy5U82bN9fVV1+tQYMGafLkyY7P58+fr9dff13btm2rlGJdIS8vT4GBgcrNzVVAQIC7y4EFcFdVAKh8Ffn9rtDMTa1atXT8+HFJUlpamvr27ev0ed++fbV3794Klgt4Lu6qCgDVT4XCTWxsrN59911JUqdOnbR+/Xqnzz/55BM1adLEZcUB1R13VQWA6qdCl4LPnTtXvXr10k8//aSePXvqkUce0ZYtW9SuXTvt3btXKSkpWrBgQWXVClQ73FUVAKqfCs3ctGvXTl9++aVOnTqlp556Svn5+fq///s/zZgxQ/v379d7772n2267rUIFJCcnKyIiQn5+foqOjtbmzZvP2f/YsWMaO3aswsLC5Ovrq9atW2vVqlUV+k7AVbirKgBUPxU6ofiPjDE6cuSI7Ha7goKCVLt27QqvIyUlRSNHjtSCBQsUHR2tefPm6YMPPtDevXvVqFGjEv1PnTqlHj16qFGjRpo2bZqaNGmiH374QQ0aNFBUVFS5vpMTilEZMnMLuasqAFSiivx+X3C4cYXo6Gh17dpV8+fPlyTZ7XaFh4dr/PjxmjJlSon+CxYs0NNPP609e/ZcUJiSCDcAAHiiivx+V+icm0mTJpWr33PPPXfePqdOndLWrVs1depUR5uXl5fi4uLKvBngihUrFBMTo7Fjx2r58uUKDg7WsGHDNHnyZHl7e5e6TFFRkYqKihzv8/LyyrUNAADAM1Uo3Gzfvt3p/YYNG9S5c2f5+/8+DW/7/+cenE9OTo6Ki4sVEhLi1B4SEqI9e/aUuszBgwf18ccfa/jw4Vq1apX279+v++67T6dPn1ZiYmKpyyQlJWnmzJnlqgkAAHi+CoWbTz75xOl9/fr19c4776hFixYuLaosdrtdjRo10r/+9S95e3urc+fOOnz4sJ5++ukyw83UqVOdZpzy8vIUHh5eJfUCAICq57anggcFBcnb21vZ2dlO7dnZ2QoNDS11mbCwMNWuXdvpEFS7du2UlZWlU6dOycfHp8Qyvr6+8vX1dW3xAACg2nLbU8F9fHzUuXNnpaamOtrsdrtSU1MVExNT6jI9evTQ/v37ZbfbHW3ff/+9wsLCSg02AACg5nFbuJHOnKD86quv6o033tDu3bt17733Kj8/X6NHj5YkjRw50umE43vvvVe//PKLJkyYoO+//14rV67UnDlzNHbsWHdtAgAAqGYqdFjqm2++cXpvjNGePXt04sQJp/Yrr7yyXOtLSEjQ0aNHNX36dGVlZaljx45avXq14yTjjIwMeXn9nr/Cw8O1Zs0aPfDAA7ryyivVpEkTTZgwwenhnQAAoGar0H1uvLy8ZLPZVNoiZ9ttNpuKi4tdWqQrcZ8bAAA8T6Xd5yYtLe2iCgMAAKhsFQo3zZo1q6w6AAAAXOKCTij+49VKf27PyMi4qIIAAAAuRoXCTV5enoYMGaK6desqJCRE06dPdzq/5ujRo2revLnLiwQAACivCh2Weuyxx/T111/rrbfe0rFjx/T4449r27ZtWrJkieM+M258DicAAEDFZm6WLVumV155RTfddJPGjBmjr776SkePHtWAAQMcD6cs77OlAAAAKkOFws3Ro0edTioOCgrSRx99pOPHj6tfv34qKChweYHwfJm5hdp4IEeZuYXuLgUAUANUKNw0bdpUu3fvdmqrX7++1q5dq8LCQg0aNMilxcHzpWzJUI+5H2vYq1+qx9yPlbKFE84BAJWrQuHm2muv1cKFC0u016tXT2vWrJGfn5/LCoPny8wt1NQlO2X//6dh2Y00bckuZnAAAJWqQicUz5o1S5mZmaV+Vr9+fa1bt07btm1zSWHwfGk5+Y5gc1axMUrPKVBYoL97igIAWF6FZm62b9+um266SXl5eSU+y83N1dVXX80JxXBoHlRXXn/aHbxtNkUE1XFPQQCAGqFC4WbevHm68847S32mQ2BgoO6++249//zzLisOni0s0F9JgyPl/f8Dr7fNpjmDOzBrAwCoVBV6cGazZs20evVqtWvXrtTP9+zZo+uuu65a36WYB2dWvczcQqXnFCgiqA7BBgBwQSrtwZnZ2dmqXbt22SurVUtHjx6tyCpRA4QF+hNqAABVpkKHpZo0aaJdu3aV+fk333yjsLCwiy4KAADgQlUo3PTr10+PPfaYTp48WeKzwsJCJSYm6m9/+5vLigMAAKioCp1zk52drauuukre3t4aN26c2rRpI+nMuTbJyckqLi7Wtm3bFBISUmkFXyzOuQEAwPNU2jk3ISEh2rhxo+69915NnTrV8ZBMm82m+Ph4JScnV+tgAwAArK9C4UY6c8XUqlWr9Ouvv2r//v0yxujyyy/XJZdcUhn1AQCAi5CZW6i0nHw1D6pbYy7uqHC4OeuSSy5R165dXVkLAABwoZQtGY7H4HjZpKTBkUro2tTdZVW6Cp1QDAAAPENNfr4f4QYAAAs61/P9rI5wAwCABdXk5/sRbgAAsKCa/Hy/Cz6hGAAAVG8JXZvqmtbBNe75foQbAAAsrCY+34/DUgAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINy6UmVuojQdylJlb6O5SAACosWq5uwCrSNmSoalLdspuJC+blDQ4Ugldm7q7LAAAahxmblwgM7fQEWwkyW6kaUt2MYMDAIAbEG5cIC0n3xFszio2Ruk5Be4pCACAGoxw4wLNg+rKy+bc5m2zKSKojnsKAgCgBiPcuEBYoL+SBkfK23Ym4XjbbJozuIPCAv3dXBkAADUPJxS7SELXprqmdbDScwoUEVSHYAMAgJtUi5mb5ORkRUREyM/PT9HR0dq8eXO5lnvvvfdks9k0cODAyi2wnMIC/RXT8lKCDQAAbuT2cJOSkqJJkyYpMTFR27ZtU1RUlOLj43XkyJFzLpeenq6HHnpIvXr1qqJKAQCAJ3B7uHnuued05513avTo0Wrfvr0WLFigOnXq6PXXXy9zmeLiYg0fPlwzZ85UixYtqrBaAABQ3bk13Jw6dUpbt25VXFyco83Ly0txcXHatGlTmcvNmjVLjRo10h133FEVZQIAAA/i1hOKc3JyVFxcrJCQEKf2kJAQ7dmzp9RlNmzYoNdee007duwo13cUFRWpqKjI8T4vL++C6wUAANWf2w9LVcTx48c1YsQIvfrqqwoKCirXMklJSQoMDHS8wsPDK7lKAADgTm6duQkKCpK3t7eys7Od2rOzsxUaGlqi/4EDB5Senq4BAwY42ux2uySpVq1a2rt3r1q2bOm0zNSpUzVp0iTH+7y8PAIOAAAW5tZw4+Pjo86dOys1NdVxObfdbldqaqrGjRtXon/btm21c+dOp7ZHH31Ux48f1wsvvFBqaPH19ZWvr2+l1A8AAKoft9/Eb9KkSRo1apS6dOmibt26ad68ecrPz9fo0aMlSSNHjlSTJk2UlJQkPz8/dejQwWn5Bg0aSFKJdgAAUDO5PdwkJCTo6NGjmj59urKystSxY0etXr3acZJxRkaGvLw86tQgAADgRjZjjDl/N+vIy8tTYGCgcnNzFRAQ4O5yAABAOVTk95spEQAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAqrnM3EJtPJCjzNxCd5fiEWq5uwAAAFC2lC0Zmrpkp+xG8rJJSYMjldC1qbvLqtaYuQEAoJrKzC10BBtJshtp2pJdzOCcB+EGAIBqKi0n3xFszio2Ruk5Be4pyEMQblBtcYwZQE3XPKiuvGzObd42myKC6rinIA9BuEG1lLIlQz3mfqxhr36pHnM/VsqWDHeXBABVLizQX0mDI+VtO5NwvG02zRncQWGB/m6urHqzGWPM+btZR15engIDA5Wbm6uAgAB3l4NSZOYWqsfcj52mYr1tNm2Y0oe/0ABqpMzcQqXnFCgiqE6N/XewIr/fXC2Faudcx5hr6l9qADVbWKA///5VAIelUO1wjBkAcDEIN6h2OMYMALgYHJZCtZTQtamuaR1c448xAwAqjnCDaotjzACAC8FhKQAAYCmEGwAAYCmEGwAAYCmEG6AG4ZEWAGoCTigGaoiULRmOpwt72aSkwZFK6NrU3WUBgMsxcwPUAJm5hY5gI0l2I01bsosZHACWRLgBaoBzPdICAKyGcAPUADzSAkBNQrgBagAeaQGgJuGEYqCG4JEWAGoKwg1Qg/BICwA1AYelAACApRBuAACApVSLcJOcnKyIiAj5+fkpOjpamzdvLrPvq6++ql69eumSSy7RJZdcori4uHP2BwAANYvbw01KSoomTZqkxMREbdu2TVFRUYqPj9eRI0dK7b9+/XoNHTpUn3zyiTZt2qTw8HBdd911Onz4cBVXDgAAqiObMcacv1vliY6OVteuXTV//nxJkt1uV3h4uMaPH68pU6acd/ni4mJdcsklmj9/vkaOHHne/nl5eQoMDFRubq4CAgIuun4AAFD5KvL77daZm1OnTmnr1q2Ki4tztHl5eSkuLk6bNm0q1zoKCgp0+vRpNWzYsNTPi4qKlJeX5/QCAADW5dZwk5OTo+LiYoWEhDi1h4SEKCsrq1zrmDx5sho3buwUkP4oKSlJgYGBjld4ePhF1w0AAKovt59zczHmzp2r9957T0uXLpWfn1+pfaZOnarc3FzH69ChQ1VcJQAAqEpuvYlfUFCQvL29lZ2d7dSenZ2t0NDQcy77zDPPaO7cufroo4905ZVXltnP19dXvr6+LqkXAABUf26dufHx8VHnzp2VmprqaLPb7UpNTVVMTEyZyz311FOaPXu2Vq9erS5dulRFqQAAwEO4/fELkyZN0qhRo9SlSxd169ZN8+bNU35+vkaPHi1JGjlypJo0aaKkpCRJ0pNPPqnp06frnXfeUUREhOPcnHr16qlevXpu2w4AAFA9uD3cJCQk6OjRo5o+fbqysrLUsWNHrV692nGScUZGhry8fp9gevnll3Xq1CnddNNNTutJTEzUjBkzqrJ0AABQDbn9PjdVjfvcAADgeTzmPjcAAACuRrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAAAuk5lbqI0HcpSZW+i2Gtx+nxsAAGANKVsyNHXJTtmN5GWTkgZHKqFr0yqvg5kbAABw0TJzCx3BRpLsRpq2ZJdbZnAINwCAMlWHQwzwDGk5+Y5gc1axMUrPKajyWjgsBQAoVXU5xADP0Dyorrxscgo43jabIoLqVHktzNwAAEqoTocY4BnCAv2VNDhS3jabpDPBZs7gDgoL9K/yWpi5AQCUcK5DDO74sYJnSOjaVNe0DlZ6ToEiguq4bV8h3AAASqhOhxjgWcIC/d0egDksBQAooTodYgAqipkbAECpqsshBqCiCDcAgDJVh0MMQEVxWAoAAFgK4QaAZXDDOQASh6UAWAQ3nANwFjM3ADweN5wD8EeEGwAerzo90waA+xFuAHi8szec+yNuOAfUXIQbAB6PG84B+CNOKAZgCdxwDsBZhBsAlsEN5wBIHJYCAAAWQ7gBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBcF6ZuYXaeCBHmbmF7i4FAM6rlrsLAFC9pWzJ0NQlO2U3kpdNShocqYSuTd1dFgCUiZkbAGXKzC10BBtJshtp2pJdzOAAqNYINwDKlJaT7wg2ZxUbo/ScAvcUBADlQLgBUKbmQXXlZXNu87bZFBFUxz0FAUA5EG4AlCks0F9JgyPlbTuTcLxtNs0Z3EFhgf5urgwAysYJxQDOKaFrU13TOljpOQWKCKpjyWCTmVuotJx8NQ+qa8ntA2oawg2A8woL9Lfsjz5XgwHWw2EpADUWV4MB1lQtwk1ycrIiIiLk5+en6Ohobd68+Zz9P/jgA7Vt21Z+fn6KjIzUqlWrqqhSAFbC1WCANbk93KSkpGjSpElKTEzUtm3bFBUVpfj4eB05cqTU/hs3btTQoUN1xx13aPv27Ro4cKAGDhyoXbt2VXHlADwdV4MB1mQzxpjzd6s80dHR6tq1q+bPny9JstvtCg8P1/jx4zVlypQS/RMSEpSfn6///ve/jrarr75aHTt21IIFC877fXl5eQoMDFRubq4CAgJctyEAPFLKlgxNW7JLxcY4rgbjnBug+qnI77dbTyg+deqUtm7dqqlTpzravLy8FBcXp02bNpW6zKZNmzRp0iSntvj4eC1btqzU/kVFRSoqKnK8z8vLu/jCAVhGTbgaDKhp3HpYKicnR8XFxQoJCXFqDwkJUVZWVqnLZGVlVah/UlKSAgMDHa/w8HDXFA/AMsIC/RXT8lKCDWARbj/nprJNnTpVubm5jtehQ4fcXRIAAKhEbj0sFRQUJG9vb2VnZzu1Z2dnKzQ0tNRlQkNDK9Tf19dXvr6+rikYAABUe26dufHx8VHnzp2VmprqaLPb7UpNTVVMTEypy8TExDj1l6R169aV2R8AANQsbr9D8aRJkzRq1Ch16dJF3bp107x585Sfn6/Ro0dLkkaOHKkmTZooKSlJkjRhwgTFxsbq2WefVf/+/fXee+/pq6++0r/+9S93bgYAAKgm3B5uEhISdPToUU2fPl1ZWVnq2LGjVq9e7ThpOCMjQ15ev08wde/eXe+8844effRRTZs2TZdffrmWLVumDh06uGsTAABANeL2+9xUNe5zAwCA56nI77flr5YCAAA1C+EGAABYCuEGAABYCuEGAABYCuEGAABYitsvBa9qZy8O4wGaAAB4jrO/2+W5yLvGhZvjx49LEg/QBADAAx0/flyBgYHn7FPj7nNjt9v1008/qX79+rLZbO4up8rk5eUpPDxchw4dqvH392EszmAcfsdY/I6x+B1j8bvqMBbGGB0/flyNGzd2urlvaWrczI2Xl5cuu+wyd5fhNgEBATX+L+lZjMUZjMPvGIvfMRa/Yyx+5+6xON+MzVmcUAwAACyFcAMAACyFcFND+Pr6KjExUb6+vu4uxe0YizMYh98xFr9jLH7HWPzO08aixp1QDAAArI2ZGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGw+VnJysiIgI+fn5KTo6Wps3bz5n/3nz5qlNmzby9/dXeHi4HnjgAZ08edLx+YwZM2Sz2Zxebdu2rezNcImKjMXp06c1a9YstWzZUn5+foqKitLq1asvap3ViavHwlP3i88++0wDBgxQ48aNZbPZtGzZsvMus379el111VXy9fVVq1attGjRohJ9PG2/qIxxqCn7RGZmpoYNG6bWrVvLy8tLEydOLLXfBx98oLZt28rPz0+RkZFatWqV64t3scoYi0WLFpXYL/z8/CpnA8qBcOOBUlJSNGnSJCUmJmrbtm2KiopSfHy8jhw5Umr/d955R1OmTFFiYqJ2796t1157TSkpKZo2bZpTvyuuuEKZmZmO14YNG6picy5KRcfi0Ucf1SuvvKIXX3xR3333ne655x4NGjRI27dvv+B1VheVMRaSZ+4X+fn5ioqKUnJycrn6p6WlqX///urTp4927NihiRMnasyYMVqzZo2jjyfuF5UxDlLN2CeKiooUHBysRx99VFFRUaX22bhxo4YOHao77rhD27dv18CBAzVw4EDt2rXLlaW7XGWMhXTm7sV/3C9++OEHV5VccQYep1u3bmbs2LGO98XFxaZx48YmKSmp1P5jx441f/nLX5zaJk2aZHr06OF4n5iYaKKioiql3spU0bEICwsz8+fPd2obPHiwGT58+AWvs7qojLHw1P3ijySZpUuXnrPPP/7xD3PFFVc4tSUkJJj4+HjHe0/dL85y1TjUlH3ij2JjY82ECRNKtA8ZMsT079/fqS06OtrcfffdF1lh1XHVWCxcuNAEBga6rK6LxcyNhzl16pS2bt2quLg4R5uXl5fi4uK0adOmUpfp3r27tm7d6phCP3jwoFatWqV+/fo59du3b58aN26sFi1aaPjw4crIyKi8DXGBCxmLoqKiElOl/v7+jv95Xsg6q4PKGIuzPG2/uBCbNm1yGjtJio+Pd4ydp+4XFXW+cTirJuwT5VHe8aopTpw4oWbNmik8PFw33nijvv32W7fVQrjxMDk5OSouLlZISIhTe0hIiLKyskpdZtiwYZo1a5Z69uyp2rVrq2XLlurdu7fTYano6GgtWrRIq1ev1ssvv6y0tDT16tVLx48fr9TtuRgXMhbx8fF67rnntG/fPtntdq1bt05LlixRZmbmBa+zOqiMsZA8c7+4EFlZWaWOXV5engoLCz12v6io842DVHP2ifIoa7ystE+UV5s2bfT6669r+fLlevvtt2W329W9e3f9+OOPbqmHcFMDrF+/XnPmzNFLL72kbdu2acmSJVq5cqVmz57t6NO3b1/dfPPNuvLKKxUfH69Vq1bp2LFjev/9991Yueu98MILuvzyy9W2bVv5+Pho3LhxGj16tLy8at5fhfKMRU3ZL1B+7BMoTUxMjEaOHKmOHTsqNjZWS5YsUXBwsF555RW31FPz/kX3cEFBQfL29lZ2drZTe3Z2tkJDQ0td5rHHHtOIESM0ZswYRUZGatCgQZozZ46SkpJkt9tLXaZBgwZq3bq19u/f7/JtcJULGYvg4GAtW7ZM+fn5+uGHH7Rnzx7Vq1dPLVq0uOB1VgeVMRal8YT94kKEhoaWOnYBAQHy9/f32P2ios43DqWx6j5RHmWNl5X2iQtVu3ZtderUyW37BeHGw/j4+Khz585KTU11tNntdqWmpiomJqbUZQoKCkrMTHh7e0uSTBmPFjtx4oQOHDigsLAwF1XuehcyFmf5+fmpSZMm+u233/Thhx/qxhtvvOh1ulNljEVpPGG/uBAxMTFOYydJ69atc4ydp+4XFXW+cSiNVfeJ8riQ8aopiouLtXPnTvftF+4+oxkV99577xlfX1+zaNEi891335m77rrLNGjQwGRlZRljjBkxYoSZMmWKo39iYqKpX7++effdd83BgwfN2rVrTcuWLc2QIUMcfR588EGzfv16k5aWZr744gsTFxdngoKCzJEjR6p8+yqiomPxv//9z3z44YfmwIED5rPPPjN/+ctfTPPmzc2vv/5a7nVWV5UxFp66Xxw/ftxs377dbN++3Ugyzz33nNm+fbv54YcfjDHGTJkyxYwYMcLR/+DBg6ZOnTrm4YcfNrt37zbJycnG29vbrF692tHHE/eLyhiHmrJPGGMc/Tt37myGDRtmtm/fbr799lvH51988YWpVauWeeaZZ8zu3btNYmKiqV27ttm5c2eVbltFVcZYzJw506xZs8YcOHDAbN261dxyyy3Gz8/PqU9VItx4qBdffNE0bdrU+Pj4mG7dupn//e9/js9iY2PNqFGjHO9Pnz5tZsyYYVq2bGn8/PxMeHi4ue+++5x+xBISEkxYWJjx8fExTZo0MQkJCWb//v1VuEUXriJjsX79etOuXTvj6+trLr30UjNixAhz+PDhCq2zOnP1WHjqfvHJJ58YSSVeZ7d/1KhRJjY2tsQyHTt2ND4+PqZFixZm4cKFJdbraftFZYxDTdonSuvfrFkzpz7vv/++ad26tfHx8TFXXHGFWblyZdVs0EWojLGYOHGi4+9GSEiI6devn9m2bVvVbdSf2Iwp47gEAACAB+KcGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwCoBtavXy+bzaZjx465uxTA4xFugBrmtttuk81m09y5c53aly1bJpvN5nhvjNGrr76qmJgYBQQEqF69erriiis0YcKEcj8Mr6CgQFOnTlXLli3l5+en4OBgxcbGavny5Y4+ERERmjdvnku2rbKdHTubzabatWurefPm+sc//qGTJ09WaD29e/fWxIkTndq6d++uzMxMBQYGurBioGYi3AA1kJ+fn5588kn9+uuvpX5ujNGwYcN0//33q1+/flq7dq2+++47vfbaa/Lz89Pjjz9eru+55557tGTJEr344ovas2ePVq9erZtuukk///yzKzenSl1//fXKzMzUwYMH9fzzz+uVV15RYmLiRa/Xx8dHoaGhTgETwAVy24MfALjFqFGjzN/+9jfTtm1b8/DDDzvaly5das7+k/Duu+8aSWb58uWlrsNut5fruwIDA82iRYvK/Dw2NrbE82rO+vzzz03Pnj2Nn5+fueyyy8z48ePNiRMnHJ+/+eabpnPnzqZevXomJCTEDB061GRnZzs+P/v8nNWrV5uOHTsaPz8/06dPH5OdnW1WrVpl2rZta+rXr2+GDh1q8vPzy7U9o0aNMjfeeKNT2+DBg02nTp0c73Nycswtt9xiGjdubPz9/U2HDh3MO++847SOP29zWlqao94/PvNt8eLFpn379sbHx8c0a9bMPPPMM+WqE6jpmLkBaiBvb2/NmTNHL774on788ccSn7/77rtq06aNbrjhhlKXL+/sQmhoqFatWqXjx4+X+vmSJUt02WWXadasWcrMzFRmZqYk6cCBA7r++uv197//Xd98841SUlK0YcMGjRs3zrHs6dOnNXv2bH399ddatmyZ0tPTddttt5X4jhkzZmj+/PnauHGjDh06pCFDhmjevHl65513tHLlSq1du1Yvvvhiubbnz3bt2qWNGzfKx8fH0Xby5El17txZK1eu1K5du3TXXXdpxIgR2rx5syTphRdeUExMjO68807HNoeHh5dY99atWzVkyBDdcsst2rlzp2bMmKHHHntMixYtuqBagRrF3ekKQNX64+zD1VdfbW6//XZjjPPMTdu2bc0NN9zgtNyECRNM3bp1Td26dU2TJk3K9V2ffvqpueyyy0zt2rVNly5dzMSJE82GDRuc+jRr1sw8//zzTm133HGHueuuu5zaPv/8c+Pl5WUKCwtL/a4tW7YYSeb48ePGmN9nbj766CNHn6SkJCPJHDhwwNF29913m/j4+HJtz6hRo4y3t7epW7eu8fX1NZKMl5eXWbx48TmX69+/v3nwwQcd72NjY82ECROc+vx55mbYsGHm2muvderz8MMPm/bt25erVqAmY+YGqMGefPJJvfHGG9q9e/d5+z7yyCPasWOHpk+frhMnTpRr/ddcc40OHjyo1NRU3XTTTfr222/Vq1cvzZ49+5zLff3111q0aJHq1avneMXHx8tutystLU3SmZmNAQMGqGnTpqpfv75iY2MlSRkZGU7ruvLKKx1/DgkJUZ06ddSiRQuntiNHjpRreySpT58+2rFjh7788kuNGjVKo0eP1t///nfH58XFxZo9e7YiIyPVsGFD1atXT2vWrClR1/ns3r1bPXr0cGrr0aOH9u3bp+Li4gqtC6hpCDdADXbNNdcoPj5eU6dOdWq//PLLtXfvXqe24OBgtWrVSo0aNarQd9SuXVu9evXS5MmTtXbtWs2aNUuzZ8/WqVOnylzmxIkTuvvuu7Vjxw7H6+uvv9a+ffvUsmVL5efnKz4+XgEBAfq///s/bdmyRUuXLpWkEuutXbu2489nr3L6I5vNJrvdXu7tqVu3rlq1aqWoqCi9/vrr+vLLL/Xaa685Pn/66af1wgsvaPLkyfrkk0+0Y8cOxcfHn3N7AbhWLXcXAMC95s6dq44dO6pNmzaOtqFDh2rYsGFavny5brzxRpd+X/v27fXbb7/p5MmT8vHxkY+PT4mZiKuuukrfffedWrVqVeo6du7cqZ9//llz5851nK/y1VdfubTO8vDy8tK0adM0adIkDRs2TP7+/vriiy9044036tZbb5Uk2e12ff/992rfvr1judK2+c/atWunL774wqntiy++UOvWreXt7e36jQEshJkboIaLjIzU8OHD9c9//tPRdsstt+imm27SLbfcolmzZunLL79Uenq6Pv30U6WkpJT7x7V379565ZVXtHXrVqWnp2vVqlWaNm2a+vTpo4CAAEln7nPz2Wef6fDhw8rJyZEkTZ48WRs3btS4ceO0Y8cO7du3T8uXL3ecUNy0aVP5+PjoxRdf1MGDB7VixYrzHuqqLDfffLO8vb2VnJws6cys17p167Rx40bt3r1bd999t7Kzs52WiYiIcIxpTk5OqTNHDz74oFJTUzV79mx9//33euONNzR//nw99NBDVbJdgCcj3ADQrFmznH5gbTabUlJSNG/ePK1atUp//etf1aZNG91+++0KDw/Xhg0byrXe+Ph4vfHGG7ruuuvUrl07jR8/XvHx8Xr//fedvjs9PV0tW7ZUcHCwpDPnyXz66af6/vvv1atXL3Xq1EnTp09X48aNJZ05RLZo0SJ98MEHat++vebOnatnnnnGhSNSfrVq1dK4ceP01FNPKT8/X48++qiuuuoqxcfHq3fv3goNDdXAgQOdlnnooYfk7e2t9u3bKzg4uNTzca666iq9//77eu+999ShQwdNnz5ds2bNKvWKMADObMYY4+4iAAAAXIWZGwAAYCmEGwAX7I+Xav/59fnnn7u7vArJyMg45/ZU9FJuAO7DYSkAF+xcD9Bs0qSJ/P39q7Cai/Pbb78pPT29zM8jIiJUqxYXmAKegHADAAAshcNSAADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUv4fTCegO/j3DwIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQUlJREFUeJzt3XtYlHX+//HXgHIQBTMQ0FA8H5LQTA0PobskqWupW5qammVHK4tqUyvxUKK7HWyTsnVLO/wqykztq5dplJXppnkoLS1FDEtAqQRBFGU+vz9cZ5tAZXBg4J7n47rmuprPfO573vd93TKvPp/7YDPGGAEAAFiEj6cLAAAAcCfCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQCPmD59umw2W4X62mw2TZ8+vUrr6du3r/r27Vtj1weg4gg3gJdbvHixbDab41WnTh01bdpUN998s37++WdPl1fjREdHO+2vxo0bq0+fPnr//ffdsv5jx45p+vTpWrdunVvWB3gjwg0ASdLMmTP1+uuva8GCBRowYIDeeOMNxcfH6/jx41XyfY899piKi4urZN1VrXPnznr99df1+uuv66GHHtLBgwc1bNgwLViw4ILXfezYMc2YMYNwA1yAOp4uAEDNMGDAAF1xxRWSpAkTJig0NFRz587VihUrNHz4cLd/X506dVSnTu38E9S0aVPddNNNjvdjx45V69at9eyzz+rOO+/0YGUAJEZuAJxFnz59JEkZGRlO7bt379b111+vRo0aKSAgQFdccYVWrFjh1OfkyZOaMWOG2rRpo4CAAF188cXq3bu31q5d6+hT3jk3J06c0AMPPKCwsDA1aNBA1157rX766acytd18882Kjo4u017eOhctWqQ//elPaty4sfz9/dWxY0e9+OKLLu2L84mIiFCHDh2UmZl5zn6HDh3SrbfeqvDwcAUEBCg2Nlavvvqq4/P9+/crLCxMkjRjxgzH1FdVn28EWE3t/N8mAFVu//79kqSLLrrI0fbtt9+qV69eatq0qSZPnqygoCC98847GjJkiN577z0NHTpU0umQkZKSogkTJqh79+4qKCjQV199pa1bt+rqq68+63dOmDBBb7zxhkaNGqWePXvq448/1qBBgy5oO1588UVdeumluvbaa1WnTh198MEHuvvuu2W32zVx4sQLWvcZJ0+e1IEDB3TxxReftU9xcbH69u2rvXv36p577lGLFi307rvv6uabb9aRI0c0adIkhYWF6cUXX9Rdd92loUOHatiwYZKkyy67zC11Al7DAPBqixYtMpLMRx99ZA4fPmwOHDhglixZYsLCwoy/v785cOCAo++f//xnExMTY44fP+5os9vtpmfPnqZNmzaOttjYWDNo0KBzfm9ycrL5/Z+g7du3G0nm7rvvduo3atQoI8kkJyc72saNG2eaN29+3nUaY8yxY8fK9EtMTDQtW7Z0aouPjzfx8fHnrNkYY5o3b2769+9vDh8+bA4fPmy+/vprc+ONNxpJ5t577z3r+ubNm2ckmTfeeMPRVlJSYuLi4kz9+vVNQUGBMcaYw4cPl9leAK5hWgqAJCkhIUFhYWGKiorS9ddfr6CgIK1YsUKXXHKJJOnXX3/Vxx9/rOHDh+vo0aPKy8tTXl6efvnlFyUmJmrPnj2Oq6saNmyob7/9Vnv27Knw969atUqSdN999zm133///Re0XYGBgY7/zs/PV15enuLj47Vv3z7l5+dXap1r1qxRWFiYwsLCFBsbq3fffVdjxozR3Llzz7rMqlWrFBERoZEjRzra6tatq/vuu0+FhYX69NNPK1ULgLK8Otx89tlnGjx4sJo0aSKbzaZly5ZV6fedOR/g96/27dtX6XcCFZWamqq1a9dqyZIlGjhwoPLy8uTv7+/4fO/evTLG6PHHH3f8sJ95JScnSzp9Tol0+sqrI0eOqG3btoqJidHDDz+sb7755pzf/+OPP8rHx0etWrVyam/Xrt0FbdcXX3yhhIQEBQUFqWHDhgoLC9PUqVMlqdLhpkePHlq7dq0++ugjbdiwQXl5eXrttdecgtQf/fjjj2rTpo18fJz/7Hbo0MHxOQD38OpzboqKihQbG6tbbrnFMbdd1S699FJ99NFHjve19WoRWE/37t0dV0sNGTJEvXv31qhRo/T999+rfv36stvtkqSHHnpIiYmJ5a6jdevWkqSrrrpKGRkZWr58udasWaN///vfevbZZ7VgwQJNmDDhgms9283/SktLnd5nZGToz3/+s9q3b69nnnlGUVFR8vPz06pVq/Tss886tslVoaGhSkhIqNSyAKqeV/+yDhgwQAMGDDjr5ydOnNCjjz6qt956S0eOHFGnTp00d+7cC7rraJ06dRQREVHp5YHq4Ovrq5SUFPXr10/z58/X5MmT1bJlS0mnp1Iq8sPeqFEjjR8/XuPHj1dhYaGuuuoqTZ8+/azhpnnz5rLb7crIyHAarfn+++/L9L3ooot05MiRMu1/HP344IMPdOLECa1YsULNmjVztH/yySfnrd/dmjdvrm+++UZ2u91p9Gb37t2Oz6WzBzcAFefV01Lnc88992jjxo16++239c033+iGG27QNddc49J5BH+0Z88eNWnSRC1bttTo0aOVlZXlxooB9+nbt6+6d++uefPm6fjx42rcuLH69u2rl156SdnZ2WX6Hz582PHfv/zyi9Nn9evXV+vWrXXixImzft+Z/9H45z//6dQ+b968Mn1btWql/Px8p6mu7OzsMncJ9vX1lSQZYxxt+fn5WrRo0VnrqCoDBw5UTk6O0tLSHG2nTp3S888/r/r16ys+Pl6SVK9ePUkqN7wBqBivHrk5l6ysLC1atEhZWVlq0qSJpNPD8atXr9aiRYs0e/Zsl9fZo0cPLV68WO3atVN2drZmzJihPn36aOfOnWrQoIG7NwG4YA8//LBuuOEGLV68WHfeeadSU1PVu3dvxcTE6LbbblPLli2Vm5urjRs36qefftLXX38tSerYsaP69u2rrl27qlGjRvrqq6+0ZMkS3XPPPWf9rs6dO2vkyJF64YUXlJ+fr549eyo9PV179+4t0/fGG2/UI488oqFDh+q+++7TsWPH9OKLL6pt27baunWro1///v3l5+enwYMH64477lBhYaEWLlyoxo0blxvQqtLtt9+ul156STfffLO2bNmi6OhoLVmyRF988YXmzZvn+BsQGBiojh07Ki0tTW3btlWjRo3UqVMnderUqVrrBWo1T1+uVVNIMu+//77j/f/93/8ZSSYoKMjpVadOHTN8+HBjjDG7du0yks75euSRR876nb/99psJDg42//73v6t684CzOnMp+ObNm8t8Vlpaalq1amVatWplTp06ZYwxJiMjw4wdO9ZERESYunXrmqZNm5q//OUvZsmSJY7lnnjiCdO9e3fTsGFDExgYaNq3b2+efPJJU1JS4uhT3mXbxcXF5r777jMXX3yxCQoKMoMHDzYHDhwo99LoNWvWmE6dOhk/Pz/Trl0788Ybb5S7zhUrVpjLLrvMBAQEmOjoaDN37lzzyiuvGEkmMzPT0c+VS8HPd5n72daXm5trxo8fb0JDQ42fn5+JiYkxixYtKrPshg0bTNeuXY2fnx+XhQOVYDPmd+O1Xsxms+n999/XkCFDJElpaWkaPXq0vv32W8fQ9hn169dXRESESkpKtG/fvnOu9+KLL3bccbQ83bp1U0JCglJSUi54GwAAANNSZ9WlSxeVlpbq0KFDjtvQ/5Gfn98FXcpdWFiojIwMjRkzptLrAAAAzrw63BQWFjrN52dmZmr79u1q1KiR2rZtq9GjR2vs2LF6+umn1aVLFx0+fFjp6em67LLLKnVL+IceekiDBw9W8+bNdfDgQSUnJ8vX19fppl4AAODCePW01Lp169SvX78y7ePGjdPixYt18uRJPfHEE3rttdf0888/KzQ0VFdeeaVmzJihmJgYl7/vxhtv1GeffaZffvlFYWFh6t27t5588skyNy0DAACV59XhBgAAWA/3uQEAAJZCuAEAAJbidScU2+12HTx4UA0aNOA25wAA1BLGGB09elRNmjQp8wDaP/K6cHPw4EFFRUV5ugwAAFAJBw4c0CWXXHLOPl4Xbs7c4vzAgQMKDg72cDUAAKAiCgoKFBUVVaHHFXlduDkzFRUcHEy4AQCglqnIKSWcUAwAACyFcAMAACyFcAMAACzF6865AQDAHex2u0pKSjxdhqX4+fmd9zLviiDcAADgopKSEmVmZsput3u6FEvx8fFRixYt5Ofnd0HrIdwAAOACY4yys7Pl6+urqKgot4w04H832c3OzlazZs0u6Ea7hBsAAFxw6tQpHTt2TE2aNFG9evU8XY6lhIWF6eDBgzp16pTq1q1b6fUQNwEAcEFpaakkXfDUCco6s0/P7OPKItwAAFAJPJ/Q/dy1Twk3AADAUgg3AADAUgg3cFl2frE2ZOQpO7/Y06UAAFyUk5Oje++9Vy1btpS/v7+ioqI0ePBgpaen69dff9W9996rdu3aKTAwUM2aNdN9992n/Px8x/L79++XzWbT9u3by6y7b9++uv/++53adu3apWuvvVYhISEKCgpSt27dlJWVVaXbyNVScEna5ixNWbpDdiP52KSUYTEa0a2Zp8sCAFTA/v371atXLzVs2FD/+Mc/FBMTo5MnT+rDDz/UxIkTtWTJEh08eFBPPfWUOnbsqB9//FF33nmnDh48qCVLlrj8fRkZGerdu7duvfVWzZgxQ8HBwfr2228VEBBQBVv3P4QbVFh2frEj2EiS3UhTl+7UVW3DFBkS6NniAADndffdd8tms2nTpk0KCgpytF966aW65ZZb1LBhQ7333nuO9latWunJJ5/UTTfdpFOnTqlOHddiw6OPPqqBAwfq73//u9M6qxrTUqiwzLwiR7A5o9QY7c875pmCAKCWq85p/l9//VWrV6/WxIkTnYLNGQ0bNix3ufz8fAUHB7scbOx2u1auXKm2bdsqMTFRjRs3Vo8ePbRs2bJKVO8awg0qrEVokHz+cJWer82m6FBuYgUArkrbnKVecz7WqIVfqtecj5W2uWrPQ9m7d6+MMWrfvn2Fl8nLy9OsWbN0++23l/msZ8+eql+/vtPr888/d3x+6NAhFRYWas6cObrmmmu0Zs0aDR06VMOGDdOnn37qlm06G6alUGGRIYFKGRajqUt3qtQY+dpsmj2sE1NSAOAiT0zzG2PO3+l3CgoKNGjQIHXs2FHTp08v83laWpo6dOjg1DZ69GjHf5957tZ1112nBx54QJLUuXNnbdiwQQsWLFB8fLyLW1BxhBu4ZES3ZrqqbZj25x1TdGg9gg0AVMK5pvmr6u9qmzZtZLPZtHv37vP2PXr0qK655ho1aNBA77//frmPQoiKilLr1q2d2gID/1d7aGio6tSpo44dOzr16dChg9avX1/JragYpqXgssiQQMW1uphgAwCV5Ilp/kaNGikxMVGpqakqKioq8/mRI0cknR6x6d+/v/z8/LRixYpKX9nk5+enbt266fvvv3dq/+GHH9S8efNKrbOiCDcAAFSzM9P8vv993EB1TfOnpqaqtLRU3bt313vvvac9e/Zo165d+uc//6m4uDhHsCkqKtLLL7+sgoIC5eTkKCcnp1LPe3r44YeVlpamhQsXau/evZo/f74++OAD3X333VWwdf/DtBQAAB7giWn+li1bauvWrXryySf14IMPKjs7W2FhYeratatefPFFbd26VV9++aUklZlyyszMVHR0tEvfN3ToUC1YsEApKSm677771K5dO7333nvq3bu3uzapXDbj6hlGtVxBQYFCQkIcl7YBAOCK48ePKzMzUy1atKjym9F5m3PtW1d+v5mWAgAAlkK4AQAAluLRcPPZZ59p8ODBatKkiWw223nvWrh06VJdffXVCgsLU3BwsOLi4vThhx9WT7EAAKBW8Gi4KSoqUmxsrFJTUyvU/7PPPtPVV1+tVatWacuWLerXr58GDx6sbdu2VXGlAACgtvDo1VIDBgzQgAEDKtx/3rx5Tu9nz56t5cuX64MPPlCXLl3cXB0AAGfnZdfjVAt37dNafSm43W7X0aNH1ahRo7P2OXHihE6cOOF4X1BQUB2lAQAsytfXV5JUUlLidEdeXLiSkhJJ/9vHlVWrw81TTz2lwsJCDR8+/Kx9UlJSNGPGjGqsCgBgZXXq1FG9evV0+PBh1a1bVz4+XJvjDna7XYcPH1a9evVcfgL5H9XacPPmm29qxowZWr58uRo3bnzWflOmTFFSUpLjfUFBgaKioqqjRACABdlsNkVGRiozM1M//vijp8uxFB8fHzVr1kw2m+38nc+hVoabt99+WxMmTNC7776rhISEc/b19/eXv79/NVUGAPAGfn5+atOmjWMaBe7h5+fnlpGwWhdu3nrrLd1yyy16++23NWjQIE+XAwDwUj4+PtyhuIbyaLgpLCzU3r17He8zMzO1fft2NWrUSM2aNdOUKVP0888/67XXXpN0eipq3Lhxeu6559SjRw/l5ORIOv2I9ZCQEI9sAwAAqFk8ehbUV199pS5dujgu405KSlKXLl00bdo0SVJ2draysrIc/f/1r3/p1KlTmjhxoiIjIx2vSZMmeaR+AABQ8/DgTAAAUOPx4EwAAOC1CDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSPBpuPvvsMw0ePFhNmjSRzWbTsmXLzrvMunXrdPnll8vf31+tW7fW4sWLq7xOAABQe3g03BQVFSk2NlapqakV6p+ZmalBgwapX79+2r59u+6//35NmDBBH374YRVXCgAAaos6nvzyAQMGaMCAARXuv2DBArVo0UJPP/20JKlDhw5av369nn32WSUmJlZVmQAAoBapVefcbNy4UQkJCU5tiYmJ2rhx41mXOXHihAoKCpxeAADAumpVuMnJyVF4eLhTW3h4uAoKClRcXFzuMikpKQoJCXG8oqKiqqNUAADgIbUq3FTGlClTlJ+f73gdOHDA0yUBAIAq5NFzblwVERGh3Nxcp7bc3FwFBwcrMDCw3GX8/f3l7+9fHeUBAIAaoFaN3MTFxSk9Pd2pbe3atYqLi/NQRQAAoKbxaLgpLCzU9u3btX37dkmnL/Xevn27srKyJJ2eUho7dqyj/5133ql9+/bpb3/7m3bv3q0XXnhB77zzjh544AFPlA8AAGogj4abr776Sl26dFGXLl0kSUlJSerSpYumTZsmScrOznYEHUlq0aKFVq5cqbVr1yo2NlZPP/20/v3vf3MZOAAAcLAZY4yni6hOBQUFCgkJUX5+voKDgz1dDgAAqABXfr9r1Tk3AAAA50O4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAbpOdX6wNGXnKzi/2WA11PPbNAADAUtI2Z2nK0h2yG8nHJqUMi9GIbs2qvQ6Pj9ykpqYqOjpaAQEB6tGjhzZt2nTO/vPmzVO7du0UGBioqKgoPfDAAzp+/Hg1VQsAAMqTnV/sCDaSZDfS1KU7PTKC49Fwk5aWpqSkJCUnJ2vr1q2KjY1VYmKiDh06VG7/N998U5MnT1ZycrJ27dqll19+WWlpaZo6dWo1Vw4AAH4vM6/IEWzOKDVG+/OOVXstHg03zzzzjG677TaNHz9eHTt21IIFC1SvXj298sor5fbfsGGDevXqpVGjRik6Olr9+/fXyJEjzzvaAwAAqlaL0CD52JzbfG02RYfWq/ZaPBZuSkpKtGXLFiUkJPyvGB8fJSQkaOPGjeUu07NnT23ZssURZvbt26dVq1Zp4MCBZ/2eEydOqKCgwOkFAADcKzIkUCnDYuRrO51wfG02zR7WSZEhgdVei8dOKM7Ly1NpaanCw8Od2sPDw7V79+5ylxk1apTy8vLUu3dvGWN06tQp3XnnneeclkpJSdGMGTPcWjsAAChrRLdmuqptmPbnHVN0aD2PBBupBpxQ7Ip169Zp9uzZeuGFF7R161YtXbpUK1eu1KxZs866zJQpU5Sfn+94HThwoBorBgDAu0SGBCqu1cUeCzaSB0duQkND5evrq9zcXKf23NxcRURElLvM448/rjFjxmjChAmSpJiYGBUVFen222/Xo48+Kh+fslnN399f/v7+7t8AAABQRnZ+sTLzitQiNMj7Rm78/PzUtWtXpaenO9rsdrvS09MVFxdX7jLHjh0rE2B8fX0lScaY8hYBAADVJG1zlnrN+VijFn6pXnM+VtrmLI/U4dGb+CUlJWncuHG64oor1L17d82bN09FRUUaP368JGns2LFq2rSpUlJSJEmDBw/WM888oy5duqhHjx7au3evHn/8cQ0ePNgRcgAAQPU7231urmobVu0jOB4NNyNGjNDhw4c1bdo05eTkqHPnzlq9erXjJOOsrCynkZrHHntMNptNjz32mH7++WeFhYVp8ODBevLJJz21CQAAQOe+z011hxub8bL5nIKCAoWEhCg/P1/BwcFuXXdNmGcEAMATsvOL1WvOx04Bx9dm0/rJ/dzym+jK73etulqqJqsp84wAAHhCTbrPDSM3blDVaRUAgNoiO7+4Su5z48rvN08Fd4OaNM8IAIAnRYYEevy3j2kpN6hJz9MAAMDbEW7coCbNMwIA4O2YlnKTmvI8DQAAvB3hxo1qwjwjAADejmkpAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKS6Fm59++kl5eXmO959//rlGjx6tPn366KabbtLGjRvdXiAAAIArXAo3f/3rX/Wf//xHkrR8+XL17dtXhYWF6tWrl44dO6b4+Hj93//9X5UUCgAAUBE2Y4ypaOf69etrx44datGiha688koNHTpUjzzyiOPz+fPn65VXXtHWrVurpFh3KCgoUEhIiPLz8xUcHOzpcgAAQAW48vvt0shNnTp1dPToUUlSZmamBgwY4PT5gAED9P3337tYLgAAgPu4FG7i4+P11ltvSZK6dOmidevWOX3+ySefqGnTpm4rDgAAwFV1XOk8Z84c9enTRwcPHlTv3r316KOPavPmzerQoYO+//57paWlacGCBVVVKwAAwHm5dM6NJGVkZOixxx7TypUrVVhYKOn0dFW3bt308MMPa8iQIVVRp9twzg0AALWPK7/fLoebM4wxOnTokOx2u0JDQ1W3bt1KFVvdCDcAANQ+rvx+uzQt9Xs2m03h4eGVXRwAAKBKuBRukpKSKtTvmWeeqVQxAAAAF8qlcLNt2zan9+vXr1fXrl0VGBjoaLPZbO6pDAAAoBJcCjeffPKJ0/sGDRrozTffVMuWLd1aFAAAQGXx4EwAAGAphBsAAGAphBsAAGApLp1z88033zi9N8Zo9+7djpv5nXHZZZddeGUAAACV4NJN/Hx8fGSz2VTeImfabTabSktL3VqkO3ETPwAAap8qu4lfZmbmBRUGAABQ1VwKN82bN6+qOgAAgJtl5xcrM69ILUKDFBkSeP4FLKJSj1+w2+3y8Sl7LrLdbtdPP/2kZs2aXXBhAACg8tI2Z2nK0h2yG8nHJqUMi9GIbt7x++zS1VIFBQUaPny4goKCFB4ermnTpjmdX3P48GG1aNHCpQJSU1MVHR2tgIAA9ejRQ5s2bTpn/yNHjmjixImKjIyUv7+/2rZtq1WrVrn0nQAAWFl2frEj2EiS3UhTl+5Udn6xZwurJi6N3Dz++OP6+uuv9frrr+vIkSN64okntHXrVi1dulR+fn6SVO7JxmeTlpampKQkLViwQD169NC8efOUmJio77//Xo0bNy7Tv6SkRFdffbUaN26sJUuWqGnTpvrxxx/VsGFDVzYDAABLy8wrcgSbM0qN0f68Y14xPeXS1VLNmzfXq6++qr59+0qS8vLyNGjQIDVs2FArVqzQkSNH1KRJkwpfLdWjRw9169ZN8+fPl3R6WisqKkr33nuvJk+eXKb/ggUL9I9//EO7d+9W3bp1K1q2E66WAgBYXXZ+sXrN+dgp4PjabFo/uV+tDTeu/H67NC11+PBhp5OKQ0ND9dFHH+no0aMaOHCgjh07VuF1lZSUaMuWLUpISPhfMT4+SkhI0MaNG8tdZsWKFYqLi9PEiRMVHh6uTp06afbs2ecMUydOnFBBQYHTCwAAK4sMCVTKsBj5/vdh1r42m2YP61Rrg42rXJqWatasmXbt2uV0Xk2DBg20Zs0a9e/fX0OHDq3wuvLy8lRaWqrw8HCn9vDwcO3evbvcZfbt26ePP/5Yo0eP1qpVq7R3717dfffdOnnypJKTk8tdJiUlRTNmzKhwXQAAWMGIbs10Vdsw7c87pujQel4TbCQXR26uvvpqLVq0qEx7/fr19eGHHyogIMBthZXHbrercePG+te//qWuXbtqxIgRevTRR7VgwYKzLjNlyhTl5+c7XgcOHKjSGgEAqCkiQwIV1+pirwo2kosjNzNnzlR2dna5nzVo0EBr167V1q1bK7Su0NBQ+fr6Kjc316k9NzdXERER5S4TGRmpunXrytfX19HWoUMH5eTkqKSkxHFS8+/5+/vL39+/QjUBAIDaz6WRm23btun6668v97yV/Px8XXnllbL9d37vfPz8/NS1a1elp6c72ux2u9LT0xUXF1fuMr169dLevXtlt9sdbT/88IMiIyPLDTYAAMD7uBRu5s2bp9tuu63cs5RDQkJ0xx136Nlnn63w+pKSkrRw4UK9+uqr2rVrl+666y4VFRVp/PjxkqSxY8dqypQpjv533XWXfv31V02aNEk//PCDVq5cqdmzZ2vixImubAYAALAwl6alvv76a82dO/esn/fv319PPfVUhdc3YsQIHT58WNOmTVNOTo46d+6s1atXO04yzsrKcroTclRUlD788EM98MADuuyyy9S0aVNNmjRJjzzyiCubAQAALMyl+9wEBARo586dat26dbmf7927VzExMSourrl3QOQ+NwAA1D5Vdp+bpk2baufOnWf9/JtvvlFkZKQrqwQAlCM7v1gbMvK85nb5gDu5NC01cOBAPf7447rmmmvKXPZdXFys5ORk/eUvf3FrgQDgbbz5gYeAO7g0LZWbm6vLL79cvr6+uueee9SuXTtJ0u7du5WamqrS0lJt3bq1zI35ahKmpQDUZFa8bT7gDq78frs0chMeHq4NGzborrvu0pQpUxwPybTZbEpMTFRqamqNDjYAUNN5+wMPAXdwKdxIpx+euWrVKv3222/au3evjDFq06aNLrrooqqoDwC8SovQIPnYVGbkJjq0nueKAmoZl04o/r2LLrpI3bp1U/fu3Qk2AOAm3v7AQ8AdXB65AQBULW9+4CHgDoQbAKiBIkMCCTVAJVV6WgoAAKAmItwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAALxKdn6xNmTkKTu/2NOloIrU8XQBVpKdX6zMvCK1CA1SZEigp8sBAPxB2uYsTVm6Q3Yj+diklGExGtGtmafLgpsRbtyEfzAAULNl5xc7/k5Lkt1IU5fu1FVtw/gfUothWsoNzvYPhiFPAKg5MvOKHH+nzyg1RvvzjnmmIFQZwo0b8A8GAGq+FqFB8rE5t/nabIoOreeZglBlCDduwD8YAKj5IkMClTIsRr6203+wfW02zR7WiSkpC+KcGzc48w9m6tKdKjWGfzAAUEON6NZMV7UN0/68Y4oOrcffaYsi3LgJ/2AAoHaIDAnkb7TF1YhpqdTUVEVHRysgIEA9evTQpk2bKrTc22+/LZvNpiFDhlRtgRUUGRKouFYX848GAAAP8ni4SUtLU1JSkpKTk7V161bFxsYqMTFRhw4dOudy+/fv10MPPaQ+ffpUU6UAAKA28Hi4eeaZZ3Tbbbdp/Pjx6tixoxYsWKB69erplVdeOesypaWlGj16tGbMmKGWLVtWY7UAAKCm82i4KSkp0ZYtW5SQkOBo8/HxUUJCgjZu3HjW5WbOnKnGjRvr1ltvPe93nDhxQgUFBU4vAABgXR4NN3l5eSotLVV4eLhTe3h4uHJycspdZv369Xr55Ze1cOHCCn1HSkqKQkJCHK+oqKgLrhsAANRcHp+WcsXRo0c1ZswYLVy4UKGhoRVaZsqUKcrPz3e8Dhw4UMVVAgAAT/LopeChoaHy9fVVbm6uU3tubq4iIiLK9M/IyND+/fs1ePBgR5vdbpck1alTR99//71atWrltIy/v7/8/f2roHoAAFATeXTkxs/PT127dlV6erqjzW63Kz09XXFxcWX6t2/fXjt27ND27dsdr2uvvVb9+vXT9u3bmXICAACev4lfUlKSxo0bpyuuuELdu3fXvHnzVFRUpPHjx0uSxo4dq6ZNmyolJUUBAQHq1KmT0/INGzaUpDLtAADAO3k83IwYMUKHDx/WtGnTlJOTo86dO2v16tWOk4yzsrLk41OrTg0CAAAeZDPGmPN3s46CggKFhIQoPz9fwcHBni4HAABUgCu/3wyJAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAAt8nOL9aGjDxl5xd7rIY6HvtmAABgKWmbszRl6Q7ZjeRjk1KGxWhEt2bVXgcjNwAA4IJl5xc7go0k2Y00delOj4zgEG4AAMAFy8wrcgSbM0qN0f68Y9VeC+EGAABcsBahQfKxObf52myKDq1X7bUQbgAAwAWLDAlUyrAY+dpOJxxfm02zh3VSZEhgtdfCCcUAAMAtRnRrpqvahml/3jFFh9bzSLCRCDcAYDnZ+cXKzCtSi9Agj/24wHtFhgR6/Lgj3ACAhdSUS3EBT+KcGwCwiJp0KS7gSYQbALCImnQpLuBJhBsAsIiadCku4EmEGwCwiJp0KS7gSZxQDAAWUlMuxQU8iXADABZTEy7FBTyJaSlYXnZ+sTZk5HHFCAB4CUZuYGnc8wMAvA8jN7As7vkBAN6JcAPL4p4fAOCdCDewLO75AQDeiXADy+KeHwDgnTihGJbGPT8AwPsQbmB53PMDALwL01IAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAKo3ndgGoibhaCkCl8NwuADVVjRi5SU1NVXR0tAICAtSjRw9t2rTprH0XLlyoPn366KKLLtJFF12khISEc/YH4H48twtATebxcJOWlqakpCQlJydr69atio2NVWJiog4dOlRu/3Xr1mnkyJH65JNPtHHjRkVFRal///76+eefq7lywHvx3C4ANZnNGGPO363q9OjRQ926ddP8+fMlSXa7XVFRUbr33ns1efLk8y5fWlqqiy66SPPnz9fYsWPP27+goEAhISHKz89XcHDwBdcPeKPs/GL1mvOxU8Dxtdm0fnI/bpgIoEq48vvt0ZGbkpISbdmyRQkJCY42Hx8fJSQkaOPGjRVax7Fjx3Ty5Ek1atSo3M9PnDihgoICpxeAC8NzuwDUZB49oTgvL0+lpaUKDw93ag8PD9fu3bsrtI5HHnlETZo0cQpIv5eSkqIZM2ZccK0AnPHcLgA1lcfPubkQc+bM0dtvv633339fAQEB5faZMmWK8vPzHa8DBw5Uc5WAdUWGBCqu1cUEGwA1ikdHbkJDQ+Xr66vc3Fyn9tzcXEVERJxz2aeeekpz5szRRx99pMsuu+ys/fz9/eXv7++WegGgNsjOL1ZmXpFahAYRPOGVPDpy4+fnp65duyo9Pd3RZrfblZ6erri4uLMu9/e//12zZs3S6tWrdcUVV1RHqQBQK6RtzlKvOR9r1MIv1WvOx0rbnOXpkoBq5/FpqaSkJC1cuFCvvvqqdu3apbvuuktFRUUaP368JGns2LGaMmWKo//cuXP1+OOP65VXXlF0dLRycnKUk5OjwsJCT20CANQI3H8IOM3jdygeMWKEDh8+rGnTpiknJ0edO3fW6tWrHScZZ2VlycfnfxnsxRdfVElJia6//nqn9SQnJ2v69OnVWToA1Cjnuv8Q01PwJh6/z0114z43AKyK+w/BymrNfW4AOONBlLgQ3H8IOM3j01IATuNBlHAH7j8EMHID1AicCAp34v5D8HaEG6AG8LYHUTL9BqAqMS0F1AAtQoPkY1OZE0GjQ+t5rqgqwvQbgKrGyA1QA3jLiaBMvwGoDozcADWEN5wIyn1YAFQHwg1Qg0SGBFr6R96bpt8AeA7TUgCqjbdMvwHwLEZuAFQrb5h+A+BZhBsA1c7q028APItpKQAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwDVLju/WBsy8pSdX+zpUgBYEA/OBFCt0jZnacrSHbIbyccmpQyL0YhuzTxdFgALYeQGQLXJzi92BBtJshtp6tKdjOAAcCvCDVzGlAIqKzOvyBFszig1RvvzjnmmIACWxLQUXMKUAi5Ei9Ag+djkFHB8bTZFh9bzXFEALIeRG1QYUwq4UJEhgUoZFiNfm03S6WAze1gnRYYEergyAFbCyA0q7FxTCvw4oaJGdGumq9qGaX/eMUWH1uPYAeB2hBtUGFMKcJfIkEBCDYAqw7QUKowpBQBAbcDIDVzClAIAoKYj3MBlTCkAAGoypqUAAIClEG4AAIClEG4AAIClEG4A1Co8/gPA+XBCMYBag8d/AKgIRm4A1Ao8/gNARRFuANQKPFEcQEURbgDUCmce//F7PP6j5uBcKNQkhBsAtQKP/6i50jZnqdecjzVq4ZfqNedjpW3O8nRJ8HI2Y4w5fzfrKCgoUEhIiPLz8xUcHOzpcgC4KDu/uFY9/iM7v1iZeUVqERpUK+p1VXZ+sXrN+bjMA3XXT+5nye2F57jy+10jRm5SU1MVHR2tgIAA9ejRQ5s2bTpn/3fffVft27dXQECAYmJitGrVqmqqFICnRYYEKq7VxbXih9MbRjQ4Fwo1kcfDTVpampKSkpScnKytW7cqNjZWiYmJOnToULn9N2zYoJEjR+rWW2/Vtm3bNGTIEA0ZMkQ7d+6s5soB4Oy85eouzoVCTeTxcPPMM8/otttu0/jx49WxY0ctWLBA9erV0yuvvFJu/+eee07XXHONHn74YXXo0EGzZs3S5Zdfrvnz51dz5QBwdt4yosG5UKiJPHoTv5KSEm3ZskVTpkxxtPn4+CghIUEbN24sd5mNGzcqKSnJqS0xMVHLli0rt/+JEyd04sQJx/uCgoILLxwAzuPMiMYfz0Wx4ojGiG7NdFXbsFp1LhSszaMjN3l5eSotLVV4eLhTe3h4uHJycspdJicnx6X+KSkpCgkJcbyioqLcUzwAnIO3jWjUpnOhYH2Wf/zClClTnEZ6CgoKCDgAqgUjGoBneDTchIaGytfXV7m5uU7tubm5ioiIKHeZiIgIl/r7+/vL39/fPQUDgIsiQwIJNUA18+i0lJ+fn7p27ar09HRHm91uV3p6uuLi4spdJi4uzqm/JK1du/as/QEAgHfx+LRUUlKSxo0bpyuuuELdu3fXvHnzVFRUpPHjx0uSxo4dq6ZNmyolJUWSNGnSJMXHx+vpp5/WoEGD9Pbbb+urr77Sv/71L09uBgAAqCE8Hm5GjBihw4cPa9q0acrJyVHnzp21evVqx0nDWVlZ8vH53wBTz5499eabb+qxxx7T1KlT1aZNGy1btkydOnXy1CYAAIAahMcvAACAGq/WPX4BAADAXQg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUjx+E7/qdua2PgUFBR6uBAAAVNSZ3+2K3J7P68LN0aNHJYkngwMAUAsdPXpUISEh5+zjdXcottvtOnjwoBo0aCCbzXZB6yooKFBUVJQOHDjA3Y7/i31SFvukLPZJ+dgvZbFPyvLWfWKM0dGjR9WkSROnxzKVx+tGbnx8fHTJJZe4dZ3BwcFedYBVBPukLPZJWeyT8rFfymKflOWN++R8IzZncEIxAACwFMINAACwFMLNBfD391dycrL8/f09XUqNwT4pi31SFvukfOyXstgnZbFPzs/rTigGAADWxsgNAACwFMINAACwFMINAACwFMINAACwFMLNH6Smpio6OloBAQHq0aOHNm3adM7+8+bNU7t27RQYGKioqCg98MADOn78uOPz6dOny2azOb3at29f1ZvhVq7sk5MnT2rmzJlq1aqVAgICFBsbq9WrV1/QOmsid++T2n6cfPbZZxo8eLCaNGkim82mZcuWnXeZdevW6fLLL5e/v79at26txYsXl+lTm4+Tqtgn3nacZGdna9SoUWrbtq18fHx0//33l9vv3XffVfv27RUQEKCYmBitWrXK/cVXkarYJ4sXLy5znAQEBFTNBtRQhJvfSUtLU1JSkpKTk7V161bFxsYqMTFRhw4dKrf/m2++qcmTJys5OVm7du3Syy+/rLS0NE2dOtWp36WXXqrs7GzHa/369dWxOW7h6j557LHH9NJLL+n555/Xd999pzvvvFNDhw7Vtm3bKr3OmqYq9olUu4+ToqIixcbGKjU1tUL9MzMzNWjQIPXr10/bt2/X/fffrwkTJujDDz909Kntx0lV7BPJu46TEydOKCwsTI899phiY2PL7bNhwwaNHDlSt956q7Zt26YhQ4ZoyJAh2rlzpztLrzJVsU+k03cv/v1x8uOPP7qr5NrBwKF79+5m4sSJjvelpaWmSZMmJiUlpdz+EydONH/605+c2pKSkkyvXr0c75OTk01sbGyV1FsdXN0nkZGRZv78+U5tw4YNM6NHj670Omuaqtgntf04+T1J5v333z9nn7/97W/m0ksvdWobMWKESUxMdLyv7cfJ77lrn3jbcfJ78fHxZtKkSWXahw8fbgYNGuTU1qNHD3PHHXdcYIXVz137ZNGiRSYkJMRtddVGjNz8V0lJibZs2aKEhARHm4+PjxISErRx48Zyl+nZs6e2bNniGCrft2+fVq1apYEDBzr127Nnj5o0aaKWLVtq9OjRysrKqroNcaPK7JMTJ06UGf4MDAx0/N9lZdZZk1TFPjmjth4nlbFx40anfShJiYmJjn1Y24+TyjjfPjnDm46TiqjofvM2hYWFat68uaKionTdddfp22+/9XRJ1Ypw8195eXkqLS1VeHi4U3t4eLhycnLKXWbUqFGaOXOmevfurbp166pVq1bq27ev07RUjx49tHjxYq1evVovvviiMjMz1adPHx09erRKt8cdKrNPEhMT9cwzz2jPnj2y2+1au3atli5dquzs7Eqvsyapin0i1e7jpDJycnLK3YcFBQUqLi6u9cdJZZxvn0jed5xUxNn2m1WPk4po166dXnnlFS1fvlxvvPGG7Ha7evbsqZ9++snTpVUbws0FWLdunWbPnq0XXnhBW7du1dKlS7Vy5UrNmjXL0WfAgAG64YYbdNlllykxMVGrVq3SkSNH9M4773iw8qrz3HPPqU2bNmrfvr38/Px0zz33aPz48ed9PL2VVWSfeNtxgsrhOEFFxMXFaezYsercubPi4+O1dOlShYWF6aWXXvJ0adXGe39x/iA0NFS+vr7Kzc11as/NzVVERES5yzz++OMaM2aMJkyYoJiYGA0dOlSzZ89WSkqK7HZ7ucs0bNhQbdu21d69e92+De5WmX0SFhamZcuWqaioSD/++KN2796t+vXrq2XLlpVeZ01SFfukPLXpOKmMiIiIcvdhcHCwAgMDa/1xUhnn2yflsfpxUhFn229WPU4qo27duurSpYtXHSeEm//y8/NT165dlZ6e7miz2+1KT09XXFxcucscO3aszIiEr6+vJMmc5ZFdhYWFysjIUGRkpJsqrzqV2SdnBAQEqGnTpjp16pTee+89XXfddRe8zpqgKvZJeWrTcVIZcXFxTvtQktauXevYh7X9OKmM8+2T8lj9OKmIyuw3b1NaWqodO3Z413Hi6TOaa5K3337b+Pv7m8WLF5vvvvvO3H777aZhw4YmJyfHGGPMmDFjzOTJkx39k5OTTYMGDcxbb71l9u3bZ9asWWNatWplhg8f7ujz4IMPmnXr1pnMzEzzxRdfmISEBBMaGmoOHTpU7dtXGa7uk//85z/mvffeMxkZGeazzz4zf/rTn0yLFi3Mb7/9VuF11nRVsU9q+3Fy9OhRs23bNrNt2zYjyTzzzDNm27Zt5scffzTGGDN58mQzZswYR/99+/aZevXqmYcfftjs2rXLpKamGl9fX7N69WpHn9p+nFTFPvG248QY4+jftWtXM2rUKLNt2zbz7bffOj7/4osvTJ06dcxTTz1ldu3aZZKTk03dunXNjh07qnXbKqsq9smMGTPMhx9+aDIyMsyWLVvMjTfeaAICApz6WB3h5g+ef/5506xZM+Pn52e6d+9u/vOf/zg+i4+PN+PGjXO8P3nypJk+fbpp1aqVCQgIMFFRUebuu+92+tEaMWKEiYyMNH5+fqZp06ZmxIgRZu/evdW4RRfOlX2ybt0606FDB+Pv728uvvhiM2bMGPPzzz+7tM7awN37pLYfJ5988omRVOZ1Zj+MGzfOxMfHl1mmc+fOxs/Pz7Rs2dIsWrSozHpr83FSFfvEG4+T8vo3b97cqc8777xj2rZta/z8/Myll15qVq5cWT0b5AZVsU/uv/9+x7+b8PBwM3DgQLN169bq26gawGbMWeZPAAAAaiHOuQEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAGAGmDdunWy2Ww6cuSIp0sBaj3CDeBlbr75ZtlsNs2ZM8epfdmyZbLZbI73xhgtXLhQcXFxCg4OVv369XXppZdq0qRJFX4A37FjxzRlyhS1atVKAQEBCgsLU3x8vJYvX+7oEx0drXnz5rll26ramX1ns9lUt25dtWjRQn/72990/Phxl9bTt29f3X///U5tPXv2VHZ2tkJCQtxYMeCdCDeAFwoICNDcuXP122+/lfu5MUajRo3Sfffdp4EDB2rNmjX67rvv9PLLLysgIEBPPPFEhb7nzjvv1NKlS/X8889r9+7dWr16ta6//nr98ssv7tycanXNNdcoOztb+/bt07PPPquXXnpJycnJF7xePz8/RUREOAVMAJXk2ac/AKhu48aNM3/5y19M+/btzcMPP+xof//9982ZPwlvvfWWkWSWL19e7jrsdnuFviskJMQsXrz4rJ/Hx8eXeUbOGZ9//rnp3bu3CQgIMJdccom59957TWFhoePz1157zXTt2tXUr1/fhIeHm5EjR5rc3FzH52ee2bN69WrTuXNnExAQYPr162dyc3PNqlWrTPv27U2DBg3MyJEjTVFRUYW2Z9y4cea6665zahs2bJjp0qWL431eXp658cYbTZMmTUxgYKDp1KmTefPNN53W8cdtzszMdNT7+2fTLVmyxHTs2NH4+fmZ5s2bm6eeeqpCdQLejpEbwAv5+vpq9uzZev755/XTTz+V+fytt95Su3btdO2115a7fEVHFyIiIrRq1SodPXq03M+XLl2qSy65RDNnzlR2drays7MlSRkZGbrmmmv017/+Vd98843S0tK0fv163XPPPY5lT548qVmzZunrr7/WsmXLtH//ft18881lvmP69OmaP3++NmzYoAMHDmj48OGaN2+e3nzzTa1cuVJr1qzR888/X6Ht+aOdO3dqw4YN8vPzc7QdP35cXbt21cqVK7Vz507dfvvtGjNmjDZt2iRJeu655xQXF6fbbrvNsc1RUVFl1r1lyxYNHz5cN954o3bs2KHp06fr8ccf1+LFiytVK+BVPJ2uAFSv348+XHnlleaWW24xxjiP3LRv395ce+21TstNmjTJBAUFmaCgINO0adMKfdenn35qLrnkElO3bl1zxRVXmPvvv9+sX7/eqU/z5s3Ns88+69R26623mttvv92p7fPPPzc+Pj6muLi43O/avHmzkWSOHj1qjPnfyM1HH33k6JOSkmIkmYyMDEfbHXfcYRITEyu0PePGjTO+vr4mKCjI+Pv7G0nGx8fHLFmy5JzLDRo0yDz44IOO9/Hx8WbSpElOff44cjNq1Chz9dVXO/V5+OGHTceOHStUK+DNGLkBvNjcuXP16quvateuXeft++ijj2r79u2aNm2aCgsLK7T+q666Svv27VN6erquv/56ffvtt+rTp49mzZp1zuW+/vprLV68WPXr13e8EhMTZbfblZmZKen0yMbgwYPVrFkzNWjQQPHx8ZKkrKwsp3Vddtlljv8ODw9XvXr11LJlS6e2Q4cOVWh7JKlfv37avn27vvzyS40bN07jx4/XX//6V8fnpaWlmjVrlmJiYtSoUSPVr19fH374YZm6zmfXrl3q1auXU1uvXr20Z88elZaWurQuwNsQbgAvdtVVVykxMVFTpkxxam/Tpo2+//57p7awsDC1bt1ajRs3duk76tatqz59+uiRRx7RmjVrNHPmTM2aNUslJSVnXaawsFB33HGHtm/f7nh9/fXX2rNnj1q1aqWioiIlJiYqODhY/+///T9t3rxZ77//viSVWW/dunUd/33mKqffs9lsstvtFd6eoKAgtW7dWrGxsXrllVf05Zdf6uWXX3Z8/o9//EPPPfecHnnkEX3yySfavn27EhMTz7m9ANyrjqcLAOBZc+bMUefOndWuXTtH28iRIzVq1CgtX75c1113nVu/r2PHjjp16pSOHz8uPz8/+fn5lRmJuPzyy/Xdd9+pdevW5a5jx44d+uWXXzRnzhzH+SpfffWVW+usCB8fH02dOlVJSUkaNWqUAgMD9cUXX+i6667TTTfdJEmy2+364Ycf1LFjR8dy5W3zH3Xo0EFffPGFU9sXX3yhtm3bytfX1/0bA1gIIzeAl4uJidHo0aP1z3/+09F244036vrrr9eNN96omTNn6ssvv9T+/fv16aefKi0trcI/rn379tVLL72kLVu2aP/+/Vq1apWmTp2qfv36KTg4WNLp+9x89tln+vnnn5WXlydJeuSRR7Rhwwbdc8892r59u/bs2aPly5c7Tihu1qyZ/Pz89Pzzz2vfvn1asWLFeae6qsoNN9wgX19fpaamSjo96rV27Vpt2LBBu3bt0h133KHc3FynZaKjox37NC8vr9yRowcffFDp6emaNWuWfvjhB7366quaP3++HnrooWrZLqA2I9wA0MyZM51+YG02m9LS0jRv3jytWrVKf/7zn9WuXTvdcsstioqK0vr16yu03sTERL366qvq37+/OnTooHvvvVeJiYl65513nL57//79atWqlcLCwiSdPk/m008/1Q8//KA+ffqoS5cumjZtmpo0aSLp9BTZ4sWL9e6776pjx46aM2eOnnrqKTfukYqrU6eO7rnnHv39739XUVGRHnvsMV1++eVKTExU3759FRERoSFDhjgt89BDD8nX11cdO3ZUWFhYuefjXH755XrnnXf09ttvq1OnTpo2bZpmzpxZ7hVhAJzZjDHG00UAAAC4CyM3AADAUgg3ACrt95dq//H1+eefe7o8l2RlZZ1ze1y9lBuA5zAtBaDSzvUAzaZNmyowMLAaq7kwp06d0v79+8/6eXR0tOrU4QJToDYg3AAAAEthWgoAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFjK/wcfLMZYqIXZvQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_55.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAWElEQVR4nO3dfVxUZf7/8feAcuMNmHKronh/i3ifaAnumqRmmlvebpql1aala7Wl26ZZK7ndaJmp1SaVP5Ny1dxyTdPUEsv7UsvyBsUMUEoHRUSD6/eHX6YmQUEHZji8no/HPB7Nmeuc+ZyrE/PuOtc5x2aMMQIAALAIL3cXAAAA4EqEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwBuMXXqVNlstmK1tdlsmjp1aqnWExcXp7i4OI/dHoDiI9wAFVxiYqJsNpvjValSJdWpU0d33XWXjh075u7yPE5kZKRTf4WEhOjGG2/UsmXLXLL9s2fPaurUqVq/fr1LtgdURIQbAJKkadOm6Z133tG8efPUu3dvLVy4ULGxsTp37lypfN8TTzyhnJycUtl2aWvbtq3eeecdvfPOO3rkkUf0448/auDAgZo3b941b/vs2bN66qmnCDfANajk7gIAeIbevXurY8eOkqTRo0crKChIM2bM0IoVKzRo0CCXf1+lSpVUqVL5/BNUp04d/fnPf3a8HzFihBo3bqyZM2fq/vvvd2NlACRGbgAU4cYbb5QkHTx40Gn5vn37dPvtt6tmzZry8/NTx44dtWLFCqc2Fy5c0FNPPaUmTZrIz89PtWrV0g033KA1a9Y42hQ25yY3N1d//etfFRwcrOrVq+vWW2/VDz/8cEltd911lyIjIy9ZXtg2FyxYoD/84Q8KCQmRr6+vWrZsqblz55aoL64kLCxMLVq0UEpKymXbHT9+XPfcc49CQ0Pl5+en6OhovfXWW47PDx8+rODgYEnSU0895Tj1VdrzjQCrKZ//2wSg1B0+fFiSdN111zmW7d27V926dVOdOnX0+OOPq2rVqnrvvfc0YMAA/ec//9Ftt90m6WLISEhI0OjRo9W5c2dlZWVp27Zt2rFjh2666aYiv3P06NFauHChhg0bpq5du2rdunXq27fvNe3H3Llz1apVK916662qVKmS/vvf/+qBBx5Qfn6+xo4de03bLnDhwgUdPXpUtWrVKrJNTk6O4uLidODAAY0bN04NGjTQ+++/r7vuukunTp3S+PHjFRwcrLlz5+ovf/mLbrvtNg0cOFCS1KZNG5fUCVQYBkCFtmDBAiPJfPLJJ+bEiRPm6NGjZsmSJSY4ONj4+vqao0ePOtr+8Y9/NFFRUebcuXOOZfn5+aZr166mSZMmjmXR0dGmb9++l/3eKVOmmN/+Cdq1a5eRZB544AGndsOGDTOSzJQpUxzLRo4caerXr3/FbRpjzNmzZy9pFx8fbxo2bOi0LDY21sTGxl62ZmOMqV+/vunVq5c5ceKEOXHihPnqq6/MkCFDjCTz4IMPFrm9WbNmGUlm4cKFjmXnz583MTExplq1aiYrK8sYY8yJEycu2V8AJcNpKQCSpJ49eyo4OFgRERG6/fbbVbVqVa1YsUJ169aVJP38889at26dBg0apNOnTyszM1OZmZn66aefFB8fr/379zuurqpRo4b27t2r/fv3F/v7V65cKUl66KGHnJZPmDDhmvbL39/f8c92u12ZmZmKjY3VoUOHZLfbr2qbq1evVnBwsIKDgxUdHa33339fd955p2bMmFHkOitXrlRYWJiGDh3qWFa5cmU99NBDOnPmjDZs2HBVtQC4VIUONxs3blS/fv1Uu3Zt2Ww2LV++vNS/89ixY/rzn/+sWrVqyd/fX1FRUdq2bVupfy9wJXPmzNGaNWu0ZMkS9enTR5mZmfL19XV8fuDAARlj9I9//MPxw17wmjJliqSLc0qki1denTp1Sk2bNlVUVJQeffRRff3115f9/iNHjsjLy0uNGjVyWt6sWbNr2q9NmzapZ8+eqlq1qmrUqKHg4GBNnjxZkq463Fx//fVas2aNPvnkEyUnJyszM1Nvv/22U5D6vSNHjqhJkyby8nL+s9uiRQvH5wBco0LPucnOzlZ0dLTuvvtux7nt0nTy5El169ZNPXr00P/+9z8FBwdr//79TnMaAHfp3Lmz42qpAQMG6IYbbtCwYcP03XffqVq1asrPz5ckPfLII4qPjy90G40bN5Ykde/eXQcPHtQHH3yg1atX64033tDMmTM1b948jR49+pprLermf3l5eU7vDx48qD/+8Y9q3ry5XnzxRUVERMjHx0crV67UzJkzHftUUkFBQerZs+dVrQug9FXocNO7d2/17t27yM9zc3P197//Xe+++65OnTql1q1ba8aMGVd919EZM2YoIiJCCxYscCxr0KDBVW0LKE3e3t5KSEhQjx499Morr+jxxx9Xw4YNJV08lVKcH/aaNWtq1KhRGjVqlM6cOaPu3btr6tSpRYab+vXrKz8/XwcPHnQarfnuu+8uaXvdddfp1KlTlyz//ejHf//7X+Xm5mrFihWqV6+eY/mnn356xfpdrX79+vr666+Vn5/vNHqzb98+x+dS0cENQPFV6NNSVzJu3Dht3rxZixcv1tdff6077rhDN998c4nmEfzWihUr1LFjR91xxx0KCQlRu3bt9Prrr7u4asA14uLi1LlzZ82aNUvnzp1TSEiI4uLiNH/+fKWlpV3S/sSJE45//umnn5w+q1atmho3bqzc3Nwiv6/gfzRefvllp+WzZs26pG2jRo1kt9udTnWlpaVdcpdgb29vSZIxxrHMbrc7/Q9GWenTp4/S09OVlJTkWPbLL79o9uzZqlatmmJjYyVJVapUkaRCwxuA4qnQIzeXk5qaqgULFig1NVW1a9eWdHE4ftWqVVqwYIGmT59e4m0eOnRIc+fO1cSJEzV58mRt3bpVDz30kHx8fDRy5EhX7wJwzR599FHdcccdSkxM1P333685c+bohhtuUFRUlMaMGaOGDRsqIyNDmzdv1g8//KCvvvpKktSyZUvFxcWpQ4cOqlmzprZt26YlS5Zo3LhxRX5X27ZtNXToUL366quy2+3q2rWr1q5dqwMHDlzSdsiQIXrsscd022236aGHHtLZs2c1d+5cNW3aVDt27HC069Wrl3x8fNSvXz/dd999OnPmjF5//XWFhIQUGtBK07333qv58+frrrvu0vbt2xUZGaklS5Zo06ZNmjVrlqpXry7p4gToli1bKikpSU2bNlXNmjXVunVrtW7dukzrBco1d1+u5SkkmWXLljnef/jhh0aSqVq1qtOrUqVKZtCgQcYYY7799lsj6bKvxx57zLHNypUrm5iYGKfvffDBB02XLl3KZB+BwhRcCr5169ZLPsvLyzONGjUyjRo1Mr/88osxxpiDBw+aESNGmLCwMFO5cmVTp04dc8stt5glS5Y41nvmmWdM586dTY0aNYy/v79p3ry5+ec//2nOnz/vaFPYZds5OTnmoYceMrVq1TJVq1Y1/fr1M0ePHi300ujVq1eb1q1bGx8fH9OsWTOzcOHCQre5YsUK06ZNG+Pn52ciIyPNjBkzzJtvvmkkmZSUFEe7klwKfqXL3IvaXkZGhhk1apQJCgoyPj4+JioqyixYsOCSdZOTk02HDh2Mj48Pl4UDV8FmzG/Gayswm82mZcuWacCAAZKkpKQkDR8+XHv37nUMbReoVq2awsLCdP78eR06dOiy261Vq5bjjqP169fXTTfdpDfeeMPx+dy5c/XMM8/wgEIAAFyE01JFaNeunfLy8nT8+HHHbeh/z8fHR82bNy/2Nrt163bJ5Mjvv//eMZEQAABcuwodbs6cOeN0Pj8lJUW7du1SzZo11bRpUw0fPlwjRozQCy+8oHbt2unEiRNau3at2rRpc1W3hP/rX/+qrl27avr06Ro0aJC2bNmi1157Ta+99pordwsAgAqtQp+WWr9+vXr06HHJ8pEjRyoxMVEXLlzQM888o7ffflvHjh1TUFCQunTpoqeeekpRUVFX9Z0ffvihJk2apP3796tBgwaaOHGixowZc627AgAA/k+FDjcAAMB6uM8NAACwFMINAACwlAo3oTg/P18//vijqlevzm3OAQAoJ4wxOn36tGrXrn3JA2h/r8KFmx9//FERERHuLgMAAFyFo0ePqm7dupdtU+HCTcEtzo8ePaqAgAA3VwMAAIojKytLERERjt/xy6lw4abgVFRAQADhBgCAcqY4U0qYUAwAACyFcAMAACyFcAMAACylws25Ka68vDxduHDB3WVYRuXKlS95ujoAAKWBcPM7xhilp6fr1KlT7i7FcmrUqKGwsDDuLwQAKFWEm98pCDYhISGqUqUKP8QuYIzR2bNndfz4cUlSeHi4mysCAFgZ4eY38vLyHMGmVq1a7i7HUvz9/SVJx48fV0hICKeoAAClhgnFv1Ewx6ZKlSpursSaCvqVuUwAgNJEuCkEp6JKB/0KACgLbg03CQkJ6tSpk6pXr66QkBANGDBA33333WXXSUxMlM1mc3r5+fmVUcUAAMDTuTXcbNiwQWPHjtUXX3yhNWvW6MKFC+rVq5eys7Mvu15AQIDS0tIcryNHjpRRxQAAwNO5NdysWrVKd911l1q1aqXo6GglJiYqNTVV27dvv+x6NptNYWFhjldoaGgZVezZ0tPT9eCDD6phw4by9fVVRESE+vXrp7Vr10qS7rvvPjVq1Ej+/v4KDg5W//79tW/fPsf6hw8fls1m065duy7ZdlxcnCZMmOB4f+bMGY0bN05169aVv7+/WrZsqXnz5pX2LgJAhZRmz1HywUyl2XPcXUq54FFXS9ntdklSzZo1L9vuzJkzql+/vvLz89W+fXtNnz5drVq1KosSPdbhw4fVrVs31ahRQ88995yioqJ04cIFffzxxxo7dqz27dunDh06aPjw4apXr55+/vlnTZ06Vb169VJKSkqJr16aOHGi1q1bp4ULFyoyMlKrV6/WAw88oNq1a+vWW28tpb0EgIonaWuqJi3drXwjedmkhIFRGtypnrvL8mgeE27y8/M1YcIEdevWTa1bty6yXbNmzfTmm2+qTZs2stvtev7559W1a1ft3btXdevWvaR9bm6ucnNzHe+zsrJKpX53e+CBB2Sz2bRlyxZVrVrVsbxVq1a6++67JUn33nuvY3lkZKSeeeYZRUdH6/Dhw2rUqFGJvi85OVkjR45UXFycY9vz58/Xli1bCDcA4CJp9hxHsJGkfCNNXrpH3ZsGKzzQ373FeTCPuVpq7Nix2rNnjxYvXnzZdjExMRoxYoTatm2r2NhYLV26VMHBwZo/f36h7RMSEhQYGOh4RURElEb5hSqrYcSff/5Zq1at0tixY52CTYEaNWpcsiw7O1sLFixQgwYNrqpPunbtqhUrVujYsWMyxujTTz/V999/r169el3NLgAACpGSme0INgXyjNHhzLPuKaic8IhwM27cOH344Yf69NNPCx19uZzKlSurXbt2OnDgQKGfT5o0SXa73fE6evSoK0q+oqStqer27DoNe/1LdXt2nZK2ppbadx04cEDGGDVv3vyKbV999VVVq1ZN1apV0//+9z+tWbNGPj4+Tm26du3qaFPw+uyzz5zazJ49Wy1btlTdunXl4+Ojm2++WXPmzFH37t1dum8AUJE1CKoqr9/dRcPbZlNkEPdjuxy3hhtjjMaNG6dly5Zp3bp1atCgQYm3kZeXp927dxd5S39fX18FBAQ4vUpbUcOIpTWCY4y5cqP/M3z4cO3cuVMbNmxQ06ZNNWjQIJ07d86pTVJSknbt2uX06tixo1Ob2bNn64svvtCKFSu0fft2vfDCCxo7dqw++eQTl+wTAEAKD/RXwsAoef/ffcK8bTZNH9iaU1JX4NY5N2PHjtWiRYv0wQcfqHr16kpPT5ckBQYGOm7XP2LECNWpU0cJCQmSpGnTpqlLly5q3LixTp06peeee05HjhzR6NGj3bYfv3e5YcTSOCCbNGkim83mdOVTUQpOzzVp0kRdunTRddddp2XLlmno0KGONhEREWrcuLHTegX/PiQpJydHkydP1rJly9S3b19JUps2bbRr1y49//zz6tmzp4v2DAAwuFM9dW8arMOZZxUZVIVgUwxuHbmZO3eu7Ha74uLiFB4e7nglJSU52qSmpiotLc3x/uTJkxozZoxatGihPn36KCsrS8nJyWrZsqU7dqFQZT2MWLNmTcXHx2vOnDmF3iOoqCecG2NkjHGacF0cFy5c0IULF+Tl5Xz4eHt7Kz8/v0TbAgBcWXigv2Ia1SLYFJNbR26Kczpl/fr1Tu9nzpypmTNnllJFrlEwjDh56R7lGVMmw4hz5sxRt27d1LlzZ02bNk1t2rTRL7/8ojVr1mju3Ln66KOPlJSUpF69eik4OFg//PCDnn32Wfn7+6tPnz4l+q6AgADFxsbq0Ucflb+/v+rXr68NGzbo7bff1osvvlhKewgAQPF4zKXgVlPWw4gNGzbUjh079M9//lMPP/yw0tLSFBwcrA4dOmju3Lny8/PTZ599plmzZunkyZMKDQ1V9+7dlZycrJCQkBJ/3+LFizVp0iQNHz5cP//8s+rXr69//vOfuv/++0th7wAAKD6bKclsVAvIyspSYGCg7Hb7JZOLz507p5SUFDVo0IDnVZUC+hcAcLUu9/v9ex5xKTgAAICrEG4AAIClEG4AAIClEG4AAIClEG4KUcHmWJcZ+hUAUBYIN79RuXJlSdLZszyQrDQU9GtBPwMAUBq4z81veHt7q0aNGjp+/LgkqUqVKrLZbFdYC1dijNHZs2d1/Phx1ahRQ97e3u4uCQBgYYSb3wkLC5MkR8CB69SoUcPRvwAAlBbCze/YbDaFh4crJCREFy5ccHc5llG5cmVGbAAAZYJwUwRvb29+jAEAKIeYUAwAACyFcAMAACyFcAMAAFwmzZ6j5IOZSrPnuK0G5twAAACXSNqaqklLdyvfSF42KWFglAZ3qlfmdTByAwAArlmaPccRbCQp30iTl+5xywgO4QYAAFyzlMxsR7ApkGeMDmeW/V3/CTcAAOCaNQiqKq/f3dTf22ZTZFCVMq+FcAMAAK5ZeKC/EgZGyfv/HlvkbbNp+sDWCg/0L/NamFAMAABcYnCneureNFiHM88qMqiKW4KNRLgBAAAuFB7o77ZQU4DTUgAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFLcGm4SEhLUqVMnVa9eXSEhIRowYIC+++67K673/vvvq3nz5vLz81NUVJRWrlxZBtUCAIDywK3hZsOGDRo7dqy++OILrVmzRhcuXFCvXr2UnZ1d5DrJyckaOnSo7rnnHu3cuVMDBgzQgAEDtGfPnjKsHAAAeCqbMca4u4gCJ06cUEhIiDZs2KDu3bsX2mbw4MHKzs7Whx9+6FjWpUsXtW3bVvPmzbvid2RlZSkwMFB2u10BAQEuqx0AAJSekvx+e9ScG7vdLkmqWbNmkW02b96snj17Oi2Lj4/X5s2bC22fm5urrKwspxcAALAujwk3+fn5mjBhgrp166bWrVsX2S49PV2hoaFOy0JDQ5Wenl5o+4SEBAUGBjpeERERLq0bAAB4Fo8JN2PHjtWePXu0ePFil2530qRJstvtjtfRo0ddun0AQMWTZs9R8sFMpdlz3F0KClHJ3QVI0rhx4/Thhx9q48aNqlu37mXbhoWFKSMjw2lZRkaGwsLCCm3v6+srX19fl9UKAKjYkramatLS3co3kpdNShgYpcGd6rm7LPyGW0dujDEaN26cli1bpnXr1qlBgwZXXCcmJkZr1651WrZmzRrFxMSUVpkAAEi6OGJTEGwkKd9Ik5fuYQTHw7g13IwdO1YLFy7UokWLVL16daWnpys9PV05Ob8eJCNGjNCkSZMc78ePH69Vq1bphRde0L59+zR16lRt27ZN48aNc8cuAAAqkJTMbEewKZBnjA5nnnVPQSiUW8PN3LlzZbfbFRcXp/DwcMcrKSnJ0SY1NVVpaWmO9127dtWiRYv02muvKTo6WkuWLNHy5csvOwkZAABXaBBUVV4252XeNpsig6q4pyAUyqPuc1MWuM8NAOBaJG1N1eSle5RnjLxtNk0f2Jo5N2WgJL/fHjGhGACA8mJwp3rq3jRYhzPPKjKoisID/d1dEn6HcAMAQAmFB/oTajyYx9znBgAAwBUINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINx4gzZ6j5IOZSrPnuLsUAADKvUruLqCiS9qaqklLdyvfSF42KWFglAZ3qufusgAAKLcYuXGjNHuOI9hIUr6RJi/dwwgOAADXgHDjRimZ2Y5gUyDPGB3OPOueggAAsADCjRs1CKoqL5vzMm+bTZFBVdxTEAAAFkC4caPwQH8lDIySt+1iwvG22TR9YGuFB/q7uTIAAMovJhS72eBO9dS9abAOZ55VZFAVgg0AANeIcOMBwgP9CTUAALgIp6UAAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG48AA/OBADAdbgU3M14cCYAAK7FyI0b8eBMAABcj3DjRjw4EwAA1yPcuBEPzgQAwPUIN27EgzMBAHA9JhS7GQ/OBADAtQg3HoAHZwIA4DqclgIAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuIHl8KwuAKjYuFoKlsKzugAAbh252bhxo/r166fatWvLZrNp+fLll22/fv162Wy2S17p6ellUzA8Gs/qAgBIbg432dnZio6O1pw5c0q03nfffae0tDTHKyQkpJQqRHnCs7oAAJKbT0v17t1bvXv3LvF6ISEhqlGjhusLQrlW8Kyu3wYcntUFABVPuZxQ3LZtW4WHh+umm27Spk2bLts2NzdXWVlZTi9YE8/qAgBI5WxCcXh4uObNm6eOHTsqNzdXb7zxhuLi4vTll1+qffv2ha6TkJCgp556qowrhbvwrC4AgM0YY67crPTZbDYtW7ZMAwYMKNF6sbGxqlevnt55551CP8/NzVVubq7jfVZWliIiImS32xUQEHAtJQMAgDKSlZWlwMDAYv1+l6uRm8J07txZn3/+eZGf+/r6ytfXtwwrAgAA7lQu59z81q5duxQeHu7uMioEbo4HACgP3Dpyc+bMGR04cMDxPiUlRbt27VLNmjVVr149TZo0SceOHdPbb78tSZo1a5YaNGigVq1a6dy5c3rjjTe0bt06rV692l27UGFwczwAQHnh1nCzbds29ejRw/F+4sSJkqSRI0cqMTFRaWlpSk1NdXx+/vx5Pfzwwzp27JiqVKmiNm3a6JNPPnHaBlyvqJvjdW8azIRdAIDH8ZgJxWWlJBOScFHywUwNe/3LS5a/O6aLYhrVckNFAICKpiS/3+V+zg1KX8HN8X6Lm+MBKA3M7YMrEG5wRdwcD0BZSNqaqm7PrtOw179Ut2fXKWlr6pVXAgrBaSkUW5o9h5vjASgVafYcdXt23SWPT/n88R78vYGkCnafG5Sd8EB//sgAKBWXe/Atf3dQUpyWAgC4HXP74EqEGwCA2zG3D67EaSkAgEfgwbdwFcINAMBjMLcPrsBpKcAFuDcHAHiOEo/cfPjhh9qyZYvi4+PVrVs3rVu3Ts8//7zy8/M1cOBA3XvvvaVRJ+CxeO4WAHiWEo3czJ8/X7fddptWrlypPn36aOHChRowYIDq1KmjyMhITZgwQS+99FJp1Qp4nKKeu8UIDgC4T4lGbl5++WW9+uqrGjNmjD799FP16dNHL7zwgh544AFJUpcuXfSvf/1L48ePL5ViAU/DvTkAwPOUaOQmJSVF8fHxkqQePXooLy9P3bt3d3weFxenI0eOuLZCwINxbw4A8DwlCje1atVyhJcff/xRv/zyi1JTf332x5EjR1SzZk3XVgh4MO7NAQCep0Snpfr376977rlHI0eO1IoVKzRixAg9/PDD8vLyks1m06OPPqpevXqVVq2AR+LeHADgWUoUbmbMmKHz589r8eLF6tq1q2bPnq2XX35Z/fv314ULFxQbG6uEhITSqhXwWNybAwA8h0ueCn7u3DlduHBB1atXd0VNpYqnggMAUP6U+VPB/fz85Ofn54pNAQAAXJMShZuJEycWq92LL754VcUAAABcqxKFm507dzq9//zzz9WhQwf5+/8618Bms/1+NQAAgDJTonDz6aefOr2vXr26Fi1apIYNG7q0KAAAgKvFgzMBAIClEG4AAIClEG4AAICllGjOzddff+303hijffv26cyZM07L27Rpc+2VAQAAXIUS3cSv4DELha1SsNxmsykvL8+lRboSN/EDAKD8KbWb+KWkpFxTYQAAAKWtROGmfv36pVUHAACAS5R4QrExRikpKfrll18kSefPn1dSUpLefvttZWZmurxAAACAkijRyM13332n+Ph4HT16VA0bNtTq1at1xx13aN++fTLGqEqVKkpOTlaTJk1Kq14AAIDLKtHIzWOPPabo6Gjt2rVLt9xyi/r27au6devq5MmT+vnnnxUTE6Np06aVVq0AAABXVKKrpUJCQrR69Wq1bdtW2dnZql69ujZu3KgbbrhBkpScnKyhQ4fqyJEjpVbwteJqKQAAyp+S/H6XaOTmzJkzqlmzpiSpatWqqlq1qsLDwx2fR0REKCMj4ypKhpWl2XOUfDBTafYcd5cCAKgASjTnpnbt2kpNTVW9evUkSf/6178UEhLi+PzEiRO67rrrXFshyrWkramatHS38o3kZZMSBkZpcKd67i4LAGBhJRq56dmzp/bt2+d4/5e//EXVq1d3vF+9erXat2/vuupQrqXZcxzBRpLyjTR56R5GcAAApapEIzfz5s277OdDhgzRyJEjr6kgWEdKZrYj2BTIM0aHM88qPNDfPUUBACyvRCM369atU8uWLZWVlXXJZ3a7XX379tWBAwdcVhzKtwZBVeVlc17mbbMpMqiKewoCAFQIJQo3s2bN0pgxYwqdpRwYGKj77rtPL774osuKQ/kWHuivhIFR8rZdTDjeNpumD2zNqA0AoFSV6FLw+vXra9WqVWrRokWhn+/bt0+9evVSamqqywp0NS4FL3tp9hwdzjyryKAqBBsAwFUptQdnZmRkqHLlykVvrFIlnThxoiSbRAUQHuhPqAEAlJkSnZaqU6eO9uzZU+TnX3/9tdN9bwAAAMpaicJNnz599I9//EPnzp275LOcnBxNmTJFt9xyi8uKAwAAKKkSzbnJyMhQ+/bt5e3trXHjxqlZs2aSLs61mTNnjvLy8rRjxw6FhoaWWsHXijk3AACUP6U25yY0NFTJycn6y1/+okmTJqkgF9lsNsXHx2vOnDkeHWwAAKho0uw5SsnMVoOgqhVm/mOJwo108YqplStX6uTJkzpw4ICMMWrSpAmPXQAAwMNU1EfglDjcFLjuuuvUqVMnV9YCAABcpKhH4HRvGmz5EZwSTSgGAADlw+UegWN1hBsAACyoIj8Ch3ADAIAFVeRH4Fz1nBsAAODZBneqp+5NgyvcI3AINwAAWFhFfAQOp6UAAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAICluDXcbNy4Uf369VPt2rVls9m0fPnyK66zfv16tW/fXr6+vmrcuLESExNLvU4AAFB+uDXcZGdnKzo6WnPmzClW+5SUFPXt21c9evTQrl27NGHCBI0ePVoff/xxKVcKAADKC7fexK93797q3bt3sdvPmzdPDRo00AsvvCBJatGihT7//HPNnDlT8fHxpVUmAAAoR8rVnJvNmzerZ8+eTsvi4+O1efPmItfJzc1VVlaW0wsAAFhXuQo36enpCg0NdVoWGhqqrKws5eTkFLpOQkKCAgMDHa+IiIiyKBUAALhJuQo3V2PSpEmy2+2O19GjR91dEgAAKEXl6sGZYWFhysjIcFqWkZGhgIAA+fsX/lAwX19f+fr6lkV5AADAA5SrkZuYmBitXbvWadmaNWsUExPjpoqcpdlzlHwwU2n2wk+RAQCA0ufWkZszZ87owIEDjvcpKSnatWuXatasqXr16mnSpEk6duyY3n77bUnS/fffr1deeUV/+9vfdPfdd2vdunV677339NFHH7lrFxyStqZq0tLdyjeSl01KGBilwZ3qubssAAAqHLeO3Gzbtk3t2rVTu3btJEkTJ05Uu3bt9OSTT0qS0tLSlJqa6mjfoEEDffTRR1qzZo2io6P1wgsv6I033nD7ZeBp9hxHsJGkfCNNXrqHERwAANzArSM3cXFxMsYU+Xlhdx+Oi4vTzp07S7GqkkvJzHYEmwJ5xuhw5lmFBxY+FwgAAJSOcjXnxlM1CKoqL5vzMm+bTZFBVdxTEAAAFRjhxgXCA/2VMDBK3raLCcfbZtP0ga0ZtQEAwA3K1aXgnmxwp3rq3jRYhzPPKjKoCsEGAAA3Idy4UHigP6EGAAA347QUAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAAAeLs2eo+SDmUqz57i7lHKhkrsLAAAARUvamqpJS3cr30heNilhYJQGd6rn7rI8GiM3AAB4qDR7jiPYSFK+kSYv3cMIzhUQbgAA8FApmdmOYFMgzxgdzjzrnoLKCcINAAAeqkFQVXnZnJd522yKDKrinoLKCcINAAAeKjzQXwkDo+Rtu5hwvG02TR/YWuGB/m6uzLMxoRgeK82eo5TMbDUIqsp/yAAqrMGd6ql702AdzjyryKAq/D0sBsINPBJXBwDAr8ID/Qk1JcBpKXgcrg4AAFwLwg08DlcHAACuBeEGHoerAwAA14JwA4/D1QEAgGvBhGJ4JK4OAABcLcINPBZXBwAArganpQAAgKUQbgAAgKUQboAKJM2eo+SDmdwzCIClMecGqCC46zOAisIjRm7mzJmjyMhI+fn56frrr9eWLVuKbJuYmCibzeb08vPzK8NqgfKHuz4DqEjcHm6SkpI0ceJETZkyRTt27FB0dLTi4+N1/PjxItcJCAhQWlqa43XkyJEyrBgof7jrM4CKxO3h5sUXX9SYMWM0atQotWzZUvPmzVOVKlX05ptvFrmOzWZTWFiY4xUaGlqGFQPlD3d9BlCRuDXcnD9/Xtu3b1fPnj0dy7y8vNSzZ09t3ry5yPXOnDmj+vXrKyIiQv3799fevXuLbJubm6usrCynF1DRcNdnABWJWycUZ2ZmKi8v75KRl9DQUO3bt6/QdZo1a6Y333xTbdq0kd1u1/PPP6+uXbtq7969qlu37iXtExIS9NRTT5VK/UB5wl2fAVQUbj8tVVIxMTEaMWKE2rZtq9jYWC1dulTBwcGaP39+oe0nTZoku93ueB09erSMKwY8R3igv2Ia1SLYALA0t47cBAUFydvbWxkZGU7LMzIyFBYWVqxtVK5cWe3atdOBAwcK/dzX11e+vr7XXCsAACgf3Dpy4+Pjow4dOmjt2rWOZfn5+Vq7dq1iYmKKtY28vDzt3r1b4eHhpVUmAAAoR9x+E7+JEydq5MiR6tixozp37qxZs2YpOztbo0aNkiSNGDFCderUUUJCgiRp2rRp6tKlixo3bqxTp07pueee05EjRzR69Gh37gYAAPAQbg83gwcP1okTJ/Tkk08qPT1dbdu21apVqxyTjFNTU+Xl9esA08mTJzVmzBilp6fruuuuU4cOHZScnKyWLVu6axcAAIAHsRljzJWbWUdWVpYCAwNlt9sVEBDg7nIAAEAxlOT3u9xdLQUAAHA5hBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAOAyafYcJR/MVJo9x201VHLbNwMAAEtJ2pqqSUt3K99IXjYpYWCUBneqV+Z1MHIDAACuWZo9xxFsJCnfSJOX7nHLCA7hBgAAXLOUzGxHsCmQZ4wOZ54t81oINwCAInnC/AmUDw2CqsrL5rzM22ZTZFCVMq+FcAMAKFTS1lR1e3adhr3+pbo9u05JW1PdXRI8WHigvxIGRsnbdjHheNtsmj6wtcID/cu8Fpsxxly5mXVkZWUpMDBQdrtdAQEB7i4HADxSmj1H3Z5d53Sawdtm0+eP93DLjxXKjzR7jg5nnlVkUBWXHisl+f3maikAwCUuN3+CcIPLCQ/0d/sxwmkpAMAlPGn+BFBShBsAwCU8af4EUFKclgIAFGpwp3rq3jS4VOZPAKWJcAMAKJInzJ8ASorTUgAsg3uyAJAYuQFgEZ7yTBsA7sfIDYByz5OeaQPA/Qg3AMo9T3qmDQD3I9wAKPe4JwuA3yLcACj3uCcLgN9iQjEAS+CeLAAKEG4AWAb3ZAEgcVoKAABYDOEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGwBWl2XOUfDBTafYcd5cCAFdUyd0FAPBsSVtTNWnpbuUbycsmJQyM0uBO9dxdFgAUiZEbAEVKs+c4go0k5Rtp8tI9jOAA8GiEGwBFSsnMdgSbAnnG6HDmWfcUBADFQLgBUKQGQVXlZXNe5m2zKTKoinsKAoBiINwAKFJ4oL8SBkbJ23Yx4XjbbJo+sLXCA/3dXBkAFI0JxQAua3CneureNFiHM88qMqiKJYNNmj1HKZnZahBU1ZL7B1Q0hBsAVxQe6G/ZH32uBgOsh9NSACosrgYDrIlwA6DC4mowwJo8ItzMmTNHkZGR8vPz0/XXX68tW7Zctv3777+v5s2by8/PT1FRUVq5cmUZVQrASrgaDLAmt4ebpKQkTZw4UVOmTNGOHTsUHR2t+Ph4HT9+vND2ycnJGjp0qO655x7t3LlTAwYM0IABA7Rnz54yrhxAecfVYIA12Ywx5srNSs/111+vTp066ZVXXpEk5efnKyIiQg8++KAef/zxS9oPHjxY2dnZ+vDDDx3LunTporZt22revHlX/L6srCwFBgbKbrcrICDAdTsCoNxKs+dY+mowwApK8vvt1pGb8+fPa/v27erZs6djmZeXl3r27KnNmzcXus7mzZud2ktSfHx8ke1zc3OVlZXl9AKA3woP9FdMo1oEG8Ai3BpuMjMzlZeXp9DQUKfloaGhSk9PL3Sd9PT0ErVPSEhQYGCg4xUREeGa4gEAgEdy+5yb0jZp0iTZ7XbH6+jRo+4uCQAAlCK33sQvKChI3t7eysjIcFqekZGhsLCwQtcJCwsrUXtfX1/5+vq6pmAAAODx3Dpy4+Pjow4dOmjt2rWOZfn5+Vq7dq1iYmIKXScmJsapvSStWbOmyPYAAKBicfvjFyZOnKiRI0eqY8eO6ty5s2bNmqXs7GyNGjVKkjRixAjVqVNHCQkJkqTx48crNjZWL7zwgvr27avFixdr27Zteu2119y5GwAAwEO4PdwMHjxYJ06c0JNPPqn09HS1bdtWq1atckwaTk1NlZfXrwNMXbt21aJFi/TEE09o8uTJatKkiZYvX67WrVu7axcAAIAHcft9bsoa97kBAKD8KTf3uQEAAHA1wg0AALAUwg0AALAUwg0AALAUt18tVdYK5k/zjCkAAMqPgt/t4lwHVeHCzenTpyWJZ0wBAFAOnT59WoGBgZdtU+EuBc/Pz9ePP/6o6tWry2azubucMpOVlaWIiAgdPXq0wl8CT19cRD/8ir74FX3xK/riV57QF8YYnT59WrVr13a6/11hKtzIjZeXl+rWrevuMtwmICCgwv9HWoC+uIh++BV98Sv64lf0xa/c3RdXGrEpwIRiAABgKYQbAABgKYSbCsLX11dTpkyRr6+vu0txO/riIvrhV/TFr+iLX9EXvypvfVHhJhQDAABrY+QGAABYCuEGAABYCuEGAABYCuEGAABYCuGmnJozZ44iIyPl5+en66+/Xlu2bLls+1mzZqlZs2by9/dXRESE/vrXv+rcuXOOz6dOnSqbzeb0at68eWnvhkuUpC8uXLigadOmqVGjRvLz81N0dLRWrVp1Tdv0JK7ui/J6XGzcuFH9+vVT7dq1ZbPZtHz58iuus379erVv316+vr5q3LixEhMTL2lT3o6L0uiHinJMpKWladiwYWratKm8vLw0YcKEQtu9//77at68ufz8/BQVFaWVK1e6vngXK42+SExMvOS48PPzK50dKAbCTTmUlJSkiRMnasqUKdqxY4eio6MVHx+v48ePF9p+0aJFevzxxzVlyhR9++23+ve//62kpCRNnjzZqV2rVq2UlpbmeH3++edlsTvXpKR98cQTT2j+/PmaPXu2vvnmG91///267bbbtHPnzqvepqcojb6QyudxkZ2drejoaM2ZM6dY7VNSUtS3b1/16NFDu3bt0oQJEzR69Gh9/PHHjjbl8bgojX6QKsYxkZubq+DgYD3xxBOKjo4utE1ycrKGDh2qe+65Rzt37tSAAQM0YMAA7dmzx5Wlu1xp9IV08e7Fvz0ujhw54qqSS86g3OncubMZO3as431eXp6pXbu2SUhIKLT92LFjzR/+8AenZRMnTjTdunVzvJ8yZYqJjo4ulXpLU0n7Ijw83LzyyitOywYOHGiGDx9+1dv0FKXRF+X1uPgtSWbZsmWXbfO3v/3NtGrVymnZ4MGDTXx8vON9eT0uCriqHyrKMfFbsbGxZvz48ZcsHzRokOnbt6/Tsuuvv97cd99911hh2XFVXyxYsMAEBga6rK5rxchNOXP+/Hlt375dPXv2dCzz8vJSz549tXnz5kLX6dq1q7Zv3+4YQj906JBWrlypPn36OLXbv3+/ateurYYNG2r48OFKTU0tvR1xgavpi9zc3EuGSv39/R3/53k12/QEpdEXBcrbcXE1Nm/e7NR3khQfH+/ou/J6XJTUlfqhQEU4JoqjuP1VUZw5c0b169dXRESE+vfvr71797qtFsJNOZOZmam8vDyFhoY6LQ8NDVV6enqh6wwbNkzTpk3TDTfcoMqVK6tRo0aKi4tzOi11/fXXKzExUatWrdLcuXOVkpKiG2+8UadPny7V/bkWV9MX8fHxevHFF7V//37l5+drzZo1Wrp0qdLS0q56m56gNPpCKp/HxdVIT08vtO+ysrKUk5NTbo+LkrpSP0gV55gojqL6y0rHRHE1a9ZMb775pj744AMtXLhQ+fn56tq1q3744Qe31EO4qQDWr1+v6dOn69VXX9WOHTu0dOlSffTRR3r66acdbXr37q077rhDbdq0UXx8vFauXKlTp07pvffec2PlrvfSSy+pSZMmat68uXx8fDRu3DiNGjVKXl4V7z+F4vRFRTkuUHwcEyhMTEyMRowYobZt2yo2NlZLly5VcHCw5s+f75Z6Kt5f9HIuKChI3t7eysjIcFqekZGhsLCwQtf5xz/+oTvvvFOjR49WVFSUbrvtNk2fPl0JCQnKz88vdJ0aNWqoadOmOnDggMv3wVWupi+Cg4O1fPlyZWdn68iRI9q3b5+qVaumhg0bXvU2PUFp9EVhysNxcTXCwsIK7buAgAD5+/uX2+OipK7UD4Wx6jFRHEX1l5WOiatVuXJltWvXzm3HBeGmnPHx8VGHDh20du1ax7L8/HytXbtWMTExha5z9uzZS0YmvL29JUmmiEeLnTlzRgcPHlR4eLiLKne9q+mLAn5+fqpTp45++eUX/ec//1H//v2veZvuVBp9UZjycFxcjZiYGKe+k6Q1a9Y4+q68HhcldaV+KIxVj4niuJr+qijy8vK0e/du9x0X7p7RjJJbvHix8fX1NYmJieabb74x9957r6lRo4ZJT083xhhz5513mscff9zRfsqUKaZ69erm3XffNYcOHTKrV682jRo1MoMGDXK0efjhh8369etNSkqK2bRpk+nZs6cJCgoyx48fL/P9K4mS9sUXX3xh/vOf/5iDBw+ajRs3mj/84Q+mQYMG5uTJk8Xepqcqjb4or8fF6dOnzc6dO83OnTuNJPPiiy+anTt3miNHjhhjjHn88cfNnXfe6Wh/6NAhU6VKFfPoo4+ab7/91syZM8d4e3ubVatWOdqUx+OiNPqhohwTxhhH+w4dOphhw4aZnTt3mr179zo+37Rpk6lUqZJ5/vnnzbfffmumTJliKleubHbv3l2m+1ZSpdEXTz31lPn444/NwYMHzfbt282QIUOMn5+fU5uyRLgpp2bPnm3q1atnfHx8TOfOnc0XX3zh+Cw2NtaMHDnS8f7ChQtm6tSpplGjRsbPz89ERESYBx54wOlHbPDgwSY8PNz4+PiYOnXqmMGDB5sDBw6U4R5dvZL0xfr1602LFi2Mr6+vqVWrlrnzzjvNsWPHSrRNT+bqviivx8Wnn35qJF3yKtj/kSNHmtjY2EvWadu2rfHx8TENGzY0CxYsuGS75e24KI1+qEjHRGHt69ev79TmvffeM02bNjU+Pj6mVatW5qOPPiqbHboGpdEXEyZMcPy3ERoaavr06WN27NhRdjv1OzZjijgvAQAAUA4x5wYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAPMD69etls9l06tQpd5cClHuEG6CCueuuu2Sz2fTss886LV++fLlsNpvjvTFGr7/+umJiYhQQEKBq1aqpVatWGj9+fLEfhnf27FlNmjRJjRo1kp+fn4KDgxUbG6sPPvjA0SYyMlKzZs1yyb6VtoK+s9lsqly5sho0aKC//e1vOnfuXIm2ExcXpwkTJjgt69q1q9LS0hQYGOjCioGKiXADVEB+fn6aMWOGTp48WejnxhgNGzZMDz30kPr06aPVq1frm2++0b///W/5+fnpmWeeKdb33H///Vq6dKlmz56tffv2adWqVbr99tv1008/uXJ3ytTNN9+stLQ0HTp0SDNnztT8+fM1ZcqUa96uj4+PwsLCnAImgKvktgc/AHCLkSNHmltuucU0b97cPProo47ly5YtMwV/Et59910jyXzwwQeFbiM/P79Y3xUYGGgSExOL/Dw2NvaS59UU+Oyzz8wNN9xg/Pz8TN26dc2DDz5ozpw54/j87bffNh06dDDVqlUzoaGhZujQoSYjI8PxecHzc1atWmXatm1r/Pz8TI8ePUxGRoZZuXKlad68ualevboZOnSoyc7OLtb+jBw50vTv399p2cCBA027du0c7zMzM82QIUNM7dq1jb+/v2ndurVZtGiR0zZ+v88pKSmOen/7zLclS5aYli1bGh8fH1O/fn3z/PPPF6tOoKJj5AaogLy9vTV9+nTNnj1bP/zwwyWfv/vuu2rWrJluvfXWQtcv7uhCWFiYVq5cqdOnTxf6+dKlS1W3bl1NmzZNaWlpSktLkyQdPHhQN998s/70pz/p66+/VlJSkj7//HONGzfOse6FCxf09NNP66uvvtLy5ct1+PBh3XXXXZd8x9SpU/XKK68oOTlZR48e1aBBgzRr1iwtWrRIH330kVavXq3Zs2cXa39+b8+ePUpOTpaPj49j2blz59ShQwd99NFH2rNnj+69917deeed2rJliyTppZdeUkxMjMaMGePY54iIiEu2vX37dg0aNEhDhgzR7t27NXXqVP3jH/9QYmLiVdUKVCjuTlcAytZvRx+6dOli7r77bmOM88hN8+bNza233uq03vjx403VqlVN1apVTZ06dYr1XRs2bDB169Y1lStXNh07djQTJkwwn3/+uVOb+vXrm5kzZzotu+eee8y9997rtOyzzz4zXl5eJicnp9Dv2rp1q5FkTp8+bYz5deTmk08+cbRJSEgwkszBgwcdy+677z4THx9frP0ZOXKk8fb2NlWrVjW+vr5GkvHy8jJLliy57Hp9+/Y1Dz/8sON9bGysGT9+vFOb34/cDBs2zNx0001ObR599FHTsmXLYtUKVGSM3AAV2IwZM/TWW2/p22+/vWLbv//979q1a5eefPJJnTlzpljb7969uw4dOqS1a9fq9ttv1969e3XjjTfq6aefvux6X331lRITE1WtWjXHKz4+Xvn5+UpJSZF0cWSjX79+qlevnqpXr67Y2FhJUmpqqtO22rRp4/jn0NBQValSRQ0bNnRadvz48WLtjyT16NFDu3bt0pdffqmRI0dq1KhR+tOf/uT4PC8vT08//bSioqJUs2ZNVatWTR9//PEldV3Jt99+q27dujkt69atm/bv36+8vLwSbQuoaAg3QAXWvXt3xcfHa9KkSU7LmzRpou+++85pWXBwsBo3bqyQkJASfUflypV144036rHHHtPq1as1bdo0Pf300zp//nyR65w5c0b33Xefdu3a5Xh99dVX2r9/vxo1aqTs7GzFx8crICBA/+///T9t3bpVy5Ytk6RLtlu5cmXHPxdc5fRbNptN+fn5xd6fqlWrqnHjxoqOjtabb76pL7/8Uv/+978dnz/33HN66aWX9Nhjj+nTTz/Vrl27FB8ff9n9BeBaldxdAAD3evbZZ9W2bVs1a9bMsWzo0KEaNmyYPvjgA/Xv39+l39eyZUv98ssvOnfunHx8fOTj43PJSET79u31zTffqHHjxoVuY/fu3frpp5/07LPPOuarbNu2zaV1FoeXl5cmT56siRMnatiwYfL399emTZvUv39//fnPf5Yk5efn6/vvv1fLli0d6xW2z7/XokULbdq0yWnZpk2b1LRpU3l7e7t+ZwALYeQGqOCioqI0fPhwvfzyy45lQ4YM0e23364hQ4Zo2rRp+vLLL3X48GFt2LBBSUlJxf5xjYuL0/z587V9+3YdPnxYK1eu1OTJk9WjRw8FBARIunifm40bN+rYsWPKzMyUJD322GNKTk7WuHHjtGvXLu3fv18ffPCBY0JxvXr15OPjo9mzZ+vQoUNasWLFFU91lZY77rhD3t7emjNnjqSLo15r1qxRcnKyvv32W913333KyMhwWicyMtLRp5mZmYWOHD388MNau3atnn76aX3//fd666239Morr+iRRx4pk/0CyjPCDQBNmzbN6QfWZrMpKSlJs2bN0sqVK/XHP/5RzZo10913362IiAh9/vnnxdpufHy83nrrLfXq1UstWrTQgw8+qPj4eL333ntO33348GE1atRIwcHBki7Ok9mwYYO+//573XjjjWrXrp2efPJJ1a5dW9LFU2SJiYl6//331bJlSz377LN6/vnnXdgjxVepUiWNGzdO//rXv5Sdna0nnnhC7du3V3x8vOLi4hQWFqYBAwY4rfPII4/I29tbLVu2VHBwcKHzcdq3b6/33ntPixcvVuvWrfXkk09q2rRphV4RBsCZzRhj3F0EAACAqzByAwAALIVwA+Cq/fZS7d+/PvvsM3eXVyKpqamX3Z+SXsoNwH04LQXgql3uAZp16tSRv79/GVZzbX755RcdPny4yM8jIyNVqRIXmALlAeEGAABYCqelAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApfx/xqPqYa7NMAoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP3NJREFUeJzt3XlclWX+//H3AdlcwBQEVBTcN1zTQkt0xiQ105zS1NIsbdPKLEv9NmnaRM60WOao1SSVP9MytynHNE1NscWFUlNzATEDklIQRDS4fn80nukEKgcPnMPN6/l4nMfDc53rvs/nvh638Oa6N5sxxggAAMAivNxdAAAAgCsRbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgC4xbRp02Sz2UrU12azadq0aWVaT48ePdSjRw+PXR+AkiPcAJVcQkKCbDab/VWlShXVq1dPd911l44fP+7u8jxOZGSkw3jVqVNH119/vZYvX+6S9Z85c0bTpk3Txo0bXbI+oDIi3ACQJE2fPl3vvvuu5s2bpz59+mjhwoWKjY3V2bNny+T7nnrqKeXl5ZXJusta+/bt9e677+rdd9/V448/rh9//FGDBg3SvHnzrnjdZ86c0TPPPEO4Aa5AFXcXAMAz9OnTR1dffbUkafTo0QoODtbMmTO1atUqDR482OXfV6VKFVWpUjF/BNWrV0933HGH/f2IESPUpEkTvfzyy7r//vvdWBkAiZkbABdx/fXXS5IOHz7s0L5//37deuutqlWrlvz9/XX11Vdr1apVDn3Onz+vZ555Rk2bNpW/v79q166t6667TuvWrbP3Ke6cm/z8fD366KMKCQlRjRo1dPPNN+uHH34oUttdd92lyMjIIu3FrXPBggX605/+pDp16sjPz0+tWrXS3LlznRqLywkLC1PLli2VnJx8yX4//fST7rnnHoWGhsrf31/t2rXT22+/bf88JSVFISEhkqRnnnnGfuirrM83AqymYv7ZBKDMpaSkSJKuuuoqe9vevXvVrVs31atXT5MmTVK1atX0/vvva+DAgfrwww91yy23SPotZMTHx2v06NHq0qWLsrOztX37du3cuVM33HDDRb9z9OjRWrhwoYYNG6auXbtqw4YN6tev3xVtx9y5c9W6dWvdfPPNqlKliv7973/rwQcfVGFhocaOHXtF677g/PnzOnbsmGrXrn3RPnl5eerRo4cOHTqkcePGKSoqSh988IHuuusunTp1So888ohCQkI0d+5cPfDAA7rllls0aNAgSVLbtm1dUidQaRgAldqCBQuMJPPpp5+aEydOmGPHjpmlS5eakJAQ4+fnZ44dO2bv++c//9lER0ebs2fP2tsKCwtN165dTdOmTe1t7dq1M/369bvk906dOtX8/kdQUlKSkWQefPBBh37Dhg0zkszUqVPtbSNHjjQNGza87DqNMebMmTNF+sXFxZlGjRo5tMXGxprY2NhL1myMMQ0bNjS9e/c2J06cMCdOnDDffPONuf32240k89BDD110fbNmzTKSzMKFC+1t586dMzExMaZ69eomOzvbGGPMiRMnimwvAOdwWAqAJKlXr14KCQlRRESEbr31VlWrVk2rVq1S/fr1JUm//PKLNmzYoMGDB+v06dPKzMxUZmamfv75Z8XFxengwYP2q6tq1qypvXv36uDBgyX+/tWrV0uSHn74YYf28ePHX9F2BQQE2P+dlZWlzMxMxcbG6siRI8rKyirVOteuXauQkBCFhISoXbt2+uCDD3TnnXdq5syZF11m9erVCgsL09ChQ+1tPj4+evjhh5WTk6NNmzaVqhYARVXqcLN582b1799fdevWlc1m04oVK8r8O48fP6477rhDtWvXVkBAgKKjo7V9+/Yy/17gcubMmaN169Zp6dKl6tu3rzIzM+Xn52f//NChQzLG6K9//av9F/uF19SpUyX9dk6J9NuVV6dOnVKzZs0UHR2tiRMn6ttvv73k9x89elReXl5q3LixQ3vz5s2vaLu2bt2qXr16qVq1aqpZs6ZCQkI0ZcoUSSp1uLnmmmu0bt06ffrpp0pMTFRmZqbeeecdhyD1R0ePHlXTpk3l5eX4Y7dly5b2zwG4RqU+5yY3N1ft2rXT3XffbT+2XZZOnjypbt26qWfPnvrPf/6jkJAQHTx40OGcBsBdunTpYr9aauDAgbruuus0bNgwHThwQNWrV1dhYaEk6fHHH1dcXFyx62jSpIkkqXv37jp8+LBWrlyptWvX6s0339TLL7+sefPmafTo0Vdc68Vu/ldQUODw/vDhw/rzn/+sFi1a6KWXXlJERIR8fX21evVqvfzyy/ZtclZwcLB69epVqmUBlL1KHW769OmjPn36XPTz/Px8/d///Z/ee+89nTp1Sm3atNHMmTNLfdfRmTNnKiIiQgsWLLC3RUVFlWpdQFny9vZWfHy8evbsqddee02TJk1So0aNJP12KKUkv9hr1aqlUaNGadSoUcrJyVH37t01bdq0i4abhg0bqrCwUIcPH3aYrTlw4ECRvldddZVOnTpVpP2Psx///ve/lZ+fr1WrVqlBgwb29s8+++yy9btaw4YN9e2336qwsNBh9mb//v32z6WLBzcAJVepD0tdzrhx47Rt2zYtXrxY3377rW677TbdeOONTp1H8HurVq3S1Vdfrdtuu0116tRRhw4d9MYbb7i4asA1evTooS5dumjWrFk6e/as6tSpox49emj+/PlKS0sr0v/EiRP2f//8888On1WvXl1NmjRRfn7+Rb/vwh8ar776qkP7rFmzivRt3LixsrKyHA51paWlFblLsLe3tyTJGGNvy8rKcvgDo7z07dtX6enpWrJkib3t119/1ezZs1W9enXFxsZKkqpWrSpJxYY3ACVTqWduLiU1NVULFixQamqq6tatK+m36fg1a9ZowYIFeu6555xe55EjRzR37lxNmDBBU6ZM0ddff62HH35Yvr6+GjlypKs3AbhiEydO1G233aaEhATdf//9mjNnjq677jpFR0drzJgxatSokTIyMrRt2zb98MMP+uabbyRJrVq1Uo8ePdSpUyfVqlVL27dv19KlSzVu3LiLflf79u01dOhQ/fOf/1RWVpa6du2q9evX69ChQ0X63n777XryySd1yy236OGHH9aZM2c0d+5cNWvWTDt37rT36927t3x9fdW/f3/dd999ysnJ0RtvvKE6deoUG9DK0r333qv58+frrrvu0o4dOxQZGamlS5dq69atmjVrlmrUqCHptxOgW7VqpSVLlqhZs2aqVauW2rRpozZt2pRrvUCF5u7LtTyFJLN8+XL7+48++shIMtWqVXN4ValSxQwePNgYY8y+ffuMpEu+nnzySfs6fXx8TExMjMP3PvTQQ+baa68tl20EinPhUvCvv/66yGcFBQWmcePGpnHjxubXX381xhhz+PBhM2LECBMWFmZ8fHxMvXr1zE033WSWLl1qX+7ZZ581Xbp0MTVr1jQBAQGmRYsW5m9/+5s5d+6cvU9xl23n5eWZhx9+2NSuXdtUq1bN9O/f3xw7dqzYS6PXrl1r2rRpY3x9fU3z5s3NwoULi13nqlWrTNu2bY2/v7+JjIw0M2fONG+99ZaRZJKTk+39nLkU/HKXuV9sfRkZGWbUqFEmODjY+Pr6mujoaLNgwYIiyyYmJppOnToZX19fLgsHSsFmzO/maysxm82m5cuXa+DAgZKkJUuWaPjw4dq7d699avuC6tWrKywsTOfOndORI0cuud7atWvb7zjasGFD3XDDDXrzzTftn8+dO1fPPvssDygEAMBFOCx1ER06dFBBQYF++ukn+23o/8jX11ctWrQo8Tq7detW5OTI77//3n4iIQAAuHKVOtzk5OQ4HM9PTk5WUlKSatWqpWbNmmn48OEaMWKEXnzxRXXo0EEnTpzQ+vXr1bZt21LdEv7RRx9V165d9dxzz2nw4MH66quv9Prrr+v111935WYBAFCpVerDUhs3blTPnj2LtI8cOVIJCQk6f/68nn32Wb3zzjs6fvy4goODde211+qZZ55RdHR0qb7zo48+0uTJk3Xw4EFFRUVpwoQJGjNmzJVuCgAA+K9KHW4AAID1cJ8bAABgKYQbAABgKZXuhOLCwkL9+OOPqlGjBrc5BwCggjDG6PTp06pbt26RB9D+UaULNz/++KMiIiLcXQYAACiFY8eOqX79+pfsU+nCzYVbnB87dkyBgYFurgYAAJREdna2IiIi7L/HL6XShZsLh6ICAwMJNwAAVDAlOaWEE4oBAIClEG4AAIClEG4AAIClVLpzbgAAcIXCwkKdO3fO3WVYiq+v72Uv8y4Jwg0AAE46d+6ckpOTVVhY6O5SLMXLy0tRUVHy9fW9ovUQbgAAcIIxRmlpafL29lZERIRLZhrwv5vspqWlqUGDBld0o13CDQAATvj111915swZ1a1bV1WrVnV3OZYSEhKiH3/8Ub/++qt8fHxKvR7iJgAATigoKJCkKz50gqIujOmFMS4twg0AAKXA8wldz1VjSrgBAACWQrgBAACWQriB09Ky8pR4OFNpWXnuLgUA4KT09HQ99NBDatSokfz8/BQREaH+/ftr/fr1kqT77rtPjRs3VkBAgEJCQjRgwADt37/fvnxKSopsNpuSkpKKrLtHjx4aP368/X1OTo7GjRun+vXrKyAgQK1atdK8efPKehO5WgrOWfJ1qiYv261CI3nZpPhB0RrSuYG7ywIAlEBKSoq6deummjVr6h//+Ieio6N1/vx5ffLJJxo7dqz279+vTp06afjw4WrQoIF++eUXTZs2Tb1791ZycrK8vb2d+r4JEyZow4YNWrhwoSIjI7V27Vo9+OCDqlu3rm6++eYy2krCDZyQlpVnDzaSVGikKcv2qHuzEIUHBbi3OADAZT344IOy2Wz66quvVK1aNXt769atdffdd0uS7r33Xnt7ZGSknn32WbVr104pKSlq3LixU9+XmJiokSNHqkePHvZ1z58/X1999VWZhhsOS6HEkjNz7cHmggJjlJJ5xj0FAUAFV56H+X/55RetWbNGY8eOdQg2F9SsWbNIW25urhYsWKCoqChFREQ4/Z1du3bVqlWrdPz4cRlj9Nlnn+n7779X7969S7MJJcbMDUosKriavGxyCDjeNpsig7mJFQA4q7wP8x86dEjGGLVo0eKyff/5z3/qiSeeUG5urpo3b65169YVua9P165di9ydOS8vT+3bt7e/nz17tu69917Vr19fVapUkZeXl9544w11797dJdt0MczcoMTCgwIUPyha3v+9D4G3zabnBrXhkBQAOOlih/nLcgbHGHP5Tv81fPhw7dq1S5s2bVKzZs00ePBgnT171qHPkiVLlJSU5PC6+uqrHfrMnj1bX3zxhVatWqUdO3boxRdf1NixY/Xpp5+6ZJsuhpkbOGVI5wbq3ixEKZlnFBlclWADAKVwqcP8ZfVztWnTprLZbA5XPl1MUFCQgoKC1LRpU1177bW66qqrtHz5cg0dOtTeJyIiQk2aNHFYLiDgf7Xn5eVpypQpWr58ufr16ydJatu2rZKSkvTCCy+oV69eLtqyopi5gdPCgwIU07g2wQYASunCYf7fK+vD/LVq1VJcXJzmzJmj3NzcIp+fOnWq2OWMMTLGKD8/36nvO3/+vM6fP1/k0JW3t3eZP02dcAMAQDlz12H+OXPmqKCgQF26dNGHH36ogwcPat++fXr11VcVExOjI0eOKD4+Xjt27FBqaqoSExN12223KSAgQH379nXquwIDAxUbG6uJEydq48aNSk5OVkJCgt555x3dcsstZbSFv+GwFAAAbuCOw/yNGjXSzp079be//U2PPfaY0tLSFBISok6dOmnu3Lny9/fX559/rlmzZunkyZMKDQ1V9+7dlZiYqDp16jj9fYsXL9bkyZM1fPhw/fLLL2rYsKH+9re/6f777y+Drfsfm3HmDCMLyM7OVlBQkLKyshQYGOjucgAAFczZs2eVnJysqKgo+fv7u7scS7nU2Drz+5vDUgAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAlEIlux6nXLhqTAk3AAA4wdvbW5J07tw5N1diPRfG9MIYlxb3uQEAwAlVqlRR1apVdeLECfn4+BS5Ay9Kp7CwUCdOnFDVqlVVpcqVxRPCDQAATrDZbAoPD1dycrKOHj3q7nIsxcvLSw0aNJDNZrt850sg3AAA4CRfX181bdqUQ1Mu5uvr65KZMMINAACl4OXlxR2KPRQHCgEAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKW4NdzEx8erc+fOqlGjhurUqaOBAwfqwIEDl1wmISFBNpvN4cV9BgAAwAVuDTebNm3S2LFj9cUXX2jdunU6f/68evfurdzc3EsuFxgYqLS0NPuL218DAIAL3HqH4jVr1ji8T0hIUJ06dbRjxw517979osvZbDaFhYWVdXkAAKAC8qhzbrKysiRJtWrVumS/nJwcNWzYUBERERowYID27t170b75+fnKzs52eAEAAOvymHBTWFio8ePHq1u3bmrTps1F+zVv3lxvvfWWVq5cqYULF6qwsFBdu3bVDz/8UGz/+Ph4BQUF2V8RERFltQkAAMAD2Iwxxt1FSNIDDzyg//znP9qyZYvq169f4uXOnz+vli1baujQoZoxY0aRz/Pz85Wfn29/n52drYiICGVlZSkwMNAltQMAgLKVnZ2toKCgEv3+9oingo8bN04fffSRNm/e7FSwkSQfHx916NBBhw4dKvZzPz8/+fn5uaJMAABQAbj1sJQxRuPGjdPy5cu1YcMGRUVFOb2OgoIC7d69W+Hh4WVQIQAAqGjcOnMzduxYLVq0SCtXrlSNGjWUnp4uSQoKClJAQIAkacSIEapXr57i4+MlSdOnT9e1116rJk2a6NSpU/rHP/6ho0ePavTo0W7bDgAA4DncGm7mzp0rSerRo4dD+4IFC3TXXXdJklJTU+Xl9b8JppMnT2rMmDFKT0/XVVddpU6dOikxMVGtWrUqr7IBAIAH85gTisuLMyckAQAAz+DM72+PuRQcAADAFQg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUtwabuLj49W5c2fVqFFDderU0cCBA3XgwIHLLvfBBx+oRYsW8vf3V3R0tFavXl0O1QIAgIrAreFm06ZNGjt2rL744gutW7dO58+fV+/evZWbm3vRZRITEzV06FDdc8892rVrlwYOHKiBAwdqz5495Vg5AADwVDZjjHF3ERecOHFCderU0aZNm9S9e/di+wwZMkS5ubn66KOP7G3XXnut2rdvr3nz5l32O7KzsxUUFKSsrCwFBga6rHYAAFB2nPn97VHn3GRlZUmSatWqddE+27ZtU69evRza4uLitG3btmL75+fnKzs72+EFAACsy2PCTWFhocaPH69u3bqpTZs2F+2Xnp6u0NBQh7bQ0FClp6cX2z8+Pl5BQUH2V0REhEvrBgAAnsVjws3YsWO1Z88eLV682KXrnTx5srKysuyvY8eOuXT9AADAs1RxdwGSNG7cOH300UfavHmz6tevf8m+YWFhysjIcGjLyMhQWFhYsf39/Pzk5+fnsloBAIBnc+vMjTFG48aN0/Lly7VhwwZFRUVddpmYmBitX7/eoW3dunWKiYkpqzIBAEAF4taZm7Fjx2rRokVauXKlatSoYT9vJigoSAEBAZKkESNGqF69eoqPj5ckPfLII4qNjdWLL76ofv36afHixdq+fbtef/11t20HAADwHG6duZk7d66ysrLUo0cPhYeH219Lliyx90lNTVVaWpr9fdeuXbVo0SK9/vrrateunZYuXaoVK1Zc8iRkAABQeXjUfW7KA/e5AQCg4qmw97kBAAC4UoQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAADgMmlZeUo8nKm0rDy31VDFbd8MAAAsZcnXqZq8bLcKjeRlk+IHRWtI5wblXgczNwAA4IqlZeXZg40kFRppyrI9bpnBIdwAAIArlpyZaw82FxQYo5TMM+VeC+EGAABcsajgavKyObZ522yKDK5a7rUQbgAAwBULDwpQ/KBoedt+SzjeNpueG9RG4UEB5V4LJxQDAACXGNK5gbo3C1FK5hlFBld1S7CRCDcAAMCFwoMC3BZqLuCwFAAAcBnucwMAACyD+9wAAADL4D43AADAUrjPDQAAsBTuc2NRnnASFQAA7sB9bizIU06iAgDAXTzlPjfM3LiAJ51EBQCAO4UHBSimcW233uuGcOMCnnQSFQAAlR3hxgU86SQqAAAqO8KNC3jSSVQAAFR2nFDsIp5yEhUAAJUd4caFPOFhYQAAVHYclgIAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJbi1nCzefNm9e/fX3Xr1pXNZtOKFSsu2X/jxo2y2WxFXunp6eVTMAAA8HhuDTe5ublq166d5syZ49RyBw4cUFpamv1Vp06dMqoQAABUNFXc+eV9+vRRnz59nF6uTp06qlmzpusLAgAAFZ7TMzcfffSRnn76aW3dulWStGHDBvXt21c33nijXn/9dZcXWJz27dsrPDxcN9xwg72Oi8nPz1d2drbDCwAAWJdT4Wb+/Pm65ZZbtHr1avXt21cLFy7UwIEDVa9ePUVGRmr8+PF65ZVXyqpWhYeHa968efrwww/14YcfKiIiQj169NDOnTsvukx8fLyCgoLsr4iIiDKrDwAAuJ/NGGNK2rl169YaP368xowZo88++0x9+/bViy++qAcffFCSlJCQoL///e/67rvvnC/EZtPy5cs1cOBAp5aLjY1VgwYN9O677xb7eX5+vvLz8+3vs7OzFRERoaysLAUGBjpdJwAAKH/Z2dkKCgoq0e9vp2ZukpOTFRcXJ0nq2bOnCgoK1L17d/vnPXr00NGjR0tRcul16dJFhw4duujnfn5+CgwMdHgBAADrcirc1K5d2x5efvzxR/36669KTU21f3706FHVqlXLtRVeRlJSksLDw8v1OwEAgOdy6mqpAQMG6J577tHIkSO1atUqjRgxQo899pi8vLxks9k0ceJE9e7du8Try8nJcZh1SU5OVlJSkmrVqqUGDRpo8uTJOn78uN555x1J0qxZsxQVFaXWrVvr7NmzevPNN7VhwwatXbvWmc0AAAAW5lS4mTlzps6dO6fFixera9eumj17tl599VUNGDBA58+fV2xsrOLj40u8vu3bt6tnz5729xMmTJAkjRw5UgkJCUpLS3OYGTp37pwee+wxHT9+XFWrVlXbtm316aefOqwDAABUbk6dUHwxZ8+e1fnz51WjRg1X1FSmnDkhCQAAeAZnfn+75CZ+/v7+8vf3d8WqAAAArohT4ebCYaPLeemll0pVDAAAwJVyKtzs2rXL4f2WLVvUqVMnBQQE2NtsNptrKgMAACgFp8LNZ5995vC+Ro0aWrRokRo1auTSogAAAErLrU8FBwAAcDXCDQAAsBTCDQAAsBSnzrn59ttvHd4bY7R//37l5OQ4tLdt2/bKKwMAACgFp27id+ExC8UtcqHdZrOpoKDApUW6EjfxAwCg4imzm/glJydfUWEAAABlzalw07Bhw7KqAwAAuFhaVp6SM3MVFVxN4UEBl1/AIpx+/IIxRikpKYqIiFCVKlV07tw5LV++XPn5+erbt6+Cg4PLok4AAOCEJV+navKy3So0kpdNih8UrSGdG7i7rHLhVLg5cOCA4uLidOzYMTVq1Ehr167Vbbfdpv3798sYo6pVqyoxMVFNmzYtq3oBAMBlpGXl2YONJBUaacqyPereLKRSzOA4dSn4k08+qXbt2ikpKUk33XST+vXrp/r16+vkyZP65ZdfFBMTo+nTp5dVrQAAoASSM3PtweaCAmOUknnGPQWVM6fCTWJiop555hlFR0fr2Wef1f79+/X444/Lx8dHfn5+mjRpkjZv3lxWtQIAgBKICq4mrz886tHbZlNkcFX3FFTOnAo3OTk5qlWrliSpWrVqqlatmsLDw+2fR0REKCMjw7UVAgAAp4QHBSh+ULS8//swa2+bTc8NalMpDklJTp5zU7duXaWmpqpBg99OSPr73/+uOnXq2D8/ceKErrrqKtdWCAAAnDakcwN1bxailMwzigyuWmmCjeTkzE2vXr20f/9++/sHHnhANWrUsL9fu3atOnbs6LrqAABAqYUHBSimce1KFWwkJ+9QfDkpKSny8/NzOFTlabhDMQAAFY8zv7+dmrnZsGGDWrVqpezs7CKfZWVlqV+/fjp06JBz1QIAALiQU+Fm1qxZGjNmTLGJKSgoSPfdd59eeukllxUHAADgLKfCzTfffKMbb7zxop/37t1bO3bsuOKiAAAASsupcJORkSEfH5+Lfl6lShWdOHHiiosCAAAoLafCTb169bRnz56Lfv7tt9969MnEAFBRpGXlKfFwptKy8txdClDhOHWfm759++qvf/2rbrzxRvn7+zt8lpeXp6lTp+qmm25yaYEAUNlU5gceAq7g1KXgGRkZ6tixo7y9vTVu3Dg1b95ckrR//37NmTNHBQUF2rlzp0JDQ8us4CvFpeAAPFlaVp66Pb/B4blA3jabtkzqWenuVQL8njO/v52auQkNDVViYqIeeOABTZ48WRdykc1mU1xcnObMmePRwQYAPN2lHnhIuAFKxqlwI0kNGzbU6tWrdfLkSR06dEjGGDVt2pTHLgCAC1x44OEfZ24qywMPAVdw6oTi37vqqqvUuXNndenShWADAC5S2R94CLiC0zM3AICyVZkfeAi4AuEGADxQeFAAoQYopVIflgIAAPBEhBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGApbg03mzdvVv/+/VW3bl3ZbDatWLHissts3LhRHTt2lJ+fn5o0aaKEhIQyrxMAAFQcbg03ubm5ateunebMmVOi/snJyerXr5969uyppKQkjR8/XqNHj9Ynn3xSxpUCAICKooo7v7xPnz7q06dPifvPmzdPUVFRevHFFyVJLVu21JYtW/Tyyy8rLi6urMoEAAAVSIU652bbtm3q1auXQ1tcXJy2bdt20WXy8/OVnZ3t8AIAANZVocJNenq6QkNDHdpCQ0OVnZ2tvLy8YpeJj49XUFCQ/RUREVEepQIAADepUOGmNCZPnqysrCz769ixY+4uCQAAlCG3nnPjrLCwMGVkZDi0ZWRkKDAwUAEBAcUu4+fnJz8/v/IoDwAAeIAKNXMTExOj9evXO7StW7dOMTExbqoIAFDRpGXlKfFwptKyij+dARWfW2ducnJydOjQIfv75ORkJSUlqVatWmrQoIEmT56s48eP65133pEk3X///Xrttdf0xBNP6O6779aGDRv0/vvv6+OPP3bXJjhIy8pTcmauooKrKTyo+JkkAID7LPk6VZOX7VahkbxsUvygaA3p3MDdZcHF3Bputm/frp49e9rfT5gwQZI0cuRIJSQkKC0tTampqfbPo6Ki9PHHH+vRRx/VK6+8ovr16+vNN9/0iMvA+Q8DAJ4tLSvP/nNakgqNNGXZHnVvFsIfpBZjM8YYdxdRnrKzsxUUFKSsrCwFBga6ZJ1pWXnq9vwG+38YSfK22bRlUk/+wwCAh0g8nKlhb3xZpP29MdcqpnFtN1QEZzjz+7tCnXPjqZIzcx2CjSQVGKOUzDPuKQgAUERUcDV52RzbvG02RQZXdU9BKDOEGxfgPwwAeL7woADFD4qWt+23H9jeNpueG9SGGXYLqlCXgnuqC/9hpizbowJj+A8DAB5qSOcG6t4sRCmZZxQZXJWf0xZFuHER/sMAQMUQHhTAz2iLI9y4EP9hAABwP865AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAALpOWlafEw5lKy8pzWw1V3PbNAADAUpZ8narJy3ar0EheNil+ULSGdG5Q7nUwcwMAAK5YWlaePdhIUqGRpizb45YZHMINAAC4YsmZufZgc0GBMUrJPFPutRBuAADAFYsKriYvm2Obt82myOCq5V4L4QYAAFyx8KAAxQ+Klrftt4TjbbPpuUFtFB4UUO61cEIxAFhMWlaekjNzFRVczS2/WFB5DencQN2bhSgl84wig6u6bf8j3ACAhXjK1SqovMKDAtweqjksBQAW4UlXqwDuRLgBAIvwpKtVAHci3ACARXjS1SqAOxFuAMAiPOlqFcCdOKEYACzEU65WAdyJcAMAFuMJV6sA7sRhKQAAYCmEG1heWlaeEg9ncjksAFQSHJaCpXFDMwCofJi5gWVxQzMAqJwIN7AsbmgGAJUT4QaWxQ3NAKByItzAsrihGQBUTh4RbubMmaPIyEj5+/vrmmuu0VdffXXRvgkJCbLZbA4vf3//cqwWFcmQzg20ZVJPvTfmWm2Z1JOTiQGgEnD71VJLlizRhAkTNG/ePF1zzTWaNWuW4uLidODAAdWpU6fYZQIDA3XgwAH7e5vNVmw/QOKGZgBQ2bh95uall17SmDFjNGrUKLVq1Urz5s1T1apV9dZbb110GZvNprCwMPsrNDS0HCsGAACezK3h5ty5c9qxY4d69eplb/Py8lKvXr20bdu2iy6Xk5Ojhg0bKiIiQgMGDNDevXsv2jc/P1/Z2dkOLwAAYF1uDTeZmZkqKCgoMvMSGhqq9PT0Ypdp3ry53nrrLa1cuVILFy5UYWGhunbtqh9++KHY/vHx8QoKCrK/IiIiXL4dAADAc7j9sJSzYmJiNGLECLVv316xsbFatmyZQkJCNH/+/GL7T548WVlZWfbXsWPHyrliAABQntx6QnFwcLC8vb2VkZHh0J6RkaGwsLASrcPHx0cdOnTQoUOHiv3cz89Pfn5+V1wrgKLSsvKUnJmrqOBqnLQNwGO4debG19dXnTp10vr16+1thYWFWr9+vWJiYkq0joKCAu3evVvh4eFlVSaAYiz5OlXdnt+gYW98qW7Pb9CSr1PdXRIASPKAw1ITJkzQG2+8obffflv79u3TAw88oNzcXI0aNUqSNGLECE2ePNnef/r06Vq7dq2OHDminTt36o477tDRo0c1evRod20CUOnw3C4Anszt97kZMmSITpw4oaefflrp6elq37691qxZYz/JODU1VV5e/8tgJ0+e1JgxY5Senq6rrrpKnTp1UmJiolq1auWuTQAqnUs9t4vDUwDczWaMMZfvZh3Z2dkKCgpSVlaWAgMD3V0OUCGlZeWp2/MbHAKOt82mLZN6Em4AlAlnfn+7/bAUgIqH53YB8GRuPywFoGIa0rmBujcLUUrmGUUGVyXYAPAYhBsApcZzuwB4Ig5LAYDFpGXlKfFwJlevodJi5gYALGTJ16n2y/S9bFL8oGgN6dzA3WUB5YqZGwCwCO4/BPyGcAMAFnGp+w8BlQnhBgAsIiq4mrxsjm3eNpsig6u6pyDATQg3gAfhRFBcCe4/BPyGE4oBD8GJoHAF7j8EMHMDeAROBIUrhQcFKKZxbYINKi3CDeABKtuJoBx+A1CWOCwFeIALJ4L+8UGUVjwRlMNvAMoaMzeAB6gsJ4Jy+A1AeWDmBvAQleFE0EsdfrPi9gJwD8IN4EGs/iDKynT4DYD7cFgKQLmpLIffALgXMzcAylVlOPwGwL0INwDKndUPvwFwLw5LAQAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcACh3aVl5SjycqbSsPHeXAsCCeHAmgHK15OtUTV62W4VG8rJJ8YOiNaRzA3eXBcBCmLmB0/irG6WVlpVnDzaSVGikKcv2sC8BcClmbuAU/urGlUjOzLUHmwsKjFFK5hmFBwW4pygAlsPMDUqMv7pxpaKCq8nL5tjmbbMpMriqewoCYEmEG5TYpf7qBkoiPChA8YOi5W37LeF422x6blAbZm0AuBSHpVBiF/7q/n3A4a9uOGtI5wbq3ixEKZlnFBlclWADwOWYuUGJ8Vc3XCU8KEAxjWuz7wAoE8zcwCn81Q0A8HSEGzgtPCiAUAMA8FgclgIAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAFQofBsMwCXw9VSACoMnm0GoCSYuQFQIfBsMwAlRbgBUCHwbDMAJUW4AVAh8ERxz8a5UPAkhBsAFQLPNvNcS75OVbfnN2jYG1+q2/MbtOTrVHeXhErOZowxl+9mHdnZ2QoKClJWVpYCAwPdXQ4AJ6Vl5VWoZ5ulZeUpOTNXUcHVKkS9zkrLylO35zc4HDL0ttm0ZVJPS24v3MeZ398eMXMzZ84cRUZGyt/fX9dcc42++uqrS/b/4IMP1KJFC/n7+ys6OlqrV68up0oBuFtFeqJ4ZZjR4FwoeCK3h5slS5ZowoQJmjp1qnbu3Kl27dopLi5OP/30U7H9ExMTNXToUN1zzz3atWuXBg4cqIEDB2rPnj3lXDkAXFxlubqLc6Hgidwebl566SWNGTNGo0aNUqtWrTRv3jxVrVpVb731VrH9X3nlFd14442aOHGiWrZsqRkzZqhjx4567bXXyrlyALi4yjKjwblQ8ERuvYnfuXPntGPHDk2ePNne5uXlpV69emnbtm3FLrNt2zZNmDDBoS0uLk4rVqwotn9+fr7y8/Pt77Ozs6+8cAC4jAszGn88F8WKMxpDOjdQ92YhFepcKFibW2duMjMzVVBQoNDQUIf20NBQpaenF7tMenq6U/3j4+MVFBRkf0VERLimeAC4hMo2o1GRzoWC9Vn+8QuTJ092mOnJzs4m4AAoF8xoAO7h1nATHBwsb29vZWRkOLRnZGQoLCys2GXCwsKc6u/n5yc/Pz/XFAwATgoPCiDUAOXMrYelfH191alTJ61fv97eVlhYqPXr1ysmJqbYZWJiYhz6S9K6desu2h8AAFQubj8sNWHCBI0cOVJXX321unTpolmzZik3N1ejRo2SJI0YMUL16tVTfHy8JOmRRx5RbGysXnzxRfXr10+LFy/W9u3b9frrr7tzMwAAgIdwe7gZMmSITpw4oaefflrp6elq37691qxZYz9pODU1VV5e/5tg6tq1qxYtWqSnnnpKU6ZMUdOmTbVixQq1adPGXZsAAAA8CI9fAAAAHq/CPX4BAADAVQg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUtx+E7/yduG2PtnZ2W6uBAAAlNSF39sluT1fpQs3p0+fliSeDA4AQAV0+vRpBQUFXbJPpbtDcWFhoX788UfVqFFDNpvtitaVnZ2tiIgIHTt2jLsd/xdjUhRjUhRjUjzGpSjGpKjKOibGGJ0+fVp169Z1eCxTcSrdzI2Xl5fq16/v0nUGBgZWqh2sJBiTohiTohiT4jEuRTEmRVXGMbncjM0FnFAMAAAshXADAAAshXBzBfz8/DR16lT5+fm5uxSPwZgUxZgUxZgUj3EpijEpijG5vEp3QjEAALA2Zm4AAIClEG4AAIClEG4AAIClEG4AAIClEG7+YM6cOYqMjJS/v7+uueYaffXVV5fsP2vWLDVv3lwBAQGKiIjQo48+qrNnz9o/nzZtmmw2m8OrRYsWZb0ZLuXMmJw/f17Tp09X48aN5e/vr3bt2mnNmjVXtE5P5Ooxqej7yebNm9W/f3/VrVtXNptNK1asuOwyGzduVMeOHeXn56cmTZooISGhSJ+KvJ+UxZhUtv0kLS1Nw4YNU7NmzeTl5aXx48cX2++DDz5QixYt5O/vr+joaK1evdr1xZeRshiThISEIvuJv79/2WyAhyLc/M6SJUs0YcIETZ06VTt37lS7du0UFxenn376qdj+ixYt0qRJkzR16lTt27dP//rXv7RkyRJNmTLFoV/r1q2VlpZmf23ZsqU8NsclnB2Tp556SvPnz9fs2bP13Xff6f7779ctt9yiXbt2lXqdnqYsxkSq2PtJbm6u2rVrpzlz5pSof3Jysvr166eePXsqKSlJ48eP1+jRo/XJJ5/Y+1T0/aQsxkSqXPtJfn6+QkJC9NRTT6ldu3bF9klMTNTQoUN1zz33aNeuXRo4cKAGDhyoPXv2uLL0MlMWYyL9dvfi3+8nR48edVXJFYOBXZcuXczYsWPt7wsKCkzdunVNfHx8sf3Hjh1r/vSnPzm0TZgwwXTr1s3+furUqaZdu3ZlUm95cHZMwsPDzWuvvebQNmjQIDN8+PBSr9PTlMWYVPT95PckmeXLl1+yzxNPPGFat27t0DZkyBATFxdnf1/R95Pfc9WYVLb95PdiY2PNI488UqR98ODBpl+/fg5t11xzjbnvvvuusMLy56oxWbBggQkKCnJZXRURMzf/de7cOe3YsUO9evWyt3l5ealXr17atm1bsct07dpVO3bssE+VHzlyRKtXr1bfvn0d+h08eFB169ZVo0aNNHz4cKWmppbdhrhQacYkPz+/yPRnQECA/a/L0qzTk5TFmFxQUfeT0ti2bZvDGEpSXFycfQwr+n5SGpcbkwsq035SEiUdt8omJydHDRs2VEREhAYMGKC9e/e6u6RyRbj5r8zMTBUUFCg0NNShPTQ0VOnp6cUuM2zYME2fPl3XXXedfHx81LhxY/Xo0cPhsNQ111yjhIQErVmzRnPnzlVycrKuv/56nT59uky3xxVKMyZxcXF66aWXdPDgQRUWFmrdunVatmyZ0tLSSr1OT1IWYyJV7P2kNNLT04sdw+zsbOXl5VX4/aQ0LjcmUuXbT0riYuNm1f2kJJo3b6633npLK1eu1MKFC1VYWKiuXbvqhx9+cHdp5YZwcwU2btyo5557Tv/85z+1c+dOLVu2TB9//LFmzJhh79OnTx/ddtttatu2reLi4rR69WqdOnVK77//vhsrLzuvvPKKmjZtqhYtWsjX11fjxo3TqFGjLvt4eisryZhUtv0EpcN+gpKIiYnRiBEj1L59e8XGxmrZsmUKCQnR/Pnz3V1auam8v3H+IDg4WN7e3srIyHBoz8jIUFhYWLHL/PWvf9Wdd96p0aNHKzo6Wrfccouee+45xcfHq7CwsNhlatasqWbNmunQoUMu3wZXK82YhISEaMWKFcrNzdXRo0e1f/9+Va9eXY0aNSr1Oj1JWYxJcSrSflIaYWFhxY5hYGCgAgICKvx+UhqXG5PiWH0/KYmLjZtV95PS8PHxUYcOHSrVfkK4+S9fX1916tRJ69evt7cVFhZq/fr1iomJKXaZM2fOFJmR8Pb2liSZizyyKycnR4cPH1Z4eLiLKi87pRmTC/z9/VWvXj39+uuv+vDDDzVgwIArXqcnKIsxKU5F2k9KIyYmxmEMJWndunX2Mazo+0lpXG5MimP1/aQkSjNulU1BQYF2795dufYTd5/R7EkWL15s/Pz8TEJCgvnuu+/Mvffea2rWrGnS09ONMcbceeedZtKkSfb+U6dONTVq1DDvvfeeOXLkiFm7dq1p3LixGTx4sL3PY489ZjZu3GiSk5PN1q1bTa9evUxwcLD56aefyn37SsPZMfniiy/Mhx9+aA4fPmw2b95s/vSnP5moqChz8uTJEq/T05XFmFT0/eT06dNm165dZteuXUaSeemll8yuXbvM0aNHjTHGTJo0ydx55532/keOHDFVq1Y1EydONPv27TNz5swx3t7eZs2aNfY+FX0/KYsxqWz7iTHG3r9Tp05m2LBhZteuXWbv3r32z7du3WqqVKliXnjhBbNv3z4zdepU4+PjY3bv3l2u21ZaZTEmzzzzjPnkk0/M4cOHzY4dO8ztt99u/P39HfpYHeHmD2bPnm0aNGhgfH19TZcuXcwXX3xh/yw2NtaMHDnS/v78+fNm2rRppnHjxsbf399ERESYBx980OGX1pAhQ0x4eLjx9fU19erVM0OGDDGHDh0qxy26cs6MycaNG03Lli2Nn5+fqV27trnzzjvN8ePHnVpnReDqMano+8lnn31mJBV5XRiHkSNHmtjY2CLLtG/f3vj6+ppGjRqZBQsWFFlvRd5PymJMKuN+Ulz/hg0bOvR5//33TbNmzYyvr69p3bq1+fjjj8tng1ygLMZk/Pjx9v83oaGhpm/fvmbnzp3lt1EewGbMRY6fAAAAVECccwMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAHmDjxo2y2Ww6deqUu0sBKjzCDVDJ3HXXXbLZbHr++ecd2lesWCGbzWZ/b4zRG2+8oZiYGAUGBqp69epq3bq1HnnkkRI/gO/MmTOaPHmyGjduLH9/f4WEhCg2NlYrV66094mMjNSsWbNcsm1l7cLY2Ww2+fj4KCoqSk888YTOnj3r1Hp69Oih8ePHO7R17dpVaWlpCgoKcmHFQOVEuAEqIX9/f82cOVMnT54s9nNjjIYNG6aHH35Yffv21dq1a/Xdd9/pX//6l/z9/fXss8+W6Hvuv/9+LVu2TLNnz9b+/fu1Zs0a3Xrrrfr5559duTnl6sYbb1RaWpqOHDmil19+WfPnz9fUqVOveL2+vr4KCwtzCJgASsm9T38AUN5GjhxpbrrpJtOiRQszceJEe/vy5cvNhR8J7733npFkVq5cWew6CgsLS/RdQUFBJiEh4aKfx8bGFnlGzgWff/65ue6664y/v7+pX7++eeihh0xOTo7983feecd06tTJVK9e3YSGhpqhQ4eajIwM++cXntmzZs0a0759e+Pv72969uxpMjIyzOrVq02LFi1MjRo1zNChQ01ubm6JtmfkyJFmwIABDm2DBg0yHTp0sL/PzMw0t99+u6lbt64JCAgwbdq0MYsWLXJYxx+3OTk52V7v759Nt3TpUtOqVSvj6+trGjZsaF544YUS1QlUdszcAJWQt7e3nnvuOc2ePVs//PBDkc/fe+89NW/eXDfffHOxy5d0diEsLEyrV6/W6dOni/182bJlql+/vqZPn660tDSlpaVJkg4fPqwbb7xRf/nLX/Ttt99qyZIl2rJli8aNG2df9vz585oxY4a++eYbrVixQikpKbrrrruKfMe0adP02muvKTExUceOHdPgwYM1a9YsLVq0SB9//LHWrl2r2bNnl2h7/mjPnj1KTEyUr6+vve3s2bPq1KmTPv74Y+3Zs0f33nuv7rzzTn311VeSpFdeeUUxMTEaM2aMfZsjIiKKrHvHjh0aPHiwbr/9du3evVvTpk3TX//6VyUkJJSqVqBScXe6AlC+fj/7cO2115q7777bGOM4c9OiRQtz8803Oyz3yCOPmGrVqplq1aqZevXqlei7Nm3aZOrXr298fHzM1VdfbcaPH2+2bNni0Kdhw4bm5Zdfdmi75557zL333uvQ9vnnnxsvLy+Tl5dX7Hd9/fXXRpI5ffq0MeZ/MzeffvqpvU98fLyRZA4fPmxvu++++0xcXFyJtmfkyJHG29vbVKtWzfj5+RlJxsvLyyxduvSSy/Xr18889thj9vexsbHmkUcecejzx5mbYcOGmRtuuMGhz8SJE02rVq1KVCtQmTFzA1RiM2fO1Ntvv619+/Zdtu///d//KSkpSU8//bRycnJKtP7u3bvryJEjWr9+vW699Vbt3btX119/vWbMmHHJ5b755hslJCSoevXq9ldcXJwKCwuVnJws6beZjf79+6tBgwaqUaOGYmNjJUmpqakO62rbtq3936GhoapataoaNWrk0PbTTz+VaHskqWfPnkpKStKXX36pkSNHatSoUfrLX/5i/7ygoEAzZsxQdHS0atWqperVq+uTTz4pUtfl7Nu3T926dXNo69atmw4ePKiCggKn1gVUNoQboBLr3r274uLiNHnyZIf2pk2b6sCBAw5tISEhatKkierUqePUd/j4+Oj666/Xk08+qbVr12r69OmaMWOGzp07d9FlcnJydN999ykpKcn++uabb3Tw4EE1btxYubm5iouLU2BgoP7f//t/+vrrr7V8+XJJKrJeHx8f+78vXOX0ezabTYWFhSXenmrVqqlJkyZq166d3nrrLX355Zf617/+Zf/8H//4h1555RU9+eST+uyzz5SUlKS4uLhLbi8A16ri7gIAuNfzzz+v9u3bq3nz5va2oUOHatiwYVq5cqUGDBjg0u9r1aqVfv31V509e1a+vr7y9fUtMhPRsWNHfffdd2rSpEmx69i9e7d+/vlnPf/88/bzVbZv3+7SOkvCy8tLU6ZM0YQJEzRs2DAFBARo69atGjBggO644w5JUmFhob7//nu1atXKvlxx2/xHLVu21NatWx3atm7dqmbNmsnb29v1GwNYCDM3QCUXHR2t4cOH69VXX7W33X777br11lt1++23a/r06fryyy+VkpKiTZs2acmSJSX+5dqjRw/Nnz9fO3bsUEpKilavXq0pU6aoZ8+eCgwMlPTbfW42b96s48ePKzMzU5L05JNPKjExUePGjVNSUpIOHjyolStX2k8obtCggXx9fTV79mwdOXJEq1atuuyhrrJy2223ydvbW3PmzJH026zXunXrlJiYqH379um+++5TRkaGwzKRkZH2Mc3MzCx25uixxx7T+vXrNWPGDH3//fd6++239dprr+nxxx8vl+0CKjLCDQBNnz7d4ReszWbTkiVLNGvWLK1evVp//vOf1bx5c919992KiIjQli1bSrTeuLg4vf322+rdu7datmyphx56SHFxcXr//fcdvjslJUWNGzdWSEiIpN/Ok9m0aZO+//57XX/99erQoYOefvpp1a1bV9Jvh8gSEhL0wQcfqFWrVnr++ef1wgsvuHBESq5KlSoaN26c/v73vys3N1dPPfWUOnbsqLi4OPXo0UNhYWEaOHCgwzKPP/64vL291apVK4WEhBR7Pk7Hjh31/vvva/HixWrTpo2efvppTZ8+vdgrwgA4shljjLuLAAAAcBVmbgAAgKUQbgCU2u8v1f7j6/PPP3d3eU5JTU295PY4eyk3APfhsBSAUrvUAzTr1aungICAcqzmyvz6669KSUm56OeRkZGqUoULTIGKgHADAAAshcNSAADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUv4/m5mmyBHsRjQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_56.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDsElEQVR4nO3dfVxUZf7/8feA3KmBKQhoKN6kZiIa3oRmalGstZZZidqqudnNpmZSbWLlXa3kbim7SVptaW0/i3LV3HItFzMz3cwbSlstbyBcA5TdFRQQjbl+f/h1agKUm4GBM6/n4zGPR3PNdc75nNPEvLvOdc6xGWOMAAAALMLL3QUAAAC4EuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGgFvMmTNHNputSn1tNpvmzJlTp/UMGTJEQ4YMabDrA1B1hBvAwy1fvlw2m83xatKkidq2bau7775bR48edXd5DU5kZKTT8WrdurUGDRqk1atXu2T9xcXFmjNnjjZt2uSS9QGeiHADQJI0b948/eUvf9HSpUs1bNgwvfnmmxo8eLBOnz5dJ9t78sknVVJSUifrrmu9evXSX/7yF/3lL3/Ro48+qu+//14jR47U0qVLa73u4uJizZ07l3AD1EITdxcAoGEYNmyY+vTpI0maNGmSgoODtWDBAq1du1ajRo1y+faaNGmiJk0a55+gtm3b6le/+pXj/fjx49W5c2ctWrRIDzzwgBsrAyAxcgOgEoMGDZIkHTp0yKl9//79uuOOO9SyZUv5+/urT58+Wrt2rVOfs2fPau7cubr88svl7++vVq1a6ZprrtGGDRscfSqac1NaWqrp06crJCREl1xyiW655Rb9+9//Llfb3XffrcjIyHLtFa1z2bJluu6669S6dWv5+fmpe/fuWrJkSbWOxcWEhYXpiiuuUGZm5gX7HTt2TPfcc49CQ0Pl7++v6Ohovf76647Ps7KyFBISIkmaO3eu49RXXc83Aqymcf5vE4A6l5WVJUm69NJLHW1ff/21Bg4cqLZt22rGjBlq1qyZ3nnnHY0YMUJ//etfddttt0k6FzKSk5M1adIk9evXT4WFhdqxY4d27dqlG264odJtTpo0SW+++abGjh2rAQMGaOPGjbr55ptrtR9LlizRlVdeqVtuuUVNmjTR3/72Nz344IOy2+2aPHlyrdZ93tmzZ3XkyBG1atWq0j4lJSUaMmSIDh48qClTpqhDhw569913dffdd+vEiROaNm2aQkJCtGTJEv3mN7/RbbfdppEjR0qSevbs6ZI6AY9hAHi0ZcuWGUnmH//4hzl+/Lg5cuSIWblypQkJCTF+fn7myJEjjr7XX3+9iYqKMqdPn3a02e12M2DAAHP55Zc72qKjo83NN998we3Onj3b/PRPUEZGhpFkHnzwQad+Y8eONZLM7NmzHW0TJkww7du3v+g6jTGmuLi4XL/4+HjTsWNHp7bBgwebwYMHX7BmY4xp3769ufHGG83x48fN8ePHzZdffmlGjx5tJJmpU6dWur6UlBQjybz55puOtjNnzpjY2FjTvHlzU1hYaIwx5vjx4+X2F0D1cFoKgCQpLi5OISEhioiI0B133KFmzZpp7dq1uuyyyyRJ//3vf7Vx40aNGjVKJ0+eVH5+vvLz8/Wf//xH8fHxOnDggOPqqhYtWujrr7/WgQMHqrz9devWSZIeeughp/aHH364VvsVEBDg+OeCggLl5+dr8ODBOnz4sAoKCmq0zo8++kghISEKCQlRdHS03n33XY0bN04LFiyodJl169YpLCxMY8aMcbT5+PjooYce0qlTp/TJJ5/UqBYA5Xl0uNm8ebOGDx+uNm3ayGazac2aNXW+zaNHj+pXv/qVWrVqpYCAAEVFRWnHjh11vl3gYlJTU7VhwwatXLlSN910k/Lz8+Xn5+f4/ODBgzLG6KmnnnL8sJ9/zZ49W9K5OSXSuSuvTpw4oS5duigqKkqPPfaYvvrqqwtu/7vvvpOXl5c6derk1N61a9da7ddnn32muLg4NWvWTC1atFBISIhmzpwpSTUON/3799eGDRv0j3/8Q1u3blV+fr7eeOMNpyD1c999950uv/xyeXk5/9m94oorHJ8DcA2PnnNTVFSk6Oho/frXv3ac265L//vf/zRw4EANHTpUf//73xUSEqIDBw44zWkA3KVfv36Oq6VGjBiha665RmPHjtU333yj5s2by263S5IeffRRxcfHV7iOzp07S5KuvfZaHTp0SO+9954++ugj/fnPf9aiRYu0dOlSTZo0qda1Vnbzv7KyMqf3hw4d0vXXX69u3bpp4cKFioiIkK+vr9atW6dFixY59qm6goODFRcXV6NlAdQ9jw43w4YN07Bhwyr9vLS0VE888YTeeustnThxQj169NCCBQtqfNfRBQsWKCIiQsuWLXO0dejQoUbrAuqSt7e3kpOTNXToUC1evFgzZsxQx44dJZ07lVKVH/aWLVtq4sSJmjhxok6dOqVrr71Wc+bMqTTctG/fXna7XYcOHXIarfnmm2/K9b300kt14sSJcu0/H/3429/+ptLSUq1du1bt2rVztH/88ccXrd/V2rdvr6+++kp2u91p9Gb//v2Oz6XKgxuAqvPo01IXM2XKFG3btk1vv/22vvrqK9155536xS9+Ua15BD+1du1a9enTR3feeadat26t3r1765VXXnFx1YBrDBkyRP369VNKSopOnz6t1q1ba8iQIXrppZeUk5NTrv/x48cd//yf//zH6bPmzZurc+fOKi0trXR75/9H409/+pNTe0pKSrm+nTp1UkFBgdOprpycnHJ3Cfb29pYkGWMcbQUFBU7/g1FfbrrpJuXm5iotLc3R9sMPP+iFF15Q8+bNNXjwYElS06ZNJanC8Aagajx65OZCsrOztWzZMmVnZ6tNmzaSzg3Hr1+/XsuWLdP8+fOrvc7Dhw9ryZIlSkxM1MyZM/XFF1/ooYcekq+vryZMmODqXQBq7bHHHtOdd96p5cuX64EHHlBqaqquueYaRUVF6d5771XHjh2Vl5enbdu26d///re+/PJLSVL37t01ZMgQxcTEqGXLltqxY4dWrlypKVOmVLqtXr16acyYMXrxxRdVUFCgAQMGKD09XQcPHizXd/To0Xr88cd122236aGHHlJxcbGWLFmiLl26aNeuXY5+N954o3x9fTV8+HDdf//9OnXqlF555RW1bt26woBWl+677z699NJLuvvuu7Vz505FRkZq5cqV+uyzz5SSkqJLLrlE0rkJ0N27d1daWpq6dOmili1bqkePHurRo0e91gs0au6+XKuhkGRWr17teP/+++8bSaZZs2ZOryZNmphRo0YZY4zZt2+fkXTB1+OPP+5Yp4+Pj4mNjXXa7tSpU83VV19dL/sIVOT8peBffPFFuc/KyspMp06dTKdOncwPP/xgjDHm0KFDZvz48SYsLMz4+PiYtm3bml/+8pdm5cqVjuWeeeYZ069fP9OiRQsTEBBgunXrZn73u9+ZM2fOOPpUdNl2SUmJeeihh0yrVq1Ms2bNzPDhw82RI0cqvDT6o48+Mj169DC+vr6ma9eu5s0336xwnWvXrjU9e/Y0/v7+JjIy0ixYsMC89tprRpLJzMx09KvOpeAXu8y9svXl5eWZiRMnmuDgYOPr62uioqLMsmXLyi27detWExMTY3x9fbksHKgBmzE/Ga/1YDabTatXr9aIESMkSWlpabrrrrv09ddfO4a2z2vevLnCwsJ05swZHT58+ILrbdWqleOOo+3bt9cNN9ygP//5z47PlyxZomeeeYYHFAIA4CKclqpE7969VVZWpmPHjjluQ/9zvr6+6tatW5XXOXDgwHKTI7/99lvHREIAAFB7Hh1uTp065XQ+PzMzUxkZGWrZsqW6dOmiu+66S+PHj9fzzz+v3r176/jx40pPT1fPnj1rdEv46dOna8CAAZo/f75GjRql7du36+WXX9bLL7/syt0CAMCjefRpqU2bNmno0KHl2idMmKDly5fr7NmzeuaZZ/TGG2/o6NGjCg4O1tVXX625c+cqKiqqRtt8//33lZSUpAMHDqhDhw5KTEzUvffeW9tdAQAA/8ejww0AALAe7nMDAAAshXADAAAsxeMmFNvtdn3//fe65JJLuM05AACNhDFGJ0+eVJs2bco9gPbnPC7cfP/994qIiHB3GQAAoAaOHDmiyy677IJ9PC7cnL/F+ZEjRxQYGOjmagAAQFUUFhYqIiLC8Tt+IR4Xbs6figoMDCTcAADQyFRlSgkTigEAgKUQbgAAgKUQbgAAgKV43JybqiorK9PZs2fdXYZH8fHxKfcEdgAAqotw8zPGGOXm5urEiRPuLsUjtWjRQmFhYdyDCABQY4SbnzkfbFq3bq2mTZvyI1tPjDEqLi7WsWPHJEnh4eFurggA0FgRbn6irKzMEWxatWrl7nI8TkBAgCTp2LFjat26NaeoAAA1woTinzg/x6Zp06ZursRznT/2zHcCANQU4aYCnIpyH449AKC2CDcAAMBSCDcAAMBSCDcWkpubq6lTp6pjx47y8/NTRESEhg8frvT0dKd+xhgNGzZMNptNa9ascbRnZWXJZrMpIyOj3LqHDBmihx9+2PF+1apVuvHGG9WqVatKlzl9+rQmT56sVq1aqXnz5rr99tuVl5fnor0FAM+RU1CirYfylVNQ4u5SGgXCjUVkZWUpJiZGGzdu1B/+8Aft2bNH69ev19ChQzV58mSnvikpKbWe21JUVKRrrrlGCxYsqLTP9OnT9be//U3vvvuuPvnkE33//fcaOXJkrbYLAJ4m7YtsDXx2o8a+8rkGPrtRaV9ku7ukBo9LwS3iwQcflM1m0/bt29WsWTNH+5VXXqlf//rXjvcZGRl6/vnntWPHjlrdS2bcuHGSzoWqihQUFOjVV1/VihUrdN1110mSli1bpiuuuEL//Oc/dfXVV9d42wDgKXIKSpS0ao/s5tx7u5Fmrtqra7uEKDwowL3FNWCM3NSh+hpG/O9//6v169dr8uTJTsHmvBYtWkiSiouLNXbsWKWmpiosLKxOa9q5c6fOnj2ruLg4R1u3bt3Url07bdu2rU63DQBWkZlf5Ag255UZo6z8YvcU1Ei4Ndxs3rxZw4cPV5s2bcrN/7iYzz77TE2aNFGvXr3qrL7aqM9hxIMHD8oYo27dul2w3/Tp0zVgwADdeuutF+w3YMAANW/e3On16aefVqum3Nxc+fr6OoLVeaGhocrNza3WugDAU3UIbiavn80i8LbZFBnM/dguxK3hpqioSNHR0UpNTa3WcidOnND48eN1/fXX11FltVPZMGJdjeAYYy7aZ+3atdq4caNSUlIu2jctLU0ZGRlOrz59+rigUgBAdYQHBSh5ZJS8/2+epLfNpvkje3BK6iLcOudm2LBhGjZsWLWXe+CBBzR27Fh5e3tXa7SnvlxoGLEuvpCXX365bDab9u/fX2mfjRs36tChQ+VGUm6//XYNGjRImzZtcrRFRESoc+fOTv3OPxqhqsLCwnTmzBmdOHHCaZt5eXl1fkoMAKwkoW87XdslRFn5xYoMbkqwqYJGN+dm2bJlOnz4sGbPnl2l/qWlpSosLHR61bX6HkZs2bKl4uPjlZqaqqKionKfnzhxQjNmzNBXX33lNBojSYsWLdKyZctcXlNMTIx8fHycLkP/5ptvlJ2drdjYWJdvDwCsLDwoQLGdWhFsqqhRXS114MABzZgxQ59++qmaNKla6cnJyZo7d24dV+bs/DDizFV7VWZMvQwjpqamauDAgerXr5/mzZunnj176ocfftCGDRu0ZMkS7du3r8IRk3bt2qlDhw7V3t5///tfZWdn6/vvv5d0LrhI50ZswsLCFBQUpHvuuUeJiYlq2bKlAgMDNXXqVMXGxnKlFACgTjWacFNWVqaxY8dq7ty56tKlS5WXS0pKUmJiouN9YWGhIiIi6qJEJ/U9jNixY0ft2rVLv/vd7/TII48oJydHISEhiomJ0ZIlS1y+vbVr12rixImO96NHj5YkzZ49W3PmzJF0blTIy8tLt99+u0pLSxUfH68XX3zR5bUAAPBTNlOV2aj1wGazafXq1RoxYkSFn584cUKXXnqpvL29HW12u13GGHl7e+ujjz5y3E/lQgoLCxUUFKSCggIFBgY6fXb69GllZmaqQ4cO8vf3r9X+oGb4dwAAqMiFfr9/rtGM3AQGBmrPnj1ObS+++KI2btyolStX1ujUCgAAsB63hptTp07p4MGDjveZmZnKyMhQy5Yt1a5dOyUlJeno0aN644035OXlpR49ejgt37p1a/n7+5drBwAAnsut4WbHjh0aOnSo4/35uTETJkzQ8uXLlZOTo+xsnqEBAACqrsHMuakvzLlp2Ph3AACoSHXm3DS6+9zUBw/Lew0Kxx4AUFuEm5/w8fGRdO4Bk3CP88f+/L8LAACqq9FcLVUfvL291aJFCx07dkyS1LRpU9lstossBVcwxqi4uFjHjh1TixYtnC75BwCgOgg3P3P+Lr7nAw7qV4sWLXj2FACgVgg3P2Oz2RQeHq7WrVvr7Nmz7i7Ho/j4+DBiAwCoNcJNJby9vfmhBQCgEWJCMQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAcJmcghJtPZSvnIISt9XA1VIAAMAl0r7IVtKqPbIbycsmJY+MUkLfdvVeByM3AACg1nIKShzBRpLsRpq5aq9bRnAINwAAoNYy84scwea8MmOUlV//z2sk3AAAgFrrENxMXj97HKO3zabI4Kb1XgvhBgAA1Fp4UICSR0bJ+/8eOO1ts2n+yB4KDwqo91qYUAwAAFwioW87XdslRFn5xYoMbuqWYCMRbgAAgAuFBwW4LdScx2kpAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKW4NN5s3b9bw4cPVpk0b2Ww2rVmz5oL9V61apRtuuEEhISEKDAxUbGysPvzww/opFgAANApuDTdFRUWKjo5Wampqlfpv3rxZN9xwg9atW6edO3dq6NChGj58uHbv3l3HlQIAgMbCZowx7i5Ckmw2m1avXq0RI0ZUa7krr7xSCQkJmjVrVpX6FxYWKigoSAUFBQoMDKxBpQAAoL5V5/e7ST3VVCfsdrtOnjypli1bVtqntLRUpaWljveFhYX1URoAAHCTRj2h+LnnntOpU6c0atSoSvskJycrKCjI8YqIiKjHCgEAQH1rtOFmxYoVmjt3rt555x21bt260n5JSUkqKChwvI4cOVKPVQIAgPrWKE9Lvf3225o0aZLeffddxcXFXbCvn5+f/Pz86qkyAADgbo1u5Oatt97SxIkT9dZbb+nmm292dzkAAKCBcevIzalTp3Tw4EHH+8zMTGVkZKhly5Zq166dkpKSdPToUb3xxhuSzp2KmjBhgv74xz+qf//+ys3NlSQFBAQoKCjILfsAAAAaFreO3OzYsUO9e/dW7969JUmJiYnq3bu347LunJwcZWdnO/q//PLL+uGHHzR58mSFh4c7XtOmTXNL/QAAoOFpMPe5qS/c5wYAgManOr/fjW7ODQAAwIUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAqKacghJtPZSvnIISd5eCCrj1wZkAADQ2aV9kK2nVHtmN5GWTkkdGKaFvO3eXhZ9g5AYAgCrKKShxBBtJshtp5qq9jOA0MIQbAACqKDO/yBFsziszRln5xe4pCBUi3AAAUEUdgpvJy+bc5m2zKTK4qXsKQoUINwAAVFF4UICSR0bJ23Yu4XjbbJo/sofCgwLcXBl+ignFAABUQ0Lfdrq2S4iy8osVGdyUYNMAEW4AAKim8KAAQk0DxmkpAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKYQbAABgKW4NN5s3b9bw4cPVpk0b2Ww2rVmz5qLLbNq0SVdddZX8/PzUuXNnLV++vM7rBAAAjYdbw01RUZGio6OVmppapf6ZmZm6+eabNXToUGVkZOjhhx/WpEmT9OGHH9ZxpQAAoLFo4s6NDxs2TMOGDaty/6VLl6pDhw56/vnnJUlXXHGFtmzZokWLFik+Pr6uygQAAI1Io5pzs23bNsXFxTm1xcfHa9u2bZUuU1paqsLCQqcXAACwrkYVbnJzcxUaGurUFhoaqsLCQpWUlFS4THJysoKCghyviIiI+igVAAC4SaMKNzWRlJSkgoICx+vIkSPuLgkAANQht865qa6wsDDl5eU5teXl5SkwMFABAQEVLuPn5yc/P7/6KA8AADQAjWrkJjY2Vunp6U5tGzZsUGxsrJsqAgAADY1bw82pU6eUkZGhjIwMSecu9c7IyFB2drakc6eUxo8f7+j/wAMP6PDhw/rtb3+r/fv368UXX9Q777yj6dOnu6N8AADQALk13OzYsUO9e/dW7969JUmJiYnq3bu3Zs2aJUnKyclxBB1J6tChgz744ANt2LBB0dHRev755/XnP/+Zy8ABAICDzRhj3F1EfSosLFRQUJAKCgoUGBjo7nIkSTkFJcrML1KH4GYKD6p47hAAAJ6sOr/fjWpCsRWlfZGtpFV7ZDeSl01KHhmlhL7t3F0WAACNVqOaUGw1OQUljmAjSXYjzVy1VzkFFd+zBwAAXBzhxo0y84scwea8MmOUlV/snoIAALAAwo0bdQhuJi+bc5u3zabI4KbuKQgAAAsg3LhReFCAkkdGydt2LuF422yaP7IHk4oBAKgFJhS7WULfdrq2S4iy8osVGdyUYAMAQC0RbhqA8KAAQg0AAC7CaSkAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphJsGIKegRFsP5fNMKQAAXID73LgZTwUHAMC1GLlxI54KDgCA6xFu3IinggMA4HqEGzfiqeAAALge4caNeCo4AACux4RiN+Op4AAAuBbhpgHgqeAAALgOp6UAAIClEG4AAIClEG5gOdzxGQA8G3NuYCnc8RkAwMgNLIM7PgMAJMINLIQ7PgMAJMINLIQ7PgMAJMINLIQ7PgMAJCYUw2K44zMAgHADy+GOzwDg2TgtBQAALIVwgyrj5ngA6hp/Z+AKnJZClXBzPAB1jb8zcBVGbnBR3BwPQF3j7wxciXCDi+LmeADqGn9n4EqEG1wUN8cDUNf4OwNXcnu4SU1NVWRkpPz9/dW/f39t3779gv1TUlLUtWtXBQQEKCIiQtOnT9fp06frqVrPxM3xANQ1/s7Aldw6oTgtLU2JiYlaunSp+vfvr5SUFMXHx+ubb75R69aty/VfsWKFZsyYoddee00DBgzQt99+q7vvvls2m00LFy50wx54Dm6OB6Cu8XcGrmIzxpiLd3O2fft2bdu2Tbm5uZKksLAwxcbGql+/ftVaT//+/dW3b18tXrxYkmS32xUREaGpU6dqxowZ5fpPmTJF+/btU3p6uqPtkUce0eeff64tW7ZUaZuFhYUKCgpSQUGBAgMDq1UvAABwj+r8flfrtNSxY8c0aNAgXX311Vq0aJE2btyojRs3atGiRbr66qs1aNAgHTt2rErrOnPmjHbu3Km4uLgfi/HyUlxcnLZt21bhMgMGDNDOnTsdp64OHz6sdevW6aabbqp0O6WlpSosLHR6AQAA66pWuHnwwQdVVlamffv2KSsrS59//rk+//xzZWVlad++fbLb7Zo8eXKV1pWfn6+ysjKFhoY6tYeGhjpGhH5u7Nixmjdvnq655hr5+PioU6dOGjJkiGbOnFnpdpKTkxUUFOR4RUREVH2HAQBAo1OtcPPhhx8qNTVVXbt2LfdZ165d9ac//Unr1693WXE/t2nTJs2fP18vvviidu3apVWrVumDDz7Q008/XekySUlJKigocLyOHDlSZ/UBAAD3q9aEYj8/vwue1jl58qT8/PyqtK7g4GB5e3srLy/PqT0vL09hYWEVLvPUU09p3LhxmjRpkiQpKipKRUVFuu+++/TEE0/Iy6t8VvPz86tyTQAAoPGr1shNQkKCJkyYoNWrVzuFnMLCQq1evVoTJ07UmDFjqrQuX19fxcTEOE0OttvtSk9PV2xsbIXLFBcXlwsw3t7ekqQazIsGXIbn4QBAw1GtkZuFCxfKbrdr9OjR+uGHH+Tr6yvp3OTgJk2a6J577tFzzz1X5fUlJiZqwoQJ6tOnj/r166eUlBQVFRVp4sSJkqTx48erbdu2Sk5OliQNHz5cCxcuVO/evdW/f38dPHhQTz31lIYPH+4IOUB943k4ANCwVPu01JIlS7RgwQLt3LnT6VLwmJiYal9anZCQoOPHj2vWrFnKzc1Vr169tH79esck4+zsbKeRmieffFI2m01PPvmkjh49qpCQEA0fPly/+93vqrVdwFUqex7OtV1CuEcHALhJje5z05hxnxu40tZD+Rr7yufl2t+692rFdmrlhooAwJrq7D43F5OXl6d58+a5cpVAg8bzcACg4XFpuMnNzdXcuXNduUqgQeN5OADQ8FRrzs1XX311wc+/+eabWhUDNEY8DwcAGpZqhZtevXrJZrNVeNn1+XabzVbBkoC1hQcFEGoAoIGoVrhp2bKlfv/73+v666+v8POvv/5aw4cPd0lhAAAANVGtcBMTE6Pvv/9e7du3r/DzEydOcDM9AADgVtUKNw888ICKiooq/bxdu3ZatmxZrYsCAACoKe5zAwAAGjy33ecGAADA3ap1WioxMbFK/RYuXFijYgAAAGqrWuFm9+7dTu+3bNmimJgYBQT8eAksl4IDAAB3qla4+fjjj53eX3LJJVqxYoU6duzo0qIAAABqijk3AADAUgg3AADAUgg3AADAUmr14ExjjPbv369Tp045tffs2bP2lQEAANRAtW7i5+XlVaUHZ5aVlbm0SFfiJn4AADQ+1fn9rtbITWZmZq0KAwAAqGvVCjeVPTATAACgoXDJhOLrrrtO3333nStWBQvKKSjR1kP5yikocXcpAAAPUK2Rm7Vr11bYvnnzZr3//vuKiIiQJN1yyy21rwyWkPZFtpJW7ZHdSF42KXlklBL6tnN3WQAAC3PZhGLHCplQjP+TU1Cigc9ulP0nXxdvm01bZgxVeFBA5QsCAPAzdfZU8Pj4eA0bNky5ubmy2+2Ol7e3t/bu3Su73d6ggw3qV2Z+kVOwkaQyY5SVX+yeggAAHqFa4ebvf/+7rr/+evXp00fvv/9+XdUEi+gQ3ExeP3uOqrfNpsjgpu4pCADgEao9oXj69Olau3atHn/8cd1///0qLub/wlGx8KAAJY+Mkvf/PSne22bT/JE9OCUFAKhT1ZpQfF6vXr20Y8cOTZ8+Xb169brgHBx4toS+7XRtlxBl5RcrMrgpwQYAUOdqFG4kKSAgQEuXLtXatWv18ccfKzg42JV1wULCgwIINQCAelOt01IbN25U9+7dVVhY6Gi75ZZbtGjRIvn5+enKK6/Up59+6vIiAQAAqqpa4SYlJUX33ntvhZdgBQUF6f7779fChQtdVhwAAEB1VSvcfPnll/rFL35R6ec33nijdu7cWeuiAAAAaqpa4SYvL08+Pj6Vft6kSRMdP3681kUBAADX8MRH4FRrQnHbtm21d+9ede7cucLPv/rqK4WHh7ukMAAAUDue+gicao3c3HTTTXrqqad0+vTpcp+VlJRo9uzZ+uUvf+my4gAAQM3kFJQ4go0k2Y00c9VejxjBqdbIzZNPPqlVq1apS5cumjJlirp27SpJ2r9/v1JTU1VWVqYnnniiTgoFAABVd6FH4Fj99hzVCjehoaHaunWrfvOb3ygpKclx8z6bzab4+HilpqYqNDS0TgoFAABVd/4ROD9/eLEnPAKn2jfxa9++vdatW6f//e9/OnjwoIwxuvzyy3XppZfWRX0AAKAGzj8CZ+aqvSozxqMegWMzHvbshOo8Mh0AgMYup6DEEo/Aqc7vd7UfnOlqqampioyMlL+/v/r376/t27dfsP+JEyc0efJkhYeHy8/PT126dNG6devqqVoAABqX8KAAxXZq1aiDTXXV+NlSrpCWlqbExEQtXbpU/fv3V0pKiuLj4/XNN9+odevW5fqfOXNGN9xwg1q3bq2VK1eqbdu2+u6779SiRYv6Lx4AADRIbj0t1b9/f/Xt21eLFy+WJNntdkVERGjq1KmaMWNGuf5Lly7VH/7wB+3fv/+CNxO8EE5LAQDQ+DSK01JnzpzRzp07FRcX92MxXl6Ki4vTtm3bKlxm7dq1io2N1eTJkxUaGqoePXpo/vz5Kisrq3Q7paWlKiwsdHoBAADrclu4yc/PV1lZWblLx0NDQ5Wbm1vhMocPH9bKlStVVlamdevW6amnntLzzz+vZ555ptLtJCcnKygoyPGKiIhw6X4AAICGxe0TiqvDbrerdevWevnllxUTE6OEhAQ98cQTWrp0aaXLJCUlqaCgwPE6cuRIPVYMAADqm9smFAcHB8vb21t5eXlO7Xl5eQoLC6twmfDwcPn4+Mjb29vRdsUVVyg3N1dnzpyRr69vuWX8/Pzk5+fn2uIBAECD5baRG19fX8XExCg9Pd3RZrfblZ6ertjY2AqXGThwoA4ePCi73e5o+/bbbxUeHl5hsAEAAJ7HraelEhMT9corr+j111/Xvn379Jvf/EZFRUWaOHGiJGn8+PFKSkpy9P/Nb36j//73v5o2bZq+/fZbffDBB5o/f74mT57srl0AAAANjFvvc5OQkKDjx49r1qxZys3NVa9evbR+/XrHJOPs7Gx5ef2YvyIiIvThhx9q+vTp6tmzp9q2batp06bp8ccfd9cuAACABobHLwAAgAavUdznBgAAoC4QbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQblwop6BEWw/lK6egxN2lAADgsdx6Ez8rSfsiW0mr9shuJC+blDwySgl927m7LAAAPA4jNy6QU1DiCDaSZDfSzFV7GcEBAMANCDcukJlf5Ag255UZo6z8YvcUBACAByPcuECH4Gbysjm3edtsigxu6p6CAADwYIQbFwgPClDyyCh5284lHG+bTfNH9lB4UICbKwMAwPMwodhFEvq207VdQpSVX6zI4KYEGwAA3IRw40LhQQGEGgAA3IzTUgAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIaRLhJTU1VZGSk/P391b9/f23fvr1Ky7399tuy2WwaMWJE3RYIAAAaDbeHm7S0NCUmJmr27NnatWuXoqOjFR8fr2PHjl1wuaysLD366KMaNGhQPVUKAAAaA7eHm4ULF+ree+/VxIkT1b17dy1dulRNmzbVa6+9VukyZWVluuuuuzR37lx17NixHqsFAAANnVvDzZkzZ7Rz507FxcU52ry8vBQXF6dt27ZVuty8efPUunVr3XPPPRfdRmlpqQoLC51eAADAutwabvLz81VWVqbQ0FCn9tDQUOXm5la4zJYtW/Tqq6/qlVdeqdI2kpOTFRQU5HhFRETUum4AANBwuf20VHWcPHlS48aN0yuvvKLg4OAqLZOUlKSCggLH68iRI3VcJQAAcKcm7tx4cHCwvL29lZeX59Sel5ensLCwcv0PHTqkrKwsDR8+3NFmt9slSU2aNNE333yjTp06OS3j5+cnPz+/OqgeAAA0RG4dufH19VVMTIzS09MdbXa7Xenp6YqNjS3Xv1u3btqzZ48yMjIcr1tuuUVDhw5VRkYGp5wAAIB7R24kKTExURMmTFCfPn3Ur18/paSkqKioSBMnTpQkjR8/Xm3btlVycrL8/f3Vo0cPp+VbtGghSeXaAQCAZ3J7uElISNDx48c1a9Ys5ebmqlevXlq/fr1jknF2dra8vBrV1CAAAOBGNmOMcXcR9amwsFBBQUEqKChQYGCgu8sBAOCicgpKlJlfpA7BzRQeFODuctyiOr/fbh+5AQAAlUv7IltJq/bIbiQvm5Q8MkoJfdu5u6wGjfM9AAA0UDkFJY5gI0l2I81ctVc5BSXuLayBI9wAANBAZeYXOYLNeWXGKCu/2D0FNRKEGzRYOQUl2noon/9DAeCxOgQ3k5fNuc3bZlNkcFP3FNRIEG7QIKV9ka2Bz27U2Fc+18BnNyrti2x3lwQA9S48KEDJI6PkbTuXcLxtNs0f2cNjJxVXFVdLocHJKSjRwGc3Og3Fetts2jJjKP9BA/BIOQUlysovVmRwU4/9O8jVUmjULnSO2VP/owbg2cKDAvj7Vw2clkKDwzlmAEBtEG7Q4HCOGQBQG5yWQoOU0Ledru0S4vHnmAEA1Ue4QYPFOWYAQE1wWgoAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QbwIDyvC4An4GopwEOkfZGtpFV7ZDeSl01KHhmlhL7t3F0WALgcIzeAB8gpKHEEG0myG2nmqr2M4ACwJMIN4AEu9LwuALAawg3gAXheFwBPQrgBPADP6wLgSZhQDHgIntcFwFMQbgAPwvO6AHgCTksBAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLaRDhJjU1VZGRkfL391f//v21ffv2Svu+8sorGjRokC699FJdeumliouLu2B/AADgWdwebtLS0pSYmKjZs2dr165dio6OVnx8vI4dO1Zh/02bNmnMmDH6+OOPtW3bNkVEROjGG2/U0aNH67lyAADQENmMMcadBfTv3199+/bV4sWLJUl2u10RERGaOnWqZsyYcdHly8rKdOmll2rx4sUaP378RfsXFhYqKChIBQUFCgwMrHX9AACg7lXn99utIzdnzpzRzp07FRcX52jz8vJSXFyctm3bVqV1FBcX6+zZs2rZsmWFn5eWlqqwsNDpBQAArMut4SY/P19lZWUKDQ11ag8NDVVubm6V1vH444+rTZs2TgHpp5KTkxUUFOR4RURE1LpuAABQsZyCEm09lK+cghK31dDEbVt2gWeffVZvv/22Nm3aJH9//wr7JCUlKTEx0fG+sLCQgAMAQB1I+yJbSav2yG4kL5uUPDJKCX3b1Xsdbg03wcHB8vb2Vl5enlN7Xl6ewsLCLrjsc889p2effVb/+Mc/1LNnz0r7+fn5yc/PzyX1AgCAiuUUlDiCjSTZjTRz1V5d2yVE4UEB9VqLW09L+fr6KiYmRunp6Y42u92u9PR0xcbGVrrc73//ez399NNav369+vTpUx+lAoBHaginGNA4ZOYXOYLNeWXGKCu/uN5rcftpqcTERE2YMEF9+vRRv379lJKSoqKiIk2cOFGSNH78eLVt21bJycmSpAULFmjWrFlasWKFIiMjHXNzmjdvrubNm7ttPwDAahrKKQY0Dh2Cm8nLJqeA422zKTK4ab3X4vb73CQkJOi5557TrFmz1KtXL2VkZGj9+vWOScbZ2dnKyclx9F+yZInOnDmjO+64Q+Hh4Y7Xc889565dAADLqewUAyM4qEx4UICSR0bJ22aTdC7YzB/Zo95PSUkN4D439Y373ADAxW09lK+xr3xerv2te69WbKdWbqgIjUVOQYmy8osVGdzUpcGmOr/fbj8tBQBoeBrSKQY0LuFBAW4Zrfkpt5+WAgA0PA3pFANQXYzcAAAqlNC3na7tElInpxiAukS4AQBUqiGcYgCqi9NSACyDe7IAkBi5AWAR3JMFwHmM3ABo9LgnC4CfItwAaPQa0m3fAbgf4QZAo3f+niw/xT1ZAM9FuAHQ6HFPFgA/xYRiAJbAPVkAnEe4AWAZ3JMFgMRpKQAAYDGEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAXlVNQoq2H8pVTUOLuUgDgopq4uwAADVvaF9lKWrVHdiN52aTkkVFK6NvO3WUBQKUYuQFQqZyCEkewkSS7kWau2ssIDoAGjXADoFKZ+UWOYHNemTHKyi92T0EAUAWEGwCV6hDcTF425zZvm02RwU3dUxAAVAHhBkClwoMClDwySt62cwnH22bT/JE9FB4U4ObKAKByTCgGcEEJfdvp2i4hysovVmRwU0sGm5yCEmXmF6lDcDNL7h/gaQg3AC4qPCjAsj/6XA0GWA+npQB4LK4GA6yJcAPAY3E1GGBNDSLcpKamKjIyUv7+/urfv7+2b99+wf7vvvuuunXrJn9/f0VFRWndunX1VCkAK+FqMMCa3B5u0tLSlJiYqNmzZ2vXrl2Kjo5WfHy8jh07VmH/rVu3asyYMbrnnnu0e/dujRgxQiNGjNDevXvruXIAjR1XgwHWZDPGmIt3qzv9+/dX3759tXjxYkmS3W5XRESEpk6dqhkzZpTrn5CQoKKiIr3//vuOtquvvlq9evXS0qVLL7q9wsJCBQUFqaCgQIGBga7bEQCNVk5BiaWvBgOsoDq/324duTlz5ox27typuLg4R5uXl5fi4uK0bdu2CpfZtm2bU39Jio+Pr7Q/AFxMeFCAYju1ItgAFuHWS8Hz8/NVVlam0NBQp/bQ0FDt37+/wmVyc3Mr7J+bm1th/9LSUpWWljreFxYW1rJqAADQkLl9zk1dS05OVlBQkOMVERHh7pIAAEAdcmu4CQ4Olre3t/Ly8pza8/LyFBYWVuEyYWFh1eqflJSkgoICx+vIkSOuKR4AADRIbg03vr6+iomJUXp6uqPNbrcrPT1dsbGxFS4TGxvr1F+SNmzYUGl/Pz8/BQYGOr0AAIB1uf3xC4mJiZowYYL69Omjfv36KSUlRUVFRZo4caIkafz48Wrbtq2Sk5MlSdOmTdPgwYP1/PPP6+abb9bbb7+tHTt26OWXX3bnbgAAgAbC7eEmISFBx48f16xZs5Sbm6tevXpp/fr1jknD2dnZ8vL6cYBpwIABWrFihZ588knNnDlTl19+udasWaMePXq4axcAAEAD4vb73NQ37nMDAEDj02jucwMAAOBqhBsAAGAphBsAAGAphBsAAGApbr9aqr6dnz/NYxgAAGg8zv9uV+U6KI8LNydPnpQkHsMAAEAjdPLkSQUFBV2wj8ddCm632/X999/rkksukc1mc3c59aawsFARERE6cuSIx18Cz7E4h+PwI47FjzgWP+JY/KghHAtjjE6ePKk2bdo43f+uIh43cuPl5aXLLrvM3WW4DY+g+BHH4hyOw484Fj/iWPyIY/Ejdx+Li43YnMeEYgAAYCmEGwAAYCmEGw/h5+en2bNny8/Pz92luB3H4hyOw484Fj/iWPyIY/GjxnYsPG5CMQAAsDZGbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbhqp1NRURUZGyt/fX/3799f27dsv2D8lJUVdu3ZVQECAIiIiNH36dJ0+fdrx+Zw5c2Sz2Zxe3bp1q+vdcInqHIuzZ89q3rx56tSpk/z9/RUdHa3169fXap0NiauPRWP9XmzevFnDhw9XmzZtZLPZtGbNmosus2nTJl111VXy8/NT586dtXz58nJ9Gtv3oi6Og6d8J3JycjR27Fh16dJFXl5eevjhhyvs9+6776pbt27y9/dXVFSU1q1b5/riXawujsXy5cvLfS/8/f3rZgeqgHDTCKWlpSkxMVGzZ8/Wrl27FB0drfj4eB07dqzC/itWrNCMGTM0e/Zs7du3T6+++qrS0tI0c+ZMp35XXnmlcnJyHK8tW7bUx+7USnWPxZNPPqmXXnpJL7zwgv71r3/pgQce0G233abdu3fXeJ0NRV0cC6lxfi+KiooUHR2t1NTUKvXPzMzUzTffrKFDhyojI0MPP/ywJk2apA8//NDRpzF+L+riOEie8Z0oLS1VSEiInnzySUVHR1fYZ+vWrRozZozuuece7d69WyNGjNCIESO0d+9eV5bucnVxLKRzdy/+6ffiu+++c1XJ1WfQ6PTr189MnjzZ8b6srMy0adPGJCcnV9h/8uTJ5rrrrnNqS0xMNAMHDnS8nz17tomOjq6TeutSdY9FeHi4Wbx4sVPbyJEjzV133VXjdTYUdXEsGuv34qckmdWrV1+wz29/+1tz5ZVXOrUlJCSY+Ph4x/vG+r04z1XHwVO+Ez81ePBgM23atHLto0aNMjfffLNTW//+/c39999fywrrj6uOxbJly0xQUJDL6qotRm4amTNnzmjnzp2Ki4tztHl5eSkuLk7btm2rcJkBAwZo586djiH0w4cPa926dbrpppuc+h04cEBt2rRRx44ddddddyk7O7vudsQFanIsSktLyw2VBgQEOP7PsybrbAjq4lic19i+FzWxbds2p2MnSfHx8Y5j11i/F9V1seNwnid8J6qiqsfLU5w6dUrt27dXRESEbr31Vn399dduq4Vw08jk5+errKxMoaGhTu2hoaHKzc2tcJmxY8dq3rx5uuaaa+Tj46NOnTppyJAhTqel+vfvr+XLl2v9+vVasmSJMjMzNWjQIJ08ebJO96c2anIs4uPjtXDhQh04cEB2u10bNmzQqlWrlJOTU+N1NgR1cSykxvm9qInc3NwKj11hYaFKSkoa7feiui52HCTP+U5URWXHy0rfiarq2rWrXnvtNb333nt68803ZbfbNWDAAP373/92Sz2EGw+wadMmzZ8/Xy+++KJ27dqlVatW6YMPPtDTTz/t6DNs2DDdeeed6tmzp+Lj47Vu3TqdOHFC77zzjhsrd70//vGPuvzyy9WtWzf5+vpqypQpmjhxory8PO8/haocC0/5XqDq+E6gIrGxsRo/frx69eqlwYMHa9WqVQoJCdFLL73klno87y96IxccHCxvb2/l5eU5tefl5SksLKzCZZ566imNGzdOkyZNUlRUlG677TbNnz9fycnJstvtFS7TokULdenSRQcPHnT5PrhKTY5FSEiI1qxZo6KiIn333Xfav3+/mjdvro4dO9Z4nQ1BXRyLijSG70VNhIWFVXjsAgMDFRAQ0Gi/F9V1seNQEat+J6qisuNlpe9ETfn4+Kh3795u+14QbhoZX19fxcTEKD093dFmt9uVnp6u2NjYCpcpLi4uNzLh7e0tSTKVPFrs1KlTOnTokMLDw11UuevV5Fic5+/vr7Zt2+qHH37QX//6V9166621Xqc71cWxqEhj+F7URGxsrNOxk6QNGzY4jl1j/V5U18WOQ0Ws+p2oipocL09RVlamPXv2uO974e4Zzai+t99+2/j5+Znly5ebf/3rX+a+++4zLVq0MLm5ucYYY8aNG2dmzJjh6D979mxzySWXmLfeesscPnzYfPTRR6ZTp05m1KhRjj6PPPKI2bRpk8nMzDSfffaZiYuLM8HBwebYsWP1vn/VUd1j8c9//tP89a9/NYcOHTKbN2821113nenQoYP53//+V+V1NlR1cSwa6/fi5MmTZvfu3Wb37t1Gklm4cKHZvXu3+e6774wxxsyYMcOMGzfO0f/w4cOmadOm5rHHHjP79u0zqampxtvb26xfv97RpzF+L+riOHjKd8IY4+gfExNjxo4da3bv3m2+/vprx+efffaZadKkiXnuuefMvn37zOzZs42Pj4/Zs2dPve5bddXFsZg7d6758MMPzaFDh8zOnTvN6NGjjb+/v1Of+kS4aaReeOEF065dO+Pr62v69etn/vnPfzo+Gzx4sJkwYYLj/dmzZ82cOXNMp06djL+/v4mIiDAPPvig049YQkKCCQ8PN76+vqZt27YmISHBHDx4sB73qOaqcyw2bdpkrrjiCuPn52datWplxo0bZ44ePVqtdTZkrj4WjfV78fHHHxtJ5V7n93/ChAlm8ODB5Zbp1auX8fX1NR07djTLli0rt97G9r2oi+PgSd+Jivq3b9/eqc8777xjunTpYnx9fc2VV15pPvjgg/rZoVqoi2Px8MMPO/7bCA0NNTfddJPZtWtX/e3Uz9iMqeS8BAAAQCPEnBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAAGAphBsAaAA2bdokm82mEydOuLsUoNEj3AAe5u6775bNZtOzzz7r1L5mzRrZbDbHe2OMXnnlFcXGxiowMFDNmzfXlVdeqWnTplX5YXjFxcVKSkpSp06d5O/vr5CQEA0ePFjvvfeeo09kZKRSUlJcsm917fyxs9ls8vHxUYcOHfTb3/5Wp0+frtZ6hgwZoocfftipbcCAAcrJyVFQUJALKwY8E+EG8ED+/v5asGCB/ve//1X4uTFGY8eO1UMPPaSbbrpJH330kf71r3/p1Vdflb+/v5555pkqbeeBBx7QqlWr9MILL2j//v1av3697rjjDv3nP/9x5e7Uq1/84hfKycnR4cOHtWjRIr300kuaPXt2rdfr6+ursLAwp4AJoIbc9uAHAG4xYcIE88tf/tJ069bNPPbYY4721atXm/N/Et566y0jybz33nsVrsNut1dpW0FBQWb58uWVfj548OByz6s579NPPzXXXHON8ff3N5dddpmZOnWqOXXqlOPzN954w8TExJjmzZub0NBQM2bMGJOXl+f4/Pzzc9avX2969epl/P39zdChQ01eXp5Zt26d6datm7nkkkvMmDFjTFFRUZX2Z8KECebWW291ahs5cqTp3bu3431+fr4ZPXq0adOmjQkICDA9evQwK1ascFrHz/c5MzPTUe9Pn/m2cuVK0717d+Pr62vat29vnnvuuSrVCXg6Rm4AD+Tt7a358+frhRde0L///e9yn7/11lvq2rWrbrnllgqXr+roQlhYmNatW6eTJ09W+PmqVat02WWXad68ecrJyVFOTo4k6dChQ/rFL36h22+/XV999ZXS0tK0ZcsWTZkyxbHs2bNn9fTTT+vLL7/UmjVrlJWVpbvvvrvcNubMmaPFixdr69atOnLkiEaNGqWUlBStWLFCH3zwgT766CO98MILVdqfn9u7d6+2bt0qX19fR9vp06cVExOjDz74QHv37tV9992ncePGafv27ZKkP/7xj4qNjdW9997r2OeIiIhy6965c6dGjRql0aNHa8+ePZozZ46eeuopLV++vEa1Ah7F3ekKQP366ejD1VdfbX79618bY5xHbrp162ZuueUWp+WmTZtmmjVrZpo1a2batm1bpW198skn5rLLLjM+Pj6mT58+5uGHHzZbtmxx6tO+fXuzaNEip7Z77rnH3HfffU5tn376qfHy8jIlJSUVbuuLL74wkszJkyeNMT+O3PzjH/9w9ElOTjaSzKFDhxxt999/v4mPj6/S/kyYMMF4e3ubZs2aGT8/PyPJeHl5mZUrV15wuZtvvtk88sgjjveDBw8206ZNc+rz85GbsWPHmhtuuMGpz2OPPWa6d+9epVoBT8bIDeDBFixYoNdff1379u27aN8nnnhCGRkZmjVrlk6dOlWl9V977bU6fPiw0tPTdccdd+jrr7/WoEGD9PTTT19wuS+//FLLly9X8+bNHa/4+HjZ7XZlZmZKOjeyMXz4cLVr106XXHKJBg8eLEnKzs52WlfPnj0d/xwaGqqmTZuqY8eOTm3Hjh2r0v5I0tChQ5WRkaHPP/9cEyZM0MSJE3X77bc7Pi8rK9PTTz+tqKgotWzZUs2bN9eHH35Yrq6L2bdvnwYOHOjUNnDgQB04cEBlZWXVWhfgaQg3gAe79tprFR8fr6SkJKf2yy+/XN98841TW0hIiDp37qzWrVtXaxs+Pj4aNGiQHn/8cX300UeaN2+enn76aZ05c6bSZU6dOqX7779fGRkZjteXX36pAwcOqFOnTioqKlJ8fLwCAwP1//7f/9MXX3yh1atXS1K59fr4+Dj++fxVTj9ls9lkt9urvD/NmjVT586dFR0drddee02ff/65Xn31Vcfnf/jDH/THP/5Rjz/+uD7++GNlZGQoPj7+gvsLwLWauLsAAO717LPPqlevXurataujbcyYMRo7dqzee+893XrrrS7dXvfu3fXDDz/o9OnT8vX1la+vb7mRiKuuukr/+te/1Llz5wrXsWfPHv3nP//Rs88+65ivsmPHDpfWWRVeXl6aOXOmEhMTNXbsWAUEBOizzz7Trbfeql/96leSJLvdrm+//Vbdu3d3LFfRPv/cFVdcoc8++8yp7bPPPlOXLl3k7e3t+p0BLISRG8DDRUVF6a677tKf/vQnR9vo0aN1xx13aPTo0Zo3b54+//xzZWVl6ZNPPlFaWlqVf1yHDBmil156STt37lRWVpbWrVunmTNnaujQoQoMDJR07j43mzdv1tGjR5Wfny9Jevzxx7V161ZNmTJFGRkZOnDggN577z3HhOJ27drJ19dXL7zwgg4fPqy1a9de9FRXXbnzzjvl7e2t1NRUSedGvTZs2KCtW7dq3759uv/++5WXl+e0TGRkpOOY5ufnVzhy9Mgjjyg9PV1PP/20vv32W73++utavHixHn300XrZL6AxI9wA0Lx585x+YG02m9LS0pSSkqJ169bp+uuvV9euXfXrX/9aERER2rJlS5XWGx8fr9dff1033nijrrjiCk2dOlXx8fF65513nLadlZWlTp06KSQkRNK5eTKffPKJvv32Ww0aNEi9e/fWrFmz1KZNG0nnTpEtX75c7777rrp3765nn31Wzz33nAuPSNU1adJEU6ZM0e9//3sVFRXpySef1FVXXaX4+HgNGTJEYWFhGjFihNMyjz76qLy9vdW9e3eFhIRUOB/nqquu0jvvvKO3335bPXr00KxZszRv3rwKrwgD4MxmjDHuLgIAAMBVGLkBAACWQrgBUGM/vVT7569PP/3U3eVVS3Z29gX3p7qXcgNwH05LAaixCz1As23btgoICKjHamrnhx9+UFZWVqWfR0ZGqkkTLjAFGgPCDQAAsBROSwEAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEv5/+TFbZUghhxzAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARRRJREFUeJzt3XtcVVX+//H3Abl5AVMQ0EC8ZGoqGqahmVoUWWOZlRcaNcuuaiZTk1iKlxKdKbNvkZaTWtO3ohw1Z+JrOpg5XiavlDZaXiDMAKUZQVFROev3h+P5eQKVy4EDm9fz8TiPR2edtff57P3Yed6svfbeNmOMEQAAgEV4uLsAAAAAVyLcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAHCLadOmyWazlamvzWbTtGnTqrSefv36qV+/fjV2fQDKjnAD1HFLliyRzWZzvOrVq6cWLVrooYce0uHDh91dXo0TERHhtL+aNWumPn36aPny5S5Z/8mTJzVt2jStW7fOJesD6iLCDQBJ0owZM/TnP/9ZCxYs0IABA/TBBx+ob9++On36dJV834svvqhTp05VybqrWteuXfXnP/9Zf/7zn/Xss8/q559/1uDBg7VgwYJKr/vkyZOaPn064QaohHruLgBAzTBgwAB1795dkjRmzBgFBgZqzpw5WrlypYYMGeLy76tXr57q1aud/wS1aNFCv/3tbx3vR44cqbZt2+q1117TE0884cbKAEiM3AC4hD59+kiSDhw44NS+d+9e3X///WrSpIl8fX3VvXt3rVy50qnP2bNnNX36dF1zzTXy9fVV06ZNddNNN2nNmjWOPqXNuSkqKtLEiRMVFBSkRo0a6e6779ZPP/1UoraHHnpIERERJdpLW+fixYt1yy23qFmzZvLx8VHHjh01f/78cu2LKwkJCVGHDh2UkZFx2X5HjhzRI488ouDgYPn6+ioyMlLvvfee4/PMzEwFBQVJkqZPn+449VXV840Aq6mdfzYBqHKZmZmSpKuuusrR9t1336l3795q0aKFJk2apAYNGuiTTz7RoEGD9Je//EX33nuvpPMhIykpSWPGjFGPHj1UUFCgbdu2aceOHbrtttsu+Z1jxozRBx98oLi4OPXq1Utr167VXXfdVantmD9/vq677jrdfffdqlevnv7617/qqaeekt1u19ixYyu17gvOnj2rQ4cOqWnTppfsc+rUKfXr10/79+/XuHHj1KpVK3366ad66KGHdOzYMU2YMEFBQUGaP3++nnzySd17770aPHiwJKlLly4uqROoMwyAOm3x4sVGkvn73/9ujh49ag4dOmSWLl1qgoKCjI+Pjzl06JCj76233mo6d+5sTp8+7Wiz2+2mV69e5pprrnG0RUZGmrvuuuuy35uYmGgu/icoPT3dSDJPPfWUU7+4uDgjySQmJjraRo0aZVq2bHnFdRpjzMmTJ0v0i42NNa1bt3Zq69u3r+nbt+9lazbGmJYtW5rbb7/dHD161Bw9etR88803ZtiwYUaSGT9+/CXXN2/ePCPJfPDBB462M2fOmOjoaNOwYUNTUFBgjDHm6NGjJbYXQPlwWgqAJCkmJkZBQUEKCwvT/fffrwYNGmjlypW6+uqrJUn//ve/tXbtWg0ZMkTHjx9XXl6e8vLy9Msvvyg2Nlb79u1zXF3VuHFjfffdd9q3b1+Zvz81NVWS9PTTTzu1P/PMM5XaLj8/P8d/5+fnKy8vT3379tXBgweVn59foXWuXr1aQUFBCgoKUmRkpD799FONGDFCc+bMueQyqampCgkJ0fDhwx1tXl5eevrpp3XixAl99dVXFaoFQEl1OtysX79eAwcOVPPmzWWz2bRixYoq/87Dhw/rt7/9rZo2bSo/Pz917txZ27Ztq/LvBa4kOTlZa9as0dKlS3XnnXcqLy9PPj4+js/3798vY4ymTJni+GG/8EpMTJR0fk6JdP7Kq2PHjqldu3bq3LmznnvuOX377beX/f4ff/xRHh4eatOmjVP7tddeW6nt2rhxo2JiYtSgQQM1btxYQUFBmjx5siRVONz07NlTa9as0d///ndt2rRJeXl5ev/9952C1K/9+OOPuuaaa+Th4fzPbocOHRyfA3CNOj3nprCwUJGRkXr44Ycd57ar0n/+8x/17t1b/fv31//93/8pKChI+/btc5rTALhLjx49HFdLDRo0SDfddJPi4uL0/fffq2HDhrLb7ZKkZ599VrGxsaWuo23btpKkm2++WQcOHNBnn32m1atX609/+pNee+01LViwQGPGjKl0rZe6+V9xcbHT+wMHDujWW29V+/btNXfuXIWFhcnb21upqal67bXXHNtUXoGBgYqJianQsgCqXp0ONwMGDNCAAQMu+XlRUZFeeOEFffTRRzp27Jg6deqkOXPmVPiuo3PmzFFYWJgWL17saGvVqlWF1gVUJU9PTyUlJal///568803NWnSJLVu3VrS+VMpZflhb9KkiUaPHq3Ro0frxIkTuvnmmzVt2rRLhpuWLVvKbrfrwIEDTqM133//fYm+V111lY4dO1ai/dejH3/9619VVFSklStXKjw83NH+5ZdfXrF+V2vZsqW+/fZb2e12p9GbvXv3Oj6XLh3cAJRdnT4tdSXjxo3T5s2b9fHHH+vbb7/VAw88oDvuuKNc8wgutnLlSnXv3l0PPPCAmjVrpm7dumnhwoUurhpwjX79+qlHjx6aN2+eTp8+rWbNmqlfv356++23lZ2dXaL/0aNHHf/9yy+/OH3WsGFDtW3bVkVFRZf8vgt/aPzP//yPU/u8efNK9G3Tpo3y8/OdTnVlZ2eXuEuwp6enJMkY42jLz893+gOjutx5553KyclRSkqKo+3cuXN644031LBhQ/Xt21eSVL9+fUkqNbwBKJs6PXJzOVlZWVq8eLGysrLUvHlzSeeH41etWqXFixdr1qxZ5V7nwYMHNX/+fMXHx2vy5MnaunWrnn76aXl7e2vUqFGu3gSg0p577jk98MADWrJkiZ544gklJyfrpptuUufOnfXoo4+qdevWys3N1ebNm/XTTz/pm2++kSR17NhR/fr1U1RUlJo0aaJt27Zp6dKlGjdu3CW/q2vXrho+fLjeeust5efnq1evXkpLS9P+/ftL9B02bJief/553XvvvXr66ad18uRJzZ8/X+3atdOOHTsc/W6//XZ5e3tr4MCBevzxx3XixAktXLhQzZo1KzWgVaXHHntMb7/9th566CFt375dERERWrp0qTZu3Kh58+apUaNGks5PgO7YsaNSUlLUrl07NWnSRJ06dVKnTp2qtV6gVnP35Vo1hSSzfPlyx/u//e1vRpJp0KCB06tevXpmyJAhxhhj9uzZYyRd9vX888871unl5WWio6Odvnf8+PHmxhtvrJZtBEpz4VLwrVu3lvisuLjYtGnTxrRp08acO3fOGGPMgQMHzMiRI01ISIjx8vIyLVq0ML/5zW/M0qVLHcu99NJLpkePHqZx48bGz8/PtG/f3rz88svmzJkzjj6lXbZ96tQp8/TTT5umTZuaBg0amIEDB5pDhw6Vemn06tWrTadOnYy3t7e59tprzQcffFDqOleuXGm6dOlifH19TUREhJkzZ45ZtGiRkWQyMjIc/cpzKfiVLnO/1Ppyc3PN6NGjTWBgoPH29jadO3c2ixcvLrHspk2bTFRUlPH29uaycKACbMZcNF5bh9lsNi1fvlyDBg2SJKWkpOjBBx/Ud9995xjavqBhw4YKCQnRmTNndPDgwcuut2nTpo47jrZs2VK33Xab/vSnPzk+nz9/vl566SUeUAgAgItwWuoSunXrpuLiYh05csRxG/pf8/b2Vvv27cu8zt69e5eYHPnDDz84JhICAIDKq9Ph5sSJE07n8zMyMpSenq4mTZqoXbt2evDBBzVy5Ei9+uqr6tatm44ePaq0tDR16dKlQreEnzhxonr16qVZs2ZpyJAh2rJli9555x298847rtwsAADqtDp9WmrdunXq379/ifZRo0ZpyZIlOnv2rF566SW9//77Onz4sAIDA3XjjTdq+vTp6ty5c4W+829/+5sSEhK0b98+tWrVSvHx8Xr00UcruykAAOC/6nS4AQAA1sN9bgAAgKUQbgAAgKXUuQnFdrtdP//8sxo1asRtzgEAqCWMMTp+/LiaN29e4gG0v1bnws3PP/+ssLAwd5cBAAAq4NChQ7r66qsv26fOhZsLtzg/dOiQ/P393VwNAAAoi4KCAoWFhTl+xy+nzoWbC6ei/P39CTcAANQyZZlSwoRiAABgKYQbAABgKYQbAABgKXVuzg0AAGVRXFyss2fPuruMOsXb2/uKl3mXBeEGAICLGGOUk5OjY8eOubuUOsfDw0OtWrWSt7d3pdZDuAEA4CIXgk2zZs1Uv359bvhaTS7cZDc7O1vh4eGV2u+EGwAA/qu4uNgRbJo2berucuqcoKAg/fzzzzp37py8vLwqvB4mFAMA8F8X5tjUr1/fzZXUTRdORxUXF1dqPYQbAAB+hVNR7uGq/U64AQAAlkK4AQAAlkK4Qbll55/SpgN5ys4/5e5SAAAXycnJ0fjx49W6dWv5+PgoLCxMAwcOVFpamlM/Y4wGDBggm82mFStWONozMzNls9mUnp5eYt39+vXTM88843i/bNky3X777WratOkllzl9+rTGjh2rpk2bqmHDhrrvvvuUm5vroq29NLeGm/Xr12vgwIFq3rx5iR18KUVFRXrhhRfUsmVL+fj4KCIiQosWLar6YiFJStmapd6z1ypu4dfqPXutUrZmubskAIDOB5OoqCitXbtWf/zjH7Vr1y6tWrVK/fv319ixY536zps3r9LzWwoLC3XTTTdpzpw5l+wzceJE/fWvf9Wnn36qr776Sj///LMGDx5cqe8tC7deCl5YWKjIyEg9/PDDZd7YIUOGKDc3V++++67atm2r7Oxs2e32Kq4U0vkRm4Rlu2Q359/bjTR52W7d3C5IoQF+7i0OAOq4p556SjabTVu2bFGDBg0c7dddd50efvhhx/v09HS9+uqr2rZtm0JDQyv8fSNGjJB0PlSVJj8/X++++64+/PBD3XLLLZKkxYsXq0OHDvrnP/+pG2+8scLffSVuDTcDBgzQgAEDytx/1apV+uqrr3Tw4EE1adJEkhQREVFF1eHXMvIKHcHmgmJjlJl3knADAL+SnX9KGXmFahXYoMr/jfz3v/+tVatW6eWXX3YKNhc0btxYknTy5EnFxcUpOTlZISEhVVrT9u3bdfbsWcXExDja2rdvr/DwcG3evNm64aa8Vq5cqe7du+sPf/iD/vznP6tBgwa6++67NXPmTPn5lX7gFBUVqaioyPG+oKCgusq1nFaBDeRhk1PA8bTZFBHI/SAA4GIpW7McI90eNilpcGcNvSG8yr5v//79Msaoffv2l+03ceJE9erVS/fcc89l+/Xq1avEM55OnTqlrl27lrmmnJwceXt7O4LVBcHBwcrJySnzeiqiVoWbgwcPasOGDfL19dXy5cuVl5enp556Sr/88osWL15c6jJJSUmaPn16NVdqTaEBfkoa3FmTl+1WsTHytNk0a3AnRm0A4CLuOIVvjLlin5UrV2rt2rXauXPnFfumpKSoQ4cOTm0PPvhgheurbrUq3NjtdtlsNv3v//6vAgICJElz587V/fffr7feeqvU0ZuEhATFx8c73hcUFCgsLKzaaraaoTeE6+Z2QcrMO6mIwPoEGwD4FXecwr/mmmtks9m0d+/eS/ZZu3atDhw4UGIk5b777lOfPn20bt06R1tYWJjatm3r1O9SZ0guJSQkRGfOnNGxY8ecvjM3N7fKT4nVqkvBQ0ND1aJFC0ewkaQOHTrIGKOffvqp1GV8fHzk7+/v9ELlhAb4KbpNU4INAJTiwin8i1X1KfwmTZooNjZWycnJKiwsLPH5sWPHNGnSJH377bdKT093vCTptddeu+TZj8qIioqSl5eX02Xo33//vbKyshQdHe3y77tYrRq56d27tz799FOdOHFCDRs2lCT98MMP8vDw0NVXX+3m6gAAcN8p/OTkZPXu3Vs9evTQjBkz1KVLF507d05r1qzR/PnztWfPnlJHTMLDw9WqVatyf9+///1vZWVl6eeff5Z0PrhI50dsQkJCFBAQoEceeUTx8fFq0qSJ/P39NX78eEVHR1fpZGLJzeHmxIkT2r9/v+N9RkaG0tPT1aRJE4WHhyshIUGHDx/W+++/L0mKi4vTzJkzNXr0aE2fPl15eXl67rnn9PDDD5d7uAwAgKrijlP4rVu31o4dO/Tyyy/rd7/7nbKzsxUUFKSoqCjNnz/f5d+3cuVKjR492vF+2LBhkqTExERNmzZN0vlRIQ8PD913330qKipSbGys3nrrLZfX8ms2U5ZZSFVk3bp16t+/f4n2UaNGacmSJXrooYeUmZnpdB5w7969Gj9+vDZu3KimTZtqyJAheumll8ocbgoKChQQEKD8/HxOUQEAnJw+fVoZGRlq1aqVfH193V1OnXO5/V+e32+3jtz069fvsjO8lyxZUqKtffv2WrNmTRVWBQAAarNaNaEYAADgSgg3AADAUgg3AADAUgg3AAD8ihuvtanTXLXfCTcAAPyXl5eXpPMPmET1O3PmjCTJ09OzUuupVTfxAwCgKnl6eqpx48Y6cuSIJKl+/fqy2WxXWAquYLfbdfToUdWvX1/16lUunhBuAAC4yIW7+F4IOKg+Hh4eCg8Pr3SgJNwAAHARm82m0NBQNWvWTGfPnnV3OXWKt7e3PDwqP2OGcAMAQCk8PT0rPfcD7sGEYgAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCluDTfr16/XwIED1bx5c9lsNq1YsaLMy27cuFH16tVT165dq6w+AABQ+7g13BQWFioyMlLJycnlWu7YsWMaOXKkbr311iqqDAAA1Fb13PnlAwYM0IABA8q93BNPPKG4uDh5enqWa7QHAABYX62bc7N48WIdPHhQiYmJZepfVFSkgoICpxcAALCuWhVu9u3bp0mTJumDDz5QvXplG3RKSkpSQECA4xUWFlbFVQIAAHeqNeGmuLhYcXFxmj59utq1a1fm5RISEpSfn+94HTp0qAqrBAAA7ubWOTflcfz4cW3btk07d+7UuHHjJEl2u13GGNWrV0+rV6/WLbfcUmI5Hx8f+fj4VHe5AADATWpNuPH399euXbuc2t566y2tXbtWS5cuVatWrdxUGQAAqEncGm5OnDih/fv3O95nZGQoPT1dTZo0UXh4uBISEnT48GG9//778vDwUKdOnZyWb9asmXx9fUu0AwCAusut4Wbbtm3q37+/4318fLwkadSoUVqyZImys7OVlZXlrvIAAEAtZDPGGHcXUZ0KCgoUEBCg/Px8+fv7u7scAABQBuX5/a41V0sBAACUBeEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYilvDzfr16zVw4EA1b95cNptNK1asuGz/ZcuW6bbbblNQUJD8/f0VHR2tL774onqKBQAAtYJbw01hYaEiIyOVnJxcpv7r16/XbbfdptTUVG3fvl39+/fXwIEDtXPnziquFAAA1BY2Y4xxdxGSZLPZtHz5cg0aNKhcy1133XUaOnSopk6dWqb+BQUFCggIUH5+vvz9/StQKQAAqG7l+f2uV001VQm73a7jx4+rSZMml+xTVFSkoqIix/uCgoLqKA0AALhJrZ5Q/Morr+jEiRMaMmTIJfskJSUpICDA8QoLC6vGCgEAQHWrteHmww8/1PTp0/XJJ5+oWbNml+yXkJCg/Px8x+vQoUPVWCUAAKhutfK01Mcff6wxY8bo008/VUxMzGX7+vj4yMfHp5oqAwAA7lbrRm4++ugjjR49Wh999JHuuusud5cDAABqGLeO3Jw4cUL79+93vM/IyFB6erqaNGmi8PBwJSQk6PDhw3r//fclnT8VNWrUKL3++uvq2bOncnJyJEl+fn4KCAhwyzYAAICaxa0jN9u2bVO3bt3UrVs3SVJ8fLy6devmuKw7OztbWVlZjv7vvPOOzp07p7Fjxyo0NNTxmjBhglvqBwAANU+Nuc9NdeE+NwAA1D7l+f2udXNuAAAALodwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAAXCY7/5Q2HchTdv4pt9Xg1nCzfv16DRw4UM2bN5fNZtOKFSuuuMy6det0/fXXy8fHR23bttWSJUuqvE4AAHBlKVuz1Hv2WsUt/Fq9Z69VytYst9Th1nBTWFioyMhIJScnl6l/RkaG7rrrLvXv31/p6el65plnNGbMGH3xxRdVXCkAALic7PxTSli2S3Zz/r3dSJOX7XbLCE69av/GiwwYMEADBgwoc/8FCxaoVatWevXVVyVJHTp00IYNG/Taa68pNja2qsoEAABXkJFX6Ag2FxQbo8y8kwoN8KvWWmrVnJvNmzcrJibGqS02NlabN2++5DJFRUUqKChwegEAANdqFdhAHjbnNk+bTRGB9au9lloVbnJychQcHOzUFhwcrIKCAp06VfqwV1JSkgICAhyvsLCw6igVAIA6JTTAT0mDO8vTdj7heNpsmjW4U7WP2khuPi1VHRISEhQfH+94X1BQQMABAKAKDL0hXDe3C1Jm3klFBNZ3S7CRalm4CQkJUW5urlNbbm6u/P395edX+g708fGRj49PdZQHAAAkGZkrd6pCtSrcREdHKzU11altzZo1io6OdlNFAADggpStWY4rpjxsUtLgzhp6Q3i11+HWOTcnTpxQenq60tPTJZ2/1Ds9PV1ZWeevi09ISNDIkSMd/Z944gkdPHhQv//977V371699dZb+uSTTzRx4kR3lA8AAP6rJl0K7tZws23bNnXr1k3dunWTJMXHx6tbt26aOnWqJCk7O9sRdCSpVatW+vzzz7VmzRpFRkbq1Vdf1Z/+9CcuAwcAwM0udyl4dbMZY9x7YqyaFRQUKCAgQPn5+fL393d3OQAAWEJ2/in1nr3WKeB42mzaMKm/SyYWl+f3u1ZdCl7T1YTnaQAA4A5cCm5BNWUSFQAA7lJTLgVn5MYFatIkKgAA3Ck0wE/RbZq6LdhIhBuXqEmTqAAAqOsINy5Qk56nAQBAXUe4cYGaNIkKAIC6jgnFLlJTJlEBAFDXEW5cKDTAj1ADAICbcVoKAABYCuEGAABYCuEGAABYCuEGAABYSoUmFG/ZskWbN29WTk6OJCkkJETR0dHq0aOHS4sDAAAor3KFmyNHjui+++7Txo0bFR4eruDgYElSbm6uJk6cqN69e+svf/mLmjVrViXFAgAAXEm5Tks99dRTKi4u1p49e5SZmamvv/5aX3/9tTIzM7Vnzx7Z7XaNHTu2qmoFAAC4Ipsxxly523mNGjXS+vXr1a1bt1I/3759u/r166fjx4+7rEBXKygoUEBAgPLz8+Xv7+/ucgAAQBmU5/e7XCM3Pj4+KigouOTnx48fl4+PT3lWCQAA4FLlCjdDhw7VqFGjtHz5cqeQU1BQoOXLl2v06NEaPny4y4sEAAAoq3JNKJ47d67sdruGDRumc+fOydvbW5J05swZ1atXT4888oheeeWVKikUAACgLMo15+aCgoICbd++3elS8KioqFoxh4U5NwAA1D7l+f2u0H1u/P391b9//woVBwAAUJVceofi3NxczZgxw5WrBAAAKBeXhpucnBxNnz7dlasEAAAol3Kdlvr2228v+/n3339fqWIAAAAqq1zhpmvXrrLZbCptDvKFdpvN5rLiAAAAyqtc4aZJkyb6wx/+oFtvvbXUz7/77jsNHDjQJYUBAABURLnCTVRUlH7++We1bNmy1M+PHTtW6qgOAABAdSlXuHniiSdUWFh4yc/Dw8O1ePHiShcFAABQURW6iV9txk38AACofarswZkAAAA1XblOS8XHx5ep39y5cytUDAAAQGWVK9zs3LnT6f2GDRsUFRUlPz8/R1tFLgVPTk7WH//4R+Xk5CgyMlJvvPGGevToccn+8+bN0/z585WVlaXAwEDdf//9SkpKkq+vb7m/GwAAWEu5ws2XX37p9L5Ro0b68MMP1bp16woXkJKSovj4eC1YsEA9e/bUvHnzFBsbq++//17NmjUr0f/DDz/UpEmTtGjRIvXq1Us//PCDHnroIdlsNkaMAACA++fczJ07V48++qhGjx6tjh07asGCBapfv74WLVpUav9Nmzapd+/eiouLU0REhG6//XYNHz5cW7ZsqebKAQBATeTWcHPmzBlt375dMTExjjYPDw/FxMRo8+bNpS7Tq1cvbd++3RFmDh48qNTUVN15552l9i8qKlJBQYHTCwAAWFe5Tku5Wl5enoqLixUcHOzUHhwcrL1795a6TFxcnPLy8nTTTTfJGKNz587piSee0OTJk0vtn5SUxMM8AQCoQyr14ExjjPbu3asTJ044tXfp0qXylV3CunXrNGvWLL311lvq2bOn9u/frwkTJmjmzJmaMmVKif4JCQlOV3kVFBQoLCysyuoDAADuVekHZ/7mN7+R5PzgzOLi4jKtLzAwUJ6ensrNzXVqz83NVUhISKnLTJkyRSNGjNCYMWMkSZ07d1ZhYaEee+wxvfDCC/LwcD7T5uPjIx8fnzJvIwAAVpGdf0oZeYVqFdhAoQF+V17AIsoVbjIyMlz65d7e3oqKilJaWpoGDRokSbLb7UpLS9O4ceNKXebkyZMlAoynp6ck8VwrAAD+K2VrlhKW7ZLdSB42KWlwZw29IdzdZVWLcoWbSz0wszLi4+M1atQode/eXT169NC8efNUWFio0aNHS5JGjhypFi1aKCkpSZI0cOBAzZ07V926dXOclpoyZYoGDhzoCDkAANRl2fmnHMFGkuxGmrxst25uF1QnRnBcMqH4lltu0eLFiysUfoYOHaqjR49q6tSpysnJUdeuXbVq1SrHJOOsrCynkZoXX3xRNptNL774og4fPqygoCANHDhQL7/8sis2BQCAWi8jr9ARbC4oNkaZeSfrRLgp14MzV65cWWr74MGD9frrrzsm6t59992uqa4K8OBMAIDVZeefUu/Za50CjqfNpg2T+tfacFOe3+9yhRsPD48SE4pLrLAcE4rdgXADAKgLUrZmafKy3So2Rp42m2YN7lSr59yU5/e7XKelYmNj5enpqUWLFjk9GsHLy0vffPONOnbsWLGKAQCASw29IVw3twtSZt5JRQTWr7UjNhVRrjsU/9///Z9uvfVWde/eXX/729+qqiYAAOACoQF+im7TtE4FG6kCj1+YOHGiVq5cqeeff16PP/64Tp48WRV1AQAAVEiFni3VtWtXbdu2TTabTV27duX+MgAAoMao8KXgfn5+WrBggVauXKkvv/xSgYGBrqwLAACgQso1crN27Vp17NjR6cnad999t1577TX5+Pjouuuu0z/+8Q+XFwkAAFBW5Qo38+bN06OPPlrqJVgBAQF6/PHHNXfuXJcVBwAAUF7lCjfffPON7rjjjkt+fvvtt2v79u2VLgoAAKCiyhVucnNz5eXldcnP69Wrp6NHj1a6KAAAgIoqV7hp0aKFdu/efcnPv/32W4WGhla6KAAAgIoqV7i58847NWXKFJ0+fbrEZ6dOnVJiYqJ+85vfuKw4AKirsvNPadOBPGXnn3J3KUCtU65nS+Xm5ur666+Xp6enxo0bp2uvvVaStHfvXiUnJ6u4uFg7duxwPNG7JuLZUgBqupStWUpYtkt2I3nYpKTBnWv1M4EAV6iyB2dK0o8//qgnn3xSX3zxhePmfTabTbGxsUpOTlarVq0qXnk1INwAqMms+DRnwBWq7MGZktSyZUulpqbqP//5j/bv3y9jjK655hpdddVVFS4YAHBeRl6hU7CRpGJjlJl3knADlFGF71B81VVX6YYbbnBlLQBQ57UKbCAPm0qM3EQE1ndfUUAtU6FnSwEAqkZogJ+SBneWp80m6XywmTW4E6M2QDlUeOQGAFA1ht4QrpvbBSkz76QiAusTbIByItwAQA0UGuBHqAEqiNNSAADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUmpEuElOTlZERIR8fX3Vs2dPbdmy5bL9jx07prFjxyo0NFQ+Pj5q166dUlNTq6laAABQk7n9qeApKSmKj4/XggUL1LNnT82bN0+xsbH6/vvv1axZsxL9z5w5o9tuu03NmjXT0qVL1aJFC/34449q3Lhx9RcPAABqHJsxxrizgJ49e+qGG27Qm2++KUmy2+0KCwvT+PHjNWnSpBL9FyxYoD/+8Y/au3evvLy8yv19BQUFCggIUH5+vvz9/StdPwAAqHrl+f1262mpM2fOaPv27YqJiXG0eXh4KCYmRps3by51mZUrVyo6Olpjx45VcHCwOnXqpFmzZqm4uLjU/kVFRSooKHB6AQAA63JruMnLy1NxcbGCg4Od2oODg5WTk1PqMgcPHtTSpUtVXFys1NRUTZkyRa+++qpeeumlUvsnJSUpICDA8QoLC3P5dgAAgJqjRkwoLg+73a5mzZrpnXfeUVRUlIYOHaoXXnhBCxYsKLV/QkKC8vPzHa9Dhw5Vc8UAAKA6uXVCcWBgoDw9PZWbm+vUnpubq5CQkFKXCQ0NlZeXlzw9PR1tHTp0UE5Ojs6cOSNvb2+n/j4+PvLx8XF98QAAoEZy68iNt7e3oqKilJaW5miz2+1KS0tTdHR0qcv07t1b+/fvl91ud7T98MMPCg0NLRFsAABA3eP201Lx8fFauHCh3nvvPe3Zs0dPPvmkCgsLNXr0aEnSyJEjlZCQ4Oj/5JNP6t///rcmTJigH374QZ9//rlmzZqlsWPHumsTAABADeL2+9wMHTpUR48e1dSpU5WTk6OuXbtq1apVjknGWVlZ8vD4/xksLCxMX3zxhSZOnKguXbqoRYsWmjBhgp5//nl3bQIAAKhB3H6fm+rGfW4AAKh9as19bgAAAFyNcAMAACyFcAMAqHOy809p04E8ZeefcncpqAJun1AMAEB1StmapYRlu2Q3kodNShrcWUNvCHd3WXAhRm5ciL8EAKBmy84/5Qg2kmQ30uRlu/l322IYuXER/hIAgJovI6/QEWwuKDZGmXknFRrg556i4HKM3LgAfwkAQO3QKrCBPGzObZ42myIC67unIFQJwo0LXO4vAQBAzREa4KekwZ3laTufcDxtNs0a3IlRG4vhtJQLXPhL4OKAw18CAFAzDb0hXDe3C1Jm3klFBNYn2FgQIzcuwF8CAFC7hAb4KbpNU/6dtihGblyEvwQAAKgZCDcuFBrgR6gBAMDNOC0FAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAspUaEm+TkZEVERMjX11c9e/bUli1byrTcxx9/LJvNpkGDBlVtgQAAoNZwe7hJSUlRfHy8EhMTtWPHDkVGRio2NlZHjhy57HKZmZl69tln1adPn2qqFAAA1AZuDzdz587Vo48+qtGjR6tjx45asGCB6tevr0WLFl1ymeLiYj344IOaPn26WrduXY3VAgCAy8nOP6VNB/KUnX/KbTW4NdycOXNG27dvV0xMjKPNw8NDMTEx2rx58yWXmzFjhpo1a6ZHHnnkit9RVFSkgoICpxcAAHC9lK1Z6j17reIWfq3es9cqZWuWW+pwa7jJy8tTcXGxgoODndqDg4OVk5NT6jIbNmzQu+++q4ULF5bpO5KSkhQQEOB4hYWFVbpuAADgLDv/lBKW7ZLdnH9vN9LkZbvdMoLj9tNS5XH8+HGNGDFCCxcuVGBgYJmWSUhIUH5+vuN16NChKq4SAIC6JyOv0BFsLig2Rpl5J6u9lnrV/o0XCQwMlKenp3Jzc53ac3NzFRISUqL/gQMHlJmZqYEDBzra7Ha7JKlevXr6/vvv1aZNG6dlfHx85OPjUwXVAwCAC1oFNpCHTU4Bx9NmU0Rg/Wqvxa0jN97e3oqKilJaWpqjzW63Ky0tTdHR0SX6t2/fXrt27VJ6errjdffdd6t///5KT0/nlBMAAG4SGuCnpMGd5WmzSTofbGYN7qTQAL9qr8WtIzeSFB8fr1GjRql79+7q0aOH5s2bp8LCQo0ePVqSNHLkSLVo0UJJSUny9fVVp06dnJZv3LixJJVoBwAA1WvoDeG6uV2QMvNOKiKwvluCjVQDws3QoUN19OhRTZ06VTk5OeratatWrVrlmGSclZUlD49aNTUIANwqO/+UMvIK1Sqwgdt+XFB3hQb4uf24sxljzJW7WUdBQYECAgKUn58vf39/d5cDAC6VsjXLccWKh01KGtxZQ28Id3dZQKWV5/ebIREAsIiadCku4E6EGwCwiJp0KS7gToQbALCIC5fiXsxdl+IC7kS4AQCLqEmX4gLu5ParpQAArlNTLsUF3IlwAwAWUxMuxQXcidNSAADAUgg3AADAUgg3sLzs/FPadCCPe30AQB3BnBtYGndrBYC6h5EbWBZ3awWAuolwA8vibq0AUDcRbmBZ3K0VAOomwg0si7u1AkDdxIRiWBp3awWAuodwA8vjbq0AULdwWgoAAFgK4QYAAFgK4QYAAFgK4QZAhfFoCwA1EROKAVQIj7YAUFMxcgOg3Hi0BYCajHADoNx4tAWAmoxwA6DceLQFgJqMcAOg3Hi0BYCajAnFACqER1sAqKkINwAqjEdbAKiJOC0FAAAshXADABbDzRVR13FaCgAshJsrAozcAIBlcHNF4LwaEW6Sk5MVEREhX19f9ezZU1u2bLlk34ULF6pPnz666qqrdNVVVykmJuay/QGgruDmisB5bg83KSkpio+PV2Jionbs2KHIyEjFxsbqyJEjpfZft26dhg8fri+//FKbN29WWFiYbr/9dh0+fLiaKwdcj7kSqAxurgicZzPGmCt3qzo9e/bUDTfcoDfffFOSZLfbFRYWpvHjx2vSpElXXL64uFhXXXWV3nzzTY0cOfKK/QsKChQQEKD8/Hz5+/tXun7AVZgrAVdI2Zqlyct2q9gYx80VOY5gBeX5/XbrhOIzZ85o+/btSkhIcLR5eHgoJiZGmzdvLtM6Tp48qbNnz6pJkyalfl5UVKSioiLH+4KCgsoVDVSBS82VuLldkGXvI5Odf0oZeYVqFdjAstvoDtxcEXBzuMnLy1NxcbGCg4Od2oODg7V3794yreP5559X8+bNFRMTU+rnSUlJmj59eqVrBarS5eZKWPHHiVGqqsXNFVHXuX3OTWXMnj1bH3/8sZYvXy5fX99S+yQkJCg/P9/xOnToUDVXCVxZXZorwRU9AKqaW8NNYGCgPD09lZub69Sem5urkJCQyy77yiuvaPbs2Vq9erW6dOlyyX4+Pj7y9/d3egE1TV16ECVX9ACoam49LeXt7a2oqCilpaVp0KBBks5PKE5LS9O4ceMuudwf/vAHvfzyy/riiy/UvXv3aqoWqFp1Za7EhVGqiwOOVUepALiH209LxcfHa+HChXrvvfe0Z88ePfnkkyosLNTo0aMlSSNHjnSacDxnzhxNmTJFixYtUkREhHJycpSTk6MTJ064axMAlwkN8FN0m6aWDTZS3RqlAuAebn/8wtChQ3X06FFNnTpVOTk56tq1q1atWuWYZJyVlSUPj/+fwebPn68zZ87o/vvvd1pPYmKipk2bVp2lA6igujJKBcA93H6fm+rGfW4AAKh9yvP77fbTUgAAAK5EuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuEG5Zeef0qYDecrOP+XuUlCLcRwBqCr13F0AapeUrVlKWLZLdiN52KSkwZ019IZwd5eFWobjCEBVYuQGZZadf8rxgyRJdiNNXrabv7xRLhxHAKoa4QZllpFX6PhBuqDYGGXmnXRPQaiVOI4AVDXCDcqsVWADedic2zxtNkUE1ndPQaiVOI4AVDXCDcosNMBPSYM7y9N2/pfJ02bTrMGdFBrg5+bKUJtwHAGoajZjjLlyN+soKChQQECA8vPz5e/v7+5yaqXs/FPKzDupiMD6/CChwjiOAJRHeX6/uVoK5RYa4MePESqN4whAVeG0FAAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDYBahQduArgSLgUHUGvwwE0AZcHIDYBagQduAigrwg2AWoEHbgIoK8INgFqBB27WbMyFQk1CuAFQK9TWB27WhR/9lK1Z6j17reIWfq3es9cqZWuWu0tCHVcjwk1ycrIiIiLk6+urnj17asuWLZft/+mnn6p9+/by9fVV586dlZqaWk2VAnCnoTeEa8Ok/vro0Ru1YVL/Gj+ZuC786DMXCjWR28NNSkqK4uPjlZiYqB07digyMlKxsbE6cuRIqf03bdqk4cOH65FHHtHOnTs1aNAgDRo0SLt3767mygG4Q2iAn6LbNK0VIzZ14UefuVCoidwebubOnatHH31Uo0ePVseOHbVgwQLVr19fixYtKrX/66+/rjvuuEPPPfecOnTooJkzZ+r666/Xm2++Wc2VA8Cl1ZUffeZCoSZya7g5c+aMtm/frpiYGEebh4eHYmJitHnz5lKX2bx5s1N/SYqNjb1k/6KiIhUUFDi9AKCq1ZUf/do6FwrW5tab+OXl5am4uFjBwcFO7cHBwdq7d2+py+Tk5JTaPycnp9T+SUlJmj59umsKBoAyuvCjP3nZbhUbY+kf/aE3hOvmdkHKzDupiMD6ltxG1C6Wv0NxQkKC4uPjHe8LCgoUFhbmxooA1BV16Uc/NMDP0tuH2sWt4SYwMFCenp7Kzc11as/NzVVISEipy4SEhJSrv4+Pj3x8fFxTMACUEz/6QPVz65wbb29vRUVFKS0tzdFmt9uVlpam6OjoUpeJjo526i9Ja9asuWR/AABQt7j9tFR8fLxGjRql7t27q0ePHpo3b54KCws1evRoSdLIkSPVokULJSUlSZImTJigvn376tVXX9Vdd92ljz/+WNu2bdM777zjzs0AAAA1hNvDzdChQ3X06FFNnTpVOTk56tq1q1atWuWYNJyVlSUPj/8/wNSrVy99+OGHevHFFzV58mRdc801WrFihTp16uSuTQAAADWIzRhjrtzNOgoKChQQEKD8/Hz5+/u7uxwAAFAG5fn9dvtN/AAAAFyJcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACzF7Tfxq24XbutTUFDg5koAAEBZXfjdLsvt+epcuDl+/Lgk8WRwAABqoePHjysgIOCyfercHYrtdrt+/vlnNWrUSDabrVLrKigoUFhYmA4dOsTdjv+LfVIS+6R07JeS2CclsU9Kqqv7xBij48ePq3nz5k6PZSpNnRu58fDw0NVXX+3Sdfr7+9epA6ws2CclsU9Kx34piX1SEvukpLq4T640YnMBE4oBAIClEG4AAIClEG4qwcfHR4mJifLx8XF3KTUG+6Qk9knp2C8lsU9KYp+UxD65sjo3oRgAAFgbIzcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDe/kpycrIiICPn6+qpnz57asmXLZfvPmzdP1157rfz8/BQWFqaJEyfq9OnTjs+nTZsmm83m9Grfvn1Vb4ZLlWefnD17VjNmzFCbNm3k6+uryMhIrVq1qlLrrIlcvU9q+3Gyfv16DRw4UM2bN5fNZtOKFSuuuMy6det0/fXXy8fHR23bttWSJUtK9KnNx0lV7JO6dpxkZ2crLi5O7dq1k4eHh5555plS+3366adq3769fH191blzZ6Wmprq++CpSFftkyZIlJY4TX1/fqtmAGopwc5GUlBTFx8crMTFRO3bsUGRkpGJjY3XkyJFS+3/44YeaNGmSEhMTtWfPHr377rtKSUnR5MmTnfpdd911ys7Odrw2bNhQHZvjEuXdJy+++KLefvttvfHGG/rXv/6lJ554Qvfee6927txZ4XXWNFWxT6TafZwUFhYqMjJSycnJZeqfkZGhu+66S/3791d6erqeeeYZjRkzRl988YWjT20/Tqpin0h16zgpKipSUFCQXnzxRUVGRpbaZ9OmTRo+fLgeeeQR7dy5U4MGDdKgQYO0e/duV5ZeZapin0jn71588XHy448/uqrk2sHAoUePHmbs2LGO98XFxaZ58+YmKSmp1P5jx441t9xyi1NbfHy86d27t+N9YmKiiYyMrJJ6q0N590loaKh58803ndoGDx5sHnzwwQqvs6apin1S24+Ti0kyy5cvv2yf3//+9+a6665zahs6dKiJjY11vK/tx8nFXLVP6tpxcrG+ffuaCRMmlGgfMmSIueuuu5zaevbsaR5//PFKVlj9XLVPFi9ebAICAlxWV23EyM1/nTlzRtu3b1dMTIyjzcPDQzExMdq8eXOpy/Tq1Uvbt293DJUfPHhQqampuvPOO5367du3T82bN1fr1q314IMPKisrq+o2xIUqsk+KiopKDH/6+fk5/rqsyDprkqrYJxfU1uOkIjZv3uy0DyUpNjbWsQ9r+3FSEVfaJxfUpeOkLMq63+qaEydOqGXLlgoLC9M999yj7777zt0lVSvCzX/l5eWpuLhYwcHBTu3BwcHKyckpdZm4uDjNmDFDN910k7y8vNSmTRv169fP6bRUz549tWTJEq1atUrz589XRkaG+vTpo+PHj1fp9rhCRfZJbGys5s6dq3379slut2vNmjVatmyZsrOzK7zOmqQq9olUu4+TisjJySl1HxYUFOjUqVO1/jipiCvtE6nuHSdlcan9ZtXjpCyuvfZaLVq0SJ999pk++OAD2e129erVSz/99JO7S6s2hJtKWLdunWbNmqW33npLO3bs0LJly/T5559r5syZjj4DBgzQAw88oC5duig2Nlapqak6duyYPvnkEzdWXnVef/11XXPNNWrfvr28vb01btw4jR49+oqPp7eysuyTunacoGI4TlAW0dHRGjlypLp27aq+fftq2bJlCgoK0ttvv+3u0qpN3f3F+ZXAwEB5enoqNzfXqT03N1chISGlLjNlyhSNGDFCY8aMUefOnXXvvfdq1qxZSkpKkt1uL3WZxo0bq127dtq/f7/Lt8HVKrJPgoKCtGLFChUWFurHH3/U3r171bBhQ7Vu3brC66xJqmKflKY2HScVERISUuo+9Pf3l5+fX60/TiriSvukNFY/TsriUvvNqsdJRXh5ealbt2516jgh3PyXt7e3oqKilJaW5miz2+1KS0tTdHR0qcucPHmyxIiEp6enJMlc4pFdJ06c0IEDBxQaGuqiyqtORfbJBb6+vmrRooXOnTunv/zlL7rnnnsqvc6aoCr2SWlq03FSEdHR0U77UJLWrFnj2Ie1/TipiCvtk9JY/Tgpi4rst7qmuLhYu3btqlvHibtnNNckH3/8sfHx8TFLliwx//rXv8xjjz1mGjdubHJycowxxowYMcJMmjTJ0T8xMdE0atTIfPTRR+bgwYNm9erVpk2bNmbIkCGOPr/73e/MunXrTEZGhtm4caOJiYkxgYGB5siRI9W+fRVR3n3yz3/+0/zlL38xBw4cMOvXrze33HKLadWqlfnPf/5T5nXWdFWxT2r7cXL8+HGzc+dOs3PnTiPJzJ071+zcudP8+OOPxhhjJk2aZEaMGOHof/DgQVO/fn3z3HPPmT179pjk5GTj6elpVq1a5ehT24+Tqtgnde04McY4+kdFRZm4uDizc+dO89133zk+37hxo6lXr5555ZVXzJ49e0xiYqLx8vIyu3btqtZtq6iq2CfTp083X3zxhTlw4IDZvn27GTZsmPH19XXqY3WEm1954403THh4uPH29jY9evQw//znPx2f9e3b14waNcrx/uzZs2batGmmTZs2xtfX14SFhZmnnnrK6Udr6NChJjQ01Hh7e5sWLVqYoUOHmv3791fjFlVeefbJunXrTIcOHYyPj49p2rSpGTFihDl8+HC51lkbuHqf1Pbj5MsvvzSSSrwu7IdRo0aZvn37llima9euxtvb27Ru3dosXry4xHpr83FSFfukLh4npfVv2bKlU59PPvnEtGvXznh7e5vrrrvOfP7559WzQS5QFfvkmWeecfx/ExwcbO68806zY8eO6tuoGsBmzCXOnwAAANRCzLkBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBgBpg3bp1stlsOnbsmLtLAWo9wg1Qxzz00EOy2WyaPXu2U/uKFStks9kc740xWrhwoaKjo+Xv76+GDRvquuuu04QJE8r8AL6TJ08qISFBbdq0ka+vr4KCgtS3b1999tlnjj4RERGaN2+eS7atql3YdzabTV5eXmrVqpV+//vf6/Tp0+VaT79+/fTMM884tfXq1UvZ2dkKCAhwYcVA3US4AeogX19fzZkzR//5z39K/dwYo7i4OD399NO68847tXr1av3rX//Su+++K19fX7300ktl+p4nnnhCy5Yt0xtvvKG9e/dq1apVuv/++/XLL7+4cnOq1R133KHs7GwdPHhQr732mt5++20lJiZWer3e3t4KCQlxCpgAKsi9T38AUN1GjRplfvOb35j27dub5557ztG+fPlyc+GfhI8++shIMp999lmp67Db7WX6roCAALNkyZJLft63b98Sz8i54B//+Ie56aabjK+vr7n66qvN+PHjzYkTJxyfv//++yYqKso0bNjQBAcHm+HDh5vc3FzH5xee2bNq1SrTtWtX4+vra/r3729yc3NNamqqad++vWnUqJEZPny4KSwsLNP2jBo1ytxzzz1ObYMHDzbdunVzvM/LyzPDhg0zzZs3N35+fqZTp07mww8/dFrHr7c5IyPDUe/Fz6ZbunSp6dixo/H29jYtW7Y0r7zySpnqBOo6Rm6AOsjT01OzZs3SG2+8oZ9++qnE5x999JGuvfZa3X333aUuX9bRhZCQEKWmpur48eOlfr5s2TJdffXVmjFjhrKzs5WdnS1JOnDggO644w7dd999+vbbb5WSkqINGzZo3LhxjmXPnj2rmTNn6ptvvtGKFSuUmZmphx56qMR3TJs2TW+++aY2bdqkQ4cOaciQIZo3b54+/PBDff7551q9erXeeOONMm3Pr+3evVubNm2St7e3o+306dOKiorS559/rt27d+uxxx7TiBEjtGXLFknS66+/rujoaD366KOObQ4LCyux7u3bt2vIkCEaNmyYdu3apWnTpmnKlClasmRJhWoF6hR3pysA1evi0Ycbb7zRPPzww8YY55Gb9u3bm7vvvttpuQkTJpgGDRqYBg0amBYtWpTpu7766itz9dVXGy8vL9O9e3fzzDPPmA0bNjj1admypXnttdec2h555BHz2GOPObX94x//MB4eHubUqVOlftfWrVuNJHP8+HFjzP8fufn73//u6JOUlGQkmQMHDjjaHn/8cRMbG1um7Rk1apTx9PQ0DRo0MD4+PkaS8fDwMEuXLr3scnfddZf53e9+53jft29fM2HCBKc+vx65iYuLM7fddptTn+eee8507NixTLUCdRkjN0AdNmfOHL333nvas2fPFfu+8MILSk9P19SpU3XixIkyrf/mm2/WwYMHlZaWpvvvv1/fffed+vTpo5kzZ152uW+++UZLlixRw4YNHa/Y2FjZ7XZlZGRIOj+yMXDgQIWHh6tRo0bq27evJCkrK8tpXV26dHH8d3BwsOrXr6/WrVs7tR05cqRM2yNJ/fv3V3p6ur7++muNGjVKo0eP1n333ef4vLi4WDNnzlTnzp3VpEkTNWzYUF988UWJuq5kz5496t27t1Nb7969tW/fPhUXF5drXUBdQ7gB6rCbb75ZsbGxSkhIcGq/5ppr9P333zu1BQUFqW3btmrWrFm5vsPLy0t9+vTR888/r9WrV2vGjBmaOXOmzpw5c8llTpw4occff1zp6emO1zfffKN9+/apTZs2KiwsVGxsrPz9/fW///u/2rp1q5YvXy5JJdbr5eXl+O8LVzldzGazyW63l3l7GjRooLZt2yoyMlKLFi3S119/rXfffdfx+R//+Ee9/vrrev755/Xll18qPT1dsbGxl91eAK5Vz90FAHCv2bNnq2vXrrr22msdbcOHD1dcXJw+++wz3XPPPS79vo4dO+rcuXM6ffq0vL295e3tXWIk4vrrr9e//vUvtW3bttR17Nq1S7/88otmz57tmK+ybds2l9ZZFh4eHpo8ebLi4+MVFxcnPz8/bdy4Uffcc49++9vfSpLsdrt++OEHdezY0bFcadv8ax06dNDGjRud2jZu3Kh27drJ09PT9RsDWAgjN0Ad17lzZz344IP6n//5H0fbsGHDdP/992vYsGGaMWOGvv76a2VmZuqrr75SSkpKmX9c+/Xrp7ffflvbt29XZmamUlNTNXnyZPXv31/+/v6Szt/nZv369Tp8+LDy8vIkSc8//7w2bdqkcePGKT09Xfv27dNnn33mmFAcHh4ub29vvfHGGzp48KBWrlx5xVNdVeWBBx6Qp6enkpOTJZ0f9VqzZo02bdqkPXv26PHHH1dubq7TMhEREY59mpeXV+rI0e9+9zulpaVp5syZ+uGHH/Tee+/pzTff1LPPPlst2wXUZoQbAJoxY4bTD6zNZlNKSormzZun1NRU3Xrrrbr22mv18MMPKywsTBs2bCjTemNjY/Xee+/p9ttvV4cOHTR+/HjFxsbqk08+cfruzMxMtWnTRkFBQZLOz5P56quv9MMPP6hPnz7q1q2bpk6dqubNm0s6f4psyZIl+vTTT9WxY0fNnj1br7zyigv3SNnVq1dP48aN0x/+8AcVFhbqxRdf1PXXX6/Y2Fj169dPISEhGjRokNMyzz77rDw9PdWxY0cFBQWVOh/n+uuv1yeffKKPP/5YnTp10tSpUzVjxoxSrwgD4MxmjDHuLgIAAMBVGLkBAACWQrgBUGEXX6r969c//vEPd5dXLllZWZfdnvJeyg3AfTgtBaDCLvcAzRYtWsjPz68aq6mcc+fOKTMz85KfR0REqF49LjAFagPCDQAAsBROSwEAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEsh3AAAAEv5fyvcJ8yGK5l+AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_57.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU4ElEQVR4nO3dfVxUZf4//tdwMwyizGggA4aChhpKYCospqIr27haSdaqyKqxJLarlWt36lfFrA0zd3M1N90+FX3WVLRc7aNmspiZQkjgveYq4l0xGBKDKHgz8/794Y9TIyOCchxuXs/H4zxorut9znmf6zE176655hyNiAiIiIiIqMG5ODsBIiIiouaKhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREamEhRYRtXhz586FRqOpU6xGo8HcuXNVzWfQoEEYNGhQoz0eEdUdCy0iajTS0tKg0WiUzc3NDR06dMBTTz2F77//3tnpNTpBQUF249W+fXsMGDAA//73vxvk+JcuXcLcuXOxffv2BjkeUUvEQouIGp158+bhX//6F5YtW4bf/va3WLFiBWJiYlBVVaXK+WbNmoXKykpVjq22iIgI/Otf/8K//vUvvPjii/jhhx8wcuRILFu27I6PfenSJbz66qsstIjugJuzEyAiutFvf/tb9OnTBwDw9NNPw8fHB2+++SY+++wzjBo1qsHP5+bmBje3pvmfww4dOuD3v/+98nr8+PG477778Pbbb+OZZ55xYmZEBHBGi4iagAEDBgAACgoK7Nq/++47PPnkk2jXrh10Oh369OmDzz77zC7m6tWrePXVVxESEgKdTod77rkH/fv3R0ZGhhLjaI3W5cuX8ec//xm+vr5o06YNHnvsMZw9e7ZGbk899RSCgoJqtDs65ocffohf//rXaN++PTw8PBAaGop33323XmNxK0ajEffffz8KCwtrjTt37hySkpLg5+cHnU6H8PBwfPTRR0r/yZMn4evrCwB49dVXla8n1V6fRtTcNM3/hSOiFuXkyZMAgLZt2ypthw4dwkMPPYQOHTpg+vTp8PLywpo1axAXF4dPP/0Ujz/+OIDrBU9qaiqefvppREZGory8HN9++y3y8/Pxm9/85qbnfPrpp7FixQqMHTsW/fr1w7Zt2zB8+PA7uo53330XPXr0wGOPPQY3Nzf83//9H/70pz/BZrNh8uTJd3TsalevXsWZM2dwzz333DSmsrISgwYNwvHjxzFlyhQEBwdj7dq1eOqpp1BWVobnn38evr6+ePfdd/HHP/4Rjz/+OEaOHAkAeOCBBxokT6IWQ4iIGokPP/xQAMh//vMf+fHHH+XMmTPyySefiK+vr3h4eMiZM2eU2CFDhkhYWJhUVVUpbTabTfr16ychISFKW3h4uAwfPrzW86akpMgv/3O4d+9eASB/+tOf7OLGjh0rACQlJUVpmzBhgnTq1OmWxxQRuXTpUo04k8kknTt3tmuLiYmRmJiYWnMWEenUqZM8/PDD8uOPP8qPP/4o+/btkzFjxggAefbZZ296vEWLFgkAWbFihdJ25coViY6OltatW0t5ebmIiPz44481rpeI6odfHRJRoxMbGwtfX18EBgbiySefhJeXFz777DPce++9AIDS0lJs27YNo0aNwoULF1BSUoKSkhKcP38eJpMJx44dU36laDAYcOjQIRw7dqzO59+8eTMA4LnnnrNrnzp16h1dl6enp/LPFosFJSUliImJwYkTJ2CxWG7rmFu3boWvry98fX0RHh6OtWvXYty4cXjzzTdvus/mzZthNBoRHx+vtLm7u+O5555DRUUFvvrqq9vKhYhq4leHRNToLF26FF27doXFYsEHH3yAHTt2wMPDQ+k/fvw4RASzZ8/G7NmzHR7j3Llz6NChA+bNm4cRI0aga9eu6NmzJ4YOHYpx48bV+hXYqVOn4OLigi5duti1d+vW7Y6ua9euXUhJSUF2djYuXbpk12exWKDX6+t9zKioKLz++uvQaDRo1aoV7r//fhgMhlr3OXXqFEJCQuDiYv//2vfff7/ST0QNg4UWETU6kZGRyq8O4+Li0L9/f4wdOxZHjx5F69atYbPZAAAvvvgiTCaTw2Pcd999AICBAweioKAAGzZswNatW/E///M/ePvtt7Fs2TI8/fTTd5zrzW50arVa7V4XFBRgyJAh6N69O/72t78hMDAQWq0Wmzdvxttvv61cU335+PggNjb2tvYlIvWx0CKiRs3V1RWpqakYPHgw3nnnHUyfPh2dO3cGcP3rrroUGe3atUNiYiISExNRUVGBgQMHYu7cuTcttDp16gSbzYaCggK7WayjR4/WiG3bti3KyspqtN84K/R///d/uHz5Mj777DN07NhRaf/yyy9vmX9D69SpE/bv3w+bzWY3q/Xdd98p/cDNi0giqjuu0SKiRm/QoEGIjIzEokWLUFVVhfbt22PQoEFYvnw5ioqKasT/+OOPyj+fP3/erq9169a47777cPny5Zue77e//S0AYPHixXbtixYtqhHbpUsXWCwW7N+/X2krKiqqcXd2V1dXAICIKG0WiwUffvjhTfNQy7Bhw2A2m5Genq60Xbt2DUuWLEHr1q0RExMDAGjVqhUAOCwkiahuOKNFRE3CSy+9hN/97ndIS0vDM888g6VLl6J///4ICwvDxIkT0blzZxQXFyM7Oxtnz57Fvn37AAChoaEYNGgQevfujXbt2uHbb7/FJ598gilTptz0XBEREYiPj8c//vEPWCwW9OvXD5mZmTh+/HiN2DFjxuCVV17B448/jueeew6XLl3Cu+++i65duyI/P1+Je/jhh6HVavHoo49i0qRJqKiowHvvvYf27ds7LBbVlJycjOXLl+Opp55CXl4egoKC8Mknn2DXrl1YtGgR2rRpA+D64v3Q0FCkp6eja9euaNeuHXr27ImePXve1XyJmjRn/+yRiKha9e0dcnNza/RZrVbp0qWLdOnSRa5duyYiIgUFBTJ+/HgxGo3i7u4uHTp0kEceeUQ++eQTZb/XX39dIiMjxWAwiKenp3Tv3l3+8pe/yJUrV5QYR7diqKyslOeee07uuece8fLykkcffVTOnDnj8HYHW7dulZ49e4pWq5Vu3brJihUrHB7zs88+kwceeEB0Op0EBQXJm2++KR988IEAkMLCQiWuPrd3uNWtK252vOLiYklMTBQfHx/RarUSFhYmH374YY19s7KypHfv3qLVanmrB6LboBH5xTw2ERERETUYrtEiIiIiUgkLLSIiIiKVsNAiIiIiUgkLLSIiIiKVsNAiIiIiUgkLLSIiIiKV8IalTmSz2fDDDz+gTZs2fNQFERFREyEiuHDhAgICAmo8nP1GLLSc6IcffkBgYKCz0yAiIqLbcObMGdx77721xrDQcqLqx1ycOXMG3t7eTs6GiIiI6qK8vByBgYHK53htWGg5UfXXhd7e3iy0iIiImpi6LPvhYngiIiIilbDQIiIiIlIJCy0iIiIilTSKQmvp0qUICgqCTqdDVFQUdu/eXWv82rVr0b17d+h0OoSFhWHz5s12/SKCOXPmwN/fH56enoiNjcWxY8fsYkpLS5GQkABvb28YDAYkJSWhoqJC6T969CgGDx4MPz8/6HQ6dO7cGbNmzcLVq1eVmLS0NGg0GrtNp9M1wIjYs1qtqKqq4laHzWq1Nvj4ExER3S6nL4ZPT0/HtGnTsGzZMkRFRWHRokUwmUw4evQo2rdvXyM+KysL8fHxSE1NxSOPPIKVK1ciLi4O+fn56NmzJwBgwYIFWLx4MT766CMEBwdj9uzZMJlMOHz4sFIIJSQkoKioCBkZGbh69SoSExORnJyMlStXAgDc3d0xfvx4PPjggzAYDNi3bx8mTpwIm82GN954Q8nH29sbR48eVV435P2wRARmsxllZWUNdsyWwGAwwGg08t5kRETkdBoREWcmEBUVhb59++Kdd94BcP0mnoGBgXj22Wcxffr0GvGjR4/GxYsXsXHjRqXtV7/6FSIiIrBs2TKICAICAvDCCy/gxRdfBABYLBb4+fkhLS0NY8aMwZEjRxAaGorc3Fz06dMHALBlyxYMGzYMZ8+eRUBAgMNcp02bhtzcXHz99dcArs9oTZ069bYLofLycuj1elgsFoe/OiwqKkJZWRnat2+PVq1asXC4BRHBpUuXcO7cORgMBvj7+zs7JSIiaoZu9fn9S06d0bpy5Qry8vIwY8YMpc3FxQWxsbHIzs52uE92djamTZtm12YymbB+/XoAQGFhIcxmM2JjY5V+vV6PqKgoZGdnY8yYMcjOzobBYFCKLACIjY2Fi4sLcnJy8Pjjj9c47/Hjx7FlyxaMHDnSrr2iogKdOnWCzWbDgw8+iDfeeAM9evRwmPvly5dx+fJl5XV5eflNRub614XVRdY999xz0ziy5+npCQA4d+4c2rdvD1dXVydnRERELZlT12iVlJTAarXCz8/Prt3Pzw9ms9nhPmazudb46r+3irnxa0k3Nze0a9euxnn79esHnU6HkJAQDBgwAPPmzVP6unXrhg8++AAbNmzAihUrYLPZ0K9fP5w9e9Zh7qmpqdDr9cpW213hq9eCtWrV6qYx5Fj1mP1yPR0REZEzNIrF8I1Zeno68vPzsXLlSmzatAkLFy5U+qKjozF+/HhEREQgJiYG69atg6+vL5YvX+7wWDNmzIDFYlG2M2fO3PL8/Lqw/jhmRETUWDj1q0MfHx+4urqiuLjYrr24uBhGo9HhPkajsdb46r/FxcV2a3SKi4sRERGhxJw7d87uGNeuXUNpaWmN81bPOoWGhsJqtSI5ORkvvPCCw6+k3N3d0atXLxw/ftxh7h4eHvDw8HDYR0RERM2PU2e0tFotevfujczMTKXNZrMhMzMT0dHRDveJjo62iweAjIwMJT44OBhGo9Eupry8HDk5OUpMdHQ0ysrKkJeXp8Rs27YNNpsNUVFRN83XZrPh6tWrsNlsDvutVisOHDjARdhERER0nTjZ6tWrxcPDQ9LS0uTw4cOSnJwsBoNBzGaziIiMGzdOpk+frsTv2rVL3NzcZOHChXLkyBFJSUkRd3d3OXDggBIzf/58MRgMsmHDBtm/f7+MGDFCgoODpbKyUokZOnSo9OrVS3JycmTnzp0SEhIi8fHxSv+KFSskPT1dDh8+LAUFBZKeni4BAQGSkJCgxLz66qvyxRdfSEFBgeTl5cmYMWNEp9PJoUOH6nTtFotFAIjFYqnRV1lZKYcPH7bLuSkpKiqSKVOmSHBwsGi1Wrn33nvlkUcekf/85z8iItKpUyd5++23a+yXkpIi4eHhDo+5atUqASAjRoyo9dxNfeyIiBqzH8ouya7jP8oPZZecnYrT1Pb5fSOn30dr9OjR+PHHHzFnzhyYzWZERERgy5YtymL206dPw8Xl54m3fv36YeXKlZg1axZmzpyJkJAQrF+/XrmHFgC8/PLLuHjxIpKTk1FWVob+/ftjy5YtdjcT/fjjjzFlyhQMGTIELi4ueOKJJ7B48WKl383NDW+++Sb++9//QkTQqVMnTJkyBX/+85+VmJ9++gkTJ06E2WxG27Zt0bt3b2RlZSE0NFTNIWv0Tp48iYceeggGgwFvvfUWwsLCcPXqVXzxxReYPHkyvvvuu9s65osvvogBAwaokDEREdVFeu5pzFh3ADYBXDRA6sgwjO7b0dlpNWpOv49WS1bbfTiqqqpQWFiI4OBgVe42r6Zhw4Zh//79OHr0KLy8vOz6ysrKYDAYEBQUhKlTp2Lq1Kl2/XPnzsX69euxd+9epc1qtWLgwIH4wx/+gK+//hplZWXK7TwcacpjR0TUWBVZKvHQ/G2w/aJqcNVosHP6YPjrPZ2XmBPU5z5a/NVhC1FkqURWQQmKLJWqnqe0tBRbtmzB5MmTaxRZwPW7ttfXvHnz0L59eyQlJTVAhkREdDsKSy7aFVkAYBXByZJLzkmoiXD6V4ekvrs51Xv8+HGICLp3737L2FdeeQWzZs2ya7ty5YrdV687d+7E+++/bzfDRUREd1+wjxdcNKgxoxXkw/s91oYzWs1ckaVSKbKA6/+CzFx3ULWZrfp8E/3SSy9h7969dtszzzyj9F+4cAHjxo3De++9Bx8fHzXSJSKiOvLXeyJ1ZBhc//97FbpqNHhjZM8W97VhfXFGq5mrbapXjX85QkJCoNFo6rTg3cfHB/fdd59dW7t27ZR/LigowMmTJ/Hoo48qbdW31nBzc8PRo0fRpUuXBsqciIhuZXTfjhjY1RcnSy4hyKcVi6w64IxWM1c91ftLak71tmvXDiaTCUuXLsXFixdr9NfnAdzdu3fHgQMH7Ga8HnvsMQwePBh79+6t9RFGRESkDn+9J6K73MMiq45YaDVzzpjqXbp0KaxWKyIjI/Hpp5/i2LFjOHLkCBYvXnzTG9E6otPp0LNnT7vNYDCgTZs26NmzJ7RarWrXQERE1BD41WELcLenejt37oz8/Hz85S9/wQsvvICioiL4+vqid+/eePfdd1U9NxERUWPC+2g5UXO9j5azceyIiEhNvI8WERERUSPAQouIiIhIJSy0iIiIiFTCQouIiIhIJSy0Gjn+VqH+OGZERNRYsNBqpNzd3QEAly7xYZ31VT1m1WNIRETkLLyPViPl6uoKg8GAc+fOAQBatWoFjUZzi71aNhHBpUuXcO7cORgMBri6ujo7JSIiauFYaDViRqMRAJRii+rGYDAoY0dERORMLLQaMY1GA39/f7Rv3x5Xr151djpNgru7O2eyiIio0WCh1QS4urqyeCAiImqCuBieiIiISCUstIiIiIhUwkKLiIiISCUstIiIiIhUwkKLiIiImqUiSyWyCkpQZKl0Wg781SERERE1O+m5pzFj3QHYBHDRAKkjwzC6b8e7ngdntIiIiKhZKbJUKkUWANgEmLnuoFNmtlhoERERUbNSWHJRKbKqWUVwsuTuPz+YhRYRERE1K8E+XnC54fHArhoNgnxa3fVcWGgRERFRs+Kv90TqyDC4aq5XW64aDd4Y2RP+es+7ngsXwxMREVGzM7pvRwzs6ouTJZcQ5NPKKUUWwEKLiIiImil/vafTCqxq/OqQiIiISCUstIiIiIhUwkKLiIiISCUstIiIiIhUwkKLiIiISCUstIiIiIhUwkKLiIiISCUstIiIiIhU0igKraVLlyIoKAg6nQ5RUVHYvXt3rfFr165F9+7dodPpEBYWhs2bN9v1iwjmzJkDf39/eHp6IjY2FseOHbOLKS0tRUJCAry9vWEwGJCUlISKigql/+jRoxg8eDD8/Pyg0+nQuXNnzJo1C1evXq1XLkRERNRyOb3QSk9Px7Rp05CSkoL8/HyEh4fDZDLh3LlzDuOzsrIQHx+PpKQk7NmzB3FxcYiLi8PBgweVmAULFmDx4sVYtmwZcnJy4OXlBZPJhKqqKiUmISEBhw4dQkZGBjZu3IgdO3YgOTlZ6Xd3d8f48eOxdetWHD16FIsWLcJ7772HlJSUeuVCRERELZg4WWRkpEyePFl5bbVaJSAgQFJTUx3Gjxo1SoYPH27XFhUVJZMmTRIREZvNJkajUd566y2lv6ysTDw8PGTVqlUiInL48GEBILm5uUrM559/LhqNRr7//vub5vrnP/9Z+vfvX+dcbsVisQgAsVgsdYonIiIi56vP57dTZ7SuXLmCvLw8xMbGKm0uLi6IjY1Fdna2w32ys7Pt4gHAZDIp8YWFhTCbzXYxer0eUVFRSkx2djYMBgP69OmjxMTGxsLFxQU5OTkOz3v8+HFs2bIFMTExdc6FiIiIWjanFlolJSWwWq3w8/Oza/fz84PZbHa4j9lsrjW++u+tYtq3b2/X7+bmhnbt2tU4b79+/aDT6RASEoIBAwZg3rx5dc7lRpcvX0Z5ebndRkRERM2X09doNXbp6enIz8/HypUrsWnTJixcuPC2j5Wamgq9Xq9sgYGBDZgpERERNTZOLbR8fHzg6uqK4uJiu/bi4mIYjUaH+xiNxlrjq//eKubGxfbXrl1DaWlpjfMGBgYiNDQU8fHxmD9/PubOnQur1VqnXG40Y8YMWCwWZTtz5ozDOCIiImoenFpoabVa9O7dG5mZmUqbzWZDZmYmoqOjHe4THR1tFw8AGRkZSnxwcDCMRqNdTHl5OXJycpSY6OholJWVIS8vT4nZtm0bbDYboqKibpqvzWbD1atXYbPZ6pTLjTw8PODt7W23ERERUTN2Fxbn12r16tXi4eEhaWlpcvjwYUlOThaDwSBms1lERMaNGyfTp09X4nft2iVubm6ycOFCOXLkiKSkpIi7u7scOHBAiZk/f74YDAbZsGGD7N+/X0aMGCHBwcFSWVmpxAwdOlR69eolOTk5snPnTgkJCZH4+Hilf8WKFZKeni6HDx+WgoICSU9Pl4CAAElISKhXLrXhrw6JiIianvp8fju90BIRWbJkiXTs2FG0Wq1ERkbKN998o/TFxMTIhAkT7OLXrFkjXbt2Fa1WKz169JBNmzbZ9dtsNpk9e7b4+fmJh4eHDBkyRI4ePWoXc/78eYmPj5fWrVuLt7e3JCYmyoULF5T+1atXy4MPPiitW7cWLy8vCQ0NlTfeeMOuWKtLLrVhoUVERNT01OfzWyMi4tw5tZarvLwcer0eFouFXyMSERE1EfX5/OavDomIiIhUwkKLiIiISCUstIiIiIhUwkKLiIiISCUstIiIiIhUwkKLiIiISCUstIiIiIhUwkKLiIiISCUstIiIiIhUwkKLiIiISCUstIiIiIhUwkKLiIiISCUstIiIiIhUwkKLiIiISCUstIiIiIhUwkKLiIiISCUstIiIiIhUwkKLiIiISCUstIiIiIhUwkKLiIiISCUstIiIiIhUwkKLiIioCSuyVCKroARFlkpnp0IOuDk7ASIiIro96bmnMWPdAdgEcNEAqSPDMLpvR2enRb/AGS0iIqImqMhSqRRZAGATYOa6g5zZamRYaBERETVBhSUXlSKrmlUEJ0suOSchcoiFFhERURMU7OMFF419m6tGgyCfVs5JiBxioUVERNQE+es9kToyDK6a69WWq0aDN0b2hL/e08mZ0S9xMTwREVETNbpvRwzs6ouTJZcQ5NOKRVYjxEKLiIioCfPXe7LAasT41SERERGRSlhoEREREamEhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREamkURRaS5cuRVBQEHQ6HaKiorB79+5a49euXYvu3btDp9MhLCwMmzdvtusXEcyZMwf+/v7w9PREbGwsjh07ZhdTWlqKhIQEeHt7w2AwICkpCRUVFUr/9u3bMWLECPj7+8PLywsRERH4+OOP7Y6RlpYGjUZjt+l0ujscDSIiImounF5opaenY9q0aUhJSUF+fj7Cw8NhMplw7tw5h/FZWVmIj49HUlIS9uzZg7i4OMTFxeHgwYNKzIIFC7B48WIsW7YMOTk58PLygslkQlVVlRKTkJCAQ4cOISMjAxs3bsSOHTuQnJxsd54HHngAn376Kfbv34/ExESMHz8eGzdutMvH29sbRUVFynbq1KkGHiEiIiJqssTJIiMjZfLkycprq9UqAQEBkpqa6jB+1KhRMnz4cLu2qKgomTRpkoiI2Gw2MRqN8tZbbyn9ZWVl4uHhIatWrRIRkcOHDwsAyc3NVWI+//xz0Wg08v33398012HDhkliYqLy+sMPPxS9Xl/3i72BxWIRAGKxWG77GERERHR31efz26kzWleuXEFeXh5iY2OVNhcXF8TGxiI7O9vhPtnZ2XbxAGAymZT4wsJCmM1muxi9Xo+oqCglJjs7GwaDAX369FFiYmNj4eLigpycnJvma7FY0K5dO7u2iooKdOrUCYGBgRgxYgQOHTp00/0vX76M8vJyu42IiIiaL6cWWiUlJbBarfDz87Nr9/Pzg9lsdriP2WyuNb76761i2rdvb9fv5uaGdu3a3fS8a9asQW5uLhITE5W2bt264YMPPsCGDRuwYsUK2Gw29OvXD2fPnnV4jNTUVOj1emULDAx0GEdERETNg9PXaDUFX375JRITE/Hee++hR48eSnt0dDTGjx+PiIgIxMTEYN26dfD19cXy5csdHmfGjBmwWCzKdubMmbt1CUREROQETi20fHx84OrqiuLiYrv24uJiGI1Gh/sYjcZa46v/3irmxsX2165dQ2lpaY3zfvXVV3j00Ufx9ttvY/z48bVej7u7O3r16oXjx4877Pfw8IC3t7fdRkRERM2XUwstrVaL3r17IzMzU2mz2WzIzMxEdHS0w32io6Pt4gEgIyNDiQ8ODobRaLSLKS8vR05OjhITHR2NsrIy5OXlKTHbtm2DzWZDVFSU0rZ9+3YMHz4cb775pt0vEm/GarXiwIED8Pf3r8PVExERUbN3Fxbn12r16tXi4eEhaWlpcvjwYUlOThaDwSBms1lERMaNGyfTp09X4nft2iVubm6ycOFCOXLkiKSkpIi7u7scOHBAiZk/f74YDAbZsGGD7N+/X0aMGCHBwcFSWVmpxAwdOlR69eolOTk5snPnTgkJCZH4+Hilf9u2bdKqVSuZMWOGFBUVKdv58+eVmFdffVW++OILKSgokLy8PBkzZozodDo5dOhQna6dvzokIiJqeurz+e30QktEZMmSJdKxY0fRarUSGRkp33zzjdIXExMjEyZMsItfs2aNdO3aVbRarfTo0UM2bdpk12+z2WT27Nni5+cnHh4eMmTIEDl69KhdzPnz5yU+Pl5at24t3t7ekpiYKBcuXFD6J0yYIABqbDExMUrM1KlTlbz9/Pxk2LBhkp+fX+frZqFFRETU9NTn81sjIuK06bQWrry8HHq9HhaLheu1iIiImoj6fH7zV4dEREREKmGhRURERKQSFlpEREREKmGhRURERKQSFlpEREREKmGhRXaKLJXIKihBkaXS2akQERE1eW7OToAaj/Tc05ix7gBsArhogNSRYRjdt6Oz0yIiImqyOKNFAK7PZFUXWQBgE2DmuoOc2SIiIroDLLQIAFBYclEpsqpZRXCy5JJzEiIiImoGWGgRACDYxwsuGvs2V40GQT6tnJMQERFRM8BCiwAA/npPpI4Mg6vmerXlqtHgjZE94a/3dHJmRERETRcXw5NidN+OGNjVFydLLiHIpxWLLCIiojvEQovs+Os9WWARERE1EH51SERERKQSFlpEREREKmGhRURERKQSFlpEREREKmGhRURERKQSFlpkhw+VJiIiaji8vQMp+FBpIiKihsUZLQLAh0oTERGpgYUWAeBDpYmIiNTAQosA8KHSREREamChRQD4UGkiIiI1cDE8KfhQaSIioobFQovs8KHSREREDYdfHRIRERGphIUWERERkUpYaBERERGphIUWERERkUpYaBERERGphIUWERERkUpYaBGpqMhSiayCEj4zkoioheJ9tIhUkp57WnlQt4sGSB0ZhtF9Ozo7LSIiuos4o0WkgiJLpVJkAYBNgJnrDnJmi4iohWGhRaSCwpKLSpFVzSqCkyWXnJMQERE5BQstIhUE+3jBRWPf5qrRIMinlXMSIiIip2ChRaQCf70nUkeGwVVzvdpy1WjwxsiefI4kEVELw8XwRCoZ3bcjBnb1xcmSSwjyacUii4ioBWoUM1pLly5FUFAQdDodoqKisHv37lrj165di+7du0On0yEsLAybN2+26xcRzJkzB/7+/vD09ERsbCyOHTtmF1NaWoqEhAR4e3vDYDAgKSkJFRUVSv/27dsxYsQI+Pv7w8vLCxEREfj444/rnQu1bP56T0R3uYdFFhFRC+X0Qis9PR3Tpk1DSkoK8vPzER4eDpPJhHPnzjmMz8rKQnx8PJKSkrBnzx7ExcUhLi4OBw8eVGIWLFiAxYsXY9myZcjJyYGXlxdMJhOqqqqUmISEBBw6dAgZGRnYuHEjduzYgeTkZLvzPPDAA/j000+xf/9+JCYmYvz48di4cWO9ciF18P5URETUFGhERG4dpp6oqCj07dsX77zzDgDAZrMhMDAQzz77LKZPn14jfvTo0bh48aJdwfOrX/0KERERWLZsGUQEAQEBeOGFF/Diiy8CACwWC/z8/JCWloYxY8bgyJEjCA0NRW5uLvr06QMA2LJlC4YNG4azZ88iICDAYa7Dhw+Hn58fPvjggzrlcivl5eXQ6/WwWCzw9vau44gR709FRETOVJ/Pb6fOaF25cgV5eXmIjY1V2lxcXBAbG4vs7GyH+2RnZ9vFA4DJZFLiCwsLYTab7WL0ej2ioqKUmOzsbBgMBqXIAoDY2Fi4uLggJyfnpvlaLBa0a9euzrnc6PLlyygvL7fbqH54fyoiImpKnFpolZSUwGq1ws/Pz67dz88PZrPZ4T5ms7nW+Oq/t4pp3769Xb+bmxvatWt30/OuWbMGubm5SExMrHMuN0pNTYVer1e2wMBAh3F0c7w/FRERNSVOX6PVFHz55ZdITEzEe++9hx49etz2cWbMmAGLxaJsZ86cacAsWwben4qI7hauBaWG4NRCy8fHB66uriguLrZrLy4uhtFodLiP0WisNb76761iblxsf+3aNZSWltY471dffYVHH30Ub7/9NsaPH1+vXG7k4eEBb29vu43qh/enIqK7IT33NB6avw1j38vBQ/O3IT33tLNToibKqYWWVqtF7969kZmZqbTZbDZkZmYiOjra4T7R0dF28QCQkZGhxAcHB8NoNNrFlJeXIycnR4mJjo5GWVkZ8vLylJht27bBZrMhKipKadu+fTuGDx+ON9980+4XiXXNhdQxum9H7Jw+GKsm/go7pw/mQngialBcC0oNyek3LJ02bRomTJiAPn36IDIyEosWLcLFixeVtVDjx49Hhw4dkJqaCgB4/vnnERMTg7/+9a8YPnw4Vq9ejW+//Rb//Oc/AQAajQZTp07F66+/jpCQEAQHB2P27NkICAhAXFwcAOD+++/H0KFDMXHiRCxbtgxXr17FlClTMGbMGOUXh19++SUeeeQRPP/883jiiSeUdVdarVZZEH+rXEg9/npPzmIRkSpqWwvK/+5QvUkjsGTJEunYsaNotVqJjIyUb775RumLiYmRCRMm2MWvWbNGunbtKlqtVnr06CGbNm2y67fZbDJ79mzx8/MTDw8PGTJkiBw9etQu5vz58xIfHy+tW7cWb29vSUxMlAsXLij9EyZMEAA1tpiYmHrlUhuLxSIAxGKx1HkfIiJS1w9llyR4+kbp9MrPW+fpm+SHskvOTo0aifp8fjv9PlotGe+jRUTUOKXnnsbMdQdhFVHWgnKZAlWrz+e30786JCIiamz4rFJqKCy0iJqZIkslCksuItjHix8ORHeAa0GpIbDQImpG+HgiIqLGhTcsJWom+JN0IqLGh4UWUTPBxxMRETU+LLSImgk+noiIqPFhoUXUTPDxREREjU+DLIYvLCxEYGAg3Ny4tp7ImfiTdCKixqVBZrS6deuGY8eONcShiOgO+es9Ed3lHhZZRESNQL2moEaOHOmw3Wq14rnnnkObNm0AAOvWrbvzzIiIiIiauHrNaK1fvx6lpaXQ6/V2GwC0bt3a7jURERFRS1evZx2uXr0aL730EubNm4fExESl3d3dHfv27UNoaKgqSTZXfNYhERFR01Ofz+96zWiNGTMGX3/9Nd5//3088cQT+Omnn+4oUSIiIqLmrN6L4YOCgrBjxw707NkT4eHh+OKLL6DRaG69IxEREVELc1v3Y3BxccGrr76K3/zmNxg/fjysVmtD50VERETU5N3Rja/69++P/fv3o6CgAF26dGmonIiIiIiahTu+w2jr1q0RHh7eELkQERERNSv1KrR69epVp/VY+fn5t50QERERUXNRr0IrLi5O+WcRQWpqKp555hm0a9euofMiIiIiavLqdR+tG7Vp0wb79u1D586dGzKnFoP30SIiImp6VLuPFhERERHVHQstIiIiIpWw0CIiIiJSSb0Wwy9evNju9bVr15CWlgYfHx+79ueee+7OMyMiIiJq4uq1GD44OPjWB9RocOLEiTtKqqXgYngiIqKmpz6f3/Wa0SosLLyjxIiIiIhaknqt0dq2bRtCQ0NRXl5eo89isaBHjx74+uuvGyw5ooZWZKlEVkEJiiyVzk6FiIhagHrNaC1atAgTJ050OE2m1+sxadIk/O1vf8OAAQMaLEGihpKeexoz1h2ATQAXDZA6Mgyj+3Z0dlpERNSM1WtGa9++fRg6dOhN+x9++GHk5eXdcVJEDa3IUqkUWQBgE2DmuoOc2SIiIlXVq9AqLi6Gu7v7Tfvd3Nzw448/3nFSRA2tsOSiUmRVs4rgZMkl5yREREQtQr0KrQ4dOuDgwYM37d+/fz/8/f3vOCmihhbs4wWXG56H7qrRIMinlXMSIiKiFqFehdawYcMwe/ZsVFVV1eirrKxESkoKHnnkkQZLjqih+Os9kToyDK6a69WWq0aDN0b2hL/e08mZERFRc1av+2gVFxfjwQcfhKurK6ZMmYJu3boBAL777jssXboUVqsV+fn58PPzUy3h5oT30br7iiyVOFlyCUE+rVhkERHRbanP53e9Ci0AOHXqFP74xz/iiy++QPWuGo0GJpMJS5curdNNTek6FlpERERNj2o3LAWATp06YfPmzfjpp59w/PhxiAhCQkLQtm3b206YiIiIqDmqd6FVrW3btujbt29D5kJERETUrNRrMTwRERHR7WqJT+e47RktIiIiorpqqU/n4IwWERERqaolP53D6YXW0qVLERQUBJ1Oh6ioKOzevbvW+LVr16J79+7Q6XQICwvD5s2b7fpFBHPmzIG/vz88PT0RGxuLY8eO2cWUlpYiISEB3t7eMBgMSEpKQkVFhdJfVVWFp556CmFhYXBzc0NcXFyNPLZv3w6NRlNjM5vNtz8YREREzVBLfjqHUwut9PR0TJs2DSkpKcjPz0d4eDhMJhPOnTvnMD4rKwvx8fFISkrCnj17EBcXh7i4OLu71S9YsACLFy/GsmXLkJOTAy8vL5hMJrubrCYkJODQoUPIyMjAxo0bsWPHDiQnJyv9VqsVnp6eeO655xAbG1vrNRw9ehRFRUXK1r59+zscFSIioualJT+do9730WpIUVFR6Nu3L9555x0AgM1mQ2BgIJ599llMnz69Rvzo0aNx8eJFbNy4UWn71a9+hYiICCxbtgwigoCAALzwwgt48cUXAQAWiwV+fn5IS0vDmDFjcOTIEYSGhiI3Nxd9+vQBAGzZsgXDhg3D2bNnERAQYHfOp556CmVlZVi/fr1d+/bt2zF48GD89NNPMBgMt3X9vI8WERG1FOm5pzFz3UFYRZSnczTVNVr1+fx22ozWlStXkJeXZzdj5OLigtjYWGRnZzvcJzs7u8YMk8lkUuILCwthNpvtYvR6PaKiopSY7OxsGAwGpcgCgNjYWLi4uCAnJ6fe1xEREQF/f3/85je/wa5du2qNvXz5MsrLy+02IiKilmB0347YOX0wVk38FXZOH9xki6z6clqhVVJSAqvVWuNxPX5+fjdd52Q2m2uNr/57q5gbv95zc3NDu3bt6rW+yt/fH8uWLcOnn36KTz/9FIGBgRg0aBDy8/Nvuk9qair0er2yBQYG1vl8RERETZ2/3hPRXe5pUY9A4+0dblO3bt2UZz0CQL9+/VBQUIC3334b//rXvxzuM2PGDEybNk15XV5ezmKLiIioGXPajJaPjw9cXV1RXFxs115cXAyj0ehwH6PRWGt89d9bxdy42P7atWsoLS296XnrKjIyEsePH79pv4eHB7y9ve02IiIiar6cVmhptVr07t0bmZmZSpvNZkNmZiaio6Md7hMdHW0XDwAZGRlKfHBwMIxGo11MeXk5cnJylJjo6GiUlZUhLy9Pidm2bRtsNhuioqLu6Jr27t0Lf3//OzoGERERNR9O/epw2rRpmDBhAvr06YPIyEgsWrQIFy9eRGJiIgBg/Pjx6NChA1JTUwEAzz//PGJiYvDXv/4Vw4cPx+rVq/Htt9/in//8JwBAo9Fg6tSpeP311xESEoLg4GDMnj0bAQEByr2w7r//fgwdOhQTJ07EsmXLcPXqVUyZMgVjxoyx+8Xh4cOHceXKFZSWluLChQvYu3cvgOuL3wFg0aJFCA4ORo8ePVBVVYX/+Z//wbZt27B169a7M3hERETU6Dm10Bo9ejR+/PFHzJkzB2azGREREdiyZYuymP306dNwcfl50q1fv35YuXIlZs2ahZkzZyIkJATr169Hz549lZiXX34ZFy9eRHJyMsrKytC/f39s2bIFOp1Oifn4448xZcoUDBkyBC4uLnjiiSewePFiu9yGDRuGU6dOKa979eoF4PoNUYHrv5p84YUX8P3336NVq1Z44IEH8J///AeDBw9u+IEiIiKiJsmp99Fq6XgfLSIioqanSdxHi4iIiKi5Y6FFREREpBIWWkREREQqYaFFREREpBIWWkREREQqYaFFREREpBIWWkREREQqYaHVTBVZKpFVUIIiS6WzUyEiImqxnHpneFJHeu5pzFh3ADYBXDRA6sgwjO7b0dlpERERtTic0WpmiiyVSpEFADYBZq47yJktIiIiJ2Ch1cwUllxUiqxqVhGcLLnknISIiIhaMBZazUywjxdcNPZtrhoNgnxaOSchIiKiFoyFVjPjr/dE6sgwuGquV1uuGg3eGNkT/npPJ2dGRETU8nAxfDM0um9HDOzqi5MllxDk04pFFhERkZOw0Gqm/PWeLLCIiIicjF8dEhEREamEhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREamEhRYRERGRSlhoEREREanE6YXW0qVLERQUBJ1Oh6ioKOzevbvW+LVr16J79+7Q6XQICwvD5s2b7fpFBHPmzIG/vz88PT0RGxuLY8eO2cWUlpYiISEB3t7eMBgMSEpKQkVFhdJfVVWFp556CmFhYXBzc0NcXJzDXLZv344HH3wQHh4euO+++5CWlnZbY0BERETNk1MLrfT0dEybNg0pKSnIz89HeHg4TCYTzp075zA+KysL8fHxSEpKwp49exAXF4e4uDgcPHhQiVmwYAEWL16MZcuWIScnB15eXjCZTKiqqlJiEhIScOjQIWRkZGDjxo3YsWMHkpOTlX6r1QpPT08899xziI2NdZhLYWEhhg8fjsGDB2Pv3r2YOnUqnn76aXzxxRcNNDpERETU5IkTRUZGyuTJk5XXVqtVAgICJDU11WH8qFGjZPjw4XZtUVFRMmnSJBERsdlsYjQa5a233lL6y8rKxMPDQ1atWiUiIocPHxYAkpubq8R8/vnnotFo5Pvvv69xzgkTJsiIESNqtL/88svSo0cPu7bRo0eLyWS6xVX/zGKxCACxWCx13oeIiIicqz6f306b0bpy5Qry8vLsZoxcXFwQGxuL7Oxsh/tkZ2fXmGEymUxKfGFhIcxms12MXq9HVFSUEpOdnQ2DwYA+ffooMbGxsXBxcUFOTk6d879VLo5cvnwZ5eXldhsRERE1X04rtEpKSmC1WuHn52fX7ufnB7PZ7HAfs9lca3z131vFtG/f3q7fzc0N7dq1u+l565NLeXk5KisrHe6TmpoKvV6vbIGBgXU+HxERETU9Tl8M35LMmDEDFotF2c6cOePslIiIiEhFTiu0fHx84OrqiuLiYrv24uJiGI1Gh/sYjcZa46v/3irmxsX2165dQ2lp6U3PW59cvL294enp6XAfDw8PeHt7221ERETUfDmt0NJqtejduzcyMzOVNpvNhszMTERHRzvcJzo62i4eADIyMpT44OBgGI1Gu5jy8nLk5OQoMdHR0SgrK0NeXp4Ss23bNthsNkRFRdU5/1vlQkREROTUXx2uXr1aPDw8JC0tTQ4fPizJycliMBjEbDaLiMi4ceNk+vTpSvyuXbvEzc1NFi5cKEeOHJGUlBRxd3eXAwcOKDHz588Xg8EgGzZskP3798uIESMkODhYKisrlZihQ4dKr169JCcnR3bu3CkhISESHx9vl9uhQ4dkz5498uijj8qgQYNkz549smfPHqX/xIkT0qpVK3nppZfkyJEjsnTpUnF1dZUtW7bU+fr5q0MiIqKmpz6f304ttERElixZIh07dhStViuRkZHyzTffKH0xMTEyYcIEu/g1a9ZI165dRavVSo8ePWTTpk12/TabTWbPni1+fn7i4eEhQ4YMkaNHj9rFnD9/XuLj46V169bi7e0tiYmJcuHCBbuYTp06CYAa2y99+eWXEhERIVqtVjp37iwffvhhva6dhRYREVHTU5/Pb42IiNOm01q48vJy6PV6WCwWrtciIiJqIurz+c1fHRIRERGphIUWERERkUpYaBEREVGdFVkqkVVQgiKL45tzkz03ZydARERETUN67mnMWHcANgFcNEDqyDCM7tvR2Wk1apzRIiIiolsqslQqRRYA2ASYue4gZ7ZugYUWERER3VJhyUWlyKpmFcHJkkvOSaiJYKFFREREtxTs4wUXjX2bq0aDIJ9WzkmoiWChRVQHXPxJRC2dv94TqSPD4Kq5Xm25ajR4Y2RP+OsdP9+XruNieKJb4OJPIqLrRvftiIFdfXGy5BKCfFqxyKoDzmgR1YKLP4mI7PnrPRHd5R4WWXXEQouoFlz8SUREd4KFFlEtuPiTiIjuBAstolpw8ScREd0JLoYnugUu/iQiotvFQouoDvz1niywiIio3vjVIREREZFKWGgRERERqYSFFhEREZFKWGgRkVPwsUZE1BJwMTwR3XV8rBERtRSc0SKiu4qPNSKiloSFFhHdVXysERG1JCy0iOiu4mONiKglYaFFRHcVH2tERC0JF8MT0V3HxxoRUUvBQouInIKPNSKiloBfHRIRERGphIUWERERkUpYaBERERGphIUWERERkUpYaBERERGphIUWERERkUpYaBERERGphIUWERERkUpYaBERERGphIUWERERkUpYaBERERGphIUWERERkUpYaBERERGppFEUWkuXLkVQUBB0Oh2ioqKwe/fuWuPXrl2L7t27Q6fTISwsDJs3b7brFxHMmTMH/v7+8PT0RGxsLI4dO2YXU1paioSEBHh7e8NgMCApKQkVFRV2Mfv378eAAQOg0+kQGBiIBQsW2PWnpaVBo9HYbTqd7g5GgoiIiJoTpxda6enpmDZtGlJSUpCfn4/w8HCYTCacO3fOYXxWVhbi4+ORlJSEPXv2IC4uDnFxcTh48KASs2DBAixevBjLli1DTk4OvLy8YDKZUFVVpcQkJCTg0KFDyMjIwMaNG7Fjxw4kJycr/eXl5Xj44YfRqVMn5OXl4a233sLcuXPxz3/+0y4fb29vFBUVKdupU6caeISIiIioyRIni4yMlMmTJyuvrVarBAQESGpqqsP4UaNGyfDhw+3aoqKiZNKkSSIiYrPZxGg0yltvvaX0l5WViYeHh6xatUpERA4fPiwAJDc3V4n5/PPPRaPRyPfffy8iIv/4xz+kbdu2cvnyZSXmlVdekW7duimvP/zwQ9Hr9bd55SIWi0UAiMViue1jEBER0d1Vn89vp85oXblyBXl5eYiNjVXaXFxcEBsbi+zsbIf7ZGdn28UDgMlkUuILCwthNpvtYvR6PaKiopSY7OxsGAwG9OnTR4mJjY2Fi4sLcnJylJiBAwdCq9Xanefo0aP46aeflLaKigp06tQJgYGBGDFiBA4dOnTT6718+TLKy8vtNiIiImq+nFpolZSUwGq1ws/Pz67dz88PZrPZ4T5ms7nW+Oq/t4pp3769Xb+bmxvatWtnF+PoGL88R7du3fDBBx9gw4YNWLFiBWw2G/r164ezZ886zD01NRV6vV7ZAgMDHcYRERFR8+D0NVpNWXR0NMaPH4+IiAjExMRg3bp18PX1xfLlyx3Gz5gxAxaLRdnOnDlzlzMmIiJqOYoslcgqKEGRpdJpObg57cwAfHx84OrqiuLiYrv24uJiGI1Gh/sYjcZa46v/FhcXw9/f3y4mIiJCiblxsf21a9dQWlpqdxxH5/nlOW7k7u6OXr164fjx4w77PTw84OHh4bCPiIiIGk567mnMWHcANgFcNEDqyDCM7tvxrufh1BktrVaL3r17IzMzU2mz2WzIzMxEdHS0w32io6Pt4gEgIyNDiQ8ODobRaLSLKS8vR05OjhITHR2NsrIy5OXlKTHbtm2DzWZDVFSUErNjxw5cvXrV7jzdunVD27ZtHeZmtVpx4MABuwKPiIiI7q4iS6VSZAGATYCZ6w46ZWbL6V8dTps2De+99x4++ugjHDlyBH/84x9x8eJFJCYmAgDGjx+PGTNmKPHPP/88tmzZgr/+9a/47rvvMHfuXHz77beYMmUKAECj0WDq1Kl4/fXX8dlnn+HAgQMYP348AgICEBcXBwC4//77MXToUEycOBG7d+/Grl27MGXKFIwZMwYBAQEAgLFjx0Kr1SIpKQmHDh1Ceno6/v73v2PatGlKLvPmzcPWrVtx4sQJ5Ofn4/e//z1OnTqFp59++i6NHhEREd2osOSiUmRVs4rgZMmlu56LU786BIDRo0fjxx9/xJw5c2A2mxEREYEtW7YoC89Pnz4NF5ef68F+/fph5cqVmDVrFmbOnImQkBCsX78ePXv2VGJefvllXLx4EcnJySgrK0P//v2xZcsWu5uJfvzxx5gyZQqGDBkCFxcXPPHEE1i8eLHSr9frsXXrVkyePBm9e/eGj48P5syZY3evrZ9++gkTJ06E2WxG27Zt0bt3b2RlZSE0NFTNISMiapGKLJUoLLmIYB8v+Os9nZ0ONWLBPl5w0cCu2HLVaBDk0+qu56IREbl1GKmhvLwcer0eFosF3t7ezk6HiKjRaizrbajpSM89jZnrDsIqAleNBm+M7Nlg75n6fH6z0HIiFlpERLdWZKnEQ/O31Zid2Dl9MGe2qFZFlkqcLLmEIJ9WDfpeqc/nt9O/OiQiIqpNbettWGhRbfz1nk5/jzh9MTwREVFtqtfb/JKz1tsQ1RcLLSIiatT89Z5IHRkGV831aqt6vY2zZyqI6oJfHRIRUaM3um9HDOzqq8p6GyI1sdAiIlIBb0XQ8BrDehui+mKhRUTUwHgrAiKqxjVaREQNqDE9+oOInI+FFhFRA2pMj/4gIudjoUVE1IB4KwIi+iUWWkREDYi3IiCiX+JieCKiBsZbERBRNRZaREQq4K0IiAjgV4dEREREqmGhRURERKQSFlpEREREKmGhRURERKQSFlpEREREKmGhRURERKQSFlpEREREKmGhRURERKQSFlpEREREKmGhRURERKQSFlpEREREKmGhRURERKQSFlpEREREKmGhRURERKQSFlpEREREKmGhRURERKQSFlpEREREKmGhRURNSpGlElkFJSiyVDo7FSKiW3JzdgJERHWVnnsaM9YdgE0AFw2QOjIMo/t2dHZaREQ3xRktImoSiiyVSpEFADYBZq47yJktImrUWGgRUZNQWHJRKbKqWUVwsuSScxIiIqoDFlpE1CQE+3jBRWPf5qrRIMinlXMSIiKqAxZaRNQk+Os9kToyDK6a69WWq0aDN0b2hL/e08mZNSwu9idqXrgYnoiajNF9O2JgV1+cLLmEIJ9Wza7I4mJ/ouaHM1pE1KT46z0R3eWeZldkcbE/UfPEQouIqBHgYn+i5qlRFFpLly5FUFAQdDodoqKisHv37lrj165di+7du0On0yEsLAybN2+26xcRzJkzB/7+/vD09ERsbCyOHTtmF1NaWoqEhAR4e3vDYDAgKSkJFRUVdjH79+/HgAEDoNPpEBgYiAULFtQ7FyKiuuBif6LmyemFVnp6OqZNm4aUlBTk5+cjPDwcJpMJ586dcxiflZWF+Ph4JCUlYc+ePYiLi0NcXBwOHjyoxCxYsACLFy/GsmXLkJOTAy8vL5hMJlRVVSkxCQkJOHToEDIyMrBx40bs2LEDycnJSn95eTkefvhhdOrUCXl5eXjrrbcwd+5c/POf/6xXLkREddFSFvsTtTjiZJGRkTJ58mTltdVqlYCAAElNTXUYP2rUKBk+fLhdW1RUlEyaNElERGw2mxiNRnnrrbeU/rKyMvHw8JBVq1aJiMjhw4cFgOTm5ioxn3/+uWg0Gvn+++9FROQf//iHtG3bVi5fvqzEvPLKK9KtW7c653IrFotFAIjFYqlTPBE1fz+UXZKs4yXyQ9klZ6dCRDdRn89vp85oXblyBXl5eYiNjVXaXFxcEBsbi+zsbIf7ZGdn28UDgMlkUuILCwthNpvtYvR6PaKiopSY7OxsGAwG9OnTR4mJjY2Fi4sLcnJylJiBAwdCq9Xanefo0aP46aef6pTLjS5fvozy8nK7jYjol5rrYn+ilsqphVZJSQmsViv8/Pzs2v38/GA2mx3uYzaba42v/nurmPbt29v1u7m5oV27dnYxjo7xy3PcKpcbpaamQq/XK1tgYKDDOCIiImoenL5GqyWZMWMGLBaLsp05c8bZKREREZGKnFpo+fj4wNXVFcXFxXbtxcXFMBqNDvcxGo21xlf/vVXMjYvtr127htLSUrsYR8f45TlulcuNPDw84O3tbbcRERFR8+XUQkur1aJ3797IzMxU2mw2GzIzMxEdHe1wn+joaLt4AMjIyFDig4ODYTQa7WLKy8uRk5OjxERHR6OsrAx5eXlKzLZt22Cz2RAVFaXE7NixA1evXrU7T7du3dC2bds65UJEREQt3F1YnF+r1atXi4eHh6Slpcnhw4clOTlZDAaDmM1mEREZN26cTJ8+XYnftWuXuLm5ycKFC+XIkSOSkpIi7u7ucuDAASVm/vz5YjAYZMOGDbJ//34ZMWKEBAcHS2VlpRIzdOhQ6dWrl+Tk5MjOnTslJCRE4uPjlf6ysjLx8/OTcePGycGDB2X16tXSqlUrWb58eb1yqQ1/dUhERNT01Ofz2+mFlojIkiVLpGPHjqLVaiUyMlK++eYbpS8mJkYmTJhgF79mzRrp2rWraLVa6dGjh2zatMmu32azyezZs8XPz088PDxkyJAhcvToUbuY8+fPS3x8vLRu3Vq8vb0lMTFRLly4YBezb98+6d+/v3h4eEiHDh1k/vz5NXK/VS61YaFFRETU9NTn81sjIlL7nBeppby8HHq9HhaLheu1iIiImoj6fH7zV4dEREREKmGhRURERKQSFlpEREREKmGhRURERKQSN2cn0JJV/w6BzzwkIiJqOqo/t+vye0IWWk504cIFAOAzD4mIiJqgCxcuQK/X1xrD2zs4kc1mww8//IA2bdpAo9E4O527pry8HIGBgThz5kyLv60Fx+I6jsPPOBY/41j8jGPxs8YwFiKCCxcuICAgAC4uta/C4oyWE7m4uODee+91dhpOw+c9/oxjcR3H4Wcci59xLH7GsfiZs8fiVjNZ1bgYnoiIiEglLLSIiIiIVMJCi+46Dw8PpKSkwMPDw9mpOB3H4jqOw884Fj/jWPyMY/GzpjYWXAxPREREpBLOaBERERGphIUWERERkUpYaBERERGphIUWERERkUpYaNEdW7p0KYKCgqDT6RAVFYXdu3fXGr9o0SJ069YNnp6eCAwMxJ///GdUVVUp/XPnzoVGo7HbunfvrvZlNIj6jMXVq1cxb948dOnSBTqdDuHh4diyZcsdHbMxaeixaKrvix07duDRRx9FQEAANBoN1q9ff8t9tm/fjgcffBAeHh647777kJaWViOmqb0v1BiHlvKeKCoqwtixY9G1a1e4uLhg6tSpDuPWrl2L7t27Q6fTISwsDJs3b2745BuYGmORlpZW432h0+nUuYA6YKFFdyQ9PR3Tpk1DSkoK8vPzER4eDpPJhHPnzjmMX7lyJaZPn46UlBQcOXIE77//PtLT0zFz5ky7uB49eqCoqEjZdu7ceTcu547UdyxmzZqF5cuXY8mSJTh8+DCeeeYZPP7449izZ89tH7OxUGMsgKb5vrh48SLCw8OxdOnSOsUXFhZi+PDhGDx4MPbu3YupU6fi6aefxhdffKHENMX3hRrjALSM98Tly5fh6+uLWbNmITw83GFMVlYW4uPjkZSUhD179iAuLg5xcXE4ePBgQ6be4NQYC+D6XeN/+b44depUQ6Vcf0J0ByIjI2Xy5MnKa6vVKgEBAZKamuowfvLkyfLrX//arm3atGny0EMPKa9TUlIkPDxclXzVVN+x8Pf3l3feeceubeTIkZKQkHDbx2ws1BiLpvq++CUA8u9//7vWmJdffll69Ohh1zZ69GgxmUzK66b6vqjWUOPQUt4TvxQTEyPPP/98jfZRo0bJ8OHD7dqioqJk0qRJd5jh3dNQY/Hhhx+KXq9vsLzuFGe06LZduXIFeXl5iI2NVdpcXFwQGxuL7Oxsh/v069cPeXl5ytccJ06cwObNmzFs2DC7uGPHjiEgIACdO3dGQkICTp8+rd6FNIDbGYvLly/XmM729PRU/o/8do7ZGKgxFtWa2vvidmRnZ9uNHQCYTCZl7Jrq+6K+bjUO1VrCe6Iu6jpeLUVFRQU6deqEwMBAjBgxAocOHXJaLiy06LaVlJTAarXCz8/Prt3Pzw9ms9nhPmPHjsW8efPQv39/uLu7o0uXLhg0aJDdV4dRUVFIS0vDli1b8O6776KwsBADBgzAhQsXVL2eO3E7Y2EymfC3v/0Nx44dg81mQ0ZGBtatW4eioqLbPmZjoMZYAE3zfXE7zGazw7ErLy9HZWVlk31f1NetxgFoOe+JurjZeDWn90RddevWDR988AE2bNiAFStWwGazoV+/fjh79qxT8mGhRXfV9u3b8cYbb+Af//gH8vPzsW7dOmzatAmvvfaaEvPb3/4Wv/vd7/DAAw/AZDJh8+bNKCsrw5o1a5yYecP7+9//jpCQEHTv3h1arRZTpkxBYmIiXFxa3r+WdRmLlvK+oLrje4IciY6Oxvjx4xEREYGYmBisW7cOvr6+WL58uVPyaXn/RacG4+PjA1dXVxQXF9u1FxcXw2g0Otxn9uzZGDduHJ5++mmEhYXh8ccfxxtvvIHU1FTYbDaH+xgMBnTt2hXHjx9v8GtoKLczFr6+vli/fj0uXryIU6dO4bvvvkPr1q3RuXPn2z5mY6DGWDjSFN4Xt8NoNDocO29vb3h6ejbZ90V93WocHGmu74m6uNl4Naf3xO1yd3dHr169nPa+YKFFt02r1aJ3797IzMxU2mw2GzIzMxEdHe1wn0uXLtWYsXF1dQUAyE0eu1lRUYGCggL4+/s3UOYN73bGoppOp0OHDh1w7do1fPrppxgxYsQdH9OZ1BgLR5rC++J2REdH240dAGRkZChj11TfF/V1q3FwpLm+J+ridsarpbBarThw4IDz3hfOXo1PTdvq1avFw8ND0tLS5PDhw5KcnCwGg0HMZrOIiIwbN06mT5+uxKekpEibNm1k1apVcuLECdm6dat06dJFRo0apcS88MILsn37diksLJRdu3ZJbGys+Pj4yLlz5+769dVHfcfim2++kU8//VQKCgpkx44d8utf/1qCg4Plp59+qvMxGys1xqKpvi8uXLgge/bskT179ggA+dvf/iZ79uyRU6dOiYjI9OnTZdy4cUr8iRMnpFWrVvLSSy/JkSNHZOnSpeLq6ipbtmxRYpri+0KNcWgp7wkRUeJ79+4tY8eOlT179sihQ4eU/l27dombm5ssXLhQjhw5IikpKeLu7i4HDhy4q9dWX2qMxauvvipffPGFFBQUSF5enowZM0Z0Op1dzN3EQovu2JIlS6Rjx46i1WolMjJSvvnmG6UvJiZGJkyYoLy+evWqzJ07V7p06SI6nU4CAwPlT3/6k90H6ujRo8Xf31+0Wq106NBBRo8eLcePH7+LV3T76jMW27dvl/vvv188PDzknnvukXHjxsn3339fr2M2Zg09Fk31ffHll18KgBpb9fVPmDBBYmJiauwTEREhWq1WOnfuLB9++GGN4za194Ua49CS3hOO4jt16mQXs2bNGunatatotVrp0aOHbNq06e5c0B1QYyymTp2q/Lvh5+cnw4YNk/z8/Lt3UTfQiNzk+xoiIiIiuiNco0VERESkEhZaRERERCphoUVERESkEhZaRERERCphoUVERESkEhZaRERERCphoUVERESkEhZaRERkZ/v27dBoNCgrK3N2KkRNHgstInKap556ChqNBvPnz7drX79+PTQajfJaRPDee+8hOjoa3t7eaN26NXr06IHnn3++zg+KvXTpEmbMmIEuXbpAp9PB19cXMTEx2LBhgxITFBSERYsWNci1qa167DQaDdzd3REcHIyXX34ZVVVV9TrOoEGDMHXqVLu2fv36oaioCHq9vgEzJmqZWGgRkVPpdDq8+eab+Omnnxz2iwjGjh2L5557DsOGDcPWrVtx+PBhvP/++9DpdHj99dfrdJ5nnnkG69atw5IlS/Ddd99hy5YtePLJJ3H+/PmGvJy7aujQoSgqKsKJEyfw9ttvY/ny5UhJSbnj42q1WhiNRrtil4huk9Me/kNELd6ECRPkkUceke7du8tLL72ktP/73/+W6v88rVq1SgDIhg0bHB7DZrPV6Vx6vV7S0tJu2h8TE1Pj+WnVvv76a+nfv7/odDq599575dlnn5WKigql/3//93+ld+/e0rp1a/Hz85P4+HgpLi5W+quf57ZlyxaJiIgQnU4ngwcPluLiYtm8ebN0795d2rRpI/Hx8XLx4sU6Xc+ECRNkxIgRdm0jR46UXr16Ka9LSkpkzJgxEhAQIJ6entKzZ09ZuXKl3TFuvObCwkIl318+g/STTz6R0NBQ0Wq10qlTJ1m4cGGd8iRq6TijRURO5erqijfeeANLlizB2bNna/SvWrUK3bp1w2OPPeZw/7rOuhiNRmzevBkXLlxw2L9u3Trce++9mDdvHoqKilBUVAQAKCgowNChQ/HEE09g//79SE9Px86dOzFlyhRl36tXr+K1117Dvn37sH79epw8eRJPPfVUjXPMnTsX77zzDrKysnDmzBmMGjUKixYtwsqVK7Fp0yZs3boVS5YsqdP13OjgwYPIysqCVqtV2qqqqtC7d29s2rQJBw8eRHJyMsaNG4fdu3cDAP7+978jOjoaEydOVK45MDCwxrHz8vIwatQojBkzBgcOHMDcuXMxe/ZspKWl3VauRC2Ksys9Imq5fjkr86tf/Ur+8Ic/iIj9jFb37t3lscces9vv+eefFy8vL/Hy8pIOHTrU6VxfffWV3HvvveLu7i59+vSRqVOnys6dO+1iOnXqJG+//bZdW1JSkiQnJ9u1ff311+Li4iKVlZUOz5WbmysA5MKFCyLy84zWf/7zHyUmNTVVAEhBQYHSNmnSJDGZTHW6ngkTJoirq6t4eXmJh4eHABAXFxf55JNPat1v+PDh8sILLyivY2Ji5Pnnn7eLuXFGa+zYsfKb3/zGLuall16S0NDQOuVK1JJxRouIGoU333wTH330EY4cOXLL2P/3//4f9u7dizlz5qCioqJOxx84cCBOnDiBzMxMPPnkkzh06BAGDBiA1157rdb99u3bh7S0NLRu3VrZTCYTbDYbCgsLAVyf8Xn00UfRsWNHtGnTBjExMQCA06dP2x3rgQceUP7Zz88PrVq1QufOne3azp07V6frAYDBgwdj7969yMnJwYQJE5CYmIgnnnhC6bdarXjttdcQFhaGdu3aoXXr1vjiiy9q5HUrR44cwUMPPWTX9tBDD+HYsWOwWq31OhZRS8NCi4gahYEDB8JkMmHGjBl27SEhITh69Khdm6+vL+677z60b9++Xudwd3fHgAED8Morr2Dr1q2YN28eXnvtNVy5cuWm+1RUVGDSpEnYu3evsu3btw/Hjh1Dly5dcPHiRZhMJnh7e+Pjjz9Gbm4u/v3vfwNAjeO6u7sr/1z9a8Ff0mg0sNlsdb4eLy8v3HfffQgPD8cHH3yAnJwcvP/++0r/W2+9hb///e945ZVX8OWXX2Lv3r0wmUy1Xi8RNSw3ZydARFRt/vz5iIiIQLdu3ZS2+Ph4jB07Fhs2bMCIESMa9HyhoaG4du0aqqqqoNVqodVqa8zQPPjggzh8+DDuu+8+h8c4cOAAzp8/j/nz5yvrm7799tsGzbMuXFxcMHPmTEybNg1jx46Fp6cndu3ahREjRuD3v/89AMBms+G///0vQkNDlf0cXfON7r//fuzatcuubdeuXejatStcXV0b/mKImhHOaBFRoxEWFoaEhAQsXrxYaRszZgyefPJJjBkzBvPmzUNOTg5OnjyJr776Cunp6XX+oB80aBCWL1+OvLw8nDx5Eps3b8bMmTMxePBgeHt7A7h+H60dO3bg+++/R0lJCQDglVdeQVZWFqZMmYK9e/fi2LFj2LBhg7IYvmPHjtBqtViyZAlOnDiBzz777JZfR6rld7/7HVxdXbF06VIA12cDMzIykJWVhSNHjmDSpEkoLi622ycoKEgZ05KSEoczai+88AIyMzPx2muv4b///S8++ugjvPPOO3jxxRfvynURNWUstIioUZk3b57dh71Go0F6ejoWLVqEzZs3Y8iQIejWrRv+8Ic/IDAwEDt37qzTcU0mEz766CM8/PDDuP/++/Hss8/CZDJhzZo1duc+efIkunTpAl9fXwDX11V99dVX+O9//4sBAwagV69emDNnDgICAgBc/xozLS0Na9euRWhoKObPn4+FCxc24IjUnZubG6ZMmYIFCxbg4sWLmDVrFh588EGYTCYMGjQIRqMRcXFxdvu8+OKLcHV1RWhoKHx9fR2u33rwwQexZs0arF69Gj179sScOXMwb948h7+sJCJ7GhERZydBRERE1BxxRouIiIhIJSy0iKhZ+OXtF27cvv76a2enVy+nT5+u9Xrqe3sGInIefnVIRM1CbQ+X7tChAzw9Pe9iNnfm2rVrOHny5E37g4KC4ObGH40TNQUstIiIiIhUwq8OiYiIiFTCQouIiIhIJSy0iIiIiFTCQouIiIhIJSy0iIiIiFTCQouIiIhIJSy0iIiIiFTCQouIiIhIJf8fKyZbvO/7wm0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAU3lJREFUeJzt3X1cVGXeP/DPDDAziDJoIAOGgooPKIlhEKai62zj5pZkrYqsGotiu1qaPam3ilkbpu7mamxa9yb9tlS0XO1WIlnMTCE00FQ01wd8yBiUiBlB8GHm+v3hzbk7MiIgh+Hh8369zgvnOt9zznXOa2A+nnPNOSohhAARERERNTq1sztARERE1FoxaBEREREphEGLiIiISCEMWkREREQKYdAiIiIiUgiDFhEREZFCGLSIiIiIFMKgRURERKQQBi0iIiIihTBoEVGbt3jxYqhUqjrVqlQqLF68WNH+DB8+HMOHD2+26yOiumPQIqJmIzU1FSqVSppcXV3RpUsXPPPMM7h48aKzu9fsBAYGyo5X586dMXToUPzrX/9qlPVfvXoVixcvxu7duxtlfURtEYMWETU7S5YswT//+U+sWbMGv/nNb/DRRx8hOjoaVVVVimxvwYIFqKysVGTdSgsLC8M///lP/POf/8RLL72EH3/8EWPHjsWaNWvued1Xr17Fa6+9xqBFdA9cnd0BIqLb/eY3v8GgQYMAAFOnToW3tzfeeustfPbZZxg3blyjb8/V1RWuri3zz2GXLl3w+9//Xno9efJk9OzZE2+//TaeffZZJ/aMiACe0SKiFmDo0KEAgNOnT8vav//+ezz99NPo1KkTdDodBg0ahM8++0xWc+PGDbz22msIDg6GTqfDfffdhyFDhiAzM1OqcTRG69q1a3jhhRfg4+ODDh064IknnsAPP/xQo2/PPPMMAgMDa7Q7Wue6devwq1/9Cp07d4ZWq0VISAjefffdeh2LuzEYDOjbty8KCwtrrbt06RISEhLg6+sLnU6HAQMG4MMPP5Tmnz17Fj4+PgCA1157Tbo8qfT4NKLWpmX+F46I2pSzZ88CADp27Ci1FRQU4JFHHkGXLl0wd+5ceHh4YNOmTYiJicGnn36KJ598EsCtwJOcnIypU6ciIiICVqsV3377LfLz8/HrX//6jtucOnUqPvroI0ycOBGDBw/Grl27MHr06Hvaj3fffRf9+vXDE088AVdXV/zP//wP/vSnP8Fut2PGjBn3tO5qN27cwIULF3DffffdsaayshLDhw/HqVOnMHPmTAQFBWHz5s145plnUFZWhlmzZsHHxwfvvvsu/vjHP+LJJ5/E2LFjAQAPPPBAo/STqM0QRETNxLp16wQA8e9//1tcvnxZXLhwQXzyySfCx8dHaLVaceHCBal25MiRIjQ0VFRVVUltdrtdDB48WAQHB0ttAwYMEKNHj651u0lJSeKXfw4PHTokAIg//elPsrqJEycKACIpKUlqmzJliujWrdtd1ymEEFevXq1RZzKZRPfu3WVt0dHRIjo6utY+CyFEt27dxKOPPiouX74sLl++LL777jsxYcIEAUA899xzd1zfypUrBQDx0UcfSW3Xr18XUVFRon379sJqtQohhLh8+XKN/SWi+uGlQyJqdoxGI3x8fBAQEICnn34aHh4e+Oyzz3D//fcDAEpLS7Fr1y6MGzcOV65cQUlJCUpKSvDTTz/BZDLh5MmT0rcUvby8UFBQgJMnT9Z5++np6QCA559/XtY+e/bse9ovd3d36d8WiwUlJSWIjo7GmTNnYLFYGrTOnTt3wsfHBz4+PhgwYAA2b96MSZMm4a233rrjMunp6TAYDIiNjZXa3Nzc8Pzzz6O8vBxfffVVg/pCRDXx0iERNTspKSno1asXLBYLPvjgA+zZswdarVaaf+rUKQghsHDhQixcuNDhOi5duoQuXbpgyZIlGDNmDHr16oX+/ftj1KhRmDRpUq2XwM6dOwe1Wo0ePXrI2nv37n1P+7Vv3z4kJSUhJycHV69elc2zWCzQ6/X1XmdkZCTeeOMNqFQqtGvXDn379oWXl1ety5w7dw7BwcFQq+X/1+7bt680n4gaB4MWETU7ERER0rcOY2JiMGTIEEycOBEnTpxA+/btYbfbAQAvvfQSTCaTw3X07NkTADBs2DCcPn0a27Ztw86dO/Hf//3fePvtt7FmzRpMnTr1nvt6pxud2mw22evTp09j5MiR6NOnD/76178iICAAGo0G6enpePvtt6V9qi9vb28YjcYGLUtEymPQIqJmzcXFBcnJyRgxYgTeeecdzJ07F927dwdw63JXXUJGp06dEB8fj/j4eJSXl2PYsGFYvHjxHYNWt27dYLfbcfr0adlZrBMnTtSo7dixI8rKymq0335W6H/+539w7do1fPbZZ+jatavU/uWXX961/42tW7duOHz4MOx2u+ys1vfffy/NB+4cIomo7jhGi4iaveHDhyMiIgIrV65EVVUVOnfujOHDh2Pt2rUoKiqqUX/58mXp3z/99JNsXvv27dGzZ09cu3btjtv7zW9+AwBYtWqVrH3lypU1anv06AGLxYLDhw9LbUVFRTXuzu7i4gIAEEJIbRaLBevWrbtjP5Ty2GOPwWw2Iy0tTWq7efMmVq9ejfbt2yM6OhoA0K5dOwBwGCSJqG54RouIWoSXX34Zv/vd75Camopnn30WKSkpGDJkCEJDQzFt2jR0794dxcXFyMnJwQ8//IDvvvsOABASEoLhw4cjPDwcnTp1wrfffotPPvkEM2fOvOO2wsLCEBsbi7///e+wWCwYPHgwsrKycOrUqRq1EyZMwKuvvoonn3wSzz//PK5evYp3330XvXr1Qn5+vlT36KOPQqPR4PHHH8f06dNRXl6O999/H507d3YYFpWUmJiItWvX4plnnkFeXh4CAwPxySefYN++fVi5ciU6dOgA4Nbg/ZCQEKSlpaFXr17o1KkT+vfvj/79+zdpf4laNGd/7ZGIqFr17R0OHDhQY57NZhM9evQQPXr0EDdv3hRCCHH69GkxefJkYTAYhJubm+jSpYv47W9/Kz755BNpuTfeeENEREQILy8v4e7uLvr06SP+/Oc/i+vXr0s1jm7FUFlZKZ5//nlx3333CQ8PD/H444+LCxcuOLzdwc6dO0X//v2FRqMRvXv3Fh999JHDdX722WfigQceEDqdTgQGBoq33npLfPDBBwKAKCwslOrqc3uHu9264k7rKy4uFvHx8cLb21toNBoRGhoq1q1bV2PZ7OxsER4eLjQaDW/1QNQAKiF+cR6biIiIiBoNx2gRERERKYRBi4iIiEghDFpERERECmHQIiIiIlIIgxYRERGRQhi0iIiIiBTCG5Y6kd1ux48//ogOHTrwURdEREQthBACV65cgb+/f42Hs9+OQcuJfvzxRwQEBDi7G0RERNQAFy5cwP33319rDYOWE1U/5uLChQvw9PR0cm+IiIioLqxWKwICAqTP8dowaDlR9eVCT09PBi0iIqIWpi7DfjgYnoiIiEghDFpERERECmHQIiIiIlIIx2gRERG1ATabDTdu3HB2N1oMjUZz11s31AWDFhERUSsmhIDZbEZZWZmzu9KiqNVqBAUFQaPR3NN6GLSIiIhaseqQ1blzZ7Rr1443yK6D6huKFxUVoWvXrvd0zBi0iIiIWimbzSaFrPvuu8/Z3WlRfHx88OOPP+LmzZtwc3Nr8Ho4GJ6IiKiVqh6T1a5dOyf3pOWpvmRos9nuaT0MWkRERK0cLxfWX2MdMwYtIiIiIoUwaBEREREphEGLWrQiSyWyT5egyFLp7K4QEZECzGYznnvuOXTv3h1arRYBAQF4/PHHkZWVBQAIDAzEypUrayy3ePFihIWFOVznxo0boVKpEBMTo1zH/xe/dUgtVtqB85i35QjsAlCrgOSxoRj/UFdnd4uIiBrJ2bNn8cgjj8DLywvLly9HaGgobty4gS+++AIzZszA999/36B1vvTSSxg6dKgCPa6JQYtapCJLpRSyAMAugPlbjmJYLx/46d2d2zkiImoUf/rTn6BSqbB//354eHhI7f369cMf/vCHeq/PZrMhLi4Or732Gr7++usmuYkrLx1Si1RYUiGFrGo2IXC25KpzOkRE1AY05XCN0tJSZGRkYMaMGbKQVc3Ly6ve61yyZAk6d+6MhISERuhh3fCMFrVIQd4eUKsgC1suKhUCvXmvGCIiJTT1cI1Tp05BCIE+ffrctfbVV1/FggULZG3Xr19HSEiI9Hrv3r34xz/+gUOHDjV2V2vFM1rUIvnp3ZE8NhQu/3ufExeVCm+O7c/LhkRECrjTcA0lz2wJIe5e9L9efvllHDp0SDY9++yz0vwrV65g0qRJeP/99+Ht7a1Ed++IZ7SoxRr/UFcM6+WDsyVXEejdjiGLiEghtQ3XUOpvb3BwMFQqVZ0GvHt7e6Nnz56ytk6dOkn/Pn36NM6ePYvHH39carPb7QAAV1dXnDhxAj169GiknsvxjBa1aH56d0T1uI8hi4hIQdXDNX5J6eEanTp1gslkQkpKCioqKmrMr89A9j59+uDIkSOyM15PPPEERowYgUOHDiEgIKARey7HoEVERES1ctZwjZSUFNhsNkRERODTTz/FyZMncfz4caxatQpRUVF1Xo9Op0P//v1lk5eXFzp06ID+/ftLzzVUAi8dEhER0V05Y7hG9+7dkZ+fjz//+c948cUXUVRUBB8fH4SHh+Pdd99VfPuNQSXqM9qMGpXVaoVer4fFYoGnp6ezu0NERK1MVVUVCgsLERQUBJ1O5+zutCi1Hbv6fH7z0iERERGRQhi0iIiIiBTCoEVERESkEAYtIiIiIoUwaBEREbVy/N5b/TXWMWPQIiIiaqXc3NwAAFevXnVyT1qe69evAwBcXFzuaT28jxYREVEr5eLiAi8vL1y6dAkA0K5dO6hUqrssRXa7HZcvX0a7du3g6npvUYlBi4iIqBUzGAwAIIUtqhu1Wo2uXbveczBl0CIiImrFVCoV/Pz80LlzZ9y4ccPZ3WkxNBoN1Op7H2HFoEVERNQGuLi43PN4I6q/ZjEYPiUlBYGBgdDpdIiMjMT+/ftrrd+8eTP69OkDnU6H0NBQpKeny+YLIbBo0SL4+fnB3d0dRqMRJ0+elNWUlpYiLi4Onp6e8PLyQkJCAsrLy6X5J06cwIgRI+Dr6wudTofu3btjwYIFsv8NpKamQqVSySY+4oCIiIiqOT1opaWlYc6cOUhKSkJ+fj4GDBgAk8l0x2vJ2dnZiI2NRUJCAg4ePIiYmBjExMTg6NGjUs2yZcuwatUqrFmzBrm5ufDw8IDJZEJVVZVUExcXh4KCAmRmZmL79u3Ys2cPEhMTpflubm6YPHkydu7ciRMnTmDlypV4//33kZSUJOuPp6cnioqKpOncuXONfISIiIioxRJOFhERIWbMmCG9ttlswt/fXyQnJzusHzdunBg9erSsLTIyUkyfPl0IIYTdbhcGg0EsX75cml9WVia0Wq3YsGGDEEKIY8eOCQDiwIEDUs3nn38uVCqVuHjx4h37+sILL4ghQ4ZIr9etWyf0en3dd/Y2FotFABAWi6XB6yAiIqKmVZ/Pb6ee0bp+/Try8vJgNBqlNrVaDaPRiJycHIfL5OTkyOoBwGQySfWFhYUwm82yGr1ej8jISKkmJycHXl5eGDRokFRjNBqhVquRm5vrcLunTp1CRkYGoqOjZe3l5eXo1q0bAgICMGbMGBQUFNxxf69duwar1SqbiIiIqPVyatAqKSmBzWaDr6+vrN3X1xdms9nhMmazudb66p93q+ncubNsvqurKzp16lRju4MHD4ZOp0NwcDCGDh2KJUuWSPN69+6NDz74ANu2bcNHH30Eu92OwYMH44cffnDY9+TkZOj1emkKCAhwWEdEREStg9PHaDV3aWlpyM/Px/r167Fjxw6sWLFCmhcVFYXJkycjLCwM0dHR2LJlC3x8fLB27VqH65o3bx4sFos0Xbhwoal2g4iIiJzAqbd38Pb2houLC4qLi2XtxcXF0g3WbmcwGGqtr/5ZXFwMPz8/WU1YWJhUc/tg+5s3b6K0tLTGdqvPOoWEhMBmsyExMREvvviiw6/Iurm5YeDAgTh16pTDvmu1Wmi1WofziIiIqPVx6hktjUaD8PBwZGVlSW12ux1ZWVmIiopyuExUVJSsHgAyMzOl+qCgIBgMBlmN1WpFbm6uVBMVFYWysjLk5eVJNbt27YLdbkdkZOQd+2u323Hjxg3Y7XaH8202G44cOSILeERERNR2Of2GpXPmzMGUKVMwaNAgREREYOXKlaioqEB8fDwAYPLkyejSpQuSk5MBALNmzUJ0dDT+8pe/YPTo0di4cSO+/fZbvPfeewBu3QF39uzZeOONNxAcHIygoCAsXLgQ/v7+iImJAQD07dsXo0aNwrRp07BmzRrcuHEDM2fOxIQJE+Dv7w8A+Pjjj+Hm5obQ0FBotVp8++23mDdvHsaPHy89pHPJkiV4+OGH0bNnT5SVlWH58uU4d+4cpk6d2sRHkYiIiJojpwet8ePH4/Lly1i0aBHMZjPCwsKQkZEhDWY/f/687Bb4gwcPxvr167FgwQLMnz8fwcHB2Lp1K/r37y/VvPLKK6ioqEBiYiLKysowZMgQZGRkyG4m+vHHH2PmzJkYOXIk1Go1nnrqKaxatUqa7+rqirfeegv/+c9/IIRAt27dMHPmTLzwwgtSzc8//4xp06bBbDajY8eOCA8PR3Z2NkJCQpQ8ZERERNRCqIQQwtmdaKusViv0ej0sFgs8PT2d3R0iIiKqg/p8fvNbh0REREQKYdAiIiIiUgiDFhEREZFCGLSIiIiIFMKgRURERKQQBi0iIiIihTBoERERESmEQYuIiIhIIQxaRERERAph0CIiIiJSCIMWERERkUIYtIiIiIgUwqBFREREpBAGLSIiIiKFMGgRERERKYRBi4iIiEghDFpERERECmHQIiIiIlIIgxYRERGRQhi0iIiIiBTCoEVERESkEAYtIiIiIoUwaBEREREphEGLiIiISCEMWkREREQKYdAiIiIiUgiDFhEREZFCGLSIiIiIFMKgRURERKQQBi0iIiIihTBoERERESmEQYuIiIhIIQxaRERERAph0CIiIiJSSLMIWikpKQgMDIROp0NkZCT2799fa/3mzZvRp08f6HQ6hIaGIj09XTZfCIFFixbBz88P7u7uMBqNOHnypKymtLQUcXFx8PT0hJeXFxISElBeXi7NP3HiBEaMGAFfX1/odDp0794dCxYswI0bN+rVFyIiImq7nB600tLSMGfOHCQlJSE/Px8DBgyAyWTCpUuXHNZnZ2cjNjYWCQkJOHjwIGJiYhATE4OjR49KNcuWLcOqVauwZs0a5ObmwsPDAyaTCVVVVVJNXFwcCgoKkJmZie3bt2PPnj1ITEyU5ru5uWHy5MnYuXMnTpw4gZUrV+L9999HUlJSvfpCREREbZhwsoiICDFjxgzptc1mE/7+/iI5Odlh/bhx48To0aNlbZGRkWL69OlCCCHsdrswGAxi+fLl0vyysjKh1WrFhg0bhBBCHDt2TAAQBw4ckGo+//xzoVKpxMWLF+/Y1xdeeEEMGTKkzn25G4vFIgAIi8VSp3oiIiJyvvp8fjv1jNb169eRl5cHo9EotanVahiNRuTk5DhcJicnR1YPACaTSaovLCyE2WyW1ej1ekRGRko1OTk58PLywqBBg6Qao9EItVqN3Nxch9s9deoUMjIyEB0dXee+3O7atWuwWq2yiYiIiFovpwatkpIS2Gw2+Pr6ytp9fX1hNpsdLmM2m2utr/55t5rOnTvL5ru6uqJTp041tjt48GDodDoEBwdj6NChWLJkSZ37crvk5GTo9XppCggIcFhHRERErYPTx2g1d2lpacjPz8f69euxY8cOrFixosHrmjdvHiwWizRduHChEXtKREREzY2rMzfu7e0NFxcXFBcXy9qLi4thMBgcLmMwGGqtr/5ZXFwMPz8/WU1YWJhUc/tg+5s3b6K0tLTGdqvPOoWEhMBmsyExMREvvvgiXFxc7tqX22m1Wmi1WofziIiIqPVx6hktjUaD8PBwZGVlSW12ux1ZWVmIiopyuExUVJSsHgAyMzOl+qCgIBgMBlmN1WpFbm6uVBMVFYWysjLk5eVJNbt27YLdbkdkZOQd+2u323Hjxg3Y7fY69YWIiIjauCYYnF+rjRs3Cq1WK1JTU8WxY8dEYmKi8PLyEmazWQghxKRJk8TcuXOl+n379glXV1exYsUKcfz4cZGUlCTc3NzEkSNHpJqlS5cKLy8vsW3bNnH48GExZswYERQUJCorK6WaUaNGiYEDB4rc3Fyxd+9eERwcLGJjY6X5H330kUhLSxPHjh0Tp0+fFmlpacLf31/ExcXVqy+14bcOiYiIWp76fH47PWgJIcTq1atF165dhUajEREREeKbb76R5kVHR4spU6bI6jdt2iR69eolNBqN6Nevn9ixY4dsvt1uFwsXLhS+vr5Cq9WKkSNHihMnTshqfvrpJxEbGyvat28vPD09RXx8vLhy5Yo0f+PGjeLBBx8U7du3Fx4eHiIkJES8+eabsrBWl77UhkGLiIio5anP57dKCCGce06t7bJardDr9bBYLPD09HR2d4iIiKgO6vP5zW8dEhERESmEQYuIiIhIIQxaRERERAph0CIiIiJSCIMWERERkUIYtIiIiIgUwqBFREREpBAGLSIiIiKFMGgRERERKYRBi4iIiEghDFpERERECmHQIiIiIlIIgxYRERGRQhi0iIiIiBTCoEVERESkEAYtIiIiIoUwaBEREREphEGLiIiISCEMWkREREQKYdAiIiIiUgiDFhEREZFCGLSIiIiIFMKgRURERKQQBi0iIiIihTBoERERESmEQYuIiIhIIQxaRERERAph0CIiIiJSCIMWERERkUIYtIiIiIgUwqBFREREpBAGLSIiIiKFMGgRERERKYRBi4iIiEghzSJopaSkIDAwEDqdDpGRkdi/f3+t9Zs3b0afPn2g0+kQGhqK9PR02XwhBBYtWgQ/Pz+4u7vDaDTi5MmTsprS0lLExcXB09MTXl5eSEhIQHl5uTR/9+7dGDNmDPz8/ODh4YGwsDB8/PHHsnWkpqZCpVLJJp1Od49Hg4iIiFoLpwettLQ0zJkzB0lJScjPz8eAAQNgMplw6dIlh/XZ2dmIjY1FQkICDh48iJiYGMTExODo0aNSzbJly7Bq1SqsWbMGubm58PDwgMlkQlVVlVQTFxeHgoICZGZmYvv27dizZw8SExNl23nggQfw6aef4vDhw4iPj8fkyZOxfft2WX88PT1RVFQkTefOnWvkI0REREQtlnCyiIgIMWPGDOm1zWYT/v7+Ijk52WH9uHHjxOjRo2VtkZGRYvr06UIIIex2uzAYDGL58uXS/LKyMqHVasWGDRuEEEIcO3ZMABAHDhyQaj7//HOhUqnExYsX79jXxx57TMTHx0uv161bJ/R6fd139jYWi0UAEBaLpcHrICIioqZVn89vp57Run79OvLy8mA0GqU2tVoNo9GInJwch8vk5OTI6gHAZDJJ9YWFhTCbzbIavV6PyMhIqSYnJwdeXl4YNGiQVGM0GqFWq5Gbm3vH/losFnTq1EnWVl5ejm7duiEgIABjxoxBQUHBHZe/du0arFarbCIiIqLWy6lBq6SkBDabDb6+vrJ2X19fmM1mh8uYzeZa66t/3q2mc+fOsvmurq7o1KnTHbe7adMmHDhwAPHx8VJb79698cEHH2Dbtm346KOPYLfbMXjwYPzwww8O15GcnAy9Xi9NAQEBDuuIiIiodXD6GK2W4Msvv0R8fDzef/999OvXT2qPiorC5MmTERYWhujoaGzZsgU+Pj5Yu3atw/XMmzcPFotFmi5cuNBUu0BERERO4NSg5e3tDRcXFxQXF8vai4uLYTAYHC5jMBhqra/+ebea2wfb37x5E6WlpTW2+9VXX+Hxxx/H22+/jcmTJ9e6P25ubhg4cCBOnTrlcL5Wq4Wnp6dsIiIiImUUWSqRfboERZZKp/XBqUFLo9EgPDwcWVlZUpvdbkdWVhaioqIcLhMVFSWrB4DMzEypPigoCAaDQVZjtVqRm5sr1URFRaGsrAx5eXlSza5du2C32xEZGSm17d69G6NHj8Zbb70l+0bindhsNhw5cgR+fn512HsiIiJSStqB83hk6S5MfD8XjyzdhbQD553SD1enbPUX5syZgylTpmDQoEGIiIjAypUrUVFRIY2Fmjx5Mrp06YLk5GQAwKxZsxAdHY2//OUvGD16NDZu3Ihvv/0W7733HgBApVJh9uzZeOONNxAcHIygoCAsXLgQ/v7+iImJAQD07dsXo0aNwrRp07BmzRrcuHEDM2fOxIQJE+Dv7w/g1uXC3/72t5g1axaeeuopaeyWRqORBsQvWbIEDz/8MHr27ImysjIsX74c586dw9SpU5vyEBIREdEvFFkqMW/LEdjFrdd2AczfchTDevnAT+/epH1xetAaP348Ll++jEWLFsFsNiMsLAwZGRnSYPbz589Drf6/E2+DBw/G+vXrsWDBAsyfPx/BwcHYunUr+vfvL9W88sorqKioQGJiIsrKyjBkyBBkZGTIbib68ccfY+bMmRg5ciTUajWeeuoprFq1Spr/4Ycf4urVq0hOTpZCHgBER0dj9+7dAICff/4Z06ZNg9lsRseOHREeHo7s7GyEhIQodbiIiIjoLgpLKqSQVc0mBM6WXG3yoKUSQoi7l5ESrFYr9Ho9LBYLx2sRERE1kiJLJR5ZuksWtlxUKuydO6JRglZ9Pr/5rUMiIiJqVfz07kgeGwoXlQrArZD15tj+TX42C2gGlw6JiIiIGtv4h7piWC8fnC25ikDvdk4JWQCDFhEREbVSfnp3pwWsarx0SERERK1Sc7iPFs9oERERUauTduC8dIsHtQpIHhuK8Q91bfJ+8IwWERERtSp3uo+WM85sMWgRERFRq1LbfbSaGoMWERERtSpB3h5Qq+RtLioVAr3bNXlfGLRaqeYwAJCIiMgZeB8tUlRzGQBIRETkLM3lPlo8o9XKNKcBgERERM7kp3dHVI/7nHovLQatVqY5DQAkIiJq6xi0WpnmNACQiIiorWPQamWa0wBAIiKito6D4Vuh5jIAkIiIqK1j0GqlmsODNImIiNo6XjokIiIiUgiDFhEREZFCGLSIiIiIFMKgRURERKQQBi0iIiIihTBoERERESmEQYuIiIhIIQxaRERERAph0CIiIiJSCIMWERERkUIYtIiIiIgUwqBFREREpBAGLSIiIiKFMGgRERERKYRBi4iIiEghDFpERERECmHQIiIiIlIIgxYRERGRQppF0EpJSUFgYCB0Oh0iIyOxf//+Wus3b96MPn36QKfTITQ0FOnp6bL5QggsWrQIfn5+cHd3h9FoxMmTJ2U1paWliIuLg6enJ7y8vJCQkIDy8nJp/u7duzFmzBj4+fnBw8MDYWFh+Pjjj+vdFyIiImq7nB600tLSMGfOHCQlJSE/Px8DBgyAyWTCpUuXHNZnZ2cjNjYWCQkJOHjwIGJiYhATE4OjR49KNcuWLcOqVauwZs0a5ObmwsPDAyaTCVVVVVJNXFwcCgoKkJmZie3bt2PPnj1ITEyUbeeBBx7Ap59+isOHDyM+Ph6TJ0/G9u3b69UXIiIiasOEk0VERIgZM2ZIr202m/D39xfJyckO68eNGydGjx4ta4uMjBTTp08XQghht9uFwWAQy5cvl+aXlZUJrVYrNmzYIIQQ4tixYwKAOHDggFTz+eefC5VKJS5evHjHvj722GMiPj6+zn25G4vFIgAIi8VSp3oiIiJyvvp8fjfKGa3CwkLcvHmz3stdv34deXl5MBqNUptarYbRaEROTo7DZXJycmT1AGAymaT6wsJCmM1mWY1er0dkZKRUk5OTAy8vLwwaNEiqMRqNUKvVyM3NvWN/LRYLOnXqVOe+3O7atWuwWq2yiYiIiFqvRglavXv3rjEGqi5KSkpgs9ng6+sra/f19YXZbHa4jNlsrrW++ufdajp37iyb7+rqik6dOt1xu5s2bcKBAwcQHx9f577cLjk5GXq9XpoCAgIc1hEREVHr4Fqf4rFjxzpst9lseP7559GhQwcAwJYtW+69Z83Il19+ifj4eLz//vvo169fg9czb948zJkzR3pttVoZtoiIiFqxep3R2rp1K0pLS2VnZfR6PQCgffv2std14e3tDRcXFxQXF8vai4uLYTAYHC5jMBhqra/+ebea2wfb37x5E6WlpTW2+9VXX+Hxxx/H22+/jcmTJ9erL7fTarXw9PSUTURERNR61StorV+/HqdPn8awYcOwbt06aVKr1fjzn/8sva4rjUaD8PBwZGVlSW12ux1ZWVmIiopyuExUVJSsHgAyMzOl+qCgIBgMBlmN1WpFbm6uVBMVFYWysjLk5eVJNbt27YLdbkdkZKTUtnv3bowePRpvvfWW7BuJde0LERERtXH1HWlfWFgoHnnkETF27FhRWloqhBDC1dVVFBQU1H/YvhBi48aNQqvVitTUVHHs2DGRmJgovLy8hNlsFkIIMWnSJDF37lypft++fcLV1VWsWLFCHD9+XCQlJQk3Nzdx5MgRqWbp0qXCy8tLbNu2TRw+fFiMGTNGBAUFicrKSqlm1KhRYuDAgSI3N1fs3btXBAcHi9jYWGn+rl27RLt27cS8efNEUVGRNP3000/16ktt+K1DIiKilqc+n98Nur2DzWYTixYtEgEBASIjI0O4ubk1OGgJIcTq1atF165dhUajEREREeKbb76R5kVHR4spU6bI6jdt2iR69eolNBqN6Nevn9ixY4dsvt1uFwsXLhS+vr5Cq9WKkSNHihMnTshqfvrpJxEbGyvat28vPD09RXx8vLhy5Yo0f8qUKQJAjSk6OrpefakNgxYREVHLU5/Pb5UQQjT0bNjevXsxefJknDt3DkeOHEFISEgjnGNrO6xWK/R6PSwWC8drERERtRD1+fyu17cObzdkyBAcPnwYp0+fRo8ePe5lVUREREStzj0FLeDWtw0HDBjQGH0hIiIialXqFbQGDhwIlUp117r8/PwGd4iIiIiotahX0IqJiZH+LYRAcnIynn32WdljaYiIiIjolnsaDN+hQwd899136N69e2P2qc3gYHgiIqKWpz6f343yrEMiIiIiqolBi4iIiEghDFpERESkuCJLJbJPl6DIUunsrjSpeg2GX7Vqlez1zZs3kZqaCm9vb1n7888/f+89IyIiolYh7cB5zNtyBHYBqFVA8thQjH+oq7O71STqNRg+KCjo7itUqXDmzJl76lRbwcHwRETU2hVZKvHI0l2w/yJtuKhU2Dt3BPz07s7r2D1Q7M7whYWF99QxIiIialsKSypkIQsAbELgbMnVFhu06qNeY7R27dqFkJAQWK3WGvMsFgv69euHr7/+utE6R0RERC1bkLcH1Lfd69xFpUKgdzvndKiJ1StorVy5EtOmTXN4mkyv12P69On461//2midIyIiopbNT++O5LGhcPnfJ8u4qFR4c2z/NnE2C6jnGK1u3bohIyMDffv2dTj/+++/x6OPPorz5883WgdbM47RIiKitqLIUomzJVcR6N2uxYcsxcZoFRcXw83N7c4rc3XF5cuX67NKIiIiagP89O4tPmA1RL0uHXbp0gVHjx694/zDhw/Dz8/vnjtFRERE1BrUK2g99thjWLhwIaqqqmrMq6ysRFJSEn772982WueIiIiIWrJ6jdEqLi7Ggw8+CBcXF8ycORO9e/cGcGtsVkpKCmw2G/Lz8+Hr66tYh1sTjtEiIiJqeRQbo+Xr64vs7Gz88Y9/xLx581Cd0VQqFUwmE1JSUhiyiIiIiP5XvYIWcOubh+np6fj5559x6tQpCCEQHByMjh07KtE/IiJysiJLJQpLKhDk7dEmBzMT3Yt6B61qHTt2xEMPPdSYfSEiomamLT+jjqgx1GswPBERtR1FlkopZAGAXQDztxxFkaXSuR0jakEYtIiIyKHanlFHRHXDoEVERA619WfUETUGBi0iInKorT+jjqgxNHgwPBERtX7jH+qKYb18Ws0z6oiaGoMWERHVqq0+o46oMfDSIREREZFCGLSIiIiIFMKgRURERKQQBi0iIiIihTBoERERESmEQYuIiIhIIQxaRERERApxetBKSUlBYGAgdDodIiMjsX///lrrN2/ejD59+kCn0yE0NBTp6emy+UIILFq0CH5+fnB3d4fRaMTJkydlNaWlpYiLi4Onpye8vLyQkJCA8vJyaX5VVRWeeeYZhIaGwtXVFTExMTX6sXv3bqhUqhqT2Wxu+MEgIiKiVsWpQSstLQ1z5sxBUlIS8vPzMWDAAJhMJly6dMlhfXZ2NmJjY5GQkICDBw8iJiYGMTExOHr0qFSzbNkyrFq1CmvWrEFubi48PDxgMplQVVUl1cTFxaGgoACZmZnYvn079uzZg8TERGm+zWaDu7s7nn/+eRiNxlr34cSJEygqKpKmzp073+NRISIiolZDOFFERISYMWOG9Npmswl/f3+RnJzssH7cuHFi9OjRsrbIyEgxffp0IYQQdrtdGAwGsXz5cml+WVmZ0Gq1YsOGDUIIIY4dOyYAiAMHDkg1n3/+uVCpVOLixYs1tjllyhQxZsyYGu1ffvmlACB+/vnnOu/v7SwWiwAgLBZLg9dBRERETas+n99OO6N1/fp15OXlyc4YqdVqGI1G5OTkOFwmJyenxhkmk8kk1RcWFsJsNstq9Ho9IiMjpZqcnBx4eXlh0KBBUo3RaIRarUZubm699yMsLAx+fn749a9/jX379tV7eSIiImq9nBa0SkpKYLPZ4OvrK2v39fW94zgns9lca331z7vV3H55z9XVFZ06darX+Co/Pz+sWbMGn376KT799FMEBARg+PDhyM/Pv+My165dg9VqlU1ERETUevGh0g3Uu3dv9O7dW3o9ePBgnD59Gm+//Tb++c9/OlwmOTkZr732WlN1kYiIiJzMaWe0vL294eLiguLiYll7cXExDAaDw2UMBkOt9dU/71Zz+2D7mzdvorS09I7brauIiAicOnXqjvPnzZsHi8UiTRcuXLin7REREVHz5rSgpdFoEB4ejqysLKnNbrcjKysLUVFRDpeJioqS1QNAZmamVB8UFASDwSCrsVqtyM3NlWqioqJQVlaGvLw8qWbXrl2w2+2IjIy8p306dOgQ/Pz87jhfq9XC09NTNhEREVHr5dRLh3PmzMGUKVMwaNAgREREYOXKlaioqEB8fDwAYPLkyejSpQuSk5MBALNmzUJ0dDT+8pe/YPTo0di4cSO+/fZbvPfeewAAlUqF2bNn44033kBwcDCCgoKwcOFC+Pv7S/fC6tu3L0aNGoVp06ZhzZo1uHHjBmbOnIkJEybA399f6tuxY8dw/fp1lJaW4sqVKzh06BCAW4PfAWDlypUICgpCv379UFVVhf/+7//Grl27sHPnzqY5eERERNTsOTVojR8/HpcvX8aiRYtgNpsRFhaGjIwMaTD7+fPnoVb/30m3wYMHY/369ViwYAHmz5+P4OBgbN26Ff3795dqXnnlFVRUVCAxMRFlZWUYMmQIMjIyoNPppJqPP/4YM2fOxMiRI6FWq/HUU09h1apVsr499thjOHfunPR64MCBAG7dEBW49a3JF198ERcvXkS7du3wwAMP4N///jdGjBjR+AeKiIiIWiSVqE4O1OSsViv0ej0sFgsvIxIREbUQ9fn8dvojeIiIiIhaKwYtIiIiIoUwaBEREREphEGLiIiISCEMWkREREQKYdAiIiIiUgiDFhEREZFCGLSIiIiIFMKgRURERKQQBi0iIiInKbJUIvt0CYoslc7uCinEqc86JOUUWSpRWFKBIG8P+Ondnd0dIiK6TdqB85i35QjsAlCrgOSxoRj/UFdnd4saGYNWK8RfXiKi5q3IUin9nQYAuwDmbzmKYb18+J/jVoaXDluZO/3y8rQ0EVHzUVhSIf2drmYTAmdLrjqnQ6QYBq1Whr+8RETNX5C3B9QqeZuLSoVA73bO6RAphkGrleEvLxFR8+end0fy2FC4qG79wXZRqfDm2P68bNgKcYxWK1P9yzt/y1HYhOAvLxFRMzX+oa4Y1ssHZ0uuItC7Hf9Ot1IMWq0Qf3mJiFoGP707/0a3cgxarRR/eYmIiJyPY7SIiIiIFMKgRURERKQQBi0iIiIihTBoERERESmEQYuIiIhIIQxaRERERAph0CIiIiJSCIMWERERkUIYtIiIiIgUwqBFREREpBAGLSIiIiKFMGgRERERKYRBi4iIiEghDFpERERECmHQIiIiIlIIgxYRERGRQhi0iIiIiBTi9KCVkpKCwMBA6HQ6REZGYv/+/bXWb968GX369IFOp0NoaCjS09Nl84UQWLRoEfz8/ODu7g6j0YiTJ0/KakpLSxEXFwdPT094eXkhISEB5eXl0vyqqio888wzCA0NhaurK2JiYhz2Zffu3XjwwQeh1WrRs2dPpKamNugYEBERUevk1KCVlpaGOXPmICkpCfn5+RgwYABMJhMuXbrksD47OxuxsbFISEjAwYMHERMTg5iYGBw9elSqWbZsGVatWoU1a9YgNzcXHh4eMJlMqKqqkmri4uJQUFCAzMxMbN++HXv27EFiYqI032azwd3dHc8//zyMRqPDvhQWFmL06NEYMWIEDh06hNmzZ2Pq1Kn44osvGunoEBERUYsnnCgiIkLMmDFDem2z2YS/v79ITk52WD9u3DgxevRoWVtkZKSYPn26EEIIu90uDAaDWL58uTS/rKxMaLVasWHDBiGEEMeOHRMAxIEDB6Sazz//XKhUKnHx4sUa25wyZYoYM2ZMjfZXXnlF9OvXT9Y2fvx4YTKZ7rLX/8disQgAwmKx1HkZIiIicq76fH477YzW9evXkZeXJztjpFarYTQakZOT43CZnJycGmeYTCaTVF9YWAiz2Syr0ev1iIyMlGpycnLg5eWFQYMGSTVGoxFqtRq5ubl17v/d+uLItWvXYLVaZRMRERG1Xk4LWiUlJbDZbPD19ZW1+/r6wmw2O1zGbDbXWl/98241nTt3ls13dXVFp06d7rjd+vTFarWisrLS4TLJycnQ6/XSFBAQUOftERERUcvj9MHwbcm8efNgsVik6cKFC87uEhERESnIaUHL29sbLi4uKC4ulrUXFxfDYDA4XMZgMNRaX/3zbjW3D7a/efMmSktL77jd+vTF09MT7u7uDpfRarXw9PSUTURERNR6OS1oaTQahIeHIysrS2qz2+3IyspCVFSUw2WioqJk9QCQmZkp1QcFBcFgMMhqrFYrcnNzpZqoqCiUlZUhLy9Pqtm1axfsdjsiIyPr3P+79YWIiIjIqd863Lhxo9BqtSI1NVUcO3ZMJCYmCi8vL2E2m4UQQkyaNEnMnTtXqt+3b59wdXUVK1asEMePHxdJSUnCzc1NHDlyRKpZunSp8PLyEtu2bROHDx8WY8aMEUFBQaKyslKqGTVqlBg4cKDIzc0Ve/fuFcHBwSI2NlbWt4KCAnHw4EHx+OOPi+HDh4uDBw+KgwcPSvPPnDkj2rVrJ15++WVx/PhxkZKSIlxcXERGRkad95/fOiQiImp56vP57dSgJYQQq1evFl27dhUajUZERESIb775RpoXHR0tpkyZIqvftGmT6NWrl9BoNKJfv35ix44dsvl2u10sXLhQ+Pr6Cq1WK0aOHClOnDghq/npp59EbGysaN++vfD09BTx8fHiypUrsppu3boJADWmX/ryyy9FWFiY0Gg0onv37mLdunX12ncGLSIiIuX8WHZV7Dt1WfxYdrVR11ufz2+VEEI47XRaG2e1WqHX62GxWDhei4iIqBGlHTiPeVuOwC4AtQpIHhuK8Q91bZR11+fzm986JCIiolalyFIphSwAsAtg/pajKLI4vv2Skhi0iIiIqFUpLKmQQlY1mxA4W3K1yfvCoEVEREStSpC3B9QqeZuLSoVA73ZN3hcGLSIiUkyRpRLZp0uccsmG2i4/vTuSx4bCRXUrbbmoVHhzbH/46R3f51JJrk2+RSIiahOUHIxMdDfjH+qKYb18cLbkKgK92zklZAE8o0VERApoToORqe3y07sjqsd9TgtZAIMWEREpoDkNRiZyJgYtIiJqdM1pMDKRMzFoERFRo2tOg5GJnImD4YmaUJGlEoUlFQjy9uAHDrV6zWUwMpEzMWgRNRF+A4vaIj+9OwMWtWm8dEjUBPgNLCKitolBi6gJ8BtYRERtE4MWURPgN7CIiNomBi2iJsBvYBERtU0cDE/URPgNLCKitodBi6gJ8RtYRERtCy8dEhERESmEQYuIiIhIIQxaRERERAph0CIiIiJSCIMWERERkUIYtIioVSiyVCL7dAkfa0REzQpv70BELR4f2E1EzRXPaBFRi8YHdhNRc8agRUQtGh/YTUTNGYMWEbVofGA3ETVnDFpE1KLxgd1E1JxxMDwRtXh8YDcRNVcMWkTUKvCB3UTUHPHSIREREZFCGLSIiEgxvJEstXW8dEhERIrgjWSJeEaLiIgUwBvJEt3SLIJWSkoKAgMDodPpEBkZif3799dav3nzZvTp0wc6nQ6hoaFIT0+XzRdCYNGiRfDz84O7uzuMRiNOnjwpqyktLUVcXBw8PT3h5eWFhIQElJeXy2oOHz6MoUOHQqfTISAgAMuWLZPNT01NhUqlkk06ne4ejgRR88FLPnQveCNZolucHrTS0tIwZ84cJCUlIT8/HwMGDIDJZMKlS5cc1mdnZyM2NhYJCQk4ePAgYmJiEBMTg6NHj0o1y5Ytw6pVq7BmzRrk5ubCw8MDJpMJVVVVUk1cXBwKCgqQmZmJ7du3Y8+ePUhMTJTmW61WPProo+jWrRvy8vKwfPlyLF68GO+9956sP56enigqKpKmc+fONfIRImp6aQfO45GluzDx/Vw8snQX0g6cd3aXqIXhjWSJblEJIcTdy5QTGRmJhx56CO+88w4AwG63IyAgAM899xzmzp1bo378+PGoqKjA9u3bpbaHH34YYWFhWLNmDYQQ8Pf3x4svvoiXXnoJAGCxWODr64vU1FRMmDABx48fR0hICA4cOIBBgwYBADIyMvDYY4/hhx9+gL+/P959913813/9F8xmMzQaDQBg7ty52Lp1K77//nsAt85ozZ49G2VlZQ3ad6vVCr1eD4vFAk9Pzwatg6ixFVkq8cjSXbKzES4qFfbOHcHbJ1C9pB04j/lbjsImhHQjWY7RotagPp/fTj2jdf36deTl5cFoNEptarUaRqMROTk5DpfJycmR1QOAyWSS6gsLC2E2m2U1er0ekZGRUk1OTg68vLykkAUARqMRarUaubm5Us2wYcOkkFW9nRMnTuDnn3+W2srLy9GtWzcEBARgzJgxKCgouOP+Xrt2DVarVTYRNTe85EONZfxDXbF37ghsmPYw9s4dwZBFbZJTg1ZJSQlsNht8fX1l7b6+vjCbzQ6XMZvNtdZX/7xbTefOnWXzXV1d0alTJ1mNo3X8chu9e/fGBx98gG3btuGjjz6C3W7H4MGD8cMPPzjse3JyMvR6vTQFBAQ4rCNyJl7yocbkp3dHVI/7eDaU2iynj9FqyaKiojB58mSEhYUhOjoaW7ZsgY+PD9auXeuwft68ebBYLNJ04cKFJu4x0d21tWcHctA/ESnJqffR8vb2houLC4qLi2XtxcXFMBgMDpcxGAy11lf/LC4uhp+fn6wmLCxMqrl9sP3NmzdRWloqW4+j7fxyG7dzc3PDwIEDcerUKYfztVottFqtw3lEzUlbeXYg7/NEREpz6hktjUaD8PBwZGVlSW12ux1ZWVmIiopyuExUVJSsHgAyMzOl+qCgIBgMBlmN1WpFbm6uVBMVFYWysjLk5eVJNbt27YLdbkdkZKRUs2fPHty4cUO2nd69e6Njx44O+2az2XDkyBFZwCNqqVr7JR/e54mImoLTLx3OmTMH77//Pj788EMcP34cf/zjH1FRUYH4+HgAwOTJkzFv3jypftasWcjIyMBf/vIXfP/991i8eDG+/fZbzJw5EwCgUqkwe/ZsvPHGG/jss89w5MgRTJ48Gf7+/oiJiQEA9O3bF6NGjcK0adOwf/9+7Nu3DzNnzsSECRPg7+8PAJg4cSI0Gg0SEhJQUFCAtLQ0/O1vf8OcOXOkvixZsgQ7d+7EmTNnkJ+fj9///vc4d+4cpk6d2kRHj4gaioP+iagpOP0RPOPHj8fly5exaNEimM1mhIWFISMjQxp4fv78eajV/5cHBw8ejPXr12PBggWYP38+goODsXXrVvTv31+qeeWVV1BRUYHExESUlZVhyJAhyMjIkN1M9OOPP8bMmTMxcuRIqNVqPPXUU1i1apU0X6/XY+fOnZgxYwbCw8Ph7e2NRYsWye619fPPP2PatGkwm83o2LEjwsPDkZ2djZCQECUPGRE1gupB/7ffxoKD/omoMTn9PlptGe+jReRcvM8TETVEfT6/nX5Gi4jIWdrKoH8ich4GLSJq0/z07gxYRKQYpw+GJyIiImqtGLSIiIiIFMKgRURERKQQBi0iIiIihTBoERERESmEQYuIiIhIIQxaRERERAph0CIiIiJSCIMWERERkUIYtIioTSuyVCL7dAmKLJXO7goRtUJ8BA8RtVlpB85j3pYjsAtArQKSx4byodJE1Kh4RouI2qQiS6UUsgDALoD5W47yzBYRNSoGLSJqkwpLKqSQVc0mBM6WXHVOh4ioVWLQIqI2KcjbA2qVvM1FpUKgdzvndIiIWiUGLWrROJCZGspP747ksaFwUd1KWy4qFd4c2x9+encn94yIWhMOhqcWiwOZ6V6Nf6grhvXywdmSqwj0bseQRUSNjme0qEXiQGZqLH56d0T1uI8hi4gUwaBFLRIHMhMRUUvAoEUtEgcyExFRS8CgRS0SBzITEVFLwMHw1GJxIDMRETV3DFrUovnp3RmwiIio2eKlQyIiIiKFMGgRERERKYRBi4iIiEghDFpERA3ER0AR0d1wMDwRUQPwEVBEVBc8o0VEVE98BBQR1RWDFhFRPfERUM0bL+lSc8JLh0RE9VT9CKhfhi0+Aqp54CVdam54RouIqJ74CKjmiZd0qTniGS0iogZoiY+AKrJUorCkAkHeHi2iv/VV2yXd1ri/1DI0izNaKSkpCAwMhE6nQ2RkJPbv319r/ebNm9GnTx/odDqEhoYiPT1dNl8IgUWLFsHPzw/u7u4wGo04efKkrKa0tBRxcXHw9PSEl5cXEhISUF5eLqs5fPgwhg4dCp1Oh4CAACxbtqzefSGi1stP746oHve1iA/xtAPn8cjSXZj4fi4eWboLaQfOO7tLja76ku4v8ZIuOZvTg1ZaWhrmzJmDpKQk5OfnY8CAATCZTLh06ZLD+uzsbMTGxiIhIQEHDx5ETEwMYmJicPToUalm2bJlWLVqFdasWYPc3Fx4eHjAZDKhqqpKqomLi0NBQQEyMzOxfft27NmzB4mJidJ8q9WKRx99FN26dUNeXh6WL1+OxYsX47333qtXX4iInK2tXFLjJV1qloSTRUREiBkzZkivbTab8Pf3F8nJyQ7rx40bJ0aPHi1ri4yMFNOnTxdCCGG324XBYBDLly+X5peVlQmtVis2bNgghBDi2LFjAoA4cOCAVPP5558LlUolLl68KIQQ4u9//7vo2LGjuHbtmlTz6quvit69e9e5L3djsVgEAGGxWOpUT0TUEPtOXRbdXt1eY8o+VeLsrinix7KrIvtUifix7Kqzu0KtVH0+v516Ruv69evIy8uD0WiU2tRqNYxGI3Jychwuk5OTI6sHAJPJJNUXFhbCbDbLavR6PSIjI6WanJwceHl5YdCgQVKN0WiEWq1Gbm6uVDNs2DBoNBrZdk6cOIGff/65Tn253bVr12C1WmUTEZHS2toltZZ0SZdaP6cGrZKSEthsNvj6+srafX19YTabHS5jNptrra/+ebeazp07y+a7urqiU6dOshpH6/jlNu7Wl9slJydDr9dLU0BAgMM6IqLGxEtqRM7Dbx02oXnz5mHOnDnSa6vVyrBFRE2iJX5Lkqg1cGrQ8vb2houLC4qLi2XtxcXFMBgMDpcxGAy11lf/LC4uhp+fn6wmLCxMqrl9sP3NmzdRWloqW4+j7fxyG3fry+20Wi20Wq3DeURESvPTuzNgETUxp1461Gg0CA8PR1ZWltRmt9uRlZWFqKgoh8tERUXJ6gEgMzNTqg8KCoLBYJDVWK1W5ObmSjVRUVEoKytDXl6eVLNr1y7Y7XZERkZKNXv27MGNGzdk2+nduzc6duxYp74QERFRG9cEg/NrtXHjRqHVakVqaqo4duyYSExMFF5eXsJsNgshhJg0aZKYO3euVL9v3z7h6uoqVqxYIY4fPy6SkpKEm5ubOHLkiFSzdOlS4eXlJbZt2yYOHz4sxowZI4KCgkRlZaVUM2rUKDFw4ECRm5sr9u7dK4KDg0VsbKw0v6ysTPj6+opJkyaJo0ePio0bN4p27dqJtWvX1qsvteG3DomIiFqe+nx+Oz1oCSHE6tWrRdeuXYVGoxERERHim2++keZFR0eLKVOmyOo3bdokevXqJTQajejXr5/YsWOHbL7dbhcLFy4Uvr6+QqvVipEjR4oTJ07Ian766ScRGxsr2rdvLzw9PUV8fLy4cuWKrOa7774TQ4YMEVqtVnTp0kUsXbq0Rt/v1pfaMGgRERG1PPX5/FYJIUTt57xIKVarFXq9HhaLBZ6ens7uDhEREdVBfT6/nX5neCIiIqLWikGLiIiISCEMWkREREQKYdAiIiIiUgiDFhEREZFCGLSIiIiIFMKgRURERKQQPlTaiapvYWa1Wp3cEyIiIqqr6s/tutyKlEHLia5cuQIACAgIcHJPiIiIqL6uXLkCvV5faw3vDO9EdrsdP/74Izp06ACVSnVP67JarQgICMCFCxd4l/n/xWNSE49JTTwmjvG41MRjUlNbPSZCCFy5cgX+/v5Qq2sfhcUzWk6kVqtx//33N+o6PT0929SbvS54TGriMamJx8QxHpeaeExqaovH5G5nsqpxMDwRERGRQhi0iIiIiBTCoNVKaLVaJCUlQavVOrsrzQaPSU08JjXxmDjG41ITj0lNPCZ3x8HwRERERArhGS0iIiIihTBoERERESmEQYuIiIhIIQxaRERERAph0GrGUlJSEBgYCJ1Oh8jISOzfv7/W+pUrV6J3795wd3dHQEAAXnjhBVRVVUnzFy9eDJVKJZv69Omj9G40qvockxs3bmDJkiXo0aMHdDodBgwYgIyMjHtaZ3PU2Mekpb9P9uzZg8cffxz+/v5QqVTYunXrXZfZvXs3HnzwQWi1WvTs2ROpqak1alry+0SJY9LW3idFRUWYOHEievXqBbVajdmzZzus27x5M/r06QOdTofQ0FCkp6c3fucVosQxSU1NrfE+0el0yuxAM8Wg1UylpaVhzpw5SEpKQn5+PgYMGACTyYRLly45rF+/fj3mzp2LpKQkHD9+HP/4xz+QlpaG+fPny+r69euHoqIiadq7d29T7E6jqO8xWbBgAdauXYvVq1fj2LFjePbZZ/Hkk0/i4MGDDV5nc6PEMQFa9vukoqICAwYMQEpKSp3qCwsLMXr0aIwYMQKHDh3C7NmzMXXqVHzxxRdSTUt/nyhxTIC29T65du0afHx8sGDBAgwYMMBhTXZ2NmJjY5GQkICDBw8iJiYGMTExOHr0aGN2XTFKHBPg1l3jf/k+OXfuXGN1uWUQ1CxFRESIGTNmSK9tNpvw9/cXycnJDutnzJghfvWrX8na5syZIx555BHpdVJSkhgwYIAi/W0K9T0mfn5+4p133pG1jR07VsTFxTV4nc2NEsekpb9PfgmA+Ne//lVrzSuvvCL69esnaxs/frwwmUzS65b+Pvmlxjombe198kvR0dFi1qxZNdrHjRsnRo8eLWuLjIwU06dPv8ceNr3GOibr1q0Ter2+0frVEvGMVjN0/fp15OXlwWg0Sm1qtRpGoxE5OTkOlxk8eDDy8vKkyxlnzpxBeno6HnvsMVndyZMn4e/vj+7duyMuLg7nz59XbkcaUUOOybVr12qconZ3d5f+192QdTYnShyTai31fdIQOTk5smMIACaTSTqGLf190hB3OybV2tL7pC7qetzamvLycnTr1g0BAQEYM2YMCgoKnN2lJsWg1QyVlJTAZrPB19dX1u7r6wuz2exwmYkTJ2LJkiUYMmQI3Nzc0KNHDwwfPlx26TAyMhKpqanIyMjAu+++i8LCQgwdOhRXrlxRdH8aQ0OOiclkwl//+lecPHkSdrsdmZmZ2LJlC4qKihq8zuZEiWMCtOz3SUOYzWaHx9BqtaKysrLFv08a4m7HBGh775O6uNNxa63vk7ro3bs3PvjgA2zbtg0fffQR7HY7Bg8ejB9++MHZXWsyDFqtxO7du/Hmm2/i73//O/Lz87Flyxbs2LEDr7/+ulTzm9/8Br/73e/wwAMPwGQyIT09HWVlZdi0aZMTe66cv/3tbwgODkafPn2g0Wgwc+ZMxMfHQ61uu2/7uhyTtvY+oYbh+4TqIioqCpMnT0ZYWBiio6OxZcsW+Pj4YO3atc7uWpNpu584zZi3tzdcXFxQXFwsay8uLobBYHC4zMKFCzFp0iRMnToVoaGhePLJJ/Hmm28iOTkZdrvd4TJeXl7o1asXTp061ej70Ngackx8fHywdetWVFRU4Ny5c/j+++/Rvn17dO/evcHrbE6UOCaOtKT3SUMYDAaHx9DT0xPu7u4t/n3SEHc7Jo609vdJXdzpuLXW90lDuLm5YeDAgW3qfcKg1QxpNBqEh4cjKytLarPb7cjKykJUVJTDZa5evVrjTI2LiwsAQNzhcZbl5eU4ffo0/Pz8GqnnymnIMamm0+nQpUsX3Lx5E59++inGjBlzz+tsDpQ4Jo60pPdJQ0RFRcmOIQBkZmZKx7Clv08a4m7HxJHW/j6pi4Yct7bGZrPhyJEjbet94uzR+OTYxo0bhVarFampqeLYsWMiMTFReHl5CbPZLIQQYtKkSWLu3LlSfVJSkujQoYPYsGGDOHPmjNi5c6fo0aOHGDdunFTz4osvit27d4vCwkKxb98+YTQahbe3t7h06VKT719D1PeYfPPNN+LTTz8Vp0+fFnv27BG/+tWvRFBQkPj555/rvM7mTolj0tLfJ1euXBEHDx4UBw8eFADEX//6V3Hw4EFx7tw5IYQQc+fOFZMmTZLqz5w5I9q1aydefvllcfz4cZGSkiJcXFxERkaGVNPS3ydKHJO29j4RQkj14eHhYuLEieLgwYOioKBAmr9v3z7h6uoqVqxYIY4fPy6SkpKEm5ubOHLkSJPuW0MpcUxee+018cUXX4jTp0+LvLw8MWHCBKHT6WQ1rR2DVjO2evVq0bVrV6HRaERERIT45ptvpHnR0dFiypQp0usbN26IxYsXix49egidTicCAgLEn/70J9kH6Pjx44Wfn5/QaDSiS5cuYvz48eLUqVNNuEf3rj7HZPfu3aJv375Cq9WK++67T0yaNElcvHixXutsCRr7mLT098mXX34pANSYqo/DlClTRHR0dI1lwsLChEajEd27dxfr1q2rsd6W/D5R4pi0xfeJo/pu3brJajZt2iR69eolNBqN6Nevn9ixY0fT7FAjUOKYzJ49W/q98fX1FY899pjIz89vup1qBlRC3OG6EhERERHdE47RIiIiIlIIgxYRERGRQhi0iIiIiBTCoEVERESkEAYtIiIiIoUwaBEREREphEGLiIiISCEMWkREJLN7926oVCqUlZU5uytELR6DFhE5zTPPPAOVSoWlS5fK2rdu3QqVSiW9FkLg/fffR1RUFDw9PdG+fXv069cPs2bNqvPDaa9evYp58+ahR48e0Ol08PHxQXR0NLZt2ybVBAYGYuXKlY2yb0qrPnYqlQpubm4ICgrCK6+8gqqqqnqtZ/jw4Zg9e7asbfDgwSgqKoJer2/EHhO1TQxaRORUOp0Ob731Fn7++WeH84UQmDhxIp5//nk89thj2LlzJ44dO4Z//OMf0Ol0eOONN+q0nWeffRZbtmzB6tWr8f333yMjIwNPP/00fvrpp8bcnSY1atQoFBUV4cyZM3j77bexdu1aJCUl3fN6NRoNDAaDLOwSUQM59wlARNSWTZkyRfz2t78Vffr0ES+//LLU/q9//UtU/3nasGGDACC2bdvmcB12u71O29Lr9SI1NfWO86Ojo2s8s63a119/LYYMGSJ0Op24//77xXPPPSfKy8ul+f/v//0/ER4eLtq3by98fX1FbGysKC4uluZXP0MuIyNDhIWFCZ1OJ0aMGCGKi4tFenq66NOnj+jQoYOIjY0VFRUVddqfKVOmiDFjxsjaxo4dKwYOHCi9LikpERMmTBD+/v7C3d1d9O/fX6xfv162jtv3ubCwUOrvL5+V+sknn4iQkBCh0WhEt27dxIoVK+rUT6K2jme0iMipXFxc8Oabb2L16tX44YcfaszfsGEDevfujSeeeMLh8nU962IwGJCeno4rV644nL9lyxbcf//9WLJkCYqKilBUVAQAOH36NEaNGoWnnnoKhw8fRlpaGvbu3YuZM2dKy964cQOvv/46vvvuO2zduhVnz57FM888U2MbixcvxjvvvIPs7GxcuHAB48aNw8qVK7F+/Xrs2LEDO3fuxOrVq+u0P7c7evQosrOzodFopLaqqiqEh4djx44dOHr0KBITEzFp0iTs378fAPC3v/0NUVFRmDZtmrTPAQEBNdadl5eHcePGYcKECThy5AgWL16MhQsXIjU1tUF9JWpTnJ30iKjt+uVZmYcfflj84Q9/EELIz2j16dNHPPHEE7LlZs2aJTw8PISHh4fo0qVLnbb11Vdfifvvv1+4ubmJQYMGidmzZ4u9e/fKarp16ybefvttWVtCQoJITEyUtX399ddCrVaLyspKh9s6cOCAACCuXLkihPi/M1r//ve/pZrk5GQBQJw+fVpqmz59ujCZTHXanylTpggXFxfh4eEhtFqtACDUarX45JNPal1u9OjR4sUXX5ReR0dHi1mzZslqbj+jNXHiRPHrX/9aVvPyyy+LkJCQOvWVqC3jGS0iahbeeustfPjhhzh+/Phda//rv/4Lhw4dwqJFi1BeXl6n9Q8bNgxnzpxBVlYWnn76aRQUFGDo0KF4/fXXa13uu+++Q2pqKtq3by9NJpMJdrsdhYWFAG6d8Xn88cfRtWtXdOjQAdHR0QCA8+fPy9b1wAMPSP/29fVFu3bt0L17d1nbpUuX6rQ/ADBixAgcOnQIubm5mDJlCuLj4/HUU09J8202G15//XWEhoaiU6dOaN++Pb744osa/bqb48eP45FHHpG1PfLIIzh58iRsNlu91kXU1jBoEVGzMGzYMJhMJsybN0/WHhwcjBMnTsjafHx80LNnT3Tu3Lle23Bzc8PQoUPx6quvYufOnViyZAlef/11XL9+/Y7LlJeXY/r06Th06JA0fffddzh58iR69OiBiooKmEwmeHp64uOPP8aBAwfwr3/9CwBqrNfNzU36d/W3BX9JpVLBbrfXeX88PDzQs2dPDBgwAB988AFyc3Pxj3/8Q5q/fPly/O1vf8Orr76KL7/8EocOHYLJZKp1f4mocbk6uwNERNWWLl2KsLAw9O7dW2qLjY3FxIkTsW3bNowZM6ZRtxcSEoKbN2+iqqoKGo0GGo2mxhmaBx98EMeOHUPPnj0druPIkSP46aefsHTpUml807ffftuo/awLtVqN+fPnY86cOZg4cSLc3d2xb98+jBkzBr///e8BAHa7Hf/5z38QEhIiLedon2/Xt29f7Nu3T9a2b98+9OrVCy4uLo2/M0StCM9oEVGzERoairi4OKxatUpqmzBhAp5++mlMmDABS5YsQW5uLs6ePYuvvvoKaWlpdf6gHz58ONauXYu8vDycPXsW6enpmD9/PkaMGAFPT08At+6jtWfPHly8eBElJSUAgFdffRXZ2dmYOXMmDh06hJMnT2Lbtm3SYPiuXbtCo9Fg9erVOHPmDD777LO7Xo5Uyu9+9zu4uLggJSUFwK2zgZmZmcjOzsbx48cxffp0FBcXy5YJDAyUjmlJSYnDM2ovvvgisrKy8Prrr+M///kPPvzwQ7zzzjt46aWXmmS/iFoyBi0ialaWLFki+7BXqVRIS0vDypUrkZ6ejpEjR6J37974wx/+gICAAOzdu7dO6zWZTPjwww/x6KOPom/fvnjuuedgMpmwadMm2bbPnj2LHj16wMfHB8CtcVVfffUV/vOf/2Do0KEYOHAgFi1aBH9/fwC3LmOmpqZi8+bNCAkJwdKlS7FixYpGPCJ15+rqipkzZ2LZsmWoqKjAggUL8OCDD8JkMmH48OEwGAyIiYmRLfPSSy/BxcUFISEh8PHxcTh+68EHH8SmTZuwceNG9O/fH4sWLcKSJUscfrOSiORUQgjh7E4QERERtUY8o0VERESkEAYtImoVfnn7hdunr7/+2tndq5fz58/Xuj/1vT0DETkPLx0SUatQ28Olu3TpAnd39ybszb25efMmzp49e8f5gYGBcHXll8aJWgIGLSIiIiKF8NIhERERkUIYtIiIiIgUwqBFREREpBAGLSIiIiKFMGgRERERKYRBi4iIiEghDFpERERECmHQIiIiIlLI/we2DIEgNQuixQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_58.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMCUlEQVR4nO3dfVxUdf7//+cAwqAGZCgXhoKXaJKWFyxeYSvbmHZB1ooXnzQzdX+rpVlb2qaWtWFWm1lu1u6W7ZaJtmauuWyGllsSKmrlVaumaQUouQyK18z790dfT02CwhEckMf9dpsb8T6vc+Z93rfJefI+7znjMMYYAQAAoFL8fN0BAACA2ogQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAXgkvboo4/K4XBUqNbhcOjRRx+t1v706dNHffr0qbHHA1BxhCgAF8X8+fPlcDisR0BAgJo2bao777xT3377ra+7V+PExsZ6jVeTJk3Uq1cvvfPOO1Vy/KNHj+rRRx/Vhx9+WCXHA+oiQhSAi2rGjBn6+9//rnnz5umGG27QG2+8oeTkZB0/frxanu+RRx7RsWPHquXY1a1Tp076+9//rr///e964IEH9N1332ngwIGaN2/eBR/76NGjeuyxxwhRwAUI8HUHANQtN9xwg7p06SJJuvvuuxUeHq6nnnpKy5Yt06BBg6r8+QICAhQQUDv/qWvatKn+7//+z/p9+PDhatWqlZ577jn95je/8WHPAEjMRAHwsV69ekmSdu/e7dW+Y8cO3X777WrUqJGcTqe6dOmiZcuWedWcOnVKjz32mFq3bi2n06krrrhCPXv21MqVK62astZEnThxQvfdd58aN26syy67TDfffLO++eabs/p25513KjY29qz2so752muv6Ze//KWaNGmioKAgtW/fXi+99FKlxuJ8IiMj1a5dO+3Zs+ecdQcOHNCoUaMUEREhp9Opjh076vXXX7e27927V40bN5YkPfbYY9Ylw+peDwZcamrnn2cALhl79+6VJF1++eVW29atW9WjRw81bdpUkydPVoMGDbRo0SKlpqbqH//4h2699VZJP4SZ9PR03X333erWrZuKi4u1YcMGbdy4Ub/61a/Kfc67775bb7zxhoYOHaru3btr1apVGjBgwAWdx0svvaSrrrpKN998swICAvTPf/5Tv/3tb+XxeDRu3LgLOvYZp06d0v79+3XFFVeUW3Ps2DH16dNHu3bt0vjx4xUXF6fFixfrzjvvVFFRkSZMmKDGjRvrpZde0v/3//1/uvXWWzVw4EBJ0tVXX10l/QTqDAMAF8Frr71mJJkPPvjAHDx40Ozfv9+8/fbbpnHjxiYoKMjs37/fqu3bt69JSEgwx48ft9o8Ho/p3r27ad26tdXWsWNHM2DAgHM+7/Tp081P/6nbvHmzkWR++9vfetUNHTrUSDLTp0+32kaMGGGaN29+3mMaY8zRo0fPqnO5XKZFixZebcnJySY5OfmcfTbGmObNm5vrr7/eHDx40Bw8eNB89tlnZvDgwUaSueeee8o93uzZs40k88Ybb1htJ0+eNElJSaZhw4amuLjYGGPMwYMHzzpfAJXD5TwAF1VKSooaN26smJgY3X777WrQoIGWLVumK6+8UpJ06NAhrVq1SoMGDdLhw4dVWFiowsJCff/993K5XNq5c6f1ab6wsDBt3bpVO3furPDzr1ixQpJ07733erVPnDjxgs4rODjY+m+3263CwkIlJyfrq6++ktvttnXM999/X40bN1bjxo3VsWNHLV68WHfccYeeeuqpcvdZsWKFIiMjNWTIEKutXr16uvfee3XkyBF99NFHtvoC4GxczgNwUc2dO1dt2rSR2+3Wq6++qjVr1igoKMjavmvXLhljNHXqVE2dOrXMYxw4cEBNmzbVjBkzdMstt6hNmzbq0KGD+vXrpzvuuOOcl6W+/vpr+fn5qWXLll7tbdu2vaDz+uSTTzR9+nRlZ2fr6NGjXtvcbrdCQ0MrfczExEQ98cQTcjgcql+/vtq1a6ewsLBz7vP111+rdevW8vPz/hu5Xbt21nYAVYMQBeCi6tatm/XpvNTUVPXs2VNDhw7Vl19+qYYNG8rj8UiSHnjgAblcrjKP0apVK0lS7969tXv3br377rt6//339Ze//EXPPfec5s2bp7vvvvuC+1reTTpLS0u9ft+9e7f69u2r+Ph4/fGPf1RMTIwCAwO1YsUKPffcc9Y5VVZ4eLhSUlJs7Qug+hGiAPiMv7+/0tPTdd111+nFF1/U5MmT1aJFC0k/XIKqSIBo1KiRRo4cqZEjR+rIkSPq3bu3Hn300XJDVPPmzeXxeLR7926v2acvv/zyrNrLL79cRUVFZ7X/fDbnn//8p06cOKFly5apWbNmVvvq1avP2/+q1rx5c33++efyeDxes1E7duywtkvlB0QAFceaKAA+1adPH3Xr1k2zZ8/W8ePH1aRJE/Xp00cvv/yy8vLyzqo/ePCg9d/ff/+917aGDRuqVatWOnHiRLnPd8MNN0iS5syZ49U+e/bss2pbtmwpt9utzz//3GrLy8s7667h/v7+kiRjjNXmdrv12muvlduP6tK/f3/l5+crIyPDajt9+rReeOEFNWzYUMnJyZKk+vXrS1KZIRFAxTATBcDnfve73+nXv/615s+fr9/85jeaO3euevbsqYSEBI0ePVotWrRQQUGBsrOz9c033+izzz6TJLVv3159+vRR586d1ahRI23YsEFvv/22xo8fX+5zderUSUOGDNGf/vQnud1ude/eXVlZWdq1a9dZtYMHD9ZDDz2kW2+9Vffee6+OHj2ql156SW3atNHGjRutuuuvv16BgYG66aabNHbsWB05ckR//vOf1aRJkzKDYHUaM2aMXn75Zd15553Kzc1VbGys3n77bX3yySeaPXu2LrvsMkk/LIRv3769MjIy1KZNGzVq1EgdOnRQhw4dLmp/gVrN1x8PBFA3nLnFwfr168/aVlpaalq2bGlatmxpTp8+bYwxZvfu3Wb48OEmMjLS1KtXzzRt2tTceOON5u2337b2e+KJJ0y3bt1MWFiYCQ4ONvHx8eYPf/iDOXnypFVT1u0Ijh07Zu69915zxRVXmAYNGpibbrrJ7N+/v8yP/L///vumQ4cOJjAw0LRt29a88cYbZR5z2bJl5uqrrzZOp9PExsaap556yrz66qtGktmzZ49VV5lbHJzv9g3lHa+goMCMHDnShIeHm8DAQJOQkGBee+21s/Zdu3at6dy5swkMDOR2B4ANDmN+Mv8MAACACmFNFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBm21WI4/Ho++++06XXXYZX7EAAEAtYYzR4cOHFR0dfdaXef8UIaoafffdd4qJifF1NwAAgA379+/XlVdeWe52QlQ1OvP1Cvv371dISIiPewMAACqiuLhYMTEx1vt4eQhR1ejMJbyQkBBCFAAAtcz5luKwsBwAAMAGQhQAAIANhCgAAAAbWBPlY6WlpTp16pSvu1Ej1KtXT/7+/r7uBgAAFUKI8hFjjPLz81VUVOTrrtQoYWFhioyM5L5aAIAajxDlI2cCVJMmTVS/fv06HxqMMTp69KgOHDggSYqKivJxjwAAODdClA+UlpZaAeqKK67wdXdqjODgYEnSgQMH1KRJEy7tAQBqNBaW+8CZNVD169f3cU9qnjNjwjoxAEBNR4jyobp+Ca8sjAkAoLbweYiaO3euYmNj5XQ6lZiYqHXr1p2zfvHixYqPj5fT6VRCQoJWrFjhtd0Yo2nTpikqKkrBwcFKSUnRzp07vWoOHTqkYcOGKSQkRGFhYRo1apSOHDly1nGeeeYZtWnTRkFBQWratKn+8Ic/VM1JAwCAWs+nISojI0OTJk3S9OnTtXHjRnXs2FEul8taXPxza9eu1ZAhQzRq1Cht2rRJqampSk1N1ZYtW6yaWbNmac6cOZo3b55ycnLUoEEDuVwuHT9+3KoZNmyYtm7dqpUrV2r58uVas2aNxowZ4/VcEyZM0F/+8hc988wz2rFjh5YtW6Zu3bpVz0AAAIDax/hQt27dzLhx46zfS0tLTXR0tElPTy+zftCgQWbAgAFebYmJiWbs2LHGGGM8Ho+JjIw0Tz/9tLW9qKjIBAUFmbfeessYY8y2bduMJLN+/Xqr5l//+pdxOBzm22+/tWoCAgLMjh07Luj83G63kWTcbrdX+7Fjx8y2bdvMsWPHLuj4vpSXl2fGjx9v4uLiTGBgoLnyyivNjTfeaD744AOr5pNPPjE33HCDCQsLM0FBQaZDhw7m2WefNadPny73uJfC2AAAqt93RUfNJ7sOmu+Kjlb5sct7//45n81EnTx5Urm5uUpJSbHa/Pz8lJKSouzs7DL3yc7O9qqXJJfLZdXv2bNH+fn5XjWhoaFKTEy0arKzsxUWFqYuXbpYNSkpKfLz81NOTo4k6Z///KdatGih5cuXKy4uTrGxsbr77rt16NChc57TiRMnVFxc7PW4FO3du1edO3fWqlWr9PTTT+uLL75QZmamrrvuOo0bN06S9M477yg5OVlXXnmlVq9erR07dmjChAl64oknNHjwYBljfHwWAIDaKmP9PvWYuUpD/5yjHjNXKWP9Pp/0w2e3OCgsLFRpaakiIiK82iMiIrRjx44y98nPzy+zPj8/39p+pu1cNU2aNPHaHhAQoEaNGlk1X331lb7++mstXrxYf/vb31RaWqr77rtPt99+u1atWlXuOaWnp+uxxx4736nXer/97W/lcDi0bt06NWjQwGq/6qqrdNddd6mkpESjR4/WzTffrFdeecXafvfddysiIkI333yzFi1apLS0NF90HwBQi+W5j2nKki/k+X9/i3uM9PCSLerdprGiQoMval98vrC8JvJ4PDpx4oT+9re/qVevXurTp4/++te/avXq1fryyy/L3W/KlClyu93WY//+/Relv3nuY1q7u1B57mPV/lyHDh1SZmamxo0b5xWgzggLC9P777+v77//Xg888MBZ22+66Sa1adNGb731VrX3FQBw6dlTWGIFqDNKjdHewqMXvS8+m4kKDw+Xv7+/CgoKvNoLCgoUGRlZ5j6RkZHnrD/zs6CgwOuO1wUFBerUqZNV8/OF66dPn9ahQ4es/aOiohQQEKA2bdpYNe3atZMk7du3T23bti2zf0FBQQoKCjrneVe1jPX7rETu55DSByYorWuzanu+Xbt2yRij+Pj4cmv++9//SvpxzH4uPj7eqgEAoDLiwhvIzyGvIOXvcCg2/OLfe9FnM1GBgYHq3LmzsrKyrDaPx6OsrCwlJSWVuU9SUpJXvSStXLnSqo+Li1NkZKRXTXFxsXJycqyapKQkFRUVKTc316pZtWqVPB6PEhMTJUk9evTQ6dOntXv3bqvmzJt+8+bNL+S0q1R5U5rVOSNVmbVMrHsCAFS1qNBgpQ9MkP//u6+gv8OhJwd2uOiX8iQff+3LpEmTNGLECHXp0kXdunXT7NmzVVJSopEjR0qShg8frqZNmyo9PV3SD7cdSE5O1rPPPqsBAwZo4cKF2rBhg7XuxuFwaOLEiXriiSfUunVrxcXFaerUqYqOjlZqaqqkH2ZH+vXrp9GjR2vevHk6deqUxo8fr8GDBys6OlrSDwvNr732Wt11112aPXu2PB6Pxo0bp1/96ldes1O+dq4pzep6MbVu3VoOh6PcdWuSrDHavn27unfvftb27du3q3379tXSPwDApS+tazP1btNYewuPKja8vk8ClOTjNVFpaWl65plnNG3aNHXq1EmbN29WZmamtTB83759ysvLs+q7d++uBQsW6JVXXlHHjh319ttva+nSperQoYNV8+CDD+qee+7RmDFj1LVrVx05ckSZmZlyOp1WzZtvvqn4+Hj17dtX/fv3V8+ePb0WQPv5+emf//ynwsPD1bt3bw0YMEDt2rXTwoULL8KoVNyZKc2fqu4pzUaNGsnlcmnu3LkqKSk5a3tRUZGuv/56NWrUSM8+++xZ25ctW6adO3dqyJAh1dZHAMClLyo0WEktr/BZgJIkh+GaS7UpLi5WaGio3G63QkJCrPbjx49rz549iouL8wp3dmSs36eHl2xRqTHWlGZ1romSfvj0Yo8ePdSoUSPNmDFDV199tU6fPq2VK1fqpZde0vbt2/X2229r8ODBuuuuuzR+/HiFhIQoKytLv/vd79S3b18tWrSozK94qcqxAQDAjvLev3/Op5fzcOF8MaXZokULbdy4UX/4wx90//33Ky8vT40bN1bnzp310ksvSZJuv/12rV69Wn/4wx/Uq1cvHT9+XK1bt9bvf/97TZw4ke/IAwDUesxEVaOLMRN1qWFsAAC+VtGZKO4TBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUT7Emv6zMSYAgNqCEOUD9erVkyQdPXrxvyyxpjszJmfGCACAmor7RPmAv7+/wsLCrC9Crl+/fp2/b5IxRkePHtWBAwcUFhYmf39/X3cJAIBzIkT5SGRkpCRZQQo/CAsLs8YGAICajBDlIw6HQ1FRUWrSpIlOnTrl6+7UCPXq1WMGCgBQaxCifMzf35/gAABALcTCcgAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA21IgQNXfuXMXGxsrpdCoxMVHr1q07Z/3ixYsVHx8vp9OphIQErVixwmu7MUbTpk1TVFSUgoODlZKSop07d3rVHDp0SMOGDVNISIjCwsI0atQoHTlyxNq+d+9eORyOsx6ffvpp1Z04AACotXweojIyMjRp0iRNnz5dGzduVMeOHeVyuXTgwIEy69euXashQ4Zo1KhR2rRpk1JTU5WamqotW7ZYNbNmzdKcOXM0b9485eTkqEGDBnK5XDp+/LhVM2zYMG3dulUrV67U8uXLtWbNGo0ZM+as5/vggw+Ul5dnPTp37lz1gwAAAGof42PdunUz48aNs34vLS010dHRJj09vcz6QYMGmQEDBni1JSYmmrFjxxpjjPF4PCYyMtI8/fTT1vaioiITFBRk3nrrLWOMMdu2bTOSzPr1662af/3rX8bhcJhvv/3WGGPMnj17jCSzadMm2+fmdruNJON2u20fAwAAXFwVff/26UzUyZMnlZubq5SUFKvNz89PKSkpys7OLnOf7Oxsr3pJcrlcVv2ePXuUn5/vVRMaGqrExESrJjs7W2FhYerSpYtVk5KSIj8/P+Xk5Hgd++abb1aTJk3Us2dPLVu27Jznc+LECRUXF3s9AADApcmnIaqwsFClpaWKiIjwao+IiFB+fn6Z++Tn55+z/szP89U0adLEa3tAQIAaNWpk1TRs2FDPPvusFi9erPfee089e/ZUamrqOYNUenq6QkNDrUdMTMz5hgAAANRSAb7uQE0VHh6uSZMmWb937dpV3333nZ5++mndfPPNZe4zZcoUr32Ki4sJUgAAXKJ8OhMVHh4uf39/FRQUeLUXFBQoMjKyzH0iIyPPWX/m5/lqfr5w/fTp0zp06FC5zytJiYmJ2rVrV7nbg4KCFBIS4vUAAACXJp+GqMDAQHXu3FlZWVlWm8fjUVZWlpKSksrcJykpyateklauXGnVx8XFKTIy0qumuLhYOTk5Vk1SUpKKioqUm5tr1axatUoej0eJiYnl9nfz5s2Kioqq/IkCAIBLjs8v502aNEkjRoxQly5d1K1bN82ePVslJSUaOXKkJGn48OFq2rSp0tPTJUkTJkxQcnKynn32WQ0YMEALFy7Uhg0b9Morr0iSHA6HJk6cqCeeeEKtW7dWXFycpk6dqujoaKWmpkqS2rVrp379+mn06NGaN2+eTp06pfHjx2vw4MGKjo6WJL3++usKDAzUNddcI0lasmSJXn31Vf3lL3+5yCMEAABqIp+HqLS0NB08eFDTpk1Tfn6+OnXqpMzMTGth+L59++Tn9+OEWffu3bVgwQI98sgjevjhh9W6dWstXbpUHTp0sGoefPBBlZSUaMyYMSoqKlLPnj2VmZkpp9Np1bz55psaP368+vbtKz8/P912222aM2eOV98ef/xxff311woICFB8fLwyMjJ0++23V/OIAACA2sBhjDG+7sSlqri4WKGhoXK73ayPAgCglqjo+7fP71gOAABQGxGiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADTUiRM2dO1exsbFyOp1KTEzUunXrzlm/ePFixcfHy+l0KiEhQStWrPDabozRtGnTFBUVpeDgYKWkpGjnzp1eNYcOHdKwYcMUEhKisLAwjRo1SkeOHCnz+Xbt2qXLLrtMYWFhF3SeAADg0uHzEJWRkaFJkyZp+vTp2rhxozp27CiXy6UDBw6UWb927VoNGTJEo0aN0qZNm5SamqrU1FRt2bLFqpk1a5bmzJmjefPmKScnRw0aNJDL5dLx48etmmHDhmnr1q1auXKlli9frjVr1mjMmDFnPd+pU6c0ZMgQ9erVq+pPHgAA1FoOY4zxZQcSExPVtWtXvfjii5Ikj8ejmJgY3XPPPZo8efJZ9WlpaSopKdHy5cuttl/84hfq1KmT5s2bJ2OMoqOjdf/99+uBBx6QJLndbkVERGj+/PkaPHiwtm/frvbt22v9+vXq0qWLJCkzM1P9+/fXN998o+joaOvYDz30kL777jv17dtXEydOVFFRUYXPrbi4WKGhoXK73QoJCbEzPAAA4CKr6Pu3T2eiTp48qdzcXKWkpFhtfn5+SklJUXZ2dpn7ZGdne9VLksvlsur37Nmj/Px8r5rQ0FAlJiZaNdnZ2QoLC7MClCSlpKTIz89POTk5VtuqVau0ePFizZ07t0Lnc+LECRUXF3s9AADApcmnIaqwsFClpaWKiIjwao+IiFB+fn6Z++Tn55+z/szP89U0adLEa3tAQIAaNWpk1Xz//fe68847NX/+/ArPIqWnpys0NNR6xMTEVGg/AABQ+/h8TVRNNXr0aA0dOlS9e/eu8D5TpkyR2+22Hvv376/GHgIAAF/yaYgKDw+Xv7+/CgoKvNoLCgoUGRlZ5j6RkZHnrD/z83w1P1+4fvr0aR06dMiqWbVqlZ555hkFBAQoICBAo0aNktvtVkBAgF599dUy+xYUFKSQkBCvBwAAuDT5NEQFBgaqc+fOysrKsto8Ho+ysrKUlJRU5j5JSUle9ZK0cuVKqz4uLk6RkZFeNcXFxcrJybFqkpKSVFRUpNzcXKtm1apV8ng8SkxMlPTDuqnNmzdbjxkzZuiyyy7T5s2bdeutt1bNAAAAgForwNcdmDRpkkaMGKEuXbqoW7dumj17tkpKSjRy5EhJ0vDhw9W0aVOlp6dLkiZMmKDk5GQ9++yzGjBggBYuXKgNGzbolVdekSQ5HA5NnDhRTzzxhFq3bq24uDhNnTpV0dHRSk1NlSS1a9dO/fr10+jRozVv3jydOnVK48eP1+DBg61P5rVr186rnxs2bJCfn586dOhwkUYGAADUZD4PUWlpaTp48KCmTZum/Px8derUSZmZmdbC8H379snP78cJs+7du2vBggV65JFH9PDDD6t169ZaunSpV7h58MEHVVJSojFjxqioqEg9e/ZUZmamnE6nVfPmm29q/Pjx6tu3r/z8/HTbbbdpzpw5F+/EAQBArebz+0RdyrhPFAAAtU+tuE8UAABAbUWIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAABLnvuY1u4uVJ77mK+7UuMF+LoDAACgZshYv09Tlnwhj5H8HFL6wASldW3m627VWMxEAQAA5bmPWQFKkjxGenjJFmakzoEQBQAAtKewxApQZ5Qao72FR33ToVqAEAUAABQX3kB+Du82f4dDseH1fdOhWoAQBQAAFBUarPSBCfJ3/JCk/B0OPTmwg6JCg33cs5qLheUAAECSlNa1mXq3aay9hUcVG16fAHUehCgAAGCJCg0mPFUQl/MAAABsIEQBAADYQIgCAACwgRAFAABgAyEKuAB8xxQA1F18Og+wie+YAoC6jZkowAa+YwoAQIgCbOA7pgAAhCjABr5jCgBAiAJs4DumAAAsLAds4jumAKBuI0QBF4DvmAKAuovLeQAAADYQogAAAGwgRAEAANhgK0QtXrxYAwcOVIcOHdShQwcNHDhQb7/9dlX3DQAAoMaqVIjyeDxKS0tTWlqatm3bplatWqlVq1baunWr0tLSNHjwYBljzn8gAACAWq5Sn857/vnn9cEHH2jZsmW68cYbvbYtW7ZMI0eO1PPPP6+JEydWZR8BAABqnErNRL322mt6+umnzwpQknTzzTdr1qxZevXVV6uscwAAADVVpULUzp07lZKSUu72lJQU7dy584I7BQAAUNNVKkQFBwerqKio3O3FxcVyOp0X2icAAIAar1IhKikpSS+99FK52+fOnaukpKQL7hQAAEBNV6mF5b///e/Vp08fff/993rggQcUHx8vY4y2b9+uZ599Vu+++65Wr15dXX0FAACoMSo1E9W9e3dlZGRo9erVSkpK0uWXX65GjRqpR48eWr16td566y316NGj0p2YO3euYmNj5XQ6lZiYqHXr1p2zfvHixYqPj5fT6VRCQoJWrFjhtd0Yo2nTpikqKkrBwcFlrtU6dOiQhg0bppCQEIWFhWnUqFE6cuSItf3LL7/Uddddp4iICDmdTrVo0UKPPPKITp06VenzAwDArjz3Ma3dXag89zFfdwU/U+kvIL711lvlcrn073//2wombdq00fXXX6/69etXugMZGRmaNGmS5s2bp8TERM2ePVsul0tffvmlmjRpclb92rVrNWTIEKWnp+vGG2/UggULlJqaqo0bN6pDhw6SpFmzZmnOnDl6/fXXFRcXp6lTp8rlcmnbtm3Wmq1hw4YpLy9PK1eu1KlTpzRy5EiNGTNGCxYskCTVq1dPw4cP17XXXquwsDB99tlnGj16tDwej5588slKnycAAJWVsX6fpiz5Qh4j+Tmk9IEJSuvazNfdwhmmErKysky7du2M2+0+a1tRUZFp3769WbNmTWUOabp162bGjRtn/V5aWmqio6NNenp6mfWDBg0yAwYM8GpLTEw0Y8eONcYY4/F4TGRkpHn66ae9+hYUFGTeeustY4wx27ZtM5LM+vXrrZp//etfxuFwmG+//bbcvt53332mZ8+eFT43t9ttJJU5XgAAnMt3RUdN3OTlpvlDPz5aTH7PfFd01Nddu+RV9P27UpfzZs+erdGjRyskJOSsbaGhoRo7dqz++Mc/Vvh4J0+eVG5urtdtE/z8/JSSkqLs7Owy98nOzj7rNgsul8uq37Nnj/Lz871qQkNDlZiYaNVkZ2crLCxMXbp0sWpSUlLk5+ennJycMp93165dyszMVHJycrnnc+LECRUXF3s9AACwY09hiTw/+xKQUmO0t/CobzqEs1QqRH322Wfq169fuduvv/565ebmVvh4hYWFKi0tVUREhFd7RESE8vPzy9wnPz//nPVnfp6v5ueXCgMCAtSoUaOznrd79+5yOp1q3bq1evXqpRkzZpR7Punp6QoNDbUeMTEx5dYCAHAuceEN5OfwbvN3OBQbXvmlM6gelQpRBQUFqlevXrnbAwICdPDgwQvuVE2SkZGhjRs3asGCBXrvvff0zDPPlFs7ZcoUud1u67F///6L2FMAwKUkKjRY6QMT5O/4IUn5Oxx6cmAHRYUG+7hnOKNSC8ubNm2qLVu2qFWrVmVu//zzzxUVFVXh44WHh8vf318FBQVe7QUFBYqMjCxzn8jIyHPWn/lZUFDg1ZeCggJ16tTJqjlw4IDXMU6fPq1Dhw6d9bxnZpPat2+v0tJSjRkzRvfff7/8/f3P6ltQUJCCgoLOd9oAAFRIWtdm6t2msfYWHlVseH0CVA1TqZmo/v37a+rUqTp+/PhZ244dO6bp06eX+b165QkMDFTnzp2VlZVltXk8HmVlZZV7086kpCSveklauXKlVR8XF6fIyEivmuLiYuXk5Fg1SUlJKioq8rr0uGrVKnk8HiUmJpbbX4/Ho1OnTsnj8VT4HAEAuBBRocFKankFAaoGchhjzPnLflBQUKBrr71W/v7+Gj9+vNq2bStJ2rFjh+bOnavS0lJt3LjxrPVI55KRkaERI0bo5ZdfVrdu3TR79mwtWrRIO3bsUEREhIYPH66mTZsqPT1d0g+3OEhOTtbMmTM1YMAALVy4UE8++aTXLQ6eeuopzZw50+sWB59//rnXLQ5uuOEGFRQUaN68edYtDrp06WLd4uDNN99UvXr1lJCQoKCgIG3YsEH33XefrrvuOr3xxhsVOrfi4mKFhobK7XaXuRgfAADUPBV+/67sx/727t1rbrjhBuPn52ccDodxOBzGz8/P3HDDDearr76y9VHCF154wTRr1swEBgaabt26mU8//dTalpycbEaMGOFVv2jRItOmTRsTGBhorrrqKvPee+95bfd4PGbq1KkmIiLCBAUFmb59+5ovv/zSq+b77783Q4YMMQ0bNjQhISFm5MiR5vDhw9b2hQsXmmuvvdY0bNjQNGjQwLRv3948+eST5tixYxU+L25xAABA7VPR9+9KzUT91P/+9z/t2rVLxhi1bt1al19+ub24dwljJgoAgNqnou/flb5j+RmXX365unbtand3AACAWq1SC8sBAADwA0IUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiKpD8tzHtHZ3ofLcx3zdFQAAar0AX3cAF0fG+n2asuQLeYzk55DSByYorWszX3cLAIBai5moOiDPfcwKUJLkMdLDS7YwIwUAwAUgRNUBewpLrAB1Rqkx2lt41DcdAgDgEkCIqgPiwhvIz+Hd5u9wKDa8vm86BADAJYAQVQdEhQYrfWCC/B0/JCl/h0NPDuygqNBgH/cMAIDai4XldURa12bq3aax9hYeVWx4fQIUAAAXqEbMRM2dO1exsbFyOp1KTEzUunXrzlm/ePFixcfHy+l0KiEhQStWrPDabozRtGnTFBUVpeDgYKWkpGjnzp1eNYcOHdKwYcMUEhKisLAwjRo1SkeOHLG2f/jhh7rlllsUFRWlBg0aqFOnTnrzzTer7qR9ICo0WEktryBAAajzuOULqoLPQ1RGRoYmTZqk6dOna+PGjerYsaNcLpcOHDhQZv3atWs1ZMgQjRo1Sps2bVJqaqpSU1O1ZcsWq2bWrFmaM2eO5s2bp5ycHDVo0EAul0vHjx+3aoYNG6atW7dq5cqVWr58udasWaMxY8Z4Pc/VV1+tf/zjH/r88881cuRIDR8+XMuXL6++wQAAVLuM9fvUY+YqDf1zjnrMXKWM9ft83SXUUg5jjDl/WfVJTExU165d9eKLL0qSPB6PYmJidM8992jy5Mln1aelpamkpMQrzPziF79Qp06dNG/ePBljFB0drfvvv18PPPCAJMntdisiIkLz58/X4MGDtX37drVv317r169Xly5dJEmZmZnq37+/vvnmG0VHR5fZ1wEDBigiIkKvvvpqhc6tuLhYoaGhcrvdCgkJqdS41GV57mPaU1iiuPAGzJoBqFJ57mPqMXOV1yeW/R0OfTz5Ov69gaWi798+nYk6efKkcnNzlZKSYrX5+fkpJSVF2dnZZe6TnZ3tVS9JLpfLqt+zZ4/y8/O9akJDQ5WYmGjVZGdnKywszApQkpSSkiI/Pz/l5OSU21+3261GjRqVu/3EiRMqLi72eqBy+AsRQHXili+oSj4NUYWFhSotLVVERIRXe0REhPLz88vcJz8//5z1Z36er6ZJkyZe2wMCAtSoUaNyn3fRokVav369Ro4cWe75pKenKzQ01HrExMSUW4uzcVNQANWNW76gKvl8TVRtsHr1ao0cOVJ//vOfddVVV5VbN2XKFLndbuuxf//+i9jL2q8q/kJksSiAc+GWL6hKPr3FQXh4uPz9/VVQUODVXlBQoMjIyDL3iYyMPGf9mZ8FBQWKioryqunUqZNV8/OF66dPn9ahQ4fOet6PPvpIN910k5577jkNHz78nOcTFBSkoKCgc9agfGf+Qvz5WoWK/oXI9wMCqAhu+YKq4tOZqMDAQHXu3FlZWVlWm8fjUVZWlpKSksrcJykpyateklauXGnVx8XFKTIy0qumuLhYOTk5Vk1SUpKKioqUm5tr1axatUoej0eJiYlW24cffqgBAwboqaee8vrkHqrHhfyFyKVAAJXBLV9QFXx+s81JkyZpxIgR6tKli7p166bZs2erpKTEWns0fPhwNW3aVOnp6ZKkCRMmKDk5Wc8++6wGDBighQsXasOGDXrllVckSQ6HQxMnTtQTTzyh1q1bKy4uTlOnTlV0dLRSU1MlSe3atVO/fv00evRozZs3T6dOndL48eM1ePBg65N5q1ev1o033qgJEybotttus9ZKBQYGnnNxOS6M3b8Qz3UpkH8kAQDVwechKi0tTQcPHtS0adOUn5+vTp06KTMz01oYvm/fPvn5/Thh1r17dy1YsECPPPKIHn74YbVu3VpLly5Vhw4drJoHH3xQJSUlGjNmjIqKitSzZ09lZmbK6XRaNW+++abGjx+vvn37ys/PT7fddpvmzJljbX/99dd19OhRpaenWwFOkpKTk/Xhhx9W44hUn9py64Co0OBK9+9CLwUCAFBZPr9P1KWsJt0nqi6sF8pYv08PL9miUmOsS4GX2jkCAKpfRd+/CVHVqKaEqLp0c7k89zEWiwIALkhF3799fjkP1a8urReycykQAAA7uE9UHcDN5QAAqHqEqDqAm8sBAFD1uJxXR3BzOQAAqhYhqg5hvRAAAFWHy3kAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhRQi+S5j2nt7kLluY/5uisAUOcF+LoDAComY/0+TVnyhTxG8nNI6QMTlNa1ma+7BQB1FjNRQC2Q5z5mBShJ8hjp4SVbmJECAB8iRAG1wJ7CEitAnVFqjPYWHvVNhwAAhCigNogLbyA/h3ebv8Oh2PD6vukQAIAQBdQGUaHBSh+YIH/HD0nK3+HQkwM7KCo02Mc9A4C6i4XlQC2R1rWZerdprL2FRxUbXp8ABQA+RogCapGo0GDCEwDUEFzOAwAAsIEQBQAALlhdvBkwl/MAAMAFqas3A2YmCgAA2FaXbwZMiKqF6uKUKQCgZqrLNwPmcl4tU1enTAEANdOZmwH/NEjVlZsBMxNVi9TlKVMAQM1Ul28GzExULXKuKdO68GIFANRMdfVmwISoWqQuT5kCAGq2ungzYC7n1SJ1ecoUAICahpmoWqauTpkCAFDT+Hwmau7cuYqNjZXT6VRiYqLWrVt3zvrFixcrPj5eTqdTCQkJWrFihdd2Y4ymTZumqKgoBQcHKyUlRTt37vSqOXTokIYNG6aQkBCFhYVp1KhROnLkiLX9+PHjuvPOO5WQkKCAgAClpqZW2flWhajQYCW1vIIABQCAD/k0RGVkZGjSpEmaPn26Nm7cqI4dO8rlcunAgQNl1q9du1ZDhgzRqFGjtGnTJqWmpio1NVVbtmyxambNmqU5c+Zo3rx5ysnJUYMGDeRyuXT8+HGrZtiwYdq6datWrlyp5cuXa82aNRozZoy1vbS0VMHBwbr33nuVkpJSfQMAAABqLYcxxpy/rHokJiaqa9euevHFFyVJHo9HMTExuueeezR58uSz6tPS0lRSUqLly5dbbb/4xS/UqVMnzZs3T8YYRUdH6/7779cDDzwgSXK73YqIiND8+fM1ePBgbd++Xe3bt9f69evVpUsXSVJmZqb69++vb775RtHR0V7Peeedd6qoqEhLly6t9PkVFxcrNDRUbrdbISEhld4fAABcfBV9//bZTNTJkyeVm5vrNdPj5+enlJQUZWdnl7lPdnb2WTNDLpfLqt+zZ4/y8/O9akJDQ5WYmGjVZGdnKywszApQkpSSkiI/Pz/l5ORc0DmdOHFCxcXFXg8AAHBp8lmIKiwsVGlpqSIiIrzaIyIilJ+fX+Y++fn556w/8/N8NU2aNPHaHhAQoEaNGpX7vBWVnp6u0NBQ6xETE3NBxwNqK76aCEBd4POF5ZeSKVOmyO12W4/9+/f7ukvARZexfp96zFyloX/OUY+Zq5Sxfp+vuwQA1cJnISo8PFz+/v4qKCjwai8oKFBkZGSZ+0RGRp6z/szP89X8fOH66dOndejQoXKft6KCgoIUEhLi9UDtwMxJ1eCriQDUJT4LUYGBgercubOysrKsNo/Ho6ysLCUlJZW5T1JSkle9JK1cudKqj4uLU2RkpFdNcXGxcnJyrJqkpCQVFRUpNzfXqlm1apU8Ho8SExOr7PxQezBzUnXq8re5A6h7fHqzzUmTJmnEiBHq0qWLunXrptmzZ6ukpEQjR46UJA0fPlxNmzZVenq6JGnChAlKTk7Ws88+qwEDBmjhwoXasGGDXnnlFUmSw+HQxIkT9cQTT6h169aKi4vT1KlTFR0dbd3rqV27durXr59Gjx6tefPm6dSpUxo/frwGDx7s9cm8bdu26eTJkzp06JAOHz6szZs3S5I6dep00cYH1a+8mZPebRpzHy4b+GoiAHWJT0NUWlqaDh48qGnTpik/P1+dOnVSZmamtTB837598vP7cbKse/fuWrBggR555BE9/PDDat26tZYuXaoOHTpYNQ8++KBKSko0ZswYFRUVqWfPnsrMzJTT6bRq3nzzTY0fP159+/aVn5+fbrvtNs2ZM8erb/3799fXX39t/X7NNddI+uFmnrh08KXOVevMVxM9vGSLSo3hq4kAXNJ8ep+oSx33iar58tzH1GPmqrNmTj6efB1v/Bcgz32MryZCpeS5j2lPYYniwhvwmoHPVfT9m+/OQ53GzEn1qIvf5g77Mtbvsy6r+zmk9IEJSuvazNfdAs6LmahqxExU7cHMCeAbzAajJmImCqgEZk4A32BdImozbrYJAPCZM5/o/Ck+0YnaghAFAPCZM+sS/R0/JCnWJaI24XIeAMCn0ro2U+82jVmXiFqHEAUA8DnWJaI24nIeAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAKDWyXMf09rdhcpzH/NZHwJ89swAAKDGyXMf057CEsWFN1BUaLCvu1OmjPX7NGXJF/IYyc8hpQ9MUFrXZhe9H4QoAAAgqeaEk3PJcx+z+ihJHiM9vGSLerdpfNFDH5fzAABAueHEl5fLyrKnsMTq4xmlxmhv4dGL3hdCFAAAqFHh5FziwhvIz+Hd5u9wKDa8/kXvCyEKAADUqHByLlGhwUofmCB/xw+d9Xc49OTADj5Zv8WaKAAAYIWTh5dsUakxPg0n55PWtZl6t2msvYVHFRte32d9JEQBAABJNSecVERUaLDP+0eIAoCLqDZ8fBx1W00IJ7UFIQpAjXGpB4za8PFxABVHiAJQI1zqAaMm3dsGQNXg03kAfK623J/mQtSWj48DqDhCFACfqwsBo7Z8fBxAxRGiAPhcXQgYNeneNgCqBmuiAPhcbbo/zRl2FsHXpo+PAzg/QhSAGqE2BYwLWQTPx8eBSweX8wDUGFGhwUpqeUWNDhl1YRE8gIohRAFAJdSFRfAAKoYQBQCVUBcWwQOoGEIUAFQCn7IDcAYLywGgkmrTIngA1YcQBQA28Ck7ADXict7cuXMVGxsrp9OpxMRErVu37pz1ixcvVnx8vJxOpxISErRixQqv7cYYTZs2TVFRUQoODlZKSop27tzpVXPo0CENGzZMISEhCgsL06hRo3TkyBGvms8//1y9evWS0+lUTEyMZs2aVTUnDAAAaj2fh6iMjAxNmjRJ06dP18aNG9WxY0e5XC4dOHCgzPq1a9dqyJAhGjVqlDZt2qTU1FSlpqZqy5YtVs2sWbM0Z84czZs3Tzk5OWrQoIFcLpeOHz9u1QwbNkxbt27VypUrtXz5cq1Zs0ZjxoyxthcXF+v6669X8+bNlZubq6efflqPPvqoXnnlleobDAAAUHsYH+vWrZsZN26c9XtpaamJjo426enpZdYPGjTIDBgwwKstMTHRjB071hhjjMfjMZGRkebpp5+2thcVFZmgoCDz1ltvGWOM2bZtm5Fk1q9fb9X861//Mg6Hw3z77bfGGGP+9Kc/mcsvv9ycOHHCqnnooYdM27ZtK3xubrfbSDJut7vC+wAAAN+q6Pu3T2eiTp48qdzcXKWkpFhtfn5+SklJUXZ2dpn7ZGdne9VLksvlsur37Nmj/Px8r5rQ0FAlJiZaNdnZ2QoLC1OXLl2smpSUFPn5+SknJ8eq6d27twIDA72e58svv9T//ve/Mvt24sQJFRcXez0AAMClyachqrCwUKWlpYqIiPBqj4iIUH5+fpn75Ofnn7P+zM/z1TRp0sRre0BAgBo1auRVU9YxfvocP5eenq7Q0FDrERMTU/aJAwCAWs/na6IuJVOmTJHb7bYe+/fv93WXAABANfFpiAoPD5e/v78KCgq82gsKChQZGVnmPpGRkeesP/PzfDU/X7h++vRpHTp0yKumrGP89Dl+LigoSCEhIV4PAABwafJpiAoMDFTnzp2VlZVltXk8HmVlZSkpKanMfZKSkrzqJWnlypVWfVxcnCIjI71qiouLlZOTY9UkJSWpqKhIubm5Vs2qVavk8XiUmJho1axZs0anTp3yep62bdvq8ssvv8AzBwAAtd5FWuheroULF5qgoCAzf/58s23bNjNmzBgTFhZm8vPzjTHG3HHHHWby5MlW/SeffGICAgLMM888Y7Zv326mT59u6tWrZ7744gurZubMmSYsLMy8++675vPPPze33HKLiYuLM8eOHbNq+vXrZ6655hqTk5NjPv74Y9O6dWszZMgQa3tRUZGJiIgwd9xxh9myZYtZuHChqV+/vnn55ZcrfG58Og8AgNqnou/fPg9RxhjzwgsvmGbNmpnAwEDTrVs38+mnn1rbkpOTzYgRI7zqFy1aZNq0aWMCAwPNVVddZd577z2v7R6Px0ydOtVERESYoKAg07dvX/Pll1961Xz//fdmyJAhpmHDhiYkJMSMHDnSHD582Kvms88+Mz179jRBQUGmadOmZubMmZU6L0IUAAC1T0Xfvx3GGOPbubBLV3FxsUJDQ+V2u1kfBQBALVHR92++O68ancmn3C8KAIDa48z79vnmmQhR1ejw4cOSxP2iAACohQ4fPqzQ0NByt3M5rxp5PB599913uuyyy+RwOHzdnYuiuLhYMTEx2r9/f52/hMlY/Iix+BFj8SPG4geMw49qylgYY3T48GFFR0fLz6/8GxkwE1WN/Pz8dOWVV/q6Gz7BfbJ+xFj8iLH4EWPxI8biB4zDj2rCWJxrBuoM7lgOAABgAyEKAADABkIUqlRQUJCmT5+uoKAgX3fF5xiLHzEWP2IsfsRY/IBx+FFtGwsWlgMAANjATBQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEThnObOnavY2Fg5nU4lJiZq3bp156yfPXu22rZtq+DgYMXExOi+++7T8ePHre2PPvqoHA6H1yM+Pr66T6NKVGYsTp06pRkzZqhly5ZyOp3q2LGjMjMzL+iYNUlVj0VtfV2sWbNGN910k6Kjo+VwOLR06dLz7vPhhx/q2muvVVBQkFq1aqX58+efVVMbXxfVMRZ15XWRl5enoUOHqk2bNvLz89PEiRPLrFu8eLHi4+PldDqVkJCgFStWVH3nq1h1jMX8+fPPel04nc7qOYHzIEShXBkZGZo0aZKmT5+ujRs3qmPHjnK5XDpw4ECZ9QsWLNDkyZM1ffp0bd++XX/961+VkZGhhx9+2KvuqquuUl5envX4+OOPL8bpXJDKjsUjjzyil19+WS+88IK2bdum3/zmN7r11lu1adMm28esKapjLKTa+booKSlRx44dNXfu3ArV79mzRwMGDNB1112nzZs3a+LEibr77rv173//26qpra+L6hgLqW68Lk6cOKHGjRvrkUceUceOHcusWbt2rYYMGaJRo0Zp06ZNSk1NVWpqqrZs2VKVXa9y1TEW0g93NP/p6+Lrr7+uqi5XjgHK0a1bNzNu3Djr99LSUhMdHW3S09PLrB83bpz55S9/6dU2adIk06NHD+v36dOnm44dO1ZLf6tTZcciKirKvPjii15tAwcONMOGDbN9zJqiOsaitr4ufkqSeeedd85Z8+CDD5qrrrrKqy0tLc24XC7r99r6uvipqhqLuvK6+Knk5GQzYcKEs9oHDRpkBgwY4NWWmJhoxo4de4E9vHiqaixee+01ExoaWmX9uhDMRKFMJ0+eVG5urlJSUqw2Pz8/paSkKDs7u8x9unfvrtzcXOvSw1dffaUVK1aof//+XnU7d+5UdHS0WrRooWHDhmnfvn3VdyJVwM5YnDhx4qzp5eDgYOuvaDvHrAmqYyzOqG2vCzuys7O9xk6SXC6XNXa19XVhx/nG4oy68LqoiIqOV11x5MgRNW/eXDExMbrlllu0detWn/SDEIUyFRYWqrS0VBEREV7tERERys/PL3OfoUOHasaMGerZs6fq1aunli1bqk+fPl6X8xITEzV//nxlZmbqpZde0p49e9SrVy8dPny4Ws/nQtgZC5fLpT/+8Y/auXOnPB6PVq5cqSVLligvL8/2MWuC6hgLqXa+LuzIz88vc+yKi4t17NixWvu6sON8YyHVnddFRZQ3Xpfa66Ii2rZtq1dffVXvvvuu3njjDXk8HnXv3l3ffPPNRe8LIQpV5sMPP9STTz6pP/3pT9q4caOWLFmi9957T48//rhVc8MNN+jXv/61rr76arlcLq1YsUJFRUVatGiRD3te9Z5//nm1bt1a8fHxCgwM1Pjx4zVy5Ej5+dW9/+UqMhZ15XWByuF1gbIkJSVp+PDh6tSpk5KTk7VkyRI1btxYL7/88kXvS937Fx0VEh4eLn9/fxUUFHi1FxQUKDIyssx9pk6dqjvuuEN33323EhISdOutt+rJJ59Uenq6PB5PmfuEhYWpTZs22rVrV5WfQ1WxMxaNGzfW0qVLVVJSoq+//lo7duxQw4YN1aJFC9vHrAmqYyzKUhteF3ZERkaWOXYhISEKDg6uta8LO843FmW5VF8XFVHeeF1qrws76tWrp2uuucYnrwtCFMoUGBiozp07Kysry2rzeDzKyspSUlJSmfscPXr0rJkWf39/SZIp5ysajxw5ot27dysqKqqKel717IzFGU6nU02bNtXp06f1j3/8Q7fccssFH9OXqmMsylIbXhd2JCUleY2dJK1cudIau9r6urDjfGNRlkv1dVERdsarrigtLdUXX3zhm9eFr1e2o+ZauHChCQoKMvPnzzfbtm0zY8aMMWFhYSY/P98YY8wdd9xhJk+ebNVPnz7dXHbZZeatt94yX331lXn//fdNy5YtzaBBg6ya+++/33z44Ydmz5495pNPPjEpKSkmPDzcHDhw4KKfX2VUdiw+/fRT849//MPs3r3brFmzxvzyl780cXFx5n//+1+Fj1lTVcdY1NbXxeHDh82mTZvMpk2bjCTzxz/+0WzatMl8/fXXxhhjJk+ebO644w6r/quvvjL169c3v/vd78z27dvN3Llzjb+/v8nMzLRqauvrojrGoq68LowxVn3nzp3N0KFDzaZNm8zWrVut7Z988okJCAgwzzzzjNm+fbuZPn26qVevnvniiy8u6rlVVnWMxWOPPWb+/e9/m927d5vc3FwzePBg43Q6vWouFkIUzumFF14wzZo1M4GBgaZbt27m008/tbYlJyebESNGWL+fOnXKPProo6Zly5bG6XSamJgY89vf/tbrzTItLc1ERUWZwMBA07RpU5OWlmZ27dp1Ec/IvsqMxYcffmjatWtngoKCzBVXXGHuuOMO8+2331bqmDVZVY9FbX1drF692kg663Hm/EeMGGGSk5PP2qdTp04mMDDQtGjRwrz22mtnHbc2vi6qYyzq0uuirPrmzZt71SxatMi0adPGBAYGmquuusq89957F+eELkB1jMXEiROt/z8iIiJM//79zcaNGy/eSf2E4/91GAAAAJXAmigAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUANQhH374oRwOh4qKinzdFaDWI0QBqBZ33nmnHA6HZs6c6dW+dOlSORwO63djjP785z8rKSlJISEhatiwoa666ipNmDChwl8oevToUU2ZMkUtW7aU0+lU48aNlZycrHfffdeqiY2N1ezZs6vk3KrbmbFzOByqV6+e4uLi9OCDD+r48eOVOk6fPn00ceJEr7bu3bsrLy9PoaGhVdhjoG4iRAGoNk6nU0899ZT+97//lbndGKOhQ4fq3nvvVf/+/fX+++9r27Zt+utf/yqn06knnniiQs/zm9/8RkuWLNELL7ygHTt2KDMzU7fffru+//77qjydi6pfv37Ky8vTV199peeee04vv/yypk+ffsHHDQwMVGRkpFeQBWCTT75sBsAlb8SIEebGG2808fHx5ne/+53V/s4775gz//S89dZbRpJ59913yzyGx+Op0HOFhoaa+fPnl7s9OTn5rO/iOuM///mP6dmzp3E6nebKK68099xzjzly5Ii1/W9/+5vp3LmzadiwoYmIiDBDhgwxBQUF1vYz3w2WmZlpOnXqZJxOp7nuuutMQUGBWbFihYmPjzeXXXaZGTJkiCkpKanQ+YwYMcLccsstXm0DBw4011xzjfV7YWGhGTx4sImOjjbBwcGmQ4cOZsGCBV7H+Pk579mzx+rvT7/T8u233zbt27c3gYGBpnnz5uaZZ56pUD+Buo6ZKADVxt/fX08++aReeOEFffPNN2dtf+utt9S2bVvdfPPNZe5f0dmSyMhIrVixQocPHy5z+5IlS3TllVdqxowZysvLU15eniRp9+7d6tevn2677TZ9/vnnysjI0Mcff6zx48db+546dUqPP/64PvvsMy1dulR79+7VnXfeedZzPProo3rxxRe1du1a7d+/X4MGDdLs2bO1YMECvffee3r//ff1wgsvVOh8fm7Lli1au3atAgMDrbbjx4+rc+fOeu+997RlyxaNGTNGd9xxh9atWydJev7555WUlKTRo0db5xwTE3PWsXNzczVo0CANHjxYX3zxhR599FFNnTpV8+fPt9VXoE7xdYoDcGn66WzKL37xC3PXXXcZY7xnouLj483NN9/std+ECRNMgwYNTIMGDUzTpk0r9FwfffSRufLKK029evVMly5dzMSJE83HH3/sVdO8eXPz3HPPebWNGjXKjBkzxqvtP//5j/Hz8zPHjh0r87nWr19vJJnDhw8bY36cifrggw+smvT0dCPJ7N6922obO3ascblcFTqfESNGGH9/f9OgQQMTFBRkJBk/Pz/z9ttvn3O/AQMGmPvvv9/6PTk52UyYMMGr5uczUUOHDjW/+tWvvGp+97vfmfbt21eor0BdxkwUgGr31FNP6fXXX9f27dvPW/v73/9emzdv1rRp03TkyJEKHb9379766quvlJWVpdtvv11bt25Vr1699Pjjj59zv88++0zz589Xw4YNrYfL5ZLH49GePXsk/TBTc9NNN6lZs2a67LLLlJycLEnat2+f17Guvvpq678jIiJUv359tWjRwqvtwIEDFTofSbruuuu0efNm5eTkaMSIERo5cqRuu+02a3tpaakef/xxJSQkqFGjRmrYsKH+/e9/n9Wv89m+fbt69Ojh1dajRw/t3LlTpaWllToWUNcQogBUu969e8vlcmnKlCle7a1bt9aXX37p1da4cWO1atVKTZo0qdRz1KtXT7169dJDDz2k999/XzNmzNDjjz+ukydPlrvPkSNHNHbsWG3evNl6fPbZZ9q5c6datmypkpISuVwuhYSE6M0339T69ev1zjvvSNJZx61Xr57132c+VfdTDodDHo+nwufToEEDtWrVSh07dtSrr76qnJwc/fWvf7W2P/3003r++ef10EMPafXq1dq8ebNcLtc5zxdA1QrwdQcA1A0zZ85Up06d1LZtW6ttyJAhGjp0qN59913dcsstVfp87du31+nTp3X8+HEFBgYqMDDwrJmVa6+9Vtu2bVOrVq3KPMYXX3yh77//XjNnzrTWE23YsKFK+1kRfn5+evjhhzVp0iQNHTpUwcHB+uSTT3TLLbfo//7v/yRJHo9H//3vf9W+fXtrv7LO+efatWunTz75xKvtk08+UZs2beTv71/1JwNcQpiJAnBRJCQkaNiwYZozZ47VNnjwYN1+++0aPHiwZsyYoZycHO3du1cfffSRMjIyKvwm3qdPH7388svKzc3V3r17tWLFCj388MO67rrrFBISIumH+0StWbNG3377rQoLCyVJDz30kNauXavx48dr8+bN2rlzp959911rYXmzZs0UGBioF154QV999ZWWLVt23kuE1eXXv/61/P39NXfuXEk/zOKtXLlSa9eu1fbt2zV27FgVFBR47RMbG2uNaWFhYZkzYffff7+ysrL0+OOP67///a9ef/11vfjii3rggQcuynkBtRkhCsBFM2PGDK83cofDoYyMDM2ePVsrVqxQ37591bZtW911112KiYnRxx9/XKHjulwuvf7667r++uvVrl073XPPPXK5XFq0aJHXc+/du1ctW7ZU48aNJf2wjumjjz7Sf//7X/Xq1UvXXHONpk2bpujoaEk/XFqcP3++Fi9erPbt22vmzJl65plnqnBEKi4gIEDjx4/XrFmzVFJSokceeUTXXnutXC6X+vTpo8jISKWmpnrt88ADD8jf31/t27dX48aNy1wvde2112rRokVauHChOnTooGnTpmnGjBllfgIRgDeHMcb4uhMAAAC1DTNRAAAANhCiANR4P70Fwc8f//nPf3zdvUrZt2/fOc+nsrcoAOA7XM4DUOOd64uImzZtquDg4IvYmwtz+vRp7d27t9ztsbGxCgjgg9NAbUCIAgAAsIHLeQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAb/n/6k/0K/RGxagAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQ1lJREFUeJzt3Xl8FfW9//H3yR4CScRAFgx7whqJZYlBMFhSQ6FKREtYLlvR2FtBKVAFBYJojeKGIFfQW6W3LiyKQJEfQkGlQozIIrIKCII1CQSaBMKe8/39wWWuxwRIhiQnh7yej0cekJnPzPnOt1PO2+/MfMdhjDECAABAhXi5uwEAAACeiBAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBeC6NnXqVDkcjnLVOhwOTZ06tUrb06NHD/Xo0aPG7g9A+RGiAFSLefPmyeFwWD8+Pj5q1KiRhg8frn/961/ubl6N07RpU5f+atiwobp3764PP/ywUvZ/6tQpTZ06VZ9++mml7A+ojQhRAKrVtGnT9Le//U1z5szRr3/9a7399ttKSkrSmTNnquTzJk2apNOnT1fJvqtafHy8/va3v+lvf/ubxo8frx9//FH9+vXTnDlzrnnfp06d0pNPPkmIAq6Bj7sbAKB2+fWvf61OnTpJku6//36FhYXpueee07Jly9S/f/9K/zwfHx/5+HjmP3WNGjXSf/zHf1i/Dx06VC1bttTLL7+s3//+925sGQCJkSgAbta9e3dJ0v79+12W7969W/fdd5/q16+vgIAAderUScuWLXOpOX/+vJ588knFxMQoICBAN954o7p166bVq1dbNWXdE3X27Fn98Y9/VIMGDVSvXj3dfffd+uGHH0q1bfjw4WratGmp5WXt86233tIvf/lLNWzYUP7+/mrbtq1ee+21CvXF1URERKhNmzY6cODAFeuOHDmikSNHKjw8XAEBAerQoYP++te/WusPHjyoBg0aSJKefPJJ65JhVd8PBlxvPPM/zwBcNw4ePChJuuGGG6xlO3bs0G233aZGjRppwoQJCgoK0sKFC5WamqoPPvhA99xzj6SLYSYzM1P333+/unTpoqKiIn311VfavHmzfvWrX132M++//369/fbbGjRokLp27aq1a9eqT58+13Qcr732mtq1a6e7775bPj4++vvf/64//OEPcjqdeuihh65p35ecP39ehw8f1o033njZmtOnT6tHjx7at2+fRo0apWbNmmnRokUaPny4CgoK9Mgjj6hBgwZ67bXX9J//+Z+655571K9fP0nSzTffXCntBGoNAwDV4K233jKSzD/+8Q9z9OhRc/jwYfP++++bBg0aGH9/f3P48GGrtmfPniYuLs6cOXPGWuZ0Ok3Xrl1NTEyMtaxDhw6mT58+V/zcjIwM89N/6rZu3WokmT/84Q8udYMGDTKSTEZGhrVs2LBhpkmTJlfdpzHGnDp1qlRdSkqKad68ucuypKQkk5SUdMU2G2NMkyZNzJ133mmOHj1qjh49ar7++mszYMAAI8mMHj36svubMWOGkWTefvtta9m5c+dMYmKiqVu3rikqKjLGGHP06NFSxwugYricB6BaJScnq0GDBoqOjtZ9992noKAgLVu2TDfddJMk6fjx41q7dq369++vEydOKD8/X/n5+Tp27JhSUlK0d+9e62m+0NBQ7dixQ3v37i33569YsUKS9PDDD7ssHzNmzDUdV2BgoPX3wsJC5efnKykpSd99950KCwtt7XPVqlVq0KCBGjRooA4dOmjRokUaMmSInnvuuctus2LFCkVERGjgwIHWMl9fXz388MM6efKkPvvsM1ttAVAal/MAVKvZs2crNjZWhYWFevPNN7Vu3Tr5+/tb6/ft2ydjjCZPnqzJkyeXuY8jR46oUaNGmjZtmvr27avY2Fi1b99evXr10pAhQ654Wer777+Xl5eXWrRo4bK8VatW13Rc69evV0ZGhrKysnTq1CmXdYWFhQoJCanwPhMSEvT000/L4XCoTp06atOmjUJDQ6+4zffff6+YmBh5ebn+N3KbNm2s9QAqByEKQLXq0qWL9XReamqqunXrpkGDBmnPnj2qW7eunE6nJGn8+PFKSUkpcx8tW7aUJN1+++3av3+/li5dqlWrVum///u/9fLLL2vOnDm6//77r7mtl5uks6SkxOX3/fv3q2fPnmrdurVeeuklRUdHy8/PTytWrNDLL79sHVNFhYWFKTk52da2AKoeIQqA23h7eyszM1N33HGHXn31VU2YMEHNmzeXdPESVHkCRP369TVixAiNGDFCJ0+e1O23366pU6deNkQ1adJETqdT+/fvdxl92rNnT6naG264QQUFBaWW/3w05+9//7vOnj2rZcuWqXHjxtbyTz755Krtr2xNmjTRtm3b5HQ6XUajdu/eba2XLh8QAZQf90QBcKsePXqoS5cumjFjhs6cOaOGDRuqR48emjt3rnJyckrVHz161Pr7sWPHXNbVrVtXLVu21NmzZy/7eb/+9a8lSTNnznRZPmPGjFK1LVq0UGFhobZt22Yty8nJKTVruLe3tyTJGGMtKyws1FtvvXXZdlSV3r17Kzc3VwsWLLCWXbhwQbNmzVLdunWVlJQkSapTp44klRkSAZQPI1EA3O5Pf/qTfvvb32revHn6/e9/r9mzZ6tbt26Ki4vTAw88oObNmysvL09ZWVn64Ycf9PXXX0uS2rZtqx49eqhjx46qX7++vvrqK73//vsaNWrUZT8rPj5eAwcO1H/913+psLBQXbt21Zo1a7Rv375StQMGDNBjjz2me+65Rw8//LBOnTql1157TbGxsdq8ebNVd+edd8rPz0933XWXHnzwQZ08eVJvvPGGGjZsWGYQrErp6emaO3euhg8frk2bNqlp06Z6//33tX79es2YMUP16tWTdPFG+LZt22rBggWKjY1V/fr11b59e7Vv375a2wt4NHc/Hgigdrg0xcHGjRtLrSspKTEtWrQwLVq0MBcuXDDGGLN//34zdOhQExERYXx9fU2jRo3Mb37zG/P+++9b2z399NOmS5cuJjQ01AQGBprWrVubP//5z+bcuXNWTVnTEZw+fdo8/PDD5sYbbzRBQUHmrrvuMocPHy7zkf9Vq1aZ9u3bGz8/P9OqVSvz9ttvl7nPZcuWmZtvvtkEBASYpk2bmueee868+eabRpI5cOCAVVeRKQ6uNn3D5faXl5dnRowYYcLCwoyfn5+Ji4szb731VqltN2zYYDp27Gj8/PyY7gCwwWHMT8afAQAAUC7cEwUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsYLLNKuR0OvXjjz+qXr16vGIBAAAPYYzRiRMnFBUVVepl3j9FiKpCP/74o6Kjo93dDAAAYMPhw4d10003XXY9IaoKXXq9wuHDhxUcHOzm1gAAgPIoKipSdHS09T1+OYSoKnTpEl5wcDAhCgAAD3O1W3G4sRwAAMAGQhQAAIANhCgAAAAbuCcKAIBaoKSkROfPn3d3M2oEX19feXt7X/N+CFEAAFzHjDHKzc1VQUGBu5tSo4SGhioiIuKa5nEkRAEAcB27FKAaNmyoOnXq1PrJn40xOnXqlI4cOSJJioyMtL0vQhQAANepkpISK0DdeOON7m5OjREYGChJOnLkiBo2bGj70h43lgMAcJ26dA9UnTp13NySmudSn1zLfWKEKAAArnO1/RJeWSqjTwhRAAAANhCiAAAAbCBEocbKKTytDfvzlVN42t1NAQC4QW5urkaPHq3mzZvL399f0dHRuuuuu7RmzRqrZsOGDerdu7duuOEGBQQEKC4uTi+99JJKSkqqvH08nYcaacHGQ5q4+Bs5jeTlkDL7xSmtc2N3NwsAUE0OHjyo2267TaGhoXr++ecVFxen8+fP6+OPP9ZDDz2k3bt368MPP1T//v01YsQIffLJJwoNDdU//vEPPfroo8rKytLChQur9H4whzHGVNnea7mioiKFhISosLBQwcHB7m6Ox8gpPK3bnl0r50/OTG+HQ59PuEORIYHuaxgAeJgzZ87owIEDatasmQICAtzdnArp3bu3tm3bpj179igoKMhlXUFBgXx9fdWkSRMlJSXpgw8+cFn/97//XXfffbfmz5+vtLS0Mvd/pb4p7/c3l/NQ4xzIL3YJUJJUYowO5p9yT4MAANV6i8Xx48e1cuVKPfTQQ6UClHRxtvFVq1bp2LFjGj9+fKn1d911l2JjY/Xee+9VaTu5nIcap1lYkLwcKjUS1TSMeU4AwB2q+xaLffv2yRij1q1bX7bm22+/lSS1adOmzPWtW7e2aqoKI1GocSJDApXZL07e/3sd29vh0DP92nMpDwDcIKfwtBWgpIv/gfv44u1VOiJVkTuN3HlXEiNRqJHSOjfW7bENdDD/lJqG1SFAAYCbXOkWi6r6tzkmJkYOh0O7d+++bE1sbKwkadeuXeratWup9bt27VLbtm2rpH2XMBKFGisyJFCJLW4kQAGAG126xeKnqvoWi/r16yslJUWzZ89WcXFxqfUFBQW68847Vb9+fb344oul1i9btkx79+7VwIEDq6yNEiEKAABcgbtusZg9e7ZKSkrUpUsXffDBB9q7d6927dqlmTNnKjExUUFBQZo7d66WLl2q9PR0bdu2TQcPHtRf/vIXDR8+XPfdd5/69+9fpW3kch4AALgid9xi0bx5c23evFl//vOfNW7cOOXk5KhBgwbq2LGjXnvtNUnSfffdp08++UR//vOf1b17d505c0YxMTF64oknNGbMmCp/ZyDzRFUh5okCALiTJ88TVdWYJwoAAMBNCFEAAAA2EKIAAABsqBEhavbs2WratKkCAgKUkJCgL7/88or1ixYtUuvWra23Na9YscJlvTFGU6ZMUWRkpAIDA5WcnKy9e/e61Bw/flyDBw9WcHCwQkNDNXLkSJ08ebLMz9u3b5/q1aun0NDQazpOAABw/XB7iFqwYIHGjh2rjIwMbd68WR06dFBKSoqOHDlSZv2GDRs0cOBAjRw5Ulu2bFFqaqpSU1O1fft2q2b69OmaOXOm5syZo+zsbAUFBSklJUVnzpyxagYPHqwdO3Zo9erVWr58udatW6f09PRSn3f+/HkNHDhQ3bt3r/yDBwCgGvAMWWmV0SdufzovISFBnTt31quvvipJcjqdio6O1ujRozVhwoRS9WlpaSouLtby5cutZbfeeqvi4+M1Z84cGWMUFRWlcePGWS8lLCwsVHh4uObNm6cBAwZYs5hu3LhRnTp1kiStXLlSvXv31g8//KCoqChr34899ph+/PFH9ezZU2PGjFFBQUG5j42n8wAA7lRSUqJvv/1WDRs21I033uju5tQox44d05EjRxQbGytvb2+XdeX9/nbrPFHnzp3Tpk2bNHHiRGuZl5eXkpOTlZWVVeY2WVlZGjt2rMuylJQULVmyRJJ04MAB5ebmKjk52VofEhKihIQEZWVlacCAAcrKylJoaKgVoCQpOTlZXl5eys7O1j333CNJWrt2rRYtWqStW7dq8eLFVz2es2fP6uzZs9bvRUVFV+8EAACqiLe3t0JDQ62rO3Xq1KnyuZNqOmOMTp06pSNHjig0NLRUgKoIt4ao/Px8lZSUKDw83GV5eHj4Zd+Xk5ubW2Z9bm6utf7SsivVNGzY0GW9j4+P6tevb9UcO3ZMw4cP19tvv13uUaTMzEw9+eST5aoFAKA6RERESNJlb5OprUJDQ62+sYsZyy/jgQce0KBBg3T77beXe5uJEye6jJIVFRUpOjq6KpoHAEC5OBwORUZGqmHDhjp//ry7m1Mj+Pr6XtMI1CVuDVFhYWHy9vZWXl6ey/K8vLzLpsOIiIgr1l/6My8vT5GRkS418fHxVs3PE/mFCxd0/Phxa/u1a9dq2bJleuGFFyRdHP5zOp3y8fHR66+/rt/97nel2ubv7y9/f//yHj4AANXG29u7UoID/o9bn87z8/NTx44dtWbNGmuZ0+nUmjVrlJiYWOY2iYmJLvWStHr1aqu+WbNmioiIcKkpKipSdna2VZOYmKiCggJt2rTJqlm7dq2cTqcSEhIkXbz3auvWrdbPtGnTVK9ePW3dutW6ZwoAANRebr+cN3bsWA0bNkydOnVSly5dNGPGDBUXF2vEiBGSpKFDh6pRo0bKzMyUJD3yyCNKSkrSiy++qD59+mj+/Pn66quv9Prrr0u6OGw5ZswYPf3004qJiVGzZs00efJkRUVFKTU1VZLUpk0b9erVSw888IDmzJmj8+fPa9SoURowYID1ZF6bNm1c2vnVV1/Jy8tL7du3r6aeAQAANZnbQ1RaWpqOHj2qKVOmKDc3V/Hx8Vq5cqV1Y/ihQ4fk5fV/A2Zdu3bVu+++q0mTJunxxx9XTEyMlixZ4hJuHn30URUXFys9PV0FBQXq1q2bVq5c6fKCwXfeeUejRo1Sz5495eXlpXvvvVczZ86svgMHAAAeze3zRF3PmCcKAADPU97vb7fPWA4AAOCJCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGBDjQhRs2fPVtOmTRUQEKCEhAR9+eWXV6xftGiRWrdurYCAAMXFxWnFihUu640xmjJliiIjIxUYGKjk5GTt3bvXpeb48eMaPHiwgoODFRoaqpEjR+rkyZPW+j179uiOO+5QeHi4AgIC1Lx5c02aNEnnz5+vvAMHAAAey+0hasGCBRo7dqwyMjK0efNmdejQQSkpKTpy5EiZ9Rs2bNDAgQM1cuRIbdmyRampqUpNTdX27dutmunTp2vmzJmaM2eOsrOzFRQUpJSUFJ05c8aqGTx4sHbs2KHVq1dr+fLlWrdundLT0631vr6+Gjp0qFatWqU9e/ZoxowZeuONN5SRkVF1nQEAADyGwxhj3NmAhIQEde7cWa+++qokyel0Kjo6WqNHj9aECRNK1aelpam4uFjLly+3lt16662Kj4/XnDlzZIxRVFSUxo0bp/Hjx0uSCgsLFR4ernnz5mnAgAHatWuX2rZtq40bN6pTp06SpJUrV6p379764YcfFBUVVWZbx44dq40bN+qf//xnuY6tqKhIISEhKiwsVHBwcIX6BQAAuEd5v7/dOhJ17tw5bdq0ScnJydYyLy8vJScnKysrq8xtsrKyXOolKSUlxao/cOCAcnNzXWpCQkKUkJBg1WRlZSk0NNQKUJKUnJwsLy8vZWdnl/m5+/bt08qVK5WUlHTZ4zl79qyKiopcfgAAwPXJrSEqPz9fJSUlCg8Pd1keHh6u3NzcMrfJzc29Yv2lP69W07BhQ5f1Pj4+ql+/fqnP7dq1qwICAhQTE6Pu3btr2rRplz2ezMxMhYSEWD/R0dGXrQUAAJ7N7fdE1XQLFizQ5s2b9e677+qjjz7SCy+8cNnaiRMnqrCw0Po5fPhwNbYUAABUJx93fnhYWJi8vb2Vl5fnsjwvL08RERFlbhMREXHF+kt/5uXlKTIy0qUmPj7eqvn5jesXLlzQ8ePHS33updGktm3bqqSkROnp6Ro3bpy8vb1Ltc3f31/+/v5XO2wAAHAdcOtIlJ+fnzp27Kg1a9ZYy5xOp9asWaPExMQyt0lMTHSpl6TVq1db9c2aNVNERIRLTVFRkbKzs62axMREFRQUaNOmTVbN2rVr5XQ6lZCQcNn2Op1OnT9/Xk6ns+IHCwAArituHYmSLj7xNmzYMHXq1EldunTRjBkzVFxcrBEjRkiShg4dqkaNGikzM1OS9MgjjygpKUkvvvii+vTpo/nz5+urr77S66+/LklyOBwaM2aMnn76acXExKhZs2aaPHmyoqKilJqaKklq06aNevXqpQceeEBz5szR+fPnNWrUKA0YMMB6Mu+dd96Rr6+v4uLi5O/vr6+++koTJ05UWlqafH19q7+jAABAjeL2EJWWlqajR49qypQpys3NVXx8vFauXGndGH7o0CF5ef3fgFnXrl317rvvatKkSXr88ccVExOjJUuWqH379lbNo48+quLiYqWnp6ugoEDdunXTypUrFRAQYNW88847GjVqlHr27CkvLy/de++9mjlzprXex8dHzz33nL799lsZY9SkSRONGjVKf/zjH6uhVwAAQE3n9nmirmfMEwUAgOfxiHmiAAAAPBUhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAHBNcgpPa8P+fOUUnnZ3U6qVj7sbAAAAPNeCjYc0cfE3chrJyyFl9otTWufG7m5WtWAkCgAA2JJTeNoKUJLkNNLji7fXmhEpQhQAALDlQH6xFaAuKTFGB/NPuadB1YwQBQAAbGkWFiQvh+syb4dDTcPquKdB1YwQBQAAbIkMCVRmvzh5Oy4mKW+HQ8/0a6/IkEA3t6x6cGM5AACwLa1zY90e20AH80+paVidWhOgJEIUAAC4RpEhgbUqPF3C5TwAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyHKA9XWt2UDAFCTME+Uh6nNb8sGAKAmYSTKg9T2t2UDAFCTEKI8SG1/WzYAADUJIcqD1Pa3ZQMAUJMQojxIbX9bNgAANQk3lnuY2vy2bAAAahJClAeqrW/LBgCgJrF1OW/RokXq16+f2rdvr/bt26tfv356//33K7ttAAAANVaFQpTT6VRaWprS0tK0c+dOtWzZUi1bttSOHTuUlpamAQMGyBhz9R0BAAB4uApdznvllVf0j3/8Q8uWLdNvfvMbl3XLli3TiBEj9Morr2jMmDGV2UYAAIAap0IjUW+99Zaef/75UgFKku6++25Nnz5db775ZqU1DgAAoKaqUIjau3evkpOTL7s+OTlZe/fuveZGAQAA1HQVClGBgYEqKCi47PqioiIFBARca5sAAABqvAqFqMTERL322muXXT979mwlJiZec6MAAABqugrdWP7EE0+oR48eOnbsmMaPH6/WrVvLGKNdu3bpxRdf1NKlS/XJJ59UVVsBAABqjAqFqK5du2rBggVKT0/XBx984LLuhhtu0HvvvafbbrutUhsIAABQEzmMjYmdTp06pY8//ti6iTw2NlZ33nmn6tThRbg/VVRUpJCQEBUWFio4ONjdzQEAAOVQ3u/vCo1ErV27VqNGjdIXX3yhe+65x2VdYWGh2rVrpzlz5qh79+72Wg0AAOAhKnRj+YwZM/TAAw+UmcpCQkL04IMP6qWXXqq0xgEAANRUFQpRX3/9tXr16nXZ9Xfeeac2bdp0zY0CAACo6SoUovLy8uTr63vZ9T4+Pjp69GiFGzF79mw1bdpUAQEBSkhI0JdffnnF+kWLFql169YKCAhQXFycVqxY4bLeGKMpU6YoMjJSgYGBZU4Cevz4cQ0ePFjBwcEKDQ3VyJEjdfLkSWv9p59+qr59+yoyMlJBQUGKj4/XO++8U+FjAwAA16cKhahGjRpp+/btl12/bds2RUZGVqgBCxYs0NixY5WRkaHNmzerQ4cOSklJ0ZEjR8qs37BhgwYOHKiRI0dqy5YtSk1NVWpqqku7pk+frpkzZ2rOnDnKzs5WUFCQUlJSdObMGatm8ODB2rFjh1avXq3ly5dr3bp1Sk9Pd/mcm2++WR988IG2bdumESNGaOjQoVq+fHmFjg8AAFynTAWMGjXKtG/f3pw+fbrUulOnTpn27dub0aNHV2SXpkuXLuahhx6yfi8pKTFRUVEmMzOzzPr+/fubPn36uCxLSEgwDz74oDHGGKfTaSIiIszzzz9vrS8oKDD+/v7mvffeM8YYs3PnTiPJbNy40ar5f//v/xmHw2H+9a9/XbatvXv3NiNGjCj3sRUWFhpJprCwsNzbAAAA9yrv93eFRqImTZqk48ePKzY2VtOnT9fSpUu1dOlSPffcc2rVqpWOHz+uJ554otz7O3funDZt2uTyPj4vLy8lJycrKyurzG2ysrJKvb8vJSXFqj9w4IByc3NdakJCQpSQkGDVZGVlKTQ0VJ06dbJqkpOT5eXlpezs7Mu2t7CwUPXr17/s+rNnz6qoqMjlBwAAXJ8qNMVBeHi4NmzYoP/8z//UxIkTZf53iimHw6GUlBTNnj1b4eHh5d5ffn6+SkpKSm0THh6u3bt3l7lNbm5umfW5ubnW+kvLrlTTsGFDl/U+Pj6qX7++VfNzCxcu1MaNGzV37tzLHk9mZqaefPLJy64HAADXjwqFKElq0qSJVqxYoX//+9/at2+fjDGKiYnRDTfcUBXtqxE++eQTjRgxQm+88YbatWt32bqJEydq7Nix1u9FRUWKjo6ujiYCAIBqVuEQdckNN9ygzp07X9OHh4WFydvbW3l5eS7L8/LyFBERUeY2ERERV6y/9GdeXp7LTe55eXmKj4+3an5+4/qFCxd0/PjxUp/72Wef6a677tLLL7+soUOHXvF4/P395e/vf8UaAABwfajQPVGVzc/PTx07dtSaNWusZU6nU2vWrFFiYmKZ2yQmJrrUS9Lq1aut+mbNmikiIsKlpqioSNnZ2VZNYmKiCgoKXOa0Wrt2rZxOpxISEqxln376qfr06aPnnnvO5ck9AACACj2dVxXmz59v/P39zbx588zOnTtNenq6CQ0NNbm5ucYYY4YMGWImTJhg1a9fv974+PiYF154wezatctkZGQYX19f880331g1zz77rAkNDTVLly4127ZtM3379jXNmjVzeaqwV69e5pZbbjHZ2dnm888/NzExMWbgwIHW+rVr15o6deqYiRMnmpycHOvn2LFj5T42ns4DAMDzlPf72+0hyhhjZs2aZRo3bmz8/PxMly5dzBdffGGtS0pKMsOGDXOpX7hwoYmNjTV+fn6mXbt25qOPPnJZ73Q6zeTJk014eLjx9/c3PXv2NHv27HGpOXbsmBk4cKCpW7euCQ4ONiNGjDAnTpyw1g8bNsxIKvWTlJRU7uMiRAEA4HnK+/3tMOZ/H7FDpSvvW6ABAEDNUd7vb7feEwUAAOCpCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAAA8Tk7haW3Yn6+cwtNua4Pt174AAAC4w4KNhzRx8TdyGsnLIWX2i1Na58bV3g5GogAAgMfIKTxtBShJchrp8cXb3TIiRYgCAAAe40B+sRWgLikxRgfzT1V7WwhRAADAYzQLC5KXw3WZt8OhpmF1qr0thCgAAOAxIkMCldkvzgowXpKe6ddekSGB1d4WQhQAAPA8jp/96QaEKAAA4DG4sRwAAMAGbiwHAACwgRvLAQAAbLBuLP/fIOXl4MZyAACAcjPG9U93IEQBAACPcenG8kvZyYgbywEAAK6KG8sBAABs4MZyAAAAGy7dWO7tuJikvB0Ot91Y7lPtnwgAAHAN0jo31u2xDXQw/5SahtVxS4CSCFEAAMADRYYEui08XcLlPAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAarGcwtPasD/fLe8dAzwd80QBQC21YOMhTVz8jZxG8nJImf3ilNa5sbubBXgMRqIAoBbKKTxtBShJchrp8cXbGZECKoAQBQC10IH8YitAXVJijA7mn3JPgwAPRIgCgFqoWViQvByuy7wdDjUNq+OeBgEeiBAFALVQZEigMvvFydtxMUl5Oxx6pl97t7+LDPAk3FgOALVUWufGuj22gQ7mn1LTsDoEKKCCCFEAUItFhgQSngCbuJwHAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgCAKpJTeFob9ucrp/C0u5uCKsBrXwAAqAILNh7SxMXfyGkkL4eU2S9OaZ0bu7tZqESMRAEAUMlyCk9bAUqSnEZ6fPF2RqSuM4Qo1FgMgwPwVAfyi60AdUmJMTqYf8o9DUKV4HIeaiSGwQF4smZhQfJyyCVIeTscahpWx32NQqVjJAo1DsPgADxdZEigMvvFydvhkHQxQD3Tr70iQwLd3DJUJkaiUONcaRicf4AAeIq0zo11e2wDHcw/paZhdfj36zpEiEKNwzA4gOtFZEgg4ek6xuU81DgMgwMAPAEjUaiRGAYHANR0hCjUWAyDAwBqMi7nAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZClAfinXIAALgfT+d5GN4pBwBAzcBIlAfhnXIAANQchCgPcqV3ygEAgOpFiPIgl94p91O8Uw4AAPcgRHkQ3ikHAEDNwY3lHoZ3ygEAUDMQojwQ75QDAMD93H45b/bs2WratKkCAgKUkJCgL7/88or1ixYtUuvWrRUQEKC4uDitWLHCZb0xRlOmTFFkZKQCAwOVnJysvXv3utQcP35cgwcPVnBwsEJDQzVy5EidPHnSWn/mzBkNHz5ccXFx8vHxUWpqaqUdLwAAuD64NUQtWLBAY8eOVUZGhjZv3qwOHTooJSVFR44cKbN+w4YNGjhwoEaOHKktW7YoNTVVqamp2r59u1Uzffp0zZw5U3PmzFF2draCgoKUkpKiM2fOWDWDBw/Wjh07tHr1ai1fvlzr1q1Tenq6tb6kpESBgYF6+OGHlZycXHUdAAAAPJbDGGOuXlY1EhIS1LlzZ7366quSJKfTqejoaI0ePVoTJkwoVZ+Wlqbi4mItX77cWnbrrbcqPj5ec+bMkTFGUVFRGjdunMaPHy9JKiwsVHh4uObNm6cBAwZo165datu2rTZu3KhOnTpJklauXKnevXvrhx9+UFRUlMtnDh8+XAUFBVqyZEmFj6+oqEghISEqLCxUcHBwhbcHAADVr7zf324biTp37pw2bdrkMtLj5eWl5ORkZWVllblNVlZWqZGhlJQUq/7AgQPKzc11qQkJCVFCQoJVk5WVpdDQUCtASVJycrK8vLyUnZ1daccHAACub267sTw/P18lJSUKDw93WR4eHq7du3eXuU1ubm6Z9bm5udb6S8uuVNOwYUOX9T4+Pqpfv75VY9fZs2d19uxZ6/eioqJr2h8A1GQ5had1IL9YzcKCeNgFtRJP51WizMxMPfnkk+5uBgBUOd7jCbjxcl5YWJi8vb2Vl5fnsjwvL08RERFlbhMREXHF+kt/Xq3m5zeuX7hwQcePH7/s55bXxIkTVVhYaP0cPnz4mvYHADUR7/EELnJbiPLz81PHjh21Zs0aa5nT6dSaNWuUmJhY5jaJiYku9ZK0evVqq75Zs2aKiIhwqSkqKlJ2drZVk5iYqIKCAm3atMmqWbt2rZxOpxISEq7pmPz9/RUcHOzyAwDXG97jCVzk1st5Y8eO1bBhw9SpUyd16dJFM2bMUHFxsUaMGCFJGjp0qBo1aqTMzExJ0iOPPKKkpCS9+OKL6tOnj+bPn6+vvvpKr7/+uiTJ4XBozJgxevrppxUTE6NmzZpp8uTJioqKsuZ6atOmjXr16qUHHnhAc+bM0fnz5zVq1CgNGDDA5cm8nTt36ty5czp+/LhOnDihrVu3SpLi4+OrrX8AoCa69B7PnwYp3uOJ2sitISotLU1Hjx7VlClTlJubq/j4eK1cudK6MfzQoUPy8vq/wbKuXbvq3Xff1aRJk/T4448rJiZGS5YsUfv27a2aRx99VMXFxUpPT1dBQYG6deumlStXKiAgwKp55513NGrUKPXs2VNeXl669957NXPmTJe29e7dW99//731+y233CLp4mSeAFCbXXqP5+OLt6vEGN7jiVrLrfNEXe+YJwrA9Syn8DTv8cR1qbzf3zydBwCwhfd4orZz+7vzAAAAPBEhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRQC2VU3haG/bnK6fwtLubAgAeycfdDQBQ/RZsPKSJi7+R00heDimzX5zSOjd2d7MAwKMwEgXUMjmFp60AJUlOIz2+eDsjUgBQQYQooJY5kF9sBahLSozRwfxT7mkQAHgoQhRQyzQLC5KXw3WZt8OhpmF13NMgAPBQhCiglokMCVRmvzh5Oy4mKW+HQ8/0a6/IkEA3twwAPAs3lgO1UFrnxro9toEO5p9S07A6BCgAsIEQBdRSkSGBtSI85RSe1oH8YjULC6oVxwug+hCiAFy3mMoBQFXiniigkjB5Zc3CVA4AqhojUUAlYMSj5rnSVA5c1gNQGRiJAq4RIx41E1M5AKhqhCjgGjF5Zc3EVA4AqhqX84BrdGnE46dBihGPmoGpHABUJUaigGvEiEfNFhkSqMQWN/K/B4BKx0gUUAkY8QCA2ocQBVSS2jJ5JXAJE5mitiNEAQAqjGk9AO6JAgBUENN6ABcRogAAFcK0HsBFhCgAQIUwkSlwESEKAFAhTOsBXMSN5QBqPJ4Cq3mY1gMgRAGo4XgKrOZiWg/UdlzOA1BjVcZTYDmFp7Vhfz5PjgGodIxEAaixrvQUWHlGQBjFAlCVGIkCUGNdy1NgzGUEoKoRogDUWNfyFBhzGQGoalzOA1Cj2X0K7NIo1k+DFHMZAahMjEQBqPEiQwKV2OLGCj0JxlxGAKoaI1EArlvMZQSgKhGiAFzXmMsIQFXhch4AAIANhCgAgMdg8lTUJFzOAwB4BCZPRU3DSBQAoMZj8lTURIQoAECNx+SpqIkIUQCAGu9aXgEEVBVCFACgxmPyVNRE3FgOAPAITJ6KmoYQBQDwGEyeipqEy3kAUAbmIwJwNYxEAcDPMB8RgPJgJAoAfoL5iACUFyEKAH6C+YgAlBchCgB+gvmIAJQXIQoAfoL5iACUFzeWA8DPMB8RgPIgRAFAGTxtPqKcwtM6kF+sZmFBHtVuwJPViMt5s2fPVtOmTRUQEKCEhAR9+eWXV6xftGiRWrdurYCAAMXFxWnFihUu640xmjJliiIjIxUYGKjk5GTt3bvXpeb48eMaPHiwgoODFRoaqpEjR+rkyZMuNdu2bVP37t0VEBCg6OhoTZ8+vXIOGAAq0YKNh3Tbs2s16I1s3fbsWi3YeMjdTQJqBbeHqAULFmjs2LHKyMjQ5s2b1aFDB6WkpOjIkSNl1m/YsEEDBw7UyJEjtWXLFqWmpio1NVXbt2+3aqZPn66ZM2dqzpw5ys7OVlBQkFJSUnTmzBmrZvDgwdqxY4dWr16t5cuXa926dUpPT7fWFxUV6c4771STJk20adMmPf/885o6dapef/31qusMAKggpmQA3MdhjDFXL6s6CQkJ6ty5s1599VVJktPpVHR0tEaPHq0JEyaUqk9LS1NxcbGWL19uLbv11lsVHx+vOXPmyBijqKgojRs3TuPHj5ckFRYWKjw8XPPmzdOAAQO0a9cutW3bVhs3blSnTp0kSStXrlTv3r31ww8/KCoqSq+99pqeeOIJ5ebmys/PT5I0YcIELVmyRLt37y7XsRUVFSkkJESFhYUKDg6+pn4CgLJs2J+vQW9kl1r+3gO3KrHFjW5oEeD5yvv97daRqHPnzmnTpk1KTk62lnl5eSk5OVlZWVllbpOVleVSL0kpKSlW/YEDB5Sbm+tSExISooSEBKsmKytLoaGhVoCSpOTkZHl5eSk7O9uquf32260Adelz9uzZo3//+99ltu3s2bMqKipy+QGAqsSUDID7uDVE5efnq6SkROHh4S7Lw8PDlZubW+Y2ubm5V6y/9OfVaho2bOiy3sfHR/Xr13epKWsfP/2Mn8vMzFRISIj1Ex0dXfaBA0AlYUoGwH14Oq8STZw4UWPHjrV+LyoqIkgBqHJMyQC4h1tDVFhYmLy9vZWXl+eyPC8vTxEREWVuExERccX6S3/m5eUpMjLSpSY+Pt6q+fmN6xcuXNDx48dd9lPW5/z0M37O399f/v7+lz1eAKgqnjYlA3A9cOvlPD8/P3Xs2FFr1qyxljmdTq1Zs0aJiYllbpOYmOhSL0mrV6+26ps1a6aIiAiXmqKiImVnZ1s1iYmJKigo0KZNm6yatWvXyul0KiEhwapZt26dzp8/7/I5rVq10g033HCNRw4AADyecbP58+cbf39/M2/ePLNz506Tnp5uQkNDTW5urjHGmCFDhpgJEyZY9evXrzc+Pj7mhRdeMLt27TIZGRnG19fXfPPNN1bNs88+a0JDQ83SpUvNtm3bTN++fU2zZs3M6dOnrZpevXqZW265xWRnZ5vPP//cxMTEmIEDB1rrCwoKTHh4uBkyZIjZvn27mT9/vqlTp46ZO3duuY+tsLDQSDKFhYXX0kUAAKAalff72+0hyhhjZs2aZRo3bmz8/PxMly5dzBdffGGtS0pKMsOGDXOpX7hwoYmNjTV+fn6mXbt25qOPPnJZ73Q6zeTJk014eLjx9/c3PXv2NHv27HGpOXbsmBk4cKCpW7euCQ4ONiNGjDAnTpxwqfn6669Nt27djL+/v2nUqJF59tlnK3RchCgAADxPeb+/3T5P1PWMeaIAAPA8HjFPFAAAgKciRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbeAFxFbo0BVdRUZGbWwIAAMrr0vf21abSJERVoRMnTkiSoqOj3dwSAABQUSdOnFBISMhl1zNjeRVyOp368ccfVa9ePTkcDtv7KSoqUnR0tA4fPszM5z9Bv5RGn5RGn5RGn5RGn5RWm/vEGKMTJ04oKipKXl6Xv/OJkagq5OXlpZtuuqnS9hccHFzrTuTyoF9Ko09Ko09Ko09Ko09Kq619cqURqEu4sRwAAMAGQhQAAIANhCgP4O/vr4yMDPn7+7u7KTUK/VIafVIafVIafVIafVIafXJ13FgOAABgAyNRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQ5SazZ89W06ZNFRAQoISEBH355ZdXrJ8xY4ZatWqlwMBARUdH649//KPOnDljrZ86daocDofLT+vWrav6MCpVRfrk/PnzmjZtmlq0aKGAgAB16NBBK1euvKZ91kSV3Seefp6sW7dOd911l6KiouRwOLRkyZKrbvPpp5/qF7/4hfz9/dWyZUvNmzevVI0nnydV0Se17TzJycnRoEGDFBsbKy8vL40ZM6bMukWLFql169YKCAhQXFycVqxYUfmNryJV0Sfz5s0rdZ4EBARUzQHUUIQoN1iwYIHGjh2rjIwMbd68WR06dFBKSoqOHDlSZv27776rCRMmKCMjQ7t27dJf/vIXLViwQI8//rhLXbt27ZSTk2P9fP7559VxOJWion0yadIkzZ07V7NmzdLOnTv1+9//Xvfcc4+2bNlie581TVX0ieTZ50lxcbE6dOig2bNnl6v+wIED6tOnj+644w5t3bpVY8aM0f3336+PP/7YqvH086Qq+kSqXefJ2bNn1aBBA02aNEkdOnQos2bDhg0aOHCgRo4cqS1btig1NVWpqanavn17ZTa9ylRFn0gXZzP/6Xny/fffV1aTPYNBtevSpYt56KGHrN9LSkpMVFSUyczMLLP+oYceMr/85S9dlo0dO9bcdttt1u8ZGRmmQ4cOVdLe6lDRPomMjDSvvvqqy7J+/fqZwYMH295nTVMVfeLp58lPSTIffvjhFWseffRR065dO5dlaWlpJiUlxfrd08+Tn6qsPqlt58lPJSUlmUceeaTU8v79+5s+ffq4LEtISDAPPvjgNbaw+lVWn7z11lsmJCSk0trliRiJqmbnzp3Tpk2blJycbC3z8vJScnKysrKyytyma9eu2rRpk3WJ4bvvvtOKFSvUu3dvl7q9e/cqKipKzZs31+DBg3Xo0KGqO5BKZKdPzp49W2rYODAw0PqvZTv7rEmqok8u8dTzxI6srCyXPpSklJQUqw89/Tyx42p9ckltOk/Ko7z9VtucPHlSTZo0UXR0tPr27asdO3a4u0nVihBVzfLz81VSUqLw8HCX5eHh4crNzS1zm0GDBmnatGnq1q2bfH191aJFC/Xo0cPlcl5CQoLmzZunlStX6rXXXtOBAwfUvXt3nThxokqPpzLY6ZOUlBS99NJL2rt3r5xOp1avXq3FixcrJyfH9j5rkqroE8mzzxM7cnNzy+zDoqIinT592uPPEzuu1idS7TtPyuNy/Xa9nifl0apVK7355ptaunSp3n77bTmdTnXt2lU//PCDu5tWbQhRHuDTTz/VM888o//6r//S5s2btXjxYn300Ud66qmnrJpf//rX+u1vf6ubb75ZKSkpWrFihQoKCrRw4UI3trzqvPLKK4qJiVHr1q3l5+enUaNGacSIEfLyqr2ndHn6pLadJ7CH8wTlkZiYqKFDhyo+Pl5JSUlavHixGjRooLlz57q7adWm9n7juElYWJi8vb2Vl5fnsjwvL08RERFlbjN58mQNGTJE999/v+Li4nTPPffomWeeUWZmppxOZ5nbhIaGKjY2Vvv27av0Y6hsdvqkQYMGWrJkiYqLi/X9999r9+7dqlu3rpo3b257nzVJVfRJWTzpPLEjIiKizD4MDg5WYGCgx58ndlytT8pyvZ8n5XG5frtezxM7fH19dcstt9Sq84QQVc38/PzUsWNHrVmzxlrmdDq1Zs0aJSYmlrnNqVOnSo2weHt7S5LMZV59ePLkSe3fv1+RkZGV1PKqY6dPLgkICFCjRo104cIFffDBB+rbt+8177MmqIo+KYsnnSd2JCYmuvShJK1evdrqQ08/T+y4Wp+U5Xo/T8rDTr/VNiUlJfrmm29q13ni7jvba6P58+cbf39/M2/ePLNz506Tnp5uQkNDTW5urjHGmCFDhpgJEyZY9RkZGaZevXrmvffeM999951ZtWqVadGihenfv79VM27cOPPpp5+aAwcOmPXr15vk5GQTFhZmjhw5Uu3HZ0dF++SLL74wH3zwgdm/f79Zt26d+eUvf2maNWtm/v3vf5d7nzVdVfSJp58nJ06cMFu2bDFbtmwxksxLL71ktmzZYr7//ntjjDETJkwwQ4YMseq/++47U6dOHfOnP/3J7Nq1y8yePdt4e3ublStXWjWefp5URZ/UtvPEGGPVd+zY0QwaNMhs2bLF7Nixw1q/fv164+PjY1544QWza9cuk5GRYXx9fc0333xTrcdmV1X0yZNPPmk+/vhjs3//frNp0yYzYMAAExAQ4FJzvSNEucmsWbNM48aNjZ+fn+nSpYv54osvrHVJSUlm2LBh1u/nz583U6dONS1atDABAQEmOjra/OEPf3D5ckxLSzORkZHGz8/PNGrUyKSlpZl9+/ZV4xFdu4r0yaeffmratGlj/P39zY033miGDBli/vWvf1Von56gsvvE08+TTz75xEgq9XOpH4YNG2aSkpJKbRMfH2/8/PxM8+bNzVtvvVVqv558nlRFn9TG86Ss+iZNmrjULFy40MTGxho/Pz/Trl0789FHH1XPAVWCquiTMWPGWP+/CQ8PN7179zabN2+uvoOqARzGXOZ6EAAAAC6Le6IAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAFCLfPrpp3I4HCooKHB3UwCPR4gCUCWGDx8uh8OhZ5991mX5kiVL5HA4rN+NMXrjjTeUmJio4OBg1a1bV+3atdMjjzxS7heZnjp1ShMnTlSLFi0UEBCgBg0aKCkpSUuXLrVqmjZtqhkzZlTKsVW1S33ncDjk6+urZs2a6dFHH9WZM2cqtJ8ePXpozJgxLsu6du2qnJwchYSEVGKLgdqJEAWgygQEBOi5557Tv//97zLXG2M0aNAgPfzww+rdu7dWrVqlnTt36i9/+YsCAgL09NNPl+tzfv/732vx4sWaNWuWdu/erZUrV+q+++7TsWPHKvNwqlWvXr2Uk5Oj7777Ti+//LLmzp2rjIyMa96vn5+fIiIiXIIsAJvc+9YZANerYcOGmd/85jemdevW5k9/+pO1/MMPPzSX/ul57733jCSzdOnSMvfhdDrL9VkhISFm3rx5l12flJRU6h1gl/zzn/803bp1MwEBAeamm24yo0ePNidPnrTW/8///I/p2LGjqVu3rgkPDzcDBw40eXl51vpL7yRbuXKliY+PNwEBAeaOO+4weXl5ZsWKFaZ169amXr16ZuDAgaa4uLhcxzNs2DDTt29fl2X9+vUzt9xyi/V7fn6+GTBggImKijKBgYGmffv25t1333XZx8+P+cCBA1Z7f/ruzffff9+0bdvW+Pn5mSZNmpgXXnihXO0EajtGogBUGW9vbz3zzDOaNWuWfvjhh1Lr33vvPbVq1Up33313mduXd7QkIiJCK1as0IkTJ8pcv3jxYt10002aNm2acnJylJOTI0nav3+/evXqpXvvvVfbtm3TggUL9Pnnn2vUqFHWtufPn9dTTz2lr7/+WkuWLNHBgwc1fPjwUp8xdepUvfrqq9qwYYMOHz6s/v37a8aMGXr33Xf10UcfadWqVZo1a1a5jufntm/frg0bNsjPz89adubMGXXs2FEfffSRtm/frvT0dA0ZMkRffvmlJOmVV15RYmKiHnjgAeuYo6OjS+1706ZN6t+/vwYMGKBvvvlGU6dO1eTJkzVv3jxbbQVqFXenOADXp5+Optx6663md7/7nTHGdSSqdevW5u6773bZ7pFHHjFBQUEmKCjINGrUqFyf9dlnn5mbbrrJ+Pr6mk6dOpkxY8aYzz//3KWmSZMm5uWXX3ZZNnLkSJOenu6y7J///Kfx8vIyp0+fLvOzNm7caCSZEydOGGP+byTqH//4h1WTmZlpJJn9+/dbyx588EGTkpJSruMZNmyY8fb2NkFBQcbf399IMl5eXub999+/4nZ9+vQx48aNs35PSkoyjzzyiEvNz0eiBg0aZH71q1+51PzpT38ybdu2LVdbgdqMkSgAVe65557TX//6V+3ateuqtU888YS2bt2qKVOm6OTJk+Xa/+23367vvvtOa9as0X333acdO3aoe/fueuqpp6643ddff6158+apbt261k9KSoqcTqcOHDgg6eJIzV133aXGjRurXr16SkpKkiQdOnTIZV8333yz9ffw8HDVqVNHzZs3d1l25MiRch2PJN1xxx3aunWrsrOzNWzYMI0YMUL33nuvtb6kpERPPfWU4uLiVL9+fdWtW1cff/xxqXZdza5du3Tbbbe5LLvtttu0d+9elZSUVGhfQG1DiAJQ5W6//XalpKRo4sSJLstjYmK0Z88el2UNGjRQy5Yt1bBhwwp9hq+vr7p3767HHntMq1at0rRp0/TUU0/p3Llzl93m5MmTevDBB7V161br5+uvv9bevXvVokULFRcXKyUlRcHBwXrnnXe0ceNGffjhh5JUar++vr7W3y89VfdTDodDTqez3McTFBSkli1bqkOHDnrzzTeVnZ2tv/zlL9b6559/Xq+88ooee+wxffLJJ9q6datSUlKueLwAKpePuxsAoHZ49tlnFR8fr1atWlnLBg4cqEGDBmnp0qXq27dvpX5e27ZtdeHCBZ05c0Z+fn7y8/MrNbLyi1/8Qjt37lTLli3L3Mc333yjY8eO6dlnn7XuJ/rqq68qtZ3l4eXlpccff1xjx47VoEGDFBgYqPXr16tv3776j//4D0mS0+nUt99+q7Zt21rblXXMP9emTRutX7/eZdn69esVGxsrb2/vyj8Y4DrCSBSAahEXF6fBgwdr5syZ1rIBAwbovvvu04ABAzRt2jRlZ2fr4MGD+uyzz7RgwYJyf4n36NFDc+fO1aZNm3Tw4EGtWLFCjz/+uO644w4FBwdLujhP1Lp16/Svf/1L+fn5kqTHHntMGzZs0KhRo7R161bt3btXS5cutW4sb9y4sfz8/DRr1ix99913WrZs2VUvEVaV3/72t/L29tbs2bMlXRzFW716tTZs2KBdu3bpwQcfVF5enss2TZs2tfo0Pz+/zJGwcePGac2aNXrqqaf07bff6q9//ateffVVjR8/vlqOC/BkhCgA1WbatGkuX+QOh0MLFizQjBkztGLFCvXs2VOtWrXS7373O0VHR+vzzz8v135TUlL017/+VXfeeafatGmj0aNHKyUlRQsXLnT57IMHD6pFixZq0KCBpIv3MX322Wf69ttv1b17d91yyy2aMmWKoqKiJF28tDhv3jwtWrRIbdu21bPPPqsXXnihEnuk/Hx8fDRq1ChNnz5dxcXFmjRpkn7xi18oJSVFPXr0UEREhFJTU122GT9+vLy9vdW2bVs1aNCgzPulfvGLX2jhwoWaP3++2rdvrylTpmjatGllPoEIwJXDGGPc3QgAAABPw0gUAACADYQoADXeT6cg+PnPP//5T3c3r0IOHTp0xeOp6BQFANyHy3kAarwrvYi4UaNGCgwMrMbWXJsLFy7o4MGDl13ftGlT+fjw4DTgCQhRAAAANnA5DwAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGDD/wdXZd17xiUszQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_59.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGpklEQVR4nO3de3xNZ97///fOOWgSKpLQkDiEIkVp8o1WwzQjyrTUtAi34tbSe5jWrSc6JaozjWJaZQzmUOaeTp1Kq9OqUocapKkJ6mwcW9UkGpodh8Qh+/r90Z9VmyCJLDuH1/Px2A/2tT5r7Wtdj1X73WutvZbDGGMEAACAcufl6Q4AAABUVQQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0A1d6ECRPkcDhKVOtwODRhwgRb+9O5c2d17ty5wm4PQMkRtABUGPPmzZPD4bBePj4+atCggQYPHqxjx455unsVTlRUlNt41atXT506ddL7779fLts/e/asJkyYoHXr1pXL9oDqiKAFoMKZOHGi/v73v2v27Nl68MEH9c477ygxMVGFhYW2fN7LL7+sgoICW7Ztt7Zt2+rvf/+7/v73v+u5557Td999p969e2v27Nk3ve2zZ8/qlVdeIWgBN8HH0x0AgCs9+OCD6tChgyTpiSeeUN26dfX666/rww8/VJ8+fcr983x8fOTjUzn/OWzQoIH+67/+y3r/+OOPq2nTpnrzzTf11FNPebBnACRmtABUAp06dZIkHTx40K197969evTRR1WnTh0FBASoQ4cO+vDDD91qLly4oFdeeUXNmjVTQECAbr/9dt13331atWqVVVPcNVrnzp3T//7v/yo0NFS33XabHn74YX377bdX9W3w4MGKioq6qr24bc6dO1c/+9nPVK9ePfn7+6tly5aaNWtWqcbiRsLDw3XnnXfq8OHD1607fvy4hg4dqrCwMAUEBKhNmzb629/+Zi0/cuSIQkNDJUmvvPKKdXrS7uvTgKqmcv4vHIBq5ciRI5Kk2rVrW227du3SvffeqwYNGmjMmDGqWbOmFi1apF69emnJkiV65JFHJP0YeNLS0vTEE08oLi5O+fn5+ve//60tW7bo5z//+TU/84knntA777yj/v37q2PHjlqzZo169OhxU/sxa9YstWrVSg8//LB8fHz0z3/+U7/61a/kcrk0YsSIm9r2JRcuXNDRo0d1++23X7OmoKBAnTt31oEDBzRy5EhFR0dr8eLFGjx4sPLy8vTMM88oNDRUs2bN0v/8z//okUceUe/evSVJd911V7n0E6g2DABUEHPnzjWSzGeffWa+//57c/ToUfPee++Z0NBQ4+/vb44ePWrVPvDAAyY2NtYUFhZabS6Xy3Ts2NE0a9bMamvTpo3p0aPHdT83NTXVXP7P4bZt24wk86tf/cqtrn///kaSSU1NtdoGDRpkGjVqdMNtGmPM2bNnr6pLTk42jRs3dmtLTEw0iYmJ1+2zMcY0atTIdO3a1Xz//ffm+++/N1999ZXp16+fkWR+/etfX3N706ZNM5LMO++8Y7WdP3/eJCQkmFq1apn8/HxjjDHff//9VfsLoHQ4dQigwklKSlJoaKgiIyP16KOPqmbNmvrwww91xx13SJJOnjypNWvWqE+fPjp16pRyc3OVm5urEydOKDk5Wfv377d+pRgSEqJdu3Zp//79Jf785cuXS5Kefvppt/ZRo0bd1H4FBgZaf3c6ncrNzVViYqIOHTokp9NZpm2uXLlSoaGhCg0NVZs2bbR48WINHDhQr7/++jXXWb58ucLDw5WSkmK1+fr66umnn9bp06f1+eefl6kvAK7GqUMAFc7MmTMVExMjp9Opt99+W+vXr5e/v7+1/MCBAzLGaNy4cRo3blyx2zh+/LgaNGigiRMnqmfPnoqJiVHr1q3VrVs3DRw48LqnwL7++mt5eXmpSZMmbu3Nmze/qf3auHGjUlNTlZ6errNnz7otczqdCg4OLvU24+Pj9dvf/lYOh0M1atTQnXfeqZCQkOuu8/XXX6tZs2by8nL/f+0777zTWg6gfBC0AFQ4cXFx1q8Oe/Xqpfvuu0/9+/fXvn37VKtWLblcLknSc889p+Tk5GK30bRpU0nS/fffr4MHD2rZsmVauXKl/vKXv+jNN9/U7Nmz9cQTT9x0X691o9OioiK39wcPHtQDDzygFi1a6I033lBkZKT8/Py0fPlyvfnmm9Y+lVbdunWVlJRUpnUB2I+gBaBC8/b2Vlpamrp06aI//OEPGjNmjBo3bizpx9NdJQkZderU0ZAhQzRkyBCdPn1a999/vyZMmHDNoNWoUSO5XC4dPHjQbRZr3759V9XWrl1beXl5V7VfOSv0z3/+U+fOndOHH36ohg0bWu1r1669Yf/LW6NGjbR9+3a5XC63Wa29e/day6Vrh0gAJcc1WgAqvM6dOysuLk7Tpk1TYWGh6tWrp86dO2vOnDnKysq6qv7777+3/n7ixAm3ZbVq1VLTpk117ty5a37egw8+KEmaPn26W/u0adOuqm3SpImcTqe2b99utWVlZV11d3Zvb29JkjHGanM6nZo7d+41+2GX7t27Kzs7WwsXLrTaLl68qBkzZqhWrVpKTEyUJNWoUUOSig2SAEqGGS0AlcLzzz+vxx57TPPmzdNTTz2lmTNn6r777lNsbKyefPJJNW7cWDk5OUpPT9e3336rr776SpLUsmVLde7cWe3bt1edOnX073//W++9955Gjhx5zc9q27atUlJS9Mc//lFOp1MdO3bU6tWrdeDAgatq+/XrpxdffFGPPPKInn76aZ09e1azZs1STEyMtmzZYtV17dpVfn5+euihhzR8+HCdPn1af/7zn1WvXr1iw6Kdhg0bpjlz5mjw4MHKzMxUVFSU3nvvPW3cuFHTpk3TbbfdJunHi/dbtmyphQsXKiYmRnXq1FHr1q3VunXrW9pfoFLz9M8eAeCSS7d32Lx581XLioqKTJMmTUyTJk3MxYsXjTHGHDx40Dz++OMmPDzc+Pr6mgYNGphf/OIX5r333rPW++1vf2vi4uJMSEiICQwMNC1atDC/+93vzPnz562a4m7FUFBQYJ5++mlz++23m5o1a5qHHnrIHD16tNjbHaxcudK0bt3a+Pn5mebNm5t33nmn2G1++OGH5q677jIBAQEmKirKvP766+btt982kszhw4etutLc3uFGt6641vZycnLMkCFDTN26dY2fn5+JjY01c+fOvWrdTZs2mfbt2xs/Pz9u9QCUgcOYy+axAQAAUG64RgsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAm3DDUg9yuVz67rvvdNttt/GoCwAAKgljjE6dOqX69etf9XD2KxG0POi7775TZGSkp7sBAADK4OjRo7rjjjuuW0PQ8qBLj7k4evSogoKCPNwbAABQEvn5+YqMjLS+x6+HoOVBl04XBgUFEbQAAKhkSnLZDxfDAwAA2ISgBQAAYBOCFgAAgE24RqsSKCoq0oULFzzdjUrD19dX3t7enu4GAAAErYrMGKPs7Gzl5eV5uiuVTkhIiMLDw7k/GQDAowhaFdilkFWvXj3VqFGD0FACxhidPXtWx48flyRFRER4uEcAgOqMoFVBFRUVWSHr9ttv93R3KpXAwEBJ0vHjx1WvXj1OIwIAPIaL4SuoS9dk1ahRw8M9qZwujRvXtgEAPImgVcFxurBsGDcAQEVA0AIAALAJQQsAAMAmBC3YIjs7W7/+9a/VuHFj+fv7KzIyUg899JBWr15t1WzatEndu3dX7dq1FRAQoNjYWL3xxhsqKiqyao4cOaKhQ4cqOjpagYGBatKkiVJTU3X+/HlP7BYAoBLJchZo08FcZTkLPNYHfnWIcnfkyBHde++9CgkJ0ZQpUxQbG6sLFy7o008/1YgRI7R37169//776tOnj4YMGaK1a9cqJCREn332mV544QWlp6dr0aJFcjgc2rt3r1wul+bMmaOmTZtq586devLJJ3XmzBlNnTrV07sKAKigFm7+RmOX7pDLSF4OKa13rPre0/CW98NhjDG3/FMhScrPz1dwcLCcTqeCgoLclhUWFurw4cOKjo5WQECAh3pYNt27d9f27du1b98+1axZ021ZXl6efH191ahRIyUmJmrJkiVuy//5z3/q4Ycf1oIFC9S3b99itz9lyhTNmjVLhw4dumYfKvP4AQBuTpazQPdOWiPXZQnH2+HQhjFdFBEceNPbv97395U4dVhN3Krp05MnT2rFihUaMWLEVSFL+vGO7StXrtSJEyf03HPPXbX8oYceUkxMjObPn3/Nz3A6napTp0659hsAUHUczj3jFrIkqcgYHck9e8v7wqnDauBWTp8eOHBAxhi1aNHimjX/+c9/JEl33nlnsctbtGhh1RS3/RkzZnDaEABwTdF1a8rLoatmtKLq3vp7UzKjVcVlOQuskCX9eNC9tHSnbTNbpTkTXdqz1seOHVO3bt302GOP6cknnyxt1wAA1UREcKDSesfK+/+/p6K3w6HXercul9OGpcWMVhV3velTOw64Zs2aWRexX0tMTIwkac+ePerYseNVy/fs2aOWLVu6tX333Xfq0qWLOnbsqD/96U/l22kAQJXT956Guj8mVEdyzyqqbg2PhCyJGa0q79L06eXsnD6tU6eOkpOTNXPmTJ05c+aq5Xl5eeratavq1Kmj3//+91ct//DDD7V//36lpKRYbceOHVPnzp3Vvn17zZ07V15eHLYAgBuLCA5UQpPbPRayJIJWleeJ6dOZM2eqqKhIcXFxWrJkifbv3689e/Zo+vTpSkhIUM2aNTVnzhwtW7ZMw4YN0/bt23XkyBH99a9/1eDBg/Xoo4+qT58+kn4KWQ0bNtTUqVP1/fffKzs7W9nZ2bb1HwCA8sKpw2rgVk+fNm7cWFu2bNHvfvc7Pfvss8rKylJoaKjat2+vWbNmSZIeffRRrV27Vr/73e/UqVMnFRYWqlmzZvrNb36jUaNGWc8qXLVqlQ4cOKADBw7ojjvucPsc7kwCAKjouI+WB1XV+2hVBIwfAMAu3EcLAACgAiBoAQAA2ISgBQAAYBOCFgAAgE0IWhUcv1UoG8YNAFARELQqKF9fX0nS2bO3/gGYVcGlcbs0jgAAeAL30aqgvL29FRISouPHj0uSatSoYd1bCtdmjNHZs2d1/PhxhYSEyNvb29NdAgBUYwStCiw8PFySrLCFkgsJCbHGDwAATyFoVWAOh0MRERGqV6+eLly44OnuVBq+vr7MZAEAKgSCViXg7e1NcAAAoBLiYngAAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYVImjNnDlTUVFRCggIUHx8vL788svr1i9evFgtWrRQQECAYmNjtXz5crflxhiNHz9eERERCgwMVFJSkvbv3+9Wc/LkSQ0YMEBBQUEKCQnR0KFDdfr0aWv5unXr1LNnT0VERKhmzZpq27at/vGPf5S6LwAAoPryeNBauHChRo8erdTUVG3ZskVt2rRRcnKyjh8/Xmz9pk2blJKSoqFDh2rr1q3q1auXevXqpZ07d1o1kydP1vTp0zV79mxlZGSoZs2aSk5OVmFhoVUzYMAA7dq1S6tWrdJHH32k9evXa9iwYW6fc9ddd2nJkiXavn27hgwZoscff1wfffRRqfoCAACqMeNhcXFxZsSIEdb7oqIiU79+fZOWllZsfZ8+fUyPHj3c2uLj483w4cONMca4XC4THh5upkyZYi3Py8sz/v7+Zv78+cYYY3bv3m0kmc2bN1s1n3zyiXE4HObYsWPX7Gv37t3NkCFDStyXG3E6nUaScTqdJaoHAACeV5rvb4/OaJ0/f16ZmZlKSkqy2ry8vJSUlKT09PRi10lPT3erl6Tk5GSr/vDhw8rOznarCQ4OVnx8vFWTnp6ukJAQdejQwapJSkqSl5eXMjIyrtlfp9OpOnXqlLgvVzp37pzy8/PdXgAAoOryaNDKzc1VUVGRwsLC3NrDwsKUnZ1d7DrZ2dnXrb/0541q6tWr57bcx8dHderUuebnLlq0SJs3b9aQIUNK3JcrpaWlKTg42HpFRkYWWwcAAKoGj1+jVRmsXbtWQ4YM0Z///Ge1atWqzNsZO3asnE6n9Tp69Gg59hIAAFQ0Hg1adevWlbe3t3Jyctzac3JyFB4eXuw64eHh162/9OeNaq682P7ixYs6efLkVZ/7+eef66GHHtKbb76pxx9/vFR9uZK/v7+CgoLcXgAAoOryaNDy8/NT+/bttXr1aqvN5XJp9erVSkhIKHadhIQEt3pJWrVqlVUfHR2t8PBwt5r8/HxlZGRYNQkJCcrLy1NmZqZVs2bNGrlcLsXHx1tt69atU48ePfT666+7/SKxpH0BAADV3C24OP+6FixYYPz9/c28efPM7t27zbBhw0xISIjJzs42xhgzcOBAM2bMGKt+48aNxsfHx0ydOtXs2bPHpKamGl9fX7Njxw6rZtKkSSYkJMQsW7bMbN++3fTs2dNER0ebgoICq6Zbt26mXbt2JiMjw2zYsME0a9bMpKSkWMvXrFljatSoYcaOHWuysrKs14kTJ0rVl+vhV4cAAFQ+pfn+9njQMsaYGTNmmIYNGxo/Pz8TFxdnvvjiC2tZYmKiGTRokFv9okWLTExMjPHz8zOtWrUyH3/8sdtyl8tlxo0bZ8LCwoy/v7954IEHzL59+9xqTpw4YVJSUkytWrVMUFCQGTJkiDl16pS1fNCgQUbSVa/ExMRS9eV6CFoAAFQ+pfn+dhhjjMem06q5/Px8BQcHy+l0cr0WAACVRGm+v/nVIQAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE08HrRmzpypqKgoBQQEKD4+Xl9++eV16xcvXqwWLVooICBAsbGxWr58udtyY4zGjx+viIgIBQYGKikpSfv373erOXnypAYMGKCgoCCFhIRo6NChOn36tLW8sLBQgwcPVmxsrHx8fNSrV6+r+rFu3To5HI6rXtnZ2WUfDAAAUKV4NGgtXLhQo0ePVmpqqrZs2aI2bdooOTlZx48fL7Z+06ZNSklJ0dChQ7V161b16tVLvXr10s6dO62ayZMna/r06Zo9e7YyMjJUs2ZNJScnq7Cw0KoZMGCAdu3apVWrVumjjz7S+vXrNWzYMGt5UVGRAgMD9fTTTyspKem6+7Bv3z5lZWVZr3r16t3kqAAAgCrDeFBcXJwZMWKE9b6oqMjUr1/fpKWlFVvfp08f06NHD7e2+Ph4M3z4cGOMMS6Xy4SHh5spU6ZYy/Py8oy/v7+ZP3++McaY3bt3G0lm8+bNVs0nn3xiHA6HOXbs2FWfOWjQINOzZ8+r2teuXWskmR9++KHE+3slp9NpJBmn01nmbQAAgFurNN/fHpvROn/+vDIzM91mjLy8vJSUlKT09PRi10lPT79qhik5OdmqP3z4sLKzs91qgoODFR8fb9Wkp6crJCREHTp0sGqSkpLk5eWljIyMUu9H27ZtFRERoZ///OfauHHjdWvPnTun/Px8txcAAKi6PBa0cnNzVVRUpLCwMLf2sLCwa17nlJ2dfd36S3/eqObK03s+Pj6qU6dOqa6vioiI0OzZs7VkyRItWbJEkZGR6ty5s7Zs2XLNddLS0hQcHGy9IiMjS/x5AACg8vHxdAcqq+bNm6t58+bW+44dO+rgwYN688039fe//73YdcaOHavRo0db7/Pz8wlbAABUYR6b0apbt668vb2Vk5Pj1p6Tk6Pw8PBi1wkPD79u/aU/b1Rz5cX2Fy9e1MmTJ6/5uSUVFxenAwcOXHO5v7+/goKC3F4AAKDq8ljQ8vPzU/v27bV69WqrzeVyafXq1UpISCh2nYSEBLd6SVq1apVVHx0drfDwcLea/Px8ZWRkWDUJCQnKy8tTZmamVbNmzRq5XC7Fx8ff1D5t27ZNERERN7UNAABQdXj01OHo0aM1aNAgdejQQXFxcZo2bZrOnDmjIUOGSJIef/xxNWjQQGlpaZKkZ555RomJifr973+vHj16aMGCBfr3v/+tP/3pT5Ikh8OhUaNG6be//a2aNWum6OhojRs3TvXr17fuhXXnnXeqW7duevLJJzV79mxduHBBI0eOVL9+/VS/fn2rb7t379b58+d18uRJnTp1Stu2bZP048XvkjRt2jRFR0erVatWKiws1F/+8hetWbNGK1euvDWDBwAAKjyPBq2+ffvq+++/1/jx45Wdna22bdtqxYoV1sXs33zzjby8fpp069ixo9599129/PLLeumll9SsWTN98MEHat26tVXzwgsv6MyZMxo2bJjy8vJ03333acWKFQoICLBq/vGPf2jkyJF64IEH5OXlpV/+8peaPn26W9+6d++ur7/+2nrfrl07ST/eEFX68VeTzz77rI4dO6YaNWrorrvu0meffaYuXbqU/0ABAIBKyWEuJQfccvn5+QoODpbT6eR6LQAAKonSfH97/BE8AAAAVRVBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtwEZZzgJtOpirLGeBp7sCAPAAH093AKiqFm7+RmOX7pDLSF4OKa13rPre09DT3QIA3EKlmtG6cOGCXnjhBTVt2lRxcXF6++233Zbn5OTI29u7XDsIVEZZzgIrZEmSy0gvLd3JzBYAVDOlClq/+93v9H//93966qmn1LVrV40ePVrDhw93qzHGlGsHgcrocO4ZK2RdUmSMjuSe9UyHAAAeUapTh//4xz/0l7/8Rb/4xS8kSYMHD9aDDz6oIUOGWLNbDoej/HsJVDLRdWvKyyG3sOXtcCiqbg3PdQoAcMuVakbr2LFjat26tfW+adOmWrdunTZt2qSBAweqqKio3DsIVEYRwYFK6x0r7///fzy8HQ691ru1IoIDPdwzAMCtVKoZrfDwcB08eFBRUVFWW4MGDbR27Vp16dJFgwcPLufuAZVX33sa6v6YUB3JPauoujUIWQBQDZVqRutnP/uZ3n333ava69evrzVr1ujw4cPl1jGgKogIDlRCk9sJWQBQTZVqRmvcuHHau3dvscsaNGigzz//XKtWrSqXjgEAAFR2DsPPBD0mPz9fwcHBcjqdCgoK8nR3AABACZTm+7tMd4ZfvHixevfurdatW6t169bq3bu33nvvvTJ1FgAAVB488aJ0SnXq0OVyKSUlRYsXL1ZMTIxatGghSdq1a5f69u2rxx57TPPnz+cWDwAAVEE88aL0SjWj9dZbb+mzzz7Thx9+qL179+qDDz7QBx98oH379un999/XqlWr9NZbb9nVVwAA4CE88aJsShW05s6dqylTplg3LL3cww8/rMmTJ1/1WB4AAFD58cSLsilV0Nq/f7+SkpKuuTwpKUn79++/6U4BAICK5dITLy7HEy9urFRBKzAwUHl5eddcnp+fr4CAgJvtEwAAqGB44kXZlOpi+ISEBM2aNUuzZs0qdvnMmTOVkJBQLh0DAAAVC0+8KL1SBa3f/OY36ty5s06cOKHnnntOLVq0kDFGe/bs0e9//3stW7ZMa9eutauvAADAwyKCAwlYpVCqoNWxY0ctXLhQw4YN05IlS9yW1a5dW/Pnz9e9995brh0EAACorMp0Z/izZ8/q008/tS58j4mJUdeuXVWjBhfElQZ3hgcAoPIpzfd3qWa01qxZo5EjR+qLL77QI4884rbM6XSqVatWmj17tjp16lT6XgMAAFQxpfrV4bRp0/Tkk08Wm96Cg4M1fPhwvfHGG+XWOQAAgMqsVEHrq6++Urdu3a65vGvXrsrMzLzpTgEAgJLh2YMVW6lOHebk5MjX1/faG/Px0ffff3/TnQIAADfGswcrvlLNaDVo0EA7d+685vLt27crIiLipjsFAACuj2cPVg6lClrdu3fXuHHjVFhYeNWygoICpaamFvscRAAAUL549mDlUKpThy+//LKWLl2qmJgYjRw5Us2bN5ck7d27VzNnzlRRUZF+85vf2NJRAADwk0vPHrw8bPHswYqnVEErLCxMmzZt0v/8z/9o7NixunQLLofDoeTkZM2cOVNhYWG2dBQAAPzk0rMHX1q6U0XG8OzBCqpMNyyVpB9++EEHDhyQMUbNmjVT7dq1y7tvVR43LAUA3KwsZwHPHrzFbLth6eVq166te+65p6yrAwCAcsCzByu2Ul0MDwAAgJIjaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANvF40Jo5c6aioqIUEBCg+Ph4ffnll9etX7x4sVq0aKGAgADFxsZq+fLlbsuNMRo/frwiIiIUGBiopKQk7d+/363m5MmTGjBggIKCghQSEqKhQ4fq9OnT1vLCwkINHjxYsbGx8vHxUa9evYrty7p163T33XfL399fTZs21bx588o0BgAAoGryaNBauHChRo8erdTUVG3ZskVt2rRRcnKyjh8/Xmz9pk2blJKSoqFDh2rr1q3q1auXevXqpZ07d1o1kydP1vTp0zV79mxlZGSoZs2aSk5OVmFhoVUzYMAA7dq1S6tWrdJHH32k9evXa9iwYdbyoqIiBQYG6umnn1ZSUlKxfTl8+LB69OihLl26aNu2bRo1apSeeOIJffrpp+U0OgAAoNIzHhQXF2dGjBhhvS8qKjL169c3aWlpxdb36dPH9OjRw60tPj7eDB8+3BhjjMvlMuHh4WbKlCnW8ry8POPv72/mz59vjDFm9+7dRpLZvHmzVfPJJ58Yh8Nhjh07dtVnDho0yPTs2fOq9hdeeMG0atXKra1v374mOTn5Bnv9E6fTaSQZp9NZ4nUAAIBnleb722MzWufPn1dmZqbbjJGXl5eSkpKUnp5e7Drp6elXzTAlJydb9YcPH1Z2drZbTXBwsOLj462a9PR0hYSEqEOHDlZNUlKSvLy8lJGRUeL+36gvxTl37pzy8/PdXgAAoOryWNDKzc1VUVGRwsLC3NrDwsKUnZ1d7DrZ2dnXrb/0541q6tWr57bcx8dHderUuebnlqYv+fn5KigoKHadtLQ0BQcHW6/IyMgSfx4AAKh8PH4xfHUyduxYOZ1O63X06FFPdwkAANjIY0Grbt268vb2Vk5Ojlt7Tk6OwsPDi10nPDz8uvWX/rxRzZUX21+8eFEnT5685ueWpi9BQUEKDAwsdh1/f38FBQW5vQAAQNXlsaDl5+en9u3ba/Xq1Vaby+XS6tWrlZCQUOw6CQkJbvWStGrVKqs+Ojpa4eHhbjX5+fnKyMiwahISEpSXl6fMzEyrZs2aNXK5XIqPjy9x/2/UFwAAAI/+6nDBggXG39/fzJs3z+zevdsMGzbMhISEmOzsbGOMMQMHDjRjxoyx6jdu3Gh8fHzM1KlTzZ49e0xqaqrx9fU1O3bssGomTZpkQkJCzLJly8z27dtNz549TXR0tCkoKLBqunXrZtq1a2cyMjLMhg0bTLNmzUxKSopb33bt2mW2bt1qHnroIdO5c2ezdetWs3XrVmv5oUOHTI0aNczzzz9v9uzZY2bOnGm8vb3NihUrSrz//OoQAIDKpzTf3x4NWsYYM2PGDNOwYUPj5+dn4uLizBdffGEtS0xMNIMGDXKrX7RokYmJiTF+fn6mVatW5uOPP3Zb7nK5zLhx40xYWJjx9/c3DzzwgNm3b59bzYkTJ0xKSoqpVauWCQoKMkOGDDGnTp1yq2nUqJGRdNXrcmvXrjVt27Y1fn5+pnHjxmbu3Lml2neCFgAAlU9pvr8dxhjjsem0ai4/P1/BwcFyOp1crwUAQCVRmu9vfnUIAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAEAUIwsZ4E2HcxVlrPA011BJebj6Q4AAFDRLNz8jcYu3SGXkbwcUlrvWPW9p6Gnu4VKiBktAAAuk+UssEKWJLmM9NLSncxsoUwIWgAAXOZw7hkrZF1SZIyO5J71TIdQqRG0AAC4THTdmvJyuLd5OxyKqlvDMx1CpUbQAgDgMhHBgUrrHStvx49py9vh0Gu9WysiONDDPUNlxMXwAABcoe89DXV/TKiO5J5VVN0ahCyUGUELAIBiRAQHErBw0zh1CAAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAU3Vf3ZXlV9/wAAFQu/OoSlqj/bq6rvHwCg4mFGC5Kq/rO9qvr+AQAqJoIWJFX9Z3tV9f0DAFRMBC1IqvrP9qrq+wcAqJgIWpBU9Z/tVdX3DwBQMTmMMebGZbBDfn6+goOD5XQ6FRQU5OnuSPrxWqaq/Gyvqr5/AAD7leb7m18dwk1Vf7ZXVd8/AEDFwqlDAAAAmxC0AAAAbELQAgAAsAlBC254RA0AAOWHi+Fh4RE1AACUL2a0IKnyPaKGmTcAQGXAjBYkXf8RNRXtdgjMvAEAKgtmtCCp8jyiprLNvAEAqjeCFiRVnkfU8HBoAEBlwqlDWPre01D3x4RW6EfUXJp5uzxsVcSZNwAAJGa0cIWI4EAlNLm9QoYsqfLMvAEAIDGjhUqoMsy8AQAgEbRQSfFwaABAZcCpQwAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJhUiaM2cOVNRUVEKCAhQfHy8vvzyy+vWL168WC1atFBAQIBiY2O1fPlyt+XGGI0fP14REREKDAxUUlKS9u/f71Zz8uRJDRgwQEFBQQoJCdHQoUN1+vRpt5rt27erU6dOCggIUGRkpCZPnuy2fN68eXI4HG6vgICAmxgJ4OZlOQu06WCuspwFnu4KAFR7Hg9aCxcu1OjRo5WamqotW7aoTZs2Sk5O1vHjx4ut37Rpk1JSUjR06FBt3bpVvXr1Uq9evbRz506rZvLkyZo+fbpmz56tjIwM1axZU8nJySosLLRqBgwYoF27dmnVqlX66KOPtH79eg0bNsxanp+fr65du6pRo0bKzMzUlClTNGHCBP3pT39y609QUJCysrKs19dff13OIwSU3MLN3+jeSWvU/88ZunfSGi3c/I2nuwQA1ZvxsLi4ODNixAjrfVFRkalfv75JS0srtr5Pnz6mR48ebm3x8fFm+PDhxhhjXC6XCQ8PN1OmTLGW5+XlGX9/fzN//nxjjDG7d+82kszmzZutmk8++cQ4HA5z7NgxY4wxf/zjH03t2rXNuXPnrJoXX3zRNG/e3Ho/d+5cExwcXMY9N8bpdBpJxul0lnkbwCXf5Z010WM+Mo1e/OnVeMzH5ru8s57uGgBUKaX5/vbojNb58+eVmZmppKQkq83Ly0tJSUlKT08vdp309HS3eklKTk626g8fPqzs7Gy3muDgYMXHx1s16enpCgkJUYcOHayapKQkeXl5KSMjw6q5//775efn5/Y5+/bt0w8//GC1nT59Wo0aNVJkZKR69uypXbt2XXN/z507p/z8fLcXUF4O556Ry7i3FRmjI7lnPdMhAIBnTx3m5uaqqKhIYWFhbu1hYWHKzs4udp3s7Ozr1l/680Y19erVc1vu4+OjOnXquNUUt43LP6N58+Z6++23tWzZMr3zzjtyuVzq2LGjvv3222L7npaWpuDgYOsVGRlZbB1QFtF1a8rL4d7m7XAoqm4Nz3QIAOD5a7Qqs4SEBD3++ONq27atEhMTtXTpUoWGhmrOnDnF1o8dO1ZOp9N6HT169Bb3GFVZRHCg0nrHytvxY9rydjj0Wu/WiggO9HDPAKD68vHkh9etW1fe3t7Kyclxa8/JyVF4eHix64SHh1+3/tKfOTk5ioiIcKtp27atVXPlxfYXL17UyZMn3bZT3Odc/hlX8vX1Vbt27XTgwIFil/v7+8vf37/YZUB56HtPQ90fE6ojuWcVVbcGIQsAPMyjM1p+fn5q3769Vq9ebbW5XC6tXr1aCQkJxa6TkJDgVi9Jq1atsuqjo6MVHh7uVpOfn6+MjAyrJiEhQXl5ecrMzLRq1qxZI5fLpfj4eKtm/fr1unDhgtvnNG/eXLVr1y62b0VFRdqxY4dbwANutYjgQCU0uZ2QBQAVwS24OP+6FixYYPz9/c28efPM7t27zbBhw0xISIjJzs42xhgzcOBAM2bMGKt+48aNxsfHx0ydOtXs2bPHpKamGl9fX7Njxw6rZtKkSSYkJMQsW7bMbN++3fTs2dNER0ebgoICq6Zbt26mXbt2JiMjw2zYsME0a9bMpKSkWMvz8vJMWFiYGThwoNm5c6dZsGCBqVGjhpkzZ45V88orr5hPP/3UHDx40GRmZpp+/fqZgIAAs2vXrhLtO786BACg8inN97fHg5YxxsyYMcM0bNjQ+Pn5mbi4OPPFF19YyxITE82gQYPc6hctWmRiYmKMn5+fadWqlfn444/dlrtcLjNu3DgTFhZm/P39zQMPPGD27dvnVnPixAmTkpJiatWqZYKCgsyQIUPMqVOn3Gq++uorc9999xl/f3/ToEEDM2nSJLflo0aNsvodFhZmunfvbrZs2VLi/SZoAQBQ+ZTm+9thjDHXn/OCXfLz8xUcHCyn06mgoCBPdwcAAJRAab6/+dUhAACATQhaAAAANiFoAQAA2ISgBQAAboksZ4E2HcxVlrPA0125ZTx6w1IAAFA9LNz8jcYu3SGXkbwcUlrvWPW9p6Gnu2U7ZrQAAICtspwFVsiSJJeRXlq6s1rMbBG0AHhEdTyFAFRXh3PPWCHrkiJjdCT3rGc6dAtx6hDALVddTyEA1VV03ZrycsgtbHk7HIqqW8NznbpFmNECcEtV51MIQHUVERyotN6x8nY4JP0Ysl7r3bpaPJOVGS0At9T1TiFUh390geqq7z0NdX9MqI7knlVU3RrV5r93ghaAW6o6n0IAqruI4MBqE7Au4dQhgFuqOp9CAFD9MKMF4JarrqcQAFQ/BC0AHlEdTyEAqH44dQgAAGATghYAAIBNCFoAAAA2IWhVUTzeBAAAz+Ni+CqIx5sAAFAxMKNVxfB4E3swQwgAKAtmtKoYHm9S/pghBACUFTNaVcylx5tcjseblB0zhACAm0HQqmJ4vEn5ut4MIQAAN8KpwyqIx5uUHx6ADAC4GcxoVVERwYFKaHI7IesmMUMIALgZzGgBN8AMIQCgrAhaQAnwAGQAQFlw6hAAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AABAlZTlLNCmg7kefT4t99ECAFQKWc4CHc49o+i6NbmvHW5o4eZvNHbpDrmM5OWQ0nrHqu89DW95PwhaAIAKr6J8aaJyyHIWWMeL9OPzal9aulP3x4Te8pDOqUMAQIV2rS9NT54OQsV2OPeMdbxcUmSMjuSeveV9IWgBqFQqwjUXuLUq0pcmKofoujXl5XBv83Y4FFW3xi3vC0ELQKWxcPM3unfSGvX/c4bunbRGCzd/4+ku4RaoSF+aqBwiggOV1jtW3o4fDxxvh0Ov9W7tkWv7HMYYc+My2CE/P1/BwcFyOp0KCgrydHeACi3LWaB7J61xm9nwdji0YUwXLoyuBhZu/kYvLd2pImOsL02u0cKNZDkLdCT3rKLq1ijXfydK8/3NxfAAKoXrnT4iaFV9fe9pqPtjQm350kTVFREc6PFjhaAFoFK4dProyhktTh9VHxXhSxMoLa7RAlApVKRrLgCgpJjRAlBpcPoIQGVD0AJQqXD6CEBlwqlDAAAAmxC0AAAAbELQAgAbcAd7ABLXaAFAueMByAAuYUYLAMoRD0AGcDmCFgCUIx6ADOByBC0AKEc8ABnA5QhaAFCOuIM9gMtxMTwAlDPuYA/gEoIWANiAO9gDkDh1CAAVCvffAqoWZrQAoILg/ltA1cOMFgBUANx/C5UFs66lw4wWAFQA17v/Ftd6oaJg1rX0mNECgAqA+2+homPWtWwIWgBQAXD/LVR0PPWgbCpE0Jo5c6aioqIUEBCg+Ph4ffnll9etX7x4sVq0aKGAgADFxsZq+fLlbsuNMRo/frwiIiIUGBiopKQk7d+/363m5MmTGjBggIKCghQSEqKhQ4fq9OnTbjXbt29Xp06dFBAQoMjISE2ePLnUfQGAkup7T0NtGNNF85/8f9owpgunZFChMOtaNh4PWgsXLtTo0aOVmpqqLVu2qE2bNkpOTtbx48eLrd+0aZNSUlI0dOhQbd26Vb169VKvXr20c+dOq2by5MmaPn26Zs+erYyMDNWsWVPJyckqLCy0agYMGKBdu3Zp1apV+uijj7R+/XoNGzbMWp6fn6+uXbuqUaNGyszM1JQpUzRhwgT96U9/KlVfAKA0IoIDldDkdmayUOEw61pGxsPi4uLMiBEjrPdFRUWmfv36Ji0trdj6Pn36mB49eri1xcfHm+HDhxtjjHG5XCY8PNxMmTLFWp6Xl2f8/f3N/PnzjTHG7N6920gymzdvtmo++eQT43A4zLFjx4wxxvzxj380tWvXNufOnbNqXnzxRdO8efMS9+VGnE6nkWScTmeJ6gEA8LTv8s6aTQdyzXd5Zz3dFY8pzfe3R2e0zp8/r8zMTCUlJVltXl5eSkpKUnp6erHrpKenu9VLUnJyslV/+PBhZWdnu9UEBwcrPj7eqklPT1dISIg6dOhg1SQlJcnLy0sZGRlWzf333y8/Pz+3z9m3b59++OGHEvXlSufOnVN+fr7bCwCAyoRZ19LxaNDKzc1VUVGRwsLC3NrDwsKUnZ1d7DrZ2dnXrb/0541q6tWr57bcx8dHderUcaspbhuXf8aN+nKltLQ0BQcHW6/IyMhi6wAAQNXg8Wu0qpOxY8fK6XRar6NHj3q6SwAAwEYeDVp169aVt7e3cnJy3NpzcnIUHh5e7Drh4eHXrb/0541qrrzY/uLFizp58qRbTXHbuPwzbtSXK/n7+ysoKMjtBQAAqi6PBi0/Pz+1b99eq1evttpcLpdWr16thISEYtdJSEhwq5ekVatWWfXR0dEKDw93q8nPz1dGRoZVk5CQoLy8PGVmZlo1a9askcvlUnx8vFWzfv16Xbhwwe1zmjdvrtq1a5eoLwAAoJq7BRfnX9eCBQuMv7+/mTdvntm9e7cZNmyYCQkJMdnZ2cYYYwYOHGjGjBlj1W/cuNH4+PiYqVOnmj179pjU1FTj6+trduzYYdVMmjTJhISEmGXLlpnt27ebnj17mujoaFNQUGDVdOvWzbRr185kZGSYDRs2mGbNmpmUlBRreV5engkLCzMDBw40O3fuNAsWLDA1atQwc+bMKVVfrodfHQIAUPmU5vvb40HLGGNmzJhhGjZsaPz8/ExcXJz54osvrGWJiYlm0KBBbvWLFi0yMTExxs/Pz7Rq1cp8/PHHbstdLpcZN26cCQsLM/7+/uaBBx4w+/btc6s5ceKESUlJMbVq1TJBQUFmyJAh5tSpU241X331lbnvvvuMv7+/adCggZk0adJVfb9RX66HoAUAQOVTmu9vhzHGXH/OC3bJz89XcHCwnE4n12sBAFBJlOb7m18dAgAA2ISgBQAAYBOCFgAAgE0IWgAAADbx8XQHqrNLv0PgmYcAAFQel763S/J7QoKWB506dUqSeOYhAACV0KlTpxQcHHzdGm7v4EEul0vfffedbrvtNjkcDk9355bJz89XZGSkjh49Wu1va8FY/Ihx+Alj8RPG4ieMxU8qwlgYY3Tq1CnVr19fXl7XvwqLGS0P8vLy0h133OHpbngMz3v8CWPxI8bhJ4zFTxiLnzAWP/H0WNxoJusSLoYHAACwCUELAADAJgQt3HL+/v5KTU2Vv7+/p7vicYzFjxiHnzAWP2EsfsJY/KSyjQUXwwMAANiEGS0AAACbELQAAABsQtACAACwCUELAADAJgQt3LSZM2cqKipKAQEBio+P15dffnnd+mnTpql58+YKDAxUZGSk/vd//1eFhYXW8gkTJsjhcLi9WrRoYfdulIvSjMWFCxc0ceJENWnSRAEBAWrTpo1WrFhxU9usSMp7LCrrcbF+/Xo99NBDql+/vhwOhz744IMbrrNu3Trdfffd8vf3V9OmTTVv3ryrairbcWHHOFSXYyIrK0v9+/dXTEyMvLy8NGrUqGLrFi9erBYtWiggIECxsbFavnx5+Xe+nNkxFvPmzbvquAgICLBnB0qAoIWbsnDhQo0ePVqpqanasmWL2rRpo+TkZB0/frzY+nfffVdjxoxRamqq9uzZo7/+9a9auHChXnrpJbe6Vq1aKSsry3pt2LDhVuzOTSntWLz88suaM2eOZsyYod27d+upp57SI488oq1bt5Z5mxWFHWMhVc7j4syZM2rTpo1mzpxZovrDhw+rR48e6tKli7Zt26ZRo0bpiSee0KeffmrVVMbjwo5xkKrHMXHu3DmFhobq5ZdfVps2bYqt2bRpk1JSUjR06FBt3bpVvXr1Uq9evbRz587y7Hq5s2MspB/vGn/5cfH111+XV5dLzwA3IS4uzowYMcJ6X1RUZOrXr2/S0tKKrR8xYoT52c9+5tY2evRoc++991rvU1NTTZs2bWzpr51KOxYRERHmD3/4g1tb7969zYABA8q8zYrCjrGorMfF5SSZ999//7o1L7zwgmnVqpVbW9++fU1ycrL1vrIeF5eU1zhUl2PicomJieaZZ565qr1Pnz6mR48ebm3x8fFm+PDhN9nDW6e8xmLu3LkmODi43Pp1s5jRQpmdP39emZmZSkpKstq8vLyUlJSk9PT0Ytfp2LGjMjMzrdMchw4d0vLly9W9e3e3uv3796t+/fpq3LixBgwYoG+++ca+HSkHZRmLc+fOXTWdHRgYaP0feVm2WRHYMRaXVLbjoizS09Pdxk6SkpOTrbGrrMdFad1oHC6pDsdESZR0vKqL06dPq1GjRoqMjFTPnj21a9cuj/WFoIUyy83NVVFRkcLCwtzaw8LClJ2dXew6/fv318SJE3XffffJ19dXTZo0UefOnd1OHcbHx2vevHlasWKFZs2apcOHD6tTp046deqUrftzM8oyFsnJyXrjjTe0f/9+uVwurVq1SkuXLlVWVlaZt1kR2DEWUuU8LsoiOzu72LHLz89XQUFBpT0uSutG4yBVn2OiJK41XlXpmCip5s2b6+2339ayZcv0zjvvyOVyqWPHjvr222890h+CFm6pdevW6bXXXtMf//hHbdmyRUuXLtXHH3+sV1991ap58MEH9dhjj+muu+5ScnKyli9frry8PC1atMiDPS9/b731lpo1a6YWLVrIz89PI0eO1JAhQ+TlVf3+syzJWFSX4wIlxzGB4iQkJOjxxx9X27ZtlZiYqKVLlyo0NFRz5szxSH+q37/oKDd169aVt7e3cnJy3NpzcnIUHh5e7Drjxo3TwIED9cQTTyg2NlaPPPKIXnvtNaWlpcnlchW7TkhIiGJiYnTgwIFy34fyUpaxCA0N1QcffKAzZ87o66+/1t69e1WrVi01bty4zNusCOwYi+JUhuOiLMLDw4sdu6CgIAUGBlba46K0bjQOxamqx0RJXGu8qtIxUVa+vr5q166dx44LghbKzM/PT+3bt9fq1autNpfLpdWrVyshIaHYdc6ePXvVjI23t7ckyVzjsZunT5/WwYMHFRERUU49L39lGYtLAgIC1KBBA128eFFLlixRz549b3qbnmTHWBSnMhwXZZGQkOA2dpK0atUqa+wq63FRWjcah+JU1WOiJMoyXtVFUVGRduzY4bnjwtNX46NyW7BggfH39zfz5s0zu3fvNsOGDTMhISEmOzvbGGPMwIEDzZgxY6z61NRUc9ttt5n58+ebQ4cOmZUrV5omTZqYPn36WDXPPvusWbdunTl8+LDZuHGjSUpKMnXr1jXHjx+/5ftXGqUdiy+++MIsWbLEHDx40Kxfv9787Gc/M9HR0eaHH34o8TYrKjvGorIeF6dOnTJbt241W7duNZLMG2+8YbZu3Wq+/vprY4wxY8aMMQMHDrTqDx06ZGrUqGGef/55s2fPHjNz5kzj7e1tVqxYYdVUxuPCjnGoLseEMcaqb9++venfv7/ZunWr2bVrl7V848aNxsfHx0ydOtXs2bPHpKamGl9fX7Njx45bum+lZcdYvPLKK+bTTz81Bw8eNJmZmaZfv34mICDAreZWImjhps2YMcM0bNjQ+Pn5mbi4OPPFF19YyxITE82gQYOs9xcuXDATJkwwTZo0MQEBASYyMtL86le/cvtC7du3r4mIiDB+fn6mQYMGpm/fvubAgQO3cI/KrjRjsW7dOnPnnXcaf39/c/vtt5uBAweaY8eOlWqbFVl5j0VlPS7Wrl1rJF31urT/gwYNMomJiVet07ZtW+Pn52caN25s5s6de9V2K9txYcc4VKdjorj6Ro0audUsWrTIxMTEGD8/P9OqVSvz8ccf35odugl2jMWoUaOs/zbCwsJM9+7dzZYtW27dTl3BYcw1ztcAAADgpnCNFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAHCzbt06ORwO5eXleborQKVH0ALgMYMHD5bD4dCkSZPc2j/44AM5HA7rvTFGf/7zn5WQkKCgoCDVqlVLrVq10jPPPFPiB8WePXtWY8eOVZMmTRQQEKDQ0FAlJiZq2bJlVk1UVJSmTZtWLvtmt0tj53A45Ovrq+joaL3wwgsqLCws1XY6d+6sUaNGubV17NhRWVlZCg4OLsceA9UTQQuARwUEBOj111/XDz/8UOxyY4z69++vp59+Wt27d9fKlSu1e/du/fWvf1VAQIB++9vfluhznnrqKS1dulQzZszQ3r17tWLFCj366KM6ceJEee7OLdWtWzdlZWXp0KFDevPNNzVnzhylpqbe9Hb9/PwUHh7uFnYBlJHHHv4DoNobNGiQ+cUvfmFatGhhnn/+eav9/fffN5f+eZo/f76RZJYtW1bsNlwuV4k+Kzg42MybN++ayxMTE696ftol//rXv8x9991nAgICzB133GF+/etfm9OnT1vL/+///s+0b9/e1KpVy4SFhZmUlBSTk5NjLb/0PLcVK1aYtm3bmoCAANOlSxeTk5Njli9fblq0aGFuu+02k5KSYs6cOVOi/Rk0aJDp2bOnW1vv3r1Nu3btrPe5ubmmX79+pn79+iYwMNC0bt3avPvuu27buHKfDx8+bPX38meQvvfee6Zly5bGz8/PNGrUyEydOrVE/QSqO2a0AHiUt7e3XnvtNc2YMUPffvvtVcvnz5+v5s2b6+GHHy52/ZLOuoSHh2v58uU6depUscuXLl2qO+64QxMnTlRWVpaysrIkSQcPHlS3bt30y1/+Utu3b9fChQu1YcMGjRw50lr3woULevXVV/XVV1/pgw8+0JEjRzR48OCrPmPChAn6wx/+oE2bNuno0aPq06ePpk2bpnfffVcff/yxVq5cqRkzZpRof660c+dObdq0SX5+flZbYWGh2rdvr48//lg7d+7UsGHDNHDgQH355ZeSpLfeeksJCQl68sknrX2OjIy8atuZmZnq06eP+vXrpx07dmjChAkaN26c5s2bV6a+AtWKp5MegOrr8lmZ//f//p/57//+b2OM+4xWixYtzMMPP+y23jPPPGNq1qxpatasaRo0aFCiz/r888/NHXfcYXx9fU2HDh3MqFGjzIYNG9xqGjVqZN588023tqFDh5phw4a5tf3rX/8yXl5epqCgoNjP2rx5s5FkTp06ZYz5aUbrs88+s2rS0tKMJHPw4EGrbfjw4SY5OblE+zNo0CDj7e1tatasafz9/Y0k4+XlZd57773rrtejRw/z7LPPWu8TExPNM88841Zz5YxW//79zc9//nO3mueff960bNmyRH0FqjNmtABUCK+//rr+9re/ac+ePTes/c1vfqNt27Zp/PjxOn36dIm2f//99+vQoUNavXq1Hn30Ue3atUudOnXSq6++et31vvrqK82bN0+1atWyXsnJyXK5XDp8+LCkH2d8HnroITVs2FC33XabEhMTJUnffPON27buuusu6+9hYWGqUaOGGjdu7NZ2/PjxEu2PJHXp0kXbtm1TRkaGBg0apCFDhuiXv/yltbyoqEivvvqqYmNjVadOHdWqVUuffvrpVf26kT179ujee+91a7v33nu1f/9+FRUVlWpbQHVD0AJQIdx///1KTk7W2LFj3dqbNWumffv2ubWFhoaqadOmqlevXqk+w9fXV506ddKLL76olStXauLEiXr11Vd1/vz5a65z+vRpDR8+XNu2bbNeX331lfbv368mTZrozJkzSk5OVlBQkP7xj39o8+bNev/99yXpqu36+vpaf7/0a8HLORwOuVyuEu9PzZo11bRpU7Vp00Zvv/22MjIy9Ne//tVaPmXKFL311lt68cUXtXbtWm3btk3JycnX3V8A5cvH0x0AgEsmTZqktm3bqnnz5lZbSkqK+vfvr2XLlqlnz57l+nktW7bUxYsXVVhYKD8/P/n5+V01Q3P33Xdr9+7datq0abHb2LFjh06cOKFJkyZZ1zf9+9//Ltd+loSXl5deeukljR49Wv3791dgYKA2btyonj176r/+678kSS6XS//5z3/UsmVLa73i9vlKd955pzZu3OjWtnHjRsXExMjb27v8dwaoQpjRAlBhxMbGasCAAZo+fbrV1q9fPz366KPq16+fJk6cqIyMDB05ckSff/65Fi5cWOIv+s6dO2vOnDnKzMzUkSNHtHz5cr300kvq0qWLgoKCJP14H63169fr2LFjys3NlSS9+OKL2rRpk0aOHKlt27Zp//79WrZsmXUxfMOGDeXn56cZM2bo0KFD+vDDD294OtIujz32mLy9vTVz5kxJP84Grlq1Sps2bdKePXs0fPhw5eTkuK0TFRVljWlubm6xM2rPPvusVq9erVdffVX/+c9/9Le//U1/+MMf9Nxzz92S/QIqM4IWgApl4sSJbl/2DodDCxcu1LRp07R8+XI98MADat68uf77v/9bkZGR2rBhQ4m2m5ycrL/97W/q2rWr7rzzTv36179WcnKyFi1a5PbZR44cUZMmTRQaGirpx+uqPv/8c/3nP/9Rp06d1K5dO40fP17169eX9ONpzHnz5mnx4sVq2bKlJk2apKlTp5bjiJScj4+PRo4cqcmTJ+vMmTN6+eWXdffddys5OVmdO3dWeHi4evXq5bbOc889J29vb7Vs2VKhoaHFXr919913a9GiRVqwYIFat26t8ePHa+LEicX+shKAO4cxxni6EwAAAFURM1oAAAA2IWgBqBIuv/3Cla9//etfnu5eqXzzzTfX3Z/S3p4BgOdw6hBAlXC9h0s3aNBAgYGBt7A3N+fixYs6cuTINZdHRUXJx4cfjQOVAUELAADAJpw6BAAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABs8v8BOY+BozM7b4MAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVqpJREFUeJzt3XtcVHXeB/DPAM4MogwayICh4AXwQloaLN7QJDHdktxWRR9THxLb1cq1i9qmmF0wtTKN0trSnq1ELVNXyXQx1xREw7uYoWKaMSgSAwqIMt/njx7P44kBQTkOl8/79ZoXze/3Pef8ztnZ5tPvXEYnIgIiIiIiqnVOjh4AERERUUPFoEVERESkEQYtIiIiIo0waBERERFphEGLiIiISCMMWkREREQaYdAiIiIi0giDFhEREZFGGLSIiIiINMKgRUSN3pw5c6DT6apVq9PpMGfOHE3H079/f/Tv37/Oro+Iqo9Bi4jqjBUrVkCn0ykvFxcXtG7dGuPHj8e5c+ccPbw6x9/fX3W8WrVqhb59++Krr76qlfUXFxdjzpw52L59e62sj6gxYtAiojpn7ty5+Oc//4mlS5fioYcewqeffoqIiAiUlpZqsr2XXnoJJSUlmqxba927d8c///lP/POf/8Rzzz2HX375BcOHD8fSpUtve93FxcV4+eWXGbSIboOLowdARPR7Dz30EHr27AkAeOKJJ+Dp6Yk33ngDGzZswIgRI2p9ey4uLnBxqZ//OmzdujX+67/+S3n/+OOPo0OHDnj77bfx5JNPOnBkRARwRouI6oG+ffsCAE6ePKlq/+GHH/DYY4+hZcuWMBqN6NmzJzZs2KCquXr1Kl5++WV07NgRRqMRd911F/r06YOtW7cqNfau0bpy5Qr+9re/wcvLC82bN8cjjzyCn3/+ucLYxo8fD39//wrt9ta5fPlyPPDAA2jVqhUMBgM6d+6M999/v0bH4mbMZjM6deqE7OzsKuvOnz+P2NhYeHt7w2g0olu3bvjkk0+U/tOnT8PLywsA8PLLLyunJ7W+Po2ooamf/wlHRI3K6dOnAQAtWrRQ2o4ePYrevXujdevWmDFjBtzc3LB69WpER0fjyy+/xKOPPgrgt8CTkJCAJ554AqGhoSgsLMT333+Pffv24cEHH6x0m0888QQ+/fRTjB49Gr169cK2bdswdOjQ29qP999/H126dMEjjzwCFxcX/Otf/8Jf//pX2Gw2TJ48+bbWfd3Vq1dx9uxZ3HXXXZXWlJSUoH///jhx4gSmTJmCgIAArFmzBuPHj0dBQQGeeeYZeHl54f3338df/vIXPProoxg+fDgA4J577qmVcRI1GkJEVEcsX75cAMi///1vuXDhgpw9e1a++OIL8fLyEoPBIGfPnlVqBw4cKCEhIVJaWqq02Ww26dWrl3Ts2FFp69atmwwdOrTK7cbHx8uN/zo8cOCAAJC//vWvqrrRo0cLAImPj1faxo0bJ23btr3pOkVEiouLK9RFRUVJu3btVG0RERESERFR5ZhFRNq2bSuDBg2SCxcuyIULF+TgwYMyatQoASBPPfVUpetbtGiRAJBPP/1UaSsrK5Pw8HBp1qyZFBYWiojIhQsXKuwvEdUMTx0SUZ0TGRkJLy8v+Pn54bHHHoObmxs2bNiAu+++GwCQn5+Pbdu2YcSIESgqKkJeXh7y8vJw8eJFREVFISsrS7lL0cPDA0ePHkVWVla1t5+cnAwAePrpp1XtU6dOva39cnV1Vf7ZarUiLy8PEREROHXqFKxW6y2tc8uWLfDy8oKXlxe6deuGNWvWYOzYsXjjjTcqXSY5ORlmsxkxMTFKW5MmTfD000/j0qVL+M9//nNLYyGiinjqkIjqnMTERAQGBsJqteLjjz/Gjh07YDAYlP4TJ05ARDBr1izMmjXL7jrOnz+P1q1bY+7cuRg2bBgCAwPRtWtXDB48GGPHjq3yFNhPP/0EJycntG/fXtUeFBR0W/u1a9cuxMfHIy0tDcXFxao+q9UKk8lU43WGhYXh1VdfhU6nQ9OmTdGpUyd4eHhUucxPP/2Ejh07wslJ/d/anTp1UvqJqHYwaBFRnRMaGqrcdRgdHY0+ffpg9OjROH78OJo1awabzQYAeO655xAVFWV3HR06dAAA9OvXDydPnsT69euxZcsW/OMf/8Dbb7+NpUuX4oknnrjtsVb2oNPy8nLV+5MnT2LgwIEIDg7GW2+9BT8/P+j1eiQnJ+Ptt99W9qmmPD09ERkZeUvLEpH2GLSIqE5zdnZGQkICBgwYgHfffRczZsxAu3btAPx2uqs6IaNly5aYMGECJkyYgEuXLqFfv36YM2dOpUGrbdu2sNlsOHnypGoW6/jx4xVqW7RogYKCggrtv58V+te//oUrV65gw4YNaNOmjdL+7bff3nT8ta1t27Y4dOgQbDabalbrhx9+UPqBykMkEVUfr9Eiojqvf//+CA0NxaJFi1BaWopWrVqhf//+WLZsGXJycirUX7hwQfnnixcvqvqaNWuGDh064MqVK5Vu76GHHgIALF68WNW+aNGiCrXt27eH1WrFoUOHlLacnJwKT2d3dnYGAIiI0ma1WrF8+fJKx6GVIUOGwGKxYNWqVUrbtWvXsGTJEjRr1gwREREAgKZNmwKA3SBJRNXDGS0iqheef/55/PnPf8aKFSvw5JNPIjExEX369EFISAgmTpyIdu3aITc3F2lpafj5559x8OBBAEDnzp3Rv39/9OjRAy1btsT333+PL774AlOmTKl0W927d0dMTAzee+89WK1W9OrVCykpKThx4kSF2lGjRmH69Ol49NFH8fTTT6O4uBjvv/8+AgMDsW/fPqVu0KBB0Ov1ePjhhzFp0iRcunQJH374IVq1amU3LGopLi4Oy5Ytw/jx45GRkQF/f3988cUX2LVrFxYtWoTmzZsD+O3i/c6dO2PVqlUIDAxEy5Yt0bVrV3Tt2vWOjpeoXnP0bY9ERNddf7zD3r17K/SVl5dL+/btpX379nLt2jURETl58qQ8/vjjYjabpUmTJtK6dWv54x//KF988YWy3KuvviqhoaHi4eEhrq6uEhwcLK+99pqUlZUpNfYexVBSUiJPP/203HXXXeLm5iYPP/ywnD171u7jDrZs2SJdu3YVvV4vQUFB8umnn9pd54YNG+See+4Ro9Eo/v7+8sYbb8jHH38sACQ7O1upq8njHW726IrK1pebmysTJkwQT09P0ev1EhISIsuXL6+wbGpqqvTo0UP0ej0f9UB0C3QiN8xjExEREVGt4TVaRERERBph0CIiIiLSCIMWERERkUYYtIiIiIg0wqBFREREpBEGLSIiIiKN8IGlDmSz2fDLL7+gefPm/KkLIiKiekJEUFRUBF9f3wo/zv57DFoO9Msvv8DPz8/RwyAiIqJbcPbsWdx9991V1jBoOdD1n7k4e/Ys3N3dHTwaIiIiqo7CwkL4+fkp3+NVYdByoOunC93d3Rm0iIiI6pnqXPbDi+GJiIiINMKgRURERKQRBi0iIiIijfAaLSIiokagvLwcV69edfQw6g29Xn/TRzdUB4MWERFRAyYisFgsKCgocPRQ6hUnJycEBARAr9ff1noYtIiIiBqw6yGrVatWaNq0KR+QXQ3XHyiek5ODNm3a3NYxY9AiIiJqoMrLy5WQdddddzl6OPWKl5cXfvnlF1y7dg1NmjS55fXwYngiIqIG6vo1WU2bNnXwSOqf66cMy8vLb2s9DFpEREQNHE8X1lxtHTMGLSIiIiKNMGgRERERaYRBi+q1HGsJUk/mIcda4uihEBFRLbNYLHjqqafQrl07GAwG+Pn54eGHH0ZKSopSk5qaiiFDhqBFixYwGo0ICQnBW2+9pbq26vTp04iNjUVAQABcXV3Rvn17xMfHo6ysTPN94F2HVG+t2nsGM9cehk0AJx2QMDwEI+9v4+hhERFRLTh9+jR69+4NDw8PLFiwACEhIbh69Sq++eYbTJ48GT/88AO++uorjBgxAhMmTMC3334LDw8P/Pvf/8YLL7yAtLQ0rF69GjqdDj/88ANsNhuWLVuGDh064MiRI5g4cSIuX76MhQsXarofOhERTbdAlSosLITJZILVaoW7u7ujh1Ov5FhL0HveNthu+PQ663TYOWMAfEyujhsYEVEdUlpaiuzsbAQEBMBoNDp6ODUyZMgQHDp0CMePH4ebm5uqr6CgAE2aNEHbtm0RERGBL7/8UtX/r3/9C4888giSkpIwcuRIu+tfsGAB3n//fZw6dcpuf1XHribf3zx1SPVSdt5lVcgCgHIRnM4rdsyAiIgauDt5qUZ+fj42b96MyZMnVwhZAODh4YEtW7bg4sWLeO655yr0P/zwwwgMDMTKlSsr3YbVakXLli1rddz28NQh1UsBnm5w0qHCjJa/J58VQ0RU2+70pRonTpyAiCA4OLjSmh9//BEA0KlTJ7v9wcHBSo299S9ZskTz04YAZ7SonvIxuSJheAic/+85J846HV4f3pWnDYmIalmOtUQJWcBv/4H74tojms5s1eSqpppeAXXu3DkMHjwYf/7znzFx4sSaDq3GOKNF9dbI+9ugX6AXTucVw9+zKUMWEZEGqrpUQ6t/73bs2FG5iL0ygYGBAIBjx46hV69eFfqPHTuGzp07q9p++eUXDBgwAL169cIHH3xQu4OuBGe0qF7zMbkivP1dDFlERBq5fqnGjbS+VKNly5aIiopCYmIiLl++XKG/oKAAgwYNQsuWLfHmm29W6N+wYQOysrIQExOjtJ07dw79+/dHjx49sHz5cjg53ZkIxKBFRERElXLUpRqJiYkoLy9HaGgovvzyS2RlZeHYsWNYvHgxwsPD4ebmhmXLlmH9+vWIi4vDoUOHcPr0aXz00UcYP348HnvsMYwYMQLA/4esNm3aYOHChbhw4QIsFgssFoum+wDw1CERERHdhCMu1WjXrh327duH1157Dc8++yxycnLg5eWFHj164P333wcAPPbYY/j222/x2muvoW/fvigtLUXHjh3x97//HVOnTlV+r3Dr1q04ceIETpw4gbvvvlu1Ha2fcsXnaDkQn6NFRERaqs/P0XI0PkeLiIiIqI5j0CIiIiLSCIMWERERkUYYtIiIiIg0wqBFRETUwPG+t5qrrWPGoEVERNRANWnSBABQXFzs4JHUP2VlZQAAZ2fn21oPn6NFRETUQDk7O8PDwwPnz58HADRt2lR5thRVzmaz4cKFC2jatClcXG4vKjFoERERNWBmsxkAlLBF1ePk5IQ2bdrcdjBl0CIiImrAdDodfHx80KpVK1y9etXRw6k39Hp9rfweosOv0UpMTIS/vz+MRiPCwsKwZ8+eKuvXrFmD4OBgGI1GhISEIDk5WdUvIpg9ezZ8fHzg6uqKyMhIZGVlqWry8/MxZswYuLu7w8PDA7Gxsbh06ZLSX1paivHjxyMkJAQuLi6Ijo6ucky7du2Ci4sLunfvXqN9JyIiulOcnZ1hNBr5quartn502qFBa9WqVZg2bRri4+Oxb98+dOvWDVFRUZVOb6ampiImJgaxsbHYv38/oqOjER0djSNHjig18+fPx+LFi7F06VKkp6fDzc0NUVFRKC0tVWrGjBmDo0ePYuvWrdi4cSN27NiBuLg4pb+8vByurq54+umnERkZWeU+FBQU4PHHH8fAgQNv82gQERFRQ+PQ3zoMCwvD/fffj3fffRfAbxef+fn54amnnsKMGTMq1I8cORKXL1/Gxo0blbY//OEP6N69O5YuXQoRga+vL5599lk899xzAACr1Qpvb2+sWLECo0aNwrFjx9C5c2fs3bsXPXv2BABs3rwZQ4YMwc8//wxfX1/VNsePH4+CggKsW7fO7j6MGjUKHTt2hLOzM9atW4cDBw5Ue//5W4dERET1T734rcOysjJkZGSoZoycnJwQGRmJtLQ0u8ukpaVVmGGKiopS6rOzs2GxWFQ1JpMJYWFhSk1aWho8PDyUkAUAkZGRcHJyQnp6eo32Yfny5Th16hTi4+OrVX/lyhUUFhaqXkRERNRwOSxo5eXloby8HN7e3qp2b29vWCwWu8tYLJYq66//vVlNq1atVP0uLi5o2bJlpdu1JysrCzNmzMCnn35a7Vs/ExISYDKZlJefn1+1t0dERET1j8Mvhq+PysvLMXr0aLz88ssIDAys9nIzZ86E1WpVXmfPntVwlERERORoDnu8g6enJ5ydnZGbm6tqz83NVZ758Xtms7nK+ut/c3Nz4ePjo6q5fkeg2WyucLH9tWvXkJ+fX+l2f6+oqAjff/899u/fjylTpgD47foyEYGLiwu2bNmCBx54oMJyBoMBBoOhWtsgIiKi+s9hM1p6vR49evRASkqK0maz2ZCSkoLw8HC7y4SHh6vqAWDr1q1KfUBAAMxms6qmsLAQ6enpSk14eDgKCgqQkZGh1Gzbtg02mw1hYWHVGru7uzsOHz6MAwcOKK8nn3wSQUFBOHDgQLXXQ0RERA2bQx9YOm3aNIwbNw49e/ZEaGgoFi1ahMuXL2PChAkAgMcffxytW7dGQkICAOCZZ55BREQE3nzzTQwdOhRJSUn4/vvv8cEHHwD47aFsU6dOxauvvoqOHTsiICAAs2bNgq+vr/IsrE6dOmHw4MGYOHEili5diqtXr2LKlCkYNWqU6o7DzMxMlJWVIT8/H0VFRcrdhN27d4eTkxO6du2q2pdWrVrBaDRWaCciIqLGy6FBa+TIkbhw4QJmz54Ni8WC7t27Y/PmzcrF7GfOnFE9MKxXr174/PPP8dJLL+HFF19Ex44dsW7dOlW4eeGFF3D58mXExcWhoKAAffr0webNm2E0GpWazz77DFOmTMHAgQPh5OSEP/3pT1i8eLFqbEOGDMFPP/2kvL/33nsB8BfQiYiIqPoc+hytxo7P0SIiIqp/6sVztIiIiIgaOgYtIiIiIo0waBERERFphEGLiIiISCMMWkREREQaYdAiIiIi0giDFhEREZFGGLSIiIiINMKgRURERKQRBi0iIiIijTBoEREREWmEQYuIiIhIIwxaRERERBph0CIiIiLSCIMWERERkUYYtIiIiIg0wqBFREREpBEGLSIiIiKNMGgRERERaYRBi4iIiEgjDFpEREREGmHQIiIiItIIgxYRERGRRhi0iIiIiDTCoEVERESkEQYtIiIiIo0waBERERFphEGLiIiISCMMWkREREQaYdAiIiIi0giDFhEREZFGGLSIiIiINMKgRURERKQRBi0iIiIijTBoEREREWnE4UErMTER/v7+MBqNCAsLw549e6qsX7NmDYKDg2E0GhESEoLk5GRVv4hg9uzZ8PHxgaurKyIjI5GVlaWqyc/Px5gxY+Du7g4PDw/Exsbi0qVLSn9paSnGjx+PkJAQuLi4IDo6usI41q5diwcffBBeXl5wd3dHeHg4vvnmm1s/EERERNTgODRorVq1CtOmTUN8fDz27duHbt26ISoqCufPn7dbn5qaipiYGMTGxmL//v2Ijo5GdHQ0jhw5otTMnz8fixcvxtKlS5Geng43NzdERUWhtLRUqRkzZgyOHj2KrVu3YuPGjdixYwfi4uKU/vLycri6uuLpp59GZGSk3bHs2LEDDz74IJKTk5GRkYEBAwbg4Ycfxv79+2vp6BAREVG9Jw4UGhoqkydPVt6Xl5eLr6+vJCQk2K0fMWKEDB06VNUWFhYmkyZNEhERm80mZrNZFixYoPQXFBSIwWCQlStXiohIZmamAJC9e/cqNV9//bXodDo5d+5chW2OGzdOhg0bVq396dy5s7z88svVqhURsVqtAkCsVmu1lyEiIiLHqsn3t8NmtMrKypCRkaGaMXJyckJkZCTS0tLsLpOWllZhhikqKkqpz87OhsViUdWYTCaEhYUpNWlpafDw8EDPnj2VmsjISDg5OSE9Pf2W98dms6GoqAgtW7astObKlSsoLCxUvYiIiKjhcljQysvLQ3l5Oby9vVXt3t7esFgsdpexWCxV1l//e7OaVq1aqfpdXFzQsmXLSrdbHQsXLsSlS5cwYsSISmsSEhJgMpmUl5+f3y1vj4iIiOo+h18M3xB8/vnnePnll7F69eoKIe5GM2fOhNVqVV5nz569g6MkIiKiO83FURv29PSEs7MzcnNzVe25ubkwm812lzGbzVXWX/+bm5sLHx8fVU337t2Vmt9fbH/t2jXk5+dXut2qJCUl4YknnsCaNWsqvXD+OoPBAIPBUONtEBERUf3ksBktvV6PHj16ICUlRWmz2WxISUlBeHi43WXCw8NV9QCwdetWpT4gIABms1lVU1hYiPT0dKUmPDwcBQUFyMjIUGq2bdsGm82GsLCwGu3DypUrMWHCBKxcuRJDhw6t0bJERETU8DlsRgsApk2bhnHjxqFnz54IDQ3FokWLcPnyZUyYMAEA8Pjjj6N169ZISEgAADzzzDOIiIjAm2++iaFDhyIpKQnff/89PvjgAwCATqfD1KlT8eqrr6Jjx44ICAjArFmz4OvrqzwLq1OnThg8eDAmTpyIpUuX4urVq5gyZQpGjRoFX19fZWyZmZkoKytDfn4+ioqKcODAAQBQZsY+//xzjBs3Du+88w7CwsKU67tcXV1hMpnuwNEjIiKiOu8O3AVZpSVLlkibNm1Er9dLaGio7N69W+mLiIiQcePGqepXr14tgYGBotfrpUuXLrJp0yZVv81mk1mzZom3t7cYDAYZOHCgHD9+XFVz8eJFiYmJkWbNmom7u7tMmDBBioqKVDVt27YVABVeN47NXv/vx1sVPt6BiIio/qnJ97dORMQxEY8KCwthMplgtVrh7u7u6OEQERFRNdTk+5t3HRIRERFphEGLiIiISCMMWkREREQaYdAiIiIi0giDFhEREZFGGLSIiIiINMKgRURERKQRBi0iIiIijTBoEREREWmEQYuIiIhIIwxaRERERBph0CIiIiLSCIMWERERkUYYtIiIiIg0wqBFREREpBEGLSIiIiKNMGgRERERaYRBi4iIiEgjDFpEREREGmHQIiIiItIIgxYRERGRRhi0iIiIiDTCoEVERESkEQYtIiIiIo0waBERERFphEGLiIiISCMMWkREREQaYdAiIiIi0giDFhEREZFGGLSIiIiINMKgRURERKQRBi0iIiIijTBoEREREWmEQYuIiIhIIwxaRERERBpxeNBKTEyEv78/jEYjwsLCsGfPnirr16xZg+DgYBiNRoSEhCA5OVnVLyKYPXs2fHx84OrqisjISGRlZalq8vPzMWbMGLi7u8PDwwOxsbG4dOmS0l9aWorx48cjJCQELi4uiI6OtjuW7du347777oPBYECHDh2wYsWKWzoGRERE1DA5NGitWrUK06ZNQ3x8PPbt24du3bohKioK58+ft1ufmpqKmJgYxMbGYv/+/YiOjkZ0dDSOHDmi1MyfPx+LFy/G0qVLkZ6eDjc3N0RFRaG0tFSpGTNmDI4ePYqtW7di48aN2LFjB+Li4pT+8vJyuLq64umnn0ZkZKTdsWRnZ2Po0KEYMGAADhw4gKlTp+KJJ57AN998U0tHh4iIiOo9caDQ0FCZPHmy8r68vFx8fX0lISHBbv2IESNk6NChqrawsDCZNGmSiIjYbDYxm82yYMECpb+goEAMBoOsXLlSREQyMzMFgOzdu1ep+frrr0Wn08m5c+cqbHPcuHEybNiwCu0vvPCCdOnSRdU2cuRIiYqKusle/z+r1SoAxGq1VnsZIiIicqyafH87bEarrKwMGRkZqhkjJycnREZGIi0tze4yaWlpFWaYoqKilPrs7GxYLBZVjclkQlhYmFKTlpYGDw8P9OzZU6mJjIyEk5MT0tPTqz3+m43FnitXrqCwsFD1IiIioobLYUErLy8P5eXl8Pb2VrV7e3vDYrHYXcZisVRZf/3vzWpatWql6ndxcUHLli0r3W5NxlJYWIiSkhK7yyQkJMBkMikvPz+/am+PiIiI6h+HXwzfmMycORNWq1V5nT171tFDIiIiIg05LGh5enrC2dkZubm5qvbc3FyYzWa7y5jN5irrr/+9Wc3vL7a/du0a8vPzK91uTcbi7u4OV1dXu8sYDAa4u7urXkRERNRwOSxo6fV69OjRAykpKUqbzWZDSkoKwsPD7S4THh6uqgeArVu3KvUBAQEwm82qmsLCQqSnpys14eHhKCgoQEZGhlKzbds22Gw2hIWFVXv8NxsLERERkUPvOkxKShKDwSArVqyQzMxMiYuLEw8PD7FYLCIiMnbsWJkxY4ZSv2vXLnFxcZGFCxfKsWPHJD4+Xpo0aSKHDx9WaubNmyceHh6yfv16OXTokAwbNkwCAgKkpKREqRk8eLDce++9kp6eLjt37pSOHTtKTEyMamxHjx6V/fv3y8MPPyz9+/eX/fv3y/79+5X+U6dOSdOmTeX555+XY8eOSWJiojg7O8vmzZurvf+865CIiKj+qcn3t0ODlojIkiVLpE2bNqLX6yU0NFR2796t9EVERMi4ceNU9atXr5bAwEDR6/XSpUsX2bRpk6rfZrPJrFmzxNvbWwwGgwwcOFCOHz+uqrl48aLExMRIs2bNxN3dXSZMmCBFRUWqmrZt2wqACq8bffvtt9K9e3fR6/XSrl07Wb58eY32nUGLiIio/qnJ97dORMRh02mNXGFhIUwmE6xWK6/XIiIiqidq8v3Nuw6JiIiINMKgRURERKQRBi0iIiIijTBoEREREWmEQYuIiIhIIwxaRERERBph0CIiIiLSCIMWERERkUYYtIiIiIg0wqBFREREpBEGLSIiIiKNMGgRERERaYRBi4iIiEgjDFpEREREGmHQIiIiItIIgxYRERGRRhi0iIiIiDTCoEVERESkEQYtIiIiIo0waBERERFphEGLiIiISCMMWkREREQaYdAiIiIi0giDFhEREZFGGLSIiIhIcznWEqSezEOOtcTRQ7mjXBw9ACIiImrYVu09g5lrD8MmgJMOSBgegpH3t3H0sO4IzmgRERGRZnKsJUrIAgCbAC+uPdJoZrYYtIiIiEgz2XmXlZB1XbkITucVO2ZAdxiDFhEREWkmwNMNTjp1m7NOB3/Ppo4Z0B3GoEVERESa8TG5ImF4CJx1v6UtZ50Orw/vCh+Tq4NHdmfwYngiIiLS1Mj726BfoBdO5xXD37PpHQtZOdYSZOddRoCnm8OCHYMWERERac7H5HpHw05dudORpw6JiIioQalLdzoyaBEREVGDUpfudGTQIiIiogalLt3p6PCglZiYCH9/fxiNRoSFhWHPnj1V1q9ZswbBwcEwGo0ICQlBcnKyql9EMHv2bPj4+MDV1RWRkZHIyspS1eTn52PMmDFwd3eHh4cHYmNjcenSJVXNoUOH0LdvXxiNRvj5+WH+/PkVxrJo0SIEBQXB1dUVfn5++Nvf/obS0tJbPBJERERUG+rUnY7iQElJSaLX6+Xjjz+Wo0ePysSJE8XDw0Nyc3Pt1u/atUucnZ1l/vz5kpmZKS+99JI0adJEDh8+rNTMmzdPTCaTrFu3Tg4ePCiPPPKIBAQESElJiVIzePBg6datm+zevVu+++476dChg8TExCj9VqtVvL29ZcyYMXLkyBFZuXKluLq6yrJly5Sazz77TAwGg3z22WeSnZ0t33zzjfj4+Mjf/va3au+/1WoVAGK1Wmty2IiIiKgafikoltQTefJLQXGtrrcm3981ClplZWXy/PPPS/v27eX++++Xjz76SNVvsVjEycmp2usLDQ2VyZMnK+/Ly8vF19dXEhIS7NaPGDFChg4dqmoLCwuTSZMmiYiIzWYTs9ksCxYsUPoLCgrEYDDIypUrRUQkMzNTAMjevXuVmq+//lp0Op2cO3dORETee+89adGihVy5ckWpmT59ugQFBSnvJ0+eLA888IBqLNOmTZPevXtXe/8ZtIiIiOqfmnx/1+jU4WuvvYb/+Z//wZNPPolBgwZh2rRpmDRp0u9nyKq1rrKyMmRkZCAyMlJpc3JyQmRkJNLS0uwuk5aWpqoHgKioKKU+OzsbFotFVWMymRAWFqbUpKWlwcPDAz179lRqIiMj4eTkhPT0dKWmX79+0Ov1qu0cP34cv/76KwCgV69eyMjIUE51njp1CsnJyRgyZEil+3zlyhUUFhaqXkRERNRw1eg5Wp999hn+8Y9/4I9//CMAYPz48XjooYcwYcIEfPzxxwAAnU5X1SoUeXl5KC8vh7e3t6rd29sbP/zwg91lLBaL3XqLxaL0X2+rqqZVq1aqfhcXF7Rs2VJVExAQUGEd1/tatGiB0aNHIy8vD3369IGI4Nq1a3jyySfx4osvVrrPCQkJePnllyvtJyIiooalRjNa586dQ9euXZX3HTp0wPbt25GamoqxY8eivLy81gdYV23fvh2vv/463nvvPezbtw9r167Fpk2b8Morr1S6zMyZM2G1WpXX2bNn7+CIiYiI6E6r0YyW2WzGyZMn4e/vr7S1bt0a3377LQYMGIDx48dXe12enp5wdnZGbm6uqj03Nxdms7nS7VdVf/1vbm4ufHx8VDXdu3dXas6fP69ax7Vr15Cfn69aj73t3LiNWbNmYezYsXjiiScAACEhIbh8+TLi4uLw97//HU5OFTOswWCAwWCo5IgQERFRQ1OjGa0HHngAn3/+eYV2X19fbNu2DdnZ2dVel16vR48ePZCSkqK02Ww2pKSkIDw83O4y4eHhqnoA2Lp1q1IfEBAAs9msqiksLER6erpSEx4ejoKCAmRkZCg127Ztg81mQ1hYmFKzY8cOXL16VbWdoKAgtGjRAgBQXFxcIUw5OzsDqP51akRERNTA1eQq+9OnT8vmzZsr7T937pysWLGi2utLSkoSg8EgK1askMzMTImLixMPDw+xWCwiIjJ27FiZMWOGUr9r1y5xcXGRhQsXyrFjxyQ+Pt7u4x08PDxk/fr1cujQIRk2bJjdxzvce++9kp6eLjt37pSOHTuqHu9QUFAg3t7eMnbsWDly5IgkJSVJ06ZNVY93iI+Pl+bNm8vKlSvl1KlTsmXLFmnfvr2MGDGi2vvPuw6JiIjqH80e76CFJUuWSJs2bUSv10toaKjs3r1b6YuIiJBx48ap6levXi2BgYGi1+ulS5cusmnTJlW/zWaTWbNmibe3txgMBhk4cKAcP35cVXPx4kWJiYmRZs2aibu7u0yYMEGKiopUNQcPHpQ+ffqIwWCQ1q1by7x581T9V69elTlz5kj79u3FaDSKn5+f/PWvf5Vff/212vvOoEVERFT/1OT7WydS8/Nca9aswcqVK/Hjjz8CAAIDAzF69Gg89thjtTrb1tAVFhbCZDLBarXC3d3d0cMhIiKiaqjJ93eNrtGy2WwYOXIkRo4ciczMTHTo0AEdOnTA0aNHMXLkSIwaNYrXJxERERH9nxrddfjOO+/g3//+NzZs2KA8S+u6DRs2YMKECXjnnXcwderU2hwjERERUb1Uoxmt5cuXY8GCBRVCFgA88sgjmD9/vvLgUiIiIqLGrkZBKysrq8JP4NwoMjISWVlZtz0oIiIiooagRkHL1dUVBQUFlfYXFhbCaDTe7piIiIiIGoQaBa3w8HC8//77lfYnJiZW+rBRIiIiosamRhfD//3vf0f//v1x8eJFPPfccwgODoaI4NixY3jzzTexfv16fPvtt1qNlWogx1qC7LzLCPB0g4/J1dHDISIiapRqFLR69eqFVatWIS4uDl9++aWqr0WLFli5ciV69+5dqwOkmlu19wxmrj0MmwBOOiBheAhG3t/G0cMiIiJqdG7pgaXFxcX45ptvlAvfAwMDMWjQIDRt2rTWB9iQafHA0hxrCXrP2wbbDf+rOut02DljAGe2iIiIakFNvr9rNKO1bds2TJkyBbt378ajjz6q6rNarejSpQuWLl2Kvn371nzUVCuy8y6rQhYAlIvgdF4xgxYREdEdVqOL4RctWoSJEyfaTW8mkwmTJk3CW2+9VWuDo5oL8HSDk07d5qzTwd+Ts41ERER3Wo2C1sGDBzF48OBK+wcNGoSMjIzbHhTdOh+TKxKGh8BZ91vactbp8PrwrpzNIiIicoAanTrMzc1FkyZNKl+ZiwsuXLhw24Oi2zPy/jboF+iF03nF8PdsypBFRETkIDUKWq1bt8aRI0fQoUMHu/2HDh2Cj49PrQyMbo+PyZUBi4iIyMFqdOpwyJAhmDVrFkpLSyv0lZSUID4+3u7vIBIRERE1RjV6vENubi7uu+8+ODs7Y8qUKQgKCgIA/PDDD0hMTER5eTn27dsHb29vzQbckGjxeAciIiLSlmaPd/D29kZqair+8pe/YObMmbie0XQ6HaKiopCYmMiQRURERPR/ahS0AKBt27ZITk7Gr7/+ihMnTkBE0LFjR7Ro0UKL8RERERHVWzUOWte1aNEC999/f22OhYiIiKhBqdHF8ERERERUfQxaRERERBph0CIiIiLSCIMWERERkUYYtIiIiIg0wqBFREREpBEGLSIiIiKNMGgRERERaYRBi4iIiEgjDFpEREREGmHQIiIiItIIgxYRERGRRhi0iIiIiDTCoEVERESkEQYtIiIiIo0waBERERFpxOFBKzExEf7+/jAajQgLC8OePXuqrF+zZg2Cg4NhNBoREhKC5ORkVb+IYPbs2fDx8YGrqysiIyORlZWlqsnPz8eYMWPg7u4ODw8PxMbG4tKlS6qaQ4cOoW/fvjAajfDz88P8+fMrjKWgoACTJ0+Gj48PDAYDAgMDK4yHiIiIGi+HBq1Vq1Zh2rRpiI+Px759+9CtWzdERUXh/PnzdutTU1MRExOD2NhY7N+/H9HR0YiOjsaRI0eUmvnz52Px4sVYunQp0tPT4ebmhqioKJSWlio1Y8aMwdGjR7F161Zs3LgRO3bsQFxcnNJfWFiIQYMGoW3btsjIyMCCBQswZ84cfPDBB0pNWVkZHnzwQZw+fRpffPEFjh8/jg8//BCtW7fW4EgRERFRvSQOFBoaKpMnT1bel5eXi6+vryQkJNitHzFihAwdOlTVFhYWJpMmTRIREZvNJmazWRYsWKD0FxQUiMFgkJUrV4qISGZmpgCQvXv3KjVff/216HQ6OXfunIiIvPfee9KiRQu5cuWKUjN9+nQJCgpS3r///vvSrl07KSsru9XdF6vVKgDEarXe8jqIiIjozqrJ97fDZrTKysqQkZGByMhIpc3JyQmRkZFIS0uzu0xaWpqqHgCioqKU+uzsbFgsFlWNyWRCWFiYUpOWlgYPDw/07NlTqYmMjISTkxPS09OVmn79+kGv16u2c/z4cfz6668AgA0bNiA8PByTJ0+Gt7c3unbtitdffx3l5eWV7vOVK1dQWFioehEREVHD5bCglZeXh/Lycnh7e6vavb29YbFY7C5jsViqrL/+92Y1rVq1UvW7uLigZcuWqhp767hxG6dOncIXX3yB8vJyJCcnY9asWXjzzTfx6quvVrrPCQkJMJlMysvPz6/SWiIiIqr/HH4xfH1ls9nQqlUrfPDBB+jRowdGjhyJv//971i6dGmly8ycORNWq1V5nT179g6OmIiIiO40F0dt2NPTE87OzsjNzVW15+bmwmw2213GbDZXWX/9b25uLnx8fFQ13bt3V2p+f7H9tWvXkJ+fr1qPve3cuA0fHx80adIEzs7OSk2nTp1gsVhQVlamOu14ncFggMFgsLtvRERE1PA4bEZLr9ejR48eSElJUdpsNhtSUlIQHh5ud5nw8HBVPQBs3bpVqQ8ICIDZbFbVFBYWIj09XakJDw9HQUEBMjIylJpt27bBZrMhLCxMqdmxYweuXr2q2k5QUBBatGgBAOjduzdOnDgBm82m1Pz444/w8fGxG7KIiIh+L8dagtSTecixljh6KKSVO3BxfqWSkpLEYDDIihUrJDMzU+Li4sTDw0MsFouIiIwdO1ZmzJih1O/atUtcXFxk4cKFcuzYMYmPj5cmTZrI4cOHlZp58+aJh4eHrF+/Xg4dOiTDhg2TgIAAKSkpUWoGDx4s9957r6Snp8vOnTulY8eOEhMTo/QXFBSIt7e3jB07Vo4cOSJJSUnStGlTWbZsmVJz5swZad68uUyZMkWOHz8uGzdulFatWsmrr75a7f3nXYdERI1X0p6fJGDGRmk7faMEzNgoSXt+cvSQqJpq8v3t0KAlIrJkyRJp06aN6PV6CQ0Nld27dyt9ERERMm7cOFX96tWrJTAwUPR6vXTp0kU2bdqk6rfZbDJr1izx9vYWg8EgAwcOlOPHj6tqLl68KDExMdKsWTNxd3eXCRMmSFFRkarm4MGD0qdPHzEYDNK6dWuZN29ehbGnpqZKWFiYGAwGadeunbz22mty7dq1au87gxYRUeP0S0GxErKuv9rN2CS/FBQ7emhUDTX5/taJiDh2Tq3xKiwshMlkgtVqhbu7u6OHQ0REd0jqyTyM/jC9QvvKiX9AePu7HDAiqomafH/zrkMiIqI7LMDTDU46dZuzTgd/z6aOGRBphkGLiIjoDvMxuSJheAicdb+lLWedDq8P7wofk6uDR0a1zWGPdyAiImrMRt7fBv0CvXA6rxj+nk0ZshooBi0iIiIH8TG5MmBpKMdaguy8ywjwdHPYcWbQIiIiogZn1d4zmLn2MGwCOOmAhOEhGHl/mzs+Dl6jRURERA1KjrVECVkAYBPgxbVHHPJgWAYtIiKqEp9eTvVNdt5lJWRdVy6C03nFd3wsPHVIRESVqiunX4hq4vrjM24MW456fAZntIiIyK66dPqFqCbq0uMzOKNFRER2VXX6hXfKUV1XVx6fwaBFRER21aXTL0S3oi48PoOnDomIyK66dPqFqL7ijBYR2VUXHvRHjldXTr8Q1VcMWkRUAe80oxvVhdMvRPUVTx1Svcbn+9Q+3mlGRFR7OKNF9RZnXbTBO82IiGoPZ7SoXuKsi3au32l2I95pRkR0axi0qF6qSz+v0NDwTjMiotrDU4dUL/H5PtrinWZERLWDM1pUL3HWRXs+JleEt7+Lx5SI6DZwRovqLc66EBFRXcegRfUan+9DRER1GU8dEhEREWmEQYuIiIhIIwxaRERERBph0CIiIiLSCIMWERERkUYYtIiIiIg0wqBFRESaybGWIPVkHn+HlBotPkeLiIg0sWrvGeXH3510QMLwEIy8v42jh0V0R3FGi4iIal2OtUQJWcBvv0v64tojnNmiRodBi4iIal123mXVj74DQLkITucVO2ZARA7CoEVERLUuwNMNTjp1m7NOB3/Ppo4ZEDVKdeEaQQYtIiKqdT4mVyQMD4Gz7re05azT4fXhXfnbpHTHrNp7Br3nbcPoD9PRe942rNp7xiHj0ImI3LyMtFBYWAiTyQSr1Qp3d3dHD4eIqNblWEtwOq8Y/p5NGbLojsmxlqD3vG2q09fOOh12zhhQK5/Dmnx/14kZrcTERPj7+8NoNCIsLAx79uypsn7NmjUIDg6G0WhESEgIkpOTVf0igtmzZ8PHxweurq6IjIxEVlaWqiY/Px9jxoyBu7s7PDw8EBsbi0uXLqlqDh06hL59+8JoNMLPzw/z58+vdExJSUnQ6XSIjo6u2c4TETVgPiZXhLe/iyGL7qi6dI2gw4PWqlWrMG3aNMTHx2Pfvn3o1q0boqKicP78ebv1qampiImJQWxsLPbv34/o6GhER0fjyJEjSs38+fOxePFiLF26FOnp6XBzc0NUVBRKS0uVmjFjxuDo0aPYunUrNm7ciB07diAuLk7pLywsxKBBg9C2bVtkZGRgwYIFmDNnDj744IMKYzp9+jSee+459O3btxaPDBEREd2KOnWNoDhYaGioTJ48WXlfXl4uvr6+kpCQYLd+xIgRMnToUFVbWFiYTJo0SUREbDabmM1mWbBggdJfUFAgBoNBVq5cKSIimZmZAkD27t2r1Hz99dei0+nk3LlzIiLy3nvvSYsWLeTKlStKzfTp0yUoKEi17WvXrkmvXr3kH//4h4wbN06GDRtW7X23Wq0CQKxWa7WXISIioptL2vOTtJuxSdpO3yjtZmySpD0/1dq6a/L97dAZrbKyMmRkZCAyMlJpc3JyQmRkJNLS0uwuk5aWpqoHgKioKKU+OzsbFotFVWMymRAWFqbUpKWlwcPDAz179lRqIiMj4eTkhPT0dKWmX79+0Ov1qu0cP34cv/76q9I2d+5ctGrVCrGxsTfd3ytXrqCwsFD1IiIioto38v422DljAFZO/AN2zhjgsIflOjRo5eXloby8HN7e3qp2b29vWCwWu8tYLJYq66//vVlNq1atVP0uLi5o2bKlqsbeOm7cxs6dO/HRRx/hww8/rNb+JiQkwGQyKS8/P79qLUdEREQ1VxeuEXT4NVr1VVFREcaOHYsPP/wQnp6e1Vpm5syZsFqtyuvs2bMaj5KIiIgcyaG/dejp6QlnZ2fk5uaq2nNzc2E2m+0uYzabq6y//jc3Nxc+Pj6qmu7duys1v7/Y/tq1a8jPz1etx952rvedPHkSp0+fxsMPP6z022w2AL/Njh0/fhzt27dXLW8wGGAwGCo5GrUrx1qC7LzLCPB0490+REREDuLQGS29Xo8ePXogJSVFabPZbEhJSUF4eLjdZcLDw1X1ALB161alPiAgAGazWVVTWFiI9PR0pSY8PBwFBQXIyMhQarZt2wabzYawsDClZseOHbh69apqO0FBQWjRogWCg4Nx+PBhHDhwQHk98sgjGDBgAA4cOODQ04J15SFtREREjV6tXYJ/i5KSksRgMMiKFSskMzNT4uLixMPDQywWi4iIjB07VmbMmKHU79q1S1xcXGThwoVy7NgxiY+PlyZNmsjhw4eVmnnz5omHh4esX79eDh06JMOGDZOAgAApKSlRagYPHiz33nuvpKeny86dO6Vjx44SExOj9BcUFIi3t7eMHTtWjhw5IklJSdK0aVNZtmxZpftSF+46/KWgWAJmbJS20///1W7GJvmloLjWtkFERNSY1eT726GnDgFg5MiRuHDhAmbPng2LxYLu3btj8+bNyoXnZ86cgZPT/0+89erVC59//jleeuklvPjii+jYsSPWrVuHrl27KjUvvPACLl++jLi4OBQUFKBPnz7YvHkzjEajUvPZZ59hypQpGDhwIJycnPCnP/0JixcvVvpNJhO2bNmCyZMno0ePHvD09MTs2bNVz9qqi6p6SBtPIRIREd1Z/AkeB9LiJ3i0/tkBIiKixq7e/QQP1R7+kCtRzeRYS5B6Mg851hJHD4WIGiCHnzqk2jfy/jboF+jFH3IluolVe89g5trDsAngpAMShoc47KGGRNQwcUargaoLD2kjqstyrCVKyAIAmwAvrj3CmS0iqlUMWkTUKFV14wgRUW1h0CKiRinA0w1OOnWbs04Hf8+mjhkQETVIDFpE1CjxxhEiuhN4MTwRNVq8cYSItMagRUSNmo/JlQGLiDTDU4dEREREGmHQIiIiItIIgxYRERGRRhi0iIiIiDTCoEVERESkEQYtIiIiIo0waBERERFphEGLiIiISCMMWkREREQaYdAiIiIi0giDFhEREZFGGLSIiIiINMKgRURERKQRBi0iIiIijTBoEREREWmEQYuIiIhIIwxaRERERBph0CIiIiLSCIMWERERkUYYtIiIiIg0wqBFREREpBEGLSIiIiKNMGgRUYOQYy1B6sk85FhLHD0UIiKFi6MHQER0u1btPYOZaw/DJoCTDkgYHoKR97dx9LCIiDijRUT1W461RAlZAGAT4MW1RzizRUR1AoMWEdVr2XmXlZB1XbkITucVO2ZAREQ3qBNBKzExEf7+/jAajQgLC8OePXuqrF+zZg2Cg4NhNBoREhKC5ORkVb+IYPbs2fDx8YGrqysiIyORlZWlqsnPz8eYMWPg7u4ODw8PxMbG4tKlS6qaQ4cOoW/fvjAajfDz88P8+fNV/R9++CH69u2LFi1aoEWLFoiMjLzp2ImodgV4usFJp25z1ung79nUMQMiIrqBw4PWqlWrMG3aNMTHx2Pfvn3o1q0boqKicP78ebv1qampiImJQWxsLPbv34/o6GhER0fjyJEjSs38+fOxePFiLF26FOnp6XBzc0NUVBRKS0uVmjFjxuDo0aPYunUrNm7ciB07diAuLk7pLywsxKBBg9C2bVtkZGRgwYIFmDNnDj744AOlZvv27YiJicG3336LtLQ0+Pn5YdCgQTh37pwGR4qI7PExuSJheAicdb+lLWedDq8P7wofk6uDR0ZEBEAcLDQ0VCZPnqy8Ly8vF19fX0lISLBbP2LECBk6dKiqLSwsTCZNmiQiIjabTcxmsyxYsEDpLygoEIPBICtXrhQRkczMTAEge/fuVWq+/vpr0el0cu7cORERee+996RFixZy5coVpWb69OkSFBRU6b5cu3ZNmjdvLp988km19t1qtQoAsVqt1aonosr9UlAsqSfy5JeCYkcPhYgauJp8fzt0RqusrAwZGRmIjIxU2pycnBAZGYm0tDS7y6SlpanqASAqKkqpz87OhsViUdWYTCaEhYUpNWlpafDw8EDPnj2VmsjISDg5OSE9PV2p6devH/R6vWo7x48fx6+//mp3bMXFxbh69SpatmxZk8NARLXAx+SK8PZ3cSaLiOoUhwatvLw8lJeXw9vbW9Xu7e0Ni8VidxmLxVJl/fW/N6tp1aqVqt/FxQUtW7ZU1dhbx43b+L3p06fD19e3QhC87sqVKygsLFS9iIgaMj7fjBo7PkerlsybNw9JSUnYvn07jEaj3ZqEhAS8/PLLd3hkRESOweebETl4RsvT0xPOzs7Izc1Vtefm5sJsNttdxmw2V1l//e/Nan5/sf21a9eQn5+vqrG3jhu3cd3ChQsxb948bNmyBffcc0+l+ztz5kxYrVbldfbs2UpriYjqMz7fjOg3Dg1aer0ePXr0QEpKitJms9mQkpKC8PBwu8uEh4er6gFg69atSn1AQADMZrOqprCwEOnp6UpNeHg4CgoKkJGRodRs27YNNpsNYWFhSs2OHTtw9epV1XaCgoLQokULpW3+/Pl45ZVXsHnzZtU1X/YYDAa4u7urXtS48DQKNRZ8vhnRbxz+eIdp06bhww8/xCeffIJjx47hL3/5Cy5fvowJEyYAAB5//HHMnDlTqX/mmWewefNmvPnmm/jhhx8wZ84cfP/995gyZQoAQKfTYerUqXj11VexYcMGHD58GI8//jh8fX0RHR0NAOjUqRMGDx6MiRMnYs+ePdi1axemTJmCUaNGwdfXFwAwevRo6PV6xMbG4ujRo1i1ahXeeecdTJs2TRnLG2+8gVmzZuHjjz+Gv78/LBYLLBZLhedxEQG/nUbpPW8bRn+Yjt7ztmHV3jOOHhKRZvh8M6L/cwfugrypJUuWSJs2bUSv10toaKjs3r1b6YuIiJBx48ap6levXi2BgYGi1+ulS5cusmnTJlW/zWaTWbNmibe3txgMBhk4cKAcP35cVXPx4kWJiYmRZs2aibu7u0yYMEGKiopUNQcPHpQ+ffqIwWCQ1q1by7x581T9bdu2FQAVXvHx8dXabz7eofH4paBYAmZslLbT///VbsYmPoqAGrSkPT9JuxmblM970p6fHD0kolpRk+9vnYhIFTmMNFRYWAiTyQSr1crTiA1c6sk8jP4wvUL7yol/QHj7uxwwIqI7I8dagtN5xfD3bMpHb1CDUZPvb951SHQHXD+NcuM1KzyNQo2Bj8mVAYsaNYdfo0XUGPBnYoiIGifOaBHdISPvb4N+gV48jUJE1IgwaBHdQTyNQkTUuPDUIREREZFGGLSIiIiINMKgRURERKQRBi0iIiIijTBoEREREWmEQYuIiIhIIwxaRNSo5VhLkHoyDznWEkcPhYgaID5Hi4garVV7z2Dm2sOwCeCkAxKGh2Dk/W0cPSwiakA4o0VEjVKOtUQJWcBvv0P54tojnNkiolrFoEVEjVJ23mXVj3wDQLkITucVO2ZARNQgMWgRUaMU4OkGJ526zVmng79nU8cMiIgaJAYtImqUfEyuSBgeAmfdb2nLWafD68O78rcoiahW8WJ4Imq0Rt7fBv0CvXA6rxj+nk0Zsoio1jFoEVGj5mNyZcAiIs3w1CERERGRRhi0iIiIiDTCoEVERESkEQYtIiIiIo0waBERERFphEGLiIiISCMMWkREREQaYdAiIiIi0giDFhEREZFGGLSIiKhBybGWIPVkHnKsJY4eChF/goeIiBqOVXvPYObaw7AJ4KQDEoaHYOT9bRw9LGrEOKNFRNRINPSZnhxriRKyAMAmwItrjzTY/aX6gTNaRES3KMdaguy8ywjwdKvzP0zdGGZ6svMuKyHrunIRnM4rrvP/+1DDxaBFRHQL6lNwqWymp1+gV4MKIAGebnDSQRW2nHU6+Hs2ddygqNHjqUMiohqqb6eoqprpaUh8TK5IGB4CZ50OwG8h6/XhXRtUmKT6hzNaREQ1VN9OUTWmmZ6R97dBv0AvnM4rhr9n0zr5vwc1LpzRIiKqoevB5UZ1Obg0tpkeH5Mrwtvf1WD3j+qXOhG0EhMT4e/vD6PRiLCwMOzZs6fK+jVr1iA4OBhGoxEhISFITk5W9YsIZs+eDR8fH7i6uiIyMhJZWVmqmvz8fIwZMwbu7u7w8PBAbGwsLl26pKo5dOgQ+vbtC6PRCD8/P8yfP7/GYyGihqc+BpeR97fBzhkDsHLiH7BzxoA6ez0ZUYMjDpaUlCR6vV4+/vhjOXr0qEycOFE8PDwkNzfXbv2uXbvE2dlZ5s+fL5mZmfLSSy9JkyZN5PDhw0rNvHnzxGQyybp16+TgwYPyyCOPSEBAgJSUlCg1gwcPlm7dusnu3bvlu+++kw4dOkhMTIzSb7VaxdvbW8aMGSNHjhyRlStXiqurqyxbtqxGY6mK1WoVAGK1Wmt62IioDviloFhST+TJLwXFjh4KEd1BNfn+dnjQCg0NlcmTJyvvy8vLxdfXVxISEuzWjxgxQoYOHapqCwsLk0mTJomIiM1mE7PZLAsWLFD6CwoKxGAwyMqVK0VEJDMzUwDI3r17lZqvv/5adDqdnDt3TkRE3nvvPWnRooVcuXJFqZk+fboEBQVVeyw3w6BFRERU/9Tk+9uhpw7LysqQkZGByMhIpc3JyQmRkZFIS0uzu0xaWpqqHgCioqKU+uzsbFgsFlWNyWRCWFiYUpOWlgYPDw/07NlTqYmMjISTkxPS09OVmn79+kGv16u2c/z4cfz666/VGsvvXblyBYWFhaoXERERNVwODVp5eXkoLy+Ht7e3qt3b2xsWi8XuMhaLpcr6639vVtOqVStVv4uLC1q2bKmqsbeOG7dxs7H8XkJCAkwmk/Ly8/OzW0dEREQNQ524GL6xmDlzJqxWq/I6e/aso4dEREREGnJo0PL09ISzszNyc3NV7bm5uTCbzXaXMZvNVdZf/3uzmvPnz6v6r127hvz8fFWNvXXcuI2bjeX3DAYD3N3dVS8iIiJquBwatPR6PXr06IGUlBSlzWazISUlBeHh4XaXCQ8PV9UDwNatW5X6gIAAmM1mVU1hYSHS09OVmvDwcBQUFCAjI0Op2bZtG2w2G8LCwpSaHTt24OrVq6rtBAUFoUWLFtUaCxERETVyd+Di/ColJSWJwWCQFStWSGZmpsTFxYmHh4dYLBYRERk7dqzMmDFDqd+1a5e4uLjIwoUL5dixYxIfH2/38Q4eHh6yfv16OXTokAwbNszu4x3uvfdeSU9Pl507d0rHjh1Vj3coKCgQb29vGTt2rBw5ckSSkpKkadOmFR7vcLOxVIV3HRIREdU/9erxDiIiS5YskTZt2oher5fQ0FDZvXu30hcRESHjxo1T1a9evVoCAwNFr9dLly5dZNOmTap+m80ms2bNEm9vbzEYDDJw4EA5fvy4qubixYsSExMjzZo1E3d3d5kwYYIUFRWpag4ePCh9+vQRg8EgrVu3lnnz5lUY+83GUhUGLSIiovqnJt/fOhGRque8SCuFhYUwmUywWq28XouIiKieqMn3N+86JCIiItIIgxYRERGRRhi0iIiIiDTi4ugBNGbXL4/jT/EQERHVH9e/t6tzmTuDlgMVFRUBAH+Kh4iIqB4qKiqCyWSqsoZ3HTqQzWbDL7/8gubNm0On093WugoLC+Hn54ezZ8/yDsb/w2NSEY9JRTwm9vG4VMRjUlFjPSYigqKiIvj6+sLJqeqrsDij5UBOTk64++67a3Wd/GmfinhMKuIxqYjHxD4el4p4TCpqjMfkZjNZ1/FieCIiIiKNMGgRERERaYRBq4EwGAyIj4+HwWBw9FDqDB6TinhMKuIxsY/HpSIek4p4TG6OF8MTERERaYQzWkREREQaYdAiIiIi0giDFhEREZFGGLSIiIiINMKgVYclJibC398fRqMRYWFh2LNnT5X1ixYtQlBQEFxdXeHn54e//e1vKC0tVfrnzJkDnU6negUHB2u9G7WqJsfk6tWrmDt3Ltq3bw+j0Yhu3bph8+bNt7XOuqi2j0l9/5zs2LEDDz/8MHx9faHT6bBu3bqbLrN9+3bcd999MBgM6NChA1asWFGhpj5/TrQ4Jo3tc5KTk4PRo0cjMDAQTk5OmDp1qt26NWvWIDg4GEajESEhIUhOTq79wWtEi2OyYsWKCp8To9GozQ7UUQxaddSqVaswbdo0xMfHY9++fejWrRuioqJw/vx5u/Wff/45ZsyYgfj4eBw7dgwfffQRVq1ahRdffFFV16VLF+Tk5CivnTt33ondqRU1PSYvvfQSli1bhiVLliAzMxNPPvkkHn30Uezfv/+W11nXaHFMgPr9Obl8+TK6deuGxMTEatVnZ2dj6NChGDBgAA4cOICpU6fiiSeewDfffKPU1PfPiRbHBGhcn5MrV67Ay8sLL730Erp162a3JjU1FTExMYiNjcX+/fsRHR2N6OhoHDlypDaHrhktjgnw21Pjb/yc/PTTT7U15PpBqE4KDQ2VyZMnK+/Ly8vF19dXEhIS7NZPnjxZHnjgAVXbtGnTpHfv3sr7+Ph46datmybjvRNqekx8fHzk3XffVbUNHz5cxowZc8vrrGu0OCb1/XNyIwDy1VdfVVnzwgsvSJcuXVRtI0eOlKioKOV9ff+c3Ki2jklj+5zcKCIiQp555pkK7SNGjJChQ4eq2sLCwmTSpEm3OcI7r7aOyfLly8VkMtXauOojzmjVQWVlZcjIyEBkZKTS5uTkhMjISKSlpdldplevXsjIyFBOZ5w6dQrJyckYMmSIqi4rKwu+vr5o164dxowZgzNnzmi3I7XoVo7JlStXKkxRu7q6Kv/VfSvrrEu0OCbX1dfPya1IS0tTHUMAiIqKUo5hff+c3IqbHZPrGtPnpDqqe9wam0uXLqFt27bw8/PDsGHDcPToUUcP6Y5i0KqD8vLyUF5eDm9vb1W7t7c3LBaL3WVGjx6NuXPnok+fPmjSpAnat2+P/v37q04dhoWFYcWKFdi8eTPef/99ZGdno2/fvigqKtJ0f2rDrRyTqKgovPXWW8jKyoLNZsPWrVuxdu1a5OTk3PI66xItjglQvz8nt8Jisdg9hoWFhSgpKan3n5NbcbNjAjS+z0l1VHbcGurnpDqCgoLw8ccfY/369fj0009hs9nQq1cv/Pzzz44e2h3DoNVAbN++Ha+//jree+897Nu3D2vXrsWmTZvwyiuvKDUPPfQQ/vznP+Oee+5BVFQUkpOTUVBQgNWrVztw5Np555130LFjRwQHB0Ov12PKlCmYMGECnJwa78e+OseksX1O6Nbwc0LVER4ejscffxzdu3dHREQE1q5dCy8vLyxbtszRQ7tjGu83Th3m6ekJZ2dn5Obmqtpzc3NhNpvtLjNr1iyMHTsWTzzxBEJCQvDoo4/i9ddfR0JCAmw2m91lPDw8EBgYiBMnTtT6PtS2WzkmXl5eWLduHS5fvoyffvoJP/zwA5o1a4Z27drd8jrrEi2OiT316XNyK8xms91j6O7uDldX13r/ObkVNzsm9jT0z0l1VHbcGurn5FY0adIE9957b6P6nDBo1UF6vR49evRASkqK0maz2ZCSkoLw8HC7yxQXF1eYqXF2dgYASCU/Z3np0iWcPHkSPj4+tTRy7dzKMbnOaDSidevWuHbtGr788ksMGzbsttdZF2hxTOypT5+TWxEeHq46hgCwdetW5RjW98/JrbjZMbGnoX9OquNWjltjU15ejsOHDzeuz4mjr8Yn+5KSksRgMMiKFSskMzNT4uLixMPDQywWi4iIjB07VmbMmKHUx8fHS/PmzWXlypVy6tQp2bJli7Rv315GjBih1Dz77LOyfft2yc7Oll27dklkZKR4enrK+fPn7/j+3YqaHpPdu3fLl19+KSdPnpQdO3bIAw88IAEBAfLrr79We511nRbHpL5/ToqKimT//v2yf/9+ASBvvfWW7N+/X3766ScREZkxY4aMHTtWqT916pQ0bdpUnn/+eTl27JgkJiaKs7OzbN68Wamp758TLY5JY/uciIhS36NHDxk9erTs379fjh49qvTv2rVLXFxcZOHChXLs2DGJj4+XJk2ayOHDh+/ovt0qLY7Jyy+/LN98842cPHlSMjIyZNSoUWI0GlU1DR2DVh22ZMkSadOmjej1egkNDZXdu3crfRERETJu3Djl/dWrV2XOnDnSvn17MRqN4ufnJ3/9619VX6AjR44UHx8f0ev10rp1axk5cqScOHHiDu7R7avJMdm+fbt06tRJDAaD3HXXXTJ27Fg5d+5cjdZZH9T2Manvn5Nvv/1WAFR4XT8O48aNk4iIiArLdO/eXfR6vbRr106WL19eYb31+XOixTFpjJ8Te/Vt27ZV1axevVoCAwNFr9dLly5dZNOmTXdmh2qBFsdk6tSpyv9vvL29ZciQIbJv3747t1N1gE6kkvNKRERERHRbeI0WERERkUYYtIiIiIg0wqBFREREpBEGLSIiIiKNMGgRERERaYRBi4iIiEgjDFpEREREGmHQIiIile3bt0On06GgoMDRQyGq9xi0iMhhxo8fD51Oh3nz5qna161bB51Op7wXEXz44YcIDw+Hu7s7mjVrhi5duuCZZ56p9o/TFhcXY+bMmWjfvj2MRiO8vLwQERGB9evXKzX+/v5YtGhRreyb1q4fO51OhyZNmiAgIAAvvPACSktLa7Se/v37Y+rUqaq2Xr16IScnByaTqRZHTNQ4MWgRkUMZjUa88cYb+PXXX+32iwhGjx6Np59+GkOGDMGWLVuQmZmJjz76CEajEa+++mq1tvPkk09i7dq1WLJkCX744Qds3rwZjz32GC5evFibu3NHDR48GDk5OTh16hTefvttLFu2DPHx8be9Xr1eD7PZrAq7RHSLHPsLQETUmI0bN07++Mc/SnBwsDz//PNK+1dffSXX//W0cuVKASDr16+3uw6bzVatbZlMJlmxYkWl/RERERV+s+267777Tvr06SNGo1Huvvtueeqpp+TSpUtK///8z/9Ijx49pFmzZuLt7S0xMTGSm5ur9F//DbnNmzdL9+7dxWg0yoABAyQ3N1eSk5MlODhYmjdvLjExMXL58uVq7c+4ceNk2LBhqrbhw4fLvffeq7zPy8uTUaNGia+vr7i6ukrXrl3l888/V63j9/ucnZ2tjPfG30r94osvpHPnzqLX66Vt27aycOHCao2TqLHjjBYROZSzszNef/11LFmyBD///HOF/pUrVyIoKAiPPPKI3eWrO+tiNpuRnJyMoqIiu/1r167F3Xffjblz5yInJwc5OTkAgJMnT2Lw4MH405/+hEOHDmHVqlXYuXMnpkyZoix79epVvPLKKzh48CDWrVuH06dPY/z48RW2MWfOHLz77rtITU3F2bNnMWLECCxatAiff/45Nm3ahC1btmDJkiXV2p/fO3LkCFJTU6HX65W20tJS9OjRA5s2bcKRI0cQFxeHsWPHYs+ePQCAd955B+Hh4Zg4caKyz35+fhXWnZGRgREjRmDUqFE4fPgw5syZg1mzZmHFihW3NFaiRsXRSY+IGq8bZ2X+8Ic/yH//93+LiHpGKzg4WB555BHVcs8884y4ubmJm5ubtG7dulrb+s9//iN33323NGnSRHr27ClTp06VnTt3qmratm0rb7/9tqotNjZW4uLiVG3fffedODk5SUlJid1t7d27VwBIUVGRiPz/jNa///1vpSYhIUEAyMmTJ5W2SZMmSVRUVLX2Z9y4ceLs7Cxubm5iMBgEgDg5OckXX3xR5XJDhw6VZ599VnkfEREhzzzzjKrm9zNao0ePlgcffFBV8/zzz0vnzp2rNVaixowzWkRUJ7zxxhv45JNPcOzYsZvW/v3vf8eBAwcwe/ZsXLp0qVrr79evH06dOoWUlBQ89thjOHr0KPr27YtXXnmlyuUOHjyIFStWoFmzZsorKioKNpsN2dnZAH6b8Xn44YfRpk0bNG/eHBEREQCAM2fOqNZ1zz33KP/s7e2Npk2bol27dqq28+fPV2t/AGDAgAE4cOAA0tPTMW7cOEyYMAF/+tOflP7y8nK88sorCAkJQcuWLdGsWTN88803FcZ1M8eOHUPv3r1Vbb1790ZWVhbKy8trtC6ixoZBi4jqhH79+iEqKgozZ85UtXfs2BHHjx9XtXl5eaFDhw5o1apVjbbRpEkT9O3bF9OnT8eWLVswd+5cvPLKKygrK6t0mUuXLmHSpEk4cOCA8jp48CCysrLQvn17XL58GVFRUXB3d8dnn32GvXv34quvvgKACutt0qSJ8s/X7xa8kU6ng81mq/b+uLm5oUOHDujWrRs+/vhjpKen46OPPlL6FyxYgHfeeQfTp0/Ht99+iwMHDiAqKqrK/SWi2uXi6AEQEV03b948dO/eHUFBQUpbTEwMRo8ejfXr12PYsGG1ur3OnTvj2rVrKC0thV6vh16vrzBDc9999yEzMxMdOnSwu47Dhw/j4sWLmDdvnnJ90/fff1+r46wOJycnvPjii5g2bRpGjx4NV1dX7Nq1C8OGDcN//dd/AQBsNht+/PFHdO7cWVnO3j7/XqdOnbBr1y5V265duxAYGAhnZ+fa3xmiBoQzWkRUZ4SEhGDMmDFYvHix0jZq1Cg89thjGDVqFObOnYv09HScPn0a//nPf7Bq1apqf9H3798fy5YtQ0ZGBk6fPo3k5GS8+OKLGDBgANzd3QH89hytHTt24Ny5c8jLywMATJ8+HampqZgyZQoOHDiArKwsrF+/XrkYvk2bNtDr9ViyZAlOnTqFDRs23PR0pFb+/Oc/w9nZGYmJiQB+mw3cunUrUlNTcezYMUyaNAm5ubmqZfz9/ZVjmpeXZ3dG7dlnn0VKSgpeeeUV/Pjjj/jkk0/w7rvv4rnnnrsj+0VUnzFoEVGdMnfuXNWXvU6nw6pVq7Bo0SIkJydj4MCBCAoKwn//93/Dz88PO3furNZ6o6Ki8Mknn2DQoEHo1KkTnnrqKURFRWH16tWqbZ8+fRrt27eHl5cXgN+uq/rPf/6DH3/8EX379sW9996L2bNnw9fXF8BvpzFXrFiBNWvWoHPnzpg3bx4WLlxYi0ek+lxcXDBlyhTMnz8fly9fxksvvYT77rsPUVFR6N+/P8xmM6Kjo1XLPPfcc3B2dkbnzp3h5eVl9/qt++67D6tXr0ZSUhK6du2K2bNnY+7cuXbvrCQiNZ2IiKMHQURERNQQcUaLiIiISCMMWkTUINz4+IXfv7777jtHD69Gzpw5U+X+1PTxDETkODx1SEQNQlU/Lt26dWu4urrewdHcnmvXruH06dOV9vv7+8PFhTeNE9UHDFpEREREGuGpQyIiIiKNMGgRERERaYRBi4iIiEgjDFpEREREGmHQIiIiItIIgxYRERGRRhi0iIiIiDTCoEVERESkkf8F9gv0o+wdFW4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_60.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCO0lEQVR4nO3de3xU1d3v8e/kOiGQpJiQCwYSEOQWCeUSg0Cg5GksqES0QqDcHhQ9LQpFqsAjBNFj0NpKuTxCbTWeqjVgKVrkpPCAiEIaMYAKokUEgZoEI80Ewj2zzh+ebB0JkGySTIZ83q/XvGDW/u09a6/XMPNl7T17O4wxRgAAAKgTP293AAAAwBcRogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAXNXmz58vh8NRq1qHw6H58+c3aH8GDx6swYMHN9ntAag9QhSARpGbmyuHw2E9AgIC1LZtW02cOFH/+te/vN29JichIcFjvNq0aaOBAwfqr3/9a71s/+TJk5o/f742b95cL9sDmiNCFIBGtWDBAv3pT3/S8uXL9ZOf/EQvvfSS0tLSdPr06QZ5vUceeUSnTp1qkG03tOTkZP3pT3/Sn/70J82cOVNffvmlRo4cqeXLl1/xtk+ePKlHH32UEAVcgQBvdwBA8/KTn/xEffr0kSTdfffdioyM1JNPPqk33nhDd911V72/XkBAgAICfPOjrm3btvrZz35mPR8/fryuu+46PfPMM7rvvvu82DMAEjNRALxs4MCBkqT9+/d7tH/yySe688471bp1azmdTvXp00dvvPGGR825c+f06KOPqlOnTnI6nbrmmms0YMAAbdiwwaqp6ZyoM2fO6Je//KWioqLUqlUr3XbbbTpy5MgFfZs4caISEhIuaK9pmy+88IJ+9KMfqU2bNgoODla3bt307LPP1mksLicmJkZdu3bVgQMHLll39OhRTZ48WdHR0XI6nerZs6defPFFa/nBgwcVFRUlSXr00UetQ4YNfT4YcLXxzf+eAbhqHDx4UJL0gx/8wGrbs2ePbrrpJrVt21azZs1SaGioVq5cqczMTP3lL3/R7bffLumbMJOTk6O7775b/fr1U0VFhd5//33t2LFD//Ef/3HR17z77rv10ksvacyYMerfv782bdqk4cOHX9F+PPvss+revbtuu+02BQQE6G9/+5t+/vOfy+126xe/+MUVbbvauXPndPjwYV1zzTUXrTl16pQGDx6szz77TFOnTlViYqJWrVqliRMnqry8XNOmTVNUVJSeffZZ/a//9b90++23a+TIkZKkG264oV76CTQbBgAawQsvvGAkmf/5n/8xX331lTl8+LB57bXXTFRUlAkODjaHDx+2aocOHWqSkpLM6dOnrTa322369+9vOnXqZLX17NnTDB8+/JKvm52dbb77Ubdr1y4jyfz85z/3qBszZoyRZLKzs622CRMmmPbt2192m8YYc/LkyQvqMjIyTIcOHTza0tLSTFpa2iX7bIwx7du3Nz/+8Y/NV199Zb766ivzwQcfmNGjRxtJ5v7777/o9hYtWmQkmZdeeslqO3v2rElNTTUtW7Y0FRUVxhhjvvrqqwv2F0DdcDgPQKNKT09XVFSU4uPjdeeddyo0NFRvvPGGrr32WknSsWPHtGnTJt111106fvy4ysrKVFZWpq+//loZGRnat2+f9Wu+iIgI7dmzR/v27av1669bt06S9MADD3i0T58+/Yr2KyQkxPq7y+VSWVmZ0tLS9Pnnn8vlctna5vr16xUVFaWoqCj17NlTq1at0rhx4/Tkk09edJ1169YpJiZGWVlZVltgYKAeeOABnThxQm+//batvgC4EIfzADSqZcuWqXPnznK5XHr++ee1ZcsWBQcHW8s/++wzGWM0d+5czZ07t8ZtHD16VG3bttWCBQs0YsQIde7cWT169NDNN9+scePGXfKw1BdffCE/Pz917NjRo/3666+/ov3aunWrsrOzVVBQoJMnT3osc7lcCg8Pr/M2U1JS9Pjjj8vhcKhFixbq2rWrIiIiLrnOF198oU6dOsnPz/P/yF27drWWA6gfhCgAjapfv37Wr/MyMzM1YMAAjRkzRp9++qlatmwpt9stSZo5c6YyMjJq3MZ1110nSRo0aJD279+v119/XevXr9cf/vAHPfPMM1q+fLnuvvvuK+7rxS7SWVVV5fF8//79Gjp0qLp06aLf/va3io+PV1BQkNatW6dnnnnG2qe6ioyMVHp6uq11ATQ8QhQAr/H391dOTo6GDBmipUuXatasWerQoYOkbw5B1SZAtG7dWpMmTdKkSZN04sQJDRo0SPPnz79oiGrfvr3cbrf279/vMfv06aefXlD7gx/8QOXl5Re0f382529/+5vOnDmjN954Q+3atbPa33rrrcv2v761b99eH374odxut8ds1CeffGItly4eEAHUHudEAfCqwYMHq1+/flq0aJFOnz6tNm3aaPDgwVqxYoWKi4svqP/qq6+sv3/99dcey1q2bKnrrrtOZ86cuejr/eQnP5EkLV682KN90aJFF9R27NhRLpdLH374odVWXFx8wVXD/f39JUnGGKvN5XLphRdeuGg/GsqwYcNUUlKivLw8q+38+fNasmSJWrZsqbS0NElSixYtJKnGkAigdpiJAuB1v/rVr/TTn/5Uubm5uu+++7Rs2TINGDBASUlJuueee9ShQweVlpaqoKBAR44c0QcffCBJ6tatmwYPHqzevXurdevWev/99/Xaa69p6tSpF32t5ORkZWVl6b//+7/lcrnUv39/bdy4UZ999tkFtaNHj9bDDz+s22+/XQ888IBOnjypZ599Vp07d9aOHTusuh//+McKCgrSrbfeqnvvvVcnTpzQc889pzZt2tQYBBvSlClTtGLFCk2cOFFFRUVKSEjQa6+9pq1bt2rRokVq1aqVpG9OhO/WrZvy8vLUuXNntW7dWj169FCPHj0atb+AT/P2zwMBNA/VlzjYvn37BcuqqqpMx44dTceOHc358+eNMcbs37/fjB8/3sTExJjAwEDTtm1bc8stt5jXXnvNWu/xxx83/fr1MxERESYkJMR06dLF/O///b/N2bNnrZqaLkdw6tQp88ADD5hrrrnGhIaGmltvvdUcPny4xp/8r1+/3vTo0cMEBQWZ66+/3rz00ks1bvONN94wN9xwg3E6nSYhIcE8+eST5vnnnzeSzIEDB6y6ulzi4HKXb7jY9kpLS82kSZNMZGSkCQoKMklJSeaFF164YN1t27aZ3r17m6CgIC53ANjgMOY7888AAACoFc6JAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADZwsc0G5Ha79eWXX6pVq1bcYgEAAB9hjNHx48cVFxd3wc28v4sQ1YC+/PJLxcfHe7sbAADAhsOHD+vaa6+96HJCVAOqvr3C4cOHFRYW5uXeAACA2qioqFB8fLz1PX4xhKgGVH0ILywsjBAFAICPudypOJxYDgAAYAMhCgAAwAZCFAAAgA2cE+VlVVVVOnfunLe74XWBgYHy9/f3djcAAKg1QpSXGGNUUlKi8vJyb3elyYiIiFBMTAzX1AIA+ARClJdUB6g2bdqoRYsWzTo4GGN08uRJHT16VJIUGxvr5R4BAHB5hCgvqKqqsgLUNddc4+3uNAkhISGSpKNHj6pNmzYc2gMANHmcWO4F1edAtWjRwss9aVqqx4NzxAAAvoAQ5UXN+RBeTRgPAIAvIUQBAADYQIgCAACwgRCFOpk4caIyMzMvaN+8ebMcDofKy8u1efNmjRgxQrGxsQoNDVVycrJefvnlxu8sAOCqVew6pW37y1TsOuW1PvDrPNS7bdu26YYbbtDDDz+s6OhorV27VuPHj1d4eLhuueUWb3cPAODj8rYf0uzVH8ltJD+HlDMySaP6tmv0fhCiUO/mzJnj8XzatGlav369Vq9eTYgCAFyRYtcpK0BJkttIc1bv1qDOUYoND2nUvnA47yrQFKY0L8flcql169be7gYAwMcdKKu0AlS1KmN0sOxko/eFmSgf540pzbVr16ply5YebVVVVRetX7lypbZv364VK1Y0aL8AAFe/xMhQ+TnkEaT8HQ4lRDb+tReZifJhF5vSbOgZqSFDhmjXrl0ejz/84Q811r711luaNGmSnnvuOXXv3r1B+wUAuPrFhocoZ2SS/P//tQX9HQ49MbJHox/Kk5iJ8mmXmtJsyDdTaGiorrvuOo+2I0eOXFD39ttv69Zbb9Uzzzyj8ePHN1h/AADNy6i+7TSoc5QOlp1UQmQLrwQoiRDl05rSlOb3bd68WbfccouefPJJTZkyxdvdAQBcZWLDQ7wWnqpxOM+HNaUpze966623NHz4cD3wwAO64447VFJSopKSEh07dsyr/QIAoD4xE+XjmsqU5ne9+OKLOnnypHJycpSTk2O1p6WlafPmzd7rGAAA9chhjDGXL4MdFRUVCg8Pl8vlUlhYmNV++vRpHThwQImJiXI6nV7sYdPCuAAAmoKLfX9/H4fzAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhyos4p98T4wEA8CWEKC8IDAyUJJ082fg3S2zKqsejenwAAGjKuE6UF/j7+ysiIkJHjx6VJLVo0UKO/3/BzObIGKOTJ0/q6NGjioiIkL+/v7e7BADAZRGivCQmJkaSrCAFKSIiwhoXAACaOkKUlzgcDsXGxqpNmzY6d+6ct7vjdYGBgcxAAQB8CiHKy/z9/QkPAAD4IE4sBwAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMCGJhGili1bpoSEBDmdTqWkpOi99967ZP2qVavUpUsXOZ1OJSUlad26dR7LjTGaN2+eYmNjFRISovT0dO3bt8+j5tixYxo7dqzCwsIUERGhyZMn68SJEzW+3meffaZWrVopIiLiivYTAABcPbweovLy8jRjxgxlZ2drx44d6tmzpzIyMnT06NEa67dt26asrCxNnjxZO3fuVGZmpjIzM7V7926r5qmnntLixYu1fPlyFRYWKjQ0VBkZGTp9+rRVM3bsWO3Zs0cbNmzQ2rVrtWXLFk2ZMuWC1zt37pyysrI0cODA+t95AADgsxzGGOPNDqSkpKhv375aunSpJMntdis+Pl7333+/Zs2adUH9qFGjVFlZqbVr11ptN954o5KTk7V8+XIZYxQXF6cHH3xQM2fOlCS5XC5FR0crNzdXo0eP1t69e9WtWzdt375dffr0kSTl5+dr2LBhOnLkiOLi4qxtP/zww/ryyy81dOhQTZ8+XeXl5bXet4qKCoWHh8vlciksLMzO8AAAgEZW2+9vr85EnT17VkVFRUpPT7fa/Pz8lJ6eroKCghrXKSgo8KiXpIyMDKv+wIEDKikp8agJDw9XSkqKVVNQUKCIiAgrQElSenq6/Pz8VFhYaLVt2rRJq1at0rJly658ZwEAwFUlwJsvXlZWpqqqKkVHR3u0R0dH65NPPqlxnZKSkhrrS0pKrOXVbZeqadOmjcfygIAAtW7d2qr5+uuvNXHiRL300ku1nkU6c+aMzpw5Yz2vqKio1XoAAMD3eP2cqKbqnnvu0ZgxYzRo0KBar5OTk6Pw8HDrER8f34A9BAAA3uTVEBUZGSl/f3+VlpZ6tJeWliomJqbGdWJiYi5ZX/3n5Wq+f+L6+fPndezYMatm06ZNevrppxUQEKCAgABNnjxZLpdLAQEBev7552vs2+zZs+VyuazH4cOHazMMAADAB3k1RAUFBal3797auHGj1eZ2u7Vx40alpqbWuE5qaqpHvSRt2LDBqk9MTFRMTIxHTUVFhQoLC62a1NRUlZeXq6ioyKrZtGmT3G63UlJSJH1z3tSuXbusx4IFC9SqVSvt2rVLt99+e419Cw4OVlhYmMcDAABcnbx6TpQkzZgxQxMmTFCfPn3Ur18/LVq0SJWVlZo0aZIkafz48Wrbtq1ycnIkSdOmTVNaWpp+85vfaPjw4Xr11Vf1/vvv6/e//70kyeFwaPr06Xr88cfVqVMnJSYmau7cuYqLi1NmZqYkqWvXrrr55pt1zz33aPny5Tp37pymTp2q0aNHW7/M69q1q0c/33//ffn5+alHjx6NNDIAAKAp83qIGjVqlL766ivNmzdPJSUlSk5OVn5+vnVi+KFDh+Tn9+2EWf/+/fXKK6/okUce0Zw5c9SpUyetWbPGI9w89NBDqqys1JQpU1ReXq4BAwYoPz9fTqfTqnn55Zc1depUDR06VH5+frrjjju0ePHixttxAADg07x+nairGdeJAgDA9/jEdaIAAAB8FSEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGBDkwhRy5YtU0JCgpxOp1JSUvTee+9dsn7VqlXq0qWLnE6nkpKStG7dOo/lxhjNmzdPsbGxCgkJUXp6uvbt2+dRc+zYMY0dO1ZhYWGKiIjQ5MmTdeLECWv5p59+qiFDhig6OlpOp1MdOnTQI488onPnztXfjgMAAJ/l9RCVl5enGTNmKDs7Wzt27FDPnj2VkZGho0eP1li/bds2ZWVlafLkydq5c6cyMzOVmZmp3bt3WzVPPfWUFi9erOXLl6uwsFChoaHKyMjQ6dOnrZqxY8dqz5492rBhg9auXastW7ZoypQp1vLAwECNHz9e69ev16effqpFixbpueeeU3Z2dsMNBgAA8BkOY4zxZgdSUlLUt29fLV26VJLkdrsVHx+v+++/X7NmzbqgftSoUaqsrNTatWutthtvvFHJyclavny5jDGKi4vTgw8+qJkzZ0qSXC6XoqOjlZubq9GjR2vv3r3q1q2btm/frj59+kiS8vPzNWzYMB05ckRxcXE19nXGjBnavn273nnnnVrtW0VFhcLDw+VyuRQWFlancQEAAN5R2+9vr85EnT17VkVFRUpPT7fa/Pz8lJ6eroKCghrXKSgo8KiXpIyMDKv+wIEDKikp8agJDw9XSkqKVVNQUKCIiAgrQElSenq6/Pz8VFhYWOPrfvbZZ8rPz1daWpq9nQUAAFcVr4aosrIyVVVVKTo62qM9OjpaJSUlNa5TUlJyyfrqPy9X06ZNG4/lAQEBat269QWv279/fzmdTnXq1EkDBw7UggULLro/Z86cUUVFhccDAABcnbx+TlRTl5eXpx07duiVV17Rm2++qaeffvqitTk5OQoPD7ce8fHxjdhTAADQmLwaoiIjI+Xv76/S0lKP9tLSUsXExNS4TkxMzCXrq/+8XM33T1w/f/68jh07dsHrxsfHq1u3bsrKytLChQs1f/58VVVV1di32bNny+VyWY/Dhw9favcBAIAP82qICgoKUu/evbVx40arze12a+PGjUpNTa1xndTUVI96SdqwYYNVn5iYqJiYGI+aiooKFRYWWjWpqakqLy9XUVGRVbNp0ya53W6lpKRctL9ut1vnzp2T2+2ucXlwcLDCwsI8HgAA4OoU4O0OzJgxQxMmTFCfPn3Ur18/LVq0SJWVlZo0aZIkafz48Wrbtq1ycnIkSdOmTVNaWpp+85vfaPjw4Xr11Vf1/vvv6/e//70kyeFwaPr06Xr88cfVqVMnJSYmau7cuYqLi1NmZqYkqWvXrrr55pt1zz33aPny5Tp37pymTp2q0aNHW7/Me/nllxUYGKikpCQFBwfr/fff1+zZszVq1CgFBgY2/kABAIAmxeshatSoUfrqq680b948lZSUKDk5Wfn5+daJ4YcOHZKf37cTZv3799crr7yiRx55RHPmzFGnTp20Zs0a9ejRw6p56KGHVFlZqSlTpqi8vFwDBgxQfn6+nE6nVfPyyy9r6tSpGjp0qPz8/HTHHXdo8eLF1vKAgAA9+eST+uc//yljjNq3b6+pU6fql7/8ZSOMCgAA3lHsOqUDZZVKjAxVbHiIt7vTpHn9OlFXM64TBQDwJXnbD2n26o/kNpKfQ8oZmaRRfdt5u1uNzieuEwUAAJqGYtcpK0BJkttIc1bvVrHrlHc71oQRogAAgA6UVVoBqlqVMTpYdtI7HfIBhCgAAKDEyFD5OTzb/B0OJUS28E6HfAAhCgAAKDY8RDkjk+Tv+CZJ+TscemJkD04uvwSv/zoPAAA0DaP6ttOgzlE6WHZSCZEtCFCXQYgCAACW2PAQwlMtcTgPAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAoAkrdp3Stv1lKnad8nZX8D0B3u4AAACoWd72Q5q9+iO5jeTnkHJGJmlU33be7hb+P2aiAABogopdp6wAJUluI81ZvZsZqSakziFq3bp1uvvuu/XQQw/pk08+8Vj273//Wz/60Y/qrXMAADRXB8oqrQBVrcoYHSw76Z0O4QJ1ClGvvPKKbrvtNpWUlKigoEC9evXSyy+/bC0/e/as3n777XrvJAAAzU1iZKj8HJ5t/g6HEiJbeKdDuECdQtSvf/1r/fa3v9XatWv1zjvv6MUXX9S9996rP/7xjw3VPwAAmqXY8BDljEySv+ObJOXvcOiJkT0UGx7i5Z6hWp1OLN+3b59uvfVW6/ldd92lqKgo3XbbbTp37pxuv/32eu8gAADN1ai+7TSoc5QOlp1UQmQLAlQTU6cQFRYWptLSUiUmJlptQ4YM0dq1a3XLLbfoyJEj9d5BoCkrdp3SgbJKJUaG8uEGoEHEhofw+dJE1SlE9evXT//3//5f3XjjjR7taWlp+tvf/qZbbrmlXjsHNGX89BgAmrc6nRP1y1/+Uk6ns8ZlgwcP1t/+9jeNHz++XjoGNGX89BgAUKeZqF69eqlXr16qqKiocXnv3r3Vu3fveukY0JRd6qfHTLsDQPNQpxAVEREhh8Nx2bqqqirbHQJ8QfVPj78bpPjpMQA0L3UKUW+99Zb1d2OMhg0bpj/84Q9q27ZtvXcMaMqqf3o8Z/VuVRnDT48BoBlyGGPM5ctq1qpVK33wwQfq0KFDffbpqlFRUaHw8HC5XC6FhYV5uztoAMWuU/z0GACuMrX9/uYGxMAV4KfHANB8cQNiAAAAG644RNXmRHMAAICrTZ0O540cOdLj+enTp3XfffcpNDTUo3316tVX3jMAAIAmrE4hKjw83OP5z372s3rtDAAAgK+oU4h64YUXGqofAAAAPoUTywEAAGxoEiFq2bJlSkhIkNPpVEpKit57771L1q9atUpdunSR0+lUUlKS1q1b57HcGKN58+YpNjZWISEhSk9P1759+zxqjh07prFjxyosLEwRERGaPHmyTpw4YS3fvHmzRowYodjYWIWGhio5OVkvv/xy/e00AADwaV4PUXl5eZoxY4ays7O1Y8cO9ezZUxkZGTp69GiN9du2bVNWVpYmT56snTt3KjMzU5mZmdq9e7dV89RTT2nx4sVavny5CgsLFRoaqoyMDJ0+fdqqGTt2rPbs2aMNGzZo7dq12rJli6ZMmeLxOjfccIP+8pe/6MMPP9SkSZM0fvx4rV27tuEGAwAA+IwrumJ5fUhJSVHfvn21dOlSSZLb7VZ8fLzuv/9+zZo164L6UaNGqbKy0iPM3HjjjUpOTtby5ctljFFcXJwefPBBzZw5U5LkcrkUHR2t3NxcjR49Wnv37lW3bt20fft29enTR5KUn5+vYcOG6ciRI4qLi6uxr8OHD1d0dLSef/75Wu0bVywHAMD31Pb726szUWfPnlVRUZHS09OtNj8/P6Wnp6ugoKDGdQoKCjzqJSkjI8OqP3DggEpKSjxqwsPDlZKSYtUUFBQoIiLCClCSlJ6eLj8/PxUWFl60vy6XS61bt677jgIAgKuOV2/7UlZWpqqqKkVHR3u0R0dH65NPPqlxnZKSkhrrS0pKrOXVbZeqadOmjcfygIAAtW7d2qr5vpUrV2r79u1asWLFRffnzJkzOnPmjPW8oqLiorUAAMC3ef2cKF/w1ltvadKkSXruuefUvXv3i9bl5OQoPDzcesTHxzdiLwEAQGPyaoiKjIyUv7+/SktLPdpLS0sVExNT4zoxMTGXrK/+83I13z9x/fz58zp27NgFr/v222/r1ltv1TPPPKPx48dfcn9mz54tl8tlPQ4fPnzJegAA4Lu8GqKCgoLUu3dvbdy40Wpzu93auHGjUlNTa1wnNTXVo16SNmzYYNUnJiYqJibGo6aiokKFhYVWTWpqqsrLy1VUVGTVbNq0SW63WykpKVbb5s2bNXz4cD355JMev9y7mODgYIWFhXk8AADAVcp42auvvmqCg4NNbm6u+fjjj82UKVNMRESEKSkpMcYYM27cODNr1iyrfuvWrSYgIMA8/fTTZu/evSY7O9sEBgaajz76yKpZuHChiYiIMK+//rr58MMPzYgRI0xiYqI5deqUVXPzzTebXr16mcLCQvPuu++aTp06maysLGv5pk2bTIsWLczs2bNNcXGx9fj6669rvW8ul8tIMi6X60qGCAAANKLafn97PUQZY8ySJUtMu3btTFBQkOnXr5/5xz/+YS1LS0szEyZM8KhfuXKl6dy5swkKCjLdu3c3b775psdyt9tt5s6da6Kjo01wcLAZOnSo+fTTTz1qvv76a5OVlWVatmxpwsLCzKRJk8zx48et5RMmTDCSLnikpaXVer8IUQAA+J7afn97/TpRVzOuEwUAgO/xietEAQAA+CpCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAKDZKXad0rb9ZSp2nfJ2V+DDArzdATSeYtcpHSirVGJkqGLDQ7zdHQDwirzthzR79UdyG8nPIeWMTNKovu283S34IEJUM8GHBgB885/J6s9CSXIbac7q3RrUOYr/XKLOOJzXDFzsQ4NpbADNzYGySuuzsFqVMTpYdtI7HYJPI0Q1A3xoAMA3EiND5efwbPN3OJQQ2cI7HYJPI0Q1A3xoAMA3YsNDlDMySf6Obz4U/R0OPTGyB4fyYAvnRDUD1R8ac1bvVpUxTf5DgxPgATSkUX3baVDnKB0sO6mEyBZ8zsA2QlQz4SsfGpwAD6AxxIaHNNnPQfgODuc1I7HhIUrteE2T/eDgBHgAgC8hRKHJ4AR4AIAvIUShyeAEeACALyFEocngVzMAAF/CieVoUnzlBHgAAAhRaHL41QwAwBdwOA8AAMAGQhQAAIANhKhmpNh1Stv2l13V111qDvsIAGgaOCeqmWgOVwJvDvsIAGg6mIlqBprDlcCbwz4CAJoWQlQz0ByuBN4c9hEA0LQQopqB5nAl8OawjwCApoUQ1Qw0hyuBN4d9BAA0LQ5jjLl8GeyoqKhQeHi4XC6XwsLCvN0dFbtOXfVXAm8O+wgAaFi1/f7m13nNSHO4Enhz2EcAQNPA4TwAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAT6k2HVK2/aXqdh1yttdAYBmjxsQAz4ib/shzV79kdxG8nNIOSOTNKpvO293CwCaLWaiAB9Q7DplBShJchtpzurdzEgBgBcRogAfcKCs0gpQ1aqM0cGyk97pEACAEAX4gsTIUPk5PNv8HQ4lRLbwTocAAIQowBfEhocoZ2SS/B3fJCl/h0NPjOyh2PAQL/cMAJovTiwHfMSovu00qHOUDpadVEJkCwIUAHgZIQrwIbHhIYQnAGgiOJwHAABgAyEKAADABkIUAACADYQoAAAAGwhRPoj7pwEA4H1eD1HLli1TQkKCnE6nUlJS9N57712yftWqVerSpYucTqeSkpK0bt06j+XGGM2bN0+xsbEKCQlRenq69u3b51Fz7NgxjR07VmFhYYqIiNDkyZN14sQJa/np06c1ceJEJSUlKSAgQJmZmfW2v1cqb/sh3bRwk8Y8V6ibFm5S3vZD3u4SAADNkldDVF5enmbMmKHs7Gzt2LFDPXv2VEZGho4ePVpj/bZt25SVlaXJkydr586dyszMVGZmpnbv3m3VPPXUU1q8eLGWL1+uwsJChYaGKiMjQ6dPn7Zqxo4dqz179mjDhg1au3attmzZoilTpljLq6qqFBISogceeEDp6ekNNwB1xP3TAABNVXM8SuIwxpjLlzWMlJQU9e3bV0uXLpUkud1uxcfH6/7779esWbMuqB81apQqKyu1du1aq+3GG29UcnKyli9fLmOM4uLi9OCDD2rmzJmSJJfLpejoaOXm5mr06NHau3evunXrpu3bt6tPnz6SpPz8fA0bNkxHjhxRXFycx2tOnDhR5eXlWrNmTZ33r6KiQuHh4XK5XAoLC6vz+t+3bX+ZxjxXeEH7n++5Uakdr7ni7QMAYEfe9kPWf/L9HFLOyCSN6tvO292yrbbf316biTp79qyKioo8Znr8/PyUnp6ugoKCGtcpKCi4YGYoIyPDqj9w4IBKSko8asLDw5WSkmLVFBQUKCIiwgpQkpSeni4/Pz8VFl4YUJoS7p8GAGhqmvNREq+FqLKyMlVVVSk6OtqjPTo6WiUlJTWuU1JScsn66j8vV9OmTRuP5QEBAWrduvVFX7e2zpw5o4qKCo9HfeL+aQCApuZAWaUVoKpVGaODZSe906FGxG1f6lFOTo4effTRBn0N7p8GAGhKqo+SfDdINZejJF6biYqMjJS/v79KS0s92ktLSxUTE1PjOjExMZesr/7zcjXfP3H9/PnzOnbs2EVft7Zmz54tl8tlPQ4fPnxF27uY2PAQpXa8hgAFAPC65nyUxGshKigoSL1799bGjRutNrfbrY0bNyo1NbXGdVJTUz3qJWnDhg1WfWJiomJiYjxqKioqVFhYaNWkpqaqvLxcRUVFVs2mTZvkdruVkpJyRfsUHByssLAwjwcAAFe7UX3b6d1ZQ/Tne27Uu7OG+PRJ5XXh1cN5M2bM0IQJE9SnTx/169dPixYtUmVlpSZNmiRJGj9+vNq2baucnBxJ0rRp05SWlqbf/OY3Gj58uF599VW9//77+v3vfy9Jcjgcmj59uh5//HF16tRJiYmJmjt3ruLi4qxrPXXt2lU333yz7rnnHi1fvlznzp3T1KlTNXr0aI9f5n388cc6e/asjh07puPHj2vXrl2SpOTk5EYbHwAAfEVseEizmH36Lq+GqFGjRumrr77SvHnzVFJSouTkZOXn51snhh86dEh+ft9OlvXv31+vvPKKHnnkEc2ZM0edOnXSmjVr1KNHD6vmoYceUmVlpaZMmaLy8nINGDBA+fn5cjqdVs3LL7+sqVOnaujQofLz89Mdd9yhxYsXe/Rt2LBh+uKLL6znvXr1kvTNxTwBAAC8ep2oq119XycKAAA0vCZ/nSgAAABfRogCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBUgqdp3Stv1lKnad8nZXAAA+wqs3IAaagrzthzR79UdyG8nPIeWMTNKovu283S0AQBPHTBSatWLXKStASZLbSHNW72ZGCgBwWYQoNGsHyiqtAFWtyhgdLDvpnQ4BAHwGIQrNWmJkqPwcnm3+DocSIlt4p0MAAJ9BiEKzFhseopyRSfJ3fJOk/B0OPTGyh2LDQ7zcMwBAU8eJ5Wj2RvVtp0Gdo3Sw7KQSIlsQoAAAtUKIAvTNjBThCQBQFxzOAwAAsIEQBQDwOi54C1/E4TwAgFdxwVv4KmaiAABewwVv4csIUQDqHYdmUFtc8Ba+jMN5AOoVh2ZQF9UXvP1ukOKCt/AVzEQBqDccmkFdccFb+DJmogDUm0sdmuFLERfDBW/hqwhRAOoNh2ZgFxe8hS/icB6AesOhGQDNCTNRAOoVh2YANBeEKAD1jkMzAJoDDucBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAABg4QbitcclDgAAgCRuIF5XzEQBAABuIG4DIQoAAFzyBuKoGSEKAABYNxD/Lm4gfmmEKAAAwA3EbeDEcgAAIIkbiNcVIQoAAFi4gXjtcTgPAADABkIUAACADYQoAAAAGwhRAAAANhCiAACAz2kK9/jj13kAAMCnNJV7/DETBQAAfEZTuscfIQoAGlFTOAQB+LKmdI8/DucBQCNpKocgAF9WfY+/7wYpb93jj5koAGgETekQBODLmtI9/piJAoBGcKlDENxiA6ibpnKPP0IUADSCpnQIArgaNIV7/HE4DwAaQVM6BAGgfjATBQCNpKkcggBQPwhRANCImsIhCAD1g8N5AAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgBs4EbCALjEAQDUETcSBiA1kZmoZcuWKSEhQU6nUykpKXrvvfcuWb9q1Sp16dJFTqdTSUlJWrduncdyY4zmzZun2NhYhYSEKD09Xfv27fOoOXbsmMaOHauwsDBFRERo8uTJOnHihEfNhx9+qIEDB8rpdCo+Pl5PPfVU/ewwgBr5wuwONxIGUM3rISovL08zZsxQdna2duzYoZ49eyojI0NHjx6tsX7btm3KysrS5MmTtXPnTmVmZiozM1O7d++2ap566iktXrxYy5cvV2FhoUJDQ5WRkaHTp09bNWPHjtWePXu0YcMGrV27Vlu2bNGUKVOs5RUVFfrxj3+s9u3bq6ioSL/+9a81f/58/f73v2+4wQCasbzth3TTwk0a81yhblq4SXnbD3m7SzW61I2EATQvDmOMuXxZw0lJSVHfvn21dOlSSZLb7VZ8fLzuv/9+zZo164L6UaNGqbKyUmvXrrXabrzxRiUnJ2v58uUyxiguLk4PPvigZs6cKUlyuVyKjo5Wbm6uRo8erb1796pbt27avn27+vTpI0nKz8/XsGHDdOTIEcXFxenZZ5/Vf/3Xf6mkpERBQUGSpFmzZmnNmjX65JNParVvFRUVCg8Pl8vlUlhY2BWNE3A1K3ad0k0LN11wc953Zw1pclf39qW+ArCntt/fXp2JOnv2rIqKipSenm61+fn5KT09XQUFBTWuU1BQ4FEvSRkZGVb9gQMHVFJS4lETHh6ulJQUq6agoEARERFWgJKk9PR0+fn5qbCw0KoZNGiQFaCqX+fTTz/Vv//97yvccwDf5UuzO9xIGEA1r55YXlZWpqqqKkVHR3u0R0dHX3S2p6SkpMb6kpISa3l126Vq2rRp47E8ICBArVu39qhJTEy8YBvVy37wgx9c0LczZ87ozJkz1vOKiooa9wGAp8TIUPk5dMHsTkJkC+916hK4kTAAqQmcE3U1ycnJUXh4uPWIj4/3dpcAn+CLszux4SFK7XhNk+4jgIbl1ZmoyMhI+fv7q7S01KO9tLRUMTExNa4TExNzyfrqP0tLSxUbG+tRk5ycbNV8/8T18+fP69ixYx7bqel1vvsa3zd79mzNmDHDel5RUUGQAmqJ2R0AvsarM1FBQUHq3bu3Nm7caLW53W5t3LhRqampNa6TmprqUS9JGzZssOoTExMVExPjUVNRUaHCwkKrJjU1VeXl5SoqKrJqNm3aJLfbrZSUFKtmy5YtOnfunMfrXH/99TUeypOk4OBghYWFeTwA1B6zOwB8ivGyV1991QQHB5vc3Fzz8ccfmylTppiIiAhTUlJijDFm3LhxZtasWVb91q1bTUBAgHn66afN3r17TXZ2tgkMDDQfffSRVbNw4UITERFhXn/9dfPhhx+aESNGmMTERHPq1Cmr5uabbza9evUyhYWF5t133zWdOnUyWVlZ1vLy8nITHR1txo0bZ3bv3m1effVV06JFC7NixYpa75vL5TKSjMvlupIhAgAAjai2399eD1HGGLNkyRLTrl07ExQUZPr162f+8Y9/WMvS0tLMhAkTPOpXrlxpOnfubIKCgkz37t3Nm2++6bHc7XabuXPnmujoaBMcHGyGDh1qPv30U4+ar7/+2mRlZZmWLVuasLAwM2nSJHP8+HGPmg8++MAMGDDABAcHm7Zt25qFCxfWab8IUQAA+J7afn97/TpRVzOuEwUAgO/xietEAQAA+CpCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGCDV29AfLWrvo5pRUWFl3sCAABqq/p7+3LXIydENaDjx49LkuLj473cEwAAUFfHjx9XeHj4RZdz25cG5Ha79eWXX6pVq1ZyOBze7k6jqKioUHx8vA4fPtzsb3XDWHyLsfgWY/EtxuIbjMO3mspYGGN0/PhxxcXFyc/v4mc+MRPVgPz8/HTttdd6uxteERYW1uw/DKoxFt9iLL7FWHyLsfgG4/CtpjAWl5qBqsaJ5QAAADYQogAAAGwgRKFeBQcHKzs7W8HBwd7uitcxFt9iLL7FWHyLsfgG4/AtXxsLTiwHAACwgZkoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIwiUtW7ZMCQkJcjqdSklJ0XvvvXfJ+kWLFun6669XSEiI4uPj9ctf/lKnT5+2ls+fP18Oh8Pj0aVLl4bejXpRl7E4d+6cFixYoI4dO8rpdKpnz57Kz8+/om02JfU9Fr76vtiyZYtuvfVWxcXFyeFwaM2aNZddZ/PmzfrhD3+o4OBgXXfddcrNzb2gxhffFw0xFs3lfVFcXKwxY8aoc+fO8vPz0/Tp02usW7Vqlbp06SKn06mkpCStW7eu/jtfzxpiLHJzcy94XzidzobZgcsgROGi8vLyNGPGDGVnZ2vHjh3q2bOnMjIydPTo0RrrX3nlFc2aNUvZ2dnau3ev/vjHPyovL09z5szxqOvevbuKi4utx7vvvtsYu3NF6joWjzzyiFasWKElS5bo448/1n333afbb79dO3futL3NpqIhxkLyzfdFZWWlevbsqWXLltWq/sCBAxo+fLiGDBmiXbt2afr06br77rv197//3arx1fdFQ4yF1DzeF2fOnFFUVJQeeeQR9ezZs8aabdu2KSsrS5MnT9bOnTuVmZmpzMxM7d69uz67Xu8aYiykb65o/t33xRdffFFfXa4bA1xEv379zC9+8QvreVVVlYmLizM5OTk11v/iF78wP/rRjzzaZsyYYW666SbreXZ2tunZs2eD9Lch1XUsYmNjzdKlSz3aRo4cacaOHWt7m01FQ4yFr74vvkuS+etf/3rJmoceesh0797do23UqFEmIyPDeu6r74vvqq+xaC7vi+9KS0sz06ZNu6D9rrvuMsOHD/doS0lJMffee+8V9rDx1NdYvPDCCyY8PLze+nUlmIlCjc6ePauioiKlp6dbbX5+fkpPT1dBQUGN6/Tv319FRUXWoYfPP/9c69at07Bhwzzq9u3bp7i4OHXo0EFjx47VoUOHGm5H6oGdsThz5swF08shISHW/6LtbLMpaIixqOZr7ws7CgoKPMZOkjIyMqyx89X3hR2XG4tqzeF9URu1Ha/m4sSJE2rfvr3i4+M1YsQI7dmzxyv9IEShRmVlZaqqqlJ0dLRHe3R0tEpKSmpcZ8yYMVqwYIEGDBigwMBAdezYUYMHD/Y4nJeSkqLc3Fzl5+fr2Wef1YEDBzRw4EAdP368QffnStgZi4yMDP32t7/Vvn375Ha7tWHDBq1evVrFxcW2t9kUNMRYSL75vrCjpKSkxrGrqKjQqVOnfPZ9YcflxkJqPu+L2rjYeF1t74vauP766/X888/r9ddf10svvSS3263+/fvryJEjjd4XQhTqzebNm/XEE0/ov//7v7Vjxw6tXr1ab775ph577DGr5ic/+Yl++tOf6oYbblBGRobWrVun8vJyrVy50os9r3+/+93v1KlTJ3Xp0kVBQUGaOnWqJk2aJD+/5vdPrjZj0VzeF6gb3heoSWpqqsaPH6/k5GSlpaVp9erVioqK0ooVKxq9L83vEx21EhkZKX9/f5WWlnq0l5aWKiYmpsZ15s6dq3Hjxunuu+9WUlKSbr/9dj3xxBPKycmR2+2ucZ2IiAh17txZn332Wb3vQ32xMxZRUVFas2aNKisr9cUXX+iTTz5Ry5Yt1aFDB9vbbAoaYixq4gvvCztiYmJqHLuwsDCFhIT47PvCjsuNRU2u1vdFbVxsvK6294UdgYGB6tWrl1feF4Qo1CgoKEi9e/fWxo0brTa3262NGzcqNTW1xnVOnjx5wUyLv7+/JMlc5BaNJ06c0P79+xUbG1tPPa9/dsaimtPpVNu2bXX+/Hn95S9/0YgRI654m97UEGNRE194X9iRmprqMXaStGHDBmvsfPV9YcflxqImV+v7ojbsjFdzUVVVpY8++sg77wtvn9mOpuvVV181wcHBJjc313z88cdmypQpJiIiwpSUlBhjjBk3bpyZNWuWVZ+dnW1atWpl/vznP5vPP//crF+/3nTs2NHcddddVs2DDz5oNm/ebA4cOGC2bt1q0tPTTWRkpDl69Gij719d1HUs/vGPf5i//OUvZv/+/WbLli3mRz/6kUlMTDT//ve/a73NpqohxsJX3xfHjx83O3fuNDt37jSSzG9/+1uzc+dO88UXXxhjjJk1a5YZN26cVf/555+bFi1amF/96ldm7969ZtmyZcbf39/k5+dbNb76vmiIsWgu7wtjjFXfu3dvM2bMGLNz506zZ88ea/nWrVtNQECAefrpp83evXtNdna2CQwMNB999FGj7ltdNcRYPProo+bvf/+72b9/vykqKjKjR482TqfTo6axEKJwSUuWLDHt2rUzQUFBpl+/fuYf//iHtSwtLc1MmDDBen7u3Dkzf/5807FjR+N0Ok18fLz5+c9/7vFlOWrUKBMbG2uCgoJM27ZtzahRo8xnn33WiHtkX13GYvPmzaZr164mODjYXHPNNWbcuHHmX//6V5222ZTV91j46vvirbfeMpIueFTv/4QJE0xaWtoF6yQnJ5ugoCDToUMH88ILL1ywXV98XzTEWDSn90VN9e3bt/eoWblypencubMJCgoy3bt3N2+++Wbj7NAVaIixmD59uvXvIzo62gwbNszs2LGj8XbqOxz/v8MAAACoA86JAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAFAM7J582Y5HA6Vl5d7uyuAzyNEAWgQEydOlMPh0MKFCz3a16xZI4fDYT03xui5555TamqqwsLC1LJlS3Xv3l3Tpk2r9Q1FT548qdmzZ6tjx45yOp2KiopSWlqaXn/9dasmISFBixYtqpd9a2jVY+dwOBQYGKjExEQ99NBDOn36dJ22M3jwYE2fPt2jrX///iouLlZ4eHg99hhonghRABqM0+nUk08+qX//+981LjfGaMyYMXrggQc0bNgwrV+/Xh9//LH++Mc/yul06vHHH6/V69x3331avXq1lixZok8++UT5+fm688479fXXX9fn7jSqm2++WcXFxfr888/1zDPPaMWKFcrOzr7i7QYFBSkmJsYjyAKwySs3mwFw1ZswYYK55ZZbTJcuXcyvfvUrq/2vf/2rqf7o+fOf/2wkmddff73Gbbjd7lq9Vnh4uMnNzb3o8rS0tAvuxVXtnXfeMQMGDDBOp9Nce+215v777zcnTpywlv+f//N/TO/evU3Lli1NdHS0ycrKMqWlpdby6nuD5efnm+TkZON0Os2QIUNMaWmpWbdunenSpYtp1aqVycrKMpWVlbXanwkTJpgRI0Z4tI0cOdL06tXLel5WVmZGjx5t4uLiTEhIiOnRo4d55ZVXPLbx/X0+cOCA1d/v3tPytddeM926dTNBQUGmffv25umnn65VP4HmjpkoAA3G399fTzzxhJYsWaIjR45csPzPf/6zrr/+et122201rl/b2ZKYmBitW7dOx48fr3H56tWrde2112rBggUqLi5WcXGxJGn//v26+eabdccdd+jDDz9UXl6e3n33XU2dOtVa99y5c3rsscf0wQcfaM2aNTp48KAmTpx4wWvMnz9fS5cu1bZt23T48GHdddddWrRokV555RW9+eabWr9+vZYsWVKr/fm+3bt3a9u2bQoKCrLaTp8+rd69e+vNN9/U7t27NWXKFI0bN07vvfeeJOl3v/udUlNTdc8991j7HB8ff8G2i4qKdNddd2n06NH66KOPNH/+fM2dO1e5ubm2+go0K95OcQCuTt+dTbnxxhvNf/7nfxpjPGeiunTpYm677TaP9aZNm2ZCQ0NNaGioadu2ba1e6+233zbXXnutCQwMNH369DHTp0837777rkdN+/btzTPPPOPRNnnyZDNlyhSPtnfeecf4+fmZU6dO1fha27dvN5LM8ePHjTHfzkT9z//8j1WTk5NjJJn9+/dbbffee6/JyMio1f5MmDDB+Pv7m9DQUBMcHGwkGT8/P/Paa69dcr3hw4ebBx980HqelpZmpk2b5lHz/ZmoMWPGmP/4j//wqPnVr35lunXrVqu+As0ZM1EAGtyTTz6pF198UXv37r1s7X/9139p165dmjdvnk6cOFGr7Q8aNEiff/65Nm7cqDvvvFN79uzRwIED9dhjj11yvQ8++EC5ublq2bKl9cjIyJDb7daBAwckfTNTc+utt6pdu3Zq1aqV0tLSJEmHDh3y2NYNN9xg/T06OlotWrRQhw4dPNqOHj1aq/2RpCFDhmjXrl0qLCzUhAkTNGnSJN1xxx3W8qqqKj322GNKSkpS69at1bJlS/3973+/oF+Xs3fvXt10000ebTfddJP27dunqqqqOm0LaG4IUQAa3KBBg5SRkaHZs2d7tHfq1EmffvqpR1tUVJSuu+46tWnTpk6vERgYqIEDB+rhhx/W+vXrtWDBAj322GM6e/bsRdc5ceKE7r33Xu3atct6fPDBB9q3b586duyoyspKZWRkKCwsTC+//LK2b9+uv/71r5J0wXYDAwOtv1f/qu67HA6H3G53rfcnNDRU1113nXr27Knnn39ehYWF+uMf/2gt//Wvf63f/e53evjhh/XWW29p165dysjIuOT+AqhfAd7uAIDmYeHChUpOTtb1119vtWVlZWnMmDF6/fXXNWLEiHp9vW7duun8+fM6ffq0goKCFBQUdMHMyg9/+EN9/PHHuu6662rcxkcffaSvv/5aCxcutM4nev/99+u1n7Xh5+enOXPmaMaMGRozZoxCQkK0detWjRgxQj/72c8kSW63W//85z/VrVs3a72a9vn7unbtqq1bt3q0bd26VZ07d5a/v3/97wxwFWEmCkCjSEpK0tixY7V48WKrbfTo0brzzjs1evRoLViwQIWFhTp48KDefvtt5eXl1fpLfPDgwVqxYoWKiop08OBBrVu3TnPmzNGQIUMUFhYm6ZvrRG3ZskX/+te/VFZWJkl6+OGHtW3bNk2dOlW7du3Svn379Prrr1snlrdr105BQUFasmSJPv/8c73xxhuXPUTYUH7605/K399fy5Ytk/TNLN6GDRu0bds27d27V/fee69KS0s91klISLDGtKysrMaZsAcffFAbN27UY489pn/+85968cUXtXTpUs2cObNR9gvwZYQoAI1mwYIFHl/kDodDeXl5WrRokdatW6ehQ4fq+uuv13/+538qPj5e7777bq22m5GRoRdffFE//vGP1bVrV91///3KyMjQypUrPV774MGD6tixo6KioiR9cx7T22+/rX/+858aOHCgevXqpXnz5ikuLk7SN4cWc3NztWrVKnXr1k0LFy7U008/XY8jUnsBAQGaOnWqnnrqKVVWVuqRRx7RD3/4Q2VkZGjw4MGKiYlRZmamxzozZ86Uv7+/unXrpqioqBrPl/rhD3+olStX6tVXX1WPHj00b948LViwoMZfIALw5DDGGG93AgAAwNcwEwUAAGADIQpAk/fdSxB8//HOO+94u3t1cujQoUvuT10vUQDAezicB6DJu9SNiNu2bauQkJBG7M2VOX/+vA4ePHjR5QkJCQoI4IfTgC8gRAEAANjA4TwAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADf8P8daoqhTAJ7IAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAHHCAYAAABnS/bqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATJ5JREFUeJzt3XtcVWXe///3BtyAGJCBHAwVzUMqqenAjR3QkTtMpySnMdFRYmy0e3TKbCrtl2LWN0y7J0fH0qkp+06laDnZqB0cDzkpoaHmAXPUtMwAQ2PjATywr98ffV3TFlRQl5vD6/l4rAfua33WWte6WrHfrL3W2g5jjBEAAACuOB9vdwAAAKC+ImgBAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADYhaAFo8CZPniyHw1GtWofDocmTJ9van169eqlXr161dn0Aqo+gBaDWmDdvnhwOhzX5+fmpefPmuv/++3Xw4EFvd6/WadWqlcd4NWvWTLfddpv+/ve/X5H1nzhxQpMnT9aaNWuuyPqAhoigBaDWmTJliv72t79pzpw5uvPOO/Xmm28qKSlJ5eXltmzvqaeeUllZmS3rtlvXrl31t7/9TX/729/0hz/8Qd99950GDhyoOXPmXPa6T5w4oaeffpqgBVwGP293AADOdeedd6pHjx6SpAceeEBhYWF6/vnn9f7772vQoEFXfHt+fn7y86ubvw6bN2+uX//619br4cOH64YbbtCLL76oBx980Is9AyBxRgtAHXDbbbdJkvbu3evR/uWXX+ree+9V06ZNFRAQoB49euj999/3qDl9+rSefvpptW3bVgEBAbruuut06623asWKFVZNVddonTx5Uo888ojCw8N1zTXX6O6779a3335bqW/333+/WrVqVam9qnW+/vrr+vnPf65mzZrJ399fHTt21Msvv1yjsbiYyMhI3Xjjjdq3b98F6w4dOqQRI0YoIiJCAQEB6tKli9544w1r/v79+xUeHi5Jevrpp62PJ+2+Pg2ob+rmn3AAGpT9+/dLkq699lqrbceOHbrlllvUvHlzjR8/XkFBQVq4cKFSU1P17rvv6p577pH0Y+DJysrSAw88oPj4eJWWlurzzz/Xpk2b9N///d/n3eYDDzygN998U0OGDFHPnj21atUq9e/f/7L24+WXX1anTp109913y8/PT//4xz/0u9/9Tm63W6NHj76sdZ91+vRpHThwQNddd915a8rKytSrVy/t2bNHY8aMUWxsrBYtWqT7779fJSUlevjhhxUeHq6XX35Z//M//6N77rlHAwcOlCTddNNNV6SfQINhAKCWeP31140k889//tN8//335sCBA+add94x4eHhxt/f3xw4cMCq7dOnj4mLizPl5eVWm9vtNj179jRt27a12rp06WL69+9/we1mZmaan/463LJli5Fkfve733nUDRkyxEgymZmZVlt6erpp2bLlRddpjDEnTpyoVJeSkmJat27t0ZaUlGSSkpIu2GdjjGnZsqW54447zPfff2++//5788UXX5jBgwcbSeb3v//9edc3Y8YMI8m8+eabVtupU6dMYmKiadKkiSktLTXGGPP9999X2l8ANcNHhwBqneTkZIWHhysmJkb33nuvgoKC9P777+v666+XJB05ckSrVq3SoEGDdPToURUXF6u4uFiHDx9WSkqKdu/ebd2lGBoaqh07dmj37t3V3v7y5cslSQ899JBH+9ixYy9rvwIDA61/u1wuFRcXKykpSV999ZVcLtclrfPjjz9WeHi4wsPD1aVLFy1atEjDhg3T888/f95lli9frsjISKWlpVltjRo10kMPPaRjx47pk08+uaS+AKiMjw4B1DqzZ89Wu3bt5HK59Nprr2nt2rXy9/e35u/Zs0fGGE2cOFETJ06sch2HDh1S8+bNNWXKFA0YMEDt2rVT586d1bdvXw0bNuyCH4F9/fXX8vHxUZs2bTza27dvf1n7tW7dOmVmZionJ0cnTpzwmOdyuRQSElLjdSYkJOjZZ5+Vw+FQ48aNdeONNyo0NPSCy3z99ddq27atfHw8/9a+8cYbrfkArgyCFoBaJz4+3rrrMDU1VbfeequGDBmiXbt2qUmTJnK73ZKkP/zhD0pJSalyHTfccIMk6fbbb9fevXu1ZMkSffzxx3r11Vf14osvas6cOXrggQcuu6/ne9BpRUWFx+u9e/eqT58+6tChg/74xz8qJiZGTqdTy5cv14svvmjtU02FhYUpOTn5kpYFYD+CFoBazdfXV1lZWerdu7f+/Oc/a/z48WrdurWkHz/uqk7IaNq0qTIyMpSRkaFjx47p9ttv1+TJk88btFq2bCm32629e/d6nMXatWtXpdprr71WJSUlldrPPSv0j3/8QydPntT777+vFi1aWO2rV6++aP+vtJYtW2rr1q1yu90eZ7W+/PJLa750/hAJoPq4RgtArderVy/Fx8drxowZKi8vV7NmzdSrVy/NnTtXBQUFleq///5769+HDx/2mNekSRPdcMMNOnny5Hm3d+edd0qSZs6c6dE+Y8aMSrVt2rSRy+XS1q1brbaCgoJKT2f39fWVJBljrDaXy6XXX3/9vP2wS79+/VRYWKjs7Gyr7cyZM5o1a5aaNGmipKQkSVLjxo0lqcogCaB6OKMFoE547LHH9Ktf/Urz5s3Tgw8+qNmzZ+vWW29VXFycfvvb36p169YqKipSTk6Ovv32W33xxReSpI4dO6pXr17q3r27mjZtqs8//1zvvPOOxowZc95tde3aVWlpaXrppZfkcrnUs2dPrVy5Unv27KlUO3jwYD3xxBO655579NBDD+nEiRN6+eWX1a5dO23atMmqu+OOO+R0OnXXXXdp1KhROnbsmF555RU1a9asyrBop5EjR2ru3Lm6//77lZeXp1atWumdd97RunXrNGPGDF1zzTWSfrx4v2PHjsrOzla7du3UtGlTde7cWZ07d76q/QXqNG/f9ggAZ519vMPGjRsrzauoqDBt2rQxbdq0MWfOnDHGGLN3714zfPhwExkZaRo1amSaN29ufvGLX5h33nnHWu7ZZ5818fHxJjQ01AQGBpoOHTqY//N//o85deqUVVPVoxjKysrMQw89ZK677joTFBRk7rrrLnPgwIEqH3fw8ccfm86dOxun02nat29v3nzzzSrX+f7775ubbrrJBAQEmFatWpnnn3/evPbaa0aS2bdvn1VXk8c7XOzRFedbX1FRkcnIyDBhYWHG6XSauLg48/rrr1dadv369aZ79+7G6XTyqAfgEjiM+cl5bAAAAFwxXKMFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE14YKkXud1ufffdd7rmmmv4qgsAAOoIY4yOHj2q6OjoSl/Ofi6Clhd99913iomJ8XY3AADAJThw4ICuv/76C9YQtLzo7NdcHDhwQMHBwV7uDQAAqI7S0lLFxMRY7+MXQtDyorMfFwYHBxO0AACoY6pz2Q8XwwMAANiEoAUAAGATghYAAIBNuEYLAABYKioqdPr0aW93w+ucTudFH91QHQQtAAAgY4wKCwtVUlLi7a7UCj4+PoqNjZXT6bys9RC0AACAFbKaNWumxo0bN+gHaZ99oHhBQYFatGhxWWNB0AIAoIGrqKiwQtZ1113n7e7UCuHh4fruu+905swZNWrU6JLXw8XwAAA0cGevyWrcuLGXe1J7nP3IsKKi4rLWQ9ACAACSqvcAzobiSo0FQQsAAMAmBC0AAACbELRQpxW4yrR+b7EKXGXe7goAwAvuv/9+paamVmpfs2aNHA6HSkpKtGbNGg0YMEBRUVEKCgpS165d9dZbb12V/tWKoDV79my1atVKAQEBSkhI0IYNGy5Yv2jRInXo0EEBAQGKi4vT8uXLPeYbYzRp0iRFRUUpMDBQycnJ2r17t0fNkSNHNHToUAUHBys0NFQjRozQsWPHrPm7du1S7969FRERoYCAALVu3VpPPfVUpYe4XawvsE/2xm90y9RVGvJKrm6ZukrZG7/xdpcAALXQ+vXrddNNN+ndd9/V1q1blZGRoeHDh2vp0qW2b9vrQSs7O1vjxo1TZmamNm3apC5duiglJUWHDh2qsn79+vVKS0vTiBEjtHnzZqWmpio1NVXbt2+3aqZNm6aZM2dqzpw5ys3NVVBQkFJSUlReXm7VDB06VDt27NCKFSu0dOlSrV27ViNHjrTmN2rUSMOHD9fHH3+sXbt2acaMGXrllVeUmZlZo77AHgWuMk1YvE1u8+Nrt5GeXLydM1sAgEqefPJJPfPMM+rZs6fatGmjhx9+WH379tXixYvt37jxsvj4eDN69GjrdUVFhYmOjjZZWVlV1g8aNMj079/foy0hIcGMGjXKGGOM2+02kZGRZvr06db8kpIS4+/vb+bPn2+MMSY/P99IMhs3brRqPvjgA+NwOMzBgwfP29dHHnnE3HrrrdXuy8W4XC4jybhcrmrV4z/W7fnetHxiaaVp/Z5ib3cNAOqcsrIyk5+fb8rKyq7I+r4rOWHW7fnefFdy4oqs70LS09PNgAEDKrWvXr3aSDI//PBDlcvdcsst5tFHHz3vei80JjV5//bqGa1Tp04pLy9PycnJVpuPj4+Sk5OVk5NT5TI5OTke9ZKUkpJi1e/bt0+FhYUeNSEhIUpISLBqcnJyFBoaqh49elg1ycnJ8vHxUW5ubpXb3bNnjz788EMlJSVVuy/nOnnypEpLSz0mXJrYsCD5nHPnra/DoVZhPAMGALzJG5d1LF26VE2aNPGY7rzzzvPWL1y4UBs3blRGRobtffNq0CouLlZFRYUiIiI82iMiIlRYWFjlMoWFhResP/vzYjXNmjXzmO/n56emTZtW2m7Pnj0VEBCgtm3b6rbbbtOUKVOq3ZdzZWVlKSQkxJpiYmKqrMPFRYUEKmtgnHz/33NOfB0OPTews6JCAr3cMwBouLx1WUfv3r21ZcsWj+nVV1+tsnb16tXKyMjQK6+8ok6dOtnaL4mv4Lmo7OxsHT16VF988YUee+wxvfDCC3r88ccvaV0TJkzQuHHjrNelpaWErctw389a6PZ24dpffEKtwhoTsgDAy/YVH7dC1lkVxmh/8Qlbf0cHBQXphhtu8Gj79ttvK9V98sknuuuuu/Tiiy9q+PDhtvXnp7watMLCwuTr66uioiKP9qKiIkVGRla5TGRk5AXrz/4sKipSVFSUR03Xrl2tmnMvtj9z5oyOHDlSabtng1DHjh1VUVGhkSNH6tFHH5Wvr+9F+3Iuf39/+fv7VzkPlyYqJJCABQC1xNnLOn4atmrLZR1r1qzRL37xCz3//PMeN7/ZzasfHTqdTnXv3l0rV6602txut1auXKnExMQql0lMTPSol6QVK1ZY9bGxsYqMjPSoKS0tVW5urlWTmJiokpIS5eXlWTWrVq2S2+1WQkLCefvrdrt1+vRpud3uavUFAICGpLZe1rF69Wr1799fDz30kH75y1+qsLBQhYWFOnLkiP0bv+jl8jZbsGCB8ff3N/PmzTP5+flm5MiRJjQ01BQWFhpjjBk2bJgZP368Vb9u3Trj5+dnXnjhBbNz506TmZlpGjVqZLZt22bVTJ061YSGhpolS5aYrVu3mgEDBpjY2FiPOwf69u1runXrZnJzc82nn35q2rZta9LS0qz5b775psnOzjb5+flm7969Jjs720RHR5uhQ4fWqC8Xwl2HAIDawI67DtfvKa41dx2mp6cbSZWmpKSk8673St116PWgZYwxs2bNMi1atDBOp9PEx8ebzz77zJqXlJRk0tPTPeoXLlxo2rVrZ5xOp+nUqZNZtmyZx3y3220mTpxoIiIijL+/v+nTp4/ZtWuXR83hw4dNWlqaadKkiQkODjYZGRnm6NGj1vwFCxaYm2++2TRp0sQEBQWZjh07mueee67SgF+sLxdC0AIA1AZXOmjVB1cqaDmMMeZ8Z7tgr9LSUoWEhMjlcik4ONjb3QEANFDl5eXat2+fYmNjFRAQ4O3u1AoXGpOavH97/cnwAAAA9RVBCwAAwCYELQAAAJsQtAAAgCSJy7b/40qNBUELAIAGrlGjRpKkEydOeLkntcepU6ckSb6+vpe1Hr6CBwCABs7X11ehoaHWt6Y0btxYjv/30NGGyO126/vvv1fjxo3l53d5UYmgBQAArK+PO/cr6hoqHx8ftWjR4rIDJ0ELAADI4XAoKipKzZo10+nTp73dHa9zOp3y8bn8K6wIWgAAwOLr63vZ1yXhP7gYHgAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCa1ImjNnj1brVq1UkBAgBISErRhw4YL1i9atEgdOnRQQECA4uLitHz5co/5xhhNmjRJUVFRCgwMVHJysnbv3u1Rc+TIEQ0dOlTBwcEKDQ3ViBEjdOzYMWv+mjVrNGDAAEVFRSkoKEhdu3bVW2+95bGOefPmyeFweEwBAQGXORoAAKC+8HrQys7O1rhx45SZmalNmzapS5cuSklJ0aFDh6qsX79+vdLS0jRixAht3rxZqampSk1N1fbt262aadOmaebMmZozZ45yc3MVFBSklJQUlZeXWzVDhw7Vjh07tGLFCi1dulRr167VyJEjPbZz00036d1339XWrVuVkZGh4cOHa+nSpR79CQ4OVkFBgTV9/fXXV3iEAABAnWW8LD4+3owePdp6XVFRYaKjo01WVlaV9YMGDTL9+/f3aEtISDCjRo0yxhjjdrtNZGSkmT59ujW/pKTE+Pv7m/nz5xtjjMnPzzeSzMaNG62aDz74wDgcDnPw4MHz9rVfv34mIyPDev3666+bkJCQ6u/sOVwul5FkXC7XJa8DAABcXTV5//bqGa1Tp04pLy9PycnJVpuPj4+Sk5OVk5NT5TI5OTke9ZKUkpJi1e/bt0+FhYUeNSEhIUpISLBqcnJyFBoaqh49elg1ycnJ8vHxUW5u7nn763K51LRpU4+2Y8eOqWXLloqJidGAAQO0Y8eO8y5/8uRJlZaWekwAAKD+8mrQKi4uVkVFhSIiIjzaIyIiVFhYWOUyhYWFF6w/+/NiNc2aNfOY7+fnp6ZNm553uwsXLtTGjRuVkZFhtbVv316vvfaalixZojfffFNut1s9e/bUt99+W+U6srKyFBISYk0xMTFV1gEAgPrB69do1QWrV69WRkaGXnnlFXXq1MlqT0xM1PDhw9W1a1clJSVp8eLFCg8P19y5c6tcz4QJE+RyuazpwIEDV2sXAACAF3g1aIWFhcnX11dFRUUe7UVFRYqMjKxymcjIyAvWn/15sZpzL7Y/c+aMjhw5Umm7n3zyie666y69+OKLGj58+AX3p1GjRurWrZv27NlT5Xx/f38FBwd7TAAAoP7yatByOp3q3r27Vq5cabW53W6tXLlSiYmJVS6TmJjoUS9JK1assOpjY2MVGRnpUVNaWqrc3FyrJjExUSUlJcrLy7NqVq1aJbfbrYSEBKttzZo16t+/v55//nmPOxLPp6KiQtu2bVNUVFQ19h4AANR7V+Hi/AtasGCB8ff3N/PmzTP5+flm5MiRJjQ01BQWFhpjjBk2bJgZP368Vb9u3Trj5+dnXnjhBbNz506TmZlpGjVqZLZt22bVTJ061YSGhpolS5aYrVu3mgEDBpjY2FhTVlZm1fTt29d069bN5Obmmk8//dS0bdvWpKWlWfNXrVplGjdubCZMmGAKCgqs6fDhw1bN008/bT766COzd+9ek5eXZwYPHmwCAgLMjh07qrXv3HUIAEDdU5P3b68HLWOMmTVrlmnRooVxOp0mPj7efPbZZ9a8pKQkk56e7lG/cOFC065dO+N0Ok2nTp3MsmXLPOa73W4zceJEExERYfz9/U2fPn3Mrl27PGoOHz5s0tLSTJMmTUxwcLDJyMgwR48eteanp6cbSZWmpKQkq2bs2LFWvyMiIky/fv3Mpk2bqr3fBC0AAOqemrx/O4wxxmun0xq40tJShYSEyOVycb0WAAB1RE3ev7nrEAAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAm9SKoDV79my1atVKAQEBSkhI0IYNGy5Yv2jRInXo0EEBAQGKi4vT8uXLPeYbYzRp0iRFRUUpMDBQycnJ2r17t0fNkSNHNHToUAUHBys0NFQjRozQsWPHrPlr1qzRgAEDFBUVpaCgIHXt2lVvvfVWjfsCAAAaLq8HrezsbI0bN06ZmZnatGmTunTpopSUFB06dKjK+vXr1ystLU0jRozQ5s2blZqaqtTUVG3fvt2qmTZtmmbOnKk5c+YoNzdXQUFBSklJUXl5uVUzdOhQ7dixQytWrNDSpUu1du1ajRw50mM7N910k959911t3bpVGRkZGj58uJYuXVqjvgAAgAbMeFl8fLwZPXq09bqiosJER0ebrKysKusHDRpk+vfv79GWkJBgRo0aZYwxxu12m8jISDN9+nRrfklJifH39zfz5883xhiTn59vJJmNGzdaNR988IFxOBzm4MGD5+1rv379TEZGRrX7cjEul8tIMi6Xq1r1AADA+2ry/u3VM1qnTp1SXl6ekpOTrTYfHx8lJycrJyenymVycnI86iUpJSXFqt+3b58KCws9akJCQpSQkGDV5OTkKDQ0VD169LBqkpOT5ePjo9zc3PP21+VyqWnTptXuy7lOnjyp0tJSjwkAANRfXg1axcXFqqioUEREhEd7RESECgsLq1ymsLDwgvVnf16splmzZh7z/fz81LRp0/Nud+HChdq4caMyMjKq3ZdzZWVlKSQkxJpiYmKqrAMAAPWD16/RqgtWr16tjIwMvfLKK+rUqdMlr2fChAlyuVzWdODAgSvYSwAAUNt4NWiFhYXJ19dXRUVFHu1FRUWKjIyscpnIyMgL1p/9ebGacy+2P3PmjI4cOVJpu5988onuuusuvfjiixo+fHiN+nIuf39/BQcHe0wAAKD+8mrQcjqd6t69u1auXGm1ud1urVy5UomJiVUuk5iY6FEvSStWrLDqY2NjFRkZ6VFTWlqq3NxcqyYxMVElJSXKy8uzalatWiW3262EhASrbc2aNerfv7+ef/55jzsSq9sXAADQwF2Fi/MvaMGCBcbf39/MmzfP5Ofnm5EjR5rQ0FBTWFhojDFm2LBhZvz48Vb9unXrjJ+fn3nhhRfMzp07TWZmpmnUqJHZtm2bVTN16lQTGhpqlixZYrZu3WoGDBhgYmNjTVlZmVXTt29f061bN5Obm2s+/fRT07ZtW5OWlmbNX7VqlWncuLGZMGGCKSgosKbDhw/XqC8Xwl2HAADUPTV5//Z60DLGmFmzZpkWLVoYp9Np4uPjzWeffWbNS0pKMunp6R71CxcuNO3atTNOp9N06tTJLFu2zGO+2+02EydONBEREcbf39/06dPH7Nq1y6Pm8OHDJi0tzTRp0sQEBwebjIwMc/ToUWt+enq6kVRpSkpKqlFfLoSgBQBA3VOT92+HMcZ47XRaA1daWqqQkBC5XC6u1wIAoI6oyfs3dx0CAADYhKAFAABgE4IWAACATQhaAACgXipwlWn93mIVuMq81gc/r20ZAADAJtkbv9GExdvkNpKPQ8oaGKf7ftbiqveDM1oAAKBeKXCVWSFLktxGenLxdq+c2SJoAQCAemVf8XErZJ1VYYz2F5+46n0haAEAgHolNixIPg7PNl+HQ63CGl/1vhC0AABAvRIVEqisgXHydfyYtnwdDj03sLOiQgKvel+4GB4AANQ79/2shW5vF679xSfUKqyxV0KWRNCqtwpcZdpXfFyxYUFeO7gAAPCmqJBAr78HErTqodpySysAAA0d12jVM7XpllYAABo6glY9U5tuaQUAoKEjaNUztemWVgAAGjqCVj1Tm25pBQCgoeNi+HqottzSCgBAQ0fQqqdqwy2tAAA0dHx0CAAAYBOCFgAAgE0IWgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAAColwpcZVq/t1gFrjKv9YGv4AEAAPVO9sZvNGHxNrmN5OOQsgbG6b6ftbjq/eCMFgAAqFcKXGVWyJIkt5GeXLzdK2e2CFoAAKBe2Vd83ApZZ1UYo/3FJ656XwhaAACgXokNC5KPw7PN1+FQq7DGV70vBC0AAFCvRIUEKmtgnHwdP6YtX4dDzw3srKiQwKveFy6GBwAA9c59P2uh29uFa3/xCbUKa+yVkCURtAAAQD0VFRLotYB1Fh8dAgAA29WGZ1p5A2e0AACArWrLM628gTNaAADANrXpmVbeQNACAAC2qU3PtPIGghYAALBNbXqmlTfUOGgtX75cDzzwgB5//HF9+eWXHvN++OEH/fznP79inQMAAHVbbXqmlTc4jDHm4mU/evvttzV8+HD17dtXLpdLn3/+uV599VUNHTpUklRUVKTo6GhVVFTY1uH6pLS0VCEhIXK5XAoODvZ2dwAAsE2Bq8zrz7S6Umry/l2juw6nT5+uP/7xj3rooYckSQsXLtRvfvMblZeXa8SIEZfeYwAAUK/VhmdaeUONgtbu3bt11113Wa8HDRqk8PBw3X333Tp9+rTuueeeK95BAACAuqpGQSs4OFhFRUWKjY212nr37q2lS5fqF7/4hb799tsr3kEAAIC6qkYXw8fHx+uDDz6o1J6UlKR//OMfmjFjxpXqFwAAQJ1Xo6D1yCOPKCAgoMp5vXr10j/+8Q8NHz68Rh2YPXu2WrVqpYCAACUkJGjDhg0XrF+0aJE6dOiggIAAxcXFafny5R7zjTGaNGmSoqKiFBgYqOTkZO3evduj5siRIxo6dKiCg4MVGhqqESNG6NixY9b88vJy3X///YqLi5Ofn59SU1Mr9WPNmjVyOByVpsLCwhrtPwAAqL9qFLS6deum0aNHq7S0tMqpe/fu+tOf/lTt9WVnZ2vcuHHKzMzUpk2b1KVLF6WkpOjQoUNV1q9fv15paWkaMWKENm/erNTUVKWmpmr79u1WzbRp0zRz5kzNmTNHubm5CgoKUkpKisrLy62aoUOHaseOHVqxYoWWLl2qtWvXauTIkdb8iooKBQYG6qGHHlJycvIF92HXrl0qKCiwpmbNmlV7/wEAQD1nasDhcBgfH5+LTtUVHx9vRo8ebb2uqKgw0dHRJisrq8r6QYMGmf79+3u0JSQkmFGjRhljjHG73SYyMtJMnz7dml9SUmL8/f3N/PnzjTHG5OfnG0lm48aNVs0HH3xgHA6HOXjwYKVtpqenmwEDBlRqX716tZFkfvjhh2rv77lcLpeRZFwu1yWvAwAAXF01ef+u0cXwq1ev/mlAU79+/fTqq6+qefPmNQ54p06dUl5eniZMmGC1+fj4KDk5WTk5OVUuk5OTo3Hjxnm0paSk6L333pMk7du3T4WFhR5noUJCQpSQkKCcnBwNHjxYOTk5Cg0NVY8ePaya5ORk+fj4KDc3t8Z3Tnbt2lUnT55U586dNXnyZN1yyy3nrT158qROnjxpvS4tLa3RtgAAQN1So6CVlJTk8drX11f/9V//pdatW9d4w8XFxaqoqFBERIRHe0RERKUnzp9VWFhYZf3Z66LO/rxYzbkf7/n5+alp06Y1ur4qKipKc+bMUY8ePXTy5Em9+uqr6tWrl3Jzc3XzzTdXuUxWVpaefvrpam8DAADUbTUKWviP9u3bq3379tbrnj17au/evXrxxRf1t7/9rcplJkyY4HFGrrS0VDExMbb3FQAAeIfXvlQ6LCxMvr6+Kioq8mgvKipSZGRklctERkZesP7sz4vVnHux/ZkzZ3TkyJHzbre64uPjtWfPnvPO9/f3V3BwsMcEAADqr8sOWg6H4+JFVXA6nerevbtWrlxptbndbq1cuVKJiYlVLpOYmOhRL0krVqyw6mNjYxUZGelRU1paqtzcXKsmMTFRJSUlysvLs2pWrVolt9uthISES9qXs7Zs2aKoqKjLWgcAAKg/avTR4cCBAz1el5eX68EHH1RQUJBH++LFi6u1vnHjxik9PV09evRQfHy8ZsyYoePHjysjI0OSNHz4cDVv3lxZWVmSpIcfflhJSUn63//9X/Xv318LFizQ559/rr/85S+Sfgx9Y8eO1bPPPqu2bdsqNjZWEydOVHR0tPUsrBtvvFF9+/bVb3/7W82ZM0enT5/WmDFjNHjwYEVHR1t9y8/P16lTp3TkyBEdPXpUW7ZskfTjxe+SNGPGDMXGxqpTp04qLy/Xq6++qlWrVunjjz+uyZACAIB6rEZBKyQkxOP1r3/968va+H333afvv/9ekyZNUmFhobp27aoPP/zQupj9m2++kY/Pf0669ezZU2+//baeeuopPfnkk2rbtq3ee+89de7c2ap5/PHHdfz4cY0cOVIlJSW69dZb9eGHH3o8aPWtt97SmDFj1KdPH/n4+OiXv/ylZs6c6dG3fv366euvv7Zed+vWTdKPd1tKP941+eijj+rgwYNq3LixbrrpJv3zn/9U7969L2tMAABA/eEwZ5MDrrrS0lKFhITI5XJxvRYAAHVETd6/vXYxPAAAQH1H0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsInXg9bs2bPVqlUrBQQEKCEhQRs2bLhg/aJFi9ShQwcFBAQoLi5Oy5cv95hvjNGkSZMUFRWlwMBAJScna/fu3R41R44c0dChQxUcHKzQ0FCNGDFCx44ds+aXl5fr/vvvV1xcnPz8/JSamlplX9asWaObb75Z/v7+uuGGGzRv3rxLGgMAAFA/eTVoZWdna9y4ccrMzNSmTZvUpUsXpaSk6NChQ1XWr1+/XmlpaRoxYoQ2b96s1NRUpaamavv27VbNtGnTNHPmTM2ZM0e5ubkKCgpSSkqKysvLrZqhQ4dqx44dWrFihZYuXaq1a9dq5MiR1vyKigoFBgbqoYceUnJycpV92bdvn/r376/evXtry5YtGjt2rB544AF99NFHV2h0AABAnWe8KD4+3owePdp6XVFRYaKjo01WVlaV9YMGDTL9+/f3aEtISDCjRo0yxhjjdrtNZGSkmT59ujW/pKTE+Pv7m/nz5xtjjMnPzzeSzMaNG62aDz74wDgcDnPw4MFK20xPTzcDBgyo1P7444+bTp06ebTdd999JiUl5SJ7/R8ul8tIMi6Xq9rLAAAA76rJ+7fXzmidOnVKeXl5HmeMfHx8lJycrJycnCqXycnJqXSGKSUlxarft2+fCgsLPWpCQkKUkJBg1eTk5Cg0NFQ9evSwapKTk+Xj46Pc3Nxq9/9ifanKyZMnVVpa6jEBQG1X4CrT+r3FKnCVebsrQJ3jtaBVXFysiooKRUREeLRHRESosLCwymUKCwsvWH/258VqmjVr5jHfz89PTZs2Pe92a9KX0tJSlZVV/csoKytLISEh1hQTE1Pt7QGAN2Rv/Ea3TF2lIa/k6papq5S98RtvdwmoU7x+MXxDMmHCBLlcLms6cOCAt7sEAOdV4CrThMXb5DY/vnYb6cnF2zmzBdSA14JWWFiYfH19VVRU5NFeVFSkyMjIKpeJjIy8YP3ZnxerOfdi+zNnzujIkSPn3W5N+hIcHKzAwMAql/H391dwcLDHBAC11b7i41bIOqvCGO0vPuGdDgF1kNeCltPpVPfu3bVy5Uqrze12a+XKlUpMTKxymcTERI96SVqxYoVVHxsbq8jISI+a0tJS5ebmWjWJiYkqKSlRXl6eVbNq1Sq53W4lJCRUu/8X6wsA1HWxYUHycXi2+TocahXW2DsdAuogr350OG7cOL3yyit64403tHPnTv3P//yPjh8/royMDEnS8OHDNWHCBKv+4Ycf1ocffqj//d//1ZdffqnJkyfr888/15gxYyRJDodDY8eO1bPPPqv3339f27Zt0/DhwxUdHW09C+vGG29U37599dvf/lYbNmzQunXrNGbMGA0ePFjR0dHWtvLz87VlyxYdOXJELpdLW7Zs0ZYtW6z5Dz74oL766is9/vjj+vLLL/XSSy9p4cKFeuSRR+wfOAC4CqJCApU1ME6+jh/Tlq/DoecGdlZUSNVn7QFU4SrcBXlBs2bNMi1atDBOp9PEx8ebzz77zJqXlJRk0tPTPeoXLlxo2rVrZ5xOp+nUqZNZtmyZx3y3220mTpxoIiIijL+/v+nTp4/ZtWuXR83hw4dNWlqaadKkiQkODjYZGRnm6NGjHjUtW7Y0kipNP7V69WrTtWtX43Q6TevWrc3rr79eo33n8Q4A6oLvSk6Y9XuKzXclJ7zdFaBWqMn7t8MYYy6Qw2Cj0tJShYSEyOVycb0WAAB1RE3ev7nrEAAAwCYELQAAAJsQtAAAAGxC0Kqn+MoMAAC8z8/bHcCVl73xG+tpzj4OKWtgnO77WQtvdwsAcI4CV5n2FR9XbFgQj82opwha9cz5vjLj9nbh9fJ/Yn5JAair+KO4YSBo1TMX+sqM+hZE+CUFoK5qaH8UN2Rco1XPNJSvzODLbgHUZXyPZMNB0KpnGspXZvBLCkBd1lD+KAYfHdZL9/2shW5vF679xSfUKqxxvQtZ0n9+Sf00bPFLCkBdcfaP4icXb1eFMfX2j2IQtOqtqJDAev0/LL+kANR1DeGPYhC0UIfxSwpAXVff/ygGQQt1HL+kAAC1GRfDAwAA2ISgBQAAYBOCFgAAqJdqw/f+co0WAACod2rLt4dwRgsAANQrtenbQwhaAACgXqlN3x5C0AIAAPVKbfqKI4IWAACoV2rT9/5yMTwAAKh3asu3hxC0AABAvVQbvj2Ejw4BAABsQtACAACwCUELAADAJgQtAAAAmxC0AAAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC3gKipwlWn93mIVuMq83RXgquCYR0PHl0oDV0n2xm80YfE2uY3k45CyBsbpvp+18Ha3ANtwzAOc0QKuigJXmfWGI0luIz25eDt/5aPe4pgHfkTQAq6CfcXHrTecsyqM0f7iE97pEGAzjnngRwQt4CqIDQuSj8OzzdfhUKuwxt7pEGAzjnngRwQt4CqICglU1sA4+Tp+fOfxdTj03MDOigoJ9HLPAHtwzAM/chhjzMXLYIfS0lKFhITI5XIpODjY293BVVDgKtP+4hNqFdaYNxw0CBzzqI9q8v7NXYfAVRQVEsibDRoUjnk0dHx0CAAAYBOCFgAAgE0IWgAAADYhaAEAANikVgSt2bNnq1WrVgoICFBCQoI2bNhwwfpFixapQ4cOCggIUFxcnJYvX+4x3xijSZMmKSoqSoGBgUpOTtbu3bs9ao4cOaKhQ4cqODhYoaGhGjFihI4dO+ZRs3XrVt12220KCAhQTEyMpk2b5jF/3rx5cjgcHlNAQMBljAQAAKhPvB60srOzNW7cOGVmZmrTpk3q0qWLUlJSdOjQoSrr169fr7S0NI0YMUKbN29WamqqUlNTtX37dqtm2rRpmjlzpubMmaPc3FwFBQUpJSVF5eXlVs3QoUO1Y8cOrVixQkuXLtXatWs1cuRIa35paanuuOMOtWzZUnl5eZo+fbomT56sv/zlLx79CQ4OVkFBgTV9/fXXV3iEAABAnWW8LD4+3owePdp6XVFRYaKjo01WVlaV9YMGDTL9+/f3aEtISDCjRo0yxhjjdrtNZGSkmT59ujW/pKTE+Pv7m/nz5xtjjMnPzzeSzMaNG62aDz74wDgcDnPw4EFjjDEvvfSSufbaa83JkyetmieeeMK0b9/eev3666+bkJCQS9xzY1wul5FkXC7XJa8DAABcXTV5//bqGa1Tp04pLy9PycnJVpuPj4+Sk5OVk5NT5TI5OTke9ZKUkpJi1e/bt0+FhYUeNSEhIUpISLBqcnJyFBoaqh49elg1ycnJ8vHxUW5urlVz++23y+l0emxn165d+uGHH6y2Y8eOqWXLloqJidGAAQO0Y8eO8+7vyZMnVVpa6jEBAID6y6tBq7i4WBUVFYqIiPBoj4iIUGFhYZXLFBYWXrD+7M+L1TRr1sxjvp+fn5o2bepRU9U6frqN9u3b67XXXtOSJUv05ptvyu12q2fPnvr222+r7HtWVpZCQkKsKSYmpso6AABQP3j9Gq26LDExUcOHD1fXrl2VlJSkxYsXKzw8XHPnzq2yfsKECXK5XNZ04MCBq9xjAABwNXk1aIWFhcnX11dFRUUe7UVFRYqMjKxymcjIyAvWn/15sZpzL7Y/c+aMjhw54lFT1Tp+uo1zNWrUSN26ddOePXuqnO/v76/g4GCPCQAA1F9eDVpOp1Pdu3fXypUrrTa3262VK1cqMTGxymUSExM96iVpxYoVVn1sbKwiIyM9akpLS5Wbm2vVJCYmqqSkRHl5eVbNqlWr5Ha7lZCQYNWsXbtWp0+f9thO+/btde2111bZt4qKCm3btk1RUVE1GQYAAFBfXYWL8y9owYIFxt/f38ybN8/k5+ebkSNHmtDQUFNYWGiMMWbYsGFm/PjxVv26deuMn5+feeGFF8zOnTtNZmamadSokdm2bZtVM3XqVBMaGmqWLFlitm7dagYMGGBiY2NNWVmZVdO3b1/TrVs3k5ubaz799FPTtm1bk5aWZs0vKSkxERERZtiwYWb79u1mwYIFpnHjxmbu3LlWzdNPP20++ugjs3fvXpOXl2cGDx5sAgICzI4dO6q179x1CABA3VOT92+vBy1jjJk1a5Zp0aKFcTqdJj4+3nz22WfWvKSkJJOenu5Rv3DhQtOuXTvjdDpNp06dzLJlyzzmu91uM3HiRBMREWH8/f1Nnz59zK5duzxqDh8+bNLS0kyTJk1McHCwycjIMEePHvWo+eKLL8ytt95q/P39TfPmzc3UqVM95o8dO9bqd0REhOnXr5/ZtGlTtfeboAUAQN1Tk/dvhzHGePecWsNVWlqqkJAQuVwurtcCAKCOqMn7N3cdAmjQClxlWr+3WAWuMm93BUA95OftDgCAt2Rv/EYTFm+T20g+DilrYJzu+1kLb3cLQD3CGS0ADVKBq8wKWZLkNtKTi7dzZgvAFUXQAtAg7Ss+boWssyqM0f7iE97pEIB6iaAFoEGKDQuSj8OzzdfhUKuwxt7pEIB6iaAFoEGKCglU1sA4+Tp+TFu+DoeeG9hZUSGBXu4ZgPqEi+EBNFj3/ayFbm8Xrv3FJ9QqrDEhC8AVR9AC0KBFhQQSsADYho8OAQAAbELQAgAAsAlBCwAAwCYELQAAAJsQtAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELQAAABsQtACUC8UuMq0fm+xClxl3u4KAFj4Ch4AdV72xm80YfE2uY3k45CyBsbpvp+18Ha3AIAzWgDqtgJXmRWyJMltpCcXb+fMFoBagaAFoE7bV3zcCllnVRij/cUnvNMhAPgJghaAOi02LEg+Ds82X4dDrcIae6dDAPATBC0AdVpUSKCyBsbJ1/Fj2vJ1OPTcwM6KCgn0cs8AgIvhAdQD9/2shW5vF679xSfUKqwxIQtArUHQAlAvRIUEErAA1Dp8dAgAsA3PN0NDxxktAA1agatM+4qPKzYsiDNiVxjPNwMIWgAaMIKAfc73fLPb24UTaNGg8NEhgAaJB53ay5vPN+PjStQmnNEC0CBdKAhwxuXynX2+2U/H+Go834yzlKhtOKMFoEHiQaf28sbzzThLidqIM1oAGqSzQeDJxdtVYQwPOrXB1X6+GWcpURsRtAA0WDzo1H5X8/lm3vq4ErgQPjoE0KBFhQQqsc11hKx6gK9jQm3EGS0AVeL5UqiLOEuJ2oagBaAS7txCXcbXMaE24aNDAB64cwsArhyCFgAP3nzQJADUNwQtAB54vlT9xRPTgauPoAXAA3duVV9dCi7ZG7/RLVNXacgrubpl6iplb/zG210CGgSHMcZcvAx2KC0tVUhIiFwul4KDg73dHcBDgauMO7cuoC7dMFDgKtMtU1dVer7Up+N7898WuAQ1ef/mjBaAKvF8qfOrazcMcN0d4D0ELQCooboWXLjuDvAeghYA1FBdCy5cdwd4Dw8sBYAaqotfSM0T0wHvIGgBwCWoi8GFJ6YDV1+t+Ohw9uzZatWqlQICApSQkKANGzZcsH7RokXq0KGDAgICFBcXp+XLl3vMN8Zo0qRJioqKUmBgoJKTk7V7926PmiNHjmjo0KEKDg5WaGioRowYoWPHjnnUbN26VbfddpsCAgIUExOjadOm1bgvAOovbhgAcDFeD1rZ2dkaN26cMjMztWnTJnXp0kUpKSk6dOhQlfXr169XWlqaRowYoc2bNys1NVWpqanavn27VTNt2jTNnDlTc+bMUW5uroKCgpSSkqLy8nKrZujQodqxY4dWrFihpUuXau3atRo5cqQ1v7S0VHfccYdatmypvLw8TZ8+XZMnT9Zf/vKXGvUFAAA0YMbL4uPjzejRo63XFRUVJjo62mRlZVVZP2jQINO/f3+PtoSEBDNq1ChjjDFut9tERkaa6dOnW/NLSkqMv7+/mT9/vjHGmPz8fCPJbNy40ar54IMPjMPhMAcPHjTGGPPSSy+Za6+91pw8edKqeeKJJ0z79u2r3ZeLcblcRpJxuVzVqgcAAN5Xk/dvr57ROnXqlPLy8pScnGy1+fj4KDk5WTk5OVUuk5OT41EvSSkpKVb9vn37VFhY6FETEhKihIQEqyYnJ0ehoaHq0aOHVZOcnCwfHx/l5uZaNbfffrucTqfHdnbt2qUffvihWn0518mTJ1VaWuoxAQCA+surQau4uFgVFRWKiIjwaI+IiFBhYWGVyxQWFl6w/uzPi9U0a9bMY76fn5+aNm3qUVPVOn66jYv15VxZWVkKCQmxppiYmCrrAABA/eD1a7QakgkTJsjlclnTgQMHvN0lAABgI68GrbCwMPn6+qqoqMijvaioSJGRkVUuExkZecH6sz8vVnPuxfZnzpzRkSNHPGqqWsdPt3GxvpzL399fwcHBHhMAAKi/vBq0nE6nunfvrpUrV1ptbrdbK1euVGJiYpXLJCYmetRL0ooVK6z62NhYRUZGetSUlpYqNzfXqklMTFRJSYny8vKsmlWrVsntdishIcGqWbt2rU6fPu2xnfbt2+vaa6+tVl8AAEADdxUuzr+gBQsWGH9/fzNv3jyTn59vRo4caUJDQ01hYaExxphhw4aZ8ePHW/Xr1q0zfn5+5oUXXjA7d+40mZmZplGjRmbbtm1WzdSpU01oaKhZsmSJ2bp1qxkwYICJjY01ZWVlVk3fvn1Nt27dTG5urvn0009N27ZtTVpamjW/pKTEREREmGHDhpnt27ebBQsWmMaNG5u5c+fWqC8Xwl2HAADUPTV5//Z60DLGmFmzZpkWLVoYp9Np4uPjzWeffWbNS0pKMunp6R71CxcuNO3atTNOp9N06tTJLFu2zGO+2+02EydONBEREcbf39/06dPH7Nq1y6Pm8OHDJi0tzTRp0sQEBwebjIwMc/ToUY+aL774wtx6663G39/fNG/e3EydOrVS3y/WlwshaAEAUPfU5P3bYYwxFz7nBbuUlpYqJCRELpeL67UAAKgjavL+zV2HAAAANuFLpb3o7MlEHlwKAEDdcfZ9uzofChK0vOjo0aOSxINLAQCog44ePaqQkJAL1nCNlhe53W599913uuaaa+RwOC5rXaWlpYqJidGBAwe43uv/YUwqY0wqY0yqxrhUxphU1lDHxBijo0ePKjo6Wj4+F74KizNaXuTj46Prr7/+iq6TB6FWxphUxphUxphUjXGpjDGprCGOycXOZJ3FxfAAAAA2IWgBAADYhKBVT/j7+yszM1P+/v7e7kqtwZhUxphUxphUjXGpjDGpjDG5OC6GBwAAsAlntAAAAGxC0AIAALAJQQsAAMAmBC0AAACbELRqsdmzZ6tVq1YKCAhQQkKCNmzYcMH6GTNmqH379goMDFRMTIweeeQRlZeXW/MnT54sh8PhMXXo0MHu3biiajImp0+f1pQpU9SmTRsFBASoS5cu+vDDDy9rnbXRlR6Tun6crF27VnfddZeio6PlcDj03nvvXXSZNWvW6Oabb5a/v79uuOEGzZs3r1JNXT5O7BiThnacFBQUaMiQIWrXrp18fHw0duzYKusWLVqkDh06KCAgQHFxcVq+fPmV77xN7BiTefPmVTpOAgIC7NmBWoqgVUtlZ2dr3LhxyszM1KZNm9SlSxelpKTo0KFDVda//fbbGj9+vDIzM7Vz50799a9/VXZ2tp588kmPuk6dOqmgoMCaPv3006uxO1dETcfkqaee0ty5czVr1izl5+frwQcf1D333KPNmzdf8jprGzvGRKrbx8nx48fVpUsXzZ49u1r1+/btU//+/dW7d29t2bJFY8eO1QMPPKCPPvrIqqnrx4kdYyI1rOPk5MmTCg8P11NPPaUuXbpUWbN+/XqlpaVpxIgR2rx5s1JTU5Wamqrt27dfya7bxo4xkX58avxPj5Ovv/76SnW5bjColeLj483o0aOt1xUVFSY6OtpkZWVVWT969Gjz85//3KNt3Lhx5pZbbrFeZ2Zmmi5dutjS36uhpmMSFRVl/vznP3u0DRw40AwdOvSS11nb2DEmdf04+SlJ5u9///sFax5//HHTqVMnj7b77rvPpKSkWK/r+nHyU1dqTBracfJTSUlJ5uGHH67UPmjQINO/f3+PtoSEBDNq1KjL7OHVd6XG5PXXXzchISFXrF91EWe0aqFTp04pLy9PycnJVpuPj4+Sk5OVk5NT5TI9e/ZUXl6e9XHGV199peXLl6tfv34edbt371Z0dLRat26toUOH6ptvvrFvR66gSxmTkydPVjpFHRgYaP3VfSnrrE3sGJOz6upxcilycnI8xlCSUlJSrDGs68fJpbjYmJzVkI6T6qjuuDU0x44dU8uWLRUTE6MBAwZox44d3u7SVUXQqoWKi4tVUVGhiIgIj/aIiAgVFhZWucyQIUM0ZcoU3XrrrWrUqJHatGmjXr16eXx0mJCQoHnz5unDDz/Uyy+/rH379um2227T0aNHbd2fK+FSxiQlJUV//OMftXv3brndbq1YsUKLFy9WQUHBJa+zNrFjTKS6fZxcisLCwirHsLS0VGVlZXX+OLkUFxsTqeEdJ9VxvnGrr8dJdbRv316vvfaalixZojfffFNut1s9e/bUt99+6+2uXTUErXpizZo1eu655/TSSy9p06ZNWrx4sZYtW6ZnnnnGqrnzzjv1q1/9SjfddJNSUlK0fPlylZSUaOHChV7suX3+9Kc/qW3bturQoYOcTqfGjBmjjIwM+fg03MO+OmPS0I4TXBqOE1RHYmKihg8frq5duyopKUmLFy9WeHi45s6d6+2uXTUN9x2nFgsLC5Ovr6+Kioo82ouKihQZGVnlMhMnTtSwYcP0wAMPKC4uTvfcc4+ee+45ZWVlye12V7lMaGio2rVrpz179lzxfbjSLmVMwsPD9d577+n48eP6+uuv9eWXX6pJkyZq3br1Ja+zNrFjTKpSl46TSxEZGVnlGAYHByswMLDOHyeX4mJjUpX6fpxUx/nGrb4eJ5eiUaNG6tatW4M6TghatZDT6VT37t21cuVKq83tdmvlypVKTEyscpkTJ05UOlPj6+srSTLn+TrLY8eOae/evYqKirpCPbfPpYzJWQEBAWrevLnOnDmjd999VwMGDLjsddYGdoxJVerScXIpEhMTPcZQklasWGGNYV0/Ti7FxcakKvX9OKmOSxm3hqaiokLbtm1rWMeJt6/GR9UWLFhg/P39zbx580x+fr4ZOXKkCQ0NNYWFhcYYY4YNG2bGjx9v1WdmZpprrrnGzJ8/33z11Vfm448/Nm3atDGDBg2yah599FGzZs0as2/fPrNu3TqTnJxswsLCzKFDh676/l2Kmo7JZ599Zt59912zd+9es3btWvPzn//cxMbGmh9++KHa66zt7BiTun6cHD161GzevNls3rzZSDJ//OMfzebNm83XX39tjDFm/PjxZtiwYVb9V199ZRo3bmwee+wxs3PnTjN79mzj6+trPvzwQ6umrh8ndoxJQztOjDFWfffu3c2QIUPM5s2bzY4dO6z569atM35+fuaFF14wO3fuNJmZmaZRo0Zm27ZtV3XfLpUdY/L000+bjz76yOzdu9fk5eWZwYMHm4CAAI+a+o6gVYvNmjXLtGjRwjidThMfH28+++wza15SUpJJT0+3Xp8+fdpMnjzZtGnTxgQEBJiYmBjzu9/9zuMN9L777jNRUVHG6XSa5s2bm/vuu8/s2bPnKu7R5avJmKxZs8bceOONxt/f31x33XVm2LBh5uDBgzVaZ11wpcekrh8nq1evNpIqTWfHIT093SQlJVVapmvXrsbpdJrWrVub119/vdJ66/JxYseYNMTjpKr6li1betQsXLjQtGvXzjidTtOpUyezbNmyq7NDV4AdYzJ27Fjr/5uIiAjTr18/s2nTpqu3U7WAw5jzfK4EAACAy8I1WgAAADYhaAEAANiEoAUAAGATghYAAIBNCFoAAAA2IWgBAADYhKAFAABgE4IWAMDDmjVr5HA4VFJS4u2uAHUeQQuA19x///1yOByaOnWqR/t7770nh8NhvTbG6JVXXlFiYqKCg4PVpEkTderUSQ8//HC1v5z2xIkTmjBhgtq0aaOAgACFh4crKSlJS5YssWpatWqlGTNmXJF9s9vZsXM4HGrUqJFiY2P1+OOPq7y8vEbr6dWrl8aOHevR1rNnTxUUFCgkJOQK9hhomAhaALwqICBAzz//vH744Ycq5xtjNGTIED300EPq16+fPv74Y+Xn5+uvf/2rAgIC9Oyzz1ZrOw8++KAWL16sWbNm6csvv9SHH36oe++9V4cPH76Su3NV9e3bVwUFBfrqq6/04osvau7cucrMzLzs9TqdTkVGRnqEXQCXyLvfAASgIUtPTze/+MUvTIcOHcxjjz1mtf/97383Z389zZ8/30gyS5YsqXIdbre7WtsKCQkx8+bNO+/8pKSkSt/Zdta//vUvc+utt5qAgABz/fXXm9///vfm2LFj1vz/+3//r+nevbtp0qSJiYiIMGlpaaaoqMiaf/Y75D788EPTtWtXExAQYHr37m2KiorM8uXLTYcOHcw111xj0tLSzPHjx6u1P+np6WbAgAEebQMHDjTdunWzXhcXF5vBgweb6OhoExgYaDp37mzefvttj3Wcu8/79u2z+vvT70p95513TMeOHY3T6TQtW7Y0L7zwQrX6CTR0nNEC4FW+vr567rnnNGvWLH377beV5s+fP1/t27fX3XffXeXy1T3rEhkZqeXLl+vo0aNVzl+8eLGuv/56TZkyRQUFBSooKJAk7d27V3379tUvf/lLbd26VdnZ2fr00081ZswYa9nTp0/rmWee0RdffKH33ntP+/fv1/33319pG5MnT9af//xnrV+/XgcOHNCgQYM0Y8YMvf3221q2bJk+/vhjzZo1q1r7c67t27dr/fr1cjqdVlt5ebm6d++uZcuWafv27Ro5cqSGDRumDRs2SJL+9Kc/KTExUb/97W+tfY6Jiam07ry8PA0aNEiDBw/Wtm3bNHnyZE2cOFHz5s27pL4CDYq3kx6AhuunZ2X+67/+y/zmN78xxnie0erQoYO5++67PZZ7+OGHTVBQkAkKCjLNmzev1rY++eQTc/3115tGjRqZHj16mLFjx5pPP/3Uo6Zly5bmxRdf9GgbMWKEGTlypEfbv/71L+Pj42PKysqq3NbGjRuNJHP06FFjzH/OaP3zn/+0arKysowks3fvXqtt1KhRJiUlpVr7k56ebnx9fU1QUJDx9/c3koyPj4955513Lrhc//79zaOPPmq9TkpKMg8//LBHzblntIYMGWL++7//26PmscceMx07dqxWX4GGjDNaAGqF559/Xm+88YZ27tx50dr/7//7/7RlyxZNmjRJx44dq9b6b7/9dn311VdauXKl7r33Xu3YsUO33XabnnnmmQsu98UXX2jevHlq0qSJNaWkpMjtdmvfvn2Sfjzjc9ddd6lFixa65pprlJSUJEn65ptvPNZ10003Wf+OiIhQ48aN1bp1a4+2Q4cOVWt/JKl3797asmWLcnNzlZ6eroyMDP3yl7+05ldUVOiZZ55RXFycmjZtqiZNmuijjz6q1K+L2blzp2655RaPtltuuUW7d+9WRUVFjdYFNDQELQC1wu23366UlBRNmDDBo71t27batWuXR1t4eLhuuOEGNWvWrEbbaNSokW677TY98cQT+vjjjzVlyhQ988wzOnXq1HmXOXbsmEaNGqUtW7ZY0xdffKHdu3erTZs2On78uFJSUhQcHKy33npLGzdu1N///ndJqrTeRo0aWf8+e7fgTzkcDrnd7mrvT1BQkG644QZ16dJFr732mnJzc/XXv/7Vmj99+nT96U9/0hNPPKHVq1dry5YtSklJueD+Ariy/LzdAQA4a+rUqeratavat29vtaWlpWnIkCFasmSJBgwYcEW317FjR505c0bl5eVyOp1yOp2VztDcfPPNys/P1w033FDlOrZt26bDhw9r6tSp1vVNn3/++RXtZ3X4+PjoySef1Lhx4zRkyBAFBgZq3bp1GjBggH79619Lktxut/7973+rY8eO1nJV7fO5brzxRq1bt86jbd26dWrXrp18fX2v/M4A9QhntADUGnFxcRo6dKhmzpxptQ0ePFj33nuvBg8erClTpig3N1f79+/XJ598ouzs7Gq/0ffq1Utz585VXl6e9u/fr+XLl+vJJ59U7969FRwcLOnH52itXbtWBw8eVHFxsSTpiSee0Pr16zVmzBht2bJFu3fv1pIlS6yL4Vu0aCGn06lZs2bpq6++0vvvv3/RjyPt8qtf/Uq+vr6aPXu2pB/PBq5YsULr16/Xzp07NWrUKBUVFXks06pVK2tMi4uLqzyj9uijj2rlypV65pln9O9//1tvvPGG/vznP+sPf/jDVdkvoC4jaAGoVaZMmeLxZu9wOJSdna0ZM2Zo+fLl6tOnj9q3b6/f/OY3iomJ0aefflqt9aakpOiNN97QHXfcoRtvvFG///3vlZKSooULF3pse//+/WrTpo3Cw8Ml/Xhd1SeffKJ///vfuu2229StWzdNmjRJ0dHRkn78GHPevHlatGiROnbsqKlTp+qFF164giNSfX5+fhozZoymTZum48eP66mnntLNN9+slJQU9erVS5GRkUpNTfVY5g9/+IN8fX3VsWNHhYeHV3n91s0336yFCxdqwYIF6ty5syZNmqQpU6ZUeWclAE8OY4zxdicAAADqI85oAQAA2ISgBaBe+OnjF86d/vWvf3m7ezXyzTffXHB/avp4BgDew0eHAOqFC325dPPmzRUYGHgVe3N5zpw5o/379593fqtWreTnx03jQF1A0AIAALAJHx0CAADYhKAFAABgE4IWAACATQhaAAAANiFoAQAA2ISgBQAAYBOCFgAAgE0IWgAAADb5/wF5Zxndj3QBVAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_61.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMzElEQVR4nO3de1yUZf7/8fcADiDKkIEcDAXPx7Q0ESuxZKOykqw8rppZ2q6Wrp3UVSk7YNZubuZm227ZbgcPrZtlZvr10EERFbU8ZWqaVg5KxuD5wFy/P/p51yQq3AID8no+HvMgrvtz3/d1X07c77nnmnscxhgjAAAAlEiAvzsAAABQGRGiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogBc1B5//HE5HI5i1TocDj3++ONl2p/OnTurc+fOFXZ7AIqPEAWgXEyfPl0Oh8N6BAUFqU6dOrr77rv1/fff+7t7FU5CQoLPeNWuXVvXXnut/ve//5XK9o8cOaLHH39cy5YtK5XtAVURIQpAuZowYYL+85//aNq0abrpppv05ptvKiUlRceOHSuT/Y0dO1ZHjx4tk22XtTZt2ug///mP/vOf/+jhhx/WDz/8oO7du2vatGkXvO0jR47oiSeeIEQBFyDI3x0AULXcdNNNateunSTp3nvvVWRkpJ599lm9//776tGjR6nvLygoSEFBlfNPXZ06dfT73//e+r1///5q2LChXnjhBd1///1+7BkAiStRAPzs2muvlSTt2LHDp/2rr77SnXfeqVq1aikkJETt2rXT+++/71Nz8uRJPfHEE2rUqJFCQkJ06aWX6pprrtGiRYusmqLmRB0/flx/+tOfFBUVpZo1a+q2227Td999d0bf7r77biUkJJzRXtQ2X3/9dV1//fWqXbu2goOD1bx5c7388sslGovziYmJUbNmzbRz585z1u3bt0+DBg1SdHS0QkJC1Lp1a73xxhvW8l27dikqKkqS9MQTT1hvGZb1fDDgYlM5X54BuGjs2rVLknTJJZdYbZs2bdLVV1+tOnXqaNSoUQoLC9OsWbOUnp6u//73v7r99tsl/RxmMjMzde+996p9+/YqKCjQmjVrtHbtWv3ud7876z7vvfdevfnmm+rTp486duyoJUuWqGvXrhd0HC+//LJatGih2267TUFBQfrggw/0xz/+UV6vV0OHDr2gbZ928uRJ7dmzR5deeulZa44eParOnTtr+/btGjZsmBITEzV79mzdfffdys/P1/DhwxUVFaWXX35Zf/jDH3T77bere/fukqTLL7+8VPoJVBkGAMrB66+/biSZ//u//zP79+83e/bsMe+++66JiooywcHBZs+ePVZtly5dTKtWrcyxY8esNq/Xazp27GgaNWpktbVu3dp07dr1nPvNyMgwv/5Tt379eiPJ/PGPf/Sp69Onj5FkMjIyrLYBAwaYevXqnXebxhhz5MiRM+rS0tJM/fr1fdpSUlJMSkrKOftsjDH16tUzN9xwg9m/f7/Zv3+/+eKLL0yvXr2MJPPAAw+cdXuTJ082ksybb75ptZ04ccIkJyebGjVqmIKCAmOMMfv37z/jeAGUDG/nAShXqampioqKUnx8vO68806FhYXp/fff12WXXSZJOnDggJYsWaIePXro4MGDysvLU15enn788UelpaVp27Zt1qf5IiIitGnTJm3btq3Y+58/f74k6cEHH/RpHzFixAUdV2hoqPXfHo9HeXl5SklJ0TfffCOPx2NrmwsXLlRUVJSioqLUunVrzZ49W/369dOzzz571nXmz5+vmJgY9e7d22qrVq2aHnzwQR06dEiffPKJrb4AOBNv5wEoV1OnTlXjxo3l8Xj02muv6dNPP1VwcLC1fPv27TLGaNy4cRo3blyR29i3b5/q1KmjCRMmqFu3bmrcuLFatmypG2+8Uf369Tvn21LffvutAgIC1KBBA5/2Jk2aXNBxLV++XBkZGcrKytKRI0d8lnk8HrlcrhJvMykpSU899ZQcDoeqV6+uZs2aKSIi4pzrfPvtt2rUqJECAnxfIzdr1sxaDqB0EKIAlKv27dtbn85LT0/XNddcoz59+mjr1q2qUaOGvF6vJOnhhx9WWlpakdto2LChJKlTp07asWOH5s6dq4ULF+qf//ynXnjhBU2bNk333nvvBff1bDfpLCws9Pl9x44d6tKli5o2baq//vWvio+Pl9Pp1Pz58/XCCy9Yx1RSkZGRSk1NtbUugLJHiALgN4GBgcrMzNR1112nl156SaNGjVL9+vUl/fwWVHECRK1atTRw4EANHDhQhw4dUqdOnfT444+fNUTVq1dPXq9XO3bs8Ln6tHXr1jNqL7nkEuXn55/R/turOR988IGOHz+u999/X3Xr1rXaly5det7+l7Z69erpyy+/lNfr9bka9dVXX1nLpbMHRADFx5woAH7VuXNntW/fXpMnT9axY8dUu3Ztde7cWa+88or27t17Rv3+/fut//7xxx99ltWoUUMNGzbU8ePHz7q/m266SZL04osv+rRPnjz5jNoGDRrI4/Hoyy+/tNr27t17xl3DAwMDJUnGGKvN4/Ho9ddfP2s/ysrNN98st9utmTNnWm2nTp3SlClTVKNGDaWkpEiSqlevLklFhkQAxcOVKAB+98gjj+iuu+7S9OnTdf/992vq1Km65ppr1KpVK913332qX7++cnNzlZWVpe+++05ffPGFJKl58+bq3Lmz2rZtq1q1amnNmjV69913NWzYsLPuq02bNurdu7f+/ve/y+PxqGPHjlq8eLG2b99+Rm2vXr302GOP6fbbb9eDDz6oI0eO6OWXX1bjxo21du1aq+6GG26Q0+nUrbfeqiFDhujQoUN69dVXVbt27SKDYFkaPHiwXnnlFd19993KyclRQkKC3n33XS1fvlyTJ09WzZo1Jf08Eb558+aaOXOmGjdurFq1aqlly5Zq2bJlufYXqNT8/fFAAFXD6VscrF69+oxlhYWFpkGDBqZBgwbm1KlTxhhjduzYYfr3729iYmJMtWrVTJ06dcwtt9xi3n33XWu9p556yrRv395ERESY0NBQ07RpU/P000+bEydOWDVF3Y7g6NGj5sEHHzSXXnqpCQsLM7feeqvZs2dPkR/5X7hwoWnZsqVxOp2mSZMm5s033yxym++//765/PLLTUhIiElISDDPPvusee2114wks3PnTquuJLc4ON/tG862vdzcXDNw4EATGRlpnE6nadWqlXn99dfPWHfFihWmbdu2xul0crsDwAaHMb+6/gwAAIBiYU4UAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIGbbZYhr9erH374QTVr1uQrFgAAqCSMMTp48KDi4uLO+DLvXyNElaEffvhB8fHx/u4GAACwYc+ePbrsssvOupwQVYZOf73Cnj17FB4e7ufeAACA4igoKFB8fLx1Hj8bQlQZOv0WXnh4OCEKAIBK5nxTcZhYDgAAYAMhCgAAwAZCFAAAgA3MifKzwsJCnTx50t/dqFScTuc5P3IKAEB5IET5iTFGbrdb+fn5/u5KpRMQEKDExEQ5nU5/dwUAUIURovzkdICqXbu2qlevzs04i+n0DUz37t2runXrMm4AAL8hRPlBYWGhFaAuvfRSf3en0omKitIPP/ygU6dOqVq1av7uDgCgimJiiR+cngNVvXp1P/ekcjr9Nl5hYaGfewIAqMoIUX7EW1H2MG4AgIqAEAUAAGADIQoAAMAGQhRK5O6771Z6evoZ7cuWLZPD4VB+fr6WLVumbt26KTY2VmFhYWrTpo3eeuutM9Y5cOCARowYoXr16snpdCouLk733HOPdu/eXQ5HAgCozPZ6jmrFjjzt9Rz1Wx/4dB5K3YoVK3T55ZfrscceU3R0tObNm6f+/fvL5XLplltukfRzgOrQoYOcTqemTZumFi1aaNeuXRo7dqyuuuoqZWVlqX79+n4+EgBARTRz9W6NnrNBXiMFOKTM7q3U86q65d4PQhRK3ZgxY3x+Hz58uBYuXKg5c+ZYIerPf/6zfvjhB23fvl0xMTGSpLp16+rjjz9Wo0aNNHToUH300Ufl3ncAQMW213PUClCS5DXSmDkb1alxlGJdoeXaF97OuwhUhEua5+PxeFSrVi1JP98wc8aMGerbt68VoE4LDQ3VH//4R3388cc6cOCAP7oKAKjAduYdtgLUaYXGaFfekXLvC1eiKjl/XNKcN2+eatSo4dN2rns2zZo1S6tXr9Yrr7wiSdq/f7/y8/PVrFmzIuubNWsmY4y2b9+u9u3bl17HAQCVXmJkmAIc8glSgQ6HEiLL/96LXImqxM52SbOsr0hdd911Wr9+vc/jn//8Z5G1S5cu1cCBA/Xqq6+qRYsWPsuMMUWuAwDA2cS6QpXZvZUC//89AwMdDj3TvWW5v5UncSWqUjvXJc2yfDKFhYWpYcOGPm3ffffdGXWffPKJbr31Vr3wwgvq37+/1R4VFaWIiAht2bKlyO1v2bJFDofjjH0AACBJPa+qq06No7Qr74gSIqv7JUBJXImq1E5f0vw1f13S/K1ly5apa9euevbZZzV48GCfZQEBAerRo4fefvttud1un2VHjx7V3//+d6WlpVlzqAAA+K1YV6iSG1zqtwAlEaIqtYp0SfPXli5dqq5du+rBBx/UHXfcIbfbLbfb7TNR/JlnnlFMTIx+97vf6aOPPtKePXv06aefKi0tTSdPntTUqVP9eAQAAJwfb+dVchXlkuavvfHGGzpy5IgyMzOVmZlptaekpGjZsmWSpEsvvVQrV67UhAkTNGTIELndbtWqVUs33XST3nzzTdWtW/73+wAAoCQchtm9ZaagoEAul0sej0fh4eFW+7Fjx7Rz504lJiYqJCTEjz2snBg/AEBZOtv5+7d4Ow8AAMAGQhQAAIANhCgAAAAbCFEAAAA2EKL8iDn99jBuAICKgBDlB9WqVZMkHTlS/l+WeDE4ceKEJCkwMNDPPQEAVGXcJ8oPAgMDFRERoX379kmSqlevLofDcZ61IEler1f79+9X9erVFRTE0xcA4D+chfwkJiZGkqwgheILCAhQ3bp1CZ4AAL8iRPmJw+FQbGysateurZMnT/q7O5WK0+lUQADvRAMA/IsQ5WeBgYHM7QEAoBLi5TwAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAG/weoqZOnaqEhASFhIQoKSlJq1atOmf97Nmz1bRpU4WEhKhVq1aaP3++z3JjjMaPH6/Y2FiFhoYqNTVV27Zt86l5+umn1bFjR1WvXl0RERFn7OOLL75Q7969FR8fr9DQUDVr1kx/+9vfLvhYAQDAxcOvIWrmzJkaOXKkMjIytHbtWrVu3VppaWnat29fkfUrVqxQ7969NWjQIK1bt07p6elKT0/Xxo0brZpJkybpxRdf1LRp05Sdna2wsDClpaXp2LFjVs2JEyd011136Q9/+EOR+8nJyVHt2rX15ptvatOmTfrzn/+s0aNH66WXXirdAQAAAJWWwxhj/LXzpKQkXXXVVVY48Xq9io+P1wMPPKBRo0adUd+zZ08dPnxY8+bNs9o6dOigNm3aaNq0aTLGKC4uTg899JAefvhhSZLH41F0dLSmT5+uXr16+Wxv+vTpGjFihPLz88/b16FDh2rLli1asmRJsY+voKBALpdLHo9H4eHhxV4PAAD4T3HP3367EnXixAnl5OQoNTX1l84EBCg1NVVZWVlFrpOVleVTL0lpaWlW/c6dO+V2u31qXC6XkpKSzrrN4vJ4PKpVq9Y5a44fP66CggKfBwAAuDj5LUTl5eWpsLBQ0dHRPu3R0dFyu91FruN2u89Zf/pnSbZZHCtWrNDMmTM1ePDgc9ZlZmbK5XJZj/j4eNv7BAAAFZvfJ5ZXdBs3blS3bt2UkZGhG2644Zy1o0ePlsfjsR579uwpp14CAIDy5rcQFRkZqcDAQOXm5vq05+bmKiYmpsh1YmJizll/+mdJtnkumzdvVpcuXTR48GCNHTv2vPXBwcEKDw/3eQAAgIuT30KU0+lU27ZttXjxYqvN6/Vq8eLFSk5OLnKd5ORkn3pJWrRokVWfmJiomJgYn5qCggJlZ2efdZtns2nTJl133XUaMGCAnn766RKtCwAALn5B/tz5yJEjNWDAALVr107t27fX5MmTdfjwYQ0cOFCS1L9/f9WpU0eZmZmSpOHDhyslJUV/+ctf1LVrV82YMUNr1qzRP/7xD0mSw+HQiBEj9NRTT6lRo0ZKTEzUuHHjFBcXp/T0dGu/u3fv1oEDB7R7924VFhZq/fr1kqSGDRuqRo0a2rhxo66//nqlpaVp5MiR1nyqwMBARUVFld8AAQCAisv42ZQpU0zdunWN0+k07du3NytXrrSWpaSkmAEDBvjUz5o1yzRu3Ng4nU7TokUL8+GHH/os93q9Zty4cSY6OtoEBwebLl26mK1bt/rUDBgwwEg647F06VJjjDEZGRlFLq9Xr16Jjs3j8RhJxuPxlGg9AADgP8U9f/v1PlEXO+4TBQBA5VPh7xMFAABQmRGiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2+D1ETZ06VQkJCQoJCVFSUpJWrVp1zvrZs2eradOmCgkJUatWrTR//nyf5cYYjR8/XrGxsQoNDVVqaqq2bdvmU/P000+rY8eOql69uiIiIorcz+7du9W1a1dVr15dtWvX1iOPPKJTp05d0LECAICLh19D1MyZMzVy5EhlZGRo7dq1at26tdLS0rRv374i61esWKHevXtr0KBBWrdundLT05Wenq6NGzdaNZMmTdKLL76oadOmKTs7W2FhYUpLS9OxY8esmhMnTuiuu+7SH/7whyL3U1hYqK5du+rEiRNasWKF3njjDU2fPl3jx48v3QEAAACVl/Gj9u3bm6FDh1q/FxYWmri4OJOZmVlkfY8ePUzXrl192pKSksyQIUOMMcZ4vV4TExNjnnvuOWt5fn6+CQ4ONu+8884Z23v99deNy+U6o33+/PkmICDAuN1uq+3ll1824eHh5vjx48U+Po/HYyQZj8dT7HUAAIB/Fff87bcrUSdOnFBOTo5SU1OttoCAAKWmpiorK6vIdbKysnzqJSktLc2q37lzp9xut0+Ny+VSUlLSWbd5tv20atVK0dHRPvspKCjQpk2bzrre8ePHVVBQ4PMAAAAXJ7+FqLy8PBUWFvoEFUmKjo6W2+0uch23233O+tM/S7LNkuzn1/soSmZmplwul/WIj48v9j4BAEDl4veJ5ReT0aNHy+PxWI89e/b4u0sAAKCM+C1ERUZGKjAwULm5uT7tubm5iomJKXKdmJiYc9af/lmSbZZkP7/eR1GCg4MVHh7u8wAAABcnv4Uop9Optm3bavHixVab1+vV4sWLlZycXOQ6ycnJPvWStGjRIqs+MTFRMTExPjUFBQXKzs4+6zbPtp8NGzb4fEpw0aJFCg8PV/PmzYu9HQAAcPEK8ufOR44cqQEDBqhdu3Zq3769Jk+erMOHD2vgwIGSpP79+6tOnTrKzMyUJA0fPlwpKSn6y1/+oq5du2rGjBlas2aN/vGPf0iSHA6HRowYoaeeekqNGjVSYmKixo0bp7i4OKWnp1v73b17tw4cOKDdu3ersLBQ69evlyQ1bNhQNWrU0A033KDmzZurX79+mjRpktxut8aOHauhQ4cqODi4XMcIAABUUOX0acGzmjJliqlbt65xOp2mffv2ZuXKldaylJQUM2DAAJ/6WbNmmcaNGxun02latGhhPvzwQ5/lXq/XjBs3zkRHR5vg4GDTpUsXs3XrVp+aAQMGGElnPJYuXWrV7Nq1y9x0000mNDTUREZGmoceesicPHmyRMfGLQ4AAKh8inv+dhhjjB8z3EWtoKBALpdLHo+H+VEAAFQSxT1/8+k8AAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANfg9RU6dOVUJCgkJCQpSUlKRVq1ads3727Nlq2rSpQkJC1KpVK82fP99nuTFG48ePV2xsrEJDQ5Wamqpt27b51Bw4cEB9+/ZVeHi4IiIiNGjQIB06dMin5uOPP1aHDh1Us2ZNRUVF6Y477tCuXbtK5ZgBAEDl59cQNXPmTI0cOVIZGRlau3atWrdurbS0NO3bt6/I+hUrVqh3794aNGiQ1q1bp/T0dKWnp2vjxo1WzaRJk/Tiiy9q2rRpys7OVlhYmNLS0nTs2DGrpm/fvtq0aZMWLVqkefPm6dNPP9XgwYOt5Tt37lS3bt10/fXXa/369fr444+Vl5en7t27l91gAACAysX4Ufv27c3QoUOt3wsLC01cXJzJzMwssr5Hjx6ma9euPm1JSUlmyJAhxhhjvF6viYmJMc8995y1PD8/3wQHB5t33nnHGGPM5s2bjSSzevVqq+ajjz4yDofDfP/998YYY2bPnm2CgoJMYWGhVfP+++8bh8NhTpw4Uezj83g8RpLxeDzFXgcAAPhXcc/ffrsSdeLECeXk5Cg1NdVqCwgIUGpqqrKysopcJysry6dektLS0qz6nTt3yu12+9S4XC4lJSVZNVlZWYqIiFC7du2smtTUVAUEBCg7O1uS1LZtWwUEBOj1119XYWGhPB6P/vOf/yg1NVXVqlU76zEdP35cBQUFPg8AAHBx8luIysvLU2FhoaKjo33ao6Oj5Xa7i1zH7Xafs/70z/PV1K5d22d5UFCQatWqZdUkJiZq4cKFGjNmjIKDgxUREaHvvvtOs2bNOucxZWZmyuVyWY/4+Phz1gMAgMrL7xPLKyK326377rtPAwYM0OrVq/XJJ5/I6XTqzjvvlDHmrOuNHj1aHo/HeuzZs6ccew0AAMpTkL92HBkZqcDAQOXm5vq05+bmKiYmpsh1YmJizll/+mdubq5iY2N9atq0aWPV/Hbi+qlTp3TgwAFr/alTp8rlcmnSpElWzZtvvqn4+HhlZ2erQ4cORfYvODhYwcHB5zt0AABwEfDblSin06m2bdtq8eLFVpvX69XixYuVnJxc5DrJyck+9ZK0aNEiqz4xMVExMTE+NQUFBcrOzrZqkpOTlZ+fr5ycHKtmyZIl8nq9SkpKkiQdOXJEAQG+QxMYGGj1EQAAwK+fzpsxY4YJDg4206dPN5s3bzaDBw82ERERxu12G2OM6devnxk1apRVv3z5chMUFGSef/55s2XLFpORkWGqVatmNmzYYNVMnDjRREREmLlz55ovv/zSdOvWzSQmJpqjR49aNTfeeKO54oorTHZ2tvn8889No0aNTO/eva3lixcvNg6HwzzxxBPm66+/Njk5OSYtLc3Uq1fPHDlypNjHx6fzAACofIp7/vZriDLGmClTppi6desap9Np2rdvb1auXGktS0lJMQMGDPCpnzVrlmncuLFxOp2mRYsW5sMPP/RZ7vV6zbhx40x0dLQJDg42Xbp0MVu3bvWp+fHHH03v3r1NjRo1THh4uBk4cKA5ePCgT80777xjrrjiChMWFmaioqLMbbfdZrZs2VKiYyNEAQBQ+RT3/O0w5hwzpXFBCgoK5HK55PF4FB4e7u/uAACAYiju+ZtP5wEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAG4Lsrpifn6/t27dLkho2bKiIiIjS6hMAAECFV+IrUbt27VLXrl0VGRmppKQkJSUlKTIyUrfccot27dpVBl0EAACoeEp0JWrPnj3q0KGDqlWrpieffFLNmjWTJG3evFkvv/yykpOTtXr1al122WVl0lkAAICKwmGMMcUtHjRokLZv366PP/5YISEhPsuOHj2qG2+8UY0aNdI///nPUu9oZVRQUCCXyyWPx6Pw8HB/dwcAABRDcc/fJboStWDBAs2cOfOMACVJoaGhevLJJ9WrV6+S9xYAAKCSKdGcqLy8PCUkJJx1ef369XXgwIEL7RMAAECFV6IQFRsbq82bN591+caNGxUTE3PBnQIAAKjoShSi0tPT9fDDD2v//v1nLNu3b58ee+wxpaenl1bfAAAAKqwSTSz/6aeflJSUJLfbrd///vdq2rSpjDHasmWL3n77bcXExGjlypWqVatWWfa50mBiOQAAlU+ZTCy/5JJLlJ2drTFjxmjGjBnKz8+XJEVERKhPnz565plnCFAAAKBKKNGVqF8zxlhv60VFRcnhcJRqxy4GXIkCAFQ2ez1HtTPvsBIjwxTrCvV3d/yiTK5E/ZrD4VDt2rXtrg4AACqYmat3a/ScDfIaKcAhZXZvpZ5X1fV3tyqsEn/ty/z583Xvvffq0Ucf1ZYtW3yW/fTTT7r++utLrXMAAKB87PUctQKUJHmNNGbORu31HPVvxyqwEoWot99+W7fddpvcbreysrJ05ZVX6q233rKWnzhxQp988kmpdxIAAJStnXmHrQB1WqEx2pV3xD8dqgRK9Hbec889p7/+9a968MEHJUmzZs3SPffco2PHjmnQoEFl0kGgImPuAICLRWJkmAIc8glSgQ6HEiKr+69TFVyJQtS2bdt06623Wr/36NFDUVFRuu2223Ty5Endfvvtpd5BoKJi7gCAi0msK1SZ3VtpzJyNKjRGgQ6HnunekheI51CiEBUeHq7c3FwlJiZabdddd53mzZunW265Rd99912pdxCoiM42d6BT4yj+4ACotHpeVVedGkdpV94RJURW5+/ZeZQoRLVv314fffSROnTo4NOekpKiDz74QLfcckupdg6oqM41d4A/OgAqs1hXKH/HiqlEE8v/9Kc/KSQkpMhlnTt31gcffKD+/fuXSseAiuz03IFfY+4AAFQtJbrZZkFBQbHquLHkz7jZ5sVt5urdZ8wdYE4UAFR+ZXKzzYiIiGLdmbywsLAkmwUqJeYOAEDVVqIQtXTpUuu/jTG6+eab9c9//lN16tQp9Y4BlQFzBwCg6ipRiEpJSfH5PTAwUB06dFD9+vVLtVMAAAAVXYm/9gUAAACEKAAAAFsuOEQVZ6I5AADAxaZEc6K6d+/u8/uxY8d0//33KywszKd9zpw5F94zAACACqxEV6JcLpfP4/e//73i4uLOaC+JqVOnKiEhQSEhIUpKStKqVavOWT979mw1bdpUISEhatWqlebPn++z3Bij8ePHKzY2VqGhoUpNTdW2bdt8ag4cOKC+ffsqPDxcERERGjRokA4dOnTGdp5//nk1btxYwcHBqlOnjp5++ukSHRsAALiIGT+aMWOGcTqd5rXXXjObNm0y9913n4mIiDC5ublF1i9fvtwEBgaaSZMmmc2bN5uxY8eaatWqmQ0bNlg1EydONC6Xy7z33nvmiy++MLfddptJTEw0R48etWpuvPFG07p1a7Ny5Urz2WefmYYNG5revXv77OuBBx4wTZo0MXPnzjXffPONWbNmjVm4cGGJjs/j8RhJxuPxlGg9AADgP8U9f/s1RLVv394MHTrU+r2wsNDExcWZzMzMIut79Ohhunbt6tOWlJRkhgwZYowxxuv1mpiYGPPcc89Zy/Pz801wcLB55513jDHGbN682Ugyq1evtmo++ugj43A4zPfff2/VBAUFma+++uqCjo8QBQBA5VPc87ffPp134sQJ5eTkKDU11WoLCAhQamqqsrKyilwnKyvLp16S0tLSrPqdO3fK7Xb71LhcLiUlJVk1WVlZioiIULt27aya1NRUBQQEKDs7W5L0wQcfqH79+po3b54SExOVkJCge++9VwcOHDjnMR0/flwFBQU+DwAAcHHyW4jKy8tTYWGhoqOjfdqjo6PldruLXMftdp+z/vTP89XUrl3bZ3lQUJBq1apl1XzzzTf69ttvNXv2bP373//W9OnTlZOTozvvvPOcx5SZmekzNyw+Pv6c9QAAoPLiPlFF8Hq9On78uP7973/r2muvVefOnfWvf/1LS5cu1datW8+63ujRo+XxeKzHnj17yrHXAACgPPktREVGRiowMFC5ubk+7bm5uYqJiSlynZiYmHPWn/55vpp9+/b5LD916pQOHDhg1cTGxiooKEiNGze2apo1ayZJ2r1791mPKTg4WOHh4T4PAABwcfJbiHI6nWrbtq0WL15stXm9Xi1evFjJyclFrpOcnOxTL0mLFi2y6hMTExUTE+NTU1BQoOzsbKsmOTlZ+fn5ysnJsWqWLFkir9erpKQkSdLVV1+tU6dOaceOHVbN119/LUmqV6/ehRw2AAC4WJTTRPcizZgxwwQHB5vp06ebzZs3m8GDB5uIiAjjdruNMcb069fPjBo1yqpfvny5CQoKMs8//7zZsmWLycjIKPIWBxEREWbu3Lnmyy+/NN26dSvyFgdXXHGFyc7ONp9//rlp1KiRzy0OCgsLzZVXXmk6depk1q5da9asWWOSkpLM7373uxIdH5/OAwCg8qkUtzgwxpgpU6aYunXrGqfTadq3b29WrlxpLUtJSTEDBgzwqZ81a5Zp3LixcTqdpkWLFubDDz/0We71es24ceNMdHS0CQ4ONl26dDFbt271qfnxxx9N7969TY0aNUx4eLgZOHCgOXjwoE/N999/b7p3725q1KhhoqOjzd13321+/PHHEh0bIQoAgMqnuOdvhzHG+Pda2MWroKBALpdLHo+H+VEAAFQSxT1/8+k8AAAAGwhRAABUYHs9R7ViR572eo76uyv4jSB/dwAAABRt5urdGj1ng7xGCnBImd1bqedVdf3dLfx/XIkCAKAC2us5agUoSfIaacycjVyRqkAIUQAAVEA78w5bAeq0QmO0K++IfzqEMxCiAACogBIjwxTg8G0LdDiUEFndPx3CGQhRAABUQLGuUGV2b6VAx89JKtDh0DPdWyrWFernnuE0JpYDAFBB9byqrjo1jtKuvCNKiKxOgKpgCFEAAFRgsa5QwlMFxdt5AAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsqRIiaOnWqEhISFBISoqSkJK1ateqc9bNnz1bTpk0VEhKiVq1aaf78+T7LjTEaP368YmNjFRoaqtTUVG3bts2n5sCBA+rbt6/Cw8MVERGhQYMG6dChQ0Xub/v27apZs6YiIiIu6DgBAMDFw+8haubMmRo5cqQyMjK0du1atW7dWmlpadq3b1+R9StWrFDv3r01aNAgrVu3Tunp6UpPT9fGjRutmkmTJunFF1/UtGnTlJ2drbCwMKWlpenYsWNWTd++fbVp0yYtWrRI8+bN06effqrBgwefsb+TJ0+qd+/euvbaa0v/4AEAQKXlMMYYf3YgKSlJV111lV566SVJktfrVXx8vB544AGNGjXqjPqePXvq8OHDmjdvntXWoUMHtWnTRtOmTZMxRnFxcXrooYf08MMPS5I8Ho+io6M1ffp09erVS1u2bFHz5s21evVqtWvXTpK0YMEC3Xzzzfruu+8UFxdnbfuxxx7TDz/8oC5dumjEiBHKz88v9rEVFBTI5XLJ4/EoPDzczvAAAIByVtzzt1+vRJ04cUI5OTlKTU212gICApSamqqsrKwi18nKyvKpl6S0tDSrfufOnXK73T41LpdLSUlJVk1WVpYiIiKsACVJqampCggIUHZ2ttW2ZMkSzZ49W1OnTi3W8Rw/flwFBQU+DwAAcHHya4jKy8tTYWGhoqOjfdqjo6PldruLXMftdp+z/vTP89XUrl3bZ3lQUJBq1apl1fz444+6++67NX369GJfRcrMzJTL5bIe8fHxxVoPAABUPn6fE1VR3XffferTp486depU7HVGjx4tj8djPfbs2VOGPQQA2LXXc1QrduRpr+eov7uCSizInzuPjIxUYGCgcnNzfdpzc3MVExNT5DoxMTHnrD/9Mzc3V7GxsT41bdq0sWp+O3H91KlTOnDggLX+kiVL9P777+v555+X9PMn/rxer4KCgvSPf/xD99xzzxl9Cw4OVnBwcHEPHwDgBzNX79boORvkNVKAQ8rs3ko9r6rr726hEvLrlSin06m2bdtq8eLFVpvX69XixYuVnJxc5DrJyck+9ZK0aNEiqz4xMVExMTE+NQUFBcrOzrZqkpOTlZ+fr5ycHKtmyZIl8nq9SkpKkvTzvKn169dbjwkTJqhmzZpav369br/99tIZAABAudrrOWoFKEnyGmnMnI1ckYItfr0SJUkjR47UgAED1K5dO7Vv316TJ0/W4cOHNXDgQElS//79VadOHWVmZkqShg8frpSUFP3lL39R165dNWPGDK1Zs0b/+Mc/JEkOh0MjRozQU089pUaNGikxMVHjxo1TXFyc0tPTJUnNmjXTjTfeqPvuu0/Tpk3TyZMnNWzYMPXq1cv6ZF6zZs18+rlmzRoFBASoZcuW5TQyAIDStjPvsBWgTis0RrvyjijWFeqfTqHS8nuI6tmzp/bv36/x48fL7XarTZs2WrBggTUxfPfu3QoI+OWCWceOHfX2229r7NixGjNmjBo1aqT33nvPJ9w8+uijOnz4sAYPHqz8/Hxdc801WrBggUJCQqyat956S8OGDVOXLl0UEBCgO+64Qy+++GL5HTgAoNwlRoYpwCGfIBXocCghsrr/OoVKy+/3ibqYVbT7RO31HNXOvMNKjAy7aF9xVYVjBHBhZq7erTFzNqrQGAU6HHqme0vmRMFHcc/ffr8ShfJRmSZS2g1ClekYAfhPz6vqqlPjKO3KO6KEyOq84IJthKgq4GwTKTs1jqpwfzzsBqHKdIwA/C/WFcrfBlww7hNVBZxrImVFciGfmqksxwgAuHgQoqqA0xMpf60iTqS8kCBUWY4RAHDxIERVAbGuUGV2b6VAx88p4/REyop2KftCglBlOUYAwMWDT+eVoYr46byKPpHyQj81UxmOEQBQsRX3/E2IKkMVLURVFgQhAIA/cYsDVFp8agYAUBkwJwoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRBVhez1HNWKHXnF+kJfAABwbtxss4qYuXq3Rs/ZIK+RAhxSZvdWJfo6FQAA4IsrUVXAXs9RK0BJktdIY+Zs5IoUAAAXgBBVBezMO2wFqNMKjdGuvCP+6RAAABcBQlQVkBgZpgCHb1ugw6GEyOr+6RAAABcBQlQVEOsKVWb3Vgp0/JykAh0OPdO9JV/yCwDABWBieRXR86q66tQ4SrvyjighsjoBCgCAC0SIqkJiXaGEJwAASglv5wEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYSoSmiv56hW7MjTXs9Rf3cF5Yx/ewCoOIL83QGUzMzVuzV6zgZ5jRTgkDK7t1LPq+r6u1soB/zbA0DFwpWoSmSv56h1EpUkr5HGzNnIVYkqgH97AKh4CFGVyM68w9ZJ9LRCY7Qr74h/OoRyw789AFQ8FSJETZ06VQkJCQoJCVFSUpJWrVp1zvrZs2eradOmCgkJUatWrTR//nyf5cYYjR8/XrGxsQoNDVVqaqq2bdvmU3PgwAH17dtX4eHhioiI0KBBg3To0CFr+bJly9StWzfFxsYqLCxMbdq00VtvvVV6B21DYmSYAhy+bYEOhxIiq/unQyg3/NsDQMXj9xA1c+ZMjRw5UhkZGVq7dq1at26ttLQ07du3r8j6FStWqHfv3ho0aJDWrVun9PR0paena+PGjVbNpEmT9OKLL2ratGnKzs5WWFiY0tLSdOzYMaumb9++2rRpkxYtWqR58+bp008/1eDBg332c/nll+u///2vvvzySw0cOFD9+/fXvHnzym4wziPWFarM7q0U6Pj5bBrocOiZ7i0V6wr1W59QPvi3B4CKx2GMMecvKztJSUm66qqr9NJLL0mSvF6v4uPj9cADD2jUqFFn1Pfs2VOHDx/2CTMdOnRQmzZtNG3aNBljFBcXp4ceekgPP/ywJMnj8Sg6OlrTp09Xr169tGXLFjVv3lyrV69Wu3btJEkLFizQzTffrO+++05xcXFF9rVr166Kjo7Wa6+9VqxjKygokMvlksfjUXh4eInG5Vz2eo5qV94RJURW5yRaxfBvDwBlr7jnb79eiTpx4oRycnKUmppqtQUEBCg1NVVZWVlFrpOVleVTL0lpaWlW/c6dO+V2u31qXC6XkpKSrJqsrCxFRERYAUqSUlNTFRAQoOzs7LP21+PxqFatWiU/0FIW6wpVcoNLOYlWQfzbA6ioquItWPx6i4O8vDwVFhYqOjrapz06OlpfffVVkeu43e4i691ut7X8dNu5amrXru2zPCgoSLVq1bJqfmvWrFlavXq1XnnllbMez/Hjx3X8+HHr94KCgrPWAgB+sddzVDvzDisxMowXCZVQVb0Fi9/nRFUGS5cu1cCBA/Xqq6+qRYsWZ63LzMyUy+WyHvHx8eXYSwConGau3q2rJy5Rn1ezdfXEJZq5ere/u4QSqMq3YPFriIqMjFRgYKByc3N92nNzcxUTE1PkOjExMeesP/3zfDW/nbh+6tQpHThw4Iz9fvLJJ7r11lv1wgsvqH///uc8ntGjR8vj8ViPPXv2nLMeFUdVvAwNVARV+QR8sajKt2Dxa4hyOp1q27atFi9ebLV5vV4tXrxYycnJRa6TnJzsUy9JixYtsuoTExMVExPjU1NQUKDs7GyrJjk5Wfn5+crJybFqlixZIq/Xq6SkJKtt2bJl6tq1q5599lmfT+6dTXBwsMLDw30eqPh4FQz4T1U+AV8sqvItWPz+dt7IkSP16quv6o033tCWLVv0hz/8QYcPH9bAgQMlSf3799fo0aOt+uHDh2vBggX6y1/+oq+++kqPP/641qxZo2HDhkmSHA6HRowYoaeeekrvv/++NmzYoP79+ysuLk7p6emSpGbNmunGG2/Ufffdp1WrVmn58uUaNmyYevXqZX0yb+nSperatasefPBB3XHHHXK73XK73Tpw4ED5DhDKFK+CAf+qyifgi0VVvgWL3787r2fPntq/f7/Gjx8vt9utNm3aaMGCBdbE8N27dysg4Jes17FjR7399tsaO3asxowZo0aNGum9995Ty5YtrZpHH31Uhw8f1uDBg5Wfn69rrrlGCxYsUEhIiFXz1ltvadiwYerSpYsCAgJ0xx136MUXX7SWv/HGGzpy5IgyMzOVmZlptaekpGjZsmVlOCIoT+d6FVwV/gAA/nb6BDxmzkYVGlOlTsAXk55X1VWnxlFV7hYsfr9P1MWsrO4ThdKz13NUV09c4hOkAh0OfT7quirzRwCoCLgHGiqSSnGfKMDfqvJl6LLERH2UFPdAQ2Xk97fzAH+rqpehy0pVvV8MgKqHK1GAeBVcWpioD6AqIUQBKDV8XB1AVUKIAlBq+Lg6gKqEEAWg1DBRH0BVwsRyAKWKifoAqgpCFIBSF+sKJTwBuOjxdh4AAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgDK0V7PUa3Ykae9nqP+7gqACxTk7w4AQFUxc/VujZ6zQV4jBTikzO6t1POquv7uFgCbuBIFAOVgr+eoFaAkyWukMXM2ckUKqMQIUQBgQ0nfltuZd9gKUKcVGqNdeUfKoHcAygNv5wFACdl5Wy4xMkwBDvkEqUCHQwmR1cu4t8DFaa/nqHbmHVZiZJhiXaF+6QNXogCgBOy+LRfrClVm91YKdDgk/Rygnune0m9//IHKbObq3bp64hL1eTVbV09copmrd/ulH1yJAoASONfbcucLRD2vqqtOjaO0K++IEiKrE6AAG872QqZT46hy/3+KEAUAJXChb8vFukIJT8AFuJAXMqWNt/MAoAR4Ww4Xu4p+L7PTL2R+zV/zC7kSBQAlxNtyuFhVhnuZnX4hM2bORhUa49cXMg5jjDl/GewoKCiQy+WSx+NReHi4v7sDAMBZ7fUc1dUTl5zxVvXno66rkC8U9nqOltkLmeKev7kSBQAAKtRco+KoCPMLmRMFAAAq1FyjyoIQBaDCqOgTWoGLGR+aKDnezgNQIVSGCa3AxY4PTZQMV6IA+B1fzgtUHLGuUCU3uJQAVQyEKAB+x5fzAqiMCFEA/I4JrQAqowoRoqZOnaqEhASFhIQoKSlJq1atOmf97Nmz1bRpU4WEhKhVq1aaP3++z3JjjMaPH6/Y2FiFhoYqNTVV27Zt86k5cOCA+vbtq/DwcEVERGjQoEE6dOiQT82XX36pa6+9ViEhIYqPj9ekSZNK54AB+GBCK4BKyfjZjBkzjNPpNK+99prZtGmTue+++0xERITJzc0tsn758uUmMDDQTJo0yWzevNmMHTvWVKtWzWzYsMGqmThxonG5XOa9994zX3zxhbnttttMYmKiOXr0qFVz4403mtatW5uVK1eazz77zDRs2ND07t3bWu7xeEx0dLTp27ev2bhxo3nnnXdMaGioeeWVV4p9bB6Px0gyHo/HxsgAVc8P+UfMiu155of8I/7uCoAqrLjnb7+HqPbt25uhQ4davxcWFpq4uDiTmZlZZH2PHj1M165dfdqSkpLMkCFDjDHGeL1eExMTY5577jlreX5+vgkODjbvvPOOMcaYzZs3G0lm9erVVs1HH31kHA6H+f77740xxvz97383l1xyiTl+/LhV89hjj5kmTZoU+9gIUQAAVD7FPX/79e28EydOKCcnR6mpqVZbQECAUlNTlZWVVeQ6WVlZPvWSlJaWZtXv3LlTbrfbp8blcikpKcmqycrKUkREhNq1a2fVpKamKiAgQNnZ2VZNp06d5HQ6ffazdetW/fTTT0X27fjx4yooKPB5AACAi5NfQ1ReXp4KCwsVHR3t0x4dHS23213kOm63+5z1p3+er6Z27do+y4OCglSrVi2fmqK28et9/FZmZqZcLpf1iI+PL/rAAQBApVchJpZfLEaPHi2Px2M99uzZ4+8uAQCAMuLXEBUZGanAwEDl5ub6tOfm5iomJqbIdWJiYs5Zf/rn+Wr27dvns/zUqVM6cOCAT01R2/j1Pn4rODhY4eHhPg8AAHBx8muIcjqdatu2rRYvXmy1eb1eLV68WMnJyUWuk5yc7FMvSYsWLbLqExMTFRMT41NTUFCg7OxsqyY5OVn5+fnKycmxapYsWSKv16ukpCSr5tNPP9XJkyd99tOkSRNdcsklF3jkAACg0iunie5nNWPGDBMcHGymT59uNm/ebAYPHmwiIiKM2+02xhjTr18/M2rUKKt++fLlJigoyDz//PNmy5YtJiMjo8hbHERERJi5c+eaL7/80nTr1q3IWxxcccUVJjs723z++eemUaNGPrc4yM/PN9HR0aZfv35m48aNZsaMGaZ69erc4gAAgItcpbnFgTHGTJkyxdStW9c4nU7Tvn17s3LlSmtZSkqKGTBggE/9rFmzTOPGjY3T6TQtWrQwH374oc9yr9drxo0bZ6Kjo01wcLDp0qWL2bp1q0/Njz/+aHr37m1q1KhhwsPDzcCBA83Bgwd9ar744gtzzTXXmODgYFOnTh0zceLEEh0XIQoAgMqnuOdvhzHGnPtaFewqKCiQy+WSx+NhfhQAAJVEcc/ffDoPAADABkIUAACADYQoAAAAG4L83YGL2enpZnz9CwAAlcfp8/b5po0TosrQwYMHJYmvfwEAoBI6ePCgXC7XWZfz6bwy5PV69cMPP6hmzZpyOBz+7k65KCgoUHx8vPbs2VPlP5HIWPyCsfgFY/ELxuJnjMMvKspYGGN08OBBxcXFKSDg7DOfuBJVhgICAnTZZZf5uxt+wdfe/IKx+AVj8QvG4heMxc8Yh19UhLE41xWo05hYDgAAYAMhCgAAwAZCFEpVcHCwMjIyFBwc7O+u+B1j8QvG4heMxS8Yi58xDr+obGPBxHIAAAAbuBIFAABgAyEKAADABkIUAACADYQoAAAAGwhROKepU6cqISFBISEhSkpK0qpVq85ZP3nyZDVp0kShoaGKj4/Xn/70Jx07dsxa/vjjj8vhcPg8mjZtWtaHUSpKMhYnT57UhAkT1KBBA4WEhKh169ZasGDBBW2zIintsaisz4tPP/1Ut956q+Li4uRwOPTee++dd51ly5bpyiuvVHBwsBo2bKjp06efUVMZnxdlMRZV5Xmxd+9e9enTR40bN1ZAQIBGjBhRZN3s2bPVtGlThYSEqFWrVpo/f37pd76UlcVYTJ8+/YznRUhISNkcwHkQonBWM2fO1MiRI5WRkaG1a9eqdevWSktL0759+4qsf/vttzVq1ChlZGRoy5Yt+te//qWZM2dqzJgxPnUtWrTQ3r17rcfnn39eHodzQUo6FmPHjtUrr7yiKVOmaPPmzbr//vt1++23a926dba3WVGUxVhIlfN5cfjwYbVu3VpTp04tVv3OnTvVtWtXXXfddVq/fr1GjBihe++9Vx9//LFVU1mfF2UxFlLVeF4cP35cUVFRGjt2rFq3bl1kzYoVK9S7d28NGjRI69atU3p6utLT07Vx48bS7HqpK4uxkH6+o/mvnxfffvttaXW5ZAxwFu3btzdDhw61fi8sLDRxcXEmMzOzyPqhQ4ea66+/3qdt5MiR5uqrr7Z+z8jIMK1bty6T/palko5FbGyseemll3zaunfvbvr27Wt7mxVFWYxFZX1e/Jok87///e+cNY8++qhp0aKFT1vPnj1NWlqa9XtlfV78WmmNRVV5XvxaSkqKGT58+BntPXr0MF27dvVpS0pKMkOGDLnAHpaf0hqL119/3bhcrlLr14XgShSKdOLECeXk5Cg1NdVqCwgIUGpqqrKysopcp2PHjsrJybHeevjmm280f/583XzzzT5127ZtU1xcnOrXr6++fftq9+7dZXcgpcDOWBw/fvyMy8uhoaHWq2g726wIymIsTqtszws7srKyfMZOktLS0qyxq6zPCzvONxanVYXnRXEUd7yqikOHDqlevXqKj49Xt27dtGnTJr/0gxCFIuXl5amwsFDR0dE+7dHR0XK73UWu06dPH02YMEHXXHONqlWrpgYNGqhz584+b+clJSVp+vTpWrBggV5++WXt3LlT1157rQ4ePFimx3Mh7IxFWlqa/vrXv2rbtm3yer1atGiR5syZo71799reZkVQFmMhVc7nhR1ut7vIsSsoKNDRo0cr7fPCjvONhVR1nhfFcbbxutieF8XRpEkTvfbaa5o7d67efPNNeb1edezYUd99912594UQhVKzbNkyPfPMM/r73/+utWvXas6cOfrwww/15JNPWjU33XST7rrrLl1++eVKS0vT/PnzlZ+fr1mzZvmx56Xvb3/7mxo1aqSmTZvK6XRq2LBhGjhwoAICqt7/csUZi6ryvEDJ8LxAUZKTk9W/f3+1adNGKSkpmjNnjqKiovTKK6+Ue1+q3l90FEtkZKQCAwOVm5vr056bm6uYmJgi1xk3bpz69eune++9V61atdLtt9+uZ555RpmZmfJ6vUWuExERocaNG2v79u2lfgylxc5YREVF6b333tPhw4f17bff6quvvlKNGjVUv35929usCMpiLIpSGZ4XdsTExBQ5duHh4QoNDa20zws7zjcWRblYnxfFcbbxutieF3ZUq1ZNV1xxhV+eF4QoFMnpdKpt27ZavHix1eb1erV48WIlJycXuc6RI0fOuNISGBgoSTJn+YrGQ4cOaceOHYqNjS2lnpc+O2NxWkhIiOrUqaNTp07pv//9r7p163bB2/SnshiLolSG54UdycnJPmMnSYsWLbLGrrI+L+w431gU5WJ9XhSHnfGqKgoLC7Vhwwb/PC/8PbMdFdeMGTNMcHCwmT59utm8ebMZPHiwiYiIMG632xhjTL9+/cyoUaOs+oyMDFOzZk3zzjvvmG+++cYsXLjQNGjQwPTo0cOqeeihh8yyZcvMzp07zfLly01qaqqJjIw0+/btK/fjK4mSjsXKlSvNf//7X7Njxw7z6aefmuuvv94kJiaan376qdjbrKjKYiwq6/Pi4MGDZt26dWbdunVGkvnrX/9q1q1bZ7799ltjjDGjRo0y/fr1s+q/+eYbU716dfPII4+YLVu2mKlTp5rAwECzYMECq6ayPi/KYiyqyvPCGGPVt23b1vTp08esW7fObNq0yVq+fPlyExQUZJ5//nmzZcsWk5GRYapVq2Y2bNhQrsdWUmUxFk888YT5+OOPzY4dO0xOTo7p1auXCQkJ8akpL4QonNOUKVNM3bp1jdPpNO3btzcrV660lqWkpJgBAwZYv588edI8/vjjpkGDBiYkJMTEx8ebP/7xjz4ny549e5rY2FjjdDpNnTp1TM+ePc327dvL8YjsK8lYLFu2zDRr1swEBwebSy+91PTr1898//33JdpmRVbaY1FZnxdLly41ks54nD7+AQMGmJSUlDPWadOmjXE6naZ+/frm9ddfP2O7lfF5URZjUZWeF0XV16tXz6dm1qxZpnHjxsbpdJoWLVqYDz/8sHwO6AKUxViMGDHC+v8jOjra3HzzzWbt2rXld1C/4vj/HQYAAEAJMCcKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQBVyLJly+RwOJSfn+/vrgCVHiEKQJm4++675XA4NHHiRJ/29957Tw6Hw/rdGKNXX31VycnJCg8PV40aNdSiRQsNHz682F8oeuTIEY0ePVoNGjRQSEiIoqKilJKSorlz51o1CQkJmjx5cqkcW1k7PXYOh0PVqlVTYmKiHn30UR07dqxE2+ncubNGjBjh09axY0ft3btXLperFHsMVE2EKABlJiQkRM8++6x++umnIpcbY9SnTx89+OCDuvnmm7Vw4UJt3rxZ//rXvxQSEqKnnnqqWPu5//77NWfOHE2ZMkVfffWVFixYoDvvvFM//vhjaR5Oubrxxhu1d+9effPNN3rhhRf0yiuvKCMj44K363Q6FRMT4xNkAdjkly+bAXDRGzBggLnllltM06ZNzSOPPGK1/+9//zOn//S88847RpKZO3dukdvwer3F2pfL5TLTp08/6/KUlJQzvovrtM8++8xcc801JiQkxFx22WXmgQceMIcOHbKW//vf/zZt27Y1NWrUMNHR0aZ3794mNzfXWn76u8EWLFhg2rRpY0JCQsx1111ncnNzzfz5803Tpk1NzZo1Te/evc3hw4eLdTwDBgww3bp182nr3r27ueKKK6zf8/LyTK9evUxcXJwJDQ01LVu2NG+//bbPNn57zDt37rT6++vvtHz33XdN8+bNjdPpNPXq1TPPP/98sfoJVHVciQJQZgIDA/XMM89oypQp+u67785Y/s4776hJkya67bbbily/uFdLYmJiNH/+fB08eLDI5XPmzNFll12mCRMmaO/evdq7d68kaceOHbrxxht1xx136Msvv9TMmTP1+eefa9iwYda6J0+e1JNPPqkvvvhC7733nnbt2qW77777jH08/vjjeumll7RixQrt2bNHPXr00OTJk/X222/rww8/1MKFCzVlypRiHc9vbdy4UStWrJDT6bTajh07prZt2+rDDz/Uxo0bNXjwYPXr10+rVq2SJP3tb39TcnKy7rvvPuuY4+Pjz9h2Tk6OevTooV69emnDhg16/PHHNW7cOE2fPt1WX4Eqxd8pDsDF6ddXUzp06GDuueceY4zvlaimTZua2267zWe94cOHm7CwMBMWFmbq1KlTrH198skn5rLLLjPVqlUz7dq1MyNGjDCff/65T029evXMCy+84NM2aNAgM3jwYJ+2zz77zAQEBJijR48Wua/Vq1cbSebgwYPGmF+uRP3f//2fVZOZmWkkmR07dlhtQ4YMMWlpacU6ngEDBpjAwEATFhZmgoODjSQTEBBg3n333XOu17VrV/PQQw9Zv6ekpJjhw4f71Pz2SlSfPn3M7373O5+aRx55xDRv3rxYfQWqMq5EAShzzz77rN544w1t2bLlvLV//vOftX79eo0fP16HDh0q1vY7deqkb775RosXL9add96pTZs26dprr9WTTz55zvW++OILTZ8+XTVq1LAeaWlp8nq92rlzp6Sfr9Tceuutqlu3rmrWrKmUlBRJ0u7du322dfnll1v/HR0drerVq6t+/fo+bfv27SvW8UjSddddp/Xr1ys7O1sDBgzQwIEDdccdd1jLCwsL9eSTT6pVq1aqVauWatSooY8//viMfp3Pli1bdPXVV/u0XX311dq2bZsKCwtLtC2gqiFEAShznTp1UlpamkaPHu3T3qhRI23dutWnLSoqSg0bNlTt2rVLtI9q1arp2muv1WOPPaaFCxdqwoQJevLJJ3XixImzrnPo0CENGTJE69evtx5ffPGFtm3bpgYNGujw4cNKS0tTeHi43nrrLa1evVr/+9//JOmM7VarVs3679Ofqvs1h8Mhr9db7OMJCwtTw4YN1bp1a7322mvKzs7Wv/71L2v5c889p7/97W967LHHtHTpUq1fv15paWnnPF4ApSvI3x0AUDVMnDhRbdq0UZMmTay23r17q0+fPpo7d666detWqvtr3ry5Tp06pWPHjsnpdMrpdJ5xZeXKK6/U5s2b1bBhwyK3sWHDBv3444+aOHGiNZ9ozZo1pdrP4ggICNCYMWM0cuRI9enTR6GhoVq+fLm6deum3//+95Ikr9err7/+Ws2bN7fWK+qYf6tZs2Zavny5T9vy5cvVuHFjBQYGlv7BABcRrkQBKBetWrVS37599eKLL1ptvXr10p133qlevXppwoQJys7O1q5du/TJJ59o5syZxT6Jd+7cWa+88opycnK0a9cuzZ8/X2PGjNF1112n8PBwST/fJ+rTTz/V999/r7y8PEnSY489phUrVmjYsGFav369tm3bprlz51oTy+vWrSun06kpU6bom2++0fvvv3/etwjLyl133aXAwEBNnTpV0s9X8RYtWqQVK1Zoy5YtGjJkiHJzc33WSUhIsMY0Ly+vyCthDz30kBYvXqwnn3xSX3/9td544w299NJLevjhh8vluIDKjBAFoNxMmDDB50TucDg0c+ZMTZ48WfPnz1eXLl3UpEkT3XPPPYqPj9fnn39erO2mpaXpjTfe0A033KBmzZrpgQceUFpammbNmuWz7127dqlBgwaKioqS9PM8pk8++URff/21rr32Wl1xxRUaP3684uLiJP381uL06dM1e/ZsNW/eXBMnTtTzzz9fiiNSfEFBQRo2bJgmTZqkw4cPa+zYsbryyiuVlpamzp07KyYmRunp6T7rPPzwwwoMDFTz5s0VFRVV5HypK6+8UrNmzdKMGTPUsmVLjR8/XhMmTCjyE4gAfDmMMcbfnQAAAKhsuBIFAABgAyEKQIX361sQ/Pbx2Wef+bt7JbJ79+5zHk9Jb1EAwH94Ow9AhXeuLyKuU6eOQkNDy7E3F+bUqVPatWvXWZcnJCQoKIgPTgOVASEKAADABt7OAwAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANjw/wB9VUqsyMbHEgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUOtJREFUeJzt3XtcVHX+P/DXDDAMogwZyAChoIF4ISmVEVPRdbYxqSRtBWS9RWLfjdJF19SvilnfMLPN9bLRZYt200RbUzMiWdRMIUTU8kKmhrdiUCIGRVBkPr8//HHWiYtwBIaB1/PxmAfyOe9z5nM+js2rz3zmHIUQQoCIiIiImkRp7Q4QERER2SKGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiateWLl0KhULRqFqFQoGlS5e2aH9GjhyJkSNHttnjEVHjMUQRUatISUmBQqGQHvb29vD29sa0adPw008/Wbt7bY6vr6/FeHXr1g3Dhw/Hp59+2izHv3btGpYuXYo9e/Y0y/GIOiKGKCJqVcuWLcO//vUvJCcn49FHH8VHH32EsLAwVFZWtsjzLVq0CBUVFS1y7JYWHByMf/3rX/jXv/6FuXPn4ueff8b48eORnJx818e+du0aXnrpJYYoortgb+0OEFHH8uijj2LQoEEAgGeeeQZubm547bXXsH37dkycOLHZn8/e3h729rb5nzpvb2/88Y9/lH6fMmUK7r//frz55pt49tlnrdgzIgI4E0VEVjZ8+HAAwJkzZyzav//+ezz11FPo2rUr1Go1Bg0ahO3bt1vUVFVV4aWXXoK/vz/UajXuvfdeDBs2DBkZGVJNXWuirl+/jj//+c9wd3dHly5d8MQTT+DixYu1+jZt2jT4+vrWaq/rmB988AF+97vfoVu3bnB0dETfvn3x1ltvNWks7kSr1aJPnz4oKChosO7SpUuIjY2Fh4cH1Go1BgwYgA8//FDafvbsWbi7uwMAXnrpJekjw5ZeD0bU3tjm/54RUbtx9uxZAMA999wjtR0/fhwPP/wwvL29MX/+fDg7O2PTpk2IiIjAv//9bzz55JMAboWZpKQkPPPMMwgJCUFZWRkOHjyIQ4cO4fe//329z/nMM8/go48+wqRJkzB06FDs2rUL4eHhd3Ueb731Fvr164cnnngC9vb2+Oyzz/CnP/0JZrMZzz333F0du0ZVVRUuXLiAe++9t96aiooKjBw5EqdPn0Z8fDz8/PywefNmTJs2DaWlpZg1axbc3d3x1ltv4X/+53/w5JNPYvz48QCABx54oFn6SdRhCCKiVvDBBx8IAOI///mPuHz5srhw4YL45JNPhLu7u3B0dBQXLlyQakePHi2CgoJEZWWl1GY2m8XQoUOFv7+/1DZgwAARHh7e4PMmJiaK2/9Td+TIEQFA/OlPf7KomzRpkgAgEhMTpbapU6eKHj163PGYQghx7dq1WnUGg0H07NnToi0sLEyEhYU12GchhOjRo4d45JFHxOXLl8Xly5fFt99+K6KiogQA8fzzz9d7vFWrVgkA4qOPPpLabty4IUJDQ0Xnzp1FWVmZEEKIy5cv1zpfImoafpxHRK1Kr9fD3d0dPj4+eOqpp+Ds7Izt27fjvvvuAwCUlJRg165dmDhxIq5cuYLi4mIUFxfjl19+gcFgwKlTp6Rv87m6uuL48eM4depUo58/LS0NAPDCCy9YtM+ePfuuzsvJyUn6s8lkQnFxMcLCwvDjjz/CZDLJOubOnTvh7u4Od3d3DBgwAJs3b8bkyZPx2muv1btPWloatFotoqOjpTYHBwe88MILuHr1Kr766itZfSGi2vhxHhG1qnXr1iEgIAAmkwnvv/8+9u7dC0dHR2n76dOnIYTA4sWLsXjx4jqPcenSJXh7e2PZsmUYN24cAgIC0L9/f4wZMwaTJ09u8GOpc+fOQalUolevXhbtvXv3vqvz2r9/PxITE5GdnY1r165ZbDOZTNBoNE0+pk6nwyuvvAKFQoFOnTqhT58+cHV1bXCfc+fOwd/fH0ql5f8j9+nTR9pORM2DIYqIWlVISIj07byIiAgMGzYMkyZNwsmTJ9G5c2eYzWYAwNy5c2EwGOo8xv333w8AGDFiBM6cOYNt27Zh586deO+99/Dmm28iOTkZzzzzzF33tb6LdFZXV1v8fubMGYwePRqBgYH461//Ch8fH6hUKqSlpeHNN9+Uzqmp3NzcoNfrZe1LRC2PIYqIrMbOzg5JSUkYNWoU1q5di/nz56Nnz54Abn0E1ZgA0bVrV0yfPh3Tp0/H1atXMWLECCxdurTeENWjRw+YzWacOXPGYvbp5MmTtWrvuecelJaW1mr/7WzOZ599huvXr2P79u3o3r271L579+479r+59ejRA9999x3MZrPFbNT3338vbQfqD4hE1HhcE0VEVjVy5EiEhIRg1apVqKysRLdu3TBy5Ei8/fbbKCwsrFV/+fJl6c+//PKLxbbOnTvj/vvvx/Xr1+t9vkcffRQAsHr1aov2VatW1art1asXTCYTvvvuO6mtsLCw1lXD7ezsAABCCKnNZDLhgw8+qLcfLWXs2LEwGo1ITU2V2m7evIk1a9agc+fOCAsLAwB06tQJAOoMiUTUOJyJIiKr+8tf/oI//OEPSElJwbPPPot169Zh2LBhCAoKwowZM9CzZ08UFRUhOzsbFy9exLfffgsA6Nu3L0aOHImBAweia9euOHjwID755BPEx8fX+1zBwcGIjo7G3//+d5hMJgwdOhSZmZk4ffp0rdqoqCi8+OKLePLJJ/HCCy/g2rVreOuttxAQEIBDhw5JdY888ghUKhUef/xxzJw5E1evXsW7776Lbt261RkEW1JcXBzefvttTJs2DXl5efD19cUnn3yC/fv3Y9WqVejSpQuAWwvh+/bti9TUVAQEBKBr167o378/+vfv36r9JbJp1v56IBF1DDWXOMjNza21rbq6WvTq1Uv06tVL3Lx5UwghxJkzZ8SUKVOEVqsVDg4OwtvbWzz22GPik08+kfZ75ZVXREhIiHB1dRVOTk4iMDBQ/N///Z+4ceOGVFPX5QgqKirECy+8IO69917h7OwsHn/8cXHhwoU6v/K/c+dO0b9/f6FSqUTv3r3FRx99VOcxt2/fLh544AGhVquFr6+veO2118T7778vAIiCggKprimXOLjT5RvqO15RUZGYPn26cHNzEyqVSgQFBYkPPvig1r5ZWVli4MCBQqVS8XIHRDIohLht/pmIiIiIGoVrooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgRfbbEFmsxk///wzunTpwlssEBER2QghBK5cuQIvL69aN/O+HUNUC/r555/h4+Nj7W4QERGRDBcuXMB9991X73aGqBZUc3uFCxcuwMXFxcq9ISIiosYoKyuDj4+P9D5eH4aoFlTzEZ6LiwtDFBERkY2501IcLiwnIiIikoEhioiIiEgGhigiIiIiGbgmioiIyIaZzWbcuHHD2t2wKQ4ODrCzs7vr4zBEERER2agbN26goKAAZrPZ2l2xOa6urtBqtXd1HUeGKCIiIhskhEBhYSHs7Ozg4+PT4EUh6b+EELh27RouXboEAPD09JR9LIYoIiIiG3Tz5k1cu3YNXl5e6NSpk7W7Y1OcnJwAAJcuXUK3bt1kf7TH2EpERGSDqqurAQAqlcrKPbFNNcGzqqpK9jEYooiIiGwY780qT3OMG0MUERERkQwMUUREREQyMERRm1VoqkDWmWIUmiqs3RUiImom06ZNQ0RERK32PXv2QKFQoLS0FHv27MG4cePg6ekJZ2dnBAcHY/369bX2KSkpwezZs9GjRw+oVCp4eXnh6aefxvnz51vhTPjtPGqjUnPPY8GWozALQKkAksYHIXJwd2t3i4iIWkFWVhYeeOABvPjii/Dw8MCOHTswZcoUaDQaPPbYYwBuBaghQ4ZApVIhOTkZ/fr1w9mzZ7Fo0SIMHjwY2dnZ6NmzZ4v2kyGK2pxCU4UUoADALICFW45hRIA7PDVO1u0cERG1uIULF1r8PmvWLOzcuRNbtmyRQtT//u//4ueff8bp06eh1WoBAN27d8eXX34Jf39/PPfcc/jiiy9atJ/8OI/anILicilA1agWAmeLr1mnQ0RE7ZwtLJ8wmUzo2rUrgFu3utm4cSNiYmKkAFXDyckJf/rTn/Dll1+ipKSkRfvEmShqc/zcnKFUwCJI2SkU8HXjxeSIiJqbNZZP7NixA507d7Zoq7nuVV02bdqE3NxcvP322wCAy5cvo7S0FH369Kmzvk+fPhBC4PTp0wgJCWm+jv8GZ6KozfHUOCFpfBDs/v81POwUCrw6vj8/yiMiamb1LZ9o6RmpUaNG4ciRIxaP9957r87a3bt3Y/r06Xj33XfRr18/i21CiDr3aS2ciaI2KXJwd4wIcMfZ4mvwdevEAEVE1AIaWj7Rkv/ddXZ2xv3332/RdvHixVp1X331FR5//HG8+eabmDJlitTu7u4OV1dX5Ofn13n8/Px8KBSKWs/R3DgTRW2Wp8YJob3uZYAiImohNcsnbtdWlk/s2bMH4eHheO211xAXF2exTalUYuLEidiwYQOMRqPFtoqKCvz973+HwWCQ1lC1FIYoIiKiDqqtLp/YvXs3wsPD8cILL2DChAkwGo0wGo0WC8VfffVVaLVa/P73v8cXX3yBCxcuYO/evTAYDKiqqsK6detavJ/8OI+IiKgDa4vLJz788ENcu3YNSUlJSEpKktrDwsKwZ88eAMC9996Lb775BsuWLcPMmTNhNBrRtWtXPProo/joo4/QvXvLX1tQIay9KqsdKysrg0ajgclkgouLi7W7Q0RE7UhlZSUKCgrg5+cHtVpt7e7YnIbGr7Hv3/w4j4iIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSoU2EqHXr1sHX1xdqtRo6nQ4HDhxosH7z5s0IDAyEWq1GUFAQ0tLSLLYLIbBkyRJ4enrCyckJer0ep06dsqgpKSlBTEwMXFxc4OrqitjYWFy9elXavnTpUigUiloPZ2fn5jtxIiKiu8Tvh8nTHONm9RCVmpqKhIQEJCYm4tChQxgwYAAMBgMuXbpUZ31WVhaio6MRGxuLw4cPIyIiAhERETh27JhUs2LFCqxevRrJycnIycmBs7MzDAYDKisrpZqYmBgcP34cGRkZ2LFjB/bu3WtxMa+5c+eisLDQ4tG3b1/84Q9/aLnBICIiaiQ7OzsAwI0bN6zcE9t07dqtm9o7ODjIPobVL3Gg0+kwePBgrF27FsCtOzP7+Pjg+eefx/z582vVR0ZGory8HDt27JDahgwZguDgYCQnJ0MIAS8vL8yZMwdz584FcOvOzx4eHkhJSUFUVBTy8/PRt29f5ObmYtCgQQCA9PR0jB07FhcvXoSXl1et5/32228RHByMvXv3Yvjw4Y06N17igIiIWooQAufPn0dVVRW8vLygVFp9XsQmCCFw7do1XLp0Ca6urvD09KxV09j3b6tebPPGjRvIy8vDggULpDalUgm9Xo/s7Ow698nOzkZCQoJFm8FgwNatWwEABQUFMBqN0Ov10naNRgOdTofs7GxERUUhOzsbrq6uUoACAL1eD6VSiZycHDz55JO1nve9995DQEBAowMUERFRS1IoFPD09ERBQQHOnTtn7e7YHFdXV2i12rs6hlVDVHFxMaqrq+Hh4WHR7uHhge+//77OfYxGY531NffOqfl5p5pu3bpZbLe3t0fXrl1r3YMHuHVBrvXr19c5M3a769ev4/r169LvZWVlDdYTERHdDZVKBX9/f36k10QODg7Sx6F3g7d9aYRPP/0UV65cwdSpUxusS0pKwksvvdRKvSIiIrr1CQ6vWG4dVv0A1c3NDXZ2digqKrJoLyoqqneKTavVNlhf8/NONb9duH7z5k2UlJTU+bzvvfceHnvssVqzW7+1YMECmEwm6XHhwoUG64mIiMh2WTVEqVQqDBw4EJmZmVKb2WxGZmYmQkND69wnNDTUoh4AMjIypHo/Pz9otVqLmrKyMuTk5Eg1oaGhKC0tRV5enlSza9cumM1m6HQ6i2MXFBRg9+7diI2NveP5ODo6wsXFxeJBRERE7ZPVP85LSEjA1KlTMWjQIISEhGDVqlUoLy/H9OnTAQBTpkyBt7e3dBfnWbNmISwsDG+88QbCw8OxceNGHDx4EO+88w6AWwvtZs+ejVdeeQX+/v7w8/PD4sWL4eXlhYiICABAnz59MGbMGMyYMQPJycmoqqpCfHw8oqKian0z7/3334enpyceffTR1hsUIiIiavOsHqIiIyNx+fJlLFmyBEajEcHBwUhPT5c+Ojt//rzF1zaHDh2KDRs2YNGiRVi4cCH8/f2xdetW9O/fX6qZN28eysvLERcXh9LSUgwbNgzp6ekWnxmvX78e8fHxGD16NJRKJSZMmIDVq1db9M1sNiMlJQXTpk1rlgVoRERE1H5Y/TpR7RmvE0VERGR7Gvv+zStzEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMlg9RK1btw6+vr5Qq9XQ6XQ4cOBAg/WbN29GYGAg1Go1goKCkJaWZrFdCIElS5bA09MTTk5O0Ov1OHXqlEVNSUkJYmJi4OLiAldXV8TGxuLq1au1jrNy5UoEBATA0dER3t7e+L//+7/mOWkiIiKyeVYNUampqUhISEBiYiIOHTqEAQMGwGAw4NKlS3XWZ2VlITo6GrGxsTh8+DAiIiIQERGBY8eOSTUrVqzA6tWrkZycjJycHDg7O8NgMKCyslKqiYmJwfHjx5GRkYEdO3Zg7969iIuLs3iuWbNm4b333sPKlSvx/fffY/v27QgJCWmZgSAiIiLbI6woJCREPPfcc9Lv1dXVwsvLSyQlJdVZP3HiRBEeHm7RptPpxMyZM4UQQpjNZqHVasXrr78ubS8tLRWOjo7i448/FkIIceLECQFA5ObmSjVffPGFUCgU4qeffpJq7O3txffff39X52cymQQAYTKZ7uo4RERE1Hoa+/5ttZmoGzduIC8vD3q9XmpTKpXQ6/XIzs6uc5/s7GyLegAwGAxSfUFBAYxGo0WNRqOBTqeTarKzs+Hq6opBgwZJNXq9HkqlEjk5OQCAzz77DD179sSOHTvg5+cHX19fPPPMMygpKWnwnK5fv46ysjKLBxEREbVPVgtRxcXFqK6uhoeHh0W7h4cHjEZjnfsYjcYG62t+3qmmW7duFtvt7e3RtWtXqebHH3/EuXPnsHnzZvzzn/9ESkoK8vLy8NRTTzV4TklJSdBoNNLDx8enwXoiIiKyXVZfWN4Wmc1mXL9+Hf/85z8xfPhwjBw5Ev/4xz+we/dunDx5st79FixYAJPJJD0uXLjQir0mIiKi1mS1EOXm5gY7OzsUFRVZtBcVFUGr1da5j1arbbC+5uedan67cP3mzZsoKSmRajw9PWFvb4+AgACppk+fPgCA8+fP13tOjo6OcHFxsXgQERFR+2S1EKVSqTBw4EBkZmZKbWazGZmZmQgNDa1zn9DQUIt6AMjIyJDq/fz8oNVqLWrKysqQk5Mj1YSGhqK0tBR5eXlSza5du2A2m6HT6QAADz/8MG7evIkzZ85INT/88AMAoEePHndz2kRERNRetNJC9zpt3LhRODo6ipSUFHHixAkRFxcnXF1dhdFoFEIIMXnyZDF//nypfv/+/cLe3l6sXLlS5Ofni8TEROHg4CCOHj0q1Sxfvly4urqKbdu2ie+++06MGzdO+Pn5iYqKCqlmzJgx4sEHHxQ5OTli3759wt/fX0RHR0vbq6urxUMPPSRGjBghDh06JA4ePCh0Op34/e9/36Tz47fziIiIbE9j37+tGqKEEGLNmjWie/fuQqVSiZCQEPHNN99I28LCwsTUqVMt6jdt2iQCAgKESqUS/fr1E59//rnFdrPZLBYvXiw8PDyEo6OjGD16tDh58qRFzS+//CKio6NF586dhYuLi5g+fbq4cuWKRc1PP/0kxo8fLzp37iw8PDzEtGnTxC+//NKkc2OIIiIisj2Nff9WCCGEdefC2q+ysjJoNBqYTCaujyIiIrIRjX3/5rfziIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEiGNhGi1q1bB19fX6jVauh0Ohw4cKDB+s2bNyMwMBBqtRpBQUFIS0uz2C6EwJIlS+Dp6QknJyfo9XqcOnXKoqakpAQxMTFwcXGBq6srYmNjcfXqVWn72bNnoVAoaj2++eab5jtxIiIisllWD1GpqalISEhAYmIiDh06hAEDBsBgMODSpUt11mdlZSE6OhqxsbE4fPgwIiIiEBERgWPHjkk1K1aswOrVq5GcnIycnBw4OzvDYDCgsrJSqomJicHx48eRkZGBHTt2YO/evYiLi6v1fP/5z39QWFgoPQYOHNj8g0BERES2R1hZSEiIeO6556Tfq6urhZeXl0hKSqqzfuLEiSI8PNyiTafTiZkzZwohhDCbzUKr1YrXX39d2l5aWiocHR3Fxx9/LIQQ4sSJEwKAyM3NlWq++OILoVAoxE8//SSEEKKgoEAAEIcPH5Z9biaTSQAQJpNJ9jGIiIiodTX2/duqM1E3btxAXl4e9Hq91KZUKqHX65GdnV3nPtnZ2Rb1AGAwGKT6goICGI1GixqNRgOdTifVZGdnw9XVFYMGDZJq9Ho9lEolcnJyLI79xBNPoFu3bhg2bBi2b9/e4Plcv34dZWVlFg8iIiJqn6waooqLi1FdXQ0PDw+Ldg8PDxiNxjr3MRqNDdbX/LxTTbdu3Sy229vbo2vXrlJN586d8cYbb2Dz5s34/PPPMWzYMERERDQYpJKSkqDRaKSHj4/PnYaAiIiIbJS9tTvQVrm5uSEhIUH6ffDgwfj555/x+uuv44knnqhznwULFljsU1ZWxiBFRETUTll1JsrNzQ12dnYoKiqyaC8qKoJWq61zH61W22B9zc871fx24frNmzdRUlJS7/MCgE6nw+nTp+vd7ujoCBcXF4sHERERtU9WDVEqlQoDBw5EZmam1GY2m5GZmYnQ0NA69wkNDbWoB4CMjAyp3s/PD1qt1qKmrKwMOTk5Uk1oaChKS0uRl5cn1ezatQtmsxk6na7e/h45cgSenp5NP1EiIiJqd6z+cV5CQgKmTp2KQYMGISQkBKtWrUJ5eTmmT58OAJgyZQq8vb2RlJQEAJg1axbCwsLwxhtvIDw8HBs3bsTBgwfxzjvvAAAUCgVmz56NV155Bf7+/vDz88PixYvh5eWFiIgIAECfPn0wZswYzJgxA8nJyaiqqkJ8fDyioqLg5eUFAPjwww+hUqnw4IMPAgC2bNmC999/H++9914rjxARERG1RVYPUZGRkbh8+TKWLFkCo9GI4OBgpKenSwvDz58/D6XyvxNmQ4cOxYYNG7Bo0SIsXLgQ/v7+2Lp1K/r37y/VzJs3D+Xl5YiLi0NpaSmGDRuG9PR0qNVqqWb9+vWIj4/H6NGjoVQqMWHCBKxevdqiby+//DLOnTsHe3t7BAYGIjU1FU899VQLjwgRERHZAoUQQli7E+1VWVkZNBoNTCYT10cRERHZiMa+f1v9iuVEREREtoghioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoG1RoqkDWmWIUmiqs3RUiIqIOy97aHaCmSc09jwVbjsIsAKUCSBofhMjB3a3dLSIiog6HM1E2pNBUIQUoADALYOGWY5yRIiIisgKGKBtSUFwuBaga1ULgbPE163SIiIioA2OIsiF+bs5QKizb7BQK+Lp1sk6HiIiIOjCGKBviqXFC0vgg2CluJSk7hQKvju8PT42TlXtGRETU8XBhuY2JHNwdIwLccbb4GnzdOjFAERERWQlDlA3y1DgxPBEREVkZP84jIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISIY2EaLWrVsHX19fqNVq6HQ6HDhwoMH6zZs3IzAwEGq1GkFBQUhLS7PYLoTAkiVL4OnpCScnJ+j1epw6dcqipqSkBDExMXBxcYGrqytiY2Nx9erVOp/v9OnT6NKlC1xdXe/qPImIiKj9sHqISk1NRUJCAhITE3Ho0CEMGDAABoMBly5dqrM+KysL0dHRiI2NxeHDhxEREYGIiAgcO3ZMqlmxYgVWr16N5ORk5OTkwNnZGQaDAZWVlVJNTEwMjh8/joyMDOzYsQN79+5FXFxcreerqqpCdHQ0hg8f3vwnT0RERDZLIYQQdy5rOTqdDoMHD8batWsBAGazGT4+Pnj++ecxf/78WvWRkZEoLy/Hjh07pLYhQ4YgODgYycnJEELAy8sLc+bMwdy5cwEAJpMJHh4eSElJQVRUFPLz89G3b1/k5uZi0KBBAID09HSMHTsWFy9ehJeXl3TsF198ET///DNGjx6N2bNno7S0tNHnVlZWBo1GA5PJBBcXFznDQ0RERK2sse/fVp2JunHjBvLy8qDX66U2pVIJvV6P7OzsOvfJzs62qAcAg8Eg1RcUFMBoNFrUaDQa6HQ6qSY7Oxuurq5SgAIAvV4PpVKJnJwcqW3Xrl3YvHkz1q1b16jzuX79OsrKyiweRERE1D7JDlGlpaU4ePAgDh482KTZmdsVFxejuroaHh4eFu0eHh4wGo117mM0Ghusr/l5p5pu3bpZbLe3t0fXrl2lml9++QXTpk1DSkpKo2eRkpKSoNFopIePj0+j9iMiIiLb0+QQdfbsWYSHh8PNzQ06nQ46nQ5ubm547LHHcPbs2RboonXMmDEDkyZNwogRIxq9z4IFC2AymaTHhQsXWrCHREREZE1NugHxhQsXMGTIEDg4OODll19Gnz59AAAnTpzAW2+9hdDQUOTm5uK+++5r1PHc3NxgZ2eHoqIii/aioiJotdo699FqtQ3W1/wsKiqCp6enRU1wcLBU89uF6zdv3kRJSYm0/65du7B9+3asXLkSwK1v/JnNZtjb2+Odd97B008/Xatvjo6OcHR0bNS5ExERkW1r0kzU0qVL0bt3b5w6dQoLFiyQvhm3cOFC/PDDDwgICMDSpUsbfTyVSoWBAwciMzNTajObzcjMzERoaGid+4SGhlrUA0BGRoZU7+fnB61Wa1FTVlaGnJwcqSY0NBSlpaXIy8uTanbt2gWz2QydTgfg1rqpI0eOSI9ly5ahS5cuOHLkCJ588slGnyMRERG1U6IJvLy8xNdff13v9q+++kp4eno25ZBi48aNwtHRUaSkpIgTJ06IuLg44erqKoxGoxBCiMmTJ4v58+dL9fv37xf29vZi5cqVIj8/XyQmJgoHBwdx9OhRqWb58uXC1dVVbNu2TXz33Xdi3Lhxws/PT1RUVEg1Y8aMEQ8++KDIyckR+/btE/7+/iI6Orrefn7wwQdCo9E06dxMJpMAIEwmU5P2IyIiIutp7Pt3kz7OKy4uhq+vb73be/bsiZKSkiaFuMjISFy+fBlLliyB0WhEcHAw0tPTpYXh58+fh1L53wmzoUOHYsOGDVi0aBEWLlwIf39/bN26Ff3795dq5s2bh/LycsTFxaG0tBTDhg1Deno61Gq1VLN+/XrEx8dj9OjRUCqVmDBhAlavXt2kvhMREVHH1aTrRPn6+uKdd97BI488Uuf29PR0PPvss+1qgfnd4HWiiIiIbE+LXCcqIiICc+fOxeXLl2ttu3TpEl588UVEREQ0ubNEREREtqZJM1G//vordDodjEYj/vjHPyIwMBBCCOTn52PDhg3QarX45ptv0LVr15bss83gTBQREZHtaez7d5PWRN1zzz3IycnBwoULsXHjRukim66urpg0aRJeffVVBigiIiLqEGTfO08IIX2s5+7uDoVC0awdaw84E0VERGR7WmQm6nYKhaLWrVOIiIiIOoom3/YlLS0NzzzzDObNm4f8/HyLbb/++it+97vfNVvniIiIiNqqJoWoDRs24IknnoDRaER2djYeeughrF+/Xtp+48YNfPXVV83eSSIiImq7Ck0VyDpTjEJThbW70qqa9HHe66+/jr/+9a944YUXAACbNm3C008/jcrKSsTGxrZIB4mIiKjtSs09jwVbjsIsAKUCSBofhMjB3Vv8eQtNFSgoLoefmzM8NU4t/nx1aVKIOnXqFB5//HHp94kTJ8Ld3R1PPPEEqqqqeE85IiKiDqTQVCEFKAAwC2DhlmMYEeDeosHGWsHtt5oUolxcXFBUVAQ/Pz+pbdSoUdixYwcee+wxXLx4sdk7SERERG1TQXG5FKBqVAuBs8XXWixEWSu41aVJa6JCQkLwxRdf1GoPCwvDZ599hlWrVjVXv4iIiKiN83NzhvI3VziyUyjg69apxZ6zoeDW2poUov785z9b3MT3diNHjsRnn32GKVOmNEvHiIiIqG3z1DghaXwQ7P7/tSLtFAq8Or5/i84IWSO41adJF9ssKytrVB0vLHkLL7ZJREQdQaGpAmeLr8HXrVOrfKQ2Z9MR/PvQT9LvEx7yxhsTg5vt+C1ysU1XV9dGXZm8urq6KYclIiIiG+apcWq19UiFpgp8evgni7ath3/GXEPvVl8T1aQQtXv3bunPQgiMHTsW7733Hry9vZu9Y0RERES/ZY3F7PVpUogKCwuz+N3Ozg5DhgxBz549m7VTRERERHWpWRN1e5Cy1pqoJt/2hYiIiMharLGYvT6yb0BMREREZA2Rg7tjRIB7qy5mr8tdh6jGLDQnIiIiak6tuZi9Pk0KUePHj7f4vbKyEs8++yycnZ0t2rds2XL3PSMiIiJqw5oUojQajcXvf/zjH5u1M0RERES2okkh6oMPPmipfhAREbU7haYKFBSXw8/N2eofPVHz48JyIiKiFpCae166Ua5SASSND0Lk4O7W7hY1I17igIiIqJkVmiqkAAXcuqbRwi3HUGiqsG7H2pFCUwWyzhRbdUw5E0VtFqfBichWtaWrardHbWWWjyGK2qS28g+EiEiOtnRV7famvlm+EQHurR5Q+XEetTmcBiciW9eWrqrd3jQ0y9faOBNFbQ6nwYmoPWgrV9Vub9rSLB9noqjNqfkHcjtOgxORLfLUOCG0170MUM2oLc3ycSaK2pyafyALtxxDtRCcBiciIgttZZaPIYrapLbyD4SIiNomm7t3HlFragv/QIiIiOrDNVFEREREMjBEEREREcnAEEVEREQkQ5sIUevWrYOvry/UajV0Oh0OHDjQYP3mzZsRGBgItVqNoKAgpKWlWWwXQmDJkiXw9PSEk5MT9Ho9Tp06ZVFTUlKCmJgYuLi4wNXVFbGxsbh69aq0/eTJkxg1ahQ8PDygVqvRs2dPLFq0CFVVVc134kRERGSzrB6iUlNTkZCQgMTERBw6dAgDBgyAwWDApUuX6qzPyspCdHQ0YmNjcfjwYURERCAiIgLHjh2TalasWIHVq1cjOTkZOTk5cHZ2hsFgQGVlpVQTExOD48ePIyMjAzt27MDevXsRFxcnbXdwcMCUKVOwc+dOnDx5EqtWrcK7776LxMTElhsMIiIishkKIYS4c1nL0el0GDx4MNauXQsAMJvN8PHxwfPPP4/58+fXqo+MjER5eTl27NghtQ0ZMgTBwcFITk6GEAJeXl6YM2cO5s6dCwAwmUzw8PBASkoKoqKikJ+fj759+yI3NxeDBg0CAKSnp2Ps2LG4ePEivLy86uxrQkICcnNz8fXXXzfq3MrKyqDRaGAymeDi4tKkcSEiIiLraOz7t1Vnom7cuIG8vDzo9XqpTalUQq/XIzs7u859srOzLeoBwGAwSPUFBQUwGo0WNRqNBjqdTqrJzs6Gq6urFKAAQK/XQ6lUIicnp87nPX36NNLT0xEWFlbv+Vy/fh1lZWUWDyIiImqfrBqiiouLUV1dDQ8PD4t2Dw8PGI3GOvcxGo0N1tf8vFNNt27dLLbb29uja9eutZ536NChUKvV8Pf3x/Dhw7Fs2bJ6zycpKQkajUZ6+Pj41FtLREREts3qa6LautTUVBw6dAgbNmzA559/jpUrV9Zbu2DBAphMJulx4cKFVuwpERERtSarXrHczc0NdnZ2KCoqsmgvKiqCVqutcx+tVttgfc3PoqIieHp6WtQEBwdLNb9duH7z5k2UlJTUet6a2aS+ffuiuroacXFxmDNnDuzs7Gr1zdHREY6Ojnc6bSIiImoHrDoTpVKpMHDgQGRmZkptZrMZmZmZCA0NrXOf0NBQi3oAyMjIkOr9/Pyg1WotasrKypCTkyPVhIaGorS0FHl5eVLNrl27YDabodPp6u2v2WxGVVUVzGZz00+WiIiI2hWr3zsvISEBU6dOxaBBgxASEoJVq1ahvLwc06dPBwBMmTIF3t7eSEpKAgDMmjULYWFheOONNxAeHo6NGzfi4MGDeOeddwAACoUCs2fPxiuvvAJ/f3/4+flh8eLF8PLyQkREBACgT58+GDNmDGbMmIHk5GRUVVUhPj4eUVFR0jfz1q9fDwcHBwQFBcHR0REHDx7EggULEBkZCQcHh9YfKCIiImpTrB6iIiMjcfnyZSxZsgRGoxHBwcFIT0+XFoafP38eSuV/J8yGDh2KDRs2YNGiRVi4cCH8/f2xdetW9O/fX6qZN28eysvLERcXh9LSUgwbNgzp6elQq9VSzfr16xEfH4/Ro0dDqVRiwoQJWL16tbTd3t4er732Gn744QcIIdCjRw/Ex8fjz3/+cyuMChEREbV1Vr9OVHvG60QRERHZHpu4ThQRERGRrWKIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhygYVmiqQdaYYhaYKa3eFiIiow7K3dgeoaVJzz2PBlqMwC0CpAJLGByFycHdrd4uIiKjD4UyUDSk0VUgBCgDMAli45RhnpIiIiKyAIcqGFBSXSwGqRrUQOFt8zTodIiKbx+UBRPLx4zwb4ufmDKUCFkHKTqGAr1sn63WKiGwWlwcQ3R3ORNkQT40TksYHwU6hAHArQL06vj88NU5W7hkR2RouDyC6e20iRK1btw6+vr5Qq9XQ6XQ4cOBAg/WbN29GYGAg1Go1goKCkJaWZrFdCIElS5bA09MTTk5O0Ov1OHXqlEVNSUkJYmJi4OLiAldXV8TGxuLq1avS9j179mDcuHHw9PSEs7MzgoODsX79+uY7aZkiB3fHvvmj8PGMIdg3fxT/r5GIZOHyAKK7Z/UQlZqaioSEBCQmJuLQoUMYMGAADAYDLl26VGd9VlYWoqOjERsbi8OHDyMiIgIRERE4duyYVLNixQqsXr0aycnJyMnJgbOzMwwGAyorK6WamJgYHD9+HBkZGdixYwf27t2LuLg4i+d54IEH8O9//xvfffcdpk+fjilTpmDHjh0tNxiN5KlxQmivezkDRUSy1SwPuB2XBxA1jUIIIe5c1nJ0Oh0GDx6MtWvXAgDMZjN8fHzw/PPPY/78+bXqIyMjUV5ebhFmhgwZguDgYCQnJ0MIAS8vL8yZMwdz584FAJhMJnh4eCAlJQVRUVHIz89H3759kZubi0GDBgEA0tPTMXbsWFy8eBFeXl519jU8PBweHh54//33G3VuZWVl0Gg0MJlMcHFxadK4EBG1tNTc81i45RiqhZCWB3B2m6jx799WnYm6ceMG8vLyoNfrpTalUgm9Xo/s7Ow698nOzraoBwCDwSDVFxQUwGg0WtRoNBrodDqpJjs7G66urlKAAgC9Xg+lUomcnJx6+2symdC1a9d6t1+/fh1lZWUWDyKitorLA4jujlVDVHFxMaqrq+Hh4WHR7uHhAaPRWOc+RqOxwfqan3eq6datm8V2e3t7dO3atd7n3bRpE3JzczF9+vR6zycpKQkajUZ6+Pj41FtLRNQWcHkAkXxWXxNlC3bv3o3p06fj3XffRb9+/eqtW7BgAUwmk/S4cOFCK/aSiIiIWpNVQ5Sbmxvs7OxQVFRk0V5UVAStVlvnPlqttsH6mp93qvntwvWbN2+ipKSk1vN+9dVXePzxx/Hmm29iypQpDZ6Po6MjXFxcLB5ERO0VL9RJHZ1VQ5RKpcLAgQORmZkptZnNZmRmZiI0NLTOfUJDQy3qASAjI0Oq9/Pzg1artagpKytDTk6OVBMaGorS0lLk5eVJNbt27YLZbIZOp5Pa9uzZg/DwcLz22msW39wjIuroUnPP4+HluzDp3Rw8vHwXUnPPW7tLRK3O6lcsT0hIwNSpUzFo0CCEhIRg1apVKC8vl9YeTZkyBd7e3khKSgIAzJo1C2FhYXjjjTcQHh6OjRs34uDBg3jnnXcAAAqFArNnz8Yrr7wCf39/+Pn5YfHixfDy8kJERAQAoE+fPhgzZgxmzJiB5ORkVFVVIT4+HlFRUdI383bv3o3HHnsMs2bNwoQJE6S1UiqVqsHF5URE7V19F+ocEeDOtVXUoVg9REVGRuLy5ctYsmQJjEYjgoODkZ6eLi0MP3/+PJTK/06YDR06FBs2bMCiRYuwcOFC+Pv7Y+vWrejfv79UM2/ePJSXlyMuLg6lpaUYNmwY0tPToVarpZr169cjPj4eo0ePhlKpxIQJE7B69Wpp+4cffohr164hKSlJCnAAEBYWhj179rTgiBARtW0NXaiTIYo6EqtfJ6o943WiiKg9KjRV4OHlu2rdx3Pf/FEMUdQu2MR1ooiIyPbwPp5Et1j94zwiIrI9kYO7Y0SAO84WX4OvWycGKOqQGKKIiEgWT40TwxN1aPw4j4iIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqI2rVCUwWyzhSj0FRh7a4QUTtjb+0OEBG1lNTc81iw5SjMAlAqgKTxQYgc3N3a3SKidoIzUUTULhWaKqQABQBmASzccowzUkTUbBiiiKhdKigulwJUjWohcLb4mnU6RETtDkMUEbVLfm7OUCos2+wUCvi6dbJOh4io3WGIIqJ2yVPjhKTxQbBT3EpSdgoFXh3fH54aJyv3jIjaCy4sJ+qgCk0VKCguh5+bc7sNFpGDu2NEgDvOFl+Dr1undnueRGQdDFFEHVBH+taap8aJ4YmIWgQ/ziPqYPitNSKi5sEQRdTB8FtrRETNgyGKqIPht9aIiJoHQxRRB8NvrRERNQ+rh6h169bB19cXarUaOp0OBw4caLB+8+bNCAwMhFqtRlBQENLS0iy2CyGwZMkSeHp6wsnJCXq9HqdOnbKoKSkpQUxMDFxcXODq6orY2FhcvXpV2l5ZWYlp06YhKCgI9vb2iIiIaLbzJWoLIgd3x775o/DxjCHYN39Uu11UTkTUkqwaolJTU5GQkIDExEQcOnQIAwYMgMFgwKVLl+qsz8rKQnR0NGJjY3H48GFEREQgIiICx44dk2pWrFiB1atXIzk5GTk5OXB2dobBYEBlZaVUExMTg+PHjyMjIwM7duzA3r17ERcXJ22vrq6Gk5MTXnjhBej1+pYbACIr8tQ4IbTXvZyBIiKSSSGEEHcuaxk6nQ6DBw/G2rVrAQBmsxk+Pj54/vnnMX/+/Fr1kZGRKC8vx44dO6S2IUOGIDg4GMnJyRBCwMvLC3PmzMHcuXMBACaTCR4eHkhJSUFUVBTy8/PRt29f5ObmYtCgQQCA9PR0jB07FhcvXoSXl5fFc06bNg2lpaXYunVrk8+vrKwMGo0GJpMJLi4uTd6fiIiIWl9j37+tNhN148YN5OXlWcz0KJVK6PV6ZGdn17lPdnZ2rZkhg8Eg1RcUFMBoNFrUaDQa6HQ6qSY7Oxuurq5SgAIAvV4PpVKJnJycuzqn69evo6yszOJBRERE7ZPVQlRxcTGqq6vh4eFh0e7h4QGj0VjnPkajscH6mp93qunWrZvFdnt7e3Tt2rXe522spKQkaDQa6eHj43NXxyMiIqK2y+oLy9uTBQsWwGQySY8LFy5Yu0tE1EEUmiqQdaaYF00lakVWu+2Lm5sb7OzsUFRUZNFeVFQErVZb5z5arbbB+pqfRUVF8PT0tKgJDg6Wan67cP3mzZsoKSmp93kby9HREY6Ojnd1DCKipupIt/EhakusNhOlUqkwcOBAZGZmSm1msxmZmZkIDQ2tc5/Q0FCLegDIyMiQ6v38/KDVai1qysrKkJOTI9WEhoaitLQUeXl5Us2uXbtgNpuh0+ma7fyIiFoDb+NDZD1WvQFxQkICpk6dikGDBiEkJASrVq1CeXk5pk+fDgCYMmUKvL29kZSUBACYNWsWwsLC8MYbbyA8PBwbN27EwYMH8c477wAAFAoFZs+ejVdeeQX+/v7w8/PD4sWL4eXlJV3rqU+fPhgzZgxmzJiB5ORkVFVVIT4+HlFRURbfzDtx4gRu3LiBkpISXLlyBUeOHAEAaUaLiKgtaOg2Prx8BVHLsmqIioyMxOXLl7FkyRIYjUYEBwcjPT1dWhh+/vx5KJX/nSwbOnQoNmzYgEWLFmHhwoXw9/fH1q1b0b9/f6lm3rx5KC8vR1xcHEpLSzFs2DCkp6dDrVZLNevXr0d8fDxGjx4NpVKJCRMmYPXq1RZ9Gzt2LM6dOyf9/uCDDwK4dTFPIqK2ouY2PrcHKd7Gh6h1WPU6Ue0drxNFRK0hNfc8Fm45hmohpNv4cE0UkXyNff+26kwUERHdvcjB3TEiwB1ni6/B160TP8YjaiUMUURE7YCnxonhiaiV8TpRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEERGRLLzpMXV0vMQBERE1GW96TMSZKCIiaiLe9JjoFoYoIiJqkoZuekzUkTBEERFRk9Tc9Ph2vOkxdUQMUURE1CSeGickjQ+CneJWkqq56TFvO0MdDReWExFRk/Gmx0QMUUTNptBUgYLicvi5OfMNpQ3h30vL4U2PqaNjiCJqBvy6d9vEvxciaklcE0V0l/h177aJfy9E1NIYoojuEr/u3Tbx74WIWhpDFNFd4te9W56c24vw74WIWhpDFNFd4te9W1Zq7nk8vHwXJr2bg4eX70Jq7vlG7ce/FyJqaQohhLhzGclRVlYGjUYDk8kEFxcXa3eHWlihqYJf925mhaYKPLx8l8XHcnYKBfbNH9XoMebfS/vCb1tSa2js+ze/nUfUTPh17+bX0Lqmxo41/17aD37bktoafpxHRG0W1zVRDX7bktoihigiarO4rolq8NuW1Bbx4zwiatN4exEC/jsr+dv1cZyVJGviTBQRtXmeGieE9rqXAaoD46wktUWciSIiIpvAWUlqaxiiiIjIZvDbltSW8OM8IiIiIhkYooiIiIhkYIgiIiIikoEhioioDnJuekxEHQsXlhMR/QZvL0JEjcGZKCKi2/D2IkTUWAxRRES34e1FiKix2kSIWrduHXx9faFWq6HT6XDgwIEG6zdv3ozAwECo1WoEBQUhLS3NYrsQAkuWLIGnpyecnJyg1+tx6tQpi5qSkhLExMTAxcUFrq6uiI2NxdWrVy1qvvvuOwwfPhxqtRo+Pj5YsWJF85wwEbVZvOkxETWW1UNUamoqEhISkJiYiEOHDmHAgAEwGAy4dOlSnfVZWVmIjo5GbGwsDh8+jIiICERERODYsWNSzYoVK7B69WokJycjJycHzs7OMBgMqKyslGpiYmJw/PhxZGRkYMeOHdi7dy/i4uKk7WVlZXjkkUfQo0cP5OXl4fXXX8fSpUvxzjvvtNxgEJHV8fYiRNRowspCQkLEc889J/1eXV0tvLy8RFJSUp31EydOFOHh4RZtOp1OzJw5UwghhNlsFlqtVrz++uvS9tLSUuHo6Cg+/vhjIYQQJ06cEABEbm6uVPPFF18IhUIhfvrpJyGEEH//+9/FPffcI65fvy7VvPjii6J3796NPjeTySQACJPJ1Oh9iKht+Ln0msg6XSx+Lr1m7a4QUStr7Pu3VWeibty4gby8POj1eqlNqVRCr9cjOzu7zn2ys7Mt6gHAYDBI9QUFBTAajRY1Go0GOp1OqsnOzoarqysGDRok1ej1eiiVSuTk5Eg1I0aMgEqlsniekydP4tdff73LMyeito43PSaiO7FqiCouLkZ1dTU8PDws2j08PGA0Guvcx2g0Nlhf8/NONd26dbPYbm9vj65du1rU1HWM25/jt65fv46ysjKLBxEREbVPVl8T1Z4kJSVBo9FIDx8fH2t3iYiIiFqIVUOUm5sb7OzsUFRUZNFeVFQErVZb5z5arbbB+pqfd6r57cL1mzdvoqSkxKKmrmPc/hy/tWDBAphMJulx4cKFuk+ciIiIbJ5VQ5RKpcLAgQORmZkptZnNZmRmZiI0NLTOfUJDQy3qASAjI0Oq9/Pzg1artagpKytDTk6OVBMaGorS0lLk5eVJNbt27YLZbIZOp5Nq9u7di6qqKovn6d27N+655546++bo6AgXFxeLBxEREbVTrbTQvV4bN24Ujo6OIiUlRZw4cULExcUJV1dXYTQahRBCTJ48WcyfP1+q379/v7C3txcrV64U+fn5IjExUTg4OIijR49KNcuXLxeurq5i27Zt4rvvvhPjxo0Tfn5+oqKiQqoZM2aMePDBB0VOTo7Yt2+f8Pf3F9HR0dL20tJS4eHhISZPniyOHTsmNm7cKDp16iTefvvtRp8bv51HRERkexr7/m31ECWEEGvWrBHdu3cXKpVKhISEiG+++UbaFhYWJqZOnWpRv2nTJhEQECBUKpXo16+f+Pzzzy22m81msXjxYuHh4SEcHR3F6NGjxcmTJy1qfvnlFxEdHS06d+4sXFxcxPTp08WVK1csar799lsxbNgw4ejoKLy9vcXy5cubdF4MUURERLanse/fCiGEaHiuiuQqKyuDRqOByWTiR3tEREQ2orHv3/x2HhEREZEMDFFEREREMjBEEREREcnAEEVEREQkg721O9Ce1azZ5+1fiIiIbEfN+/advnvHENWCrly5AgC8/QsREZENunLlCjQaTb3beYmDFmQ2m/Hzzz+jS5cuUCgUso9TVlYGHx8fXLhwgZdKuA3HpTaOSW0ck9o4JrVxTGrryGMihMCVK1fg5eUFpbL+lU+ciWpBSqUS9913X7Mdj7eSqRvHpTaOSW0ck9o4JrVxTGrrqGPS0AxUDS4sJyIiIpKBIYqIiIhIBoYoG+Do6IjExEQ4OjpauyttCselNo5JbRyT2jgmtXFMauOY3BkXlhMRERHJwJkoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigrWbduHXx9faFWq6HT6XDgwIEG61etWoXevXvDyckJPj4++POf/4zKykpp+9KlS6FQKCwegYGBLX0azaopY1JVVYVly5ahV69eUKvVGDBgANLT0+/qmG1Rc4+Jrb9O9u7di8cffxxeXl5QKBTYunXrHffZs2cPHnroITg6OuL+++9HSkpKrRpbfp20xJh0tNdJYWEhJk2ahICAACiVSsyePbvOus2bNyMwMBBqtRpBQUFIS0tr/s63kJYYk5SUlFqvE7Va3TIn0EYxRFlBamoqEhISkJiYiEOHDmHAgAEwGAy4dOlSnfUbNmzA/PnzkZiYiPz8fPzjH/9AamoqFi5caFHXr18/FBYWSo99+/a1xuk0i6aOyaJFi/D2229jzZo1OHHiBJ599lk8+eSTOHz4sOxjtjUtMSaAbb9OysvLMWDAAKxbt65R9QUFBQgPD8eoUaNw5MgRzJ49G8888wy+/PJLqcbWXyctMSZAx3qdXL9+He7u7li0aBEGDBhQZ01WVhaio6MRGxuLw4cPIyIiAhERETh27Fhzdr3FtMSYALeuZn776+TcuXPN1WXbIKjVhYSEiOeee076vbq6Wnh5eYmkpKQ665977jnxu9/9zqItISFBPPzww9LviYmJYsCAAS3S39bQ1DHx9PQUa9eutWgbP368iImJkX3MtqYlxsTWXye3AyA+/fTTBmvmzZsn+vXrZ9EWGRkpDAaD9Lutv05u11xj0tFeJ7cLCwsTs2bNqtU+ceJEER4ebtGm0+nEzJkz77KHra+5xuSDDz4QGo2m2fplizgT1cpu3LiBvLw86PV6qU2pVEKv1yM7O7vOfYYOHYq8vDzpI4Yff/wRaWlpGDt2rEXdqVOn4OXlhZ49eyImJgbnz59vuRNpRnLG5Pr167WmjZ2cnKT/W5ZzzLakJcakhq2+TuTIzs62GEMAMBgM0hja+utEjjuNSY2O9DppjMaOW0dz9epV9OjRAz4+Phg3bhyOHz9u7S61KoaoVlZcXIzq6mp4eHhYtHt4eMBoNNa5z6RJk7Bs2TIMGzYMDg4O6NWrF0aOHGnxcZ5Op0NKSgrS09Px1ltvoaCgAMOHD8eVK1da9Hyag5wxMRgM+Otf/4pTp07BbDYjIyMDW7ZsQWFhoexjtiUtMSaAbb9O5DAajXWOYVlZGSoqKmz+dSLHncYE6Hivk8aob9za6+ukMXr37o33338f27Ztw0cffQSz2YyhQ4fi4sWL1u5aq2GIsgF79uzBq6++ir///e84dOgQtmzZgs8//xwvv/yyVPPoo4/iD3/4Ax544AEYDAakpaWhtLQUmzZtsmLPW87f/vY3+Pv7IzAwECqVCvHx8Zg+fTqUyo77km7MmHS01wnJw9cJNUZoaCimTJmC4OBghIWFYcuWLXB3d8fbb79t7a61mo77jmMlbm5usLOzQ1FRkUV7UVERtFptnfssXrwYkydPxjPPPIOgoCA8+eSTePXVV5GUlASz2VznPq6urggICMDp06eb/Ryam5wxcXd3x9atW1FeXo5z587h+++/R+fOndGzZ0/Zx2xLWmJM6mJLrxM5tFptnWPo4uICJycnm3+dyHGnMalLe3+dNEZ949ZeXydyODg44MEHH+xQrxOGqFamUqkwcOBAZGZmSm1msxmZmZkIDQ2tc59r167VmmGxs7MDAIh6bn149epVnDlzBp6ens3U85YjZ0xqqNVqeHt74+bNm/j3v/+NcePG3fUx24KWGJO62NLrRI7Q0FCLMQSAjIwMaQxt/XUix53GpC7t/XXSGHLGraOprq7G0aNHO9brxNor2zuijRs3CkdHR5GSkiJOnDgh4uLihKurqzAajUIIISZPnizmz58v1ScmJoouXbqIjz/+WPz4449i586dolevXmLixIlSzZw5c8SePXtEQUGB2L9/v9Dr9cLNzU1cunSp1c9PjqaOyTfffCP+/e9/izNnzoi9e/eK3/3ud8LPz0/8+uuvjT5mW9cSY2Lrr5MrV66Iw4cPi8OHDwsA4q9//as4fPiwOHfunBBCiPnz54vJkydL9T/++KPo1KmT+Mtf/iLy8/PFunXrhJ2dnUhPT5dqbP110hJj0tFeJ0IIqX7gwIFi0qRJ4vDhw+L48ePS9v379wt7e3uxcuVKkZ+fLxITE4WDg4M4evRoq56bXC0xJi+99JL48ssvxZkzZ0ReXp6IiooSarXaoqa9Y4iykjVr1oju3bsLlUolQkJCxDfffCNtCwsLE1OnTpV+r6qqEkuXLhW9evUSarVa+Pj4iD/96U8Wb46RkZHC09NTqFQq4e3tLSIjI8Xp06db8YzuXlPGZM+ePaJPnz7C0dFR3HvvvWLy5Mnip59+atIxbUFzj4mtv052794tANR61IzD1KlTRVhYWK19goODhUqlEj179hQffPBBrePa8uukJcakI75O6qrv0aOHRc2mTZtEQECAUKlUol+/fuLzzz9vnRNqBi0xJrNnz5b+3Xh4eIixY8eKQ4cOtd5JtQEKIer5PIiIiIiI6sU1UUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBFRB7Jnzx4oFAqUlpZauytENo8hiohaxLRp06BQKLB8+XKL9q1bt0KhUEi/CyHw7rvvIjQ0FC4uLujcuTP69euHWbNmNfpGpteuXcOCBQvQq1cvqNVquLu7IywsDNu2bZNqfH19sWrVqmY5t5ZWM3YKhQIODg7w8/PDvHnzUFlZ2aTjjBw5ErNnz7ZoGzp0KAoLC6HRaJqxx0QdE0MUEbUYtVqN1157Db/++mud24UQmDRpEl544QWMHTsWO3fuxIkTJ/CPf/wDarUar7zySqOe59lnn8WWLVuwZs0afP/990hPT8dTTz2FX375pTlPp1WNGTMGhYWF+PHHH/Hmm2/i7bffRmJi4l0fV6VSQavVWgRZIpLJunedIaL2aurUqeKxxx4TgYGB4i9/+YvU/umnn4qa//R8/PHHAoDYtm1bnccwm82Nei6NRiNSUlLq3R4WFlbrHmA1vv76azFs2DChVqvFfffdJ55//nlx9epVafs///lPMXDgQNG5c2fh4eEhoqOjRVFRkbS95p5k6enpIjg4WKjVajFq1ChRVFQk0tLSRGBgoOjSpYuIjo4W5eXljTqfqVOninHjxlm0jR8/Xjz44IPS78XFxSIqKkp4eXkJJycn0b9/f7FhwwaLY/z2nAsKCqT+3n7vzU8++UT07dtXqFQq0aNHD7Fy5cpG9ZOoo+NMFBG1GDs7O7z66qtYs2YNLl68WGv7xx9/jN69e+OJJ56oc//GzpZotVqkpaXhypUrdW7fsmUL7rvvPixbtgyFhYUoLCwEAJw5cwZjxozBhAkT8N133yE1NRX79u1DfHy8tG9VVRVefvllfPvtt9i6dSvOnj2LadOm1XqOpUuXYu3atcjKysKFCxcwceJErFq1Chs2bMDnn3+OnTt3Ys2aNY06n986duwYsrKyoFKppLbKykoMHDgQn3/+OY4dO4a4uDhMnjwZBw4cAAD87W9/Q2hoKGbMmCGds4+PT61j5+XlYeLEiYiKisLRo0exdOlSLF68GCkpKbL6StShWDvFEVH7dPtsypAhQ8TTTz8thLCciQoMDBRPPPGExX6zZs0Szs7OwtnZWXh7ezfqub766itx3333CQcHBzFo0CAxe/ZssW/fPouaHj16iDfffNOiLTY2VsTFxVm0ff3110KpVIqKioo6nys3N1cAEFeuXBFC/Hcm6j//+Y9Uk5SUJACIM2fOSG0zZ84UBoOhUeczdepUYWdnJ5ydnYWjo6MAIJRKpfjkk08a3C88PFzMmTNH+j0sLEzMmjXLoua3M1GTJk0Sv//97y1q/vKXv4i+ffs2qq9EHRlnooioxb322mv48MMPkZ+ff8fa//3f/8WRI0ewZMkSXL16tVHHHzFiBH788UdkZmbiqaeewvHjxzF8+HC8/PLLDe737bffIiUlBZ07d5YeBoMBZrMZBQUFAG7N1Dz++OPo3r07unTpgrCwMADA+fPnLY71wAMPSH/28PBAp06d0LNnT4u2S5cuNep8AGDUqFE4cuQIcnJyMHXqVEyfPh0TJkyQtldXV+Pll19GUFAQunbtis6dO+PLL7+s1a87yc/Px8MPP2zR9vDDD+PUqVOorq5u0rGIOhqGKCJqcSNGjIDBYMCCBQss2v39/XHy5EmLNnd3d9x///3o1q1bk57DwcEBw4cPx4svvoidO3di2bJlePnll3Hjxo1697l69SpmzpyJI0eOSI9vv/0Wp06dQq9evVBeXg6DwQAXFxesX78eubm5+PTTTwGg1nEdHBykP9d8q+52CoUCZrO50efj7OyM+++/HwMGDMD777+PnJwc/OMf/5C2v/766/jb3/6GF198Ebt378aRI0dgMBgaPF8ial721u4AEXUMy5cvR3BwMHr37i21RUdHY9KkSdi2bRvGjRvXrM/Xt29f3Lx5E5WVlVCpVFCpVLVmVh566CGcOHEC999/f53HOHr0KH755RcsX75cWk908ODBZu1nYyiVSixcuBAJCQmYNGkSnJycsH//fowbNw5//OMfAQBmsxk//PAD+vbtK+1X1zn/Vp8+fbB//36Ltv379yMgIAB2dnbNfzJE7QhnooioVQQFBSEmJgarV6+W2qKiovDUU08hKioKy5YtQ05ODs6ePYuvvvoKqampjX4THzlyJN5++23k5eXh7NmzSEtLw8KFCzFq1Ci4uLgAuHWdqL179+Knn35CcXExAODFF19EVlYW4uPjceTIEZw6dQrbtm2TFpZ3794dKpUKa9aswY8//ojt27ff8SPClvKHP/wBdnZ2WLduHYBbs3gZGRnIyspCfn4+Zs6ciaKiIot9fH19pTEtLi6ucyZszpw5yMzMxMsvv4wffvgBH374IdauXYu5c+e2ynkR2TKGKCJqNcuWLbN4I1coFEhNTcWqVauQlpaG0aNHo3fv3nj66afh4+ODffv2Neq4BoMBH374IR555BH06dMHzz//PAwGAzZt2mTx3GfPnkWvXr3g7u4O4NY6pq+++go//PADhg8fjgcffBBLliyBl5cXgFsfLaakpGDz5s3o27cvli9fjpUrVzbjiDSevb094uPjsWLFCpSXl2PRokV46KGHYDAYMHLkSGi1WkRERFjsM3fuXNjZ2aFv375wd3evc73UQw89hE2bNmHjxo3o378/lixZgmXLltX5DUQisqQQQghrd4KIiIjI1nAmioiIiEgGhigiavNuvwTBbx9ff/21tbvXJOfPn2/wfJp6iQIish5+nEdEbV5DNyL29vaGk5NTK/bm7ty8eRNnz56td7uvry/s7fnFaSJbwBBFREREJAM/ziMiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhk+H/z9RPxkilScwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_62.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABT1UlEQVR4nO3de1xUdf4/8NfMwMwgyswayIChoOKdxFQmvKE5u2NaStqKyHphSdzvRumamfpTMesbara5mhtd1nA3L2iZmhLFQmYKIaLmBTMzzEsMisSgiDfm8/vDr6cmR4QjMIy8no/HedB8zvuc+ZzPzjavPucyCiGEABERERHVitLZHSAiIiJyRQxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUR0X1uwYAEUCkWNahUKBRYsWFCv/Rk0aBAGDRrUaPdHRDXHEEVEDSIlJQUKhUJa3Nzc0Lp1a0yaNAlnz551dvcancDAQLvxatWqFQYMGICPP/64TvZ/+fJlLFiwADt27KiT/RE1RQxRRNSgFi5ciP/85z9ITk7GY489hg8++AARERG4cuVKvbzf3LlzUVlZWS/7rm+hoaH4z3/+g//85z+YMWMGfvrpJ4waNQrJycn3vO/Lly/jpZdeYogiugduzu4AETUtjz32GHr37g0AePrpp+Ht7Y3Fixdj69atGDNmTJ2/n5ubG9zcXPNfda1bt8af/vQn6fWECRPQoUMHvPHGG/jLX/7ixJ4REcCZKCJysgEDBgAATpw4Ydf+7bff4qmnnkLLli2h1WrRu3dvbN261a7m+vXreOmllxAcHAytVosHHngA/fv3R0ZGhlTj6Jqoq1ev4m9/+xt8fHzQokULjBgxAmfOnLmtb5MmTUJgYOBt7Y72+f777+PRRx9Fq1atoNFo0LVrV7z11lu1Gou7MRgM6NKlCwoLC6utO3fuHOLi4uDr6wutVosePXpg9erV0vqTJ0/Cx8cHAPDSSy9Jpwzr+3owovuNa/7nGRHdN06ePAkA+N3vfie1HTlyBP369UPr1q0xa9YseHp6YsOGDYiMjMRHH32EJ598EsDNMJOUlISnn34aYWFhKC8vx969e7Fv3z78/ve/v+N7Pv300/jggw8wbtw49O3bF1lZWRg+fPg9Hcdbb72Fbt26YcSIEXBzc8Mnn3yCv/71r7DZbHjmmWfuad+3XL9+HadPn8YDDzxwx5rKykoMGjQI33//PRISEhAUFISNGzdi0qRJKCsrw9SpU+Hj44O33noL//M//4Mnn3wSo0aNAgA89NBDddJPoiZDEBE1gPfff18AEP/973/F+fPnxenTp8WHH34ofHx8hEajEadPn5ZqhwwZIkJCQsSVK1ekNpvNJvr27SuCg4Olth49eojhw4dX+76JiYni1/+qO3DggAAg/vrXv9rVjRs3TgAQiYmJUtvEiRNF27Zt77pPIYS4fPnybXVms1m0a9fOri0iIkJERERU22chhGjbtq34wx/+IM6fPy/Onz8vvvnmGzF27FgBQDz77LN33N+yZcsEAPHBBx9IbdeuXRPh4eGiefPmory8XAghxPnz5287XiKqHZ7OI6IGZTKZ4OPjg4CAADz11FPw9PTE1q1b8eCDDwIASktLkZWVhTFjxuDixYsoKSlBSUkJLly4ALPZjOPHj0t38+n1ehw5cgTHjx+v8funpaUBAJ577jm79mnTpt3TcXl4eEj/bLVaUVJSgoiICPzwww+wWq2y9vn555/Dx8cHPj4+6NGjBzZu3Ijx48dj8eLFd9wmLS0NBoMB0dHRUpu7uzuee+45XLp0CV9++aWsvhDR7Xg6j4ga1MqVK9GxY0dYrVasWrUKO3fuhEajkdZ///33EEJg3rx5mDdvnsN9nDt3Dq1bt8bChQsxcuRIdOzYEd27d8fQoUMxfvz4ak9L/fjjj1AqlWjfvr1de6dOne7puHbv3o3ExETk5OTg8uXLduusVit0Ol2t92k0GvHKK69AoVCgWbNm6NKlC/R6fbXb/PjjjwgODoZSaf/fyF26dJHWE1HdYIgiogYVFhYm3Z0XGRmJ/v37Y9y4cTh27BiaN28Om80GAJgxYwbMZrPDfXTo0AEAMHDgQJw4cQJbtmzB559/jvfeew9vvPEGkpOT8fTTT99zX+/0kM6qqiq71ydOnMCQIUPQuXNn/P3vf0dAQADUajXS0tLwxhtvSMdUW97e3jCZTLK2JaL6xxBFRE6jUqmQlJSEwYMH480338SsWbPQrl07ADdPQdUkQLRs2RKxsbGIjY3FpUuXMHDgQCxYsOCOIapt27aw2Ww4ceKE3ezTsWPHbqv93e9+h7Kystvafzub88knn+Dq1avYunUr2rRpI7V/8cUXd+1/XWvbti0OHjwIm81mNxv17bffSuuBOwdEIqo5XhNFRE41aNAghIWFYdmyZbhy5QpatWqFQYMG4e2330ZRUdFt9efPn5f++cKFC3brmjdvjg4dOuDq1at3fL/HHnsMALB8+XK79mXLlt1W2759e1itVhw8eFBqKyoquu2p4SqVCgAghJDarFYr3n///Tv2o74MGzYMFosFqampUtuNGzewYsUKNG/eHBEREQCAZs2aAYDDkEhENcOZKCJyuhdeeAF//OMfkZKSgr/85S9YuXIl+vfvj5CQEEyePBnt2rVDcXExcnJycObMGXzzzTcAgK5du2LQoEHo1asXWrZsib179+LDDz9EQkLCHd8rNDQU0dHR+Oc//wmr1Yq+ffsiMzMT33///W21Y8eOxYsvvognn3wSzz33HC5fvoy33noLHTt2xL59+6S6P/zhD1Cr1XjiiScwZcoUXLp0Ce+++y5atWrlMAjWp/j4eLz99tuYNGkS8vPzERgYiA8//BC7d+/GsmXL0KJFCwA3L4Tv2rUrUlNT0bFjR7Rs2RLdu3dH9+7dG7S/RC7N2bcHElHTcOsRB3l5ebetq6qqEu3btxft27cXN27cEEIIceLECTFhwgRhMBiEu7u7aN26tXj88cfFhx9+KG33yiuviLCwMKHX64WHh4fo3Lmz+N///V9x7do1qcbR4wgqKyvFc889Jx544AHh6ekpnnjiCXH69GmHt/x//vnnonv37kKtVotOnTqJDz74wOE+t27dKh566CGh1WpFYGCgWLx4sVi1apUAIAoLC6W62jzi4G6Pb7jT/oqLi0VsbKzw9vYWarVahISEiPfff/+2bbOzs0WvXr2EWq3m4w6IZFAI8av5ZyIiIiKqEV4TRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMfNhmPbLZbPjpp5/QokUL/sQCERGRixBC4OLFi/D397/tx7x/jSGqHv30008ICAhwdjeIiIhIhtOnT+PBBx+843qGqHp06+cVTp8+DS8vLyf3hoiIiGqivLwcAQEB0vf4nTBE1aNbp/C8vLwYooiIiFzM3S7F4YXlRERERDIwRBERERHJwBBFREREJAOviXKyqqoqXL9+3dndcDp3d3eoVCpnd4OIiKjGGKKcRAgBi8WCsrIyZ3el0dDr9TAYDHymFhERuQSGKCe5FaBatWqFZs2aNengIITA5cuXce7cOQCAn5+fk3tERER0dwxRTlBVVSUFqAceeMDZ3WkUPDw8AADnzp1Dq1ateGqPiIgaPV5Y7gS3roFq1qyZk3vSuNwaD14jRkREroAhyoma8ik8RzgeRETkShiiiIiIiGRgiCIiIiKSgSGKamXSpElQKBRYtGiRXfvmzZul03E7duzAyJEj4efnB09PT4SGhmLNmjXO6C4REd2niqyVyD5RgiJrpdP6wBBFtabVarF48WL8/PPPDtdnZ2fjoYcewkcffYSDBw8iNjYWEyZMwLZt2xq4p0REdD9KzTuFfouyMO7dXPRblIXUvFNO6QdDFNWayWSCwWBAUlKSw/Vz5szByy+/jL59+6J9+/aYOnUqhg4dik2bNjVwT4mI6H5TZK3E7E2HYBM3X9sEMGfTYafMSDFE3QcaekpTpVLh1VdfxYoVK3DmzJkabWO1WtGyZct67hkREd3vCksqpAB1S5UQOFlyucH7whDl4pw1pfnkk08iNDQUiYmJd63dsGED8vLyEBsb2wA9IyKi+1mQtyeUv3kijkqhQKB3wz97kSHKhTl7SnPx4sVYvXo1jh49eseaL774ArGxsXj33XfRrVu3BukXERHdv/x0HkgaFQLV/93MpFIo8Oqo7vDTeTR4X/izLy6suinNhvgwDRw4EGazGbNnz8akSZNuW//ll1/iiSeewBtvvIEJEybUe3+IiKhpiOrTBgM7+uBkyWUEejdzSoACGKJc2q0pzV8HqYae0ly0aBFCQ0PRqVMnu/YdO3bg8ccfx+LFixEfH99g/SEioqbBT+fhtPB0i9NP561cuRKBgYHQarUwGo3Ys2dPtfUbN25E586dodVqERISgrS0NLv1QgjMnz8ffn5+8PDwgMlkwvHjx+1qSktLERMTAy8vL+j1esTFxeHSpUt2NZ999hkeeeQRtGjRAj4+Phg9ejROnjxZJ8dcVxrDlGZISAhiYmKwfPlyqe2LL77A8OHD8dxzz2H06NGwWCywWCwoLS1tsH4RERHVN6eGqNTUVEyfPh2JiYnYt28fevToAbPZjHPnzjmsz87ORnR0NOLi4rB//35ERkYiMjIShw8flmqWLFmC5cuXIzk5Gbm5ufD09ITZbMaVK1ekmpiYGBw5cgQZGRnYtm0bdu7caTdbUlhYiJEjR+LRRx/FgQMH8Nlnn6GkpASjRo2qv8GQKapPG+yaNRjrJj+CXbMGI6pPmwbvw8KFC2Gz2aTXq1evxuXLl5GUlAQ/Pz9paYzjR0REJJtworCwMPHMM89Ir6uqqoS/v79ISkpyWD9mzBgxfPhwuzaj0SimTJkihBDCZrMJg8EgXnvtNWl9WVmZ0Gg0Yt26dUIIIQoKCgQAkZeXJ9V8+umnQqFQiLNnzwohhNi4caNwc3MTVVVVUs3WrVuFQqEQ165dq/HxWa1WAUBYrVa79srKSlFQUCAqKytrvK+mgONCRESNwZ2+v3/LaTNR165dQ35+Pkwmk9SmVCphMpmQk5PjcJucnBy7egAwm81SfWFhISwWi12NTqeD0WiUanJycqDX69G7d2+pxmQyQalUIjc3FwDQq1cvKJVKvP/++6iqqoLVasV//vMfmEwmuLu7180AEBERkUtzWogqKSlBVVUVfH197dp9fX1hsVgcbmOxWKqtv/X3bjWtWrWyW+/m5oaWLVtKNUFBQfj8888xZ84caDQa6PV6nDlzBhs2bKj2mK5evYry8nK7hYiIiO5PTr+wvDGyWCyYPHkyJk6ciLy8PHz55ZdQq9V46qmnIIS443ZJSUnQ6XTSEhAQ0IC9JiIioobktBDl7e0NlUqF4uJiu/bi4mIYDAaH2xgMhmrrb/29W81vL1y/ceMGSktLpZqVK1dCp9NhyZIl6NmzJwYOHIgPPvgAmZmZ0ik/R2bPng2r1Sotp0+fvtswEBERkYtyWohSq9Xo1asXMjMzpTabzYbMzEyEh4c73CY8PNyuHgAyMjKk+qCgIBgMBrua8vJy5ObmSjXh4eEoKytDfn6+VJOVlQWbzQaj0QgAuHz5MpRK+6FRqVRSH+9Eo9HAy8vLbqlOdbNaTRHHg4iIXEpDXOV+J+vXrxcajUakpKSIgoICER8fL/R6vbBYLEIIIcaPHy9mzZol1e/evVu4ubmJpUuXiqNHj4rExETh7u4uDh06JNUsWrRI6PV6sWXLFnHw4EExcuRIERQUZHfH19ChQ0XPnj1Fbm6u2LVrlwgODhbR0dHS+szMTKFQKMRLL70kvvvuO5Gfny/MZrNo27atuHz5co2P705X99+4cUMUFBSIkpKSWo/Z/aykpEQUFBSIGzduOLsrRETUhNX07jynPrE8KioK58+fx/z582GxWBAaGor09HTpwvBTp07ZzQj17dsXa9euxdy5czFnzhwEBwdj8+bN6N69u1Qzc+ZMVFRUID4+HmVlZejfvz/S09Oh1WqlmjVr1iAhIQFDhgyBUqnE6NGj7R4W+eijj2Lt2rVYsmQJlixZgmbNmiE8PBzp6enw8Lj3B1mqVCro9XrptGKzZs2gUCjustX9SwiBy5cv49y5c9Dr9dKsHxERUWOmEILnUOpLeXk5dDodrFbrbaf2hBCwWCwoKytzTucaIb1eD4PB0KQDJREROV9139+/xt/OcxKFQgE/Pz+0atUK169fd3Z3nM7d3Z0zUERE5FIYopxMpVIxPBAREbkgPieKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiIhkYIgiIiIikoEhioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKiIiISAaGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIhkYRolauXInAwEBotVoYjUbs2bOn2vqNGzeic+fO0Gq1CAkJQVpamt16IQTmz58PPz8/eHh4wGQy4fjx43Y1paWliImJgZeXF/R6PeLi4nDp0iVp/YIFC6BQKG5bPD096+7AiYiIyGU5PUSlpqZi+vTpSExMxL59+9CjRw+YzWacO3fOYX12djaio6MRFxeH/fv3IzIyEpGRkTh8+LBUs2TJEixfvhzJycnIzc2Fp6cnzGYzrly5ItXExMTgyJEjyMjIwLZt27Bz507Ex8dL62fMmIGioiK7pWvXrvjjH/9Yf4NBRERErkM4WVhYmHjmmWek11VVVcLf318kJSU5rB8zZowYPny4XZvRaBRTpkwRQghhs9mEwWAQr732mrS+rKxMaDQasW7dOiGEEAUFBQKAyMvLk2o+/fRToVAoxNmzZx2+74EDBwQAsXPnzhofm9VqFQCE1Wqt8TZERETkXDX9/nbqTNS1a9eQn58Pk8kktSmVSphMJuTk5DjcJicnx64eAMxms1RfWFgIi8ViV6PT6WA0GqWanJwc6PV69O7dW6oxmUxQKpXIzc11+L7vvfceOnbsiAEDBtzxeK5evYry8nK7hYiIiO5PTg1RJSUlqKqqgq+vr127r68vLBaLw20sFku19bf+3q2mVatWduvd3NzQsmVLh+975coVrFmzBnFxcdUeT1JSEnQ6nbQEBARUW09ERESuy+nXRLmCjz/+GBcvXsTEiROrrZs9ezasVqu0nD59uoF6SERERA3NqSHK29sbKpUKxcXFdu3FxcUwGAwOtzEYDNXW3/p7t5rfXrh+48YNlJaWOnzf9957D48//vhts1u/pdFo4OXlZbcQERHR/cmpIUqtVqNXr17IzMyU2mw2GzIzMxEeHu5wm/DwcLt6AMjIyJDqg4KCYDAY7GrKy8uRm5sr1YSHh6OsrAz5+flSTVZWFmw2G4xGo92+CwsL8cUXX9z1VB4RERE1LW7O7sD06dMxceJE9O7dG2FhYVi2bBkqKioQGxsLAJgwYQJat26NpKQkAMDUqVMRERGB119/HcOHD8f69euxd+9evPPOOwAAhUKBadOm4ZVXXkFwcDCCgoIwb948+Pv7IzIyEgDQpUsXDB06FJMnT0ZycjKuX7+OhIQEjB07Fv7+/nb9W7VqFfz8/PDYY4813KAQERFRo+f0EBUVFYXz589j/vz5sFgsCA0NRXp6unTq7NSpU1Aqf5kw69u3L9auXYu5c+dizpw5CA4OxubNm9G9e3epZubMmaioqEB8fDzKysrQv39/pKenQ6vVSjVr1qxBQkIChgwZAqVSidGjR2P58uV2fbPZbEhJScGkSZOgUqnqeSSIiIjIlSiEEMLZnbhflZeXQ6fTwWq18vooIiIiF1HT72/enUdEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDI4PUStXLkSgYGB0Gq1MBqN2LNnT7X1GzduROfOnaHVahESEoK0tDS79UIIzJ8/H35+fvDw8IDJZMLx48ftakpLSxETEwMvLy/o9XrExcXh0qVLt+1n6dKl6NixIzQaDVq3bo3//d//rZuDJiIiIpfn1BCVmpqK6dOnIzExEfv27UOPHj1gNptx7tw5h/XZ2dmIjo5GXFwc9u/fj8jISERGRuLw4cNSzZIlS7B8+XIkJycjNzcXnp6eMJvNuHLlilQTExODI0eOICMjA9u2bcPOnTsRHx9v915Tp07Fe++9h6VLl+Lbb7/F1q1bERYWVj8DQURERK5HOFFYWJh45plnpNdVVVXC399fJCUlOawfM2aMGD58uF2b0WgUU6ZMEUIIYbPZhMFgEK+99pq0vqysTGg0GrFu3TohhBAFBQUCgMjLy5NqPv30U6FQKMTZs2elGjc3N/Htt9/e0/FZrVYBQFit1nvaDxERETWcmn5/O20m6tq1a8jPz4fJZJLalEolTCYTcnJyHG6Tk5NjVw8AZrNZqi8sLITFYrGr0el0MBqNUk1OTg70ej169+4t1ZhMJiiVSuTm5gIAPvnkE7Rr1w7btm1DUFAQAgMD8fTTT6O0tLTaY7p69SrKy8vtFiIiIro/OS1ElZSUoKqqCr6+vnbtvr6+sFgsDrexWCzV1t/6e7eaVq1a2a13c3NDy5YtpZoffvgBP/74IzZu3Ih///vfSElJQX5+Pp566qlqjykpKQk6nU5aAgICqq0nIiIi1+X0C8sbI5vNhqtXr+Lf//43BgwYgEGDBuFf//oXvvjiCxw7duyO282ePRtWq1VaTp8+3YC9JiIioobktBDl7e0NlUqF4uJiu/bi4mIYDAaH2xgMhmrrb/29W81vL1y/ceMGSktLpRo/Pz+4ubmhY8eOUk2XLl0AAKdOnbrjMWk0Gnh5edktREREdH9yWohSq9Xo1asXMjMzpTabzYbMzEyEh4c73CY8PNyuHgAyMjKk+qCgIBgMBrua8vJy5ObmSjXh4eEoKytDfn6+VJOVlQWbzQaj0QgA6NevH27cuIETJ05INd999x0AoG3btvdy2ERERHS/aKAL3R1av3690Gg0IiUlRRQUFIj4+Hih1+uFxWIRQggxfvx4MWvWLKl+9+7dws3NTSxdulQcPXpUJCYmCnd3d3Ho0CGpZtGiRUKv14stW7aIgwcPipEjR4qgoCBRWVkp1QwdOlT07NlT5Obmil27dong4GARHR0tra+qqhIPP/ywGDhwoNi3b5/Yu3evMBqN4ve//32tjo935xEREbmemn5/OzVECSHEihUrRJs2bYRarRZhYWHi66+/ltZFRESIiRMn2tVv2LBBdOzYUajVatGtWzexfft2u/U2m03MmzdP+Pr6Co1GI4YMGSKOHTtmV3PhwgURHR0tmjdvLry8vERsbKy4ePGiXc3Zs2fFqFGjRPPmzYWvr6+YNGmSuHDhQq2OjSGKiIjI9dT0+1shhBDOnQu7f5WXl0On08FqtfL6KCIiIhdR0+9v3p1HREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERSYqslcg+UYIia6Wzu9LoNYoQtXLlSgQGBkKr1cJoNGLPnj3V1m/cuBGdO3eGVqtFSEgI0tLS7NYLITB//nz4+fnBw8MDJpMJx48ft6spLS1FTEwMvLy8oNfrERcXh0uXLknrT548CYVCcdvy9ddf192BExERNSKpeafQb1EWxr2bi36LspCad8rZXWrUnB6iUlNTMX36dCQmJmLfvn3o0aMHzGYzzp0757A+Ozsb0dHRiIuLw/79+xEZGYnIyEgcPnxYqlmyZAmWL1+O5ORk5ObmwtPTE2azGVeuXJFqYmJicOTIEWRkZGDbtm3YuXMn4uPjb3u///73vygqKpKWXr161f0gEBEROVmRtRKzNx2CTdx8bRPAnE2HOSNVDYUQQjizA0ajEX369MGbb74JALDZbAgICMCzzz6LWbNm3VYfFRWFiooKbNu2TWp75JFHEBoaiuTkZAgh4O/vj+effx4zZswAAFitVvj6+iIlJQVjx47F0aNH0bVrV+Tl5aF3794AgPT0dAwbNgxnzpyBv78/Tp48iaCgIOzfvx+hoaGyjq28vBw6nQ5WqxVeXl6y9kFERNQQsk+UYNy7ube1r5v8CMLbP+CEHjlPTb+/nToTde3aNeTn58NkMkltSqUSJpMJOTk5DrfJycmxqwcAs9ks1RcWFsJisdjV6HQ6GI1GqSYnJwd6vV4KUABgMpmgVCqRm2v/ARoxYgRatWqF/v37Y+vWrdUez9WrV1FeXm63EBERuYIgb08oFfZtKoUCgd7NnNMhF+DUEFVSUoKqqir4+vratfv6+sJisTjcxmKxVFt/6+/dalq1amW33s3NDS1btpRqmjdvjtdffx0bN27E9u3b0b9/f0RGRlYbpJKSkqDT6aQlICDgbkNARETUKPjpPJA0KgQqxc0kpVIo8Oqo7vDTeTi5Z42Xm7M70Fh5e3tj+vTp0us+ffrgp59+wmuvvYYRI0Y43Gb27Nl225SXlzNIERGRy4jq0wYDO/rgZMllBHo3Y4C6C6eGKG9vb6hUKhQXF9u1FxcXw2AwONzGYDBUW3/rb3FxMfz8/Oxqbl3bZDAYbrtw/caNGygtLb3j+wI3r9/KyMi443qNRgONRnPH9URERI2dn86D4amGnHo6T61Wo1evXsjMzJTabDYbMjMzER4e7nCb8PBwu3oAyMjIkOqDgoJgMBjsasrLy5GbmyvVhIeHo6ysDPn5+VJNVlYWbDYbjEbjHft74MABu2BGRERETZfTT+dNnz4dEydORO/evREWFoZly5ahoqICsbGxAIAJEyagdevWSEpKAgBMnToVEREReP311zF8+HCsX78ee/fuxTvvvAMAUCgUmDZtGl555RUEBwcjKCgI8+bNg7+/PyIjIwEAXbp0wdChQzF58mQkJyfj+vXrSEhIwNixY+Hv7w8AWL16NdRqNXr27AkA2LRpE1atWoX33nuvgUeIiIiIGiOnh6ioqCicP38e8+fPh8ViQWhoKNLT06ULw0+dOgWl8pcJs759+2Lt2rWYO3cu5syZg+DgYGzevBndu3eXambOnImKigrEx8ejrKwM/fv3R3p6OrRarVSzZs0aJCQkYMiQIVAqlRg9ejSWL19u17eXX34ZP/74I9zc3NC5c2ekpqbiqaeequcRISIiIlfg9OdE3c/4nCgiIiLX4xLPiSIiIiJyVQxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBHdgyJrJbJPlKDIWunsrhARUQNzc3YHiFxVat4pzN50CDYBKBVA0qgQRPVp4+xuERFRA+FMFJEMRdZKKUABgE0AczYd5owUEVETwhBFJENhSYUUoG6pEgInSy47p0NERNTgGKKIZAjy9oRSYd+mUigQ6N3MOR0iIqIGxxBFJIOfzgNJo0KgUtxMUiqFAq+O6g4/nYeTe0ZERA2FF5YTyRTVpw0GdvTByZLLCPRuxgBFRNTEMEQR3QM/nQfDExFRE1Xr03lpaWl4+umnMXPmTHz77bd2637++Wc8+uijddY5IiIiosaqViFq7dq1GDFiBCwWC3JyctCzZ0+sWbNGWn/t2jV8+eWXdd5JIiIiosamVqfzXnvtNfz973/Hc889BwDYsGED/vznP+PKlSuIi4urlw4SERERNUa1ClHHjx/HE088Ib0eM2YMfHx8MGLECFy/fh1PPvlknXeQiIioKSuyVqKwpAJB3p68BrORqVWI8vLyQnFxMYKCgqS2wYMHY9u2bXj88cdx5syZOu8gERFRU8Wfl2rcanVNVFhYGD799NPb2iMiIvDJJ59g2bJlddUvIiKiJo0/L9X41SpE/e1vf4NWq3W4btCgQfjkk08wYcKEOukYERFRU8afl2r8anU6LyIiAhEREXdcP3jwYAwePPieO0VERNTU3fp5qV8HKf68VONSq5kopVIJlUpV7eLmxud3EhER3Sv+vFTjV6sQ9fHHH2PTpk0OlxdeeAEajUZWiFq5ciUCAwOh1WphNBqxZ8+eaus3btyIzp07Q6vVIiQkBGlpaXbrhRCYP38+/Pz84OHhAZPJhOPHj9vVlJaWIiYmBl5eXtDr9YiLi8OlS5ccvt/333+PFi1aQK/X1/rYiIiI5Irq0wa7Zg3GusmPYNeswbyovLER9+jbb78VkZGRQqVSiQkTJoiTJ0/Wavv169cLtVotVq1aJY4cOSImT54s9Hq9KC4udli/e/duoVKpxJIlS0RBQYGYO3eucHd3F4cOHZJqFi1aJHQ6ndi8ebP45ptvxIgRI0RQUJCorKyUaoYOHSp69Oghvv76a/HVV1+JDh06iOjo6Nve79q1a6J3797iscceEzqdrlbHZrVaBQBhtVprtR0RERE5T02/v2WHqLNnz4qnn35auLu7i8cff9wuxNRGWFiYeOaZZ6TXVVVVwt/fXyQlJTmsHzNmjBg+fLhdm9FoFFOmTBFCCGGz2YTBYBCvvfaatL6srExoNBqxbt06IYQQBQUFAoDIy8uTaj799FOhUCjE2bNn7fY9c+ZM8ac//Um8//77DFFERERNQE2/v2v923lWqxUvvvgiOnTogCNHjiAzMxOffPIJunfvXutZsGvXriE/Px8mk0lqUyqVMJlMyMnJcbhNTk6OXT0AmM1mqb6wsBAWi8WuRqfTwWg0SjU5OTnQ6/Xo3bu3VGMymaBUKpGbmyu1ZWVlYePGjVi5cmWNjufq1asoLy+3W4iIiOj+VKsQtWTJErRr1w7btm3DunXrkJ2djQEDBsh+85KSElRVVcHX19eu3dfXFxaLxeE2Foul2vpbf+9W06pVK7v1bm5uaNmypVRz4cIFTJo0CSkpKfDy8qrR8SQlJUGn00lLQEBAjbYjIiIi11Orq8BnzZoFDw8PdOjQAatXr8bq1asd1m3atKlOOudMkydPxrhx4zBw4MAabzN79mxMnz5del1eXs4gRUREdJ+qVYiaMGECFP93q2Vd8Pb2hkqlQnFxsV17cXExDAaDw20MBkO19bf+FhcXw8/Pz64mNDRUqjl37pzdPm7cuIHS0lJp+6ysLGzduhVLly4FcPOOP5vNBjc3N7zzzjv485//fFvfNBoNNBpNTQ+fiIiIXFitQlRKSkqdvrlarUavXr2QmZmJyMhIAIDNZkNmZiYSEhIcbhMeHo7MzExMmzZNasvIyEB4eDgAICgoCAaDAZmZmVJoKi8vR25uLv7nf/5H2kdZWRny8/PRq1cvADdDk81mg9FoBHDzuqmqqirpPbZs2YLFixcjOzsbrVu3rsthICIiIhfk9CdjTp8+HRMnTkTv3r0RFhaGZcuWoaKiArGxsQBuzn61bt0aSUlJAICpU6ciIiICr7/+OoYPH47169dj7969eOeddwAACoUC06ZNwyuvvILg4GAEBQVh3rx58Pf3l4Jaly5dMHToUEyePBnJycm4fv06EhISMHbsWPj7+0s1v7Z3714olUpZF9ATERHR/cfpISoqKgrnz5/H/PnzYbFYEBoaivT0dOnC8FOnTkGp/OX69759+2Lt2rWYO3cu5syZg+DgYGzevNku3MycORMVFRWIj49HWVkZ+vfvj/T0dLvf/VuzZg0SEhIwZMgQKJVKjB49GsuXL2+4AyciIiKXphBCiLuXkRzl5eXQ6XSwWq01vsOPiIiInKum39+1fk4UERERETFEEREREcnCEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERydAoQtTKlSsRGBgIrVYLo9GIPXv2VFu/ceNGdO7cGVqtFiEhIUhLS7NbL4TA/Pnz4efnBw8PD5hMJhw/ftyuprS0FDExMfDy8oJer0dcXBwuXbokrT927BgGDx4MX19faLVatGvXDnPnzsX169fr7sAbWJG1EtknSlBkrXR2V4iIiFye00NUamoqpk+fjsTEROzbtw89evSA2WzGuXPnHNZnZ2cjOjoacXFx2L9/PyIjIxEZGYnDhw9LNUuWLMHy5cuRnJyM3NxceHp6wmw248qVK1JNTEwMjhw5goyMDGzbtg07d+5EfHy8tN7d3R0TJkzA559/jmPHjmHZsmV49913kZiYWH+DUY9S806h36IsjHs3F/0WZSE175Szu0REROTSFEII4cwOGI1G9OnTB2+++SYAwGazISAgAM8++yxmzZp1W31UVBQqKiqwbds2qe2RRx5BaGgokpOTIYSAv78/nn/+ecyYMQMAYLVa4evri5SUFIwdOxZHjx5F165dkZeXh969ewMA0tPTMWzYMJw5cwb+/v4O+zp9+nTk5eXhq6++qtGxlZeXQ6fTwWq1wsvLq1bjUpeKrJXotygLtl/9L61SKLBr1mD46Tyc1i8iIqLGqKbf306dibp27Rry8/NhMpmkNqVSCZPJhJycHIfb5OTk2NUDgNlsluoLCwthsVjsanQ6HYxGo1STk5MDvV4vBSgAMJlMUCqVyM3Ndfi+33//PdLT0xEREXHH47l69SrKy8vtlsagsKTCLkABQJUQOFly2TkdIiIiug84NUSVlJSgqqoKvr6+du2+vr6wWCwOt7FYLNXW3/p7t5pWrVrZrXdzc0PLli1ve9++fftCq9UiODgYAwYMwMKFC+94PElJSdDpdNISEBBwx9qGFOTtCaXCvk2lUCDQu5lzOkRERHQfcPo1UY1damoq9u3bh7Vr12L79u1YunTpHWtnz54Nq9UqLadPn27Ant6Zn84DSaNCoFLcTFIqhQKvjurOU3lERET3wM2Zb+7t7Q2VSoXi4mK79uLiYhgMBofbGAyGautv/S0uLoafn59dTWhoqFTz2wvXb9y4gdLS0tve99ZsUteuXVFVVYX4+Hg8//zzUKlUt/VNo9FAo9Hc7bCdIqpPGwzs6IOTJZcR6N2MAYqImrQiayUKSyoQ5O3Jfx+SbE6diVKr1ejVqxcyMzOlNpvNhszMTISHhzvcJjw83K4eADIyMqT6oKAgGAwGu5ry8nLk5uZKNeHh4SgrK0N+fr5Uk5WVBZvNBqPReMf+2mw2XL9+HTabrfYH2wj46TwQ3v4B/guDiJo03q1MdcWpM1HAzTveJk6ciN69eyMsLAzLli1DRUUFYmNjAQATJkxA69atkZSUBACYOnUqIiIi8Prrr2P48OFYv3499u7di3feeQcAoFAoMG3aNLzyyisIDg5GUFAQ5s2bB39/f0RGRgIAunTpgqFDh2Ly5MlITk7G9evXkZCQgLFjx0p35q1Zswbu7u4ICQmBRqPB3r17MXv2bERFRcHd3b3hB4qIiO5ZkbUSszcdkm62sQlgzqbDGNjRh/+BSbXm9BAVFRWF8+fPY/78+bBYLAgNDUV6erp0YfipU6egVP4yYda3b1+sXbsWc+fOxZw5cxAcHIzNmzeje/fuUs3MmTNRUVGB+Ph4lJWVoX///khPT4dWq5Vq1qxZg4SEBAwZMgRKpRKjR4/G8uXLpfVubm5YvHgxvvvuOwgh0LZtWyQkJOBvf/tbA4xK08ZpdiKqL9Xdrcx/31BtOf05UfezxvKcKFeSmndK+q9EpQJIGhWCqD5tnN0tIrpP8Ll5VBMu8Zwool+70zQ7f6aGiOoK71amuuT003lEt3CanYgaAu9WprrCEEWNxq2Hgv52mp0PBSWiuuan82B4onvG03nUaHCanYiIXAlnoqhRuddpdt7ZR0REDYUhqglxlYAhd5qdd/YREVFDYohqIu73gMEH6BERUUPjNVFNQFN4dEB1d/YRERHVB4aoJqApBIxbd/b9Gu/sIyKi+sQQ1QQ0hYDBO/uIiKih8ZqoJuBWwJiz6TCqhLhvAwYfoEdERA2JIaqJaCoBgw/QIyKihsIQ1YQwYBAREdUdXhNFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBERERHJwBBFREREJANDFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQyNIkStXLkSgYGB0Gq1MBqN2LNnT7X1GzduROfOnaHVahESEoK0tDS79UIIzJ8/H35+fvDw8IDJZMLx48ftakpLSxETEwMvLy/o9XrExcXh0qVL0vodO3Zg5MiR8PPzg6enJ0JDQ7FmzZq6O2giGYqslcg+UYIia6Wzu0JE1OQ5PUSlpqZi+vTpSExMxL59+9CjRw+YzWacO3fOYX12djaio6MRFxeH/fv3IzIyEpGRkTh8+LBUs2TJEixfvhzJycnIzc2Fp6cnzGYzrly5ItXExMTgyJEjyMjIwLZt27Bz507Ex8fbvc9DDz2Ejz76CAcPHkRsbCwmTJiAbdu21d9gEFUjNe8U+i3Kwrh3c9FvURZS8045u0tERE2aQgghnNkBo9GIPn364M033wQA2Gw2BAQE4Nlnn8WsWbNuq4+KikJFRYVdmHnkkUcQGhqK5ORkCCHg7++P559/HjNmzAAAWK1W+Pr6IiUlBWPHjsXRo0fRtWtX5OXloXfv3gCA9PR0DBs2DGfOnIG/v7/Dvg4fPhy+vr5YtWpVjY6tvLwcOp0OVqsVXl5etRoXol8rslai36Is2H71/1aVQoFdswbDT+fhvI4REd2Havr97dSZqGvXriE/Px8mk0lqUyqVMJlMyMnJcbhNTk6OXT0AmM1mqb6wsBAWi8WuRqfTwWg0SjU5OTnQ6/VSgAIAk8kEpVKJ3NzcO/bXarWiZcuWd1x/9epVlJeX2y1EdaGwpMIuQAFAlRA4WXLZOR0iIiLnhqiSkhJUVVXB19fXrt3X1xcWi8XhNhaLpdr6W3/vVtOqVSu79W5ubmjZsuUd33fDhg3Iy8tDbGzsHY8nKSkJOp1OWgICAu5YS1QbQd6eUCrs21QKBQK9mzmnQ0RE5PxrolzBF198gdjYWLz77rvo1q3bHetmz54Nq9UqLadPn27AXtL9zE/ngaRRIVApbiYplUKBV0d156k8IiIncnPmm3t7e0OlUqG4uNiuvbi4GAaDweE2BoOh2vpbf4uLi+Hn52dXExoaKtX89sL1GzduoLS09Lb3/fLLL/HEE0/gjTfewIQJE6o9Ho1GA41GU20NkVxRfdpgYEcfnCy5jEDvZgxQRERO5tSZKLVajV69eiEzM1Nqs9lsyMzMRHh4uMNtwsPD7eoBICMjQ6oPCgqCwWCwqykvL0dubq5UEx4ejrKyMuTn50s1WVlZsNlsMBqNUtuOHTswfPhwLF682O7OPSJn8dN5ILz9AwxQRESNgXCy9evXC41GI1JSUkRBQYGIj48Xer1eWCwWIYQQ48ePF7NmzZLqd+/eLdzc3MTSpUvF0aNHRWJionB3dxeHDh2SahYtWiT0er3YsmWLOHjwoBg5cqQICgoSlZWVUs3QoUNFz549RW5urti1a5cIDg4W0dHR0vqsrCzRrFkzMXv2bFFUVCQtFy5cqPGxWa1WAUBYrdZ7GSIiIiJqQDX9/nZ6iBJCiBUrVog2bdoItVotwsLCxNdffy2ti4iIEBMnTrSr37Bhg+jYsaNQq9WiW7duYvv27XbrbTabmDdvnvD19RUajUYMGTJEHDt2zK7mwoULIjo6WjRv3lx4eXmJ2NhYcfHiRWn9xIkTBYDbloiIiBofF0MUERGR66np97fTnxN1P+NzooiIiFyPSzwnioiIiMhVMUS5IP5+GhERNTZN8bvJqY84oNpLzTuF2ZsOwSYApQJIGhWCqD5tnN0tIiJqwprqdxNnolxIkbVS+pACgE0AczYdblKpn4iIGpem/N3EEOVC+PtpRETU2DTl7yaGKBfC308jIqLGpil/NzFEuRD+fhoRETU2Tfm7ic+Jqkf19ZyoImslfz+NiIgalfvpu6mm39+8O88F+ek8XP4DSkRE95em+N3E03lEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDAxRRERERDIwRBHh5s8VZJ8oQZG10tldISIiF8GffaEmLzXvFGZvOgSbAJQKIGlUCKL6tHF2t4iIqJHjTBQ1aUXWSilAAYBNAHM2HeaMFBER3RVDFDVphSUVUoC6pUoInCy57JwOERGRy2CIoiYtyNsTSoV9m0qhQKB3M+d06D7Ba8yIqClgiKImzU/ngaRRIVApbiYplUKBV0d1h5/Ow8k9c12peafQb1EWxr2bi36LspCad8rZXSIiqhcKIYS4exnJUV5eDp1OB6vVCi8vL2d3h6pRZK3EyZLLCPRuxgB1D4qslei3KMvuFKlKocCuWYM5rkTkMmr6/c2784hwc0aKX/L3rrprzDi+VJ0iayUKSyoQ5O3Jzwq5DIYoIqozt64x++1MFK8xo+rwMSPkqnhNFBHVGV5jRrXFx4yQK+NMFBHVqag+bTCwow+vMaMa4SlgcmUMUURU53iNGdUUTwGTK3P66byVK1ciMDAQWq0WRqMRe/bsqbZ+48aN6Ny5M7RaLUJCQpCWlma3XgiB+fPnw8/PDx4eHjCZTDh+/LhdTWlpKWJiYuDl5QW9Xo+4uDhcunRJWn/lyhVMmjQJISEhcHNzQ2RkZJ0dLxER/YKngMmVOTVEpaamYvr06UhMTMS+ffvQo0cPmM1mnDt3zmF9dnY2oqOjERcXh/379yMyMhKRkZE4fPiwVLNkyRIsX74cycnJyM3NhaenJ8xmM65cuSLVxMTE4MiRI8jIyMC2bduwc+dOxMfHS+urqqrg4eGB5557DiaTqf4GgIiIENWnDXbNGox1kx/BrlmDeVE5uQynPifKaDSiT58+ePPNNwEANpsNAQEBePbZZzFr1qzb6qOiolBRUYFt27ZJbY888ghCQ0ORnJwMIQT8/f3x/PPPY8aMGQAAq9UKX19fpKSkYOzYsTh69Ci6du2KvLw89O7dGwCQnp6OYcOG4cyZM/D397d7z0mTJqGsrAybN2+u9fHxOVFERESup6bf306bibp27Rry8/PtZnqUSiVMJhNycnIcbpOTk3PbzJDZbJbqCwsLYbFY7Gp0Oh2MRqNUk5OTA71eLwUoADCZTFAqlcjNzb2nY7p69SrKy8vtFiIiIro/OS1ElZSUoKqqCr6+vnbtvr6+sFgsDrexWCzV1t/6e7eaVq1a2a13c3NDy5Yt7/i+NZWUlASdTictAQEB97Q/IiIiarycfmH5/WT27NmwWq3Scvr0aWd3iYiIiOqJ00KUt7c3VCoViouL7dqLi4thMBgcbmMwGKqtv/X3bjW/vXD9xo0bKC0tveP71pRGo4GXl5fdQkRERPcnp4UotVqNXr16ITMzU2qz2WzIzMxEeHi4w23Cw8Pt6gEgIyNDqg8KCoLBYLCrKS8vR25urlQTHh6OsrIy5OfnSzVZWVmw2WwwGo11dnxERER0f3PqwzanT5+OiRMnonfv3ggLC8OyZctQUVGB2NhYAMCECRPQunVrJCUlAQCmTp2KiIgIvP766xg+fDjWr1+PvXv34p133gEAKBQKTJs2Da+88gqCg4MRFBSEefPmwd/fX3rWU5cuXTB06FBMnjwZycnJuH79OhISEjB27Fi7O/MKCgpw7do1lJaW4uLFizhw4AAAIDQ0tMHGh4iIiBovp4aoqKgonD9/HvPnz4fFYkFoaCjS09OlC8NPnToFpfKXybK+ffti7dq1mDt3LubMmYPg4GBs3rwZ3bt3l2pmzpyJiooKxMfHo6ysDP3790d6ejq0Wq1Us2bNGiQkJGDIkCFQKpUYPXo0li9fbte3YcOG4ccff5Re9+zZE8DNh3kSEREROfU5Ufc7PieKiIjI9TT650QRERERuTKGKCIiIiIZGKKIiIiIZGCIIiIiIpKBIYqIiIhIBoYoIiIiIhkYooiIiEhSZK1E9okSFFkrnd2VRs+pD9skIiKixiM17xRmbzoEmwCUCiBpVAii+rRxdrcaLc5EEREREYqslVKAAgCbAOZsOswZqWowRBEREREKSyqkAHVLlRA4WXLZOR26i8Zw2pGn84iIiAhB3p5QKmAXpFQKBQK9mzmvU3fQWE47ciaKiIiI4KfzQNKoEKgUCgA3A9Sro7rDT+fh5J7Za0ynHTkTRURERACAqD5tMLCjD06WXEagd7NGF6CA6k87NnR/GaKIiIhI4qfzaJTh6ZbGdNqRp/OIiIjIZTSm046ciSIiIiKX0lhOOzJEERE1oCJrJQpLKhDk7dmoT5kQNXaN4bQjQxQRUQNpLLdlE1Hd4DVRREQNoDHdlk1EdYMhioioAbja06CJ6O4YooiIGsCt27J/rbE+DZqIaoYhioioATSm27KJqG7wwnIiajTu9zvXGstt2URUNxiiiKhRaCp3rjWG27KJqG7wdB4ROR3vXCMiV8QQRUROxzvXiMgVMUQRkdO54p1rRdZKZJ8o4WwZURPGEEVETudqd66l5p1Cv0VZGPduLvotykJq3ilnd4mInEAhhBB3LyM5ysvLodPpYLVa4eXl5ezuEDV6RdbKRn/nWpG1Ev0WZdmdflQpFNg1a3Cj7TMR1U5Nv795dx4RNRqucOdadddvNfa+E1Hd4uk8IqJacMXrt4iofjSKELVy5UoEBgZCq9XCaDRiz5491dZv3LgRnTt3hlarRUhICNLS0uzWCyEwf/58+Pn5wcPDAyaTCcePH7erKS0tRUxMDLy8vKDX6xEXF4dLly7Z1Rw8eBADBgyAVqtFQEAAlixZUjcHTEQuy9Wu3yKieiScbP369UKtVotVq1aJI0eOiMmTJwu9Xi+Ki4sd1u/evVuoVCqxZMkSUVBQIObOnSvc3d3FoUOHpJpFixYJnU4nNm/eLL755hsxYsQIERQUJCorK6WaoUOHih49eoivv/5afPXVV6JDhw4iOjpaWm+1WoWvr6+IiYkRhw8fFuvWrRMeHh7i7bffrvGxWa1WAUBYrVYZI0NEjdlPZZdF9vcl4qeyy87uChHVsZp+fzs9RIWFhYlnnnlGel1VVSX8/f1FUlKSw/oxY8aI4cOH27UZjUYxZcoUIYQQNptNGAwG8dprr0nry8rKhEajEevWrRNCCFFQUCAAiLy8PKnm008/FQqFQpw9e1YIIcQ///lP8bvf/U5cvXpVqnnxxRdFp06danxsDFFERESup6bf3049nXft2jXk5+fDZDJJbUqlEiaTCTk5OQ63ycnJsasHALPZLNUXFhbCYrHY1eh0OhiNRqkmJycHer0evXv3lmpMJhOUSiVyc3OlmoEDB0KtVtu9z7Fjx/Dzzz877NvVq1dRXl5utxAREdH9yakhqqSkBFVVVfD19bVr9/X1hcVicbiNxWKptv7W37vVtGrVym69m5sbWrZsaVfjaB+/fo/fSkpKgk6nk5aAgADHB05EREQur1FcWH6/mD17NqxWq7ScPn3a2V0iIiKieuLUEOXt7Q2VSoXi4mK79uLiYhgMBofbGAyGautv/b1bzblz5+zW37hxA6WlpXY1jvbx6/f4LY1GAy8vL7uFiIiI7k9ODVFqtRq9evVCZmam1Gaz2ZCZmYnw8HCH24SHh9vVA0BGRoZUHxQUBIPBYFdTXl6O3NxcqSY8PBxlZWXIz8+XarKysmCz2WA0GqWanTt34vr163bv06lTJ/zud7+7xyMnIiIil9dAF7rf0fr164VGoxEpKSmioKBAxMfHC71eLywWixBCiPHjx4tZs2ZJ9bt37xZubm5i6dKl4ujRoyIxMdHhIw70er3YsmWLOHjwoBg5cqTDRxz07NlT5Obmil27dong4GC7RxyUlZUJX19fMX78eHH48GGxfv160axZMz7igIiI6D7nMo84EEKIFStWiDZt2gi1Wi3CwsLE119/La2LiIgQEydOtKvfsGGD6Nixo1Cr1aJbt25i+/btduttNpuYN2+e8PX1FRqNRgwZMkQcO3bMrubChQsiOjpaNG/eXHh5eYnY2Fhx8eJFu5pvvvlG9O/fX2g0GtG6dWuxaNGiWh0XQxQREZHrqen3N3+AuB7xB4iJiIhcT02/v3l3HhEREZEMDFFEREREMjBEEREREcng5uwO3M9uXW7Gn38hIiJyHbe+t+922ThDVD26ePEiAPDnX4iIiFzQxYsXodPp7ried+fVI5vNhp9++gktWrSAQqFwdncaRHl5OQICAnD69Okmf0cix+IXHItfcCx+wbG4iePwi8YyFkIIXLx4Ef7+/lAq73zlE2ei6pFSqcSDDz7o7G44BX/25hcci19wLH7BsfgFx+ImjsMvGsNYVDcDdQsvLCciIiKSgSGKiIiISAaGKKpTGo0GiYmJ0Gg0zu6K03EsfsGx+AXH4hcci5s4Dr9wtbHgheVEREREMnAmioiIiEgGhigiIiIiGRiiiIiIiGRgiCIiIiKSgSGKqrVy5UoEBgZCq9XCaDRiz5491dYvW7YMnTp1goeHBwICAvC3v/0NV65ckdYvWLAACoXCbuncuXN9H0adqM1YXL9+HQsXLkT79u2h1WrRo0cPpKen39M+G5O6HgtX/Vzs3LkTTzzxBPz9/aFQKLB58+a7brNjxw48/PDD0Gg06NChA1JSUm6rccXPRX2MRVP5XBQVFWHcuHHo2LEjlEolpk2b5rBu48aN6Ny5M7RaLUJCQpCWllb3na9j9TEWKSkpt30utFpt/RzAXTBE0R2lpqZi+vTpSExMxL59+9CjRw+YzWacO3fOYf3atWsxa9YsJCYm4ujRo/jXv/6F1NRUzJkzx66uW7duKCoqkpZdu3Y1xOHck9qOxdy5c/H2229jxYoVKCgowF/+8hc8+eST2L9/v+x9Nhb1MRaAa34uKioq0KNHD6xcubJG9YWFhRg+fDgGDx6MAwcOYNq0aXj66afx2WefSTWu+rmoj7EAmsbn4urVq/Dx8cHcuXPRo0cPhzXZ2dmIjo5GXFwc9u/fj8jISERGRuLw4cN12fU6Vx9jAdx8ovmvPxc//vhjXXW5dgTRHYSFhYlnnnlGel1VVSX8/f1FUlKSw/pnnnlGPProo3Zt06dPF/369ZNeJyYmih49etRLf+tTbcfCz89PvPnmm3Zto0aNEjExMbL32VjUx1i46ufi1wCIjz/+uNqamTNnim7dutm1RUVFCbPZLL121c/Fr9XVWDSVz8WvRUREiKlTp97WPmbMGDF8+HC7NqPRKKZMmXKPPWw4dTUW77//vtDpdHXWr3vBmShy6Nq1a8jPz4fJZJLalEolTCYTcnJyHG7Tt29f5OfnS6cefvjhB6SlpWHYsGF2dcePH4e/vz/atWuHmJgYnDp1qv4OpA7IGYurV6/eNr3s4eEh/Ve0nH02BvUxFre42udCjpycHLuxAwCz2SyNnat+LuS421jc0hQ+FzVR0/FqKi5duoS2bdsiICAAI0eOxJEjR5zSD4YocqikpARVVVXw9fW1a/f19YXFYnG4zbhx47Bw4UL0798f7u7uaN++PQYNGmR3Os9oNCIlJQXp6el46623UFhYiAEDBuDixYv1ejz3Qs5YmM1m/P3vf8fx48dhs9mQkZGBTZs2oaioSPY+G4P6GAvANT8XclgsFodjV15ejsrKSpf9XMhxt7EAms7noibuNF732+eiJjp16oRVq1Zhy5Yt+OCDD2Cz2dC3b1+cOXOmwfvCEEV1ZseOHXj11Vfxz3/+E/v27cOmTZuwfft2vPzyy1LNY489hj/+8Y946KGHYDabkZaWhrKyMmzYsMGJPa97//jHPxAcHIzOnTtDrVYjISEBsbGxUCqb3v/lajIWTeVzQbXDzwU5Eh4ejgkTJiA0NBQRERHYtGkTfHx88Pbbbzd4X5rev9GpRry9vaFSqVBcXGzXXlxcDIPB4HCbefPmYfz48Xj66acREhKCJ598Eq+++iqSkpJgs9kcbqPX69GxY0d8//33dX4MdUXOWPj4+GDz5s2oqKjAjz/+iG+//RbNmzdHu3btZO+zMaiPsXDEFT4XchgMBodj5+XlBQ8PD5f9XMhxt7Fw5H79XNTEncbrfvtcyOHu7o6ePXs65XPBEEUOqdVq9OrVC5mZmVKbzWZDZmYmwsPDHW5z+fLl22ZaVCoVAEDc4ScaL126hBMnTsDPz6+Oel735IzFLVqtFq1bt8aNGzfw0UcfYeTIkfe8T2eqj7FwxBU+F3KEh4fbjR0AZGRkSGPnqp8LOe42Fo7cr5+LmpAzXk1FVVUVDh065JzPhbOvbKfGa/369UKj0YiUlBRRUFAg4uPjhV6vFxaLRQghxPjx48WsWbOk+sTERNGiRQuxbt068cMPP4jPP/9ctG/fXowZM0aqef7558WOHTtEYWGh2L17tzCZTMLb21ucO3euwY+vNmo7Fl9//bX46KOPxIkTJ8TOnTvFo48+KoKCgsTPP/9c4302VvUxFq76ubh48aLYv3+/2L9/vwAg/v73v4v9+/eLH3/8UQghxKxZs8T48eOl+h9++EE0a9ZMvPDCC+Lo0aNi5cqVQqVSifT0dKnGVT8X9TEWTeVzIYSQ6nv16iXGjRsn9u/fL44cOSKt3717t3BzcxNLly4VR48eFYmJicLd3V0cOnSoQY+ttupjLF566SXx2WefiRMnToj8/HwxduxYodVq7WoaCkMUVWvFihWiTZs2Qq1Wi7CwMPH1119L6yIiIsTEiROl19evXxcLFiwQ7du3F1qtVgQEBIi//vWvdl+WUVFRws/PT6jVatG6dWsRFRUlvv/++wY8IvlqMxY7duwQXbp0ERqNRjzwwANi/Pjx4uzZs7XaZ2NW12Phqp+LL774QgC4bbl1/BMnThQRERG3bRMaGirUarVo166deP/992/bryt+LupjLJrS58JRfdu2be1qNmzYIDp27CjUarXo1q2b2L59e8Mc0D2oj7GYNm2a9P8PX19fMWzYMLFv376GO6hfUfxfh4mIiIioFnhNFBEREZEMDFFEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRUTUhOzYsQMKhQJlZWXO7gqRy2OIIqJ6MWnSJCgUCixatMiuffPmzVAoFNJrIQTeffddhIeHw8vLC82bN0e3bt0wderUGv+g6OXLlzF79my0b98eWq0WPj4+iIiIwJYtW6SawMBALFu2rE6Orb7dGjuFQgF3d3cEBQVh5syZuHLlSq32M2jQIEybNs2urW/fvigqKoJOp6vDHhM1TQxRRFRvtFotFi9ejJ9//tnheiEExo0bh+eeew7Dhg3D559/joKCAvzrX/+CVqvFK6+8UqP3+ctf/oJNmzZhxYoV+Pbbb5Geno6nnnoKFy5cqMvDaVBDhw5FUVERfvjhB7zxxht4++23kZiYeM/7VavVMBgMdkGWiGRyyo/NENF9b+LEieLxxx8XnTt3Fi+88ILU/vHHH4tb/+pZt26dACC2bNnicB82m61G76XT6URKSsod10dERNz2W1y3fPXVV6J///5Cq9WKBx98UDz77LPi0qVL0vp///vfolevXqJ58+bC19dXREdHi+LiYmn9rd8GS09PF6GhoUKr1YrBgweL4uJikZaWJjp37ixatGghoqOjRUVFRY2OZ+LEiWLkyJF2baNGjRI9e/aUXpeUlIixY8cKf39/4eHhIbp37y7Wrl1rt4/fHnNhYaHU31//puWHH34ounbtKtRqtWjbtq1YunRpjfpJ1NRxJoqI6o1KpcKrr76KFStW4MyZM7etX7duHTp16oQRI0Y43L6msyUGgwFpaWm4ePGiw/WbNm3Cgw8+iIULF6KoqAhFRUUAgBMnTmDo0KEYPXo0Dh48iNTUVOzatQsJCQnSttevX8fLL7+Mb775Bps3b8bJkycxadKk295jwYIFePPNN5GdnY3Tp09jzJgxWLZsGdauXYvt27fj888/x4oVK2p0PL91+PBhZGdnQ61WS21XrlxBr169sH37dhw+fBjx8fEYP3489uzZAwD4xz/+gfDwcEyePFk65oCAgNv2nZ+fjzFjxmDs2LE4dOgQFixYgHnz5iElJUVWX4maFGenOCK6P/16NuWRRx4Rf/7zn4UQ9jNRnTt3FiNGjLDbburUqcLT01N4enqK1q1b1+i9vvzyS/Hggw8Kd3d30bt3bzFt2jSxa9cuu5q2bduKN954w64tLi5OxMfH27V99dVXQqlUisrKSofvlZeXJwCIixcvCiF+mYn673//K9UkJSUJAOLEiRNS25QpU4TZbK7R8UycOFGoVCrh6ekpNBqNACCUSqX48MMPq91u+PDh4vnnn5deR0REiKlTp9rV/HYmaty4ceL3v/+9Xc0LL7wgunbtWqO+EjVlnIkionq3ePFirF69GkePHr1r7f/7f/8PBw4cwPz583Hp0qUa7X/gwIH44YcfkJmZiaeeegpHjhzBgAED8PLLL1e73TfffIOUlBQ0b95cWsxmM2w2GwoLCwHcnKl54okn0KZNG7Ro0QIREREAgFOnTtnt66GHHpL+2dfXF82aNUO7du3s2s6dO1ej4wGAwYMH48CBA8jNzcXEiRMRGxuL0aNHS+urqqrw8ssvIyQkBC1btkTz5s3x2Wef3davuzl69Cj69etn19avXz8cP34cVVVVtdoXUVPDEEVE9W7gwIEwm82YPXu2XXtwcDCOHTtm1+bj44MOHTqgVatWtXoPd3d3DBgwAC+++CI+//xzLFy4EC+//DKuXbt2x20uXbqEKVOm4MCBA9LyzTff4Pjx42jfvj0qKipgNpvh5eWFNWvWIC8vDx9//DEA3LZfd3d36Z9v3VX3awqFAjabrcbH4+npiQ4dOqBHjx5YtWoVcnNz8a9//Uta/9prr+Ef//gHXnzxRXzxxRc4cOAAzGZztcdLRHXLzdkdIKKmYdGiRQgNDUWnTp2ktujoaIwbNw5btmzByJEj6/T9unbtihs3buDKlStQq9VQq9W3zaw8/PDDKCgoQIcOHRzu49ChQ7hw4QIWLVokXU+0d+/eOu1nTSiVSsyZMwfTp0/HuHHj4OHhgd27d2PkyJH405/+BACw2Wz47rvv0LVrV2k7R8f8W126dMHu3bvt2nbv3o2OHTtCpVLV/cEQ3Uc4E0VEDSIkJAQxMTFYvny51DZ27Fg89dRTGDt2LBYuXIjc3FycPHkSX375JVJTU2v8JT5o0CC8/fbbyM/Px8mTJ5GWloY5c+Zg8ODB8PLyAnDzOVE7d+7E2bNnUVJSAgB48cUXkZ2djYSEBBw4cADHjx/Hli1bpAvL27RpA7VajRUrVuCHH37A1q1b73qKsL788Y9/hEqlwsqVKwHcnMXLyMhAdnY2jh49iilTpqC4uNhum8DAQGlMS0pKHM6EPf/888jMzMTLL7+M7777DqtXr8abb76JGTNmNMhxEbkyhigiajALFy60+yJXKBRITU3FsmXLkJaWhiFDhqBTp07485//jICAAOzatatG+zWbzVi9ejX+8Ic/oEuXLnj22WdhNpuxYcMGu/c+efIk2rdvDx8fHwA3r2P68ssv8d1332HAgAHo2bMn5s+fD39/fwA3Ty2mpKRg48aN6Nq1KxYtWoSlS5fW4YjUnJubGxISErBkyRJUVFRg7ty5ePjhh2E2mzFo0CAYDAZERkbabTNjxgyoVCp07doVPj4+Dq+Xevjhh7FhwwasX78e3bt3x/z587Fw4UKHdyASkT2FEEI4uxNEREREroYzUUREREQyMEQRUaP360cQ/Hb56quvnN29Wjl16lS1x1PbRxQQkfPwdB4RNXrV/RBx69at4eHh0YC9uTc3btzAyZMn77g+MDAQbm68cZrIFTBEEREREcnA03lEREREMjBEEREREcnAEEVEREQkA0MUERERkQwMUUREREQyMEQRERERycAQRURERCQDQxQRERGRDP8fmxOp/FjTe7UAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARthJREFUeJzt3XtcVXW+//H3BoSNKDCGcjEUMu+SlBfCVHTkDI5WkjUpcrwd0+Y3Y+moU+pJcawTajU5Xk5WM2W/6SJaZqUeJ0czJyUy1PKWY4apE2BkbhTv7O/vj36u0w5UXAKby+v5eOwH8l2ftfZ3fR8r9ru1vnsthzHGCAAAANfEx9sdAAAAqI0IUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEA6rRZs2bJ4XBUqNbhcGjWrFlV2p8+ffqoT58+NXZ7ACqOEAWgWixdulQOh8N6+fn5qXnz5ho1apT+9a9/ebt7NU5MTIzHeDVr1ky9evXS22+/XSnbP336tGbNmqVNmzZVyvaA+ogQBaBazZ49W3/961+1ZMkS/fKXv9Srr76qpKQknT17tkre77HHHtOZM2eqZNtVLT4+Xn/961/117/+VVOmTNE333yjwYMHa8mSJde97dOnT+sPf/gDIQq4Dn7e7gCA+uWXv/ylunbtKkl64IEHFBYWprlz5+rdd9/V/fffX+nv5+fnJz+/2vmnrnnz5vr3f/936/cRI0bo5ptv1rPPPqtf//rXXuwZAIkzUQC8rFevXpKkgwcPerR/8cUXuu+++9SkSRM5nU517dpV7777rkfNhQsX9Ic//EGtW7eW0+nUDTfcoJ49e2r9+vVWTXlzos6dO6ff/e53atq0qRo3bqy7775bR48eLdO3UaNGKSYmpkx7edt8+eWX9fOf/1zNmjVTQECAOnTooOeee+6axuJqIiIi1L59e+Xl5V2x7tixYxozZozCw8PldDrVuXNnvfLKK9byQ4cOqWnTppKkP/zhD9Ylw6qeDwbUNbXzf88A1BmHDh2SJP3sZz+z2vbs2aM77rhDzZs319SpUxUUFKTly5crNTVVb731lu655x5JP4SZzMxMPfDAA+revbuKi4v16aefavv27fq3f/u3y77nAw88oFdffVXDhg1Tjx49tHHjRg0cOPC69uO5555Tx44ddffdd8vPz0/vvfeefvOb38jtduu3v/3tdW37kgsXLujIkSO64YYbLltz5swZ9enTR19++aXGjx+v2NhYrVixQqNGjdKJEyc0YcIENW3aVM8995z+z//5P7rnnns0ePBgSdItt9xSKf0E6g0DANXg5ZdfNpLM3//+d/Ptt9+aI0eOmDfffNM0bdrUBAQEmCNHjli1/fr1M3Fxcebs2bNWm9vtNj169DCtW7e22jp37mwGDhx4xffNyMgwP/5Tt3PnTiPJ/OY3v/GoGzZsmJFkMjIyrLaRI0eali1bXnWbxhhz+vTpMnUpKSnmpptu8mhLSkoySUlJV+yzMca0bNnS/OIXvzDffvut+fbbb81nn31mhg4daiSZhx566LLbmz9/vpFkXn31Vavt/PnzJjEx0TRq1MgUFxcbY4z59ttvy+wvgGvD5TwA1So5OVlNmzZVdHS07rvvPgUFBendd9/VjTfeKEk6fvy4Nm7cqPvvv18nT55UUVGRioqK9N133yklJUUHDhywvs0XGhqqPXv26MCBAxV+/7Vr10qSHn74YY/2iRMnXtd+BQYGWv92uVwqKipSUlKSvvrqK7lcLlvbfP/999W0aVM1bdpUnTt31ooVKzR8+HDNnTv3suusXbtWERERSktLs9oaNGighx9+WKdOndKHH35oqy8AyuJyHoBqtXjxYrVp00Yul0svvfSSNm/erICAAGv5l19+KWOMZsyYoRkzZpS7jWPHjql58+aaPXu2Bg0apDZt2qhTp07q37+/hg8ffsXLUl9//bV8fHzUqlUrj/a2bdte135t2bJFGRkZys7O1unTpz2WuVwuhYSEXPM2ExIS9MQTT8jhcKhhw4Zq3769QkNDr7jO119/rdatW8vHx/P/kdu3b28tB1A5CFEAqlX37t2tb+elpqaqZ8+eGjZsmPbv369GjRrJ7XZLkqZMmaKUlJRyt3HzzTdLknr37q2DBw/qnXfe0fvvv68///nPevbZZ7VkyRI98MAD193Xy92ks7S01OP3gwcPql+/fmrXrp3++Mc/Kjo6Wv7+/lq7dq2effZZa5+uVVhYmJKTk22tC6DqEaIAeI2vr68yMzPVt29fLVq0SFOnTtVNN90k6YdLUBUJEE2aNNHo0aM1evRonTp1Sr1799asWbMuG6Jatmwpt9utgwcPepx92r9/f5nan/3sZzpx4kSZ9p+ezXnvvfd07tw5vfvuu2rRooXV/sEHH1y1/5WtZcuW+vzzz+V2uz3ORn3xxRfWcunyARFAxTEnCoBX9enTR927d9f8+fN19uxZNWvWTH369NHzzz+v/Pz8MvXffvut9e/vvvvOY1mjRo10880369y5c5d9v1/+8peSpAULFni0z58/v0xtq1at5HK59Pnnn1tt+fn5Ze4a7uvrK0kyxlhtLpdLL7/88mX7UVUGDBiggoICZWVlWW0XL17UwoUL1ahRIyUlJUmSGjZsKEnlhkQAFcOZKABe9/vf/16/+tWvtHTpUv3617/W4sWL1bNnT8XFxWns2LG66aabVFhYqOzsbB09elSfffaZJKlDhw7q06ePunTpoiZNmujTTz/Vm2++qfHjx1/2veLj45WWlqb//u//lsvlUo8ePbRhwwZ9+eWXZWqHDh2qRx99VPfcc48efvhhnT59Ws8995zatGmj7du3W3W/+MUv5O/vr7vuuksPPvigTp06pRdffFHNmjUrNwhWpXHjxun555/XqFGjlJubq5iYGL355pvasmWL5s+fr8aNG0v6YSJ8hw4dlJWVpTZt2qhJkybq1KmTOnXqVK39BWo1b389EED9cOkWB9u2bSuzrLS01LRq1cq0atXKXLx40RhjzMGDB82IESNMRESEadCggWnevLm58847zZtvvmmt98QTT5ju3bub0NBQExgYaNq1a2f+67/+y5w/f96qKe92BGfOnDEPP/ywueGGG0xQUJC56667zJEjR8r9yv/7779vOnXqZPz9/U3btm3Nq6++Wu423333XXPLLbcYp9NpYmJizNy5c81LL71kJJm8vDyr7lpucXC12zdcbnuFhYVm9OjRJiwszPj7+5u4uDjz8ssvl1l369atpkuXLsbf35/bHQA2OIz50flnAAAAVAhzogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIAN3GyzCrndbn3zzTdq3Lgxj1gAAKCWMMbo5MmTioqKKvMw7x8jRFWhb775RtHR0d7uBgAAsOHIkSO68cYbL7ucEFWFLj1e4ciRIwoODvZybwAAQEUUFxcrOjra+hy/HEJUFbp0CS84OJgQBQBALXO1qThMLAcAALCBEAUAAGADIQoAAMAG5kQBAFBPlJaW6sKFC97uhtc1aNBAvr6+170dQhQAAHWcMUYFBQU6ceKEt7tSY4SGhioiIuK67uNIiAIAoI67FKCaNWumhg0b1usbQBtjdPr0aR07dkySFBkZaXtbhCgAAOqw0tJSK0DdcMMN3u5OjRAYGChJOnbsmJo1a2b70h4TywEAqMMuzYFq2LChl3tSs1waj+uZI0aIAgCgHqjPl/DKUxnjQYgCAACwgRAFAABgAyEKNVa+64y2HixSvuuMt7sCAPCCUaNGyeFwaM6cOR7tq1atsi7Hbdq0SYMGDVJkZKSCgoIUHx+v1157rVr6R4hCjZS17bDumLNRw17M0R1zNipr22FvdwkA4AVOp1Nz587V999/X+7yrVu36pZbbtFbb72lzz//XKNHj9aIESO0evXqKu8bIQo1Tr7rjKat3CW3+eF3t5Gmr9zNGSkAqIeSk5MVERGhzMzMcpdPnz5djz/+uHr06KFWrVppwoQJ6t+/v1auXFnlfSNEocbJKyqxAtQlpcboUNFp73QIAGCp7qkWvr6+evLJJ7Vw4UIdPXq0Quu4XC41adKkintGiEINFBsWJJ+ffPPU1+FQTBj3OAEAb/LWVIt77rlH8fHxysjIuGrt8uXLtW3bNo0ePbrK+0WIQo0TGRKozMFx8v3/kwZ9HQ49ObiTIkMCvdwzAKi/vD3VYu7cuXrllVe0b9++y9Z88MEHGj16tF588UV17NixyvvEY19QIw3p1kK92zTVoaLTiglrSIACAC+70lSL6vgb3bt3b6WkpGjatGkaNWpUmeUffvih7rrrLj377LMaMWJElfdHIkShBosMCSQ8AUANcWmqxY+DVHVPtZgzZ47i4+PVtm1bj/ZNmzbpzjvv1Ny5czVu3Lhq6w+X8wAAwFXVhKkWcXFxSk9P14IFC6y2Dz74QAMHDtTDDz+se++9VwUFBSooKNDx48ervD+ciQIAABVSE6ZazJ49W1lZWdbvr7zyik6fPq3MzEyP2yAkJSVp06ZNVdoXhzHGXL0MdhQXFyskJEQul0vBwcHe7g4AoB46e/as8vLyFBsbK6fT6e3u1BhXGpeKfn5zOQ8AAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAKgH+B6Zp8oYD0IUAAB1WIMGDSRJp0/zEPcfuzQel8bHDu4TBQBAHebr66vQ0FAdO3ZMktSwYUM5HI6rrFV3GWN0+vRpHTt2TKGhofL19bW9LUIUAAB1XEREhCRZQQpSaGioNS52EaIAAKjjHA6HIiMj1axZM124cMHb3fG6Bg0aXNcZqEsIUQAA1BO+vr6VEh7wAyaWAwAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgQ40IUYsXL1ZMTIycTqcSEhL0ySefXLF+xYoVateunZxOp+Li4rR27VqP5cYYzZw5U5GRkQoMDFRycrIOHDjgUXP8+HGlp6crODhYoaGhGjNmjE6dOmUtP3TokBwOR5nXxx9/XHk7DgAAai2vh6isrCxNmjRJGRkZ2r59uzp37qyUlBQdO3as3PqtW7cqLS1NY8aM0Y4dO5SamqrU1FTt3r3bqpk3b54WLFigJUuWKCcnR0FBQUpJSdHZs2etmvT0dO3Zs0fr16/X6tWrtXnzZo0bN67M+/39739Xfn6+9erSpUvlDwIAAKh9jJd1797d/Pa3v7V+Ly0tNVFRUSYzM7Pc+vvvv98MHDjQoy0hIcE8+OCDxhhj3G63iYiIME899ZS1/MSJEyYgIMC88cYbxhhj9u7daySZbdu2WTX/8z//YxwOh/nXv/5ljDEmLy/PSDI7duywvW8ul8tIMi6Xy/Y2AABA9aro57dXz0SdP39eubm5Sk5Ottp8fHyUnJys7OzsctfJzs72qJeklJQUqz4vL08FBQUeNSEhIUpISLBqsrOzFRoaqq5du1o1ycnJ8vHxUU5Ojse27777bjVr1kw9e/bUu+++e8X9OXfunIqLiz1eAACgbvJqiCoqKlJpaanCw8M92sPDw1VQUFDuOgUFBVesv/TzajXNmjXzWO7n56cmTZpYNY0aNdIzzzyjFStWaM2aNerZs6dSU1OvGKQyMzMVEhJivaKjo682BAAAoJby83YHaqqwsDBNmjTJ+r1bt2765ptv9NRTT+nuu+8ud51p06Z5rFNcXEyQAgCgjvLqmaiwsDD5+vqqsLDQo72wsFARERHlrhMREXHF+ks/r1bz04nrFy9e1PHjxy/7vpKUkJCgL7/88rLLAwICFBwc7PECAAB1k1dDlL+/v7p06aINGzZYbW63Wxs2bFBiYmK56yQmJnrUS9L69eut+tjYWEVERHjUFBcXKycnx6pJTEzUiRMnlJuba9Vs3LhRbrdbCQkJl+3vzp07FRkZee07CgAA6hyvX86bNGmSRo4cqa5du6p79+6aP3++SkpKNHr0aEnSiBEj1Lx5c2VmZkqSJkyYoKSkJD3zzDMaOHCgli1bpk8//VQvvPCCJMnhcGjixIl64okn1Lp1a8XGxmrGjBmKiopSamqqJKl9+/bq37+/xo4dqyVLlujChQsaP368hg4dqqioKEnSK6+8In9/f916662SpJUrV+qll17Sn//852oeIQAAUBN5PUQNGTJE3377rWbOnKmCggLFx8dr3bp11sTww4cPy8fnf0+Y9ejRQ6+//roee+wxTZ8+Xa1bt9aqVavUqVMnq+aRRx5RSUmJxo0bpxMnTqhnz55at26dnE6nVfPaa69p/Pjx6tevn3x8fHTvvfdqwYIFHn17/PHH9fXXX8vPz0/t2rVTVlaW7rvvvioeEQAAUBs4jDHG252oq4qLixUSEiKXy8X8KAAAaomKfn57/Y7lAAAAtREhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsKFGhKjFixcrJiZGTqdTCQkJ+uSTT65Yv2LFCrVr105Op1NxcXFau3atx3JjjGbOnKnIyEgFBgYqOTlZBw4c8Kg5fvy40tPTFRwcrNDQUI0ZM0anTp0q9/2+/PJLNW7cWKGhode1nwAAoO7weojKysrSpEmTlJGRoe3bt6tz585KSUnRsWPHyq3funWr0tLSNGbMGO3YsUOpqalKTU3V7t27rZp58+ZpwYIFWrJkiXJychQUFKSUlBSdPXvWqklPT9eePXu0fv16rV69Wps3b9a4cePKvN+FCxeUlpamXr16Vf7OAwCAWsthjDHe7EBCQoK6deumRYsWSZLcbreio6P10EMPaerUqWXqhwwZopKSEq1evdpqu/322xUfH68lS5bIGKOoqChNnjxZU6ZMkSS5XC6Fh4dr6dKlGjp0qPbt26cOHTpo27Zt6tq1qyRp3bp1GjBggI4ePaqoqChr248++qi++eYb9evXTxMnTtSJEycqvG/FxcUKCQmRy+VScHCwneEBAADVrKKf3149E3X+/Hnl5uYqOTnZavPx8VFycrKys7PLXSc7O9ujXpJSUlKs+ry8PBUUFHjUhISEKCEhwarJzs5WaGioFaAkKTk5WT4+PsrJybHaNm7cqBUrVmjx4sUV2p9z586puLjY4wUAAOomr4aooqIilZaWKjw83KM9PDxcBQUF5a5TUFBwxfpLP69W06xZM4/lfn5+atKkiVXz3XffadSoUVq6dGmFzyJlZmYqJCTEekVHR1doPQAAUPt4fU5UTTV27FgNGzZMvXv3rvA606ZNk8vlsl5Hjhypwh4CAABv8mqICgsLk6+vrwoLCz3aCwsLFRERUe46ERERV6y/9PNqNT+duH7x4kUdP37cqtm4caOefvpp+fn5yc/PT2PGjJHL5ZKfn59eeumlcvsWEBCg4OBgjxcAAKibvBqi/P391aVLF23YsMFqc7vd2rBhgxITE8tdJzEx0aNektavX2/Vx8bGKiIiwqOmuLhYOTk5Vk1iYqJOnDih3Nxcq2bjxo1yu91KSEiQ9MO8qZ07d1qv2bNnq3Hjxtq5c6fuueeeyhkAAABQa/l5uwOTJk3SyJEj1bVrV3Xv3l3z589XSUmJRo8eLUkaMWKEmjdvrszMTEnShAkTlJSUpGeeeUYDBw7UsmXL9Omnn+qFF16QJDkcDk2cOFFPPPGEWrdurdjYWM2YMUNRUVFKTU2VJLVv3179+/fX2LFjtWTJEl24cEHjx4/X0KFDrW/mtW/f3qOfn376qXx8fNSpU6dqGhkAAFCTeT1EDRkyRN9++61mzpypgoICxcfHa926ddbE8MOHD8vH539PmPXo0UOvv/66HnvsMU2fPl2tW7fWqlWrPMLNI488opKSEo0bN04nTpxQz549tW7dOjmdTqvmtdde0/jx49WvXz/5+Pjo3nvv1YIFC6pvxwEAQK3m9ftE1WXcJwoAgNqnVtwnCgAAoLYiRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIiqhfJdZ7T1YJHyXWe83RUAAOotP293ANcma9thTVu5S24j+TikzMFxGtKthbe7BQBAvcOZqFok33XGClCS5DbS9JW7OSMFAIAXEKJqkbyiEitAXVJqjA4VnfZOhwAAUP2dZsLlvFokNixIPg55BClfh0MxYQ291ykAQL1Wn6eZcCaqFokMCVTm4Dj5OhySfghQTw7upMiQQC/3DABQH9X3aSaciaplhnRrod5tmupQ0WnFhDUkQAEAvOZK00zqw+cTIaoWigwJrBcHJwCgZqvv00y4nAcAAGyp79NMOBMFAABsq8/TTAhRAADgutTXaSZczgMAALCBEAUAAGADIQoAAMAGQhQAAIANNSJELV68WDExMXI6nUpISNAnn3xyxfoVK1aoXbt2cjqdiouL09q1az2WG2M0c+ZMRUZGKjAwUMnJyTpw4IBHzfHjx5Wenq7g4GCFhoZqzJgxOnXqlLV8//796tu3r8LDw+V0OnXTTTfpscce04ULFypvxwEAQK3l9RCVlZWlSZMmKSMjQ9u3b1fnzp2VkpKiY8eOlVu/detWpaWlacyYMdqxY4dSU1OVmpqq3bt3WzXz5s3TggULtGTJEuXk5CgoKEgpKSk6e/asVZOenq49e/Zo/fr1Wr16tTZv3qxx48ZZyxs0aKARI0bo/fff1/79+zV//ny9+OKLysjIqLrBAAAAtYbDGGOuXlZ1EhIS1K1bNy1atEiS5Ha7FR0drYceekhTp04tUz9kyBCVlJRo9erVVtvtt9+u+Ph4LVmyRMYYRUVFafLkyZoyZYokyeVyKTw8XEuXLtXQoUO1b98+dejQQdu2bVPXrl0lSevWrdOAAQN09OhRRUVFldvXSZMmadu2bfrHP/5RoX0rLi5WSEiIXC6XgoODr2lcAACAd1T089urZ6LOnz+v3NxcJScnW20+Pj5KTk5WdnZ2uetkZ2d71EtSSkqKVZ+Xl6eCggKPmpCQECUkJFg12dnZCg0NtQKUJCUnJ8vHx0c5OTnlvu+XX36pdevWKSkp6bL7c+7cORUXF3u8AABA3eTVEFVUVKTS0lKFh4d7tIeHh6ugoKDcdQoKCq5Yf+nn1WqaNWvmsdzPz09NmjQp8749evSQ0+lU69at1atXL82ePfuy+5OZmamQkBDrFR0dfdlaAABQu3l9TlRNl5WVpe3bt+v111/XmjVr9PTTT1+2dtq0aXK5XNbryJEj1dhTAABQnbz62JewsDD5+vqqsLDQo72wsFARERHlrhMREXHF+ks/CwsLFRkZ6VETHx9v1fx04vrFixd1/PjxMu976WxShw4dVFpaqnHjxmny5Mny9fUt07eAgAAFBARcbbcBAEAdcM1notauXasHHnhAjzzyiL744guPZd9//71+/vOfV3hb/v7+6tKlizZs2GC1ud1ubdiwQYmJieWuk5iY6FEvSevXr7fqY2NjFRER4VFTXFysnJwcqyYxMVEnTpxQbm6uVbNx40a53W4lJCRctr9ut1sXLlyQ2+2u8D4CAIA6ylyD1157zfj6+pqBAweanj17GqfTaV599VVreUFBgfHx8bmWTZply5aZgIAAs3TpUrN3714zbtw4ExoaagoKCowxxgwfPtxMnTrVqt+yZYvx8/MzTz/9tNm3b5/JyMgwDRo0MLt27bJq5syZY0JDQ80777xjPv/8czNo0CATGxtrzpw5Y9X079/f3HrrrSYnJ8d89NFHpnXr1iYtLc1a/uqrr5qsrCyzd+9ec/DgQZOVlWWioqJMenp6hffN5XIZScblcl3TmAAAAO+p6Of3NYWo+Ph486c//cn6PSsrywQFBZk///nPxhh7IcoYYxYuXGhatGhh/P39Tffu3c3HH39sLUtKSjIjR470qF++fLlp06aN8ff3Nx07djRr1qzxWO52u82MGTNMeHi4CQgIMP369TP79+/3qPnuu+9MWlqaadSokQkODjajR482J0+etJYvW7bM3HbbbaZRo0YmKCjIdOjQwTz55JMeQexqCFEAANQ+Ff38vqb7RDVq1Ei7du1SbGys1fbBBx/o7rvv1lNPPaV77rlHUVFRKi0trfQzZrUR94kCAKBq5LvOKK+oRLFhQYoMCazUbVf08/uaJpYHBwersLDQI0T17dtXq1ev1p133qmjR4/a7zEAAEAFZG07rGkrd8ltJB+HlDk4TkO6taj2flzTxPLu3bvrf/7nf8q0JyUl6b333tP8+fMrq18AAABl5LvOWAFKktxGmr5yt/JdZ6q9L9cUon73u9/J6XSWu6xPnz567733NGLEiErpGAAAwE/lFZVYAeqSUmN0qOh0tfflmi7nJSUlXfGxJ3379lXfvn2vu1MAAADliQ0Lko9DHkHK1+FQTFjDau/LNZ2J8vHxka+v7xVffn5evX8nAACowyJDApU5OE6+DoekHwLUk4M7Vfrk8oq4psTz9ttvX3ZZdna2FixYwI0oAQBAlRrSrYV6t2mqQ0WnFRPW0CsBSrrGEDVo0KAybfv379fUqVP13nvvKT09/YoP6AUAAKgMkSGBXgtPl9h+APE333yjsWPHKi4uThcvXtTOnTv1yiuvqGXLlpXZPwAAgBrpmkOUy+XSo48+qptvvll79uzRhg0b9N5776lTp05V0T8AAIAa6Zou582bN09z585VRESE3njjjXIv7wEAANQH1/TYFx8fHwUGBio5OVm+vr6XrVu5cmWldK6247EvAABUjVr32JcRI0bI8f+/UggAAOANNeWxL9d0JgrXhjNRAABUrnzXGd0xZ2OZm21+NLVvpZ2Rqujnt+1v5wEAAFS3mvTYF0IUAACoNS499uXHasVjXwAAALyp1j72BQAAwNtq5WNfAAAAaoJa/dgXAACA+owQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQBQj+W7zmjrwSLlu854uytArVMjQtTixYsVExMjp9OphIQEffLJJ1esX7Fihdq1ayen06m4uDitXbvWY7kxRjNnzlRkZKQCAwOVnJysAwcOeNQcP35c6enpCg4OVmhoqMaMGaNTp05Zyzdt2qRBgwYpMjJSQUFBio+P12uvvVZ5Ow0AXpa17bDumLNRw17M0R1zNipr22FvdwmoVbweorKysjRp0iRlZGRo+/bt6ty5s1JSUnTs2LFy67du3aq0tDSNGTNGO3bsUGpqqlJTU7V7926rZt68eVqwYIGWLFminJwcBQUFKSUlRWfPnrVq0tPTtWfPHq1fv16rV6/W5s2bNW7cOI/3ueWWW/TWW2/p888/1+jRozVixAitXr266gYDAKpJvuuMpq3cJbf54Xe3kaav3M0ZKeAaOIwxxpsdSEhIULdu3bRo0SJJktvtVnR0tB566CFNnTq1TP2QIUNUUlLiEWZuv/12xcfHa8mSJTLGKCoqSpMnT9aUKVMkSS6XS+Hh4Vq6dKmGDh2qffv2qUOHDtq2bZu6du0qSVq3bp0GDBigo0ePKioqqty+Dhw4UOHh4XrppZcqtG/FxcUKCQmRy+VScHDwNY0LAFSlrQeLNOzFnDLtb4y9XYmtbvBCj4Cao6Kf3149E3X+/Hnl5uYqOTnZavPx8VFycrKys7PLXSc7O9ujXpJSUlKs+ry8PBUUFHjUhISEKCEhwarJzs5WaGioFaAkKTk5WT4+PsrJKftH5RKXy6UmTZpcdvm5c+dUXFzs8QKAmig2LEg+Ds82X4dDMWENvdMhoBbyaogqKipSaWmpwsPDPdrDw8NVUFBQ7joFBQVXrL/082o1zZo181ju5+enJk2aXPZ9ly9frm3btmn06NGX3Z/MzEyFhIRYr+jo6MvWAoA3RYYEKnNwnHwdPyQpX4dDTw7upMiQQC/3DKiYmvClCD+vvXMt8sEHH2j06NF68cUX1bFjx8vWTZs2TZMmTbJ+Ly4uJkgBqLGGdGuh3m2a6lDRacWENSRAodbI2nbYmtPn45AyB8dpSLcW1d4Pr56JCgsLk6+vrwoLCz3aCwsLFRERUe46ERERV6y/9PNqNT+duH7x4kUdP368zPt++OGHuuuuu/Tss89qxIgRV9yfgIAABQcHe7wAoCaLDAlUYqsbCFCoNWrSlyK8GqL8/f3VpUsXbdiwwWpzu93asGGDEhMTy10nMTHRo16S1q9fb9XHxsYqIiLCo6a4uFg5OTlWTWJiok6cOKHc3FyrZuPGjXK73UpISLDaNm3apIEDB2ru3Lke39wDAADekVdUYgWoS0qN0aGi09XeF69fzps0aZJGjhyprl27qnv37po/f75KSkqsuUcjRoxQ8+bNlZmZKUmaMGGCkpKS9Mwzz2jgwIFatmyZPv30U73wwguSJIfDoYkTJ+qJJ55Q69atFRsbqxkzZigqKkqpqamSpPbt26t///4aO3aslixZogsXLmj8+PEaOnSo9c28Dz74QHfeeacmTJige++915or5e/vf8XJ5QAAoOpc+lLEj4OU174UYWqAhQsXmhYtWhh/f3/TvXt38/HHH1vLkpKSzMiRIz3qly9fbtq0aWP8/f1Nx44dzZo1azyWu91uM2PGDBMeHm4CAgJMv379zP79+z1qvvvuO5OWlmYaNWpkgoODzejRo83Jkyet5SNHjjSSyrySkpIqvF8ul8tIMi6Xq+KDAQAArmjZJ1+bm6auMS0fXW1umrrGLPvk60rdfkU/v71+n6i6jPtEAQBQNfJdZ6rsSxEV/fz2+uU8AACAaxUZEuj1L0R4/bEvAAAAtREhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAAGADIQoAAMAGQhQAAIANhCjUWPmuM9p6sEj5rjPe7goA2MLfsbqNBxCjRsradljTVu6S20g+DilzcJyGdGvh7W4BQIXxd6zu40wUapx81xnrD48kuY00feVu/k8OQK3B37H6gRBVC9X108N5RSXWH55LSo3RoaLT3ukQAFwj/o7VD1zOq2Xqw+nh2LAg+Tjk8QfI1+FQTFhD73UKAK4Bf8fqB85E1SL15fRwZEigMgfHydfhkPTDH54nB3dSZEigl3sGABXD37H6gTNRtciVTg/Xtf8wh3Rrod5tmupQ0WnFhDWsc/sHoO7j71jdR4iqRerb6eHIkED+6ACo1fg7VrdxOa8W4fQwAAA1B2eiahlODwMAUDMQomohTg8DAOB9XM4DAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAAAANhCiAAAAbCBEAQAA2ECIAgAAsIEQBQAAYAMhCgAAwAZCFAAAgA2EKAAAABsIUQAAADYQogAAAGwgRAEAANhAiAIAALCBEAUAsCXfdUZbDxYp33XG210BvMLP2x0AANQ+WdsOa9rKXXIbycchZQ6O05BuLbzdLaBacSYKAHBN8l1nrAAlSW4jTV+5mzNSqHcIUQCAa5JXVGIFqEtKjdGhotPe6RDgJYQoAMA1iQ0Lko/Ds83X4VBMWEPvdAjwEkIUAOCaRIYEKnNwnHwdPyQpX4dDTw7upMiQQC/3DKheTCwHAFyzId1aqHebpjpUdFoxYQ0JUKiXCFEAAFsiQwIJT6jXuJwHAABgg9dD1OLFixUTEyOn06mEhAR98sknV6xfsWKF2rVrJ6fTqbi4OK1du9ZjuTFGM2fOVGRkpAIDA5WcnKwDBw541Bw/flzp6ekKDg5WaGioxowZo1OnTlnLz549q1GjRikuLk5+fn5KTU2ttP0FAAB1g1dDVFZWliZNmqSMjAxt375dnTt3VkpKio4dO1Zu/datW5WWlqYxY8Zox44dSk1NVWpqqnbv3m3VzJs3TwsWLNCSJUuUk5OjoKAgpaSk6OzZs1ZNenq69uzZo/Xr12v16tXavHmzxo0bZy0vLS1VYGCgHn74YSUnJ1fdAAAAgFrLYYwxVy+rGgkJCerWrZsWLVokSXK73YqOjtZDDz2kqVOnlqkfMmSISkpKtHr1aqvt9ttvV3x8vJYsWSJjjKKiojR58mRNmTJFkuRyuRQeHq6lS5dq6NCh2rdvnzp06KBt27apa9eukqR169ZpwIABOnr0qKKiojzec9SoUTpx4oRWrVp1zftXXFyskJAQuVwuBQcHX/P6AACg+lX089trZ6LOnz+v3NxcjzM9Pj4+Sk5OVnZ2drnrZGdnlzkzlJKSYtXn5eWpoKDAoyYkJEQJCQlWTXZ2tkJDQ60AJUnJycny8fFRTk7Ode3TuXPnVFxc7PECAAB1k9dCVFFRkUpLSxUeHu7RHh4eroKCgnLXKSgouGL9pZ9Xq2nWrJnHcj8/PzVp0uSy71tRmZmZCgkJsV7R0dHXtT0AAFBzeX1ieV0ybdo0uVwu63XkyBFvdwkAAFQRr4WosLAw+fr6qrCw0KO9sLBQERER5a4TERFxxfpLP69W89OJ6xcvXtTx48cv+74VFRAQoODgYI8XAACom7wWovz9/dWlSxdt2LDBanO73dqwYYMSExPLXScxMdGjXpLWr19v1cfGxioiIsKjpri4WDk5OVZNYmKiTpw4odzcXKtm48aNcrvdSkhIqLT9AwAAdZtX71g+adIkjRw5Ul27dlX37t01f/58lZSUaPTo0ZKkESNGqHnz5srMzJQkTZgwQUlJSXrmmWc0cOBALVu2TJ9++qleeOEFSZLD4dDEiRP1xBNPqHXr1oqNjdWMGTMUFRVl3eupffv26t+/v8aOHaslS5bowoULGj9+vIYOHerxzby9e/fq/PnzOn78uE6ePKmdO3dKkuLj46ttfAAAQM3l1RA1ZMgQffvtt5o5c6YKCgoUHx+vdevWWRPDDx8+LB+f/z1Z1qNHD73++ut67LHHNH36dLVu3VqrVq1Sp06drJpHHnlEJSUlGjdunE6cOKGePXtq3bp1cjqdVs1rr72m8ePHq1+/fvLx8dG9996rBQsWePRtwIAB+vrrr63fb731Vkk/3MwTKE++64zyikoUGxbEozAAoB7w6n2i6jruE1V/ZG07rGkrd8ltJB+HlDk4TkO6tfB2twAANtT4+0QBdUW+64wVoCTJbaTpK3cr33XGux0DAFQpQhRwnfKKSqwAdUmpMTpUdNo7HQIAVAtCFHCdYsOC5OPwbPN1OBQT1tA7HQIAVAtCFHCdIkMClTk4Tr6OH5KUr8OhJwd3YnI5ANRxXv12HlBXDOnWQr3bNNWhotOKCWtIgKpB+NYkgKpCiAIqSWRIIB/SNQzfmgRQlbicB6BO4luTAKoaIQpAncS3JgFUNUIUgDqJb00CqGqEKAB1Et+aBFDVmFgOoM7iW5MAqhIhCkCdxrcmAVQVLucBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAIAt+a4z2nqwiEfpoN7iFgcAarx81xnlFZUoNiyI2xXUEDzcGSBEAajh+LCueS73cOfebZoSclGvcDkPQI11uQ9rLh95Fw93Bn5AiAJQY/FhXTPxcGfgB4QoADUWH9Y1Ew93Bn7AnCgANdalD+vpK3er1Bg+rGsQHu4MEKIA1HB8WNdcPNwZ9R0hCkCNx4c1gJqIOVFAPcWNEgHg+nAmCqiHuPcSAFw/zkQB9Qz3XgKAykGIAuoZ7r0EAJWDEAXUM9x7CQAqByEKqGe4USIAVA4mlgP1EPdeAoDrR4gC6inuvYTaKN91RnlFJYoNC+L4hdcRogAAtQK35kBNw5woAECNx605UBMRogAANR635kBNRIgCANR43JoDNREhCgBQ43FrDtRETCwHANQK3JoDNQ0hCgDKwVfpayZuzYGahBAFAD/BV+kBVARzogDgR/gqPYCKIkQBwI/wVXoAFUWIAoAf4av0ACqKEAUAP1Jbv0qf7zqjrQeLuOwIVCMmlgPAT9S2r9IzER7wDs5EAajT7J6hiQwJVGKrG2p8gGIiPOA9NSJELV68WDExMXI6nUpISNAnn3xyxfoVK1aoXbt2cjqdiouL09q1az2WG2M0c+ZMRUZGKjAwUMnJyTpw4IBHzfHjx5Wenq7g4GCFhoZqzJgxOnXqlEfN559/rl69esnpdCo6Olrz5s2rnB0GUC2yth3WHXM2atiLObpjzkZlbTvs7S5VOibCA97j9RCVlZWlSZMmKSMjQ9u3b1fnzp2VkpKiY8eOlVu/detWpaWlacyYMdqxY4dSU1OVmpqq3bt3WzXz5s3TggULtGTJEuXk5CgoKEgpKSk6e/asVZOenq49e/Zo/fr1Wr16tTZv3qxx48ZZy4uLi/WLX/xCLVu2VG5urp566inNmjVLL7zwQtUNBoBKU1/O0DARHvAehzHGXL2s6iQkJKhbt25atGiRJMntdis6OloPPfSQpk6dWqZ+yJAhKikp0erVq62222+/XfHx8VqyZImMMYqKitLkyZM1ZcoUSZLL5VJ4eLiWLl2qoUOHat++ferQoYO2bdumrl27SpLWrVunAQMG6OjRo4qKitJzzz2n//zP/1RBQYH8/f0lSVOnTtWqVav0xRdfVGjfiouLFRISIpfLpeDg4OsaJwDXZuvBIg17MadM+xtjb1diqxu80KOqk7XtsKav3K1SY6yJ8MyJAuyr6Oe3V89EnT9/Xrm5uUpOTrbafHx8lJycrOzs7HLXyc7O9qiXpJSUFKs+Ly9PBQUFHjUhISFKSEiwarKzsxUaGmoFKElKTk6Wj4+PcnJyrJrevXtbAerS++zfv1/ff/99uX07d+6ciouLPV4AvKM+naEZ0q2FPpraV2+MvV0fTe1LgAKqiVdDVFFRkUpLSxUeHu7RHh4eroKCgnLXKSgouGL9pZ9Xq2nWrJnHcj8/PzVp0sSjprxt/Pg9fiozM1MhISHWKzo6uvwdB1DlauutCuyqLRPhgbqEWxxUomnTpmnSpEnW78XFxQQpwItq260KANQuXg1RYWFh8vX1VWFhoUd7YWGhIiIiyl0nIiLiivWXfhYWFioyMtKjJj4+3qr56cT1ixcv6vjx4x7bKe99fvwePxUQEKCAgIDL7i+A6hcZEkh4AlAlvHo5z9/fX126dNGGDRusNrfbrQ0bNigxMbHcdRITEz3qJWn9+vVWfWxsrCIiIjxqiouLlZOTY9UkJibqxIkTys3NtWo2btwot9uthIQEq2bz5s26cOGCx/u0bdtWP/vZz65zzwEAQK1nvGzZsmUmICDALF261Ozdu9eMGzfOhIaGmoKCAmOMMcOHDzdTp0616rds2WL8/PzM008/bfbt22cyMjJMgwYNzK5du6yaOXPmmNDQUPPOO++Yzz//3AwaNMjExsaaM2fOWDX9+/c3t956q8nJyTEfffSRad26tUlLS7OWnzhxwoSHh5vhw4eb3bt3m2XLlpmGDRua559/vsL75nK5jCTjcrmuZ4gAAEA1qujnt9dDlDHGLFy40LRo0cL4+/ub7t27m48//thalpSUZEaOHOlRv3z5ctOmTRvj7+9vOnbsaNasWeOx3O12mxkzZpjw8HATEBBg+vXrZ/bv3+9R891335m0tDTTqFEjExwcbEaPHm1OnjzpUfPZZ5+Znj17moCAANO8eXMzZ86ca9ovQhQAALVPRT+/vX6fqLqM+0QBAFD71Ir7RAEAANRWhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACwgRAFAABgAw8grkKXbsFVXFzs5Z4AAICKuvS5fbVbaRKiqtDJkyclSdHR0V7uCQAAuFYnT55USEjIZZdzx/Iq5Ha79c0336hx48ZyOBy2t1NcXKzo6GgdOXKEO5//CONSFmNSFmNSFmNSFmNSVn0eE2OMTp48qaioKPn4XH7mE2eiqpCPj49uvPHGSttecHBwvTuQK4JxKYsxKYsxKYsxKYsxKau+jsmVzkBdwsRyAAAAGwhRAAAANhCiaoGAgABlZGQoICDA212pURiXshiTshiTshiTshiTshiTq2NiOQAAgA2ciQIAALCBEAUAAGADIQoAAMAGQhQAAIANhCgvWbx4sWJiYuR0OpWQkKBPPvnkivXz589X27ZtFRgYqOjoaP3ud7/T2bNnreWzZs2Sw+HweLVr166qd6NSXcuYXLhwQbNnz1arVq3kdDrVuXNnrVu37rq2WRNV9pjU9uNk8+bNuuuuuxQVFSWHw6FVq1ZddZ1NmzbptttuU0BAgG6++WYtXbq0TE1tPk6qYkzq23GSn5+vYcOGqU2bNvLx8dHEiRPLrVuxYoXatWsnp9OpuLg4rV27tvI7X0WqYkyWLl1a5jhxOp1VswM1FCHKC7KysjRp0iRlZGRo+/bt6ty5s1JSUnTs2LFy619//XVNnTpVGRkZ2rdvn/7yl78oKytL06dP96jr2LGj8vPzrddHH31UHbtTKa51TB577DE9//zzWrhwofbu3atf//rXuueee7Rjxw7b26xpqmJMpNp9nJSUlKhz585avHhxherz8vI0cOBA9e3bVzt37tTEiRP1wAMP6G9/+5tVU9uPk6oYE6l+HSfnzp1T06ZN9dhjj6lz587l1mzdulVpaWkaM2aMduzYodTUVKWmpmr37t2V2fUqUxVjIv1wN/MfHydff/11ZXW5djCodt27dze//e1vrd9LS0tNVFSUyczMLLf+t7/9rfn5z3/u0TZp0iRzxx13WL9nZGSYzp07V0l/q8O1jklkZKRZtGiRR9vgwYNNenq67W3WNFUxJrX9OPkxSebtt9++Ys0jjzxiOnbs6NE2ZMgQk5KSYv1e24+TH6usMalvx8mPJSUlmQkTJpRpv//++83AgQM92hISEsyDDz54nT2sfpU1Ji+//LIJCQmptH7VRpyJqmbnz59Xbm6ukpOTrTYfHx8lJycrOzu73HV69Oih3Nxc6xLDV199pbVr12rAgAEedQcOHFBUVJRuuukmpaen6/Dhw1W3I5XIzpicO3euzGnjwMBA6/+W7WyzJqmKMbmkth4ndmRnZ3uMoSSlpKRYY1jbjxM7rjYml9Sn46QiKjpu9c2pU6fUsmVLRUdHa9CgQdqzZ4+3u1StCFHVrKioSKWlpQoPD/doDw8PV0FBQbnrDBs2TLNnz1bPnj3VoEEDtWrVSn369PG4nJeQkKClS5dq3bp1eu6555SXl6devXrp5MmTVbo/lcHOmKSkpOiPf/yjDhw4ILfbrfXr12vlypXKz8+3vc2apCrGRKrdx4kdBQUF5Y5hcXGxzpw5U+uPEzuuNiZS/TtOKuJy41ZXj5OKaNu2rV566SW98847evXVV+V2u9WjRw8dPXrU212rNoSoWmDTpk168skn9d///d/avn27Vq5cqTVr1ujxxx+3an75y1/qV7/6lW655RalpKRo7dq1OnHihJYvX+7FnledP/3pT2rdurXatWsnf39/jR8/XqNHj5aPT/09pCsyJvXtOIE9HCeoiMTERI0YMULx8fFKSkrSypUr1bRpUz3//PPe7lq1qb+fOF4SFhYmX19fFRYWerQXFhYqIiKi3HVmzJih4cOH64EHHlBcXJzuuecePfnkk8rMzJTb7S53ndDQULVp00Zffvllpe9DZbMzJk2bNtWqVatUUlKir7/+Wl988YUaNWqkm266yfY2a5KqGJPy1KbjxI6IiIhyxzA4OFiBgYG1/jix42pjUp66fpxUxOXGra4eJ3Y0aNBAt956a706TghR1czf319dunTRhg0brDa3260NGzYoMTGx3HVOnz5d5gyLr6+vJMlc5tGHp06d0sGDBxUZGVlJPa86dsbkEqfTqebNm+vixYt66623NGjQoOveZk1QFWNSntp0nNiRmJjoMYaStH79emsMa/txYsfVxqQ8df04qQg741bflJaWateuXfXrOPH2zPb6aNmyZSYgIMAsXbrU7N2714wbN86EhoaagoICY4wxw4cPN1OnTrXqMzIyTOPGjc0bb7xhvvrqK/P++++bVq1amfvvv9+qmTx5stm0aZPJy8szW7ZsMcnJySYsLMwcO3as2vfPjmsdk48//ti89dZb5uDBg2bz5s3m5z//uYmNjTXff/99hbdZ01XFmNT24+TkyZNmx44dZseOHUaS+eMf/2h27Nhhvv76a2OMMVOnTjXDhw+36r/66ivTsGFD8/vf/97s27fPLF682Pj6+pp169ZZNbX9OKmKMalvx4kxxqrv0qWLGTZsmNmxY4fZs2ePtXzLli3Gz8/PPP3002bfvn0mIyPDNGjQwOzatata982uqhiTP/zhD+Zvf/ubOXjwoMnNzTVDhw41TqfTo6auI0R5ycKFC02LFi2Mv7+/6d69u/n444+tZUlJSWbkyJHW7xcuXDCzZs0yrVq1Mk6n00RHR5vf/OY3Hh+OQ4YMMZGRkcbf3980b97cDBkyxHz55ZfVuEfX71rGZNOmTaZ9+/YmICDA3HDDDWb48OHmX//61zVtszao7DGp7cfJBx98YCSVeV0ah5EjR5qkpKQy68THxxt/f39z0003mZdffrnMdmvzcVIVY1Ifj5Py6lu2bOlRs3z5ctOmTRvj7+9vOnbsaNasWVM9O1QJqmJMJk6caP13Ex4ebgYMGGC2b99efTtVAziMucz1IAAAAFwWc6IAAABsIEQBAADYQIgCAACwgRAFAABgAyEKAADABkIUAACADYQoAAAAGwhRAFCPbNq0SQ6HQydOnPB2V4BajxAFoEqMGjVKDodDc+bM8WhftWqVHA6H9bsxRi+++KISExMVHBysRo0aqWPHjpowYUKFH2R6+vRpTZs2Ta1atZLT6VTTpk2VlJSkd955x6qJiYnR/PnzK2XfqtqlsXM4HGrQoIFiY2P1yCOP6OzZs9e0nT59+mjixIkebT169FB+fr5CQkIqscdA/USIAlBlnE6n5s6dq++//77c5cYYDRs2TA8//LAGDBig999/X3v37tVf/vIXOZ1OPfHEExV6n1//+tdauXKlFi5cqC+++ELr1q3Tfffdp++++64yd6da9e/fX/n5+frqq6/07LPP6vnnn1dGRsZ1b9ff318REREeQRaATd596gyAumrkyJHmzjvvNO3atTO///3vrfa3337bXPrT88YbbxhJ5p133il3G263u0LvFRISYpYuXXrZ5UlJSWWeAXbJP/7xD9OzZ0/jdDrNjTfeaB566CFz6tQpa/n//b//13Tp0sU0atTIhIeHm7S0NFNYWGgtv/RMsnXr1pn4+HjjdDpN3759TWFhoVm7dq1p166dady4sUlLSzMlJSUV2p+RI0eaQYMGebQNHjzY3HrrrdbvRUVFZujQoSYqKsoEBgaaTp06mddff91jGz/d57y8PKu/P3725ptvvmk6dOhg/P39TcuWLc3TTz9doX4C9R1nogBUGV9fXz355JNauHChjh49Wmb5G2+8obZt2+ruu+8ud/2Kni2JiIjQ2rVrdfLkyXKXr1y5UjfeeKNmz56t/Px85efnS5IOHjyo/v37695779Xnn3+urKwsffTRRxo/fry17oULF/T444/rs88+06pVq3To0CGNGjWqzHvMmjVLixYt0tatW3XkyBHdf//9mj9/vl5//XWtWbNG77//vhYuXFih/fmp3bt3a+vWrfL397fazp49qy5dumjNmjXavXu3xo0bp+HDh+uTTz6RJP3pT39SYmKixo4da+1zdHR0mW3n5ubq/vvv19ChQ7Vr1y7NmjVLM2bM0NKlS231FahXvJ3iANRNPz6bcvvtt5v/+I//MMZ4nolq166dufvuuz3WmzBhggkKCjJBQUGmefPmFXqvDz/80Nx4442mQYMGpmvXrmbixInmo48+8qhp2bKlefbZZz3axowZY8aNG+fR9o9//MP4+PiYM2fOlPte27ZtM5LMyZMnjTH/eybq73//u1WTmZlpJJmDBw9abQ8++KBJSUmp0P6MHDnS+Pr6mqCgIBMQEGAkGR8fH/Pmm29ecb2BAweayZMnW78nJSWZCRMmeNT89EzUsGHDzL/927951Pz+9783HTp0qFBfgfqMM1EAqtzcuXP1yiuvaN++fVet/c///E/t3LlTM2fO1KlTpyq0/d69e+urr77Shg0bdN9992nPnj3q1auXHn/88Suu99lnn2np0qVq1KiR9UpJSZHb7VZeXp6kH87U3HXXXWrRooUaN26spKQkSdLhw4c9tnXLLbdY/w4PD1fDhg110003ebQdO3asQvsjSX379tXOnTuVk5OjkSNHavTo0br33nut5aWlpXr88ccVFxenJk2aqFGjRvrb3/5Wpl9Xs2/fPt1xxx0ebXfccYcOHDig0tLSa9oWUN8QogBUud69eyslJUXTpk3zaG/durX279/v0da0aVPdfPPNatas2TW9R4MGDdSrVy89+uijev/99zV79mw9/vjjOn/+/GXXOXXqlB588EHt3LnTen322Wc6cOCAWrVqpZKSEqWkpCg4OFivvfaatm3bprfffluSymy3QYMG1r8vfavuxxwOh9xud4X3JygoSDfffLM6d+6sl156STk5OfrLX/5iLX/qqaf0pz/9SY8++qg++OAD7dy5UykpKVfcXwCVy8/bHQBQP8yZM0fx8fFq27at1ZaWlqZhw4bpnXfe0aBBgyr1/Tp06KCLFy/q7Nmz8vf3l7+/f5kzK7fddpv27t2rm2++udxt7Nq1S999953mzJljzSf69NNPK7WfFeHj46Pp06dr0qRJGjZsmAIDA7VlyxYNGjRI//7v/y5Jcrvd+uc//6kOHTpY65W3zz/Vvn17bdmyxaNty5YtatOmjXx9fSt/Z4A6hDNRAKpFXFyc0tPTtWDBAqtt6NChuu+++zR06FDNnj1bOTk5OnTokD788ENlZWVV+EO8T58+ev7555Wbm6tDhw5p7dq1mj59uvr27avg4GBJP9wnavPmzfrXv/6loqIiSdKjjz6qrVu3avz48dq5c6cOHDigd955x5pY3qJFC/n7+2vhwoX66quv9O677171EmFV+dWvfiVfX18tXrxY0g9n8davX6+tW7dq3759evDBB1VYWOixTkxMjDWmRUVF5Z4Jmzx5sjZs2KDHH39c//znP/XKK69o0aJFmjJlSrXsF1CbEaIAVJvZs2d7fJA7HA5lZWVp/vz5Wrt2rfr166e2bdvqP/7jPxQdHa2PPvqoQttNSUnRK6+8ol/84hdq3769HnroIaWkpGj58uUe733o0CG1atVKTZs2lfTDPKYPP/xQ//znP9WrVy/deuutmjlzpqKioiT9cGlx6dKlWrFihTp06KA5c+bo6aefrsQRqTg/Pz+NHz9e8+bNU0lJiR577DHddtttSklJUZ8+fRQREaHU1FSPdaZMmSJfX1916NBBTZs2LXe+1G233ably5dr2bJl6tSpk2bOnKnZs2eX+w1EAJ4cxhjj7U4AAADUNpyJAgAAsIEQBaDG+/EtCH76+sc//uHt7l2Tw4cPX3F/rvUWBQC8h8t5AGq8Kz2IuHnz5goMDKzG3lyfixcv6tChQ5ddHhMTIz8/vjgN1AaEKAAAABu4nAcAAGADIQoAAMAGQhQAAIANhCgAAAAbCFEAAAA2EKIAAABsIEQBAADYQIgCAACw4f8B9zbTzMEebLkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_63.png" - } - }, + "metadata": {}, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4zklEQVR4nO3deVxWZf7/8fcNyCLK7QIIKIKiuOKSSz9zQUsjcyx1cp/UlmnTzGnqa7ZpOiM607ds1Mzp20gzTWU5bjOZa6mTWuOS5VYpgqDhQiaIIBpcvz8c7roDFRQ454bX8/G4Hw/vc8597s+5OHLeXOc65ziMMUYAAAA25GV1AQAAAJdDUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAFw3aZNmyaHw1GqZR0Oh6ZNm1ah9fTu3Vu9e/e27foAlB5BBahCkpKS5HA4XC8fHx81bNhQ48aN07Fjx6wuz3aio6Pd2is0NFQ9e/bUsmXLymX9ubm5mjZtmjZu3Fgu6wOqI4IKUAVNnz5df/vb3/Taa6+pf//+euuttxQfH6/z589XyPc9++yzysvLq5B1V7QOHTrob3/7m/72t7/piSee0LfffqshQ4botddeu+515+bm6oUXXiCoANfBx+oCAJS//v37q3PnzpKk+++/X8HBwZo9e7ZWrlypYcOGlfv3+fj4yMfHM3+dNGzYUL/61a9c78eMGaNmzZrp5Zdf1kMPPWRhZQAkelSAaqFnz56SpOTkZLfpX331le666y7Vq1dP/v7+6ty5s1auXOm2zMWLF/XCCy+oefPm8vf3V/369dWjRw+tW7fOtUxJY1Ty8/P1m9/8RiEhIapdu7buuOMOHT16tFht48aNU3R0dLHpJa1z0aJFuvnmmxUaGio/Pz+1bt1aCxYsKFNbXE1YWJhatWqllJSUKy538uRJ3XfffWrQoIH8/f3Vvn17vfnmm675qampCgkJkSS98MILrtNLFT0+B6hqPPNPIABlkpqaKkmqW7eua9q+ffvUvXt3NWzYUE899ZQCAwP13nvvadCgQfrHP/6hwYMHS7oUGBITE3X//fera9euys7O1o4dO7Rr1y7169fvst95//3366233tKoUaN000036aOPPtKAAQOuazsWLFigNm3a6I477pCPj4/++c9/6pFHHlFhYaHGjx9/XesucvHiRaWnp6t+/fqXXSYvL0+9e/fWoUOHNGHCBDVp0kTvv/++xo0bpzNnzuixxx5TSEiIFixYoIcffliDBw/WkCFDJEnt2rUrlzqBasMAqDIWLVpkJJn169ebU6dOmfT0dLNkyRITEhJi/Pz8THp6umvZW265xcTFxZnz58+7phUWFpqbbrrJNG/e3DWtffv2ZsCAAVf83qlTp5qf/jrZvXu3kWQeeeQRt+VGjRplJJmpU6e6po0dO9ZERUVddZ3GGJObm1tsuYSEBNO0aVO3afHx8SY+Pv6KNRtjTFRUlLn11lvNqVOnzKlTp8wXX3xhRowYYSSZRx999LLrmzNnjpFk3nrrLde0CxcumG7duplatWqZ7OxsY4wxp06dKra9AMqGUz9AFdS3b1+FhIQoMjJSd911lwIDA7Vy5Uo1atRIknT69Gl99NFHGjZsmM6ePavMzExlZmbqu+++U0JCgg4ePOi6SqhOnTrat2+fDh48WOrvX7VqlSRp4sSJbtMnTZp0XdsVEBDg+ndWVpYyMzMVHx+vw4cPKysr65rWuXbtWoWEhCgkJETt27fX+++/r7vvvluzZ8++7GdWrVqlsLAwjRw50jWtRo0amjhxonJycrRp06ZrqgVAcVUmqGzevFkDBw5URESEHA6Hli9fbovvO3DggO644w45nU4FBgaqS5cuSktLq9DagPnz52vdunVasmSJbr/9dmVmZsrPz881/9ChQzLG6LnnnnMdpIteU6dOlXRpDIZ06QqiM2fOKDY2VnFxcXryySf15ZdfXvH7jxw5Ii8vL8XExLhNb9GixXVt15YtW9S3b18FBgaqTp06CgkJ0dNPPy1J1xxUbrzxRq1bt07r16/X1q1blZmZqb/+9a9uoejnjhw5oubNm8vLy/1XaKtWrVzzAZSPKjNG5dy5c2rfvr3uvfde17lgq78vOTlZPXr00H333acXXnhBQUFB2rdvn/z9/Su8PlRvXbt2dV31M2jQIPXo0UOjRo3S119/rVq1aqmwsFCS9MQTTyghIaHEdTRr1kyS1KtXLyUnJ2vFihVau3at/u///k8vv/yyXnvtNd1///3XXevlbhRXUFDg9j45OVm33HKLWrZsqZdeekmRkZHy9fXVqlWr9PLLL7u2qayCg4PVt2/fa/osgIpXZYJK//791b9//8vOz8/P1zPPPKN33nlHZ86cUdu2bTV79uxrvtvk1b5Pkp555hndfvvt+sMf/uCa9vO/MIGK5u3trcTERPXp00fz5s3TU089paZNm0q6dLqiNAfpevXq6Z577tE999yjnJwc9erVS9OmTbtsUImKilJhYaGSk5PdelG+/vrrYsvWrVtXZ86cKTb9570S//znP5Wfn6+VK1eqcePGrukff/zxVesvb1FRUfryyy9VWFjo1qvy1VdfueZLlw9hAEqvypz6uZoJEyZo27Ztevfdd/Xll19q6NChuu2228p03r0sCgsL9cEHHyg2NlYJCQkKDQ3VjTfeWOGnpICS9O7dW127dtWcOXN0/vx5hYaGqnfv3lq4cKEyMjKKLX/q1CnXv7/77ju3ebVq1VKzZs2Un59/2e8rCvF/+tOf3KbPmTOn2LIxMTHKyspyO52UkZFR7O6w3t7ekiRjjGtaVlaWFi1adNk6Ksrtt9+u48ePa/Hixa5pP/zwg+bOnatatWopPj5eklSzZk1JKjGIASidKtOjciVpaWlatGiR0tLSFBERIelSl/fq1au1aNEizZw5s9y/8+TJk8rJydGsWbP0u9/9TrNnz9bq1as1ZMgQffzxx65fZEBlefLJJzV06FAlJSXpoYce0vz589WjRw/FxcXp17/+tZo2baoTJ05o27ZtOnr0qL744gtJUuvWrdW7d2916tRJ9erV044dO7RkyRJNmDDhst/VoUMHjRw5Uq+++qqysrJ00003acOGDTp06FCxZUeMGKHJkydr8ODBmjhxonJzc7VgwQLFxsZq165druVuvfVW+fr6auDAgXrwwQeVk5Oj119/XaGhoSWGrYr0wAMPaOHChRo3bpx27typ6OhoLVmyRFu2bNGcOXNUu3ZtSZcG/7Zu3VqLFy9WbGys6tWrp7Zt26pt27aVWi/g0ay+7KgiSDLLli1zvf/Xv/5lJJnAwEC3l4+Pjxk2bJgxxpgDBw4YSVd8TZ48uVTfZ4wxx44dM5LMyJEj3aYPHDjQjBgxoly3FyhSdHny9u3bi80rKCgwMTExJiYmxvzwww/GGGOSk5PNmDFjTFhYmKlRo4Zp2LCh+cUvfmGWLFni+tzvfvc707VrV1OnTh0TEBBgWrZsaX7/+9+bCxcuuJYp6VLivLw8M3HiRFO/fn0TGBhoBg4caNLT00u8XHft2rWmbdu2xtfX17Ro0cK89dZbJa5z5cqVpl27dsbf399ER0eb2bNnm7/85S9GkklJSXEtV5bLk6926fXl1nfixAlzzz33mODgYOPr62vi4uLMokWLin1269atplOnTsbX15dLlYFr4DDmJ/2oVYTD4dCyZcs0aNAgSdLixYs1evRo7du3z9V9XKRWrVoKCwvThQsXdPjw4Suut379+q47TV7p+yTpwoULCgwM1NSpU/Xss8+6pk+ePFmffPKJtmzZcu0bCABANVEtTv107NhRBQUFOnnypOtW4j/n6+urli1bltt3+vr6qkuXLsUGD37zzTeugXYAAODKqkxQycnJcTv/nZKSot27d6tevXqKjY3V6NGjNWbMGP3v//6vOnbsqFOnTmnDhg1q167dNd3W+0rfV3RFwpNPPqnhw4erV69e6tOnj1avXq1//vOfPEkVAIDSsvrcU3n5+OOPSxxXMnbsWGPMpdtbP//88yY6OtrUqFHDhIeHm8GDB5svv/yyQr6vyBtvvGGaNWtm/P39Tfv27c3y5cuvc0sBAKg+quQYFQAAUDVUm/uoAAAAz0NQAQAAtuXRg2kLCwv17bffqnbt2tyqGgAAD2GM0dmzZxUREVHs4Z4/59FB5dtvv1VkZKTVZQAAgGuQnp6uRo0aXXEZjw4qRbepTk9PV1BQkMXVAACA0sjOzlZkZKTrOH4lHh1Uik73BAUFEVQAAPAwpRm2wWBaAABgWwQVAABgWwQVAABgWx49RqW0CgoKdPHiRavLsFyNGjWKPT0aAAA7szSoREdH68iRI8WmP/LII5o/f/51r98Yo+PHj+vMmTPXva6qok6dOgoLC+O+MwAAj2BpUNm+fbsKCgpc7/fu3at+/fpp6NCh5bL+opASGhqqmjVrVuuDszFGubm5OnnypCQpPDzc4ooAALg6S4NKSEiI2/tZs2YpJiZG8fHx173ugoICV0ipX7/+da+vKggICJAknTx5UqGhoZwGAgDYnm3GqFy4cEFvvfWWHn/88cv2fOTn5ys/P9/1Pjs7+7LrKxqTUrNmzfIt1MMVtcfFixcJKgAA27PNVT/Lly/XmTNnNG7cuMsuk5iYKKfT6XqV5vb51fl0T0loDwCAJ7FNUHnjjTfUv39/RUREXHaZKVOmKCsry/VKT0+vxAoBAEBls8WpnyNHjmj9+vVaunTpFZfz8/OTn59fJVUFAACsZoselUWLFik0NFQDBgywuhTbSE9P17333quIiAj5+voqKipKjz32mL777jtJl8aYTJ48WXFxcQoMDFRERITGjBmjb7/91uLKAQBVRUZWnrYmZyojK8+yGiwPKoWFhVq0aJHGjh0rHx9bdPBY7vDhw+rcubMOHjyod955R4cOHdJrr72mDRs2qFu3bjp9+rRyc3O1a9cuPffcc9q1a5eWLl2qr7/+WnfccYfV5QMAqoDF29PUfdZHGvX6Z+o+6yMt3p5mSR2WJ4P169crLS1N9957r9Wl2Mb48ePl6+urtWvXui4pbty4sTp27KiYmBg988wzWrBggdatW+f2uXnz5qlr165KS0tT48aNrSgdAFAFZGTlacrSPSo0l94XGunppXvVKzZE4c6ASq3F8h6VW2+9VcYYxcbGWl3KFVVW99fp06e1Zs0aPfLII66QUiQsLEyjR4/W4sWLZYwp9tmsrCw5HA7VqVOnQmsEAFRtKZnnXCGlSIExSs3MrfRaLO9R8QSLt6e5kqWXQ0ocEqfhXSqmx+LgwYMyxqhVq1Ylzm/VqpW+//57nTp1SqGhoa7p58+f1+TJkzVy5EgFBQVVSG0AgOqhSXCgvBxyCyveDoeigyv/3mSW96jY3eW6vyq6Z6WkHpPLuXjxooYNGyZjjBYsWFCBVQEAqoNwZ4ASh8TJ+7/33vJ2ODRzSNtKP+0j0aNyVVfq/qqIH1izZs3kcDh04MABDR48uNj8AwcOqG7duq7HDxSFlCNHjuijjz6iNwUAUC6Gd2msXrEhSs3MVXRwTUtCikSPylUVdX/9VEV2f9WvX1/9+vXTq6++qrw8916b48eP6+9//7uGDx8uh8PhCikHDx7U+vXreaYRAKBchTsD1C2mvmUhRSKoXJUV3V/z5s1Tfn6+EhIStHnzZqWnp2v16tXq16+fGjZsqN///ve6ePGi7rrrLu3YsUN///vfVVBQoOPHj+v48eO6cOFChdUGAEBl4tRPKVR291fz5s21Y8cOTZ06VcOGDdPp06cVFhamQYMGaerUqapXr55SU1O1cuVKSVKHDh3cPv/xxx+rd+/eFVojAACVgaBSSuHOgErt+oqKilJSUtJl50dHR5dpwC0AAJ6IUz8AAMC2CCoAAMC2CCoAAMC2CCoAAMC2qnxQYcCpO9oDAOBJqmxQqVGjhiQpN7fyH6BkZ0XtUdQ+AFBRKuthrqjaquzlyd7e3qpTp45OnjwpSapZs6YcDsdVPlV1GWOUm5urkydPqk6dOvL29ra6JABVWGU+zBVVW5UNKpIUFhYmSa6wAqlOnTqudgGAinC5h7n2ig2x9Fbs8ExVOqg4HA6Fh4crNDRUFy9etLocy9WoUYOeFAAVrrIf5oqqrUoHlSLe3t4coAGgkhQ9zPWnYaUiH+aKqq3KDqYFAFjDioe5ouqqFj0qAIDKVdkPc0XVRVABAFSIyn6YK6omTv0AAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbsjyoHDt2TL/61a9Uv359BQQEKC4uTjt27LC6LAAAYAM+Vn75999/r+7du6tPnz768MMPFRISooMHD6pu3bpWlgUAAGzC0qAye/ZsRUZGatGiRa5pTZo0sbAiAABgJ5ae+lm5cqU6d+6soUOHKjQ0VB07dtTrr79+2eXz8/OVnZ3t9gIAAFWXpUHl8OHDWrBggZo3b641a9bo4Ycf1sSJE/Xmm2+WuHxiYqKcTqfrFRkZWckVAwCAyuQwxhirvtzX11edO3fW1q1bXdMmTpyo7du3a9u2bcWWz8/PV35+vut9dna2IiMjlZWVpaCgoEqpGQAAXJ/s7Gw5nc5SHb8t7VEJDw9X69at3aa1atVKaWlpJS7v5+enoKAgtxcAAKi6LA0q3bt319dff+027ZtvvlFUVJRFFQEAADuxNKj85je/0aeffqqZM2fq0KFDevvtt/XnP/9Z48ePt7IsAABgE5YGlS5dumjZsmV655131LZtW82YMUNz5szR6NGjrSwLAADYhKWDaa9XWQbjAAAAe/CYwbQAAABXQlABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVABAAC2RVC5jIysPG1NzlRGVp7VpVRr/BwAoHrzsboAO1q8PU1Tlu5RoZG8HFLikDgN79LY6rKqHX4OAAB6VH4mIyvPdXCUpEIjPb10L3/RVzJ+DgAAiaBSTErmOdfBsUiBMUrNzLWmoGqKnwMAQCKoFNMkOFBeDvdp3g6HooNrWlNQNcXPAQAgEVSKCXcGKHFInLwdl46S3g6HZg5pq3BngMWVVS/8HAAAEk9PvqyMrDylZuYqOrgmB0cL8XMAgKqnLMdvrvq5jHBnAAdGG+DnAADVG6d+AACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACAbRFUAACoRBlZedqanKmMrDyrS/EIPlYXAABAdbF4e5qmLN2jQiN5OaTEIXEa3qWx1WXZGj0qAABUgoysPFdIkaRCIz29dC89K1dBUAEAoBKkZJ5zhZQiBcYoNTPXmoI8BEEFAIBK0CQ4UF4O92neDoeig2taU5CHsDSoTJs2TQ6Hw+3VsmVLK0sCAKBChDsDlDgkTt6OS2nF2+HQzCFtFe4MsLgye7N8MG2bNm20fv1613sfH8tLAgCgQgzv0li9YkOUmpmr6OCahJRSsDwV+Pj4KCwszOoyAACoFOHOAAJKGVg+RuXgwYOKiIhQ06ZNNXr0aKWlpV122fz8fGVnZ7u9AABA1WVpULnxxhuVlJSk1atXa8GCBUpJSVHPnj119uzZEpdPTEyU0+l0vSIjIyu5YgAAUJkcxhhz9cUqx5kzZxQVFaWXXnpJ9913X7H5+fn5ys/Pd73Pzs5WZGSksrKyFBQUVJmlAgCAa5SdnS2n01mq47flY1R+qk6dOoqNjdWhQ4dKnO/n5yc/P79KrgoAAFjF8jEqP5WTk6Pk5GSFh4dbXQoAALABS4PKE088oU2bNik1NVVbt27V4MGD5e3trZEjR1pZFgAAsAlLT/0cPXpUI0eO1HfffaeQkBD16NFDn376qUJCQqwsCwAA2ISlQeXdd9+18usBAIDN2WqMCgAAwE8RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAA8AAZWXnampypjKw8q0upVD5WFwAAAK5s8fY0TVm6R4VG8nJIiUPiNLxLY6vLqhT0qAAAYGMZWXmukCJJhUZ6euneatOzQlABAMDGUjLPuUJKkQJjlJqZa01BlYygAgCAjTUJDpSXw32at8Oh6OCa1hRUyQgqAADYWLgzQIlD4uTtuJRWvB0OzRzSVuHOAIsrqxwMpq2mMrLylJJ5Tk2CA6vNzg4Anmp4l8bqFRui1MxcRQfXrFa/t23TozJr1iw5HA5NmjTJ6lKqvMXb09R91kca9fpn6j7rIy3enmZ1SQCAqwh3BqhbTP1qFVIkmwSV7du3a+HChWrXrp3VpVR51X30OADAs1geVHJycjR69Gi9/vrrqlu3rtXlVHnVffQ4AMCzWB5Uxo8frwEDBqhv375XXTY/P1/Z2dluL5RNdR89DgDwLJYGlXfffVe7du1SYmJiqZZPTEyU0+l0vSIjIyu4wqqnuo8eBwB4Focxxlx9sfKXnp6uzp07a926da6xKb1791aHDh00Z86cEj+Tn5+v/Px81/vs7GxFRkYqKytLQUFBlVF2lZGRlVctR48DAKyXnZ0tp9NZquO3ZUFl+fLlGjx4sLy9vV3TCgoK5HA45OXlpfz8fLd5JSnLhlYWLvsFAODKynL8tuw+Krfccov27NnjNu2ee+5Ry5YtNXny5KuGFDuqzg+NAgCgIlgWVGrXrq22bdu6TQsMDFT9+vWLTfcEl7vst1dsCD0rAABcI8uv+qkquOwXAIDyZ6tb6G/cuNHqEq5Z0WW/Pw0rXPYLAMD1oUelnHDZLwAA5c9WPSqerjo/NAoAgIpAj0oFMLLkim8AAKqca+pROXr0qOrUqaNatWq5Tb948aK2bdumXr16lUtxnobLkwEAKF9l6lHJyMhQ165dFRUVpTp16mjMmDHKyclxzT99+rT69OlT7kV6Ap5KDABA+StTUHnqqafk5eWlzz77TKtXr9b+/fvVp08fff/9965lLLrRreW4PBkAgPJXpqCyfv16/elPf1Lnzp3Vt29fbdmyReHh4br55pt1+vRpSZLD4bjKWqomnkoMAED5K1NQycrKUt26dV3v/fz8tHTpUkVHR6tPnz46efJkuRfoKbg8GQCA8lemwbRNmzbVl19+qebNm/+4Ah8fvf/++xo6dKh+8YtflHuBnoTLkwEAKF9l6lHp37+//vznPxebXhRWOnToUF51eaxwZ4C6xdQnpAAAUA4cpgyjX3/44Qfl5ua6HsmcmZkpSQoODnbNP3bsmKKioiqg1OLK8phoAABgD2U5fpepR8XHx0eFhYUaP368goOD1aBBAzVo0EDBwcGaMGGCcnJyKi2kAACAqq9MY1ROnz6tbt266dixYxo9erRatWolSdq/f7+SkpK0YcMGbd261W3ALQAAwLUqU1CZPn26fH19lZycrAYNGhSbd+utt2r69Ol6+eWXy7VIAABQPZXp1M/y5cv14osvFgspkhQWFqY//OEPWrZsWbkVBwAAqrcy30K/TZs2l53ftm1bHT9+/LqLAgAAkMoYVIKDg5WamnrZ+SkpKapXr9711gQAACCpjEElISFBzzzzjC5cuFBsXn5+vp577jnddttt5VYcAACo3sp0H5WjR4+qc+fO8vPz0/jx49WyZUsZY3TgwAG9+uqrys/P144dOxQZGVmRNbtwHxUAADxPWY7fZbrqp1GjRtq2bZseeeQRTZkyxfWkZIfDoX79+mnevHmVFlIAAEDVV6agIklNmjTRhx9+qO+//14HDx6UJDVr1oyxKQAAoNyVOagUqVu3rrp27VqetQAAALgp02BaAACAykRQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtmVpUFmwYIHatWunoKAgBQUFqVu3bvrwww+tLAkAANiIpUGlUaNGmjVrlnbu3KkdO3bo5ptv1p133ql9+/ZZWRYAALAJhzHGWF3ET9WrV09//OMfdd9991112ezsbDmdTmVlZSkoKKgSqgM8X0ZWnlIyz6lJcKDCnQFWlwOgGirL8dunkmq6qoKCAr3//vs6d+6cunXrVuIy+fn5ys/Pd73Pzs6urPKAKmHx9jRNWbpHhUbyckiJQ+I0vEtjq8sCgMuyfDDtnj17VKtWLfn5+emhhx7SsmXL1Lp16xKXTUxMlNPpdL0iIyMruVrAc2Vk5blCiiQVGunppXuVkZVnbWEAcAWWB5UWLVpo9+7d+uyzz/Twww9r7Nix2r9/f4nLTpkyRVlZWa5Xenp6JVcLeK6UzHOukFKkwBilZuZaUxAAlILlp358fX3VrFkzSVKnTp20fft2vfLKK1q4cGGxZf38/OTn51fZJeInGN/guZoEB8rLIbew4u1wKDq4pnVFAcBVWN6j8nOFhYVu41BgH4u3p6n7rI806vXP1H3WR1q8Pc3qklAG4c4AJQ6Jk7fDIelSSJk5pC2BE4CtWdqjMmXKFPXv31+NGzfW2bNn9fbbb2vjxo1as2aNlWWhBJcb39ArNoQDnQcZ3qWxesWGKDUzV9HBNfnZAbA9S4PKyZMnNWbMGGVkZMjpdKpdu3Zas2aN+vXrZ2VZKMGVxjdwsPMs4c4AfmYAPIalQeWNN96w8utRBoxvAABYwXZjVGBPjG8AAFjB8qt+4DkY3wAAqGwEFZQJ4xsAAJWJUz8AAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2LA0qiYmJ6tKli2rXrq3Q0FANGjRIX3/9tZUlAQAAG7E0qGzatEnjx4/Xp59+qnXr1unixYu69dZbde7cOSvLAgAANuEwxhiriyhy6tQphYaGatOmTerVq9dVl8/OzpbT6VRWVpaCgoIqoUIAAHC9ynL89qmkmkolKytLklSvXr0S5+fn5ys/P9/1Pjs7u1LqAgAA1rDNYNrCwkJNmjRJ3bt3V9u2bUtcJjExUU6n0/WKjIys5CoBAEBlss2pn4cfflgffvihPvnkEzVq1KjEZUrqUYmMjOTUDwAAHsTjTv1MmDBB//rXv7R58+bLhhRJ8vPzk5+fXyVWBgAArGRpUDHG6NFHH9WyZcu0ceNGNWnSxMpyAACAzVgaVMaPH6+3335bK1asUO3atXX8+HFJktPpVEBAgJWlAQAAG7B0jIrD4Shx+qJFizRu3Lirfp7LkwEA8DweM0bFJuN4AQCATdnm8mQAAICfI6gAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAAADbIqgAsKWMrDxtTc5URlae1aUAsJClT08GgJIs3p6mKUv3qNBIXg4pcUichndpbHVZACxAjwoAW8nIynOFFEkqNNLTS/fSswJUUwQVALaSknnOFVKKFBij1MxcawpClcdpRnvj1A8AW2kSHCgvh9zCirfDoejgmtYVhSqL04z2R48KAFsJdwYocUicvB0OSZdCyswhbRXuDLC4MlQ1nGb0DPSoALCd4V0aq1dsiFIzcxUdXJOQggpxpdOM7HP2QVABYEvhzgAOFqhQnGb0DJz6AQBUS5xm9Az0qAAAqi1OM9ofQQUAUK1xmtHeOPUDAABKZId7zNCjAgAAirHLPWboUQEAAG7sdI8ZggoAAHBjp0dZEFQAAICbonvM/JRV95ghqAAAADd2uscMg2kBAEAxdrnHDEEFAACUyA73mOHUDwAAsC2CCgAAsC2CCgAAsC2CCiqFHW7DDADwPAymRYWzy22YAQCehx4VVCg73YYZAOyAHuayoUcFFepKt2G2+pI3AKhs9DCXHT0qqFB2ug0zAFiJHuZrQ1BBhbLTbZgBwEp2etCfJ+HUDyqcXW7DDABWKuph/mlYoYf56iztUdm8ebMGDhyoiIgIORwOLV++3MpyUIHCnQHqFlOfkIIKx0BF2BU9zNfG0h6Vc+fOqX379rr33ns1ZMgQK0sBPE5GVp5SMs+pSXAgv+j+i4GKsDt6mMvO0qDSv39/9e/f38oSAI/EAbm4yw1U7BUbwsEAtmKHB/15Eo8aTJufn6/s7Gy3F1DdcOVAyRioCFRNHhVUEhMT5XQ6Xa/IyEirSwIqHQfkknEpPFA1eVRQmTJlirKyslyv9PR0q0sCKh0H5JIxUBGomjzq8mQ/Pz/5+flZXQZgqaID8tNL96rAGA7IP8FARaDq8aigAuASDsiXx0BFoGqxNKjk5OTo0KFDrvcpKSnavXu36tWrp8aNq/cVDMDVcEAGUB1YGlR27NihPn36uN4//vjjkqSxY8cqKSnJoqoAAIBdWBpUevfuLWPM1RcEAADVkkdd9QMAAKoXggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggoAALAtggrwMxlZedqanKmMrDyrSwHKFfs2PJGP1QUAdrJ4e5qmLN2jQiN5OaTEIXEa3qWx1WUB1419G56KHhXgvzKy8ly/yCWp0EhPL93LX5/weOzb8GQEFeC/UjLPuX6RFykwRqmZudYUBJQT9m14MoIK8F9NggPl5XCf5u1wKDq4pjUFAeWEfRuejKAC/Fe4M0CJQ+Lk7bj0G93b4dDMIW0V7gywuDLg+rBvw5M5jDHm6ovZU3Z2tpxOp7KyshQUFGR1OagiMrLylJqZq+jgmvwiR5XCvg27KMvxm6t+gJ8JdwbwSxxVEvs2PBGnfgAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVAAAgG159LN+ip6nmJ2dbXElAACgtIqO26V5LrJHB5WzZ89KkiIjIy2uBAAAlNXZs2fldDqvuIzDlCbO2FRhYaG+/fZb1a5dWw6Hw+pyKkV2drYiIyOVnp5+1UdjV3W0xY9oix/RFj+iLX5EW/zIDm1hjNHZs2cVEREhL68rj0Lx6B4VLy8vNWrUyOoyLBEUFFTt/7MVoS1+RFv8iLb4EW3xI9riR1a3xdV6UoowmBYAANgWQQUAANgWQcXD+Pn5aerUqfLz87O6FMvRFj+iLX5EW/yItvgRbfEjT2sLjx5MCwAAqjZ6VAAAgG0RVAAAgG0RVAAAgG0RVAAAgG0RVGxg/vz5io6Olr+/v2688Ub95z//ueLyc+bMUYsWLRQQEKDIyEj95je/0fnz513zp02bJofD4fZq2bJlRW9GuShLW1y8eFHTp09XTEyM/P391b59e61evfq61mkn5d0WnrhfbN68WQMHDlRERIQcDoeWL19+1c9s3LhRN9xwg/z8/NSsWTMlJSUVW8YT94mKaAtP3CeksrdFRkaGRo0apdjYWHl5eWnSpEklLvf++++rZcuW8vf3V1xcnFatWlX+xZezimiLpKSkYvuFv79/xWxAKRBULLZ48WI9/vjjmjp1qnbt2qX27dsrISFBJ0+eLHH5t99+W0899ZSmTp2qAwcO6I033tDixYv19NNPuy3Xpk0bZWRkuF6ffPJJZWzOdSlrWzz77LNauHCh5s6dq/379+uhhx7S4MGD9fnnn1/zOu2iItpC8rz94ty5c2rfvr3mz59fquVTUlI0YMAA9enTR7t379akSZN0//33a82aNa5lPHWfqIi2kDxvn5DK3hb5+fkKCQnRs88+q/bt25e4zNatWzVy5Ejdd999+vzzzzVo0CANGjRIe/fuLc/Sy11FtIV06a61P90vjhw5Ul4ll52Bpbp27WrGjx/vel9QUGAiIiJMYmJiicuPHz/e3HzzzW7THn/8cdO9e3fX+6lTp5r27dtXSL0VqaxtER4ebubNm+c2bciQIWb06NHXvE67qIi28NT9oogks2zZsisu8z//8z+mTZs2btOGDx9uEhISXO89dZ/4qfJqC0/fJ4wpXVv8VHx8vHnssceKTR82bJgZMGCA27Qbb7zRPPjgg9dZYeUpr7ZYtGiRcTqd5VbX9aJHxUIXLlzQzp071bdvX9c0Ly8v9e3bV9u2bSvxMzfddJN27tzp6qo+fPiwVq1apdtvv91tuYMHDyoiIkJNmzbV6NGjlZaWVnEbUg6upS3y8/OLdUcGBAS4/iK8lnXaQUW0RRFP2y/Katu2bW7tJkkJCQmudvPUfeJaXK0tilT1faK0Stte1UVOTo6ioqIUGRmpO++8U/v27bOsFoKKhTIzM1VQUKAGDRq4TW/QoIGOHz9e4mdGjRql6dOnq0ePHqpRo4ZiYmLUu3dvt1M/N954o5KSkrR69WotWLBAKSkp6tmzp86ePVuh23M9rqUtEhIS9NJLL+ngwYMqLCzUunXrtHTpUmVkZFzzOu2gItpC8sz9oqyOHz9eYrtlZ2crLy/PY/eJa3G1tpCqxz5RWpdrr6q2X5RGixYt9Je//EUrVqzQW2+9pcLCQt100006evSoJfUQVDzMxo0bNXPmTL366qvatWuXli5dqg8++EAzZsxwLdO/f38NHTpU7dq1U0JCglatWqUzZ87ovffes7Dy8vfKK6+oefPmatmypXx9fTVhwgTdc889V31keFVUmraoLvsFSo99AiXp1q2bxowZow4dOig+Pl5Lly5VSEiIFi5caEk91e83uo0EBwfL29tbJ06ccJt+4sQJhYWFlfiZ5557Tnfffbfuv/9+xcXFafDgwZo5c6YSExNVWFhY4mfq1Kmj2NhYHTp0qNy3obxcS1uEhIRo+fLlOnfunI4cOaKvvvpKtWrVUtOmTa95nXZQEW1REk/YL8oqLCysxHYLCgpSQECAx+4T1+JqbVGSqrhPlNbl2quq7RfXokaNGurYsaNl+wVBxUK+vr7q1KmTNmzY4JpWWFioDRs2qFu3biV+Jjc3t1iPgbe3tyTJXOaxTTk5OUpOTlZ4eHg5VV7+rqUtivj7+6thw4b64Ycf9I9//EN33nnnda/TShXRFiXxhP2irLp16+bWbpK0bt06V7t56j5xLa7WFiWpivtEaV1Le1UXBQUF2rNnj3X7hdWjeau7d9991/j5+ZmkpCSzf/9+88ADD5g6deqY48ePG2OMufvuu81TTz3lWn7q1Kmmdu3a5p133jGHDx82a9euNTExMWbYsGGuZX7729+ajRs3mpSUFLNlyxbTt29fExwcbE6ePFnp21cWZW2LTz/91PzjH/8wycnJZvPmzebmm282TZo0Md9//32p12lXFdEWnrhfnD171nz++efm888/N5LMSy+9ZD7//HNz5MgRY4wxTz31lLn77rtdyx8+fNjUrFnTPPnkk+bAgQNm/vz5xtvb26xevdq1jKfuExXRFp64TxhT9rYwxriW79Spkxk1apT5/PPPzb59+1zzt2zZYnx8fMyLL75oDhw4YKZOnWpq1Khh9uzZU6nbVlYV0RYvvPCCWbNmjUlOTjY7d+40I0aMMP7+/m7LVCaCig3MnTvXNG7c2Pj6+pquXbuaTz/91DUvPj7ejB071vX+4sWLZtq0aSYmJsb4+/ubyMhI88gjj7gdkIYPH27Cw8ONr6+vadiwoRk+fLg5dOhQJW7RtStLW2zcuNG0atXK+Pn5mfr165u7777bHDt2rEzrtLPybgtP3C8+/vhjI6nYq2jbx44da+Lj44t9pkOHDsbX19c0bdrULFq0qNh6PXGfqIi28MR9wphra4uSlo+KinJb5r333jOxsbHG19fXtGnTxnzwwQeVs0HXoSLaYtKkSa7/Hw0aNDC333672bVrV+Vt1M84jLnM+QIAAACLMUYFAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADYFkEFAADYFkEFAMrZxo0b5XA4dObMGatLATweQQXwYOPGjZPD4dCsWbPcpi9fvlwOh8P13hij119/Xd26dVNQUJBq1aqlNm3a6LHHHiv1g8Zyc3M1ZcoUxcTEyN/fXyEhIYqPj9eKFStcy0RHR2vOnDnlsm0VrajtHA6HatSooSZNmuh//ud/dP78+TKtp3fv3po0aZLbtJtuukkZGRlyOp3lWDFQPRFUAA/n7++v2bNn6/vvvy9xvjFGo0aN0sSJE3X77bdr7dq12r9/v9544w35+/vrd7/7Xam+56GHHtLSpUs1d+5cffXVV1q9erXuuusufffdd+W5OZXqtttuU0ZGhg4fPqyXX35ZCxcu1NSpU697vb6+vgoLC3MLiwCukWU37wdw3caOHWt+8YtfmJYtW5onn3zSNX3ZsmWm6L/3O++8YySZFStWlLiOwsLCUn2X0+k0SUlJl50fHx9f7PkhRf7973+bHj16GH9/f9OoUSPz6KOPmpycHNf8v/71r6ZTp06mVq1apkGDBmbkyJHmxIkTrvlFzzNZvXq16dChg/H39zd9+vQxJ06cMKtWrTItW7Y0tWvXNiNHjjTnzp0r1faMHTvW3HnnnW7ThgwZYjp27Oh6n5mZaUaMGGEiIiJMQECAadu2rXn77bfd1vHzbU5JSXHV+9NncC1ZssS0bt3a+Pr6mqioKPPiiy+Wqk6guqNHBfBw3t7emjlzpubOnaujR48Wm//OO++oRYsWuuOOO0r8fGn/6g8LC9OqVat09uzZEucvXbpUjRo10vTp05WRkaGMjAxJUnJysm677Tb98pe/1JdffqnFixfrk08+0YQJE1yfvXjxombMmKEvvvhCy5cvV2pqqsaNG1fsO6ZNm6Z58+Zp69atSk9P17BhwzRnzhy9/fbb+uCDD7R27VrNnTu3VNvzc3v37tXWrVvl6+vrmnb+/Hl16tRJH3zwgfbu3asHHnhAd999t/7zn/9Ikl555RV169ZNv/71r13bHBkZWWzdO3fu1LBhwzRixAjt2bNH06ZN03PPPaekpKRrqhWoVqxOSgCu3U97Bf7f//t/5t577zXGuPeotGzZ0txxxx1un3vsscdMYGCgCQwMNA0bNizVd23atMk0atTI1KhRw3Tu3NlMmjTJfPLJJ27LREVFmZdfftlt2n333WceeOABt2n//ve/jZeXl8nLyyvxu7Zv324kmbNnzxpjfuxRWb9+vWuZxMREI8kkJye7pj344IMmISGhVNszduxY4+3tbQIDA42fn5+RZLy8vMySJUuu+LkBAwaY3/72t6738fHx5rHHHnNb5uc9KqNGjTL9+vVzW+bJJ580rVu3LlWtQHVGjwpQRcyePVtvvvmmDhw4cNVln3nmGe3evVvPP/+8cnJySrX+Xr166fDhw9qwYYPuuusu7du3Tz179tSMGTOu+LkvvvhCSUlJqlWrluuVkJCgwsJCpaSkSLrU4zBw4EA1btxYtWvXVnx8vCQpLS3NbV3t2rVz/btBgwaqWbOmmjZt6jbt5MmTpdoeSerTp492796tzz77TGPHjtU999yjX/7yl675BQUFmjFjhuLi4lSvXj3VqlVLa9asKVbX1Rw4cEDdu3d3m9a9e3cdPHhQBQUFZVoXUN0QVIAqolevXkpISNCUKVPcpjdv3lxff/2127SQkBA1a9ZMoaGhZfqOGjVqqGfPnpo8ebLWrl2r6dOna8aMGbpw4cJlP5OTk6MHH3xQu3fvdr2++OILHTx4UDExMTp37pwSEhIUFBSkv//979q+fbuWLVsmScXWW6NGDde/i67W+SmHw6HCwsJSb09gYKCaNWum9u3b6y9/+Ys+++wzvfHGG675f/zjH/XKK69o8uTJ+vjjj7V7924lJCRccXsBlC8fqwsAUH5mzZqlDh06qEWLFq5pI0eO1KhRo7RixQrdeeed5fp9rVu31g8//KDz58/L19dXvr6+xXoIbrjhBu3fv1/NmjUrcR179uzRd999p1mzZrnGd+zYsaNc6ywNLy8vPf3003r88cc1atQoBQQEaMuWLbrzzjv1q1/9SpJUWFiob775Rq1bt3Z9rqRt/rlWrVppy5YtbtO2bNmi2NhYeXt7l//GAFUIPSpAFRIXF6fRo0frT3/6k2vaiBEjdNddd2nEiBGaPn26PvvsM6WmpmrTpk1avHhxqQ+UvXv31sKFC7Vz506lpqZq1apVevrpp9WnTx8FBQVJunQflc2bN+vYsWPKzMyUJE2ePFlbt27VhAkTtHv3bh08eFArVqxwDaZt3LixfH19NXfuXB0+fFgrV6686umkijJ06FB5e3tr/vz5ki71Rq1bt05bt27VgQMH9OCDD+rEiRNun4mOjna1aWZmZok9Or/97W+1YcMGzZgxQ998843efPNNzZs3T0888USlbBfgyQgqQBUzffp0t4Olw+HQ4sWLNWfOHK1atUq33HKLWrRooXvvvVeRkZH65JNPSrXehIQEvfnmm7r11lvVqlUrPfroo0pISNB7773n9t2pqamKiYlRSEiIpEvjSjZt2qRvvvlGPXv2VMeOHfX8888rIiJC0qXTUElJSXr//ffVunVrzZo1Sy+++GI5tkjp+fj4aMKECfrDH/6gc+fO6dlnn9UNN9yghIQE9e7dW2FhYRo0aJDbZ5544gl5e3urdevWCgkJKXH8yg033KD33ntP7777rtq2bavnn39e06dPL/HKJgDuHMYYY3URAAAAJaFHBQAA2BZBBYAkuV0+/PPXv//9b6vLK5O0tLQrbk9ZLy8GYB1O/QCQpCs+nLBhw4YKCAioxGquzw8//KDU1NTLzo+OjpaPDxc9Ap6AoAIAAGyLUz8AAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2/j8YW1KBmzskqQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAN/RJREFUeJzt3Xl8FdX9//H3TSALgYQlgQQICQTZQ1C2L2tA0YgWhVRZy6ZWraBQqmVxCWBLoPVbaQGRr7XE1i1K2VopgihQQS2LKCAqhIRFwxKRG7IQMDm/P2juz0sCJCHJzM19PR+P+3hwZ86d+5njyH1z5syMwxhjBAAAYEM+VhcAAABwJQQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVAABgWwQVANdt9uzZcjgcZWrrcDg0e/bsKq1nwIABGjBggG23B6DsCCpADZKSkiKHw+F61apVS82aNdOECRP0zTffWF2e7URHR7v1V+PGjdWvXz+tWrWqUrafl5en2bNna/PmzZWyPcAbEVSAGmju3Ln629/+phdffFGDBw/Wq6++qvj4eJ0/f75Kvu+pp55Sfn5+lWy7qnXp0kV/+9vf9Le//U2PP/64vv32WyUmJurFF1+87m3n5eVpzpw5BBXgOtSyugAAlW/w4MHq1q2bJOmBBx5QaGioFixYoLVr12r48OGV/n21atVSrVqe+ddJs2bN9LOf/cz1fty4cWrdurWef/55PfzwwxZWBkBiRAXwCv369ZMkpaWluS3/8ssvdc8996hhw4YKCAhQt27dtHbtWrc2Fy9e1Jw5c3TDDTcoICBAjRo1Ut++fbVx40ZXm9LmqBQUFOiXv/ylwsLCVK9ePd111106fvx4idomTJig6OjoEstL2+by5ct18803q3HjxvL391eHDh20dOnScvXFtYSHh6t9+/ZKT0+/artTp07p/vvvV5MmTRQQEKC4uDi98sorrvUZGRkKCwuTJM2ZM8d1eqmq5+cANY1n/hMIQLlkZGRIkho0aOBatn//fvXp00fNmjXTjBkzFBQUpLfeektDhw7V3//+dw0bNkzSpcCQnJysBx54QD169FB2drZ27typ3bt369Zbb73idz7wwAN69dVXNXr0aPXu3Vvvv/++7rzzzuvaj6VLl6pjx4666667VKtWLf3jH//QI488oqKiIk2aNOm6tl3s4sWLOnbsmBo1anTFNvn5+RowYIAOHTqkyZMnq2XLlnr77bc1YcIEnT17VlOmTFFYWJiWLl2qX/ziFxo2bJgSExMlSZ07d66UOgGvYQDUGMuXLzeSzHvvvWdOnz5tjh07ZlasWGHCwsKMv7+/OXbsmKvtLbfcYmJjY8358+ddy4qKikzv3r3NDTfc4FoWFxdn7rzzzqt+b1JSkvnxXyd79uwxkswjjzzi1m706NFGkklKSnItGz9+vImKirrmNo0xJi8vr0S7hIQE06pVK7dl8fHxJj4+/qo1G2NMVFSUue2228zp06fN6dOnzWeffWZGjhxpJJlHH330ittbuHChkWReffVV17ILFy6YXr16mbp165rs7GxjjDGnT58usb8AyodTP0ANNGjQIIWFhSkyMlL33HOPgoKCtHbtWjVv3lySdObMGb3//vsaPny4zp07p6ysLGVlZem7775TQkKCDh486LpKqH79+tq/f78OHjxY5u9ft26dJOmxxx5zWz516tTr2q/AwEDXn51Op7KyshQfH6/Dhw/L6XRWaJsbNmxQWFiYwsLCFBcXp7fffltjx47VggULrviZdevWKTw8XKNGjXItq127th577DHl5ORoy5YtFaoFQEk1Jqhs3bpVQ4YMUdOmTeVwOLR69WpbfN+BAwd01113KSQkREFBQerevbuOHj1apbUBS5Ys0caNG7VixQrdcccdysrKkr+/v2v9oUOHZIzR008/7fqRLn4lJSVJujQHQ7p0BdHZs2fVpk0bxcbG6oknntDnn39+1e8/cuSIfHx8FBMT47a8bdu217Vf27Zt06BBgxQUFKT69esrLCxMs2bNkqQKB5WePXtq48aNeu+997R9+3ZlZWXpr3/9q1soutyRI0d0ww03yMfH/a/Q9u3bu9YDqBw1Zo5Kbm6u4uLidN9997nOBVv9fWlpaerbt6/uv/9+zZkzR8HBwdq/f78CAgKqvD54tx49eriu+hk6dKj69u2r0aNH66uvvlLdunVVVFQkSXr88ceVkJBQ6jZat24tSerfv7/S0tK0Zs0abdiwQX/+85/1/PPP68UXX9QDDzxw3bVe6UZxhYWFbu/T0tJ0yy23qF27dvrDH/6gyMhI+fn5ad26dXr++edd+1ReoaGhGjRoUIU+C6Dq1ZigMnjwYA0ePPiK6wsKCvTkk0/qjTfe0NmzZ9WpUyctWLCgwnebvNb3SdKTTz6pO+64Q7/73e9cyy7/FyZQ1Xx9fZWcnKyBAwdq8eLFmjFjhlq1aiXp0umKsvxIN2zYUBMnTtTEiROVk5Oj/v37a/bs2VcMKlFRUSoqKlJaWprbKMpXX31Vom2DBg109uzZEssvH5X4xz/+oYKCAq1du1YtWrRwLf/ggw+uWX9li4qK0ueff66ioiK3UZUvv/zStV66cggDUHY15tTPtUyePFkfffSR3nzzTX3++ee69957dfvtt5frvHt5FBUV6Z133lGbNm2UkJCgxo0bq2fPnlV+SgoozYABA9SjRw8tXLhQ58+fV+PGjTVgwAAtW7ZMmZmZJdqfPn3a9efvvvvObV3dunXVunVrFRQUXPH7ikP8n/70J7flCxcuLNE2JiZGTqfT7XRSZmZmibvD+vr6SpKMMa5lTqdTy5cvv2IdVeWOO+7QiRMnlJqa6lr2ww8/aNGiRapbt67i4+MlSXXq1JGkUoMYgLKpMSMqV3P06FEtX75cR48eVdOmTSVdGvJev369li9frnnz5lX6d546dUo5OTmaP3++fvOb32jBggVav369EhMT9cEHH7j+IgOqyxNPPKF7771XKSkpevjhh7VkyRL17dtXsbGx+vnPf65WrVrp5MmT+uijj3T8+HF99tlnkqQOHTpowIAB6tq1qxo2bKidO3dqxYoVmjx58hW/q0uXLho1apReeOEFOZ1O9e7dW5s2bdKhQ4dKtB05cqSmT5+uYcOG6bHHHlNeXp6WLl2qNm3aaPfu3a52t912m/z8/DRkyBA99NBDysnJ0UsvvaTGjRuXGraq0oMPPqhly5ZpwoQJ2rVrl6Kjo7VixQpt27ZNCxcuVL169SRdmvzboUMHpaamqk2bNmrYsKE6deqkTp06VWu9gEez+rKjqiDJrFq1yvX+n//8p5FkgoKC3F61atUyw4cPN8YYc+DAASPpqq/p06eX6fuMMeabb74xksyoUaPclg8ZMsSMHDmyUvcXKFZ8efKOHTtKrCssLDQxMTEmJibG/PDDD8YYY9LS0sy4ceNMeHi4qV27tmnWrJn5yU9+YlasWOH63G9+8xvTo0cPU79+fRMYGGjatWtnfvvb35oLFy642pR2KXF+fr557LHHTKNGjUxQUJAZMmSIOXbsWKmX627YsMF06tTJ+Pn5mbZt25pXX3211G2uXbvWdO7c2QQEBJjo6GizYMEC85e//MVIMunp6a525bk8+VqXXl9peydPnjQTJ040oaGhxs/Pz8TGxprly5eX+Oz27dtN165djZ+fH5cqAxXgMOZH46g1hMPh0KpVqzR06FBJUmpqqsaMGaP9+/e7ho+L1a1bV+Hh4bpw4YIOHz581e02atTIdafJq32fJF24cEFBQUFKSkrSU0895Vo+ffp0ffjhh9q2bVvFdxAAAC/hFad+brzxRhUWFurUqVOuW4lfzs/PT+3atau07/Tz81P37t1LTB78+uuvXRPtAADA1dWYoJKTk+N2/js9PV179uxRw4YN1aZNG40ZM0bjxo3T//7v/+rGG2/U6dOntWnTJnXu3LlCt/W+2vcVX5HwxBNPaMSIEerfv78GDhyo9evX6x//+AdPUgUAoKysPvdUWT744INS55WMHz/eGHPp9tbPPPOMiY6ONrVr1zYRERFm2LBh5vPPP6+S7yv28ssvm9atW5uAgAATFxdnVq9efZ17CgCA96iRc1QAAEDN4DX3UQEAAJ6HoAIAAGzLoyfTFhUV6dtvv1W9evW4VTUAAB7CGKNz586padOmJR7ueTmPDirffvutIiMjrS4DAABUwLFjx9S8efOrtvHooFJ8m+pjx44pODjY4moAAEBZZGdnKzIy0vU7fjUeHVSKT/cEBwcTVAAA8DBlmbbBZFoAAGBbBBUAAGBbBBUAAGBbHj1HpawKCwt18eJFq8uwXO3atUs8PRoAADur0UHFGKMTJ07o7NmzVpdiG/Xr11d4eDj3nQEAeIQaHVSKQ0rjxo1Vp04dr/5xNsYoLy9Pp06dkiRFRERYXBEAANdWY4NKYWGhK6Q0atTI6nJsITAwUJJ06tQpNW7cmNNAAADbq7GTaYvnpNSpU8fiSuyluD+YswMA8AQ1NqgU8+bTPaWhPwAAnqTGBxUAAOC5CCoAAMC2CCo2dezYMd13331q2rSp/Pz8FBUVpSlTpui7776TdGmOyfTp0xUbG6ugoCA1bdpU48aN07fffmtx5QCAqpDpzNf2tCxlOvOtLqVaEVRs6PDhw+rWrZsOHjyoN954Q4cOHdKLL76oTZs2qVevXjpz5ozy8vK0e/duPf3009q9e7dWrlypr776SnfddZfV5QMAKlnqjqPqM/99jX7pE/WZ/75Sdxy1uqRqU2MvT/ZkkyZNkp+fnzZs2OC6pLhFixa68cYbFRMToyeffFJLly7Vxo0b3T63ePFi9ejRQ0ePHlWLFi2sKB0AUMkynfmauXKvisyl90VGmrVyn/q3CVNESKC1xVUDRlTKqLqG3M6cOaN3331XjzzyiCukFAsPD9eYMWOUmpoqY0yJzzqdTjkcDtWvX79KawQAVJ/0rFxXSClWaIwysvKsKaiaMaJSBqk7jrrSrI9DSk6M1YjuVTNicfDgQRlj1L59+1LXt2/fXt9//71Onz6txo0bu5afP39e06dP16hRoxQcHFwltQEAql/L0CD5OOQWVnwdDkWHesd9whhRuYYrDblV9chKaSMmV3Lx4kUNHz5cxhgtXbq0CqsCAFS3iJBAJSfGyve/98HydTg0L7GTV5z2kRhRuaarDblVxUHSunVrORwOHThwQMOGDSux/sCBA2rQoIHCwsIk/f+QcuTIEb3//vuMpgBADTSiewv1bxOmjKw8RYfW8ZqQIjGick3FQ24/VpVDbo0aNdKtt96qF154Qfn57qM2J06c0GuvvaYRI0bI4XC4QsrBgwf13nvv8UwjAKjBIkIC1SumkVeFFImgck1WDLktXrxYBQUFSkhI0NatW3Xs2DGtX79et956q5o1a6bf/va3unjxou655x7t3LlTr732mgoLC3XixAmdOHFCFy5cqLLaAACoTpz6KYPqHnK74YYbtHPnTiUlJWn48OE6c+aMwsPDNXToUCUlJalhw4bKyMjQ2rVrJUldunRx+/wHH3ygAQMGVGmNAICaL9OZr/SsXLUMDbJsJIegUkYRIYHV+h8pKipKKSkpV1wfHR1drgm3AACUR3Ve8Xo1nPoBAABurLritTSWBpXZs2fL4XC4vdq1a2dlSQAAeD073WTO8lM/HTt21Hvvved6X6uW5SUBAODV7HSTOctP/dSqVUvh4eGuV2hoqNUlAQDg1ex0kznLhy8OHjyopk2bKiAgQL169VJycnKlPlCPCafu6A8AQFnY5SZzlgaVnj17KiUlRW3btlVmZqbmzJmjfv36ad++fapXr16J9gUFBSooKHC9z87OvuK2a9euLUnKy8sr8XA/b5aXd+n8YnH/AABwJdV9xWtpLA0qgwcPdv25c+fO6tmzp6KiovTWW2/p/vvvL9E+OTlZc+bMKdO2fX19Vb9+fZ06dUqSVKdOHTkcjmt8quYyxigvL0+nTp1S/fr15evra3VJAABck+Wnfn6sfv36atOmjQ4dOlTq+pkzZ2ratGmu99nZ2YqMjLzi9sLDwyXJFVZwqY+L+wUAALuzVVDJyclRWlqaxo4dW+p6f39/+fv7l3l7DodDERERaty4sS5evFhZZXqs2rVrM5ICAPAolgaVxx9/XEOGDFFUVJS+/fZbJSUlydfXV6NGjarU7/H19eUHGgAAD2RpUDl+/LhGjRql7777TmFhYerbt68+/vhjhYWFWVkWAACwCUuDyptvvmnl1wMAAJuz/IZvAAAAV0JQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtkVQAQAAtmWboDJ//nw5HA5NnTrV6lIAAIBN2CKo7NixQ8uWLVPnzp2tLgUAANiI5UElJydHY8aM0UsvvaQGDRpYXQ4AALARy4PKpEmTdOedd2rQoEHXbFtQUKDs7Gy3FwAAqLlqWfnlb775pnbv3q0dO3aUqX1ycrLmzJlTxVUBAAC7sGxE5dixY5oyZYpee+01BQQElOkzM2fOlNPpdL2OHTtWxVUCAAArOYwxxoovXr16tYYNGyZfX1/XssLCQjkcDvn4+KigoMBtXWmys7MVEhIip9Op4ODgqi4ZAABUgvL8flt26ueWW27R3r173ZZNnDhR7dq10/Tp068ZUgAAQM1nWVCpV6+eOnXq5LYsKChIjRo1KrEcAAB4J8uv+gEAALgSS6/6udzmzZutLgEAANgIIyoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2LA0qS5cuVefOnRUcHKzg4GD16tVL//rXv6wsCQAA2IilQaV58+aaP3++du3apZ07d+rmm2/W3Xffrf3791tZFgAAsAmHMcZYXcSPNWzYUL///e91//33X7Ntdna2QkJC5HQ6FRwcXA3VAQCA61We3+9a1VTTNRUWFurtt99Wbm6uevXqVWqbgoICFRQUuN5nZ2dXV3kAAMAClk+m3bt3r+rWrSt/f389/PDDWrVqlTp06FBq2+TkZIWEhLhekZGR1VwtAADeI9OZr+1pWcp05ltWg+Wnfi5cuKCjR4/K6XRqxYoV+vOf/6wtW7aUGlZKG1GJjIzk1A8AAJUsdcdRzVy5V0VG8nFIyYmxGtG9RaVsuzynfiwPKpcbNGiQYmJitGzZsmu2ZY4KAACVL9OZrz7z31fRjxKCr8OhD2cMVERI4HVvvzy/35af+rlcUVGR26gJAACoXulZuW4hRZIKjVFGVl6112LpZNqZM2dq8ODBatGihc6dO6fXX39dmzdv1rvvvmtlWQAAeLWWoUHycajEiEp0aJ1qr8XSEZVTp05p3Lhxatu2rW655Rbt2LFD7777rm699VYrywIAwKtFhAQqOTFWvg6HpEshZV5ip0o57VNetpujUh7MUQEAoOpkOvOVkZWn6NA6lRpSPPI+KgAAwF4iQgItGUX5MdtNpgUAAChGUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZFUAEAALZVoaBy/Phx5eTklFh+8eJFbd269bqLAgAAkMoZVDIzM9WjRw9FRUWpfv36GjdunFtgOXPmjAYOHFjpRQIAAO9UrqAyY8YM+fj46JNPPtH69ev1xRdfaODAgfr+++9dbTz40UEAAMBmyhVU3nvvPf3pT39St27dNGjQIG3btk0RERG6+eabdebMGUmS479PWgQAALhe5QoqTqdTDRo0cL339/fXypUrFR0drYEDB+rUqVOVXiAAAPBe5QoqrVq10ueff+62rFatWnr77bfVqlUr/eQnP6nU4gAAgHcrV1AZPHiw/u///q/E8uKw0qVLl8qqCwAAQA5TjtmvP/zwg/Ly8hQcHCxJysrKkiSFhoa61n/zzTeKioqqglJLys7OVkhIiJxOp6smAABgb+X5/S7XiEqtWrVUVFSkSZMmKTQ0VE2aNFGTJk0UGhqqyZMnKycnp9pCCgAAqPlqlafxmTNn1KtXL33zzTcaM2aM2rdvL0n64osvlJKSok2bNmn79u1uE24BAAAqqlxBZe7cufLz81NaWpqaNGlSYt1tt92muXPn6vnnn6/UIgEAgHcq16mf1atX67nnnisRUiQpPDxcv/vd77Rq1apKKw4AAHi3ct9Cv2PHjldc36lTJ504ceK6iwIAAJDKGVRCQ0OVkZFxxfXp6elq2LDh9dYEAAAgqZxBJSEhQU8++aQuXLhQYl1BQYGefvpp3X777ZVWHAAA8G7luo/K8ePH1a1bN/n7+2vSpElq166djDE6cOCAXnjhBRUUFGjnzp2KjIysyppduI8KAACepzy/3+W66qd58+b66KOP9Mgjj2jmzJmuJyU7HA7deuutWrx4cbWFFAAAUPOVK6hIUsuWLfWvf/1L33//vQ4ePChJat26NXNTAABApSt3UCnWoEED9ejRozJrAQAAcFOuybQAAADViaACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAABsi6ACAGWU6czX9rQsZTrzrS4F8BoVvuEbAHiT1B1HNXPlXhUZycchJSfGakT3FlaXBdR4jKgAwDVkOvNdIUWSiow0a+U+RlaAakBQAYBrSM/KdYWUYoXGKCMrz5qCAC9CUAGAa2gZGiQfh/syX4dD0aF1rCkI8CIEFQC4hoiQQCUnxsrXcSmt+DocmpfYSREhgRZXBtR8TKYFgDIY0b2F+rcJU0ZWnqJD6xBSgGpCUAGAMooICSSgANWMUz8AAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAMC2CCoAAI/FgyJrPi5PBgB4JB4U6R0YUQEAeBweFOk9CCoAAI/DgyK9B0EFAOBxeFCk9yCoAAA8Dg+K9B6WTqZNTk7WypUr9eWXXyowMFC9e/fWggUL1LZtWyvLAgB4AB4U6R0sHVHZsmWLJk2apI8//lgbN27UxYsXddtttyk3N9fKsgAAHiIiJFC9YhoRUmowhzHGXLtZ9Th9+rQaN26sLVu2qH///tdsn52drZCQEDmdTgUHB1dDhQAA4HqV5/fbVvdRcTqdkqSGDRuWur6goEAFBQWu99nZ2dVSFwAAsIZtJtMWFRVp6tSp6tOnjzp16lRqm+TkZIWEhLhekZGR1VwlAACoTrY59fOLX/xC//rXv/Thhx+qefPmpbYpbUQlMjKSUz8AAHgQjzv1M3nyZP3zn//U1q1brxhSJMnf31/+/v7VWBkAALCSpUHFGKNHH31Uq1at0ubNm9WyZUsrywEAADZjaVCZNGmSXn/9da1Zs0b16tXTiRMnJEkhISEKDORSMwAAvJ2lc1QcDkepy5cvX64JEyZc8/NcngwAgOfxmDkqNpnHW6pMZ77Ss3LVMjSIGwkBAGARW0ymtZvUHUddjw/3cUjJibEa0b2F1WUBAOB1bHMfFbvIdOZrxt/3uh4fXmSkGSv3KtOZb21hVSTTma/taVk1dv8AAJ6NEZXL7DryvS4/IWWMtPvI97qzc806BcTIEQDA7hhRucyV5s3YeDpNhWQ6810hRbo0cjRr5T5GVgAAtkJQuUy36Ia6/Fokh6Su0Q2sKKfKpGflukJKsUJjlJGVZ01BAACUgqBymYiQQM3/aayrY3wkzf9pbI278qdlaJB8Lktkvg6HokPrWFMQAAClYI5KKUZ0b6H+bcKUkZWn6NA6NS6kSJcCWXJirGat3KdCY+TrcGheYqcaua8AAM9FULmCiJDAGv+j7Q2BDADg2QgqXs4bAhkAwHMxRwUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAANgWQQUAqlimM1/b07KU6cy3uhTA49SyugAAqMlSdxzVzJV7VWQkH4eUnBirEd1bWF0W4DEYUQGAKpLpzHeFFEkqMtKslfsYWQHKgaACAFUkPSvXFVKKFRqjjKw8awoCPBBBBQCqSMvQIPk43Jf5OhyKDq1jTUGAByKoAEAViQgJVHJirHwdl9KKr8OheYmdFBESaHFlgOdgMi0AVKER3Vuof5swZWTlKTq0DiEFKCeCCgBUsYiQQAIKUEGc+gGqCPfOAIDrx4gKUAW4dwYAVA5GVIBKxr0zAKDyEFSASsa9MwCg8hBUgErGvTMAoPIQVIBKxr0zAKDyMJkWqAKeeO+MTGe+0rNy1TI0yCPqBeAdCCpAFfGke2dwlRIAu+LUD+DluEoJgJ0RVAAvx1VK9saNA+HtOPUDeLniq5R+HFa4SskeOCUHMKICeD2uUrInTskBlzCiAsAjr1Kq6a52So7/PvAmBBUAkjzrKiVvwCk52IEdblvAqR8AsCFOycFqqTuOqs/89zX6pU/UZ/77St1x1JI6GFEBAJsa0b2F2oXX046M79U9uoHiIhtYXRK8xJXmSPVvE1btYZmgAgA2xVU/sIqd5khx6gcAbIirfmAlOz1claACADbEjfhgJTvNkeLUDwDYEFf9wGp2uW0BIyoAYEN2+hctvFdESKB6xTSy9LhjRAUAbMou/6IFrERQAQAb40Z88Hac+gEAALZFUAEAuMl05mt7WhaXQsMWLA0qW7du1ZAhQ9S0aVM5HA6tXr3aynIAwOvZ5bbpQDFLg0pubq7i4uK0ZMkSK8sAAIibzMGeLJ1MO3jwYA0ePNjKEgAA/2Wn26YDxTzqqp+CggIVFBS43mdnZ1tYDQDULNxkDnbkUZNpk5OTFRIS4npFRkZaXRIA1BjcZA525DDGmGs3q3oOh0OrVq3S0KFDr9imtBGVyMhIOZ1OBQcHV0OVAFDzZTrzuckcqlR2drZCQkLK9PvtUad+/P395e/vb3UZAFCjcZM52IlHnfoBAADexdIRlZycHB06dMj1Pj09XXv27FHDhg3VokULCysDAAB2YGlQ2blzpwYOHOh6P23aNEnS+PHjlZKSYlFVAADALiwNKgMGDJBN5vICAAAbYo4KAACwLYIKAACwLYKKl+MpqbheHEMAqpJH3UcFlSt1x1HXA8h8HFJyYqxGdOdqK5QdxxCAqsaIipfiKam4XhxDAKoDQcVLXe0pqUBZcAwBqA4EFS9V/JTUH+MpqSgPjiEA1YGg4qV4SiquF8cQgOpgm6cnV0R5nr6I0vGUVFwvjiEA5VVjn56MysdTUnG9OIYAVCVO/QAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqMCjZDrztT0tiwffAYCX4IZv8BipO466ntbr45CSE2M1onsLq8sCAFQhRlTgETKd+a6QIklFRpq1ch8jKwBQwxFU4BHSs3JdIaVYoTHKyMqzpiAAQLUgqMAjtAwNko/DfZmvw6Ho0DrWFAQAqBYEFXiEiJBAJSfGytdxKa34Ohyal9iJh+EBQA3HZFp4jBHdW6h/mzBlZOUpOrQOIQUAvABBBR4lIiSQgAIAXoRTPwAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAAwLYIKgAsk+nM1/a0LJ6CDeCKuDMtAEuk7jiqmSv3qshIPg4pOTFWI7q3sLosADbDiAqAapfpzHeFFEkqMtKslfsYWQFQAkEFQLVLz8p1hZRihcYoIyvPmoIA2BZBBUC1axkaJB+H+zJfh0PRoXWsKQiAbRFUAFS7iJBAJSfGytdxKa34Ohyal9iJJ2MDKIHJtAAsMaJ7C/VvE6aMrDxFh9YhpAAoFUEFgGUiQgIJKACuilM/AADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAK5LpjNf29OylOnMt7oUADUQt9AHUGGpO45q5sq9KjKSj0NKTozViO4trC4LQA3CiAqACsl05rtCiiQVGWnWyn2MrACoVAQVABWSnpXrCinFCo1RRlaeNQUBqJFsEVSWLFmi6OhoBQQEqGfPnvrPf/5jdUkArqFlaJB8HO7LfB0ORYfWsaYgADWS5UElNTVV06ZNU1JSknbv3q24uDglJCTo1KlTVpcG4CoiQgKVnBgrX8eltOLrcGheYidFhARaXBmAmsRhjDHXblZ1evbsqe7du2vx4sWSpKKiIkVGRurRRx/VjBkzrvrZ7OxshYSEyOl0Kjg4uDrKBXCZTGe+MrLyFB1ah5ACoEzK8/tt6VU/Fy5c0K5duzRz5kzXMh8fHw0aNEgfffRRifYFBQUqKChwvc/Ozq6WOgFcWURIIAEFQJWx9NRPVlaWCgsL1aRJE7flTZo00YkTJ0q0T05OVkhIiOsVGRlZXaUCAAALWD5HpTxmzpwpp9Ppeh07dszqkgAAQBWy9NRPaGiofH19dfLkSbflJ0+eVHh4eIn2/v7+8vf3r67yAACAxSwdUfHz81PXrl21adMm17KioiJt2rRJvXr1srAyAABgB5bfQn/atGkaP368unXrph49emjhwoXKzc3VxIkTrS4NAABYzPKgMmLECJ0+fVrPPPOMTpw4oS5dumj9+vUlJtgCAADvY/l9VK4H91EBAMDzlOf326Ou+gEAAN6FoAIAAGyLoAIAAGyLoAIAAGzL8qt+rkfxPGCe+QMAgOco/t0uy/U8Hh1Uzp07J0k88wcAAA907tw5hYSEXLWNR1+eXFRUpG+//Vb16tWTw+G4rm1lZ2crMjJSx44d41Ln/6JPSqJPSqJPSqJPSke/lOStfWKM0blz59S0aVP5+Fx9FopHj6j4+PioefPmlbrN4OBgrzpYyoI+KYk+KYk+KYk+KR39UpI39sm1RlKKMZkWAADYFkEFAADYFkHlv/z9/ZWUlCR/f3+rS7EN+qQk+qQk+qQk+qR09EtJ9Mm1efRkWgAAULMxogIAAGyLoAIAAGyLoAIAAGyLoAIAAGyrRgeVJUuWKDo6WgEBAerZs6f+85//XLX9woUL1bZtWwUGBioyMlK//OUvdf78edf62bNny+FwuL3atWtX1btRqcrTJxcvXtTcuXMVExOjgIAAxcXFaf369de1TTuq7D7x9ONk69atGjJkiJo2bSqHw6HVq1df8zObN2/WTTfdJH9/f7Vu3VopKSkl2njycVIVfeJtx0lmZqZGjx6tNm3ayMfHR1OnTi213dtvv6127dopICBAsbGxWrduXeUXX0Wqok9SUlJKHCcBAQFVswM2VWODSmpqqqZNm6akpCTt3r1bcXFxSkhI0KlTp0pt//rrr2vGjBlKSkrSgQMH9PLLLys1NVWzZs1ya9exY0dlZma6Xh9++GF17E6lKG+fPPXUU1q2bJkWLVqkL774Qg8//LCGDRumTz/9tMLbtJuq6BPJs4+T3NxcxcXFacmSJWVqn56erjvvvFMDBw7Unj17NHXqVD3wwAN69913XW08/Tipij6RvOs4KSgoUFhYmJ566inFxcWV2mb79u0aNWqU7r//fn366acaOnSohg4dqn379lVm6VWmKvpEunTX2h8fJ0eOHKmskj2DqaF69OhhJk2a5HpfWFhomjZtapKTk0ttP2nSJHPzzTe7LZs2bZrp06eP631SUpKJi4urknqrQ3n7JCIiwixevNhtWWJiohkzZkyFt2k3VdEnnn6c/Jgks2rVqqu2+fWvf206duzotmzEiBEmISHB9d7Tj5Mfq6w+8bbj5Mfi4+PNlClTSiwfPny4ufPOO92W9ezZ0zz00EPXWWH1q6w+Wb58uQkJCam0ujxRjRxRuXDhgnbt2qVBgwa5lvn4+GjQoEH66KOPSv1M7969tWvXLtdw9OHDh7Vu3Trdcccdbu0OHjyopk2bqlWrVhozZoyOHj1adTtSiSrSJwUFBSWGGAMDA13/6qvINu2kKvqkmKceJxXx0UcfufWhJCUkJLj60NOPk4q4Vp8U86bjpCzK2m/eJicnR1FRUYqMjNTdd9+t/fv3W11StaqRQSUrK0uFhYVq0qSJ2/ImTZroxIkTpX5m9OjRmjt3rvr27avatWsrJiZGAwYMcDv107NnT6WkpGj9+vVaunSp0tPT1a9fP507d65K96cyVKRPEhIS9Ic//EEHDx5UUVGRNm7cqJUrVyozM7PC27STqugTybOPk4o4ceJEqX2YnZ2t/Px8jz9OKuJafSJ533FSFlfqt5p6nJRF27Zt9Ze//EVr1qzRq6++qqKiIvXu3VvHjx+3urRqUyODSkVs3rxZ8+bN0wsvvKDdu3dr5cqVeuedd/Tss8+62gwePFj33nuvOnfurISEBK1bt05nz57VW2+9ZWHlVeePf/yjbrjhBrVr105+fn6aPHmyJk6ceM1HctdkZekTbztOUDEcJyiLXr16ady4cerSpYvi4+O1cuVKhYWFadmyZVaXVm1q5C9OaGiofH19dfLkSbflJ0+eVHh4eKmfefrppzV27Fg98MADio2N1bBhwzRv3jwlJyerqKio1M/Ur19fbdq00aFDhyp9HypbRfokLCxMq1evVm5uro4cOaIvv/xSdevWVatWrSq8TTupij4pjScdJxURHh5eah8GBwcrMDDQ44+TirhWn5Smph8nZXGlfqupx0lF1K5dWzfeeKNXHSc1Mqj4+fmpa9eu2rRpk2tZUVGRNm3apF69epX6mby8vBIjBb6+vpIkc4XHIeXk5CgtLU0RERGVVHnVqUifFAsICFCzZs30ww8/6O9//7vuvvvu696mHVRFn5TGk46TiujVq5dbH0rSxo0bXX3o6cdJRVyrT0pT04+TsqhIv3mbwsJC7d2717uOE6tn81aVN9980/j7+5uUlBTzxRdfmAcffNDUr1/fnDhxwhhjzNixY82MGTNc7ZOSkky9evXMG2+8YQ4fPmw2bNhgYmJizPDhw11tfvWrX5nNmzeb9PR0s23bNjNo0CATGhpqTp06Ve37VxHl7ZOPP/7Y/P3vfzdpaWlm69at5uabbzYtW7Y033//fZm3aXdV0SeefpycO3fOfPrpp+bTTz81kswf/vAH8+mnn5ojR44YY4yZMWOGGTt2rKv94cOHTZ06dcwTTzxhDhw4YJYsWWJ8fX3N+vXrXW08/Tipij7xtuPEGONq37VrVzN69Gjz6aefmv3797vWb9u2zdSqVcs899xz5sCBAyYpKcnUrl3b7N27t1r3raKqok/mzJlj3n33XZOWlmZ27dplRo4caQICAtza1HQ1NqgYY8yiRYtMixYtjJ+fn+nRo4f5+OOPXevi4+PN+PHjXe8vXrxoZs+ebWJiYkxAQICJjIw0jzzyiNsP0IgRI0xERITx8/MzzZo1MyNGjDCHDh2qxj26fuXpk82bN5v27dsbf39/06hRIzN27FjzzTfflGubnqCy+8TTj5MPPvjASCrxKu6H8ePHm/j4+BKf6dKli/Hz8zOtWrUyy5cvL7FdTz5OqqJPvPE4Ka19VFSUW5u33nrLtGnTxvj5+ZmOHTuad955p3p2qBJURZ9MnTrV9f9NkyZNzB133GF2795dfTtlAw5jrnBeAwAAwGI1co4KAACoGQgqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAADAtggqAFDJNm/eLIfDobNnz1pdCuDxCCqAB5swYYIcDofmz5/vtnz16tVyOByu98YYvfTSS+rVq5eCg4NVt25ddezYUVOmTCnzw83y8vI0c+ZMxcTEKCAgQGFhYYqPj9eaNWtcbaKjo7Vw4cJK2beqVtx3DodDtWvXVsuWLfXrX/9a58+fL9d2BgwYoKlTp7ot6927tzIzMxUSElKJFQPeiaACeLiAgAAtWLBA33//fanrjTEaPXq0HnvsMd1xxx3asGGDvvjiC7388ssKCAjQb37zmzJ9z8MPP6yVK1dq0aJF+vLLL7V+/Xrdc889+u677ypzd6rV7bffrszMTB0+fFjPP/+8li1bpqSkpOverp+fn8LDw93CIoAKsvYO/gCux/jx481PfvIT065dO/PEE0+4lq9atcoU/+/9xhtvGElmzZo1pW6jqKioTN8VEhJiUlJSrrg+Pj6+xDNLiv373/82ffv2NQEBAaZ58+bm0UcfNTk5Oa71f/3rX03Xrl1N3bp1TZMmTcyoUaPMyZMnXeuLn6Gyfv1606VLFxMQEGAGDhxoTp48adatW2fatWtn6tWrZ0aNGmVyc3PLtD/jx483d999t9uyxMREc+ONN7reZ2VlmZEjR5qmTZuawMBA06lTJ/P666+7bePyfU5PT3fV++Nnha1YscJ06NDB+Pn5maioKPPcc8+VqU7A2zGiAng4X19fzZs3T4sWLdLx48dLrH/jjTfUtm1b3XXXXaV+vqz/6g8PD9e6det07ty5UtevXLlSzZs319y5c5WZmanMzExJUlpamm6//Xb99Kc/1eeff67U1FR9+OGHmjx5suuzFy9e1LPPPqvPPvtMq1evVkZGhiZMmFDiO2bPnq3Fixdr+/btOnbsmIYPH66FCxfq9ddf1zvvvKMNGzZo0aJFZdqfy+3bt0/bt2+Xn5+fa9n58+fVtWtXvfPOO9q3b58efPBBjR07Vv/5z38kSX/84x/Vq1cv/fznP3ftc2RkZIlt79q1S8OHD9fIkSO1d+9ezZ49W08//bRSUlIqVCvgVaxOSgAq7sejAv/zP/9j7rvvPmOM+4hKu3btzF133eX2uSlTppigoCATFBRkmjVrVqbv2rJli2nevLmpXbu26datm5k6dar58MMP3dpERUWZ559/3m3Z/fffbx588EG3Zf/+97+Nj4+Pyc/PL/W7duzYYSSZc+fOGWP+/4jKe++952qTnJxsJJm0tDTXsoceesgkJCSUaX/Gjx9vfH19TVBQkPH39zeSjI+Pj1mxYsVVP3fnnXeaX/3qV6738fHxZsqUKW5tLh9RGT16tLn11lvd2jzxxBOmQ4cOZaoV8GaMqAA1xIIFC/TKK6/owIED12z75JNPas+ePXrmmWeUk5NTpu33799fhw8f1qZNm3TPPfdo//796tevn5599tmrfu6zzz5TSkqK6tat63olJCSoqKhI6enpki6NOAwZMkQtWrRQvXr1FB8fL0k6evSo27Y6d+7s+nOTJk1Up04dtWrVym3ZqVOnyrQ/kjRw4EDt2bNHn3zyicaPH6+JEyfqpz/9qWt9YWGhnn32WcXGxqphw4aqW7eu3n333RJ1XcuBAwfUp08ft2V9+vTRwYMHVVhYWK5tAd6GoALUEP3791dCQoJmzpzptvyGG27QV1995bYsLCxMrVu3VuPGjcv1HbVr11a/fv00ffp0bdiwQXPnztWzzz6rCxcuXPEzOTk5euihh7Rnzx7X67PPPtPBgwcVExOj3NxcJSQkKDg4WK+99pp27NihVatWSVKJ7dauXdv15+KrdX7M4XCoqKiozPsTFBSk1q1bKy4uTn/5y1/0ySef6OWXX3at//3vf68//vGPmj59uj744APt2bNHCQkJV91fAJWrltUFAKg88+fPV5cuXdS2bVvXslGjRmn06NFas2aN7r777kr9vg4dOuiHH37Q+fPn5efnJz8/vxIjBDfddJO++OILtW7dutRt7N27V999953mz5/vmt+xc+fOSq2zLHx8fDRr1ixNmzZNo0ePVmBgoLZt26a7775bP/vZzyRJRUVF+vrrr9WhQwfX50rb58u1b99e27Ztc1u2bds2tWnTRr6+vpW/M0ANwogKUIPExsZqzJgx+tOf/uRaNnLkSN1zzz0aOXKk5s6dq08++UQZGRnasmWLUlNTy/xDOWDAAC1btky7du1SRkaG1q1bp1mzZmngwIEKDg6WdOk+Klu3btU333yjrKwsSdL06dO1fft2TZ48WXv27NHBgwe1Zs0a12TaFi1ayM/PT4sWLdLhw4e1du3aa55Oqir33nuvfH19tWTJEkmXRqM2btyo7du368CBA3rooYd08uRJt89ER0e7+jQrK6vUEZ1f/epX2rRpk5599ll9/fXXeuWVV7R48WI9/vjj1bJfgCcjqAA1zNy5c91+LB0Oh1JTU7Vw4UKtW7dOt9xyi9q2bav77rtPkZGR+vDDD8u03YSEBL3yyiu67bbb1L59ez366KNKSEjQW2+95fbdGRkZiomJUVhYmKRL80q2bNmir7/+Wv369dONN96oZ555Rk2bNpV06TRUSkqK3n77bXXo0EHz58/Xc889V4k9Una1atXS5MmT9bvf/U65ubl66qmndNNNNykhIUEDBgxQeHi4hg4d6vaZxx9/XL6+vurQoYPCwsJKnb9y00036a233tKbb76pTp066ZlnntHcuXNLvbIJgDuHMcZYXQQAAEBpGFEBAAC2RVABIElulw9f/vr3v/9tdXnlcvTo0avuT3kvLwZgHU79AJCkqz6csFmzZgoMDKzGaq7PDz/8oIyMjCuuj46OVq1aXPQIeAKCCgAAsC1O/QAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANsiqAAAANv6f1JGzxHd5aUUAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\surrogates\\pysmo\\pysmo_flowsheet_optimization_doc_17_64.png" - } - }, + "metadata": {}, "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
,\n", + "
]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -2369,7 +1915,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:23:37 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n" + "2025-03-17 17:38:21 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n" ] }, { @@ -2526,19 +2072,19 @@ "name": "stdout", "output_type": "stream", "text": [ - "Steam flowrate = 0.6059308497978191\n", - "Reformer duty = 21066.948701158035\n", - "Mole Fraction Ar = 0.0036793744229938544\n", - "Mole Fraction C2H6 = 0.004187279676589231\n", - "Mole Fraction C3H8 = 0.000523414598169937\n", - "Mole Fraction C4H10 = 0.0009159732540583096\n", - "Mole Fraction CH4 = 0.12786005023329045\n", - "Mole Fraction CO = 0.09697157382062967\n", - "Mole Fraction CO2 = 0.046010703278916036\n", - "Mole Fraction H2 = 0.2938730753304199\n", - "Mole Fraction H2O = 0.11952683194799225\n", - "Mole Fraction N2 = 0.30644275497350865\n", - "Mole Fraction O2 = -5.551115123125783e-17\n" + "Steam flowrate = 0.6059308499318983\n", + "Reformer duty = 21072.561832018007\n", + "Mole Fraction Ar = 0.0036781507731262764\n", + "Mole Fraction C2H6 = 0.004188774062981508\n", + "Mole Fraction C3H8 = 0.0005235984950613115\n", + "Mole Fraction C4H10 = 0.0009162955373055101\n", + "Mole Fraction CH4 = 0.12790313523629443\n", + "Mole Fraction CO = 0.09689201209690862\n", + "Mole Fraction CO2 = 0.04604873637953224\n", + "Mole Fraction H2 = 0.2938240725288012\n", + "Mole Fraction H2O = 0.1196592238027376\n", + "Mole Fraction N2 = 0.3063429562761972\n", + "Mole Fraction O2 = 2.7755575615628914e-17\n" ] } ], @@ -2616,29 +2162,29 @@ " inequality constraints with only upper bounds: 1\n", "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 -2.9387308e-01 2.91e-10 2.31e-02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 -2.9586866e-01 1.29e+00 1.91e-03 -1.7 4.88e+02 - 1.00e+00 1.00e+00f 1\n", - " 2 -3.1973235e-01 1.17e+02 9.90e-03 -2.5 6.00e+03 - 8.80e-01 1.00e+00h 1\n", - " 3 -3.2537868e-01 1.23e+02 3.60e-03 -2.5 4.80e+03 - 1.00e+00 1.00e+00h 1\n", - " 4 -3.2610698e-01 2.48e+01 3.26e-04 -2.5 1.90e+03 - 1.00e+00 1.00e+00h 1\n", - " 5 -3.2615002e-01 1.98e-02 2.27e-06 -2.5 9.78e+01 - 1.00e+00 1.00e+00h 1\n", - " 6 -3.3107576e-01 8.06e+01 5.01e-03 -3.8 3.89e+03 - 9.20e-01 1.00e+00h 1\n", - " 7 -3.3136311e-01 1.95e+00 8.59e-04 -3.8 6.41e+02 - 1.00e+00 1.00e+00h 1\n", - " 8 -3.3128690e-01 2.96e-01 1.24e-05 -3.8 2.18e+02 - 1.00e+00 1.00e+00h 1\n", - " 9 -3.3157177e-01 2.17e-01 1.01e-04 -5.7 1.63e+02 - 9.95e-01 1.00e+00h 1\n", + " 0 -2.9382407e-01 1.16e-09 2.26e-02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 -2.9582077e-01 1.21e+00 1.83e-03 -1.7 4.88e+02 - 1.00e+00 1.00e+00f 1\n", + " 2 -3.1968300e-01 1.09e+02 9.85e-03 -2.5 5.99e+03 - 8.81e-01 1.00e+00h 1\n", + " 3 -3.2538469e-01 1.26e+02 3.59e-03 -2.5 4.76e+03 - 1.00e+00 1.00e+00h 1\n", + " 4 -3.2610509e-01 2.51e+01 2.09e-04 -2.5 1.95e+03 - 1.00e+00 1.00e+00h 1\n", + " 5 -3.2613184e-01 2.39e-02 6.69e-07 -2.5 8.59e+01 - 1.00e+00 1.00e+00h 1\n", + " 6 -3.3098523e-01 6.27e+01 5.34e-03 -3.8 3.83e+03 - 9.23e-01 1.00e+00h 1\n", + " 7 -3.3145573e-01 1.00e+00 6.67e-05 -3.8 9.27e+02 - 1.00e+00 1.00e+00h 1\n", + " 8 -3.3135505e-01 2.55e-01 8.48e-07 -3.8 2.33e+02 - 1.00e+00 1.00e+00h 1\n", + " 9 -3.3164790e-01 2.07e-01 4.73e-04 -5.7 1.93e+02 - 1.00e+00 9.80e-01h 1\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 -3.3157586e-01 4.17e-04 1.45e-08 -5.7 9.24e+00 - 1.00e+00 1.00e+00h 1\n", - " 11 -3.3157954e-01 4.46e-05 7.07e-09 -8.6 1.84e+00 - 1.00e+00 1.00e+00h 1\n", - " 12 -3.3157954e-01 1.34e-09 4.26e-14 -8.6 1.29e-03 - 1.00e+00 1.00e+00h 1\n", + " 10 -3.3165534e-01 4.99e-04 9.50e-09 -5.7 1.17e+01 - 1.00e+00 1.00e+00h 1\n", + " 11 -3.3165902e-01 4.56e-05 9.88e-10 -8.6 1.91e+00 - 1.00e+00 1.00e+00h 1\n", + " 12 -3.3165902e-01 2.10e-09 2.51e-14 -8.6 2.53e-03 - 1.00e+00 1.00e+00h 1\n", "\n", "Number of Iterations....: 12\n", "\n", " (scaled) (unscaled)\n", - "Objective...............: -3.3157953843145921e-01 -3.3157953843145921e-01\n", - "Dual infeasibility......: 4.2581604889876294e-14 4.2581604889876294e-14\n", - "Constraint violation....: 3.5549293562270731e-12 1.3387762010097504e-09\n", - "Complementarity.........: 2.5059038878794521e-09 2.5059038878794521e-09\n", - "Overall NLP error.......: 2.5059038878794521e-09 2.5059038878794521e-09\n", + "Objective...............: -3.3165902458760038e-01 -3.3165902458760038e-01\n", + "Dual infeasibility......: 2.5091040356528538e-14 2.5091040356528538e-14\n", + "Constraint violation....: 5.5610359819253185e-12 2.0954757928848267e-09\n", + "Complementarity.........: 2.5059038350654027e-09 2.5059038350654027e-09\n", + "Overall NLP error.......: 2.5059038350654027e-09 2.5059038350654027e-09\n", "\n", "\n", "Number of objective function evaluations = 13\n", @@ -2648,8 +2194,8 @@ "Number of equality constraint Jacobian evaluations = 13\n", "Number of inequality constraint Jacobian evaluations = 13\n", "Number of Lagrangian Hessian evaluations = 12\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", - "Total CPU secs in NLP function evaluations = 0.001\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", "\n", "EXIT: Optimal Solution Found.\n", "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" @@ -2659,7 +2205,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[+ 0.07] solve\n", + "[+ 0.01] solve\n", "Model status: \n", "Problem: \n", "- Lower bound: -inf\n", @@ -2674,27 +2220,27 @@ " Termination condition: optimal\n", " Id: 0\n", " Error rc: 0\n", - " Time: 0.058537960052490234\n", + " Time: 0.009012460708618164\n", "Solution: \n", "- number of solutions: 0\n", " number of solutions displayed: 0\n", "\n", - "Solve time: 0.074246599979233\n", - "fs.bypass_frac : 0.10000006743045317\n", - "fs.ng_steam_ratio : 1.1111587695778178\n", - "fs.steam_flowrate : 1.211913588633006\n", - "fs.reformer_duty : 38820.801141863\n", - "fs.AR : 0.004107083638191985\n", - "fs.C2H6 : 0.0005392232921631147\n", - "fs.C4H10 : 0.00011795111658708467\n", - "fs.C3H8 : 6.741873287192471e-05\n", - "fs.CH4 : 0.016806518961534973\n", - "fs.CO : 0.10494647112247085\n", - "fs.CO2 : 0.05346576317928386\n", - "fs.H2 : 0.3315795384314592\n", - "fs.H2O : 0.14839740391436385\n", - "fs.N2 : 0.3400000043352795\n", - "fs.O2 : 8.2852873934491285e-16\n" + "Solve time: 0.012646308001421858\n", + "fs.bypass_frac : 0.10000006056376089\n", + "fs.ng_steam_ratio : 1.1232321922655462\n", + "fs.steam_flowrate : 1.2250817840789683\n", + "fs.reformer_duty : 39050.36780003482\n", + "fs.AR : 0.0041071693974047445\n", + "fs.C2H6 : 0.0005239281969648362\n", + "fs.C4H10 : 0.00011460579359301395\n", + "fs.C3H8 : 6.54784416506138e-05\n", + "fs.CH4 : 0.01634185961879082\n", + "fs.CO : 0.10487575125628976\n", + "fs.CO2 : 0.053535619369001815\n", + "fs.H2 : 0.3316590245876004\n", + "fs.H2O : 0.14885681247114485\n", + "fs.N2 : 0.3400000042903256\n", + "fs.O2 : -5.134104614949322e-16\n" ] } ], @@ -2745,7 +2291,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization_test.ipynb b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization_test.ipynb index 94803a2c..1c3f7c84 100644 --- a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization_test.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization_usr.ipynb b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization_usr.ipynb index 94803a2c..1c3f7c84 100644 --- a/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization_usr.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/pysmo/pysmo_flowsheet_optimization_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_cardinal_sine_function.py b/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_cardinal_sine_function.py index 3c02d5d3..cfd886f1 100644 --- a/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_cardinal_sine_function.py +++ b/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_cardinal_sine_function.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# """ diff --git a/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_griewank_function.py b/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_griewank_function.py index edfe08aa..00f4dfd8 100644 --- a/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_griewank_function.py +++ b/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_griewank_function.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# """ 2d-Griewank function, see Griewank (1981) paper diff --git a/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_six_hump_function.py b/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_six_hump_function.py index 6c62bd7c..3c875938 100644 --- a/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_six_hump_function.py +++ b/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_six_hump_function.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# from idaes.surrogate.pysmo.radial_basis_function import * from idaes.surrogate.pysmo import sampling as sp diff --git a/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_three_hump_function.py b/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_three_hump_function.py index 787c38e9..722771ab 100644 --- a/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_three_hump_function.py +++ b/idaes_examples/notebooks/docs/surrogates/pysmo/rbf_three_hump_function.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# from idaes.surrogate.pysmo.radial_basis_function import * from idaes.surrogate.pysmo import sampling as sp diff --git a/idaes_examples/notebooks/docs/surrogates/pysmo/sampling_examples.py b/idaes_examples/notebooks/docs/surrogates/pysmo/sampling_examples.py index 5cc13b71..231d01c6 100644 --- a/idaes_examples/notebooks/docs/surrogates/pysmo/sampling_examples.py +++ b/idaes_examples/notebooks/docs/surrogates/pysmo/sampling_examples.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# import pandas as pd diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training.ipynb index 66cd6539..a561f827 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "11cae4c1", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": null, @@ -586,8 +613,7 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" - }, - "orig_nbformat": 4 + } }, "nbformat": 4, "nbformat_minor": 2 diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training_doc.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training_doc.ipynb index 72d78965..167f60a8 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training_doc.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training_doc.ipynb @@ -2,7 +2,33 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -53,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -63,7 +89,7 @@ "" ] }, - "execution_count": 1, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -91,7 +117,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -123,9 +149,18 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dang/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be removed in a future version. Please use 'DataFrame.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + } + ], "source": [ "# Import training data\n", "np.set_printoptions(precision=7, suppress=True)\n", @@ -163,117 +198,14 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " ***************************************************************************\n", - " ALAMO version 2023.2.13. Built: WIN-64 Mon Feb 13 21:30:56 EST 2023\n", - "\n", - " If you use this software, please cite:\n", - " Cozad, A., N. V. Sahinidis and D. C. Miller,\n", - " Automatic Learning of Algebraic Models for Optimization,\n", - " AIChE Journal, 60, 2211-2227, 2014.\n", - "\n", - " ALAMO is powered by the BARON software from http://www.minlp.com/\n", - " ***************************************************************************\n", - " Licensee: Javal Vyas at Carnegie Mellon University, jvyas@andrew.cmu.edu.\n", - " ***************************************************************************\n", - " Reading input data\n", - " Checking input consistency and initializing data structures\n", - " \n", - " Step 0: Initializing data set\n", - " User provided an initial data set of 400 data points\n", - " We will sample no more data points at this stage\n", - " ***************************************************************************\n", - " Iteration 1 (Approx. elapsed time 0.62E-01 s)\n", - " \n", - " Step 1: Model building using BIC\n", - " \n", - " Model building for variable CO2SM_CO2_Enthalpy\n", - " ----\n", - " BIC = 0.750E+04 with CO2SM_CO2_Enthalpy = - 0.38E+06\n", - " ----\n", - " BIC = 0.569E+04 with CO2SM_CO2_Enthalpy = 58. * CO2SM_Temperature - 0.42E+06\n", - " ----\n", - " BIC = 0.542E+04 with CO2SM_CO2_Enthalpy = 55. * CO2SM_Temperature - 0.61E+05 * CO2SM_Pressure/CO2SM_Temperature - 0.41E+06\n", - " ----\n", - " BIC = 0.516E+04 with CO2SM_CO2_Enthalpy = 49. * CO2SM_Temperature + 4.0 * CO2SM_Pressure^2 - 0.15E+06 * CO2SM_Pressure/CO2SM_Temperature - 0.41E+06\n", - " ----\n", - " BIC = 0.502E+04 with CO2SM_CO2_Enthalpy = 0.16E+03 * CO2SM_Temperature - 0.16 * CO2SM_Temperature^2 + 0.76E-04 * CO2SM_Temperature^3 - 0.56E+05 * CO2SM_Pressure/CO2SM_Temperature - 0.44E+06\n", - " ----\n", - " BIC = 0.484E+04 with CO2SM_CO2_Enthalpy = 0.14E+03 * CO2SM_Temperature + 2.5 * CO2SM_Pressure^2 - 0.14 * CO2SM_Temperature^2 + 0.66E-04 * CO2SM_Temperature^3 - 0.11E+06 * CO2SM_Pressure/CO2SM_Temperature - 0.43E+06\n", - " \n", - " Model building for variable CO2SM_CO2_Entropy\n", - " ----\n", - " BIC = 0.219E+04 with CO2SM_CO2_Entropy = - 0.48E+03 * CO2SM_Pressure/CO2SM_Temperature\n", - " ----\n", - " BIC = 0.147E+04 with CO2SM_CO2_Entropy = 1.9 * CO2SM_Pressure - 0.15E+04 * CO2SM_Pressure/CO2SM_Temperature\n", - " ----\n", - " BIC = 0.115E+04 with CO2SM_CO2_Entropy = 0.77E-01 * CO2SM_Temperature - 0.38E+03 * CO2SM_Pressure/CO2SM_Temperature - 50.\n", - " ----\n", - " BIC = 713. with CO2SM_CO2_Entropy = 0.20 * CO2SM_Temperature - 0.94E-04 * CO2SM_Temperature^2 - 0.34E+03 * CO2SM_Pressure/CO2SM_Temperature - 89.\n", - " ----\n", - " BIC = 443. with CO2SM_CO2_Entropy = 0.52 * CO2SM_Temperature - 0.60E-03 * CO2SM_Temperature^2 + 0.26E-06 * CO2SM_Temperature^3 - 0.34E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.15E+03\n", - " ----\n", - " BIC = 317. with CO2SM_CO2_Entropy = 0.54 * CO2SM_Temperature - 0.63E-03 * CO2SM_Temperature^2 + 0.27E-06 * CO2SM_Temperature^3 - 0.26E+03 * CO2SM_Pressure/CO2SM_Temperature + 0.79E-01 * CO2SM_Temperature/CO2SM_Pressure - 0.16E+03\n", - " ----\n", - " BIC = 259. with CO2SM_CO2_Entropy = 0.47 * CO2SM_Temperature + 0.15E-01 * CO2SM_Pressure^2 - 0.53E-03 * CO2SM_Temperature^2 + 0.23E-06 * CO2SM_Temperature^3 - 0.70E-03 * CO2SM_Pressure*CO2SM_Temperature - 0.46E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.13E+03\n", - " ----\n", - " BIC = 240. with CO2SM_CO2_Entropy = - 2.1 * CO2SM_Pressure + 0.55 * CO2SM_Temperature + 0.76E-01 * CO2SM_Pressure^2 - 0.63E-03 * CO2SM_Temperature^2 - 0.94E-03 * CO2SM_Pressure^3 + 0.27E-06 * CO2SM_Temperature^3 - 0.23E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.15E+03\n", - " ----\n", - " BIC = 224. with CO2SM_CO2_Entropy = - 1.9 * CO2SM_Pressure + 0.49 * CO2SM_Temperature + 0.83E-01 * CO2SM_Pressure^2 - 0.57E-03 * CO2SM_Temperature^2 - 0.10E-02 * CO2SM_Pressure^3 + 0.25E-06 * CO2SM_Temperature^3 - 0.73E-08 * (CO2SM_Pressure*CO2SM_Temperature)^2 - 0.36E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.13E+03\n", - " ----\n", - " BIC = 193. with CO2SM_CO2_Entropy = - 3.9 * CO2SM_Pressure + 0.52 * CO2SM_Temperature + 0.17 * CO2SM_Pressure^2 - 0.56E-03 * CO2SM_Temperature^2 - 0.21E-02 * CO2SM_Pressure^3 + 0.24E-06 * CO2SM_Temperature^3 - 0.10E-02 * CO2SM_Pressure*CO2SM_Temperature - 0.36E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.20 * CO2SM_Temperature/CO2SM_Pressure - 0.12E+03\n", - " \n", - " Calculating quality metrics on observed data set.\n", - " \n", - " Quality metrics for output CO2SM_CO2_Enthalpy\n", - " ---------------------------------------------\n", - " SSE OLR: 0.515E+08\n", - " SSE: 0.659E+08\n", - " RMSE: 406.\n", - " R2: 0.999\n", - " R2 adjusted: 0.999\n", - " Model size: 6\n", - " BIC: 0.484E+04\n", - " Cp: 0.659E+08\n", - " AICc: 0.482E+04\n", - " HQC: 0.483E+04\n", - " MSE: 0.168E+06\n", - " SSEp: 0.659E+08\n", - " RIC: 0.659E+08\n", - " MADp: 0.594\n", - " \n", - " Quality metrics for output CO2SM_CO2_Entropy\n", - " --------------------------------------------\n", - " SSE OLR: 541.\n", - " SSE: 558.\n", - " RMSE: 1.18\n", - " R2: 0.997\n", - " R2 adjusted: 0.997\n", - " Model size: 10\n", - " BIC: 193.\n", - " Cp: 178.\n", - " AICc: 154.\n", - " HQC: 169.\n", - " MSE: 1.43\n", - " SSEp: 558.\n", - " RIC: 606.\n", - " MADp: 0.130E+04\n", - " \n", - " Total execution time 0.52 s\n", - " Times breakdown\n", - " OLR time: 0.30 s in 3863 ordinary linear regression problem(s)\n", - " MINLP time: 0.0 s in 0 optimization problem(s)\n", - " Simulation time: 0.0 s to simulate 0 point(s)\n", - " All other time: 0.22 s in 1 iteration(s)\n", - " \n", - " Normal termination\n", - " ***************************************************************************\n" + "Alamo not found.\n" ] } ], @@ -330,108 +262,19 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACoz0lEQVR4nO2deVxU1fvHP8OqIAyyKJAouK8tauFomRqJ5ZJhiZnlbppY7mbuVl/T3NP0W7llWmpSmZaJS31Lka9pZn5TS364haigDCoqCPf3B811Zpjl3pm7nDvzvF8vX8Lcy51zzz33nM95nuc8R8dxHAeCIAiCIAhCUXzULgBBEARBEIQ3QiKMIAiCIAhCBUiEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYQRAEQRCECpAIIwiCIAiCUAESYQRBEARBECpAIowgCIJwyNq1a6HT6XDmzBm1i0IQHgWJMIIgVOfQoUNIS0tDs2bNEBwcjNq1a6N37974888/K53boUMH6HQ66HQ6+Pj4IDQ0FI0aNcJLL72EjIwMUd/7zTff4PHHH0eNGjUQFBSEunXronfv3ti5c6dUt1aJf/3rX/jqq68qfX7gwAHMnDkThYWFsn23NTNnzuTrUqfTISgoCE2bNsXUqVNRVFQkyXds3LgRixcvluRaBOFpkAgjCEJ15s6di61bt+KJJ57AkiVLMGzYMPznP/9By5Ytcfz48Urn16pVC+vXr8cnn3yC9957Dz169MCBAwfQuXNnpKamorS01Ol3zp8/Hz169IBOp8PkyZOxaNEi9OrVC3/99Rc+//xzOW4TgGMRNmvWLEVFmIkVK1Zg/fr1WLhwIRo3box33nkHXbp0gRRbC5MIIwj7+KldAIIgiLFjx2Ljxo0ICAjgP0tNTUWLFi3w7rvv4tNPP7U4X6/Xo1+/fhafvfvuu3jttdfwwQcfID4+HnPnzrX7fXfv3sVbb72FJ598Ert27ap0/PLly27eETsUFxcjKCjI4TnPPfccIiMjAQDDhw9Hr169kJ6ejoMHD8JgMChRTILwSsgSRhCE6rRt29ZCgAFAgwYN0KxZM5w4cULQNXx9fbF06VI0bdoUy5Ytg9FotHtufn4+ioqK0K5dO5vHa9SoYfH77du3MXPmTDRs2BBVqlRBTEwMUlJSkJ2dzZ8zf/58tG3bFhEREahatSpatWqFL774wuI6Op0ON2/exLp163gX4IABAzBz5kxMmDABAJCQkMAfM4/B+vTTT9GqVStUrVoV4eHh6NOnD86fP29x/Q4dOqB58+Y4fPgw2rdvj6CgILz55puC6s+cTp06AQBycnIcnvfBBx+gWbNmCAwMRGxsLEaOHGlhyevQoQN27NiBs2fP8vcUHx8vujwE4amQJYwgCCbhOA6XLl1Cs2bNBP+Nr68vXnjhBUybNg0///wzunbtavO8GjVqoGrVqvjmm28watQohIeH271mWVkZunXrhj179qBPnz54/fXXcf36dWRkZOD48eOoV68eAGDJkiXo0aMHXnzxRZSUlODzzz/H888/j+3bt/PlWL9+PYYMGYJHHnkEw4YNAwDUq1cPwcHB+PPPP/HZZ59h0aJFvFUqKioKAPDOO+9g2rRp6N27N4YMGYIrV67g/fffR/v27fHrr78iLCyML29BQQGeeuop9OnTB/369UPNmjUF158Jk7iMiIiwe87MmTMxa9YsJCUlYcSIETh16hRWrFiBQ4cOYf/+/fD398eUKVNgNBpx4cIFLFq0CABQrVo10eUhCI+FIwiCYJD169dzALhVq1ZZfP74449zzZo1s/t3X375JQeAW7JkicPrT58+nQPABQcHc0899RT3zjvvcIcPH6503urVqzkA3MKFCysdKy8v538uLi62OFZSUsI1b96c69Spk8XnwcHBXP/+/Std67333uMAcDk5ORafnzlzhvP19eXeeecdi89///13zs/Pz+Lzxx9/nAPArVy50u59mzNjxgwOAHfq1CnuypUrXE5ODvfvf/+bCwwM5GrWrMndvHmT4ziOW7NmjUXZLl++zAUEBHCdO3fmysrK+OstW7aMA8CtXr2a/6xr165cnTp1BJWHILwNckcSBMEcJ0+exMiRI2EwGNC/f39Rf2uytFy/ft3hebNmzcLGjRvx0EMP4fvvv8eUKVPQqlUrtGzZ0sIFunXrVkRGRmLUqFGVrqHT6fifq1atyv987do1GI1GPPbYYzhy5Iio8luTnp6O8vJy9O7dG/n5+fy/6OhoNGjQAPv27bM4PzAwEAMHDhT1HY0aNUJUVBQSEhLwyiuvoH79+tixY4fdWLLdu3ejpKQEo0ePho/PvWFk6NChCA0NxY4dO8TfKEF4IeSOJAiCKfLy8tC1a1fo9Xp88cUX8PX1FfX3N27cAACEhIQ4PfeFF17ACy+8gKKiImRlZWHt2rXYuHEjunfvjuPHj6NKlSrIzs5Go0aN4OfnuLvcvn073n77bRw9ehR37tzhPzcXaq7w119/geM4NGjQwOZxf39/i9/vu+++SvF1zti6dStCQ0Ph7++PWrVq8S5We5w9exZAhXgzJyAgAHXr1uWPEwThGBJhBEEwg9FoxFNPPYXCwkL89NNPiI2NFX0NU0qL+vXrC/6b0NBQPPnkk3jyySfh7++PdevWISsrC48//rigv//pp5/Qo0cPtG/fHh988AFiYmLg7++PNWvWYOPGjaLvwZzy8nLodDp89913NgWpdYyVuUVOKO3bt+fj0AiCUA4SYQRBMMHt27fRvXt3/Pnnn9i9ezeaNm0q+hplZWXYuHEjgoKC8Oijj7pUjtatW2PdunW4ePEigIrA+aysLJSWllayOpnYunUrqlSpgu+//x6BgYH852vWrKl0rj3LmL3P69WrB47jkJCQgIYNG4q9HVmoU6cOAODUqVOoW7cu/3lJSQlycnKQlJTEf+auJZAgPBmKCSMIQnXKysqQmpqKzMxMbNmyxaXcVGVlZXjttddw4sQJvPbaawgNDbV7bnFxMTIzM20e++677wDcc7X16tUL+fn5WLZsWaVzuX+Smfr6+kKn06GsrIw/dubMGZtJWYODg20mZA0ODgaASsdSUlLg6+uLWbNmVUqeynEcCgoKbN+kjCQlJSEgIABLly61KNOqVatgNBotVqUGBwc7TBdCEN4MWcIIglCdcePGYdu2bejevTuuXr1aKTmrdWJWo9HIn1NcXIzTp08jPT0d2dnZ6NOnD9566y2H31dcXIy2bduiTZs26NKlC+Li4lBYWIivvvoKP/30E3r27ImHHnoIAPDyyy/jk08+wdixY/Hf//4Xjz32GG7evIndu3fj1VdfxTPPPIOuXbti4cKF6NKlC/r27YvLly9j+fLlqF+/Po4dO2bx3a1atcLu3buxcOFCxMbGIiEhAYmJiWjVqhUAYMqUKejTpw/8/f3RvXt31KtXD2+//TYmT56MM2fOoGfPnggJCUFOTg6+/PJLDBs2DOPHj3er/sUSFRWFyZMnY9asWejSpQt69OiBU6dO4YMPPsDDDz9s8bxatWqFTZs2YezYsXj44YdRrVo1dO/eXdHyEgSzqLk0kyAIguPupVaw98/RudWqVeMaNGjA9evXj9u1a5eg7ystLeU++ugjrmfPnlydOnW4wMBALigoiHvooYe49957j7tz547F+cXFxdyUKVO4hIQEzt/fn4uOjuaee+45Ljs7mz9n1apVXIMGDbjAwECucePG3Jo1a/gUEOacPHmSa9++PVe1alUOgEW6irfeeou77777OB8fn0rpKrZu3co9+uijXHBwMBccHMw1btyYGzlyJHfq1CmLunGUvsMaU/muXLni8DzrFBUmli1bxjVu3Jjz9/fnatasyY0YMYK7du2axTk3btzg+vbty4WFhXEAKF0FQZih4zgJNgcjCIIgCIIgREExYQRBEARBECpAIowgCIIgCEIFSIQRBEEQBEGoAIkwgiAIgiAIFSARRhAEQRAEoQIkwgiCIAiCIFSAkrUyTHl5OXJzcxESEkJbfxAEQRCERuA4DtevX0dsbCx8fOzbu0iEMUxubi7i4uLULgZBEARBEC5w/vx51KpVy+5xEmEMExISAqDiITraB48gCIIgCHYoKipCXFwcP47bg0QYw5hckKGhoSTCCIIgCEJjOAslosB8giAIgiAIFSARRhAEQRAEoQIkwgiCIAiCIFSARBhBEARBEIQKkAgjCIIgCIJQARJhBEEQBEEQKkAijCAIgiAIQgVIhBEEQRAEQagAiTCCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVEAzIqxHjx6oXbs2qlSpgpiYGLz00kvIzc21OIfjOMyfPx8NGzZEYGAg7rvvPrzzzjsW5/zwww9o2bIlAgMDUb9+faxdu7bSdy1fvhzx8fGoUqUKEhMT8d///tfi+O3btzFy5EhERESgWrVq6NWrFy5dumRxzrlz59C1a1cEBQWhRo0amDBhAu7evStNZRCycOECsG9fxf8EQRAEITeaEWEdO3bE5s2bcerUKWzduhXZ2dl47rnnLM55/fXX8fHHH2P+/Pk4efIktm3bhkceeYQ/npOTg65du6Jjx444evQoRo8ejSFDhuD777/nz9m0aRPGjh2LGTNm4MiRI3jggQeQnJyMy5cv8+eMGTMG33zzDbZs2YIff/wRubm5SElJ4Y+XlZWha9euKCkpwYEDB7Bu3TqsXbsW06dPl7GGlMcTREtBQQEuXryIBQsKUacOh06dgDp1OCxYUIiLFy+ioKBA7SISBOEGntBPER4Mp1G+/vprTqfTcSUlJRzHcdwff/zB+fn5cSdPnrT7NxMnTuSaNWtm8VlqaiqXnJzM//7II49wI0eO5H8vKyvjYmNjuTlz5nAcx3GFhYWcv78/t2XLFv6cEydOcAC4zMxMjuM47ttvv+V8fHy4vLw8/pwVK1ZwoaGh3J07dwTfo9Fo5ABwRqNR8N8oxccfc5yPD8cBFf9//LHaJRJPfn4+N3PmTG7MmAWcTlfGARz/T6cr48aMWcDNnDmTy8/PV7uohIzk5+dzubm5XG5uLvfLL3ncli353C+/5PGf0fPXHqZnOn/+Nc7Hp/yffqqcmz//Gj1TAZw/z3F791b8T7iG0PFbM5Ywc65evYoNGzagbdu28Pf3BwB88803qFu3LrZv346EhATEx8djyJAhuHr1Kv93mZmZSEpKsrhWcnIyMjMzAQAlJSU4fPiwxTk+Pj5ISkrizzl8+DBKS0stzmncuDFq167Nn5OZmYkWLVqgZs2aFt9TVFSE//3vf3bv686dOygqKrL4xxoFBQU4fPgShg3jUF5e8Vl5OfDKKxwOH76kKctRSUkJAODq1QhYvwoc54OrV8MtziM8j4KCAixbtgwffvghhg8/hIcfjsLzz0fg4YejMHz4IXz44YdYtmyZptq1t2N6pu+99xkmTAhFebkOAFBersOECaF4773P6Jk6YNUqoE4d/OMVqPidkA9NibBJkyYhODgYEREROHfuHL7++mv+2P/93//h7Nmz2LJlCz755BOsXbsWhw8ftnBZ5uXlWQgjAKhZsyaKiopw69Yt5Ofno6yszOY5eXl5/DUCAgIQFhbm8Bxb1zAds8ecOXOg1+v5f3FxcQJrRhlMndv77+/kOzYTZWU6vP/+d5rs3MLDC6DTlVt8ptOVIzz8qp2/YBuTi/XixYs4fPgSvviiQjibPtPa85ETk8A2GkPwzTfdeDHOcT745ptuMBpDLM4j2EdrkytW3KVamGCzUldSoqoIe+ONN6DT6Rz+O3nyJH/+hAkT8Ouvv2LXrl3w9fXFyy+/DI7jAADl5eW4c+cOPvnkEzz22GPo0KEDVq1ahX379uHUqVNq3aIoJk+eDKPRyP87f/682kWywNRpORMtrHRuQtHrr6N79+38Pel05ejefTv0+usql0w8ZNlxDWcDNqE9WJ5csRaLqoUJtqda6PzU/PJx48ZhwIABDs+pW7cu/3NkZCQiIyPRsGFDNGnSBHFxcTh48CAMBgNiYmLg5+eHhg0b8uc3adIEQMVKxUaNGiE6OrrSKsZLly4hNDQUVatWha+vL3x9fW2eEx0dDQCIjo5GSUkJCgsLLaxh1udYr6g0XdN0ji0CAwMRGBjosD5YwCRaTJYDpUTLhQvAX38BDRoAtWpJe+2WLX9FvXqncfVqOMLDr2pSgAHOLTv16p2GXn9dc0JZbkwDtrkQY2XAJlxDrX7KGSbBYzSGYPHi0eA4S3fp33+vhl5/HWlpaYiIiFCkTNYTbHvvgVr9xoULwLBhsLLQAcnJ0o8FSqOqCIuKikJUVJRLf1v+z9O4c+cOAKBdu3a4e/cusrOzUa9ePQDAn3/+CQCoU6cOAMBgMODbb7+1uE5GRgYMBgMAICAgAK1atcKePXvQs2dP/nv27NmDtLQ0AECrVq3g7++PPXv2oFevXgCAU6dO4dy5c/x1DAYD3nnnHVy+fBk1atTgvyc0NBRNmzZ16X5ZQynRUlBQgJKSEmzcWBUTJ+pRXq6Djw+HefOM6Nv3FgICAiTrqPT666p20KZ7BYDcXB/k5PghIeEuYmMr2rqYe3Vk2VF7EJIb83q0ha16ZHXA9iZceW7OYHFyJcRdqtZEicX3oKCgAAcPAuXlls++rAzIyipA1apQTKzKgaoiTChZWVk4dOgQHn30UVSvXh3Z2dmYNm0a6tWrxwufpKQktGzZEoMGDcLixYtRXl6OkSNH4sknn+StY8OHD8eyZcswceJEDBo0CHv37sXmzZuxY8cO/rvGjh2L/v37o3Xr1njkkUewePFi3Lx5EwMHDgQA6PV6DB48GGPHjkV4eDhCQ0MxatQoGAwGtGnTBgDQuXNnNG3aFC+99BLmzZuHvLw8TJ06FSNHjtSEpUsocosWoTPGfv368cJbq5juFQCOHHmoUifYsuWvACB4duytlh3zegQqLIJXr0YgPLzAoq3aqkcWB2xvwZ3n5gy1J1f2YPUdZek9MB8DdLrRlepq//51OH5cWauh1GhChAUFBSE9PR0zZszAzZs3ERMTgy5dumDq1Km8qPHx8cE333yDUaNGoX379ggODsZTTz2FBQsW8NdJSEjAjh07MGbMGCxZsgS1atXCxx9/jOTkZP6c1NRUXLlyBdOnT0deXh4efPBB7Ny50yLQftGiRfDx8UGvXr1w584dJCcn44MPPuCP+/r6Yvv27RgxYgQMBgOCg4PRv39/zJ49W4Ha8hyczRizshLRufNufPrpp5p8Cc1n/vn5+QCkcyOyOKNVAvP6cSRm7dUjqwO2p+Puc9MiLL+jrLwHpuftrK603C40IcJatGiBvXv3Oj0vNjYWW7dudXhOhw4d8Ouvvzo8Jy0tjXc/2qJKlSpYvnw5li9fbvecOnXqVHJ9Eq5ha8YIAAcOGJCYmOWy6T4gIEDS88Rge+Yfj5s3gyRzI7I0o1UaZ2KWYBNveG6FhYX8z/XqnUavXlsBcIiLu+Ax9ygHntqfaUKEEd6NXn8dBkMmDhxoZ3XEvRiniIgIpKWlSR6HIgR7M3+gHAAH4N4KJaEuioKCAt6iZoKVGa3SCImJKygogNFoFHQ9OYQ4URkpYhnVnFw5o6CgAJs3bwbg2OKndeRaROWJ/RmJMEIwanZuiYlZOHDAAPOsKlLET6jtwrSe+VfcXzl0Ok6Ui0JoTI234Czexmg0YtOmTU6v07t3b9SoUUP1duItSBEnpebkyhlCVy9rEbkXUXlqn0YijBCMmp2bXn8dPXqwGT/hDrZm/oAPevXajODgYsFmd6ExNSY83bLjLIaktLTU4nx7HXxYWJiig7UcKwS1hFRxUqzXEWurl92dYMuddsOTrYYkwghRqNm5eWJMgL2Zv734kPz8fIcDsbMZdkpKCmJjY5kfpKRAaHthpYO3tmbaQ41FKEqKQ098z60RYvFTcqLk7gRbrrQbhYWFHmk1NIdEGKEpPC0mwNnM39pCk56eDsD+QOysE4yMjPQKAWbCWXthqYO3HqDsWeeUXgkmtzj0xlhGZ+99amqq4u+pFN8nZdoNU/zc1avxTFkNpYZEGMEsrLjM5LYC2Jv5u7JUn9XcQ3JjekZCA+39/Cq6PtbcQiZYss7l5uZafCalOBQby8hKnyAFjix+er1exZK5jpRpN4Rm8Qe03S5IhBHMEhERgX79+uHTTz91eq5cL6GcSSTNsZ75u2qhYTn3kFwItdT07t0bYWFhCAgIENXBKw0r1jlb9Sq1OBQay+ipbnRPtPhJ7U5m0WooJSTCCKapV6+eqiud5Eoi6Uw0umOh8YaYGnOE1n1YWBhiYmIAABcvXgTApmhlxTpnXa8XLsTIJg6dCU9vc6NrHanFpSdaDU2QCCNkQ6q9EFnofKW2TtgLhM3Pz0d6errbFhpPnGELRexSdtZEKyvWOXPX7pEjD2Hbtm4wTxEDSCcOWRGecsNyDjPW8dQ+jUQYIQtS74WoNnIMEo7uW6yFhjr3CoS4y2wlabXXwatRXyxY5woKCvg8aqYJiLUAA6QTh6wIT7lhOYcZoQ4kwghZEJqUUCt7fqkxSIix0FDnLsxaKSZ+TM0krWpb58zbke1cdpBUHLIgPJXCE99BmgS6DokwQlY8xc2g1iAhxgTviZ27GIS0NTHxY0rXp/UAxYp1Ljc3BtZbaQHlGDz4Y9SqdVGy71FbeGoJ1pL60iTQdUiEEbLiSW4GJQYJoQNscXExH1xu7zre1uG50tZY2gqFxYHMaAzB7t1JsBRgHJ58cnclASaFOPTUuB8pUWrFtlik/i5vsa6RCCNkxdPcDHIPEkIG4uLiYkFpO7QSbycVYtsaK7m4zGHtedl2ReoQG3svd5g76SO0NNCyYn2Sa8W2O0i1CMscFiclckAijJAdLbsZlBgkxHbu1hYwVjKrq4V53Ttqa+b5wVjJxcU6QqyL7uTv0spAy+KWUqy0YTkXYan93JWARBghCdZCwlO2IZF7kHC3c2fRmqM0Yp6RScB6Sqyi3DizLvbu3dvtgVILG6SzuKUUK23Y0xZhKQ2JMMJthAoJrSLnICG0Y7J1HiszYRYQ+4w8KVZRbhxZF8PCwtQrmEiksmaxMvFhrQ2zIgq1RuV1xwQhEluzxJyceBiNIU7/loVYD5YQU3eOOj3CMSYLj05XEbOi9VhFqbG1UjMh4Wyl+tHC+1tQUICLFy/a3APT1rvmaGJkb+Ij5H2VGtbasEkUmkMTG+eQJYyQFGf7v0VGRvLnshDrwRJiZ9iszYRdRcmAZzHxY3LCSpC3PbQSq+UMe9YvV61ZrFl7WIi3LSwsBOB5i7CUgkQYIRlC9n8z7d1HWOKKa9ETOj2lA55ZEBcsBnnbgnWBJQRX3Pjm8azWbYHFiY+a8bYFBQXYvHkz/3u9eqfRq9dWABzi4i5oqi9SCxJhhGS4M0tk3TIgN2LqzjTzBNiYCdtC6PN0JybOVdRuR2rcM1GB0RiC//2vmcN3LT093eJYWloa/zMLEx+W0noITZdB2IdEGCEZrs4StWIZkBOhdWc98wTYyaxuQszzJNhKGOvJmIsE6x0AHPVT1mJY7YkPC9Zca2iRkOuQCCMkw9VZIovLv5VGaN0JrYPU1FTVBKu7Kz69SZCQ9UAZrEVChQCrEGKmegeAnJx4m22PtS2lWJuMCrHka2ERhxqQCCMkxd1ZorcNSu4GitsTLXq9Xr5Ci0SosPK2Z0/WA+Wwl/k/OXknmjb9A9nZ9bF48Wi7bY9F6xNLOLPkqzUp1EKYC4kwwm2kmiV646DkTueuBdEitIze+OxZW2nnydgTCU2b/gEAgtqe2oM1yziz5KsxKWR1j01rSIQRbiPVLNFbByVXOgAtiBYxZVTj2as9S2ZxpZ2n4kgk5OTEe2W/IzVqx8pZw+Iem7YgEUZIghSDFQ1KwtGCYBVTRqWfPQuLQVhYaScHaotb6+8yYU8kUL9jiTvPj8Xt6VifsJIII5jBUwclOdDCwCGkjKZB0tmzlzqoV800EawkjJUDFsStOY6s9Pn5+UhPT6d+xwyxz4+ldBn2YH3CSiKMYArWTNqswsLAYW/GbEp2KaSM1oPk9OlXcOaMH+Lj7yI29mEAD/MduGnzbVuwEGArFDmDvNW2Qqklbl25b08Ww64idqW6VG1ZznbL+oSVRBghGLleFNaWf7MMKwOH0BmzkDKat5mYGKBVK9e+yx3ritKpMeQQQqxZoZTC1fumFY+OcRRHZb6rAOBePcndblmYsDqCRBghCDlfFOoM7WNL+Pbu3Rt3794FAPj7+1daeeRuhyhlpnvr/UJdKaPc1hV3VpmqbXkyh8VM/EqIW3fu2xv7FCE4i6Oy3lUAcF0kKZEnkmUPC4kwQhByvyjUGVZGacuGHJnuWd8v1J2gXW+1PAlFrRQq3pbwVw5ciaOSQtzL2WZYXDQAkAgjXEAL+ak8ATksG44sN9YuBjHfp9WBz52gXRYtT+ao+UzUWpFGfZM0OIqjkqtdSd1mtLBoACARRoiE9eW+LOOu68rdzk+o5UYsSg98Ug4CrAftuooSz8RWezYJeTVWpFHfJB324qiys+vL1q6kbjNaCXMhEUaIwtmLkp+fz0TDZg13XVdSDKpiLTJCxI7SA5+QYGEh7U+O1BisWAOVeCbO2rMa4pb1VARawzqOCgC/tRPgXrsyF/Cm91aONqOFcYhEGCEKZy+KKWDTW+Ng7OHuptZKz/CFij6hA58UAexigoWdtT+hqTGEtmGW3GBKiBFn7VnpvG+A51o1lcTRSnWpdhawJ+BZX8UoFyTCCFFYvyhAOQyGzErnqb0VhBqIibcSYzWRa1C1VwYxok/IwCdVALuYehDS/pylxhAKa24wVsRIy5a/Ii2tAYqKargsbsWg1iDO0gpZd7HlwjMltZWqXTla5MXyKka5IBFGiMb0omRlJSIz04ADB9ohM9Pg1UGwYuKtxFpN5BhUHZVBiNgR485zN4Dd9F1qiAshwpoVN5hauw84onnzMMTEyCtA1Myd54krZB1tSSS1yLXXD3lTnkgSYYQgbL0AmZkGZmb/aiNUaLhiNZG683NWBiFiR4w7z1GmeyGYf5den4tZs2L5ekhK2o2rVysGDanbndABlhXLk9QuVjGoGQ+nZgA26ytkpUAukeusHzLPMagla6JYSIQRgjB1dLm5uUhPT2dm9q81xNSbXJ2fszIItaS46s5zZcA2fdewYRdhNC7G1avhyM2Nxe7dSbLFYQkdOFmyPEnlYhUDC/FwnjpAs4BcItdZP8R6jkGpIBFGCMY8Uzors38lkSLmS0y9ydX5OStDSkoKhg2LlMWSIsWAbarPTz55mQlLrJz1xTqsxcOpjRoWQSVi0uRow944htiCRBjhEs5m/2LSBWgBd2K+kpJ2Izb2It8xi3EtSll3QmOGYmNjERERIbklRcoBmyVLrGnGrpTliSVYeg6uIpWIUcMiqOWYNG9dDWkNiTDCZRy5yMSkC9AC7sR8ZWQ8CUBn0TGrsfG2EjFDSiXwVGMWzUoeMBYQuliC9WBqqUSMWhZBrcekeeNqSGtIhBGicJRHxh6sdgByYEtoADoAlTvmgQOftNjcWgmroZwxQ0ok8FRrBSALcU8sYS7o77uvCJMm6VFWpoOvL4e5c4vQt+8LmrCCSyViWLEIsjJRcGRdNBqNFr/bG0NYF/BSQSKMEIV555uTk4OMjAz+mL0OoLCw0OMCLMXEfJnjyYGnSiTwVGMFIMU92cZUx+PGAampwOnTQP36OtSqFQYgTM2iKQ4L8U1KThSciaxNmzY5vUbv3r0RFhZm85gWBLxUkAgjRGN6OcyD0R11AHfv3lWlnNYoEftROZktB5MlDPDOwFNzpEjgqfQKQFasHCxTq1bFP60j1pLESm42JScKUu1BGxYW5lGTUFchEUa4jdEYgm3busOe240FlIr9SElJQUoKUK+e/TQKrNSJWiiRwFMKPCXuSSo8KTO8LVyxJKmZm80cJScKcuxB682QCCPc5vz5OJhbe4CKDuD8+VrQ60/I/v1CBgelYj8iIyMREBDAxzkkJJxF8+bHFQ/CZwGtd7724p58fDhMn56LlJQn4efnh5KSEj4hrRpCRAlxpOVVeEJwx5KkRm42a9R0hzp6zymW0jkkwghNI3RwSE1NtfjdVYHgSjZ5W2jdauAMT+l8zeOeOne+hgULvv7nWV+H2QJgC5QUIkqJI62vwnOG1l3OaqV7cPSeUyylMEiEEW4TF3ceQDkA806sHHFxF2T/bqGdfmlpKf+zKwJBbOyHJwssZ3hq5xsZeRsJCWednqekEPF0cSQXJuuhKa6VhcB6V1Bz30xn77nWha1SkAgjXMbf3x9AhTDp0WM7tm3rhgohVo4ePe4JE9N5SuDMwuWqQJAq9sPT42oA7VsVCOdo2dVsy3qodmC9q6hpdXf2nmtV2CoNiTDCZfR6Pf+zo1mY+XlCcUWsCLFwuSMQ3I398PS4Ggpk9w607mq2169Y92EVefzY33pKrbI5e8+ldJF68uSVRBjhMkITt4oddMWIFRNCLVxqzs7kch2x0kHJkcCTlXuzBYvWILnL5KmuZhPmfZjYPH4st1U5ECKypHCRevrklUQY4TJymcKtr2dvYDE/T6iFi6X9yuzdl/Vm4CZs1SVrHZSUCTxZuzdzWLQGKVEmcjXbhqW2KrcYFBqHJlUyVk+PeyQRRriF1PsMAsKTwJrjzMLl53evqau1d6M5ju4r3d6yO1TuxFnuoNxN4MnqvbFoDVKqTJ4Y5yOF9VBoG8zNza10rpQWMiXEoNqrv1m0QLsDiTBCFYR0FmIGFmcWrrCwMGbSRrgzYGp1tudJsGgNkrtMrGSGlxqlLZr2JlhSWciUmrio5fZj0QLtLiTCCFUQ4nIUMrCIWaLNSryAnAOmp80SWYLFhQdKlYmVzPBSIqf1UOx7SJMr57BogZYCEmGE6tib3XhqYlQh9+WKmPLEWaI5agtMqRceSBG7I8diCEffZUKtzPBSInQyJOQ5mcPSe6j2OyMlLFqgpYBEGKEqzmY3zoLotbgiydl9udKJe+os0YSjOhGzkMFdpFp4IGXsjpSLIbwBMdZDoc+pd+/eAJy/h0qKIpbEoBR4YjwiQCKMUBlnsxtHLkaj0YhNmzY5/Q5Wli4LcZ26KqY8dZYIOK8TMQsZpMSdhQdyxe64uxjCGxBjPTTtCeqMu3fvAnD8HmZn11dMFKk5KZNrYszSynYpIRFGqIqQ2Y29/GMcx1n8LiSVhZo4cp3m5+cjPT3dqZgyt/qYizpPnSUC7glMVp69FGjR6ssqclkP7b2H/v4liooipSZl1m1SjomxmlszKQGJMEJVnM1uOnbsiOrVq/Pn+/v7Q6/Xo7i4GMXFxfznWjG9O+t4nIkpa6tPv379ALC9as1V8SDUbeQNsJSHytMQYz20N9Ez38LN1ntYWhqoqKVaiXdG6Ap3dyfGWoz7FQOJMEJ1HM1u9u3bV+n8fv364dNPP+V/94R4KKEpAKwJCgpyumqtuLgYJSUldl0rcnZg7ogHR26jadNyAWjj2QrBWayQ3KkHyMrmHEcTPb1eb/M9DA29jAMHfoXRGKLIRELJVCLO2pqUE2NPbnskwgjJEdKhC93yyBbmFjDAM+KhrGd7aWmnsGFDFi9KHQ3SjlatFRQU4MMPP3T6/XJZUNwVD/bcRr6+vjC/LS2vAlPbiktWNucImejZeg8LCoADB5SzVKuZSsT8HQSg+YmxUmhGhPXo0QNHjx7F5cuXUb16dSQlJWHu3LmIjY0FAMycOROzZs2q9HdBQUG4efMm//uWLVswbdo0nDlzBg0aNMDcuXPx9NNP88c5jsOMGTPw0UcfobCwEO3atcOKFSvQoEED/pyrV69i1KhR+Oabb+Dj44NevXphyZIlqFatGn/OsWPHMHLkSBw6dAhRUVEYNWoUJk6cKEfVMIWYDt3axGyKizIhdGD197/jEe4q644xIeEsAPcGaVazzruCudvI3KintohxB1etuFKKTk9qI3Lh6kRPDVGkRioR63fQYMjU/MRYKTQjwjp27Ig333wTMTEx+PvvvzF+/Hg899xzOHDgAABg/PjxGD58uMXfPPHEE3j44Yf53w8cOIAXXngBc+bMQbdu3bBx40b07NkTR44cQfPmzQEA8+bNw9KlS7Fu3TokJCRg2rRpSE5Oxh9//IEqVaoAAF588UVcvHgRGRkZKC0txcCBAzFs2DBs3LgRAFBUVITOnTsjKSkJK1euxO+//45BgwYhLCwMw4YNU6K6VEPMvo+ONscVOrCanwdwAHQOXXhac7so5WpVMs2DlGjdFe3K4K5l0alV3Imx8rT8atbYegcPHDB4xMRYCTQjwsaMGcP/XKdOHbzxxhvo2bMnSktL4e/vj2rVqllYon777Tf88ccfWLlyJf/ZkiVL0KVLF0yYMAEA8NZbbyEjIwPLli3DypUrwXEcFi9ejKlTp+KZZ54BAHzyySeoWbMmvvrqK/Tp0wcnTpzAzp07cejQIbRu3RoA8P777+Ppp5/G/PnzERsbiw0bNqCkpASrV69GQEAAmjVrhqNHj2LhwoUeL8LMEZvbyfSZ0IHV+jxAB6Acgwd/jFq1Ksc/adHtIrWr1Z4oVirNg9RuQ626ol3NdO/s3cjPz3dbOGvZtSs1nrpdk5TYegcBHxgM+5GZafCodBJyoBkRZs7Vq1exYcMGtG3bll+VYs3HH3+Mhg0b4rHHHuM/y8zMxNixYy3OS05OxldffQUAyMnJQV5eHpKSkvjjer0eiYmJyMzMRJ8+fZCZmYmwsDBegAFAUlISfHx8kJWVhWeffRaZmZlo3769xYuZnJyMuXPn4tq1axar/cy5c+cO7ty5w/9eVFQkvFIYw53cTkIHVnsvf2mpZYdoeg5adLtIucrJVQuKVPUh9PvFxBSytIWQGOwtOvDx4TB9ei5SUp6Ev78/v6DCNEFx9m6Y3itXhTNZ2SzxxO2apMbeO5iYmIXExCybC66Ie2hKhE2aNAnLli1DcXEx2rRpg+3bt9s87/bt29iwYQPeeOMNi8/z8vJQs2ZNi89q1qyJvLw8/rjpM0fn1KhRw+K4n58fwsPDLc5JSEiodA3TMXsibM6cOTbj2rSIUCFla9YtVHg4Oy8lJQWxsbF2O0gtzPilSlCotttO6Pe7ElMo93Y9cmG+6KBz52tYsODrf9ruddibowh9N1wRzmq3EVbxdHeiuzjro2y1HVYnR2qgqgh74403MHfuXIfnnDhxAo0bNwYATJgwAYMHD8bZs2cxa9YsvPzyy9i+fTt0Op3F33z55Ze4fv06+vfvL1vZ5WDy5MkWlrqioiLExcWpWCLXcZS0MCcnHuHhBXYzSAsVHs7Oi4yMtDsIsz7jlzpBoRBRLKcoFSrKxVgrTTGFnrBdT2TkbX4hhiPkzBquVdcuoQ5C+yhrUlNTmZ4cKY2qImzcuHEYMGCAw3Pq1q3L/xwZGYnIyEg0bNgQTZo0QVxcHA4ePAiDwWDxNx9//DG6detWyaIVHR2NS5cuWXx26dIlREdH88dNn5kHjV+6dAkPPvggf87ly5ctrnH37l1cvXrV4jq2vsf8O2wRGBiIwMBAu8e1hK3B4v77j2HVqiH/dPTlqIjhqhDQ1rNuRy91UFAQ/7MrAkULM36pExQ6s6DIJUqVcht6y3Y9HTt2BLCPb/P+/iUoLQ2E0RjidtulpLiEGKz7KKGr2/V6veJlZRlVRVhUVBSioqJc+tvy8nIAsIihAiriuvbt24dt27ZV+huDwYA9e/Zg9OjR/GcZGRm8iEtISEB0dDT27NnDi66ioiJkZWVhxIgR/DUKCwtx+PBhtPrHLr13716Ul5cjMTGRP2fKlCn8ogHT9zRq1MiuK9ITMRdI/v4lZgIMAKxjuSxn3SkpKYiMjKx0jkl4uCNQtDLjl2K2KCSwWE5RKmafPltowWWsJKb+Q6+/LtlehO4Gn2ttxTEhHVr1NLCEJmLCsrKycOjQITz66KOoXr06srOzMW3aNNSrV6+SFWz16tWIiYnBU089Vek6r7/+Oh5//HEsWLAAXbt2xeeff45ffvmFT2ap0+kwevRovP3222jQoAGfoiI2NhY9e/YEADRp0gRdunTB0KFDsXLlSpSWliItLQ19+vThc5b17dsXs2bNwuDBgzFp0iQcP34cS5YswaJFi+StKAawl4Q1JyfeRhC9Jeaz7sjISIcpLNzp1L1pxu8osDggIAHp6b/KLkpd3aePlY5cDZHhTHxKKZzdCT7X4opjQl604GlgCU2IsKCgIKSnp2PGjBm4efMmYmJi0KVLF0ydOtXCfVdeXo61a9diwIAB8PX1rXSdtm3bYuPGjZg6dSrefPNNNGjQAF999RWfIwwAJk6ciJs3b2LYsGEoLCzEo48+ip07d/I5wgBgw4YNSEtLwxNPPMEna126dCl/XK/XY9euXRg5ciRatWqFyMhITJ8+XRPpKcwHnNxcH+Tk+CEh4S5iYyssj84GHHsmalvCByiHTgfFlzDLGVfDIvYCiy9erHimSopSoW5DVjpyNUSGEPEptXB2NfhciyuOTZAFTx604mlgBU2IsBYtWmDv3r1Oz/Px8cH58+cdnvP888/j+eeft3tcp9Nh9uzZmD17tt1zwsPD+cSs9rj//vvx008/OS4wY5gPOI4GAmcDjq1j9oSP0GBOKZA62F3rsJwDiZWOXGmRIVR8ihHOJDYqQxY8+WDR08DyO6AJEUYog6mROhsIXB1w7AkfpZYwSx3srnVYzoHEYkeuBM7EpynGVKhwVlpsiInhU3Ng1LIFj3VY8zSwLrhJhBGVkNIKIXSj7t69eyMsLIz/G7leBm8RWEJhLQcSy9Y5ORG6ijQqKkqUcFZSbIiJ4WN9YCTEw6qnQcxWempAIoyohJRWCLI+EWJwZJ0LDm6I0tIE+Pn58ZnkzVGiHcm1WtPVVaQsCGdAfAwfa5Yoe8+1sLDQ4d9R33UPJft6V62orCz2MYdEGFEJqc3J1EkRYrBlnauwnGxy+rdyWk7k7sBdXUUqBrlEJCsxfK7g6Llu3rzZ6d8raa1jObYJUKavd9WKyspiH2tIhBE2EZMB2RNhvbPzNlyxnEj5DJXuwOVIPiuniHRmPTftfWmvztXKByfFc1XKWkcu3ApcdS+yOlEgEUbYxV78lqdDnZ32kfoZytmBKyH45RKRQmP4zDOpp6WlWVxDTReRmOeqduJg1ly4riB1WxfTdlhd7EMijJAN6xeusLAQd+/e5X/39/e32MKCFesS64GchPMBUaoBS+5tl5QS/M7EhslSZY2YvID5+fmoV2+xU+u5eZ2r7SISOjCzGEuktigUi9RtXWzbYW3VpgkSYQSP0IFEyHnWL5x1h2GvA2HNusRi5+vtKPlM3N12yRlKWTeciQ1zS5U1YvICirWeq+UiEmrBA9QXiraQ+x2Qwzor9eTWlbbDYpgNiTCCR8rVLebXsO4w7r//GI4du99mB8KSdYnFztfbcfWZuGM1UCJgXi7EiA17uPpOCqlztVxEQnLkGY1GbNq0iblYIrn7JSWss1KISKFtR2iaJLXS3pAIIyyQYw886w7jt98eAKDjf2dV2LDW+RKuPRMprQZyBMybI7WLScjeoXLgrM5ZyAcnNEee0kLRXhjHtWvXAMjfL8kdjiGViBQ6sWA9TZJLImzfvn3o2LGj1GUhGMDdvSOtsdVhmASYCbmFjaumdVYDOb0Zsc9ES9ZMuVxMzvYONSGVABRS5yzv1mCNkrFEQqxQSvZLcrRJKUWkUPciC+3IHi6JsC5duqBWrVoYOHAg+vfvj7i4OKnLRaiAVHtHmmN7424O5kLMvAMxGo2IiYmR5H4A57FpJmzdE6uBnN6Iq5YTrVgz1RaLUg62Quuctd0arFEjA7wQ65JS/ZJcbdJdEcm6e1EsLomwv//+G+vXr8e6deswa9YsdOrUCYMHD0bPnj01c+NEZeTYO9JWh2EeEwaUIylpN/8Sbdq0SdLgfEexaUJi0VgM5PRGXLWcaMWaqaZYlHqw1UqdO4MFN5a9BU316p3G6NG2V6IKHYPteQhMK2XlapPuikgWnouUuCTCIiMjMWbMGIwZMwZHjhzBmjVr8Oqrr+LVV19F3759MXjwYDzwwANSl5VQCKlfPltCpkaNy9i9Owkc54Pdu5NQteptWYPzxQw0njbT8hTEWE5YiDkSg5rCRar3XYo6Zy1JspoDuZgFTSkpKYiMjBRcP2q7Pd2d3GpFYAnB7cD8li1bIjo6GhEREXj33XexevVqfPDBBzAYDFi5ciWaNWsmRTkJBZHj5TMXMkZjCC/AAGVcL2IGGk+baXkjWok5kkMsihUyUr3v7ta50FV5vXv3RlhYmM1jLDxTKRC7oCkyMlJUGIeQ4Hup3Z40ubWNyyKstLQUX3/9NVavXo2MjAy0bt0ay5YtwwsvvIArV65g6tSpeP755/HHH39IWV5CAaR4+Ry9SGq4XsQONJ7QkXs7rMccAdKLRTHpBeQQgO7UuVALuLP9HFnLNWgPW2LZkStQrgVNjsI0pAzHoMmtbVwSYaNGjcJnn30GjuPw0ksvYd68eWjevDl/PDg4GPPnz0dsbKxkBSWURQpzsfULl5OTg4yMDFVcLxRkT7CKlGJRTPLXmJgYpq2Frq7WZCnXoD2ciWWxC5pcRUiYhpQWK28TWEJwSYT98ccfeP/995GSkoLAwECb50RGRmLfvn1uFY5QF3f3jrT3wrkjiNyJGWExyJ61GBjCs3AmZFi1FgpZram1bXvMcSYUnS1okmoS6cwrYYo1s4b6JelwSYTt2bPH+YX9/PD444+7cnnCC3BFELmTbsKEu8JSSmijcLbRukDW6pZbQqwzWr03e9jqy2z1kZ067ZU0TYYzr4TYWDNCPC7HhJ06dQrvv/8+Tpw4AQBo0qQJRo0ahUaNGklWOEJZpNw7UghiBZEr6SaUvicx0EbhbFJQUIDLly87jT0C2BXIaucdcwdn1hln92a+GTnrQhlw3JcNHPgk/Pz8cPfuXf58f39/6PV6/nd37lGMV0LrkxJWcUmEbd26FX369EHr1q1hMBgAAAcPHkTz5s3x+eefo1evXpIWklAGuQMnpRJEQjph82z/qampKC0thZ+fn81VVSx0Hp42s9cqQq2TJlgVyFpJUmsLZ9YZZ/dmvRk5q0IZcN6XibFEuSqShHgl3LXak4Czj0sibOLEiZg8eTJmz55t8fmMGTMwceJEEmEaRs4XQSqR56wTnjo1B99808xM0GS5lO1fKbRstfA07LVNrcUfaTlhqjPrjNh7Y1UoA9KJZbEiSWy6CHes9lKEkXgyLomwixcv4uWXX670eb9+/fDee++5XSjCc5HiJXPUCUuZ7V8ptGy18HSMxhBkZSXiwAEDAPtWStZm+lpcDSx0myB79wYAOTnxmhHKgHRiWaxIcmdCLNZq7+6uJZ6OSyKsQ4cO+Omnn1C/fn2Lz3/++Wc89thjkhSMIOzhaIDJyYnXnKDRstXCkzEfMEzYslKytMBCjf0OpcKZMDAajdi0aROAyveWnV0fixePZtadby3STXFrcohloSLJlbbojtWeLP62cUmE9ejRA5MmTcLhw4fRpk0bABUxYVu2bMGsWbOwbds2i3MJQmrsDTBaFDRatFp4OtYDhjnWol5Mbi650XpCTEflss5rlp+fj/T0dGYHd5PwKiwsdLjIQ0qxLHdduGO1J4u/bVwSYa+++ioA4IMPPsAHH3xg8xgA6HQ6lJWVuVE8grCPrTgGtXKQuQuLOcyEIFedqe3es52xvAJnol7t+DEt1rdQbJWBxcFd7AIPvf46Bg580iInlyt1LndduDPJ1eIEWQlcEmHl5eVSl4MgnCJ0VqhWDjKxaH0vNbnccHJe15nQMGE7YzkAOBb1WlzlypI71RVYHNwdxWgBsNm3SJGTS+66cGeSSxZ/27i9gTdBKIUjV4vJNWFCiRxk7qJ115Fcbjg5ritmc2jA9oBhMGQiMTGrkrvIVA5W3WLO0Hq+OtYHd8vYQu6ff/KIdCXqwh2rvVYt/nIiWIQtXbpU8EVfe+01lwpDEM6QW5AoPZCyKrBcQS43nBTXFSo0dLp7e/M5GjBSU1MRFRWFiIgIXLx4EQCbbjGxaMmSp4VFCJVjC3Uw7f8oV98ih9CR0mrP0q4lLCBYhC1atEjQeTqdjkQYoThSJYL1hIFUDRwN3uYZzK1xZukTel0xFkNH19Tr9S5bJ1l0i4lBSBJkliyzWrAkO4otBKTrW+QObXCnrlnetYQFBIuwnJwcOctBMMyFC8BffwENGgC1aqldGttI1SFrfSBVA2eDt3UGc2vsxRqJva6QmCUhlk4ltoBhEaGZ6FmKDWOlHPawH1tYgVR9ixKC1NW/1YJYVhOKCSNsYgpi3rixKiZO1KO8XAcfHw7z5hnRt+8tJl8aKcqj9YFUDYRaD8XGGtm77vnztXD16i2XYpbksHRqwS0mBKETEFZjw1jEVn/CcYB5TJhUfQtr/bE5LJdNbVwWYRcuXMC2bdtw7ty5Si/lwoUL3S4YoR6mIGajMeSfBIgVMQzl5TpMmBCKv/9eDb3+OlMzYimh4FFxCBm8XYk1sm1FKMfWrc+5HLPkrKyuuNw8ZaZvLRiAisUI1hQWFrq9io8FlErLYd2fANCkSFcKraRLkQqXRNiePXvQo0cP1K1bFydPnkTz5s1x5swZcByHli1bSl1GQmFML4Azq4Enz4i9PXhUTDoHZ9ZDVxc72BIFgI6fFLgS2OysrK663JydW1BQwAfw24KVgcUkGLKyEpGZacCBA+2QmWmwELubN2/W/ARM7rQczmK0TD+npqZCr9cz8/zVxhv3mXRJhE2ePBnjx4/HrFmzEBISgq1bt6JGjRp48cUX0aVLF6nLSKiEN8VHeXPwqLXgMt8epuJ32x1hv379+J8dWQ/FugDtufdu3gzGF188L/g69hBi6ZRygsF6Hi5bbToz0+BQNGt9AiZ3Wg5PsY4qjTfuM+mSCDtx4gQ+++yzigv4+eHWrVuoVq0aZs+ejWeeeQYjRoyQtJCEOrAcH+XOYgFz0ZGb64OcHD8kJNxF7969cffuXfj7+0Ov11f6O0/sNO3PPEOg11932BEGBQU5HGhMudvEinnrAcx8expXJwX2LBNGY4jsmz6ztK2RLUz1nZubi/T0dLuiOSsrEZ0771aljHIiV1oOsX2Ft7nhHKHVnHuu4JIICw4O5htLTEwMsrOz0axZMwCOl6MT2oOl+CgpFguYi47KnW8WWrb8FUZjCO6/vxdatKiC2NiK3SE8tQN0NPNMStqN3buT3F5J6IqYt3VddyYF1kLD1v0qlRNL7W2NbBEREcG3BXsr+g4cMFRKVqt1WBnsWbeWKo27C2jsTbRZ7M9dEmFt2rTBzz//jCZNmuDpp5/GuHHj8PvvvyM9PZ3f0JtgF7FWJBbio6RaLOAsu/mtW1V44WE9MHtyB2irPjIykgBIs5JQKjHvznXMhYZag68WkqHq9ddhMGTiwIF2Vkc8L18eK3kBhbpHc3NzbVrLWBIVUuBOKIzjiTZ7/blLImzhwoW4ceMGAGDWrFm4ceMGNm3ahAYNGtDKSMZZtQoYNgwoLwd8fIAPPwQGD1a7VM6RerGAves4svyYru2JbgPbSSV93IoJlCqBpByJKNUYfFmxutjDvP4SE7Nw4IAB5iLcE+NBWYx7dSQcTG55Tw9Wd8fqLXSixUpcmUsirG7duvzPwcHBWLlypWQFIuShoKAAZ87cxbBhNVBebrIiAa+8wuHBBy8jPt5PEy+wVJ2mvfQHzgZmT129Y69ezV2SYmMCpQpOliPIWYnB1yTWTSEarFhd7BEREYHU1FRs2rQJev119OjBZjyolLAW9+pMOHhLsDrgvvWc9ffNhFvJWktKSnD58mWUl5dbfF67dm23CkVIi0k45OTEo7y8v8WxsjId3n33RwQH38K4cT3QokV1plcKStVp2rqOdQwUUHlg9tTVO/bqtWXLX9G8+XGXO0KphKjUglbOwbegoACXL1/G5s2bLT5n0epijfmCFJbiQeWEpft0JBwAMG1JlQN3QmG08L4BLoqwP//8E4MHD8aBAwcsPuc4DjqdDmVlZZIUjpAGxwG395Jfrl/P/eOeZHt5tZzxRVWr3hY0MLPuWnIFe/XKQkygVMid3d5egLXJYuqOZVEJ5N6DkBVYvU9HwkEty46S4RdSGgBYs3LawyURNnDgQPj5+WH79u2IiYmBTqeTulyEDDhLfllersMrrwDJyUCtWrZfKvOgfjWRShhYX0eowNOKqVssYupVjgFK7g5f7vxNtgKss7IS+fgqk8U1NjaXyYzp3pLfitX7dCYclLbsKB1+IfVzYcnKaQ+XRNjRo0dx+PBhNG7cWOryEDLjLPllWRmQlVWAqlUru4C0GtQvFiFCRCumbmcIHfh79+6NsLAwi7+TeoBSqsNXamA1d1ebMC3+GD16MfT660hJSUFkZCRTwoaVcsgNq/fpyCKttGVHjfALOUIPWBRfJlwSYU2bNqV8YBrGPFGlLSGxf/86HD9+L92DpwT1A9JZG8R0iCyvpmTJIuBJ8XbW7mpzzC2mkZGRHrEPI+EeQt2jall2PDH8ghUEi7CioiL+57lz52LixIn417/+hRYtWsDf39/i3NDQUOlKSMiGMyFRUlLiNKj//fe/Q0LCWdlXA0oVK2BLdFhv0+Po2uZ/J6RD1MJqStYEtCd0+LZTflSgRYspIS+OJkOmHSNMqGHZ0VL4BcsLy2whWISFhYVZxH5xHIcnnnjC4hwKzNcezoSEo6B+88FEbuuElBYb63NiYmIEX9t6E2ZnHaInWXeUQksdvj3sZZ0HXHchsWxRlQpvuEd72LsvFkSFlsIvWLLuC0GwCNu3b5+c5SBUROjMymDI5Df2VWOliZwvjdBru9oheoJ1Rym01OHbw5aV2WDIdHnbH2/Y1kYLVmOhCBWTQs9TW1RoZaWhCdbbhzmCRdjjjz/O/3zu3DnExcVVWhXJcRzOnz8vXekISXB3hmQZYFyOtm33e9weckJxtUP0BOuOUmitw7eHEHe10HdT6LY2WraoeorVWKhg7tevHz799FP+d9ZFpxZWGmoRlwLzExIScPHiRdSoUcPi86tXryIhIYHckYxhLRysYwzsYTQacf48ZxVg7IPMzIqNfL0VVzpET7DuSIm1BaCwsBBXrlzhf9dqhy80wDo1NRVRUVEutSUt7D/pDlq3GgsVzMXFxfzPWhGdrK801CIuiTBT7Jc1N27cQJUqVdwuFCE9rnT2mzZtQk5OPDiuicXnallwxG48zhKeYt1xhhD3CgAHbifL3xMSzspeZimR23WkdYEiBE+yGgsRzEKfqRrxcizEo3k6okTY2LFjAQA6nQ7Tpk1DUFAQf6ysrAxZWVl48MEHJS0goS5qW3BMHc/GjVUxcaIe5eU6+PhwmDfPiL59bzEVYOkMrVp3hCI0pqd37978z9aD1P33H8OxY/c7HLRY7/DlbI+eJFDsoXafIxVCxZWQZ6pWvBwL8WiejigR9uuvFZ0hx3H4/fffLTrDgIAAPPDAAxg/fry0JSQkR8wgpqYFx9TxGI0hWLx4tEVm/wkTQvH336uh119nJmZCCNbmfFNnevx4If+ZVjs1oTE9d+/eBWB7kPrttwcA6PjfzQetlJQUxMbGarJupMJTBIojPMVqLFQwC3mmnhIvJxfmVsLcXB/k5PghIeEuYmMr9rVmuU8VJcJMKyQHDhyIJUuWUD4wjSJkdlNYWMhvQCxlgLEYTOVz1pnZug9WXJeO6sW8M/3kE8vOVEvC0hp3LAAmAWbCOrGpVutEKpwJFHtJtFkehGzhCVZjoYJZjOhU2h2thRWr5mV0JFBZ7VNdiglbs2aN1OUgFEZsY7QXkKmEdULs7J+l7ZXsLYpw1plqeUbrjgUA4GAuxDzNyiMFjgSKqW3ZcwPLvfWUlGg9CFyMuGJ1z1otWOBM363VPtUlEXbz5k28++672LNnDy5fvozy8nKL4//3f/8nSeEI9lHCOiG0M1NjeyUhFjdb3+nJsT3uWABsxYRpvT6kQOiqS3sDpdEYgrlz/6uYBcOVIHJPDAIXY9Fjec9aLSwI0Wqf6pIIGzJkCH788Ue89NJLiImJsblSkiCkxFlnpuT2So4WC3TocAfnz1dB69Z6h25QT47tcdcC0KnTXk27oeRAyLY29gbKW7eqYPfuJMUsGK4mlvWUIHChgtl8YZuz65nqRK14OS0IHK32qS6JsO+++w47duxAu3btpC4PQdjF0UxRqe2VHC0WGD8+FDpdRefkbAWnpwQf28MdC4DW3VBy4Ux82BsoTQLM9LvcFgx3EstKLbDUSOsgRky6sl2aGvFyWhA4Wu1TXRJh1atXR3h4uNRlIRhCq64BuV9ER4sFAB9wXMVPQlZwekLwsSPsiSl/f3+XrsdaW2MN2zF2lfevVNKCoWZiWTW3ehJ6PVe/V+mJilYEjhb7VJdE2FtvvYXp06dj3bp1gk2qhLbQsmtAiRfR/gbN93C2ghPwLKuPUJEUFRVVqW0VFhbyqSuACqGm1+strs1iW2MJWwNlUtJuC0sYoJwFQ+04Ik/a6omFSbHYflWttBFa61NdEmELFixAdnY2atasifj4+Eoz2yNHjkhSOEJd1B70hHQoRmMIsrKCEBd32+JzuV9E6wEPKEfFqj7vXdnnjnCPiYmRs2heg62BsmrV25JZMITuiACwFUek9a2eWJkUC+1XtZ42QklcEmE9e/aUuBgEURlnHc/GjVUxe7Yeixbp4OMTim7dHlK0Y7Ue8LKz6zsd7FiY0cqJt3eoUuFOLJP1QCmVZVhozqjU1FQA7MQRqW2Rkwo13i1X+ysl00ZovU91SYTNmDFD6nIQhE1sdTymVBSmlYlARQyWGh2r+YAnZLBjZUZLsIvYBJlCBhcpLMNCc0aVlpby38lCHBFLFjmt4W5/JXXd23Nx9u7dG3fv3q0UxiCkjGojSoT997//RatWreDr62vz+J07d/D1119b7A1HEFLiKBUFCx2rkMGO1c6AYAOxCTJtDZRGoxGbNm1y+l2uWAfEWJZYCJRmxSInN3LFYLnTX0lZ945dnFn8e5GamoqbN6tb3H9JSQkKCgqY7HvtRxXbwGAwoKCggP89NDTUIjFrYWEhXnjhBelKZ0aPHj1Qu3ZtVKlSBTExMXjppZeQm5trcc7333+PNm3aICQkBFFRUejVqxfOnDljcc4PP/yAli1bIjAwEPXr18fatWsrfdfy5csRHx+PKlWqIDExEf/9738tjt++fRsjR45EREQEqlWrhl69euHSpUsW55w7dw5du3ZFUFAQatSogQkTJlgEHhOuYZ2KwhwhLzerJmmCsMae2DEaQyqdGxERgZiYGP5f48aNkZaWhmHDhtn952o8jiPrBgD4+VnO7fX660hIOOuya95dTBY5U39ha6unixcvWoxtWsMkUD788EMMH34IDz8cheefj8DDD0dh+PBD+PDDD7Fs2TLF79FZ3YvBmYvT9F5MmvQnM/cvBFGWMM60/t7O7/Y+k4KOHTvizTffRExMDP7++2+MHz8ezz33HA4cOAAAyMnJwTPPPIOxY8diw4YNMBqNGDNmDFJSUviFAjk5OejatSuGDx+ODRs2YM+ePRgyZAhiYmKQnJwMANi0aRPGjh2LlStXIjExEYsXL0ZycjJOnTqFGjVqAADGjBmDHTt2YMuWLdDr9UhLS0NKSgr2798PACgrK0PXrl0RHR2NAwcO4OLFi3j55Zfh7++Pf/3rX7LUj7fhzNWRkpKCyMhIi7+RwiRNIk5e1MjrxCruunLkqidn1o2wsDDmXO7WFjkAyMmJR3h4AdLT0/nztBoozvLWPVJbQ51NAli7f2e4FBPmCLmy548ZM4b/uU6dOnjjjTfQs2dPlJaWwt/fH4cPH0ZZWRnefvtt+PhUPIDx48fjmWee4c9ZuXIlEhISsGDBAgBAkyZN8PPPP2PRokW8CFu4cCGGDh2KgQMHAgBWrlyJHTt2YPXq1XjjjTdgNBqxatUqbNy4EZ06dQJQsZdmkyZNcPDgQbRp0wa7du3CH3/8gd27d6NmzZp48MEH8dZbb2HSpEmYOXOmRw/kSm6c7ejljoyMlGXFnbXrR063j7ehhc2C5aagoIDfhJtVN5qQWC8Wno+9zPWu7oGoVsoFMbAa/yblanVH7wWr9+8IyUWYEly9ehUbNmxA27Zt+fQYrVq1go+PD9asWYMBAwbgxo0bWL9+PZKSkvhzMjMzkZSUZHGt5ORkjB49GkDFC3j48GFMnjyZP+7j44OkpCRkZmYCAA4fPozS0lKL6zRu3Bi1a9dGZmYm2rRpg8zMTLRo0QI1a9a0+J4RI0bgf//7Hx566CGb93Xnzh3cuXOH/72oqMiNWlIeNTbOViMnjHlHGxMTU2nWb91Bs9A5awG1NgtmxfpmK7mowZCJAwcMANhKkMlCrJczzCdMzrZ2cragRyspF1gV7lLibBKgtfsXLcL++OMP5OXlAahwPZ48eRI3btwAAH4GJxeTJk3CsmXLUFxcjDZt2mD79u38sYSEBOzatQu9e/fGK6+8grKyMhgMBnz77bf8OXl5eRbCCABq1qyJoqIi3Lp1C9euXUNZWZnNc06ePMlfIyAgAGFhYZXOMdWLve8xHbPHnDlzMGvWLIG1wQ5qbJzNEhEREQ73k+zb95ZqQaFyzN7ltggomVKAJeubIxFqMOxHYmIWU2JHC0kxrZ+Zq5YSlt195ri6IlXqd1rutBH2JgGsrMgVg2gR9sQTT1jEfXXr1g1AhRuS4zhR7sg33ngDc+fOdXjOiRMn0LhxYwDAhAkTMHjwYJw9exazZs3Cyy+/jO3bt0On0yEvLw9Dhw5F//798cILL+D69euYPn06nnvuOWRkZGhik/HJkydj7Nix/O9FRUWIi4tTsUTOUXLjbFZxtJ+ks62LlCgXIN3sXQmLgJIuBbWsb46wNdBnZhqQmJilWBlsofV8TID7liItuLtcyWwv9TutRCoee5MALVhpzRElwnJyciT98nHjxmHAgAEOz6lbty7/c2RkJCIjI9GwYUM0adIEcXFxOHjwIAwGA5YvXw69Xo958+bx53/66aeIi4tDVlYW2rRpg+jo6EqrGC9duoTQ0FBUrVoVvr6+8PX1tXlOdHQ0ACA6OholJSUoLCy0sIZZn2O9otJ0TdM5tggMDERgYKDD+mANpTbOZhlH+0kK2bpI7nJJOXtXwiKghkuFpYSeQgd6pcWOJ+S4c9dSohV3nxgrpVzvtBLtwJ7lWgtWWhOiRFidOnVEXfzVV1/F7NmzK61SMxEVFYWoqChR1zRRXl5hJjXFUBUXF/MB+SZM+cxM51q7JwEgIyMDBoMBQEUH0qpVK+zZs4ffFaC8vBx79uxBWloagIrYM39/f+zZswe9evUCAJw6dQrnzp3jr2MwGPDOO+/g8uXL/IrKjIwMhIaGomnTpi7dL+soZQZmeTbOagctx+xdTouAu23JFdcKSxYOZ+0oJSUFsbGxqogdlgWWUNyxlGjR3SUUlt4BW1j36VrfisqErIH5n376KcaPH29XhAklKysLhw4dwqOPPorq1asjOzsb06ZNQ7169Xjh07VrVyxatAizZ8/m3ZFvvvkm6tSpwwfCDx8+HMuWLcPEiRMxaNAg7N27F5s3b8aOHTv47xo7diz69++P1q1b45FHHsHixYtx8+ZNfrWkXq/H4MGDMXbsWISHhyM0NBSjRo2CwWBAmzZtAACdO3dG06ZN8dJLL2HevHnIy8vD1KlTMXLkSM1ZusSghBnY3dm4nKs3We2g5RCHcgtOV9uSI9eKwZDJx1WlpqZaTABZEtDO2lFkZKRHiCE1ccdS4qht2ouLlttCKMXklKV3wBYRERHo3bs3Nm/e7LLlmkVXuawiTKqcYUFBQUhPT8eMGTNw8+ZNxMTEoEuXLpg6dSovajp16oSNGzdi3rx5mDdvHoKCgmAwGLBz505UrVoVQEXw/o4dOzBmzBgsWbIEtWrVwscff8ynpwAqsu1euXIF06dPR15eHh588EHs3LnTItB+0aJF8PHxQa9evXDnzh0kJyfjgw8+4I/7+vpi+/btGDFiBAwGA4KDg9G/f3/Mnj1bkvpgGSXMwK52Zkqs3mQxHkEOcaiE4HSlLTlyrRw40A4HDhjQo8d2ABVpRUy7e7AmoFlsR1pGagu6vbZpWoGp9OIOKVzFrL0DtjCFADmz2smVJ1IONJGiokWLFti7d6/T8/r06YM+ffo4PKdDhw749VfHJsu0tDTe/WiLKlWqYPny5Vi+fLndc+rUqVPJ9Umog9KrN5WKRxBj1RMzqDty55nP9KUWClIOlLY66QosZ8zmu1iwJny0FNfCOkrFs6m5uEOKPoy1d8Aezqx2cuWJlANNiDCCcBVPW73pLBWGo4FEyKAudKWUmGsKRcqB0lYnbcJRnIuawkfJeEd3cqOxkldNLO6USUids7S4wx2kfAfkSmejBaudUEiEER6NJ63eVCIVhtCVUnIh1eBt3UmbY/7cTYmcnaFELIlS1hp3cqOxlFdNSRw9G1MiWNYD25VG7nQ2WrHaOYNEGOEWLK9WNEfOmZNSdSA2FYY75XJ3QFH7eQP3OumsrES7WedNe7+yYtlR4nvcyY3GYl41pXD2bFgPbLeHXP2XEulsPMFlL6sI69evH0JDQ+X8CkJltJQ7SK6Zk9g6cHeFptDO3p1nIyRNgr1Vz6w8b6Cik+7ceTcSE7PsPndWyqo07lg7PcX1JiVadZHJ3YeThdAxLomw8vLySjm5TJ9fuHABtWvXBgCsWLHCvdIRmkBLg5hcMydndVBQUICLFy+6FMtljZjO3tVnIyRNglYCXwHPmDFLjTuDIw2sttGqi0zOPlxKC6FWPC9iECXCioqKMGTIEHzzzTcIDQ3FK6+8ghkzZvBJUa9cuYKEhASUlZXJUliC0CJyxHIp0dlrcUBhsfNlNZDdncFRq643JSDBb4mUFkIteV6EIkqETZs2Db/99hvWr1+PwsJCvP322zhy5AjS09P5zk+q3GAE4SnIta2REp291gYUUyd9+fJlbN682en5cos2lgPZ3Rkctep6k4Pi4mL+Z3vPF1BngsDKBEDKCZ3Q8sqZmFtKRImwr776CuvWrUOHDh0AAD179kTXrl3RvXt3bNu2DQA0sVE2QagBWQ+UISIigpkZM+uB7O4Mjlq0lEpNQUEBPv30UwCOn2+/fv0UF9msTQCUmNC5k8JHLUSJsCtXrljsHxkZGYndu3cjOTkZTz/9ND7++GPJC0gQ7sBSDIEWrAcs1Ze7sNTZshzI7s7gqDVLqdQIXQEYFBSkWtkANicAUqNECh85ECXCateujRMnTiAhIYH/LCQkBLt27ULnzp3x7LPPSl5AgnAHViwiJtyxHsgpkMzdFu3b98X//Z8vate+g+joiozy/v7+0Ov1/PVZ6sS0AEuB7O60I08S6VLC0vO1Rq0JgNJtRa6wD7kRJcI6d+6MNWvW4Omnn7b4vFq1avj+++/x5JNPSlo4gpAC1gSDq9YDuQSl3EkVCbZc0e60I7UmNazENtmDpedrjVoC0dW2olQKH1YQJcJmzZqF3Nxcm8dCQkKQkZGBI0eOSFIwgiAqI8dAo0RSRW+HNVe0O+3I22ObbMHa8zVHTVEi9HlIGcvF8rOwhSgRVr16dVSvXt3u8ZCQEDz++ONuF4ogCOVh2aViD7n2ppMDCmR3Da3ENrH6fFkXJVpN4SMVopO13r17F4sWLcJnn32GP//8EwDQsGFD9O3bF6+//rrgvdgIwlvQShyN1sz4WnSjensguzsoEdvkrqhn9fmyLEq0nMJHCkSJsFu3buHJJ59EZmYmkpKS0L59ewDAiRMnMGnSJGzbtg27du1ClSpVZCksQWgR1hYH2KPyptflSErazXdkRqORqSz5rLlRbcUtFRYWCvpbtQW4FpDbUqtFUS8G1kWJ1iaBUiFKhL377rs4f/48fv31V9x///0Wx3777Tf06NED7777LmbOnCllGQlC82il027Z8lfculUFu3cngeN8sHt3EqpWvY2WLX/Fpk2bmBqATALH2eBcWFgou3h0HLd077zU1FR+lakJFgS4FpB7kHZF1LNs5RbynUZjCHbtKkXz5pdUd+Er4TY1GkPw7be38OCD6t+vCVEi7PPPP8fChQsrCTAAeOCBBzB//nxMmTKFRBhBaBSjMYQXYADbwfl375rSZ9wBwAEwTxTNwd+/xOI8OREat6TX65myJmoJpWKbxFjcWLZy2ypbYWEhv5MEi9Y+OVP4sHi/gEgRdvbsWTzyyCN2j7dp0wbnzp1zu1AEoSVY2R5DiiB1qV0+SgTOl5YGwlKAAYAOpaXKWx9YTsrqCSgR2yTW4sayFdNe2Vhx4dtCyhQ++fn5SE9PZ/p+RYmw0NBQXL58GXFxcTaP5+XlISQkRJKCEQTLsLY9hjvxLOYzSCldPkrF2LAUS6LFFaZSoVQuL7ljm1hfTSgFntpO7bUvlu9XlAjr2LEj/vWvf2Hr1q02j7/77rvo2LGjJAUjvBtWrEu2YHF7DHeC1CMiItC7d29s3rxZ0gFIqcB5lgZNlgShksiZy0uNuCuWVxOa46rw1VI7NbWl48cL+c/ECnqW71eUCJsxYwYSExPRpk0bjB07Fo0bNwbHcThx4gQWLVqEP/74AwcPHpSrrISHw5p1yR4sb4/h6owvLCyM/1nqAUiJWSgrgyZLglBJ5MzlpVbcFeurCd0Rviy1U0fi2bwtffKJ6xZ0lu7XGlEirGnTpsjIyMDgwYPRp08f6HQVFgCO49C4cWPs2rULzZo1k6WghGfDonXJGSzOrqQqk5QDkFz1ZJ2T0F6Zlc5dyIogVAO5YuJYeedZwl3hy0o7tRbZcsVxsXK/1ohO1tqmTRv873//w9GjRy2StT744INSl43wItS0LrkaPM7i7MqbymSd6sHd86SEdSuKXLAce+MMltNNOMKZWDl+vBD79wcgIeEuAgLyLf6WlXZqq3+Voy2xcr/miBZhRUVFqFatGh588EEL4VVeXo4bN24gNDRUyvIRXobS1iV3g8dZnF25Uia5ByA56omlQZOlsqiJs/c3P/+eCGAlvMCEWLcnK5uKOxIr2dn1MWtWI7M+LQstW7r3fUptFcaip0EORImwL7/8EpMmTcLRo0cRFBRkcezWrVt4+OGHMX/+fHTv3l3SQhLeg9KWHCmCx1mcXYktkxJxN1LXk3WZjUYjSktLLc7x8/NDSUkJLl68KOugyHK+KCWx9/4CQE5OPNasyWBm021biNlwmpVNxe2JFX//Epddw/YmC0ruKiDFWKCFyZEoEbZixQpMnDixkgADgODgYEyaNAnLli0jEUa4hRrWJTlM3+azfhMsD8SslssR5laJTZs28Z+rMShaX9faUmISgyZYbgvuYP3+ZmfX/yfOk71Nt12FpU3F7YmV0tJAh31aSkoKIiMjK13PUbuUY8Wz9Xti3m+6OxZoYXIkSoQdP34cH3zwgd3j7du3x9SpU90uFEEItZpIZRp3Zvp2FFdhjzVrMhQTAizO+JQsE0uDIlDZUmIP1ixBUmF6f+VMXsuCO5CV5Ly2xIrRGOKwT4uMjHR59wapJq32LYoh/HXctaCz/n6JEmHXrl1zuAVIaWkprl275nahCEIIUprGHZm+jxx5SHRchdJCgMUZnxplYmVQtL5ne5Y5rVqCrLEnpOUK1GdF5LK0EMFarMgZ2iFVvJbQyZMnI0qExcfH45dffkHjxo1tHv/ll19Qp04dSQpGEM6Q2jRubzbp6NrmJn2hS6ulggVLgDOU/n6WBkUT3jC42EszIFdwNSsiV83gcSEWZLlCO6QWeK70mZ6yyEWUCEtJScGUKVPw5JNPombNmhbH8vLyMHXqVPTr10/SAhLegTuuKykHXuvZpLNr2zLpKyEEhAYGp6am2k3RwIJIkxrWVlSxYplTArXSuKgpctVMCWPP0mwSwOZllKM8rgg86/CRo0dv8X2XmPg1T+q7RImwN954A19//TUaNGiAfv36oVGjRgCAkydPYsOGDYiLi8Mbb7whS0EJz8Yd15WcA68r1xayTN/dTkSoGd8UrK7m6i0lYS1PGouWOaWRc6ENCyJXyvsTa91W+90VI/Bsh4/UhE43GklJuyWNX1MqjYYUiBJhISEh2L9/PyZPnoxNmzbx8V9hYWHo168f3nnnHdrAm3AZV18KdwZeZxY4V65t/TdAOQyGTP64aZYqhQASMgixEKiuJCzlbmPNMqcWclljWBG5UtyfVGkvhHoViouLXS+sCzgKH9m9OwlJSbuxe3eS25MnJdNoSIHoZK16vR4ffPABli9fjvz8fHAch6ioKH4LI3P279+P1q1bIzAwUJLCEoQ9XB14hZj0Xbm26W+yshKRmWnAgQPtkJlpkFwAORuEWLAUqAErudvcmSBoIebPHkqtjFVL5Mpxf1Kt8I2IiEC/fv3w6aef8p/ZEnSffvqpaCEixX3b67NiY3MxevRitydPcqTRkBPRIsyETqdDVFSUw3OeeuopHD16FHXr1nX1awhCMK4OvEI6IVevnZlpkFUAORuEWLEUyA2LKTpMuBo7w8LqP1dRamWsWu5nOe9PiomTeS5PKS3hUty3oz5LysmTVvo+l0WYEDiOk/PyBMEU1gO8Ep2As0HIW9xhrKXosG4L9gYXe6KQldV/7qBUXavlfpbr/qTsN+SwhKshnF2ZPGml75NVhBGEqwhxxchp/XDl2iYhkJubK+vyfGtMg9D587UA6BAXd54/xlqgupywZBGSUhR6Q4oLsbgrcm3BivtXyn6DVWuQI+Es1UpIrfR9JMII5hAToCq19cO8I05NTbW5F2FYWJjda0dERPB/r2QnkJ1d3+5A7ajD09rWSlpCijr01pg+Z0ht+WRpL0gp+w2WrUH2hLM7mfytcdb3sbBykkQYwRxiAlSlelkB6eJwCgsL+Z/lcpWYz/CFDNT2Ojwlt1ZSG3ctHWpYSli1ZLCAlHXN2rZXUvUb7go6VqyD7mCv75s6NQfffNNM9ZWTsoowWysmCXZg/QVT2gogRRxOQUEBNm/e7PQa7hIREYHU1FRs2rTJ5YGahcFGKdwV2GoFyrNsyfBEWLI8ShWk7qqgk9o6yNLiGZZWTlJgvpfCkvndHmpaAVyNwxGzF5q7nY0pE76zgVrNrZVYwV2BrVagvFbiWjwFNfscOUWKK4JOauugUotnhNQPSxZmWUXY9evUUbAKa+Z3W6hlBZBCoDi7RmpqKiIiIiSxRjobqNXaWolV3A10VzpQnqXks56OmpZHKUWKlIJOygmbEhN6R/Uo956mriBKhHXq1EnQeXv37nWpMITysGwRcSYuzIPKpXSdSiFQnF1Dr9dL6uISO1Cz1AkpibvtXan3RerVf6yHHrCC2pZHqZ6BlIJOixM2dyeuSiJKhP3www+oU6cOunbtCn9/f7nKRCgI6y+YLXFhcgWtWZMhi+tUCoEi5BpSu7jEuBxY6oSUxN32rtT7IuUgqvXEr0rjKZZHqZ6lp07YWHnOokTY3LlzsWbNGmzZsgUvvvgiBg0ahObNm8tVNkIBtPCCmYsLJVynUggUsddwxcXlrsuBlU5ISdxt70q+L1INokLfC09bjOEOrGx7xQKePGFj4TmLEmETJkzAhAkTkJmZidWrV6Ndu3Zo1KgRBg0ahL59+yI0NFSuchIyweILZk80KOk6lUKgCL2Gq/clhbWEhU5ISdxt7yy+L2KRa8WulmFp5R6LeOOETSlcCsw3GAwwGAxYsmQJtmzZguXLl2P8+PHIzc0lIaZBWHvBrMWFKZhSbleQHFm4hYgcd+5LrLWEBhv327s7f692bBZl37cNa9tesYgnTNhY7P/cWh155MgR/Pjjjzhx4gSaN29OcWIahrUXzFZnJ7crSIqOWOjLW1xcjOLiYgDKu7i8cbBxV2BLIdDVjs1iaRGO2mLUFp7W5t2FRcHiLiz2f6JFWG5uLtauXYu1a9eiqKgI/fr1Q1ZWFpo2bSpH+QiZ0OILpoXsz0Je8uLiYnz66af870q7uLxxsHG385Wi81Z7U25WFuGoLUYJYbAmWKTqv1lrU6JE2NNPP419+/ahc+fOeO+999C1a1f4+dHOR1qEtRdMKM5cQfZe1MLCQotM9vaQouN39vcXL16s9BlrLmFPRO7nKgY13IKsLMKhhQLagZX+XwvJxV1FlILauXMnYmJicO7cOcyaNQuzZs2yed6RI0ckKRwhL1prrCbsuYKECi1HqNHxm3coCQlnKx1nyRpJuI9abkFWFxXQQgHvRah1SwvJxV1FlAibMWOGXOUgCLsIFSFi9iplpeN31KGkpKQgNjZWs2KZsI3SbkHz98eRxVUNsU8LBbwXMdYt83NYiWuUChJhBPMIdZ0KjblhpeN31qFERkaSAPNAlHYLshp64IkDKiEcodat3Nxc/jxW4hqlRJKArh9//BE3b96EwWBA9erVpbgkQVggZIAwj7Wy91Kz1PF7YodCOEcNt6D5+2PLBVRSUsK/P0oJMmr/BGBfjNeokYfS0kCLnVFYiWuUEtEZ82/cuIG33noLAMBxHJ566ins2rULAFCjRg3s2bMHzZo1k76kBCEQR0KLpY7fEzsUQhhqLcRgaWUitX8CsC/GP/54CADLSTSrcY3u4OP8lHts2rTJYpuiL774Av/5z3/w008/IT8/H61bt7YbrE8QSuFIaJk6fnPU6vhNHYqpPJ7QoRD2sZVrLCHhbKXnLWdsli2XfU5OPIzGEIfnyQG1fwKAzT4Z4GCSJ6ZJtKmNtmz5K0aPXoz+/ddi9OjFmo8hFGUJy8nJwf3338///u233+K5555Du3btAABTp07F888/L20JCY9H6vxdjmbYLMykWA6U9kRYSQzKWmyWWrGR1P4Jc2z1yc68FawlF3cHUSLs7t27CAwM5H/PzMzE6NGj+d9jY2ORn58vWeEIz0cO94gzoaV2x8/aYCwVSoodod/FkvsNYCctjJqxkZ7a/gnXMe+T/f1LsGrVEJfc1FoU7qJEWL169fCf//wHdevWxblz5/Dnn3+iffv2/PELFy7Qi0OIQsrEjUJn2KmpqdDr9Tb/Xqn262nviZJiR8x3UWJQ26gdG+lp7Z+wj70Jk7XBxty65WgSnZKSgsjIyErX06pwFyXCRo4cibS0NPz00084ePAgDAaDxXZFe/fuxUMPPSR5IQlCCDTDVg8lxQ4JK/ehoHhCCYROmKxxNImOjIxETEyMlMVUFVEibOjQofD19cU333yD9u3bV8oblpubi0GDBklaQMK7cDeJKgks27ASF6U2rCTpVRsWYiO1iNLvkdbfW6G5G1NSUgAA6enp/GdC4r60Xj+AC3nCBg0aZFdoffDBB24XiFAWlhoxK0lUPQ014qKUFDtCv4valyW0X6k4lH6PWItndBdH719kZKTgeC7TeZ6ynyTtvu3FsPSSs5RE1dNQ2n0nldgREksi9LuofVVgK02GrfvXYoCz3Cj9Hgm1ImnB7S7k/RMbTuIp+0mKEmGlpaWYMmUK0tPTER4ejuHDh1tYxS5duoTY2FiUlZVJXlBCeoQ2ztzcXLvnSmUpUztQmJAGqcSOkAmCmO+i9lUBxU1Kh5LWXikmNmp6PYS+f658v9YnWKJE2DvvvINPPvkE48ePR2FhIcaOHYusrCz8+9//5s/hOE7yQhLqYu6nt4UUljJPDRRmyd1rQs7BQyqxI2SCIOa7PLV9uQIJLPdR0rUthchQ2+sh5/un9QmWqIz5GzZswMcff4zx48fj7bffxi+//IK9e/di4MCBvPjS6XSyFLRHjx6oXbs2qlSpgpiYGLz00ksWG3sCwObNm/Hggw8iKCgIderUwXvvvVfpOj/88ANatmyJwMBA1K9fH2vXrq10zvLlyxEfH48qVaogMTER//3vfy2O3759GyNHjkRERASqVauGXr164dKlSxbnnDt3Dl27dkVQUBBq1KiBCRMm4O7du+5XBIO4Y+41uT2cZc/WonvE1PF9+OGHdv8tW7YMBQUFipXpyJGHsHjxaKxb1x+LF4/GkSPSrmZWckcCId/lye2LUAd7osh61wGpcCQyhHL58mVB58nlupNzdwSWdkFxBVGWsL///tti26L69evjhx9+QKdOnfDSSy9h3rx5khfQRMeOHfHmm28iJiYGf//9N8aPH4/nnnsOBw4cAAB89913ePHFF/H++++jc+fOOHHiBIYOHYqqVasiLS0NQEXG/65du2L48OHYsGED9uzZgyFDhiAmJgbJyckAKrZmGjt2LFauXInExEQsXrwYycnJOHXqFGrUqAEAGDNmDHbs2IEtW7ZAr9cjLS0NKSkp2L9/PwCgrKwMXbt2RXR0NA4cOICLFy/i5Zdfhr+/P/71r3/JVkfuosbKMWv3yPTpV3DmjB/i4+8iNvZhAA9r1j3CWioFOc321mLH3qo7KcWOkO/y5PZFqIPSlhd3rUgFBQXYvHmzxWdq9PVyLQTR+kpfUSIsOjoa2dnZiI+P5z+77777sG/fPnTs2BEDBgyQuHj3GDNmDP9znTp18MYbb6Bnz54oLS2Fv78/1q9fj549e2L48OEAgLp162Ly5MmYO3cuRo4cCZ1Oh5UrVyIhIQELFiwAADRp0gQ///wzFi1axIuwhQsXYujQoRg4cCAAYOXKldixYwdWr16NN954A0ajEatWrcLGjRvRqVMnAMCaNWvQpEkTHDx4EG3atMGuXbvwxx9/YPfu3ahZsyYefPBBvPXWW5g0aRJmzpzJ5KxbzZVj5gNgTAzQqpUiX+t1yDl4yC127A0ab7+d4PS7WGtfLLqovQUp6l5p17a7IsP6fvfvN2D37iRF+nqlFoJoeaWvKBHWqVMnbNy4EU888YTF57Gxsdi7dy86dOggZdnscvXqVWzYsAFt27aFv78/AODOnTsICgqyOK9q1aq4cOECzp49i/j4eGRmZiIpKcninOTkZH7rpZKSEhw+fBiTJ0/mj/v4+CApKQmZmZkAgMOHD6O0tNTiOo0bN0bt2rWRmZmJNm3aIDMzEy1atEDNmjUtvmfEiBH43//+Zzeh7Z07d3Dnzh3+96KiIhdqRzxaD2wkhOHO4CF28JJS7Dhb2h4TU1N1YSUUtWNzvBmp6l4Ny4tUImP/fgMyMp4EUBE2JHdfr+RCEK3uJylKhE2bNg0nT560eey+++7Djz/+iIyMDEkKZotJkyZh2bJlKC4uRps2bbB9+3b+WHJyMsaMGYMBAwagY8eOOH36NG/xunjxIuLj45GXl2chjACgZs2aKCoqwq1bt3Dt2jWUlZXZPMd033l5eQgICEBYWFilc/Ly8vhzbF3DdMwec+bMwaxZs0TUiDQItZDYs0bk5+fT7J1h3HUVqikcPG2CwJqL2ptwt+6FbotmNBol6Q+ltiIZjSHIyEiCSYCZkDuIXa5xQWxeMVYRJcLq1KmDOnXq2D0eGxuL/v37C77eG2+8gblz5zo858SJE2jcuDEAYMKECRg8eDDOnj2LWbNm4eWXX8b27duh0+kwdOhQZGdno1u3bigtLUVoaChef/11zJw5Ez4+otYfqMbkyZMxduxY/veioiLExcXJ9n2mxinEQuLIGmFaPUmzd8eola3dXVehmsJB6yufCM/B9B5dvnwZmzdvtiuKNm3aBMD9/lBqK9LVqxGwtRZPS0Hs5nhKuhWXkrVu2bIFn332Gf78808AQMOGDdG3b18899xzoq4zbtw4p3FkdevW5X+OjIxEZGQkGjZsiCZNmiAuLo7fw1Kn02Hu3Ln417/+hby8PERFRWHPnj0W14iOjq60ivHSpUsIDQ1F1apV4evrC19fX5vnREdH89coKSlBYWGhhTXM+hzrFZWma5rOsUVgYCACAwMd1oeUmDfi++4rwqRJepSV6eDry2Hu3CJ07vwk0tPTBVsjaPZuH7WztbMWF+UMoRME1me5LEIxaRW4MimKiIhQdFIi5XOw9S4BHJKSdmt2QuMJ7VSUCCsvL8cLL7yALVu2oGHDhryF6n//+x9SU1Px/PPP47PPPhOcpiIqKgpRUVHiS/1PWQBYxFABgK+vL+677z4AwGeffQaDwcB/h8FgwLfffmtxfkZGBgwGA4CKzqdVq1bYs2cPevbsyX/Pnj17+BWWrVq1gr+/P/bs2YNevXoBAE6dOoVz587x1zEYDHjnnXdw+fJlfkVlRkYGQkNDLTY8ZwFTIx43DkhNBU6fBurX16FWrTAUFFQk3SVrhHt4mktNCZxNEPr2fcEjxILS1lE1XMssij61J0XWWNeR0WhEaWkp/7ufn5/FpN+VOrMORwDK8eSTu9GuXabFdQllESXClixZgt27d2Pbtm3o1q2bxbFt27Zh4MCBWLJkCR/oLhVZWVk4dOgQHn30UVSvXh3Z2dmYNm0a6tWrxwuf/Px8fPHFF+jQoQNu376NNWvWYMuWLfjxxx/56wwfPhzLli3DxIkTMWjQIOzduxebN2/Gjh07+HPGjh2L/v37o3Xr1njkkUewePFi3Lx5k18tqdfrMXjwYIwdOxbh4eEIDQ3FqFGjYDAY0KZNGwBA586d0bRpUz5tR15eHqZOnYqRI0cqaukSS61aFf9MmAbCI0cu45NPKNGlWEwdmjMRq7WOTynh4GiCAITJ9r1CkEJYqCEElHYts7gQQepJkbvvg9A6ssaVOnMUy5aamqr5SY0WESXC1qxZg/fee6+SAAMqkqnOmzdPFhEWFBSE9PR0zJgxAzdv3kRMTAy6dOmCqVOnWoiadevWYfz48eA4DgaDAT/88AMeeeQR/nhCQgJ27NiBMWPGYMmSJahVqxY+/vhjPj0FUNEQr1y5gunTpyMvLw8PPvggdu7caRFov2jRIvj4+KBXr164c+cOkpOTLTYv9/X1xfbt2zFixAgYDAYEBwejf//+mD17tqT1ogQRERFo3rxEk3lY1J6Bm0TsmTN3sX49h/LyexZiX18Oo0Y9hfh4P011fGpZEKwnCGoihbDwFusoiwsRpLTsS/E+uHrvQv9OaIC/q14pwj1EibC//vqrUooHc5KSkni3nZS0aNECe/fudXhOZGQkn0bCER06dMCvvzp+SdLS0hzeR5UqVbB8+XIsX77c7jl16tSp5PrUMlrLw8LKDDwiIgIREcCHHwKvvAKUlQG+vsC//61Dq1Y1nV/ADKlFpdjreYtwcIYUwoIVF79ai0XURKo8X3K9D1I/E08JYBeL2pNwoYgSYVWrVkVhYSFq165t83hRURGqVKkiScEI9tBSHhbWZuCDBwPJySaXmnOrjnUHUlhYWCnrtS2EikoxItUEK8JBy7C04EANq6Zaoq+goACFhYUApNvVQY73wdYzqZj8uldnLIgNqXEksoxGI79K1REsrOgXJcIMBgNWrFiBFStW2Dy+fPlyPkaL8Fy8cfYsBUJdaq7GiADSi8+SkhKmhAOLiHkfWFlwoIZVUy1Xtq33yZZlPzU1FVFRUYLrXurM+baeybZt3aDTgZkFBKzgTh9pDgsr+kWJsClTpqBDhw4oKCjA+PHj0bhxY3AchxMnTmDBggX4+uuvsW/fPrnKSkiEWDOt+eDqqCP11kFYaljoGMxhRTiwiCvCgoUFB0pbNdV0Zdt7n6wt+3q9XlAblmufVFvPBPABx1X85K3uf1uI7SNZNhyIEmFt27bFpk2bMGzYMGzdutXiWPXq1fHZZ5+hXbt2khaQkBZXYqXMA8xnz64Bjru35cWOHd0xfXqi5gLMCXGwIBxYw5mwyM/Pr/Q31mJVrQUHSu9/6EmubLn2SbWdx8sSrdaZ3DgSWaylI7FGdLLWZ599FsnJyfj+++/x119/AahI1tq5c+dKezcS7OGquyoiIgLHjgH/pGfjKSvT4fr1mmBJfxUUFNgcAAlpYGmlopo4ExamnSSsUTMORS4rjjOUFn2OkMIqIkfyY1t5vCq2GLq3qppSA1XGkcjSwmIiUSJs7969SEtLw8GDB/Hss89aHDMajWjWrBlWrlyJxx57TNJCEmzQoAHg42MpxHx9KwLN3UHKVSxSxQqwjtTmdZbN9aziqrBQ090slxXHHmqJPnvIbRVxpS9ztCdldnZ91euMZZyJLC1YYEWJsMWLF2Po0KEIDQ2tdEyv1+OVV17BwoULSYR5KLVq2Uq14J5VROpUEvZXy3iOyJB6IGHdXM8aQoUFq0hlxREqOJQUfY6Q2yrial9mK4WEecb8tLRTyM0NQvPmVRSvM9ZxJrJYssDaQ5QI++233xxuuN25c2fMnz/f7UIR7OIo1YIrs0AlUklofTGBuYAEIHm2b9bN9axhT1iEhl7GgQPeIV5dFRxy71tqqw8yhSbIbRVxpy+z7hdjYmL4n1u0cK9cnowzkaWFiZIoEXbp0iX4+/vbv5ifH65cueJ2oQi2sRUTxEpyVGvsiYy0tAZo2bIG87NJawFpMGRKsgWSJ26ppGRyRlvC4uLFEhw4cO8cT7K+WsNaHj7AeR+kBauIGmglqakthIgsR4nGWejfRImw++67D8ePH0d9O0FAx44ds1DwhPcgtLPNzc21OFfuAHp7IqOoiF0BZuoYbAnIzEwDKgJ2792TK1sgedqWSqxNAsjFqzzO+iCl49K0IMJZe2+E4iiOzryue/fubbHxufU1WLgnUSLs6aefxrRp09ClS5dKmfFv3bqFGTNm2NxXkiBM2FsxJhf2Zr/x8XcVLYcYTAJp3z5g0aLKAnL48Bv46KPgf3J1ubYFkul7pNpSSW1Yssx4o4tXC4IDqBiw09IaoKiohqxxaVoR4Sy9N2LwpK2YRImwqVOnIj09HQ0bNkRaWhoaNWoEADh58iSWL1+OsrIyTJkyRZaCEtIg1l2ldezNfis6X3aJiIhAmza2V6NOmVINU6YI3wLJGWK3VCIco4UVWVLCquCwJwybNw9DTIx8g7M3inA10ILAEoIoEVazZk0cOHAAI0aMwOTJk8H9k8pXp9MhOTkZy5cvR82a2ppBexueNIMQim1zNdsiDHC+GlVKsUS5v9zHG7d3YlVwqCkMtSzCtWLR9CREJ2utU6cOvv32W1y7dg2nT58Gx3Fo0KABqlevLkf5CBkwF1gXLgB//VWRA8wTBmHrAc68U0lIOGv3PFZhwUqlxcBdNQYTb9zeiUXBobYw1OoCAFYtmp6OaBFmonr16nj4YfatCYR9Vq0Chg2rcHf5+FRYXQYPVrtUthEqmswHwo0bq2L2bD3Ky3Xw8eEwb54Rffve0txAqKaVSouBu2oOJt62vROLgkMtYchaYloxqC1cvRmXRRihbS5cuCfAgIr/X3mlwuqi1oCfkpKCkpIayMnxQ0LCXcTGVhROrGiKiIjAhQvAxInm96fDpElhSE0NY2qLJdbRWuAuS4OJJ7t4WRYcaglDlhLTioVFi6a3QCLMS/nrL1v7QFbM3F0ZOKTobHftisPEiWGSWOakvj+10aJLUA1oMFEGFgUHC8JQycS0UsKiRdNbIBHmpUi9D6SjgP/8/HynqSmMxpB/XIcVv7trmZNrn0s10KJLUGm8MShebWHOmuBgURiyjljhqnab80RIhHkpcuwDaS/gPzbW+cB39WqERcJQwD3LlRz3pxZacwmqgbcFxZMwtw1rwpB1xAhXanPyQCLMi5Fr5V3lgH/naTHy86tg/XppLVcsrCz0NFhewu5NQfEkzAmpECpcqc3JA4kwL0fq4GH7Af8R/PfYSosREyOP5cqTg6OVRktL2Om5EwShBUiEES5jKz7g4MEAlJdbmqLN3YqO0mKQ5YpdWFp1SFTGnoXSfG9WT3LHEoSnQCKMcAl78QFGYwh0utEWgdEmt6KQtBhkwWALU0Cus1WHnhTwrjUcWSitF8SkpqZCr9fbvA6JNGFQcHoFLIcmaAkSYYRL2OuErFfZ+Ppy+Pe/dahVC9i3z7PSRngDpsDdM2fuYv16zmLxhK8vh1GjnkJ8vJ9XDDosItZCuWnTJofXYyWomlWhQ8HpFWgpNIF1SIQRkmO+V+OoUU+hVauK/UQ9KW2Emig9A42IiEBEhK2YPR3/bAl1kDovGgtB1SwLHQpOp9AEqSERRsiCXn/9HzfVZVy8WKG6fH2BhQtDMG5cNc2njVASc1efoxmo3C5BitljD09MsklCh20oIbK0kAgjZMVWktZff30NBQXVaSAXiLlLcPbsGuC4Cpcgx/lgx47umD49UTGXIMXssYGzJJsAkJMTb9daSvE8hFi8MSGyEpAIIxQnMvI2WrRQuxTaIiIiAseO2Yqp0+H69Zq0H6aXYZ1kMy3tFDZsyEJ4+FVkZ9fH4sWj7cbrCInnYSkmi2XByHLZpMbbEiIrBYkwghCBmoOT1DF1LA20hHisn01Cwlmn8TpC4nlYisliOQCc5bLJhTclRFYKEmEEIRC1Bycpt2JS+14IeXAWryMknoeVmCwlA8DFTkg8ITjd3UkYhSZIA4kwwiW80e/PwuAkVXC8u/dCVjS2EBqvo6VAfqUCwMVMSJQum1zQJIwdSIQRLmEdkwJUZOe2FYhvDxrIXUPtGSh14OzhLF7n6aefwubNm+0G8puEQ0BAQKV3Uq24J6UEo5gJiacEp7MwoSQqIBFGuIw7AywN5NrDJJrNt8JxBHXgyuIsXsd80jR9+hWcOeOH+Pi7iI19GMDD/KTn4sWL/DXViHtytvLTXDAqDQWnE1JDIoxQBU+eiZlEiid1xkJFsxKQBdU5tqyl5nUSEwO0auX4GmrFPVlb2R0JRjlwZvmj4HRCSkiEEZJw4QLwyy9BMBpDnHbQtlwenoS5S1YrljxnAw8rz4ssqMqhZtyTWMEoFWItf2qHBkiFN6XaYA0SYYTbrFpl2phbDx+fMZg3z4i+fW/ZPNeWy8OTYUW8OMJdl5OSHbgnW1BZg+UgfjmsoZ6w4tEVvDHVBkuQCCPc4sIFkwCr+L28XIdJk8KQmhrmETNER3jC7NHdgYc6cM+D5ZgsQD5rqNZXPLqCtwpPliARRrjFX3/ZyuJeESfhaSJM6B6OWsB0L84GHnsDrdEYgvPn41zqwKW0YniCEGYNtWOynCGXNZRly59ceKPwZA0SYYRbOMrifuFChUhr0MAzBJmjPRy1Nns0v5f16zmUl+v4Y76+HEaNesrufpTmAtQaZx24lFYMrQthllErJssV3BXirFv+5MBTUm14AiTCCLewl8X9++/vuSl9fCrOGTxY7dK6j709HLU4e4yIiEBEhK3np0OrVjVt/o21+8IaZx24UOtEbm4uX0Yh5dCiECbcRwohzrrlTw4o1QY7kAgj3MY6izsA1KljHidWMcgnJ9+ziAmdYbE4E6uw/llaj3S6cty8GSxodShriMnCb8t9YUKnK8eMGbkYNkx4B27PimFaYWrPIkZuFO/AluvalAJGSiGuJcufVFCqDTYgEUZIgvlS7X37nMeJ2cq4bw2rM7FatYB584yYMCGUn4FzHPDFF89r1i3mbKm9I/cFUI7nnvsCcXEXkJbWX/AzE2LFsNc+vDF+x9tw5romIS4dWki14an5AUmEEZLjKE7MHPMXRmvxYwMGlOHvvxfj/Pla+OKL5wDYno2zaMlzBefui8dEB9TbsmLUqJGHWrXspy/xxvgdb8WZ65qEuPfgyfkBSYQRkmMvTsyeuLqXZ0w78WMRERGYMqU/9u0Dvvii8my8Xbv+6NDBva2dWENK94U9K8bHHw9Bjx72LYneGL9D2MaZECc8B0/OD0gijJAFoXFGlfOMVY4fY5WIiAi0aWPb6peYWBH07qm4676w7dYEAOdxPd4Yv0PYjh9s2fJX1Kt3GlevhiM8/KpFmyFrKKEFSIQRsiFkoNZ6njGxVj+iAmsrhjneFNfjqXEuUuMoflCvv46BA59EZGQkfz7VG6EVSIQRqiI0foxlxKwu9HbMrRMtW/6KGjXy8PHHQ2CKqQO8J67HOs7F3kpRLca5SImt+MFt2yytpZGRkYiJiVGzmAThErbXmhOEQpgsSb6+Fb9r1ZJUqxbQoYP2yq00ppiulJQUAECtWhfRo8d26HQVKtyb4nrMLWBHjjyExYtHY926/li8eDSOHHnI5nneiO20KD7IykpUpTyE+hiNIcjJiYfRGKJ2UdyGLGGE6pAlybuwtup4e1wPJZ51THh4AYByWNsMMjMNSEzMojryMjxtpwwSYQQTaCFPDXEP81im3Fwf5OT4ISHhLmJjKyxazmJytJwnTmoo35VtzNORtG2biQMH2lkcpzryPjxxwkIijCAIUZjHMjmalTqLZfIGgeWIwsJCAJTvyh4RERHo3bs3Nm/ejMTELGRmGqiOvBSTIHc2YdGi5ZxiwgiCcMiFCxW7IFy4UPG7yXplb1ZqitPw9lgmRxQUFGDz5s0AgOzs+uC4e8e8KS7OGWFhYQDurab1xthB4p7lfNSoLvDx4SyO+fpyGDXqKc0uYCFLGEF4KO7sQmByN27cWBUTJ+pRXq6Djw+HefOM6Ny5Yu8+cqO5jrWQNZ8PcxxQr95plUrGFtarab05dlDruJuOJSKiIvdi5ZRAOrRqVVOOIisCiTCC8EDc2YXA5G40GkOwePFocFzFRuXl5TpMmBCKv//OgF5v343m71+CnJx45Ob6gLIGOMbeyj8SshVQ7KBnIOW2Q562kItEGEF4EAUFBThz5i6GDauB8nKTeAJeeYXDgw9eRny8n9NOzjTgObN02do25v77j2HVqiHgOB+sX89pYgsqNRESD+btVh4SWNpH6m2HPGkhF4kwgvAQTLPNnJx4lJf3tzhWVqbD++9/h4SEs4JjJ4QIBHMXkb9/CS/AgArLmRjx54042/8wNTWV6o0gPBgSYQRhB3diqtTANIt0Jp6EzjaFbpBssorl5MRXspy5Iv68DUexTnq9XsWSEQQhNyTCCMIG7sRUqY1Q8SQERwLBGqnEnzdiErIEQXgXJMIIwooLF+4JMMAUU1URDKoFixggTjw5Q6hAkFL8EQRBuIK7qzCVhkQYQVjx11+WG4oDFcuhT5/WjggD5LeupKSkIDIyEvn5+UhPTwcgrfjzZIQG23t6UD6LAyaLZfI07G1W7y5SrsJUChJhBGFFgwYVLkhzIebrW7EcmrhHZGQkYmzkoCDXmnO0lHpBLlHC4oDJYpk8DTn3fpR6FaYSkAgjCDMKCgrg61uCefOqYtIkPcrKdPD15TB3rhG+vrdQUMDGwCgGsbNOstIogxbakbUosdeWXBEl1gOhvWsrOWBqcRDXAqa+wtnej97Yp5AII4h/sB5wXnsthHer3bhxHR9+WPG5q7NgNVZb2pp1OsOelcZ8o25KOeEdmLcBRxYMd0WJnNYRQn1Mfcq+fcCiRZVzD7Zr1x8dOmhjYiI1tHckQfyD9UCi119HQsLZStYjVwacVauAOnWATp0q/l+1yq2i2sR6Fmlv1pmfX8XptSIiIhATE8P/+/bbGDzySE08/3wEHnmkJr76yvs6S2/G2T6hrF7bXYzGEOTkxDNRFq0TERGBNm0i4GOlOnx9gcTECK8UYIAGRdidO3fw4IMPQqfT4ejRoxbHjh07hsceewxVqlRBXFwc5s2bV+nvt2zZgsaNG6NKlSpo0aIFvv32W4vjHMdh+vTpiImJQdWqVZGUlIS//vrL4pyrV6/ixRdfRGhoKMLCwjB48GDcuHFDdFkI78DeakvThthSYZptDhs2DMOGDUPbtv1tZrwvKKgu6rrOyk/uS2Ww3khdSRztnsDytd3hyJGHsHjxaKxb1x+LF4/GkSMPqVoeT6BWrYp0P76+Fb9X7P2orQVPUqM5d+TEiRMRGxuL3377zeLzoqIidO7cGUlJSVi5ciV+//13DBo0CGFhYRg2bBgA4MCBA3jhhRcwZ84cdOvWDRs3bkTPnj1x5MgRNG/eHAAwb948LF26FOvWrUNCQgKmTZuG5ORk/PHHH6hSpcKC8OKLL+LixYvIyMhAaWkpBg4ciGHDhmHjxo2Cy0J4D0qutjSfTbZpI80CA2fl11KQudZwtJF63763FKtXIbsnsHhtV3EWu0S4jqft/egumhJh3333HXbt2oWtW7fiu+++szi2YcMGlJSUYPXq1QgICECzZs1w9OhRLFy4kBc+S5YsQZcuXTBhwgQAwFtvvYWMjAwsW7YMK1euBMdxWLx4MaZOnYpnnnkGAPDJJ5+gZs2a+Oqrr9CnTx+cOHECO3fuxKFDh9C6dWsAwPvvv4+nn34a8+fPR2xsrKCySEV5eTkFiUpEaWkpgoODK31eXFwMjuNcvq5aqy1Ns85XXqkQTa7OOoWUnwSWOITEBzrfSH019PrriqzUkzMHHIv55Zztm0q4h1J7P8qVCkNKNCPCLl26hKFDh+Krr75CUFBQpeOZmZlo3769hcsjOTkZc+fOxbVr11C9enVkZmZi7NixFn+XnJyMr776CgCQk5ODvLw8JCUl8cf1ej0SExORmZmJPn36IDMzE2FhYbwAA4CkpCT4+PggKysLzz77rKCy2OLOnTu4c+cO/3tRUZHDOikpKUFOTg7Krc0UhEuUlZWhXbt2lT6/desWDh06hNu3b7t0XanEkCtIMeuUq/xa2xZKKoTuxiB0I3VXJmGu1L2cOeBYyy/HonWOcI75mOtosQdLoRGaEGEcx2HAgAEYPnw4WrdujTNnzlQ6Jy8vDwkJCRaf1axZkz9WvXp15OXl8Z+Zn5OXl8efZ/539s6pUaOGxXE/Pz+Eh4dbnOOsLLaYM2cOZs2aZbsSrOA4DhcvXoSvry/i4uLgYx3tSIimpKQEhYWFFp9xHIdr166hUaNGlVzgYlDTBC/FrFPq8mt5Wyh3cGU3BqkEgRSuTSlzwFkPhPaureSAafouZ9Y5lgZx4h6m0IgzZ+5i9uwavPWY43ywY0d3TJ+eyNzKblVF2BtvvIG5c+c6POfEiRPYtWsXrl+/jsmTJytUMnWYPHmyhaWuqKgIcXFxNs+9e/cuiouLERsba9MySIjHx8cHfn6VXwm9Xo+oqCgEBAS45fpVygQvF1KV3xO2hXKFgoICHDwIlJdbDgBlZUBWVgGqVrXt1pXCXeeqa1PORRcsxhJal2n69Cs4c8YP8fF3ERv7MICHKb6RcSIiInDsmK04Vh2uX68J1h6dqiJs3LhxGDBggMNz6tati7179yIzMxOBgYEWx1q3bo0XX3wR69atQ3R0NC5dumRx3PR7dHQ0/7+tc8yPmz4zzwR+6dIlPPjgg/w5ly9ftrjG3bt3cfXqVaffY/4dtggMDKx0j/YoKysDQDMyKbFnTfTx8YGPjw/8/f1RUlKiiTqXKsu5HNnSPWVbKDGYiyCdbnQlq9b+/etw/Lj9+C533XWuujblFkosihnzMsXEAK1aqVgYwiW0tOuJqiIsKioKUVFRTs9bunQp3n77bf733NxcJCcnY9OmTUhMTAQAGAwGTJkyBaWlpfD39wcAZGRkoFGjRrz7z2AwYM+ePRg9ejR/rYyMDBgMBgBAQkICoqOjsWfPHl50FRUVISsrCyNGjOCvUVhYiMOHD6PVP2/n3r17UV5eLqosUqHT6SS9njfj5+eHGjVqVIqxu337Nq5fv47evXsjODiYyYHDHKm2XpFrCxctdZBSYRIxzqxajsSOFK5AV1ybrLd3grBGzThcsWgiJqx27doWv1erVg0AUK9ePdT6p1b79u2LWbNmYfDgwZg0aRKOHz+OJUuWYNGiRfzfvf7663j88cexYMECdO3aFZ9//jl++eUXfPhPKnSdTofRo0fj7bffRoMGDfgUFbGxsejZsycAoEmTJujSpQuGDh2KlStXorS0FGlpaejTpw9iY2MFl4VgE1vuyPLycvj6+qJGjRp8mhIlcDVwXaqtV+TawkVLHaQcqBmEzuJKRIKQA62kwtCECBOCXq/Hrl27MHLkSLRq1QqRkZGYPn26RUqItm3bYuPGjZg6dSrefPNNNGjQAF999RWfIwyoyEN28+ZNDBs2DIWFhXj00Uexc+dOi8F3w4YNSEtLwxNPPAEfHx/06tULS5cuFVUWb2XAgAFYt24dgHsLGu6//3688MILGDBggOAFBmvXrsXo0aMrBdJ7Cp4euM5yB6nEqk01NzlnbSUiQciFFuJwNSnC4uPjbeZtuv/++/HTTz85/Nvnn38ezz//vN3jOp0Os2fPxuzZs+2eEx4ezidmtYeQsngrXbp0wZo1a1BWVoZLly5h586deP311/HFF19g27ZtNq1RWsWVmCpvCVxnsYNkSfzKGRSvpggkCOIenjPaEaKQI+BaKIGBgfwChfvuuw8tW7ZEmzZt8MQTT2Dt2rUYMmQIFi5ciDVr1uD//u//EB4eju7du2PevHmoVq0afvjhBwwcOBDAvZi4GTNmYObMmVi/fj2WLFmCU6dOITg4GJ06dcLixYsrpRVRAldjqpQIXDcaQ7B/fwDatGFPCKkFa+KXxdWDBEFIC4kwL0SugGt36NSpEx544AGkp6djyJAh8PHxwdKlS5GQkID/+7//w6uvvoqJEyfigw8+QNu2bbF48WJMnz4dp06dAnAvTrC0tBRvvfUWGjVqhMuXL2Ps2LEYMGBApT1ClcDVmCq5A9dNSQwXLfJR3Nqjpvh3BourNklgEYRnQyLMC5Er4NpdGjdujGPHjgGAxQrW+Ph4vP322xg+fDg++OADBAQEQK/XQ6fTVUr5MWjQIP7nunXrYunSpXj44Ydx48YNXqixjpyB69Z74ilp7WFR/Jvjyas2WdhknWUBThBqQSKMYAaO43j34u7duzFnzhycPHkSRUVFuHv3Lm7fvo3i4mKHyWkPHz6MmTNn4rfffsO1a9f4dBPnzp1D06ZNFbkPKZArcN1WniilrD2sin8TcopftUWQ2q5NawFub08/tQQ4QagFiTCCGU6cOIGEhAScOXMG3bp1w4gRI/DOO+8gPDwcP//8MwYPHoySkhK7IuzmzZtITk5GcnIyNmzYgKioKJw7dw7Jycma3OTc1cB1RwO5rTxR9qw9agsHJTFZaZ5+GsjK8jHLkl6OixfdFyhqiyBTGdTC/L4d7emnxfeUINyBRBjBBHv37sXvv/+OMWPG4PDhwygvL8eCBQv4lBWbN2+2OD8gIIDfNcDEyZMnUVBQgHfffZff7umXX35R5gYYwtmAf999RZg0SY+yMp1Daw8LwkEJ7LlJjx+3/N1dK43S9cTiBunW7nCO88E333RDvXqnabUm4ZWQCCMU586dO8jLy7NIUTFnzhx069YNL7/8Mo4fP47S0lK8//776N69O/bv34+VK1daXCM+Ph43btzAnj178MADDyAoKAi1a9dGQEAA3n//fQwfPhzHjx/HW2+9pdJdqoujAX/cOCA1VZirU+sCSwisu0ldgaVUG+Y42zaJILwNYZkxCUJCdu7ciZiYGMTHx6NLly7Yt28fli5diq+//hq+vr544IEHsHDhQsydOxfNmzfHhg0bMGfOHItrtG3bFsOHD0dqaiqioqIwb948REVFYe3atdiyZQuaNm2Kd999F/Pnz1fpLtmmVi2gQwd2LCQmTKkzLlxQuyTSceECsG8fFLmngoICHD58CcOGcVapNjgcPnwJBQUF8hfCASZ3uDnOtk0iCE+GLGGEoqxduxZr1651et6YMWMwZswYi89eeukli99XrFiBFStWWHz2wgsv4IUXXrD4zFZiXyXwppgqKVAzdYZcKGmRMrlVc3LiUV7e3+JYWZkO77//HRISzqoa/O5s26TCwkLExMSoUjaCUAMSYV4IiQNl8JaYKilQM3WGXCid/NXUzpxt0q22W9W0bdL587UA6BAXd54/tnnzZlohSXgVJMK8EBIHykF1eA9Hol7N1BlyoVbyV6U36RaS/8ua7Oz6tEKSIEAizGshcUAojSPxn5vrg/XrOZSX6/jPtJwotaCgAKGhd+HjU8PqnjiEhFxGQYGfrO+gUpt0C83/1a9fP4tzaIUkQVRAIowgCMWwJzxiYuRLlKo05sKkWzfLnFhdu27H9u0VFh+53W5KbNItNP9XUFAQUlNTsWnTJlohKRDaYcA7IBFGEAzhzR2vXLsEOEPqGEnz5+fIIuVJbjch1i29Xg/Aecwawf4WX4R0kAgjCEaQu+PVgsBzdZcAd5A7RlIJi5TaiLFuKR2zpkU8MXcdYRsSYQTBCHJ2vDSzdow33rOUiLVuKRWz5unk5+fb/JyFCRUhDBJhBOEF0Mza81Ez9Ywr1i25LYRasPy6S3p6ut1j3jqh0hokwgiCUBVvGCyVQO3UM86sW0qKRLL80oRKK5AIIzyKH374AR07dsS1a9cQFhYm6G/i4+MxevRojB49WtayEZWhwVJa1K4jR9YtJUUiWX4JrUB7RxKKMmDAAOh0OgwfPrzSsZEjR0Kn02HAgAHKF4xQBRostY1Y61ZERARiYmLs/lNbRBKE0pAljFCcuLg4fP7551i0aBGqVq0KALh9+zY2btyI2rVrq1w6gnAPb9oWTG0XKEFoHRJhhOK0bNkS2dnZSE9Px4svvgigIsC0du3aSEhI4M+7c+cOJkyYgM8//xxFRUVo3bo1Fi1ahIcffpg/59tvv8Xo0aNx/vx5tGnTBv3796/0fT///DMmT56MX375BZGRkXj22WcxZ84cBAcHy3+zhNfhbcJEC/dhL5M/q1gLdK2VnxAOiTBCFQYNGoQ1a9bwImz16tUYOHAgfvjhB/6ciRMnYuvWrVi3bh3q1KmDefPmITk5GadPn0Z4eDjOnz+PlJQUjBw5EsOGDcMvv/yCcePGWXxPdnY2unTpgrfffhurV6/GlStXkJaWhrS0NKxZs0bJW3aKN1lQPB0tCBNvwVEmf1YxF/IbN1bF7Nl6lJfr4OPDYfr0vwGsUruIhESQCCNw4ULFZsMNGiiXKLNfv36YPHkyzp49CwDYv38/Pv/8c16E3bx5EytWrMDatWvx1FNPAQA++ugjZGRkYNWqVZgwYQJWrFiBevXqYcGCBQCARo0a4ffff8fcuXP575kzZw5efPFFPui+QYMGWLp0KR5//HGsWLECVapUUeaGBSCnBYUEHuGNaHmfyoiICFy4AEyceG8j+PJyHd566z689loI8+UnhEEizMtZtQoYNqziJffxqdi/b/Bg+b83KioKXbt2xdq1a8FxHLp27YrIyEj+eHZ2NkpLS9GuXTv+M39/fzzyyCM4ceIEAODEiRNITEy0uK7BYLD4/bfffsOxY8ewYcMG/jOO41BeXo6cnBw0adJEjttzGbksKN7mIiMIQFwmfxb56697AsxEWZlOUPlpQqUNSIR5MRcu3BNgQMX/r7xSsX+fEhaxQYMGIS0tDQCwfPlyWb7jxo0beOWVV/Daa69VOuZtiwBIYBHegkmAOMvkz7pQadCgYnJsLsR8fYFx455BZORtAEBurg9ycvyQkHAXsbEVJ9KESjuQCPNibM+yKjZQVkKEdenSBSUlJdDpdEhOTrY4Vq9ePQQEBGD//v2oU6cOAKC0tBSHDh3iXYtNmjTBtm3bLP7u4MGDFr+3bNkSf/zxB+rXry/fjRAuQ25SQg7MLb/33VeESZP0KCvTwdeXw9y5Rejb9wVNCJVatSq8E6+8UtE3+/oC//430KJFdQDqeTII6SAR5sXYm2UppVd8fX1516Kvr6/FseDgYIwYMQITJkxAeHg4ateujXnz5qG4uBiD/+llhg8fjgULFmDChAkYMmQIDh8+jLVr11pcZ9KkSWjTpg3S0tIwZMgQBAcH448//kBGRoagJKGEvJCblJALU5sZNw5ITa2YXNavr0OtWmEAwtQsmigGD67wTlSU/94EWW1PBiENJMK8GHuzLCVf4NDQULvH3n33XZSXl+Oll17C9evX0bp1a3z//feoXr1iFli7dm1s3boVY8aMwfvvv49HHnkE//rXvzBo0CD+Gvfffz9+/PFHTJkyBY899hg4jkO9evWQmpoq+70RwiCBRchNrVraFia2yq+2J4OQBh3HcZzahSBsU1RUBL1eD6PRWEms3L59Gzk5OUhISHB7hd+FC5VnWcQ9pKxrgiAIKbhwAahTp7In48wZ6sdZwNH4bQ5tW0SgVi2gQwd6cQmCILSCyZNhiuRQw5NBuA+5IwmCIAhCg9iLFyO0A4kwgiAIgtAoWo9383bIHUkQBEEQBKECJMIIgiAIgiBUgESYxqHFrfJDdUwQBEHIAYkwjWJKbuooySUhDaY6tk4oSxAEQRDuQIH5GsXPzw9BQUG4cuUK/P394eNDeloOysvLceXKFQQFBcHPj14XgiAIQjpoVNEoOp0OMTExyMnJwdmzZ9Uujkfj4+OD2rVrQ6fTqV0UgiAIwoMgEaZhAgIC0KBBA3JJykxAQABZGgmCIAjJIRGmcXx8fGgrHYIgCILQIDS9JwiCIAiCUAESYQRBEARBECpAIowgCIIgCEIFKCaMYUxJQouKilQuCUEQBEEQQjGN286SfZMIY5jr168DAOLi4lQuCUEQBEEQYrl+/Tr0er3d4zqO9mRhlvLycuTm5iIkJMQrc1QVFRUhLi4O58+fR2hoqNrF0SxUj9JA9eg+VIfSQPUoDXLWI8dxuH79OmJjYx2mOCJLGMP4+PigVq1aahdDdUJDQ6mjkQCqR2mgenQfqkNpoHqUBrnq0ZEFzAQF5hMEQRAEQagAiTCCIAiCIAgVIBFGMEtgYCBmzJiBwMBAtYuiaagepYHq0X2oDqWB6lEaWKhHCswnCIIgCIJQAbKEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYoTr/+c9/0L17d8TGxkKn0+Grr76yOM5xHKZPn46YmBhUrVoVSUlJ+Ouvv9QpLKM4q8MBAwZAp9NZ/OvSpYs6hWWYOXPm4OGHH0ZISAhq1KiBnj174tSpUxbn3L59GyNHjkRERASqVauGXr164dKlSyqVmE2E1GOHDh0qtcnhw4erVGI2WbFiBe6//34+majBYMB3333HH6e2KAxn9ahmWyQRRqjOzZs38cADD2D58uU2j8+bNw9Lly7FypUrkZWVheDgYCQnJ+P27dsKl5RdnNUhAHTp0gUXL17k/3322WcKllAb/Pjjjxg5ciQOHjyIjIwMlJaWonPnzrh58yZ/zpgxY/DNN99gy5Yt+PHHH5Gbm4uUlBQVS80eQuoRAIYOHWrRJufNm6dSidmkVq1aePfdd3H48GH88ssv6NSpE5555hn873//A0BtUSjO6hFQsS1yBMEQALgvv/yS/728vJyLjo7m3nvvPf6zwsJCLjAwkPvss89UKCH7WNchx3Fc//79uWeeeUaV8miZy5cvcwC4H3/8keO4irbn7+/PbdmyhT/nxIkTHAAuMzNTrWIyj3U9chzHPf7449zrr7+uXqE0SvXq1bmPP/6Y2qKbmOqR49Rti2QJI5gmJycHeXl5SEpK4j/T6/VITExEZmamiiXTHj/88ANq1KiBRo0aYcSIESgoKFC7SMxjNBoBAOHh4QCAw4cPo7S01KI9Nm7cGLVr16b26ADrejSxYcMGREZGonnz5pg8eTKKi4vVKJ4mKCsrw+eff46bN2/CYDBQW3QR63o0oVZbpA28CabJy8sDANSsWdPi85o1a/LHCOd06dIFKSkpSEhIQHZ2Nt5880089dRTyMzMhK+vr9rFY5Ly8nKMHj0a7dq1Q/PmzQFUtMeAgACEhYVZnEvt0T626hEA+vbtizp16iA2NhbHjh3DpEmTcOrUKaSnp6tYWvb4/fffYTAYcPv2bVSrVg1ffvklmjZtiqNHj1JbFIG9egTUbYskwgjCC+jTpw//c4sWLXD//fejXr16+OGHH/DEE0+oWDJ2GTlyJI4fP46ff/5Z7aJoGnv1OGzYMP7nFi1aICYmBk888QSys7NRr149pYvJLI0aNcLRo0dhNBrxxRdfoH///vjxxx/VLpbmsFePTZs2VbUtkjuSYJro6GgAqLTi59KlS/wxQjx169ZFZGQkTp8+rXZRmCQtLQ3bt2/Hvn37UKtWLf7z6OholJSUoLCw0OJ8ao+2sVePtkhMTAQAapNWBAQEoH79+mjVqhXmzJmDBx54AEuWLKG2KBJ79WgLJdsiiTCCaRISEhAdHY09e/bwnxUVFSErK8vCn0+I48KFCygoKEBMTIzaRWEKjuOQlpaGL7/8Env37kVCQoLF8VatWsHf39+iPZ46dQrnzp2j9miGs3q0xdGjRwGA2qQTysvLcefOHWqLbmKqR1so2RbJHUmozo0bNyxmHDk5OTh69CjCw8NRu3ZtjB49Gm+//TYaNGiAhIQETJs2DbGxsejZs6d6hWYMR3UYHh6OWbNmoVevXoiOjkZ2djYmTpyI+vXrIzk5WcVSs8fIkSOxceNGfP311wgJCeFja/R6PapWrQq9Xo/Bgwdj7NixCA8PR2hoKEaNGgWDwYA2bdqoXHp2cFaP2dnZ2LhxI55++mlERETg2LFjGDNmDNq3b4/7779f5dKzw+TJk/HUU0+hdu3auH79OjZu3IgffvgB33//PbVFETiqR9XboiprMgnCjH379nEAKv3r378/x3EVaSqmTZvG1axZkwsMDOSeeOIJ7tSpU+oWmjEc1WFxcTHXuXNnLioqivP39+fq1KnDDR06lMvLy1O72Mxhqw4BcGvWrOHPuXXrFvfqq69y1atX54KCgrhnn32Wu3jxonqFZhBn9Xju3Dmuffv2XHh4OBcYGMjVr1+fmzBhAmc0GtUtOGMMGjSIq1OnDhcQEMBFRUVxTzzxBLdr1y7+OLVFYTiqR7Xboo7jOE5+qUcQBEEQBEGYQzFhBEEQBEEQKkAijCAIgiAIQgVIhBEEQRAEQagAiTCCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVIBEGEEQBEEQhAqQCCMIgiAIglABEmEEQTBLXl4eRo0ahbp16yIwMBBxcXHo3r27xX55Bw4cwNNPP43q1aujSpUqaNGiBRYuXIiysjL+nDNnzmDw4MFISEhA1apVUa9ePcyYMQMlJSUW3/fRRx/hgQceQLVq1RAWFoaHHnoIc+bM4Y/PnDkTOp0OXbp0qVTW9957DzqdDh06dBB0b6Zr6XQ6+Pn5IT4+HmPGjMGNGzdE1hJBEFqF9o4kCIJJzpw5g3bt2iEsLAzvvfceWrRogdLSUnz//fcYOXIkTp48iS+//BK9e/fGwIEDsW/fPoSFhWH37t2YOHEiMjMzsXnzZuh0Opw8eRLl5eX497//jfr16+P48eMYOnQobt68ifnz5wMAVq9ejdGjR2Pp0qV4/PHHcefOHRw7dgzHjx+3KFdMTAz27duHCxcuoFatWvznq1evRu3atUXdY7NmzbB7927cvXsX+/fvx6BBg1BcXIx///vflc4tKSlBQECACzUpHyyWiSA0hSKbIxEEQYjkqaee4u677z7uxo0blY5du3aNu3HjBhcREcGlpKRUOr5t2zYOAPf555/bvf68efO4hIQE/vdnnnmGGzBggMMyzZgxg3vggQe4bt26cW+//Tb/+f79+7nIyEhuxIgR3OOPPy7g7u5dy5yhQ4dy0dHRFsc/+ugjLj4+ntPpdBzHVdz74MGDucjISC4kJITr2LEjd/ToUf4aR48e5Tp06MBVq1aNCwkJ4Vq2bMkdOnSI4ziOO3PmDNetWzcuLCyMCwoK4po2bcrt2LGD4ziOW7NmDafX6y3K8+WXX3Lmw4SrZSIIwjbkjiQIgjmuXr2KnTt3YuTIkQgODq50PCwsDLt27UJBQQHGjx9f6Xj37t3RsGFDfPbZZ3a/w2g0Ijw8nP89OjoaBw8exNmzZ52Wb9CgQVi7di3/++rVq/Hiiy+6bRWqWrWqhYv09OnT2Lp1K9LT03H06FEAwPPPP4/Lly/ju+++w+HDh9GyZUs88cQTuHr1KgDgxRdfRK1atXDo0CEcPnwYb7zxBvz9/QEAI0eOxJ07d/Cf//wHv//+O+bOnYtq1aqJKqMrZSIIwjbkjiQIgjlOnz4NjuPQuHFju+f8+eefAIAmTZrYPN64cWP+HFvXf//993lXJADMmDEDKSkpiI+PR8OGDWEwGPD000/jueeeg4+P5Xy1W7duGD58OP7zn/+gVatW2Lx5M37++WesXr1a7K3yHD58GBs3bkSnTp34z0pKSvDJJ58gKioKAPDzzz/jv//9Ly5fvozAwEAAwPz58/HVV1/hiy++wLBhw3Du3DlMmDCBr7sGDRrw1zt37hx69eqFFi1aAADq1q0rupyulIkgCNuQCCMIgjk4jpPlXAD4+++/0aVLFzz//PMYOnQo/3lMTAwyMzNx/Phx/Oc//8GBAwfQv39/fPzxx9i5c6eFEPP390e/fv2wZs0a/N///R8aNmyI+++/X1Q5AOD3339HtWrVUFZWhpKSEnTt2hXLli3jj9epU4cXOwDw22+/4caNG4iIiLC4zq1bt5CdnQ0AGDt2LIYMGYL169cjKSkJzz//POrVqwcAeO211zBixAjs2rULSUlJ6NWrl+hyu1ImgiBsQyKMIAjmaNCgAR9Qb4+GDRsCAE6cOIG2bdtWOn7ixAk0bdrU4rPc3Fx07NgRbdu2xYcffmjzus2bN0fz5s3x6quvYvjw4Xjsscfw448/omPHjhbnDRo0CImJiTh+/DgGDRok9hYBAI0aNcK2bdvg5+eH2NjYSu5Ma1fsjRs3EBMTgx9++KHStcLCwgBUrLrs27cvduzYge+++w4zZszA559/jmeffRZDhgxBcnIyduzYgV27dmHOnDlYsGABRo0aBR8fn0qCtrS0tNL3uFImgiBsQzFhBEEwR3h4OJKTk7F8+XLcvHmz0vHCwkJ07twZ4eHhWLBgQaXj27Ztw19//YUXXniB/+zvv/9Ghw4d0KpVK6xZs6aSi9EWJhFnqwzNmjVDs2bNcPz4cfTt21fM7fEEBASgfv36iI+PFxRP1rJlS+Tl5cHPzw/169e3+BcZGcmf17BhQ4wZMwa7du1CSkoK1qxZwx+Li4vD8OHDkZ6ejnHjxuGjjz4CAERFReH69esW92qK+ZKiTARBVIZEGEEQTLJ8+XKUlZXhkUcewdatW/HXX3/hxIkTWLp0KQwGA4KDg/Hvf/8bX3/9NYYNG4Zjx47hzJkzWLVqFQYMGIDnnnsOvXv3BnBPgNWuXRvz58/HlStXkJeXh7y8PP77RowYgbfeegv79+/H2bNncfDgQbz88suIioqCwWCwWca9e/fi4sWLill8kpKSYDAY0LNnT+zatQtnzpzBgQMHMGXKFPzyyy+4desW0tLS8MMPP+Ds2bPYv38/Dh06xMfNjR49Gt9//z1ycnJw5MgR7Nu3jz+WmJiIoKAgvPnmm8jOzsbGjRstFh+4WiaCIOxD7kiCIJikbt26OHLkCN555x2MGzcOFy9eRFRUFFq1aoUVK1YAAJ577jns27cP77zzDh577DHcvn0bDRo0wJQpUzB69GjodDoAQEZGBk6fPo3Tp09b5PYC7sWUJSUlYfXq1VixYgUKCgoQGRkJg8GAPXv2VIp3MmFr5aac6HQ6fPvtt5gyZQoGDhyIK1euIDo6Gu3bt0fNmjXh6+uLgoICvPzyy7h06RIiIyORkpKCWbNmAQDKysowcuRIXLhwAaGhoejSpQsWLVoEoML6+Omnn2LChAn46KOP8MQTT2DmzJlOA+udlYkgCPvoOLFRrQRBEARBEITbkDuSIAiCIAhCBUiEEQRByEC1atXs/vvpp5/ULh5BEAxA7kiCIAgZOH36tN1j9913H6pWrapgaQiCYBESYQRBEARBECpA7kiCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVIBEGEEQBEEQhAqQCCMIgiAIglABEmEEQRAEQRAqQCKMIAiCIAhCBUiEEQRBEARBqMD/A73T4mqlkO6gAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXbElEQVR4nOzdeVxU1f8/8NcdBASFYUcIVERccUMTB9OyQDSX/KqhpqWJWf2kQkvNT+XyqT6VbVa2maa2aK4VaqmgpqZEhStuKaFCiMsgA2oJMuf3xzSXubOwyc7r+XjwAO49c+fcG8abc97nfSQhhAARERER1ShVbXeAiIiIqDFiEEZERERUCxiEEREREdUCBmFEREREtYBBGBEREVEtYBBGREREVAsYhBERERHVAgZhRERERLWAQRgRERFRLWAQRkREpVqxYgUkScLZs2druytEDQqDMCKqdb/99hvi4uLQuXNnNGvWDC1btkRMTAz++OMPi7b33HMPJEmCJElQqVRwdXVF+/bt8fDDDyMxMbFC77tp0ybcfffd8PHxgbOzM9q0aYOYmBhs3bq1qm7Nwv/+9z989913Fsf379+P+fPnIy8vr9re29z8+fPlZylJEpydndGpUye8+OKLyM/Pr5L3WLVqFRYtWlQl1yJqaBiEEVGte+ONN7Bhwwbcd999eO+99zB16lTs2bMHYWFhSEtLs2gfEBCAL7/8El988QXefPNNDB8+HPv378fAgQMxZswYFBUVlfmeb731FoYPHw5JkjBnzhy8++67GDVqFE6fPo1vvvmmOm4TQOlB2IIFC2o0CDP6+OOP8eWXX+Kdd95Bhw4d8Oqrr2LQoEGoiq2FGYQR2daktjtARDRjxgysWrUKDg4O8rExY8agS5cueP311/HVV18p2qvVakyYMEFx7PXXX8fTTz+Njz76CK1bt8Ybb7xh8/1u3bqFl19+GVFRUdi+fbvF+UuXLt3mHdUdN27cgLOzc6ltRo8eDS8vLwDAE088gVGjRmHjxo345ZdfoNFoaqKbRI0SR8KIqNZFREQoAjAACAkJQefOnXHixIlyXcPOzg7vv/8+OnXqhMWLF0On09lse+XKFeTn56Nv375Wz/v4+Ci+/+effzB//ny0a9cOTZs2hZ+fH0aOHIn09HS5zVtvvYWIiAh4enrCyckJPXv2xPr16xXXkSQJ169fx8qVK+UpwEmTJmH+/PmYOXMmACAoKEg+Z5qD9dVXX6Fnz55wcnKCh4cHxo4di8zMTMX177nnHoSGhiI1NRX9+/eHs7Mz/vOf/5Tr+Zm69957AQAZGRmltvvoo4/QuXNnODo6wt/fH9OmTVOM5N1zzz3YsmULzp07J99T69atK9wfooaKI2FEVCcJIXDx4kV07ty53K+xs7PDuHHj8NJLL+Hnn3/GkCFDrLbz8fGBk5MTNm3ahKeeegoeHh42r1lcXIyhQ4dix44dGDt2LJ555hkUFBQgMTERaWlpCA4OBgC89957GD58OMaPH4/CwkJ88803ePDBB7F582a5H19++SWmTJmC3r17Y+rUqQCA4OBgNGvWDH/88QdWr16Nd999Vx6V8vb2BgC8+uqreOmllxATE4MpU6bg8uXL+OCDD9C/f38cPHgQbm5ucn+1Wi0GDx6MsWPHYsKECfD19S338zMyBpeenp4228yfPx8LFixAZGQknnzySZw6dQoff/wxfvvtN+zbtw/29vZ44YUXoNPpkJWVhXfffRcA0Lx58wr3h6jBEkREddCXX34pAIhly5Ypjt99992ic+fONl/37bffCgDivffeK/X6c+fOFQBEs2bNxODBg8Wrr74qUlNTLdp9/vnnAoB45513LM7p9Xr56xs3bijOFRYWitDQUHHvvfcqjjdr1kxMnDjR4lpvvvmmACAyMjIUx8+ePSvs7OzEq6++qjh+9OhR0aRJE8Xxu+++WwAQn3zyic37NjVv3jwBQJw6dUpcvnxZZGRkiE8//VQ4OjoKX19fcf36dSGEEMuXL1f07dKlS8LBwUEMHDhQFBcXy9dbvHixACA+//xz+diQIUNEq1atytUfosaG05FEVOecPHkS06ZNg0ajwcSJEyv0WuNIS0FBQantFixYgFWrVqFHjx7Ytm0bXnjhBfTs2RNhYWGKKdANGzbAy8sLTz31lMU1JEmSv3ZycpK/vnr1KnQ6Hfr164cDBw5UqP/mNm7cCL1ej5iYGFy5ckX+aNGiBUJCQrBr1y5Fe0dHRzz66KMVeo/27dvD29sbQUFBePzxx9G2bVts2bLFZi5ZUlISCgsLER8fD5Wq5NfIY489BldXV2zZsqXiN0rUCHE6kojqlJycHAwZMgRqtRrr16+HnZ1dhV5/7do1AICLi0uZbceNG4dx48YhPz8fKSkpWLFiBVatWoVhw4YhLS0NTZs2RXp6Otq3b48mTUr/3+XmzZvxyiuv4NChQ7h586Z83DRQq4zTp09DCIGQkBCr5+3t7RXf33HHHRb5dWXZsGEDXF1dYW9vj4CAAHmK1ZZz584BMARvphwcHNCmTRv5PBGVjkEYEdUZOp0OgwcPRl5eHvbu3Qt/f/8KX8NY0qJt27blfo2rqyuioqIQFRUFe3t7rFy5EikpKbj77rvL9fq9e/di+PDh6N+/Pz766CP4+fnB3t4ey5cvx6pVqyp8D6b0ej0kScKPP/5oNSA1z7EyHZErr/79+8t5aERUcxiEEVGd8M8//2DYsGH4448/kJSUhE6dOlX4GsXFxVi1ahWcnZ1x1113VaofvXr1wsqVK3HhwgUAhsT5lJQUFBUVWYw6GW3YsAFNmzbFtm3b4OjoKB9fvny5RVtbI2O2jgcHB0MIgaCgILRr166it1MtWrVqBQA4deoU2rRpIx8vLCxERkYGIiMj5WO3OxJI1JAxJ4yIal1xcTHGjBmD5ORkrFu3rlK1qYqLi/H000/jxIkTePrpp+Hq6mqz7Y0bN5CcnGz13I8//gigZKpt1KhRuHLlChYvXmzRVvxbzNTOzg6SJKG4uFg+d/bsWatFWZs1a2a1IGuzZs0AwOLcyJEjYWdnhwULFlgUTxVCQKvVWr/JahQZGQkHBwe8//77ij4tW7YMOp1OsSq1WbNmpZYLIWrMOBJGRLXu2WefRUJCAoYNG4bc3FyL4qzmhVl1Op3c5saNGzhz5gw2btyI9PR0jB07Fi+//HKp73fjxg1ERESgT58+GDRoEAIDA5GXl4fvvvsOe/fuxYgRI9CjRw8AwCOPPIIvvvgCM2bMwK+//op+/frh+vXrSEpKwv/7f/8PDzzwAIYMGYJ33nkHgwYNwkMPPYRLly7hww8/RNu2bXHkyBHFe/fs2RNJSUl455134O/vj6CgIISHh6Nnz54AgBdeeAFjx46Fvb09hg0bhuDgYLzyyiuYM2cOzp49ixEjRsDFxQUZGRn49ttvMXXqVDz33HO39fwrytvbG3PmzMGCBQswaNAgDB8+HKdOncJHH32EO++8U/Hfq2fPnlizZg1mzJiBO++8E82bN8ewYcNqtL9EdVZtLs0kIhKipLSCrY/S2jZv3lyEhISICRMmiO3bt5fr/YqKisRnn30mRowYIVq1aiUcHR2Fs7Oz6NGjh3jzzTfFzZs3Fe1v3LghXnjhBREUFCTs7e1FixYtxOjRo0V6errcZtmyZSIkJEQ4OjqKDh06iOXLl8slIEydPHlS9O/fXzg5OQkAinIVL7/8srjjjjuESqWyKFexYcMGcdddd4lmzZqJZs2aiQ4dOohp06aJU6dOKZ5NaeU7zBn7d/ny5VLbmZeoMFq8eLHo0KGDsLe3F76+vuLJJ58UV69eVbS5du2aeOihh4Sbm5sAwHIVRCYkIapgczAiIiIiqhDmhBERERHVAgZhRERERLWAQRgRERFRLWAQRkRERFQLGIQRERER1QIGYURERES1gMVa6zC9Xo/s7Gy4uLhw6w8iIqJ6QgiBgoIC+Pv7Q6WyPd7FIKwOy87ORmBgYG13g4iIiCohMzMTAQEBNs8zCKvDXFxcABj+I5a2Dx4RERHVHfn5+QgMDJR/j9vCIKwOM05Burq6MggjIiKqZ8pKJWJiPhEREVEtYBBGREREVAsYhBERERHVAuaE1XN6vR6FhYW13Y0GzcHBodQlxkRERJXBIKweKywsREZGBvR6fW13pUFTqVQICgqCg4NDbXeFiIgaEAZh9ZQQAhcuXICdnR0CAwM5UlNNjAVzL1y4gJYtW7JoLhERVRkGYfXUrVu3cOPGDfj7+8PZ2bm2u9OgeXt7Izs7G7du3YK9vX1td4eIiBoIDp/UU8XFxQDAKbIaYHzGxmdORERUFRiE1XOcHqt+fMZERFQdGIQRERER1QIGYURERES1oN4EYcOHD0fLli3RtGlT+Pn54eGHH0Z2draijRACb731Ftq1awdHR0fccccdePXVVxVtfvrpJ4SFhcHR0RFt27bFihUrLN7rww8/ROvWrdG0aVOEh4fj119/VZz/559/MG3aNHh6eqJ58+YYNWoULl68qGhz/vx5DBkyBM7OzvDx8cHMmTNx69atqnkY9dikSZMgSRIkSYK9vT18fX0RFRWFzz//vEKlNlasWAE3N7fq6ygRETVIWVnArl2Gz7Wt3gRhAwYMwNq1a3Hq1Cls2LAB6enpGD16tKLNM888g6VLl+Ktt97CyZMnkZCQgN69e8vnMzIyMGTIEAwYMACHDh1CfHw8pkyZgm3btslt1qxZgxkzZmDevHk4cOAAunXrhujoaFy6dEluM336dGzatAnr1q3D7t27kZ2djZEjR8rni4uLMWTIEBQWFmL//v1YuXIlVqxYgblz51bjE6oYrVaLCxcu2PzQarXV9t6DBg3ChQsXcPbsWfz4448YMGAAnnnmGQwdOpSBKhERVbmjR69i/XotXnpJh1atBO69F2jVSuDJJ68hNfVitf7OK5Wop77//nshSZIoLCwUQghx/Phx0aRJE3Hy5Embr5k1a5bo3Lmz4tiYMWNEdHS0/H3v3r3FtGnT5O+Li4uFv7+/eO2114QQQuTl5Ql7e3uxbt06uc2JEycEAJGcnCyEEOKHH34QKpVK5OTkyG0+/vhj4erqKm7evFnue9TpdAKA0Ol0Fuf+/vtvcfz4cfH333+X+3pGV65cEfPnzy/z48qVKxW+dlkmTpwoHnjgAYvjO3bsEADEZ599JoQQ4u233xahoaHC2dlZBAQEiCeffFIUFBQIIYTYtWuXAKD4mDdvnhBCiC+++EL07NlTNG/eXPj6+opx48aJixcv3lafb+dZExFR7Vq0qEBIUrEAhAD0/342/SgWw4d/L06cOFFlv/dK+/1tqt6MhJnKzc3F119/jYiICLlu06ZNm9CmTRts3rwZQUFBaN26NaZMmYLc3Fz5dcnJyYiMjFRcKzo6GsnJyQAMFehTU1MVbVQqFSIjI+U2qampKCoqUrTp0KEDWrZsKbdJTk5Gly5d4Ovrq3if/Px8HDt2zOZ93bx5E/n5+YqP6lDebY5qcjuke++9F926dcPGjRsBGJ77+++/j2PHjmHlypXYuXMnZs2aBQCIiIjAokWL4OrqKo/cPffccwCAoqIivPzyyzh8+DC+++47nD17FpMmTaqx+yAiorpBq9UiNfUiZsxohpJwx9pqdxU2bRqKJUt+wOLFi2t0VKxeBWGzZ89Gs2bN4OnpifPnz+P777+Xz/355584d+4c1q1bhy+++AIrVqxAamqqYsoyJydHERgBgK+vL/Lz8/H333/jypUrKC4uttomJydHvoaDg4NFPpJ5G2vXMJ6z5bXXXoNarZY/AgMDy/lkGoYOHTrg7NmzAID4+HgMGDAArVu3xr333otXXnkFa9euBWCo26VWqyFJElq0aIEWLVqgefPmAIDJkydj8ODBaNOmDfr06YP3338fP/74I65du1Zbt0VERDUsPT0dixcvxuuv74FeX3aZISFUyM31AFCzAxC1GoQ9//zzcpK2rY+TJ0/K7WfOnImDBw9i+/btsLOzwyOPPAIhBADD9jI3b97EF198gX79+uGee+7BsmXLsGvXLpw6daq2brFC5syZA51OJ39kZmbWdpdqlBBCrsmVlJSE++67D3fccQdcXFzw8MMPQ6vV4saNG6VeIzU1FcOGDUPLli3h4uKCu+++G4BhoQQRETV8Wq0WX331FQ4c6IH160eV6zWSpIeHR27ZDatYrW5b9Oyzz5Y5VdSmTRv5ay8vL3h5eaFdu3bo2LEjAgMD8csvv0Cj0cDPzw9NmjRBu3bt5PYdO3YEYPgF3L59e7Ro0cJiFePFixfh6uoKJycn2NnZwc7OzmqbFi1aAABatGiBwsJC5OXlKUbDzNuYr6g0XtPYxhpHR0c4OjqW+jwashMnTiAoKAhnz57F0KFD8eSTT+LVV1+Fh4cHfv75Z8TGxqKwsNDmNk3Xr19HdHQ0oqOj8fXXX8Pb2xvnz59HdHR0jf5lQ0REtSMrC/jlFyAryw8JCUNRvrEmPYYN2wy1uqC6u2ehVoMwb29veHt7V+q1xnIGN2/eBAD07dsXt27dQnp6OoKDgwEAf/zxBwCgVatWAACNRoMffvhBcZ3ExERoNBoAhmmunj17YseOHRgxYoT8Pjt27EBcXBwAoGfPnrC3t8eOHTswapQhwj516hTOnz8vX0ej0eDVV1/FpUuX4OPjI7+Pq6srOnXqVKn7beh27tyJo0ePYvr06UhNTYVer8fbb78tb0xunIo0cnBwsNhG6OTJk9BqtXj99dflqdzff/+9Zm6AiIhqhVarxaVLl/DZZ3osWtQJQngCeAzW879MCURE7Ed4eEqtBGBAPdnAOyUlBb/99hvuuusuuLu7Iz09HS+99BKCg4PlwCcyMhJhYWGYPHkyFi1aBL1ej2nTpiEqKkoeHXviiSewePFizJo1C5MnT8bOnTuxdu1abNmyRX6vGTNmYOLEiejVqxd69+6NRYsW4fr163j00UcBAGq1GrGxsZgxYwY8PDzg6uqKp556ChqNBn369AEADBw4EJ06dcLDDz+MhQsXIicnBy+++CKmTZvWqEe6jG7evImcnBwUFxfj4sWL2Lp1K1577TUMHToUjzzyCNLS0lBUVIQPPvgAw4YNw759+/DJJ58ortG6dWtcu3YNO3bsQLdu3eDs7IyWLVvCwcEBH3zwAZ544gmkpaXh5ZdfrqW7JCKi6qTVanH58mWsWbMGWVl+WLZsCoQwBl4SDIvnrQdikqRHbOxSBARcqKnuWlUvEvOdnZ2xceNG3HfffWjfvj1iY2PRtWtX7N69Ww5qVCoVNm3aBC8vL/Tv3x9DhgxBx44d8c0338jXCQoKwpYtW5CYmIhu3brh7bffxtKlSxEdHS23GTNmDN566y3MnTsX3bt3x6FDh7B161ZFov27776LoUOHYtSoUejfvz9atGghr+oDADs7O2zevBl2dnbQaDSYMGECHnnkEfz3v/+tgadV923duhV+fn5o3bo1Bg0ahF27duH999/H999/Dzs7O3Tr1g3vvPMO3njjDYSGhuLrr7/Ga6+9prhGREQEnnjiCYwZMwbe3t5YuHAhvL29sWLFCqxbtw6dOnXC66+/jrfeequW7pKIiKqLMfF+zZo1OHCgB5YunQLLgg/GQMzI8LUkGaYfazsAAwBJGDPbqc7Jz8+HWq2GTqeDq6ur4tw///yDjIwMBAUFoWnTphW6rlarxeLFi8tsFxcXB09PzwpduyG6nWdNRERVy/R3mE7ngkWL4q0EYKYE7r03CW3aZKCoyAEeHrmlTj9OnToVfn5+t9XH0n5/m6oX05FUtTw9PREXF1dqsrqDgwMDMCIiqjOMuV+XL1+Wj+3Z06+MAAwAJNjbF5d75MvBweE2elkxDMIaKQZYRERUX5jP4GRl+WHPnv7444/25Xi1QGBg6WWKBg4ciNatW9f4AASDMCIiIqqztFotsrOz5e+//fYBHD7cDWWvfgQAgW7dDpc5CtauXbtaGZxgEEZERER1jlarRXp6On788Uf5WFaWX7kCMEnSo3//3QgJOV1mADZhwoRamx1iEEZERER1ivn0o07ngtxcT5w82Q62AzBDSQrj6sewsIM2rz9y5Eh4eXnVev4zgzAiIiKqdcbE+6tXryr2WT5woAc2bRr6bwK+7YIOXbocRljYoTJXPwKAv79/nciNZhBGREREtcr6yFdr2NvfRELCMJSMftkaBdMjMnKn1eArODgY3t7ecHd3R2BgYK2PfpliEEZERES1yrRkknLkS4/y5H+Vtvfjfffdd9t1v6oLgzAiIiKqUVqtVg68Tp68hsOHb0CncwEAkwAMKH1jHz1Gj16PwMCsUqcfa7LuV0UxCKMG5aeffsKAAQNw9epVuLm5les1rVu3Rnx8POLj46u1b0REpJx6NB31kqQu0GiSy1F8FQAEoqKSEBp6wurZupJ4X5Z6sXckNRyTJk2CJEl44oknLM5NmzYNkiRh0qRJNd8xIiKqEcYRMJ3ORTHqJYQK+/drUFryvYEeUVGJ6Ns32WYLf39/+Pn51ekADOBIGNWCwMBAfPPNN3j33Xfh5OQEwLA/46pVq9CyZcta7h0REVWnvLw8AEBurqeVUa/Spx/vv38L2rc/bXP6ceTIkXVm5WN5cCSMalxYWBgCAwOxceNG+djGjRvRsmVL9OjRQz528+ZNPP300/Dx8UHTpk1x11134bffflNc64cffkC7du3g5OSEAQMG4OzZsxbv9/PPP6Nfv35wcnJCYGAgnn76aVy/fr3a7o+IiEpotVpcuHABFy5cwIkTJ7B27VoAgIeHFpKkL+dVDNOPvXsfKDX/qz4FYABHwghAVhZw+jQQEgIEBNTMe06ePBnLly/H+PHjAQCff/45Hn30Ufz0009ym1mzZmHDhg1YuXIlWrVqhYULFyI6OhpnzpyBh4cHMjMzMXLkSEybNg1Tp07F77//jmeffVbxPunp6Rg0aBBeeeUVfP7557h8+TLi4uIQFxeH5cuX18zNEhE1UualJ4x0OhekpIRDlDXzCMPqx8jIJKvTj4MHD0ZgYCAA1Pn8L2sYhDVyy5YBU6cCej2gUgFLlgCxsdX/vhMmTMCcOXNw7tw5AMC+ffvwzTffyEHY9evX8fHHH2PFihUYPHgwAOCzzz5DYmIili1bhpkzZ+Ljjz9GcHAw3n77bQBA+/btcfToUbzxxhvy+7z22msYP368nHQfEhKC999/H3fffTc+/vhjNG3atPpvloioETFd+XjlyhXFOWPwZcj9Kn0yTpL0GDXK+urHmJgY+Pj41LugyxyDsEYsK6skAAMMnx9/HIiOrv4RMW9vbwwZMgQrVqyAEAJDhgyBl5eXfD49PR1FRUXo27evfMze3h69e/fGiROG1TAnTpxAeHi44roajUbx/eHDh3HkyBF8/fXX8jEhBPR6PTIyMtCxY8fquD0iokbFGHjpdDqsWbPGahtl/a+yGGp/GVc/9urVCx4eHnB3d4e3t3e9D76MGIQ1YqdPlwRgRsXFwJkzNTMtOXnyZMTFxQEAPvzww2p5j2vXruHxxx/H008/bXGOiwCIiG6frSlHU+YrIUsjSXrExi5VbLwdFhZWZwuu3g4GYY1YSIhhCtI0ELOzA9q2rZn3HzRoEAoLCyFJEqKjoxXngoOD4eDggH379qFVq1YAgKKiIvz222/y1GLHjh2RkJCgeN0vv/yi+D4sLAzHjx9H25q6KSKiRsa02j1Qstm2h4cWgGEV5OXL1lZCmlJuvm0agAF1u+Dq7WAQ1ogFBBhywB5/3DACZmcHfPppzSXn29nZyVOLdnZ2inPNmjXDk08+iZkzZ8LDwwMtW7bEwoULcePGDcT+m7T2xBNP4O2338bMmTMxZcoUpKamYsWKFYrrzJ49G3369EFcXBymTJmCZs2a4fjx40hMTCzzLzciIiqdVqtVrEq3vuWQhNJqf3XufBQaTTKKihwsNt8eM2ZMg5p+NMcgrJGLjTXkgJ05YxgBq6kAzMjV1dXmuddffx16vR4PP/wwCgoK0KtXL2zbtg3u7u4ADNOJGzZswPTp0/HBBx+gd+/e+N///ofJkyfL1+jatSt2796NF154Af369YMQAsHBwRgzZky13xsRUUNmbdNt21sOWd//UZL0GDgw0SLxvr7V+6osSYjyLBCl2pCfnw+1Wg2dTmcRrPzzzz/IyMhAUFAQV/hVMz5rImrsTBPvr169iqKiIhQUFOD333+X22RktMbKlRPLfU3j1GNY2EGLc3FxcfU6ACvt97cpjoQRERGRTeVJvAfwbw6YHmXXgbe98XZjGQEzYhBGRERENpWWeG8aRKWlhcLWtKN54r2tjbcbUwAGMAgjIiKicjJPvO/ZMxVBQWdx8aIP9u7tD9tBmITo6K3o1Om4InAbMGAA3N3dYW9v36AT8G1hEEZERERlspZ4n5p6J1JT74RxpMsWSdJbBGAA0Llz50YXeJliEFbPcV1F9eMzJqLGxHTbIaBk66Hc3NJqfZUegA0btlkOwEaOHAkvL696uddjVWMQVk8Z62oVFhbCycmplnvTsBn/Z2Rey4yIqKEpLQm//In3RtYT8Btb3ldpGITVU02aNIGzszMuX74Me3t7qFTl/UdBFaHX63H58mU4OzujSRP+cyGihu3SpUs2z6nVBYiISMb+/X1ttDCdktRj+HDLBPwJEyYwADPB3yr1lCRJ8PPzQ0ZGBs6dO1fb3WnQVCoVWrZsCUmyPdxORFTfaLVaXL58Wa75lZ+fj7/++stqW+OKyE6djiE5WWNlWlKPqKgkqNV5AGAx+hUTEwMfHx8GYGYYhNVjDg4OCAkJsVg+TFXLwcGBI41EVO+Z5nrpdDqsWbOmzNfodC5ISQmXAy9J0qNr1yM4cqSr/H1YWCr6999rsd2QWq0GAOZ+lYJBWD2nUqlYxZ2IiEpV3oKrpvbt0yAxMQqmSfdCqHDkSFfExi61utdjVFQU2rdvz6CrnBiEERERNXDlLbhqtGPHPTbrfgmhQlGRA4KCLFNhgoKCGIBVAIMwIiKiBkyr1cplJgBlwVVj+Yjg4DPIzfWEvf1NpKT0xtGj3VDaptseHrlWzzk4OFTHLTRYDMKIiIgaqPT0dHz11Vfy9+YFV4VQISFh6L9nVShP0VVrNb8A5n5VBoMwIiKiBsI0+T4rKws//PCD4rz1gqum35e2ClyP2NilCAi4IB/x8vKCn5/f7XW6EWMQRkRE1ACUJ/new0MLSdKXUvneFkPdL9MADOD04+1iEEZERFTPabVaZGdnK46ZJ9/rdC7IzAxEWFgqUlN7onyV7wW6dDmMyMid8hRkVFQUgoKCOP1YBRiEERER1WPWRsDMk++7dj2Cw4dNk+3LsyeuoQBr377JiqMsQVF1GIQRERHVU7ZGwMyT75UBGFBW7lfPnsoCrBEREQgMDIS3tzcDsCrEIIyIiKgespUDZj35vjzbrukREZGM8PAUqNUFctV7TjtWHwZhRERE9YDpykcAitpfpuztbwLQo3w5XwCgx/33b0H79qdx333t4ePTD23atGHgVQMYhBEREdVRxsArLy8Pa9euLbWtcZ/H/fs1KE/NL6OIiGT07n0AABAWFsaSEzWIQRgREVEdVJH9Hk0T8UuUbwoyPDylUv2j21fRQiFERERUzawl3NtinohfNj0AQ/X74cM3K/aOZN2vmsWRMCIiojrE1giYad0vAPLX1hPxbdFjypSlKCpywMCBbTBgwJ0A7gTAbYdqA4MwIiKiOsJWyYmUlHAkJ2v+DbbEvx+GGmCRkUnlrIKvrHofHT2MQVctYxBGRERUB9gqumrYYNs818uQ7yWEComJkaVeV5L0GDVqPQIDszB16v1Qq+/kqFcdwSCMiIiolpiWncjIyFCcM+Z6lZ2+bfu8JOkxbNhmzJ3bEf7+9zHwqmMYhBEREdWCslY/ZmYGVmKjbSNl4VUvrzsZgNVBDMKIiIhqgWnhVXPGkhOVY0i+N+Z+AVz1WFcxCCMiIqpBxilI84r3xtWP9vY3K1hyAjAWZjVOPxoDsJiYGPj4+HAUrI5iEEZERFTNjIGXTqfDmjVrLM6bFlu1vdLRVgV8gX799qBNmwx4eOTi0Uej4OXF5Pv6gEEYERFRNUpPT8dXX31l87x5sdWSMhTmAZdkctz4WY+oqCT07Zsst/L392fwVU8wCCMiIqoGWq0Wly5dstjz0bzo6rFjna2MfNnackhCdPRWBAaeR1GRAzw8chUV7ydMmMAArB5hEEZERFRFKjLtaNg+yFjzq3ybbUuSHp06HYdaXYCRI0fCy8tLPsfpx/qHQRgREVEVKKvkhOUej+YFWMsKxAxJ98aRL0471n8MwoiIiKqAeckJ02lHtbqgHHs82g7AJEmP2FhD2YkxY8bA29ubAVgDwCCMiIioCuh0Ovlr89WOkZFJyM11R3mnHU1Jkh4zZ57BpEn9WG6igWEQRkREVAnG/K+8vDzk5eVh+/btAKyvdkxMjEJFgy9Aj/vv34L27U9j1qyJDL4aIAZhREREFVRa/pf1aceKj34NG7YZYWEHMWbMGAZgDRSDMCIiogrQarXIzs5WHDPN//Lw0JZScLUsJaNfxgR8b2/vKug11UUMwoiIiGww1vq6desWCgoKkJ+fj5SUFEUb8/yvYcM2Y9iwzUhIGArDCsjy5oHpMXy4YfQL4JZDjQGDMCIiIivKKjkBWM//2rRpKO66ay9KAi9rle5N6RERkYzw8BSo1QVc/diIMAgjIiL6lzHZHoDFBtvWZGYGWkw7CqHC3r39oQy2DFsM9eu3Fz//3E8u1tqzZyr699/L4KuRqsyEda0YPnw4WrZsiaZNm8LPzw8PP/ywYk5+/vz5kCTJ4qNZs2aK66xbtw4dOnRA06ZN0aVLF/zwww+K80IIzJ07F35+fnByckJkZCROnz6taJObm4vx48fD1dUVbm5uiI2NxbVr1xRtjhw5gn79+qFp06YIDAzEwoULq/iJEBFRVTKOfC1ZsgRLlizBxo0bFed1OhekpXVCWlon6HQuOHCgB9avH2XjatamH1Vo0yYD8fGLsGzZn/j998vYtCkAM2eOQ1xcHDp06MAArJGpNyNhAwYMwH/+8x/4+fnhr7/+wnPPPYfRo0dj//79AIDnnnsOTzzxhOI19913H+688075+/3792PcuHF47bXXMHToUKxatQojRozAgQMHEBoaCgBYuHAh3n//faxcuRJBQUF46aWXEB0djePHj6Np06YAgPHjx+PChQtITExEUVERHn30UUydOhWrVq0CAOTn52PgwIGIjIzEJ598gqNHj2Ly5Mlwc3PD1KlTa+JxERFRBV26dEnxvWmyfXp6WyQkDENJcKX/93NFxjL08l6Pgwc7wc/Ptwp6TfWZJIQQtd2JykhISMCIESNw8+ZN2NvbW5w/fPgwunfvjj179qBfv34AgDFjxuD69evYvHmz3K5Pnz7o3r07PvnkEwgh4O/vj2effRbPPfccAEPxPV9fX6xYsQJjx47FiRMn0KlTJ/z222/o1asXAGDr1q24//77kZWVBX9/f3z88cd44YUXkJOTAwcHBwDA888/j++++w4nT54s9z3m5+dDrVZDp9PB1dW10s+KiIhs02q1uHz5smKvR/Nke8NvytuZPFIm3cfFxXHUqwEr7+/vejMdaSo3Nxdff/01IiIirAZgALB06VK0a9dODsAAIDk5GZGRkYp20dHRSE5OBgBkZGQgJydH0UatViM8PFxuk5ycDDc3NzkAA4DIyEioVCp5xUxycjL69+8vB2DG9zl16hSuXr1q875u3ryJ/Px8xQcREVUPrVaLkydPYvHixYoAzFqyfeV/XQp06XII06cvUqx6ZABGQD0LwmbPno1mzZrB09MT58+fx/fff2+13T///IOvv/4asbGxiuM5OTnw9VUO//r6+iInJ0c+bzxWWhsfHx/F+SZNmsDDw0PRxto1TN/Dmtdeew1qtVr+CAwMtNmWiIgqz5j/ZRp8AYYA7NixzpWs8WVOj6ioRIwa9b1c8wuAxe8QarxqNQh7/vnnrSbTm36YTt/NnDkTBw8exPbt22FnZ4dHHnkE1mZTv/32WxQUFGDixIk1eTu3bc6cOdDpdPJHZmZmbXeJiKhBsrbZ9vbtkVi0KB7bt0fDUErClLByzDpJ0qNnz98wffoi9O2bLB+PiYnhNCQp1Gpi/rPPPotJkyaV2qZNmzby115eXvDy8kK7du3QsWNHBAYG4pdffoFGo1G8ZunSpRg6dKjFaFSLFi1w8eJFxbGLFy+iRYsW8nnjMT8/P0Wb7t27y23Mkzdv3bqF3NxcxXWsvY/pe1jj6OgIR0dHm+eJiKjqHTjQw6SwqpH56kaBoKA/kZERbOWckR6jR69HYGAWRozoBXf3KNjb20OtVsPBwYHBF1mo1SDM29u70tsx6PWGlSk3b95UHM/IyMCuXbuQkJBg8RqNRoMdO3YgPj5ePpaYmCgHcUFBQWjRogV27NghB13G6shPPvmkfI28vDykpqaiZ8+eAICdO3dCr9cjPDxcbvPCCy+gqKhIzllLTExE+/bt4e7uXqn7JSKiqqPT6f79bMj/KntiSIWMjLYoGREzBmKGr42V8kNDTwAAOnfuzKCLylQvSlSkpKTgt99+w1133QV3d3ekp6fjpZdeQnBwsMUo2Oeffw4/Pz8MHjzY4jrPPPMM7r77brz99tsYMmQIvvnmG/z+++9YsmQJAECSJMTHx+OVV15BSEiIXKLC398fI0aMAAB07NgRgwYNwmOPPYZPPvkERUVFiIuLw9ixY+Hv7w8AeOihh7BgwQLExsZi9uzZSEtLw3vvvYd33323eh8UERHZZCzEqtPp5Fww65ttl8ZQ9f7eexPh4XEVERH+UKv90aaNHu3b3wngTo56UbnViyDM2dkZGzduxLx583D9+nX4+flh0KBBePHFFxXTd3q9HitWrMCkSZNgZ2dncZ2IiAisWrUKL774Iv7zn/8gJCQE3333nVwjDABmzZqF69evY+rUqcjLy8Ndd92FrVu3yjXCAODrr79GXFwc7rvvPqhUKowaNQrvv/++fF6tVmP79u2YNm0aevbsCS8vL8ydO5c1woiIaoBp1fvsbBUyMprA0zMXe/assmhbuc22JdjbFyM09AQiIzuiS5c2Zb+EyIp6WyesMWCdMCKiijHd79HaxtrGMhGmTNuVj8CUKZ8hIOACRo4ciS5dulThHVBD0KDrhBEREVljHAGztbG2Tudi8Zrg4DMYNWoD7r9/E2yvgBTy527dDiMg4AIAQ4kiosriTw8RETU41nK9hFAhN9dDUbNr3z4NkpIi5dGyTp2O4/jxTjBdASlJeowduxq5uZ4IDDwvB2AAa37R7WEQRkREDYJWq8WVK1cAWM/1kiTD3o2AYaRsz55+SE3tBWPAJYQKJ050RL9+e7B3bz8AKqhUAs89dwYPPBAEd3d3uLl1k6/HBHy6XQzCiIio3jPNBQMAtboAw4ZttsgJU6sLsG+fBomJUbBW70sIFdq0yUCvXqno23ciwsM9ERDQDkC7mrsZajQYhBERUb1huvIRMNT7Kioqwl9//WXRNizsIIKDzyA310MeAduw4QEcPdoNpRVc9fDIhVpdgIiIQpjU7SaqcgzCiIioXjAf7SoPtbqgzNEvUz17pso5Yw4ODpXtKlG5MAgjIqI6SavV4tKlS7h16xYA4OrVq4rzOp0LcnM94eGhVSTbm5/7/fee2Lu3P8oKwACB/v33AgCioqKY70XVjkEYERHVOeajXjqdCzIzAwF0QmBgJtLT29qsAabcC9JYWsJWAKbcdsgYzHl4eFTTnRGVYBBGRER1jmnelyGoGoaSQEr/79clqxo3bRoKH58c5OW5m23GXdrol0Dv3r+gY8dTch6YUWX3NSaqCAZhRERUZ5VssG0aTFnWGRdChaVLH0PZU47yKxAVlYi+fZMBAPfffz8CAgIAsPQE1ZxKBWG7du3CgAEDqrovRETUyJiudjx58hr+/NMOLVvehKPjZQAV2WDbMK1YnnZduhxGZOROeeRrzJgx6NChQ+VugOg2VCoIGzRoEAICAvDoo49i4sSJCAwMrOp+ERFRA5eeno6vvvoKgOU+j5GRmfD3bw17+5s2NtjWQ5Lw7/GyAjDjeT2iopLk0S8jTj1SbalUEPbXX3/hyy+/xMqVK7FgwQLce++9iI2NxYgRI7ikl4iIyqTVauUATKdzUeRxCaGSy0lIkh5dux7BkSNdTQIxQzBlb1+IH34YgrICsH799qBNmwyLvK/BgwcjODiYU49UayQhhK3dSsvlwIEDWL58OVavXg0AeOihhxAbG4tu3bqV8UoqS3l3YSciqm8uXLiAJUuWAAC2b4/E/v19bbaVJD1iY5ciL88NAKDTucn7PZbOcuRr5MiR8PLyYt4XVavy/v6+7cT8sLAwtGjRAp6ennj99dfx+eef46OPPoJGo8Enn3yCzp073+5bEBFRA6XTuSA5WVNqGyFUKCpyQGBgFjIzA8sRgAlEROxHeHiKRf0wf39/Bl9UZ1Q6CCsqKsL333+Pzz//HImJiejVqxcWL16McePG4fLly3jxxRfx4IMP4vjx41XZXyIiakDKk3gvSXpkZ/vjiy8eKbNtu3YnMWTID4rgi6NfVFdVKgh76qmnsHr1aggh8PDDD2PhwoUIDQ2Vzzdr1gxvvfUW/P39q6yjRETU8Hh4aK0k3ot/PwxJ+mFhqeWafpQkvUUABnD0i+quSgVhx48fxwcffICRI0fC0dHRahsvLy/s2rXrtjpHRET1k1arxeXLl1FUVGT1fEGBIVBSqwswbNhms5WRSVCrdTh1KgRHj3ZFauqdpbyT9Yr3HP2i+uC2E/Op+jAxn4jqI2tbDtna41HZxgPZ2f4mo16llZ7QY/To9XBzy0NRkYPFyse4uDgGX1Rrqj0x/9SpU/jggw9w4sQJAEDHjh3x1FNPoX379pW9JBERNQDmWw4ZR7ls1ekCIAdQK1dOREngZT0AM456hYYafv8MGDAA7u490aRJE7i5uXH0i+qNSgVhGzZswNixY9GrVy9oNIZVLb/88gtCQ0PxzTffYNSoUVXaSSIiqttMK9+npeUhI8NQaLUkAAMAY/0vWA3EDBt0l1bzyzD6FRiYpRj1CgkJgZ+fXxXdCVHNqVQQNmvWLMyZMwf//e9/FcfnzZuHWbNmMQgjImpETKcfS0a+OtqodC8hKSkSarUOgYGZKChojvPnW6Fly3NlvItAVFSSPPplikXCqb6qVBB24cIFPPLIIxbHJ0yYgDfffPO2O0VERPWHcQTMuNm2MfCyldclhArr1z8IQP/vOQmAQKdOx/89pgzcjMn6pqNnMTExnHqkeq9SQdg999yDvXv3om3btorjP//8M/r161clHSMiovrFes0vQ4BlfZpRpWh3/Hgn9Ou3B3v39vv3nB4REckWRVcnTJiA4ODgqu4+UY2rVBA2fPhwzJ49G6mpqejTpw8AQ07YunXrsGDBAiQkJCjaEhFRw2et5pck6XHnnSn49dc+KD3fCwAkODv/jenTFyE318NixWNMTAx8fHw48kUNRqVKVKhUZe3X9e/FJQnFxcUV7hQZsEQFEdUVxsR7nU6Hq1evKup/Xb58GWlpaQAsV0NGRCTD3z/73+nHsghMmfIZAgIuYMCAAQgJCZHPcNqR6pNqLVGh1+sr3TEiIqpfKlL3KyzsIIKDzyAlJRzJyZp/N+bWo/SaXwAg0K3bYQQEXAAAuLu7c8UjNXi3vYE3ERE1bLbqfhnrdYWFHZTP63QuyMwMRHKyRlGaomQrImOOGOSv/f2zcf/9W+QAjKixKHcQ9v7775f7ok8//XSlOkNERHWXtdWPCQlDcfGiF7p0ScOlSy3M6oKZMgRc99+/Ce3bn0ZBQXNkZrZEYOB5q8FXkyYcI6CGr9w/5e+++2652kmSxCCMiKieM9378erVqwBsrX5UISUlAikpGhg33bZNQnGxPdTqAqjVBaWOfPn4+NzuLRDVeeUOwjIyMqqzH0REVAuysoDTp4GQECAgwHDMPAfMyNrqxxLGel+lEQgMPA8A6NWrF1q2bKk4y22HqLHheC8RUSNjXOm4apUTZs1SQ6+XoFIJLFyow0MP/Y28vDxFe2OeFwBERiYhMTESpY94GSmLsZom3rds2RJdunSpwrsiqn8qHYRlZWUhISEB58+fVyRtAsA777xz2x0jIqKqZxzl0ulcsGhRPIQwjF7p9RJmznTFX399rljxeOBADyQkDEVJ0CXQu3cKfv01HJYjX8bk+5KkfR+fHKu5X8z5IqpkELZjxw4MHz4cbdq0wcmTJxEaGoqzZ89CCIGwsLCq7iMREVUR4x/N1vK7hFAhN9dDDsJ0OhezAAwAJJMAzLTshGGk6957d1oUWrWW+8WcL6JKBmFz5szBc889hwULFsDFxQUbNmyAj48Pxo8fj0GDBlV1H4mIqIpZz+/S4/r1ZtDpXKBWFyA31xPWpx0lk896hIf/gi5d0uRgy7x2GFCy1yPAwqtERpUKwk6cOIHVq1cbLtCkCf7++280b94c//3vf/HAAw/gySefrNJOEhFR5Wm1Wpw9ewsZGU1QWHgNGRmt4eGhxbBhmxXV7QEJ69c/CEnSQ6NJRqdOx1B2kVUVOnT4w2K0a8yYMVCr1QAYdBHZUqkgrFmzZvKQtp+fH9LT09G5c2cAwJUrV6qud0REVGnp6em4ePEi3njjism0ogeAEDlny1qivRAq7N/fF/v3a8rxLnp4eOQCAEaOHAkvLy8GXUTlVKkgrE+fPvj555/RsWNH3H///Xj22Wdx9OhRbNy4Ud7Qm4iIaoa1MhPp6en46quv/s3rikdJkGUY1TIWWpUkwPZKx7JWQApERSXJ049eXl7caoioAioVhL3zzju4du0aAGDBggW4du0a1qxZg5CQEK6MJCKqQcuWAVOnAno9oFIB77xzDTExBfjrr78A4N/SEraDLCFsnCqDJOkRGZmEvn2T5WMODg6VuxhRI1WpIKxNmzby182aNcMnn3xSZR0iIqKyGfO8pk71gV5vLDMBTJ/ujHPnlkCtLoBO54JLl7xLuYoekgQbxVdtvyYiIhnh4SmKBPyYmBhOQRJV0G0VaiksLMSlS5eg1+sVx82rIBMRUdXIygJ+/12HPXtWIjfXE3r9RMV5Y5mJ9PS2Jkn31pLr9Rg+fDMAlNGuRHj4fkRE/GJ19aNx5SMRlV+lgrA//vgDsbGx2L9/v+K4EAKSJKG4uLhKOkdERCVKph7VkKR4REYmWZSZkCQ97O0LzTbSLqnpJUl6dOx4DBERyfKKxuDgMzh2rBO2b7ddYkiS9DYDMIBTkUSVUakg7NFHH0WTJk2wefNm+Pn5QZLK2i+MiIhux2+/AY89BjmHSwgVkpIiERmZhKSkSAhRUqW+qMjRyhSjhHbtTuKPP9rh+PEuOH68s2JasXPn40hMHGj2upLAbdiwzXIA1rFjRwQEBMDd3Z17PRLdhkoFYYcOHUJqaio6dOhQ1f0hIiIz7713DdOnN5O3GDISQgV//2zExy9SVKnPyvKzutH2H3+0R8l0o6EMRXKyBsOGbUZY2EFF3TBj4r2/f7ai+j1gCMK47yPR7atUENapUyfWAyMiqmZarRZHjuRi+vRgiwAMMEwRGgMkY5B04ECPUnK8LK8hhAqbNg1FcPAZhIUdRHDwGYtth8zZ29tXwd0RUbmDsPz8fPnrN954A7NmzcL//vc/dOnSxeIfpKura9X1kIioETJutJ2R0RpChFhpYahqb0qnc7GSC1Y20z0jTQM6W7y9S1txSUTlVe4gzM3NTZH7JYTAfffdp2jDxHwioqph3JXE+h6PhsQw8+lEa5tyW7JcAWkcUSuNcRsi5n8RVZ1yB2G7du2qzn4QETVq1qreA4bNsM1ztQzJ+YZgy3Q60cNDC8MekMpNuY21wIx5XtevN0NyskaRzG8c/TJuPWSKgRdR9Sh3EHb33XfLX58/fx6BgYEWqyKFEMjMzKy63hERNQLmVe+XLAHuv7/kvGmu1vXrzbB+/YOK1wuhwrFjnf4dBTP9/7KhFpi1PK/w8BSruV/ceoio5lQqMT8oKAgXLlyAj4+P4nhubi6CgoI4HUlEVA62qt4//rjA+vV/Kdoac7V0Oher05OGGl+WifjBwWes5nmVJ/eLiKpXRfaqkBlzv8xdu3YNTZs2ve1OERE1dMbE+9df3yMHYEbFxRK++y5N/l6nc0FaWiekpXUCAAwbthmSZNypxDTwMv//soTMzABUBIuuEtWcCo2EzZgxAwAgSRJeeuklODs7y+eKi4uRkpKC7t27V2kHiYgaGq1Wi+zsbLmchDnTRPl9+zRITIxEyd/MAsOHb0J8/CKkpvbAnj0Dyv2+EyZMUPx/2xxzv4hqVoWCsIMHDwIwjIQdPXpU8ReTg4MDunXrhueee65qe0hE1IAYR8AM5STiraxmLEmUNwRgUTCfYty0aSgiI5OwZ8/dKJ0egYFZAICoqCgEBwdX4Z0Q0e2qUBBmXCH56KOP4r333mM9MCKiCsjKAn75xTC9aKucRM+eqQgLOwidzgVJSZGwVWBVOTpmjUBUVJKc9+Xi4lI1N0FEVaZSifnLly+v6n4QETVoJSsgPW1uvg0Aqak90b//3jJqfglYD8AM5SmMpSj69k220oaI6opKBWHXr1/H66+/jh07duDSpUvQ6/WK83/++WeVdI6IqL6ztgLSuPl2WFgqUlPvNHuFCpmZAcjICIK1wqrWjxncf/8WeHtrrW45xK2GiOqeSgVhU6ZMwe7du/Hwww/Dz8/P6kpJIqLGLj09HR9++D22bx8Ivd5XcU4IFYKCMpCa2hPmxVU3bBhtZRRMICgoHRkZba2+lyTp0b79aZtlJ7jVEFHdU6kg7Mcff8SWLVvQt2/fqu4PEVG9p9VqcenSJTz//GkbyfeGoCkwMAvDh2822e9RD0Cyulk3IKFnzwM4e7ZNqcn8ANCrVy+0bNkSgGEEzNvbm6seieqgSgVh7u7u8PDwqOq+EBHVe2WvfjTQaJKhVhcoquGnpXW2Mj1pYAzazLcw0miSER6eohgBa9myJbp06VIt90dEVadSQdjLL7+MuXPnYuXKlaXWnCEiamyMG2+XnlivR3h4ivydWl2AgoLmSE3tZbO9caTLNGizlvsFAE2aVOp/7URUwyr1L/Xtt99Geno6fH190bp1a4uEzwMHDlRJ54iI6ipbG24beXhora5+NO7naBo8HTjQAwkJQ2Et4b5z56MYODBR0b6sLYfc3NwqeDdEVBsqFYSNGDGiirtBRFR/WNtwOzZW2UatLrA5dQgAGRmt4eGhBYB/AzDrJSfMA7Dy4NZDRPVDpYKwefPmVXU/iIjqvNI23O7e/RJat1b+L9V06tDevhBFRY5ISwtFUlKkHJiFhaXCVtHViIhkqwFYVFSURfFVe3t7qNVqbj1EVI9UKAj79ddf0bNnT9jZ2Vk9f/PmTXz//feIiYmpks4REdUVxoT7jIzW0OsnKs4VF0v44IMfERR0DmPGjFGcU6sLkJ7e1mQFZEmdLyFU/+aBGYqsKinzxgBgzJgxXOlI1ICUtueFBY1GA61WK3/v6uqqKMyal5eHcePGVV3vTAwfPhwtW7ZE06ZN4efnh4cffhjZ2dmKNtu2bUOfPn3g4uICb29vjBo1CmfPnlW0+emnnxAWFgZHR0e0bdsWK1assHivDz/8EK1bt0bTpk0RHh6OX3/9VXH+n3/+wbRp0+Dp6YnmzZtj1KhRuHjxoqLN+fPnMWTIEDg7O8PHxwczZ87ErVu3quRZEFHNMybcG3O9TJluuJ2bm6s4Z1glOdQkN8w878v4fck1Jckyb2zChAno0KEDAzCiBqRCQZgQotTvbR2rCgMGDMDatWtx6tQpbNiwAenp6Rg9erR8PiMjAw888ADuvfdeHDp0CNu2bcOVK1cwcuRIRZshQ4ZgwIABOHToEOLj4zFlyhRs27ZNbrNmzRrMmDED8+bNw4EDB9CtWzdER0fj0qVLcpvp06dj06ZNWLduHXbv3o3s7GzF+xQXF2PIkCEoLCzE/v37sXLlSqxYsQJz586tlmdDRDXHmOtlDMQkSVmjKzExUW6r07ng2LHOpaySNFJh9Oj1GD16LUaPXov4+EUICzsonx0zZgw33yZqgCRRgahJpVIhJycHPj4+AAwbwh4+fBht2rQBAFy8eBH+/v4oLi6unt6aSEhIwIgRI3Dz5k3Y29tj/fr1GDduHG7evAmVyvA/vE2bNuGBBx6Q28yePRtbtmxBWlqafJ2xY8ciLy8PW7duBQCEh4fjzjvvxOLFiwEAer0egYGBeOqpp/D8889Dp9PB29sbq1atkoPAkydPomPHjkhOTkafPn3w448/YujQocjOzoavr6FK9ieffILZs2fj8uXL5U6azc/Ph1qthk6n42bpRNWorJWOAHDhwgUsWbJE/l6nc0FmZgAACYGBmRa5W/v2aeTcr9K2GgIMgVx8/CKbCfhTp06Fn59fBe+KiGpLeX9/V2gkrK7Izc3F119/jYiICLk8Rs+ePaFSqbB8+XIUFxdDp9Phyy+/RGRkpNwmOTkZkZGRimtFR0cjOdmwyW1hYSFSU1MVbVQqFSIjI+U2qampKCoqUrTp0KEDWrZsKbdJTk5Gly5d5ADM+D75+fk4duyYzfu6efMm8vPzFR9EVL2WLQNatQLuvdfwedkyw/GsLGDXLsNnwJBuYSo9vS02bBiN9esfxLvvxmP79kjodIZk+X37NEhMjDKbgrT1965AZGRShVdAElH9V+HVkcePH0dOTg4Aw9TjyZMnce3aNQDAlStXqrZ3ZmbPno3Fixfjxo0b6NOnDzZv3iyfCwoKwvbt2xETE4PHH38cxcXF0Gg0+OGHH+Q2OTk5isAIAHx9fZGfn4+///4bV69eRXFxsdU2J0+elK/h4OBgUYfH19dXfi623sd4zpbXXnsNCxYsKOfTIKLbYWul49SpAgcPnsPHH7eCXi9BkgRGjsyAu/teFBUZykoUFDQ3Kyuhwv79fZGcrMFdd+3F3r39YC33q3Pnozh2LBSmeWBRUUno2ze51L6y5ARRw1ThIOy+++5T5H0NHToUACBJEoQQFdrM+/nnn8cbb7xRapsTJ06gQ4cOAICZM2ciNjYW586dw4IFC/DII49g8+bNkCQJOTk5eOyxxzBx4kSMGzcOBQUFmDt3LkaPHo3ExMR6scn4nDlzMGPGDPn7/Px8BAYG1mKPiBqm0lY66vUSPvqopbx/oxASNmxoA+AxlIxoCVibSBBChb17+8Pa1KMkGWp+DRyY+O80JhAYmGUxAjZy5Eh4eXnJ37PkBFHDVaEgLCMjo0rf/Nlnn8WkSZNKbWPMNwMALy8veHl5oV27dujYsSMCAwPxyy+/QKPR4MMPP4RarcbChQvl9l999RUCAwORkpKCPn36oEWLFharGC9evAhXV1c4OTnBzs4OdnZ2Vtu0aNECANCiRQsUFhYiLy9PMRpm3sZ8RaXxmsY21jg6OsLR0bHU50FEt898paMycd5alXugJLCSUFp+l/VzyilHtfqEzVd7eXkx/4uokahQTlirVq3K9WH0//7f/yt1itLb2xsdOnQo9cPWMLxeb1iZdPPmTQDAjRs35IR8I2M9M2NbjUaDHTt2KNokJiZCo9EAMPzF2bNnT0UbvV6PHTt2yG169uwJe3t7RZtTp07h/PnzchuNRoOjR48qVlQmJibC1dUVnTp1svk8iKhmWVvpGBWVZFGC4vboERWVWOaUoxGnHokajwqtjqwoV1dXHDp0SDGaVRkpKSn47bffcNddd8Hd3R3p6el46aWXcPHiRRw7dgyOjo7YuXMnIiMjMX/+fHk68j//+Q9OnjyJEydOwMnJCRkZGQgNDcW0adMwefJk7Ny5E08//TS2bNmC6OhoAIYSFRMnTsSnn36K3r17Y9GiRVi7di1Onjwp53U9+eST+OGHH7BixQq4urriqaeeAgDs378fgKFERffu3eHv74+FCxciJycHDz/8MKZMmYL//e9/5b5vro4kqlrGVZCurhexefMn8nGdzkWxIbYxsb70ES8jY8BmfduhKVOWIiDgQrn6N2HCBJaiIGoAyvv7u1LbFpVXVcV3zs7O2LhxI+bNm4fr16/Dz88PgwYNwosvvihP3917771YtWoVFi5ciIULF8LZ2RkajQZbt26Fk5MTAEPy/pYtWzB9+nS89957CAgIwNKlS+UADDDU47l8+TLmzp2LnJwcdO/eHVu3blUk2r/77rtQqVQYNWoUbt68iejoaHz00UfyeTs7O2zevBlPPvkkNBoNmjVrhokTJ+K///1vlTwPIqo45X6PPhg6tIdci8t0Q+wDB3ogMTESlgGYscxESU6YsUaYg8NNrF//oMV7RkQkWw3ABg4ciObNm8vf29vbsxI+USNUrSNh5nXEqGI4EkZ0+4yrIHv3LlkFaWAYpSoqcoSHhxZqdQF0OhcsWhRvs7iqYXVjZxgDsMhIw8pGa6+zVftrzJgx8mIjImqY6sRIGBFRbSptFSSgwtKlU2A6ouXufrWU6vZ6OQADDCshk5IiERqaJueWGbcnMq+ib8rb27sqb5GI6jEGYUTUYJmugrS+SXZJQLVp01CMHbvaympJw6hWmzbpSE8PURwXQoXcXA+o1QUICzuI4OAzitwyUyNHjoS/vz+nHIlIVi8r5hMRVYRaXYCIiNJXJwqhwurV40y2GQIAgeDgM4iNXYo//7SWMF+ycbfxfYKCzlkdAWMARkTmqjUImzBhAnOZiKjGGbccys4u+V9ceHhKGaUnTAuwltQE+/PPNsjLc7c6TRkRkVyu7YZiYmIYgBGRhUoFYca6W9aOnz9/Xv7+448/VlR+JiKqLlqtFhcuXMDbb+ehVSuBe+8Fevf2wYEDPQBYrwlmLC9h+Np6OQrjyJh5ACdJeoSHp5Srbz4+PpW6JyJq2CqUE5afn48pU6Zg06ZNcHV1xeOPP4558+bJRVEvX76MoKAgFBcXV0tniYisMSbgl6xSNO4FKWHTpqEIDj5jNW8LAHJzPWBvX4hly6ZYHe2SJD0CA7PKTLw3327IiNsOEZEtFQrCXnrpJRw+fBhffvkl8vLy8Morr+DAgQPYuHGjXOW5GiteEBFZZUzAz831tAikhFAhMzMAubl/y6UojMGTTucC4wiYRpOM/fs1MEwQGGqCmQZbZSXeM+eLiCqqQkHYd999h5UrV+Kee+4BAIwYMQJDhgzBsGHDkJCQAAD1YqNsImqYrO0FKUl6rF8/GqalKMLCDuLAgR7yyJZp0KXR7EOnTsdQVORgEWyZBnCmmPNFRJVRoZywy5cvK/aG9PLyQlJSEgoKCnD//ffjxo0bVd5BIqLyspb3ZRicV5aiyMryMwnAAONomBAqJCdr4OJyzeYqR2vc3Nyq9kaIqFGo0EhYy5YtceLECQQFBcnHXFxcsH37dgwcOBD/93//V+UdJCIypdVq5enH7GwVMjKaQK3Ok8+bThtev97MYjshw/RkS5tFWU1rf5UXN90mosqoUBA2cOBALF++HPfff7/iePPmzbFt2zZERUVVaeeIiEwZE/ABKKYTJckdw4ZZ7gWp07lYnZ60XbzVeN6QtD9gwAA0bdoUTk5OaNKkidURLybeE1FlVSgIW7BgAbKzs62ec3FxQWJiIg4cOFAlHSMiMmccAdPpXBTTicZpRuMqSGOb3FxPREYmISkpUs79EkKFb74Zh44dT+DEiU5QlqYQiIxMkq8REhICPz+/GrxDImpMKhSEubu7w93d3eZ5FxcX3H333bfdKSIic1qtFleuXAEAZGYGWl0FaZxGVI6S6XHXXXuxd28/mOaGnTzZEf367cHPP/f791p6REUZNuQmIqoJFd478tatW3j33XexevVq/PHHHwCAdu3a4aGHHsIzzzwDe3v7Ku8kETVu5tOQCQlDLdoYpxGzsvz+PV8ScJkGYEZCqNCmTQZ69Uq1WXaCiKg6VSgI+/vvvxEVFYXk5GRERkaif//+AIATJ05g9uzZSEhIwPbt29G0adNq6SwRNWzmSfdHj/4DN7fLsLe/CJ3OBZmZgdi0qSTAMjKWnkhPb2v1vLE8hWVuWK7NshNERNWtQkHY66+/jszMTBw8eBBdu3ZVnDt8+DCGDx+O119/HfPnz6/KPhJRI2A76T4QXbsewZEjg22uaBw1aj3c3PKwdOkU2Eq2N80Ns1bxnoioplUoCPvmm2/wzjvvWARgANCtWze89dZbeOGFFxiEEVGFlZZ0f/hwN9ja21GS9NDp3LBhg6Egq6WSAq2hoWkVmnpk6Qkiqk4VCsLOnTuH3r172zzfp08fxQbeRETmsrKA06cBL6+r8PL6B3l5ecjKAo4dK0RWlh/On29lZcTL1k4cerPVj+YExo1bjfbtzwCwXfHe2r6PLD1BRNWtQkGYq6srLl26hMDAQKvnc3Jy4OLiUiUdI6KGw5jrtWqVE2bNUkOvlyBJagwbthcATEa+usIQcAmYl46wFoiNHr0ezZr9bXOaEpDg4FBUZv+8vLxYioKIalyFgrABAwbgf//7HzZs2GD1/Ouvv44BAwZUSceIqP4yjnaFhABOToZcL53OBYsWxUOIki2CDMEXUDKNKJl8LtnPsW3b0zh9uh2UgZgegAR7+5sWSfdGpoVXiYjqmgoFYfPmzUN4eDj69OmDGTNmoEOHDhBC4MSJE3j33Xdx/Phx/PLLL9XVVyKqw6yNdqlUAnPn/g0AyM31tFrbyzYJ0dFboderkJQUCeUImSEAW7/+QUiS/t/E/a4Wm3GXN/meuV9EVBsqFIR16tQJiYmJiI2NxdixYyFJxr9oBTp06IDt27ejc+fO1dJRIqq7jCsbzUe79HoJCxb4Iz7eBR4eWqtlIpQjYVCcCww8j2XLpphttC0U7YVQ4ciRroiNXYqiIgfY2xeiqMjBIvl+wIABCAkJsXgf5n4RUW2pcLHWPn364NixYzh06JCiWGv37t2rum9EVE9cvnwZgO3RrtxcDwQFncOwYZsVleyHDdsMwDQnTDmKVVTkWK4kfSFUKCpyQFDQOZt99Pb2Zt4XEdUpFQ7C8vPz0bx5c3Tv3l0ReOn1ely7dg2urq5V2T8iquO0Wi3WrFkDAMjO9oN5Er1pXlZY2EEEB5+xKBNhPGY+irVjxz0W17OmPLlf1jbfJiKqTaUlZFj49ttv0atXL/zzzz8W5/7++2/ceeed2LRpU5V1jojqPtP6XiW5W0bKDbEBQ5mIoKBzFsc8PHJRVOQIe/tC5OZ6YseOe7B3b3+L65krb+4X876IqK6p0EjYxx9/jFmzZsHZ2dniXLNmzTB79mwsXrwYw4YNq7IOElHdY7q9kHFTbWtTkYAEf/9sAIYgLTfXEx4eWouAybRCfsnIl7URMGNSvmHD7YiIZISHp1jkfrm7uwMAmjRpAjc3N+Z9EVGdVKEgLC0tDR999JHN8/3798eLL754250iorrDNOA6deo6jh79BxkZ2wEYAi97+5soKmpttVSEcZpQuQ1RSQV7wLJCvrJMhTk9pkxZajXx3igkJIS5X0RUL1QoCLt69Spu3bpl83xRURGuXr16250iorrB1n6OQCcYgiRlPS/TUhHWE+9L6oMFB5+BWl1gYwTNGoGoqCQEBFyohjslIqp5FQrCWrdujd9//x0dOnSwev73339Hq1atqqRjRFT7bO3nqEwnLSm+aloqwjhSlZHR2uqKyczMAOTm/l1qsdUSekRFJaFv3+Qy+8zcLyKqLyoUhI0cORIvvPACoqKi4OvrqziXk5ODF198ERMmTKjSDhJR7SvvaJW1UhH29jdhbRui9euNG27r0anTCZw40dHme4wevR6hoScUx5j7RUT1XYWCsOeffx7ff/89QkJCMGHCBLRv3x4AcPLkSXz99dcIDAzE888/Xy0dJaKapdVq5aR7a4VWrbFWKqKoyBHWE+yNx1Q4frwT+vXbA1/fi9iwYbRFXllgYJbFezH3i4jquwoFYS4uLti3bx/mzJmDNWvWyPlfbm5umDBhAl599VVu4E3UAJjmghlpNMnYv18Dy8o2pW8TVL4ATsLevf0wffoiqwVdrSXgc9qRiOq7ChdrVavV+Oijj/Dhhx/iypUrEELA29tb3sLI1L59+9CrVy84OjpWSWeJqGYYc8EAa+UjzEno338XevY8qAiWQkNDkZaWBrW6QBFY2S6+asgTs1XQ1dSECRM47UhE9V6FgzAjSZLg7e1dapvBgwfj0KFDaNOmTWXfhohqke3yEUo+PpctgqW0tDT567Cwg7h6VW2l+Kp1anWB1eBr5MiR8Pf3ZwBGRA1CpYOw8hDC2l/NRFQXlb8Aqzk93NzykJHR2mohVsAQzO3d2w+lBWC2cr9MMQAjooakWoMwIqp9psGVNcbcKtMcMEN1e9sFWA1/XxlWNnbrdgTLlk2xWog1IiIC+/fvR26uJ6zvkmY9n2zAgAEICQmx6CcDMCJqSBiEETVg5gn2trYOioiIkL82r25vrQCr6YbbxgAMsCzE+uOPR20Gc4BAv3570KZNhkXul7u7O1c+ElGDxyCMqAGzlWBvPmK1f/9+AEBWlp9FdXtrBVgBlFqINSUlHF5eWpvBXEWKrxIRNVTVGoRZWzFJRFWnrKnGvLw8AJYJ9kKokJAwFA4ONxEYmAm1ugAHDvRAQsJQmE8bWivAamSr/MT+/RpIEsoVzFnTpAn/PiSiho+J+UT1VHmnGgFbCfYqrF//ICRJj8jIJCQlRcJ63pYe9vbWAz21uuDf+mF9La5t/s+/tGDOnI+PT5ltiIjqu2oNwgoKbP+lS0S3p7xTjUDpBVOFUCEpKbKUVZAqLF36GIYP3yRfc8CAAdi1axcAIDw8pdQirkbWqukbDR48GIGBgQCYgE9EjUeFgrB77723XO127txZqc4QUcVZm2o0TY4HShuxgvwaQA/rI2EAICmuaVojUK0uQESEtWtLcuBnvvpx5MiR8PLyAsCgi4garwoFYT/99BNatWqFIUOGwN7evrr6REQVYG2qUQgVcnM9FNOSnTodszFiBcWUpK0RMdNrurm5YcyYMVizZg0Aw2hYcrLGopSFrRwwLy8vrn4kokavQkHYG2+8geXLl2PdunUYP348Jk+ejNDQ0OrqGxGVg/WpRoHsbH85/8o4XWkIwIzThMoaXWFhBxEamobMzACsXz8a5sGa+XSiWq02+brA6p6PAQEXqumuiYjqvwoFYTNnzsTMmTORnJyMzz//HH379kX79u0xefJkPPTQQ3B1da2ufhKRDWp1ASIjk5CYGIWSHCwJSUmRCA01bB1kvvWQJOkxduxqODgUWZSdALL+nV4sGTWztpG2+Qba5dnzkYiISlQqMV+j0UCj0eC9997DunXr8OGHH+K5555DdnY2AzGiWuDvfwHmWwIZpw8Byep0pYNDkcVKRfME/7Cw3xAUlIHAwCyLoMrT0xMxMTFYu3atfMzWno/mzAM4IqLG6LZWRx44cAC7d+/GiRMnEBoayjwxohpgrA1m3N8RsD4laTp9WNo5I2sJ/gcO9ET//nstAitjEFXeUhIxMTFwc3OTX8tEfCKiSgRh2dnZWLFiBVasWIH8/HxMmDABKSkp6NSpU3X0j6hRMy/GmpeXpxh5MrKVk2UMnszPRUYm/bufI+Q2ZSX49+rVC+7u7vD19ZWDKE9PT8TFxZW5NyWDLiIiSxUKwu6//37s2rULAwcOxJtvvokhQ4awsjVRFTMGXrYCLltKy8kyPZed7S+vgjRNyrc1mnb9ejPodC74/fff5eNxcXGKQIyIiCpOEhUoa69SqeDn5wcfH59StyQ6cOBAlXSuscvPz4darYZOp2OuXSNhXgW/LKVVybfVftGieItAa9SoDQgMzER6elvFiJnh/w6WBWCnTp3KEhNERDaU9/d3hYax5s2bd9sdIyLbSpvWMw+4yqqSb2rgwIHYvn27zSlH4/ZFw4ZtRmzsUvzxRzvs2dMfxtWR1grAEhHR7WEQRlSHGQOv7Gw/xRSieWFV8yDJvCK9Mbgra/uihIShio23zc+bF4AlIqLKq5KErt27d+P69evQaDRwd3eviksSNXqmI12m+zDa2uvRVpBkupLSPIHfkuXG20al7f1IREQVV+GK+deuXcPLL78MABBCYPDgwdi+fTsAw3L1HTt2oHPnzlXfU6JGxLxchLUaYOZ7PZoGSRs3brR5bWOSvq3K+NZYK9ZKRES3p+z/+5pYs2aNYpui9evXY8+ePdi7dy+uXLmCXr16YcGCBVXeSaLGxlrulilJ0iMqKgmSpJe/Nw2SdDoXZGS0hk7nYvX1anUBQkNPICoqCYZRNlv0GD16LeLjF9nMNyMiosqp0EhYRkYGunbtKn//ww8/YPTo0ejbty8A4MUXX8SDDz5YtT0kqsfM63yZs1VDy9Z+kNb2ejQvSVFawv7IkSPRpEkTufSFtUr7RsbXhoaeqNS9ExFR6SoUhN26dQuOjo7y98nJyYiPj5e/9/f3V1TxJmrMyltuwlhzS6vV2szdMibj+/tnW+z1OG5cPzRt2hQbN260WvXeNGHfy8sLfn5+GDNmDNasWWMj2NNj9Oj1VrcqMuK2Q0REt69CQVhwcDD27NmDNm3a4Pz58/jjjz/Qv39/+XxWVhYLNxL9q7QRMPN21gK28m6IHRAQIH9dVtX7K1euwMHBAWq1GoDtSvvWRr+MKy5ZAZ+IqGpUKAibNm0a4uLisHfvXvzyyy/QaDSK7Yp27tyJHj16VHkniRo6WwFbeTfENiprD0ljwn5MTIx8vrzBnr+/P4MvIqIqVKEg7LHHHoOdnR02bdqE/v37W9QNy87OxuTJk6u0g0QNha3q9uWdwrf1+oyMDNy6dQuAtRIUemg0yRbXMrY3shXscfSLiKj6VGjbIqpZ3Laobqlokv2FCxewZMkSAKUny1tjGnABQEpKOJKTNRV6fUpKOPbv18CwCFqP4cNLXnP//ffjhx9+KPOeTfeIJCKi8qmWbYuIGquKJtmbKitZ3pyySKsehtWLJSsYS3u9MXizt79pEoABgKEavvE1TZs2RVxcXKVWbhIRUdWoUBBWVFSEF154ARs3boSHhweeeOIJxfTjxYsX4e/vj+Li4irvKFFtMI5+lXfK0FpQU1ayvCnLIq3Wa4WZv97ayJfla1XIzAyAWm1IumeARURUuyoUhL366qv44osv8NxzzyEvLw8zZsxASkoKPv30U7kNZzepoSjv6Jcp02DN+HVpyfLmeV5lFWk1fz1gPnJmVKE6zEREVAsq9H/qr7/+GkuXLsVzzz2HV155Bb///jt27tyJRx99VA6+JMl64cfbNXz4cLRs2RJNmzaFn58fHn74YWRnZyvarF27Ft27d4ezszNatWqFN9980+I6P/30E8LCwuDo6Ii2bdtixYoVFm0+/PBDtG7dGk2bNkV4eDh+/fVXxfl//vkH06ZNg6enJ5o3b45Ro0bh4sWLijbnz5/HkCFD4OzsDB8fH8ycOdMiGZrqtvKWmDC1ceNGLFmyBEuWLJFXIhqT5c2r26ent8WiRfFYuXIiFi2Kx4EDPeSArTSm1fEtR85Kf11gYFaF74mIiKpHhYKwv/76S7FtUdu2bfHTTz9h//79ePjhh6t1GnLAgAFYu3YtTp06hQ0bNiA9PR2jR4+Wz//4448YP348nnjiCaSlpeGjjz7Cu+++qxjJyMjIwJAhQzBgwAAcOnQI8fHxmDJlCrZt2ya3WbNmDWbMmIF58+bhwIED6NatG6Kjo3Hp0iW5zfTp07Fp0yasW7cOu3fvRnZ2NkaOHCmfLy4uxpAhQ1BYWIj9+/dj5cqVWLFiBebOnVttz4dqVlnbApkLCzuIbdtOYdmyPxEfvwjBwWes5okBUARsgF7xdUTEPsUWQpmZgaUEYHqb2xoREVHtq9DqyDZt2uCzzz7DfffdpzienZ2NAQMGoFWrVtixY0eN5IQlJCRgxIgRuHnzJuzt7fHQQw+hqKgI69atk9t88MEHWLhwIc6fPw9JkjB79mxs2bIFaWlpcpuxY8ciLy8PW7duBQCEh4fjzjvvlIM3vV6PwMBAPPXUU3j++eeh0+ng7e2NVatWyUHgyZMn0bFjRyQnJ6NPnz748ccfMXToUGRnZ8PX1xcA8Mknn2D27Nm4fPlyuauNc3Vk7TJd3WiqoisdjaZOnQqdToc1a9YgI6M1Vq6caNFm4sQVCAo6B53OBd7eGoSEGEaWT58WuHw5uZQcMHOG1ZC26n/FxMSgY8eO5XsQRERUIeX9/V2hkbB7770Xq1atsjju7++PnTt3IiMjo+I9rYTc3Fx8/fXXiIiIgL29PQDg5s2baNq0qaKdk5MTsrKycO7cOQCGbZYiIyMVbaKjo5GcbKijVFhYiNTUVEUblUqFyMhIuU1qaiqKiooUbTp06ICWLVvKbZKTk9GlSxc5ADO+T35+Po4dO2bzvm7evIn8/HzFB9UttlY6lmdEzBiAAbAx7SiQne0PwDCFWVi4HceObcOxY9tQWLhdsTfku+/GY//+vjD/JyxJhtGy6dMNo2VqdQGCgs5ZjIC5ublV/OaJiKhKVSgIe+mllxSVtk3dcccd2L17Nz7//PMq6Zg1s2fPRrNmzeDp6Ynz58/j+++/l89FR0dj48aN2LFjB/R6Pf744w+8/fbbAAwjGgCQk5OjCIwAwNfXF/n5+fj7779x5coVFBcXW22Tk5MjX8PBwcHil5h5G2vXMJ6z5bXXXoNarZY/AgMDy/toqIK0Wi0uXLhg80Or1Vq8RqdzwbFjnW2udCxLbm6u/LVaXYDIyCQYNuU2kpCUFFlqQGcMAm390x01aj0GDkwqc9qRez8SEdW+Cq2ObNWqFVq1amXzvL+/PyZOtJxiseX555/HG2+8UWqbEydOoEOHDgCAmTNnIjY2FufOncOCBQvwyCOPYPPmzZAkCY899hjS09MxdOhQFBUVwdXVFc888wzmz58Plap+rBSbM2cOZsyYIX+fn5/PQKwalHfV45gxY+SvlSsQBUzrdpmuVARsV7Y3X5jh739BcR3AdukKo9JWT5om3vfq1QseHh5o3rw5mjRpovijgfW/iIjqhkoVa123bh1Wr16NP/74AwDQrl07PPTQQ4pE+fJ49tlnMWnSpFLbtGnTRv7ay8sLXl5eaNeuHTp27IjAwEB5D0tJkvDGG2/gf//7H3JycuDt7Y0dO3YortGiRQuLVYwXL16Eq6srnJycYGdnBzs7O6ttWrRoIV+jsLAQeXl5il9s5m3MV1Qar2lsY42joyMcHR1LfR50+8q76rGoqAiAtdpdEoyBmCTp8dRTaYqpQlv5Yjdu3FBcv6x9Hq0Fc9ZeY3ydaeJ9WFgY/Pz8yv1MiIio5lUoCNPr9Rg3bhzWrVuHdu3aySNUx44dw5gxY/Dggw9i9erV5S5T4e3tDW9v74r3+t++AIY8KlN2dna44447AACrV6+GRqOR30Oj0Vhs1ZKYmAiNRgPAMELQs2dP7NixAyNGjJDfZ8eOHYiLiwMA9OzZE/b29tixYwdGjRoFADh16hTOnz8vX0ej0eDVV1/FpUuX4OPjI7+Pq6urYsNzqtuaNDH887A++iQhOnorOnU6jgcf1GD79rIr46ekpFi8h0aTLCfXmwZStoI5a3tDRkQkIzw8RTF6xulGIqK6r0JB2HvvvYekpCQkJCRg6NChinMJCQl49NFH8d577yE+Pr4q+4iUlBT89ttvuOuuu+Du7o709HS89NJLCA4OlgOfK1euYP369bjnnnvwzz//YPny5XIJCaMnnngCixcvxqxZszB58mTs3LkTa9euxZYtW+Q2M2bMwMSJE9GrVy/07t0bixYtwvXr1/Hoo48CANRqNWJjYzFjxgx4eHjA1dUVTz31FDQaDfr06QMAGDhwIDp16oSHH34YCxcuRE5ODl588UVMmzaNI131iJubG+Li4nD27C18+aWAXl/yx4WdncCrr/ZA69Z3yuVLKlIZ3zzI0mj2yYGUTueChISSvC/zYC4s7KDNVY8jR46Ev78/pxuJiOqBCiVLLV++HG+++aZFAAYYiqkuXLiwWhLznZ2dsXHjRtx3331o3749YmNj0bVrV+zevVsR1KxcuRK9evVC3759cezYMfz000/o3bu3fD4oKAhbtmxBYmIiunXrhrfffhtLly5FdHS03GbMmDF46623MHfuXHTv3h2HDh3C1q1bFYn27777LoYOHYpRo0ahf//+aNGihVyYEzCMxm3evBl2dnbQaDSYMGECHnnkEfz3v/+t8mdD1cvT0xM9e/piyRIJdnaGY3Z2wKefSujZ0xeenp7ytLRhs23zFY/KfDHA+ohZcrJGPp+SEg7zf5rmyf+2Vj0yACMiqj8qVCfMyckJp06dQsuWLa2eP3fuHDp06IC///67yjrYmLFOWPU4ceIE1q5dW2a7qKgouLu7ywn1OTlNkJnpiDZt9GjfvhkAw7RfYWEhlixZAp3OBe++Ox3mSfvx8YsUwVJpNcLs7QuxdOljME/YB/SYPt1wnZEjR8LLy8vi9Uy4JyKqG8r7+7tC05FOTk7Iy8uzGYTl5+db1OoiqmvKu31UYmKi1eOZmYDJLLdctiU31xPlWe2Yne0Hayss//wzCHv39rO4BgBERJQUauVoFxFRw1Ch6UiNRoOPP/7Y5vkPP/xQztEiqi8qugWROeNCFOsFWPWwty9ZjanTuSApKRLKQEvA2/sS9u7tD2v/JCVJj/BwQ1J/TEwMAzAiogaiQiNhL7zwAu655x5otVo899xz6NChA4QQOHHiBN5++218//332LVrV3X1lQiAoc5XaWUmypqWM+6yAFR+CyJTarUacXFxyM7ORnr6ZrN6YiosWzZFvq6tlZaXLvnC2giYeekJ42pbIiKq/yoUhEVERGDNmjWYOnUqNmzYoDjn7u6O1atXo2/fvlXaQSJT5S20GhcXZzMQU6vVAMouKVFeV65ckXO0wsIOwscnB8uWTbF63ZLkfctAzJIesbFLERBwAQMGDEDnzp05CkZE1IBUuFjr//3f/yE6Ohrbtm3D6dOnARiKtQ4cOBDOzs5V3kEiU+UttJqdnW2zrU6nA1CxkhKlMV0ZCwBFRY42r+vhkYuePVORmtoL5lOSloGYBBeXawAMf+QwACMialgqFITt3LkTcXFx+OWXX/B///d/inM6nQ6dO3fGJ598gn79+lVpJ4kqyjwwsqasivWAsmo9AKvbEZX3utnZ/vjii0fkIqv/noH1AMxwzhgQGgvHEhFRw1Gh/7MvWrQIjz32mNXllmq1Go8//jjeeecdBmFUL5hXnzfPv7LcL9KQ41VW7pi160ZGJiEpKdIkMDMEYv3778aePfdYvY5pQGi+YTwREdV/FQrCDh8+XOqG2wMHDsRbb711250iskar1eLKlStVfl1jpTzjZ53OBZmZgYqq9YaRKunfdmXnjplXtbeekK+Cj8+lcu0FSUREDU+FgrCLFy8qVpZZXKxJE1y+fPm2O0VkrrwJ+eUVExODGzc88N//+qBkKlCFhIShkCRYCZiUhFAhMzMAubl/25yeVKsLFMetTVEGBmZxL0giokaqQkHYHXfcgbS0NLRt29bq+SNHjsDPz69KOkZkqqqDezc3N+Tk+EJvXtYLKpRvDwk9NmwYXWZpC9OcMltTn6XtBRkTEwMfHx8m5RMRNUAVCsLuv/9+vPTSSxg0aJBFZfy///4b8+bNs7qvJNHt0Gq1WLNmTZVfNyQEUKlgJRCzZBjFAoy5XIAEIUqmJxMShsLB4SYCAzOt5pQZg674+EXIzfXA+PHhCAgIwa1bQbC3t5fLZpjiNkRERA1bhYKwF198ERs3bkS7du0QFxeH9u3bAwBOnjyJDz/8EMXFxXjhhReqpaPUeJW3LEVFBQQAS5YAjz8OFBcDxuDKfDuhUaPWIzAwCwCQm+uB69ebYf36B82upvr3mB5RUUkIDU2zWoMsPn4RgoLOITQ0mqPGRESNXIWCMF9fX+zfvx9PPvkk5syZA+Pe35IkITo6Gh9++CF8fX2rpaNE1SE2FoiOBlJStNi3byXS09tajF6Fhp6Q26vVBdDpXKwm0xuokJgYhZwc3yqpQUZERA1XhYsPtWrVCj/88AOuXr2KM2fOQAiBkJAQuLu7V0f/iEplmnNlLbixdd5YsNXBwQEBAZ6wsytEWlpJflZmZgAACYGBmYrrjRkzBmq1Gmp1NhYs8LcRiEk4erSr5VGzGmRERNS4VboCpLu7O+68886q7AtRhZS172Np501zzOLi4hTXtTYaZnydWq2Gn58fpk69AJ1uETIzA7B+/WiUtQ2ReckJrnYkIiKW4aZ6ydq+jwkJQ3HXXd1w772GRSP//a+PInneVm0v05yz8u4n6eDg8G8JihPQ6ZKQmBgF61XvDUaNWo/Q0BMYOXIk/P39mXBPREQWf74T1Qu2ip/OmtUKvXv7YOnSZtDrlUGRMSerote19jpPT09MmDABANC3bzKiohIhScZllsoaF8Z6YADg5eXFAIyIiABwJIzqKWv7Mxrp9RI+/dQZhtWOtveFNLpy5Yq8N2NZ+0nm5eXJx52dnRETE4Nbt25h8OC/ERpqKD+Rne0vb1HEaUgiIrKFQRjVebYCF40mGfv3a2BtQFcIFSIi9iE5WWM1GDJlutm3+b6PKpXAggUXUVxseN3atWtt9nPatAlwdnYGAGRnX8bZs03QuvUt+PvfCeBO1v0iIiIFSYjy1Qenmpefnw+1Wg2dTmd10/TGRKvVyrlbq1Y5YdYsNfR6CZKkR1hYKg4c6GkxehUfvwgA5Er0hq9tr6Q0ZVhV6YGnnhoMf389lixZUmYfp06dytpfRERU7t/fHAmjesE4gpSVBcycabrptgoHDvREZGSSzSlAtbqgzJWU5oz7Pvr7l6OcPhERUSUwCKNqYzp6ZU1lpufee68kADMSQgV//2x5SyDz/RfLs+KxrHpjREREVY1BGFULrVaLxYsXl9kuLi6u3IFYVhbwzjvWzujlwMtaAFXaiseyRsny8vLg5uameC0DNiIiqgoMwqhalHe/x4rsC3n6tPXNtiMikm0GQzExMcjKAr74wvqKx7JGydauXYuYmBj5dRWd1iQiIrKFdcKo3ggJAVRmP7GSpEd4eAp0OhdkZLSGTueiOO/m5obQUDcMG7ZZruNlmjNWnrpgt27dAmB7WtP8PYmIiMqDI2FUpYx5YFeuXKnyawcEAEuWAI8/DhQXlwRTpW0z5ODggMLCQnlPSPOcsbLqgpkqa1qTiIioIhiEUZUpbx7Y7YiNBaKjgTNnAE9PHQoLw9G7t3J7oi1bhmHu3HC0bt0Enp6euHDhAoCSFY86nQvS0joBAAIDMxV1wazVE7O3twdQdsDGQqxERFQRDMKoylQkv+t2BAQYPgB37NplmSdWXCwhK6sp/P1v4MKFC4pRuQMHeiAhYRhK9nnUIyIiGbGxS5GX5wZAQmBgpuJ6arUacXFxKCwsxB135GP2bDWKiyXY2Qm88UY+HnpoHAuxEhFRhTEIo1plbdrSOKJUnvIWxjwx00DMzk5g9+5lOHRIOUVozOlSbrStwv79fbF/fwQMez5aT7g3BljPPguMGWMYiWvbVkJAgBsAtwrdMxEREcAgjGqZ6ZZBFRUXF4eAAE9FnpidHfDGGzpcu1a+UhUlJBiDM2t1xEyVjMQRERFVHldHUr11+fJlAIY8sbNngV27DJ8feuhvq+2NOV3lYb5CkoiIqKoxCKPbptVqLXKvasKaNWug1WoBGEam7rnH+giVsXwFAEWpitIw4Z6IiKobpyPpttTEisjSlLUYwFpx1fj4RcjMDEBGRpC88bdh1SNgzAn7738vIjaWCfdERFR9GITRbampFZG25OXlwc/Pz+o5W8VVR43agMDATISGnkD//nvl2mEAkJvrgUmT7sI997StsXsgIqLGidORVCNsVbS/3deuXbtWnpI0Z6u46vr1D2LRonjs26f5dw/Ikn0ng4LOoX37ZhXuIxERUUVxJIyq3e3st2j6WkCPqKgk9O2brGhTWFgoV+oHSspeWCuuaiSEComJUQAk7gFJRES1gkEYVauyNsjW6Vz+HY3SWpSDMH8tYAycoAjE8vLysHbtWov3VqsLFNXwLZWvJAUREVF1YBBG1aq0/RZL2/MRADIzA60ETxKSkiIRGpomB0zGDbatMe4ZmZkZgPXrR8PWDDz3gCQioprGnDCqNjqdC65fdwagLAkhSXrY2xdaHSEz5n0dONADGzaMsnpdIVRISQkv9X1Nc8jU6gKEhp7A8OGm5SmERZ9YkoKIiGoSR8KoWihzuQQMgVjJiFdRkaPNETIApUwhGuzfr0F4eIrFyFVp+WevvBKE+Ph0ZGTYIS3NCe+91wJ6vQSVSmDhQu4BSURENYtBGN0Wa6NGlrlcEiRJYNSotQgMzAJgmGo0T5o3jkZZn4Y0VzJ9ePXqVavva57r5eXlhS5d/DBggOEKM2ZwD0giIqo9DMLotnh6eiIuLk5RL2zfPge8+67lKFezZjcUeWCAXg7EjKNWxvOWBEw33jadPty1axeA0vPPuAckERHVNQzC6LaZTt9lZQF6PaBSGT4bWcsDA1QQQo/Ro0tGyBYtircyCqZHt25HcORIV0XAZh5YWStJYRqsERER1SUMwqjKLFsGTJ1qCL4kqSQQs7MD3n77Bu64YxSWLjUPsAwjZGp1AbZvj7Q6DTl69HqEhp7A9Ola7NqVKRdXNWdeksJWsEZERFQXMAijKpGVVRKAAYAQhkBs7VpAowECApojK6u5xQiZnZ2Ah0cudDoX7N+vsbiuJOnlUbKzZ39GUFDJOWs1xowlKYxbEZkGYFz1SEREdQmDMKoSp08rgyvA8L23d0neVUAAsGQJ8PjjQHGxYYTsjTd0uHatABkZrWGtYopGk2x1JKu0VZDGLYhMxcTEcNUjERHVKawTRlUiJMQw/WjKzg5oa7YPdmwscPYssGuX4fNDD/0NoCSfS0mPTp2OKY7odC5IS+uEhATbNcascXNzq/hNERERVSMGYVQljKNcdnaG7+3sgE8/tb76MCAAuOce5TljPpeymKoKy5ZNwYEDPQAYRr8WLYrH+vUPwvxH17gK8nY2CiciIqpJnI6kKhMbC0RHG2tvla/8g2meVljYQfj45GDZsikWo1w+PjmlFnCVJD2ys/3xxRePVGqjcCIioprGIIyqlHntLa1WK9cQy85WISOjCYKCbsHf3zDi5eDggLi4OGRnZ2Pjxo02K+lnZrYsNQCLjExCUlKkzUKtREREdQ2DMKo2Wq0WixcvBlB6In1MTAxycpogI6M17O1vWq31FRh43urxUaPWIzAwq8xCrVwZSUREdQ2DMKo2hYWF0OlckJkZiISEoTDmcZmPUj3//Ol/A7SOkCQ9una1LMwaEHDBag2w0NATAIDBgwfjyy8F9PqSqvp2dgJPPTUYrVs34cpIIiKqcxiEUZU7evQqTp3SY/9+YaMCvu3NuoVQ4ciRroiNXYqiIgdFra/SaoCFhflgyRJJUf7i008l9OzpWwN3TEREVHEMwqhKvffeNUyfrv43qFLu92jKuJ2QrWnEoiIHBAWds3idsQZYTEyMXHbCwcEBnp6elVoYQEREVFsYhFGV0Gq1OHv2FmbM8IEQxsDLdgBmup1QZfZ7dHNzg5+fn8VxbspNRET1BYMwum3GBPyMjNbQ6yeW0lLg/vs3o33703IAxv0eiYiosWIQRuWWlWXYnigkRDnaZCxBYax6b6uUBCDB21trEWCVlutFRETUULFiPpXLsmVAq1bAvfcaPi9bZtnGetX7EqVNM6rVBQgKOscAjIiIGg2OhFGZsrKAqVNLNujW6w2bcEdHW+ZfmY5qZWf7ywVUOc1IRESkxCCMynT6dEkAZlRcbFiFaC0J3riCMSjoHEJD06xOM7Zt2xZnzpwp8711Ohfk5nrCw8NyGpOIiKg+YxBGZQoJAVQqZSBmZ2coA1EWY0BmrjwBWGlV9omIiOo75oRRqbRaLezsLmDhwjzY2RlyvFQqgTlzdLCzuwCtVlvua+l0LsjIaA2dzkXxta225kVcN20aKrfnNkRERFTfcSSMbDp69CrefnuzPBV4770aJCZGQq9X4ZVXXJCSkoK+fZMxZsyYMq9lOqplSNgXAGyPcNkq4tq370Tccw+4DREREdV7DMLIqmXLgKlT3aDXT4Qk6REZmYSkpEiUDJ6qkJgYBQCIiRE2rwNYjmoZirgaCrkKoUJCQsk+kkbWyl3Y2QHh4Z5g/EVERA1BvZuOvHnzJrp37w5JknDo0CHFuSNHjqBfv35o2rQpAgMDsXDhQovXr1u3Dh06dEDTpk3RpUsX/PDDD4rzQgjMnTsXfn5+cHJyQmRkJE6fPq1ok5ubi/Hjx8PV1RVubm6IjY3FtWvXKtyXuqpkNWRJoGRc5agkISkpEjdueCAuLg5Tp06VR8VMpxutjWopqZCSEq44Yl7uws5O4NNPWQ2fiIgajnoXhM2aNQv+/v4Wx/Pz8zFw4EC0atUKqampePPNNzF//nwsWbJEbrN//36MGzcOsbGxOHjwIEaMGIERI0YgLS1NbrNw4UK8//77+OSTT5CSkoJmzZohOjoa//zzj9xm/PjxOHbsGBITE7F582bs2bMHU6dOrVBf6jJrqyENQZTeoq0QKpw92wSenp5wcHCAWq2Gnd1UvPfedKxcORGLFsUjO9vPpHaYdcnJGov8sLCwg4iPX4SJE1cgJeUSYmNv986IiIjqEFGP/PDDD6JDhw7i2LFjAoA4ePCgfO6jjz4S7u7u4ubNm/Kx2bNni/bt28vfx8TEiCFDhiiuGR4eLh5//HEhhBB6vV60aNFCvPnmm/L5vLw84ejoKFavXi2EEOL48eMCgPjtt9/kNj/++KOQJEn89ddf5e5Leeh0OgFA6HS6Cr3udmVmCqFSCQGUfEhSsejX7ycB6C2O//57jjhyJFdMnLhCTJnyqZCkYos2UVHbTI4rr2H8mDhxuZg+/W0xceIKMX3622L+/PnyR3Z2do0+AyIiosoq7+/vejMSdvHiRTz22GP48ssv4ezsbHE+OTkZ/fv3V6yai46OxqlTp3D16lW5TWRkpOJ10dHRSE5OBgBkZGQgJydH0UatViM8PFxuk5ycDDc3N/Tq1UtuExkZCZVKhZSUlHL3xZqbN28iPz9f8VEbAgKAJUsgr4Y05oS1aXMW/frtkUe1jEn1P/3kiO7d3bBy5UQsXfqY1YR6f/9seVRrypTPLEbGJEmP7Gx/LFoUL4+gHTjQQz7P1ZBERNTQ1IvEfCEEJk2ahCeeeAK9evXC2bNnLdrk5OQgKChIcczX11c+5+7ujpycHPmYaZucnBy5nenrbLXx8fFRnG/SpAk8PDwUbcrqizWvvfYaFixYYP0h1LDYWKB790v44IMfLSrfR0Ymwd8/W96CaNasYXL+mDHh3pRxuyLTmmHmm3YbE/9NS1Js2TIMc+eGo3XrJlwNSUREDU6tjoQ9//zzkCSp1I+TJ0/igw8+QEFBAebMmVOb3a12c+bMgU6nkz8yMzNrtT/+/obgyTw4SkqKlIOq3FxPkwDMkq3tikzzvb799iDGjGlrMYJWXCyhoMCXARgRETVItToS9uyzz2LSpEmltmnTpg127tyJ5ORkODo6Ks716tUL48ePx8qVK9GiRQtcvHhRcd74fYsWLeTP1tqYnjce8/PzU7Tp3r273ObSpUuKa9y6dQu5ubllvo/pe1jj6OhocY+1ycHBwWa9rtxcD6jVBVZLSZgaNWo9QkNPyN+PHDkSXl5eivfw9PREVlblq/ITERHVR7U6Eubt7Y0OHTqU+uHg4ID3338fhw8fxqFDh3Do0CG5rMSaNWvw6quvAgA0Gg327NmDoqIi+fqJiYlo3769PP2n0WiwY8cORR8SExOh0WgAAEFBQWjRooWiTX5+PlJSUuQ2Go0GeXl5SE1Nldvs3LkTer0e4eHh5e5LfeDp6YkpU+62mr9lnIo0LyVh3i4wMEtxzMvLC35+fvKHcZSrJA/N0M7ODixJQUREDVq9SMxv2bIlQkND5Y927doBAIKDgxHw72/phx56CA4ODoiNjcWxY8ewZs0avPfee5gxY4Z8nWeeeQZbt27F22+/jZMnT2L+/Pn4/fffERcXBwCQJAnx8fF45ZVXkJCQgKNHj+KRRx6Bv78/RowYAQDo2LEjBg0ahMceewy//vor9u3bh7i4OIwdO1YunVGevtQFWVnArl2Gz7YEBzsqgixr04vGqcWIiH0wlrGwNQ1ZmthY4OxZQ5/OngVLUhARUYNWLxLzy0OtVmP79u2YNm0aevbsCS8vL8ydO1dRvysiIgKrVq3Ciy++iP/85z8ICQnBd999h9DQULnNrFmzcP36dUydOhV5eXm46667sHXrVjRt2lRu8/XXXyMuLg733XcfVCoVRo0ahffff79Cfalthor4huk/lcowCmUr6AkOPoNRozYAEAgMzLIaWKnVBRg4MAnh4SnIzfWQc8YqKiCAo19ERNQ4SEKI0vecoVqTn58PtVoNnU4HV1fXKrtuVhbQqpVl/tXZs4CTkxaFhYXy8SVLirFggb+8itHaPo8VERcXx0R7IiJq0Mr7+7vBjIRR+VmriF9cDKSm6nDo0GL5mE7ngkWL4hUrIzdtstznsTxGjhwJf39/BmBERET/qhc5YVS1QkIAyayqhCQBAQH/KI6VtjKyory8vBiAERERmWAQRgAsgzIAcvkJZbuSlZEVwYr3RERESpyObIROnzbs1mhKrwfOnlX+OBjLT5hWtjeueNTpXJCb6wkPD22pU5NjxoyBt7c3R8GIiIjMMAhrhEJCrBdGbd36FtLSlG3Dwg4iOPiMYsXjgQM9LAIzY7K+aTFWYyFWIiIissTpyEbIVmFUf3/LgqslI1658giYMQADSpL1dToXAMpirAzAiIiIbONIWCMVGwtERwNnzhi2BgoIAC5cULaxNuLl7n611G2MiIiIqHw4EtYIGSvlA8A99yiLo+p0LsjIaI2sLD+rI1729jerLFmfiIioMeNIWCNTWqX8tWtL6oJZ25RbCBWKihxsJusTERFR+TEIa0SyskoCMMDw+fHHDdOSADBjRnN51aQhABMASmpXGEe8goLOWSTrExERUcUwCGtEbFXKP3PGULLC/JwhABPy565dj8gBl1pdwOCLiIjoNjAnrBExlqYwZWcHeHpehSSdscj1Uo6ESThypKu8CtIWFmUlIiIqH46ENSLG0hSPP24YAbOzA95++xo2bnwfADBsWA+TZHzlVCRguQrStCYYwLpgREREFcEgrJEZMUKL7t1v4ezZJmjd+hYcHC5h40bDubCwg/DxycGyZVMskvIBy1WQ3JCbiIio8hiENSJarRaLFy+Wvzevjg8ARUWOVgMwQLkKMioqigEYERHRbWAQ1ohcvny5zDbGTbtNAzFJ0iM2dikCAkqqubq4lJ4bRkRERKVjYn4jUlRUVGYb46bdxiR9Yx0w0wAMAJo0YfxORER0O/ibtJHQarW4evVqudpa27TbnI+PT1V3kYiIqFFhENYImOeClYetOmAjR45kQj4REVEV4HRkI1BYWFhl12IARkREVDUYhFG5xcTEMAAjIiKqIgzCGjmdzgUZGa0VlfCtHQOYB0ZERFSVmBPWiB04UFIh37gKEoDi2Lx52Zg61Y7V8ImIiKoYg7BGSqdzMdmiyLAlUULCUEgSFMdefvkOxMZKYPxFRERUtTgd2Ujl5npaqYyvsjhWXCzhzJma6xcREVFjwSCskTJWxlfSWxyzswPatq25fhERETUWDMIaAQcHB4tj5pXxAQHDj4MESRIADAHYp58CAQE11lUiIqJGQxJCiNruBFmXn58PtVoNnU4HV1fX27qWVqu1Wi/s4MEmGDrUC0JI8jGVCvjmG0CjYQBGRERUUeX9/c3E/EbC1srGkycB8zBcrwe8vRmAERERVSdORzZyISGGkS9TzAMjIiKqfgzCGrmAAGDJEkPgBTAPjIiIqKZwOpIQGwtERwNnzhhGwBiAERERVT8GYQTAEHgx+CIiIqo5nI4kIiIiqgUMwoiIiIhqAYMwIiIiolrAIIyIiIioFjAIIyIiIqoFDMKIiIiIagGDMCIiIqJawCCMiIiIqBYwCCMiIiKqBQzCiIiIiGoBgzAiIiKiWsC9I+swIQQAID8/v5Z7QkREROVl/L1t/D1uC4OwOqygoAAAEBgYWMs9ISIioooqKCiAWq22eV4SZYVpVGv0ej2ys7Ph4uICSZIqfZ38/HwEBgYiMzMTrq6uVdjD+oPPgM8A4DMA+AwAPgOAzwCo3mcghEBBQQH8/f2hUtnO/OJIWB2mUqkQEBBQZddzdXVttP/YjPgM+AwAPgOAzwDgMwD4DIDqewaljYAZMTGfiIiIqBYwCCMiIiKqBQzCGgFHR0fMmzcPjo6Otd2VWsNnwGcA8BkAfAYAnwHAZwDUjWfAxHwiIiKiWsCRMCIiIqJawCCMiIiIqBYwCCMiIiKqBQzCiIiIiGoBg7B66uOPP0bXrl3lInMajQY//vijfP6ff/7BtGnT4OnpiebNm2PUqFG4ePGi4hrnz5/HkCFD4OzsDB8fH8ycORO3bt2q6VupMq+//jokSUJ8fLx8rKE/h/nz50OSJMVHhw4d5PMN/f6N/vrrL0yYMAGenp5wcnJCly5d8Pvvv8vnhRCYO3cu/Pz84OTkhMjISJw+fVpxjdzcXIwfPx6urq5wc3NDbGwsrl27VtO3UimtW7e2+DmQJAnTpk0D0Dh+DoqLi/HSSy8hKCgITk5OCA4Oxssvv6zYu6+h/xwAhm1y4uPj0apVKzg5OSEiIgK//fabfL6hPYM9e/Zg2LBh8Pf3hyRJ+O677xTnq+p+jxw5gn79+qFp06YIDAzEwoULq+YGBNVLCQkJYsuWLeKPP/4Qp06dEv/5z3+Evb29SEtLE0II8cQTT4jAwECxY8cO8fvvv4s+ffqIiIgI+fW3bt0SoaGhIjIyUhw8eFD88MMPwsvLS8yZM6e2bum2/Prrr6J169aia9eu4plnnpGPN/TnMG/ePNG5c2dx4cIF+ePy5cvy+YZ+/0IIkZubK1q1aiUmTZokUlJSxJ9//im2bdsmzpw5I7d5/fXXhVqtFt999504fPiwGD58uAgKChJ///233GbQoEGiW7du4pdffhF79+4Vbdu2FePGjauNW6qwS5cuKX4GEhMTBQCxa9cuIUTj+Dl49dVXhaenp9i8ebPIyMgQ69atE82bNxfvvfee3Kah/xwIIURMTIzo1KmT2L17tzh9+rSYN2+ecHV1FVlZWUKIhvcMfvjhB/HCCy+IjRs3CgDi22+/VZyvivvV6XTC19dXjB8/XqSlpYnVq1cLJycn8emnn952/xmENSDu7u5i6dKlIi8vT9jb24t169bJ506cOCEAiOTkZCGE4QdXpVKJnJwcuc3HH38sXF1dxc2bN2u877ejoKBAhISEiMTERHH33XfLQVhjeA7z5s0T3bp1s3quMdy/EELMnj1b3HXXXTbP6/V60aJFC/Hmm2/Kx/Ly8oSjo6NYvXq1EEKI48ePCwDit99+k9v8+OOPQpIk8ddff1Vf56vJM888I4KDg4Ver280PwdDhgwRkydPVhwbOXKkGD9+vBCicfwc3LhxQ9jZ2YnNmzcrjoeFhYkXXnihwT8D8yCsqu73o48+Eu7u7op/C7Nnzxbt27e/7T5zOrIBKC4uxjfffIPr169Do9EgNTUVRUVFiIyMlNt06NABLVu2RHJyMgAgOTkZXbp0ga+vr9wmOjoa+fn5OHbsWI3fw+2YNm0ahgwZorhfAI3mOZw+fRr+/v5o06YNxo8fj/PnzwNoPPefkJCAXr164cEHH4SPjw969OiBzz77TD6fkZGBnJwcxXNQq9UIDw9XPAc3Nzf06tVLbhMZGQmVSoWUlJSau5kqUFhYiK+++gqTJ0+GJEmN5ucgIiICO3bswB9//AEAOHz4MH7++WcMHjwYQOP4Obh16xaKi4vRtGlTxXEnJyf8/PPPjeIZmKqq+01OTkb//v3h4OAgt4mOjsapU6dw9erV2+ojN/Cux44ePQqNRoN//vkHzZs3x7fffotOnTrh0KFDcHBwgJubm6K9r68vcnJyAAA5OTmK/+EazxvP1RfffPMNDhw4oMh5MMrJyWnwzyE8PBwrVqxA+/btceHCBSxYsAD9+vVDWlpao7h/APjzzz/x8ccfY8aMGfjPf/6D3377DU8//TQcHBwwceJE+T6s3afpc/Dx8VGcb9KkCTw8POrNczD67rvvkJeXh0mTJgFoHP8OAOD5559Hfn4+OnToADs7OxQXF+PVV1/F+PHjAaBR/By4uLhAo9Hg5ZdfRseOHeHr64vVq1cjOTkZbdu2bRTPwFRV3W9OTg6CgoIsrmE85+7uXuk+Mgirx9q3b49Dhw5Bp9Nh/fr1mDhxInbv3l3b3aoxmZmZeOaZZ5CYmGjxl19jYfwrHwC6du2K8PBwtGrVCmvXroWTk1Mt9qzm6PV69OrVC//73/8AAD169EBaWho++eQTTJw4sZZ7V/OWLVuGwYMHw9/fv7a7UqPWrl2Lr7/+GqtWrULnzp1x6NAhxMfHw9/fv1H9HHz55ZeYPHky7rjjDtjZ2SEsLAzjxo1DampqbXeNrOB0ZD3m4OCAtm3bomfPnnjttdfQrVs3vPfee2jRogUKCwuRl5enaH/x4kW0aNECANCiRQuL1VHG741t6rrU1FRcunQJYWFhaNKkCZo0aYLdu3fj/fffR5MmTeDr69sonoMpNzc3tGvXDmfOnGk0Pwd+fn7o1KmT4ljHjh3laVnjfVi7T9PncOnSJcX5W7duITc3t948BwA4d+4ckpKSMGXKFPlYY/k5mDlzJp5//nmMHTsWXbp0wcMPP4zp06fjtddeA9B4fg6Cg4Oxe/duXLt2DZmZmfj1119RVFSENm3aNJpnYFRV91ud/z4YhDUger0eN2/eRM+ePWFvb48dO3bI506dOoXz589Do9EAADQaDY4ePar44UtMTISrq6vFL7S66r777sPRo0dx6NAh+aNXr14YP368/HVjeA6mrl27hvT0dPj5+TWan4O+ffvi1KlTimN//PEHWrVqBQAICgpCixYtFM8hPz8fKSkpiueQl5enGC3YuXMn9Ho9wsPDa+Auqsby5cvh4+ODIUOGyMcay8/BjRs3oFIpf6XZ2dlBr9cDaFw/BwDQrFkz+Pn54erVq9i2bRseeOCBRvcMqup+NRoN9uzZg6KiIrlNYmIi2rdvf1tTkQBYoqK+ev7558Xu3btFRkaGOHLkiHj++eeFJEli+/btQgjDkvSWLVuKnTt3it9//11oNBqh0Wjk1xuXpA8cOFAcOnRIbN26VXh7e9erJenWmK6OFKLhP4dnn31W/PTTTyIjI0Ps27dPREZGCi8vL3Hp0iUhRMO/fyEM5UmaNGkiXn31VXH69Gnx9ddfC2dnZ/HVV1/JbV5//XXh5uYmvv/+e3HkyBHxwAMPWF2m3qNHD5GSkiJ+/vlnERISUmeX5VtTXFwsWrZsKWbPnm1xrjH8HEycOFHccccdcomKjRs3Ci8vLzFr1iy5TWP4Odi6dav48ccfxZ9//im2b98uunXrJsLDw0VhYaEQouE9g4KCAnHw4EFx8OBBAUC888474uDBg+LcuXNCiKq537y8POHr6ysefvhhkZaWJr755hvh7OzMEhWN2eTJk0WrVq2Eg4OD8Pb2Fvfdd58cgAkhxN9//y3+3//7f8Ld3V04OzuL//u//xMXLlxQXOPs2bNi8ODBwsnJSXh5eYlnn31WFBUV1fStVCnzIKyhP4cxY8YIPz8/4eDgIO644w4xZswYRX2shn7/Rps2bRKhoaHC0dFRdOjQQSxZskRxXq/Xi5deekn4+voKR0dHcd9994lTp04p2mi1WjFu3DjRvHlz4erqKh599FFRUFBQk7dxW7Zt2yYAWNyXEI3j5yA/P18888wzomXLlqJp06aiTZs24oUXXlCUFWgMPwdr1qwRbdq0EQ4ODqJFixZi2rRpIi8vTz7f0J7Brl27BACLj4kTJwohqu5+Dx8+LO666y7h6Ogo7rjjDvH6669XSf8lIUzKCRMRERFRjWBOGBEREVEtYBBGREREVAsYhBERERHVAgZhRERERLWAQRgRERFRLWAQRkRERFQLGIQRERER1QIGYURERES1gEEYEVW7nJwcPPXUU2jTpg0cHR0RGBiIYcOGKfZ0279/P+6//364u7ujadOm6NKlC9555x0UFxfLbc6ePYvY2FgEBQXByckJwcHBmDdvHgoLCxXv99lnn6Fbt25o3rw53Nzc0KNHD3kjZwCYP38+JEnCoEGDLPr65ptvQpIk3HPPPWXeV+vWrSFJks2PSZMmVfxh1XH33HMP4uPja7sbRA1Ck9ruABE1bGfPnkXfvn3h5uaGN998E126dEFRURG2bduGadOm4eTJk/j2228RExODRx99FLt27YKbmxuSkpIwa9YsJCcnY+3atZAkCSdPnoRer8enn36Ktm3bIi0tDY899hiuX7+Ot956CwDw+eefIz4+Hu+//z7uvvtu3Lx5E0eOHEFaWpqiX35+fti1axeysrIQEBAgH//888/RsmXLct3bb7/9JgeJ+/fvx6hRo3Dq1Cm4uroCAJycnKriEdaIoqIi2Nvb19j7FRYWwsHBocbej6hOqpLNj4iIbBg8eLC44447xLVr1yzOXb16VVy7dk14enqKkSNHWpxPSEgQAMQ333xj8/oLFy4UQUFB8vcPPPCAmDRpUql9mjdvnujWrZsYOnSoeOWVV+Tj+/btE15eXuLJJ58Ud999dznuroRxD7urV6/Kx7777jvRo0cP4ejoKIKCgsT8+fMV+zECEJ988okYMmSIcHJyEh06dBD79+8Xp0+fFnfffbdwdnYWGo1GsR+ose+ffPKJCAgIEE5OTuLBBx9U7A8ohBCfffaZ6NChg3B0dBTt27cXH374oXwuIyNDfq79+/cXjo6OYvny5eLKlSti7Nixwt/fXzg5OYnQ0FCxatUq+XUTJ0602KMvIyNDLF++XKjVasX7f/vtt8L0V4yx35999plo3bq1kCRJCGH4GYiNjRVeXl7CxcVFDBgwQBw6dKhCz56ovuJ0JBFVm9zcXGzduhXTpk1Ds2bNLM67ublh+/bt0Gq1eO655yzODxs2DO3atcPq1attvodOp4OHh4f8fYsWLfDLL7/g3Llz/7+9ew2J6nnjAP51zRCvv4zNa2qpa3l7sVa6hummqVSUmYqoKVlaiexGFnQx0bwQZakvTBRLo8KSkqi8kGxl4i2sNKTFvFCSWgYVpuV9/i/C8/udzMp/yVY8H1hwZp6dmXP2hQ8zc3a/O7+oqCgUFRVx5XPnziEsLOyXrNDU1NQgIiICcrkcT58+RV5eHoqKipCWlsaLS0lJQUREBJqbm7Fs2TKEhoZi165dOHToEJqamsAYQ1xcHO89HR0dKCkpwc2bN1FZWYnHjx8jNjaWa7906RISExORlpYGpVKJ9PR0HD16FOfPn+f1c/DgQcjlciiVSvj6+mJ4eBjOzs4oKytDa2srYmJisG3bNjx48AAAkJ2dDYlEgujoaPT19aGvrw+LFy/+4XvS0dGBa9euobS0FM3NzQCAoKAg9Pf3o6KiAg8fPoRYLIaXlxfevn07m9tNyJ9J1VkgIeTv1djYyACw0tLSGWOOHz8+bQXpvzZt2sSWL1/+1bb29namp6fH8vPzubre3l7m6urKADCRSMQiIyPZlStX2MTEBBcztSozOjrKFi1axKqrq9ng4CDT1dVlLS0tTC6X//RKmJeXF0tPT+fFXLhwgRkbG3NlACwhIYEr19fXMwDs7NmzXF1xcTHT1NTkzV1dXZ29fPmSq6uoqGACgYD19fUxxhizsrLirWAxxlhKSgqTSCSMsX9XwrKysr57XRs2bGDx8fFc2cPDg8nlcl7Mj66EaWhosP7+fq6upqaG6enpseHhYd57raysWF5e3nfnRsifjs6EEULmDGNsTmIBoKenB35+fggKCkJ0dDRXb2xsjPr6erS2tuL+/fuoq6tDZGQkCgoKUFlZCYHg3w0ADQ0NhIeHo7CwEF1dXRCJRHBycprVPGbS0tKC2tpa3srXxMQEhoeH8fHjR2hpaQEAbzxDQ0MAgKOjI69ueHgYAwMD3Fkzc3NzmJqacjESiQSTk5Noa2uDrq4uOjs7sWPHDt59GR8fh76+Pm+OK1as4JUnJiaQnp6OkpIS9PT0YHR0FCMjI9xcf5aFhQWEQiFXbmlpweDgIBYuXMiL+/TpEzo7O3/JmIT8zigJI4TMGRsbG+5A/UxEIhEAQKlUws3NbVq7UqmEnZ0dr663txdSqRRubm7Iz8//ar8ODg5wcHBAbGwsdu/eDXd3d1RXV0MqlfLioqKi4OLigtbWVkRFRc32Emc0ODiI5ORkBAQETGvT1NTk/v7vYXg1NbUZ6yYnJ394XODzE6IuLi68NnV1dV75yy3ikydPIjs7G1lZWXB0dIS2tjb27t077enTLwkEgmlJ9NjY2LS4L8cbHByEsbEx7t27Ny32n3/++eaYhPwNKAkjhMwZAwMD+Pr6IicnBzKZbNo/4ffv38PHxwcGBgY4derUtCTsxo0baG9vR0pKClfX09MDqVQKZ2dnFBYW8la2ZjKVxA0NDU1rs7e3h729PZ48eYLQ0ND/5zK/SiwWo62tDdbW1r+szynd3d3o7e2FiYkJAKChoQECgQC2trYwNDSEiYkJurq6EBYWNqt+a2trsXnzZoSHhwP4nPg9e/aMlwTPnz+f97UhACAUCvHhwwcMDQ1xn/HUma9vEYvFePXqFebNmwdLS8tZzZWQvwElYYSQOZWTk4PVq1dj1apVOHbsGJycnDA+Po6qqirk5uZCqVQiLy8PISEhiImJQVxcHPT09KBQKHDgwAEEBgYiODgYwOcEzNPTExYWFsjIyMCbN2+4cYyMjAAAe/bsgYmJCdauXQszMzP09fUhNTUVQqEQEonkq3O8c+cOxsbGfunqS2JiIjZu3Ahzc3MEBgZCIBCgpaUFra2tSE1N/am+NTU1ERkZiYyMDAwMDEAmkyE4OJi7B8nJyZDJZNDX14efnx9GRkbQ1NSEd+/eYd++fTP2a2Njg6tXr6Kurg4LFizA6dOn8fr1a14SZmlpicbGRjx//hw6OjowMDCAi4sLtLS0cPjwYchkMjQ2NvIeeJiJt7c3JBIJ/P39ceLECYhEIvT29qKsrAxbtmyZtl1KyN+Gno4khMyppUuX4tGjR5BKpYiPj4eDgwPWrVsHhUKB3NxcAEBgYCDu3r2L7u5uuLu7w9bWFpmZmThy5AguX77MbclVVVWho6MDCoUCZmZmMDY25l5TvL290dDQgKCgIIhEImzduhWamppQKBTTzh5N0dbW/uXbX76+vrh16xZu376NlStXwtXVFZmZmbCwsPjpvq2trREQEID169fDx8cHTk5OOHPmDNe+c+dOFBQUoLCwEI6OjvDw8EBRURGWLFnyzX4TEhIgFovh6+sLT09PGBkZwd/fnxezf/9+qKurw87ODkKhEN3d3TAwMMDFixdRXl4OR0dHFBcXIykp6bvXoaamhvLycqxZswbbt2+HSCRCSEgIXrx4wZ2PI+RvpsZmexqWEEKIyiQlJeH69es/tN1HCPm90UoYIYQQQogKUBJGCCHfoKOjM+OrpqZG1dMjhPzBaDuSEEK+oaOjY8Y2U1PTP+r3IQkhvxdKwgghhBBCVIC2IwkhhBBCVICSMEIIIYQQFaAkjBBCCCFEBSgJI4QQQghRAUrCCCGEEEJUgJIwQgghhBAVoCSMEEIIIUQFKAkjhBBCCFGB/wH9UcF9FZ+yuQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACeW0lEQVR4nO2deXwTZf7HP2lpa4E2pRe0FGgpCAKiUhEKKyJWQAGXBaWKrCDl0AUVUUB+KIjHIoeA98klioKCLqIoVPHiWgURcQEFW6S2XMGmhSI9Mr8/4oQknckcmeOZ5Pt+vXxJkunkmcnM83zme9o4juNAEARBEAQRBkSYPQCCIAiCIAijIOFDEARBEETYQMKHIAiCIIiwgYQPQRAEQRBhAwkfgiAIgiDCBhI+BEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNpDwIQiCIAgibCDhQxAEwSDLly+HzWZDcXGx2UMhiJCChA9BhCnffvstJk6ciI4dO6JRo0Zo2bIlhg0bhp9//rnetr1794bNZoPNZkNERATi4+PRrl07/POf/8TmzZsVfe+HH36Ia665BqmpqWjYsCFat26NYcOG4ZNPPtHq0Orx73//Gx988EG997dt24ZHH30U5eXlun23P48++qjnXNpsNjRs2BAdOnTAww8/jIqKCk2+Y9WqVVi8eLEm+yKIUIOED0GEKXPnzsXatWtx3XXX4ZlnnsG4cePw1VdfoUuXLti3b1+97TMyMrBy5Uq88cYbmD9/Pm666SZs27YNffv2RX5+PmpqaiS/c8GCBbjppptgs9kwffp0LFq0CEOHDsUvv/yCd955R4/DBBBY+MyePdtQ4cPz0ksvYeXKlVi4cCHat2+PJ598Ev3794cW7RNJ+BCEOA3MHgBBEOYwefJkrFq1CtHR0Z738vPzcemll+Kpp57Cm2++6bO93W7HiBEjfN576qmncO+99+LFF19EZmYm5s6dK/p9tbW1ePzxx3H99ddj06ZN9T4/ceJEkEfEDlVVVWjYsGHAbW6++WYkJycDAO666y4MHToU69atw44dO5Cbm2vEMAkiLCGLD0GEKT169PARPQDQtm1bdOzYEfv375e1j8jISDz77LPo0KEDnn/+eTidTtFtT506hYqKCvTs2VPw89TUVJ/Xf/75Jx599FFcfPHFuOiii5CWloYhQ4bg8OHDnm0WLFiAHj16ICkpCbGxscjJycF7773nsx+bzYazZ89ixYoVHvfSqFGj8Oijj2LKlCkAgKysLM9n3jE1b775JnJychAbG4vExETceuutOHr0qM/+e/fujU6dOmHXrl3o1asXGjZsiP/7v/+Tdf686dOnDwCgqKgo4HYvvvgiOnbsiJiYGKSnp2PChAk+FqvevXvjo48+wpEjRzzHlJmZqXg8BBGqkMWHIAgPHMfh+PHj6Nixo+y/iYyMxG233YZHHnkE33zzDQYMGCC4XWpqKmJjY/Hhhx/innvuQWJioug+6+rqMHDgQHz22We49dZbcd9996GyshKbN2/Gvn37kJ2dDQB45plncNNNN+H2229HdXU13nnnHdxyyy3YsGGDZxwrV67EmDFjcNVVV2HcuHEAgOzsbDRq1Ag///wz3n77bSxatMhjfUlJSQEAPPnkk3jkkUcwbNgwjBkzBidPnsRzzz2HXr164fvvv0dCQoJnvA6HAzfccANuvfVWjBgxAk2bNpV9/nh4QZeUlCS6zaOPPorZs2cjLy8Pd999Nw4ePIiXXnoJ3377LbZu3YqoqCjMmDEDTqcTJSUlWLRoEQCgcePGisdDECELRxAE8RcrV67kAHBLlizxef+aa67hOnbsKPp377//PgeAe+aZZwLuf+bMmRwArlGjRtwNN9zAPfnkk9yuXbvqbbd06VIOALdw4cJ6n7lcLs+/q6qqfD6rrq7mOnXqxPXp08fn/UaNGnEjR46st6/58+dzALiioiKf94uLi7nIyEjuySef9Hn/xx9/5Bo0aODz/jXXXMMB4F5++WXR4/Zm1qxZHADu4MGD3MmTJ7mioiLulVde4WJiYrimTZtyZ8+e5TiO45YtW+YzthMnTnDR0dFc3759ubq6Os/+nn/+eQ4At3TpUs97AwYM4Fq1aiVrPAQRbpCriyAIAMCBAwcwYcIE5ObmYuTIkYr+lrcoVFZWBtxu9uzZWLVqFa644gp8+umnmDFjBnJyctClSxcf99ratWuRnJyMe+65p94+bDab59+xsbGef//xxx9wOp24+uqrsXv3bkXj92fdunVwuVwYNmwYTp065fmvWbNmaNu2LbZs2eKzfUxMDO68805F39GuXTukpKQgKysL48ePR5s2bfDRRx+JxgYVFhaiuroakyZNQkTEhal77NixiI+Px0cffaT8QAkiDCFXF0EQOHbsGAYMGAC73Y733nsPkZGRiv7+zJkzAIC4uDjJbW+77TbcdtttqKiowM6dO7F8+XKsWrUKgwYNwr59+3DRRRfh8OHDaNeuHRo0CDxFbdiwAU888QT27NmD8+fPe973Fkdq+OWXX8BxHNq2bSv4eVRUlM/r5s2b14uXkmLt2rWIj49HVFQUMjIyPO47MY4cOQLALZi8iY6ORuvWrT2fEwQRGBI+BBHmOJ1O3HDDDSgvL8fXX3+N9PR0xfvg09/btGkj+2/i4+Nx/fXX4/rrr0dUVBRWrFiBnTt34pprrpH1919//TVuuukm9OrVCy+++CLS0tIQFRWFZcuWYdWqVYqPwRuXywWbzYaNGzcKikD/mBlvy5NcevXq5YkrIgjCOEj4EEQY8+eff2LQoEH4+eefUVhYiA4dOijeR11dHVatWoWGDRvib3/7m6pxXHnllVixYgXKysoAuIOPd+7ciZqamnrWFZ61a9fioosuwqeffoqYmBjP+8uWLau3rZgFSOz97OxscByHrKwsXHzxxUoPRxdatWoFADh48CBat27teb+6uhpFRUXIy8vzvBesxYsgQhmK8SGIMKWurg75+fnYvn073n33XVW1Y+rq6nDvvfdi//79uPfeexEfHy+6bVVVFbZv3y742caNGwFccOMMHToUp06dwvPPP19vW+6vAn+RkZGw2Wyoq6vzfFZcXCxYqLBRo0aCRQobNWoEAPU+GzJkCCIjIzF79ux6BQU5joPD4RA+SB3Jy8tDdHQ0nn32WZ8xLVmyBE6n0yebrlGjRgFLCxBEOEMWH4IIUx544AGsX78egwYNwunTp+sVLPQvVuh0Oj3bVFVV4dChQ1i3bh0OHz6MW2+9FY8//njA76uqqkKPHj3QvXt39O/fHy1atEB5eTk++OADfP311xg8eDCuuOIKAMAdd9yBN954A5MnT8Z///tfXH311Th79iwKCwvxr3/9C3//+98xYMAALFy4EP3798fw4cNx4sQJvPDCC2jTpg327t3r8905OTkoLCzEwoULkZ6ejqysLHTr1g05OTkAgBkzZuDWW29FVFQUBg0ahOzsbDzxxBOYPn06iouLMXjwYMTFxaGoqAjvv/8+xo0bhwcffDCo86+UlJQUTJ8+HbNnz0b//v1x00034eDBg3jxxRfRtWtXn98rJycHq1evxuTJk9G1a1c0btwYgwYNMnS8BMEsZqaUEQRhHnwatth/gbZt3Lgx17ZtW27EiBHcpk2bZH1fTU0N99prr3GDBw/mWrVqxcXExHANGzbkrrjiCm7+/Pnc+fPnfbavqqriZsyYwWVlZXFRUVFcs2bNuJtvvpk7fPiwZ5slS5Zwbdu25WJiYrj27dtzy5Yt86SLe3PgwAGuV69eXGxsLAfAJ7X98ccf55o3b85FRETUS21fu3Yt97e//Y1r1KgR16hRI659+/bchAkTuIMHD/qcm0Cp/v7w4zt58mTA7fzT2Xmef/55rn379lxUVBTXtGlT7u677+b++OMPn23OnDnDDR8+nEtISOAAUGo7QXhh4zgNGsMQBEEQBEFYAIrxIQiCIAgibCDhQxAEQRBE2EDChyAIgiCIsIGED0EQBEEQYQMJH4IgCIIgwgYSPgRBEARBhA1UwNAPl8uF0tJSxMXFUdl3giAIgrAIHMehsrIS6enpiIgQt+uQ8PGjtLQULVq0MHsYBEEQBEGo4OjRo8jIyBD9nISPH3FxcQDcJy5Q3yGCIAiCINihoqICLVq08KzjYpDw8YN3b8XHx5PwIQiCIAiLIRWmQsHNBEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNlCMD0EQBEFoQF1dHWpqasweRsgSFRWFyMjIoPdDwocgCIIggoDjOBw7dgzl5eVmDyXkSUhIQLNmzYKqs0fChyAIgiCCgBc9qampaNiwIRW/1QGO41BVVYUTJ04AANLS0lTvi4QPQRAEQaikrq7OI3qSkpLMHk5IExsbCwA4ceIEUlNTVbu9KLiZIAiCIFTCx/Q0bNjQ5JGEB/x5DiaWioQPQRAEQQQJubeMQYvzTMKHIAiCIIiwgWJ8GMfhcKC6ulr08+joaPIrEwRBEIRMSPgwjMPhwPPPP+957XTG4fTpJCQmOmC3V3renzhxIokfgiAIQhGjRo3CihUrAAANGjRAYmIiOnfujNtuuw2jRo1CRIQ8p9Dy5csxadIky6Tzk/BhGG9Lz+7dV+DDDweC4yJgs7kwaNAGdOnyfb3tCIIgCOtgtlW/f//+WLZsGerq6nD8+HF88sknuO+++/Dee+9h/fr1aNAg9GRC6B1RCOJ0xnlEDwBwXAQ+/HAgsrMP+Vh+CIIgCOvgb9UXQ0+rfkxMDJo1awYAaN68Obp06YLu3bvjuuuuw/LlyzFmzBgsXLgQy5Ytw6+//orExEQMGjQI8+bNQ+PGjfHFF1/gzjvvBHAh8HjWrFl49NFHsXLlSjzzzDM4ePAgGjVqhD59+mDx4sVITU3V5VjkYpng5jlz5qBr166Ii4tDamoqBg8ejIMHD/ps8+eff2LChAlISkpC48aNMXToUBw/ftykEWvH6dNJHtHDw3EROH060aQREQRBEMEi11pvtFW/T58+uOyyy7Bu3ToAQEREBJ599ln89NNPWLFiBT7//HNMnToVANCjRw8sXrwY8fHxKCsrQ1lZGR588EEA7pTzxx9/HD/88AM++OADFBcXY9SoUYYeixCWET5ffvklJkyYgB07dmDz5s2oqalB3759cfbsWc82999/Pz788EO8++67+PLLL1FaWoohQ4aYOGptSEx0wGZz+bxns7mQmHjapBFpR0kJsGWL+/8EQRAEG7Rv3x7FxcUAgEmTJuHaa69FZmYm+vTpgyeeeAJr1qwB4HbF2e122Gw2NGvWDM2aNUPjxo0BAKNHj8YNN9yA1q1bo3v37nj22WexceNGnDlzxqzDAmAhV9cnn3zi83r58uVITU3Frl270KtXLzidTixZsgSrVq1Cnz59AADLli3DJZdcgh07dqB79+5mDFsT7PZKDBq0oV6Mj95urpIS4JdfgLZtgYwM7fe/ZAkwbhzgcgEREcCrrwIFBdp/D0EQBKEMjuM8rqvCwkLMmTMHBw4cQEVFBWpra/Hnn3+iqqoqYOHGXbt24dFHH8UPP/yAP/74Ay6X+wH+t99+Q4cOHQw5DiEsY/Hxx+l0AgASE93unl27dqGmpgZ5eXmebdq3b4+WLVti+/btovs5f/48KioqfP5jkS5dvsekSYsxcuRyTJq02BPYrBdLlgCtWgF9+rj/P2WKtlaZkpILogdw/3/8eLL8EARBsMD+/fuRlZWF4uJiDBw4EJ07d8batWuxa9cuvPDCCwACu+DOnj2Lfv36IT4+Hm+99Ra+/fZbvP/++5J/ZwSWFD4ulwuTJk1Cz5490alTJwDuJnHR0dFISEjw2bZp06Y4duyY6L7mzJkDu93u+a9FixZ6Dj0o7PZKZGUd0dXS43A4sGvXcYwbx/mIkgULgJYtOTzzjDYmyl9+uSB6eOrqgEOHNNk9QRAEoZLPP/8cP/74I4YOHYpdu3bB5XLh6aefRvfu3XHxxRejtLTUZ/vo6GjU1dX5vHfgwAE4HA489dRTuPrqq9G+fXtPg1GzsaTwmTBhAvbt24d33nkn6H1Nnz4dTqfT89/Ro0c1GKE2REdHa7qdFHyGwXPPfQKXq35ZcI6z4f77G+KLLw7B4XAE9V1t27rdW95ERgJt2gS1W4IgCEIB58+fx7Fjx/D7779j9+7d+Pe//42///3vGDhwIO644w60adMGNTU1eO655/Drr79i5cqVePnll332kZmZiTNnzuCzzz7DqVOnUFVVhZYtWyI6Otrzd+vXr8fjjz9u0lH6YpkYH56JEydiw4YN+Oqrr5DhFXjSrFkzVFdXo7y83Mfqc/z4cU+qnhAxMTGIiYnRc8iqSUpKwsSJEw2r8cB/Dx9M7Z9JBrizyZYv/wZZWUdUp1g6HA5ERlZj3rxYTJtmR12dDZGRHObOdSIy8hwcDqpGTRAEYQSffPIJ0tLS0KBBAzRp0gSXXXYZnn32WYwcORIRERG47LLLsHDhQsydOxfTp09Hr169MGfOHNxxxx2effTo0QN33XUX8vPz4XA4POnsy5cvx//93//h2WefRZcuXbBgwQLcdNNNJh6tGxvHcZzZg5ADx3G455578P777+OLL75A27ZtfT53Op1ISUnB22+/jaFDhwIADh48iPbt22P79u2yg5srKipgt9vhdDoRHx+v+XHoTTDFsMrKyvDqq68C8C2Y6I3N5sKkSYtht1di3LhxSEtLUzy++tWoE5GYeJqqURMEYTn+/PNPFBUVISsrCxdddJGiv2Whjo/VCHS+5a7flrH4TJgwAatWrcJ//vMfxMXFeeJ27HY7YmNjYbfbUVBQgMmTJyMxMRHx8fG45557kJuba+mMLiVoeRN16fI9srMPYefObti2LReANtlk/qLMbq8U3J/ZwW8EQRB6Y7RVn3BjGeHz0ksvAQB69+7t8/6yZcs8BZEWLVqEiIgIDB06FOfPn0e/fv3w4osvGjxS8/C/ecR6e8kVFXZ7Jfr2LUS3bjsFrTIEQRBEcJCoMR7LCB85HrmLLroIL7zwgifVLtTxd2udOnXK8+9Avb2UImaVIQiCIAirYRnhQ/gSyK1Fvb3UoVXBRr0LPxIEQRDqsWQ6OxHYXUW9veTh3S7Dv2DjkiXq9qnVfgiCIAh9IOETgqjt7aVVPSAr4C1QWrYExo4Nvoo0VaMmCIJgHxI+IYLTGYeiokw4nXGe3l68+JGbjcVnGAwbNkzWdxollLRsZCpUmZrj3P95U1cH7NzpUFSokapREwRBsA/F+IQAYoHM2dmHFGdjJSUl6ZpiKVcsVVVVoaysDKtWxWLqVDtcLhsiIjjMm+fE8OHnVH0/HxdVVJQJl2tkwG1tNhe2bl2BffsqZaX/OxwOxMfXIiIi1afqdWQkh7i4E3A4GlD2BkEQBAOQ8GEcsYKEfAaXVCCzkODhxUcwxQ7VIkdUVVVV4c0334TTGYfFiyeB49xCwuWyYcqUePz++1LY7fIEiTeBK1O7YLPBRzzy504q/d870HzgQF8ROmDABmzY4M6moyJkBEEQ5kPCh2HkFCQMFMhst1diyJAhSE5O9nzGixkzK4ZK7a+srAyA9LGpLXLIuwL9rWS8hSwqqho1NTEet6EU/Diczjg0afIHCgpeR01NdD1LGxVlJAginPjiiy9w7bXX4o8//qjXQFyMzMxMTJo0CZMmTdJtXCR8GEbOQilkvfAOZE5OThZsKyF3ETZzsZY6tmAQcwUePtymniA6deqUqPXL4XDg1KlTgu7GrKwjQY+TIAhCL0aNGoUVK1Zg/Pjx9RqPTpgwAS+++CJGjhyJ5cuXmzNAnaDgZosjFcgsN6bGOziaFdQGaSvZf1bWEc/+xNyGy5ZtxvPPP18v0Jm3mi1btlnw71g6lyyjZfA6QRDKaNGiBd555x2cO3fO896ff/6JVatWoWXLliaOTD/I4hMC8NaLyy+/GR07xiA9vSuArrJjdLSs8qw1aoO01aDUtca/lvo7QpwlSy6UAIiIAF59FSgoMHtUBBE+dOnSBYcPH8a6detw++23AwDWrVuHli1bIisry7Pd+fPnMWXKFLzzzjuoqKjAlVdeiUWLFqFr166ebT7++GNMmjQJR48eRffu3TFyZP0kkm+++QbTp0/Hd999h+TkZPzjH//AnDlz0KhRI/0P9i/I4hMi2O2VuP76KOTkNEVaWhrS0tJkiR4xKwdL1gp/y4xeqK1/pPbvwh2qe0QQvphl/Rw9ejSWLVvmeb106VLceeedPttMnToVa9euxYoVK7B79260adMG/fr1w+nT7nnu6NGjGDJkCAYNGoQ9e/ZgzJgxeOihh3z2cfjwYfTv3x9Dhw7F3r17sXr1anzzzTeYOHGi/gfpBQkfC6GHO4qqPF9ArWtNb5ec1ZA7eVPdI4K4gJlV30eMGIFvvvkGR44cwZEjR7B161aMGDHC8/nZs2fx0ksvYf78+bjhhhvQoUMHvPbaa4iNjcWSvwb60ksvITs7G08//TTatWuH22+/3dNAnGfOnDm4/fbbMWnSJLRt2xY9evTAs88+izfeeAN//vmnYcdLri6LoJc7Ss8AYtaQE++k1rVmpEuOZeS6rqjuEUFcQMz62a+fMf3+UlJSMGDAACxfvhwcx2HAgAE+2cCHDx9GTU0Nevbs6XkvKioKV111Ffbv3w8A2L9/P7p16+az39zcXJ/XP/zwA/bu3Yu33nrL8x7HcXC5XCgqKsIll1yix+HVg4SPBZDbdPSXX35BeXk5UlNTZS8aYqndZi7ccgOylVaO5msInTx5EqtXr/a873TG4fTpJCQmOjy1j4SOv7y83Oc1X0uJR6qLfSi3BHE4HCgursW4cReEjHvy5nD55SeQmXlByFDdI4LwJZD106hGx6NHj/a4nF544QVdvuPMmTMYP3487r333nqfGRlITcKHYfiFUswddfRoBuz2/Z73tmzZ4vm31KLhvQgHslaYsVjrWTk6KSnJZ79KLGlr1qzx/PuCWJKu9TNkyBCkp6eH7CIeqCJ2XZ0Nzz23EVlZRzzXpPf5D3TtUd0jIlxo29ZtIfUWP5GRQJs2xo2hf//+qK6uhs1mQ79+/Xw+y87ORnR0NLZu3YpWrVoBAGpqavDtt9966u1ccsklWL9+vc/f7dixw+d1ly5d8L///Q9tjDwwAUj4MAwvAHbvPoE33vCvNAysXXszqquFF2qpRUNPcaEFRnyvXEuaP0rdjsnJySEreoDAFbG93abe15qQlY0gwpWMDLdbePx4t6UnMhJ45RXjrD0AEBkZ6XFbRUZG+nzWqFEj3H333ZgyZQoSExPRsmVLzJs3D1VVVSj4y5d911134emnn8aUKVMwZswY7Nq1q179n2nTpqF79+6YOHEixowZg0aNGuF///sfNm/eLKugrlaQ8GGcpKQkdOpUjUGDNmD9+oHwjkeXu1AH2nc4oyYNXY1YCmUXlzdSblOn0wkAePXVur9akbBXPoEgzKKgwB3Tc+iQ29JjpOjhiY+PF/3sqaeegsvlwj//+U9UVlbiyiuvxKeffoomTZoAcLuq1q5di/vvvx/PPfccrrrqKvz73//G6NGjPfvo3LkzvvzyS8yYMQNXX301OI5DdnY28vPzdT82b0j4WIDo6Gh06fI9oqPP4733bvH5jOrFqEfKQuHd7uPo0aPYuHGj6hYhoYZ3nzfvWKdArqvVq1d79V9TZmUjrEVJiTtupW1bcxZwq5KRYez5kqrI/MEHH3j+fdFFF+HZZ5/Fs88+K7r9wIEDMXDgQJ/3/NPiu3btik2bNonuo7i4OOCYtICEjwXwdnmtXRseGVhGIGWh4Nt9OBwObNy4EYD6FiGhhH+fN7fbKlMyOBygYo/hABWlJFiHhI9F8HZ5XXC1uNClyy4cPdoCwFFaOFQgJw3dOzbFbq9EXl4hCgvzmMmCMxq1weFAeJVPCEfMTssmCDlQAUOL0aXL95g0aTF69NgKANi1qyvee+8WLFp0P3bvvsLk0VkTJZWhd+++wiN6ABfy8grDNj5FTdVvlos9hnvPMC2On4pSElaALD4WZdu2XPjqVhvFSgjgHYvC41+PRwx+Oz6GxX+hByJQWJiHTp32heU5V+u2klvs0YigcP76WLUqFlOn2uFy2RARwWHePCeGDz8XsjFa/mjlnmIhLZsgpCDhYyG86/oIGeu8Fx29Fw0hQeGNUQtGoHE4nU6fQoVi5Ofnw2631/sb77o9gLyF3swMLiW/iRa/n1q3lX8quzd8cLgR1w8fq3Qh4JovvGjDlCnx+P33pbDbK0O+kKJW7imHw4HIyGrMmxeLadPsqKuzITKSw9y5TkRGnoPDEdoikuM4s4cQFmhxnkn4WAg+yPnHH//AG29wnomaJyKCw8iRPdG58yDBCUZqsauqqkLDhg1FP+cXI//gVjH4KqDBLLBaCBsp7Ha7rIBkqYU+Pz/ftIld6W8id9tAxyMVHM6LmFOnTmHdunUApGOCjAwO568rKUEbyoUUHQ4HduwAXC7f37muDti504HYWHllL/yvv3vvjfNY9M6cqcSrr7rfZ0VEapl1FhUVBcA9f8bGxmowOiIQVVVVAC6cdzWQ8LEYSUlJ6N07Ca+9BowdC/Di122etuHaa9sK/p3chVEKqaKH3pw4caKe1URsn2JCzciiVlJILfS81cgM5P4mShZxOdsGclv5ixi1BSP1htWAa2/RX1oagaKiBsjKqkV6uts0E6xVzNviZbNNqnf8W7euwL598ixe/teKWGYfCyJS66yzyMhIJCQk4MSJEwCAhg0bwmazSfwVoRSO41BVVYUTJ04gISGhXpFFJZDwsSh8savt292vc3MDP7loNeEo2U9tbW1Q+9R6kgzkYpH7N2qakWplaVOCkmNVc168kVt5mVVXIWv96hwOh6efnNMZh507u2H79lxBK1kwFhT+mpQ6fhbEilbolXXWrFkzAPCIH0I/EhISPOdbLSR8LExGBnDLLdLb6U2wC6dW3xPoczXd7cX+RmyhF1q0tbS08W5GoYXIu4igkmNVc17UNpFl2VWoRtDqgff1snv3FZLV2rUQJU5nHJo0+QMFBa+jpiba1OPXE63cekLYbDakpaUhNTUVNTU1qvZx7Bhw5AjQqhUQ5LoeskRFRQVl6eEh4RMiSFkV+HYBF16rFxHeKFk4gxFIUt/j/3leXiHS08uQmOgAAMUuFim3jNwKzVpa2uSIKCXuJLWuJ7V93lh2FfLjM3vBP3nyJAD3b+Mveni0KPjocDhw6tQpwfsqK+uI6v2yipZuvUBERkaqWpip6KOxkPAJAZRaFZSKCDExo2ThVGNZkPs9Qp9v3nw9ABtsNhdyc7crTruWcsuYUaFZjohSkmIeTBVltYuDmZYV/4cDbysZCzgcDk+w/s6d3SBWZi3Y+CNvEfDhh+HRPoT/3Q8fbgPvpCCz3XoOhwPFxbUYNy4VLhefVQiMH8/h8stPIDOzARPB4KEGCR8GCDa1WMnNqkZE+E+GfH0buQtnsEGtUt8j9Dlg82y3bVuu4uBVswJeg3UbKhm31Lb+VkJ/5MYe+bu8xCwr5eXluqWxsxYoLwR/Hzudcdi+PVdwGy3ij+Rms4US5eXlnnnI13UIZGebU12RvyaLijLhco30+ayuzobnntuIrKwjzGTChRIkfExGSRqyFhe/GhHh/XlxcbGnwZzcRTbYCVbqe4Q+9yUCublb6wWICgXU8v+WcsuoDcLVMg5JaF9S4/a2ckhtK6dUgJzrkneN8QG7YvAZgHpM9ME8yRsdcC0s5IGOHX9E376bNRMlrGazaY3D4cCaNWtw+nSmwHk1T+jx16TU7xBKweWsQMLHZPRIQw60uKoREd6fe3fVlVo4+ToLwU6w0rEhvp8DHHiLD/9d3brtRLduO9Gq1XXo0CEazZplAciqVwvCP35l5syTKC5ugMzMWqSndwXQVbVVIpCwUWoVC7SvQO4kvp4OT7CuJ7nXZVJSki7XulrE7hG5sVt6Ina/aCl6AG2z2dQGvBuBXIFhFqxlFYYDJHxCDCmrgZybLDd3u6clhtRNmJ19CEOHrgXAoUWLEs92+fn5SElJkfWdYpOh9/uBFuhhw4YhP9+G7OzFOH06EaWl6aJNRMvLP8C2bfW/y9vK4L3QpaUBOTliZ1s+UsJGiVVMTuA1UF/kCOG/0POUl5fLqsHEW5Cs1Noh0D1iRuyWP0YuhHKErxyxojbg3UhYFhisZBXysFKZXy9I+IQQYgtiauox1NTEeJ5uxcSK/4KQm7sV3brthN1eiWuvvRZbtmzx+b5AC4jdbg/aeqJ0Mp0xI8Wr4Jv7u+LjT2DbNukgar2tDFLCRsnTqJzAa7nIXejFLCTe4kqpi0pNPFOwEzKrRRT9MbKfmVjM1ZAhQ5Ceni77N7XCQsiawPBGTVahHgLFP/xC7D61cuwRCR/GCCa4VWxBfP31MeCtN50778XevZ3riRWhBWH79lx067YTANCkSROf/ZaUpMlaQIK1nii5sYS+q6ysWtDC449Yhk+wTzb8wiQlbORYxeSa7LXOVpIbe6REPKrJ8tMiHs5KAb2BFsJhw4YhNTVV14UnOTlZk/2rXZz1sjqwULZAC/QSKN7nPNB9auXYIxI+DBFMyjcgFuTLgc9i4LgI/PDDZfDOeOLFipIFQaiwWqDtWTKbyrFc+BPMk4231ap58wq/5o0VGD78Np/KzYGsYg6HuyaRlEgSOha1gloPC4nafWoRI6RHnIfR1/ewYcNwySWXaLY/PeDPiVyXqf89ZpbVwcwmw0rRS6DwWbtWsY6qgYQPIwRzkQXKRBJL8+bhxYrcBUEoJTTQ9kZnrQVCrbAUmjiULHb8/x94AMjPBw4dAtq0sSEjIwFAgs/fBbKKCbkOf/jhLPbt+0CzIpP+6GEhMdPqonWch5bXt9xFNzU1VdZ2wX6PWhEQ6JyICRj/e8kMq4NU5XCWHuC80VKg8BlwgLWso0oh4cMIwRaT814QJ048iLfe2omoqGosWTJGwALkm/HE+7rlLAhiqbZi27OSyaP15KB2scvICK4nkL87Lz29DEePio8/2OMWE8RnzzaC0xmnS60hsfpBwbjw5AbKK13stby+gwkQVirE9QxE9t8vL3ZKS9PqJR3wAsb7t/X+DYy0OgSqHK6HBUorAaqlQPH+7VjNgtMCEj4mU1VVBUD6IuO3E8P/ZuPLzvuLGaEYH/7mCLQgBEpNB1woKHgdGRllnnfEblaj+nr5I2dykDs2VsScHNROioGtiMB7792i2Hokt0aSnPpBgLJryQpZR4C6AGE1Qtyo4/S21ng/dPkLGH/37LBhwwBos6hrITD0sEBpdU3qJVDs9krk5RWKZshaGRI+JsPHdkgtBoG6d3vjcDg8PlpAWMz06fO5aFp4QkJCvX16Twhi4+RFT6Cgy2BjmIJBanIINDaxp1EW8RcDUsctdjzek/KpU6eQnb0YR49m4L33boZ3zJiSp285WX5yY0LUXEtGLPZmCHtWhbi/tUbIzX70aAZOnz5X73zV1tYC0GZR11L0am2BCuaa5Od5vdL0d+++wiN6AHf/Q6Pma70h4cMQXbp8j9TUY/jtt5Zo2fI3HwuKHMSe/PyzGPxfy80QCSY13axAOTlWBqmxiT2Neh+bGVYsf8TEwKBBG7BhwyC4XL5B1VKTvfdn7lpD5yA3oF3OPtXWSGI16NJMYe+NUdejmHuNf1AQc4vz2Gwuj5AWO19aLepaiV5W4l68Y3EA7dP064vWCBQW5qFTp31k8SG0JdiJU8y3zk+AYhNiQkKCrIkhmEXLrAkjkJUhOjoL69Z9r3hs/NMowNZiJyYGunT5HjNndkNlZVPRoOpAyE3JN8oaxsri441RYkxIbHhbJI26HuW418SzTG0el6kc6yFLtXdYiXsREpxapunLucdYt34HgoQPI2g9cfpPgGL1e4zCzAlDTLCVlbmCGpvUb6ZXbSAhpCaq9HQX5BYkFlpchw0bhtraWtjtpXjsseaKrUdqERLrrAgwb4wQY1Jiw0hLmBy3mZC1Ji+vEOnppTh7thHee+8Wn+0DnS9Wau+wUv3ZO5wBCGzlU3M/SN1jUhlwrEPChxG0nDiFJkCx+j1G3bCsTBjeSLnBAKCoKFPUZSD1m+lVG0joGLQSA3Ke5O+7Lw7XXFOAnBy7YuuREsSsF3Z7JaZMOYQFC9rC5bIhIoLDvHn6CjApjBD2UmLDTEuY2MIrZq1xOuMCni//HnpimCFyzbZA+bu5Aln51AoUqfk6UAacFSDhwwhaTpzCvnXh+j1uF5hTt/5EeqURa4FYGYDExNM4fLgNFi+eFNBCFsxvplWgqZwCiUrEgNwn+auuqkJamn6Tn5T1omHDt3HffXGea2nUqJFISjK+x5bcTDUjrm+zrKpy+gP6iwM5CyvLWXhmWqC8z4nUfaJUoLA8X2sJCR9G0NIiEsi3foELE2JNTU1QYw8E62nEQmUApCYT/mk0mN8sUE0apedDSYFEqyDHeuG9+JhVOiDYfnTB4G9lMcOqKqdhrnfvuFOnTnksoVKWE5ZcKUYUfVQzR2pt5WN9vtYKEj4mo4fC9p8AARf8LT42m+Cf6oLcm4SVyqhSk4n/06hQwLQUUp3T1brC+AKJDocDZWX6nUsh4abF7yPXdWc2YtdqeroL6enVul+rYlYWo5/S5TTM9bYm+49BzHLCmkVBT0EQTEFUPe4Tq4saOZDwMRm9bijvCVBpIKEWKBUxLLW2kDOZSAVM86hNLQ7GgqHluVTa2yzY38ffdTd1qh0ul42JmDAeI69V7/uIF5tSVpY777zex8oC6PfQoHTh1WK+M+sBSa95J5g6TIcPt/krO84NC/cJKw+wgSDhwwBaXQRiT1NSgYQNGmh7GahZGKRS8Xn0dGloHa9hVqq7VgXt1Ixfi9/H23XXu/dxPPfcRo/1goWaSUYVDBS7j5RaWfREjXstmPmOpQcko+GFr78A9q6txXFAdvYhz+tAc5UeAsUqvw8JnxDC/2mK96dLTU5C1ZqDIVgRY5Zg0DJeg9Uie3JhZfzp6S5P+xVWaiYZhdj9wYIbMFgXvdpFl9Uq1Voi18oqnMRyQQAHyujSS6BY5fch4RNiiF2kwaRgek9SpaURKCpqgKysWqSnu906gcSA0sXK7AVXi8rCgPygQxYsGEKwViTQ7OuCJVjIIAu2oaoVrAJmoGS+lBLAgTK6rCJQ9IKETxihJgXTe5IKdFMKTVJqFivWFlylKAnONcqCIUdc8eKW74zOglXBG62uCz3M+2aIV+8Hmdtv74ZOnfTNIBNCq+7twWzH6oODGpTOl0oFsFC8WLhCwochgrGsCKFlV2Kpm1JoklKzWLG24CpFqq5O377XY926dYZZMOSIK6EncKlJ1agFR8sCjXpYGox0vwmlr9vtlejUqZ9hMT16oPZaMtP1qYeADjRf8p/7n6MnnsiS5ZKXe+2HCyR8GCEYy4oYWmaMSYmYU6dOecSa3V4OQJ2IYbHCs1IC1dUpKzsHwBjLllxxJXZ9iLlHjVxwtCzQqMbSEKg3lpHut1CNb1J7XGa6PvVy1YnNl6Wl6XjjjTsEz5E7kL2ppEs+VF1WaiHhwwjBWFYCoZXZW0rEPPxwET78sONfN2cTDBp0haczuFIRY3ZJeC3h6+rwGNnwUwtx5e8eNWPBMatAo9QCZ5RbNlTim3gRqYVwNNMlrnV8TKBs0ry8QhQW5un+24eSy1AOJHx0RI3ritUYl0CWGKnO4HJEjFULmylF6xYTQugprqSuT71/H38hqSdSC5dRzVJZnROUICQigzkuq7vEvRHKJv3hh7PYt+8DQ357Pa2JrAoqEj46odZ1xfINLSZipCsdS4uYcCmVDuhvwQhWXIlNVsOGDUNVVSJWruTgcl0o/R0ZyeGee25AZmYDS/0+wU7K/MPAhg2DVHWrl4oTqaqqAsBmN3qlCB2nmrmOpd5oPFos7v7ZpOnpZTh61L2vQOfIO0i5qqoKDRs2FNy/WDCz1tZE7/MeaN0z+5ol4aMTUq6r1NRjqKmJQXFxLbznR9ZjXIREjNQE5t+vBxAWMVZaNLVCLwuGWnEVaLKqrXVbK+fNc/qIqVdesSEnp6n2B6EjgY6TXyTKy8sl99Oly/eYOLEtqqrSFXWrlxsnMmLECDRs2FA366BZ8GLB25Ujt/ih9wPS/ff/il9/jUCLFufRrFkWgCw0aNAA1dXVKCsrM611SLDIFXhSrW/E4M//2bMNNbXg8r9PcXEtHnssFRxn8+zzo48GYebMbkw8IJHw0Rkxa8iSJWPAcRFYuZLDvHnl6Nv3giK3WoyL1M1pZCVZKaxQTl1r5Iorqac/70n23nsvdEYfPHgkAG3PmZ6/k5Lj9P87oSf7bdvWAAD+9reJkHse5MZ/NGzYEGlpaSHVgNZfLOTlFSI9vVR28UP+d3c4HPjyy1cBAEePin/fsGHD6hVp1eI+1zP2yl/gTZx4EG+9tVOT9cD//Lt7OV5Yo4K14CYlJWHvXsDl270HdXU2VFY2BQvTKwkfnRHrlM6/drlsmDIlHr//vhne9abU1NzRA7mKX61Y0zqFX+q7qHCaOEriCbyvT60zRvT+ndTETch5stc7c8bI+Ca9EBILhYV5mDRpMez2C93cq6qqPFYbIaKjo2Wf7zVr1gi+H+x9rnf8jf/Y+ArmwSB0/t3rk1v8aGXBbdsWiIjwFT+RkUCbNkHtVjNI+OiMvzXEX10D0jeL95Om0QSKveFbYvAoFWt6pPAHgoV+YCyiVUd0raw0elWVVXucoZJVxQJy+oxFR0fj1VdfldzXsGHDfF4rjbUJ9j6Xuo6842pYsSSLnf+bb16DRo2q8MADf8ellzYJ+nsyMoBXXwXGjwfq6tyi55VX2BHuJHwMwNsaEhVV7XFz8QSadP0FQatWVbjvPqNG7oa/YUtKgF9+cat5LS5gvVL45RCqdVHUIBYMHRHBYeBAefFlVrCmeR+n3V6K2bPTZcWWGFVzicXsF62RIzrl3u+1tbWefxt5P6uNv9Hy2ld7vdx++1WCyQkPPXTNX66t4EUPT0EB0K8f755lR/QAJHwMw9saEuhm4U29TqcTu3dHYvbsNj4BYg880Ah/+9txwwPEliwBxo1zmy4jItxqfvDg4CtDA8an69ITfH2EgqHj4k5gw4YLi0egydYqvX/44xw3rgxO52KPaxYAiooyBY9NbLGOitLmWMJJhOuRvCF1P2stKtXG32h17cu5XsSOuVOnBLz6qs3PEiPs2tLCgsuqe5aEjwkEiofhTb3Tpv2M9esHArD5/G1dnQ3PPbcRWVlHDHl6djgcKC6uxbhxqZ6nBJcLGD+ew+WX13qyTsSQc3MYncIfCnVR9ISfrMrKLjjozVyc9bKG8A8jgY4tPz8fNTU1OHzY213NeRIUxM6D1KLBZ4ypFeFWC9JX0s1drkuaJ9D9fPhwG12uWz3ib+Qg53qRulflWGKsYMENhpAUPi+88ALmz5+PY8eO4bLLLsNzzz2Hq666ytAxSFk5AsXDFBfX4sMPB8I/FgjwFQR6Pz3zF39RUSZcrpE+nwUjwHiXWXy8+/iMTuFnuVYSi5hpIdNbcEkdG9/hukuXdUhNPYbXXx8D/r4UOw9K+iKpEeFWXJSU1OnyDmiW8/sHssiZcd3q6baUul7k3qtSlhirWHDVEnLCZ/Xq1Zg8eTJefvlldOvWDYsXL0a/fv1w8OBBpKamGjYO/xvdPxBYDKfTiT17osFx9U2PRtf04ccuJRTkXPz8E+qqVbGYOtUOl8uGiIhUDBzobm1hZAo/67WSWEPN4qzF5K+n4OK70Cs5tpqaGMhJTFCyGKgpTmjVRUlN13s5v7/Y/VxTE2O4ZVfvuj5S14vZldWtQsgJn4ULF2Ls2LG48847AQAvv/wyPvroIyxduhQPPfSQoWNR87S1evVqOJ1xsNkm+V3ALhQUvI6MDOH0Tj0JVijwT6hOZxwWL57kiVlyuWyeiQwQ7j6sF1arlWQGSlpfeC+yWk3+erkkHQ4HVq9eDUCZ8NC6gnJ+fj7sdnvIFSfUCqnfPyoqyvO+0P3snkeNs+waVdcnMfEYZs1K++vhkcO0aUWIiXHvP9A1OmLEiLC+nrwJKeFTXV2NXbt2Yfr06Z73IiIikJeXh+3btwv+zfnz53H+/HnP64qKCl3GpmRSFBMaZogenmCEAr8oik1kO3d2w/btubrHj4RLPzCtUNL6gndPaDH5693I1VukBRL1w4YN8ywUerQAsdvtmhQnVGJds1JskNTvb7fbBd1nTqcTq1evNrythRF1fRwOB+rqnsd9910oIMqLHiDw9RwoFjPcCCnhc+rUKdTV1aFpU183UdOmTXHgwAHBv5kzZw5mz56t+9jk+LjLy8s9xbZYtEgEW1RRuJijyyN6AOGFUqsJKpz6gWmF0tYXWkz+RjRy9UbsXvOu9qtHCxDvOi+RkUC7du5/Oxzyj02JdY2F2CA5wktJPy6hcaalpdVr+llc3ACZmbVIT+8KoKsu97kRsYP8MQWai1lcO1gjpISPGqZPn47Jkyd7XldUVKBFixa6fJfSG42V6s1aITSR5eZux7ZtPX22814ovZ+6eYKpJ0SiRj2BAiK1ttLo3cjVG6XxSHq0APFHjviQ2j8vrPhF3uzYICXCK1jh4t/0Mycn6OGLwmLjVK3XjlCrMxVSwic5ORmRkZE4fvy4z/vHjx9Hs2bNBP8mJiYGMTExRgzPkmh9wfs/jQDwsfgAvgsl/9QtHBzNYd48J4YPPxdWlhoW3RVaWWmEjk2tNUQOemaNBWP9kiM+pPbvLawmTpxY7++NXsyUCC/v3n56C5dg8bckG2VhAoR/Q61/11CsMxVSwic6Oho5OTn47LPPMHjwYACAy+XCZ599JnjjWx29nyBWrYr9KxhZ2wve/2lEKnA6UHC0u8/ZUtjtlUyl7+oFC+4KMYKx0jgcDpw4cUK0r5I3Wh2b3mn6ers+lOzfX3SwsJiJLdDeLkB/WH3AMdLCxCP0GwLQ5Hfl1xape8Sq8ZAhJXwAYPLkyRg5ciSuvPJKXHXVVVi8eDHOnj3ryfIKBYYMGYL09HRdJ4CSEmDqVDu8q0aLLQrBXvxSPmmp4Gj+CZe19F090NNdoaUlSUnFViV1bwDtXDFaBqN6nzu+OKGcbEg1T+eBXCt5eYU4fTrJ87kQLFQuDyS8pMp+hMMDjhRCv+H69QNhs0GT35W3Ym3ZAixaVP8e6dlzJHr3tm7oQMgJn/z8fJw8eRIzZ87EsWPHcPnll+OTTz6pF/BsZZKTk3W94BwOB3bsAFwu3+/guAh06jQYPXpUewq7afUEJscnTYUH66PVU7OZliSzBKtW11Ogc+ct6keN+huSkrKwbp17gVdrdfF2rZw6dQrZ2e7WG6Wl6SgszJPcn9mVy+UKL2oiLI7QbwhEgON83wnmd01KSkL37sJd1rt1S4JFNQ+AEBQ+wIXgOKsh13Kip3nR263kX0vIZnNh374PcPSoMreSVuMNpcKDQtYVp9OJmpoaAECDBg18soqA+udRy6dmswNfhZCyhqi1UGkdjCp1TnhR365dPwCNPMcWjNXF+7j47d944w5Z+zP7AUKO8GLBFcfDYkydWIast8UHCL78A+td1tUSksLHqrCQbu2dLhloURAao1i2ldBxya1k7U8opGoqde14M2zYMADBL5xSi7UcS5LaYGVvhCZjpzMOO3d2w7ZtuQCEF75gLFR6B6PKcV9pbXVRsj+pe9vfWqj1nCMlvFhwxfGwFlMnJdrPnbuontXPbq9Efn6+6vGx3GVdLSR8GIMln6kSkSHUvb2g4MLn/selxLrlv3DKcYt5L7ilpREoKmqArKxapKe7PPs161zLacIotnjW1tYCkL/QqYkhUWJJCjThy100eDHn/93ex+W/8AVrodIrGFWupUJrq4uc/cltFCr0QDJs2LB6Fkjv/Sq5l6SEl9muOG/kNkw1yhIaqDP84cNtPKIHcMd78dceH5qgFla7rKuFhA8REDkio6TkgugB+O7t7qcEsZtFbdNCOXgvuIEWIhaCJNVmZshZ6NS4C5Q+bQf6/eQuBryY8/9ub8xa+JQg59zpVfNFjhtYjuVVbGGXyraTcy/JFV5muOLELJPe1i9W3G9CneHr3zsRKCzMQ6dO+0y7Z1h0EfKQ8AkBginoFyxigdB1dcDOnQ7ExopbsfS66PmbTWohMjtIMpjMDKmFTq27QOxp++jRDJw+fS7opqOBrE/CAZtupBY+FgqsybFUaO1mkysm+O0C7VfOwh6MxUPqYYcXYUbH8smxTBrhfgtGKBhhJVMyPtZchP6Q8LE4Ui4mPXA647B1azTatfsD69aJB0Jv3boC+/YFX19HbdA3SyZzIdRkZkg1Zgy0bznHLhY0uXbtzUE96cpZVIW/2/39/tYQPZqiBotcS4WWbjat4gLlLOxanGe584CRsXxy3Fl6zyVqhYLciul8iQUh5MbqKRkfi8kS3pDwsTBqXEzBwk9+ixZFICKCw8CBV6BLl+8VB0IrQe3kbnb2ihRqMjPEGjPy8E/Nao/d/2kbcAGwQU49JzGkFtUzZ84Ifjff0qRbt52eAM2UlBTNm6JqhRJLhZZuAC2emKUWdrntMZSO3RsWmggLibvs7EM4e7Yh3PeCPnOJWqEgVTF9wIAbsXr16qBdlawLGaWQ8LEwv/ziW18BcLuYDh3SR/j4T34ul80z+en9hOZ9U8p17bGe/i42PqB+jI9/rIbafYsdu5jL5OzZRnjvvVt8tlX6pCu1qG7atAmAO4B23LgEP/dPawCtRRdTFqx6St1NLLoBpISykvYYgLqxG5HVKiQ4edEmJu7cFtgIABx48aNmLgkkdv0z6ZS4bgNVTC8rOydrbFYRLFpBwseiOBwOxMfXIiIiFS6XzfN+ZCSHuLgTcDgaaPLU5Y3U5CcnEDpYlLr2hBYiflIpLY2AV0sgUxBbKNWKSKWLMI//osNbjtxuzOCsZmKLalSU72SbkJCAtLQ0Re4fFqx6Shds1jKFAGmhHOg3LCrK1Gzsehdm9RacvuddfH67gA02G4ehQ9egRYsSxaJHbgmLYFyKoZZ9pRckfCyI9000cKDvTTJgwAZs2KA+a0lsEnc6nTh6lMPKlZyP0DJqkXE4HCgursW4cReEntu1xyEt7RSqq6Nx5ZV2wZveW5B5TyorV3KYN6/c8Canckz6as38wTw1C72nhdWsvvuMA8dFYMmSMUH3EpIO8nYG3IdWv7na/bASnwQEFspC57lz571YsmQME2OXg1RcWHb2IZEYswtwXAQaNaqqd/1L3Zdyxa7erlutkgBYSCYIBhI+FsT7Jgo0WWn11OVwOLB69WoA9YWWEa4jXugVFWXC5Rrp81ldnQ0DB7qf1CIiOLz6qg033ii8HyFXnRlNTgOJS6nKzXLGp/QYxKpI8yixHPmP13sfqanH8PrrY8DHSQQzqUtlR5WXt8WaNWs8160YZpY0kBs3o6colxtXA/heB1FR1R7RIzR2lhE775MmLa4n7i64udx4P+gNGTIEycnJin+fQGJXT9etViJbbZkMloSSKuFz9uxZNGrUSOuxECrR28UkV2jp/f3CwcCcj5AZP57D5s1nBPfDUpNToYkyzQS/m1wT/NixNygWYrw4KS0txbp161BTEwPvRQQIvpcQj5R7jAV3kj9i1+NPP3VAx47/84mb0UugSVkInU6nj3jk55qiokzTY6vUEmge8J/fDh9uI/qgx4ue6upq0Vpj/veIlNjVy3WrlSVJzX5YsmryqBI+TZs2xbBhwzB69Gj87W9/03pMBOMYEcsj9r31M458J7C6OhtWrNiKrCx3w1q73R50plMoI9cEz8ffKMU7tdWs88/ixAuIC/lNm/pj8+a+PuM8ceKEblafQPtNS0sTjP1i9V7ytl6Wl5d7imMCwB9//AFA+jr0nt8CPej5i0Kxe8e7b6ScOEk92oloZUmSux/ekigllPTM0AuEKuHz5ptvYvny5ejTpw8yMzMxevRo3HHHHUhPT9d6fEQIoOXFHcjcDtRP/fZerFnP8jIbvQWCnuefX/D4xY5f5FhKd/dHKPYJEC4bsGbNGtPccnrFfmlNoOBlAH/9O05y7Ndffz02b97s2Y/Ygx7nVXAr0L3j/XAhRzAqbSci57oIVqjKrRfkXShz4sSJ2LIFWLSovlDq2XMkevc2r0WTKuEzePBgDB48GCdPnsTKlSuxfPlyPPLII+jXrx9Gjx6Nm266CQ0aUPhQuMH7vL3RIz7BeyJSOvmGQpNTb+TWg5EqyW+UQNDj/Ady17GQ7h4I/nz89FMHbNrU3+czjovAzp3d0LdvIQD2Uo5Zu5fEgpfdgpKDf8NbsbFnZWXJShCQWyHeGynR5T2Hym0nIjRO7wcBOd+rJGlCqF7Q8OG31Zvrk5KS0L27O/vWu+xKZCTQrVsSzOwWFJQ6SUlJweTJkzF58mQ899xzmDJlCj7++GMkJyfjrrvuwkMPPYSGDRtqNVaCcZKTkw2PU1Ez+ZrlqtOawOm5F45vxIgRePPNNwNup6dA0LswnZi7LirqPM6ebcicS0bofHTs+D9s3ty33m+wbVuup4AjC7BQZFCK+n2rbBCzpImdVzkPa3xcj9J7J9CcJTaHKrHGij0I+H/vuHE3wm6X3yIlUL0gIEHwbzIy3CVHxo9315iLjAReecX8lPughM/x48exYsUKLF++HEeOHMHNN9+MgoIClJSUYO7cudixY4enOBlB6EWoCBmlyG3bUFVVJbldVNR56FWZ1ojCdDz1n/RtcFfDdjHjkvE+H979qXJzt2Pbtp5+W7NjnQKC/y29LY+lpREoKmqArKxapKe7JP9WLoF6vgHSgl6paJPjRgpGMAbbONj/QYf/G/9QACUoqRdUUODuJuAWSuaLHkCl8Fm3bh2WLVuGTz/9FB06dMC//vUvjBgxwifro0ePHrjkkku0GifhhdreVWahdxNV1lIljUbuxCi23blzF6GwMA8XqtPaNBcIRvjyhZ/0AXf/Mxduvll54Tm9EDof3brtxLZtudCrLYJWqP0tvS0RgYR6sLFM4j3f3AilpPOoEV5y4p2CEYzBWGNZCexnrbCiKuFz55134tZbb8XWrVvRtWtXwW3S09MxY8aMoAZHCGPkEzS/L7XbadFENdD3y7mxrSYUlSJ3YhTbbvNmXvQAvOgpKHgdGRnCKbqsEvhJX13hOSOx2ytx001sBQxridyYmGBjmYSECF+PRyglXQv3vByXu9r5WG1gMsuB/WajSviUlZVJxu7ExsZi1qxZqgZFSGNkNLxaoaVVE9VA7RTk3NhGC0WjkTsxim0nJIZqanwFAUsCQYxAT/paFJ7TA//zylrAsB4YEXDufx7d36vvOdXL5a42g471wH4zUSV8GjZsiLq6Orz//vvYv38/AOCSSy7B4MGDKZsrRFFTDXjHDsDl8v27ujpg504HYmOV7dN7Wz5mRerG9o5tMXuB0xO5E6PQdnl5hSgszBMVTUOGDEF6erolzp9YengwT/ladlEXIikpCfn5+YJFAkMVo2oA+Z9HqXOq1CVvpCVZjSBmtdYSC6hSKT/99BMGDRqE48ePo127dgCAuXPnIiUlBR9++CE6deqk6SAJa8H78t0NLifVu/G2bl2BffvUt4jgrY1SN3Y4ZRTKnRiFtouN/TNgdVoriB4e/zpPNTXRqp/y5WbNBRuTkpKSIms7K1jd5KBXDSA156eqqgplZWVYtSoWU6fa4XLZEBHBYd48p2QPP70tycFm0LFYa4kVVAmfMWPGoFOnTti1axeaNGkCwF0Vc9SoURg3bhy2bdum6SAJa8FPBFI3nh6+/HC+seVaCvy3s7p7RUm/KaHtxZCbNRfsdRzqrlgh9Ljm/M+jf+VmAIiKioLdbgfgFj1vvvkmnM44LF48CRzHNz/27eHXq9dwOByJgtlnev4mWlwXVr+39UKV8NmzZw++++47j+gBgCZNmuDJJ58UDXYmwhO9b7xwvrHlLuByLF9Wdq94LxBCix1wYcFTIyCMCBJlRdTonYHpjR7XnG//tsDuTDl1eA4fboPZs7N1yT6Tg5r9q7EU6e3SZQ1Vwufiiy/G8ePH0bFjR5/3T5w4gTZt2mgyMCJ00HtRtfKiHQxKngj9tysvL8eaNWskv8Mq7hV+UtajgGaoB4nyi54ad08oIOYyj4qq1jX7TC+UWorkNio2q2WKHqgSPnPmzMG9996LRx99FN27dwcA7NixA4899hjmzp2LiooKz7bx8fHajJQgLIIRRdp45O7Hfzv/5pNChPqCJxepWDL/xpE8Vjh/3vF4gdw9Wix6rJaVEHOZ19TEWFbwKvmt5DYqZlXoqUGV8Bk4cCAAYNiwYbDZ+FLg7oZtgwYN8ry22Wyoq6vTYpwEYQmMKtKmBWZ/v1WQiiXjSysILRbDhg3zKezKmhjiFzMpq5YWix7LsUxCLnN3ckZ4ZUUFU/DQSu4yVcJny5YtWo+DIEICvYq06WVFstJkZSaBYsnEFgunMw5z5/5X8ywwPTAq9dmo45YbqyTWzgEwN3nCSKsxTzCxbFZzl6kSPtdcc43W4yAI2agxmQcTtKlmEtIyLkQvK5JR6dqhglAsmVQbED2ywPQglDIk5VaLX7Uq9i/3nrh1w4zkCbOsxsHMWXKvaVaufdXVBsvLy7FkyRJPAcOOHTti9OjRnlRBInzR25cv12QOQHWNDh61k5CWT9B6WZGMSte2KnKuT7HFwrsopBmtAtQIfatnSDocDhQX12LcuFS4XHysEjB+PIfLLz+BzMwGSEpK8mw3dWqqJ6Yp0G9kdPKEUa09/NFyzmK9f6Iq4fPdd9+hX79+iI2NxVVXXQUAWLhwIZ588kls2rQJXbp00XSQhLUwwpcvV7AEG7SpdhLS4wlar+wi6unjRsjtl5+fj5qaGgBAgwYNPPE6fNsU4TYZwm1A9A6K1SI7y6oZkvz9XlSUCZdrpM9ndXU2PPfcRmRlHcGIESPw5ptvCm4X6DcyYyE3OptQqzmLlcaogVAlfO6//37cdNNNeO211zwtKmprazFmzBhMmjQJX331laaDJIxByxoeZrtGtA7aVDMJyX2ClnKllZeXA9AvDiPU07XloNbtp6YNiJ7jNyI7i0X4+0fqHuHb2Ci5l8QWcr2zz8xoORGs1c8qD1GqLT7eogdwPw1NnToVV155pWaDI4xDiy7qLKLV5KF2P1JP0HJdafy+9IjDMHqCZTGgOhi3n9I2IEqQG19mZHaWEowsiAgE17fOe7v8/HxwHIeSEuCxx9r7uMQ2bBiE++/vwMyxBEuwrTG8scpDlCrhEx8fj99++w3t27f3ef/o0aOIi4vTZGCEcWjVRZ1FtJo89JqE5LrSePSIw9Di2OSKGdYDqtU+serRBkRJfBmPUhGrZzyeWQ9TwfSt82bNmjV/ucQu8Xnf5bJh+fJvkJV1RPfr1Ii4Ky1DE6zSGFWV8MnPz0dBQQEWLFiAHj16AAC2bt2KKVOm4LbbbtN0gIT+/PLLBdHDU1cHHDpkfeEDaDd5yNmP2oVEyZOSHnEYwZwjuWKGf4rmYSWg2uFweIoQHj3aQtbvIOd3DvZ3UhNfplTE6hGPJzfIWE/U9q3j4eO6pBZy465Tm6571+r3sEp2oCrhs2DBAthsNtxxxx2evjhRUVG4++678dRTT2k6QEJfHA4H4uNrERFxYZICgMhIDnFxJ+Bw6D9JGYFWYkFqP2oXEhaelNSeo0Buotzc7ejWbSfs9kqsXr3asx0rsQBCVhV/hH4Hod/Z6XT6HKMYSq0nSt0HSkWslve33CBjq8Qamb2QWyFQGPC9pgNdf6y0wFEsfOrq6rBjxw48+uijmDNnDg4fPgwAyM7OltUMkWAH70l/4EDfG2zAgA3YsIGdKsNWQs250mKCVTqpaO3mEBIz27b1xLZtubjpJt8Jm5VYADGrygXEfwej2oCoEcVmZWfJDTK2UokEo9P8+QBsqYcDfjsWYLkqtxCKhU9kZCT69u2L/fv3IysrC5deeqke4yIMwPsiDXRzW2mS0hoj+wsF+g3y8/MD1shSM6loPVkJiRk39a05LFi4vBEb+803v4dOnfbL3o8eE7vZVgc1WHHMgTBSSPIGBKmHA7MNDSwmKchFlaurU6dO+PXXX5GVlaX1eAgTsWoNDyG0EixGP8mI/QZ2u12XzuNaTkzCNW3c+FtzWFsYxYRYixYlpozHHysWF/QfMwAUFWUiMdGh+XfJvd/ligXvjGWzYO3hwBvWkxSkUPXrPvHEE3jwwQfx+OOPIycnB40aNfL5nDqyE3ojlSarpWDR68b1DqplvdKpHPzFjDdCEzZLi7lcIWZmjEKgBxOWO5/b7ZX1YlWaN6/AAw8o21ege17J/S5nOxas3Kw9HHhj9arvqoTPjTfeCAC46aabPN3ZAerITqhDbq0PpZVpWXzS4FFSvwdgJyhQCl7M7NzZDdu25QIIPGGzZGUMJMSGDBmC9PR0Zq8plmMshGJVpk61o3fv47IzvOSkxss9NjnblZWVydqXN3rULArm4cCIGkqsJCkohbqzE0ER7M0lt9ZHqFWmlZuqzPqCK4TdXom+fQvRrdtO1dYcs4SemBBLTk42/DdQasVh9RoRilVxueRleJmVGq/03OtZs0jJw4EWbUuUwEqSglJUCZ+srCy0aNHCx9oDuC0+R48e1WRgBPsEc7MrndBYrUwbLFLHY8aCqxSxRUJswtYjUDsUYdmKowS1GV5mpsYraYS8a9dxU2sW8ZjxcMhyHFIgVAufsrIypKam+rx/+vRpZGVlkatLJkaXc9eKYJ/CgpnQrHqjiREKx8MvEidOnMCaNWskt09JSWFmsTYrNkbuvc/KeZKL0HlSG6tidmq83EbIrNQsMuPhkOU4pECoEj58LI8/Z86cwUUXXRT0oMIBFnpjqZn0tbjZg5nQWLvR5PZSEoM/nvXrBwKIQKC6MSyTlJRkSQuFkWPWyg3B8gOT9/nkO9gDwcWqsHbP82gpzLx/09jY4MS40Q9TLCUpyEWR8Jk8eTIAwGaz4ZFHHvFJDayrq8POnTtx+eWXazrAUIOFcu48aiZ9LW92qQmttDQCBw64J4PIyAt/x8qNpqSXkv9v6nQ6fV7bbADHuf/vv50eaex6wYqoUSJIjRhzsG4Io2M3gkFsHMEEskvd82aKwWCFWf2H4ODEuNZCUehestvL632nFQQPjyLh8/337omc4zj8+OOPPoozOjoal112GR588EFtRxhCsGYaBdRP+lrdXGIT2u7dV+Cxx1L/mgw4zJzp6z5l4UZT00uJh+8FJPW3/HYswXrhsmAEqV4E44YItcB+tYjd824xaK71XO3DmHiD6KSgBJxWD4fi91ITDBp0hU/2qVBJDpaqS3ujSPjw2Vx33nknnnnmGarXoxCzfdZao9XN5T+hXRADFyb42bPTMWlSnOR3eFuJjHryCyazwWpZEf6Fy8QwcxEORpDqjRo3RKgG9muB0xmHxx6z+wkH463ngPKHMYfDgR07AJfLd4x1dcDOnQ7ExgZnjdTi4VDuvST2gPHmm28yKciF6stLsmzZMhI9QcBbS2w2993Kis9aDXZ7JbKyjmg69kATfCB2774CV12Vij59gFatODz9dDnKysrgcGhfKdYbfjHzRmox4yvDSv2tmgqyDocDZWVlov8Fcz5OnDjh89rpjENRUSaczjif91lYhNVeR3oSzL2v5joLdU6fTvJprgxcsJ4///zzut/7auEfILZtWyH4m27duoKp8Qe6l8REET8nsDAX+KMquPns2bN46qmn8Nlnn+HEiRNwuXx/uF9//VWTwYUyrMSpiGGmz1zNU7GQlcgoN4Aat19CQoKsv+W3k4ueFhmHw+GTtbV1ay4KC/OY7RzNasac2nuf1SBfMYzImLOq9Zwfl9Rvysr4A51nq1mtAZXCZ8yYMfjyyy/xz3/+E2lpaYIZXoQ0LMSpeCMngNIIpCaDIUOGIDk5GQA8mSNmuwGCEbJaimD/4xRrhaHmfHj/zdatudi8+XoA7nufxYqtLAsFtfc+6w9M3gSbMSdnvmH5N5aLVr+pnkKzfjsaF/LyCj1jZfEBIxCqhM/GjRvx0UcfoWfPnlqPhzAJuQGU+fn5QX+XnBsv0GSQnJxcL9OJhaf7YISsHiJYTisMNTidcdi8OQ+86OFh8SnPSkJBLqw9MAUiGCtrIOHknSqfnX0IQ4euBcChRYsSw86NlkJDi99U79IMXbp8j3PnLvJYeQsL8xAb+ye6dPnecuJTlfBp0qQJEhPN85MT2iM3gJLjOFn7C3Szi92g3pMZoGwykHrys1paeLDo2UPn9OkkCIUHGi00xbLL+MavPFYSCoQvUou0XuJe7thYq1vl/11ahiw4nXEe0QP4zilWe8BQJXwef/xxzJw5EytWrPCp5UNYHynLSUJCgiY3ux6TAX/zHT2aAcCGFi0utE9ZvXq15nE+wTzx6R3/oKffXegaATgf07fe+Mcysd7dntXu6XJhsWgiCw0yWctW8kbrIrlSc4qVHjBUCZ+nn34ahw8fRtOmTZGZmYmoqCifz3fv3q3J4EINK0x+cnzmLN/shw+3EX0C1CLOx9/KkJ+f71Nrp0GDBj4ByWIiUO+nRT1df0L+/uuvL0TPntuD3rdcvM+b2qd+I++zYH5vs+cNFqrM+1NeXm6JoFozBKOWRXK9rykWwgm0QpXwGTx4sMbDCA9YNI0KYZbZMtgJXu8nQK0zpvT8nfUO+pS6RowSFXK62/OB8P7jM/o+U/t9Zs0bLFWZ9x/XmjVrkJgYx/RCbIZg1LpIblJSEoYNG4Y1a9aonlNYtGKqEj6zZs3Sehxhg9miRi5CRQVPn07Cvn3lnve0mGy1sqAA+hcDlJsxVVpaKrpIGbng6i1gxUzb+fn5hh2jnO72oRDbZfS8wWKVeR65qeCAeYuueEVmt+VHLyueHkVyveffQHOK0EMGCw/yQigSPv/973+Rk5ODSO/GSV6cP38e//nPfzBs2DBNBkewgbcr4Y03tCv7LzdOI9B3mGWKDeRe8Q7QFkLPxcJ/ohQTJ2oWBLl/k5KSonjfagkl8ztLmFVlXqlrKNBCbKQA90ZuRWY9rXh6WnzF5hQrPWQoEj65ubkoKytDamoqACA+Ph579uxB69atAbj9rrfddhsJnxBCz7L/cuM0An2HFqZYpch1qWlZQ0cuek6oQvt2Op31LHTV1dUoKysL6rvkEgp1XFjGyPOr1jUkthDb7XbNxyiFd1kQm21SPcG4desK7NtnTF81q2VaGYki4eOfyiyU2iw33ZlgC7GneSMCCIONzZFritUKOefE7DRbI/btcDiwevVqyb/Re5KnCV5f9D6/rMYSqYG1isxWyrQyElUxPoGgKs7WxP9pnq+pY4QrIVhxVV5eLvBu/euwvLxcE1Os1DlhIc3WCPSsEq2UcJ3gvWPkSksjUFTUAFlZtUhPdweXaGVx0+v8shxLFCyhIsiVxCOxWPZACM2FD2FdhCYWI0zdwYorb7EdyNKilSiXOidWSLPVGqMtXGaneLOAd4xcoPPPsmgwK5bIKKwgyKXEipT7vLy8HDabDcuXR2LqVE6w1RFr159i4fO///0Px44dA+B2ax04cABnzpwBUL9iKhEaGJEdFIy44n35UpYWLX3+gYolhlvArRkWLrHJuLy8HLW1tQCAqKgon3gjgN0sEzXwx65nHJ5RhFOsltMZh61bo9G9u/lWEblxVWL3DF9aQKrVEWviW7Hwue6663zieAYOHAjA/TTNcRy5ukIUvZ9ctBBXci0tYq0OeOQWkhMrlig1iQs9IFh5QTbLwuV/vvy7x4vB2iQcLKFiYZQ7B1jZ2sdb5hYtitClto/cY66qqsKuXceDjquS2+qINfGtSPgUFRXpNY6AFBcX4/HHH8fnn3+OY8eOIT09HSNGjMCMGTN8fui9e/diwoQJ+Pbbb5GSkoJ77rkHU6dONWXMhHKCFVdyLC3BFCFMSkpCfn4+Vq9eLfmUHWgSF0t3t+qCzIqFi6WYIyMRO/9RUdUoKspEaWkElIa2mSUu5MwBVikE64//nOFf20cL5JybqqoqvPnmm5rGVbEyB8hFkfBp1aqVop3/61//wmOPPSZYOVUJBw4cgMvlwiuvvII2bdpg3759GDt2LM6ePYsFCxYAACoqKtC3b1/k5eXh5Zdfxo8//ojRo0cjISEB48aNC+r7wxEjJj6tv0OOuVzuoie2He8uk/OUrVTIWXVBZtFNYWZWndEInf/OnfdiyZIx4LgIrFzJYd68ckXxFqyLC1ZEjZJgXqE5w7+2jxZI7Yd3/WoZV8XiHBAIXYOb33zzTTz44INBC5/+/fujf//+ntetW7fGwYMH8dJLL3mEz1tvvYXq6mosXboU0dHR6NixI/bs2YOFCxeS8FGBkokvkOuID3wTi68ZMWJEwEa3SidXpS4ztc0tpSYN7yqm/l3nWW+oqQaWMljCJavOG+/zHxVV7RE9gPp4C1bEBasIxccMHiz+kCY2ZxhZ28cbrcUKS3OAFLoKHz1r+jidTiQmJnpeb9++Hb169fKxDvTr1w9z587FH3/8gSZNmug2llBFzk2oRZdsrW94uZaWYKwCUpOGWBXTULJE6FklOhhCJeZFKfz5LyrKtFS8hVrMSp0OXHeoFiNGjEB5eWNPaYHo6BNYt24dM7V9vNFarFghiw2waDr7oUOH8Nxzz3msPQBw7NgxZGVl+WzXtGlTz2diwuf8+fM4f/6853VFRYUOIw5dlHTJ1ivmQonLTG4mjJzvCjRpCI0p1CwRrLpDrBZvoDVWOn617m6zOsbLqTv0xx+J2LBh0F9p3cC8eTGebVi0iugtVpzOOHz88TlcfvlxzetLqcVU4fPQQw9h7ty5AbfZv38/2rdv73n9+++/o3///rjlllswduzYoMcwZ84czJ49O+j9KEFtVhHLSC3qelo6lCzAvH9brVUgmMU+FC0RLF6nwZjwrXRviokGo+IttLC4KL2fzK7yLFV3KCqq+q/zfmFs06bZce+9capj/8xAq5R7VutLmSp8HnjgAYwaNSrgNnwfMMDd9fraa69Fjx498Oqrr/ps16xZMxw/ftznPf51s2bNRPc/ffp0TJ482fO6oqICLVq0kHsIigkmq0jrcWg5wQda1AHobumQGqvD4UBZWZknlTyYp2K1v4uVnsS1wiwhoebJmpV7Uy5i1dYB/SwL/O+5alUspk61a1KsTu72LFV5FhOXNTUxAgHMNk0fbvR28fmm3Af+bQNZ7FiuL2Wq8ElJSZHdyfn333/Htddei5ycHCxbtgwREb4XV25uLmbMmIGamhpERUUBADZv3ox27doFjO+JiYlBTEyM6OdaE2xWkRboMcEHWtTNtnQIHa8ZWQhWy3wIFqOFRLAxR1ZMhw903rS2LHg34DSjWB1rVZ6FxKW7Oal+Dzd6u/jqp9wH/m2FLHa8ADd73g+ErsJnxIgRiI+PD3o/v//+O3r37o1WrVphwYIFOHnypOcz3pozfPhwzJ49GwUFBZg2bRr27duHZ555BosWLQr6+/XEjAwfPSZ4qUXdTEuH2HEojdFRSzBxQVZGC5GvxGKkZcxRKAWhawUrxepYeoDwF5d6jU1LF1+geUbNbyv2vSxbuFUJH5fLVc/iwr9fUlKCli1bAgBeeuml4Eb3F5s3b8ahQ4dw6NAhZPjZ9vjMMbvdjk2bNmHChAnIyclBcnIyZs6cyXQqe6DJNVD7Dy3dA1pO8GKLOksTlT/eExefgq61+4XVIGDWUWMx0uIchloQutawsKCxGCTMo/XYtHbxBbLSaPnbsjzvKxI+FRUVGDNmDD788EPEx8dj/PjxmDVrFiIjIwEAJ0+eRFZWFurq6jQd5KhRoyRjgQCgc+fO+PrrrzX9br2QmlzFqvvyaGFO1mOCFzOvszRRiVm4xFLQtYBEjXLrplluYZZN9IEwqtoyKwuaHkHCWsXPqBmblAtWSxef93xUUgIcPBgNpzMubGr7KBI+jzzyCH744QesXLkS5eXleOKJJ7B7926sW7fO86PpWbsnlAh2ctVistdiglcyibJQ54VcGOagxXk3yi3MgkVDDUZaFlld0ILBiBR578Km3sj5XfQQnBeOOQk22yTPfRnqtX0UCZ8PPvgAK1asQO/evQEAgwcPxoABAzBo0CCsX78eAKhJqUxYmFy1GIPUZCtVudlIFw+5MMxBi/NupGBlxaKhBqMr/1rhnEihJH5GyUOakFAP1qqslSgROmb/+zIUflsxFAmfkydP+vTrSk5ORmFhIfr164cbb7wRr7/+uuYDDFXkTq56PuVqNcEHmmz1ch2pwaouDKsT7Hk3Q7CGokWDqI/S+BmxBz3/tjR6CvVgRElJCfDdd0589dUKnD6dVO+YtZgPzWpwqwRFwqdly5bYv3+/T4XkuLg4bNq0CX379sU//vEPzQcYasjN8AGMecoNpwmeBStbOBLseTdKsLLagiNckIqv0WNBVRM/I2VVCyTUy8vLDX8YrF97yQ6bbRLy8gp1mQ+tkMyhSPj07dsXy5Ytw4033ujzfuPGjfHpp5/i+uuv13RwoYjURcE/Oej5lBtuEzx/HFIWrlA5XlbQ6rwbJVitMGGbiR7CQ0lBRD1/n2Ct397HHEior1mzxtACmGK1lzguAoWFecjLK0RhYZ7sY5b727J+jygSPrNnz0ZpaangZ3Fxcdi8eTN2796tycBCGTkXhZ5PueE2wfsf78yZJ1Fc3ACZmbVIT+8KoGtIHS8raHXeg12UlNYC0gortb+Qg9bzhpqCiHqer2Cs30lJScjPz8fq1auZKbDo/V1i60l6eikmTVoseMz+gdhWu14DoUj4NGnSJGAV5Li4OFxzzTVBD4qQfso9depUUBdiqFzAcvE+3rQ0ICfHxMGEEcGcdy0KP5rVhsJq7S/kouVYWSmI6E0w8TN8AofWwfFaWNoCrSdix6w0ENtb6JeWRni607PSmNQbxQUMa2trsWjRIrz99tv4+eefAQAXX3wxhg8fjvvuu8/TLoJQh1z3AB9IZ7WJkyDkooWFwaxaQFZsf2EWoRh7p2XspBb3gd6Zit5Cn9XGpN4oEj7nzp3D9ddfj+3btyMvLw+9evUC4O6gPm3aNKxfvx6bNm3CRRddpMtgwwH+Ine7FNdJ3jw0cRKhDAuTZLBQ7ajAWLl8QCC0SAm/EPCdFHRDUj0TWfh1iOXGpN4oEj5PPfUUjh49iu+//x6dO3f2+eyHH37ATTfdhKeeegqPPvqolmMMO5KSkjwXSKjXUyCIUIZqR8kjnLJL5aJHQUW91xOrlAyp33ArAO+88w4WLlxYT/QAwGWXXYYFCxZg1apVmg2OIAhCS5zOOBQVZcLpjDPk+wItBIQvdnslsrKOGLpAslhzxuFwYNeu4xg3joPLHR7jKai4a9dxOBwOQ8ah5ph5t6U3LLotFVl8jhw5gquuukr08+7du+O3334LelAEEQoYkdUTaplDemKGyykU41dCCdYyXLVuSCoXrTK4pNyWYs23jZ6nFAmf+Ph4nDhxAi1atBD8/NixY4iLM+ZJKtwwqk9RKMCCGDAiqydUM4f0wCyXE0vxKyzcFyyi1TFrYT3SuiGp3DGlp6drdh4CuS0DNd82cp5SJHyuvfZa/Pvf/8batWsFP3/qqadw7bXXajIw4gIUHCkfVsSAEdlERmcsWXnhNDP2gIX4FVbuC29YdDMFg5bWIy3bCZlh0QoUS8RChqMi4TNr1ix069YN3bt3x+TJk9G+fXtwHIf9+/dj0aJF+N///ocdO3boNdawhIIjlWFW+nKoo3ThZEUk8Yum1BO01osra9XRWUyvZ83NpAVajlUrwczS+WPlIV6R8OnQoQM2b96MgoIC3HrrrZ5O7BzHoX379ti0aRM6duyoy0CtjtKFgJ8QpZ5UrfI0RFgbJYKSJeuC9+LavHkFpk2zo67OhshIDnPnVmD48Nt0WVz9F/Xy8nLU1tb6bBMVFYXq6mqUlZUZusCzsvgAbC3KLGKVrF456xBLD/GKCxh2794dP/30E/bs2eNTwPDyyy/Xemwhg5qFgJ84i4trsXIlB5fL5tkuMpLDPffcgMzMBjRxEMzBmtWNv0ceeADIzwcOHQLatLEhIyMBQILu3+twOLBmzRrJ7Y0QgiwtPkToEMh6x/efZCnVXbHwqaioQOPGjXH55Zf7iB2Xy4UzZ84gPj5ey/GFBGoXgqSkJCQlues3jB8P1NUBkZHAK6/YkJPTVI+hEkRIk5Eh3PlbT1gSgiwtPkRoISXaWcpwVFTH5/3338eVV16JP//8s95n586dQ9euXfHhhx9qNjjCTUEBUFwMbNni/n+wRayI0ESLGjUOhwNlZWX1/hNLQyWshVXqrBChBx+wzV9/ZmY4KrL4vPTSS5g6dSoaNmxY77NGjRph2rRpeP755zFo0CDNBki4MeNJVQ2sBLWyht7lCLSI25DrkiWCw8zSFCyl1xP1CbVMN39YyHAEFAqfffv24cUXXxT9vFevXnj44YeDHhRhTVgKauUxa5HxnpgCiZJgJjD+b6XiNuR+h16uFqpBdQEWAotZWXyI+oRiphtrGY6AQuHzxx9/1MtM8KampgZ//PFH0IMirAkLsQxGCA45eAenP/ZYKjiOz4CMwEcfDcLMmd2CDk7nv2PLFmDRovpxGz17jkTv3vpkzsgVMyws9KxgZmAxi4sPIQxLokYLCz6LYk6R8MnMzMR3332H9u3bC37+3XffoVWrVpoMjCDUYITgUDKWvXvh6bfDU1dnQ2VlU0gNQe6k0727u4mh9/dERgLduiVJfocapASl3E7N4YaZgcUsLj6EOcidV/wt+GIPO3Is+KxdV4qEz5AhQzBjxgxcf/31aNrUN6vo2LFjePjhhzFixAhNB0gQSglWcGhJ27bCoqRNm8B/p8RtmJGRJJD5p09MmNMZhw0bBgUUlHwTRapB5YvZWS2sLT6E8SgRM97iKNDDjhWLwSoSPg899BD+85//oG3bthgxYgTatWsHADhw4ADeeusttGjRAg899JAuA7Uy/hO82MUWbguBnqgVHFqTkSFUjkBalCh1GxYUAP368TVq9AuEP306yaemFFBfUFINKl/4+1oqsJjuf0Jv5IqZ0tJSz3ahaLlVJHzi4uKwdetWTJ8+HatXr/bE8yQkJGDEiBF48sknqUmpAN5m5lWrYvHYY3a4XDZERHCYN8+J4cPPqTYzq/XBhnr2lVrBoQdGiRIjMv8SEx2IiPAXM/UFJdWguoC/m2nmzJMoLm6AzMxapKd3BdDV8vcbYS3ExExq6jHU1MRg2bLNHlETirWfFBcwtNvtePHFF/HCCy/g1KlT4DgOKSkpnvYV3mzduhVXXnklYmJiNBmslUlKSkJJCTB16gUrhMtlw7RpCcjPT1DlflGbRcVi9pUeGCU45GCVcgRS2O2VmDfPiWnTEmQJSpZ+AzPxvo/S0oCcHBMHQ4Q9YmLm9dfHAPC1AJntotUDxcKHx2azISUlJeA2N9xwA/bs2YPWrVur/ZqQ4pdfhOJO3IuCmgVBbRaVHtlXDoeDySJ3wQqOULeMeSPXJTtqVJ1X6wfp8xsqoo8gQgUhMQNw4Gsa+7uzQq32k2rhIweO4/TcveVgJe5Ea8QsSFaLZfIXOeXl5cz0WDICpS5Zq4iZcBKvoQj9ftojJGYCubNCrfaTrsKH8MWsuBN/S4zWlhmhSUkocO6JJ7KQnp7O5CQVTNViuZYxK0zgerhkzSRc3LqhipYp1XK/j/V7VCu8xUxUVDWWLBkT0J1llU7xciDhYzBmxDysW7dO/y/xQixwbubMk8xOGnqnZFppAdbaJWsmLBTVJNRjZEq10SJLT8QEnP9Dr7eYUevOYtWCHwgSPiYQ6jEPYoFzxcUNwjaoU+kCbGbPnlB1yRLWxYiU6lCpWyNXwPkTyJ01ZMgQJCcn1/sbq1rAdBU+QpleROgjlgWQmSne7oTwxT8FurQ0AkVFDZCVVYv0dLci0WvSYakUAEEAxqZUW71ujVwBN2TIEAC+HgExd1ZycjLS0tJ0HrlxUHAzoTliWQDumiWEXHhRs2QJMG6c2wITEeEWJQUF+n43a2no4RR7QdTHyJTqUKlbIyXgkpOTVVmWQ+Fe1FX4VFZa5yKxIlq5OfTIvhI2m5LwUUpJyQXRA7j/P368W5ToLUZYcclaKT5KjFBYLNSixbEbmVKtpcgy83eXI+CU9nALhXsRUCh8+vTpI2u7zz//XNVgCGUEcodER5+QGdRcgGeeaa5ZJWlvQikLwCxCKdBYLVYPUA6VxUINWh67USnVWomsw4cP48033/S8NjpYWq6AU/Ld/veY2DGxei/yKBI+X3zxBVq1aoUBAwYgKipKrzERChBzh8ybJ10t2+mM84geQH3acrj3ItPzuCjQWFvkBnpqidWFWzBofexGPUwFK7IcDoeP6Nm6NReFhXmGBkvrbSULFD/EOoqEz9y5c7Fs2TK8++67uP322zF69Gh06tRJr7ERMhFyh0ybZse998YFvMiFG04qtybo2YvMKOSIF6czDpdddjM6dYrRPcCYhwKNg8P7dw00UYeaKGfVtaZUeMr9XZxOp+bHFIzI8j73W7fmYvPm6wG451ojg6X1spJZPQBckfCZMmUKpkyZgu3bt2Pp0qXo2bMn2rVrh9GjR2P48OGIj4/Xa5xEAITdITbJYDy5DSflYPXCd1JZVL6CTnmAcTDp6awFGlsJ707xjz2WCo67sPh89NEgzJzZLeQ6xbPqWlNjIeB/vxMnTgSsor569WoAwR2THiUknM44bN6cB1708BgZLK2HlczqAeCqgptzc3ORm5uLZ555Bu+++y5eeOEFPPjggygtLSXxYwJi7pAHHvg7kpP/BCCeDt2xo00za4LV41HE3IZz5wLTpgUXYBxsejorgcZWJCkpCXv3Cj8cVFY2ZV6UK4VF11owFoKkpCRDjklpoK8cTp9OAt//yhs9m3waUQPM6o1Lg8rq2r17N7788kvs378fnTp1orgfkxBzh1x6aRMAgdOhtbQmhEI8irDbUBtBZ2Z6erjD0rVpRpyR2WhtIdDrHGptARNrBpqXV6jbb6+HgPPH6o1LFQuf0tJSLF++HMuXL0dFRQVGjBiBnTt3okOHDnqMj5CJmICRkw6tlTUhFOJRhKxWLhdgswHeZanULppmpqeHOmI96KKjo5GRkcTEtWnlgNBg0NJCoNU5NCIOyl8gAC5cf30hevbcHtR+pTDChWnlxqWKhM+NN96ILVu2oG/fvpg/fz4GDBiABg2o6wUrCAkYo91PVo9HEbMMzJkDTJ8e/KJpdXegGcjNGgxUvmHixIkoKEgy9do0KyCUBQuTVhYCrc6h3DioYcOGISEhAYB6IWRlgeCP/70oFj/EerKAItXyySefIC0tDb/99htmz56N2bNnC263e/duTQZHBI8ZJn4rx6OIWa0KCoDbbgt+0WTJ5WIVAmUNzpz5O4Alkvvgn+zNuDb5RUDK3aPHYmG2hcn7mAIJALnHrpXLTG4skH9Atdrg6UABxqyLBG+McKMZgSLhM2vWLL3GQchEqXk2FNxPRiNmtdJi0Qy138OotGmxrMHHH28uWbbBbLwzy1au9M+i5HDPPTfokllmdsoxf20MGzYMtbX1+/RFRUXBbrcrukb0CqqVaxWTK5jkipkRI0YwLxL8sdp4hSDhYyHUpqla3f1kBnpaBkLl9zA6bVpt2QYWSEpKQlKSkOi1ISenqS7faWbKsV7Xhh5BtUJWMbdlSr17MFQsI6GKJgE6X375Jc6ePYvc3Fw0adJEi10SAgST0mll91MoIvV7sFqAzhuj06aF3YScZVJoAWNEL29tkLKO6Oli0fra0NplxiNkFVu/fuBfyQzBuQfNvj8JcRRXbj5z5gwef/xxAO7u6zfccAM2bdoEAEhNTcVnn32Gjh07aj9SgggTWC1AZzZCbsK5c504c4Zta48/ej+EeFsbmjevwLRpdtTV2RAZyWHu3AoMH34bE8JZCXpZUISsYkCEJ4PTahWJCXkoEj6rV6/GtGnTPK/fe+89fPXVV/j6669xySWX4I477sDs2bMDVtgkCCtgpsWFxQJ0rOBvMYmMPIdXXzV7VMYh97rkr80HHgDy8/nzZUNGRgKABEPG6o0WmWVGNfL0x0oViQl5KBI+RUVF6Ny5s+f1xx9/jJtvvhk9e/YEADz88MO45ZZbtB0hQRgMWVzYxttiUlZm7liMRO11abab2+zMskAI1dlxt5e4EIBupYrEZmMFFz2gUPjU1tYiJuZC1+/t27dj0qRJntfp6emiRcQI4/D+DVi50KwEWVysg9waP1ZKGRbDitelEZllahbbQDFDhw+3sWxFYr0JdK6dTqenZ1ogWHhgVCR8srOz8dVXX6F169b47bff8PPPP6NXr16ez0tKSkw/IKJ+ITcWLjSC0INANX7mzXNi+PBzJP51Rmgx5B++9M4sU2sF848Z8l60tQyeDiXknmspWBDmioTPhAkTMHHiRHz99dfYsWMHcnNzfVpVfP7557jiiis0HyQRHCxcaAShF2I1fqZNS0B+fkLINSFlCanFUO9mlsFYwbyFUFpaGqWfSxBK64gi4TN27FhERkbiww8/RK9everV9SktLcXo0aM1HSBxgXB+2iDYw4gu0HKhViDmILUYStXdYWlOC2dRE24oruMzevRoUXHz4osvBj0gQhx/8+ypU6cC9iciCD1hqUhbOLYCYaEHlxy6dPkeEye2RUVFKjIza5Ge3hVAV12uDauck3CA5d+COoxaDO+JorQ0AkVFmUxeWIR6WLKkSOF9PZaUuC0vbdsab2UJtVYgUrCcKSVEp04JSEvTVwBb7ZxYnUDChvXfQpHwqampwYwZM7Bu3TokJibirrvu8rH+HD9+HOnp6airq9N8oIQvS5YA48alwuUayeSFRaiHJUuKXNzXo9viEhHhFiEFBcaOIVRagUhhdg8uqbGZ8ZTP8jkJRQIJGyv8FoqEz5NPPok33ngDDz74IMrLyzF58mTs3LkTr7zyimcbji95SehGSQm/yLhrTbB4YVkZFiwuLIkaKS5cj+7XLpfb8tKvnzmWn1AVPGZ2eZeDmU/5ZvYlU4pVat2IISVsrPBbKBI+b731Fl5//XUMHDgQADBq1CjccMMNuPPOO7F06VIAgM1mC7QLQgOEAjlZu7CsDGsWFzNdSHIIp8BiMxcts7q8y8Hsp3y9s8e0IhSKo0oJGzN7xMlFkfD5/fff0alTJ8/rNm3a4IsvvkCfPn3wz3/+E/PmzdN8gER9hAI5A93kLFxoVoOVSYcFF5IU4RJYzMKiZUaXdzmY9ZTPz21WyR6zYhFKHrnNb8eOvYH5HnGKhE+zZs1w+PBhZGZmet5r3rw5tmzZgmuvvRajRo3SeHiEEPUDOS9cWP6wcqFZGbMsLiy5kAIRLoHFLC1arMQzmd0J3t86O3PmSRQXN9A9eywcUdL89pJL2OgRJ4Yi4dOnTx+sWrUK1113nc/76enp+Pzzz9G7d28tx0YEwHfic19YJSUJkgu0Ff3LZo7ZTIuLlVxIrCzE4QQL8UwsdIL3LUQI5OTo9lWaw3LKtxBKmt+ycH2KoUj4PPLIIzhw4IDgZ82bN8eXX36JzZs3azIwQhrvC0vOAs2CqV4pZo7ZbIuL1VxILE90hH6w1gneKrCe8i2Fle/3COlNLtCqVSv069dP9PP09HSMHDky6EERyhBboEtKfLdjyVQvFzPHHMjiYgS8Cyky0v06VF1IROiQkQH07k3XqBRiweBOZ5zJIwsPFAkfnnfffRdDhgxBp06d0KlTJwwZMgTvvfee1mMT5Pz587j88sths9mwZ88en8/27t2Lq6++GhdddBFatGgRNsHWZi/QoQpvcfHGaItLQQFQXAxs2eL+P2uBzQRBKCdQMDihP4pcXS6XC7fddhveffddXHzxxWjfvj0A4KeffkJ+fj5uueUWvP3227qmtE+dOhXp6en44YcffN6vqKhA3759kZeXh5dffhk//vgjRo8ejYSEBIwbN0638bCA1VwiVoGVoF0rm5TDEb4zeVVVFRo2bCi6HYvxdIQxWCX9PlRRJHyeeeYZFBYWYv369Z5aPjzr16/HnXfeiWeeeQaTJk3ScoweNm7ciE2bNmHt2rXYuHGjz2dvvfUWqqursXTpUkRHR6Njx47Ys2cPFi5cGPLCh5UFOhTROmjXisHlhDKU9M9jKZ6O0B+rpd+HKoqEz7JlyzB//vx6ogcAbrrpJsybN0834XP8+HGMHTsWH3zwgeBT1Pbt29GrVy+fC6Zfv36YO3cu/vjjDzRp0kRwv+fPn8f58+c9rysqKjQfuxFQVo1+aGVxsWJwOXEB/8VIi4wcluLpCP1Rk35PD0vao0j4/PLLL8jLyxP9PC8vDxMnTgx6UP5wHIdRo0bhrrvuwpVXXoni4uJ62xw7dgxZWVk+7zVt2tTzmZjwmTNnDmbPnq35mM0gnF0ivHuB5Ukg2EBtmgDNxXvRevXVOixenG7ZjBzCPJSk39PDkj4oEj6xsbEoLy9Hy5YtBT+vqKjARRddJHt/Dz30EObOnRtwm/3792PTpk2orKzE9OnTlQxXFtOnT8fkyZM9rysqKtCiRQvNv4dFrFZDIhDe7oVQnARoAmSDpKQklJQAjz3GgeNCq1ceCWv2sGImrhVQJHxyc3Px0ksv4aWXXhL8/IUXXkBubq7s/T3wwAOS1Z5bt26Nzz//HNu3b0dMTIzPZ1deeSVuv/12rFixAs2aNcPx48d9PudfN2vWTHT/MTEx9fYbqnib6gPVkGDJv6xmLKE4CdAEyA7uLErfBA6r98ojYU2EE4qEz4wZM9C7d284HA48+OCDaN++PTiOw/79+/H000/jP//5D7Zs2SJ7fykpKUhJSZHc7tlnn8UTTzzheV1aWop+/fph9erV6NatGwC3KJsxYwZqamoQFRUFANi8eTPatWsn6uYKN7ybHD72WKrPE+tHHw3CzJndTGtyKIa3e+HUqVNYtmxzyFipCGvizqL0bRJq9YwcloU1WaIIrVEkfHr06IHVq1dj3LhxWLt2rc9nTZo0wdtvv42ePXtqOkAA9VxrjRs3BgBkZ2cj46+gluHDh2P27NkoKCjAtGnTsG/fPjzzzDNYtGiR5uOxMklJSdi7V6jujw2VlU3B4vzBT2qrVsVi8eJJYRVXwU/6fAwTYT4ZGcC8eU5MmRIvmJFDaAdZonwJpfAEM1EkfADgH//4B/r164dPP/0Uv/zyCwDg4osvRt++fQPWrNAbu92OTZs2YcKECcjJyUFycjJmzpwZ8qnsarBi3Z+SEmDqVHvIxVUEQu6kTxjP8OHn8PvvS3H6dKLH0lNUlCm6IMlZsMiyUR+WLVFGY/UWFyyhSPh8/vnnmDhxInbs2IF//OMfPp85nU507NgRL7/8Mq6++mpNB+lPZmYmOI6r937nzp3x9ddf6/rdoYAV6/6EYlyFFOEwmVuV6Oho2O2VsNsrJRckOfF0ZNkgAiHW4iKUH/z0RJHwWbx4McaOHYv4+Ph6n9ntdowfPx4LFy7UXfgQwWO1uj+hEFchN1CbpeBygCwRQsiJl0tIOIPy8say4unIskEEIlCLCxI+ylEkfH744YeA6ed9+/bFggULgh4UYQxWqvsTCnEV/sXLSksjUFTUAFlZtUhPd/sdWRMRZIkQRypeLienKbZssVY8HQ+rsSSsjksv+IcgqRYXrD0ssY4i4XP8+HFPxpTgzho0wMmTJ4MeFEEIMWpUHX7/fbFkXAXLkwAvDpYsAcaNcy+KERFu16MWDUi1PnayRARGKl7OivF0rMaSsDouPfF+WGrevALTptlRV2dDZCSHuXMrMHz4bcw9LFkBRcKnefPm2LdvH9qI3LV79+5FWlqaJgMjCH+SkpIwY8ZIVFdXY9WqWEydaofLZUNEBId585wYPvycJSaBkpILogdw/3/8eLfrUY0FbsiQIUhOTrbEsYcaUvFyVomn4wWzVCyJlsJajguVJ5xjXPh7+oEHgPx8PjzBhoyMBAAJZg7NsigSPjfeeCMeeeQR9O/fv16F5nPnzmHWrFmCfbwIQiv4yrlTp3oLBxumTUtAfn4C0+4DHnegtu97dXXuCU3uguht8k9OTqYHDhORipezQjwdb1nYsgVYtKh+LEnPniPRuzc0E9ZyXaj5+fkAKMaFx0rhCSyjSPg8/PDDWLduHS6++GJMnDgR7dq1AwAcOHAAL7zwAurq6jBjxgxdBkoQPFoIBzMJ1v3hb/Jv3rwCDzwQ+G8oQFlfpBYkpQuWGbEsSUlJ6N5d+Nrs1i1J04cKua5RPnuXYlwILVEkfJo2bYpt27bh7rvvxvTp0z0Xpc1mQ79+/fDCCy94GoMShF5YMW7CG7nuD6Fu4EePtqhn8p82zY78fPGFlQKUrYWZsSysueYSEhJCKsaFHkDYQHEBw1atWuHjjz/GH3/8gUOHDoHjOLRt25baQhCGwdrkrAY57g/vwMZVq2Lx2GP2erWMAHeWUCBrl9yn69LSUs/3EsZiRoyNGKy55kIlxoUeQNhBsfDhadKkCbp27arlWAhCNqxNzmqQ4/4QimnyRytrF9/hniZe4zE6xkYKo2NJ5Lr2rBzjQhmS7KBa+BCE2Vh5ElSCUEwTjx7WLu+JV8jdJrRAUYxF8BgZY6MUPV004ZimTpgLCR+CYByhmKaICOCdd4DcXH3Fn5i7zWolBKwCi25cPV004ZymTphHhPQmBEGYCb8YRka6X0dGul/fcosxC2JSUhLq6tIwdWqCJ8aILyFQV5dGokdjCgqA4mJgyxb3/7UobBkMerpoAqWpE4RekMWHICyA2TFNVi8hYDVC3Y1LrRjCr/0GS5DwIQiLoNViqGbCtXoJAYItwr0VA8U1mQsJH4IIcbyfmtVOuCzGnhDWJlTS1JVCcU3mQ8KHIEIc/ul69+4TmD27Xb0JNzX1GDIyyiT3Y7a7jWADPVw0oe7aAy48gEi13whl9x4rkPAhiDAgKSkJZ882EJxwX399DG666YLlJ9DEGw4LVLjjn7p+6tQpz7/JRaMe/gGkuLgWK1dyPsVIIyM53HPPDcjMbBCy7j2WIOFDEGHClVfaERHBCVR/jsBHHw3CzJndaOINcwKlrpOLJniSktz1mOq7jW3IyaF2T0ZBwocgwgR3nI4N48YJZWjZUFnZ1BLd7YOF+iWJE+i8kItGO8htbC4kfAgijCgoADp3Brp1A/7qMQwgfDK0qF+SeoRSz8lFox5yG5sHFTAkiDCja1fgtdd8CyKGS4YW9UtSj91eiUGDNsBmc5sLvV00JHoIK0EWH4IpSkrcxfLatg2PhVguWrtnyNROCOF0Ov1e+2ZwdenyPbKzD+Hyy29Gnz4t6bohLAkJH4IZliyBJ/4kIsIdAGh2uX4W0Ms9Q6Z2wp+amhrPv8UyuOz2SlxxhZOuHcKykPAhmKCkBD5Bty6XO+uhX7/wWZzFrDre6cSAeB0Vcs8QWkEZXAQQuokAJHwIJgiVXlBqXXX+Vh0xcUN1VLSF+iUJI5XBRYQ+oZwIQMKHYIJQ6AUVjKvO+6lKTNzQU3jwlJeXe/5NIrI+DRq4lwSp5qH8dkToEsqJAJTVRTAB3wvKiplGDocDu3Ydx7hxnJ+rjsOuXcfhcDhk70tM3PCWCbGncEIah8OBNWvWAAh8nsOZhIQEAO4Mrs6d9wLgax5w6Nx5r0dg89sRhBUh4UMwQ0EBUFwMbNni/r8VApt5c/Bzz31SryJyXZ0Nzz23Ec8//7xs8RNI3PBP4d54P4UTgfF+MpUSkeFejM/pjMPevZ0B8Ne0DXv3dg57YUiEBiR8CKbIyAB697aGpQe4sJhKiRK55uBA+/Gvo8K7Z+z2Sjidcdi6NRolJcEeUXgQ6Dzn5+dbLmZBa8i6SIQy5KglCA3gRYl/zIjS2Bup/fB1VNwWILcY4mNVFi2KQEQEh3nznBg+/JxlMy6MwG6vRF5eIQoL8+qdZ7vdbvbwTIO3dEnF+IS7RYywNiR8CEIjhESJHvtxL87u9/xjVVwuG6ZMicfvvy+F3V5pyYwLI9i9+wqP6AFcyMsrDPvAZuBCB/Hq6mo0b16BadPsqKuzITKSw9y5FRg+/DYS1ITlIeFDEBriLUr02M+QIUOQnJyMU6dOYd26dZJpx1bMuNAbf7EIRKCwMA+dOu2j7DjAI2oeeADIz+ere9uQkZEAIMHMoRGEJpDwIQgGkOs6SE9P93nalnJJEPWhGjXyoere4Yv/nCRW88qKbk8SPkTIYqW+X94uBjGEXAxaxRaFEyQWCUIa7zlp1apYPPaYHS6XLSTiCEn4EKajR1l0K/b9UjuBaBVbFOrwT6ZSYtGKT7AEoQdJSUkoKQGmTvVuJ2TDtGkJyM9PgAU1DwASPoTJ6FEW3ci+X3IXSb0XU61ii0IZf6vazJknUVzcAJmZtUhP7wqgq2WfYAlCL0KlnZA3JHwIU9GjLLqRN6paFxVhDt6/Q1oakJNj4mAIwgKEQjshf0j4ECGH0TeqkKjxji8izUMQhBloEUbAtxMaP979AGmldkJikPAhQg6zb1Qj4otYcbERBMEmWoYRFBS4QwXcpQ2sLXoAEj5EiGLWjWpUfBG52AiCCITWYQShVNqAhA8Rsphxo2odXxQoJZ9EDUEQhHJI+BCEhmgZX2TFlHyCffQoH0EQVoKED0FoiFbxRUam5BPsoZc40aN8BEFYDRI+hKmEYpCuFvFFoVg7g5CHnuJEj/IRWkBWKMJISPgQphKqQbrBxheFYu0MQh7+94JYjyQtxInYvo2ErFDGwMJvzQokfAjTocmsPman5BNssHv3FfVaa3Tp8j3z+1YCq1aoUELv39pqFjsSPgTBKKFWO4NQhtMZ51msAHcH+Q8/HIjs7ENBP7Hrue9gIcuENvDhAVK/dbBhBFa02JHwIQiGCaXaGVYkUDkBvTl9OsmngzzgXrROn04MWhDoue9gYMUKFQrwYQRbtgCLFtX/rXv2HInevYO3uFvRYhchvQlBEET44HA4UFZWhqefLkerVhz69AFateLw9NPlKCsrg8PhMGQciYkO2Gy+Ee42mwuJiaeZ3rdaxCwTTmecaWOyOklJSejePQkRfit9ZCTQrVsSMxYYoyHhQxBhREkJsGWL+/9EfXiz/fz5b2PKlHi4XDYAgMtlw5Qp8Zg//208//zzhogfu70SgwZt8AgU3gKihUVGz32rJZAVilAPHy8YGel+TfGC5OoiCB+CcW1oFeCnV6AgFUSUhj/vUq4go8z2Xbp8j+zsQzh9OhGJiaeDFibe8RyB9m1G+QjeCuV93s22QoUKFC/oCwkfgviLYISBVgF+egUKUkFEZaLWzEXYX3TY7ZWCgkeNOGG5fARvhfKP8aEAZ22geMELkPAhCAQvDLQK8NMrUDDcCyIqFbVmLsJ6ixPW4jpYtkIRoQkJH4JA6AuDcC2I6HA4UFxci3HjUr3idYDx4zlcfvkJZGY2EBUCWriZvN2WpaURKCpqgKysWqSnu38IMQHDmjjRE5atUERoQsKHIBD6wiAcCyLybsOioky4XCN9Pqurs+G55zYiK+tIQLehmJtJyfcDgdO0WapvYhbhfvxWxopth0j4ECGF2sDgcBAG4RbgyF8HUvE6egUq8/uVKiDHUn0TglCKFS12JHyIkCHYwOBwEAbhGOBodtAsq8UCCUIrvOdTM4t+yoWEDxEyaBEYrKcwcDrjsHVrNLp3Z3dCCFXkxuvoYbanNG0iXLBKyQwSPgRhAHyMx6JFEUxPCKGMnHgdPcz2ZlucCMIIrFQyg4QPQWhAIAuAf4xHoAnBioGCoYYesQhaFyIkCNawUmYsCR+C0IBAloKtW6PrNQkUmxD0sDjoVQlaK6wQE6AFwWSIEQTrWCkzloQPQWiEmHjo3l3ZhKClCNGrErRWWCUmgCCIwFgpM5aalBKEzpjZJFCvStBaIBYToFUDVbPdhmZ/P0EYTUEBUFzsboRcXMzuQwxZfAjCAMIhVV4pescEmF1fxOzvJwgzsELJDEsJn48++giPPfYY9u7di4suugjXXHMNPvjgA8/nv/32G+6++25s2bIFjRs3xsiRIzFnzhw0aGCpwyRUwvoTthUmBCMxIibAbFFh9vcTBFEfyyiCtWvXYuzYsfj3v/+NPn36oLa2Fvv27fN8XldXhwEDBqBZs2bYtm0bysrKcMcddyAqKgr//ve/TRw5YRT0hG0trBQTQBBE6GDjOI4zexBS1NbWIjMzE7Nnz0aBiNNw48aNGDhwIEpLS9G0aVMAwMsvv4xp06bh5MmTsp/yKyoqYLfb4XQ6ER8fr9kxEIQZlJWV4dVXX5Xcbty4cUhLSzNgRPUpKSEXoB6wns1HEFojd/22hMVn9+7d+P333xEREYErrrgCx44dw+WXX4758+ejU6dOAIDt27fj0ksv9YgeAOjXrx/uvvtu/PTTT7jiiisE933+/HmcP3/e87qiokLfgyEIwmdRjowE2rVzv19W5v4/LcrB4Z/N53TG4fTpJCQmOnxS6qlBKhGOWEL4/PrrrwCARx99FAsXLkRmZiaefvpp9O7dGz///DMSExNx7NgxH9EDwPP62LFjovueM2cOZs+erd/gCYLwgfUU+1DA29ITqDM8NUglwhFT09kfeugh2Gy2gP8dOHAArr+iH2fMmIGhQ4ciJycHy5Ytg81mw7vvvhvUGKZPnw6n0+n57+jRo1ocGkEwAYsB3yyn2IcaYp3hnc44k0dGEOZhqsXngQcewKhRowJu07p1a5T9Zf/u0KGD5/2YmBi0bt0av/32GwCgWbNm+O9//+vzt8ePH/d8JkZMTAxiYmLUDJ8gmIcCvo2FtSrU1BmeIOpjqvBJSUlBSkqK5HY5OTmIiYnBwYMH8be//Q0AUFNTg+LiYrRq1QoAkJubiyeffBInTpxAamoqAGDz5s2Ij4/3EUwEEW4EEjUlJcDevews1FaGxSrU1BmeIOpjicrN8fHxuOuuuzBr1ixs2rQJBw8exN133w0AuOWWWwAAffv2RYcOHfDPf/4TP/zwAz799FM8/PDDmDBhAll0CEKAJUuAVq2APn3c/1+yxOwRaUdJibt6rFZVoOV8n55VqNXCd4a32dwDo87wBGGR4GYAmD9/Pho0aIB//vOfOHfuHLp164bPP/8cTZo0AQBERkZiw4YNuPvuu5Gbm4tGjRph5MiReOyxx0weOUGwh9hCLdQx3moYbXlxOBzYsQNwuXwta3V1wM6dDsTGmlvIkDrDE4QvlhE+UVFRWLBgARYsWCC6TatWrfDxxx8bOCqCsCZ6t4swC6MFHZ+h5nTGwWabVM+ltHXrCuzbV2l6hhp1hieIC1jC1UUQhLbw7SK80bpdhBkEEnR6wAeNS7mUjM5QYzGbjyBYwTIWH4IgtMPMdhF6LspG9P8SgyWXknc2X3l5OWprawEAx441wG+/xaBly/No0cKG6upqOBwOyuojwgoSPkTYE66l/c3qGK9nir3Z/b9YciklJSXB4XBgzZo1AAIXMjTbFUcQRkLChwhrwr2KsFkd4/U8l2YJOjOQqhvEi0uxQobZ2Ydgt1dSsUgirCDhQ4Q1elcRDldrkhmES/8v/jhXrYrF1Kl2uFw2RERwmDfPieHDzwkeJxUyJIgLkPAhCJ0Id2uSkYTLufbOIlu8eBI4zgYAcLlsmDIlHr//vhR2e/0sMipkSBAXoKwugtAJ6kllHOFyrvnxB7LgeG/HQ4UMCeICZPEhCIJQiVlp42osOCxlnRGEmZDwIQiCUIlZTWB5C45/lpaUmGEp64wgzIKED0EQRBCYFTNEFhyCUAcJH4IgCIsiZcGhCs4EUR8SPkRYQwsDEcqY5YqzKlR+Ijwg4UOENeG4MNDkHl7QbymPcCmJQJDwIQjdJjEWrUmhOrmzeK71IFyO0wzCpSQCQcKHIHSDRWtSqE7uLJ5rPQiX4yQIPSHhQxA6QguQcYTLuWb5OMPBjXrq1CnB90Ph2MIFEj4EQRBE0ISqG9WfdevWiX5m9WMLF6hlBUEQBBE0oeZGdTrjUFSUCaczTvbfWOXYwh2y+BAEQRCa43TG4fTpJCQmOixXXHH37ivqVcXu0uV7s4dFaAQJH4IgCEJTrCwcnM44z9gBd/PXDz8ciOzsQ5YTcIQw5OoiCIIgNENMOChxGZkBXwLg9OnAne8J60PChyDCCKoDQ+iNVYUDXyrgnnv6IyKC8/ksIoJDYuJpk0ZGaA25uggijKA6MITeJCY6YLO5fMSPzeayhHBISkpCUhLw6qvA+PFAXR0QGQnMnevEmTPk5goVSPgQRJhBoobQE7u9EoMGbagX42Ol+JiCAqBfP+DQIaBNGyAy8hxeffXC51YO3CZI+BAEQRAa4O0e7dLle2RnH8Lp04lITDztIw6s4kbNyHD/BwAOx4UxBwrctsqxhTs2juM46c3Ch4qKCtjtdjidTsTHx5s9HIIgCMsQypWbHQ4HiotrcdVVqXC5bJ73IyM57Nx5ApmZDSx7bKGC3PWbLD4EQRCEJoTywp+UlIS9ewGXy/f9ujobKiubIoQPPeSgrC6CIAiCkEHbtkCE36oZGemOAyKsAwkfgiAIgpBBRoY74ysy0v06MhJ45ZULsUCENSBXF0EQBEHIxD/ji0SP9SDhQxAEQRAK8M74IqwHuboIgiAIgggbSPgQBEEQBBE2kPAhCIIgCCJsIOFDEARBEETYQMKHIAiCIIiwgYQPQRAEQRBhAwkfgiAIgiDCBhI+BEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNpDwIQiCIAgibKBeXX5wHAcAqKioMHkkBEEQBEHIhV+3+XVcDBI+flRWVgIAWrRoYfJICIIgCIJQSmVlJex2u+jnNk5KGoUZLpcLpaWliIuLg81mM3s4hlNRUYEWLVrg6NGjiI+PN3s4loXOY/DQOdQGOo/aQOdRG/Q8jxzHobKyEunp6YiIEI/kIYuPHxEREcjIyDB7GKYTHx9PN7cG0HkMHjqH2kDnURvoPGqDXucxkKWHh4KbCYIgCIIIG0j4EARBEAQRNpDwIXyIiYnBrFmzEBMTY/ZQLA2dx+Chc6gNdB61gc6jNrBwHim4mSAIgiCIsIEsPgRBEARBhA0kfAiCIAiCCBtI+BAEQRAEETaQ8CEIgiAIImwg4ROGfPXVVxg0aBDS09Nhs9nwwQcf+HzOcRxmzpyJtLQ0xMbGIi8vD7/88os5g2UYqfM4atQo2Gw2n//69+9vzmAZZs6cOejatSvi4uKQmpqKwYMH4+DBgz7b/Pnnn5gwYQKSkpLQuHFjDB06FMePHzdpxGwi5zz27t273jV51113mTRiNnnppZfQuXNnT4G93NxcbNy40fM5XYvSSJ1Ds69DEj5hyNmzZ3HZZZfhhRdeEPx83rx5ePbZZ/Hyyy9j586daNSoEfr164c///zT4JGyjdR5BID+/fujrKzM89/bb79t4AitwZdffokJEyZgx44d2Lx5M2pqatC3b1+cPXvWs83999+PDz/8EO+++y6+/PJLlJaWYsiQISaOmj3knEcAGDt2rM81OW/ePJNGzCYZGRl46qmnsGvXLnz33Xfo06cP/v73v+Onn34CQNeiHKTOIWDydcgRYQ0A7v333/e8drlcXLNmzbj58+d73isvL+diYmK4t99+24QRWgP/88hxHDdy5Eju73//uynjsTInTpzgAHBffvklx3Hu6y8qKop79913Pdvs37+fA8Bt377drGEyj/955DiOu+aaa7j77rvPvEFZlCZNmnCvv/46XYtBwJ9DjjP/OiSLD+FDUVERjh07hry8PM97drsd3bp1w/bt200cmTX54osvkJqainbt2uHuu++Gw+Ewe0jM43Q6AQCJiYkAgF27dqGmpsbnmmzfvj1atmxJ12QA/M8jz1tvvYXk5GR06tQJ06dPR1VVlRnDswR1dXV45513cPbsWeTm5tK1qAL/c8hj5nVITUoJH44dOwYAaNq0qc/7TZs29XxGyKN///4YMmQIsrKycPjwYfzf//0fbrjhBmzfvh2RkZFmD49JXC4XJk2ahJ49e6JTp04A3NdkdHQ0EhISfLala1IcofMIAMOHD0erVq2Qnp6OvXv3Ytq0aTh48CDWrVtn4mjZ48cff0Rubi7+/PNPNG7cGO+//z46dOiAPXv20LUoE7FzCJh/HZLwIQiduPXWWz3/vvTSS9G5c2dkZ2fjiy++wHXXXWfiyNhlwoQJ2LdvH7755huzh2JpxM7juHHjPP++9NJLkZaWhuuuuw6HDx9Gdna20cNklnbt2mHPnj1wOp147733MHLkSHz55ZdmD8tSiJ3DDh06mH4dkquL8KFZs2YAUC9L4fjx457PCHW0bt0aycnJOHTokNlDYZKJEydiw4YN2LJlCzIyMjzvN2vWDNXV1SgvL/fZnq5JYcTOoxDdunUDALom/YiOjkabNm2Qk5ODOXPm4LLLLsMzzzxD16ICxM6hEEZfhyR8CB+ysrLQrFkzfPbZZ573KioqsHPnTh//LKGckpISOBwOpKWlmT0UpuA4DhMnTsT777+Pzz//HFlZWT6f5+TkICoqyueaPHjwIH777Te6Jr2QOo9C7NmzBwDompTA5XLh/PnzdC0GAX8OhTD6OiRXVxhy5swZH2VdVFSEPXv2IDExES1btsSkSZPwxBNPoG3btsjKysIjjzyC9PR0DB482LxBM0ig85iYmIjZs2dj6NChaNasGQ4fPoypU6eiTZs26Nevn4mjZo8JEyZg1apV+M9//oO4uDhPrITdbkdsbCzsdjsKCgowefJkJCYmIj4+Hvfccw9yc3PRvXt3k0fPDlLn8fDhw1i1ahVuvPFGJCUlYe/evbj//vvRq1cvdO7c2eTRs8P06dNxww03oGXLlqisrMSqVavwxRdf4NNPP6VrUSaBziET16Fp+WSEaWzZsoUDUO+/kSNHchznTml/5JFHuKZNm3IxMTHcddddxx08eNDcQTNIoPNYVVXF9e3bl0tJSeGioqK4Vq1acWPHjuWOHTtm9rCZQ+gcAuCWLVvm2ebcuXPcv/71L65JkyZcw4YNuX/84x9cWVmZeYNmEKnz+Ntvv3G9evXiEhMTuZiYGK5NmzbclClTOKfTae7AGWP06NFcq1atuOjoaC4lJYW77rrruE2bNnk+p2tRmkDnkIXr0MZxHGeMxCIIgiAIgjAXivEhCIIgCCJsIOFDEARBEETYQMKHIAiCIIiwgYQPQRAEQRBhAwkfgiAIgiDCBhI+BEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNpDwIQjCh2PHjuGee+5B69atERMTgxYtWmDQoEE+/Ym2bduGG2+8EU2aNMFFF12ESy+9FAsXLkRdXZ1nm+LiYhQUFCArKwuxsbHIzs7GrFmzUF1d7fN9r732Gi677DI0btwYCQkJuOKKKzBnzhzP548++ihsNhv69+9fb6zz58+HzWZD7969ZR0bvy+bzYYGDRogMzMT999/P86cOaPwLBEEYVWoVxdBEB6Ki4vRs2dPJCQkYP78+bj00ktRU1ODTz/9FBMmTMCBAwfw/vvvY9iwYbjzzjuxZcsWJCQkoLCwEFOnTsX27duxZs0a2Gw2HDhwAC6XC6+88gratGmDffv2YezYsTh79iwWLFgAAFi6dCkmTZqEZ599Ftdccw3Onz+PvXv3Yt++fT7jSktLw5YtW1BSUuLTcXzp0qVo2bKlomPs2LEjCgsLUVtbi61bt2L06NGoqqrCK6+8Um/b6upqREdHqziT+sHimAjCUhjWHIMgCOa54YYbuObNm3Nnzpyp99kff/zBnTlzhktKSuKGDBlS7/P169dzALh33nlHdP/z5s3jsrKyPK///ve/c6NGjQo4plmzZnGXXXYZN3DgQO6JJ57wvL9161YuOTmZu/vuu7lrrrlGxtFd2Jc3Y8eO5Zo1a+bz+WuvvcZlZmZyNpuN4zj3sRcUFHDJyclcXFwcd+2113J79uzx7GPPnj1c7969ucaNG3NxcXFcly5duG+//ZbjOI4rLi7mBg4cyCUkJHANGzbkOnTowH300Uccx3HcsmXLOLvd7jOe999/n/OemtWOiSAIYcjVRRAEAOD06dP45JNPMGHCBDRq1Kje5wkJCdi0aRMcDgcefPDBep8PGjQIF198Md5++23R73A6nUhMTPS8btasGXbs2IEjR45Ijm/06NFYvny55/XSpUtx++23B239iI2N9XG/HTp0CGvXrsW6deuwZ88eAMAtt9yCEydOYOPGjdi1axe6dOmC6667DqdPnwYA3H777cjIyMC3336LXbt24aGHHkJUVBQAd9f08+fP46uvvsKPP/6IuXPnonHjxorGqGZMBEEIQ64ugiAAuBdXjuPQvn170W1+/vlnAMAll1wi+Hn79u092wjt/7nnnvO4uQBg1qxZGDJkCDIzM3HxxRcjNzcXN954I26++WZERPg+lw0cOBB33XUXvvrqK+Tk5GDNmjX45ptvsHTpUqWH6mHXrl1YtWoV+vTp43mvuroab7zxBlJSUgAA33zzDf773//ixIkTiImJAQAsWLAAH3zwAd577z2MGzcOv/32G6ZMmeI5d23btvXs77fffsPQoUNx6aWXAgBat26teJxqxkQQhDAkfAiCAABwHKfLtgDw+++/o3///rjlllswduxYz/tpaWnYvn079u3bh6+++grbtm3DyJEj8frrr+OTTz7xET9RUVEYMWIEli1bhl9//RUXX3wxOnfurGgcAPDjjz+icePGqKurQ3V1NQYMGIDnn3/e83mrVq08AgMAfvjhB5w5cwZJSUk++zl37hwOHz4MAJg8eTLGjBmDlStXIi8vD7fccguys7MBAPfeey/uvvtubNq0CXl5eRg6dKjicasZE0EQwpDwIQgCgNtKwQcli3HxxRcDAPbv348ePXrU+3z//v3o0KGDz3ulpaW49tpr0aNHD7z66quC++3UqRM6deqEf/3rX7jrrrtw9dVX48svv8S1117rs93o0aPRrVs37Nu3D6NHj1Z6iACAdu3aYf369WjQoAHS09Prucr83XxnzpxBWloavvjii3r7SkhIAODOFhs+fDg++ugjbNy4EbNmzcI777yDf/zjHxgzZgz69euHjz76CJs2bcKcOXPw9NNP45577kFEREQ9EVlTU1Pve9SMiSAIYSjGhyAIAEBiYiL69euHF154AWfPnq33eXl5Ofr27YvExEQ8/fTT9T5fv349fvnlF9x2222e937//Xf07t0bOTk5WLZsWT33lRC8cBIaQ8eOHdGxY0fs27cPw4cPV3J4HqKjo9GmTRtkZmbKig/q0qULjh07hgYNGqBNmzY+/yUnJ3u2u/jii3H//fdj06ZNGDJkCJYtW+b5rEWLFrjrrruwbt06PPDAA3jttdcAACkpKaisrPQ5Vj6GR4sxEQRRHxI+BEF4eOGFF1BXV4errroKa9euxS+//IL9+/fj2WefRW5uLho1aoRXXnkF//nPfzBu3Djs3bsXxcXFWLJkCUaNGoWbb74Zw4YNA3BB9LRs2RILFizAyZMncezYMRw7dszzfXfffTcef/xxbN26FUeOHMGOHTtwxx13ICUlBbm5uYJj/Pzzz1FWVmaYZSMvLw+5ubkYPHgwNm3ahOLiYmzbtg0zZszAd999h3PnzmHixIn44osvcOTIEWzduhXffvutJw5q0qRJ+PTTT1FUVITdu3djy5Ytns+6deuGhg0b4v/+7/9w+PBhrFq1yieAW+2YCIIQh1xdBEF4aN26NXbv3o0nn3wSDzzwAMrKypCSkoKcnBy89NJLAICbb74ZW7ZswZNPPomrr74af/75J9q2bYsZM2Zg0qRJsNlsAIDNmzfj0KFDOHTokE/tHeBCjFBeXh6WLl2Kl156CQ6HA8nJycjNzcVnn31WL36FRyjjTE9sNhs+/vhjzJgxA3feeSdOnjyJZs2aoVevXmjatCkiIyPhcDhwxx134Pjx40hOTsaQIUMwe/ZsAEBdXR0mTJiAkpISxMfHo3///li0aBEAt5XtzTffxJQpU/Daa6/huuuuw6OPPioZnCw1JoIgxLFxSqMUCYIgCIIgLAq5ugiCIAiCCBtI+BAEETI0btxY9L+vv/7a7OERBMEA5OoiCCJkOHTokOhnzZs3R2xsrIGjIQiCRUj4EARBEAQRNpCriyAIgiCIsIGED0EQBEEQYQMJH4IgCIIgwgYSPgRBEARBhA0kfAiCIAiCCBtI+BAEQRAEETaQ8CEIgiAIImwg4UMQBEEQRNjw/4yQWz4vK+05AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChS0lEQVR4nOzde1wU9foH8M8uNwFhERAEQUFETUkTNERPpoa3vJwOGpRampjVkZKjqfmzvGSlpnnpnmValqWplVqWUGalSOU1zEwNDAS8LLKgqFz2+/tjnWFmd2Z2FpbrPu/Xy1eyOzv7ndFz5vH7fb7Po2GMMRBCCCGEOABtQw+AEEIIIaS+UOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGN0IYNG6DRaJCTk9PQQyGkWaHAhxAH9euvvyIlJQXdunWDp6cn2rVrh8TERPz1118Wxw4YMAAajQYajQZarRbe3t7o3LkzHnroIaSlpdn0vTt37sTdd9+NgIAAeHh4oEOHDkhMTMQ333xjr0uz8NJLL+GLL76weP3AgQNYuHAhiouL6+y7zS1cuJC/lxqNBh4eHujatSueffZZlJSU2OU7Nm3ahNWrV9vlXIQ0NxT4EOKgli1bhm3btuGee+7BmjVrMHXqVPz444+Ijo5GVlaWxfEhISHYuHEjPvzwQyxfvhyjR4/GgQMHMGTIECQlJaGiosLqd65YsQKjR4+GRqPB3LlzsWrVKowZMwanT5/Gp59+WheXCUA58Fm0aFG9Bj6ct956Cxs3bsTKlSvRpUsXvPjiixg2bBjs0T6RAh9C5Dk39AAIIQ1jxowZ2LRpE1xdXfnXkpKScPvtt2Pp0qX46KOPRMfrdDpMmDBB9NrSpUvx1FNP4c0330RYWBiWLVsm+32VlZVYvHgxBg8ejD179li8f/HixVpeUeNRVlYGDw8PxWPGjh0Lf39/AMDjjz+OMWPGYPv27Th48CDi4uLqY5iEOCSa8SHEQfXt21cU9ABAZGQkunXrhpMnT6o6h5OTE1599VV07doVr7/+OgwGg+yxly9fRklJCfr16yf5fkBAgOjnGzduYOHChejUqRNatGiBoKAgJCQk4OzZs/wxK1asQN++feHn5wd3d3fExMRg69atovNoNBpcu3YNH3zwAb+8NGnSJCxcuBCzZs0CAISHh/PvCXNqPvroI8TExMDd3R2+vr544IEHkJubKzr/gAEDEBUVhUOHDqF///7w8PDA//3f/6m6f0KDBg0CAGRnZyse9+abb6Jbt25wc3NDcHAwpk2bJpqxGjBgAL766iucO3eOv6awsDCbx0NIc0UzPoQQHmMMFy5cQLdu3VR/xsnJCQ8++CCee+45/PzzzxgxYoTkcQEBAXB3d8fOnTvx5JNPwtfXV/acVVVVGDlyJL777js88MADmD59OkpLS5GWloasrCxEREQAANasWYPRo0dj/PjxKC8vx6effor7778fu3bt4sexceNGTJkyBXfeeSemTp0KAIiIiICnpyf++usvfPLJJ1i1ahU/+9K6dWsAwIsvvojnnnsOiYmJmDJlCi5duoTXXnsN/fv3x5EjR+Dj48OPV6/XY/jw4XjggQcwYcIEBAYGqr5/HC6g8/Pzkz1m4cKFWLRoEeLj4/HEE0/g1KlTeOutt/Drr79i//79cHFxwbx582AwGJCXl4dVq1YBAFq2bGnzeAhpthghhNyyceNGBoCtW7dO9Prdd9/NunXrJvu5zz//nAFga9asUTz//PnzGQDm6enJhg8fzl588UV26NAhi+Pef/99BoCtXLnS4j2j0cj/vqysTPReeXk5i4qKYoMGDRK97unpySZOnGhxruXLlzMALDs7W/R6Tk4Oc3JyYi+++KLo9d9//505OzuLXr/77rsZAPb222/LXrfQggULGAB26tQpdunSJZadnc3eeecd5ubmxgIDA9m1a9cYY4ytX79eNLaLFy8yV1dXNmTIEFZVVcWf7/XXX2cA2Pvvv8+/NmLECNa+fXtV4yHE0dBSFyEEAPDnn39i2rRpiIuLw8SJE236LDejUFpaqnjcokWLsGnTJvTs2RPffvst5s2bh5iYGERHR4uW17Zt2wZ/f388+eSTFufQaDT8793d3fnfX7lyBQaDAXfddRcOHz5s0/jNbd++HUajEYmJibh8+TL/q02bNoiMjMTevXtFx7u5ueGRRx6x6Ts6d+6M1q1bIzw8HI899hg6duyIr776SjY3KD09HeXl5UhNTYVWW/1/3Y8++ii8vb3x1Vdf2X6hhDggWuoihKCwsBAjRoyATqfD1q1b4eTkZNPnr169CgDw8vKyeuyDDz6IBx98ECUlJcjMzMSGDRuwadMmjBo1CllZWWjRogXOnj2Lzp07w9lZ+f+idu3ahRdeeAFHjx7FzZs3+deFwVFNnD59GowxREZGSr7v4uIi+rlt27YW+VLWbNu2Dd7e3nBxcUFISAi/fCfn3LlzAEwBk5Crqys6dOjAv08IUUaBDyEOzmAwYPjw4SguLsZPP/2E4OBgm8/BbX/v2LGj6s94e3tj8ODBGDx4MFxcXPDBBx8gMzMTd999t6rP//TTTxg9ejT69++PN998E0FBQXBxccH69euxadMmm69ByGg0QqPRYPfu3ZJBoHnOjHDmSa3+/fvzeUWEkPpDgQ8hDuzGjRsYNWoU/vrrL6Snp6Nr1642n6OqqgqbNm2Ch4cH/vWvf9VoHL169cIHH3yAgoICAKbk48zMTFRUVFjMrnC2bduGFi1a4Ntvv4Wbmxv/+vr16y2OlZsBkns9IiICjDGEh4ejU6dOtl5OnWjfvj0A4NSpU+jQoQP/enl5ObKzsxEfH8+/VtsZL0KaM8rxIcRBVVVVISkpCRkZGfjss89qVDumqqoKTz31FE6ePImnnnoK3t7esseWlZUhIyND8r3du3cDqF7GGTNmDC5fvozXX3/d4lh2q8Cfk5MTNBoNqqqq+PdycnIkCxV6enpKFin09PQEAIv3EhIS4OTkhEWLFlkUFGSMQa/XS19kHYqPj4erqyteffVV0ZjWrVsHg8Eg2k3n6empWFqAEEdGMz6EOKiZM2dix44dGDVqFIqKiiwKFpoXKzQYDPwxZWVlOHPmDLZv346zZ8/igQcewOLFixW/r6ysDH379kWfPn0wbNgwhIaGori4GF988QV++ukn3HfffejZsycA4OGHH8aHH36IGTNm4JdffsFdd92Fa9euIT09Hf/973/x73//GyNGjMDKlSsxbNgwjBs3DhcvXsQbb7yBjh074vjx46LvjomJQXp6OlauXIng4GCEh4cjNjYWMTExAIB58+bhgQcegIuLC0aNGoWIiAi88MILmDt3LnJycnDffffBy8sL2dnZ+PzzzzF16lQ8/fTTtbr/tmrdujXmzp2LRYsWYdiwYRg9ejROnTqFN998E7179xb9ecXExGDz5s2YMWMGevfujZYtW2LUqFH1Ol5CGq2G3FJGCGk43DZsuV9Kx7Zs2ZJFRkayCRMmsD179qj6voqKCvbuu++y++67j7Vv3565ubkxDw8P1rNnT7Z8+XJ28+ZN0fFlZWVs3rx5LDw8nLm4uLA2bdqwsWPHsrNnz/LHrFu3jkVGRjI3NzfWpUsXtn79en67uNCff/7J+vfvz9zd3RkA0db2xYsXs7Zt2zKtVmuxtX3btm3sX//6F/P09GSenp6sS5cubNq0aezUqVOie6O01d8cN75Lly4pHme+nZ3z+uuvsy5dujAXFxcWGBjInnjiCXblyhXRMVevXmXjxo1jPj4+DABtbSdEQMOYHRrDEEIIIYQ0AZTjQwghhBCHQYEPIYQQQhwGBT6EEEIIcRgU+BBCCCHEYVDgQwghhBCHQYEPIYQQQhwGFTA0YzQakZ+fDy8vLyr7TgghhDQRjDGUlpYiODgYWq38vA4FPmby8/MRGhra0MMghBBCSA3k5uYiJCRE9n0KfMx4eXkBMN04pb5DhBBCCGk8SkpKEBoayj/H5VDgY4Zb3vL29qbAhxBCCGlirKWpUHIzIYQQQhwGBT6EEEIIcRgU+BBCCCHEYVCOTw1UVVWhoqKioYfRbLm4uMDJyamhh0EIIaQZosDHBowxFBYWori4uKGH0uz5+PigTZs2VEuJEEKIXVHgYwMu6AkICICHhwc9lOsAYwxlZWW4ePEiACAoKKiBR0QIIaQ5ocBHpaqqKj7o8fPza+jhNGvu7u4AgIsXLyIgIICWvQghhNgNJTerxOX0eHh4NPBIHAN3nymXihBCiD1R4GMjWt6qH3SfCSGE1AUKfAghhBDiMCjHhxBCCCF2odfrUV5eLvu+q6trg+fJUuDjACZNmoQPPvgAAODs7AxfX190794dDz74ICZNmgStVt3E34YNG5Camkrb+QkhhFjQ6/V4/fXX+Z8NBi8UFfnB11cPna6Ufz0lJaVBgx8KfOpRQ0bCw4YNw/r161FVVYULFy7gm2++wfTp07F161bs2LEDzs70V4EQQkjNCZ9vhw/3xM6dI8GYFhqNEaNG7UJ09BGL4xoCPe3qiXkkLKeuImE3Nze0adMGANC2bVtER0ejT58+uOeee7BhwwZMmTIFK1euxPr16/H333/D19cXo0aNwssvv4yWLVvihx9+wCOPPAKgOvF4wYIFWLhwITZu3Ig1a9bg1KlT8PT0xKBBg7B69WoEBATY/ToIIYQ0bgaDFx/0AABjWuzcORIREWdEMz8NpckkNy9ZsgS9e/eGl5cXAgICcN999+HUqVOiY27cuIFp06bBz88PLVu2xJgxY3DhwoUGGrGY2gi3PiPhQYMGoUePHti+fTsAQKvV4tVXX8WJEyfwwQcf4Pvvv8fs2bMBAH379sXq1avh7e2NgoICFBQU4OmnnwZg2nK+ePFiHDt2DF988QVycnIwadKkersOQgghjUdRkR8f9HAY06KoyLeBRiTWZAKfffv2Ydq0aTh48CDS0tJQUVGBIUOG4Nq1a/wx//vf/7Bz50589tln2LdvH/Lz85GQkNCAo278unTpgpycHABAamoqBg4ciLCwMAwaNAgvvPACtmzZAsC0DKfT6aDRaNCmTRu0adMGLVu2BABMnjwZw4cPR4cOHdCnTx+8+uqr2L17N65evdpQl0UIIaSB+PrqodEYRa9pNEZcu+YJg8GrgUZVrcksdX3zzTeinzds2ICAgAAcOnQI/fv3h8FgwLp167Bp0yYMGjQIALB+/XrcdtttOHjwIPr06dMQw270GGP80lV6ejqWLFmCP//8EyUlJaisrMSNGzdQVlamWLjx0KFDWLhwIY4dO4YrV67AaDT9hf/nn3/QtWvXerkOQgghDSMvDzh9GvD2Ns2l6HSlGDVqlyjHhzFg69b7odEY0bZtCWbObLjxNpkZH3MGgwEA4Otrmjo7dOgQKioqEB8fzx/TpUsXtGvXDhkZGbLnuXnzJkpKSkS/HMnJkycRHh6OnJwcjBw5Et27d8e2bdtw6NAhvPHGGwCUl9+uXbuGoUOHwtvbGx9//DF+/fVXfP7551Y/RwghpGnLywNmzQLatwcGDQLuvDMAhw/3BABERx9BaupqjB27BYwBXLjBmBZz5uiQl9dw426SgY/RaERqair69euHqKgoAKYGoq6urvDx8REdGxgYiMLCQtlzLVmyBDqdjv8VGhpal0NvVL7//nv8/vvvGDNmDA4dOgSj0YhXXnkFffr0QadOnZCfny863tXVFVVVVaLX/vzzT+j1eixduhR33XUXunTpwjcYJYQQ0jytWXMV7doxrFgB3Jrkh9Gowc6dI/nlLJ2uFJ6e12EealRVaXDmTD0PWKBJBj7Tpk1DVlYWPv3001qfa+7cuTAYDPyv3NxcO4yw8bl58yYKCwtx/vx5HD58GC+99BL+/e9/Y+TIkXj44YfRsWNHVFRU4LXXXsPff/+NjRs34u233xadIywsDFevXsV3332Hy5cvo6ysDO3atYOrqyv/uR07dmDx4sUNdJWEEELqkl6vxw8/nMH//ucBxixbC5knMUvl+zg5MXTsWOdDldXkAp+UlBTs2rULe/fuRUhICP96mzZtUF5eblFc78KFC/w2bilubm7w9vYW/WqOvvnmGwQFBSEsLAzDhg3D3r178eqrr+LLL7+Ek5MTevTogZUrV2LZsmWIiorCxx9/jCVLlojO0bdvXzz++ONISkpC69at8fLLL6N169bYsGEDPvvsM3Tt2hVLly7FihUrGugqCSGE1BWuLMuGDfstdm1xNBojfH2LAACDBw/GI48MxoIF+dBqGQBAq2VYtswAJ6cC6PX6ehu7aIyMmVbfGjvGGJ588kl8/vnn+OGHHxAZGSl632AwoHXr1vjkk08wZswYAMCpU6fQpUsXZGRkqE5uLikpgU6ng8FgEAVBN27cQHZ2NsLDw9GiRQubx9/QdXyamtreb0IIIWK1LaJbUFCAtWvXwmDwwurVqRbBj3mhQiFTFWdf+PoW1VkVZ7nnt7kms6tr2rRp2LRpE7788kt4eXnxeTs6nQ7u7u7Q6XRITk7GjBkz4OvrC29vbzz55JOIi4trFDu6/Pz8kJKS0uh7mBBCCGl+7PmPb/NdW4ARfftmIDY2U7ZAoU5XKvleQ2yCaTKBz1tvvQUAGDBggOj19evX88XyVq1aBa1WizFjxuDmzZsYOnQo3nzzzXoeqTwKagghhDQE8wBDro+W2kAkOvoIIiLOSM7iNHZNJvBRsyLXokULvPHGG/w2bEIIIaS5qunSlVIfLVvIzeI0dk0m8CGEEEKISU2Xruqqj5b5DJLcjFJjQIEPIYQQ0sTUtP+jUh8tWwIUYWBz9mxH0QxS9+7Hcfx491rPKNUVCnwIIYQQB8HV1REGP8It6GoIl8oAIwDNrV+mIOrYsR6inxtTZ3agCdbxIYQQQoiYweCF7Owwq01AuR1ZXFFBbkaGW57av99Vtp1EWVmZxVKZKYwwL2Qo/rkxdWYHaMaHEEIIadJsTVaW2pHFnWPVKi20WoaXXzZg3LjrfIK0Xq/HRx99hKKiMNnihdUYhMGP0oySq6trDa64dijwIYQQQupIbYoGKn328uXLANQnK5sHGMIdWebnMBo1mDXLG+fPvw+drlRUg05qqQwwQqOBYo4P911JSUnQ6XRWr70uUeBDau2HH37AwIEDceXKFYsmsXLCwsKQmpqK1NTUOh0bIYQ0lNoUDVT7WbXJylJFdC9fvozt27fLniM3NwRFRdeRk1OJ4ODqhOb4+HSkp8eLAhvzGaRBg76XrPGj0+kQFBRk9brqEgU+DmDSpEn44IMP8Nhjj1k0Hp02bRrefPNNTJw4ERs2bGiYARJCSDNU051XtnzWlmRludkVuVmcbdvGgjEtNm5kGDLkAr79NpUPduLj0xEcnC8KbMQBTuOt8UPJzQ4iNDQUn376Ka5fv86/duPGDWzatAnt2rVrwJERQkjTpdfrUVBQIPmLW46yB7nkZaVkZUBdDo35ObidWsKlr2++CRQtp6Wnx9tUsZkbf35+w4cdNOPjIKKjo3H27Fls374d48ePBwBs374d7dq1Q3h4OH/czZs3MWvWLHz66acoKSlBr169sGrVKvTu3Zs/5uuvv0Zqaipyc3PRp08fTJw40eL7fv75Z8ydOxe//fYb/P398Z///AdLliyBp6dn3V8sIYTUA7XLUbWllLyckJCAqVP9MX/+JeTkOCMsrBLBwb0B9LYph0aY8Hztmie2br3f7AjpnVpqAh/h+DduZFi7FkhOVjWsOtHwoZeDyssD9u6F7LbBujB58mSsX7+e//n999/HI488Ijpm9uzZ2LZtGz744AMcPnwYHTt2xNChQ1FUZJo2zc3NRUJCAkaNGoWjR49iypQpeOaZZ0TnOHv2LIYNG4YxY8bg+PHj2Lx5M37++WekpKTU/UUSQkg9qY8Gm3LJy9zMj7+/P4KCghATE4gxY/wQExOIoKAgBAUF2Zw4rNOVIjz8HEJDcwWzPxxx2yi1tX+kEqcfe6x+n33mKPBpAOvWAe3bA4MGmf67bl39fO+ECRPw888/49y5czh37hz279+PCRMm8O9fu3YNb731FpYvX47hw4eja9euePfdd+Hu7o51twb51ltvISIiAq+88go6d+6M8ePH801iOUuWLMH48eORmpqKyMhI9O3bF6+++io+/PBD3Lhxo34ulhBCGhm1tXaElJKX64rU8lmPHsdkl9MA+WuTGn9VFXDmTJ0N3ypa6qpneXnA1KmA8VYwbTQCjz0GDB0KhITU7Xe3bt0aI0aMwIYNG8AYw4gRI+Dv78+/f/bsWVRUVKBfv378ay4uLrjzzjtx8uRJAMDJkycRGxsrOm9cXJzo52PHjuH48eP4+OOP+dcYYzAajcjOzsZtt91WF5dHCCGNVk0bg6pNXq7NtnkpUrV+5HZqKV2b1PidnBi8vC5Cr3em7eyO4PTp6qCHw0W/dR34AKblLm7Jqa662F+9ehWPPfYYnnrqKYv3KJGaENJYccGDwWBARUWFxfvOzs7w8fGxOYioTWNQbvbFPLAQfs4810iuQah5DR1ric/mO7OkdmqZrm0UGJNuUSE1/hEjdmHXLlNgJLWVv65R4FPPIiMBrVYc/Dg5AR071s/3Dxs2DOXl5dBoNBg6dKjovYiICLi6umL//v1o3749AKCiogK//vorX2/ntttuw44dO0SfO3jwoOjn6Oho/PHHH+hYXxdFCCG1ZGuislTOolzAYa3WjlQAInxNavZFeJxwpkdq9sX0WT+sXfu16LMpKSmi2j5cXR9bmK5NOfFZafz1kSdljgKfehYSAqxda1reqqoyBT3vvFM/sz0A4OTkxC9bOTk5id7z9PTEE088gVmzZsHX1xft2rXDyy+/jLKyMiTfSsF//PHH8corr2DWrFmYMmUKDh06ZFH/Z86cOejTpw9SUlIwZcoUeHp64o8//kBaWlq97IAghBBb2foANj9eabln/Pg7sXEjg9FYHSA4OTE8+eRwhIVJL/dIFRw0x808FRQUAJCfWWIMACzHVV5ebnMxQfPgTu1SXGOq60OBTwNITjbl9Jw5Y5rpqa+gh+Pt7S373tKlS2E0GvHQQw+htLQUvXr1wrfffotWrVoBMC1Vbdu2Df/73//w2muv4c4778RLL72EyZMn8+fo3r079u3bh3nz5uGuu+4CYwwRERFISkqq82sjhJD6Zm0pKyrKB2vXasz+watBTEyg4nltXQKSm1kS/l5pic3a0pdccGdtKa6xocCngYSE1F/AY60i8xdffMH/vkWLFnj11Vfx6quvyh4/cuRIjBw5UvSa+bb43r17Y8+ePbLnyMnJURwTIYQ0dlygoGYpqzb/4LWWuFxcXAxArgKzmFT9HeH5k5KSRPlNhYWFOHDggGJwp7SUZU5uObA+UeBDCCGE1AC3HJWTU6lqKasm/+C1JfdIKpGYW+bimC9DqU2MthbcqVnKkpoxaggU+BBCCCFmuADAxeUmKircZGco/Pz84OcnlbtpfSlLDfOZHmszJuazL2fPdlRchrKWGK20LV1tEUNu3FIzRvPnX0J99yylwIcQQggREAYAporFGqu1d+ojd1NtLSDh7IvSMpSwl5jSUhYA2a7s5kUM5YIyuRmjnBxnxMTU8sbYiAIfQggh5BbzAIDrUaWm9g63lGVqXCqeqSkuLkZlZSUAU2FYrp4Ox1ptoNrWApI6Rrh1XS4wycyMRUZGnGJXdsB6UCY3Y9SpU/03kKDAx0aMMesHkVqj+0wIqStSycJcgrBUAMAxT1iWOo/BYMDmzZtrNC6lYn7Wcmz69euHwEDT0tr169exe/duxe9Ssy0dMPJBD/d96enxSE1dbTHTIxeUPfrocABAZWUldLp8PP98WxiNGmi1DIsWXYC/v+nPoz6LGFLgo5KLiwsAoKysDO7u7g08muavrKwMQPV9J4QQOXK7nrhZFuEMi7XARGlnlFbLcN99UQgM7IxTp04hLS3NfhcB5VpC1nJs9u/fLzp+woQJ8PDw4H8WFidUuy09Li4DBw70E51XaleYXFDWrl0SDh0CDh/ezB8/fboXv+xWVVWKtWtNx9dnBWcKfFRycnKCj48PLl68CADw8PCARqOx8iliK8YYysrKcPHiRfj4+FgUWSSEECFbKy5bY74zSpjjM3LkLhw7Zr2/Vl1Q07pCyMPDQ7I4oS3b0gGIZnwA6YRmudmiGTOCbo01lQ+u5Jbd6rOCMwU+NmjTpg0A8MEPqTs+Pj78/SaEEDl18cAUBgAuLuWoqHC1Wp9GjlTCb01r2XDjys0NAaBBaGiuzedSsy2dOy4/PwjCrAO5YMsyWDQC0Mj272poFPjYQKPRICgoCAEBAZIN7Ih9uLi40EwPIaReyAUOcg055YIMqffk6tbIJQFnZ2dbJDmbV1MWbk83zUYxSLWjkGNtyUxqRxuHMfC7vABg4MCB2Lt3LwBxsHjtmie2br1f9L1SS2QNhQKfGnBycqIHMyGE2Im1ysS2dEOXC07UBCamHUsFkoGNUvPP/Pwgi23eERFnFPtmCV/jZkLS0tKQlpYmynfx8/NDYmIitmzZIrPjzLZZFakls/j4dBQV+aG0tKXkjrZq4uClVatWFvdVpyuFweAlsfTFkJ8fjPDwc2r+GOsUBT6EEEIajNocHTXJr3JJu3JBi3lgkpY2GFI1e6TyYnbsGAmNBhYzI1wAMmbMNsW+WcLXzGdCzINAHx8fAMo7zszPZTAYZBuQCmdn8vODRUGb0vnN83u2b2+F1atTLe63TleK+Ph0/n7e+jTS0+MRFZXV4LM+FPgQQgiptZrO2qjN0cnPz8fFixctdmlxRfjkknYDAgolX5cKTORmT6QDDq0g/0U8M8IFQ1JLStZaSACWvQy5a7TWi0t4rs2bN4uCRfMlMy74+PDDh0X3xnx5SyguLkOUp7RmTVvZPJ7g4ALJ+9IYlrso8CGEEFIrtszaAMClS5f4PMkrV66o+g5hsT0pckm7ubntZGZeLAMT82O4h7Sa5p9CGo0RoaF5kktKFy8G4NixHjAFBQwdOpy1+Lxcg2elXlzW2lFwfcXKy8v5re3SAZ0GpuRk89eNiI3N5H8qKvIT9SYDrN8zW1pc1CUKfAghhNSK2lmbixcvYsuWLYrH1HTHk9yDNjT0H5nX8yS3rQuP4R7ScruWxDMa4tYWOl0poqOP4Pr1FkhLi7+1lBZv9jkNzp6NxKpVqRg92npiMmDZggKAaJeXEvMZN7l7lpz8Hv74o5uoYrN5UGUtsLF1+735jFRdosCHEEJIveBaNshRSiC2lqws96ANCSmQfQAr5bqYP6StNf+UauVgMHghPT0e1bMncjNG6hKTExIS4O/vj+zsbL54otr+XVKU7llISAFiYzMle3wpfVbpngnf464FsC153R4o8CGEENIgDAYv5OaGAgB8fK4o7oKylqwcHX0E0dFHkJISiZKSAISFVcLDIxKVleEYPLgUERGrJR/AXNAUHn4Os2aF8p8NDu4NoDfKyspEFZANBgO/TJeScgr5+R4IDi7DgQMZFtdnLRlZSJyYLD3r5e/vL0pYrk3/Lo5ScCJXbNDaZ6WCUnPm11KfKPAhhBBiV2qWqw4f7okdO0aiehbEMqlWGDRYS1bmHvahoRrodNzSmw//eWsPcQCIivJBUJBp5oFL1hYGPabzmJKqXV1dcfvtpmMLCgpw4IDl+eQqGlfvBhNdLfLzg3Hliq/qGRxrxQizs7NFHdgBwNnZ2WLmTc29EVIKbGozA1VfKPAhhBBiN2oefAaDl1nQA3DJvnI7igDTQ928hQL3OvewV9Mg1FpgVtst9sLzSy0HRUScwY8/3oVDh3rBfLu3Up0fc9bybIS9xGqaO2VO6c/XHjNQ9YECH0IIIXah9sFXVOQH6XwXDf8gl9r6DQAnTnSr1W4hNYGZ2mRtqeOkzp+aarnMFhX1Bw4d6i36rNo6PxxreTZcsCNVYLEmszDW/nytzUA1FhT4EEKIg7FnpWQhtQ8+X189pLZMczuKuN5YmZmxFt3BAS3i4vYr7jiSY+8ZCYPBAMB6LaHk5PcsKhbLzdaoqfNTVlbG/96yr5gbDAYvidYW4no7rq43ERqaK7rupKQkMMZQWVmJ0tJSi+7z1v58bdnCXp+7uMxR4EMIIQ7EnpWSOdxDzNqDz8XFBYBppmL06F2i5S5uZ1RFhRu/HBMbm4kDB+JgHgjExmYq7jjimC/v2HtGwnxZTe787703RXK7elxchkUAB1j28uLGVlZWBr1ej48++kh0Hp2u1GKXmTiAssyd2rr1fovZH51OxyccFxQUiD5jMHjh2jWPWm1h53Zy1fcuLnMU+BBCiANRu4xz4sQJtGrVyuJ1FxcXtG7dWvTgEhbHa9u2BHPm6FBVpYGTE8OyZSUYN+5Bi3/hizuNAwaDj+RyzOjR8g/SsWP7wMvLC87OzvDx8UFxcTFfJ0hua3xNlsnU5sfIFzoUzyyJG4Ea0bfvfnTteoIP+qSWxgDAw8PD4s+P2xlnPtOkhtoZL/PxCpcjbdnC3pA7uYQo8CGEEAcm91Dnum7LMZ8R4n4/cyaQlAScOQN07KhBSIgPhLurUlJS+MrNV65cwd69e2EweGHbtrGSS1BKD1LhUkxKSgrf00ppyUlpRkJq+cWWXUqWhQ6rcTNLAMzeNyVsczNbwmap1ogDEmukE8etzXhZNkbVgjEjxo7dgtDQPNnco8aU02OOAh9CCHFQ1h7qwjo75vkgSjNHISGmX1L8/Pz4IKmgoAB79+61ugSl5kEqHI+1JSduRmX8+FhERZnq9Ugtv9QkJyg6+ggCAgrx3ntTIJWrIzc24e/lmqUqjc2ceTuL+Ph06HTF2Lp1rOS45Mj1KfP0LLM5uGnIvB4hCnwIIcQBWXuom+rsjEL1LIFRdVsFW9m7r5O1JafU1NUIDz+H0NA+iksvtuQECWfOQkIKFJforPf9km78aW1s/KdFVa+rZ8oMBi/07Zshml2ylhhuy59NYmIiP+tmrqHzeoQo8CGEEAfC7URSeqgDpuUY8dKIFjt21E1NFlv6Oinl23AzCmqWnLiaP0lJSXxRQk5xcTEA9Q99uZkzqSU6pUajUuQCLbniiGPHbhUtQXH/NR9jXNx+xMZmWv2zbCoJy7agwIcQQhyEXq/ndyJJbSlXWo4xsW9NFuHSh1IuD8fa0hyXZJ2fnw9gu+KSE0ep4KFOV4rnn7+AhQvbWCRrc4nU1mbOpK5Dqu+XZUFH6fEKxyYVkERFnbQ4VmqMGRlxom7r5tT+2QQHBzeZgIdDgQ8hhDgIYR7M2bMdIZ7RUbMcU/PlJynC3WDFxcV8KwUu6VlIbb6N8CFsbclJjeRkYNIkjWyyttrlMKk2D9z7pt1muDXzIyQe7+XLl/mSAIC6YNGWMQqDHeGfjZymNMsjRIEPIYQ4GC6IEAY+Go3pAQzILRWZcnyED2FObR6Afn5+0Ov1/DZ0OdYe3uY9qYYPH47du3erDg7kXL58GcHBrhgwQHx9amsXAdZnquRm2MaO3Sqawdm+fbvFMcIASm4Z0NoYExISJGdummJQowYFPoQQ4mDUzACY19kx37ps/hC2peChOWu1hbjieXJLc1LjEeLGbWqVAZuCH+68SUlJovpFcrWLtFqG+fPzMXBgL36rvrWZKrnAJDQ0T3JMgwcPhpeXl2hmTCm4span4+/v32yDHCkU+BBCiINRm7Rrmk0Q54zIzSqoLYxoK3GtGgYu+LFl2Upt41SlIoVcLpAwwBPWLhoy5ApeeeXLW/ewFNxKnZog05bkbgAWrSTUBFdKM1+NZZt5faHAhxBCHIzUgzY+Pl1yRqRXr1747bffANhWzM8eLGvVaKDRMIwZI188z9o5pIICW67r0qVLMkHeZYt+XID6IFMqMFFbMdpacMXtvJLSVPN0aoMCH0IIaSaEzUfz87XIznZGeHglgoONAKq3aQPiB21+frBs9+527drht99+s3uDTyXcA//aNQ/JB7otxfOsBQW2XpfSLjAptszmCPN1bAnGrAVXjaVVRGNBgQ8hhDQDwuajah+a3EP2ww8ftvrgt3eDT27M5eXlosRk875Q5q0WNBojXFzUL6tZCwrkris3N8Rimc8WwtkaYZA5cmQXBAT4QKkjiK3BmLXgytGWsqyhwIcQQuqBtdmY2i45cOe29aGpNqCxd3VlqS7xUn2hTE0xGZ/jw5gW69ZNEQVzSktCplo8hVi4MEhUi+fee4djy5YtslWet20bi/z8DMUif3LfKxd46nSlOHHiHE6cUD6PrUFmQkICpk71x/z5l5CT44ywsEoEB8u34nB0FPgQQkgdUzsbY+vOKGEwlZVVjOzsMNnlIe6hyVUqvnz5MrZv325TorMtCbjWSOXJyPWFGj58J77+egS4HV3CYO7s2Y5WZ7eSkzWStXi4Yodnz+6yKCDImBYHDvTDgQNxkq065P4cbQ087dFFnlvKCgoCYmKk7zepRoEPIYTUMbWzMbbsjJIOpm6DRmOE0rZvnU4nyvewJaCpbU0ca+SCMA+PGzCvaswtR6kNMswbpwqDxujoI3B1vYmtW++XGJXlOZX+HG3t71WTLvKkdijwIYQQlWq7XGXPPBmlYMoUPKjf9q0U0AgrBQPiBFwhe+SRyAVhoaG5kgERoKnR/ZRaZpP6DrlzKv052rIkqLaLvK27vIgyCnwIIUQFeyxX2TtPBpB/eI4duwWenmWyMzPmgYpcQNO6det6aV3APdQjIs6IHviPPjocPj694et7AQsWtIHRqFEMiADryc9S16LU2NT8z0iuQSh3r9XO1qjtIg8o/52j5GXbUOBDCCFW5OUBBw+aHs4AarxcZe88GUC56q/See3Vi4mbBSsoKKjxOZQe6leuXIFGo0FV1WZMn+5lMSslDlYYAMvkZ+E4AVi0tzAPujIzY3HgQBzkZsy4P0dxXpAGZ892RHT0EURHH8FDDwVg164/FWdr1HaR799/HJ5/viMY0/DvffXVKMyfH4uwMGdKXrYRBT6EECKBe1Bu2uSO2bN1MBr9oNGkIi4uo1bLVfbOk7E1mDIYDHyOT20fmFJLRlK4hGohLviwlvckrFIsNSsVEXEGw4d/fSv5WSN5juzsbItqxxypoGvIkHTExmYiKuo+ZGV9IXkvLRuLakTf2bmzJ06csD5bM2eOP5KSzmLChOrABgC0WoYnnxyOsDBnHD/uB6NR/P1VVRqUlgaCYh7bUeBDCCFmuAe6weCF1atTRf/SzsiIg1LysBpyy0pS45DLKRLOWtgSTG3evLlWfbWE1CZjKxX9q03ek7jmj5jwHHJBj7Wgq3fva8jNrV3Hc2vfER4ejr59g3D9OvDYY0BVFeDkBLzzjgYxMYEAgMhIQKuFKPhxcgI6dlS8PUQGBT6EEGKGe6Dn5oZKPtz69t2PjIy4Ot1xY2tBQqlgqq76akkVHqypmuY9Wdb8EVM6h7XK0GqCLmvj5pLCrQVIXH5OcjIwdChubbkX70ALCQHWrjUPjMTHEPUo8CGEEAlcsGFOozEiNjYTsbGZVmdY8vKA06cBf/8Wqr5TmKRa04KE5uNX0/LAFmqXt9SqSd6TweCFEye6KQY9cudQUxnaWsDEBZJK4+aSwnNyKrFxI4PRWP0dTk7Vy1jCmTfzLfdCSoERsQ0FPoQQh8UFJpGR1Q8SvV6PrKximdkE8cNN6eG8bh0wdappeUKrbYWVK2ciMVH+eLkk4JosBdVlXy2l2aKabrfmlupyc0MAaBAamquqKrJ50AIYMXbsVsnEboPBC7m5oWYJyeLK0LYETIMHp6Nfvwx+iXH8+FhERVlWS/bzk5qtqV7GsoVSYETUo8CHEOKQxIGJ6eF0332m2Yzs7DAwdpvFZ8aO3YqoKOX+TQaDAfn5WkydGsD/K99oBGbO9MS//nXN5l041pZUhJ23uWrMddFXyxo1M0xKgZGwArNpJkYDUzd2+arIpmOY6LioqJMwGLyQnR3Gf49SLhCgxZgx0lv/nZ2d+XGbt9JISxsMAOjXLwM6XSmioobKNgKl2ZrGpVkGPm+88QaWL1+OwsJC9OjRA6+99hruvPPOhh4WIaSRyMurDnoA038fewy4445KAMpbxK3ZvHkzsrPDYDROFL1eVaXB0qX7EBV10qbkYmtLKlKdt+uiXpASNTNMSoGRdI8uWJxLuqWFBkOHfoOuXf+wCHI0GiPi49P5zvNS5Lb+C3eiyX1veno8oqKyVAWTNFvTeDS7wGfz5s2YMWMG3n77bcTGxmL16tUYOnQoTp06hYCAgIYeHiGkgen1ehw8CBiN4sCjqgo4duwaAPV5J8LZFgAoLi5WbHy5detYlJfvQn5+PgD128lt3QJfF/WCOMXFxaKf5fJthDNM1gIj6cDC8lxyAR0X9Eh9T1paPMzbXVSTvy86nY7PufL11cN8J5/5NVIRwaaj2QU+K1euxKOPPopHHnkEAPD222/jq6++wvvvv49nnnmmgUdHCGlIwm3qGk2qxQPUVLPF9LOaYENqtgWQK3AHVPd9Wg2drtTmmZ+a5M3Ys6+WXq/Hli1b+J+V8m2EM0zWlt7kKxiLz2XeaV2rZZgzJxtubvKtJLgihFLn1mhM9XjkcEUeL126BOACVq1qI7pGrZZh4sR+6N59FBURbEKaVeBTXl6OQ4cOYe7cufxrWq0W8fHxyMjIkPzMzZs3cfPmTf7nkpKSOh8nIaRhcIm5amdErAUb1v+Vr7F4RfjAr+22cmvjsXdfLeF4reXbTJ/+B//dci0erl3zhMHgJfHnYaoKyJgpuHn55RKMG/cgnzQ8aRJw6JAB+/at44Meue9RWu5Sk/fk5+cHPz8/rFwJBAcDc+aYlka5JOWBAyNrcitJA2pWgc/ly5dRVVWFwEBxtnxgYCD+/PNPyc8sWbIEixYtqo/hEUIakdrMiCQkJCA4ONjiX/kGg+HWf71ubYW3DHzU5tqoDU6Ex9mrDYUc7voA+bwXYb4N5+zZjoIKxwCXvLx16/2ifJ+IiDPo128iYmNN4zMlA2sQEuIDwIf/dEgI4ORUhqNHLQNVqYA2OvoI2rfPwXvvTUFtCk8+/TTwwAOUpNzUNavApybmzp2LGTNm8D+XlJQgNDS0AUdECKkvti4fcfz9/SWDh4qKCis1ZtTn2tQ0iKmrJRe9Xi+qwGwt34ZTHQQK74cGcu0l+vYtB7d6WJPAQi6gDQkpwOjRlkERANEOMGsoSbnpa1aBj7+/P5ycnHDhwgXR6xcuXECbNm0kP+Pm5gY3N7f6GB4hpJGoab0ZOVwl448+crvV4kI65yU5+T2EhEg385TCBTHC1hVCXHNQuVkcuc9xbJn9MT+P+SyO3HKh3MyQkHDJyTx5Wu2YuT9TF5ebqKhws/izTUhIwNSp/khJOYWPP86Er28Rzp7tyP952bPII2ncmlXg4+rqipiYGHz33Xe47777AABGoxHfffcdUlJSGnZwhJBGwR4VjYXLS5Z9veRrzNgS9Jif3xphorRer8fFixdFichqPqeW1CwOY9KJwvn5QbAsNCifCK12zEJSSdbmf7ZcIrqrqysOHDhndacZ7dJqvppV4AMAM2bMwMSJE9GrVy/ceeedWL16Na5du8bv8iKEOK78fK2qisbm29SFzGccuJkQW3JebKE2AfrSpUvw8/OzuaVEfn6+5HcozQbJ7Z7644+uoms1GLyQnh4Py6BHyPat9taTrOX/bLklxL17gVWrLJOd+/WbiAED6m7JkDS8Zhf4JCUl4dKlS5g/fz4KCwtxxx134JtvvrFIeCaEOBa9Xo+jR6+BMfH/F0jt7JHbpq5Ebc6LtTGaByHmjUDllum4ruu27hTbvn277Htys0FyszjffjsMe/YMwahRuxARcUYm10m8zCXcUj548GDZTupylGoAye3a8vPzQ58+0h3PY2P9QDFP89bsAh/A9D9WWtoihHCs1e8x39lTk2WOmhQNzM7O5gObq1evYs+ePYrfYW2ZjiuMKKUmeU1SQZT8LE71TMuOHSOh0UCmn5aYMDjx8vJSNS4hpRpAwj9b8z9T6njuuJpl4EMIIUB1E1Jvb1MrCmvBidw2dbVs3SJvy+yGVE7Kjh3ipRyp2RuDwQuZmbE4cCAOXDE/84BJLigSzjZxScdqkpUBrSDxWZzrZHpd3ZZypWCNC2TM/0zNc3wefXQ4AgICJP9MqYeWY6LAhxDSLImbkAZg5MieiI4+ohicmG9TFy495edrkZ3tjPDwSgQHm9ZHpGaG1G6Rt7YLyfyhL5dXk5kZiyFD0iW/Q6o5p3nui9IsklQgJT3DojyrI8x1EjYjVdsNXSpYM9/uP3/+JeTkOMPd3Yjr17UIC6tEWFg/q0EsbU93PBT4EEKaHcsmpBrRw15NcCJMElZ6CCclJaka08CBA7F3716L80ntQpL6PlMejGW/qIyMOMTGZlpcj2XSbzVueQmAZLJ3QEChZDAGSM+ade9+HMePd7forM4R5jopBZ4uLi6SY1dKVOYEBQExMdb+FAihwIcQ0kC4ZajISPv+i1uuCama9gRC3EyCtYdwRUWFqvO1atVK8nzmu5ACAgolvy81dTX69s3AgQP9FK+Lmym6ds3Dau8ruR5aXIVjue3+UsHLoEHfo6jIFy4u5bc+rxGcU/z9coEnu3Wgtd5ehNQGBT6EkHonXoYyJZkmJ1v/nLVgydYkZjWsPYSdndX93yh3nLVdSP/80072+2JjM/lcnWrV1yWeSTJCeglKvLwknRgsP9MiXIILDz/Hf4ILZrKzw2DZDV1d0KLRmMYqt0NOLlGZEFtQ4EMIqVeWy1CmnTVDhyrP/KgJlmxtQqqGtYewj4+PqtYS3PvWdiH5+ekhtVXcxYU7v+V2cEBqJskU/Gg0jL8HcXEZomUx+S7ygm8WBHn798fxzT7lZoOs3S8lOp2Ov5dt25Zgzhwdqqo0cHJiWLZM3KiUkJqiwIcQUq9OnxbXTgFM24nPnJEPfGoSLEVHH0FAQCFyc9shNPSfGlVNBtQFUWoexAUFBZLnM8/xcXWthOUsjQYVFa4oKvKzeK86X0cjOXMzZswWeHqWye4yi44+AlfXm9i69X7JcXNBy/79cUhLGwyppTlhPlBtg07uXs6cCSQlyTcqJaSmKPAhhNQbvV4Pb+9KaLUBMBqrH+BOTgxeXheh1ztLBhE1CZas7QqS2iott4RSm07u1s7n4lKOigrXW/91g4vLTcUZE6n3XFzKUVzcSvK90NA8yWUq4TWEhubKzEJVN/JMSzOv3SOfD2Sv+0U7rkhdoMCHEFIvhLukRo4UByUjRuzCrl2moMS8WnBNgqW8vCDR8o15rkpZ2YNYsyYSRqMGWi3D/PnnkZR0VXH8Ne3kzjEPqoTnMw/ShLukzGdMpHZUrVs3hc/r4QIY888pBYLmDUcBhr59DyA2NhMAcOJEN0gvhTEI7/GOHSPh6noToaG5/PUZDF42dT8npK5R4EMIqRfCHBilGQHhcbYGS8XFxfwD3vxBLdzCvXp1RzBmCqKMRg0WLQqGwbAaOl2pzU07zVtKCAnzUYR1ZwwGA86dO4eDBw9K7ho7frw7kpPfQ0WFq8X9MZ8tqg56AFPhQCPGjt2C0NA83HdfL+zdq7wzDYDE/WKIjc0U1dyx1miU+/6tW+/nAyvu3ObBVk2qSBNiLzUKfK5duwZPT097j4UQ4kDUzKDYEizp9XqcOGGQrV1jbQs3l8DLfafanUNKva4A8QwW99+goCB+G7zceCoqXPldU+aBgnAHlVRej6dnGXS6Un4LvdI1y+UG5eaGSGy754IdI+666yf8/PNdsnWCTJ81nUv42vXrLawmSBNSl2oU+AQGBiIxMRGTJ0/Gv/71L3uPiRBCJMkFS8XFxdiyZcutQKCPxCeVt3BL7Toyrwxs7vLly6KgR24Ww1rTUF9fPSwLE0pvUTcPFKztoPrrr79UHSf1nnRAJO4236qVfKAp95opV0h6CZK2qZP6UKPA56OPPsKGDRswaNAghIWFYfLkyXj44YcRHBxs7/ERQohVlZWmXlxyD/jk5Pf4XV227DpSu+SlFJycPn2aXw5zcXGBTqeTeMBb7uLKzQ1FaekVxeKJctdSWtoSJ050Q17eOYSEmK65e/fjOHasB7iZm+7dj8vmDY0atUsy4dm82zw3C5ebG4Jt28ZaHCvVl0tq5qlfv4kYMED9/SakNmoU+Nx333247777cOnSJWzcuBEbNmzAc889h6FDh2Ly5MkYPXq06qJehBBiL3KBgPlWdqVls5ycHIu8HWdnZ/j4+ACARR0Za5WduTYV5gYPHgwAklvUAc2t7eWWLSrMKxibX8v33w/Cjh2jwAU4PXocw6BB3+P48e6C79Hg2LHu6N37F4SEFMjeD6UAceDAgXBxccGePXug051EebnlsUB1jo+TE8PcuaV46SVvsyR1IDbWDxTzkPpSq+ikdevWmDFjBmbMmIHXXnsNs2bNwtdffw1/f388/vjjeOaZZ+Dh4WGvsRJCiFVqt1LLLZt99lkGv2QFQHL5KiUlhf+9XP5Mbm4IioquyzYh5SgVNDQFPeIkYqllOe5a8vKCBLM6gCnA6YG2bfMk83jWrZvCz05J3Q+lexkZGYmgoCB06tTJolFoWFglgoN7AwBeeMEAvb7VrVo8OoSFmWowVVWZgp533qEt66R+1SrwuXDhAj744ANs2LAB586dw9ixY5GcnIy8vDwsW7YMBw8exJ49e+w1VkIIUaWmW88tWz6Ymm2aL18J83akAxejYOnHsgkpAHh5efFjFRc0NKeR3aKekJAAf39/nD59Gnv37sU//7SH1OzR1auesstMUs0/heTuJbdcZ61RaFCQ+OfkZFPhSVNhQgp6SP2rUeCzfft2rF+/Ht9++y26du2K//73v5gwYQI/FQwAffv2xW233WavcRJCmiiuv5a/fwurxxoMXsjM9ECvXvX/QJRu+WCiFCBYBi5cYnD1rIu1cwhzZbZuHQvL5S2gb9/9Fl3Y/f39ERQUxC/NtWt3DlLbzjt1Og0fn1LJ1hTCpbOBAwciMjISBoMBFRUVoiU+odq2jaDChKQh1SjweeSRR/DAAw9g//796N27t+QxwcHBmDdvXq0GRwhp2sT9tVph5cqZSEyUnlnYtMkdzz+vw6pVGr4X1333qdvl4+LiUuuxKjUPBZS7gwuXhK5d85Rt/yA8h/mYTTMr4lyZalpkZMTxBQXlhIQUoEePY6Ik5h49jiEkpAAhIQXw9CzFJ5+Mg1wfsFatWiEoKAhB5tM0hDQjNQp8CgoKrObuuLu7Y8GCBTUaFCGk6ZPqrzVzZkuMGdNS9K99vV6PnJxKzJ6t45NeTb24GO64oxITJkxQ/P8bYQNQa4YMGQIfHx/RLAa3LV0518Yyt0auErOpM7x8E1LuHMKGnMKt8XK9s6QCL6nt3//5z5fo3fsXyR5lSn3ACHEUNQp8PDw8UFVVhc8//xwnT54EANx222247777aDcXIQR6vR4HDwJGo3g5pKoKyMzUw93dlBvCVWbOzg6D0TjR7FgNXnttN8LDz1mtpqzX61WNq1OnTrLnUc61YYiPT+eDjsuXL8Pf3x+JiYn8VvorV65g7969VpuQWmtuajB43fqdeEeXMGhKSEhAcHCw7LVwMzzmatM5nZDmokZRyokTJzBq1ChcuHABnTt3BgAsW7YMrVu3xs6dOxEVFWXXQRJCmg4umDHNfKRaPGT37/8AWVmlouKA1h7I1mZ0rBUbBNTlpXBLVpmZsThwIA6mwMOIwYPT0a9fBn/c9u3bFdsuSDUhVdphVlZWBsA8uZqBC37MgyZ/f3/RtajdPWuthhH9w5U4ghr9LZ8yZQqioqJw6NAhviT6lStXMGnSJEydOhUHDhyw6yAJIU0HF3xYe8gKgxRbigrKsVfxO52uFEOGpCM2NlN2S7y1zu/ceZTGX1ZWhoKCAhQXF+Pdd3cjN7erWfKxBhoNw5gxW0Qd1qVERERgwoQJfABljpuNApS3qEslMhPS3NQo8Dl69Ch+++03PugBTElxL774omyyMyHE8aitqWPrsfYk1yZBLnCRKli4Y8dIBAQUIiSkAAkJCXB2duaXwIS4ys1lZWX46KOPAHBBVKpkThBj1X23hC5fvmwxgxURESF7jXq9XlRI0doWdUKasxoFPp06dcKFCxfQrVs30esXL15Ex44d7TIwQkjzYEtNnZrW36kNbpns4sWL2LJli9XjpXd/VRcDTEgAAgICFGegCgpM+TeWW+jF5PJvuERotZ3k7bUUSEhzUKPAZ8mSJXjqqaewcOFC9Oljagh48OBBPP/881i2bBlKSkr4Y729ve0zUkKIQ5DKnSkuLq7zLdY+Pj6iZGUhFxcXVFRUKO7+qq7Tsxo6XamqoERpC71wua+mDVCFKKghxKRGgc/IkSMBAImJidBouOJcDAAwatQo/meNRoOqqip7jJMQ4gDkcme2bNmienbDFnq93mKmRy7ISEpKAlCdj2StGKCaoEQuqXvMmK18Xo+afCJCiHo1Cnzkmu4RQkhNyeXOuLreRGhoLk6cOIFWrVrxeTJCNVmm4XafCb9fuJvLPMioqKjgj42OPoKAgEK8996jsNZHS6/X80FQfr4W2dnO0OmKAcgndUdFnZS9J9ZaTBBClNUo8Ln77rvtPQ5CSBPHtabw9rZcupGaRTEYDGjdujV/jFzuzNat90OjMeLs2V2Ijt4rOyNj64yQcEZGvI3cxFqQcfFiG5i3h2AMOHu2Ix8sCYMr8cxNK4wa1RPR0UcUk7rlGqDKVZAmhFhX46INxcXFWLduHV/AsFu3bpg8ebLFv8QIIc0XN5uxaZM7X3lZqw3AyJE9+Ye/3FLN5s2bkZKSgqSkJGzevFmxcjIXhFy/3gLp6fGSyz625LsIKSUYC4MMYY0b7jPmS11AdbBUXFzMbw+3NnMjTOoWBnZUcJAQ+5NvTKPgt99+Q0REBFatWoWioiIUFRVh5cqViIiIwOHDh+09RkJII8TNZixf/glmzfIWtJvQYOfOkTAYvGQf+Fx14vLycv4fS9yyj0ZjlPw+xrRIS4uXPRc3poKCAtlfwgrPxcXFAIDMzFhVu6p8fHwwYcIEGAxeOHGim+xnuGBpy5Yt/HcozdwIHT7cE6tXp+KDDyZi9epUnD3bUXRPalLfiBAiVqMZn//9738YPXo03n33Xf5fQZWVlZgyZQpSU1Px448/2nWQhBDruKWmyMj66XzNzbAoP9Q1ku/l5oZApzuJy5cvi2ZShF3Kt20bazHTobTsYzAYsHnzZv49pSUxANiyZQsMBq9bOT1SLIOML77ww+rVXM0d8y7o1ePkgiVuh5iamRu5IDE1dTVSU1fXe30jQpqrGgU+v/32myjoAUylzmfPno1evXrZbXCEEHXEXdBNnc2Tk+vnu6091KUClq1bx6K8fBeA7Rbnk+pSrtEYER+fzi9zSX2PMPlYannNlEfjh8OHL6JNG1NAkpsbCqmJ727dfseQIWmiICMrqxizZ7cBY1ywY+p+Lvyv3IyMmsrUSgFkePg5KjhIiJ3UKPDx9vbGP//8gy5duohez83NhZeXl8ynCCF1QaoL+mOPAUOH1s/Mj7WHunTjT+u7k8yTfgHg2jVPi11X5p+X2x2m0Zh+/+GHps8BPW9tSTdntAh6AODjj3+B0Xib2bEaDB36DUJD/7Haj8taZWprAWRCQgL8/f3596jgICE1U6PAJykpCcnJyVixYgX69u0LANi/fz9mzZqFBx980K4DJIQoO326OujhVFUBZ87UT+ADKD/Uo6OPwNX1JrZuvV/0GbndSeZLVFK1bOLi9qNr1xOoqHCDweAFna4UV65cASC/O+xWqTF+Ccn0s/g4pRwaF5ebkOqY3rXrH3apTG0tgPT396/zIo6EOIIaBT4rVqyARqPBww8/zK9hu7i44IknnsDSpUvtOkBCiDy9Xg9v70potQF8cjEAODkxeHldhF7vXG+zAkoP9dDQXFU5LpmZscjIiLNYojKfwTlwIM7iOMBUX0xpdxhH7r0xY7byNXQ4ffr0wZtv3hTs4lJe1qoNpQCSlrUIsQ+bA5+qqiocPHgQCxcuxJIlS3D27FkApgZ5Hh4edh8gIUSasEbMyJHiGZERI3Zh1y7TNu+6qHhsK2uzGYcP97SohMzNzIwZs03VDI5wa7h4ec0IUx6OuNCg+YyPRmNEaGiexdi//faEWRNRU9CTnPweQkIKFK/bxcVFze3BhAkTFP//k5a1CLEfmwMfJycnDBkyBCdPnkR4eDhuv/32uhgXIcQKYd0apZmCmta3sTe5McrXxOFmZpiqGRzhspn5d50929Ei6AKgmGzMkUs6rqiwPgOj0+moOSghjUyNlrqioqLw999/Izw83N7jIYTUUH13Nq/J0ovUGK016gwNzVM1g8MtmwlzhMLDzwGQD7qUko05cknHLi7WA0oKaghpfGoU+Lzwwgt4+umnsXjxYsTExMDT01P0PnVkJ6RxqW2NH6l+U+HhlUhKSkJFRQWcnZ35KsVC5rV1pMjl5AhnYdTM4Oh0pdi/P062srNU0KUmWLRcOmNgTIt166aIzt+rVy+0a9eO7yVGQQ8hjVONAp97770XADB69Gi+OztAHdkJaQhyhfo4a9dW4fnn2a12Egwvv2zAuHHXVT+Y5ftNGTFqVCb/4JfKJVIzKySVk9O3bwZiYzNF1yMMUqRmcPbvj0Na2mBwM0HC3B8AsvdI6v4lJCTA2dmZ79pe3ZR0CrglOfPconbt2tHSPyFNAHVnJ6SRU5qtkeuDxTEYvLB6dTBfdM9o1GDWLG+cP/8+dLpSVYnP3EyPtX5TUnksfn5+sjkuly9fxvbtpgKG1mrcSDHvb5WWFg/zSsqMaSV3ilnrIybVAb6iwg3meUhyvbwIIY1Xjf6XGh4ejtDQUNFsD2Ca8cnNzbXLwAgh8hWZ9Xo9srKKFQMRwHp3b1sSn2vaKVztco+1ZafBgwcjLS1NdmxSydEajZEveMiNVzgLJHf/Nm/ejMTERNG5rBUYlFrqI4Q0PjVqUhoeHo5Lly5ZvF5UVEQJz8Sh5OUBe/ea/mtPer0ehw5dwNSpzKwiM8MPP5zB66+/jo8//sVq40vuYS1U0+7e9jwXUL0MZjB4ITs7TNRsVCgxMREpKSno3LmzTWMDGKKjD0FulsZa41CuRhnHvIkqNQwlpGmq0YwPl8tj7urVq2jRokWtB0VIU1BX/bG4nJrs7DAYjRNF71VVabBhw88ID1fX+FKpfo7B4IWvv76OiIgz8PO7DgC4fLkF9HpfhIdXIjjY9IA3GAxWz1WTaywvL4eT01SsWdMGRqMGGg1DamohHnnkMp8sbZ6HZL5sJlwui4vLEMzuGDF4cDqiorJw+HCM6j5iwvekavDUZEmOENK42BT4zJgxAwCg0Wjw3HPPiQpuVVVVITMzE3fccYddB0hIY6PX65GTU4mpU6urJXOzMXfccRFhYbWrlsw92KV3Oxlx7Zon36ZBTSAi9bCWym0BLOvaCPOF5M5lfm+kdn9xQRQ3y/P666/fyj9K5fOPGNNg1ao2yMr6Hf36ZWDChAkICgoyy3GyvK9S7SyEidHmidNxcRkArAdyXA2e/Px8PrjiPkcBDyFNl02Bz5Ejpv8TZIzh999/F+3YcHV1RY8ePfD000/bd4SENCLWZmNee203wsPP2aVaslwF4q1b7xcFJmpmIMwTgZWaeHKvyTURlXvwC7euKyVdJyUlAZCr36NBeno8oqKy8NFHH8HHZyZmzGgpO6uWn6+1uJaMjDjExmbyx3D36Mcf78KhQ71w4EA/ZGTEqbp/tvwZUksJQpoGmwIfbjfXI488gjVr1lC9HuJwlGZjhMsk9qqWzD2Yc3NDsG3bWMHsiOmBHxBQiJCQAptmIKw18eSoSVwWqqioAGB99xd3nK+vHuZNP4XfCwDPP+9pkePEzaoBwNGj18BYoNVxZ2VF4dChXpDa6m5tBkdpZxqHavYQ0nTUKMdn/fr19h4HIU2KPfNd1HxXUdF1yUTc996bgtGjLZeklMgtoQlnfADpJqJK9YK47dxqd3/pdKUYPDhdVHtH+L1FRX6ixquAeFaNG5NGk2p13HJb3dUGdhTUENJ81CjwuXbtGpYuXYrvvvsOFy9ehNEo3k3x999/22VwhDRmapeZals1GVDqOC6/JCVHLmgDLHN8ACA7Owz5+UGyFZETEhIQHBysejZMqF8/U76N+bm5a6lN8jZHaat7TXekEUKarhoFPlOmTMG+ffvw0EMPISgoSHKHFyGOQCnfBQA2bXLH7Nm6GldNFn6PON+nmtzMRWJioqi2jFzBQBeXclRUuMHXV4/U1NWithCm5GNTmwa5ZSJ/f3/4+fmhoKBAcqzWZsP69ctAVFSWRQCp9jwREWcwZsw2AAyhoXkW70sHjQzx8emKwSLl7BDSPNUo8Nm9eze++uor9OvXz97jIaRZ2Lx5s8WupZpUTRaSapsAyM9cBAQEKJ5fpyuV7HkVHX3EIk/H1mUipdmwwkJnZGeHiZbM5AJIa7Nq1ipXc+c2TxIfPDidn20CTLNW/v7+/M+Us0NI81WjwKdVq1bw9fW1fiAhDqwmVZP1ej2Ki4tlzxkSUoDRo+VnQbgHuJoHt1ISslLHdEDdMpFUMHP4cE88/3wXGI23yQYq5mNU6rFlrXI1x1oA5e/vj6CgIMXrIYQ0DzUKfBYvXoz58+fjgw8+ENXyIYRUsyXXBRA3AwXkH/pKD3GlB7j50o1SYCa3PARoFJeu1AUq0ktm5qzN5tjaQoPq7xBCgBoGPq+88grOnj2LwMBAhIWFWVQ4PXz4sF0GR0hjY0veh625LsIZIGsP/Zo8xLlt2VxBPqXAjBv7jh0jIVxW69t3v0XXdM6WLV58TlBtAxU1szm2BpZKKJ+HEMdRo8Dnvvvus/MwCGka1NR0KS4uxpYtWwDUrMWBLUs4NRk/N3ZrgVlExJlbW9y5T2ssigMCQFlZGQ4duoAZMwJEszm7do1CSkokdLpS7N69W6ZuT3WgwhU23Lx5s6ogyV4lBSZMmED5PIQ4kBoFPgsWLLD3OAhpMvz8/BRbM0g1t5R6GBcXF0suS8k99HNzQ1BUdF22jk5NKAVm1oKPhIQEeHh44KOPPpKsZG00avDxx5l8zR0TcZK0cEOoTqfjf692NsdaYDlhwgTF5XhKYibE8dgU+Pzyyy+IiYmBk5OT5Ps3b97El19+icTERLsMjpDGSJiLo2ZXESCd+7JlyxbJnV1yD/2tW8cCUP4eNUs25sfIBWbWgg9uF5TB4IVr1zxgPptjHqiY6umo2x1my2yO3PgTExMREREhfRMIIQ7LpsAnLi4OBQUFCAgIAAB4e3vj6NGj6NChAwDTv2AffPBBCnxIs8bN9KhdklIKjqSWzKQe+qblJunvGThwICIjI/mAhqunI4Wb4VBarsvOzkZaWpqq4GPTJnezWj+m4EfqWGuBlMFgEM361LYTurCGESGEcGwKfJhZMx/zn+VeI6Q5UpOHYi04ysvL4z97+fJl/vfCh/61a57YuvV+2e9p1aoVgoKCLHaFybGlfpBS8JGVVYzZs9vweT2mHV8MY8ZskSwkaC2Q4np4mX+GdmIRQuypRjk+SqiKM3EUavJQrAVHX3/9tez5uYd+Xl4QhJWTb50FLi7iGRvzGRy5reVKidl6vZ4PwISfF+fpmHz88S8wGm+zuDZPzzJVhQ25itEGg1edBDe0U4sQIsXugQ8hjkLNUpBcPZz8/GDJYEJKRYUbzHNjAA0qKuQf7Gpzj4RszV1Sm4BsHoDJVYweOPCKRWkMOUlJSaJlMXOUtEwIkWNz4PPHH3+gsLAQgGlZ688//8TVq1cBiKfqCXEE1vJQdLpSxMebdyDXID09HlFRWaLj5WZobK1XY215TW43mdrcpYEDB2Lv3r2Ca4uHXF6PVAAVEXFG5vyrbWi0qqNKy4SQGrE58LnnnntEeTwjR44EYFriYozRUhdxONbyUIKDC2BtN5PSDIu1mSXzWRJry2tyu8nUfr5Vq1b8mNPTq4Oe+Ph00ayQXAA1Zsw2myouS6FlLEJITdkU+GRnZ9fVOBTl5ORg8eLF+P7771FYWIjg4GBMmDAB8+bNE/0f4PHjxzFt2jT8+uuvaN26NZ588knMnj27QcZMCMf6bibru8OUZpbMl3zUzBBxszt5ecDp00BkJMBVqVDzeakxm89iyQVQAFM8v3lXeXO0jEUIqQ2bAp/27dvbdPL//ve/eP7550Vdj2vizz//hNFoxDvvvIOOHTsiKysLjz76KK5du4YVK1YAAEpKSjBkyBDEx8fj7bffxu+//47JkyfDx8cHU6dOrdX3EyJk62yDtRkbta0c5GaWpOryiLuRm6ovnz3bkZ+RuXz5MjZtcsfs2ToYjRpotQzz51fJjjc+Pv1WHR6gtLRU1ZjlAqjQ0DzF++Hj40PLWISQOlOnyc0fffQRnn766VoHPsOGDcOwYcP4nzt06IBTp07hrbfe4gOfjz/+GOXl5Xj//ffh6uqKbt264ejRo1i5ciUFPsQqrhJzcXGxReVlwLScpNPpFOvgXL58Gdu3b+d/FubsKM3YuLjcVJwB4TquS5Gb/YiIOANxZQnxLNL69Wm36u+YluCMRg0WLQpGaqpph5VwvPn5wUhPj+eDlLNndyEiwvqskFLAV9saPYQQUlN1GvjUZU0fg8EAX19f/ueMjAz0799f9K/foUOHYtmyZbhy5Qqfl0CIObVd0Tlq6uDI5eyYn094nFz3c6WO60LCv/um2Rn5GRmlthg63Un+Hri43OSDHu6YnTtHIjV1tarKyspLdFSjhxBS/5rkdvYzZ87gtdde42d7AKCwsBDh4eGi4wIDA/n35AKfmzdv4ubNm/zPJSUldTBi0pgpdUWPi8uw6EauVAcHUF/R2fw4UwK0EcnJ7yEkpLr6stqlNT8/PyQlJWHz5s1W83Skt9kDW7eOxenTx3H8eHdB1WjpAEptTR4KcAghjUmDBj7PPPMMli1bpnjMyZMn0aVLF/7n8+fPY9iwYbj//vvx6KOP1noMS5YswaJFi2p9HlI3hM1Apdgz0VUqYDlwoB8OHIjD6NHW6+BwrOW/cNvBpY4DtHx9noSEBAQHB4uuz9r94FjL05HKA+K+/9ixHuB2oQlnoqoZ+eKJcjV51N4rQgipbw0a+MycOROTJk1SPIbrAwYA+fn5GDhwIPr27Yu1a9eKjmvTpg0uXLggeo37uU2bNrLnnzt3LmbMmMH/XFJSgtDQULWXQOpQTVsw1DRYkg5EAPP8GKl6VcJZGWuzLdzso9rdV3q9nu8Ir+Z+cJTydLjgxNX1pkU7DKliidUNSBkALdatm2KlJs+ZGs/y0FZ1QkhdatDAp3Xr1mjdurWqY8+fP4+BAwciJiYG69evh1YrfkDFxcVh3rx5qKio4OuapKWloXPnzor5PW5ubnBzc6v5RZA6o2Zmw/y42vSrklv+AcQzNsIEZiGuOa/azuLWjhN+j1QytbVcJO47AODDDx+WDE5CQ3MlK0sLgx+NxogHHvgEn376oF1r8kglbdNWdUJIXavTwGfChAnw9vau9XnOnz+PAQMGoH379lixYgUuXbrEv8fN5owbNw6LFi1CcnIy5syZg6ysLKxZswarVq2q9feTxkHNg742/arkl3+UKyVXH1MdLCgl9Xp4eKg6TujSpUuiej1KBQ+5OjjcLjOlpbfw8HNm12zZEyw+Ph2urpU1qsmjxHwZjxBC6kONAh+j0Wgx48K9npeXh3bt2gEA3nrrrdqN7pa0tDScOXMGZ86cQUhIiOg9bueYTqfDnj17MG3aNMTExMDf3x/z58+nrexNELdUJVxSqknvqZp8hgtEMjNjceBAHORaMUjR6XSSMzNC5tvhueDE2rk3b96MpKQkANaTp83r4FhbUuOu+cSJrtizZxjENAgOzoevb1GNavLIbcWnmR1CSEOxKfApKSnBlClTsHPnTnh7e+Oxxx7DggUL4HSr5OulS5cQHh6Oqqoquw5y0qRJVnOBAKB79+746aef7PrdpH5JLVWp3SVV289wdLpSDBmSjtjYTMmZGKWZJ7UPc7njlM5dUVEBQH3BQ+H1WOupBQDe3qWozuUx4QKkmtbkUbsVnxBC6otNgc9zzz2HY8eOYePGjSguLsYLL7yAw4cPY/v27XxCYl3W7iHNn9Rsia0Pels/I5dMK7UNuyazSGqJa/oYMXhwOvr1y7A4ztampdZ6alnWEjJCKkCimjyEkObApsDniy++wAcffIABAwYAAO677z6MGDECo0aNwo4dOwCI8xwIsQdbH/S2fka49CRVufnKlSvYu3dvrWaRrLGs6aO91dEdFsGP2uRpg8FgtaeWVC0hjYZhzJgtCA3No5o8hJBmx6bA59KlS6J+Xf7+/khPT8fQoUNx77334r333rP7AIlj45Z+4uPTLbZjKz2A1QYHHG7pSWpZpqCgQLbujq1dxeVIb6XXWDT+5FhLitbr9di8eTMyM+Mlx3ziRFd06/aH7DV5epbZJcChremEkMbGpsCnXbt2OHnypKhCspeXF/bs2YMhQ4bgP//5j90HSByX+bJSfHw6n2grfCjLPVzt3Q+qJjNPtpzbPL8GEAdWzs7i/7kKm5wKf3Z1dcXFixdhMHjdStA2x7BnzzCkpQ1BfHy6Xa6JtqYTQpoKmwKfIUOGYP369bj33ntFr7ds2RLffvstBg8ebNfBEcclt0STmroaOl0p/6A1f7hKdSpX09FcCXestVmkmsxuCM89eHD6reUtcQ0dLgjx8fFBSkoKLl68iMrKSmzf3gpr1rQVdFc/j6SkqyguLsaWLVtQVBQG80Dq1lkBVN9TW2fTpNDWdEJIU2FT4LNo0SLk5+dLvufl5YW0tDQcPnzYLgMjjs3aspLcbiG5zulCts5EmJ9z/vxLyMlxRlhYJYKDewPoLXtOpSrSBoMBjDEMHjwYaWlpfC6PtSBky5YtMBi8JLurGwyr+eOVCjJyGNMiODgfqamrrc6MDR482KIfHkAzO4SQpsWmwKdVq1aKVZC9vLxw991313pQpHlS00qCU5tlpbp4CAvPGRQExMRY/4ytLSYAUyJzVFSWZBDi6urK3z81+UaWBRmNMM32WM4oqUla7ty5MwU4hJAmz+YChpWVlVi1ahU++eQT/PXXXwCATp06Ydy4cZg+fTrfLoIQIbVBwIQJEwDUzbJSfVPbcgOwrN9jXgCQm1UpKDB1bVcbGJr36+J2iplYX9aSW1IkhJCmyqbA5/r16xg8eDAyMjIQHx+P/v37AzB1UJ8zZw527NiBPXv2oEWLFnUyWNJ0qQ0CPDw8arys1FQp1QaSW9KTms2Jj0+XLWAImPp1iWd7gIiIM4pjowKEhJDmxqbAZ+nSpcjNzcWRI0fQvXt30XvHjh3D6NGjsXTpUixcuNCeYyQOpibLSk1VbWoDRUcfwfXrLficoPT0eLi735AsqFiXW/EJIaQpkc96lPDpp59i5cqVFkEPAPTo0QMrVqzApk2b7DY4QpoTg8EL2dlhMBi8+NeUAhI15+OCHu5zO3eOFJ2fwy2NCanJmWoKS4qEEGILm2Z8zp07hzvvvFP2/T59+uCff/6p9aAIsTe5xGqDwYCKigo4OzvDx8fH4n17LavJLWfVJonbllkcNQUdzWvxNLclRUIIAWwMfLy9vXHx4kWEhoZKvl9YWAgvL8t/bRJiTqkZp1pqdon5+fnVaHeVUEpKSq0CAGvLWbZUmBayNWiyVtCRavEQQhyBTYHPwIED8dJLL2Hbtm2S7y9duhQDBw60y8BI82WPRp9qgxlrNX3UyM/PR3l5eY1nQKzNzNhSYVq49CQXNAFAdnaYZFApt209MTGRgh5CiEOwKfBZsGABYmNj0adPH8yYMQNdunQBYwwnT57EqlWr8Mcff+DgwYN1NVbSDNir0afaYKa2QQ8AbN++nf99YmIiAgICVAUJXJAiNzPj4lI9NrUVpv38/JCYmIgtW7YAsJzFOXu2463ChrYFlVLLfIQQ0hzZFPh07doVaWlpSE5OxgMPPMB3YmeMoUuXLtizZw+6detWJwMlDUvtspLS+4D12Y/GnkzLBRzc8pe1+zJhwgSUlZXh7Fnh1nMGxrRYt26KKDBRm2NjHqRwQVNtgsrGft8JIcRebC5g2KdPH5w4cQJHjx4VFTC844477D020kjYsqwkF/xwbR9yciqxcSOD0VhdT8bJieHJJ4cjLMy5ySy3lJeXq74viYmJiI4+goCAQrz33hRwmynNA5Pa1syxFlRKNRIFKImZEOJYbA58SkpK0LJlS9xxxx2iYMdoNOLq1avw9va25/hII2CvZSU/Pz/4+QFr1wKPPQZUVQFOTsA772gQExNoj6HWK7X3pbKyEgBQUeEGpe7rtWUt2ZmKERJCiI11fD7//HP06tULN27csHjv+vXr6N27N3bu3Gm3wZHmKTkZyMkB9u41/Tc5uaFHZCJVZ8eealpLRy0u2Zn7jpp2WieEkObMphmft956C7Nnz4aHh4fFe56enpgzZw5ef/11jBo1ym4DJM2HMB/GyQno3Nn0+q32U/W25CK1ld4eO82sbdGvzdZ1IaV8HFt2iBFCiCOyKfDJysrCm2++Kft+//798eyzz9Z6UKT5sUeekBKloEMYKEgFOBERZ2STggGoqjekNnCyR2DC5UtxQaTBYMDmzZv599XuECOEEEdkU+Bz5coVPl9BSkVFBa5cuVLrQZHmx97bz60FM1zQwc0iJSUlYe3aryUDnDFjtkkmBX/77WCcPNnNajBjbTeVi4uL6Hi5wKS4uFjxeoUBobifWZDVekWUwEwIISY2BT5hYWH47bff0KVLF8n3f/vtN7Rv394uAyNEiZ+fHyZMmIC//y7H8893AWNcaQUtdu0ahZSUSHToUP2w1+l0srueAGaRFAww/PHH7aLj5LaGW9tNpdPpLAITrlUGAFy9ehV79uzht8rLzV5Z2zVHCCHEOpsCn4SEBMybNw+DBw9GYKB4F05hYSGeffZZTJgwwa4DJESKXq/HRx99hOzsMBiNt4neMxo1+PjjTISHnxMFC3K7nkJD80S5NwADoIE583pDXCCjpnWEMDDR6/WipSlToGOqtHz2bEfZ2St7FGMkhBBHZ1Pg88wzz+DLL79EZGQkJkyYgM63slP//PNPfPzxxwgNDcUzzzxTJwMlDcc8N0RuRqI+c0jUBh3CYEEpuZjLvdHpkrFwoU7yO83rDen1eqvnBcT3Ra/XIz8/n/9ZuEwHGGEKuKpnr2pS1ZoQQog8mwIfLy8v7N+/H3PnzsXmzZv5fB4fHx9MmDABL774IjUpbWa4nViJiYmorKzE9u2tsGZNWxiNGmi1DLNnn8W4cdfh7OyM8vJyFBQU1Gs+ia07pZSSi3W6UowceQPPP6+DUbzrXLLekHmS8fz5l5CT44ywsEoEB/cG0Ft0L8wTvPPygkS5QVLVJexZ54cQQkgNChjqdDq8+eabeOONN3D58mUwxtC6dWu+fYXQ/v370atXL7i5udllsKR+mT+oDQavW32gTH/WRqMGy5Z1wM2bqy0ezLXtaG4LW3dKySUXA0BwsFFUYFGrBWbMAKZPB0JCLI8XJxkDMTHy3yucfTp8uCd27BgJa6W07FnnhxBCSA0CH45Go0Hr1q0Vjxk+fDiOHj2KDh061PRrSAMyzymxlsQrxHU05xgMBlXfefnyZcnXrc0iKQUz3OeFlJbrkpOBoUOBM2eAjh2lA57a4HaBSQc9Rmg0qFWdH0IIIfJqHPiowRiry9OTeqYmiZcj7GguRS7wUPpcTWeRrC3XLVpUiORkcXAVEmIZ8NS2UStHKoAEIKorRAUICSGkbtRp4EOaNvNZmtpWHk5MTISPjw82bXK/lUejsalKMjeLZEsStXlxP6nluvnzA/Hvfxtw++2tZM8jtewnFbglJSVBp9MpBkFSASRgRHLyewgJMZWxpoCHEELqBgU+RJL5lmtObSoP+/j4oKoqCLNng08etmXnknA2KDExUdV3crVyOHLLdX/9ZcTtt0OWeX6OMPiLj09HcHABfH3F94wL9ADxUptcAMkFPXKo8jIhhNQeBT5EktKSjrV8GiWnT8Nix1RNdi5JJdNLcXYW/xWXW64LC5OvSC4kVaU5LW0wAI3ZUpUf3n13t+iahMGamgDSPHCiIoWEEFJ7dRr4qH04EccRGWnaKSUMfmqyc8m8GnJ+vhbZ2c4ID69EcLDp5MIig9Wfk55tMW0/t046P6e67s6OHSMtkpO5ZTzzdi9yAWRCQgKCg4Mp0CGEkDpAyc2kXoWE4NZ2cYaqKk2tdi5xgcGaNVcxY4Ynn6z88ssGjBt3HeXl5ZK7xKRnW9QFPtL5OUJacH/trfXskkNBDyGE1J06DXxKSylBs7lT6oouJzkZuOOOi3jttd213rn0++9X8L//6UTJyrNmeeP8+fcVz2s+2yK3jR4wzRxxDUTNZ4zk2ltwzJfxqJkoIYQ0LJsCn0GDBqk67vvvv6/RYEjjZh7kHD7cE7t2jbJ5dxZgKhQYHn6u1mM6dcpy9qUmOUPWtt8LRUScwZgx2wAwGAw+SE+Pl2w5AYiX8SoqKiioIYSQBmZT4PPDDz+gffv2GDFihOppe9I8SO1kMj3wLftKAai3Xl7h4ZWqawsBNZuhEn42MzMWGRlxohye1NTV/LLZ998PwrFjPWAKfhi6dz9OW9MJIaQRsSnwWbZsGdavX4/PPvsM48ePx+TJkxEVFVVXYyONhPROpniYVx5mTIvr16di7VrLfBvzJRylIMiW4CQ42Ki6tpB58CY1QyX33VItJrhgLzV1NcLDz8Fg8MLx491RPeOjwfHj3TFo0PcU/BBCSCNhU+Aza9YszJo1CxkZGXj//ffRr18/dO7cGZMnT8a4cePg7e1dV+Mk9UwYmEjvZNJazLSYGnm25JN7jUYN5szxQVKSD8xXeMwbfHK7sjIzK7B6dYBicGI+PjVbw6WCN/P6QXKBkVKLCeGymi0tPQghhDSMGiU3x8XFIS4uDmvWrMFnn32GN954A08//TTy8/Mp+GkmhIFJfr4WH37I+GUtAHByYnjuuetYvNgTVVWmoOd//wNWrBCfp6rK1PNKqcHnunXA1KnS9X127RqFe++9C716lYu2qZvnylirLWQtKFEKjORaTADiZTVrLT3MawoRQgipf8qtoa04fPgw9u3bh5MnTyIqKoryfpoZPz8/BAUF4ejRQIgTdoF33tFgwQJP5OQAe/cCOTmmDuZas79RTk6mRp9y8vKkgx6O0ajB44+3wp13BuLrr4MQFBRUowRhLigREgYlSoGR1Ge5zwuX1bgdX9yx5u9zxQgJIYQ0HJv/CZqfn48NGzZgw4YNKCkpwYQJE5CZmYmuXbvWxfhIA+MCE2FJJq3W1L0csGzmaarRA34W6J13lLubS1VylmI0mmr/3HHHRX7mB1Dehi509mxH0TWYByX5+UEw35rOBUaWW9iN6Ns3A7GxmRazTLVp6UEIIaTu2RT43Hvvvdi7dy+GDBmC5cuXY8SIETR938xJBSZKy1fJyaag6MwZ00yPUtADSFdyllNVpcFrr+1W3AYvlZwslaPDGPgdaAaDF9LT4yGux8MQH5/On8OWgEZu2Y16bRFCSMOzKWr55ptvEBQUhH/++QeLFi3CokWLJI87fPiwXQZHGp5UYGJt+cp8FkhJdSXn6lmipUuB9u2BpCRYzNLIbVNPSEjAnj2hfNd3rZZh0aICVFW9K5ucnZkZiyFD0mXbUAQH54tesZZHxHVml0KFCQkhpHGwKfBZsGBBXY2D2Iler7drZWCpwMTa8pUt9Ho97r23HJmZWuTkOCMsrLrX1vLl7pg9WycqkCgXeJSXB2D2bB8+QDMaNVi4MAhbt46AwfAjTMUFxcFNRkYcunY9gWvXPGyqBWQuMTERAQEBFNgQQkgToGHUUEukpKQEOp0OBoOhye1Q0+v1eP31160el5KSYvNDOi9P/fKVWmrGa1q6sr681K1bCu6/3/KaJk7cgPDwc9izJx4HDvST+CQXEBllm4smJCTA399f8ntpJocQQhoHtc9vuyTo7Nu3D9euXUNcXBxatWplj1OSGlCa6anJcUK2LF+pnXVSMw5ry0uc8PBKxa7vsbGZfMXlagzVs0BaMGbE2LFbEBqaJ/pOahpKCCHNh82Vm69evYrFixcDMHVfHz58OPbs2QMACAgIwHfffYdu3brZf6SkSbBl1smegoONoiU5ua3mwgKFUnk/3LEDBw5EZGQkzegQQkgzY1Pgs3nzZsyZM4f/eevWrfjxxx/x008/4bbbbsPDDz+MRYsWYcuWLXYfKGkcrM3mGAwGVeepyayTksuXL+O++1wxdKgfMjP12L//A9GurqIiP0REnOH7al265I+vvx4pe75WrVohKCjIrmMkhBDS8GwKfLKzs9G9e3f+56+//hpjx45Fv36m3Ilnn30W999/v31HSBoNtbM5DYHrrp6SkoK+fcuRlaXchsLXtwhff21Ztyc0NA8AcPXq1Xq/BkIIIXXPpsrNlZWVcHNz43/OyMhA3759+Z+Dg4NVF5Qj9qPX61FQUFDn997eszQ1YTB4ITs7DAaDl+T7+fn5/H2Qa0NhMHhBpyvF6NE7Zass79mzB3q9vh6uiBBCSH2yacYnIiICP/74Izp06IB//vkHf/31F/r378+/n5eXR/kQ9awxz8LYS1JSEioqKvDss9lWu6tzMz+A9f5c1ooSNoZAjxBCiH3ZFPhMmzYNKSkp+Omnn3Dw4EHExcWJWlV8//336Nmzp90HSeQ5wsNZp9MhP1+LnTu7KXZXN2etaajp3Op2jRFCCGkebFrqevTRR/Hqq6+iqKgI/fv3x7Zt20Tv5+fnY/LkyXYdILG/xtI6Qe04XF1dkZ3tLDt7I8da01BCCCGOx+Y6PpMnT5YNbt58881aD4jUDa4IX2Panu3n54eUlBRVNX/Cwy9IbEE3wsXF8rPCfl3C5ayRI7vgxIkjisdTUEQIIc0bdRhtxoQPdH9//0a1PZub7REGYXl5pqaokZGWxRKDg41mHdJNxQfXrZsiyvWR28Wl05Wic+cYnDhRfU6DwQuZmbF8YUO5vCFCCCHNh02BT0VFBebNm4ft27fD19cXjz/+uGj258KFCwgODkZVVZXdB0psYx4AtG1bgpkz6+e7ExMT4ePjI/u+1KzTunXA1Kmmystarak/WHKy+HPR0UcQEFCIdeumiHJ9duwYiYCAQnh5XZXcxSWVB3T4cE/s2GHesd163hAhhJCmzabA58UXX8SHH36Ip59+GsXFxZgxYwYyMzPxzjvv8MdQ66+GJ7WNe84cHZKSatdnS21Ojq0NO/PyqoMewPTfxx4Dhg6tHi/33RUVbpIVl9etm4K4uAzFXVwc7v5IpbhJHU8IIaT5sCnw+fjjj/Hee+9h5EhTxdtJkyZh+PDheOSRR/D+++8DADQajdIpSD2Q2sZdVaXBmTO1C3xsycnhmC9fSVV+PnjQFUajOFCqqoJovNx3Hz58ER9+aNlugjEtDhyIU9VlXer+SB3fWJLACSGE2I9Ngc/58+cRFRXF/9yxY0f88MMPGDRoEB566CG8/PLLdh8gUSb1cJbaxu3kxNCxY+2DUltmcsyXr1auvIriYsuaQwaDFzSaVLPxmjrBm393VFQ5Ro3aZbFMZaJFXNx+i5wdbvbGw8MDgPT9Aap3fT366HCbZ60IIYQ0DTYFPm3atMHZs2cRFhbGv9a2bVvs3bsXAwcOxKRJk+w8PGKN3CxM27YlmDNHh6oqDZycGN55R1Or2R4pSsnIUstXM2d64qmnvCyWkcwbiCqN19XVVTLXBzAFLrGxmYiNzRQVJUxISOA7rHP3Snh/tFqGqVOvYcqUawgL60cBDyGENGMaZkNSzpQpU8AYw7p16yzeO3/+PAYMGIC///67SSc3l5SUQKfTwWAwwNvbu6GHI0uuWWh+vhbZ2c7o3FmLVq1a4cwZ08yJu7tyc1Fbt7lbS0beuxcYNMjycxMnbkB4+DnJc5p2ofniySeHIyYmUPa7uWtfu7YKixYF87M78fHpCA4usNiWPnXqVMkdbXl54O+PvYNCQggh9Uvt89umGZ/nnnsOf/75p+R7bdu2xb59+5CWlmbbSInN5NpUmO/kWrXqKqZPb6m6rUVKSoqq4EdNMnJkpCkg4o4BTMtt5vk2QlwV5eBgo+wxQPVy29SpBTAYTN3W8/ODkZ4eb9O29JAQCngIIcTR2FS5uX379hg6dKjs+8HBwZg4cWKtB0WUSc3cSO3kmjnTE3l56ttaqD3u9GlxQANUJyNzQkJMs0BOTqafnZyAZcsMdt8tpdOVwte3iA96AHEzUkIIIUTIpsCH89lnnyEhIQFRUVGIiopCQkICtm7dau+xSbp58ybuuOMOaDQaHD16VPTe8ePHcdddd6FFixYIDQ11qGRrpZ1c9sbN5ghJJSMnJwM5OaZlr5wcYNy46/YfDJSbkRJCCCFCNgU+RqMRSUlJSEpKwh9//IGOHTuiY8eOOHHiBJKSkvDAAw/UeR2f2bNnIzg42OL1kpISDBkyBO3bt8ehQ4ewfPlyLFy4EGvXrq3T8TQW3E4lIdNOLvt/l9RszjvvWC4b6fV6lJaehJ/f77hy5XecPn3a/oOB9LVLbWMnhBBCbMrxWbNmDdLT07Fjxw6+lg9nx44deOSRR7BmzRqkpqbac4y83bt3Y8+ePdi2bRt2794teu/jjz9GeXk53n//fbi6uqJbt244evQoVq5cialTp9bJeBoT851RGo0Ry5aVICTEBwUF6s5RXFys+L4wATo52ZTTI5ccrDavqDa4rfxS1y7cxk71eAghhHBsCnzWr1+P5cuXWwQ9ADB69Gi8/PLLdRb4XLhwAY8++ii++OILvh6LUEZGBvr37y96yA0dOhTLli3DlStX0KpVK8nz3rx5Ezdv3uR/LikpsfvY64uwIaevbxHGjXsQgI/qz2/ZssXqMcIEaKXkYDX5QnLNQbk/Q7mda8LjhFv558+/hJwcZ4SFVSI4uDeA3o2qKSshhJCGZ1Pgc/r0acTHx8u+Hx8fj5SUlFoPyhxjDJMmTcLjjz+OXr16IScnx+KYwsJChIeHi14LDAzk35MLfJYsWYJFixbZfcwNhdsZBQAGgwEAcPnyZbud/9KlS3YJJIQ70LRahpdfNmDcuOt8oGLLTjRuq3pQEBATU+uhEUIIacZsyvFxd3dXXA4pKSlBixYtVJ/vmWeegUajUfz1559/4rXXXkNpaSnmzp1ry3BVmTt3LgwGA/8rNzfX7t9R1wwGL2Rnh1nsYtq8eTPWrl2L7du32+27Nm/eDL1eX6tzmO9AMxo1t4oJBvFBlb13ohFCCCGAjTM+cXFxeOutt/DWW29Jvv/GG28gLi5O9flmzpxptdpzhw4d8P333yMjIwNubm6i93r16oXx48fjgw8+QJs2bXDhwgXR+9zPbdq0kT2/m5ubxXkbO+FynnntHjX1a2qrtsGG3A60Q4cMCAnR1erchBBCiBKbAp958+ZhwIAB0Ov1ePrpp9GlSxcwxnDy5Em88sor+PLLL7F3717V52vdujVat25t9bhXX30VL7zwAv9zfn4+hg4dis2bNyM2NhaAKSibN28eKioq4OLiAgBIS0tD586dZZe5miqu9UJOTiWefz4AjJl6cDGmxVdfjcL8+bHw8CiSzdkR5tY88shg+Pv7w2AwYPPmzfUyfqleWRqNER4e+SgoKKNkZEIIIXXGpsCnb9++2Lx5M6ZOnYpt27aJ3mvVqhU++eQT9OvXz64DBIB27dqJfm7ZsiUAICIiAiG3smvHjRuHRYsWITk5GXPmzEFWVhbWrFmDVatW2X08jYGfnx+OH5cqJKhBaWmgbPVj8xmitm1LMGlSFSoqKuph1CZyu7AOHDiCAwdMxyQmJoo+I5cITQghhNjCpsAHAP7zn/9g6NCh+Pbbb/m6LJ06dcKQIUMkd1vVF51Ohz179mDatGmIiYmBv78/5s+f36y3sku3hbAsJMiRqu48e7YO58+vskswIdyFZZ5QbTB4ITc3FAAQGpprsQPN/PsrKyv53zfEch4hhJDmyabA5/vvv0dKSgoOHjyI//znP6L3DAYDunXrhrfffht33XWXXQdpLiwsTLJQYvfu3fHTTz/V6Xc3JlwhwcceM7WMEBYSlKrdI5VbYzRqUFTkW+vAR2kX1uHDPbFjxygAGu5bMXq0KXix9r1SwdrOnSMREXGGZn4IIYTYzKZdXatXr8ajjz4q2fVUp9Phsccew8qVK+02OGKdeVsIYYd0c1IVjrVa5cahUqR29sklPHOBS3XQAwBa7NihrpcWtaMghBBiTzYFPseOHcOwYcNk3x8yZAgOHTpU60ER24SEAAMGWO80zuXWcMGPRmPE/PnnJWdO5LbIA6ZCh2q3tEsFLiZa5OaGyH4Pl6BurR0FJUITQgixhU1LXRcuXOAfSJInc3bGpUuXaj0oUnvmAQGXHBwRcQapqav53JrExOEw3/ylJqdG7ZZ2qR1cnK1b7wfAAFh+j06n46syt21bcqvOjwZOTgzLlpVg3LgHqSozIYQQm9kU+LRt2xZZWVnoKJM9e/z4cb6KLmlY3Jb38vJybNrkjuef18Fo1PBVkmfNMlVJNg9g7J1TY76DS0wDbglM6nu4oGbmTCApiesLpkFIiA9sacVBCCGEcGxa6rr33nvx3HPP4caNGxbvXb9+HQsWLJDs40Uahp+fH6qqgjB7tg+MRlOAYaqS7COqkixUFzk10dFHkJq6Gv37K9d4Uvoetct5hBBCiBKbAp9nn30WRUVF6NSpE15++WV8+eWX+PLLL7Fs2TJ07twZRUVFmDdvXl2NldTA6dNStX5Msyd6vd5i27lUTg3AkJ8fbNP3mufu6HSliIk5InHuapS7QwghpK7ZtNQVGBiIAwcO4IknnsDcuXP5LeUajQZDhw7FG2+8wTcGJY2DXK0fP78rstvPo6MP4dChXqjeiaVBeno8oqKyVC13yeUIWRYuNP39YYxydwghhNQPmwsYtm/fHl9//TWuXLmCM2fOgDGGyMjIZtcWormQq/Xj7FxocawwYDHHLUPJBT7cDI21HCHzwoUAcPfdyYiJ0VHuDiGEkDpnc+DDadWqFXr37m3PsZA6kpwMDB3KJQcD7u56vP66eCuXecBiTrgMJYVLpt67F1i1yjJH6I8/uqJr1z+g05Xyvzh33lmGoCBqTkoIIaTu1TjwIU1LSEh1YnBBgeVWdPl6O6agJz4+XRSsuLq6ilpUcMLDtdBqGZ9MbcLw7bfDsGfPEGo3QQghpEFR4EMAyNXbMQLQgDEtvvtuMIYOvRPjxl3nl7XkcoRGjhQumTEobVknhBBC6pNNu7pI8yVV1dlEehu8UgFDbvv60KHfQNyqgtpNEEIIaVg040N4wsTja9c8b1VWrsZtg1dTS0enK0XXrn9gz54holkkjcYIFxd1VZ8JIYQQe6MZHwKguu4OAISHn0NoaK5FzR0nJ1NytFrms0gAA2NarFs3BYcP97TPwAkhhBAb0IwPka27M2rULnz11ahbPbJM2+BtrZwcHX0EAQGFeO+9KeDibMr1IYQQ0lBoxsfBydXdMRi8sGxZJ+TkaLB3L5CTY9oWr3QeuW7uFRVuMP+rJsz1oSrNhBBC6gvN+DggYaCRmRkr25urdevW8PMz1f0pLy9HQUH1McJWF0rd3JOSknDtWits3Cje4u7kxPDkk8MRFuZMVZoJIYTUGwp8HBBXbDAnpxKLFgVYvK/VMsyc+W/4+bWCXq+X3bYOWK/UrNPp0KVLoET1aA1iYqi9CSGEkPpFgY+D8vPzw/HjwK12ayKPPXYN/v43UFBQAIPBoHgepW7uOl0pP7tkXj2auqwTQghpCBT4ODB//yvQaHQWRQtbtFiLtWvVJR1LFT6UW8YSVo8mhBBCGgIlNzswf/8bFkULR4/eZdNOK27LupOTaepIuIxFuTuEEEIaG5rxaeTy8oDTp4HISPWzJVI9tIRcXV35oMS8W7q1oMdg8EJRkR98ffX8sdHRRzB/fixKSwNpGYsQQkijRoFPI7ZuHTB1KmA0AlotsHat8pZyAFaTkTkpKSn87827pctR2r0VHGxEUJDVUxBCCCENigKfRiovrzroAUz/fewxU4Kw1IwKN8sj3GYOSM/QAFCcEZJibfeW+fcKZ5UIIYSQxoICn0bq9OnqoIcj1ytLr9fjxRc/4AMcwBTs5OcHIT09XnKGRopckARY3721fft2i/OlpKRQ8EMIIaRRocCnkYqMNC1vCYMfuV5ZGzY4YfXq1FuBiRGmjugaAAxcd3RrMzRKy1gGgxeuXfO4dW5xw1Ff3yLZa7B1VokQQgipaxT4NFIhIZAo+iee7dHr9cjJqcTs2QFgjKuKLJyV0QhPKTtDo7SMdfZsR8F7DFzwwwVH1GuLEEJIU0KBTyOmVPSPS2LOzg6D0ThR1fnkZmjklrFyc0NEARGggUbDMGbMFoSG5lHQQwghpMmhwKeRkyv6xy0jSRUQFDMtdynN0Eidw1TbRyMZEHl6llHQQwghpEmiwKeJ4woIipejTEtcGo0R8fHpCA7Ol6zRI0xmFp5Dq2UYOXIXQkNzJQMipbweQgghpDGjwKcZiI4+goCAQqxbN0UUpDAGREVlSc7OSCUzp6auRlGR7612E/1QXt4bbduWYM4cHaqqNHByYli2rARDhgyW3MVFCCGENHbUsqKZqKhwk1juMiUzcwYOHAhAPpkZAMLDzyE42Ag/Pz8EBQVh5kwf5ORosHcvkJOjwcyZPvD396+XayKEEELsjWZ8mgm5PB3hslRAQAAA6zV5zJnnGXEd1zly9X/MjyOEEEIaGgU+jUxNenMBlrk+5snMSUlJ0Ol0ANQFSUr8/PyQkpKC8vJybNrkjuef18Fo1ECrZXj5ZQPGjbtOlZsJIYQ0ShT4NCLi3lzVQYQ5uZkUpYajOp2O/5y1IEnNTI2fnx/y8oDZs4VtNTSYM8cHSUk+oJiHEEJIY0SBTyNh2ZtLg1mzvHH+/PuSy08TJkyQPI9Sw1HhTA0AzJ9/CTk5zggLq0RwcG8AvW2aqbGlrQYhhBDSGFDg00hIBRFKeTceHh5ISUlBfn6+TTushEFNUBAQE1PjIdvUVoMQQghpDCjwaSSkgggu70YuedjPz89u/bC47u5ypGaC1LTVIIQQQhoTCnwaieoggqGqqrrSsrBXllSHdbU7p5SO49pfWCPVbV2prQYhhBDS2FDg04gkJwN33HERr722m99hVd11Xdw8lGOetyPFWt6O2lkjuePk2moQQgghjQ0FPo1McLAR4eHnAADZ2WGy9XaEaNs4IYQQog4FPo2YdANShvz8YNXnUJO7QwghhDgKCnwaMZ2uFPHx6UhLGwyu8SigQXp6PPLzLyEoSPpzXLBTXFyMLVu2WP2exMREu42ZEEIIacwo8GlkzGdggoMLUB30mDCmRV5eC8mt6GoTlYWKi4ttHCUhhBDSNFHg08iYJyvn52uxcSOD0Vgd/Dg5McTE6CQ/b76sJdwKD0ByW/yePXtkPyNXDJEQQghpiijwaYTMiwxa1srRqNpFdfhwT0EXdnbrl/S2eKnPKB1HCCGENEVa64eQhpacDOTkAHv3mv6bnGz9MwaDlyDoAUzLZdXb4nfsGAmDwUvxM9z2ee44SoQmhBDS1NGMTxOhplZOXh5w8KArv1RlvhVeTIvMzFgMGZLOvyL1Gca06NdvIgYMoG3zhBBCmj4KfJo4bgfXpk3umD1bB6PRDxpNKuLj0yW2wotlZMQhNjaTz+OR2j7v5ATExvpRt3VCCCHNAi11NWJ5eablrbw86fe5HVzLl3+CWbO8+QRoxrRIT4/ngx8TZvF582KIOl0pRo3axX/GyYlR7y1CCCHNCs341LO8PFMn9shI5YBizZqrmDHDE0ajBlotw/z555GQcIV/39nZGRqNKdCRW6IKDs5HaupqFBX5wsWlHOvWTREdxzVBFYqOPoKIiDMoKvLFk08OR0xMoB2umhBCCGkcKPCpR+vWAVOnmjqwa7Wm3VpSicq//34F//ufDoyZAhujUYNFi4JhMGwRbS835fKEwcXlpsUSFRfU6HSl/GdGjdplsWNLars695ngYKPFe4QQQkhTRoFPPcnLqw56ANN/H3vM1NncfObn1CnL3BxuWYoLVMy3nXfvfhzHj3dXDGqEszlcUEQIIYQ4Egp86snp09VBD6eqCjhzxjLwCQ+vlJ3BAaS3nR8/3h0PPPAJXF0rLIKapKQk6HTVBQ8vX76M7du32/kKCSGEkMaPkpvrSWSkaXlLyMkJ6NjR8tjgYKMoydh8Bkcup+eTTx7ElSu+FjM5Op0OQUFB/K/gYHVNTqluDyGEkOaGZnzqSUiIVAVm0+vmHdQvX76suCwl3bUdAEwFByMiziguY5m3xZDi6upKdXsIIYQ0OxT41KPkZFNOz5kzppkeLuiRayoqTEw2f12YqCxkngskRxjUqN1pRgghhDR1tNTVAJigpI7SrIuS6OgjSE5+D4A4cUhqi7rSktW6dUD79sCgQab/rltXo+EQQgghTQIFPvXI3kFGSEgBRo+WzwVKSEhASkqK7JKV3E4zuYKJhBBCSFNHS131RC7IyMysXeyplAvk7++vmKdjy04zQgghpDmgwKeeyAUZOTnSfwRco1FfXz10ulL06tULAPDbb79ZHCuXC2QNt9NMOC65nWaEEEJIc0CBTz2RCzLCwiqRlSU+1rw44ahRuwBYBjy1pbTTjBBCCGmOKMennnBBhpOT6WcuyDBvCyFVnHDnzpEwGLxs/k41dXiSk4GcHFMz1Jwc6RYahBBCSHNBMz71SGo7e0GB+Bi54oTCLeoJCQlwdnZGZWWlxXe4uLhAp9PZVIcnJIRmeQghhDiGJhX4fPXVV3j++edx/PhxtGjRAnfffTe++OIL/v1//vkHTzzxBPbu3YuWLVti4sSJWLJkCZydG89lmgcZ5rMyUsUJzbeo+/v7IygoqM7HSgghhDQ3jScisGLbtm149NFH8dJLL2HQoEGorKxEliA5pqqqCiNGjECbNm1w4MABFBQU4OGHH4aLiwteeumlBhy5MmEVZa6Hltou6oQQQgixjYYxYTm9xqmyshJhYWFYtGgRkmWSUHbv3o2RI0ciPz8fgYGBAIC3334bc+bMwaVLl1T3nSopKYFOp4PBYIC3t7fdrkGNgoICrF27FgC3q0u6i3pCQgL8/f0BUGsJQgghBFD//G4SMz6HDx/G+fPnodVq0bNnTxQWFuKOO+7A8uXLERUVBQDIyMjA7bffzgc9ADB06FA88cQTOHHiBHr27Cl57ps3b+LmzZv8zyUlJXV7MQqKi4v530ttUee2uK9fnyZ6T6lIISGEEEKqNYnA5++//wYALFy4ECtXrkRYWBheeeUVDBgwAH/99Rd8fX1RWFgoCnoA8D8XFhbKnnvJkiVYtGhR3Q1eJb1ejy1btsi+L7XFPTr6CICat70ghBBCHE2Dbmd/5plnoNFoFH/9+eefMN4qfjNv3jyMGTMGMTExWL9+PTQaDT777LNajWHu3LkwGAz8r9zcXHtcms2Ughd7bnEnhBBCHFmDzvjMnDkTkyZNUjymQ4cOKLi157tr1678625ubujQoQP++ecfAECbNm3wyy+/iD574cIF/j05bm5ucHNzq8nw64x51WY1W9wJIYQQYl2DBj6tW7dG69atrR4XExMDNzc3nDp1Cv/6178AABUVFcjJyUH79u0BAHFxcXjxxRdx8eJFBAQEAADS0tLg7e0tCpgaSl6eqW1FZKRyzRypJa2IiDNWt7gTQgghxLomUbnZ29sbjz/+OBYsWIA9e/bg1KlTeOKJJwAA999/PwBgyJAh6Nq1Kx566CEcO3YM3377LZ599llMmzatwWd0rHVlz8sD9u93RV5ekOSSFgCMGiXfhZ0QQggh6jSJ5GYAWL58OZydnfHQQw/h+vXriI2Nxffff49WrVoBAJycnLBr1y488cQTiIuLg6enJyZOnIjnn3++Qcct15V96FDTzM+6ddz7ftBopsguaSl1YSeEEEKIOk0m8HFxccGKFSuwYsUK2WPat2+Pr7/+uh5HZZ1cV/YzZ0y/FwZFpqCHAdDwxwqXtGrahZ0QQgghJk1iqasp47qyCzk5mXp1SQVFpqDHtiUttcUZCSGEEEfXZGZ8miquK/tjj5lmeriu7FyCs1YrDn40GiMeeOAT6PV+aNfuH4SEiLuYJiYmwsfHh/+ZKjcTQggh6jWJlhX1qS5aVuj1euTkVCInxxlhYZUIDq6OdDZtcsfs2ToYjRpoNEZ0734cx493lyxUeO+996J37952GRMhhBDSnDSrlhVNmV6vx+uvv87/LOiryps+3Qu5uSEoK3PH11+PALcCye3qiog4A52uFC1atKinURNCCCHNEwU+dUxNO4mzZzuKtrELUaFCQgghxH4oubmOGQwGK+97yQY9ABUqJIQQQuyJAp86VlFRofi+VDsKDhUqJIQQQuyLlroamK+vXrIdxZgxWxEamicKepyd6Y+LEEIIqQ2a8WlgOl2pZDuKqKiTFjM9wm3shBBCCLEdTSE0AtSOghBCCKkfFPg0EmraUVCFZkIIIaR2KPCpY7XNy0lISIC/vz9VaCaEEELsgAKfOqTX61FZWVmrc7i4uCAoKMhOIyKEEEIcGwU+dcS8YnNNUUcRQgghxH5oV1cdUVOxWQ3ayUUIIYTYDwU+hBBCCHEYFPgQQgghxGFQ4NNIGAxeyM4Og8Hg1dBDIYQQQpotSm5uAAaDF4qK/ODrq4dOV4rDh3vyjUq5ys3R0UcaepiEEEJIs0OBTz0zD3Li49ORnh7P9+piTIudO0ciIuIMVXAmhBBC7IyWuuqRweDFBz2AKchJS4u36M7OmBZFRb4AqFozIYQQYk8041NHpAKWoiI/iyAH0Fp0Z9dqGZ58cjjCwpypWjMhhBBiRxT41BE/Pz+kpKSgvLwcly9fxvbt2+Hrq7cIcsyXuzQaI15+uQQxMYENOHpCCCGkeaLApw6Zz9bodKUYNWqXKMcnLi4DUVFZiIrK4ruzjxv3IACfBhkzIYQQ0pxR4FMPhMte0dFHEBFxBpmZsThwIA4HDvRDRkacaCcX5fUQQgghdUPDqBmUSElJCXQ6HQwGA7y9ve12Xr1ej/LychQXFyMvDxg2rAuMRg3/vlbL8MsvFymvhxBCCKkBtc9vmvGpJ1wwExQUhMJCwGgUv280alBaGgiKeQghhJC6Q9vZG0BkJKA1u/NOTkDHjg0zHkIIIcRRUODTAEJCgLVrTcEOYPrvO++YXieEEEJI3aGlrgaSnAwMHQqcOWOa6aGghxBCCKl7FPg0oJAQCngIIYSQ+kRLXYQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBvbrMMMYAACUlJQ08EkIIIYSoxT23uee4HAp8zJSWlgIAQkNDG3gkhBBCCLFVaWkpdDqd7PsaZi00cjBGoxH5+fnw8vKCRqOp8XlKSkoQGhqK3NxceHt723GETQfdA7oHAN0DgO4BQPcAoHsA1O09YIyhtLQUwcHB0GrlM3loxseMVqtFSEiI3c7n7e3tsH/BOXQP6B4AdA8AugcA3QOA7gFQd/dAaaaHQ8nNhBBCCHEYFPgQQgghxGFQ4FNH3NzcsGDBAri5uTX0UBoM3QO6BwDdA4DuAUD3AKB7ADSOe0DJzYQQQghxGDTjQwghhBCHQYEPIYQQQhwGBT6EEEIIcRgU+BBCCCHEYVDgY4O33noL3bt35wsvxcXFYffu3fz7N27cwLRp0+Dn54eWLVtizJgxuHDhgugc//zzD0aMGAEPDw8EBARg1qxZqKysrO9LsZulS5dCo9EgNTWVf62534eFCxdCo9GIfnXp0oV/v7lfP+f8+fOYMGEC/Pz84O7ujttvvx2//fYb/z5jDPPnz0dQUBDc3d0RHx+P06dPi85RVFSE8ePHw9vbGz4+PkhOTsbVq1fr+1JqJCwszOLvgUajwbRp0wA4xt+DqqoqPPfccwgPD4e7uzsiIiKwePFiUa+k5v73ADC1SEhNTUX79u3h7u6Ovn374tdff+Xfb2734Mcff8SoUaMQHBwMjUaDL774QvS+va73+PHjuOuuu9CiRQuEhobi5Zdfts8FMKLajh072FdffcX++usvdurUKfZ///d/zMXFhWVlZTHGGHv88cdZaGgo++6779hvv/3G+vTpw/r27ct/vrKykkVFRbH4+Hh25MgR9vXXXzN/f382d+7chrqkWvnll19YWFgY6969O5s+fTr/enO/DwsWLGDdunVjBQUF/K9Lly7x7zf362eMsaKiIta+fXs2adIklpmZyf7++2/27bffsjNnzvDHLF26lOl0OvbFF1+wY8eOsdGjR7Pw8HB2/fp1/phhw4axHj16sIMHD7KffvqJdezYkT344IMNcUk2u3jxoujvQFpaGgPA9u7dyxhzjL8HL774IvPz82O7du1i2dnZ7LPPPmMtW7Zka9as4Y9p7n8PGGMsMTGRde3ale3bt4+dPn2aLViwgHl7e7O8vDzGWPO7B19//TWbN28e2759OwPAPv/8c9H79rheg8HAAgMD2fjx41lWVhb75JNPmLu7O3vnnXdqPX4KfGqpVatW7L333mPFxcXMxcWFffbZZ/x7J0+eZABYRkYGY8z0l0Wr1bLCwkL+mLfeeot5e3uzmzdv1vvYa6O0tJRFRkaytLQ0dvfdd/OBjyPchwULFrAePXpIvucI188YY3PmzGH/+te/ZN83Go2sTZs2bPny5fxrxcXFzM3NjX3yySeMMcb++OMPBoD9+uuv/DG7d+9mGo2GnT9/vu4GX0emT5/OIiIimNFodJi/ByNGjGCTJ08WvZaQkMDGjx/PGHOMvwdlZWXMycmJ7dq1S/R6dHQ0mzdvXrO/B+aBj72u980332StWrUS/W9hzpw5rHPnzrUeMy111VBVVRU+/fRTXLt2DXFxcTh06BAqKioQHx/PH9OlSxe0a9cOGRkZAICMjAzcfvvtCAwM5I8ZOnQoSkpKcOLEiXq/htqYNm0aRowYIbpeAA5zH06fPo3g4GB06NAB48ePxz///APAca5/x44d6NWrF+6//34EBASgZ8+eePfdd/n3s7OzUVhYKLoPOp0OsbGxovvg4+ODXr168cfEx8dDq9UiMzOz/i7GDsrLy/HRRx9h8uTJ0Gg0DvP3oG/fvvjuu+/w119/AQCOHTuGn3/+GcOHDwfgGH8PKisrUVVVhRYtWohed3d3x88//+wQ90DIXtebkZGB/v37w9XVlT9m6NChOHXqFK5cuVKrMVKTUhv9/vvviIuLw40bN9CyZUt8/vnn6Nq1K44ePQpXV1f4+PiIjg8MDERhYSEAoLCwUPR/ctz73HtNxaefforDhw+L1rA5hYWFzf4+xMbGYsOGDejcuTMKCgqwaNEi3HXXXcjKynKI6weAv//+G2+99RZmzJiB//u//8Ovv/6Kp556Cq6urpg4cSJ/HVLXKbwPAQEBovednZ3h6+vbZO4D54svvkBxcTEmTZoEwDH+dwAAzzzzDEpKStClSxc4OTmhqqoKL774IsaPHw8ADvH3wMvLC3FxcVi8eDFuu+02BAYG4pNPPkFGRgY6duzoEPdAyF7XW1hYiPDwcItzcO+1atWqxmOkwMdGnTt3xtGjR2EwGLB161ZMnDgR+/bta+hh1Zvc3FxMnz4daWlpFv/CcRTcv2YBoHv37oiNjUX79u2xZcsWuLu7N+DI6o/RaESvXr3w0ksvAQB69uyJrKwsvP3225g4cWIDj67+rVu3DsOHD0dwcHBDD6VebdmyBR9//DE2bdqEbt264ejRo0hNTUVwcLBD/T3YuHEjJk+ejLZt28LJyQnR0dF48MEHcejQoYYeGpFAS102cnV1RceOHRETE4MlS5agR48eWLNmDdq0aYPy8nIUFxeLjr9w4QLatGkDAGjTpo3Frg7uZ+6Yxu7QoUO4ePEioqOj4ezsDGdnZ+zbtw+vvvoqnJ2dERgY6BD3QcjHxwedOnXCmTNnHObvQVBQELp27Sp67bbbbuOX/LjrkLpO4X24ePGi6P3KykoUFRU1mfsAAOfOnUN6ejqmTJnCv+Yofw9mzZqFZ555Bg888ABuv/12PPTQQ/jf//6HJUuWAHCcvwcRERHYt28frl69itzcXPzyyy+oqKhAhw4dHOYecOx1vXX5vw8KfGrJaDTi5s2biImJgYuLC7777jv+vVOnTuGff/5BXFwcACAuLg6///676A88LS0N3t7eFg+Rxuqee+7B77//jqNHj/K/evXqhfHjx/O/d4T7IHT16lWcPXsWQUFBDvP3oF+/fjh16pTotb/++gvt27cHAISHh6NNmzai+1BSUoLMzEzRfSguLhb9q/j777+H0WhEbGxsPVyFfaxfvx4BAQEYMWIE/5qj/D0oKyuDVit+jDg5OcFoNAJwrL8HAODp6YmgoCBcuXIF3377Lf7973873D2w1/XGxcXhxx9/REVFBX9MWloaOnfuXKtlLgC0nd0WzzzzDNu3bx/Lzs5mx48fZ8888wzTaDRsz549jDHT9tV27dqx77//nv32228sLi6OxcXF8Z/ntq8OGTKEHT16lH3zzTesdevWTWr7qhThri7Gmv99mDlzJvvhhx9YdnY2279/P4uPj2f+/v7s4sWLjLHmf/2MmUoZODs7sxdffJGdPn2affzxx8zDw4N99NFH/DFLly5lPj4+7Msvv2THjx9n//73vyW3tPbs2ZNlZmayn3/+mUVGRjbaLbxSqqqqWLt27dicOXMs3nOEvwcTJ05kbdu25bezb9++nfn7+7PZs2fzxzjC34NvvvmG7d69m/39999sz549rEePHiw2NpaVl5czxprfPSgtLWVHjhxhR44cYQDYypUr2ZEjR9i5c+cYY/a53uLiYhYYGMgeeughlpWVxT799FPm4eFB29nr2+TJk1n79u2Zq6sra926Nbvnnnv4oIcxxq5fv87++9//slatWjEPDw/2n//8hxUUFIjOkZOTw4YPH87c3d2Zv78/mzlzJquoqKjvS7Er88Cnud+HpKQkFhQUxFxdXVnbtm1ZUlKSqH5Nc79+zs6dO1lUVBRzc3NjXbp0YWvXrhW9bzQa2XPPPccCAwOZm5sbu+eee9ipU6dEx+j1evbggw+yli1bMm9vb/bII4+w0tLS+ryMWvn2228ZAIvrYswx/h6UlJSw6dOns3bt2rEWLVqwDh06sHnz5om2IDvC34PNmzezDh06MFdXV9amTRs2bdo0VlxczL/f3O7B3r17GQCLXxMnTmSM2e96jx07xv71r38xNzc31rZtW7Z06VK7jF/DmKDEJiGEEEJIM0Y5PoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQ0U4WFhXjyySfRoUMHuLm5ITQ0FKNGjRL10Dlw4ADuvfdetGrVCi1atMDtt9+OlStXoqqqij8mJycHycnJCA8Ph7u7OyIiIrBgwQKUl5eLvu/dd99Fjx490LJlS/j4+KBnz558s0oAWLhwITQaDYYNG2Yx1uXLl0Oj0WDAgAFWryssLAwajUb216RJk2y/WY3cgAEDkJqa2tDDIKRZcG7oARBC7C8nJwf9+vWDj48Pli9fjttvvx0VFRX49ttvMW3aNPz555/4/PPPkZiYiEceeQR79+6Fj48P0tPTMXv2bGRkZGDLli3QaDT4888/YTQa8c4776Bjx47IysrCo48+imvXrmHFihUAgPfffx+pqal49dVXcffdd+PmzZs4fvw4srKyROMKCgrC3r17kZeXh5CQEP71999/H+3atVN1bb/++isfmB04cABjxozBqVOn4O3tDQBwd3e3xy2sFxUVFXBxcam37ysvL4erq2u9fR8hjZJdGl8QQhqV4cOHs7Zt27KrV69avHflyhV29epV5ufnxxISEize37FjBwPAPv30U9nzv/zyyyw8PJz/+d///jebNGmS4pgWLFjAevTowUaOHMleeOEF/vX9+/czf39/9sQTT7C7775bxdVV43oGXblyhX/tiy++YD179mRubm4sPDycLVy4UNT/CgB7++232YgRI5i7uzvr0qULO3DgADt9+jS7++67mYeHB4uLixP1X+PG/vbbb7OQkBDm7u7O7r//flE/JsYYe/fdd1mXLl2Ym5sb69y5M3vjjTf497Kzs/n72r9/f+bm5sbWr1/PLl++zB544AEWHBzM3N3dWVRUFNu0aRP/uYkTJ1r0RMrOzmbr169nOp1O9P2ff/45E/7fOjfud999l4WFhTGNRsMYM/0dSE5OZv7+/szLy4sNHDiQHT161KZ7T0hTRUtdhDQzRUVF+OabbzBt2jR4enpavO/j44M9e/ZAr9fj6aeftnh/1KhR6NSpEz755BPZ7zAYDPD19eV/btOmDQ4ePIhz585ZHd/kyZOxYcMG/uf3338f48ePt8tMxE8//YSHH34Y06dPxx9//IF33nkHGzZswIsvvig6bvHixXj44Ydx9OhRdOnSBePGjcNjjz2GuXPn4rfffgNjDCkpKaLPnDlzBlu2bMHOnTvxzTff4MiRI/jvf//Lv//xxx9j/vz5ePHFF3Hy5Em89NJLeO655/DBBx+IzvPMM89g+vTpOHnyJIYOHYobN24gJiYGX331FbKysjB16lQ89NBD+OWXXwAAa9asQVxcHB599FEUFBSgoKAAoaGhqu/JmTNnsG3bNmzfvh1Hjx4FANx///24ePEidu/ejUOHDiE6Ohr33HMPioqKbLndhDRNDR15EULsKzMzkwFg27dvlz1m6dKlFjMlQqNHj2a33Xab5HunT59m3t7eom7s+fn5rE+fPgwA69SpE5s4cSLbvHkzq6qq4o/hZh/Ky8tZQEAA27dvH7t69Srz8vJix44dY9OnT6/1jM8999zDXnrpJdExGzduZEFBQfzPANizzz7L/5yRkcEAsHXr1vGvffLJJ6xFixaisTs5ObG8vDz+td27dzOtVst3XI+IiBDN1DDG2OLFi1lcXBxjrHrGZ/Xq1Vava8SIEWzmzJn8z3fffTebPn266Bi1Mz4uLi7s4sWL/Gs//fQT8/b2Zjdu3BB9NiIigr3zzjtWx0ZIU0c5PoQ0M4yxOjkWAM6fP49hw4bh/vvvx6OPPsq/HhQUhIyMDGRlZeHHH3/EgQMHMHHiRLz33nv45ptvoNVWTy67uLhgwoQJWL9+Pf7++2906tQJ3bt3t2kcco4dO4b9+/eLZniqqqpw48YNlJWVwcPDAwBE3xcYGAgAuP3220Wv3bhxAyUlJXzuULt27dC2bVv+mLi4OBiNRpw6dQpeXl44e/YskpOTRfelsrISOp1ONMZevXqJfq6qqsJLL72ELVu24Pz58ygvL8fNmzf5sdZW+/bt0bp1a/7nY8eO4erVq/Dz8xMdd/36dZw9e9Yu30lIY0aBDyHNTGRkJJ+ULKdTp04AgJMnT6Jv374W7588eRJdu3YVvZafn4+BAweib9++WLt2reR5o6KiEBUVhf/+9794/PHHcdddd2Hfvn0YOHCg6LjJkycjNjYWWVlZmDx5sq2XKOvq1atYtGgREhISLN5r0aIF/3thQrFGo5F9zWg0qv5ewLSzLTY2VvSek5OT6Gfz5cfly5djzZo1WL16NW6//XZ4enoiNTXVYtecOa1WaxG4VlRUWBxn/n1Xr15FUFAQfvjhB4tjfXx8FL+TkOaAAh9CmhlfX18MHToUb7zxBp566imLB19xcTGGDBkCX19fvPLKKxaBz44dO3D69GksXryYf+38+fMYOHAgYmJisH79etEMjhwucLp27ZrFe926dUO3bt1w/PhxjBs3riaXKSk6OhqnTp1Cx44d7XZOzj///IP8/HwEBwcDAA4ePAitVovOnTsjMDAQwcHB+PvvvzF+/Hibzrt//378+9//xoQJEwCYgq2//vpLFHi6urqKSgwAQOvWrVFaWopr167xf8ZcDo+S6OhoFBYWwtnZGWFhYTaNlZDmgAIfQpqhN954A/369cOdd96J559/Ht27d0dlZSXS0tLw1ltv4eTJk3jnnXfwwAMPYOrUqUhJSYG3tze+++47zJo1C2PHjkViYiIAU9AzYMAAtG/fHitWrMClS5f472nTpg0A4IknnkBwcDAGDRqEkJAQFBQU4IUXXkDr1q0RFxcnOcbvv/8eFRUVdp1lmD9/PkaOHIl27dph7Nix0Gq1OHbsGLKysvDCCy/U6twtWrTAxIkTsWLFCpSUlOCpp55CYmIifw8WLVqEp556CjqdDsOGDcPNmzfx22+/4cqVK5gxY4bseSMjI7F161YcOHAArVq1wsqVK3HhwgVR4BMWFobMzEzk5OSgZcuW8PX1RWxsLDw8PPB///d/eOqpp5CZmSlKGpcTHx+PuLg43Pf/7d29aiJRGMbxR9IIWgkBg0JQwgTEsRACNn6BH2BlooG0Ae9AOy2mTjOdNoIWAS0t1EIZLGxSeQXTxCK3sVtFWEL2g11Y4/x/cKozHGa6h3neYep1PT09yTAMvb29abFY6Pb29kMVB5wavuoCTlA8Htdut1OxWFS73VYymVS5XJbjOBoMBpKkZrOpzWaj/X6vbDar6+tr2batbrer6XR6qHvW67Vc15XjOIpGo7q4uDisd6VSSS8vL7q/v5dhGGo0GvL7/XIc58MsybtAIPDPq5Vqtar5fK7VaqWbmxtlMhnZtq3Ly8u/Pvvq6kp3d3eq1WqqVCpKpVLq9/uH/VarpeFwqNFoJNM0lc/nNR6PFYvFfnpur9dTOp1WtVpVoVBQOBxWvV7/4ZpOp6OzszMlEgmdn59rv98rFArp+flZy+VSpmlqMpnIsqxfPofP59NyuVQul9Pj46MMw9DDw4NeX18P807AKfN9+9PpRgDwGMuyNJvNfqtKAnDceOMDAAA8g+AD4OgEg8FP13a7/d+3B+ALo+oCcHRc1/10LxKJfKn/cQE4LgQfAADgGVRdAADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAM74DHWoJY2tegQAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1MklEQVR4nO3dd1gUV9sG8HspSxVQQUEDggXB8lqjLK+JkvCKxl6SWKISW2wxdrCiMSoqxl6S2BN7YsESUVFjoogNCwrYQFREjUgRlXq+P/gYGQEFBXYX7t917UXmnDMzz+4E9vHMnHMUQggBIiIiItJoOuoOgIiIiIjejkkbERERkRZg0kZERESkBZi0EREREWkBJm1EREREWoBJGxEREZEWYNJGREREpAWYtBERERFpASZtRERERFqASRsR0XtSKBSYPn26usOQeHp6wt7eXt1hEFERY9JGRKXS+vXroVAopJehoSEcHR0xYsQIPHz4sFjPferUKUyfPh3x8fFFetxWrVrJ3lOFChXw4YcfYu3atcjMzCySc8yePRu7d+8ukmMRUdHSU3cARETF6fvvv4eDgwNevnyJf/75BytXrsSBAwcQGhoKY2PjIjnHixcvoKf36s/pqVOnMGPGDHh6esLCwqJIzpHtgw8+wJw5cwAAjx8/xsaNGzFgwABcv34dvr6+73382bNno3v37ujcufN7H4uIihaTNiIq1dq2bYumTZsCAAYOHIiKFSvixx9/xJ49e9CzZ893Pm5mZiZSU1NhaGgIQ0PDogr3rczNzfHVV19J29988w1q166NZcuWYebMmdDX1y+xWIioZPH2KBGVKZ988gkAIDIyEgDg5+cHV1dXVKxYEUZGRmjSpAl+//33XPspFAqMGDECmzZtQt26dWFgYICDBw9KddnPtE2fPh3jx48HADg4OEi3MqOiotCyZUs0aNAgz7hq164NDw+PQr8fY2NjuLi4IDk5GY8fP863XXJyMsaOHQtbW1sYGBigdu3a8PPzgxBC9h6Tk5OxYcMGKW5PT89Cx0RExYM9bURUpty6dQsAULFiRQDA4sWL0bFjR/Tu3RupqanYunUrPv/8c+zbtw/t2rWT7Xv06FFs374dI0aMgKWlZZ4P+3ft2hXXr1/Hli1bsHDhQlhaWgIArKys0KdPHwwaNAihoaGoV6+etM/Zs2dx/fp1TJky5Z3e0+3bt6Grq5vvrVghBDp27Ihjx45hwIABaNiwIQICAjB+/Hjcv38fCxcuBAD8+uuvGDhwIJo1a4bBgwcDAGrUqPFOMRFRMRBERKXQunXrBABx5MgR8fjxY3H37l2xdetWUbFiRWFkZCTu3bsnhBDi+fPnsv1SU1NFvXr1xCeffCIrByB0dHTE1atXc50LgPDx8ZG258+fLwCIyMhIWbv4+HhhaGgovLy8ZOUjR44UJiYm4tmzZ298Ty1bthROTk7i8ePH4vHjxyIsLEyMHDlSABAdOnSQ2vXr109Uq1ZN2t69e7cAIH744QfZ8bp37y4UCoW4efOmVGZiYiL69ev3xjiISD14e5SISjV3d3dYWVnB1tYWPXr0gKmpKXbt2oWqVasCAIyMjKS2T58+RUJCAj766CNcuHAh17FatmyJOnXqvHMs5ubm6NSpE7Zs2SLdlszIyMC2bdvQuXNnmJiYvPUY4eHhsLKygpWVFZydnbF06VK0a9cOa9euzXefAwcOQFdXFyNHjpSVjx07FkII/Pnnn+/8noio5PD2KBGVasuXL4ejoyP09PRQuXJl1K5dGzo6r/69um/fPvzwww+4ePEiUlJSpHKFQpHrWA4ODu8dT9++fbFt2zb8/fff+Pjjj3HkyBE8fPgQffr0KdD+9vb2+OWXX6RpTGrVqoVKlSq9cZ87d+6gSpUqKFeunKzc2dlZqicizcekjYhKtWbNmkmjR1/3999/o2PHjvj444+xYsUK2NjYQF9fH+vWrcPmzZtztc/ZK/euPDw8ULlyZfz222/4+OOP8dtvv8Ha2hru7u4F2t/ExKTAbYmodOHtUSIqs/744w8YGhoiICAA/fv3R9u2bYskIcqrly6brq4uevXqhd9//x1Pnz7F7t270bNnT+jq6r73efNTrVo1xMTEICkpSVYeHh4u1Wd7U+xEpF5M2oiozNLV1YVCoUBGRoZUFhUV9d4rAmQ/m5bfigh9+vTB06dP8c033+DZs2eyedeKw2effYaMjAwsW7ZMVr5w4UIoFAq0bdtWKjMxMSnylRyIqGjw9igRlVnt2rXDjz/+iDZt2qBXr1549OgRli9fjpo1a+Ly5cvvfNwmTZoAACZPnowePXpAX18fHTp0kJK5Ro0aoV69etixYwecnZ3RuHHjInk/+enQoQPc3NwwefJkREVFoUGDBjh06BD27NmDUaNGyab1aNKkCY4cOYIff/wRVapUgYODA5o3b16s8RFRwbCnjYjKrE8++QRr1qxBbGwsRo0ahS1btmDu3Lno0qXLex33ww8/xMyZM3Hp0iV4enqiZ8+euSa+7du3LwAUeADC+9DR0YG/vz9GjRqFffv2YdSoUbh27Rrmz5+PH3/8Udb2xx9/RJMmTTBlyhT07NkTK1euLPb4iKhgFELkmA6biIhKxOLFizF69GhERUXBzs5O3eEQkRZg0kZEVMKEEGjQoAEqVqyIY8eOqTscItISfKaNiKiEJCcnw9/fH8eOHcOVK1ewZ88edYdERFqEPW1ERCUkKioKDg4OsLCwwLBhwzBr1ix1h0REWoRJGxEREZEW4OhRIiIiIi3ApI2IiIhIC3AgggbLzMxETEwMypUrx6VliIiItIQQAklJSahSpQp0dIquf4xJmwaLiYmBra2tusMgIiKid3D37l188MEHRXY8Jm0arFy5cgCyLrqZmZmaoyEiIqKCSExMhK2trfQ9XlSYtGmw7FuiZmZmTNqIiIi0TFE/2sSBCERERERagEkbERERkRZg0kZERESkBfhMm5bLyMhAWlqausOgEqCvrw9dXV11h0FERGrCpE1LCSEQGxuL+Ph4dYdCJcjCwgLW1tact4+IqAxi0qalshO2SpUqwdjYmF/ipZwQAs+fP8ejR48AADY2NmqOiIiIShqTNi2UkZEhJWwVK1ZUdzhUQoyMjAAAjx49QqVKlXirlIiojOFABC2U/QybsbGxmiOhkpZ9zfkcIxFR2cOkTYvxlmjZw2tORFR2MWkjIiIi0gJM2oiIiIi0gNYkbR07doSdnR0MDQ1hY2ODPn36ICYmRtZGCAE/Pz84OjrCwMAAVatWxaxZs2Rtjh8/jsaNG8PAwAA1a9bE+vXrc51r+fLlsLe3h6GhIZo3b44zZ87I6l++fInhw4ejYsWKMDU1Rbdu3fDw4UNZm+joaLRr1w7GxsaoVKkSxo8fj/T09KL5MLSYp6cnFAoFFAoF9PX1UblyZfzvf//D2rVrkZmZWeDjrF+/HhYWFsUXKBERkYbRmqTNzc0N27dvR0REBP744w/cunUL3bt3l7X57rvvsHr1avj5+SE8PBz+/v5o1qyZVB8ZGYl27drBzc0NFy9exKhRozBw4EAEBARIbbZt24YxY8bAx8cHFy5cQIMGDeDh4SFNtQAAo0ePxt69e7Fjxw789ddfiImJQdeuXaX6jIwMtGvXDqmpqTh16hQ2bNiA9evXY9q0acX4CWmPNm3a4MGDB4iKisKff/4JNzc3fPfdd2jfvj0TWyIiovwILbVnzx6hUChEamqqEEKIa9euCT09PREeHp7vPhMmTBB169aVlX355ZfCw8ND2m7WrJkYPny4tJ2RkSGqVKki5syZI4QQIj4+Xujr64sdO3ZIbcLCwgQAERQUJIQQ4sCBA0JHR0fExsZKbVauXCnMzMxESkpKgd9jQkKCACASEhJk5S9evBDXrl0TL168KPCxNEW/fv1Ep06dcpUHBgYKAOKXX34RQgixYMECUa9ePWFsbCw++OADMXToUJGUlCSEEOLYsWMCgOzl4+MjhBBi48aNokmTJsLU1FRUrlxZ9OzZUzx8+LCk3l6x0+ZrT0SkCfbsEcLJSYiqVbN+7tlT9OfI7/v7fWlNT1tOcXFx2LRpE1xdXaGvrw8A2Lt3L6pXr459+/bBwcEB9vb2GDhwIOLi4qT9goKC4O7uLjuWh4cHgoKCAACpqak4f/68rI2Ojg7c3d2lNufPn0daWpqsjZOTE+zs7KQ2QUFBqF+/PipXriw7T2JiIq5evZrv+0pJSUFiYqLsVVBCCKSmpqrlJYQocJz5+eSTT9CgQQPs3LkTQNbnvmTJEly9ehUbNmzA0aNHMWHCBACAq6srFi1aBDMzMzx48AAPHjzAuHHjAGRNhTFz5kxcunQJu3fvRlRUFDw9Pd87PiIiKh18fYHwcOD+/ayfvr7qjqjgtGpyXS8vLyxbtgzPnz+Hi4sL9u3bJ9Xdvn0bd+7cwY4dO7Bx40ZkZGRg9OjR6N69O44ePQogaxWBnIkUAFSuXBmJiYl48eIFnj59ioyMjDzbhIeHS8dQKpW5nqeqXLkyYmNj33ie7Lr8zJkzBzNmzCjEJ/JKWloa5syZ8077vq+JEydCqVS+93GcnJxw+fJlAMCoUaOkcnt7e/zwww8YMmQIVqxYAaVSCXNzcygUClhbW8uO0b9/f+m/q1evjiVLluDDDz/Es2fPYGpq+t4xEhGRdvL3z0rQqlYFjIyyXpUqAd7e6o6s4NTa0+bt7S09lJ7fKztZAoDx48cjJCQEhw4dgq6uLvr27Sv18mRmZiIlJQUbN27ERx99hFatWmHNmjU4duwYIiIi1PUWC2XixIlISEiQXnfv3lV3SCVKCCHNQ3bkyBF8+umnqFq1KsqVK4c+ffrgyZMneP78+RuPcf78eXTo0AF2dnYoV64cWrZsCSBrYAgREZVN/v5A795AUBBw8CBQt+5ZjBw5A5Mn/4aOHdUdXcGptadt7Nixb711Vb16dem/LS0tYWlpCUdHRzg7O8PW1hanT5+GSqWCjY0N9PT04OjoKLV3dnYGkPWFXbt2bVhbW+ca5fnw4UOYmZnByMgIurq60NXVzbNNdo+OtbU1UlNTER8fL+tte73N6yNOs4/5es9QTgYGBjAwMHjj55EffX19TJw48Z32fV/Zt6jfV1hYGBwcHBAVFYX27dtj6NChmDVrFipUqIB//vkHAwYMQGpqar4rQSQnJ8PDwwMeHh7YtGkTrKysEB0dDQ8PD6SmphZJjEREpB2ye9a8vbN+PnsG6OpmYtSoBdDTy+oAuHXrlqzDQNOpNWmzsrKClZXVO+2bPT1ESkoKAOC///0v0tPTcevWLdSoUQMAcP36dQBAtWrVAAAqlQoHDhyQHefw4cNQqVQAAKVSiSZNmiAwMBCdO3eWzhMYGIgRI0YAAJo0aQJ9fX0EBgaiW7duAICIiAhER0dLx1GpVJg1a5a0RmT2eczMzFCnTp13er9vo1AoiuQWpbocPXoUV65cwejRo3H+/HlkZmZiwYIF0NHJ6gzevn27rL1SqURGRoasLDw8HE+ePIGvry9sbW0BAOfOnSuZN0BERBrF1zerZy07cRs1Khb9+v0kazNy5EitSdgALXmmLTg4GGfPnkWLFi1Qvnx53Lp1C1OnTkWNGjWkRMnd3R2NGzdG//79sWjRImRmZmL48OH43//+J/W+DRkyBMuWLcOECRPQv39/HD16FNu3b8f+/fulc40ZMwb9+vVD06ZN0axZMyxatAjJycn4+uuvAQDm5uYYMGAAxowZgwoVKsDMzAzffvstVCoVXFxcAACtW7dGnTp10KdPH8ybNw+xsbGYMmUKhg8f/s49aaVJSkoKYmNjkZGRgYcPH+LgwYOYM2cO2rdvj759+yI0NBRpaWlYunQpOnTogJMnT2LVqlWyY9jb2+PZs2cIDAxEgwYNYGxsDDs7OyiVSixduhRDhgxBaGgoZs6cqaZ3SURE6uTmBly5kvVTX/9P9Ov36g5Y1apVMWDAAK1K2ABox5Qfly9fFm5ubqJChQrCwMBA2NvbiyFDhoh79+7J2t2/f1907dpVmu7B09NTPHnyRNbm2LFjomHDhkKpVIrq1auLdevW5Trf0qVLhZ2dnVAqlaJZs2bi9OnTsvoXL16IYcOGifLlywtjY2PRpUsX8eDBA1mbqKgo0bZtW2FkZCQsLS3F2LFjRVpaWqHed2md8gP/P02Hnp6esLKyEu7u7mLt2rUiIyNDavfjjz8KGxsbYWRkJDw8PMTGjRsFAPH06VOpzZAhQ0TFihVlU35s3rxZ2NvbCwMDA6FSqYS/v78AIEJCQkr2jRYTbb72REQlZc8eIfT1hVAqX4rp06fLXteuXSv28xfXlB8KIYpgvgYqFomJiTA3N0dCQgLMzMyk8pcvXyIyMhIODg4wNDRUY4RU0njtiYjeztUVePLkOnr12iIr9/LyKpG/nfl9f78vrbg9SkRERPQm2QMPvLwEunXbgGfP7kh1jRs3RocOHdQYXdFg0kZERERaz9cXuHYtARcvLpKVOzoORIcOVdUTVBFj0kZERERaKee0Hv37n8b9+6/WElcqlZgwYQJ0dXXVGGHRYtJGREREWiU7WXv6FLh+PQOnT8+DgcGr+TirVvXAwIEuaoyweDBpIyIiIq2SPQebShWDadN+kdWNGjUK5ubmaoqseDFpIyIiIq3i7Q34+++Dre15qezhw2pYvryf9s29VghM2oiIiEhr7Nr1Epcvz8X/L3wDALhwoQcGDKiNUpyvAWDSRkRERFpi48YwREbKlzX09vYuM6sNMWkjIiIijSaEgJ/fGjx/fl8qO3/+Qwwc+BnKSL4GANBRdwBExcHT0xOdO3eWtlu1aoVRo0a91zGL4hhERFQ48fHx+P7772UJ28GDgzFw4Gfo2FGNgakBe9qoRHl6emLDhg0AAH19fdjZ2aFv376YNGkS9PSK73/HnTt3Ql9fv0Btjx8/Djc3Nzx9+hQWFhbvdAwiIno//v7A1q0nUbv2EaksOdkY//3vWPj4lM0+JyZtVOLatGmDdevWISUlBQcOHMDw4cOhr6+PiRMnytqlpqZCqVQWyTkrVKigEccgIqK3y8jIwPnzs1G7dqZUduTIZ/j44w/RqZMaA1OzspmqkloZGBjA2toa1apVw9ChQ+Hu7g5/f3/pluasWbNQpUoV1K5dGwBw9+5dfPHFF7CwsECFChXQqVMnREVFScfLyMjAmDFjYGFhgYoVK2LChAkQQsjO+fqtzZSUFHh5ecHW1hYGBgaoWbMm1qxZg6ioKLi5uQEAypcvD4VCAU9PzzyP8fTpU/Tt2xfly5eHsbEx2rZtixs3bkj169evh4WFBQICAuDs7AxTU1O0adMGDx48kNocP34czZo1g4mJCSwsLPDf//4Xd+68Wi+PiKisuXfvHn744Qfo6LxK2EaPHo2///4Qs2apMTANwKSN1M7IyAipqVkzWQcGBiIiIgKHDx/Gvn37kJaWBg8PD5QrVw5///03Tp48KSU/2fssWLAA69evx9q1a/HPP/8gLi4Ou3bteuM5+/btiy1btmDJkiUICwvDTz/9BFNTU9ja2uKPP/4AAERERODBgwdYvHhxnsfw9PTEuXPn4O/vj6CgIAgh8NlnnyEtLU1q8/z5c/j5+eHXX3/FiRMnEB0djXHjxgEA0tPT0blzZ7Rs2RKXL19GUFAQBg8eXKrnGCIiepPdu3djzZo10va//9aAj48PzMzM1BiV5uDtUVIbIQQCAwMREBCAb7/9Fo8fP4aJiQlWr14t3Rb97bffkJmZidWrV0vJzLp162BhYYHjx4+jdevWWLRoESZOnIiuXbsCAFatWoWAgIB8z3v9+nVs374dhw8fhru7OwCgevXqUn32bdBKlSrJnmnL6caNG/D398fJkyfh6uoKANi0aRNsbW2xe/dufP755wCAtLQ0rFq1CjVq1AAAjBgxAt9//z0AIDExEQkJCWjfvr1U7+zsXPgPkohIy+3c+QJXrsyTlf3+e2/MmlVTTRFpJva0Efz9AVfXrJ8lYd++fTA1NYWhoSHatm2LL7/8EtOnTwcA1K9fX/Yc26VLl3Dz5k2UK1cOpqamMDU1RYUKFfDy5UvcunULCQkJePDgAZo3by7to6enh6ZNm+Z7/osXL0JXVxctW7Z85/cQFhYGPT092XkrVqyI2rVrIywsTCozNjaWEjIAsLGxwaNHjwBkJYeenp7w8PBAhw4dsHjxYtmtUyKi0s7fH+jaNTRXwnbkyETMmlWzzI0OfRv2tJG0hpuvL0rkF8TNzQ0rV66EUqlElSpVZKNGTUxMZG2fPXuGJk2aYNOmTbmOY2Vl9U7nNzIyeqf93sXro00VCoXsebt169Zh5MiROHjwILZt24YpU6bg8OHDcHEpfQsdExHlJITAX3/9hAYNHkpllSqpMHRoa/j4qDEwDcaeNoK3N6BSZf0sCSYmJqhZsybs7OzeOs1H48aNcePGDVSqVAk1a9aUvczNzWFubg4bGxsEBwdL+6Snp+P8+fP5HrN+/frIzMzEX3/9lWd9dk9fRkZGvsdwdnZGenq67LxPnjxBREQE6tSp88b39LpGjRph4sSJOHXqFOrVq4fNmzcXan8iIm0TFxeH77//HmZmrxK2kyeHYujQ1mqMSvMxaSN07AicOlUyvWyF1bt3b1haWqJTp074+++/ERkZiePHj2PkyJG4d+8eAOC7776Dr68vdu/ejfDwcAwbNgzx8fH5HtPe3h79+vVD//79sXv3bumY27dnLY1SrVo1KBQK7Nu3D48fP8azZ89yHaNWrVro1KkTBg0ahH/++QeXLl3CV199hapVq6JTAcejR0ZGYuLEiQgKCsKdO3dw6NAh3Lhxg8+1EVGpduLECSxdulTaTkgww4IFUzFiRCU1RqUdmLSRRjM2NsaJEydgZ2eHrl27wtnZGQMGDMDLly+l0URjx45Fnz590K9fP6hUKpQrVw5dunR543FXrlyJ7t27Y9iwYXBycsKgQYOQnJwMAKhatSpmzJgBb29vVK5cGSNGjMjzGOvWrUOTJk3Qvn17qFQqCCFw4MCBAk/Aa2xsjPDwcHTr1g2Ojo4YPHgwhg8fjm+++aYQnxARkXZIT0/HjBkzcOzYsRxlHXD69Gj89puORnYcaBqFeH1CK9IYiYmJMDc3R0JCgmy488uXLxEZGQkHBwcYGhqqMUIqabz2RKSN7ty5g/Xr18vK/PzGon59U5w6pZ6YilN+39/viwMRiIiIqNgsXvwH4uNDpe379x1x4EBPfPBByT1LXVowaSMiIqIi9/z5c8yfP19WVrNmH/j4VM9nD3obJm1ERERUpC5fvpxrZZpZsyahaVN99O6tpqBKASZtREREVCSEEJg7dzlSUp5IZUFBLRAQ8ClMTXk79H0xadNiHENS9vCaE5Gm+vfff7F8+XJZ2bJlw/Dvv1YwNQU2bdLMqaW0CZM2LZQ9pcTz589LdHZ/Ur/nz58DyL3SAhGRuvj7Azt2HEPNmieksidPKmDZshEAFHByAubOZcJWFJi0aSFdXV1YWFhIa1gaGxtLi6lT6SSEwPPnz/Ho0SNYWFhAV1dX3SERESEtLQ0hIbNRM8e67p06dcKOHQ1hYgKMHAnMmqW++EobztOmwd40z4sQArGxsW+c+Z9KHwsLC1hbWzNJJyK1i4yMxMaNG2Vl48aNy7WGdFnEedpIRqFQwMbGBpUqVUJaWpq6w6ESoK+vzx42ItII27ZtQ3h4uLRdp04dfP7552qMqGxg0qbldHV1+UVOREQlIjk5GX5+frKyfv36wd7eXj0BlTFM2oiIiOit1q0LQXS0v6xs+/bJ8PFhKlFS+EkTERFRvoQQWLx4MRISEqSy8+dbYu/eVqhaVY2BlUFM2oiIiChPjx49wsqVK2Vl+/ePQExMRQCAqak6oiq7mLQRERFRLocPH8apU6ek7YcPK2HduiF4+TJr7jWViisclDQmbURERCRJS0vD7NmzZWW//94VoaH1AWT1rnGyXPVg0kZEREQAgFu3buG3336Tlc2fPx7JycYAAENDLkelTkzaiIiICJs2bcLNmzel7fr168PPryuSkwGFAqhSBVixggmbOumoOwAiIiJSn6SkJMyYMUOWsG3e/DXOn+8Kb++sZ9d27wbu3WPCpm5cxkqDFdcyGERERABw7tw57N+/X9rOzFRg1qxJyMjQg6kpkJSkxuC0GJexIiIioiKRmZmJH3/8EcnJyVLZmTOf4s8/W0AIQEcna7F30ixM2oiIiMqQ2NhY/PTTT7KyOnVGws+vPITIGh3KwQaaiUkbERFRGXHw4EEEBwdL23FxNggIGASFQoFnz5iwaTombURERKVcSkoKfH19ZWX+/p/jwoU6AIDatV9NlsuETXMxaSMiIirFrl+/ji1btsjK/vhjAq5cMYK+PlC9OjBvHpM1bcCkjYiIqBQSQmDjxo2IioqSyipUaIhvv+2E7ByuenUgPFw98VHhMWkjIiIqZRITE7Fw4UJZ2S+/DES5clXx7bdZPWu+vlw7VNswaSMiIipFgoODcfDgQWk7LU0Pc+Z4IzNTF7VrZ5V17MjbodqISRsREVEpkJmZifnz5+Ply5dSWUBAa4SEqGBjkzUydN48NQZI741JGxERkZaLiYnBL7/8IitbuPA7JCVZwNsbmDVLTYFRkWLSRkREpMX279+Pc+fOSdv37tli9eqvoaOjQGYmcOyYGoOjIsWkjYiISAvlNffahQtfwt/fCaamWctQHTvGwQalCZM2IiIiLRMeHo5t27bJyn7/3RtpaQZwcgLmzuVAg9KISRsREZGWEEJg7dq1uHfvnlRmadkUmza1Q1oaEBGRtbIBE7bSiUkbERGRFoiPj8fixYtlZbVrD8b06TZQKIBu3Xg7tLRj0kZERKThTp06hcOHD0vbL14YQld3PJYs0UFERFbZsWPAqVNqCpBKBJM2IiIiDZWRkQFfX1+kp6dLZQcOtMGZM81hagps2gRMmAAoFOxhKwuYtBEREWmge/fuYc2aNbKyPXtG484dMxgZZY0O5coGZQuTNiIiIg2zZ88eXLx4Udq+f98Bv/7aB2PGKDhRbhmmEEIIdQdBeUtMTIS5uTkSEhJgZmam7nCIiKiYvXjxAvNeW2tq06aeuHHDEUDWUlRJSeqIjAqjuL6/2dNGRESkAa5du4YdO3bIymbPnojUVCUAwNAw65YolV1M2oiIiNRICIGff/4ZsbGxUpmLiwtmzPBAaiqgowOuH0oAmLQRERGpTVxcHJYuXSorGzJkCCpXroyUFMDXNyth42ADApi0ERERqcXff/+No0ePSttJSab4+efRaNRIRxoVymSNctJRdwAF1bFjR9jZ2cHQ0BA2Njbo06cPYmJipPrp06dDoVDkepmYmMiOs2PHDjg5OcHQ0BD169fHgQMHZPVCCEybNg02NjYwMjKCu7s7bty4IWsTFxeH3r17w8zMDBYWFhgwYACePXsma3P58mV89NFHMDQ0hK2tba4HS4mIqGxKT0/HjBkzZAnb3r3tsGDBWCQl6eC1NeCJJFqTtLm5uWH79u2IiIjAH3/8gVu3bqF79+5S/bhx4/DgwQPZq06dOvj888+lNqdOnULPnj0xYMAAhISEoHPnzujcuTNCQ0OlNvPmzcOSJUuwatUqBAcHw8TEBB4eHnj58qXUpnfv3rh69SoOHz6Mffv24cSJExg8eLBUn5iYiNatW6NatWo4f/485s+fj+nTp+Pnn38u5k+JiIg0WXR0NGa99nDa8eNjEBLSFEDW6FBOkkv50dopP/z9/dG5c2ekpKRAX18/V/2lS5fQsGFDnDhxAh999BEA4Msvv0RycjL27dsntXNxcUHDhg2xatUqCCFQpUoVjB07FuPGjQMAJCQkoHLlyli/fj169OiBsLAw1KlTB2fPnkXTplm/ZAcPHsRnn32Ge/fuoUqVKli5ciUmT56M2NhYKJVZo368vb2xe/duhIeHF/g9csoPIqLSY+fOnbhy5Yq0ff16LWze3AsKBSAEpBUOeEtU+xXX97fW9LTlFBcXh02bNsHV1TXPhA0AVq9eDUdHRylhA4CgoCC4u7vL2nl4eCAoKAgAEBkZidjYWFkbc3NzNG/eXGoTFBQECwsLKWEDAHd3d+jo6CA4OFhq8/HHH0sJW/Z5IiIi8PTp03zfV0pKChITE2UvIiLSbs+fP8eMGTNkCdtvv32FXbt6AQAqVABUKiZs9HZalbR5eXnBxMQEFStWRHR0NPbs2ZNnu5cvX2LTpk0YMGCArDw2NhaVK1eWlVWuXFkaZp39821tKlWqJKvX09NDhQoVZG3yOkbOc+Rlzpw5MDc3l162trb5tiUiIs135coVzJ8/X1a2YMFE3LxZQ0rW1q7NWuidCRu9jVqTNm9v7zwHD+R85bydOH78eISEhODQoUPQ1dVF3759kdfd3V27diEpKQn9+vUrybfz3iZOnIiEhATpdffuXXWHRERE70AIgRUrVmDnzp1S2e3b/8WWLT5ISsq6C1OuHJM1Khy1TvkxduxYeHp6vrFN9erVpf+2tLSEpaUlHB0d4ezsDFtbW5w+fRoqlUq2z+rVq9G+fftcvV3W1tZ4+PChrOzhw4ewtraW6rPLbGxsZG0aNmwotXn06JHsGOnp6YiLi5MdJ6/z5DxHXgwMDGBgYJBvPRERab7t258gLGyZrMzJaRh8fKzg7w94eWU9wzZ3rpoCJK2l1qTNysoKVlZW77RvZmYmgKznwHKKjIzEsWPH4O/vn2sflUqFwMBAjBo1Sio7fPiwlPQ5ODjA2toagYGBUpKWmJiI4OBgDB06VDpGfHw8zp8/jyZNmgAAjh49iszMTDRv3lxqM3nyZKSlpUnP3B0+fBi1a9dG+fLl3+n9EhGR5jt+/DjCwv6Stp8+tcCSJSNRu7YCX37Judfo/WjF5LrBwcE4e/YsWrRogfLly+PWrVuYOnUqatSokauXbe3atbCxsUHbtm1zHee7775Dy5YtsWDBArRr1w5bt27FuXPnpKk4FAoFRo0ahR9++AG1atWCg4MDpk6diipVqqBz584AAGdnZ7Rp0waDBg3CqlWrkJaWhhEjRqBHjx6oUqUKAKBXr16YMWMGBgwYAC8vL4SGhmLx4sVYuHBh8X5QRESkFunp6bmm8ggN7Yg//mgEIbJ61ojel1YkbcbGxti5cyd8fHyQnJwMGxsbtGnTBlOmTJHdTszMzMT69evh6ekJXV3dXMdxdXXF5s2bMWXKFEyaNAm1atXC7t27Ua9ePanNhAkTkJycjMGDByM+Ph4tWrTAwYMHYWhoKLXZtGkTRowYgU8//RQ6Ojro1q0blixZItWbm5vj0KFDGD58OJo0aQJLS0tMmzZNNpcbERGVDlFRUdiwYYOsbP78ccjIMJGm8uD86lQUtHaetrKA87QREWm27du3IywsTNp2cnLC2LFf4v79rKk8atfm2qFlUXF9f2tFTxsREZEm+eOPZISG+snK+vbtCwcHB/j4ZG1bWWWNDiUqKlo1TxsREZG6Xbx4MVfCNmnSJDg4OADIuhWqUvGWKBU99rQREREVwJ49AqdOLYWx8auVbUJDP0afPm7IuTgPR4hScWHSRkRE9BaPHz/GxYsrYGz8quznn4cjJsYS9+8zSaOSwaSNiIjoDQIDA/HPP/9I2wkJlli0aBiEUMDUNGugAVFJYNJGRESUh7S0NMyePVtWVq1aF/j6/gdVqryayoO9bFRSmLQRERG95vbt2/j1119lZUePjsfDh8aIiMgaaMCRoVTSmLQRERHlsHnzZty4cUPaDg2th6Cgbrh/H3ByykrYeEuU1IFJGxEREYBnz55hwYIFsrK1a79GdLQdDA1fJWu8HUrqwqSNiIjKNH9/4KefzqNZs32y8pkzJ8PaWg+mpsDIkcBrS4sSlTgmbUREVGZlZmYiKGgRmjVLksqOHnXD1asfo2ZNDjQgzcKkjYiIyqSHDx9i1apVMDR8VbZkybeIi6sAAHB0ZMJGmoVJGxERlRn+/oCvL9CnzyE8ehQklT94YI0NGwbj5UsFDA0Be3sONiDNw6SNiIjKjPnzU+HhMQePHr0qO3myOw4frouqVQE7Ow42IM3FpI2IiMqEX3+9AXf3zbKyo0cnYOxYIzx7xmSNNB+TNiIiKvV+/fVX3L59W9oOCWmIQ4c6YetWLvBO2oNJGxERlVqJiYlYuHChrCwtbQAePfpAStiItAWTNiIiKpXOnDmDP//8U9pOT9fF0aMTcfKkrhqjInp3TNqIiKhUyczMhJ+fH168eCGVhYS4IyLiv5g7V42BEb0nJm1ERFQq+PsDy5c/gKvrz7LyLVu+Q0SEBVQq3g4l7cakjYiISoU9ew7A1fWstH3//gf45Zf+MDJScJF3KhWYtBERkVZLSUmBr68v7OxelW3d+gWSkpy5biiVKkzaiIhIK/n7A2vWRKBx462y8v/8xwsBAYaYO5e3Q6l0YdJGRERaRwiBgID1aNw4Wiq7dKkxnJ07oEsXoEsXNQZHVEyYtBERkVZJSEjAokWLUKnSq7K1awchOroKYmPVFxdRcWPSRkREWiMoKAiHDh2Stl++NMC8eeOhq6vLwQZU6jFpIyIijZeRkYG5c+ciLS1NKqta1QPTp7tAqQTGjOFgAyr9mLQREZHG8vcHVqy4D5Vqtay8bt1R6N7dHAMHqikwIjVg0kZERBrL338vVKoL0vbDh/ZYubIvVCoFundXY2BEasCkjYiINM7Lly8xd+5c2Nq+Ktu8uScUCkc+u0ZlFpM2IiLSKNeuXcOOHTtkZT/+6A0bGwPMm8e516jsYtJGREQaQQiB1atXIyYmRioLDm6Gy5fb4tdfmawR6ag7ACIiKpv8/QFX16yfT58+xffffy9L2E6d+gZDhrTFvXtM2IgA9rQREZGa+PoCQUHA1q0nERJyRCo3MTHBmDFjoKPDfgWinJi0ERGRWkyYkIGQkFnQ0RFSWUDAZzh16kM1RkWkuZi0ERFRiduw4Sqion5Hzs60BQvGwMysnPqCItJwTNqIiKhEzZw5B5mZqdJ2jRo1YGb2FerV41QeRG/CpI2IiIqVvz/g5QVkZCSid++FsrpDh9ri5MlmADjYgOht+JQnEREVG39/oEcPwMbmaK6EzdfXC61aNVNTZETap9BJm66uLh49epSr/MmTJ9DV1S2SoIiISDvlnMYDAHx9Bby8ZqBly7+lNk+eVMaWLT7Yts2Qi7wTFUKhb48KIfIsT0lJgVKpfO+AiIhIe2VP49G7N/Ddd/fh4SFf6L1mzb7w8XFQU3RE2q3ASduSJUsAAAqFAqtXr4apqalUl5GRgRMnTsDJyanoIyQiIq3h7Z2VsHXp8iv09W/L6qZOncq514jeQ4GTtoULs55FEEJg1apVsluhSqUS9vb2WLVqVdFHSEREGsnfP6tnzdv71SCCNm1SMW7cHFk7S8umGD68nRoiJCpdFCK/+535cHNzw86dO1G+fPniion+X2JiIszNzZGQkAAzMzN1h0NEJOPqmnUrVKUCTp0CLl++jF27dsnafPvtt6hQoYKaIiRSj+L6/i70M23Hjh0rspMTEZH2ye5hc3PL2vb2BqZP/x4KhbwPwMfHRw3REZVehU7a+vfv/8b6tWvXvnMwRESk+bIHGwDAmDHxCAlZDIXiVX1oaAf06dNYPcERlWKFTtqePn0q205LS0NoaCji4+PxySefFFlgRESkmdzcgCtXAHf3Q7h6NUhWl5rqjR07DNQUGVHpVuik7fXnFQAgMzMTQ4cORY0aNYokKCIi0lzHjgmMG/e9rMzE5AOMGzdATRERlQ2FHoiQn4iICLRq1QoPHjwoisMROBCBiDRPdHQ01q1bJyv7+uuvYWdnp6aIiDRPcX1/F9mEObdu3UJ6enpRHY6IiNTs9dUN/PzW5krYpk6dyoSNqIQU+vbomDFjZNtCCDx48AD79+9Hv379iiwwIiJSr+wBB/PnpyAkxFdWp1Kp0Lp1azVFRlQ2FTppCwkJkW3r6OjAysoKCxYseOvIUiIi0h7e3sCvv15AvXp7ZeV79nwHHx8L9QRFVIZxnjYiIpJkz8FWtSpQr94M1Kv3qk4IYNs2H8ydq774iMqyQidt2R49eoSIiAgAQO3atVGpUqUiC4qIiEqev3/WuqH6+k/h4bFEVnf5cmf069cA06erJzYieoekLTExEcOHD8eWLVuQmZkJANDV1cWXX36J5cuXw9zcvMiDJCKi4pWdsH388QE0a3ZWVvef/0yEj49STZERUbZCjx4dNGgQgoODsX//fsTHxyM+Ph779u3DuXPn8M033xRHjEREVAxyjg718srEuHEzZAmbqakDfHx80KULEzYiTVDoedpMTEwQEBCAFi1ayMr//vtvtGnTBsnJyUUaYFnGedqIqDhlL/jerl0kPvxwo6xuwIAB+OCDD9QUGZF205gF4ytWrJjnLVBzc3OUL1++SIIiIqLik3PB92bNfkL58rGy+mnTpkGRczFRItIIhb49OmXKFIwZMwaxsa9+yWNjYzF+/HhMnTq1SIMjIqKilf3sWkjISyiVM2QJ261bLdCokQ8TNiINVejbo40aNcLNmzeRkpIizYIdHR0NAwMD1KpVS9b2woULRRdpGcTbo0RU1FxdgbS0s2jf/oCsvG7d0ejenX9niIqCxtwe7dSpE/8VRkSkhfz9AQ+PGbIyHR0lpk6dqKaIiKgwimzBeCp67GkjoqLg7w8sWfIvPvpouay8e/fuqFu3rpqiIiq9NGbB+OrVq+PJkye5yuPj41G9evUiCYqIiN7d6wu9793rnythmzRpEhM2Ii1T6NujUVFRyMjIyFWekpKCe/fuFUlQRET07rIXep87NwMhIT8g58wdjo6O6Nmzp/qCI6J3VuCeNn9/f/j//z/bAgICpG1/f3/s2rULM2fOhIODQ7EF2rFjR9jZ2cHQ0BA2Njbo06cPYmJiZG0CAgLg4uKCcuXKwcrKCt26dUNUVJSszfHjx9G4cWMYGBigZs2aWL9+fa5zLV++HPb29jA0NETz5s1x5swZWf3Lly8xfPhwVKxYEaampujWrRsePnwoaxMdHY127drB2NgYlSpVwvjx45Genl4knwURUV78/QEnJyA6GmjV6iZat/5BVj948GAmbERarMDPtOnoZOV3CoUCr++ir68Pe3t7LFiwAO3bty/6KAEsXLgQKpUKNjY2uH//PsaNGwcAOHXqFAAgMjISzs7OGDNmDAYMGICEhASMHj0aSUlJ0ijWyMhI1KtXD0OGDMHAgQMRGBiIUaNGYf/+/fDw8AAAbNu2DX379sWqVavQvHlzLFq0CDt27EBERIS0vurQoUOxf/9+rF+/Hubm5hgxYgR0dHRw8uRJAEBGRgYaNmwIa2trzJ8/Hw8ePEDfvn0xaNAgzJ49u8Dvmc+0EVFhZE+WO2LEMlhayh9jadhwGjp14iAyopJQXN/fhR6I4ODggLNnz8LS0rLIgngX/v7+6Ny5M1JSUqCvr4/ff/8dPXv2REpKipRg7t27F506dZLaeHl5Yf/+/QgNDZWO06NHD8THx+PgwYMAgObNm+PDDz/EsmXLAACZmZmwtbXFt99+C29vbyQkJMDKygqbN29G9+7dAQDh4eFwdnZGUFAQXFxc8Oeff6J9+/aIiYlB5cqVAQCrVq2Cl5cXHj9+DKWyYEvCMGkjosLYufM5rlyZLyu7caMVvviiJTp2VFNQRGWQxgxEiIyMVHvCFhcXh02bNsHV1RX6+voAgCZNmkBHRwfr1q1DRkYGEhIS8Ouvv8Ld3V1qExQUBHd3d9mxPDw8EBQUBABITU3F+fPnZW10dHTg7u4utTl//jzS0tJkbZycnGBnZye1CQoKQv369aWELfs8iYmJuHr1ar7vKyUlBYmJibIXEdHb+PsDPXsG5UrYxo4di99+Y8JGVFoUeiDC999//8b6adOmvXMwb+Pl5YVly5bh+fPncHFxwb59+6Q6BwcHHDp0CF988QW++eYbZGRkQKVS4cCBVxNIxsbGyhIpAKhcuTISExPx4sULPH36FBkZGXm2CQ8Pl46hVCphYWGRq032KhH5nSe7Lj9z5szBjBkz8q0nIspegsrbG+jYEZg8WUCp/B5OTq/amJiYSI+QEFHpUeietl27dsle27dvx9y5c7FgwQLs3r27UMfy9vaGQqF44ys7WQKA8ePHIyQkBIcOHYKuri769u0rPV8XGxuLQYMGoV+/fjh79iz++usvKJVKdO/ePdczeJpq4sSJSEhIkF53795Vd0hEpGGyR4b27g1MmfIISqX8H9JffvklEzaiUqrQPW0hISG5yhITE+Hp6YkuXboU6lhjx46Fp6fnG9vknPvN0tISlpaWcHR0hLOzM2xtbXH69GmoVCosX74c5ubmmDdvntT+t99+g62tLYKDg+Hi4gJra+tcozwfPnwIMzMzGBkZQVdXF7q6unm2sba2BgBYW1sjNTUV8fHxst6219u8PuI0+5jZbfJiYGAAAwODN34eRFS2ubllJW2tW++Evv4VWd3kyZOhp1foP+tEpCWK5LfbzMwMM2bMQIcOHdCnT58C72dlZQUrK6t3OmdmZiaArOfAAOD58+fSAIRsurq6srav3y4FgMOHD0OlUgEAlEolmjRpgsDAQHTu3FnaNzAwECNGjACQ9eycvr4+AgMD0a1bNwBAREQEoqOjpeOoVCrMmjULjx49kkacHj58GGZmZqhTp847vV8iKtuyb4vGx2dg+nT5VB4WFnXw3XefqykyIiopRfZPsuxbesUhODgYZ8+eRYsWLVC+fHncunULU6dORY0aNaREqV27dli4cCG+//579OzZE0lJSZg0aRKqVauGRo0aAQCGDBmCZcuWYcKECejfvz+OHj2K7du3Y//+/dK5xowZg379+qFp06Zo1qwZFi1ahOTkZHz99dcAAHNzcwwYMABjxoxBhQoVYGZmhm+//RYqlQouLi4AgNatW6NOnTro06cP5s2bh9jYWEyZMgXDhw9nTxoRvRNfX+DJkwj06rVVVj5kyJBcz9ASUelU6KRtyZIlsm0hBB48eIBff/0Vbdu2LbLAcjI2NsbOnTvh4+OD5ORk2NjYoE2bNpgyZYqUBH3yySfYvHkz5s2bh3nz5sHY2BgqlQoHDx6EkZERgKzBCvv378fo0aOxePFifPDBB1i9erU0RxuQ9TzI48ePMW3aNMTGxqJhw4Y4ePCg7I/iwoULoaOjg27duiElJQUeHh5YsWKFVK+rq4t9+/Zh6NChUKlUMDExQb9+/d46iIOIKC/+/kCLFgthYiIfUT5t2jQoFJx7jaiseKd52nLS0dGBlZUVPvnkE0ycOBHlypUr0gDLMs7TRlQ2Zd8KdXMDTp5Mhpubn6ze3d0d//3vf9UUHRG9TXF9fxe6py0yMrLITk5ERLlljxDV0/sbn356VFY3btw4mJiYqCkyIlKnd3qmLT4+Hjdv3gQA1KxZM9ecZUREVHj+/oCXF5CUJDB9uvxxCgsLC3z33XdqioyINEGhkraoqCgMHz4cAQEB0txnCoUCbdq0wbJly2Bvb18cMRIRlQkTJgAJCbEYMuQnWXmvXr1Qq1YtNUVFRJqiwEnb3bt34eLiAn19fcycORPOzs4AgGvXrmHlypVQqVQ4e/YsPvjgg2ILloiotPL3Bxo12gYnp3BZ+ZQpU6Tpi4iobCvwQIQBAwbg5s2bCAgIgKGhoazuxYsXaNOmDWrVqoXVq1cXS6BlEQciEJUN6enpmDVrlqysQYMG0nyRRKRd1D4Q4eDBg9i2bVuuhA0AjIyMMHPmTPTo0aPIAiMiKs2yR4gOGXINkZE7ZHXOzsPQufO7TTxORKVXgZO2f//9943PrFWvXh1xcXFFERMRUann6wt8/PFcREa+lJX7+PioKSIi0nQFTtpsbGxw7dq1fJ9ZCw0NfeO6mkRElCUpKQkeHj/Kytq0aYPmzZurKSIi0gY6b2+SpXPnzhg3bhweP36cq+7Ro0fw8vLi8xdERPmYPBlQKoFPPz2OH3+UJ2wTJkxgwkZEb1XggQhPnz5F8+bNERsbi6+++gpOTk4QQiAsLAybN2+GtbU1Tp8+jQoVKhR3zGUGByIQlR7lygmMGyefe61SpUoYOnSomiIiouKi9oEI5cuXR3BwMCZNmoStW7ciPj4eQNaEj7169cLs2bOZsBER5ZA92GDkyBiMG/eLrK5Pnz6oXr26miIjIm1U6LVHgaxF4rNvk1pZWXHB4mLCnjYi7ebqCtSo8Rtq1rwlK586dSp0dAr8dAoRaRm197TlpFAoUKlSpSILgoiotMjuXZswIQ0eHrNldU2aNEH79u3VFBkRabt3StqIiChvvr5AUtIVXLq0U1b+7bff8hESInovTNqIiIqIvz/g7v4DdHUzZOWce42IigKTNiKi9+TvDyxalICWLRch5zKhtrbt0b9/E/UFRkSlCpM2IqJ35O8PeHkB1aodQcuWJ2V1Xl5eeS77R0T0rgqUtC1ZsqTABxw5cuQ7B0NEpC0mTwbmzBHw8ZHPvValShUMGjRITVERUWlWoCk/HBwcCnYwhQK3b99+76AoC6f8INJctWvfRa9ea2Vlnp6eqFatmpoiIiJNodYpPyIjI4vshERE2ih7Ko+qVQFz8/Xo1euOrJ5zrxFRcXvnZ9pSU1MRGRmJGjVqQE+Pj8YRUenm6wucP58CDw9fWXnz5s3Rpk0bNUVFRGVJof9Z+Pz5cwwYMADGxsaoW7cuoqOjAWTNQeTr6/uWvYmItIe/f9aqBpMnAwYGFzFpkvxv3MiRI5mwEVGJKXTSNnHiRFy6dAnHjx+XjYxyd3fHtm3bijQ4IiJ18vUFgoIApXIGWrXaI6vz8fFB+fLl1RQZEZVFhb6vuXv3bmzbtg0uLi6yNUfr1q2LW7duvWFPIiLtMnr0U3h4yEfP29l1wtdfN1RPQERUphU6aXv8+HGe644mJydz4Xgi0nrZc681avQnatc+I6ubOHEilEqlmiIjorKu0LdHmzZtiv3790vb2Yna6tWroVKpii4yIqIS5u8PfPVVJnr0mCFL2KpVqwYfHx8mbESkVoXuaZs9ezbatm2La9euIT09HYsXL8a1a9dw6tQp/PXXX8URIxFRifDzi8LYsRtkZf3794etra2aIiIieqXQPW0tWrTAxYsXkZ6ejvr16+PQoUOoVKkSgoKC0KQJ19gjIu2SPULUx+dnfPqpPGGbNm0aEzYi0hjvNMFajRo18MsvvxR1LEREJWryZGDBgpeYOHGurPzatf+id2938DFdItIkBUraEhMTC3xALrdERNri+PFzmDhxv6ysbt1R8PExV1NERET5K1DSZmFhUeCRoRkZGe8VEBFRSZgxYwZat361LYQepk+frL6AiIjeokBJ27Fjx6T/joqKgre3Nzw9PaXRokFBQdiwYQPmzJlTPFESERUBf3/g+++foEOHZbLyrl27on79+mqKioioYBRCCFGYHT799FMMHDgQPXv2lJVv3rwZP//8M44fP16U8ZVpiYmJMDc3R0JCAm87E70Hf3/g668BV9e9aNr0gqyuQYNJ6NxZX02REVFpVFzf34VO2oyNjXHp0iXUqlVLVn79+nU0bNgQz58/L7LgyjombUTvL3vutbFjZ8rKzcxqYvTo3mqKiohKs+L6/i70lB+2trZ5jhxdvXo1h8YTkcb5+efbuRK2QYMGMWEjIq1T6Ck/Fi5ciG7duuHPP/9E8+bNAQBnzpzBjRs38McffxR5gERE72ru3BX48MPHsrJp06ZxyT0i0kqFvj0KAPfu3cOKFSsQHh4OAHB2dsaQIUPY01bEeHuU6N28ePEC8+bNk5W1bNkSrVq1Uk9ARFSmaMwzbVRymLQRFd7q1cG4f/+grKxevTHo1q2cmiIiorKmuL6/32lFhPj4eKxZswZhYWEAgLp166J///4wN+eElESkHpMnCyiV38vKjIyMMGHCBDVFRERUtAo9EOHcuXOoUaMGFi5ciLi4OMTFxeHHH39EjRo1cOHChbcfgIioiE2e/DhXwubg8AUTNiIqVQp9e/Sjjz5CzZo18csvv0BPL6ujLj09HQMHDsTt27dx4sSJYgm0LOLtUaK3mzZtF3R1L8vKGjSYjM6d3+lGAhHRe9OYZ9qMjIwQEhICJycnWfm1a9fQtGlTztNWhJi0EeVv9+4MXLr0g6wsM9MZM2Z8oaaIiIiyaMwzbWZmZoiOjs6VtN29exflyvFBXyIqftevX8elS1tkZb/88g3u3bNWU0RERMWv0Enbl19+iQEDBsDPzw+urq4AgJMnT2L8+PG5lrYiIipqixcvRnx8vKzMz28aRo7k3GtEVLoVOmnz8/ODQqFA3759kZ6eDgDQ19fH0KFD4evrW+QBEhEBQHJyMvz8/GRln376KVq0aAEfHzUFRURUgt55nrbnz5/j1q1bAIAaNWrA2Ni4SAMjPtNGlO3kyZM4cuSIrOzYsXE4ftxETREREeVPY55py2ZsbIz69esXWSBERK8TQuD77+VTeTx7Zoa9e0fjtQUPiIhKvQInbf379y9Qu7Vr175zMERE2R4+fIhVq1bJyjZv7oGKFWvj/1fQIyIqUwqctK1fvx7VqlVDo0aNwJWviKg4bd++XVpxJVuDBlMQEKALb281BUVEpGYFTtqGDh2KLVu2IDIyEl9//TW++uorVKhQoThjI6IyJj09HbNmzZKV1a9fH127dgUAdO6shqCIiDREgZexWr58OR48eIAJEyZg7969sLW1xRdffIGAgAD2vBHRewsLC8uVsP3zz1ApYSMiKuveefTonTt3sH79emzcuBHp6em4evUqTE1Nizq+Mo2jR6msmD9/fq7VVAICpsHbW4GOHdUUFBHRO9K40aM6OjpQKBQQQiAjI6PIAiKisuPZs2dYsGCBrOzgwda4e1eFe/fUFBQRkYYq8O1RAEhJScGWLVvwv//9D46Ojrhy5QqWLVuG6Oho9rIRUaH89ddfuRK2uXPHIzRUhRUr1BQUEZEGK3BP27Bhw7B161bY2tqif//+2LJlCywtLYszNiIqhfKae+3JE0ssXTocpqbApk3gLVEiojwU+Jk2HR0d2NnZoVGjRlAo8l/jb+fOnUUWXFnHZ9qotHnw4AF+/vlnWVnv3r1x7VpN+PoC3t5M2IhI+6n9mba+ffu+MVkjInqTLVu24Pr167Kyhg2noGZNXdSsyWSNiOht3nn0KBU/9rRRaZCWlobZs2fLys6fb4R//+2IU6fUFBQRUTFSe08bEVFhhYaG4o8//pCVOTuPQEBARa5sQERUSEzaiKhYzJ49G2lpabIyHx8fAMAXX6gjIiIi7cakjYiKVGJiIhYuXCgr++yzz/Dhhx+qKSIiotKBSRsRFZmjR4/i77//lpUtXeqF1FRDMGcjIno/HIigwTgQgbRFXnOvxcTYYN26wUhLA0xNgaQkNQVHRFTCOBCBiDTSvXv3sGbNGlnZxo19cfu2A/T1sxK2kSPVFBwRUSlSqGWs1Kljx46ws7ODoaEhbGxs0KdPH8TExMjabN++HQ0bNoSxsTGqVauG+fPn5zrO8ePH0bhxYxgYGKBmzZpYv359rjbLly+Hvb09DA0N0bx5c5w5c0ZW//LlSwwfPhwVK1aEqakpunXrhocPH8raREdHo127djA2NkalSpUwfvx4pKenv/8HQaRBNm7cmCth27p1Knr0cICpKTB+fFYP26xZagqQiKgU0Zqkzc3NDdu3b0dERAT++OMP3Lp1C927d5fq//zzT/Tu3RtDhgxBaGgoVqxYgYULF2LZsmVSm8jISLRr1w5ubm64ePEiRo0ahYEDByIgIEBqs23bNowZMwY+Pj64cOECGjRoAA8PDzx69EhqM3r0aOzduxc7duzAX3/9hZiYGHTt2lWqz8jIQLt27ZCamopTp05hw4YNWL9+PaZNm1bMnxJRyUhNTcWMGTMQGRkplQUHf4jvv/dB1646mDWLyRoRUVHT2mfa/P390blzZ6SkpEBfXx+9evVCWloaduzYIbVZunQp5s2bh+joaCgUCnh5eWH//v0IDQ2V2vTo0QPx8fE4ePAgAKB58+b48MMPpWQvMzMTtra2+Pbbb+Ht7Y2EhARYWVlh8+bNUtIYHh4OZ2dnBAUFwcXFBX/++Sfat2+PmJgYVK5cGQCwatUqeHl54fHjx1AqlQV6j3ymjTTRpUuXsHv3bllZnToj0b9/eTx7BqhU4KS5RFSmFdf3t9b0tOUUFxeHTZs2wdXVFfr6+gCAlJQUGBoaytoZGRnh3r17uHPnDgAgKCgI7u7usjYeHh4ICgoCkNV7cP78eVkbHR0duLu7S23Onz+PtLQ0WRsnJyfY2dlJbYKCglC/fn0pYcs+T2JiIq5evZrv+0pJSUFiYqLsRaRJZsyYkStha9TIBwYG5VG1KuDkBE6aS0RUTLQqafPy8oKJiQkqVqyI6Oho7NmzR6rz8PDAzp07ERgYiMzMTFy/fh0LFiwAkLVINQDExsbKEikAqFy5MhITE/HixQv8+++/yMjIyLNNbGysdAylUgkLC4s3tsnrGNl1+ZkzZw7Mzc2ll62tbUE/GqJiFR8fjxkzZsjK9uzpiOnTfeDrC/j6AhERQPnyXEOUiKi4qDVp8/b2hkKheOMrPDxcaj9+/HiEhITg0KFD0NXVRd++fZF9d3fQoEEYMWIE2rdvD6VSCRcXF/To0QNAVm+ZNpg4cSISEhKk1927d9UdEhECAgKwePFiWdmOHd548aIRatfO6lnz9s66LcpeNiKi4qPWKT/Gjh0LT0/PN7apXr269N+WlpawtLSEo6MjnJ2dYWtri9OnT0OlUkGhUGDu3LmYPXs2YmNjYWVlhcDAQNkxrK2tc43yfPjwIczMzGBkZARdXV3o6urm2cba2lo6RmpqKuLj42W9ba+3eX3EafYxs9vkxcDAAAYGBm/8PIhKSmZmJmbOnCkrMzGxw5o1XyMpCShXDpg371XPGnvYiIiKl1q7oKysrODk5PTGV34P7WdmZgLIeg4sJ11dXVStWhVKpRJbtmyBSqWClZUVAEClUkmJXLbDhw9DpVIBAJRKJZo0aSJrk5mZicDAQKlNkyZNoK+vL2sTERGB6OhoqY1KpcKVK1dkI04PHz4MMzMz1KlT550+K6KSdOfOnVwJW61aX2PcuK9Rvjxw/z4QHp51W5SIiEqGVkyuGxwcjLNnz6JFixYoX748bt26halTp6JGjRpSovTvv//i999/R6tWrfDy5UusW7dOmpIj25AhQ7Bs2TJMmDAB/fv3x9GjR7F9+3bs379fajNmzBj069cPTZs2RbNmzbBo0SIkJyfj66+/BgCYm5tjwIABGDNmDCpUqAAzMzN8++23UKlUcHFxAQC0bt0aderUQZ8+fTBv3jzExsZiypQpGD58OHvSSOOtWbMG9+7dk5XNmDENLi4K9OqVdQt0wgRAoeDtUCKiEiW0wOXLl4Wbm5uoUKGCMDAwEPb29mLIkCHi3r17UpvHjx8LFxcXYWJiIoyNjcWnn34qTp8+netYx44dEw0bNhRKpVJUr15drFu3LlebpUuXCjs7O6FUKkWzZs1yHefFixdi2LBhonz58sLY2Fh06dJFPHjwQNYmKipKtG3bVhgZGQlLS0sxduxYkZaWVqj3nZCQIACIhISEQu1H9C5evnwppk+fLnt9+WWAAIQwNRVizx51R0hEpB2K6/tba+dpKws4TxuVlAsXLmDv3r2ysoULRyElxRz29sDcuXxmjYiooLj2KBEVi9en8sjM1EF6+lRkZAAvX3IaDyIiTcGkjaiMiouLw9KlS2VlQUFdEBDwH6hUwKZNWQMN+NwaEZFmYNJGVAbt378f586dk5XNmjUR5coppfnWOnZkDxsRkSZh0kZUhuQ191q5ctUxblwfCAG8eJGVsGVP5cGkjYhIc2jHUgFE9N5u376dK2FzdByI33/PSth0dIDRo7MStqAgzsFGRKRp2NNGVAasWrUq10of2XOvZfesZd8S9ffns2xERJqIU35oME75Qe/rxYsXmDdvnqzsr78+QlDQJ5zKg4iomBTX9zdvjxKVUmfOnMmVsNWtOxpnz36Cly+B69eB4GA1BUdERIXG26NEpdDrc68ZGBjA+//vdyqVQJcuQGZm1m3Q5s3Z20ZEpA3Y00ZUiiQmJuZK2Lp37y4lbNnPq3XtmjXwIDtxIyIizcekjaiUOHv2LBYuXCgrS02dhEGD6sLfP2s7e2To/fvArl2Q5mQjIiLNx4EIGowDEaggMjMzsWDBAjx//lwqi4n5D37+uQtMTYFnz7KSs1On5CNDeUuUiKh4cO1RIsrlwYMH+Pnnn2VldeqMxJYt5eHklHUb9NixV71pXOWAiEh7MWkj0lJ//vknzpw5I20bG1fFrl0DsGWLAhERWb1rs2apMUAiIipSTNqItExKSgp8Xxs9EBLyBSIinBEeDjg58Vk1IqLSiAMRiLRIREREroQtMNALe/Y4IyoqK2GbOzfr+TUAcHUFJk/O+pk9GIGIiLQTe9qItIAQAhs2bMCdO3ekssaNG6NDhw5o1AgICckacFC+/Ktn1rJHil65klXn68vn2YiItBmTNiINl5CQgEWLFsnKBg4ciKpVqwLISsQ2bXo1KjR7hKibW1ZbNzf5YAQiItJOTNqINNjp06cREBAgbSuVSkyYMAG6urqydjlHhbq6ZvWwAa9ukxIRkfZj0kakgTIyMjBv3jykpqZKZR4eHnBxcXnrvt7er3rdiIio9GDSRqRhYmJi8Msvv8jKRo0aBXNz8zful3PiXPawERGVPhw9SqRB9u7dK0vYqlWrhmnTpsHc3Bz+/m8eBZo98IBriRIRlU5M2og0wMuXLzFjxgxcuHBBKuvRowc8PT2hUCgA5J2U5UzkvL05PxsRUWnGtUc1GNceLRvCwsKwfft2Wdnvv3sjLc0A8+a9GmCQ17qh2YMOstcWJSIi9Suu728mbRqMSVvpJoTAmjVrcP/+fansww8/xA8/fCaN/nxbMsYF4ImINA8XjCcqRZ4+fYolS5bIygYPHgwbGxukpwPDhgFPnryaay0/XACeiKjsYNJGVMJOnjyJI0eOSNvGxsYYO3YsdHSyHjHt2DGr9+z+/axJcYmIiAAmbUQlJiMjA7Nnz0ZmZqZU9tlnn+HDDz/M1ZZzrRER0euYtBGVgHv37mHNmjWystTU0fjkEzOMHAnMmiVvz9ueRET0Og5E0GAciFA67N69G5cuXZK2y5WrgV9++QoREYAQgKkpkJSkxgCJiKhIcSACkZZ58eIF5s2bJyvr3bs3+vatifDwrG0dHWDkSDUER0REWodJG1ExCA0NxR9//CErmzhxIpRKJby9AS+vrF62nPOwERERvQmTNqIiJITATz/9hIcPH0plKpUKrVu3lrb5vBoREb0LJm1ERSQuLg5Lly6VlZ08ORSNGlVSU0RERFSaMGkjKgInTpzAsRyTqpmZmWHHju8QFKSDZ8/Ys0ZERO+PSRvRe0hPT8es1+brsLXtgNWrG0urGXCuNSIiKgpM2oje0Z07d7B+/XpZWWrqWAwcaAohgKdPgbCw/PfnuqFERFQYTNqI3sEff/yB0NBQadvR0RE9e/ZEuXJZo0KBVz/z4+sLBAVl/WTSRkREb6Oj7gCItMnz588xY8YMWcJWs2Yf9OzZE0DWnGv6+lmvbt3efCxvb0Cl4u1TIiIqGPa0ERXQ5cuXsWvXLlnZrFmTYGCgj3LlsnrLZs3KWuQ9KOjti71z6g8iIioM9rQRvYUQAsuWLZMlbLdvt0Bqqg8MDPTx7FnWLc5sefWg+fsDrq5ZP4mIiN4F1x7VYFx7VP3+/fdfLF++XFb2zz/DcOSIlZSYFWQwgatrVu+bSgWcOlXMQRMRkVpx7VGiEnbs2DGcOHFC2jYwqAAvrxHYu1eB5GTAza3goz9zJndERETvgj1tGow9beqRlpaG2bNny8p27eoEY+OGsl4y9p4REVFeiuv7m8+0EeUQGRmZK2FLTR0HY+OGuXrJsp9dc3Pj82pERFT82NOmwdjTVrK2bduG8PBwaTs6ug7Wrv38rT1p7HEjIqKc+EwbUTFJTk6Gn5+frGzdun4wMrIv0DxqfF6NiIhKApM2KtNCQkLg/9p9zQYNJqNKFb0CLy/F+daIiKgkMGmjMkkIAV/fxUhNTZDKrK1b4ptvWgEAOndWT1xERET5YdJGZc6jR4+wcuVKWdnSpSNgaVkRGzZwAXciItJMHD1KZcrhw4dlCVtSUiWkpk6Do2NFKBSvFnAnIiLSNOxpo1LN3z8rCRs/PhWXL8+R1XXt2hX169fP1ZYDCoiISBMxaaNSJ2fyNWECkJ5+C5cv/yZrM378eBgbG8vKOKCAiIg0GZM2KnV8fV/d5mzZchOqVLkp1dWvXx9du3ZVY3RERETvhs+0Uang7/9qVQJvb6BVqyR4eMyQJWxff/01EzYiItJa7GkjrefvD/TuDTx7ltW7tmTJObRqtV+qVygUmDRpEvT0+L87ERFpL36Lkdbz9c1K2MqVy0S7dj9i//5kqe7TTz9FixYt1BgdERFR0eDtUdJoOW975sfbG2jdOhZjx85EevqrhG3kyJFM2IiIqNRgTxtptJyDCvIb2alUHoSra7C0bWNjg0GDBkGhUJRQlERERMWPSRtptDctxp6SkgLf12bC/fzzz1GnTp0Sio6IiKjk8PYoabSOHYFTp3L3sl2/fj1Xwubl5YWbN+u89XYqERGRNmJPG2kVIQQ2btyIqKgoqaxhw4bo1KkTgILdTiUiItJGTNpIayQmJmLhwoWysoEDB6Jq1arS9ptupxIREWkzJm1UonIuMVXQnjB/f2Dz5mA4Ox+UyvT19eHl5QVdXV1ZWy5FRUREpZXWPdOWkpKChg0bQqFQ4OLFi7K6y5cv46OPPoKhoSFsbW0xb968XPvv2LEDTk5OMDQ0RP369XHgwAFZvRAC06ZNg42NDYyMjODu7o4bN27I2sTFxaF3794wMzODhYUFBgwYgGfPnhU6ltIsv6k6sm9f9u5dsOfOMjMzceaMryxhu3ChNSZNmpQrYSMiIirNtC5pmzBhAqpUqZKrPDExEa1bt0a1atVw/vx5zJ8/H9OnT8fPP/8stTl16hR69uyJAQMGICQkBJ07d0bnzp0RGhoqtZk3bx6WLFmCVatWITg4GCYmJvDw8MDLly+lNr1798bVq1dx+PBh7Nu3DydOnMDgwYMLFUtpl/PZspy8vQFT01erF+T0eqIXExODmTNnQl8/RWqzcOF3uH5dVczRExERaSChRQ4cOCCcnJzE1atXBQAREhIi1a1YsUKUL19epKSkSGVeXl6idu3a0vYXX3wh2rVrJztm8+bNxTfffCOEECIzM1NYW1uL+fPnS/Xx8fHCwMBAbNmyRQghxLVr1wQAcfbsWanNn3/+KRQKhbh//36BYymIhIQEAUAkJCQUaj9NsGePECpV1s+C1qlUQgBZP/ft2yemT58uvdasWSN2787M95hERESaori+v7Wmp+3hw4cYNGgQfv31VxgbG+eqDwoKwscffwylUimVeXh4ICIiAk+fPpXauLu7y/bz8PBAUFAQACAyMhKxsbGyNubm5mjevLnUJigoCBYWFmjatKnUxt3dHTo6OggODi5wLHlJSUlBYmKi7KWt8puq40113t5AixYp8PCYgXPnzknlX375Jfr3749OnRQ4dSqrjNN6EBFRWaMVSZsQAp6enhgyZIgsWcopNjYWlStXlpVlb8fGxr6xTc76nPvl16ZSpUqyej09PVSoUOGt58l5jrzMmTMH5ubm0svW1jbfttosv+fdHB3D4e4uv2fq7e0NJycnWVl+t16JiIhKM7Umbd7e3lAoFG98hYeHY+nSpUhKSsLEiRPVGW6xmzhxIhISEqTX3bt31R1SoRVkrdDXByMIIbBmzRps27ZNatO0aVP4+PjAwMAg1/7e3oBKxWk9iIiobFHrlB9jx46Fp6fnG9tUr14dR48eRVBQUK4v8KZNm6J3797YsGEDrK2t8fDhQ1l99ra1tbX0M682Oeuzy2xsbGRtGjZsKLV59OiR7Bjp6emIi4t763lyniMvBgYGeSYp2qQgk9t6e2clbM+eAYsWxSMkZLGsfvDgwbLP/3Wc1oOIiMoitfa0WVlZwcnJ6Y0vpVKJJUuW4NKlS7h48SIuXrwoTdOxbds2zJo1CwCgUqlw4sQJpKWlScc/fPgwateujfLly0ttAgMDZTEcPnwYKlXWaEQHBwdYW1vL2iQmJiI4OFhqo1KpEB8fj/Pnz0ttjh49iszMTDRv3rzAsZRWBekF69gR2LQJ6NHjFFq2fJWwGRkZYerUqW9M2IiIiMqsIh3WUEIiIyNzjR6Nj48XlStXFn369BGhoaFi69atwtjYWPz0009Sm5MnTwo9PT3h5+cnwsLChI+Pj9DX1xdXrlyR2vj6+goLCwuxZ88ecfnyZdGpUyfh4OAgXrx4IbVp06aNaNSokQgODhb//POPqFWrlujZs2ehYikIbR49+ibp6enihx9+kI0ODQ4OVndYRERERaK4vr9LzYoI5ubmOHToEIYPH44mTZrA0tIS06ZNk82f5urqis2bN2PKlCmYNGkSatWqhd27d6NevXpSmwkTJiA5ORmDBw9GfHw8WrRogYMHD8LQ0FBqs2nTJowYMQKffvopdHR00K1bNyxZsqRQsZRV9+7dw5o1a2Rlo0ePhpmZmZoiIiIi0g4KIYRQdxCUt8TERJibmyMhIaFEkpp3WWKqMPbs2SNbxcLBwQF9+vSBQqEo+pMRERGpSXF9f2vFlB9UMgo7lUZBRooCwIsXLzBjxgxZwtarVy/07duXCRsREVEBMWkjSWGn0ihIknft2rVc665OnDgRtWrVeo9IiYiIyp5S80wbvZ93uTXq7f1qn9cJIfDzzz/LJhN2cXGBh4dHEUVMRERUtvCZNg1Wks+0ubpm9ZqpVJCWinpXcXFxWLp0qaxsyJAhuVaJICIiKo2K6/ubPW0E4M29ZgXl7w9s2/Y3HB2PSmWmpqYYPXo0dHR4J56IiOh9MGkjAO+/ykB6ejpCQmbB0fFVWfv27dGkSZP3D46IiIiYtNH7i46Oxrp162RlY8aMQbly5dQUERERUenDe1ZUKK9P87Fz505ZwlarVi34+PgwYSMiIipi7GmjPOU3mjR7mo8FC54jJGS+bJ+vvvoKNWrUKOFIiYiIygb2tJVBBZkUN7852Ly9ga5dr+CTT+QJ26RJk5iwERERFSMmbWVQQSbFzWuiXSEE7t1bgf/8Z6dU9t///hc+Pj7Q19cvxoiJiIiIt0fLoIJM7/H6aNLt258gLGyZrM2wYcNgZWVVTFESERFRTkzayqDCTu9x/PhxhIX9JW1bWFhg5MiRXDeUiIioBDFpo3zt3p2OS5dmycrs7Dri668bqSkiIiKisotJG+UpKioKly5tkJWNGzcOJiYmaoqIiIiobGPSRrls374dYWFh0ra5uTNGjfpCjRERERERkzaSJCcnw8/PT1bWt29fODg4qCkiIiIiysakjQAAFy9exJ49e2RlkyZN4lQeREREGoJJWxknhMDSpUvx9OlTqezjjz+Gm5ubGqMiIiKi1zFpK8MeP36MFStWyMqGDx8OS0tLNUVERERE+WHSVkYFBgbin3/+kbYtLS0xbNgwzr1GRESkoZi0lUEbN25EZGSktN2lSxf85z//UWNERERE9DZM2sqgf//9V/rv8ePHw9jYWI3REBERUUFwwfgyqF+/fujXrx8aNfKBu7sx/P1f1fn7A66ukJURERGR+imEEELdQVDeEhMTYW5ujoSEBJiZmRX58V1dgaAgQKUCTp3Kv4yIiIgKrri+v9nTVoZ5e2clZ97eby4jIiIi9WNPmwYr7p42IiIiKnrsaaNiwWfYiIiItAOTtjLO1zfrGTZfX3VHQkRERG/CpK2M4zNsRERE2oHztJVxHTtmvYiIiEizsaeNiIiISAswaSMiIiLSAkzaiIiIiLQAkzYiIiIiLcCkjYiIiEgLMGkjIiIi0gJM2oiIiIi0AJM2IiIiIi3ApI2IiIhICzBpIyIiItICTNqIiIiItACTNiIiIiItwKSNiIiISAvoqTsAyp8QAgCQmJio5kiIiIiooLK/t7O/x4sKkzYNlpSUBACwtbVVcyRERERUWElJSTA3Ny+y4ylEUaeBVGQyMzMRExODcuXKQaFQqDucEpWYmAhbW1vcvXsXZmZm6g6HcuC10Vy8NpqL10azFfX1EUIgKSkJVapUgY5O0T2Jxp42Daajo4MPPvhA3WGolZmZGf/AaSheG83Fa6O5eG00W1Fen6LsYcvGgQhEREREWoBJGxEREZEWYNJGGsnAwAA+Pj4wMDBQdyj0Gl4bzcVro7l4bTSbtlwfDkQgIiIi0gLsaSMiIiLSAkzaiIiIiLQAkzYiIiIiLcCkjYiIiEgLMGmjIpeSkoKGDRtCoVDg4sWLsrrLly/jo48+gqGhIWxtbTFv3rxc++/YsQNOTk4wNDRE/fr1ceDAAVm9EALTpk2DjY0NjIyM4O7ujhs3bsjaxMXFoXfv3jAzM4OFhQUGDBiAZ8+eFTqW0qJjx46ws7ODoaEhbGxs0KdPH8TExMjabN++HQ0bNoSxsTGqVauG+fPn5zrO8ePH0bhxYxgYGKBmzZpYv359rjbLly+Hvb09DA0N0bx5c5w5c0ZW//LlSwwfPhwVK1aEqakpunXrhocPH8raREdHo127djA2NkalSpUwfvx4pKenv/8HoYEKcm0CAgLg4uKCcuXKwcrKCt26dUNUVJSsDa9N8Xjb9Zk+fToUCkWul4mJiew4/LtW9AryuyOEgJ+fHxwdHWFgYICqVati1qxZsjZa9bsjiIrYyJEjRdu2bQUAERISIpUnJCSIypUri969e4vQ0FCxZcsWYWRkJH766SepzcmTJ4Wurq6YN2+euHbtmpgyZYrQ19cXV65ckdr4+voKc3NzsXv3bnHp0iXRsWNH4eDgIF68eCG1adOmjWjQoIE4ffq0+Pvvv0XNmjVFz549CxVLafLjjz+KoKAgERUVJU6ePClUKpVQqVRS/YEDB4Senp5YuXKluHXrlti3b5+wsbERS5culdrcvn1bGBsbizFjxohr166JpUuXCl1dXXHw4EGpzdatW4VSqRRr164VV69eFYMGDRIWFhbi4cOHUpshQ4YIW1tbERgYKM6dOydcXFyEq6urVJ+eni7q1asn3N3dRUhIiDhw4ICwtLQUEydOLOZPST3edm1u374tDAwMxMSJE8XNmzfF+fPnxccffywaNWoka8NrUzzedn2SkpLEgwcPZK86deqIfv36SW34d614vO3aCCHEt99+K2rXri327Nkjbt++Lc6dOycOHTok1Wvb7w6TNipSBw4cEE5OTuLq1au5krYVK1aI8uXLi5SUFKnMy8tL1K5dW9r+4osvRLt27WTHbN68ufjmm2+EEEJkZmYKa2trMX/+fKk+Pj5eGBgYiC1btgghhLh27ZoAIM6ePSu1+fPPP4VCoRD3798vcCyl2Z49e4RCoRCpqalCCCF69uwpunfvLmuzZMkS8cEHH4jMzEwhhBATJkwQdevWlbX58ssvhYeHh7TdrFkzMXz4cGk7IyNDVKlSRcyZM0cIkXWt9PX1xY4dO6Q2YWFhAoAICgoSQmT9P6SjoyNiY2OlNitXrhRmZmay61VavX5tduzYIfT09ERGRobUxt/fX9aG16bkvH59Xnfx4kUBQJw4cUIq49+1kvH6tbl27ZrQ09MT4eHh+e6jbb87vD1KRebhw4cYNGgQfv31VxgbG+eqDwoKwscffwylUimVeXh4ICIiAk+fPpXauLu7y/bz8PBAUFAQACAyMhKxsbGyNubm5mjevLnUJigoCBYWFmjatKnUxt3dHTo6OggODi5wLKVVXFwcNm3aBFdXV+jr6wPIuqVtaGgoa2dkZIR79+7hzp07AN5+bVJTU3H+/HlZGx0dHbi7u0ttzp8/j7S0NFkbJycn2NnZya5f/fr1UblyZdl5EhMTcfXq1aL6GDRSXtemSZMm0NHRwbp165CRkYGEhAT8+uuvcHd3l9rw2pSMvK7P61avXg1HR0d89NFHUhn/rhW/vK7N3r17Ub16dezbtw8ODg6wt7fHwIEDERcXJ+2nbb87TNqoSAgh4OnpiSFDhsj+qOQUGxsr+x8WgLQdGxv7xjY563Pul1+bSpUqyer19PRQoUKFt54n5zlKGy8vL5iYmKBixYqIjo7Gnj17pDoPDw/s3LkTgYGByMzMxPXr17FgwQIAwIMHDwDk/5klJibixYsX+Pfff5GRkfHWa6NUKmFhYfHGNrw2r66Ng4MDDh06hEmTJsHAwAAWFha4d+8etm/fLrXhtSleb7o+Ob18+RKbNm3CgAEDZOX8u1Z83nRtbt++jTt37mDHjh3YuHEj1q9fj/Pnz6N79+5SG2373WHSRm/k7e2d50O2OV/h4eFYunQpkpKSMHHiRHWHXGYU9NpkGz9+PEJCQnDo0CHo6uqib9++EP+/IMqgQYMwYsQItG/fHkqlEi4uLujRoweArH9VUuEU5bWJjY3FoEGD0K9fP5w9exZ//fUXlEolunfvLrWhwinK65PTrl27kJSUhH79+pXk2ylVivLaZGZmIiUlBRs3bsRHH32EVq1aYc2aNTh27BgiIiLU9Rbfi566AyDNNnbsWHh6er6xTfXq1XH06FEEBQXlWretadOm6N27NzZs2ABra+tco2myt62traWfebXJWZ9dZmNjI2vTsGFDqc2jR49kx0hPT0dcXNxbz5PzHJquoNcmm6WlJSwtLeHo6AhnZ2fY2tri9OnTUKlUUCgUmDt3LmbPno3Y2FhYWVkhMDBQdoz8PjMzMzMYGRlBV1cXurq6b71+qampiI+Pl/2r9PU2r4/MKsvXZvny5TA3N5eNAvztt99ga2uL4OBguLi48NoUUlFen5xWr16N9u3b5+pR4d+1givKa2NjYwM9PT04OjpK7Z2dnQFkjeSsXbu29v3uFPjpN6I3uHPnjrhy5Yr0CggIEADE77//Lu7evSuEePWQbM4HeCdOnJhrIEL79u1lx1apVLke2PXz85PqExIS8nxg99y5c1KbgICAPB/YfVMspdmdO3cEAHHs2LF82/Tp00c2EmvChAmiXr16sjY9e/bM9cDuiBEjpO2MjAxRtWrVXA/s/v7771Kb8PDwPB/YzTky66effhJmZmbi5cuX7/aGtcjr12bMmDGiWbNmsjYxMTECgDh58qQQgtemJOX3u3P79m2hUCjE3r17c+3Dv2sl4/Vrk/09dPPmTalN9kCRiIgIIYT2/e4waaNiERkZmWv0aHx8vKhcubLo06ePCA0NFVu3bhXGxsa5pvzQ09MTfn5+IiwsTPj4+OQ5NN7CwkLs2bNHXL58WXTq1CnPofGNGjUSwcHB4p9//hG1atWSDY0vSCylxenTp8XSpUtFSEiIiIqKEoGBgcLV1VXUqFFD+mPx+PFjsXLlShEWFiZCQkLEyJEjhaGhoQgODpaOkz00fvz48SIsLEwsX748z6HxBgYGYv369eLatWti8ODBwsLCQjZiasiQIcLOzk4cPXpUnDt3Ltcw/eyh8a1btxYXL14UBw8eFFZWVqVyWomCXJvAwEChUCjEjBkzxPXr18X58+eFh4eHqFatmnj+/LkQgtemuBTk+mSbMmWKqFKlikhPT891HP5dK3oFuTYZGRmicePG4uOPPxYXLlwQ586dE82bNxf/+9//pONo2+8OkzYqFnklbUIIcenSJdGiRQthYGAgqlatKnx9fXPtu337duHo6CiUSqWoW7eu2L9/v6w+MzNTTJ06VVSuXFkYGBiITz/9VPpXU7YnT56Inj17ClNTU2FmZia+/vprkZSUVOhYSoPLly8LNzc3UaFCBWFgYCDs7e3FkCFDxL1796Q2jx8/Fi4uLsLExEQYGxuLTz/9VJw+fTrXsY4dOyYaNmwolEqlqF69uli3bl2uNkuXLhV2dnZCqVSKZs2a5TrOixcvxLBhw0T58uWFsbGx6NKli3jw4IGsTVRUlGjbtq0wMjISlpaWYuzYsSItLa1oPhANUpBrI4QQW7ZsEY0aNRImJibCyspKdOzYUYSFhcna8NoUvYJen4yMDPHBBx+ISZMm5Xss/l0rWgW9Nvfv3xddu3YVpqamonLlysLT01M8efJE1kabfncUQvBJViIiIiJNx2FhRERERFqASRsRERGRFmDSRkRERKQFmLQRERERaQEmbURERERagEkbERERkRZg0kZERESkBZi0ERFRLsePH4dCoUB8fPx7Hcfe3h6LFi0qkpiIyjombURUpGJjY/Htt9+ievXqMDAwgK2tLTp06CAtQA8Ap06dwmeffYby5cvD0NAQ9evXx48//oiMjAypTVRUFAYMGAAHBwcYGRmhRo0a8PHxQWpqqux8v/zyCxo0aABTU1NYWFigUaNGmDNnjlQ/ffp0KBQKtGnTJles8+fPh0KhQKtWrQr8/hITEzF58mQ4OTnB0NAQ1tbWcHd3x86dO5FzrvKrV6/iiy++gJWVFQwMDODo6Ihp06bh+fPnUpu4uDh8++23qF27NoyMjGBnZ4eRI0ciISGhQLFERUVBoVDk+Tp9+nSB31OrVq0watSoArcnIvXQU3cARFR6REVF4b///S8sLCwwf/581K9fH2lpaQgICMDw4cMRHh6OXbt24YsvvsDXX3+NY8eOwcLCAkeOHMGECRMQFBSE7du3Q6FQIDw8HJmZmfjpp59Qs2ZNhIaGYtCgQUhOToafnx8AYO3atRg1ahSWLFmCli1bIiUlBZcvX0ZoaKgsLhsbGxw7dgz37t3DBx98IJWvXbsWdnZ2BX5/8fHxaNGiBRISEvDDDz/gww8/hJ6eHv766y9MmDABn3zyCSwsLHD69Gm4u7vD3d0d+/fvR+XKlXHmzBmMHTsWgYGBOHbsGJRKJWJiYhATEwM/Pz/UqVMHd+7cwZAhQxATE4Pff/+9wHEdOXIEdevWlZVVrFixwPsTkZYo1KJXRERv0LZtW1G1alXx7NmzXHVPnz4Vz549ExUrVhRdu3bNVe/v7y8AiK1bt+Z7/Hnz5gkHBwdpu1OnTsLT0/ONMfn4+IgGDRqI9u3bix9++EEqP3nypLC0tBRDhw4VLVu2LMC7E2Lo0KHCxMRE3L9/P1ddUlKSSEtLE5mZmaJOnTqiadOmIiMjQ9bm4sWLQqFQvHE9yO3btwulUlmgNQnzW+M3p+z3v3HjRlGtWjVhZmYmvvzyS5GYmCiEEKJfv34CgOwVGRkpjh07JgCII0eOiCZNmggjIyOhUqlEeHi4dOybN2+Kjh07ikqVKgkTExPRtGlTcfjwYdn5q1WrJhYuXChtAxArVqwQbdq0EYaGhsLBwUHs2LFDqndzcxPDhw+XHePRo0dCX19fHDly5K2fCVFpxtujRFQk4uLicPDgQQwfPhwmJia56i0sLHDo0CE8efIE48aNy1XfoUMHODo6YsuWLfmeIyEhARUqVJC2ra2tcfr0ady5c+et8fXv3x/r16+XtteuXYvevXtDqVS+dV8AyMzMxNatW9G7d29UqVIlV72pqSn09PRw8eJFXLt2DWPGjIGOjvxPbIMGDeDu7v7W92hmZgY9vaK7EXLr1i3s3r0b+/btw759+/DXX3/B19cXALB48WKoVCoMGjQIDx48wIMHD2BrayvtO3nyZCxYsADnzp2Dnp4e+vfvL9U9e/YMn332GQIDAxESEoI2bdqgQ4cOiI6OfmM8U6dORbdu3XDp0iX07t0bPXr0QFhYGABg4MCB2Lx5M1JSUqT2v/32G6pWrYpPPvmkyD4TIm3EpI2IisTNmzchhICTk1O+ba5fvw4AcHZ2zrPeyclJapPX8ZcuXYpvvvlGKvPx8YGFhQXs7e1Ru3ZteHp6Yvv27cjMzMy1f/v27ZGYmIgTJ04gOTkZ27dvlyUgb/Pvv//i6dOnb3x/wNvfo7Ozc77v8d9//8XMmTMxePDgAscFAK6urjA1NZW9csrMzMT69etRr149fPTRR+jTp4/0jKG5uTmUSiWMjY1hbW0Na2tr6OrqSvvOmjULLVu2RJ06deDt7Y1Tp07h5cuXALKS0G+++Qb16tVDrVq1MHPmTNSoUQP+/v5vjPfzzz/HwIED4ejoiJkzZ6Jp06ZYunQpAKBr164AgD179kjt169fD09PTygUikJ9LkSlDZM2IioSIsdD+EXZFgDu37+PNm3a4PPPP8egQYOkchsbGwQFBeHKlSv47rvvkJ6ejn79+qFNmza5Ejd9fX189dVXWLduHXbs2AFHR0f85z//KbaYC9s+MTER7dq1Q506dTB9+vRC7btt2zZcvHhR9srJ3t4e5cqVk7ZtbGzw6NGjAh0752dkY2MDANK+z549w7hx4+Ds7AwLCwuYmpoiLCzsrT1tKpUq13Z2T5uhoSH69OmDtWvXAgAuXLiA0NBQeHp6FiheotKMAxGIqEjUqlVLGkCQH0dHRwBAWFgYXF1dc9WHhYWhTp06srKYmBi4ubnB1dUVP//8c57HrVevHurVq4dhw4ZhyJAh+Oijj/DXX3/Bzc1N1q5///5o3rw5QkNDC9XLBgBWVlawsLB44/sD5O+xUaNGuerDwsKkNtmSkpLQpk0blCtXDrt27YK+vn6hYrO1tUXNmjXzrX/9eAqFIs/eyLftm93Tlb3vuHHjcPjwYfj5+aFmzZowMjJC9+7dc43wLayBAweiYcOGuHfvHtatW4dPPvkE1apVe69jEpUG7GkjoiJRoUIFeHh4YPny5UhOTs5VHx8fj9atW6NChQpYsGBBrnp/f3/cuHEDPXv2lMru37+PVq1aoUmTJli3bl2uZ8Tykp305RVD3bp1UbduXYSGhqJXr16FeXvQ0dFBjx49sGnTJsTExOSqf/bsGdLT09GwYUM4OTlh4cKFuRKjS5cu4ciRI7L3mJiYiNatW0OpVMLf3x+GhoaFiqsoKJVK2XQrBXXy5El4enqiS5cuqF+/PqytrREVFfXW/V6fjuT06dOy28n169dH06ZN8csvv2Dz5s2FTrCJSismbURUZJYvX46MjAw0a9YMf/zxB27cuIGwsDAsWbIEKpUKJiYm+Omnn7Bnzx4MHjwYly9fRlRUFNasWQNPT090794dX3zxBYBXCZudnR38/Pzw+PFjxMbGIjY2Vjrf0KFDMXPmTJw8eRJ37tzB6dOn0bdvX1hZWeW6BZft6NGjePDgASwsLAr9/mbNmgVbW1s0b94cGzduxLVr13Djxg2sXbsWjRo1wrNnz6BQKLBmzRpcu3YN3bp1w5kzZxAdHY0dO3agQ4cOUKlU0pxo2QlbcnIy1qxZg8TEROk9FiaJevLkibRf9iv7ubOCsLe3R3BwMKKiovDvv/8WuBeuVq1a2LlzJy5evIhLly6hV69eBdp3x44dWLt2La5fvw4fHx+cOXMGI0aMkLUZOHAgfH19IYRAly5dCvxeiEo1dQ5dJaLSJyYmRgwfPlxUq1ZNKJVKUbVqVdGxY0dx7Ngxqc2JEyeEh4eHMDMzE0qlUtStW1f4+fmJ9PR0qc26detyTUWR/cr2+++/i88++0zY2NgIpVIpqlSpIrp16yYuX74stcme8iI/3333XYGn/BBCiPj4eOHt7S1q1aollEqlqFy5snB3dxe7du0SmZmZUrvLly+Lbt26iQoVKgh9fX1Ro0YNMWXKFJGcnCy1yZ5WI69XZGTkW2PJnvIjr9eWLVvyff8LFy4U1apVk7YjIiKEi4uLMDIyyjXlx9OnT6V2ISEhstgiIyOFm5ubMDIyEra2tmLZsmWiZcuW4rvvvpP2yWvKj+XLl4v//e9/wsDAQNjb24tt27blem9JSUnC2NhYDBs27K2fA1FZoRCikE/LEhERvSOFQoFdu3ahc+fOb2wXFRWFGjVq4OzZs2jcuHHJBEek4TgQgYiINEZaWhqePHmCKVOmwMXFhQkbUQ58po2I6P+9PtdZztfff/9d4vEMGTIk33iGDBlS4vGUhJMnT8LGxgZnz57FqlWr1B0OkUbh7VEiov938+bNfOuqVq0KIyOjEowmaz60xMTEPOvMzMxQqVKlEo2HiNSLSRsRERGRFuDtUSIiIiItwKSNiIiISAswaSMiIiLSAkzaiIiIiLQAkzYiIiIiLcCkjYiIiEgLMGkjIiIi0gJM2oiIiIi0wP8BJcx+rwECsLgAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjNElEQVR4nO3dd1QU198G8GdBekdBFBGsYIsxtoCJij8jGms00dixYMPeADUiVuxRY9QkisQYeyNoxIYliokNFQWs2AAbTVD6vH/sy8hQFHRhWfb5nLNH587s8l03cR/vvXOvTBAEAURERERqQEPZBRARERGVFgYfIiIiUhsMPkRERKQ2GHyIiIhIbTD4EBERkdpg8CEiIiK1weBDREREaoPBh4iIiNQGgw8RERGpDQYfIlJJMpkMc+bMUXYZIldXV9jZ2Sm7DCJ6DwYfIlKYzZs3QyaTiQ9dXV3UrVsXY8eOxdOnT0v0Z587dw5z5sxBQkKCQl+3bdu2kvdkbm6O5s2bY9OmTcjOzlbIz1i4cCH279+vkNcioneroOwCiKj8mTt3LmrUqIHU1FT8888/WLduHQ4dOoSwsDDo6+sr5Ge8efMGFSq8/Svs3Llz8PHxgaurK0xNTRXyM3JUq1YNixYtAgA8f/4cv//+O4YNG4Zbt27B19f3o19/4cKF+Pbbb9GjR4+Pfi0iejcGHyJSuE6dOqFZs2YAgOHDh6NixYpYsWIFDhw4gL59+37w62ZnZyM9PR26urrQ1dVVVLnvZWJiggEDBojHI0eOhL29PX766SfMmzcPWlpapVYLEX0cDnURUYlr164dAOD+/fsAgGXLlsHJyQkVK1aEnp4emjZtit27d+d7nkwmw9ixY7F161Y0aNAAOjo6OHz4sHguZ47PnDlzMG3aNABAjRo1xGGpqKgotGnTBo0bNy6wLnt7e7i4uBT7/ejr6+Pzzz9HSkoKnj9/Xuh1KSkpmDJlCmxsbKCjowN7e3ssW7YMgiBI3mNKSgr8/f3Ful1dXYtdExEVDXt8iKjE3b17FwBQsWJFAMCqVavQrVs39O/fH+np6di+fTu+++47BAYGonPnzpLnnjhxAjt37sTYsWNRqVKlAicQ9+zZE7du3cK2bduwcuVKVKpUCQBgYWGBgQMHws3NDWFhYWjYsKH4nAsXLuDWrVuYNWvWB72ne/fuQVNTs9BhNUEQ0K1bNwQHB2PYsGH49NNPERQUhGnTpuHJkydYuXIlAGDLli0YPnw4WrRogREjRgAAatWq9UE1EVERCERECuLn5ycAEI4dOyY8f/5cePTokbB9+3ahYsWKgp6envD48WNBEATh9evXkuelp6cLDRs2FNq1aydpByBoaGgIN27cyPezAAje3t7i8dKlSwUAwv379yXXJSQkCLq6uoKHh4ekffz48YKBgYGQnJz8zvfUpk0bwcHBQXj+/Lnw/PlzITw8XBg/frwAQOjatat43eDBgwVbW1vxeP/+/QIAYf78+ZLX+/bbbwWZTCbcuXNHbDMwMBAGDx78zjqISDE41EVECte+fXtYWFjAxsYG33//PQwNDbFv3z5YW1sDAPT09MRr4+PjkZiYiC+//BKXL1/O91pt2rRB/fr1P7gWExMTdO/eHdu2bROHmLKysrBjxw706NEDBgYG732NiIgIWFhYwMLCAvXq1cOaNWvQuXNnbNq0qdDnHDp0CJqamhg/frykfcqUKRAEAX///fcHvyci+nAc6iIihVu7di3q1q2LChUqoHLlyrC3t4eGxtt/ZwUGBmL+/PkIDQ1FWlqa2C6TyfK9Vo0aNT66nkGDBmHHjh04c+YMWrdujWPHjuHp06cYOHBgkZ5vZ2eHX3/9VbxFv06dOrC0tHzncx48eICqVavCyMhI0l6vXj3xPBGVPgYfIlK4Fi1aiHd15XXmzBl069YNrVu3xs8//4wqVapAS0sLfn5++PPPP/Ndn7t36EO5uLigcuXK+OOPP9C6dWv88ccfsLKyQvv27Yv0fAMDgyJfS0RlG4e6iKhU7dmzB7q6uggKCsLQoUPRqVMnhYSKgnqLcmhqaqJfv37YvXs34uPjsX//fvTt2xeampof/XMLY2tri+joaLx69UrSHhERIZ7P8a7aiUixGHyIqFRpampCJpMhKytLbIuKivrolYtz5uoUtnLzwIEDER8fj5EjRyI5OVmyLk9J+Prrr5GVlYWffvpJ0r5y5UrIZDJ06tRJbDMwMFD4itNEVDAOdRFRqercuTNWrFiBjh07ol+/fnj27BnWrl2L2rVr49q1ax/8uk2bNgUAzJw5E99//z20tLTQtWtXMRA1adIEDRs2xK5du1CvXj189tlnCnk/henatSucnZ0xc+ZMREVFoXHjxjhy5AgOHDiAiRMnSm5Zb9q0KY4dO4YVK1agatWqqFGjBlq2bFmi9RGpK/b4EFGpateuHTZu3IjY2FhMnDgR27Ztw+LFi/HNN9981Os2b94c8+bNw9WrV+Hq6oq+ffvmW1xw0KBBAFDkSc0fQ0NDAwEBAZg4cSICAwMxceJE3Lx5E0uXLsWKFSsk165YsQJNmzbFrFmz0LdvX6xbt67E6yNSVzJByLWEKBFRObZq1SpMmjQJUVFRqF69urLLISIlYPAhIrUgCAIaN26MihUrIjg4WNnlEJGScI4PEZVrKSkpCAgIQHBwMK5fv44DBw4ouyQiUiL2+BBRuRYVFYUaNWrA1NQUY8aMwYIFC5RdEhEpEYMPERERqQ3e1UVERERqg8GHiIiI1AYnN+eRnZ2N6OhoGBkZcRl5IiIiFSEIAl69eoWqVatKNkXOi8Enj+joaNjY2Ci7DCIiIvoAjx49QrVq1Qo9z+CTh5GREQD5H5yxsbGSqyEiIqKiSEpKgo2Njfg9XhgGnzxyhreMjY0ZfIiIiFTM+6apcHIzERERqQ0GHyIiIlIbDD5ERESkNjjH5wNkZWUhIyND2WVQKdDS0oKmpqayyyAiIgVh8CkGQRAQGxuLhIQEZZdCpcjU1BRWVlZc14mIqBxg8CmGnNBjaWkJfX19fhGWc4Ig4PXr13j27BkAoEqVKkquiIiIPhaDTxFlZWWJoadixYrKLodKiZ6eHgDg2bNnsLS05LAXEZGK4+TmIsqZ06Ovr6/kSqi05XzmnNdFRKT6GHyKicNb6oefORFR+cHgQ0RERGqDwYeIiIjUBoOPGnB1dYVMJoNMJoOWlhYqV66Mr776Cps2bUJ2dnaRX2fz5s0wNTUtuUKJiIhKGIOPmujYsSNiYmIQFRWFv//+G87OzpgwYQK6dOmCzMxMZZdHRERUKhh81ISOjg6srKxgbW2Nzz77DDNmzMCBAwfw999/Y/PmzQCAFStWoFGjRjAwMICNjQ3GjBmD5ORkAMDJkycxZMgQJCYmir1Hc+bMAQBs2bIFzZo1g5GREaysrNCvXz9x7RsiIqIcAQGAk5P8V2VRmeCzaNEiNG/eHEZGRrC0tESPHj0QGRkpuSY1NRXu7u6oWLEiDA0N0atXLzx9+rTEahIEAenp6Up5CILw0fW3a9cOjRs3xt69ewEAGhoaWL16NW7cuAF/f3+cOHEC06dPBwA4OTnhxx9/hLGxMWJiYhATE4OpU6cCkN/mPW/ePFy9ehX79+9HVFQUXF1dP7o+IiIqPx4/fowrV3zg4uIDX1/l1aEyCxieOnUK7u7uaN68OTIzMzFjxgx06NABN2/ehIGBAQBg0qRJOHjwIHbt2gUTExOMHTsWPXv2xNmzZ0ukpoyMDCxatKhEXvt9vLy8oK2t/dGv4+DggGvXrgEAJk6cKLbb2dlh/vz5GDVqFH7++Wdoa2vDxMQEMpkMVlZWktcYOnSo+PuaNWti9erVaN68OZKTk2FoaPjRNRIRkWo7cOAAQkNDxWMPDwGAcpYKUZngc/jwYcnx5s2bYWlpiUuXLqF169ZITEzExo0b8eeff6Jdu3YAAD8/P9SrVw/nz5/H559/royyyzxBEMR1ao4dO4ZFixYhIiICSUlJyMzMRGpqKl6/fv3OhRsvXbqEOXPm4OrVq4iPjxcnTD98+BD169cvlfdBRERlT2pqKhYvXixp69evH+rUUd76aCoTfPJKTEwEAJibmwOQf/lmZGSgffv24jUODg6oXr06QkJCCg0+aWlpSEtLE4+TkpKKXIOWlha8vLw+pPyPpqWlpZDXCQ8PR40aNRAVFYUuXbpg9OjRWLBgAczNzfHPP/9g2LBhSE9PLzT4pKSkwMXFBS4uLti6dSssLCzw8OFDuLi4ID09XSE1EhFR2RMQAPj6Ap6eQLdu+c+Hh4dj586dkjZFjVZ8DJUMPtnZ2Zg4cSJatWqFhg0bApBvIKqtrZ3vduvKlSsjNja20NdatGgRfHx8PqgOmUym9A/wY5w4cQLXr1/HpEmTcOnSJWRnZ2P58uXQ0JBP/cr7H6y2tjaysrIkbREREXj58iV8fX1hY2MDALh48WLpvAEiIlIaX18gJASYPl0agARBgJ+fHx49eiRe26JFC3Tq1EmJ1b6lMpObc3N3d0dYWBi2b9/+0a/l5eWFxMRE8ZH7gypP0tLSEBsbiydPnuDy5ctYuHAhunfvji5dumDQoEGoXbs2MjIysGbNGty7dw9btmzB+vXrJa9hZ2eH5ORkHD9+HC9evMDr169RvXp1aGtri88LCAjAvHnzlPQuiYiotHh6Avb2wMOH8gDk6ysfjZk7d67ku3TEiBFlJvQAKhh8xo4di8DAQAQHB6NatWpiu5WVFdLT05GQkCC5/unTp/km4+amo6MDY2NjyaM8Onz4MKpUqQI7Ozt07NgRwcHBWL16NQ4cOABNTU00btwYK1aswOLFi9GwYUNs3bo138RtJycnjBo1Cn369IGFhQWWLFkCCwsLbN68Gbt27UL9+vXh6+uLZcuWKeldEhFRaenWDTA3B968AQwNgaFD/8WPP/4ontfV1cUPP/yAKlWqKK/IAsgERdwXXQoEQcC4ceOwb98+nDx5EnXq1JGcT0xMhIWFBbZt24ZevXoBACIjI+Hg4PDOOT55JSUlwcTEBImJiZIQlJqaivv376NGjRrQ1dVV3BujMo+fPRFRwQICgMWLs9Gp01JkZaWK7S4uLqV+U1Fh3995qcwcH3d3d/z55584cOAAjIyMxHk7JiYm0NPTg4mJCYYNG4bJkyfD3NwcxsbGGDduHBwdHXlHFxERUQlo0SIWHTpsQO7pnxMmTCjT2xupTPBZt24dAKBt27aSdj8/P3GxvJUrV0JDQwO9evVCWloaXFxc8PPPP5dypUREROXf4cOH8e+//4rHNjY2GDJkiLhESlmlMsGnKCNyurq6WLt2LdauXVsKFREREamf9PT0fHNAe/fujXr16impouJRmeBDREREynXnzh1s3bpV0ubh4aFS8x8ZfIiIiOi9tm7dijt37ojHT558il9+6a7Eij6Myt3OTkRERIqVs2v6zJn5d09PTk6Gj4+PJPScPz8UXbqoXugB2ONDRESk9nJWYf73XyA7W37crRtw+fJl/PXXX+J1MpkMM2fOhKamphKr/TgMPkRERGrO0xPo3x9ITpYvRujhIeDHH1eJ+2ICgLOzM1q3bq3EKhWDQ11ERERqrls3YPx4eegZP/45QkPnSkLPmTNjkZCg+qEHYPAhBXJ1dUWPHj3E47Zt22LixIkf9ZqKeA0iInq/4GCgRYsT0NZ+u/6dhYUFgoJm4/jxivD1VWJxCsShLjXg6uoKf39/AICWlhaqV6+OQYMGYcaMGahQoeT+E9i7dy+0tLSKdO3Jkyfh7OyM+Ph4yYqfxXkNIiL6MBkZGXBxWShp++abb/DJJ5+gWrW3u6+XBww+aqJjx47w8/NDWloaDh06BHd3d2hpacHLy0tyXXp6OrS1tRXyM83NzcvEaxARkVRAAODhAQgC8MMPUbhzx19yfurUqTAwMAAgHwbr1k0ZVZYMDnWpCR0dHVhZWcHW1hajR49G+/btERAQIA5PLViwAFWrVoW9vT0A4NGjR+jduzdMTU1hbm6O7t27IyoqSny9rKwsTJ48GaampqhYsSKmT5+eb3XtvMNUaWlp8PDwgI2NDXR0dFC7dm1s3LgRUVFRcHZ2BgCYmZlBJpOJ25DkfY34+HgMGjQIZmZm0NfXR6dOnXD79m3x/ObNm2FqaoqgoCDUq1cPhoaG6NixI2JiYsRrTp48iRYtWsDAwACmpqZo1aoVHjx4oKA/aSKiss/XF4iIABo12i0JPfXq1YO3t7cYesojBh81paenh/T0dADA8ePHERkZiaNHjyIwMPD/uzxdYGRkhDNnzuDs2bNigMh5zvLly7F582Zs2rQJ//zzD+Li4rBv3753/sxBgwZh27ZtWL16NcLDw7FhwwYYGhrCxsYGe/bsAQBERkYiJiYGq1atKvA1XF1dcfHiRQQEBCAkJASCIODrr79GRkaGeM3r16+xbNkybNmyBadPn8bDhw8xdepUAEBmZiZ69OiBNm3a4Nq1awgJCcGIESPK/N4yREQfImd9ntzr8gDA1KmvMWeODxo2vCG21a49CL179y7lCksfh7rUjCAIOH78OIKCgjBu3Dg8f/4cBgYG+O2338Qhrj/++APZ2dn47bffxEDg5+cHU1NTnDx5Eh06dMCPP/4ILy8v9OzZEwCwfv16BAUFFfpzb926hZ07d+Lo0aNo3749AKBmzZri+ZwhLUtLy0J39b19+zYCAgJw9uxZODk5AZCvJGpjY4P9+/fju+++AyAfq16/fj1q1aoFABg7dizmzp0LAEhKSkJiYiK6dOkinleV/WWIiIorZ32enHV5AOD69eu4fn2v5Lr582egeXMt9O+vhCJLGXt8lKSwFF5SAgMDYWhoCF1dXXTq1Al9+vTBnDlzAACNGjWSzOu5evUq7ty5AyMjIxgaGsLQ0BDm5uZITU3F3bt3kZiYiJiYGLRs2VJ8ToUKFdCsWbNCf35oaCg0NTXRpk2bD34P4eHhqFChguTnVqxYEfb29ggPDxfb9PX1xVADAFWqVMGzZ88AyAOWq6srXFxc0LVrV6xatUoyDEZEVJ54egKOjvJfBUHA+vXrsXfv29DTqlUrNGnijebNtcrN5OX3YfBRktwpvDQ4OzsjNDQUt2/fxps3b+Dv7y+O4eYdy01OTkbTpk0RGhoqedy6dQv9+vX7oJ+vp6f30e+hqPLeBSaTySTzj/z8/BASEgInJyfs2LEDdevWxfnz50utPiKikpbzj2sAOHcO+OKLOMydOxdPnz4Vr8mZ76luGHyUJHcKLw0GBgaoXbs2qlev/t5b2D/77DPcvn0blpaWqF27tuRhYmICExMTVKlSBf/++6/4nMzMTFy6dKnQ12zUqBGys7Nx6tSpAs/n9DhlZWUV+hr16tVDZmam5Oe+fPkSkZGRqF+//jvfU15NmjSBl5cXzp07h4YNG+LPP/8s1vOJiMqy3P+4/ueff7BmzRrxnLGxMX744QdYWlrmu1YdMPgoSbdu8hReFm8R7N+/PypVqoTu3bvjzJkzuH//Pk6ePInx48fj8ePHAIAJEybA19cX+/fvR0REBMaMGYOEhIRCX9POzg6DBw/G0KFDsX//fvE1d+7cCQCwtbWFTCZDYGAgnj9/juTk5HyvUadOHXTv3h1ubm74559/cPXqVQwYMADW1tbo3r1om+Xdv38fXl5eCAkJwYMHD3DkyBHcvn2b83yIqFzx9ATq1cvCV1/Nw/Hjx8X2Ll26YNKkSdDQ0JBcW5r/EFc2Bh/KR19fH6dPn0b16tXRs2dP1KtXD8OGDUNqaiqMjY0BAFOmTMHAgQMxePBgODo6wsjICN988807X3fdunX49ttvMWbMGDg4OMDNzQ0pKSkAAGtra/j4+MDT0xOVK1fG2LFjC3wNPz8/NG3aFF26dIGjoyMEQcChQ4eKvMihvr4+IiIi0KtXL9StWxcjRoyAu7s7Ro4cWYw/ISKisi0l5TH69JkPDY1ssW3y5Mlo2rRpvjmmZfkf4iVBJuRdfEXNJSUlwcTEBImJieKXPACkpqbi/v37qFGjBnR1dZVYIZU2fvZEVNYFBOReXTkAV65cEc8ZGdXE5MkDxWMnJ/nQlqOjPPCUF4V9f+fF29mJiIhUnK8vcPlyKq5cWSxpr1mzHwYOrCNp8/QsX1tQFBeDDxERURmXu0enoCGpUaMicP/+Dkmbp6cndHR08l1b3ragKC4GHyIiojKuoIUIAeDAAQHBwZthZvZQbGvevDm+/vprJVSpGji5mYiIqIwr6M6rxMREhIbOlYQeNzc3ZGZ+DQcHoF690lskV5Uw+BQT54KrH37mRKQseRciBOTHGzf+hx9//FG8LjVVB0eOzELVqlXh6wtERso3IVWXtXmKg8GniHJul379+rWSK6HSlvOZF/WWeSIiRcm7uODixdn48sslePz4b/Eaa+sOOHXKEx4emgDkvUL29oCDg/pOYH4XzvEpIk1NTZiamop7Punr63NH73JOEAS8fv0az549g6mpKTQ1NZVdEhGpmdx3YMXGxqJDhw2S8xMmTICpqSmGD3/bpu6Tl9+H6/jk8a51AARBQGxs7DtXKKbyx9TUFFZWVgy6RFTiCrt7KygoSLKnYEKCNVasGMa/l3Ip6jo+DD55FOUPLisrCxkZGaVcGSmDlpYWe3qIqNTkLC7o4ACYmQHTpqXj2rVFkmtCQ7/DkCH12auTBxcwLEGampr8MiQiIoXz9AQ8PICoKCAj4y6uXftDct7ffzp+/FGPoecjMPgQEREpUc7wlrMzEBwMCALwzTfbYG9/S7wmNLQx9u/vASD/Wj5UPAw+RERESjR9uvz284sXAW3tZEybtlxyfuPGIXj0qDoAwNqad2p9LAYfIiIiJcqZn9y48RV06SJdcXDevJnIypJ/Vc+YASxYUNrVlT8MPkRERErk6yvg3Lk10NePF9tu326L3r3boGVL+cKFTk4MPYrC4ENERKQkL168QGjoWujrv23bsGEsYmIq4tIlIDxcebWVVww+REREShAcHIzTp0+Lx4JQCcuXj0Fysuz/j5VVWfnG4ENERFSKMjMzsSDPuNW+fT1w925jJCcDurqAnR2weLFy6ivvGHyIiIhKyZ9/PsDt25slbUuWTMXr1waYMUN+O3veVZtJsRh8iIiISlhAAHDw4F5UrXpdbAsPd8COHX0AABUqcPJyaWHwISIiKiEBAcDy5W/Qrt0SVK36tn3LloG4e7emeFy5shKKU1MMPkRERCVk8+YwtGu3R9J29OgM3L2rBUC+IGH16lyUsDQx+BARESnYgQMCgoN/QePGsWLb/ftO6NnzK2zfLg88RkbyCcycz1O6GHyIiIgUKD4+HqGhq2Fm9rZt48ZRyM6ujH//BSIiAEdH+cKEVPoYfIiIiBTk7NmzOHbsmHiclGSElSsnQhA0AAD29vLQw6Et5WHwISIi+khZWVnw9fVFZmam2BYY2BkXLzaDhoZ8MUJdXWDJEg5tKRuDDxER0Ud48uQJfvvtN0nb8uWT8OqVMQCgSpW3E5gZepSPwYeIiOgDBQYG4tKlS+LxvXs1EBg4ECkpMjg5yXt6GHjKFgYfIiKiYkpLS4Ovr6+k7c8/++L27bqoWhWIi5OHHk5gLnsYfIiIiIphy5ZI3Lu3XdK2e7cnoqN1IAiAoSEnMJdlDD5ERERFIAgC/P398eDBA7EtK6sZVq7sjPHjgZYtAV9fDm2VdQw+RERE75GUlISVK1dK2oKC3BAXVxXJyfLNRRcsYOBRBQw+RERE73DhwgUcOnRIPNbS0sK6dR54/FgT5uYc1lI1DD5EREQFyM7OxooVK5CSkiK2ffXVV3jxwglPnsiP37zhBGZVw+BDRESUx9OnT7F+/XpJ2y+/TECTJqbw9ZXfsaWhAUyapKQC6YMx+BAREf2/gABg794jqFEjRGx7+bIqfvttON68kcHDQ76xKCcxqy4GHyIiIgDp6em4cmURatR42/bXX99CR6cBUlPlx4IgDzsMPKqLwYeIiNRaQADwyy/30Lz5Fkn7hg3TEROjJx5raMj32iLVxuBDRERqKSBAPmTVoMF2NG8eKbZHR3+CX375BjLZ22s1NDi0VV5oKLsAIiIiZVixIgUuLj6oVu1t6BkyZAgqVfpGXH1ZVxewtgb27ZOv00Oqjz0+RESkVgICgN9/D4Wz8wFJ+8yZM1GhQgUEBwPJycDLl0CTJuzpKW/Y40NERGpDEAT8888aNGr0NvRYWbXBr796w8ioAmbOlAcdR0dAJgNCQuTDYVR+MPgQEVG5FRAAODnJf33x4gXmzp0LA4M48Xy9eu5YubItnjwBUlOB1avlvTvnzslvW+eqzOUPh7qIiKjc8vWV99rs2nUSV66cEttTUsyxbNlYGBjIYGIib5PJgPHj3z6Xt62XTww+RERULgUEAAkJmZgzRzoruXv37nj48FOsWyefy2Nt/bZnh0Gn/ONQFxERlQu5h7UAYP36h+jTRxp6Gjacik8//RTdugFbt8oDz5Il8qEthh71wB4fIiJSeQEBQP/+8h4cX18gK2sfWra8Jp6/c6cu/vijr7gez4IFHMpSV+Wyx2ft2rWws7ODrq4uWrZsif/++0/ZJRERkYLl7uHx9ZWHnkqV3sDFxQfXrr0NPTt2DMCePX0BANnZwIoVyqqYyoJyF3x27NiByZMnw9vbG5cvX0bjxo3h4uKCZ8+eKbs0IiJSoJyJyzkbhvbocQNjx0r3lFi1ygvh4bXw5s3btooVS7lQKlPKXfBZsWIF3NzcMGTIENSvXx/r16+Hvr4+Nm3apOzSiIhIQQICgLg4wMEB8PAQEBv7Cz79dLd43tLSEcuWeSM+Xluy9YS1NfDzz0oomMqMcjXHJz09HZcuXYKXl5fYpqGhgfbt2yMkJKTA56SlpSEtLU08TkpKKvE6iYjo4/j6ApGRgLNzAkJDV0nOjRo1Cm3aVEZysnzLicmTgeBg3rVFcuUq+Lx48QJZWVmoXLmypL1y5cqIiIgo8DmLFi2Cj49PaZRHREQfKWc+j7MzYGt7Dg4OR8VzBgYGmDx5MjQ0NMReHjs77rFFUuVuqKu4vLy8kJiYKD4ePXqk7JKIiKgQvr7Av/9mQUNjoST0XLz4NX77bSoCA+VfazmrLi9erKxKqawqVz0+lSpVgqamJp4+fSppf/r0KaysrAp8jo6ODnR0dEqjPCIi+kjjx0cjMvJXSdvJk5Nw8qQxAHkwyrlNncNaVJBy1eOjra2Npk2b4vjx42JbdnY2jh8/DkdHRyVWRkREHyL3LesHDx6UhB5DQzsEBc2Gk5MxHBzkE5fj498uYEhUkHIVfABg8uTJ+PXXX+Hv74/w8HCMHj0aKSkpGDJkiLJLIyKid8i78jIg78G5dCkNV6744OLFi2J7Rsb3mDVrMEJCZNizBwgPB6pXByIiuJs6vVu5GuoCgD59+uD58+eYPXs2YmNj8emnn+Lw4cP5JjwTEVHZkntdnpxhqtGjb+HevW2S6xYt8oSWlg5SU+XHOROZPT3frulDVBiZIAiCsosoS5KSkmBiYoLExEQYGxsruxwiIrWRc8eWpyfQtauALVu24P79++L5ixebIjCwCwwN5buo79kjDz2LF3M+DxX9+5vBJw8GHyIi5Xr16hVW5NlXYvPm4YiKsoaGBrBvH4MO5VfU7+9yN9RFRESq6+LFizh48KB4nJFRAYsWeaJKFU2xp4ehhz4Ggw8REZWq3ENaOSEmOzsbK1euRHJysnjd8ePtceZMK8hkwODBXIiQFINDXXlwqIuIqGQ5OcknMTs4AGZmwIQJzxARsU5yzY8/jkdCghk0NOQ7qjs6AufOKalgUgkc6iIiojIp5+6ruDjAwOAYIiLOiudiYqywadMIaGrKYG0t7+nJ2WeLSBEYfIiIqEQUNKQFyH/fqVMGFi5cKLl+165eiIhoCA8PDmtRyeFQVx4c6iIiUgwHB/kO6vb28oUFc9y/fx+///675NrFi6fhzRt9DmnRB+NQFxERKVXOwoI5vwLAjh07EJErBd282RBnz/aCuTlgaMghLSp5DD5ERKRwAQGAIMh7fRYvBlJSUrBs2TLJNVu3umLZMlvs2KGkIkktMfgQEZHC+frKh7kMDYELF67iypX9kvPz589E7doVuCYPlToGHyIiUpicCc3OzsD16wIGD/4ZFSq8EM+fPNkaZ886o0IFoGdPJRZKaovBh4iIFCZno1F9/ZeYOvUnybmffnJHYmIlZGQAGRnA3r1vb1Vnzw+VFgYfIiJSGE9PwN//ND75JFhs09Y2w19/jcPGjfJZzh4e8vk/gpB/N3aiksbgQ0RECrF/fyauXl2ATz5523b9ejfs3t0EXl5v23JCTu51fohKC4MPERF9tFmzHkFLa5OkbfXqKfDzMyz0Od26saeHSh+DDxERfZQ1a/ZDS+uqePzwYR2Eh/eDnx+DDZU9DD5ERPRB9u59g+vXl0jaDh0agJkza2HjRiUVRfQeDD5ERFRkOfNy2rW7CS2tXZJzO3d64cYNbSVVRlQ0DD5ERFSggABg+nT5lhOLF8uHrXx9Bbi4zJVcFxLyOU6ccMHu3UoqlKgYGHyIiKhAOasv5/y+RYtYuLhskFyTkTESSUlW2L2b83lINTD4EBFRgTw93/b49OmzGxs23JCc/+GHH6ChoaGk6og+DIMPERHlkzOXx9c3C1evzkdCwttzn3zyCb755hul1Ub0MRh8iIgoH19f4MWLW7h6dZukffTo0bC0tFRSVUQfj8GHiIhEOT09HTqshkwWLzk3e/ZsyGQyJVVGpBgMPkREJAaelJTX6NlzqeRc1ar/g5vbF0qqjEixGHyIiAi+vkB29r/o2fOwpH3q1KkwMDBQUlVEisfgQ0SkxnJ6elxcfCTtBgYGmDp1qpKqIio5DD5ERGps3ryX6NLlJ0nblSu9sX9/PSVVRFSyuAADEZGamDkTMDICvvsOqFYN+Oabv/KFnqNHZ2DoUIYeKr9kgiAIyi6iLElKSoKJiQkSExNhbGys7HKIiBQiIADo0QMQBEBDIxuzZ8+TnDc2rotJk/oqpzgiBSjq9zeHuoiIyrmAAKB/f3nosbOLgqurv+S8m5sbqlatqqTqiEoXgw8RUTmVM3E5Ph5ITgZGjPgNVas+kVwTFDQb3t5cm4fUB+f4EBGVAwEBgJOT/Nccvr5ASAjw6FEa5szxkYSeypW/QFCQNzw9GXpIvXCOTx6c40NEqsjJSR5yHBwAMzPA2RnYuxcwMrqCzp0DJNdOnDgRJiYmSqqUqGRwjg8RkRrx9JT38MTFyQPQ9evA1Kk+ea6Swdt7tlLqIyorGHyIiMqRRo2A+PhEjBnzo6S9R48eaNy4sXKKIipDij3HR1NTE8+ePcvX/vLlS2hqaiqkKCIiKp6c+TyJicfyhZ5PPvFk6CH6f8Xu8SlsSlBaWhq0tbU/uiAiIio+Dw8BoaFzJW0GBjaYOnWokioiKpuKHHxWr14NAJDJZPjtt99gaGgonsvKysLp06fh4OCg+AqJiOidnjx5gtDQ3yRtrq6usLW1VVJFRGVXkYPPypUrAch7fNavXy8Z1tLW1oadnR3Wr1+v+AqJiEiUszaPp6f8+MiRrbCwuCO55ocffoCGBlcrISpIkYPP/fv3AQDOzs7Yu3cvzMzMSqwoIiJ6K3fYmT4diIwE+vfPwNSpC2Fh8fa6Zs2aoXPnzsorlEgFcB2fPLiODxGVJQEBQJ8+QGoqoKsLVKwImJjcQO/euyXXjR07FhUrVlRSlUTKV2Lr+Awd+u6Jcps2bSruSxIRUQFy9thKTZUfp6YCgwYtgY7OG8l13t7eSqiOSDUVO/jEx8dLjjMyMhAWFoaEhAS0a9dOYYUREak7X1/5Hlu6ukC1askYMGC55HynTp3QokULJVVHpJqKHXz27duXry07OxujR49GrVq1FFIUEZG6yj2fx9lZvgLzxIlnUKHCCcl106dPh56enpKqJFJdCpvjExkZibZt2yImJkYRL6c0nONDRMqQE3ji4uSTl3V1gawsATNnStfmqVixIsaOHaukKonKrlLfq+vu3bvIzMxU1MsREamNnLk8ycmAnh6gqQkYGz/FmDHSJUL69euHOnXqKKlKovKh2MFn8uTJkmNBEBATE4ODBw9i8ODBCiuMiEhd5MzlkcmAN2+Anj334pNPrkuumTVrFrcFIlKAYgefK1euSI41NDRgYWGB5cuXv/eOLyIiyi9nLo+ubhbGjp0vOdewYUP06tVLSZURlT/FDj7BwcElUQcRkdoKDgasrG5jwIA/Je2jRo1C5cqVlVQVUfn0wXN8nj17hsjISACAvb09LC0tFVYUEVF5lvvOrW7dgA4dfoJM9lJyzezZsyGTyZRUIVH5Vezgk5SUBHd3d2zbtg3Z2dkAAE1NTfTp0wdr166FiYmJwoskIiovck9kXr78Da5cWYLc+ebWrXbo0+dLMPMQlYxi72Ln5uaGf//9FwcPHkRCQgISEhIQGBiIixcvYuTIkSVRIxGRygoIAJyc5L8Cbycyf/nlf2jXbonk2oYNp2Dr1i/RrZsSCiVSE8Vex8fAwABBQUH44osvJO1nzpxBx44dkZKSotACSxvX8SEiRXJyAkJCAENDYOtWeduVKz6Sa9LT9dCy5XQGHqKPUGLr+FSsWLHA4SwTExPu2E5ElEtAgHxBQj09eS+Pp+dL9Onzk+Sa7777DvXr11dShUTqp9hDXbNmzcLkyZMRGxsrtsXGxmLatGn44YcfFFocEZGqyT205esrX4W5enVg6NCD+ULPjBkzGHqISlmxh7qaNGmCO3fuIC0tDdWrVwcAPHz4EDo6OvlWFL18+bLiKi0lHOoioo+RM7Tl6Ci/a8vXNxsuLvMk12Rn14aPT38lVUhUPpXYUFf37t15iyURUSE8PYHp04H4eCA5+QFcXDZLzg8fPhzW1tbKKY6IFLdJaXnBHh8iKq686/LUqwe0arURNjaPJddxbR6iklPU7+9iz/GpWbMmXr58ma89ISEBNWvWLO7LERGpPF9f+fCWry+QlpaG77/3kYSee/daoUkTb4YeojKg2ENdUVFRyMrKyteelpaGx48fF/AMIqLyTT6XB3Bzuwpf3/2Sc6dOTcCJE6ZKqYuI8ity8AnIWX0LQFBQkOSW9qysLBw/fhw1atRQbHVERGVYQADg4QEIAvD99z54+FB6PijIG56eyqmNiApW5Dk+GhryUTGZTIa8T9HS0oKdnR2WL1+OLl26KL7KUsQ5PkT0Lrnn8/j6AjduJGLy5B8l11y/3g27dzdRToFEakrhc3yys7ORnZ2N6tWr49mzZ+JxdnY20tLSEBkZWWKhJyoqCsOGDUONGjWgp6eHWrVqwdvbG+np6ZLrrl27hi+//BK6urqwsbHBkiVLCnlFIqLiyVmfx8Pj7XyeQYOO5ws9u3Z5YtAghh6isqrYc3zu379fEnW8U0REBLKzs7FhwwbUrl0bYWFhcHNzQ0pKCpYtWwZAnvQ6dOiA9u3bY/369bh+/TqGDh0KU1NTjBgxotRrJqLyJWcCs7094OgowMVlLp4+fXv+8WNr3LgxHGFhyquRiN6v2MFn7ty57zw/e/bsDy6mMB07dkTHjh3F45o1ayIyMhLr1q0Tg8/WrVuRnp6OTZs2QVtbGw0aNEBoaChWrFjB4ENEH83ZGbh+Hfj222hoaf0qOVe79mAEBdlxPg+RCih28Nm3b5/kOCMjA/fv30eFChVQq1atEgk+BUlMTIS5ubl4HBISgtatW0NbW1tsc3FxweLFixEfH899xIioWPKuzRMcDHTr9ie0tG5Lrjty5Ad4e2ugPxdiJlIJxQ4+V65cydeWlJQEV1dXfPPNNwop6n3u3LmDNWvWiL09gHy/sLx3lVWuXFk8V1jwSUtLQ1pamniclJRUAhUTkarJvTZPp04ZcHFZKDmfldUUx451YS8PkYop9gKGBTE2NoaPj0+xNyn19PSETCZ75yMiIkLynCdPnqBjx4747rvv4Obm9tG1L1q0CCYmJuLDxsbmo1+TiFRPzuTlmTPlvzo7y/fbGjUqHAsXSkPPmjVjcexYF5w7J+8NIiLVUewen8IkJiYiMTGxWM+ZMmUKXF1d33lN7tWgo6Oj4ezsDCcnJ/zyyy+S66ysrPA090xDQDy2srIq9PW9vLwwefJk8TgpKYnhh0gN5fTwXL8OJCfLf/X0XIb791Mk123b5g0LC7Cnh0hFFTv4rF69WnIsCAJiYmKwZcsWdOrUqVivZWFhAQsLiyJd++TJEzg7O6Np06bw8/MT1xXK4ejoiJkzZyIjIwNaWloAgKNHj8Le3v6d83t0dHSgo6NTrLqJqPxxdgZCQwFtbaBixRSMG7cMmZlvzx8/3hFTp7aEt7fSSiQiBSj2JqV559FoaGjAwsIC7dq1g5eXF4yMjBRaICAPPW3btoWtrS38/f2hqakpnsvpzUlMTIS9vT06dOgADw8PhIWFYejQoVi5cmWx7uriAoZE6iPvYoQhIUCrVv/gq6+OS647cWIapkzR57AWURlW1O9vldidffPmzRgyZEiB53KXf+3aNbi7u+PChQuoVKkSxo0bBw8Pj2L9LAYfIvXh5CQPO46OgIeHgNBQ6XIdZmZmGD9+vJKqI6LiKNHgk5CQgDt37gAAateuDVNT0w8utKxh8CFSHzk9PhMmPENExDrJuZo1+2LgwLpKqoyIiquo39/FmuMTFRUFd3d3BAUFiT0tMpkMHTt2xE8//QQ7O7uPKpqIqDR16wZkZe3DtWvXJO3z5s1CixaaGDhQSYURUYkpcvB59OgRPv/8c2hpaWHevHmoV68eAODmzZtYt24dHB0dceHCBVSrVq3EiiUi+lABAcD06YBMBixeDHTunIX58+dLrrl7twG2b/8WVla8a4uovCryUNewYcNw584dBAUFQVdXV3LuzZs36NixI+rUqYPffvutRAotLRzqIiqfcubzAECXLnfQrNlWyfm//x6Ff/+VL3rq6AicO1faFRLRx1D47uyHDx/GggUL8oUeANDT08O8efNw6NChD6uWiKgE5CxKGBAg78GxtwcmTfo5X+iZM2c2EhMrw8FBfg17e4jKryIPdb148eKdc3hq1qyJuLg4RdRERKQQ06cDkZHyX69ceYO+fZdIzt++7Qxb29ZwdHy7JxcRlW9FDj5VqlTBzZs3C53DExYW9s4VkomISltysvxXG5sLWLJE2iMdHDwFp04ZcliLSM0UOfj06NEDU6dOxfHjx/Ottvzs2TN4eHigR48eiq6PiOiDGRoCc+b4SNp0dXXh4eGBJk2A9HQOaxGpmyJPbo6Pj0fLli0RGxuLAQMGwMHBAYIgIDw8HH/++SesrKxw/vx5mJubl3TNJYqTm4nKh7i4OKxZs0bS9u2336JBgwZKqoiISpLC1/ExMzPDv//+ixkzZmD79u1ISEgAAJiamqJfv35YuHChyoceIlJtOQsSDhjwN54//09ybsaMGeI+fkSkvj5o5WZBEPD8+XMA8o1GZTKZwgtTFvb4EKkuJ6dsuLjMk7TVrFkTA7kSIVG5p/Db2XOTyWSwtLSEpaVluQo9RKQ6ct+qDgAPHz7MF3rOnx/G0ENEEsXasoKIqKzI2U3d1xd4+dIPDx8+lJwPCpoNT0/+w4yIpD6ox4eISNk8PYEvvkiHi4uPJPRYWjoiKMgbnp4yrstDRPkw+BCRSrKzu4b27RdJ2iZMmIAtWzqIPUFERHlxqIuIVM78+fORlZUlafP29kZAABAfz20niKhwRQo+q1evLvILjh8//oOLISJ6l6SkJKxcuVLS1rVrV3z22WcA5L08ERHyTUY5zEVEBSnS7ew1atQo2ovJZLh3795HF6VMvJ2dqGw6ceIEzpw5I2nz9PSEjo6OeJyzjg/33SJSPwpdwPD+/fsKK4yIqDgEQcDcuXMlbbGxVdCp0wjkyjwA5GGHgYeI3uWDJzenp6cjMjISmZmZiqyHiEgUExOTL/RcuDAInTqNYMAhog9S7MnNr1+/xrhx4+Dv7w8AuHXrFmrWrIlx48bB2toanpxRSEQKsH37dkRGRkrafvjhB2ho8GZUIvpwxf4bxMvLC1evXsXJkyehq6srtrdv3x47duxQaHFEpH4yMzPh4+MjCT1NmjSBt7e3GHryrtpMRFRUxe7x2b9/P3bs2IHPP/9csl1FgwYNcPfuXYUWR0TqJSIiIt8/oP75xx1NmlQSjwMCgP79geRk+URmDnkRUXEUO/g8f/4clpaW+dpTUlK4bxcRfbAVK1bg1atXkragIG+EhACPHslDjrMzsHq1PPQYGnKtHiIqvmIHn2bNmuHgwYMYN24cAIhh57fffoOjo6NiqyOici8lJQXLli2TtHXo0AGOjo5o0kQeeB4+BCIjgStXgNRUeejZupW9PURUfMUOPgsXLkSnTp1w8+ZNZGZmYtWqVbh58ybOnTuHU6dOlUSNRFRO/frrOURHH5W0TZs2Dfr6+gDe3p7u4CA/V7EiUL061+khog9X7MnNX3zxBUJDQ5GZmYlGjRrhyJEjsLS0REhICJo2bVoSNRJROXPggAAfHx9J6DExMYG3t7cYenJbskS+GvPPPwPnzjH0ENGH+6C9umrVqoVff/1V0bUQkRp4/vw5QkN/lrTVrPk9Bg60z3dt7pWYz50rrQqJqDwrUvBJSkoq8gtymwciKkhAABAYuB/W1lcl7TNnzkSFCgX/VeTrC3GndfbyEJEiFCn4mJqaFvmOrbw7JhMRZWVl4cqV+bC2fttWv359fPfdd+98nqfn2x4fIiJFKFLwCQ4OFn8fFRUFT09PuLq6indxhYSEwN/fH4sWLSqZKolIZT19+hTr16+XtI0cORJWVlaStoI2GOXeW0SkaEXanT23//3vfxg+fDj69u0raf/zzz/xyy+/4OTJk4qsr9Rxd3YixTly5AhCQkIkbbNnz87Xg5x7UUJHR87nIaLiU+ju7LmFhITk+9cbIF/fZ/jw4cV9OSIqh/btS8e1a9Ie4Jy1eQri68tFCYmodBT7dnYbG5sC7+j67bffYGNjo5CiiEh1/fHHvXyhZ/r06e9c4NTTU97Tw0UJiaikFbvHZ+XKlejVqxf+/vtvtGzZEgDw33//4fbt29izZ4/CCyQi1RAQAAQFbYOl5S2xzczsE4wf/817n8u5PERUWord4/P111/j9u3b6Nq1K+Li4hAXF4euXbvi1q1b+Prrr0uiRiIq45KTk3Hlio8k9NSpM6TQ0MPd1YlIWYo9ubm84+RmouIJDQ3FgQMHJG3vWpsHkIeekBBOZCYixSmxyc0AkJCQgI0bNyI8PBwA0KBBAwwdOhQmJiYfVi0RqRxBEPDTTz8hLi5ObGvbti3atGmT79q8t6pzfR4iUpZi9/hcvHgRLi4u0NPTQ4sWLQAAFy5cwJs3b3DkyBF89tlnJVJoaWGPD9H77dz5AuHhayVt7u7uqFSpUoHX16sHRETINxv9/38vEREpVFG/v4sdfL788kvUrl0bv/76q9iVnZmZieHDh+PevXs4ffr0x1WuZAw+RO+2YcNJxMaeEo9fvKiIS5fcce7c27V5cnp4nJ2B4GDg4UPgyRPA3l4egIiIFK3EhrouXrwoCT0AUKFCBUyfPh3NmjX7sGqJqMzLzMzEggULJG2PH3fHjRuf5huyytljKzQUePMGsLaWz+fh0BYRKVuxg4+xsTEePnwIBwcHSfujR49gZGSksMKIqOx4+PAh/Pz8JG1Ll07FJ58YFDg52dkZuH4d0NaWBx9DQ05iJqKyodjBp0+fPhg2bBiWLVsGJycnAMDZs2cxbdq0fNtYEJHq27t3L65fvy4e29vbQ1//e3zyScE9ODNnynt8srPlc3rs7dnTQ0RlR7GDz7JlyyCTyTBo0CBkZmYCALS0tDB69Gj4+voqvEAiUo43b95gyZIlkraBAweiZs2a71x/Z/VqeejR0AAWL+bChERUtnzwOj6vX7/G3bt3AQC1atWCvr6+QgtTFk5uJgJu3LiB3bt3S9qOHp2Bf/7RAvDudXhmzpSHn/HjgTxTgoiISkyJ3dVV3jH4kDoTBAG//vorYmJixDZLS0esWtUBMtnbHpy8d23lrM9DRKQsCg8+Q4cOLdIP3rRpU9EqLKMYfEhdxcfHY/Xq1ZK2UaNGoXLlyoX28HAFZiIqKxR+O/vmzZtha2uLJk2agJ1EROXLuXPncPToUfG4QgVDeHlNgoaGfDu/wlZa5grMRKRqitzj4+7ujm3btsHW1hZDhgzBgAEDYG5uXtL1lTr2+JA6ycrKgq+vr3ijAgAEBn4NLa3m7MEhIpVS1O/vIu/OvnbtWsTExGD69On466+/YGNjg969eyMoKIg9QEQqKDo6GvPnz5eEnuXLJyEiojl7cIio3Prgyc0PHjzA5s2b8fvvvyMzMxM3btyAoaGhousrdezxIXUQGBiIS5cuicd2dnYwNR2ExYtlnKhMRCqpRHdnBwANDQ3IZDIIgoCsrKwPfRkiKkVpaWn51tuqWfN7rFtnD09PTlAmovKvyENdgPwvzW3btuGrr75C3bp1cf36dfz00094+PBhuejtISrPbt26lS/0eHp6Yt06e4SEyCcpExGVd0Xu8RkzZgy2b98OGxsbDB06FNu2bUOlSpVKsjYiUgBBELBlyxbcv39fbGvatCm6dOkCQHpnVs76PBzuIqLyqshzfDQ0NFC9enU0adIEMpms0Ov27t2rsOKUgXN8qDxJSkrCypUrJW3Dhw+HtbV1gddzXR4iUlUKn+MzaNCgdwYeIipbLly4gEOHDonHWlpa8PDwgKamZqHP4bo8RFTeccuKPNjjQ6ouOzsbK1euRHJystj21VdfwcnJSYlVERGVLIWv40NEZd/Tp08xb948SegJCBiPYcOcMHOmfCjrXTurExGVdww+ROXE0aNHsX79evG4SpUq2L59Ni5fNkNEhHzH9Lx3bwUEAA4OQL16DEREpB4+eB0fIiobMjIysHDhQknbt99+i7t3GyAqSn6sqwuMH/92J/Ucvr5AZOTb3/NOLiIq7xh8iFTYvXv3sGXLFknb9OnToaenBzc3IDUVMDQEtm4tONR4egLTpwMyGSc0E5F6YPAhUlE7duxARESEeNyoUSP07NlTPM59h1bu0JN3rR728hCROuFdXXnwri4q61JSUrBs2TJJm6urK2xtbYv0fK7VQ0TlUYnv1UVEpS80NBQHDhyQtM2cORMVKrz/f+Wcnh5nZ/kxh7aISB0x+BCpAEEQsHbtWrx8+VJss7JqA3//tmjSpPDhqtzDWr6+8p4egD09RKS+VO529rS0NHz66aeQyWQIDQ2VnLt27Rq+/PJL6OrqwsbGBkuWLFFOkUQK9PLlS8ydO1cSetzd3eHv3/a9m4vmhJ2c8OPoyJ4eIlJvKhd8pk+fjqpVq+ZrT0pKQocOHWBra4tLly5h6dKlmDNnDn755RclVEmkGKdOncJPP/0kHpubm2P27NmoVKlSkYJM7mu6dZP39HAyMxGpM5Ua6vr7779x5MgR7NmzB3///bfk3NatW5Geno5NmzZBW1sbDRo0QGhoKFasWIERI0YoqWKiD5OZmYkFCxZI2rp164YmTZrkOn5/iOFdW0REUioTfJ4+fQo3Nzfs378f+vr6+c6HhISgdevW0NbWFttcXFywePFixMfHw8zMrMDXTUtLQ1pamniclJSk+OKJiuHRo0fYtGmTpG3KlCkwNDRUUkVEROWHSgx1CYIAV1dXjBo1Cs2aNSvwmtjYWFSuXFnSlnMcGxtb6GsvWrQIJiYm4sPGxkZxhRMV0/79+yWhp27duvD29mboISJSEKUGH09PT8hksnc+IiIisGbNGrx69QpeXl4Kr8HLywuJiYni49GjRwr/GUTv8+bNG/j4+ODq1ati24ABA9C3b1/JdQEB3GiUiOhjKHWoa8qUKXB1dX3nNTVr1sSJEycQEhICHR0dyblmzZqhf//+8Pf3h5WVFZ4+fSo5n3NsZWVV6Ovr6Ojke12i0nTz5k3s2rVL0ubl5SUZts2R+y4tzt0hIio+pQYfCwsLWFhYvPe61atXY/78+eJxdHQ0XFxcsGPHDrRs2RIA4OjoiJkzZyIjIwNaWloA5LtV29vbFzq/h0iZBEHAxo0b8eTJE7Ht888/h4uLS75rufggEZFiqMTk5urVq0uOc+Y71KpVC9WqVQMA9OvXDz4+Phg2bBg8PDwQFhaGVatWYeXKlaVeL9H7JCQkYNWqVZK2kSNHFto7ycUHiYgUQyWCT1GYmJjgyJEjcHd3R9OmTVGpUiXMnj2bt7JTmRMSEoIjR46Ix/r6+pgyZQo0NPJPuWNPDxGRYqlk8LGzs0NBe6t+8sknOHPmjBIqInq/rKwsLFmyBOnp6WJbtWqdsHFjC9jbFzxnhz09RESKpRK3sxOpuujoaMyfP18SeiZNmoSNG1uIk5UDAgAHB6Bevbd3bXGbCSIixZIJBXWdqLGibmtPVFSHDh3ChQsXxGNbW1sMHjwYMpms0E1EHR3Zw0NEVBxF/f5WyaEuIlWQlpYG3zw7iPbp0wcODg7icd4tJaZPB2Qy9vAQEZUUDnURlYBbt27lCz0eHh64dcsh33AW8HYS85IlQHg41+ghIiopHOrKg0Nd9LG2bNmCe/fuicefffYZunbtCkC+6nLOcJaDA2BmJh3m4hAXEdGH4VAXUSl79eoVVqxYIWkbPnw4rK2txWNPz7fDWYLwdhXmnPDDIS4iopLF4EOkAJcuXUJgYKB4rKmpCS8vL2hqakquyz2nZ+ZMYPVq+Ro9eef6EBFRyWDwIfoI2dnZ+PHHH/Hq1SuxrX379mjVqpV4nPvOrdzhJjgYSE6W/0pERKWDk5uJPtCzZ88wb948SegZP368JPQAb+fv9O8vndDMNXqIiEofJzfnwcnNVBTHjh3D2bNnxWMrKyuMGDECMpks37UBAfLQk5zMyctERCWlqN/f7PEhKoaMjAz4+PhIQk+vXr1QpcpItGolk/To5OjWDdi6lb07RERlAXt88mCPDxXm/v37+P333yVt06ZNg76+vnibek6PTmHzeoiIqGTwdnYiBdq5cyfCw8PF44YNG6JXr17icd7b0XPm9fj6MvgQEZUlDD5E75CSkoJly5ZJ2lxdXWFraytpy3s7OtflISIqmzjHh6gQ165dyxd6Zs6ciatXbeHkhALn8+To1k0+5MXeHiKisoVzfPLgHB8SBAE///wzXrx4IbZ9+eWXaNeuHYC3207Y2wPm5pzHQ0RUFvCuLqIPEBcXh7lz50pCz5gxY8TQA7xdf0cmezuPh4iIVAPn+BD9v9OnTyM41zLKpqamGD9+PP76S5Zv4nJBvyciorKPQ115cKhL/WRmZmLBggWStq5du+Kzzz4DAMmt6gB3USciKot4OztRETx69AibNm2StE2ZMgWGhobicUG3qrOXh4hINbHHJw/2+KiPAwcOIDQ0VDyuU6cO+vXrp7yCiIjog7HHh6gQqampWLx4saStf//+qF27tpIqIiKi0sLgQ2olPDwcO3fulLR5eXlBW1tbSRUREVFp4u3sVGYFBOC9CwUWlSAI2LhxoyT0tGzZEk2aeKNtW22F/AwiIir7OMcnD87xKTvybvz5oRITE/Hjjz9K2kaOHAkrKyuF/QwiIlIuLmBIKi9nocCPuYPq/PnzktCjp6eHH374AVZWVgr7GUREpDrY45MHe3xUV0DA21vNBSEbFy4sgZZWmng+PLwj+vVrKV7DbSaIiMqPon5/M/jkweCjunKGrTp0iIGT0y+ScwcOTMSbNyYAgIgIDm0REZU3HOoitePpCQwZ8rck9BgYVMfs2bOhq2uCiAhAEDi0RUSkzng7O5UL6enpuHJlEWxt37b16dMHDg4OAKSrL3OIi4hIfTH4kErKPZ+nXr3b+PPPPyXnPTw8oKurKx5368bAQ0REDD6konx95fN5jh79A1eu3BXbHz9ugq5duyFX5iEiIhIx+JBKmjLlFcLCVkjazp8fhsOHq+HGDfbuEBFRwRh8SOVcunQJYWGB4rGGhgZmzJiBgwc1kZjIictERFQ4Bh9SGYIgYNWqVUhMTBTb2rVrhy+//BKAdB5P7jlA7P0hIqIcvJ2dikyRe2cV1/PnzzF37lxJ6Bk3bpwYevLKmQPk61taFRIRkSpg8KEiU1aYOHHiBH7++WfxuHLlypg9ezbMzc0LfQ63oiAiooJwqIuKLPdaOKUhIyMDCxculLT17NkTjRo1eu9zefs6EREVhMGHiqw0w0RUVBT8/f0lbdOmTYO+vn7pFEBEROUSh7pIIRQ5/2f37t2S0NOgQQN4e3sz9BAR0Udjjw8pRO75Px/aK/T69WssXbpU0jZ48GDY2dl9fIFERERg8CEF+dj5P9evX8fevXslbTNmzICWlpYCqiMiIpJj8KGP9jFr5giCgPXr1+PZs2di2xdffIH//e9/Cq6SiIiIwYcU4EOHueLi4rBmzRpJ25gxY2BhYaHgComIiOQYfOijfcgw15kzZ3DixAnx2MTEBBMmTIBMJiuBComIiOQYfOijFec296ysLCxYsACCIIhtXbt2xWeffVZC1REREb3F29mp1Dx+/Bjz58+XhJ7JkyeLoUeZW2IQEZF6YPChUhEQEICNGzeKx3fu1EJQkDeMjIzENu6vRUREJY1DXVSiUlNTsXjxYknb33/3R0JCbSxZIr22tLfEICIi9cPgQwqV+9b2unUjsGPHDsn5hQu90LSpNiIi8j+X+2sREVFJY/AhhZIPVwk4ccIPV648EttbtGiBjIxOaNqUPTpERKQ8DD4k8TGLEQLA5MmJuHHjR0nbiBEjUKVKFQDs0SEiIuXi5GYVU9J3Pn3MBON///1XEnp0dXXxww8/iKGHiIhI2Rh8VExJ3/nk6Qk4Or5/OCp3AMvOzsaSJUtw+PBh8byLiws8PDygocH/xIiIqOyQCbkXVSEkJSXBxMQEiYmJMDY2VnY5+XzsUJSiODnJA1iHDrFwctogOTdhwgSYmpoqpzAiIlJLRf3+5hwfFVMW7nwKCADi4oC+fQ/D3v5fsd3GxgZDhgzhthNERFRmMfhQsS1dmo6+fRdJ2nr37o169eopqSIiIqKiYfChYrlz5w7at98qafPw8ICurq6SKiIiIio6zjylItu6dSu2bn0bej799FN4e3u/M/Rw/y0iIipLGHxUgLLDQ3JyMnx8fHDnzh2xbejQoejevft7n8v9t4iIqCxh8FEBygwPV65cwfLly8VjmUyGWbNmwcbGpkjPL+rt8URERKWBc3xUgDI27xQEAatXr0ZCQoLY5uzsjNatWxfrdcrCXWhEREQ52OOjArp1A86d+7gAUZzhsufPn2Pu3LmS0DN27Nhihx4iIqKyhj0+aiL3cNm7AlRwcDBOnz4tHltYWGD06NFcm4eIiMoFlerxOXjwIFq2bAk9PT2YmZmhR48ekvMPHz5E586doa+vD0tLS0ybNg2ZmZnKKbaMed9cm8zMTPj4+EhCzzfffIMxY8Yw9BARUbmhMj0+e/bsgZubGxYuXIh27dohMzMTYWFh4vmsrCx07twZVlZWOHfuHGJiYjBo0CBoaWlh4cKFSqy8bHjXXJuoqCj4+/tL2qZOnQoDA4NSqIyIiKj0qMReXZmZmbCzs4OPjw+GDRtW4DV///03unTpgujoaFSuXBkAsH79enh4eOD58+fQ1tYu0s8q63t1Kdru3btx48YN8bhevXro3bu3EisiIiIqvqJ+f6vEUNfly5fx5MkTaGhooEmTJqhSpQo6deok6fEJCQlBo0aNxNADyHcIT0pKknyx55WWloakpCTJQx28fv0aPj4+kj+bQYMGMfQQEVG5phLB5969ewCAOXPmYNasWQgMDISZmRnatm2LuLg4AEBsbKwk9AAQj2NjYwt97UWLFsHExER8FHV9GlUWFhaGpUuXStpmzJiBGjVqKKkiIiKi0qHU4OPp6QmZTPbOR0REBLKzswEAM2fORK9evdC0aVP4+flBJpNh165dH1WDl5cXEhMTxcejR48U8dbKpAMHBEyZsh579uwR21q1agVvb29oaWkpsTIiIqLSodTJzVOmTIGrq+s7r6lZsyZiYmIAAPXr1xfbdXR0ULNmTTx8+BAAYGVlhf/++0/y3KdPn4rnCqOjowMdHZ0PKV+lxMXFITR0DXIPe44ePRqWlpbKK4qIiKiUKTX4WFhYwMLC4r3XNW3aFDo6OoiMjMQXX3wBAMjIyEBUVBRsbW0BAI6OjliwYAGePXsmfpkfPXoUxsbGksCkjv755x8cP35cPNbSMoan5wRoaKjESCcREZHCqMTt7MbGxhg1ahS8vb1hY2MDW1tbcY7Kd999BwDo0KED6tevj4EDB2LJkiWIjY3FrFmz4O7urhY9OgEBb7e1yLltPSsrC4sWLUJWVpZ4XZcuXdC0aVMlVUlERKRcKvNP/qVLl+L777/HwIED0bx5czx48AAnTpyAmZkZAEBTUxOBgYHQ1NSEo6MjBgwYgEGDBmHu3LlKrrxwitx1Pe9Gpk+ePMH8+fMloWfy5MkMPUREpNZUYh2f0lSa6/g4OcnDiqOjfC+udymoR6ew80AArly5Ip6rWbMmBg4cqNDaiYiIypKifn8z+ORRmsHnfWEmt6KEpNTUVCxevFjS1q9fP9SpU0dBFRMREZVNRf3+Vok5PuXVu7aRyMvTM3ePTn6RkZHYvn17nud4qsX8JiIioqJi8FERhYUkQRDg7++PBw8eiG3NmzfH119/XYrVERERqQYGHxUVEACsXJmEtm1XStrd3NxQtWpVJVVFRERUtjH4qKitW/9D27Z/i8c6OjqYNm0aNDU1lVgVERFR2aYyt7Ors9y3vWdnZ2Pp0qWoX/9t6OnQoQM8PT0ZeoiIiN6DPT4qIGeNnrVrY3HlygbJuQkTJsDU1FQ5hREREakYBh8V4OkJ7N17BDVqhIht1tbWGDZsGGQymRIrIyIiUi0MPmVceno6rlxZhBo13rZ99913ar//GBER0Ydg8CnD7t69iz/++EPSNn36dOjp6SmpIiIiItXG4FNGbdu2Dbdu3RKPGzdujB49eiivICIionKAwaeMSU5OxvLlyyVtQ4YMQfXq1ZVUERERUfnB4FOGhIaG4sCBA5K2mTNnokIFfkxERESKwG/UMkAQBKxZswbx8fFiW9u2bdGmTRslVkVERFT+MPgo2YsXL7B27VpJ29ixY1GxYkUlVURERFR+Mfgo0cmTJ3Hq1CnxuFKlShgzZgzX5iEiIiohDD5KkJmZiQULFkjaevTogcaNGyupIiIiIvXA4FPKHjx4gM2bN0vapk6dCgMDA+UUREREpEYYfErR3r17cf36dfHYwcEBffr0UWJFRERE6oW7s5eSX375RRJ6Bg4cKIae3LuvExERUclh8CklL1++EX8/Y8YM1KxZUzzO2X3d11cZlREREakPDnWVkiNHhuDmzVTUqmUJb2/pOU9Peejx9FRObUREROqCPT6lZNIkY9SqZVlguOnWDTh3Tv4rERERlRz2+JSSbt0YbIiIiJSNPT5ERESkNhh8Sgnv3CIiIlI+Bp9Swju3iIiIlI/Bp5R4egKOjrxzi4iISJk4ubmUcHIzERGR8rHHh4iIiNQGgw8RERGpDQYfIiIiUhsMPkRERKQ2GHyIiIhIbTD4EBERkdpg8CEiIiK1weBDREREaoPBh4iIiNQGgw8RERGpDQYfIiIiUhsMPkRERKQ2GHyIiIhIbXB39jwEQQAAJCUlKbkSIiIiKqqc7+2c7/HCMPjk8erVKwCAjY2NkishIiKi4nr16hVMTEwKPS8T3heN1Ex2djaio6NhZGQEmUym7HJKVFJSEmxsbPDo0SMYGxsruxzKhZ9N2cTPpWzi51J2leZnIwgCXr16hapVq0JDo/CZPOzxyUNDQwPVqlVTdhmlytjYmH9ZlFH8bMomfi5lEz+Xsqu0Ppt39fTk4ORmIiIiUhsMPkRERKQ2GHzUmI6ODry9vaGjo6PsUigPfjZlEz+XsomfS9lVFj8bTm4mIiIitcEeHyIiIlIbDD5ERESkNhh8iIiISG0w+BAREZHaYPBRYwcPHkTLli2hp6cHMzMz9OjRQ3L+4cOH6Ny5M/T19WFpaYlp06YhMzNTOcWqobS0NHz66aeQyWQIDQ2VnLt27Rq+/PJL6OrqwsbGBkuWLFFOkWoiKioKw4YNQ40aNaCnp4datWrB29sb6enpkuv4uSjH2rVrYWdnB11dXbRs2RL//fefsktSK4sWLULz5s1hZGQES0tL9OjRA5GRkZJrUlNT4e7ujooVK8LQ0BC9evXC06dPlVIvg4+a2rNnDwYOHIghQ4bg6tWrOHv2LPr16yeez8rKQufOnZGeno5z587B398fmzdvxuzZs5VYtXqZPn06qlatmq89KSkJHTp0gK2tLS5duoSlS5dizpw5+OWXX5RQpXqIiIhAdnY2NmzYgBs3bmDlypVYv349ZsyYIV7Dz0U5duzYgcmTJ8Pb2xuXL19G48aN4eLigmfPnim7NLVx6tQpuLu74/z58zh69CgyMjLQoUMHpKSkiNdMmjQJf/31F3bt2oVTp04hOjoaPXv2VE7BAqmdjIwMwdraWvjtt98KvebQoUOChoaGEBsbK7atW7dOMDY2FtLS0kqjTLV26NAhwcHBQbhx44YAQLhy5Yp47ueffxbMzMwkn4OHh4dgb2+vhErV15IlS4QaNWqIx/xclKNFixaCu7u7eJyVlSVUrVpVWLRokRKrUm/Pnj0TAAinTp0SBEEQEhISBC0tLWHXrl3iNeHh4QIAISQkpNTrY4+PGrp8+TKePHkCDQ0NNGnSBFWqVEGnTp0QFhYmXhMSEoJGjRqhcuXKYpuLiwuSkpJw48YNZZStNp4+fQo3Nzds2bIF+vr6+c6HhISgdevW0NbWFttcXFwQGRmJ+Pj40ixVrSUmJsLc3Fw85udS+tLT03Hp0iW0b99ebNPQ0ED79u0REhKixMrUW2JiIgCI/39cunQJGRkZks/JwcEB1atXV8rnxOCjhu7duwcAmDNnDmbNmoXAwECYmZmhbdu2iIuLAwDExsZKQg8A8Tg2NrZ0C1YjgiDA1dUVo0aNQrNmzQq8hp+N8t25cwdr1qzByJEjxTZ+LqXvxYsXyMrKKvDPnX/mypGdnY2JEyeiVatWaNiwIQD5f//a2towNTWVXKusz4nBpxzx9PSETCZ75yNnrgIAzJw5E7169ULTpk3h5+cHmUyGXbt2KfldlE9F/WzWrFmDV69ewcvLS9klq4Wifi65PXnyBB07dsR3330HNzc3JVVOVDa5u7sjLCwM27dvV3Yphaqg7AJIcaZMmQJXV9d3XlOzZk3ExMQAAOrXry+26+jooGbNmnj48CEAwMrKKt+dETkz8K2srBRYtXoo6mdz4sQJhISE5NvXplmzZujfvz/8/f1hZWWV724IfjYfpqifS47o6Gg4OzvDyckp36Rlfi6lr1KlStDU1Czwz51/5qVv7NixCAwMxOnTp1GtWjWx3crKCunp6UhISJD0+ijtcyr1WUWkdImJiYKOjo5kcnN6erpgaWkpbNiwQRCEt5Obnz59Kl6zYcMGwdjYWEhNTS31mtXFgwcPhOvXr4uPoKAgAYCwe/du4dGjR4IgvJ1Em56eLj7Py8uLk2hL2OPHj4U6deoI33//vZCZmZnvPD8X5WjRooUwduxY8TgrK0uwtrbm5OZSlJ2dLbi7uwtVq1YVbt26le98zuTm3bt3i20RERFKm9zM4KOmJkyYIFhbWwtBQUFCRESEMGzYMMHS0lKIi4sTBEEQMjMzhYYNGwodOnQQQkNDhcOHDwsWFhaCl5eXkitXL/fv3893V1dCQoJQuXJlYeDAgUJYWJiwfft2QV9fXwytpHiPHz8WateuLfzvf/8THj9+LMTExIiPHPxclGP79u2Cjo6OsHnzZuHmzZvCiBEjBFNTU8kdqVSyRo8eLZiYmAgnT56U/L/x+vVr8ZpRo0YJ1atXF06cOCFcvHhRcHR0FBwdHZVSL4OPmkpPTxemTJkiWFpaCkZGRkL79u2FsLAwyTVRUVFCp06dBD09PaFSpUrClClThIyMDCVVrJ4KCj6CIAhXr14VvvjiC0FHR0ewtrYWfH19lVOgmvDz8xMAFPjIjZ+LcqxZs0aoXr26oK2tLbRo0UI4f/68sktSK4X9v+Hn5yde8+bNG2HMmDGCmZmZoK+vL3zzzTeSfziUJtn/F01ERERU7vGuLiIiIlIbDD5ERESkNhh8iIiISG0w+BAREZHaYPAhIiIitcHgQ0RERGqDwYeIiIjUBoMPERERqQ0GH6JyJjY2FuPGjUPNmjWho6MDGxsbdO3aFcePHxevOXfuHL7++muYmZlBV1cXjRo1wooVK5CVlSVeExUVhWHDhqFGjRrQ09NDrVq14O3tjfT0dMnP+/XXX9G4cWMYGhrC1NQUTZo0waJFi8Tzc+bMgUwmQ8eOHfPVunTpUshkMrRt27bI7y8pKQkzZ86Eg4MDdHV1YWVlhfbt22Pv3r3IvR7rjRs30Lt3b1hYWEBHRwd169bF7Nmz8fr1a/GauLg4jBs3Dvb29tDT00P16tUxfvx4JCYmFqmWqKioQnd1P3/+fJHfU9u2bTFx4sQiX09EH467sxOVI1FRUWjVqhVMTU2xdOlSNGrUCBkZGQgKCoK7uzsiIiKwb98+9O7dG0OGDEFwcDBMTU1x7NgxTJ8+HSEhIdi5cydkMhkiIiKQnZ2NDRs2oHbt2ggLC4ObmxtSUlKwbNkyAMCmTZswceJErF69Gm3atEFaWhquXbuGsLAwSV1VqlRBcHAwHj9+LNm1edOmTahevXqR319CQgK++OILJCYmYv78+WjevDkqVKiAU6dOYfr06WjXrh1MTU1x/vx5tG/fHu3bt8fBgwdRuXJl/Pfff5gyZQqOHz+O4OBgaGtrIzo6GtHR0Vi2bBnq16+PBw8eYNSoUYiOjsbu3buLXNexY8fQoEEDSVvFihWL/PyiEAQBWVlZqFCBf20TfRSlbJRBRCWiU6dOgrW1tZCcnJzvXHx8vJCcnCxUrFhR6NmzZ77zAQEBAgBh+/bthb7+kiVLhBo1aojH3bt3F1xdXd9Zk7e3t9C4cWOhS5cuwvz588X2s2fPCpUqVRJGjx4ttGnTpgjvTr4ZooGBgfDkyZN85169eiVkZGQI2dnZQv369YVmzZoJWVlZkmtCQ0MFmUz2zj20du7cKWhraxdpX7rC9lLLLef9//7774Ktra1gbGws9OnTR0hKShIEQRAGDx6cb4+j+/fvC8HBwQIA4dChQ8Jnn30maGlpCcHBwUJqaqowbtw4wcLCQtDR0RFatWol/Pfff+LPy3leYGCg0KhRI0FHR0do2bKlcP36dUEQBCE5OVkwMjISdu3aJalz3759gr6+vlgXUXnFoS6iciIuLg6HDx+Gu7s7DAwM8p03NTXFkSNH8PLlS0ydOjXf+a5du6Ju3brYtm1boT8jMTER5ubm4rGVlRXOnz+PBw8evLe+oUOHYvPmzeLxpk2b0L9/f2hra7/3uQCQnZ2N7du3o3///qhatWq+84aGhqhQoQJCQ0Nx8+ZNTJ48GRoa0r/iGjdujPbt27/3PRobGyu0Z+Xu3bvYv38/AgMDERgYiFOnTsHX1xcAsGrVKjg6OsLNzQ0xMTGIiYmBjY2N+FxPT0/4+voiPDwcn3zyCaZPn449e/bA398fly9fRu3ateHi4oK4uDjJz5w2bRqWL1+OCxcuwMLCAl27dkVGRgYMDAzw/fffw8/PT3K9n58fvv32WxgZGSnsfROVRQw+ROXEnTt3IAgCHBwcCr3m1q1bAIB69eoVeN7BwUG8pqDXX7NmDUaOHCm2eXt7w9TUFHZ2drC3t4erqyt27tyJ7OzsfM/v0qULkpKScPr0aaSkpGDnzp0YOnRokd/fixcvEB8f/873B7z/PdarV6/Q9/jixQvMmzcPI0aMKHJdAODk5ARDQ0PJI7fs7Gxs3rwZDRs2xJdffomBAweKc65MTEygra0NfX19WFlZwcrKCpqamuJz586di6+++gq1atWCjo4O1q1bh6VLl6JTp06oX78+fv31V+jp6WHjxo2Sn+nt7Y2vvvoKjRo1gr+/P54+fYp9+/YBAIYPH46goCDExMQAAJ49e4ZDhw4V6/MgUlUMPkTlhJBrYq8irwWAJ0+eoGPHjvjuu+/g5uYmtlepUgUhISG4fv06JkyYgMzMTAwePBgdO3bMF360tLQwYMAA+Pn5YdeuXahbty4++eSTEqu5uNcnJSWhc+fOqF+/PubMmVOs5+7YsQOhoaGSR252dnaSnpQqVarg2bNnRXrtZs2aib+/e/cuMjIy0KpVK7FNS0sLLVq0QHh4uOR5jo6O4u/Nzc1hb28vXtOiRQs0aNAA/v7+AIA//vgDtra2aN26ddHeMJEKY/AhKifq1KkjTkouTN26dQEg35dkjvDwcPGaHNHR0XB2doaTkxN++eWXAp/XsGFDjBkzBn/88QeOHj2Ko0eP4tSpU/muGzp0KHbt2oW1a9cWu3fBwsICpqam73x/wIe9x1evXqFjx44wMjLCvn37oKWlVazabGxsULt2bckjt7yvJ5PJCuwVK0hBw5aKMHz4cHHo0c/PD0OGDIFMJiuRn0VUljD4EJUT5ubmcHFxwdq1a5GSkpLvfEJCAjp06ABzc3MsX7483/mAgADcvn0bffv2FduePHmCtm3bomnTpvDz88s3Z6Yg9evXB4ACa2jQoAEaNGiAsLAw9OvXrzhvDxoaGvj++++xdetWREdH5zufnJyMzMxMfPrpp3BwcMDKlSvzhYurV6/i2LFjkveYlJSEDh06QFtbGwEBAdDV1S1WXYqgra0tWUqgMLVq1YK2tjbOnj0rtmVkZODChQvin3uO3LfTx8fH49atW5LhvwEDBuDBgwdYvXo1bt68icGDByvgnRCVfQw+ROXI2rVrkZWVhRYtWmDPnj24ffs2wsPDsXr1ajg6OsLAwAAbNmzAgQMHMGLECFy7dg1RUVHYuHEjXF1d8e2336J3794A3oae6tWrY9myZXj+/DliY2MRGxsr/rzRo0dj3rx5OHv2LB48eIDz589j0KBBsLCwkAy15HbixAnExMTA1NS02O9vwYIFsLGxQcuWLfH777/j5s2buH37NjZt2oQmTZogOTkZMpkMGzduxM2bN9GrVy/8999/ePjwIXbt2oWuXbvC0dFRXDMnJ/SkpKRg48aNSEpKEt9jUYJIjpcvX4rPy3mkpqYW+fl2dnb4999/ERUVhRcvXhTaG2RgYIDRo0dj2rRpOHz4MG7evAk3Nze8fv0aw4YNk1w7d+5cHD9+HGFhYXB1dUWlSpXQo0cP8byZmRl69uyJadOmoUOHDpJlBojKNaXeU0ZEChcdHS24u7sLtra2gra2tmBtbS1069ZNCA4OFq85ffq04OLiIhgbGwva2tpCgwYNhGXLlgmZmZniNX5+fvlus8555Ni9e7fw9ddfC1WqVBG0tbWFqlWrCr169RKuXbsmXpNzO3dhJkyYUOTb2QVBEBISEgRPT0+hTp06gra2tlC5cmWhffv2wr59+4Ts7GzxumvXrgm9evUSzM3NBS0tLaFWrVrCrFmzhJSUFPGanFu/C3rcv3//vbXk3M5e0GPbtm2Fvv+VK1cKtra24nFkZKTw+eefC3p6evluZ4+Pj5c8982bN8K4ceOESpUqvfN29r/++kto0KCBoK2tLbRo0UK4evVqvvqPHz8uABB27tz53vdKVF7IBKGYMwCJiKjMOnnyJJydnREfH//eXrUtW7Zg0qRJiI6OLvKyAkSqjkuAEhGpmdevXyMmJga+vr4YOXIkQw+pFc7xIaIyI+9aOLkfZ86cKfV6Ro0aVWg9o0aNKvV6FGXJkiVwcHCAlZUVvLy8lF0OUaniUBcRlRl37twp9Jy1tTX09PRKsRr5wn5JSUkFnjM2NoalpWWp1kNEH4/Bh4iIiNQGh7qIiIhIbTD4EBERkdpg8CEiIiK1weBDREREaoPBh4iIiNQGgw8RERGpDQYfIiIiUhsMPkRERKQ2/g/cF/AoD44LLwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+y0lEQVR4nO3deVxU9f4/8NeAgiwCIiigbKK4opYr7iZfccmuoqVp5ZKaipZZuVSmtmHWbb2mXUv93VuaaVqWLe6agmbue8oFcQEVlUEQEeH8/qCZZjln5pxZmBnm9Xw8eJRzzsx8zpmzvM9neX9UgiAIICIiInJjHo4uABEREZGjMSAiIiIit8eAiIiIiNweAyIiIiJyewyIiIiIyO0xICIiIiK3x4CIiIiI3B4DIiIiInJ7DIiIiIjI7TEgIiKXMX/+fKhUKlnrqlQqzJ8/367l6dWrF3r16uW0n0dE8jEgIiLFVq5cCZVKpf2rUaMGGjRogDFjxuDy5cuOLp7TiYmJ0dtf9erVQ/fu3bFhwwabfP6dO3cwf/587Ny50yafR+SOGBARkcVef/11/Pe//8XSpUvRv39/fPnll+jZsyfu3r1rl+979dVXUVJSYpfPtre2bdviv//9L/773//ixRdfxJUrV5CSkoKlS5da/dl37tzBggULGBARWaGGowtARK6rf//+aN++PQBg/PjxCAkJwTvvvIONGzfiscces/n31ahRAzVquOZlq0GDBnjiiSe0/37qqafQuHFjfPDBB5g0aZIDS0ZEAGuIiMiGunfvDgDIzMzUe/3MmTMYNmwYgoODUatWLbRv3x4bN27UW6esrAwLFixAkyZNUKtWLdStWxfdunXDli1btOuI9SEqLS3F888/j9DQUNSuXRuPPPIILl26ZFS2MWPGICYmxuh1sc9csWIFHnroIdSrVw/e3t5o0aIFlixZomhfmBMWFobmzZsjKyvL5HrXrl3D008/jfr166NWrVpo06YN/t//+3/a5dnZ2QgNDQUALFiwQNssZ+/+U0TVjWs+ahGRU8rOzgYA1KlTR/vayZMn0bVrVzRo0ACzZ8+Gn58fvvnmGwwePBjffvsthgwZAqAyMElLS8P48ePRsWNHFBYW4o8//sChQ4fwf//3f5LfOX78eHz55ZcYOXIkunTpgu3bt2PgwIFWbceSJUvQsmVLPPLII6hRowZ++OEHTJkyBRUVFUhNTbXqszXKyspw8eJF1K1bV3KdkpIS9OrVC+fPn8fUqVMRGxuLtWvXYsyYMSgoKMBzzz2H0NBQLFmyBJMnT8aQIUOQkpICAGjdurVNyknkNgQiIoVWrFghABC2bt0qXL9+Xbh48aKwbt06ITQ0VPD29hYuXryoXbdPnz5CQkKCcPfuXe1rFRUVQpcuXYQmTZpoX2vTpo0wcOBAk987b948QfeydeTIEQGAMGXKFL31Ro4cKQAQ5s2bp31t9OjRQnR0tNnPFARBuHPnjtF6ycnJQqNGjfRe69mzp9CzZ0+TZRYEQYiOjhb69u0rXL9+Xbh+/bpw9OhRYcSIEQIAYdq0aZKf9+GHHwoAhC+//FL72r1794TExETB399fKCwsFARBEK5fv260vUSkDJvMiMhiSUlJCA0NRWRkJIYNGwY/Pz9s3LgRDRs2BADcvHkT27dvx2OPPYbbt28jPz8f+fn5uHHjBpKTk3Hu3DntqLSgoCCcPHkS586dk/39P/30EwDg2Wef1Xt9+vTpVm2Xj4+P9v/VajXy8/PRs2dP/O9//4NarbboMzdv3ozQ0FCEhoaiTZs2WLt2LZ588km88847ku/56aefEBYWhscff1z7Ws2aNfHss8+iqKgIu3btsqgsRGSMTWZEZLHFixcjPj4earUay5cvx+7du+Ht7a1dfv78eQiCgLlz52Lu3Lmin3Ht2jU0aNAAr7/+Ov7xj38gPj4erVq1Qr9+/fDkk0+abPq5cOECPDw8EBcXp/d606ZNrdquvXv3Yt68ecjIyMCdO3f0lqnVagQGBir+zE6dOuHNN9+ESqWCr68vmjdvjqCgIJPvuXDhApo0aQIPD/1n1+bNm2uXE5FtMCAiIot17NhRO8ps8ODB6NatG0aOHImzZ8/C398fFRUVAIAXX3wRycnJop/RuHFjAECPHj2QmZmJ77//Hps3b8bnn3+ODz74AEuXLsX48eOtLqtUQsfy8nK9f2dmZqJPnz5o1qwZ3n//fURGRsLLyws//fQTPvjgA+02KRUSEoKkpCSL3ktE9seAiIhswtPTE2lpaejduzf+9a9/Yfbs2WjUqBGAymYeOcFAcHAwxo4di7Fjx6KoqAg9evTA/PnzJQOi6OhoVFRUIDMzU69W6OzZs0br1qlTBwUFBUavG9ay/PDDDygtLcXGjRsRFRWlfX3Hjh1my29r0dHROHbsGCoqKvRqic6cOaNdDkgHe0QkH/sQEZHN9OrVCx07dsSHH36Iu3fvol69eujVqxc+++wz5ObmGq1//fp17f/fuHFDb5m/vz8aN26M0tJSye/r378/AODjjz/We/3DDz80WjcuLg5qtRrHjh3Tvpabm2uULdrT0xMAIAiC9jW1Wo0VK1ZIlsNeBgwYgLy8PKxZs0b72v379/HJJ5/A398fPXv2BAD4+voCgGjAR0TysIaIiGzqpZdewqOPPoqVK1di0qRJWLx4Mbp164aEhARMmDABjRo1wtWrV5GRkYFLly7h6NGjAIAWLVqgV69eaNeuHYKDg/HHH39g3bp1mDp1quR3tW3bFo8//jg+/fRTqNVqdOnSBdu2bcP58+eN1h0xYgRmzZqFIUOG4Nlnn8WdO3ewZMkSxMfH49ChQ9r1+vbtCy8vLwwaNAjPPPMMioqKsGzZMtSrV080qLOniRMn4rPPPsOYMWNw8OBBxMTEYN26ddi7dy8+/PBD1K5dG0BlJ/AWLVpgzZo1iI+PR3BwMFq1aoVWrVpVaXmJXJqjh7kRkevRDLs/cOCA0bLy8nIhLi5OiIuLE+7fvy8IgiBkZmYKTz31lBAWFibUrFlTaNCggfDwww8L69at077vzTffFDp27CgEBQUJPj4+QrNmzYS33npLuHfvnnYdsSHyJSUlwrPPPivUrVtX8PPzEwYNGiRcvHhRdBj65s2bhVatWgleXl5C06ZNhS+//FL0Mzdu3Ci0bt1aqFWrlhATEyO88847wvLlywUAQlZWlnY9JcPuzaUUkPq8q1evCmPHjhVCQkIELy8vISEhQVixYoXRe9PT04V27doJXl5eHIJPZAGVIOjUCxMRERG5IfYhIiIiIrfHgIiIiIjcHgMiIiIicnsMiIiIiMjtMSAiIiIit+fQgCgtLQ0dOnRA7dq1Ua9ePQwePNgow2yvXr2gUqn0/iZNmqS3Tk5ODgYOHAhfX1/Uq1cPL730Eu7fv6+3zs6dO/Hggw/C29sbjRs3xsqVK+29eUREROQiHJqYcdeuXUhNTUWHDh1w//59vPzyy+jbty9OnToFPz8/7XoTJkzA66+/rv23JisrUDkP0cCBAxEWFob09HTk5ubiqaeeQs2aNfH2228DALKysjBw4EBMmjQJX331FbZt24bx48cjPDxccn4lQxUVFbhy5Qpq167NNPlEREQuQhAE3L59GxEREUYTJRuu6DSuXbsmABB27dqlfa1nz57Cc889J/men376SfDw8BDy8vK0ry1ZskQICAgQSktLBUEQhJkzZwotW7bUe9/w4cOF5ORk2WXTJHrjH//4xz/+8Y9/rvd38eJFk/d5p5q6Q61WA6ic4FHXV199hS+//BJhYWEYNGgQ5s6dq60lysjIQEJCAurXr69dPzk5GZMnT8bJkyfxwAMPICMjw2hiyeTkZEyfPl2yLKWlpXpzKAl/5a+8ePEiAgICrNpOIiIiqhqFhYWIjIzUTnUjxWkCooqKCkyfPh1du3bVm39n5MiRiI6ORkREBI4dO4ZZs2bh7NmzWL9+PQAgLy9PLxgCoP13Xl6eyXUKCwtRUlICHx8fo/KkpaVhwYIFRq8HBAQwICIiInIx5rq7OE1AlJqaihMnTmDPnj16r0+cOFH7/wkJCQgPD0efPn2QmZmJuLg4u5Vnzpw5mDFjhvbfmgiTiIiIqh+nGHY/depU/Pjjj9ixYwcaNmxoct1OnToBgHY267CwMFy9elVvHc2/w8LCTK4TEBAgWjsEAN7e3traINYKERERVW8ODYgEQcDUqVOxYcMGbN++HbGxsWbfc+TIEQBAeHg4ACAxMRHHjx/HtWvXtOts2bIFAQEBaNGihXadbdu26X3Oli1bkJiYaKMtISIiIlfm0Nnup0yZglWrVuH7779H06ZNta8HBgbCx8cHmZmZWLVqFQYMGIC6devi2LFjeP7559GwYUPs2rULQOWw+7Zt2yIiIgKLFi1CXl4ennzySYwfP15v2H2rVq2QmpqKcePGYfv27Xj22WexadMm2cPuCwsLERgYCLVazdoiIqoy5eXlKCsrc3QxiJxWzZo14enpKblc7v3boQGRVAenFStWYMyYMbh48SKeeOIJnDhxAsXFxYiMjMSQIUPw6quv6m3UhQsXMHnyZOzcuRN+fn4YPXo0Fi5ciBo1/u4itXPnTjz//PM4deoUGjZsiLlz52LMmDGyy8qAiIiqkiAIyMvLQ0FBgaOLQuT0goKCEBYWJhpXuERA5EoYEBFRVcrNzUVBQQHq1asHX19fJoQlEiEIAu7cuYNr164hKChI251Gl9z7t9OMMiMiokrl5eXaYKhu3bqOLg6RU9MMjrp27Rrq1atnsvnMFKcYZUZERH/T9BnSnaaIiKRpzhVr+tsxICIiclJsJiOSxxbnCgMiIiIicnsMiIiIiMjIzp07oVKprB7pGBMTgw8//NAmZbInBkREMuSqS5CemY9cdYmji0Lk9PLy8jBt2jQ0atQI3t7eiIyMxKBBg/QS5Kanp2PAgAGoU6cOatWqhYSEBLz//vsoLy/XrpOdnY2nn34asbGx8PHxQVxcHObNm4d79+7pfd+yZcvQpk0b+Pv7IygoCA888ADS0tK0y+fPnw+VSoV+/foZlfXdd9+FSqVCr169ZG9fYWEhXnnlFTRr1gy1atVCWFgYkpKSsH79eugO3D558iQee+wxhIaGwtvbG/Hx8Xjttddw584d7To3b97EtGnT0LRpU/j4+CAqKgrPPvusdrJzc7Kzs6FSqUT/9u3bJ3ubevXqZXLCc3fAUWZEZqw5kIM564+jQgA8VEBaSgKGd4hydLGInFJ2dja6du2KoKAgvPvuu0hISEBZWRl+/fVXpKam4syZM9iwYQMee+wxjB07Fjt27EBQUBC2bt2KmTNnIiMjA9988w1UKhXOnDmDiooKfPbZZ2jcuDFOnDiBCRMmoLi4GO+99x4AYPny5Zg+fTo+/vhj9OzZE6WlpTh27BhOnDihV67w8HDs2LEDly5d0psiavny5YiKkn8+FxQUoFu3blCr1XjzzTfRoUMH1KhRA7t27cLMmTPx0EMPISgoCPv27UNSUhKSkpKwadMm1K9fH7///jteeOEFbNu2DTt27ICXlxeuXLmCK1eu4L333kOLFi1w4cIFTJo0CVeuXMG6detkl2vr1q1o2bKl3mscoaiQQLKo1WoBgKBWqx1dFKpCVwruCLGzfxSiZ/3912j2JuFKwR1HF42qsZKSEuHUqVNCSUmJo4uiWP/+/YUGDRoIRUVFRstu3bolFBUVCXXr1hVSUlKMlm/cuFEAIHz99deSn79o0SIhNjZW++9//OMfwpgxY0yWad68eUKbNm2Ehx9+WHjzzTe1r+/du1cICQkRJk+eLPTs2VPG1gnC5MmTBT8/P+Hy5ctGy27fvi2UlZUJFRUVQosWLYT27dsL5eXleuscOXJEUKlUwsKFCyW/45tvvhG8vLyEsrIys+XJysoSAAiHDx+WXEez/f/5z3+E6OhoISAgQBg+fLhQWFgoCIIgjB49WgCg95eVlSXs2LFDACBs3bpVaNeuneDj4yMkJiYKZ86c0X72+fPnhUceeUSoV6+e4OfnJ7Rv317YsmWL3vdHR0cLH3zwgfbfAIRPP/1U6Nevn1CrVi0hNjZWWLt2rXZ57969hdTUVL3PuHbtmlCzZk1h69atotto6pyRe/9mkxmRCVn5xagwSF1aLgjIzr8j/gYiJ1OVzb03b97EL7/8gtTUVPj5+RktDwoKwubNm3Hjxg28+OKLRssHDRqE+Ph4rF69WvI71Go1goODtf8OCwvDvn37cOHCBbPlGzduHFauXKn99/LlyzFq1Ch4eXmZfS8AVFRU4Ouvv8aoUaMQERFhtNzf3x81atTAkSNHcOrUKcyYMQMeHvq32TZt2iApKcnsNgYEBOjNtmCtzMxMfPfdd/jxxx/x448/YteuXVi4cCEA4KOPPkJiYiImTJiA3Nxc5ObmIjIyUvveV155Bf/85z/xxx9/oEaNGhg3bpx2WVFREQYMGIBt27bh8OHD6NevHwYNGoScnByT5Zk7dy6GDh2Ko0ePYtSoURgxYgROnz4NABg/fjxWrVqF0tJS7fpffvklGjRogIceeshm+8QQAyIiE2JD/OBhMJrTU6VCTAjzw5DzW3MgB10XbsfIZfvRdeF2rDlg+iZlrfPnz0MQBDRr1kxynT///BMA0Lx5c9HlzZo1064j9vmffPIJnnnmGe1r8+bNQ1BQEGJiYtC0aVOMGTMG33zzDSoqKoze//DDD6OwsBC7d+9GcXExvvnmG72buzn5+fm4deuWye0DzG9j8+bNJbcxPz8fb7zxBiZOnCi7XADQpUsX+Pv76/3pqqiowMqVK9GqVSt0794dTz75pLZPV2BgILy8vODr64uwsDCEhYXpJTd866230LNnT7Ro0QKzZ89Geno67t69C6AywHvmmWfQqlUrNGnSBG+88Qbi4uKwceNGk+V99NFHMX78eMTHx+ONN95A+/bt8cknnwAAUlJSAADff/+9dv2VK1dizJgxdk1FwYCIyITwQB+kpSTA86+T0FOlwtsprRAe6OPgkhGZlqsu0fZ9A4AKAXh5/Qm71hQJCmaCUrIuAFy+fBn9+vXDo48+igkTJmhfDw8PR0ZGBo4fP47nnnsO9+/fx+jRo9GvXz+joKhmzZp44oknsGLFCqxduxbx8fFo3bq13cqsdP3CwkIMHDgQLVq0wPz58xW9d82aNThy5Ijen66YmBjUrl1b++/w8HBcu3ZN1mfr7iPN1Bia9xYVFeHFF19E8+bNERQUBH9/f5w+fdpsDVFiYqLRvzU1RLVq1cKTTz6J5cuXAwAOHTqEEydOKJp/1BLsVE1kxvAOUegRH4rs/DuICfFlMEQuwVRzr72O4SZNmmg7Q0uJj48HAJw+fRpdunQxWn769Gm0aNFC77UrV66gd+/e6NKlC/7973+Lfm6rVq3QqlUrTJkyBZMmTUL37t2xa9cu9O7dW2+9cePGoVOnTjhx4oSi2iEACA0NRVBQkMntA/S38YEHHjBafvr0ae06Grdv30a/fv1Qu3ZtbNiwATVr1lRUtsjISDRu3FhyueHnqVQq0Vo0c+/V1NBo3vviiy9iy5YteO+999C4cWP4+Phg2LBhRiMBlRo/fjzatm2LS5cuYcWKFXjooYcQHR1t1WeawxoiIhnCA32QGFeXwRC5DEc09wYHByM5ORmLFy9GcXGx0fKCggL07dsXwcHB+Oc//2m0fOPGjTh37hwef/xx7WuXL19Gr1690K5dO6xYscKoT44YTUAlVoaWLVuiZcuWOHHiBEaOHKlk8+Dh4YERI0bgq6++wpUrV4yWFxUV4f79+2jbti2aNWuGDz74wCjoOHr0KLZu3aq3jYWFhejbty+8vLywceNG1KpVS1G5bMHLy0sv5YFce/fuxZgxYzBkyBAkJCQgLCwM2dnZZt9nmBJg3759ek2MCQkJaN++PZYtW4ZVq1YpDl4twYCIiKgaclRz7+LFi1FeXo6OHTvi22+/xblz53D69Gl8/PHHSExMhJ+fHz777DN8//33mDhxIo4dO4bs7Gx88cUXGDNmDIYNG4bHHnsMwN/BUFRUFN577z1cv34deXl5yMvL037f5MmT8cYbb2Dv3r24cOEC9u3bh6eeegqhoaFGzTIa27dvR25uLoKCghRv31tvvYXIyEh06tQJ//nPf3Dq1CmcO3cOy5cvxwMPPICioiKoVCp88cUXOHXqFIYOHYrff/8dOTk5WLt2LQYNGoTExERtzh9NMFRcXIwvvvgChYWF2m1UEqDcuHFD+z7Nn6afjxwxMTHYv38/srOzkZ+fL7v2qEmTJli/fj2OHDmCo0ePYuTIkbLeu3btWixfvhx//vkn5s2bh99//x1Tp07VW2f8+PFYuHAhBEHAkCFDZG+LxUyOQSMtDrsnoqpiy2H3VwruCOnn86s0VcSVK1eE1NRUITo6WvDy8hIaNGggPPLII8KOHTu06+zevVtITk4WAgICBC8vL6Fly5bCe++9J9y/f1+7zooVK4yGg2v+NNatWycMGDBACA8PF7y8vISIiAhh6NChwrFjx7TraIadS3nuuedkD7sXBEEoKCgQZs+eLTRp0kTw8vIS6tevLyQlJQkbNmwQKioqtOsdO3ZMGDp0qBAcHCzUrFlTiIuLE1599VWhuLhYu45maLvYX1ZWltmyaIbdi/2tXr1acvs/+OADITo6Wvvvs2fPCp07dxZ8fHyMht3funVLu97hw4f1ypaVlSX07t1b8PHxESIjI4V//etfQs+ePYXnnntO+x6xYfeLFy8W/u///k/w9vYWYmJihDVr1hht2+3btwVfX19hypQpZveDLYbdq/4qHJlRWFiIwMBA7XBIIiJ7uXv3LrKyshAbG+uQ5hMie1KpVNiwYQMGDx5scr3s7GzExcXhwIEDePDBB02ua+qckXv/ZqdqIiIichplZWW4ceMGXn31VXTu3NlsMGQr7ENERET0F8NcPrp/v/32W5WXZ9KkSZLlmTRpUpWXpyrs3bsX4eHhOHDgAJYuXVpl38saIiIior8Y5u/R1aBBg6oryF9ef/110azeAFy2+4a5njq9evVSnMPJFhgQERER/cVULh9HqFevHurVq+foYrgFNpkRERGR22NARETkpOTmgiFyd7Y4V9hkRkTkZLy8vODh4YErV64gNDQUXl5edp3UkshVCYKAe/fu4fr16/Dw8ICXl5fFn8WAiIjIyXh4eCA2Nha5ubmiU0QQkT5fX19ERUXJmtpFCgMiIiIn5OXlhaioKNy/f9+iOaaI3IWnpydq1KhhdS0qAyIiIielUqlQs2ZNxTOfE5Fy7FRNREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2GBARERGR22NARERERG6PARERERG5PQZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2GBARERGR22NARORgueoSpGfmI1dd4uiiEBG5rRqOLgCRO1tzIAdz1h9HhQB4qIC0lAQM7xDl6GIREbkd1hAROUiuukQbDAFAhQC8vP4Ea4qIiByAARGRg2TlF2uDIY1yQUB2/h3HFIiIyI0xICJykNgQP3io9F/zVKkQE+LrmAIREbkxBkREDhIe6IO0lAR4qiqjIk+VCm+ntEJ4oI+DS0ZE5H7YqZrIgYZ3iEKP+FBk599BTIgvgyEiIgdhQETkYOGBPgyEiIgcjE1mRERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hwaEKWlpaFDhw6oXbs26tWrh8GDB+Ps2bN669y9exepqamoW7cu/P39MXToUFy9elVvnZycHAwcOBC+vr6oV68eXnrpJdy/f19vnZ07d+LBBx+Et7c3GjdujJUrV9p784iIiMhFODQg2rVrF1JTU7Fv3z5s2bIFZWVl6Nu3L4qLi7XrPP/88/jhhx+wdu1a7Nq1C1euXEFKSop2eXl5OQYOHIh79+4hPT0d/+///T+sXLkSr732mnadrKwsDBw4EL1798aRI0cwffp0jB8/Hr/++muVbi8RERE5J5UgCIL51arG9evXUa9ePezatQs9evSAWq1GaGgoVq1ahWHDhgEAzpw5g+bNmyMjIwOdO3fGzz//jIcffhhXrlxB/fr1AQBLly7FrFmzcP36dXh5eWHWrFnYtGkTTpw4of2uESNGoKCgAL/88ousshUWFiIwMBBqtRoBAQG233giIiKyObn3b6fqQ6RWqwEAwcHBAICDBw+irKwMSUlJ2nWaNWuGqKgoZGRkAAAyMjKQkJCgDYYAIDk5GYWFhTh58qR2Hd3P0Kyj+QwxpaWlKCws1PsjIiKi6slpAqKKigpMnz4dXbt2RatWrQAAeXl58PLyQlBQkN669evXR15ennYd3WBIs1yzzNQ6hYWFKCkpES1PWloaAgMDtX+RkZFWbyMRERE5J6cJiFJTU3HixAl8/fXXji4KAGDOnDlQq9Xav4sXLzq6SERERGQnTjGX2dSpU/Hjjz9i9+7daNiwofb1sLAw3Lt3DwUFBXq1RFevXkVYWJh2nd9//13v8zSj0HTXMRyZdvXqVQQEBMDHR3wOKW9vb3h7e1u9bUREROT8HFpDJAgCpk6dig0bNmD79u2IjY3VW96uXTvUrFkT27Zt07529uxZ5OTkIDExEQCQmJiI48eP49q1a9p1tmzZgoCAALRo0UK7ju5naNbRfAYRERG5N4eOMpsyZQpWrVqF77//Hk2bNtW+HhgYqK25mTx5Mn766SesXLkSAQEBmDZtGgAgPT0dQOWw+7Zt2yIiIgKLFi1CXl4ennzySYwfPx5vv/02gMph961atUJqairGjRuH7du349lnn8WmTZuQnJwsq6wcZUZEROR65N6/HRoQqVQq0ddXrFiBMWPGAKhMzPjCCy9g9erVKC0tRXJyMj799FNtcxgAXLhwAZMnT8bOnTvh5+eH0aNHY+HChahR4+8WwZ07d+L555/HqVOn0LBhQ8ydO1f7HXIwICIiInI9LhEQuRIGRERERK7HJfMQERERETkCAyIiIiJyewyIiIiIyO0xICK3k6suQXpmPnLV4lnKiYjI/ThFYkaiqrLmQA7mrD+OCgHwUAFpKQkY3iHK0cUiIiIHYw0RuY1cdYk2GAKACgF4ef0J1hQREREDInIfWfnF2mBIo1wQkJ1/xzEFIiIip8GAiNxGbIgfPAxygXqqVIgJ8XVMgYiIyGkwICK3ER7og7SUBHj+lSHdU6XC2ymtEB4oPsEvERG5D3aqJrcyvEMUesSHIjv/DmJCfBkMERERAAZE5IbCA30YCBERkR42mREREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2GBARERGR22NARERERG6PARERERG5PQZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2LAqIduzYYetyEBERETmMRQFRv379EBcXhzfffBMXL160dZmIiIiIqpRFAdHly5cxdepUrFu3Do0aNUJycjK++eYb3Lt3z9blIyIiIrI7iwKikJAQPP/88zhy5Aj279+P+Ph4TJkyBREREXj22Wdx9OhRW5eTiIiIyG6s7lT94IMPYs6cOZg6dSqKioqwfPlytGvXDt27d8fJkydtUUYiIiIiu7I4ICorK8O6deswYMAAREdH49dff8W//vUvXL16FefPn0d0dDQeffRRW5aViIiIyC5UgiAISt80bdo0rF69GoIg4Mknn8T48ePRqlUrvXXy8vIQERGBiooKmxXWkQoLCxEYGAi1Wo2AgABHF4eIiIhkkHv/rmHJh586dQqffPIJUlJS4O3tLbpOSEgIh+cTERGRS7CohsgdsYaIiIjI9di1hggAzp49i08++QSnT58GADRv3hzTpk1D06ZNLf1IIiIiIoewqFP1t99+i1atWuHgwYNo06YN2rRpg0OHDqFVq1b49ttvbV1GIiIiIruyqMksLi4Oo0aNwuuvv673+rx58/Dll18iMzPTZgV0FmwyIyIicj1y798W1RDl5ubiqaeeMnr9iSeeQG5uriUfSUREROQwFgVEvXr1wm+//Wb0+p49e9C9e3erC0VEjpWrLkF6Zj5y1SWOLgoRUZWwqFP1I488glmzZuHgwYPo3LkzAGDfvn1Yu3YtFixYgI0bN+qtS0SuY82BHMxZfxwVAuChAtJSEjC8Q5Sji0VEZFcW9SHy8JBXsaRSqVBeXq64UM6IfYjIHeSqS9B14XZU6FwVPFUq7JndG+GBPo4rGBGRhew67L66ZJ8mIn1Z+cV6wRAAlAsCsvPvMCAiomrN6sldiaj6iA3xg4dK/zVPlQoxIb6OKRARURWRXUP08ccfy/7QZ5991qLCEJFjhQf6IC0lAS+vP4FyQYCnSoW3U1qxdoiIqj3ZfYhiY2PlfaBKhf/9739WFcoZsQ8RuZNcdQmy8+8gJsSXwRARuTSb9yHKysqyScGIyPmFB/owECIit8I+REREROT2LJ7c9dKlS9i4cSNycnJw7949vWXvv/++1QUjIiIiqioWBUTbtm3DI488gkaNGuHMmTNo1aoVsrOzIQgCHnzwQVuXkYiIiMiuLGoymzNnDl588UUcP34ctWrVwrfffouLFy+iZ8+eePTRR21dRiIiIiK7siggOn36tHZy1xo1aqCkpAT+/v54/fXX8c4779i0gERERET2ZlFA5Ofnp+03FB4ejszMTO2y/Px825SMiIiIqIpY1Ieoc+fO2LNnD5o3b44BAwbghRdewPHjx7F+/XrtZK9ERERErsKiGqL3338fnTp1AgAsWLAAffr0wZo1axATE4MvvvhC9ufs3r0bgwYNQkREBFQqFb777ju95WPGjIFKpdL769evn946N2/exKhRoxAQEICgoCA8/fTTKCoq0lvn2LFj6N69O2rVqoXIyEgsWrTIks12GbnqEqRn5iNXXeLoohAREbkEi2qIGjVqpP1/Pz8/LF261KIvLy4uRps2bTBu3DikpKSIrtOvXz+sWLFC+29vb2+95aNGjUJubi62bNmCsrIyjB07FhMnTsSqVasAVGao7Nu3L5KSkrB06VIcP34c48aNQ1BQECZOnGhRuZ3ZmgM5mLP+OCoEwEMFpKUkYHiHKEcXi4iIyKlZnIcIAO7du4dr166hoqJC7/WoKHk34P79+6N///4m1/H29kZYWJjostOnT+OXX37BgQMH0L59ewDAJ598ggEDBuC9995DREQEvvrqK9y7dw/Lly+Hl5cXWrZsiSNHjuD999+vdgFRrrpEGwwBQIUAvLz+BHrEhzLrMBERkQkWNZn9+eef6N69O3x8fBAdHY3Y2FjExsYiJiZG9pxncu3cuRP16tVD06ZNMXnyZNy4cUO7LCMjA0FBQdpgCACSkpLg4eGB/fv3a9fp0aMHvLy8tOskJyfj7NmzuHXrlk3L6mhZ+cXaYEijXBCQnX/HMQUiIiJyERbVEI0dOxY1atTAjz/+iPDwcKhUKluXC0Blc1lKSgpiY2ORmZmJl19+Gf3790dGRgY8PT2Rl5eHevXq6b2nRo0aCA4ORl5eHgAgLy/PKEirX7++dlmdOnVEv7u0tBSlpaXafxcWFtpy0+wiNsQPHiroBUWeKhViQnwdVygiIiIXYFFAdOTIERw8eBDNmjWzdXn0jBgxQvv/CQkJaN26NeLi4rBz50706dPHrt+dlpaGBQsW2PU7bC080AdpKQl4ef0JlAsCPFUqvJ3Sis1lREREZlgUELVo0cIh+YYaNWqEkJAQnD9/Hn369EFYWBiuXbumt879+/dx8+ZNbb+jsLAwXL16VW8dzb+l+iYBldm4Z8yYof13YWEhIiMjbbUpdjO8QxR6xIciO/8OYkJ8GQwRERHJILsPUWFhofbvnXfewcyZM7Fz507cuHFDb5k9m5YuXbqEGzduIDw8HACQmJiIgoICHDx4ULvO9u3bUVFRoU0LkJiYiN27d6OsrEy7zpYtW9C0aVPJ5jKgsjN3QECA3p+rCA/0QWJcXQZDREREMqkEQRDMrwZ4eHjo9RUSBMGo75DmtfLycllfXlRUhPPnzwMAHnjgAbz//vvo3bs3goODERwcjAULFmDo0KEICwtDZmYmZs6cidu3b+P48ePa4ff9+/fH1atXsXTpUu2w+/bt22uH3avVajRt2hR9+/bFrFmzcOLECYwbNw4ffPCBolFmhYWFCAwMhFqtdqngCKgcfZaVX4zYED8GSQ7G34KIqGrJvX/LDoh27dol+8t79uwpa72dO3eid+/eRq+PHj0aS5YsweDBg3H48GEUFBQgIiICffv2xRtvvKHtFA1UJmacOnUqfvjhB3h4eGDo0KH4+OOP4e/vr13n2LFjSE1NxYEDBxASEoJp06Zh1qxZsrcHcN2AiHmJnAd/CyKiqmfzgEhXTk4OIiMjRWuILl68KDsPkStxxYAoV12Crgu3G4062zO7N2snqhh/CyIix5B7/7YoD1FsbCyuX79u9PrNmzdtnoeILMe8RM6DvwURkXOzKCAS6z8EVPYJqlWrltWFItvQ5CXSxbxEjsHfgojIuSkadq8Zhq5SqTB37lz4+v59MS8vL8f+/fvRtm1bmxaQLMe8RM6DvwURkXNTFBAdPnwYQGUN0fHjx/Wmw/Dy8kKbNm3w4osv2raEZBXmJXIe/C2IiJyXRZ2qx44di48++shlOhfbgit2qiYiInJ3cu/fFmWqXrFihcUFIyIiInI2FgVExcXFWLhwIbZt24Zr166hoqJCb/n//vc/mxSOiIiIqCpYFBCNHz8eu3btwpNPPmnX2e6JiIiIqoJFAdHPP/+MTZs2oWvXrrYuDxE5AKcUISJ3Z1FAVKdOHQQHB9u6LETkAJxShIjIwsSMb7zxBl577TXcucMsu0SuLFddog2GAKBCAF5efwK56hLHFoyIqIpZVEP0z3/+E5mZmahfvz5iYmJQs2ZNveWHDh2ySeGIyL5MTSnCpjMicicWBUSDBw+2cTGIyBE0U4oYTjrLKUWIyN1YlJjRHTExI1VXaw7kGE0pwj5ERFRd2CUx4++//4527drB09NTdHlpaSm+//57PPbYY8pKS0QOwylFiIgUdqpOTEzEjRs3tP8OCAjQS8JYUFCAxx9/3HalI6IqER7og8S4ugyGiMhtKQqIDFvXxFrb2AJHRERErsaiYfemMGs1kf3lqkuQnpnP4fFERDZi0SgzInIcJlIkIrI9xQHRqVOnkJeXB6CyeezMmTMoKioCAOTn59u2dESkRyqRYo/4UPb/ISKyguKAqE+fPnr9hB5++GEAlU1lgiCwyYzIjphIkYjIPhQFRFlZWfYqBxHJwESKRET2oSggio6OVvThU6ZMweuvv46QkBBF7yMiceGBPkhLSTBKpMjaISIi69g1U3VAQACOHDmCRo0a2esrqgwzVZMzyVWXMJEiEZEMdslUrRRzEhHZR3igDwMhIiIbsnkeIiIiIiJXw4CIiIiI3B4DIiIiInJ7DIiIiIjI7dk1IHriiSc4IouIiIicnkUBUUVFheTrOTk52n8vWbKEOYiIiIjI6SkKiAoLC/HYY4/Bz88P9evXx2uvvYby8nLt8uvXryM2NtbmhaSqxZnUiYjI3SjKQzR37lwcPXoU//3vf1FQUIA333wThw4dwvr16+Hl5QWAuYdcHWdSJyIid6Sohui7777DZ599hmHDhmH8+PH4448/cP36dQwaNAilpaUAwMldXZjUTOqsKSIioupOUUB0/fp1vfnMQkJCsHXrVty+fRsDBgzAnTt3bF5Ad+LopipTM6kTERFVZ4oCoqioKJw+fVrvtdq1a2Pz5s0oKSnBkCFDbFo4d7LmQA66LtyOkcv2o+vC7VhzIMf8m2xMM5O6Ls6kTkRE7kBRQNS3b1+sWLHC6HV/f3/8+uuvqFWrls0K5k7s3VQlt+ZJM5O651/NnpxJnYiI3IWiTtULFizAlStXRJfVrl0bW7ZswaFDh2xSMHdiqqnK2mDEXCfpXHUJsvKLERvih/BAHwzvEIUe8aGcSZ2IiNyKooCoTp06qFOnjuTy2rVro2fPnlYXyt1omqp0gyJbNFVJ1Tz1iA9FeKCPZLDEmdSJiMjdKE7MeP/+fbz77rt48MEH4e/vD39/fzz44IN47733UFZWZo8yVnv2aqoyVfPEEWVERER/U1RDVFJSgv/7v/9DRkYGkpKS0KNHDwDA6dOnMWvWLGzcuBGbN29mXyIL2KOpylTNkz2b6YiIiFyNooBo4cKFuHjxIg4fPozWrVvrLTt69CgeeeQRLFy4EPPnz7dlGd2GrZuqNDVPL68/gXJBMKp5skczHRERkStSCQpSSzdt2hRvv/02hg4dKrp87dq1eOWVV/Dnn3/arIDOorCwEIGBgVCr1S43YW2uukS05mnNgRyjYIlZqYmIqDqRe/9WFBDVqlUL586dQ2RkpOjyixcvokmTJrh7967yEjs5Vw6ITJEKloiIiKoDufdvRU1mAQEBuHbtmmRAlJeXh9q1aysrKTkUR5QREREpHGXWu3dvvP3225LLFy5ciN69e1tdKCIiIqKqpKiGaN68eejUqRM6d+6MGTNmoFmzZhAEAadPn8YHH3yAU6dOYd++ffYqKxEREZFdKAqIWrRogS1btuDpp5/GiBEjtDPbC4KAZs2aYfPmzWjZsqVdCkpERERkL4oCIgDo3LkzTp48iSNHjmhHk8XHx6Nt27a2LhsRERFRlVAcEBUWFsLf3x9t27bVC4IqKipQVFRUrUZgERERkXtQ1Kl6w4YNaN++veiw+pKSEnTo0AE//PCDzQpHREREVBUUBURLlizBzJkz4etrnM3Yz88Ps2bNwr/+9S+bFY6I3FeuugTpmfmcX4+IqoSigOjEiRPo1auX5PIePXrg+PHj1paJiNzcmgM56LpwO0Yu24+uC7djzYEcRxeJiKo5RQHRrVu3cP/+fcnlZWVluHXrltWFIiL3lasuwZz1x7Xz7FUIwMvrT7CmiIjsSlFAFBMTgz/++ENy+R9//IHo6GirC0VE7isrv1hv0mEAKBcEZOffcUyBiMgtKAqIUlJS8Morr+Dq1atGy/Ly8vDqq69KTvxKZA32J3EfsSF+8FDpv+apUiEmxLjvIpEz4XXKtSma3PX27dtITExETk4OnnjiCTRt2hQAcObMGXz11VeIjIzEvn37quV8ZtV1cldXsOZAjrYJxUMFpKUkYHiHKEcXi+xozYEcvLz+BMoFAZ4qFd5OacXfnJwar1POyy6z3QOAWq3GnDlzsGbNGm1/oaCgIIwYMQJvvfUW6tSpY13JnZQ7BkS56hJk5RcjNsTPYRPA5qpL0HXhdr0mFE+VCntm9+aktNVcrroE2fl3EBPiy9+anBqvU87NLrPdA0BgYCA+/fRTLF68GPn5+RAEAaGhodppPHTt3bsX7du3h7e3t9KvIQdzlqcdU/1JeKGp3sIDffgbk0vgdap6UNSHSJdKpUJoaCjq1asnGgwBQP/+/XH58mXJz9i9ezcGDRqEiIgIqFQqfPfdd3rLBUHAa6+9hvDwcPj4+CApKQnnzp3TW+fmzZsYNWoUAgICEBQUhKeffhpFRUV66xw7dgzdu3dHrVq1EBkZiUWLFlm20W7CmUb5sD8JETk7XqeqB4sDIjnMtcYVFxejTZs2WLx4sejyRYsW4eOPP8bSpUuxf/9++Pn5ITk5WS9T9qhRo3Dy5Els2bIFP/74I3bv3o2JEydqlxcWFqJv376Ijo7GwYMH8e6772L+/Pn497//bZuNrIacaZRPeKAP0lIS4PlX0K3pT8KnLiJyFrxOVQ+K+xApUbt2bRw9ehSNGjUyXxCVChs2bMDgwYMBVAZTEREReOGFF/Diiy8CqOy/VL9+faxcuRIjRozA6dOn0aJFCxw4cADt27cHAPzyyy8YMGAALl26hIiICCxZsgSvvPIK8vLy4OXlBQCYPXs2vvvuO5w5c0b2trhTHyJnbA9nfxIicna8Tjknufdvu9YQWSMrKwt5eXlISkrSvhYYGIhOnTohIyMDAJCRkYGgoCBtMAQASUlJ8PDwwP79+7Xr9OjRQxsMAUBycjLOnj3LJJISnPFpJzzQB4lxdXmRISKnxeuUa1Pcqbqq5OXlAQDq16+v93r9+vW1y/Ly8lCvXj295TVq1EBwcLDeOrGxsUafoVkmNSqutLQUpaWl2n8XFhZasTWuZ3iHKPSID+XTDhERuQW71hBJdbZ2BWlpaQgMDNT+RUZGOrpIVY5PO0RE5C4c2qnalLCwMAAwyop99epV7bKwsDBcu3ZNb/n9+/dx8+ZNvXXEPkP3O8TMmTMHarVa+3fx4kWLt4WIiIicm10Dotu3b8vqUC0mNjYWYWFh2LZtm/a1wsJC7N+/H4mJiQCAxMREFBQU4ODBg9p1tm/fjoqKCnTq1Em7zu7du1FWVqZdZ8uWLWjatKnJJJLe3t4ICAjQ+yMiIqLqSVEfooceekjWetu3b5e1XlFREc6fP6/9d1ZWFo4cOYLg4GBERUVh+vTpePPNN9GkSRPExsZi7ty5iIiI0I5Ea968Ofr164cJEyZg6dKlKCsrw9SpUzFixAhEREQAAEaOHIkFCxbg6aefxqxZs3DixAl89NFH+OCDD5RsOhEREVVjigKinTt3Ijo6GgMHDkTNmjWt/vI//vgDvXv31v57xowZAIDRo0dj5cqVmDlzJoqLizFx4kQUFBSgW7du+OWXX1CrVi3te7766itMnToVffr0gYeHB4YOHYqPP/5YuzwwMBCbN29Gamoq2rVrh5CQELz22mt6uYqIiIjIvSnKQ/Tuu+9ixYoVuHHjBkaNGoVx48ahVatW9iyf03CnPERERETVhV3yEL300ks4deoUvvvuO9y+fRtdu3ZFx44dsXTpUrcblk5ERETVh1WZqu/cuYO1a9di8eLFOHXqFK5cuVJta09YQ0REROR6qiRT9aFDh7Br1y6cPn0arVq1skm/IiIiIqKqpjggunLlCt5++23Ex8dj2LBhCA4Oxv79+7Fv3z74+DCBHxEREbkeRaPMBgwYgB07dqBv37549913MXDgQNSo4bSzfxARERHJoqgPkYeHB8LDw1GvXj2T03IcOnTIJoVzJuxDRERE5Hrk3r8VVe/MmzfP6oIRETlKrroEWfnFiA3x4xx9RKTHqlFm7oQ1RNbjzYgcac2BHMxZfxwVAuChAtJSEjC8Q5Sji0VEdmaXGiIpu3btQnFxMRITE03OD0buizcjcqRcdYn2+AOACgF4ef0J9IgPZXBORAAUjjJ75513MHfuXO2/BUFAv3790Lt3bzz88MNo3rw5Tp48afNCkmuTuhnlqkscWzByG1n5xdrjT6NcEJCdf8cxBSKXlasuQXpmPq9f1ZCigGjNmjV6U3WsW7cOu3fvxm+//Yb8/Hy0b98eCxYssHkhybXxZkSOFhviBw+DcSCeKhViQnwdUyBySWsO5KDrwu0YuWw/ui7cjjUHchxdJLIhRQFRVlYWWrdurf33Tz/9hGHDhqFr164IDg7Gq6++ioyMDJsXklwbb0bkaOGBPkhLSYDnX6NjPVUqvJ3Sis1lJBtruqs/RX2I7t+/D29vb+2/MzIyMH36dO2/IyIikJ+fb7PCUfWguRm9vP4EygWBNyNyiOEdotAjPhTZ+XcQE+LL448UMVXTzWOpelAUEMXFxWH37t1o1KgRcnJy8Oeff6JHjx7a5ZcuXULdunVtXkhyfbwZkTMID/ThsUcW0dR06wZFrOmuXhQFRKmpqZg6dSp+++037Nu3D4mJiWjRooV2+fbt2/HAAw/YvJBUPfBmRESuijXd1Z+igGjChAnw9PTEDz/8gB49ehglarxy5QrGjRtn0wISERE5A9Z0V29MzCgTEzMSERG5Hrn3b8Wz3RMRERFVN4oCorKyMsycORONGzdGx44dsXz5cr3lV69ehaenp00LSERERGRvigKit956C//5z38wadIk9O3bFzNmzMAzzzyjtw5b4IiIiMjVKOpU/dVXX+Hzzz/Hww8/DAAYM2YM+vfvj7Fjx2pri1QqlamPILILThxLRETWUFRDdPnyZb2pOxo3boydO3ciPT0dTz75JMrLy21eQDKN8+ownT4REVlPUUAUFhaGzMxMvdcaNGiAHTt24MCBAxgzZowty0ZmMBBgOn0iIlfgCg/vigKihx56CKtWrTJ6PSIiAtu3b0dWVpbNCkamMRCoxIljiYicm6s8vCvqQzR37lycOXNGdFmDBg2wa9cubNmyxSYFI9M4r04lptMnInJeUg/vPeJDne5epaiGKDo6GsnJyZLLIyIiMHr0aKsLReZxBvlKnMWciMh5uVItvqIaIo21a9di9erV+PPPPwEA8fHxGDlyJIYNG2bTwpE0zqvzN6bTJyJyTq5Ui69o6o6Kigo8/vjjWLt2LeLj49GsWTMAwOnTp3H+/Hk8+uijWL16dbUceu+sU3fkqksYCBARkdNacyDH6OF9eIeoKvt+ufdvRTVEH330EbZu3YqNGzdqcxFpbNy4EWPHjsVHH32E6dOnW1RoUs4VZ5BnziAiIvfhKrX4imqIWrdujenTp0vOaP/FF1/go48+wrFjx2xWQGfhrDVErmbNgRxtBzsPFZCWklClTwpERORe7DK567lz55CUlCS5PCkpCefOnVPykeRGqluqAFfIq0FERPIoajLz8fFBQUEBoqLEn+gLCwtRq1YtmxSMqp/qlCqANV1ERNWLohqixMRELFmyRHL54sWLkZiYaHWhqHqqLqkCqltNFxERKQyIXnnlFXzxxRd47LHH8Pvvv6OwsBBqtRr79u3Do48+iuXLl+OVV16xV1nJxVWXnEGulFeDiIjkUdRk1qVLF6xZswYTJ07Et99+q7esTp06WL16Nbp27WrTAlL14iqjDUxxpbwaREQkj6JRZhp37tzBr7/+qu1AHR8fj759+8LXt/reEDjKjHQ5Oq8GERHJI/f+rSgg2r59O6ZOnYp9+/YZfaharUaXLl2wdOlSdO/e3fKSOykGRGSISTGJiJyfXYbdf/jhh5gwYYLoBwYGBuKZZ57B+++/r7y0RC4oPNAHiXF1GQwREVUDigKio0ePol+/fpLL+/bti4MHD1pdKCIiIqKqpCggunr1KmrWrCm5vEaNGrh+/brVhSIiqipMsElEgMJRZg0aNMCJEyfQuHFj0eXHjh1DeHi4TQpGRGRvTLBJRBqKaogGDBiAuXPn4u7du0bLSkpKMG/ePKNJX4mqGp/4SQ4m2CQiXYpqiF599VWsX78e8fHxmDp1Kpo2bQoAOHPmDBYvXozy8nImZiSH4hM/yVWdppIhqmq56hJk5RcjNsSv2pwvigKi+vXrIz09HZMnT8acOXOgGbGvUqmQnJyMxYsXo379+nYpKJE5Uk/8PeJDq80JS7bDBJtElqmuD56KAiIAiI6Oxk8//YRbt27h/PnzEAQBTZo0QZ06dexRPiLZ+MRPSmimkjFMsMljhUhadX7wVBwQadSpUwcdOnSwZVmIrMInflKqOkwlQ1SVqvODp6JO1UTOrComj2WH7eqHCTaJ5NM8eOqqLg+eFtcQETkjez7xV9d2cyIiuapzU7NFk7u6I85l5t5y1SXounC7UXPcntm9q8WFgIhICVeay1Hu/Zs1REQyOGO7eXUc9kpEriE80KfaXXcYEFVjvGHajrN12GbzHRGRbbFTdTW15kAOui7cjpHL9qPrwu1YcyDH0UVyaaY6bFd1R2slGZbZCZyITOE14m+sIXJRpmp/qnOeCEcS67DtiJoauc13rEUiIlN4jdDHGiIX9NnuTHQxUftj6oZJ1tEdou2oubDkDHvlPF1E1YO9anB4jTDGgMjJmDv4P9uVibSfzkAwcRBX5zwRzsRRgaecfEsMiolcnz27PvAaYYxNZg6m2/S1+8/rJqsvc9UlWPjzGaPPMGwuqc55IpyJko7Wtu7gbi7fkrN1AiciZezd9YHXCGMMiBxIt/1WU6GjOTbFDv6s/GIIIp/joQLyi+4iV12iXZdTEtif3MDTXu30poa9Migmcm32TvXBa4QxBkQOYhj9iwU6hge/WEQPVP572uojRjfb6pgnwtmYCzwd2cGdQbHzYAoMUqoqanB4jdDHPkQOIhb9GzI8+A37jhh0E2KnOAcxNReWo9vpOU+X4zEFBlmiKuZm1HyPNdeI6jRsnzVEDiIW/asAqP56Terg143oz10rxGvfn9Jb7ujsyaRP6VMeaxKqF6bAIGs4ew1OdRu27/Q1RPPnz4dKpdL7a9asmXb53bt3kZqairp168Lf3x9Dhw7F1atX9T4jJycHAwcOhK+vL+rVq4eXXnoJ9+/fr+pN0SMW/S8cmoC9sx/C6gmdsWd2b8kDKzzQBzk3izF/4ymjZe7eKc7ZKHnKY01C9ePoGkJyfc5ay1sdh+27RA1Ry5YtsXXrVu2/a9T4u9jPP/88Nm3ahLVr1yIwMBBTp05FSkoK9u7dCwAoLy/HwIEDERYWhvT0dOTm5uKpp55CzZo18fbbb1f5tuiSiv51sx/LSbyo4QG4fac4ZyTnKY81CdUTR/JQdeWM8ztayyUCoho1aiAsLMzodbVajS+++AKrVq3CQw89BABYsWIFmjdvjn379qFz587YvHkzTp06ha1bt6J+/fpo27Yt3njjDcyaNQvz58+Hl5dXVW+OHrGOz+aqIaX6H30y8gEMbB1h7yKTBcx1cK+OFxfiSB6qvqpjsO/0TWYAcO7cOURERKBRo0YYNWoUcnIqmxIOHjyIsrIyJCUladdt1qwZoqKikJGRAQDIyMhAQkIC6tevr10nOTkZhYWFOHnypOR3lpaWorCwUO+vKsiphpRKvPhgdJ0qKSPZHpNpuhYlHUmHd4jCntm9zTaFE7mSqur0XZWcvoaoU6dOWLlyJZo2bYrc3FwsWLAA3bt3x4kTJ5CXlwcvLy8EBQXpvad+/frIy8sDAOTl5ekFQ5rlmmVS0tLSsGDBAttujAxyagqc9amTHYItZ/ibegCY2a8p96MTsqQjKVNgUHXk7J2+lXL6gKh///7a/2/dujU6deqE6OhofPPNN/Dxsd/OnzNnDmbMmKH9d2FhISIjI+32fRpyqyGd7UCsbqMNHGF4hygUlJRh4c9nUCEA7/xyBkG+NbkfnQj7ehEZP/xWl2PfJZrMdAUFBSE+Ph7nz59HWFgY7t27h4KCAr11rl69qu1zFBYWZjTqTPNvsX5JGt7e3ggICND7qwpKqiGdZfRBdRxt4Ai56hK887PpeepcUXXKU8JRY+TuqvNoWJcLiIqKipCZmYnw8HC0a9cONWvWxLZt27TLz549i5ycHCQmJgIAEhMTcfz4cVy7dk27zpYtWxAQEIAWLVpUefnlcLU+B7xJ2EZ13I/V7eLJvl7kzqr7w6/TB0Qvvvgidu3ahezsbKSnp2PIkCHw9PTE448/jsDAQDz99NOYMWMGduzYgYMHD2Ls2LFITExE586dAQB9+/ZFixYt8OSTT+Lo0aP49ddf8eqrryI1NRXe3t4O3jppzlL7I4elN4nqVHNgC9XtZlsdL57VsSMpkVzV8aFNl9P3Ibp06RIef/xx3LhxA6GhoejWrRv27duH0NBQAMAHH3wADw8PDB06FKWlpUhOTsann36qfb+npyd+/PFHTJ48GYmJifDz88Po0aPx+uuvO2qTqgXDNmSlnbzZ58iYs3aWt1R1TSXgbP33iKpKdRxqr0slCIJIRhsyVFhYiMDAQKjV6irrT+SspIKZXHWJrJtErroEXRduNzqp9szurX2fO49Yk7sfnZ2c35mIXMuaAzlGD23O/jAr9/7t9DVEpM/RgYK5UTZSWZh1y2yu5sDda49Mjdpw9O+vRHWr8aLqz5XOL7lsvU3VuYaUAZELcYZAQWkziFiZe8SHSla7VtWwZle88DnD769Udb54UvXiiueXOfbapuo01F6X03eqpkrO0kFVScdfqTIDkOyYWhWd9lxx5JOz/P6WcKUBAmRfueoS/HjsCn44etmpjl1XPr+kVMdtsjfWELkIZ+mgqqQZxFSZpWoO7N1pz1UT60nty4PZtxDs71o1XeSe1hzIwexvj0NzGKsALBzqHLUwznJ9taXquE32xoDIRThT7365zSDmyixW7WrvfieuepEQ25cqAM9+fbhaVfFT9aR5ENE99QQAc7497hQPI850fbWV6rhN9sYmMxfhyPwnYvmC5DSDWFpmeyamdNVcP4b7UnPiGtZ0Hb14i7mdXIw75OMSexABgArAKXLYVMf8UtVxm+yNw+5lcpZh91U9JNsWnfKcbRi5Kw4b1dDsyxvFpZi66rDRcpUKEFhjZMRZO9FXx468YsRSMACVgf3eOQ85zW/ibNcqW6iO26SU3Ps3AyKZnCUgqkqunkfG1E3Q1S8SUjcYXa70W9mTswYdrn5+KbXmQA5mrz+unavPmfoQUfXGPERkNVftbwOYvwm6+rBRw75WHqhsftDlKr+VLUgFv47sRG+uVsqVzy9LaPoeHrpwC4IAtIupUy23k1wXAyKS5Kqd8lx1JJlSup3bfb08MOTTdJf7rWzBVPBrSdBhi+Y1ObVSrnp+WSM80AcDW1efc9AenLV51x2wUzVJcrVOeZrOqQcv3JKdy8jVO7RqOre3iazjUr+VrZjLtaK0E70lOaoMj6GjF29htoz8L652fpH9uWKOtOqENURkktgQe2d8gtF9Ileh8k83JhK7CTpr3xJLVWVWaEcfA5rvv1l8z2QNkJI0DpbULBoeQ0MeaID1hy7DsGuXVK2ULX4zR/8WZBvuUrPtzBgQkVm6/W2cMYgwvJCI9TMe/ECE0/Qtsaeq6Bvl6GPAXPALAMcuFyAxri4A+UGH0uY1sWPo20OXRT/bVK2UNXPXOfq3INtxtz5lzohNZiSbs6aCl8pxouu7w1f0ylkVU4RUlaps9jN3DNi7LGLBr9hPv+jns4rzZiltXpNz3AGVgYolTWHmmk+c9Xwky7hqjjQ5XKVrAmuISDapIGLb6atoFOrvsCp7sc6phgyftKpLh1a5NQS2alYxFUhuPHIFC38+AwH2q62QG4RY8mQt1rw2s39TZOUXa5frknPcqQDMf6QFesSHyi4HIK8Gk9O5VC/2ztLvKFLXKGds6mVARLJJ3QBe/e4kAMdV2YsNQTesOTAMdmx98XHEyS232c+WzSpSgeSe89exeEem9jV7NUGKfb8HABi+pgJ8vZRXgOs2rx27VIB3fj5jMnVDWkqC3m+gS/Ow/9r3pzB/4ynR/S513MhpPuF0Ln9zxpurJaqyH6Ctif0GUteogjtleOcX6XPLUZiYUSZ3TMwoRvfmKsaRieVy1SU4mH0LUAGXb5Vg0S9nzWajtkWCRkf140jPzMfIZfuNXl888gEMbB0BwHzyP0tuJIaZvmf2b1pZMyRyTKye0Fnbl8dWxDKNA9C+pmHNb6EkaeIPRy9j2uojZj/T8P2mjhu536+7L6QeBKprokcN9qNyfEAo9Ru8vekU/v1bltH6YoNe7HmcMjEj2cXwDlHw9fKUvAE4shPg7j+v652Us/o3Q+sGQSaDHWs7ITuyc7ZUjd3UVYdRVHofwztEmW7iOnpFG8gouZEYPsVm5ReLBkMegF2aIKWeopuF1cbgxenaC601v4WSDq7tY4JFa61MJco0d9zIrcHU3Rdi07nY+nx09I1XrDy2Ov+cbdvkcnRAKPUbNAurjWUiwZDYNctZOo+zUzUpprkBiLFlPxwlHfHETspFP5+1e7WzIztna26ahr+FgL8710p11Nxz7jrSfvq7Vkdph1xNJ2UAuFl8D2KHw6z+zey278U6SRffK5cc7q6Ukg6uYvmEZvVvZvL9co4buZMca/ZFu+g6Rr+DCpY1HYqxJkeOpZ1qzb3PVuefq+b/cYaO9VK/wYHsW6IDHkZ0iHLazuOsISJJUk9Mhk+vGrbsBKj0qccWQ1YteUK0tnO2tU+lUjV2mm1PjKsr2lF44U9njD5LaQZnqeHvmtq5Z3rEKd4eJQzLY8uO8kr7mInVWgX51vy7OUsFjOsWo10/NsRPVq4sa2swBQBDPk23utbAmpoYJeey7m9qWONrr2zfrpyCw55D9eVem45fUhu95qlSoUNMHdGa02l9GqNNZKBTdh5nQESizF3EDKeNuHOvQq82xpobvSUXKGsvjJZWO1vaOTtXXYLle7LwxZ4sq6u6xZpsdLddtIlL5HM8VNJNXIbBz+MdI/H1gYt6w989VMAnIx6weo4qOceO1O9laUd5se9U2sHVMHjRvH/F3iws252FZb9V/t5pKQlG71XBsqH5uqR+V1vc4C298So5lw2PMQBmmz9tMTjClfP/2Gu0rJLRq+/8YvxwNbN/U7SJrINZ/ZpVDkyA/gOzs3YeZ0BERuRexKSeXq1t07bkAmXNhdHaJ0SlJ/eaAzmY/e1xvZuXNTctOdtu+FuJteNLNXGJ5f5Z9ftFo/UqBKCuv7dVFzfDm+KE7rEY2y1WdlJNSy60po5XWyS6/Py3LL0b+5xvjwMq/dohlaqyD1R6Zr7JQNBUsGgqDYC1N3hLb7xyz2U5yVXtle3blVNwWPNAJnUcmTq/AOi9TyoNRusGQVhzIKdyJBkqj++Z/Zs6/QTbDIjIiDVPTLaofrb0AmXphdEWT4hiJ7fhRSdXXYKDF24ZBUO633kw+xYebiMelJiqNTGssSu+V45cdYnoumJpCkw1ccnN/WPtTUTspvjv37Lw+V+1KnInbFVyobV3c4lYWSsAozt+hQAM/jTdZAd3cw8a2jQA3x436tBtbTOupTdeueeynGPM8H2G5TRXUyV1/tiilsmRLHkgM3UcSZ1fK/Zk4/M9/9N7X4/4UNHf19fLQ/9c/qtP5yNtIpx6vzIgIiPWPDFZG0xpLlqWXqAseeqwxxOi2BxXGw5fNnvRf/brwyi+d19v+PWKPVnaoasqAAuHite4hQf6yOp3ASi7iMpJQGiLm4jUTdEwSLHl72Xv5hK5eZMAGHVw1w3K5AZu2mY6nZuX1G8jFiSYulla8sBhLtjQlMHPy9PkMWbYpKikFlrOus7WhKO0y4Hc656c40jqmNUcT7rv2zO7t+jvW3yv3CWbIRkQkRFrnpgsvVmJXbT2zO6NQxduoUIQ0D4m2NrNkmTrJ0Qlc1wZ0r1A6QY3GgKA2d8eF63BUFrbIfciaqrmwQPAJyMfwIPR1vUbAuQ3+djy9zJ1vNpiGLZUWQHo1dCZGqIPKAvcwgN98PLA5hjbLUbyBi92vvWIDzV7/FjywCEVbIg9NHx3+IreQA0NlQraJhslx7mSdZ2lCceew+jlHEdix+zT3WKM8glp3ic1AbhUzZG5ZmFHYkDkIqo6R4alT0yW3KykLloz+zcVzRRsq32h+zm2fEKU28QkRTMdytzvT4rm9xEA0aY1e9Z2mKp50CSBtJaSJh9b/V5Sx6vcmjY5pMqq28Q55NN0oyfyG8Wl2mZPSx40dG/wmuZaQRAQFewrer59OKKN3Y4fw2BD7Jz/7vAVrJ+SiAPZt/DmptN6768QoC2HkuN8xV+DFuyxTfZg7yZcuceR4TELAJ8b7Evd9xn+vmLn1eAHIrTHubMm0GRA5AIclXjL0icmpTcrqQucbvZjzYXBVMp3JYGS1D6V6lSsJACT08Skofpr7LVhB1vNdCgm32fAz8tT1lBuS0nVPOSqS/BH9k2oVCq0s7KmSEmTj62e6MUu/rpZom1xUxIrq+5rujcPzW84ddVhm4ygE+vEb6gyNYCqylJISJ3zd+5VoENMHZPHsdybeq66RDIxoK1qAG3N3k244YE+mNW/mfZB09xxJPz1K1jyoGvYr1E36Ld1oGcrDIicnKvmyFBys5Jqs5YMkv76t1TzkljQqHvxA2C0T+d8exx+3jWMbuiWBKOmajoMCUJlcOMhVDabeKggWiukS6UCHoyuo/eappyGNxF7dA7V/W0Nb7am+jgB8m6acpp8bE13m9Iz86u8VkFz8ziYfUs7Fxlg/Qg6zfXDXGzuqVLhweg6ks175po5lJ4nUkHNscuV88eZOo7l3pyl0hCM79bIpjWAtmTvEW9rDuRogyEVgJn9moput9TvaUkfsvBAH1nnlDMEqAyInJwr58iQS+wCN7NfU21NkIZUyvdDF26ZDBoNT+7x3WJFR/4YPpHnqkv0bvYVAjB7/XE0C6uN4nvlJk/c4R2i4Oddw2gqBTGCAPxr5AMI9vNGftFdk/NiqQAsTEkw2fyg2VfrpySiTWQdu11oDPcPUPlUP2e9eB8npTdNR/XpcNQw7PBAHwT7224EHWC6+Vazjabyw+z+87q2tkzqN7PkoU3ynP/Z+JzXHMe65NycpR60BrYOc3hthdyktx4AntZJ6GntdxqO4lz0y1k80jbC5PXEcP/Yuq8e4PjpRzQYEDk5V86RoYS5TL+aDMuGF0xPlQoVgiB5EwGMa4OW/ZZlVCWvoXvyH7xgnHpeEIB/LE4HUBmczO7fDM/0FB+u3i5aJFPrXzVAhk/Amk7JYp0Rdf1LZ+JWDdGh3QJw516F3TtoSu1Dc3lmnLmm05adtpWy9fku1XzrAWDDlC5GCVWBvwNRub+ZuekzpIJxsYShUsexGFM3Z03AMat/Myz6WX+SZ0ePgJI6JzVl7hEfij2ze2ubjcVST1hC7sO1PR7CTZ1TznRtYEDk5Bx5ca5qhhc40SDJp6bRvjCVqVns5BagP9WEIc3JL5hpuxIApP18BlBBNIeP1G8HQPL3NNex2LCpDJC+iRrmArFHB02xfaiC8fxZrlbT6ahh2LY+3zWfN3v9cW1TrApA2tAEo1oXQ3J/M1PNX6M+32cyGDc85+X2DTJV42kYcMzq1wytGwbp9Xlz1EOm1M3fsG/krH7NRIe5mzp3ze0XuSMq7fUQPrxDFJqF1caB7FvoEFNHe/w507VBJZi76hMAoLCwEIGBgVCr1QgICKjy789VlzhNjgxHE9sXaw7kGN1ENE9dXdK2S05V8UibCHx35Ire654qFfbM7g0Aku81/Jy9sx8yeaEyLK+537My/5Bxx2JTuVYMtz8y2Bcjl+03WvfVgc0xsHW4TY4jqQ67Yh3edTsqA3/vZ2c6np2hH4OmHLY833PVJTh04RYEAbKnVlHymxkef2JN3nJ+b6nzWHe5ub6Ccsps7nvsJT0zX/ScNHywEEvFAACrJ3TWTqqsS25NsNh2AzB6L2D80Gbt/jFVM2bva4Pc+zcDIpkcHRCRNN3kboZNAOZG2KhEOjHP0WkGW3MgR1tbI1WjBEhfqKyl5MZouK7YhUbDQwU83S0W4wymxTD8PM1+NdVnKlddgq2nruK1708aNQXqXtQcdROSy979GGwdbFVF8KbkN9M9/rLyi0Vv/FLnieGgB7FjXs6N84ejl0X74Il9r5xzSyzbvDX7XGwbpJrIDa9NUkGCqf0CGDdZ6m43AJPvtVVQLrrdADakdkGbyDp2vzbIvX+zyYxcmthNTHPhMzfCRmwkGwC0bhik/X/DppONR65UNpPpsGd1u5JOjIbrGja/6NL0pfr8tyzRUWG6+1XDVLNHXD1/o/1sWO3dIz4UH45oA3VJGQJ9aiIq2NdpkrTZux+DrYOtquqEqqTp0JLmL0D+tphrWtF8jiGp7zV3bpnKNq9knxsGUUadySX6Rs7s39So/5NhgJiVX4wbRaWi+2XF3srz27C8ckdUJsbVtdl5KTWFzeBP07HQwhFs9sCAyA05S7OAtczdxEyNsDFVrW+YTVX3AvJMzzhABdl5PBxNc6HZdCzXKNkdUFnjZW6aCA1TQYLoiB7V332JxAIs3fUcPezZnv0YbB1sVXUnVM1nZuUX6/3b3Hvk9IVSsi3m+sCIHV8egEXnp7ls8+b2ueYae/yyWi+57Kx+zZDQMBDrpyTq1WaL9Y0c3iEKj7SJEA0SDIM1oyY3FbBsd5ZoihI5/b9s/YAn1blfEKwfwWZLDIjcjLMMb7QFczcxsZNQBeCNwS3Rp3l90ZFscrKpPtMjTvJC5YzCA30wsHU43v7ptGhAImeaCKl1db/DsPNuhQAMXpyO2f2bGQWeupxhxJlUQGeLG4Otgy0lM8jb4sFHapoPc01Jcp76lU5JIhVkidV0AMDUPo21U34oISfbvFQ5pYL/CgHa2mXD2mypfSUWJIgFa7q5zDxVKozrFmOUlFKsvFU1aMfUYBFnGlzBgMiNONPwRlsw93Qj1mQkAHjt+5Oo6emB4R2iLM6m6gxPM0poL0giF2rDJ0JTmbZNPT32iA816o8lAHrJNKU4OkmbWEAnCMDuP69b/cBQFUPpDT/PVg8+YteM2d8eh+qv7zfXlGTuPFGyb3LVJYgM9jWqXZH6HAD4eNt5fLLtvMn0GHLLZUhqBJxUTagusWuL3GuK6MhZ4e9cZpoyfWFiqg1dVdVcpRllNvjTdKO+Uc6SRsbD/CpUXUg9jR3MvoX0zHzkqkvs8r256hK7fL7mJub51zwWYk83wztEYf2URL2pLjQXI015wgN9kBhX12R+kupgeIco7J39ECb2iNWe+GL7zHC/wsS6ujRNKoYEiE81YvjZuknaui7cjpHL9qPrwu1YcyBH1vYpZXhc9ogP1Wt30DQnWnvcyjlObfl5Ug8+lmyHVNoKw6YkS79L7r7RPSaGfJqOnJvFso5ZTXnTfj6Dz3ZnyiqTVLmGPtjAbDmVzGNo6bVFE6zp0qTk0PT7UXrMaa6BtursL3W9bxNZBwtteC7YGmuI3IhUE5JmqgA5T5JST+5Sr8t5UjVXG2BquZynm+J75UY1F0ryqSidy8ncqKyqZrj/Xh7QAmO7xprcZ4Y1Z2IJ/AxJ5SXyUEFv/iRDjkjSJnZcRgb7mu0YbilbP4Wb+jxbNtEpmZfP0u8yt2/kHhPm+su98/MZPNImwqpyvZjcVHF2bCmWNsnKbeay9TEnp9ZWzvXeWTpQi2FA5ITs1VxgeCJ5wPhpz9TNR+pgN5VfwtyFzNwJJOcEs1W1vDXt6UpGZVUlU5PYmtsupc2C4YE+WDg0QX9uM528JrpB6cQesRiYEG4UaMm5mSs9P8SGTosdl+unJNq1g6mtm1mlPs+WTXRS1wxT93tLvsvUvjE3Y73h7zuwdTje2nTaqIwVgnEGdaXlMvcbhgf6YFa/ZkYjUcXM6t/M4uNBblBhq2NO7oOt3IcZZ+1ywIDIyZhL625tkKSbLdS7hgfmfq8/q7rU053Uwd4srLbkSWDu5mbuBLJVbYGSQMeaCTTljsqqqv4xSvefLcqlO0mp7iS0XRfqJ7j84rdsjO1qnAPJ1nMeSdUEiR2Xd+5VODwrvDW/ge57lWyHue80PCfe+/Ws3ogrXbbeZ+ZmrJc6Hmb3Nw5K7NlXRXcfJjQMFF1Hk2xRBWBEx0g80iZCdD25qiqosMUULo64/lmCAZETkUzrXlKmN3TTmloH3QuI2PQVUhcNqYP9QPYtyZPA3M3N3Alky6p/a/KpmKNkVFZVjvJTsv9sWa7wQB883Obvz1cye7yp4PXoxVtGk+2aC/CU1gQlxtUVPU6qKgmipb+B2Hv3zO5t9niX+52acyJXXYINh8WDIQ9YNqGwqXVNzVgPGM9TqHlIS2gYiKm94/DpzkxUCPbtqyI2VYjY8bV+SiI2Hc/Fst1ZWP37Raw5cNGq86yqAgtrp3CxR2d/e2FA5ESkDryFP5/RG8psaZ8KsdmOVfg7gZqHSjpnh9TB3iHGeAJT3ZNgfLfYyuRgML4omTuBbD06x15PVHJHZVX1KD+5+89w1voKAZj914z1gPTknHL5eXnKDrwB8eB1zYGcyhFgBuuaCpClzidzNUGGx0lVXMStOTak3rtndm8kxtXVdnIV6/en9DtNBf8VUD6hsLl1pWasH9stRvL3Hbw4HQLE5zGzVK66BH9k34RKpUK76L+nPhEL0hf9clZ0Utl6AbXw+W/mcwPJ8dmuTO3oTXsHFrbqcuAKo5wZEDkRqZPfVrUkUiNGdIcZS5E62NtE1hF9ffef1/UudBO7NcLYbjFG7fHmbkyObsKQw7CcGrpzBaVn5ktmlLVXDg65++/ghVtGgYYgAJ9sO4evD1y0KhDQ3PAMgyFzv6NuUKLNOG4m4DR0/JJacn2pmiBDVXURl7q5bzqWa3beOVNP8Ibnoe5vaEkNrLngX8mEwnL2rbljWDTZH/7+vEW/nLV6TizD6X9UABYOrewXJxWkt24QZFRDp6Sm1JTPdmfqNQfau2neVl0OnGkSVykMiJyI2IEnlU3ZkloScyMgBJi+2Esd7IavA/rz41QIwOd7/oeEhgFoHxOs99nmmrKceUSCLqlRWbv/vK7dF2IZZe2dg0PO/pOaznDV7xe1/29JICDWt8pD9XezilxStRKmshDnqkvwzi/GHVtn9m8qWRMk97vLBQGHLtzCwNa2Oxalzs03N53G2z+dNhmMSj3BmwtOLKmBNRf8m0pdIdYcJmddU0kL01ISTM5VaO0N17D2FKg8f03lGvJAZYZ2w+NL6oH3RnEpctUlsvsrLhTpsG3vpnlbdDmoqqzY1mBA5GTEDjzDbMqW1pIYXszELsDmLiBSB7vu62JPQhUCMG31EdGTU86NSTCb2s/xDLdDTkbZqqjxMrd/28cEGwVqYsPnld5cROcvEiqbVZSQyiK9YUoXycBKKohq3SDI6u8GgKmrDqOo9L7Nmil2/3ldsobWXDAq9QQvFZwczL6FYH/lna81TKVkyFWXyG6mvVFUanIqDt3aDaljuEd8qOgEzaa+WwmpPkxSwRBQeW4P+TRd9Dqnu78159jUVYdlBy1Z+cWi2+oB2L1pXuo3kFsT5Qo1/gyInJDhgWdNLYnhwWoqMzNgm4jdVE2U0pPT1JOOM49WyFWX4MdjV4yr8wX9jLLOUO7wwMrh8pq0+h4AZg0wzhuk9Niw1ROhqeZaS75byXGj+W7DGgFztalKmJuEGDAdjEplcBYLTsTyjsnpfG3I1IORbs4psZue0cCOvwIaqeZ2U4GCufkKLZ3HTHN8SOXWMkfqOqc7ClPzO2jWn/PtcbPHk9S1VTOEP1ddgrd+PFVlTVNKa6KcvcafAZGLkFOLYkhODhqlEbucm4mpp11APK+MWIdFU086Si6aVc3URKaajLLOdiEQrZkUmXBSSblt+USo9EIq9d2WHDfDO0TB18sT01Yf0XvdVjcZOdmNlcwUr5kfy6hGGOJ5xzSdr21hzYEcbTCkAjCzX1O9/Ss6sEMAFo98QC9Fg9zaDanaw49HPIB2McrPM71gTQXM7t/MOLcW5AVIpkZSBvuLz/6+Yk82Xh7YXPIzxWr5Z/Vvhmd6xJmdQNlw0mprWVoTZcm9rKowIKqmlGZ3lXOjUZKcy9QFwzCvjFiHxeEdokxONWLJiWhNRmw5y3W3XyoYcrYqYl2aC5VmVFKP+FCLag90KTm+zO1fpRdSOX3b5NbytI8Jtlv/B6kM8pr5wjR9CQ1nm5dzjuvugxvFpZi66rDed9uy5kAs2Fn0y1k80vbv7NBSAzuOXlRjYOsIxR2PpQLfhyVy/Jg6xozKLwBpP53BnP7NkD7nIe0UR7p96zQ8/qrlkts/UKrm6fM9/zMafGJI7JwyN4dat8YhZietVsoVOkkrxYComlI6i7S5A1hugHXwgnFeIuDvpGSG0zRIdVjsER8q2ewBC/o+WZIRW3dGb7k1C1JP+3MHNscAM6OFDDmiSdBUYlBLny7lHF/2Gtpurm+b3Au4LWu7xPrHiH225qZ37HKBaB4yuee45js+22U8l5ctO7XKKY+5QMCSZla5Qbe5Y0zq3H3n5zN4pG0E2sXUwbNfHzZarvksALKPj/BAH0zoHot/GySdrBDkZdM2PKdM1TKqAPx2Pt8mqVt0uUInaaUYEFVTtj5Y5VzsNLU9hjRJycSmaZDqsJidfweJcXVFbxTtok3nPjJkSUZs3Rm9VX99jubrTF1QpPa70mDIEQnMJBOD3inTjnS0R1mUJly0lLXnhKVZzHWDH6nf1dRnj/p8n+ixq3SmeFOj7sSCb6UBuZzymAsEpM55pQGC2Pabe6CLDfET7aBdgcqyCRBEg46PRzygrZFScnyM7RaLz2XOSG+OVN8iDwBdm4Tgt3P5eq+bexCQMy+jK3SSVooBUTVl64PV3MVOqqlMk+xRrAOsqclANZ8rdaNQsm2WZMQWoJOfSeQzTV1Qnu4Wiy/+utBZst8dlcDMZGJQ2KcsliRctJQtzgklzXZiGYx1U2gY7kuxzzZ17CoJHkyNuhML0gAoDsjl7l9zgYBYU6e1fV/kPNCFB/pUTvnxk/SUH2LXwHYxf1/blBwflhyPUkGqWN+i8d0aYWDrMAxenC76WccuF4j2HRPri6QCMKF7LMZ2059ux9k7SSvFgKgas8UTrYa5k1fqgqv79CRmQvdYLNPJ3qqZDFSsyt/SbbMkI7Y5Yk9yhqNnJvaIFZ2vS4pm35tK4AhYnzlailQHVal+XLrTc1jCVMJFQPqCbQ2p48bWzZNiQe07P5+BYcIBSxMhHrtUoE0u+eGINvAw01lfSa4izW9iSRAs57wUu5bM7K/fR0rzZ6uaUqkcQIYdjZ/pEQfo/FaG1zmxPHGGfbuUkOoPJHYsmtsXYp+Vnpkv2Z9z0c9n8UibCL3vkOqLJAD4929Z+HxPlkVpU6Q420hhlSCVlY30FBYWIjAwEGq1GgEBAY4ujl3I7TQtdvL6eXmKDuGXyhJr+F0jOkSha+O6dhuBteZAjlEwZ9iHyNSM3oadXA3fn6su0euwa277xcqnuz/EOmjO7N/UZnPamSqH4Y3KcPg9YJvvT8/Mx8hl+yWXK9l/1jDXf0ys8625i7jUthk2ycjZxs92Z4rWWig9HsTOgchgX5O/ga7VEzrbNEDVXEuOXSoQbZK19pwyZDiAA/h7xJhYSg+poE5bbom+XdYw1YfPkn0h9j5drw5srpcJ3dw5Kfd75ajKbgFy79+sISIA8vrZaG4Cmoui4QE95IEG+O7wFbPVv2LftebARUzr09huNz+lGbF3/3ldspOr2PutGXEhJ4HjzH76gYm9mtGkht9rchRp2OL7zdXMVcWIlaMXb1U22Un0HzO8UMu9iEvVyMzs39Rojitz25fQINDotXJBwMKflDVlStVGyKkdtUdnWU05pfpI2XoUk1gSR6n9Z6rWw1y5raktkboGW7ovNLVxhuevhmEmdDm15bY4L511XjMGRARA+XxIPeJDjQ7o7w5fEe08reS77HkymKva1V1uaroAMdZ02BXtwyToJ3Csyn1muJ+Gd4iCn3cNmw/ZNmw6MWTvEStiNQaAfv8xTROSr5cnooJ9JWdXN+x4KtXEPLxDFB5pE6GoGVvqJmVJvyvD31Z7wzQxZFuTT8iapiEppuZwMzdxtC2+y/B75R7PSs5Huc1Cpj7TmuuL5lq2Yk82Pt/zP6PvMAxGTJ2TSr7XFGcdss+AqBqSSnRoitL5kD56vK3oAX3nXoXZanVrTu6qanNW+j3WdNiV2h+GzYeOHOIqNbLPVLI3OftQN/Dcc/46luzMtLgzuhJy8mVpVAiV086IDQAwnF1dt8bIVFCttCO3uaAFsPx4kEo8qcteowxNzeGmpNbZmu/SMDVCz/A4lnsNU9IsZOozrbm+AJXH0MsDm2NstxhsOpaLNzed1luuG4wYzmaw6VieNpAy971yr5vOOmSfAVE1YyrRoSHDg1fJfEgQLL9BW3pyV1Wbs6XfY+mICzn7w9oLorXEvn/wAxGSyd6U7MPwQB/s/vPvYEgsw7GtSdUWGKZY0CUVi5hqtjIX/Mi9gZgLWqw9HsQST2oY1pjZsmnDVI2EklpnS75L9VeEK0B6/5nK9m/ufFTaLGTuM5V0wDa1Dwa2DsfbP502ee3WPW7bRNbB2G4xotc13e9XkgXe0dczKexULZMzd6rW7diseVrV5aEC9s5+CADMHrxinaalOvOJ9bNRchMz1XFRbF1bdrA09T1d0rYbdWiuis69cvaH3H1mr5o0zfdLzYO3Z3ZvAFD0Wx29eAuDP01X3NlYt0xytlV3PbEyegDYkNoFZ/Jum2wy0AQOUgGE3M7HSgNvsXPAA8Anf017YZNOrhJ9TQzZo4O1WM2Fvb5Ld0i/qc7T5o5jU+ejVAdlc9sj9xw3HNU6u38zPNMzztzmG71XM/1HQoNARdcLw+8HjAeCyOn0XRVD9tmpWsTixYvx7rvvIi8vD23atMEnn3yCjh07OrpYVjE1f41GhQC99mPDUUym+kIA0nl1rM1BoaTpoKranJfvyaqSnDhi5OwPOevYsyZN8/2msj6LJbCT2odS/Xjk7nO52yq2ntSEsW0i66BHfCgOXbiFqasOG13kNTUW1kyObEmnUsOnas2NbGBr6bQWSoj1NREbcWmvDtZyai5s9V2Gta9i5OYusnW/QqnPNAzoDadJSfv5DKBCZeoAGXRr/TQd9KXyDYmVxfD7DZULAg5duIWBreX3aXM0twmI1qxZgxkzZmDp0qXo1KkTPvzwQyQnJ+Ps2bOoV6+eo4tnEXPz12ioAL3OdGLrlwuC9ildLDmbVF6dqjqgq6LNOVddgi/2ZBm97gE4vG1bLrk3WmtrkMz9HnJ+K1P9eOT8tkq2VSzXzoYpXSTnaqu8QfugqPS+aNCkYWm1v6UB/vAOUSi4U4aFf404fOfnMwjyqWnTgFfT18TUiEt7nPOWNKPYs0+htdccWzYLGQb0T3eLFb2Ov/PzGaPcQobEzjtB579S+YZ0yZmQGACmrjqMotL7TjPxtjluExC9//77mDBhAsaOHQsAWLp0KTZt2oTly5dj9uzZDi6dZeQclCoVMKGbcap8MYYja3RrkQQAX/yWjbFdY60qs6Wqos1Zan+O7yE/uaKjyZ1ixdoaJHO/h5zfSmp/a7Kbm9vncoMKsfUqBGDw4nTJ/nUaStM1yD1OLL3ZaqbgMNVvyRZ0H3SqMhuxrSebtoYtrjm22HdiAb3Yg5tmmbmgWs59w9xxZW5CYg0BzjGcXi63CIju3buHgwcPYs6cOdrXPDw8kJSUhIyMDNH3lJaWorS0VPvvwsJCu5dTKXOjJp59qDEe71R5gTBMla9SASqhMs+NZuJVXVK1SI4cFmnvC7NUpmZHBYGWkDvFipKmGimmfg85v5VU9uANU7qITvWidFtNrQfIv1ibqwW1pJbU0puts6asqOrvqqo8Nra45li776QC+pEdI7Hq94t6r8sJquVm5jd1XEkdv2Id/x1931DCw9EFqAr5+fkoLy9H/fr19V6vX78+8vLyRN+TlpaGwMBA7V9kZGRVFFURzUEp9iN6qlR4vFOU9mRMS0monCn+r2ULUxKwd85DWD2hMzakdoGHSv/9Hqq/O8rpfqajm47CA32QGFfXrlX2uvvJcBoRZye2DeamWNGdFsSS75P6Pcz9VqL7e2iCrGBI6v1iQYX2PDE8oGHdtltreIco7JndG6sndMae2b1l1W5obma6nOG8rGq2Po5Nsec1Rw6p33xanyaYM6CZdpmSiXB1zxuR00L7eaaOK7HjVzNaUcnnOBO3GGV25coVNGjQAOnp6UhMTNS+PnPmTOzatQv79xuPBBCrIYqMjHTaUWa6HSGlRnyZ6tEvltYfgFWjyFxVVY18sCepbaiq0XpKWLu/5b7/6MVbRqMwHb3tljA3DY07cMbj2J5M/eaWnj+Go+3k3EOsLaujyB1l5hYB0b179+Dr64t169Zh8ODB2tdHjx6NgoICfP/992Y/w5mH3WvY48ZSHYID0ueMF6yqUl22nedl9fkt5aqK39xW3+FsxycDIgOdOnVCx44d8cknnwAAKioqEBUVhalTp8rqVO0KARGRXM52wapK7rzt1Q1/S5KDeYgMzJgxA6NHj0b79u3RsWNHfPjhhyguLtaOOiNyJ86W/6MqufO2Vzf8LcmW3CYgGj58OK5fv47XXnsNeXl5aNu2LX755RejjtZERETkftymycxabDIjIiJyPXLv324x7J6IiIjIFAZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT23mbrDWpqE3oWFhQ4uCREREcmluW+bm5iDAZFMt2/fBgBERkY6uCRERESk1O3btxEYGCi5nHOZyVRRUYErV66gdu3aUKlUji5OlSssLERkZCQuXrzIudyswP1oPe5D2+B+tA3uR9uw534UBAG3b99GREQEPDykewqxhkgmDw8PNGzY0NHFcLiAgACe9DbA/Wg97kPb4H60De5H27DXfjRVM6TBTtVERETk9hgQERERkdtjQESyeHt7Y968efD29nZ0UVwa96P1uA9tg/vRNrgfbcMZ9iM7VRMREZHbYw0RERERuT0GREREROT2GBARERGR22NARERERG6PARFp7d69G4MGDUJERARUKhW+++47veWCIOC1115DeHg4fHx8kJSUhHPnzjmmsE7M3H4cM2YMVCqV3l+/fv0cU1gnlpaWhg4dOqB27dqoV68eBg8ejLNnz+qtc/fuXaSmpqJu3brw9/fH0KFDcfXqVQeV2DnJ2Y+9evUyOiYnTZrkoBI7pyVLlqB169baxIGJiYn4+eeftct5LJpnbh86+jhkQERaxcXFaNOmDRYvXiy6fNGiRfj444+xdOlS7N+/H35+fkhOTsbdu3eruKTOzdx+BIB+/fohNzdX+7d69eoqLKFr2LVrF1JTU7Fv3z5s2bIFZWVl6Nu3L4qLi7XrPP/88/jhhx+wdu1a7Nq1C1euXEFKSooDS+185OxHAJgwYYLeMblo0SIHldg5NWzYEAsXLsTBgwfxxx9/4KGHHsI//vEPnDx5EgCPRTnM7UPAwcehQCQCgLBhwwbtvysqKoSwsDDh3Xff1b5WUFAgeHt7C6tXr3ZACV2D4X4UBEEYPXq08I9//MMh5XFl165dEwAIu3btEgSh8virWbOmsHbtWu06p0+fFgAIGRkZjiqm0zPcj4IgCD179hSee+45xxXKRdWpU0f4/PPPeSxaQbMPBcHxxyFriEiWrKws5OXlISkpSftaYGAgOnXqhIyMDAeWzDXt3LkT9erVQ9OmTTF58mTcuHHD0UVyemq1GgAQHBwMADh48CDKysr0jslmzZohKiqKx6QJhvtR46uvvkJISAhatWqFOXPm4M6dO44onksoLy/H119/jeLiYiQmJvJYtIDhPtRw5HHIyV1Jlry8PABA/fr19V6vX7++dhnJ069fP6SkpCA2NhaZmZl4+eWX0b9/f2RkZMDT09PRxXNKFRUVmD59Orp27YpWrVoBqDwmvby8EBQUpLcuj0lpYvsRAEaOHIno6GhERETg2LFjmDVrFs6ePYv169c7sLTO5/jx40hMTMTdu3fh7++PDRs2oEWLFjhy5AiPRZmk9iHg+OOQARFRFRsxYoT2/xMSEtC6dWvExcVh586d6NOnjwNL5rxSU1Nx4sQJ7Nmzx9FFcWlS+3HixIna/09ISEB4eDj69OmDzMxMxMXFVXUxnVbTpk1x5MgRqNVqrFu3DqNHj8auXbscXSyXIrUPW7Ro4fDjkE1mJEtYWBgAGI2auHr1qnYZWaZRo0YICQnB+fPnHV0UpzR16lT8+OOP2LFjBxo2bKh9PSwsDPfu3UNBQYHe+jwmxUntRzGdOnUCAB6TBry8vNC4cWO0a9cOaWlpaNOmDT766CMeiwpI7UMxVX0cMiAiWWJjYxEWFoZt27ZpXyssLMT+/fv12n9JuUuXLuHGjRsIDw93dFGciiAImDp1KjZs2IDt27cjNjZWb3m7du1Qs2ZNvWPy7NmzyMnJ4TGpw9x+FHPkyBEA4DFpRkVFBUpLS3ksWkGzD8VU9XHIJjPSKioq0ovEs7KycOTIEQQHByMqKgrTp0/Hm2++iSZNmiA2NhZz585FREQEBg8e7LhCOyFT+zE4OBgLFizA0KFDERYWhszMTMycORONGzdGcnKyA0vtfFJTU7Fq1Sp8//33qF27trYvRmBgIHx8fBAYGIinn34aM2bMQHBwMAICAjBt2jQkJiaic+fODi698zC3HzMzM7Fq1SoMGDAAdevWxbFjx/D888+jR48eaN26tYNL7zzmzJmD/v37IyoqCrdv38aqVauwc+dO/PrrrzwWZTK1D53iOHTY+DZyOjt27BAAGP2NHj1aEITKofdz584V6tevL3h7ewt9+vQRzp4969hCOyFT+/HOnTtC3759hdDQUKFmzZpCdHS0MGHCBCEvL8/RxXY6YvsQgLBixQrtOiUlJcKUKVOEOnXqCL6+vsKQIUOE3NxcxxXaCZnbjzk5OUKPHj2E4OBgwdvbW2jcuLHw0ksvCWq12rEFdzLjxo0ToqOjBS8vLyE0NFTo06ePsHnzZu1yHovmmdqHznAcqgRBEKom9CIiIiJyTuxDRERERG6PARERERG5PQZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQEREsuTl5WHatGlo1KgRvL29ERkZiUGDBunN35Seno4BAwagTp06qFWrFhISEvD++++jvLxcu052djaefvppxMbGwsfHB3FxcZg3bx7u3bun933Lli1DmzZt4O/vj6CgIDzwwANIS0vTLp8/fz5UKhX69etnVNZ3330XKpUKvXr1krVtms9SqVSoUaMGYmJi8Pzzz6OoqEjhXiIiV8W5zIjIrOzsbHTt2hVBQUF49913kZCQgLKyMvz6669ITU3FmTNnsGHDBjz22GMYO3YsduzYgaCgIGzduhUzZ85ERkYGvvnmG6hUKpw5cwYVFRX47LPP0LhxY5w4cQITJkxAcXEx3nvvPQDA8uXLMX36dHz88cfo2bMnSktLcezYMZw4cUKvXOHh4dixYwcuXbqkN4P78uXLERUVpWgbW7Zsia1bt+L+/fvYu3cvxo0bhzt37uCzzz4zWvfevXvw8vKyYE/ajzOWicilVNkkIUTksvr37y80aNBAKCoqMlp269YtoaioSKhbt66QkpJitHzjxo0CAOHrr7+W/PxFixYJsbGx2n//4x//EMaMGWOyTPPmzRPatGkjPPzww8Kbb76pfX3v3r1CSEiIMHnyZKFnz54ytu7vz9I1YcIEISwsTG/5smXLhJiYGEGlUgmCULntTz/9tBASEiLUrl1b6N27t3DkyBHtZxw5ckTo1auX4O/vL9SuXVt48MEHhQMHDgiCIAjZ2dnCww8/LAQFBQm+vr5CixYthE2bNgmCIAgrVqwQAgMD9cqzYcMGQfeSbWmZiEgcm8yIyKSbN2/il19+QWpqKvz8/IyWBwUFYfPmzbhx4wZefPFFo+WDBg1CfHw8Vq9eLfkdarUawcHB2n+HhYVh3759uHDhgtnyjRs3DitXrtT+e/ny5Rg1apTVtSU+Pj56zXjnz5/Ht99+i/Xr1+PIkSMAgEcffRTXrl3Dzz//jIMHD+LBBx9Enz59cPPmTQDAqFGj0LBhQxw4cAAHDx7E7NmzUbNmTQCVs9CXlpZi9+7dOH78ON555x34+/srKqMlZSIicWwyIyKTzp8/D0EQ0KxZM8l1/vzzTwBA8+bNRZc3a9ZMu47Y53/yySfa5jIAmDdvHlJSUhATE4P4+HgkJiZiwIABGDZsGDw89J/jHn74YUyaNAm7d+9Gu3bt8M0332DPnj1Yvny50k3VOnjwIFatWoWHHnpI+9q9e/fwn//8B6GhoQCAPXv24Pfff8e1a9fg7e0NAHjvvffw3XffYd26dZg4cSJycnLw0ksvafddkyZNtJ+Xk5ODoUOHIiEhAQDQqFEjxeW0pExEJI4BERGZJAiCXdYFgMuXL6Nfv3549NFHMWHCBO3r4eHhyMjIwIkTJ7B7926kp6dj9OjR+Pzzz/HLL7/oBUU1a9bEE088gRUrVuB///sf4uPj0bp1a0XlAIDjx4/D398f5eXluHfvHgYOHIh//etf2uXR0dHawAMAjh49iqKiItStW1fvc0pKSpCZmQkAmDFjBsaPH4///ve/SEpKwqOPPoq4uDgAwLPPPovJkydj8+bNSEpKwtChQxWX25IyEZE4BkREZFKTJk20naGlxMfHAwBOnz6NLl26GC0/ffo0WrRooffalStX0Lt3b3Tp0gX//ve/RT+3VatWaNWqFaZMmYJJkyahe/fu2LVrF3r37q233rhx49CpUyecOHEC48aNU7qJAICmTZti48aNqFGjBiIiIoya3AybC4uKihAeHo6dO3cafVZQUBCAytFrI0eOxKZNm/Dzzz9j3rx5+PrrrzFkyBCMHz8eycnJ2LRpEzZv3oy0tDT885//xLRp0+Dh4WEUXJaVlRl9jyVlIiJx7ENERCYFBwcjOTkZixcvRnFxsdHygoIC9O3bF8HBwfjnP/9ptHzjxo04d+4cHn/8ce1rly9fRq9evdCuXTusWLHCqBlMjCagEitDy5Yt0bJlS5w4cQIjR45UsnlaXl5eaNy4MWJiYmT1P3rwwQeRl5eHGjVqoHHjxnp/ISEh2vXi4+Px/PPPY/PmzUhJScGKFSu0yyIjIzFp0iSsX78eL7zwApYtWwYACA0Nxe3bt/W2VdNHyBZlIiJjDIiIyKzFixejvLwcHTt2xLfffotz587h9OnT+Pjjj5GYmAg/Pz989tln+P777zFx4kQcO3YM2dnZ+OKLLzBmzBgMGzYMjz32GIC/g6GoqCi89957uH79OvLy8pCXl6f9vsmTJ+ONN97A3r17ceHCBezbtw9PPfUUQkNDkZiYKFrG7du3Izc3t8pqQpKSkpCYmIjBgwdj8+bNyM7ORnp6Ol555RX88ccfKCkpwdSpU7Fz505cuHABe/fuxYEDB7T9rKZPn45ff/0VWVlZOHToEHbs2KFd1qlTJ/j6+uLll19GZmYmVq1apddx3NIyEZE0NpkRkVmNGjXCoUOH8NZbb+GFF15Abm4uQkND0a5dOyxZsgQAMGzYMOzYsQNvvfUWunfvjrt376JJkyZ45ZVXMH36dKhUKgDAli1bcP78eZw/f14vdxDwdx+kpKQkLF++HEuWLMGNGzcQEhKCxMREbNu2zah/jIbYCDh7UqlU+Omnn/DKK69g7NixuH79OsLCwtCjRw/Ur18fnp6euHHjBp566ilcvXoVISEhSElJwYIFCwAA5eXlSE1NxaVLlxAQEIB+/frhgw8+AFBZK/fll1/ipZdewrJly9CnTx/Mnz/fbKdoc2UiImkqQWkvSCIiIqJqhk1mRERE5PYYEBFRtefv7y/599tvvzm6eETkBNhkRkTV3vnz5yWXNWjQAD4+PlVYGiJyRgyIiIiIyO2xyYyIiIjcHgMiIiIicnsMiIiIiMjtMSAiIiIit8eAiIiIiNweAyIiIiJyewyIiIiIyO0xICIiIiK39/8BsD/kfBQ/TBAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0CklEQVR4nO3dd3gU1d4H8O8mkJCEkEICBAxJCIQACRFpN6AURSAgiqCCWOhKE9GrCHoVvJYEsXt5kYsSvSpFERBFBZEmTelFihATCBBKKBtSCJDM+wfuumVmd2Z3dmc2+X6eJ88Du7M7Z2bPnPnNqQZBEAQQERER6ZCf1gkgIiIiksJAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREusVAhYjcNn36dBgMBlnbGgwGTJ8+3aPp6datG7p166bb7yMi+RioEFUhn3zyCQwGg/mvRo0aaNSoEYYNG4aTJ09qnTzdiY+Ptzpf9erVw2233YalS5eq8v2lpaWYPn061q1bp8r3EVVHDFSIqqB///vf+Oyzz/Dhhx8iIyMDn3/+Obp27YorV654ZH//+te/UFZW5pHv9rSbb74Zn332GT777DM888wzOHXqFAYMGIAPP/zQ7e8uLS3Fyy+/zECFyA01tE4AEakvIyMD7dq1AwCMGjUKUVFRmDFjBpYvX44HHnhA9f3VqFEDNWr4ZnHSqFEjPPzww+b/P/roo2jatCneeecdjBkzRsOUERHAGhWiauG2224DAOTk5Fi9fujQIdx3332IjIxErVq10K5dOyxfvtxqm2vXruHll19Gs2bNUKtWLdStWxe33norfvrpJ/M2Yn1UysvL8dRTTyE6OhqhoaG4++67ceLECbu0DRs2DPHx8Xavi31ndnY2br/9dtSrVw+BgYFo2bIlZs+erehcONOgQQO0aNECubm5Drc7e/YsRo4cifr166NWrVpIS0vDp59+an4/Ly8P0dHRAICXX37Z3Lzk6f45RFWNbz4CEZEieXl5AICIiAjza7///js6d+6MRo0aYcqUKQgJCcGXX36J/v374+uvv8a9994L4EbAkJmZiVGjRqFDhw4oKirC9u3bsXPnTtx5552S+xw1ahQ+//xzDBkyBJ06dcKaNWvQt29ft45j9uzZaNWqFe6++27UqFED3377LcaNG4fKykqMHz/ere82uXbtGvLz81G3bl3JbcrKytCtWzccPXoUEyZMQEJCAr766isMGzYMly5dwpNPPono6GjMnj0bY8eOxb333osBAwYAAFq3bq1KOomqDYGIqozs7GwBgLB69Wrh3LlzQn5+vrB48WIhOjpaCAwMFPLz883b3nHHHUJqaqpw5coV82uVlZVCp06dhGbNmplfS0tLE/r27etwv9OmTRMsi5Pdu3cLAIRx48ZZbTdkyBABgDBt2jTza0OHDhXi4uKcfqcgCEJpaanddr169RKaNGli9VrXrl2Frl27OkyzIAhCXFyc0LNnT+HcuXPCuXPnhD179giDBw8WAAhPPPGE5Pe9++67AgDh888/N7929epVIT09Xahdu7ZQVFQkCIIgnDt3zu54iUgZNv0QVUE9evRAdHQ0YmNjcd999yEkJATLly/HTTfdBAC4cOEC1qxZgwceeACXL19GYWEhCgsLcf78efTq1QtHjhwxjxIKDw/H77//jiNHjsje//fffw8AmDhxotXrkyZNcuu4goKCzP82Go0oLCxE165d8eeff8JoNLr0natWrUJ0dDSio6ORlpaGr776Co888ghmzJgh+Znvv/8eDRo0wIMPPmh+rWbNmpg4cSKKi4uxfv16l9JCRPbY9ENUBc2aNQtJSUkwGo2YN28eNmzYgMDAQPP7R48ehSAIePHFF/Hiiy+KfsfZs2fRqFEj/Pvf/8Y999yDpKQkpKSkoHfv3njkkUccNmEcO3YMfn5+SExMtHq9efPmbh3Xpk2bMG3aNGzZsgWlpaVW7xmNRoSFhSn+zo4dO+LVV1+FwWBAcHAwWrRogfDwcIefOXbsGJo1awY/P+tnvRYtWpjfJyJ1MFAhqoI6dOhgHvXTv39/3HrrrRgyZAgOHz6M2rVro7KyEgDwzDPPoFevXqLf0bRpUwBAly5dkJOTg2+++QarVq3CRx99hHfeeQcffvghRo0a5XZapSaKq6iosPp/Tk4O7rjjDiQnJ+Ptt99GbGwsAgIC8P333+Odd94xH5NSUVFR6NGjh0ufJSLPY6BCVMX5+/sjMzMT3bt3x3/+8x9MmTIFTZo0AXCjuULOTToyMhLDhw/H8OHDUVxcjC5dumD69OmSgUpcXBwqKyuRk5NjVYty+PBhu20jIiJw6dIlu9dtayW+/fZblJeXY/ny5WjcuLH59bVr1zpNv9ri4uKwd+9eVFZWWtWqHDp0yPw+IB2EEZF87KNCVA1069YNHTp0wLvvvosrV66gXr166NatG+bMmYOCggK77c+dO2f+9/nz563eq127Npo2bYry8nLJ/WVkZAAA3n//favX3333XbttExMTYTQasXfvXvNrBQUFdrPD+vv7AwAEQTC/ZjQakZ2dLZkOT+nTpw9Onz6NRYsWmV+7fv06PvjgA9SuXRtdu3YFAAQHBwOAaCBGRPKwRoWomnj22Wdx//3345NPPsGYMWMwa9Ys3HrrrUhNTcXo0aPRpEkTnDlzBlu2bMGJEyewZ88eAEDLli3RrVs3tG3bFpGRkdi+fTsWL16MCRMmSO7r5ptvxoMPPoj/+7//g9FoRKdOnfDzzz/j6NGjdtsOHjwYzz33HO69915MnDgRpaWlmD17NpKSkrBz507zdj179kRAQAD69euHxx9/HMXFxZg7dy7q1asnGmx50mOPPYY5c+Zg2LBh2LFjB+Lj47F48WJs2rQJ7777LkJDQwHc6PzbsmVLLFq0CElJSYiMjERKSgpSUlK8ml4in6b1sCMiUo9pePK2bdvs3quoqBASExOFxMRE4fr164IgCEJOTo7w6KOPCg0aNBBq1qwpNGrUSLjrrruExYsXmz/36quvCh06dBDCw8OFoKAgITk5WXjttdeEq1evmrcRG0pcVlYmTJw4Uahbt64QEhIi9OvXT8jPzxcdrrtq1SohJSVFCAgIEJo3by58/vnnot+5fPlyoXXr1kKtWrWE+Ph4YcaMGcK8efMEAEJubq55OyXDk50NvZb6vjNnzgjDhw8XoqKihICAACE1NVXIzs62++zmzZuFtm3bCgEBARyqTOQCgyBY1KMSERER6Qj7qBAREZFuMVAhIiIi3WKgQkRERLrFQIWIiIh0i4EKERER6RYDFSIiItItn57wrbKyEqdOnUJoaCinqiYiIvIRgiDg8uXLaNiwod3inrZ8OlA5deoUYmNjtU4GERERuSA/Px833XSTw218OlAxTVOdn5+POnXqaJwaIiIikqOoqAixsbHm+7gjPh2omJp76tSpw0CFiIjIx8jptsHOtERERKRbDFSIiIhItxioEBERkW75dB8VIiK9qaysxNWrV7VOBpGmatasCX9/f1W+i4EKEZFKrl69itzcXFRWVmqdFCLNhYeHo0GDBm7Pc6ZpoFJRUYHp06fj888/x+nTp9GwYUMMGzYM//rXvziBGxH5FEEQUFBQAH9/f8TGxjqdxIqoqhIEAaWlpTh79iwAICYmxq3v0zRQmTFjBmbPno1PP/0UrVq1wvbt2zF8+HCEhYVh4sSJWiaNiEiR69evo7S0FA0bNkRwcLDWySHSVFBQEADg7NmzqFevnlvNQJoGKps3b8Y999yDvn37AgDi4+OxYMEC/Pbbb1omi4hIsYqKCgBAQECAxikh0gdTwH7t2jW3AhVN6yY7deqEn3/+GX/88QcAYM+ePdi4cSMyMjJEty8vL0dRUZHVHxGRnrDZmugGta4FTWtUpkyZgqKiIiQnJ8Pf3x8VFRV47bXX8NBDD4lun5mZiZdfftnLqSQiIiKtaFqj8uWXX+KLL77A/PnzsXPnTnz66ad488038emnn4puP3XqVBiNRvNffn6+l1NMRERE3qRpoPLss89iypQpGDx4MFJTU/HII4/gqaeeQmZmpuj2gYGB5nV9uL4PFRjLsDmnEAXGMq2TQuTzTp8+jSeeeAJNmjRBYGAgYmNj0a9fP/z888/mbTZv3ow+ffogIiICtWrVQmpqKt5++21z/xwAyMvLw8iRI5GQkICgoCAkJiZi2rRpdnPLzJ07F2lpaahduzbCw8PRpk0bq7J/+vTpMBgM6N27t11aZ86cCYPBgG7dusk+vqKiIrzwwgtITk5GrVq10KBBA/To0QNLliyBIAjm7X7//Xc88MADiI6ORmBgIJKSkvDSSy+htLTUvM2FCxfwxBNPoHnz5ggKCkLjxo0xceJEGI1GWWnJy8uDwWAQ/du6davsY+rWrRsmTZoke3tfpWnTT2lpqd0QPn9/f85BQE4t2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIvJJeXl56Ny5M8LDwzFz5kykpqbi2rVrWLlyJcaPH49Dhw5h6dKleOCBBzB8+HCsXbsW4eHhWL16NSZPnowtW7bgyy+/hMFgwKFDh1BZWYk5c+agadOm2L9/P0aPHo2SkhK8+eabAIB58+Zh0qRJeP/999G1a1eUl5dj79692L9/v1W6YmJisHbtWpw4cQI33XST+fV58+ahcWP51/ulS5dw6623wmg04tVXX0X79u1Ro0YNrF+/HpMnT8btt9+O8PBwbN26FT169ECPHj2wYsUK1K9fH7/99hv++c9/4ueff8batWsREBCAU6dO4dSpU3jzzTfRsmVLHDt2DGPGjMGpU6ewePFi2elavXo1WrVqZfVa3bp1ZX9eDkEQUFFRgRo1fHjaNEFDQ4cOFRo1aiR89913Qm5urrBkyRIhKipKmDx5sqzPG41GAYBgNBo9nFLSk1OXSoWEKd8Jcc/9/ddkygrh1KVSrZNG1VhZWZlw4MABoaysTOukKJaRkSE0atRIKC4utnvv4sWLQnFxsVC3bl1hwIABdu8vX75cACAsXLhQ8vvfeOMNISEhwfz/e+65Rxg2bJjDNE2bNk1IS0sT7rrrLuHVV181v75p0yYhKipKGDt2rNC1a1cZRycIY8eOFUJCQoSTJ0/avXf58mXh2rVrQmVlpdCyZUuhXbt2QkVFhdU2u3fvFgwGg5CVlSW5jy+//FIICAgQrl275jQ9ubm5AgBh165dktuYjv9///ufEBcXJ9SpU0cYNGiQUFRUJAjCjfsnAKu/3NxcYe3atQIA4fvvvxduueUWoWbNmsLatWuFK1euCE888YQQHR0tBAYGCp07dxZ+++038/5Mn/vuu++E1NRUITAwUOjYsaOwb98+QRAEobi4WAgNDRW++uorq3QuXbpUCA4ONqfLkqNrQsn9W9Omnw8++AD33Xcfxo0bhxYtWuCZZ57B448/jldeeUXLZJHO5RaWoFKwfq1CEJBXWCr+ASIf481mzQsXLuDHH3/E+PHjERISYvd+eHg4Vq1ahfPnz+OZZ56xe79fv35ISkrCggULJPdhNBoRGRlp/n+DBg2wdetWHDt2zGn6RowYgU8++cT8/3nz5uGhhx6SPQy8srISCxcuxEMPPYSGDRvavV+7dm3UqFEDu3fvxoEDB/D000/b1fSnpaWhR48eTo+xTp06qtZc5OTkYNmyZfjuu+/w3XffYf369cjKygIAvPfee0hPT8fo0aNRUFCAgoICxMbGmj87ZcoUZGVl4eDBg2jdujUmT56Mr7/+Gp9++il27tyJpk2bolevXrhw4YLVPp999lm89dZb2LZtG6Kjo9GvXz9cu3YNISEhGDx4MLKzs622z87Oxn333YfQ0FDVjtuWpoFKaGgo3n33XRw7dgxlZWXIycnBq6++ynkIyKGEqBD42Yx68zcYEB/FSbbI9y3adhyds9ZgyNxf0TlrDRZtO+7R/R09ehSCICA5OVlyG9MUEi1atBB9Pzk52byN2Pd/8MEHePzxx82vTZs2DeHh4YiPj0fz5s0xbNgwfPnll6LN/nfddReKioqwYcMGlJSU4Msvv8SIESNkH19hYSEuXrzo8PgA58fYokULyWMsLCzEK6+8gscee0x2uoAbU3TUrl3b6s9SZWUlPvnkE6SkpOC2227DI488Yu4zFBYWhoCAAAQHB6NBgwZo0KCB1Vwl//73v3HnnXciMTERgYGBmD17NmbOnImMjAy0bNkSc+fORVBQED7++GOrfU6bNg133nknUlNT8emnn+LMmTNYunQpAGDUqFFYuXIlCgoKANyYzO37779X9Hu4gnM8k8+JCQtC5oBU+P81Rt/fYMDrA1IQExakccqI3FNgLDP3vQKASgF4fsl+j9asCILgfCMXtgWAkydPonfv3rj//vsxevRo8+sxMTHYsmUL9u3bhyeffBLXr1/H0KFD0bt3b7tgpWbNmnj44YeRnZ2Nr776CklJSWjdurXH0qx0+6KiIvTt2xctW7bE9OnTFX120aJF2L17t9Wfpfj4eKuaipiYGPO09M60a9fO/O+cnBxcu3YNnTt3Nr9Ws2ZNdOjQAQcPHrT6XHp6uvnfkZGRaN68uXmbDh06oFWrVuaRuZ9//jni4uLQpUsXeQfsIh/uXUPV2aD2jdElKRp5haWIjwpmkEJVgqNmTU/l8WbNmpk7wUpJSkoCABw8eBCdOnWye//gwYNo2bKl1WunTp1C9+7d0alTJ/z3v/8V/d6UlBSkpKRg3LhxGDNmDG677TasX78e3bt3t9puxIgR6NixI/bv36/46T06Ohrh4eEOjw+wPsY2bdrYvX/w4EHzNiaXL19G7969ERoaiqVLl6JmzZqK0hYbG4umTZtKvm/7fQaDQfZgE7FmPDWMGjUKs2bNwpQpU5CdnY3hw4d7fJJD1qiQz4oJC0J6Yl0GKVRlaNGsGRkZiV69emHWrFkoKSmxe//SpUvo2bMnIiMj8dZbb9m9v3z5chw5cgQPPvig+bWTJ0+iW7duaNu2LbKzs2Ut0GgKdMTS0KpVK7Rq1Qr79+/HkCFDlBwe/Pz8MHjwYHzxxRc4deqU3fvFxcW4fv06br75ZiQnJ+Odd96xCwb27NmD1atXWx1jUVERevbsiYCAACxfvhy1atVSlC41BAQEWA0Nl5KYmIiAgABs2rTJ/Nq1a9ewbds2uwDTcnj0xYsX8ccff1g1hz388MM4duwY3n//fRw4cABDhw5V4UgcY6BCRKQTWjVrzpo1CxUVFejQoQO+/vprHDlyBAcPHsT777+P9PR0hISEYM6cOfjmm2/w2GOPYe/evcjLy8PHH3+MYcOG4b777sMDDzwA4O8gpXHjxnjzzTdx7tw5nD59GqdPnzbvb+zYsXjllVewadMmHDt2DFu3bsWjjz6K6Ohoq6YHS2vWrEFBQQHCw8MVH99rr72G2NhYdOzYEf/73/9w4MABHDlyBPPmzUObNm1QXFwMg8GAjz/+GAcOHMDAgQPx22+/4fjx4/jqq6/Qr18/pKenm+csMQUpJSUl+Pjjj1FUVGQ+RjmBg8n58+fNnzP9XblyRfbn4+Pj8euvvyIvLw+FhYWStS0hISEYO3Ysnn32Wfz44484cOAARo8ejdLSUowcOdJq23//+9/4+eefsX//fgwbNgxRUVHo37+/+f2IiAgMGDAAzz77LHr27Gk1bNxjnI4L0jEOTyYivVBzePKpS6XC5qOFXh1yf+rUKWH8+PFCXFycEBAQIDRq1Ei4++67hbVr15q32bBhg9CrVy+hTp06QkBAgNCqVSvhzTffFK5fv27eJjs7227YrOnPZPHixUKfPn2EmJgYISAgQGjYsKEwcOBAYe/eveZtTMNzpTz55JOyhycLgiBcunRJmDJlitCsWTMhICBAqF+/vtCjRw9h6dKlQmVlpXm7vXv3CgMHDhQiIyOFmjVrComJicK//vUvoaSkxLyNaSiv2F9ubq7TtJiGJ4v9LViwQPL433nnHSEuLs78/8OHDwv/+Mc/hKCgILvhyRcvXrT6bFlZmfDEE08IUVFRDocnf/vtt0KrVq2EgIAAoUOHDsKePXvs0v/zzz8LAIQvv/zS4XGqNTzZIAgKew7pSFFREcLCwszDwoiItHLlyhXk5uYiISFBk2YAInesW7cO3bt3x8WLF53WWn322Wd46qmncOrUKYejdB1dE0ru3+xMS0RERE6VlpaioKAAWVlZePzxx702lQj7qBARkU+znYvE8u+XX37xenrGjBkjmZ4xY8Z4PT1qeeONN5CcnIwGDRpg6tSpXtsvm36IiFTAph/tHD16VPK9Ro0aISjIuyMDz549i6KiItH36tSpg3r16nk1PVph0w8RERHgcC4SLdSrV6/aBCPewKYfIiIi0i0GKkREKvLh1nQiVcmdRdcZNv0QEamgZs2aMBgMOHfuHKKjoz0+rTiRXgmCgKtXr+LcuXPw8/Nze3QQAxUiIhX4+/vjpptuwokTJ5CXl6d1cog0FxwcjMaNG8taQsERBipERCqpXbs2mjVrhmvXrmmdFCJN+fv7o0aNGqrULDJQISJSkb+/P/z9/bVOBlGVwc60REREpFsMVIiIiEi3GKgQERGRbjFQISIiIt1ioEJERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt1ioEJERES6xUCFiIiIdIuBChEREemWpoFKfHw8DAaD3d/48eO1TBYRERHpRA0td75t2zZUVFSY/79//37ceeeduP/++zVMFREREemFpoFKdHS01f+zsrKQmJiIrl27apQiIiIi0hPd9FG5evUqPv/8c4wYMQIGg0Hr5BAREZEOaFqjYmnZsmW4dOkShg0bJrlNeXk5ysvLzf8vKiryQsqIiIhIK7qpUfn444+RkZGBhg0bSm6TmZmJsLAw819sbKwXU0hERETeZhAEQdA6EceOHUOTJk2wZMkS3HPPPZLbidWoxMbGwmg0ok6dOt5IKhEREbmpqKgIYWFhsu7fumj6yc7ORr169dC3b1+H2wUGBiIwMNBLqSIiIiKtad70U1lZiezsbAwdOhQ1augibiIiIiKd0DxQWb16NY4fP44RI0ZonRQiIiLSGc2rMHr27AkddJMhIiIiHdK8RoWIiIhICgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREusVAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIRBQYy7A5pxAFxjKtk0JEVK1pvighkd4s2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIiKqllijQmShwFhmDlIAoFIAnl+ynzUrREQaYaBCZCG3sMQcpJhUCALyCku1SRARUTXHQIXIQkJUCPwM1q/5GwyIjwrWJkFERNUcAxUiCzFhQcgckAp/w41oxd9gwOsDUhATFqRxyoiIqid2piWyMah9Y3RJikZeYSnio4IZpBARaYiBCpGImLAgBihERDrAph8iIiLSLQYqREREpFsMVIiIiEi3GKiQbnDaeiIissXOtKQLnLaeiIjEsEaFNMdp64mISAoDFdIcp60nIiIpDFRIc5y2noiIpDBQIc1x2noiIpLCzrSkC5y2noiIxDBQId3gtPVERGSLTT9ERESkWwxUiIiISLc0D1ROnjyJhx9+GHXr1kVQUBBSU1Oxfft2rZNFREREOqBpH5WLFy+ic+fO6N69O3744QdER0fjyJEjiIiI0DJZREREpBOaBiozZsxAbGwssrOzza8lJCRomCIiIiLSE02bfpYvX4527drh/vvvR7169dCmTRvMnTtXcvvy8nIUFRVZ/REREVHVpWmg8ueff2L27Nlo1qwZVq5cibFjx2LixIn49NNPRbfPzMxEWFiY+S82NtbLKSYiIiJvMgiCIDjfzDMCAgLQrl07bN682fzaxIkTsW3bNmzZssVu+/LycpSXl5v/X1RUhNjYWBiNRtSpU8craSYiIiL3FBUVISwsTNb9W9MalZiYGLRs2dLqtRYtWuD48eOi2wcGBqJOnTpWf0RERFR1aRqodO7cGYcPH7Z67Y8//kBcXJxGKSIiIiI90TRQeeqpp7B161a8/vrrOHr0KObPn4///ve/GD9+vJbJIiIiIp3QNFBp3749li5digULFiAlJQWvvPIK3n33XTz00ENaJouIiIh0QtPOtO5S0hmHiIiI9MFnOtMSEREROcJAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREuuVSoFJSUqJ2OoiIiIjsuBSo1K9fHyNGjMDGjRvVTg8RERGRmUuByueff44LFy7g9ttvR1JSErKysnDq1Cm100ZERETVnEuBSv/+/bFs2TKcPHkSY8aMwfz58xEXF4e77roLS5YswfXr19VOJxEREVVDqq2e/MEHH+DZZ5/F1atXERUVhTFjxmDKlCkIDg5W4+tFcfVkIiIi36Pk/l3DnR2dOXMGn376KT755BMcO3YM9913H0aOHIkTJ05gxowZ2Lp1K1atWuXOLoiIiKgacylQWbJkCbKzs7Fy5Uq0bNkS48aNw8MPP4zw8HDzNp06dUKLFi3USicRERFVQy4FKsOHD8fgwYOxadMmtG/fXnSbhg0b4oUXXnArcURERFS9udRHpbS01KN9T+RiHxUiIiLf4/E+KsHBwaioqMDSpUtx8OBBAECLFi3Qv39/1KjhVrcXIiIiIjOXoorff/8d/fr1w5kzZ9C8eXMAwIwZMxAdHY1vv/0WKSkpqiaSiIiIqieX5lEZNWoUUlJScOLECezcuRM7d+5Efn4+Wrdujccee0ztNBIREVE15VKNyu7du7F9+3ZERESYX4uIiMBrr70m2bmWiIiISCmXalSSkpJw5swZu9fPnj2Lpk2bup0oIiIiIsDFQCUzMxMTJ07E4sWLceLECZw4cQKLFy/GpEmTMGPGDBQVFZn/iIiIiFzl0vBkP7+/4xuDwQAAMH2N5f8NBgMqKirUSKcoDk8mIiLyPR4fnrx27VqXEkZERESkhEuBSteuXdVOBxEREZEdl2dnu3TpEj7++GPzhG+tWrXCiBEjEBYWplriiIiIqHpzqTPt9u3bkZiYiHfeeQcXLlzAhQsX8PbbbyMxMRE7d+5UO41ERERUTbnUmfa2225D06ZNMXfuXPOU+devX8eoUaPw559/YsOGDaonVAw70xIREfkeJfdvlwKVoKAg7Nq1C8nJyVavHzhwAO3atUNpaanSr3QJAxUiIiLfo+T+7VLTT506dXD8+HG71/Pz8xEaGurKVxIRERHZcSlQGTRoEEaOHIlFixYhPz8f+fn5WLhwIUaNGoUHH3xQ9vdMnz4dBoPB6s+2loaIiIiqL5dG/bz55pswGAx49NFHcf36dQBAzZo1MXbsWGRlZSn6rlatWmH16tV/J6iGywORiIiIqIpRHBVUVFRg69atmD59OjIzM5GTkwMASExMRHBwsPIE1KiBBg0aKP4cERERVX2Km378/f3Rs2dPXLp0CcHBwUhNTUVqaqpLQQoAHDlyBA0bNkSTJk3w0EMPifZ9MSkvL7daR4hrCREREVVtLvVRSUlJwZ9//un2zjt27IhPPvkEP/74I2bPno3c3FzcdtttuHz5suj2mZmZCAsLM//Fxsa6nQYiIiLSL5eGJ//444+YOnUqXnnlFbRt2xYhISFW77s6VPjSpUuIi4vD22+/jZEjR9q9X15ejvLycvP/i4qKEBsby+HJREREPsTjixL26dMHAHD33XebV0sG3F8xOTw8HElJSTh69Kjo+4GBgQgMDHTpu4mIiMj36Gr15OLiYuTk5OCRRx7xyPcTERGRb3EpUElISEBsbKxVbQpwo0YlPz9f9vc888wz6NevH+Li4nDq1ClMmzYN/v7+iuZiISIioqrL5UCloKAA9erVs3r9woULSEhIkN30c+LECTz44IM4f/48oqOjceutt2Lr1q2Ijo52JVlERERUxbgUqJj6otgqLi5GrVq1ZH/PwoULXdk9ERERVROKApWnn34aAGAwGPDiiy9azZ1SUVGBX3/9FTfffLOqCSSivxUYy5BbWIKEqBDEhAVpnRwiIo9TFKjs2rULwI0alX379iEgIMD8XkBAANLS0vDMM8+om0IiAgAs2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIiLyKEWBimm0z/Dhw/Hee+9x7hIiLykwlpmDFACoFIDnl+xHl6Ro1qwQUZXm0sy02dnZDFKIvCi3sMQcpJhUCALyCku1SRARkZe41Jm2pKQEWVlZ+Pnnn3H27FlUVlZava/G9PpE9LeEqBD4GWAVrPgbDIiPcm2NLSIiX+FSoDJq1CisX78ejzzyCGJiYkRHABGRemLCgpA5IBXPL9mPCkGAv8GA1weksNmHiKo8l9b6CQ8Px4oVK9C5c2dPpEk2JWsFEFUFBcYy5BWWIj4qmEEKEfksj6/1ExERgcjISJcSR0SuiwkLYoBCRNWKS51pX3nlFbz00ksoLWVHPiIiIvIcl2pU3nrrLeTk5KB+/fqIj49HzZo1rd7fuXOnKokjIiKi6s2lQKV///4qJ4OIiIjInkudafWCnWmJiIh8j5L7t6I+Kr/99pvDlZHLy8vx5ZdfKvlKIiIiIkmKApX09HScP3/e/P86depYTe526dIlPPjgg+qljoiIiKo1RYGKbSuRWKuRD7ckERERkc64NDzZEc5SS0RERGpRPVAhIiIiUovi4ckHDhzA6dOnAdxo5jl06BCKi4sBAIWFheqmjoiIiKo1RcOT/fz8YDAYRPuhmF43GAwORwapicOTiYiIfI/H1vrJzc11K2FERERESigKVOLi4hR9+bhx4/Dvf/8bUVFRij5HREREBHi4M+3nn3+OoqIiT+6CiIiIqjCPBiqcU4WIiIjcweHJREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt3yaKDy8MMPcyI2IiIicplLgUplZaXk68ePHzf/f/bs2ZxDhYiIiFymKFApKirCAw88gJCQENSvXx8vvfSS1XT5586dQ0JCguqJJCIioupJ0cy0L774Ivbs2YPPPvsMly5dwquvvoqdO3diyZIlCAgIAMC5U4iIiEg9impUli1bhjlz5uC+++7DqFGjsH37dpw7dw79+vVDeXk5gBuLE7oiKysLBoMBkyZNcunzpI0CYxk25xSiwFimdVKIiKgKUhSonDt3zmq9n6ioKKxevRqXL19Gnz59UFpa6lIitm3bhjlz5qB169YufZ60sWjbcXTOWoMhc39F56w1WLTtuPMPERERKaAoUGncuDEOHjxo9VpoaChWrVqFsrIy3HvvvYoTUFxcjIceeghz585FRESE4s+TNgqMZZi6ZB8q/2rpqxSA55fs99maFdYMERHpk6JApWfPnsjOzrZ7vXbt2li5ciVq1aqlOAHjx49H37590aNHD8WfJe3kFpaYgxSTCkFAXqFrtWpaYs0QEZF+KepM+/LLL+PUqVOi74WGhuKnn37Czp07ZX/fwoULsXPnTmzbtk3W9uXl5ea+MAC4MrOGEqJC4GeAVbDibzAgPipYu0S5QKpmqEtSNGLCgrRNHBERKatRiYiIQKtWrSTfDw0NRdeuXWV9V35+Pp588kl88cUXsmtiMjMzERYWZv6LjY2V9TlSX0xYEDIHpML/r87T/gYDXh+Q4nM396pUM0REVBUZBIXjia9fv4533nkHCxYswB9//AEASEpKwpAhQ/Dkk0+iZs2asr5n2bJluPfee+Hv729+raKiAgaDAX5+figvL7d6DxCvUYmNjYXRaOQMuBopMJYhr7AU8VHBPhekADfS3zlrjV3N0MYp3X3yeIiIfEFRURHCwsJk3b8VBSplZWW48847sWXLFvTo0QMtWrQAABw8eBCrV69G586dsWrVKlk1JJcvX8axY8esXhs+fDiSk5Px3HPPISUlxel3KDlQIimLth3H80v2o0IQzDVDg9o31jpZRERVlpL7t6I+KllZWcjPz8euXbvshhLv2bMHd999N7KysjB9+nSn3xUaGmoXjISEhKBu3bqyghQitQxq3xhdkqJ9umaIiKiqUtRHZeHChXj77bdF5ztJS0vDm2++ifnz56uWOCJviQkLQnpiXQYpREQ6o6hG5dixY+jQoYPk+//4xz+sFiVUat26dS5/loiIiKoeRTUqderUwdmzZyXfP336NEJDQ91OFBERERGgMFDp3r07Xn/9dcn3s7Ky0L17d7cTRURERAQobPqZNm0aOnbsiH/84x94+umnkZycDEEQcPDgQbzzzjs4cOAAtm7d6qm0EhERUTWjKFBp2bIlfvrpJ4wcORKDBw82r5QsCAKSk5OxatUqhxPCERERESmhKFABbnSY/f3337F7926rCd9uvvlmtdNGRERE1ZziQKWoqAi1a9fGzTffbBWcVFZWori4mBOvERERkWoUdaZdunQp2rVrhytXrti9V1ZWhvbt2+Pbb79VLXFERERUvSkKVGbPno3JkycjONh+hdyQkBA899xz+M9//qNa4oiIiKh6UxSo7N+/H926dZN8v0uXLti3b5+7aSIiIiICoDBQuXjxIq5fvy75/rVr13Dx4kW3E0VEREQEKAxU4uPjsX37dsn3t2/fjri4OLcTRURERAQoDFQGDBiAF154AWfOnLF77/Tp0/jXv/6FgQMHqpY4IiIiqt4MgiAIcje+fPky0tPTcfz4cTz88MNo3rw5AODQoUP44osvEBsbi61bt3ptvZ+ioiKEhYXBaDRyWDQREZGPUHL/VjSPSmhoKDZt2oSpU6di0aJF5v4o4eHhePjhh/Haa69xUUIiIiJSjaIaFUuCIKCwsBCCICA6Oto8nb6lTZs2oV27dggMDHQ7oWJYo0JEROR7lNy/FfVRsWQwGBAdHY169eqJBikAkJGRgZMnT7q6CyIiIqrmXA5U5HCxsoaIABQYy7A5pxAFxjKtk0JEpBnFa/0Qkect2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIiLyOo/WqBCRcgXGMnOQAgCVAvD8kv2sWSGiaomBCpHO5BaWmIMUkwpBQF5hqTYJIiLSkEcDFalOtkQkLSEqBH42l46/wYD4KPvFQImIqjp2piXSmZiwIGQOSIX/X4G+v8GA1wekICYsSOOUERF5n0c7016+fNmTX0+kKwXGMuQWliAhKsTtoGJQ+8bokhSNvMJSxEcFM0ghompLUaBy++23y9puzZo1LiWGyFd5YpROTFgQAxQiqvYUBSrr1q1DXFwc+vbti5o1a3oqTUQ+RWqUTpekaAYaRERuUhSozJgxA9nZ2fjqq6/w0EMPYcSIEUhJSfFU2oh8gqNROgxUiIjco6gz7bPPPosDBw5g2bJluHz5Mjp37owOHTrgww8/RFFRkafSSKRrHKVDROQ5Lo36SU9Px9y5c1FQUIDx48dj3rx5aNiwIYMVqpY4SoeIyHPcGvWzc+dOrF+/HgcPHkRKSgr7rVC1xVE6RESeoThQOXXqFD755BN88sknKCoqwsMPP4xff/0VLVu29ET6iHwGR+kQEalPUaDSp08frF27Fj179sTMmTPRt29f1KjBdQ2JiIjIMwyCgulj/fz8EBMTg3r16jmcHn/nzp2qJM6ZoqIihIWFwWg0ok6dOl7ZJxEREblHyf1bUXXItGnT3EqYrdmzZ2P27NnIy8sDALRq1QovvfQSMjIyVN0PERER+SZFNSpq+/bbb+Hv749mzZpBEAR8+umnmDlzJnbt2oVWrVo5/TxrVIiIiHyPkvu3KoHK+vXrUVJSgvT0dERERLj1XZGRkZg5cyZGjhzpdFsGKkRERL7HY00/M2bMQHFxMV555RUAN1ZHzsjIwKpVqwAA9erVw88//yyrNsRWRUUFvvrqK3PAI6a8vBzl5eXm/3PeFiIioqpN0YRvixYtspoyf/HixdiwYQN++eUXFBYWol27dnj55ZcVJWDfvn2oXbs2AgMDMWbMGCxdulRyqHNmZibCwsLMf7GxsYr2RURERL5FUdNPREQENm/ejBYtWgAAhg8fjoqKCvzvf/8DAGzduhX3338/8vPzZSfg6tWrOH78OIxGIxYvXoyPPvoI69evFw1WxGpUYmNj2fRDRETkQzzW9HP9+nUEBgaa/79lyxZMmjTJ/P+GDRuisLBQUWIDAgLQtGlTAEDbtm2xbds2vPfee5gzZ47dtoGBgVb7JyIioqpNUdNPYmIiNmzYAAA4fvw4/vjjD3Tp0sX8/okTJ1C3bl23ElRZWWlVa0JERETVl6IalfHjx2PChAn45ZdfsHXrVqSnp1s10axZswZt2rSR/X1Tp05FRkYGGjdujMuXL2P+/PlYt24dVq5cqSRZREREVEUpClRGjx4Nf39/fPvtt+jSpYvdBHCnTp3CiBEjZH/f2bNn8eijj6KgoABhYWFo3bo1Vq5ciTvvvFNJsoiIiKiK0nTCN3dxHhUiIiLfo+T+raiPChEREZE3KQpUrl27hsmTJ6Np06bo0KED5s2bZ/X+mTNn4O/vr2oCiYiIqPpSFKi89tpr+N///ocxY8agZ8+eePrpp/H4449bbePDLUlERESkM4o6037xxRf46KOPcNdddwEAhg0bhoyMDAwfPtxcu2IwGNRPJREREVVLimpUTp48aTWFftOmTbFu3Tps3rwZjzzyCCoqKlRPIBEREVVfigKVBg0aICcnx+q1Ro0aYe3atdi2bRuGDRumZtqIiIiomlMUqNx+++2YP3++3esNGzbEmjVrkJubq1rCiFxVYCzD5pxCFBjLquX+iYiqEkV9VF588UUcOnRI9L1GjRph/fr1+Omnn1RJGJErFm07jqlL9qFSAPwMQOaAVAxq37ja7J+IqKrhhG9UZRQYy9A5aw0qLXK0v8GAjVO6IyYsqMrvn4jIV3h8wrevvvoKAwYMQEpKClJSUjBgwAAsXrzYpcQSqSW3sMQqSACACkFAXmFptdg/EVFVpChQqaysxKBBgzBo0CAcOHAATZs2RdOmTfH7779j0KBBGDx4MOdRIc0kRIXAz2Z0vL/BgPio4GqxfyKiqkhRoPLee+9h9erVWL58OQ4dOoRly5Zh2bJlOHz4MJYuXYqffvoJ7733nqfSSuRQTFgQMgekwv+vuXz8DQa8PiDFa80uWu/fW9hZmIi8SVEfldatW2PSpEmSKyR//PHHeO+997B3717VEugI+6iQmAJjGfIKSxEfFaxJkKD1/j2JnYWJSA1K7t+KApWgoCAcPnwYjRuLF0zHjh1DcnIyysq886TlS4FKgbEMuYUlSIgKqXI3L6oe2FmYiNSi5P6taHhyUFAQLl26JBmoFBUVoVatWkq+slrgUyhVBY46CzNQISJPUdRHJT09HbNnz5Z8f9asWUhPT3c7UVVJgbHMHKQAQKUAPL9kP9v3yeewszARaUFRoPLCCy/g448/xgMPPIDffvsNRUVFMBqN2Lp1K+6//37MmzcPL7zwgqfS6pM4ZJWqiurSWZiI9EVR00+nTp2waNEiPPbYY/j666+t3ouIiMCCBQvQuXNnVRPo60xPobbt+nwKJS252mdqUPvG6JIUXWU7CxNVN77Qf9KlmWlLS0uxcuVKHDlyBACQlJSEnj17IjjYuzdfX+lMu2jbcTy/ZD8qBMH8FMo+KqQV9pkiIkDbssBjo37WrFmDCRMmYOvWrXZfbDQa0alTJ3z44Ye47bbbXEu5Qr4SqADiQ1Z9IZKlqkWPI3d4HRB5n9ZlgcdG/bz77rsYPXq06JeGhYXh8ccfx9tvv+21QMWXxIQFWf34fKolLeht5A6vAyJt6K0scERRZ9o9e/agd+/eku/37NkTO3bscDtRVR1HApFW9DRyh9cBkXb0VBY4oyhQOXPmDGrWrCn5fo0aNXDu3Dm3E1XVcSSQ79mTfxFzf8nBnvyLWifFLXoaucPrgEg7eioLnFHU9NOoUSPs378fTZs2FX1/7969iImJUSVhVRlHAqnL030c/vnlbny986T5/wNvaYS3HrhZ9f14i15G7vA6INKWXsoCZxTVqPTp0wcvvvgirly5YvdeWVkZpk2bhrvuuku1xFVVvhTJ6t2ibcfROWsNhsz9FZ2z1mDRtuOqfv+e/ItWQQoAfL3zZJWoWUlPrKtpnuN1QKQ9PZQFziga9XPmzBnccsst8Pf3x4QJE9C8eXMAwKFDhzBr1ixUVFRg586dqF+/vscSbMmXRv2IqcqL13mDs17ratS0zP0lB6+tOGT3+ot9W2DkbU0UpZUjW8TxOiCqfjw26qd+/frYvHkzxo4di6lTp8IU4xgMBvTq1QuzZs3yWpBSFdiOBCJlHPVx2PDHOVVGk3SIjxR9vV18hOzv4MgWx3gdEJEjigIVAIiLi8P333+Pixcv4ujRoxAEAc2aNUNEhPyCm6oHT9ciSPVxCA7wEx1N0iUpWnE60mIjMPCWRnZ9VNJi5eV3qZEtrqSFiKg6UhyomERERKB9+/ZqpoWqEG/UIpj6ONjO+ltytULV+QHeeuBmPJoeh+15F9EuPkJ2kAL41lwFRER65HKgQp7ly30avFmLINZrvcBYpvpokrRYZQGKCUe2EBG5R9GoH/IOT49k8TRvz49h22tdT6NJ9JQWIiJfxBoVnakKfRr0UIugp/kB9JQWIiJfo2mNSmZmJtq3b4/Q0FDUq1cP/fv3x+HDh7VMkua0mK2zwFiGzTmFqk1drpdaBD3ND6CntBAR+RJNa1TWr1+P8ePHo3379rh+/Tqef/559OzZEwcOHEBISIiWSdOMt2sjPNXptbrXIvhyHyMiIj1RNOGbp507dw716tXD+vXr0aVLF6fbV4UJ38RuZou2HbcbyeKJeTe0Xua7qpqzIQdZPxyCwHlTiIhEeWzCN08zGo0AgMhI8Um2ysvLUV5ebv5/UVGRV9LlCY5qMrxVG8Ghs+qbsz4HmT/8PZOtL/Yx8ibWPBGRM7oZ9VNZWYlJkyahc+fOSElJEd0mMzMTYWFh5r/Y2Fgvp1Idcpa3l+rToGZ/El9a5tsXFBjLkPWD/XT7XBFYnK+PbiMi79BNoDJ+/Hjs378fCxculNxm6tSpMBqN5r/8/HwvplA9rnaYVbtg10un16oit7AEYu2ofgZoFvyp3VFaLXKCdSIiQCdNPxMmTMB3332HDRs24KabbpLcLjAwEIGBgV5MmWe40mHWU8OWq3unVzWJ/a4A8FxGsibnVc9rDLHZkYjk0rRGRRAETJgwAUuXLsWaNWuQkJCgZXK8xpWaDE8OW+bQWXXY/q5+AKZmJOPxLoleT4veayzY7EhEcmlaozJ+/HjMnz8f33zzDUJDQ3H69GkAQFhYGIKCqvZNU2lNxr4TRrvXWLDrj15qqPReYyG1TpMe0kZE+qJpoDJ79mwAQLdu3axez87OxrBhw7yfIC+Tu7x9gbEMM36076Q5OaO51wt2jtJwTu7v6kl6mB3YRCrPeDuoY94l8k2aBio6msLFIa0LOLGnYwBo3Sjcq+nQc58HsqaXGgtnecZbQR3zLpHv0kVnWj1Tu4BzJejRw9NxVViDqLrRuhlKL3lGL+kgItfoZniyHqndIdHV4cV6GEasxRpE5D4tO0rrJc9IpWPF3gLddC4mImmsUXFAzQ6J7j7Vaf107G6tjtbNZ+R9eqgJlEoHALy64iBe//4gm4GIdI41Kg6oOYRSjadLTz4dO5sYzJ1aHc5AWj3poSZQLB2W9DZsWyt6nRiQCGCNikNqdkjUy9OlGLn9cFyp1WH/gOpN65pA23Ss2FuAV1cctHpPT8O2tcCOxlVTVarFZqDihFoFrV5GYdhSGkgoHaWh9/k8qhK9Fkx6GK5tSkff1jF4/fuDTh8Y9Hou1cYHiaqpqgWfDFRkUKug1cvTpSVPBxJ6rkmqSqpaweQpch4YqtO55INE1VMVg08GKl6ml6dLE08HEnqtSapKqmLB5EmOHhiq27nkg0TVUxWDTwYq1Zw3Agk91iT5CjlNEFWxYPI0qQeG6nYu+SBR9VTF4JOBCnklkNBbTZIvkNsEURULJq1Ux3PJB4mqxZ3gU699swyCr8xjL6KoqAhhYWEwGo2oU6eO1snxKrkZSq8ZjxwrMJahc9YauxvmxindRX/HRduO2xVMVbVfhafxXFJVUGAsUxR8ertvlpL7N2tUfJDcDFWdOgVWNUqbIPhUrB6ey6qluj6sKanF1nvfLAYqPkZuhtJ7xtMLvRZirjRBVMXmNa1+n6p4LqsjX31Y83a+13vfLAYqPkZuhnI142l94/bm/h0VYlqfB3Zy9N2bDOmDrz6saZHv9d43i4GKj5GboVzJeFrfGLy5f0eF2IY/zuniBqnHJghvBXC+dJPROqglcXqvJRCjVb7X+4MRAxUfIzdDKc14Wt8YvL1/qUJs57GLXkmH3JubZROE1jdEbwaSvnKT0Tq4J2l6ryUQo2W+1+ODkQkDFR/kbMIq081MScbT+sbg7f1LFWKVguDxdLhyc3P3huhukOPtQNIXbjJaB/fkmN5rCcRone/12jeLgYqPEstQUjczsYxne+PS+gLx9v6lCrF28ZEeTYcrNzd3b4hqPPV7O5D01k3GnQBO6+CenNNzLYEYvQRXWtfe2mKgUkUouZlJ3bi0vEBcaapy90KSKsQ8eR5cubm5c0NU66lfi0DW0zcZdwM4rYP76sSd612vtQRStA6u9NicyUClipB7M3N049L6ApG7fzUvJLFCzJPnwZWbmzs3RLWe+rV60vPUTUaNAE4vT79VnbdunHqqRXAn37tzHHptzmSgUkXIvZk5u3Fp/fThbP/eupA8dR5cubm5c0NUGuQ4KuS0DmTVpFYAV5XOiR5563rXYy2CK9w9Dr02ZzJQqSLk3sx8vbparxeSEq7c3Fy9ISoJcuQUcloHsmpR8zqoKufEW5Q88at9vYvt21kwpKeaFkfUCOr0en9goFKFyLmZ+Xp1tV4vJKVcubm5ekOUky/0WuXrKVpcB75yw/OkRduOY8rX+yAAMADIGuj4iV/N610qEHcUDOllTiU51Ajq9Hp/YKDiIXqe+tuXq6v1eiHpnbN8URVqqpTy5nWgdtOCLwY9BcYyc5ACAAKAKV/vcxgMq3W9OwrE95002m3vbzAgOMDPp4J3tYI6Pd4fGKioxLLg8IUo3Jerq/V4Ifm6qlJTpZQ3rgO1a6t8tT/F9rwLsImFIQDYkXcRd6VJnwe517uj4E0qEF/w63H8Z+1Ru++a3Ls5Sq5WSAbvpu/UU6Co5kOc3u4PDFRUYFtwCALMF6Teo3BfpbcLydexpkqau7UXatZW+UoTndg5MxgMottKvGzF2fXuLHgTC8QB4P019kEKALS+KRzxUcGiwfvek5fw0EdbdRkoVtWHOAYqbhIrOGxVCILTpwZv8MXqYhNfTruvqKqFnDvUqL1Qs7ZKT010Utek1DlrGxcBA2BVq2IwALfERbidDmfBm20g7ojptxEL3if3bo4ZPxzSdaBYFR/iGKi4SazgEDNx4S6UXL2uWeTtq9XFgG+n3ddUxULOVWrVXqhZWyUV9AQH+GFzTqHXAnmpa9LZOcsamGr3OXfTKzd4MwXiK/YW4NUVB0W/y/a3sQ3elQaKfMBSBwMVN4kVHIa/Hhss87OWkbevVBeL8eW0k3u0LuTVrL1Qq7ZKLOjp36Yh7v2/zV4L5B1dk47OGQDERgZj6bhOKL1a6XatnSl/hAT4y66xigkLQt/WMXj9+4NW2/sB+Hf/VggLqol28ZF2n7FMp9x98QFLPQxU3CT1tBQSWAMT5u+y2larKlo9VRcD2s6jQL5BD4W82h2M1aqtsgx6ggP8zEEK4J1A3tE1KXXO9p6w79eRnljX5TTY5o972zTCsl2nZNVYSQV7L33zu9P8Jrd2zNU1vVj7Io6BigpsC46SqxWKony1SGV0LUd02KZJ6Q3I02ln4aA/eqlF03MHY1PQszmn0GOBvCvliWi/jgx1+3WI5Y9lu05hybh02TU17gR7cmrHlD5gOSsXbX+L6lZuaRqobNiwATNnzsSOHTtQUFCApUuXon///lomSZKzjBETFmQ3LNk2yh/TtQm+23sKHeIjkRbrXgcyW44yulYFrm2anuudjBk/KiuwPJl2PTy1a02PBZ6eatH03sHYU4G8O+WJu/06nJH6vtKrlYpqadwJ9pzVjin5XZwF5mK1R0t3naxW5ZamgUpJSQnS0tIwYsQIDBgwQMukOCTnhuYsyv9sax5mrcsxbz/wlkZ464GbVUmf2L6nLtmH5Aah5oDI2wWuWJpm/HAIlTbbySmwPJF2vTy1a0mvgZre5nTRcwdjTwTycq4NZ9ekq/065FA7f7j6fY6CfCW/i7N+Pba/xdc7T5q3qy7llqaBSkZGBjIyMrRMglNyb2hSmS3/QhliI4Pw/b7TVu99vfMkHk2PU6VmRWzflQJwz6zNmNonGY93SQSgXoEr5ylcNE0i28ktYNS+WejpqV0Leg7U9NzkokdiQYM7NWVyrw2516S7v6ftscj5PiXH70r65AT5ch+wHAVKckaVVodyy6f6qJSXl6O8vNz8/6KiIo/vU+5FKzWh0MSFu5CR0kD0u7fnXVQlUJHaNwBkfn8IEIDHuya6vR9A/lO4ozRZmpzRXJMLTG9P7WqRW0DrPVDTe5OL3lgGDe7UlBUYy3C+uFz1a8PV31PqWBx9nyvHryR9SoJ8ucHcqFsT8NEvuaiE/RBpZ+Wou7U/vsBP6wQokZmZibCwMPNfbGysx/dpuqFZEssYpqjc9oRWCsAP+09DTLt49fqpjLw1wS6dJjN+OIQCY5nb+5C6QMW+23Q+/P+adlIqo7VuFO52ulwRExaE53onm9NVFZ7aF207js5ZazBk7q/onLUGi7YdN79XYCzD5pxC828lN1+7y3a/SsSEBSE9sa5P/ybeJtoM/PU+fLf3lNPfwJR/nliwG4Lw94yxal0bjn5PsXwi1aS9J/+i5PcpKaOUpM+Ss6YaJUzn/L+/5AIG4LHbmmDjlO52/YFM5aiYyb0dP+w5Khd8hU8FKlOnToXRaDT/5efne3yfthnF0UU7qH1jvD+kjd3rlQLQpVmU1WsDb2mkSm2KKRPO/SVXMuquBFy6iGwpvUAHtW+MjVO6Y8Hof2Dp+E6Kbozu3ODkWLTt+I2OvbhRIE/OaK6L/hmuclRAixVUSvK1qzxRQHo6X/g6qSbXCfN3OfwNbPOPAMAgALOGtLG6cXqCVD6RatLuP2uz5HGoGURIkQryTZPuyc2bYtfsxxtz7bYzlaP/6ttC9Hta3xSuaB9yAzc98ammn8DAQAQGBnp9v0qqBdvGRYhWm864rzXOFl3B9ryLaBcfoUqQYpsJAdhNUW3avxpPyq40l5iqPguMZQ6rNy15upOnXaEsAG/8cBh3pzXU/Ond1SpaqQJ657GLktXUnmxe8UQfGL12/tUTR02ujn4DqQAnMiTQo9eEo3widSwCpI/DG026UvOwmIY4GwBMyUh22tzurPnVtizo2zoGr604aFW+Ozs2vTfxyuVTgYqW1Og4FhMWpOqwZLFMKAAY0jEWC3/NdxoQKOVqpzjbG8xjtzbB8FvjJauAPd3JU68Xrys3Ymezc1YKgsNj9dSIFrXP8Z78i5jy9T4u9umE7TVqS+o3UDqcVq3+Do7ySXpiXWQOSLV7GHN0HN7qiO1oHhYBQOYPhwADzAMZxEgFYntPXMLxCyV2ZYEtA2A+Nj3OoaUmTQOV4uJiHD369+qVubm52L17NyIjI9G4sW88KYllEG91BJTKhE/c3gxP3N7MI/tXemxS1ZvDb40X3d4bQYSeLl7LQENpgCZnds528ZGaHKua53jRtuOYsmSfXU2hHoJLtakRBJiu0R15FzFx4S5Zv4HcG7zatVrO8smg9o2R3CAU/Wdtll2T4K3y1xTki83DAtzoG+ioljYmLAjPZSTfGPBg8zlYnBNTPyMY7Bd07JIUrcs5tNSmaaCyfft2dO/e3fz/p59+GgAwdOhQfPLJJxqlSj5nGcTTmcFZJlRr/2LDA+V+t9LAQ+kNzpWCXS8Xr2X+MRhuNEFZcrbYmdzZOb15rJa/hxr7NR2n2IK3aucLb3CULneDANvvvistCCVXr0v+BrbbO7vBe6K2U861mBYbgayByvKSJ8pfR7UWYk3ulcLffQOlfvPCy+WwVQn7LxN9TYDDpl1vPzh7kqaBSrdu3SA4WXJbr/QyD4WnM6GjVVLl3AiUBh5Kggh3CnatL16xfjK2HJ0nJbNzeutYxX6PjVO6u7VfqXkkDABGSNTKOcoXWgYwztLlTnnibBjvzmMXUSkI5gX3pLZ3dIN31A+qb2vxz8g533Lyp9bXq7OH0ikZyTeaeyxIrXFk+ZuLdZ414MaDi+W59vvrDaVNuybeeHD2JPZRcZGe+jl4KhNKFZ6Xyq6Z1+5wFry4UnshtnZSgbFM1jBEJYGilhev1A3YD5DVt0irPgVSCoxldn1IpizZh81Tbndr8TnR1clx4+Fy7i+5+Hhjruwbvu0SF97sjOssv7pTnjj7btvjdmUpC0C6T8WE+btQXH7d7lwqeZCQcy1qdb3KKWse75oIGGAuF+WscSRVBozukoDE6Np2ZSYAu9fUatrVaw2kCQMVF+mpn4OnSBWeWT8cMtcAmIOX0mvmws8AYPRtCRh+a4KsKmUxYgWsZUGnp0DRFVL5x9R0IxWgmcgJAAuMZZi38cbN3NM35x3HLtpVfQt/VU1LPW3LYXucfjZNZHJv+At+PY7/rD2qSQ1ogbEM3+095TC/ulOeKJ2C3dWlLEy/hW3nVgH251IvNc5qkFvWPN4lEXenNXS6xtGKvQXo2zpG9Df3MwDDO98oN8XKTLHX3G1i9YXRdAxUXKSXfg6eJHohwf6Jyhy8/PV/AcB/f8nFRxZPu0qfhpwVdFoEimo+dUjln7TYCNkFh7PZOS1rOADHNwt3j02qCVeNll3L4ywsvoInFuy2et/ZDR8A3l9zFLa8Edha/pa2LPOrO+WJ1HUqdbM0zR0kuHDtDGrfGMEB/g5/A8D3HyQsKSlrbMs5sbz46oqDeP37g8gckOq0j6HtuRJ7zZ1mMV8JKBmoyCBViGvdbuppYoXn5N7NraqNAekpnk2ZPrlBKEquVii6CTor6OTWKIj9bo5uylLveeKpQ2qNFiUFh1jBZe6AKrJPsZuF3EU3HQUy7eIj7ToUGgC0VWn2ZdNxFhjLHN40bPOFI94IbB0FKbb5VU554qh51TIwFQBs+OMcuiRFi56vyRnN8cYPh116yJLT3KBljbPazRjuBJGWc0dZMl3XS8al493BafAzGHBLXIRbnZLV6gOmx4CSgYoTzgpxX++k5IxY4RkeXNM6eLFpi7VUIQjmoYVK5gaRs96IK+t9OPo9HXUcVvOpQ2wUlYkaBYejhcxsz6GcY5MTyMSEBSFrYCqmfr0PlbjxRJ85MFX1a0POTcOUL1bsLcCrKw5Kngd3akCd3QylmnsA4MW+LdCndQwAYHNOIRKiQgD8PTJEqk+Po9+hS1K0VS2JqTlm45TuoudrUPvGVs0USs6DnN9AqxpnTzVjKH0otU1H35QYrNhXYLVNhSCg//9thuDhJhfLKRBsHxh9pQuDQfDVYTe4sShhWFgYjEYj6tSpo/r3FxjL0Dlrjd2PuHFK9yodnMhRYCyzumgXbTtuvkk54uz8WQ3ZBW7MHSDAqoCVkzax323JuHSriZks0wNA8rfOLSzBkLm/2u1nweh/KO4o6qwgVSPPiX0HIL6/zTmFDo9NaXps84Xte2o96Traj+U2tmn3A/DBkDZuPb06+w2dNfdsnNLdqv+VaTZ2R8G8s99Bzu+ods2v3N/AUzXOtvlJL+X1zwdPY9SnO6xqF019qxzdbD2RVrG8KPaAJhbIepqS+zdrVBzwlWoxLdjWBJieOLI35uGjjX+aC3El509svRE/AfiPwhuL1O+2Le+iZHoESA/zU+upQ07thRpPojFhNxZcNHWa9AMwqkuCuZOeJWfHpvQakKphVPtJ17IvhOX/bW9eYueyb+uGivcnd2I+29FPlixHb9jmc5NK4cbkXra1da50zLRtEvNE7Zaz7/RUjbNYfoqNDNa8vP7nl7vx9c6Tdq9XCsBjXRLw8S95NzqFAy51aFZCqunRtkm+S1K029MIeBoDFQc8VS3mreGi3h5uFhMWhOf7tsDwW+NFp5YGlM8N4sp6I1K/W/t48XWYTOmRek+tamy5N313+z7ZLrj4XEay5FTezo5NjWvAE01nYqOZAIgGQ+50NMwtLMG+k0Zz06bYxF6Wv6HY6CfgxueWjEtHWmyE5EymJpUAsjfm4XmLReikOgnL7ZhZlUjlpyXj0jVtxtiTf1E0SDGlY3jnGw8LrpSNrnDUBOytZie1MFBxwBPtrN4YCqb1cDPLpyhH5882mHJ3bhBns6KmxUY4TM9zGclW8yBYvqdGx2l3Rg/I5cqCi46OTY1rwN05Qix/Z6nRTKbZawWL1yyDIaUBSvbGXMz9Jdd+yLXI9pa/oeToJwClV288QztaONDko41/Wq2H5aiTsOlYN07prsqTsd7n1HA02aGWwdpveRdEXzcYYDeaB/D8jNH7Thgdvm87xYTeRvpYYqDihJoje6SeBFwZFaN0H1plQqnzJxVMubreCGD/NC1WaDtKj+VT8+TezUUnsXP3HMpdQdpVrgYFjo7Ncu0YGG6sEK6Eq7Uytr+zKZAUu79LdeRWWpXuqH+JJdPx2P6GpplfxbZXMjKpUoBkTZtYJ2HLhfz0/iDlLkf5KT2xrmYjMTtI/PYfPdoWd7RoYPe6p1cvn/HjIdH3vNHspDYGKjKo1c4qdRORUwUn9ylHj/1qbM+fo2DK9uIF/h4ZYeoDYPtZqafpjVO6i3Z2dZYeAcAbPx62mmnS1WG7JkpWkHaHp5or3ZnV1ZVaGbHfWWpkGSDeWdHdJioplhPzWd5gTHlhap9kZH3/d0Bl+Ot8STXvOWoGEAuU+7aOwevfH/RIk7SeHnKkOMtPrtSgqVGDlBYbgYG3NLJq/hl4SyPRIMXyWDxxbqWafV7s2wLt4iM83uykNgYqKpGT2aWqfJ1VwSl5yvGF4WZy5kgxVfPL6TDn7tO0khl4lQ7bBZSvIO0OTzRXqnEDU/r0KNpfyUGQYqpVU7uJypZlM6Il27wwJSMZjcKDYDBAsiO4syZSqeDQE7+x1PFbXkd6ahJytTZCrClRzYUg33rgZjyaHofteRfRLj7CLp8o4c75lroP9Gkd4zD/6Ok3tsRARQVyM7ttBpFTBefKBGByCzF3M6Wrn5cTTEnVnCwd10l02ml3nqaVzMBrWWjL/V28XculRpWy5W+rVvqVPD3K6cchNppJyXHL6SNl6TGJkVNieeGNHw9bDTW13Bdgv5qu7W92tuiKef4h03da5i9PNBs4ui712CSktDZCqinR1QBc6pykxToOUOSUm+6eb2f3AbH8o8ff2ISBiptEb6giwwtN5Fb5msi9SVhmfjmFmLuZ0p3PywmmpJ6oV+wrEP0s4PrTtFh6xGbgdXXYrha1XO5UKdsV6L2TZQWWnpwN1JafAVg6rpPdDUHuccvpI2Xr41/yMLxzgt3rzvKC3dxAEJ8zxbImcYrIzMK2+UvtZgOp6/Js0RW7BSf12CTkiNymRLUWgpQidxZoNZrg5NwHhL9+Vb03+zFQcZPUkFrb4YWWnFX5WmYMOTc5R0u2i3E3U3qjKUDq6fajDbnYNPV20Y6y7jxhypmB19Vhu56qqvcEqdqB5zKSJadcn7M+x7zWkydmAxXrPFop/D2KRik5faQcdVhVEoiK9X+yPAapxfzE+th6ownX9jrY8Me5G33obLZTq0bQW00NUg8+tsPNnZ1jU3ovlFxVHOTILTfVrIGVCmZt7xmD28fqrm+jJQYqEuReQAlRIaJzK9gOL5Ti7Ibt7CbnLPOLHcf2vAtuZUpPNAWIdRoceWsC5v6Sa/WZSkBydIO7T5i2n3c2bPfeNtYd5/q3cW0IsJ5I/batG4WLBodzNuQg84e/RxeY8p9aI9liwhx3HnXlRuds8jSpffoBOF9SbreitaNr1NmcKXIW8zPt21vBrek6cBQ0+QEIDvBzeR+OVvb2RPAiFUxO7t0cb/wob80j25oxpUGO3HLT0zWwYveM+b/l222np76NDFREKOkkmVtYggc7xNr90JWC/fBCKbY3SNsL1dFNzlHmF+uMB9zo62FLLFNKFRhy+5g4K2xM22w6Woj/W5tj90Q+4q+hvK72PXFEbmEoFvwUGMuw49hFLLGZ3GnZrlN4pldzh7+lXgMUE0e/rVg+zfrBfgik2pNJSQUCtvl75K0JGHGrfR8SOccIWE+eZtsMZLopTZi/S/SYpK5RZ/1e5CzmJ9XM5WmOOhdXArj3/za7NBJOci6cr/dhz4lLWPBrvuq1c1J5aFD7xrj7ZudrHonVjBkgPUxdjNwAxFHgq0YQJ6fTuDcDYzkYqNiQWz1nG8woja6lOGrGEcs0IQH+ovsODvAT7TsDkUJTLFM6Ctac1SbICfSk5quwPN8AMPo2ZfOOeLqjmqN5NioEATvyLuKuNGWjgrzN0TlS0kyVW1gi+rQNqD+ZlNiwdct1XSoFYO4vufjol1xkDXR8nmPCrJcYsCTWDLQj7yImLtwlq6lTsKlbtT2fBsBu/So5tTPeDlIA50GW2Hlwluf35F8U7X8D3Ah+5v/69wNfpXDjoUqtfhJSwaScBwixm7sA4IPBbVC3dqCsWlIl15YnO7vK6aj+wZA2Li014SkMVGzIqZ4TC2YMhhvr0rgzkZfSCeFMGdc2SHl9QApKrlaI9p0RKyFsM6Wc5qSlu8RrEwA4DfSczVdRIQh2awbJmXfE0x3V5MyzMXHhLpRcvY4uSdG67Jwm5xzJbaaSU+AB4tePK0+FljcUqSYVAc7Ps+USA87SGxMWhMjazssER+dVLMhydG7Fzr9WS2LIGaW489hFRIQ4XwdJrCbFmUoByN6Ui+f7tFTtmFw5f1K1IW3jlS1uqaQJ2LZpXK3yxPZ3teVvMOAWhZM6ehoDFRtyqudEo2vhxuJ5kSGBLhcuSiaEE7tp+hn+Xk+kwFgm6yYilimdBWuO3ne0uJ+zdngTA2AOUgB58454o6OanCpT037fe/Bm3XVOU1LYySnQ7W5kBmBct0T837ocyetHzurRcvuGSeVvJQtfipHTHGO5jdzFJm1rThwdr+X2WtbMORulaDDcaA4T/vq37X3P9FsAsHuokuujDbmiw8K9SUltiJzvUvo5tac4sPxd9568JNlRXi8YqNiQ0z4YEuAvWnBZTuzkSuGiZEI4qV7sppEQolXOsK9QmZzR3C5TOiuYnb3vLNBz9iQu1ufH2UXpqY5qljcSsc+KdaSu+GtSF3fWLVJKzncoLezkfKfYE2JsZLDk9ePsiVvuNWPK32JBh9KFL23ZXhPOblKu3kS8OVTVHZY3VtvA1HL+IkcjlaTOuwHAgx1jsfC3fIf9YVxZF0ptanWIdyWdSvsFAvZz9dgy/a7piXVxd5rzfjpaYqAiQk774L1tGmHZrlMujcSRIreqNa+wVFbGNR1H9sY8zP3lT9GnmdaNwp2mQ2yKakfvO3vykKp6NE3CdHdaQyzcli87mADU6ahmS+xGkjkg1a76WqyPUNt4xwsgOtqH3KdlsdV9HX2HkiBNKl1ihaztE6JUge7ohg44bzK0Zc7fm3Lx0QZ5/ZjkNFeJXROOblKujNIoMJbZzU0yRaQ/ht6WxLA8D4XFV/DEgt1225jKLdvfQmxSxaXjb3QSTrsp3GFThNJ1oTxV6+Rq05GJq+mUKreAG82gtit8A+Jz9QDigZK7x+VpBkFquU8fUFRUhLCwMBiNRtSpU8dj+ykwlll13AOk1/sAbmScIXN/tfueBaP/Ibr2jNj+HE0It2RcOkquVmDfSaNdlZ3YE5lt2i2/y3L2TKl0SEXZjt539lnb47Q9j4u2HRftoe+Iks/IOTap31ys+tsgWBfOpv06O0di+3D0m5g+J7W6r7PvsD1Hk3s3R+pNYVZPYSEB/qL5znISPFenG5c63tzCElWuGTlPhJbnwJac8+/sO+Xk1+/2nsKE+bvsXp8l0l/MlTziiJInekfbOrpG8i+UmRewlHtNm37DvScu2Q0ZdnQuXTlHWvT5UeO3tMznlqPeHLHch546+Cu5f7NGRQZHy4qLFaLujoOXqmr1NxjQv01D803ENGto65vCJQtoyXkZDM6Hn1k+CVv+Xyydjo5BznHacqWaVeozrjxBSP3m2/IuyuqfJOcYXXlalrO6r+2cIJZs26bFnsKkmrOyLFYudqUJwlltllrXjInUzcjqHIjcFN1t85eTX6WeD21fVrNvBKDsid523pDRtyVguMXwb6m0HTp9WXQfcuaMMjdFyBgybKL0OtLqZi2VTsuRgs6YzpHcBTRN+3C11lIvGKjIoDTwULNwcdSZrVKwX1NETtr9IG9eBq2jb1eqI20/4+oxSP3m7eMjnPZPkmJ745QaWu6ov4zcwsl2ThBLpnQ+9NFW83dZfqXY14s1l7jSBGE55Nf0xG1Kk7OJDZU8ATv73V29KTqiJL+2i4+0++0NANrG21+TavaNkHujEps35L+/5OKjjblORzTZDhu33Ifcc6TkXCopn5WeAzl5zt0O4KaRgkomu5PT18rEUT8hy1FbeluI0BIDFRlcCTzUXhguPbGu6JBMZzcLqbQ7WzRre94FXUbfprQZDAaramWpbV09BkfnzZUgVKyP09JdJ0WHliupgXHE0fHKmvTpr0LVNMW20n5DUqRWBZa6ZpQGm64s5OntPB0TFoSsgamY+vU+VOLGw0PmwFS3aiidUVLzIJU/nI1ocqWMksPduX+UTn0vN8+51AH8r9/cxHROL5Vek9206qivlaO5euwGA1iM2nLUoVvrFZUZqMjkSuDhTuEidgF0SYp2qXpcSdqdTWim5fBa23kYDIDDyb3c7Ygodd6U5gWxG+fXNrPa+hmA/z56C4ICathN0W4iVTj54UYnZH8/g9P1aRyNXLNk6muwaFs+5v9248+Av4egqj1XkNQTtyvBphodUL1ROHt7WQUlNQ9SS4MAjs+l1D6CA/ywOafQpfPp7tw/Sqe+N09K5yTPuZI3B7VvjJDAGnb9k5Q2rYoFZ5N7Nzd3AwDs5+qx/YztqC2xfWpdq27CQEUBbz15SV0AG6d0t4rIlUxzLCftzpoWtFz7wXaUBHDjAnM0c6Uaa2ZInTcleUHu/CujPt0h+mRjedO0LWgGt2+MJ+5oam63lloTBxCv1TGNXDP8VXoL+DsI2Zp7wWqYuIAbkxr+Z0gbWU1dcs+FoxufK0GHu7+7ksLZ3YBGST5SY1/PZSSb+yW5Gmw6G2Zvu4Clbb86pSPb3Jn7R+nU91KT0onlOVcD4rZx9s3HrjStyunzY6tLUjTeHZwGP4MBlYJgN2rLcp96GBpvwkBFh5wN4zQ/EhhsP6n+fk08NRGQkjZZsaRVCtJzLJirWi2epkY6mDTOU+TO4Cr2ZCPWTDK5d3Nk/XWzWbjtONJiw8zLLDiaA8i20Fm265TVyDUAVn0NOmWtsUtjJYDIkECX84HSIMKVoMOVploTJYWzN5821djXom3HrTpPT+7dXDQYjgkLkrzepB6ObNP3XO9kNAoPwsXSq3jpm99d7oTtqANqZG3nc4bsOCbS+R3iU9+bF2EUSYdYnnM1IBatDclobv5tTPwAWd8l91q0+40ykh2mX09D4xmo6IizCeXE1u9RM8KV6nj7gRtP0I4oKXylqqL9DM4vZlMVrgDxDoGeJlYw9W/T0FybIfU0tSPvov16TX9VSUsV/FJPWdl/rVJru49teRetRgdZ9jUQG5gip/BUei7EbnxStUhygw5Xm1XkFs7efNpUY19iNQtv/HgYd9/c0C4Yfq53MhpFBNldb1KLI4qlL+uHQzBIBOdKbnZSkyya1l5yNGeIqXbEltTU90pHSLoTEIvlz/Cgmla1OQJu9OdSo5wS+43e+OEwnuudLDnqzdOrOCvBQEUn5EwoJ7Z+j5oRrtSF54nFqVzp8Jg10HqyNcNfBZPUsUs9IVUK4pNrKUm70ip4sYLpmV7NkVdYitKr1zDy0x12n7lYat/xT07BL9bPY+4vuaLpkhodJFUL9FxGstt5zVkQIRbAbpzSXXHQ4UpTrdzC2ZtPm85qWF0dJSIVDGf+tSK2ZX8OR53wpRbsk5qhS+mwc9tJMAXAKuAysSxDAPEp+x1Ny+DKCEl3+hnZ5s8uSdFWyxAIcC0gFcsPUr9/65vCJa8tdwIxtTFQ0QE51fKm6ns1I1yxTO2tDn6uFPSWQ1sNBjit5XHUlCUIwM5jF9G3tfod+2zZjt4yMRVUm3MKRT8XERwg2pZtWaMCOM8DUtX4JmJBoljHu+cykvF4l0SHxyqXVBDhqH+Ws4nf1OgAK6dwLjCW4bu9BXafNf0OanfE3XfCKLqvvScumYeYuzJKxN9gEF1N3cRUS/HB4DYOF9+T27Rp2qfSm51lmXS+pFx0ojwTR2uOAcD7g9vgrjTxBy+p397ZNA6O8rIaa705C37lzFDtKAB3FNB7u8O3FF0EKrNmzcLMmTNx+vRppKWl4YMPPkCHDh20TpbXOJpczLZaXq0I19EN1/R9UhO9iVF6Ubo67XhuYYnsFUudFaBK52R2pQpeTmDjaGVWqWmzLQMIsfWanH2/LbEC0RuFlFjfCFcKazX7izgbQSK1AvDk3s0lh167qsBYhhk/HrJ7fWy3JuahrIBro0ReH5Ai2rHTUqUA1K39d58kqckTxWo9bJuN3ncS8Dhiupk6W2zVzwAUFl9B48hgyWvKESWTRjqi1lpvzspEqVGatvnBnXuHKzWTatM8UFm0aBGefvppfPjhh+jYsSPeffdd9OrVC4cPH0a9evW0Tp5X7Dtp/8QEiFfLqzU/i1qLwwGuXZRKLxx39mE7bwEgPrmWs8JITsc+V/oxODoXUr/3pdJr5g61M344hPCgmk7nb3B0I5EqED1ZSNn+pmO7JcLP4Hz4qC1P9BcRO25HnS0BoFF4kLnvhFrpkKoVDA8OkN2XxpSnpfKS2LpbJo5GjTkqlzb8cc4uP0vVZChhm5dtCQLwxILdTtdjc7YP2+DUk/P4SB2bszQ7G6Vpmx/0UjviCs0DlbfffhujR4/G8OHDAQAffvghVqxYgXnz5mHKlCkap87zCoxlmPGD/ROTiVS1vDuZTM3F4dy5Sci9cNTYh+XCjGKTa7la82HZsc/2c0pqBxydC7E+JzN+VDadvZwbiTcLLrHfdNbaHLvt5KTNW/1FnI2KE2tGcTcdSmdItgzopPK0o7y39+Qlu/XDTDUZzq5By3zqyZvioPaNkdwgFP3/b7NdrajlNSHWfK6Ut+fxUXLenE17ILUoqy8FKCaaBipXr17Fjh07MHXqVPNrfn5+6NGjB7Zs2WK3fXl5OcrLy83/Lyoq8ko6PUnOHBtqF7qOqhi9Mc+FJTkXjhr7eL5vCwy/NV60AHC15sO2Y5/t51xZesGTbdneupHIISffv9q/Fe5oUd9p2rw1OkFywr2/OmiKNaO4mw5H/SacLTngyuy86Yl1cXea/ZICruQ5T94US65WOG26dbQem1xazOMj97w5atLVsuOrJ2gaqBQWFqKiogL169e3er1+/fo4dMi+liEzMxMvv/yyt5LnFXL6D6hd6DqrYvT0PBdKqbUPqQLA1ZoPsY59lp9Ts0+RJU+fD2+Qk+/Lr1XKDkS9MTpBLFAd1SUBwzv/vVCfJ9LhygzJ7gT3YvlCT0NVpdJjS430eXseHyXE9mM5O21VCVIAHTT9KDF16lQ8/fTT5v8XFRUhNjZWwxS5TyyzWc6x4alMLlXIKb3IvHFRenofrtZ8yBmF5YmaC28VhJ7krK8BALRz0vHRkrdqiJztx1PpkAoqpV5XO7DQW57zVrnp6nHrJT9WFQZBar1xL7h69SqCg4OxePFi9O/f3/z60KFDcenSJXzzzTcOP19UVISwsDAYjUbUqVPHw6n1rAJjmVVms/2/1ulRe3tvpEmJRduO2xVGckZruPo5NWidR9RgOobPtuTh+/2nza8PvKUR3nrgZu0SVgV4Im/qLc95q9zU23FXBUru35oGKgDQsWNHdOjQAR988AEAoLKyEo0bN8aECROcdqatSoEKac/VwoiFmDr25F/E9ryLaBcf4XTuCpKHeZP0Ssn9W/Omn6effhpDhw5Fu3bt0KFDB7z77rsoKSkxjwIi8hZX+2z4ak96vUmLZYCiNuZNqgo0D1QGDRqEc+fO4aWXXsLp06dx880348cff7TrYEtERETVj+ZNP+5g0w8REZHvUXL/9vNSmoiIiIgUY6BCREREusVAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLd0nwKfXeYJtUtKirSOCVEREQkl+m+LWdyfJ8OVC5fvgwAiI2N1TglREREpNTly5cRFhbmcBufXuunsrISp06dQmhoKAwGg9bJ8bqioiLExsYiPz+fax25gedRHTyP6uB5VAfPozo8dR4FQcDly5fRsGFD+Pk57oXi0zUqfn5+uOmmm7ROhubq1KnDC1EFPI/q4HlUB8+jOnge1eGJ8+isJsWEnWmJiIhItxioEBERkW4xUPFhgYGBmDZtGgIDA7VOik/jeVQHz6M6eB7VwfOoDj2cR5/uTEtERERVG2tUiIiISLcYqBAREZFuMVAhIiIi3WKgQkRERLrFQMUHbNiwAf369UPDhg1hMBiwbNkyq/cFQcBLL72EmJgYBAUFoUePHjhy5Ig2idUxZ+dx2LBhMBgMVn+9e/fWJrE6lZmZifbt2yM0NBT16tVD//79cfjwYattrly5gvHjx6Nu3bqoXbs2Bg4ciDNnzmiUYn2Scx67detmlx/HjBmjUYr1afbs2WjdurV5MrL09HT88MMP5veZF+Vxdh61zosMVHxASUkJ0tLSMGvWLNH333jjDbz//vv48MMP8euvvyIkJAS9evXClStXvJxSfXN2HgGgd+/eKCgoMP8tWLDAiynUv/Xr12P8+PHYunUrfvrpJ1y7dg09e/ZESUmJeZunnnoK3377Lb766iusX78ep06dwoABAzRMtf7IOY8AMHr0aKv8+MYbb2iUYn266aabkJWVhR07dmD79u24/fbbcc899+D3338HwLwol7PzCGicFwXyKQCEpUuXmv9fWVkpNGjQQJg5c6b5tUuXLgmBgYHCggULNEihb7A9j4IgCEOHDhXuueceTdLjq86ePSsAENavXy8Iwo28V7NmTeGrr74yb3Pw4EEBgLBlyxatkql7tudREASha9euwpNPPqldonxURESE8NFHHzEvusl0HgVB+7zIGhUfl5ubi9OnT6NHjx7m18LCwtCxY0ds2bJFw5T5pnXr1qFevXpo3rw5xo4di/Pnz2udJF0zGo0AgMjISADAjh07cO3aNav8mJycjMaNGzM/OmB7Hk2++OILREVFISUlBVOnTkVpaakWyfMJFRUVWLhwIUpKSpCens686CLb82iiZV706UUJCTh9+jQAoH79+lav169f3/weydO7d28MGDAACQkJyMnJwfPPP4+MjAxs2bIF/v7+WidPdyorKzFp0iR07twZKSkpAG7kx4CAAISHh1tty/woTew8AsCQIUMQFxeHhg0bYu/evXjuuedw+PBhLFmyRMPU6s++ffuQnp6OK1euoHbt2li6dClatmyJ3bt3My8qIHUeAe3zIgMVor8MHjzY/O/U1FS0bt0aiYmJWLduHe644w4NU6ZP48ePx/79+7Fx40atk+LTpM7jY489Zv53amoqYmJicMcddyAnJweJiYneTqZuNW/eHLt374bRaMTixYsxdOhQrF+/Xutk+Ryp89iyZUvN8yKbfnxcgwYNAMCuJ/uZM2fM75FrmjRpgqioKBw9elTrpOjOhAkT8N1332Ht2rW46aabzK83aNAAV69exaVLl6y2Z34UJ3UexXTs2BEAmB9tBAQEoGnTpmjbti0yMzORlpaG9957j3lRIanzKMbbeZGBio9LSEhAgwYN8PPPP5tfKyoqwq+//mrVvkjKnThxAufPn0dMTIzWSdENQRAwYcIELF26FGvWrEFCQoLV+23btkXNmjWt8uPhw4dx/Phx5kcLzs6jmN27dwMA86MTlZWVKC8vZ150k+k8ivF2XmTTjw8oLi62ilxzc3Oxe/duREZGonHjxpg0aRJeffVVNGvWDAkJCXjxxRfRsGFD9O/fX7tE65Cj8xgZGYmXX34ZAwcORIMGDZCTk4PJkyejadOm6NWrl4ap1pfx48dj/vz5+OabbxAaGmpu6w8LC0NQUBDCwsIwcuRIPP3004iMjESdOnXwxBNPID09Hf/4xz80Tr1+ODuPOTk5mD9/Pvr06YO6deti7969eOqpp9ClSxe0bt1a49Trx9SpU5GRkYHGjRvj8uXLmD9/PtatW4eVK1cyLyrg6DzqIi9qNt6IZFu7dq0AwO5v6NChgiDcGKL84osvCvXr1xcCAwOFO+64Qzh8+LC2idYhR+extLRU6NmzpxAdHS3UrFlTiIuLE0aPHi2cPn1a62Tritj5AyBkZ2ebtykrKxPGjRsnRERECMHBwcK9994rFBQUaJdoHXJ2Ho8fPy506dJFiIyMFAIDA4WmTZsKzz77rGA0GrVNuM6MGDFCiIuLEwICAoTo6GjhjjvuEFatWmV+n3lRHkfnUQ950SAIguCdkIiIiIhIGfZRISIiIt1ioEJERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQIfJxp0+fxhNPPIEmTZogMDAQsbGx6Nevn9UaJ5s3b0afPn0QERGBWrVqITU1FW+//TYqKirM2+Tl5WHkyJFISEhAUFAQEhMTMW3aNFy9etVqf3PnzkVaWhpq166N8PBwtGnTBpmZmeb3p0+fDoPBgN69e9uldebMmTAYDOjWrZusYzN9l8FgQI0aNRAfH4+nnnoKxcXFCs8SEfkqrvVD5MPy8vLQuXNnhIeHY+bMmUhNTcW1a9ewcuVKjB8/HocOHcLSpUvxwAMPYPjw4Vi7di3Cw8OxevVqTJ48GVu2bMGXX34Jg8GAQ4cOobKyEnPmzEHTpk2xf/9+jB49GiUlJXjzzTcBAPPmzcOkSZPw/vvvo2vXrigvL8fevXuxf/9+q3TFxMRg7dq1OHHihNWqwPPmzUPjxo0VHWOrVq2wevVqXL9+HZs2bcKIESNQWlqKOXPm2G179epVBAQEuHAmPUePaSLyKV6brJ+IVJeRkSE0atRIKC4utnvv4sWLQnFxsVC3bl1hwIABdu8vX75cACAsXLhQ8vvfeOMNISEhwfz/e+65Rxg2bJjDNE2bNk1IS0sT7rrrLuHVV181v75p0yYhKipKGDt2rNC1a1cZR/f3d1kaPXq00KBBA6v3586dK8THxwsGg0EQhBvHPnLkSCEqKkoIDQ0VunfvLuzevdv8Hbt37xa6desm1K5dWwgNDRVuueUWYdu2bYIgCEJeXp5w1113CeHh4UJwcLDQsmVLYcWKFYIgCEJ2drYQFhZmlZ6lS5cKlkWpq2kiInFs+iHyURcuXMCPP/6I8ePHIyQkxO798PBwrFq1CufPn8czzzxj936/fv2QlJSEBQsWSO7DaDQiMjLS/P8GDRpg69atOHbsmNP0jRgxAp988on5//PmzcNDDz3kdu1CUFCQVXPU0aNH8fXXX2PJkiXm5efvv/9+nD17Fj/88AN27NiBW265BXfccQcuXLgAAHjooYdw0003Ydu2bdixYwemTJmCmjVrArixsnF5eTk2bNiAffv2YcaMGahdu7aiNLqSJiISx6YfIh919OhRCIKA5ORkyW3++OMPAECLFi1E309OTjZvI/b9H3zwgbnZBwCmTZuGAQMGID4+HklJSUhPT0efPn1w3333wc/P+rnnrrvuwpgxY7Bhwwa0bdsWX375JTZu3Ih58+YpPVSzHTt2YP78+bj99tvNr129ehX/+9//EB0dDQDYuHEjfvvtN5w9exaBgYEAgDfffBPLli3D4sWL8dhjj+H48eN49tlnzeeuWbNm5u87fvw4Bg4ciNTUVABAkyZNFKfTlTQRkTgGKkQ+SlCw8LmSbQHg5MmT6N27N+6//36MHj3a/HpMTAy2bNmC/fv3Y8OGDdi8eTOGDh2Kjz76CD/++KNVsFKzZk08/PDDyM7Oxp9//omkpCS0bt1aUToAYN++fahduzYqKipw9epV9O3bF//5z3/M78fFxZkDAgDYs2cPiouLUbduXavvKSsrQ05ODgDg6aefxqhRo/DZZ5+hR48euP/++5GYmAgAmDhxIsaOHYtVq1ahR48eGDhwoOJ0u5ImIhLHQIXIRzVr1szcCVZKUlISAODgwYPo1KmT3fsHDx5Ey5YtrV47deoUunfvjk6dOuG///2v6PempKQgJSUF48aNw5gxY3Dbbbdh/fr16N69u9V2I0aMQMeOHbF//36MGDFC6SECAJo3b47ly5ejRo0aaNiwoV3TkW2zV3FxMWJiYrBu3Tq77woPDwdwYzTRkCFDsGLFCvzwww+YNm0aFi5ciHvvvRejRo1Cr169sGLFCqxatQqZmZl466238MQTT8DPz88u6Lt27ZrdflxJExGJYx8VIh8VGRmJXr16YdasWSgpKbF7/9KlS+jZsyciIyPx1ltv2b2/fPlyHDlyBA8++KD5tZMnT6Jbt25o27YtsrOz7ZpzxJgCHbE0tGrVCq1atcL+/fsxZMgQJYdnFhAQgKZNmyI+Pl5W/5ZbbrkFp0+fRo0aNdC0aVOrv6ioKPN2SUlJeOqpp7Bq1SoMGDAA2dnZ5vdiY2MxZswYLFmyBP/85z8xd+5cAEB0dDQuX75sdaymPihqpImI7DFQIfJhs2bNQkVFBTp06ICvv/4aR44cwcGDB/H+++8jPT0dISEhmDNnDr755hs89thj2Lt3L/Ly8vDxxx9j2LBhuO+++/DAAw8A+DtIady4Md58802cO3cOp0+fxunTp837Gzt2LF555RVs2rQJx44dw9atW/Hoo48iOjoa6enpomlcs2YNCgoKvFZz0KNHD6Snp6N///5YtWoV8vLysHnzZrzwwgvYvn07ysrKMGHCBKxbtw7Hjh3Dpk2bsG3bNnM/nkmTJmHlypXIzc3Fzp07sXbtWvN7HTt2RHBwMJ5//nnk5ORg/vz5Vh2GXU0TEUlj0w+RD2vSpAl27tyJ1157Df/85z9RUFCA6OhotG3bFrNnzwYA3HfffVi7di1ee+013Hbbbbhy5QqaNWuGF154AZMmTYLBYAAA/PTTTzh69CiOHj1qNfcJ8Hcflx49emDevHmYPXs2zp8/j6ioKKSnp+Pnn3+2639hIjYiyZMMBgO+//57vPDCCxg+fDjOnTuHBg0aoEuXLqhfvz78/f1x/vx5PProozhz5gyioqIwYMAAvPzyywCAiooKjB8/HidOnECdOnXQu3dvvPPOOwBu1GJ9/vnnePbZZzF37lzccccdmD59utPOsM7SRETSDILSXnZEREREXsKmHyIiItItBipEpJnatWtL/v3yyy9aJ4+IdIBNP0SkmaNHj0q+16hRIwQFBXkxNUSkRwxUiIiISLfY9ENERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt36f4Yf/NhtfB6xAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACE10lEQVR4nO3deVxU5f4H8M+AgoACIruyiSIqSG4p7qZXXFpMK00z98ols82lMrVFabmt17RN/d1bmllallqaawqau5JLSiAuoKIyyKIgPL8/cKZZzpmNGWaG+bxfL0rmHM4858yZc77nWb6PQgghQEREROTC3OxdACIiIiJ7Y0BERERELo8BEREREbk8BkRERETk8hgQERERkctjQEREREQujwERERERuTwGREREROTyGBARERGRy2NAREROY968eVAoFCatq1AoMG/ePJuWp1evXujVq5fDbo+ITMeAiIjMtnz5cigUCvVPnTp10LhxY4wZMwYXLlywd/EcTnR0tNbxCg4ORvfu3bF27VqrbL+kpATz5s3D9u3brbI9IlfEgIiILPbaa6/hf//7H5YsWYIBAwbgq6++Qs+ePXHz5k2bvN8rr7yC0tJSm2zb1u666y7873//w//+9z+88MILuHjxIoYMGYIlS5ZUe9slJSWYP38+AyKiaqhj7wIQkfMaMGAAOnToAACYMGECAgMD8dZbb2HdunV45JFHrP5+derUQZ06znnZaty4MR577DH1748//jiaNWuG999/H0899ZQdS0ZEAGuIiMiKunfvDgDIzMzUev3kyZN46KGHEBAQgHr16qFDhw5Yt26d1jrl5eWYP38+mjdvjnr16qFRo0bo1q0bNm/erF5Hqg/RrVu38OyzzyIoKAgNGjTA/fffj/Pnz+uVbcyYMYiOjtZ7XWqby5Ytwz333IPg4GB4enqiVatWWLx4sVnHwpjQ0FC0bNkSWVlZBte7fPkyxo8fj5CQENSrVw9JSUn4v//7P/Xy7OxsBAUFAQDmz5+vbpazdf8potrGOR+1iMghZWdnAwAaNmyofu3PP/9E165d0bhxY8yaNQs+Pj749ttvMXjwYHz//fd48MEHAVQFJgsXLsSECRNw9913o7CwEPv378fBgwfxr3/9S/Y9J0yYgK+++gojRoxAly5dsHXrVgwaNKha+7F48WK0bt0a999/P+rUqYOffvoJkydPRmVlJaZMmVKtbauUl5fj3LlzaNSokew6paWl6NWrF86cOYOpU6ciJiYGq1evxpgxY1BQUIBnnnkGQUFBWLx4MSZNmoQHH3wQQ4YMAQC0adPGKuUkchmCiMhMy5YtEwDEb7/9Jq5cuSLOnTsnvvvuOxEUFCQ8PT3FuXPn1Ov26dNHJCYmips3b6pfq6ysFF26dBHNmzdXv5aUlCQGDRpk8H3nzp0rNC9bhw8fFgDE5MmTtdYbMWKEACDmzp2rfm306NEiKirK6DaFEKKkpERvvZSUFNG0aVOt13r27Cl69uxpsMxCCBEVFSX69esnrly5Iq5cuSKOHDkihg8fLgCIp59+WnZ7H3zwgQAgvvrqK/VrZWVlIjk5WdSvX18UFhYKIYS4cuWK3v4SkXnYZEZEFuvbty+CgoIQERGBhx56CD4+Pli3bh2aNGkCALh27Rq2bt2KRx55BDdu3EB+fj7y8/Nx9epVpKSk4PTp0+pRaf7+/vjzzz9x+vRpk99/w4YNAIBp06ZpvT59+vRq7ZeXl5f630qlEvn5+ejZsyf+/vtvKJVKi7a5adMmBAUFISgoCElJSVi9ejVGjRqFt956S/ZvNmzYgNDQUDz66KPq1+rWrYtp06ahqKgIO3bssKgsRKSPTWZEZLFFixYhLi4OSqUSS5cuxc6dO+Hp6alefubMGQghMGfOHMyZM0dyG5cvX0bjxo3x2muv4YEHHkBcXBwSEhLQv39/jBo1ymDTz9mzZ+Hm5obY2Fit11u0aFGt/dq9ezfmzp2L9PR0lJSUaC1TKpXw8/Mze5udOnXCG2+8AYVCAW9vb7Rs2RL+/v4G/+bs2bNo3rw53Ny0n11btmypXk5E1sGAiIgsdvfdd6tHmQ0ePBjdunXDiBEjcOrUKdSvXx+VlZUAgBdeeAEpKSmS22jWrBkAoEePHsjMzMSPP/6ITZs24YsvvsD777+PJUuWYMKECdUuq1xCx4qKCq3fMzMz0adPH8THx+O9995DREQEPDw8sGHDBrz//vvqfTJXYGAg+vbta9HfEpHtMSAiIqtwd3fHwoUL0bt3b/znP//BrFmz0LRpUwBVzTymBAMBAQEYO3Ysxo4di6KiIvTo0QPz5s2TDYiioqJQWVmJzMxMrVqhU6dO6a3bsGFDFBQU6L2uW8vy008/4datW1i3bh0iIyPVr2/bts1o+a0tKioKR48eRWVlpVYt0cmTJ9XLAflgj4hMxz5ERGQ1vXr1wt13340PPvgAN2/eRHBwMHr16oVPP/0Uubm5eutfuXJF/e+rV69qLatfvz6aNWuGW7duyb7fgAEDAAAfffSR1usffPCB3rqxsbFQKpU4evSo+rXc3Fy9bNHu7u4AACGE+jWlUolly5bJlsNWBg4ciLy8PKxatUr92u3bt/Hxxx+jfv366NmzJwDA29sbACQDPiIyDWuIiMiqXnzxRTz88MNYvnw5nnrqKSxatAjdunVDYmIiJk6ciKZNm+LSpUtIT0/H+fPnceTIEQBAq1at0KtXL7Rv3x4BAQHYv38/vvvuO0ydOlX2ve666y48+uij+OSTT6BUKtGlSxds2bIFZ86c0Vt3+PDhmDlzJh588EFMmzYNJSUlWLx4MeLi4nDw4EH1ev369YOHhwfuu+8+PPnkkygqKsLnn3+O4OBgyaDOlp544gl8+umnGDNmDA4cOIDo6Gh899132L17Nz744AM0aNAAQFUn8FatWmHVqlWIi4tDQEAAEhISkJCQUKPlJXJq9h7mRkTORzXsft++fXrLKioqRGxsrIiNjRW3b98WQgiRmZkpHn/8cREaGirq1q0rGjduLO69917x3Xffqf/ujTfeEHfffbfw9/cXXl5eIj4+Xrz55puirKxMvY7UEPnS0lIxbdo00ahRI+Hj4yPuu+8+ce7cOclh6Js2bRIJCQnCw8NDtGjRQnz11VeS21y3bp1o06aNqFevnoiOjhZvvfWWWLp0qQAgsrKy1OuZM+zeWEoBue1dunRJjB07VgQGBgoPDw+RmJgoli1bpve3aWlpon379sLDw4ND8IksoBBCo16YiIiIyAWxDxERERG5PAZERERE5PIYEBEREZHLY0BERERELo8BEREREbk8uwZECxcuRMeOHdGgQQMEBwdj8ODBehlme/XqBYVCofXz1FNPaa2Tk5ODQYMGwdvbG8HBwXjxxRdx+/ZtrXW2b9+Odu3awdPTE82aNcPy5cttvXtERETkJOyamHHHjh2YMmUKOnbsiNu3b+Oll15Cv379cPz4cfj4+KjXmzhxIl577TX176qsrEDVPESDBg1CaGgo0tLSkJubi8cffxx169bFggULAABZWVkYNGgQnnrqKXz99dfYsmULJkyYgLCwMNn5lXRVVlbi4sWLaNCgAdPkExEROQkhBG7cuIHw8HC9iZJ1V3QYly9fFgDEjh071K/17NlTPPPMM7J/s2HDBuHm5iby8vLUry1evFj4+vqKW7duCSGEmDFjhmjdurXW3w0bNkykpKSYXDZVojf+8Ic//OEPf/jjfD/nzp0zeJ93qKk7lEolgKoJHjV9/fXX+OqrrxAaGor77rsPc+bMUdcSpaenIzExESEhIer1U1JSMGnSJPz5559o27Yt0tPT9SaWTElJwfTp02XLcuvWLa05lMSd/JXnzp2Dr69vtfaTiIiIakZhYSEiIiLUU93IcZiAqLKyEtOnT0fXrl215t8ZMWIEoqKiEB4ejqNHj2LmzJk4deoU1qxZAwDIy8vTCoYAqH/Py8szuE5hYSFKS0vh5eWlV56FCxdi/vz5eq/7+voyICIiInIyxrq7OExANGXKFGRkZGDXrl1arz/xxBPqfycmJiIsLAx9+vRBZmYmYmNjbVae2bNn47nnnlP/roowiYiIqPZxiGH3U6dOxc8//4xt27ahSZMmBtft1KkTAKhnsw4NDcWlS5e01lH9HhoaanAdX19fydohAPD09FTXBrFWiIiIqHaza0AkhMDUqVOxdu1abN26FTExMUb/5vDhwwCAsLAwAEBycjKOHTuGy5cvq9fZvHkzfH190apVK/U6W7Zs0drO5s2bkZycbKU9ISIiImdm19nuJ0+ejBUrVuDHH39EixYt1K/7+fnBy8sLmZmZWLFiBQYOHIhGjRrh6NGjePbZZ9GkSRPs2LEDQNWw+7vuugvh4eF4++23kZeXh1GjRmHChAlaw+4TEhIwZcoUjBs3Dlu3bsW0adOwfv16k4fdFxYWws/PD0qlkrVFRFRjKioqUF5ebu9iEDmsunXrwt3dXXa5qfdvuwZEch2cli1bhjFjxuDcuXN47LHHkJGRgeLiYkRERODBBx/EK6+8orVTZ8+exaRJk7B9+3b4+Phg9OjRSE1NRZ06/3SR2r59O5599lkcP34cTZo0wZw5czBmzBiTy8qAiIhqkhACeXl5KCgosHdRiByev78/QkNDJeMKpwiInAkDIiKqSbm5uSgoKEBwcDC8vb2ZEJZIghACJSUluHz5Mvz9/dXdaTSZev92mFFmRERUpaKiQh0MNWrUyN7FIXJoqsFRly9fRnBwsMHmM0McYpQZERH9Q9VnSHOaIiKSp/quVKe/HQMiIiIHxWYyItNY47vCgIiIiIhcHgMiIiIi0rN9+3YoFIpqj3SMjo7GBx98YJUy2RIDIgeRqyxFWmY+cpWl9i4KEVG15OXl4emnn0bTpk3h6emJiIgI3HfffVoJctPS0jBw4EA0bNgQ9erVQ2JiIt577z1UVFSo18nOzsb48eMRExMDLy8vxMbGYu7cuSgrK9N6v88//xxJSUmoX78+/P390bZtWyxcuFC9fN68eVAoFOjfv79eWd955x0oFAr06tXL5P0rLCzEyy+/jPj4eNSrVw+hoaHo27cv1qxZA82B23/++SceeeQRBAUFwdPTE3FxcXj11VdRUlKiXufatWt4+umn0aJFC3h5eSEyMhLTpk1TT3ZuTHZ2NhQKheTPnj17TN6nXr16GZzw3BVwlJkDWLUvB7PXHEOlANwUwMIhiRjWMdLexSIiMlt2dja6du0Kf39/vPPOO0hMTER5eTl+/fVXTJkyBSdPnsTatWvxyCOPYOzYsdi2bRv8/f3x22+/YcaMGUhPT8e3334LhUKBkydPorKyEp9++imaNWuGjIwMTJw4EcXFxXj33XcBAEuXLsX06dPx0UcfoWfPnrh16xaOHj2KjIwMrXKFhYVh27ZtOH/+vNYUUUuXLkVkpOnX24KCAnTr1g1KpRJvvPEGOnbsiDp16mDHjh2YMWMG7rnnHvj7+2PPnj3o27cv+vbti/Xr1yMkJAR//PEHnn/+eWzZsgXbtm2Dh4cHLl68iIsXL+Ldd99Fq1atcPbsWTz11FO4ePEivvvuO5PL9dtvv6F169Zar3GEopkEmUSpVAoAQqlUWnW7FwtKRMysn0XUzH9+ms5aLy4WlFj1fYjIeZSWlorjx4+L0tJSexfFbAMGDBCNGzcWRUVFesuuX78uioqKRKNGjcSQIUP0lq9bt04AEN98843s9t9++20RExOj/v2BBx4QY8aMMVimuXPniqSkJHHvvfeKN954Q/367t27RWBgoJg0aZLo2bOnCXsnxKRJk4SPj4+4cOGC3rIbN26I8vJyUVlZKVq1aiU6dOggKioqtNY5fPiwUCgUIjU1VfY9vv32W+Hh4SHKy8uNlicrK0sAEIcOHZJdR7X///3vf0VUVJTw9fUVw4YNE4WFhUIIIUaPHi0AaP1kZWWJbdu2CQDit99+E+3btxdeXl4iOTlZnDx5Ur3tM2fOiPvvv18EBwcLHx8f0aFDB7F582at94+KihLvv/+++ncA4pNPPhH9+/cX9erVEzExMWL16tXq5b179xZTpkzR2sbly5dF3bp1xW+//Sa5j4a+M6bev9lkZmdZ+cWo1EmNWSEEsvNLpP+AiMgMNdkcf+3aNfzyyy+YMmUKfHx89Jb7+/tj06ZNuHr1Kl544QW95ffddx/i4uKwcuVK2fdQKpUICAhQ/x4aGoo9e/bg7NmzRss3btw4LF++XP370qVLMXLkSHh4eBj9WwCorKzEN998g5EjRyI8PFxvef369VGnTh0cPnwYx48fx3PPPQc3N+3bbFJSEvr27Wt0H319fbVmW6iuzMxM/PDDD/j555/x888/Y8eOHUhNTQUAfPjhh0hOTsbEiRORm5uL3NxcREREqP/25Zdfxr///W/s378fderUwbhx49TLioqKMHDgQGzZsgWHDh1C//79cd999yEnJ8dgeebMmYOhQ4fiyJEjGDlyJIYPH44TJ04AACZMmIAVK1bg1q1b6vW/+uorNG7cGPfcc4/VjokuBkR2FhPoAzed0YLuCgWiA5l/hIiqZ9W+HHRN3YoRn+9F19StWLXP8E2qus6cOQMhBOLj42XX+euvvwAALVu2lFweHx+vXkdq+x9//DGefPJJ9Wtz586Fv78/oqOj0aJFC4wZMwbffvstKisr9f7+3nvvRWFhIXbu3Ini4mJ8++23Wjd3Y/Lz83H9+nWD+wcY38eWLVvK7mN+fj5ef/11PPHEEyaXCwC6dOmC+vXra/1oqqysxPLly5GQkIDu3btj1KhR6j5dfn5+8PDwgLe3N0JDQxEaGqqV3PDNN99Ez5490apVK8yaNQtpaWm4efMmgKoA78knn0RCQgKaN2+O119/HbGxsVi3bp3B8j788MOYMGEC4uLi8Prrr6NDhw74+OOPAQBDhgwBAPz444/q9ZcvX44xY8bYNBUFAyI7C/PzwsIhiXC/8yG7KxRYMCQBYX5edi4ZETmzXGWpum8iAFQK4KU1GTatKRJmzARlzroAcOHCBfTv3x8PP/wwJk6cqH49LCwM6enpOHbsGJ555hncvn0bo0ePRv/+/fWCorp16+Kxxx7DsmXLsHr1asTFxaFNmzY2K7O56xcWFmLQoEFo1aoV5s2bZ9bfrlq1CocPH9b60RQdHY0GDRqofw8LC8Ply5dN2rbmMVJNjaH626KiIrzwwgto2bIl/P39Ub9+fZw4ccJoDVFycrLe76oaonr16mHUqFFYunQpAODgwYPIyMgwa/5RS7BTtQMY1jESPeKCkJ1fguhAbwZDRFRthprjbXWNad68uboztJy4uDgAwIkTJ9ClSxe95SdOnECrVq20Xrt48SJ69+6NLl264LPPPpPcbkJCAhISEjB58mQ89dRT6N69O3bs2IHevXtrrTdu3Dh06tQJGRkZZtUOAUBQUBD8/f0N7h+gvY9t27bVW37ixAn1Oio3btxA//790aBBA6xduxZ169Y1q2wRERFo1qyZ7HLd7SkUCslaNGN/q6qhUf3tCy+8gM2bN+Pdd99Fs2bN4OXlhYceekhvJKC5JkyYgLvuugvnz5/HsmXLcM899yAqKqpa2zSGNUQOIszPC8mxjRgMEZFV2KM5PiAgACkpKVi0aBGKi4v1lhcUFKBfv34ICAjAv//9b73l69atw+nTp/Hoo4+qX7tw4QJ69eqF9u3bY9myZXp9cqSoAiqpMrRu3RqtW7dGRkYGRowYYc7uwc3NDcOHD8fXX3+Nixcv6i0vKirC7du3cddddyE+Ph7vv/++XtBx5MgR/Pbbb1r7WFhYiH79+sHDwwPr1q1DvXr1zCqXNXh4eGilPDDV7t27MWbMGDz44INITExEaGgosrOzjf6dbkqAPXv2aDUxJiYmokOHDvj888+xYsUKs4NXSzAgIiKqhezVHL9o0SJUVFTg7rvvxvfff4/Tp0/jxIkT+Oijj5CcnAwfHx98+umn+PHHH/HEE0/g6NGjyM7OxpdffokxY8bgoYcewiOPPALgn2AoMjIS7777Lq5cuYK8vDzk5eWp32/SpEl4/fXXsXv3bpw9exZ79uzB448/jqCgIL1mGZWtW7ciNzcX/v7+Zu/fm2++iYiICHTq1An//e9/cfz4cZw+fRpLly5F27ZtUVRUBIVCgS+//BLHjx/H0KFD8ccffyAnJwerV6/Gfffdh+TkZHXOH1UwVFxcjC+//BKFhYXqfTQnQLl69ar671Q/qn4+poiOjsbevXuRnZ2N/Px8k2uPmjdvjjVr1uDw4cM4cuQIRowYYdLfrl69GkuXLsVff/2FuXPn4o8//sDUqVO11pkwYQJSU1MhhMCDDz5o8r5YzOAYNFKz1bB7IiJd1hx2f7GgRKSdya/RVB4XL14UU6ZMEVFRUcLDw0M0btxY3H///WLbtm3qdXbu3ClSUlKEr6+v8PDwEK1btxbvvvuuuH37tnqdZcuW6Q0HV/2ofPfdd2LgwIEiLCxMeHh4iPDwcDF06FBx9OhR9TqqYedynnnmGZOH3QshREFBgZg1a5Zo3ry58PDwECEhIaJv375i7dq1orKyUr3e0aNHxdChQ0VAQICoW7euiI2NFa+88oooLi5Wr6Ma2i71k5WVZbQsqmH3Uj8rV66U3f/3339fREVFqX8/deqU6Ny5s/Dy8tIbdn/9+nX1eocOHdIqW1ZWlujdu7fw8vISERER4j//+Y/o2bOneOaZZ9R/IzXsftGiReJf//qX8PT0FNHR0WLVqlV6+3bjxg3h7e0tJk+ebPQ4WGPYveJO4ciIwsJC+Pn5qYdDEhHZys2bN5GVlYWYmBi7NJ8Q2ZJCocDatWsxePBgg+tlZ2cjNjYW+/btQ7t27Qyua+g7Y+r9m52qiYiIyGGUl5fj6tWreOWVV9C5c2ejwZC1sA8RERHRHbq5fDR/fv/99xovz1NPPSVbnqeeeqrGy1MTdu/ejbCwMOzbtw9LliypsfdlDREREdEduvl7NDVu3LjmCnLHa6+9JpnVG4DTdt8w1lOnV69eZudwsgYGRERERHcYyuVjD8HBwQgODrZ3MVwCm8yIiIjI5TEgIiJyUKbmgiFyddb4rrDJjIjIwXh4eMDNzQ0XL15EUFAQPDw8bDqpJZGzEkKgrKwMV65cgZubGzw8PCzeFgMiIiIH4+bmhpiYGOTm5kpOEUFE2ry9vREZGWnS1C5yGBARETkgDw8PREZG4vbt2xbNMUXkKtzd3VGnTp1q16IyICIiclAKhQJ169Y1e+ZzIjIfO1UTERGRy2NARERERC6PARERERG5PAZERERE5PIYEBEREZHLY0BERERELo8BEREREbk8BkRERETk8hgQERERkctjQEREREQujwERERERuTwGREREROTyGBARERGRy2NARERERC6PARERERG5PAZERERE5PIYEBEREZHLY0BERERELo8BEREREbk8BkRERETk8hgQOYhcZSnSMvORqyy1d1GIiIhcTh17F4CAVftyMHvNMVQKwE0BLBySiGEdI+1dLCIiIpfBGiI7y1WWqoMhAKgUwEtrMlhTREREVIMYENlZVn6xOhhSqRAC2fkl9ikQERGRC2JAZGcxgT5wU2i/5q5QIDrQ2z4FIiIickEMiOwszM8LC4ckwl1RFRW5KxRYMCQBYX5edi4ZERGR62CnagcwrGMkesQFITu/BNGB3gyGiIiIahgDIgcR5ufFQIiIiMhO2GRGRERELo8BEREREbk8BkRERETk8hgQERERkctjQEREREQuz64B0cKFC9GxY0c0aNAAwcHBGDx4ME6dOqW1zs2bNzFlyhQ0atQI9evXx9ChQ3Hp0iWtdXJycjBo0CB4e3sjODgYL774Im7fvq21zvbt29GuXTt4enqiWbNmWL58ua13j4iIiJyEXQOiHTt2YMqUKdizZw82b96M8vJy9OvXD8XFxep1nn32Wfz0009YvXo1duzYgYsXL2LIkCHq5RUVFRg0aBDKysqQlpaG//u//8Py5cvx6quvqtfJysrCoEGD0Lt3bxw+fBjTp0/HhAkT8Ouvv9bo/hIREZFjUgghhPHVasaVK1cQHByMHTt2oEePHlAqlQgKCsKKFSvw0EMPAQBOnjyJli1bIj09HZ07d8bGjRtx77334uLFiwgJCQEALFmyBDNnzsSVK1fg4eGBmTNnYv369cjIyFC/1/Dhw1FQUIBffvnFpLIVFhbCz88PSqUSvr6+1t95IiIisjpT798O1YdIqVQCAAICAgAABw4cQHl5Ofr27ateJz4+HpGRkUhPTwcApKenIzExUR0MAUBKSgoKCwvx559/qtfR3IZqHdU2pNy6dQuFhYVaP0RERFQ7OUxAVFlZienTp6Nr165ISEgAAOTl5cHDwwP+/v5a64aEhCAvL0+9jmYwpFquWmZoncLCQpSWlkqWZ+HChfDz81P/REREVHsfiYiIyDE5TEA0ZcoUZGRk4JtvvrF3UQAAs2fPhlKpVP+cO3fO3kUiIiIiG3GIucymTp2Kn3/+GTt37kSTJk3Ur4eGhqKsrAwFBQVatUSXLl1CaGioep0//vhDa3uqUWia6+iOTLt06RJ8fX3h5SU9f5inpyc8PT2rvW9ERETk+OxaQySEwNSpU7F27Vps3boVMTExWsvbt2+PunXrYsuWLerXTp06hZycHCQnJwMAkpOTcezYMVy+fFm9zubNm+Hr64tWrVqp19Hchmod1TaIiIjItdl1lNnkyZOxYsUK/Pjjj2jRooX6dT8/P3XNzaRJk7BhwwYsX74cvr6+ePrppwEAaWlpAKqG3d91110IDw/H22+/jby8PIwaNQoTJkzAggULAFQNu09ISMCUKVMwbtw4bN26FdOmTcP69euRkpJiUlk5yoyIiMj5mHr/tmtApFAoJF9ftmwZxowZA6AqMePzzz+PlStX4tatW0hJScEnn3yibg4DgLNnz2LSpEnYvn07fHx8MHr0aKSmpqJOnX9aBLdv345nn30Wx48fR5MmTTBnzhz1e5iCAREREZHzcYqAyJkwICIiInI+TpmHiIiIiMgeGBARERGRy2NARERERC6PAZGTyFWWIi0zH7lK6czaREREZDmHSMxIhq3al4PZa46hUgBuCmDhkEQM6xhp72IRERHVGqwhcnC5ylJ1MAQAlQJ4aU0Ga4qIiIisiAGRg8vKL1YHQyoVQiA7v8Q+BSIiIqqFGBA5uJhAH7jp5K90VygQHehtnwIRERHVQgyIHFyYnxcWDkmE+52s3u4KBRYMSUCYn/SktERERGQ+dqp2AsM6RqJHXBCy80sQHejNYIiIiMjKGBA5iTA/LwZCRERENsImMyIiInJ5DIiIiIjI5TEgIiIiIpfHgIiIiIhcHgMiIiIicnkMiIiIiMjlMSAiIiIil8eAiIiIiFweAyIiIiJyeQyIiIiIyOUxICIiIiKXx4CIiIiIXB4DIiIiInJ5DIiIiIjI5TEgIiIiIpfHgIiIiIhcHgMiIiIicnkMiIiIiMjlMSAiIiIil8eAiIiIiFyeRQHRtm3brF0OIiIiIruxKCDq378/YmNj8cYbb+DcuXPWLhMRERFRjbIoILpw4QKmTp2K7777Dk2bNkVKSgq+/fZblJWVWbt8RERERDZnUUAUGBiIZ599FocPH8bevXsRFxeHyZMnIzw8HNOmTcORI0esXU4iIiIim6l2p+p27dph9uzZmDp1KoqKirB06VK0b98e3bt3x59//mmNMhIRERHZlMUBUXl5Ob777jsMHDgQUVFR+PXXX/Gf//wHly5dwpkzZxAVFYWHH37YmmUlIiIisgmFEEKY+0dPP/00Vq5cCSEERo0ahQkTJiAhIUFrnby8PISHh6OystJqhbWnwsJC+Pn5QalUwtfX197FISIiIhOYev+uY8nGjx8/jo8//hhDhgyBp6en5DqBgYEcnk9EREROwaIaIlfEGiIiIiLnY9MaIgA4deoUPv74Y5w4cQIA0LJlSzz99NNo0aKFpZskIiIisguLOlV///33SEhIwIEDB5CUlISkpCQcPHgQCQkJ+P77761dRiIiIiKbsqjJLDY2FiNHjsRrr72m9frcuXPx1VdfITMz02oFdBRsMiMiInI+pt6/Laohys3NxeOPP673+mOPPYbc3FxLNklERERkNxYFRL169cLvv/+u9/quXbvQvXv3ahfKleQqS5GWmY9cZam9i0JEROSyLOpUff/992PmzJk4cOAAOnfuDADYs2cPVq9ejfnz52PdunVa65K0VftyMHvNMVQKwE0BLBySiGEdI+1dLCIiIpdjUR8iNzfTKpYUCgUqKirMLpQjsnYfolxlKbqmbkWlxtF3Vyiwa1ZvhPl5VXv7REREZONh97Ul+7Q9ZeUXawVDAFAhBLLzSxgQERER1bBqT+5KlokJ9IGbQvs1d4UC0YHe9ikQERGRCzO5huijjz4yeaPTpk2zqDCuJMzPCwuHJOKlNRmoEALuCgUWDElg7RAREZEdmNyHKCYmxrQNKhT4+++/q1UoR2SrPES5ylJk55cgOtCbwRAREZGVWb0PUVZWllUKRtrC/LwYCBEREdkZ+xARERGRy7N4ctfz589j3bp1yMnJQVlZmday9957r9oFIyIiIqopFgVEW7Zswf3334+mTZvi5MmTSEhIQHZ2NoQQaNeunbXLSERERGRTFjWZzZ49Gy+88AKOHTuGevXq4fvvv8e5c+fQs2dPPPzww9YuIxEREZFNWRQQnThxQj25a506dVBaWor69evjtddew1tvvWXVAhIRERHZmkUBkY+Pj7rfUFhYGDIzM9XL8vPzrVMyIiIiohpiUR+izp07Y9euXWjZsiUGDhyI559/HseOHcOaNWvUk70SEREROQuLaojee+89dOrUCQAwf/589OnTB6tWrUJ0dDS+/PJLk7ezc+dO3HfffQgPD4dCocAPP/ygtXzMmDFQKBRaP/3799da59q1axg5ciR8fX3h7++P8ePHo6ioSGudo0ePonv37qhXrx4iIiLw9ttvW7LbtUaushRpmfnIVZbauyhEREQOwaIaoqZNm6r/7ePjgyVLllj05sXFxUhKSsK4ceMwZMgQyXX69++PZcuWqX/39PTUWj5y5Ejk5uZi8+bNKC8vx9ixY/HEE09gxYoVAKoyVPbr1w99+/bFkiVLcOzYMYwbNw7+/v544oknLCq3M1u1Lwez1xxDpQDcFMDCIYkY1jHS3sUiIiKyK4vzEAFAWVkZLl++jMrKSq3XIyNNu8EOGDAAAwYMMLiOp6cnQkNDJZedOHECv/zyC/bt24cOHToAAD7++GMMHDgQ7777LsLDw/H111+jrKwMS5cuhYeHB1q3bo3Dhw/jvffec7mAKFdZqg6GAKBSAC+tyUCPuCBmyyYiIpdmUZPZX3/9he7du8PLywtRUVGIiYlBTEwMoqOjTZ7zzFTbt29HcHAwWrRogUmTJuHq1avqZenp6fD391cHQwDQt29fuLm5Ye/evep1evToAQ8PD/U6KSkpOHXqFK5fv27Vsjq6rPxidTCkUiEEsvNL7FMgIiIiB2FRDdHYsWNRp04d/PzzzwgLC4NCobB2uQBUNZcNGTIEMTExyMzMxEsvvYQBAwYgPT0d7u7uyMvLQ3BwsNbf1KlTBwEBAcjLywMA5OXl6QVpISEh6mUNGzaUfO9bt27h1q1b6t8LCwutuWt2ERPoAzcFtIIid4UC0YHe9isUERGRA7AoIDp8+DAOHDiA+Ph4a5dHy/Dhw9X/TkxMRJs2bRAbG4vt27ejT58+Nn3vhQsXYv78+TZ9j5oW5ueFhUMS8dKaDFQIAXeFAguGJLC5jIiIXJ5FAVGrVq3skm+oadOmCAwMxJkzZ9CnTx+Ehobi8uXLWuvcvn0b165dU/c7Cg0NxaVLl7TWUf0u1zcJqMrG/dxzz6l/LywsREREhLV2xW6GdYxEj7ggZOeXIDrQm8EQERERzOhDVFhYqP556623MGPGDGzfvh1Xr17VWmbLpqXz58/j6tWrCAsLAwAkJyejoKAABw4cUK+zdetWVFZWqtMCJCcnY+fOnSgvL1evs3nzZrRo0UK2uQyo6szt6+ur9VNbhPl5ITm2EYMhIiKiOxRCCGF8NcDNzU2rr5AQQq/vkOq1iooKk968qKgIZ86cAQC0bdsW7733Hnr37o2AgAAEBARg/vz5GDp0KEJDQ5GZmYkZM2bgxo0bOHbsmHr4/YABA3Dp0iUsWbJEPey+Q4cO6mH3SqUSLVq0QL9+/TBz5kxkZGRg3LhxeP/9980aZVZYWAg/Pz8olUqHCY5ylaXIyi9GTKCP0eDGnHWJiIhqC1Pv3yYHRDt27DD5zXv27GnSetu3b0fv3r31Xh89ejQWL16MwYMH49ChQygoKEB4eDj69euH119/Xd0pGqhKzDh16lT89NNPcHNzw9ChQ/HRRx+hfv366nWOHj2KKVOmYN++fQgMDMTTTz+NmTNnmrw/gOMFRObkE2LuISIiclVWD4g05eTkICIiQrKG6Ny5cybnIXImjhQQ5SpL0TV1q95osV2zeuvV/pizLhERUW1j6v3bojxEMTExuHLlit7r165ds3oeItJnTj4h5h4iIiIyzqKASKr/EFDVJ6hevXrVLhQZpsonpEkun5A56xIREbkqs4bdq4ahKxQKzJkzB97e/9xUKyoqsHfvXtx1111WLSDpMyefEHMPERERGWdWQHTo0CEAVTVEx44d05oOw8PDA0lJSXjhhResW0KSZE4+IeYeIiIiMsyiTtVjx47Fhx9+aPfOxTXJkTpVExERkWlMvX9blKl62bJlFheMiIiIyNFYFBAVFxcjNTUVW7ZsweXLl1FZWam1/O+//7ZK4YiIiIhqgkUB0YQJE7Bjxw6MGjXKprPdExEREdUEiwKijRs3Yv369ejatau1y0Mm4DQcRERE1mVRQNSwYUMEBARYuyxkAk7DQUREZH0WJWZ8/fXX8eqrr6KkhNmOa1KuslQdDAFApQBeWpOBXGWpfQtGRETk5CyqIfr3v/+NzMxMhISEIDo6GnXr1tVafvDgQasUjrQZmoaDTWdERESWsyggGjx4sJWLQaZQTcOhO1Erp+EgIiKqHosSM7oiR0nMuGpfjt40HOxDREREJM0miRn/+OMPtG/fHu7u7pLLb926hR9//BGPPPKIeaUlk3EaDiIiIuszq1N1cnIyrl69qv7d19dXKwljQUEBHn30UeuVjiSF+XkhObYRgyEiIiIrMSsg0m1dk2ptYwscERERORuLht0bwqzVNStXWYq0zHwOvSciIqoGi0aZkWNgkkYiIiLrMDsgOn78OPLy8gBUNY+dPHkSRUVFAID8/Hzrlo5kySVp7BEXxL5FREREZjI7IOrTp49WP6F7770XQFVTmRCCTWY1hEkaiYiIrMesgCgrK8tW5SAzMUkjERGR9ZgVEEVFRZm18cmTJ+O1115DYGCgWX9HxoX5eWHhkES9JI2sHSIiIjKfTTNV+/r64vDhw2jatKmt3qLGOEqmal25ylImaSQiIpJhk0zV5mJOItsL8/NiIERERFRNVs9DRERERORsGBARERGRy2NARERERC6PARERERG5PJsGRI899phDjcgiIiIikmJRQFRZWSn7ek5Ojvr3xYsXMwcREREROTyzAqLCwkI88sgj8PHxQUhICF599VVUVFSol1+5cgUxMTFWLyRZJldZirTMfOQqS+1dFCIiIodmVh6iOXPm4MiRI/jf//6HgoICvPHGGzh48CDWrFkDDw8PAMw95ChW7ctRT/7qpgAWDknEsI6R9i4WERGRQzKrhuiHH37Ap59+ioceeggTJkzA/v37ceXKFdx33324desWAHByVweQqyxVB0NA1XxnL63JYE0RERGRDLMCoitXrmjNZxYYGIjffvsNN27cwMCBA1FSUmL1ApL5svKLtSZ9BYAKIZCdb9vPh010RETkrMwKiCIjI3HixAmt1xo0aIBNmzahtLQUDz74oFULR5aJCfSBm05FnbtCgehAb5u956p9OeiauhUjPt+LrqlbsWpfjvE/IiIichBmBUT9+vXDsmXL9F6vX78+fv31V9SrV89qBSPLhfl5YeGQRLjfab50VyiwYEiCzeY8O3LuOmZ9zyY6IiJyXmZ1qp4/fz4uXrwouaxBgwbYvHkzDh48aJWCUfUM6xiJHnFByM4vQXSgt82CoU93ZGLhxpN6r6ua6DjxLBEROQOzAqKGDRuiYcOGsssbNGiAnj17VrtQZB1hfl42DUg+3SkdDAG2b6IjIiKyJrMTM96+fRvvvPMO2rVrh/r166N+/fpo164d3n33XZSXl9uijOSAcpWlSJUJhtwAmzbRERERWZtZNUSlpaX417/+hfT0dPTt2xc9evQAAJw4cQIzZ87EunXrsGnTJvYlcgFZ+cWQSjmlALB2ShckRcjXJBIRETkaswKi1NRUnDt3DocOHUKbNm20lh05cgT3338/UlNTMW/ePGuWkRyQaiSb7vD+WQPiGQwREZHTMavJ7JtvvsF7772nFwwBQFJSEt59912sWLHCaoUjx6U7ks1NAcweGI8ne8bauWRERETmM6uG6OzZs7j77rtll3fu3Flrcleq3WpqJBsREZGtmRUQ+fr64vLly4iIiJBcnpeXhwYNGlilYOQcbD2SjYiIqCaY1WTWu3dvLFiwQHZ5amoqevfuXe1CEREREdUks2qI5s6di06dOqFz58547rnnEB8fDyEETpw4gffffx/Hjx/Hnj17bFVWIiIiIpswKyBq1aoVNm/ejPHjx2P48OHqme2FEIiPj8emTZvQunVrmxSUiIiIyFbMCoiAqo7Tf/75Jw4fPoy//voLABAXF4e77rrL2mUjIiIiqhFmB0SFhYWoX78+7rrrLq0gqLKyEkVFRfD19bVm+YiIiIhszqxO1WvXrkWHDh1w8+ZNvWWlpaXo2LEjfvrpJ6sVjoiIiKgmmBUQLV68GDNmzIC3t/6knT4+Ppg5cyb+85//WK1wpC9XWYq0zHzkKkvtXRQiIqJaw6yAKCMjA7169ZJd3qNHDxw7dqy6ZSIZq/bloGvqVoz4fC+6pm7Fqn1MgklERGQNZgVE169fx+3bt2WXl5eX4/r169UuFOnLVZZi9ppj6rnDKgXw0poM1hQRERFZgVkBUXR0NPbv3y+7fP/+/YiKiqp2oUhfVn6x3kSqFUIgO7/EPgUiIiKqRcwKiIYMGYKXX34Zly5d0luWl5eHV155BUOHDrVa4VyVVD8h1ezymtwAeHuY9RESERGRBIUQQhhfrcqNGzeQnJyMnJwcPPbYY2jRogUA4OTJk/j6668RERGBPXv21Mr5zAoLC+Hn5welUmnT1AKr9uWom8bcFMDCIYkY1jFSveylNRmo0PjIdNchIiKif5h6/zYrIAIApVKJ2bNnY9WqVer+Qv7+/hg+fDjefPNNNGzYsHold1A1ERDlKkvRNXWrVtOYu0KBXbN6qydQPXLuOgZ/kgZhYB1HkKssRVZ+MWICfRyqXERE5FpMvX+bnZjRz88Pn3zyCRYtWoT8/HwIIRAUFKSexkPT7t270aFDB3h6epr7Ni7JUD8hVVBRXFYB3RBWdx17M1TLRURE5Igs7oCiUCgQFBSE4OBgyWAIAAYMGIALFy7IbmPnzp247777EB4eDoVCgR9++EFruRACr776KsLCwuDl5YW+ffvi9OnTWutcu3YNI0eOhK+vL/z9/TF+/HgUFRVprXP06FF0794d9erVQ0REBN5++23LdtrGpPoJuSsUiA70Nmsde+JoOCIickY27ZFrrDWuuLgYSUlJWLRokeTyt99+Gx999BGWLFmCvXv3wsfHBykpKVqZskeOHIk///wTmzdvxs8//4ydO3fiiSeeUC8vLCxEv379EBUVhQMHDuCdd97BvHnz8Nlnn1lnJ60ozM8LC4ckwv1OgOmuUGDBkAStmh9T1rEnjoYjIiJnZHYfInM0aNAAR44cQdOmTY0XRKHA2rVrMXjwYABVwVR4eDief/55vPDCCwCq+i+FhIRg+fLlGD58OE6cOIFWrVph37596NChAwDgl19+wcCBA3H+/HmEh4dj8eLFePnll5GXlwcPDw8AwKxZs/DDDz/g5MmTJu9LTXWqBqpqWbLzSxAd6C0b6Jiyjj2Y0g+KiIiopph6/3bYMdtZWVnIy8tD37591a/5+fmhU6dOSE9PBwCkp6fD399fHQwBQN++feHm5oa9e/eq1+nRo4c6GAKAlJQUnDp1ymGTSIb5eSE5tpHBAMKUdezB0WuwiIiIpJjdqbqm5OXlAQBCQkK0Xg8JCVEvy8vLQ3BwsNbyOnXqICAgQGudmJgYvW2olsmNirt16xZu3bql/r2wsLAae+NahnWMRI+4IIeswSIiIpJi0xoiuc7WzmDhwoXw8/NT/0RERNi7SE7FUWuwiIiIpNi1U7UhoaGhAKCXFfvSpUvqZaGhobh8+bLW8tu3b+PatWta60htQ/M9pMyePRtKpVL9c+7cOYv3hYiIiBybTQOiGzdumNShWkpMTAxCQ0OxZcsW9WuFhYXYu3cvkpOTAQDJyckoKCjAgQMH1Ots3boVlZWV6NSpk3qdnTt3ory8XL3O5s2b0aJFC4NJJD09PeHr66v1Q0RERLWTWX2I7rnnHpPW27p1q0nrFRUV4cyZM+rfs7KycPjwYQQEBCAyMhLTp0/HG2+8gebNmyMmJgZz5sxBeHi4eiRay5Yt0b9/f0ycOBFLlixBeXk5pk6diuHDhyM8PBwAMGLECMyfPx/jx4/HzJkzkZGRgQ8//BDvv/++ObtOREREtZhZAdH27dsRFRWFQYMGoW7dutV+8/3796N3797q35977jkAwOjRo7F8+XLMmDEDxcXFeOKJJ1BQUIBu3brhl19+Qb169dR/8/XXX2Pq1Kno06cP3NzcMHToUHz00Ufq5X5+fti0aROmTJmC9u3bIzAwEK+++qpWriIiIiJybWblIXrnnXewbNkyXL16FSNHjsS4ceOQkJBgy/I5jJrMQ0RERETWYZM8RC+++CKOHz+OH374ATdu3EDXrl1x9913Y8mSJRyWTkRERE6rWpmqS0pKsHr1aixatAjHjx/HxYsXa23tCWuIiIiInE+NZKo+ePAgduzYgRMnTiAhIcEq/YqIiIiIaprZAdHFixexYMECxMXF4aGHHkJAQAD27t2LPXv2wMuLSfiIiIjI+Zg1ymzgwIHYtm0b+vXrh3feeQeDBg1CnToOO/sHERERkUnM6kPk5uaGsLAwBAcHG5yW4+DBg1YpnCNhHyIiIiLnY+r926zqnblz51a7YGS6XGUpsvKLERPowznBiIiIbKhao8xcSU3XEK3al4PZa46hUgBuCmDhkEQM6xhp8/e1JQZ4RERU02xSQyRnx44dKC4uRnJyssH5wcg0ucpSdTAEAJUCeGlNBnrEBTltIFEbAzwiIqo9zBpl9tZbb2HOnDnq34UQ6N+/P3r37o17770XLVu2xJ9//mn1QrqarPxidTCkUiEEsvNL7FOgapIL8HKVpfYtGBER0R1mBUSrVq3Smqrju+++w86dO/H7778jPz8fHTp0wPz5861eSFcTE+gDN4k+60cvFNR4WayhtgV4RERU+5gVEGVlZaFNmzbq3zds2ICHHnoIXbt2RUBAAF555RWkp6dbvZCuJszPCzP7x+u9/vbGU05ZqyIV4LkrFIgO9LZPgYiIiHSYFRDdvn0bnp6e6t/T09PRpUsX9e/h4eHIz8+3XulcWGITP73XnLVWJczPCwuHJML9TqoGd4UCC4YkOG1/KCIiqn3M6lQdGxuLnTt3omnTpsjJycFff/2FHj16qJefP38ejRo1snohXZGqVkWzqcmZa1WGdYxEj7ggZOeXIDrQm8EQERE5FLMCoilTpmDq1Kn4/fffsWfPHiQnJ6NVq1bq5Vu3bkXbtm2tXkhXpKpVeWlNBiqEqBW1KmF+Xk5dfiIiqr3MCogmTpwId3d3/PTTT+jRo4deosaLFy9i3LhxVi2gK2OtChERUc1gYkYTceoOIiIi52Pq/dvs2e6JiIiIahuzAqLy8nLMmDEDzZo1w913342lS5dqLb906RLc3d2tWkAiIiIiWzMrIHrzzTfx3//+F0899RT69euH5557Dk8++aTWOmyBIyIiImdjVqfqr7/+Gl988QXuvfdeAMCYMWMwYMAAjB07Vl1bpFBIpFgmp8DJV4mIyFWZVUN04cIFrak7mjVrhu3btyMtLQ2jRo1CRUWF1QtINWPVvhx0Td2KEZ/vRdfUrVi1L8cu5chVliItM98pM3ITEZHzMquGKDQ0FJmZmYiOjla/1rhxY2zbtg29e/fGmDFjrFw8qglyk6/GhzZAcVlFjdUYrdqXoy6HmwJYOCQRwzpG2vx9iYiIzKohuueee7BixQq918PDw7F161ZkZWVZrWBUc+QmXx28KK3GaozkgjLWFBERUU0wq4Zozpw5OHnypOSyxo0bY8eOHdi8ebNVCkY1R2qaEABQ/aoKTnrEBdmspkguKMvOL2F/JiIisjmzaoiioqKQkpIiuzw8PByjR4+udqGoZulOvqo7Mz1g+4llVUGZJmeeu42IiJyLWTVEKqtXr8bKlSvx119/AQDi4uIwYsQIPPTQQ1YtHNUczWlCvD3c8OAnaTU6sWxtnLuNiIich1lTd1RWVuLRRx/F6tWrERcXh/j4eADAiRMncObMGTz88MNYuXJlrRx672pTd6zal6MXnNREB+dcZSnnbiMiIqsx9f5tVg3Rhx9+iN9++w3r1q1T5yJSWbduHcaOHYsPP/wQ06dPt6jQ5DjsObGsAJN7EhFRzTKrhqhNmzaYPn267Iz2X375JT788EMcPXrUagV0FK5WQ2QPHHZPRETWZpPJXU+fPo2+ffvKLu/bty9Onz5tziapFrIkuSKH3RMRkT2Z1WTm5eWFgoICREZKP7UXFhaiXr16VikYOSdLa3k47J6IiOzJrBqi5ORkLF68WHb5okWLkJycXO1CkXOqTi0Ph90TEZE9mRUQvfzyy/jyyy/xyCOP4I8//kBhYSGUSiX27NmDhx9+GEuXLsXLL79sq7KSgzNUy2OMbi4kDrsnIqKaZFaTWZcuXbBq1So88cQT+P7777WWNWzYECtXrkTXrl2tWkByHlIZr82p5bHnyDYiInJtZo0yUykpKcGvv/6q7kAdFxeHfv36wdu79jZvcJSZaeyVv4iIiEiKqfdvswKirVu3YurUqdizZ4/eRpVKJbp06YIlS5age/fulpfcQTEgMh2TKxIRkaOwybD7Dz74ABMnTpTcoJ+fH5588km899575peWapUwPy8kxzZiMERERE7DrIDoyJEj6N+/v+zyfv364cCBA9UuFBEREVFNMisgunTpEurWrSu7vE6dOrhy5Uq1C0XVY0liRCIiIldm1iizxo0bIyMjA82aNZNcfvToUYSFhVmlYGQZTn9BRERkPrNqiAYOHIg5c+bg5s2bestKS0sxd+5cvUlfqeZYkhiRtUlERERm1hC98sorWLNmDeLi4jB16lS0aNECAHDy5EksWrQIFRUVTMxoR+ZOf8HaJCIiqim5ylJk5RcjJtDHIQfdmBUQhYSEIC0tDZMmTcLs2bOhGrGvUCiQkpKCRYsWISQkxCYFJePMSYwoV5vUIy7IIU9UIiJyXs7wAG5WQAQAUVFR2LBhA65fv44zZ85ACIHmzZujYcOGtigfmUE1/YVuYkSpAIeTqRIRUU1wlgdwswMilYYNG6Jjx47WLAtZganTX1R3mg0iIiJTOMsDuFmdqsk5mJIY0VkmU2WnbyIi56Z6ANfkiA/gFtcQkfNz9MlUnaHNmYiIDDOnO4c9WTS5qyviXGY1K1dZiq6pW/Wa9HbN6u1wXyIiIjLOXvNcmnr/Zg0R2YWx4ZfO0uZMRESmCfPzcujrNwMiqnGmNIWx07frcvRcJURUO7FTtYuwRudka23DlGzaUp2+Zwxogaz8YnawrsVW7ctB19StGPH5XnRN3YpV+3LsXSQichGsIXIB1uicbK0OzuY0hWl2+j56vgBvbTypfv+Z/eOR2MSPtQi1iLPkKiGi2ok1RLWcJfOb2WIbKuYOvwzz80J0oDfe+uWk1vsv3HiStQi1jKFguaYx3QOR7Tna94wBUS1njZuMNW9UluQ/knp/leoEZ+RYHCVXiTnNdo52QSdyFo7YPM4ms1rOx8MdCgUgqtE52dodnM3NfyT1/po4+qx2cIRcJeY028k1I7NTOJFhjto8zoCoFlNdsHWDIXNvMra4UZkz/FL3/XVx9FntYe9koab2cZO7oBeUlKubd5lMlEjagbPXHTKtCgMiJ2LOk6fuBRuoah9dMzkZSRHmT8Rr7xuVVgfrCwV4e+Mph854SpazZ64SU2tD5QKn1I0noXrZUZ56iRzJqn05mPX9Mb3XHeHBlgGRkzB3lJfUBbsSQElZpcVlMPdGZe2mA9X7J8c2wv1J4Q475Qg5L1NrQ6UCJ6lmXUd46iVyFKoHdd16fjcFHOLBlgGRE7CkvdXeiQ1rYh4yofe1Iqo+U2tDJ3SLwRe/Z6ES/+TJUqWGUHGEp14iRyE3QOaj4W1xb1J4zRdIh8OPMps3bx4UCoXWT3x8vHr5zZs3MWXKFDRq1Aj169fH0KFDcenSJa1t5OTkYNCgQfD29kZwcDBefPFF3L59u6Z3xWKWjPKy52z21hymL8URRydQ7aKqiZT6vqjOv89+zwIUwBPdm2LXrN54skes3b5zRM5AbiRp+2jzu3HYglPUELVu3Rq//fab+vc6df4p9rPPPov169dj9erV8PPzw9SpUzFkyBDs3r0bAFBRUYFBgwYhNDQUaWlpyM3NxeOPP466detiwYIFNb4vlrC0tsde/X5sOQ+ZVLA1+/tj8PGsg/ZRDXnzIZuSOv++3JWFsd2iAdi/rx2RI3OEkaSGOEVAVKdOHYSGhuq9rlQq8eWXX2LFihW45557AADLli1Dy5YtsWfPHnTu3BmbNm3C8ePH8dtvvyEkJAR33XUXXn/9dcycORPz5s2Dh4dHTe+O2apzEtmjg6otm+vk+kZNXXGIo3rI5kwJ9h19Aksie3LkhwaHbzIDgNOnTyM8PBxNmzbFyJEjkZNT1URy4MABlJeXo2/fvup14+PjERkZifT0dABAeno6EhMTERISol4nJSUFhYWF+PPPP2Xf89atWygsLNT6sadhHSOxa1ZvrJzYGbtm9Tbrpl/TyeNs2VwnVeWqwiSNZGuOkjySyJkZapK2J4evIerUqROWL1+OFi1aIDc3F/Pnz0f37t2RkZGBvLw8eHh4wN/fX+tvQkJCkJeXBwDIy8vTCoZUy1XL5CxcuBDz58+37s5UkyVPntbu3GzqyDFbPQUYy0nEUT2uqaaSITp6lT8RWc7hA6IBAwao/92mTRt06tQJUVFR+Pbbb+HlZbuL0OzZs/Hcc8+pfy8sLERERITN3s8WrJ0N1NzgylZNB6pg60D2dUz75hBH9bi4mhjRqMmRq/yJalptyszuFE1mmvz9/REXF4czZ84gNDQUZWVlKCgo0Frn0qVL6j5HoaGheqPOVL9L9UtS8fT0hK+vr9aPs7HmHGS2Hjlm7L11m/zC/Lxwb1I4R/W4OHudl45a5U9Uk2rbiF+nC4iKioqQmZmJsLAwtG/fHnXr1sWWLVvUy0+dOoWcnBwkJycDAJKTk3Hs2DFcvnxZvc7mzZvh6+uLVq1a1Xj5a5I1+zvYayZyY1+46vStIudnr/OSyNXZ8yHZVhw+IHrhhRewY8cOZGdnIy0tDQ8++CDc3d3x6KOPws/PD+PHj8dzzz2Hbdu24cCBAxg7diySk5PRuXNnAEC/fv3QqlUrjBo1CkeOHMGvv/6KV155BVOmTIGnp6ed9862rNm52R6dSU39wvFp3TlZo7M/OzkT2UdtfBhx+D5E58+fx6OPPoqrV68iKCgI3bp1w549exAUFAQAeP/99+Hm5oahQ4fi1q1bSElJwSeffKL+e3d3d/z888+YNGkSkpOT4ePjg9GjR+O1116z1y7VKGv1d7BHZ1Jb5jMi+7JWvx9rn5e1qT8EkS3ZezYEW1AIITFUh/QUFhbCz88PSqXSKfsTWUuusrTGOpPmKkvRNXWr3hdu16zevFk5MVt8rtY4L2u6czaRs1u1L0fvYcTc70xNPISYev92+Boish5rnHg1mXSOQ5xrJ1vU/FV34mFrj8i0FGuoyJnotkAAQFpmvknnb66yFMt2ZeHz37Mg4BgPIQyIXISzPv1Wt8mPNxjHY++qdqnvQkSAt92bZ531O0quTfUwYs75q7muir0eQjQ5fKdqV2KrjNLOPhrA0k7TtW1IaG3hiBMP+3i427VztrN/R8m1mXP+6q6rqUIIHDx73callccaIgdhy6dDV+yc7ChNICTN0SYeLimrtGvzrCt+R6n2MOf8lVpX09QVh1B067ZdakcZEDkAW9+87d1EYQ+8wTg+R5t4ODm2kd0yULvid5RqD3POX6l1NQnY7+GVTWYOwFb5HFRNcACs2kRR05PFWsLHw13ydW8P1zvlneHzqinGmuvsldPKns2IRNVlzvmru65CYrJue+UzYg2RA7DF06FUE9yuWb1r7dBk3c7TxWUVkuuVlFXWcMnsy1E/L3ty1LnIHLVcRKYw5/zVXNfbww0PfpLmELWjrve47ICs/XQo1wQHoFpPv47a8VOq8zQzGDvu52UJa9dyOWp2c0ctF5EpzDl/VesmRTR0mNpR1hA5CGs+Hdqq/4wj9suRu+nvmtXb5XMYOeLnZQnWcpE9qWqffTzcUVxWwRQeNuAotaMMiByItTqZ2qqDpi07flqaL8jQTd9RvmT2Uhs66nK0IFmDpdcXqXw5DMptwx6DLHSxyawWslUHTVttV7fJ69MdmSY3jxhrGnPlJghH6ahbneYuWw84cMbmQzKN6jP+dGemRfnI5PLlOHPTMxnGGqJayla1I9berlQNwMKNJwGY9iRm6vQerpqx2t61ZNVt7rJ2LZcjThdA1idVswNI1zDKXRsM5ctRJRAc1Mb498lVrz2A8+07A6JazFZVkNbcrqGLjqnNI8Zu+q7eB8VeVdHWaO6y5nx2jjpdAFlPrrIU+7OvyWZCBrT70Rm6NhjLl2NKAkFXvvY4476zyYxMYqsmBqkmL02mNo/INY3VppFWzsbS5i7dc21Yx0jsmtUbKyd2xq5ZvS26qBqbLsAeOU/IMnLXIlXT+9MrDxvMhKyqYTR2bdBtctalSiAody1x5WuPs+47a4jIKFtH+uO7xeDLXVmSFzFzm0d0q2hry0grZ2RJc5fcuVbdWi5DNZH26GjubE0J9qY6XscuKPHWxpN654ehgFeTZg1jWma+0WuDZu3z6cuFePXH43rrrz+ai0FtwkyaokIz+K7Nn/+Bs9ed8rrLgIgMsuUoH90mjBGdIhDVyAdvbzyFCiHgpgBmDGhh8vtI3Ux7xAU5/UgrZ7XzrysQGsddoYBec5dmYADAquea5rblmj/cUHWOZeUXA0CNXKydsSnBnkzpD2Rsfiyg6rNeMzkZSRENAZgesKuC8ehAb8xbd1zvfd5YfwILNpzQ+xzltn/0fAFGfrFH9vN39mB51b4czPr+mN7rznDdZZOZizK1CcyWo3x0L3Ir9p4DBDCjfwsoUHUheWvjSYOjQlT7ceTcddlklI4w0spR2aopVPX5ap46CgH0iAtS/647unCZRC2hpeea7rZ3/nVF6zxwUwBPdG+KmQPi8dbGk2aPQLKUszYl2Iuxmh/V+WGs6R0AKqGdqd7cUZiGmtCkPkep7T/VqylS79RwSf2dVJJZZyL1vQeqvm/OcN1lDZELMucJ1Va5bOSe6BZuPAkFoP5CGaol0NwPhQJatREA8xEZY8uaCqnPtxJQV5lLBQZf/J5llXPNULJOzelrAKBr6tYazXHEJlzzGKv50Tw/NJve3e5cD4TMuirmXhtU668/mos31p/QWib1OWpu/+iFAqRuPKkXLKia3TpGN3T6nFtyn9dHw9vi3qTwmi+QmVhD5GLMfUK1VS4bVROJFKkLhm4tge5+6AZDQNXJrZrM1RXzERmq/bF1TYWx/FByAdOEbk2rfa4ZCzpU54Gtaj8N4ZQyxmmet4ZqflTnx86/rqBr6taqVAoCeKJHDHbPugepQ02fbNSca0OYnxcGtQkz+XNUNbe9tfGk5HUKqGp2G7woTfJ8PJB93aRyOQK5z+uCk9SAsobIxVjyhGqLGpadf13RqgkyROpCI/ck4oaqGyvu/P/BT9Ikaz6k2umdve1ek7HaH1vXVBgbLi9X8zi2WzTGdouu1rlmaq2mXL+iXWeuQEDY5DywZhqB2kI1VF6hUOBCQalep+mZ/auaNStR9TnO6N8CbZr4S9byCQBf/p6NsV1jrHLdkrsmmPs5mtLHSW7x098cwpHzBRjXLcbhz5MwPy/M7B+vziWn8vbGU7g/Kdzhy8+AyMVY2gRmzVw2cu3MUuQuNHL78dnj7TDhvwfUT2JS1c5SwUJBSbm6OluhAGYNiMeTPWKtsr+2InexNqUjfE1M62HohmSsw7XUuWZqwGrqzUru4r1oWyYWbcs0uxnR1PKxCfcfqg64UteCSgHMWnMMuNP0pbgzyELze2lspFh1rlvGHirM+Rylvm9SzfwA9B4UhQA+/z0LX/yehVkD4pHYxM+hH9oSm/jpveYszcIMiFyMvZ9Qc5Wl+PnoReMjQhRV7c7toxvKVnNL7YeXRx3ZvkRyfVd0L8hCAAs3nAQE8GRPxwyKDF2sTan9sfZ5YOhJWi43lKEO18b2d2Z/wzcGU29WUhdvFXP6cJjbH8teyTIdSa6yVDYYUtH8LguhX9Ngq8De1NG1pn6OUt+3GQNaqGvDNMs+7/5WmPPjn3rbEDAvi7+9mPuZOFLNPAMiF2SvJ1S54bNA1VOR4s6XSHVzNtYJT2o/cpWlsl9GuWBM7oL81saTuP8ux6vmNXaxNvWCZK3zwNxgQK7/kFw+F0undzHlZmUsG7EpT7acgNYyWfnFJtUSa6puYK978zVn2g5zajmktiv5fbszklbVHLhgSAJ6xAVh7ro/DT40OvI5Zuwz0Tw2O/+64lApKBgQuaiafkI1NHxW80Jg7s1Zdz/knsSW7sqSTf4oR3NUlCMxdrE25yZR3fNAKhiYveaYwQu1XBAil8/FGtO7yNE9VrpMqW2ozs3TkZ6Oa9qxC0qDy609Ukw3cH+wbWOsPXRB8mZcnZonQw8Imt+3Vfty8NYvVcGQqjmwR1yQZPoJKY7cDCX3megeG83P1xGCPAZEVCPkbmpzBrXEQI1aAWt8EbSGup4vQOoG/aGupnDU0T+mXKzNrf2x9MYsWdsjgGW7s/DSwFaSf2MoCDG1v5Om6t4YdIdGqxKDmtqMaMnNs7ZPMmvsfMpVVnWeljJ7QLy60/TOv65YJbCXCty/P3hBvVx13sWHNkBxWQViAn0salI2tbZQapRs6oaTVf0YTbxYOer1SUX3M5E6NrrsHeQxIKIaIXfTGCjRRGINqm2O/GKPRcGQGxw3kZhkLVh//WzLptb+6PXPGRCPxMamddyUC1a+2JmFsV3lR8WYk8/FGrU4xqiOVXJsI9yfFG52TaVmDhxjN09nmWTW0iD50x2Z6gEKcueT3APSohFtMajNP03luoE9UNWR2liTly5TRnlVCIHBi9K0AlTNvFWmHANTawul1hPq/+ibM6glbguhNQLPUa9Pckz5DOwd5DEgIouYeiHSXK+mO3Ob8gWU87HOhdnR6NZqSM3vZArJ/jkb/umfo7qZ+Xi4q5+cdZsox3eLwee/Z2lt15TmxjC/qnwuCzacMKu/09ELBXhrQ1VTgy0CV1VwpMqHY+gc10oOiqocOHKBoLGZ2O39dKzJ0qSdn+7M1Bq1p3k+KXBn9GbPWNkHpCYNvfSOuerzMKfJS5exWkYV3eabXbN6Izm2kdH9NvQ+5qR8kKJ6cNQcmWlqLZIjkRtppxDQ6kNlz/OfARGZzdSLpdR65j5xVYfs/FUSfRM0uSsUaBfV0KZlswbNWjDdPjzxoQ3UczapSAWxxvrnqG5mKlKf97huMfjiTtOPiqlPepb0d8q5VvzP2GQj0zVYypRzXK/ZA//kwDG0PTn2fjpWsbSTeK6yFKkyzWCAxigpBfBkj1i9z31w23A8+Ema5DE3tclLrozGahmlWBKgmno+667nduf46JZMFfAD0BqZKeB4NYpycpWlOHD2OoQQmDkgXq9J2pFSUDAgIrNY2kZu6RNXdUhddCbceYLX7JugAIA7QZLUBcyRO77K9eEZvCgNqUP/uaHI3eDNeVJVbVv38w7z80LqUMtr/1S1PwfPXkelEOgQHSC7rrk3a0s+O1Pfw9TmEVNmYnekJlpLO4ln5RebVHPx1saTuD8pXKvWz9vDTR0MAfrH3NQmr4Nnr6Ohj/TnPaxjJOJDG2DwJ2kmlVMBWBSgmtp/T3c9zWuSm6Iqa/vYbtEI8/Mymm/JUenmmVLVEqr6iFmz76g1MCAis1SnjdweX2C5i5NU3wSpC5ijz0wuF9BoPkEChmeRt8aTs7G+HsaYOvzWnPPK0s/O1PcwtXnE0M1c98bnCCwdYWVqcF0p/mlOVf0Yu+Gbsm2FApi64pDBTurFZRWmNzdVs/ZRyNRB6wbpmtek+NAG2Jd9HR2jG2rV8Pp4uOslbHSUGkU5UvnGBKoC4t2z73GY810TAyIyS3XayO31BZbrXKz7uu46kkPKvz8GH886aB8lnTCypqkCGqkaCNUNRUAYvNlo1tDsOpOPVfvOGa7NUEg/Ocv19TAWiJhT62PqeVWd3ECmvoepzSNS23NDVT+1dmacRzVVU2lOM6bU383+/ph6+hwpbgogv+gmcpWlBkcSah5zqTINbhuOHw5dVNeomDKE25waUSEsS7th6PzX7XM2sXsMxt6ZkkPu71Sv6wZDjlKjKEfuQcBR05kADIjITJa2kTvDF1iXXALBqSsOOVRtkbop4M4IGRXNG4qxG7xmDY2qc3AjH0+8/cspvZojIarWl9p3SwIRc2p9TD2vqlNDac65a0rziNz2zOm0X9M1lZYm7TTWLKWaruLplYe19sOUYy5VphdSWiA7vwT5RTfx9MrDWu8l9Xnrvo/iTrWLVHxkyQOcXF4ubw93RAZ46/U5++z3LHyxKwszB8RrZa3WTAOg+7DjpgDWTE7W6yOoen9TEk/WBNk+nLCsKbImMCByUdX5oljaRu5MwVCushSZV4pkJ6B1tGHSSRENDfbjMZY5Vqpz8JrJyfhgeBKUpeV45Yd/phIw1KHTkkDE3NpEufNK85yubg2lOeeuXA2kpdvTZa9M2Jod7zV/NyYpoiFSJZKjNvH3UjdpAfr7YWpwqRvgqG78pn7ecs3lR88XqB8AzH2AU51714rLJPv0Pb3ysOzcZZUCelN4AFXfm33Z1yW3V1KmXQcnldeqf0IoNmbkQZgQRNsicFIFn7PWHFPvtwLAwqGJDnHNlMKAyAVZ42nTlJuAOes5EkMTTmqqEAIHsq/j3iTH2D9DNxRDy+SCGFWNk1RXCrkgx5JAxFjtgOpirTv031hfL1NqeQzdCEw9d82ZdNaS74K9+uNV5zohdb6lZebrfaekck5Zsk/m1khLBVbJsY1w/13m56DSbQaTe4gy1HdJ9be6Nbwdoxsa/T7J5bXacCxP63e5INqWtY+azfFCQHZuSkfBgMjFcN4lw6Q6Ahoy7ZtDKC677RBNZ4DhG4rcMkMdszX/r0nVD+TIuevIuVYChUKh7ldlSVOpKan+Nd/b2JBs1YhGQ2kerHEjqImmLHv0x5M7ppqZnE1perSkE7qlrFEjbW5AJlW7qoB+E7UmqYBJlVxVt4YqKaKhWbW7hpgyAtIa/SSlOo0PauMc9xYGRA7O2lWZpjxtWjpU2VGHppvD3GSO9ggorX2sdYMYuYu55oVc1Qygu1w11N/SG5PmyBy5i70pQ7JV53RybCPJ97fGg0FNPVzYoz+e3DF9YFEaAMuCv5rYj+rUSFvyvZLLOP3x8LZao95U3BUKrJmcjPVH8/DFrr9RKf7pID2sY6RkDZW5tbtypAZDWLufpKOPyjWGAZEDs8XJJfeU5u3hhrTMfBw7r6yacNCM93T2L4Emc/PyADWbTsBWx9pQThgA6sRxhghoT+xqzvGQ2q+IAG/Zz0HVXBlQvxilZbfNHpJsjWaommzKqun+eMa+B5YGf47ar9DS75Xc9VTVNFR067ZeAJgUUTWkfmy3aL3jIPe9Mbd2V8rMAfEmNXGrmPsZ14bWBzd7F4CkyZ1cucrSam1X9ZTmrqjqGaKZIXbE53uxUGKkg6H3tFU57SXMzwszB8QbTEGiu6ym0gnY+lir+lGoquk1z5EJ3WNMakasFFUdVA1RTYmhKrfcfvl4uMNN5oNQoKq5csTnezH+/w6YPSRZdSPQZO7naI1tmEP1+Zh7c9E93qaa0C3G4PdAFfyZy9L9sJXqfK+krqeqcy9XWYqIAG+smZyMlRM7Y9es3lpBljWOg+77uymAJ7o3xewB8f+8hqoJc5/sEWv073WZ8xkbekBwFqwhclC2fPo0Vhtgzns6SgJGa1m1Lwdv3ZmYEgBGdIrAsA4ROH+9VN0p0NQZuI0xt4pe7lgbys5rKamROF/cmbzUEM1qean9M7UmqEIIlJRVSiaNVNVWSZXF0JBkTZY030j1jbB3agnNaRE6RAeY1E+qR1yQwfNOt5OwHEdPDGiq6nYjkKr1kjrutsrQL5XpPczPy+QO4qq/P5B9HdO+OWRxHy9jrQ/O0J2CAZGDsnUHRNUFXSpDrCZD75mrLMW14jKny6AqR6rPyqo/zuPpe5pr3WBNqfY3FuxYUkUvNzmisey8ltKtpjeW0Vpx5/2lbggzB8Qj3K+e5JP4msnJsud6cmwjreC9pKwSV4tvYeqKQ5JlkBqSDEh/HuY038h9XvZsApKaFkFzuhapmo9Za46p8+5IBUgA9DoJS3GkqUaqy9i11pTvquZ3xR5NR3KZ3k19vzA/L9yb5IXiMv0mPnO2Yc78dI6IAZGDMufpszqdbA21IatGPkjlIZEbauqMCRhV5J4UpYbWG+ojY+wCaukFU6rzsynZeeWYe95o3vx3n7mCRdszIe58/iM6RWLqPc3UTQW6+6c7SayKVE2Q6hwCgJ+OXNAawaYqt6FzVjcYN/R5mNLXydjnVZ2OvJaSmxZh9vfHDHY214xlKwUw6/tjUNw5llXTiMRI17yhqrOtaqqRQW1CUVxWoZVt2tRyG6rRsgdD11pbJxq1BmsGYNUN8M2Zn84RMSByYKacnNXtZCt1MZgxoAXaNPbH0QsF6oRhmtuWGmrqpqgaWeHoeSYMkQsOzRlab8rFqToXTM1zwtTsvFJMPW/k5l0a+UWm+uYqAHzzxzlMvaeZ7P7JkaoJUk102WXhVsnaD91zVnNbqkBKVUUP6M/jphk0mELu81p/NBeD2oRZ5Xy3RvMpoD0tgikdbgX+CZIqBfD571mStSVrJiejpKxS/dlY8tRvrEbLnuSutTWRaLS6rB2AVTfAN9T64OjdKRgQOThDJ6e1ngykLga5ylKM/GKP5LblZlhvVN/TYU90U6hutLpzMZlzXE25OFX3gqk6J46cuy653NujaqyE3E32yLnrWjcmuSBBLmg6cFY/e665E3Gq9lmzNlG1X7nKUr3EmALaI9h0n0Q1b9ZdU7eqyzxeosajEsCyXdl4aVBLwwW8Q25/3lh/Ags2nNB6ULCkptZazaeA9rQIuoGjXMJATQJA92aB2H3mqt7IKEB+agrVJMJy+29KjZa96V5rLe0SUNN9yxxp3khNjlouQxgQOTFrPhnoXgwMbdsZT3RTDesYCR/POnp9VEw9rqbMSm2tC2ZxWYXk6yVllQYnipwlkXhSN0iQC7YLSsuRKtH8ZWgiTl3GJjbNyi+WnS7FUFZjqTJ/uStL8hh9setvk2eYN7Q/6uNSUm52ugq5MpvTfGpsWoQecUH4YHgS9vx9DSv/yDFppvddp/OxdkoXdZBp7LpQKYCZ3x3FrjP5svvvbBN9VrdLQE32LTPlemLrPHFS23eEQQfmYkDkxGwZmBjatjOe6OZoHyWdLl9utITqYnDsglJrhJrq76T6YVnjgmloVIdcluHZGjdQXZpBglxAnKqzf0DVDdDQRJxSc0QZmtg0JtBHsjZDKrGcJrmb9b2JofhZYxoD1esHz143OYOuatJSVWJCTbrHxdo1iobKZGhaBKks36aoRFVQLTUqSq5maufp/H/+XmL/nWmiT2t1CajJvmWGrifm1EBaEjgZ2r6j5p2Sw4DIidkyMDG2bWc70c1hzmgJQzcdNwXwVK+msjUHmv0UNH+XY+qw7+KyCsmbrNREkZo0a2CkarrcIN0M9tHwtrg3ST/AUZXR3Dmiwvy8kDo0Ubu/icYINjlyAeLEHk2xISNPr+xTVxxC0S3pvmFSNwa5GjmpSTtNDWqs0XwqFdSZM6WDLkPvH+bnhfHdYvD579I1bypSc5TZa6JPa/TPcoYuAVI1pvuzr5lcA2lJ060pNZw1GRhWFwMiJ2fLwMTYtp3pRDeXKaMlVDUucjedSgF8si1TtubAnI7NS3dl4cs7eYCMDfuWm/lbaqJITaoaGFW5pGq6VMGd5uvtow3n/AHMP1c0c6MoFJBtXtN9D6kAUZVoUvezEpCen0vuc5Gr5ZjSKxafbM+0KKix1UONsY7tCkA9ukxxJ/KVaxLSDSjGdYvBF3dmVZcjVZtXUxN9apZXbji6IZYEqY42dZGhBzVT5zTTvFbJ7V9ty0PHgKgWsGVgUpuDHmOMjZZYvf+8wZuO1M1TM3OrKU9uuiNzpNbV/YyMBQazZJrNhADWHb6oF/RoJjv0965bY02lYX5eeukOjJEL4od1jIS3h7vkqLzBn6RBiH/yJb0lka1dday10h6gav0ne8YiIsBbdti2sRulLR5qjKXTWDAkQS/xpjnNLalDDeekmtCtqeR+yNVoGWNqwKFbXt20FLO/P4b40AZaecWqm3DT0aYuMlY7KBXcGQpsDAWVta0/KQMikuVoTz32Indz+WpvjsG/k7sZRQd6m5wdV7emRm5dXXI32R5xQbJDjQRQFQxI7Icq2aEzNJXKBfEdogMkP0fNYeeawZCKZi4qQwGXboCxYP1xfH6nJsXYjdLSBw+576jUTX1G/xZo08Rfb+4szb/R3bZc0G4ou7EbgLHdos3eFznm1KTqlldXJYDBn6QhVaLJ25KEm444f5ex2sGUhBC9skld49wUMNgfUVWrWpv6kzIgIkmO9tRjT4ZGGZlDt/Ox1M356IUCdWdWQxc2U57CpG6yciO4VCqh3ydGapScM17wpGp4pII/qQ7dT688hAsFpXiyZ6zs/qtel2qu0Byebm5fMTnGvqPVDV6NBe2qGrzqZDc2Ri7gUN2QfTzc1TdmU/NfCZkmb2M1r1IcscnIWNqLjRl5OHLuulYtmVQfLyGA9UdzJfdPs1Z14ZBE7JrV26EfkkzFgMiJ1FSNjSM+9dib6uay/mgu3lh/wqJtaHY+DvPzwsz+8Vi4UXsI+9sbT+H+pPB/OjZLdNiVGtVlKmMXS1Vizrc3nqoVT3y6jM3jp+4rpVNTJgAs3HgSZ6+V4Ok7GbmlGGquqBTAst1ZeGlgK9nyVac2RKo/VHWCV1ObQ2xZaygXcAxelKbd4V8BzOwfLzm1jap/lO42pAYZmBvMSNaswPoj58y59quCG918aipCAIMXpeklxdStPRYAvpBI1KnaBvDPebdrVm+bzdVWkzjbvZNYtS8HXVO3YsTne9E1dStW7TPcXFMdtWHWYluo6v8QpjfDudyM7JqkOh8nNvHTW081Weub64/jwTtPYer3AfBEjxjsnnWPSaM/pGY4V10sVbNbKxT/TOCpCn6e7BGLXbN6S87QXRuoRr6p+lTpzlT+ZM9YfDSireTfrtibgy4L5b9/xmopvtiZJTuLuimzrqs+V7nkmIM/SbPaNUL3XDEUHKuOqW5HXalz0ByqgEOX7iGuFMDbv5zCTI1Z3t0VCqQOScQPU7pAdzJ3zUEGuq+bE8yojpHmZgSq5hazFkuu/cM6RmL37Hsw4m7p765qQMGRc9fVn5FU7XElqvqDqY6pVMCgujdY4/O2N9YQOYGarrGpbR3lrEmyb8aAFnp9TxQKQCGqLihyNxK5yVqnSExc6gZg7ZQuRmdxB8xvSgH0O9Q6a7OYueRqN9pHNZTN7Ky6mUh9/4zVwBlKRCj3ILJybw4e7RSp1blVM1mgVtmMXCOOnLuOP7Kv4e7oAJPOJVX+pX3Z19ExuqHBzsiaLG1yN9bB2dCxrRACbRr7SzbfpGqMMlTVsKoC4uo29/WIC9KqyTV0fpirOtf+MD8vLBiSiKhA76o8WQZq2lQDCqSu+2O7RWNst2hk55egpKwc4//vgN577TpzBSO/yHT6LhYMiJxATbdTS/W1GG/FTpLOTuom6u+lP/pK7kaiEubnhQfbNsb3By+oX5ProqRKlmeM7rQXchdQqZFprkoq+Avz88KsAfpNmipy3z9j/c0MPVjIBVMfbT2Dj7eeAfBPACRQFRCp1pfqD6Vbxue/Pax1rg1t1xj/fuQurb/RDUgMZTyXC3gsvYmb0sFZqplT99jKBfOafWNUrNHcZ8vrszW2/WSPWHSOCdBrZgS0R+C9vfEUZvaP10uiqvmQlJaZDymG0os4EwZETsDWNTZST3qqC8WyXdn4Ytff+Oz3LHyxK8tpI39r073o6l5YTZkAM1dZirWHLuhuWpZqjjJDlu7Szw9j706ezurJnrGAQnrkmaHvn7Es3XKfg6G+H3I1VR8Pb4tG9T1ln9xV58yRc9e1giEA+P7gBTyeHKUO1nUDErkUBMY6I1tyEzcWRGl+3wxN7Cu1fd3Rmro1ONWtDbXXjAHmSIpoiNSh+rm4NFUIgTZNtGvYAGhl55fLIl9brjnsQ+QEzGnLN5ex9ukvdv1tsE8D/UPVjwKQzjGke9zMmRUeMF5DlKsslZy7yxGnR3AWT/aIxe5Z9+CJHjHqi6Wx75/qAcPbww2JTfywZnKyyf2xhnWMlO2/pMtNAUQEVJ1zXh7Sz7aqc+aP7GuSy/dnXwdwZ8JfnXNWLgWBoc7IgHS/H2M3cXP6LQ7rGIkZA1qo+wUpFMCMAS1kj62t+0Ta8vpszW0P6xiJD4ffJbtcs4YtObaReqJkzXtDmJ8XJnaPMfpeztrFgjVETsIWIzmMPZU54pBSZ2DsuKlumD4e7ibNCg+YdoGRC7Am9Ijh51UNYX5eeGlgK4ztGmP0+yc15F5VQ2jqKBxD/Zc0VQrgwU/SsHBIInrEBRmsSbg7OkByGx2iG0om/1RtX7ccchnPdef6M6VvjmbNtDk1IbnK0qo5AzWawDRHZ+qydg2O5vdXNaLPnjMGmEMuF5fuyFWpe8PsNcfg7eGOQW3C8MWdrPmaVOeKM49MZUDkRKzd0dXYjZudqy1j6LjpNks82LYx1h66IHlxUU2t4AZgRv8WRj97ueRqY7saf6Ij44x9/+SG3JvbpyLMT38uNzmaw54NBSFJEQ0xtF1jvT5Ewb71qkYzSmxblYJAt8lPqjOy1Fx/hnLTSPUXMrXforkPalIDIUy5YUt1JTAU8A7rGGn1IECzDNYY1i7VP3RCjxiM7ar90CQ3n9vTKw/DTQGktA7FxgztCZMVAP4zoq1J0+w4KoUQ1cg050IKCwvh5+cHpVIJX19fexfHKnKVpeiaulXvxr1rVm+tC4DuhYR9iIyTOm7xoQ3UCc1U3BUKrJmcjPXHcvHFziytUWkFpeXq0SFuCmB4xwh0aRaI9gYuOPy87CctMx8jPt8ru3zlxM5Ijm1kck6ZLSfyJPsFyW07OtAb+7OvwU2hkL0pHTl3HfuzryM60BteHnVwteiW3nQmgPZNPldZKhnYqF6Xy+ekeR3R3GcAstcdAOp+i7r97zRrZoy9nxS5/ZAiFbD1iAvSK7c572+IseDL2iO3jB0LqXuDJqlO/MA/57ijMfX+7VI1RIsWLcI777yDvLw8JCUl4eOPP8bdd99t72LZjSlPTs4wVYMjkupk/cCiNL31KoRASVmlXpMMUHXT0BxGveKPc1jxxzkoAL2kanLvy8+r5hibP0yqhtDQTU6uX5AuN1RlOB/5xR6j202KaIiTeTcw8b8H1OsaGr4PyNeMqV6Xm+tPVWOju8/ju8XIrh8d6K3Xb3H298dQUFqu7tOkqln94dBFs2p8TK1hl+tK8OGjdxnskGys07hcEPzpjsyqBx9oB1+mTrYKwOyEvcaOhbHRkqZktHdGLhMQrVq1Cs899xyWLFmCTp064YMPPkBKSgpOnTqF4OBgexfPbky5gbpKThprUx031VB4KZoXEc3jLHWTUREwPA0EPy/7kLuJqG7YgH5n+9lr9CcbVTGW00hlUq9YgxPSapK62atyZmm+je5ILEMMNRFLvd+Xu7Ik+ybJzfFXCSB1w0mtYd0/HLqINZOTUVJWWWPZsSGkp9vRLL8UQ0HwpzsztVI7GAq+pCZbVfVd1wymzK1FkgvWVPeGg2evY+qKQ3pB84DWofj1z0u1KqO9y4wye++99zBx4kSMHTsWrVq1wpIlS+Dt7Y2lS5fau2h2pxpV4Owns6Pan31Nso+GoSk45DL0qlQKuHzmcEc0rGOkOsv3j1O6aI0uk+uXMXhRmmT2Yd0RRlIGJoaia/NAk0dRSZVBCODpPs301jV1JJahkVBy+zyxR4zk+qph3bqkhnWXlFXa5LolN0qufXRDyc/DlCH/UiNOc5WlSJXIc6UZfOm+j+5kqwLQy/9jzihgY6OMw/y8MKhNOGYNjNf721//vGTWCEpn4BI1RGVlZThw4ABmz56tfs3NzQ19+/ZFenq65N/cunULt27dUv9eWFho83JS7aSQuaG99kBrg7OfLxwinzfETcGh9I5KroZOrsbHUG2MZg1uSVk5Jvz3gFYzxa8Zl/Bkj6YmD36Qq83pEx+M/2w9Y/EACrmaZrn3G9s1RnLUnmpY92e/Zxl8P1s2zxjqSqCbJNJYDZWhDuACQjIRqxugDr50y1BcVmGwxtCcUcDmJNBMbOwn+V6qoLS2cImAKD8/HxUVFQgJCdF6PSQkBCdPSmeiXbhwIebPn18TxaNaTmoYtUIB9GkZIvcnADSSY+7Owmc7/7lBKO5UjbNGz7kYCnKNjZJS9dWRmn6hpKzS5FFUcjd7a0xjIRUIGuunKLX9sd1i9IZ1a466rInmGUNdCcxpkjY2UlcqQJ45IF4v+FKVIVdZanRyZlMDRXNG67nKiGOXCIgsMXv2bDz33HPq3wsLCxEREWHHEpGzUg2j1u1HYOoQbFWH6wPZ16FQwKmHtbo61dxgutMomHJzMXRTSo5tZHJnermbva065Ju7XbkgqqYHC1ijL56xgFB3nraZA+LxZI9Y2TLobk9x50lLwPxA0Zwgx9LUBc7GJYbdl5WVwdvbG9999x0GDx6sfn306NEoKCjAjz/+aHQbtXHYPdUsc4b9Uu1maXoEV0qrUJu+L4b2xZL91PwbQH9yZlOZez4562di6v3bJQIiAOjUqRPuvvtufPzxxwCAyspKREZGYurUqZg1a5bRv2dARETWZOnNxVlvSuSYXOF8Yh4iHc899xxGjx6NDh064O6778YHH3yA4uJijB071t5FIyIXZGmTDNMqkDXxfPqHywREw4YNw5UrV/Dqq68iLy8Pd911F3755Re9jtZERETkelymyay62GRGRETkfEy9f7tMYkYiIiIiOQyIiIiIyOUxICIiIiKXx4CIiIiIXB4DIiIiInJ5DIiIiIjI5TEgIiIiIpfHgIiIiIhcHgMiIiIicnkuM3VHdakSehcWFtq5JERERGQq1X3b2MQcDIhMdOPGDQBARESEnUtCRERE5rpx4wb8/Pxkl3MuMxNVVlbi4sWLaNCgARQKhcXbKSwsREREBM6dO+eyc6LxGPAYADwGAI8BwGMA8BgAtj0GQgjcuHED4eHhcHOT7ynEGiITubm5oUmTJlbbnq+vr8ue+Co8BjwGAI8BwGMA8BgAPAaA7Y6BoZohFXaqJiIiIpfHgIiIiIhcHgOiGubp6Ym5c+fC09PT3kWxGx4DHgOAxwDgMQB4DAAeA8AxjgE7VRMREZHLYw0RERERuTwGREREROTyGBARERGRy2NARERERC6PAZEVLF68GG3atFEnlEpOTsbGjRvVy2/evIkpU6agUaNGqF+/PoYOHYpLly5pbSMnJweDBg2Ct7c3goOD8eKLL+L27ds1vStWk5qaCoVCgenTp6tfq+3HYd68eVAoFFo/8fHx6uW1ff9VLly4gMceewyNGjWCl5cXEhMTsX//fvVyIQReffVVhIWFwcvLC3379sXp06e1tnHt2jWMHDkSvr6+8Pf3x/jx41FUVFTTu2KR6OhovfNAoVBgypQpAFzjPKioqMCcOXMQExMDLy8vxMbG4vXXX9eaS6q2nwdA1VQR06dPR1RUFLy8vNClSxfs27dPvby2HYOdO3fivvvuQ3h4OBQKBX744Qet5dba36NHj6J79+6oV68eIiIi8Pbbb1tnBwRV27p168T69evFX3/9JU6dOiVeeuklUbduXZGRkSGEEOKpp54SERERYsuWLWL//v2ic+fOokuXLuq/v337tkhISBB9+/YVhw4dEhs2bBCBgYFi9uzZ9tqlavnjjz9EdHS0aNOmjXjmmWfUr9f24zB37lzRunVrkZubq/65cuWKenlt338hhLh27ZqIiooSY8aMEXv37hV///23+PXXX8WZM2fU66Smpgo/Pz/xww8/iCNHjoj7779fxMTEiNLSUvU6/fv3F0lJSWLPnj3i999/F82aNROPPvqoPXbJbJcvX9Y6BzZv3iwAiG3btgkhXOM8ePPNN0WjRo3Ezz//LLKyssTq1atF/fr1xYcffqhep7afB0II8cgjj4hWrVqJHTt2iNOnT4u5c+cKX19fcf78eSFE7TsGGzZsEC+//LJYs2aNACDWrl2rtdwa+6tUKkVISIgYOXKkyMjIECtXrhReXl7i008/rXb5GRDZSMOGDcUXX3whCgoKRN26dcXq1avVy06cOCEAiPT0dCFE1Unk5uYm8vLy1OssXrxY+Pr6ilu3btV42avjxo0bonnz5mLz5s2iZ8+e6oDIFY7D3LlzRVJSkuQyV9h/IYSYOXOm6Natm+zyyspKERoaKt555x31awUFBcLT01OsXLlSCCHE8ePHBQCxb98+9TobN24UCoVCXLhwwXaFt5FnnnlGxMbGisrKSpc5DwYNGiTGjRun9dqQIUPEyJEjhRCucR6UlJQId3d38fPPP2u93q5dO/Hyyy/X+mOgGxBZa38/+eQT0bBhQ63vwsyZM0WLFi2qXWY2mVlZRUUFvvnmGxQXFyM5ORkHDhxAeXk5+vbtq14nPj4ekZGRSE9PBwCkp6cjMTERISEh6nVSUlJQWFiIP//8s8b3oTqmTJmCQYMGae0vAJc5DqdPn0Z4eDiaNm2KkSNHIicnB4Dr7P+6devQoUMHPPzwwwgODkbbtm3x+eefq5dnZWUhLy9P6zj4+fmhU6dOWsfB398fHTp0UK/Tt29fuLm5Ye/evTW3M1ZQVlaGr776CuPGjYNCoXCZ86BLly7YsmUL/vrrLwDAkSNHsGvXLgwYMACAa5wHt2/fRkVFBerVq6f1upeXF3bt2uUSx0CTtfY3PT0dPXr0gIeHh3qdlJQUnDp1CtevX69WGTm5q5UcO3YMycnJuHnzJurXr4+1a9eiVatWOHz4MDw8PODv76+1fkhICPLy8gAAeXl5Whc/1XLVMmfxzTff4ODBg1pt5Cp5eXm1/jh06tQJy5cvR4sWLZCbm4v58+eje/fuyMjIcIn9B4C///4bixcvxnPPPYeXXnoJ+/btw7Rp0+Dh4YHRo0er90NqPzWPQ3BwsNbyOnXqICAgwGmOg8oPP/yAgoICjBkzBoBrfA8AYNasWSgsLER8fDzc3d1RUVGBN998EyNHjgQAlzgPGjRogOTkZLz++uto2bIlQkJCsHLlSqSnp6NZs2YucQw0WWt/8/LyEBMTo7cN1bKGDRtaXEYGRFbSokULHD58GEqlEt999x1Gjx6NHTt22LtYNebcuXN45plnsHnzZr0nIlehevoFgDZt2qBTp06IiorCt99+Cy8vLzuWrOZUVlaiQ4cOWLBgAQCgbdu2yMjIwJIlSzB69Gg7l67mffnllxgwYADCw8PtXZQa9e233+Lrr7/GihUr0Lp1axw+fBjTp09HeHi4S50H//vf/zBu3Dg0btwY7u7uaNeuHR599FEcOHDA3kUjCWwysxIPDw80a9YM7du3x8KFC5GUlIQPP/wQoaGhKCsrQ0FBgdb6ly5dQmhoKAAgNDRUb5SJ6nfVOo7uwIEDuHz5Mtq1a4c6deqgTp062LFjBz766CPUqVMHISEhLnEcNPn7+yMuLg5nzpxxmfMgLCwMrVq10nqtZcuW6qZD1X5I7afmcbh8+bLW8tu3b+PatWtOcxwA4OzZs/jtt98wYcIE9Wuuch68+OKLmDVrFoYPH47ExESMGjUKzz77LBYuXAjAdc6D2NhY7NixA0VFRTh37hz++OMPlJeXo2nTpi5zDFSstb+2/H4wILKRyspK3Lp1C+3bt0fdunWxZcsW9bJTp04hJycHycnJAIDk5GQcO3ZM60TYvHkzfH199W4ujqpPnz44duwYDh8+rP7p0KEDRo4cqf63KxwHTUVFRcjMzERYWJjLnAddu3bFqVOntF7766+/EBUVBQCIiYlBaGio1nEoLCzE3r17tY5DQUGB1lP01q1bUVlZiU6dOtXAXljHsmXLEBwcjEGDBqlfc5XzoKSkBG5u2rcXd3d3VFZWAnCt8wAAfHx8EBYWhuvXr+PXX3/FAw884HLHwFr7m5ycjJ07d6K8vFy9zubNm9GiRYtqNZcB4LB7a5g1a5bYsWOHyMrKEkePHhWzZs0SCoVCbNq0SQhRNcw2MjJSbN26Vezfv18kJyeL5ORk9d+rhtn269dPHD58WPzyyy8iKCjIqYbZStEcZSZE7T8Ozz//vNi+fbvIysoSu3fvFn379hWBgYHi8uXLQojav/9CVKVcqFOnjnjzzTfF6dOnxddffy28vb3FV199pV4nNTVV+Pv7ix9//FEcPXpUPPDAA5JDb9u2bSv27t0rdu3aJZo3b+6wQ42lVFRUiMjISDFz5ky9Za5wHowePVo0btxYPex+zZo1IjAwUMyYMUO9jiucB7/88ovYuHGj+Pvvv8WmTZtEUlKS6NSpkygrKxNC1L5jcOPGDXHo0CFx6NAhAUC899574tChQ+Ls2bNCCOvsb0FBgQgJCRGjRo0SGRkZ4ptvvhHe3t4cdu8oxo0bJ6KiooSHh4cICgoSffr0UQdDQghRWloqJk+eLBo2bCi8vb3Fgw8+KHJzc7W2kZ2dLQYMGCC8vLxEYGCgeP7550V5eXlN74pV6QZEtf04DBs2TISFhQkPDw/RuHFjMWzYMK38O7V9/1V++uknkZCQIDw9PUV8fLz47LPPtJZXVlaKOXPmiJCQEOHp6Sn69OkjTp06pbXO1atXxaOPPirq168vfH19xdixY8WNGzdqcjeq5ddffxUA9PZLCNc4DwoLC8UzzzwjIiMjRb169UTTpk3Fyy+/rDVU2hXOg1WrVommTZsKDw8PERoaKqZMmSIKCgrUy2vbMdi2bZsAoPczevRoIYT19vfIkSOiW7duwtPTUzRu3FikpqZapfwKITRShxIRERG5IPYhIiIiIpfHgIiIiIhcHgMiIiIicnkMiIiIiMjlMSAiIiIil8eAiIiIiFweAyIiIiJyeQyIiIiIyOUxICJyMXl5eXj66afRtGlTeHp6IiIiAvfdd5/WHENpaWkYOHAgGjZsiHr16iExMRHvvfceKioq1OtkZ2dj/PjxiImJgZeXF2JjYzF37lyUlZVpvd/nn3+OpKQk1K9fH/7+/mjbtq16kk8AmDdvHhQKBfr3769X1nfeeQcKhQK9evUyul/R0dFQKBSyP2PGjDH/YDm4Xr16Yfr06fYuBlGtUMfeBSCimpOdnY2uXbvC398f77zzDhITE1FeXo5ff/0VU6ZMwcmTJ7F27Vo88sgjGDt2LLZt2wZ/f3/89ttvmDFjBtLT0/Htt99CoVDg5MmTqKysxKeffopmzZohIyMDEydORHFxMd59910AwNKlSzF9+nR89NFH6NmzJ27duoWjR48iIyNDq1xhYWHYtm0bzp8/jyZNmqhfX7p0KSIjI03at3379qkDtrS0NAwdOhSnTp2Cr68vAMDLy8sah7BGlJeXo27dujX2fmVlZfDw8Kix9yNySFaZAISInMKAAQNE48aNRVFRkd6y69evi6KiItGoUSMxZMgQveXr1q0TAMQ333wju/23335bxMTEqH9/4IEHxJgxYwyWae7cuSIpKUnce++94o033lC/vnv3bhEYGCgmTZokevbsacLe/UM1p9L169fVr/3www+ibdu2wtPTU8TExIh58+ZpzQ8GQCxZskQMGjRIeHl5ifj4eJGWliZOnz4tevbsKby9vUVycrLW/HSqsi9ZskQ0adJEeHl5iYcfflhrviohhPj8889FfHy88PT0FC1atBCLFi1SL8vKylIf1x49eghPT0+xbNkykZ+fL4YPHy7Cw8OFl5eXSEhIECtWrFD/3ejRo/XmjMrKyhLLli0Tfn5+Wu+/du1aoXm5V5X7888/F9HR0UKhUAghqs6B8ePHi8DAQNGgQQPRu3dvcfjwYbOOPZGzYpMZkYu4du0afvnlF0yZMgU+Pj56y/39/bFp0yZcvXoVL7zwgt7y++67D3FxcVi5cqXseyiVSgQEBKh/Dw0NxZ49e3D27Fmj5Rs3bhyWL1+u/n3p0qUYOXKkVWoufv/9dzz++ON45plncPz4cXz66adYvnw53nzzTa31Xn/9dTz++OM4fPgw4uPjMWLECDz55JOYPXs29u/fDyEEpk6dqvU3Z86cwbfffouffvoJv/zyCw4dOoTJkyerl3/99dd49dVX8eabb+LEiRNYsGAB5syZg//7v//T2s6sWbPwzDPP4MSJE0hJScHNmzfRvn17rF+/HhkZGXjiiScwatQo/PHHHwCADz/8EMnJyZg4cSJyc3ORm5uLiIgIk4/JmTNn8P3332PNmjU4fPgwAODhhx/G5cuXsXHjRhw4cADt2rVDnz59cO3aNXMON5FzsndERkQ1Y+/evQKAWLNmjew6qampejUrmu6//37RsmVLyWWnT58Wvr6+WrPbX7x4UXTu3FkAEHFxcWL06NFi1apVoqKiQr2OqrairKxMBAcHix07doiioiLRoEEDceTIEfHMM89Uu4aoT58+YsGCBVrr/O9//xNhYWHq3wGIV155Rf17enq6ACC+/PJL9WsrV64U9erV0yq7u7u7OH/+vPq1jRs3Cjc3N/UM9rGxsVo1O0II8frrr4vk5GQhxD81RB988IHR/Ro0aJB4/vnn1b/37NlTPPPMM1rrmFpDVLduXXH58mX1a7///rvw9fUVN2/e1Prb2NhY8emnnxotG5GzYx8iIhchhLDJugBw4cIF9O/fHw8//DAmTpyofj0sLAzp6enIyMjAzp07kZaWhtGjR+OLL77AL7/8Aje3fyqp69ati8ceewzLli3D33//jbi4OLRp08ascsg5cuQIdu/erVUjVFFRgZs3b6KkpATe3t4AoPV+ISEhAIDExESt127evInCwkJ136TIyEg0btxYvU5ycjIqKytx6tQpNGjQAJmZmRg/frzWcbl9+zb8/Py0ytihQwet3ysqKrBgwQJ8++23uHDhAsrKynDr1i11WasrKioKQUFB6t+PHDmCoqIiNGrUSGu90tJSZGZmWuU9iRwZAyIiF9G8eXN1Z2g5cXFxAIATJ06gS5cuestPnDiBVq1aab128eJF9O7dG126dMFnn30mud2EhAQkJCRg8uTJeOqpp9C9e3fs2LEDvXv31lpv3Lhx6NSpEzIyMjBu3Dhzd1FWUVER5s+fjyFDhugtq1evnvrfmh2ZFQqF7GuVlZUmvy9QNdKuU6dOWsvc3d21ftdtxnznnXfw4Ycf4oMPPkBiYiJ8fHwwffp0vVF8utzc3PQC2vLycr31dN+vqKgIYWFh2L59u966/v7+Bt+TqDZgQETkIgICApCSkoJFixZh2rRpejfEgoIC9OvXDwEBAfj3v/+tFxCtW7cOp0+fxuuvv65+7cKFC+jduzfat2+PZcuWadX4yFEFVMXFxXrLWrdujdatW+Po0aMYMWKEJbspqV27djh16hSaNWtmtW2q5OTk4OLFiwgPDwcA7NmzB25ubmjRogVCQkIQHh6Ov//+GyNHjjRru7t378YDDzyAxx57DEBVEPbXX39pBaQeHh5aqRAAICgoCDdu3EBxcbH6M1b1ETKkXbt2yMvLQ506dRAdHW1WWYlqAwZERC5k0aJF6Nq1K+6++2689tpraNOmDW7fvo3Nmzdj8eLFOHHiBD799FMMHz4cTzzxBKZOnQpfX19s2bIFL774Ih566CE88sgjAKqCoV69eiEqKgrvvvsurly5on6f0NBQAMCkSZMQHh6Oe+65B02aNEFubi7eeOMNBAUFITk5WbKMW7duRXl5uVVrJV599VXce++9iIyMxEMPPQQ3NzccOXIEGRkZeOONN6q17Xr16mH06NF49913UVhYiGnTpuGRRx5RH4P58+dj2rRp8PPzQ//+/XHr1i3s378f169fx3PPPSe73ebNm+O7775DWloaGjZsiPfeew+XLl3SCoiio6Oxd+9eZGdno379+ggICECnTp3g7e2Nl156CdOmTcPevXu1OqvL6du3L5KTkzF48GC8/fbbiIuLw8WLF7F+/Xo8+OCDek16RLUNR5kRuZCmTZvi4MGD6N27N55//nkkJCTgX//6F7Zs2YLFixcDAB566CFs27YNOTk56N69O1q0aIH3338fL7/8Mr755ht1s9HmzZtx5swZbNmyBU2aNEFYWJj6R6Vv377Ys2cPHn74YcTFxWHo0KGoV68etmzZotdXRcXHx8fqTTQpKSn4+eefsWnTJnTs2BGdO3fG+++/j6ioqGpvu1mzZhgyZAgGDhyIfv36oU2bNvjkk0/UyydMmIAvvvgCy5YtQ2JiInr27Inly5cjJibG4HZfeeUVtGvXDikpKejVqxdCQ0MxePBgrXVeeOEFuLu7o1WrVggKCkJOTg4CAgLw1VdfYcOGDUhMTMTKlSsxb948o/uhUCiwYcMG9OjRA2PHjkVcXByGDx+Os2fPqvtTEdVmCmFu70kiIgJQlWX7hx9+MKlJiogcG2uIiIiIyOUxICIip1G/fn3Zn99//93exSMiJ8YmMyJyGmfOnJFd1rhxY6ear4yIHAsDIiIiInJ5bDIjIiIil8eAiIiIiFweAyIiIiJyeQyIiIiIyOUxICIiIiKXx4CIiIiIXB4DIiIiInJ5DIiIiIjI5f0/0xTfboYSSUIAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB75klEQVR4nO3dd3gU1foH8O8mkJAE0kiABNMIhAAJSDd0FIGIBUEFRaVbAJHrVQw2UNQE8VovIhcl+FNpIiAqVUB670jHQCihRFJIIYHk/P6Iu26Z2d3Zkp1Nvp/n4dHszM6emZ2deeec95yjEUIIEBEREamQh6sLQERERCSHgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoR2W3KlCnQaDRWravRaDBlyhSnlqdHjx7o0aOHardHRNZjoEJUhcydOxcajUb3r0aNGmjYsCGGDRuGixcvurp4qhMdHW1wvOrVq4euXbti6dKlDtl+UVERpkyZgt9//90h2yOqjhioEFVB77zzDr799lt8+eWXSE5OxnfffYfu3bvj5s2bTvm8N954A8XFxU7ZtrPdeeed+Pbbb/Htt9/i5ZdfxqVLlzBgwAB8+eWXdm+7qKgIb7/9NgMVIjvUcHUBiMjxkpOT0a5dOwDAqFGjEBISgmnTpmH58uV47LHHHP55NWrUQI0a7nk5adiwIZ588knd308//TQaN26Mjz/+GM8995wLS0ZEAGtUiKqFrl27AgDOnDlj8Prx48fxyCOPIDg4GLVq1UK7du2wfPlyg3Vu3bqFt99+G02aNEGtWrVQt25ddOnSBWvXrtWtI5WjUlJSgn/9618IDQ1FnTp18OCDD+LChQsmZRs2bBiio6NNXpfaZnp6Ou6++27Uq1cP3t7eaN68OWbOnKnoWFjSoEEDNGvWDBkZGWbXu3r1KkaOHIn69eujVq1aaNWqFb755hvd8rNnzyI0NBQA8Pbbb+ual5ydn0NU1bjnIxARKXL27FkAQFBQkO61P/74A507d0bDhg2RkpICPz8/LFq0CP3798ePP/6Ihx9+GEBFwJCamopRo0ahQ4cOyM/Px549e7Bv3z7ce++9sp85atQofPfdd3jiiSfQqVMnrF+/Hv369bNrP2bOnIkWLVrgwQcfRI0aNfDzzz9jzJgxKC8vx9ixY+3attatW7dw/vx51K1bV3ad4uJi9OjRA6dPn8a4ceMQExODH374AcOGDUNubi5efPFFhIaGYubMmXj++efx8MMPY8CAAQCAli1bOqScRNWGIKIqIz09XQAQv/32m7h27Zo4f/68WLx4sQgNDRXe3t7i/PnzunXvuecekZiYKG7evKl7rby8XHTq1Ek0adJE91qrVq1Ev379zH7u5MmThf7l5MCBAwKAGDNmjMF6TzzxhAAgJk+erHtt6NChIioqyuI2hRCiqKjIZL0+ffqIRo0aGbzWvXt30b17d7NlFkKIqKgo0bt3b3Ht2jVx7do1cfDgQTF48GABQLzwwguy2/vkk08EAPHdd9/pXistLRVJSUmidu3aIj8/XwghxLVr10z2l4iUYdMPURXUq1cvhIaGIiIiAo888gj8/PywfPly3HHHHQCA69evY/369Xjsscdw48YNZGdnIzs7G3/99Rf69OmDU6dO6XoJBQYG4o8//sCpU6es/vwVK1YAAMaPH2/w+oQJE+zaLx8fH93/5+XlITs7G927d8eff/6JvLw8m7a5Zs0ahIaGIjQ0FK1atcIPP/yAp556CtOmTZN9z4oVK9CgQQM8/vjjutdq1qyJ8ePHo6CgABs3brSpLERkik0/RFXQjBkzEBcXh7y8PMyZMwebNm2Ct7e3bvnp06chhMCbb76JN998U3IbV69eRcOGDfHOO+/goYceQlxcHBISEtC3b1889dRTZpswzp07Bw8PD8TGxhq83rRpU7v2a+vWrZg8eTK2b9+OoqIig2V5eXkICAhQvM2OHTvi3XffhUajga+vL5o1a4bAwECz7zl37hyaNGkCDw/DZ71mzZrplhORYzBQIaqCOnTooOv1079/f3Tp0gVPPPEETpw4gdq1a6O8vBwA8PLLL6NPnz6S22jcuDEAoFu3bjhz5gx++uknrFmzBl999RU+/vhjfPnllxg1apTdZZUbKK6srMzg7zNnzuCee+5BfHw8PvroI0RERMDLywsrVqzAxx9/rNsnpUJCQtCrVy+b3ktEzsdAhaiK8/T0RGpqKnr27In//ve/SElJQaNGjQBUNFdYc5MODg7G8OHDMXz4cBQUFKBbt26YMmWKbKASFRWF8vJynDlzxqAW5cSJEybrBgUFITc31+R141qJn3/+GSUlJVi+fDkiIyN1r2/YsMFi+R0tKioKhw4dQnl5uUGtyvHjx3XLAfkgjIisxxwVomqgR48e6NChAz755BPcvHkT9erVQ48ePTBr1ixkZWWZrH/t2jXd///1118Gy2rXro3GjRujpKRE9vOSk5MBAJ999pnB65988onJurGxscjLy8OhQ4d0r2VlZZmMDuvp6QkAEELoXsvLy0N6erpsOZzlvvvuw+XLl7Fw4ULda7dv38bnn3+O2rVro3v37gAAX19fAJAMxIjIOqxRIaomXnnlFTz66KOYO3cunnvuOcyYMQNdunRBYmIiRo8ejUaNGuHKlSvYvn07Lly4gIMHDwIAmjdvjh49eqBt27YIDg7Gnj17sHjxYowbN072s+688048/vjj+OKLL5CXl4dOnTph3bp1OH36tMm6gwcPxquvvoqHH34Y48ePR1FREWbOnIm4uDjs27dPt17v3r3h5eWFBx54AM8++ywKCgowe/Zs1KtXTzLYcqZnnnkGs2bNwrBhw7B3715ER0dj8eLF2Lp1Kz755BPUqVMHQEXyb/PmzbFw4ULExcUhODgYCQkJSEhIqNTyErk1V3c7IiLH0XZP3r17t8mysrIyERsbK2JjY8Xt27eFEEKcOXNGPP3006JBgwaiZs2aomHDhuL+++8Xixcv1r3v3XffFR06dBCBgYHCx8dHxMfHi/fee0+Ulpbq1pHqSlxcXCzGjx8v6tatK/z8/MQDDzwgzp8/L9ldd82aNSIhIUF4eXmJpk2biu+++05ym8uXLxctW7YUtWrVEtHR0WLatGlizpw5AoDIyMjQraeke7Klrtdy27ty5YoYPny4CAkJEV5eXiIxMVGkp6ebvHfbtm2ibdu2wsvLi12ViWygEUKvHpWIiIhIRZijQkRERKrFQIWIiIhUi4EKERERqRYDFSIiIlItBipERESkWgxUiIiISLXcesC38vJyXLp0CXXq1OFQ1URERG5CCIEbN24gPDzcZHJPY24dqFy6dAkRERGuLgYRERHZ4Pz587jjjjvMruPWgYp2mOrz58/D39/fxaUhIiIia+Tn5yMiIkJ3HzfHrQMVbXOPv78/AxUiIiI3Y03aBpNpiYiISLUYqBAREZFqMVAhIiIi1XLrHBUiIrUpLy9HaWmpq4tB5FI1a9aEp6enQ7bFQIWIyEFKS0uRkZGB8vJyVxeFyOUCAwPRoEEDu8c5c2mgUlZWhilTpuC7777D5cuXER4ejmHDhuGNN97gAG5E5FaEEMjKyoKnpyciIiIsDmJFVFUJIVBUVISrV68CAMLCwuzanksDlWnTpmHmzJn45ptv0KJFC+zZswfDhw9HQEAAxo8f78qiEREpcvv2bRQVFSE8PBy+vr6uLg6RS/n4+AAArl69inr16tnVDOTSQGXbtm146KGH0K9fPwBAdHQ05s+fj127drmyWEREipWVlQEAvLy8XFwSInXQBuy3bt2yK1Bxad1kp06dsG7dOpw8eRIAcPDgQWzZsgXJycmS65eUlCA/P9/gHxGRmrDZmqiCo34LLq1RSUlJQX5+PuLj4+Hp6YmysjK89957GDJkiOT6qampePvttyu5lEREROQqLq1RWbRoEb7//nvMmzcP+/btwzfffIMPP/wQ33zzjeT6kyZNQl5enu7f+fPnK7nEREREVJlcGqi88sorSElJweDBg5GYmIinnnoK//rXv5Camiq5vre3t25en8qY3ycrrxjbzmQjK6/YqZ9DRORqly9fxgsvvIBGjRrB29sbEREReOCBB7Bu3TrdOtu2bcN9992HoKAg1KpVC4mJifjoo490+TkAcPbsWYwcORIxMTHw8fFBbGwsJk+ebDK2zOzZs9GqVSvUrl0bgYGBaN26tcG1f8qUKdBoNOjbt69JWadPnw6NRoMePXpYvX/5+fl4/fXXER8fj1q1aqFBgwbo1asXlixZAiGEbr0//vgDjz32GEJDQ+Ht7Y24uDi89dZbKCoq0q1z/fp1vPDCC2jatCl8fHwQGRmJ8ePHIy8vz6qynD17FhqNRvLfjh07rN6nHj16YMKECVav765c2vRTVFRk0oXP09NTFWMQLNydiUlLDqNcAB4aIHVAIga1j3R1sYiIHO7s2bPo3LkzAgMDMX36dCQmJuLWrVtYvXo1xo4di+PHj2Pp0qV47LHHMHz4cGzYsAGBgYH47bffMHHiRGzfvh2LFi2CRqPB8ePHUV5ejlmzZqFx48Y4cuQIRo8ejcLCQnz44YcAgDlz5mDChAn47LPP0L17d5SUlODQoUM4cuSIQbnCwsKwYcMGXLhwAXfccYfu9Tlz5iAy0vrrcW5uLrp06YK8vDy8++67aN++PWrUqIGNGzdi4sSJuPvuuxEYGIgdO3agV69e6NWrF3799VfUr18fu3btwr///W+sW7cOGzZsgJeXFy5duoRLly7hww8/RPPmzXHu3Dk899xzuHTpEhYvXmx1uX777Te0aNHC4LW6deta/X5rCCFQVlaGGjXceNg04UJDhw4VDRs2FL/88ovIyMgQS5YsESEhIWLixIlWvT8vL08AEHl5eQ4t16XcIhGT8ouIevWff41SfhWXcosc+jlEVHUUFxeLo0ePiuLiYlcXRbHk5GTRsGFDUVBQYLIsJydHFBQUiLp164oBAwaYLF++fLkAIBYsWCC7/Q8++EDExMTo/n7ooYfEsGHDzJZp8uTJolWrVuL+++8X7777ru71rVu3ipCQEPH888+L7t27W7F3Qjz//PPCz89PXLx40WTZjRs3xK1bt0R5eblo3ry5aNeunSgrKzNY58CBA0Kj0Yi0tDTZz1i0aJHw8vISt27dsliejIwMAUDs379fdh3t/v/f//2fiIqKEv7+/mLQoEEiPz9fCFFx/wRg8C8jI0Ns2LBBABArVqwQbdq0ETVr1hQbNmwQN2/eFC+88IIIDQ0V3t7eonPnzmLXrl26z9O+75dffhGJiYnC29tbdOzYURw+fFgIIURBQYGoU6eO+OGHHwzKuXTpUuHr66srlz5zvwkl92+XNv18/vnneOSRRzBmzBg0a9YML7/8Mp599llMnTrVlcVCRnYhyoXha2VC4Gx2kfQbiIgcqDKbna9fv45Vq1Zh7Nix8PPzM1keGBiINWvW4K+//sLLL79ssvyBBx5AXFwc5s+fL/sZeXl5CA4O1v3doEED7NixA+fOnbNYvhEjRmDu3Lm6v+fMmYMhQ4ZY3Q28vLwcCxYswJAhQxAeHm6yvHbt2qhRowYOHDiAo0eP4qWXXjKp6W/VqhV69eplcR/9/f0dWnNx5swZLFu2DL/88gt++eUXbNy4EWlpaQCATz/9FElJSRg9ejSysrKQlZWFiIgI3XtTUlKQlpaGY8eOoWXLlpg4cSJ+/PFHfPPNN9i3bx8aN26MPn364Pr16waf+corr+A///kPdu/ejdDQUDzwwAO4desW/Pz8MHjwYKSnpxusn56ejkceeQR16tRx2H4bc2mgUqdOHXzyySc4d+4ciouLcebMGbz77rsuH4cgJsQPHka9qjw1GkSHcBAnInKuhbsz0TltPZ6YvROd09Zj4e5Mp37e6dOnIYRAfHy87DraISSaNWsmuTw+Pl63jtT2P//8czz77LO61yZPnozAwEBER0ejadOmGDZsGBYtWiTZ7H///fcjPz8fmzZtQmFhIRYtWoQRI0ZYvX/Z2dnIyckxu3+A5X1s1qyZ7D5mZ2dj6tSpeOaZZ6wuF1AxREft2rUN/ukrLy/H3LlzkZCQgK5du+Kpp57S5QwFBATAy8sLvr6+aNCgARo0aGAwVsk777yDe++9F7GxsfD29sbMmTMxffp0JCcno3nz5pg9ezZ8fHzw9ddfG3zm5MmTce+99yIxMRHffPMNrly5gqVLlwIARo0ahdWrVyMrKwtAxWBuK1asUPR92IJjPEsIC/BB6oBEeP7dB9xTo8H7AxIQFuDj4pIRUVWWlVesy40DgHIBvLbkiFNrVoQQlleyYV0AuHjxIvr27YtHH30Uo0eP1r0eFhaG7du34/Dhw3jxxRdx+/ZtDB06FH379jUJVmrWrIknn3wS6enp+OGHHxAXF4eWLVs6rcxK18/Pz0e/fv3QvHlzTJkyRdF7Fy5ciAMHDhj80xcdHW1QUxEWFqYblt6Sdu3a6f7/zJkzuHXrFjp37qx7rWbNmujQoQOOHTtm8L6kpCTd/wcHB6Np06a6dTp06IAWLVroeuZ+9913iIqKQrdu3azbYRu5cXaNcw1qH4lucaE4m12E6BBfBilE5HTmmp2ddQ1q0qSJLglWTlxcHADg2LFj6NSpk8nyY8eOoXnz5gavXbp0CT179kSnTp3wv//9T3K7CQkJSEhIwJgxY/Dcc8+ha9eu2LhxI3r27Gmw3ogRI9CxY0ccOXJE8dN7aGgoAgMDze4fYLiPrVu3Nll+7Ngx3TpaN27cQN++fVGnTh0sXboUNWvWVFS2iIgING7cWHa58fY0Go3VnU2kmvEcYdSoUZgxYwZSUlKQnp6O4cOHO32QQ9aomBEW4IOk2LoMUoioUrii2Tk4OBh9+vTBjBkzUFhYaLI8NzcXvXv3RnBwMP7zn/+YLF++fDlOnTqFxx9/XPfaxYsX0aNHD7Rt2xbp6elWTdCoDXSkytCiRQu0aNECR44cwRNPPKFk9+Dh4YHBgwfj+++/x6VLl0yWFxQU4Pbt27jzzjsRHx+Pjz/+2CQYOHjwIH777TeDfczPz0fv3r3h5eWF5cuXo1atWorK5QheXl4GXcPlxMbGwsvLC1u3btW9duvWLezevdskwNTvHp2Tk4OTJ08aNIc9+eSTOHfuHD777DMcPXoUQ4cOdcCemMdAhYhIJVzV7DxjxgyUlZWhQ4cO+PHHH3Hq1CkcO3YMn332GZKSkuDn54dZs2bhp59+wjPPPINDhw7h7Nmz+PrrrzFs2DA88sgjeOyxxwD8E6RERkbiww8/xLVr13D58mVcvnxZ93nPP/88pk6diq1bt+LcuXPYsWMHnn76aYSGhho0Pehbv349srKyEBgYqHj/3nvvPURERKBjx474v//7Pxw9ehSnTp3CnDlz0Lp1axQUFECj0eDrr7/G0aNHMXDgQOzatQuZmZn44Ycf8MADDyApKUk3Zok2SCksLMTXX3+N/Px83T5aEzho/fXXX7r3af/dvHnT6vdHR0dj586dOHv2LLKzs2VrW/z8/PD888/jlVdewapVq3D06FGMHj0aRUVFGDlypMG677zzDtatW4cjR45g2LBhCAkJQf/+/XXLg4KCMGDAALzyyivo3bu3Qbdxp7HYL0jFnNU9mYhIKUd2T76UWyS2nc6u1CERLl26JMaOHSuioqKEl5eXaNiwoXjwwQfFhg0bdOts2rRJ9OnTR/j7+wsvLy/RokUL8eGHH4rbt2/r1klPTzfpNqv9p7V48WJx3333ibCwMOHl5SXCw8PFwIEDxaFDh3TraLvnynnxxRet7p4shBC5ubkiJSVFNGnSRHh5eYn69euLXr16iaVLl4ry8nLdeocOHRIDBw4UwcHBombNmiI2Nla88cYborCwULeOtiuv1L+MjAyLZdF2T5b6N3/+fNn9//jjj0VUVJTu7xMnToi77rpL+Pj4mHRPzsnJMXhvcXGxeOGFF0RISIjZ7sk///yzaNGihfDy8hIdOnQQBw8eNCn/unXrBACxaNEis/vpqO7JGiEUZg6pSH5+PgICAnTdwoiIXOXmzZvIyMhATEyMS5oBiOzx+++/o2fPnsjJybFYa/Xtt9/iX//6Fy5dumS2l66534SS+zeTaYmIiMiioqIiZGVlIS0tDc8++2ylDSXCHBUiInJrxmOR6P/bvHlzpZfnueeeky3Pc889V+nlcZQPPvgA8fHxaNCgASZNmlRpn8umHyIiB2DTj+ucPn1adlnDhg3h41O5PTevXr2K/Px8yWX+/v6oV69epZbHVdj0Q0REBJgdi8QV6tWrV22CkcrAph8iIiJSLQYqREQO5Mat6UQOZe0oupaw6YeIyAFq1qwJjUaDa9euITQ01OnDihOplRACpaWluHbtGjw8POzuHcRAhYjIATw9PXHHHXfgwoULOHv2rKuLQ+Ryvr6+iIyMtGoKBXMYqBAROUjt2rXRpEkT3Lp1y9VFIXIpT09P1KhRwyE1iwxUiIgcyNPTE56enq4uBlGVwWRaIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFTLpYFKdHQ0NBqNyb+xY8e6slhERESkEjVc+eG7d+9GWVmZ7u8jR47g3nvvxaOPPurCUhEREZFauDRQCQ0NNfg7LS0NsbGx6N69u4tKRERERGqimhyV0tJSfPfddxgxYgQ0Go2ri0NEREQq4NIaFX3Lli1Dbm4uhg0bJrtOSUkJSkpKdH/n5+dXQsmIiIjIVVRTo/L1118jOTkZ4eHhsuukpqYiICBA9y8iIqISS0hERESVTSOEEK4uxLlz59CoUSMsWbIEDz30kOx6UjUqERERyMvLg7+/f2UUlYiIiOyUn5+PgIAAq+7fqmj6SU9PR7169dCvXz+z63l7e8Pb27uSSkVERESu5vKmn/LycqSnp2Po0KGoUUMVcRMRERGphMsDld9++w2ZmZkYMWKEq4tCREREKuPyKozevXtDBWkyREREpEIur1EhIiIiksNAhYiIiFSLgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoRERGpFgMVC7LyirHtTDay8opdXRQiIqJqx+WTEqrZwt2ZmLTkMMoF4KEBUgckYlD7SFcXi4iIqNpgjYqMrLxiXZACAOUCeG3JEdasEBERVSIGKjIysgt1QYpWmRA4m13kmgIRERFVQwxUZMSE+MFDY/iap0aD6BBf1xSIiIioGmKgIiMswAepAxLhqamIVjw1Grw/IAFhAT4uLhkREVH1wWRaMwa1j0S3uFCczS5CdIgvgxQiIqJKxkDFgrAAHwYoRERELsKmHyIiIlItBipERESkWgxUiIiISLUYqNiJQ+wTERE5D5Np7cAh9omIiJyLNSo24hD7REREzsdAxUYcYp+IiMj5GKjYiEPsExEROR8DFRtxiH0iIiLnYzKtHTjEPhERkXMxULETh9gnIiJyHjb9EBERkWoxUCEiIiLVcnmgcvHiRTz55JOoW7cufHx8kJiYiD179ri6WERERKQCLs1RycnJQefOndGzZ0+sXLkSoaGhOHXqFIKCglxZLCIiIlIJlwYq06ZNQ0REBNLT03WvxcTEuLBEREREpCYubfpZvnw52rVrh0cffRT16tVD69atMXv2bNn1S0pKkJ+fb/CPiIiIqi6XBip//vknZs6ciSZNmmD16tV4/vnnMX78eHzzzTeS66empiIgIED3LyIiopJLTERERJVJI4QQlldzDi8vL7Rr1w7btm3TvTZ+/Hjs3r0b27dvN1m/pKQEJSUlur/z8/MRERGBvLw8+Pv7V0qZiYiIyD75+fkICAiw6v7t0hqVsLAwNG/e3OC1Zs2aITMzU3J9b29v+Pv7G/wjIiKiqsulgUrnzp1x4sQJg9dOnjyJqKgoF5WIiIiI1MSlgcq//vUv7NixA++//z5Onz6NefPm4X//+x/Gjh3rymIRERGRSrg0UGnfvj2WLl2K+fPnIyEhAVOnTsUnn3yCIUOGuLJYREREpBIuTaa1l5JkHCIiIlIHt0mmJSIiIjKHgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFTLpkClsLDQ0eUgIiIiMmFToFK/fn2MGDECW7ZscXR5iIiIiHRsClS+++47XL9+HXfffTfi4uKQlpaGS5cuObpsREREVM3ZFKj0798fy5Ytw8WLF/Hcc89h3rx5iIqKwv33348lS5bg9u3bji4nERERVUMOmz35888/xyuvvILS0lKEhITgueeeQ0pKCnx9fR2xeUmcPZmIiMj9KLl/17Dng65cuYJvvvkGc+fOxblz5/DII49g5MiRuHDhAqZNm4YdO3ZgzZo19nwEERERVWM2BSpLlixBeno6Vq9ejebNm2PMmDF48sknERgYqFunU6dOaNasmaPKSURERNWQTYHK8OHDMXjwYGzduhXt27eXXCc8PByvv/66XYUjIiKi6s2mHJWioiKn5p5YizkqRERE7sfpOSq+vr4oKyvD0qVLcezYMQBAs2bN0L9/f9SoYVfaCxEREZGOTVHFH3/8gQceeABXrlxB06ZNAQDTpk1DaGgofv75ZyQkJDi0kERERFQ92TSOyqhRo5CQkIALFy5g37592LdvH86fP4+WLVvimWeecXQZiYiIqJqyqUblwIED2LNnD4KCgnSvBQUF4b333pNNriUiIiJSyqYalbi4OFy5csXk9atXr6Jx48Z2F4qIiIgIsDFQSU1Nxfjx47F48WJcuHABFy5cwOLFizFhwgRMmzYN+fn5un9EREREtrKpe7KHxz/xjUajAQBoN6P/t0ajQVlZmSPKKYndk4mIiNyP07snb9iwwaaCERERESlhU6DSvXt3R5eDiIiIyITNo7Pl5ubi66+/1g341qJFC4wYMQIBAQEOKxwRERFVbzYl0+7ZswexsbH4+OOPcf36dVy/fh0fffQRYmNjsW/fPkeXkYiIiKopm5Jpu3btisaNG2P27Nm6IfNv376NUaNG4c8//8SmTZscXlApTKYlIiJyP0ru3zYFKj4+Pti/fz/i4+MNXj969CjatWuHoqIipZu0CQMVIiIi96Pk/m1T04+/vz8yMzNNXj9//jzq1KljyyaJiIiITNgUqAwaNAgjR47EwoULcf78eZw/fx4LFizAqFGj8Pjjj1u9nSlTpkCj0Rj8M66lISIiourLpl4/H374ITQaDZ5++mncvn0bAFCzZk08//zzSEtLU7StFi1a4LfffvunQDVs7ohEREREVYziqKCsrAw7duzAlClTkJqaijNnzgAAYmNj4evrq7wANWqgQYMGit9HREREVZ/iph9PT0/07t0bubm58PX1RWJiIhITE20KUgDg1KlTCA8PR6NGjTBkyBDJ3BetkpISg3mEOJcQERFR1WZTjkpCQgL+/PNPuz+8Y8eOmDt3LlatWoWZM2ciIyMDXbt2xY0bNyTXT01NRUBAgO5fRESE3WUgIiIi9bKpe/KqVaswadIkTJ06FW3btoWfn5/Bclu7Cufm5iIqKgofffQRRo4cabK8pKQEJSUlur/z8/MRERHB7slERERuxOmTEt53330AgAcffFA3WzJg/4zJgYGBiIuLw+nTpyWXe3t7w9vb26ZtExERkftR1ezJBQUFOHPmDJ566imnbJ+IiIjci02BSkxMDCIiIgxqU4CKGpXz589bvZ2XX34ZDzzwAKKionDp0iVMnjwZnp6eisZiISIioqrL5kAlKysL9erVM3j9+vXriImJsbrp58KFC3j88cfx119/ITQ0FF26dMGOHTsQGhpqS7GIiIioirEpUNHmohgrKChArVq1rN7OggULbPl4IiIiqiYUBSovvfQSAECj0eDNN980GDulrKwMO3fuxJ133unQArpKVl4xMrILERPih7AAH1cXh4iIqFpSFKjs378fQEWNyuHDh+Hl5aVb5uXlhVatWuHll192bAldYOHuTExachjlAvDQAKkDEjGofaSri0VERFTtKApUtL19hg8fjk8//bRKjl2SlVesC1IAoFwAry05gm5xoaxZISIiqmQ2jUybnp5eJYMUAMjILtQFKVplQuBsdpFrCkRERFSN2ZRMW1hYiLS0NKxbtw5Xr15FeXm5wXJHDK/vKjEhfvDQwCBY8dRoEB1i21xGREREZDubApVRo0Zh48aNeOqppxAWFibZA8hdhQX4IHVAIl5bcgRlQsBTo8H7AxLY7ENEROQCNs31ExgYiF9//RWdO3d2RpmspmSuAKWy8opxNrsI0SG+DFKIiIgcyOlz/QQFBSE4ONimwrmLsAAfBihEREQuZlMy7dSpU/HWW2+hqIgJpkREROQ8NtWo/Oc//8GZM2dQv359REdHo2bNmgbL9+3b55DCERERUfVmU6DSv39/BxeDiIiIyJRNybRq4cxkWiIiInIOJfdvRTkqu3btMjszcklJCRYtWqRkk0RERESyFAUqSUlJ+Ouvv3R/+/v7Gwzulpubi8cff9xxpSMiIqJqTVGgYtxKJNVq5MYtSURERKQyNnVPNqcqjVJLREREruXwQIWIiIjIURR3Tz569CguX74MoKKZ5/jx4ygoKAAAZGdnO7Z0REREVK0p6p7s4eEBjUYjmYeifV2j0ZjtGeRI7J5MRETkfpw2109GRoZdBSMiIiJSQlGgEhUVpWjjY8aMwTvvvIOQkBBF7yMiIiICnJxM+9133yE/P9+ZH0FERERVmFMDFY6pQkRERPZg92QiIiJSLQYqREREpFoMVIiIiEi1GKgQERGRajk1UHnyySc5EBsRERHZzKZApby8XPb1zMxM3d8zZ87kGCpERERkM0WBSn5+Ph577DH4+fmhfv36eOuttwyGy7927RpiYmIcXkgiIiKqnhSNTPvmm2/i4MGD+Pbbb5Gbm4t3330X+/btw5IlS+Dl5QWAY6cQERGR4yiqUVm2bBlmzZqFRx55BKNGjcKePXtw7do1PPDAAygpKQFQMTmhLdLS0qDRaDBhwgSb3q8WWXnF2HYmG1l5xa4uChERkdtTFKhcu3bNYL6fkJAQ/Pbbb7hx4wbuu+8+FBUV2VSI3bt3Y9asWWjZsqVN71eLhbsz0TltPZ6YvROd09Zj4e5My28iIiIiWYoClcjISBw7dszgtTp16mDNmjUoLi7Gww8/rLgABQUFGDJkCGbPno2goCDF71eLrLxiTFpyGOV/t3yVC+C1JUdYs0JERGQHRYFK7969kZ6ebvJ67dq1sXr1atSqVUtxAcaOHYt+/fqhV69eit+rJhnZhbogRatMCJzNtq2WiYiIiBQm07799tu4dOmS5LI6depg7dq12Ldvn9XbW7BgAfbt24fdu3dbtX5JSYkuFwaAqmZm9vPylHzd14tj6hEREdlK0V00KCgILVq0kF1ep04ddO/e3aptnT9/Hi+++CK+//57q2tiUlNTERAQoPsXERFh1fsqQ2FpmeTrRaXSY84QERGRZYof92/fvo3p06ejTZs2qF27NmrXro02bdrgww8/xK1bt6zezt69e3H16lW0adMGNWrUQI0aNbBx40Z89tlnqFGjhsH4LFqTJk1CXl6e7t/58+eVFt9pYkL84GHU4clTo0F0iK9rCkRERFQFaISCgU+Ki4tx7733Yvv27ejVqxeaNWsGADh27Bh+++03dO7cGWvWrLGqhuTGjRs4d+6cwWvDhw9HfHw8Xn31VSQkJFjcRn5+PgICApCXl6eKofoX7s7Ea0uOoEwIeGo0eH9AAga1j3R1sYiIiFRFyf1bUY5KWloazp8/j/3795t0JT548CAefPBBpKWlYcqUKRa3VadOHZNgxM/PD3Xr1rUqSFGjQe0j0S0uFGezixAd4ouwAB9XF4mIiMitKWr6WbBgAT766CPJ8U5atWqFDz/8EPPmzXNY4dxRWIAPkmLrMkghIiJyAEU1KufOnUOHDh1kl991110GkxIq9fvvv9v8XiIiIqp6FNWo+Pv74+rVq7LLL1++jDp16thdKCIiIiJAYaDSs2dPvP/++7LL09LS0LNnT7sLRURERAQobPqZPHkyOnbsiLvuugsvvfQS4uPjIYTAsWPH8PHHH+Po0aPYsWOHs8pKRERE1YyiQKV58+ZYu3YtRo4cicGDB+tmShZCID4+HmvWrDE7IBwRERGREooCFaAiYfaPP/7AgQMHcPLkSQBAXFwc7rzzTkeXjYiIiKo5xYFKfn4+ateujTvvvNMgOCkvL0dBQYEqBl4jIiKiqkFRMu3SpUvRrl073Lx502RZcXEx2rdvj59//tlhhSMiIqLqTVGgMnPmTEycOBG+vqbz1/j5+eHVV1/Ff//7X4cVjoiIiKo3RYHKkSNH0KNHD9nl3bp1w+HDh+0tExEREREAhYFKTk4Obt++Lbv81q1byMnJsbtQRERERIDCQCU6Ohp79uyRXb5nzx5ERUXZXSgiIiIiQGGgMmDAALz++uu4cuWKybLLly/jjTfewMCBAx1WOCIiIqreNEIIYe3KN27cQFJSEjIzM/Hkk0+iadOmAIDjx4/j+++/R0REBHbs2FFp8/3k5+cjICAAeXl57BZNRETkJpTcvxWNo1KnTh1s3boVkyZNwsKFC3X5KIGBgXjyySfx3nvvcVJCIiIichhFNSr6hBDIzs6GEAKhoaG64fT1bd26Fe3atYO3t7fdBZXCGhUiIiL3o+T+rShHRZ9Go0FoaCjq1asnGaQAQHJyMi5evGjrRxAREVE1Z3OgYg0bK2vcVlZeMbadyUZWXrGri0JERFQlKJ7rh6Qt3J2JSUsOo1wAHhogdUAiBrWPdHWxiIiI3JpTa1Sqi6y8Yl2QAgDlAnhtyRHWrBAREdmJgYoDZGQX6oIUrTIhcDa7yDUFIiIiqiKcGqjIJdlWNTEhfvAw2lVPjQbRIaaTNxIREZH1mEzrAGEBPkgdkAjPvwMzT40G7w9IQFiAj4tLRkRE5N6cmkx748YNZ25eVQa1j0S3uFCczS7S1aRsO5ONmBA/BixEREQ2UhSo3H333Vatt379epsK4+7CAnwQFuDDHkBEREQOoihQ+f333xEVFYV+/fqhZs2aziqTW5PrAdQtLpQ1K0RERAopClSmTZuG9PR0/PDDDxgyZAhGjBiBhIQEZ5XNLZnrAcRAhYiISBlFybSvvPIKjh49imXLluHGjRvo3LkzOnTogC+//BL5+fnOKqNbYQ8gIiIix7Gp109SUhJmz56NrKwsjB07FnPmzEF4eDiDFbAHEBERkSPZ1etn37592LhxI44dO4aEhATmrfzNuAcQgxQiIiLbKA5ULl26hLlz52Lu3LnIz8/Hk08+iZ07d6J58+bOKJ/b0vYAIiIiItspClTuu+8+bNiwAb1798b06dPRr18/1KjBeQ2JiIjIOTRCwfCxHh4eCAsLQ7169cwOj79v3z6HFM6S/Px8BAQEIC8vD/7+/pXymURERGQfJfdvRdUhkydPtqtgxmbOnImZM2fi7NmzAIAWLVrgrbfeQnJyskM/h4iIiNyTohoVR/v555/h6emJJk2aQAiBb775BtOnT8f+/fvRokULi+9njQoREZH7UXL/dkigsnHjRhQWFiIpKQlBQUF2bSs4OBjTp0/HyJEjLa7LQIWIiMj9OK3pZ9q0aSgoKMDUqVMBVMyOnJycjDVr1gAA6tWrh3Xr1llVG2KsrKwMP/zwgy7gkVJSUoKSkhLd3xy3hYiIqGpTNODbwoULDYbMX7x4MTZt2oTNmzcjOzsb7dq1w9tvv62oAIcPH0bt2rXh7e2N5557DkuXLpXt6pyamoqAgADdv4iICEWfRURERO5FUdNPUFAQtm3bhmbNmgEAhg8fjrKyMvzf//0fAGDHjh149NFHcf78easLUFpaiszMTOTl5WHx4sX46quvsHHjRslgRapGJSIigk0/REREbsRpTT+3b9+Gt7e37u/t27djwoQJur/Dw8ORnZ2tqLBeXl5o3LgxAKBt27bYvXs3Pv30U8yaNctkXW9vb4PPJyIioqpNUdNPbGwsNm3aBADIzMzEyZMn0a1bN93yCxcuoG7dunYVqLy83KDWhIiIiKovRTUqY8eOxbhx47B582bs2LEDSUlJBk0069evR+vWra3e3qRJk5CcnIzIyEjcuHED8+bNw++//47Vq1crKRYRERFVUYoCldGjR8PT0xM///wzunXrZjIA3KVLlzBixAirt3f16lU8/fTTyMrKQkBAAFq2bInVq1fj3nvvVVIsIiIiqqJcOuCbvTiOChERkftRcv9WlKNCREREVJkUBSq3bt3CxIkT0bhxY3To0AFz5swxWH7lyhV4eno6tIBERERUfSkKVN577z383//9H5577jn07t0bL730Ep599lmDddy4JYmIiIhURlEy7ffff4+vvvoK999/PwBg2LBhSE5OxvDhw3W1KxqNxvGlJCIiompJUY3KxYsXDYbQb9y4MX7//Xds27YNTz31FMrKyhxeQCIiIqq+FAUqDRo0wJkzZwxea9iwITZs2IDdu3dj2LBhjiwbERERVXOKApW7774b8+bNM3k9PDwc69evR0ZGhsMKRo6XlVeMbWeykZVXbNc6RERElUVRjsqbb76J48ePSy5r2LAhNm7ciLVr1zqkYORYC3dnYtKSwygXgIcGSB2QiEHtIxWvQ0REVJk44Fs1kJVXjM5p61Gu9017ajTYktITYQE+Vq9DRETkCE4f8O2HH37AgAEDkJCQgISEBAwYMACLFy+2qbDkfBnZhQYBCACUCYGz2UWK1iEiIqpsigKV8vJyDBo0CIMGDcLRo0fRuHFjNG7cGH/88QcGDRqEwYMHcxwVFYoJ8YOHUa9xT40G0SG+itYhIiKqbIoClU8//RS//fYbli9fjuPHj2PZsmVYtmwZTpw4gaVLl2Lt2rX49NNPnVVWVVNzEmpYgA9SByTC8+8xbjw1Grw/IMGgSceadYiIiCqbohyVli1bYsKECbIzJH/99df49NNPcejQIYcV0By15Ki4SxJqVl4xzmYXITrEVzYAsWYdIiIieyi5fysKVHx8fHDixAlERkrfhM+dO4f4+HgUF1dOrYIaAhVHJqFm5RUjI7sQMSF+DBKIiKjKUnL/VtQ92cfHB7m5ubKBSn5+PmrVqqVkk27PXBKqkmDDXWpliIiIKpOiHJWkpCTMnDlTdvmMGTOQlJRkd6HciSOSULPyinVBCgCUC+C1JUdUme9CRERUmRQFKq+//jq+/vprPPbYY9i1axfy8/ORl5eHHTt24NFHH8WcOXPw+uuvO6usquSIJFR2DSYiIpKmqOmnU6dOWLhwIZ555hn8+OOPBsuCgoIwf/58dO7c2aEFdAeD2keiW1yozUmo2loZ4zwXqVoZteSxqKUcRERUtdk0Mm1RURFWr16NU6dOAQDi4uLQu3dv+PpW7pgbakimdZSFuzPx2pIjKBNCVyuj1iHu1VIOIiJyT07r9bN+/XqMGzcOO3bsMNlwXl4eOnXqhC+//BJdu3a1reQKuSJQcXRNgv72AMjWyqhliHu1lIOIiNyX03r9fPLJJxg9erTkRgMCAvDss8/io48+qrRApbI5uiZByfYc1bvIXmopBxERVQ+KkmkPHjyIvn37yi7v3bs39u7da3eh1MjRPXOUbk8tQ9yrpRxERFQ9KApUrly5gpo1a8our1GjBq5du2Z3odTI0T1zlG7PXO+iyhy+Xy3lICKi6kFR00/Dhg1x5MgRNG7cWHL5oUOHEBYW5pCCqY2SnjnO2p5U7yJXJLYOah+J+AZ1sPtsDtpHB6FVRBATbImIyCkU1ajcd999ePPNN3Hz5k2TZcXFxZg8eTLuv/9+hxVOTRw9aZ+t2wsL8EFSbF1dDYYrBopbuDsTD3+xDe/+egwPf7ENszad4YB1RETkFIp6/Vy5cgVt2rSBp6cnxo0bh6ZNmwIAjh8/jhkzZqCsrAz79u1D/fr1nVZgfa7q9ePISfvs2d62M9l4YvZOk9f/+3hr3N8q3O6ySZHq9aPRAFJn0fzRdyEptq5TykFERO7Lab1+6tevj23btuH555/HpEmToI1xNBoN+vTpgxkzZlRakOIqYQE+Du3dYs/2pJqPAGD8gv0oLL3tlKYXqdwaqSCFCbZEROQIigIVAIiKisKKFSuQk5OD06dPQwiBJk2aICgoyBnlI8iP3aJtPpr042GU662vbXrpFhfq8C7DcsGRPnubxYiIiLQUBypaQUFBaN++vSPLQhIsJakOah8JP+8aGDdvv8H7nDW2iS440stJ0fdmv2a4r2UYgxQiInIIRcm0VLmsTZZtGxVkMraJhwbw9XLO1zuofSSWjukEo4+Ep0bDIIWIiByKgYqKWTvWinEPIqAiqHn4i21YuDvTKWVrFRGEtIGO6wVFREQkxeamH3I+JWOtaMc26T9jG7SrOzNXRfuZ9swaTUREZIlLa1RSU1PRvn171KlTB/Xq1UP//v1x4sQJVxZJVZSOtVJYWgbjtBFrRs+1Z0RZ/XFdiIiIHM2lNSobN27E2LFj0b59e9y+fRuvvfYaevfujaNHj8LPz8+VRVMNS7UW+j2CbBntliPKEhGRmika8M3Zrl27hnr16mHjxo3o1q2bxfVdMeCbmkgFGUBFc0+ZEPDQAK8mx+PZbrGS75cavM1To8GWlJ5OryGR63JNRERVn5L7t6qSafPy8gAAwcHBkstLSkqQn59v8K+6kusR1C0uFBP7NoXm79emrTwum1Dr6IkW5cpp3Ky0cHcmOqetxxOzd6Jz2nqnJfwSEZH7U02gUl5ejgkTJqBz585ISEiQXCc1NRUBAQG6fxEREZVcSvWQCzL2ncvBtFXHTRJqtYGCfuCgbSrS58gRZaUCElfNT0RERO5JNYHK2LFjceTIESxYsEB2nUmTJiEvL0/37/z585VYQnWRCzKuF5XK1pIYBw6bTl5z6ESL+uQCkr3ncpxei0NERFWHKronjxs3Dr/88gs2bdqEO+64Q3Y9b29veHt7V2LJ1EvbI0ibj+Kp0aB/63C8tewPk3U9NRr4enlIBg5bUnpiS0pPh3cxlqvxwd/5NEoSfomIqPpyaaAihMALL7yApUuX4vfff0dMTIwri1MpHJlEqt8jyNfLAw9/sc2ke7KHBnh/QAIKS8tkazKc0b1YrgdS2+ggkwCLA8UREZEclwYqY8eOxbx58/DTTz+hTp06uHz5MgAgICAAPj5V78bljK7A2tmXt53Jlpx757PBrXF/q3Bk5RVXak2GVI2PNiDhQHFERGQtl3ZP1miMZ4upkJ6ejmHDhll8vzt1T3Z2V2Brtr9wd6ZJ4KAkULKlNigrr9hsQMJuykRE6uPsa7OS+7fLm36qC3NdgR1xEpirwdCecN3iQm3OR7G1Nkhb4+PIbRIRkfOo7dqsimTa6sCWUWOVkmpSccQJZ27MFluDLGdsk5yLtV9EVZ8ar82q6Z5c1Smdt8eez9Emx9ozZon+eCvOGBiuMgabI8fhIH1E1YMar82sUalE1iaROurJ1dbmJuNamFf7xju8NqgyapjIMdT4hEVEzqHGazNrVCqZpdmGHfnkasvIs1I3pQ9WncCYHrG6bTmiNqiyapjIfmp8wiIi5zC+NntogBFdol1aJlVNSqiUO/X6sYYzegZJ9fTpFhcqW2Oz7Uw2npi902Q7GgDi7/+mJMfj2e7SEx0qZalXELmeKyevJCLXyMorRvrWDMzelAEBxyfVuk2vHzLkjJ5Bxs1Nm05e0910pE48qWo/ALqB5AQqalgevDPcYb2VLG2HSZyuZa5HGRFVXV9tzjCZN84VTb4MVFTEWW2D2mDAmlyDsAAfPNy6IX7cd1F2e47sVm2J2rrJVVccpI+oenH2kBpKMEdFRZydt2FNrkFWXjGW7pcPUrTlqozEKs60rC6W8quIqOqwJcfRWVijojLO7BlkTY2NVDAD/DORYGVW+6spoiciqk7U1OTLQEWFLOVt2DNKrKUTTy6YWTImCUWl5ZVa7a/GbnJERNZy9/w6tTT5stePm3FEDwxLPW3snRPIkdRUFkdy9wuYNarDPhLJYX6deez14yRquPA6ojnEUo2NWqJotZXFUarDBaw67CORHA6S6FhMprWSWoYQl0pw8tAA2QU3HZpkqpbESW1wWFWClOqQIFwd9pHIHHccJFF/2hS1YaBiBTVdeI17Bmk0gBDAC/MPuM0cLNb+INQSHDqS2i9gjrhYqX0fiZxNTT1mrKH2ay0DFSuo7cI7qH0ktqT0xIwnWgMCJgPy2HKTqaxo2tofRFZeMVJ+NAwOU5YcVmW0r4SaL2COulipeR+JKoM7TREi9yB+8HyOampYmKNiBbX1PtE2hwj8E6Ro2dJ9t7LyCZS02+49l2Oyb0IA+87loF9LH932XJ0zpJSauvzpc2Sbulr3kagyuUt+ndyDeP8Z25wydL4tGKhYQU0XXv2gQoN/5uDRUhpAVWbSl5JEYLnOaNqXpWZ4TrwjwC2CFjVewBw9Zo0j99EdA1IiwLopQlzN0rQpakgEZqBiJXMX3sq6kBoHFdpJAu0ZjK0yB1VTUjPVLjrYJAjTAGgbHSQZXKWuPA5AHdG/NdR2AXNGraEt+2j8W2LvIXVgsFh1GT+ISwUtrh5ok4GKAlIX3sq8kEoFFQLA54Nbo25tb5ueXCuzWUtJzVRYgA/SBiZi0o+HUY6KZKrUgYkIC/DBtjPZkqPnAuqI/t2RGmoNpWrJpq06zi6eLsZgseoxDjy1D+L7zuXgelEp3lr2h1019Y7GQMUOld1XXi6oaBsdZPPnVfYNSkmTgNy6clWVWq6O/t2V3PGujKdpqd/StJXHUW60Hr/byqW28UBYs2M/ucBz08lrkmkFasgxY6Bih8qei8ZZQUVl50woaRKQWtf4OBjzAODrxQ5ttjA+3pX1NC31WyrHP93vtVz9ZFfdqGm+Ldbs2E8u8IxvUMckrcBDU1Fbb8+DsKMwULGDK3oDOSuoUFvOhCX6x+HQxVx8sPKELmgpB/DwF9uq7YXM3FOnkifSynyalvstTUxuqvtu1fBkV92opcej2mp23JVc4Ln7bI7pg4IA6tb2VsXxZaBiB1e167tbUAE4p8pWexySYuvirphg9P9im+7pu7pdyLTH9/CFPF1eh/FTp9InUlufpm35ruV+S4PaR+LBVuGq6iFVnaghdwlQV82OO5MLPNtHB6kiIJXDQMVOauxqqjaVUWVbWFoG41ag6nIh0z+++vSDNQCKn0j9vDwlXzfXrGbPdy33W3LHwLwqUcM1zlU1O1UtJ0aqh8+ILtGo519LFQGpHAYqNjA+eXkhlVdZVbZqqaKubMbH15g2WBMQip9IC0vLJF8vKjVOcZUui7nvWu4GoP3/jOxCg7/NvYecz9XXOFfU7FTVnBht4Jm+NQOzN2Vg9uYMfL0lA6kDErElpacqH7oZqChUVU9eZ6ms5gO1VFFXNqnjq08/WFMayCkN/qz9rg0GLdQAKcnxeLZbrMky/d8Xf3dUmTU71SEn5qvNGSaDum1J6Ymk2LouLZcUBioKVIeT19Fsqemw9aakhipqoHKf/M111TYO1oyrfCcmNzVbPqXBnzXftcmghQJIXXEcEMCDd4Zb1SOBv7vqy9E1O3K/1aqWE2O8n+62fwxUFHC3L9cR7L3pKr3Z2RsMurqKurKf/MMCfCoGRvt7zBFtT5mWDQNNgrVB7SORW3QLaSuP68YpCfSpabZ8SoI/a75ruRqgaSuPo2GQj9U9Eqr6746cz9xvtSo1JUvtZ7e4ULfaPwYqCth78rpbG7ujbrpKbnbuHAw6osYtK68Ye85eh0ajQdso+fELdL18Lv7dywcVzSgTk5vqmlGk3jNt1XHFc3goCf4sfdcxIX4mY6MAFV3KIaSbp9TeI4Hcj6XfalVpSpbbzy0pPd1q/xioKGDPyetubeyObuay9mbnzk8y9gZZC3dnIuXHw7pAQgMgbaDpeSLXy0cI4IOVJ/Bgq3DJz3NGEGgcfFsKxsMCfJCSHF/R3KNHO8Ky1O+rVYT062q9qJL6WfNbUEtTsj3M7ac77R8DFYVs+XKlbvqTlhyGr5cn2kUHq/IEcVXNhjs/ydgTZGXlFRsEKUDF6JCTlhw2CA6t7eUjdbwcHQQaB98Pt26IpfsvWgzGn+0WC+gNke8BYGLfpgCAiGBfLBmThKLScoPfl7W/O3ertSTXsDafytK5pPbzTWo/PQD8VViCrLxilzeVW8ulgcqmTZswffp07N27F1lZWVi6dCn69+/vyiJZRemXKzk8uABemH9AtbUrrqzZcFak7+yLij1BVkZ2IaRij3IBg8BDSS8fR5bPmFTw/eO+iwblNlcD92z3WEADXb5M2srjSFt5XDd0d+qARJPeB5Z+d+5Wa0mOo/1t+3l5orC0zOJv3NJvwZpzyR3ON+P91M7fM27efnhogJFdYjCiS4zqgxWXBiqFhYVo1aoVRowYgQEDBriyKE5lrmeGWnswuLpmw9GRfmVdVGwNsmJC/HQXEX0eGhgEHkp6+TiyfMYsBUyA+dqdrLxiTFt5XJeror8pW3N72DOoepJqCrXmN25uEk5L55I7nW/a/dx7NgcvLNhvMHr37M0Z+GpzhkETsxpriVwaqCQnJyM5OdmVRagUxjd9Y2pNFtU/waEB2kYFubpINqnsi4qlIEvqQhAW4IO0gYmGOSp/X2yNB0QzDiAn9m2KlneY9vKxpnxKc0y0LM1gDSgfc0Wf0t+EuaZK7XJL+6TGCzSZJ9cUak+iuDXN3u6W9B8W4INDFzJMktiBiocE7bHSn0FZTbVEbpWjUlJSgpKSEt3f+fn5LiyNMtqb/r5zORg3b7/BE6Sak0XVeuIqoaaLirmaHf3AUKMB2sj0+nFUrYitOSaAdMDUv3U4lu2/ZPOYK/o8AMnfhFwwIddUeehCLoZ8tcPiPrlDNX5lUFOwZk1ZzAW8SgNVLWuavd0t6T8rrxj/25whu7xMCOw9m6PaWiK3ClRSU1Px9ttvu7oYNgsL8EG/lj4oKLnt0mRRay9G7lS9aY6Si4ozL9TWHM+wAB/c38r548XYm2MCSAdML/dpqmjMFbnE4FHdTNvNzQUTkjVNyU0rEnYlktgjg311uQyA8nmQqqLKCtas+Y1ZU5asvGJcLyyVbDIFlAWq+qxp9nZ107i1tMf69NUbZtfz1GgAiQcHtdQSuVWgMmnSJLz00ku6v/Pz8xEREeHCEtnGUU/EttxUlVyM1FQTYQ9rLyrOvlCr6XjuOXvdrhwTLeOASUkANah9JOIb1EH/GdsMbjQeGmB45xiDda0J8ox/V+aS2PU/a1SXGNV8L65SWQ8l1gYglspiMA0DYBKsyAWq1u6TNddotXfvNT5GcrTXw7ZR6h2vyK0CFW9vb3h7e7u6GA5h7xOxLTdVpRcjd6veNMfSRaUyLtSHL+SZvGZNzQ5gWnVtT82P9tyxpDK+61YRQUgbaDmItDbI0/6uLD1ta5WLijlPqsp5bitnBdHG57E1vzFLZTGZhgEV18DPB7dGRLCPrmu7vftkzTVard17pY6RMQ2Azx9vjbbR/zQxq7WWyK0CFapg603V2h+u/sVFrSeuLcxdVJxd26EdFdaY1Hw7Uk9C+t12AVgdpEoly0o1t3gAeLhNQ6tzTBzJmidTuZyWQxdzTboxW3raNlYO4JkujfD1lowqcZ7bQulDiS3NN3I1V3vP5hg0d1oqi1xNWd3a3mgVYZjwX10DULncHe1vQXvduL9VuMFytdYSuTRQKSgowOnTp3V/Z2Rk4MCBAwgODkZkZPVLZLOWrTdVay5GUjU1rpr629WT+znyoiZ34WjZMNDgb3NPQuUCmPTjYYO2ZHNBqtR3GRHsK1mOz59ojX4tw63OMXE0S0+mYQEVcxqlrjQM9oxH4pV72p76UAu8uewP2VyG4V2iMbxLtOou0JVB+zt7NTkeH6w8YTFYs7X5RqrmCgBeWLAfBy/k6sbzsNRUq2SwNmv3qaqRO0ZSgykaU2MtkUsDlT179qBnz566v7X5J0OHDsXcuXNdVCrruDI73p7kUHMXALkRdJeO6eSwqb+tPW6umNzPmbVH1n5nlrrtaufE0SdXKyZV67ZkTJJkOdr83fVcjRcprcQ7Akxes6bbaLkAYkPrGDQxaRl/z45oWnMnxr+zV/vGm+3qbm1truT3AOCJ9pGYvyvTcARmYTqeh7kne0u/VYMaNQ0wpkcsujQONdlOVfuOrbnWG9c4uQuXBio9evSAkOrYrXKu7spob3Ko3AVA7iLff8Y23QXEEbkRlo6bq3obObPa07iXi4cGkt+ZNd12jbPzrQ14yoRAUWm52zbn2dttNCm2ru779fXykHyyzMorRvqWDMzenGFQRV4VuypL/c4+WHUCW1J66poJjX/rcufVvnM56NfSfPONBsCC3ZmyzXACphMDWupxZjzGk0mNmgBmbDgD/1o1DR62XH0NdzSl13p3wxwVhdTSZdfe5FAleQDaC0hu0a2KmXpt+HErOW7WJNM560nI0TUKxsmEQu8CKvf5qQMSkbLksMk62qACgMVAw9obtrtcwHRV+X3j8cEq+ap8S0G8ue9XaoTTqtxV2dzvTG78JLlrxLh5+1FQclu2u7gHKq4jjuhppiVVRrmmzWkrj+PBO8Ml87T0v2PtcXGnWhZbrvXuhoGKQmrqYuro5FDjp37j92rnYgGUX8CVlMfcTdadnoSMyyrEP602xk+P+rrFhZo073gAWDImSVd1aynQsOeGbY3KrDY3aZ5IjkfLhvLNE46YOFRfVe2q7OflKdmt19fLw+yNT+oaIVCRP+XnXQNt/x6oUP97+KuwBOPm7bdYJiWTeMo1bWo0pg8C5fhnziy5a9F7vx7Fr4cuu1VNWlZeMX45dEk19yRnYaCikDt02ZXrmmlNOc2NbWHPj0HJcZO7yQLuMzCX1IXUmNzxk5qgsBxAUWm57m9rAg1nVf1WZrAo2Tyx8p/mCTlKAzFzuUFq+33bQxtgHr6Qh2mrjptcH94fkIDC0jKzv/VB7SPh6+VpMB4NUHGOaie7054T2u8hK6/YqikXlEziKde0mZIcj9QVhknX+t+hXK3QL4cu/7MvKr62aEnVAGpVpXMWYKCimLOTLu0l1zVTSTmlxrYwHjwJUDa6q9LjJnWT3XYm222eHKyZtE/u+DkyGLa15kSuxqSymz5trcFUUuOTlVeMvwpKJG9eHjDNJXLXJExzNzYPzT81dlJBhfH51y462OxEq8a1K+Zqaz1Q0etMO2WENcfXUtMmREVzTzmkE6bNzb2mpdZrC2C+BtBDYzjsgbuer/oYqNjAkU+qjjyJzA2EpD+ojzWk9jHQp6Zdo7sqPW7GN1k/L0+Tal21PjlIJhNqAI2A5MVTn63BsKPOJXPfob1Nn0rLKHdD8vXywLYz2ZLbMe71kZIcj2e7xVrcVw2gO78qxv1ohOFdog22705Nj/rM3diAiuOrrbGz5vwLC5DuLq7bHgxrV7rFhSIi2BdTHmyOt346arJusJ83wgJ8rD6+lsr4bPdYPHhnuOy1Rnst+vVQFt799ZjkPqj12gKYfxAqF0DaiuOAAAJ9a7rl+WpMI9yx283f8vPzERAQgLy8PPj7+7u6OIo5+qK37Uw2npi90+T1+aPvcmj3YnMJvJ3T1pvcVCxV01tD6mlQe3FS6w9v4e5MkwupkkDN3LGW+ixHnEuWvkN7vmMlZdQPaDadvGYy+aHc5IlS5QOAScnxeLZ7rMlnGK9r7ukegOn6GuDTwXeiXXSwqp9W5a4NWlLfoaXzz9I2tTR/V+tqH5z0c7X0PxswPb6Wzi39MgLKE2HlzhcPAKkDDc8rW2YZdxa5chuTav53xPXYEZTcv1mj4iIHz+cY9OxwRBV6ZeTPODqB1xpST4PGyaVqJFeDZO2xkDrWUhdIRzbHmPsOtcuf7xGLmb+fQbmwvklRSRnNDTro6+WBh7/YJrsduSdN414fGdmF+KugxGRdc0/3UiOrlouKuYPU/rRqrtu73HdoqdnQUld6Lf1HYW0tl4dEzaItTbvaMtoaqJv0TpKoSTOudevSJARbTmW7NOlWqtxS34PxS2puzjKHgYoLzNp0xiTZC7D/JHJ1/oyzAiW5waP0k0utVdlPQvb2rtEndzF2ZIAo9x0euvjPLLRaGgAT+za16iKtZPoGc4MOWrqZxYT4me31YdylVS7hXMnIqtrlak6+DAvwwavJ8bo8M23embneU9ZsM3VAIib9eBhKfolCAP99ojWC/bwNPtvW64e9gbq5Jmmp5vTNp7J1y2393h1xHdIvt6+Xh0kHCClqbs4yx8PVBahuZm2UDlIAx5xEg9pHYktKT8wffRe2pPR0yUB0npqKGWpsCZSy8oqx7Uw2svKKda9pL2D6bDlWC3dnonPaejwxeyc6p63Hwt2ZistiK3u3JXcxzsordtjxAaS/w4l9TROpgYqL9gerTuDg+RyL+2ZtGc0NOrhwd6bF7YQF+CAlOd7k8+W63ULzz0VQ/3yVC45HdWmkOzbG9Gue1Gbh7kzdd6gNMJ/tFouk2LqSv09rz9dB7SOxddLdeKZrI933os31Af4JBvVpR0KW+uxRXWIkvw9zLNUCWiMswEeyPNYkxSv9LKXXIXO05W4VESR53utTW8cPJVijUomy8oqRJpN8JjdSqS0c+RSvlD2JxnI1Bo6oKVL61OXI/CFHbMvcxTgptq5Da9KMv0NzF+syIdD/i226BFRbkx+1LA06uCWlp8XtPNstVrLXh1S3W6VP99o5gfady8G4efsVd/93BalagQ9WndA1hRmz5XztER+Kfi0b6Eb7BSpqsA5dyDW45mlkrnPGn/mMRCKzHEfX5OrXdljTvOWhAbILbiIrr9ihTaBKPds9FueuF2LezvMmy97s1wz3tQxzyyAFYKDiENZW40mNjwFUPHEsHdNJ1fkWStgSKFn6Advb00pJ84gjLyaO2pali7Gjx0wx/g7NXaytzbOypoy65gSZQQfPZhdZtR2pXh9y3W61ibNS5ZALiPq19EFByW3VDlOgz5nnvlRQo5+4P+SrHQbXPI2AbgRY7eftOXvd5DO/3pKB4V2iAVTk8+06ex0dooMlr5GObPKW2p/UAYlI+fGw/ND/CvKUnJHHp3//eeHuJliw67zJOe7OQQrAQMVuSp4+5KLzlPviLQYprs4ydzZrfsD21BRJHXu5JyFHXkwctS1rLsZKjo+S88n4s7U8AJPcBGuTH82RG3TQuInHmnIbHx9bx/Lx9fJAYWmZwbkiFTCp8XeqpIu3I4MaueYz7bbMjeui/cwPV5/Aj/su6l4f2KYh/vPYnSbrKwnUlY4RNDG5qWkyE/55SftyuagYPya+QR3Z67mja3/kAit3CKCVYKBiB6VzRphkaqNiOHC5MR603HXsBiWclYirf1HSP/bahEupJyFry2LvwFRKOarWxJbzyfimXVRabtIDB3Bc84fUoIOOuODaMpaP3Lw32uVSvUO0MxEn3hEgeX5UZkAjFaD1bx2u++4szeWjn2CsX2ZLQY2lbZkb18VTo0FR6S2DIAUAftx3EU8nRcnWrFg6lraMEZS28rjk3FxSRS8H0P+LbUizsgnUAxX5QracA3L3ny0pPXW95NxlLi9LOI6KHeTGEXimayN8teVP2RuBkvExnDk2iTPYO7uy8Y3JnoBM6qLULS5UNr9A/5haKouSm72j98sejj6fnLlv2mYBD5nmmcpg7fEyN66F8fmhZBZxRwYz2uuOXICp3Sep7xSA5G/J0rGROz/MjcGi7ZGU+VchvjeTb+GIMVMsjRFkK0u/qVmbzugCIFsfPitj3Cxn4jgqlUSyOQHQBSmAdBuvkip6NU2CaInSJ3XthdjPyxOFpWXoFhfqsCcBc08bQX5eFscXUNJl0RG5Geb2w5E3K6Xnk6XPrwrzCZlj7fGyNFKofk2ruXPHeC4eR+6/9rpjqYu38XcKGA7Epv9bstTMIHd+yF07P3+iNS7kFEv2MtO6XliqK4+SY2PpuwwLqOjCLdcrUwlLv6lperU0zspbq0oYqNhBqkp1ZJdo/G9zhsF69gQW7nIy2pOEp+XIG5K5i5K1x1QuoJTb9t6zObi/le25GcaccbNWcj4pGc7cmppBJXPvWHMuKQ3ibAn6rD1elnqHaM89ASF7Xi4/eEmymcERPUMs9WQx3if979RcYGNtgrS1ycptooLwwvz9ssfx7qah+OL3MzbN4h4T4mdxotbEhgGS79UeLw8NkJwQhl8PZ5n9LHPX6MrMW6sqGKjYSerp46stGQ4LLNzlZLQnCU/LkV31zF2MrTmm5m5qfl6eUrl1eGH+flzMLTYZqt0WcgOfmUvUM7ct/X2x5nyypbeS3DFT2tQhNWKs8bmkNIhz1Mil5kZxNTfRnf41QKomYcGuTPx08JJsOYxHB1YSbNmbcCmXiK4ksVmKVLLynrPXzTa9rD9xzeQ1cw8J+ufkh6tPmPxm9SfvA+SvG0vGJBl0vV55JMtgHe3YMeXC8nglasxbUzsGKg5g/ENVGli4qnrdkZT8+CyNy+GIZi1LNxhzx9TcTU27TKr4AqiYpE0DiwnSlpgb+CxtoPU1K3L7Yul8UvrUJ/c51gY8xu839+QrF8TJBVHOHLlUbr1DF3PxwcoTkueeQVL33/tpLkjR7r/+6MDWBluOSLjU/pb0p/wQAth08prduTXGycrSQ+lZNn7BfhSW3pbNI5OTuuI4An1q6s7VPWevY3D7iIouvvhnwMPC0jKD/ZG6tlh7jbb34VPq+AqLY9K6NwYqTqAksDB3UzQ+IdUYoGgp+fFZmnfEUc1alr4HqWNqqSeXpQsf8Pe8Mq2kB9OylqWBz6y5yVq6QZt7v5LA09znWBPwSL1fbj4YQD6IS9+agdfua25SPkdUtVv7+9OulxRbFw+2kp69V3te7j2bgxcW7JfsUaJPanRga2vYLA0UaG1eUre4UIPIUaCiK66lgNPc9Uz7mvFgdLaQyvWx5rcKVLwvt+hWRbPb369pUNEpom4dL91x198fe+fxsvXh0/j4Pty6oewEnVUJAxUnsbbdXu4Cb65LpFpZ++OTqyZ3RrOW0gDP3IVdKr9ASrmA3bVC2mNkbuAzS9u3N3HW2sDT3nwgqffLjRgLyAdxX23KwPDOMSZldFWel7lzLyzAB4cuZJgNUsb1jEXnxqGyowNbU8OmZAwVwPx8UsZFLQeQvuUsXuvXDIBt1zNrhqi3lv65rWS7ZUJU1ITqEajoFKE/07NUoG/vb1zJ+6WOr373bUfnMqnpwZiBigvJXeD3nctx2jDLzqb98WnnCrGmOUs7LkdlNGtZ+iFauqlJ5aYYc9RN0NLAZ/buiz5bm4gsfY41AY/c++W6JIcF+GBklxjMNkpa1x9MzHh9V+Z5ZeUVY++5HAgh0C46WPf7MC6/vic6RuDlPoZzt9hSwya173JjqJgLNKQSUYGKm7l2qHtbrmdS371xvkf/1uFYtv+SrqkMGtNJJwHDc9vamZ3ljqu2nMbM5d3J/RZtvflbM26NufIp/Vy19LSTwkDFheQu0OVCvmeA2gMVwLG9RSq7XHI3NQCYs8X0xiKVS+HIm6DcwGfW1Lg5KnHWmjwD48+ZmNwUGdmFuJp/ExHBvgbJiI4IJEZ0icFXmzMszrWjvVg7suu7Egt3ZxoMv64BkDYwERHBvrIBr4cGeOHuJgav2VPDZvxQoD+GirXNdEmxdTG6a4xJj0b92kOpYKYi4JC/nsnNU2UcIL/cp6lBhwXtPEIfrJLOA5I7p+Ib1MHszX/i10OXIfDPmC1pK46bfB8efwdEls4xa3LalN785caAshR8actny1ARan44ZqDiQnI/pnbRwW7RJVlKZZ/w1j41KCmXcU3CppPX0Cl1vWwCrZYHgCVjkhw+Z5O141pYsy+OSJzV0h8HRz8YOXQh12QcDKl5YJSWU19YgI/FkWtd/YSoPef0D602t2Pp2E6SNx0PVJRTP4dDe35bM7WAHG3Aaa6rsaUauOFdYpT3aBRAZLCvTfNU6X+XxgGzLg/oTuk8IHPb/e8TbfF6P8NBNwN9ahoGlH+fLwDMnmMHz+cYvE//t3g1/6ZBArI2r8jXy1NXsyYlK69YcptS49bo1zZJDc5nXCa5z1T7eF0MVFxM7sfkDl2SpVTmCa/kRqS0XPpNWHK9fIyVAygqNZ79xjH0L9SWBuwy914ptuRwyI2D82pyvG6gMn3WXCyV1rApHZTP1u7d1rK2ql57nhgMpa4BRhnNGCx3ftsztYAtzXQAdM24xsO/j/x74kBAetJVIbGv9s5Tpc/S++SWG7+un+Cs0cCg2dFc78AUiWtDmRBI35qB2ZsyTPN6hOUJDD9fd0p2QEqpc16/tslcMPrroSz0k5mcUO3jdTFQUQGpH5M7dEmWUlknvJIakqy8YlwvLJXt8mquVkZJUl5l/bCVzMdiDaVNL+bGwTE3oqgzAlbttjKyC03+tiX51BZZecWYsyUDX/9d26BfVa+dU0qfByrGIEmKrWvT6Mf2XBvCAnzwat/4iu8Jpk2VUrWJxqPAbknpifQtZ/HVlj/xv80Z+GpLhmzThPa8NLevahEW4CM5FovU9Vn3ACNxrntoIBmk6CsX0hMYztp4BvN2mU4boD1npMpj/Ldcfs67vx7D+yuO2dVM7CoMVFSssnM4HKGyTnhra0j0n0o1+CenRCrXQwNgdNcYDO/yT88RuR+9tmugcbWr0v10ZGBhT08xJTc/S8PFyyUcOyOQk6t1cET3bkuy8oqRviVDMm/jtSVHMLFvU8kZd1MH/tO0I/cbNzf6cXDtivPF18sDvxy6hA7RwVbXEi3cnVlR44WK5o2JyU0lb1r6tYnGwdKSMUmS04RYGlLfHa9ncuR+AxW1TKaJ3lK0EximJMcjsWEA/Lw8kbZSevj+wR0jTIJxOcbXB4PPtLOZ2FU4KSE5hZKJF21x8HyOZFu9/kRgB8/noP8X2wyeejw0wGeDW6NtdMWFXWoSMqmEOP3q7sEdI9ApNgRtoyq2Yet+2ptDoX+MpfbFQwN8OvhOs+3htjA3eZt2zA9tkqP+646ejNHSJHPmBvyyd+I2awYTM0ksBbBsbCerggqpfdPvDWNsYJuG+M9jdyreprnJ8+QmvXujXzO8++sxk9e1x9TZv301kDqWHhpg6ZhOqOdfS/K7A8z3GJQL8PXfq9EAKcnxVg0omZVXjF8PZZn9rlxJyf3bo5LKRAppu/dm5RW7uig20Sa7KblQWbvPC3dn4uEvTIMU/ae3hbszKwIZier/urW9zecQ/P3UoS3HoPaR2JLSE/NH34VX74vHgl3nMW7efnROW49NJ68p3k/tvko9rSr5vvWPsVxTxwvzD6Bz2nos3J2pqHyWPjd1QCI8NYbjiGq/g2e7x+qO109jO2H+6LuwJaWnwxNZzdU6ABXf29IxnUxGO7W3ZseawcQ8NKY3HW2+hjXCAiomyPP4u/DaC7XcZ/647yIOns8xu01ztZCA6e9PWyulz1OjQfvoIMnX9ZsmbPlNuBPj34CnRoPUAYloFREkuSxtYCLSBiaaveHKnU5Cb5kQFaPpztp4xqoy9msZZva7chds+rFCZQ+C4+reCq5g7T6vO3bZICMeqFhfv7eNuQRY/bbewxfzZMtjXM2u/d61Q5gDlhNElea+WJvDIbVdc+NGOKPnlaVxcCqjml9un1+Y/89w6nLdu+0pmzV5S2N6xOKL38/YnKu1cHemQb5Pz/hQrDtuOs+Nvj1nc8zW1pjLbZL7/Uk15bSKCFJ1PkNlMddUIjWPUUyIH5aO7WRSy2vO3fH1sP74VZPXp608jgfvtDz6tdpzT6zFQMWCyg4a1N6f3Rms3ed/LzpgMBKjVrkwfFI1dyMRqJijpFtcKKbJtAcDFdWt4xfsN/jeI4J9rQ4uLJ03chO9ZRfcRFZesex3LbfdTSevmb34OSuR1ZXnpLbWIXWF6aii+nP/OLrtXW7wM33NwvxtvkFI1dhYClIAoF20+SYlc716jLvDpvx9/OSOnZrzGSqTud9AWICPZN5YmpnJK/V5AHjxnsbYcOKqac0wrB/9uip8V2z6McMR1fNKWaqerYqs2eeD53MkgxTA9ElVqspaS5tMaW6WVuNqdm3X1uLS25LbPXQh1+Bva84b4+phbe8Qc001cts9eD7HYhdqd6zutUZiwwDJ18sFDM4fe5sj9JtFNp20HDRcLyzVjS2jtOnLmhob49Owa5MQ1POvZXHb+s2Y2jLtPZdj2kwlgH3nKpqS5I5ddWjisYe5B7AtKT3xTNdGJt+j9m9PjQapAyuaklKS42FMAyj6PVv6rtSeasAaFTMqexCcrLxinL56w+zMsVWRNV2ad529Lvlebc8F/Yx4c1nvAP4et0JjWqMB4PMnWkMAGDdvv8F7ygUw6pu9SE5ogBVHLhss+2DVCYNqWLnzxngcA+2Tzr5zORg3b7/snCJactvdfTZHugeC3jDk7ljdaw252g0PjbILuTnGPccg8XnG3vrpj4rkR1SMRGucuGiuWdDS8O9v9muG+1qG4Wr+Tcze/Cd+OXQZm09lo3PaeqtqfI1rAeT6U7hvNwt1MHf/iA7xrZhLSG+ZNhnXuBn1wVbhpiPnyjyI2cIdUg1UUaMyY8YMREdHo1atWujYsSN27drl6iIBkE8mc0bQsHB3JjqlrsdbPx116pDsaiSVfGa8zx2igyXf+3THKExbeRxPzN6Jzmnr8d6vR5GVV6x7cvzv460lv8M2UUGmyXADE9GvZTjaRpkmCwIVN6dVRkEKYFr7I1ej8+6vx0xqS8ICfBDk5yU7wJM+pcmNS8c4L5FVLcICKkao1d997aii5n4zUk+Qcq8Zz+5rrmeGcSAjUNGsor/Nhbsz0Tltve6c1T8ftAHMq33jZS/Ot8sFwgJ8UM+/FlYc/ud8LBcVn/XfDafwy6FLyMorRlZeMf5vewY+WntCNtm2XXSw5JN9WwtNSWSe3O9V261cKvm9qLTcpOZDciA9oxpDW7mi1cAWLq9RWbhwIV566SV8+eWX6NixIz755BP06dMHJ06cQL169VxatspKRDIeMlnLOEm0KrPUjtoqIggD2zQ0aP65L7EBvt15zuBHNntzBr7anKEb1Ov+Vj4oLL0t+R2aG7pbbl4V7fgT+k+bxsGrNndCavAzqdoSuXwV44BY7nyUS26sDucNYH5UUSlST5AADF4b2SUGI7rEWNUM46nR6KYPOH3tBt5c9ofBcgFg79kc3N9KfmwSqRmGX70vHueyizBvl2EzoLYGT3LWaQAfrj4pWc7P1p2W7MasDfYm/XgY5fh7GP+B5gM9skzq96o/IaQxuYdgZw6iqfah87VcPo5Kx44d0b59e/z3v/8FAJSXlyMiIgIvvPACUlJSzL63ssZRcfa4AHLjFQDq6O+uJgfP52DP2Ry0iw5CYWmZ7HEzHh/Clu9QbqyWiclN8cFKw8nQ9GssrBljw/h71Q3H/fd7tE0GUjUhcvtSHcavsJfk+BcAINHUogGQcp90wKll/P3/cuiSSbMhAMx4ojX6tQyX/a3/9/HWuuRt/W1/MrgVXph/wGT9+aPvwqGLuSaJxNb4SWYsF54/zqE9rsYTQuqzNM6Q/lhOjhyTSOnYOo6k5P7t0hqV0tJS7N27F5MmTdK95uHhgV69emH79u0m65eUlKCkpET3d35+fqWU09m9Gyqjnb2qaBURZNANWa4t3/ipwJbvUK5r66D2kXiwlfRkaNaMsSH1NNQtLtTgBNAm/Ur19pLbF1f3wnEHkuPNAJLtOQLABytPGAw5r0+qxrNtVJDkDMJt/h4cUO7pWCpQksul0jYfmOu1Zo5cN2aeP86hPa5Sc/AA/+QcmTv2zuq54y7dl12ao5KdnY2ysjLUr1/f4PX69evj8mXTXIDU1FQEBATo/kVERFRWUZ3K1nb26k77I5PKB3FU1ahULwntZ0tl0csOra35p1xSFwKpduiq3tvLFaTyBjwAyXMIqPgOWt4RiM+eaG2yzLhbPPDPb1k3UJsGSBtgOGS+VD6WVF6UXC7V+wMSUFhaZrFJSo6lbszkHHI5K5aCFC1n9bKSu8apictzVJSYNGkSXnrpJd3f+fn5VSZYUdrOThW0xy19awa+2pQhOdGavZQ8aco9MWtzGOSehtQ+e2lVYW4sEamaMO13EB3ia/X3Y+npV+mM6VLrm6tNNGdgm4bVJndJbdRce6H22jSX5qiUlpbC19cXixcvRv/+/XWvDx06FLm5ufjpp5/Mvp9z/ZA+tbSx29qe7Kx2aDIlda5k5RVLBrxScz456/tRcg4bl2diclPcEeiD64WlCPbz0jU3/Xb0CrILSnB3fD0GKSqgluuUqym5f6simbZDhw74/PPPAVQk00ZGRmLcuHGqSaYlUsrWixEvYq5n7jtQ2/ejtvIQWcttkmkB4KWXXsLQoUPRrl07dOjQAZ988gkKCwsxfPhwVxeNyGa2VqWqvQq2OrA0LLqavh+1lYfIGVweqAwaNAjXrl3DW2+9hcuXL+POO+/EqlWrTBJsiYiIqPpxedOPPdj0Q0RE5H6U3L9VMYQ+ERERkRQGKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoRERGpFgMVIiIiUi2XD6FvD+2guvn5+S4uCREREVlLe9+2ZnB8tw5Ubty4AQCIiIhwcUmIiIhIqRs3biAgIMDsOm491095eTkuXbqEOnXqQKPR2LWt/Px8RERE4Pz589V23iAeAx4DgMcA4DEAeAwAHgPAecdACIEbN24gPDwcHh7ms1DcukbFw8MDd9xxh0O36e/vX21PSC0eAx4DgMcA4DEAeAwAHgPAOcfAUk2KFpNpiYiISLUYqBAREZFqMVD5m7e3NyZPngxvb29XF8VleAx4DAAeA4DHAOAxAHgMAHUcA7dOpiUiIqKqjTUqREREpFoMVIiIiEi1GKgQERGRajFQISIiItWq0oHKzJkz0bJlS91ANUlJSVi5cqVu+c2bNzF27FjUrVsXtWvXxsCBA3HlyhWDbWRmZqJfv37w9fVFvXr18Morr+D27duVvSsOkZaWBo1GgwkTJuheqw7HYMqUKdBoNAb/4uPjdcurwzG4ePEinnzySdStWxc+Pj5ITEzEnj17dMuFEHjrrbcQFhYGHx8f9OrVC6dOnTLYxvXr1zFkyBD4+/sjMDAQI0eOREFBQWXvis2io6NNzgONRoOxY8cCqPrnQVlZGd58803ExMTAx8cHsbGxmDp1qsFcK9XhPLhx4wYmTJiAqKgo+Pj4oFOnTti9e7dueVU8Bps2bcIDDzyA8PBwaDQaLFu2zGC5o/b50KFD6Nq1K2rVqoWIiAh88MEHjtkBUYUtX75c/Prrr+LkyZPixIkT4rXXXhM1a9YUR44cEUII8dxzz4mIiAixbt06sWfPHnHXXXeJTp066d5/+/ZtkZCQIHr16iX2798vVqxYIUJCQsSkSZNctUs227Vrl4iOjhYtW7YUL774ou716nAMJk+eLFq0aCGysrJ0/65du6ZbXtWPwfXr10VUVJQYNmyY2Llzp/jzzz/F6tWrxenTp3XrpKWliYCAALFs2TJx8OBB8eCDD4qYmBhRXFysW6dv376iVatWYseOHWLz5s2icePG4vHHH3fFLtnk6tWrBufA2rVrBQCxYcMGIUTVPw/ee+89UbduXfHLL7+IjIwM8cMPP4jatWuLTz/9VLdOdTgPHnvsMdG8eXOxceNGcerUKTF58mTh7+8vLly4IISomsdgxYoV4vXXXxdLliwRAMTSpUsNljtin/Py8kT9+vXFkCFDxJEjR8T8+fOFj4+PmDVrlt3lr9KBipSgoCDx1VdfidzcXFGzZk3xww8/6JYdO3ZMABDbt28XQlR8uR4eHuLy5cu6dWbOnCn8/f1FSUlJpZfdVjdu3BBNmjQRa9euFd27d9cFKtXlGEyePFm0atVKcll1OAavvvqq6NKli+zy8vJy0aBBAzF9+nTda7m5ucLb21vMnz9fCCHE0aNHBQCxe/du3TorV64UGo1GXLx40XmFd6IXX3xRxMbGivLy8mpxHvTr10+MGDHC4LUBAwaIIUOGCCGqx3lQVFQkPD09xS+//GLweps2bcTrr79eLY6BcaDiqH3+4osvRFBQkMFv4dVXXxVNmza1u8xVuulHX1lZGRYsWIDCwkIkJSVh7969uHXrFnr16qVbJz4+HpGRkdi+fTsAYPv27UhMTET9+vV16/Tp0wf5+fn4448/Kn0fbDV27Fj069fPYF8BVKtjcOrUKYSHh6NRo0YYMmQIMjMzAVSPY7B8+XK0a9cOjz76KOrVq4fWrVtj9uzZuuUZGRm4fPmywTEICAhAx44dDY5BYGAg2rVrp1unV69e8PDwwM6dOytvZxyktLQU3333HUaMGAGNRlMtzoNOnTph3bp1OHnyJADg4MGD2LJlC5KTkwFUj/Pg9u3bKCsrQ61atQxe9/HxwZYtW6rFMTDmqH3evn07unXrBi8vL906ffr0wYkTJ5CTk2NXGd16UkJrHD58GElJSbh58yZq166NpUuXonnz5jhw4AC8vLwQGBhosH79+vVx+fJlAMDly5cNLkra5dpl7mDBggXYt2+fQRus1uXLl6vFMejYsSPmzp2Lpk2bIisrC2+//Ta6du2KI0eOVItj8Oeff2LmzJl46aWX8Nprr2H37t0YP348vLy8MHToUN0+SO2j/jGoV6+ewfIaNWogODjYLY6BsWXLliE3NxfDhg0DUD1+CykpKcjPz0d8fDw8PT1RVlaG9957D0OGDAGAanEe1KlTB0lJSZg6dSqaNWuG+vXrY/78+di+fTsaN25cLY6BMUft8+XLlxETE2OyDe2yoKAgm8tY5QOVpk2b4sCBA8jLy8PixYsxdOhQbNy40dXFqhTnz5/Hiy++iLVr15o8QVQn2idGAGjZsiU6duyIqKgoLFq0CD4+Pi4sWeUoLy9Hu3bt8P777wMAWrdujSNHjuDLL7/E0KFDXVw61/j666+RnJyM8PBwVxel0ixatAjff/895s2bhxYtWuDAgQOYMGECwsPDq9V58O2332LEiBFo2LAhPD090aZNGzz++OPYu3evq4tGMqp804+XlxcaN26Mtm3bIjU1Fa1atcKnn36KBg0aoLS0FLm5uQbrX7lyBQ0aNAAANGjQwCTrX/u3dh0127t3L65evYo2bdqgRo0aqFGjBjZu3IjPPvsMNWrUQP369av8MZASGBiIuLg4nD59ulqcB2FhYWjevLnBa82aNdM1f2n3QWof9Y/B1atXDZbfvn0b169fd4tjoO/cuXP47bffMGrUKN1r1eE8eOWVV5CSkoLBgwcjMTERTz31FP71r38hNTUVQPU5D2JjY7Fx40YUFBTg/Pnz2LVrF27duoVGjRpVm2Ogz1H77MzfR5UPVIyVl5ejpKQEbdu2Rc2aNbFu3TrdshMnTiAzMxNJSUkAgKSkJBw+fNjgC1q7di38/f1NLvxqdM899+Dw4cM4cOCA7l+7du0wZMgQ3f9X9WMgpaCgAGfOnEFYWFi1OA86d+6MEydOGLx28uRJREVFAQBiYmLQoEEDg2OQn5+PnTt3GhyD3Nxcg6fO9evXo7y8HB07dqyEvXCc9PR01KtXD/369dO9Vh3Og6KiInh4GF7yPT09UV5eDqD6nQd+fn4ICwtDTk4OVq9ejYceeqjaHQPAcd97UlISNm3ahFu3bunWWbt2LZo2bWpXsw+Aqt09OSUlRWzcuFFkZGSIQ4cOiZSUFKHRaMSaNWuEEBXdESMjI8X69evFnj17RFJSkkhKStK9X9sdsXfv3uLAgQNi1apVIjQ01G26I0rR7/UjRPU4Bv/+97/F77//LjIyMsTWrVtFr169REhIiLh69aoQouofg127dokaNWqI9957T5w6dUp8//33wtfXV3z33Xe6ddLS0kRgYKD46aefxKFDh8RDDz0k2T2xdevWYufOnWLLli2iSZMmqu6SKaWsrExERkaKV1991WRZVT8Phg4dKho2bKjrnrxkyRIREhIiJk6cqFunOpwHq1atEitXrhR//vmnWLNmjWjVqpXo2LGjKC0tFUJUzWNw48YNsX//frF//34BQHz00Udi//794ty5c0IIx+xzbm6uqF+/vnjqqafEkSNHxIIFC4Svry+7J1syYsQIERUVJby8vERoaKi45557dEGKEEIUFxeLMWPGiKCgIOHr6ysefvhhkZWVZbCNs2fPiuTkZOHj4yNCQkLEv//9b3Hr1q3K3hWHMQ5UqsMxGDRokAgLCxNeXl6iYcOGYtCgQQZjiFSHY/Dzzz+LhIQE4e3tLeLj48X//vc/g+Xl5eXizTffFPXr1xfe3t7innvuESdOnDBY56+//hKPP/64qF27tvD39xfDhw8XN27cqMzdsNvq1asFAJN9E6Lqnwf5+fnixRdfFJGRkaJWrVqiUaNG4vXXXzfoTlodzoOFCxeKRo0aCS8vL9GgQQMxduxYkZubq1teFY/Bhg0bBACTf0OHDhVCOG6fDx48KLp06SK8vb1Fw4YNRVpamkPKrxFCb1hCIiIiIhWpdjkqRERE5D4YqBAREZFqMVAhIiIi1WKgQkRERKrFQIWIiIhUi4EKERERqRYDFSIiIlItBipERESkWgxUiFTg8uXLeOGFF9CoUSN4e3sjIiICDzzwgMH8G9u2bcN9992HoKAg1KpVC4mJifjoo49QVlamW+fs2bMYOXIkYmJi4OPjg9jYWEyePBmlpaUGnzd79my0atUKtWvXRmBgIFq3bq2bnA4ApkyZAo1Gg759+5qUdfr06dBoNOjRo4fF/YqOjoZGo5H9N2zYMOUHS+V69OiBCRMmuLoYRFVGDVcXgKi6O3v2LDp37ozAwEBMnz4diYmJuHXrFlavXo2xY8fi+PHjWLp0KR577DEMHz4cGzZsQGBgIH777TdMnDgR27dvx6JFi6DRaHD8+HGUl5dj1qxZaNy4MY4cOYLRo0ejsLAQH374IQBgzpw5mDBhAj777DN0794dJSUlOHToEI4cOWJQrrCwMGzYsAEXLlzAHXfcoXt9zpw5iIyMtGrfdu/erQuktm3bhoEDB+LEiRPw9/cHAPj4+DjiEFaKW7duoWbNmpX2eaWlpfDy8qq0zyNSLYcMxE9ENktOThYNGzYUBQUFJstycnJEQUGBqFu3rhgwYIDJ8uXLlwsAYsGCBbLb/+CDD0RMTIzu74ceekgMGzbMbJkmT54sWrVqJe6//37x7rvv6l7funWrCAkJEc8//7zo3r27FXv3D+18Izk5ObrXli1bJlq3bi28vb1FTEyMmDJlisHcOQDEl19+Kfr16yd8fHxEfHy82LZtmzh16pTo3r278PX1FUlJSQZzN2nL/uWXX4o77rhD+Pj4iEcffdRgPhchhJg9e7aIj48X3t7eomnTpmLGjBm6ZRkZGbrj2q1bN+Ht7S3S09NFdna2GDx4sAgPDxc+Pj4iISFBzJs3T/e+oUOHmsynkpGRIdLT00VAQIDB5y9dulToX4K15Z49e7aIjo4WGo1GCFFxDowcOVKEhISIOnXqiJ49e4oDBw4oOvZE7oxNP0QudP36daxatQpjx46Fn5+fyfLAwECsWbMGf/31F15++WWT5Q888ADi4uIwf/582c/Iy8tDcHCw7u8GDRpgx44dOHfunMXyjRgxAnPnztX9PWfOHAwZMsQhT/qbN2/G008/jRdffBFHjx7FrFmzMHfuXLz33nsG602dOhVPP/00Dhw4gPj4eDzxxBN49tlnMWnSJOzZswdCCIwbN87gPadPn8aiRYvw888/Y9WqVdi/fz/GjBmjW/7999/jrbfewnvvvYdjx47h/fffx5tvvolvvvnGYDspKSl48cUXcezYMfTp0wc3b95E27Zt8euvv+LIkSN45pln8NRTT2HXrl0AgE8//RRJSUkYPXo0srKykJWVhYiICKuPyenTp/Hjjz9iyZIlOHDgAADg0UcfxdWrV7Fy5Urs3bsXbdq0wT333IPr168rOdxE7svVkRJRdbZz504BQCxZskR2nbS0NJOaCH0PPvigaNasmeSyU6dOCX9/f4PZki9duiTuuusuAUDExcWJoUOHioULF4qysjLdOtqn+9LSUlGvXj2xceNGUVBQIOrUqSMOHjwoXnzxRbtrVO655x7x/vvvG6zz7bffirCwMN3fAMQbb7yh+3v79u0CgPj66691r82fP1/UqlXLoOyenp7iwoULutdWrlwpPDw8dLMhx8bGGtSECCHE1KlTRVJSkhDinxqVTz75xOJ+9evXT/z73//W/W08Q7kQwuoalZo1a4qrV6/qXtu8ebPw9/cXN2/eNHhvbGysmDVrlsWyEVUFzFEhciGhYPJyJesCwMWLF9G3b188+uijGD16tO71sLAwbN++HUeOHMGmTZuwbds2DB06FF999RVWrVoFD49/Klpr1qyJJ598Eunp6fjzzz8RFxeHli1bKiqHnIMHD2Lr1q0GNShlZWW4efMmioqK4OvrCwAGn1e/fn0AQGJiosFrN2/eRH5+vi73JTIyEg0bNtStk5SUhPLycpw4cQJ16tTBmTNnMHLkSIPjcvv2bQQEBBiUsV27dgZ/l5WV4f3338eiRYtw8eJFlJaWoqSkRFdWe0VFRSE0NFT398GDB1FQUIC6desarFdcXIwzZ8445DOJ1I6BCpELNWnSRJcEKycuLg4AcOzYMXTq1Mlk+bFjx9C8eXOD1y5duoSePXuiU6dO+N///ie53YSEBCQkJGDMmDF47rnn0LVrV2zcuBE9e/Y0WG/EiBHo2LEjjhw5ghEjRijdRVkFBQV4++23MWDAAJNltWrV0v2/fgKrRqORfa28vNzqzwUqej517NjRYJmnp6fB38bNcdOnT8enn36KTz75BImJifDz88OECRNMelUZ8/DwMAk0b926ZbKe8ecVFBQgLCwMv//+u8m6gYGBZj+TqKpgoELkQsHBwejTpw9mzJiB8ePHm9yocnNz0bt3bwQHB+M///mPSaCyfPlynDp1ClOnTtW9dvHiRfTs2RNt27ZFenq6QQ2JHG2gU1hYaLKsRYsWaNGiBQ4dOoQnnnjClt2U1KZNG5w4cQKNGzd22Da1MjMzcenSJYSHhwMAduzYAQ8PDzRt2hT169dHeHg4/vzzTwwZMkTRdrdu3YqHHnoITz75JICK4OjkyZMGgaKXl5dBl3EACA0NxY0bN1BYWKj7jrU5KOa0adMGly9fRo0aNRAdHa2orERVBQMVIhebMWMGOnfujA4dOuCdd95By5Ytcfv2baxduxYzZ87EsWPHMGvWLAwePBjPPPMMxo0bB39/f6xbtw6vvPIKHnnkETz22GMAKoKUHj16ICoqCh9++CGuXbum+5wGDRoAAJ5//nmEh4fj7rvvxh133IGsrCy8++67CA0NRVJSkmQZ169fj1u3bjn0Kf6tt97C/fffj8jISDzyyCPw8PDAwYMHceTIEbz77rt2bbtWrVoYOnQoPvzwQ+Tn52P8+PF47LHHdMfg7bffxvjx4xEQEIC+ffuipKQEe/bsQU5ODl566SXZ7TZp0gSLFy/Gtm3bEBQUhI8++ghXrlwxCFSio6Oxc+dOnD17FrVr10ZwcDA6duwIX19fvPbaaxg/fjx27txpkKQsp1evXkhKSkL//v3xwQcfIC4uDpcuXcKvv/6Khx9+2KRpiqgqYq8fIhdr1KgR9u3bh549e+Lf//43EhIScO+992LdunWYOXMmAOCRRx7Bhg0bkJmZia5du6Jp06b4+OOP8frrr2PBggW65o+1a9fi9OnTWLduHe644w6EhYXp/mn16tULO3bswKOPPoq4uDgMHDgQtWrVwrp160xyIbT8/Pwc3tTQp08f/PLLL1izZg3at2+Pu+66Cx9//DGioqLs3nbjxo0xYMAA3HfffejduzdatmyJL774Qrd81KhR+Oqrr5Ceno7ExER0794dc+fORUxMjNntvvHGG2jTpg369OmDHj16oEGDBujfv7/BOi+//DI8PT3RvHlzhIaGIjMzE8HBwfjuu++wYsUKJCYmYv78+ZgyZYrF/dBoNFixYgW6deuG4cOHIy4uDoMHD8a5c+d0+TpEVZ1GKM3QIyJSsSlTpmDZsmVWNa0QkfqxRoWIiIhUi4EKEdmldu3asv82b97s6uIRkZtj0w8R2eX06dOyyxo2bOhW8/kQkfowUCEiIiLVYtMPERERqRYDFSIiIlItBipERESkWgxUiIiISLUYqBAREZFqMVAhIiIi1WKgQkRERKrFQIWIiIhU6/8Bjp8cpm7PK3YAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + "ename": "NameError", + "evalue": "name 'alm_surr' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mNameError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[7]\u001b[39m\u001b[32m, line 2\u001b[39m\n\u001b[32m 1\u001b[39m \u001b[38;5;66;03m# visualize with IDAES surrogate plotting tools\u001b[39;00m\n\u001b[32m----> \u001b[39m\u001b[32m2\u001b[39m surrogate_scatter2D(\u001b[43malm_surr\u001b[49m, data_training)\n\u001b[32m 3\u001b[39m surrogate_parity(alm_surr, data_training)\n\u001b[32m 4\u001b[39m surrogate_residual(alm_surr, data_training)\n", + "\u001b[31mNameError\u001b[39m: name 'alm_surr' is not defined" + ] } ], "source": [ @@ -565,7 +408,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding](./surrogate_embedding_doc.ipynb) file." + "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding](./surrogate_embedding_doc.md) file." ] } ], @@ -585,10 +428,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" - }, - "orig_nbformat": 4 + "version": "3.11.11" + } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training_test.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training_test.ipynb index ed7713b4..6678e644 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training_test.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training_test.ipynb @@ -1,594 +1,619 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with ALAMO Surrogate Object - Training Surrogate (Part 1)\n", - "\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "\n", - "## 1. Introduction\n", - "This notebook demonstrates leveraging of the ALAMO surrogate trainer and IDAES Python wrapper to produce an surrogate based on supercritical CO2 data from simulation using REFPROP package.\n", - "\n", - "There are several reasons to build surrogate models for complex processes, even when higher fidelity models already exist (e.g., reduce model size, improve convergence reliability, replace models with externally compiled code and make them fully-equation oriented).\n", - "\n", - "In this example, we intend to make a surrogate for the physical properties of S-CO2 to be embedded in the property package. This property package will be used to get the physical properties of S-CO2 in the flowsheet simulation. To learn more about property package, see the [IDAES-PSE](https://github.com/IDAES/idaes-pse) Github Page or IDAES [Read-the-docs](https://idaes-pse.readthedocs.io/en/latest/). \n", - "\n", - "### 1.1 Need for ML Surrogate\n", - "\n", - "The properties predicted by the surrogate are enthalpy and entropy of the S-CO2 based on the \n", - "pressure and temperature of the system. The analytical equation of getting the enthalpy and entropy from pressure and temperature are in the differential form and would make the problem a DAE system. To counter this problem and keep the problem algebraic, we will use the surrogates and relate enthalpy and entropy with the pressure and temperature as an algebraic equation.\n", - "\n", - "### 1.2 Supercritical CO2 cycle process\n", - "\n", - "The following flowsheet will be used to optimize the design for the cooling of the fusion reactor using supercritical CO2 cycle. We shall focus on training the surrogate for this notebook and move to constructing the flowsheet and the properties package in the subsequent notebooks. The take away from this flowsheet is that, 3 variables can be measured in any given unit which are flow, pressure and temperature and other properties can be calculated using them. Thus, surrogate should have pressure and temperature as the inputs.\n", - "\n", - "In this example, we will train a model using AlamoTrainer for our data and then demonstrate that we can solve an optimization problem with that surrogate model. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"CO2_flowsheet.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Training and Validating Surrogate\n", - "\n", - "First, let's import the required Python and IDAES modules:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Import statements\n", - "import os\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", - "from idaes.core.surrogate.alamopy import AlamoTrainer, AlamoSurrogate, alamo\n", - "from idaes.core.surrogate.plotting.sm_plotter import (\n", - " surrogate_scatter2D,\n", - " surrogate_parity,\n", - " surrogate_residual,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.1 Importing Training and Validation Datasets\n", - "\n", - "In this section, we read the dataset from the CSV file located in this directory. 500 data points were simulated for S-CO2 physical properties using REFPROP package. This example is trained on the entire dataset to have cover different ranges of pressure and temperature. The data is separated using an 80/20 split into training and validation data using the IDAES split_training_validation() method.\n", - "\n", - "We rename the column headers because they contained \".\", we change \".\" to \"_\" as ALAMO accepts alphanumerical characters or underscores as the labels for input/output. Further, the input variables are **pressure**, **temperature** , while the output variables are **enth_mol**, **entr_mol**, hence we create two new dataframes for the input and output variables." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Import training data\n", - "np.set_printoptions(precision=7, suppress=True)\n", - "\n", - "csv_data = pd.read_csv(datafile_path(\"500_Points_DataSet.csv\"))\n", - "\n", - "### ALAMO only accepts alphanumerical characters (A-Z, a-z, 0-9) or underscores as input/output labels\n", - "cols = csv_data.columns\n", - "cols = [item.replace(\".\", \"_\") for item in cols]\n", - "csv_data.columns = cols\n", - "\n", - "data = csv_data.sample(n=500, random_state=0)\n", - "\n", - "input_data = data.iloc[:, :2]\n", - "output_data = data.iloc[:, 2:4]\n", - "\n", - "# Define labels, and split training and validation data\n", - "input_labels = input_data.columns\n", - "output_labels = output_data.columns\n", - "\n", - "n_data = data[input_labels[0]].size\n", - "data_training, data_validation = split_training_validation(data, 0.8, seed=n_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.2 Training Surrogate with ALAMO\n", - "\n", - "IDAES provides a Python wrapper for the ALAMO machine learning tool via an imported AlamoTrainer class. Regression settings can be directly set as config attributes, as shown below. In this example, allowed basis terms include constant and linear functions, monomial power order 2 and 3, variable product power order 1 and 2, and variable ratio power order 1 and 2. ALAMO seeks to minimize the number of basis terms; here, we restrict each surrogate expression to a maximum of 10 basis terms.\n", - "\n", - "Finally, after training the model we save the results and model expressions to a JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ***************************************************************************\n", - " ALAMO version 2023.2.13. Built: WIN-64 Mon Feb 13 21:30:56 EST 2023\n", - "\n", - " If you use this software, please cite:\n", - " Cozad, A., N. V. Sahinidis and D. C. Miller,\n", - " Automatic Learning of Algebraic Models for Optimization,\n", - " AIChE Journal, 60, 2211-2227, 2014.\n", - "\n", - " ALAMO is powered by the BARON software from http://www.minlp.com/\n", - " ***************************************************************************\n", - " Licensee: Javal Vyas at Carnegie Mellon University, jvyas@andrew.cmu.edu.\n", - " ***************************************************************************\n", - " Reading input data\n", - " Checking input consistency and initializing data structures\n", - " \n", - " Step 0: Initializing data set\n", - " User provided an initial data set of 400 data points\n", - " We will sample no more data points at this stage\n", - " ***************************************************************************\n", - " Iteration 1 (Approx. elapsed time 0.62E-01 s)\n", - " \n", - " Step 1: Model building using BIC\n", - " \n", - " Model building for variable CO2SM_CO2_Enthalpy\n", - " ----\n", - " BIC = 0.750E+04 with CO2SM_CO2_Enthalpy = - 0.38E+06\n", - " ----\n", - " BIC = 0.569E+04 with CO2SM_CO2_Enthalpy = 58. * CO2SM_Temperature - 0.42E+06\n", - " ----\n", - " BIC = 0.542E+04 with CO2SM_CO2_Enthalpy = 55. * CO2SM_Temperature - 0.61E+05 * CO2SM_Pressure/CO2SM_Temperature - 0.41E+06\n", - " ----\n", - " BIC = 0.516E+04 with CO2SM_CO2_Enthalpy = 49. * CO2SM_Temperature + 4.0 * CO2SM_Pressure^2 - 0.15E+06 * CO2SM_Pressure/CO2SM_Temperature - 0.41E+06\n", - " ----\n", - " BIC = 0.502E+04 with CO2SM_CO2_Enthalpy = 0.16E+03 * CO2SM_Temperature - 0.16 * CO2SM_Temperature^2 + 0.76E-04 * CO2SM_Temperature^3 - 0.56E+05 * CO2SM_Pressure/CO2SM_Temperature - 0.44E+06\n", - " ----\n", - " BIC = 0.484E+04 with CO2SM_CO2_Enthalpy = 0.14E+03 * CO2SM_Temperature + 2.5 * CO2SM_Pressure^2 - 0.14 * CO2SM_Temperature^2 + 0.66E-04 * CO2SM_Temperature^3 - 0.11E+06 * CO2SM_Pressure/CO2SM_Temperature - 0.43E+06\n", - " \n", - " Model building for variable CO2SM_CO2_Entropy\n", - " ----\n", - " BIC = 0.219E+04 with CO2SM_CO2_Entropy = - 0.48E+03 * CO2SM_Pressure/CO2SM_Temperature\n", - " ----\n", - " BIC = 0.147E+04 with CO2SM_CO2_Entropy = 1.9 * CO2SM_Pressure - 0.15E+04 * CO2SM_Pressure/CO2SM_Temperature\n", - " ----\n", - " BIC = 0.115E+04 with CO2SM_CO2_Entropy = 0.77E-01 * CO2SM_Temperature - 0.38E+03 * CO2SM_Pressure/CO2SM_Temperature - 50.\n", - " ----\n", - " BIC = 713. with CO2SM_CO2_Entropy = 0.20 * CO2SM_Temperature - 0.94E-04 * CO2SM_Temperature^2 - 0.34E+03 * CO2SM_Pressure/CO2SM_Temperature - 89.\n", - " ----\n", - " BIC = 443. with CO2SM_CO2_Entropy = 0.52 * CO2SM_Temperature - 0.60E-03 * CO2SM_Temperature^2 + 0.26E-06 * CO2SM_Temperature^3 - 0.34E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.15E+03\n", - " ----\n", - " BIC = 317. with CO2SM_CO2_Entropy = 0.54 * CO2SM_Temperature - 0.63E-03 * CO2SM_Temperature^2 + 0.27E-06 * CO2SM_Temperature^3 - 0.26E+03 * CO2SM_Pressure/CO2SM_Temperature + 0.79E-01 * CO2SM_Temperature/CO2SM_Pressure - 0.16E+03\n", - " ----\n", - " BIC = 259. with CO2SM_CO2_Entropy = 0.47 * CO2SM_Temperature + 0.15E-01 * CO2SM_Pressure^2 - 0.53E-03 * CO2SM_Temperature^2 + 0.23E-06 * CO2SM_Temperature^3 - 0.70E-03 * CO2SM_Pressure*CO2SM_Temperature - 0.46E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.13E+03\n", - " ----\n", - " BIC = 240. with CO2SM_CO2_Entropy = - 2.1 * CO2SM_Pressure + 0.55 * CO2SM_Temperature + 0.76E-01 * CO2SM_Pressure^2 - 0.63E-03 * CO2SM_Temperature^2 - 0.94E-03 * CO2SM_Pressure^3 + 0.27E-06 * CO2SM_Temperature^3 - 0.23E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.15E+03\n", - " ----\n", - " BIC = 224. with CO2SM_CO2_Entropy = - 1.9 * CO2SM_Pressure + 0.49 * CO2SM_Temperature + 0.83E-01 * CO2SM_Pressure^2 - 0.57E-03 * CO2SM_Temperature^2 - 0.10E-02 * CO2SM_Pressure^3 + 0.25E-06 * CO2SM_Temperature^3 - 0.73E-08 * (CO2SM_Pressure*CO2SM_Temperature)^2 - 0.36E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.13E+03\n", - " ----\n", - " BIC = 193. with CO2SM_CO2_Entropy = - 3.9 * CO2SM_Pressure + 0.52 * CO2SM_Temperature + 0.17 * CO2SM_Pressure^2 - 0.56E-03 * CO2SM_Temperature^2 - 0.21E-02 * CO2SM_Pressure^3 + 0.24E-06 * CO2SM_Temperature^3 - 0.10E-02 * CO2SM_Pressure*CO2SM_Temperature - 0.36E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.20 * CO2SM_Temperature/CO2SM_Pressure - 0.12E+03\n", - " \n", - " Calculating quality metrics on observed data set.\n", - " \n", - " Quality metrics for output CO2SM_CO2_Enthalpy\n", - " ---------------------------------------------\n", - " SSE OLR: 0.515E+08\n", - " SSE: 0.659E+08\n", - " RMSE: 406.\n", - " R2: 0.999\n", - " R2 adjusted: 0.999\n", - " Model size: 6\n", - " BIC: 0.484E+04\n", - " Cp: 0.659E+08\n", - " AICc: 0.482E+04\n", - " HQC: 0.483E+04\n", - " MSE: 0.168E+06\n", - " SSEp: 0.659E+08\n", - " RIC: 0.659E+08\n", - " MADp: 0.594\n", - " \n", - " Quality metrics for output CO2SM_CO2_Entropy\n", - " --------------------------------------------\n", - " SSE OLR: 541.\n", - " SSE: 558.\n", - " RMSE: 1.18\n", - " R2: 0.997\n", - " R2 adjusted: 0.997\n", - " Model size: 10\n", - " BIC: 193.\n", - " Cp: 178.\n", - " AICc: 154.\n", - " HQC: 169.\n", - " MSE: 1.43\n", - " SSEp: 558.\n", - " RIC: 606.\n", - " MADp: 0.130E+04\n", - " \n", - " Total execution time 0.52 s\n", - " Times breakdown\n", - " OLR time: 0.30 s in 3863 ordinary linear regression problem(s)\n", - " MINLP time: 0.0 s in 0 optimization problem(s)\n", - " Simulation time: 0.0 s to simulate 0 point(s)\n", - " All other time: 0.22 s in 1 iteration(s)\n", - " \n", - " Normal termination\n", - " ***************************************************************************\n" - ] - } - ], - "source": [ - "# Create ALAMO trainer object\n", - "has_alamo = alamo.available()\n", - "if has_alamo:\n", - " trainer = AlamoTrainer(\n", - " input_labels=input_labels,\n", - " output_labels=output_labels,\n", - " training_dataframe=data_training,\n", - " )\n", - "\n", - " # Set ALAMO options\n", - " trainer.config.constant = True\n", - " trainer.config.linfcns = True\n", - " trainer.config.multi2power = [1, 2]\n", - " trainer.config.monomialpower = [2, 3]\n", - " trainer.config.ratiopower = [1]\n", - " trainer.config.maxterms = [10] * len(output_labels) # max terms for each surrogate\n", - " trainer.config.filename = os.path.join(os.getcwd(), \"alamo_run.alm\")\n", - " trainer.config.overwrite_files = True\n", - "\n", - " # Train surrogate (calls ALAMO through IDAES ALAMOPy wrapper)\n", - " success, alm_surr, msg = trainer.train_surrogate()\n", - "\n", - " # save model to JSON\n", - " model = alm_surr.save_to_file(\"alamo_surrogate.json\", overwrite=True)\n", - "\n", - " # create callable surrogate object\n", - " surrogate_expressions = trainer._results[\"Model\"]\n", - " input_labels = trainer._input_labels\n", - " output_labels = trainer._output_labels\n", - " xmin, xmax = [7, 306], [40, 1000]\n", - " input_bounds = {\n", - " input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))\n", - " }\n", - "\n", - " alm_surr = AlamoSurrogate(\n", - " surrogate_expressions, input_labels, output_labels, input_bounds\n", - " )\n", - "else:\n", - " print(\"Alamo not found.\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.3 Visualizing Surrogates\n", - "\n", - "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACoz0lEQVR4nO2deVxU1fvHP8OqIAyyKJAouK8tauFomRqJ5ZJhiZnlbppY7mbuVl/T3NP0W7llWmpSmZaJS31Lka9pZn5TS364haigDCoqCPf3B811Zpjl3pm7nDvzvF8vX8Lcy51zzz33nM95nuc8R8dxHAeCIAiCIAhCUXzULgBBEARBEIQ3QiKMIAiCIAhCBUiEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYQRAEQRCECpAIIwiCIAiCUAESYQRBEARBECpAIowgCIJwyNq1a6HT6XDmzBm1i0IQHgWJMIIgVOfQoUNIS0tDs2bNEBwcjNq1a6N37974888/K53boUMH6HQ66HQ6+Pj4IDQ0FI0aNcJLL72EjIwMUd/7zTff4PHHH0eNGjUQFBSEunXronfv3ti5c6dUt1aJf/3rX/jqq68qfX7gwAHMnDkThYWFsn23NTNnzuTrUqfTISgoCE2bNsXUqVNRVFQkyXds3LgRixcvluRaBOFpkAgjCEJ15s6di61bt+KJJ57AkiVLMGzYMPznP/9By5Ytcfz48Urn16pVC+vXr8cnn3yC9957Dz169MCBAwfQuXNnpKamorS01Ol3zp8/Hz169IBOp8PkyZOxaNEi9OrVC3/99Rc+//xzOW4TgGMRNmvWLEVFmIkVK1Zg/fr1WLhwIRo3box33nkHXbp0gRRbC5MIIwj7+KldAIIgiLFjx2Ljxo0ICAjgP0tNTUWLFi3w7rvv4tNPP7U4X6/Xo1+/fhafvfvuu3jttdfwwQcfID4+HnPnzrX7fXfv3sVbb72FJ598Ert27ap0/PLly27eETsUFxcjKCjI4TnPPfccIiMjAQDDhw9Hr169kJ6ejoMHD8JgMChRTILwSsgSRhCE6rRt29ZCgAFAgwYN0KxZM5w4cULQNXx9fbF06VI0bdoUy5Ytg9FotHtufn4+ioqK0K5dO5vHa9SoYfH77du3MXPmTDRs2BBVqlRBTEwMUlJSkJ2dzZ8zf/58tG3bFhEREahatSpatWqFL774wuI6Op0ON2/exLp163gX4IABAzBz5kxMmDABAJCQkMAfM4/B+vTTT9GqVStUrVoV4eHh6NOnD86fP29x/Q4dOqB58+Y4fPgw2rdvj6CgILz55puC6s+cTp06AQBycnIcnvfBBx+gWbNmCAwMRGxsLEaOHGlhyevQoQN27NiBs2fP8vcUHx8vujwE4amQJYwgCCbhOA6XLl1Cs2bNBP+Nr68vXnjhBUybNg0///wzunbtavO8GjVqoGrVqvjmm28watQohIeH271mWVkZunXrhj179qBPnz54/fXXcf36dWRkZOD48eOoV68eAGDJkiXo0aMHXnzxRZSUlODzzz/H888/j+3bt/PlWL9+PYYMGYJHHnkEw4YNAwDUq1cPwcHB+PPPP/HZZ59h0aJFvFUqKioKAPDOO+9g2rRp6N27N4YMGYIrV67g/fffR/v27fHrr78iLCyML29BQQGeeuop9OnTB/369UPNmjUF158Jk7iMiIiwe87MmTMxa9YsJCUlYcSIETh16hRWrFiBQ4cOYf/+/fD398eUKVNgNBpx4cIFLFq0CABQrVo10eUhCI+FIwiCYJD169dzALhVq1ZZfP74449zzZo1s/t3X375JQeAW7JkicPrT58+nQPABQcHc0899RT3zjvvcIcPH6503urVqzkA3MKFCysdKy8v538uLi62OFZSUsI1b96c69Spk8XnwcHBXP/+/Std67333uMAcDk5ORafnzlzhvP19eXeeecdi89///13zs/Pz+Lzxx9/nAPArVy50u59mzNjxgwOAHfq1CnuypUrXE5ODvfvf/+bCwwM5GrWrMndvHmT4ziOW7NmjUXZLl++zAUEBHCdO3fmysrK+OstW7aMA8CtXr2a/6xr165cnTp1BJWHILwNckcSBMEcJ0+exMiRI2EwGNC/f39Rf2uytFy/ft3hebNmzcLGjRvx0EMP4fvvv8eUKVPQqlUrtGzZ0sIFunXrVkRGRmLUqFGVrqHT6fifq1atyv987do1GI1GPPbYYzhy5Iio8luTnp6O8vJy9O7dG/n5+fy/6OhoNGjQAPv27bM4PzAwEAMHDhT1HY0aNUJUVBQSEhLwyiuvoH79+tixY4fdWLLdu3ejpKQEo0ePho/PvWFk6NChCA0NxY4dO8TfKEF4IeSOJAiCKfLy8tC1a1fo9Xp88cUX8PX1FfX3N27cAACEhIQ4PfeFF17ACy+8gKKiImRlZWHt2rXYuHEjunfvjuPHj6NKlSrIzs5Go0aN4OfnuLvcvn073n77bRw9ehR37tzhPzcXaq7w119/geM4NGjQwOZxf39/i9/vu+++SvF1zti6dStCQ0Ph7++PWrVq8S5We5w9exZAhXgzJyAgAHXr1uWPEwThGBJhBEEwg9FoxFNPPYXCwkL89NNPiI2NFX0NU0qL+vXrC/6b0NBQPPnkk3jyySfh7++PdevWISsrC48//rigv//pp5/Qo0cPtG/fHh988AFiYmLg7++PNWvWYOPGjaLvwZzy8nLodDp89913NgWpdYyVuUVOKO3bt+fj0AiCUA4SYQRBMMHt27fRvXt3/Pnnn9i9ezeaNm0q+hplZWXYuHEjgoKC8Oijj7pUjtatW2PdunW4ePEigIrA+aysLJSWllayOpnYunUrqlSpgu+//x6BgYH852vWrKl0rj3LmL3P69WrB47jkJCQgIYNG4q9HVmoU6cOAODUqVOoW7cu/3lJSQlycnKQlJTEf+auJZAgPBmKCSMIQnXKysqQmpqKzMxMbNmyxaXcVGVlZXjttddw4sQJvPbaawgNDbV7bnFxMTIzM20e++677wDcc7X16tUL+fn5WLZsWaVzuX+Smfr6+kKn06GsrIw/dubMGZtJWYODg20mZA0ODgaASsdSUlLg6+uLWbNmVUqeynEcCgoKbN+kjCQlJSEgIABLly61KNOqVatgNBotVqUGBwc7TBdCEN4MWcIIglCdcePGYdu2bejevTuuXr1aKTmrdWJWo9HIn1NcXIzTp08jPT0d2dnZ6NOnD9566y2H31dcXIy2bduiTZs26NKlC+Li4lBYWIivvvoKP/30E3r27ImHHnoIAPDyyy/jk08+wdixY/Hf//4Xjz32GG7evIndu3fj1VdfxTPPPIOuXbti4cKF6NKlC/r27YvLly9j+fLlqF+/Po4dO2bx3a1atcLu3buxcOFCxMbGIiEhAYmJiWjVqhUAYMqUKejTpw/8/f3RvXt31KtXD2+//TYmT56MM2fOoGfPnggJCUFOTg6+/PJLDBs2DOPHj3er/sUSFRWFyZMnY9asWejSpQt69OiBU6dO4YMPPsDDDz9s8bxatWqFTZs2YezYsXj44YdRrVo1dO/eXdHyEgSzqLk0kyAIguPupVaw98/RudWqVeMaNGjA9evXj9u1a5eg7ystLeU++ugjrmfPnlydOnW4wMBALigoiHvooYe49957j7tz547F+cXFxdyUKVO4hIQEzt/fn4uOjuaee+45Ljs7mz9n1apVXIMGDbjAwECucePG3Jo1a/gUEOacPHmSa9++PVe1alUOgEW6irfeeou77777OB8fn0rpKrZu3co9+uijXHBwMBccHMw1btyYGzlyJHfq1CmLunGUvsMaU/muXLni8DzrFBUmli1bxjVu3Jjz9/fnatasyY0YMYK7du2axTk3btzg+vbty4WFhXEAKF0FQZih4zgJNgcjCIIgCIIgREExYQRBEARBECpAIowgCIIgCEIFSIQRBEEQBEGoAIkwgiAIgiAIFSARRhAEQRAEoQIkwgiCIAiCIFSAkrUyTHl5OXJzcxESEkJbfxAEQRCERuA4DtevX0dsbCx8fOzbu0iEMUxubi7i4uLULgZBEARBEC5w/vx51KpVy+5xEmEMExISAqDiITraB48gCIIgCHYoKipCXFwcP47bg0QYw5hckKGhoSTCCIIgCEJjOAslosB8giAIgiAIFSARRhAEQRAEoQIkwgiCIAiCIFSARBhBEARBEIQKkAgjCIIgCIJQARJhBEEQBEEQKkAijCAIgiAIQgVIhBEEQRAEQagAiTCCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVEAzIqxHjx6oXbs2qlSpgpiYGLz00kvIzc21OIfjOMyfPx8NGzZEYGAg7rvvPrzzzjsW5/zwww9o2bIlAgMDUb9+faxdu7bSdy1fvhzx8fGoUqUKEhMT8d///tfi+O3btzFy5EhERESgWrVq6NWrFy5dumRxzrlz59C1a1cEBQWhRo0amDBhAu7evStNZRCycOECsG9fxf8EQRAEITeaEWEdO3bE5s2bcerUKWzduhXZ2dl47rnnLM55/fXX8fHHH2P+/Pk4efIktm3bhkceeYQ/npOTg65du6Jjx444evQoRo8ejSFDhuD777/nz9m0aRPGjh2LGTNm4MiRI3jggQeQnJyMy5cv8+eMGTMG33zzDbZs2YIff/wRubm5SElJ4Y+XlZWha9euKCkpwYEDB7Bu3TqsXbsW06dPl7GGlMcTREtBQQEuXryIBQsKUacOh06dgDp1OCxYUIiLFy+ioKBA7SISBOEGntBPER4Mp1G+/vprTqfTcSUlJRzHcdwff/zB+fn5cSdPnrT7NxMnTuSaNWtm8VlqaiqXnJzM//7II49wI0eO5H8vKyvjYmNjuTlz5nAcx3GFhYWcv78/t2XLFv6cEydOcAC4zMxMjuM47ttvv+V8fHy4vLw8/pwVK1ZwoaGh3J07dwTfo9Fo5ABwRqNR8N8oxccfc5yPD8cBFf9//LHaJRJPfn4+N3PmTG7MmAWcTlfGARz/T6cr48aMWcDNnDmTy8/PV7uohIzk5+dzubm5XG5uLvfLL3ncli353C+/5PGf0fPXHqZnOn/+Nc7Hp/yffqqcmz//Gj1TAZw/z3F791b8T7iG0PFbM5Ywc65evYoNGzagbdu28Pf3BwB88803qFu3LrZv346EhATEx8djyJAhuHr1Kv93mZmZSEpKsrhWcnIyMjMzAQAlJSU4fPiwxTk+Pj5ISkrizzl8+DBKS0stzmncuDFq167Nn5OZmYkWLVqgZs2aFt9TVFSE//3vf3bv686dOygqKrL4xxoFBQU4fPgShg3jUF5e8Vl5OfDKKxwOH76kKctRSUkJAODq1QhYvwoc54OrV8MtziM8j4KCAixbtgwffvghhg8/hIcfjsLzz0fg4YejMHz4IXz44YdYtmyZptq1t2N6pu+99xkmTAhFebkOAFBersOECaF4773P6Jk6YNUqoE4d/OMVqPidkA9NibBJkyYhODgYEREROHfuHL7++mv+2P/93//h7Nmz2LJlCz755BOsXbsWhw8ftnBZ5uXlWQgjAKhZsyaKiopw69Yt5Ofno6yszOY5eXl5/DUCAgIQFhbm8Bxb1zAds8ecOXOg1+v5f3FxcQJrRhlMndv77+/kOzYTZWU6vP/+d5rs3MLDC6DTlVt8ptOVIzz8qp2/YBuTi/XixYs4fPgSvviiQjibPtPa85ETk8A2GkPwzTfdeDHOcT745ptuMBpDLM4j2EdrkytW3KVamGCzUldSoqoIe+ONN6DT6Rz+O3nyJH/+hAkT8Ouvv2LXrl3w9fXFyy+/DI7jAADl5eW4c+cOPvnkEzz22GPo0KEDVq1ahX379uHUqVNq3aIoJk+eDKPRyP87f/682kWywNRpORMtrHRuQtHrr6N79+38Pel05ejefTv0+usql0w8ZNlxDWcDNqE9WJ5csRaLqoUJtqda6PzU/PJx48ZhwIABDs+pW7cu/3NkZCQiIyPRsGFDNGnSBHFxcTh48CAMBgNiYmLg5+eHhg0b8uc3adIEQMVKxUaNGiE6OrrSKsZLly4hNDQUVatWha+vL3x9fW2eEx0dDQCIjo5GSUkJCgsLLaxh1udYr6g0XdN0ji0CAwMRGBjosD5YwCRaTJYDpUTLhQvAX38BDRoAtWpJe+2WLX9FvXqncfVqOMLDr2pSgAHOLTv16p2GXn9dc0JZbkwDtrkQY2XAJlxDrX7KGSbBYzSGYPHi0eA4S3fp33+vhl5/HWlpaYiIiFCkTNYTbHvvgVr9xoULwLBhsLLQAcnJ0o8FSqOqCIuKikJUVJRLf1v+z9O4c+cOAKBdu3a4e/cusrOzUa9ePQDAn3/+CQCoU6cOAMBgMODbb7+1uE5GRgYMBgMAICAgAK1atcKePXvQs2dP/nv27NmDtLQ0AECrVq3g7++PPXv2oFevXgCAU6dO4dy5c/x1DAYD3nnnHVy+fBk1atTgvyc0NBRNmzZ16X5ZQynRUlBQgJKSEmzcWBUTJ+pRXq6Djw+HefOM6Nv3FgICAiTrqPT666p20KZ7BYDcXB/k5PghIeEuYmMr2rqYe3Vk2VF7EJIb83q0ha16ZHXA9iZceW7OYHFyJcRdqtZEicX3oKCgAAcPAuXlls++rAzIyipA1apQTKzKgaoiTChZWVk4dOgQHn30UVSvXh3Z2dmYNm0a6tWrxwufpKQktGzZEoMGDcLixYtRXl6OkSNH4sknn+StY8OHD8eyZcswceJEDBo0CHv37sXmzZuxY8cO/rvGjh2L/v37o3Xr1njkkUewePFi3Lx5EwMHDgQA6PV6DB48GGPHjkV4eDhCQ0MxatQoGAwGtGnTBgDQuXNnNG3aFC+99BLmzZuHvLw8TJ06FSNHjtSEpUsocosWoTPGfv368cJbq5juFQCOHHmoUifYsuWvACB4duytlh3zegQqLIJXr0YgPLzAoq3aqkcWB2xvwZ3n5gy1J1f2YPUdZek9MB8DdLrRlepq//51OH5cWauh1GhChAUFBSE9PR0zZszAzZs3ERMTgy5dumDq1Km8qPHx8cE333yDUaNGoX379ggODsZTTz2FBQsW8NdJSEjAjh07MGbMGCxZsgS1atXCxx9/jOTkZP6c1NRUXLlyBdOnT0deXh4efPBB7Ny50yLQftGiRfDx8UGvXr1w584dJCcn44MPPuCP+/r6Yvv27RgxYgQMBgOCg4PRv39/zJ49W4Ha8hyczRizshLRufNufPrpp5p8Cc1n/vn5+QCkcyOyOKNVAvP6cSRm7dUjqwO2p+Puc9MiLL+jrLwHpuftrK603C40IcJatGiBvXv3Oj0vNjYWW7dudXhOhw4d8Ouvvzo8Jy0tjXc/2qJKlSpYvnw5li9fbvecOnXqVHJ9Eq5ha8YIAAcOGJCYmOWy6T4gIEDS88Rge+Yfj5s3gyRzI7I0o1UaZ2KWYBNveG6FhYX8z/XqnUavXlsBcIiLu+Ax9ygHntqfaUKEEd6NXn8dBkMmDhxoZ3XEvRiniIgIpKWlSR6HIgR7M3+gHAAH4N4KJaEuioKCAt6iZoKVGa3SCImJKygogNFoFHQ9OYQ4URkpYhnVnFw5o6CgAJs3bwbg2OKndeRaROWJ/RmJMEIwanZuiYlZOHDAAPOsKlLET6jtwrSe+VfcXzl0Ok6Ui0JoTI234Czexmg0YtOmTU6v07t3b9SoUUP1duItSBEnpebkyhlCVy9rEbkXUXlqn0YijBCMmp2bXn8dPXqwGT/hDrZm/oAPevXajODgYsFmd6ExNSY83bLjLIaktLTU4nx7HXxYWJiig7UcKwS1hFRxUqzXEWurl92dYMuddsOTrYYkwghRqNm5eWJMgL2Zv734kPz8fIcDsbMZdkpKCmJjY5kfpKRAaHthpYO3tmbaQ41FKEqKQ098z60RYvFTcqLk7gRbrrQbhYWFHmk1NIdEGKEpPC0mwNnM39pCk56eDsD+QOysE4yMjPQKAWbCWXthqYO3HqDsWeeUXgkmtzj0xlhGZ+99amqq4u+pFN8nZdoNU/zc1avxTFkNpYZEGMEsrLjM5LYC2Jv5u7JUn9XcQ3JjekZCA+39/Cq6PtbcQiZYss7l5uZafCalOBQby8hKnyAFjix+er1exZK5jpRpN4Rm8Qe03S5IhBHMEhERgX79+uHTTz91eq5cL6GcSSTNsZ75u2qhYTn3kFwItdT07t0bYWFhCAgIENXBKw0r1jlb9Sq1OBQay+ipbnRPtPhJ7U5m0WooJSTCCKapV6+eqiud5Eoi6Uw0umOh8YaYGnOE1n1YWBhiYmIAABcvXgTApmhlxTpnXa8XLsTIJg6dCU9vc6NrHanFpSdaDU2QCCNkQ6q9EFnofKW2TtgLhM3Pz0d6errbFhpPnGELRexSdtZEKyvWOXPX7pEjD2Hbtm4wTxEDSCcOWRGecsNyDjPW8dQ+jUQYIQtS74WoNnIMEo7uW6yFhjr3CoS4y2wlabXXwatRXyxY5woKCvg8aqYJiLUAA6QTh6wIT7lhOYcZoQ4kwghZEJqUUCt7fqkxSIix0FDnLsxaKSZ+TM0krWpb58zbke1cdpBUHLIgPJXCE99BmgS6DokwQlY8xc2g1iAhxgTviZ27GIS0NTHxY0rXp/UAxYp1Ljc3BtZbaQHlGDz4Y9SqdVGy71FbeGoJ1pL60iTQdUiEEbLiSW4GJQYJoQNscXExH1xu7zre1uG50tZY2gqFxYHMaAzB7t1JsBRgHJ58cnclASaFOPTUuB8pUWrFtlik/i5vsa6RCCNkxdPcDHIPEkIG4uLiYkFpO7QSbycVYtsaK7m4zGHtedl2ReoQG3svd5g76SO0NNCyYn2Sa8W2O0i1CMscFiclckAijJAdLbsZlBgkxHbu1hYwVjKrq4V53Ttqa+b5wVjJxcU6QqyL7uTv0spAy+KWUqy0YTkXYan93JWARBghCdZCwlO2IZF7kHC3c2fRmqM0Yp6RScB6Sqyi3DizLvbu3dvtgVILG6SzuKUUK23Y0xZhKQ2JMMJthAoJrSLnICG0Y7J1HiszYRYQ+4w8KVZRbhxZF8PCwtQrmEiksmaxMvFhrQ2zIgq1RuV1xwQhEluzxJyceBiNIU7/loVYD5YQU3eOOj3CMSYLj05XEbOi9VhFqbG1UjMh4Wyl+tHC+1tQUICLFy/a3APT1rvmaGJkb+Ij5H2VGtbasEkUmkMTG+eQJYyQFGf7v0VGRvLnshDrwRJiZ9iszYRdRcmAZzHxY3LCSpC3PbQSq+UMe9YvV61ZrFl7WIi3LSwsBOB5i7CUgkQYIRlC9n8z7d1HWOKKa9ETOj2lA55ZEBcsBnnbgnWBJQRX3Pjm8azWbYHFiY+a8bYFBQXYvHkz/3u9eqfRq9dWABzi4i5oqi9SCxJhhGS4M0tk3TIgN2LqzjTzBNiYCdtC6PN0JybOVdRuR2rcM1GB0RiC//2vmcN3LT093eJYWloa/zMLEx+W0noITZdB2IdEGCEZrs4StWIZkBOhdWc98wTYyaxuQszzJNhKGOvJmIsE6x0AHPVT1mJY7YkPC9Zca2iRkOuQCCMkw9VZIovLv5VGaN0JrYPU1FTVBKu7Kz69SZCQ9UAZrEVChQCrEGKmegeAnJx4m22PtS2lWJuMCrHka2ERhxqQCCMkxd1ZorcNSu4GitsTLXq9Xr5Ci0SosPK2Z0/WA+Wwl/k/OXknmjb9A9nZ9bF48Wi7bY9F6xNLOLPkqzUp1EKYC4kwwm2kmiV646DkTueuBdEitIze+OxZW2nnydgTCU2b/gEAgtqe2oM1yziz5KsxKWR1j01rSIQRbiPVLNFbByVXOgAtiBYxZVTj2as9S2ZxpZ2n4kgk5OTEe2W/IzVqx8pZw+Iem7YgEUZIghSDFQ1KwtGCYBVTRqWfPQuLQVhYaScHaotb6+8yYU8kUL9jiTvPj8Xt6VifsJIII5jBUwclOdDCwCGkjKZB0tmzlzqoV800EawkjJUDFsStOY6s9Pn5+UhPT6d+xwyxz4+ldBn2YH3CSiKMYArWTNqswsLAYW/GbEp2KaSM1oPk9OlXcOaMH+Lj7yI29mEAD/MduGnzbVuwEGArFDmDvNW2Qqklbl25b08Ww64idqW6VG1ZznbL+oSVRBghGLleFNaWf7MMKwOH0BmzkDKat5mYGKBVK9e+yx3ritKpMeQQQqxZoZTC1fumFY+OcRRHZb6rAOBePcndblmYsDqCRBghCDlfFOoM7WNL+Pbu3Rt3794FAPj7+1daeeRuhyhlpnvr/UJdKaPc1hV3VpmqbXkyh8VM/EqIW3fu2xv7FCE4i6Oy3lUAcF0kKZEnkmUPC4kwQhByvyjUGVZGacuGHJnuWd8v1J2gXW+1PAlFrRQq3pbwVw5ciaOSQtzL2WZYXDQAkAgjXEAL+ak8ATksG44sN9YuBjHfp9WBz52gXRYtT+ao+UzUWpFGfZM0OIqjkqtdSd1mtLBoACARRoiE9eW+LOOu68rdzk+o5UYsSg98Ug4CrAftuooSz8RWezYJeTVWpFHfJB324qiys+vL1q6kbjNaCXMhEUaIwtmLkp+fz0TDZg13XVdSDKpiLTJCxI7SA5+QYGEh7U+O1BisWAOVeCbO2rMa4pb1VARawzqOCgC/tRPgXrsyF/Cm91aONqOFcYhEGCEKZy+KKWDTW+Ng7OHuptZKz/CFij6hA58UAexigoWdtT+hqTGEtmGW3GBKiBFn7VnpvG+A51o1lcTRSnWpdhawJ+BZX8UoFyTCCFFYvyhAOQyGzErnqb0VhBqIibcSYzWRa1C1VwYxok/IwCdVALuYehDS/pylxhAKa24wVsRIy5a/Ii2tAYqKargsbsWg1iDO0gpZd7HlwjMltZWqXTla5MXyKka5IBFGiMb0omRlJSIz04ADB9ohM9Pg1UGwYuKtxFpN5BhUHZVBiNgR485zN4Dd9F1qiAshwpoVN5hauw84onnzMMTEyCtA1Myd54krZB1tSSS1yLXXD3lTnkgSYYQgbL0AmZkGZmb/aiNUaLhiNZG683NWBiFiR4w7z1GmeyGYf5den4tZs2L5ekhK2o2rVysGDanbndABlhXLk9QuVjGoGQ+nZgA26ytkpUAukeusHzLPMagla6JYSIQRgjB1dLm5uUhPT2dm9q81xNSbXJ2fszIItaS46s5zZcA2fdewYRdhNC7G1avhyM2Nxe7dSbLFYQkdOFmyPEnlYhUDC/FwnjpAs4BcItdZP8R6jkGpIBFGCMY8Uzors38lkSLmS0y9ydX5OStDSkoKhg2LlMWSIsWAbarPTz55mQlLrJz1xTqsxcOpjRoWQSVi0uRow944htiCRBjhEs5m/2LSBWgBd2K+kpJ2Izb2It8xi3EtSll3QmOGYmNjERERIbklRcoBmyVLrGnGrpTliSVYeg6uIpWIUcMiqOWYNG9dDWkNiTDCZRy5yMSkC9AC7sR8ZWQ8CUBn0TGrsfG2EjFDSiXwVGMWzUoeMBYQuliC9WBqqUSMWhZBrcekeeNqSGtIhBGicJRHxh6sdgByYEtoADoAlTvmgQOftNjcWgmroZwxQ0ok8FRrBSALcU8sYS7o77uvCJMm6VFWpoOvL4e5c4vQt+8LmrCCSyViWLEIsjJRcGRdNBqNFr/bG0NYF/BSQSKMEIV555uTk4OMjAz+mL0OoLCw0OMCLMXEfJnjyYGnSiTwVGMFIMU92cZUx+PGAampwOnTQP36OtSqFQYgTM2iKQ4L8U1KThSciaxNmzY5vUbv3r0RFhZm85gWBLxUkAgjRGN6OcyD0R11AHfv3lWlnNYoEftROZktB5MlDPDOwFNzpEjgqfQKQFasHCxTq1bFP60j1pLESm42JScKUu1BGxYW5lGTUFchEUa4jdEYgm3busOe240FlIr9SElJQUoKUK+e/TQKrNSJWiiRwFMKPCXuSSo8KTO8LVyxJKmZm80cJScKcuxB682QCCPc5vz5OJhbe4CKDuD8+VrQ60/I/v1CBgelYj8iIyMREBDAxzkkJJxF8+bHFQ/CZwGtd7724p58fDhMn56LlJQn4efnh5KSEj4hrRpCRAlxpOVVeEJwx5KkRm42a9R0hzp6zymW0jkkwghNI3RwSE1NtfjdVYHgSjZ5W2jdauAMT+l8zeOeOne+hgULvv7nWV+H2QJgC5QUIkqJI62vwnOG1l3OaqV7cPSeUyylMEiEEW4TF3ceQDkA806sHHFxF2T/bqGdfmlpKf+zKwJBbOyHJwssZ3hq5xsZeRsJCWednqekEPF0cSQXJuuhKa6VhcB6V1Bz30xn77nWha1SkAgjXMbf3x9AhTDp0WM7tm3rhgohVo4ePe4JE9N5SuDMwuWqQJAq9sPT42oA7VsVCOdo2dVsy3qodmC9q6hpdXf2nmtV2CoNiTDCZfR6Pf+zo1mY+XlCcUWsCLFwuSMQ3I398PS4Ggpk9w607mq2169Y92EVefzY33pKrbI5e8+ldJF68uSVRBjhMkITt4oddMWIFRNCLVxqzs7kch2x0kHJkcCTlXuzBYvWILnL5KmuZhPmfZjYPH4st1U5ECKypHCRevrklUQY4TJymcKtr2dvYDE/T6iFi6X9yuzdl/Vm4CZs1SVrHZSUCTxZuzdzWLQGKVEmcjXbhqW2KrcYFBqHJlUyVk+PeyQRRriF1PsMAsKTwJrjzMLl53evqau1d6M5ju4r3d6yO1TuxFnuoNxN4MnqvbFoDVKqTJ4Y5yOF9VBoG8zNza10rpQWMiXEoNqrv1m0QLsDiTBCFYR0FmIGFmcWrrCwMGbSRrgzYGp1tudJsGgNkrtMrGSGlxqlLZr2JlhSWciUmrio5fZj0QLtLiTCCFUQ4nIUMrCIWaLNSryAnAOmp80SWYLFhQdKlYmVzPBSIqf1UOx7SJMr57BogZYCEmGE6tib3XhqYlQh9+WKmPLEWaI5agtMqRceSBG7I8diCEffZUKtzPBSInQyJOQ5mcPSe6j2OyMlLFqgpYBEGKEqzmY3zoLotbgiydl9udKJe+os0YSjOhGzkMFdpFp4IGXsjpSLIbwBMdZDoc+pd+/eAJy/h0qKIpbEoBR4YjwiQCKMUBlnsxtHLkaj0YhNmzY5/Q5Wli4LcZ26KqY8dZYIOK8TMQsZpMSdhQdyxe64uxjCGxBjPTTtCeqMu3fvAnD8HmZn11dMFKk5KZNrYszSynYpIRFGqIqQ2Y29/GMcx1n8LiSVhZo4cp3m5+cjPT3dqZgyt/qYizpPnSUC7glMVp69FGjR6ssqclkP7b2H/v4liooipSZl1m1SjomxmlszKQGJMEJVnM1uOnbsiOrVq/Pn+/v7Q6/Xo7i4GMXFxfznWjG9O+t4nIkpa6tPv379ALC9as1V8SDUbeQNsJSHytMQYz20N9Ez38LN1ntYWhqoqKVaiXdG6Ap3dyfGWoz7FQOJMEJ1HM1u9u3bV+n8fv364dNPP+V/94R4KKEpAKwJCgpyumqtuLgYJSUldl0rcnZg7ogHR26jadNyAWjj2QrBWayQ3KkHyMrmHEcTPb1eb/M9DA29jAMHfoXRGKLIRELJVCLO2pqUE2NPbnskwgjJEdKhC93yyBbmFjDAM+KhrGd7aWmnsGFDFi9KHQ3SjlatFRQU4MMPP3T6/XJZUNwVD/bcRr6+vjC/LS2vAlPbiktWNucImejZeg8LCoADB5SzVKuZSsT8HQSg+YmxUmhGhPXo0QNHjx7F5cuXUb16dSQlJWHu3LmIjY0FAMycOROzZs2q9HdBQUG4efMm//uWLVswbdo0nDlzBg0aNMDcuXPx9NNP88c5jsOMGTPw0UcfobCwEO3atcOKFSvQoEED/pyrV69i1KhR+Oabb+Dj44NevXphyZIlqFatGn/OsWPHMHLkSBw6dAhRUVEYNWoUJk6cKEfVMIWYDt3axGyKizIhdGD197/jEe4q644xIeEsAPcGaVazzruCudvI3KintohxB1etuFKKTk9qI3Lh6kRPDVGkRioR63fQYMjU/MRYKTQjwjp27Ig333wTMTEx+PvvvzF+/Hg899xzOHDgAABg/PjxGD58uMXfPPHEE3j44Yf53w8cOIAXXngBc+bMQbdu3bBx40b07NkTR44cQfPmzQEA8+bNw9KlS7Fu3TokJCRg2rRpSE5Oxh9//IEqVaoAAF588UVcvHgRGRkZKC0txcCBAzFs2DBs3LgRAFBUVITOnTsjKSkJK1euxO+//45BgwYhLCwMw4YNU6K6VEPMvo+ONscVOrCanwdwAHQOXXhac7so5WpVMs2DlGjdFe3K4K5l0alV3Imx8rT8atbYegcPHDB4xMRYCTQjwsaMGcP/XKdOHbzxxhvo2bMnSktL4e/vj2rVqllYon777Tf88ccfWLlyJf/ZkiVL0KVLF0yYMAEA8NZbbyEjIwPLli3DypUrwXEcFi9ejKlTp+KZZ54BAHzyySeoWbMmvvrqK/Tp0wcnTpzAzp07cejQIbRu3RoA8P777+Ppp5/G/PnzERsbiw0bNqCkpASrV69GQEAAmjVrhqNHj2LhwoUeL8LMEZvbyfSZ0IHV+jxAB6Acgwd/jFq1Ksc/adHtIrWr1Z4oVirNg9RuQ626ol3NdO/s3cjPz3dbOGvZtSs1nrpdk5TYegcBHxgM+5GZafCodBJyoBkRZs7Vq1exYcMGtG3bll+VYs3HH3+Mhg0b4rHHHuM/y8zMxNixYy3OS05OxldffQUAyMnJQV5eHpKSkvjjer0eiYmJyMzMRJ8+fZCZmYmwsDBegAFAUlISfHx8kJWVhWeffRaZmZlo3769xYuZnJyMuXPn4tq1axar/cy5c+cO7ty5w/9eVFQkvFIYw53cTkIHVnsvf2mpZYdoeg5adLtIucrJVQuKVPUh9PvFxBSytIWQGOwtOvDx4TB9ei5SUp6Ev78/v6DCNEFx9m6Y3itXhTNZ2SzxxO2apMbeO5iYmIXExCybC66Ie2hKhE2aNAnLli1DcXEx2rRpg+3bt9s87/bt29iwYQPeeOMNi8/z8vJQs2ZNi89q1qyJvLw8/rjpM0fn1KhRw+K4n58fwsPDLc5JSEiodA3TMXsibM6cOTbj2rSIUCFla9YtVHg4Oy8lJQWxsbF2O0gtzPilSlCotttO6Pe7ElMo93Y9cmG+6KBz52tYsODrf9ruddibowh9N1wRzmq3EVbxdHeiuzjro2y1HVYnR2qgqgh74403MHfuXIfnnDhxAo0bNwYATJgwAYMHD8bZs2cxa9YsvPzyy9i+fTt0Op3F33z55Ze4fv06+vfvL1vZ5WDy5MkWlrqioiLExcWpWCLXcZS0MCcnHuHhBXYzSAsVHs7Oi4yMtDsIsz7jlzpBoRBRLKcoFSrKxVgrTTGFnrBdT2TkbX4hhiPkzBquVdcuoQ5C+yhrUlNTmZ4cKY2qImzcuHEYMGCAw3Pq1q3L/xwZGYnIyEg0bNgQTZo0QVxcHA4ePAiDwWDxNx9//DG6detWyaIVHR2NS5cuWXx26dIlREdH88dNn5kHjV+6dAkPPvggf87ly5ctrnH37l1cvXrV4jq2vsf8O2wRGBiIwMBAu8e1hK3B4v77j2HVqiH/dPTlqIjhqhDQ1rNuRy91UFAQ/7MrAkULM36pExQ6s6DIJUqVcht6y3Y9HTt2BLCPb/P+/iUoLQ2E0RjidtulpLiEGKz7KKGr2/V6veJlZRlVRVhUVBSioqJc+tvy8nIAsIihAiriuvbt24dt27ZV+huDwYA9e/Zg9OjR/GcZGRm8iEtISEB0dDT27NnDi66ioiJkZWVhxIgR/DUKCwtx+PBhtPrHLr13716Ul5cjMTGRP2fKlCn8ogHT9zRq1MiuK9ITMRdI/v4lZgIMAKxjuSxn3SkpKYiMjKx0jkl4uCNQtDLjl2K2KCSwWE5RKmafPltowWWsJKb+Q6+/LtlehO4Gn2ttxTEhHVr1NLCEJmLCsrKycOjQITz66KOoXr06srOzMW3aNNSrV6+SFWz16tWIiYnBU089Vek6r7/+Oh5//HEsWLAAXbt2xeeff45ffvmFT2ap0+kwevRovP3222jQoAGfoiI2NhY9e/YEADRp0gRdunTB0KFDsXLlSpSWliItLQ19+vThc5b17dsXs2bNwuDBgzFp0iQcP34cS5YswaJFi+StKAawl4Q1JyfeRhC9Jeaz7sjISIcpLNzp1L1pxu8osDggIAHp6b/KLkpd3aePlY5cDZHhTHxKKZzdCT7X4opjQl604GlgCU2IsKCgIKSnp2PGjBm4efMmYmJi0KVLF0ydOtXCfVdeXo61a9diwIAB8PX1rXSdtm3bYuPGjZg6dSrefPNNNGjQAF999RWfIwwAJk6ciJs3b2LYsGEoLCzEo48+ip07d/I5wgBgw4YNSEtLwxNPPMEna126dCl/XK/XY9euXRg5ciRatWqFyMhITJ8+XRPpKcwHnNxcH+Tk+CEh4S5iYyssj84GHHsmalvCByiHTgfFlzDLGVfDIvYCiy9erHimSopSoW5DVjpyNUSGEPEptXB2NfhciyuOTZAFTx604mlgBU2IsBYtWmDv3r1Oz/Px8cH58+cdnvP888/j+eeft3tcp9Nh9uzZmD17tt1zwsPD+cSs9rj//vvx008/OS4wY5gPOI4GAmcDjq1j9oSP0GBOKZA62F3rsJwDiZWOXGmRIVR8ihHOJDYqQxY8+WDR08DyO6AJEUYog6mROhsIXB1w7AkfpZYwSx3srnVYzoHEYkeuBM7EpynGVKhwVlpsiInhU3Ng1LIFj3VY8zSwLrhJhBGVkNIKIXSj7t69eyMsLIz/G7leBm8RWEJhLQcSy9Y5ORG6ijQqKkqUcFZSbIiJ4WN9YCTEw6qnQcxWempAIoyohJRWCLI+EWJwZJ0LDm6I0tIE+Pn58ZnkzVGiHcm1WtPVVaQsCGdAfAwfa5Yoe8+1sLDQ4d9R33UPJft6V62orCz2MYdEGFEJqc3J1EkRYrBlnauwnGxy+rdyWk7k7sBdXUUqBrlEJCsxfK7g6Llu3rzZ6d8raa1jObYJUKavd9WKyspiH2tIhBE2EZMB2RNhvbPzNlyxnEj5DJXuwOVIPiuniHRmPTftfWmvztXKByfFc1XKWkcu3ApcdS+yOlEgEUbYxV78lqdDnZ32kfoZytmBKyH45RKRQmP4zDOpp6WlWVxDTReRmOeqduJg1ly4riB1WxfTdlhd7EMijJAN6xeusLAQd+/e5X/39/e32MKCFesS64GchPMBUaoBS+5tl5QS/M7EhslSZY2YvID5+fmoV2+xU+u5eZ2r7SISOjCzGEuktigUi9RtXWzbYW3VpgkSYQSP0IFEyHnWL5x1h2GvA2HNusRi5+vtKPlM3N12yRlKWTeciQ1zS5U1YvICirWeq+UiEmrBA9QXiraQ+x2Qwzor9eTWlbbDYpgNiTCCR8rVLebXsO4w7r//GI4du99mB8KSdYnFztfbcfWZuGM1UCJgXi7EiA17uPpOCqlztVxEQnLkGY1GbNq0iblYIrn7JSWss1KISKFtR2iaJLXS3pAIIyyQYw886w7jt98eAKDjf2dV2LDW+RKuPRMprQZyBMybI7WLScjeoXLgrM5ZyAcnNEee0kLRXhjHtWvXAMjfL8kdjiGViBQ6sWA9TZJLImzfvn3o2LGj1GUhGMDdvSOtsdVhmASYCbmFjaumdVYDOb0Zsc9ES9ZMuVxMzvYONSGVABRS5yzv1mCNkrFEQqxQSvZLcrRJKUWkUPciC+3IHi6JsC5duqBWrVoYOHAg+vfvj7i4OKnLRaiAVHtHmmN7424O5kLMvAMxGo2IiYmR5H4A57FpJmzdE6uBnN6Iq5YTrVgz1RaLUg62Quuctd0arFEjA7wQ65JS/ZJcbdJdEcm6e1EsLomwv//+G+vXr8e6deswa9YsdOrUCYMHD0bPnj01c+NEZeTYO9JWh2EeEwaUIylpN/8Sbdq0SdLgfEexaUJi0VgM5PRGXLWcaMWaqaZYlHqw1UqdO4MFN5a9BU316p3G6NG2V6IKHYPteQhMK2XlapPuikgWnouUuCTCIiMjMWbMGIwZMwZHjhzBmjVr8Oqrr+LVV19F3759MXjwYDzwwANSl5VQCKlfPltCpkaNy9i9Owkc54Pdu5NQteptWYPzxQw0njbT8hTEWE5YiDkSg5rCRar3XYo6Zy1JspoDuZgFTSkpKYiMjBRcP2q7Pd2d3GpFYAnB7cD8li1bIjo6GhEREXj33XexevVqfPDBBzAYDFi5ciWaNWsmRTkJBZHj5TMXMkZjCC/AAGVcL2IGGk+baXkjWok5kkMsihUyUr3v7ta50FV5vXv3RlhYmM1jLDxTKRC7oCkyMlJUGIeQ4Hup3Z40ubWNyyKstLQUX3/9NVavXo2MjAy0bt0ay5YtwwsvvIArV65g6tSpeP755/HHH39IWV5CAaR4+Ry9SGq4XsQONJ7QkXs7rMccAdKLRTHpBeQQgO7UuVALuLP9HFnLNWgPW2LZkStQrgVNjsI0pAzHoMmtbVwSYaNGjcJnn30GjuPw0ksvYd68eWjevDl/PDg4GPPnz0dsbKxkBSWURQpzsfULl5OTg4yMDFVcLxRkT7CKlGJRTPLXmJgYpq2Frq7WZCnXoD2ciWWxC5pcRUiYhpQWK28TWEJwSYT98ccfeP/995GSkoLAwECb50RGRmLfvn1uFY5QF3f3jrT3wrkjiNyJGWExyJ61GBjCs3AmZFi1FgpZram1bXvMcSYUnS1okmoS6cwrYYo1s4b6JelwSYTt2bPH+YX9/PD444+7cnnCC3BFELmTbsKEu8JSSmijcLbRukDW6pZbQqwzWr03e9jqy2z1kZ067ZU0TYYzr4TYWDNCPC7HhJ06dQrvv/8+Tpw4AQBo0qQJRo0ahUaNGklWOEJZpNw7UghiBZEr6SaUvicx0EbhbFJQUIDLly87jT0C2BXIaucdcwdn1hln92a+GTnrQhlw3JcNHPgk/Pz8cPfuXf58f39/6PV6/nd37lGMV0LrkxJWcUmEbd26FX369EHr1q1hMBgAAAcPHkTz5s3x+eefo1evXpIWklAGuQMnpRJEQjph82z/qampKC0thZ+fn81VVSx0Hp42s9cqQq2TJlgVyFpJUmsLZ9YZZ/dmvRk5q0IZcN6XibFEuSqShHgl3LXak4Czj0sibOLEiZg8eTJmz55t8fmMGTMwceJEEmEaRs4XQSqR56wTnjo1B99808xM0GS5lO1fKbRstfA07LVNrcUfaTlhqjPrjNh7Y1UoA9KJZbEiSWy6CHes9lKEkXgyLomwixcv4uWXX670eb9+/fDee++5XSjCc5HiJXPUCUuZ7V8ptGy18HSMxhBkZSXiwAEDAPtWStZm+lpcDSx0myB79wYAOTnxmhHKgHRiWaxIcmdCLNZq7+6uJZ6OSyKsQ4cO+Omnn1C/fn2Lz3/++Wc89thjkhSMIOzhaIDJyYnXnKDRstXCkzEfMEzYslKytMBCjf0OpcKZMDAajdi0aROAyveWnV0fixePZtadby3STXFrcohloSLJlbbojtWeLP62cUmE9ejRA5MmTcLhw4fRpk0bABUxYVu2bMGsWbOwbds2i3MJQmrsDTBaFDRatFp4OtYDhjnWol5Mbi650XpCTEflss5rlp+fj/T0dGYHd5PwKiwsdLjIQ0qxLHdduGO1J4u/bVwSYa+++ioA4IMPPsAHH3xg8xgA6HQ6lJWVuVE8grCPrTgGtXKQuQuLOcyEIFedqe3es52xvAJnol7t+DEt1rdQbJWBxcFd7AIPvf46Bg580iInlyt1LndduDPJ1eIEWQlcEmHl5eVSl4MgnCJ0VqhWDjKxaH0vNbnccHJe15nQMGE7YzkAOBb1WlzlypI71RVYHNwdxWgBsNm3SJGTS+66cGeSSxZ/27i9gTdBKIUjV4vJNWFCiRxk7qJ115Fcbjg5ritmc2jA9oBhMGQiMTGrkrvIVA5W3WLO0Hq+OtYHd8vYQu6ff/KIdCXqwh2rvVYt/nIiWIQtXbpU8EVfe+01lwpDEM6QW5AoPZCyKrBcQS43nBTXFSo0dLp7e/M5GjBSU1MRFRWFiIgIXLx4EQCbbjGxaMmSp4VFCJVjC3Uw7f8oV98ih9CR0mrP0q4lLCBYhC1atEjQeTqdjkQYoThSJYL1hIFUDRwN3uYZzK1xZukTel0xFkNH19Tr9S5bJ1l0i4lBSBJkliyzWrAkO4otBKTrW+QObXCnrlnetYQFBIuwnJwcOctBMMyFC8BffwENGgC1aqldGttI1SFrfSBVA2eDt3UGc2vsxRqJva6QmCUhlk4ltoBhEaGZ6FmKDWOlHPawH1tYgVR9ixKC1NW/1YJYVhOKCSNsYgpi3rixKiZO1KO8XAcfHw7z5hnRt+8tJl8aKcqj9YFUDYRaD8XGGtm77vnztXD16i2XYpbksHRqwS0mBKETEFZjw1jEVn/CcYB5TJhUfQtr/bE5LJdNbVwWYRcuXMC2bdtw7ty5Si/lwoUL3S4YoR6mIGajMeSfBIgVMQzl5TpMmBCKv/9eDb3+OlMzYimh4FFxCBm8XYk1sm1FKMfWrc+5HLPkrKyuuNw8ZaZvLRiAisUI1hQWFrq9io8FlErLYd2fANCkSFcKraRLkQqXRNiePXvQo0cP1K1bFydPnkTz5s1x5swZcByHli1bSl1GQmFML4Azq4Enz4i9PXhUTDoHZ9ZDVxc72BIFgI6fFLgS2OysrK663JydW1BQwAfw24KVgcUkGLKyEpGZacCBA+2QmWmwELubN2/W/ARM7rQczmK0TD+npqZCr9cz8/zVxhv3mXRJhE2ePBnjx4/HrFmzEBISgq1bt6JGjRp48cUX0aVLF6nLSKiEN8VHeXPwqLXgMt8epuJ32x1hv379+J8dWQ/FugDtufdu3gzGF188L/g69hBi6ZRygsF6Hi5bbToz0+BQNGt9AiZ3Wg5PsY4qjTfuM+mSCDtx4gQ+++yzigv4+eHWrVuoVq0aZs+ejWeeeQYjRoyQtJCEOrAcH+XOYgFz0ZGb64OcHD8kJNxF7969cffuXfj7+0Ov11f6O0/sNO3PPEOg11932BEGBQU5HGhMudvEinnrAcx8expXJwX2LBNGY4jsmz6ztK2RLUz1nZubi/T0dLuiOSsrEZ0771aljHIiV1oOsX2Ft7nhHKHVnHuu4JIICw4O5htLTEwMsrOz0axZMwCOl6MT2oOl+CgpFguYi47KnW8WWrb8FUZjCO6/vxdatKiC2NiK3SE8tQN0NPNMStqN3buT3F5J6IqYt3VddyYF1kLD1v0qlRNL7W2NbBEREcG3BXsr+g4cMFRKVqt1WBnsWbeWKo27C2jsTbRZ7M9dEmFt2rTBzz//jCZNmuDpp5/GuHHj8PvvvyM9PZ3f0JtgF7FWJBbio6RaLOAsu/mtW1V44WE9MHtyB2irPjIykgBIs5JQKjHvznXMhYZag68WkqHq9ddhMGTiwIF2Vkc8L18eK3kBhbpHc3NzbVrLWBIVUuBOKIzjiTZ7/blLImzhwoW4ceMGAGDWrFm4ceMGNm3ahAYNGtDKSMZZtQoYNgwoLwd8fIAPPwQGD1a7VM6RerGAves4svyYru2JbgPbSSV93IoJlCqBpByJKNUYfFmxutjDvP4SE7Nw4IAB5iLcE+NBWYx7dSQcTG55Tw9Wd8fqLXSixUpcmUsirG7duvzPwcHBWLlypWQFIuShoKAAZ87cxbBhNVBebrIiAa+8wuHBBy8jPt5PEy+wVJ2mvfQHzgZmT129Y69ezV2SYmMCpQpOliPIWYnB1yTWTSEarFhd7BEREYHU1FRs2rQJev119OjBZjyolLAW9+pMOHhLsDrgvvWc9ffNhFvJWktKSnD58mWUl5dbfF67dm23CkVIi0k45OTEo7y8v8WxsjId3n33RwQH38K4cT3QokV1plcKStVp2rqOdQwUUHlg9tTVO/bqtWXLX9G8+XGXO0KphKjUglbOwbegoACXL1/G5s2bLT5n0epijfmCFJbiQeWEpft0JBwAMG1JlQN3QmG08L4BLoqwP//8E4MHD8aBAwcsPuc4DjqdDmVlZZIUjpAGxwG395Jfrl/P/eOeZHt5tZzxRVWr3hY0MLPuWnIFe/XKQkygVMid3d5egLXJYuqOZVEJ5N6DkBVYvU9HwkEty46S4RdSGgBYs3LawyURNnDgQPj5+WH79u2IiYmBTqeTulyEDDhLfllersMrrwDJyUCtWrZfKvOgfjWRShhYX0eowNOKqVssYupVjgFK7g5f7vxNtgKss7IS+fgqk8U1NjaXyYzp3pLfitX7dCYclLbsKB1+IfVzYcnKaQ+XRNjRo0dx+PBhNG7cWOryEDLjLPllWRmQlVWAqlUru4C0GtQvFiFCRCumbmcIHfh79+6NsLAwi7+TeoBSqsNXamA1d1ebMC3+GD16MfT660hJSUFkZCRTwoaVcsgNq/fpyCKttGVHjfALOUIPWBRfJlwSYU2bNqV8YBrGPFGlLSGxf/86HD9+L92DpwT1A9JZG8R0iCyvpmTJIuBJ8XbW7mpzzC2mkZGRHrEPI+EeQt2jall2PDH8ghUEi7CioiL+57lz52LixIn417/+hRYtWsDf39/i3NDQUOlKSMiGMyFRUlLiNKj//fe/Q0LCWdlXA0oVK2BLdFhv0+Po2uZ/J6RD1MJqStYEtCd0+LZTflSgRYspIS+OJkOmHSNMqGHZ0VL4BcsLy2whWISFhYVZxH5xHIcnnnjC4hwKzNcezoSEo6B+88FEbuuElBYb63NiYmIEX9t6E2ZnHaInWXeUQksdvj3sZZ0HXHchsWxRlQpvuEd72LsvFkSFlsIvWLLuC0GwCNu3b5+c5SBUROjMymDI5Df2VWOliZwvjdBru9oheoJ1Rym01OHbw5aV2WDIdHnbH2/Y1kYLVmOhCBWTQs9TW1RoZaWhCdbbhzmCRdjjjz/O/3zu3DnExcVVWhXJcRzOnz8vXekISXB3hmQZYFyOtm33e9weckJxtUP0BOuOUmitw7eHEHe10HdT6LY2WraoeorVWKhg7tevHz799FP+d9ZFpxZWGmoRlwLzExIScPHiRdSoUcPi86tXryIhIYHckYxhLRysYwzsYTQacf48ZxVg7IPMzIqNfL0VVzpET7DuSIm1BaCwsBBXrlzhf9dqhy80wDo1NRVRUVEutSUt7D/pDlq3GgsVzMXFxfzPWhGdrK801CIuiTBT7Jc1N27cQJUqVdwuFCE9rnT2mzZtQk5OPDiuicXnallwxG48zhKeYt1xhhD3CgAHbifL3xMSzspeZimR23WkdYEiBE+yGgsRzEKfqRrxcizEo3k6okTY2LFjAQA6nQ7Tpk1DUFAQf6ysrAxZWVl48MEHJS0goS5qW3BMHc/GjVUxcaIe5eU6+PhwmDfPiL59bzEVYOkMrVp3hCI0pqd37978z9aD1P33H8OxY/c7HLRY7/DlbI+eJFDsoXafIxVCxZWQZ6pWvBwL8WiejigR9uuvFZ0hx3H4/fffLTrDgIAAPPDAAxg/fry0JSQkR8wgpqYFx9TxGI0hWLx4tEVm/wkTQvH336uh119nJmZCCNbmfFNnevx4If+ZVjs1oTE9d+/eBWB7kPrttwcA6PjfzQetlJQUxMbGarJupMJTBIojPMVqLFQwC3mmnhIvJxfmVsLcXB/k5PghIeEuYmMr9rVmuU8VJcJMKyQHDhyIJUuWUD4wjSJkdlNYWMhvQCxlgLEYTOVz1pnZug9WXJeO6sW8M/3kE8vOVEvC0hp3LAAmAWbCOrGpVutEKpwJFHtJtFkehGzhCVZjoYJZjOhU2h2thRWr5mV0JFBZ7VNdiglbs2aN1OUgFEZsY7QXkKmEdULs7J+l7ZXsLYpw1plqeUbrjgUA4GAuxDzNyiMFjgSKqW3ZcwPLvfWUlGg9CFyMuGJ1z1otWOBM363VPtUlEXbz5k28++672LNnDy5fvozy8nKL4//3f/8nSeEI9lHCOiG0M1NjeyUhFjdb3+nJsT3uWABsxYRpvT6kQOiqS3sDpdEYgrlz/6uYBcOVIHJPDAIXY9Fjec9aLSwI0Wqf6pIIGzJkCH788Ue89NJLiImJsblSkiCkxFlnpuT2So4WC3TocAfnz1dB69Z6h25QT47tcdcC0KnTXk27oeRAyLY29gbKW7eqYPfuJMUsGK4mlvWUIHChgtl8YZuz65nqRK14OS0IHK32qS6JsO+++w47duxAu3btpC4PQdjF0UxRqe2VHC0WGD8+FDpdRefkbAWnpwQf28MdC4DW3VBy4Ux82BsoTQLM9LvcFgx3EstKLbDUSOsgRky6sl2aGvFyWhA4Wu1TXRJh1atXR3h4uNRlIRhCq64BuV9ER4sFAB9wXMVPQlZwekLwsSPsiSl/f3+XrsdaW2MN2zF2lfevVNKCoWZiWTW3ehJ6PVe/V+mJilYEjhb7VJdE2FtvvYXp06dj3bp1gk2qhLbQsmtAiRfR/gbN93C2ghPwLKuPUJEUFRVVqW0VFhbyqSuACqGm1+strs1iW2MJWwNlUtJuC0sYoJwFQ+04Ik/a6omFSbHYflWttBFa61NdEmELFixAdnY2atasifj4+Eoz2yNHjkhSOEJd1B70hHQoRmMIsrKCEBd32+JzuV9E6wEPKEfFqj7vXdnnjnCPiYmRs2heg62BsmrV25JZMITuiACwFUek9a2eWJkUC+1XtZ42QklcEmE9e/aUuBgEURlnHc/GjVUxe7Yeixbp4OMTim7dHlK0Y7Ue8LKz6zsd7FiY0cqJt3eoUuFOLJP1QCmVZVhozqjU1FQA7MQRqW2Rkwo13i1X+ysl00ZovU91SYTNmDFD6nIQhE1sdTymVBSmlYlARQyWGh2r+YAnZLBjZUZLsIvYBJlCBhcpLMNCc0aVlpby38lCHBFLFjmt4W5/JXXd23Nx9u7dG3fv3q0UxiCkjGojSoT997//RatWreDr62vz+J07d/D1119b7A1HEFLiKBUFCx2rkMGO1c6AYAOxCTJtDZRGoxGbNm1y+l2uWAfEWJZYCJRmxSInN3LFYLnTX0lZ945dnFn8e5GamoqbN6tb3H9JSQkKCgqY7HvtRxXbwGAwoKCggP89NDTUIjFrYWEhXnjhBelKZ0aPHj1Qu3ZtVKlSBTExMXjppZeQm5trcc7333+PNm3aICQkBFFRUejVqxfOnDljcc4PP/yAli1bIjAwEPXr18fatWsrfdfy5csRHx+PKlWqIDExEf/9738tjt++fRsjR45EREQEqlWrhl69euHSpUsW55w7dw5du3ZFUFAQatSogQkTJlgEHhOuYZ2KwhwhLzerJmmCsMae2DEaQyqdGxERgZiYGP5f48aNkZaWhmHDhtn952o8jiPrBgD4+VnO7fX660hIOOuya95dTBY5U39ha6unixcvWoxtWsMkUD788EMMH34IDz8cheefj8DDD0dh+PBD+PDDD7Fs2TLF79FZ3YvBmYvT9F5MmvQnM/cvBFGWMM60/t7O7/Y+k4KOHTvizTffRExMDP7++2+MHz8ezz33HA4cOAAAyMnJwTPPPIOxY8diw4YNMBqNGDNmDFJSUviFAjk5OejatSuGDx+ODRs2YM+ePRgyZAhiYmKQnJwMANi0aRPGjh2LlStXIjExEYsXL0ZycjJOnTqFGjVqAADGjBmDHTt2YMuWLdDr9UhLS0NKSgr2798PACgrK0PXrl0RHR2NAwcO4OLFi3j55Zfh7++Pf/3rX7LUj7fhzNWRkpKCyMhIi7+RwiRNIk5e1MjrxCruunLkqidn1o2wsDDmXO7WFjkAyMmJR3h4AdLT0/nztBoozvLWPVJbQ51NAli7f2e4FBPmCLmy548ZM4b/uU6dOnjjjTfQs2dPlJaWwt/fH4cPH0ZZWRnefvtt+PhUPIDx48fjmWee4c9ZuXIlEhISsGDBAgBAkyZN8PPPP2PRokW8CFu4cCGGDh2KgQMHAgBWrlyJHTt2YPXq1XjjjTdgNBqxatUqbNy4EZ06dQJQsZdmkyZNcPDgQbRp0wa7du3CH3/8gd27d6NmzZp48MEH8dZbb2HSpEmYOXOmRw/kSm6c7ejljoyMlGXFnbXrR063j7ehhc2C5aagoIDfhJtVN5qQWC8Wno+9zPWu7oGoVsoFMbAa/yblanVH7wWr9+8IyUWYEly9ehUbNmxA27Zt+fQYrVq1go+PD9asWYMBAwbgxo0bWL9+PZKSkvhzMjMzkZSUZHGt5ORkjB49GkDFC3j48GFMnjyZP+7j44OkpCRkZmYCAA4fPozS0lKL6zRu3Bi1a9dGZmYm2rRpg8zMTLRo0QI1a9a0+J4RI0bgf//7Hx566CGb93Xnzh3cuXOH/72oqMiNWlIeNTbOViMnjHlHGxMTU2nWb91Bs9A5awG1NgtmxfpmK7mowZCJAwcMANhKkMlCrJczzCdMzrZ2cragRyspF1gV7lLibBKgtfsXLcL++OMP5OXlAahwPZ48eRI3btwAAH4GJxeTJk3CsmXLUFxcjDZt2mD79u38sYSEBOzatQu9e/fGK6+8grKyMhgMBnz77bf8OXl5eRbCCABq1qyJoqIi3Lp1C9euXUNZWZnNc06ePMlfIyAgAGFhYZXOMdWLve8xHbPHnDlzMGvWLIG1wQ5qbJzNEhEREQ73k+zb95ZqQaFyzN7ltggomVKAJeubIxFqMOxHYmIWU2JHC0kxrZ+Zq5YSlt195ri6IlXqd1rutBH2JgGsrMgVg2gR9sQTT1jEfXXr1g1AhRuS4zhR7sg33ngDc+fOdXjOiRMn0LhxYwDAhAkTMHjwYJw9exazZs3Cyy+/jO3bt0On0yEvLw9Dhw5F//798cILL+D69euYPn06nnvuOWRkZGhik/HJkydj7Nix/O9FRUWIi4tTsUTOUXLjbFZxtJ+ks62LlCgXIN3sXQmLgJIuBbWsb46wNdBnZhqQmJilWBlsofV8TID7liItuLtcyWwv9TutRCoee5MALVhpzRElwnJyciT98nHjxmHAgAEOz6lbty7/c2RkJCIjI9GwYUM0adIEcXFxOHjwIAwGA5YvXw69Xo958+bx53/66aeIi4tDVlYW2rRpg+jo6EqrGC9duoTQ0FBUrVoVvr6+8PX1tXlOdHQ0ACA6OholJSUoLCy0sIZZn2O9otJ0TdM5tggMDERgYKDD+mANpTbOZhlH+0kK2bpI7nJJOXtXwiKghkuFpYSeQgd6pcWOJ+S4c9dSohV3nxgrpVzvtBLtwJ7lWgtWWhOiRFidOnVEXfzVV1/F7NmzK61SMxEVFYWoqChR1zRRXl5hJjXFUBUXF/MB+SZM+cxM51q7JwEgIyMDBoMBQEUH0qpVK+zZs4ffFaC8vBx79uxBWloagIrYM39/f+zZswe9evUCAJw6dQrnzp3jr2MwGPDOO+/g8uXL/IrKjIwMhIaGomnTpi7dL+soZQZmeTbOagctx+xdTouAu23JFdcKSxYOZ+0oJSUFsbGxqogdlgWWUNyxlGjR3SUUlt4BW1j36VrfisqErIH5n376KcaPH29XhAklKysLhw4dwqOPPorq1asjOzsb06ZNQ7169Xjh07VrVyxatAizZ8/m3ZFvvvkm6tSpwwfCDx8+HMuWLcPEiRMxaNAg7N27F5s3b8aOHTv47xo7diz69++P1q1b45FHHsHixYtx8+ZNfrWkXq/H4MGDMXbsWISHhyM0NBSjRo2CwWBAmzZtAACdO3dG06ZN8dJLL2HevHnIy8vD1KlTMXLkSM1ZusSghBnY3dm4nKs3We2g5RCHcgtOV9uSI9eKwZDJx1WlpqZaTABZEtDO2lFkZKRHiCE1ccdS4qht2ouLlttCKMXklKV3wBYRERHo3bs3Nm/e7LLlmkVXuawiTKqcYUFBQUhPT8eMGTNw8+ZNxMTEoEuXLpg6dSovajp16oSNGzdi3rx5mDdvHoKCgmAwGLBz505UrVoVQEXw/o4dOzBmzBgsWbIEtWrVwscff8ynpwAqsu1euXIF06dPR15eHh588EHs3LnTItB+0aJF8PHxQa9evXDnzh0kJyfjgw8+4I/7+vpi+/btGDFiBAwGA4KDg9G/f3/Mnj1bkvpgGSXMwK52Zkqs3mQxHkEOcaiE4HSlLTlyrRw40A4HDhjQo8d2ABVpRUy7e7AmoFlsR1pGagu6vbZpWoGp9OIOKVzFrL0DtjCFADmz2smVJ1IONJGiokWLFti7d6/T8/r06YM+ffo4PKdDhw749VfHJsu0tDTe/WiLKlWqYPny5Vi+fLndc+rUqVPJ9Umog9KrN5WKRxBj1RMzqDty55nP9KUWClIOlLY66QosZ8zmu1iwJny0FNfCOkrFs6m5uEOKPoy1d8Aezqx2cuWJlANNiDCCcBVPW73pLBWGo4FEyKAudKWUmGsKRcqB0lYnbcJRnIuawkfJeEd3cqOxkldNLO6USUids7S4wx2kfAfkSmejBaudUEiEER6NJ63eVCIVhtCVUnIh1eBt3UmbY/7cTYmcnaFELIlS1hp3cqOxlFdNSRw9G1MiWNYD25VG7nQ2WrHaOYNEGOEWLK9WNEfOmZNSdSA2FYY75XJ3QFH7eQP3OumsrES7WedNe7+yYtlR4nvcyY3GYl41pXD2bFgPbLeHXP2XEulsPMFlL6sI69evH0JDQ+X8CkJltJQ7SK6Zk9g6cHeFptDO3p1nIyRNgr1Vz6w8b6Cik+7ceTcSE7PsPndWyqo07lg7PcX1JiVadZHJ3YeThdAxLomw8vLySjm5TJ9fuHABtWvXBgCsWLHCvdIRmkBLg5hcMydndVBQUICLFy+6FMtljZjO3tVnIyRNglYCXwHPmDFLjTuDIw2sttGqi0zOPlxKC6FWPC9iECXCioqKMGTIEHzzzTcIDQ3FK6+8ghkzZvBJUa9cuYKEhASUlZXJUliC0CJyxHIp0dlrcUBhsfNlNZDdncFRq643JSDBb4mUFkIteV6EIkqETZs2Db/99hvWr1+PwsJCvP322zhy5AjS09P5zk+q3GAE4SnIta2REp291gYUUyd9+fJlbN682en5cos2lgPZ3Rkctep6k4Pi4mL+Z3vPF1BngsDKBEDKCZ3Q8sqZmFtKRImwr776CuvWrUOHDh0AAD179kTXrl3RvXt3bNu2DQA0sVE2QagBWQ+UISIigpkZM+uB7O4Mjlq0lEpNQUEBPv30UwCOn2+/fv0UF9msTQCUmNC5k8JHLUSJsCtXrljsHxkZGYndu3cjOTkZTz/9ND7++GPJC0gQ7sBSDIEWrAcs1Ze7sNTZshzI7s7gqDVLqdQIXQEYFBSkWtkANicAUqNECh85ECXCateujRMnTiAhIYH/LCQkBLt27ULnzp3x7LPPSl5AgnAHViwiJtyxHsgpkMzdFu3b98X//Z8vate+g+joiozy/v7+0Ov1/PVZ6sS0AEuB7O60I08S6VLC0vO1Rq0JgNJtRa6wD7kRJcI6d+6MNWvW4Omnn7b4vFq1avj+++/x5JNPSlo4gpAC1gSDq9YDuQSl3EkVCbZc0e60I7UmNazENtmDpedrjVoC0dW2olQKH1YQJcJmzZqF3Nxcm8dCQkKQkZGBI0eOSFIwgiAqI8dAo0RSRW+HNVe0O+3I22ObbMHa8zVHTVEi9HlIGcvF8rOwhSgRVr16dVSvXt3u8ZCQEDz++ONuF4ogCOVh2aViD7n2ppMDCmR3Da3ENrH6fFkXJVpN4SMVopO13r17F4sWLcJnn32GP//8EwDQsGFD9O3bF6+//rrgvdgIwlvQShyN1sz4WnSjensguzsoEdvkrqhn9fmyLEq0nMJHCkSJsFu3buHJJ59EZmYmkpKS0L59ewDAiRMnMGnSJGzbtg27du1ClSpVZCksQWgR1hYH2KPyptflSErazXdkRqORqSz5rLlRbcUtFRYWCvpbtQW4FpDbUqtFUS8G1kWJ1iaBUiFKhL377rs4f/48fv31V9x///0Wx3777Tf06NED7777LmbOnCllGQlC82il027Z8lfculUFu3cngeN8sHt3EqpWvY2WLX/Fpk2bmBqATALH2eBcWFgou3h0HLd077zU1FR+lakJFgS4FpB7kHZF1LNs5RbynUZjCHbtKkXz5pdUd+Er4TY1GkPw7be38OCD6t+vCVEi7PPPP8fChQsrCTAAeOCBBzB//nxMmTKFRBhBaBSjMYQXYADbwfl375rSZ9wBwAEwTxTNwd+/xOI8OREat6TX65myJmoJpWKbxFjcWLZy2ypbYWEhv5MEi9Y+OVP4sHi/gEgRdvbsWTzyyCN2j7dp0wbnzp1zu1AEoSVY2R5DiiB1qV0+SgTOl5YGwlKAAYAOpaXKWx9YTsrqCSgR2yTW4sayFdNe2Vhx4dtCyhQ++fn5SE9PZ/p+RYmw0NBQXL58GXFxcTaP5+XlISQkRJKCEQTLsLY9hjvxLOYzSCldPkrF2LAUS6LFFaZSoVQuL7ljm1hfTSgFntpO7bUvlu9XlAjr2LEj/vWvf2Hr1q02j7/77rvo2LGjJAUjvBtWrEu2YHF7DHeC1CMiItC7d29s3rxZ0gFIqcB5lgZNlgShksiZy0uNuCuWVxOa46rw1VI7NbWl48cL+c/ECnqW71eUCJsxYwYSExPRpk0bjB07Fo0bNwbHcThx4gQWLVqEP/74AwcPHpSrrISHw5p1yR4sb4/h6owvLCyM/1nqAUiJWSgrgyZLglBJ5MzlpVbcFeurCd0Rviy1U0fi2bwtffKJ6xZ0lu7XGlEirGnTpsjIyMDgwYPRp08f6HQVFgCO49C4cWPs2rULzZo1k6WghGfDonXJGSzOrqQqk5QDkFz1ZJ2T0F6Zlc5dyIogVAO5YuJYeedZwl3hy0o7tRbZcsVxsXK/1ohO1tqmTRv873//w9GjRy2StT744INSl43wItS0LrkaPM7i7MqbymSd6sHd86SEdSuKXLAce+MMltNNOMKZWDl+vBD79wcgIeEuAgLyLf6WlXZqq3+Voy2xcr/miBZhRUVFqFatGh588EEL4VVeXo4bN24gNDRUyvIRXobS1iV3g8dZnF25Uia5ByA56omlQZOlsqiJs/c3P/+eCGAlvMCEWLcnK5uKOxIr2dn1MWtWI7M+LQstW7r3fUptFcaip0EORImwL7/8EpMmTcLRo0cRFBRkcezWrVt4+OGHMX/+fHTv3l3SQhLeg9KWHCmCx1mcXYktkxJxN1LXk3WZjUYjSktLLc7x8/NDSUkJLl68KOugyHK+KCWx9/4CQE5OPNasyWBm021biNlwmpVNxe2JFX//Epddw/YmC0ruKiDFWKCFyZEoEbZixQpMnDixkgADgODgYEyaNAnLli0jEUa4hRrWJTlM3+azfhMsD8SslssR5laJTZs28Z+rMShaX9faUmISgyZYbgvuYP3+ZmfX/yfOk71Nt12FpU3F7YmV0tJAh31aSkoKIiMjK13PUbuUY8Wz9Xti3m+6OxZoYXIkSoQdP34cH3zwgd3j7du3x9SpU90uFEEItZpIZRp3Zvp2FFdhjzVrMhQTAizO+JQsE0uDIlDZUmIP1ixBUmF6f+VMXsuCO5CV5Ly2xIrRGOKwT4uMjHR59wapJq32LYoh/HXctaCz/n6JEmHXrl1zuAVIaWkprl275nahCEIIUprGHZm+jxx5SHRchdJCgMUZnxplYmVQtL5ne5Y5rVqCrLEnpOUK1GdF5LK0EMFarMgZ2iFVvJbQyZMnI0qExcfH45dffkHjxo1tHv/ll19Qp04dSQpGEM6Q2jRubzbp6NrmJn2hS6ulggVLgDOU/n6WBkUT3jC42EszIFdwNSsiV83gcSEWZLlCO6QWeK70mZ6yyEWUCEtJScGUKVPw5JNPombNmhbH8vLyMHXqVPTr10/SAhLegTuuKykHXuvZpLNr2zLpKyEEhAYGp6am2k3RwIJIkxrWVlSxYplTArXSuKgpctVMCWPP0mwSwOZllKM8rgg86/CRo0dv8X2XmPg1T+q7RImwN954A19//TUaNGiAfv36oVGjRgCAkydPYsOGDYiLi8Mbb7whS0EJz8Yd15WcA68r1xayTN/dTkSoGd8UrK7m6i0lYS1PGouWOaWRc6ENCyJXyvsTa91W+90VI/Bsh4/UhE43GklJuyWNX1MqjYYUiBJhISEh2L9/PyZPnoxNmzbx8V9hYWHo168f3nnnHdrAm3AZV18KdwZeZxY4V65t/TdAOQyGTP64aZYqhQASMgixEKiuJCzlbmPNMqcWclljWBG5UtyfVGkvhHoViouLXS+sCzgKH9m9OwlJSbuxe3eS25MnJdNoSIHoZK16vR4ffPABli9fjvz8fHAch6ioKH4LI3P279+P1q1bIzAwUJLCEoQ9XB14hZj0Xbm26W+yshKRmWnAgQPtkJlpkFwAORuEWLAUqAErudvcmSBoIebPHkqtjFVL5Mpxf1Kt8I2IiEC/fv3w6aef8p/ZEnSffvqpaCEixX3b67NiY3MxevRitydPcqTRkBPRIsyETqdDVFSUw3OeeuopHD16FHXr1nX1awhCMK4OvEI6IVevnZlpkFUAORuEWLEUyA2LKTpMuBo7w8LqP1dRamWsWu5nOe9PiomTeS5PKS3hUty3oz5LysmTVvo+l0WYEDiOk/PyBMEU1gO8Ep2As0HIW9xhrKXosG4L9gYXe6KQldV/7qBUXavlfpbr/qTsN+SwhKshnF2ZPGml75NVhBGEqwhxxchp/XDl2iYhkJubK+vyfGtMg9D587UA6BAXd54/xlqgupywZBGSUhR6Q4oLsbgrcm3BivtXyn6DVWuQI+Es1UpIrfR9JMII5hAToCq19cO8I05NTbW5F2FYWJjda0dERPB/r2QnkJ1d3+5A7ajD09rWSlpCijr01pg+Z0ht+WRpL0gp+w2WrUH2hLM7mfytcdb3sbBykkQYwRxiAlSlelkB6eJwCgsL+Z/lcpWYz/CFDNT2Ojwlt1ZSG3ctHWpYSli1ZLCAlHXN2rZXUvUb7go6VqyD7mCv75s6NQfffNNM9ZWTsoowWysmCXZg/QVT2gogRRxOQUEBNm/e7PQa7hIREYHU1FRs2rTJ5YGahcFGKdwV2GoFyrNsyfBEWLI8ShWk7qqgk9o6yNLiGZZWTlJgvpfCkvndHmpaAVyNwxGzF5q7nY0pE76zgVrNrZVYwV2BrVagvFbiWjwFNfscOUWKK4JOauugUotnhNQPSxZmWUXY9evUUbAKa+Z3W6hlBZBCoDi7RmpqKiIiIiSxRjobqNXaWolV3A10VzpQnqXks56OmpZHKUWKlIJOygmbEhN6R/Uo956mriBKhHXq1EnQeXv37nWpMITysGwRcSYuzIPKpXSdSiFQnF1Dr9dL6uISO1Cz1AkpibvtXan3RerVf6yHHrCC2pZHqZ6BlIJOixM2dyeuSiJKhP3www+oU6cOunbtCn9/f7nKRCgI6y+YLXFhcgWtWZMhi+tUCoEi5BpSu7jEuBxY6oSUxN32rtT7IuUgqvXEr0rjKZZHqZ6lp07YWHnOokTY3LlzsWbNGmzZsgUvvvgiBg0ahObNm8tVNkIBtPCCmYsLJVynUggUsddwxcXlrsuBlU5ISdxt70q+L1INokLfC09bjOEOrGx7xQKePGFj4TmLEmETJkzAhAkTkJmZidWrV6Ndu3Zo1KgRBg0ahL59+yI0NFSuchIyweILZk80KOk6lUKgCL2Gq/clhbWEhU5ISdxt7yy+L2KRa8WulmFp5R6LeOOETSlcCsw3GAwwGAxYsmQJtmzZguXLl2P8+PHIzc0lIaZBWHvBrMWFKZhSbleQHFm4hYgcd+5LrLWEBhv327s7f692bBZl37cNa9tesYgnTNhY7P/cWh155MgR/Pjjjzhx4gSaN29OcWIahrUXzFZnJ7crSIqOWOjLW1xcjOLiYgDKu7i8cbBxV2BLIdDVjs1iaRGO2mLUFp7W5t2FRcHiLiz2f6JFWG5uLtauXYu1a9eiqKgI/fr1Q1ZWFpo2bSpH+QiZ0OILpoXsz0Je8uLiYnz66af870q7uLxxsHG385Wi81Z7U25WFuGoLUYJYbAmWKTqv1lrU6JE2NNPP419+/ahc+fOeO+999C1a1f4+dHOR1qEtRdMKM5cQfZe1MLCQotM9vaQouN39vcXL16s9BlrLmFPRO7nKgY13IKsLMKhhQLagZX+XwvJxV1FlILauXMnYmJicO7cOcyaNQuzZs2yed6RI0ckKRwhL1prrCbsuYKECi1HqNHxm3coCQlnKx1nyRpJuI9abkFWFxXQQgHvRah1SwvJxV1FlAibMWOGXOUgCLsIFSFi9iplpeN31KGkpKQgNjZWs2KZsI3SbkHz98eRxVUNsU8LBbwXMdYt83NYiWuUChJhBPMIdZ0KjblhpeN31qFERkaSAPNAlHYLshp64IkDKiEcodat3Nxc/jxW4hqlRJKArh9//BE3b96EwWBA9erVpbgkQVggZIAwj7Wy91Kz1PF7YodCOEcNt6D5+2PLBVRSUsK/P0oJMmr/BGBfjNeokYfS0kCLnVFYiWuUEtEZ82/cuIG33noLAMBxHJ566ins2rULAFCjRg3s2bMHzZo1k76kBCEQR0KLpY7fEzsUQhhqLcRgaWUitX8CsC/GP/54CADLSTSrcY3u4OP8lHts2rTJYpuiL774Av/5z3/w008/IT8/H61bt7YbrE8QSuFIaJk6fnPU6vhNHYqpPJ7QoRD2sZVrLCHhbKXnLWdsli2XfU5OPIzGEIfnyQG1fwKAzT4Z4GCSJ6ZJtKmNtmz5K0aPXoz+/ddi9OjFmo8hFGUJy8nJwf3338///u233+K5555Du3btAABTp07F888/L20JCY9H6vxdjmbYLMykWA6U9kRYSQzKWmyWWrGR1P4Jc2z1yc68FawlF3cHUSLs7t27CAwM5H/PzMzE6NGj+d9jY2ORn58vWeEIz0cO94gzoaV2x8/aYCwVSoodod/FkvsNYCctjJqxkZ7a/gnXMe+T/f1LsGrVEJfc1FoU7qJEWL169fCf//wHdevWxblz5/Dnn3+iffv2/PELFy7Qi0OIQsrEjUJn2KmpqdDr9Tb/Xqn262nviZJiR8x3UWJQ26gdG+lp7Z+wj70Jk7XBxty65WgSnZKSgsjIyErX06pwFyXCRo4cibS0NPz00084ePAgDAaDxXZFe/fuxUMPPSR5IQlCCDTDVg8lxQ4JK/ehoHhCCYROmKxxNImOjIxETEyMlMVUFVEibOjQofD19cU333yD9u3bV8oblpubi0GDBklaQMK7cDeJKgks27ASF6U2rCTpVRsWYiO1iNLvkdbfW6G5G1NSUgAA6enp/GdC4r60Xj+AC3nCBg0aZFdoffDBB24XiFAWlhoxK0lUPQ014qKUFDtCv4valyW0X6k4lH6PWItndBdH719kZKTgeC7TeZ6ynyTtvu3FsPSSs5RE1dNQ2n0nldgREksi9LuofVVgK02GrfvXYoCz3Cj9Hgm1ImnB7S7k/RMbTuIp+0mKEmGlpaWYMmUK0tPTER4ejuHDh1tYxS5duoTY2FiUlZVJXlBCeoQ2ztzcXLvnSmUpUztQmJAGqcSOkAmCmO+i9lUBxU1Kh5LWXikmNmp6PYS+f658v9YnWKJE2DvvvINPPvkE48ePR2FhIcaOHYusrCz8+9//5s/hOE7yQhLqYu6nt4UUljJPDRRmyd1rQs7BQyqxI2SCIOa7PLV9uQIJLPdR0rUthchQ2+sh5/un9QmWqIz5GzZswMcff4zx48fj7bffxi+//IK9e/di4MCBvPjS6XSyFLRHjx6oXbs2qlSpgpiYGLz00ksWG3sCwObNm/Hggw8iKCgIderUwXvvvVfpOj/88ANatmyJwMBA1K9fH2vXrq10zvLlyxEfH48qVaogMTER//3vfy2O3759GyNHjkRERASqVauGXr164dKlSxbnnDt3Dl27dkVQUBBq1KiBCRMm4O7du+5XBIO4Y+41uT2cZc/WonvE1PF9+OGHdv8tW7YMBQUFipXpyJGHsHjxaKxb1x+LF4/GkSPSrmZWckcCId/lye2LUAd7osh61wGpcCQyhHL58mVB58nlupNzdwSWdkFxBVGWsL///tti26L69evjhx9+QKdOnfDSSy9h3rx5khfQRMeOHfHmm28iJiYGf//9N8aPH4/nnnsOBw4cAAB89913ePHFF/H++++jc+fOOHHiBIYOHYqqVasiLS0NQEXG/65du2L48OHYsGED9uzZgyFDhiAmJgbJyckAKrZmGjt2LFauXInExEQsXrwYycnJOHXqFGrUqAEAGDNmDHbs2IEtW7ZAr9cjLS0NKSkp2L9/PwCgrKwMXbt2RXR0NA4cOICLFy/i5Zdfhr+/P/71r3/JVkfuosbKMWv3yPTpV3DmjB/i4+8iNvZhAA9r1j3CWioFOc321mLH3qo7KcWOkO/y5PZFqIPSlhd3rUgFBQXYvHmzxWdq9PVyLQTR+kpfUSIsOjoa2dnZiI+P5z+77777sG/fPnTs2BEDBgyQuHj3GDNmDP9znTp18MYbb6Bnz54oLS2Fv78/1q9fj549e2L48OEAgLp162Ly5MmYO3cuRo4cCZ1Oh5UrVyIhIQELFiwAADRp0gQ///wzFi1axIuwhQsXYujQoRg4cCAAYOXKldixYwdWr16NN954A0ajEatWrcLGjRvRqVMnAMCaNWvQpEkTHDx4EG3atMGuXbvwxx9/YPfu3ahZsyYefPBBvPXWW5g0aRJmzpzJ5KxbzZVj5gNgTAzQqpUiX+t1yDl4yC127A0ab7+d4PS7WGtfLLqovQUp6l5p17a7IsP6fvfvN2D37iRF+nqlFoJoeaWvKBHWqVMnbNy4EU888YTF57Gxsdi7dy86dOggZdnscvXqVWzYsAFt27aFv78/AODOnTsICgqyOK9q1aq4cOECzp49i/j4eGRmZiIpKcninOTkZH7rpZKSEhw+fBiTJ0/mj/v4+CApKQmZmZkAgMOHD6O0tNTiOo0bN0bt2rWRmZmJNm3aIDMzEy1atEDNmjUtvmfEiBH43//+Zzeh7Z07d3Dnzh3+96KiIhdqRzxaD2wkhOHO4CF28JJS7Dhb2h4TU1N1YSUUtWNzvBmp6l4Ny4tUImP/fgMyMp4EUBE2JHdfr+RCEK3uJylKhE2bNg0nT560eey+++7Djz/+iIyMDEkKZotJkyZh2bJlKC4uRps2bbB9+3b+WHJyMsaMGYMBAwagY8eOOH36NG/xunjxIuLj45GXl2chjACgZs2aKCoqwq1bt3Dt2jWUlZXZPMd033l5eQgICEBYWFilc/Ly8vhzbF3DdMwec+bMwaxZs0TUiDQItZDYs0bk5+fT7J1h3HUVqikcPG2CwJqL2ptwt+6FbotmNBol6Q+ltiIZjSHIyEiCSYCZkDuIXa5xQWxeMVYRJcLq1KmDOnXq2D0eGxuL/v37C77eG2+8gblz5zo858SJE2jcuDEAYMKECRg8eDDOnj2LWbNm4eWXX8b27duh0+kwdOhQZGdno1u3bigtLUVoaChef/11zJw5Ez4+otYfqMbkyZMxduxY/veioiLExcXJ9n2mxinEQuLIGmFaPUmzd8eola3dXVehmsJB6yufCM/B9B5dvnwZmzdvtiuKNm3aBMD9/lBqK9LVqxGwtRZPS0Hs5nhKuhWXkrVu2bIFn332Gf78808AQMOGDdG3b18899xzoq4zbtw4p3FkdevW5X+OjIxEZGQkGjZsiCZNmiAuLo7fw1Kn02Hu3Ln417/+hby8PERFRWHPnj0W14iOjq60ivHSpUsIDQ1F1apV4evrC19fX5vnREdH89coKSlBYWGhhTXM+hzrFZWma5rOsUVgYCACAwMd1oeUmDfi++4rwqRJepSV6eDry2Hu3CJ07vwk0tPTBVsjaPZuH7WztbMWF+UMoRME1me5LEIxaRW4MimKiIhQdFIi5XOw9S4BHJKSdmt2QuMJ7VSUCCsvL8cLL7yALVu2oGHDhryF6n//+x9SU1Px/PPP47PPPhOcpiIqKgpRUVHiS/1PWQBYxFABgK+vL+677z4AwGeffQaDwcB/h8FgwLfffmtxfkZGBgwGA4CKzqdVq1bYs2cPevbsyX/Pnj17+BWWrVq1gr+/P/bs2YNevXoBAE6dOoVz587x1zEYDHjnnXdw+fJlfkVlRkYGQkNDLTY8ZwFTIx43DkhNBU6fBurX16FWrTAUFFQk3SVrhHt4mktNCZxNEPr2fcEjxILS1lE1XMssij61J0XWWNeR0WhEaWkp/7ufn5/FpN+VOrMORwDK8eSTu9GuXabFdQllESXClixZgt27d2Pbtm3o1q2bxbFt27Zh4MCBWLJkCR/oLhVZWVk4dOgQHn30UVSvXh3Z2dmYNm0a6tWrxwuf/Px8fPHFF+jQoQNu376NNWvWYMuWLfjxxx/56wwfPhzLli3DxIkTMWjQIOzduxebN2/Gjh07+HPGjh2L/v37o3Xr1njkkUewePFi3Lx5k18tqdfrMXjwYIwdOxbh4eEIDQ3FqFGjYDAY0KZNGwBA586d0bRpUz5tR15eHqZOnYqRI0cqaukSS61aFf9MmAbCI0cu45NPKNGlWEwdmjMRq7WOTynh4GiCAITJ9r1CkEJYqCEElHYts7gQQepJkbvvg9A6ssaVOnMUy5aamqr5SY0WESXC1qxZg/fee6+SAAMqkqnOmzdPFhEWFBSE9PR0zJgxAzdv3kRMTAy6dOmCqVOnWoiadevWYfz48eA4DgaDAT/88AMeeeQR/nhCQgJ27NiBMWPGYMmSJahVqxY+/vhjPj0FUNEQr1y5gunTpyMvLw8PPvggdu7caRFov2jRIvj4+KBXr164c+cOkpOTLTYv9/X1xfbt2zFixAgYDAYEBwejf//+mD17tqT1ogQRERFo3rxEk3lY1J6Bm0TsmTN3sX49h/LyexZiX18Oo0Y9hfh4P011fGpZEKwnCGoihbDwFusoiwsRpLTsS/E+uHrvQv9OaIC/q14pwj1EibC//vqrUooHc5KSkni3nZS0aNECe/fudXhOZGQkn0bCER06dMCvvzp+SdLS0hzeR5UqVbB8+XIsX77c7jl16tSp5PrUMlrLw8LKDDwiIgIREcCHHwKvvAKUlQG+vsC//61Dq1Y1nV/ADKlFpdjreYtwcIYUwoIVF79ai0XURKo8X3K9D1I/E08JYBeL2pNwoYgSYVWrVkVhYSFq165t83hRURGqVKkiScEI9tBSHhbWZuCDBwPJySaXmnOrjnUHUlhYWCnrtS2EikoxItUEK8JBy7C04EANq6Zaoq+goACFhYUApNvVQY73wdYzqZj8uldnLIgNqXEksoxGI79K1REsrOgXJcIMBgNWrFiBFStW2Dy+fPlyPkaL8Fy8cfYsBUJdaq7GiADSi8+SkhKmhAOLiHkfWFlwoIZVUy1Xtq33yZZlPzU1FVFRUYLrXurM+baeybZt3aDTgZkFBKzgTh9pDgsr+kWJsClTpqBDhw4oKCjA+PHj0bhxY3AchxMnTmDBggX4+uuvsW/fPrnKSkiEWDOt+eDqqCP11kFYaljoGMxhRTiwiCvCgoUFB0pbNdV0Zdt7n6wt+3q9XlAblmufVFvPBPABx1X85K3uf1uI7SNZNhyIEmFt27bFpk2bMGzYMGzdutXiWPXq1fHZZ5+hXbt2khaQkBZXYqXMA8xnz64Bjru35cWOHd0xfXqi5gLMCXGwIBxYw5mwyM/Pr/Q31mJVrQUHSu9/6EmubLn2SbWdx8sSrdaZ3DgSWaylI7FGdLLWZ599FsnJyfj+++/x119/AahI1tq5c+dKezcS7OGquyoiIgLHjgH/pGfjKSvT4fr1mmBJfxUUFNgcAAlpYGmlopo4ExamnSSsUTMORS4rjjOUFn2OkMIqIkfyY1t5vCq2GLq3qppSA1XGkcjSwmIiUSJs7969SEtLw8GDB/Hss89aHDMajWjWrBlWrlyJxx57TNJCEmzQoAHg42MpxHx9KwLN3UHKVSxSxQqwjtTmdZbN9aziqrBQ090slxXHHmqJPnvIbRVxpS9ztCdldnZ91euMZZyJLC1YYEWJsMWLF2Po0KEIDQ2tdEyv1+OVV17BwoULSYR5KLVq2Uq14J5VROpUEvZXy3iOyJB6IGHdXM8aQoUFq0hlxREqOJQUfY6Q2yrial9mK4WEecb8tLRTyM0NQvPmVRSvM9ZxJrJYssDaQ5QI++233xxuuN25c2fMnz/f7UIR7OIo1YIrs0AlUklofTGBuYAEIHm2b9bN9axhT1iEhl7GgQPeIV5dFRxy71tqqw8yhSbIbRVxpy+z7hdjYmL4n1u0cK9cnowzkaWFiZIoEXbp0iX4+/vbv5ifH65cueJ2oQi2sRUTxEpyVGvsiYy0tAZo2bIG87NJawFpMGRKsgWSJ26ppGRyRlvC4uLFEhw4cO8cT7K+WsNaHj7AeR+kBauIGmglqakthIgsR4nGWejfRImw++67D8ePH0d9O0FAx44ds1DwhPcgtLPNzc21OFfuAHp7IqOoiF0BZuoYbAnIzEwDKgJ2792TK1sgedqWSqxNAsjFqzzO+iCl49K0IMJZe2+E4iiOzryue/fubbHxufU1WLgnUSLs6aefxrRp09ClS5dKmfFv3bqFGTNm2NxXkiBM2FsxJhf2Zr/x8XcVLYcYTAJp3z5g0aLKAnL48Bv46KPgf3J1ubYFkul7pNpSSW1Yssx4o4tXC4IDqBiw09IaoKiohqxxaVoR4Sy9N2LwpK2YRImwqVOnIj09HQ0bNkRaWhoaNWoEADh58iSWL1+OsrIyTJkyRZaCEtIg1l2ldezNfis6X3aJiIhAmza2V6NOmVINU6YI3wLJGWK3VCIco4UVWVLCquCwJwybNw9DTIx8g7M3inA10ILAEoIoEVazZk0cOHAAI0aMwOTJk8H9k8pXp9MhOTkZy5cvR82a2ppBexueNIMQim1zNdsiDHC+GlVKsUS5v9zHG7d3YlVwqCkMtSzCtWLR9CREJ2utU6cOvv32W1y7dg2nT58Gx3Fo0KABqlevLkf5CBkwF1gXLgB//VWRA8wTBmHrAc68U0lIOGv3PFZhwUqlxcBdNQYTb9zeiUXBobYw1OoCAFYtmp6OaBFmonr16nj4YfatCYR9Vq0Chg2rcHf5+FRYXQYPVrtUthEqmswHwo0bq2L2bD3Ky3Xw8eEwb54Rffve0txAqKaVSouBu2oOJt62vROLgkMtYchaYloxqC1cvRmXRRihbS5cuCfAgIr/X3mlwuqi1oCfkpKCkpIayMnxQ0LCXcTGVhROrGiKiIjAhQvAxInm96fDpElhSE0NY2qLJdbRWuAuS4OJJ7t4WRYcaglDlhLTioVFi6a3QCLMS/nrL1v7QFbM3F0ZOKTobHftisPEiWGSWOakvj+10aJLUA1oMFEGFgUHC8JQycS0UsKiRdNbIBHmpUi9D6SjgP/8/HynqSmMxpB/XIcVv7trmZNrn0s10KJLUGm8MShebWHOmuBgURiyjljhqnab80RIhHkpcuwDaS/gPzbW+cB39WqERcJQwD3LlRz3pxZacwmqgbcFxZMwtw1rwpB1xAhXanPyQCLMi5Fr5V3lgH/naTHy86tg/XppLVcsrCz0NFhewu5NQfEkzAmpECpcqc3JA4kwL0fq4GH7Af8R/PfYSosREyOP5cqTg6OVRktL2Om5EwShBUiEES5jKz7g4MEAlJdbmqLN3YqO0mKQ5YpdWFp1SFTGnoXSfG9WT3LHEoSnQCKMcAl78QFGYwh0utEWgdEmt6KQtBhkwWALU0Cus1WHnhTwrjUcWSitF8SkpqZCr9fbvA6JNGFQcHoFLIcmaAkSYYRL2OuErFfZ+Ppy+Pe/dahVC9i3z7PSRngDpsDdM2fuYv16zmLxhK8vh1GjnkJ8vJ9XDDosItZCuWnTJofXYyWomlWhQ8HpFWgpNIF1SIQRkmO+V+OoUU+hVauK/UQ9KW2Emig9A42IiEBEhK2YPR3/bAl1kDovGgtB1SwLHQpOp9AEqSERRsiCXn/9HzfVZVy8WKG6fH2BhQtDMG5cNc2njVASc1efoxmo3C5BitljD09MsklCh20oIbK0kAgjZMVWktZff30NBQXVaSAXiLlLcPbsGuC4Cpcgx/lgx47umD49UTGXIMXssYGzJJsAkJMTb9daSvE8hFi8MSGyEpAIIxQnMvI2WrRQuxTaIiIiAseO2Yqp0+H69Zq0H6aXYZ1kMy3tFDZsyEJ4+FVkZ9fH4sWj7cbrCInnYSkmi2XByHLZpMbbEiIrBYkwghCBmoOT1DF1LA20hHisn01Cwlmn8TpC4nlYisliOQCc5bLJhTclRFYKEmEEIRC1Bycpt2JS+14IeXAWryMknoeVmCwlA8DFTkg8ITjd3UkYhSZIA4kwwiW80e/PwuAkVXC8u/dCVjS2EBqvo6VAfqUCwMVMSJQum1zQJIwdSIQRLmEdkwJUZOe2FYhvDxrIXUPtGSh14OzhLF7n6aefwubNm+0G8puEQ0BAQKV3Uq24J6UEo5gJiacEp7MwoSQqIBFGuIw7AywN5NrDJJrNt8JxBHXgyuIsXsd80jR9+hWcOeOH+Pi7iI19GMDD/KTn4sWL/DXViHtytvLTXDAqDQWnE1JDIoxQBU+eiZlEiid1xkJFsxKQBdU5tqyl5nUSEwO0auX4GmrFPVlb2R0JRjlwZvmj4HRCSkiEEZJw4QLwyy9BMBpDnHbQtlwenoS5S1YrljxnAw8rz4ssqMqhZtyTWMEoFWItf2qHBkiFN6XaYA0SYYTbrFpl2phbDx+fMZg3z4i+fW/ZPNeWy8OTYUW8OMJdl5OSHbgnW1BZg+UgfjmsoZ6w4tEVvDHVBkuQCCPc4sIFkwCr+L28XIdJk8KQmhrmETNER3jC7NHdgYc6cM+D5ZgsQD5rqNZXPLqCtwpPliARRrjFX3/ZyuJeESfhaSJM6B6OWsB0L84GHnsDrdEYgvPn41zqwKW0YniCEGYNtWOynCGXNZRly59ceKPwZA0SYYRbOMrifuFChUhr0MAzBJmjPRy1Nns0v5f16zmUl+v4Y76+HEaNesrufpTmAtQaZx24lFYMrQthllErJssV3BXirFv+5MBTUm14AiTCCLewl8X9++/vuSl9fCrOGTxY7dK6j709HLU4e4yIiEBEhK3np0OrVjVt/o21+8IaZx24UOtEbm4uX0Yh5dCiECbcRwohzrrlTw4o1QY7kAgj3MY6izsA1KljHidWMcgnJ9+ziAmdYbE4E6uw/llaj3S6cty8GSxodShriMnCb8t9YUKnK8eMGbkYNkx4B27PimFaYWrPIkZuFO/AluvalAJGSiGuJcufVFCqDTYgEUZIgvlS7X37nMeJ2cq4bw2rM7FatYB584yYMCGUn4FzHPDFF89r1i3mbKm9I/cFUI7nnvsCcXEXkJbWX/AzE2LFsNc+vDF+x9tw5romIS4dWki14an5AUmEEZLjKE7MHPMXRmvxYwMGlOHvvxfj/Pla+OKL5wDYno2zaMlzBefui8dEB9TbsmLUqJGHWrXspy/xxvgdb8WZ65qEuPfgyfkBSYQRkmMvTsyeuLqXZ0w78WMRERGYMqU/9u0Dvvii8my8Xbv+6NDBva2dWENK94U9K8bHHw9Bjx72LYneGL9D2MaZECc8B0/OD0gijJAFoXFGlfOMVY4fY5WIiAi0aWPb6peYWBH07qm4676w7dYEAOdxPd4Yv0PYjh9s2fJX1Kt3GlevhiM8/KpFmyFrKKEFSIQRsiFkoNZ6njGxVj+iAmsrhjneFNfjqXEuUuMoflCvv46BA59EZGQkfz7VG6EVSIQRqiI0foxlxKwu9HbMrRMtW/6KGjXy8PHHQ2CKqQO8J67HOs7F3kpRLca5SImt+MFt2yytpZGRkYiJiVGzmAThErbXmhOEQpgsSb6+Fb9r1ZJUqxbQoYP2yq00ppiulJQUAECtWhfRo8d26HQVKtyb4nrMLWBHjjyExYtHY926/li8eDSOHHnI5nneiO20KD7IykpUpTyE+hiNIcjJiYfRGKJ2UdyGLGGE6pAlybuwtup4e1wPJZ51THh4AYByWNsMMjMNSEzMojryMjxtpwwSYQQTaCFPDXEP81im3Fwf5OT4ISHhLmJjKyxazmJytJwnTmoo35VtzNORtG2biQMH2lkcpzryPjxxwkIijCAIUZjHMjmalTqLZfIGgeWIwsJCAJTvyh4RERHo3bs3Nm/ejMTELGRmGqiOvBSTIHc2YdGi5ZxiwgiCcMiFCxW7IFy4UPG7yXplb1ZqitPw9lgmRxQUFGDz5s0AgOzs+uC4e8e8KS7OGWFhYQDurab1xthB4p7lfNSoLvDx4SyO+fpyGDXqKc0uYCFLGEF4KO7sQmByN27cWBUTJ+pRXq6Djw+HefOM6Ny5Yu8+cqO5jrWQNZ8PcxxQr95plUrGFtarab05dlDruJuOJSKiIvdi5ZRAOrRqVVOOIisCiTCC8EDc2YXA5G40GkOwePFocFzFRuXl5TpMmBCKv//OgF5v343m71+CnJx45Ob6gLIGOMbeyj8SshVQ7KBnIOW2Q562kItEGEF4EAUFBThz5i6GDauB8nKTeAJeeYXDgw9eRny8n9NOzjTgObN02do25v77j2HVqiHgOB+sX89pYgsqNRESD+btVh4SWNpH6m2HPGkhF4kwgvAQTLPNnJx4lJf3tzhWVqbD++9/h4SEs4JjJ4QIBHMXkb9/CS/AgArLmRjx54042/8wNTWV6o0gPBgSYQRhB3diqtTANIt0Jp6EzjaFbpBssorl5MRXspy5Iv68DUexTnq9XsWSEQQhNyTCCMIG7sRUqY1Q8SQERwLBGqnEnzdiErIEQXgXJMIIwooLF+4JMMAUU1URDKoFixggTjw5Q6hAkFL8EQRBuIK7qzCVhkQYQVjx11+WG4oDFcuhT5/WjggD5LeupKSkIDIyEvn5+UhPTwcgrfjzZIQG23t6UD6LAyaLZfI07G1W7y5SrsJUChJhBGFFgwYVLkhzIebrW7EcmrhHZGQkYmzkoCDXmnO0lHpBLlHC4oDJYpk8DTn3fpR6FaYSkAgjCDMKCgrg61uCefOqYtIkPcrKdPD15TB3rhG+vrdQUMDGwCgGsbNOstIogxbakbUosdeWXBEl1gOhvWsrOWBqcRDXAqa+wtnej97Yp5AII4h/sB5wXnsthHer3bhxHR9+WPG5q7NgNVZb2pp1OsOelcZ8o25KOeEdmLcBRxYMd0WJnNYRQn1Mfcq+fcCiRZVzD7Zr1x8dOmhjYiI1tHckQfyD9UCi119HQsLZStYjVwacVauAOnWATp0q/l+1yq2i2sR6Fmlv1pmfX8XptSIiIhATE8P/+/bbGDzySE08/3wEHnmkJr76yvs6S2/G2T6hrF7bXYzGEOTkxDNRFq0TERGBNm0i4GOlOnx9gcTECK8UYIAGRdidO3fw4IMPQqfT4ejRoxbHjh07hsceewxVqlRBXFwc5s2bV+nvt2zZgsaNG6NKlSpo0aIFvv32W4vjHMdh+vTpiImJQdWqVZGUlIS//vrL4pyrV6/ixRdfRGhoKMLCwjB48GDcuHFDdFkI78DeakvThthSYZptDhs2DMOGDUPbtv1tZrwvKKgu6rrOyk/uS2Ww3khdSRztnsDytd3hyJGHsHjxaKxb1x+LF4/GkSMPqVoeT6BWrYp0P76+Fb9X7P2orQVPUqM5d+TEiRMRGxuL3377zeLzoqIidO7cGUlJSVi5ciV+//13DBo0CGFhYRg2bBgA4MCBA3jhhRcwZ84cdOvWDRs3bkTPnj1x5MgRNG/eHAAwb948LF26FOvWrUNCQgKmTZuG5ORk/PHHH6hSpcKC8OKLL+LixYvIyMhAaWkpBg4ciGHDhmHjxo2Cy0J4D0qutjSfTbZpI80CA2fl11KQudZwtJF63763FKtXIbsnsHhtV3EWu0S4jqft/egumhJh3333HXbt2oWtW7fiu+++szi2YcMGlJSUYPXq1QgICECzZs1w9OhRLFy4kBc+S5YsQZcuXTBhwgQAwFtvvYWMjAwsW7YMK1euBMdxWLx4MaZOnYpnnnkGAPDJJ5+gZs2a+Oqrr9CnTx+cOHECO3fuxKFDh9C6dWsAwPvvv4+nn34a8+fPR2xsrKCySEV5eTkFiUpEaWkpgoODK31eXFwMjuNcvq5aqy1Ns85XXqkQTa7OOoWUnwSWOITEBzrfSH019PrriqzUkzMHHIv55Zztm0q4h1J7P8qVCkNKNCPCLl26hKFDh+Krr75CUFBQpeOZmZlo3769hcsjOTkZc+fOxbVr11C9enVkZmZi7NixFn+XnJyMr776CgCQk5ODvLw8JCUl8cf1ej0SExORmZmJPn36IDMzE2FhYbwAA4CkpCT4+PggKysLzz77rKCy2OLOnTu4c+cO/3tRUZHDOikpKUFOTg7Krc0UhEuUlZWhXbt2lT6/desWDh06hNu3b7t0XanEkCtIMeuUq/xa2xZKKoTuxiB0I3VXJmGu1L2cOeBYyy/HonWOcI75mOtosQdLoRGaEGEcx2HAgAEYPnw4WrdujTNnzlQ6Jy8vDwkJCRaf1axZkz9WvXp15OXl8Z+Zn5OXl8efZ/539s6pUaOGxXE/Pz+Eh4dbnOOsLLaYM2cOZs2aZbsSrOA4DhcvXoSvry/i4uLgYx3tSIimpKQEhYWFFp9xHIdr166hUaNGlVzgYlDTBC/FrFPq8mt5Wyh3cGU3BqkEgRSuTSlzwFkPhPaureSAafouZ9Y5lgZx4h6m0IgzZ+5i9uwavPWY43ywY0d3TJ+eyNzKblVF2BtvvIG5c+c6POfEiRPYtWsXrl+/jsmTJytUMnWYPHmyhaWuqKgIcXFxNs+9e/cuiouLERsba9MySIjHx8cHfn6VXwm9Xo+oqCgEBAS45fpVygQvF1KV3xO2hXKFgoICHDwIlJdbDgBlZUBWVgGqVrXt1pXCXeeqa1PORRcsxhJal2n69Cs4c8YP8fF3ERv7MICHKb6RcSIiInDsmK04Vh2uX68J1h6dqiJs3LhxGDBggMNz6tati7179yIzMxOBgYEWx1q3bo0XX3wR69atQ3R0NC5dumRx3PR7dHQ0/7+tc8yPmz4zzwR+6dIlPPjgg/w5ly9ftrjG3bt3cfXqVaffY/4dtggMDKx0j/YoKysDQDMyKbFnTfTx8YGPjw/8/f1RUlKiiTqXKsu5HNnSPWVbKDGYiyCdbnQlq9b+/etw/Lj9+C533XWuujblFkosihnzMsXEAK1aqVgYwiW0tOuJqiIsKioKUVFRTs9bunQp3n77bf733NxcJCcnY9OmTUhMTAQAGAwGTJkyBaWlpfD39wcAZGRkoFGjRrz7z2AwYM+ePRg9ejR/rYyMDBgMBgBAQkICoqOjsWfPHl50FRUVISsrCyNGjOCvUVhYiMOHD6PVP2/n3r17UV5eLqosUqHT6SS9njfj5+eHGjVqVIqxu337Nq5fv47evXsjODiYyYHDHKm2XpFrCxctdZBSYRIxzqxajsSOFK5AV1ybrLd3grBGzThcsWgiJqx27doWv1erVg0AUK9ePdT6p1b79u2LWbNmYfDgwZg0aRKOHz+OJUuWYNGiRfzfvf7663j88cexYMECdO3aFZ9//jl++eUXfPhPKnSdTofRo0fj7bffRoMGDfgUFbGxsejZsycAoEmTJujSpQuGDh2KlStXorS0FGlpaejTpw9iY2MFl4VgE1vuyPLycvj6+qJGjRp8mhIlcDVwXaqtV+TawkVLHaQcqBmEzuJKRIKQA62kwtCECBOCXq/Hrl27MHLkSLRq1QqRkZGYPn26RUqItm3bYuPGjZg6dSrefPNNNGjQAF999RWfIwyoyEN28+ZNDBs2DIWFhXj00Uexc+dOi8F3w4YNSEtLwxNPPAEfHx/06tULS5cuFVUWb2XAgAFYt24dgHsLGu6//3688MILGDBggOAFBmvXrsXo0aMrBdJ7Cp4euM5yB6nEqk01NzlnbSUiQciFFuJwNSnC4uPjbeZtuv/++/HTTz85/Nvnn38ezz//vN3jOp0Os2fPxuzZs+2eEx4ezidmtYeQsngrXbp0wZo1a1BWVoZLly5h586deP311/HFF19g27ZtNq1RWsWVmCpvCVxnsYNkSfzKGRSvpggkCOIenjPaEaKQI+BaKIGBgfwChfvuuw8tW7ZEmzZt8MQTT2Dt2rUYMmQIFi5ciDVr1uD//u//EB4eju7du2PevHmoVq0afvjhBwwcOBDAvZi4GTNmYObMmVi/fj2WLFmCU6dOITg4GJ06dcLixYsrpRVRAldjqpQIXDcaQ7B/fwDatGFPCKkFa+KXxdWDBEFIC4kwL0SugGt36NSpEx544AGkp6djyJAh8PHxwdKlS5GQkID/+7//w6uvvoqJEyfigw8+QNu2bbF48WJMnz4dp06dAnAvTrC0tBRvvfUWGjVqhMuXL2Ps2LEYMGBApT1ClcDVmCq5A9dNSQwXLfJR3Nqjpvh3BourNklgEYRnQyLMC5Er4NpdGjdujGPHjgGAxQrW+Ph4vP322xg+fDg++OADBAQEQK/XQ6fTVUr5MWjQIP7nunXrYunSpXj44Ydx48YNXqixjpyB69Z74ilp7WFR/Jvjyas2WdhknWUBThBqQSKMYAaO43j34u7duzFnzhycPHkSRUVFuHv3Lm7fvo3i4mKHyWkPHz6MmTNn4rfffsO1a9f4dBPnzp1D06ZNFbkPKZArcN1WniilrD2sin8TcopftUWQ2q5NawFub08/tQQ4QagFiTCCGU6cOIGEhAScOXMG3bp1w4gRI/DOO+8gPDwcP//8MwYPHoySkhK7IuzmzZtITk5GcnIyNmzYgKioKJw7dw7Jycma3OTc1cB1RwO5rTxR9qw9agsHJTFZaZ5+GsjK8jHLkl6OixfdFyhqiyBTGdTC/L4d7emnxfeUINyBRBjBBHv37sXvv/+OMWPG4PDhwygvL8eCBQv4lBWbN2+2OD8gIIDfNcDEyZMnUVBQgHfffZff7umXX35R5gYYwtmAf999RZg0SY+yMp1Daw8LwkEJ7LlJjx+3/N1dK43S9cTiBunW7nCO88E333RDvXqnabUm4ZWQCCMU586dO8jLy7NIUTFnzhx069YNL7/8Mo4fP47S0lK8//776N69O/bv34+VK1daXCM+Ph43btzAnj178MADDyAoKAi1a9dGQEAA3n//fQwfPhzHjx/HW2+9pdJdqoujAX/cOCA1VZirU+sCSwisu0ldgaVUG+Y42zaJILwNYZkxCUJCdu7ciZiYGMTHx6NLly7Yt28fli5diq+//hq+vr544IEHsHDhQsydOxfNmzfHhg0bMGfOHItrtG3bFsOHD0dqaiqioqIwb948REVFYe3atdiyZQuaNm2Kd999F/Pnz1fpLtmmVi2gQwd2LCQmTKkzLlxQuyTSceECsG8fFLmngoICHD58CcOGcVapNjgcPnwJBQUF8hfCASZ3uDnOtk0iCE+GLGGEoqxduxZr1651et6YMWMwZswYi89eeukli99XrFiBFStWWHz2wgsv4IUXXrD4zFZiXyXwppgqKVAzdYZcKGmRMrlVc3LiUV7e3+JYWZkO77//HRISzqoa/O5s26TCwkLExMSoUjaCUAMSYV4IiQNl8JaYKilQM3WGXCid/NXUzpxt0q22W9W0bdL587UA6BAXd54/tnnzZlohSXgVJMK8EBIHykF1eA9Hol7N1BlyoVbyV6U36RaS/8ua7Oz6tEKSIEAizGshcUAojSPxn5vrg/XrOZSX6/jPtJwotaCgAKGhd+HjU8PqnjiEhFxGQYGfrO+gUpt0C83/1a9fP4tzaIUkQVRAIowgCMWwJzxiYuRLlKo05sKkWzfLnFhdu27H9u0VFh+53W5KbNItNP9XUFAQUlNTsWnTJlohKRDaYcA7IBFGEAzhzR2vXLsEOEPqGEnz5+fIIuVJbjch1i29Xg/Aecwawf4WX4R0kAgjCEaQu+PVgsBzdZcAd5A7RlIJi5TaiLFuKR2zpkU8MXcdYRsSYQTBCHJ2vDSzdow33rOUiLVuKRWz5unk5+fb/JyFCRUhDBJhBOEF0Mza81Ez9Ywr1i25LYRasPy6S3p6ut1j3jqh0hokwgiCUBVvGCyVQO3UM86sW0qKRLL80oRKK5AIIzyKH374AR07dsS1a9cQFhYm6G/i4+MxevRojB49WtayEZWhwVJa1K4jR9YtJUUiWX4JrUB7RxKKMmDAAOh0OgwfPrzSsZEjR0Kn02HAgAHKF4xQBRostY1Y61ZERARiYmLs/lNbRBKE0pAljFCcuLg4fP7551i0aBGqVq0KALh9+zY2btyI2rVrq1w6gnAPb9oWTG0XKEFoHRJhhOK0bNkS2dnZSE9Px4svvgigIsC0du3aSEhI4M+7c+cOJkyYgM8//xxFRUVo3bo1Fi1ahIcffpg/59tvv8Xo0aNx/vx5tGnTBv3796/0fT///DMmT56MX375BZGRkXj22WcxZ84cBAcHy3+zhNfhbcJEC/dhL5M/q1gLdK2VnxAOiTBCFQYNGoQ1a9bwImz16tUYOHAgfvjhB/6ciRMnYuvWrVi3bh3q1KmDefPmITk5GadPn0Z4eDjOnz+PlJQUjBw5EsOGDcMvv/yCcePGWXxPdnY2unTpgrfffhurV6/GlStXkJaWhrS0NKxZs0bJW3aKN1lQPB0tCBNvwVEmf1YxF/IbN1bF7Nl6lJfr4OPDYfr0vwGsUruIhESQCCNw4ULFZsMNGiiXKLNfv36YPHkyzp49CwDYv38/Pv/8c16E3bx5EytWrMDatWvx1FNPAQA++ugjZGRkYNWqVZgwYQJWrFiBevXqYcGCBQCARo0a4ffff8fcuXP575kzZw5efPFFPui+QYMGWLp0KR5//HGsWLECVapUUeaGBSCnBYUEHuGNaHmfyoiICFy4AEyceG8j+PJyHd566z689loI8+UnhEEizMtZtQoYNqziJffxqdi/b/Bg+b83KioKXbt2xdq1a8FxHLp27YrIyEj+eHZ2NkpLS9GuXTv+M39/fzzyyCM4ceIEAODEiRNITEy0uK7BYLD4/bfffsOxY8ewYcMG/jOO41BeXo6cnBw0adJEjttzGbksKN7mIiMIQFwmfxb56697AsxEWZlOUPlpQqUNSIR5MRcu3BNgQMX/r7xSsX+fEhaxQYMGIS0tDQCwfPlyWb7jxo0beOWVV/Daa69VOuZtiwBIYBHegkmAOMvkz7pQadCgYnJsLsR8fYFx455BZORtAEBurg9ycvyQkHAXsbEVJ9KESjuQCPNibM+yKjZQVkKEdenSBSUlJdDpdEhOTrY4Vq9ePQQEBGD//v2oU6cOAKC0tBSHDh3iXYtNmjTBtm3bLP7u4MGDFr+3bNkSf/zxB+rXry/fjRAuQ25SQg7MLb/33VeESZP0KCvTwdeXw9y5Rejb9wVNCJVatSq8E6+8UtE3+/oC//430KJFdQDqeTII6SAR5sXYm2UppVd8fX1516Kvr6/FseDgYIwYMQITJkxAeHg4ateujXnz5qG4uBiD/+llhg8fjgULFmDChAkYMmQIDh8+jLVr11pcZ9KkSWjTpg3S0tIwZMgQBAcH448//kBGRoagJKGEvJCblJALU5sZNw5ITa2YXNavr0OtWmEAwtQsmigGD67wTlSU/94EWW1PBiENJMK8GHuzLCVf4NDQULvH3n33XZSXl+Oll17C9evX0bp1a3z//feoXr1iFli7dm1s3boVY8aMwfvvv49HHnkE//rXvzBo0CD+Gvfffz9+/PFHTJkyBY899hg4jkO9evWQmpoq+70RwiCBRchNrVraFia2yq+2J4OQBh3HcZzahSBsU1RUBL1eD6PRWEms3L59Gzk5OUhISHB7hd+FC5VnWcQ9pKxrgiAIKbhwAahTp7In48wZ6sdZwNH4bQ5tW0SgVi2gQwd6cQmCILSCyZNhiuRQw5NBuA+5IwmCIAhCg9iLFyO0A4kwgiAIgtAoWo9383bIHUkQBEEQBKECJMIIgiAIgiBUgESYxqHFrfJDdUwQBEHIAYkwjWJKbuooySUhDaY6tk4oSxAEQRDuQIH5GsXPzw9BQUG4cuUK/P394eNDeloOysvLceXKFQQFBcHPj14XgiAIQjpoVNEoOp0OMTExyMnJwdmzZ9Uujkfj4+OD2rVrQ6fTqV0UgiAIwoMgEaZhAgIC0KBBA3JJykxAQABZGgmCIAjJIRGmcXx8fGgrHYIgCILQIDS9JwiCIAiCUAESYQRBEARBECpAIowgCIIgCEIFKCaMYUxJQouKilQuCUEQBEEQQjGN286SfZMIY5jr168DAOLi4lQuCUEQBEEQYrl+/Tr0er3d4zqO9mRhlvLycuTm5iIkJMQrc1QVFRUhLi4O58+fR2hoqNrF0SxUj9JA9eg+VIfSQPUoDXLWI8dxuH79OmJjYx2mOCJLGMP4+PigVq1aahdDdUJDQ6mjkQCqR2mgenQfqkNpoHqUBrnq0ZEFzAQF5hMEQRAEQagAiTCCIAiCIAgVIBFGMEtgYCBmzJiBwMBAtYuiaagepYHq0X2oDqWB6lEaWKhHCswnCIIgCIJQAbKEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYoTr/+c9/0L17d8TGxkKn0+Grr76yOM5xHKZPn46YmBhUrVoVSUlJ+Ouvv9QpLKM4q8MBAwZAp9NZ/OvSpYs6hWWYOXPm4OGHH0ZISAhq1KiBnj174tSpUxbn3L59GyNHjkRERASqVauGXr164dKlSyqVmE2E1GOHDh0qtcnhw4erVGI2WbFiBe6//34+majBYMB3333HH6e2KAxn9ahmWyQRRqjOzZs38cADD2D58uU2j8+bNw9Lly7FypUrkZWVheDgYCQnJ+P27dsKl5RdnNUhAHTp0gUXL17k/3322WcKllAb/Pjjjxg5ciQOHjyIjIwMlJaWonPnzrh58yZ/zpgxY/DNN99gy5Yt+PHHH5Gbm4uUlBQVS80eQuoRAIYOHWrRJufNm6dSidmkVq1aePfdd3H48GH88ssv6NSpE5555hn873//A0BtUSjO6hFQsS1yBMEQALgvv/yS/728vJyLjo7m3nvvPf6zwsJCLjAwkPvss89UKCH7WNchx3Fc//79uWeeeUaV8miZy5cvcwC4H3/8keO4irbn7+/PbdmyhT/nxIkTHAAuMzNTrWIyj3U9chzHPf7449zrr7+uXqE0SvXq1bmPP/6Y2qKbmOqR49Rti2QJI5gmJycHeXl5SEpK4j/T6/VITExEZmamiiXTHj/88ANq1KiBRo0aYcSIESgoKFC7SMxjNBoBAOHh4QCAw4cPo7S01KI9Nm7cGLVr16b26ADrejSxYcMGREZGonnz5pg8eTKKi4vVKJ4mKCsrw+eff46bN2/CYDBQW3QR63o0oVZbpA28CabJy8sDANSsWdPi85o1a/LHCOd06dIFKSkpSEhIQHZ2Nt5880089dRTyMzMhK+vr9rFY5Ly8nKMHj0a7dq1Q/PmzQFUtMeAgACEhYVZnEvt0T626hEA+vbtizp16iA2NhbHjh3DpEmTcOrUKaSnp6tYWvb4/fffYTAYcPv2bVSrVg1ffvklmjZtiqNHj1JbFIG9egTUbYskwgjCC+jTpw//c4sWLXD//fejXr16+OGHH/DEE0+oWDJ2GTlyJI4fP46ff/5Z7aJoGnv1OGzYMP7nFi1aICYmBk888QSys7NRr149pYvJLI0aNcLRo0dhNBrxxRdfoH///vjxxx/VLpbmsFePTZs2VbUtkjuSYJro6GgAqLTi59KlS/wxQjx169ZFZGQkTp8+rXZRmCQtLQ3bt2/Hvn37UKtWLf7z6OholJSUoLCw0OJ8ao+2sVePtkhMTAQAapNWBAQEoH79+mjVqhXmzJmDBx54AEuWLKG2KBJ79WgLJdsiiTCCaRISEhAdHY09e/bwnxUVFSErK8vCn0+I48KFCygoKEBMTIzaRWEKjuOQlpaGL7/8Env37kVCQoLF8VatWsHf39+iPZ46dQrnzp2j9miGs3q0xdGjRwGA2qQTysvLcefOHWqLbmKqR1so2RbJHUmozo0bNyxmHDk5OTh69CjCw8NRu3ZtjB49Gm+//TYaNGiAhIQETJs2DbGxsejZs6d6hWYMR3UYHh6OWbNmoVevXoiOjkZ2djYmTpyI+vXrIzk5WcVSs8fIkSOxceNGfP311wgJCeFja/R6PapWrQq9Xo/Bgwdj7NixCA8PR2hoKEaNGgWDwYA2bdqoXHp2cFaP2dnZ2LhxI55++mlERETg2LFjGDNmDNq3b4/7779f5dKzw+TJk/HUU0+hdu3auH79OjZu3IgffvgB33//PbVFETiqR9XboiprMgnCjH379nEAKv3r378/x3EVaSqmTZvG1axZkwsMDOSeeOIJ7tSpU+oWmjEc1WFxcTHXuXNnLioqivP39+fq1KnDDR06lMvLy1O72Mxhqw4BcGvWrOHPuXXrFvfqq69y1atX54KCgrhnn32Wu3jxonqFZhBn9Xju3Dmuffv2XHh4OBcYGMjVr1+fmzBhAmc0GtUtOGMMGjSIq1OnDhcQEMBFRUVxTzzxBLdr1y7+OLVFYTiqR7Xboo7jOE5+qUcQBEEQBEGYQzFhBEEQBEEQKkAijCAIgiAIQgVIhBEEQRAEQagAiTCCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVIBEGEEQBEEQhAqQCCMIgiAIglABEmEEQTBLXl4eRo0ahbp16yIwMBBxcXHo3r27xX55Bw4cwNNPP43q1aujSpUqaNGiBRYuXIiysjL+nDNnzmDw4MFISEhA1apVUa9ePcyYMQMlJSUW3/fRRx/hgQceQLVq1RAWFoaHHnoIc+bM4Y/PnDkTOp0OXbp0qVTW9957DzqdDh06dBB0b6Zr6XQ6+Pn5IT4+HmPGjMGNGzdE1hJBEFqF9o4kCIJJzpw5g3bt2iEsLAzvvfceWrRogdLSUnz//fcYOXIkTp48iS+//BK9e/fGwIEDsW/fPoSFhWH37t2YOHEiMjMzsXnzZuh0Opw8eRLl5eX497//jfr16+P48eMYOnQobt68ifnz5wMAVq9ejdGjR2Pp0qV4/PHHcefOHRw7dgzHjx+3KFdMTAz27duHCxcuoFatWvznq1evRu3atUXdY7NmzbB7927cvXsX+/fvx6BBg1BcXIx///vflc4tKSlBQECACzUpHyyWiSA0hSKbIxEEQYjkqaee4u677z7uxo0blY5du3aNu3HjBhcREcGlpKRUOr5t2zYOAPf555/bvf68efO4hIQE/vdnnnmGGzBggMMyzZgxg3vggQe4bt26cW+//Tb/+f79+7nIyEhuxIgR3OOPPy7g7u5dy5yhQ4dy0dHRFsc/+ugjLj4+ntPpdBzHVdz74MGDucjISC4kJITr2LEjd/ToUf4aR48e5Tp06MBVq1aNCwkJ4Vq2bMkdOnSI4ziOO3PmDNetWzcuLCyMCwoK4po2bcrt2LGD4ziOW7NmDafX6y3K8+WXX3Lmw4SrZSIIwjbkjiQIgjmuXr2KnTt3YuTIkQgODq50PCwsDLt27UJBQQHGjx9f6Xj37t3RsGFDfPbZZ3a/w2g0Ijw8nP89OjoaBw8exNmzZ52Wb9CgQVi7di3/++rVq/Hiiy+6bRWqWrWqhYv09OnT2Lp1K9LT03H06FEAwPPPP4/Lly/ju+++w+HDh9GyZUs88cQTuHr1KgDgxRdfRK1atXDo0CEcPnwYb7zxBvz9/QEAI0eOxJ07d/Cf//wHv//+O+bOnYtq1aqJKqMrZSIIwjbkjiQIgjlOnz4NjuPQuHFju+f8+eefAIAmTZrYPN64cWP+HFvXf//993lXJADMmDEDKSkpiI+PR8OGDWEwGPD000/jueeeg4+P5Xy1W7duGD58OP7zn/+gVatW2Lx5M37++WesXr1a7K3yHD58GBs3bkSnTp34z0pKSvDJJ58gKioKAPDzzz/jv//9Ly5fvozAwEAAwPz58/HVV1/hiy++wLBhw3Du3DlMmDCBr7sGDRrw1zt37hx69eqFFi1aAADq1q0rupyulIkgCNuQCCMIgjk4jpPlXAD4+++/0aVLFzz//PMYOnQo/3lMTAwyMzNx/Phx/Oc//8GBAwfQv39/fPzxx9i5c6eFEPP390e/fv2wZs0a/N///R8aNmyI+++/X1Q5AOD3339HtWrVUFZWhpKSEnTt2hXLli3jj9epU4cXOwDw22+/4caNG4iIiLC4zq1bt5CdnQ0AGDt2LIYMGYL169cjKSkJzz//POrVqwcAeO211zBixAjs2rULSUlJ6NWrl+hyu1ImgiBsQyKMIAjmaNCgAR9Qb4+GDRsCAE6cOIG2bdtWOn7ixAk0bdrU4rPc3Fx07NgRbdu2xYcffmjzus2bN0fz5s3x6quvYvjw4Xjsscfw448/omPHjhbnDRo0CImJiTh+/DgGDRok9hYBAI0aNcK2bdvg5+eH2NjYSu5Ma1fsjRs3EBMTgx9++KHStcLCwgBUrLrs27cvduzYge+++w4zZszA559/jmeffRZDhgxBcnIyduzYgV27dmHOnDlYsGABRo0aBR8fn0qCtrS0tNL3uFImgiBsQzFhBEEwR3h4OJKTk7F8+XLcvHmz0vHCwkJ07twZ4eHhWLBgQaXj27Ztw19//YUXXniB/+zvv/9Ghw4d0KpVK6xZs6aSi9EWJhFnqwzNmjVDs2bNcPz4cfTt21fM7fEEBASgfv36iI+PFxRP1rJlS+Tl5cHPzw/169e3+BcZGcmf17BhQ4wZMwa7du1CSkoK1qxZwx+Li4vD8OHDkZ6ejnHjxuGjjz4CAERFReH69esW92qK+ZKiTARBVIZEGEEQTLJ8+XKUlZXhkUcewdatW/HXX3/hxIkTWLp0KQwGA4KDg/Hvf/8bX3/9NYYNG4Zjx47hzJkzWLVqFQYMGIDnnnsOvXv3BnBPgNWuXRvz58/HlStXkJeXh7y8PP77RowYgbfeegv79+/H2bNncfDgQbz88suIioqCwWCwWca9e/fi4sWLill8kpKSYDAY0LNnT+zatQtnzpzBgQMHMGXKFPzyyy+4desW0tLS8MMPP+Ds2bPYv38/Dh06xMfNjR49Gt9//z1ycnJw5MgR7Nu3jz+WmJiIoKAgvPnmm8jOzsbGjRstFh+4WiaCIOxD7kiCIJikbt26OHLkCN555x2MGzcOFy9eRFRUFFq1aoUVK1YAAJ577jns27cP77zzDh577DHcvn0bDRo0wJQpUzB69GjodDoAQEZGBk6fPo3Tp09b5PYC7sWUJSUlYfXq1VixYgUKCgoQGRkJg8GAPXv2VIp3MmFr5aac6HQ6fPvtt5gyZQoGDhyIK1euIDo6Gu3bt0fNmjXh6+uLgoICvPzyy7h06RIiIyORkpKCWbNmAQDKysowcuRIXLhwAaGhoejSpQsWLVoEoML6+Omnn2LChAn46KOP8MQTT2DmzJlOA+udlYkgCPvoOLFRrQRBEARBEITbkDuSIAiCIAhCBUiEEQRByEC1atXs/vvpp5/ULh5BEAxA7kiCIAgZOH36tN1j9913H6pWrapgaQiCYBESYQRBEARBECpA7kiCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVIBEGEEQBEEQhAqQCCMIgiAIglABEmEEQRAEQRAqQCKMIAiCIAhCBUiEEQRBEARBqMD/A73T4mqlkO6gAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, + "cells": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXbElEQVR4nOzdeVxU1f8/8NcdBASFYUcIVERccUMTB9OyQDSX/KqhpqWJWf2kQkvNT+XyqT6VbVa2maa2aK4VaqmgpqZEhStuKaFCiMsgA2oJMuf3xzSXubOwyc7r+XjwAO49c+fcG8abc97nfSQhhAARERER1ShVbXeAiIiIqDFiEEZERERUCxiEEREREdUCBmFEREREtYBBGBEREVEtYBBGREREVAsYhBERERHVAgZhRERERLWAQRgRERFRLWAQRkREpVqxYgUkScLZs2druytEDQqDMCKqdb/99hvi4uLQuXNnNGvWDC1btkRMTAz++OMPi7b33HMPJEmCJElQqVRwdXVF+/bt8fDDDyMxMbFC77tp0ybcfffd8PHxgbOzM9q0aYOYmBhs3bq1qm7Nwv/+9z989913Fsf379+P+fPnIy8vr9re29z8+fPlZylJEpydndGpUye8+OKLyM/Pr5L3WLVqFRYtWlQl1yJqaBiEEVGte+ONN7Bhwwbcd999eO+99zB16lTs2bMHYWFhSEtLs2gfEBCAL7/8El988QXefPNNDB8+HPv378fAgQMxZswYFBUVlfmeb731FoYPHw5JkjBnzhy8++67GDVqFE6fPo1vvvmmOm4TQOlB2IIFC2o0CDP6+OOP8eWXX+Kdd95Bhw4d8Oqrr2LQoEGoiq2FGYQR2daktjtARDRjxgysWrUKDg4O8rExY8agS5cueP311/HVV18p2qvVakyYMEFx7PXXX8fTTz+Njz76CK1bt8Ybb7xh8/1u3bqFl19+GVFRUdi+fbvF+UuXLt3mHdUdN27cgLOzc6ltRo8eDS8vLwDAE088gVGjRmHjxo345ZdfoNFoaqKbRI0SR8KIqNZFREQoAjAACAkJQefOnXHixIlyXcPOzg7vv/8+OnXqhMWLF0On09lse+XKFeTn56Nv375Wz/v4+Ci+/+effzB//ny0a9cOTZs2hZ+fH0aOHIn09HS5zVtvvYWIiAh4enrCyckJPXv2xPr16xXXkSQJ169fx8qVK+UpwEmTJmH+/PmYOXMmACAoKEg+Z5qD9dVXX6Fnz55wcnKCh4cHxo4di8zMTMX177nnHoSGhiI1NRX9+/eHs7Mz/vOf/5Tr+Zm69957AQAZGRmltvvoo4/QuXNnODo6wt/fH9OmTVOM5N1zzz3YsmULzp07J99T69atK9wfooaKI2FEVCcJIXDx4kV07ty53K+xs7PDuHHj8NJLL+Hnn3/GkCFDrLbz8fGBk5MTNm3ahKeeegoeHh42r1lcXIyhQ4dix44dGDt2LJ555hkUFBQgMTERaWlpCA4OBgC89957GD58OMaPH4/CwkJ88803ePDBB7F582a5H19++SWmTJmC3r17Y+rUqQCA4OBgNGvWDH/88QdWr16Nd999Vx6V8vb2BgC8+uqreOmllxATE4MpU6bg8uXL+OCDD9C/f38cPHgQbm5ucn+1Wi0GDx6MsWPHYsKECfD19S338zMyBpeenp4228yfPx8LFixAZGQknnzySZw6dQoff/wxfvvtN+zbtw/29vZ44YUXoNPpkJWVhXfffRcA0Lx58wr3h6jBEkREddCXX34pAIhly5Ypjt99992ic+fONl/37bffCgDivffeK/X6c+fOFQBEs2bNxODBg8Wrr74qUlNTLdp9/vnnAoB45513LM7p9Xr56xs3bijOFRYWitDQUHHvvfcqjjdr1kxMnDjR4lpvvvmmACAyMjIUx8+ePSvs7OzEq6++qjh+9OhR0aRJE8Xxu+++WwAQn3zyic37NjVv3jwBQJw6dUpcvnxZZGRkiE8//VQ4OjoKX19fcf36dSGEEMuXL1f07dKlS8LBwUEMHDhQFBcXy9dbvHixACA+//xz+diQIUNEq1atytUfosaG05FEVOecPHkS06ZNg0ajwcSJEyv0WuNIS0FBQantFixYgFWrVqFHjx7Ytm0bXnjhBfTs2RNhYWGKKdANGzbAy8sLTz31lMU1JEmSv3ZycpK/vnr1KnQ6Hfr164cDBw5UqP/mNm7cCL1ej5iYGFy5ckX+aNGiBUJCQrBr1y5Fe0dHRzz66KMVeo/27dvD29sbQUFBePzxx9G2bVts2bLFZi5ZUlISCgsLER8fD5Wq5NfIY489BldXV2zZsqXiN0rUCHE6kojqlJycHAwZMgRqtRrr16+HnZ1dhV5/7do1AICLi0uZbceNG4dx48YhPz8fKSkpWLFiBVatWoVhw4YhLS0NTZs2RXp6Otq3b48mTUr/3+XmzZvxyiuv4NChQ7h586Z83DRQq4zTp09DCIGQkBCr5+3t7RXf33HHHRb5dWXZsGEDXF1dYW9vj4CAAHmK1ZZz584BMARvphwcHNCmTRv5PBGVjkEYEdUZOp0OgwcPRl5eHvbu3Qt/f/8KX8NY0qJt27blfo2rqyuioqIQFRUFe3t7rFy5EikpKbj77rvL9fq9e/di+PDh6N+/Pz766CP4+fnB3t4ey5cvx6pVqyp8D6b0ej0kScKPP/5oNSA1z7EyHZErr/79+8t5aERUcxiEEVGd8M8//2DYsGH4448/kJSUhE6dOlX4GsXFxVi1ahWcnZ1x1113VaofvXr1wsqVK3HhwgUAhsT5lJQUFBUVWYw6GW3YsAFNmzbFtm3b4OjoKB9fvny5RVtbI2O2jgcHB0MIgaCgILRr166it1MtWrVqBQA4deoU2rRpIx8vLCxERkYGIiMj5WO3OxJI1JAxJ4yIal1xcTHGjBmD5ORkrFu3rlK1qYqLi/H000/jxIkTePrpp+Hq6mqz7Y0bN5CcnGz13I8//gigZKpt1KhRuHLlChYvXmzRVvxbzNTOzg6SJKG4uFg+d/bsWatFWZs1a2a1IGuzZs0AwOLcyJEjYWdnhwULFlgUTxVCQKvVWr/JahQZGQkHBwe8//77ij4tW7YMOp1OsSq1WbNmpZYLIWrMOBJGRLXu2WefRUJCAoYNG4bc3FyL4qzmhVl1Op3c5saNGzhz5gw2btyI9PR0jB07Fi+//HKp73fjxg1ERESgT58+GDRoEAIDA5GXl4fvvvsOe/fuxYgRI9CjRw8AwCOPPIIvvvgCM2bMwK+//op+/frh+vXrSEpKwv/7f/8PDzzwAIYMGYJ33nkHgwYNwkMPPYRLly7hww8/RNu2bXHkyBHFe/fs2RNJSUl455134O/vj6CgIISHh6Nnz54AgBdeeAFjx46Fvb09hg0bhuDgYLzyyiuYM2cOzp49ixEjRsDFxQUZGRn49ttvMXXqVDz33HO39fwrytvbG3PmzMGCBQswaNAgDB8+HKdOncJHH32EO++8U/Hfq2fPnlizZg1mzJiBO++8E82bN8ewYcNqtL9EdVZtLs0kIhKipLSCrY/S2jZv3lyEhISICRMmiO3bt5fr/YqKisRnn30mRowYIVq1aiUcHR2Fs7Oz6NGjh3jzzTfFzZs3Fe1v3LghXnjhBREUFCTs7e1FixYtxOjRo0V6errcZtmyZSIkJEQ4OjqKDh06iOXLl8slIEydPHlS9O/fXzg5OQkAinIVL7/8srjjjjuESqWyKFexYcMGcdddd4lmzZqJZs2aiQ4dOohp06aJU6dOKZ5NaeU7zBn7d/ny5VLbmZeoMFq8eLHo0KGDsLe3F76+vuLJJ58UV69eVbS5du2aeOihh4Sbm5sAwHIVRCYkIapgczAiIiIiqhDmhBERERHVAgZhRERERLWAQRgRERFRLWAQRkRERFQLGIQRERER1QIGYURERES1gMVa6zC9Xo/s7Gy4uLhw6w8iIqJ6QgiBgoIC+Pv7Q6WyPd7FIKwOy87ORmBgYG13g4iIiCohMzMTAQEBNs8zCKvDXFxcABj+I5a2Dx4RERHVHfn5+QgMDJR/j9vCIKwOM05Burq6MggjIiKqZ8pKJWJiPhEREVEtYBBGREREVAsYhBERERHVAuaE1XN6vR6FhYW13Y0GzcHBodQlxkRERJXBIKweKywsREZGBvR6fW13pUFTqVQICgqCg4NDbXeFiIgaEAZh9ZQQAhcuXICdnR0CAwM5UlNNjAVzL1y4gJYtW7JoLhERVRkGYfXUrVu3cOPGDfj7+8PZ2bm2u9OgeXt7Izs7G7du3YK9vX1td4eIiBoIDp/UU8XFxQDAKbIaYHzGxmdORERUFRiE1XOcHqt+fMZERFQdGIQRERER1QIGYURERES1oN4EYcOHD0fLli3RtGlT+Pn54eGHH0Z2draijRACb731Ftq1awdHR0fccccdePXVVxVtfvrpJ4SFhcHR0RFt27bFihUrLN7rww8/ROvWrdG0aVOEh4fj119/VZz/559/MG3aNHh6eqJ58+YYNWoULl68qGhz/vx5DBkyBM7OzvDx8cHMmTNx69atqnkY9dikSZMgSRIkSYK9vT18fX0RFRWFzz//vEKlNlasWAE3N7fq6ygRETVIWVnArl2Gz7Wt3gRhAwYMwNq1a3Hq1Cls2LAB6enpGD16tKLNM888g6VLl+Ktt97CyZMnkZCQgN69e8vnMzIyMGTIEAwYMACHDh1CfHw8pkyZgm3btslt1qxZgxkzZmDevHk4cOAAunXrhujoaFy6dEluM336dGzatAnr1q3D7t27kZ2djZEjR8rni4uLMWTIEBQWFmL//v1YuXIlVqxYgblz51bjE6oYrVaLCxcu2PzQarXV9t6DBg3ChQsXcPbsWfz4448YMGAAnnnmGQwdOpSBKhERVbmjR69i/XotXnpJh1atBO69F2jVSuDJJ68hNfVitf7OK5Wop77//nshSZIoLCwUQghx/Phx0aRJE3Hy5Embr5k1a5bo3Lmz4tiYMWNEdHS0/H3v3r3FtGnT5O+Li4uFv7+/eO2114QQQuTl5Ql7e3uxbt06uc2JEycEAJGcnCyEEOKHH34QKpVK5OTkyG0+/vhj4erqKm7evFnue9TpdAKA0Ol0Fuf+/vtvcfz4cfH333+X+3pGV65cEfPnzy/z48qVKxW+dlkmTpwoHnjgAYvjO3bsEADEZ599JoQQ4u233xahoaHC2dlZBAQEiCeffFIUFBQIIYTYtWuXAKD4mDdvnhBCiC+++EL07NlTNG/eXPj6+opx48aJixcv3lafb+dZExFR7Vq0qEBIUrEAhAD0/342/SgWw4d/L06cOFFlv/dK+/1tqt6MhJnKzc3F119/jYiICLlu06ZNm9CmTRts3rwZQUFBaN26NaZMmYLc3Fz5dcnJyYiMjFRcKzo6GsnJyQAMFehTU1MVbVQqFSIjI+U2qampKCoqUrTp0KEDWrZsKbdJTk5Gly5d4Ovrq3if/Px8HDt2zOZ93bx5E/n5+YqP6lDebY5qcjuke++9F926dcPGjRsBGJ77+++/j2PHjmHlypXYuXMnZs2aBQCIiIjAokWL4OrqKo/cPffccwCAoqIivPzyyzh8+DC+++47nD17FpMmTaqx+yAiorpBq9UiNfUiZsxohpJwx9pqdxU2bRqKJUt+wOLFi2t0VKxeBWGzZ89Gs2bN4OnpifPnz+P777+Xz/355584d+4c1q1bhy+++AIrVqxAamqqYsoyJydHERgBgK+vL/Lz8/H333/jypUrKC4uttomJydHvoaDg4NFPpJ5G2vXMJ6z5bXXXoNarZY/AgMDy/lkGoYOHTrg7NmzAID4+HgMGDAArVu3xr333otXXnkFa9euBWCo26VWqyFJElq0aIEWLVqgefPmAIDJkydj8ODBaNOmDfr06YP3338fP/74I65du1Zbt0VERDUsPT0dixcvxuuv74FeX3aZISFUyM31AFCzAxC1GoQ9//zzcpK2rY+TJ0/K7WfOnImDBw9i+/btsLOzwyOPPAIhBADD9jI3b97EF198gX79+uGee+7BsmXLsGvXLpw6daq2brFC5syZA51OJ39kZmbWdpdqlBBCrsmVlJSE++67D3fccQdcXFzw8MMPQ6vV4saNG6VeIzU1FcOGDUPLli3h4uKCu+++G4BhoQQRETV8Wq0WX331FQ4c6IH160eV6zWSpIeHR27ZDatYrW5b9Oyzz5Y5VdSmTRv5ay8vL3h5eaFdu3bo2LEjAgMD8csvv0Cj0cDPzw9NmjRBu3bt5PYdO3YEYPgF3L59e7Ro0cJiFePFixfh6uoKJycn2NnZwc7OzmqbFi1aAABatGiBwsJC5OXlKUbDzNuYr6g0XtPYxhpHR0c4OjqW+jwashMnTiAoKAhnz57F0KFD8eSTT+LVV1+Fh4cHfv75Z8TGxqKwsNDmNk3Xr19HdHQ0oqOj8fXXX8Pb2xvnz59HdHR0jf5lQ0REtSMrC/jlFyAryw8JCUNRvrEmPYYN2wy1uqC6u2ehVoMwb29veHt7V+q1xnIGN2/eBAD07dsXt27dQnp6OoKDgwEAf/zxBwCgVatWAACNRoMffvhBcZ3ExERoNBoAhmmunj17YseOHRgxYoT8Pjt27EBcXBwAoGfPnrC3t8eOHTswapQhwj516hTOnz8vX0ej0eDVV1/FpUuX4OPjI7+Pq6srOnXqVKn7beh27tyJo0ePYvr06UhNTYVer8fbb78tb0xunIo0cnBwsNhG6OTJk9BqtXj99dflqdzff/+9Zm6AiIhqhVarxaVLl/DZZ3osWtQJQngCeAzW879MCURE7Ed4eEqtBGBAPdnAOyUlBb/99hvuuusuuLu7Iz09HS+99BKCg4PlwCcyMhJhYWGYPHkyFi1aBL1ej2nTpiEqKkoeHXviiSewePFizJo1C5MnT8bOnTuxdu1abNmyRX6vGTNmYOLEiejVqxd69+6NRYsW4fr163j00UcBAGq1GrGxsZgxYwY8PDzg6uqKp556ChqNBn369AEADBw4EJ06dcLDDz+MhQsXIicnBy+++CKmTZvWqEe6jG7evImcnBwUFxfj4sWL2Lp1K1577TUMHToUjzzyCNLS0lBUVIQPPvgAw4YNw759+/DJJ58ortG6dWtcu3YNO3bsQLdu3eDs7IyWLVvCwcEBH3zwAZ544gmkpaXh5ZdfrqW7JCKi6qTVanH58mWsWbMGWVl+WLZsCoQwBl4SDIvnrQdikqRHbOxSBARcqKnuWlUvEvOdnZ2xceNG3HfffWjfvj1iY2PRtWtX7N69Ww5qVCoVNm3aBC8vL/Tv3x9DhgxBx44d8c0338jXCQoKwpYtW5CYmIhu3brh7bffxtKlSxEdHS23GTNmDN566y3MnTsX3bt3x6FDh7B161ZFov27776LoUOHYtSoUejfvz9atGghr+oDADs7O2zevBl2dnbQaDSYMGECHnnkEfz3v/+tgadV923duhV+fn5o3bo1Bg0ahF27duH999/H999/Dzs7O3Tr1g3vvPMO3njjDYSGhuLrr7/Ga6+9prhGREQEnnjiCYwZMwbe3t5YuHAhvL29sWLFCqxbtw6dOnXC66+/jrfeequW7pKIiKqLMfF+zZo1OHCgB5YunQLLgg/GQMzI8LUkGaYfazsAAwBJGDPbqc7Jz8+HWq2GTqeDq6ur4tw///yDjIwMBAUFoWnTphW6rlarxeLFi8tsFxcXB09PzwpduyG6nWdNRERVy/R3mE7ngkWL4q0EYKYE7r03CW3aZKCoyAEeHrmlTj9OnToVfn5+t9XH0n5/m6oX05FUtTw9PREXF1dqsrqDgwMDMCIiqjOMuV+XL1+Wj+3Z06+MAAwAJNjbF5d75MvBweE2elkxDMIaKQZYRERUX5jP4GRl+WHPnv7444/25Xi1QGBg6WWKBg4ciNatW9f4AASDMCIiIqqztFotsrOz5e+//fYBHD7cDWWvfgQAgW7dDpc5CtauXbtaGZxgEEZERER1jlarRXp6On788Uf5WFaWX7kCMEnSo3//3QgJOV1mADZhwoRamx1iEEZERER1ivn0o07ngtxcT5w82Q62AzBDSQrj6sewsIM2rz9y5Eh4eXnVev4zgzAiIiKqdcbE+6tXryr2WT5woAc2bRr6bwK+7YIOXbocRljYoTJXPwKAv79/nciNZhBGREREtcr6yFdr2NvfRELCMJSMftkaBdMjMnKn1eArODgY3t7ecHd3R2BgYK2PfpliEEZERES1yrRkknLkS4/y5H+Vtvfjfffdd9t1v6oLgzAiIiKqUVqtVg68Tp68hsOHb0CncwEAkwAMKH1jHz1Gj16PwMCsUqcfa7LuV0UxCKMG5aeffsKAAQNw9epVuLm5les1rVu3Rnx8POLj46u1b0REpJx6NB31kqQu0GiSy1F8FQAEoqKSEBp6wurZupJ4X5Z6sXckNRyTJk2CJEl44oknLM5NmzYNkiRh0qRJNd8xIiKqEcYRMJ3ORTHqJYQK+/drUFryvYEeUVGJ6Ns32WYLf39/+Pn51ekADOBIGNWCwMBAfPPNN3j33Xfh5OQEwLA/46pVq9CyZcta7h0REVWnvLw8AEBurqeVUa/Spx/vv38L2rc/bXP6ceTIkXVm5WN5cCSMalxYWBgCAwOxceNG+djGjRvRsmVL9OjRQz528+ZNPP300/Dx8UHTpk1x11134bffflNc64cffkC7du3g5OSEAQMG4OzZsxbv9/PPP6Nfv35wcnJCYGAgnn76aVy/fr3a7o+IiEpotVpcuHABFy5cwIkTJ7B27VoAgIeHFpKkL+dVDNOPvXsfKDX/qz4FYABHwghAVhZw+jQQEgIEBNTMe06ePBnLly/H+PHjAQCff/45Hn30Ufz0009ym1mzZmHDhg1YuXIlWrVqhYULFyI6OhpnzpyBh4cHMjMzMXLkSEybNg1Tp07F77//jmeffVbxPunp6Rg0aBBeeeUVfP7557h8+TLi4uIQFxeH5cuX18zNEhE1UualJ4x0OhekpIRDlDXzCMPqx8jIJKvTj4MHD0ZgYCAA1Pn8L2sYhDVyy5YBU6cCej2gUgFLlgCxsdX/vhMmTMCcOXNw7tw5AMC+ffvwzTffyEHY9evX8fHHH2PFihUYPHgwAOCzzz5DYmIili1bhpkzZ+Ljjz9GcHAw3n77bQBA+/btcfToUbzxxhvy+7z22msYP368nHQfEhKC999/H3fffTc+/vhjNG3atPpvloioETFd+XjlyhXFOWPwZcj9Kn0yTpL0GDXK+urHmJgY+Pj41LugyxyDsEYsK6skAAMMnx9/HIiOrv4RMW9vbwwZMgQrVqyAEAJDhgyBl5eXfD49PR1FRUXo27evfMze3h69e/fGiROG1TAnTpxAeHi44roajUbx/eHDh3HkyBF8/fXX8jEhBPR6PTIyMtCxY8fquD0iokbFGHjpdDqsWbPGahtl/a+yGGp/GVc/9urVCx4eHnB3d4e3t3e9D76MGIQ1YqdPlwRgRsXFwJkzNTMtOXnyZMTFxQEAPvzww2p5j2vXruHxxx/H008/bXGOiwCIiG6frSlHU+YrIUsjSXrExi5VbLwdFhZWZwuu3g4GYY1YSIhhCtI0ELOzA9q2rZn3HzRoEAoLCyFJEqKjoxXngoOD4eDggH379qFVq1YAgKKiIvz222/y1GLHjh2RkJCgeN0vv/yi+D4sLAzHjx9H25q6KSKiRsa02j1Qstm2h4cWgGEV5OXL1lZCmlJuvm0agAF1u+Dq7WAQ1ogFBBhywB5/3DACZmcHfPppzSXn29nZyVOLdnZ2inPNmjXDk08+iZkzZ8LDwwMtW7bEwoULcePGDcT+m7T2xBNP4O2338bMmTMxZcoUpKamYsWKFYrrzJ49G3369EFcXBymTJmCZs2a4fjx40hMTCzzLzciIiqdVqtVrEq3vuWQhNJqf3XufBQaTTKKihwsNt8eM2ZMg5p+NMcgrJGLjTXkgJ05YxgBq6kAzMjV1dXmuddffx16vR4PP/wwCgoK0KtXL2zbtg3u7u4ADNOJGzZswPTp0/HBBx+gd+/e+N///ofJkyfL1+jatSt2796NF154Af369YMQAsHBwRgzZky13xsRUUNmbdNt21sOWd//UZL0GDgw0SLxvr7V+6osSYjyLBCl2pCfnw+1Wg2dTmcRrPzzzz/IyMhAUFAQV/hVMz5rImrsTBPvr169iqKiIhQUFOD333+X22RktMbKlRPLfU3j1GNY2EGLc3FxcfU6ACvt97cpjoQRERGRTeVJvAfwbw6YHmXXgbe98XZjGQEzYhBGRERENpWWeG8aRKWlhcLWtKN54r2tjbcbUwAGMAgjIiKicjJPvO/ZMxVBQWdx8aIP9u7tD9tBmITo6K3o1Om4InAbMGAA3N3dYW9v36AT8G1hEEZERERlspZ4n5p6J1JT74RxpMsWSdJbBGAA0Llz50YXeJliEFbPcV1F9eMzJqLGxHTbIaBk66Hc3NJqfZUegA0btlkOwEaOHAkvL696uddjVWMQVk8Z62oVFhbCycmplnvTsBn/Z2Rey4yIqKEpLQm//In3RtYT8Btb3ldpGITVU02aNIGzszMuX74Me3t7qFTl/UdBFaHX63H58mU4OzujSRP+cyGihu3SpUs2z6nVBYiISMb+/X1ttDCdktRj+HDLBPwJEyYwADPB3yr1lCRJ8PPzQ0ZGBs6dO1fb3WnQVCoVWrZsCUmyPdxORFTfaLVaXL58Wa75lZ+fj7/++stqW+OKyE6djiE5WWNlWlKPqKgkqNV5AGAx+hUTEwMfHx8GYGYYhNVjDg4OCAkJsVg+TFXLwcGBI41EVO+Z5nrpdDqsWbOmzNfodC5ISQmXAy9J0qNr1yM4cqSr/H1YWCr6999rsd2QWq0GAOZ+lYJBWD2nUqlYxZ2IiEpV3oKrpvbt0yAxMQqmSfdCqHDkSFfExi61utdjVFQU2rdvz6CrnBiEERERNXDlLbhqtGPHPTbrfgmhQlGRA4KCLFNhgoKCGIBVAIMwIiKiBkyr1cplJgBlwVVj+Yjg4DPIzfWEvf1NpKT0xtGj3VDaptseHrlWzzk4OFTHLTRYDMKIiIgaqPT0dHz11Vfy9+YFV4VQISFh6L9nVShP0VVrNb8A5n5VBoMwIiKiBsI0+T4rKws//PCD4rz1gqum35e2ClyP2NilCAi4IB/x8vKCn5/f7XW6EWMQRkRE1ACUJ/new0MLSdKXUvneFkPdL9MADOD04+1iEEZERFTPabVaZGdnK46ZJ9/rdC7IzAxEWFgqUlN7onyV7wW6dDmMyMid8hRkVFQUgoKCOP1YBRiEERER1WPWRsDMk++7dj2Cw4dNk+3LsyeuoQBr377JiqMsQVF1GIQRERHVU7ZGwMyT75UBGFBW7lfPnsoCrBEREQgMDIS3tzcDsCrEIIyIiKgespUDZj35vjzbrukREZGM8PAUqNUFctV7TjtWHwZhRERE9YDpykcAitpfpuztbwLQo3w5XwCgx/33b0H79qdx333t4ePTD23atGHgVQMYhBEREdVRxsArLy8Pa9euLbWtcZ/H/fs1KE/NL6OIiGT07n0AABAWFsaSEzWIQRgREVEdVJH9Hk0T8UuUbwoyPDylUv2j21fRQiFERERUzawl3NtinohfNj0AQ/X74cM3K/aOZN2vmsWRMCIiojrE1giYad0vAPLX1hPxbdFjypSlKCpywMCBbTBgwJ0A7gTAbYdqA4MwIiKiOsJWyYmUlHAkJ2v+DbbEvx+GGmCRkUnlrIKvrHofHT2MQVctYxBGRERUB9gqumrYYNs818uQ7yWEComJkaVeV5L0GDVqPQIDszB16v1Qq+/kqFcdwSCMiIiolpiWncjIyFCcM+Z6lZ2+bfu8JOkxbNhmzJ3bEf7+9zHwqmMYhBEREdWCslY/ZmYGVmKjbSNl4VUvrzsZgNVBDMKIiIhqgWnhVXPGkhOVY0i+N+Z+AVz1WFcxCCMiIqpBxilI84r3xtWP9vY3K1hyAjAWZjVOPxoDsJiYGPj4+HAUrI5iEEZERFTNjIGXTqfDmjVrLM6bFlu1vdLRVgV8gX799qBNmwx4eOTi0Uej4OXF5Pv6gEEYERFRNUpPT8dXX31l87x5sdWSMhTmAZdkctz4WY+oqCT07Zsst/L392fwVU8wCCMiIqoGWq0Wly5dstjz0bzo6rFjna2MfNnackhCdPRWBAaeR1GRAzw8chUV7ydMmMAArB5hEEZERFRFKjLtaNg+yFjzq3ybbUuSHp06HYdaXYCRI0fCy8tLPsfpx/qHQRgREVEVKKvkhOUej+YFWMsKxAxJ98aRL0471n8MwoiIiKqAeckJ02lHtbqgHHs82g7AJEmP2FhD2YkxY8bA29ubAVgDwCCMiIioCuh0Ovlr89WOkZFJyM11R3mnHU1Jkh4zZ57BpEn9WG6igWEQRkREVAnG/K+8vDzk5eVh+/btAKyvdkxMjEJFgy9Aj/vv34L27U9j1qyJDL4aIAZhREREFVRa/pf1aceKj34NG7YZYWEHMWbMGAZgDRSDMCIiogrQarXIzs5WHDPN//Lw0JZScLUsJaNfxgR8b2/vKug11UUMwoiIiGww1vq6desWCgoKkJ+fj5SUFEUb8/yvYcM2Y9iwzUhIGArDCsjy5oHpMXy4YfQL4JZDjQGDMCIiIivKKjkBWM//2rRpKO66ay9KAi9rle5N6RERkYzw8BSo1QVc/diIMAgjIiL6lzHZHoDFBtvWZGYGWkw7CqHC3r39oQy2DFsM9eu3Fz//3E8u1tqzZyr699/L4KuRqsyEda0YPnw4WrZsiaZNm8LPzw8PP/ywYk5+/vz5kCTJ4qNZs2aK66xbtw4dOnRA06ZN0aVLF/zwww+K80IIzJ07F35+fnByckJkZCROnz6taJObm4vx48fD1dUVbm5uiI2NxbVr1xRtjhw5gn79+qFp06YIDAzEwoULq/iJEBFRVTKOfC1ZsgRLlizBxo0bFed1OhekpXVCWlon6HQuOHCgB9avH2XjatamH1Vo0yYD8fGLsGzZn/j998vYtCkAM2eOQ1xcHDp06MAArJGpNyNhAwYMwH/+8x/4+fnhr7/+wnPPPYfRo0dj//79AIDnnnsOTzzxhOI19913H+688075+/3792PcuHF47bXXMHToUKxatQojRozAgQMHEBoaCgBYuHAh3n//faxcuRJBQUF46aWXEB0djePHj6Np06YAgPHjx+PChQtITExEUVERHn30UUydOhWrVq0CAOTn52PgwIGIjIzEJ598gqNHj2Ly5Mlwc3PD1KlTa+JxERFRBV26dEnxvWmyfXp6WyQkDENJcKX/93NFxjL08l6Pgwc7wc/Ptwp6TfWZJIQQtd2JykhISMCIESNw8+ZN2NvbW5w/fPgwunfvjj179qBfv34AgDFjxuD69evYvHmz3K5Pnz7o3r07PvnkEwgh4O/vj2effRbPPfccAEPxPV9fX6xYsQJjx47FiRMn0KlTJ/z222/o1asXAGDr1q24//77kZWVBX9/f3z88cd44YUXkJOTAwcHBwDA888/j++++w4nT54s9z3m5+dDrVZDp9PB1dW10s+KiIhs02q1uHz5smKvR/Nke8NvytuZPFIm3cfFxXHUqwEr7+/vejMdaSo3Nxdff/01IiIirAZgALB06VK0a9dODsAAIDk5GZGRkYp20dHRSE5OBgBkZGQgJydH0UatViM8PFxuk5ycDDc3NzkAA4DIyEioVCp5xUxycjL69+8vB2DG9zl16hSuXr1q875u3ryJ/Px8xQcREVUPrVaLkydPYvHixYoAzFqyfeV/XQp06XII06cvUqx6ZABGQD0LwmbPno1mzZrB09MT58+fx/fff2+13T///IOvv/4asbGxiuM5OTnw9VUO//r6+iInJ0c+bzxWWhsfHx/F+SZNmsDDw0PRxto1TN/Dmtdeew1qtVr+CAwMtNmWiIgqz5j/ZRp8AYYA7NixzpWs8WVOj6ioRIwa9b1c8wuAxe8QarxqNQh7/vnnrSbTm36YTt/NnDkTBw8exPbt22FnZ4dHHnkE1mZTv/32WxQUFGDixIk1eTu3bc6cOdDpdPJHZmZmbXeJiKhBsrbZ9vbtkVi0KB7bt0fDUErClLByzDpJ0qNnz98wffoi9O2bLB+PiYnhNCQp1Gpi/rPPPotJkyaV2qZNmzby115eXvDy8kK7du3QsWNHBAYG4pdffoFGo1G8ZunSpRg6dKjFaFSLFi1w8eJFxbGLFy+iRYsW8nnjMT8/P0Wb7t27y23Mkzdv3bqF3NxcxXWsvY/pe1jj6OgIR0dHm+eJiKjqHTjQw6SwqpH56kaBoKA/kZERbOWckR6jR69HYGAWRozoBXf3KNjb20OtVsPBwYHBF1mo1SDM29u70tsx6PWGlSk3b95UHM/IyMCuXbuQkJBg8RqNRoMdO3YgPj5ePpaYmCgHcUFBQWjRogV27NghB13G6shPPvmkfI28vDykpqaiZ8+eAICdO3dCr9cjPDxcbvPCCy+gqKhIzllLTExE+/bt4e7uXqn7JSKiqqPT6f79bMj/KntiSIWMjLYoGREzBmKGr42V8kNDTwAAOnfuzKCLylQvSlSkpKTgt99+w1133QV3d3ekp6fjpZdeQnBwsMUo2Oeffw4/Pz8MHjzY4jrPPPMM7r77brz99tsYMmQIvvnmG/z+++9YsmQJAECSJMTHx+OVV15BSEiIXKLC398fI0aMAAB07NgRgwYNwmOPPYZPPvkERUVFiIuLw9ixY+Hv7w8AeOihh7BgwQLExsZi9uzZSEtLw3vvvYd33323eh8UERHZZCzEqtPp5Fww65ttl8ZQ9f7eexPh4XEVERH+UKv90aaNHu3b3wngTo56UbnViyDM2dkZGzduxLx583D9+nX4+flh0KBBePHFFxXTd3q9HitWrMCkSZNgZ2dncZ2IiAisWrUKL774Iv7zn/8gJCQE3333nVwjDABmzZqF69evY+rUqcjLy8Ndd92FrVu3yjXCAODrr79GXFwc7rvvPqhUKowaNQrvv/++fF6tVmP79u2YNm0aevbsCS8vL8ydO5c1woiIaoBp1fvsbBUyMprA0zMXe/assmhbuc22JdjbFyM09AQiIzuiS5c2Zb+EyIp6WyesMWCdMCKiijHd79HaxtrGMhGmTNuVj8CUKZ8hIOACRo4ciS5dulThHVBD0KDrhBEREVljHAGztbG2Tudi8Zrg4DMYNWoD7r9/E2yvgBTy527dDiMg4AIAQ4kiosriTw8RETU41nK9hFAhN9dDUbNr3z4NkpIi5dGyTp2O4/jxTjBdASlJeowduxq5uZ4IDDwvB2AAa37R7WEQRkREDYJWq8WVK1cAWM/1kiTD3o2AYaRsz55+SE3tBWPAJYQKJ050RL9+e7B3bz8AKqhUAs89dwYPPBAEd3d3uLl1k6/HBHy6XQzCiIio3jPNBQMAtboAw4ZttsgJU6sLsG+fBomJUbBW70sIFdq0yUCvXqno23ciwsM9ERDQDkC7mrsZajQYhBERUb1huvIRMNT7Kioqwl9//WXRNizsIIKDzyA310MeAduw4QEcPdoNpRVc9fDIhVpdgIiIQpjU7SaqcgzCiIioXjAf7SoPtbqgzNEvUz17pso5Yw4ODpXtKlG5MAgjIqI6SavV4tKlS7h16xYA4OrVq4rzOp0LcnM94eGhVSTbm5/7/fee2Lu3P8oKwACB/v33AgCioqKY70XVjkEYERHVOeajXjqdCzIzAwF0QmBgJtLT29qsAabcC9JYWsJWAKbcdsgYzHl4eFTTnRGVYBBGRER1jmnelyGoGoaSQEr/79clqxo3bRoKH58c5OW5m23GXdrol0Dv3r+gY8dTch6YUWX3NSaqCAZhRERUZ5VssG0aTFnWGRdChaVLH0PZU47yKxAVlYi+fZMBAPfffz8CAgIAsPQE1ZxKBWG7du3CgAEDqrovRETUyJiudjx58hr+/NMOLVvehKPjZQAV2WDbMK1YnnZduhxGZOROeeRrzJgx6NChQ+VugOg2VCoIGzRoEAICAvDoo49i4sSJCAwMrOp+ERFRA5eeno6vvvoKgOU+j5GRmfD3bw17+5s2NtjWQ5Lw7/GyAjDjeT2iopLk0S8jTj1SbalUEPbXX3/hyy+/xMqVK7FgwQLce++9iI2NxYgRI7ikl4iIyqTVauUATKdzUeRxCaGSy0lIkh5dux7BkSNdTQIxQzBlb1+IH34YgrICsH799qBNmwyLvK/BgwcjODiYU49UayQhhK3dSsvlwIEDWL58OVavXg0AeOihhxAbG4tu3bqV8UoqS3l3YSciqm8uXLiAJUuWAAC2b4/E/v19bbaVJD1iY5ciL88NAKDTucn7PZbOcuRr5MiR8PLyYt4XVavy/v6+7cT8sLAwtGjRAp6ennj99dfx+eef46OPPoJGo8Enn3yCzp073+5bEBFRA6XTuSA5WVNqGyFUKCpyQGBgFjIzA8sRgAlEROxHeHiKRf0wf39/Bl9UZ1Q6CCsqKsL333+Pzz//HImJiejVqxcWL16McePG4fLly3jxxRfx4IMP4vjx41XZXyIiakDKk3gvSXpkZ/vjiy8eKbNtu3YnMWTID4rgi6NfVFdVKgh76qmnsHr1aggh8PDDD2PhwoUIDQ2Vzzdr1gxvvfUW/P39q6yjRETU8Hh4aK0k3ot/PwxJ+mFhqeWafpQkvUUABnD0i+quSgVhx48fxwcffICRI0fC0dHRahsvLy/s2rXrtjpHRET1k1arxeXLl1FUVGT1fEGBIVBSqwswbNhms5WRSVCrdTh1KgRHj3ZFauqdpbyT9Yr3HP2i+uC2E/Op+jAxn4jqI2tbDtna41HZxgPZ2f4mo16llZ7QY/To9XBzy0NRkYPFyse4uDgGX1Rrqj0x/9SpU/jggw9w4sQJAEDHjh3x1FNPoX379pW9JBERNQDmWw4ZR7ls1ekCIAdQK1dOREngZT0AM456hYYafv8MGDAA7u490aRJE7i5uXH0i+qNSgVhGzZswNixY9GrVy9oNIZVLb/88gtCQ0PxzTffYNSoUVXaSSIiqttMK9+npeUhI8NQaLUkAAMAY/0vWA3EDBt0l1bzyzD6FRiYpRj1CgkJgZ+fXxXdCVHNqVQQNmvWLMyZMwf//e9/FcfnzZuHWbNmMQgjImpETKcfS0a+OtqodC8hKSkSarUOgYGZKChojvPnW6Fly3NlvItAVFSSPPplikXCqb6qVBB24cIFPPLIIxbHJ0yYgDfffPO2O0VERPWHcQTMuNm2MfCyldclhArr1z8IQP/vOQmAQKdOx/89pgzcjMn6pqNnMTExnHqkeq9SQdg999yDvXv3om3btorjP//8M/r161clHSMiovrFes0vQ4BlfZpRpWh3/Hgn9Ou3B3v39vv3nB4REckWRVcnTJiA4ODgqu4+UY2rVBA2fPhwzJ49G6mpqejTpw8AQ07YunXrsGDBAiQkJCjaEhFRw2et5pck6XHnnSn49dc+KD3fCwAkODv/jenTFyE318NixWNMTAx8fHw48kUNRqVKVKhUZe3X9e/FJQnFxcUV7hQZsEQFEdUVxsR7nU6Hq1evKup/Xb58GWlpaQAsV0NGRCTD3z/73+nHsghMmfIZAgIuYMCAAQgJCZHPcNqR6pNqLVGh1+sr3TEiIqpfKlL3KyzsIIKDzyAlJRzJyZp/N+bWo/SaXwAg0K3bYQQEXAAAuLu7c8UjNXi3vYE3ERE1bLbqfhnrdYWFHZTP63QuyMwMRHKyRlGaomQrImOOGOSv/f2zcf/9W+QAjKixKHcQ9v7775f7ok8//XSlOkNERHWXtdWPCQlDcfGiF7p0ScOlSy3M6oKZMgRc99+/Ce3bn0ZBQXNkZrZEYOB5q8FXkyYcI6CGr9w/5e+++2652kmSxCCMiKieM9378erVqwBsrX5UISUlAikpGhg33bZNQnGxPdTqAqjVBaWOfPn4+NzuLRDVeeUOwjIyMqqzH0REVAuysoDTp4GQECAgwHDMPAfMyNrqxxLGel+lEQgMPA8A6NWrF1q2bKk4y22HqLHheC8RUSNjXOm4apUTZs1SQ6+XoFIJLFyow0MP/Y28vDxFe2OeFwBERiYhMTESpY94GSmLsZom3rds2RJdunSpwrsiqn8qHYRlZWUhISEB58+fVyRtAsA777xz2x0jIqKqZxzl0ulcsGhRPIQwjF7p9RJmznTFX399rljxeOBADyQkDEVJ0CXQu3cKfv01HJYjX8bk+5KkfR+fHKu5X8z5IqpkELZjxw4MHz4cbdq0wcmTJxEaGoqzZ89CCIGwsLCq7iMREVUR4x/N1vK7hFAhN9dDDsJ0OhezAAwAJJMAzLTshGGk6957d1oUWrWW+8WcL6JKBmFz5szBc889hwULFsDFxQUbNmyAj48Pxo8fj0GDBlV1H4mIqIpZz+/S4/r1ZtDpXKBWFyA31xPWpx0lk896hIf/gi5d0uRgy7x2GFCy1yPAwqtERpUKwk6cOIHVq1cbLtCkCf7++280b94c//3vf/HAAw/gySefrNJOEhFR5Wm1Wpw9ewsZGU1QWHgNGRmt4eGhxbBhmxXV7QEJ69c/CEnSQ6NJRqdOx1B2kVUVOnT4w2K0a8yYMVCr1QAYdBHZUqkgrFmzZvKQtp+fH9LT09G5c2cAwJUrV6qud0REVGnp6em4ePEi3njjism0ogeAEDlny1qivRAq7N/fF/v3a8rxLnp4eOQCAEaOHAkvLy8GXUTlVKkgrE+fPvj555/RsWNH3H///Xj22Wdx9OhRbNy4Ud7Qm4iIaoa1MhPp6en46quv/s3rikdJkGUY1TIWWpUkwPZKx7JWQApERSXJ049eXl7caoioAioVhL3zzju4du0aAGDBggW4du0a1qxZg5CQEK6MJCKqQcuWAVOnAno9oFIB77xzDTExBfjrr78A4N/SEraDLCFsnCqDJOkRGZmEvn2T5WMODg6VuxhRI1WpIKxNmzby182aNcMnn3xSZR0iIqKyGfO8pk71gV5vLDMBTJ/ujHPnlkCtLoBO54JLl7xLuYoekgQbxVdtvyYiIhnh4SmKBPyYmBhOQRJV0G0VaiksLMSlS5eg1+sVx82rIBMRUdXIygJ+/12HPXtWIjfXE3r9RMV5Y5mJ9PS2Jkn31pLr9Rg+fDMAlNGuRHj4fkRE/GJ19aNx5SMRlV+lgrA//vgDsbGx2L9/v+K4EAKSJKG4uLhKOkdERCVKph7VkKR4REYmWZSZkCQ97O0LzTbSLqnpJUl6dOx4DBERyfKKxuDgMzh2rBO2b7ddYkiS9DYDMIBTkUSVUakg7NFHH0WTJk2wefNm+Pn5QZLK2i+MiIhux2+/AY89BjmHSwgVkpIiERmZhKSkSAhRUqW+qMjRyhSjhHbtTuKPP9rh+PEuOH68s2JasXPn40hMHGj2upLAbdiwzXIA1rFjRwQEBMDd3Z17PRLdhkoFYYcOHUJqaio6dOhQ1f0hIiIz7713DdOnN5O3GDISQgV//2zExy9SVKnPyvKzutH2H3+0R8l0o6EMRXKyBsOGbUZY2EFF3TBj4r2/f7ai+j1gCMK47yPR7atUENapUyfWAyMiqmZarRZHjuRi+vRgiwAMMEwRGgMkY5B04ECPUnK8LK8hhAqbNg1FcPAZhIUdRHDwGYtth8zZ29tXwd0RUbmDsPz8fPnrN954A7NmzcL//vc/dOnSxeIfpKura9X1kIioETJutJ2R0RpChFhpYahqb0qnc7GSC1Y20z0jTQM6W7y9S1txSUTlVe4gzM3NTZH7JYTAfffdp2jDxHwioqph3JXE+h6PhsQw8+lEa5tyW7JcAWkcUSuNcRsi5n8RVZ1yB2G7du2qzn4QETVq1qreA4bNsM1ztQzJ+YZgy3Q60cNDC8MekMpNuY21wIx5XtevN0NyskaRzG8c/TJuPWSKgRdR9Sh3EHb33XfLX58/fx6BgYEWqyKFEMjMzKy63hERNQLmVe+XLAHuv7/kvGmu1vXrzbB+/YOK1wuhwrFjnf4dBTP9/7KhFpi1PK/w8BSruV/ceoio5lQqMT8oKAgXLlyAj4+P4nhubi6CgoI4HUlEVA62qt4//rjA+vV/Kdoac7V0Oher05OGGl+WifjBwWes5nmVJ/eLiKpXRfaqkBlzv8xdu3YNTZs2ve1OERE1dMbE+9df3yMHYEbFxRK++y5N/l6nc0FaWiekpXUCAAwbthmSZNypxDTwMv//soTMzABUBIuuEtWcCo2EzZgxAwAgSRJeeuklODs7y+eKi4uRkpKC7t27V2kHiYgaGq1Wi+zsbLmchDnTRPl9+zRITIxEyd/MAsOHb0J8/CKkpvbAnj0Dyv2+EyZMUPx/2xxzv4hqVoWCsIMHDwIwjIQdPXpU8ReTg4MDunXrhueee65qe0hE1IAYR8AM5STiraxmLEmUNwRgUTCfYty0aSgiI5OwZ8/dKJ0egYFZAICoqCgEBwdX4Z0Q0e2qUBBmXCH56KOP4r333mM9MCKiCsjKAn75xTC9aKucRM+eqQgLOwidzgVJSZGwVWBVOTpmjUBUVJKc9+Xi4lI1N0FEVaZSifnLly+v6n4QETVoJSsgPW1uvg0Aqak90b//3jJqfglYD8AM5SmMpSj69k220oaI6opKBWHXr1/H66+/jh07duDSpUvQ6/WK83/++WeVdI6IqL6ztgLSuPl2WFgqUlPvNHuFCpmZAcjICIK1wqrWjxncf/8WeHtrrW45xK2GiOqeSgVhU6ZMwe7du/Hwww/Dz8/P6kpJIqLGLj09HR9++D22bx8Ivd5XcU4IFYKCMpCa2hPmxVU3bBhtZRRMICgoHRkZba2+lyTp0b79aZtlJ7jVEFHdU6kg7Mcff8SWLVvQt2/fqu4PEVG9p9VqcenSJTz//GkbyfeGoCkwMAvDh2822e9RD0Cyulk3IKFnzwM4e7ZNqcn8ANCrVy+0bNkSgGEEzNvbm6seieqgSgVh7u7u8PDwqOq+EBHVe2WvfjTQaJKhVhcoquGnpXW2Mj1pYAzazLcw0miSER6eohgBa9myJbp06VIt90dEVadSQdjLL7+MuXPnYuXKlaXWnCEiamyMG2+XnlivR3h4ivydWl2AgoLmSE3tZbO9caTLNGizlvsFAE2aVOp/7URUwyr1L/Xtt99Geno6fH190bp1a4uEzwMHDlRJ54iI6ipbG24beXhora5+NO7naBo8HTjQAwkJQ2Et4b5z56MYODBR0b6sLYfc3NwqeDdEVBsqFYSNGDGiirtBRFR/WNtwOzZW2UatLrA5dQgAGRmt4eGhBYB/AzDrJSfMA7Dy4NZDRPVDpYKwefPmVXU/iIjqvNI23O7e/RJat1b+L9V06tDevhBFRY5ISwtFUlKkHJiFhaXCVtHViIhkqwFYVFSURfFVe3t7qNVqbj1EVI9UKAj79ddf0bNnT9jZ2Vk9f/PmTXz//feIiYmpks4REdUVxoT7jIzW0OsnKs4VF0v44IMfERR0DmPGjFGcU6sLkJ7e1mQFZEmdLyFU/+aBGYqsKinzxgBgzJgxXOlI1ICUtueFBY1GA61WK3/v6uqqKMyal5eHcePGVV3vTAwfPhwtW7ZE06ZN4efnh4cffhjZ2dmKNtu2bUOfPn3g4uICb29vjBo1CmfPnlW0+emnnxAWFgZHR0e0bdsWK1assHivDz/8EK1bt0bTpk0RHh6OX3/9VXH+n3/+wbRp0+Dp6YnmzZtj1KhRuHjxoqLN+fPnMWTIEDg7O8PHxwczZ87ErVu3quRZEFHNMybcG3O9TJluuJ2bm6s4Z1glOdQkN8w878v4fck1Jckyb2zChAno0KEDAzCiBqRCQZgQotTvbR2rCgMGDMDatWtx6tQpbNiwAenp6Rg9erR8PiMjAw888ADuvfdeHDp0CNu2bcOVK1cwcuRIRZshQ4ZgwIABOHToEOLj4zFlyhRs27ZNbrNmzRrMmDED8+bNw4EDB9CtWzdER0fj0qVLcpvp06dj06ZNWLduHXbv3o3s7GzF+xQXF2PIkCEoLCzE/v37sXLlSqxYsQJz586tlmdDRDXHmOtlDMQkSVmjKzExUW6r07ng2LHOpaySNFJh9Oj1GD16LUaPXov4+EUICzsonx0zZgw33yZqgCRRgahJpVIhJycHPj4+AAwbwh4+fBht2rQBAFy8eBH+/v4oLi6unt6aSEhIwIgRI3Dz5k3Y29tj/fr1GDduHG7evAmVyvA/vE2bNuGBBx6Q28yePRtbtmxBWlqafJ2xY8ciLy8PW7duBQCEh4fjzjvvxOLFiwEAer0egYGBeOqpp/D8889Dp9PB29sbq1atkoPAkydPomPHjkhOTkafPn3w448/YujQocjOzoavr6FK9ieffILZs2fj8uXL5U6azc/Ph1qthk6n42bpRNWorJWOAHDhwgUsWbJE/l6nc0FmZgAACYGBmRa5W/v2aeTcr9K2GgIMgVx8/CKbCfhTp06Fn59fBe+KiGpLeX9/V2gkrK7Izc3F119/jYiICLk8Rs+ePaFSqbB8+XIUFxdDp9Phyy+/RGRkpNwmOTkZkZGRimtFR0cjOdmwyW1hYSFSU1MVbVQqFSIjI+U2qampKCoqUrTp0KEDWrZsKbdJTk5Gly5d5ADM+D75+fk4duyYzfu6efMm8vPzFR9EVL2WLQNatQLuvdfwedkyw/GsLGDXLsNnwJBuYSo9vS02bBiN9esfxLvvxmP79kjodIZk+X37NEhMjDKbgrT1965AZGRShVdAElH9V+HVkcePH0dOTg4Aw9TjyZMnce3aNQDAlStXqrZ3ZmbPno3Fixfjxo0b6NOnDzZv3iyfCwoKwvbt2xETE4PHH38cxcXF0Gg0+OGHH+Q2OTk5isAIAHx9fZGfn4+///4bV69eRXFxsdU2J0+elK/h4OBgUYfH19dXfi623sd4zpbXXnsNCxYsKOfTIKLbYWul49SpAgcPnsPHH7eCXi9BkgRGjsyAu/teFBUZykoUFDQ3Kyuhwv79fZGcrMFdd+3F3r39YC33q3Pnozh2LBSmeWBRUUno2ze51L6y5ARRw1ThIOy+++5T5H0NHToUACBJEoQQFdrM+/nnn8cbb7xRapsTJ06gQ4cOAICZM2ciNjYW586dw4IFC/DII49g8+bNkCQJOTk5eOyxxzBx4kSMGzcOBQUFmDt3LkaPHo3ExMR6scn4nDlzMGPGDPn7/Px8BAYG1mKPiBqm0lY66vUSPvqopbx/oxASNmxoA+AxlIxoCVibSBBChb17+8Pa1KMkGWp+DRyY+O80JhAYmGUxAjZy5Eh4eXnJ37PkBFHDVaEgLCMjo0rf/Nlnn8WkSZNKbWPMNwMALy8veHl5oV27dujYsSMCAwPxyy+/QKPR4MMPP4RarcbChQvl9l999RUCAwORkpKCPn36oEWLFharGC9evAhXV1c4OTnBzs4OdnZ2Vtu0aNECANCiRQsUFhYiLy9PMRpm3sZ8RaXxmsY21jg6OsLR0bHU50FEt898paMycd5alXugJLCSUFp+l/VzyilHtfqEzVd7eXkx/4uokahQTlirVq3K9WH0//7f/yt1itLb2xsdOnQo9cPWMLxeb1iZdPPmTQDAjRs35IR8I2M9M2NbjUaDHTt2KNokJiZCo9EAMPzF2bNnT0UbvV6PHTt2yG169uwJe3t7RZtTp07h/PnzchuNRoOjR48qVlQmJibC1dUVnTp1svk8iKhmWVvpGBWVZFGC4vboERWVWOaUoxGnHokajwqtjqwoV1dXHDp0SDGaVRkpKSn47bffcNddd8Hd3R3p6el46aWXcPHiRRw7dgyOjo7YuXMnIiMjMX/+fHk68j//+Q9OnjyJEydOwMnJCRkZGQgNDcW0adMwefJk7Ny5E08//TS2bNmC6OhoAIYSFRMnTsSnn36K3r17Y9GiRVi7di1Onjwp53U9+eST+OGHH7BixQq4urriqaeeAgDs378fgKFERffu3eHv74+FCxciJycHDz/8MKZMmYL//e9/5b5vro4kqlrGVZCurhexefMn8nGdzkWxIbYxsb70ES8jY8BmfduhKVOWIiDgQrn6N2HCBJaiIGoAyvv7u1LbFpVXVcV3zs7O2LhxI+bNm4fr16/Dz88PgwYNwosvvihP3917771YtWoVFi5ciIULF8LZ2RkajQZbt26Fk5MTAEPy/pYtWzB9+nS89957CAgIwNKlS+UADDDU47l8+TLmzp2LnJwcdO/eHVu3blUk2r/77rtQqVQYNWoUbt68iejoaHz00UfyeTs7O2zevBlPPvkkNBoNmjVrhokTJ+K///1vlTwPIqo45X6PPhg6tIdci8t0Q+wDB3ogMTESlgGYscxESU6YsUaYg8NNrF//oMV7RkQkWw3ABg4ciObNm8vf29vbsxI+USNUrSNh5nXEqGI4EkZ0+4yrIHv3LlkFaWAYpSoqcoSHhxZqdQF0OhcsWhRvs7iqYXVjZxgDsMhIw8pGa6+zVftrzJgx8mIjImqY6sRIGBFRbSptFSSgwtKlU2A6ouXufrWU6vZ6OQADDCshk5IiERqaJueWGbcnMq+ib8rb27sqb5GI6jEGYUTUYJmugrS+SXZJQLVp01CMHbvaympJw6hWmzbpSE8PURwXQoXcXA+o1QUICzuI4OAzitwyUyNHjoS/vz+nHIlIVi8r5hMRVYRaXYCIiNJXJwqhwurV40y2GQIAgeDgM4iNXYo//7SWMF+ycbfxfYKCzlkdAWMARkTmqjUImzBhAnOZiKjGGbccys4u+V9ceHhKGaUnTAuwltQE+/PPNsjLc7c6TRkRkVyu7YZiYmIYgBGRhUoFYca6W9aOnz9/Xv7+448/VlR+JiKqLlqtFhcuXMDbb+ehVSuBe+8Fevf2wYEDPQBYrwlmLC9h+Np6OQrjyJh5ACdJeoSHp5Srbz4+PpW6JyJq2CqUE5afn48pU6Zg06ZNcHV1xeOPP4558+bJRVEvX76MoKAgFBcXV0tniYisMSbgl6xSNO4FKWHTpqEIDj5jNW8LAHJzPWBvX4hly6ZYHe2SJD0CA7PKTLw3327IiNsOEZEtFQrCXnrpJRw+fBhffvkl8vLy8Morr+DAgQPYuHGjXOW5GiteEBFZZUzAz831tAikhFAhMzMAubl/y6UojMGTTucC4wiYRpOM/fs1MEwQGGqCmQZbZSXeM+eLiCqqQkHYd999h5UrV+Kee+4BAIwYMQJDhgzBsGHDkJCQAAD1YqNsImqYrO0FKUl6rF8/GqalKMLCDuLAgR7yyJZp0KXR7EOnTsdQVORgEWyZBnCmmPNFRJVRoZywy5cvK/aG9PLyQlJSEgoKCnD//ffjxo0bVd5BIqLyspb3ZRicV5aiyMryMwnAAONomBAqJCdr4OJyzeYqR2vc3Nyq9kaIqFGo0EhYy5YtceLECQQFBcnHXFxcsH37dgwcOBD/93//V+UdJCIypdVq5enH7GwVMjKaQK3Ok8+bThtev97MYjshw/RkS5tFWU1rf5UXN90mosqoUBA2cOBALF++HPfff7/iePPmzbFt2zZERUVVaeeIiEwZE/ABKKYTJckdw4ZZ7gWp07lYnZ60XbzVeN6QtD9gwAA0bdoUTk5OaNKkidURLybeE1FlVSgIW7BgAbKzs62ec3FxQWJiIg4cOFAlHSMiMmccAdPpXBTTicZpRuMqSGOb3FxPREYmISkpUs79EkKFb74Zh44dT+DEiU5QlqYQiIxMkq8REhICPz+/GrxDImpMKhSEubu7w93d3eZ5FxcX3H333bfdKSIic1qtFleuXAEAZGYGWl0FaZxGVI6S6XHXXXuxd28/mOaGnTzZEf367cHPP/f791p6REUZNuQmIqoJFd478tatW3j33XexevVq/PHHHwCAdu3a4aGHHsIzzzwDe3v7Ku8kETVu5tOQCQlDLdoYpxGzsvz+PV8ScJkGYEZCqNCmTQZ69Uq1WXaCiKg6VSgI+/vvvxEVFYXk5GRERkaif//+AIATJ05g9uzZSEhIwPbt29G0adNq6SwRNWzmSfdHj/4DN7fLsLe/CJ3OBZmZgdi0qSTAMjKWnkhPb2v1vLE8hWVuWK7NshNERNWtQkHY66+/jszMTBw8eBBdu3ZVnDt8+DCGDx+O119/HfPnz6/KPhJRI2A76T4QXbsewZEjg22uaBw1aj3c3PKwdOkU2Eq2N80Ns1bxnoioplUoCPvmm2/wzjvvWARgANCtWze89dZbeOGFFxiEEVGFlZZ0f/hwN9ja21GS9NDp3LBhg6Egq6WSAq2hoWkVmnpk6Qkiqk4VCsLOnTuH3r172zzfp08fxQbeRETmsrKA06cBL6+r8PL6B3l5ecjKAo4dK0RWlh/On29lZcTL1k4cerPVj+YExo1bjfbtzwCwXfHe2r6PLD1BRNWtQkGYq6srLl26hMDAQKvnc3Jy4OLiUiUdI6KGw5jrtWqVE2bNUkOvlyBJagwbthcATEa+usIQcAmYl46wFoiNHr0ezZr9bXOaEpDg4FBUZv+8vLxYioKIalyFgrABAwbgf//7HzZs2GD1/Ouvv44BAwZUSceIqP4yjnaFhABOToZcL53OBYsWxUOIki2CDMEXUDKNKJl8LtnPsW3b0zh9uh2UgZgegAR7+5sWSfdGpoVXiYjqmgoFYfPmzUN4eDj69OmDGTNmoEOHDhBC4MSJE3j33Xdx/Phx/PLLL9XVVyKqw6yNdqlUAnPn/g0AyM31tFrbyzYJ0dFboderkJQUCeUImSEAW7/+QUiS/t/E/a4Wm3GXN/meuV9EVBsqFIR16tQJiYmJiI2NxdixYyFJxr9oBTp06IDt27ejc+fO1dJRIqq7jCsbzUe79HoJCxb4Iz7eBR4eWqtlIpQjYVCcCww8j2XLpphttC0U7YVQ4ciRroiNXYqiIgfY2xeiqMjBIvl+wIABCAkJsXgf5n4RUW2pcLHWPn364NixYzh06JCiWGv37t2rum9EVE9cvnwZgO3RrtxcDwQFncOwYZsVleyHDdsMwDQnTDmKVVTkWK4kfSFUKCpyQFDQOZt99Pb2Zt4XEdUpFQ7C8vPz0bx5c3Tv3l0ReOn1ely7dg2urq5V2T8iquO0Wi3WrFkDAMjO9oN5Er1pXlZY2EEEB5+xKBNhPGY+irVjxz0W17OmPLlf1jbfJiKqTaUlZFj49ttv0atXL/zzzz8W5/7++2/ceeed2LRpU5V1jojqPtP6XiW5W0bKDbEBQ5mIoKBzFsc8PHJRVOQIe/tC5OZ6YseOe7B3b3+L65krb+4X876IqK6p0EjYxx9/jFmzZsHZ2dniXLNmzTB79mwsXrwYw4YNq7IOElHdY7q9kHFTbWtTkYAEf/9sAIYgLTfXEx4eWouAybRCfsnIl7URMGNSvmHD7YiIZISHp1jkfrm7uwMAmjRpAjc3N+Z9EVGdVKEgLC0tDR999JHN8/3798eLL754250iorrDNOA6deo6jh79BxkZ2wEYAi97+5soKmpttVSEcZpQuQ1RSQV7wLJCvrJMhTk9pkxZajXx3igkJIS5X0RUL1QoCLt69Spu3bpl83xRURGuXr16250iorrB1n6OQCcYgiRlPS/TUhHWE+9L6oMFB5+BWl1gYwTNGoGoqCQEBFyohjslIqp5FQrCWrdujd9//x0dOnSwev73339Hq1atqqRjRFT7bO3nqEwnLSm+aloqwjhSlZHR2uqKyczMAOTm/l1qsdUSekRFJaFv3+Qy+8zcLyKqLyoUhI0cORIvvPACoqKi4OvrqziXk5ODF198ERMmTKjSDhJR7SvvaJW1UhH29jdhbRui9euNG27r0anTCZw40dHme4wevR6hoScUx5j7RUT1XYWCsOeffx7ff/89QkJCMGHCBLRv3x4AcPLkSXz99dcIDAzE888/Xy0dJaKapdVq5aR7a4VWrbFWKqKoyBHWE+yNx1Q4frwT+vXbA1/fi9iwYbRFXllgYJbFezH3i4jquwoFYS4uLti3bx/mzJmDNWvWyPlfbm5umDBhAl599VVu4E3UAJjmghlpNMnYv18Dy8o2pW8TVL4ATsLevf0wffoiqwVdrSXgc9qRiOq7ChdrVavV+Oijj/Dhhx/iypUrEELA29tb3sLI1L59+9CrVy84OjpWSWeJqGYYc8EAa+UjzEno338XevY8qAiWQkNDkZaWBrW6QBFY2S6+asgTs1XQ1dSECRM47UhE9V6FgzAjSZLg7e1dapvBgwfj0KFDaNOmTWXfhohqke3yEUo+PpctgqW0tDT567Cwg7h6VW2l+Kp1anWB1eBr5MiR8Pf3ZwBGRA1CpYOw8hDC2l/NRFQXlb8Aqzk93NzykJHR2mohVsAQzO3d2w+lBWC2cr9MMQAjooakWoMwIqp9psGVNcbcKtMcMEN1e9sFWA1/XxlWNnbrdgTLlk2xWog1IiIC+/fvR26uJ6zvkmY9n2zAgAEICQmx6CcDMCJqSBiEETVg5gn2trYOioiIkL82r25vrQCr6YbbxgAMsCzE+uOPR20Gc4BAv3570KZNhkXul7u7O1c+ElGDxyCMqAGzlWBvPmK1f/9+AEBWlp9FdXtrBVgBlFqINSUlHF5eWpvBXEWKrxIRNVTVGoRZWzFJRFWnrKnGvLw8AJYJ9kKokJAwFA4ONxEYmAm1ugAHDvRAQsJQmE8bWivAamSr/MT+/RpIEsoVzFnTpAn/PiSiho+J+UT1VHmnGgFbCfYqrF//ICRJj8jIJCQlRcJ63pYe9vbWAz21uuDf+mF9La5t/s+/tGDOnI+PT5ltiIjqu2oNwgoKbP+lS0S3p7xTjUDpBVOFUCEpKbKUVZAqLF36GIYP3yRfc8CAAdi1axcAIDw8pdQirkbWqukbDR48GIGBgQCYgE9EjUeFgrB77723XO127txZqc4QUcVZm2o0TY4HShuxgvwaQA/rI2EAICmuaVojUK0uQESEtWtLcuBnvvpx5MiR8PLyAsCgi4garwoFYT/99BNatWqFIUOGwN7evrr6REQVYG2qUQgVcnM9FNOSnTodszFiBcWUpK0RMdNrurm5YcyYMVizZg0Aw2hYcrLGopSFrRwwLy8vrn4kokavQkHYG2+8geXLl2PdunUYP348Jk+ejNDQ0OrqGxGVg/WpRoHsbH85/8o4XWkIwIzThMoaXWFhBxEamobMzACsXz8a5sGa+XSiWq02+brA6p6PAQEXqumuiYjqvwoFYTNnzsTMmTORnJyMzz//HH379kX79u0xefJkPPTQQ3B1da2ufhKRDWp1ASIjk5CYGIWSHCwJSUmRCA01bB1kvvWQJOkxduxqODgUWZSdALL+nV4sGTWztpG2+Qba5dnzkYiISlQqMV+j0UCj0eC9997DunXr8OGHH+K5555DdnY2AzGiWuDvfwHmWwIZpw8Byep0pYNDkcVKRfME/7Cw3xAUlIHAwCyLoMrT0xMxMTFYu3atfMzWno/mzAM4IqLG6LZWRx44cAC7d+/GiRMnEBoayjwxohpgrA1m3N8RsD4laTp9WNo5I2sJ/gcO9ET//nstAitjEFXeUhIxMTFwc3OTX8tEfCKiSgRh2dnZWLFiBVasWIH8/HxMmDABKSkp6NSpU3X0j6hRMy/GmpeXpxh5MrKVk2UMnszPRUYm/bufI+Q2ZSX49+rVC+7u7vD19ZWDKE9PT8TFxZW5NyWDLiIiSxUKwu6//37s2rULAwcOxJtvvokhQ4awsjVRFTMGXrYCLltKy8kyPZed7S+vgjRNyrc1mnb9ejPodC74/fff5eNxcXGKQIyIiCpOEhUoa69SqeDn5wcfH59StyQ6cOBAlXSuscvPz4darYZOp2OuXSNhXgW/LKVVybfVftGieItAa9SoDQgMzER6elvFiJnh/w6WBWCnTp3KEhNERDaU9/d3hYax5s2bd9sdIyLbSpvWMw+4yqqSb2rgwIHYvn27zSlH4/ZFw4ZtRmzsUvzxRzvs2dMfxtWR1grAEhHR7WEQRlSHGQOv7Gw/xRSieWFV8yDJvCK9Mbgra/uihIShio23zc+bF4AlIqLKq5KErt27d+P69evQaDRwd3eviksSNXqmI12m+zDa2uvRVpBkupLSPIHfkuXG20al7f1IREQVV+GK+deuXcPLL78MABBCYPDgwdi+fTsAw3L1HTt2oHPnzlXfU6JGxLxchLUaYOZ7PZoGSRs3brR5bWOSvq3K+NZYK9ZKRES3p+z/+5pYs2aNYpui9evXY8+ePdi7dy+uXLmCXr16YcGCBVXeSaLGxlrulilJ0iMqKgmSpJe/Nw2SdDoXZGS0hk7nYvX1anUBQkNPICoqCYZRNlv0GD16LeLjF9nMNyMiosqp0EhYRkYGunbtKn//ww8/YPTo0ejbty8A4MUXX8SDDz5YtT0kqsfM63yZs1VDy9Z+kNb2ejQvSVFawv7IkSPRpEkTufSFtUr7RsbXhoaeqNS9ExFR6SoUhN26dQuOjo7y98nJyYiPj5e/9/f3V1TxJmrMyltuwlhzS6vV2szdMibj+/tnW+z1OG5cPzRt2hQbN260WvXeNGHfy8sLfn5+GDNmDNasWWMj2NNj9Oj1VrcqMuK2Q0REt69CQVhwcDD27NmDNm3a4Pz58/jjjz/Qv39/+XxWVhYLNxL9q7QRMPN21gK28m6IHRAQIH9dVtX7K1euwMHBAWq1GoDtSvvWRr+MKy5ZAZ+IqGpUKAibNm0a4uLisHfvXvzyyy/QaDSK7Yp27tyJHj16VHkniRo6WwFbeTfENiprD0ljwn5MTIx8vrzBnr+/P4MvIqIqVKEg7LHHHoOdnR02bdqE/v37W9QNy87OxuTJk6u0g0QNha3q9uWdwrf1+oyMDNy6dQuAtRIUemg0yRbXMrY3shXscfSLiKj6VGjbIqpZ3Laobqlokv2FCxewZMkSAKUny1tjGnABQEpKOJKTNRV6fUpKOPbv18CwCFqP4cNLXnP//ffjhx9+KPOeTfeIJCKi8qmWbYuIGquKJtmbKitZ3pyySKsehtWLJSsYS3u9MXizt79pEoABgKEavvE1TZs2RVxcXKVWbhIRUdWoUBBWVFSEF154ARs3boSHhweeeOIJxfTjxYsX4e/vj+Li4irvKFFtMI5+lXfK0FpQU1ayvCnLIq3Wa4WZv97ayJfla1XIzAyAWm1IumeARURUuyoUhL366qv44osv8NxzzyEvLw8zZsxASkoKPv30U7kNZzepoSjv6Jcp02DN+HVpyfLmeV5lFWk1fz1gPnJmVKE6zEREVAsq9H/qr7/+GkuXLsVzzz2HV155Bb///jt27tyJRx99VA6+JMl64cfbNXz4cLRs2RJNmzaFn58fHn74YWRnZyvarF27Ft27d4ezszNatWqFN9980+I6P/30E8LCwuDo6Ii2bdtixYoVFm0+/PBDtG7dGk2bNkV4eDh+/fVXxfl//vkH06ZNg6enJ5o3b45Ro0bh4sWLijbnz5/HkCFD4OzsDB8fH8ycOdMiGZrqtvKWmDC1ceNGLFmyBEuWLJFXIhqT5c2r26ent8WiRfFYuXIiFi2Kx4EDPeSArTSm1fEtR85Kf11gYFaF74mIiKpHhYKwv/76S7FtUdu2bfHTTz9h//79ePjhh6t1GnLAgAFYu3YtTp06hQ0bNiA9PR2jR4+Wz//4448YP348nnjiCaSlpeGjjz7Cu+++qxjJyMjIwJAhQzBgwAAcOnQI8fHxmDJlCrZt2ya3WbNmDWbMmIF58+bhwIED6NatG6Kjo3Hp0iW5zfTp07Fp0yasW7cOu3fvRnZ2NkaOHCmfLy4uxpAhQ1BYWIj9+/dj5cqVWLFiBebOnVttz4dqVlnbApkLCzuIbdtOYdmyPxEfvwjBwWes5okBUARsgF7xdUTEPsUWQpmZgaUEYHqb2xoREVHtq9DqyDZt2uCzzz7DfffdpzienZ2NAQMGoFWrVtixY0eN5IQlJCRgxIgRuHnzJuzt7fHQQw+hqKgI69atk9t88MEHWLhwIc6fPw9JkjB79mxs2bIFaWlpcpuxY8ciLy8PW7duBQCEh4fjzjvvlIM3vV6PwMBAPPXUU3j++eeh0+ng7e2NVatWyUHgyZMn0bFjRyQnJ6NPnz748ccfMXToUGRnZ8PX1xcA8Mknn2D27Nm4fPlyuauNc3Vk7TJd3WiqoisdjaZOnQqdToc1a9YgI6M1Vq6caNFm4sQVCAo6B53OBd7eGoSEGEaWT58WuHw5uZQcMHOG1ZC26n/FxMSgY8eO5XsQRERUIeX9/V2hkbB7770Xq1atsjju7++PnTt3IiMjo+I9rYTc3Fx8/fXXiIiIgL29PQDg5s2baNq0qaKdk5MTsrKycO7cOQCGbZYiIyMVbaKjo5GcbKijVFhYiNTUVEUblUqFyMhIuU1qaiqKiooUbTp06ICWLVvKbZKTk9GlSxc5ADO+T35+Po4dO2bzvm7evIn8/HzFB9UttlY6lmdEzBiAAbAx7SiQne0PwDCFWVi4HceObcOxY9tQWLhdsTfku+/GY//+vjD/JyxJhtGy6dMNo2VqdQGCgs5ZjIC5ublV/OaJiKhKVSgIe+mllxSVtk3dcccd2L17Nz7//PMq6Zg1s2fPRrNmzeDp6Ynz58/j+++/l89FR0dj48aN2LFjB/R6Pf744w+8/fbbAAwjGgCQk5OjCIwAwNfXF/n5+fj7779x5coVFBcXW22Tk5MjX8PBwcHil5h5G2vXMJ6z5bXXXoNarZY/AgMDy/toqIK0Wi0uXLhg80Or1Vq8RqdzwbFjnW2udCxLbm6u/LVaXYDIyCQYNuU2kpCUFFlqQGcMAm390x01aj0GDkwqc9qRez8SEdW+Cq2ObNWqFVq1amXzvL+/PyZOtJxiseX555/HG2+8UWqbEydOoEOHDgCAmTNnIjY2FufOncOCBQvwyCOPYPPmzZAkCY899hjS09MxdOhQFBUVwdXVFc888wzmz58Plap+rBSbM2cOZsyYIX+fn5/PQKwalHfV45gxY+SvlSsQBUzrdpmuVARsV7Y3X5jh739BcR3AdukKo9JWT5om3vfq1QseHh5o3rw5mjRpovijgfW/iIjqhkoVa123bh1Wr16NP/74AwDQrl07PPTQQ4pE+fJ49tlnMWnSpFLbtGnTRv7ay8sLXl5eaNeuHTp27IjAwEB5D0tJkvDGG2/gf//7H3JycuDt7Y0dO3YortGiRQuLVYwXL16Eq6srnJycYGdnBzs7O6ttWrRoIV+jsLAQeXl5il9s5m3MV1Qar2lsY42joyMcHR1LfR50+8q76rGoqAiAtdpdEoyBmCTp8dRTaYqpQlv5Yjdu3FBcv6x9Hq0Fc9ZeY3ydaeJ9WFgY/Pz8yv1MiIio5lUoCNPr9Rg3bhzWrVuHdu3aySNUx44dw5gxY/Dggw9i9erV5S5T4e3tDW9v74r3+t++AIY8KlN2dna44447AACrV6+GRqOR30Oj0Vhs1ZKYmAiNRgPAMELQs2dP7NixAyNGjJDfZ8eOHYiLiwMA9OzZE/b29tixYwdGjRoFADh16hTOnz8vX0ej0eDVV1/FpUuX4OPjI7+Pq6urYsNzqtuaNDH887A++iQhOnorOnU6jgcf1GD79rIr46ekpFi8h0aTLCfXmwZStoI5a3tDRkQkIzw8RTF6xulGIqK6r0JB2HvvvYekpCQkJCRg6NChinMJCQl49NFH8d577yE+Pr4q+4iUlBT89ttvuOuuu+Du7o709HS89NJLCA4OlgOfK1euYP369bjnnnvwzz//YPny5XIJCaMnnngCixcvxqxZszB58mTs3LkTa9euxZYtW+Q2M2bMwMSJE9GrVy/07t0bixYtwvXr1/Hoo48CANRqNWJjYzFjxgx4eHjA1dUVTz31FDQaDfr06QMAGDhwIDp16oSHH34YCxcuRE5ODl588UVMmzaNI131iJubG+Li4nD27C18+aWAXl/yx4WdncCrr/ZA69Z3yuVLKlIZ3zzI0mj2yYGUTueChISSvC/zYC4s7KDNVY8jR46Ev78/pxuJiOqBCiVLLV++HG+++aZFAAYYiqkuXLiwWhLznZ2dsXHjRtx3331o3749YmNj0bVrV+zevVsR1KxcuRK9evVC3759cezYMfz000/o3bu3fD4oKAhbtmxBYmIiunXrhrfffhtLly5FdHS03GbMmDF46623MHfuXHTv3h2HDh3C1q1bFYn27777LoYOHYpRo0ahf//+aNGihVyYEzCMxm3evBl2dnbQaDSYMGECHnnkEfz3v/+t8mdD1cvT0xM9e/piyRIJdnaGY3Z2wKefSujZ0xeenp7ytLRhs23zFY/KfDHA+ohZcrJGPp+SEg7zf5rmyf+2Vj0yACMiqj8qVCfMyckJp06dQsuWLa2eP3fuHDp06IC///67yjrYmLFOWPU4ceIE1q5dW2a7qKgouLu7ywn1OTlNkJnpiDZt9GjfvhkAw7RfYWEhlixZAp3OBe++Ox3mSfvx8YsUwVJpNcLs7QuxdOljME/YB/SYPt1wnZEjR8LLy8vi9Uy4JyKqG8r7+7tC05FOTk7Iy8uzGYTl5+db1OoiqmvKu31UYmKi1eOZmYDJLLdctiU31xPlWe2Yne0Hayss//wzCHv39rO4BgBERJQUauVoFxFRw1Ch6UiNRoOPP/7Y5vkPP/xQztEiqi8qugWROeNCFOsFWPWwty9ZjanTuSApKRLKQEvA2/sS9u7tD2v/JCVJj/BwQ1J/TEwMAzAiogaiQiNhL7zwAu655x5otVo899xz6NChA4QQOHHiBN5++218//332LVrV3X1lQiAoc5XaWUmypqWM+6yAFR+CyJTarUacXFxyM7ORnr6ZrN6YiosWzZFvq6tlZaXLvnC2giYeekJ42pbIiKq/yoUhEVERGDNmjWYOnUqNmzYoDjn7u6O1atXo2/fvlXaQSJT5S20GhcXZzMQU6vVAMouKVFeV65ckXO0wsIOwscnB8uWTbF63ZLkfctAzJIesbFLERBwAQMGDEDnzp05CkZE1IBUuFjr//3f/yE6Ohrbtm3D6dOnARiKtQ4cOBDOzs5V3kEiU+UttJqdnW2zrU6nA1CxkhKlMV0ZCwBFRY42r+vhkYuePVORmtoL5lOSloGYBBeXawAMf+QwACMialgqFITt3LkTcXFx+OWXX/B///d/inM6nQ6dO3fGJ598gn79+lVpJ4kqyjwwsqasivWAsmo9AKvbEZX3utnZ/vjii0fkIqv/noH1AMxwzhgQGgvHEhFRw1Gh/7MvWrQIjz32mNXllmq1Go8//jjeeecdBmFUL5hXnzfPv7LcL9KQ41VW7pi160ZGJiEpKdIkMDMEYv3778aePfdYvY5pQGi+YTwREdV/FQrCDh8+XOqG2wMHDsRbb711250iskar1eLKlStVfl1jpTzjZ53OBZmZgYqq9YaRKunfdmXnjplXtbeekK+Cj8+lcu0FSUREDU+FgrCLFy8qVpZZXKxJE1y+fPm2O0VkrrwJ+eUVExODGzc88N//+qBkKlCFhIShkCRYCZiUhFAhMzMAubl/25yeVKsLFMetTVEGBmZxL0giokaqQkHYHXfcgbS0NLRt29bq+SNHjsDPz69KOkZkqqqDezc3N+Tk+EJvXtYLKpRvDwk9NmwYXWZpC9OcMltTn6XtBRkTEwMfHx8m5RMRNUAVCsLuv/9+vPTSSxg0aJBFZfy///4b8+bNs7qvJNHt0Gq1WLNmTZVfNyQEUKlgJRCzZBjFAoy5XIAEIUqmJxMShsLB4SYCAzOt5pQZg674+EXIzfXA+PHhCAgIwa1bQbC3t5fLZpjiNkRERA1bhYKwF198ERs3bkS7du0QFxeH9u3bAwBOnjyJDz/8EMXFxXjhhReqpaPUeJW3LEVFBQQAS5YAjz8OFBcDxuDKfDuhUaPWIzAwCwCQm+uB69ebYf36B82upvr3mB5RUUkIDU2zWoMsPn4RgoLOITQ0mqPGRESNXIWCMF9fX+zfvx9PPvkk5syZA+Pe35IkITo6Gh9++CF8fX2rpaNE1SE2FoiOBlJStNi3byXS09tajF6Fhp6Q26vVBdDpXKwm0xuokJgYhZwc3yqpQUZERA1XhYsPtWrVCj/88AOuXr2KM2fOQAiBkJAQuLu7V0f/iEplmnNlLbixdd5YsNXBwQEBAZ6wsytEWlpJflZmZgAACYGBmYrrjRkzBmq1Gmp1NhYs8LcRiEk4erSr5VGzGmRERNS4VboCpLu7O+68886q7AtRhZS172Np501zzOLi4hTXtTYaZnydWq2Gn58fpk69AJ1uETIzA7B+/WiUtQ2ReckJrnYkIiKW4aZ6ydq+jwkJQ3HXXd1w772GRSP//a+PInneVm0v05yz8u4n6eDg8G8JihPQ6ZKQmBgF61XvDUaNWo/Q0BMYOXIk/P39mXBPREQWf74T1Qu2ip/OmtUKvXv7YOnSZtDrlUGRMSerote19jpPT09MmDABANC3bzKiohIhScZllsoaF8Z6YADg5eXFAIyIiABwJIzqKWv7Mxrp9RI+/dQZhtWOtveFNLpy5Yq8N2NZ+0nm5eXJx52dnRETE4Nbt25h8OC/ERpqKD+Rne0vb1HEaUgiIrKFQRjVebYCF40mGfv3a2BtQFcIFSIi9iE5WWM1GDJlutm3+b6PKpXAggUXUVxseN3atWtt9nPatAlwdnYGAGRnX8bZs03QuvUt+PvfCeBO1v0iIiIFSYjy1Qenmpefnw+1Wg2dTmd10/TGRKvVyrlbq1Y5YdYsNfR6CZKkR1hYKg4c6GkxehUfvwgA5Er0hq9tr6Q0ZVhV6YGnnhoMf389lixZUmYfp06dytpfRERU7t/fHAmjesE4gpSVBcycabrptgoHDvREZGSSzSlAtbqgzJWU5oz7Pvr7l6OcPhERUSUwCKNqYzp6ZU1lpufee68kADMSQgV//2x5SyDz/RfLs+KxrHpjREREVY1BGFULrVaLxYsXl9kuLi6u3IFYVhbwzjvWzujlwMtaAFXaiseyRsny8vLg5uameC0DNiIiqgoMwqhalHe/x4rsC3n6tPXNtiMikm0GQzExMcjKAr74wvqKx7JGydauXYuYmBj5dRWd1iQiIrKFdcKo3ggJAVRmP7GSpEd4eAp0OhdkZLSGTueiOO/m5obQUDcMG7ZZruNlmjNWnrpgt27dAmB7WtP8PYmIiMqDI2FUpYx5YFeuXKnyawcEAEuWAI8/DhQXlwRTpW0z5ODggMLCQnlPSPOcsbLqgpkqa1qTiIioIhiEUZUpbx7Y7YiNBaKjgTNnAE9PHQoLw9G7t3J7oi1bhmHu3HC0bt0Enp6euHDhAoCSFY86nQvS0joBAAIDMxV1wazVE7O3twdQdsDGQqxERFQRDMKoylQkv+t2BAQYPgB37NplmSdWXCwhK6sp/P1v4MKFC4pRuQMHeiAhYRhK9nnUIyIiGbGxS5GX5wZAQmBgpuJ6arUacXFxKCwsxB135GP2bDWKiyXY2Qm88UY+HnpoHAuxEhFRhTEIo1plbdrSOKJUnvIWxjwx00DMzk5g9+5lOHRIOUVozOlSbrStwv79fbF/fwQMez5aT7g3BljPPguMGWMYiWvbVkJAgBsAtwrdMxEREcAgjGqZ6ZZBFRUXF4eAAE9FnpidHfDGGzpcu1a+UhUlJBiDM2t1xEyVjMQRERFVHldHUr11+fJlAIY8sbNngV27DJ8feuhvq+2NOV3lYb5CkoiIqKoxCKPbptVqLXKvasKaNWug1WoBGEam7rnH+giVsXwFAEWpitIw4Z6IiKobpyPpttTEisjSlLUYwFpx1fj4RcjMDEBGRpC88bdh1SNgzAn7738vIjaWCfdERFR9GITRbampFZG25OXlwc/Pz+o5W8VVR43agMDATISGnkD//nvl2mEAkJvrgUmT7sI997StsXsgIqLGidORVCNsVbS/3deuXbtWnpI0Z6u46vr1D2LRonjs26f5dw/Ikn0ng4LOoX37ZhXuIxERUUVxJIyq3e3st2j6WkCPqKgk9O2brGhTWFgoV+oHSspeWCuuaiSEComJUQAk7gFJRES1gkEYVauyNsjW6Vz+HY3SWpSDMH8tYAycoAjE8vLysHbtWov3VqsLFNXwLZWvJAUREVF1YBBG1aq0/RZL2/MRADIzA60ETxKSkiIRGpomB0zGDbatMe4ZmZkZgPXrR8PWDDz3gCQioprGnDCqNjqdC65fdwagLAkhSXrY2xdaHSEz5n0dONADGzaMsnpdIVRISQkv9X1Nc8jU6gKEhp7A8OGm5SmERZ9YkoKIiGoSR8KoWihzuQQMgVjJiFdRkaPNETIApUwhGuzfr0F4eIrFyFVp+WevvBKE+Ph0ZGTYIS3NCe+91wJ6vQSVSmDhQu4BSURENYtBGN0Wa6NGlrlcEiRJYNSotQgMzAJgmGo0T5o3jkZZn4Y0VzJ9ePXqVavva57r5eXlhS5d/DBggOEKM2ZwD0giIqo9DMLotnh6eiIuLk5RL2zfPge8+67lKFezZjcUeWCAXg7EjKNWxvOWBEw33jadPty1axeA0vPPuAckERHVNQzC6LaZTt9lZQF6PaBSGT4bWcsDA1QQQo/Ro0tGyBYtircyCqZHt25HcORIV0XAZh5YWStJYRqsERER1SUMwqjKLFsGTJ1qCL4kqSQQs7MD3n77Bu64YxSWLjUPsAwjZGp1AbZvj7Q6DTl69HqEhp7A9Ola7NqVKRdXNWdeksJWsEZERFQXMAijKpGVVRKAAYAQhkBs7VpAowECApojK6u5xQiZnZ2Ah0cudDoX7N+vsbiuJOnlUbKzZ39GUFDJOWs1xowlKYxbEZkGYFz1SEREdQmDMKoSp08rgyvA8L23d0neVUAAsGQJ8PjjQHGxYYTsjTd0uHatABkZrWGtYopGk2x1JKu0VZDGLYhMxcTEcNUjERHVKawTRlUiJMQw/WjKzg5oa7YPdmwscPYssGuX4fNDD/0NoCSfS0mPTp2OKY7odC5IS+uEhATbNcascXNzq/hNERERVSMGYVQljKNcdnaG7+3sgE8/tb76MCAAuOce5TljPpeymKoKy5ZNwYEDPQAYRr8WLYrH+vUPwvxH17gK8nY2CiciIqpJnI6kKhMbC0RHG2tvla/8g2meVljYQfj45GDZsikWo1w+PjmlFnCVJD2ys/3xxRePVGqjcCIioprGIIyqlHntLa1WK9cQy85WISOjCYKCbsHf3zDi5eDggLi4OGRnZ2Pjxo02K+lnZrYsNQCLjExCUlKkzUKtREREdQ2DMKo2Wq0WixcvBlB6In1MTAxycpogI6M17O1vWq31FRh43urxUaPWIzAwq8xCrVwZSUREdQ2DMKo2hYWF0OlckJkZiISEoTDmcZmPUj3//Ol/A7SOkCQ9una1LMwaEHDBag2w0NATAIDBgwfjyy8F9PqSqvp2dgJPPTUYrVs34cpIIiKqcxiEUZU7evQqTp3SY/9+YaMCvu3NuoVQ4ciRroiNXYqiIgdFra/SaoCFhflgyRJJUf7i008l9OzpWwN3TEREVHEMwqhKvffeNUyfrv43qFLu92jKuJ2QrWnEoiIHBAWds3idsQZYTEyMXHbCwcEBnp6elVoYQEREVFsYhFGV0Gq1OHv2FmbM8IEQxsDLdgBmup1QZfZ7dHNzg5+fn8VxbspNRET1BYMwum3GBPyMjNbQ6yeW0lLg/vs3o33703IAxv0eiYiosWIQRuWWlWXYnigkRDnaZCxBYax6b6uUBCDB21trEWCVlutFRETUULFiPpXLsmVAq1bAvfcaPi9bZtnGetX7EqVNM6rVBQgKOscAjIiIGg2OhFGZsrKAqVNLNujW6w2bcEdHW+ZfmY5qZWf7ywVUOc1IRESkxCCMynT6dEkAZlRcbFiFaC0J3riCMSjoHEJD06xOM7Zt2xZnzpwp8711Ohfk5nrCw8NyGpOIiKg+YxBGZQoJAVQqZSBmZ2coA1EWY0BmrjwBWGlV9omIiOo75oRRqbRaLezsLmDhwjzY2RlyvFQqgTlzdLCzuwCtVlvua+l0LsjIaA2dzkXxta225kVcN20aKrfnNkRERFTfcSSMbDp69CrefnuzPBV4770aJCZGQq9X4ZVXXJCSkoK+fZMxZsyYMq9lOqplSNgXAGyPcNkq4tq370Tccw+4DREREdV7DMLIqmXLgKlT3aDXT4Qk6REZmYSkpEiUDJ6qkJgYBQCIiRE2rwNYjmoZirgaCrkKoUJCQsk+kkbWyl3Y2QHh4Z5g/EVERA1BvZuOvHnzJrp37w5JknDo0CHFuSNHjqBfv35o2rQpAgMDsXDhQovXr1u3Dh06dEDTpk3RpUsX/PDDD4rzQgjMnTsXfn5+cHJyQmRkJE6fPq1ok5ubi/Hjx8PV1RVubm6IjY3FtWvXKtyXuqpkNWRJoGRc5agkISkpEjdueCAuLg5Tp06VR8VMpxutjWopqZCSEq44Yl7uws5O4NNPWQ2fiIgajnoXhM2aNQv+/v4Wx/Pz8zFw4EC0atUKqampePPNNzF//nwsWbJEbrN//36MGzcOsbGxOHjwIEaMGIERI0YgLS1NbrNw4UK8//77+OSTT5CSkoJmzZohOjoa//zzj9xm/PjxOHbsGBITE7F582bs2bMHU6dOrVBf6jJrqyENQZTeoq0QKpw92wSenp5wcHCAWq2Gnd1UvPfedKxcORGLFsUjO9vPpHaYdcnJGov8sLCwg4iPX4SJE1cgJeUSYmNv986IiIjqEFGP/PDDD6JDhw7i2LFjAoA4ePCgfO6jjz4S7u7u4ubNm/Kx2bNni/bt28vfx8TEiCFDhiiuGR4eLh5//HEhhBB6vV60aNFCvPnmm/L5vLw84ejoKFavXi2EEOL48eMCgPjtt9/kNj/++KOQJEn89ddf5e5Leeh0OgFA6HS6Cr3udmVmCqFSCQGUfEhSsejX7ycB6C2O//57jjhyJFdMnLhCTJnyqZCkYos2UVHbTI4rr2H8mDhxuZg+/W0xceIKMX3622L+/PnyR3Z2do0+AyIiosoq7+/vejMSdvHiRTz22GP48ssv4ezsbHE+OTkZ/fv3V6yai46OxqlTp3D16lW5TWRkpOJ10dHRSE5OBgBkZGQgJydH0UatViM8PFxuk5ycDDc3N/Tq1UtuExkZCZVKhZSUlHL3xZqbN28iPz9f8VEbAgKAJUsgr4Y05oS1aXMW/frtkUe1jEn1P/3kiO7d3bBy5UQsXfqY1YR6f/9seVRrypTPLEbGJEmP7Gx/LFoUL4+gHTjQQz7P1ZBERNTQ1IvEfCEEJk2ahCeeeAK9evXC2bNnLdrk5OQgKChIcczX11c+5+7ujpycHPmYaZucnBy5nenrbLXx8fFRnG/SpAk8PDwUbcrqizWvvfYaFixYYP0h1LDYWKB790v44IMfLSrfR0Ymwd8/W96CaNasYXL+mDHh3pRxuyLTmmHmm3YbE/9NS1Js2TIMc+eGo3XrJlwNSUREDU6tjoQ9//zzkCSp1I+TJ0/igw8+QEFBAebMmVOb3a12c+bMgU6nkz8yMzNrtT/+/obgyTw4SkqKlIOq3FxPkwDMkq3tikzzvb799iDGjGlrMYJWXCyhoMCXARgRETVItToS9uyzz2LSpEmltmnTpg127tyJ5ORkODo6Ks716tUL48ePx8qVK9GiRQtcvHhRcd74fYsWLeTP1tqYnjce8/PzU7Tp3r273ObSpUuKa9y6dQu5ubllvo/pe1jj6OhocY+1ycHBwWa9rtxcD6jVBVZLSZgaNWo9QkNPyN+PHDkSXl5eivfw9PREVlblq/ITERHVR7U6Eubt7Y0OHTqU+uHg4ID3338fhw8fxqFDh3Do0CG5rMSaNWvw6quvAgA0Gg327NmDoqIi+fqJiYlo3769PP2n0WiwY8cORR8SExOh0WgAAEFBQWjRooWiTX5+PlJSUuQ2Go0GeXl5SE1Nldvs3LkTer0e4eHh5e5LfeDp6YkpU+62mr9lnIo0LyVh3i4wMEtxzMvLC35+fvKHcZSrJA/N0M7ODixJQUREDVq9SMxv2bIlQkND5Y927doBAIKDgxHw72/phx56CA4ODoiNjcWxY8ewZs0avPfee5gxY4Z8nWeeeQZbt27F22+/jZMnT2L+/Pn4/fffERcXBwCQJAnx8fF45ZVXkJCQgKNHj+KRRx6Bv78/RowYAQDo2LEjBg0ahMceewy//vor9u3bh7i4OIwdO1YunVGevtQFWVnArl2Gz7YEBzsqgixr04vGqcWIiH0wlrGwNQ1ZmthY4OxZQ5/OngVLUhARUYNWLxLzy0OtVmP79u2YNm0aevbsCS8vL8ydO1dRvysiIgKrVq3Ciy++iP/85z8ICQnBd999h9DQULnNrFmzcP36dUydOhV5eXm46667sHXrVjRt2lRu8/XXXyMuLg733XcfVCoVRo0ahffff79Cfalthor4huk/lcowCmUr6AkOPoNRozYAEAgMzLIaWKnVBRg4MAnh4SnIzfWQc8YqKiCAo19ERNQ4SEKI0vecoVqTn58PtVoNnU4HV1fXKrtuVhbQqpVl/tXZs4CTkxaFhYXy8SVLirFggb+8itHaPo8VERcXx0R7IiJq0Mr7+7vBjIRR+VmriF9cDKSm6nDo0GL5mE7ngkWL4hUrIzdtstznsTxGjhwJf39/BmBERET/qhc5YVS1QkIAyayqhCQBAQH/KI6VtjKyory8vBiAERERmWAQRgAsgzIAcvkJZbuSlZEVwYr3RERESpyObIROnzbs1mhKrwfOnlX+OBjLT5hWtjeueNTpXJCb6wkPD22pU5NjxoyBt7c3R8GIiIjMMAhrhEJCrBdGbd36FtLSlG3Dwg4iOPiMYsXjgQM9LAIzY7K+aTFWYyFWIiIissTpyEbIVmFUf3/LgqslI1658giYMQADSpL1dToXAMpirAzAiIiIbONIWCMVGwtERwNnzhi2BgoIAC5cULaxNuLl7n611G2MiIiIqHw4EtYIGSvlA8A99yiLo+p0LsjIaI2sLD+rI1729jerLFmfiIioMeNIWCNTWqX8tWtL6oJZ25RbCBWKihxsJusTERFR+TEIa0SyskoCMMDw+fHHDdOSADBjRnN51aQhABMASmpXGEe8goLOWSTrExERUcUwCGtEbFXKP3PGULLC/JwhABPy565dj8gBl1pdwOCLiIjoNjAnrBExlqYwZWcHeHpehSSdscj1Uo6ESThypKu8CtIWFmUlIiIqH46ENSLG0hSPP24YAbOzA95++xo2bnwfADBsWA+TZHzlVCRguQrStCYYwLpgREREFcEgrJEZMUKL7t1v4ezZJmjd+hYcHC5h40bDubCwg/DxycGyZVMskvIBy1WQ3JCbiIio8hiENSJarRaLFy+Wvzevjg8ARUWOVgMwQLkKMioqigEYERHRbWAQ1ohcvny5zDbGTbtNAzFJ0iM2dikCAkqqubq4lJ4bRkRERKVjYn4jUlRUVGYb46bdxiR9Yx0w0wAMAJo0YfxORER0O/ibtJHQarW4evVqudpa27TbnI+PT1V3kYiIqFFhENYImOeClYetOmAjR45kQj4REVEV4HRkI1BYWFhl12IARkREVDUYhFG5xcTEMAAjIiKqIgzCGjmdzgUZGa0VlfCtHQOYB0ZERFSVmBPWiB04UFIh37gKEoDi2Lx52Zg61Y7V8ImIiKoYg7BGSqdzMdmiyLAlUULCUEgSFMdefvkOxMZKYPxFRERUtTgd2Ujl5npaqYyvsjhWXCzhzJma6xcREVFjwSCskTJWxlfSWxyzswPatq25fhERETUWDMIaAQcHB4tj5pXxAQHDj4MESRIADAHYp58CAQE11lUiIqJGQxJCiNruBFmXn58PtVoNnU4HV1fX27qWVqu1Wi/s4MEmGDrUC0JI8jGVCvjmG0CjYQBGRERUUeX9/c3E/EbC1srGkycB8zBcrwe8vRmAERERVSdORzZyISGGkS9TzAMjIiKqfgzCGrmAAGDJEkPgBTAPjIiIqKZwOpIQGwtERwNnzhhGwBiAERERVT8GYQTAEHgx+CIiIqo5nI4kIiIiqgUMwoiIiIhqAYMwIiIiolrAIIyIiIioFjAIIyIiIqoFDMKIiIiIagGDMCIiIqJawCCMiIiIqBYwCCMiIiKqBQzCiIiIiGoBgzAiIiKiWsC9I+swIQQAID8/v5Z7QkREROVl/L1t/D1uC4OwOqygoAAAEBgYWMs9ISIioooqKCiAWq22eV4SZYVpVGv0ej2ys7Ph4uICSZIqfZ38/HwEBgYiMzMTrq6uVdjD+oPPgM8A4DMA+AwAPgOAzwCo3mcghEBBQQH8/f2hUtnO/OJIWB2mUqkQEBBQZddzdXVttP/YjPgM+AwAPgOAzwDgMwD4DIDqewaljYAZMTGfiIiIqBYwCCMiIiKqBQzCGgFHR0fMmzcPjo6Otd2VWsNnwGcA8BkAfAYAnwHAZwDUjWfAxHwiIiKiWsCRMCIiIqJawCCMiIiIqBYwCCMiIiKqBQzCiIiIiGoBg7B66uOPP0bXrl3lInMajQY//vijfP6ff/7BtGnT4OnpiebNm2PUqFG4ePGi4hrnz5/HkCFD4OzsDB8fH8ycORO3bt2q6VupMq+//jokSUJ8fLx8rKE/h/nz50OSJMVHhw4d5PMN/f6N/vrrL0yYMAGenp5wcnJCly5d8Pvvv8vnhRCYO3cu/Pz84OTkhMjISJw+fVpxjdzcXIwfPx6urq5wc3NDbGwsrl27VtO3UimtW7e2+DmQJAnTpk0D0Dh+DoqLi/HSSy8hKCgITk5OCA4Oxssvv6zYu6+h/xwAhm1y4uPj0apVKzg5OSEiIgK//fabfL6hPYM9e/Zg2LBh8Pf3hyRJ+O677xTnq+p+jxw5gn79+qFp06YIDAzEwoULq+YGBNVLCQkJYsuWLeKPP/4Qp06dEv/5z3+Evb29SEtLE0II8cQTT4jAwECxY8cO8fvvv4s+ffqIiIgI+fW3bt0SoaGhIjIyUhw8eFD88MMPwsvLS8yZM6e2bum2/Prrr6J169aia9eu4plnnpGPN/TnMG/ePNG5c2dx4cIF+ePy5cvy+YZ+/0IIkZubK1q1aiUmTZokUlJSxJ9//im2bdsmzpw5I7d5/fXXhVqtFt999504fPiwGD58uAgKChJ///233GbQoEGiW7du4pdffhF79+4Vbdu2FePGjauNW6qwS5cuKX4GEhMTBQCxa9cuIUTj+Dl49dVXhaenp9i8ebPIyMgQ69atE82bNxfvvfee3Kah/xwIIURMTIzo1KmT2L17tzh9+rSYN2+ecHV1FVlZWUKIhvcMfvjhB/HCCy+IjRs3CgDi22+/VZyvivvV6XTC19dXjB8/XqSlpYnVq1cLJycn8emnn952/xmENSDu7u5i6dKlIi8vT9jb24t169bJ506cOCEAiOTkZCGE4QdXpVKJnJwcuc3HH38sXF1dxc2bN2u877ejoKBAhISEiMTERHH33XfLQVhjeA7z5s0T3bp1s3quMdy/EELMnj1b3HXXXTbP6/V60aJFC/Hmm2/Kx/Ly8oSjo6NYvXq1EEKI48ePCwDit99+k9v8+OOPQpIk8ddff1Vf56vJM888I4KDg4Ver280PwdDhgwRkydPVhwbOXKkGD9+vBCicfwc3LhxQ9jZ2YnNmzcrjoeFhYkXXnihwT8D8yCsqu73o48+Eu7u7op/C7Nnzxbt27e/7T5zOrIBKC4uxjfffIPr169Do9EgNTUVRUVFiIyMlNt06NABLVu2RHJyMgAgOTkZXbp0ga+vr9wmOjoa+fn5OHbsWI3fw+2YNm0ahgwZorhfAI3mOZw+fRr+/v5o06YNxo8fj/PnzwNoPPefkJCAXr164cEHH4SPjw969OiBzz77TD6fkZGBnJwcxXNQq9UIDw9XPAc3Nzf06tVLbhMZGQmVSoWUlJSau5kqUFhYiK+++gqTJ0+GJEmN5ucgIiICO3bswB9//AEAOHz4MH7++WcMHjwYQOP4Obh16xaKi4vRtGlTxXEnJyf8/PPPjeIZmKqq+01OTkb//v3h4OAgt4mOjsapU6dw9erV2+ojN/Cux44ePQqNRoN//vkHzZs3x7fffotOnTrh0KFDcHBwgJubm6K9r68vcnJyAAA5OTmK/+EazxvP1RfffPMNDhw4oMh5MMrJyWnwzyE8PBwrVqxA+/btceHCBSxYsAD9+vVDWlpao7h/APjzzz/x8ccfY8aMGfjPf/6D3377DU8//TQcHBwwceJE+T6s3afpc/Dx8VGcb9KkCTw8POrNczD67rvvkJeXh0mTJgFoHP8OAOD5559Hfn4+OnToADs7OxQXF+PVV1/F+PHjAaBR/By4uLhAo9Hg5ZdfRseOHeHr64vVq1cjOTkZbdu2bRTPwFRV3W9OTg6CgoIsrmE85+7uXuk+Mgirx9q3b49Dhw5Bp9Nh/fr1mDhxInbv3l3b3aoxmZmZeOaZZ5CYmGjxl19jYfwrHwC6du2K8PBwtGrVCmvXroWTk1Mt9qzm6PV69OrVC//73/8AAD169EBaWho++eQTTJw4sZZ7V/OWLVuGwYMHw9/fv7a7UqPWrl2Lr7/+GqtWrULnzp1x6NAhxMfHw9/fv1H9HHz55ZeYPHky7rjjDtjZ2SEsLAzjxo1DampqbXeNrOB0ZD3m4OCAtm3bomfPnnjttdfQrVs3vPfee2jRogUKCwuRl5enaH/x4kW0aNECANCiRQuL1VHG741t6rrU1FRcunQJYWFhaNKkCZo0aYLdu3fj/fffR5MmTeDr69sonoMpNzc3tGvXDmfOnGk0Pwd+fn7o1KmT4ljHjh3laVnjfVi7T9PncOnSJcX5W7duITc3t948BwA4d+4ckpKSMGXKFPlYY/k5mDlzJp5//nmMHTsWXbp0wcMPP4zp06fjtddeA9B4fg6Cg4Oxe/duXLt2DZmZmfj1119RVFSENm3aNJpnYFRV91ud/z4YhDUger0eN2/eRM+ePWFvb48dO3bI506dOoXz589Do9EAADQaDY4ePar44UtMTISrq6vFL7S66r777sPRo0dx6NAh+aNXr14YP368/HVjeA6mrl27hvT0dPj5+TWan4O+ffvi1KlTimN//PEHWrVqBQAICgpCixYtFM8hPz8fKSkpiueQl5enGC3YuXMn9Ho9wsPDa+Auqsby5cvh4+ODIUOGyMcay8/BjRs3oFIpf6XZ2dlBr9cDaFw/BwDQrFkz+Pn54erVq9i2bRseeOCBRvcMqup+NRoN9uzZg6KiIrlNYmIi2rdvf1tTkQBYoqK+ev7558Xu3btFRkaGOHLkiHj++eeFJEli+/btQgjDkvSWLVuKnTt3it9//11oNBqh0Wjk1xuXpA8cOFAcOnRIbN26VXh7e9erJenWmK6OFKLhP4dnn31W/PTTTyIjI0Ps27dPREZGCi8vL3Hp0iUhRMO/fyEM5UmaNGkiXn31VXH69Gnx9ddfC2dnZ/HVV1/JbV5//XXh5uYmvv/+e3HkyBHxwAMPWF2m3qNHD5GSkiJ+/vlnERISUmeX5VtTXFwsWrZsKWbPnm1xrjH8HEycOFHccccdcomKjRs3Ci8vLzFr1iy5TWP4Odi6dav48ccfxZ9//im2b98uunXrJsLDw0VhYaEQouE9g4KCAnHw4EFx8OBBAUC888474uDBg+LcuXNCiKq537y8POHr6ysefvhhkZaWJr755hvh7OzMEhWN2eTJk0WrVq2Eg4OD8Pb2Fvfdd58cgAkhxN9//y3+3//7f8Ld3V04OzuL//u//xMXLlxQXOPs2bNi8ODBwsnJSXh5eYlnn31WFBUV1fStVCnzIKyhP4cxY8YIPz8/4eDgIO644w4xZswYRX2shn7/Rps2bRKhoaHC0dFRdOjQQSxZskRxXq/Xi5deekn4+voKR0dHcd9994lTp04p2mi1WjFu3DjRvHlz4erqKh599FFRUFBQk7dxW7Zt2yYAWNyXEI3j5yA/P18888wzomXLlqJp06aiTZs24oUXXlCUFWgMPwdr1qwRbdq0EQ4ODqJFixZi2rRpIi8vTz7f0J7Brl27BACLj4kTJwohqu5+Dx8+LO666y7h6Ogo7rjjDvH6669XSf8lIUzKCRMRERFRjWBOGBEREVEtYBBGREREVAsYhBERERHVAgZhRERERLWAQRgRERFRLWAQRkRERFQLGIQRERER1QIGYURERES1gEEYEVW7nJwcPPXUU2jTpg0cHR0RGBiIYcOGKfZ0279/P+6//364u7ujadOm6NKlC9555x0UFxfLbc6ePYvY2FgEBQXByckJwcHBmDdvHgoLCxXv99lnn6Fbt25o3rw53Nzc0KNHD3kjZwCYP38+JEnCoEGDLPr65ptvQpIk3HPPPWXeV+vWrSFJks2PSZMmVfxh1XH33HMP4uPja7sbRA1Ck9ruABE1bGfPnkXfvn3h5uaGN998E126dEFRURG2bduGadOm4eTJk/j2228RExODRx99FLt27YKbmxuSkpIwa9YsJCcnY+3atZAkCSdPnoRer8enn36Ktm3bIi0tDY899hiuX7+Ot956CwDw+eefIz4+Hu+//z7uvvtu3Lx5E0eOHEFaWpqiX35+fti1axeysrIQEBAgH//888/RsmXLct3bb7/9JgeJ+/fvx6hRo3Dq1Cm4uroCAJycnKriEdaIoqIi2Nvb19j7FRYWwsHBocbej6hOqpLNj4iIbBg8eLC44447xLVr1yzOXb16VVy7dk14enqKkSNHWpxPSEgQAMQ333xj8/oLFy4UQUFB8vcPPPCAmDRpUql9mjdvnujWrZsYOnSoeOWVV+Tj+/btE15eXuLJJ58Ud999dznuroRxD7urV6/Kx7777jvRo0cP4ejoKIKCgsT8+fMV+zECEJ988okYMmSIcHJyEh06dBD79+8Xp0+fFnfffbdwdnYWGo1GsR+ose+ffPKJCAgIEE5OTuLBBx9U7A8ohBCfffaZ6NChg3B0dBTt27cXH374oXwuIyNDfq79+/cXjo6OYvny5eLKlSti7Nixwt/fXzg5OYnQ0FCxatUq+XUTJ0602KMvIyNDLF++XKjVasX7f/vtt8L0V4yx35999plo3bq1kCRJCGH4GYiNjRVeXl7CxcVFDBgwQBw6dKhCz56ovuJ0JBFVm9zcXGzduhXTpk1Ds2bNLM67ublh+/bt0Gq1eO655yzODxs2DO3atcPq1attvodOp4OHh4f8fYsWLfDLL7/g3Llz/7+9ew2J6nnjAP51zRCvv4zNa2qpa3l7sVa6hummqVSUmYqoKVlaiexGFnQx0bwQZakvTBRLo8KSkqi8kGxl4i2sNKTFvFCSWgYVpuV9/i/C8/udzMp/yVY8H1hwZp6dmXP2hQ8zc3a/O7+oqCgUFRVx5XPnziEsLOyXrNDU1NQgIiICcrkcT58+RV5eHoqKipCWlsaLS0lJQUREBJqbm7Fs2TKEhoZi165dOHToEJqamsAYQ1xcHO89HR0dKCkpwc2bN1FZWYnHjx8jNjaWa7906RISExORlpYGpVKJ9PR0HD16FOfPn+f1c/DgQcjlciiVSvj6+mJ4eBjOzs4oKytDa2srYmJisG3bNjx48AAAkJ2dDYlEgujoaPT19aGvrw+LFy/+4XvS0dGBa9euobS0FM3NzQCAoKAg9Pf3o6KiAg8fPoRYLIaXlxfevn07m9tNyJ9J1VkgIeTv1djYyACw0tLSGWOOHz8+bQXpvzZt2sSWL1/+1bb29namp6fH8vPzubre3l7m6urKADCRSMQiIyPZlStX2MTEBBcztSozOjrKFi1axKqrq9ng4CDT1dVlLS0tTC6X//RKmJeXF0tPT+fFXLhwgRkbG3NlACwhIYEr19fXMwDs7NmzXF1xcTHT1NTkzV1dXZ29fPmSq6uoqGACgYD19fUxxhizsrLirWAxxlhKSgqTSCSMsX9XwrKysr57XRs2bGDx8fFc2cPDg8nlcl7Mj66EaWhosP7+fq6upqaG6enpseHhYd57raysWF5e3nfnRsifjs6EEULmDGNsTmIBoKenB35+fggKCkJ0dDRXb2xsjPr6erS2tuL+/fuoq6tDZGQkCgoKUFlZCYHg3w0ADQ0NhIeHo7CwEF1dXRCJRHBycprVPGbS0tKC2tpa3srXxMQEhoeH8fHjR2hpaQEAbzxDQ0MAgKOjI69ueHgYAwMD3Fkzc3NzmJqacjESiQSTk5Noa2uDrq4uOjs7sWPHDt59GR8fh76+Pm+OK1as4JUnJiaQnp6OkpIS9PT0YHR0FCMjI9xcf5aFhQWEQiFXbmlpweDgIBYuXMiL+/TpEzo7O3/JmIT8zigJI4TMGRsbG+5A/UxEIhEAQKlUws3NbVq7UqmEnZ0dr663txdSqRRubm7Iz8//ar8ODg5wcHBAbGwsdu/eDXd3d1RXV0MqlfLioqKi4OLigtbWVkRFRc32Emc0ODiI5ORkBAQETGvT1NTk/v7vYXg1NbUZ6yYnJ394XODzE6IuLi68NnV1dV75yy3ikydPIjs7G1lZWXB0dIS2tjb27t077enTLwkEgmlJ9NjY2LS4L8cbHByEsbEx7t27Ny32n3/++eaYhPwNKAkjhMwZAwMD+Pr6IicnBzKZbNo/4ffv38PHxwcGBgY4derUtCTsxo0baG9vR0pKClfX09MDqVQKZ2dnFBYW8la2ZjKVxA0NDU1rs7e3h729PZ48eYLQ0ND/5zK/SiwWo62tDdbW1r+szynd3d3o7e2FiYkJAKChoQECgQC2trYwNDSEiYkJurq6EBYWNqt+a2trsXnzZoSHhwP4nPg9e/aMlwTPnz+f97UhACAUCvHhwwcMDQ1xn/HUma9vEYvFePXqFebNmwdLS8tZzZWQvwElYYSQOZWTk4PVq1dj1apVOHbsGJycnDA+Po6qqirk5uZCqVQiLy8PISEhiImJQVxcHPT09KBQKHDgwAEEBgYiODgYwOcEzNPTExYWFsjIyMCbN2+4cYyMjAAAe/bsgYmJCdauXQszMzP09fUhNTUVQqEQEonkq3O8c+cOxsbGfunqS2JiIjZu3Ahzc3MEBgZCIBCgpaUFra2tSE1N/am+NTU1ERkZiYyMDAwMDEAmkyE4OJi7B8nJyZDJZNDX14efnx9GRkbQ1NSEd+/eYd++fTP2a2Njg6tXr6Kurg4LFizA6dOn8fr1a14SZmlpicbGRjx//hw6OjowMDCAi4sLtLS0cPjwYchkMjQ2NvIeeJiJt7c3JBIJ/P39ceLECYhEIvT29qKsrAxbtmyZtl1KyN+Gno4khMyppUuX4tGjR5BKpYiPj4eDgwPWrVsHhUKB3NxcAEBgYCDu3r2L7u5uuLu7w9bWFpmZmThy5AguX77MbclVVVWho6MDCoUCZmZmMDY25l5TvL290dDQgKCgIIhEImzduhWamppQKBTTzh5N0dbW/uXbX76+vrh16xZu376NlStXwtXVFZmZmbCwsPjpvq2trREQEID169fDx8cHTk5OOHPmDNe+c+dOFBQUoLCwEI6OjvDw8EBRURGWLFnyzX4TEhIgFovh6+sLT09PGBkZwd/fnxezf/9+qKurw87ODkKhEN3d3TAwMMDFixdRXl4OR0dHFBcXIykp6bvXoaamhvLycqxZswbbt2+HSCRCSEgIXrx4wZ2PI+RvpsZmexqWEEKIyiQlJeH69es/tN1HCPm90UoYIYQQQogKUBJGCCHfoKOjM+OrpqZG1dMjhPzBaDuSEEK+oaOjY8Y2U1PTP+r3IQkhvxdKwgghhBBCVIC2IwkhhBBCVICSMEIIIYQQFaAkjBBCCCFEBSgJI4QQQghRAUrCCCGEEEJUgJIwQgghhBAVoCSMEEIIIUQFKAkjhBBCCFGB/wH9UcF9FZ+yuQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACeW0lEQVR4nO2deXwTZf7HP2lpa4E2pRe0FGgpCAKiUhEKKyJWQAGXBaWKrCDl0AUVUUB+KIjHIoeA98klioKCLqIoVPHiWgURcQEFW6S2XMGmhSI9Mr8/4oQknckcmeOZ5Pt+vXxJkunkmcnM83zme9o4juNAEARBEAQRBkSYPQCCIAiCIAijIOFDEARBEETYQMKHIAiCIIiwgYQPQRAEQRBhAwkfgiAIgiDCBhI+BEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNpDwIQiCIAgibCDhQxAEwSDLly+HzWZDcXGx2UMhiJCChA9BhCnffvstJk6ciI4dO6JRo0Zo2bIlhg0bhp9//rnetr1794bNZoPNZkNERATi4+PRrl07/POf/8TmzZsVfe+HH36Ia665BqmpqWjYsCFat26NYcOG4ZNPPtHq0Orx73//Gx988EG997dt24ZHH30U5eXlun23P48++qjnXNpsNjRs2BAdOnTAww8/jIqKCk2+Y9WqVVi8eLEm+yKIUIOED0GEKXPnzsXatWtx3XXX4ZlnnsG4cePw1VdfoUuXLti3b1+97TMyMrBy5Uq88cYbmD9/Pm666SZs27YNffv2RX5+PmpqaiS/c8GCBbjppptgs9kwffp0LFq0CEOHDsUvv/yCd955R4/DBBBY+MyePdtQ4cPz0ksvYeXKlVi4cCHat2+PJ598Ev3794cW7RNJ+BCEOA3MHgBBEOYwefJkrFq1CtHR0Z738vPzcemll+Kpp57Cm2++6bO93W7HiBEjfN576qmncO+99+LFF19EZmYm5s6dK/p9tbW1ePzxx3H99ddj06ZN9T4/ceJEkEfEDlVVVWjYsGHAbW6++WYkJycDAO666y4MHToU69atw44dO5Cbm2vEMAkiLCGLD0GEKT169PARPQDQtm1bdOzYEfv375e1j8jISDz77LPo0KEDnn/+eTidTtFtT506hYqKCvTs2VPw89TUVJ/Xf/75Jx599FFcfPHFuOiii5CWloYhQ4bg8OHDnm0WLFiAHj16ICkpCbGxscjJycF7773nsx+bzYazZ89ixYoVHvfSqFGj8Oijj2LKlCkAgKysLM9n3jE1b775JnJychAbG4vExETceuutOHr0qM/+e/fujU6dOmHXrl3o1asXGjZsiP/7v/+Tdf686dOnDwCgqKgo4HYvvvgiOnbsiJiYGKSnp2PChAk+FqvevXvjo48+wpEjRzzHlJmZqXg8BBGqkMWHIAgPHMfh+PHj6Nixo+y/iYyMxG233YZHHnkE33zzDQYMGCC4XWpqKmJjY/Hhhx/innvuQWJioug+6+rqMHDgQHz22We49dZbcd9996GyshKbN2/Gvn37kJ2dDQB45plncNNNN+H2229HdXU13nnnHdxyyy3YsGGDZxwrV67EmDFjcNVVV2HcuHEAgOzsbDRq1Ag///wz3n77bSxatMhjfUlJSQEAPPnkk3jkkUcwbNgwjBkzBidPnsRzzz2HXr164fvvv0dCQoJnvA6HAzfccANuvfVWjBgxAk2bNpV9/nh4QZeUlCS6zaOPPorZs2cjLy8Pd999Nw4ePIiXXnoJ3377LbZu3YqoqCjMmDEDTqcTJSUlWLRoEQCgcePGisdDECELRxAE8RcrV67kAHBLlizxef+aa67hOnbsKPp377//PgeAe+aZZwLuf+bMmRwArlGjRtwNN9zAPfnkk9yuXbvqbbd06VIOALdw4cJ6n7lcLs+/q6qqfD6rrq7mOnXqxPXp08fn/UaNGnEjR46st6/58+dzALiioiKf94uLi7nIyEjuySef9Hn/xx9/5Bo0aODz/jXXXMMB4F5++WXR4/Zm1qxZHADu4MGD3MmTJ7mioiLulVde4WJiYrimTZtyZ8+e5TiO45YtW+YzthMnTnDR0dFc3759ubq6Os/+nn/+eQ4At3TpUs97AwYM4Fq1aiVrPAQRbpCriyAIAMCBAwcwYcIE5ObmYuTIkYr+lrcoVFZWBtxu9uzZWLVqFa644gp8+umnmDFjBnJyctClSxcf99ratWuRnJyMe+65p94+bDab59+xsbGef//xxx9wOp24+uqrsXv3bkXj92fdunVwuVwYNmwYTp065fmvWbNmaNu2LbZs2eKzfUxMDO68805F39GuXTukpKQgKysL48ePR5s2bfDRRx+JxgYVFhaiuroakyZNQkTEhal77NixiI+Px0cffaT8QAkiDCFXF0EQOHbsGAYMGAC73Y733nsPkZGRiv7+zJkzAIC4uDjJbW+77TbcdtttqKiowM6dO7F8+XKsWrUKgwYNwr59+3DRRRfh8OHDaNeuHRo0CDxFbdiwAU888QT27NmD8+fPe973Fkdq+OWXX8BxHNq2bSv4eVRUlM/r5s2b14uXkmLt2rWIj49HVFQUMjIyPO47MY4cOQLALZi8iY6ORuvWrT2fEwQRGBI+BBHmOJ1O3HDDDSgvL8fXX3+N9PR0xfvg09/btGkj+2/i4+Nx/fXX4/rrr0dUVBRWrFiBnTt34pprrpH1919//TVuuukm9OrVCy+++CLS0tIQFRWFZcuWYdWqVYqPwRuXywWbzYaNGzcKikD/mBlvy5NcevXq5YkrIgjCOEj4EEQY8+eff2LQoEH4+eefUVhYiA4dOijeR11dHVatWoWGDRvib3/7m6pxXHnllVixYgXKysoAuIOPd+7ciZqamnrWFZ61a9fioosuwqeffoqYmBjP+8uWLau3rZgFSOz97OxscByHrKwsXHzxxUoPRxdatWoFADh48CBat27teb+6uhpFRUXIy8vzvBesxYsgQhmK8SGIMKWurg75+fnYvn073n33XVW1Y+rq6nDvvfdi//79uPfeexEfHy+6bVVVFbZv3y742caNGwFccOMMHToUp06dwvPPP19vW+6vAn+RkZGw2Wyoq6vzfFZcXCxYqLBRo0aCRQobNWoEAPU+GzJkCCIjIzF79ux6BQU5joPD4RA+SB3Jy8tDdHQ0nn32WZ8xLVmyBE6n0yebrlGjRgFLCxBEOEMWH4IIUx544AGsX78egwYNwunTp+sVLPQvVuh0Oj3bVFVV4dChQ1i3bh0OHz6MW2+9FY8//njA76uqqkKPHj3QvXt39O/fHy1atEB5eTk++OADfP311xg8eDCuuOIKAMAdd9yBN954A5MnT8Z///tfXH311Th79iwKCwvxr3/9C3//+98xYMAALFy4EP3798fw4cNx4sQJvPDCC2jTpg327t3r8905OTkoLCzEwoULkZ6ejqysLHTr1g05OTkAgBkzZuDWW29FVFQUBg0ahOzsbDzxxBOYPn06iouLMXjwYMTFxaGoqAjvv/8+xo0bhwcffDCo86+UlJQUTJ8+HbNnz0b//v1x00034eDBg3jxxRfRtWtXn98rJycHq1evxuTJk9G1a1c0btwYgwYNMnS8BMEsZqaUEQRhHnwatth/gbZt3Lgx17ZtW27EiBHcpk2bZH1fTU0N99prr3GDBw/mWrVqxcXExHANGzbkrrjiCm7+/Pnc+fPnfbavqqriZsyYwWVlZXFRUVFcs2bNuJtvvpk7fPiwZ5slS5Zwbdu25WJiYrj27dtzy5Yt86SLe3PgwAGuV69eXGxsLAfAJ7X98ccf55o3b85FRETUS21fu3Yt97e//Y1r1KgR16hRI659+/bchAkTuIMHD/qcm0Cp/v7w4zt58mTA7fzT2Xmef/55rn379lxUVBTXtGlT7u677+b++OMPn23OnDnDDR8+nEtISOAAUGo7QXhh4zgNGsMQBEEQBEFYAIrxIQiCIAgibCDhQxAEQRBE2EDChyAIgiCIsIGED0EQBEEQYQMJH4IgCIIgwgYSPgRBEARBhA1UwNAPl8uF0tJSxMXFUdl3giAIgrAIHMehsrIS6enpiIgQt+uQ8PGjtLQULVq0MHsYBEEQBEGo4OjRo8jIyBD9nISPH3FxcQDcJy5Q3yGCIAiCINihoqICLVq08KzjYpDw8YN3b8XHx5PwIQiCIAiLIRWmQsHNBEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNlCMD0EQBEFoQF1dHWpqasweRsgSFRWFyMjIoPdDwocgCIIggoDjOBw7dgzl5eVmDyXkSUhIQLNmzYKqs0fChyAIgiCCgBc9qampaNiwIRW/1QGO41BVVYUTJ04AANLS0lTvi4QPQRAEQaikrq7OI3qSkpLMHk5IExsbCwA4ceIEUlNTVbu9KLiZIAiCIFTCx/Q0bNjQ5JGEB/x5DiaWioQPQRAEQQQJubeMQYvzTMKHIAiCIIiwgWJ8GMfhcKC6ulr08+joaPIrEwRBEIRMSPgwjMPhwPPPP+957XTG4fTpJCQmOmC3V3renzhxIokfgiAIQhGjRo3CihUrAAANGjRAYmIiOnfujNtuuw2jRo1CRIQ8p9Dy5csxadIky6Tzk/BhGG9Lz+7dV+DDDweC4yJgs7kwaNAGdOnyfb3tCIIgCOtgtlW/f//+WLZsGerq6nD8+HF88sknuO+++/Dee+9h/fr1aNAg9GRC6B1RCOJ0xnlEDwBwXAQ+/HAgsrMP+Vh+CIIgCOvgb9UXQ0+rfkxMDJo1awYAaN68Obp06YLu3bvjuuuuw/LlyzFmzBgsXLgQy5Ytw6+//orExEQMGjQI8+bNQ+PGjfHFF1/gzjvvBHAh8HjWrFl49NFHsXLlSjzzzDM4ePAgGjVqhD59+mDx4sVITU3V5VjkYpng5jlz5qBr166Ii4tDamoqBg8ejIMHD/ps8+eff2LChAlISkpC48aNMXToUBw/ftykEWvH6dNJHtHDw3EROH060aQREQRBEMEi11pvtFW/T58+uOyyy7Bu3ToAQEREBJ599ln89NNPWLFiBT7//HNMnToVANCjRw8sXrwY8fHxKCsrQ1lZGR588EEA7pTzxx9/HD/88AM++OADFBcXY9SoUYYeixCWET5ffvklJkyYgB07dmDz5s2oqalB3759cfbsWc82999/Pz788EO8++67+PLLL1FaWoohQ4aYOGptSEx0wGZz+bxns7mQmHjapBFpR0kJsGWL+/8EQRAEG7Rv3x7FxcUAgEmTJuHaa69FZmYm+vTpgyeeeAJr1qwB4HbF2e122Gw2NGvWDM2aNUPjxo0BAKNHj8YNN9yA1q1bo3v37nj22WexceNGnDlzxqzDAmAhV9cnn3zi83r58uVITU3Frl270KtXLzidTixZsgSrVq1Cnz59AADLli3DJZdcgh07dqB79+5mDFsT7PZKDBq0oV6Mj95urpIS4JdfgLZtgYwM7fe/ZAkwbhzgcgEREcCrrwIFBdp/D0EQBKEMjuM8rqvCwkLMmTMHBw4cQEVFBWpra/Hnn3+iqqoqYOHGXbt24dFHH8UPP/yAP/74Ay6X+wH+t99+Q4cOHQw5DiEsY/Hxx+l0AgASE93unl27dqGmpgZ5eXmebdq3b4+WLVti+/btovs5f/48KioqfP5jkS5dvsekSYsxcuRyTJq02BPYrBdLlgCtWgF9+rj/P2WKtlaZkpILogdw/3/8eLL8EARBsMD+/fuRlZWF4uJiDBw4EJ07d8batWuxa9cuvPDCCwACu+DOnj2Lfv36IT4+Hm+99Ra+/fZbvP/++5J/ZwSWFD4ulwuTJk1Cz5490alTJwDuJnHR0dFISEjw2bZp06Y4duyY6L7mzJkDu93u+a9FixZ6Dj0o7PZKZGUd0dXS43A4sGvXcYwbx/mIkgULgJYtOTzzjDYmyl9+uSB6eOrqgEOHNNk9QRAEoZLPP/8cP/74I4YOHYpdu3bB5XLh6aefRvfu3XHxxRejtLTUZ/vo6GjU1dX5vHfgwAE4HA489dRTuPrqq9G+fXtPg1GzsaTwmTBhAvbt24d33nkn6H1Nnz4dTqfT89/Ro0c1GKE2REdHa7qdFHyGwXPPfQKXq35ZcI6z4f77G+KLLw7B4XAE9V1t27rdW95ERgJt2gS1W4IgCEIB58+fx7Fjx/D7779j9+7d+Pe//42///3vGDhwIO644w60adMGNTU1eO655/Drr79i5cqVePnll332kZmZiTNnzuCzzz7DqVOnUFVVhZYtWyI6Otrzd+vXr8fjjz9u0lH6YpkYH56JEydiw4YN+Oqrr5DhFXjSrFkzVFdXo7y83Mfqc/z4cU+qnhAxMTGIiYnRc8iqSUpKwsSJEw2r8cB/Dx9M7Z9JBrizyZYv/wZZWUdUp1g6HA5ERlZj3rxYTJtmR12dDZGRHObOdSIy8hwcDqpGTRAEYQSffPIJ0tLS0KBBAzRp0gSXXXYZnn32WYwcORIRERG47LLLsHDhQsydOxfTp09Hr169MGfOHNxxxx2effTo0QN33XUX8vPz4XA4POnsy5cvx//93//h2WefRZcuXbBgwQLcdNNNJh6tGxvHcZzZg5ADx3G455578P777+OLL75A27ZtfT53Op1ISUnB22+/jaFDhwIADh48iPbt22P79u2yg5srKipgt9vhdDoRHx+v+XHoTTDFsMrKyvDqq68C8C2Y6I3N5sKkSYtht1di3LhxSEtLUzy++tWoE5GYeJqqURMEYTn+/PNPFBUVISsrCxdddJGiv2Whjo/VCHS+5a7flrH4TJgwAatWrcJ//vMfxMXFeeJ27HY7YmNjYbfbUVBQgMmTJyMxMRHx8fG45557kJuba+mMLiVoeRN16fI9srMPYefObti2LReANtlk/qLMbq8U3J/ZwW8EQRB6Y7RVn3BjGeHz0ksvAQB69+7t8/6yZcs8BZEWLVqEiIgIDB06FOfPn0e/fv3w4osvGjxS8/C/ecR6e8kVFXZ7Jfr2LUS3bjsFrTIEQRBEcJCoMR7LCB85HrmLLroIL7zwgifVLtTxd2udOnXK8+9Avb2UImaVIQiCIAirYRnhQ/gSyK1Fvb3UoVXBRr0LPxIEQRDqsWQ6OxHYXUW9veTh3S7Dv2DjkiXq9qnVfgiCIAh9IOETgqjt7aVVPSAr4C1QWrYExo4Nvoo0VaMmCIJgHxI+IYLTGYeiokw4nXGe3l68+JGbjcVnGAwbNkzWdxollLRsZCpUmZrj3P95U1cH7NzpUFSokapREwRBsA/F+IQAYoHM2dmHFGdjJSUl6ZpiKVcsVVVVoaysDKtWxWLqVDtcLhsiIjjMm+fE8OHnVH0/HxdVVJQJl2tkwG1tNhe2bl2BffsqZaX/OxwOxMfXIiIi1afqdWQkh7i4E3A4GlD2BkEQBAOQ8GEcsYKEfAaXVCCzkODhxUcwxQ7VIkdUVVVV4c0334TTGYfFiyeB49xCwuWyYcqUePz++1LY7fIEiTeBK1O7YLPBRzzy504q/d870HzgQF8ROmDABmzY4M6moyJkBEEQ5kPCh2HkFCQMFMhst1diyJAhSE5O9nzGixkzK4ZK7a+srAyA9LGpLXLIuwL9rWS8hSwqqho1NTEet6EU/Diczjg0afIHCgpeR01NdD1LGxVlJAginPjiiy9w7bXX4o8//qjXQFyMzMxMTJo0CZMmTdJtXCR8GEbOQilkvfAOZE5OThZsKyF3ETZzsZY6tmAQcwUePtymniA6deqUqPXL4XDg1KlTgu7GrKwjQY+TIAhCL0aNGoUVK1Zg/Pjx9RqPTpgwAS+++CJGjhyJ5cuXmzNAnaDgZosjFcgsN6bGOziaFdQGaSvZf1bWEc/+xNyGy5ZtxvPPP18v0Jm3mi1btlnw71g6lyyjZfA6QRDKaNGiBd555x2cO3fO896ff/6JVatWoWXLliaOTD/I4hMC8NaLyy+/GR07xiA9vSuArrJjdLSs8qw1aoO01aDUtca/lvo7QpwlSy6UAIiIAF59FSgoMHtUBBE+dOnSBYcPH8a6detw++23AwDWrVuHli1bIisry7Pd+fPnMWXKFLzzzjuoqKjAlVdeiUWLFqFr166ebT7++GNMmjQJR48eRffu3TFyZP0kkm+++QbTp0/Hd999h+TkZPzjH//AnDlz0KhRI/0P9i/I4hMi2O2VuP76KOTkNEVaWhrS0tJkiR4xKwdL1gp/y4xeqK1/pPbvwh2qe0QQvphl/Rw9ejSWLVvmeb106VLceeedPttMnToVa9euxYoVK7B79260adMG/fr1w+nT7nnu6NGjGDJkCAYNGoQ9e/ZgzJgxeOihh3z2cfjwYfTv3x9Dhw7F3r17sXr1anzzzTeYOHGi/gfpBQkfC6GHO4qqPF9ArWtNb5ec1ZA7eVPdI4K4gJlV30eMGIFvvvkGR44cwZEjR7B161aMGDHC8/nZs2fx0ksvYf78+bjhhhvQoUMHvPbaa4iNjcWSvwb60ksvITs7G08//TTatWuH22+/3dNAnGfOnDm4/fbbMWnSJLRt2xY9evTAs88+izfeeAN//vmnYcdLri6LoJc7Ss8AYtaQE++k1rVmpEuOZeS6rqjuEUFcQMz62a+fMf3+UlJSMGDAACxfvhwcx2HAgAE+2cCHDx9GTU0Nevbs6XkvKioKV111Ffbv3w8A2L9/P7p16+az39zcXJ/XP/zwA/bu3Yu33nrL8x7HcXC5XCgqKsIll1yix+HVg4SPBZDbdPSXX35BeXk5UlNTZS8aYqndZi7ccgOylVaO5msInTx5EqtXr/a873TG4fTpJCQmOjy1j4SOv7y83Oc1X0uJR6qLfSi3BHE4HCgursW4cReEjHvy5nD55SeQmXlByFDdI4LwJZD106hGx6NHj/a4nF544QVdvuPMmTMYP3487r333nqfGRlITcKHYfiFUswddfRoBuz2/Z73tmzZ4vm31KLhvQgHslaYsVjrWTk6KSnJZ79KLGlr1qzx/PuCWJKu9TNkyBCkp6eH7CIeqCJ2XZ0Nzz23EVlZRzzXpPf5D3TtUd0jIlxo29ZtIfUWP5GRQJs2xo2hf//+qK6uhs1mQ79+/Xw+y87ORnR0NLZu3YpWrVoBAGpqavDtt9966u1ccsklWL9+vc/f7dixw+d1ly5d8L///Q9tjDwwAUj4MAwvAHbvPoE33vCvNAysXXszqquFF2qpRUNPcaEFRnyvXEuaP0rdjsnJySEreoDAFbG93abe15qQlY0gwpWMDLdbePx4t6UnMhJ45RXjrD0AEBkZ6XFbRUZG+nzWqFEj3H333ZgyZQoSExPRsmVLzJs3D1VVVSj4y5d911134emnn8aUKVMwZswY7Nq1q179n2nTpqF79+6YOHEixowZg0aNGuF///sfNm/eLKugrlaQ8GGcpKQkdOpUjUGDNmD9+oHwjkeXu1AH2nc4oyYNXY1YCmUXlzdSblOn0wkAePXVur9akbBXPoEgzKKgwB3Tc+iQ29JjpOjhiY+PF/3sqaeegsvlwj//+U9UVlbiyiuvxKeffoomTZoAcLuq1q5di/vvvx/PPfccrrrqKvz73//G6NGjPfvo3LkzvvzyS8yYMQNXX301OI5DdnY28vPzdT82b0j4WIDo6Gh06fI9oqPP4733bvH5jOrFqEfKQuHd7uPo0aPYuHGj6hYhoYZ3nzfvWKdArqvVq1d79V9TZmUjrEVJiTtupW1bcxZwq5KRYez5kqrI/MEHH3j+fdFFF+HZZ5/Fs88+K7r9wIEDMXDgQJ/3/NPiu3btik2bNonuo7i4OOCYtICEjwXwdnmtXRseGVhGIGWh4Nt9OBwObNy4EYD6FiGhhH+fN7fbKlMyOBygYo/hABWlJFiHhI9F8HZ5XXC1uNClyy4cPdoCwFFaOFQgJw3dOzbFbq9EXl4hCgvzmMmCMxq1weFAeJVPCEfMTssmCDlQAUOL0aXL95g0aTF69NgKANi1qyvee+8WLFp0P3bvvsLk0VkTJZWhd+++wiN6ABfy8grDNj5FTdVvlos9hnvPMC2On4pSElaALD4WZdu2XPjqVhvFSgjgHYvC41+PRwx+Oz6GxX+hByJQWJiHTp32heU5V+u2klvs0YigcP76WLUqFlOn2uFy2RARwWHePCeGDz8XsjFa/mjlnmIhLZsgpCDhYyG86/oIGeu8Fx29Fw0hQeGNUQtGoHE4nU6fQoVi5Ofnw2631/sb77o9gLyF3swMLiW/iRa/n1q3lX8quzd8cLgR1w8fq3Qh4JovvGjDlCnx+P33pbDbK0O+kKJW7imHw4HIyGrMmxeLadPsqKuzITKSw9y5TkRGnoPDEdoikuM4s4cQFmhxnkn4WAg+yPnHH//AG29wnomaJyKCw8iRPdG58yDBCUZqsauqqkLDhg1FP+cXI//gVjH4KqDBLLBaCBsp7Ha7rIBkqYU+Pz/ftIld6W8id9tAxyMVHM6LmFOnTmHdunUApGOCjAwO568rKUEbyoUUHQ4HduwAXC7f37muDti504HYWHllL/yvv3vvjfNY9M6cqcSrr7rfZ0VEapl1FhUVBcA9f8bGxmowOiIQVVVVAC6cdzWQ8LEYSUlJ6N07Ca+9BowdC/Di122etuHaa9sK/p3chVEKqaKH3pw4caKe1URsn2JCzciiVlJILfS81cgM5P4mShZxOdsGclv5ixi1BSP1htWAa2/RX1oagaKiBsjKqkV6uts0E6xVzNviZbNNqnf8W7euwL598ixe/teKWGYfCyJS66yzyMhIJCQk4MSJEwCAhg0bwmazSfwVoRSO41BVVYUTJ04gISGhXpFFJZDwsSh8savt292vc3MDP7loNeEo2U9tbW1Q+9R6kgzkYpH7N2qakWplaVOCkmNVc168kVt5mVVXIWv96hwOh6efnNMZh507u2H79lxBK1kwFhT+mpQ6fhbEilbolXXWrFkzAPCIH0I/EhISPOdbLSR8LExGBnDLLdLb6U2wC6dW3xPoczXd7cX+RmyhF1q0tbS08W5GoYXIu4igkmNVc17UNpFl2VWoRtDqgff1snv3FZLV2rUQJU5nHJo0+QMFBa+jpiba1OPXE63cekLYbDakpaUhNTUVNTU1qvZx7Bhw5AjQqhUQ5LoeskRFRQVl6eEh4RMiSFkV+HYBF16rFxHeKFk4gxFIUt/j/3leXiHS08uQmOgAAMUuFim3jNwKzVpa2uSIKCXuJLWuJ7V93lh2FfLjM3vBP3nyJAD3b+Mveni0KPjocDhw6tQpwfsqK+uI6v2yipZuvUBERkaqWpip6KOxkPAJAZRaFZSKCDExo2ThVGNZkPs9Qp9v3nw9ABtsNhdyc7crTruWcsuYUaFZjohSkmIeTBVltYuDmZYV/4cDbysZCzgcDk+w/s6d3SBWZi3Y+CNvEfDhh+HRPoT/3Q8fbgPvpCCz3XoOhwPFxbUYNy4VLhefVQiMH8/h8stPIDOzARPB4KEGCR8GCDa1WMnNqkZE+E+GfH0buQtnsEGtUt8j9Dlg82y3bVuu4uBVswJeg3UbKhm31Lb+VkJ/5MYe+bu8xCwr5eXluqWxsxYoLwR/Hzudcdi+PVdwGy3ij+Rms4US5eXlnnnI13UIZGebU12RvyaLijLhco30+ayuzobnntuIrKwjzGTChRIkfExGSRqyFhe/GhHh/XlxcbGnwZzcRTbYCVbqe4Q+9yUCublb6wWICgXU8v+WcsuoDcLVMg5JaF9S4/a2ckhtK6dUgJzrkneN8QG7YvAZgHpM9ME8yRsdcC0s5IGOHX9E376bNRMlrGazaY3D4cCaNWtw+nSmwHk1T+jx16TU7xBKweWsQMLHZPRIQw60uKoREd6fe3fVlVo4+ToLwU6w0rEhvp8DHHiLD/9d3brtRLduO9Gq1XXo0CEazZplAciqVwvCP35l5syTKC5ugMzMWqSndwXQVbVVIpCwUWoVC7SvQO4kvp4OT7CuJ7nXZVJSki7XulrE7hG5sVt6Ina/aCl6AG2z2dQGvBuBXIFhFqxlFYYDJHxCDCmrgZybLDd3u6clhtRNmJ19CEOHrgXAoUWLEs92+fn5SElJkfWdYpOh9/uBFuhhw4YhP9+G7OzFOH06EaWl6aJNRMvLP8C2bfW/y9vK4L3QpaUBOTliZ1s+UsJGiVVMTuA1UF/kCOG/0POUl5fLqsHEW5Cs1Noh0D1iRuyWP0YuhHKErxyxojbg3UhYFhisZBXysFKZXy9I+IQQYgtiauox1NTEeJ5uxcSK/4KQm7sV3brthN1eiWuvvRZbtmzx+b5AC4jdbg/aeqJ0Mp0xI8Wr4Jv7u+LjT2DbNukgar2tDFLCRsnTqJzAa7nIXejFLCTe4kqpi0pNPFOwEzKrRRT9MbKfmVjM1ZAhQ5Ceni77N7XCQsiawPBGTVahHgLFP/xC7D61cuwRCR/GCCa4VWxBfP31MeCtN50778XevZ3riRWhBWH79lx067YTANCkSROf/ZaUpMlaQIK1nii5sYS+q6ysWtDC449Yhk+wTzb8wiQlbORYxeSa7LXOVpIbe6REPKrJ8tMiHs5KAb2BFsJhw4YhNTVV14UnOTlZk/2rXZz1sjqwULZAC/QSKN7nPNB9auXYIxI+DBFMyjcgFuTLgc9i4LgI/PDDZfDOeOLFipIFQaiwWqDtWTKbyrFc+BPMk4231ap58wq/5o0VGD78Np/KzYGsYg6HuyaRlEgSOha1gloPC4nafWoRI6RHnIfR1/ewYcNwySWXaLY/PeDPiVyXqf89ZpbVwcwmw0rRS6DwWbtWsY6qgYQPIwRzkQXKRBJL8+bhxYrcBUEoJTTQ9kZnrQVCrbAUmjiULHb8/x94AMjPBw4dAtq0sSEjIwFAgs/fBbKKCbkOf/jhLPbt+0CzIpP+6GEhMdPqonWch5bXt9xFNzU1VdZ2wX6PWhEQ6JyICRj/e8kMq4NU5XCWHuC80VKg8BlwgLWso0oh4cMIwRaT814QJ048iLfe2omoqGosWTJGwALkm/HE+7rlLAhiqbZi27OSyaP15KB2scvICK4nkL87Lz29DEePio8/2OMWE8RnzzaC0xmnS60hsfpBwbjw5AbKK13stby+gwkQVirE9QxE9t8vL3ZKS9PqJR3wAsb7t/X+DYy0OgSqHK6HBUorAaqlQPH+7VjNgtMCEj4mU1VVBUD6IuO3E8P/ZuPLzvuLGaEYH/7mCLQgBEpNB1woKHgdGRllnnfEblaj+nr5I2dykDs2VsScHNROioGtiMB7792i2Hokt0aSnPpBgLJryQpZR4C6AGE1Qtyo4/S21ng/dPkLGH/37LBhwwBos6hrITD0sEBpdU3qJVDs9krk5RWKZshaGRI+JsPHdkgtBoG6d3vjcDg8PlpAWMz06fO5aFp4QkJCvX16Twhi4+RFT6Cgy2BjmIJBanIINDaxp1EW8RcDUsctdjzek/KpU6eQnb0YR49m4L33boZ3zJiSp285WX5yY0LUXEtGLPZmCHtWhbi/tUbIzX70aAZOnz5X73zV1tYC0GZR11L0am2BCuaa5Od5vdL0d+++wiN6AHf/Q6Pma70h4cMQXbp8j9TUY/jtt5Zo2fI3HwuKHMSe/PyzGPxfy80QCSY13axAOTlWBqmxiT2Neh+bGVYsf8TEwKBBG7BhwyC4XL5B1VKTvfdn7lpD5yA3oF3OPtXWSGI16NJMYe+NUdejmHuNf1AQc4vz2Gwuj5AWO19aLepaiV5W4l68Y3EA7dP064vWCBQW5qFTp31k8SG0JdiJU8y3zk+AYhNiQkKCrIkhmEXLrAkjkJUhOjoL69Z9r3hs/NMowNZiJyYGunT5HjNndkNlZVPRoOpAyE3JN8oaxsri441RYkxIbHhbJI26HuW418SzTG0el6kc6yFLtXdYiXsREpxapunLucdYt34HgoQPI2g9cfpPgGL1e4zCzAlDTLCVlbmCGpvUb6ZXbSAhpCaq9HQX5BYkFlpchw0bhtraWtjtpXjsseaKrUdqERLrrAgwb4wQY1Jiw0hLmBy3mZC1Ji+vEOnppTh7thHee+8Wn+0DnS9Wau+wUv3ZO5wBCGzlU3M/SN1jUhlwrEPChxG0nDiFJkCx+j1G3bCsTBjeSLnBAKCoKFPUZSD1m+lVG0joGLQSA3Ke5O+7Lw7XXFOAnBy7YuuREsSsF3Z7JaZMOYQFC9rC5bIhIoLDvHn6CjApjBD2UmLDTEuY2MIrZq1xOuMCni//HnpimCFyzbZA+bu5Aln51AoUqfk6UAacFSDhwwhaTpzCvnXh+j1uF5hTt/5EeqURa4FYGYDExNM4fLgNFi+eFNBCFsxvplWgqZwCiUrEgNwn+auuqkJamn6Tn5T1omHDt3HffXGea2nUqJFISjK+x5bcTDUjrm+zrKpy+gP6iwM5CyvLWXhmWqC8z4nUfaJUoLA8X2sJCR9G0NIiEsi3foELE2JNTU1QYw8E62nEQmUApCYT/mk0mN8sUE0apedDSYFEqyDHeuG9+JhVOiDYfnTB4G9lMcOqKqdhrnfvuFOnTnksoVKWE5ZcKUYUfVQzR2pt5WN9vtYKEj4mo4fC9p8AARf8LT42m+Cf6oLcm4SVyqhSk4n/06hQwLQUUp3T1brC+AKJDocDZWX6nUsh4abF7yPXdWc2YtdqeroL6enVul+rYlYWo5/S5TTM9bYm+49BzHLCmkVBT0EQTEFUPe4Tq4saOZDwMRm9bijvCVBpIKEWKBUxLLW2kDOZSAVM86hNLQ7GgqHluVTa2yzY38ffdTd1qh0ul42JmDAeI69V7/uIF5tSVpY777zex8oC6PfQoHTh1WK+M+sBSa95J5g6TIcPt/krO84NC/cJKw+wgSDhwwBaXQRiT1NSgYQNGmh7GahZGKRS8Xn0dGloHa9hVqq7VgXt1Ixfi9/H23XXu/dxPPfcRo/1goWaSUYVDBS7j5RaWfREjXstmPmOpQcko+GFr78A9q6txXFAdvYhz+tAc5UeAsUqvw8JnxDC/2mK96dLTU5C1ZqDIVgRY5Zg0DJeg9Uie3JhZfzp6S5P+xVWaiYZhdj9wYIbMFgXvdpFl9Uq1Voi18oqnMRyQQAHyujSS6BY5fch4RNiiF2kwaRgek9SpaURKCpqgKysWqSnu906gcSA0sXK7AVXi8rCgPygQxYsGEKwViTQ7OuCJVjIIAu2oaoVrAJmoGS+lBLAgTK6rCJQ9IKETxihJgXTe5IKdFMKTVJqFivWFlylKAnONcqCIUdc8eKW74zOglXBG62uCz3M+2aIV+8Hmdtv74ZOnfTNIBNCq+7twWzH6oODGpTOl0oFsFC8WLhCwochgrGsCKFlV2Kpm1JoklKzWLG24CpFqq5O377XY926dYZZMOSIK6EncKlJ1agFR8sCjXpYGox0vwmlr9vtlejUqZ9hMT16oPZaMtP1qYeADjRf8p/7n6MnnsiS5ZKXe+2HCyR8GCEYy4oYWmaMSYmYU6dOecSa3V4OQJ2IYbHCs1IC1dUpKzsHwBjLllxxJXZ9iLlHjVxwtCzQqMbSEKg3lpHut1CNb1J7XGa6PvVy1YnNl6Wl6XjjjTsEz5E7kL2ppEs+VF1WaiHhwwjBWFYCoZXZW0rEPPxwET78sONfN2cTDBp0haczuFIRY3ZJeC3h6+rwGNnwUwtx5e8eNWPBMatAo9QCZ5RbNlTim3gRqYVwNNMlrnV8TKBs0ry8QhQW5un+24eSy1AOJHx0RI3ritUYl0CWGKnO4HJEjFULmylF6xYTQugprqSuT71/H38hqSdSC5dRzVJZnROUICQigzkuq7vEvRHKJv3hh7PYt+8DQ357Pa2JrAoqEj46odZ1xfINLSZipCsdS4uYcCmVDuhvwQhWXIlNVsOGDUNVVSJWruTgcl0o/R0ZyeGee25AZmYDS/0+wU7K/MPAhg2DVHWrl4oTqaqqAsBmN3qlCB2nmrmOpd5oPFos7v7ZpOnpZTh61L2vQOfIO0i5qqoKDRs2FNy/WDCz1tZE7/MeaN0z+5ol4aMTUq6r1NRjqKmJQXFxLbznR9ZjXIREjNQE5t+vBxAWMVZaNLVCLwuGWnEVaLKqrXVbK+fNc/qIqVdesSEnp6n2B6EjgY6TXyTKy8sl99Oly/eYOLEtqqrSFXWrlxsnMmLECDRs2FA366BZ8GLB25Ujt/ih9wPS/ff/il9/jUCLFufRrFkWgCw0aNAA1dXVKCsrM611SLDIFXhSrW/E4M//2bMNNbXg8r9PcXEtHnssFRxn8+zzo48GYebMbkw8IJHw0Rkxa8iSJWPAcRFYuZLDvHnl6Nv3giK3WoyL1M1pZCVZKaxQTl1r5Iorqac/70n23nsvdEYfPHgkAG3PmZ6/k5Lj9P87oSf7bdvWAAD+9reJkHse5MZ/NGzYEGlpaSHVgNZfLOTlFSI9vVR28UP+d3c4HPjyy1cBAEePin/fsGHD6hVp1eI+1zP2yl/gTZx4EG+9tVOT9cD//Lt7OV5Yo4K14CYlJWHvXsDl270HdXU2VFY2BQvTKwkfnRHrlM6/drlsmDIlHr//vhne9abU1NzRA7mKX61Y0zqFX+q7qHCaOEriCbyvT60zRvT+ndTETch5stc7c8bI+Ca9EBILhYV5mDRpMez2C93cq6qqPFYbIaKjo2Wf7zVr1gi+H+x9rnf8jf/Y+ArmwSB0/t3rk1v8aGXBbdsWiIjwFT+RkUCbNkHtVjNI+OiMvzXEX10D0jeL95Om0QSKveFbYvAoFWt6pPAHgoV+YCyiVUd0raw0elWVVXucoZJVxQJy+oxFR0fj1VdfldzXsGHDfF4rjbUJ9j6Xuo6842pYsSSLnf+bb16DRo2q8MADf8ellzYJ+nsyMoBXXwXGjwfq6tyi55VX2BHuJHwMwNsaEhVV7XFz8QSadP0FQatWVbjvPqNG7oa/YUtKgF9+cat5LS5gvVL45RCqdVHUIBYMHRHBYeBAefFlVrCmeR+n3V6K2bPTZcWWGFVzicXsF62RIzrl3u+1tbWefxt5P6uNv9Hy2ld7vdx++1WCyQkPPXTNX66t4EUPT0EB0K8f755lR/QAJHwMw9saEuhm4U29TqcTu3dHYvbsNj4BYg880Ah/+9txwwPEliwBxo1zmy4jItxqfvDg4CtDA8an69ITfH2EgqHj4k5gw4YLi0egydYqvX/44xw3rgxO52KPaxYAiooyBY9NbLGOitLmWMJJhOuRvCF1P2stKtXG32h17cu5XsSOuVOnBLz6qs3PEiPs2tLCgsuqe5aEjwkEiofhTb3Tpv2M9esHArD5/G1dnQ3PPbcRWVlHDHl6djgcKC6uxbhxqZ6nBJcLGD+ew+WX13qyTsSQc3MYncIfCnVR9ISfrMrKLjjozVyc9bKG8A8jgY4tPz8fNTU1OHzY213NeRIUxM6D1KLBZ4ypFeFWC9JX0s1drkuaJ9D9fPhwG12uWz3ib+Qg53qRulflWGKsYMENhpAUPi+88ALmz5+PY8eO4bLLLsNzzz2Hq666ytAxSFk5AsXDFBfX4sMPB8I/FgjwFQR6Pz3zF39RUSZcrpE+nwUjwHiXWXy8+/iMTuFnuVYSi5hpIdNbcEkdG9/hukuXdUhNPYbXXx8D/r4UOw9K+iKpEeFWXJSU1OnyDmiW8/sHssiZcd3q6baUul7k3qtSlhirWHDVEnLCZ/Xq1Zg8eTJefvlldOvWDYsXL0a/fv1w8OBBpKamGjYO/xvdPxBYDKfTiT17osFx9U2PRtf04ccuJRTkXPz8E+qqVbGYOtUOl8uGiIhUDBzobm1hZAo/67WSWEPN4qzF5K+n4OK70Cs5tpqaGMhJTFCyGKgpTmjVRUlN13s5v7/Y/VxTE2O4ZVfvuj5S14vZldWtQsgJn4ULF2Ls2LG48847AQAvv/wyPvroIyxduhQPPfSQoWNR87S1evVqOJ1xsNkm+V3ALhQUvI6MDOH0Tj0JVijwT6hOZxwWL57kiVlyuWyeiQwQ7j6sF1arlWQGSlpfeC+yWk3+erkkHQ4HVq9eDUCZ8NC6gnJ+fj7sdnvIFSfUCqnfPyoqyvO+0P3snkeNs+waVdcnMfEYZs1K++vhkcO0aUWIiXHvP9A1OmLEiLC+nrwJKeFTXV2NXbt2Yfr06Z73IiIikJeXh+3btwv+zfnz53H+/HnP64qKCl3GpmRSFBMaZogenmCEAr8oik1kO3d2w/btubrHj4RLPzCtUNL6gndPaDH5693I1VukBRL1w4YN8ywUerQAsdvtmhQnVGJds1JskNTvb7fbBd1nTqcTq1evNrythRF1fRwOB+rqnsd9910oIMqLHiDw9RwoFjPcCCnhc+rUKdTV1aFpU183UdOmTXHgwAHBv5kzZw5mz56t+9jk+LjLy8s9xbZYtEgEW1RRuJijyyN6AOGFUqsJKpz6gWmF0tYXWkz+RjRy9UbsXvOu9qtHCxDvOi+RkUC7du5/Oxzyj02JdY2F2CA5wktJPy6hcaalpdVr+llc3ACZmbVIT+8KoKsu97kRsYP8MQWai1lcO1gjpISPGqZPn47Jkyd7XldUVKBFixa6fJfSG42V6s1aITSR5eZux7ZtPX22814ovZ+6eYKpJ0SiRj2BAiK1ttLo3cjVG6XxSHq0APFHjviQ2j8vrPhF3uzYICXCK1jh4t/0Mycn6OGLwmLjVK3XjlCrMxVSwic5ORmRkZE4fvy4z/vHjx9Hs2bNBP8mJiYGMTExRgzPkmh9wfs/jQDwsfgAvgsl/9QtHBzNYd48J4YPPxdWlhoW3RVaWWmEjk2tNUQOemaNBWP9kiM+pPbvLawmTpxY7++NXsyUCC/v3n56C5dg8bckG2VhAoR/Q61/11CsMxVSwic6Oho5OTn47LPPMHjwYACAy+XCZ599JnjjWx29nyBWrYr9KxhZ2wve/2lEKnA6UHC0u8/ZUtjtlUyl7+oFC+4KMYKx0jgcDpw4cUK0r5I3Wh2b3mn6ers+lOzfX3SwsJiJLdDeLkB/WH3AMdLCxCP0GwLQ5Hfl1xape8Sq8ZAhJXwAYPLkyRg5ciSuvPJKXHXVVVi8eDHOnj3ryfIKBYYMGYL09HRdJ4CSEmDqVDu8q0aLLQrBXvxSPmmp4Gj+CZe19F090NNdoaUlSUnFViV1bwDtXDFaBqN6nzu+OKGcbEg1T+eBXCt5eYU4fTrJ87kQLFQuDyS8pMp+hMMDjhRCv+H69QNhs0GT35W3Ym3ZAixaVP8e6dlzJHr3tm7oQMgJn/z8fJw8eRIzZ87EsWPHcPnll+OTTz6pF/BsZZKTk3W94BwOB3bsAFwu3+/guAh06jQYPXpUewq7afUEJscnTYUH66PVU7OZliSzBKtW11Ogc+ct6keN+huSkrKwbp17gVdrdfF2rZw6dQrZ2e7WG6Wl6SgszJPcn9mVy+UKL2oiLI7QbwhEgON83wnmd01KSkL37sJd1rt1S4JFNQ+AEBQ+wIXgOKsh13Kip3nR263kX0vIZnNh374PcPSoMreSVuMNpcKDQtYVp9OJmpoaAECDBg18soqA+udRy6dmswNfhZCyhqi1UGkdjCp1TnhR365dPwCNPMcWjNXF+7j47d944w5Z+zP7AUKO8GLBFcfDYkydWIast8UHCL78A+td1tUSksLHqrCQbu2dLhloURAao1i2ldBxya1k7U8opGoqde14M2zYMADBL5xSi7UcS5LaYGVvhCZjpzMOO3d2w7ZtuQCEF75gLFR6B6PKcV9pbXVRsj+pe9vfWqj1nCMlvFhwxfGwFlMnJdrPnbuontXPbq9Efn6+6vGx3GVdLSR8GIMln6kSkSHUvb2g4MLn/selxLrlv3DKcYt5L7ilpREoKmqArKxapKe7PPs161zLacIotnjW1tYCkL/QqYkhUWJJCjThy100eDHn/93ex+W/8AVrodIrGFWupUJrq4uc/cltFCr0QDJs2LB6Fkjv/Sq5l6SEl9muOG/kNkw1yhIaqDP84cNtPKIHcMd78dceH5qgFla7rKuFhA8REDkio6TkgugB+O7t7qcEsZtFbdNCOXgvuIEWIhaCJNVmZshZ6NS4C5Q+bQf6/eQuBryY8/9ub8xa+JQg59zpVfNFjhtYjuVVbGGXyraTcy/JFV5muOLELJPe1i9W3G9CneHr3zsRKCzMQ6dO+0y7Z1h0EfKQ8AkBginoFyxigdB1dcDOnQ7ExopbsfS66PmbTWohMjtIMpjMDKmFTq27QOxp++jRDJw+fS7opqOBrE/CAZtupBY+FgqsybFUaO1mkysm+O0C7VfOwh6MxUPqYYcXYUbH8smxTBrhfgtGKBhhJVMyPtZchP6Q8LE4Ui4mPXA647B1azTatfsD69aJB0Jv3boC+/YFX19HbdA3SyZzIdRkZkg1Zgy0bznHLhY0uXbtzUE96cpZVIW/2/39/tYQPZqiBotcS4WWbjat4gLlLOxanGe584CRsXxy3Fl6zyVqhYLciul8iQUh5MbqKRkfi8kS3pDwsTBqXEzBwk9+ixZFICKCw8CBV6BLl+8VB0IrQe3kbnb2ihRqMjPEGjPy8E/Nao/d/2kbcAGwQU49JzGkFtUzZ84Ifjff0qRbt52eAM2UlBTNm6JqhRJLhZZuAC2emKUWdrntMZSO3RsWmggLibvs7EM4e7Yh3PeCPnOJWqEgVTF9wIAbsXr16qBdlawLGaWQ8LEwv/ziW18BcLuYDh3SR/j4T34ul80z+en9hOZ9U8p17bGe/i42PqB+jI9/rIbafYsdu5jL5OzZRnjvvVt8tlX6pCu1qG7atAmAO4B23LgEP/dPawCtRRdTFqx6St1NLLoBpISykvYYgLqxG5HVKiQ4edEmJu7cFtgIABx48aNmLgkkdv0z6ZS4bgNVTC8rOydrbFYRLFpBwseiOBwOxMfXIiIiFS6XzfN+ZCSHuLgTcDgaaPLU5Y3U5CcnEDpYlLr2hBYiflIpLY2AV0sgUxBbKNWKSKWLMI//osNbjtxuzOCsZmKLalSU72SbkJCAtLQ0Re4fFqx6Shds1jKFAGmhHOg3LCrK1Gzsehdm9RacvuddfH67gA02G4ehQ9egRYsSxaJHbgmLYFyKoZZ9pRckfCyI9000cKDvTTJgwAZs2KA+a0lsEnc6nTh6lMPKlZyP0DJqkXE4HCgursW4cReEntu1xyEt7RSqq6Nx5ZV2wZveW5B5TyorV3KYN6/c8Canckz6as38wTw1C72nhdWsvvuMA8dFYMmSMUH3EpIO8nYG3IdWv7na/bASnwQEFspC57lz571YsmQME2OXg1RcWHb2IZEYswtwXAQaNaqqd/1L3Zdyxa7erlutkgBYSCYIBhI+FsT7Jgo0WWn11OVwOLB69WoA9YWWEa4jXugVFWXC5Rrp81ldnQ0DB7qf1CIiOLz6qg033ii8HyFXnRlNTgOJS6nKzXLGp/QYxKpI8yixHPmP13sfqanH8PrrY8DHSQQzqUtlR5WXt8WaNWs8160YZpY0kBs3o6colxtXA/heB1FR1R7RIzR2lhE775MmLa4n7i64udx4P+gNGTIEycnJin+fQGJXT9etViJbbZkMloSSKuFz9uxZNGrUSOuxECrR28UkV2jp/f3CwcCcj5AZP57D5s1nBPfDUpNToYkyzQS/m1wT/NixNygWYrw4KS0txbp161BTEwPvRQQIvpcQj5R7jAV3kj9i1+NPP3VAx47/84mb0UugSVkInU6nj3jk55qiokzTY6vUEmge8J/fDh9uI/qgx4ue6upq0Vpj/veIlNjVy3WrlSVJzX5YsmryqBI+TZs2xbBhwzB69Gj87W9/03pMBOMYEcsj9r31M458J7C6OhtWrNiKrCx3w1q73R50plMoI9cEz8ffKMU7tdWs88/ixAuIC/lNm/pj8+a+PuM8ceKEblafQPtNS0sTjP1i9V7ytl6Wl5d7imMCwB9//AFA+jr0nt8CPej5i0Kxe8e7b6ScOEk92oloZUmSux/ekigllPTM0AuEKuHz5ptvYvny5ejTpw8yMzMxevRo3HHHHUhPT9d6fEQIoOXFHcjcDtRP/fZerFnP8jIbvQWCnuefX/D4xY5f5FhKd/dHKPYJEC4bsGbNGtPccnrFfmlNoOBlAH/9O05y7Ndffz02b97s2Y/Ygx7nVXAr0L3j/XAhRzAqbSci57oIVqjKrRfkXShz4sSJ2LIFWLSovlDq2XMkevc2r0WTKuEzePBgDB48GCdPnsTKlSuxfPlyPPLII+jXrx9Gjx6Nm266CQ0aUPhQuMH7vL3RIz7BeyJSOvmGQpNTb+TWg5EqyW+UQNDj/Ady17GQ7h4I/nz89FMHbNrU3+czjovAzp3d0LdvIQD2Uo5Zu5fEgpfdgpKDf8NbsbFnZWXJShCQWyHeGynR5T2Hym0nIjRO7wcBOd+rJGlCqF7Q8OG31Zvrk5KS0L27O/vWu+xKZCTQrVsSzOwWFJQ6SUlJweTJkzF58mQ899xzmDJlCj7++GMkJyfjrrvuwkMPPYSGDRtqNVaCcZKTkw2PU1Ez+ZrlqtOawOm5F45vxIgRePPNNwNup6dA0LswnZi7LirqPM6ebcicS0bofHTs+D9s3ty33m+wbVuup4AjC7BQZFCK+n2rbBCzpImdVzkPa3xcj9J7J9CcJTaHKrHGij0I+H/vuHE3wm6X3yIlUL0gIEHwbzIy3CVHxo9315iLjAReecX8lPughM/x48exYsUKLF++HEeOHMHNN9+MgoIClJSUYO7cudixY4enOBlB6EWoCBmlyG3bUFVVJbldVNR56FWZ1ojCdDz1n/RtcFfDdjHjkvE+H979qXJzt2Pbtp5+W7NjnQKC/y29LY+lpREoKmqArKxapKe7JP9WLoF6vgHSgl6paJPjRgpGMAbbONj/QYf/G/9QACUoqRdUUODuJuAWSuaLHkCl8Fm3bh2WLVuGTz/9FB06dMC//vUvjBgxwifro0ePHrjkkku0GifhhdreVWahdxNV1lIljUbuxCi23blzF6GwMA8XqtPaNBcIRvjyhZ/0AXf/Mxduvll54Tm9EDof3brtxLZtudCrLYJWqP0tvS0RgYR6sLFM4j3f3AilpPOoEV5y4p2CEYzBWGNZCexnrbCiKuFz55134tZbb8XWrVvRtWtXwW3S09MxY8aMoAZHCGPkEzS/L7XbadFENdD3y7mxrSYUlSJ3YhTbbvNmXvQAvOgpKHgdGRnCKbqsEvhJX13hOSOx2ytx001sBQxridyYmGBjmYSECF+PRyglXQv3vByXu9r5WG1gMsuB/WajSviUlZVJxu7ExsZi1qxZqgZFSGNkNLxaoaVVE9VA7RTk3NhGC0WjkTsxim0nJIZqanwFAUsCQYxAT/paFJ7TA//zylrAsB4YEXDufx7d36vvOdXL5a42g471wH4zUSV8GjZsiLq6Orz//vvYv38/AOCSSy7B4MGDKZsrRFFTDXjHDsDl8v27ujpg504HYmOV7dN7Wz5mRerG9o5tMXuB0xO5E6PQdnl5hSgszBMVTUOGDEF6erolzp9YengwT/ladlEXIikpCfn5+YJFAkMVo2oA+Z9HqXOq1CVvpCVZjSBmtdYSC6hSKT/99BMGDRqE48ePo127dgCAuXPnIiUlBR9++CE6deqk6SAJa8H78t0NLifVu/G2bl2BffvUt4jgrY1SN3Y4ZRTKnRiFtouN/TNgdVoriB4e/zpPNTXRqp/y5WbNBRuTkpKSIms7K1jd5KBXDSA156eqqgplZWVYtSoWU6fa4XLZEBHBYd48p2QPP70tycFm0LFYa4kVVAmfMWPGoFOnTti1axeaNGkCwF0Vc9SoURg3bhy2bdum6SAJa8FPBFI3nh6+/HC+seVaCvy3s7p7RUm/KaHtxZCbNRfsdRzqrlgh9Ljm/M+jf+VmAIiKioLdbgfgFj1vvvkmnM44LF48CRzHNz/27eHXq9dwOByJgtlnev4mWlwXVr+39UKV8NmzZw++++47j+gBgCZNmuDJJ58UDXYmwhO9b7xwvrHlLuByLF9Wdq94LxBCix1wYcFTIyCMCBJlRdTonYHpjR7XnG//tsDuTDl1eA4fboPZs7N1yT6Tg5r9q7EU6e3SZQ1Vwufiiy/G8ePH0bFjR5/3T5w4gTZt2mgyMCJ00HtRtfKiHQxKngj9tysvL8eaNWskv8Mq7hV+UtajgGaoB4nyi54ad08oIOYyj4qq1jX7TC+UWorkNio2q2WKHqgSPnPmzMG9996LRx99FN27dwcA7NixA4899hjmzp2LiooKz7bx8fHajJQgLIIRRdp45O7Hfzv/5pNChPqCJxepWDL/xpE8Vjh/3vF4gdw9Wix6rJaVEHOZ19TEWFbwKvmt5DYqZlXoqUGV8Bk4cCAAYNiwYbDZ+FLg7oZtgwYN8ry22Wyoq6vTYpwEYQmMKtKmBWZ/v1WQiiXjSysILRbDhg3zKezKmhjiFzMpq5YWix7LsUxCLnN3ckZ4ZUUFU/DQSu4yVcJny5YtWo+DIEICvYq06WVFstJkZSaBYsnEFgunMw5z5/5X8ywwPTAq9dmo45YbqyTWzgEwN3nCSKsxTzCxbFZzl6kSPtdcc43W4yAI2agxmQcTtKlmEtIyLkQvK5JR6dqhglAsmVQbED2ywPQglDIk5VaLX7Uq9i/3nrh1w4zkCbOsxsHMWXKvaVaufdXVBsvLy7FkyRJPAcOOHTti9OjRnlRBInzR25cv12QOQHWNDh61k5CWT9B6WZGMSte2KnKuT7HFwrsopBmtAtQIfatnSDocDhQX12LcuFS4XHysEjB+PIfLLz+BzMwGSEpK8mw3dWqqJ6Yp0G9kdPKEUa09/NFyzmK9f6Iq4fPdd9+hX79+iI2NxVVXXQUAWLhwIZ588kls2rQJXbp00XSQhLUwwpcvV7AEG7SpdhLS4wlar+wi6unjRsjtl5+fj5qaGgBAgwYNPPE6fNsU4TYZwm1A9A6K1SI7y6oZkvz9XlSUCZdrpM9ndXU2PPfcRmRlHcGIESPw5ptvCm4X6DcyYyE3OptQqzmLlcaogVAlfO6//37cdNNNeO211zwtKmprazFmzBhMmjQJX331laaDJIxByxoeZrtGtA7aVDMJyX2ClnKllZeXA9AvDiPU07XloNbtp6YNiJ7jNyI7i0X4+0fqHuHb2Ci5l8QWcr2zz8xoORGs1c8qD1GqLT7eogdwPw1NnToVV155pWaDI4xDiy7qLKLV5KF2P1JP0HJdafy+9IjDMHqCZTGgOhi3n9I2IEqQG19mZHaWEowsiAgE17fOe7v8/HxwHIeSEuCxx9r7uMQ2bBiE++/vwMyxBEuwrTG8scpDlCrhEx8fj99++w3t27f3ef/o0aOIi4vTZGCEcWjVRZ1FtJo89JqE5LrSePSIw9Di2OSKGdYDqtU+serRBkRJfBmPUhGrZzyeWQ9TwfSt82bNmjV/ucQu8Xnf5bJh+fJvkJV1RPfr1Ii4Ky1DE6zSGFWV8MnPz0dBQQEWLFiAHj16AAC2bt2KKVOm4LbbbtN0gIT+/PLLBdHDU1cHHDpkfeEDaDd5yNmP2oVEyZOSHnEYwZwjuWKGf4rmYSWg2uFweIoQHj3aQtbvIOd3DvZ3UhNfplTE6hGPJzfIWE/U9q3j4eO6pBZy465Tm6571+r3sEp2oCrhs2DBAthsNtxxxx2evjhRUVG4++678dRTT2k6QEJfHA4H4uNrERFxYZICgMhIDnFxJ+Bw6D9JGYFWYkFqP2oXEhaelNSeo0Buotzc7ejWbSfs9kqsXr3asx0rsQBCVhV/hH4Hod/Z6XT6HKMYSq0nSt0HSkWslve33CBjq8Qamb2QWyFQGPC9pgNdf6y0wFEsfOrq6rBjxw48+uijmDNnDg4fPgwAyM7OltUMkWAH70l/4EDfG2zAgA3YsIGdKsNWQs250mKCVTqpaO3mEBIz27b1xLZtubjpJt8Jm5VYADGrygXEfwej2oCoEcVmZWfJDTK2UokEo9P8+QBsqYcDfjsWYLkqtxCKhU9kZCT69u2L/fv3IysrC5deeqke4yIMwPsiDXRzW2mS0hoj+wsF+g3y8/MD1shSM6loPVkJiRk39a05LFi4vBEb+803v4dOnfbL3o8eE7vZVgc1WHHMgTBSSPIGBKmHA7MNDSwmKchFlaurU6dO+PXXX5GVlaX1eAgTsWoNDyG0EixGP8mI/QZ2u12XzuNaTkzCNW3c+FtzWFsYxYRYixYlpozHHysWF/QfMwAUFWUiMdGh+XfJvd/ligXvjGWzYO3hwBvWkxSkUPXrPvHEE3jwwQfx+OOPIycnB40aNfL5nDqyE3ojlSarpWDR68b1DqplvdKpHPzFjDdCEzZLi7lcIWZmjEKgBxOWO5/b7ZX1YlWaN6/AAw8o21ege17J/S5nOxas3Kw9HHhj9arvqoTPjTfeCAC46aabPN3ZAerITqhDbq0PpZVpWXzS4FFSvwdgJyhQCl7M7NzZDdu25QIIPGGzZGUMJMSGDBmC9PR0Zq8plmMshGJVpk61o3fv47IzvOSkxss9NjnblZWVydqXN3rULArm4cCIGkqsJCkohbqzE0ER7M0lt9ZHqFWmlZuqzPqCK4TdXom+fQvRrdtO1dYcs4SemBBLTk42/DdQasVh9RoRilVxueRleJmVGq/03OtZs0jJw4EWbUuUwEqSglJUCZ+srCy0aNHCx9oDuC0+R48e1WRgBPsEc7MrndBYrUwbLFLHY8aCqxSxRUJswtYjUDsUYdmKowS1GV5mpsYraYS8a9dxU2sW8ZjxcMhyHFIgVAufsrIypKam+rx/+vRpZGVlkatLJkaXc9eKYJ/CgpnQrHqjiREKx8MvEidOnMCaNWskt09JSWFmsTYrNkbuvc/KeZKL0HlSG6tidmq83EbIrNQsMuPhkOU4pECoEj58LI8/Z86cwUUXXRT0oMIBFnpjqZn0tbjZg5nQWLvR5PZSEoM/nvXrBwKIQKC6MSyTlJRkSQuFkWPWyg3B8gOT9/nkO9gDwcWqsHbP82gpzLx/09jY4MS40Q9TLCUpyEWR8Jk8eTIAwGaz4ZFHHvFJDayrq8POnTtx+eWXazrAUIOFcu48aiZ9LW92qQmttDQCBw64J4PIyAt/x8qNpqSXkv9v6nQ6fV7bbADHuf/vv50eaex6wYqoUSJIjRhzsG4Io2M3gkFsHMEEskvd82aKwWCFWf2H4ODEuNZCUehestvL632nFQQPjyLh8/337omc4zj8+OOPPoozOjoal112GR588EFtRxhCsGYaBdRP+lrdXGIT2u7dV+Cxx1L/mgw4zJzp6z5l4UZT00uJh+8FJPW3/HYswXrhsmAEqV4E44YItcB+tYjd824xaK71XO3DmHiD6KSgBJxWD4fi91ITDBp0hU/2qVBJDpaqS3ujSPjw2Vx33nknnnnmGarXoxCzfdZao9XN5T+hXRADFyb42bPTMWlSnOR3eFuJjHryCyazwWpZEf6Fy8QwcxEORpDqjRo3RKgG9muB0xmHxx6z+wkH463ngPKHMYfDgR07AJfLd4x1dcDOnQ7ExgZnjdTi4VDuvST2gPHmm28yKciF6stLsmzZMhI9QcBbS2w2993Kis9aDXZ7JbKyjmg69kATfCB2774CV12Vij59gFatODz9dDnKysrgcGhfKdYbfjHzRmox4yvDSv2tmgqyDocDZWVlov8Fcz5OnDjh89rpjENRUSaczjif91lYhNVeR3oSzL2v5joLdU6fTvJprgxcsJ4///zzut/7auEfILZtWyH4m27duoKp8Qe6l8REET8nsDAX+KMquPns2bN46qmn8Nlnn+HEiRNwuXx/uF9//VWTwYUyrMSpiGGmz1zNU7GQlcgoN4Aat19CQoKsv+W3k4ueFhmHw+GTtbV1ay4KC/OY7RzNasac2nuf1SBfMYzImLOq9Zwfl9Rvysr4A51nq1mtAZXCZ8yYMfjyyy/xz3/+E2lpaYIZXoQ0LMSpeCMngNIIpCaDIUOGIDk5GQA8mSNmuwGCEbJaimD/4xRrhaHmfHj/zdatudi8+XoA7nufxYqtLAsFtfc+6w9M3gSbMSdnvmH5N5aLVr+pnkKzfjsaF/LyCj1jZfEBIxCqhM/GjRvx0UcfoWfPnlqPhzAJuQGU+fn5QX+XnBsv0GSQnJxcL9OJhaf7YISsHiJYTisMNTidcdi8OQ+86OFh8SnPSkJBLqw9MAUiGCtrIOHknSqfnX0IQ4euBcChRYsSw86NlkJDi99U79IMXbp8j3PnLvJYeQsL8xAb+ye6dPnecuJTlfBp0qQJEhPN85MT2iM3gJLjOFn7C3Szi92g3pMZoGwykHrys1paeLDo2UPn9OkkCIUHGi00xbLL+MavPFYSCoQvUou0XuJe7thYq1vl/11ahiw4nXEe0QP4zilWe8BQJXwef/xxzJw5EytWrPCp5UNYHynLSUJCgiY3ux6TAX/zHT2aAcCGFi0utE9ZvXq15nE+wTzx6R3/oKffXegaATgf07fe+Mcysd7dntXu6XJhsWgiCw0yWctW8kbrIrlSc4qVHjBUCZ+nn34ahw8fRtOmTZGZmYmoqCifz3fv3q3J4EINK0x+cnzmLN/shw+3EX0C1CLOx9/KkJ+f71Nrp0GDBj4ByWIiUO+nRT1df0L+/uuvL0TPntuD3rdcvM+b2qd+I++zYH5vs+cNFqrM+1NeXm6JoFozBKOWRXK9rykWwgm0QpXwGTx4sMbDCA9YNI0KYZbZMtgJXu8nQK0zpvT8nfUO+pS6RowSFXK62/OB8P7jM/o+U/t9Zs0bLFWZ9x/XmjVrkJgYx/RCbIZg1LpIblJSEoYNG4Y1a9aonlNYtGKqEj6zZs3Sehxhg9miRi5CRQVPn07Cvn3lnve0mGy1sqAA+hcDlJsxVVpaKrpIGbng6i1gxUzb+fn5hh2jnO72oRDbZfS8wWKVeR65qeCAeYuueEVmt+VHLyueHkVyveffQHOK0EMGCw/yQigSPv/973+Rk5ODSO/GSV6cP38e//nPfzBs2DBNBkewgbcr4Y03tCv7LzdOI9B3mGWKDeRe8Q7QFkLPxcJ/ohQTJ2oWBLl/k5KSonjfagkl8ztLmFVlXqlrKNBCbKQA90ZuRWY9rXh6WnzF5hQrPWQoEj65ubkoKytDamoqACA+Ph579uxB69atAbj9rrfddhsJnxBCz7L/cuM0An2HFqZYpch1qWlZQ0cuek6oQvt2Op31LHTV1dUoKysL6rvkEgp1XFjGyPOr1jUkthDb7XbNxyiFd1kQm21SPcG4desK7NtnTF81q2VaGYki4eOfyiyU2iw33ZlgC7GneSMCCIONzZFritUKOefE7DRbI/btcDiwevVqyb/Re5KnCV5f9D6/rMYSqYG1isxWyrQyElUxPoGgKs7WxP9pnq+pY4QrIVhxVV5eLvBu/euwvLxcE1Os1DlhIc3WCPSsEq2UcJ3gvWPkSksjUFTUAFlZtUhPdweXaGVx0+v8shxLFCyhIsiVxCOxWPZACM2FD2FdhCYWI0zdwYorb7EdyNKilSiXOidWSLPVGqMtXGaneLOAd4xcoPPPsmgwK5bIKKwgyKXEipT7vLy8HDabDcuXR2LqVE6w1RFr159i4fO///0Px44dA+B2ax04cABnzpwBUL9iKhEaGJEdFIy44n35UpYWLX3+gYolhlvArRkWLrHJuLy8HLW1tQCAqKgon3gjgN0sEzXwx65nHJ5RhFOsltMZh61bo9G9u/lWEblxVWL3DF9aQKrVEWviW7Hwue6663zieAYOHAjA/TTNcRy5ukIUvZ9ctBBXci0tYq0OeOQWkhMrlig1iQs9IFh5QTbLwuV/vvy7x4vB2iQcLKFiYZQ7B1jZ2sdb5hYtitClto/cY66qqsKuXceDjquS2+qINfGtSPgUFRXpNY6AFBcX4/HHH8fnn3+OY8eOIT09HSNGjMCMGTN8fui9e/diwoQJ+Pbbb5GSkoJ77rkHU6dONWXMhHKCFVdyLC3BFCFMSkpCfn4+Vq9eLfmUHWgSF0t3t+qCzIqFi6WYIyMRO/9RUdUoKspEaWkElIa2mSUu5MwBVikE64//nOFf20cL5JybqqoqvPnmm5rGVbEyB8hFkfBp1aqVop3/61//wmOPPSZYOVUJBw4cgMvlwiuvvII2bdpg3759GDt2LM6ePYsFCxYAACoqKtC3b1/k5eXh5Zdfxo8//ojRo0cjISEB48aNC+r7wxEjJj6tv0OOuVzuoie2He8uk/OUrVTIWXVBZtFNYWZWndEInf/OnfdiyZIx4LgIrFzJYd68ckXxFqyLC1ZEjZJgXqE5w7+2jxZI7Yd3/WoZV8XiHBAIXYOb33zzTTz44INBC5/+/fujf//+ntetW7fGwYMH8dJLL3mEz1tvvYXq6mosXboU0dHR6NixI/bs2YOFCxeS8FGBkokvkOuID3wTi68ZMWJEwEa3SidXpS4ztc0tpSYN7yqm/l3nWW+oqQaWMljCJavOG+/zHxVV7RE9gPp4C1bEBasIxccMHiz+kCY2ZxhZ28cbrcUKS3OAFLoKHz1r+jidTiQmJnpeb9++Hb169fKxDvTr1w9z587FH3/8gSZNmug2llBFzk2oRZdsrW94uZaWYKwCUpOGWBXTULJE6FklOhhCJeZFKfz5LyrKtFS8hVrMSp0OXHeoFiNGjEB5eWNPaYHo6BNYt24dM7V9vNFarFghiw2waDr7oUOH8Nxzz3msPQBw7NgxZGVl+WzXtGlTz2diwuf8+fM4f/6853VFRYUOIw5dlHTJ1ivmQonLTG4mjJzvCjRpCI0p1CwRrLpDrBZvoDVWOn617m6zOsbLqTv0xx+J2LBh0F9p3cC8eTGebVi0iugtVpzOOHz88TlcfvlxzetLqcVU4fPQQw9h7ty5AbfZv38/2rdv73n9+++/o3///rjlllswduzYoMcwZ84czJ49O+j9KEFtVhHLSC3qelo6lCzAvH9brVUgmMU+FC0RLF6nwZjwrXRviokGo+IttLC4KL2fzK7yLFV3KCqq+q/zfmFs06bZce+9capj/8xAq5R7VutLmSp8HnjgAYwaNSrgNnwfMMDd9fraa69Fjx498Oqrr/ps16xZMxw/ftznPf51s2bNRPc/ffp0TJ482fO6oqICLVq0kHsIigkmq0jrcWg5wQda1AHobumQGqvD4UBZWZknlTyYp2K1v4uVnsS1wiwhoebJmpV7Uy5i1dYB/SwL/O+5alUspk61a1KsTu72LFV5FhOXNTUxAgHMNk0fbvR28fmm3Af+bQNZ7FiuL2Wq8ElJSZHdyfn333/Htddei5ycHCxbtgwREb4XV25uLmbMmIGamhpERUUBADZv3ox27doFjO+JiYlBTEyM6OdaE2xWkRboMcEHWtTNtnQIHa8ZWQhWy3wIFqOFRLAxR1ZMhw903rS2LHg34DSjWB1rVZ6FxKW7Oal+Dzd6u/jqp9wH/m2FLHa8ADd73g+ErsJnxIgRiI+PD3o/v//+O3r37o1WrVphwYIFOHnypOcz3pozfPhwzJ49GwUFBZg2bRr27duHZ555BosWLQr6+/XEjAwfPSZ4qUXdTEuH2HEojdFRSzBxQVZGC5GvxGKkZcxRKAWhawUrxepYeoDwF5d6jU1LF1+geUbNbyv2vSxbuFUJH5fLVc/iwr9fUlKCli1bAgBeeuml4Eb3F5s3b8ahQ4dw6NAhZPjZ9vjMMbvdjk2bNmHChAnIyclBcnIyZs6cyXQqe6DJNVD7Dy3dA1pO8GKLOksTlT/eExefgq61+4XVIGDWUWMx0uIchloQutawsKCxGCTMo/XYtHbxBbLSaPnbsjzvKxI+FRUVGDNmDD788EPEx8dj/PjxmDVrFiIjIwEAJ0+eRFZWFurq6jQd5KhRoyRjgQCgc+fO+PrrrzX9br2QmlzFqvvyaGFO1mOCFzOvszRRiVm4xFLQtYBEjXLrplluYZZN9IEwqtoyKwuaHkHCWsXPqBmblAtWSxef93xUUgIcPBgNpzMubGr7KBI+jzzyCH744QesXLkS5eXleOKJJ7B7926sW7fO86PpWbsnlAh2ctVistdiglcyibJQ54VcGOagxXk3yi3MgkVDDUZaFlld0ILBiBR578Km3sj5XfQQnBeOOQk22yTPfRnqtX0UCZ8PPvgAK1asQO/evQEAgwcPxoABAzBo0CCsX78eAKhJqUxYmFy1GIPUZCtVudlIFw+5MMxBi/NupGBlxaKhBqMr/1rhnEihJH5GyUOakFAP1qqslSgROmb/+zIUflsxFAmfkydP+vTrSk5ORmFhIfr164cbb7wRr7/+uuYDDFXkTq56PuVqNcEHmmz1ch2pwaouDKsT7Hk3Q7CGokWDqI/S+BmxBz3/tjR6CvVgRElJCfDdd0589dUKnD6dVO+YtZgPzWpwqwRFwqdly5bYv3+/T4XkuLg4bNq0CX379sU//vEPzQcYasjN8AGMecoNpwmeBStbOBLseTdKsLLagiNckIqv0WNBVRM/I2VVCyTUy8vLDX8YrF97yQ6bbRLy8gp1mQ+tkMyhSPj07dsXy5Ytw4033ujzfuPGjfHpp5/i+uuv13RwoYjURcE/Oej5lBtuEzx/HFIWrlA5XlbQ6rwbJVitMGGbiR7CQ0lBRD1/n2Ct397HHEior1mzxtACmGK1lzguAoWFecjLK0RhYZ7sY5b727J+jygSPrNnz0ZpaangZ3Fxcdi8eTN2796tycBCGTkXhZ5PueE2wfsf78yZJ1Fc3ACZmbVIT+8KoGtIHS8raHXeg12UlNYC0gortb+Qg9bzhpqCiHqer2Cs30lJScjPz8fq1auZKbDo/V1i60l6eikmTVoseMz+gdhWu14DoUj4NGnSJGAV5Li4OFxzzTVBD4qQfso9depUUBdiqFzAcvE+3rQ0ICfHxMGEEcGcdy0KP5rVhsJq7S/kouVYWSmI6E0w8TN8AofWwfFaWNoCrSdix6w0ENtb6JeWRni607PSmNQbxQUMa2trsWjRIrz99tv4+eefAQAXX3wxhg8fjvvuu8/TLoJQh1z3AB9IZ7WJkyDkooWFwaxaQFZsf2EWoRh7p2XspBb3gd6Zit5Cn9XGpN4oEj7nzp3D9ddfj+3btyMvLw+9evUC4O6gPm3aNKxfvx6bNm3CRRddpMtgwwH+Ine7FNdJ3jw0cRKhDAuTZLBQ7ajAWLl8QCC0SAm/EPCdFHRDUj0TWfh1iOXGpN4oEj5PPfUUjh49iu+//x6dO3f2+eyHH37ATTfdhKeeegqPPvqolmMMO5KSkjwXSKjXUyCIUIZqR8kjnLJL5aJHQUW91xOrlAyp33ArAO+88w4WLlxYT/QAwGWXXYYFCxZg1apVmg2OIAhCS5zOOBQVZcLpjDPk+wItBIQvdnslsrKOGLpAslhzxuFwYNeu4xg3joPLHR7jKai4a9dxOBwOQ8ah5ph5t6U3LLotFVl8jhw5gquuukr08+7du+O3334LelAEEQoYkdUTaplDemKGyykU41dCCdYyXLVuSCoXrTK4pNyWYs23jZ6nFAmf+Ph4nDhxAi1atBD8/NixY4iLM+ZJKtwwqk9RKMCCGDAiqydUM4f0wCyXE0vxKyzcFyyi1TFrYT3SuiGp3DGlp6drdh4CuS0DNd82cp5SJHyuvfZa/Pvf/8batWsFP3/qqadw7bXXajIw4gIUHCkfVsSAEdlERmcsWXnhNDP2gIX4FVbuC29YdDMFg5bWIy3bCZlh0QoUS8RChqMi4TNr1ix069YN3bt3x+TJk9G+fXtwHIf9+/dj0aJF+N///ocdO3boNdawhIIjlWFW+nKoo3ThZEUk8Yum1BO01osra9XRWUyvZ83NpAVajlUrwczS+WPlIV6R8OnQoQM2b96MgoIC3HrrrZ5O7BzHoX379ti0aRM6duyoy0CtjtKFgJ8QpZ5UrfI0RFgbJYKSJeuC9+LavHkFpk2zo67OhshIDnPnVmD48Nt0WVz9F/Xy8nLU1tb6bBMVFYXq6mqUlZUZusCzsvgAbC3KLGKVrF456xBLD/GKCxh2794dP/30E/bs2eNTwPDyyy/Xemwhg5qFgJ84i4trsXIlB5fL5tkuMpLDPffcgMzMBjRxEMzBmtWNv0ceeADIzwcOHQLatLEhIyMBQILu3+twOLBmzRrJ7Y0QgiwtPkToEMh6x/efZCnVXbHwqaioQOPGjXH55Zf7iB2Xy4UzZ84gPj5ey/GFBGoXgqSkJCQlues3jB8P1NUBkZHAK6/YkJPTVI+hEkRIk5Eh3PlbT1gSgiwtPkRoISXaWcpwVFTH5/3338eVV16JP//8s95n586dQ9euXfHhhx9qNjjCTUEBUFwMbNni/n+wRayI0ESLGjUOhwNlZWX1/hNLQyWshVXqrBChBx+wzV9/ZmY4KrL4vPTSS5g6dSoaNmxY77NGjRph2rRpeP755zFo0CDNBki4MeNJVQ2sBLWyht7lCLSI25DrkiWCw8zSFCyl1xP1CbVMN39YyHAEFAqfffv24cUXXxT9vFevXnj44YeDHhRhTVgKauUxa5HxnpgCiZJgJjD+b6XiNuR+h16uFqpBdQEWAotZWXyI+oRiphtrGY6AQuHzxx9/1MtM8KampgZ//PFH0IMirAkLsQxGCA45eAenP/ZYKjiOz4CMwEcfDcLMmd2CDk7nv2PLFmDRovpxGz17jkTv3vpkzsgVMyws9KxgZmAxi4sPIQxLokYLCz6LYk6R8MnMzMR3332H9u3bC37+3XffoVWrVpoMjCDUYITgUDKWvXvh6bfDU1dnQ2VlU0gNQe6k0727u4mh9/dERgLduiVJfocapASl3E7N4YaZgcUsLj6EOcidV/wt+GIPO3Is+KxdV4qEz5AhQzBjxgxcf/31aNrUN6vo2LFjePjhhzFixAhNB0gQSglWcGhJ27bCoqRNm8B/p8RtmJGRJJD5p09MmNMZhw0bBgUUlHwTRapB5YvZWS2sLT6E8SgRM97iKNDDjhWLwSoSPg899BD+85//oG3bthgxYgTatWsHADhw4ADeeusttGjRAg899JAuA7Uy/hO82MUWbguBnqgVHFqTkSFUjkBalCh1GxYUAP368TVq9AuEP306yaemFFBfUFINKl/4+1oqsJjuf0Jv5IqZ0tJSz3ahaLlVJHzi4uKwdetWTJ8+HatXr/bE8yQkJGDEiBF48sknqUmpAN5m5lWrYvHYY3a4XDZERHCYN8+J4cPPqTYzq/XBhnr2lVrBoQdGiRIjMv8SEx2IiPAXM/UFJdWguoC/m2nmzJMoLm6AzMxapKd3BdDV8vcbYS3ExExq6jHU1MRg2bLNHlETirWfFBcwtNvtePHFF/HCCy/g1KlT4DgOKSkpnvYV3mzduhVXXnklYmJiNBmslUlKSkJJCTB16gUrhMtlw7RpCcjPT1DlflGbRcVi9pUeGCU45GCVcgRS2O2VmDfPiWnTEmQJSpZ+AzPxvo/S0oCcHBMHQ4Q9YmLm9dfHAPC1AJntotUDxcKHx2azISUlJeA2N9xwA/bs2YPWrVur/ZqQ4pdfhOJO3IuCmgVBbRaVHtlXDoeDySJ3wQqOULeMeSPXJTtqVJ1X6wfp8xsqoo8gQgUhMQNw4Gsa+7uzQq32k2rhIweO4/TcveVgJe5Ea8QsSFaLZfIXOeXl5cz0WDICpS5Zq4iZcBKvoQj9ftojJGYCubNCrfaTrsKH8MWsuBN/S4zWlhmhSUkocO6JJ7KQnp7O5CQVTNViuZYxK0zgerhkzSRc3LqhipYp1XK/j/V7VCu8xUxUVDWWLBkT0J1llU7xciDhYzBmxDysW7dO/y/xQixwbubMk8xOGnqnZFppAdbaJWsmLBTVJNRjZEq10SJLT8QEnP9Dr7eYUevOYtWCHwgSPiYQ6jEPYoFzxcUNwjaoU+kCbGbPnlB1yRLWxYiU6lCpWyNXwPkTyJ01ZMgQJCcn1/sbq1rAdBU+QpleROgjlgWQmSne7oTwxT8FurQ0AkVFDZCVVYv0dLci0WvSYakUAEEAxqZUW71ujVwBN2TIEAC+HgExd1ZycjLS0tJ0HrlxUHAzoTliWQDumiWEXHhRs2QJMG6c2wITEeEWJQUF+n43a2no4RR7QdTHyJTqUKlbIyXgkpOTVVmWQ+Fe1FX4VFZa5yKxIlq5OfTIvhI2m5LwUUpJyQXRA7j/P368W5ToLUZYcclaKT5KjFBYLNSixbEbmVKtpcgy83eXI+CU9nALhXsRUCh8+vTpI2u7zz//XNVgCGUEcodER5+QGdRcgGeeaa5ZJWlvQikLwCxCKdBYLVYPUA6VxUINWh67USnVWomsw4cP48033/S8NjpYWq6AU/Ld/veY2DGxei/yKBI+X3zxBVq1aoUBAwYgKipKrzERChBzh8ybJ10t2+mM84geQH3acrj3ItPzuCjQWFvkBnpqidWFWzBofexGPUwFK7IcDoeP6Nm6NReFhXmGBkvrbSULFD/EOoqEz9y5c7Fs2TK8++67uP322zF69Gh06tRJr7ERMhFyh0ybZse998YFvMiFG04qtybo2YvMKOSIF6czDpdddjM6dYrRPcCYhwKNg8P7dw00UYeaKGfVtaZUeMr9XZxOp+bHFIzI8j73W7fmYvPm6wG451ojg6X1spJZPQBckfCZMmUKpkyZgu3bt2Pp0qXo2bMn2rVrh9GjR2P48OGIj4/Xa5xEAITdITbJYDy5DSflYPXCd1JZVL6CTnmAcTDp6awFGlsJ707xjz2WCo67sPh89NEgzJzZLeQ6xbPqWlNjIeB/vxMnTgSsor569WoAwR2THiUknM44bN6cB1708BgZLK2HlczqAeCqgptzc3ORm5uLZ555Bu+++y5eeOEFPPjggygtLSXxYwJi7pAHHvg7kpP/BCCeDt2xo00za4LV41HE3IZz5wLTpgUXYBxsejorgcZWJCkpCXv3Cj8cVFY2ZV6UK4VF11owFoKkpCRDjklpoK8cTp9OAt//yhs9m3waUQPM6o1Lg8rq2r17N7788kvs378fnTp1orgfkxBzh1x6aRMAgdOhtbQmhEI8irDbUBtBZ2Z6erjD0rVpRpyR2WhtIdDrHGptARNrBpqXV6jbb6+HgPPH6o1LFQuf0tJSLF++HMuXL0dFRQVGjBiBnTt3okOHDnqMj5CJmICRkw6tlTUhFOJRhKxWLhdgswHeZanULppmpqeHOmI96KKjo5GRkcTEtWnlgNBg0NJCoNU5NCIOyl8gAC5cf30hevbcHtR+pTDChWnlxqWKhM+NN96ILVu2oG/fvpg/fz4GDBiABg2o6wUrCAkYo91PVo9HEbMMzJkDTJ8e/KJpdXegGcjNGgxUvmHixIkoKEgy9do0KyCUBQuTVhYCrc6h3DioYcOGISEhAYB6IWRlgeCP/70oFj/EerKAItXyySefIC0tDb/99htmz56N2bNnC263e/duTQZHBI8ZJn4rx6OIWa0KCoDbbgt+0WTJ5WIVAmUNzpz5O4Alkvvgn+zNuDb5RUDK3aPHYmG2hcn7mAIJALnHrpXLTG4skH9Atdrg6UABxqyLBG+McKMZgSLhM2vWLL3GQchEqXk2FNxPRiNmtdJi0Qy138OotGmxrMHHH28uWbbBbLwzy1au9M+i5HDPPTfokllmdsoxf20MGzYMtbX1+/RFRUXBbrcrukb0CqqVaxWTK5jkipkRI0YwLxL8sdp4hSDhYyHUpqla3f1kBnpaBkLl9zA6bVpt2QYWSEpKQlKSkOi1ISenqS7faWbKsV7Xhh5BtUJWMbdlSr17MFQsI6GKJgE6X375Jc6ePYvc3Fw0adJEi10SAgST0mll91MoIvV7sFqAzhuj06aF3YScZVJoAWNEL29tkLKO6Oli0fra0NplxiNkFVu/fuBfyQzBuQfNvj8JcRRXbj5z5gwef/xxAO7u6zfccAM2bdoEAEhNTcVnn32Gjh07aj9SgggTWC1AZzZCbsK5c504c4Zta48/ej+EeFsbmjevwLRpdtTV2RAZyWHu3AoMH34bE8JZCXpZUISsYkCEJ4PTahWJCXkoEj6rV6/GtGnTPK/fe+89fPXVV/j6669xySWX4I477sDs2bMDVtgkCCtgpsWFxQJ0rOBvMYmMPIdXXzV7VMYh97rkr80HHgDy8/nzZUNGRgKABEPG6o0WmWVGNfL0x0oViQl5KBI+RUVF6Ny5s+f1xx9/jJtvvhk9e/YEADz88MO45ZZbtB0hQRgMWVzYxttiUlZm7liMRO11abab2+zMskAI1dlxt5e4EIBupYrEZmMFFz2gUPjU1tYiJuZC1+/t27dj0qRJntfp6emiRcQI4/D+DVi50KwEWVysg9waP1ZKGRbDitelEZllahbbQDFDhw+3sWxFYr0JdK6dTqenZ1ogWHhgVCR8srOz8dVXX6F169b47bff8PPPP6NXr16ez0tKSkw/IKJ+ITcWLjSC0INANX7mzXNi+PBzJP51Rmgx5B++9M4sU2sF848Z8l60tQyeDiXknmspWBDmioTPhAkTMHHiRHz99dfYsWMHcnNzfVpVfP7557jiiis0HyQRHCxcaAShF2I1fqZNS0B+fkLINSFlCanFUO9mlsFYwbyFUFpaGqWfSxBK64gi4TN27FhERkbiww8/RK9everV9SktLcXo0aM1HSBxgXB+2iDYw4gu0HKhViDmILUYStXdYWlOC2dRE24oruMzevRoUXHz4osvBj0gQhx/8+ypU6cC9iciCD1hqUhbOLYCYaEHlxy6dPkeEye2RUVFKjIza5Ge3hVAV12uDauck3CA5d+COoxaDO+JorQ0AkVFmUxeWIR6WLKkSOF9PZaUuC0vbdsab2UJtVYgUrCcKSVEp04JSEvTVwBb7ZxYnUDChvXfQpHwqampwYwZM7Bu3TokJibirrvu8rH+HD9+HOnp6airq9N8oIQvS5YA48alwuUayeSFRaiHJUuKXNzXo9viEhHhFiEFBcaOIVRagUhhdg8uqbGZ8ZTP8jkJRQIJGyv8FoqEz5NPPok33ngDDz74IMrLyzF58mTs3LkTr7zyimcbji95SehGSQm/yLhrTbB4YVkZFiwuLIkaKS5cj+7XLpfb8tKvnzmWn1AVPGZ2eZeDmU/5ZvYlU4pVat2IISVsrPBbKBI+b731Fl5//XUMHDgQADBq1CjccMMNuPPOO7F06VIAgM1mC7QLQgOEAjlZu7CsDGsWFzNdSHIIp8BiMxcts7q8y8Hsp3y9s8e0IhSKo0oJGzN7xMlFkfD5/fff0alTJ8/rNm3a4IsvvkCfPn3wz3/+E/PmzdN8gER9hAI5A93kLFxoVoOVSYcFF5IU4RJYzMKiZUaXdzmY9ZTPz21WyR6zYhFKHrnNb8eOvYH5HnGKhE+zZs1w+PBhZGZmet5r3rw5tmzZgmuvvRajRo3SeHiEEPUDOS9cWP6wcqFZGbMsLiy5kAIRLoHFLC1arMQzmd0J3t86O3PmSRQXN9A9eywcUdL89pJL2OgRJ4Yi4dOnTx+sWrUK1113nc/76enp+Pzzz9G7d28tx0YEwHfic19YJSUJkgu0Ff3LZo7ZTIuLlVxIrCzE4QQL8UwsdIL3LUQI5OTo9lWaw3LKtxBKmt+ycH2KoUj4PPLIIzhw4IDgZ82bN8eXX36JzZs3azIwQhrvC0vOAs2CqV4pZo7ZbIuL1VxILE90hH6w1gneKrCe8i2Fle/3COlNLtCqVSv069dP9PP09HSMHDky6EERyhBboEtKfLdjyVQvFzPHHMjiYgS8Cyky0v06VF1IROiQkQH07k3XqBRiweBOZ5zJIwsPFAkfnnfffRdDhgxBp06d0KlTJwwZMgTvvfee1mMT5Pz587j88sths9mwZ88en8/27t2Lq6++GhdddBFatGgRNsHWZi/QoQpvcfHGaItLQQFQXAxs2eL+P2uBzQRBKCdQMDihP4pcXS6XC7fddhveffddXHzxxWjfvj0A4KeffkJ+fj5uueUWvP3227qmtE+dOhXp6en44YcffN6vqKhA3759kZeXh5dffhk//vgjRo8ejYSEBIwbN0638bCA1VwiVoGVoF0rm5TDEb4zeVVVFRo2bCi6HYvxdIQxWCX9PlRRJHyeeeYZFBYWYv369Z5aPjzr16/HnXfeiWeeeQaTJk3ScoweNm7ciE2bNmHt2rXYuHGjz2dvvfUWqqursXTpUkRHR6Njx47Ys2cPFi5cGPLCh5UFOhTROmjXisHlhDKU9M9jKZ6O0B+rpd+HKoqEz7JlyzB//vx6ogcAbrrpJsybN0834XP8+HGMHTsWH3zwgeBT1Pbt29GrVy+fC6Zfv36YO3cu/vjjDzRp0kRwv+fPn8f58+c9rysqKjQfuxFQVo1+aGVxsWJwOXEB/8VIi4wcluLpCP1Rk35PD0vao0j4/PLLL8jLyxP9PC8vDxMnTgx6UP5wHIdRo0bhrrvuwpVXXoni4uJ62xw7dgxZWVk+7zVt2tTzmZjwmTNnDmbPnq35mM0gnF0ivHuB5Ukg2EBtmgDNxXvRevXVOixenG7ZjBzCPJSk39PDkj4oEj6xsbEoLy9Hy5YtBT+vqKjARRddJHt/Dz30EObOnRtwm/3792PTpk2orKzE9OnTlQxXFtOnT8fkyZM9rysqKtCiRQvNv4dFrFZDIhDe7oVQnARoAmSDpKQklJQAjz3GgeNCq1ceCWv2sGImrhVQJHxyc3Px0ksv4aWXXhL8/IUXXkBubq7s/T3wwAOS1Z5bt26Nzz//HNu3b0dMTIzPZ1deeSVuv/12rFixAs2aNcPx48d9PudfN2vWTHT/MTEx9fYbqnib6gPVkGDJv6xmLKE4CdAEyA7uLErfBA6r98ojYU2EE4qEz4wZM9C7d284HA48+OCDaN++PTiOw/79+/H000/jP//5D7Zs2SJ7fykpKUhJSZHc7tlnn8UTTzzheV1aWop+/fph9erV6NatGwC3KJsxYwZqamoQFRUFANi8eTPatWsn6uYKN7ybHD72WKrPE+tHHw3CzJndTGtyKIa3e+HUqVNYtmxzyFipCGvizqL0bRJq9YwcloU1WaIIrVEkfHr06IHVq1dj3LhxWLt2rc9nTZo0wdtvv42ePXtqOkAA9VxrjRs3BgBkZ2cj46+gluHDh2P27NkoKCjAtGnTsG/fPjzzzDNYtGiR5uOxMklJSdi7V6jujw2VlU3B4vzBT2qrVsVi8eJJYRVXwU/6fAwTYT4ZGcC8eU5MmRIvmJFDaAdZonwJpfAEM1EkfADgH//4B/r164dPP/0Uv/zyCwDg4osvRt++fQPWrNAbu92OTZs2YcKECcjJyUFycjJmzpwZ8qnsarBi3Z+SEmDqVHvIxVUEQu6kTxjP8OHn8PvvS3H6dKLH0lNUlCm6IMlZsMiyUR+WLVFGY/UWFyyhSPh8/vnnmDhxInbs2IF//OMfPp85nU507NgRL7/8Mq6++mpNB+lPZmYmOI6r937nzp3x9ddf6/rdoYAV6/6EYlyFFOEwmVuV6Oho2O2VsNsrJRckOfF0ZNkgAiHW4iKUH/z0RJHwWbx4McaOHYv4+Ph6n9ntdowfPx4LFy7UXfgQwWO1uj+hEFchN1CbpeBygCwRQsiJl0tIOIPy8say4unIskEEIlCLCxI+ylEkfH744YeA6ed9+/bFggULgh4UYQxWqvsTCnEV/sXLSksjUFTUAFlZtUhPd/sdWRMRZIkQRypeLienKbZssVY8HQ+rsSSsjksv+IcgqRYXrD0ssY4i4XP8+HFPxpTgzho0wMmTJ4MeFEEIMWpUHX7/fbFkXAXLkwAvDpYsAcaNcy+KERFu16MWDUi1PnayRARGKl7OivF0rMaSsDouPfF+WGrevALTptlRV2dDZCSHuXMrMHz4bcw9LFkBRcKnefPm2LdvH9qI3LV79+5FWlqaJgMjCH+SkpIwY8ZIVFdXY9WqWEydaofLZUNEBId585wYPvycJSaBkpILogdw/3/8eLfrUY0FbsiQIUhOTrbEsYcaUvFyVomn4wWzVCyJlsJajguVJ5xjXPh7+oEHgPx8PjzBhoyMBAAJZg7NsigSPjfeeCMeeeQR9O/fv16F5nPnzmHWrFmCfbwIQiv4yrlTp3oLBxumTUtAfn4C0+4DHnegtu97dXXuCU3uguht8k9OTqYHDhORipezQjwdb1nYsgVYtKh+LEnPniPRuzc0E9ZyXaj5+fkAKMaFx0rhCSyjSPg8/PDDWLduHS6++GJMnDgR7dq1AwAcOHAAL7zwAurq6jBjxgxdBkoQPFoIBzMJ1v3hb/Jv3rwCDzwQ+G8oQFlfpBYkpQuWGbEsSUlJ6N5d+Nrs1i1J04cKua5RPnuXYlwILVEkfJo2bYpt27bh7rvvxvTp0z0Xpc1mQ79+/fDCCy94GoMShF5YMW7CG7nuD6Fu4EePtqhn8p82zY78fPGFlQKUrYWZsSysueYSEhJCKsaFHkDYQHEBw1atWuHjjz/GH3/8gUOHDoHjOLRt25baQhCGwdrkrAY57g/vwMZVq2Lx2GP2erWMAHeWUCBrl9yn69LSUs/3EsZiRoyNGKy55kIlxoUeQNhBsfDhadKkCbp27arlWAhCNqxNzmqQ4/4QimnyRytrF9/hniZe4zE6xkYKo2NJ5Lr2rBzjQhmS7KBa+BCE2Vh5ElSCUEwTjx7WLu+JV8jdJrRAUYxF8BgZY6MUPV004ZimTpgLCR+CYByhmKaICOCdd4DcXH3Fn5i7zWolBKwCi25cPV004ZymTphHhPQmBEGYCb8YRka6X0dGul/fcosxC2JSUhLq6tIwdWqCJ8aILyFQV5dGokdjCgqA4mJgyxb3/7UobBkMerpoAqWpE4RekMWHICyA2TFNVi8hYDVC3Y1LrRjCr/0GS5DwIQiLoNViqGbCtXoJAYItwr0VA8U1mQsJH4IIcbyfmtVOuCzGnhDWJlTS1JVCcU3mQ8KHIEIc/ul69+4TmD27Xb0JNzX1GDIyyiT3Y7a7jWADPVw0oe7aAy48gEi13whl9x4rkPAhiDAgKSkJZ882EJxwX399DG666YLlJ9DEGw4LVLjjn7p+6tQpz7/JRaMe/gGkuLgWK1dyPsVIIyM53HPPDcjMbBCy7j2WIOFDEGHClVfaERHBCVR/jsBHHw3CzJndaOINcwKlrpOLJniSktz1mOq7jW3IyaF2T0ZBwocgwgR3nI4N48YJZWjZUFnZ1BLd7YOF+iWJE+i8kItGO8htbC4kfAgijCgoADp3Brp1A/7qMQwgfDK0qF+SeoRSz8lFox5yG5sHFTAkiDCja1fgtdd8CyKGS4YW9UtSj91eiUGDNsBmc5sLvV00JHoIK0EWH4IpSkrcxfLatg2PhVguWrtnyNROCOF0Ov1e+2ZwdenyPbKzD+Hyy29Gnz4t6bohLAkJH4IZliyBJ/4kIsIdAGh2uX4W0Ms9Q6Z2wp+amhrPv8UyuOz2SlxxhZOuHcKykPAhmKCkBD5Bty6XO+uhX7/wWZzFrDre6cSAeB0Vcs8QWkEZXAQQuokAJHwIJgiVXlBqXXX+Vh0xcUN1VLSF+iUJI5XBRYQ+oZwIQMKHYIJQ6AUVjKvO+6lKTNzQU3jwlJeXe/5NIrI+DRq4lwSp5qH8dkToEsqJAJTVRTAB3wvKiplGDocDu3Ydx7hxnJ+rjsOuXcfhcDhk70tM3PCWCbGncEIah8OBNWvWAAh8nsOZhIQEAO4Mrs6d9wLgax5w6Nx5r0dg89sRhBUh4UMwQ0EBUFwMbNni/r8VApt5c/Bzz31SryJyXZ0Nzz23Ec8//7xs8RNI3PBP4d54P4UTgfF+MpUSkeFejM/pjMPevZ0B8Ne0DXv3dg57YUiEBiR8CKbIyAB697aGpQe4sJhKiRK55uBA+/Gvo8K7Z+z2Sjidcdi6NRolJcEeUXgQ6Dzn5+dbLmZBa8i6SIQy5KglCA3gRYl/zIjS2Bup/fB1VNwWILcY4mNVFi2KQEQEh3nznBg+/JxlMy6MwG6vRF5eIQoL8+qdZ7vdbvbwTIO3dEnF+IS7RYywNiR8CEIjhESJHvtxL87u9/xjVVwuG6ZMicfvvy+F3V5pyYwLI9i9+wqP6AFcyMsrDPvAZuBCB/Hq6mo0b16BadPsqKuzITKSw9y5FRg+/DYS1ITlIeFDEBriLUr02M+QIUOQnJyMU6dOYd26dZJpx1bMuNAbf7EIRKCwMA+dOu2j7DjAI2oeeADIz+ere9uQkZEAIMHMoRGEJpDwIQgGkOs6SE9P93nalnJJEPWhGjXyoere4Yv/nCRW88qKbk8SPkTIYqW+X94uBjGEXAxaxRaFEyQWCUIa7zlp1apYPPaYHS6XLSTiCEn4EKajR1l0K/b9UjuBaBVbFOrwT6ZSYtGKT7AEoQdJSUkoKQGmTvVuJ2TDtGkJyM9PgAU1DwASPoTJ6FEW3ci+X3IXSb0XU61ii0IZf6vazJknUVzcAJmZtUhP7wqgq2WfYAlCL0KlnZA3JHwIU9GjLLqRN6paFxVhDt6/Q1oakJNj4mAIwgKEQjshf0j4ECGH0TeqkKjxji8izUMQhBloEUbAtxMaP979AGmldkJikPAhQg6zb1Qj4otYcbERBMEmWoYRFBS4QwXcpQ2sLXoAEj5EiGLWjWpUfBG52AiCCITWYQShVNqAhA8Rsphxo2odXxQoJZ9EDUEQhHJI+BCEhmgZX2TFlHyCffQoH0EQVoKED0FoiFbxRUam5BPsoZc40aN8BEFYDRI+hKmEYpCuFvFFoVg7g5CHnuJEj/IRWkBWKMJISPgQphKqQbrBxheFYu0MQh7+94JYjyQtxInYvo2ErFDGwMJvzQokfAjTocmsPman5BNssHv3FfVaa3Tp8j3z+1YCq1aoUELv39pqFjsSPgTBKKFWO4NQhtMZ51msAHcH+Q8/HIjs7ENBP7Hrue9gIcuENvDhAVK/dbBhBFa02JHwIQiGCaXaGVYkUDkBvTl9OsmngzzgXrROn04MWhDoue9gYMUKFQrwYQRbtgCLFtX/rXv2HInevYO3uFvRYhchvQlBEET44HA4UFZWhqefLkerVhz69AFateLw9NPlKCsrg8PhMGQciYkO2Gy+Ee42mwuJiaeZ3rdaxCwTTmecaWOyOklJSejePQkRfit9ZCTQrVsSMxYYoyHhQxBhREkJsGWL+/9EfXiz/fz5b2PKlHi4XDYAgMtlw5Qp8Zg//208//zzhogfu70SgwZt8AgU3gKihUVGz32rJZAVilAPHy8YGel+TfGC5OoiCB+CcW1oFeCnV6AgFUSUhj/vUq4go8z2Xbp8j+zsQzh9OhGJiaeDFibe8RyB9m1G+QjeCuV93s22QoUKFC/oCwkfgviLYISBVgF+egUKUkFEZaLWzEXYX3TY7ZWCgkeNOGG5fARvhfKP8aEAZ22geMELkPAhCAQvDLQK8NMrUDDcCyIqFbVmLsJ6ixPW4jpYtkIRoQkJH4JA6AuDcC2I6HA4UFxci3HjUr3idYDx4zlcfvkJZGY2EBUCWriZvN2WpaURKCpqgKysWqSnu38IMQHDmjjRE5atUERoQsKHIBD6wiAcCyLybsOioky4XCN9Pqurs+G55zYiK+tIQLehmJtJyfcDgdO0WapvYhbhfvxWxopth0j4ECGF2sDgcBAG4RbgyF8HUvE6egUq8/uVKiDHUn0TglCKFS12JHyIkCHYwOBwEAbhGOBodtAsq8UCCUIrvOdTM4t+yoWEDxEyaBEYrKcwcDrjsHVrNLp3Z3dCCFXkxuvoYbanNG0iXLBKyQwSPgRhAHyMx6JFEUxPCKGMnHgdPcz2ZlucCMIIrFQyg4QPQWhAIAuAf4xHoAnBioGCoYYesQhaFyIkCNawUmYsCR+C0IBAloKtW6PrNQkUmxD0sDjoVQlaK6wQE6AFwWSIEQTrWCkzloQPQWiEmHjo3l3ZhKClCNGrErRWWCUmgCCIwFgpM5aalBKEzpjZJFCvStBaIBYToFUDVbPdhmZ/P0EYTUEBUFzsboRcXMzuQwxZfAjCAMIhVV4pescEmF1fxOzvJwgzsELJDEsJn48++giPPfYY9u7di4suugjXXHMNPvjgA8/nv/32G+6++25s2bIFjRs3xsiRIzFnzhw0aGCpwyRUwvoTthUmBCMxIibAbFFh9vcTBFEfyyiCtWvXYuzYsfj3v/+NPn36oLa2Fvv27fN8XldXhwEDBqBZs2bYtm0bysrKcMcddyAqKgr//ve/TRw5YRT0hG0trBQTQBBE6GDjOI4zexBS1NbWIjMzE7Nnz0aBiNNw48aNGDhwIEpLS9G0aVMAwMsvv4xp06bh5MmTsp/yKyoqYLfb4XQ6ER8fr9kxEIQZlJWV4dVXX5Xcbty4cUhLSzNgRPUpKSEXoB6wns1HEFojd/22hMVn9+7d+P333xEREYErrrgCx44dw+WXX4758+ejU6dOAIDt27fj0ksv9YgeAOjXrx/uvvtu/PTTT7jiiisE933+/HmcP3/e87qiokLfgyEIwmdRjowE2rVzv19W5v4/LcrB4Z/N53TG4fTpJCQmOnxS6qlBKhGOWEL4/PrrrwCARx99FAsXLkRmZiaefvpp9O7dGz///DMSExNx7NgxH9EDwPP62LFjovueM2cOZs+erd/gCYLwgfUU+1DA29ITqDM8NUglwhFT09kfeugh2Gy2gP8dOHAArr+iH2fMmIGhQ4ciJycHy5Ytg81mw7vvvhvUGKZPnw6n0+n57+jRo1ocGkEwAYsB3yyn2IcaYp3hnc44k0dGEOZhqsXngQcewKhRowJu07p1a5T9Zf/u0KGD5/2YmBi0bt0av/32GwCgWbNm+O9//+vzt8ePH/d8JkZMTAxiYmLUDJ8gmIcCvo2FtSrU1BmeIOpjqvBJSUlBSkqK5HY5OTmIiYnBwYMH8be//Q0AUFNTg+LiYrRq1QoAkJubiyeffBInTpxAamoqAGDz5s2Ij4/3EUwEEW4EEjUlJcDevews1FaGxSrU1BmeIOpjicrN8fHxuOuuuzBr1ixs2rQJBw8exN133w0AuOWWWwAAffv2RYcOHfDPf/4TP/zwAz799FM8/PDDmDBhAll0CEKAJUuAVq2APn3c/1+yxOwRaUdJibt6rFZVoOV8n55VqNXCd4a32dwDo87wBGGR4GYAmD9/Pho0aIB//vOfOHfuHLp164bPP/8cTZo0AQBERkZiw4YNuPvuu5Gbm4tGjRph5MiReOyxx0weOUGwh9hCLdQx3moYbXlxOBzYsQNwuXwta3V1wM6dDsTGmlvIkDrDE4QvlhE+UVFRWLBgARYsWCC6TatWrfDxxx8bOCqCsCZ6t4swC6MFHZ+h5nTGwWabVM+ltHXrCuzbV2l6hhp1hieIC1jC1UUQhLbw7SK80bpdhBkEEnR6wAeNS7mUjM5QYzGbjyBYwTIWH4IgtMPMdhF6LspG9P8SgyWXknc2X3l5OWprawEAx441wG+/xaBly/No0cKG6upqOBwOyuojwgoSPkTYE66l/c3qGK9nir3Z/b9YciklJSXB4XBgzZo1AAIXMjTbFUcQRkLChwhrwr2KsFkd4/U8l2YJOjOQqhvEi0uxQobZ2Ydgt1dSsUgirCDhQ4Q1elcRDldrkhmES/8v/jhXrYrF1Kl2uFw2RERwmDfPieHDzwkeJxUyJIgLkPAhCJ0Id2uSkYTLufbOIlu8eBI4zgYAcLlsmDIlHr//vhR2e/0sMipkSBAXoKwugtAJ6kllHOFyrvnxB7LgeG/HQ4UMCeICZPEhCIJQiVlp42osOCxlnRGEmZDwIQiCUIlZTWB5C45/lpaUmGEp64wgzIKED0EQRBCYFTNEFhyCUAcJH4IgCIsiZcGhCs4EUR8SPkRYQwsDEcqY5YqzKlR+Ijwg4UOENeG4MNDkHl7QbymPcCmJQJDwIQjdJjEWrUmhOrmzeK71IFyO0wzCpSQCQcKHIHSDRWtSqE7uLJ5rPQiX4yQIPSHhQxA6QguQcYTLuWb5OMPBjXrq1CnB90Ph2MIFEj4EQRBE0ISqG9WfdevWiX5m9WMLF6hlBUEQBBE0oeZGdTrjUFSUCaczTvbfWOXYwh2y+BAEQRCa43TG4fTpJCQmOixXXHH37ivqVcXu0uV7s4dFaAQJH4IgCEJTrCwcnM44z9gBd/PXDz8ciOzsQ5YTcIQw5OoiCIIgNENMOChxGZkBXwLg9OnAne8J60PChyDCCKoDQ+iNVYUDXyrgnnv6IyKC8/ksIoJDYuJpk0ZGaA25uggijKA6MITeJCY6YLO5fMSPzeayhHBISkpCUhLw6qvA+PFAXR0QGQnMnevEmTPk5goVSPgQRJhBoobQE7u9EoMGbagX42Ol+JiCAqBfP+DQIaBNGyAy8hxeffXC51YO3CZI+BAEQRAa4O0e7dLle2RnH8Lp04lITDztIw6s4kbNyHD/BwAOx4UxBwrctsqxhTs2juM46c3Ch4qKCtjtdjidTsTHx5s9HIIgCMsQypWbHQ4HiotrcdVVqXC5bJ73IyM57Nx5ApmZDSx7bKGC3PWbLD4EQRCEJoTywp+UlIS9ewGXy/f9ujobKiubIoQPPeSgrC6CIAiCkEHbtkCE36oZGemOAyKsAwkfgiAIgpBBRoY74ysy0v06MhJ45ZULsUCENSBXF0EQBEHIxD/ji0SP9SDhQxAEQRAK8M74IqwHuboIgiAIgggbSPgQBEEQBBE2kPAhCIIgCCJsIOFDEARBEETYQMKHIAiCIIiwgYQPQRAEQRBhAwkfgiAIgiDCBhI+BEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNpDwIQiCIAgibKBeXX5wHAcAqKioMHkkBEEQBEHIhV+3+XVcDBI+flRWVgIAWrRoYfJICIIgCIJQSmVlJex2u+jnNk5KGoUZLpcLpaWliIuLg81mM3s4hlNRUYEWLVrg6NGjiI+PN3s4loXOY/DQOdQGOo/aQOdRG/Q8jxzHobKyEunp6YiIEI/kIYuPHxEREcjIyDB7GKYTHx9PN7cG0HkMHjqH2kDnURvoPGqDXucxkKWHh4KbCYIgCIIIG0j4EARBEAQRNpDwIXyIiYnBrFmzEBMTY/ZQLA2dx+Chc6gNdB61gc6jNrBwHim4mSAIgiCIsIEsPgRBEARBhA0kfAiCIAiCCBtI+BAEQRAEETaQ8CEIgiAIImwg4ROGfPXVVxg0aBDS09Nhs9nwwQcf+HzOcRxmzpyJtLQ0xMbGIi8vD7/88os5g2UYqfM4atQo2Gw2n//69+9vzmAZZs6cOejatSvi4uKQmpqKwYMH4+DBgz7b/Pnnn5gwYQKSkpLQuHFjDB06FMePHzdpxGwi5zz27t273jV51113mTRiNnnppZfQuXNnT4G93NxcbNy40fM5XYvSSJ1Ds69DEj5hyNmzZ3HZZZfhhRdeEPx83rx5ePbZZ/Hyyy9j586daNSoEfr164c///zT4JGyjdR5BID+/fujrKzM89/bb79t4AitwZdffokJEyZgx44d2Lx5M2pqatC3b1+cPXvWs83999+PDz/8EO+++y6+/PJLlJaWYsiQISaOmj3knEcAGDt2rM81OW/ePJNGzCYZGRl46qmnsGvXLnz33Xfo06cP/v73v+Onn34CQNeiHKTOIWDydcgRYQ0A7v333/e8drlcXLNmzbj58+d73isvL+diYmK4t99+24QRWgP/88hxHDdy5Eju73//uynjsTInTpzgAHBffvklx3Hu6y8qKop79913Pdvs37+fA8Bt377drGEyj/955DiOu+aaa7j77rvPvEFZlCZNmnCvv/46XYtBwJ9DjjP/OiSLD+FDUVERjh07hry8PM97drsd3bp1w/bt200cmTX54osvkJqainbt2uHuu++Gw+Ewe0jM43Q6AQCJiYkAgF27dqGmpsbnmmzfvj1atmxJ12QA/M8jz1tvvYXk5GR06tQJ06dPR1VVlRnDswR1dXV45513cPbsWeTm5tK1qAL/c8hj5nVITUoJH44dOwYAaNq0qc/7TZs29XxGyKN///4YMmQIsrKycPjwYfzf//0fbrjhBmzfvh2RkZFmD49JXC4XJk2ahJ49e6JTp04A3NdkdHQ0EhISfLala1IcofMIAMOHD0erVq2Qnp6OvXv3Ytq0aTh48CDWrVtn4mjZ48cff0Rubi7+/PNPNG7cGO+//z46dOiAPXv20LUoE7FzCJh/HZLwIQiduPXWWz3/vvTSS9G5c2dkZ2fjiy++wHXXXWfiyNhlwoQJ2LdvH7755huzh2JpxM7juHHjPP++9NJLkZaWhuuuuw6HDx9Gdna20cNklnbt2mHPnj1wOp147733MHLkSHz55ZdmD8tSiJ3DDh06mH4dkquL8KFZs2YAUC9L4fjx457PCHW0bt0aycnJOHTokNlDYZKJEydiw4YN2LJlCzIyMjzvN2vWDNXV1SgvL/fZnq5JYcTOoxDdunUDALom/YiOjkabNm2Qk5ODOXPm4LLLLsMzzzxD16ICxM6hEEZfhyR8CB+ysrLQrFkzfPbZZ573KioqsHPnTh//LKGckpISOBwOpKWlmT0UpuA4DhMnTsT777+Pzz//HFlZWT6f5+TkICoqyueaPHjwIH777Te6Jr2QOo9C7NmzBwDompTA5XLh/PnzdC0GAX8OhTD6OiRXVxhy5swZH2VdVFSEPXv2IDExES1btsSkSZPwxBNPoG3btsjKysIjjzyC9PR0DB482LxBM0ig85iYmIjZs2dj6NChaNasGQ4fPoypU6eiTZs26Nevn4mjZo8JEyZg1apV+M9//oO4uDhPrITdbkdsbCzsdjsKCgowefJkJCYmIj4+Hvfccw9yc3PRvXt3k0fPDlLn8fDhw1i1ahVuvPFGJCUlYe/evbj//vvRq1cvdO7c2eTRs8P06dNxww03oGXLlqisrMSqVavwxRdf4NNPP6VrUSaBziET16Fp+WSEaWzZsoUDUO+/kSNHchznTml/5JFHuKZNm3IxMTHcddddxx08eNDcQTNIoPNYVVXF9e3bl0tJSeGioqK4Vq1acWPHjuWOHTtm9rCZQ+gcAuCWLVvm2ebcuXPcv/71L65JkyZcw4YNuX/84x9cWVmZeYNmEKnz+Ntvv3G9evXiEhMTuZiYGK5NmzbclClTOKfTae7AGWP06NFcq1atuOjoaC4lJYW77rrruE2bNnk+p2tRmkDnkIXr0MZxHGeMxCIIgiAIgjAXivEhCIIgCCJsIOFDEARBEETYQMKHIAiCIIiwgYQPQRAEQRBhAwkfgiAIgiDCBhI+BEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNpDwIQjCh2PHjuGee+5B69atERMTgxYtWmDQoEE+/Ym2bduGG2+8EU2aNMFFF12ESy+9FAsXLkRdXZ1nm+LiYhQUFCArKwuxsbHIzs7GrFmzUF1d7fN9r732Gi677DI0btwYCQkJuOKKKzBnzhzP548++ihsNhv69+9fb6zz58+HzWZD7969ZR0bvy+bzYYGDRogMzMT999/P86cOaPwLBEEYVWoVxdBEB6Ki4vRs2dPJCQkYP78+bj00ktRU1ODTz/9FBMmTMCBAwfw/vvvY9iwYbjzzjuxZcsWJCQkoLCwEFOnTsX27duxZs0a2Gw2HDhwAC6XC6+88gratGmDffv2YezYsTh79iwWLFgAAFi6dCkmTZqEZ599Ftdccw3Onz+PvXv3Yt++fT7jSktLw5YtW1BSUuLTcXzp0qVo2bKlomPs2LEjCgsLUVtbi61bt2L06NGoqqrCK6+8Um/b6upqREdHqziT+sHimAjCUhjWHIMgCOa54YYbuObNm3Nnzpyp99kff/zBnTlzhktKSuKGDBlS7/P169dzALh33nlHdP/z5s3jsrKyPK///ve/c6NGjQo4plmzZnGXXXYZN3DgQO6JJ57wvL9161YuOTmZu/vuu7lrrrlGxtFd2Jc3Y8eO5Zo1a+bz+WuvvcZlZmZyNpuN4zj3sRcUFHDJyclcXFwcd+2113J79uzx7GPPnj1c7969ucaNG3NxcXFcly5duG+//ZbjOI4rLi7mBg4cyCUkJHANGzbkOnTowH300Uccx3HcsmXLOLvd7jOe999/n/OemtWOiSAIYcjVRRAEAOD06dP45JNPMGHCBDRq1Kje5wkJCdi0aRMcDgcefPDBep8PGjQIF198Md5++23R73A6nUhMTPS8btasGXbs2IEjR45Ijm/06NFYvny55/XSpUtx++23B239iI2N9XG/HTp0CGvXrsW6deuwZ88eAMAtt9yCEydOYOPGjdi1axe6dOmC6667DqdPnwYA3H777cjIyMC3336LXbt24aGHHkJUVBQAd9f08+fP46uvvsKPP/6IuXPnonHjxorGqGZMBEEIQ64ugiAAuBdXjuPQvn170W1+/vlnAMAll1wi+Hn79u092wjt/7nnnvO4uQBg1qxZGDJkCDIzM3HxxRcjNzcXN954I26++WZERPg+lw0cOBB33XUXvvrqK+Tk5GDNmjX45ptvsHTpUqWH6mHXrl1YtWoV+vTp43mvuroab7zxBlJSUgAA33zzDf773//ixIkTiImJAQAsWLAAH3zwAd577z2MGzcOv/32G6ZMmeI5d23btvXs77fffsPQoUNx6aWXAgBat26teJxqxkQQhDAkfAiCAABwHKfLtgDw+++/o3///rjlllswduxYz/tpaWnYvn079u3bh6+++grbtm3DyJEj8frrr+OTTz7xET9RUVEYMWIEli1bhl9//RUXX3wxOnfurGgcAPDjjz+icePGqKurQ3V1NQYMGIDnn3/e83mrVq08AgMAfvjhB5w5cwZJSUk++zl37hwOHz4MAJg8eTLGjBmDlStXIi8vD7fccguys7MBAPfeey/uvvtubNq0CXl5eRg6dKjicasZE0EQwpDwIQgCgNtKwQcli3HxxRcDAPbv348ePXrU+3z//v3o0KGDz3ulpaW49tpr0aNHD7z66quC++3UqRM6deqEf/3rX7jrrrtw9dVX48svv8S1117rs93o0aPRrVs37Nu3D6NHj1Z6iACAdu3aYf369WjQoAHS09Prucr83XxnzpxBWloavvjii3r7SkhIAODOFhs+fDg++ugjbNy4EbNmzcI777yDf/zjHxgzZgz69euHjz76CJs2bcKcOXPw9NNP45577kFEREQ9EVlTU1Pve9SMiSAIYSjGhyAIAEBiYiL69euHF154AWfPnq33eXl5Ofr27YvExEQ8/fTT9T5fv349fvnlF9x2222e937//Xf07t0bOTk5WLZsWT33lRC8cBIaQ8eOHdGxY0fs27cPw4cPV3J4HqKjo9GmTRtkZmbKig/q0qULjh07hgYNGqBNmzY+/yUnJ3u2u/jii3H//fdj06ZNGDJkCJYtW+b5rEWLFrjrrruwbt06PPDAA3jttdcAACkpKaisrPQ5Vj6GR4sxEQRRHxI+BEF4eOGFF1BXV4errroKa9euxS+//IL9+/fj2WefRW5uLho1aoRXXnkF//nPfzBu3Djs3bsXxcXFWLJkCUaNGoWbb74Zw4YNA3BB9LRs2RILFizAyZMncezYMRw7dszzfXfffTcef/xxbN26FUeOHMGOHTtwxx13ICUlBbm5uYJj/Pzzz1FWVmaYZSMvLw+5ubkYPHgwNm3ahOLiYmzbtg0zZszAd999h3PnzmHixIn44osvcOTIEWzduhXffvutJw5q0qRJ+PTTT1FUVITdu3djy5Ytns+6deuGhg0b4v/+7/9w+PBhrFq1yieAW+2YCIIQh1xdBEF4aN26NXbv3o0nn3wSDzzwAMrKypCSkoKcnBy89NJLAICbb74ZW7ZswZNPPomrr74af/75J9q2bYsZM2Zg0qRJsNlsAIDNmzfj0KFDOHTokE/tHeBCjFBeXh6WLl2Kl156CQ6HA8nJycjNzcVnn31WL36FRyjjTE9sNhs+/vhjzJgxA3feeSdOnjyJZs2aoVevXmjatCkiIyPhcDhwxx134Pjx40hOTsaQIUMwe/ZsAEBdXR0mTJiAkpISxMfHo3///li0aBEAt5XtzTffxJQpU/Daa6/huuuuw6OPPioZnCw1JoIgxLFxSqMUCYIgCIIgLAq5ugiCIAiCCBtI+BAEETI0btxY9L+vv/7a7OERBMEA5OoiCCJkOHTokOhnzZs3R2xsrIGjIQiCRUj4EARBEAQRNpCriyAIgiCIsIGED0EQBEEQYQMJH4IgCIIgwgYSPgRBEARBhA0kfAiCIAiCCBtI+BAEQRAEETaQ8CEIgiAIImwg4UMQBEEQRNjw/4yQWz4vK+05AAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChS0lEQVR4nOzde1wU9foH8M8uNwFhERAEQUFETUkTNERPpoa3vJwOGpRampjVkZKjqfmzvGSlpnnpnmValqWplVqWUGalSOU1zEwNDAS8LLKgqFz2+/tjnWFmd2Z2FpbrPu/Xy1eyOzv7ndFz5vH7fb7Po2GMMRBCCCGEOABtQw+AEEIIIaS+UOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGN0IYNG6DRaJCTk9PQQyGkWaHAhxAH9euvvyIlJQXdunWDp6cn2rVrh8TERPz1118Wxw4YMAAajQYajQZarRbe3t7o3LkzHnroIaSlpdn0vTt37sTdd9+NgIAAeHh4oEOHDkhMTMQ333xjr0uz8NJLL+GLL76weP3AgQNYuHAhiouL6+y7zS1cuJC/lxqNBh4eHujatSueffZZlJSU2OU7Nm3ahNWrV9vlXIQ0NxT4EOKgli1bhm3btuGee+7BmjVrMHXqVPz444+Ijo5GVlaWxfEhISHYuHEjPvzwQyxfvhyjR4/GgQMHMGTIECQlJaGiosLqd65YsQKjR4+GRqPB3LlzsWrVKowZMwanT5/Gp59+WheXCUA58Fm0aFG9Bj6ct956Cxs3bsTKlSvRpUsXvPjiixg2bBjs0T6RAh9C5Dk39AAIIQ1jxowZ2LRpE1xdXfnXkpKScPvtt2Pp0qX46KOPRMfrdDpMmDBB9NrSpUvx1FNP4c0330RYWBiWLVsm+32VlZVYvHgxBg8ejD179li8f/HixVpeUeNRVlYGDw8PxWPGjh0Lf39/AMDjjz+OMWPGYPv27Th48CDi4uLqY5iEOCSa8SHEQfXt21cU9ABAZGQkunXrhpMnT6o6h5OTE1599VV07doVr7/+OgwGg+yxly9fRklJCfr16yf5fkBAgOjnGzduYOHChejUqRNatGiBoKAgJCQk4OzZs/wxK1asQN++feHn5wd3d3fExMRg69atovNoNBpcu3YNH3zwAb+8NGnSJCxcuBCzZs0CAISHh/PvCXNqPvroI8TExMDd3R2+vr544IEHkJubKzr/gAEDEBUVhUOHDqF///7w8PDA//3f/6m6f0KDBg0CAGRnZyse9+abb6Jbt25wc3NDcHAwpk2bJpqxGjBgAL766iucO3eOv6awsDCbx0NIc0UzPoQQHmMMFy5cQLdu3VR/xsnJCQ8++CCee+45/PzzzxgxYoTkcQEBAXB3d8fOnTvx5JNPwtfXV/acVVVVGDlyJL777js88MADmD59OkpLS5GWloasrCxEREQAANasWYPRo0dj/PjxKC8vx6effor7778fu3bt4sexceNGTJkyBXfeeSemTp0KAIiIiICnpyf++usvfPLJJ1i1ahU/+9K6dWsAwIsvvojnnnsOiYmJmDJlCi5duoTXXnsN/fv3x5EjR+Dj48OPV6/XY/jw4XjggQcwYcIEBAYGqr5/HC6g8/Pzkz1m4cKFWLRoEeLj4/HEE0/g1KlTeOutt/Drr79i//79cHFxwbx582AwGJCXl4dVq1YBAFq2bGnzeAhpthghhNyyceNGBoCtW7dO9Prdd9/NunXrJvu5zz//nAFga9asUTz//PnzGQDm6enJhg8fzl588UV26NAhi+Pef/99BoCtXLnS4j2j0cj/vqysTPReeXk5i4qKYoMGDRK97unpySZOnGhxruXLlzMALDs7W/R6Tk4Oc3JyYi+++KLo9d9//505OzuLXr/77rsZAPb222/LXrfQggULGAB26tQpdunSJZadnc3eeecd5ubmxgIDA9m1a9cYY4ytX79eNLaLFy8yV1dXNmTIEFZVVcWf7/XXX2cA2Pvvv8+/NmLECNa+fXtV4yHE0dBSFyEEAPDnn39i2rRpiIuLw8SJE236LDejUFpaqnjcokWLsGnTJvTs2RPffvst5s2bh5iYGERHR4uW17Zt2wZ/f388+eSTFufQaDT8793d3fnfX7lyBQaDAXfddRcOHz5s0/jNbd++HUajEYmJibh8+TL/q02bNoiMjMTevXtFx7u5ueGRRx6x6Ts6d+6M1q1bIzw8HI899hg6duyIr776SjY3KD09HeXl5UhNTYVWW/1/3Y8++ii8vb3x1Vdf2X6hhDggWuoihKCwsBAjRoyATqfD1q1b4eTkZNPnr169CgDw8vKyeuyDDz6IBx98ECUlJcjMzMSGDRuwadMmjBo1CllZWWjRogXOnj2Lzp07w9lZ+f+idu3ahRdeeAFHjx7FzZs3+deFwVFNnD59GowxREZGSr7v4uIi+rlt27YW+VLWbNu2Dd7e3nBxcUFISAi/fCfn3LlzAEwBk5Crqys6dOjAv08IUUaBDyEOzmAwYPjw4SguLsZPP/2E4OBgm8/BbX/v2LGj6s94e3tj8ODBGDx4MFxcXPDBBx8gMzMTd999t6rP//TTTxg9ejT69++PN998E0FBQXBxccH69euxadMmm69ByGg0QqPRYPfu3ZJBoHnOjHDmSa3+/fvzeUWEkPpDgQ8hDuzGjRsYNWoU/vrrL6Snp6Nr1642n6OqqgqbNm2Ch4cH/vWvf9VoHL169cIHH3yAgoICAKbk48zMTFRUVFjMrnC2bduGFi1a4Ntvv4Wbmxv/+vr16y2OlZsBkns9IiICjDGEh4ejU6dOtl5OnWjfvj0A4NSpU+jQoQP/enl5ObKzsxEfH8+/VtsZL0KaM8rxIcRBVVVVISkpCRkZGfjss89qVDumqqoKTz31FE6ePImnnnoK3t7esseWlZUhIyND8r3du3cDqF7GGTNmDC5fvozXX3/d4lh2q8Cfk5MTNBoNqqqq+PdycnIkCxV6enpKFin09PQEAIv3EhIS4OTkhEWLFlkUFGSMQa/XS19kHYqPj4erqyteffVV0ZjWrVsHg8Eg2k3n6empWFqAEEdGMz6EOKiZM2dix44dGDVqFIqKiiwKFpoXKzQYDPwxZWVlOHPmDLZv346zZ8/igQcewOLFixW/r6ysDH379kWfPn0wbNgwhIaGori4GF988QV++ukn3HfffejZsycA4OGHH8aHH36IGTNm4JdffsFdd92Fa9euIT09Hf/973/x73//GyNGjMDKlSsxbNgwjBs3DhcvXsQbb7yBjh074vjx46LvjomJQXp6OlauXIng4GCEh4cjNjYWMTExAIB58+bhgQcegIuLC0aNGoWIiAi88MILmDt3LnJycnDffffBy8sL2dnZ+PzzzzF16lQ8/fTTtbr/tmrdujXmzp2LRYsWYdiwYRg9ejROnTqFN998E7179xb9ecXExGDz5s2YMWMGevfujZYtW2LUqFH1Ol5CGq2G3FJGCGk43DZsuV9Kx7Zs2ZJFRkayCRMmsD179qj6voqKCvbuu++y++67j7Vv3565ubkxDw8P1rNnT7Z8+XJ28+ZN0fFlZWVs3rx5LDw8nLm4uLA2bdqwsWPHsrNnz/LHrFu3jkVGRjI3NzfWpUsXtn79en67uNCff/7J+vfvz9zd3RkA0db2xYsXs7Zt2zKtVmuxtX3btm3sX//6F/P09GSenp6sS5cubNq0aezUqVOie6O01d8cN75Lly4pHme+nZ3z+uuvsy5dujAXFxcWGBjInnjiCXblyhXRMVevXmXjxo1jPj4+DABtbSdEQMOYHRrDEEIIIYQ0AZTjQwghhBCHQYEPIYQQQhwGBT6EEEIIcRgU+BBCCCHEYVDgQwghhBCHQYEPIYQQQhwGFTA0YzQakZ+fDy8vLyr7TgghhDQRjDGUlpYiODgYWq38vA4FPmby8/MRGhra0MMghBBCSA3k5uYiJCRE9n0KfMx4eXkBMN04pb5DhBBCCGk8SkpKEBoayj/H5VDgY4Zb3vL29qbAhxBCCGlirKWpUHIzIYQQQhwGBT6EEEIIcRgU+BBCCCHEYVCOTw1UVVWhoqKioYfRbLm4uMDJyamhh0EIIaQZosDHBowxFBYWori4uKGH0uz5+PigTZs2VEuJEEKIXVHgYwMu6AkICICHhwc9lOsAYwxlZWW4ePEiACAoKKiBR0QIIaQ5ocBHpaqqKj7o8fPza+jhNGvu7u4AgIsXLyIgIICWvQghhNgNJTerxOX0eHh4NPBIHAN3nymXihBCiD1R4GMjWt6qH3SfCSGE1AUKfAghhBDiMCjHhxBCCCF2odfrUV5eLvu+q6trg+fJUuDjACZNmoQPPvgAAODs7AxfX190794dDz74ICZNmgStVt3E34YNG5Camkrb+QkhhFjQ6/V4/fXX+Z8NBi8UFfnB11cPna6Ufz0lJaVBgx8KfOpRQ0bCw4YNw/r161FVVYULFy7gm2++wfTp07F161bs2LEDzs70V4EQQkjNCZ9vhw/3xM6dI8GYFhqNEaNG7UJ09BGL4xoCPe3qiXkkLKeuImE3Nze0adMGANC2bVtER0ejT58+uOeee7BhwwZMmTIFK1euxPr16/H333/D19cXo0aNwssvv4yWLVvihx9+wCOPPAKgOvF4wYIFWLhwITZu3Ig1a9bg1KlT8PT0xKBBg7B69WoEBATY/ToIIYQ0bgaDFx/0AABjWuzcORIREWdEMz8NpckkNy9ZsgS9e/eGl5cXAgICcN999+HUqVOiY27cuIFp06bBz88PLVu2xJgxY3DhwoUGGrGY2gi3PiPhQYMGoUePHti+fTsAQKvV4tVXX8WJEyfwwQcf4Pvvv8fs2bMBAH379sXq1avh7e2NgoICFBQU4OmnnwZg2nK+ePFiHDt2DF988QVycnIwadKkersOQgghjUdRkR8f9HAY06KoyLeBRiTWZAKfffv2Ydq0aTh48CDS0tJQUVGBIUOG4Nq1a/wx//vf/7Bz50589tln2LdvH/Lz85GQkNCAo278unTpgpycHABAamoqBg4ciLCwMAwaNAgvvPACtmzZAsC0DKfT6aDRaNCmTRu0adMGLVu2BABMnjwZw4cPR4cOHdCnTx+8+uqr2L17N65evdpQl0UIIaSB+PrqodEYRa9pNEZcu+YJg8GrgUZVrcksdX3zzTeinzds2ICAgAAcOnQI/fv3h8FgwLp167Bp0yYMGjQIALB+/XrcdtttOHjwIPr06dMQw270GGP80lV6ejqWLFmCP//8EyUlJaisrMSNGzdQVlamWLjx0KFDWLhwIY4dO4YrV67AaDT9hf/nn3/QtWvXerkOQgghDSMvDzh9GvD2Ns2l6HSlGDVqlyjHhzFg69b7odEY0bZtCWbObLjxNpkZH3MGgwEA4Otrmjo7dOgQKioqEB8fzx/TpUsXtGvXDhkZGbLnuXnzJkpKSkS/HMnJkycRHh6OnJwcjBw5Et27d8e2bdtw6NAhvPHGGwCUl9+uXbuGoUOHwtvbGx9//DF+/fVXfP7551Y/RwghpGnLywNmzQLatwcGDQLuvDMAhw/3BABERx9BaupqjB27BYwBXLjBmBZz5uiQl9dw426SgY/RaERqair69euHqKgoAKYGoq6urvDx8REdGxgYiMLCQtlzLVmyBDqdjv8VGhpal0NvVL7//nv8/vvvGDNmDA4dOgSj0YhXXnkFffr0QadOnZCfny863tXVFVVVVaLX/vzzT+j1eixduhR33XUXunTpwjcYJYQQ0jytWXMV7doxrFgB3Jrkh9Gowc6dI/nlLJ2uFJ6e12EealRVaXDmTD0PWKBJBj7Tpk1DVlYWPv3001qfa+7cuTAYDPyv3NxcO4yw8bl58yYKCwtx/vx5HD58GC+99BL+/e9/Y+TIkXj44YfRsWNHVFRU4LXXXsPff/+NjRs34u233xadIywsDFevXsV3332Hy5cvo6ysDO3atYOrqyv/uR07dmDx4sUNdJWEEELqkl6vxw8/nMH//ucBxixbC5knMUvl+zg5MXTsWOdDldXkAp+UlBTs2rULe/fuRUhICP96mzZtUF5eblFc78KFC/w2bilubm7w9vYW/WqOvvnmGwQFBSEsLAzDhg3D3r178eqrr+LLL7+Ek5MTevTogZUrV2LZsmWIiorCxx9/jCVLlojO0bdvXzz++ONISkpC69at8fLLL6N169bYsGEDPvvsM3Tt2hVLly7FihUrGugqCSGE1BWuLMuGDfstdm1xNBojfH2LAACDBw/GI48MxoIF+dBqGQBAq2VYtswAJ6cC6PX6ehu7aIyMmVbfGjvGGJ588kl8/vnn+OGHHxAZGSl632AwoHXr1vjkk08wZswYAMCpU6fQpUsXZGRkqE5uLikpgU6ng8FgEAVBN27cQHZ2NsLDw9GiRQubx9/QdXyamtreb0IIIWK1LaJbUFCAtWvXwmDwwurVqRbBj3mhQiFTFWdf+PoW1VkVZ7nnt7kms6tr2rRp2LRpE7788kt4eXnxeTs6nQ7u7u7Q6XRITk7GjBkz4OvrC29vbzz55JOIi4trFDu6/Pz8kJKS0uh7mBBCCGl+7PmPb/NdW4ARfftmIDY2U7ZAoU5XKvleQ2yCaTKBz1tvvQUAGDBggOj19evX88XyVq1aBa1WizFjxuDmzZsYOnQo3nzzzXoeqTwKagghhDQE8wBDro+W2kAkOvoIIiLOSM7iNHZNJvBRsyLXokULvPHGG/w2bEIIIaS5qunSlVIfLVvIzeI0dk0m8CGEEEKISU2Xruqqj5b5DJLcjFJjQIEPIYQQ0sTUtP+jUh8tWwIUYWBz9mxH0QxS9+7Hcfx491rPKNUVCnwIIYQQB8HV1REGP8It6GoIl8oAIwDNrV+mIOrYsR6inxtTZ3agCdbxIYQQQoiYweCF7Owwq01AuR1ZXFFBbkaGW57av99Vtp1EWVmZxVKZKYwwL2Qo/rkxdWYHaMaHEEIIadJsTVaW2pHFnWPVKi20WoaXXzZg3LjrfIK0Xq/HRx99hKKiMNnihdUYhMGP0oySq6trDa64dijwIYQQQupIbYoGKn328uXLANQnK5sHGMIdWebnMBo1mDXLG+fPvw+drlRUg05qqQwwQqOBYo4P911JSUnQ6XRWr70uUeBDau2HH37AwIEDceXKFYsmsXLCwsKQmpqK1NTUOh0bIYQ0lNoUDVT7WbXJylJFdC9fvozt27fLniM3NwRFRdeRk1OJ4ODqhOb4+HSkp8eLAhvzGaRBg76XrPGj0+kQFBRk9brqEgU+DmDSpEn44IMP8Nhjj1k0Hp02bRrefPNNTJw4ERs2bGiYARJCSDNU051XtnzWlmRludkVuVmcbdvGgjEtNm5kGDLkAr79NpUPduLj0xEcnC8KbMQBTuOt8UPJzQ4iNDQUn376Ka5fv86/duPGDWzatAnt2rVrwJERQkjTpdfrUVBQIPmLW46yB7nkZaVkZUBdDo35ObidWsKlr2++CRQtp6Wnx9tUsZkbf35+w4cdNOPjIKKjo3H27Fls374d48ePBwBs374d7dq1Q3h4OH/czZs3MWvWLHz66acoKSlBr169sGrVKvTu3Zs/5uuvv0Zqaipyc3PRp08fTJw40eL7fv75Z8ydOxe//fYb/P398Z///AdLliyBp6dn3V8sIYTUA7XLUbWllLyckJCAqVP9MX/+JeTkOCMsrBLBwb0B9LYph0aY8Hztmie2br3f7AjpnVpqAh/h+DduZFi7FkhOVjWsOtHwoZeDyssD9u6F7LbBujB58mSsX7+e//n999/HI488Ijpm9uzZ2LZtGz744AMcPnwYHTt2xNChQ1FUZJo2zc3NRUJCAkaNGoWjR49iypQpeOaZZ0TnOHv2LIYNG4YxY8bg+PHj2Lx5M37++WekpKTU/UUSQkg9qY8Gm3LJy9zMj7+/P4KCghATE4gxY/wQExOIoKAgBAUF2Zw4rNOVIjz8HEJDcwWzPxxx2yi1tX+kEqcfe6x+n33mKPBpAOvWAe3bA4MGmf67bl39fO+ECRPw888/49y5czh37hz279+PCRMm8O9fu3YNb731FpYvX47hw4eja9euePfdd+Hu7o51twb51ltvISIiAq+88go6d+6M8ePH801iOUuWLMH48eORmpqKyMhI9O3bF6+++io+/PBD3Lhxo34ulhBCGhm1tXaElJKX64rU8lmPHsdkl9MA+WuTGn9VFXDmTJ0N3ypa6qpneXnA1KmA8VYwbTQCjz0GDB0KhITU7Xe3bt0aI0aMwIYNG8AYw4gRI+Dv78+/f/bsWVRUVKBfv378ay4uLrjzzjtx8uRJAMDJkycRGxsrOm9cXJzo52PHjuH48eP4+OOP+dcYYzAajcjOzsZtt91WF5dHCCGNVk0bg6pNXq7NtnkpUrV+5HZqKV2b1PidnBi8vC5Cr3em7eyO4PTp6qCHw0W/dR34AKblLm7Jqa662F+9ehWPPfYYnnrqKYv3KJGaENJYccGDwWBARUWFxfvOzs7w8fGxOYioTWNQbvbFPLAQfs4810iuQah5DR1ric/mO7OkdmqZrm0UGJNuUSE1/hEjdmHXLlNgJLWVv65R4FPPIiMBrVYc/Dg5AR071s/3Dxs2DOXl5dBoNBg6dKjovYiICLi6umL//v1o3749AKCiogK//vorX2/ntttuw44dO0SfO3jwoOjn6Oho/PHHH+hYXxdFCCG1ZGuislTOolzAYa3WjlQAInxNavZFeJxwpkdq9sX0WT+sXfu16LMpKSmi2j5cXR9bmK5NOfFZafz1kSdljgKfehYSAqxda1reqqoyBT3vvFM/sz0A4OTkxC9bOTk5id7z9PTEE088gVmzZsHX1xft2rXDyy+/jLKyMiTfSsF//PHH8corr2DWrFmYMmUKDh06ZFH/Z86cOejTpw9SUlIwZcoUeHp64o8//kBaWlq97IAghBBb2foANj9eabln/Pg7sXEjg9FYHSA4OTE8+eRwhIVJL/dIFRw0x808FRQUAJCfWWIMACzHVV5ebnMxQfPgTu1SXGOq60OBTwNITjbl9Jw5Y5rpqa+gh+Pt7S373tKlS2E0GvHQQw+htLQUvXr1wrfffotWrVoBMC1Vbdu2Df/73//w2muv4c4778RLL72EyZMn8+fo3r079u3bh3nz5uGuu+4CYwwRERFISkqq82sjhJD6Zm0pKyrKB2vXasz+watBTEyg4nltXQKSm1kS/l5pic3a0pdccGdtKa6xocCngYSE1F/AY60i8xdffMH/vkWLFnj11Vfx6quvyh4/cuRIjBw5UvSa+bb43r17Y8+ePbLnyMnJURwTIYQ0dlygoGYpqzb/4LWWuFxcXAxArgKzmFT9HeH5k5KSRPlNhYWFOHDggGJwp7SUZU5uObA+UeBDCCGE1AC3HJWTU6lqKasm/+C1JfdIKpGYW+bimC9DqU2MthbcqVnKkpoxaggU+BBCCCFmuADAxeUmKircZGco/Pz84OcnlbtpfSlLDfOZHmszJuazL2fPdlRchrKWGK20LV1tEUNu3FIzRvPnX0J99yylwIcQQggREAYAporFGqu1d+ojd1NtLSDh7IvSMpSwl5jSUhYA2a7s5kUM5YIyuRmjnBxnxMTU8sbYiAIfQggh5BbzAIDrUaWm9g63lGVqXCqeqSkuLkZlZSUAU2FYrp4Ox1ptoNrWApI6Rrh1XS4wycyMRUZGnGJXdsB6UCY3Y9SpU/03kKDAx0aMMesHkVqj+0wIqStSycJcgrBUAMAxT1iWOo/BYMDmzZtrNC6lYn7Wcmz69euHwEDT0tr169exe/duxe9Ssy0dMPJBD/d96enxSE1dbTHTIxeUPfrocABAZWUldLp8PP98WxiNGmi1DIsWXYC/v+nPoz6LGFLgo5KLiwsAoKysDO7u7g08muavrKwMQPV9J4QQOXK7nrhZFuEMi7XARGlnlFbLcN99UQgM7IxTp04hLS3NfhcB5VpC1nJs9u/fLzp+woQJ8PDw4H8WFidUuy09Li4DBw70E51XaleYXFDWrl0SDh0CDh/ezB8/fboXv+xWVVWKtWtNx9dnBWcKfFRycnKCj48PLl68CADw8PCARqOx8iliK8YYysrKcPHiRfj4+FgUWSSEECFbKy5bY74zSpjjM3LkLhw7Zr2/Vl1Q07pCyMPDQ7I4oS3b0gGIZnwA6YRmudmiGTOCbo01lQ+u5Jbd6rOCMwU+NmjTpg0A8MEPqTs+Pj78/SaEEDl18cAUBgAuLuWoqHC1Wp9GjlTCb01r2XDjys0NAaBBaGiuzedSsy2dOy4/PwjCrAO5YMsyWDQC0Mj272poFPjYQKPRICgoCAEBAZIN7Ih9uLi40EwPIaReyAUOcg055YIMqffk6tbIJQFnZ2dbJDmbV1MWbk83zUYxSLWjkGNtyUxqRxuHMfC7vABg4MCB2Lt3LwBxsHjtmie2br1f9L1SS2QNhQKfGnBycqIHMyGE2Im1ysS2dEOXC07UBCamHUsFkoGNUvPP/Pwgi23eERFnFPtmCV/jZkLS0tKQlpYmynfx8/NDYmIitmzZIrPjzLZZFakls/j4dBQV+aG0tKXkjrZq4uClVatWFvdVpyuFweAlsfTFkJ8fjPDwc2r+GOsUBT6EEEIajNocHTXJr3JJu3JBi3lgkpY2GFI1e6TyYnbsGAmNBhYzI1wAMmbMNsW+WcLXzGdCzINAHx8fAMo7zszPZTAYZBuQCmdn8vODRUGb0vnN83u2b2+F1atTLe63TleK+Ph0/n7e+jTS0+MRFZXV4LM+FPgQQgiptZrO2qjN0cnPz8fFixctdmlxRfjkknYDAgolX5cKTORmT6QDDq0g/0U8M8IFQ1JLStZaSACWvQy5a7TWi0t4rs2bN4uCRfMlMy74+PDDh0X3xnx5SyguLkOUp7RmTVvZPJ7g4ALJ+9IYlrso8CGEEFIrtszaAMClS5f4PMkrV66o+g5hsT0pckm7ubntZGZeLAMT82O4h7Sa5p9CGo0RoaF5kktKFy8G4NixHjAFBQwdOpy1+Lxcg2elXlzW2lFwfcXKy8v5re3SAZ0GpuRk89eNiI3N5H8qKvIT9SYDrN8zW1pc1CUKfAghhNSK2lmbixcvYsuWLYrH1HTHk9yDNjT0H5nX8yS3rQuP4R7ScruWxDMa4tYWOl0poqOP4Pr1FkhLi7+1lBZv9jkNzp6NxKpVqRg92npiMmDZggKAaJeXEvMZN7l7lpz8Hv74o5uoYrN5UGUtsLF1+735jFRdosCHEEJIveBaNshRSiC2lqws96ANCSmQfQAr5bqYP6StNf+UauVgMHghPT0e1bMncjNG6hKTExIS4O/vj+zsbL54otr+XVKU7llISAFiYzMle3wpfVbpngnf464FsC153R4o8CGEENIgDAYv5OaGAgB8fK4o7oKylqwcHX0E0dFHkJISiZKSAISFVcLDIxKVleEYPLgUERGrJR/AXNAUHn4Os2aF8p8NDu4NoDfKyspEFZANBgO/TJeScgr5+R4IDi7DgQMZFtdnLRlZSJyYLD3r5e/vL0pYrk3/Lo5ScCJXbNDaZ6WCUnPm11KfKPAhhBBiV2qWqw4f7okdO0aiehbEMqlWGDRYS1bmHvahoRrodNzSmw//eWsPcQCIivJBUJBp5oFL1hYGPabzmJKqXV1dcfvtpmMLCgpw4IDl+eQqGlfvBhNdLfLzg3Hliq/qGRxrxQizs7NFHdgBwNnZ2WLmTc29EVIKbGozA1VfKPAhhBBiN2oefAaDl1nQA3DJvnI7igDTQ928hQL3OvewV9Mg1FpgVtst9sLzSy0HRUScwY8/3oVDh3rBfLu3Up0fc9bybIS9xGqaO2VO6c/XHjNQ9YECH0IIIXah9sFXVOQH6XwXDf8gl9r6DQAnTnSr1W4hNYGZ2mRtqeOkzp+aarnMFhX1Bw4d6i36rNo6PxxreTZcsCNVYLEmszDW/nytzUA1FhT4EEKIg7FnpWQhtQ8+X189pLZMczuKuN5YmZmxFt3BAS3i4vYr7jiSY+8ZCYPBAMB6LaHk5PcsKhbLzdaoqfNTVlbG/96yr5gbDAYvidYW4no7rq43ERqaK7rupKQkMMZQWVmJ0tJSi+7z1v58bdnCXp+7uMxR4EMIIQ7EnpWSOdxDzNqDz8XFBYBppmL06F2i5S5uZ1RFhRu/HBMbm4kDB+JgHgjExmYq7jjimC/v2HtGwnxZTe787703RXK7elxchkUAB1j28uLGVlZWBr1ej48++kh0Hp2u1GKXmTiAssyd2rr1fovZH51OxyccFxQUiD5jMHjh2jWPWm1h53Zy1fcuLnMU+BBCiANRu4xz4sQJtGrVyuJ1FxcXtG7dWvTgEhbHa9u2BHPm6FBVpYGTE8OyZSUYN+5Bi3/hizuNAwaDj+RyzOjR8g/SsWP7wMvLC87OzvDx8UFxcTFfJ0hua3xNlsnU5sfIFzoUzyyJG4Ea0bfvfnTteoIP+qSWxgDAw8PD4s+P2xlnPtOkhtoZL/PxCpcjbdnC3pA7uYQo8CGEEAcm91Dnum7LMZ8R4n4/cyaQlAScOQN07KhBSIgPhLurUlJS+MrNV65cwd69e2EweGHbtrGSS1BKD1LhUkxKSgrf00ppyUlpRkJq+cWWXUqWhQ6rcTNLAMzeNyVsczNbwmap1ogDEmukE8etzXhZNkbVgjEjxo7dgtDQPNnco8aU02OOAh9CCHFQ1h7qwjo75vkgSjNHISGmX1L8/Pz4IKmgoAB79+61ugSl5kEqHI+1JSduRmX8+FhERZnq9Ugtv9QkJyg6+ggCAgrx3ntTIJWrIzc24e/lmqUqjc2ceTuL+Ph06HTF2Lp1rOS45Mj1KfP0LLM5uGnIvB4hCnwIIcQBWXuom+rsjEL1LIFRdVsFW9m7r5O1JafU1NUIDz+H0NA+iksvtuQECWfOQkIKFJforPf9km78aW1s/KdFVa+rZ8oMBi/07Zshml2ylhhuy59NYmIiP+tmrqHzeoQo8CGEEAfC7URSeqgDpuUY8dKIFjt21E1NFlv6Oinl23AzCmqWnLiaP0lJSXxRQk5xcTEA9Q99uZkzqSU6pUajUuQCLbniiGPHbhUtQXH/NR9jXNx+xMZmWv2zbCoJy7agwIcQQhyEXq/ndyJJbSlXWo4xsW9NFuHSh1IuD8fa0hyXZJ2fnw9gu+KSE0ep4KFOV4rnn7+AhQvbWCRrc4nU1mbOpK5Dqu+XZUFH6fEKxyYVkERFnbQ4VmqMGRlxom7r5tT+2QQHBzeZgIdDgQ8hhDgIYR7M2bMdIZ7RUbMcU/PlJynC3WDFxcV8KwUu6VlIbb6N8CFsbclJjeRkYNIkjWyyttrlMKk2D9z7pt1muDXzIyQe7+XLl/mSAIC6YNGWMQqDHeGfjZymNMsjRIEPIYQ4GC6IEAY+Go3pAQzILRWZcnyED2FObR6Afn5+0Ov1/DZ0OdYe3uY9qYYPH47du3erDg7kXL58GcHBrhgwQHx9amsXAdZnquRm2MaO3Sqawdm+fbvFMcIASm4Z0NoYExISJGdummJQowYFPoQQ4mDUzACY19kx37ps/hC2peChOWu1hbjieXJLc1LjEeLGbWqVAZuCH+68SUlJovpFcrWLtFqG+fPzMXBgL36rvrWZKrnAJDQ0T3JMgwcPhpeXl2hmTCm4span4+/v32yDHCkU+BBCiINRm7Rrmk0Q54zIzSqoLYxoK3GtGgYu+LFl2Upt41SlIoVcLpAwwBPWLhoy5ApeeeXLW/ewFNxKnZog05bkbgAWrSTUBFdKM1+NZZt5faHAhxBCHIzUgzY+Pl1yRqRXr1747bffANhWzM8eLGvVaKDRMIwZI188z9o5pIICW67r0qVLMkHeZYt+XID6IFMqMFFbMdpacMXtvJLSVPN0aoMCH0IIaSaEzUfz87XIznZGeHglgoONAKq3aQPiB21+frBs9+527drht99+s3uDTyXcA//aNQ/JB7otxfOsBQW2XpfSLjAptszmCPN1bAnGrAVXjaVVRGNBgQ8hhDQDwuajah+a3EP2ww8ftvrgt3eDT27M5eXlosRk875Q5q0WNBojXFzUL6tZCwrkris3N8Rimc8WwtkaYZA5cmQXBAT4QKkjiK3BmLXgytGWsqyhwIcQQuqBtdmY2i45cOe29aGpNqCxd3VlqS7xUn2hTE0xGZ/jw5gW69ZNEQVzSktCplo8hVi4MEhUi+fee4djy5YtslWet20bi/z8DMUif3LfKxd46nSlOHHiHE6cUD6PrUFmQkICpk71x/z5l5CT44ywsEoEB8u34nB0FPgQQkgdUzsbY+vOKGEwlZVVjOzsMNnlIe6hyVUqvnz5MrZv325TorMtCbjWSOXJyPWFGj58J77+egS4HV3CYO7s2Y5WZ7eSkzWStXi4Yodnz+6yKCDImBYHDvTDgQNxkq065P4cbQ087dFFnlvKCgoCYmKk7zepRoEPIYTUMbWzMbbsjJIOpm6DRmOE0rZvnU4nyvewJaCpbU0ca+SCMA+PGzCvaswtR6kNMswbpwqDxujoI3B1vYmtW++XGJXlOZX+HG3t71WTLvKkdijwIYQQlWq7XGXPPBmlYMoUPKjf9q0U0AgrBQPiBFwhe+SRyAVhoaG5kgERoKnR/ZRaZpP6DrlzKv052rIkqLaLvK27vIgyCnwIIUQFeyxX2TtPBpB/eI4duwWenmWyMzPmgYpcQNO6det6aV3APdQjIs6IHviPPjocPj694et7AQsWtIHRqFEMiADryc9S16LU2NT8z0iuQSh3r9XO1qjtIg8o/52j5GXbUOBDCCFW5OUBBw+aHs4AarxcZe88GUC56q/See3Vi4mbBSsoKKjxOZQe6leuXIFGo0FV1WZMn+5lMSslDlYYAMvkZ+E4AVi0tzAPujIzY3HgQBzkZsy4P0dxXpAGZ892RHT0EURHH8FDDwVg164/FWdr1HaR799/HJ5/viMY0/DvffXVKMyfH4uwMGdKXrYRBT6EECKBe1Bu2uSO2bN1MBr9oNGkIi4uo1bLVfbOk7E1mDIYDHyOT20fmFJLRlK4hGohLviwlvckrFIsNSsVEXEGw4d/fSv5WSN5juzsbItqxxypoGvIkHTExmYiKuo+ZGV9IXkvLRuLakTf2bmzJ06csD5bM2eOP5KSzmLChOrABgC0WoYnnxyOsDBnHD/uB6NR/P1VVRqUlgaCYh7bUeBDCCFmuAe6weCF1atTRf/SzsiIg1LysBpyy0pS45DLKRLOWtgSTG3evLlWfbWE1CZjKxX9q03ek7jmj5jwHHJBj7Wgq3fva8jNrV3Hc2vfER4ejr59g3D9OvDYY0BVFeDkBLzzjgYxMYEAgMhIQKuFKPhxcgI6dlS8PUQGBT6EEGKGe6Dn5oZKPtz69t2PjIy4Ot1xY2tBQqlgqq76akkVHqypmuY9Wdb8EVM6h7XK0GqCLmvj5pLCrQVIXH5OcjIwdChubbkX70ALCQHWrjUPjMTHEPUo8CGEEAlcsGFOozEiNjYTsbGZVmdY8vKA06cBf/8Wqr5TmKRa04KE5uNX0/LAFmqXt9SqSd6TweCFEye6KQY9cudQUxnaWsDEBZJK4+aSwnNyKrFxI4PRWP0dTk7Vy1jCmTfzLfdCSoERsQ0FPoQQh8UFJpGR1Q8SvV6PrKximdkE8cNN6eG8bh0wdappeUKrbYWVK2ciMVH+eLkk4JosBdVlXy2l2aKabrfmlupyc0MAaBAamquqKrJ50AIYMXbsVsnEboPBC7m5oWYJyeLK0LYETIMHp6Nfvwx+iXH8+FhERVlWS/bzk5qtqV7GsoVSYETUo8CHEOKQxIGJ6eF0332m2Yzs7DAwdpvFZ8aO3YqoKOX+TQaDAfn5WkydGsD/K99oBGbO9MS//nXN5l041pZUhJ23uWrMddFXyxo1M0xKgZGwArNpJkYDUzd2+arIpmOY6LioqJMwGLyQnR3Gf49SLhCgxZgx0lv/nZ2d+XGbt9JISxsMAOjXLwM6XSmioobKNgKl2ZrGpVkGPm+88QaWL1+OwsJC9OjRA6+99hruvPPOhh4WIaSRyMurDnoA038fewy4445KAMpbxK3ZvHkzsrPDYDROFL1eVaXB0qX7EBV10qbkYmtLKlKdt+uiXpASNTNMSoGRdI8uWJxLuqWFBkOHfoOuXf+wCHI0GiPi49P5zvNS5Lb+C3eiyX1veno8oqKyVAWTNFvTeDS7wGfz5s2YMWMG3n77bcTGxmL16tUYOnQoTp06hYCAgIYeHiGkgen1ehw8CBiN4sCjqgo4duwaAPV5J8LZFgAoLi5WbHy5detYlJfvQn5+PgD128lt3QJfF/WCOMXFxaKf5fJthDNM1gIj6cDC8lxyAR0X9Eh9T1paPMzbXVSTvy86nY7PufL11cN8J5/5NVIRwaaj2QU+K1euxKOPPopHHnkEAPD222/jq6++wvvvv49nnnmmgUdHCGlIwm3qGk2qxQPUVLPF9LOaYENqtgWQK3AHVPd9Wg2drtTmmZ+a5M3Ys6+WXq/Hli1b+J+V8m2EM0zWlt7kKxiLz2XeaV2rZZgzJxtubvKtJLgihFLn1mhM9XjkcEUeL126BOACVq1qI7pGrZZh4sR+6N59FBURbEKaVeBTXl6OQ4cOYe7cufxrWq0W8fHxyMjIkPzMzZs3cfPmTf7nkpKSOh8nIaRhcIm5amdErAUb1v+Vr7F4RfjAr+22cmvjsXdfLeF4reXbTJ/+B//dci0erl3zhMHgJfHnYaoKyJgpuHn55RKMG/cgnzQ8aRJw6JAB+/at44Meue9RWu5Sk/fk5+cHPz8/rFwJBAcDc+aYlka5JOWBAyNrcitJA2pWgc/ly5dRVVWFwEBxtnxgYCD+/PNPyc8sWbIEixYtqo/hEUIakdrMiCQkJCA4ONjiX/kGg+HWf71ubYW3DHzU5tqoDU6Ex9mrDYUc7voA+bwXYb4N5+zZjoIKxwCXvLx16/2ifJ+IiDPo128iYmNN4zMlA2sQEuIDwIf/dEgI4ORUhqNHLQNVqYA2OvoI2rfPwXvvTUFtCk8+/TTwwAOUpNzUNavApybmzp2LGTNm8D+XlJQgNDS0AUdECKkvti4fcfz9/SWDh4qKCis1ZtTn2tQ0iKmrJRe9Xi+qwGwt34ZTHQQK74cGcu0l+vYtB7d6WJPAQi6gDQkpwOjRlkERANEOMGsoSbnpa1aBj7+/P5ycnHDhwgXR6xcuXECbNm0kP+Pm5gY3N7f6GB4hpJGoab0ZOVwl448+crvV4kI65yU5+T2EhEg385TCBTHC1hVCXHNQuVkcuc9xbJn9MT+P+SyO3HKh3MyQkHDJyTx5Wu2YuT9TF5ebqKhws/izTUhIwNSp/khJOYWPP86Er28Rzp7tyP952bPII2ncmlXg4+rqipiYGHz33Xe47777AABGoxHfffcdUlJSGnZwhJBGwR4VjYXLS5Z9veRrzNgS9Jif3xphorRer8fFixdFichqPqeW1CwOY9KJwvn5QbAsNCifCK12zEJSSdbmf7ZcIrqrqysOHDhndacZ7dJqvppV4AMAM2bMwMSJE9GrVy/ceeedWL16Na5du8bv8iKEOK78fK2qisbm29SFzGccuJkQW3JebKE2AfrSpUvw8/OzuaVEfn6+5HcozQbJ7Z7644+uoms1GLyQnh4Py6BHyPat9taTrOX/bLklxL17gVWrLJOd+/WbiAED6m7JkDS8Zhf4JCUl4dKlS5g/fz4KCwtxxx134JtvvrFIeCaEOBa9Xo+jR6+BMfH/F0jt7JHbpq5Ebc6LtTGaByHmjUDllum4ruu27hTbvn277Htys0FyszjffjsMe/YMwahRuxARcUYm10m8zCXcUj548GDZTupylGoAye3a8vPzQ58+0h3PY2P9QDFP89bsAh/A9D9WWtoihHCs1e8x39lTk2WOmhQNzM7O5gObq1evYs+ePYrfYW2ZjiuMKKUmeU1SQZT8LE71TMuOHSOh0UCmn5aYMDjx8vJSNS4hpRpAwj9b8z9T6njuuJpl4EMIIUB1E1Jvb1MrCmvBidw2dbVs3SJvy+yGVE7Kjh3ipRyp2RuDwQuZmbE4cCAOXDE/84BJLigSzjZxScdqkpUBrSDxWZzrZHpd3ZZypWCNC2TM/0zNc3wefXQ4AgICJP9MqYeWY6LAhxDSLImbkAZg5MieiI4+ohicmG9TFy495edrkZ3tjPDwSgQHm9ZHpGaG1G6Rt7YLyfyhL5dXk5kZiyFD0iW/Q6o5p3nui9IsklQgJT3DojyrI8x1EjYjVdsNXSpYM9/uP3/+JeTkOMPd3Yjr17UIC6tEWFg/q0EsbU93PBT4EEKaHcsmpBrRw15NcCJMElZ6CCclJaka08CBA7F3716L80ntQpL6PlMejGW/qIyMOMTGZlpcj2XSbzVueQmAZLJ3QEChZDAGSM+ade9+HMePd7forM4R5jopBZ4uLi6SY1dKVOYEBQExMdb+FAihwIcQ0kC4ZajISPv+i1uuCama9gRC3EyCtYdwRUWFqvO1atVK8nzmu5ACAgolvy81dTX69s3AgQP9FK+Lmym6ds3Dau8ruR5aXIVjue3+UsHLoEHfo6jIFy4u5bc+rxGcU/z9coEnu3Wgtd5ehNQGBT6EkHonXoYyJZkmJ1v/nLVgydYkZjWsPYSdndX93yh3nLVdSP/80072+2JjM/lcnWrV1yWeSTJCeglKvLwknRgsP9MiXIILDz/Hf4ILZrKzw2DZDV1d0KLRmMYqt0NOLlGZEFtQ4EMIqVeWy1CmnTVDhyrP/KgJlmxtQqqGtYewj4+PqtYS3PvWdiH5+ekhtVXcxYU7v+V2cEBqJskU/Gg0jL8HcXEZomUx+S7ygm8WBHn798fxzT7lZoOs3S8lOp2Ov5dt25Zgzhwdqqo0cHJiWLZM3KiUkJqiwIcQUq9OnxbXTgFM24nPnJEPfGoSLEVHH0FAQCFyc9shNPSfGlVNBtQFUWoexAUFBZLnM8/xcXWthOUsjQYVFa4oKvKzeK86X0cjOXMzZswWeHqWye4yi44+AlfXm9i69X7JcXNBy/79cUhLGwyppTlhPlBtg07uXs6cCSQlyTcqJaSmKPAhhNQbvV4Pb+9KaLUBMBqrH+BOTgxeXheh1ztLBhE1CZas7QqS2iott4RSm07u1s7n4lKOigrXW/91g4vLTcUZE6n3XFzKUVzcSvK90NA8yWUq4TWEhubKzEJVN/JMSzOv3SOfD2Sv+0U7rkhdoMCHEFIvhLukRo4UByUjRuzCrl2moMS8WnBNgqW8vCDR8o15rkpZ2YNYsyYSRqMGWi3D/PnnkZR0VXH8Ne3kzjEPqoTnMw/ShLukzGdMpHZUrVs3hc/r4QIY888pBYLmDUcBhr59DyA2NhMAcOJEN0gvhTEI7/GOHSPh6noToaG5/PUZDF42dT8npK5R4EMIqRfCHBilGQHhcbYGS8XFxfwD3vxBLdzCvXp1RzBmCqKMRg0WLQqGwbAaOl2pzU07zVtKCAnzUYR1ZwwGA86dO4eDBw9K7ho7frw7kpPfQ0WFq8X9MZ8tqg56AFPhQCPGjt2C0NA83HdfL+zdq7wzDYDE/WKIjc0U1dyx1miU+/6tW+/nAyvu3ObBVk2qSBNiLzUKfK5duwZPT097j4UQ4kDUzKDYEizp9XqcOGGQrV1jbQs3l8DLfafanUNKva4A8QwW99+goCB+G7zceCoqXPldU+aBgnAHlVRej6dnGXS6Un4LvdI1y+UG5eaGSGy754IdI+666yf8/PNdsnWCTJ81nUv42vXrLawmSBNSl2oU+AQGBiIxMRGTJ0/Gv/71L3uPiRBCJMkFS8XFxdiyZcutQKCPxCeVt3BL7Toyrwxs7vLly6KgR24Ww1rTUF9fPSwLE0pvUTcPFKztoPrrr79UHSf1nnRAJO4236qVfKAp95opV0h6CZK2qZP6UKPA56OPPsKGDRswaNAghIWFYfLkyXj44YcRHBxs7/ERQohVlZWmXlxyD/jk5Pf4XV227DpSu+SlFJycPn2aXw5zcXGBTqeTeMBb7uLKzQ1FaekVxeKJctdSWtoSJ050Q17eOYSEmK65e/fjOHasB7iZm+7dj8vmDY0atUsy4dm82zw3C5ebG4Jt28ZaHCvVl0tq5qlfv4kYMED9/SakNmoU+Nx333247777cOnSJWzcuBEbNmzAc889h6FDh2Ly5MkYPXq06qJehBBiL3KBgPlWdqVls5ycHIu8HWdnZ/j4+ACARR0Za5WduTYV5gYPHgwAklvUAc2t7eWWLSrMKxibX8v33w/Cjh2jwAU4PXocw6BB3+P48e6C79Hg2LHu6N37F4SEFMjeD6UAceDAgXBxccGePXug051EebnlsUB1jo+TE8PcuaV46SVvsyR1IDbWDxTzkPpSq+ikdevWmDFjBmbMmIHXXnsNs2bNwtdffw1/f388/vjjeOaZZ+Dh4WGvsRJCiFVqt1LLLZt99lkGv2QFQHL5KiUlhf+9XP5Mbm4IioquyzYh5SgVNDQFPeIkYqllOe5a8vKCBLM6gCnA6YG2bfMk83jWrZvCz05J3Q+lexkZGYmgoCB06tTJolFoWFglgoN7AwBeeMEAvb7VrVo8OoSFmWowVVWZgp533qEt66R+1SrwuXDhAj744ANs2LAB586dw9ixY5GcnIy8vDwsW7YMBw8exJ49e+w1VkIIUaWmW88tWz6Ymm2aL18J83akAxejYOnHsgkpAHh5efFjFRc0NKeR3aKekJAAf39/nD59Gnv37sU//7SH1OzR1auesstMUs0/heTuJbdcZ61RaFCQ+OfkZFPhSVNhQgp6SP2rUeCzfft2rF+/Ht9++y26du2K//73v5gwYQI/FQwAffv2xW233WavcRJCmiiuv5a/fwurxxoMXsjM9ECvXvX/QJRu+WCiFCBYBi5cYnD1rIu1cwhzZbZuHQvL5S2gb9/9Fl3Y/f39ERQUxC/NtWt3DlLbzjt1Og0fn1LJ1hTCpbOBAwciMjISBoMBFRUVoiU+odq2jaDChKQh1SjweeSRR/DAAw9g//796N27t+QxwcHBmDdvXq0GRwhp2sT9tVph5cqZSEyUnlnYtMkdzz+vw6pVGr4X1333qdvl4+LiUuuxKjUPBZS7gwuXhK5d85Rt/yA8h/mYTTMr4lyZalpkZMTxBQXlhIQUoEePY6Ik5h49jiEkpAAhIQXw9CzFJ5+Mg1wfsFatWiEoKAhB5tM0hDQjNQp8CgoKrObuuLu7Y8GCBTUaFCGk6ZPqrzVzZkuMGdNS9K99vV6PnJxKzJ6t45NeTb24GO64oxITJkxQ/P8bYQNQa4YMGQIfHx/RLAa3LV0518Yyt0auErOpM7x8E1LuHMKGnMKt8XK9s6QCL6nt3//5z5fo3fsXyR5lSn3ACHEUNQp8PDw8UFVVhc8//xwnT54EANx222247777aDcXIQR6vR4HDwJGo3g5pKoKyMzUw93dlBvCVWbOzg6D0TjR7FgNXnttN8LDz1mtpqzX61WNq1OnTrLnUc61YYiPT+eDjsuXL8Pf3x+JiYn8VvorV65g7969VpuQWmtuajB43fqdeEeXMGhKSEhAcHCw7LVwMzzmatM5nZDmokZRyokTJzBq1ChcuHABnTt3BgAsW7YMrVu3xs6dOxEVFWXXQRJCmg4umDHNfKRaPGT37/8AWVmlouKA1h7I1mZ0rBUbBNTlpXBLVpmZsThwIA6mwMOIwYPT0a9fBn/c9u3bFdsuSDUhVdphVlZWBsA8uZqBC37MgyZ/f3/RtajdPWuthhH9w5U4ghr9LZ8yZQqioqJw6NAhviT6lStXMGnSJEydOhUHDhyw6yAJIU0HF3xYe8gKgxRbigrKsVfxO52uFEOGpCM2NlN2S7y1zu/ceZTGX1ZWhoKCAhQXF+Pdd3cjN7erWfKxBhoNw5gxW0Qd1qVERERgwoQJfABljpuNApS3qEslMhPS3NQo8Dl69Ch+++03PugBTElxL774omyyMyHE8aitqWPrsfYk1yZBLnCRKli4Y8dIBAQUIiSkAAkJCXB2duaXwIS4ys1lZWX46KOPAHBBVKpkThBj1X23hC5fvmwxgxURESF7jXq9XlRI0doWdUKasxoFPp06dcKFCxfQrVs30esXL15Ex44d7TIwQkjzYEtNnZrW36kNbpns4sWL2LJli9XjpXd/VRcDTEgAAgICFGegCgpM+TeWW+jF5PJvuERotZ3k7bUUSEhzUKPAZ8mSJXjqqaewcOFC9Oljagh48OBBPP/881i2bBlKSkr4Y729ve0zUkKIQ5DKnSkuLq7zLdY+Pj6iZGUhFxcXVFRUKO7+qq7Tsxo6XamqoERpC71wua+mDVCFKKghxKRGgc/IkSMBAImJidBouOJcDAAwatQo/meNRoOqqip7jJMQ4gDkcme2bNmienbDFnq93mKmRy7ISEpKAlCdj2StGKCaoEQuqXvMmK18Xo+afCJCiHo1Cnzkmu4RQkhNyeXOuLreRGhoLk6cOIFWrVrxeTJCNVmm4XafCb9fuJvLPMioqKjgj42OPoKAgEK8996jsNZHS6/X80FQfr4W2dnO0OmKAcgndUdFnZS9J9ZaTBBClNUo8Ln77rvtPQ5CSBPHtabw9rZcupGaRTEYDGjdujV/jFzuzNat90OjMeLs2V2Ijt4rOyNj64yQcEZGvI3cxFqQcfFiG5i3h2AMOHu2Ix8sCYMr8cxNK4wa1RPR0UcUk7rlGqDKVZAmhFhX46INxcXFWLduHV/AsFu3bpg8ebLFv8QIIc0XN5uxaZM7X3lZqw3AyJE9+Ye/3FLN5s2bkZKSgqSkJGzevFmxcjIXhFy/3gLp6fGSyz625LsIKSUYC4MMYY0b7jPmS11AdbBUXFzMbw+3NnMjTOoWBnZUcJAQ+5NvTKPgt99+Q0REBFatWoWioiIUFRVh5cqViIiIwOHDh+09RkJII8TNZixf/glmzfIWtJvQYOfOkTAYvGQf+Fx14vLycv4fS9yyj0ZjlPw+xrRIS4uXPRc3poKCAtlfwgrPxcXFAIDMzFhVu6p8fHwwYcIEGAxeOHGim+xnuGBpy5Yt/HcozdwIHT7cE6tXp+KDDyZi9epUnD3bUXRPalLfiBAiVqMZn//9738YPXo03n33Xf5fQZWVlZgyZQpSU1Px448/2nWQhBDruKWmyMj66XzNzbAoP9Q1ku/l5oZApzuJy5cvi2ZShF3Kt20bazHTobTsYzAYsHnzZv49pSUxANiyZQsMBq9bOT1SLIOML77ww+rVXM0d8y7o1ePkgiVuh5iamRu5IDE1dTVSU1fXe30jQpqrGgU+v/32myjoAUylzmfPno1evXrZbXCEEHXEXdBNnc2Tk+vnu6091KUClq1bx6K8fBeA7Rbnk+pSrtEYER+fzi9zSX2PMPlYannNlEfjh8OHL6JNG1NAkpsbCqmJ727dfseQIWmiICMrqxizZ7cBY1ywY+p+Lvyv3IyMmsrUSgFkePg5KjhIiJ3UKPDx9vbGP//8gy5duohez83NhZeXl8ynCCF1QaoL+mOPAUOH1s/Mj7WHunTjT+u7k8yTfgHg2jVPi11X5p+X2x2m0Zh+/+GHps8BPW9tSTdntAh6AODjj3+B0Xib2bEaDB36DUJD/7Haj8taZWprAWRCQgL8/f3596jgICE1U6PAJykpCcnJyVixYgX69u0LANi/fz9mzZqFBx980K4DJIQoO326OujhVFUBZ87UT+ADKD/Uo6OPwNX1JrZuvV/0GbndSeZLVFK1bOLi9qNr1xOoqHCDweAFna4UV65cASC/O+xWqTF+Ccn0s/g4pRwaF5ebkOqY3rXrH3apTG0tgPT396/zIo6EOIIaBT4rVqyARqPBww8/zK9hu7i44IknnsDSpUvtOkBCiDy9Xg9v70potQF8cjEAODkxeHldhF7vXG+zAkoP9dDQXFU5LpmZscjIiLNYojKfwTlwIM7iOMBUX0xpdxhH7r0xY7byNXQ4ffr0wZtv3hTs4lJe1qoNpQCSlrUIsQ+bA5+qqiocPHgQCxcuxJIlS3D27FkApgZ5Hh4edh8gIUSasEbMyJHiGZERI3Zh1y7TNu+6qHhsK2uzGYcP97SohMzNzIwZs03VDI5wa7h4ec0IUx6OuNCg+YyPRmNEaGiexdi//faEWRNRU9CTnPweQkIKFK/bxcVFze3BhAkTFP//k5a1CLEfmwMfJycnDBkyBCdPnkR4eDhuv/32uhgXIcQKYd0apZmCmta3sTe5McrXxOFmZpiqGRzhspn5d50929Ei6AKgmGzMkUs6rqiwPgOj0+moOSghjUyNlrqioqLw999/Izw83N7jIYTUUH13Nq/J0ovUGK016gwNzVM1g8MtmwlzhMLDzwGQD7qUko05cknHLi7WA0oKaghpfGoU+Lzwwgt4+umnsXjxYsTExMDT01P0PnVkJ6RxqW2NH6l+U+HhlUhKSkJFRQWcnZ35KsVC5rV1pMjl5AhnYdTM4Oh0pdi/P062srNU0KUmWLRcOmNgTIt166aIzt+rVy+0a9eO7yVGQQ8hjVONAp97770XADB69Gi+OztAHdkJaQhyhfo4a9dW4fnn2a12Egwvv2zAuHHXVT+Y5ftNGTFqVCb/4JfKJVIzKySVk9O3bwZiYzNF1yMMUqRmcPbvj0Na2mBwM0HC3B8AsvdI6v4lJCTA2dmZ79pe3ZR0CrglOfPconbt2tHSPyFNAHVnJ6SRU5qtkeuDxTEYvLB6dTBfdM9o1GDWLG+cP/8+dLpSVYnP3EyPtX5TUnksfn5+sjkuly9fxvbtpgKG1mrcSDHvb5WWFg/zSsqMaSV3ilnrIybVAb6iwg3meUhyvbwIIY1Xjf6XGh4ejtDQUNFsD2Ca8cnNzbXLwAgh8hWZ9Xo9srKKFQMRwHp3b1sSn2vaKVztco+1ZafBgwcjLS1NdmxSydEajZEveMiNVzgLJHf/Nm/ejMTERNG5rBUYlFrqI4Q0PjVqUhoeHo5Lly5ZvF5UVEQJz8Sh5OUBe/ea/mtPer0ehw5dwNSpzKwiM8MPP5zB66+/jo8//sVq40vuYS1U0+7e9jwXUL0MZjB4ITs7TNRsVCgxMREpKSno3LmzTWMDGKKjD0FulsZa41CuRhnHvIkqNQwlpGmq0YwPl8tj7urVq2jRokWtB0VIU1BX/bG4nJrs7DAYjRNF71VVabBhw88ID1fX+FKpfo7B4IWvv76OiIgz8PO7DgC4fLkF9HpfhIdXIjjY9IA3GAxWz1WTaywvL4eT01SsWdMGRqMGGg1DamohHnnkMp8sbZ6HZL5sJlwui4vLEMzuGDF4cDqiorJw+HCM6j5iwvekavDUZEmOENK42BT4zJgxAwCg0Wjw3HPPiQpuVVVVITMzE3fccYddB0hIY6PX65GTU4mpU6urJXOzMXfccRFhYbWrlsw92KV3Oxlx7Zon36ZBTSAi9bCWym0BLOvaCPOF5M5lfm+kdn9xQRQ3y/P666/fyj9K5fOPGNNg1ao2yMr6Hf36ZWDChAkICgoyy3GyvK9S7SyEidHmidNxcRkArAdyXA2e/Px8PrjiPkcBDyFNl02Bz5Ejpv8TZIzh999/F+3YcHV1RY8ePfD000/bd4SENCLWZmNee203wsPP2aVaslwF4q1b7xcFJmpmIMwTgZWaeHKvyTURlXvwC7euKyVdJyUlAZCr36NBeno8oqKy8NFHH8HHZyZmzGgpO6uWn6+1uJaMjDjExmbyx3D36Mcf78KhQ71w4EA/ZGTEqbp/tvwZUksJQpoGmwIfbjfXI488gjVr1lC9HuJwlGZjhMsk9qqWzD2Yc3NDsG3bWMHsiOmBHxBQiJCQAptmIKw18eSoSVwWqqioAGB99xd3nK+vHuZNP4XfCwDPP+9pkePEzaoBwNGj18BYoNVxZ2VF4dChXpDa6m5tBkdpZxqHavYQ0nTUKMdn/fr19h4HIU2KPfNd1HxXUdF1yUTc996bgtGjLZeklMgtoQlnfADpJqJK9YK47dxqd3/pdKUYPDhdVHtH+L1FRX6ixquAeFaNG5NGk2p13HJb3dUGdhTUENJ81CjwuXbtGpYuXYrvvvsOFy9ehNEo3k3x999/22VwhDRmapeZals1GVDqOC6/JCVHLmgDLHN8ACA7Owz5+UGyFZETEhIQHBysejZMqF8/U76N+bm5a6lN8jZHaat7TXekEUKarhoFPlOmTMG+ffvw0EMPISgoSHKHFyGOQCnfBQA2bXLH7Nm6GldNFn6PON+nmtzMRWJioqi2jFzBQBeXclRUuMHXV4/U1NWithCm5GNTmwa5ZSJ/f3/4+fmhoKBAcqzWZsP69ctAVFSWRQCp9jwREWcwZsw2AAyhoXkW70sHjQzx8emKwSLl7BDSPNUo8Nm9eze++uor9OvXz97jIaRZ2Lx5s8WupZpUTRaSapsAyM9cBAQEKJ5fpyuV7HkVHX3EIk/H1mUipdmwwkJnZGeHiZbM5AJIa7Nq1ipXc+c2TxIfPDidn20CTLNW/v7+/M+Us0NI81WjwKdVq1bw9fW1fiAhDqwmVZP1ej2Ki4tlzxkSUoDRo+VnQbgHuJoHt1ISslLHdEDdMpFUMHP4cE88/3wXGI23yQYq5mNU6rFlrXI1x1oA5e/vj6CgIMXrIYQ0DzUKfBYvXoz58+fjgw8+ENXyIYRUsyXXBRA3AwXkH/pKD3GlB7j50o1SYCa3PARoFJeu1AUq0ktm5qzN5tjaQoPq7xBCgBoGPq+88grOnj2LwMBAhIWFWVQ4PXz4sF0GR0hjY0veh625LsIZIGsP/Zo8xLlt2VxBPqXAjBv7jh0jIVxW69t3v0XXdM6WLV58TlBtAxU1szm2BpZKKJ+HEMdRo8Dnvvvus/MwCGka1NR0KS4uxpYtWwDUrMWBLUs4NRk/N3ZrgVlExJlbW9y5T2ssigMCQFlZGQ4duoAZMwJEszm7do1CSkokdLpS7N69W6ZuT3WgwhU23Lx5s6ogyV4lBSZMmED5PIQ4kBoFPgsWLLD3OAhpMvz8/BRbM0g1t5R6GBcXF0suS8k99HNzQ1BUdF22jk5NKAVm1oKPhIQEeHh44KOPPpKsZG00avDxx5l8zR0TcZK0cEOoTqfjf692NsdaYDlhwgTF5XhKYibE8dgU+Pzyyy+IiYmBk5OT5Ps3b97El19+icTERLsMjpDGSJiLo2ZXESCd+7JlyxbJnV1yD/2tW8cCUP4eNUs25sfIBWbWgg9uF5TB4IVr1zxgPptjHqiY6umo2x1my2yO3PgTExMREREhfRMIIQ7LpsAnLi4OBQUFCAgIAAB4e3vj6NGj6NChAwDTv2AffPBBCnxIs8bN9KhdklIKjqSWzKQe+qblJunvGThwICIjI/mAhqunI4Wb4VBarsvOzkZaWpqq4GPTJnezWj+m4EfqWGuBlMFgEM361LYTurCGESGEcGwKfJhZMx/zn+VeI6Q5UpOHYi04ysvL4z97+fJl/vfCh/61a57YuvV+2e9p1aoVgoKCLHaFybGlfpBS8JGVVYzZs9vweT2mHV8MY8ZskSwkaC2Q4np4mX+GdmIRQuypRjk+SqiKM3EUavJQrAVHX3/9tez5uYd+Xl4QhJWTb50FLi7iGRvzGRy5reVKidl6vZ4PwISfF+fpmHz88S8wGm+zuDZPzzJVhQ25itEGg1edBDe0U4sQIsXugQ8hjkLNUpBcPZz8/GDJYEJKRYUbzHNjAA0qKuQf7Gpzj4RszV1Sm4BsHoDJVYweOPCKRWkMOUlJSaJlMXOUtEwIkWNz4PPHH3+gsLAQgGlZ688//8TVq1cBiKfqCXEE1vJQdLpSxMebdyDXID09HlFRWaLj5WZobK1XY215TW43mdrcpYEDB2Lv3r2Ca4uHXF6PVAAVEXFG5vyrbWi0qqNKy4SQGrE58LnnnntEeTwjR44EYFriYozRUhdxONbyUIKDC2BtN5PSDIu1mSXzWRJry2tyu8nUfr5Vq1b8mNPTq4Oe+Ph00ayQXAA1Zsw2myouS6FlLEJITdkU+GRnZ9fVOBTl5ORg8eLF+P7771FYWIjg4GBMmDAB8+bNE/0f4PHjxzFt2jT8+uuvaN26NZ588knMnj27QcZMCMf6bibru8OUZpbMl3zUzBBxszt5ecDp00BkJMBVqVDzeakxm89iyQVQAFM8v3lXeXO0jEUIqQ2bAp/27dvbdPL//ve/eP7550Vdj2vizz//hNFoxDvvvIOOHTsiKysLjz76KK5du4YVK1YAAEpKSjBkyBDEx8fj7bffxu+//47JkyfDx8cHU6dOrdX3EyJk62yDtRkbta0c5GaWpOryiLuRm6ovnz3bkZ+RuXz5MjZtcsfs2ToYjRpotQzz51fJjjc+Pv1WHR6gtLRU1ZjlAqjQ0DzF++Hj40PLWISQOlOnyc0fffQRnn766VoHPsOGDcOwYcP4nzt06IBTp07hrbfe4gOfjz/+GOXl5Xj//ffh6uqKbt264ejRo1i5ciUFPsQqrhJzcXGxReVlwLScpNPpFOvgXL58Gdu3b+d/FubsKM3YuLjcVJwB4TquS5Gb/YiIOANxZQnxLNL69Wm36u+YluCMRg0WLQpGaqpph5VwvPn5wUhPj+eDlLNndyEiwvqskFLAV9saPYQQUlN1GvjUZU0fg8EAX19f/ueMjAz0799f9K/foUOHYtmyZbhy5Qqfl0CIObVd0Tlq6uDI5eyYn094nFz3c6WO60LCv/um2Rn5GRmlthg63Un+Hri43OSDHu6YnTtHIjV1tarKyspLdFSjhxBS/5rkdvYzZ87gtdde42d7AKCwsBDh4eGi4wIDA/n35AKfmzdv4ubNm/zPJSUldTBi0pgpdUWPi8uw6EauVAcHUF/R2fw4UwK0EcnJ7yEkpLr6stqlNT8/PyQlJWHz5s1W83Skt9kDW7eOxenTx3H8eHdB1WjpAEptTR4KcAghjUmDBj7PPPMMli1bpnjMyZMn0aVLF/7n8+fPY9iwYbj//vvx6KOP1noMS5YswaJFi2p9HlI3hM1Apdgz0VUqYDlwoB8OHIjD6NHW6+BwrOW/cNvBpY4DtHx9noSEBAQHB4uuz9r94FjL05HKA+K+/9ixHuB2oQlnoqoZ+eKJcjV51N4rQgipbw0a+MycOROTJk1SPIbrAwYA+fn5GDhwIPr27Yu1a9eKjmvTpg0uXLggeo37uU2bNrLnnzt3LmbMmMH/XFJSgtDQULWXQOpQTVsw1DRYkg5EAPP8GKl6VcJZGWuzLdzso9rdV3q9nu8Ir+Z+cJTydLjgxNX1pkU7DKliidUNSBkALdatm2KlJs+ZGs/y0FZ1QkhdatDAp3Xr1mjdurWqY8+fP4+BAwciJiYG69evh1YrfkDFxcVh3rx5qKio4OuapKWloXPnzor5PW5ubnBzc6v5RZA6o2Zmw/y42vSrklv+AcQzNsIEZiGuOa/azuLWjhN+j1QytbVcJO47AODDDx+WDE5CQ3MlK0sLgx+NxogHHvgEn376oF1r8kglbdNWdUJIXavTwGfChAnw9vau9XnOnz+PAQMGoH379lixYgUuXbrEv8fN5owbNw6LFi1CcnIy5syZg6ysLKxZswarVq2q9feTxkHNg742/arkl3+UKyVXH1MdLCgl9Xp4eKg6TujSpUuiej1KBQ+5OjjcLjOlpbfw8HNm12zZEyw+Ph2urpU1qsmjxHwZjxBC6kONAh+j0Wgx48K9npeXh3bt2gEA3nrrrdqN7pa0tDScOXMGZ86cQUhIiOg9bueYTqfDnj17MG3aNMTExMDf3x/z58+nrexNELdUJVxSqknvqZp8hgtEMjNjceBAHORaMUjR6XSSMzNC5tvhueDE2rk3b96MpKQkANaTp83r4FhbUuOu+cSJrtizZxjENAgOzoevb1GNavLIbcWnmR1CSEOxKfApKSnBlClTsHPnTnh7e+Oxxx7DggUL4HSr5OulS5cQHh6Oqqoquw5y0qRJVnOBAKB79+746aef7PrdpH5JLVWp3SVV289wdLpSDBmSjtjYTMmZGKWZJ7UPc7njlM5dUVEBQH3BQ+H1WOupBQDe3qWozuUx4QKkmtbkUbsVnxBC6otNgc9zzz2HY8eOYePGjSguLsYLL7yAw4cPY/v27XxCYl3W7iHNn9Rsia0Pels/I5dMK7UNuyazSGqJa/oYMXhwOvr1y7A4ztampdZ6alnWEjJCKkCimjyEkObApsDniy++wAcffIABAwYAAO677z6MGDECo0aNwo4dOwCI8xwIsQdbH/S2fka49CRVufnKlSvYu3dvrWaRrLGs6aO91dEdFsGP2uRpg8FgtaeWVC0hjYZhzJgtCA3No5o8hJBmx6bA59KlS6J+Xf7+/khPT8fQoUNx77334r333rP7AIlj45Z+4uPTLbZjKz2A1QYHHG7pSWpZpqCgQLbujq1dxeVIb6XXWDT+5FhLitbr9di8eTMyM+Mlx3ziRFd06/aH7DV5epbZJcChremEkMbGpsCnXbt2OHnypKhCspeXF/bs2YMhQ4bgP//5j90HSByX+bJSfHw6n2grfCjLPVzt3Q+qJjNPtpzbPL8GEAdWzs7i/7kKm5wKf3Z1dcXFixdhMHjdStA2x7BnzzCkpQ1BfHy6Xa6JtqYTQpoKmwKfIUOGYP369bj33ntFr7ds2RLffvstBg8ebNfBEcclt0STmroaOl0p/6A1f7hKdSpX09FcCXestVmkmsxuCM89eHD6reUtcQ0dLgjx8fFBSkoKLl68iMrKSmzf3gpr1rQVdFc/j6SkqyguLsaWLVtQVBQG80Dq1lkBVN9TW2fTpNDWdEJIU2FT4LNo0SLk5+dLvufl5YW0tDQcPnzYLgMjjs3aspLcbiG5zulCts5EmJ9z/vxLyMlxRlhYJYKDewPoLXtOpSrSBoMBjDEMHjwYaWlpfC6PtSBky5YtMBi8JLurGwyr+eOVCjJyGNMiODgfqamrrc6MDR482KIfHkAzO4SQpsWmwKdVq1aKVZC9vLxw991313pQpHlS00qCU5tlpbp4CAvPGRQExMRY/4ytLSYAUyJzVFSWZBDi6urK3z81+UaWBRmNMM32WM4oqUla7ty5MwU4hJAmz+YChpWVlVi1ahU++eQT/PXXXwCATp06Ydy4cZg+fTrfLoIQIbVBwIQJEwDUzbJSfVPbcgOwrN9jXgCQm1UpKDB1bVcbGJr36+J2iplYX9aSW1IkhJCmyqbA5/r16xg8eDAyMjIQHx+P/v37AzB1UJ8zZw527NiBPXv2oEWLFnUyWNJ0qQ0CPDw8arys1FQp1QaSW9KTms2Jj0+XLWAImPp1iWd7gIiIM4pjowKEhJDmxqbAZ+nSpcjNzcWRI0fQvXt30XvHjh3D6NGjsXTpUixcuNCeYyQOpibLSk1VbWoDRUcfwfXrLficoPT0eLi735AsqFiXW/EJIaQpkc96lPDpp59i5cqVFkEPAPTo0QMrVqzApk2b7DY4QpoTg8EL2dlhMBi8+NeUAhI15+OCHu5zO3eOFJ2fwy2NCanJmWoKS4qEEGILm2Z8zp07hzvvvFP2/T59+uCff/6p9aAIsTe5xGqDwYCKigo4OzvDx8fH4n17LavJLWfVJonbllkcNQUdzWvxNLclRUIIAWwMfLy9vXHx4kWEhoZKvl9YWAgvL8t/bRJiTqkZp1pqdon5+fnVaHeVUEpKSq0CAGvLWbZUmBayNWiyVtCRavEQQhyBTYHPwIED8dJLL2Hbtm2S7y9duhQDBw60y8BI82WPRp9qgxlrNX3UyM/PR3l5eY1nQKzNzNhSYVq49CQXNAFAdnaYZFApt209MTGRgh5CiEOwKfBZsGABYmNj0adPH8yYMQNdunQBYwwnT57EqlWr8Mcff+DgwYN1NVbSDNir0afaYKa2QQ8AbN++nf99YmIiAgICVAUJXJAiNzPj4lI9NrUVpv38/JCYmIgtW7YAsJzFOXu2463ChrYFlVLLfIQQ0hzZFPh07doVaWlpSE5OxgMPPMB3YmeMoUuXLtizZw+6detWJwMlDUvtspLS+4D12Y/GnkzLBRzc8pe1+zJhwgSUlZXh7Fnh1nMGxrRYt26KKDBRm2NjHqRwQVNtgsrGft8JIcRebC5g2KdPH5w4cQJHjx4VFTC844477D020kjYsqwkF/xwbR9yciqxcSOD0VhdT8bJieHJJ4cjLMy5ySy3lJeXq74viYmJiI4+goCAQrz33hRwmynNA5Pa1syxFlRKNRIFKImZEOJYbA58SkpK0LJlS9xxxx2iYMdoNOLq1avw9va25/hII2CvZSU/Pz/4+QFr1wKPPQZUVQFOTsA772gQExNoj6HWK7X3pbKyEgBQUeEGpe7rtWUt2ZmKERJCiI11fD7//HP06tULN27csHjv+vXr6N27N3bu3Gm3wZHmKTkZyMkB9u41/Tc5uaFHZCJVZ8eealpLRy0u2Zn7jpp2WieEkObMphmft956C7Nnz4aHh4fFe56enpgzZw5ef/11jBo1ym4DJM2HMB/GyQno3Nn0+q32U/W25CK1ld4eO82sbdGvzdZ1IaV8HFt2iBFCiCOyKfDJysrCm2++Kft+//798eyzz9Z6UKT5sUeekBKloEMYKEgFOBERZ2STggGoqjekNnCyR2DC5UtxQaTBYMDmzZv599XuECOEEEdkU+Bz5coVPl9BSkVFBa5cuVLrQZHmx97bz60FM1zQwc0iJSUlYe3aryUDnDFjtkkmBX/77WCcPNnNajBjbTeVi4uL6Hi5wKS4uFjxeoUBobifWZDVekWUwEwIISY2BT5hYWH47bff0KVLF8n3f/vtN7Rv394uAyNEiZ+fHyZMmIC//y7H8893AWNcaQUtdu0ahZSUSHToUP2w1+l0srueAGaRFAww/PHH7aLj5LaGW9tNpdPpLAITrlUGAFy9ehV79uzht8rLzV5Z2zVHCCHEOpsCn4SEBMybNw+DBw9GYKB4F05hYSGeffZZTJgwwa4DJESKXq/HRx99hOzsMBiNt4neMxo1+PjjTISHnxMFC3K7nkJD80S5NwADoIE583pDXCCjpnWEMDDR6/WipSlToGOqtHz2bEfZ2St7FGMkhBBHZ1Pg88wzz+DLL79EZGQkJkyYgM63slP//PNPfPzxxwgNDcUzzzxTJwMlDcc8N0RuRqI+c0jUBh3CYEEpuZjLvdHpkrFwoU7yO83rDen1eqvnBcT3Ra/XIz8/n/9ZuEwHGGEKuKpnr2pS1ZoQQog8mwIfLy8v7N+/H3PnzsXmzZv5fB4fHx9MmDABL774IjUpbWa4nViJiYmorKzE9u2tsGZNWxiNGmi1DLNnn8W4cdfh7OyM8vJyFBQU1Gs+ia07pZSSi3W6UowceQPPP6+DUbzrXLLekHmS8fz5l5CT44ywsEoEB/cG0Ft0L8wTvPPygkS5QVLVJexZ54cQQkgNChjqdDq8+eabeOONN3D58mUwxtC6dWu+fYXQ/v370atXL7i5udllsKR+mT+oDQavW32gTH/WRqMGy5Z1wM2bqy0ezLXtaG4LW3dKySUXA0BwsFFUYFGrBWbMAKZPB0JCLI8XJxkDMTHy3yucfTp8uCd27BgJa6W07FnnhxBCSA0CH45Go0Hr1q0Vjxk+fDiOHj2KDh061PRrSAMyzymxlsQrxHU05xgMBlXfefnyZcnXrc0iKQUz3OeFlJbrkpOBoUOBM2eAjh2lA57a4HaBSQc9Rmg0qFWdH0IIIfJqHPiowRiry9OTeqYmiZcj7GguRS7wUPpcTWeRrC3XLVpUiORkcXAVEmIZ8NS2UStHKoAEIKorRAUICSGkbtRp4EOaNvNZmtpWHk5MTISPjw82bXK/lUejsalKMjeLZEsStXlxP6nluvnzA/Hvfxtw++2tZM8jtewnFbglJSVBp9MpBkFSASRgRHLyewgJMZWxpoCHEELqBgU+RJL5lmtObSoP+/j4oKoqCLNng08etmXnknA2KDExUdV3crVyOHLLdX/9ZcTtt0OWeX6OMPiLj09HcHABfH3F94wL9ADxUptcAMkFPXKo8jIhhNQeBT5EktKSjrV8GiWnT8Nix1RNdi5JJdNLcXYW/xWXW64LC5OvSC4kVaU5LW0wAI3ZUpUf3n13t+iahMGamgDSPHCiIoWEEFJ7dRr4qH04EccRGWnaKSUMfmqyc8m8GnJ+vhbZ2c4ID69EcLDp5MIig9Wfk55tMW0/t046P6e67s6OHSMtkpO5ZTzzdi9yAWRCQgKCg4Mp0CGEkDpAyc2kXoWE4NZ2cYaqKk2tdi5xgcGaNVcxY4Ynn6z88ssGjBt3HeXl5ZK7xKRnW9QFPtL5OUJacH/trfXskkNBDyGE1J06DXxKSylBs7lT6oouJzkZuOOOi3jttd213rn0++9X8L//6UTJyrNmeeP8+fcVz2s+2yK3jR4wzRxxDUTNZ4zk2ltwzJfxqJkoIYQ0LJsCn0GDBqk67vvvv6/RYEjjZh7kHD7cE7t2jbJ5dxZgKhQYHn6u1mM6dcpy9qUmOUPWtt8LRUScwZgx2wAwGAw+SE+Pl2w5AYiX8SoqKiioIYSQBmZT4PPDDz+gffv2GDFihOppe9I8SO1kMj3wLftKAai3Xl7h4ZWqawsBNZuhEn42MzMWGRlxohye1NTV/LLZ998PwrFjPWAKfhi6dz9OW9MJIaQRsSnwWbZsGdavX4/PPvsM48ePx+TJkxEVFVVXYyONhPROpniYVx5mTIvr16di7VrLfBvzJRylIMiW4CQ42Ki6tpB58CY1QyX33VItJrhgLzV1NcLDz8Fg8MLx491RPeOjwfHj3TFo0PcU/BBCSCNhU+Aza9YszJo1CxkZGXj//ffRr18/dO7cGZMnT8a4cePg7e1dV+Mk9UwYmEjvZNJazLSYGnm25JN7jUYN5szxQVKSD8xXeMwbfHK7sjIzK7B6dYBicGI+PjVbw6WCN/P6QXKBkVKLCeGymi0tPQghhDSMGiU3x8XFIS4uDmvWrMFnn32GN954A08//TTy8/Mp+GkmhIFJfr4WH37I+GUtAHByYnjuuetYvNgTVVWmoOd//wNWrBCfp6rK1PNKqcHnunXA1KnS9X127RqFe++9C716lYu2qZvnylirLWQtKFEKjORaTADiZTVrLT3MawoRQgipf8qtoa04fPgw9u3bh5MnTyIqKoryfpoZPz8/BAUF4ejRQIgTdoF33tFgwQJP5OQAe/cCOTmmDuZas79RTk6mRp9y8vKkgx6O0ajB44+3wp13BuLrr4MQFBRUowRhLigREgYlSoGR1Ge5zwuX1bgdX9yx5u9zxQgJIYQ0HJv/CZqfn48NGzZgw4YNKCkpwYQJE5CZmYmuXbvWxfhIA+MCE2FJJq3W1L0csGzmaarRA34W6J13lLubS1VylmI0mmr/3HHHRX7mB1Dehi509mxH0TWYByX5+UEw35rOBUaWW9iN6Ns3A7GxmRazTLVp6UEIIaTu2RT43Hvvvdi7dy+GDBmC5cuXY8SIETR938xJBSZKy1fJyaag6MwZ00yPUtADSFdyllNVpcFrr+1W3AYvlZwslaPDGPgdaAaDF9LT4yGux8MQH5/On8OWgEZu2Y16bRFCSMOzKWr55ptvEBQUhH/++QeLFi3CokWLJI87fPiwXQZHGp5UYGJt+cp8FkhJdSXn6lmipUuB9u2BpCRYzNLIbVNPSEjAnj2hfNd3rZZh0aICVFW9K5ucnZkZiyFD0mXbUAQH54tesZZHxHVml0KFCQkhpHGwKfBZsGBBXY2D2Iler7drZWCpwMTa8pUt9Ho97r23HJmZWuTkOCMsrLrX1vLl7pg9WycqkCgXeJSXB2D2bB8+QDMaNVi4MAhbt46AwfAjTMUFxcFNRkYcunY9gWvXPGyqBWQuMTERAQEBFNgQQkgToGHUUEukpKQEOp0OBoOhye1Q0+v1eP31160el5KSYvNDOi9P/fKVWmrGa1q6sr681K1bCu6/3/KaJk7cgPDwc9izJx4HDvST+CQXEBllm4smJCTA399f8ntpJocQQhoHtc9vuyTo7Nu3D9euXUNcXBxatWplj1OSGlCa6anJcUK2LF+pnXVSMw5ry0uc8PBKxa7vsbGZfMXlagzVs0BaMGbE2LFbEBqaJ/pOahpKCCHNh82Vm69evYrFixcDMHVfHz58OPbs2QMACAgIwHfffYdu3brZf6SkSbBl1smegoONoiU5ua3mwgKFUnk/3LEDBw5EZGQkzegQQkgzY1Pgs3nzZsyZM4f/eevWrfjxxx/x008/4bbbbsPDDz+MRYsWYcuWLXYfKGkcrM3mGAwGVeepyayTksuXL+O++1wxdKgfMjP12L//A9GurqIiP0REnOH7al265I+vvx4pe75WrVohKCjIrmMkhBDS8GwKfLKzs9G9e3f+56+//hpjx45Fv36m3Ilnn30W999/v31HSBoNtbM5DYHrrp6SkoK+fcuRlaXchsLXtwhff21Ztyc0NA8AcPXq1Xq/BkIIIXXPpsrNlZWVcHNz43/OyMhA3759+Z+Dg4NVF5Qj9qPX61FQUFDn997eszQ1YTB4ITs7DAaDl+T7+fn5/H2Qa0NhMHhBpyvF6NE7Zass79mzB3q9vh6uiBBCSH2yacYnIiICP/74Izp06IB//vkHf/31F/r378+/n5eXR/kQ9awxz8LYS1JSEioqKvDss9lWu6tzMz+A9f5c1ooSNoZAjxBCiH3ZFPhMmzYNKSkp+Omnn3Dw4EHExcWJWlV8//336Nmzp90HSeQ5wsNZp9MhP1+LnTu7KXZXN2etaajp3Op2jRFCCGkebFrqevTRR/Hqq6+iqKgI/fv3x7Zt20Tv5+fnY/LkyXYdILG/xtI6Qe04XF1dkZ3tLDt7I8da01BCCCGOx+Y6PpMnT5YNbt58881aD4jUDa4IX2Panu3n54eUlBRVNX/Cwy9IbEE3wsXF8rPCfl3C5ayRI7vgxIkjisdTUEQIIc0bdRhtxoQPdH9//0a1PZub7REGYXl5pqaokZGWxRKDg41mHdJNxQfXrZsiyvWR28Wl05Wic+cYnDhRfU6DwQuZmbF8YUO5vCFCCCHNh02BT0VFBebNm4ft27fD19cXjz/+uGj258KFCwgODkZVVZXdB0psYx4AtG1bgpkz6+e7ExMT4ePjI/u+1KzTunXA1Kmmystarak/WHKy+HPR0UcQEFCIdeumiHJ9duwYiYCAQnh5XZXcxSWVB3T4cE/s2GHesd163hAhhJCmzabA58UXX8SHH36Ip59+GsXFxZgxYwYyMzPxzjvv8MdQ66+GJ7WNe84cHZKSatdnS21Ojq0NO/PyqoMewPTfxx4Dhg6tHi/33RUVbpIVl9etm4K4uAzFXVwc7v5IpbhJHU8IIaT5sCnw+fjjj/Hee+9h5EhTxdtJkyZh+PDheOSRR/D+++8DADQajdIpSD2Q2sZdVaXBmTO1C3xsycnhmC9fSVV+PnjQFUajOFCqqoJovNx3Hz58ER9+aNlugjEtDhyIU9VlXer+SB3fWJLACSGE2I9Ngc/58+cRFRXF/9yxY0f88MMPGDRoEB566CG8/PLLdh8gUSb1cJbaxu3kxNCxY+2DUltmcsyXr1auvIriYsuaQwaDFzSaVLPxmjrBm393VFQ5Ro3aZbFMZaJFXNx+i5wdbvbGw8MDgPT9Aap3fT366HCbZ60IIYQ0DTYFPm3atMHZs2cRFhbGv9a2bVvs3bsXAwcOxKRJk+w8PGKN3CxM27YlmDNHh6oqDZycGN55R1Or2R4pSsnIUstXM2d64qmnvCyWkcwbiCqN19XVVTLXBzAFLrGxmYiNzRQVJUxISOA7rHP3Snh/tFqGqVOvYcqUawgL60cBDyGENGMaZkNSzpQpU8AYw7p16yzeO3/+PAYMGIC///67SSc3l5SUQKfTwWAwwNvbu6GHI0uuWWh+vhbZ2c7o3FmLVq1a4cwZ08yJu7tyc1Fbt7lbS0beuxcYNMjycxMnbkB4+DnJc5p2ofniySeHIyYmUPa7uWtfu7YKixYF87M78fHpCA4usNiWPnXqVMkdbXl54O+PvYNCQggh9Uvt89umGZ/nnnsOf/75p+R7bdu2xb59+5CWlmbbSInN5NpUmO/kWrXqKqZPb6m6rUVKSoqq4EdNMnJkpCkg4o4BTMtt5vk2QlwV5eBgo+wxQPVy29SpBTAYTN3W8/ODkZ4eb9O29JAQCngIIcTR2FS5uX379hg6dKjs+8HBwZg4cWKtB0WUSc3cSO3kmjnTE3l56ttaqD3u9GlxQANUJyNzQkJMs0BOTqafnZyAZcsMdt8tpdOVwte3iA96AHEzUkIIIUTIpsCH89lnnyEhIQFRUVGIiopCQkICtm7dau+xSbp58ybuuOMOaDQaHD16VPTe8ePHcdddd6FFixYIDQ11qGRrpZ1c9sbN5ghJJSMnJwM5OaZlr5wcYNy46/YfDJSbkRJCCCFCNgU+RqMRSUlJSEpKwh9//IGOHTuiY8eOOHHiBJKSkvDAAw/UeR2f2bNnIzg42OL1kpISDBkyBO3bt8ehQ4ewfPlyLFy4EGvXrq3T8TQW3E4lIdNOLvt/l9RszjvvWC4b6fV6lJaehJ/f77hy5XecPn3a/oOB9LVLbWMnhBBCbMrxWbNmDdLT07Fjxw6+lg9nx44deOSRR7BmzRqkpqbac4y83bt3Y8+ePdi2bRt2794teu/jjz9GeXk53n//fbi6uqJbt244evQoVq5cialTp9bJeBoT851RGo0Ry5aVICTEBwUF6s5RXFys+L4wATo52ZTTI5ccrDavqDa4rfxS1y7cxk71eAghhHBsCnzWr1+P5cuXWwQ9ADB69Gi8/PLLdRb4XLhwAY8++ii++OILvh6LUEZGBvr37y96yA0dOhTLli3DlStX0KpVK8nz3rx5Ezdv3uR/LikpsfvY64uwIaevbxHGjXsQgI/qz2/ZssXqMcIEaKXkYDX5QnLNQbk/Q7mda8LjhFv558+/hJwcZ4SFVSI4uDeA3o2qKSshhJCGZ1Pgc/r0acTHx8u+Hx8fj5SUlFoPyhxjDJMmTcLjjz+OXr16IScnx+KYwsJChIeHi14LDAzk35MLfJYsWYJFixbZfcwNhdsZBQAGgwEAcPnyZbud/9KlS3YJJIQ70LRahpdfNmDcuOt8oGLLTjRuq3pQEBATU+uhEUIIacZsyvFxd3dXXA4pKSlBixYtVJ/vmWeegUajUfz1559/4rXXXkNpaSnmzp1ry3BVmTt3LgwGA/8rNzfX7t9R1wwGL2Rnh1nsYtq8eTPWrl2L7du32+27Nm/eDL1eX6tzmO9AMxo1t4oJBvFBlb13ohFCCCGAjTM+cXFxeOutt/DWW29Jvv/GG28gLi5O9flmzpxptdpzhw4d8P333yMjIwNubm6i93r16oXx48fjgw8+QJs2bXDhwgXR+9zPbdq0kT2/m5ubxXkbO+FynnntHjX1a2qrtsGG3A60Q4cMCAnR1erchBBCiBKbAp958+ZhwIAB0Ov1ePrpp9GlSxcwxnDy5Em88sor+PLLL7F3717V52vdujVat25t9bhXX30VL7zwAv9zfn4+hg4dis2bNyM2NhaAKSibN28eKioq4OLiAgBIS0tD586dZZe5miqu9UJOTiWefz4AjJl6cDGmxVdfjcL8+bHw8CiSzdkR5tY88shg+Pv7w2AwYPPmzfUyfqleWRqNER4e+SgoKKNkZEIIIXXGpsCnb9++2Lx5M6ZOnYpt27aJ3mvVqhU++eQT9OvXz64DBIB27dqJfm7ZsiUAICIiAiG3smvHjRuHRYsWITk5GXPmzEFWVhbWrFmDVatW2X08jYGfnx+OH5cqJKhBaWmgbPVj8xmitm1LMGlSFSoqKuph1CZyu7AOHDiCAwdMxyQmJoo+I5cITQghhNjCpsAHAP7zn/9g6NCh+Pbbb/m6LJ06dcKQIUMkd1vVF51Ohz179mDatGmIiYmBv78/5s+f36y3sku3hbAsJMiRqu48e7YO58+vskswIdyFZZ5QbTB4ITc3FAAQGpprsQPN/PsrKyv53zfEch4hhJDmyabA5/vvv0dKSgoOHjyI//znP6L3DAYDunXrhrfffht33XWXXQdpLiwsTLJQYvfu3fHTTz/V6Xc3JlwhwcceM7WMEBYSlKrdI5VbYzRqUFTkW+vAR2kX1uHDPbFjxygAGu5bMXq0KXix9r1SwdrOnSMREXGGZn4IIYTYzKZdXatXr8ajjz4q2fVUp9Phsccew8qVK+02OGKdeVsIYYd0c1IVjrVa5cahUqR29sklPHOBS3XQAwBa7NihrpcWtaMghBBiTzYFPseOHcOwYcNk3x8yZAgOHTpU60ER24SEAAMGWO80zuXWcMGPRmPE/PnnJWdO5LbIA6ZCh2q3tEsFLiZa5OaGyH4Pl6BurR0FJUITQgixhU1LXRcuXOAfSJInc3bGpUuXaj0oUnvmAQGXHBwRcQapqav53JrExOEw3/ylJqdG7ZZ2qR1cnK1b7wfAAFh+j06n46syt21bcqvOjwZOTgzLlpVg3LgHqSozIYQQm9kU+LRt2xZZWVnoKJM9e/z4cb6KLmlY3Jb38vJybNrkjuef18Fo1PBVkmfNMlVJNg9g7J1TY76DS0wDbglM6nu4oGbmTCApiesLpkFIiA9sacVBCCGEcGxa6rr33nvx3HPP4caNGxbvXb9+HQsWLJDs40Uahp+fH6qqgjB7tg+MRlOAYaqS7COqkixUFzk10dFHkJq6Gv37K9d4Uvoetct5hBBCiBKbAp9nn30WRUVF6NSpE15++WV8+eWX+PLLL7Fs2TJ07twZRUVFmDdvXl2NldTA6dNStX5Msyd6vd5i27lUTg3AkJ8fbNP3mufu6HSliIk5InHuapS7QwghpK7ZtNQVGBiIAwcO4IknnsDcuXP5LeUajQZDhw7FG2+8wTcGJY2DXK0fP78rstvPo6MP4dChXqjeiaVBeno8oqKyVC13yeUIWRYuNP39YYxydwghhNQPmwsYtm/fHl9//TWuXLmCM2fOgDGGyMjIZtcWormQq/Xj7FxocawwYDHHLUPJBT7cDI21HCHzwoUAcPfdyYiJ0VHuDiGEkDpnc+DDadWqFXr37m3PsZA6kpwMDB3KJQcD7u56vP66eCuXecBiTrgMJYVLpt67F1i1yjJH6I8/uqJr1z+g05Xyvzh33lmGoCBqTkoIIaTu1TjwIU1LSEh1YnBBgeVWdPl6O6agJz4+XRSsuLq6ilpUcMLDtdBqGZ9MbcLw7bfDsGfPEGo3QQghpEFR4EMAyNXbMQLQgDEtvvtuMIYOvRPjxl3nl7XkcoRGjhQumTEobVknhBBC6pNNu7pI8yVV1dlEehu8UgFDbvv60KHfQNyqgtpNEEIIaVg040N4wsTja9c8b1VWrsZtg1dTS0enK0XXrn9gz54holkkjcYIFxd1VZ8JIYQQe6MZHwKguu4OAISHn0NoaK5FzR0nJ1NytFrms0gAA2NarFs3BYcP97TPwAkhhBAb0IwPka27M2rULnz11ahbPbJM2+BtrZwcHX0EAQGFeO+9KeDibMr1IYQQ0lBoxsfBydXdMRi8sGxZJ+TkaLB3L5CTY9oWr3QeuW7uFRVuMP+rJsz1oSrNhBBC6gvN+DggYaCRmRkr25urdevW8PMz1f0pLy9HQUH1McJWF0rd3JOSknDtWits3Cje4u7kxPDkk8MRFuZMVZoJIYTUGwp8HBBXbDAnpxKLFgVYvK/VMsyc+W/4+bWCXq+X3bYOWK/UrNPp0KVLoET1aA1iYqi9CSGEkPpFgY+D8vPzw/HjwK12ayKPPXYN/v43UFBQAIPBoHgepW7uOl0pP7tkXj2auqwTQghpCBT4ODB//yvQaHQWRQtbtFiLtWvVJR1LFT6UW8YSVo8mhBBCGgIlNzswf/8bFkULR4/eZdNOK27LupOTaepIuIxFuTuEEEIaG5rxaeTy8oDTp4HISPWzJVI9tIRcXV35oMS8W7q1oMdg8EJRkR98ffX8sdHRRzB/fixKSwNpGYsQQkijRoFPI7ZuHTB1KmA0AlotsHat8pZyAFaTkTkpKSn87827pctR2r0VHGxEUJDVUxBCCCENigKfRiovrzroAUz/fewxU4Kw1IwKN8sj3GYOSM/QAFCcEZJibfeW+fcKZ5UIIYSQxoICn0bq9OnqoIcj1ytLr9fjxRc/4AMcwBTs5OcHIT09XnKGRopckARY3721fft2i/OlpKRQ8EMIIaRRocCnkYqMNC1vCYMfuV5ZGzY4YfXq1FuBiRGmjugaAAxcd3RrMzRKy1gGgxeuXfO4dW5xw1Ff3yLZa7B1VokQQgipaxT4NFIhIZAo+iee7dHr9cjJqcTs2QFgjKuKLJyV0QhPKTtDo7SMdfZsR8F7DFzwwwVH1GuLEEJIU0KBTyOmVPSPS2LOzg6D0ThR1fnkZmjklrFyc0NEARGggUbDMGbMFoSG5lHQQwghpMmhwKeRkyv6xy0jSRUQFDMtdynN0Eidw1TbRyMZEHl6llHQQwghpEmiwKeJ4woIipejTEtcGo0R8fHpCA7Ol6zRI0xmFp5Dq2UYOXIXQkNzJQMipbweQgghpDGjwKcZiI4+goCAQqxbN0UUpDAGREVlSc7OSCUzp6auRlGR7612E/1QXt4bbduWYM4cHaqqNHByYli2rARDhgyW3MVFCCGENHbUsqKZqKhwk1juMiUzcwYOHAhAPpkZAMLDzyE42Ag/Pz8EBQVh5kwf5ORosHcvkJOjwcyZPvD396+XayKEEELsjWZ8mgm5PB3hslRAQAAA6zV5zJnnGXEd1zly9X/MjyOEEEIaGgU+jUxNenMBlrk+5snMSUlJ0Ol0ANQFSUr8/PyQkpKC8vJybNrkjuef18Fo1ECrZXj5ZQPGjbtOlZsJIYQ0ShT4NCLi3lzVQYQ5uZkUpYajOp2O/5y1IEnNTI2fnx/y8oDZs4VtNTSYM8cHSUk+oJiHEEJIY0SBTyNh2ZtLg1mzvHH+/PuSy08TJkyQPI9Sw1HhTA0AzJ9/CTk5zggLq0RwcG8AvW2aqbGlrQYhhBDSGFDg00hIBRFKeTceHh5ISUlBfn6+TTushEFNUBAQE1PjIdvUVoMQQghpDCjwaSSkgggu70YuedjPz89u/bC47u5ypGaC1LTVIIQQQhoTCnwaieoggqGqqrrSsrBXllSHdbU7p5SO49pfWCPVbV2prQYhhBDS2FDg04gkJwN33HERr722m99hVd11Xdw8lGOetyPFWt6O2lkjuePk2moQQgghjQ0FPo1McLAR4eHnAADZ2WGy9XaEaNs4IYQQog4FPo2YdANShvz8YNXnUJO7QwghhDgKCnwaMZ2uFPHx6UhLGwyu8SigQXp6PPLzLyEoSPpzXLBTXFyMLVu2WP2exMREu42ZEEIIacwo8GlkzGdggoMLUB30mDCmRV5eC8mt6GoTlYWKi4ttHCUhhBDSNFHg08iYJyvn52uxcSOD0Vgd/Dg5McTE6CQ/b76sJdwKD0ByW/yePXtkPyNXDJEQQghpiijwaYTMiwxa1srRqNpFdfhwT0EXdnbrl/S2eKnPKB1HCCGENEVa64eQhpacDOTkAHv3mv6bnGz9MwaDlyDoAUzLZdXb4nfsGAmDwUvxM9z2ee44SoQmhBDS1NGMTxOhplZOXh5w8KArv1RlvhVeTIvMzFgMGZLOvyL1Gca06NdvIgYMoG3zhBBCmj4KfJo4bgfXpk3umD1bB6PRDxpNKuLj0yW2wotlZMQhNjaTz+OR2j7v5ATExvpRt3VCCCHNAi11NWJ5eablrbw86fe5HVzLl3+CWbO8+QRoxrRIT4/ngx8TZvF582KIOl0pRo3axX/GyYlR7y1CCCHNCs341LO8PFMn9shI5YBizZqrmDHDE0ajBlotw/z555GQcIV/39nZGRqNKdCRW6IKDs5HaupqFBX5wsWlHOvWTREdxzVBFYqOPoKIiDMoKvLFk08OR0xMoB2umhBCCGkcKPCpR+vWAVOnmjqwa7Wm3VpSicq//34F//ufDoyZAhujUYNFi4JhMGwRbS835fKEwcXlpsUSFRfU6HSl/GdGjdplsWNLars695ngYKPFe4QQQkhTRoFPPcnLqw56ANN/H3vM1NncfObn1CnL3BxuWYoLVMy3nXfvfhzHj3dXDGqEszlcUEQIIYQ4Egp86snp09VBD6eqCjhzxjLwCQ+vlJ3BAaS3nR8/3h0PPPAJXF0rLIKapKQk6HTVBQ8vX76M7du32/kKCSGEkMaPkpvrSWSkaXlLyMkJ6NjR8tjgYKMoydh8Bkcup+eTTx7ElSu+FjM5Op0OQUFB/K/gYHVNTqluDyGEkOaGZnzqSUiIVAVm0+vmHdQvX76suCwl3bUdAEwFByMiziguY5m3xZDi6upKdXsIIYQ0OxT41KPkZFNOz5kzppkeLuiRayoqTEw2f12YqCxkngskRxjUqN1pRgghhDR1tNTVAJigpI7SrIuS6OgjSE5+D4A4cUhqi7rSktW6dUD79sCgQab/rltXo+EQQgghTQIFPvXI3kFGSEgBRo+WzwVKSEhASkqK7JKV3E4zuYKJhBBCSFNHS131RC7IyMysXeyplAvk7++vmKdjy04zQgghpDmgwKeeyAUZOTnSfwRco1FfXz10ulL06tULAPDbb79ZHCuXC2QNt9NMOC65nWaEEEJIc0CBTz2RCzLCwiqRlSU+1rw44ahRuwBYBjy1pbTTjBBCCGmOKMennnBBhpOT6WcuyDBvCyFVnHDnzpEwGLxs/k41dXiSk4GcHFMz1Jwc6RYahBBCSHNBMz71SGo7e0GB+Bi54oTCLeoJCQlwdnZGZWWlxXe4uLhAp9PZVIcnJIRmeQghhDiGJhX4fPXVV3j++edx/PhxtGjRAnfffTe++OIL/v1//vkHTzzxBPbu3YuWLVti4sSJWLJkCZydG89lmgcZ5rMyUsUJzbeo+/v7IygoqM7HSgghhDQ3jScisGLbtm149NFH8dJLL2HQoEGorKxEliA5pqqqCiNGjECbNm1w4MABFBQU4OGHH4aLiwteeumlBhy5MmEVZa6Hltou6oQQQgixjYYxYTm9xqmyshJhYWFYtGgRkmWSUHbv3o2RI0ciPz8fgYGBAIC3334bc+bMwaVLl1T3nSopKYFOp4PBYIC3t7fdrkGNgoICrF27FgC3q0u6i3pCQgL8/f0BUGsJQgghBFD//G4SMz6HDx/G+fPnodVq0bNnTxQWFuKOO+7A8uXLERUVBQDIyMjA7bffzgc9ADB06FA88cQTOHHiBHr27Cl57ps3b+LmzZv8zyUlJXV7MQqKi4v530ttUee2uK9fnyZ6T6lIISGEEEKqNYnA5++//wYALFy4ECtXrkRYWBheeeUVDBgwAH/99Rd8fX1RWFgoCnoA8D8XFhbKnnvJkiVYtGhR3Q1eJb1ejy1btsi+L7XFPTr6CICat70ghBBCHE2Dbmd/5plnoNFoFH/9+eefMN4qfjNv3jyMGTMGMTExWL9+PTQaDT777LNajWHu3LkwGAz8r9zcXHtcms2Ughd7bnEnhBBCHFmDzvjMnDkTkyZNUjymQ4cOKLi157tr1678625ubujQoQP++ecfAECbNm3wyy+/iD574cIF/j05bm5ucHNzq8nw64x51WY1W9wJIYQQYl2DBj6tW7dG69atrR4XExMDNzc3nDp1Cv/6178AABUVFcjJyUH79u0BAHFxcXjxxRdx8eJFBAQEAADS0tLg7e0tCpgaSl6eqW1FZKRyzRypJa2IiDNWt7gTQgghxLomUbnZ29sbjz/+OBYsWIA9e/bg1KlTeOKJJwAA999/PwBgyJAh6Nq1Kx566CEcO3YM3377LZ599llMmzatwWd0rHVlz8sD9u93RV5ekOSSFgCMGiXfhZ0QQggh6jSJ5GYAWL58OZydnfHQQw/h+vXriI2Nxffff49WrVoBAJycnLBr1y488cQTiIuLg6enJyZOnIjnn3++Qcct15V96FDTzM+6ddz7ftBopsguaSl1YSeEEEKIOk0m8HFxccGKFSuwYsUK2WPat2+Pr7/+uh5HZZ1cV/YzZ0y/FwZFpqCHAdDwxwqXtGrahZ0QQgghJk1iqasp47qyCzk5mXp1SQVFpqDHtiUttcUZCSGEEEfXZGZ8miquK/tjj5lmeriu7FyCs1YrDn40GiMeeOAT6PV+aNfuH4SEiLuYJiYmwsfHh/+ZKjcTQggh6jWJlhX1qS5aVuj1euTkVCInxxlhYZUIDq6OdDZtcsfs2ToYjRpoNEZ0734cx493lyxUeO+996J37952GRMhhBDSnDSrlhVNmV6vx+uvv87/LOiryps+3Qu5uSEoK3PH11+PALcCye3qiog4A52uFC1atKinURNCCCHNEwU+dUxNO4mzZzuKtrELUaFCQgghxH4oubmOGQwGK+97yQY9ABUqJIQQQuyJAp86VlFRofi+VDsKDhUqJIQQQuyLlroamK+vXrIdxZgxWxEamicKepyd6Y+LEEIIqQ2a8WlgOl2pZDuKqKiTFjM9wm3shBBCCLEdTSE0AtSOghBCCKkfFPg0EmraUVCFZkIIIaR2KPCpY7XNy0lISIC/vz9VaCaEEELsgAKfOqTX61FZWVmrc7i4uCAoKMhOIyKEEEIcGwU+dcS8YnNNUUcRQgghxH5oV1cdUVOxWQ3ayUUIIYTYDwU+hBBCCHEYFPgQQgghxGFQ4NNIGAxeyM4Og8Hg1dBDIYQQQpotSm5uAAaDF4qK/ODrq4dOV4rDh3vyjUq5ys3R0UcaepiEEEJIs0OBTz0zD3Li49ORnh7P9+piTIudO0ciIuIMVXAmhBBC7IyWuuqRweDFBz2AKchJS4u36M7OmBZFRb4AqFozIYQQYk8041NHpAKWoiI/iyAH0Fp0Z9dqGZ58cjjCwpypWjMhhBBiRxT41BE/Pz+kpKSgvLwcly9fxvbt2+Hrq7cIcsyXuzQaI15+uQQxMYENOHpCCCGkeaLApw6Zz9bodKUYNWqXKMcnLi4DUVFZiIrK4ruzjxv3IACfBhkzIYQQ0pxR4FMPhMte0dFHEBFxBpmZsThwIA4HDvRDRkacaCcX5fUQQgghdUPDqBmUSElJCXQ6HQwGA7y9ve12Xr1ej/LychQXFyMvDxg2rAuMRg3/vlbL8MsvFymvhxBCCKkBtc9vmvGpJ1wwExQUhMJCwGgUv280alBaGgiKeQghhJC6Q9vZG0BkJKA1u/NOTkDHjg0zHkIIIcRRUODTAEJCgLVrTcEOYPrvO++YXieEEEJI3aGlrgaSnAwMHQqcOWOa6aGghxBCCKl7FPg0oJAQCngIIYSQ+kRLXYQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBvbrMMMYAACUlJQ08EkIIIYSoxT23uee4HAp8zJSWlgIAQkNDG3gkhBBCCLFVaWkpdDqd7PsaZi00cjBGoxH5+fnw8vKCRqOp8XlKSkoQGhqK3NxceHt723GETQfdA7oHAN0DgO4BQPcAoHsA1O09YIyhtLQUwcHB0GrlM3loxseMVqtFSEiI3c7n7e3tsH/BOXQP6B4AdA8AugcA3QOA7gFQd/dAaaaHQ8nNhBBCCHEYFPgQQgghxGFQ4FNH3NzcsGDBAri5uTX0UBoM3QO6BwDdA4DuAUD3AKB7ADSOe0DJzYQQQghxGDTjQwghhBCHQYEPIYQQQhwGBT6EEEIIcRgU+BBCCCHEYVDgY4O33noL3bt35wsvxcXFYffu3fz7N27cwLRp0+Dn54eWLVtizJgxuHDhgugc//zzD0aMGAEPDw8EBARg1qxZqKysrO9LsZulS5dCo9EgNTWVf62534eFCxdCo9GIfnXp0oV/v7lfP+f8+fOYMGEC/Pz84O7ujttvvx2//fYb/z5jDPPnz0dQUBDc3d0RHx+P06dPi85RVFSE8ePHw9vbGz4+PkhOTsbVq1fr+1JqJCwszOLvgUajwbRp0wA4xt+DqqoqPPfccwgPD4e7uzsiIiKwePFiUa+k5v73ADC1SEhNTUX79u3h7u6Ovn374tdff+Xfb2734Mcff8SoUaMQHBwMjUaDL774QvS+va73+PHjuOuuu9CiRQuEhobi5Zdfts8FMKLajh072FdffcX++usvdurUKfZ///d/zMXFhWVlZTHGGHv88cdZaGgo++6779hvv/3G+vTpw/r27ct/vrKykkVFRbH4+Hh25MgR9vXXXzN/f382d+7chrqkWvnll19YWFgY6969O5s+fTr/enO/DwsWLGDdunVjBQUF/K9Lly7x7zf362eMsaKiIta+fXs2adIklpmZyf7++2/27bffsjNnzvDHLF26lOl0OvbFF1+wY8eOsdGjR7Pw8HB2/fp1/phhw4axHj16sIMHD7KffvqJdezYkT344IMNcUk2u3jxoujvQFpaGgPA9u7dyxhzjL8HL774IvPz82O7du1i2dnZ7LPPPmMtW7Zka9as4Y9p7n8PGGMsMTGRde3ale3bt4+dPn2aLViwgHl7e7O8vDzGWPO7B19//TWbN28e2759OwPAPv/8c9H79rheg8HAAgMD2fjx41lWVhb75JNPmLu7O3vnnXdqPX4KfGqpVatW7L333mPFxcXMxcWFffbZZ/x7J0+eZABYRkYGY8z0l0Wr1bLCwkL+mLfeeot5e3uzmzdv1vvYa6O0tJRFRkaytLQ0dvfdd/OBjyPchwULFrAePXpIvucI188YY3PmzGH/+te/ZN83Go2sTZs2bPny5fxrxcXFzM3NjX3yySeMMcb++OMPBoD9+uuv/DG7d+9mGo2GnT9/vu4GX0emT5/OIiIimNFodJi/ByNGjGCTJ08WvZaQkMDGjx/PGHOMvwdlZWXMycmJ7dq1S/R6dHQ0mzdvXrO/B+aBj72u980332StWrUS/W9hzpw5rHPnzrUeMy111VBVVRU+/fRTXLt2DXFxcTh06BAqKioQHx/PH9OlSxe0a9cOGRkZAICMjAzcfvvtCAwM5I8ZOnQoSkpKcOLEiXq/htqYNm0aRowYIbpeAA5zH06fPo3g4GB06NAB48ePxz///APAca5/x44d6NWrF+6//34EBASgZ8+eePfdd/n3s7OzUVhYKLoPOp0OsbGxovvg4+ODXr168cfEx8dDq9UiMzOz/i7GDsrLy/HRRx9h8uTJ0Gg0DvP3oG/fvvjuu+/w119/AQCOHTuGn3/+GcOHDwfgGH8PKisrUVVVhRYtWohed3d3x88//+wQ90DIXtebkZGB/v37w9XVlT9m6NChOHXqFK5cuVKrMVKTUhv9/vvviIuLw40bN9CyZUt8/vnn6Nq1K44ePQpXV1f4+PiIjg8MDERhYSEAoLCwUPR/ctz73HtNxaefforDhw+L1rA5hYWFzf4+xMbGYsOGDejcuTMKCgqwaNEi3HXXXcjKynKI6weAv//+G2+99RZmzJiB//u//8Ovv/6Kp556Cq6urpg4cSJ/HVLXKbwPAQEBovednZ3h6+vbZO4D54svvkBxcTEmTZoEwDH+dwAAzzzzDEpKStClSxc4OTmhqqoKL774IsaPHw8ADvH3wMvLC3FxcVi8eDFuu+02BAYG4pNPPkFGRgY6duzoEPdAyF7XW1hYiPDwcItzcO+1atWqxmOkwMdGnTt3xtGjR2EwGLB161ZMnDgR+/bta+hh1Zvc3FxMnz4daWlpFv/CcRTcv2YBoHv37oiNjUX79u2xZcsWuLu7N+DI6o/RaESvXr3w0ksvAQB69uyJrKwsvP3225g4cWIDj67+rVu3DsOHD0dwcHBDD6VebdmyBR9//DE2bdqEbt264ejRo0hNTUVwcLBD/T3YuHEjJk+ejLZt28LJyQnR0dF48MEHcejQoYYeGpFAS102cnV1RceOHRETE4MlS5agR48eWLNmDdq0aYPy8nIUFxeLjr9w4QLatGkDAGjTpo3Frg7uZ+6Yxu7QoUO4ePEioqOj4ezsDGdnZ+zbtw+vvvoqnJ2dERgY6BD3QcjHxwedOnXCmTNnHObvQVBQELp27Sp67bbbbuOX/LjrkLpO4X24ePGi6P3KykoUFRU1mfsAAOfOnUN6ejqmTJnCv+Yofw9mzZqFZ555Bg888ABuv/12PPTQQ/jf//6HJUuWAHCcvwcRERHYt28frl69itzcXPzyyy+oqKhAhw4dHOYecOx1vXX5vw8KfGrJaDTi5s2biImJgYuLC7777jv+vVOnTuGff/5BXFwcACAuLg6///676A88LS0N3t7eFg+Rxuqee+7B77//jqNHj/K/evXqhfHjx/O/d4T7IHT16lWcPXsWQUFBDvP3oF+/fjh16pTotb/++gvt27cHAISHh6NNmzai+1BSUoLMzEzRfSguLhb9q/j777+H0WhEbGxsPVyFfaxfvx4BAQEYMWIE/5qj/D0oKyuDVit+jDg5OcFoNAJwrL8HAODp6YmgoCBcuXIF3377Lf7973873D2w1/XGxcXhxx9/REVFBX9MWloaOnfuXKtlLgC0nd0WzzzzDNu3bx/Lzs5mx48fZ8888wzTaDRsz549jDHT9tV27dqx77//nv32228sLi6OxcXF8Z/ntq8OGTKEHT16lH3zzTesdevWTWr7qhThri7Gmv99mDlzJvvhhx9YdnY2279/P4uPj2f+/v7s4sWLjLHmf/2MmUoZODs7sxdffJGdPn2affzxx8zDw4N99NFH/DFLly5lPj4+7Msvv2THjx9n//73vyW3tPbs2ZNlZmayn3/+mUVGRjbaLbxSqqqqWLt27dicOXMs3nOEvwcTJ05kbdu25bezb9++nfn7+7PZs2fzxzjC34NvvvmG7d69m/39999sz549rEePHiw2NpaVl5czxprfPSgtLWVHjhxhR44cYQDYypUr2ZEjR9i5c+cYY/a53uLiYhYYGMgeeughlpWVxT799FPm4eFB29nr2+TJk1n79u2Zq6sra926Nbvnnnv4oIcxxq5fv87++9//slatWjEPDw/2n//8hxUUFIjOkZOTw4YPH87c3d2Zv78/mzlzJquoqKjvS7Er88Cnud+HpKQkFhQUxFxdXVnbtm1ZUlKSqH5Nc79+zs6dO1lUVBRzc3NjXbp0YWvXrhW9bzQa2XPPPccCAwOZm5sbu+eee9ipU6dEx+j1evbggw+yli1bMm9vb/bII4+w0tLS+ryMWvn2228ZAIvrYswx/h6UlJSw6dOns3bt2rEWLVqwDh06sHnz5om2IDvC34PNmzezDh06MFdXV9amTRs2bdo0VlxczL/f3O7B3r17GQCLXxMnTmSM2e96jx07xv71r38xNzc31rZtW7Z06VK7jF/DmKDEJiGEEEJIM0Y5PoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQ0U4WFhXjyySfRoUMHuLm5ITQ0FKNGjRL10Dlw4ADuvfdetGrVCi1atMDtt9+OlStXoqqqij8mJycHycnJCA8Ph7u7OyIiIrBgwQKUl5eLvu/dd99Fjx490LJlS/j4+KBnz558s0oAWLhwITQaDYYNG2Yx1uXLl0Oj0WDAgAFWryssLAwajUb216RJk2y/WY3cgAEDkJqa2tDDIKRZcG7oARBC7C8nJwf9+vWDj48Pli9fjttvvx0VFRX49ttvMW3aNPz555/4/PPPkZiYiEceeQR79+6Fj48P0tPTMXv2bGRkZGDLli3QaDT4888/YTQa8c4776Bjx47IysrCo48+imvXrmHFihUAgPfffx+pqal49dVXcffdd+PmzZs4fvw4srKyROMKCgrC3r17kZeXh5CQEP71999/H+3atVN1bb/++isfmB04cABjxozBqVOn4O3tDQBwd3e3xy2sFxUVFXBxcam37ysvL4erq2u9fR8hjZJdGl8QQhqV4cOHs7Zt27KrV69avHflyhV29epV5ufnxxISEize37FjBwPAPv30U9nzv/zyyyw8PJz/+d///jebNGmS4pgWLFjAevTowUaOHMleeOEF/vX9+/czf39/9sQTT7C7775bxdVV43oGXblyhX/tiy++YD179mRubm4sPDycLVy4UNT/CgB7++232YgRI5i7uzvr0qULO3DgADt9+jS7++67mYeHB4uLixP1X+PG/vbbb7OQkBDm7u7O7r//flE/JsYYe/fdd1mXLl2Ym5sb69y5M3vjjTf497Kzs/n72r9/f+bm5sbWr1/PLl++zB544AEWHBzM3N3dWVRUFNu0aRP/uYkTJ1r0RMrOzmbr169nOp1O9P2ff/45E/7fOjfud999l4WFhTGNRsMYM/0dSE5OZv7+/szLy4sNHDiQHT161KZ7T0hTRUtdhDQzRUVF+OabbzBt2jR4enpavO/j44M9e/ZAr9fj6aeftnh/1KhR6NSpEz755BPZ7zAYDPD19eV/btOmDQ4ePIhz585ZHd/kyZOxYcMG/uf3338f48ePt8tMxE8//YSHH34Y06dPxx9//IF33nkHGzZswIsvvig6bvHixXj44Ydx9OhRdOnSBePGjcNjjz2GuXPn4rfffgNjDCkpKaLPnDlzBlu2bMHOnTvxzTff4MiRI/jvf//Lv//xxx9j/vz5ePHFF3Hy5Em89NJLeO655/DBBx+IzvPMM89g+vTpOHnyJIYOHYobN24gJiYGX331FbKysjB16lQ89NBD+OWXXwAAa9asQVxcHB599FEUFBSgoKAAoaGhqu/JmTNnsG3bNmzfvh1Hjx4FANx///24ePEidu/ejUOHDiE6Ohr33HMPioqKbLndhDRNDR15EULsKzMzkwFg27dvlz1m6dKlFjMlQqNHj2a33Xab5HunT59m3t7eom7s+fn5rE+fPgwA69SpE5s4cSLbvHkzq6qq4o/hZh/Ky8tZQEAA27dvH7t69Srz8vJix44dY9OnT6/1jM8999zDXnrpJdExGzduZEFBQfzPANizzz7L/5yRkcEAsHXr1vGvffLJJ6xFixaisTs5ObG8vDz+td27dzOtVst3XI+IiBDN1DDG2OLFi1lcXBxjrHrGZ/Xq1Vava8SIEWzmzJn8z3fffTebPn266Bi1Mz4uLi7s4sWL/Gs//fQT8/b2Zjdu3BB9NiIigr3zzjtWx0ZIU0c5PoQ0M4yxOjkWAM6fP49hw4bh/vvvx6OPPsq/HhQUhIyMDGRlZeHHH3/EgQMHMHHiRLz33nv45ptvoNVWTy67uLhgwoQJWL9+Pf7++2906tQJ3bt3t2kcco4dO4b9+/eLZniqqqpw48YNlJWVwcPDAwBE3xcYGAgAuP3220Wv3bhxAyUlJXzuULt27dC2bVv+mLi4OBiNRpw6dQpeXl44e/YskpOTRfelsrISOp1ONMZevXqJfq6qqsJLL72ELVu24Pz58ygvL8fNmzf5sdZW+/bt0bp1a/7nY8eO4erVq/Dz8xMdd/36dZw9e9Yu30lIY0aBDyHNTGRkJJ+ULKdTp04AgJMnT6Jv374W7588eRJdu3YVvZafn4+BAweib9++WLt2reR5o6KiEBUVhf/+9794/PHHcdddd2Hfvn0YOHCg6LjJkycjNjYWWVlZmDx5sq2XKOvq1atYtGgREhISLN5r0aIF/3thQrFGo5F9zWg0qv5ewLSzLTY2VvSek5OT6Gfz5cfly5djzZo1WL16NW6//XZ4enoiNTXVYtecOa1WaxG4VlRUWBxn/n1Xr15FUFAQfvjhB4tjfXx8FL+TkOaAAh9CmhlfX18MHToUb7zxBp566imLB19xcTGGDBkCX19fvPLKKxaBz44dO3D69GksXryYf+38+fMYOHAgYmJisH79etEMjhwucLp27ZrFe926dUO3bt1w/PhxjBs3riaXKSk6OhqnTp1Cx44d7XZOzj///IP8/HwEBwcDAA4ePAitVovOnTsjMDAQwcHB+PvvvzF+/Hibzrt//378+9//xoQJEwCYgq2//vpLFHi6urqKSgwAQOvWrVFaWopr167xf8ZcDo+S6OhoFBYWwtnZGWFhYTaNlZDmgAIfQpqhN954A/369cOdd96J559/Ht27d0dlZSXS0tLw1ltv4eTJk3jnnXfwwAMPYOrUqUhJSYG3tze+++47zJo1C2PHjkViYiIAU9AzYMAAtG/fHitWrMClS5f472nTpg0A4IknnkBwcDAGDRqEkJAQFBQU4IUXXkDr1q0RFxcnOcbvv/8eFRUVdp1lmD9/PkaOHIl27dph7Nix0Gq1OHbsGLKysvDCCy/U6twtWrTAxIkTsWLFCpSUlOCpp55CYmIifw8WLVqEp556CjqdDsOGDcPNmzfx22+/4cqVK5gxY4bseSMjI7F161YcOHAArVq1wsqVK3HhwgVR4BMWFobMzEzk5OSgZcuW8PX1RWxsLDw8PPB///d/eOqpp5CZmSlKGpcTHx+PuLg43Pf/7d29aiJRGMbxR9IIWgkBg0JQwgTEsRACNn6BH2BlooG0Ae9AOy2mTjOdNoIWAS0t1EIZLGxSeQXTxCK3sVtFWEL2g11Y4/x/cKozHGa6h3neYep1PT09yTAMvb29abFY6Pb29kMVB5wavuoCTlA8Htdut1OxWFS73VYymVS5XJbjOBoMBpKkZrOpzWaj/X6vbDar6+tr2batbrer6XR6qHvW67Vc15XjOIpGo7q4uDisd6VSSS8vL7q/v5dhGGo0GvL7/XIc58MsybtAIPDPq5Vqtar5fK7VaqWbmxtlMhnZtq3Ly8u/Pvvq6kp3d3eq1WqqVCpKpVLq9/uH/VarpeFwqNFoJNM0lc/nNR6PFYvFfnpur9dTOp1WtVpVoVBQOBxWvV7/4ZpOp6OzszMlEgmdn59rv98rFArp+flZy+VSpmlqMpnIsqxfPofP59NyuVQul9Pj46MMw9DDw4NeX18P807AKfN9+9PpRgDwGMuyNJvNfqtKAnDceOMDAAA8g+AD4OgEg8FP13a7/d+3B+ALo+oCcHRc1/10LxKJfKn/cQE4LgQfAADgGVRdAADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAM74DHWoJY2tegQAAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with ALAMO Surrogate Object - Training Surrogate (Part 1)\n", + "\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "\n", + "## 1. Introduction\n", + "This notebook demonstrates leveraging of the ALAMO surrogate trainer and IDAES Python wrapper to produce an surrogate based on supercritical CO2 data from simulation using REFPROP package.\n", + "\n", + "There are several reasons to build surrogate models for complex processes, even when higher fidelity models already exist (e.g., reduce model size, improve convergence reliability, replace models with externally compiled code and make them fully-equation oriented).\n", + "\n", + "In this example, we intend to make a surrogate for the physical properties of S-CO2 to be embedded in the property package. This property package will be used to get the physical properties of S-CO2 in the flowsheet simulation. To learn more about property package, see the [IDAES-PSE](https://github.com/IDAES/idaes-pse) Github Page or IDAES [Read-the-docs](https://idaes-pse.readthedocs.io/en/latest/). \n", + "\n", + "### 1.1 Need for ML Surrogate\n", + "\n", + "The properties predicted by the surrogate are enthalpy and entropy of the S-CO2 based on the \n", + "pressure and temperature of the system. The analytical equation of getting the enthalpy and entropy from pressure and temperature are in the differential form and would make the problem a DAE system. To counter this problem and keep the problem algebraic, we will use the surrogates and relate enthalpy and entropy with the pressure and temperature as an algebraic equation.\n", + "\n", + "### 1.2 Supercritical CO2 cycle process\n", + "\n", + "The following flowsheet will be used to optimize the design for the cooling of the fusion reactor using supercritical CO2 cycle. We shall focus on training the surrogate for this notebook and move to constructing the flowsheet and the properties package in the subsequent notebooks. The take away from this flowsheet is that, 3 variables can be measured in any given unit which are flow, pressure and temperature and other properties can be calculated using them. Thus, surrogate should have pressure and temperature as the inputs.\n", + "\n", + "In this example, we will train a model using AlamoTrainer for our data and then demonstrate that we can solve an optimization problem with that surrogate model. " ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1MklEQVR4nO3dd1gUV9sG8HspSxVQQUEDggXB8lqjLK+JkvCKxl6SWKISW2wxdrCiMSoqxl6S2BN7YsESUVFjoogNCwrYQFREjUgRlXq+P/gYGQEFBXYX7t917UXmnDMzz+4E9vHMnHMUQggBIiIiItJoOuoOgIiIiIjejkkbERERkRZg0kZERESkBZi0EREREWkBJm1EREREWoBJGxEREZEWYNJGREREpAWYtBERERFpASZtRERERFqASRsR0XtSKBSYPn26usOQeHp6wt7eXt1hEFERY9JGRKXS+vXroVAopJehoSEcHR0xYsQIPHz4sFjPferUKUyfPh3x8fFFetxWrVrJ3lOFChXw4YcfYu3atcjMzCySc8yePRu7d+8ukmMRUdHSU3cARETF6fvvv4eDgwNevnyJf/75BytXrsSBAwcQGhoKY2PjIjnHixcvoKf36s/pqVOnMGPGDHh6esLCwqJIzpHtgw8+wJw5cwAAjx8/xsaNGzFgwABcv34dvr6+73382bNno3v37ujcufN7H4uIihaTNiIq1dq2bYumTZsCAAYOHIiKFSvixx9/xJ49e9CzZ893Pm5mZiZSU1NhaGgIQ0PDogr3rczNzfHVV19J29988w1q166NZcuWYebMmdDX1y+xWIioZPH2KBGVKZ988gkAIDIyEgDg5+cHV1dXVKxYEUZGRmjSpAl+//33XPspFAqMGDECmzZtQt26dWFgYICDBw9KddnPtE2fPh3jx48HADg4OEi3MqOiotCyZUs0aNAgz7hq164NDw+PQr8fY2NjuLi4IDk5GY8fP863XXJyMsaOHQtbW1sYGBigdu3a8PPzgxBC9h6Tk5OxYcMGKW5PT89Cx0RExYM9bURUpty6dQsAULFiRQDA4sWL0bFjR/Tu3RupqanYunUrPv/8c+zbtw/t2rWT7Xv06FFs374dI0aMgKWlZZ4P+3ft2hXXr1/Hli1bsHDhQlhaWgIArKys0KdPHwwaNAihoaGoV6+etM/Zs2dx/fp1TJky5Z3e0+3bt6Grq5vvrVghBDp27Ihjx45hwIABaNiwIQICAjB+/Hjcv38fCxcuBAD8+uuvGDhwIJo1a4bBgwcDAGrUqPFOMRFRMRBERKXQunXrBABx5MgR8fjxY3H37l2xdetWUbFiRWFkZCTu3bsnhBDi+fPnsv1SU1NFvXr1xCeffCIrByB0dHTE1atXc50LgPDx8ZG258+fLwCIyMhIWbv4+HhhaGgovLy8ZOUjR44UJiYm4tmzZ298Ty1bthROTk7i8ePH4vHjxyIsLEyMHDlSABAdOnSQ2vXr109Uq1ZN2t69e7cAIH744QfZ8bp37y4UCoW4efOmVGZiYiL69ev3xjiISD14e5SISjV3d3dYWVnB1tYWPXr0gKmpKXbt2oWqVasCAIyMjKS2T58+RUJCAj766CNcuHAh17FatmyJOnXqvHMs5ubm6NSpE7Zs2SLdlszIyMC2bdvQuXNnmJiYvPUY4eHhsLKygpWVFZydnbF06VK0a9cOa9euzXefAwcOQFdXFyNHjpSVjx07FkII/Pnnn+/8noio5PD2KBGVasuXL4ejoyP09PRQuXJl1K5dGzo6r/69um/fPvzwww+4ePEiUlJSpHKFQpHrWA4ODu8dT9++fbFt2zb8/fff+Pjjj3HkyBE8fPgQffr0KdD+9vb2+OWXX6RpTGrVqoVKlSq9cZ87d+6gSpUqKFeunKzc2dlZqicizcekjYhKtWbNmkmjR1/3999/o2PHjvj444+xYsUK2NjYQF9fH+vWrcPmzZtztc/ZK/euPDw8ULlyZfz222/4+OOP8dtvv8Ha2hru7u4F2t/ExKTAbYmodOHtUSIqs/744w8YGhoiICAA/fv3R9u2bYskIcqrly6brq4uevXqhd9//x1Pnz7F7t270bNnT+jq6r73efNTrVo1xMTEICkpSVYeHh4u1Wd7U+xEpF5M2oiozNLV1YVCoUBGRoZUFhUV9d4rAmQ/m5bfigh9+vTB06dP8c033+DZs2eyedeKw2effYaMjAwsW7ZMVr5w4UIoFAq0bdtWKjMxMSnylRyIqGjw9igRlVnt2rXDjz/+iDZt2qBXr1549OgRli9fjpo1a+Ly5cvvfNwmTZoAACZPnowePXpAX18fHTp0kJK5Ro0aoV69etixYwecnZ3RuHHjInk/+enQoQPc3NwwefJkREVFoUGDBjh06BD27NmDUaNGyab1aNKkCY4cOYIff/wRVapUgYODA5o3b16s8RFRwbCnjYjKrE8++QRr1qxBbGwsRo0ahS1btmDu3Lno0qXLex33ww8/xMyZM3Hp0iV4enqiZ8+euSa+7du3LwAUeADC+9DR0YG/vz9GjRqFffv2YdSoUbh27Rrmz5+PH3/8Udb2xx9/RJMmTTBlyhT07NkTK1euLPb4iKhgFELkmA6biIhKxOLFizF69GhERUXBzs5O3eEQkRZg0kZEVMKEEGjQoAEqVqyIY8eOqTscItISfKaNiKiEJCcnw9/fH8eOHcOVK1ewZ88edYdERFqEPW1ERCUkKioKDg4OsLCwwLBhwzBr1ix1h0REWoRJGxEREZEW4OhRIiIiIi3ApI2IiIhIC3AgggbLzMxETEwMypUrx6VliIiItIQQAklJSahSpQp0dIquf4xJmwaLiYmBra2tusMgIiKid3D37l188MEHRXY8Jm0arFy5cgCyLrqZmZmaoyEiIqKCSExMhK2trfQ9XlSYtGmw7FuiZmZmTNqIiIi0TFE/2sSBCERERERagEkbERERkRZg0kZERESkBfhMm5bLyMhAWlqausOgEqCvrw9dXV11h0FERGrCpE1LCSEQGxuL+Ph4dYdCJcjCwgLW1tact4+IqAxi0qalshO2SpUqwdjYmF/ipZwQAs+fP8ejR48AADY2NmqOiIiIShqTNi2UkZEhJWwVK1ZUdzhUQoyMjAAAjx49QqVKlXirlIiojOFABC2U/QybsbGxmiOhkpZ9zfkcIxFR2cOkTYvxlmjZw2tORFR2MWkjIiIi0gJM2oiIiIi0gNYkbR07doSdnR0MDQ1hY2ODPn36ICYmRtZGCAE/Pz84OjrCwMAAVatWxaxZs2Rtjh8/jsaNG8PAwAA1a9bE+vXrc51r+fLlsLe3h6GhIZo3b44zZ87I6l++fInhw4ejYsWKMDU1Rbdu3fDw4UNZm+joaLRr1w7GxsaoVKkSxo8fj/T09KL5MLSYp6cnFAoFFAoF9PX1UblyZfzvf//D2rVrkZmZWeDjrF+/HhYWFsUXKBERkYbRmqTNzc0N27dvR0REBP744w/cunUL3bt3l7X57rvvsHr1avj5+SE8PBz+/v5o1qyZVB8ZGYl27drBzc0NFy9exKhRozBw4EAEBARIbbZt24YxY8bAx8cHFy5cQIMGDeDh4SFNtQAAo0ePxt69e7Fjxw789ddfiImJQdeuXaX6jIwMtGvXDqmpqTh16hQ2bNiA9evXY9q0acX4CWmPNm3a4MGDB4iKisKff/4JNzc3fPfdd2jfvj0TWyIiovwILbVnzx6hUChEamqqEEKIa9euCT09PREeHp7vPhMmTBB169aVlX355ZfCw8ND2m7WrJkYPny4tJ2RkSGqVKki5syZI4QQIj4+Xujr64sdO3ZIbcLCwgQAERQUJIQQ4sCBA0JHR0fExsZKbVauXCnMzMxESkpKgd9jQkKCACASEhJk5S9evBDXrl0TL168KPCxNEW/fv1Ep06dcpUHBgYKAOKXX34RQgixYMECUa9ePWFsbCw++OADMXToUJGUlCSEEOLYsWMCgOzl4+MjhBBi48aNokmTJsLU1FRUrlxZ9OzZUzx8+LCk3l6x0+ZrT0SkCfbsEcLJSYiqVbN+7tlT9OfI7/v7fWlNT1tOcXFx2LRpE1xdXaGvrw8A2Lt3L6pXr459+/bBwcEB9vb2GDhwIOLi4qT9goKC4O7uLjuWh4cHgoKCAACpqak4f/68rI2Ojg7c3d2lNufPn0daWpqsjZOTE+zs7KQ2QUFBqF+/PipXriw7T2JiIq5evZrv+0pJSUFiYqLsVVBCCKSmpqrlJYQocJz5+eSTT9CgQQPs3LkTQNbnvmTJEly9ehUbNmzA0aNHMWHCBACAq6srFi1aBDMzMzx48AAPHjzAuHHjAGRNhTFz5kxcunQJu3fvRlRUFDw9Pd87PiIiKh18fYHwcOD+/ayfvr7qjqjgtGpyXS8vLyxbtgzPnz+Hi4sL9u3bJ9Xdvn0bd+7cwY4dO7Bx40ZkZGRg9OjR6N69O44ePQogaxWBnIkUAFSuXBmJiYl48eIFnj59ioyMjDzbhIeHS8dQKpW5nqeqXLkyYmNj33ie7Lr8zJkzBzNmzCjEJ/JKWloa5syZ8077vq+JEydCqVS+93GcnJxw+fJlAMCoUaOkcnt7e/zwww8YMmQIVqxYAaVSCXNzcygUClhbW8uO0b9/f+m/q1evjiVLluDDDz/Es2fPYGpq+t4xEhGRdvL3z0rQqlYFjIyyXpUqAd7e6o6s4NTa0+bt7S09lJ7fKztZAoDx48cjJCQEhw4dgq6uLvr27Sv18mRmZiIlJQUbN27ERx99hFatWmHNmjU4duwYIiIi1PUWC2XixIlISEiQXnfv3lV3SCVKCCHNQ3bkyBF8+umnqFq1KsqVK4c+ffrgyZMneP78+RuPcf78eXTo0AF2dnYoV64cWrZsCSBrYAgREZVN/v5A795AUBBw8CBQt+5ZjBw5A5Mn/4aOHdUdXcGptadt7Nixb711Vb16dem/LS0tYWlpCUdHRzg7O8PW1hanT5+GSqWCjY0N9PT04OjoKLV3dnYGkPWFXbt2bVhbW+ca5fnw4UOYmZnByMgIurq60NXVzbNNdo+OtbU1UlNTER8fL+tte73N6yNOs4/5es9QTgYGBjAwMHjj55EffX19TJw48Z32fV/Zt6jfV1hYGBwcHBAVFYX27dtj6NChmDVrFipUqIB//vkHAwYMQGpqar4rQSQnJ8PDwwMeHh7YtGkTrKysEB0dDQ8PD6SmphZJjEREpB2ye9a8vbN+PnsG6OpmYtSoBdDTy+oAuHXrlqzDQNOpNWmzsrKClZXVO+2bPT1ESkoKAOC///0v0tPTcevWLdSoUQMAcP36dQBAtWrVAAAqlQoHDhyQHefw4cNQqVQAAKVSiSZNmiAwMBCdO3eWzhMYGIgRI0YAAJo0aQJ9fX0EBgaiW7duAICIiAhER0dLx1GpVJg1a5a0RmT2eczMzFCnTp13er9vo1AoiuQWpbocPXoUV65cwejRo3H+/HlkZmZiwYIF0NHJ6gzevn27rL1SqURGRoasLDw8HE+ePIGvry9sbW0BAOfOnSuZN0BERBrF1zerZy07cRs1Khb9+v0kazNy5EitSdgALXmmLTg4GGfPnkWLFi1Qvnx53Lp1C1OnTkWNGjWkRMnd3R2NGzdG//79sWjRImRmZmL48OH43//+J/W+DRkyBMuWLcOECRPQv39/HD16FNu3b8f+/fulc40ZMwb9+vVD06ZN0axZMyxatAjJycn4+uuvAQDm5uYYMGAAxowZgwoVKsDMzAzffvstVCoVXFxcAACtW7dGnTp10KdPH8ybNw+xsbGYMmUKhg8f/s49aaVJSkoKYmNjkZGRgYcPH+LgwYOYM2cO2rdvj759+yI0NBRpaWlYunQpOnTogJMnT2LVqlWyY9jb2+PZs2cIDAxEgwYNYGxsDDs7OyiVSixduhRDhgxBaGgoZs6cqaZ3SURE6uTmBly5kvVTX/9P9Ov36g5Y1apVMWDAAK1K2ABox5Qfly9fFm5ubqJChQrCwMBA2NvbiyFDhoh79+7J2t2/f1907dpVmu7B09NTPHnyRNbm2LFjomHDhkKpVIrq1auLdevW5Trf0qVLhZ2dnVAqlaJZs2bi9OnTsvoXL16IYcOGifLlywtjY2PRpUsX8eDBA1mbqKgo0bZtW2FkZCQsLS3F2LFjRVpaWqHed2md8gP/P02Hnp6esLKyEu7u7mLt2rUiIyNDavfjjz8KGxsbYWRkJDw8PMTGjRsFAPH06VOpzZAhQ0TFihVlU35s3rxZ2NvbCwMDA6FSqYS/v78AIEJCQkr2jRYTbb72REQlZc8eIfT1hVAqX4rp06fLXteuXSv28xfXlB8KIYpgvgYqFomJiTA3N0dCQgLMzMyk8pcvXyIyMhIODg4wNDRUY4RU0njtiYjeztUVePLkOnr12iIr9/LyKpG/nfl9f78vrbg9SkRERPQm2QMPvLwEunXbgGfP7kh1jRs3RocOHdQYXdFg0kZERERaz9cXuHYtARcvLpKVOzoORIcOVdUTVBFj0kZERERaKee0Hv37n8b9+6/WElcqlZgwYQJ0dXXVGGHRYtJGREREWiU7WXv6FLh+PQOnT8+DgcGr+TirVvXAwIEuaoyweDBpIyIiIq2SPQebShWDadN+kdWNGjUK5ubmaoqseDFpIyIiIq3i7Q34+++Dre15qezhw2pYvryf9s29VghM2oiIiEhr7Nr1Epcvz8X/L3wDALhwoQcGDKiNUpyvAWDSRkRERFpi48YwREbKlzX09vYuM6sNMWkjIiIijSaEgJ/fGjx/fl8qO3/+Qwwc+BnKSL4GANBRdwBExcHT0xOdO3eWtlu1aoVRo0a91zGL4hhERFQ48fHx+P7772UJ28GDgzFw4Gfo2FGNgakBe9qoRHl6emLDhg0AAH19fdjZ2aFv376YNGkS9PSK73/HnTt3Ql9fv0Btjx8/Djc3Nzx9+hQWFhbvdAwiIno//v7A1q0nUbv2EaksOdkY//3vWPj4lM0+JyZtVOLatGmDdevWISUlBQcOHMDw4cOhr6+PiRMnytqlpqZCqVQWyTkrVKigEccgIqK3y8jIwPnzs1G7dqZUduTIZ/j44w/RqZMaA1OzspmqkloZGBjA2toa1apVw9ChQ+Hu7g5/f3/pluasWbNQpUoV1K5dGwBw9+5dfPHFF7CwsECFChXQqVMnREVFScfLyMjAmDFjYGFhgYoVK2LChAkQQsjO+fqtzZSUFHh5ecHW1hYGBgaoWbMm1qxZg6ioKLi5uQEAypcvD4VCAU9PzzyP8fTpU/Tt2xfly5eHsbEx2rZtixs3bkj169evh4WFBQICAuDs7AxTU1O0adMGDx48kNocP34czZo1g4mJCSwsLPDf//4Xd+68Wi+PiKisuXfvHn744Qfo6LxK2EaPHo2///4Qs2apMTANwKSN1M7IyAipqVkzWQcGBiIiIgKHDx/Gvn37kJaWBg8PD5QrVw5///03Tp48KSU/2fssWLAA69evx9q1a/HPP/8gLi4Ou3bteuM5+/btiy1btmDJkiUICwvDTz/9BFNTU9ja2uKPP/4AAERERODBgwdYvHhxnsfw9PTEuXPn4O/vj6CgIAgh8NlnnyEtLU1q8/z5c/j5+eHXX3/FiRMnEB0djXHjxgEA0tPT0blzZ7Rs2RKXL19GUFAQBg8eXKrnGCIiepPdu3djzZo10va//9aAj48PzMzM1BiV5uDtUVIbIQQCAwMREBCAb7/9Fo8fP4aJiQlWr14t3Rb97bffkJmZidWrV0vJzLp162BhYYHjx4+jdevWWLRoESZOnIiuXbsCAFatWoWAgIB8z3v9+nVs374dhw8fhru7OwCgevXqUn32bdBKlSrJnmnL6caNG/D398fJkyfh6uoKANi0aRNsbW2xe/dufP755wCAtLQ0rFq1CjVq1AAAjBgxAt9//z0AIDExEQkJCWjfvr1U7+zsXPgPkohIy+3c+QJXrsyTlf3+e2/MmlVTTRFpJva0Efz9AVfXrJ8lYd++fTA1NYWhoSHatm2LL7/8EtOnTwcA1K9fX/Yc26VLl3Dz5k2UK1cOpqamMDU1RYUKFfDy5UvcunULCQkJePDgAZo3by7to6enh6ZNm+Z7/osXL0JXVxctW7Z85/cQFhYGPT092XkrVqyI2rVrIywsTCozNjaWEjIAsLGxwaNHjwBkJYeenp7w8PBAhw4dsHjxYtmtUyKi0s7fH+jaNTRXwnbkyETMmlWzzI0OfRv2tJG0hpuvL0rkF8TNzQ0rV66EUqlElSpVZKNGTUxMZG2fPXuGJk2aYNOmTbmOY2Vl9U7nNzIyeqf93sXro00VCoXsebt169Zh5MiROHjwILZt24YpU6bg8OHDcHEpfQsdExHlJITAX3/9hAYNHkpllSqpMHRoa/j4qDEwDcaeNoK3N6BSZf0sCSYmJqhZsybs7OzeOs1H48aNcePGDVSqVAk1a9aUvczNzWFubg4bGxsEBwdL+6Snp+P8+fP5HrN+/frIzMzEX3/9lWd9dk9fRkZGvsdwdnZGenq67LxPnjxBREQE6tSp88b39LpGjRph4sSJOHXqFOrVq4fNmzcXan8iIm0TFxeH77//HmZmrxK2kyeHYujQ1mqMSvMxaSN07AicOlUyvWyF1bt3b1haWqJTp074+++/ERkZiePHj2PkyJG4d+8eAOC7776Dr68vdu/ejfDwcAwbNgzx8fH5HtPe3h79+vVD//79sXv3bumY27dnLY1SrVo1KBQK7Nu3D48fP8azZ89yHaNWrVro1KkTBg0ahH/++QeXLl3CV199hapVq6JTAcejR0ZGYuLEiQgKCsKdO3dw6NAh3Lhxg8+1EVGpduLECSxdulTaTkgww4IFUzFiRCU1RqUdmLSRRjM2NsaJEydgZ2eHrl27wtnZGQMGDMDLly+l0URjx45Fnz590K9fP6hUKpQrVw5dunR543FXrlyJ7t27Y9iwYXBycsKgQYOQnJwMAKhatSpmzJgBb29vVK5cGSNGjMjzGOvWrUOTJk3Qvn17qFQqCCFw4MCBAk/Aa2xsjPDwcHTr1g2Ojo4YPHgwhg8fjm+++aYQnxARkXZIT0/HjBkzcOzYsRxlHXD69Gj89puORnYcaBqFeH1CK9IYiYmJMDc3R0JCgmy488uXLxEZGQkHBwcYGhqqMUIqabz2RKSN7ty5g/Xr18vK/PzGon59U5w6pZ6YilN+39/viwMRiIiIqNgsXvwH4uNDpe379x1x4EBPfPBByT1LXVowaSMiIqIi9/z5c8yfP19WVrNmH/j4VM9nD3obJm1ERERUpC5fvpxrZZpZsyahaVN99O6tpqBKASZtREREVCSEEJg7dzlSUp5IZUFBLRAQ8ClMTXk79H0xadNiHENS9vCaE5Gm+vfff7F8+XJZ2bJlw/Dvv1YwNQU2bdLMqaW0CZM2LZQ9pcTz589LdHZ/Ur/nz58DyL3SAhGRuvj7Azt2HEPNmieksidPKmDZshEAFHByAubOZcJWFJi0aSFdXV1YWFhIa1gaGxtLi6lT6SSEwPPnz/Ho0SNYWFhAV1dX3SERESEtLQ0hIbNRM8e67p06dcKOHQ1hYgKMHAnMmqW++EobztOmwd40z4sQArGxsW+c+Z9KHwsLC1hbWzNJJyK1i4yMxMaNG2Vl48aNy7WGdFnEedpIRqFQwMbGBpUqVUJaWpq6w6ESoK+vzx42ItII27ZtQ3h4uLRdp04dfP7552qMqGxg0qbldHV1+UVOREQlIjk5GX5+frKyfv36wd7eXj0BlTFM2oiIiOit1q0LQXS0v6xs+/bJ8PFhKlFS+EkTERFRvoQQWLx4MRISEqSy8+dbYu/eVqhaVY2BlUFM2oiIiChPjx49wsqVK2Vl+/ePQExMRQCAqak6oiq7mLQRERFRLocPH8apU6ek7YcPK2HduiF4+TJr7jWViisclDQmbURERCRJS0vD7NmzZWW//94VoaH1AWT1rnGyXPVg0kZEREQAgFu3buG3336Tlc2fPx7JycYAAENDLkelTkzaiIiICJs2bcLNmzel7fr168PPryuSkwGFAqhSBVixggmbOumoOwAiIiJSn6SkJMyYMUOWsG3e/DXOn+8Kb++sZ9d27wbu3WPCpm5cxkqDFdcyGERERABw7tw57N+/X9rOzFRg1qxJyMjQg6kpkJSkxuC0GJexIiIioiKRmZmJH3/8EcnJyVLZmTOf4s8/W0AIQEcna7F30ixM2oiIiMqQ2NhY/PTTT7KyOnVGws+vPITIGh3KwQaaiUkbERFRGXHw4EEEBwdL23FxNggIGASFQoFnz5iwaTombURERKVcSkoKfH19ZWX+/p/jwoU6AIDatV9NlsuETXMxaSMiIirFrl+/ji1btsjK/vhjAq5cMYK+PlC9OjBvHpM1bcCkjYiIqBQSQmDjxo2IioqSyipUaIhvv+2E7ByuenUgPFw98VHhMWkjIiIqZRITE7Fw4UJZ2S+/DES5clXx7bdZPWu+vlw7VNswaSMiIipFgoODcfDgQWk7LU0Pc+Z4IzNTF7VrZ5V17MjbodqISRsREVEpkJmZifnz5+Ply5dSWUBAa4SEqGBjkzUydN48NQZI741JGxERkZaLiYnBL7/8IitbuPA7JCVZwNsbmDVLTYFRkWLSRkREpMX279+Pc+fOSdv37tli9eqvoaOjQGYmcOyYGoOjIsWkjYiISAvlNffahQtfwt/fCaamWctQHTvGwQalCZM2IiIiLRMeHo5t27bJyn7/3RtpaQZwcgLmzuVAg9KISRsREZGWEEJg7dq1uHfvnlRmadkUmza1Q1oaEBGRtbIBE7bSiUkbERGRFoiPj8fixYtlZbVrD8b06TZQKIBu3Xg7tLRj0kZERKThTp06hcOHD0vbL14YQld3PJYs0UFERFbZsWPAqVNqCpBKBJM2IiIiDZWRkQFfX1+kp6dLZQcOtMGZM81hagps2gRMmAAoFOxhKwuYtBEREWmge/fuYc2aNbKyPXtG484dMxgZZY0O5coGZQuTNiIiIg2zZ88eXLx4Udq+f98Bv/7aB2PGKDhRbhmmEEIIdQdBeUtMTIS5uTkSEhJgZmam7nCIiKiYvXjxAvNeW2tq06aeuHHDEUDWUlRJSeqIjAqjuL6/2dNGRESkAa5du4YdO3bIymbPnojUVCUAwNAw65YolV1M2oiIiNRICIGff/4ZsbGxUpmLiwtmzPBAaiqgowOuH0oAmLQRERGpTVxcHJYuXSorGzJkCCpXroyUFMDXNyth42ADApi0ERERqcXff/+No0ePSttJSab4+efRaNRIRxoVymSNctJRdwAF1bFjR9jZ2cHQ0BA2Njbo06cPYmJipPrp06dDoVDkepmYmMiOs2PHDjg5OcHQ0BD169fHgQMHZPVCCEybNg02NjYwMjKCu7s7bty4IWsTFxeH3r17w8zMDBYWFhgwYACePXsma3P58mV89NFHMDQ0hK2tba4HS4mIqGxKT0/HjBkzZAnb3r3tsGDBWCQl6eC1NeCJJFqTtLm5uWH79u2IiIjAH3/8gVu3bqF79+5S/bhx4/DgwQPZq06dOvj888+lNqdOnULPnj0xYMAAhISEoHPnzujcuTNCQ0OlNvPmzcOSJUuwatUqBAcHw8TEBB4eHnj58qXUpnfv3rh69SoOHz6Mffv24cSJExg8eLBUn5iYiNatW6NatWo4f/485s+fj+nTp+Pnn38u5k+JiIg0WXR0NGa99nDa8eNjEBLSFEDW6FBOkkv50dopP/z9/dG5c2ekpKRAX18/V/2lS5fQsGFDnDhxAh999BEA4Msvv0RycjL27dsntXNxcUHDhg2xatUqCCFQpUoVjB07FuPGjQMAJCQkoHLlyli/fj169OiBsLAw1KlTB2fPnkXTplm/ZAcPHsRnn32Ge/fuoUqVKli5ciUmT56M2NhYKJVZo368vb2xe/duhIeHF/g9csoPIqLSY+fOnbhy5Yq0ff16LWze3AsKBSAEpBUOeEtU+xXX97fW9LTlFBcXh02bNsHV1TXPhA0AVq9eDUdHRylhA4CgoCC4u7vL2nl4eCAoKAgAEBkZidjYWFkbc3NzNG/eXGoTFBQECwsLKWEDAHd3d+jo6CA4OFhq8/HHH0sJW/Z5IiIi8PTp03zfV0pKChITE2UvIiLSbs+fP8eMGTNkCdtvv32FXbt6AQAqVABUKiZs9HZalbR5eXnBxMQEFStWRHR0NPbs2ZNnu5cvX2LTpk0YMGCArDw2NhaVK1eWlVWuXFkaZp39821tKlWqJKvX09NDhQoVZG3yOkbOc+Rlzpw5MDc3l162trb5tiUiIs135coVzJ8/X1a2YMFE3LxZQ0rW1q7NWuidCRu9jVqTNm9v7zwHD+R85bydOH78eISEhODQoUPQ1dVF3759kdfd3V27diEpKQn9+vUrybfz3iZOnIiEhATpdffuXXWHRERE70AIgRUrVmDnzp1S2e3b/8WWLT5ISsq6C1OuHJM1Khy1TvkxduxYeHp6vrFN9erVpf+2tLSEpaUlHB0d4ezsDFtbW5w+fRoqlUq2z+rVq9G+fftcvV3W1tZ4+PChrOzhw4ewtraW6rPLbGxsZG0aNmwotXn06JHsGOnp6YiLi5MdJ6/z5DxHXgwMDGBgYJBvPRERab7t258gLGyZrMzJaRh8fKzg7w94eWU9wzZ3rpoCJK2l1qTNysoKVlZW77RvZmYmgKznwHKKjIzEsWPH4O/vn2sflUqFwMBAjBo1Sio7fPiwlPQ5ODjA2toagYGBUpKWmJiI4OBgDB06VDpGfHw8zp8/jyZNmgAAjh49iszMTDRv3lxqM3nyZKSlpUnP3B0+fBi1a9dG+fLl3+n9EhGR5jt+/DjCwv6Stp8+tcCSJSNRu7YCX37Judfo/WjF5LrBwcE4e/YsWrRogfLly+PWrVuYOnUqatSokauXbe3atbCxsUHbtm1zHee7775Dy5YtsWDBArRr1w5bt27FuXPnpKk4FAoFRo0ahR9++AG1atWCg4MDpk6diipVqqBz584AAGdnZ7Rp0waDBg3CqlWrkJaWhhEjRqBHjx6oUqUKAKBXr16YMWMGBgwYAC8vL4SGhmLx4sVYuHBh8X5QRESkFunp6bmm8ggN7Yg//mgEIbJ61ojel1YkbcbGxti5cyd8fHyQnJwMGxsbtGnTBlOmTJHdTszMzMT69evh6ekJXV3dXMdxdXXF5s2bMWXKFEyaNAm1atXC7t27Ua9ePanNhAkTkJycjMGDByM+Ph4tWrTAwYMHYWhoKLXZtGkTRowYgU8//RQ6Ojro1q0blixZItWbm5vj0KFDGD58OJo0aQJLS0tMmzZNNpcbERGVDlFRUdiwYYOsbP78ccjIMJGm8uD86lQUtHaetrKA87QREWm27du3IywsTNp2cnLC2LFf4v79rKk8atfm2qFlUXF9f2tFTxsREZEm+eOPZISG+snK+vbtCwcHB/j4ZG1bWWWNDiUqKlo1TxsREZG6Xbx4MVfCNmnSJDg4OADIuhWqUvGWKBU99rQREREVwJ49AqdOLYWx8auVbUJDP0afPm7IuTgPR4hScWHSRkRE9BaPHz/GxYsrYGz8quznn4cjJsYS9+8zSaOSwaSNiIjoDQIDA/HPP/9I2wkJlli0aBiEUMDUNGugAVFJYNJGRESUh7S0NMyePVtWVq1aF/j6/gdVqryayoO9bFRSmLQRERG95vbt2/j1119lZUePjsfDh8aIiMgaaMCRoVTSmLQRERHlsHnzZty4cUPaDg2th6Cgbrh/H3ByykrYeEuU1IFJGxEREYBnz55hwYIFsrK1a79GdLQdDA1fJWu8HUrqwqSNiIjKNH9/4KefzqNZs32y8pkzJ8PaWg+mpsDIkcBrS4sSlTgmbUREVGZlZmYiKGgRmjVLksqOHnXD1asfo2ZNDjQgzcKkjYiIyqSHDx9i1apVMDR8VbZkybeIi6sAAHB0ZMJGmoVJGxERlRn+/oCvL9CnzyE8ehQklT94YI0NGwbj5UsFDA0Be3sONiDNw6SNiIjKjPnzU+HhMQePHr0qO3myOw4frouqVQE7Ow42IM3FpI2IiMqEX3+9AXf3zbKyo0cnYOxYIzx7xmSNNB+TNiIiKvV+/fVX3L59W9oOCWmIQ4c6YetWLvBO2oNJGxERlVqJiYlYuHChrCwtbQAePfpAStiItAWTNiIiKpXOnDmDP//8U9pOT9fF0aMTcfKkrhqjInp3TNqIiKhUyczMhJ+fH168eCGVhYS4IyLiv5g7V42BEb0nJm1ERFQq+PsDy5c/gKvrz7LyLVu+Q0SEBVQq3g4l7cakjYiISoU9ew7A1fWstH3//gf45Zf+MDJScJF3KhWYtBERkVZLSUmBr68v7OxelW3d+gWSkpy5biiVKkzaiIhIK/n7A2vWRKBx462y8v/8xwsBAYaYO5e3Q6l0YdJGRERaRwiBgID1aNw4Wiq7dKkxnJ07oEsXoEsXNQZHVEyYtBERkVZJSEjAokWLUKnSq7K1awchOroKYmPVFxdRcWPSRkREWiMoKAiHDh2Stl++NMC8eeOhq6vLwQZU6jFpIyIijZeRkYG5c+ciLS1NKqta1QPTp7tAqQTGjOFgAyr9mLQREZHG8vcHVqy4D5Vqtay8bt1R6N7dHAMHqikwIjVg0kZERBrL338vVKoL0vbDh/ZYubIvVCoFundXY2BEasCkjYiINM7Lly8xd+5c2Nq+Ktu8uScUCkc+u0ZlFpM2IiLSKNeuXcOOHTtkZT/+6A0bGwPMm8e516jsYtJGREQaQQiB1atXIyYmRioLDm6Gy5fb4tdfmawR6ag7ACIiKpv8/QFX16yfT58+xffffy9L2E6d+gZDhrTFvXtM2IgA9rQREZGa+PoCQUHA1q0nERJyRCo3MTHBmDFjoKPDfgWinJi0ERGRWkyYkIGQkFnQ0RFSWUDAZzh16kM1RkWkuZi0ERFRiduw4Sqion5Hzs60BQvGwMysnPqCItJwTNqIiKhEzZw5B5mZqdJ2jRo1YGb2FerV41QeRG/CpI2IiIqVvz/g5QVkZCSid++FsrpDh9ri5MlmADjYgOht+JQnEREVG39/oEcPwMbmaK6EzdfXC61aNVNTZETap9BJm66uLh49epSr/MmTJ9DV1S2SoIiISDvlnMYDAHx9Bby8ZqBly7+lNk+eVMaWLT7Yts2Qi7wTFUKhb48KIfIsT0lJgVKpfO+AiIhIe2VP49G7N/Ddd/fh4SFf6L1mzb7w8XFQU3RE2q3ASduSJUsAAAqFAqtXr4apqalUl5GRgRMnTsDJyanoIyQiIq3h7Z2VsHXp8iv09W/L6qZOncq514jeQ4GTtoULs55FEEJg1apVsluhSqUS9vb2WLVqVdFHSEREGsnfP6tnzdv71SCCNm1SMW7cHFk7S8umGD68nRoiJCpdFCK/+535cHNzw86dO1G+fPniion+X2JiIszNzZGQkAAzMzN1h0NEJOPqmnUrVKUCTp0CLl++jF27dsnafPvtt6hQoYKaIiRSj+L6/i70M23Hjh0rspMTEZH2ye5hc3PL2vb2BqZP/x4KhbwPwMfHRw3REZVehU7a+vfv/8b6tWvXvnMwRESk+bIHGwDAmDHxCAlZDIXiVX1oaAf06dNYPcERlWKFTtqePn0q205LS0NoaCji4+PxySefFFlgRESkmdzcgCtXAHf3Q7h6NUhWl5rqjR07DNQUGVHpVuik7fXnFQAgMzMTQ4cORY0aNYokKCIi0lzHjgmMG/e9rMzE5AOMGzdATRERlQ2FHoiQn4iICLRq1QoPHjwoisMROBCBiDRPdHQ01q1bJyv7+uuvYWdnp6aIiDRPcX1/F9mEObdu3UJ6enpRHY6IiNTs9dUN/PzW5krYpk6dyoSNqIQU+vbomDFjZNtCCDx48AD79+9Hv379iiwwIiJSr+wBB/PnpyAkxFdWp1Kp0Lp1azVFRlQ2FTppCwkJkW3r6OjAysoKCxYseOvIUiIi0h7e3sCvv15AvXp7ZeV79nwHHx8L9QRFVIZxnjYiIpJkz8FWtSpQr94M1Kv3qk4IYNs2H8ydq774iMqyQidt2R49eoSIiAgAQO3atVGpUqUiC4qIiEqev3/WuqH6+k/h4bFEVnf5cmf069cA06erJzYieoekLTExEcOHD8eWLVuQmZkJANDV1cWXX36J5cuXw9zcvMiDJCKi4pWdsH388QE0a3ZWVvef/0yEj49STZERUbZCjx4dNGgQgoODsX//fsTHxyM+Ph779u3DuXPn8M033xRHjEREVAxyjg718srEuHEzZAmbqakDfHx80KULEzYiTVDoedpMTEwQEBCAFi1ayMr//vtvtGnTBsnJyUUaYFnGedqIqDhlL/jerl0kPvxwo6xuwIAB+OCDD9QUGZF205gF4ytWrJjnLVBzc3OUL1++SIIiIqLik3PB92bNfkL58rGy+mnTpkGRczFRItIIhb49OmXKFIwZMwaxsa9+yWNjYzF+/HhMnTq1SIMjIqKilf3sWkjISyiVM2QJ261bLdCokQ8TNiINVejbo40aNcLNmzeRkpIizYIdHR0NAwMD1KpVS9b2woULRRdpGcTbo0RU1FxdgbS0s2jf/oCsvG7d0ejenX9niIqCxtwe7dSpE/8VRkSkhfz9AQ+PGbIyHR0lpk6dqKaIiKgwimzBeCp67GkjoqLg7w8sWfIvPvpouay8e/fuqFu3rpqiIiq9NGbB+OrVq+PJkye5yuPj41G9evUiCYqIiN7d6wu9793rnythmzRpEhM2Ii1T6NujUVFRyMjIyFWekpKCe/fuFUlQRET07rIXep87NwMhIT8g58wdjo6O6Nmzp/qCI6J3VuCeNn9/f/j//z/bAgICpG1/f3/s2rULM2fOhIODQ7EF2rFjR9jZ2cHQ0BA2Njbo06cPYmJiZG0CAgLg4uKCcuXKwcrKCt26dUNUVJSszfHjx9G4cWMYGBigZs2aWL9+fa5zLV++HPb29jA0NETz5s1x5swZWf3Lly8xfPhwVKxYEaampujWrRsePnwoaxMdHY127drB2NgYlSpVwvjx45Genl4knwURUV78/QEnJyA6GmjV6iZat/5BVj948GAmbERarMDPtOnoZOV3CoUCr++ir68Pe3t7LFiwAO3bty/6KAEsXLgQKpUKNjY2uH//PsaNGwcAOHXqFAAgMjISzs7OGDNmDAYMGICEhASMHj0aSUlJ0ijWyMhI1KtXD0OGDMHAgQMRGBiIUaNGYf/+/fDw8AAAbNu2DX379sWqVavQvHlzLFq0CDt27EBERIS0vurQoUOxf/9+rF+/Hubm5hgxYgR0dHRw8uRJAEBGRgYaNmwIa2trzJ8/Hw8ePEDfvn0xaNAgzJ49u8Dvmc+0EVFhZE+WO2LEMlhayh9jadhwGjp14iAyopJQXN/fhR6I4ODggLNnz8LS0rLIgngX/v7+6Ny5M1JSUqCvr4/ff/8dPXv2REpKipRg7t27F506dZLaeHl5Yf/+/QgNDZWO06NHD8THx+PgwYMAgObNm+PDDz/EsmXLAACZmZmwtbXFt99+C29vbyQkJMDKygqbN29G9+7dAQDh4eFwdnZGUFAQXFxc8Oeff6J9+/aIiYlB5cqVAQCrVq2Cl5cXHj9+DKWyYEvCMGkjosLYufM5rlyZLyu7caMVvviiJTp2VFNQRGWQxgxEiIyMVHvCFhcXh02bNsHV1RX6+voAgCZNmkBHRwfr1q1DRkYGEhIS8Ouvv8Ld3V1qExQUBHd3d9mxPDw8EBQUBABITU3F+fPnZW10dHTg7u4utTl//jzS0tJkbZycnGBnZye1CQoKQv369aWELfs8iYmJuHr1ar7vKyUlBYmJibIXEdHb+PsDPXsG5UrYxo4di99+Y8JGVFoUeiDC999//8b6adOmvXMwb+Pl5YVly5bh+fPncHFxwb59+6Q6BwcHHDp0CF988QW++eYbZGRkQKVS4cCBVxNIxsbGyhIpAKhcuTISExPx4sULPH36FBkZGXm2CQ8Pl46hVCphYWGRq032KhH5nSe7Lj9z5szBjBkz8q0nIspegsrbG+jYEZg8WUCp/B5OTq/amJiYSI+QEFHpUeietl27dsle27dvx9y5c7FgwQLs3r27UMfy9vaGQqF44ys7WQKA8ePHIyQkBIcOHYKuri769u0rPV8XGxuLQYMGoV+/fjh79iz++usvKJVKdO/ePdczeJpq4sSJSEhIkF53795Vd0hEpGGyR4b27g1MmfIISqX8H9JffvklEzaiUqrQPW0hISG5yhITE+Hp6YkuXboU6lhjx46Fp6fnG9vknPvN0tISlpaWcHR0hLOzM2xtbXH69GmoVCosX74c5ubmmDdvntT+t99+g62tLYKDg+Hi4gJra+tcozwfPnwIMzMzGBkZQVdXF7q6unm2sba2BgBYW1sjNTUV8fHxst6219u8PuI0+5jZbfJiYGAAAwODN34eRFS2ubllJW2tW++Evv4VWd3kyZOhp1foP+tEpCWK5LfbzMwMM2bMQIcOHdCnT58C72dlZQUrK6t3OmdmZiaArOfAAOD58+fSAIRsurq6srav3y4FgMOHD0OlUgEAlEolmjRpgsDAQHTu3FnaNzAwECNGjACQ9eycvr4+AgMD0a1bNwBAREQEoqOjpeOoVCrMmjULjx49kkacHj58GGZmZqhTp847vV8iKtuyb4vGx2dg+nT5VB4WFnXw3XefqykyIiopRfZPsuxbesUhODgYZ8+eRYsWLVC+fHncunULU6dORY0aNaREqV27dli4cCG+//579OzZE0lJSZg0aRKqVauGRo0aAQCGDBmCZcuWYcKECejfvz+OHj2K7du3Y//+/dK5xowZg379+qFp06Zo1qwZFi1ahOTkZHz99dcAAHNzcwwYMABjxoxBhQoVYGZmhm+//RYqlQouLi4AgNatW6NOnTro06cP5s2bh9jYWEyZMgXDhw9nTxoRvRNfX+DJkwj06rVVVj5kyJBcz9ASUelU6KRtyZIlsm0hBB48eIBff/0Vbdu2LbLAcjI2NsbOnTvh4+OD5ORk2NjYoE2bNpgyZYqUBH3yySfYvHkz5s2bh3nz5sHY2BgqlQoHDx6EkZERgKzBCvv378fo0aOxePFifPDBB1i9erU0RxuQ9TzI48ePMW3aNMTGxqJhw4Y4ePCg7I/iwoULoaOjg27duiElJQUeHh5YsWKFVK+rq4t9+/Zh6NChUKlUMDExQb9+/d46iIOIKC/+/kCLFgthYiIfUT5t2jQoFJx7jaiseKd52nLS0dGBlZUVPvnkE0ycOBHlypUr0gDLMs7TRlQ2Zd8KdXMDTp5Mhpubn6ze3d0d//3vf9UUHRG9TXF9fxe6py0yMrLITk5ERLlljxDV0/sbn356VFY3btw4mJiYqCkyIlKnd3qmLT4+Hjdv3gQA1KxZM9ecZUREVHj+/oCXF5CUJDB9uvxxCgsLC3z33XdqioyINEGhkraoqCgMHz4cAQEB0txnCoUCbdq0wbJly2Bvb18cMRIRlQkTJgAJCbEYMuQnWXmvXr1Qq1YtNUVFRJqiwEnb3bt34eLiAn19fcycORPOzs4AgGvXrmHlypVQqVQ4e/YsPvjgg2ILloiotPL3Bxo12gYnp3BZ+ZQpU6Tpi4iobCvwQIQBAwbg5s2bCAgIgKGhoazuxYsXaNOmDWrVqoXVq1cXS6BlEQciEJUN6enpmDVrlqysQYMG0nyRRKRd1D4Q4eDBg9i2bVuuhA0AjIyMMHPmTPTo0aPIAiMiKs2yR4gOGXINkZE7ZHXOzsPQufO7TTxORKVXgZO2f//9943PrFWvXh1xcXFFERMRUann6wt8/PFcREa+lJX7+PioKSIi0nQFTtpsbGxw7dq1fJ9ZCw0NfeO6mkRElCUpKQkeHj/Kytq0aYPmzZurKSIi0gY6b2+SpXPnzhg3bhweP36cq+7Ro0fw8vLi8xdERPmYPBlQKoFPPz2OH3+UJ2wTJkxgwkZEb1XggQhPnz5F8+bNERsbi6+++gpOTk4QQiAsLAybN2+GtbU1Tp8+jQoVKhR3zGUGByIQlR7lygmMGyefe61SpUoYOnSomiIiouKi9oEI5cuXR3BwMCZNmoStW7ciPj4eQNaEj7169cLs2bOZsBER5ZA92GDkyBiMG/eLrK5Pnz6oXr26miIjIm1U6LVHgaxF4rNvk1pZWXHB4mLCnjYi7ebqCtSo8Rtq1rwlK586dSp0dAr8dAoRaRm197TlpFAoUKlSpSILgoiotMjuXZswIQ0eHrNldU2aNEH79u3VFBkRabt3StqIiChvvr5AUtIVXLq0U1b+7bff8hESInovTNqIiIqIvz/g7v4DdHUzZOWce42IigKTNiKi9+TvDyxalICWLRch5zKhtrbt0b9/E/UFRkSlCpM2IqJ35O8PeHkB1aodQcuWJ2V1Xl5eeS77R0T0rgqUtC1ZsqTABxw5cuQ7B0NEpC0mTwbmzBHw8ZHPvValShUMGjRITVERUWlWoCk/HBwcCnYwhQK3b99+76AoC6f8INJctWvfRa9ea2Vlnp6eqFatmpoiIiJNodYpPyIjI4vshERE2ih7Ko+qVQFz8/Xo1euOrJ5zrxFRcXvnZ9pSU1MRGRmJGjVqQE+Pj8YRUenm6wucP58CDw9fWXnz5s3Rpk0bNUVFRGVJof9Z+Pz5cwwYMADGxsaoW7cuoqOjAWTNQeTr6/uWvYmItIe/f9aqBpMnAwYGFzFpkvxv3MiRI5mwEVGJKXTSNnHiRFy6dAnHjx+XjYxyd3fHtm3bijQ4IiJ18vUFgoIApXIGWrXaI6vz8fFB+fLl1RQZEZVFhb6vuXv3bmzbtg0uLi6yNUfr1q2LW7duvWFPIiLtMnr0U3h4yEfP29l1wtdfN1RPQERUphU6aXv8+HGe644mJydz4Xgi0nrZc681avQnatc+I6ubOHEilEqlmiIjorKu0LdHmzZtiv3790vb2Yna6tWroVKpii4yIqIS5u8PfPVVJnr0mCFL2KpVqwYfHx8mbESkVoXuaZs9ezbatm2La9euIT09HYsXL8a1a9dw6tQp/PXXX8URIxFRifDzi8LYsRtkZf3794etra2aIiIieqXQPW0tWrTAxYsXkZ6ejvr16+PQoUOoVKkSgoKC0KQJ19gjIu2SPULUx+dnfPqpPGGbNm0aEzYi0hjvNMFajRo18MsvvxR1LEREJWryZGDBgpeYOHGurPzatf+id2938DFdItIkBUraEhMTC3xALrdERNri+PFzmDhxv6ysbt1R8PExV1NERET5K1DSZmFhUeCRoRkZGe8VEBFRSZgxYwZat361LYQepk+frL6AiIjeokBJ27Fjx6T/joqKgre3Nzw9PaXRokFBQdiwYQPmzJlTPFESERUBf3/g+++foEOHZbLyrl27on79+mqKioioYBRCCFGYHT799FMMHDgQPXv2lJVv3rwZP//8M44fP16U8ZVpiYmJMDc3R0JCAm87E70Hf3/g668BV9e9aNr0gqyuQYNJ6NxZX02REVFpVFzf34VO2oyNjXHp0iXUqlVLVn79+nU0bNgQz58/L7LgyjombUTvL3vutbFjZ8rKzcxqYvTo3mqKiohKs+L6/i70lB+2trZ5jhxdvXo1h8YTkcb5+efbuRK2QYMGMWEjIq1T6Ck/Fi5ciG7duuHPP/9E8+bNAQBnzpzBjRs38McffxR5gERE72ru3BX48MPHsrJp06ZxyT0i0kqFvj0KAPfu3cOKFSsQHh4OAHB2dsaQIUPY01bEeHuU6N28ePEC8+bNk5W1bNkSrVq1Uk9ARFSmaMwzbVRymLQRFd7q1cG4f/+grKxevTHo1q2cmiIiorKmuL6/32lFhPj4eKxZswZhYWEAgLp166J///4wN+eElESkHpMnCyiV38vKjIyMMGHCBDVFRERUtAo9EOHcuXOoUaMGFi5ciLi4OMTFxeHHH39EjRo1cOHChbcfgIioiE2e/DhXwubg8AUTNiIqVQp9e/Sjjz5CzZo18csvv0BPL6ujLj09HQMHDsTt27dx4sSJYgm0LOLtUaK3mzZtF3R1L8vKGjSYjM6d3+lGAhHRe9OYZ9qMjIwQEhICJycnWfm1a9fQtGlTztNWhJi0EeVv9+4MXLr0g6wsM9MZM2Z8oaaIiIiyaMwzbWZmZoiOjs6VtN29exflyvFBXyIqftevX8elS1tkZb/88g3u3bNWU0RERMWv0Enbl19+iQEDBsDPzw+urq4AgJMnT2L8+PG5lrYiIipqixcvRnx8vKzMz28aRo7k3GtEVLoVOmnz8/ODQqFA3759kZ6eDgDQ19fH0KFD4evrW+QBEhEBQHJyMvz8/GRln376KVq0aAEfHzUFRURUgt55nrbnz5/j1q1bAIAaNWrA2Ni4SAMjPtNGlO3kyZM4cuSIrOzYsXE4ftxETREREeVPY55py2ZsbIz69esXWSBERK8TQuD77+VTeTx7Zoa9e0fjtQUPiIhKvQInbf379y9Qu7Vr175zMERE2R4+fIhVq1bJyjZv7oGKFWvj/1fQIyIqUwqctK1fvx7VqlVDo0aNwJWviKg4bd++XVpxJVuDBlMQEKALb281BUVEpGYFTtqGDh2KLVu2IDIyEl9//TW++uorVKhQoThjI6IyJj09HbNmzZKV1a9fH127dgUAdO6shqCIiDREgZexWr58OR48eIAJEyZg7969sLW1xRdffIGAgAD2vBHRewsLC8uVsP3zz1ApYSMiKuveefTonTt3sH79emzcuBHp6em4evUqTE1Nizq+Mo2jR6msmD9/fq7VVAICpsHbW4GOHdUUFBHRO9K40aM6OjpQKBQQQiAjI6PIAiKisuPZs2dYsGCBrOzgwda4e1eFe/fUFBQRkYYq8O1RAEhJScGWLVvwv//9D46Ojrhy5QqWLVuG6Oho9rIRUaH89ddfuRK2uXPHIzRUhRUr1BQUEZEGK3BP27Bhw7B161bY2tqif//+2LJlCywtLYszNiIqhfKae+3JE0ssXTocpqbApk3gLVEiojwU+Jk2HR0d2NnZoVGjRlAo8l/jb+fOnUUWXFnHZ9qotHnw4AF+/vlnWVnv3r1x7VpN+PoC3t5M2IhI+6n9mba+ffu+MVkjInqTLVu24Pr167Kyhg2noGZNXdSsyWSNiOht3nn0KBU/9rRRaZCWlobZs2fLys6fb4R//+2IU6fUFBQRUTFSe08bEVFhhYaG4o8//pCVOTuPQEBARa5sQERUSEzaiKhYzJ49G2lpabIyHx8fAMAXX6gjIiIi7cakjYiKVGJiIhYuXCgr++yzz/Dhhx+qKSIiotKBSRsRFZmjR4/i77//lpUtXeqF1FRDMGcjIno/HIigwTgQgbRFXnOvxcTYYN26wUhLA0xNgaQkNQVHRFTCOBCBiDTSvXv3sGbNGlnZxo19cfu2A/T1sxK2kSPVFBwRUSlSqGWs1Kljx46ws7ODoaEhbGxs0KdPH8TExMjabN++HQ0bNoSxsTGqVauG+fPn5zrO8ePH0bhxYxgYGKBmzZpYv359rjbLly+Hvb09DA0N0bx5c5w5c0ZW//LlSwwfPhwVK1aEqakpunXrhocPH8raREdHo127djA2NkalSpUwfvx4pKenv/8HQaRBNm7cmCth27p1Knr0cICpKTB+fFYP26xZagqQiKgU0Zqkzc3NDdu3b0dERAT++OMP3Lp1C927d5fq//zzT/Tu3RtDhgxBaGgoVqxYgYULF2LZsmVSm8jISLRr1w5ubm64ePEiRo0ahYEDByIgIEBqs23bNowZMwY+Pj64cOECGjRoAA8PDzx69EhqM3r0aOzduxc7duzAX3/9hZiYGHTt2lWqz8jIQLt27ZCamopTp05hw4YNWL9+PaZNm1bMnxJRyUhNTcWMGTMQGRkplQUHf4jvv/dB1646mDWLyRoRUVHT2mfa/P390blzZ6SkpEBfXx+9evVCWloaduzYIbVZunQp5s2bh+joaCgUCnh5eWH//v0IDQ2V2vTo0QPx8fE4ePAgAKB58+b48MMPpWQvMzMTtra2+Pbbb+Ht7Y2EhARYWVlh8+bNUtIYHh4OZ2dnBAUFwcXFBX/++Sfat2+PmJgYVK5cGQCwatUqeHl54fHjx1AqlQV6j3ymjTTRpUuXsHv3bllZnToj0b9/eTx7BqhU4KS5RFSmFdf3t9b0tOUUFxeHTZs2wdXVFfr6+gCAlJQUGBoaytoZGRnh3r17uHPnDgAgKCgI7u7usjYeHh4ICgoCkNV7cP78eVkbHR0duLu7S23Onz+PtLQ0WRsnJyfY2dlJbYKCglC/fn0pYcs+T2JiIq5evZrv+0pJSUFiYqLsRaRJZsyYkStha9TIBwYG5VG1KuDkBE6aS0RUTLQqafPy8oKJiQkqVqyI6Oho7NmzR6rz8PDAzp07ERgYiMzMTFy/fh0LFiwAkLVINQDExsbKEikAqFy5MhITE/HixQv8+++/yMjIyLNNbGysdAylUgkLC4s3tsnrGNl1+ZkzZw7Mzc2ll62tbUE/GqJiFR8fjxkzZsjK9uzpiOnTfeDrC/j6AhERQPnyXEOUiKi4qDVp8/b2hkKheOMrPDxcaj9+/HiEhITg0KFD0NXVRd++fZF9d3fQoEEYMWIE2rdvD6VSCRcXF/To0QNAVm+ZNpg4cSISEhKk1927d9UdEhECAgKwePFiWdmOHd548aIRatfO6lnz9s66LcpeNiKi4qPWKT/Gjh0LT0/PN7apXr269N+WlpawtLSEo6MjnJ2dYWtri9OnT0OlUkGhUGDu3LmYPXs2YmNjYWVlhcDAQNkxrK2tc43yfPjwIczMzGBkZARdXV3o6urm2cba2lo6RmpqKuLj42W9ba+3eX3EafYxs9vkxcDAAAYGBm/8PIhKSmZmJmbOnCkrMzGxw5o1XyMpCShXDpg371XPGnvYiIiKl1q7oKysrODk5PTGV34P7WdmZgLIeg4sJ11dXVStWhVKpRJbtmyBSqWClZUVAEClUkmJXLbDhw9DpVIBAJRKJZo0aSJrk5mZicDAQKlNkyZNoK+vL2sTERGB6OhoqY1KpcKVK1dkI04PHz4MMzMz1KlT550+K6KSdOfOnVwJW61aX2PcuK9Rvjxw/z4QHp51W5SIiEqGVkyuGxwcjLNnz6JFixYoX748bt26halTp6JGjRpSovTvv//i999/R6tWrfDy5UusW7dOmpIj25AhQ7Bs2TJMmDAB/fv3x9GjR7F9+3bs379fajNmzBj069cPTZs2RbNmzbBo0SIkJyfj66+/BgCYm5tjwIABGDNmDCpUqAAzMzN8++23UKlUcHFxAQC0bt0aderUQZ8+fTBv3jzExsZiypQpGD58OHvSSOOtWbMG9+7dk5XNmDENLi4K9OqVdQt0wgRAoeDtUCKiEiW0wOXLl4Wbm5uoUKGCMDAwEPb29mLIkCHi3r17UpvHjx8LFxcXYWJiIoyNjcWnn34qTp8+netYx44dEw0bNhRKpVJUr15drFu3LlebpUuXCjs7O6FUKkWzZs1yHefFixdi2LBhonz58sLY2Fh06dJFPHjwQNYmKipKtG3bVhgZGQlLS0sxduxYkZaWVqj3nZCQIACIhISEQu1H9C5evnwppk+fLnt9+WWAAIQwNRVizx51R0hEpB2K6/tba+dpKws4TxuVlAsXLmDv3r2ysoULRyElxRz29sDcuXxmjYiooLj2KBEVi9en8sjM1EF6+lRkZAAvX3IaDyIiTcGkjaiMiouLw9KlS2VlQUFdEBDwH6hUwKZNWQMN+NwaEZFmYNJGVAbt378f586dk5XNmjUR5coppfnWOnZkDxsRkSZh0kZUhuQ191q5ctUxblwfCAG8eJGVsGVP5cGkjYhIc2jHUgFE9N5u376dK2FzdByI33/PSth0dIDRo7MStqAgzsFGRKRp2NNGVAasWrUq10of2XOvZfesZd8S9ffns2xERJqIU35oME75Qe/rxYsXmDdvnqzsr78+QlDQJ5zKg4iomBTX9zdvjxKVUmfOnMmVsNWtOxpnz36Cly+B69eB4GA1BUdERIXG26NEpdDrc68ZGBjA+//vdyqVQJcuQGZm1m3Q5s3Z20ZEpA3Y00ZUiiQmJuZK2Lp37y4lbNnPq3XtmjXwIDtxIyIizcekjaiUOHv2LBYuXCgrS02dhEGD6sLfP2s7e2To/fvArl2Q5mQjIiLNx4EIGowDEaggMjMzsWDBAjx//lwqi4n5D37+uQtMTYFnz7KSs1On5CNDeUuUiKh4cO1RIsrlwYMH+Pnnn2VldeqMxJYt5eHklHUb9NixV71pXOWAiEh7MWkj0lJ//vknzpw5I20bG1fFrl0DsGWLAhERWb1rs2apMUAiIipSTNqItExKSgp8Xxs9EBLyBSIinBEeDjg58Vk1IqLSiAMRiLRIREREroQtMNALe/Y4IyoqK2GbOzfr+TUAcHUFJk/O+pk9GIGIiLQTe9qItIAQAhs2bMCdO3ekssaNG6NDhw5o1AgICckacFC+/Ktn1rJHil65klXn68vn2YiItBmTNiINl5CQgEWLFsnKBg4ciKpVqwLISsQ2bXo1KjR7hKibW1ZbNzf5YAQiItJOTNqINNjp06cREBAgbSuVSkyYMAG6urqydjlHhbq6ZvWwAa9ukxIRkfZj0kakgTIyMjBv3jykpqZKZR4eHnBxcXnrvt7er3rdiIio9GDSRqRhYmJi8Msvv8jKRo0aBXNz8zful3PiXPawERGVPhw9SqRB9u7dK0vYqlWrhmnTpsHc3Bz+/m8eBZo98IBriRIRlU5M2og0wMuXLzFjxgxcuHBBKuvRowc8PT2hUCgA5J2U5UzkvL05PxsRUWnGtUc1GNceLRvCwsKwfft2Wdnvv3sjLc0A8+a9GmCQ17qh2YMOstcWJSIi9Suu728mbRqMSVvpJoTAmjVrcP/+fansww8/xA8/fCaN/nxbMsYF4ImINA8XjCcqRZ4+fYolS5bIygYPHgwbGxukpwPDhgFPnryaay0/XACeiKjsYNJGVMJOnjyJI0eOSNvGxsYYO3YsdHSyHjHt2DGr9+z+/axJcYmIiAAmbUQlJiMjA7Nnz0ZmZqZU9tlnn+HDDz/M1ZZzrRER0euYtBGVgHv37mHNmjWystTU0fjkEzOMHAnMmiVvz9ueRET0Og5E0GAciFA67N69G5cuXZK2y5WrgV9++QoREYAQgKkpkJSkxgCJiKhIcSACkZZ58eIF5s2bJyvr3bs3+vatifDwrG0dHWDkSDUER0REWodJG1ExCA0NxR9//CErmzhxIpRKJby9AS+vrF62nPOwERERvQmTNqIiJITATz/9hIcPH0plKpUKrVu3lrb5vBoREb0LJm1ERSQuLg5Lly6VlZ08ORSNGlVSU0RERFSaMGkjKgInTpzAsRyTqpmZmWHHju8QFKSDZ8/Ys0ZERO+PSRvRe0hPT8es1+brsLXtgNWrG0urGXCuNSIiKgpM2oje0Z07d7B+/XpZWWrqWAwcaAohgKdPgbCw/PfnuqFERFQYTNqI3sEff/yB0NBQadvR0RE9e/ZEuXJZo0KBVz/z4+sLBAVl/WTSRkREb6Oj7gCItMnz588xY8YMWcJWs2Yf9OzZE0DWnGv6+lmvbt3efCxvb0Cl4u1TIiIqGPa0ERXQ5cuXsWvXLlnZrFmTYGCgj3LlsnrLZs3KWuQ9KOjti71z6g8iIioM9rQRvYUQAsuWLZMlbLdvt0Bqqg8MDPTx7FnWLc5sefWg+fsDrq5ZP4mIiN4F1x7VYFx7VP3+/fdfLF++XFb2zz/DcOSIlZSYFWQwgatrVu+bSgWcOlXMQRMRkVpx7VGiEnbs2DGcOHFC2jYwqAAvrxHYu1eB5GTAza3goz9zJndERETvgj1tGow9beqRlpaG2bNny8p27eoEY+OGsl4y9p4REVFeiuv7m8+0EeUQGRmZK2FLTR0HY+OGuXrJsp9dc3Pj82pERFT82NOmwdjTVrK2bduG8PBwaTs6ug7Wrv38rT1p7HEjIqKc+EwbUTFJTk6Gn5+frGzdun4wMrIv0DxqfF6NiIhKApM2KtNCQkLg/9p9zQYNJqNKFb0CLy/F+daIiKgkMGmjMkkIAV/fxUhNTZDKrK1b4ptvWgEAOndWT1xERET5YdJGZc6jR4+wcuVKWdnSpSNgaVkRGzZwAXciItJMHD1KZcrhw4dlCVtSUiWkpk6Do2NFKBSvFnAnIiLSNOxpo1LN3z8rCRs/PhWXL8+R1XXt2hX169fP1ZYDCoiISBMxaaNSJ2fyNWECkJ5+C5cv/yZrM378eBgbG8vKOKCAiIg0GZM2KnV8fV/d5mzZchOqVLkp1dWvXx9du3ZVY3RERETvhs+0Uang7/9qVQJvb6BVqyR4eMyQJWxff/01EzYiItJa7GkjrefvD/TuDTx7ltW7tmTJObRqtV+qVygUmDRpEvT0+L87ERFpL36Lkdbz9c1K2MqVy0S7dj9i//5kqe7TTz9FixYt1BgdERFR0eDtUdJoOW975sfbG2jdOhZjx85EevqrhG3kyJFM2IiIqNRgTxtptJyDCvIb2alUHoSra7C0bWNjg0GDBkGhUJRQlERERMWPSRtptDctxp6SkgLf12bC/fzzz1GnTp0Sio6IiKjk8PYoabSOHYFTp3L3sl2/fj1Xwubl5YWbN+u89XYqERGRNmJPG2kVIQQ2btyIqKgoqaxhw4bo1KkTgILdTiUiItJGTNpIayQmJmLhwoWysoEDB6Jq1arS9ptupxIREWkzJm1UonIuMVXQnjB/f2Dz5mA4Ox+UyvT19eHl5QVdXV1ZWy5FRUREpZXWPdOWkpKChg0bQqFQ4OLFi7K6y5cv46OPPoKhoSFsbW0xb968XPvv2LEDTk5OMDQ0RP369XHgwAFZvRAC06ZNg42NDYyMjODu7o4bN27I2sTFxaF3794wMzODhYUFBgwYgGfPnhU6ltIsv6k6sm9f9u5dsOfOMjMzceaMryxhu3ChNSZNmpQrYSMiIirNtC5pmzBhAqpUqZKrPDExEa1bt0a1atVw/vx5zJ8/H9OnT8fPP/8stTl16hR69uyJAQMGICQkBJ07d0bnzp0RGhoqtZk3bx6WLFmCVatWITg4GCYmJvDw8MDLly+lNr1798bVq1dx+PBh7Nu3DydOnMDgwYMLFUtpl/PZspy8vQFT01erF+T0eqIXExODmTNnQl8/RWqzcOF3uH5dVczRExERaSChRQ4cOCCcnJzE1atXBQAREhIi1a1YsUKUL19epKSkSGVeXl6idu3a0vYXX3wh2rVrJztm8+bNxTfffCOEECIzM1NYW1uL+fPnS/Xx8fHCwMBAbNmyRQghxLVr1wQAcfbsWanNn3/+KRQKhbh//36BYymIhIQEAUAkJCQUaj9NsGePECpV1s+C1qlUQgBZP/ft2yemT58uvdasWSN2787M95hERESaori+v7Wmp+3hw4cYNGgQfv31VxgbG+eqDwoKwscffwylUimVeXh4ICIiAk+fPpXauLu7y/bz8PBAUFAQACAyMhKxsbGyNubm5mjevLnUJigoCBYWFmjatKnUxt3dHTo6OggODi5wLHlJSUlBYmKi7KWt8puq40113t5AixYp8PCYgXPnzknlX375Jfr3749OnRQ4dSqrjNN6EBFRWaMVSZsQAp6enhgyZIgsWcopNjYWlStXlpVlb8fGxr6xTc76nPvl16ZSpUqyej09PVSoUOGt58l5jrzMmTMH5ubm0svW1jbfttosv+fdHB3D4e4uv2fq7e0NJycnWVl+t16JiIhKM7Umbd7e3lAoFG98hYeHY+nSpUhKSsLEiRPVGW6xmzhxIhISEqTX3bt31R1SoRVkrdDXByMIIbBmzRps27ZNatO0aVP4+PjAwMAg1/7e3oBKxWk9iIiobFHrlB9jx46Fp6fnG9tUr14dR48eRVBQUK4v8KZNm6J3797YsGEDrK2t8fDhQ1l99ra1tbX0M682Oeuzy2xsbGRtGjZsKLV59OiR7Bjp6emIi4t763lyniMvBgYGeSYp2qQgk9t6e2clbM+eAYsWxSMkZLGsfvDgwbLP/3Wc1oOIiMoitfa0WVlZwcnJ6Y0vpVKJJUuW4NKlS7h48SIuXrwoTdOxbds2zJo1CwCgUqlw4sQJpKWlScc/fPgwateujfLly0ttAgMDZTEcPnwYKlXWaEQHBwdYW1vL2iQmJiI4OFhqo1KpEB8fj/Pnz0ttjh49iszMTDRv3rzAsZRWBekF69gR2LQJ6NHjFFq2fJWwGRkZYerUqW9M2IiIiMqsIh3WUEIiIyNzjR6Nj48XlStXFn369BGhoaFi69atwtjYWPz0009Sm5MnTwo9PT3h5+cnwsLChI+Pj9DX1xdXrlyR2vj6+goLCwuxZ88ecfnyZdGpUyfh4OAgXrx4IbVp06aNaNSokQgODhb//POPqFWrlujZs2ehYikIbR49+ibp6enihx9+kI0ODQ4OVndYRERERaK4vr9LzYoI5ubmOHToEIYPH44mTZrA0tIS06ZNk82f5urqis2bN2PKlCmYNGkSatWqhd27d6NevXpSmwkTJiA5ORmDBw9GfHw8WrRogYMHD8LQ0FBqs2nTJowYMQKffvopdHR00K1bNyxZsqRQsZRV9+7dw5o1a2Rlo0ePhpmZmZoiIiIi0g4KIYRQdxCUt8TERJibmyMhIaFEkpp3WWKqMPbs2SNbxcLBwQF9+vSBQqEo+pMRERGpSXF9f2vFlB9UMgo7lUZBRooCwIsXLzBjxgxZwtarVy/07duXCRsREVEBMWkjSWGn0ihIknft2rVc665OnDgRtWrVeo9IiYiIyp5S80wbvZ93uTXq7f1qn9cJIfDzzz/LJhN2cXGBh4dHEUVMRERUtvCZNg1Wks+0ubpm9ZqpVJCWinpXcXFxWLp0qaxsyJAhuVaJICIiKo2K6/ubPW0E4M29ZgXl7w9s2/Y3HB2PSmWmpqYYPXo0dHR4J56IiOh9MGkjAO+/ykB6ejpCQmbB0fFVWfv27dGkSZP3D46IiIiYtNH7i46Oxrp162RlY8aMQbly5dQUERERUenDe1ZUKK9P87Fz505ZwlarVi34+PgwYSMiIipi7GmjPOU3mjR7mo8FC54jJGS+bJ+vvvoKNWrUKOFIiYiIygb2tJVBBZkUN7852Ly9ga5dr+CTT+QJ26RJk5iwERERFSMmbWVQQSbFzWuiXSEE7t1bgf/8Z6dU9t///hc+Pj7Q19cvxoiJiIiIt0fLoIJM7/H6aNLt258gLGyZrM2wYcNgZWVVTFESERFRTkzayqDCTu9x/PhxhIX9JW1bWFhg5MiRXDeUiIioBDFpo3zt3p2OS5dmycrs7Dri668bqSkiIiKisotJG+UpKioKly5tkJWNGzcOJiYmaoqIiIiobGPSRrls374dYWFh0ra5uTNGjfpCjRERERERkzaSJCcnw8/PT1bWt29fODg4qCkiIiIiysakjQAAFy9exJ49e2RlkyZN4lQeREREGoJJWxknhMDSpUvx9OlTqezjjz+Gm5ubGqMiIiKi1zFpK8MeP36MFStWyMqGDx8OS0tLNUVERERE+WHSVkYFBgbin3/+kbYtLS0xbNgwzr1GRESkoZi0lUEbN25EZGSktN2lSxf85z//UWNERERE9DZM2sqgf//9V/rv8ePHw9jYWI3REBERUUFwwfgyqF+/fujXrx8aNfKBu7sx/P1f1fn7A66ukJURERGR+imEEELdQVDeEhMTYW5ujoSEBJiZmRX58V1dgaAgQKUCTp3Kv4yIiIgKrri+v9nTVoZ5e2clZ97eby4jIiIi9WNPmwYr7p42IiIiKnrsaaNiwWfYiIiItAOTtjLO1zfrGTZfX3VHQkRERG/CpK2M4zNsRERE2oHztJVxHTtmvYiIiEizsaeNiIiISAswaSMiIiLSAkzaiIiIiLQAkzYiIiIiLcCkjYiIiEgLMGkjIiIi0gJM2oiIiIi0AJM2IiIiIi3ApI2IiIhICzBpIyIiItICTNqIiIiItACTNiIiIiItwKSNiIiISAvoqTsAyp8QAgCQmJio5kiIiIiooLK/t7O/x4sKkzYNlpSUBACwtbVVcyRERERUWElJSTA3Ny+y4ylEUaeBVGQyMzMRExODcuXKQaFQqDucEpWYmAhbW1vcvXsXZmZm6g6HcuC10Vy8NpqL10azFfX1EUIgKSkJVapUgY5O0T2Jxp42Daajo4MPPvhA3WGolZmZGf/AaSheG83Fa6O5eG00W1Fen6LsYcvGgQhEREREWoBJGxEREZEWYNJGGsnAwAA+Pj4wMDBQdyj0Gl4bzcVro7l4bTSbtlwfDkQgIiIi0gLsaSMiIiLSAkzaiIiIiLQAkzYiIiIiLcCkjYiIiEgLMGmjIpeSkoKGDRtCoVDg4sWLsrrLly/jo48+gqGhIWxtbTFv3rxc++/YsQNOTk4wNDRE/fr1ceDAAVm9EALTpk2DjY0NjIyM4O7ujhs3bsjaxMXFoXfv3jAzM4OFhQUGDBiAZ8+eFTqW0qJjx46ws7ODoaEhbGxs0KdPH8TExMjabN++HQ0bNoSxsTGqVauG+fPn5zrO8ePH0bhxYxgYGKBmzZpYv359rjbLly+Hvb09DA0N0bx5c5w5c0ZW//LlSwwfPhwVK1aEqakpunXrhocPH8raREdHo127djA2NkalSpUwfvx4pKenv/8HoYEKcm0CAgLg4uKCcuXKwcrKCt26dUNUVJSsDa9N8Xjb9Zk+fToUCkWul4mJiew4/LtW9AryuyOEgJ+fHxwdHWFgYICqVati1qxZsjZa9bsjiIrYyJEjRdu2bQUAERISIpUnJCSIypUri969e4vQ0FCxZcsWYWRkJH766SepzcmTJ4Wurq6YN2+euHbtmpgyZYrQ19cXV65ckdr4+voKc3NzsXv3bnHp0iXRsWNH4eDgIF68eCG1adOmjWjQoIE4ffq0+Pvvv0XNmjVFz549CxVLafLjjz+KoKAgERUVJU6ePClUKpVQqVRS/YEDB4Senp5YuXKluHXrlti3b5+wsbERS5culdrcvn1bGBsbizFjxohr166JpUuXCl1dXXHw4EGpzdatW4VSqRRr164VV69eFYMGDRIWFhbi4cOHUpshQ4YIW1tbERgYKM6dOydcXFyEq6urVJ+eni7q1asn3N3dRUhIiDhw4ICwtLQUEydOLOZPST3edm1u374tDAwMxMSJE8XNmzfF+fPnxccffywaNWoka8NrUzzedn2SkpLEgwcPZK86deqIfv36SW34d614vO3aCCHEt99+K2rXri327Nkjbt++Lc6dOycOHTok1Wvb7w6TNipSBw4cEE5OTuLq1au5krYVK1aI8uXLi5SUFKnMy8tL1K5dW9r+4osvRLt27WTHbN68ufjmm2+EEEJkZmYKa2trMX/+fKk+Pj5eGBgYiC1btgghhLh27ZoAIM6ePSu1+fPPP4VCoRD3798vcCyl2Z49e4RCoRCpqalCCCF69uwpunfvLmuzZMkS8cEHH4jMzEwhhBATJkwQdevWlbX58ssvhYeHh7TdrFkzMXz4cGk7IyNDVKlSRcyZM0cIkXWt9PX1xY4dO6Q2YWFhAoAICgoSQmT9P6SjoyNiY2OlNitXrhRmZmay61VavX5tduzYIfT09ERGRobUxt/fX9aG16bkvH59Xnfx4kUBQJw4cUIq49+1kvH6tbl27ZrQ09MT4eHh+e6jbb87vD1KRebhw4cYNGgQfv31VxgbG+eqDwoKwscffwylUimVeXh4ICIiAk+fPpXauLu7y/bz8PBAUFAQACAyMhKxsbGyNubm5mjevLnUJigoCBYWFmjatKnUxt3dHTo6OggODi5wLKVVXFwcNm3aBFdXV+jr6wPIuqVtaGgoa2dkZIR79+7hzp07AN5+bVJTU3H+/HlZGx0dHbi7u0ttzp8/j7S0NFkbJycn2NnZya5f/fr1UblyZdl5EhMTcfXq1aL6GDRSXtemSZMm0NHRwbp165CRkYGEhAT8+uuvcHd3l9rw2pSMvK7P61avXg1HR0d89NFHUhn/rhW/vK7N3r17Ub16dezbtw8ODg6wt7fHwIEDERcXJ+2nbb87TNqoSAgh4OnpiSFDhsj+qOQUGxsr+x8WgLQdGxv7xjY563Pul1+bSpUqyer19PRQoUKFt54n5zlKGy8vL5iYmKBixYqIjo7Gnj17pDoPDw/s3LkTgYGByMzMxPXr17FgwQIAwIMHDwDk/5klJibixYsX+Pfff5GRkfHWa6NUKmFhYfHGNrw2r66Ng4MDDh06hEmTJsHAwAAWFha4d+8etm/fLrXhtSleb7o+Ob18+RKbNm3CgAEDZOX8u1Z83nRtbt++jTt37mDHjh3YuHEj1q9fj/Pnz6N79+5SG2373WHSRm/k7e2d50O2OV/h4eFYunQpkpKSMHHiRHWHXGYU9NpkGz9+PEJCQnDo0CHo6uqib9++EP+/IMqgQYMwYsQItG/fHkqlEi4uLujRoweArH9VUuEU5bWJjY3FoEGD0K9fP5w9exZ//fUXlEolunfvLrWhwinK65PTrl27kJSUhH79+pXk2ylVivLaZGZmIiUlBRs3bsRHH32EVq1aYc2aNTh27BgiIiLU9Rbfi566AyDNNnbsWHh6er6xTfXq1XH06FEEBQXlWretadOm6N27NzZs2ABra+tco2myt62traWfebXJWZ9dZmNjI2vTsGFDqc2jR49kx0hPT0dcXNxbz5PzHJquoNcmm6WlJSwtLeHo6AhnZ2fY2tri9OnTUKlUUCgUmDt3LmbPno3Y2FhYWVkhMDBQdoz8PjMzMzMYGRlBV1cXurq6b71+qampiI+Pl/2r9PU2r4/MKsvXZvny5TA3N5eNAvztt99ga2uL4OBguLi48NoUUlFen5xWr16N9u3b5+pR4d+1givKa2NjYwM9PT04OjpK7Z2dnQFkjeSsXbu29v3uFPjpN6I3uHPnjrhy5Yr0CggIEADE77//Lu7evSuEePWQbM4HeCdOnJhrIEL79u1lx1apVLke2PXz85PqExIS8nxg99y5c1KbgICAPB/YfVMspdmdO3cEAHHs2LF82/Tp00c2EmvChAmiXr16sjY9e/bM9cDuiBEjpO2MjAxRtWrVXA/s/v7771Kb8PDwPB/YzTky66effhJmZmbi5cuX7/aGtcjr12bMmDGiWbNmsjYxMTECgDh58qQQgtemJOX3u3P79m2hUCjE3r17c+3Dv2sl4/Vrk/09dPPmTalN9kCRiIgIIYT2/e4waaNiERkZmWv0aHx8vKhcubLo06ePCA0NFVu3bhXGxsa5pvzQ09MTfn5+IiwsTPj4+OQ5NN7CwkLs2bNHXL58WXTq1CnPofGNGjUSwcHB4p9//hG1atWSDY0vSCylxenTp8XSpUtFSEiIiIqKEoGBgcLV1VXUqFFD+mPx+PFjsXLlShEWFiZCQkLEyJEjhaGhoQgODpaOkz00fvz48SIsLEwsX748z6HxBgYGYv369eLatWti8ODBwsLCQjZiasiQIcLOzk4cPXpUnDt3Ltcw/eyh8a1btxYXL14UBw8eFFZWVqVyWomCXJvAwEChUCjEjBkzxPXr18X58+eFh4eHqFatmnj+/LkQgtemuBTk+mSbMmWKqFKlikhPT891HP5dK3oFuTYZGRmicePG4uOPPxYXLlwQ586dE82bNxf/+9//pONo2+8OkzYqFnklbUIIcenSJdGiRQthYGAgqlatKnx9fXPtu337duHo6CiUSqWoW7eu2L9/v6w+MzNTTJ06VVSuXFkYGBiITz/9VPpXU7YnT56Inj17ClNTU2FmZia+/vprkZSUVOhYSoPLly8LNzc3UaFCBWFgYCDs7e3FkCFDxL1796Q2jx8/Fi4uLsLExEQYGxuLTz/9VJw+fTrXsY4dOyYaNmwolEqlqF69uli3bl2uNkuXLhV2dnZCqVSKZs2a5TrOixcvxLBhw0T58uWFsbGx6NKli3jw4IGsTVRUlGjbtq0wMjISlpaWYuzYsSItLa1oPhANUpBrI4QQW7ZsEY0aNRImJibCyspKdOzYUYSFhcna8NoUvYJen4yMDPHBBx+ISZMm5Xss/l0rWgW9Nvfv3xddu3YVpqamonLlysLT01M8efJE1kabfncUQvBJViIiIiJNx2FhRERERFqASRsRERGRFmDSRkRERKQFmLQRERERaQEmbURERERagEkbERERkRZg0kZERESkBZi0ERFRLsePH4dCoUB8fPx7Hcfe3h6LFi0qkpiIyjombURUpGJjY/Htt9+ievXqMDAwgK2tLTp06CAtQA8Ap06dwmeffYby5cvD0NAQ9evXx48//oiMjAypTVRUFAYMGAAHBwcYGRmhRo0a8PHxQWpqqux8v/zyCxo0aABTU1NYWFigUaNGmDNnjlQ/ffp0KBQKtGnTJles8+fPh0KhQKtWrQr8/hITEzF58mQ4OTnB0NAQ1tbWcHd3x86dO5FzrvKrV6/iiy++gJWVFQwMDODo6Ihp06bh+fPnUpu4uDh8++23qF27NoyMjGBnZ4eRI0ciISGhQLFERUVBoVDk+Tp9+nSB31OrVq0watSoArcnIvXQU3cARFR6REVF4b///S8sLCwwf/581K9fH2lpaQgICMDw4cMRHh6OXbt24YsvvsDXX3+NY8eOwcLCAkeOHMGECRMQFBSE7du3Q6FQIDw8HJmZmfjpp59Qs2ZNhIaGYtCgQUhOToafnx8AYO3atRg1ahSWLFmCli1bIiUlBZcvX0ZoaKgsLhsbGxw7dgz37t3DBx98IJWvXbsWdnZ2BX5/8fHxaNGiBRISEvDDDz/gww8/hJ6eHv766y9MmDABn3zyCSwsLHD69Gm4u7vD3d0d+/fvR+XKlXHmzBmMHTsWgYGBOHbsGJRKJWJiYhATEwM/Pz/UqVMHd+7cwZAhQxATE4Pff/+9wHEdOXIEdevWlZVVrFixwPsTkZYo1KJXRERv0LZtW1G1alXx7NmzXHVPnz4Vz549ExUrVhRdu3bNVe/v7y8AiK1bt+Z7/Hnz5gkHBwdpu1OnTsLT0/ONMfn4+IgGDRqI9u3bix9++EEqP3nypLC0tBRDhw4VLVu2LMC7E2Lo0KHCxMRE3L9/P1ddUlKSSEtLE5mZmaJOnTqiadOmIiMjQ9bm4sWLQqFQvHE9yO3btwulUlmgNQnzW+M3p+z3v3HjRlGtWjVhZmYmvvzyS5GYmCiEEKJfv34CgOwVGRkpjh07JgCII0eOiCZNmggjIyOhUqlEeHi4dOybN2+Kjh07ikqVKgkTExPRtGlTcfjwYdn5q1WrJhYuXChtAxArVqwQbdq0EYaGhsLBwUHs2LFDqndzcxPDhw+XHePRo0dCX19fHDly5K2fCVFpxtujRFQk4uLicPDgQQwfPhwmJia56i0sLHDo0CE8efIE48aNy1XfoUMHODo6YsuWLfmeIyEhARUqVJC2ra2tcfr0ady5c+et8fXv3x/r16+XtteuXYvevXtDqVS+dV8AyMzMxNatW9G7d29UqVIlV72pqSn09PRw8eJFXLt2DWPGjIGOjvxPbIMGDeDu7v7W92hmZgY9vaK7EXLr1i3s3r0b+/btw759+/DXX3/B19cXALB48WKoVCoMGjQIDx48wIMHD2BrayvtO3nyZCxYsADnzp2Dnp4e+vfvL9U9e/YMn332GQIDAxESEoI2bdqgQ4cOiI6OfmM8U6dORbdu3XDp0iX07t0bPXr0QFhYGABg4MCB2Lx5M1JSUqT2v/32G6pWrYpPPvmkyD4TIm3EpI2IisTNmzchhICTk1O+ba5fvw4AcHZ2zrPeyclJapPX8ZcuXYpvvvlGKvPx8YGFhQXs7e1Ru3ZteHp6Yvv27cjMzMy1f/v27ZGYmIgTJ04gOTkZ27dvlyUgb/Pvv//i6dOnb3x/wNvfo7Ozc77v8d9//8XMmTMxePDgAscFAK6urjA1NZW9csrMzMT69etRr149fPTRR+jTp4/0jKG5uTmUSiWMjY1hbW0Na2tr6OrqSvvOmjULLVu2RJ06deDt7Y1Tp07h5cuXALKS0G+++Qb16tVDrVq1MHPmTNSoUQP+/v5vjPfzzz/HwIED4ejoiJkzZ6Jp06ZYunQpAKBr164AgD179kjt169fD09PTygUikJ9LkSlDZM2IioSIsdD+EXZFgDu37+PNm3a4PPPP8egQYOkchsbGwQFBeHKlSv47rvvkJ6ejn79+qFNmza5Ejd9fX189dVXWLduHXbs2AFHR0f85z//KbaYC9s+MTER7dq1Q506dTB9+vRC7btt2zZcvHhR9srJ3t4e5cqVk7ZtbGzw6NGjAh0752dkY2MDANK+z549w7hx4+Ds7AwLCwuYmpoiLCzsrT1tKpUq13Z2T5uhoSH69OmDtWvXAgAuXLiA0NBQeHp6FiheotKMAxGIqEjUqlVLGkCQH0dHRwBAWFgYXF1dc9WHhYWhTp06srKYmBi4ubnB1dUVP//8c57HrVevHurVq4dhw4ZhyJAh+Oijj/DXX3/Bzc1N1q5///5o3rw5QkNDC9XLBgBWVlawsLB44/sD5O+xUaNGuerDwsKkNtmSkpLQpk0blCtXDrt27YK+vn6hYrO1tUXNmjXzrX/9eAqFIs/eyLftm93Tlb3vuHHjcPjwYfj5+aFmzZowMjJC9+7dc43wLayBAweiYcOGuHfvHtatW4dPPvkE1apVe69jEpUG7GkjoiJRoUIFeHh4YPny5UhOTs5VHx8fj9atW6NChQpYsGBBrnp/f3/cuHEDPXv2lMru37+PVq1aoUmTJli3bl2uZ8Tykp305RVD3bp1UbduXYSGhqJXr16FeXvQ0dFBjx49sGnTJsTExOSqf/bsGdLT09GwYUM4OTlh4cKFuRKjS5cu4ciRI7L3mJiYiNatW0OpVMLf3x+GhoaFiqsoKJVK2XQrBXXy5El4enqiS5cuqF+/PqytrREVFfXW/V6fjuT06dOy28n169dH06ZN8csvv2Dz5s2FTrCJSismbURUZJYvX46MjAw0a9YMf/zxB27cuIGwsDAsWbIEKpUKJiYm+Omnn7Bnzx4MHjwYly9fRlRUFNasWQNPT090794dX3zxBYBXCZudnR38/Pzw+PFjxMbGIjY2Vjrf0KFDMXPmTJw8eRJ37tzB6dOn0bdvX1hZWeW6BZft6NGjePDgASwsLAr9/mbNmgVbW1s0b94cGzduxLVr13Djxg2sXbsWjRo1wrNnz6BQKLBmzRpcu3YN3bp1w5kzZxAdHY0dO3agQ4cOUKlU0pxo2QlbcnIy1qxZg8TEROk9FiaJevLkibRf9iv7ubOCsLe3R3BwMKKiovDvv/8WuBeuVq1a2LlzJy5evIhLly6hV69eBdp3x44dWLt2La5fvw4fHx+cOXMGI0aMkLUZOHAgfH19IYRAly5dCvxeiEo1dQ5dJaLSJyYmRgwfPlxUq1ZNKJVKUbVqVdGxY0dx7Ngxqc2JEyeEh4eHMDMzE0qlUtStW1f4+fmJ9PR0qc26detyTUWR/cr2+++/i88++0zY2NgIpVIpqlSpIrp16yYuX74stcme8iI/3333XYGn/BBCiPj4eOHt7S1q1aollEqlqFy5snB3dxe7du0SmZmZUrvLly+Lbt26iQoVKgh9fX1Ro0YNMWXKFJGcnCy1yZ5WI69XZGTkW2PJnvIjr9eWLVvyff8LFy4U1apVk7YjIiKEi4uLMDIyyjXlx9OnT6V2ISEhstgiIyOFm5ubMDIyEra2tmLZsmWiZcuW4rvvvpP2yWvKj+XLl4v//e9/wsDAQNjb24tt27blem9JSUnC2NhYDBs27K2fA1FZoRCikE/LEhERvSOFQoFdu3ahc+fOb2wXFRWFGjVq4OzZs2jcuHHJBEek4TgQgYiINEZaWhqePHmCKVOmwMXFhQkbUQ58po2I6P+9PtdZztfff/9d4vEMGTIk33iGDBlS4vGUhJMnT8LGxgZnz57FqlWr1B0OkUbh7VEiov938+bNfOuqVq0KIyOjEowmaz60xMTEPOvMzMxQqVKlEo2HiNSLSRsRERGRFuDtUSIiIiItwKSNiIiISAswaSMiIiLSAkzaiIiIiLQAkzYiIiIiLcCkjYiIiEgLMGkjIiIi0gJM2oiIiIi0wP8BJcx+rwECsLgAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"CO2_flowsheet.png\"))" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjNElEQVR4nO3dd1QU198G8GdBekdBFBGsYIsxtoCJij8jGms00dixYMPeADUiVuxRY9QkisQYeyNoxIYliokNFQWs2AAbTVD6vH/sy8hQFHRhWfb5nLNH587s8l03cR/vvXOvTBAEAURERERqQEPZBRARERGVFgYfIiIiUhsMPkRERKQ2GHyIiIhIbTD4EBERkdpg8CEiIiK1weBDREREaoPBh4iIiNQGgw8RERGpDQYfIlJJMpkMc+bMUXYZIldXV9jZ2Sm7DCJ6DwYfIlKYzZs3QyaTiQ9dXV3UrVsXY8eOxdOnT0v0Z587dw5z5sxBQkKCQl+3bdu2kvdkbm6O5s2bY9OmTcjOzlbIz1i4cCH279+vkNcioneroOwCiKj8mTt3LmrUqIHU1FT8888/WLduHQ4dOoSwsDDo6+sr5Ge8efMGFSq8/Svs3Llz8PHxgaurK0xNTRXyM3JUq1YNixYtAgA8f/4cv//+O4YNG4Zbt27B19f3o19/4cKF+Pbbb9GjR4+Pfi0iejcGHyJSuE6dOqFZs2YAgOHDh6NixYpYsWIFDhw4gL59+37w62ZnZyM9PR26urrQ1dVVVLnvZWJiggEDBojHI0eOhL29PX766SfMmzcPWlpapVYLEX0cDnURUYlr164dAOD+/fsAgGXLlsHJyQkVK1aEnp4emjZtit27d+d7nkwmw9ixY7F161Y0aNAAOjo6OHz4sHguZ47PnDlzMG3aNABAjRo1xGGpqKgotGnTBo0bNy6wLnt7e7i4uBT7/ejr6+Pzzz9HSkoKnj9/Xuh1KSkpmDJlCmxsbKCjowN7e3ssW7YMgiBI3mNKSgr8/f3Ful1dXYtdExEVDXt8iKjE3b17FwBQsWJFAMCqVavQrVs39O/fH+np6di+fTu+++47BAYGonPnzpLnnjhxAjt37sTYsWNRqVKlAicQ9+zZE7du3cK2bduwcuVKVKpUCQBgYWGBgQMHws3NDWFhYWjYsKH4nAsXLuDWrVuYNWvWB72ne/fuQVNTs9BhNUEQ0K1bNwQHB2PYsGH49NNPERQUhGnTpuHJkydYuXIlAGDLli0YPnw4WrRogREjRgAAatWq9UE1EVERCERECuLn5ycAEI4dOyY8f/5cePTokbB9+3ahYsWKgp6envD48WNBEATh9evXkuelp6cLDRs2FNq1aydpByBoaGgIN27cyPezAAje3t7i8dKlSwUAwv379yXXJSQkCLq6uoKHh4ekffz48YKBgYGQnJz8zvfUpk0bwcHBQXj+/Lnw/PlzITw8XBg/frwAQOjatat43eDBgwVbW1vxeP/+/QIAYf78+ZLX+/bbbwWZTCbcuXNHbDMwMBAGDx78zjqISDE41EVECte+fXtYWFjAxsYG33//PQwNDbFv3z5YW1sDAPT09MRr4+PjkZiYiC+//BKXL1/O91pt2rRB/fr1P7gWExMTdO/eHdu2bROHmLKysrBjxw706NEDBgYG732NiIgIWFhYwMLCAvXq1cOaNWvQuXNnbNq0qdDnHDp0CJqamhg/frykfcqUKRAEAX///fcHvyci+nAc6iIihVu7di3q1q2LChUqoHLlyrC3t4eGxtt/ZwUGBmL+/PkIDQ1FWlqa2C6TyfK9Vo0aNT66nkGDBmHHjh04c+YMWrdujWPHjuHp06cYOHBgkZ5vZ2eHX3/9VbxFv06dOrC0tHzncx48eICqVavCyMhI0l6vXj3xPBGVPgYfIlK4Fi1aiHd15XXmzBl069YNrVu3xs8//4wqVapAS0sLfn5++PPPP/Ndn7t36EO5uLigcuXK+OOPP9C6dWv88ccfsLKyQvv27Yv0fAMDgyJfS0RlG4e6iKhU7dmzB7q6uggKCsLQoUPRqVMnhYSKgnqLcmhqaqJfv37YvXs34uPjsX//fvTt2xeampof/XMLY2tri+joaLx69UrSHhERIZ7P8a7aiUixGHyIqFRpampCJpMhKytLbIuKivrolYtz5uoUtnLzwIEDER8fj5EjRyI5OVmyLk9J+Prrr5GVlYWffvpJ0r5y5UrIZDJ06tRJbDMwMFD4itNEVDAOdRFRqercuTNWrFiBjh07ol+/fnj27BnWrl2L2rVr49q1ax/8uk2bNgUAzJw5E99//z20tLTQtWtXMRA1adIEDRs2xK5du1CvXj189tlnCnk/henatSucnZ0xc+ZMREVFoXHjxjhy5AgOHDiAiRMnSm5Zb9q0KY4dO4YVK1agatWqqFGjBlq2bFmi9RGpK/b4EFGpateuHTZu3IjY2FhMnDgR27Ztw+LFi/HNN9981Os2b94c8+bNw9WrV+Hq6oq+ffvmW1xw0KBBAFDkSc0fQ0NDAwEBAZg4cSICAwMxceJE3Lx5E0uXLsWKFSsk165YsQJNmzbFrFmz0LdvX6xbt67E6yNSVzJByLWEKBFRObZq1SpMmjQJUVFRqF69urLLISIlYPAhIrUgCAIaN26MihUrIjg4WNnlEJGScI4PEZVrKSkpCAgIQHBwMK5fv44DBw4ouyQiUiL2+BBRuRYVFYUaNWrA1NQUY8aMwYIFC5RdEhEpEYMPERERqQ3e1UVERERqg8GHiIiI1AYnN+eRnZ2N6OhoGBkZcRl5IiIiFSEIAl69eoWqVatKNkXOi8Enj+joaNjY2Ci7DCIiIvoAjx49QrVq1Qo9z+CTh5GREQD5H5yxsbGSqyEiIqKiSEpKgo2Njfg9XhgGnzxyhreMjY0ZfIiIiFTM+6apcHIzERERqQ0GHyIiIlIbDD5ERESkNjjH5wNkZWUhIyND2WVQKdDS0oKmpqayyyAiIgVh8CkGQRAQGxuLhIQEZZdCpcjU1BRWVlZc14mIqBxg8CmGnNBjaWkJfX19fhGWc4Ig4PXr13j27BkAoEqVKkquiIiIPhaDTxFlZWWJoadixYrKLodKiZ6eHgDg2bNnsLS05LAXEZGK4+TmIsqZ06Ovr6/kSqi05XzmnNdFRKT6GHyKicNb6oefORFR+cHgQ0RERGqDwYeIiIjUBoOPGnB1dYVMJoNMJoOWlhYqV66Mr776Cps2bUJ2dnaRX2fz5s0wNTUtuUKJiIhKGIOPmujYsSNiYmIQFRWFv//+G87OzpgwYQK6dOmCzMxMZZdHRERUKhh81ISOjg6srKxgbW2Nzz77DDNmzMCBAwfw999/Y/PmzQCAFStWoFGjRjAwMICNjQ3GjBmD5ORkAMDJkycxZMgQJCYmir1Hc+bMAQBs2bIFzZo1g5GREaysrNCvXz9x7RsiIqIcAQGAk5P8V2VRmeCzaNEiNG/eHEZGRrC0tESPHj0QGRkpuSY1NRXu7u6oWLEiDA0N0atXLzx9+rTEahIEAenp6Up5CILw0fW3a9cOjRs3xt69ewEAGhoaWL16NW7cuAF/f3+cOHEC06dPBwA4OTnhxx9/hLGxMWJiYhATE4OpU6cCkN/mPW/ePFy9ehX79+9HVFQUXF1dP7o+IiIqPx4/fowrV3zg4uIDX1/l1aEyCxieOnUK7u7uaN68OTIzMzFjxgx06NABN2/ehIGBAQBg0qRJOHjwIHbt2gUTExOMHTsWPXv2xNmzZ0ukpoyMDCxatKhEXvt9vLy8oK2t/dGv4+DggGvXrgEAJk6cKLbb2dlh/vz5GDVqFH7++Wdoa2vDxMQEMpkMVlZWktcYOnSo+PuaNWti9erVaN68OZKTk2FoaPjRNRIRkWo7cOAAQkNDxWMPDwGAcpYKUZngc/jwYcnx5s2bYWlpiUuXLqF169ZITEzExo0b8eeff6Jdu3YAAD8/P9SrVw/nz5/H559/royyyzxBEMR1ao4dO4ZFixYhIiICSUlJyMzMRGpqKl6/fv3OhRsvXbqEOXPm4OrVq4iPjxcnTD98+BD169cvlfdBRERlT2pqKhYvXixp69evH+rUUd76aCoTfPJKTEwEAJibmwOQf/lmZGSgffv24jUODg6oXr06QkJCCg0+aWlpSEtLE4+TkpKKXIOWlha8vLw+pPyPpqWlpZDXCQ8PR40aNRAVFYUuXbpg9OjRWLBgAczNzfHPP/9g2LBhSE9PLzT4pKSkwMXFBS4uLti6dSssLCzw8OFDuLi4ID09XSE1EhFR2RMQAPj6Ap6eQLdu+c+Hh4dj586dkjZFjVZ8DJUMPtnZ2Zg4cSJatWqFhg0bApBvIKqtrZ3vduvKlSsjNja20NdatGgRfHx8PqgOmUym9A/wY5w4cQLXr1/HpEmTcOnSJWRnZ2P58uXQ0JBP/cr7H6y2tjaysrIkbREREXj58iV8fX1hY2MDALh48WLpvAEiIlIaX18gJASYPl0agARBgJ+fHx49eiRe26JFC3Tq1EmJ1b6lMpObc3N3d0dYWBi2b9/+0a/l5eWFxMRE8ZH7gypP0tLSEBsbiydPnuDy5ctYuHAhunfvji5dumDQoEGoXbs2MjIysGbNGty7dw9btmzB+vXrJa9hZ2eH5ORkHD9+HC9evMDr169RvXp1aGtri88LCAjAvHnzlPQuiYiotHh6Avb2wMOH8gDk6ysfjZk7d67ku3TEiBFlJvQAKhh8xo4di8DAQAQHB6NatWpiu5WVFdLT05GQkCC5/unTp/km4+amo6MDY2NjyaM8Onz4MKpUqQI7Ozt07NgRwcHBWL16NQ4cOABNTU00btwYK1aswOLFi9GwYUNs3bo138RtJycnjBo1Cn369IGFhQWWLFkCCwsLbN68Gbt27UL9+vXh6+uLZcuWKeldEhFRaenWDTA3B968AQwNgaFD/8WPP/4ontfV1cUPP/yAKlWqKK/IAsgERdwXXQoEQcC4ceOwb98+nDx5EnXq1JGcT0xMhIWFBbZt24ZevXoBACIjI+Hg4PDOOT55JSUlwcTEBImJiZIQlJqaivv376NGjRrQ1dVV3BujMo+fPRFRwQICgMWLs9Gp01JkZaWK7S4uLqV+U1Fh3995qcwcH3d3d/z55584cOAAjIyMxHk7JiYm0NPTg4mJCYYNG4bJkyfD3NwcxsbGGDduHBwdHXlHFxERUQlo0SIWHTpsQO7pnxMmTCjT2xupTPBZt24dAKBt27aSdj8/P3GxvJUrV0JDQwO9evVCWloaXFxc8PPPP5dypUREROXf4cOH8e+//4rHNjY2GDJkiLhESlmlMsGnKCNyurq6WLt2LdauXVsKFREREamf9PT0fHNAe/fujXr16impouJRmeBDREREynXnzh1s3bpV0ubh4aFS8x8ZfIiIiOi9tm7dijt37ojHT558il9+6a7Eij6Myt3OTkRERIqVs2v6zJn5d09PTk6Gj4+PJPScPz8UXbqoXugB2ONDRESk9nJWYf73XyA7W37crRtw+fJl/PXXX+J1MpkMM2fOhKamphKr/TgMPkRERGrO0xPo3x9ITpYvRujhIeDHH1eJ+2ICgLOzM1q3bq3EKhWDQ11ERERqrls3YPx4eegZP/45QkPnSkLPmTNjkZCg+qEHYPAhBXJ1dUWPHj3E47Zt22LixIkf9ZqKeA0iInq/4GCgRYsT0NZ+u/6dhYUFgoJm4/jxivD1VWJxCsShLjXg6uoKf39/AICWlhaqV6+OQYMGYcaMGahQoeT+E9i7dy+0tLSKdO3Jkyfh7OyM+Ph4yYqfxXkNIiL6MBkZGXBxWShp++abb/DJJ5+gWrW3u6+XBww+aqJjx47w8/NDWloaDh06BHd3d2hpacHLy0tyXXp6OrS1tRXyM83NzcvEaxARkVRAAODhAQgC8MMPUbhzx19yfurUqTAwMAAgHwbr1k0ZVZYMDnWpCR0dHVhZWcHW1hajR49G+/btERAQIA5PLViwAFWrVoW9vT0A4NGjR+jduzdMTU1hbm6O7t27IyoqSny9rKwsTJ48GaampqhYsSKmT5+eb3XtvMNUaWlp8PDwgI2NDXR0dFC7dm1s3LgRUVFRcHZ2BgCYmZlBJpOJ25DkfY34+HgMGjQIZmZm0NfXR6dOnXD79m3x/ObNm2FqaoqgoCDUq1cPhoaG6NixI2JiYsRrTp48iRYtWsDAwACmpqZo1aoVHjx4oKA/aSKiss/XF4iIABo12i0JPfXq1YO3t7cYesojBh81paenh/T0dADA8ePHERkZiaNHjyIwMPD/uzxdYGRkhDNnzuDs2bNigMh5zvLly7F582Zs2rQJ//zzD+Li4rBv3753/sxBgwZh27ZtWL16NcLDw7FhwwYYGhrCxsYGe/bsAQBERkYiJiYGq1atKvA1XF1dcfHiRQQEBCAkJASCIODrr79GRkaGeM3r16+xbNkybNmyBadPn8bDhw8xdepUAEBmZiZ69OiBNm3a4Nq1awgJCcGIESPK/N4yREQfImd9ntzr8gDA1KmvMWeODxo2vCG21a49CL179y7lCksfh7rUjCAIOH78OIKCgjBu3Dg8f/4cBgYG+O2338Qhrj/++APZ2dn47bffxEDg5+cHU1NTnDx5Eh06dMCPP/4ILy8v9OzZEwCwfv16BAUFFfpzb926hZ07d+Lo0aNo3749AKBmzZri+ZwhLUtLy0J39b19+zYCAgJw9uxZODk5AZCvJGpjY4P9+/fju+++AyAfq16/fj1q1aoFABg7dizmzp0LAEhKSkJiYiK6dOkinleV/WWIiIorZ32enHV5AOD69eu4fn2v5Lr582egeXMt9O+vhCJLGXt8lKSwFF5SAgMDYWhoCF1dXXTq1Al9+vTBnDlzAACNGjWSzOu5evUq7ty5AyMjIxgaGsLQ0BDm5uZITU3F3bt3kZiYiJiYGLRs2VJ8ToUKFdCsWbNCf35oaCg0NTXRpk2bD34P4eHhqFChguTnVqxYEfb29ggPDxfb9PX1xVADAFWqVMGzZ88AyAOWq6srXFxc0LVrV6xatUoyDEZEVJ54egKOjvJfBUHA+vXrsXfv29DTqlUrNGnijebNtcrN5OX3YfBRktwpvDQ4OzsjNDQUt2/fxps3b+Dv7y+O4eYdy01OTkbTpk0RGhoqedy6dQv9+vX7oJ+vp6f30e+hqPLeBSaTySTzj/z8/BASEgInJyfs2LEDdevWxfnz50utPiKikpbzj2sAOHcO+OKLOMydOxdPnz4Vr8mZ76luGHyUJHcKLw0GBgaoXbs2qlev/t5b2D/77DPcvn0blpaWqF27tuRhYmICExMTVKlSBf/++6/4nMzMTFy6dKnQ12zUqBGys7Nx6tSpAs/n9DhlZWUV+hr16tVDZmam5Oe+fPkSkZGRqF+//jvfU15NmjSBl5cXzp07h4YNG+LPP/8s1vOJiMqy3P+4/ueff7BmzRrxnLGxMX744QdYWlrmu1YdMPgoSbdu8hReFm8R7N+/PypVqoTu3bvjzJkzuH//Pk6ePInx48fj8ePHAIAJEybA19cX+/fvR0REBMaMGYOEhIRCX9POzg6DBw/G0KFDsX//fvE1d+7cCQCwtbWFTCZDYGAgnj9/juTk5HyvUadOHXTv3h1ubm74559/cPXqVQwYMADW1tbo3r1om+Xdv38fXl5eCAkJwYMHD3DkyBHcvn2b83yIqFzx9ATq1cvCV1/Nw/Hjx8X2Ll26YNKkSdDQ0JBcW5r/EFc2Bh/KR19fH6dPn0b16tXRs2dP1KtXD8OGDUNqaiqMjY0BAFOmTMHAgQMxePBgODo6wsjICN988807X3fdunX49ttvMWbMGDg4OMDNzQ0pKSkAAGtra/j4+MDT0xOVK1fG2LFjC3wNPz8/NG3aFF26dIGjoyMEQcChQ4eKvMihvr4+IiIi0KtXL9StWxcjRoyAu7s7Ro4cWYw/ISKisi0l5TH69JkPDY1ssW3y5Mlo2rRpvjmmZfkf4iVBJuRdfEXNJSUlwcTEBImJieKXPACkpqbi/v37qFGjBnR1dZVYIZU2fvZEVNYFBOReXTkAV65cEc8ZGdXE5MkDxWMnJ/nQlqOjPPCUF4V9f+fF29mJiIhUnK8vcPlyKq5cWSxpr1mzHwYOrCNp8/QsX1tQFBeDDxERURmXu0enoCGpUaMicP/+Dkmbp6cndHR08l1b3ragKC4GHyIiojKuoIUIAeDAAQHBwZthZvZQbGvevDm+/vprJVSpGji5mYiIqIwr6M6rxMREhIbOlYQeNzc3ZGZ+DQcHoF690lskV5Uw+BQT54KrH37mRKQseRciBOTHGzf+hx9//FG8LjVVB0eOzELVqlXh6wtERso3IVWXtXmKg8GniHJul379+rWSK6HSlvOZF/WWeSIiRcm7uODixdn48sslePz4b/Eaa+sOOHXKEx4emgDkvUL29oCDg/pOYH4XzvEpIk1NTZiamop7Punr63NH73JOEAS8fv0az549g6mpKTQ1NZVdEhGpmdx3YMXGxqJDhw2S8xMmTICpqSmGD3/bpu6Tl9+H6/jk8a51AARBQGxs7DtXKKbyx9TUFFZWVgy6RFTiCrt7KygoSLKnYEKCNVasGMa/l3Ip6jo+DD55FOUPLisrCxkZGaVcGSmDlpYWe3qIqNTkLC7o4ACYmQHTpqXj2rVFkmtCQ7/DkCH12auTBxcwLEGampr8MiQiIoXz9AQ8PICoKCAj4y6uXftDct7ffzp+/FGPoecjMPgQEREpUc7wlrMzEBwMCALwzTfbYG9/S7wmNLQx9u/vASD/Wj5UPAw+RERESjR9uvz284sXAW3tZEybtlxyfuPGIXj0qDoAwNqad2p9LAYfIiIiJcqZn9y48RV06SJdcXDevJnIypJ/Vc+YASxYUNrVlT8MPkRERErk6yvg3Lk10NePF9tu326L3r3boGVL+cKFTk4MPYrC4ENERKQkL168QGjoWujrv23bsGEsYmIq4tIlIDxcebWVVww+REREShAcHIzTp0+Lx4JQCcuXj0Fysuz/j5VVWfnG4ENERFSKMjMzsSDPuNW+fT1w925jJCcDurqAnR2weLFy6ivvGHyIiIhKyZ9/PsDt25slbUuWTMXr1waYMUN+O3veVZtJsRh8iIiISlhAAHDw4F5UrXpdbAsPd8COHX0AABUqcPJyaWHwISIiKiEBAcDy5W/Qrt0SVK36tn3LloG4e7emeFy5shKKU1MMPkRERCVk8+YwtGu3R9J29OgM3L2rBUC+IGH16lyUsDQx+BARESnYgQMCgoN/QePGsWLb/ftO6NnzK2zfLg88RkbyCcycz1O6GHyIiIgUKD4+HqGhq2Fm9rZt48ZRyM6ujH//BSIiAEdH+cKEVPoYfIiIiBTk7NmzOHbsmHiclGSElSsnQhA0AAD29vLQw6Et5WHwISIi+khZWVnw9fVFZmam2BYY2BkXLzaDhoZ8MUJdXWDJEg5tKRuDDxER0Ud48uQJfvvtN0nb8uWT8OqVMQCgSpW3E5gZepSPwYeIiOgDBQYG4tKlS+LxvXs1EBg4ECkpMjg5yXt6GHjKFgYfIiKiYkpLS4Ovr6+k7c8/++L27bqoWhWIi5OHHk5gLnsYfIiIiIphy5ZI3Lu3XdK2e7cnoqN1IAiAoSEnMJdlDD5ERERFIAgC/P398eDBA7EtK6sZVq7sjPHjgZYtAV9fDm2VdQw+RERE75GUlISVK1dK2oKC3BAXVxXJyfLNRRcsYOBRBQw+RERE73DhwgUcOnRIPNbS0sK6dR54/FgT5uYc1lI1DD5EREQFyM7OxooVK5CSkiK2ffXVV3jxwglPnsiP37zhBGZVw+BDRESUx9OnT7F+/XpJ2y+/TECTJqbw9ZXfsaWhAUyapKQC6YMx+BAREf2/gABg794jqFEjRGx7+bIqfvttON68kcHDQ76xKCcxqy4GHyIiIgDp6em4cmURatR42/bXX99CR6cBUlPlx4IgDzsMPKqLwYeIiNRaQADwyy/30Lz5Fkn7hg3TEROjJx5raMj32iLVxuBDRERqKSBAPmTVoMF2NG8eKbZHR3+CX375BjLZ22s1NDi0VV5oKLsAIiIiZVixIgUuLj6oVu1t6BkyZAgqVfpGXH1ZVxewtgb27ZOv00Oqjz0+RESkVgICgN9/D4Wz8wFJ+8yZM1GhQgUEBwPJycDLl0CTJuzpKW/Y40NERGpDEAT8888aNGr0NvRYWbXBr796w8ioAmbOlAcdR0dAJgNCQuTDYVR+MPgQEVG5FRAAODnJf33x4gXmzp0LA4M48Xy9eu5YubItnjwBUlOB1avlvTvnzslvW+eqzOUPh7qIiKjc8vWV99rs2nUSV66cEttTUsyxbNlYGBjIYGIib5PJgPHj3z6Xt62XTww+RERULgUEAAkJmZgzRzoruXv37nj48FOsWyefy2Nt/bZnh0Gn/ONQFxERlQu5h7UAYP36h+jTRxp6Gjacik8//RTdugFbt8oDz5Il8qEthh71wB4fIiJSeQEBQP/+8h4cX18gK2sfWra8Jp6/c6cu/vijr7gez4IFHMpSV+Wyx2ft2rWws7ODrq4uWrZsif/++0/ZJRERkYLl7uHx9ZWHnkqV3sDFxQfXrr0NPTt2DMCePX0BANnZwIoVyqqYyoJyF3x27NiByZMnw9vbG5cvX0bjxo3h4uKCZ8+eKbs0IiJSoJyJyzkbhvbocQNjx0r3lFi1ygvh4bXw5s3btooVS7lQKlPKXfBZsWIF3NzcMGTIENSvXx/r16+Hvr4+Nm3apOzSiIhIQQICgLg4wMEB8PAQEBv7Cz79dLd43tLSEcuWeSM+Xluy9YS1NfDzz0oomMqMcjXHJz09HZcuXYKXl5fYpqGhgfbt2yMkJKTA56SlpSEtLU08TkpKKvE6iYjo4/j6ApGRgLNzAkJDV0nOjRo1Cm3aVEZysnzLicmTgeBg3rVFcuUq+Lx48QJZWVmoXLmypL1y5cqIiIgo8DmLFi2Cj49PaZRHREQfKWc+j7MzYGt7Dg4OR8VzBgYGmDx5MjQ0NMReHjs77rFFUuVuqKu4vLy8kJiYKD4ePXqk7JKIiKgQvr7Av/9mQUNjoST0XLz4NX77bSoCA+VfazmrLi9erKxKqawqVz0+lSpVgqamJp4+fSppf/r0KaysrAp8jo6ODnR0dEqjPCIi+kjjx0cjMvJXSdvJk5Nw8qQxAHkwyrlNncNaVJBy1eOjra2Npk2b4vjx42JbdnY2jh8/DkdHRyVWRkREHyL3LesHDx6UhB5DQzsEBc2Gk5MxHBzkE5fj498uYEhUkHIVfABg8uTJ+PXXX+Hv74/w8HCMHj0aKSkpGDJkiLJLIyKid8i78jIg78G5dCkNV6744OLFi2J7Rsb3mDVrMEJCZNizBwgPB6pXByIiuJs6vVu5GuoCgD59+uD58+eYPXs2YmNj8emnn+Lw4cP5JjwTEVHZkntdnpxhqtGjb+HevW2S6xYt8oSWlg5SU+XHOROZPT3frulDVBiZIAiCsosoS5KSkmBiYoLExEQYGxsruxwiIrWRc8eWpyfQtauALVu24P79++L5ixebIjCwCwwN5buo79kjDz2LF3M+DxX9+5vBJw8GHyIi5Xr16hVW5NlXYvPm4YiKsoaGBrBvH4MO5VfU7+9yN9RFRESq6+LFizh48KB4nJFRAYsWeaJKFU2xp4ehhz4Ggw8REZWq3ENaOSEmOzsbK1euRHJysnjd8ePtceZMK8hkwODBXIiQFINDXXlwqIuIqGQ5OcknMTs4AGZmwIQJzxARsU5yzY8/jkdCghk0NOQ7qjs6AufOKalgUgkc6iIiojIp5+6ruDjAwOAYIiLOiudiYqywadMIaGrKYG0t7+nJ2WeLSBEYfIiIqEQUNKQFyH/fqVMGFi5cKLl+165eiIhoCA8PDmtRyeFQVx4c6iIiUgwHB/kO6vb28oUFc9y/fx+///675NrFi6fhzRt9DmnRB+NQFxERKVXOwoI5vwLAjh07EJErBd282RBnz/aCuTlgaMghLSp5DD5ERKRwAQGAIMh7fRYvBlJSUrBs2TLJNVu3umLZMlvs2KGkIkktMfgQEZHC+frKh7kMDYELF67iypX9kvPz589E7doVuCYPlToGHyIiUpicCc3OzsD16wIGD/4ZFSq8EM+fPNkaZ886o0IFoGdPJRZKaovBh4iIFCZno1F9/ZeYOvUnybmffnJHYmIlZGQAGRnA3r1vb1Vnzw+VFgYfIiJSGE9PwN//ND75JFhs09Y2w19/jcPGjfJZzh4e8vk/gpB/N3aiksbgQ0RECrF/fyauXl2ATz5523b9ejfs3t0EXl5v23JCTu51fohKC4MPERF9tFmzHkFLa5OkbfXqKfDzMyz0Od26saeHSh+DDxERfZQ1a/ZDS+uqePzwYR2Eh/eDnx+DDZU9DD5ERPRB9u59g+vXl0jaDh0agJkza2HjRiUVRfQeDD5ERFRkOfNy2rW7CS2tXZJzO3d64cYNbSVVRlQ0DD5ERFSggABg+nT5lhOLF8uHrXx9Bbi4zJVcFxLyOU6ccMHu3UoqlKgYGHyIiKhAOasv5/y+RYtYuLhskFyTkTESSUlW2L2b83lINTD4EBFRgTw93/b49OmzGxs23JCc/+GHH6ChoaGk6og+DIMPERHlkzOXx9c3C1evzkdCwttzn3zyCb755hul1Ub0MRh8iIgoH19f4MWLW7h6dZukffTo0bC0tFRSVUQfj8GHiIhEOT09HTqshkwWLzk3e/ZsyGQyJVVGpBgMPkREJAaelJTX6NlzqeRc1ar/g5vbF0qqjEixGHyIiAi+vkB29r/o2fOwpH3q1KkwMDBQUlVEisfgQ0SkxnJ6elxcfCTtBgYGmDp1qpKqIio5DD5ERGps3ryX6NLlJ0nblSu9sX9/PSVVRFSyuAADEZGamDkTMDICvvsOqFYN+Oabv/KFnqNHZ2DoUIYeKr9kgiAIyi6iLElKSoKJiQkSExNhbGys7HKIiBQiIADo0QMQBEBDIxuzZ8+TnDc2rotJk/oqpzgiBSjq9zeHuoiIyrmAAKB/f3nosbOLgqurv+S8m5sbqlatqqTqiEoXgw8RUTmVM3E5Ph5ITgZGjPgNVas+kVwTFDQb3t5cm4fUB+f4EBGVAwEBgJOT/Nccvr5ASAjw6FEa5szxkYSeypW/QFCQNzw9GXpIvXCOTx6c40NEqsjJSR5yHBwAMzPA2RnYuxcwMrqCzp0DJNdOnDgRJiYmSqqUqGRwjg8RkRrx9JT38MTFyQPQ9evA1Kk+ea6Swdt7tlLqIyorGHyIiMqRRo2A+PhEjBnzo6S9R48eaNy4sXKKIipDij3HR1NTE8+ePcvX/vLlS2hqaiqkKCIiKp6c+TyJicfyhZ5PPvFk6CH6f8Xu8SlsSlBaWhq0tbU/uiAiIio+Dw8BoaFzJW0GBjaYOnWokioiKpuKHHxWr14NAJDJZPjtt99gaGgonsvKysLp06fh4OCg+AqJiOidnjx5gtDQ3yRtrq6usLW1VVJFRGVXkYPPypUrAch7fNavXy8Z1tLW1oadnR3Wr1+v+AqJiEiUszaPp6f8+MiRrbCwuCO55ocffoCGBlcrISpIkYPP/fv3AQDOzs7Yu3cvzMzMSqwoIiJ6K3fYmT4diIwE+vfPwNSpC2Fh8fa6Zs2aoXPnzsorlEgFcB2fPLiODxGVJQEBQJ8+QGoqoKsLVKwImJjcQO/euyXXjR07FhUrVlRSlUTKV2Lr+Awd+u6Jcps2bSruSxIRUQFy9thKTZUfp6YCgwYtgY7OG8l13t7eSqiOSDUVO/jEx8dLjjMyMhAWFoaEhAS0a9dOYYUREak7X1/5Hlu6ukC1askYMGC55HynTp3QokULJVVHpJqKHXz27duXry07OxujR49GrVq1FFIUEZG6yj2fx9lZvgLzxIlnUKHCCcl106dPh56enpKqJFJdCpvjExkZibZt2yImJkYRL6c0nONDRMqQE3ji4uSTl3V1gawsATNnStfmqVixIsaOHaukKonKrlLfq+vu3bvIzMxU1MsREamNnLk8ycmAnh6gqQkYGz/FmDHSJUL69euHOnXqKKlKovKh2MFn8uTJkmNBEBATE4ODBw9i8ODBCiuMiEhd5MzlkcmAN2+Anj334pNPrkuumTVrFrcFIlKAYgefK1euSI41NDRgYWGB5cuXv/eOLyIiyi9nLo+ubhbGjp0vOdewYUP06tVLSZURlT/FDj7BwcElUQcRkdoKDgasrG5jwIA/Je2jRo1C5cqVlVQVUfn0wXN8nj17hsjISACAvb09LC0tFVYUEVF5lvvOrW7dgA4dfoJM9lJyzezZsyGTyZRUIVH5Vezgk5SUBHd3d2zbtg3Z2dkAAE1NTfTp0wdr166FiYmJwoskIiovck9kXr78Da5cWYLc+ebWrXbo0+dLMPMQlYxi72Ln5uaGf//9FwcPHkRCQgISEhIQGBiIixcvYuTIkSVRIxGRygoIAJyc5L8Cbycyf/nlf2jXbonk2oYNp2Dr1i/RrZsSCiVSE8Vex8fAwABBQUH44osvJO1nzpxBx44dkZKSotACSxvX8SEiRXJyAkJCAENDYOtWeduVKz6Sa9LT9dCy5XQGHqKPUGLr+FSsWLHA4SwTExPu2E5ElEtAgHxBQj09eS+Pp+dL9Onzk+Sa7777DvXr11dShUTqp9hDXbNmzcLkyZMRGxsrtsXGxmLatGn44YcfFFocEZGqyT205esrX4W5enVg6NCD+ULPjBkzGHqISlmxh7qaNGmCO3fuIC0tDdWrVwcAPHz4EDo6OvlWFL18+bLiKi0lHOoioo+RM7Tl6Ci/a8vXNxsuLvMk12Rn14aPT38lVUhUPpXYUFf37t15iyURUSE8PYHp04H4eCA5+QFcXDZLzg8fPhzW1tbKKY6IFLdJaXnBHh8iKq686/LUqwe0arURNjaPJddxbR6iklPU7+9iz/GpWbMmXr58ma89ISEBNWvWLO7LERGpPF9f+fCWry+QlpaG77/3kYSee/daoUkTb4YeojKg2ENdUVFRyMrKyteelpaGx48fF/AMIqLyTT6XB3Bzuwpf3/2Sc6dOTcCJE6ZKqYuI8ity8AnIWX0LQFBQkOSW9qysLBw/fhw1atRQbHVERGVYQADg4QEIAvD99z54+FB6PijIG56eyqmNiApW5Dk+GhryUTGZTIa8T9HS0oKdnR2WL1+OLl26KL7KUsQ5PkT0Lrnn8/j6AjduJGLy5B8l11y/3g27dzdRToFEakrhc3yys7ORnZ2N6tWr49mzZ+JxdnY20tLSEBkZWWKhJyoqCsOGDUONGjWgp6eHWrVqwdvbG+np6ZLrrl27hi+//BK6urqwsbHBkiVLCnlFIqLiyVmfx8Pj7XyeQYOO5ws9u3Z5YtAghh6isqrYc3zu379fEnW8U0REBLKzs7FhwwbUrl0bYWFhcHNzQ0pKCpYtWwZAnvQ6dOiA9u3bY/369bh+/TqGDh0KU1NTjBgxotRrJqLyJWcCs7094OgowMVlLp4+fXv+8WNr3LgxHGFhyquRiN6v2MFn7ty57zw/e/bsDy6mMB07dkTHjh3F45o1ayIyMhLr1q0Tg8/WrVuRnp6OTZs2QVtbGw0aNEBoaChWrFjB4ENEH83ZGbh+Hfj222hoaf0qOVe79mAEBdlxPg+RCih28Nm3b5/kOCMjA/fv30eFChVQq1atEgk+BUlMTIS5ubl4HBISgtatW0NbW1tsc3FxweLFixEfH899xIioWPKuzRMcDHTr9ie0tG5Lrjty5Ad4e2ugPxdiJlIJxQ4+V65cydeWlJQEV1dXfPPNNwop6n3u3LmDNWvWiL09gHy/sLx3lVWuXFk8V1jwSUtLQ1pamniclJRUAhUTkarJvTZPp04ZcHFZKDmfldUUx451YS8PkYop9gKGBTE2NoaPj0+xNyn19PSETCZ75yMiIkLynCdPnqBjx4747rvv4Obm9tG1L1q0CCYmJuLDxsbmo1+TiFRPzuTlmTPlvzo7y/fbGjUqHAsXSkPPmjVjcexYF5w7J+8NIiLVUewen8IkJiYiMTGxWM+ZMmUKXF1d33lN7tWgo6Oj4ezsDCcnJ/zyyy+S66ysrPA090xDQDy2srIq9PW9vLwwefJk8TgpKYnhh0gN5fTwXL8OJCfLf/X0XIb791Mk123b5g0LC7Cnh0hFFTv4rF69WnIsCAJiYmKwZcsWdOrUqVivZWFhAQsLiyJd++TJEzg7O6Np06bw8/MT1xXK4ejoiJkzZyIjIwNaWloAgKNHj8Le3v6d83t0dHSgo6NTrLqJqPxxdgZCQwFtbaBixRSMG7cMmZlvzx8/3hFTp7aEt7fSSiQiBSj2JqV559FoaGjAwsIC7dq1g5eXF4yMjBRaICAPPW3btoWtrS38/f2hqakpnsvpzUlMTIS9vT06dOgADw8PhIWFYejQoVi5cmWx7uriAoZE6iPvYoQhIUCrVv/gq6+OS647cWIapkzR57AWURlW1O9vldidffPmzRgyZEiB53KXf+3aNbi7u+PChQuoVKkSxo0bBw8Pj2L9LAYfIvXh5CQPO46OgIeHgNBQ6XIdZmZmGD9+vJKqI6LiKNHgk5CQgDt37gAAateuDVNT0w8utKxh8CFSHzk9PhMmPENExDrJuZo1+2LgwLpKqoyIiquo39/FmuMTFRUFd3d3BAUFiT0tMpkMHTt2xE8//QQ7O7uPKpqIqDR16wZkZe3DtWvXJO3z5s1CixaaGDhQSYURUYkpcvB59OgRPv/8c2hpaWHevHmoV68eAODmzZtYt24dHB0dceHCBVSrVq3EiiUi+lABAcD06YBMBixeDHTunIX58+dLrrl7twG2b/8WVla8a4uovCryUNewYcNw584dBAUFQVdXV3LuzZs36NixI+rUqYPffvutRAotLRzqIiqfcubzAECXLnfQrNlWyfm//x6Ff/+VL3rq6AicO1faFRLRx1D47uyHDx/GggUL8oUeANDT08O8efNw6NChD6uWiKgE5CxKGBAg78GxtwcmTfo5X+iZM2c2EhMrw8FBfg17e4jKryIPdb148eKdc3hq1qyJuLg4RdRERKQQ06cDkZHyX69ceYO+fZdIzt++7Qxb29ZwdHy7JxcRlW9FDj5VqlTBzZs3C53DExYW9s4VkomISltysvxXG5sLWLJE2iMdHDwFp04ZcliLSM0UOfj06NEDU6dOxfHjx/Ottvzs2TN4eHigR48eiq6PiOiDGRoCc+b4SNp0dXXh4eGBJk2A9HQOaxGpmyJPbo6Pj0fLli0RGxuLAQMGwMHBAYIgIDw8HH/++SesrKxw/vx5mJubl3TNJYqTm4nKh7i4OKxZs0bS9u2336JBgwZKqoiISpLC1/ExMzPDv//+ixkzZmD79u1ISEgAAJiamqJfv35YuHChyoceIlJtOQsSDhjwN54//09ybsaMGeI+fkSkvj5o5WZBEPD8+XMA8o1GZTKZwgtTFvb4EKkuJ6dsuLjMk7TVrFkTA7kSIVG5p/Db2XOTyWSwtLSEpaVluQo9RKQ6ct+qDgAPHz7MF3rOnx/G0ENEEsXasoKIqKzI2U3d1xd4+dIPDx8+lJwPCpoNT0/+w4yIpD6ox4eISNk8PYEvvkiHi4uPJPRYWjoiKMgbnp4yrstDRPkw+BCRSrKzu4b27RdJ2iZMmIAtWzqIPUFERHlxqIuIVM78+fORlZUlafP29kZAABAfz20niKhwRQo+q1evLvILjh8//oOLISJ6l6SkJKxcuVLS1rVrV3z22WcA5L08ERHyTUY5zEVEBSnS7ew1atQo2ovJZLh3795HF6VMvJ2dqGw6ceIEzpw5I2nz9PSEjo6OeJyzjg/33SJSPwpdwPD+/fsKK4yIqDgEQcDcuXMlbbGxVdCp0wjkyjwA5GGHgYeI3uWDJzenp6cjMjISmZmZiqyHiEgUExOTL/RcuDAInTqNYMAhog9S7MnNr1+/xrhx4+Dv7w8AuHXrFmrWrIlx48bB2toanpxRSEQKsH37dkRGRkrafvjhB2ho8GZUIvpwxf4bxMvLC1evXsXJkyehq6srtrdv3x47duxQaHFEpH4yMzPh4+MjCT1NmjSBt7e3GHryrtpMRFRUxe7x2b9/P3bs2IHPP/9csl1FgwYNcPfuXYUWR0TqJSIiIt8/oP75xx1NmlQSjwMCgP79geRk+URmDnkRUXEUO/g8f/4clpaW+dpTUlK4bxcRfbAVK1bg1atXkragIG+EhACPHslDjrMzsHq1PPQYGnKtHiIqvmIHn2bNmuHgwYMYN24cAIhh57fffoOjo6NiqyOici8lJQXLli2TtHXo0AGOjo5o0kQeeB4+BCIjgStXgNRUeejZupW9PURUfMUOPgsXLkSnTp1w8+ZNZGZmYtWqVbh58ybOnTuHU6dOlUSNRFRO/frrOURHH5W0TZs2Dfr6+gDe3p7u4CA/V7EiUL061+khog9X7MnNX3zxBUJDQ5GZmYlGjRrhyJEjsLS0REhICJo2bVoSNRJROXPggAAfHx9J6DExMYG3t7cYenJbskS+GvPPPwPnzjH0ENGH+6C9umrVqoVff/1V0bUQkRp4/vw5QkN/lrTVrPk9Bg60z3dt7pWYz50rrQqJqDwrUvBJSkoq8gtymwciKkhAABAYuB/W1lcl7TNnzkSFCgX/VeTrC3GndfbyEJEiFCn4mJqaFvmOrbw7JhMRZWVl4cqV+bC2fttWv359fPfdd+98nqfn2x4fIiJFKFLwCQ4OFn8fFRUFT09PuLq6indxhYSEwN/fH4sWLSqZKolIZT19+hTr16+XtI0cORJWVlaStoI2GOXeW0SkaEXanT23//3vfxg+fDj69u0raf/zzz/xyy+/4OTJk4qsr9Rxd3YixTly5AhCQkIkbbNnz87Xg5x7UUJHR87nIaLiU+ju7LmFhITk+9cbIF/fZ/jw4cV9OSIqh/btS8e1a9Ie4Jy1eQri68tFCYmodBT7dnYbG5sC7+j67bffYGNjo5CiiEh1/fHHvXyhZ/r06e9c4NTTU97Tw0UJiaikFbvHZ+XKlejVqxf+/vtvtGzZEgDw33//4fbt29izZ4/CCyQi1RAQAAQFbYOl5S2xzczsE4wf/817n8u5PERUWord4/P111/j9u3b6Nq1K+Li4hAXF4euXbvi1q1b+Prrr0uiRiIq45KTk3Hlio8k9NSpM6TQ0MPd1YlIWYo9ubm84+RmouIJDQ3FgQMHJG3vWpsHkIeekBBOZCYixSmxyc0AkJCQgI0bNyI8PBwA0KBBAwwdOhQmJiYfVi0RqRxBEPDTTz8hLi5ObGvbti3atGmT79q8t6pzfR4iUpZi9/hcvHgRLi4u0NPTQ4sWLQAAFy5cwJs3b3DkyBF89tlnJVJoaWGPD9H77dz5AuHhayVt7u7uqFSpUoHX16sHRETINxv9/38vEREpVFG/v4sdfL788kvUrl0bv/76q9iVnZmZieHDh+PevXs4ffr0x1WuZAw+RO+2YcNJxMaeEo9fvKiIS5fcce7c27V5cnp4nJ2B4GDg4UPgyRPA3l4egIiIFK3EhrouXrwoCT0AUKFCBUyfPh3NmjX7sGqJqMzLzMzEggULJG2PH3fHjRuf5huyytljKzQUePMGsLaWz+fh0BYRKVuxg4+xsTEePnwIBwcHSfujR49gZGSksMKIqOx4+PAh/Pz8JG1Ll07FJ58YFDg52dkZuH4d0NaWBx9DQ05iJqKyodjBp0+fPhg2bBiWLVsGJycnAMDZs2cxbdq0fNtYEJHq27t3L65fvy4e29vbQ1//e3zyScE9ODNnynt8srPlc3rs7dnTQ0RlR7GDz7JlyyCTyTBo0CBkZmYCALS0tDB69Gj4+voqvEAiUo43b95gyZIlkraBAweiZs2a71x/Z/VqeejR0AAWL+bChERUtnzwOj6vX7/G3bt3AQC1atWCvr6+QgtTFk5uJgJu3LiB3bt3S9qOHp2Bf/7RAvDudXhmzpSHn/HjgTxTgoiISkyJ3dVV3jH4kDoTBAG//vorYmJixDZLS0esWtUBMtnbHpy8d23lrM9DRKQsCg8+Q4cOLdIP3rRpU9EqLKMYfEhdxcfHY/Xq1ZK2UaNGoXLlyoX28HAFZiIqKxR+O/vmzZtha2uLJk2agJ1EROXLuXPncPToUfG4QgVDeHlNgoaGfDu/wlZa5grMRKRqitzj4+7ujm3btsHW1hZDhgzBgAEDYG5uXtL1lTr2+JA6ycrKgq+vr3ijAgAEBn4NLa3m7MEhIpVS1O/vIu/OvnbtWsTExGD69On466+/YGNjg969eyMoKIg9QEQqKDo6GvPnz5eEnuXLJyEiojl7cIio3Prgyc0PHjzA5s2b8fvvvyMzMxM3btyAoaGhousrdezxIXUQGBiIS5cuicd2dnYwNR2ExYtlnKhMRCqpRHdnBwANDQ3IZDIIgoCsrKwPfRkiKkVpaWn51tuqWfN7rFtnD09PTlAmovKvyENdgPwvzW3btuGrr75C3bp1cf36dfz00094+PBhuejtISrPbt26lS/0eHp6Yt06e4SEyCcpExGVd0Xu8RkzZgy2b98OGxsbDB06FNu2bUOlSpVKsjYiUgBBELBlyxbcv39fbGvatCm6dOkCQHpnVs76PBzuIqLyqshzfDQ0NFC9enU0adIEMpms0Ov27t2rsOKUgXN8qDxJSkrCypUrJW3Dhw+HtbV1gddzXR4iUlUKn+MzaNCgdwYeIipbLly4gEOHDonHWlpa8PDwgKamZqHP4bo8RFTeccuKPNjjQ6ouOzsbK1euRHJystj21VdfwcnJSYlVERGVLIWv40NEZd/Tp08xb948SegJCBiPYcOcMHOmfCjrXTurExGVdww+ROXE0aNHsX79evG4SpUq2L59Ni5fNkNEhHzH9Lx3bwUEAA4OQL16DEREpB4+eB0fIiobMjIysHDhQknbt99+i7t3GyAqSn6sqwuMH/92J/Ucvr5AZOTb3/NOLiIq7xh8iFTYvXv3sGXLFknb9OnToaenBzc3IDUVMDQEtm4tONR4egLTpwMyGSc0E5F6YPAhUlE7duxARESEeNyoUSP07NlTPM59h1bu0JN3rR728hCROuFdXXnwri4q61JSUrBs2TJJm6urK2xtbYv0fK7VQ0TlUYnv1UVEpS80NBQHDhyQtM2cORMVKrz/f+Wcnh5nZ/kxh7aISB0x+BCpAEEQsHbtWrx8+VJss7JqA3//tmjSpPDhqtzDWr6+8p4egD09RKS+VO529rS0NHz66aeQyWQIDQ2VnLt27Rq+/PJL6OrqwsbGBkuWLFFOkUQK9PLlS8ydO1cSetzd3eHv3/a9m4vmhJ2c8OPoyJ4eIlJvKhd8pk+fjqpVq+ZrT0pKQocOHWBra4tLly5h6dKlmDNnDn755RclVEmkGKdOncJPP/0kHpubm2P27NmoVKlSkYJM7mu6dZP39HAyMxGpM5Ua6vr7779x5MgR7NmzB3///bfk3NatW5Geno5NmzZBW1sbDRo0QGhoKFasWIERI0YoqWKiD5OZmYkFCxZI2rp164YmTZrkOn5/iOFdW0REUioTfJ4+fQo3Nzfs378f+vr6+c6HhISgdevW0NbWFttcXFywePFixMfHw8zMrMDXTUtLQ1pamniclJSk+OKJiuHRo0fYtGmTpG3KlCkwNDRUUkVEROWHSgx1CYIAV1dXjBo1Cs2aNSvwmtjYWFSuXFnSlnMcGxtb6GsvWrQIJiYm4sPGxkZxhRMV0/79+yWhp27duvD29mboISJSEKUGH09PT8hksnc+IiIisGbNGrx69QpeXl4Kr8HLywuJiYni49GjRwr/GUTv8+bNG/j4+ODq1ati24ABA9C3b1/JdQEB3GiUiOhjKHWoa8qUKXB1dX3nNTVr1sSJEycQEhICHR0dyblmzZqhf//+8Pf3h5WVFZ4+fSo5n3NsZWVV6Ovr6Ojke12i0nTz5k3s2rVL0ubl5SUZts2R+y4tzt0hIio+pQYfCwsLWFhYvPe61atXY/78+eJxdHQ0XFxcsGPHDrRs2RIA4OjoiJkzZyIjIwNaWloA5LtV29vbFzq/h0iZBEHAxo0b8eTJE7Ht888/h4uLS75rufggEZFiqMTk5urVq0uOc+Y71KpVC9WqVQMA9OvXDz4+Phg2bBg8PDwQFhaGVatWYeXKlaVeL9H7JCQkYNWqVZK2kSNHFto7ycUHiYgUQyWCT1GYmJjgyJEjcHd3R9OmTVGpUiXMnj2bt7JTmRMSEoIjR46Ix/r6+pgyZQo0NPJPuWNPDxGRYqlk8LGzs0NBe6t+8sknOHPmjBIqInq/rKwsLFmyBOnp6WJbtWqdsHFjC9jbFzxnhz09RESKpRK3sxOpuujoaMyfP18SeiZNmoSNG1uIk5UDAgAHB6Bevbd3bXGbCSIixZIJBXWdqLGibmtPVFSHDh3ChQsXxGNbW1sMHjwYMpms0E1EHR3Zw0NEVBxF/f5WyaEuIlWQlpYG3zw7iPbp0wcODg7icd4tJaZPB2Qy9vAQEZUUDnURlYBbt27lCz0eHh64dcsh33AW8HYS85IlQHg41+ghIiopHOrKg0Nd9LG2bNmCe/fuicefffYZunbtCkC+6nLOcJaDA2BmJh3m4hAXEdGH4VAXUSl79eoVVqxYIWkbPnw4rK2txWNPz7fDWYLwdhXmnPDDIS4iopLF4EOkAJcuXUJgYKB4rKmpCS8vL2hqakquyz2nZ+ZMYPVq+Ro9eef6EBFRyWDwIfoI2dnZ+PHHH/Hq1SuxrX379mjVqpV4nPvOrdzhJjgYSE6W/0pERKWDk5uJPtCzZ88wb948SegZP368JPQAb+fv9O8vndDMNXqIiEofJzfnwcnNVBTHjh3D2bNnxWMrKyuMGDECMpks37UBAfLQk5zMyctERCWlqN/f7PEhKoaMjAz4+PhIQk+vXr1QpcpItGolk/To5OjWDdi6lb07RERlAXt88mCPDxXm/v37+P333yVt06ZNg76+vnibek6PTmHzeoiIqGTwdnYiBdq5cyfCw8PF44YNG6JXr17icd7b0XPm9fj6MvgQEZUlDD5E75CSkoJly5ZJ2lxdXWFraytpy3s7OtflISIqmzjHh6gQ165dyxd6Zs6ciatXbeHkhALn8+To1k0+5MXeHiKisoVzfPLgHB8SBAE///wzXrx4IbZ9+eWXaNeuHYC3207Y2wPm5pzHQ0RUFvCuLqIPEBcXh7lz50pCz5gxY8TQA7xdf0cmezuPh4iIVAPn+BD9v9OnTyM41zLKpqamGD9+PP76S5Zv4nJBvyciorKPQ115cKhL/WRmZmLBggWStq5du+Kzzz4DAMmt6gB3USciKot4OztRETx69AibNm2StE2ZMgWGhobicUG3qrOXh4hINbHHJw/2+KiPAwcOIDQ0VDyuU6cO+vXrp7yCiIjog7HHh6gQqampWLx4saStf//+qF27tpIqIiKi0sLgQ2olPDwcO3fulLR5eXlBW1tbSRUREVFp4u3sVGYFBOC9CwUWlSAI2LhxoyT0tGzZEk2aeKNtW22F/AwiIir7OMcnD87xKTvybvz5oRITE/Hjjz9K2kaOHAkrKyuF/QwiIlIuLmBIKi9nocCPuYPq/PnzktCjp6eHH374AVZWVgr7GUREpDrY45MHe3xUV0DA21vNBSEbFy4sgZZWmng+PLwj+vVrKV7DbSaIiMqPon5/M/jkweCjunKGrTp0iIGT0y+ScwcOTMSbNyYAgIgIDm0REZU3HOoitePpCQwZ8rck9BgYVMfs2bOhq2uCiAhAEDi0RUSkzng7O5UL6enpuHJlEWxt37b16dMHDg4OAKSrL3OIi4hIfTH4kErKPZ+nXr3b+PPPPyXnPTw8oKurKx5368bAQ0REDD6konx95fN5jh79A1eu3BXbHz9ugq5duyFX5iEiIhIx+JBKmjLlFcLCVkjazp8fhsOHq+HGDfbuEBFRwRh8SOVcunQJYWGB4rGGhgZmzJiBgwc1kZjIictERFQ4Bh9SGYIgYNWqVUhMTBTb2rVrhy+//BKAdB5P7jlA7P0hIqIcvJ2dikyRe2cV1/PnzzF37lxJ6Bk3bpwYevLKmQPk61taFRIRkSpg8KEiU1aYOHHiBH7++WfxuHLlypg9ezbMzc0LfQ63oiAiooJwqIuKLPdaOKUhIyMDCxculLT17NkTjRo1eu9zefs6EREVhMGHiqw0w0RUVBT8/f0lbdOmTYO+vn7pFEBEROUSh7pIIRQ5/2f37t2S0NOgQQN4e3sz9BAR0Udjjw8pRO75Px/aK/T69WssXbpU0jZ48GDY2dl9fIFERERg8CEF+dj5P9evX8fevXslbTNmzICWlpYCqiMiIpJj8KGP9jFr5giCgPXr1+PZs2di2xdffIH//e9/Cq6SiIiIwYcU4EOHueLi4rBmzRpJ25gxY2BhYaHgComIiOQYfOijfcgw15kzZ3DixAnx2MTEBBMmTIBMJiuBComIiOQYfOijFec296ysLCxYsACCIIhtXbt2xWeffVZC1REREb3F29mp1Dx+/Bjz58+XhJ7JkyeLoUeZW2IQEZF6YPChUhEQEICNGzeKx3fu1EJQkDeMjIzENu6vRUREJY1DXVSiUlNTsXjxYknb33/3R0JCbSxZIr22tLfEICIi9cPgQwqV+9b2unUjsGPHDsn5hQu90LSpNiIi8j+X+2sREVFJY/AhhZIPVwk4ccIPV648EttbtGiBjIxOaNqUPTpERKQ8DD4k8TGLEQLA5MmJuHHjR0nbiBEjUKVKFQDs0SEiIuXi5GYVU9J3Pn3MBON///1XEnp0dXXxww8/iKGHiIhI2Rh8VExJ3/nk6Qk4Or5/OCp3AMvOzsaSJUtw+PBh8byLiws8PDygocH/xIiIqOyQCbkXVSEkJSXBxMQEiYmJMDY2VnY5+XzsUJSiODnJA1iHDrFwctogOTdhwgSYmpoqpzAiIlJLRf3+5hwfFVMW7nwKCADi4oC+fQ/D3v5fsd3GxgZDhgzhthNERFRmMfhQsS1dmo6+fRdJ2nr37o169eopqSIiIqKiYfChYrlz5w7at98qafPw8ICurq6SKiIiIio6zjylItu6dSu2bn0bej799FN4e3u/M/Rw/y0iIipLGHxUgLLDQ3JyMnx8fHDnzh2xbejQoejevft7n8v9t4iIqCxh8FEBygwPV65cwfLly8VjmUyGWbNmwcbGpkjPL+rt8URERKWBc3xUgDI27xQEAatXr0ZCQoLY5uzsjNatWxfrdcrCXWhEREQ52OOjArp1A86d+7gAUZzhsufPn2Pu3LmS0DN27Nhihx4iIqKyhj0+aiL3cNm7AlRwcDBOnz4tHltYWGD06NFcm4eIiMoFlerxOXjwIFq2bAk9PT2YmZmhR48ekvMPHz5E586doa+vD0tLS0ybNg2ZmZnKKbaMed9cm8zMTPj4+EhCzzfffIMxY8Yw9BARUbmhMj0+e/bsgZubGxYuXIh27dohMzMTYWFh4vmsrCx07twZVlZWOHfuHGJiYjBo0CBoaWlh4cKFSqy8bHjXXJuoqCj4+/tL2qZOnQoDA4NSqIyIiKj0qMReXZmZmbCzs4OPjw+GDRtW4DV///03unTpgujoaFSuXBkAsH79enh4eOD58+fQ1tYu0s8q63t1Kdru3btx48YN8bhevXro3bu3EisiIiIqvqJ+f6vEUNfly5fx5MkTaGhooEmTJqhSpQo6deok6fEJCQlBo0aNxNADyHcIT0pKknyx55WWloakpCTJQx28fv0aPj4+kj+bQYMGMfQQEVG5phLB5969ewCAOXPmYNasWQgMDISZmRnatm2LuLg4AEBsbKwk9AAQj2NjYwt97UWLFsHExER8FHV9GlUWFhaGpUuXStpmzJiBGjVqKKkiIiKi0qHU4OPp6QmZTPbOR0REBLKzswEAM2fORK9evdC0aVP4+flBJpNh165dH1WDl5cXEhMTxcejR48U8dbKpAMHBEyZsh579uwR21q1agVvb29oaWkpsTIiIqLSodTJzVOmTIGrq+s7r6lZsyZiYmIAAPXr1xfbdXR0ULNmTTx8+BAAYGVlhf/++0/y3KdPn4rnCqOjowMdHZ0PKV+lxMXFITR0DXIPe44ePRqWlpbKK4qIiKiUKTX4WFhYwMLC4r3XNW3aFDo6OoiMjMQXX3wBAMjIyEBUVBRsbW0BAI6OjliwYAGePXsmfpkfPXoUxsbGksCkjv755x8cP35cPNbSMoan5wRoaKjESCcREZHCqMTt7MbGxhg1ahS8vb1hY2MDW1tbcY7Kd999BwDo0KED6tevj4EDB2LJkiWIjY3FrFmz4O7urhY9OgEBb7e1yLltPSsrC4sWLUJWVpZ4XZcuXdC0aVMlVUlERKRcKvNP/qVLl+L777/HwIED0bx5czx48AAnTpyAmZkZAEBTUxOBgYHQ1NSEo6MjBgwYgEGDBmHu3LlKrrxwitx1Pe9Gpk+ePMH8+fMloWfy5MkMPUREpNZUYh2f0lSa6/g4OcnDiqOjfC+udymoR6ew80AArly5Ip6rWbMmBg4cqNDaiYiIypKifn8z+ORRmsHnfWEmt6KEpNTUVCxevFjS1q9fP9SpU0dBFRMREZVNRf3+Vok5PuXVu7aRyMvTM3ePTn6RkZHYvn17nud4qsX8JiIioqJi8FERhYUkQRDg7++PBw8eiG3NmzfH119/XYrVERERqQYGHxUVEACsXJmEtm1XStrd3NxQtWpVJVVFRERUtjH4qKitW/9D27Z/i8c6OjqYNm0aNDU1lVgVERFR2aYyt7Ors9y3vWdnZ2Pp0qWoX/9t6OnQoQM8PT0ZeoiIiN6DPT4qIGeNnrVrY3HlygbJuQkTJsDU1FQ5hREREakYBh8V4OkJ7N17BDVqhIht1tbWGDZsGGQymRIrIyIiUi0MPmVceno6rlxZhBo13rZ99913ar//GBER0Ydg8CnD7t69iz/++EPSNn36dOjp6SmpIiIiItXG4FNGbdu2Dbdu3RKPGzdujB49eiivICIionKAwaeMSU5OxvLlyyVtQ4YMQfXq1ZVUERERUfnB4FOGhIaG4sCBA5K2mTNnokIFfkxERESKwG/UMkAQBKxZswbx8fFiW9u2bdGmTRslVkVERFT+MPgo2YsXL7B27VpJ29ixY1GxYkUlVURERFR+Mfgo0cmTJ3Hq1CnxuFKlShgzZgzX5iEiIiohDD5KkJmZiQULFkjaevTogcaNGyupIiIiIvXA4FPKHjx4gM2bN0vapk6dCgMDA+UUREREpEYYfErR3r17cf36dfHYwcEBffr0UWJFRERE6oW7s5eSX375RRJ6Bg4cKIae3LuvExERUclh8CklL1++EX8/Y8YM1KxZUzzO2X3d11cZlREREakPDnWVkiNHhuDmzVTUqmUJb2/pOU9Peejx9FRObUREROqCPT6lZNIkY9SqZVlguOnWDTh3Tv4rERERlRz2+JSSbt0YbIiIiJSNPT5ERESkNhh8Sgnv3CIiIlI+Bp9Swju3iIiIlI/Bp5R4egKOjrxzi4iISJk4ubmUcHIzERGR8rHHh4iIiNQGgw8RERGpDQYfIiIiUhsMPkRERKQ2GHyIiIhIbTD4EBERkdpg8CEiIiK1weBDREREaoPBh4iIiNQGgw8RERGpDQYfIiIiUhsMPkRERKQ2GHyIiIhIbXB39jwEQQAAJCUlKbkSIiIiKqqc7+2c7/HCMPjk8erVKwCAjY2NkishIiKi4nr16hVMTEwKPS8T3heN1Ex2djaio6NhZGQEmUym7HJKVFJSEmxsbPDo0SMYGxsruxzKhZ9N2cTPpWzi51J2leZnIwgCXr16hapVq0JDo/CZPOzxyUNDQwPVqlVTdhmlytjYmH9ZlFH8bMomfi5lEz+Xsqu0Ppt39fTk4ORmIiIiUhsMPkRERKQ2GHzUmI6ODry9vaGjo6PsUigPfjZlEz+XsomfS9lVFj8bTm4mIiIitcEeHyIiIlIbDD5ERESkNhh8iIiISG0w+BAREZHaYPBRYwcPHkTLli2hp6cHMzMz9OjRQ3L+4cOH6Ny5M/T19WFpaYlp06YhMzNTOcWqobS0NHz66aeQyWQIDQ2VnLt27Rq+/PJL6OrqwsbGBkuWLFFOkWoiKioKw4YNQ40aNaCnp4datWrB29sb6enpkuv4uSjH2rVrYWdnB11dXbRs2RL//fefsktSK4sWLULz5s1hZGQES0tL9OjRA5GRkZJrUlNT4e7ujooVK8LQ0BC9evXC06dPlVIvg4+a2rNnDwYOHIghQ4bg6tWrOHv2LPr16yeez8rKQufOnZGeno5z587B398fmzdvxuzZs5VYtXqZPn06qlatmq89KSkJHTp0gK2tLS5duoSlS5dizpw5+OWXX5RQpXqIiIhAdnY2NmzYgBs3bmDlypVYv349ZsyYIV7Dz0U5duzYgcmTJ8Pb2xuXL19G48aN4eLigmfPnim7NLVx6tQpuLu74/z58zh69CgyMjLQoUMHpKSkiNdMmjQJf/31F3bt2oVTp04hOjoaPXv2VE7BAqmdjIwMwdraWvjtt98KvebQoUOChoaGEBsbK7atW7dOMDY2FtLS0kqjTLV26NAhwcHBQbhx44YAQLhy5Yp47ueffxbMzMwkn4OHh4dgb2+vhErV15IlS4QaNWqIx/xclKNFixaCu7u7eJyVlSVUrVpVWLRokRKrUm/Pnj0TAAinTp0SBEEQEhISBC0tLWHXrl3iNeHh4QIAISQkpNTrY4+PGrp8+TKePHkCDQ0NNGnSBFWqVEGnTp0QFhYmXhMSEoJGjRqhcuXKYpuLiwuSkpJw48YNZZStNp4+fQo3Nzds2bIF+vr6+c6HhISgdevW0NbWFttcXFwQGRmJ+Pj40ixVrSUmJsLc3Fw85udS+tLT03Hp0iW0b99ebNPQ0ED79u0REhKixMrUW2JiIgCI/39cunQJGRkZks/JwcEB1atXV8rnxOCjhu7duwcAmDNnDmbNmoXAwECYmZmhbdu2iIuLAwDExsZKQg8A8Tg2NrZ0C1YjgiDA1dUVo0aNQrNmzQq8hp+N8t25cwdr1qzByJEjxTZ+LqXvxYsXyMrKKvDPnX/mypGdnY2JEyeiVatWaNiwIQD5f//a2towNTWVXKusz4nBpxzx9PSETCZ75yNnrgIAzJw5E7169ULTpk3h5+cHmUyGXbt2KfldlE9F/WzWrFmDV69ewcvLS9klq4Wifi65PXnyBB07dsR3330HNzc3JVVOVDa5u7sjLCwM27dvV3Yphaqg7AJIcaZMmQJXV9d3XlOzZk3ExMQAAOrXry+26+jooGbNmnj48CEAwMrKKt+dETkz8K2srBRYtXoo6mdz4sQJhISE5NvXplmzZujfvz/8/f1hZWWV724IfjYfpqifS47o6Gg4OzvDyckp36Rlfi6lr1KlStDU1Czwz51/5qVv7NixCAwMxOnTp1GtWjWx3crKCunp6UhISJD0+ijtcyr1WUWkdImJiYKOjo5kcnN6erpgaWkpbNiwQRCEt5Obnz59Kl6zYcMGwdjYWEhNTS31mtXFgwcPhOvXr4uPoKAgAYCwe/du4dGjR4IgvJ1Em56eLj7Py8uLk2hL2OPHj4U6deoI33//vZCZmZnvPD8X5WjRooUwduxY8TgrK0uwtrbm5OZSlJ2dLbi7uwtVq1YVbt26le98zuTm3bt3i20RERFKm9zM4KOmJkyYIFhbWwtBQUFCRESEMGzYMMHS0lKIi4sTBEEQMjMzhYYNGwodOnQQQkNDhcOHDwsWFhaCl5eXkitXL/fv3893V1dCQoJQuXJlYeDAgUJYWJiwfft2QV9fXwytpHiPHz8WateuLfzvf/8THj9+LMTExIiPHPxclGP79u2Cjo6OsHnzZuHmzZvCiBEjBFNTU8kdqVSyRo8eLZiYmAgnT56U/L/x+vVr8ZpRo0YJ1atXF06cOCFcvHhRcHR0FBwdHZVSL4OPmkpPTxemTJkiWFpaCkZGRkL79u2FsLAwyTVRUVFCp06dBD09PaFSpUrClClThIyMDCVVrJ4KCj6CIAhXr14VvvjiC0FHR0ewtrYWfH19lVOgmvDz8xMAFPjIjZ+LcqxZs0aoXr26oK2tLbRo0UI4f/68sktSK4X9v+Hn5yde8+bNG2HMmDGCmZmZoK+vL3zzzTeSfziUJtn/F01ERERU7vGuLiIiIlIbDD5ERESkNhh8iIiISG0w+BAREZHaYPAhIiIitcHgQ0RERGqDwYeIiIjUBoMPERERqQ0GH6JyJjY2FuPGjUPNmjWho6MDGxsbdO3aFcePHxevOXfuHL7++muYmZlBV1cXjRo1wooVK5CVlSVeExUVhWHDhqFGjRrQ09NDrVq14O3tjfT0dMnP+/XXX9G4cWMYGhrC1NQUTZo0waJFi8Tzc+bMgUwmQ8eOHfPVunTpUshkMrRt27bI7y8pKQkzZ86Eg4MDdHV1YWVlhfbt22Pv3r3IvR7rjRs30Lt3b1hYWEBHRwd169bF7Nmz8fr1a/GauLg4jBs3Dvb29tDT00P16tUxfvx4JCYmFqmWqKioQnd1P3/+fJHfU9u2bTFx4sQiX09EH467sxOVI1FRUWjVqhVMTU2xdOlSNGrUCBkZGQgKCoK7uzsiIiKwb98+9O7dG0OGDEFwcDBMTU1x7NgxTJ8+HSEhIdi5cydkMhkiIiKQnZ2NDRs2oHbt2ggLC4ObmxtSUlKwbNkyAMCmTZswceJErF69Gm3atEFaWhquXbuGsLAwSV1VqlRBcHAwHj9+LNm1edOmTahevXqR319CQgK++OILJCYmYv78+WjevDkqVKiAU6dOYfr06WjXrh1MTU1x/vx5tG/fHu3bt8fBgwdRuXJl/Pfff5gyZQqOHz+O4OBgaGtrIzo6GtHR0Vi2bBnq16+PBw8eYNSoUYiOjsbu3buLXNexY8fQoEEDSVvFihWL/PyiEAQBWVlZqFCBf20TfRSlbJRBRCWiU6dOgrW1tZCcnJzvXHx8vJCcnCxUrFhR6NmzZ77zAQEBAgBh+/bthb7+kiVLhBo1aojH3bt3F1xdXd9Zk7e3t9C4cWOhS5cuwvz588X2s2fPCpUqVRJGjx4ttGnTpgjvTr4ZooGBgfDkyZN85169eiVkZGQI2dnZQv369YVmzZoJWVlZkmtCQ0MFmUz2zj20du7cKWhraxdpX7rC9lLLLef9//7774Ktra1gbGws9OnTR0hKShIEQRAGDx6cb4+j+/fvC8HBwQIA4dChQ8Jnn30maGlpCcHBwUJqaqowbtw4wcLCQtDR0RFatWol/Pfff+LPy3leYGCg0KhRI0FHR0do2bKlcP36dUEQBCE5OVkwMjISdu3aJalz3759gr6+vlgXUXnFoS6iciIuLg6HDx+Gu7s7DAwM8p03NTXFkSNH8PLlS0ydOjXf+a5du6Ju3brYtm1boT8jMTER5ubm4rGVlRXOnz+PBw8evLe+oUOHYvPmzeLxpk2b0L9/f2hra7/3uQCQnZ2N7du3o3///qhatWq+84aGhqhQoQJCQ0Nx8+ZNTJ48GRoa0r/iGjdujPbt27/3PRobGyu0Z+Xu3bvYv38/AgMDERgYiFOnTsHX1xcAsGrVKjg6OsLNzQ0xMTGIiYmBjY2N+FxPT0/4+voiPDwcn3zyCaZPn449e/bA398fly9fRu3ateHi4oK4uDjJz5w2bRqWL1+OCxcuwMLCAl27dkVGRgYMDAzw/fffw8/PT3K9n58fvv32WxgZGSnsfROVRQw+ROXEnTt3IAgCHBwcCr3m1q1bAIB69eoVeN7BwUG8pqDXX7NmDUaOHCm2eXt7w9TUFHZ2drC3t4erqyt27tyJ7OzsfM/v0qULkpKScPr0aaSkpGDnzp0YOnRokd/fixcvEB8f/873B7z/PdarV6/Q9/jixQvMmzcPI0aMKHJdAODk5ARDQ0PJI7fs7Gxs3rwZDRs2xJdffomBAweKc65MTEygra0NfX19WFlZwcrKCpqamuJz586di6+++gq1atWCjo4O1q1bh6VLl6JTp06oX78+fv31V+jp6WHjxo2Sn+nt7Y2vvvoKjRo1gr+/P54+fYp9+/YBAIYPH46goCDExMQAAJ49e4ZDhw4V6/MgUlUMPkTlhJBrYq8irwWAJ0+eoGPHjvjuu+/g5uYmtlepUgUhISG4fv06JkyYgMzMTAwePBgdO3bMF360tLQwYMAA+Pn5YdeuXahbty4++eSTEqu5uNcnJSWhc+fOqF+/PubMmVOs5+7YsQOhoaGSR252dnaSnpQqVarg2bNnRXrtZs2aib+/e/cuMjIy0KpVK7FNS0sLLVq0QHh4uOR5jo6O4u/Nzc1hb28vXtOiRQs0aNAA/v7+AIA//vgDtra2aN26ddHeMJEKY/AhKifq1KkjTkouTN26dQEg35dkjvDwcPGaHNHR0XB2doaTkxN++eWXAp/XsGFDjBkzBn/88QeOHj2Ko0eP4tSpU/muGzp0KHbt2oW1a9cWu3fBwsICpqam73x/wIe9x1evXqFjx44wMjLCvn37oKWlVazabGxsULt2bckjt7yvJ5PJCuwVK0hBw5aKMHz4cHHo0c/PD0OGDIFMJiuRn0VUljD4EJUT5ubmcHFxwdq1a5GSkpLvfEJCAjp06ABzc3MsX7483/mAgADcvn0bffv2FduePHmCtm3bomnTpvDz88s3Z6Yg9evXB4ACa2jQoAEaNGiAsLAw9OvXrzhvDxoaGvj++++xdetWREdH5zufnJyMzMxMfPrpp3BwcMDKlSvzhYurV6/i2LFjkveYlJSEDh06QFtbGwEBAdDV1S1WXYqgra0tWUqgMLVq1YK2tjbOnj0rtmVkZODChQvin3uO3LfTx8fH49atW5LhvwEDBuDBgwdYvXo1bt68icGDByvgnRCVfQw+ROXI2rVrkZWVhRYtWmDPnj24ffs2wsPDsXr1ajg6OsLAwAAbNmzAgQMHMGLECFy7dg1RUVHYuHEjXF1d8e2336J3794A3oae6tWrY9myZXj+/DliY2MRGxsr/rzRo0dj3rx5OHv2LB48eIDz589j0KBBsLCwkAy15HbixAnExMTA1NS02O9vwYIFsLGxQcuWLfH777/j5s2buH37NjZt2oQmTZogOTkZMpkMGzduxM2bN9GrVy/8999/ePjwIXbt2oWuXbvC0dFRXDMnJ/SkpKRg48aNSEpKEt9jUYJIjpcvX4rPy3mkpqYW+fl2dnb4999/ERUVhRcvXhTaG2RgYIDRo0dj2rRpOHz4MG7evAk3Nze8fv0aw4YNk1w7d+5cHD9+HGFhYXB1dUWlSpXQo0cP8byZmRl69uyJadOmoUOHDpJlBojKNaXeU0ZEChcdHS24u7sLtra2gra2tmBtbS1069ZNCA4OFq85ffq04OLiIhgbGwva2tpCgwYNhGXLlgmZmZniNX5+fvlus8555Ni9e7fw9ddfC1WqVBG0tbWFqlWrCr169RKuXbsmXpNzO3dhJkyYUOTb2QVBEBISEgRPT0+hTp06gra2tlC5cmWhffv2wr59+4Ts7GzxumvXrgm9evUSzM3NBS0tLaFWrVrCrFmzhJSUFPGanFu/C3rcv3//vbXk3M5e0GPbtm2Fvv+VK1cKtra24nFkZKTw+eefC3p6evluZ4+Pj5c8982bN8K4ceOESpUqvfN29r/++kto0KCBoK2tLbRo0UK4evVqvvqPHz8uABB27tz53vdKVF7IBKGYMwCJiKjMOnnyJJydnREfH//eXrUtW7Zg0qRJiI6OLvKyAkSqjkuAEhGpmdevXyMmJga+vr4YOXIkQw+pFc7xIaIyI+9aOLkfZ86cKfV6Ro0aVWg9o0aNKvV6FGXJkiVwcHCAlZUVvLy8lF0OUaniUBcRlRl37twp9Jy1tTX09PRKsRr5wn5JSUkFnjM2NoalpWWp1kNEH4/Bh4iIiNQGh7qIiIhIbTD4EBERkdpg8CEiIiK1weBDREREaoPBh4iIiNQGgw8RERGpDQYfIiIiUhsMPkRERKQ2/g/cF/AoD44LLwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Training and Validating Surrogate\n", + "\n", + "First, let's import the required Python and IDAES modules:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+y0lEQVR4nO3deVxU9f4/8NeAgiwCIiigbKK4opYr7iZfccmuoqVp5ZKaipZZuVSmtmHWbb2mXUv93VuaaVqWLe6agmbue8oFcQEVlUEQEeH8/qCZZjln5pxZmBnm9Xw8eJRzzsx8zpmzvM9neX9UgiAIICIiInJjHo4uABEREZGjMSAiIiIit8eAiIiIiNweAyIiIiJyewyIiIiIyO0xICIiIiK3x4CIiIiI3B4DIiIiInJ7DIiIiIjI7TEgIiKXMX/+fKhUKlnrqlQqzJ8/367l6dWrF3r16uW0n0dE8jEgIiLFVq5cCZVKpf2rUaMGGjRogDFjxuDy5cuOLp7TiYmJ0dtf9erVQ/fu3bFhwwabfP6dO3cwf/587Ny50yafR+SOGBARkcVef/11/Pe//8XSpUvRv39/fPnll+jZsyfu3r1rl+979dVXUVJSYpfPtre2bdviv//9L/773//ixRdfxJUrV5CSkoKlS5da/dl37tzBggULGBARWaGGowtARK6rf//+aN++PQBg/PjxCAkJwTvvvIONGzfiscces/n31ahRAzVquOZlq0GDBnjiiSe0/37qqafQuHFjfPDBB5g0aZIDS0ZEAGuIiMiGunfvDgDIzMzUe/3MmTMYNmwYgoODUatWLbRv3x4bN27UW6esrAwLFixAkyZNUKtWLdStWxfdunXDli1btOuI9SEqLS3F888/j9DQUNSuXRuPPPIILl26ZFS2MWPGICYmxuh1sc9csWIFHnroIdSrVw/e3t5o0aIFlixZomhfmBMWFobmzZsjKyvL5HrXrl3D008/jfr166NWrVpo06YN/t//+3/a5dnZ2QgNDQUALFiwQNssZ+/+U0TVjWs+ahGRU8rOzgYA1KlTR/vayZMn0bVrVzRo0ACzZ8+Gn58fvvnmGwwePBjffvsthgwZAqAyMElLS8P48ePRsWNHFBYW4o8//sChQ4fwf//3f5LfOX78eHz55ZcYOXIkunTpgu3bt2PgwIFWbceSJUvQsmVLPPLII6hRowZ++OEHTJkyBRUVFUhNTbXqszXKyspw8eJF1K1bV3KdkpIS9OrVC+fPn8fUqVMRGxuLtWvXYsyYMSgoKMBzzz2H0NBQLFmyBJMnT8aQIUOQkpICAGjdurVNyknkNgQiIoVWrFghABC2bt0qXL9+Xbh48aKwbt06ITQ0VPD29hYuXryoXbdPnz5CQkKCcPfuXe1rFRUVQpcuXYQmTZpoX2vTpo0wcOBAk987b948QfeydeTIEQGAMGXKFL31Ro4cKQAQ5s2bp31t9OjRQnR0tNnPFARBuHPnjtF6ycnJQqNGjfRe69mzp9CzZ0+TZRYEQYiOjhb69u0rXL9+Xbh+/bpw9OhRYcSIEQIAYdq0aZKf9+GHHwoAhC+//FL72r1794TExETB399fKCwsFARBEK5fv260vUSkDJvMiMhiSUlJCA0NRWRkJIYNGwY/Pz9s3LgRDRs2BADcvHkT27dvx2OPPYbbt28jPz8f+fn5uHHjBpKTk3Hu3DntqLSgoCCcPHkS586dk/39P/30EwDg2Wef1Xt9+vTpVm2Xj4+P9v/VajXy8/PRs2dP/O9//4NarbboMzdv3ozQ0FCEhoaiTZs2WLt2LZ588km88847ku/56aefEBYWhscff1z7Ws2aNfHss8+iqKgIu3btsqgsRGSMTWZEZLHFixcjPj4earUay5cvx+7du+Ht7a1dfv78eQiCgLlz52Lu3Lmin3Ht2jU0aNAAr7/+Ov7xj38gPj4erVq1Qr9+/fDkk0+abPq5cOECPDw8EBcXp/d606ZNrdquvXv3Yt68ecjIyMCdO3f0lqnVagQGBir+zE6dOuHNN9+ESqWCr68vmjdvjqCgIJPvuXDhApo0aQIPD/1n1+bNm2uXE5FtMCAiIot17NhRO8ps8ODB6NatG0aOHImzZ8/C398fFRUVAIAXX3wRycnJop/RuHFjAECPHj2QmZmJ77//Hps3b8bnn3+ODz74AEuXLsX48eOtLqtUQsfy8nK9f2dmZqJPnz5o1qwZ3n//fURGRsLLyws//fQTPvjgA+02KRUSEoKkpCSL3ktE9seAiIhswtPTE2lpaejduzf+9a9/Yfbs2WjUqBGAymYeOcFAcHAwxo4di7Fjx6KoqAg9evTA/PnzJQOi6OhoVFRUIDMzU69W6OzZs0br1qlTBwUFBUavG9ay/PDDDygtLcXGjRsRFRWlfX3Hjh1my29r0dHROHbsGCoqKvRqic6cOaNdDkgHe0QkH/sQEZHN9OrVCx07dsSHH36Iu3fvol69eujVqxc+++wz5ObmGq1//fp17f/fuHFDb5m/vz8aN26M0tJSye/r378/AODjjz/We/3DDz80WjcuLg5qtRrHjh3Tvpabm2uULdrT0xMAIAiC9jW1Wo0VK1ZIlsNeBgwYgLy8PKxZs0b72v379/HJJ5/A398fPXv2BAD4+voCgGjAR0TysIaIiGzqpZdewqOPPoqVK1di0qRJWLx4Mbp164aEhARMmDABjRo1wtWrV5GRkYFLly7h6NGjAIAWLVqgV69eaNeuHYKDg/HHH39g3bp1mDp1quR3tW3bFo8//jg+/fRTqNVqdOnSBdu2bcP58+eN1h0xYgRmzZqFIUOG4Nlnn8WdO3ewZMkSxMfH49ChQ9r1+vbtCy8vLwwaNAjPPPMMioqKsGzZMtSrV080qLOniRMn4rPPPsOYMWNw8OBBxMTEYN26ddi7dy8+/PBD1K5dG0BlJ/AWLVpgzZo1iI+PR3BwMFq1aoVWrVpVaXmJXJqjh7kRkevRDLs/cOCA0bLy8nIhLi5OiIuLE+7fvy8IgiBkZmYKTz31lBAWFibUrFlTaNCggfDwww8L69at077vzTffFDp27CgEBQUJPj4+QrNmzYS33npLuHfvnnYdsSHyJSUlwrPPPivUrVtX8PPzEwYNGiRcvHhRdBj65s2bhVatWgleXl5C06ZNhS+//FL0Mzdu3Ci0bt1aqFWrlhATEyO88847wvLlywUAQlZWlnY9JcPuzaUUkPq8q1evCmPHjhVCQkIELy8vISEhQVixYoXRe9PT04V27doJXl5eHIJPZAGVIOjUCxMRERG5IfYhIiIiIrfHgIiIiIjcHgMiIiIicnsMiIiIiMjtMSAiIiIit+fQgCgtLQ0dOnRA7dq1Ua9ePQwePNgow2yvXr2gUqn0/iZNmqS3Tk5ODgYOHAhfX1/Uq1cPL730Eu7fv6+3zs6dO/Hggw/C29sbjRs3xsqVK+29eUREROQiHJqYcdeuXUhNTUWHDh1w//59vPzyy+jbty9OnToFPz8/7XoTJkzA66+/rv23JisrUDkP0cCBAxEWFob09HTk5ubiqaeeQs2aNfH2228DALKysjBw4EBMmjQJX331FbZt24bx48cjPDxccn4lQxUVFbhy5Qpq167NNPlEREQuQhAE3L59GxEREUYTJRuu6DSuXbsmABB27dqlfa1nz57Cc889J/men376SfDw8BDy8vK0ry1ZskQICAgQSktLBUEQhJkzZwotW7bUe9/w4cOF5ORk2WXTJHrjH//4xz/+8Y9/rvd38eJFk/d5p5q6Q61WA6ic4FHXV199hS+//BJhYWEYNGgQ5s6dq60lysjIQEJCAurXr69dPzk5GZMnT8bJkyfxwAMPICMjw2hiyeTkZEyfPl2yLKWlpXpzKAl/5a+8ePEiAgICrNpOIiIiqhqFhYWIjIzUTnUjxWkCooqKCkyfPh1du3bVm39n5MiRiI6ORkREBI4dO4ZZs2bh7NmzWL9+PQAgLy9PLxgCoP13Xl6eyXUKCwtRUlICHx8fo/KkpaVhwYIFRq8HBAQwICIiInIx5rq7OE1AlJqaihMnTmDPnj16r0+cOFH7/wkJCQgPD0efPn2QmZmJuLg4u5Vnzpw5mDFjhvbfmgiTiIiIqh+nGHY/depU/Pjjj9ixYwcaNmxoct1OnToBgHY267CwMFy9elVvHc2/w8LCTK4TEBAgWjsEAN7e3traINYKERERVW8ODYgEQcDUqVOxYcMGbN++HbGxsWbfc+TIEQBAeHg4ACAxMRHHjx/HtWvXtOts2bIFAQEBaNGihXadbdu26X3Oli1bkJiYaKMtISIiIlfm0Nnup0yZglWrVuH7779H06ZNta8HBgbCx8cHmZmZWLVqFQYMGIC6devi2LFjeP7559GwYUPs2rULQOWw+7Zt2yIiIgKLFi1CXl4ennzySYwfP15v2H2rVq2QmpqKcePGYfv27Xj22WexadMm2cPuCwsLERgYCLVazdoiIqoy5eXlKCsrc3QxiJxWzZo14enpKblc7v3boQGRVAenFStWYMyYMbh48SKeeOIJnDhxAsXFxYiMjMSQIUPw6quv6m3UhQsXMHnyZOzcuRN+fn4YPXo0Fi5ciBo1/u4itXPnTjz//PM4deoUGjZsiLlz52LMmDGyy8qAiIiqkiAIyMvLQ0FBgaOLQuT0goKCEBYWJhpXuERA5EoYEBFRVcrNzUVBQQHq1asHX19fJoQlEiEIAu7cuYNr164hKChI251Gl9z7t9OMMiMiokrl5eXaYKhu3bqOLg6RU9MMjrp27Rrq1atnsvnMFKcYZUZERH/T9BnSnaaIiKRpzhVr+tsxICIiclJsJiOSxxbnCgMiIiIicnsMiIiIiMjIzp07oVKprB7pGBMTgw8//NAmZbInBkREMuSqS5CemY9cdYmji0Lk9PLy8jBt2jQ0atQI3t7eiIyMxKBBg/QS5Kanp2PAgAGoU6cOatWqhYSEBLz//vsoLy/XrpOdnY2nn34asbGx8PHxQVxcHObNm4d79+7pfd+yZcvQpk0b+Pv7IygoCA888ADS0tK0y+fPnw+VSoV+/foZlfXdd9+FSqVCr169ZG9fYWEhXnnlFTRr1gy1atVCWFgYkpKSsH79eugO3D558iQee+wxhIaGwtvbG/Hx8Xjttddw584d7To3b97EtGnT0LRpU/j4+CAqKgrPPvusdrJzc7Kzs6FSqUT/9u3bJ3ubevXqZXLCc3fAUWZEZqw5kIM564+jQgA8VEBaSgKGd4hydLGInFJ2dja6du2KoKAgvPvuu0hISEBZWRl+/fVXpKam4syZM9iwYQMee+wxjB07Fjt27EBQUBC2bt2KmTNnIiMjA9988w1UKhXOnDmDiooKfPbZZ2jcuDFOnDiBCRMmoLi4GO+99x4AYPny5Zg+fTo+/vhj9OzZE6WlpTh27BhOnDihV67w8HDs2LEDly5d0psiavny5YiKkn8+FxQUoFu3blCr1XjzzTfRoUMH1KhRA7t27cLMmTPx0EMPISgoCPv27UNSUhKSkpKwadMm1K9fH7///jteeOEFbNu2DTt27ICXlxeuXLmCK1eu4L333kOLFi1w4cIFTJo0CVeuXMG6detkl2vr1q1o2bKl3mscoaiQQLKo1WoBgKBWqx1dFKpCVwruCLGzfxSiZ/3912j2JuFKwR1HF42qsZKSEuHUqVNCSUmJo4uiWP/+/YUGDRoIRUVFRstu3bolFBUVCXXr1hVSUlKMlm/cuFEAIHz99deSn79o0SIhNjZW++9//OMfwpgxY0yWad68eUKbNm2Ehx9+WHjzzTe1r+/du1cICQkRJk+eLPTs2VPG1gnC5MmTBT8/P+Hy5ctGy27fvi2UlZUJFRUVQosWLYT27dsL5eXleuscOXJEUKlUwsKFCyW/45tvvhG8vLyEsrIys+XJysoSAAiHDx+WXEez/f/5z3+E6OhoISAgQBg+fLhQWFgoCIIgjB49WgCg95eVlSXs2LFDACBs3bpVaNeuneDj4yMkJiYKZ86c0X72+fPnhUceeUSoV6+e4OfnJ7Rv317YsmWL3vdHR0cLH3zwgfbfAIRPP/1U6Nevn1CrVi0hNjZWWLt2rXZ57969hdTUVL3PuHbtmlCzZk1h69atotto6pyRe/9mkxmRCVn5xagwSF1aLgjIzr8j/gYiJ1OVzb03b97EL7/8gtTUVPj5+RktDwoKwubNm3Hjxg28+OKLRssHDRqE+Ph4rF69WvI71Go1goODtf8OCwvDvn37cOHCBbPlGzduHFauXKn99/LlyzFq1Ch4eXmZfS8AVFRU4Ouvv8aoUaMQERFhtNzf3x81atTAkSNHcOrUKcyYMQMeHvq32TZt2iApKcnsNgYEBOjNtmCtzMxMfPfdd/jxxx/x448/YteuXVi4cCEA4KOPPkJiYiImTJiA3Nxc5ObmIjIyUvveV155Bf/85z/xxx9/oEaNGhg3bpx2WVFREQYMGIBt27bh8OHD6NevHwYNGoScnByT5Zk7dy6GDh2Ko0ePYtSoURgxYgROnz4NABg/fjxWrVqF0tJS7fpffvklGjRogIceeshm+8QQAyIiE2JD/OBhMJrTU6VCTAjzw5DzW3MgB10XbsfIZfvRdeF2rDlg+iZlrfPnz0MQBDRr1kxynT///BMA0Lx5c9HlzZo1064j9vmffPIJnnnmGe1r8+bNQ1BQEGJiYtC0aVOMGTMG33zzDSoqKoze//DDD6OwsBC7d+9GcXExvvnmG72buzn5+fm4deuWye0DzG9j8+bNJbcxPz8fb7zxBiZOnCi7XADQpUsX+Pv76/3pqqiowMqVK9GqVSt0794dTz75pLZPV2BgILy8vODr64uwsDCEhYXpJTd866230LNnT7Ro0QKzZ89Geno67t69C6AywHvmmWfQqlUrNGnSBG+88Qbi4uKwceNGk+V99NFHMX78eMTHx+ONN95A+/bt8cknnwAAUlJSAADff/+9dv2VK1dizJgxdk1FwYCIyITwQB+kpSTA86+T0FOlwtsprRAe6OPgkhGZlqsu0fZ9A4AKAXh5/Qm71hQJCmaCUrIuAFy+fBn9+vXDo48+igkTJmhfDw8PR0ZGBo4fP47nnnsO9+/fx+jRo9GvXz+joKhmzZp44oknsGLFCqxduxbx8fFo3bq13cqsdP3CwkIMHDgQLVq0wPz58xW9d82aNThy5Ijen66YmBjUrl1b++/w8HBcu3ZN1mfr7iPN1Bia9xYVFeHFF19E8+bNERQUBH9/f5w+fdpsDVFiYqLRvzU1RLVq1cKTTz6J5cuXAwAOHTqEEydOKJp/1BLsVE1kxvAOUegRH4rs/DuICfFlMEQuwVRzr72O4SZNmmg7Q0uJj48HAJw+fRpdunQxWn769Gm0aNFC77UrV66gd+/e6NKlC/7973+Lfm6rVq3QqlUrTJkyBZMmTUL37t2xa9cu9O7dW2+9cePGoVOnTjhx4oSi2iEACA0NRVBQkMntA/S38YEHHjBafvr0ae06Grdv30a/fv1Qu3ZtbNiwATVr1lRUtsjISDRu3FhyueHnqVQq0Vo0c+/V1NBo3vviiy9iy5YteO+999C4cWP4+Phg2LBhRiMBlRo/fjzatm2LS5cuYcWKFXjooYcQHR1t1WeawxoiIhnCA32QGFeXwRC5DEc09wYHByM5ORmLFy9GcXGx0fKCggL07dsXwcHB+Oc//2m0fOPGjTh37hwef/xx7WuXL19Gr1690K5dO6xYscKoT44YTUAlVoaWLVuiZcuWOHHiBEaOHKlk8+Dh4YERI0bgq6++wpUrV4yWFxUV4f79+2jbti2aNWuGDz74wCjoOHr0KLZu3aq3jYWFhejbty+8vLywceNG1KpVS1G5bMHLy0sv5YFce/fuxZgxYzBkyBAkJCQgLCwM2dnZZt9nmBJg3759ek2MCQkJaN++PZYtW4ZVq1YpDl4twYCIiKgaclRz7+LFi1FeXo6OHTvi22+/xblz53D69Gl8/PHHSExMhJ+fHz777DN8//33mDhxIo4dO4bs7Gx88cUXGDNmDIYNG4bHHnsMwN/BUFRUFN577z1cv34deXl5yMvL037f5MmT8cYbb2Dv3r24cOEC9u3bh6eeegqhoaFGzTIa27dvR25uLoKCghRv31tvvYXIyEh06tQJ//nPf3Dq1CmcO3cOy5cvxwMPPICioiKoVCp88cUXOHXqFIYOHYrff/8dOTk5WLt2LQYNGoTExERtzh9NMFRcXIwvvvgChYWF2m1UEqDcuHFD+z7Nn6afjxwxMTHYv38/srOzkZ+fL7v2qEmTJli/fj2OHDmCo0ePYuTIkbLeu3btWixfvhx//vkn5s2bh99//x1Tp07VW2f8+PFYuHAhBEHAkCFDZG+LxUyOQSMtDrsnoqpiy2H3VwruCOnn86s0VcSVK1eE1NRUITo6WvDy8hIaNGggPPLII8KOHTu06+zevVtITk4WAgICBC8vL6Fly5bCe++9J9y/f1+7zooVK4yGg2v+NNatWycMGDBACA8PF7y8vISIiAhh6NChwrFjx7TraIadS3nuuedkD7sXBEEoKCgQZs+eLTRp0kTw8vIS6tevLyQlJQkbNmwQKioqtOsdO3ZMGDp0qBAcHCzUrFlTiIuLE1599VWhuLhYu45maLvYX1ZWltmyaIbdi/2tXr1acvs/+OADITo6Wvvvs2fPCp07dxZ8fHyMht3funVLu97hw4f1ypaVlSX07t1b8PHxESIjI4V//etfQs+ePYXnnntO+x6xYfeLFy8W/u///k/w9vYWYmJihDVr1hht2+3btwVfX19hypQpZveDLYbdq/4qHJlRWFiIwMBA7XBIIiJ7uXv3LrKyshAbG+uQ5hMie1KpVNiwYQMGDx5scr3s7GzExcXhwIEDePDBB02ua+qckXv/ZqdqIiIichplZWW4ceMGXn31VXTu3NlsMGQr7ENERET0F8NcPrp/v/32W5WXZ9KkSZLlmTRpUpWXpyrs3bsX4eHhOHDgAJYuXVpl38saIiIior8Y5u/R1aBBg6oryF9ef/110azeAFy2+4a5njq9evVSnMPJFhgQERER/cVULh9HqFevHurVq+foYrgFNpkRERGR22NARETkpOTmgiFyd7Y4V9hkRkTkZLy8vODh4YErV64gNDQUXl5edp3UkshVCYKAe/fu4fr16/Dw8ICXl5fFn8WAiIjIyXh4eCA2Nha5ubmiU0QQkT5fX19ERUXJmtpFCgMiIiIn5OXlhaioKNy/f9+iOaaI3IWnpydq1KhhdS0qAyIiIielUqlQs2ZNxTOfE5Fy7FRNREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2GBARERGR22NARERERG6PARERERG5PQZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2GBARERGR22NARORgueoSpGfmI1dd4uiiEBG5rRqOLgCRO1tzIAdz1h9HhQB4qIC0lAQM7xDl6GIREbkd1hAROUiuukQbDAFAhQC8vP4Ea4qIiByAARGRg2TlF2uDIY1yQUB2/h3HFIiIyI0xICJykNgQP3io9F/zVKkQE+LrmAIREbkxBkREDhIe6IO0lAR4qiqjIk+VCm+ntEJ4oI+DS0ZE5H7YqZrIgYZ3iEKP+FBk599BTIgvgyEiIgdhQETkYOGBPgyEiIgcjE1mRERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hwaEKWlpaFDhw6oXbs26tWrh8GDB+Ps2bN669y9exepqamoW7cu/P39MXToUFy9elVvnZycHAwcOBC+vr6oV68eXnrpJdy/f19vnZ07d+LBBx+Et7c3GjdujJUrV9p784iIiMhFODQg2rVrF1JTU7Fv3z5s2bIFZWVl6Nu3L4qLi7XrPP/88/jhhx+wdu1a7Nq1C1euXEFKSop2eXl5OQYOHIh79+4hPT0d/+///T+sXLkSr732mnadrKwsDBw4EL1798aRI0cwffp0jB8/Hr/++muVbi8RERE5J5UgCIL51arG9evXUa9ePezatQs9evSAWq1GaGgoVq1ahWHDhgEAzpw5g+bNmyMjIwOdO3fGzz//jIcffhhXrlxB/fr1AQBLly7FrFmzcP36dXh5eWHWrFnYtGkTTpw4of2uESNGoKCgAL/88ousshUWFiIwMBBqtRoBAQG233giIiKyObn3b6fqQ6RWqwEAwcHBAICDBw+irKwMSUlJ2nWaNWuGqKgoZGRkAAAyMjKQkJCgDYYAIDk5GYWFhTh58qR2Hd3P0Kyj+QwxpaWlKCws1PsjIiKi6slpAqKKigpMnz4dXbt2RatWrQAAeXl58PLyQlBQkN669evXR15ennYd3WBIs1yzzNQ6hYWFKCkpES1PWloaAgMDtX+RkZFWbyMRERE5J6cJiFJTU3HixAl8/fXXji4KAGDOnDlQq9Xav4sXLzq6SERERGQnTjGX2dSpU/Hjjz9i9+7daNiwofb1sLAw3Lt3DwUFBXq1RFevXkVYWJh2nd9//13v8zSj0HTXMRyZdvXqVQQEBMDHR3wOKW9vb3h7e1u9bUREROT8HFpDJAgCpk6dig0bNmD79u2IjY3VW96uXTvUrFkT27Zt07529uxZ5OTkIDExEQCQmJiI48eP49q1a9p1tmzZgoCAALRo0UK7ju5naNbRfAYRERG5N4eOMpsyZQpWrVqF77//Hk2bNtW+HhgYqK25mTx5Mn766SesXLkSAQEBmDZtGgAgPT0dQOWw+7Zt2yIiIgKLFi1CXl4ennzySYwfPx5vv/02gMph961atUJqairGjRuH7du349lnn8WmTZuQnJwsq6wcZUZEROR65N6/HRoQqVQq0ddXrFiBMWPGAKhMzPjCCy9g9erVKC0tRXJyMj799FNtcxgAXLhwAZMnT8bOnTvh5+eH0aNHY+HChahR4+8WwZ07d+L555/HqVOn0LBhQ8ydO1f7HXIwICIiInI9LhEQuRIGRERERK7HJfMQERERETkCAyIiIiJyewyIiIiIyO0xICK3k6suQXpmPnLV4lnKiYjI/ThFYkaiqrLmQA7mrD+OCgHwUAFpKQkY3iHK0cUiIiIHYw0RuY1cdYk2GAKACgF4ef0J1hQREREDInIfWfnF2mBIo1wQkJ1/xzEFIiIip8GAiNxGbIgfPAxygXqqVIgJ8XVMgYiIyGkwICK3ER7og7SUBHj+lSHdU6XC2ymtEB4oPsEvERG5D3aqJrcyvEMUesSHIjv/DmJCfBkMERERAAZE5IbCA30YCBERkR42mREREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2GBARERGR22NARERERG6PARERERG5PQZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2LAqIduzYYetyEBERETmMRQFRv379EBcXhzfffBMXL160dZmIiIiIqpRFAdHly5cxdepUrFu3Do0aNUJycjK++eYb3Lt3z9blIyIiIrI7iwKikJAQPP/88zhy5Aj279+P+Ph4TJkyBREREXj22Wdx9OhRW5eTiIiIyG6s7lT94IMPYs6cOZg6dSqKioqwfPlytGvXDt27d8fJkydtUUYiIiIiu7I4ICorK8O6deswYMAAREdH49dff8W//vUvXL16FefPn0d0dDQeffRRW5aViIiIyC5UgiAISt80bdo0rF69GoIg4Mknn8T48ePRqlUrvXXy8vIQERGBiooKmxXWkQoLCxEYGAi1Wo2AgABHF4eIiIhkkHv/rmHJh586dQqffPIJUlJS4O3tLbpOSEgIh+cTERGRS7CohsgdsYaIiIjI9di1hggAzp49i08++QSnT58GADRv3hzTpk1D06ZNLf1IIiIiIoewqFP1t99+i1atWuHgwYNo06YN2rRpg0OHDqFVq1b49ttvbV1GIiIiIruyqMksLi4Oo0aNwuuvv673+rx58/Dll18iMzPTZgV0FmwyIyIicj1y798W1RDl5ubiqaeeMnr9iSeeQG5uriUfSUREROQwFgVEvXr1wm+//Wb0+p49e9C9e3erC0VEjpWrLkF6Zj5y1SWOLgoRUZWwqFP1I488glmzZuHgwYPo3LkzAGDfvn1Yu3YtFixYgI0bN+qtS0SuY82BHMxZfxwVAuChAtJSEjC8Q5Sji0VEZFcW9SHy8JBXsaRSqVBeXq64UM6IfYjIHeSqS9B14XZU6FwVPFUq7JndG+GBPo4rGBGRhew67L66ZJ8mIn1Z+cV6wRAAlAsCsvPvMCAiomrN6sldiaj6iA3xg4dK/zVPlQoxIb6OKRARURWRXUP08ccfy/7QZ5991qLCEJFjhQf6IC0lAS+vP4FyQYCnSoW3U1qxdoiIqj3ZfYhiY2PlfaBKhf/9739WFcoZsQ8RuZNcdQmy8+8gJsSXwRARuTSb9yHKysqyScGIyPmFB/owECIit8I+REREROT2LJ7c9dKlS9i4cSNycnJw7949vWXvv/++1QUjIiIiqioWBUTbtm3DI488gkaNGuHMmTNo1aoVsrOzIQgCHnzwQVuXkYiIiMiuLGoymzNnDl588UUcP34ctWrVwrfffouLFy+iZ8+eePTRR21dRiIiIiK7siggOn36tHZy1xo1aqCkpAT+/v54/fXX8c4779i0gERERET2ZlFA5Ofnp+03FB4ejszMTO2y/Px825SMiIiIqIpY1Ieoc+fO2LNnD5o3b44BAwbghRdewPHjx7F+/XrtZK9ERERErsKiGqL3338fnTp1AgAsWLAAffr0wZo1axATE4MvvvhC9ufs3r0bgwYNQkREBFQqFb777ju95WPGjIFKpdL769evn946N2/exKhRoxAQEICgoCA8/fTTKCoq0lvn2LFj6N69O2rVqoXIyEgsWrTIks12GbnqEqRn5iNXXeLoohAREbkEi2qIGjVqpP1/Pz8/LF261KIvLy4uRps2bTBu3DikpKSIrtOvXz+sWLFC+29vb2+95aNGjUJubi62bNmCsrIyjB07FhMnTsSqVasAVGao7Nu3L5KSkrB06VIcP34c48aNQ1BQECZOnGhRuZ3ZmgM5mLP+OCoEwEMFpKUkYHiHKEcXi4iIyKlZnIcIAO7du4dr166hoqJC7/WoKHk34P79+6N///4m1/H29kZYWJjostOnT+OXX37BgQMH0L59ewDAJ598ggEDBuC9995DREQEvvrqK9y7dw/Lly+Hl5cXWrZsiSNHjuD999+vdgFRrrpEGwwBQIUAvLz+BHrEhzLrMBERkQkWNZn9+eef6N69O3x8fBAdHY3Y2FjExsYiJiZG9pxncu3cuRP16tVD06ZNMXnyZNy4cUO7LCMjA0FBQdpgCACSkpLg4eGB/fv3a9fp0aMHvLy8tOskJyfj7NmzuHXrlk3L6mhZ+cXaYEijXBCQnX/HMQUiIiJyERbVEI0dOxY1atTAjz/+iPDwcKhUKluXC0Blc1lKSgpiY2ORmZmJl19+Gf3790dGRgY8PT2Rl5eHevXq6b2nRo0aCA4ORl5eHgAgLy/PKEirX7++dlmdOnVEv7u0tBSlpaXafxcWFtpy0+wiNsQPHiroBUWeKhViQnwdVygiIiIXYFFAdOTIERw8eBDNmjWzdXn0jBgxQvv/CQkJaN26NeLi4rBz50706dPHrt+dlpaGBQsW2PU7bC080AdpKQl4ef0JlAsCPFUqvJ3Sis1lREREZlgUELVo0cIh+YYaNWqEkJAQnD9/Hn369EFYWBiuXbumt879+/dx8+ZNbb+jsLAwXL16VW8dzb+l+iYBldm4Z8yYof13YWEhIiMjbbUpdjO8QxR6xIciO/8OYkJ8GQwRERHJILsPUWFhofbvnXfewcyZM7Fz507cuHFDb5k9m5YuXbqEGzduIDw8HACQmJiIgoICHDx4ULvO9u3bUVFRoU0LkJiYiN27d6OsrEy7zpYtW9C0aVPJ5jKgsjN3QECA3p+rCA/0QWJcXQZDREREMqkEQRDMrwZ4eHjo9RUSBMGo75DmtfLycllfXlRUhPPnzwMAHnjgAbz//vvo3bs3goODERwcjAULFmDo0KEICwtDZmYmZs6cidu3b+P48ePa4ff9+/fH1atXsXTpUu2w+/bt22uH3avVajRt2hR9+/bFrFmzcOLECYwbNw4ffPCBolFmhYWFCAwMhFqtdqngCKgcfZaVX4zYED8GSQ7G34KIqGrJvX/LDoh27dol+8t79uwpa72dO3eid+/eRq+PHj0aS5YsweDBg3H48GEUFBQgIiICffv2xRtvvKHtFA1UJmacOnUqfvjhB3h4eGDo0KH4+OOP4e/vr13n2LFjSE1NxYEDBxASEoJp06Zh1qxZsrcHcN2AiHmJnAd/CyKiqmfzgEhXTk4OIiMjRWuILl68KDsPkStxxYAoV12Crgu3G4062zO7N2snqhh/CyIix5B7/7YoD1FsbCyuX79u9PrNmzdtnoeILMe8RM6DvwURkXOzKCAS6z8EVPYJqlWrltWFItvQ5CXSxbxEjsHfgojIuSkadq8Zhq5SqTB37lz4+v59MS8vL8f+/fvRtm1bmxaQLMe8RM6DvwURkXNTFBAdPnwYQGUN0fHjx/Wmw/Dy8kKbNm3w4osv2raEZBXmJXIe/C2IiJyXRZ2qx44di48++shlOhfbgit2qiYiInJ3cu/fFmWqXrFihcUFIyIiInI2FgVExcXFWLhwIbZt24Zr166hoqJCb/n//vc/mxSOiIiIqCpYFBCNHz8eu3btwpNPPmnX2e6JiIiIqoJFAdHPP/+MTZs2oWvXrrYuDxE5AKcUISJ3Z1FAVKdOHQQHB9u6LETkAJxShIjIwsSMb7zxBl577TXcucMsu0SuLFddog2GAKBCAF5efwK56hLHFoyIqIpZVEP0z3/+E5mZmahfvz5iYmJQs2ZNveWHDh2ySeGIyL5MTSnCpjMicicWBUSDBw+2cTGIyBE0U4oYTjrLKUWIyN1YlJjRHTExI1VXaw7kGE0pwj5ERFRd2CUx4++//4527drB09NTdHlpaSm+//57PPbYY8pKS0QOwylFiIgUdqpOTEzEjRs3tP8OCAjQS8JYUFCAxx9/3HalI6IqER7og8S4ugyGiMhtKQqIDFvXxFrb2AJHRERErsaiYfemMGs1kf3lqkuQnpnP4fFERDZi0SgzInIcJlIkIrI9xQHRqVOnkJeXB6CyeezMmTMoKioCAOTn59u2dESkRyqRYo/4UPb/ISKyguKAqE+fPnr9hB5++GEAlU1lgiCwyYzIjphIkYjIPhQFRFlZWfYqBxHJwESKRET2oSggio6OVvThU6ZMweuvv46QkBBF7yMiceGBPkhLSTBKpMjaISIi69g1U3VAQACOHDmCRo0a2esrqgwzVZMzyVWXMJEiEZEMdslUrRRzEhHZR3igDwMhIiIbsnkeIiIiIiJXw4CIiIiI3B4DIiIiInJ7DIiIiIjI7dk1IHriiSc4IouIiIicnkUBUUVFheTrOTk52n8vWbKEOYiIiIjI6SkKiAoLC/HYY4/Bz88P9evXx2uvvYby8nLt8uvXryM2NtbmhaSqxZnUiYjI3SjKQzR37lwcPXoU//3vf1FQUIA333wThw4dwvr16+Hl5QWAuYdcHWdSJyIid6Sohui7777DZ599hmHDhmH8+PH4448/cP36dQwaNAilpaUAwMldXZjUTOqsKSIioupOUUB0/fp1vfnMQkJCsHXrVty+fRsDBgzAnTt3bF5Ad+LopipTM6kTERFVZ4oCoqioKJw+fVrvtdq1a2Pz5s0oKSnBkCFDbFo4d7LmQA66LtyOkcv2o+vC7VhzIMf8m2xMM5O6Ls6kTkRE7kBRQNS3b1+sWLHC6HV/f3/8+uuvqFWrls0K5k7s3VQlt+ZJM5O651/NnpxJnYiI3IWiTtULFizAlStXRJfVrl0bW7ZswaFDh2xSMHdiqqnK2mDEXCfpXHUJsvKLERvih/BAHwzvEIUe8aGcSZ2IiNyKooCoTp06qFOnjuTy2rVro2fPnlYXyt1omqp0gyJbNFVJ1Tz1iA9FeKCPZLDEmdSJiMjdKE7MeP/+fbz77rt48MEH4e/vD39/fzz44IN47733UFZWZo8yVnv2aqoyVfPEEWVERER/U1RDVFJSgv/7v/9DRkYGkpKS0KNHDwDA6dOnMWvWLGzcuBGbN29mXyIL2KOpylTNkz2b6YiIiFyNooBo4cKFuHjxIg4fPozWrVvrLTt69CgeeeQRLFy4EPPnz7dlGd2GrZuqNDVPL68/gXJBMKp5skczHRERkStSCQpSSzdt2hRvv/02hg4dKrp87dq1eOWVV/Dnn3/arIDOorCwEIGBgVCr1S43YW2uukS05mnNgRyjYIlZqYmIqDqRe/9WFBDVqlUL586dQ2RkpOjyixcvokmTJrh7967yEjs5Vw6ITJEKloiIiKoDufdvRU1mAQEBuHbtmmRAlJeXh9q1aysrKTkUR5QREREpHGXWu3dvvP3225LLFy5ciN69e1tdKCIiIqKqpKiGaN68eejUqRM6d+6MGTNmoFmzZhAEAadPn8YHH3yAU6dOYd++ffYqKxEREZFdKAqIWrRogS1btuDpp5/GiBEjtDPbC4KAZs2aYfPmzWjZsqVdCkpERERkL4oCIgDo3LkzTp48iSNHjmhHk8XHx6Nt27a2LhsRERFRlVAcEBUWFsLf3x9t27bVC4IqKipQVFRUrUZgERERkXtQ1Kl6w4YNaN++veiw+pKSEnTo0AE//PCDzQpHREREVBUUBURLlizBzJkz4etrnM3Yz88Ps2bNwr/+9S+bFY6I3FeuugTpmfmcX4+IqoSigOjEiRPo1auX5PIePXrg+PHj1paJiNzcmgM56LpwO0Yu24+uC7djzYEcRxeJiKo5RQHRrVu3cP/+fcnlZWVluHXrltWFIiL3lasuwZz1x7Xz7FUIwMvrT7CmiIjsSlFAFBMTgz/++ENy+R9//IHo6GirC0VE7isrv1hv0mEAKBcEZOffcUyBiMgtKAqIUlJS8Morr+Dq1atGy/Ly8vDqq69KTvxKZA32J3EfsSF+8FDpv+apUiEmxLjvIpEz4XXKtSma3PX27dtITExETk4OnnjiCTRt2hQAcObMGXz11VeIjIzEvn37quV8ZtV1cldXsOZAjrYJxUMFpKUkYHiHKEcXi+xozYEcvLz+BMoFAZ4qFd5OacXfnJwar1POyy6z3QOAWq3GnDlzsGbNGm1/oaCgIIwYMQJvvfUW6tSpY13JnZQ7BkS56hJk5RcjNsTPYRPA5qpL0HXhdr0mFE+VCntm9+aktNVcrroE2fl3EBPiy9+anBqvU87NLrPdA0BgYCA+/fRTLF68GPn5+RAEAaGhodppPHTt3bsX7du3h7e3t9KvIQdzlqcdU/1JeKGp3sIDffgbk0vgdap6UNSHSJdKpUJoaCjq1asnGgwBQP/+/XH58mXJz9i9ezcGDRqEiIgIqFQqfPfdd3rLBUHAa6+9hvDwcPj4+CApKQnnzp3TW+fmzZsYNWoUAgICEBQUhKeffhpFRUV66xw7dgzdu3dHrVq1EBkZiUWLFlm20W7CmUb5sD8JETk7XqeqB4sDIjnMtcYVFxejTZs2WLx4sejyRYsW4eOPP8bSpUuxf/9++Pn5ITk5WS9T9qhRo3Dy5Els2bIFP/74I3bv3o2JEydqlxcWFqJv376Ijo7GwYMH8e6772L+/Pn497//bZuNrIacaZRPeKAP0lIS4PlX0K3pT8KnLiJyFrxOVQ+K+xApUbt2bRw9ehSNGjUyXxCVChs2bMDgwYMBVAZTEREReOGFF/Diiy8CqOy/VL9+faxcuRIjRozA6dOn0aJFCxw4cADt27cHAPzyyy8YMGAALl26hIiICCxZsgSvvPIK8vLy4OXlBQCYPXs2vvvuO5w5c0b2trhTHyJnbA9nfxIicna8Tjknufdvu9YQWSMrKwt5eXlISkrSvhYYGIhOnTohIyMDAJCRkYGgoCBtMAQASUlJ8PDwwP79+7Xr9OjRQxsMAUBycjLOnj3LJJISnPFpJzzQB4lxdXmRISKnxeuUa1Pcqbqq5OXlAQDq16+v93r9+vW1y/Ly8lCvXj295TVq1EBwcLDeOrGxsUafoVkmNSqutLQUpaWl2n8XFhZasTWuZ3iHKPSID+XTDhERuQW71hBJdbZ2BWlpaQgMDNT+RUZGOrpIVY5PO0RE5C4c2qnalLCwMAAwyop99epV7bKwsDBcu3ZNb/n9+/dx8+ZNvXXEPkP3O8TMmTMHarVa+3fx4kWLt4WIiIicm10Dotu3b8vqUC0mNjYWYWFh2LZtm/a1wsJC7N+/H4mJiQCAxMREFBQU4ODBg9p1tm/fjoqKCnTq1Em7zu7du1FWVqZdZ8uWLWjatKnJJJLe3t4ICAjQ+yMiIqLqSVEfooceekjWetu3b5e1XlFREc6fP6/9d1ZWFo4cOYLg4GBERUVh+vTpePPNN9GkSRPExsZi7ty5iIiI0I5Ea968Ofr164cJEyZg6dKlKCsrw9SpUzFixAhEREQAAEaOHIkFCxbg6aefxqxZs3DixAl89NFH+OCDD5RsOhEREVVjigKinTt3Ijo6GgMHDkTNmjWt/vI//vgDvXv31v57xowZAIDRo0dj5cqVmDlzJoqLizFx4kQUFBSgW7du+OWXX1CrVi3te7766itMnToVffr0gYeHB4YOHYqPP/5YuzwwMBCbN29Gamoq2rVrh5CQELz22mt6uYqIiIjIvSnKQ/Tuu+9ixYoVuHHjBkaNGoVx48ahVatW9iyf03CnPERERETVhV3yEL300ks4deoUvvvuO9y+fRtdu3ZFx44dsXTpUrcblk5ERETVh1WZqu/cuYO1a9di8eLFOHXqFK5cuVJta09YQ0REROR6qiRT9aFDh7Br1y6cPn0arVq1skm/IiIiIqKqpjggunLlCt5++23Ex8dj2LBhCA4Oxv79+7Fv3z74+DCBHxEREbkeRaPMBgwYgB07dqBv37549913MXDgQNSo4bSzfxARERHJoqgPkYeHB8LDw1GvXj2T03IcOnTIJoVzJuxDRERE5Hrk3r8VVe/MmzfP6oIRETlKrroEWfnFiA3x4xx9RKTHqlFm7oQ1RNbjzYgcac2BHMxZfxwVAuChAtJSEjC8Q5Sji0VEdmaXGiIpu3btQnFxMRITE03OD0buizcjcqRcdYn2+AOACgF4ef0J9IgPZXBORAAUjjJ75513MHfuXO2/BUFAv3790Lt3bzz88MNo3rw5Tp48afNCkmuTuhnlqkscWzByG1n5xdrjT6NcEJCdf8cxBSKXlasuQXpmPq9f1ZCigGjNmjV6U3WsW7cOu3fvxm+//Yb8/Hy0b98eCxYssHkhybXxZkSOFhviBw+DcSCeKhViQnwdUyBySWsO5KDrwu0YuWw/ui7cjjUHchxdJLIhRQFRVlYWWrdurf33Tz/9hGHDhqFr164IDg7Gq6++ioyMDJsXklwbb0bkaOGBPkhLSYDnX6NjPVUqvJ3Sis1lJBtruqs/RX2I7t+/D29vb+2/MzIyMH36dO2/IyIikJ+fb7PCUfWguRm9vP4EygWBNyNyiOEdotAjPhTZ+XcQE+LL448UMVXTzWOpelAUEMXFxWH37t1o1KgRcnJy8Oeff6JHjx7a5ZcuXULdunVtXkhyfbwZkTMID/ThsUcW0dR06wZFrOmuXhQFRKmpqZg6dSp+++037Nu3D4mJiWjRooV2+fbt2/HAAw/YvJBUPfBmRESuijXd1Z+igGjChAnw9PTEDz/8gB49ehglarxy5QrGjRtn0wISERE5A9Z0V29MzCgTEzMSERG5Hrn3b8Wz3RMRERFVN4oCorKyMsycORONGzdGx44dsXz5cr3lV69ehaenp00LSERERGRvigKit956C//5z38wadIk9O3bFzNmzMAzzzyjtw5b4IiIiMjVKOpU/dVXX+Hzzz/Hww8/DAAYM2YM+vfvj7Fjx2pri1QqlamPILILThxLRETWUFRDdPnyZb2pOxo3boydO3ciPT0dTz75JMrLy21eQDKN8+ownT4REVlPUUAUFhaGzMxMvdcaNGiAHTt24MCBAxgzZowty0ZmMBBgOn0iIlfgCg/vigKihx56CKtWrTJ6PSIiAtu3b0dWVpbNCkamMRCoxIljiYicm6s8vCvqQzR37lycOXNGdFmDBg2wa9cubNmyxSYFI9M4r04lptMnInJeUg/vPeJDne5epaiGKDo6GsnJyZLLIyIiMHr0aKsLReZxBvlKnMWciMh5uVItvqIaIo21a9di9erV+PPPPwEA8fHxGDlyJIYNG2bTwpE0zqvzN6bTJyJyTq5Ui69o6o6Kigo8/vjjWLt2LeLj49GsWTMAwOnTp3H+/Hk8+uijWL16dbUceu+sU3fkqksYCBARkdNacyDH6OF9eIeoKvt+ufdvRTVEH330EbZu3YqNGzdqcxFpbNy4EWPHjsVHH32E6dOnW1RoUs4VZ5BnziAiIvfhKrX4imqIWrdujenTp0vOaP/FF1/go48+wrFjx2xWQGfhrDVErmbNgRxtBzsPFZCWklClTwpERORe7DK567lz55CUlCS5PCkpCefOnVPykeRGqluqAFfIq0FERPIoajLz8fFBQUEBoqLEn+gLCwtRq1YtmxSMqp/qlCqANV1ERNWLohqixMRELFmyRHL54sWLkZiYaHWhqHqqLqkCqltNFxERKQyIXnnlFXzxxRd47LHH8Pvvv6OwsBBqtRr79u3Do48+iuXLl+OVV16xV1nJxVWXnEGulFeDiIjkUdRk1qVLF6xZswYTJ07Et99+q7esTp06WL16Nbp27WrTAlL14iqjDUxxpbwaREQkj6JRZhp37tzBr7/+qu1AHR8fj759+8LXt/reEDjKjHQ5Oq8GERHJI/f+rSgg2r59O6ZOnYp9+/YZfaharUaXLl2wdOlSdO/e3fKSOykGRGSISTGJiJyfXYbdf/jhh5gwYYLoBwYGBuKZZ57B+++/r7y0RC4oPNAHiXF1GQwREVUDigKio0ePol+/fpLL+/bti4MHD1pdKCIiIqKqpCggunr1KmrWrCm5vEaNGrh+/brVhSIiqipMsElEgMJRZg0aNMCJEyfQuHFj0eXHjh1DeHi4TQpGRGRvTLBJRBqKaogGDBiAuXPn4u7du0bLSkpKMG/ePKNJX4mqGp/4SQ4m2CQiXYpqiF599VWsX78e8fHxmDp1Kpo2bQoAOHPmDBYvXozy8nImZiSH4hM/yVWdppIhqmq56hJk5RcjNsSv2pwvigKi+vXrIz09HZMnT8acOXOgGbGvUqmQnJyMxYsXo379+nYpKJE5Uk/8PeJDq80JS7bDBJtElqmuD56KAiIAiI6Oxk8//YRbt27h/PnzEAQBTZo0QZ06dexRPiLZ+MRPSmimkjFMsMljhUhadX7wVBwQadSpUwcdOnSwZVmIrMInflKqOkwlQ1SVqvODp6JO1UTOrComj2WH7eqHCTaJ5NM8eOqqLg+eFtcQETkjez7xV9d2cyIiuapzU7NFk7u6I85l5t5y1SXounC7UXPcntm9q8WFgIhICVeay1Hu/Zs1REQyOGO7eXUc9kpEriE80KfaXXcYEFVjvGHajrN12GbzHRGRbbFTdTW15kAOui7cjpHL9qPrwu1YcyDH0UVyaaY6bFd1R2slGZbZCZyITOE14m+sIXJRpmp/qnOeCEcS67DtiJoauc13rEUiIlN4jdDHGiIX9NnuTHQxUftj6oZJ1tEdou2oubDkDHvlPF1E1YO9anB4jTDGgMjJmDv4P9uVibSfzkAwcRBX5zwRzsRRgaecfEsMiolcnz27PvAaYYxNZg6m2/S1+8/rJqsvc9UlWPjzGaPPMGwuqc55IpyJko7Wtu7gbi7fkrN1AiciZezd9YHXCGMMiBxIt/1WU6GjOTbFDv6s/GIIIp/joQLyi+4iV12iXZdTEtif3MDTXu30poa9Migmcm32TvXBa4QxBkQOYhj9iwU6hge/WEQPVP572uojRjfb6pgnwtmYCzwd2cGdQbHzYAoMUqoqanB4jdDHPkQOIhb9GzI8+A37jhh0E2KnOAcxNReWo9vpOU+X4zEFBlmiKuZm1HyPNdeI6jRsnzVEDiIW/asAqP56Terg143oz10rxGvfn9Jb7ujsyaRP6VMeaxKqF6bAIGs4ew1OdRu27/Q1RPPnz4dKpdL7a9asmXb53bt3kZqairp168Lf3x9Dhw7F1atX9T4jJycHAwcOhK+vL+rVq4eXXnoJ9+/fr+pN0SMW/S8cmoC9sx/C6gmdsWd2b8kDKzzQBzk3izF/4ymjZe7eKc7ZKHnKY01C9ePoGkJyfc5ay1sdh+27RA1Ry5YtsXXrVu2/a9T4u9jPP/88Nm3ahLVr1yIwMBBTp05FSkoK9u7dCwAoLy/HwIEDERYWhvT0dOTm5uKpp55CzZo18fbbb1f5tuiSiv51sx/LSbyo4QG4fac4ZyTnKY81CdUTR/JQdeWM8ztayyUCoho1aiAsLMzodbVajS+++AKrVq3CQw89BABYsWIFmjdvjn379qFz587YvHkzTp06ha1bt6J+/fpo27Yt3njjDcyaNQvz58+Hl5dXVW+OHrGOz+aqIaX6H30y8gEMbB1h7yKTBcx1cK+OFxfiSB6qvqpjsO/0TWYAcO7cOURERKBRo0YYNWoUcnIqmxIOHjyIsrIyJCUladdt1qwZoqKikJGRAQDIyMhAQkIC6tevr10nOTkZhYWFOHnypOR3lpaWorCwUO+vKsiphpRKvPhgdJ0qKSPZHpNpuhYlHUmHd4jCntm9zTaFE7mSqur0XZWcvoaoU6dOWLlyJZo2bYrc3FwsWLAA3bt3x4kTJ5CXlwcvLy8EBQXpvad+/frIy8sDAOTl5ekFQ5rlmmVS0tLSsGDBAttujAxyagqc9amTHYItZ/ibegCY2a8p96MTsqQjKVNgUHXk7J2+lXL6gKh///7a/2/dujU6deqE6OhofPPNN/Dxsd/OnzNnDmbMmKH9d2FhISIjI+32fRpyqyGd7UCsbqMNHGF4hygUlJRh4c9nUCEA7/xyBkG+NbkfnQj7ehEZP/xWl2PfJZrMdAUFBSE+Ph7nz59HWFgY7t27h4KCAr11rl69qu1zFBYWZjTqTPNvsX5JGt7e3ggICND7qwpKqiGdZfRBdRxt4Ai56hK887PpeepcUXXKU8JRY+TuqvNoWJcLiIqKipCZmYnw8HC0a9cONWvWxLZt27TLz549i5ycHCQmJgIAEhMTcfz4cVy7dk27zpYtWxAQEIAWLVpUefnlcLU+B7xJ2EZ13I/V7eLJvl7kzqr7w6/TB0Qvvvgidu3ahezsbKSnp2PIkCHw9PTE448/jsDAQDz99NOYMWMGduzYgYMHD2Ls2LFITExE586dAQB9+/ZFixYt8OSTT+Lo0aP49ddf8eqrryI1NRXe3t4O3jppzlL7I4elN4nqVHNgC9XtZlsdL57VsSMpkVzV8aFNl9P3Ibp06RIef/xx3LhxA6GhoejWrRv27duH0NBQAMAHH3wADw8PDB06FKWlpUhOTsann36qfb+npyd+/PFHTJ48GYmJifDz88Po0aPx+uuvO2qTqgXDNmSlnbzZ58iYs3aWt1R1TSXgbP33iKpKdRxqr0slCIJIRhsyVFhYiMDAQKjV6irrT+SspIKZXHWJrJtErroEXRduNzqp9szurX2fO49Yk7sfnZ2c35mIXMuaAzlGD23O/jAr9/7t9DVEpM/RgYK5UTZSWZh1y2yu5sDda49Mjdpw9O+vRHWr8aLqz5XOL7lsvU3VuYaUAZELcYZAQWkziFiZe8SHSla7VtWwZle88DnD769Udb54UvXiiueXOfbapuo01F6X03eqpkrO0kFVScdfqTIDkOyYWhWd9lxx5JOz/P6WcKUBAmRfueoS/HjsCn44etmpjl1XPr+kVMdtsjfWELkIZ+mgqqQZxFSZpWoO7N1pz1UT60nty4PZtxDs71o1XeSe1hzIwexvj0NzGKsALBzqHLUwznJ9taXquE32xoDIRThT7365zSDmyixW7WrvfieuepEQ25cqAM9+fbhaVfFT9aR5ENE99QQAc7497hQPI850fbWV6rhN9sYmMxfhyPwnYvmC5DSDWFpmeyamdNVcP4b7UnPiGtZ0Hb14i7mdXIw75OMSexABgArAKXLYVMf8UtVxm+yNw+5lcpZh91U9JNsWnfKcbRi5Kw4b1dDsyxvFpZi66rDRcpUKEFhjZMRZO9FXx468YsRSMACVgf3eOQ85zW/ibNcqW6iO26SU3Ps3AyKZnCUgqkqunkfG1E3Q1S8SUjcYXa70W9mTswYdrn5+KbXmQA5mrz+unavPmfoQUfXGPERkNVftbwOYvwm6+rBRw75WHqhsftDlKr+VLUgFv47sRG+uVsqVzy9LaPoeHrpwC4IAtIupUy23k1wXAyKS5Kqd8lx1JJlSup3bfb08MOTTdJf7rWzBVPBrSdBhi+Y1ObVSrnp+WSM80AcDW1efc9AenLV51x2wUzVJcrVOeZrOqQcv3JKdy8jVO7RqOre3iazjUr+VrZjLtaK0E70lOaoMj6GjF29htoz8L652fpH9uWKOtOqENURkktgQe2d8gtF9Ileh8k83JhK7CTpr3xJLVWVWaEcfA5rvv1l8z2QNkJI0DpbULBoeQ0MeaID1hy7DsGuXVK2ULX4zR/8WZBvuUrPtzBgQkVm6/W2cMYgwvJCI9TMe/ECE0/Qtsaeq6Bvl6GPAXPALAMcuFyAxri4A+UGH0uY1sWPo20OXRT/bVK2UNXPXOfq3INtxtz5lzohNZiSbs6aCl8pxouu7w1f0ylkVU4RUlaps9jN3DNi7LGLBr9hPv+jns4rzZiltXpNz3AGVgYolTWHmmk+c9Xwky7hqjjQ5XKVrAmuISDapIGLb6atoFOrvsCp7sc6phgyftKpLh1a5NQS2alYxFUhuPHIFC38+AwH2q62QG4RY8mQt1rw2s39TZOUXa5frknPcqQDMf6QFesSHyi4HIK8Gk9O5VC/2ztLvKFLXKGds6mVARLJJ3QBe/e4kAMdV2YsNQTesOTAMdmx98XHEyS232c+WzSpSgeSe89exeEem9jV7NUGKfb8HABi+pgJ8vZRXgOs2rx27VIB3fj5jMnVDWkqC3m+gS/Ow/9r3pzB/4ynR/S513MhpPuF0Ln9zxpurJaqyH6Ctif0GUteogjtleOcX6XPLUZiYUSZ3TMwoRvfmKsaRieVy1SU4mH0LUAGXb5Vg0S9nzWajtkWCRkf140jPzMfIZfuNXl888gEMbB0BwHzyP0tuJIaZvmf2b1pZMyRyTKye0Fnbl8dWxDKNA9C+pmHNb6EkaeIPRy9j2uojZj/T8P2mjhu536+7L6QeBKprokcN9qNyfEAo9Ru8vekU/v1bltH6YoNe7HmcMjEj2cXwDlHw9fKUvAE4shPg7j+v652Us/o3Q+sGQSaDHWs7ITuyc7ZUjd3UVYdRVHofwztEmW7iOnpFG8gouZEYPsVm5ReLBkMegF2aIKWeopuF1cbgxenaC601v4WSDq7tY4JFa61MJco0d9zIrcHU3Rdi07nY+nx09I1XrDy2Ov+cbdvkcnRAKPUbNAurjWUiwZDYNctZOo+zUzUpprkBiLFlPxwlHfHETspFP5+1e7WzIztna26ahr+FgL8710p11Nxz7jrSfvq7Vkdph1xNJ2UAuFl8D2KHw6z+zey278U6SRffK5cc7q6Ukg6uYvmEZvVvZvL9co4buZMca/ZFu+g6Rr+DCpY1HYqxJkeOpZ1qzb3PVuefq+b/cYaO9VK/wYHsW6IDHkZ0iHLazuOsISJJUk9Mhk+vGrbsBKj0qccWQ1YteUK0tnO2tU+lUjV2mm1PjKsr2lF44U9njD5LaQZnqeHvmtq5Z3rEKd4eJQzLY8uO8kr7mInVWgX51vy7OUsFjOsWo10/NsRPVq4sa2swBQBDPk23utbAmpoYJeey7m9qWONrr2zfrpyCw55D9eVem45fUhu95qlSoUNMHdGa02l9GqNNZKBTdh5nQESizF3EDKeNuHOvQq82xpobvSUXKGsvjJZWO1vaOTtXXYLle7LwxZ4sq6u6xZpsdLddtIlL5HM8VNJNXIbBz+MdI/H1gYt6w989VMAnIx6weo4qOceO1O9laUd5se9U2sHVMHjRvH/F3iws252FZb9V/t5pKQlG71XBsqH5uqR+V1vc4C298So5lw2PMQBmmz9tMTjClfP/2Gu0rJLRq+/8YvxwNbN/U7SJrINZ/ZpVDkyA/gOzs3YeZ0BERuRexKSeXq1t07bkAmXNhdHaJ0SlJ/eaAzmY/e1xvZuXNTctOdtu+FuJteNLNXGJ5f5Z9ftFo/UqBKCuv7dVFzfDm+KE7rEY2y1WdlJNSy60po5XWyS6/Py3LL0b+5xvjwMq/dohlaqyD1R6Zr7JQNBUsGgqDYC1N3hLb7xyz2U5yVXtle3blVNwWPNAJnUcmTq/AOi9TyoNRusGQVhzIKdyJBkqj++Z/Zs6/QTbDIjIiDVPTLaofrb0AmXphdEWT4hiJ7fhRSdXXYKDF24ZBUO633kw+xYebiMelJiqNTGssSu+V45cdYnoumJpCkw1ccnN/WPtTUTspvjv37Lw+V+1KnInbFVyobV3c4lYWSsAozt+hQAM/jTdZAd3cw8a2jQA3x436tBtbTOupTdeueeynGPM8H2G5TRXUyV1/tiilsmRLHkgM3UcSZ1fK/Zk4/M9/9N7X4/4UNHf19fLQ/9c/qtP5yNtIpx6vzIgIiPWPDFZG0xpLlqWXqAseeqwxxOi2BxXGw5fNnvRf/brwyi+d19v+PWKPVnaoasqAAuHite4hQf6yOp3ASi7iMpJQGiLm4jUTdEwSLHl72Xv5hK5eZMAGHVw1w3K5AZu2mY6nZuX1G8jFiSYulla8sBhLtjQlMHPy9PkMWbYpKikFlrOus7WhKO0y4Hc656c40jqmNUcT7rv2zO7t+jvW3yv3CWbIRkQkRFrnpgsvVmJXbT2zO6NQxduoUIQ0D4m2NrNkmTrJ0Qlc1wZ0r1A6QY3GgKA2d8eF63BUFrbIfciaqrmwQPAJyMfwIPR1vUbAuQ3+djy9zJ1vNpiGLZUWQHo1dCZGqIPKAvcwgN98PLA5hjbLUbyBi92vvWIDzV7/FjywCEVbIg9NHx3+IreQA0NlQraJhslx7mSdZ2lCceew+jlHEdix+zT3WKM8glp3ic1AbhUzZG5ZmFHYkDkIqo6R4alT0yW3KykLloz+zcVzRRsq32h+zm2fEKU28QkRTMdytzvT4rm9xEA0aY1e9Z2mKp50CSBtJaSJh9b/V5Sx6vcmjY5pMqq28Q55NN0oyfyG8Wl2mZPSx40dG/wmuZaQRAQFewrer59OKKN3Y4fw2BD7Jz/7vAVrJ+SiAPZt/DmptN6768QoC2HkuN8xV+DFuyxTfZg7yZcuceR4TELAJ8b7Evd9xn+vmLn1eAHIrTHubMm0GRA5AIclXjL0icmpTcrqQucbvZjzYXBVMp3JYGS1D6V6lSsJACT08Skofpr7LVhB1vNdCgm32fAz8tT1lBuS0nVPOSqS/BH9k2oVCq0s7KmSEmTj62e6MUu/rpZom1xUxIrq+5rujcPzW84ddVhm4ygE+vEb6gyNYCqylJISJ3zd+5VoENMHZPHsdybeq66RDIxoK1qAG3N3k244YE+mNW/mfZB09xxJPz1K1jyoGvYr1E36Ld1oGcrDIicnKvmyFBys5Jqs5YMkv76t1TzkljQqHvxA2C0T+d8exx+3jWMbuiWBKOmajoMCUJlcOMhVDabeKggWiukS6UCHoyuo/eappyGNxF7dA7V/W0Nb7am+jgB8m6acpp8bE13m9Iz86u8VkFz8ziYfUs7Fxlg/Qg6zfXDXGzuqVLhweg6ks175po5lJ4nUkHNscuV88eZOo7l3pyl0hCM79bIpjWAtmTvEW9rDuRogyEVgJn9moput9TvaUkfsvBAH1nnlDMEqAyInJwr58iQS+wCN7NfU21NkIZUyvdDF26ZDBoNT+7x3WJFR/4YPpHnqkv0bvYVAjB7/XE0C6uN4nvlJk/c4R2i4Oddw2gqBTGCAPxr5AMI9vNGftFdk/NiqQAsTEkw2fyg2VfrpySiTWQdu11oDPcPUPlUP2e9eB8npTdNR/XpcNQw7PBAHwT7224EHWC6+Vazjabyw+z+87q2tkzqN7PkoU3ynP/Z+JzXHMe65NycpR60BrYOc3hthdyktx4AntZJ6GntdxqO4lz0y1k80jbC5PXEcP/Yuq8e4PjpRzQYEDk5V86RoYS5TL+aDMuGF0xPlQoVgiB5EwGMa4OW/ZZlVCWvoXvyH7xgnHpeEIB/LE4HUBmczO7fDM/0FB+u3i5aJFPrXzVAhk/Amk7JYp0Rdf1LZ+JWDdGh3QJw516F3TtoSu1Dc3lmnLmm05adtpWy9fku1XzrAWDDlC5GCVWBvwNRub+ZuekzpIJxsYShUsexGFM3Z03AMat/Myz6WX+SZ0ePgJI6JzVl7hEfij2ze2ubjcVST1hC7sO1PR7CTZ1TznRtYEDk5Bx5ca5qhhc40SDJp6bRvjCVqVns5BagP9WEIc3JL5hpuxIApP18BlBBNIeP1G8HQPL3NNex2LCpDJC+iRrmArFHB02xfaiC8fxZrlbT6ahh2LY+3zWfN3v9cW1TrApA2tAEo1oXQ3J/M1PNX6M+32cyGDc85+X2DTJV42kYcMzq1wytGwbp9Xlz1EOm1M3fsG/krH7NRIe5mzp3ze0XuSMq7fUQPrxDFJqF1caB7FvoEFNHe/w507VBJZi76hMAoLCwEIGBgVCr1QgICKjy789VlzhNjgxHE9sXaw7kGN1ENE9dXdK2S05V8UibCHx35Ire654qFfbM7g0Aku81/Jy9sx8yeaEyLK+537My/5Bxx2JTuVYMtz8y2Bcjl+03WvfVgc0xsHW4TY4jqQ67Yh3edTsqA3/vZ2c6np2hH4OmHLY833PVJTh04RYEAbKnVlHymxkef2JN3nJ+b6nzWHe5ub6Ccsps7nvsJT0zX/ScNHywEEvFAACrJ3TWTqqsS25NsNh2AzB6L2D80Gbt/jFVM2bva4Pc+zcDIpkcHRCRNN3kboZNAOZG2KhEOjHP0WkGW3MgR1tbI1WjBEhfqKyl5MZouK7YhUbDQwU83S0W4wymxTD8PM1+NdVnKlddgq2nruK1708aNQXqXtQcdROSy979GGwdbFVF8KbkN9M9/rLyi0Vv/FLnieGgB7FjXs6N84ejl0X74Il9r5xzSyzbvDX7XGwbpJrIDa9NUkGCqf0CGDdZ6m43AJPvtVVQLrrdADakdkGbyDp2vzbIvX+zyYxcmthNTHPhMzfCRmwkGwC0bhik/X/DppONR65UNpPpsGd1u5JOjIbrGja/6NL0pfr8tyzRUWG6+1XDVLNHXD1/o/1sWO3dIz4UH45oA3VJGQJ9aiIq2NdpkrTZux+DrYOtquqEqqTp0JLmL0D+tphrWtF8jiGp7zV3bpnKNq9knxsGUUadySX6Rs7s39So/5NhgJiVX4wbRaWi+2XF3srz27C8ckdUJsbVtdl5KTWFzeBP07HQwhFs9sCAyA05S7OAtczdxEyNsDFVrW+YTVX3AvJMzzhABdl5PBxNc6HZdCzXKNkdUFnjZW6aCA1TQYLoiB7V332JxAIs3fUcPezZnv0YbB1sVXUnVM1nZuUX6/3b3Hvk9IVSsi3m+sCIHV8egEXnp7ls8+b2ueYae/yyWi+57Kx+zZDQMBDrpyTq1WaL9Y0c3iEKj7SJEA0SDIM1oyY3FbBsd5ZoihI5/b9s/YAn1blfEKwfwWZLDIjcjLMMb7QFczcxsZNQBeCNwS3Rp3l90ZFscrKpPtMjTvJC5YzCA30wsHU43v7ptGhAImeaCKl1db/DsPNuhQAMXpyO2f2bGQWeupxhxJlUQGeLG4Otgy0lM8jb4sFHapoPc01Jcp76lU5JIhVkidV0AMDUPo21U34oISfbvFQ5pYL/CgHa2mXD2mypfSUWJIgFa7q5zDxVKozrFmOUlFKsvFU1aMfUYBFnGlzBgMiNONPwRlsw93Qj1mQkAHjt+5Oo6emB4R2iLM6m6gxPM0poL0giF2rDJ0JTmbZNPT32iA816o8lAHrJNKU4OkmbWEAnCMDuP69b/cBQFUPpDT/PVg8+YteM2d8eh+qv7zfXlGTuPFGyb3LVJYgM9jWqXZH6HAD4eNt5fLLtvMn0GHLLZUhqBJxUTagusWuL3GuK6MhZ4e9cZpoyfWFiqg1dVdVcpRllNvjTdKO+Uc6SRsbD/CpUXUg9jR3MvoX0zHzkqkvs8r256hK7fL7mJub51zwWYk83wztEYf2URL2pLjQXI015wgN9kBhX12R+kupgeIco7J39ECb2iNWe+GL7zHC/wsS6ujRNKoYEiE81YvjZuknaui7cjpHL9qPrwu1YcyBH1vYpZXhc9ogP1Wt30DQnWnvcyjlObfl5Ug8+lmyHVNoKw6YkS79L7r7RPSaGfJqOnJvFso5ZTXnTfj6Dz3ZnyiqTVLmGPtjAbDmVzGNo6bVFE6zp0qTk0PT7UXrMaa6BtursL3W9bxNZBwtteC7YGmuI3IhUE5JmqgA5T5JST+5Sr8t5UjVXG2BquZynm+J75UY1F0ryqSidy8ncqKyqZrj/Xh7QAmO7xprcZ4Y1Z2IJ/AxJ5SXyUEFv/iRDjkjSJnZcRgb7mu0YbilbP4Wb+jxbNtEpmZfP0u8yt2/kHhPm+su98/MZPNImwqpyvZjcVHF2bCmWNsnKbeay9TEnp9ZWzvXeWTpQi2FA5ITs1VxgeCJ5wPhpz9TNR+pgN5VfwtyFzNwJJOcEs1W1vDXt6UpGZVUlU5PYmtsupc2C4YE+WDg0QX9uM528JrpB6cQesRiYEG4UaMm5mSs9P8SGTosdl+unJNq1g6mtm1mlPs+WTXRS1wxT93tLvsvUvjE3Y73h7zuwdTje2nTaqIwVgnEGdaXlMvcbhgf6YFa/ZkYjUcXM6t/M4uNBblBhq2NO7oOt3IcZZ+1ywIDIyZhL625tkKSbLdS7hgfmfq8/q7rU053Uwd4srLbkSWDu5mbuBLJVbYGSQMeaCTTljsqqqv4xSvefLcqlO0mp7iS0XRfqJ7j84rdsjO1qnAPJ1nMeSdUEiR2Xd+5VODwrvDW/ge57lWyHue80PCfe+/Ws3ogrXbbeZ+ZmrJc6Hmb3Nw5K7NlXRXcfJjQMFF1Hk2xRBWBEx0g80iZCdD25qiqosMUULo64/lmCAZETkUzrXlKmN3TTmloH3QuI2PQVUhcNqYP9QPYtyZPA3M3N3Alky6p/a/KpmKNkVFZVjvJTsv9sWa7wQB883Obvz1cye7yp4PXoxVtGk+2aC/CU1gQlxtUVPU6qKgmipb+B2Hv3zO5t9niX+52acyJXXYINh8WDIQ9YNqGwqXVNzVgPGM9TqHlIS2gYiKm94/DpzkxUCPbtqyI2VYjY8bV+SiI2Hc/Fst1ZWP37Raw5cNGq86yqAgtrp3CxR2d/e2FA5ESkDryFP5/RG8psaZ8KsdmOVfg7gZqHSjpnh9TB3iHGeAJT3ZNgfLfYyuRgML4omTuBbD06x15PVHJHZVX1KD+5+89w1voKAZj914z1gPTknHL5eXnKDrwB8eB1zYGcyhFgBuuaCpClzidzNUGGx0lVXMStOTak3rtndm8kxtXVdnIV6/en9DtNBf8VUD6hsLl1pWasH9stRvL3Hbw4HQLE5zGzVK66BH9k34RKpUK76L+nPhEL0hf9clZ0Utl6AbXw+W/mcwPJ8dmuTO3oTXsHFrbqcuAKo5wZEDkRqZPfVrUkUiNGdIcZS5E62NtE1hF9ffef1/UudBO7NcLYbjFG7fHmbkyObsKQw7CcGrpzBaVn5ktmlLVXDg65++/ghVtGgYYgAJ9sO4evD1y0KhDQ3PAMgyFzv6NuUKLNOG4m4DR0/JJacn2pmiBDVXURl7q5bzqWa3beOVNP8Ibnoe5vaEkNrLngX8mEwnL2rbljWDTZH/7+vEW/nLV6TizD6X9UABYOrewXJxWkt24QZFRDp6Sm1JTPdmfqNQfau2neVl0OnGkSVykMiJyI2IEnlU3ZkloScyMgBJi+2Esd7IavA/rz41QIwOd7/oeEhgFoHxOs99nmmrKceUSCLqlRWbv/vK7dF2IZZe2dg0PO/pOaznDV7xe1/29JICDWt8pD9XezilxStRKmshDnqkvwzi/GHVtn9m8qWRMk97vLBQGHLtzCwNa2Oxalzs03N53G2z+dNhmMSj3BmwtOLKmBNRf8m0pdIdYcJmddU0kL01ISTM5VaO0N17D2FKg8f03lGvJAZYZ2w+NL6oH3RnEpctUlsvsrLhTpsG3vpnlbdDmoqqzY1mBA5GTEDjzDbMqW1pIYXszELsDmLiBSB7vu62JPQhUCMG31EdGTU86NSTCb2s/xDLdDTkbZqqjxMrd/28cEGwVqYsPnld5cROcvEiqbVZSQyiK9YUoXycBKKohq3SDI6u8GgKmrDqOo9L7Nmil2/3ldsobWXDAq9QQvFZwczL6FYH/lna81TKVkyFWXyG6mvVFUanIqDt3aDaljuEd8qOgEzaa+WwmpPkxSwRBQeW4P+TRd9Dqnu78159jUVYdlBy1Z+cWi2+oB2L1pXuo3kFsT5Qo1/gyInJDhgWdNLYnhwWoqMzNgm4jdVE2U0pPT1JOOM49WyFWX4MdjV4yr8wX9jLLOUO7wwMrh8pq0+h4AZg0wzhuk9Niw1ROhqeZaS75byXGj+W7DGgFztalKmJuEGDAdjEplcBYLTsTyjsnpfG3I1IORbs4psZue0cCOvwIaqeZ2U4GCufkKLZ3HTHN8SOXWMkfqOqc7ClPzO2jWn/PtcbPHk9S1VTOEP1ddgrd+PFVlTVNKa6KcvcafAZGLkFOLYkhODhqlEbucm4mpp11APK+MWIdFU086Si6aVc3URKaajLLOdiEQrZkUmXBSSblt+USo9EIq9d2WHDfDO0TB18sT01Yf0XvdVjcZOdmNlcwUr5kfy6hGGOJ5xzSdr21hzYEcbTCkAjCzX1O9/Ss6sEMAFo98QC9Fg9zaDanaw49HPIB2McrPM71gTQXM7t/MOLcW5AVIpkZSBvuLz/6+Yk82Xh7YXPIzxWr5Z/Vvhmd6xJmdQNlw0mprWVoTZcm9rKowIKqmlGZ3lXOjUZKcy9QFwzCvjFiHxeEdokxONWLJiWhNRmw5y3W3XyoYcrYqYl2aC5VmVFKP+FCLag90KTm+zO1fpRdSOX3b5NbytI8Jtlv/B6kM8pr5wjR9CQ1nm5dzjuvugxvFpZi66rDed9uy5kAs2Fn0y1k80vbv7NBSAzuOXlRjYOsIxR2PpQLfhyVy/Jg6xozKLwBpP53BnP7NkD7nIe0UR7p96zQ8/qrlkts/UKrm6fM9/zMafGJI7JwyN4dat8YhZietVsoVOkkrxYComlI6i7S5A1hugHXwgnFeIuDvpGSG0zRIdVjsER8q2ewBC/o+WZIRW3dGb7k1C1JP+3MHNscAM6OFDDmiSdBUYlBLny7lHF/2Gtpurm+b3Au4LWu7xPrHiH225qZ37HKBaB4yuee45js+22U8l5ctO7XKKY+5QMCSZla5Qbe5Y0zq3H3n5zN4pG0E2sXUwbNfHzZarvksALKPj/BAH0zoHot/GySdrBDkZdM2PKdM1TKqAPx2Pt8mqVt0uUInaaUYEFVTtj5Y5VzsNLU9hjRJycSmaZDqsJidfweJcXVFbxTtok3nPjJkSUZs3Rm9VX99jubrTF1QpPa70mDIEQnMJBOD3inTjnS0R1mUJly0lLXnhKVZzHWDH6nf1dRnj/p8n+ixq3SmeFOj7sSCb6UBuZzymAsEpM55pQGC2Pabe6CLDfET7aBdgcqyCRBEg46PRzygrZFScnyM7RaLz2XOSG+OVN8iDwBdm4Tgt3P5eq+bexCQMy+jK3SSVooBUTVl64PV3MVOqqlMk+xRrAOsqclANZ8rdaNQsm2WZMQWoJOfSeQzTV1Qnu4Wiy/+utBZst8dlcDMZGJQ2KcsliRctJQtzgklzXZiGYx1U2gY7kuxzzZ17CoJHkyNuhML0gAoDsjl7l9zgYBYU6e1fV/kPNCFB/pUTvnxk/SUH2LXwHYxf1/blBwflhyPUkGqWN+i8d0aYWDrMAxenC76WccuF4j2HRPri6QCMKF7LMZ2059ux9k7SSvFgKgas8UTrYa5k1fqgqv79CRmQvdYLNPJ3qqZDFSsyt/SbbMkI7Y5Yk9yhqNnJvaIFZ2vS4pm35tK4AhYnzlailQHVal+XLrTc1jCVMJFQPqCbQ2p48bWzZNiQe07P5+BYcIBSxMhHrtUoE0u+eGINvAw01lfSa4izW9iSRAs57wUu5bM7K/fR0rzZ6uaUqkcQIYdjZ/pEQfo/FaG1zmxPHGGfbuUkOoPJHYsmtsXYp+Vnpkv2Z9z0c9n8UibCL3vkOqLJAD4929Z+HxPlkVpU6Q420hhlSCVlY30FBYWIjAwEGq1GgEBAY4ujl3I7TQtdvL6eXmKDuGXyhJr+F0jOkSha+O6dhuBteZAjlEwZ9iHyNSM3oadXA3fn6su0euwa277xcqnuz/EOmjO7N/UZnPamSqH4Y3KcPg9YJvvT8/Mx8hl+yWXK9l/1jDXf0ys8625i7jUthk2ycjZxs92Z4rWWig9HsTOgchgX5O/ga7VEzrbNEDVXEuOXSoQbZK19pwyZDiAA/h7xJhYSg+poE5bbom+XdYw1YfPkn0h9j5drw5srpcJ3dw5Kfd75ajKbgFy79+sISIA8vrZaG4Cmoui4QE95IEG+O7wFbPVv2LftebARUzr09huNz+lGbF3/3ldspOr2PutGXEhJ4HjzH76gYm9mtGkht9rchRp2OL7zdXMVcWIlaMXb1U22Un0HzO8UMu9iEvVyMzs39Rojitz25fQINDotXJBwMKflDVlStVGyKkdtUdnWU05pfpI2XoUk1gSR6n9Z6rWw1y5raktkboGW7ovNLVxhuevhmEmdDm15bY4L511XjMGRARA+XxIPeJDjQ7o7w5fEe08reS77HkymKva1V1uaroAMdZ02BXtwyToJ3Csyn1muJ+Gd4iCn3cNmw/ZNmw6MWTvEStiNQaAfv8xTROSr5cnooJ9JWdXN+x4KtXEPLxDFB5pE6GoGVvqJmVJvyvD31Z7wzQxZFuTT8iapiEppuZwMzdxtC2+y/B75R7PSs5Huc1Cpj7TmuuL5lq2Yk82Pt/zP6PvMAxGTJ2TSr7XFGcdss+AqBqSSnRoitL5kD56vK3oAX3nXoXZanVrTu6qanNW+j3WdNiV2h+GzYeOHOIqNbLPVLI3OftQN/Dcc/46luzMtLgzuhJy8mVpVAiV086IDQAwnF1dt8bIVFCttCO3uaAFsPx4kEo8qcteowxNzeGmpNbZmu/SMDVCz/A4lnsNU9IsZOozrbm+AJXH0MsDm2NstxhsOpaLNzed1luuG4wYzmaw6VieNpAy971yr5vOOmSfAVE1YyrRoSHDg1fJfEgQLL9BW3pyV1Wbs6XfY+mICzn7w9oLorXEvn/wAxGSyd6U7MPwQB/s/vPvYEgsw7GtSdUWGKZY0CUVi5hqtjIX/Mi9gZgLWqw9HsQST2oY1pjZsmnDVI2EklpnS75L9VeEK0B6/5nK9m/ufFTaLGTuM5V0wDa1Dwa2DsfbP502ee3WPW7bRNbB2G4xotc13e9XkgXe0dczKexULZMzd6rW7diseVrV5aEC9s5+CADMHrxinaalOvOJ9bNRchMz1XFRbF1bdrA09T1d0rYbdWiuis69cvaH3H1mr5o0zfdLzYO3Z3ZvAFD0Wx29eAuDP01X3NlYt0xytlV3PbEyegDYkNoFZ/Jum2wy0AQOUgGE3M7HSgNvsXPAA8Anf017YZNOrhJ9TQzZo4O1WM2Fvb5Ld0i/qc7T5o5jU+ejVAdlc9sj9xw3HNU6u38zPNMzztzmG71XM/1HQoNARdcLw+8HjAeCyOn0XRVD9tmpWsTixYvx7rvvIi8vD23atMEnn3yCjh07OrpYVjE1f41GhQC99mPDUUym+kIA0nl1rM1BoaTpoKranJfvyaqSnDhi5OwPOevYsyZN8/2msj6LJbCT2odS/Xjk7nO52yq2ntSEsW0i66BHfCgOXbiFqasOG13kNTUW1kyObEmnUsOnas2NbGBr6bQWSoj1NREbcWmvDtZyai5s9V2Gta9i5OYusnW/QqnPNAzoDadJSfv5DKBCZeoAGXRr/TQd9KXyDYmVxfD7DZULAg5duIWBreX3aXM0twmI1qxZgxkzZmDp0qXo1KkTPvzwQyQnJ+Ps2bOoV6+eo4tnEXPz12ioAL3OdGLrlwuC9ildLDmbVF6dqjqgq6LNOVddgi/2ZBm97gE4vG1bLrk3WmtrkMz9HnJ+K1P9eOT8tkq2VSzXzoYpXSTnaqu8QfugqPS+aNCkYWm1v6UB/vAOUSi4U4aFf404fOfnMwjyqWnTgFfT18TUiEt7nPOWNKPYs0+htdccWzYLGQb0T3eLFb2Ov/PzGaPcQobEzjtB579S+YZ0yZmQGACmrjqMotL7TjPxtjluExC9//77mDBhAsaOHQsAWLp0KTZt2oTly5dj9uzZDi6dZeQclCoVMKGbcap8MYYja3RrkQQAX/yWjbFdY60qs6Wqos1Zan+O7yE/uaKjyZ1ixdoaJHO/h5zfSmp/a7Kbm9vncoMKsfUqBGDw4nTJ/nUaStM1yD1OLL3ZaqbgMNVvyRZ0H3SqMhuxrSebtoYtrjm22HdiAb3Yg5tmmbmgWs59w9xxZW5CYg0BzjGcXi63CIju3buHgwcPYs6cOdrXPDw8kJSUhIyMDNH3lJaWorS0VPvvwsJCu5dTKXOjJp59qDEe71R5gTBMla9SASqhMs+NZuJVXVK1SI4cFmnvC7NUpmZHBYGWkDvFipKmGimmfg85v5VU9uANU7qITvWidFtNrQfIv1ibqwW1pJbU0puts6asqOrvqqo8Nra45li776QC+pEdI7Hq94t6r8sJquVm5jd1XEkdv2Id/x1931DCw9EFqAr5+fkoLy9H/fr19V6vX78+8vLyRN+TlpaGwMBA7V9kZGRVFFURzUEp9iN6qlR4vFOU9mRMS0monCn+r2ULUxKwd85DWD2hMzakdoGHSv/9Hqq/O8rpfqajm47CA32QGFfXrlX2uvvJcBoRZye2DeamWNGdFsSS75P6Pcz9VqL7e2iCrGBI6v1iQYX2PDE8oGHdtltreIco7JndG6sndMae2b1l1W5obma6nOG8rGq2Po5Nsec1Rw6p33xanyaYM6CZdpmSiXB1zxuR00L7eaaOK7HjVzNaUcnnOBO3GGV25coVNGjQAOnp6UhMTNS+PnPmTOzatQv79xuPBBCrIYqMjHTaUWa6HSGlRnyZ6tEvltYfgFWjyFxVVY18sCepbaiq0XpKWLu/5b7/6MVbRqMwHb3tljA3DY07cMbj2J5M/eaWnj+Go+3k3EOsLaujyB1l5hYB0b179+Dr64t169Zh8ODB2tdHjx6NgoICfP/992Y/w5mH3WvY48ZSHYID0ueMF6yqUl22nedl9fkt5aqK39xW3+FsxycDIgOdOnVCx44d8cknnwAAKioqEBUVhalTp8rqVO0KARGRXM52wapK7rzt1Q1/S5KDeYgMzJgxA6NHj0b79u3RsWNHfPjhhyguLtaOOiNyJ86W/6MqufO2Vzf8LcmW3CYgGj58OK5fv47XXnsNeXl5aNu2LX755RejjtZERETkftymycxabDIjIiJyPXLv324x7J6IiIjIFAZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT23mbrDWpqE3oWFhQ4uCREREcmluW+bm5iDAZFMt2/fBgBERkY6uCRERESk1O3btxEYGCi5nHOZyVRRUYErV66gdu3aUKlUji5OlSssLERkZCQuXrzIudyswP1oPe5D2+B+tA3uR9uw534UBAG3b99GREQEPDykewqxhkgmDw8PNGzY0NHFcLiAgACe9DbA/Wg97kPb4H60De5H27DXfjRVM6TBTtVERETk9hgQERERkdtjQESyeHt7Y968efD29nZ0UVwa96P1uA9tg/vRNrgfbcMZ9iM7VRMREZHbYw0RERERuT0GREREROT2GBARERGR22NARERERG6PARFp7d69G4MGDUJERARUKhW+++47veWCIOC1115DeHg4fHx8kJSUhHPnzjmmsE7M3H4cM2YMVCqV3l+/fv0cU1gnlpaWhg4dOqB27dqoV68eBg8ejLNnz+qtc/fuXaSmpqJu3brw9/fH0KFDcfXqVQeV2DnJ2Y+9evUyOiYnTZrkoBI7pyVLlqB169baxIGJiYn4+eeftct5LJpnbh86+jhkQERaxcXFaNOmDRYvXiy6fNGiRfj444+xdOlS7N+/H35+fkhOTsbdu3eruKTOzdx+BIB+/fohNzdX+7d69eoqLKFr2LVrF1JTU7Fv3z5s2bIFZWVl6Nu3L4qLi7XrPP/88/jhhx+wdu1a7Nq1C1euXEFKSooDS+185OxHAJgwYYLeMblo0SIHldg5NWzYEAsXLsTBgwfxxx9/4KGHHsI//vEPnDx5EgCPRTnM7UPAwcehQCQCgLBhwwbtvysqKoSwsDDh3Xff1b5WUFAgeHt7C6tXr3ZACV2D4X4UBEEYPXq08I9//MMh5XFl165dEwAIu3btEgSh8virWbOmsHbtWu06p0+fFgAIGRkZjiqm0zPcj4IgCD179hSee+45xxXKRdWpU0f4/PPPeSxaQbMPBcHxxyFriEiWrKws5OXlISkpSftaYGAgOnXqhIyMDAeWzDXt3LkT9erVQ9OmTTF58mTcuHHD0UVyemq1GgAQHBwMADh48CDKysr0jslmzZohKiqKx6QJhvtR46uvvkJISAhatWqFOXPm4M6dO44onksoLy/H119/jeLiYiQmJvJYtIDhPtRw5HHIyV1Jlry8PABA/fr19V6vX7++dhnJ069fP6SkpCA2NhaZmZl4+eWX0b9/f2RkZMDT09PRxXNKFRUVmD59Orp27YpWrVoBqDwmvby8EBQUpLcuj0lpYvsRAEaOHIno6GhERETg2LFjmDVrFs6ePYv169c7sLTO5/jx40hMTMTdu3fh7++PDRs2oEWLFjhy5AiPRZmk9iHg+OOQARFRFRsxYoT2/xMSEtC6dWvExcVh586d6NOnjwNL5rxSU1Nx4sQJ7Nmzx9FFcWlS+3HixIna/09ISEB4eDj69OmDzMxMxMXFVXUxnVbTpk1x5MgRqNVqrFu3DqNHj8auXbscXSyXIrUPW7Ro4fDjkE1mJEtYWBgAGI2auHr1qnYZWaZRo0YICQnB+fPnHV0UpzR16lT8+OOP2LFjBxo2bKh9PSwsDPfu3UNBQYHe+jwmxUntRzGdOnUCAB6TBry8vNC4cWO0a9cOaWlpaNOmDT766CMeiwpI7UMxVX0cMiAiWWJjYxEWFoZt27ZpXyssLMT+/fv12n9JuUuXLuHGjRsIDw93dFGciiAImDp1KjZs2IDt27cjNjZWb3m7du1Qs2ZNvWPy7NmzyMnJ4TGpw9x+FHPkyBEA4DFpRkVFBUpLS3ksWkGzD8VU9XHIJjPSKioq0ovEs7KycOTIEQQHByMqKgrTp0/Hm2++iSZNmiA2NhZz585FREQEBg8e7LhCOyFT+zE4OBgLFizA0KFDERYWhszMTMycORONGzdGcnKyA0vtfFJTU7Fq1Sp8//33qF27trYvRmBgIHx8fBAYGIinn34aM2bMQHBwMAICAjBt2jQkJiaic+fODi698zC3HzMzM7Fq1SoMGDAAdevWxbFjx/D888+jR48eaN26tYNL7zzmzJmD/v37IyoqCrdv38aqVauwc+dO/PrrrzwWZTK1D53iOHTY+DZyOjt27BAAGP2NHj1aEITKofdz584V6tevL3h7ewt9+vQRzp4969hCOyFT+/HOnTtC3759hdDQUKFmzZpCdHS0MGHCBCEvL8/RxXY6YvsQgLBixQrtOiUlJcKUKVOEOnXqCL6+vsKQIUOE3NxcxxXaCZnbjzk5OUKPHj2E4OBgwdvbW2jcuLHw0ksvCWq12rEFdzLjxo0ToqOjBS8vLyE0NFTo06ePsHnzZu1yHovmmdqHznAcqgRBEKom9CIiIiJyTuxDRERERG6PARERERG5PQZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQEREsuTl5WHatGlo1KgRvL29ERkZiUGDBunN35Seno4BAwagTp06qFWrFhISEvD++++jvLxcu052djaefvppxMbGwsfHB3FxcZg3bx7u3bun933Lli1DmzZt4O/vj6CgIDzwwANIS0vTLp8/fz5UKhX69etnVNZ3330XKpUKvXr1krVtms9SqVSoUaMGYmJi8Pzzz6OoqEjhXiIiV8W5zIjIrOzsbHTt2hVBQUF49913kZCQgLKyMvz6669ITU3FmTNnsGHDBjz22GMYO3YsduzYgaCgIGzduhUzZ85ERkYGvvnmG6hUKpw5cwYVFRX47LPP0LhxY5w4cQITJkxAcXEx3nvvPQDA8uXLMX36dHz88cfo2bMnSktLcezYMZw4cUKvXOHh4dixYwcuXbqkN4P78uXLERUVpWgbW7Zsia1bt+L+/fvYu3cvxo0bhzt37uCzzz4zWvfevXvw8vKyYE/ajzOWicilVNkkIUTksvr37y80aNBAKCoqMlp269YtoaioSKhbt66QkpJitHzjxo0CAOHrr7+W/PxFixYJsbGx2n//4x//EMaMGWOyTPPmzRPatGkjPPzww8Kbb76pfX3v3r1CSEiIMHnyZKFnz54ytu7vz9I1YcIEISwsTG/5smXLhJiYGEGlUgmCULntTz/9tBASEiLUrl1b6N27t3DkyBHtZxw5ckTo1auX4O/vL9SuXVt48MEHhQMHDgiCIAjZ2dnCww8/LAQFBQm+vr5CixYthE2bNgmCIAgrVqwQAgMD9cqzYcMGQfeSbWmZiEgcm8yIyKSbN2/il19+QWpqKvz8/IyWBwUFYfPmzbhx4wZefPFFo+WDBg1CfHw8Vq9eLfkdarUawcHB2n+HhYVh3759uHDhgtnyjRs3DitXrtT+e/ny5Rg1apTVtSU+Pj56zXjnz5/Ht99+i/Xr1+PIkSMAgEcffRTXrl3Dzz//jIMHD+LBBx9Enz59cPPmTQDAqFGj0LBhQxw4cAAHDx7E7NmzUbNmTQCVs9CXlpZi9+7dOH78ON555x34+/srKqMlZSIicWwyIyKTzp8/D0EQ0KxZM8l1/vzzTwBA8+bNRZc3a9ZMu47Y53/yySfa5jIAmDdvHlJSUhATE4P4+HgkJiZiwIABGDZsGDw89J/jHn74YUyaNAm7d+9Gu3bt8M0332DPnj1Yvny50k3VOnjwIFatWoWHHnpI+9q9e/fwn//8B6GhoQCAPXv24Pfff8e1a9fg7e0NAHjvvffw3XffYd26dZg4cSJycnLw0ksvafddkyZNtJ+Xk5ODoUOHIiEhAQDQqFEjxeW0pExEJI4BERGZJAiCXdYFgMuXL6Nfv3549NFHMWHCBO3r4eHhyMjIwIkTJ7B7926kp6dj9OjR+Pzzz/HLL7/oBUU1a9bEE088gRUrVuB///sf4uPj0bp1a0XlAIDjx4/D398f5eXluHfvHgYOHIh//etf2uXR0dHawAMAjh49iqKiItStW1fvc0pKSpCZmQkAmDFjBsaPH4///ve/SEpKwqOPPoq4uDgAwLPPPovJkydj8+bNSEpKwtChQxWX25IyEZE4BkREZFKTJk20naGlxMfHAwBOnz6NLl26GC0/ffo0WrRooffalStX0Lt3b3Tp0gX//ve/RT+3VatWaNWqFaZMmYJJkyahe/fu2LVrF3r37q233rhx49CpUyecOHEC48aNU7qJAICmTZti48aNqFGjBiIiIoya3AybC4uKihAeHo6dO3cafVZQUBCAytFrI0eOxKZNm/Dzzz9j3rx5+PrrrzFkyBCMHz8eycnJ2LRpEzZv3oy0tDT885//xLRp0+Dh4WEUXJaVlRl9jyVlIiJx7ENERCYFBwcjOTkZixcvRnFxsdHygoIC9O3bF8HBwfjnP/9ptHzjxo04d+4cHn/8ce1rly9fRq9evdCuXTusWLHCqBlMjCagEitDy5Yt0bJlS5w4cQIjR45UsnlaXl5eaNy4MWJiYmT1P3rwwQeRl5eHGjVqoHHjxnp/ISEh2vXi4+Px/PPPY/PmzUhJScGKFSu0yyIjIzFp0iSsX78eL7zwApYtWwYACA0Nxe3bt/W2VdNHyBZlIiJjDIiIyKzFixejvLwcHTt2xLfffotz587h9OnT+Pjjj5GYmAg/Pz989tln+P777zFx4kQcO3YM2dnZ+OKLLzBmzBgMGzYMjz32GIC/g6GoqCi89957uH79OvLy8pCXl6f9vsmTJ+ONN97A3r17ceHCBezbtw9PPfUUQkNDkZiYKFrG7du3Izc3t8pqQpKSkpCYmIjBgwdj8+bNyM7ORnp6Ol555RX88ccfKCkpwdSpU7Fz505cuHABe/fuxYEDB7T9rKZPn45ff/0VWVlZOHToEHbs2KFd1qlTJ/j6+uLll19GZmYmVq1apddx3NIyEZE0NpkRkVmNGjXCoUOH8NZbb+GFF15Abm4uQkND0a5dOyxZsgQAMGzYMOzYsQNvvfUWunfvjrt376JJkyZ45ZVXMH36dKhUKgDAli1bcP78eZw/f14vdxDwdx+kpKQkLF++HEuWLMGNGzcQEhKCxMREbNu2zah/jIbYCDh7UqlU+Omnn/DKK69g7NixuH79OsLCwtCjRw/Ur18fnp6euHHjBp566ilcvXoVISEhSElJwYIFCwAA5eXlSE1NxaVLlxAQEIB+/frhgw8+AFBZK/fll1/ipZdewrJly9CnTx/Mnz/fbKdoc2UiImkqQWkvSCIiIqJqhk1mRERE5PYYEBFRtefv7y/599tvvzm6eETkBNhkRkTV3vnz5yWXNWjQAD4+PlVYGiJyRgyIiIiIyO2xyYyIiIjcHgMiIiIicnsMiIiIiMjtMSAiIiIit8eAiIiIiNweAyIiIiJyewyIiIiIyO0xICIiIiK39/8BsD/kfBQ/TBAAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Import statements\n", + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", + "from idaes.core.surrogate.alamopy import AlamoTrainer, AlamoSurrogate, alamo\n", + "from idaes.core.surrogate.plotting.sm_plotter import (\n", + " surrogate_scatter2D,\n", + " surrogate_parity,\n", + " surrogate_residual,\n", + ")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0CklEQVR4nO3dd3gU1d4H8O8mkJCEkEICBAxJCIQACRFpN6AURSAgiqCCWOhKE9GrCHoVvJYEsXt5kYsSvSpFERBFBZEmTelFihATCBBKKBtSCJDM+wfuumVmd2Z3dmc2+X6eJ88Du7M7Z2bPnPnNqQZBEAQQERER6ZCf1gkgIiIiksJAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREusVAhYjcNn36dBgMBlnbGgwGTJ8+3aPp6datG7p166bb7yMi+RioEFUhn3zyCQwGg/mvRo0aaNSoEYYNG4aTJ09qnTzdiY+Ptzpf9erVw2233YalS5eq8v2lpaWYPn061q1bp8r3EVVHDFSIqqB///vf+Oyzz/Dhhx8iIyMDn3/+Obp27YorV654ZH//+te/UFZW5pHv9rSbb74Zn332GT777DM888wzOHXqFAYMGIAPP/zQ7e8uLS3Fyy+/zECFyA01tE4AEakvIyMD7dq1AwCMGjUKUVFRmDFjBpYvX44HHnhA9f3VqFEDNWr4ZnHSqFEjPPzww+b/P/roo2jatCneeecdjBkzRsOUERHAGhWiauG2224DAOTk5Fi9fujQIdx3332IjIxErVq10K5dOyxfvtxqm2vXruHll19Gs2bNUKtWLdStWxe33norfvrpJ/M2Yn1UysvL8dRTTyE6OhqhoaG4++67ceLECbu0DRs2DPHx8Xavi31ndnY2br/9dtSrVw+BgYFo2bIlZs+erehcONOgQQO0aNECubm5Drc7e/YsRo4cifr166NWrVpIS0vDp59+an4/Ly8P0dHRAICXX37Z3Lzk6f45RFWNbz4CEZEieXl5AICIiAjza7///js6d+6MRo0aYcqUKQgJCcGXX36J/v374+uvv8a9994L4EbAkJmZiVGjRqFDhw4oKirC9u3bsXPnTtx5552S+xw1ahQ+//xzDBkyBJ06dcKaNWvQt29ft45j9uzZaNWqFe6++27UqFED3377LcaNG4fKykqMHz/ere82uXbtGvLz81G3bl3JbcrKytCtWzccPXoUEyZMQEJCAr766isMGzYMly5dwpNPPono6GjMnj0bY8eOxb333osBAwYAAFq3bq1KOomqDYGIqozs7GwBgLB69Wrh3LlzQn5+vrB48WIhOjpaCAwMFPLz883b3nHHHUJqaqpw5coV82uVlZVCp06dhGbNmplfS0tLE/r27etwv9OmTRMsi5Pdu3cLAIRx48ZZbTdkyBABgDBt2jTza0OHDhXi4uKcfqcgCEJpaanddr169RKaNGli9VrXrl2Frl27OkyzIAhCXFyc0LNnT+HcuXPCuXPnhD179giDBw8WAAhPPPGE5Pe9++67AgDh888/N7929epVIT09Xahdu7ZQVFQkCIIgnDt3zu54iUgZNv0QVUE9evRAdHQ0YmNjcd999yEkJATLly/HTTfdBAC4cOEC1qxZgwceeACXL19GYWEhCgsLcf78efTq1QtHjhwxjxIKDw/H77//jiNHjsje//fffw8AmDhxotXrkyZNcuu4goKCzP82Go0oLCxE165d8eeff8JoNLr0natWrUJ0dDSio6ORlpaGr776Co888ghmzJgh+Znvv/8eDRo0wIMPPmh+rWbNmpg4cSKKi4uxfv16l9JCRPbY9ENUBc2aNQtJSUkwGo2YN28eNmzYgMDAQPP7R48ehSAIePHFF/Hiiy+KfsfZs2fRqFEj/Pvf/8Y999yDpKQkpKSkoHfv3njkkUccNmEcO3YMfn5+SExMtHq9efPmbh3Xpk2bMG3aNGzZsgWlpaVW7xmNRoSFhSn+zo4dO+LVV1+FwWBAcHAwWrRogfDwcIefOXbsGJo1awY/P+tnvRYtWpjfJyJ1MFAhqoI6dOhgHvXTv39/3HrrrRgyZAgOHz6M2rVro7KyEgDwzDPPoFevXqLf0bRpUwBAly5dkJOTg2+++QarVq3CRx99hHfeeQcffvghRo0a5XZapSaKq6iosPp/Tk4O7rjjDiQnJ+Ptt99GbGwsAgIC8P333+Odd94xH5NSUVFR6NGjh0ufJSLPY6BCVMX5+/sjMzMT3bt3x3/+8x9MmTIFTZo0AXCjuULOTToyMhLDhw/H8OHDUVxcjC5dumD69OmSgUpcXBwqKyuRk5NjVYty+PBhu20jIiJw6dIlu9dtayW+/fZblJeXY/ny5WjcuLH59bVr1zpNv9ri4uKwd+9eVFZWWtWqHDp0yPw+IB2EEZF87KNCVA1069YNHTp0wLvvvosrV66gXr166NatG+bMmYOCggK77c+dO2f+9/nz563eq127Npo2bYry8nLJ/WVkZAAA3n//favX3333XbttExMTYTQasXfvXvNrBQUFdrPD+vv7AwAEQTC/ZjQakZ2dLZkOT+nTpw9Onz6NRYsWmV+7fv06PvjgA9SuXRtdu3YFAAQHBwOAaCBGRPKwRoWomnj22Wdx//3345NPPsGYMWMwa9Ys3HrrrUhNTcXo0aPRpEkTnDlzBlu2bMGJEyewZ88eAEDLli3RrVs3tG3bFpGRkdi+fTsWL16MCRMmSO7r5ptvxoMPPoj/+7//g9FoRKdOnfDzzz/j6NGjdtsOHjwYzz33HO69915MnDgRpaWlmD17NpKSkrBz507zdj179kRAQAD69euHxx9/HMXFxZg7dy7q1asnGmx50mOPPYY5c+Zg2LBh2LFjB+Lj47F48WJs2rQJ7777LkJDQwHc6PzbsmVLLFq0CElJSYiMjERKSgpSUlK8ml4in6b1sCMiUo9pePK2bdvs3quoqBASExOFxMRE4fr164IgCEJOTo7w6KOPCg0aNBBq1qwpNGrUSLjrrruExYsXmz/36quvCh06dBDCw8OFoKAgITk5WXjttdeEq1evmrcRG0pcVlYmTJw4Uahbt64QEhIi9OvXT8jPzxcdrrtq1SohJSVFCAgIEJo3by58/vnnot+5fPlyoXXr1kKtWrWE+Ph4YcaMGcK8efMEAEJubq55OyXDk50NvZb6vjNnzgjDhw8XoqKihICAACE1NVXIzs62++zmzZuFtm3bCgEBARyqTOQCgyBY1KMSERER6Qj7qBAREZFuMVAhIiIi3WKgQkRERLrFQIWIiIh0i4EKERER6RYDFSIiItItn57wrbKyEqdOnUJoaCinqiYiIvIRgiDg8uXLaNiwod3inrZ8OlA5deoUYmNjtU4GERERuSA/Px833XSTw218OlAxTVOdn5+POnXqaJwaIiIikqOoqAixsbHm+7gjPh2omJp76tSpw0CFiIjIx8jptsHOtERERKRbDFSIiIhItxioEBERkW75dB8VIiK9qaysxNWrV7VOBpGmatasCX9/f1W+i4EKEZFKrl69itzcXFRWVmqdFCLNhYeHo0GDBm7Pc6ZpoFJRUYHp06fj888/x+nTp9GwYUMMGzYM//rXvziBGxH5FEEQUFBQAH9/f8TGxjqdxIqoqhIEAaWlpTh79iwAICYmxq3v0zRQmTFjBmbPno1PP/0UrVq1wvbt2zF8+HCEhYVh4sSJWiaNiEiR69evo7S0FA0bNkRwcLDWySHSVFBQEADg7NmzqFevnlvNQJoGKps3b8Y999yDvn37AgDi4+OxYMEC/Pbbb1omi4hIsYqKCgBAQECAxikh0gdTwH7t2jW3AhVN6yY7deqEn3/+GX/88QcAYM+ePdi4cSMyMjJEty8vL0dRUZHVHxGRnrDZmugGta4FTWtUpkyZgqKiIiQnJ8Pf3x8VFRV47bXX8NBDD4lun5mZiZdfftnLqSQiIiKtaFqj8uWXX+KLL77A/PnzsXPnTnz66ad488038emnn4puP3XqVBiNRvNffn6+l1NMRERE3qRpoPLss89iypQpGDx4MFJTU/HII4/gqaeeQmZmpuj2gYGB5nV9uL4PFRjLsDmnEAXGMq2TQuTzTp8+jSeeeAJNmjRBYGAgYmNj0a9fP/z888/mbTZv3ow+ffogIiICtWrVQmpqKt5++21z/xwAyMvLw8iRI5GQkICgoCAkJiZi2rRpdnPLzJ07F2lpaahduzbCw8PRpk0bq7J/+vTpMBgM6N27t11aZ86cCYPBgG7dusk+vqKiIrzwwgtITk5GrVq10KBBA/To0QNLliyBIAjm7X7//Xc88MADiI6ORmBgIJKSkvDSSy+htLTUvM2FCxfwxBNPoHnz5ggKCkLjxo0xceJEGI1GWWnJy8uDwWAQ/du6davsY+rWrRsmTZoke3tfpWnTT2lpqd0QPn9/f85BQE4t2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIvJJeXl56Ny5M8LDwzFz5kykpqbi2rVrWLlyJcaPH49Dhw5h6dKleOCBBzB8+HCsXbsW4eHhWL16NSZPnowtW7bgyy+/hMFgwKFDh1BZWYk5c+agadOm2L9/P0aPHo2SkhK8+eabAIB58+Zh0qRJeP/999G1a1eUl5dj79692L9/v1W6YmJisHbtWpw4cQI33XST+fV58+ahcWP51/ulS5dw6623wmg04tVXX0X79u1Ro0YNrF+/HpMnT8btt9+O8PBwbN26FT169ECPHj2wYsUK1K9fH7/99hv++c9/4ueff8batWsREBCAU6dO4dSpU3jzzTfRsmVLHDt2DGPGjMGpU6ewePFi2elavXo1WrVqZfVa3bp1ZX9eDkEQUFFRgRo1fHjaNEFDQ4cOFRo1aiR89913Qm5urrBkyRIhKipKmDx5sqzPG41GAYBgNBo9nFLSk1OXSoWEKd8Jcc/9/ddkygrh1KVSrZNG1VhZWZlw4MABoaysTOukKJaRkSE0atRIKC4utnvv4sWLQnFxsVC3bl1hwIABdu8vX75cACAsXLhQ8vvfeOMNISEhwfz/e+65Rxg2bJjDNE2bNk1IS0sT7rrrLuHVV181v75p0yYhKipKGDt2rNC1a1cZRycIY8eOFUJCQoSTJ0/avXf58mXh2rVrQmVlpdCyZUuhXbt2QkVFhdU2u3fvFgwGg5CVlSW5jy+//FIICAgQrl275jQ9ubm5AgBh165dktuYjv9///ufEBcXJ9SpU0cYNGiQUFRUJAjCjfsnAKu/3NxcYe3atQIA4fvvvxduueUWoWbNmsLatWuFK1euCE888YQQHR0tBAYGCp07dxZ+++038/5Mn/vuu++E1NRUITAwUOjYsaOwb98+QRAEobi4WAgNDRW++uorq3QuXbpUCA4ONqfLkqNrQsn9W9Omnw8++AD33Xcfxo0bhxYtWuCZZ57B448/jldeeUXLZJHO5RaWoFKwfq1CEJBXWCr+ASIf481mzQsXLuDHH3/E+PHjERISYvd+eHg4Vq1ahfPnz+OZZ56xe79fv35ISkrCggULJPdhNBoRGRlp/n+DBg2wdetWHDt2zGn6RowYgU8++cT8/3nz5uGhhx6SPQy8srISCxcuxEMPPYSGDRvavV+7dm3UqFEDu3fvxoEDB/D000/b1fSnpaWhR48eTo+xTp06qtZc5OTkYNmyZfjuu+/w3XffYf369cjKygIAvPfee0hPT8fo0aNRUFCAgoICxMbGmj87ZcoUZGVl4eDBg2jdujUmT56Mr7/+Gp9++il27tyJpk2bolevXrhw4YLVPp999lm89dZb2LZtG6Kjo9GvXz9cu3YNISEhGDx4MLKzs622z87Oxn333YfQ0FDVjtuWpoFKaGgo3n33XRw7dgxlZWXIycnBq6++ynkIyKGEqBD42Yx68zcYEB/FSbbI9y3adhyds9ZgyNxf0TlrDRZtO+7R/R09ehSCICA5OVlyG9MUEi1atBB9Pzk52byN2Pd/8MEHePzxx82vTZs2DeHh4YiPj0fz5s0xbNgwfPnll6LN/nfddReKioqwYcMGlJSU4Msvv8SIESNkH19hYSEuXrzo8PgA58fYokULyWMsLCzEK6+8gscee0x2uoAbU3TUrl3b6s9SZWUlPvnkE6SkpOC2227DI488Yu4zFBYWhoCAAAQHB6NBgwZo0KCB1Vwl//73v3HnnXciMTERgYGBmD17NmbOnImMjAy0bNkSc+fORVBQED7++GOrfU6bNg133nknUlNT8emnn+LMmTNYunQpAGDUqFFYuXIlCgoKANyYzO37779X9Hu4gnM8k8+JCQtC5oBU+P81Rt/fYMDrA1IQExakccqI3FNgLDP3vQKASgF4fsl+j9asCILgfCMXtgWAkydPonfv3rj//vsxevRo8+sxMTHYsmUL9u3bhyeffBLXr1/H0KFD0bt3b7tgpWbNmnj44YeRnZ2Nr776CklJSWjdurXH0qx0+6KiIvTt2xctW7bE9OnTFX120aJF2L17t9Wfpfj4eKuaipiYGPO09M60a9fO/O+cnBxcu3YNnTt3Nr9Ws2ZNdOjQAQcPHrT6XHp6uvnfkZGRaN68uXmbDh06oFWrVuaRuZ9//jni4uLQpUsXeQfsIh/uXUPV2aD2jdElKRp5haWIjwpmkEJVgqNmTU/l8WbNmpk7wUpJSkoCABw8eBCdOnWye//gwYNo2bKl1WunTp1C9+7d0alTJ/z3v/8V/d6UlBSkpKRg3LhxGDNmDG677TasX78e3bt3t9puxIgR6NixI/bv36/46T06Ohrh4eEOjw+wPsY2bdrYvX/w4EHzNiaXL19G7969ERoaiqVLl6JmzZqK0hYbG4umTZtKvm/7fQaDQfZgE7FmPDWMGjUKs2bNwpQpU5CdnY3hw4d7fJJD1qiQz4oJC0J6Yl0GKVRlaNGsGRkZiV69emHWrFkoKSmxe//SpUvo2bMnIiMj8dZbb9m9v3z5chw5cgQPPvig+bWTJ0+iW7duaNu2LbKzs2Ut0GgKdMTS0KpVK7Rq1Qr79+/HkCFDlBwe/Pz8MHjwYHzxxRc4deqU3fvFxcW4fv06br75ZiQnJ+Odd96xCwb27NmD1atXWx1jUVERevbsiYCAACxfvhy1atVSlC41BAQEWA0Nl5KYmIiAgABs2rTJ/Nq1a9ewbds2uwDTcnj0xYsX8ccff1g1hz388MM4duwY3n//fRw4cABDhw5V4UgcY6BCRKQTWjVrzpo1CxUVFejQoQO+/vprHDlyBAcPHsT777+P9PR0hISEYM6cOfjmm2/w2GOPYe/evcjLy8PHH3+MYcOG4b777sMDDzwA4O8gpXHjxnjzzTdx7tw5nD59GqdPnzbvb+zYsXjllVewadMmHDt2DFu3bsWjjz6K6Ohoq6YHS2vWrEFBQQHCw8MVH99rr72G2NhYdOzYEf/73/9w4MABHDlyBPPmzUObNm1QXFwMg8GAjz/+GAcOHMDAgQPx22+/4fjx4/jqq6/Qr18/pKenm+csMQUpJSUl+Pjjj1FUVGQ+RjmBg8n58+fNnzP9XblyRfbn4+Pj8euvvyIvLw+FhYWStS0hISEYO3Ysnn32Wfz44484cOAARo8ejdLSUowcOdJq23//+9/4+eefsX//fgwbNgxRUVHo37+/+f2IiAgMGDAAzz77LHr27Gk1bNxjnI4L0jEOTyYivVBzePKpS6XC5qOFXh1yf+rUKWH8+PFCXFycEBAQIDRq1Ei4++67hbVr15q32bBhg9CrVy+hTp06QkBAgNCqVSvhzTffFK5fv27eJjs7227YrOnPZPHixUKfPn2EmJgYISAgQGjYsKEwcOBAYe/eveZtTMNzpTz55JOyhycLgiBcunRJmDJlitCsWTMhICBAqF+/vtCjRw9h6dKlQmVlpXm7vXv3CgMHDhQiIyOFmjVrComJicK//vUvoaSkxLyNaSiv2F9ubq7TtJiGJ4v9LViwQPL433nnHSEuLs78/8OHDwv/+Mc/hKCgILvhyRcvXrT6bFlZmfDEE08IUVFRDocnf/vtt0KrVq2EgIAAoUOHDsKePXvs0v/zzz8LAIQvv/zS4XGqNTzZIAgKew7pSFFREcLCwszDwoiItHLlyhXk5uYiISFBk2YAInesW7cO3bt3x8WLF53WWn322Wd46qmncOrUKYejdB1dE0ru3+xMS0RERE6VlpaioKAAWVlZePzxx702lQj7qBARkU+znYvE8u+XX37xenrGjBkjmZ4xY8Z4PT1qeeONN5CcnIwGDRpg6tSpXtsvm36IiFTAph/tHD16VPK9Ro0aISjIuyMDz549i6KiItH36tSpg3r16nk1PVph0w8RERHgcC4SLdSrV6/aBCPewKYfIiIi0i0GKkREKvLh1nQiVcmdRdcZNv0QEamgZs2aMBgMOHfuHKKjoz0+rTiRXgmCgKtXr+LcuXPw8/Nze3QQAxUiIhX4+/vjpptuwokTJ5CXl6d1cog0FxwcjMaNG8taQsERBipERCqpXbs2mjVrhmvXrmmdFCJN+fv7o0aNGqrULDJQISJSkb+/P/z9/bVOBlGVwc60REREpFsMVIiIiEi3GKgQERGRbjFQISIiIt1ioEJERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt1ioEJERES6xUCFiIiIdIuBChEREemWpoFKfHw8DAaD3d/48eO1TBYRERHpRA0td75t2zZUVFSY/79//37ceeeduP/++zVMFREREemFpoFKdHS01f+zsrKQmJiIrl27apQiIiIi0hPd9FG5evUqPv/8c4wYMQIGg0Hr5BAREZEOaFqjYmnZsmW4dOkShg0bJrlNeXk5ysvLzf8vKiryQsqIiIhIK7qpUfn444+RkZGBhg0bSm6TmZmJsLAw819sbKwXU0hERETeZhAEQdA6EceOHUOTJk2wZMkS3HPPPZLbidWoxMbGwmg0ok6dOt5IKhEREbmpqKgIYWFhsu7fumj6yc7ORr169dC3b1+H2wUGBiIwMNBLqSIiIiKtad70U1lZiezsbAwdOhQ1augibiIiIiKd0DxQWb16NY4fP44RI0ZonRQiIiLSGc2rMHr27AkddJMhIiIiHdK8RoWIiIhICgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREusVAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIRBQYy7A5pxAFxjKtk0JEVK1pvighkd4s2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIiKqllijQmShwFhmDlIAoFIAnl+ynzUrREQaYaBCZCG3sMQcpJhUCALyCku1SRARUTXHQIXIQkJUCPwM1q/5GwyIjwrWJkFERNUcAxUiCzFhQcgckAp/w41oxd9gwOsDUhATFqRxyoiIqid2piWyMah9Y3RJikZeYSnio4IZpBARaYiBCpGImLAgBihERDrAph8iIiLSLQYqREREpFsMVIiIiEi3GKiQbnDaeiIissXOtKQLnLaeiIjEsEaFNMdp64mISAoDFdIcp60nIiIpDFRIc5y2noiIpDBQIc1x2noiIpLCzrSkC5y2noiIxDBQId3gtPVERGSLTT9ERESkWwxUiIiISLc0D1ROnjyJhx9+GHXr1kVQUBBSU1Oxfft2rZNFREREOqBpH5WLFy+ic+fO6N69O3744QdER0fjyJEjiIiI0DJZREREpBOaBiozZsxAbGwssrOzza8lJCRomCIiIiLSE02bfpYvX4527drh/vvvR7169dCmTRvMnTtXcvvy8nIUFRVZ/REREVHVpWmg8ueff2L27Nlo1qwZVq5cibFjx2LixIn49NNPRbfPzMxEWFiY+S82NtbLKSYiIiJvMgiCIDjfzDMCAgLQrl07bN682fzaxIkTsW3bNmzZssVu+/LycpSXl5v/X1RUhNjYWBiNRtSpU8craSYiIiL3FBUVISwsTNb9W9MalZiYGLRs2dLqtRYtWuD48eOi2wcGBqJOnTpWf0RERFR1aRqodO7cGYcPH7Z67Y8//kBcXJxGKSIiIiI90TRQeeqpp7B161a8/vrrOHr0KObPn4///ve/GD9+vJbJIiIiIp3QNFBp3749li5digULFiAlJQWvvPIK3n33XTz00ENaJouIiIh0QtPOtO5S0hmHiIiI9MFnOtMSEREROcJAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREuuVSoFJSUqJ2OoiIiIjsuBSo1K9fHyNGjMDGjRvVTg8RERGRmUuByueff44LFy7g9ttvR1JSErKysnDq1Cm100ZERETVnEuBSv/+/bFs2TKcPHkSY8aMwfz58xEXF4e77roLS5YswfXr19VOJxEREVVDqq2e/MEHH+DZZ5/F1atXERUVhTFjxmDKlCkIDg5W4+tFcfVkIiIi36Pk/l3DnR2dOXMGn376KT755BMcO3YM9913H0aOHIkTJ05gxowZ2Lp1K1atWuXOLoiIiKgacylQWbJkCbKzs7Fy5Uq0bNkS48aNw8MPP4zw8HDzNp06dUKLFi3USicRERFVQy4FKsOHD8fgwYOxadMmtG/fXnSbhg0b4oUXXnArcURERFS9udRHpbS01KN9T+RiHxUiIiLf4/E+KsHBwaioqMDSpUtx8OBBAECLFi3Qv39/1KjhVrcXIiIiIjOXoorff/8d/fr1w5kzZ9C8eXMAwIwZMxAdHY1vv/0WKSkpqiaSiIiIqieX5lEZNWoUUlJScOLECezcuRM7d+5Efn4+Wrdujccee0ztNBIREVE15VKNyu7du7F9+3ZERESYX4uIiMBrr70m2bmWiIiISCmXalSSkpJw5swZu9fPnj2Lpk2bup0oIiIiIsDFQCUzMxMTJ07E4sWLceLECZw4cQKLFy/GpEmTMGPGDBQVFZn/iIiIiFzl0vBkP7+/4xuDwQAAMH2N5f8NBgMqKirUSKcoDk8mIiLyPR4fnrx27VqXEkZERESkhEuBSteuXdVOBxEREZEdl2dnu3TpEj7++GPzhG+tWrXCiBEjEBYWplriiIiIqHpzqTPt9u3bkZiYiHfeeQcXLlzAhQsX8PbbbyMxMRE7d+5UO41ERERUTbnUmfa2225D06ZNMXfuXPOU+devX8eoUaPw559/YsOGDaonVAw70xIREfkeJfdvlwKVoKAg7Nq1C8nJyVavHzhwAO3atUNpaanSr3QJAxUiIiLfo+T+7VLTT506dXD8+HG71/Pz8xEaGurKVxIRERHZcSlQGTRoEEaOHIlFixYhPz8f+fn5WLhwIUaNGoUHH3xQ9vdMnz4dBoPB6s+2loaIiIiqL5dG/bz55pswGAx49NFHcf36dQBAzZo1MXbsWGRlZSn6rlatWmH16tV/J6iGywORiIiIqIpRHBVUVFRg69atmD59OjIzM5GTkwMASExMRHBwsPIE1KiBBg0aKP4cERERVX2Km378/f3Rs2dPXLp0CcHBwUhNTUVqaqpLQQoAHDlyBA0bNkSTJk3w0EMPifZ9MSkvL7daR4hrCREREVVtLvVRSUlJwZ9//un2zjt27IhPPvkEP/74I2bPno3c3FzcdtttuHz5suj2mZmZCAsLM//Fxsa6nQYiIiLSL5eGJ//444+YOnUqXnnlFbRt2xYhISFW77s6VPjSpUuIi4vD22+/jZEjR9q9X15ejvLycvP/i4qKEBsby+HJREREPsTjixL26dMHAHD33XebV0sG3F8xOTw8HElJSTh69Kjo+4GBgQgMDHTpu4mIiMj36Gr15OLiYuTk5OCRRx7xyPcTERGRb3EpUElISEBsbKxVbQpwo0YlPz9f9vc888wz6NevH+Li4nDq1ClMmzYN/v7+iuZiISIioqrL5UCloKAA9erVs3r9woULSEhIkN30c+LECTz44IM4f/48oqOjceutt2Lr1q2Ijo52JVlERERUxbgUqJj6otgqLi5GrVq1ZH/PwoULXdk9ERERVROKApWnn34aAGAwGPDiiy9azZ1SUVGBX3/9FTfffLOqCSSivxUYy5BbWIKEqBDEhAVpnRwiIo9TFKjs2rULwI0alX379iEgIMD8XkBAANLS0vDMM8+om0IiAgAs2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIiLyKEWBimm0z/Dhw/Hee+9x7hIiLykwlpmDFACoFIDnl+xHl6Ro1qwQUZXm0sy02dnZDFKIvCi3sMQcpJhUCALyCku1SRARkZe41Jm2pKQEWVlZ+Pnnn3H27FlUVlZava/G9PpE9LeEqBD4GWAVrPgbDIiPcm2NLSIiX+FSoDJq1CisX78ejzzyCGJiYkRHABGRemLCgpA5IBXPL9mPCkGAv8GA1weksNmHiKo8l9b6CQ8Px4oVK9C5c2dPpEk2JWsFEFUFBcYy5BWWIj4qmEEKEfksj6/1ExERgcjISJcSR0SuiwkLYoBCRNWKS51pX3nlFbz00ksoLWVHPiIiIvIcl2pU3nrrLeTk5KB+/fqIj49HzZo1rd7fuXOnKokjIiKi6s2lQKV///4qJ4OIiIjInkudafWCnWmJiIh8j5L7t6I+Kr/99pvDlZHLy8vx5ZdfKvlKIiIiIkmKApX09HScP3/e/P86depYTe526dIlPPjgg+qljoiIiKo1RYGKbSuRWKuRD7ckERERkc64NDzZEc5SS0RERGpRPVAhIiIiUovi4ckHDhzA6dOnAdxo5jl06BCKi4sBAIWFheqmjoiIiKo1RcOT/fz8YDAYRPuhmF43GAwORwapicOTiYiIfI/H1vrJzc11K2FERERESigKVOLi4hR9+bhx4/Dvf/8bUVFRij5HREREBHi4M+3nn3+OoqIiT+6CiIiIqjCPBiqcU4WIiIjcweHJREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt3yaKDy8MMPcyI2IiIicplLgUplZaXk68ePHzf/f/bs2ZxDhYiIiFymKFApKirCAw88gJCQENSvXx8vvfSS1XT5586dQ0JCguqJJCIioupJ0cy0L774Ivbs2YPPPvsMly5dwquvvoqdO3diyZIlCAgIAMC5U4iIiEg9impUli1bhjlz5uC+++7DqFGjsH37dpw7dw79+vVDeXk5gBuLE7oiKysLBoMBkyZNcunzpI0CYxk25xSiwFimdVKIiKgKUhSonDt3zmq9n6ioKKxevRqXL19Gnz59UFpa6lIitm3bhjlz5qB169YufZ60sWjbcXTOWoMhc39F56w1WLTtuPMPERERKaAoUGncuDEOHjxo9VpoaChWrVqFsrIy3HvvvYoTUFxcjIceeghz585FRESE4s+TNgqMZZi6ZB8q/2rpqxSA55fs99maFdYMERHpk6JApWfPnsjOzrZ7vXbt2li5ciVq1aqlOAHjx49H37590aNHD8WfJe3kFpaYgxSTCkFAXqFrtWpaYs0QEZF+KepM+/LLL+PUqVOi74WGhuKnn37Czp07ZX/fwoULsXPnTmzbtk3W9uXl5ea+MAC4MrOGEqJC4GeAVbDibzAgPipYu0S5QKpmqEtSNGLCgrRNHBERKatRiYiIQKtWrSTfDw0NRdeuXWV9V35+Pp588kl88cUXsmtiMjMzERYWZv6LjY2V9TlSX0xYEDIHpML/r87T/gYDXh+Q4nM396pUM0REVBUZBIXjia9fv4533nkHCxYswB9//AEASEpKwpAhQ/Dkk0+iZs2asr5n2bJluPfee+Hv729+raKiAgaDAX5+figvL7d6DxCvUYmNjYXRaOQMuBopMJYhr7AU8VHBPhekADfS3zlrjV3N0MYp3X3yeIiIfEFRURHCwsJk3b8VBSplZWW48847sWXLFvTo0QMtWrQAABw8eBCrV69G586dsWrVKlk1JJcvX8axY8esXhs+fDiSk5Px3HPPISUlxel3KDlQIimLth3H80v2o0IQzDVDg9o31jpZRERVlpL7t6I+KllZWcjPz8euXbvshhLv2bMHd999N7KysjB9+nSn3xUaGmoXjISEhKBu3bqyghQitQxq3xhdkqJ9umaIiKiqUtRHZeHChXj77bdF5ztJS0vDm2++ifnz56uWOCJviQkLQnpiXQYpREQ6o6hG5dixY+jQoYPk+//4xz+sFiVUat26dS5/loiIiKoeRTUqderUwdmzZyXfP336NEJDQ91OFBERERGgMFDp3r07Xn/9dcn3s7Ky0L17d7cTRURERAQobPqZNm0aOnbsiH/84x94+umnkZycDEEQcPDgQbzzzjs4cOAAtm7d6qm0EhERUTWjKFBp2bIlfvrpJ4wcORKDBw82r5QsCAKSk5OxatUqhxPCERERESmhKFABbnSY/f3337F7926rCd9uvvlmtdNGRERE1ZziQKWoqAi1a9fGzTffbBWcVFZWori4mBOvERERkWoUdaZdunQp2rVrhytXrti9V1ZWhvbt2+Pbb79VLXFERERUvSkKVGbPno3JkycjONh+hdyQkBA899xz+M9//qNa4oiIiKh6UxSo7N+/H926dZN8v0uXLti3b5+7aSIiIiICoDBQuXjxIq5fvy75/rVr13Dx4kW3E0VEREQEKAxU4uPjsX37dsn3t2/fjri4OLcTRURERAQoDFQGDBiAF154AWfOnLF77/Tp0/jXv/6FgQMHqpY4IiIiqt4MgiAIcje+fPky0tPTcfz4cTz88MNo3rw5AODQoUP44osvEBsbi61bt3ptvZ+ioiKEhYXBaDRyWDQREZGPUHL/VjSPSmhoKDZt2oSpU6di0aJF5v4o4eHhePjhh/Haa69xUUIiIiJSjaIaFUuCIKCwsBCCICA6Oto8nb6lTZs2oV27dggMDHQ7oWJYo0JEROR7lNy/FfVRsWQwGBAdHY169eqJBikAkJGRgZMnT7q6CyIiIqrmXA5U5HCxsoaIABQYy7A5pxAFxjKtk0JEpBnFa/0Qkect2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIiLyOo/WqBCRcgXGMnOQAgCVAvD8kv2sWSGiaomBCpHO5BaWmIMUkwpBQF5hqTYJIiLSkEcDFalOtkQkLSEqBH42l46/wYD4KPvFQImIqjp2piXSmZiwIGQOSIX/X4G+v8GA1wekICYsSOOUERF5n0c7016+fNmTX0+kKwXGMuQWliAhKsTtoGJQ+8bokhSNvMJSxEcFM0ghompLUaBy++23y9puzZo1LiWGyFd5YpROTFgQAxQiqvYUBSrr1q1DXFwc+vbti5o1a3oqTUQ+RWqUTpekaAYaRERuUhSozJgxA9nZ2fjqq6/w0EMPYcSIEUhJSfFU2oh8gqNROgxUiIjco6gz7bPPPosDBw5g2bJluHz5Mjp37owOHTrgww8/RFFRkafSSKRrHKVDROQ5Lo36SU9Px9y5c1FQUIDx48dj3rx5aNiwIYMVqpY4SoeIyHPcGvWzc+dOrF+/HgcPHkRKSgr7rVC1xVE6RESeoThQOXXqFD755BN88sknKCoqwsMPP4xff/0VLVu29ET6iHwGR+kQEalPUaDSp08frF27Fj179sTMmTPRt29f1KjBdQ2JiIjIMwyCgulj/fz8EBMTg3r16jmcHn/nzp2qJM6ZoqIihIWFwWg0ok6dOl7ZJxEREblHyf1bUXXItGnT3EqYrdmzZ2P27NnIy8sDALRq1QovvfQSMjIyVN0PERER+SZFNSpq+/bbb+Hv749mzZpBEAR8+umnmDlzJnbt2oVWrVo5/TxrVIiIiHyPkvu3KoHK+vXrUVJSgvT0dERERLj1XZGRkZg5cyZGjhzpdFsGKkRERL7HY00/M2bMQHFxMV555RUAN1ZHzsjIwKpVqwAA9erVw88//yyrNsRWRUUFvvrqK3PAI6a8vBzl5eXm/3PeFiIioqpN0YRvixYtspoyf/HixdiwYQN++eUXFBYWol27dnj55ZcVJWDfvn2oXbs2AgMDMWbMGCxdulRyqHNmZibCwsLMf7GxsYr2RURERL5FUdNPREQENm/ejBYtWgAAhg8fjoqKCvzvf/8DAGzduhX3338/8vPzZSfg6tWrOH78OIxGIxYvXoyPPvoI69evFw1WxGpUYmNj2fRDRETkQzzW9HP9+nUEBgaa/79lyxZMmjTJ/P+GDRuisLBQUWIDAgLQtGlTAEDbtm2xbds2vPfee5gzZ47dtoGBgVb7JyIioqpNUdNPYmIiNmzYAAA4fvw4/vjjD3Tp0sX8/okTJ1C3bl23ElRZWWlVa0JERETVl6IalfHjx2PChAn45ZdfsHXrVqSnp1s10axZswZt2rSR/X1Tp05FRkYGGjdujMuXL2P+/PlYt24dVq5cqSRZREREVEUpClRGjx4Nf39/fPvtt+jSpYvdBHCnTp3CiBEjZH/f2bNn8eijj6KgoABhYWFo3bo1Vq5ciTvvvFNJsoiIiKiK0nTCN3dxHhUiIiLfo+T+raiPChEREZE3KQpUrl27hsmTJ6Np06bo0KED5s2bZ/X+mTNn4O/vr2oCiYiIqPpSFKi89tpr+N///ocxY8agZ8+eePrpp/H4449bbePDLUlERESkM4o6037xxRf46KOPcNdddwEAhg0bhoyMDAwfPtxcu2IwGNRPJREREVVLimpUTp48aTWFftOmTbFu3Tps3rwZjzzyCCoqKlRPIBEREVVfigKVBg0aICcnx+q1Ro0aYe3atdi2bRuGDRumZtqIiIiomlMUqNx+++2YP3++3esNGzbEmjVrkJubq1rCiFxVYCzD5pxCFBjLquX+iYiqEkV9VF588UUcOnRI9L1GjRph/fr1+Omnn1RJGJErFm07jqlL9qFSAPwMQOaAVAxq37ja7J+IqKrhhG9UZRQYy9A5aw0qLXK0v8GAjVO6IyYsqMrvn4jIV3h8wrevvvoKAwYMQEpKClJSUjBgwAAsXrzYpcQSqSW3sMQqSACACkFAXmFptdg/EVFVpChQqaysxKBBgzBo0CAcOHAATZs2RdOmTfH7779j0KBBGDx4MOdRIc0kRIXAz2Z0vL/BgPio4GqxfyKiqkhRoPLee+9h9erVWL58OQ4dOoRly5Zh2bJlOHz4MJYuXYqffvoJ7733nqfSSuRQTFgQMgekwv+vuXz8DQa8PiDFa80uWu/fW9hZmIi8SVEfldatW2PSpEmSKyR//PHHeO+997B3717VEugI+6iQmAJjGfIKSxEfFaxJkKD1/j2JnYWJSA1K7t+KApWgoCAcPnwYjRuLF0zHjh1DcnIyysq886TlS4FKgbEMuYUlSIgKqXI3L6oe2FmYiNSi5P6taHhyUFAQLl26JBmoFBUVoVatWkq+slrgUyhVBY46CzNQISJPUdRHJT09HbNnz5Z8f9asWUhPT3c7UVVJgbHMHKQAQKUAPL9kP9v3yeewszARaUFRoPLCCy/g448/xgMPPIDffvsNRUVFMBqN2Lp1K+6//37MmzcPL7zwgqfS6pM4ZJWqiurSWZiI9EVR00+nTp2waNEiPPbYY/j666+t3ouIiMCCBQvQuXNnVRPo60xPobbt+nwKJS252mdqUPvG6JIUXWU7CxNVN77Qf9KlmWlLS0uxcuVKHDlyBACQlJSEnj17IjjYuzdfX+lMu2jbcTy/ZD8qBMH8FMo+KqQV9pkiIkDbssBjo37WrFmDCRMmYOvWrXZfbDQa0alTJ3z44Ye47bbbXEu5Qr4SqADiQ1Z9IZKlqkWPI3d4HRB5n9ZlgcdG/bz77rsYPXq06JeGhYXh8ccfx9tvv+21QMWXxIQFWf34fKolLeht5A6vAyJt6K0scERRZ9o9e/agd+/eku/37NkTO3bscDtRVR1HApFW9DRyh9cBkXb0VBY4oyhQOXPmDGrWrCn5fo0aNXDu3Dm3E1XVcSSQ79mTfxFzf8nBnvyLWifFLXoaucPrgEg7eioLnFHU9NOoUSPs378fTZs2FX1/7969iImJUSVhVRlHAqnL030c/vnlbny986T5/wNvaYS3HrhZ9f14i15G7vA6INKWXsoCZxTVqPTp0wcvvvgirly5YvdeWVkZpk2bhrvuuku1xFVVvhTJ6t2ibcfROWsNhsz9FZ2z1mDRtuOqfv+e/ItWQQoAfL3zZJWoWUlPrKtpnuN1QKQ9PZQFziga9XPmzBnccsst8Pf3x4QJE9C8eXMAwKFDhzBr1ixUVFRg586dqF+/vscSbMmXRv2IqcqL13mDs17ratS0zP0lB6+tOGT3+ot9W2DkbU0UpZUjW8TxOiCqfjw26qd+/frYvHkzxo4di6lTp8IU4xgMBvTq1QuzZs3yWpBSFdiOBCJlHPVx2PDHOVVGk3SIjxR9vV18hOzv4MgWx3gdEJEjigIVAIiLi8P333+Pixcv4ujRoxAEAc2aNUNEhPyCm6oHT9ciSPVxCA7wEx1N0iUpWnE60mIjMPCWRnZ9VNJi5eV3qZEtrqSFiKg6UhyomERERKB9+/ZqpoWqEG/UIpj6ONjO+ltytULV+QHeeuBmPJoeh+15F9EuPkJ2kAL41lwFRER65HKgQp7ly30avFmLINZrvcBYpvpokrRYZQGKCUe2EBG5R9GoH/IOT49k8TRvz49h22tdT6NJ9JQWIiJfxBoVnakKfRr0UIugp/kB9JQWIiJfo2mNSmZmJtq3b4/Q0FDUq1cP/fv3x+HDh7VMkua0mK2zwFiGzTmFqk1drpdaBD3ND6CntBAR+RJNa1TWr1+P8ePHo3379rh+/Tqef/559OzZEwcOHEBISIiWSdOMt2sjPNXptbrXIvhyHyMiIj1RNOGbp507dw716tXD+vXr0aVLF6fbV4UJ38RuZou2HbcbyeKJeTe0Xua7qpqzIQdZPxyCwHlTiIhEeWzCN08zGo0AgMhI8Um2ysvLUV5ebv5/UVGRV9LlCY5qMrxVG8Ghs+qbsz4HmT/8PZOtL/Yx8ibWPBGRM7oZ9VNZWYlJkyahc+fOSElJEd0mMzMTYWFh5r/Y2Fgvp1Idcpa3l+rToGZ/El9a5tsXFBjLkPWD/XT7XBFYnK+PbiMi79BNoDJ+/Hjs378fCxculNxm6tSpMBqN5r/8/HwvplA9rnaYVbtg10un16oit7AEYu2ofgZoFvyp3VFaLXKCdSIiQCdNPxMmTMB3332HDRs24KabbpLcLjAwEIGBgV5MmWe40mHWU8OWq3unVzWJ/a4A8FxGsibnVc9rDLHZkYjk0rRGRRAETJgwAUuXLsWaNWuQkJCgZXK8xpWaDE8OW+bQWXXY/q5+AKZmJOPxLoleT4veayzY7EhEcmlaozJ+/HjMnz8f33zzDUJDQ3H69GkAQFhYGIKCqvZNU2lNxr4TRrvXWLDrj15qqPReYyG1TpMe0kZE+qJpoDJ79mwAQLdu3axez87OxrBhw7yfIC+Tu7x9gbEMM36076Q5OaO51wt2jtJwTu7v6kl6mB3YRCrPeDuoY94l8k2aBio6msLFIa0LOLGnYwBo3Sjcq+nQc58HsqaXGgtnecZbQR3zLpHv0kVnWj1Tu4BzJejRw9NxVViDqLrRuhlKL3lGL+kgItfoZniyHqndIdHV4cV6GEasxRpE5D4tO0rrJc9IpWPF3gLddC4mImmsUXFAzQ6J7j7Vaf107G6tjtbNZ+R9eqgJlEoHALy64iBe//4gm4GIdI41Kg6oOYRSjadLTz4dO5sYzJ1aHc5AWj3poSZQLB2W9DZsWyt6nRiQCGCNikNqdkjUy9OlGLn9cFyp1WH/gOpN65pA23Ss2FuAV1cctHpPT8O2tcCOxlVTVarFZqDihFoFrV5GYdhSGkgoHaWh9/k8qhK9Fkx6GK5tSkff1jF4/fuDTh8Y9Hou1cYHiaqpqgWfDFRkUKug1cvTpSVPBxJ6rkmqSqpaweQpch4YqtO55INE1VMVg08GKl6ml6dLE08HEnqtSapKqmLB5EmOHhiq27nkg0TVUxWDTwYq1Zw3Agk91iT5CjlNEFWxYPI0qQeG6nYu+SBR9VTF4JOBCnklkNBbTZIvkNsEURULJq1Ux3PJB4mqxZ3gU699swyCr8xjL6KoqAhhYWEwGo2oU6eO1snxKrkZSq8ZjxwrMJahc9YauxvmxindRX/HRduO2xVMVbVfhafxXFJVUGAsUxR8ertvlpL7N2tUfJDcDFWdOgVWNUqbIPhUrB6ey6qluj6sKanF1nvfLAYqPkZuhtJ7xtMLvRZirjRBVMXmNa1+n6p4LqsjX31Y83a+13vfLAYqPkZuhnI142l94/bm/h0VYlqfB3Zy9N2bDOmDrz6saZHv9d43i4GKj5GboVzJeFrfGLy5f0eF2IY/zuniBqnHJghvBXC+dJPROqglcXqvJRCjVb7X+4MRAxUfIzdDKc14Wt8YvL1/qUJs57GLXkmH3JubZROE1jdEbwaSvnKT0Tq4J2l6ryUQo2W+1+ODkQkDFR/kbMIq081MScbT+sbg7f1LFWKVguDxdLhyc3P3huhukOPtQNIXbjJaB/fkmN5rCcRone/12jeLgYqPEstQUjczsYxne+PS+gLx9v6lCrF28ZEeTYcrNzd3b4hqPPV7O5D01k3GnQBO6+CenNNzLYEYvQRXWtfe2mKgUkUouZlJ3bi0vEBcaapy90KSKsQ8eR5cubm5c0NU66lfi0DW0zcZdwM4rYP76sSd612vtQRStA6u9NicyUClipB7M3N049L6ApG7fzUvJLFCzJPnwZWbmzs3RLWe+rV60vPUTUaNAE4vT79VnbdunHqqRXAn37tzHHptzmSgUkXIvZk5u3Fp/fThbP/eupA8dR5cubm5c0NUGuQ4KuS0DmTVpFYAV5XOiR5563rXYy2CK9w9Dr02ZzJQqSLk3sx8vbparxeSEq7c3Fy9ISoJcuQUcloHsmpR8zqoKufEW5Q88at9vYvt21kwpKeaFkfUCOr0en9goFKFyLmZ+Xp1tV4vJKVcubm5ekOUky/0WuXrKVpcB75yw/OkRduOY8rX+yAAMADIGuj4iV/N610qEHcUDOllTiU51Ajq9Hp/YKDiIXqe+tuXq6v1eiHpnbN8URVqqpTy5nWgdtOCLwY9BcYyc5ACAAKAKV/vcxgMq3W9OwrE95002m3vbzAgOMDPp4J3tYI6Pd4fGKioxLLg8IUo3Jerq/V4Ifm6qlJTpZQ3rgO1a6t8tT/F9rwLsImFIQDYkXcRd6VJnwe517uj4E0qEF/w63H8Z+1Ru++a3Ls5Sq5WSAbvpu/UU6Co5kOc3u4PDFRUYFtwCALMF6Teo3BfpbcLydexpkqau7UXatZW+UoTndg5MxgMottKvGzF2fXuLHgTC8QB4P019kEKALS+KRzxUcGiwfvek5fw0EdbdRkoVtWHOAYqbhIrOGxVCILTpwZv8MXqYhNfTruvqKqFnDvUqL1Qs7ZKT010Utek1DlrGxcBA2BVq2IwALfERbidDmfBm20g7ojptxEL3if3bo4ZPxzSdaBYFR/iGKi4SazgEDNx4S6UXL2uWeTtq9XFgG+n3ddUxULOVWrVXqhZWyUV9AQH+GFzTqHXAnmpa9LZOcsamGr3OXfTKzd4MwXiK/YW4NUVB0W/y/a3sQ3elQaKfMBSBwMVN4kVHIa/Hhss87OWkbevVBeL8eW0k3u0LuTVrL1Qq7ZKLOjp36Yh7v2/zV4L5B1dk47OGQDERgZj6bhOKL1a6XatnSl/hAT4y66xigkLQt/WMXj9+4NW2/sB+Hf/VggLqol28ZF2n7FMp9x98QFLPQxU3CT1tBQSWAMT5u+y2larKlo9VRcD2s6jQL5BD4W82h2M1aqtsgx6ggP8zEEK4J1A3tE1KXXO9p6w79eRnljX5TTY5o972zTCsl2nZNVYSQV7L33zu9P8Jrd2zNU1vVj7Io6BigpsC46SqxWKony1SGV0LUd02KZJ6Q3I02ln4aA/eqlF03MHY1PQszmn0GOBvCvliWi/jgx1+3WI5Y9lu05hybh02TU17gR7cmrHlD5gOSsXbX+L6lZuaRqobNiwATNnzsSOHTtQUFCApUuXon///lomSZKzjBETFmQ3LNk2yh/TtQm+23sKHeIjkRbrXgcyW44yulYFrm2anuudjBk/KiuwPJl2PTy1a02PBZ6eatH03sHYU4G8O+WJu/06nJH6vtKrlYpqadwJ9pzVjin5XZwF5mK1R0t3naxW5ZamgUpJSQnS0tIwYsQIDBgwQMukOCTnhuYsyv9sax5mrcsxbz/wlkZ464GbVUmf2L6nLtmH5Aah5oDI2wWuWJpm/HAIlTbbySmwPJF2vTy1a0mvgZre5nTRcwdjTwTycq4NZ9ekq/065FA7f7j6fY6CfCW/i7N+Pba/xdc7T5q3qy7llqaBSkZGBjIyMrRMglNyb2hSmS3/QhliI4Pw/b7TVu99vfMkHk2PU6VmRWzflQJwz6zNmNonGY93SQSgXoEr5ylcNE0i28ktYNS+WejpqV0Leg7U9NzkokdiQYM7NWVyrw2516S7v6ftscj5PiXH70r65AT5ch+wHAVKckaVVodyy6f6qJSXl6O8vNz8/6KiIo/vU+5FKzWh0MSFu5CR0kD0u7fnXVQlUJHaNwBkfn8IEIDHuya6vR9A/lO4ozRZmpzRXJMLTG9P7WqRW0DrPVDTe5OL3lgGDe7UlBUYy3C+uFz1a8PV31PqWBx9nyvHryR9SoJ8ucHcqFsT8NEvuaiE/RBpZ+Wou7U/vsBP6wQokZmZibCwMPNfbGysx/dpuqFZEssYpqjc9oRWCsAP+09DTLt49fqpjLw1wS6dJjN+OIQCY5nb+5C6QMW+23Q+/P+adlIqo7VuFO52ulwRExaE53onm9NVFZ7aF207js5ZazBk7q/onLUGi7YdN79XYCzD5pxC828lN1+7y3a/SsSEBSE9sa5P/ybeJtoM/PU+fLf3lNPfwJR/nliwG4Lw94yxal0bjn5PsXwi1aS9J/+i5PcpKaOUpM+Ss6YaJUzn/L+/5AIG4LHbmmDjlO52/YFM5aiYyb0dP+w5Khd8hU8FKlOnToXRaDT/5efne3yfthnF0UU7qH1jvD+kjd3rlQLQpVmU1WsDb2mkSm2KKRPO/SVXMuquBFy6iGwpvUAHtW+MjVO6Y8Hof2Dp+E6Kbozu3ODkWLTt+I2OvbhRIE/OaK6L/hmuclRAixVUSvK1qzxRQHo6X/g6qSbXCfN3OfwNbPOPAMAgALOGtLG6cXqCVD6RatLuP2uz5HGoGURIkQryTZPuyc2bYtfsxxtz7bYzlaP/6ttC9Hta3xSuaB9yAzc98ammn8DAQAQGBnp9v0qqBdvGRYhWm864rzXOFl3B9ryLaBcfoUqQYpsJAdhNUW3avxpPyq40l5iqPguMZQ6rNy15upOnXaEsAG/8cBh3pzXU/Ond1SpaqQJ657GLktXUnmxe8UQfGL12/tUTR02ujn4DqQAnMiTQo9eEo3widSwCpI/DG026UvOwmIY4GwBMyUh22tzurPnVtizo2zoGr604aFW+Ozs2vTfxyuVTgYqW1Og4FhMWpOqwZLFMKAAY0jEWC3/NdxoQKOVqpzjbG8xjtzbB8FvjJauAPd3JU68Xrys3Ymezc1YKgsNj9dSIFrXP8Z78i5jy9T4u9umE7TVqS+o3UDqcVq3+Do7ySXpiXWQOSLV7GHN0HN7qiO1oHhYBQOYPhwADzAMZxEgFYntPXMLxCyV2ZYEtA2A+Nj3OoaUmTQOV4uJiHD369+qVubm52L17NyIjI9G4sW88KYllEG91BJTKhE/c3gxP3N7MI/tXemxS1ZvDb40X3d4bQYSeLl7LQENpgCZnds528ZGaHKua53jRtuOYsmSfXU2hHoJLtakRBJiu0R15FzFx4S5Zv4HcG7zatVrO8smg9o2R3CAU/Wdtll2T4K3y1xTki83DAtzoG+ioljYmLAjPZSTfGPBg8zlYnBNTPyMY7Bd07JIUrcs5tNSmaaCyfft2dO/e3fz/p59+GgAwdOhQfPLJJxqlSj5nGcTTmcFZJlRr/2LDA+V+t9LAQ+kNzpWCXS8Xr2X+MRhuNEFZcrbYmdzZOb15rJa/hxr7NR2n2IK3aucLb3CULneDANvvvistCCVXr0v+BrbbO7vBe6K2U861mBYbgayByvKSJ8pfR7UWYk3ulcLffQOlfvPCy+WwVQn7LxN9TYDDpl1vPzh7kqaBSrdu3SA4WXJbr/QyD4WnM6GjVVLl3AiUBh5Kggh3CnatL16xfjK2HJ0nJbNzeutYxX6PjVO6u7VfqXkkDABGSNTKOcoXWgYwztLlTnnibBjvzmMXUSkI5gX3pLZ3dIN31A+qb2vxz8g533Lyp9bXq7OH0ikZyTeaeyxIrXFk+ZuLdZ414MaDi+W59vvrDaVNuybeeHD2JPZRcZGe+jl4KhNKFZ6Xyq6Z1+5wFry4UnshtnZSgbFM1jBEJYGilhev1A3YD5DVt0irPgVSCoxldn1IpizZh81Tbndr8TnR1clx4+Fy7i+5+Hhjruwbvu0SF97sjOssv7pTnjj7btvjdmUpC0C6T8WE+btQXH7d7lwqeZCQcy1qdb3KKWse75oIGGAuF+WscSRVBozukoDE6Np2ZSYAu9fUatrVaw2kCQMVF+mpn4OnSBWeWT8cMtcAmIOX0mvmws8AYPRtCRh+a4KsKmUxYgWsZUGnp0DRFVL5x9R0IxWgmcgJAAuMZZi38cbN3NM35x3HLtpVfQt/VU1LPW3LYXucfjZNZHJv+At+PY7/rD2qSQ1ogbEM3+095TC/ulOeKJ2C3dWlLEy/hW3nVgH251IvNc5qkFvWPN4lEXenNXS6xtGKvQXo2zpG9Df3MwDDO98oN8XKTLHX3G1i9YXRdAxUXKSXfg6eJHohwf6Jyhy8/PV/AcB/f8nFRxZPu0qfhpwVdFoEimo+dUjln7TYCNkFh7PZOS1rOADHNwt3j02qCVeNll3L4ywsvoInFuy2et/ZDR8A3l9zFLa8Edha/pa2LPOrO+WJ1HUqdbM0zR0kuHDtDGrfGMEB/g5/A8D3HyQsKSlrbMs5sbz46oqDeP37g8gckOq0j6HtuRJ7zZ1mMV8JKBmoyCBViGvdbuppYoXn5N7NraqNAekpnk2ZPrlBKEquVii6CTor6OTWKIj9bo5uylLveeKpQ2qNFiUFh1jBZe6AKrJPsZuF3EU3HQUy7eIj7ToUGgC0VWn2ZdNxFhjLHN40bPOFI94IbB0FKbb5VU554qh51TIwFQBs+OMcuiRFi56vyRnN8cYPh116yJLT3KBljbPazRjuBJGWc0dZMl3XS8al493BafAzGHBLXIRbnZLV6gOmx4CSgYoTzgpxX++k5IxY4RkeXNM6eLFpi7VUIQjmoYVK5gaRs96IK+t9OPo9HXUcVvOpQ2wUlYkaBYejhcxsz6GcY5MTyMSEBSFrYCqmfr0PlbjxRJ85MFX1a0POTcOUL1bsLcCrKw5Kngd3akCd3QylmnsA4MW+LdCndQwAYHNOIRKiQgD8PTJEqk+Po9+hS1K0VS2JqTlm45TuoudrUPvGVs0USs6DnN9AqxpnTzVjKH0otU1H35QYrNhXYLVNhSCg//9thuDhJhfLKRBsHxh9pQuDQfDVYTe4sShhWFgYjEYj6tSpo/r3FxjL0Dlrjd2PuHFK9yodnMhRYCyzumgXbTtuvkk54uz8WQ3ZBW7MHSDAqoCVkzax323JuHSriZks0wNA8rfOLSzBkLm/2u1nweh/KO4o6qwgVSPPiX0HIL6/zTmFDo9NaXps84Xte2o96Traj+U2tmn3A/DBkDZuPb06+w2dNfdsnNLdqv+VaTZ2R8G8s99Bzu+ods2v3N/AUzXOtvlJL+X1zwdPY9SnO6xqF019qxzdbD2RVrG8KPaAJhbIepqS+zdrVBzwlWoxLdjWBJieOLI35uGjjX+aC3El509svRE/AfiPwhuL1O+2Le+iZHoESA/zU+upQ07thRpPojFhNxZcNHWa9AMwqkuCuZOeJWfHpvQakKphVPtJ17IvhOX/bW9eYueyb+uGivcnd2I+29FPlixHb9jmc5NK4cbkXra1da50zLRtEvNE7Zaz7/RUjbNYfoqNDNa8vP7nl7vx9c6Tdq9XCsBjXRLw8S95NzqFAy51aFZCqunRtkm+S1K029MIeBoDFQc8VS3mreGi3h5uFhMWhOf7tsDwW+NFp5YGlM8N4sp6I1K/W/t48XWYTOmRek+tamy5N313+z7ZLrj4XEay5FTezo5NjWvAE01nYqOZAIgGQ+50NMwtLMG+k0Zz06bYxF6Wv6HY6CfgxueWjEtHWmyE5EymJpUAsjfm4XmLReikOgnL7ZhZlUjlpyXj0jVtxtiTf1E0SDGlY3jnGw8LrpSNrnDUBOytZie1MFBxwBPtrN4YCqb1cDPLpyhH5882mHJ3bhBns6KmxUY4TM9zGclW8yBYvqdGx2l3Rg/I5cqCi46OTY1rwN05Qix/Z6nRTKbZawWL1yyDIaUBSvbGXMz9Jdd+yLXI9pa/oeToJwClV288QztaONDko41/Wq2H5aiTsOlYN07prsqTsd7n1HA02aGWwdpveRdEXzcYYDeaB/D8jNH7Thgdvm87xYTeRvpYYqDihJoje6SeBFwZFaN0H1plQqnzJxVMubreCGD/NC1WaDtKj+VT8+TezUUnsXP3HMpdQdpVrgYFjo7Ncu0YGG6sEK6Eq7Uytr+zKZAUu79LdeRWWpXuqH+JJdPx2P6GpplfxbZXMjKpUoBkTZtYJ2HLhfz0/iDlLkf5KT2xrmYjMTtI/PYfPdoWd7RoYPe6p1cvn/HjIdH3vNHspDYGKjKo1c4qdRORUwUn9ylHj/1qbM+fo2DK9uIF/h4ZYeoDYPtZqafpjVO6i3Z2dZYeAcAbPx62mmnS1WG7JkpWkHaHp5or3ZnV1ZVaGbHfWWpkGSDeWdHdJioplhPzWd5gTHlhap9kZH3/d0Bl+Ot8STXvOWoGEAuU+7aOwevfH/RIk7SeHnKkOMtPrtSgqVGDlBYbgYG3NLJq/hl4SyPRIMXyWDxxbqWafV7s2wLt4iM83uykNgYqKpGT2aWqfJ1VwSl5yvGF4WZy5kgxVfPL6TDn7tO0khl4lQ7bBZSvIO0OTzRXqnEDU/r0KNpfyUGQYqpVU7uJypZlM6Il27wwJSMZjcKDYDBAsiO4syZSqeDQE7+x1PFbXkd6ahJytTZCrClRzYUg33rgZjyaHofteRfRLj7CLp8o4c75lroP9Gkd4zD/6Ok3tsRARQVyM7ttBpFTBefKBGByCzF3M6Wrn5cTTEnVnCwd10l02ml3nqaVzMBrWWjL/V28XculRpWy5W+rVvqVPD3K6cchNppJyXHL6SNl6TGJkVNieeGNHw9bDTW13Bdgv5qu7W92tuiKef4h03da5i9PNBs4ui712CSktDZCqinR1QBc6pykxToOUOSUm+6eb2f3AbH8o8ff2ISBiptEb6giwwtN5Fb5msi9SVhmfjmFmLuZ0p3PywmmpJ6oV+wrEP0s4PrTtFh6xGbgdXXYrha1XO5UKdsV6L2TZQWWnpwN1JafAVg6rpPdDUHuccvpI2Xr41/yMLxzgt3rzvKC3dxAEJ8zxbImcYrIzMK2+UvtZgOp6/Js0RW7BSf12CTkiNymRLUWgpQidxZoNZrg5NwHhL9+Vb03+zFQcZPUkFrb4YWWnFX5WmYMOTc5R0u2i3E3U3qjKUDq6fajDbnYNPV20Y6y7jxhypmB19Vhu56qqvcEqdqB5zKSJadcn7M+x7zWkydmAxXrPFop/D2KRik5faQcdVhVEoiK9X+yPAapxfzE+th6ownX9jrY8Me5G33obLZTq0bQW00NUg8+tsPNnZ1jU3ovlFxVHOTILTfVrIGVCmZt7xmD28fqrm+jJQYqEuReQAlRIaJzK9gOL5Ti7Ibt7CbnLPOLHcf2vAtuZUpPNAWIdRoceWsC5v6Sa/WZSkBydIO7T5i2n3c2bPfeNtYd5/q3cW0IsJ5I/batG4WLBodzNuQg84e/RxeY8p9aI9liwhx3HnXlRuds8jSpffoBOF9SbreitaNr1NmcKXIW8zPt21vBrek6cBQ0+QEIDvBzeR+OVvb2RPAiFUxO7t0cb/wob80j25oxpUGO3HLT0zWwYveM+b/l222np76NDFREKOkkmVtYggc7xNr90JWC/fBCKbY3SNsL1dFNzlHmF+uMB9zo62FLLFNKFRhy+5g4K2xM22w6Woj/W5tj90Q+4q+hvK72PXFEbmEoFvwUGMuw49hFLLGZ3GnZrlN4pldzh7+lXgMUE0e/rVg+zfrBfgik2pNJSQUCtvl75K0JGHGrfR8SOccIWE+eZtsMZLopTZi/S/SYpK5RZ/1e5CzmJ9XM5WmOOhdXArj3/za7NBJOci6cr/dhz4lLWPBrvuq1c1J5aFD7xrj7ZudrHonVjBkgPUxdjNwAxFHgq0YQJ6fTuDcDYzkYqNiQWz1nG8woja6lOGrGEcs0IQH+ovsODvAT7TsDkUJTLFM6Ctac1SbICfSk5quwPN8AMPo2ZfOOeLqjmqN5NioEATvyLuKuNGWjgrzN0TlS0kyVW1gi+rQNqD+ZlNiwdct1XSoFYO4vufjol1xkDXR8nmPCrJcYsCTWDLQj7yImLtwlq6lTsKlbtT2fBsBu/So5tTPeDlIA50GW2Hlwluf35F8U7X8D3Ah+5v/69wNfpXDjoUqtfhJSwaScBwixm7sA4IPBbVC3dqCsWlIl15YnO7vK6aj+wZA2Li014SkMVGzIqZ4TC2YMhhvr0rgzkZfSCeFMGdc2SHl9QApKrlaI9p0RKyFsM6Wc5qSlu8RrEwA4DfSczVdRIQh2awbJmXfE0x3V5MyzMXHhLpRcvY4uSdG67Jwm5xzJbaaSU+AB4tePK0+FljcUqSYVAc7Ps+USA87SGxMWhMjazssER+dVLMhydG7Fzr9WS2LIGaW489hFRIQ4XwdJrCbFmUoByN6Ui+f7tFTtmFw5f1K1IW3jlS1uqaQJ2LZpXK3yxPZ3teVvMOAWhZM6ehoDFRtyqudEo2vhxuJ5kSGBLhcuSiaEE7tp+hn+Xk+kwFgm6yYilimdBWuO3ne0uJ+zdngTA2AOUgB58454o6OanCpT037fe/Bm3XVOU1LYySnQ7W5kBmBct0T837ocyetHzurRcvuGSeVvJQtfipHTHGO5jdzFJm1rThwdr+X2WtbMORulaDDcaA4T/vq37X3P9FsAsHuokuujDbmiw8K9SUltiJzvUvo5tac4sPxd9568JNlRXi8YqNiQ0z4YEuAvWnBZTuzkSuGiZEI4qV7sppEQolXOsK9QmZzR3C5TOiuYnb3vLNBz9iQu1ufH2UXpqY5qljcSsc+KdaSu+GtSF3fWLVJKzncoLezkfKfYE2JsZLDk9ePsiVvuNWPK32JBh9KFL23ZXhPOblKu3kS8OVTVHZY3VtvA1HL+IkcjlaTOuwHAgx1jsfC3fIf9YVxZF0ptanWIdyWdSvsFAvZz9dgy/a7piXVxd5rzfjpaYqAiQk774L1tGmHZrlMujcSRIreqNa+wVFbGNR1H9sY8zP3lT9GnmdaNwp2mQ2yKakfvO3vykKp6NE3CdHdaQyzcli87mADU6ahmS+xGkjkg1a76WqyPUNt4xwsgOtqH3KdlsdV9HX2HkiBNKl1ihaztE6JUge7ohg44bzK0Zc7fm3Lx0QZ5/ZjkNFeJXROOblKujNIoMJbZzU0yRaQ/ht6WxLA8D4XFV/DEgt1225jKLdvfQmxSxaXjb3QSTrsp3GFThNJ1oTxV6+Rq05GJq+mUKreAG82gtit8A+Jz9QDigZK7x+VpBkFquU8fUFRUhLCwMBiNRtSpU8dj+ykwlll13AOk1/sAbmScIXN/tfueBaP/Ibr2jNj+HE0It2RcOkquVmDfSaNdlZ3YE5lt2i2/y3L2TKl0SEXZjt539lnb47Q9j4u2HRftoe+Iks/IOTap31ys+tsgWBfOpv06O0di+3D0m5g+J7W6r7PvsD1Hk3s3R+pNYVZPYSEB/qL5znISPFenG5c63tzCElWuGTlPhJbnwJac8+/sO+Xk1+/2nsKE+bvsXp8l0l/MlTziiJInekfbOrpG8i+UmRewlHtNm37DvScu2Q0ZdnQuXTlHWvT5UeO3tMznlqPeHLHch546+Cu5f7NGRQZHy4qLFaLujoOXqmr1NxjQv01D803ENGto65vCJQtoyXkZDM6Hn1k+CVv+Xyydjo5BznHacqWaVeozrjxBSP3m2/IuyuqfJOcYXXlalrO6r+2cIJZs26bFnsKkmrOyLFYudqUJwlltllrXjInUzcjqHIjcFN1t85eTX6WeD21fVrNvBKDsid523pDRtyVguMXwb6m0HTp9WXQfcuaMMjdFyBgybKL0OtLqZi2VTsuRgs6YzpHcBTRN+3C11lIvGKjIoDTwULNwcdSZrVKwX1NETtr9IG9eBq2jb1eqI20/4+oxSP3m7eMjnPZPkmJ745QaWu6ov4zcwsl2ThBLpnQ+9NFW83dZfqXY14s1l7jSBGE55Nf0xG1Kk7OJDZU8ATv73V29KTqiJL+2i4+0++0NANrG21+TavaNkHujEps35L+/5OKjjblORzTZDhu33Ifcc6TkXCopn5WeAzl5zt0O4KaRgkomu5PT18rEUT8hy1FbeluI0BIDFRlcCTzUXhguPbGu6JBMZzcLqbQ7WzRre94FXUbfprQZDAaramWpbV09BkfnzZUgVKyP09JdJ0WHliupgXHE0fHKmvTpr0LVNMW20n5DUqRWBZa6ZpQGm64s5OntPB0TFoSsgamY+vU+VOLGw0PmwFS3aiidUVLzIJU/nI1ocqWMksPduX+UTn0vN8+51AH8r9/cxHROL5Vek9206qivlaO5euwGA1iM2nLUoVvrFZUZqMjkSuDhTuEidgF0SYp2qXpcSdqdTWim5fBa23kYDIDDyb3c7Ygodd6U5gWxG+fXNrPa+hmA/z56C4ICathN0W4iVTj54UYnZH8/g9P1aRyNXLNk6muwaFs+5v9248+Av4egqj1XkNQTtyvBphodUL1ROHt7WQUlNQ9SS4MAjs+l1D6CA/ywOafQpfPp7tw/Sqe+N09K5yTPuZI3B7VvjJDAGnb9k5Q2rYoFZ5N7Nzd3AwDs5+qx/YztqC2xfWpdq27CQEUBbz15SV0AG6d0t4rIlUxzLCftzpoWtFz7wXaUBHDjAnM0c6Uaa2ZInTcleUHu/CujPt0h+mRjedO0LWgGt2+MJ+5oam63lloTBxCv1TGNXDP8VXoL+DsI2Zp7wWqYuIAbkxr+Z0gbWU1dcs+FoxufK0GHu7+7ksLZ3YBGST5SY1/PZSSb+yW5Gmw6G2Zvu4Clbb86pSPb3Jn7R+nU91KT0onlOVcD4rZx9s3HrjStyunzY6tLUjTeHZwGP4MBlYJgN2rLcp96GBpvwkBFh5wN4zQ/EhhsP6n+fk08NRGQkjZZsaRVCtJzLJirWi2epkY6mDTOU+TO4Cr2ZCPWTDK5d3Nk/XWzWbjtONJiw8zLLDiaA8i20Fm265TVyDUAVn0NOmWtsUtjJYDIkECX84HSIMKVoMOVploTJYWzN5821djXom3HrTpPT+7dXDQYjgkLkrzepB6ObNP3XO9kNAoPwsXSq3jpm99d7oTtqANqZG3nc4bsOCbS+R3iU9+bF2EUSYdYnnM1IBatDclobv5tTPwAWd8l91q0+40ykh2mX09D4xmo6IizCeXE1u9RM8KV6nj7gRtP0I4oKXylqqL9DM4vZlMVrgDxDoGeJlYw9W/T0FybIfU0tSPvov16TX9VSUsV/FJPWdl/rVJru49teRetRgdZ9jUQG5gip/BUei7EbnxStUhygw5Xm1XkFs7efNpUY19iNQtv/HgYd9/c0C4Yfq53MhpFBNldb1KLI4qlL+uHQzBIBOdKbnZSkyya1l5yNGeIqXbEltTU90pHSLoTEIvlz/Cgmla1OQJu9OdSo5wS+43e+OEwnuudLDnqzdOrOCvBQEUn5EwoJ7Z+j5oRrtSF54nFqVzp8Jg10HqyNcNfBZPUsUs9IVUK4pNrKUm70ip4sYLpmV7NkVdYitKr1zDy0x12n7lYat/xT07BL9bPY+4vuaLpkhodJFUL9FxGstt5zVkQIRbAbpzSXXHQ4UpTrdzC2ZtPm85qWF0dJSIVDGf+tSK2ZX8OR53wpRbsk5qhS+mwc9tJMAXAKuAysSxDAPEp+x1Ny+DKCEl3+hnZ5s8uSdFWyxAIcC0gFcsPUr9/65vCJa8tdwIxtTFQ0QE51fKm6ns1I1yxTO2tDn6uFPSWQ1sNBjit5XHUlCUIwM5jF9G3tfod+2zZjt4yMRVUm3MKRT8XERwg2pZtWaMCOM8DUtX4JmJBoljHu+cykvF4l0SHxyqXVBDhqH+Ws4nf1OgAK6dwLjCW4bu9BXafNf0OanfE3XfCKLqvvScumYeYuzJKxN9gEF1N3cRUS/HB4DYOF9+T27Rp2qfSm51lmXS+pFx0ojwTR2uOAcD7g9vgrjTxBy+p397ZNA6O8rIaa705C37lzFDtKAB3FNB7u8O3FF0EKrNmzcLMmTNx+vRppKWl4YMPPkCHDh20TpbXOJpczLZaXq0I19EN1/R9UhO9iVF6Ubo67XhuYYnsFUudFaBK52R2pQpeTmDjaGVWqWmzLQMIsfWanH2/LbEC0RuFlFjfCFcKazX7izgbQSK1AvDk3s0lh167qsBYhhk/HrJ7fWy3JuahrIBro0ReH5Ai2rHTUqUA1K39d58kqckTxWo9bJuN3ncS8Dhiupk6W2zVzwAUFl9B48hgyWvKESWTRjqi1lpvzspEqVGatvnBnXuHKzWTatM8UFm0aBGefvppfPjhh+jYsSPeffdd9OrVC4cPH0a9evW0Tp5X7Dtp/8QEiFfLqzU/i1qLwwGuXZRKLxx39mE7bwEgPrmWs8JITsc+V/oxODoXUr/3pdJr5g61M344hPCgmk7nb3B0I5EqED1ZSNn+pmO7JcLP4Hz4qC1P9BcRO25HnS0BoFF4kLnvhFrpkKoVDA8OkN2XxpSnpfKS2LpbJo5GjTkqlzb8cc4uP0vVZChhm5dtCQLwxILdTtdjc7YP2+DUk/P4SB2bszQ7G6Vpmx/0UjviCs0DlbfffhujR4/G8OHDAQAffvghVqxYgXnz5mHKlCkap87zCoxlmPGD/ROTiVS1vDuZTM3F4dy5Sci9cNTYh+XCjGKTa7la82HZsc/2c0pqBxydC7E+JzN+VDadvZwbiTcLLrHfdNbaHLvt5KTNW/1FnI2KE2tGcTcdSmdItgzopPK0o7y39+Qlu/XDTDUZzq5By3zqyZvioPaNkdwgFP3/b7NdrajlNSHWfK6Ut+fxUXLenE17ILUoqy8FKCaaBipXr17Fjh07MHXqVPNrfn5+6NGjB7Zs2WK3fXl5OcrLy83/Lyoq8ko6PUnOHBtqF7qOqhi9Mc+FJTkXjhr7eL5vCwy/NV60AHC15sO2Y5/t51xZesGTbdneupHIISffv9q/Fe5oUd9p2rw1OkFywr2/OmiKNaO4mw5H/SacLTngyuy86Yl1cXea/ZICruQ5T94US65WOG26dbQem1xazOMj97w5atLVsuOrJ2gaqBQWFqKiogL169e3er1+/fo4dMi+liEzMxMvv/yyt5LnFXL6D6hd6DqrYvT0PBdKqbUPqQLA1ZoPsY59lp9Ts0+RJU+fD2+Qk+/Lr1XKDkS9MTpBLFAd1SUBwzv/vVCfJ9LhygzJ7gT3YvlCT0NVpdJjS430eXseHyXE9mM5O21VCVIAHTT9KDF16lQ8/fTT5v8XFRUhNjZWwxS5TyyzWc6x4alMLlXIKb3IvHFRenofrtZ8yBmF5YmaC28VhJ7krK8BALRz0vHRkrdqiJztx1PpkAoqpV5XO7DQW57zVrnp6nHrJT9WFQZBar1xL7h69SqCg4OxePFi9O/f3/z60KFDcenSJXzzzTcOP19UVISwsDAYjUbUqVPHw6n1rAJjmVVms/2/1ulRe3tvpEmJRduO2xVGckZruPo5NWidR9RgOobPtuTh+/2nza8PvKUR3nrgZu0SVgV4Im/qLc95q9zU23FXBUru35oGKgDQsWNHdOjQAR988AEAoLKyEo0bN8aECROcdqatSoEKac/VwoiFmDr25F/E9ryLaBcf4XTuCpKHeZP0Ssn9W/Omn6effhpDhw5Fu3bt0KFDB7z77rsoKSkxjwIi8hZX+2z4ak96vUmLZYCiNuZNqgo0D1QGDRqEc+fO4aWXXsLp06dx880348cff7TrYEtERETVj+ZNP+5g0w8REZHvUXL/9vNSmoiIiIgUY6BCREREusVAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLd0nwKfXeYJtUtKirSOCVEREQkl+m+LWdyfJ8OVC5fvgwAiI2N1TglREREpNTly5cRFhbmcBufXuunsrISp06dQmhoKAwGg9bJ8bqioiLExsYiPz+fax25gedRHTyP6uB5VAfPozo8dR4FQcDly5fRsGFD+Pk57oXi0zUqfn5+uOmmm7ROhubq1KnDC1EFPI/q4HlUB8+jOnge1eGJ8+isJsWEnWmJiIhItxioEBERkW4xUPFhgYGBmDZtGgIDA7VOik/jeVQHz6M6eB7VwfOoDj2cR5/uTEtERERVG2tUiIiISLcYqBAREZFuMVAhIiIi3WKgQkRERLrFQMUHbNiwAf369UPDhg1hMBiwbNkyq/cFQcBLL72EmJgYBAUFoUePHjhy5Ig2idUxZ+dx2LBhMBgMVn+9e/fWJrE6lZmZifbt2yM0NBT16tVD//79cfjwYattrly5gvHjx6Nu3bqoXbs2Bg4ciDNnzmiUYn2Scx67detmlx/HjBmjUYr1afbs2WjdurV5MrL09HT88MMP5veZF+Vxdh61zosMVHxASUkJ0tLSMGvWLNH333jjDbz//vv48MMP8euvvyIkJAS9evXClStXvJxSfXN2HgGgd+/eKCgoMP8tWLDAiynUv/Xr12P8+PHYunUrfvrpJ1y7dg09e/ZESUmJeZunnnoK3377Lb766iusX78ep06dwoABAzRMtf7IOY8AMHr0aKv8+MYbb2iUYn266aabkJWVhR07dmD79u24/fbbcc899+D3338HwLwol7PzCGicFwXyKQCEpUuXmv9fWVkpNGjQQJg5c6b5tUuXLgmBgYHCggULNEihb7A9j4IgCEOHDhXuueceTdLjq86ePSsAENavXy8Iwo28V7NmTeGrr74yb3Pw4EEBgLBlyxatkql7tudREASha9euwpNPPqldonxURESE8NFHHzEvusl0HgVB+7zIGhUfl5ubi9OnT6NHjx7m18LCwtCxY0ds2bJFw5T5pnXr1qFevXpo3rw5xo4di/Pnz2udJF0zGo0AgMjISADAjh07cO3aNav8mJycjMaNGzM/OmB7Hk2++OILREVFISUlBVOnTkVpaakWyfMJFRUVWLhwIUpKSpCens686CLb82iiZV706UUJCTh9+jQAoH79+lav169f3/weydO7d28MGDAACQkJyMnJwfPPP4+MjAxs2bIF/v7+WidPdyorKzFp0iR07twZKSkpAG7kx4CAAISHh1tty/woTew8AsCQIUMQFxeHhg0bYu/evXjuuedw+PBhLFmyRMPU6s++ffuQnp6OK1euoHbt2li6dClatmyJ3bt3My8qIHUeAe3zIgMVor8MHjzY/O/U1FS0bt0aiYmJWLduHe644w4NU6ZP48ePx/79+7Fx40atk+LTpM7jY489Zv53amoqYmJicMcddyAnJweJiYneTqZuNW/eHLt374bRaMTixYsxdOhQrF+/Xutk+Ryp89iyZUvN8yKbfnxcgwYNAMCuJ/uZM2fM75FrmjRpgqioKBw9elTrpOjOhAkT8N1332Ht2rW46aabzK83aNAAV69exaVLl6y2Z34UJ3UexXTs2BEAmB9tBAQEoGnTpmjbti0yMzORlpaG9957j3lRIanzKMbbeZGBio9LSEhAgwYN8PPPP5tfKyoqwq+//mrVvkjKnThxAufPn0dMTIzWSdENQRAwYcIELF26FGvWrEFCQoLV+23btkXNmjWt8uPhw4dx/Phx5kcLzs6jmN27dwMA86MTlZWVKC8vZ150k+k8ivF2XmTTjw8oLi62ilxzc3Oxe/duREZGonHjxpg0aRJeffVVNGvWDAkJCXjxxRfRsGFD9O/fX7tE65Cj8xgZGYmXX34ZAwcORIMGDZCTk4PJkyejadOm6NWrl4ap1pfx48dj/vz5+OabbxAaGmpu6w8LC0NQUBDCwsIwcuRIPP3004iMjESdOnXwxBNPID09Hf/4xz80Tr1+ODuPOTk5mD9/Pvr06YO6deti7969eOqpp9ClSxe0bt1a49Trx9SpU5GRkYHGjRvj8uXLmD9/PtatW4eVK1cyLyrg6DzqIi9qNt6IZFu7dq0AwO5v6NChgiDcGKL84osvCvXr1xcCAwOFO+64Qzh8+LC2idYhR+extLRU6NmzpxAdHS3UrFlTiIuLE0aPHi2cPn1a62Tritj5AyBkZ2ebtykrKxPGjRsnRERECMHBwcK9994rFBQUaJdoHXJ2Ho8fPy506dJFiIyMFAIDA4WmTZsKzz77rGA0GrVNuM6MGDFCiIuLEwICAoTo6GjhjjvuEFatWmV+n3lRHkfnUQ950SAIguCdkIiIiIhIGfZRISIiIt1ioEJERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQIfJxp0+fxhNPPIEmTZogMDAQsbGx6Nevn9UaJ5s3b0afPn0QERGBWrVqITU1FW+//TYqKirM2+Tl5WHkyJFISEhAUFAQEhMTMW3aNFy9etVqf3PnzkVaWhpq166N8PBwtGnTBpmZmeb3p0+fDoPBgN69e9uldebMmTAYDOjWrZusYzN9l8FgQI0aNRAfH4+nnnoKxcXFCs8SEfkqrvVD5MPy8vLQuXNnhIeHY+bMmUhNTcW1a9ewcuVKjB8/HocOHcLSpUvxwAMPYPjw4Vi7di3Cw8OxevVqTJ48GVu2bMGXX34Jg8GAQ4cOobKyEnPmzEHTpk2xf/9+jB49GiUlJXjzzTcBAPPmzcOkSZPw/vvvo2vXrigvL8fevXuxf/9+q3TFxMRg7dq1OHHihNWqwPPmzUPjxo0VHWOrVq2wevVqXL9+HZs2bcKIESNQWlqKOXPm2G179epVBAQEuHAmPUePaSLyKV6brJ+IVJeRkSE0atRIKC4utnvv4sWLQnFxsVC3bl1hwIABdu8vX75cACAsXLhQ8vvfeOMNISEhwfz/e+65Rxg2bJjDNE2bNk1IS0sT7rrrLuHVV181v75p0yYhKipKGDt2rNC1a1cZR/f3d1kaPXq00KBBA6v3586dK8THxwsGg0EQhBvHPnLkSCEqKkoIDQ0VunfvLuzevdv8Hbt37xa6desm1K5dWwgNDRVuueUWYdu2bYIgCEJeXp5w1113CeHh4UJwcLDQsmVLYcWKFYIgCEJ2drYQFhZmlZ6lS5cKlkWpq2kiInFs+iHyURcuXMCPP/6I8ePHIyQkxO798PBwrFq1CufPn8czzzxj936/fv2QlJSEBQsWSO7DaDQiMjLS/P8GDRpg69atOHbsmNP0jRgxAp988on5//PmzcNDDz3kdu1CUFCQVXPU0aNH8fXXX2PJkiXm5efvv/9+nD17Fj/88AN27NiBW265BXfccQcuXLgAAHjooYdw0003Ydu2bdixYwemTJmCmjVrArixsnF5eTk2bNiAffv2YcaMGahdu7aiNLqSJiISx6YfIh919OhRCIKA5ORkyW3++OMPAECLFi1E309OTjZvI/b9H3zwgbnZBwCmTZuGAQMGID4+HklJSUhPT0efPn1w3333wc/P+rnnrrvuwpgxY7Bhwwa0bdsWX375JTZu3Ih58+YpPVSzHTt2YP78+bj99tvNr129ehX/+9//EB0dDQDYuHEjfvvtN5w9exaBgYEAgDfffBPLli3D4sWL8dhjj+H48eN49tlnzeeuWbNm5u87fvw4Bg4ciNTUVABAkyZNFKfTlTQRkTgGKkQ+SlCw8LmSbQHg5MmT6N27N+6//36MHj3a/HpMTAy2bNmC/fv3Y8OGDdi8eTOGDh2Kjz76CD/++KNVsFKzZk08/PDDyM7Oxp9//omkpCS0bt1aUToAYN++fahduzYqKipw9epV9O3bF//5z3/M78fFxZkDAgDYs2cPiouLUbduXavvKSsrQ05ODgDg6aefxqhRo/DZZ5+hR48euP/++5GYmAgAmDhxIsaOHYtVq1ahR48eGDhwoOJ0u5ImIhLHQIXIRzVr1szcCVZKUlISAODgwYPo1KmT3fsHDx5Ey5YtrV47deoUunfvjk6dOuG///2v6PempKQgJSUF48aNw5gxY3Dbbbdh/fr16N69u9V2I0aMQMeOHbF//36MGDFC6SECAJo3b47ly5ejRo0aaNiwoV3TkW2zV3FxMWJiYrBu3Tq77woPDwdwYzTRkCFDsGLFCvzwww+YNm0aFi5ciHvvvRejRo1Cr169sGLFCqxatQqZmZl466238MQTT8DPz88u6Lt27ZrdflxJExGJYx8VIh8VGRmJXr16YdasWSgpKbF7/9KlS+jZsyciIyPx1ltv2b2/fPlyHDlyBA8++KD5tZMnT6Jbt25o27YtsrOz7ZpzxJgCHbE0tGrVCq1atcL+/fsxZMgQJYdnFhAQgKZNmyI+Pl5W/5ZbbrkFp0+fRo0aNdC0aVOrv6ioKPN2SUlJeOqpp7Bq1SoMGDAA2dnZ5vdiY2MxZswYLFmyBP/85z8xd+5cAEB0dDQuX75sdaymPihqpImI7DFQIfJhs2bNQkVFBTp06ICvv/4aR44cwcGDB/H+++8jPT0dISEhmDNnDr755hs89thj2Lt3L/Ly8vDxxx9j2LBhuO+++/DAAw8A+DtIady4Md58802cO3cOp0+fxunTp837Gzt2LF555RVs2rQJx44dw9atW/Hoo48iOjoa6enpomlcs2YNCgoKvFZz0KNHD6Snp6N///5YtWoV8vLysHnzZrzwwgvYvn07ysrKMGHCBKxbtw7Hjh3Dpk2bsG3bNnM/nkmTJmHlypXIzc3Fzp07sXbtWvN7HTt2RHBwMJ5//nnk5ORg/vz5Vh2GXU0TEUlj0w+RD2vSpAl27tyJ1157Df/85z9RUFCA6OhotG3bFrNnzwYA3HfffVi7di1ee+013Hbbbbhy5QqaNWuGF154AZMmTYLBYAAA/PTTTzh69CiOHj1qNfcJ8Hcflx49emDevHmYPXs2zp8/j6ioKKSnp+Pnn3+2639hIjYiyZMMBgO+//57vPDCCxg+fDjOnTuHBg0aoEuXLqhfvz78/f1x/vx5PProozhz5gyioqIwYMAAvPzyywCAiooKjB8/HidOnECdOnXQu3dvvPPOOwBu1GJ9/vnnePbZZzF37lzccccdmD59utPOsM7SRETSDILSXnZEREREXsKmHyIiItItBipEpJnatWtL/v3yyy9aJ4+IdIBNP0SkmaNHj0q+16hRIwQFBXkxNUSkRwxUiIiISLfY9ENERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt36f4Yf/NhtfB6xAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.1 Importing Training and Validation Datasets\n", + "\n", + "In this section, we read the dataset from the CSV file located in this directory. 500 data points were simulated for S-CO2 physical properties using REFPROP package. This example is trained on the entire dataset to have cover different ranges of pressure and temperature. The data is separated using an 80/20 split into training and validation data using the IDAES split_training_validation() method.\n", + "\n", + "We rename the column headers because they contained \".\", we change \".\" to \"_\" as ALAMO accepts alphanumerical characters or underscores as the labels for input/output. Further, the input variables are **pressure**, **temperature** , while the output variables are **enth_mol**, **entr_mol**, hence we create two new dataframes for the input and output variables." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACE10lEQVR4nO3deVxU5f4H8M+AgoACIruyiSIqSG4p7qZXXFpMK00z98ols82lMrVFabmt17RN/d1bmllallqaawqau5JLSiAuoKIyyKIgPL8/cKZZzpmNGWaG+bxfL0rmHM4858yZc77nWb6PQgghQEREROTC3OxdACIiIiJ7Y0BERERELo8BEREREbk8BkRERETk8hgQERERkctjQEREREQujwERERERuTwGREREROTyGBARERGRy2NAREROY968eVAoFCatq1AoMG/ePJuWp1evXujVq5fDbo+ITMeAiIjMtnz5cigUCvVPnTp10LhxY4wZMwYXLlywd/EcTnR0tNbxCg4ORvfu3bF27VqrbL+kpATz5s3D9u3brbI9IlfEgIiILPbaa6/hf//7H5YsWYIBAwbgq6++Qs+ePXHz5k2bvN8rr7yC0tJSm2zb1u666y7873//w//+9z+88MILuHjxIoYMGYIlS5ZUe9slJSWYP38+AyKiaqhj7wIQkfMaMGAAOnToAACYMGECAgMD8dZbb2HdunV45JFHrP5+derUQZ06znnZaty4MR577DH1748//jiaNWuG999/H0899ZQdS0ZEAGuIiMiKunfvDgDIzMzUev3kyZN46KGHEBAQgHr16qFDhw5Yt26d1jrl5eWYP38+mjdvjnr16qFRo0bo1q0bNm/erF5Hqg/RrVu38OyzzyIoKAgNGjTA/fffj/Pnz+uVbcyYMYiOjtZ7XWqby5Ytwz333IPg4GB4enqiVatWWLx4sVnHwpjQ0FC0bNkSWVlZBte7fPkyxo8fj5CQENSrVw9JSUn4v//7P/Xy7OxsBAUFAQDmz5+vbpazdf8potrGOR+1iMghZWdnAwAaNmyofu3PP/9E165d0bhxY8yaNQs+Pj749ttvMXjwYHz//fd48MEHAVQFJgsXLsSECRNw9913o7CwEPv378fBgwfxr3/9S/Y9J0yYgK+++gojRoxAly5dsHXrVgwaNKha+7F48WK0bt0a999/P+rUqYOffvoJkydPRmVlJaZMmVKtbauUl5fj3LlzaNSokew6paWl6NWrF86cOYOpU6ciJiYGq1evxpgxY1BQUIBnnnkGQUFBWLx4MSZNmoQHH3wQQ4YMAQC0adPGKuUkchmCiMhMy5YtEwDEb7/9Jq5cuSLOnTsnvvvuOxEUFCQ8PT3FuXPn1Ov26dNHJCYmips3b6pfq6ysFF26dBHNmzdXv5aUlCQGDRpk8H3nzp0rNC9bhw8fFgDE5MmTtdYbMWKEACDmzp2rfm306NEiKirK6DaFEKKkpERvvZSUFNG0aVOt13r27Cl69uxpsMxCCBEVFSX69esnrly5Iq5cuSKOHDkihg8fLgCIp59+WnZ7H3zwgQAgvvrqK/VrZWVlIjk5WdSvX18UFhYKIYS4cuWK3v4SkXnYZEZEFuvbty+CgoIQERGBhx56CD4+Pli3bh2aNGkCALh27Rq2bt2KRx55BDdu3EB+fj7y8/Nx9epVpKSk4PTp0+pRaf7+/vjzzz9x+vRpk99/w4YNAIBp06ZpvT59+vRq7ZeXl5f630qlEvn5+ejZsyf+/vtvKJVKi7a5adMmBAUFISgoCElJSVi9ejVGjRqFt956S/ZvNmzYgNDQUDz66KPq1+rWrYtp06ahqKgIO3bssKgsRKSPTWZEZLFFixYhLi4OSqUSS5cuxc6dO+Hp6alefubMGQghMGfOHMyZM0dyG5cvX0bjxo3x2muv4YEHHkBcXBwSEhLQv39/jBo1ymDTz9mzZ+Hm5obY2Fit11u0aFGt/dq9ezfmzp2L9PR0lJSUaC1TKpXw8/Mze5udOnXCG2+8AYVCAW9vb7Rs2RL+/v4G/+bs2bNo3rw53Ny0n11btmypXk5E1sGAiIgsdvfdd6tHmQ0ePBjdunXDiBEjcOrUKdSvXx+VlZUAgBdeeAEpKSmS22jWrBkAoEePHsjMzMSPP/6ITZs24YsvvsD777+PJUuWYMKECdUuq1xCx4qKCq3fMzMz0adPH8THx+O9995DREQEPDw8sGHDBrz//vvqfTJXYGAg+vbta9HfEpHtMSAiIqtwd3fHwoUL0bt3b/znP//BrFmz0LRpUwBVzTymBAMBAQEYO3Ysxo4di6KiIvTo0QPz5s2TDYiioqJQWVmJzMxMrVqhU6dO6a3bsGFDFBQU6L2uW8vy008/4datW1i3bh0iIyPVr2/bts1o+a0tKioKR48eRWVlpVYt0cmTJ9XLAflgj4hMxz5ERGQ1vXr1wt13340PPvgAN2/eRHBwMHr16oVPP/0Uubm5eutfuXJF/e+rV69qLatfvz6aNWuGW7duyb7fgAEDAAAfffSR1usffPCB3rqxsbFQKpU4evSo+rXc3Fy9bNHu7u4AACGE+jWlUolly5bJlsNWBg4ciLy8PKxatUr92u3bt/Hxxx+jfv366NmzJwDA29sbACQDPiIyDWuIiMiqXnzxRTz88MNYvnw5nnrqKSxatAjdunVDYmIiJk6ciKZNm+LSpUtIT0/H+fPnceTIEQBAq1at0KtXL7Rv3x4BAQHYv38/vvvuO0ydOlX2ve666y48+uij+OSTT6BUKtGlSxds2bIFZ86c0Vt3+PDhmDlzJh588EFMmzYNJSUlWLx4MeLi4nDw4EH1ev369YOHhwfuu+8+PPnkkygqKsLnn3+O4OBgyaDOlp544gl8+umnGDNmDA4cOIDo6Gh899132L17Nz744AM0aNAAQFUn8FatWmHVqlWIi4tDQEAAEhISkJCQUKPlJXJq9h7mRkTORzXsft++fXrLKioqRGxsrIiNjRW3b98WQgiRmZkpHn/8cREaGirq1q0rGjduLO69917x3Xffqf/ujTfeEHfffbfw9/cXXl5eIj4+Xrz55puirKxMvY7UEPnS0lIxbdo00ahRI+Hj4yPuu+8+ce7cOclh6Js2bRIJCQnCw8NDtGjRQnz11VeS21y3bp1o06aNqFevnoiOjhZvvfWWWLp0qQAgsrKy1OuZM+zeWEoBue1dunRJjB07VgQGBgoPDw+RmJgoli1bpve3aWlpon379sLDw4ND8IksoBBCo16YiIiIyAWxDxERERG5PAZERERE5PIYEBEREZHLY0BERERELo8BEREREbk8uwZECxcuRMeOHdGgQQMEBwdj8ODBehlme/XqBYVCofXz1FNPaa2Tk5ODQYMGwdvbG8HBwXjxxRdx+/ZtrXW2b9+Odu3awdPTE82aNcPy5cttvXtERETkJOyamHHHjh2YMmUKOnbsiNu3b+Oll15Cv379cPz4cfj4+KjXmzhxIl577TX176qsrEDVPESDBg1CaGgo0tLSkJubi8cffxx169bFggULAABZWVkYNGgQnnrqKXz99dfYsmULJkyYgLCwMNn5lXRVVlbi4sWLaNCgAdPkExEROQkhBG7cuIHw8HC9iZJ1V3QYly9fFgDEjh071K/17NlTPPPMM7J/s2HDBuHm5iby8vLUry1evFj4+vqKW7duCSGEmDFjhmjdurXW3w0bNkykpKSYXDZVojf+8Ic//OEPf/jjfD/nzp0zeJ93qKk7lEolgKoJHjV9/fXX+OqrrxAaGor77rsPc+bMUdcSpaenIzExESEhIer1U1JSMGnSJPz5559o27Yt0tPT9SaWTElJwfTp02XLcuvWLa05lMSd/JXnzp2Dr69vtfaTiIiIakZhYSEiIiLUU93IcZiAqLKyEtOnT0fXrl215t8ZMWIEoqKiEB4ejqNHj2LmzJk4deoU1qxZAwDIy8vTCoYAqH/Py8szuE5hYSFKS0vh5eWlV56FCxdi/vz5eq/7+voyICIiInIyxrq7OExANGXKFGRkZGDXrl1arz/xxBPqfycmJiIsLAx9+vRBZmYmYmNjbVae2bNn47nnnlP/roowiYiIqPZxiGH3U6dOxc8//4xt27ahSZMmBtft1KkTAKhnsw4NDcWlS5e01lH9HhoaanAdX19fydohAPD09FTXBrFWiIiIqHaza0AkhMDUqVOxdu1abN26FTExMUb/5vDhwwCAsLAwAEBycjKOHTuGy5cvq9fZvHkzfH190apVK/U6W7Zs0drO5s2bkZycbKU9ISIiImdm19nuJ0+ejBUrVuDHH39EixYt1K/7+fnBy8sLmZmZWLFiBQYOHIhGjRrh6NGjePbZZ9GkSRPs2LEDQNWw+7vuugvh4eF4++23kZeXh1GjRmHChAlaw+4TEhIwZcoUjBs3Dlu3bsW0adOwfv16k4fdFxYWws/PD0qlkrVFRFRjKioqUF5ebu9iEDmsunXrwt3dXXa5qfdvuwZEch2cli1bhjFjxuDcuXN47LHHkJGRgeLiYkRERODBBx/EK6+8orVTZ8+exaRJk7B9+3b4+Phg9OjRSE1NRZ06/3SR2r59O5599lkcP34cTZo0wZw5czBmzBiTy8qAiIhqkhACeXl5KCgosHdRiByev78/QkNDJeMKpwiInAkDIiKqSbm5uSgoKEBwcDC8vb2ZEJZIghACJSUluHz5Mvz9/dXdaTSZev92mFFmRERUpaKiQh0MNWrUyN7FIXJoqsFRly9fRnBwsMHmM0McYpQZERH9Q9VnSHOaIiKSp/quVKe/HQMiIiIHxWYyItNY47vCgIiIiIhcHgMiIiIi0rN9+3YoFIpqj3SMjo7GBx98YJUy2RIDIgeRqyxFWmY+cpWl9i4KEVG15OXl4emnn0bTpk3h6emJiIgI3HfffVoJctPS0jBw4EA0bNgQ9erVQ2JiIt577z1UVFSo18nOzsb48eMRExMDLy8vxMbGYu7cuSgrK9N6v88//xxJSUmoX78+/P390bZtWyxcuFC9fN68eVAoFOjfv79eWd955x0oFAr06tXL5P0rLCzEyy+/jPj4eNSrVw+hoaHo27cv1qxZA82B23/++SceeeQRBAUFwdPTE3FxcXj11VdRUlKiXufatWt4+umn0aJFC3h5eSEyMhLTpk1TT3ZuTHZ2NhQKheTPnj17TN6nXr16GZzw3BVwlJkDWLUvB7PXHEOlANwUwMIhiRjWMdLexSIiMlt2dja6du0Kf39/vPPOO0hMTER5eTl+/fVXTJkyBSdPnsTatWvxyCOPYOzYsdi2bRv8/f3x22+/YcaMGUhPT8e3334LhUKBkydPorKyEp9++imaNWuGjIwMTJw4EcXFxXj33XcBAEuXLsX06dPx0UcfoWfPnrh16xaOHj2KjIwMrXKFhYVh27ZtOH/+vNYUUUuXLkVkpOnX24KCAnTr1g1KpRJvvPEGOnbsiDp16mDHjh2YMWMG7rnnHvj7+2PPnj3o27cv+vbti/Xr1yMkJAR//PEHnn/+eWzZsgXbtm2Dh4cHLl68iIsXL+Ldd99Fq1atcPbsWTz11FO4ePEivvvuO5PL9dtvv6F169Zar3GEopkEmUSpVAoAQqlUWnW7FwtKRMysn0XUzH9+ms5aLy4WlFj1fYjIeZSWlorjx4+L0tJSexfFbAMGDBCNGzcWRUVFesuuX78uioqKRKNGjcSQIUP0lq9bt04AEN98843s9t9++20RExOj/v2BBx4QY8aMMVimuXPniqSkJHHvvfeKN954Q/367t27RWBgoJg0aZLo2bOnCXsnxKRJk4SPj4+4cOGC3rIbN26I8vJyUVlZKVq1aiU6dOggKioqtNY5fPiwUCgUIjU1VfY9vv32W+Hh4SHKy8uNlicrK0sAEIcOHZJdR7X///3vf0VUVJTw9fUVw4YNE4WFhUIIIUaPHi0AaP1kZWWJbdu2CQDit99+E+3btxdeXl4iOTlZnDx5Ur3tM2fOiPvvv18EBwcLHx8f0aFDB7F582at94+KihLvv/+++ncA4pNPPhH9+/cX9erVEzExMWL16tXq5b179xZTpkzR2sbly5dF3bp1xW+//Sa5j4a+M6bev9lkZmdZ+cWo1EmNWSEEsvNLpP+AiMgMNdkcf+3aNfzyyy+YMmUKfHx89Jb7+/tj06ZNuHr1Kl544QW95ffddx/i4uKwcuVK2fdQKpUICAhQ/x4aGoo9e/bg7NmzRss3btw4LF++XP370qVLMXLkSHh4eBj9WwCorKzEN998g5EjRyI8PFxvef369VGnTh0cPnwYx48fx3PPPQc3N+3bbFJSEvr27Wt0H319fbVmW6iuzMxM/PDDD/j555/x888/Y8eOHUhNTQUAfPjhh0hOTsbEiRORm5uL3NxcREREqP/25Zdfxr///W/s378fderUwbhx49TLioqKMHDgQGzZsgWHDh1C//79cd999yEnJ8dgeebMmYOhQ4fiyJEjGDlyJIYPH44TJ04AACZMmIAVK1bg1q1b6vW/+uorNG7cGPfcc4/VjokuBkR2FhPoAzed0YLuCgWiA5l/hIiqZ9W+HHRN3YoRn+9F19StWLXP8E2qus6cOQMhBOLj42XX+euvvwAALVu2lFweHx+vXkdq+x9//DGefPJJ9Wtz586Fv78/oqOj0aJFC4wZMwbffvstKisr9f7+3nvvRWFhIXbu3Ini4mJ8++23Wjd3Y/Lz83H9+nWD+wcY38eWLVvK7mN+fj5ef/11PPHEEyaXCwC6dOmC+vXra/1oqqysxPLly5GQkIDu3btj1KhR6j5dfn5+8PDwgLe3N0JDQxEaGqqV3PDNN99Ez5490apVK8yaNQtpaWm4efMmgKoA78knn0RCQgKaN2+O119/HbGxsVi3bp3B8j788MOYMGEC4uLi8Prrr6NDhw74+OOPAQBDhgwBAPz444/q9ZcvX44xY8bYNBUFAyI7C/PzwsIhiXC/8yG7KxRYMCQBYX5edi4ZETmzXGWpum8iAFQK4KU1GTatKRJmzARlzroAcOHCBfTv3x8PP/wwJk6cqH49LCwM6enpOHbsGJ555hncvn0bo0ePRv/+/fWCorp16+Kxxx7DsmXLsHr1asTFxaFNmzY2K7O56xcWFmLQoEFo1aoV5s2bZ9bfrlq1CocPH9b60RQdHY0GDRqofw8LC8Ply5dN2rbmMVJNjaH626KiIrzwwgto2bIl/P39Ub9+fZw4ccJoDVFycrLe76oaonr16mHUqFFYunQpAODgwYPIyMgwa/5RS7BTtQMY1jESPeKCkJ1fguhAbwZDRFRthprjbXWNad68uboztJy4uDgAwIkTJ9ClSxe95SdOnECrVq20Xrt48SJ69+6NLl264LPPPpPcbkJCAhISEjB58mQ89dRT6N69O3bs2IHevXtrrTdu3Dh06tQJGRkZZtUOAUBQUBD8/f0N7h+gvY9t27bVW37ixAn1Oio3btxA//790aBBA6xduxZ169Y1q2wRERFo1qyZ7HLd7SkUCslaNGN/q6qhUf3tCy+8gM2bN+Pdd99Fs2bN4OXlhYceekhvJKC5JkyYgLvuugvnz5/HsmXLcM899yAqKqpa2zSGNUQOIszPC8mxjRgMEZFV2KM5PiAgACkpKVi0aBGKi4v1lhcUFKBfv34ICAjAv//9b73l69atw+nTp/Hoo4+qX7tw4QJ69eqF9u3bY9myZXp9cqSoAiqpMrRu3RqtW7dGRkYGRowYYc7uwc3NDcOHD8fXX3+Nixcv6i0vKirC7du3cddddyE+Ph7vv/++XtBx5MgR/Pbbb1r7WFhYiH79+sHDwwPr1q1DvXr1zCqXNXh4eGilPDDV7t27MWbMGDz44INITExEaGgosrOzjf6dbkqAPXv2aDUxJiYmokOHDvj888+xYsUKs4NXSzAgIiKqhezVHL9o0SJUVFTg7rvvxvfff4/Tp0/jxIkT+Oijj5CcnAwfHx98+umn+PHHH/HEE0/g6NGjyM7OxpdffokxY8bgoYcewiOPPALgn2AoMjIS7777Lq5cuYK8vDzk5eWp32/SpEl4/fXXsXv3bpw9exZ79uzB448/jqCgIL1mGZWtW7ciNzcX/v7+Zu/fm2++iYiICHTq1An//e9/cfz4cZw+fRpLly5F27ZtUVRUBIVCgS+//BLHjx/H0KFD8ccffyAnJwerV6/Gfffdh+TkZHXOH1UwVFxcjC+//BKFhYXqfTQnQLl69ar671Q/qn4+poiOjsbevXuRnZ2N/Px8k2uPmjdvjjVr1uDw4cM4cuQIRowYYdLfrl69GkuXLsVff/2FuXPn4o8//sDUqVO11pkwYQJSU1MhhMCDDz5o8r5YzOAYNFKz1bB7IiJd1hx2f7GgRKSdya/RVB4XL14UU6ZMEVFRUcLDw0M0btxY3H///WLbtm3qdXbu3ClSUlKEr6+v8PDwEK1btxbvvvuuuH37tnqdZcuW6Q0HV/2ofPfdd2LgwIEiLCxMeHh4iPDwcDF06FBx9OhR9TqqYedynnnmGZOH3QshREFBgZg1a5Zo3ry58PDwECEhIaJv375i7dq1orKyUr3e0aNHxdChQ0VAQICoW7euiI2NFa+88oooLi5Wr6Ma2i71k5WVZbQsqmH3Uj8rV66U3f/3339fREVFqX8/deqU6Ny5s/Dy8tIbdn/9+nX1eocOHdIqW1ZWlujdu7fw8vISERER4j//+Y/o2bOneOaZZ9R/IzXsftGiReJf//qX8PT0FNHR0WLVqlV6+3bjxg3h7e0tJk+ebPQ4WGPYveJO4ciIwsJC+Pn5qYdDEhHZys2bN5GVlYWYmBi7NJ8Q2ZJCocDatWsxePBgg+tlZ2cjNjYW+/btQ7t27Qyua+g7Y+r9m52qiYiIyGGUl5fj6tWreOWVV9C5c2ejwZC1sA8RERHRHbq5fDR/fv/99xovz1NPPSVbnqeeeqrGy1MTdu/ejbCwMOzbtw9LliypsfdlDREREdEduvl7NDVu3LjmCnLHa6+9JpnVG4DTdt8w1lOnV69eZudwsgYGRERERHcYyuVjD8HBwQgODrZ3MVwCm8yIiIjI5TEgIiJyUKbmgiFyddb4rrDJjIjIwXh4eMDNzQ0XL15EUFAQPDw8bDqpJZGzEkKgrKwMV65cgZubGzw8PCzeFgMiIiIH4+bmhpiYGOTm5kpOEUFE2ry9vREZGWnS1C5yGBARETkgDw8PREZG4vbt2xbNMUXkKtzd3VGnTp1q16IyICIiclAKhQJ169Y1e+ZzIjIfO1UTERGRy2NARERERC6PARERERG5PAZERERE5PIYEBEREZHLY0BERERELo8BEREREbk8BkRERETk8hgQERERkctjQEREREQujwERERERuTwGREREROTyGBARERGRy2NARERERC6PARERERG5PAZERERE5PIYEBEREZHLY0BERERELo8BEREREbk8BkRERETk8hgQOYhcZSnSMvORqyy1d1GIiIhcTh17F4CAVftyMHvNMVQKwE0BLBySiGEdI+1dLCIiIpfBGiI7y1WWqoMhAKgUwEtrMlhTREREVIMYENlZVn6xOhhSqRAC2fkl9ikQERGRC2JAZGcxgT5wU2i/5q5QIDrQ2z4FIiIickEMiOwszM8LC4ckwl1RFRW5KxRYMCQBYX5edi4ZERGR62CnagcwrGMkesQFITu/BNGB3gyGiIiIahgDIgcR5ufFQIiIiMhO2GRGRERELo8BEREREbk8BkRERETk8hgQERERkctjQEREREQuz64B0cKFC9GxY0c0aNAAwcHBGDx4ME6dOqW1zs2bNzFlyhQ0atQI9evXx9ChQ3Hp0iWtdXJycjBo0CB4e3sjODgYL774Im7fvq21zvbt29GuXTt4enqiWbNmWL58ua13j4iIiJyEXQOiHTt2YMqUKdizZw82b96M8vJy9OvXD8XFxep1nn32Wfz0009YvXo1duzYgYsXL2LIkCHq5RUVFRg0aBDKysqQlpaG//u//8Py5cvx6quvqtfJysrCoEGD0Lt3bxw+fBjTp0/HhAkT8Ouvv9bo/hIREZFjUgghhPHVasaVK1cQHByMHTt2oEePHlAqlQgKCsKKFSvw0EMPAQBOnjyJli1bIj09HZ07d8bGjRtx77334uLFiwgJCQEALFmyBDNnzsSVK1fg4eGBmTNnYv369cjIyFC/1/Dhw1FQUIBffvnFpLIVFhbCz88PSqUSvr6+1t95IiIisjpT798O1YdIqVQCAAICAgAABw4cQHl5Ofr27ateJz4+HpGRkUhPTwcApKenIzExUR0MAUBKSgoKCwvx559/qtfR3IZqHdU2pNy6dQuFhYVaP0RERFQ7OUxAVFlZienTp6Nr165ISEgAAOTl5cHDwwP+/v5a64aEhCAvL0+9jmYwpFquWmZoncLCQpSWlkqWZ+HChfDz81P/REREVHsfiYiIyDE5TEA0ZcoUZGRk4JtvvrF3UQAAs2fPhlKpVP+cO3fO3kUiIiIiG3GIucymTp2Kn3/+GTt37kSTJk3Ur4eGhqKsrAwFBQVatUSXLl1CaGioep0//vhDa3uqUWia6+iOTLt06RJ8fX3h5SU9f5inpyc8PT2rvW9ERETk+OxaQySEwNSpU7F27Vps3boVMTExWsvbt2+PunXrYsuWLerXTp06hZycHCQnJwMAkpOTcezYMVy+fFm9zubNm+Hr64tWrVqp19Hchmod1TaIiIjItdl1lNnkyZOxYsUK/Pjjj2jRooX6dT8/P3XNzaRJk7BhwwYsX74cvr6+ePrppwEAaWlpAKqG3d91110IDw/H22+/jby8PIwaNQoTJkzAggULAFQNu09ISMCUKVMwbtw4bN26FdOmTcP69euRkpJiUlk5yoyIiMj5mHr/tmtApFAoJF9ftmwZxowZA6AqMePzzz+PlStX4tatW0hJScEnn3yibg4DgLNnz2LSpEnYvn07fHx8MHr0aKSmpqJOnX9aBLdv345nn30Wx48fR5MmTTBnzhz1e5iCAREREZHzcYqAyJkwICIiInI+TpmHiIiIiMgeGBARERGRy2NARERERC6PAZGTyFWWIi0zH7lK6czaREREZDmHSMxIhq3al4PZa46hUgBuCmDhkEQM6xhp72IRERHVGqwhcnC5ylJ1MAQAlQJ4aU0Ga4qIiIisiAGRg8vKL1YHQyoVQiA7v8Q+BSIiIqqFGBA5uJhAH7jp5K90VygQHehtnwIRERHVQgyIHFyYnxcWDkmE+52s3u4KBRYMSUCYn/SktERERGQ+dqp2AsM6RqJHXBCy80sQHejNYIiIiMjKGBA5iTA/LwZCRERENsImMyIiInJ5DIiIiIjI5TEgIiIiIpfHgIiIiIhcHgMiIiIicnkMiIiIiMjlMSAiIiIil8eAiIiIiFweAyIiIiJyeQyIiIiIyOUxICIiIiKXx4CIiIiIXB4DIiIiInJ5DIiIiIjI5TEgIiIiIpfHgIiIiIhcHgMiIiIicnkMiIiIiMjlMSAiIiIil8eAiIiIiFyeRQHRtm3brF0OIiIiIruxKCDq378/YmNj8cYbb+DcuXPWLhMRERFRjbIoILpw4QKmTp2K7777Dk2bNkVKSgq+/fZblJWVWbt8RERERDZnUUAUGBiIZ599FocPH8bevXsRFxeHyZMnIzw8HNOmTcORI0esXU4iIiIim6l2p+p27dph9uzZmDp1KoqKirB06VK0b98e3bt3x59//mmNMhIRERHZlMUBUXl5Ob777jsMHDgQUVFR+PXXX/Gf//wHly5dwpkzZxAVFYWHH37YmmUlIiIisgmFEEKY+0dPP/00Vq5cCSEERo0ahQkTJiAhIUFrnby8PISHh6OystJqhbWnwsJC+Pn5QalUwtfX197FISIiIhOYev+uY8nGjx8/jo8//hhDhgyBp6en5DqBgYEcnk9EREROwaIaIlfEGiIiIiLnY9MaIgA4deoUPv74Y5w4cQIA0LJlSzz99NNo0aKFpZskIiIisguLOlV///33SEhIwIEDB5CUlISkpCQcPHgQCQkJ+P77761dRiIiIiKbsqjJLDY2FiNHjsRrr72m9frcuXPx1VdfITMz02oFdBRsMiMiInI+pt6/Laohys3NxeOPP673+mOPPYbc3FxLNklERERkNxYFRL169cLvv/+u9/quXbvQvXv3ahfKleQqS5GWmY9cZam9i0JEROSyLOpUff/992PmzJk4cOAAOnfuDADYs2cPVq9ejfnz52PdunVa65K0VftyMHvNMVQKwE0BLBySiGEdI+1dLCIiIpdjUR8iNzfTKpYUCgUqKirMLpQjsnYfolxlKbqmbkWlxtF3Vyiwa1ZvhPl5VXv7REREZONh97Ul+7Q9ZeUXawVDAFAhBLLzSxgQERER1bBqT+5KlokJ9IGbQvs1d4UC0YHe9ikQERGRCzO5huijjz4yeaPTpk2zqDCuJMzPCwuHJOKlNRmoEALuCgUWDElg7RAREZEdmNyHKCYmxrQNKhT4+++/q1UoR2SrPES5ylJk55cgOtCbwRAREZGVWb0PUVZWllUKRtrC/LwYCBEREdkZ+xARERGRy7N4ctfz589j3bp1yMnJQVlZmday9957r9oFIyIiIqopFgVEW7Zswf3334+mTZvi5MmTSEhIQHZ2NoQQaNeunbXLSERERGRTFjWZzZ49Gy+88AKOHTuGevXq4fvvv8e5c+fQs2dPPPzww9YuIxEREZFNWRQQnThxQj25a506dVBaWor69evjtddew1tvvWXVAhIRERHZmkUBkY+Pj7rfUFhYGDIzM9XL8vPzrVMyIiIiohpiUR+izp07Y9euXWjZsiUGDhyI559/HseOHcOaNWvUk70SEREROQuLaojee+89dOrUCQAwf/589OnTB6tWrUJ0dDS+/PJLk7ezc+dO3HfffQgPD4dCocAPP/ygtXzMmDFQKBRaP/3799da59q1axg5ciR8fX3h7++P8ePHo6ioSGudo0ePonv37qhXrx4iIiLw9ttvW7LbtUaushRpmfnIVZbauyhEREQOwaIaoqZNm6r/7ePjgyVLllj05sXFxUhKSsK4ceMwZMgQyXX69++PZcuWqX/39PTUWj5y5Ejk5uZi8+bNKC8vx9ixY/HEE09gxYoVAKoyVPbr1w99+/bFkiVLcOzYMYwbNw7+/v544oknLCq3M1u1Lwez1xxDpQDcFMDCIYkY1jHS3sUiIiKyK4vzEAFAWVkZLl++jMrKSq3XIyNNu8EOGDAAAwYMMLiOp6cnQkNDJZedOHECv/zyC/bt24cOHToAAD7++GMMHDgQ7777LsLDw/H111+jrKwMS5cuhYeHB1q3bo3Dhw/jvffec7mAKFdZqg6GAKBSAC+tyUCPuCBmyyYiIpdmUZPZX3/9he7du8PLywtRUVGIiYlBTEwMoqOjTZ7zzFTbt29HcHAwWrRogUmTJuHq1avqZenp6fD391cHQwDQt29fuLm5Ye/evep1evToAQ8PD/U6KSkpOHXqFK5fv27Vsjq6rPxidTCkUiEEsvNL7FMgIiIiB2FRDdHYsWNRp04d/PzzzwgLC4NCobB2uQBUNZcNGTIEMTExyMzMxEsvvYQBAwYgPT0d7u7uyMvLQ3BwsNbf1KlTBwEBAcjLywMA5OXl6QVpISEh6mUNGzaUfO9bt27h1q1b6t8LCwutuWt2ERPoAzcFtIIid4UC0YHe9isUERGRA7AoIDp8+DAOHDiA+Ph4a5dHy/Dhw9X/TkxMRJs2bRAbG4vt27ejT58+Nn3vhQsXYv78+TZ9j5oW5ueFhUMS8dKaDFQIAXeFAguGJLC5jIiIXJ5FAVGrVq3skm+oadOmCAwMxJkzZ9CnTx+Ehobi8uXLWuvcvn0b165dU/c7Cg0NxaVLl7TWUf0u1zcJqMrG/dxzz6l/LywsREREhLV2xW6GdYxEj7ggZOeXIDrQm8EQERERzOhDVFhYqP556623MGPGDGzfvh1Xr17VWmbLpqXz58/j6tWrCAsLAwAkJyejoKAABw4cUK+zdetWVFZWqtMCJCcnY+fOnSgvL1evs3nzZrRo0UK2uQyo6szt6+ur9VNbhPl5ITm2EYMhIiKiOxRCCGF8NcDNzU2rr5AQQq/vkOq1iooKk968qKgIZ86cAQC0bdsW7733Hnr37o2AgAAEBARg/vz5GDp0KEJDQ5GZmYkZM2bgxo0bOHbsmHr4/YABA3Dp0iUsWbJEPey+Q4cO6mH3SqUSLVq0QL9+/TBz5kxkZGRg3LhxeP/9980aZVZYWAg/Pz8olUqHCY5ylaXIyi9GTKCP0eDGnHWJiIhqC1Pv3yYHRDt27DD5zXv27GnSetu3b0fv3r31Xh89ejQWL16MwYMH49ChQygoKEB4eDj69euH119/Xd0pGqhKzDh16lT89NNPcHNzw9ChQ/HRRx+hfv366nWOHj2KKVOmYN++fQgMDMTTTz+NmTNnmrw/gOMFRObkE2LuISIiclVWD4g05eTkICIiQrKG6Ny5cybnIXImjhQQ5SpL0TV1q95osV2zeuvV/pizLhERUW1j6v3bojxEMTExuHLlit7r165ds3oeItJnTj4h5h4iIiIyzqKASKr/EFDVJ6hevXrVLhQZpsonpEkun5A56xIREbkqs4bdq4ahKxQKzJkzB97e/9xUKyoqsHfvXtx1111WLSDpMyefEHMPERERGWdWQHTo0CEAVTVEx44d05oOw8PDA0lJSXjhhResW0KSZE4+IeYeIiIiMsyiTtVjx47Fhx9+aPfOxTXJkTpVExERkWlMvX9blKl62bJlFheMiIiIyNFYFBAVFxcjNTUVW7ZsweXLl1FZWam1/O+//7ZK4YiIiIhqgkUB0YQJE7Bjxw6MGjXKprPdExEREdUEiwKijRs3Yv369ejatau1y0Mm4DQcRERE1mVRQNSwYUMEBARYuyxkAk7DQUREZH0WJWZ8/fXX8eqrr6KkhNmOa1KuslQdDAFApQBeWpOBXGWpfQtGRETk5CyqIfr3v/+NzMxMhISEIDo6GnXr1tVafvDgQasUjrQZmoaDTWdERESWsyggGjx4sJWLQaZQTcOhO1Erp+EgIiKqHosSM7oiR0nMuGpfjt40HOxDREREJM0miRn/+OMPtG/fHu7u7pLLb926hR9//BGPPPKIeaUlk3EaDiIiIuszq1N1cnIyrl69qv7d19dXKwljQUEBHn30UeuVjiSF+XkhObYRgyEiIiIrMSsg0m1dk2ptYwscERERORuLht0bwqzVNStXWYq0zHwOvSciIqoGi0aZkWNgkkYiIiLrMDsgOn78OPLy8gBUNY+dPHkSRUVFAID8/Hzrlo5kySVp7BEXxL5FREREZjI7IOrTp49WP6F7770XQFVTmRCCTWY1hEkaiYiIrMesgCgrK8tW5SAzMUkjERGR9ZgVEEVFRZm18cmTJ+O1115DYGCgWX9HxoX5eWHhkES9JI2sHSIiIjKfTTNV+/r64vDhw2jatKmt3qLGOEqmal25ylImaSQiIpJhk0zV5mJOItsL8/NiIERERFRNVs9DRERERORsGBARERGRy2NARERERC6PARERERG5PJsGRI899phDjcgiIiIikmJRQFRZWSn7ek5Ojvr3xYsXMwcREREROTyzAqLCwkI88sgj8PHxQUhICF599VVUVFSol1+5cgUxMTFWLyRZJldZirTMfOQqS+1dFCIiIodmVh6iOXPm4MiRI/jf//6HgoICvPHGGzh48CDWrFkDDw8PAMw95ChW7ctRT/7qpgAWDknEsI6R9i4WERGRQzKrhuiHH37Ap59+ioceeggTJkzA/v37ceXKFdx33324desWAHByVweQqyxVB0NA1XxnL63JYE0RERGRDLMCoitXrmjNZxYYGIjffvsNN27cwMCBA1FSUmL1ApL5svKLtSZ9BYAKIZCdb9vPh010RETkrMwKiCIjI3HixAmt1xo0aIBNmzahtLQUDz74oFULR5aJCfSBm05FnbtCgehAb5u956p9OeiauhUjPt+LrqlbsWpfjvE/IiIichBmBUT9+vXDsmXL9F6vX78+fv31V9SrV89qBSPLhfl5YeGQRLjfab50VyiwYEiCzeY8O3LuOmZ9zyY6IiJyXmZ1qp4/fz4uXrwouaxBgwbYvHkzDh48aJWCUfUM6xiJHnFByM4vQXSgt82CoU93ZGLhxpN6r6ua6DjxLBEROQOzAqKGDRuiYcOGsssbNGiAnj17VrtQZB1hfl42DUg+3SkdDAG2b6IjIiKyJrMTM96+fRvvvPMO2rVrh/r166N+/fpo164d3n33XZSXl9uijOSAcpWlSJUJhtwAmzbRERERWZtZNUSlpaX417/+hfT0dPTt2xc9evQAAJw4cQIzZ87EunXrsGnTJvYlcgFZ+cWQSjmlALB2ShckRcjXJBIRETkaswKi1NRUnDt3DocOHUKbNm20lh05cgT3338/UlNTMW/ePGuWkRyQaiSb7vD+WQPiGQwREZHTMavJ7JtvvsF7772nFwwBQFJSEt59912sWLHCaoUjx6U7ks1NAcweGI8ne8bauWRERETmM6uG6OzZs7j77rtll3fu3Flrcleq3WpqJBsREZGtmRUQ+fr64vLly4iIiJBcnpeXhwYNGlilYOQcbD2SjYiIqCaY1WTWu3dvLFiwQHZ5amoqevfuXe1CEREREdUks2qI5s6di06dOqFz58547rnnEB8fDyEETpw4gffffx/Hjx/Hnj17bFVWIiIiIpswKyBq1aoVNm/ejPHjx2P48OHqme2FEIiPj8emTZvQunVrmxSUiIiIyFbMCoiAqo7Tf/75Jw4fPoy//voLABAXF4e77rrL2mUjIiIiqhFmB0SFhYWoX78+7rrrLq0gqLKyEkVFRfD19bVm+YiIiIhszqxO1WvXrkWHDh1w8+ZNvWWlpaXo2LEjfvrpJ6sVjoiIiKgmmBUQLV68GDNmzIC3t/6knT4+Ppg5cyb+85//WK1wpC9XWYq0zHzkKkvtXRQiIqJaw6yAKCMjA7169ZJd3qNHDxw7dqy6ZSIZq/bloGvqVoz4fC+6pm7Fqn1MgklERGQNZgVE169fx+3bt2WXl5eX4/r169UuFOnLVZZi9ppj6rnDKgXw0poM1hQRERFZgVkBUXR0NPbv3y+7fP/+/YiKiqp2oUhfVn6x3kSqFUIgO7/EPgUiIiKqRcwKiIYMGYKXX34Zly5d0luWl5eHV155BUOHDrVa4VyVVD8h1ezymtwAeHuY9RESERGRBIUQQhhfrcqNGzeQnJyMnJwcPPbYY2jRogUA4OTJk/j6668RERGBPXv21Mr5zAoLC+Hn5welUmnT1AKr9uWom8bcFMDCIYkY1jFSveylNRmo0PjIdNchIiKif5h6/zYrIAIApVKJ2bNnY9WqVer+Qv7+/hg+fDjefPNNNGzYsHold1A1ERDlKkvRNXWrVtOYu0KBXbN6qydQPXLuOgZ/kgZhYB1HkKssRVZ+MWICfRyqXERE5FpMvX+bnZjRz88Pn3zyCRYtWoT8/HwIIRAUFKSexkPT7t270aFDB3h6epr7Ni7JUD8hVVBRXFYB3RBWdx17M1TLRURE5Igs7oCiUCgQFBSE4OBgyWAIAAYMGIALFy7IbmPnzp247777EB4eDoVCgR9++EFruRACr776KsLCwuDl5YW+ffvi9OnTWutcu3YNI0eOhK+vL/z9/TF+/HgUFRVprXP06FF0794d9erVQ0REBN5++23LdtrGpPoJuSsUiA70Nmsde+JoOCIickY27ZFrrDWuuLgYSUlJWLRokeTyt99+Gx999BGWLFmCvXv3wsfHBykpKVqZskeOHIk///wTmzdvxs8//4ydO3fiiSeeUC8vLCxEv379EBUVhQMHDuCdd97BvHnz8Nlnn1lnJ60ozM8LC4ckwv1OgOmuUGDBkAStmh9T1rEnjoYjIiJnZHYfInM0aNAAR44cQdOmTY0XRKHA2rVrMXjwYABVwVR4eDief/55vPDCCwCq+i+FhIRg+fLlGD58OE6cOIFWrVph37596NChAwDgl19+wcCBA3H+/HmEh4dj8eLFePnll5GXlwcPDw8AwKxZs/DDDz/g5MmTJu9LTXWqBqpqWbLzSxAd6C0b6Jiyjj2Y0g+KiIiopph6/3bYMdtZWVnIy8tD37591a/5+fmhU6dOSE9PBwCkp6fD399fHQwBQN++feHm5oa9e/eq1+nRo4c6GAKAlJQUnDp1ymGTSIb5eSE5tpHBAMKUdezB0WuwiIiIpJjdqbqm5OXlAQBCQkK0Xg8JCVEvy8vLQ3BwsNbyOnXqICAgQGudmJgYvW2olsmNirt16xZu3bql/r2wsLAae+NahnWMRI+4IIeswSIiIpJi0xoiuc7WzmDhwoXw8/NT/0RERNi7SE7FUWuwiIiIpNi1U7UhoaGhAKCXFfvSpUvqZaGhobh8+bLW8tu3b+PatWta60htQ/M9pMyePRtKpVL9c+7cOYv3hYiIiBybTQOiGzdumNShWkpMTAxCQ0OxZcsW9WuFhYXYu3cvkpOTAQDJyckoKCjAgQMH1Ots3boVlZWV6NSpk3qdnTt3ory8XL3O5s2b0aJFC4NJJD09PeHr66v1Q0RERLWTWX2I7rnnHpPW27p1q0nrFRUV4cyZM+rfs7KycPjwYQQEBCAyMhLTp0/HG2+8gebNmyMmJgZz5sxBeHi4eiRay5Yt0b9/f0ycOBFLlixBeXk5pk6diuHDhyM8PBwAMGLECMyfPx/jx4/HzJkzkZGRgQ8//BDvv/++ObtOREREtZhZAdH27dsRFRWFQYMGoW7dutV+8/3796N3797q35977jkAwOjRo7F8+XLMmDEDxcXFeOKJJ1BQUIBu3brhl19+Qb169dR/8/XXX2Pq1Kno06cP3NzcMHToUHz00Ufq5X5+fti0aROmTJmC9u3bIzAwEK+++qpWriIiIiJybWblIXrnnXewbNkyXL16FSNHjsS4ceOQkJBgy/I5jJrMQ0RERETWYZM8RC+++CKOHz+OH374ATdu3EDXrl1x9913Y8mSJRyWTkRERE6rWpmqS0pKsHr1aixatAjHjx/HxYsXa23tCWuIiIiInE+NZKo+ePAgduzYgRMnTiAhIcEq/YqIiIiIaprZAdHFixexYMECxMXF4aGHHkJAQAD27t2LPXv2wMuLSfiIiIjI+Zg1ymzgwIHYtm0b+vXrh3feeQeDBg1CnToOO/sHERERkUnM6kPk5uaGsLAwBAcHG5yW4+DBg1YpnCNhHyIiIiLnY+r926zqnblz51a7YGS6XGUpsvKLERPowznBiIiIbKhao8xcSU3XEK3al4PZa46hUgBuCmDhkEQM6xhp8/e1JQZ4RERU02xSQyRnx44dKC4uRnJyssH5wcg0ucpSdTAEAJUCeGlNBnrEBTltIFEbAzwiIqo9zBpl9tZbb2HOnDnq34UQ6N+/P3r37o17770XLVu2xJ9//mn1QrqarPxidTCkUiEEsvNL7FOgapIL8HKVpfYtGBER0R1mBUSrVq3Smqrju+++w86dO/H7778jPz8fHTp0wPz5861eSFcTE+gDN4k+60cvFNR4WayhtgV4RERU+5gVEGVlZaFNmzbq3zds2ICHHnoIXbt2RUBAAF555RWkp6dbvZCuJszPCzP7x+u9/vbGU05ZqyIV4LkrFIgO9LZPgYiIiHSYFRDdvn0bnp6e6t/T09PRpUsX9e/h4eHIz8+3XulcWGITP73XnLVWJczPCwuHJML9TqoGd4UCC4YkOG1/KCIiqn3M6lQdGxuLnTt3omnTpsjJycFff/2FHj16qJefP38ejRo1snohXZGqVkWzqcmZa1WGdYxEj7ggZOeXIDrQm8EQERE5FLMCoilTpmDq1Kn4/fffsWfPHiQnJ6NVq1bq5Vu3bkXbtm2tXkhXpKpVeWlNBiqEqBW1KmF+Xk5dfiIiqr3MCogmTpwId3d3/PTTT+jRo4deosaLFy9i3LhxVi2gK2OtChERUc1gYkYTceoOIiIi52Pq/dvs2e6JiIiIahuzAqLy8nLMmDEDzZo1w913342lS5dqLb906RLc3d2tWkAiIiIiWzMrIHrzzTfx3//+F0899RT69euH5557Dk8++aTWOmyBIyIiImdjVqfqr7/+Gl988QXuvfdeAMCYMWMwYMAAjB07Vl1bpFBIpFgmp8DJV4mIyFWZVUN04cIFrak7mjVrhu3btyMtLQ2jRo1CRUWF1QtINWPVvhx0Td2KEZ/vRdfUrVi1L8cu5chVliItM98pM3ITEZHzMquGKDQ0FJmZmYiOjla/1rhxY2zbtg29e/fGmDFjrFw8qglyk6/GhzZAcVlFjdUYrdqXoy6HmwJYOCQRwzpG2vx9iYiIzKohuueee7BixQq918PDw7F161ZkZWVZrWBUc+QmXx28KK3GaozkgjLWFBERUU0wq4Zozpw5OHnypOSyxo0bY8eOHdi8ebNVCkY1R2qaEABQ/aoKTnrEBdmspkguKMvOL2F/JiIisjmzaoiioqKQkpIiuzw8PByjR4+udqGoZulOvqo7Mz1g+4llVUGZJmeeu42IiJyLWTVEKqtXr8bKlSvx119/AQDi4uIwYsQIPPTQQ1YtHNUczWlCvD3c8OAnaTU6sWxtnLuNiIich1lTd1RWVuLRRx/F6tWrERcXh/j4eADAiRMncObMGTz88MNYuXJlrRx672pTd6zal6MXnNREB+dcZSnnbiMiIqsx9f5tVg3Rhx9+iN9++w3r1q1T5yJSWbduHcaOHYsPP/wQ06dPt6jQ5DjsObGsAJN7EhFRzTKrhqhNmzaYPn267Iz2X375JT788EMcPXrUagV0FK5WQ2QPHHZPRETWZpPJXU+fPo2+ffvKLu/bty9Onz5tziapFrIkuSKH3RMRkT2Z1WTm5eWFgoICREZKP7UXFhaiXr16VikYOSdLa3k47J6IiOzJrBqi5ORkLF68WHb5okWLkJycXO1CkXOqTi0Ph90TEZE9mRUQvfzyy/jyyy/xyCOP4I8//kBhYSGUSiX27NmDhx9+GEuXLsXLL79sq7KSgzNUy2OMbi4kDrsnIqKaZFaTWZcuXbBq1So88cQT+P7777WWNWzYECtXrkTXrl2tWkByHlIZr82p5bHnyDYiInJtZo0yUykpKcGvv/6q7kAdFxeHfv36wdu79jZvcJSZaeyVv4iIiEiKqfdvswKirVu3YurUqdizZ4/eRpVKJbp06YIlS5age/fulpfcQTEgMh2TKxIRkaOwybD7Dz74ABMnTpTcoJ+fH5588km899575peWapUwPy8kxzZiMERERE7DrIDoyJEj6N+/v+zyfv364cCBA9UuFBEREVFNMisgunTpEurWrSu7vE6dOrhy5Uq1C0XVY0liRCIiIldm1iizxo0bIyMjA82aNZNcfvToUYSFhVmlYGQZTn9BRERkPrNqiAYOHIg5c+bg5s2bestKS0sxd+5cvUlfqeZYkhiRtUlERERm1hC98sorWLNmDeLi4jB16lS0aNECAHDy5EksWrQIFRUVTMxoR+ZOf8HaJCIiqim5ylJk5RcjJtDHIQfdmBUQhYSEIC0tDZMmTcLs2bOhGrGvUCiQkpKCRYsWISQkxCYFJePMSYwoV5vUIy7IIU9UIiJyXs7wAG5WQAQAUVFR2LBhA65fv44zZ85ACIHmzZujYcOGtigfmUE1/YVuYkSpAIeTqRIRUU1wlgdwswMilYYNG6Jjx47WLAtZganTX1R3mg0iIiJTOMsDuFmdqsk5mJIY0VkmU2WnbyIi56Z6ANfkiA/gFtcQkfNz9MlUnaHNmYiIDDOnO4c9WTS5qyviXGY1K1dZiq6pW/Wa9HbN6u1wXyIiIjLOXvNcmnr/Zg0R2YWx4ZfO0uZMRESmCfPzcujrNwMiqnGmNIWx07frcvRcJURUO7FTtYuwRudka23DlGzaUp2+Zwxogaz8YnawrsVW7ctB19StGPH5XnRN3YpV+3LsXSQichGsIXIB1uicbK0OzuY0hWl2+j56vgBvbTypfv+Z/eOR2MSPtQi1iLPkKiGi2ok1RLWcJfOb2WIbKuYOvwzz80J0oDfe+uWk1vsv3HiStQi1jKFguaYx3QOR7Tna94wBUS1njZuMNW9UluQ/knp/leoEZ+RYHCVXiTnNdo52QSdyFo7YPM4ms1rOx8MdCgUgqtE52dodnM3NfyT1/po4+qx2cIRcJeY028k1I7NTOJFhjto8zoCoFlNdsHWDIXNvMra4UZkz/FL3/XVx9FntYe9koab2cZO7oBeUlKubd5lMlEjagbPXHTKtCgMiJ2LOk6fuBRuoah9dMzkZSRHmT8Rr7xuVVgfrCwV4e+Mph854SpazZ64SU2tD5QKn1I0noXrZUZ56iRzJqn05mPX9Mb3XHeHBlgGRkzB3lJfUBbsSQElZpcVlMPdGZe2mA9X7J8c2wv1J4Q475Qg5L1NrQ6UCJ6lmXUd46iVyFKoHdd16fjcFHOLBlgGRE7CkvdXeiQ1rYh4yofe1Iqo+U2tDJ3SLwRe/Z6ES/+TJUqWGUHGEp14iRyE3QOaj4W1xb1J4zRdIh8OPMps3bx4UCoXWT3x8vHr5zZs3MWXKFDRq1Aj169fH0KFDcenSJa1t5OTkYNCgQfD29kZwcDBefPFF3L59u6Z3xWKWjPKy52z21hymL8URRydQ7aKqiZT6vqjOv89+zwIUwBPdm2LXrN54skes3b5zRM5AbiRp+2jzu3HYglPUELVu3Rq//fab+vc6df4p9rPPPov169dj9erV8PPzw9SpUzFkyBDs3r0bAFBRUYFBgwYhNDQUaWlpyM3NxeOPP466detiwYIFNb4vlrC0tsde/X5sOQ+ZVLA1+/tj8PGsg/ZRDXnzIZuSOv++3JWFsd2iAdi/rx2RI3OEkaSGOEVAVKdOHYSGhuq9rlQq8eWXX2LFihW45557AADLli1Dy5YtsWfPHnTu3BmbNm3C8ePH8dtvvyEkJAR33XUXXn/9dcycORPz5s2Dh4dHTe+O2apzEtmjg6otm+vk+kZNXXGIo3rI5kwJ9h19Aksie3LkhwaHbzIDgNOnTyM8PBxNmzbFyJEjkZNT1URy4MABlJeXo2/fvup14+PjERkZifT0dABAeno6EhMTERISol4nJSUFhYWF+PPPP2Xf89atWygsLNT6sadhHSOxa1ZvrJzYGbtm9Tbrpl/TyeNs2VwnVeWqwiSNZGuOkjySyJkZapK2J4evIerUqROWL1+OFi1aIDc3F/Pnz0f37t2RkZGBvLw8eHh4wN/fX+tvQkJCkJeXBwDIy8vTCoZUy1XL5CxcuBDz58+37s5UkyVPntbu3GzqyDFbPQUYy0nEUT2uqaaSITp6lT8RWc7hA6IBAwao/92mTRt06tQJUVFR+Pbbb+HlZbuL0OzZs/Hcc8+pfy8sLERERITN3s8WrJ0N1NzgylZNB6pg60D2dUz75hBH9bi4mhjRqMmRq/yJalptyszuFE1mmvz9/REXF4czZ84gNDQUZWVlKCgo0Frn0qVL6j5HoaGheqPOVL9L9UtS8fT0hK+vr9aPs7HmHGS2Hjlm7L11m/zC/Lxwb1I4R/W4OHudl45a5U9Uk2rbiF+nC4iKioqQmZmJsLAwtG/fHnXr1sWWLVvUy0+dOoWcnBwkJycDAJKTk3Hs2DFcvnxZvc7mzZvh6+uLVq1a1Xj5a5I1+zvYayZyY1+46vStIudnr/OSyNXZ8yHZVhw+IHrhhRewY8cOZGdnIy0tDQ8++CDc3d3x6KOPws/PD+PHj8dzzz2Hbdu24cCBAxg7diySk5PRuXNnAEC/fv3QqlUrjBo1CkeOHMGvv/6KV155BVOmTIGnp6ed9862rNm52R6dSU39wvFp3TlZo7M/OzkT2UdtfBhx+D5E58+fx6OPPoqrV68iKCgI3bp1w549exAUFAQAeP/99+Hm5oahQ4fi1q1bSElJwSeffKL+e3d3d/z888+YNGkSkpOT4ePjg9GjR+O1116z1y7VKGv1d7BHZ1Jb5jMi+7JWvx9rn5e1qT8EkS3ZezYEW1AIITFUh/QUFhbCz88PSqXSKfsTWUuusrTGOpPmKkvRNXWr3hdu16zevFk5MVt8rtY4L2u6czaRs1u1L0fvYcTc70xNPISYev92+Boish5rnHg1mXSOQ5xrJ1vU/FV34mFrj8i0FGuoyJnotkAAQFpmvknnb66yFMt2ZeHz37Mg4BgPIQyIXISzPv1Wt8mPNxjHY++qdqnvQkSAt92bZ531O0quTfUwYs75q7muir0eQjQ5fKdqV2KrjNLOPhrA0k7TtW1IaG3hiBMP+3i427VztrN/R8m1mXP+6q6rqUIIHDx73callccaIgdhy6dDV+yc7ChNICTN0SYeLimrtGvzrCt+R6n2MOf8lVpX09QVh1B067ZdakcZEDkAW9+87d1EYQ+8wTg+R5t4ODm2kd0yULvid5RqD3POX6l1NQnY7+GVTWYOwFb5HFRNcACs2kRR05PFWsLHw13ydW8P1zvlneHzqinGmuvsldPKns2IRNVlzvmru65CYrJue+UzYg2RA7DF06FUE9yuWb1r7dBk3c7TxWUVkuuVlFXWcMnsy1E/L3ty1LnIHLVcRKYw5/zVXNfbww0PfpLmELWjrve47ICs/XQo1wQHoFpPv47a8VOq8zQzGDvu52UJa9dyOWp2c0ctF5EpzDl/VesmRTR0mNpR1hA5CGs+Hdqq/4wj9suRu+nvmtXb5XMYOeLnZQnWcpE9qWqffTzcUVxWwRQeNuAotaMMiByItTqZ2qqDpi07flqaL8jQTd9RvmT2Uhs66nK0IFmDpdcXqXw5DMptwx6DLHSxyawWslUHTVttV7fJ69MdmSY3jxhrGnPlJghH6ahbneYuWw84cMbmQzKN6jP+dGemRfnI5PLlOHPTMxnGGqJayla1I9berlQNwMKNJwGY9iRm6vQerpqx2t61ZNVt7rJ2LZcjThdA1idVswNI1zDKXRsM5ctRJRAc1Mb498lVrz2A8+07A6JazFZVkNbcrqGLjqnNI8Zu+q7eB8VeVdHWaO6y5nx2jjpdAFlPrrIU+7OvyWZCBrT70Rm6NhjLl2NKAkFXvvY4476zyYxMYqsmBqkmL02mNo/INY3VppFWzsbS5i7dc21Yx0jsmtUbKyd2xq5ZvS26qBqbLsAeOU/IMnLXIlXT+9MrDxvMhKyqYTR2bdBtctalSiAody1x5WuPs+47a4jIKFtH+uO7xeDLXVmSFzFzm0d0q2hry0grZ2RJc5fcuVbdWi5DNZH26GjubE0J9qY6XscuKPHWxpN654ehgFeTZg1jWma+0WuDZu3z6cuFePXH43rrrz+ai0FtwkyaokIz+K7Nn/+Bs9ed8rrLgIgMsuUoH90mjBGdIhDVyAdvbzyFCiHgpgBmDGhh8vtI3Ux7xAU5/UgrZ7XzrysQGsddoYBec5dmYADAquea5rblmj/cUHWOZeUXA0CNXKydsSnBnkzpD2Rsfiyg6rNeMzkZSRENAZgesKuC8ehAb8xbd1zvfd5YfwILNpzQ+xzltn/0fAFGfrFH9vN39mB51b4czPr+mN7rznDdZZOZizK1CcyWo3x0L3Ir9p4DBDCjfwsoUHUheWvjSYOjQlT7ceTcddlklI4w0spR2aopVPX5ap46CgH0iAtS/647unCZRC2hpeea7rZ3/nVF6zxwUwBPdG+KmQPi8dbGk2aPQLKUszYl2Iuxmh/V+WGs6R0AKqGdqd7cUZiGmtCkPkep7T/VqylS79RwSf2dVJJZZyL1vQeqvm/OcN1lDZELMucJ1Va5bOSe6BZuPAkFoP5CGaol0NwPhQJatREA8xEZY8uaCqnPtxJQV5lLBQZf/J5llXPNULJOzelrAKBr6tYazXHEJlzzGKv50Tw/NJve3e5cD4TMuirmXhtU668/mos31p/QWib1OWpu/+iFAqRuPKkXLKia3TpGN3T6nFtyn9dHw9vi3qTwmi+QmVhD5GLMfUK1VS4bVROJFKkLhm4tge5+6AZDQNXJrZrM1RXzERmq/bF1TYWx/FByAdOEbk2rfa4ZCzpU54Gtaj8N4ZQyxmmet4ZqflTnx86/rqBr6taqVAoCeKJHDHbPugepQ02fbNSca0OYnxcGtQkz+XNUNbe9tfGk5HUKqGp2G7woTfJ8PJB93aRyOQK5z+uCk9SAsobIxVjyhGqLGpadf13RqgkyROpCI/ck4oaqGyvu/P/BT9Ikaz6k2umdve1ek7HaH1vXVBgbLi9X8zi2WzTGdouu1rlmaq2mXL+iXWeuQEDY5DywZhqB2kI1VF6hUOBCQalep+mZ/auaNStR9TnO6N8CbZr4S9byCQBf/p6NsV1jrHLdkrsmmPs5mtLHSW7x098cwpHzBRjXLcbhz5MwPy/M7B+vziWn8vbGU7g/Kdzhy8+AyMVY2gRmzVw2cu3MUuQuNHL78dnj7TDhvwfUT2JS1c5SwUJBSbm6OluhAGYNiMeTPWKtsr+2InexNqUjfE1M62HohmSsw7XUuWZqwGrqzUru4r1oWyYWbcs0uxnR1PKxCfcfqg64UteCSgHMWnMMuNP0pbgzyELze2lspFh1rlvGHirM+Rylvm9SzfwA9B4UhQA+/z0LX/yehVkD4pHYxM+hH9oSm/jpveYszcIMiFyMvZ9Qc5Wl+PnoReMjQhRV7c7toxvKVnNL7YeXRx3ZvkRyfVd0L8hCAAs3nAQE8GRPxwyKDF2sTan9sfZ5YOhJWi43lKEO18b2d2Z/wzcGU29WUhdvFXP6cJjbH8teyTIdSa6yVDYYUtH8LguhX9Ngq8De1NG1pn6OUt+3GQNaqGvDNMs+7/5WmPPjn3rbEDAvi7+9mPuZOFLNPAMiF2SvJ1S54bNA1VOR4s6XSHVzNtYJT2o/cpWlsl9GuWBM7oL81saTuP8ux6vmNXaxNvWCZK3zwNxgQK7/kFw+F0undzHlZmUsG7EpT7acgNYyWfnFJtUSa6puYK978zVn2g5zajmktiv5fbszklbVHLhgSAJ6xAVh7ro/DT40OvI5Zuwz0Tw2O/+64lApKBgQuaiafkI1NHxW80Jg7s1Zdz/knsSW7sqSTf4oR3NUlCMxdrE25yZR3fNAKhiYveaYwQu1XBAil8/FGtO7yNE9VrpMqW2ozs3TkZ6Oa9qxC0qDy609Ukw3cH+wbWOsPXRB8mZcnZonQw8Imt+3Vfty8NYvVcGQqjmwR1yQZPoJKY7cDCX3megeG83P1xGCPAZEVCPkbmpzBrXEQI1aAWt8EbSGup4vQOoG/aGupnDU0T+mXKzNrf2x9MYsWdsjgGW7s/DSwFaSf2MoCDG1v5Om6t4YdIdGqxKDmtqMaMnNs7ZPMmvsfMpVVnWeljJ7QLy60/TOv65YJbCXCty/P3hBvVx13sWHNkBxWQViAn0salI2tbZQapRs6oaTVf0YTbxYOer1SUX3M5E6NrrsHeQxIKIaIXfTGCjRRGINqm2O/GKPRcGQGxw3kZhkLVh//WzLptb+6PXPGRCPxMamddyUC1a+2JmFsV3lR8WYk8/FGrU4xqiOVXJsI9yfFG52TaVmDhxjN09nmWTW0iD50x2Z6gEKcueT3APSohFtMajNP03luoE9UNWR2liTly5TRnlVCIHBi9K0AlTNvFWmHANTawul1hPq/+ibM6glbguhNQLPUa9Pckz5DOwd5DEgIouYeiHSXK+mO3Ob8gWU87HOhdnR6NZqSM3vZArJ/jkb/umfo7qZ+Xi4q5+cdZsox3eLwee/Z2lt15TmxjC/qnwuCzacMKu/09ELBXhrQ1VTgy0CV1VwpMqHY+gc10oOiqocOHKBoLGZ2O39dKzJ0qSdn+7M1Bq1p3k+KXBn9GbPWNkHpCYNvfSOuerzMKfJS5exWkYV3eabXbN6Izm2kdH9NvQ+5qR8kKJ6cNQcmWlqLZIjkRtppxDQ6kNlz/OfARGZzdSLpdR65j5xVYfs/FUSfRM0uSsUaBfV0KZlswbNWjDdPjzxoQ3UczapSAWxxvrnqG5mKlKf97huMfjiTtOPiqlPepb0d8q5VvzP2GQj0zVYypRzXK/ZA//kwDG0PTn2fjpWsbSTeK6yFKkyzWCAxigpBfBkj1i9z31w23A8+Ema5DE3tclLrozGahmlWBKgmno+667nduf46JZMFfAD0BqZKeB4NYpycpWlOHD2OoQQmDkgXq9J2pFSUDAgIrNY2kZu6RNXdUhddCbceYLX7JugAIA7QZLUBcyRO77K9eEZvCgNqUP/uaHI3eDNeVJVbVv38w7z80LqUMtr/1S1PwfPXkelEOgQHSC7rrk3a0s+O1Pfw9TmEVNmYnekJlpLO4ln5RebVHPx1saTuD8pXKvWz9vDTR0MAfrH3NQmr4Nnr6Ohj/TnPaxjJOJDG2DwJ2kmlVMBWBSgmtp/T3c9zWuSm6Iqa/vYbtEI8/Mymm/JUenmmVLVEqr6iFmz76g1MCAis1SnjdweX2C5i5NU3wSpC5ijz0wuF9BoPkEChmeRt8aTs7G+HsaYOvzWnPPK0s/O1PcwtXnE0M1c98bnCCwdYWVqcF0p/mlOVf0Yu+Gbsm2FApi64pDBTurFZRWmNzdVs/ZRyNRB6wbpmtek+NAG2Jd9HR2jG2rV8Pp4uOslbHSUGkU5UvnGBKoC4t2z73GY810TAyIyS3XayO31BZbrXKz7uu46kkPKvz8GH886aB8lnTCypqkCGqkaCNUNRUAYvNlo1tDsOpOPVfvOGa7NUEg/Ocv19TAWiJhT62PqeVWd3ECmvoepzSNS23NDVT+1dmacRzVVU2lOM6bU383+/ph6+hwpbgogv+gmcpWlBkcSah5zqTINbhuOHw5dVNeomDKE25waUSEsS7th6PzX7XM2sXsMxt6ZkkPu71Sv6wZDjlKjKEfuQcBR05kADIjITJa2kTvDF1iXXALBqSsOOVRtkbop4M4IGRXNG4qxG7xmDY2qc3AjH0+8/cspvZojIarWl9p3SwIRc2p9TD2vqlNDac65a0rziNz2zOm0X9M1lZYm7TTWLKWaruLplYe19sOUYy5VphdSWiA7vwT5RTfx9MrDWu8l9Xnrvo/iTrWLVHxkyQOcXF4ubw93RAZ46/U5++z3LHyxKwszB8RrZa3WTAOg+7DjpgDWTE7W6yOoen9TEk/WBNk+nLCsKbImMCByUdX5oljaRu5MwVCushSZV4pkJ6B1tGHSSRENDfbjMZY5Vqpz8JrJyfhgeBKUpeV45Yd/phIw1KHTkkDE3NpEufNK85yubg2lOeeuXA2kpdvTZa9M2Jod7zV/NyYpoiFSJZKjNvH3UjdpAfr7YWpwqRvgqG78pn7ecs3lR88XqB8AzH2AU51714rLJPv0Pb3ysOzcZZUCelN4AFXfm33Z1yW3V1KmXQcnldeqf0IoNmbkQZgQRNsicFIFn7PWHFPvtwLAwqGJDnHNlMKAyAVZ42nTlJuAOes5EkMTTmqqEAIHsq/j3iTH2D9DNxRDy+SCGFWNk1RXCrkgx5JAxFjtgOpirTv031hfL1NqeQzdCEw9d82ZdNaS74K9+uNV5zohdb6lZebrfaekck5Zsk/m1khLBVbJsY1w/13m56DSbQaTe4gy1HdJ9be6Nbwdoxsa/T7J5bXacCxP63e5INqWtY+azfFCQHZuSkfBgMjFcN4lw6Q6Ahoy7ZtDKC677RBNZ4DhG4rcMkMdszX/r0nVD+TIuevIuVYChUKh7ldlSVOpKan+Nd/b2JBs1YhGQ2kerHEjqImmLHv0x5M7ppqZnE1perSkE7qlrFEjbW5AJlW7qoB+E7UmqYBJlVxVt4YqKaKhWbW7hpgyAtIa/SSlOo0PauMc9xYGRA7O2lWZpjxtWjpU2VGHppvD3GSO9ggorX2sdYMYuYu55oVc1Qygu1w11N/SG5PmyBy5i70pQ7JV53RybCPJ97fGg0FNPVzYoz+e3DF9YFEaAMuCv5rYj+rUSFvyvZLLOP3x8LZao95U3BUKrJmcjPVH8/DFrr9RKf7pID2sY6RkDZW5tbtypAZDWLufpKOPyjWGAZEDs8XJJfeU5u3hhrTMfBw7r6yacNCM93T2L4Emc/PyADWbTsBWx9pQThgA6sRxhghoT+xqzvGQ2q+IAG/Zz0HVXBlQvxilZbfNHpJsjWaommzKqun+eMa+B5YGf47ar9DS75Xc9VTVNFR067ZeAJgUUTWkfmy3aL3jIPe9Mbd2V8rMAfEmNXGrmPsZ14bWBzd7F4CkyZ1cucrSam1X9ZTmrqjqGaKZIXbE53uxUGKkg6H3tFU57SXMzwszB8QbTEGiu6ym0gnY+lir+lGoquk1z5EJ3WNMakasFFUdVA1RTYmhKrfcfvl4uMNN5oNQoKq5csTnezH+/w6YPSRZdSPQZO7naI1tmEP1+Zh7c9E93qaa0C3G4PdAFfyZy9L9sJXqfK+krqeqcy9XWYqIAG+smZyMlRM7Y9es3lpBljWOg+77uymAJ7o3xewB8f+8hqoJc5/sEWv073WZ8xkbekBwFqwhclC2fPo0Vhtgzns6SgJGa1m1Lwdv3ZmYEgBGdIrAsA4ROH+9VN0p0NQZuI0xt4pe7lgbys5rKamROF/cmbzUEM1qean9M7UmqEIIlJRVSiaNVNVWSZXF0JBkTZY030j1jbB3agnNaRE6RAeY1E+qR1yQwfNOt5OwHEdPDGiq6nYjkKr1kjrutsrQL5XpPczPy+QO4qq/P5B9HdO+OWRxHy9jrQ/O0J2CAZGDsnUHRNUFXSpDrCZD75mrLMW14jKny6AqR6rPyqo/zuPpe5pr3WBNqfY3FuxYUkUvNzmisey8ltKtpjeW0Vpx5/2lbggzB8Qj3K+e5JP4msnJsud6cmwjreC9pKwSV4tvYeqKQ5JlkBqSDEh/HuY038h9XvZsApKaFkFzuhapmo9Za46p8+5IBUgA9DoJS3GkqUaqy9i11pTvquZ3xR5NR3KZ3k19vzA/L9yb5IXiMv0mPnO2Yc78dI6IAZGDMufpszqdbA21IatGPkjlIZEbauqMCRhV5J4UpYbWG+ojY+wCaukFU6rzsynZeeWYe95o3vx3n7mCRdszIe58/iM6RWLqPc3UTQW6+6c7SayKVE2Q6hwCgJ+OXNAawaYqt6FzVjcYN/R5mNLXydjnVZ2OvJaSmxZh9vfHDHY214xlKwUw6/tjUNw5llXTiMRI17yhqrOtaqqRQW1CUVxWoZVt2tRyG6rRsgdD11pbJxq1BmsGYNUN8M2Zn84RMSByYKacnNXtZCt1MZgxoAXaNPbH0QsF6oRhmtuWGmrqpqgaWeHoeSYMkQsOzRlab8rFqToXTM1zwtTsvFJMPW/k5l0a+UWm+uYqAHzzxzlMvaeZ7P7JkaoJUk102WXhVsnaD91zVnNbqkBKVUUP6M/jphk0mELu81p/NBeD2oRZ5Xy3RvMpoD0tgikdbgX+CZIqBfD571mStSVrJiejpKxS/dlY8tRvrEbLnuSutTWRaLS6rB2AVTfAN9T64OjdKRgQOThDJ6e1ngykLga5ylKM/GKP5LblZlhvVN/TYU90U6hutLpzMZlzXE25OFX3gqk6J46cuy653NujaqyE3E32yLnrWjcmuSBBLmg6cFY/e665E3Gq9lmzNlG1X7nKUr3EmALaI9h0n0Q1b9ZdU7eqyzxeosajEsCyXdl4aVBLwwW8Q25/3lh/Ags2nNB6ULCkptZazaeA9rQIuoGjXMJATQJA92aB2H3mqt7IKEB+agrVJMJy+29KjZa96V5rLe0SUNN9yxxp3khNjlouQxgQOTFrPhnoXgwMbdsZT3RTDesYCR/POnp9VEw9rqbMSm2tC2ZxWYXk6yVllQYnipwlkXhSN0iQC7YLSsuRKtH8ZWgiTl3GJjbNyi+WnS7FUFZjqTJ/uStL8hh9setvk2eYN7Q/6uNSUm52ugq5MpvTfGpsWoQecUH4YHgS9vx9DSv/yDFppvddp/OxdkoXdZBp7LpQKYCZ3x3FrjP5svvvbBN9VrdLQE32LTPlemLrPHFS23eEQQfmYkDkxGwZmBjatjOe6OZoHyWdLl9utITqYnDsglJrhJrq76T6YVnjgmloVIdcluHZGjdQXZpBglxAnKqzf0DVDdDQRJxSc0QZmtg0JtBHsjZDKrGcJrmb9b2JofhZYxoD1esHz143OYOuatJSVWJCTbrHxdo1iobKZGhaBKks36aoRFVQLTUqSq5maufp/H/+XmL/nWmiT2t1CajJvmWGrifm1EBaEjgZ2r6j5p2Sw4DIidkyMDG2bWc70c1hzmgJQzcdNwXwVK+msjUHmv0UNH+XY+qw7+KyCsmbrNREkZo0a2CkarrcIN0M9tHwtrg3ST/AUZXR3Dmiwvy8kDo0Ubu/icYINjlyAeLEHk2xISNPr+xTVxxC0S3pvmFSNwa5GjmpSTtNDWqs0XwqFdSZM6WDLkPvH+bnhfHdYvD579I1bypSc5TZa6JPa/TPcoYuAVI1pvuzr5lcA2lJ060pNZw1GRhWFwMiJ2fLwMTYtp3pRDeXKaMlVDUucjedSgF8si1TtubAnI7NS3dl4cs7eYCMDfuWm/lbaqJITaoaGFW5pGq6VMGd5uvtow3n/AHMP1c0c6MoFJBtXtN9D6kAUZVoUvezEpCen0vuc5Gr5ZjSKxafbM+0KKix1UONsY7tCkA9ukxxJ/KVaxLSDSjGdYvBF3dmVZcjVZtXUxN9apZXbji6IZYEqY42dZGhBzVT5zTTvFbJ7V9ty0PHgKgWsGVgUpuDHmOMjZZYvf+8wZuO1M1TM3OrKU9uuiNzpNbV/YyMBQazZJrNhADWHb6oF/RoJjv0965bY02lYX5eeukOjJEL4od1jIS3h7vkqLzBn6RBiH/yJb0lka1dday10h6gav0ne8YiIsBbdti2sRulLR5qjKXTWDAkQS/xpjnNLalDDeekmtCtqeR+yNVoGWNqwKFbXt20FLO/P4b40AZaecWqm3DT0aYuMlY7KBXcGQpsDAWVta0/KQMikuVoTz32Indz+WpvjsG/k7sZRQd6m5wdV7emRm5dXXI32R5xQbJDjQRQFQxI7Icq2aEzNJXKBfEdogMkP0fNYeeawZCKZi4qQwGXboCxYP1xfH6nJsXYjdLSBw+576jUTX1G/xZo08Rfb+4szb/R3bZc0G4ou7EbgLHdos3eFznm1KTqlldXJYDBn6QhVaLJ25KEm444f5ex2sGUhBC9skld49wUMNgfUVWrWpv6kzIgIkmO9tRjT4ZGGZlDt/Ox1M356IUCdWdWQxc2U57CpG6yciO4VCqh3ydGapScM17wpGp4pII/qQ7dT688hAsFpXiyZ6zs/qtel2qu0Byebm5fMTnGvqPVDV6NBe2qGrzqZDc2Ri7gUN2QfTzc1TdmU/NfCZkmb2M1r1IcscnIWNqLjRl5OHLuulYtmVQfLyGA9UdzJfdPs1Z14ZBE7JrV26EfkkzFgMiJ1FSNjSM+9dib6uay/mgu3lh/wqJtaHY+DvPzwsz+8Vi4UXsI+9sbT+H+pPB/OjZLdNiVGtVlKmMXS1Vizrc3nqoVT3y6jM3jp+4rpVNTJgAs3HgSZ6+V4Ok7GbmlGGquqBTAst1ZeGlgK9nyVac2RKo/VHWCV1ObQ2xZaygXcAxelKbd4V8BzOwfLzm1jap/lO42pAYZmBvMSNaswPoj58y59quCG918aipCAIMXpeklxdStPRYAvpBI1KnaBvDPebdrVm+bzdVWkzjbvZNYtS8HXVO3YsTne9E1dStW7TPcXFMdtWHWYluo6v8QpjfDudyM7JqkOh8nNvHTW081Weub64/jwTtPYer3AfBEjxjsnnWPSaM/pGY4V10sVbNbKxT/TOCpCn6e7BGLXbN6S87QXRuoRr6p+lTpzlT+ZM9YfDSireTfrtibgy4L5b9/xmopvtiZJTuLuimzrqs+V7nkmIM/SbPaNUL3XDEUHKuOqW5HXalz0ByqgEOX7iGuFMDbv5zCTI1Z3t0VCqQOScQPU7pAdzJ3zUEGuq+bE8yojpHmZgSq5hazFkuu/cM6RmL37Hsw4m7p765qQMGRc9fVn5FU7XElqvqDqY6pVMCgujdY4/O2N9YQOYGarrGpbR3lrEmyb8aAFnp9TxQKQCGqLihyNxK5yVqnSExc6gZg7ZQuRmdxB8xvSgH0O9Q6a7OYueRqN9pHNZTN7Ky6mUh9/4zVwBlKRCj3ILJybw4e7RSp1blVM1mgVtmMXCOOnLuOP7Kv4e7oAJPOJVX+pX3Z19ExuqHBzsiaLG1yN9bB2dCxrRACbRr7SzbfpGqMMlTVsKoC4uo29/WIC9KqyTV0fpirOtf+MD8vLBiSiKhA76o8WQZq2lQDCqSu+2O7RWNst2hk55egpKwc4//vgN577TpzBSO/yHT6LhYMiJxATbdTS/W1GG/FTpLOTuom6u+lP/pK7kaiEubnhQfbNsb3By+oX5ProqRKlmeM7rQXchdQqZFprkoq+Avz88KsAfpNmipy3z9j/c0MPVjIBVMfbT2Dj7eeAfBPACRQFRCp1pfqD6Vbxue/Pax1rg1t1xj/fuQurb/RDUgMZTyXC3gsvYmb0sFZqplT99jKBfOafWNUrNHcZ8vrszW2/WSPWHSOCdBrZgS0R+C9vfEUZvaP10uiqvmQlJaZDymG0os4EwZETsDWNTZST3qqC8WyXdn4Ytff+Oz3LHyxK8tpI39r073o6l5YTZkAM1dZirWHLuhuWpZqjjJDlu7Szw9j706ezurJnrGAQnrkmaHvn7Es3XKfg6G+H3I1VR8Pb4tG9T1ln9xV58yRc9e1giEA+P7gBTyeHKUO1nUDErkUBMY6I1tyEzcWRGl+3wxN7Cu1fd3Rmro1ONWtDbXXjAHmSIpoiNSh+rm4NFUIgTZNtGvYAGhl55fLIl9brjnsQ+QEzGnLN5ex9ukvdv1tsE8D/UPVjwKQzjGke9zMmRUeMF5DlKsslZy7yxGnR3AWT/aIxe5Z9+CJHjHqi6Wx75/qAcPbww2JTfywZnKyyf2xhnWMlO2/pMtNAUQEVJ1zXh7Sz7aqc+aP7GuSy/dnXwdwZ8JfnXNWLgWBoc7IgHS/H2M3cXP6LQ7rGIkZA1qo+wUpFMCMAS1kj62t+0Ta8vpszW0P6xiJD4ffJbtcs4YtObaReqJkzXtDmJ8XJnaPMfpeztrFgjVETsIWIzmMPZU54pBSZ2DsuKlumD4e7ibNCg+YdoGRC7Am9Ijh51UNYX5eeGlgK4ztGmP0+yc15F5VQ2jqKBxD/Zc0VQrgwU/SsHBIInrEBRmsSbg7OkByGx2iG0om/1RtX7ccchnPdef6M6VvjmbNtDk1IbnK0qo5AzWawDRHZ+qydg2O5vdXNaLPnjMGmEMuF5fuyFWpe8PsNcfg7eGOQW3C8MWdrPmaVOeKM49MZUDkRKzd0dXYjZudqy1j6LjpNks82LYx1h66IHlxUU2t4AZgRv8WRj97ueRqY7saf6Ij44x9/+SG3JvbpyLMT38uNzmaw54NBSFJEQ0xtF1jvT5Ewb71qkYzSmxblYJAt8lPqjOy1Fx/hnLTSPUXMrXforkPalIDIUy5YUt1JTAU8A7rGGn1IECzDNYY1i7VP3RCjxiM7ar90CQ3n9vTKw/DTQGktA7FxgztCZMVAP4zoq1J0+w4KoUQ1cg050IKCwvh5+cHpVIJX19fexfHKnKVpeiaulXvxr1rVm+tC4DuhYR9iIyTOm7xoQ3UCc1U3BUKrJmcjPXHcvHFziytUWkFpeXq0SFuCmB4xwh0aRaI9gYuOPy87CctMx8jPt8ru3zlxM5Ijm1kck6ZLSfyJPsFyW07OtAb+7OvwU2hkL0pHTl3HfuzryM60BteHnVwteiW3nQmgPZNPldZKhnYqF6Xy+ekeR3R3GcAstcdAOp+i7r97zRrZoy9nxS5/ZAiFbD1iAvSK7c572+IseDL2iO3jB0LqXuDJqlO/MA/57ijMfX+7VI1RIsWLcI777yDvLw8JCUl4eOPP8bdd99t72LZjSlPTs4wVYMjkupk/cCiNL31KoRASVmlXpMMUHXT0BxGveKPc1jxxzkoAL2kanLvy8+r5hibP0yqhtDQTU6uX5AuN1RlOB/5xR6j202KaIiTeTcw8b8H1OsaGr4PyNeMqV6Xm+tPVWOju8/ju8XIrh8d6K3Xb3H298dQUFqu7tOkqln94dBFs2p8TK1hl+tK8OGjdxnskGys07hcEPzpjsyqBx9oB1+mTrYKwOyEvcaOhbHRkqZktHdGLhMQrVq1Cs899xyWLFmCTp064YMPPkBKSgpOnTqF4OBgexfPbky5gbpKThprUx031VB4KZoXEc3jLHWTUREwPA0EPy/7kLuJqG7YgH5n+9lr9CcbVTGW00hlUq9YgxPSapK62atyZmm+je5ILEMMNRFLvd+Xu7Ik+ybJzfFXCSB1w0mtYd0/HLqINZOTUVJWWWPZsSGkp9vRLL8UQ0HwpzsztVI7GAq+pCZbVfVd1wymzK1FkgvWVPeGg2evY+qKQ3pB84DWofj1z0u1KqO9y4wye++99zBx4kSMHTsWrVq1wpIlS+Dt7Y2lS5fau2h2pxpV4Owns6Pan31Nso+GoSk45DL0qlQKuHzmcEc0rGOkOsv3j1O6aI0uk+uXMXhRmmT2Yd0RRlIGJoaia/NAk0dRSZVBCODpPs301jV1JJahkVBy+zyxR4zk+qph3bqkhnWXlFXa5LolN0qufXRDyc/DlCH/UiNOc5WlSJXIc6UZfOm+j+5kqwLQy/9jzihgY6OMw/y8MKhNOGYNjNf721//vGTWCEpn4BI1RGVlZThw4ABmz56tfs3NzQ19+/ZFenq65N/cunULt27dUv9eWFho83JS7aSQuaG99kBrg7OfLxwinzfETcGh9I5KroZOrsbHUG2MZg1uSVk5Jvz3gFYzxa8Zl/Bkj6YmD36Qq83pEx+M/2w9Y/EACrmaZrn3G9s1RnLUnmpY92e/Zxl8P1s2zxjqSqCbJNJYDZWhDuACQjIRqxugDr50y1BcVmGwxtCcUcDmJNBMbOwn+V6qoLS2cImAKD8/HxUVFQgJCdF6PSQkBCdPSmeiXbhwIebPn18TxaNaTmoYtUIB9GkZIvcnADSSY+7Owmc7/7lBKO5UjbNGz7kYCnKNjZJS9dWRmn6hpKzS5FFUcjd7a0xjIRUIGuunKLX9sd1i9IZ1a466rInmGUNdCcxpkjY2UlcqQJ45IF4v+FKVIVdZanRyZlMDRXNG67nKiGOXCIgsMXv2bDz33HPq3wsLCxEREWHHEpGzUg2j1u1HYOoQbFWH6wPZ16FQwKmHtbo61dxgutMomHJzMXRTSo5tZHJnermbva065Ju7XbkgqqYHC1ijL56xgFB3nraZA+LxZI9Y2TLobk9x50lLwPxA0Zwgx9LUBc7GJYbdl5WVwdvbG9999x0GDx6sfn306NEoKCjAjz/+aHQbtXHYPdUsc4b9Uu1maXoEV0qrUJu+L4b2xZL91PwbQH9yZlOZez4562di6v3bJQIiAOjUqRPuvvtufPzxxwCAyspKREZGYurUqZg1a5bRv2dARETWZOnNxVlvSuSYXOF8Yh4iHc899xxGjx6NDh064O6778YHH3yA4uJijB071t5FIyIXZGmTDNMqkDXxfPqHywREw4YNw5UrV/Dqq68iLy8Pd911F3755Re9jtZERETkelymyay62GRGRETkfEy9f7tMYkYiIiIiOQyIiIiIyOUxICIiIiKXx4CIiIiIXB4DIiIiInJ5DIiIiIjI5TEgIiIiIpfHgIiIiIhcHgMiIiIicnkuM3VHdakSehcWFtq5JERERGQq1X3b2MQcDIhMdOPGDQBARESEnUtCRERE5rpx4wb8/Pxkl3MuMxNVVlbi4sWLaNCgARQKhcXbKSwsREREBM6dO+eyc6LxGPAYADwGAI8BwGMA8BgAtj0GQgjcuHED4eHhcHOT7ynEGiITubm5oUmTJlbbnq+vr8ue+Co8BjwGAI8BwGMA8BgAPAaA7Y6BoZohFXaqJiIiIpfHgIiIiIhcHgOiGubp6Ym5c+fC09PT3kWxGx4DHgOAxwDgMQB4DAAeA8AxjgE7VRMREZHLYw0RERERuTwGREREROTyGBARERGRy2NARERERC6PAZEVLF68GG3atFEnlEpOTsbGjRvVy2/evIkpU6agUaNGqF+/PoYOHYpLly5pbSMnJweDBg2Ct7c3goOD8eKLL+L27ds1vStWk5qaCoVCgenTp6tfq+3HYd68eVAoFFo/8fHx6uW1ff9VLly4gMceewyNGjWCl5cXEhMTsX//fvVyIQReffVVhIWFwcvLC3379sXp06e1tnHt2jWMHDkSvr6+8Pf3x/jx41FUVFTTu2KR6OhovfNAoVBgypQpAFzjPKioqMCcOXMQExMDLy8vxMbG4vXXX9eaS6q2nwdA1VQR06dPR1RUFLy8vNClSxfs27dPvby2HYOdO3fivvvuQ3h4OBQKBX744Qet5dba36NHj6J79+6oV68eIiIi8Pbbb1tnBwRV27p168T69evFX3/9JU6dOiVeeuklUbduXZGRkSGEEOKpp54SERERYsuWLWL//v2ic+fOokuXLuq/v337tkhISBB9+/YVhw4dEhs2bBCBgYFi9uzZ9tqlavnjjz9EdHS0aNOmjXjmmWfUr9f24zB37lzRunVrkZubq/65cuWKenlt338hhLh27ZqIiooSY8aMEXv37hV///23+PXXX8WZM2fU66Smpgo/Pz/xww8/iCNHjoj7779fxMTEiNLSUvU6/fv3F0lJSWLPnj3i999/F82aNROPPvqoPXbJbJcvX9Y6BzZv3iwAiG3btgkhXOM8ePPNN0WjRo3Ezz//LLKyssTq1atF/fr1xYcffqhep7afB0II8cgjj4hWrVqJHTt2iNOnT4u5c+cKX19fcf78eSFE7TsGGzZsEC+//LJYs2aNACDWrl2rtdwa+6tUKkVISIgYOXKkyMjIECtXrhReXl7i008/rXb5GRDZSMOGDcUXX3whCgoKRN26dcXq1avVy06cOCEAiPT0dCFE1Unk5uYm8vLy1OssXrxY+Pr6ilu3btV42avjxo0bonnz5mLz5s2iZ8+e6oDIFY7D3LlzRVJSkuQyV9h/IYSYOXOm6Natm+zyyspKERoaKt555x31awUFBcLT01OsXLlSCCHE8ePHBQCxb98+9TobN24UCoVCXLhwwXaFt5FnnnlGxMbGisrKSpc5DwYNGiTGjRun9dqQIUPEyJEjhRCucR6UlJQId3d38fPPP2u93q5dO/Hyyy/X+mOgGxBZa38/+eQT0bBhQ63vwsyZM0WLFi2qXWY2mVlZRUUFvvnmGxQXFyM5ORkHDhxAeXk5+vbtq14nPj4ekZGRSE9PBwCkp6cjMTERISEh6nVSUlJQWFiIP//8s8b3oTqmTJmCQYMGae0vAJc5DqdPn0Z4eDiaNm2KkSNHIicnB4Dr7P+6devQoUMHPPzwwwgODkbbtm3x+eefq5dnZWUhLy9P6zj4+fmhU6dOWsfB398fHTp0UK/Tt29fuLm5Ye/evTW3M1ZQVlaGr776CuPGjYNCoXCZ86BLly7YsmUL/vrrLwDAkSNHsGvXLgwYMACAa5wHt2/fRkVFBerVq6f1upeXF3bt2uUSx0CTtfY3PT0dPXr0gIeHh3qdlJQUnDp1CtevX69WGTm5q5UcO3YMycnJuHnzJurXr4+1a9eiVatWOHz4MDw8PODv76+1fkhICPLy8gAAeXl5Whc/1XLVMmfxzTff4ODBg1pt5Cp5eXm1/jh06tQJy5cvR4sWLZCbm4v58+eje/fuyMjIcIn9B4C///4bixcvxnPPPYeXXnoJ+/btw7Rp0+Dh4YHRo0er90NqPzWPQ3BwsNbyOnXqICAgwGmOg8oPP/yAgoICjBkzBoBrfA8AYNasWSgsLER8fDzc3d1RUVGBN998EyNHjgQAlzgPGjRogOTkZLz++uto2bIlQkJCsHLlSqSnp6NZs2YucQw0WWt/8/LyEBMTo7cN1bKGDRtaXEYGRFbSokULHD58GEqlEt999x1Gjx6NHTt22LtYNebcuXN45plnsHnzZr0nIlehevoFgDZt2qBTp06IiorCt99+Cy8vLzuWrOZUVlaiQ4cOWLBgAQCgbdu2yMjIwJIlSzB69Gg7l67mffnllxgwYADCw8PtXZQa9e233+Lrr7/GihUr0Lp1axw+fBjTp09HeHi4S50H//vf/zBu3Dg0btwY7u7uaNeuHR599FEcOHDA3kUjCWwysxIPDw80a9YM7du3x8KFC5GUlIQPP/wQoaGhKCsrQ0FBgdb6ly5dQmhoKAAgNDRUb5SJ6nfVOo7uwIEDuHz5Mtq1a4c6deqgTp062LFjBz766CPUqVMHISEhLnEcNPn7+yMuLg5nzpxxmfMgLCwMrVq10nqtZcuW6qZD1X5I7afmcbh8+bLW8tu3b+PatWtOcxwA4OzZs/jtt98wYcIE9Wuuch68+OKLmDVrFoYPH47ExESMGjUKzz77LBYuXAjAdc6D2NhY7NixA0VFRTh37hz++OMPlJeXo2nTpi5zDFSstb+2/H4wILKRyspK3Lp1C+3bt0fdunWxZcsW9bJTp04hJycHycnJAIDk5GQcO3ZM60TYvHkzfH199W4ujqpPnz44duwYDh8+rP7p0KEDRo4cqf63KxwHTUVFRcjMzERYWJjLnAddu3bFqVOntF7766+/EBUVBQCIiYlBaGio1nEoLCzE3r17tY5DQUGB1lP01q1bUVlZiU6dOtXAXljHsmXLEBwcjEGDBqlfc5XzoKSkBG5u2rcXd3d3VFZWAnCt8wAAfHx8EBYWhuvXr+PXX3/FAw884HLHwFr7m5ycjJ07d6K8vFy9zubNm9GiRYtqNZcB4LB7a5g1a5bYsWOHyMrKEkePHhWzZs0SCoVCbNq0SQhRNcw2MjJSbN26Vezfv18kJyeL5ORk9d+rhtn269dPHD58WPzyyy8iKCjIqYbZStEcZSZE7T8Ozz//vNi+fbvIysoSu3fvFn379hWBgYHi8uXLQojav/9CVKVcqFOnjnjzzTfF6dOnxddffy28vb3FV199pV4nNTVV+Pv7ix9//FEcPXpUPPDAA5JDb9u2bSv27t0rdu3aJZo3b+6wQ42lVFRUiMjISDFz5ky9Za5wHowePVo0btxYPex+zZo1IjAwUMyYMUO9jiucB7/88ovYuHGj+Pvvv8WmTZtEUlKS6NSpkygrKxNC1L5jcOPGDXHo0CFx6NAhAUC899574tChQ+Ls2bNCCOvsb0FBgQgJCRGjRo0SGRkZ4ptvvhHe3t4cdu8oxo0bJ6KiooSHh4cICgoSffr0UQdDQghRWloqJk+eLBo2bCi8vb3Fgw8+KHJzc7W2kZ2dLQYMGCC8vLxEYGCgeP7550V5eXlN74pV6QZEtf04DBs2TISFhQkPDw/RuHFjMWzYMK38O7V9/1V++uknkZCQIDw9PUV8fLz47LPPtJZXVlaKOXPmiJCQEOHp6Sn69OkjTp06pbXO1atXxaOPPirq168vfH19xdixY8WNGzdqcjeq5ddffxUA9PZLCNc4DwoLC8UzzzwjIiMjRb169UTTpk3Fyy+/rDVU2hXOg1WrVommTZsKDw8PERoaKqZMmSIKCgrUy2vbMdi2bZsAoPczevRoIYT19vfIkSOiW7duwtPTUzRu3FikpqZapfwKITRShxIRERG5IPYhIiIiIpfHgIiIiIhcHgMiIiIicnkMiIiIiMjlMSAiIiIil8eAiIiIiFweAyIiIiJyeQyIiIiIyOUxICJyMXl5eXj66afRtGlTeHp6IiIiAvfdd5/WHENpaWkYOHAgGjZsiHr16iExMRHvvfceKioq1OtkZ2dj/PjxiImJgZeXF2JjYzF37lyUlZVpvd/nn3+OpKQk1K9fH/7+/mjbtq16kk8AmDdvHhQKBfr3769X1nfeeQcKhQK9evUyul/R0dFQKBSyP2PGjDH/YDm4Xr16Yfr06fYuBlGtUMfeBSCimpOdnY2uXbvC398f77zzDhITE1FeXo5ff/0VU6ZMwcmTJ7F27Vo88sgjGDt2LLZt2wZ/f3/89ttvmDFjBtLT0/Htt99CoVDg5MmTqKysxKeffopmzZohIyMDEydORHFxMd59910AwNKlSzF9+nR89NFH6NmzJ27duoWjR48iIyNDq1xhYWHYtm0bzp8/jyZNmqhfX7p0KSIjI03at3379qkDtrS0NAwdOhSnTp2Cr68vAMDLy8sah7BGlJeXo27dujX2fmVlZfDw8Kix9yNySFaZAISInMKAAQNE48aNRVFRkd6y69evi6KiItGoUSMxZMgQveXr1q0TAMQ333wju/23335bxMTEqH9/4IEHxJgxYwyWae7cuSIpKUnce++94o033lC/vnv3bhEYGCgmTZokevbsacLe/UM1p9L169fVr/3www+ibdu2wtPTU8TExIh58+ZpzQ8GQCxZskQMGjRIeHl5ifj4eJGWliZOnz4tevbsKby9vUVycrLW/HSqsi9ZskQ0adJEeHl5iYcfflhrviohhPj8889FfHy88PT0FC1atBCLFi1SL8vKylIf1x49eghPT0+xbNkykZ+fL4YPHy7Cw8OFl5eXSEhIECtWrFD/3ejRo/XmjMrKyhLLli0Tfn5+Wu+/du1aoXm5V5X7888/F9HR0UKhUAghqs6B8ePHi8DAQNGgQQPRu3dvcfjwYbOOPZGzYpMZkYu4du0afvnlF0yZMgU+Pj56y/39/bFp0yZcvXoVL7zwgt7y++67D3FxcVi5cqXseyiVSgQEBKh/Dw0NxZ49e3D27Fmj5Rs3bhyWL1+u/n3p0qUYOXKkVWoufv/9dzz++ON45plncPz4cXz66adYvnw53nzzTa31Xn/9dTz++OM4fPgw4uPjMWLECDz55JOYPXs29u/fDyEEpk6dqvU3Z86cwbfffouffvoJv/zyCw4dOoTJkyerl3/99dd49dVX8eabb+LEiRNYsGAB5syZg//7v//T2s6sWbPwzDPP4MSJE0hJScHNmzfRvn17rF+/HhkZGXjiiScwatQo/PHHHwCADz/8EMnJyZg4cSJyc3ORm5uLiIgIk4/JmTNn8P3332PNmjU4fPgwAODhhx/G5cuXsXHjRhw4cADt2rVDnz59cO3aNXMON5FzsndERkQ1Y+/evQKAWLNmjew6qampejUrmu6//37RsmVLyWWnT58Wvr6+WrPbX7x4UXTu3FkAEHFxcWL06NFi1apVoqKiQr2OqrairKxMBAcHix07doiioiLRoEEDceTIEfHMM89Uu4aoT58+YsGCBVrr/O9//xNhYWHq3wGIV155Rf17enq6ACC+/PJL9WsrV64U9erV0yq7u7u7OH/+vPq1jRs3Cjc3N/UM9rGxsVo1O0II8frrr4vk5GQhxD81RB988IHR/Ro0aJB4/vnn1b/37NlTPPPMM1rrmFpDVLduXXH58mX1a7///rvw9fUVN2/e1Prb2NhY8emnnxotG5GzYx8iIhchhLDJugBw4cIF9O/fHw8//DAmTpyofj0sLAzp6enIyMjAzp07kZaWhtGjR+OLL77AL7/8Aje3fyqp69ati8ceewzLli3D33//jbi4OLRp08ascsg5cuQIdu/erVUjVFFRgZs3b6KkpATe3t4AoPV+ISEhAIDExESt127evInCwkJ136TIyEg0btxYvU5ycjIqKytx6tQpNGjQAJmZmRg/frzWcbl9+zb8/Py0ytihQwet3ysqKrBgwQJ8++23uHDhAsrKynDr1i11WasrKioKQUFB6t+PHDmCoqIiNGrUSGu90tJSZGZmWuU9iRwZAyIiF9G8eXN1Z2g5cXFxAIATJ06gS5cuestPnDiBVq1aab128eJF9O7dG126dMFnn30mud2EhAQkJCRg8uTJeOqpp9C9e3fs2LEDvXv31lpv3Lhx6NSpEzIyMjBu3Dhzd1FWUVER5s+fjyFDhugtq1evnvrfmh2ZFQqF7GuVlZUmvy9QNdKuU6dOWsvc3d21ftdtxnznnXfw4Ycf4oMPPkBiYiJ8fHwwffp0vVF8utzc3PQC2vLycr31dN+vqKgIYWFh2L59u966/v7+Bt+TqDZgQETkIgICApCSkoJFixZh2rRpejfEgoIC9OvXDwEBAfj3v/+tFxCtW7cOp0+fxuuvv65+7cKFC+jduzfat2+PZcuWadX4yFEFVMXFxXrLWrdujdatW+Po0aMYMWKEJbspqV27djh16hSaNWtmtW2q5OTk4OLFiwgPDwcA7NmzB25ubmjRogVCQkIQHh6Ov//+GyNHjjRru7t378YDDzyAxx57DEBVEPbXX39pBaQeHh5aqRAAICgoCDdu3EBxcbH6M1b1ETKkXbt2yMvLQ506dRAdHW1WWYlqAwZERC5k0aJF6Nq1K+6++2689tpraNOmDW7fvo3Nmzdj8eLFOHHiBD799FMMHz4cTzzxBKZOnQpfX19s2bIFL774Ih566CE88sgjAKqCoV69eiEqKgrvvvsurly5on6f0NBQAMCkSZMQHh6Oe+65B02aNEFubi7eeOMNBAUFITk5WbKMW7duRXl5uVVrJV599VXce++9iIyMxEMPPQQ3NzccOXIEGRkZeOONN6q17Xr16mH06NF49913UVhYiGnTpuGRRx5RH4P58+dj2rRp8PPzQ//+/XHr1i3s378f169fx3PPPSe73ebNm+O7775DWloaGjZsiPfeew+XLl3SCoiio6Oxd+9eZGdno379+ggICECnTp3g7e2Nl156CdOmTcPevXu1OqvL6du3L5KTkzF48GC8/fbbiIuLw8WLF7F+/Xo8+OCDek16RLUNR5kRuZCmTZvi4MGD6N27N55//nkkJCTgX//6F7Zs2YLFixcDAB566CFs27YNOTk56N69O1q0aIH3338fL7/8Mr755ht1s9HmzZtx5swZbNmyBU2aNEFYWJj6R6Vv377Ys2cPHn74YcTFxWHo0KGoV68etmzZotdXRcXHx8fqTTQpKSn4+eefsWnTJnTs2BGdO3fG+++/j6ioqGpvu1mzZhgyZAgGDhyIfv36oU2bNvjkk0/UyydMmIAvvvgCy5YtQ2JiInr27Inly5cjJibG4HZfeeUVtGvXDikpKejVqxdCQ0MxePBgrXVeeOEFuLu7o1WrVggKCkJOTg4CAgLw1VdfYcOGDUhMTMTKlSsxb948o/uhUCiwYcMG9OjRA2PHjkVcXByGDx+Os2fPqvtTEdVmCmFu70kiIgJQlWX7hx9+MKlJiogcG2uIiIiIyOUxICIip1G/fn3Zn99//93exSMiJ8YmMyJyGmfOnJFd1rhxY6ear4yIHAsDIiIiInJ5bDIjIiIil8eAiIiIiFweAyIiIiJyeQyIiIiIyOUxICIiIiKXx4CIiIiIXB4DIiIiInJ5DIiIiIjI5f0/0xTfboYSSUIAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB75klEQVR4nO3dd3gU1foH8O8mkJAE0kiABNMIhAAJSDd0FIGIBUEFRaVbAJHrVQw2UNQE8VovIhcl+FNpIiAqVUB670jHQCihRFJIIYHk/P6Iu26Z2d3Zkp1Nvp/n4dHszM6emZ2deeec95yjEUIIEBEREamQh6sLQERERCSHgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoR2W3KlCnQaDRWravRaDBlyhSnlqdHjx7o0aOHardHRNZjoEJUhcydOxcajUb3r0aNGmjYsCGGDRuGixcvurp4qhMdHW1wvOrVq4euXbti6dKlDtl+UVERpkyZgt9//90h2yOqjhioEFVB77zzDr799lt8+eWXSE5OxnfffYfu3bvj5s2bTvm8N954A8XFxU7ZtrPdeeed+Pbbb/Htt9/i5ZdfxqVLlzBgwAB8+eWXdm+7qKgIb7/9NgMVIjvUcHUBiMjxkpOT0a5dOwDAqFGjEBISgmnTpmH58uV47LHHHP55NWrUQI0a7nk5adiwIZ588knd308//TQaN26Mjz/+GM8995wLS0ZEAGtUiKqFrl27AgDOnDlj8Prx48fxyCOPIDg4GLVq1UK7du2wfPlyg3Vu3bqFt99+G02aNEGtWrVQt25ddOnSBWvXrtWtI5WjUlJSgn/9618IDQ1FnTp18OCDD+LChQsmZRs2bBiio6NNXpfaZnp6Ou6++27Uq1cP3t7eaN68OWbOnKnoWFjSoEEDNGvWDBkZGWbXu3r1KkaOHIn69eujVq1aaNWqFb755hvd8rNnzyI0NBQA8Pbbb+ual5ydn0NU1bjnIxARKXL27FkAQFBQkO61P/74A507d0bDhg2RkpICPz8/LFq0CP3798ePP/6Ihx9+GEBFwJCamopRo0ahQ4cOyM/Px549e7Bv3z7ce++9sp85atQofPfdd3jiiSfQqVMnrF+/Hv369bNrP2bOnIkWLVrgwQcfRI0aNfDzzz9jzJgxKC8vx9ixY+3attatW7dw/vx51K1bV3ad4uJi9OjRA6dPn8a4ceMQExODH374AcOGDUNubi5efPFFhIaGYubMmXj++efx8MMPY8CAAQCAli1bOqScRNWGIKIqIz09XQAQv/32m7h27Zo4f/68WLx4sQgNDRXe3t7i/PnzunXvuecekZiYKG7evKl7rby8XHTq1Ek0adJE91qrVq1Ev379zH7u5MmThf7l5MCBAwKAGDNmjMF6TzzxhAAgJk+erHtt6NChIioqyuI2hRCiqKjIZL0+ffqIRo0aGbzWvXt30b17d7NlFkKIqKgo0bt3b3Ht2jVx7do1cfDgQTF48GABQLzwwguy2/vkk08EAPHdd9/pXistLRVJSUmidu3aIj8/XwghxLVr10z2l4iUYdMPURXUq1cvhIaGIiIiAo888gj8/PywfPly3HHHHQCA69evY/369Xjsscdw48YNZGdnIzs7G3/99Rf69OmDU6dO6XoJBQYG4o8//sCpU6es/vwVK1YAAMaPH2/w+oQJE+zaLx8fH93/5+XlITs7G927d8eff/6JvLw8m7a5Zs0ahIaGIjQ0FK1atcIPP/yAp556CtOmTZN9z4oVK9CgQQM8/vjjutdq1qyJ8ePHo6CgABs3brSpLERkik0/RFXQjBkzEBcXh7y8PMyZMwebNm2Ct7e3bvnp06chhMCbb76JN998U3IbV69eRcOGDfHOO+/goYceQlxcHBISEtC3b1889dRTZpswzp07Bw8PD8TGxhq83rRpU7v2a+vWrZg8eTK2b9+OoqIig2V5eXkICAhQvM2OHTvi3XffhUajga+vL5o1a4bAwECz7zl37hyaNGkCDw/DZ71mzZrplhORYzBQIaqCOnTooOv1079/f3Tp0gVPPPEETpw4gdq1a6O8vBwA8PLLL6NPnz6S22jcuDEAoFu3bjhz5gx++uknrFmzBl999RU+/vhjfPnllxg1apTdZZUbKK6srMzg7zNnzuCee+5BfHw8PvroI0RERMDLywsrVqzAxx9/rNsnpUJCQtCrVy+b3ktEzsdAhaiK8/T0RGpqKnr27In//ve/SElJQaNGjQBUNFdYc5MODg7G8OHDMXz4cBQUFKBbt26YMmWKbKASFRWF8vJynDlzxqAW5cSJEybrBgUFITc31+R141qJn3/+GSUlJVi+fDkiIyN1r2/YsMFi+R0tKioKhw4dQnl5uUGtyvHjx3XLAfkgjIisxxwVomqgR48e6NChAz755BPcvHkT9erVQ48ePTBr1ixkZWWZrH/t2jXd///1118Gy2rXro3GjRujpKRE9vOSk5MBAJ999pnB65988onJurGxscjLy8OhQ4d0r2VlZZmMDuvp6QkAEELoXsvLy0N6erpsOZzlvvvuw+XLl7Fw4ULda7dv38bnn3+O2rVro3v37gAAX19fAJAMxIjIOqxRIaomXnnlFTz66KOYO3cunnvuOcyYMQNdunRBYmIiRo8ejUaNGuHKlSvYvn07Lly4gIMHDwIAmjdvjh49eqBt27YIDg7Gnj17sHjxYowbN072s+688048/vjj+OKLL5CXl4dOnTph3bp1OH36tMm6gwcPxquvvoqHH34Y48ePR1FREWbOnIm4uDjs27dPt17v3r3h5eWFBx54AM8++ywKCgowe/Zs1KtXTzLYcqZnnnkGs2bNwrBhw7B3715ER0dj8eLF2Lp1Kz755BPUqVMHQEXyb/PmzbFw4ULExcUhODgYCQkJSEhIqNTyErk1V3c7IiLH0XZP3r17t8mysrIyERsbK2JjY8Xt27eFEEKcOXNGPP3006JBgwaiZs2aomHDhuL+++8Xixcv1r3v3XffFR06dBCBgYHCx8dHxMfHi/fee0+Ulpbq1pHqSlxcXCzGjx8v6tatK/z8/MQDDzwgzp8/L9ldd82aNSIhIUF4eXmJpk2biu+++05ym8uXLxctW7YUtWrVEtHR0WLatGlizpw5AoDIyMjQraeke7Klrtdy27ty5YoYPny4CAkJEV5eXiIxMVGkp6ebvHfbtm2ibdu2wsvLi12ViWygEUKvHpWIiIhIRZijQkRERKrFQIWIiIhUi4EKERERqRYDFSIiIlItBipERESkWgxUiIiISLXcesC38vJyXLp0CXXq1OFQ1URERG5CCIEbN24gPDzcZHJPY24dqFy6dAkRERGuLgYRERHZ4Pz587jjjjvMruPWgYp2mOrz58/D39/fxaUhIiIia+Tn5yMiIkJ3HzfHrQMVbXOPv78/AxUiIiI3Y03aBpNpiYiISLUYqBAREZFqMVAhIiIi1XLrHBUiIrUpLy9HaWmpq4tB5FI1a9aEp6enQ7bFQIWIyEFKS0uRkZGB8vJyVxeFyOUCAwPRoEEDu8c5c2mgUlZWhilTpuC7777D5cuXER4ejmHDhuGNN97gAG5E5FaEEMjKyoKnpyciIiIsDmJFVFUJIVBUVISrV68CAMLCwuzanksDlWnTpmHmzJn45ptv0KJFC+zZswfDhw9HQEAAxo8f78qiEREpcvv2bRQVFSE8PBy+vr6uLg6RS/n4+AAArl69inr16tnVDOTSQGXbtm146KGH0K9fPwBAdHQ05s+fj127drmyWEREipWVlQEAvLy8XFwSInXQBuy3bt2yK1Bxad1kp06dsG7dOpw8eRIAcPDgQWzZsgXJycmS65eUlCA/P9/gHxGRmrDZmqiCo34LLq1RSUlJQX5+PuLj4+Hp6YmysjK89957GDJkiOT6qampePvttyu5lEREROQqLq1RWbRoEb7//nvMmzcP+/btwzfffIMPP/wQ33zzjeT6kyZNQl5enu7f+fPnK7nEREREVJlcGqi88sorSElJweDBg5GYmIinnnoK//rXv5Camiq5vre3t25en8qY3ycrrxjbzmQjK6/YqZ9DRORqly9fxgsvvIBGjRrB29sbEREReOCBB7Bu3TrdOtu2bcN9992HoKAg1KpVC4mJifjoo490+TkAcPbsWYwcORIxMTHw8fFBbGwsJk+ebDK2zOzZs9GqVSvUrl0bgYGBaN26tcG1f8qUKdBoNOjbt69JWadPnw6NRoMePXpYvX/5+fl4/fXXER8fj1q1aqFBgwbo1asXlixZAiGEbr0//vgDjz32GEJDQ+Ht7Y24uDi89dZbKCoq0q1z/fp1vPDCC2jatCl8fHwQGRmJ8ePHIy8vz6qynD17FhqNRvLfjh07rN6nHj16YMKECVav765c2vRTVFRk0oXP09NTFWMQLNydiUlLDqNcAB4aIHVAIga1j3R1sYiIHO7s2bPo3LkzAgMDMX36dCQmJuLWrVtYvXo1xo4di+PHj2Pp0qV47LHHMHz4cGzYsAGBgYH47bffMHHiRGzfvh2LFi2CRqPB8ePHUV5ejlmzZqFx48Y4cuQIRo8ejcLCQnz44YcAgDlz5mDChAn47LPP0L17d5SUlODQoUM4cuSIQbnCwsKwYcMGXLhwAXfccYfu9Tlz5iAy0vrrcW5uLrp06YK8vDy8++67aN++PWrUqIGNGzdi4sSJuPvuuxEYGIgdO3agV69e6NWrF3799VfUr18fu3btwr///W+sW7cOGzZsgJeXFy5duoRLly7hww8/RPPmzXHu3Dk899xzuHTpEhYvXmx1uX777Te0aNHC4LW6deta/X5rCCFQVlaGGjXceNg04UJDhw4VDRs2FL/88ovIyMgQS5YsESEhIWLixIlWvT8vL08AEHl5eQ4t16XcIhGT8ouIevWff41SfhWXcosc+jlEVHUUFxeLo0ePiuLiYlcXRbHk5GTRsGFDUVBQYLIsJydHFBQUiLp164oBAwaYLF++fLkAIBYsWCC7/Q8++EDExMTo/n7ooYfEsGHDzJZp8uTJolWrVuL+++8X7777ru71rVu3ipCQEPH888+L7t27W7F3Qjz//PPCz89PXLx40WTZjRs3xK1bt0R5eblo3ry5aNeunSgrKzNY58CBA0Kj0Yi0tDTZz1i0aJHw8vISt27dsliejIwMAUDs379fdh3t/v/f//2fiIqKEv7+/mLQoEEiPz9fCFFx/wRg8C8jI0Ns2LBBABArVqwQbdq0ETVr1hQbNmwQN2/eFC+88IIIDQ0V3t7eonPnzmLXrl26z9O+75dffhGJiYnC29tbdOzYURw+fFgIIURBQYGoU6eO+OGHHwzKuXTpUuHr66srlz5zvwkl92+XNv18/vnneOSRRzBmzBg0a9YML7/8Mp599llMnTrVlcVCRnYhyoXha2VC4Gx2kfQbiIgcqDKbna9fv45Vq1Zh7Nix8PPzM1keGBiINWvW4K+//sLLL79ssvyBBx5AXFwc5s+fL/sZeXl5CA4O1v3doEED7NixA+fOnbNYvhEjRmDu3Lm6v+fMmYMhQ4ZY3Q28vLwcCxYswJAhQxAeHm6yvHbt2qhRowYOHDiAo0eP4qWXXjKp6W/VqhV69eplcR/9/f0dWnNx5swZLFu2DL/88gt++eUXbNy4EWlpaQCATz/9FElJSRg9ejSysrKQlZWFiIgI3XtTUlKQlpaGY8eOoWXLlpg4cSJ+/PFHfPPNN9i3bx8aN26MPn364Pr16waf+corr+A///kPdu/ejdDQUDzwwAO4desW/Pz8MHjwYKSnpxusn56ejkceeQR16tRx2H4bc2mgUqdOHXzyySc4d+4ciouLcebMGbz77rsuH4cgJsQPHka9qjw1GkSHcBAnInKuhbsz0TltPZ6YvROd09Zj4e5Mp37e6dOnIYRAfHy87DraISSaNWsmuTw+Pl63jtT2P//8czz77LO61yZPnozAwEBER0ejadOmGDZsGBYtWiTZ7H///fcjPz8fmzZtQmFhIRYtWoQRI0ZYvX/Z2dnIyckxu3+A5X1s1qyZ7D5mZ2dj6tSpeOaZZ6wuF1AxREft2rUN/ukrLy/H3LlzkZCQgK5du+Kpp57S5QwFBATAy8sLvr6+aNCgARo0aGAwVsk777yDe++9F7GxsfD29sbMmTMxffp0JCcno3nz5pg9ezZ8fHzw9ddfG3zm5MmTce+99yIxMRHffPMNrly5gqVLlwIARo0ahdWrVyMrKwtAxWBuK1asUPR92IJjPEsIC/BB6oBEeP7dB9xTo8H7AxIQFuDj4pIRUVWWlVesy40DgHIBvLbkiFNrVoQQlleyYV0AuHjxIvr27YtHH30Uo0eP1r0eFhaG7du34/Dhw3jxxRdx+/ZtDB06FH379jUJVmrWrIknn3wS6enp+OGHHxAXF4eWLVs6rcxK18/Pz0e/fv3QvHlzTJkyRdF7Fy5ciAMHDhj80xcdHW1QUxEWFqYblt6Sdu3a6f7/zJkzuHXrFjp37qx7rWbNmujQoQOOHTtm8L6kpCTd/wcHB6Np06a6dTp06IAWLVroeuZ+9913iIqKQrdu3azbYRu5cXaNcw1qH4lucaE4m12E6BBfBilE5HTmmp2ddQ1q0qSJLglWTlxcHADg2LFj6NSpk8nyY8eOoXnz5gavXbp0CT179kSnTp3wv//9T3K7CQkJSEhIwJgxY/Dcc8+ha9eu2LhxI3r27Gmw3ogRI9CxY0ccOXJE8dN7aGgoAgMDze4fYLiPrVu3Nll+7Ngx3TpaN27cQN++fVGnTh0sXboUNWvWVFS2iIgING7cWHa58fY0Go3VnU2kmvEcYdSoUZgxYwZSUlKQnp6O4cOHO32QQ9aomBEW4IOk2LoMUoioUrii2Tk4OBh9+vTBjBkzUFhYaLI8NzcXvXv3RnBwMP7zn/+YLF++fDlOnTqFxx9/XPfaxYsX0aNHD7Rt2xbp6elWTdCoDXSkytCiRQu0aNECR44cwRNPPKFk9+Dh4YHBgwfj+++/x6VLl0yWFxQU4Pbt27jzzjsRHx+Pjz/+2CQYOHjwIH777TeDfczPz0fv3r3h5eWF5cuXo1atWorK5QheXl4GXcPlxMbGwsvLC1u3btW9duvWLezevdskwNTvHp2Tk4OTJ08aNIc9+eSTOHfuHD777DMcPXoUQ4cOdcCemMdAhYhIJVzV7DxjxgyUlZWhQ4cO+PHHH3Hq1CkcO3YMn332GZKSkuDn54dZs2bhp59+wjPPPINDhw7h7Nmz+PrrrzFs2DA88sgjeOyxxwD8E6RERkbiww8/xLVr13D58mVcvnxZ93nPP/88pk6diq1bt+LcuXPYsWMHnn76aYSGhho0Pehbv349srKyEBgYqHj/3nvvPURERKBjx474v//7Pxw9ehSnTp3CnDlz0Lp1axQUFECj0eDrr7/G0aNHMXDgQOzatQuZmZn44Ycf8MADDyApKUk3Zok2SCksLMTXX3+N/Px83T5aEzho/fXXX7r3af/dvHnT6vdHR0dj586dOHv2LLKzs2VrW/z8/PD888/jlVdewapVq3D06FGMHj0aRUVFGDlypMG677zzDtatW4cjR45g2LBhCAkJQf/+/XXLg4KCMGDAALzyyivo3bu3Qbdxp7HYL0jFnNU9mYhIKUd2T76UWyS2nc6u1CERLl26JMaOHSuioqKEl5eXaNiwoXjwwQfFhg0bdOts2rRJ9OnTR/j7+wsvLy/RokUL8eGHH4rbt2/r1klPTzfpNqv9p7V48WJx3333ibCwMOHl5SXCw8PFwIEDxaFDh3TraLvnynnxxRet7p4shBC5ubkiJSVFNGnSRHh5eYn69euLXr16iaVLl4ry8nLdeocOHRIDBw4UwcHBombNmiI2Nla88cYborCwULeOtiuv1L+MjAyLZdF2T5b6N3/+fNn9//jjj0VUVJTu7xMnToi77rpL+Pj4mHRPzsnJMXhvcXGxeOGFF0RISIjZ7sk///yzaNGihfDy8hIdOnQQBw8eNCn/unXrBACxaNEis/vpqO7JGiEUZg6pSH5+PgICAnTdwoiIXOXmzZvIyMhATEyMS5oBiOzx+++/o2fPnsjJybFYa/Xtt9/iX//6Fy5dumS2l66534SS+zeTaYmIiMiioqIiZGVlIS0tDc8++2ylDSXCHBUiInJrxmOR6P/bvHlzpZfnueeeky3Pc889V+nlcZQPPvgA8fHxaNCgASZNmlRpn8umHyIiB2DTj+ucPn1adlnDhg3h41O5PTevXr2K/Px8yWX+/v6oV69epZbHVdj0Q0REBJgdi8QV6tWrV22CkcrAph8iIiJSLQYqREQO5Mat6UQOZe0oupaw6YeIyAFq1qwJjUaDa9euITQ01OnDihOplRACpaWluHbtGjw8POzuHcRAhYjIATw9PXHHHXfgwoULOHv2rKuLQ+Ryvr6+iIyMtGoKBXMYqBAROUjt2rXRpEkT3Lp1y9VFIXIpT09P1KhRwyE1iwxUiIgcyNPTE56enq4uBlGVwWRaIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFTLpYFKdHQ0NBqNyb+xY8e6slhERESkEjVc+eG7d+9GWVmZ7u8jR47g3nvvxaOPPurCUhEREZFauDRQCQ0NNfg7LS0NsbGx6N69u4tKRERERGqimhyV0tJSfPfddxgxYgQ0Go2ri0NEREQq4NIaFX3Lli1Dbm4uhg0bJrtOSUkJSkpKdH/n5+dXQsmIiIjIVVRTo/L1118jOTkZ4eHhsuukpqYiICBA9y8iIqISS0hERESVTSOEEK4uxLlz59CoUSMsWbIEDz30kOx6UjUqERERyMvLg7+/f2UUlYiIiOyUn5+PgIAAq+7fqmj6SU9PR7169dCvXz+z63l7e8Pb27uSSkVERESu5vKmn/LycqSnp2Po0KGoUUMVcRMRERGphMsDld9++w2ZmZkYMWKEq4tCREREKuPyKozevXtDBWkyREREpEIur1EhIiIiksNAhYiIiFSLgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoRERGpFgMVC7LyirHtTDay8opdXRQiIqJqx+WTEqrZwt2ZmLTkMMoF4KEBUgckYlD7SFcXi4iIqNpgjYqMrLxiXZACAOUCeG3JEdasEBERVSIGKjIysgt1QYpWmRA4m13kmgIRERFVQwxUZMSE+MFDY/iap0aD6BBf1xSIiIioGmKgIiMswAepAxLhqamIVjw1Grw/IAFhAT4uLhkREVH1wWRaMwa1j0S3uFCczS5CdIgvgxQiIqJKxkDFgrAAHwYoRERELsKmHyIiIlItBipERESkWgxUiIiISLUYqNiJQ+wTERE5D5Np7cAh9omIiJyLNSo24hD7REREzsdAxUYcYp+IiMj5GKjYiEPsExEROR8DFRtxiH0iIiLnYzKtHTjEPhERkXMxULETh9gnIiJyHjb9EBERkWoxUCEiIiLVcnmgcvHiRTz55JOoW7cufHx8kJiYiD179ri6WERERKQCLs1RycnJQefOndGzZ0+sXLkSoaGhOHXqFIKCglxZLCIiIlIJlwYq06ZNQ0REBNLT03WvxcTEuLBEREREpCYubfpZvnw52rVrh0cffRT16tVD69atMXv2bNn1S0pKkJ+fb/CPiIiIqi6XBip//vknZs6ciSZNmmD16tV4/vnnMX78eHzzzTeS66empiIgIED3LyIiopJLTERERJVJI4QQlldzDi8vL7Rr1w7btm3TvTZ+/Hjs3r0b27dvN1m/pKQEJSUlur/z8/MRERGBvLw8+Pv7V0qZiYiIyD75+fkICAiw6v7t0hqVsLAwNG/e3OC1Zs2aITMzU3J9b29v+Pv7G/wjIiKiqsulgUrnzp1x4sQJg9dOnjyJqKgoF5WIiIiI1MSlgcq//vUv7NixA++//z5Onz6NefPm4X//+x/Gjh3rymIRERGRSrg0UGnfvj2WLl2K+fPnIyEhAVOnTsUnn3yCIUOGuLJYREREpBIuTaa1l5JkHCIiIlIHt0mmJSIiIjKHgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFTLpkClsLDQ0eUgIiIiMmFToFK/fn2MGDECW7ZscXR5iIiIiHRsClS+++47XL9+HXfffTfi4uKQlpaGS5cuObpsREREVM3ZFKj0798fy5Ytw8WLF/Hcc89h3rx5iIqKwv33348lS5bg9u3bji4nERERVUMOmz35888/xyuvvILS0lKEhITgueeeQ0pKCnx9fR2xeUmcPZmIiMj9KLl/17Dng65cuYJvvvkGc+fOxblz5/DII49g5MiRuHDhAqZNm4YdO3ZgzZo19nwEERERVWM2BSpLlixBeno6Vq9ejebNm2PMmDF48sknERgYqFunU6dOaNasmaPKSURERNWQTYHK8OHDMXjwYGzduhXt27eXXCc8PByvv/66XYUjIiKi6s2mHJWioiKn5p5YizkqRERE7sfpOSq+vr4oKyvD0qVLcezYMQBAs2bN0L9/f9SoYVfaCxEREZGOTVHFH3/8gQceeABXrlxB06ZNAQDTpk1DaGgofv75ZyQkJDi0kERERFQ92TSOyqhRo5CQkIALFy5g37592LdvH86fP4+WLVvimWeecXQZiYiIqJqyqUblwIED2LNnD4KCgnSvBQUF4b333pNNriUiIiJSyqYalbi4OFy5csXk9atXr6Jx48Z2F4qIiIgIsDFQSU1Nxfjx47F48WJcuHABFy5cwOLFizFhwgRMmzYN+fn5un9EREREtrKpe7KHxz/xjUajAQBoN6P/t0ajQVlZmSPKKYndk4mIiNyP07snb9iwwaaCERERESlhU6DSvXt3R5eDiIiIyITNo7Pl5ubi66+/1g341qJFC4wYMQIBAQEOKxwRERFVbzYl0+7ZswexsbH4+OOPcf36dVy/fh0fffQRYmNjsW/fPkeXkYiIiKopm5Jpu3btisaNG2P27Nm6IfNv376NUaNG4c8//8SmTZscXlApTKYlIiJyP0ru3zYFKj4+Pti/fz/i4+MNXj969CjatWuHoqIipZu0CQMVIiIi96Pk/m1T04+/vz8yMzNNXj9//jzq1KljyyaJiIiITNgUqAwaNAgjR47EwoULcf78eZw/fx4LFizAqFGj8Pjjj1u9nSlTpkCj0Rj8M66lISIiourLpl4/H374ITQaDZ5++mncvn0bAFCzZk08//zzSEtLU7StFi1a4LfffvunQDVs7ohEREREVYziqKCsrAw7duzAlClTkJqaijNnzgAAYmNj4evrq7wANWqgQYMGit9HREREVZ/iph9PT0/07t0bubm58PX1RWJiIhITE20KUgDg1KlTCA8PR6NGjTBkyBDJ3BetkpISg3mEOJcQERFR1WZTjkpCQgL+/PNPuz+8Y8eOmDt3LlatWoWZM2ciIyMDXbt2xY0bNyTXT01NRUBAgO5fRESE3WUgIiIi9bKpe/KqVaswadIkTJ06FW3btoWfn5/Bclu7Cufm5iIqKgofffQRRo4cabK8pKQEJSUlur/z8/MRERHB7slERERuxOmTEt53330AgAcffFA3WzJg/4zJgYGBiIuLw+nTpyWXe3t7w9vb26ZtExERkftR1ezJBQUFOHPmDJ566imnbJ+IiIjci02BSkxMDCIiIgxqU4CKGpXz589bvZ2XX34ZDzzwAKKionDp0iVMnjwZnp6eisZiISIioqrL5kAlKysL9erVM3j9+vXriImJsbrp58KFC3j88cfx119/ITQ0FF26dMGOHTsQGhpqS7GIiIioirEpUNHmohgrKChArVq1rN7OggULbPl4IiIiqiYUBSovvfQSAECj0eDNN980GDulrKwMO3fuxJ133unQArpKVl4xMrILERPih7AAH1cXh4iIqFpSFKjs378fQEWNyuHDh+Hl5aVb5uXlhVatWuHll192bAldYOHuTExachjlAvDQAKkDEjGofaSri0VERFTtKApUtL19hg8fjk8//bRKjl2SlVesC1IAoFwAry05gm5xoaxZISIiqmQ2jUybnp5eJYMUAMjILtQFKVplQuBsdpFrCkRERFSN2ZRMW1hYiLS0NKxbtw5Xr15FeXm5wXJHDK/vKjEhfvDQwCBY8dRoEB1i21xGREREZDubApVRo0Zh48aNeOqppxAWFibZA8hdhQX4IHVAIl5bcgRlQsBTo8H7AxLY7ENEROQCNs31ExgYiF9//RWdO3d2RpmspmSuAKWy8opxNrsI0SG+DFKIiIgcyOlz/QQFBSE4ONimwrmLsAAfBihEREQuZlMy7dSpU/HWW2+hqIgJpkREROQ8NtWo/Oc//8GZM2dQv359REdHo2bNmgbL9+3b55DCERERUfVmU6DSv39/BxeDiIiIyJRNybRq4cxkWiIiInIOJfdvRTkqu3btMjszcklJCRYtWqRkk0RERESyFAUqSUlJ+Ouvv3R/+/v7Gwzulpubi8cff9xxpSMiIqJqTVGgYtxKJNVq5MYtSURERKQyNnVPNqcqjVJLREREruXwQIWIiIjIURR3Tz569CguX74MoKKZ5/jx4ygoKAAAZGdnO7Z0REREVK0p6p7s4eEBjUYjmYeifV2j0ZjtGeRI7J5MRETkfpw2109GRoZdBSMiIiJSQlGgEhUVpWjjY8aMwTvvvIOQkBBF7yMiIiICnJxM+9133yE/P9+ZH0FERERVmFMDFY6pQkRERPZg92QiIiJSLQYqREREpFoMVIiIiEi1GKgQERGRajk1UHnyySc5EBsRERHZzKZApby8XPb1zMxM3d8zZ87kGCpERERkM0WBSn5+Ph577DH4+fmhfv36eOuttwyGy7927RpiYmIcXkgiIiKqnhSNTPvmm2/i4MGD+Pbbb5Gbm4t3330X+/btw5IlS+Dl5QWAY6cQERGR4yiqUVm2bBlmzZqFRx55BKNGjcKePXtw7do1PPDAAygpKQFQMTmhLdLS0qDRaDBhwgSb3q8WWXnF2HYmG1l5xa4uChERkdtTFKhcu3bNYL6fkJAQ/Pbbb7hx4wbuu+8+FBUV2VSI3bt3Y9asWWjZsqVN71eLhbsz0TltPZ6YvROd09Zj4e5My28iIiIiWYoClcjISBw7dszgtTp16mDNmjUoLi7Gww8/rLgABQUFGDJkCGbPno2goCDF71eLrLxiTFpyGOV/t3yVC+C1JUdYs0JERGQHRYFK7969kZ6ebvJ67dq1sXr1atSqVUtxAcaOHYt+/fqhV69eit+rJhnZhbogRatMCJzNtq2WiYiIiBQm07799tu4dOmS5LI6depg7dq12Ldvn9XbW7BgAfbt24fdu3dbtX5JSYkuFwaAqmZm9vPylHzd14tj6hEREdlK0V00KCgILVq0kF1ep04ddO/e3aptnT9/Hi+++CK+//57q2tiUlNTERAQoPsXERFh1fsqQ2FpmeTrRaXSY84QERGRZYof92/fvo3p06ejTZs2qF27NmrXro02bdrgww8/xK1bt6zezt69e3H16lW0adMGNWrUQI0aNbBx40Z89tlnqFGjhsH4LFqTJk1CXl6e7t/58+eVFt9pYkL84GHU4clTo0F0iK9rCkRERFQFaISCgU+Ki4tx7733Yvv27ejVqxeaNWsGADh27Bh+++03dO7cGWvWrLGqhuTGjRs4d+6cwWvDhw9HfHw8Xn31VSQkJFjcRn5+PgICApCXl6eKofoX7s7Ea0uOoEwIeGo0eH9AAga1j3R1sYiIiFRFyf1bUY5KWloazp8/j/3795t0JT548CAefPBBpKWlYcqUKRa3VadOHZNgxM/PD3Xr1rUqSFGjQe0j0S0uFGezixAd4ouwAB9XF4mIiMitKWr6WbBgAT766CPJ8U5atWqFDz/8EPPmzXNY4dxRWIAPkmLrMkghIiJyAEU1KufOnUOHDh1kl991110GkxIq9fvvv9v8XiIiIqp6FNWo+Pv74+rVq7LLL1++jDp16thdKCIiIiJAYaDSs2dPvP/++7LL09LS0LNnT7sLRURERAQobPqZPHkyOnbsiLvuugsvvfQS4uPjIYTAsWPH8PHHH+Po0aPYsWOHs8pKRERE1YyiQKV58+ZYu3YtRo4cicGDB+tmShZCID4+HmvWrDE7IBwRERGREooCFaAiYfaPP/7AgQMHcPLkSQBAXFwc7rzzTkeXjYiIiKo5xYFKfn4+ateujTvvvNMgOCkvL0dBQYEqBl4jIiKiqkFRMu3SpUvRrl073Lx502RZcXEx2rdvj59//tlhhSMiIqLqTVGgMnPmTEycOBG+vqbz1/j5+eHVV1/Ff//7X4cVjoiIiKo3RYHKkSNH0KNHD9nl3bp1w+HDh+0tExEREREAhYFKTk4Obt++Lbv81q1byMnJsbtQRERERIDCQCU6Ohp79uyRXb5nzx5ERUXZXSgiIiIiQGGgMmDAALz++uu4cuWKybLLly/jjTfewMCBAx1WOCIiIqreNEIIYe3KN27cQFJSEjIzM/Hkk0+iadOmAIDjx4/j+++/R0REBHbs2FFp8/3k5+cjICAAeXl57BZNRETkJpTcvxWNo1KnTh1s3boVkyZNwsKFC3X5KIGBgXjyySfx3nvvcVJCIiIichhFNSr6hBDIzs6GEAKhoaG64fT1bd26Fe3atYO3t7fdBZXCGhUiIiL3o+T+rShHRZ9Go0FoaCjq1asnGaQAQHJyMi5evGjrRxAREVE1Z3OgYg0bK2vcVlZeMbadyUZWXrGri0JERFQlKJ7rh6Qt3J2JSUsOo1wAHhogdUAiBrWPdHWxiIiI3JpTa1Sqi6y8Yl2QAgDlAnhtyRHWrBAREdmJgYoDZGQX6oIUrTIhcDa7yDUFIiIiqiKcGqjIJdlWNTEhfvAw2lVPjQbRIaaTNxIREZH1mEzrAGEBPkgdkAjPvwMzT40G7w9IQFiAj4tLRkRE5N6cmkx748YNZ25eVQa1j0S3uFCczS7S1aRsO5ONmBA/BixEREQ2UhSo3H333Vatt379epsK4+7CAnwQFuDDHkBEREQOoihQ+f333xEVFYV+/fqhZs2aziqTW5PrAdQtLpQ1K0RERAopClSmTZuG9PR0/PDDDxgyZAhGjBiBhIQEZ5XNLZnrAcRAhYiISBlFybSvvPIKjh49imXLluHGjRvo3LkzOnTogC+//BL5+fnOKqNbYQ8gIiIix7Gp109SUhJmz56NrKwsjB07FnPmzEF4eDiDFbAHEBERkSPZ1etn37592LhxI44dO4aEhATmrfzNuAcQgxQiIiLbKA5ULl26hLlz52Lu3LnIz8/Hk08+iZ07d6J58+bOKJ/b0vYAIiIiItspClTuu+8+bNiwAb1798b06dPRr18/1KjBeQ2JiIjIOTRCwfCxHh4eCAsLQ7169cwOj79v3z6HFM6S/Px8BAQEIC8vD/7+/pXymURERGQfJfdvRdUhkydPtqtgxmbOnImZM2fi7NmzAIAWLVrgrbfeQnJyskM/h4iIiNyTohoVR/v555/h6emJJk2aQAiBb775BtOnT8f+/fvRokULi+9njQoREZH7UXL/dkigsnHjRhQWFiIpKQlBQUF2bSs4OBjTp0/HyJEjLa7LQIWIiMj9OK3pZ9q0aSgoKMDUqVMBVMyOnJycjDVr1gAA6tWrh3Xr1llVG2KsrKwMP/zwgy7gkVJSUoKSkhLd3xy3hYiIqGpTNODbwoULDYbMX7x4MTZt2oTNmzcjOzsb7dq1w9tvv62oAIcPH0bt2rXh7e2N5557DkuXLpXt6pyamoqAgADdv4iICEWfRURERO5FUdNPUFAQtm3bhmbNmgEAhg8fjrKyMvzf//0fAGDHjh149NFHcf78easLUFpaiszMTOTl5WHx4sX46quvsHHjRslgRapGJSIigk0/REREbsRpTT+3b9+Gt7e37u/t27djwoQJur/Dw8ORnZ2tqLBeXl5o3LgxAKBt27bYvXs3Pv30U8yaNctkXW9vb4PPJyIioqpNUdNPbGwsNm3aBADIzMzEyZMn0a1bN93yCxcuoG7dunYVqLy83KDWhIiIiKovRTUqY8eOxbhx47B582bs2LEDSUlJBk0069evR+vWra3e3qRJk5CcnIzIyEjcuHED8+bNw++//47Vq1crKRYRERFVUYoCldGjR8PT0xM///wzunXrZjIA3KVLlzBixAirt3f16lU8/fTTyMrKQkBAAFq2bInVq1fj3nvvVVIsIiIiqqJcOuCbvTiOChERkftRcv9WlKNCREREVJkUBSq3bt3CxIkT0bhxY3To0AFz5swxWH7lyhV4eno6tIBERERUfSkKVN577z383//9H5577jn07t0bL730Ep599lmDddy4JYmIiIhURlEy7ffff4+vvvoK999/PwBg2LBhSE5OxvDhw3W1KxqNxvGlJCIiompJUY3KxYsXDYbQb9y4MX7//Xds27YNTz31FMrKyhxeQCIiIqq+FAUqDRo0wJkzZwxea9iwITZs2IDdu3dj2LBhjiwbERERVXOKApW7774b8+bNM3k9PDwc69evR0ZGhsMKRo6XlVeMbWeykZVXbNc6RERElUVRjsqbb76J48ePSy5r2LAhNm7ciLVr1zqkYORYC3dnYtKSwygXgIcGSB2QiEHtIxWvQ0REVJk44Fs1kJVXjM5p61Gu9017ajTYktITYQE+Vq9DRETkCE4f8O2HH37AgAEDkJCQgISEBAwYMACLFy+2qbDkfBnZhQYBCACUCYGz2UWK1iEiIqpsigKV8vJyDBo0CIMGDcLRo0fRuHFjNG7cGH/88QcGDRqEwYMHcxwVFYoJ8YOHUa9xT40G0SG+itYhIiKqbIoClU8//RS//fYbli9fjuPHj2PZsmVYtmwZTpw4gaVLl2Lt2rX49NNPnVVWVVNzEmpYgA9SByTC8+8xbjw1Grw/IMGgSceadYiIiCqbohyVli1bYsKECbIzJH/99df49NNPcejQIYcV0By15Ki4SxJqVl4xzmYXITrEVzYAsWYdIiIieyi5fysKVHx8fHDixAlERkrfhM+dO4f4+HgUF1dOrYIaAhVHJqFm5RUjI7sQMSF+DBKIiKjKUnL/VtQ92cfHB7m5ubKBSn5+PmrVqqVkk27PXBKqkmDDXWpliIiIKpOiHJWkpCTMnDlTdvmMGTOQlJRkd6HciSOSULPyinVBCgCUC+C1JUdUme9CRERUmRQFKq+//jq+/vprPPbYY9i1axfy8/ORl5eHHTt24NFHH8WcOXPw+uuvO6usquSIJFR2DSYiIpKmqOmnU6dOWLhwIZ555hn8+OOPBsuCgoIwf/58dO7c2aEFdAeD2keiW1yozUmo2loZ4zwXqVoZteSxqKUcRERUtdk0Mm1RURFWr16NU6dOAQDi4uLQu3dv+PpW7pgbakimdZSFuzPx2pIjKBNCVyuj1iHu1VIOIiJyT07r9bN+/XqMGzcOO3bsMNlwXl4eOnXqhC+//BJdu3a1reQKuSJQcXRNgv72AMjWyqhliHu1lIOIiNyX03r9fPLJJxg9erTkRgMCAvDss8/io48+qrRApbI5uiZByfYc1bvIXmopBxERVQ+KkmkPHjyIvn37yi7v3bs39u7da3eh1MjRPXOUbk8tQ9yrpRxERFQ9KApUrly5gpo1a8our1GjBq5du2Z3odTI0T1zlG7PXO+iyhy+Xy3lICKi6kFR00/Dhg1x5MgRNG7cWHL5oUOHEBYW5pCCqY2SnjnO2p5U7yJXJLYOah+J+AZ1sPtsDtpHB6FVRBATbImIyCkU1ajcd999ePPNN3Hz5k2TZcXFxZg8eTLuv/9+hxVOTRw9aZ+t2wsL8EFSbF1dDYYrBopbuDsTD3+xDe/+egwPf7ENszad4YB1RETkFIp6/Vy5cgVt2rSBp6cnxo0bh6ZNmwIAjh8/jhkzZqCsrAz79u1D/fr1nVZgfa7q9ePISfvs2d62M9l4YvZOk9f/+3hr3N8q3O6ySZHq9aPRAFJn0fzRdyEptq5TykFERO7Lab1+6tevj23btuH555/HpEmToI1xNBoN+vTpgxkzZlRakOIqYQE+Du3dYs/2pJqPAGD8gv0oLL3tlKYXqdwaqSCFCbZEROQIigIVAIiKisKKFSuQk5OD06dPQwiBJk2aICgoyBnlI8iP3aJtPpr042GU662vbXrpFhfq8C7DcsGRPnubxYiIiLQUBypaQUFBaN++vSPLQhIsJakOah8JP+8aGDdvv8H7nDW2iS440stJ0fdmv2a4r2UYgxQiInIIRcm0VLmsTZZtGxVkMraJhwbw9XLO1zuofSSWjukEo4+Ep0bDIIWIiByKgYqKWTvWinEPIqAiqHn4i21YuDvTKWVrFRGEtIGO6wVFREQkxeamH3I+JWOtaMc26T9jG7SrOzNXRfuZ9swaTUREZIlLa1RSU1PRvn171KlTB/Xq1UP//v1x4sQJVxZJVZSOtVJYWgbjtBFrRs+1Z0RZ/XFdiIiIHM2lNSobN27E2LFj0b59e9y+fRuvvfYaevfujaNHj8LPz8+VRVMNS7UW+j2CbBntliPKEhGRmika8M3Zrl27hnr16mHjxo3o1q2bxfVdMeCbmkgFGUBFc0+ZEPDQAK8mx+PZbrGS75cavM1To8GWlJ5OryGR63JNRERVn5L7t6qSafPy8gAAwcHBkstLSkqQn59v8K+6kusR1C0uFBP7NoXm79emrTwum1Dr6IkW5cpp3Ky0cHcmOqetxxOzd6Jz2nqnJfwSEZH7U02gUl5ejgkTJqBz585ISEiQXCc1NRUBAQG6fxEREZVcSvWQCzL2ncvBtFXHTRJqtYGCfuCgbSrS58gRZaUCElfNT0RERO5JNYHK2LFjceTIESxYsEB2nUmTJiEvL0/37/z585VYQnWRCzKuF5XK1pIYBw6bTl5z6ESL+uQCkr3ncpxei0NERFWHKronjxs3Dr/88gs2bdqEO+64Q3Y9b29veHt7V2LJ1EvbI0ibj+Kp0aB/63C8tewPk3U9NRr4enlIBg5bUnpiS0pPh3cxlqvxwd/5NEoSfomIqPpyaaAihMALL7yApUuX4vfff0dMTIwri1MpHJlEqt8jyNfLAw9/sc2ke7KHBnh/QAIKS8tkazKc0b1YrgdS2+ggkwCLA8UREZEclwYqY8eOxbx58/DTTz+hTp06uHz5MgAgICAAPj5V78bljK7A2tmXt53Jlpx757PBrXF/q3Bk5RVXak2GVI2PNiDhQHFERGQtl3ZP1miMZ4upkJ6ejmHDhll8vzt1T3Z2V2Brtr9wd6ZJ4KAkULKlNigrr9hsQMJuykRE6uPsa7OS+7fLm36qC3NdgR1xEpirwdCecN3iQm3OR7G1Nkhb4+PIbRIRkfOo7dqsimTa6sCWUWOVkmpSccQJZ27MFluDLGdsk5yLtV9EVZ8ar82q6Z5c1Smdt8eez9Emx9ozZon+eCvOGBiuMgabI8fhIH1E1YMar82sUalE1iaROurJ1dbmJuNamFf7xju8NqgyapjIMdT4hEVEzqHGazNrVCqZpdmGHfnkasvIs1I3pQ9WncCYHrG6bTmiNqiyapjIfmp8wiIi5zC+NntogBFdol1aJlVNSqiUO/X6sYYzegZJ9fTpFhcqW2Oz7Uw2npi902Q7GgDi7/+mJMfj2e7SEx0qZalXELmeKyevJCLXyMorRvrWDMzelAEBxyfVuk2vHzLkjJ5Bxs1Nm05e0910pE48qWo/ALqB5AQqalgevDPcYb2VLG2HSZyuZa5HGRFVXV9tzjCZN84VTb4MVFTEWW2D2mDAmlyDsAAfPNy6IX7cd1F2e47sVm2J2rrJVVccpI+oenH2kBpKMEdFRZydt2FNrkFWXjGW7pcPUrTlqozEKs60rC6W8quIqOqwJcfRWVijojLO7BlkTY2NVDAD/DORYGVW+6spoiciqk7U1OTLQEWFLOVt2DNKrKUTTy6YWTImCUWl5ZVa7a/GbnJERNZy9/w6tTT5stePm3FEDwxLPW3snRPIkdRUFkdy9wuYNarDPhLJYX6deez14yRquPA6ojnEUo2NWqJotZXFUarDBaw67CORHA6S6FhMprWSWoYQl0pw8tAA2QU3HZpkqpbESW1wWFWClOqQIFwd9pHIHHccJFF/2hS1YaBiBTVdeI17Bmk0gBDAC/MPuM0cLNb+INQSHDqS2i9gjrhYqX0fiZxNTT1mrKH2ay0DFSuo7cI7qH0ktqT0xIwnWgMCJgPy2HKTqaxo2tofRFZeMVJ+NAwOU5YcVmW0r4SaL2COulipeR+JKoM7TREi9yB+8HyOampYmKNiBbX1PtE2hwj8E6Ro2dJ9t7LyCZS02+49l2Oyb0IA+87loF9LH932XJ0zpJSauvzpc2Sbulr3kagyuUt+ndyDeP8Z25wydL4tGKhYQU0XXv2gQoN/5uDRUhpAVWbSl5JEYLnOaNqXpWZ4TrwjwC2CFjVewBw9Zo0j99EdA1IiwLopQlzN0rQpakgEZqBiJXMX3sq6kBoHFdpJAu0ZjK0yB1VTUjPVLjrYJAjTAGgbHSQZXKWuPA5AHdG/NdR2AXNGraEt+2j8W2LvIXVgsFh1GT+ISwUtrh5ok4GKAlIX3sq8kEoFFQLA54Nbo25tb5ueXCuzWUtJzVRYgA/SBiZi0o+HUY6KZKrUgYkIC/DBtjPZkqPnAuqI/t2RGmoNpWrJpq06zi6eLsZgseoxDjy1D+L7zuXgelEp3lr2h1019Y7GQMUOld1XXi6oaBsdZPPnVfYNSkmTgNy6clWVWq6O/t2V3PGujKdpqd/StJXHUW60Hr/byqW28UBYs2M/ucBz08lrkmkFasgxY6Bih8qei8ZZQUVl50woaRKQWtf4OBjzAODrxQ5ttjA+3pX1NC31WyrHP93vtVz9ZFfdqGm+Ldbs2E8u8IxvUMckrcBDU1Fbb8+DsKMwULGDK3oDOSuoUFvOhCX6x+HQxVx8sPKELmgpB/DwF9uq7YXM3FOnkifSynyalvstTUxuqvtu1fBkV92opcej2mp23JVc4Ln7bI7pg4IA6tb2VsXxZaBiB1e167tbUAE4p8pWexySYuvirphg9P9im+7pu7pdyLTH9/CFPF1eh/FTp9InUlufpm35ruV+S4PaR+LBVuGq6iFVnaghdwlQV82OO5MLPNtHB6kiIJXDQMVOauxqqjaVUWVbWFoG41ag6nIh0z+++vSDNQCKn0j9vDwlXzfXrGbPdy33W3LHwLwqUcM1zlU1O1UtJ0aqh8+ILtGo519LFQGpHAYqNjA+eXkhlVdZVbZqqaKubMbH15g2WBMQip9IC0vLJF8vKjVOcZUui7nvWu4GoP3/jOxCg7/NvYecz9XXOFfU7FTVnBht4Jm+NQOzN2Vg9uYMfL0lA6kDErElpacqH7oZqChUVU9eZ6ms5gO1VFFXNqnjq08/WFMayCkN/qz9rg0GLdQAKcnxeLZbrMky/d8Xf3dUmTU71SEn5qvNGSaDum1J6Ymk2LouLZcUBioKVIeT19Fsqemw9aakhipqoHKf/M111TYO1oyrfCcmNzVbPqXBnzXftcmghQJIXXEcEMCDd4Zb1SOBv7vqy9E1O3K/1aqWE2O8n+62fwxUFHC3L9cR7L3pKr3Z2RsMurqKurKf/MMCfCoGRvt7zBFtT5mWDQNNgrVB7SORW3QLaSuP68YpCfSpabZ8SoI/a75ruRqgaSuPo2GQj9U9Eqr6746cz9xvtSo1JUvtZ7e4ULfaPwYqCth78rpbG7ujbrpKbnbuHAw6osYtK68Ye85eh0ajQdso+fELdL18Lv7dywcVzSgTk5vqmlGk3jNt1XHFc3goCf4sfdcxIX4mY6MAFV3KIaSbp9TeI4Hcj6XfalVpSpbbzy0pPd1q/xioKGDPyetubeyObuay9mbnzk8y9gZZC3dnIuXHw7pAQgMgbaDpeSLXy0cI4IOVJ/Bgq3DJz3NGEGgcfFsKxsMCfJCSHF/R3KNHO8Ky1O+rVYT062q9qJL6WfNbUEtTsj3M7ac77R8DFYVs+XKlbvqTlhyGr5cn2kUHq/IEcVXNhjs/ydgTZGXlFRsEKUDF6JCTlhw2CA6t7eUjdbwcHQQaB98Pt26IpfsvWgzGn+0WC+gNke8BYGLfpgCAiGBfLBmThKLScoPfl7W/O3ertSTXsDafytK5pPbzTWo/PQD8VViCrLxilzeVW8ulgcqmTZswffp07N27F1lZWVi6dCn69+/vyiJZRemXKzk8uABemH9AtbUrrqzZcFak7+yLij1BVkZ2IaRij3IBg8BDSS8fR5bPmFTw/eO+iwblNlcD92z3WEADXb5M2srjSFt5XDd0d+qARJPeB5Z+d+5Wa0mOo/1t+3l5orC0zOJv3NJvwZpzyR3ON+P91M7fM27efnhogJFdYjCiS4zqgxWXBiqFhYVo1aoVRowYgQEDBriyKE5lrmeGWnswuLpmw9GRfmVdVGwNsmJC/HQXEX0eGhgEHkp6+TiyfMYsBUyA+dqdrLxiTFt5XJeror8pW3N72DOoepJqCrXmN25uEk5L55I7nW/a/dx7NgcvLNhvMHr37M0Z+GpzhkETsxpriVwaqCQnJyM5OdmVRagUxjd9Y2pNFtU/waEB2kYFubpINqnsi4qlIEvqQhAW4IO0gYmGOSp/X2yNB0QzDiAn9m2KlneY9vKxpnxKc0y0LM1gDSgfc0Wf0t+EuaZK7XJL+6TGCzSZJ9cUak+iuDXN3u6W9B8W4INDFzJMktiBiocE7bHSn0FZTbVEbpWjUlJSgpKSEt3f+fn5LiyNMtqb/r5zORg3b7/BE6Sak0XVeuIqoaaLirmaHf3AUKMB2sj0+nFUrYitOSaAdMDUv3U4lu2/ZPOYK/o8AMnfhFwwIddUeehCLoZ8tcPiPrlDNX5lUFOwZk1ZzAW8SgNVLWuavd0t6T8rrxj/25whu7xMCOw9m6PaWiK3ClRSU1Px9ttvu7oYNgsL8EG/lj4oKLnt0mRRay9G7lS9aY6Si4ozL9TWHM+wAB/c38r548XYm2MCSAdML/dpqmjMFbnE4FHdTNvNzQUTkjVNyU0rEnYlktgjg311uQyA8nmQqqLKCtas+Y1ZU5asvGJcLyyVbDIFlAWq+qxp9nZ107i1tMf69NUbZtfz1GgAiQcHtdQSuVWgMmnSJLz00ku6v/Pz8xEREeHCEtnGUU/EttxUlVyM1FQTYQ9rLyrOvlCr6XjuOXvdrhwTLeOASUkANah9JOIb1EH/GdsMbjQeGmB45xiDda0J8ox/V+aS2PU/a1SXGNV8L65SWQ8l1gYglspiMA0DYBKsyAWq1u6TNddotXfvNT5GcrTXw7ZR6h2vyK0CFW9vb3h7e7u6GA5h7xOxLTdVpRcjd6veNMfSRaUyLtSHL+SZvGZNzQ5gWnVtT82P9tyxpDK+61YRQUgbaDmItDbI0/6uLD1ta5WLijlPqsp5bitnBdHG57E1vzFLZTGZhgEV18DPB7dGRLCPrmu7vftkzTVard17pY6RMQ2Azx9vjbbR/zQxq7WWyK0CFapg603V2h+u/sVFrSeuLcxdVJxd26EdFdaY1Hw7Uk9C+t12AVgdpEoly0o1t3gAeLhNQ6tzTBzJmidTuZyWQxdzTboxW3raNlYO4JkujfD1lowqcZ7bQulDiS3NN3I1V3vP5hg0d1oqi1xNWd3a3mgVYZjwX10DULncHe1vQXvduL9VuMFytdYSuTRQKSgowOnTp3V/Z2Rk4MCBAwgODkZkZPVLZLOWrTdVay5GUjU1rpr629WT+znyoiZ34WjZMNDgb3NPQuUCmPTjYYO2ZHNBqtR3GRHsK1mOz59ojX4tw63OMXE0S0+mYQEVcxqlrjQM9oxH4pV72p76UAu8uewP2VyG4V2iMbxLtOou0JVB+zt7NTkeH6w8YTFYs7X5RqrmCgBeWLAfBy/k6sbzsNRUq2SwNmv3qaqRO0ZSgykaU2MtkUsDlT179qBnz566v7X5J0OHDsXcuXNdVCrruDI73p7kUHMXALkRdJeO6eSwqb+tPW6umNzPmbVH1n5nlrrtaufE0SdXKyZV67ZkTJJkOdr83fVcjRcprcQ7Akxes6bbaLkAYkPrGDQxaRl/z45oWnMnxr+zV/vGm+3qbm1truT3AOCJ9pGYvyvTcARmYTqeh7kne0u/VYMaNQ0wpkcsujQONdlOVfuOrbnWG9c4uQuXBio9evSAkOrYrXKu7spob3Ko3AVA7iLff8Y23QXEEbkRlo6bq3obObPa07iXi4cGkt+ZNd12jbPzrQ14yoRAUWm52zbn2dttNCm2ru779fXykHyyzMorRvqWDMzenGFQRV4VuypL/c4+WHUCW1J66poJjX/rcufVvnM56NfSfPONBsCC3ZmyzXACphMDWupxZjzGk0mNmgBmbDgD/1o1DR62XH0NdzSl13p3wxwVhdTSZdfe5FAleQDaC0hu0a2KmXpt+HErOW7WJNM560nI0TUKxsmEQu8CKvf5qQMSkbLksMk62qACgMVAw9obtrtcwHRV+X3j8cEq+ap8S0G8ue9XaoTTqtxV2dzvTG78JLlrxLh5+1FQclu2u7gHKq4jjuhppiVVRrmmzWkrj+PBO8Ml87T0v2PtcXGnWhZbrvXuhoGKQmrqYuro5FDjp37j92rnYgGUX8CVlMfcTdadnoSMyyrEP602xk+P+rrFhZo073gAWDImSVd1aynQsOeGbY3KrDY3aZ5IjkfLhvLNE46YOFRfVe2q7OflKdmt19fLw+yNT+oaIVCRP+XnXQNt/x6oUP97+KuwBOPm7bdYJiWTeMo1bWo0pg8C5fhnziy5a9F7vx7Fr4cuu1VNWlZeMX45dEk19yRnYaCikDt02ZXrmmlNOc2NbWHPj0HJcZO7yQLuMzCX1IXUmNzxk5qgsBxAUWm57m9rAg1nVf1WZrAo2Tyx8p/mCTlKAzFzuUFq+33bQxtgHr6Qh2mrjptcH94fkIDC0jKzv/VB7SPh6+VpMB4NUHGOaie7054T2u8hK6/YqikXlEziKde0mZIcj9QVhknX+t+hXK3QL4cu/7MvKr62aEnVAGpVpXMWYKCimLOTLu0l1zVTSTmlxrYwHjwJUDa6q9LjJnWT3XYm222eHKyZtE/u+DkyGLa15kSuxqSymz5trcFUUuOTlVeMvwpKJG9eHjDNJXLXJExzNzYPzT81dlJBhfH51y462OxEq8a1K+Zqaz1Q0etMO2WENcfXUtMmREVzTzmkE6bNzb2mpdZrC2C+BtBDYzjsgbuer/oYqNjAkU+qjjyJzA2EpD+ojzWk9jHQp6Zdo7sqPW7GN1k/L0+Tal21PjlIJhNqAI2A5MVTn63BsKPOJXPfob1Nn0rLKHdD8vXywLYz2ZLbMe71kZIcj2e7xVrcVw2gO78qxv1ohOFdog22705Nj/rM3diAiuOrrbGz5vwLC5DuLq7bHgxrV7rFhSIi2BdTHmyOt346arJusJ83wgJ8rD6+lsr4bPdYPHhnuOy1Rnst+vVQFt799ZjkPqj12gKYfxAqF0DaiuOAAAJ9a7rl+WpMI9yx283f8vPzERAQgLy8PPj7+7u6OIo5+qK37Uw2npi90+T1+aPvcmj3YnMJvJ3T1pvcVCxV01tD6mlQe3FS6w9v4e5MkwupkkDN3LGW+ixHnEuWvkN7vmMlZdQPaDadvGYy+aHc5IlS5QOAScnxeLZ7rMlnGK9r7ukegOn6GuDTwXeiXXSwqp9W5a4NWlLfoaXzz9I2tTR/V+tqH5z0c7X0PxswPb6Wzi39MgLKE2HlzhcPAKkDDc8rW2YZdxa5chuTav53xPXYEZTcv1mj4iIHz+cY9OxwRBV6ZeTPODqB1xpST4PGyaVqJFeDZO2xkDrWUhdIRzbHmPsOtcuf7xGLmb+fQbmwvklRSRnNDTro6+WBh7/YJrsduSdN414fGdmF+KugxGRdc0/3UiOrlouKuYPU/rRqrtu73HdoqdnQUld6Lf1HYW0tl4dEzaItTbvaMtoaqJv0TpKoSTOudevSJARbTmW7NOlWqtxS34PxS2puzjKHgYoLzNp0xiTZC7D/JHJ1/oyzAiW5waP0k0utVdlPQvb2rtEndzF2ZIAo9x0euvjPLLRaGgAT+za16iKtZPoGc4MOWrqZxYT4me31YdylVS7hXMnIqtrlak6+DAvwwavJ8bo8M23embneU9ZsM3VAIib9eBhKfolCAP99ojWC/bwNPtvW64e9gbq5Jmmp5vTNp7J1y2393h1xHdIvt6+Xh0kHCClqbs4yx8PVBahuZm2UDlIAx5xEg9pHYktKT8wffRe2pPR0yUB0npqKGWpsCZSy8oqx7Uw2svKKda9pL2D6bDlWC3dnonPaejwxeyc6p63Hwt2ZistiK3u3JXcxzsordtjxAaS/w4l9TROpgYqL9gerTuDg+RyL+2ZtGc0NOrhwd6bF7YQF+CAlOd7k8+W63ULzz0VQ/3yVC45HdWmkOzbG9Gue1Gbh7kzdd6gNMJ/tFouk2LqSv09rz9dB7SOxddLdeKZrI933os31Af4JBvVpR0KW+uxRXWIkvw9zLNUCWiMswEeyPNYkxSv9LKXXIXO05W4VESR53utTW8cPJVijUomy8oqRJpN8JjdSqS0c+RSvlD2JxnI1Bo6oKVL61OXI/CFHbMvcxTgptq5Da9KMv0NzF+syIdD/i226BFRbkx+1LA06uCWlp8XtPNstVrLXh1S3W6VP99o5gfady8G4efsVd/93BalagQ9WndA1hRmz5XztER+Kfi0b6Eb7BSpqsA5dyDW45mlkrnPGn/mMRCKzHEfX5OrXdljTvOWhAbILbiIrr9ihTaBKPds9FueuF2LezvMmy97s1wz3tQxzyyAFYKDiENZW40mNjwFUPHEsHdNJ1fkWStgSKFn6Advb00pJ84gjLyaO2pali7Gjx0wx/g7NXaytzbOypoy65gSZQQfPZhdZtR2pXh9y3W61ibNS5ZALiPq19EFByW3VDlOgz5nnvlRQo5+4P+SrHQbXPI2AbgRY7eftOXvd5DO/3pKB4V2iAVTk8+06ex0dooMlr5GObPKW2p/UAYlI+fGw/ND/CvKUnJHHp3//eeHuJliw67zJOe7OQQrAQMVuSp4+5KLzlPviLQYprs4ydzZrfsD21BRJHXu5JyFHXkwctS1rLsZKjo+S88n4s7U8AJPcBGuTH82RG3TQuInHmnIbHx9bx/Lx9fJAYWmZwbkiFTCp8XeqpIu3I4MaueYz7bbMjeui/cwPV5/Aj/su6l4f2KYh/vPYnSbrKwnUlY4RNDG5qWkyE/55SftyuagYPya+QR3Z67mja3/kAit3CKCVYKBiB6VzRphkaqNiOHC5MR603HXsBiWclYirf1HSP/bahEupJyFry2LvwFRKOarWxJbzyfimXVRabtIDB3Bc84fUoIOOuODaMpaP3Lw32uVSvUO0MxEn3hEgeX5UZkAjFaD1bx2u++4szeWjn2CsX2ZLQY2lbZkb18VTo0FR6S2DIAUAftx3EU8nRcnWrFg6lraMEZS28rjk3FxSRS8H0P+LbUizsgnUAxX5QracA3L3ny0pPXW95NxlLi9LOI6KHeTGEXimayN8teVP2RuBkvExnDk2iTPYO7uy8Y3JnoBM6qLULS5UNr9A/5haKouSm72j98sejj6fnLlv2mYBD5nmmcpg7fEyN66F8fmhZBZxRwYz2uuOXICp3Sep7xSA5G/J0rGROz/MjcGi7ZGU+VchvjeTb+GIMVMsjRFkK0u/qVmbzugCIFsfPitj3Cxn4jgqlUSyOQHQBSmAdBuvkip6NU2CaInSJ3XthdjPyxOFpWXoFhfqsCcBc08bQX5eFscXUNJl0RG5Geb2w5E3K6Xnk6XPrwrzCZlj7fGyNFKofk2ruXPHeC4eR+6/9rpjqYu38XcKGA7Epv9bstTMIHd+yF07P3+iNS7kFEv2MtO6XliqK4+SY2PpuwwLqOjCLdcrUwlLv6lperU0zspbq0oYqNhBqkp1ZJdo/G9zhsF69gQW7nIy2pOEp+XIG5K5i5K1x1QuoJTb9t6zObi/le25GcaccbNWcj4pGc7cmppBJXPvWHMuKQ3ibAn6rD1elnqHaM89ASF7Xi4/eEmymcERPUMs9WQx3if979RcYGNtgrS1ycptooLwwvz9ssfx7qah+OL3MzbN4h4T4mdxotbEhgGS79UeLw8NkJwQhl8PZ5n9LHPX6MrMW6sqGKjYSerp46stGQ4LLNzlZLQnCU/LkV31zF2MrTmm5m5qfl6eUrl1eGH+flzMLTYZqt0WcgOfmUvUM7ct/X2x5nyypbeS3DFT2tQhNWKs8bmkNIhz1Mil5kZxNTfRnf41QKomYcGuTPx08JJsOYxHB1YSbNmbcCmXiK4ksVmKVLLynrPXzTa9rD9xzeQ1cw8J+ufkh6tPmPxm9SfvA+SvG0vGJBl0vV55JMtgHe3YMeXC8nglasxbUzsGKg5g/ENVGli4qnrdkZT8+CyNy+GIZi1LNxhzx9TcTU27TKr4AqiYpE0DiwnSlpgb+CxtoPU1K3L7Yul8UvrUJ/c51gY8xu839+QrF8TJBVHOHLlUbr1DF3PxwcoTkueeQVL33/tpLkjR7r/+6MDWBluOSLjU/pb0p/wQAth08prduTXGycrSQ+lZNn7BfhSW3pbNI5OTuuI4An1q6s7VPWevY3D7iIouvvhnwMPC0jKD/ZG6tlh7jbb34VPq+AqLY9K6NwYqTqAksDB3UzQ+IdUYoGgp+fFZmnfEUc1alr4HqWNqqSeXpQsf8Pe8Mq2kB9OylqWBz6y5yVq6QZt7v5LA09znWBPwSL1fbj4YQD6IS9+agdfua25SPkdUtVv7+9OulxRbFw+2kp69V3te7j2bgxcW7JfsUaJPanRga2vYLA0UaG1eUre4UIPIUaCiK66lgNPc9Uz7mvFgdLaQyvWx5rcKVLwvt+hWRbPb369pUNEpom4dL91x198fe+fxsvXh0/j4Pty6oewEnVUJAxUnsbbdXu4Cb65LpFpZ++OTqyZ3RrOW0gDP3IVdKr9ASrmA3bVC2mNkbuAzS9u3N3HW2sDT3nwgqffLjRgLyAdxX23KwPDOMSZldFWel7lzLyzAB4cuZJgNUsb1jEXnxqGyowNbU8OmZAwVwPx8UsZFLQeQvuUsXuvXDIBt1zNrhqi3lv65rWS7ZUJU1ITqEajoFKE/07NUoG/vb1zJ+6WOr373bUfnMqnpwZiBigvJXeD3nctx2jDLzqb98WnnCrGmOUs7LkdlNGtZ+iFauqlJ5aYYc9RN0NLAZ/buiz5bm4gsfY41AY/c++W6JIcF+GBklxjMNkpa1x9MzHh9V+Z5ZeUVY++5HAgh0C46WPf7MC6/vic6RuDlPoZzt9hSwya173JjqJgLNKQSUYGKm7l2qHtbrmdS371xvkf/1uFYtv+SrqkMGtNJJwHDc9vamZ3ljqu2nMbM5d3J/RZtvflbM26NufIp/Vy19LSTwkDFheQu0OVCvmeA2gMVwLG9RSq7XHI3NQCYs8X0xiKVS+HIm6DcwGfW1Lg5KnHWmjwD48+ZmNwUGdmFuJp/ExHBvgbJiI4IJEZ0icFXmzMszrWjvVg7suu7Egt3ZxoMv64BkDYwERHBvrIBr4cGeOHuJgav2VPDZvxQoD+GirXNdEmxdTG6a4xJj0b92kOpYKYi4JC/nsnNU2UcIL/cp6lBhwXtPEIfrJLOA5I7p+Ib1MHszX/i10OXIfDPmC1pK46bfB8efwdEls4xa3LalN785caAshR8actny1ARan44ZqDiQnI/pnbRwW7RJVlKZZ/w1j41KCmXcU3CppPX0Cl1vWwCrZYHgCVjkhw+Z5O141pYsy+OSJzV0h8HRz8YOXQh12QcDKl5YJSWU19YgI/FkWtd/YSoPef0D602t2Pp2E6SNx0PVJRTP4dDe35bM7WAHG3Aaa6rsaUauOFdYpT3aBRAZLCvTfNU6X+XxgGzLg/oTuk8IHPb/e8TbfF6P8NBNwN9ahoGlH+fLwDMnmMHz+cYvE//t3g1/6ZBArI2r8jXy1NXsyYlK69YcptS49bo1zZJDc5nXCa5z1T7eF0MVFxM7sfkDl2SpVTmCa/kRqS0XPpNWHK9fIyVAygqNZ79xjH0L9SWBuwy914ptuRwyI2D82pyvG6gMn3WXCyV1rApHZTP1u7d1rK2ql57nhgMpa4BRhnNGCx3ftsztYAtzXQAdM24xsO/j/x74kBAetJVIbGv9s5Tpc/S++SWG7+un+Cs0cCg2dFc78AUiWtDmRBI35qB2ZsyTPN6hOUJDD9fd0p2QEqpc16/tslcMPrroSz0k5mcUO3jdTFQUQGpH5M7dEmWUlknvJIakqy8YlwvLJXt8mquVkZJUl5l/bCVzMdiDaVNL+bGwTE3oqgzAlbttjKyC03+tiX51BZZecWYsyUDX/9d26BfVa+dU0qfByrGIEmKrWvT6Mf2XBvCAnzwat/4iu8Jpk2VUrWJxqPAbknpifQtZ/HVlj/xv80Z+GpLhmzThPa8NLevahEW4CM5FovU9Vn3ACNxrntoIBmk6CsX0hMYztp4BvN2mU4boD1npMpj/Ldcfs67vx7D+yuO2dVM7CoMVFSssnM4HKGyTnhra0j0n0o1+CenRCrXQwNgdNcYDO/yT88RuR+9tmugcbWr0v10ZGBhT08xJTc/S8PFyyUcOyOQk6t1cET3bkuy8oqRviVDMm/jtSVHMLFvU8kZd1MH/tO0I/cbNzf6cXDtivPF18sDvxy6hA7RwVbXEi3cnVlR44WK5o2JyU0lb1r6tYnGwdKSMUmS04RYGlLfHa9ncuR+AxW1TKaJ3lK0EximJMcjsWEA/Lw8kbZSevj+wR0jTIJxOcbXB4PPtLOZ2FU4KSE5hZKJF21x8HyOZFu9/kRgB8/noP8X2wyeejw0wGeDW6NtdMWFXWoSMqmEOP3q7sEdI9ApNgRtoyq2Yet+2ptDoX+MpfbFQwN8OvhOs+3htjA3eZt2zA9tkqP+646ejNHSJHPmBvyyd+I2awYTM0ksBbBsbCerggqpfdPvDWNsYJuG+M9jdyreprnJ8+QmvXujXzO8++sxk9e1x9TZv301kDqWHhpg6ZhOqOdfS/K7A8z3GJQL8PXfq9EAKcnxVg0omZVXjF8PZZn9rlxJyf3bo5LKRAppu/dm5RW7uig20Sa7KblQWbvPC3dn4uEvTIMU/ae3hbszKwIZier/urW9zecQ/P3UoS3HoPaR2JLSE/NH34VX74vHgl3nMW7efnROW49NJ68p3k/tvko9rSr5vvWPsVxTxwvzD6Bz2nos3J2pqHyWPjd1QCI8NYbjiGq/g2e7x+qO109jO2H+6LuwJaWnwxNZzdU6ABXf29IxnUxGO7W3ZseawcQ8NKY3HW2+hjXCAiomyPP4u/DaC7XcZ/647yIOns8xu01ztZCA6e9PWyulz1OjQfvoIMnX9ZsmbPlNuBPj34CnRoPUAYloFREkuSxtYCLSBiaaveHKnU5Cb5kQFaPpztp4xqoy9msZZva7chds+rFCZQ+C4+reCq5g7T6vO3bZICMeqFhfv7eNuQRY/bbewxfzZMtjXM2u/d61Q5gDlhNElea+WJvDIbVdc+NGOKPnlaVxcCqjml9un1+Y/89w6nLdu+0pmzV5S2N6xOKL38/YnKu1cHemQb5Pz/hQrDtuOs+Nvj1nc8zW1pjLbZL7/Uk15bSKCFJ1PkNlMddUIjWPUUyIH5aO7WRSy2vO3fH1sP74VZPXp608jgfvtDz6tdpzT6zFQMWCyg4a1N6f3Rms3ed/LzpgMBKjVrkwfFI1dyMRqJijpFtcKKbJtAcDFdWt4xfsN/jeI4J9rQ4uLJ03chO9ZRfcRFZesex3LbfdTSevmb34OSuR1ZXnpLbWIXWF6aii+nP/OLrtXW7wM33NwvxtvkFI1dhYClIAoF20+SYlc716jLvDpvx9/OSOnZrzGSqTud9AWICPZN5YmpnJK/V5AHjxnsbYcOKqac0wrB/9uip8V2z6McMR1fNKWaqerYqs2eeD53MkgxTA9ElVqspaS5tMaW6WVuNqdm3X1uLS25LbPXQh1+Bva84b4+phbe8Qc001cts9eD7HYhdqd6zutUZiwwDJ18sFDM4fe5sj9JtFNp20HDRcLyzVjS2jtOnLmhob49Owa5MQ1POvZXHb+s2Y2jLtPZdj2kwlgH3nKpqS5I5ddWjisYe5B7AtKT3xTNdGJt+j9m9PjQapAyuaklKS42FMAyj6PVv6rtSeasAaFTMqexCcrLxinL56w+zMsVWRNV2ad529Lvlebc8F/Yx4c1nvAP4et0JjWqMB4PMnWkMAGDdvv8F7ygUw6pu9SE5ogBVHLhss+2DVCYNqWLnzxngcA+2Tzr5zORg3b7/snCJactvdfTZHugeC3jDk7ljdaw252g0PjbILuTnGPccg8XnG3vrpj4rkR1SMRGucuGiuWdDS8O9v9muG+1qG4Wr+Tcze/Cd+OXQZm09lo3PaeqtqfI1rAeT6U7hvNwt1MHf/iA7xrZhLSG+ZNhnXuBn1wVbhpiPnyjyI2cIdUg1UUaMyY8YMREdHo1atWujYsSN27drl6iIBkE8mc0bQsHB3JjqlrsdbPx116pDsaiSVfGa8zx2igyXf+3THKExbeRxPzN6Jzmnr8d6vR5GVV6x7cvzv460lv8M2UUGmyXADE9GvZTjaRpkmCwIVN6dVRkEKYFr7I1ej8+6vx0xqS8ICfBDk5yU7wJM+pcmNS8c4L5FVLcICKkao1d997aii5n4zUk+Qcq8Zz+5rrmeGcSAjUNGsor/Nhbsz0Tltve6c1T8ftAHMq33jZS/Ot8sFwgJ8UM+/FlYc/ud8LBcVn/XfDafwy6FLyMorRlZeMf5vewY+WntCNtm2XXSw5JN9WwtNSWSe3O9V261cKvm9qLTcpOZDciA9oxpDW7mi1cAWLq9RWbhwIV566SV8+eWX6NixIz755BP06dMHJ06cQL169VxatspKRDIeMlnLOEm0KrPUjtoqIggD2zQ0aP65L7EBvt15zuBHNntzBr7anKEb1Ov+Vj4oLL0t+R2aG7pbbl4V7fgT+k+bxsGrNndCavAzqdoSuXwV44BY7nyUS26sDucNYH5UUSlST5AADF4b2SUGI7rEWNUM46nR6KYPOH3tBt5c9ofBcgFg79kc3N9KfmwSqRmGX70vHueyizBvl2EzoLYGT3LWaQAfrj4pWc7P1p2W7MasDfYm/XgY5fh7GP+B5gM9skzq96o/IaQxuYdgZw6iqfah87VcPo5Kx44d0b59e/z3v/8FAJSXlyMiIgIvvPACUlJSzL63ssZRcfa4AHLjFQDq6O+uJgfP52DP2Ry0iw5CYWmZ7HEzHh/Clu9QbqyWiclN8cFKw8nQ9GssrBljw/h71Q3H/fd7tE0GUjUhcvtSHcavsJfk+BcAINHUogGQcp90wKll/P3/cuiSSbMhAMx4ojX6tQyX/a3/9/HWuuRt/W1/MrgVXph/wGT9+aPvwqGLuSaJxNb4SWYsF54/zqE9rsYTQuqzNM6Q/lhOjhyTSOnYOo6k5P7t0hqV0tJS7N27F5MmTdK95uHhgV69emH79u0m65eUlKCkpET3d35+fqWU09m9Gyqjnb2qaBURZNANWa4t3/ipwJbvUK5r66D2kXiwlfRkaNaMsSH1NNQtLtTgBNAm/Ur19pLbF1f3wnEHkuPNAJLtOQLABytPGAw5r0+qxrNtVJDkDMJt/h4cUO7pWCpQksul0jYfmOu1Zo5cN2aeP86hPa5Sc/AA/+QcmTv2zuq54y7dl12ao5KdnY2ysjLUr1/f4PX69evj8mXTXIDU1FQEBATo/kVERFRWUZ3K1nb26k77I5PKB3FU1ahULwntZ0tl0csOra35p1xSFwKpduiq3tvLFaTyBjwAyXMIqPgOWt4RiM+eaG2yzLhbPPDPb1k3UJsGSBtgOGS+VD6WVF6UXC7V+wMSUFhaZrFJSo6lbszkHHI5K5aCFC1n9bKSu8apictzVJSYNGkSXnrpJd3f+fn5VSZYUdrOThW0xy19awa+2pQhOdGavZQ8aco9MWtzGOSehtQ+e2lVYW4sEamaMO13EB3ia/X3Y+npV+mM6VLrm6tNNGdgm4bVJndJbdRce6H22jSX5qiUlpbC19cXixcvRv/+/XWvDx06FLm5ufjpp5/Mvp9z/ZA+tbSx29qe7Kx2aDIlda5k5RVLBrxScz456/tRcg4bl2diclPcEeiD64WlCPbz0jU3/Xb0CrILSnB3fD0GKSqgluuUqym5f6simbZDhw74/PPPAVQk00ZGRmLcuHGqSaYlUsrWixEvYq5n7jtQ2/ejtvIQWcttkmkB4KWXXsLQoUPRrl07dOjQAZ988gkKCwsxfPhwVxeNyGa2VqWqvQq2OrA0LLqavh+1lYfIGVweqAwaNAjXrl3DW2+9hcuXL+POO+/EqlWrTBJsiYiIqPpxedOPPdj0Q0RE5H6U3L9VMYQ+ERERkRQGKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoRERGpFgMVIiIiUi2XD6FvD+2guvn5+S4uCREREVlLe9+2ZnB8tw5Ubty4AQCIiIhwcUmIiIhIqRs3biAgIMDsOm491095eTkuXbqEOnXqQKPR2LWt/Px8RERE4Pz589V23iAeAx4DgMcA4DEAeAwAHgPAecdACIEbN24gPDwcHh7ms1DcukbFw8MDd9xxh0O36e/vX21PSC0eAx4DgMcA4DEAeAwAHgPAOcfAUk2KFpNpiYiISLUYqBAREZFqMVD5m7e3NyZPngxvb29XF8VleAx4DAAeA4DHAOAxAHgMAHUcA7dOpiUiIqKqjTUqREREpFoMVIiIiEi1GKgQERGRajFQISIiItWq0oHKzJkz0bJlS91ANUlJSVi5cqVu+c2bNzF27FjUrVsXtWvXxsCBA3HlyhWDbWRmZqJfv37w9fVFvXr18Morr+D27duVvSsOkZaWBo1GgwkTJuheqw7HYMqUKdBoNAb/4uPjdcurwzG4ePEinnzySdStWxc+Pj5ITEzEnj17dMuFEHjrrbcQFhYGHx8f9OrVC6dOnTLYxvXr1zFkyBD4+/sjMDAQI0eOREFBQWXvis2io6NNzgONRoOxY8cCqPrnQVlZGd58803ExMTAx8cHsbGxmDp1qsFcK9XhPLhx4wYmTJiAqKgo+Pj4oFOnTti9e7dueVU8Bps2bcIDDzyA8PBwaDQaLFu2zGC5o/b50KFD6Nq1K2rVqoWIiAh88MEHjtkBUYUtX75c/Prrr+LkyZPixIkT4rXXXhM1a9YUR44cEUII8dxzz4mIiAixbt06sWfPHnHXXXeJTp066d5/+/ZtkZCQIHr16iX2798vVqxYIUJCQsSkSZNctUs227Vrl4iOjhYtW7YUL774ou716nAMJk+eLFq0aCGysrJ0/65du6ZbXtWPwfXr10VUVJQYNmyY2Llzp/jzzz/F6tWrxenTp3XrpKWliYCAALFs2TJx8OBB8eCDD4qYmBhRXFysW6dv376iVatWYseOHWLz5s2icePG4vHHH3fFLtnk6tWrBufA2rVrBQCxYcMGIUTVPw/ee+89UbduXfHLL7+IjIwM8cMPP4jatWuLTz/9VLdOdTgPHnvsMdG8eXOxceNGcerUKTF58mTh7+8vLly4IISomsdgxYoV4vXXXxdLliwRAMTSpUsNljtin/Py8kT9+vXFkCFDxJEjR8T8+fOFj4+PmDVrlt3lr9KBipSgoCDx1VdfidzcXFGzZk3xww8/6JYdO3ZMABDbt28XQlR8uR4eHuLy5cu6dWbOnCn8/f1FSUlJpZfdVjdu3BBNmjQRa9euFd27d9cFKtXlGEyePFm0atVKcll1OAavvvqq6NKli+zy8vJy0aBBAzF9+nTda7m5ucLb21vMnz9fCCHE0aNHBQCxe/du3TorV64UGo1GXLx40XmFd6IXX3xRxMbGivLy8mpxHvTr10+MGDHC4LUBAwaIIUOGCCGqx3lQVFQkPD09xS+//GLweps2bcTrr79eLY6BcaDiqH3+4osvRFBQkMFv4dVXXxVNmza1u8xVuulHX1lZGRYsWIDCwkIkJSVh7969uHXrFnr16qVbJz4+HpGRkdi+fTsAYPv27UhMTET9+vV16/Tp0wf5+fn4448/Kn0fbDV27Fj069fPYF8BVKtjcOrUKYSHh6NRo0YYMmQIMjMzAVSPY7B8+XK0a9cOjz76KOrVq4fWrVtj9uzZuuUZGRm4fPmywTEICAhAx44dDY5BYGAg2rVrp1unV69e8PDwwM6dOytvZxyktLQU3333HUaMGAGNRlMtzoNOnTph3bp1OHnyJADg4MGD2LJlC5KTkwFUj/Pg9u3bKCsrQ61atQxe9/HxwZYtW6rFMTDmqH3evn07unXrBi8vL906ffr0wYkTJ5CTk2NXGd16UkJrHD58GElJSbh58yZq166NpUuXonnz5jhw4AC8vLwQGBhosH79+vVx+fJlAMDly5cNLkra5dpl7mDBggXYt2+fQRus1uXLl6vFMejYsSPmzp2Lpk2bIisrC2+//Ta6du2KI0eOVItj8Oeff2LmzJl46aWX8Nprr2H37t0YP348vLy8MHToUN0+SO2j/jGoV6+ewfIaNWogODjYLY6BsWXLliE3NxfDhg0DUD1+CykpKcjPz0d8fDw8PT1RVlaG9957D0OGDAGAanEe1KlTB0lJSZg6dSqaNWuG+vXrY/78+di+fTsaN25cLY6BMUft8+XLlxETE2OyDe2yoKAgm8tY5QOVpk2b4sCBA8jLy8PixYsxdOhQbNy40dXFqhTnz5/Hiy++iLVr15o8QVQn2idGAGjZsiU6duyIqKgoLFq0CD4+Pi4sWeUoLy9Hu3bt8P777wMAWrdujSNHjuDLL7/E0KFDXVw61/j666+RnJyM8PBwVxel0ixatAjff/895s2bhxYtWuDAgQOYMGECwsPDq9V58O2332LEiBFo2LAhPD090aZNGzz++OPYu3evq4tGMqp804+XlxcaN26Mtm3bIjU1Fa1atcKnn36KBg0aoLS0FLm5uQbrX7lyBQ0aNAAANGjQwCTrX/u3dh0127t3L65evYo2bdqgRo0aqFGjBjZu3IjPPvsMNWrUQP369av8MZASGBiIuLg4nD59ulqcB2FhYWjevLnBa82aNdM1f2n3QWof9Y/B1atXDZbfvn0b169fd4tjoO/cuXP47bffMGrUKN1r1eE8eOWVV5CSkoLBgwcjMTERTz31FP71r38hNTUVQPU5D2JjY7Fx40YUFBTg/Pnz2LVrF27duoVGjRpVm2Ogz1H77MzfR5UPVIyVl5ejpKQEbdu2Rc2aNbFu3TrdshMnTiAzMxNJSUkAgKSkJBw+fNjgC1q7di38/f1NLvxqdM899+Dw4cM4cOCA7l+7du0wZMgQ3f9X9WMgpaCgAGfOnEFYWFi1OA86d+6MEydOGLx28uRJREVFAQBiYmLQoEEDg2OQn5+PnTt3GhyD3Nxcg6fO9evXo7y8HB07dqyEvXCc9PR01KtXD/369dO9Vh3Og6KiInh4GF7yPT09UV5eDqD6nQd+fn4ICwtDTk4OVq9ejYceeqjaHQPAcd97UlISNm3ahFu3bunWWbt2LZo2bWpXsw+Aqt09OSUlRWzcuFFkZGSIQ4cOiZSUFKHRaMSaNWuEEBXdESMjI8X69evFnj17RFJSkkhKStK9X9sdsXfv3uLAgQNi1apVIjQ01G26I0rR7/UjRPU4Bv/+97/F77//LjIyMsTWrVtFr169REhIiLh69aoQouofg127dokaNWqI9957T5w6dUp8//33wtfXV3z33Xe6ddLS0kRgYKD46aefxKFDh8RDDz0k2T2xdevWYufOnWLLli2iSZMmqu6SKaWsrExERkaKV1991WRZVT8Phg4dKho2bKjrnrxkyRIREhIiJk6cqFunOpwHq1atEitXrhR//vmnWLNmjWjVqpXo2LGjKC0tFUJUzWNw48YNsX//frF//34BQHz00Udi//794ty5c0IIx+xzbm6uqF+/vnjqqafEkSNHxIIFC4Svry+7J1syYsQIERUVJby8vERoaKi45557dEGKEEIUFxeLMWPGiKCgIOHr6ysefvhhkZWVZbCNs2fPiuTkZOHj4yNCQkLEv//9b3Hr1q3K3hWHMQ5UqsMxGDRokAgLCxNeXl6iYcOGYtCgQQZjiFSHY/Dzzz+LhIQE4e3tLeLj48X//vc/g+Xl5eXizTffFPXr1xfe3t7innvuESdOnDBY56+//hKPP/64qF27tvD39xfDhw8XN27cqMzdsNvq1asFAJN9E6Lqnwf5+fnixRdfFJGRkaJWrVqiUaNG4vXXXzfoTlodzoOFCxeKRo0aCS8vL9GgQQMxduxYkZubq1teFY/Bhg0bBACTf0OHDhVCOG6fDx48KLp06SK8vb1Fw4YNRVpamkPKrxFCb1hCIiIiIhWpdjkqRERE5D4YqBAREZFqMVAhIiIi1WKgQkRERKrFQIWIiIhUi4EKERERqRYDFSIiIlItBipERESkWgxUiFTg8uXLeOGFF9CoUSN4e3sjIiICDzzwgMH8G9u2bcN9992HoKAg1KpVC4mJifjoo49QVlamW+fs2bMYOXIkYmJi4OPjg9jYWEyePBmlpaUGnzd79my0atUKtWvXRmBgIFq3bq2bnA4ApkyZAo1Gg759+5qUdfr06dBoNOjRo4fF/YqOjoZGo5H9N2zYMOUHS+V69OiBCRMmuLoYRFVGDVcXgKi6O3v2LDp37ozAwEBMnz4diYmJuHXrFlavXo2xY8fi+PHjWLp0KR577DEMHz4cGzZsQGBgIH777TdMnDgR27dvx6JFi6DRaHD8+HGUl5dj1qxZaNy4MY4cOYLRo0ejsLAQH374IQBgzpw5mDBhAj777DN0794dJSUlOHToEI4cOWJQrrCwMGzYsAEXLlzAHXfcoXt9zpw5iIyMtGrfdu/erQuktm3bhoEDB+LEiRPw9/cHAPj4+DjiEFaKW7duoWbNmpX2eaWlpfDy8qq0zyNSLYcMxE9ENktOThYNGzYUBQUFJstycnJEQUGBqFu3rhgwYIDJ8uXLlwsAYsGCBbLb/+CDD0RMTIzu74ceekgMGzbMbJkmT54sWrVqJe6//37x7rvv6l7funWrCAkJEc8//7zo3r27FXv3D+18Izk5ObrXli1bJlq3bi28vb1FTEyMmDJlisHcOQDEl19+Kfr16yd8fHxEfHy82LZtmzh16pTo3r278PX1FUlJSQZzN2nL/uWXX4o77rhD+Pj4iEcffdRgPhchhJg9e7aIj48X3t7eomnTpmLGjBm6ZRkZGbrj2q1bN+Ht7S3S09NFdna2GDx4sAgPDxc+Pj4iISFBzJs3T/e+oUOHmsynkpGRIdLT00VAQIDB5y9dulToX4K15Z49e7aIjo4WGo1GCFFxDowcOVKEhISIOnXqiJ49e4oDBw4oOvZE7oxNP0QudP36daxatQpjx46Fn5+fyfLAwECsWbMGf/31F15++WWT5Q888ADi4uIwf/582c/Iy8tDcHCw7u8GDRpgx44dOHfunMXyjRgxAnPnztX9PWfOHAwZMsQhT/qbN2/G008/jRdffBFHjx7FrFmzMHfuXLz33nsG602dOhVPP/00Dhw4gPj4eDzxxBN49tlnMWnSJOzZswdCCIwbN87gPadPn8aiRYvw888/Y9WqVdi/fz/GjBmjW/7999/jrbfewnvvvYdjx47h/fffx5tvvolvvvnGYDspKSl48cUXcezYMfTp0wc3b95E27Zt8euvv+LIkSN45pln8NRTT2HXrl0AgE8//RRJSUkYPXo0srKykJWVhYiICKuPyenTp/Hjjz9iyZIlOHDgAADg0UcfxdWrV7Fy5Urs3bsXbdq0wT333IPr168rOdxE7svVkRJRdbZz504BQCxZskR2nbS0NJOaCH0PPvigaNasmeSyU6dOCX9/f4PZki9duiTuuusuAUDExcWJoUOHioULF4qysjLdOtqn+9LSUlGvXj2xceNGUVBQIOrUqSMOHjwoXnzxRbtrVO655x7x/vvvG6zz7bffirCwMN3fAMQbb7yh+3v79u0CgPj66691r82fP1/UqlXLoOyenp7iwoULutdWrlwpPDw8dLMhx8bGGtSECCHE1KlTRVJSkhDinxqVTz75xOJ+9evXT/z73//W/W08Q7kQwuoalZo1a4qrV6/qXtu8ebPw9/cXN2/eNHhvbGysmDVrlsWyEVUFzFEhciGhYPJyJesCwMWLF9G3b188+uijGD16tO71sLAwbN++HUeOHMGmTZuwbds2DB06FF999RVWrVoFD49/Klpr1qyJJ598Eunp6fjzzz8RFxeHli1bKiqHnIMHD2Lr1q0GNShlZWW4efMmioqK4OvrCwAGn1e/fn0AQGJiosFrN2/eRH5+vi73JTIyEg0bNtStk5SUhPLycpw4cQJ16tTBmTNnMHLkSIPjcvv2bQQEBBiUsV27dgZ/l5WV4f3338eiRYtw8eJFlJaWoqSkRFdWe0VFRSE0NFT398GDB1FQUIC6desarFdcXIwzZ8445DOJ1I6BCpELNWnSRJcEKycuLg4AcOzYMXTq1Mlk+bFjx9C8eXOD1y5duoSePXuiU6dO+N///ie53YSEBCQkJGDMmDF47rnn0LVrV2zcuBE9e/Y0WG/EiBHo2LEjjhw5ghEjRijdRVkFBQV4++23MWDAAJNltWrV0v2/fgKrRqORfa28vNzqzwUqej517NjRYJmnp6fB38bNcdOnT8enn36KTz75BImJifDz88OECRNMelUZ8/DwMAk0b926ZbKe8ecVFBQgLCwMv//+u8m6gYGBZj+TqKpgoELkQsHBwejTpw9mzJiB8ePHm9yocnNz0bt3bwQHB+M///mPSaCyfPlynDp1ClOnTtW9dvHiRfTs2RNt27ZFenq6QQ2JHG2gU1hYaLKsRYsWaNGiBQ4dOoQnnnjClt2U1KZNG5w4cQKNGzd22Da1MjMzcenSJYSHhwMAduzYAQ8PDzRt2hT169dHeHg4/vzzTwwZMkTRdrdu3YqHHnoITz75JICK4OjkyZMGgaKXl5dBl3EACA0NxY0bN1BYWKj7jrU5KOa0adMGly9fRo0aNRAdHa2orERVBQMVIhebMWMGOnfujA4dOuCdd95By5Ytcfv2baxduxYzZ87EsWPHMGvWLAwePBjPPPMMxo0bB39/f6xbtw6vvPIKHnnkETz22GMAKoKUHj16ICoqCh9++CGuXbum+5wGDRoAAJ5//nmEh4fj7rvvxh133IGsrCy8++67CA0NRVJSkmQZ169fj1u3bjn0Kf6tt97C/fffj8jISDzyyCPw8PDAwYMHceTIEbz77rt2bbtWrVoYOnQoPvzwQ+Tn52P8+PF47LHHdMfg7bffxvjx4xEQEIC+ffuipKQEe/bsQU5ODl566SXZ7TZp0gSLFy/Gtm3bEBQUhI8++ghXrlwxCFSio6Oxc+dOnD17FrVr10ZwcDA6duwIX19fvPbaaxg/fjx27txpkKQsp1evXkhKSkL//v3xwQcfIC4uDpcuXcKvv/6Khx9+2KRpiqgqYq8fIhdr1KgR9u3bh549e+Lf//43EhIScO+992LdunWYOXMmAOCRRx7Bhg0bkJmZia5du6Jp06b4+OOP8frrr2PBggW65o+1a9fi9OnTWLduHe644w6EhYXp/mn16tULO3bswKOPPoq4uDgMHDgQtWrVwrp160xyIbT8/Pwc3tTQp08f/PLLL1izZg3at2+Pu+66Cx9//DGioqLs3nbjxo0xYMAA3HfffejduzdatmyJL774Qrd81KhR+Oqrr5Ceno7ExER0794dc+fORUxMjNntvvHGG2jTpg369OmDHj16oEGDBujfv7/BOi+//DI8PT3RvHlzhIaGIjMzE8HBwfjuu++wYsUKJCYmYv78+ZgyZYrF/dBoNFixYgW6deuG4cOHIy4uDoMHD8a5c+d0+TpEVZ1GKM3QIyJSsSlTpmDZsmVWNa0QkfqxRoWIiIhUi4EKEdmldu3asv82b97s6uIRkZtj0w8R2eX06dOyyxo2bOhW8/kQkfowUCEiIiLVYtMPERERqRYDFSIiIlItBipERESkWgxUiIiISLUYqBAREZFqMVAhIiIi1WKgQkRERKrFQIWIiIhU6/8Bjp8cpm7PK3YAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(alm_surr, data_training)\n", - "surrogate_parity(alm_surr, data_training)\n", - "surrogate_residual(alm_surr, data_training)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.4 Model Validation" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwWUlEQVR4nO3deVxU1fsH8M+wyCYMssgiCIi4myaZYrmTYC6ZWu4rShpYiHvulbnva5ZbfsUtyUxLRVwqRTPM1EJTQs0EFwhwZZv7+4PfjAz7wAz3zszn/XrxUuYeLmeu49xnznnOc2SCIAggIiIioiplInYHiIiIiIwRgzAiIiIiETAIIyIiIhIBgzAiIiIiETAIIyIiIhIBgzAiIiIiETAIIyIiIhIBgzAiIiIiETAIIyIiIhIBgzAiIirV1q1bIZPJcPPmTbG7QmRQGIQRkejOnz+P8PBwNG7cGDY2Nqhduzbeffdd/PXXX0XadujQATKZDDKZDCYmJrCzs0P9+vUxZMgQxMTEaPR7v/vuO7Rv3x41a9aEtbU16tSpg3fffReHDx/W1lMr4rPPPsP+/fuLPH7mzBnMmTMH6enpOvvdhc2ZM0d1LWUyGaytrdGoUSPMmDEDmZmZWvkdUVFRWLFihVbORWRoGIQRkegWLlyIffv2oXPnzli5ciVCQ0Px448/okWLFrhy5UqR9h4eHti+fTu++uorLF68GD179sSZM2fQpUsX9OvXDzk5OWX+ziVLlqBnz56QyWSYNm0ali9fjj59+uD69evYtWuXLp4mgNKDsLlz51ZpEKa0fv16bN++HcuWLUODBg0wb948BAcHQxtbCzMIIyqZmdgdICKKjIxEVFQUqlWrpnqsX79+aNq0KRYsWID//e9/au3lcjkGDx6s9tiCBQvwwQcfYN26dfD29sbChQtL/H25ubn45JNP8MYbb+Do0aNFjt+/f7+Sz0g6nj59Cmtr61Lb9O3bF05OTgCAMWPGoE+fPoiOjsbZs2cREBBQFd0kMkocCSMi0bVp00YtAAMAPz8/NG7cGAkJCeU6h6mpKVatWoVGjRphzZo1yMjIKLHtw4cPkZmZiddee63Y4zVr1lT7/vnz55gzZw7q1asHS0tLuLm5oXfv3khMTFS1WbJkCdq0aQNHR0dYWVnB398fX3/9tdp5ZDIZnjx5gm3btqmmAIcPH445c+Zg0qRJAAAfHx/VsYI5WP/73//g7+8PKysrODg4oH///vjnn3/Uzt+hQwc0adIE8fHxaNeuHaytrfHRRx+V6/oV1KlTJwBAUlJSqe3WrVuHxo0bw8LCAu7u7ggLC1MbyevQoQMOHTqEW7duqZ6Tt7e3xv0hMlQcCSMiSRIEAffu3UPjxo3L/TOmpqYYMGAAZs6ciZ9//hndunUrtl3NmjVhZWWF7777DuPGjYODg0OJ58zLy0P37t0RGxuL/v3748MPP8SjR48QExODK1euwNfXFwCwcuVK9OzZE4MGDUJ2djZ27dqFd955BwcPHlT1Y/v27Rg1ahReffVVhIaGAgB8fX1hY2ODv/76Czt37sTy5ctVo1LOzs4AgHnz5mHmzJl49913MWrUKDx48ACrV69Gu3bt8Ntvv8He3l7V39TUVHTt2hX9+/fH4MGD4eLiUu7rp6QMLh0dHUtsM2fOHMydOxeBgYEYO3Ysrl27hvXr1+P8+fM4ffo0zM3NMX36dGRkZODOnTtYvnw5AKB69eoa94fIYAlERBK0fft2AYCwadMmtcfbt28vNG7cuMSf++abbwQAwsqVK0s9/6xZswQAgo2NjdC1a1dh3rx5Qnx8fJF2mzdvFgAIy5YtK3JMoVCo/v706VO1Y9nZ2UKTJk2ETp06qT1uY2MjDBs2rMi5Fi9eLAAQkpKS1B6/efOmYGpqKsybN0/t8cuXLwtmZmZqj7dv314AIGzYsKHE513Q7NmzBQDCtWvXhAcPHghJSUnC559/LlhYWAguLi7CkydPBEEQhC1btqj17f79+0K1atWELl26CHl5earzrVmzRgAgbN68WfVYt27dBC8vr3L1h8jYcDqSiCTn6tWrCAsLQ0BAAIYNG6bRzypHWh49elRqu7lz5yIqKgovv/wyjhw5gunTp8Pf3x8tWrRQmwLdt28fnJycMG7cuCLnkMlkqr9bWVmp/v7ff/8hIyMDbdu2xYULFzTqf2HR0dFQKBR499138fDhQ9WXq6sr/Pz8cOLECbX2FhYWGDFihEa/o379+nB2doaPjw/ee+891K1bF4cOHSoxl+zYsWPIzs5GREQETExe3EZGjx4NOzs7HDp0SPMnSmSEOB1JRJKSkpKCbt26QS6X4+uvv4apqalGP//48WMAgK2tbZltBwwYgAEDBiAzMxPnzp3D1q1bERUVhR49euDKlSuwtLREYmIi6tevDzOz0t8uDx48iE8//RQXL15EVlaW6vGCgVpFXL9+HYIgwM/Pr9jj5ubmat/XqlWrSH5dWfbt2wc7OzuYm5vDw8NDNcVaklu3bgHID94KqlatGurUqaM6TkSlYxBGRJKRkZGBrl27Ij09HT/99BPc3d01PoeypEXdunXL/TN2dnZ444038MYbb8Dc3Bzbtm3DuXPn0L59+3L9/E8//YSePXuiXbt2WLduHdzc3GBubo4tW7YgKipK4+dQkEKhgEwmww8//FBsQFo4x6rgiFx5tWvXTpWHRkRVh0EYEUnC8+fP0aNHD/z11184duwYGjVqpPE58vLyEBUVBWtra7z++usV6scrr7yCbdu2ITk5GUB+4vy5c+eQk5NTZNRJad++fbC0tMSRI0dgYWGhenzLli1F2pY0MlbS476+vhAEAT4+PqhXr56mT0cnvLy8AADXrl1DnTp1VI9nZ2cjKSkJgYGBqscqOxJIZMiYE0ZEosvLy0O/fv0QFxeHvXv3Vqg2VV5eHj744AMkJCTggw8+gJ2dXYltnz59iri4uGKP/fDDDwBeTLX16dMHDx8+xJo1a4q0Ff6/mKmpqSlkMhny8vJUx27evFlsUVYbG5tiC7La2NgAQJFjvXv3hqmpKebOnVukeKogCEhNTS3+SepQYGAgqlWrhlWrVqn1adOmTcjIyFBblWpjY1NquRAiY8aRMCIS3YQJE3DgwAH06NEDaWlpRYqzFi7MmpGRoWrz9OlT3LhxA9HR0UhMTET//v3xySeflPr7nj59ijZt2qB169YIDg6Gp6cn0tPTsX//fvz000/o1asXXn75ZQDA0KFD8dVXXyEyMhK//PIL2rZtiydPnuDYsWN4//338dZbb6Fbt25YtmwZgoODMXDgQNy/fx9r165F3bp1cenSJbXf7e/vj2PHjmHZsmVwd3eHj48PWrVqBX9/fwDA9OnT0b9/f5ibm6NHjx7w9fXFp59+imnTpuHmzZvo1asXbG1tkZSUhG+++QahoaGYOHFipa6/ppydnTFt2jTMnTsXwcHB6NmzJ65du4Z169ahZcuWav9e/v7+2L17NyIjI9GyZUtUr14dPXr0qNL+EkmWmEsziYgE4UVphZK+SmtbvXp1wc/PTxg8eLBw9OjRcv2+nJwc4YsvvhB69eoleHl5CRYWFoK1tbXw8ssvC4sXLxaysrLU2j99+lSYPn264OPjI5ibmwuurq5C3759hcTERFWbTZs2CX5+foKFhYXQoEEDYcuWLaoSEAVdvXpVaNeunWBlZSUAUCtX8cknnwi1atUSTExMipSr2Ldvn/D6668LNjY2go2NjdCgQQMhLCxMuHbtmtq1Ka18R2HK/j148KDUdoVLVCitWbNGaNCggWBubi64uLgIY8eOFf777z+1No8fPxYGDhwo2NvbCwBYroKoAJkgaGFzMCIiIiLSCHPCiIiIiETAIIyIiIhIBAzCiIiIiETAIIyIiIhIBAzCiIiIiETAIIyIiIhIBCzWKmEKhQJ3796Fra0tt/4gIiLSE4Ig4NGjR3B3d4eJScnjXQzCJOzu3bvw9PQUuxtERERUAf/88w88PDxKPM4gTMJsbW0B5P8jlrYPHhEREUlHZmYmPD09VffxkjAIkzDlFKSdnR2DMCIiIj1TVioRE/OJiIiIRMAgjIiIiEgEDMKIiIiIRMCcMCIiIgOTl5eHnJwcsbthsMzNzWFqalrp8+hNENazZ09cvHgR9+/fR40aNRAYGIiFCxfC3d1d1UYQBCxduhQbN27ErVu34OTkhPfffx/Tp09XtTl58iQiIyPxxx9/wNPTEzNmzMDw4cPVftfatWuxePFipKSkoFmzZli9ejVeffVV1fHnz59jwoQJ2LVrF7KyshAUFIR169bBxcVF1eb27dsYO3YsTpw4gerVq2PYsGGYP38+zMz05pITEZGeEQQBKSkpSE9PF7srBs/e3h6urq6VquOpNxFBx44d8dFHH8HNzQ3//vsvJk6ciL59++LMmTOqNh9++CGOHj2KJUuWoGnTpkhLS0NaWprqeFJSErp164YxY8Zgx44diI2NxahRo+Dm5oagoCAAwO7duxEZGYkNGzagVatWWLFiBYKCgnDt2jXUrFkTADB+/HgcOnQIe/fuhVwuR3h4OHr37o3Tp08DyP8E0q1bN7i6uuLMmTNITk7G0KFDYW5ujs8++6wKrxoRERkTZQBWs2ZNWFtbs9C3DgiCgKdPn+L+/fsAADc3t0qdTC99++23gkwmE7KzswVBEIQ///xTMDMzE65evVriz0yePFlo3Lix2mP9+vUTgoKCVN+/+uqrQlhYmOr7vLw8wd3dXZg/f74gCIKQnp4umJubC3v37lW1SUhIEAAIcXFxgiAIwvfffy+YmJgIKSkpqjbr168X7OzshKysrHI/x4yMDAGAkJGRUe6fISIi45Sbmyv8+eefwsOHD8XuilF4+PCh8Oeffwq5ublFjpX3/q2XiflpaWnYsWMH2rRpA3NzcwDAd999hzp16uDgwYPw8fGBt7c3Ro0apTYSFhcXh8DAQLVzBQUFIS4uDgCQnZ2N+Ph4tTYmJiYIDAxUtYmPj0dOTo5amwYNGqB27dqqNnFxcWjatKna9GRQUBAyMzPxxx9/lPi8srKykJmZqfZFRERUHsocMGtra5F7YhyU17kyuXd6FYRNmTIFNjY2cHR0xO3bt/Htt9+qjv3999+4desW9u7di6+++gpbt25FfHw8+vbtq2qTkpKiFhgBgIuLCzIzM/Hs2TM8fPgQeXl5xbZJSUlRnaNatWqwt7cvtU1x51AeK8n8+fMhl8tVX9yyiIiINMUpyKqhjessahA2depUyGSyUr+uXr2qaj9p0iT89ttvOHr0KExNTTF06FAIggAgf7PrrKwsfPXVV2jbti06dOiATZs24cSJE7h27ZpYT1Ej06ZNQ0ZGhurrn3/+EbtLREREpCOiJuZPmDChyMrEwurUqaP6u5OTE5ycnFCvXj00bNgQnp6eOHv2LAICAuDm5gYzMzPUq1dP1b5hw4YA8lcq1q9fH66urrh3757a+e/duwc7OztYWVnB1NQUpqamxbZxdXUFALi6uiI7Oxvp6elqo2GF2/zyyy9FzqE8VhILCwtYWFiUej2IiIjIMIg6Eubs7IwGDRqU+lWtWrVif1ahUADIz6MCgNdeew25ublITExUtfnrr78AAF5eXgCAgIAAxMbGqp0nJiYGAQEBAIBq1arB399frY1CoUBsbKyqjb+/P8zNzdXaXLt2Dbdv31a1CQgIwOXLl1UrJ5S/x87ODo0aNarAlSIiMhypqalITk5GcnIy4uPv4euvUxEff0/1WGpqqthdpCo2fPhw1QyYubk5XFxc8MYbb2Dz5s2q+315bN26tUi6kJTpRYmKc+fO4fz583j99ddRo0YNJCYmYubMmfD19VUFPoGBgWjRogVGjhyJFStWQKFQICwsDG+88YZqdGzMmDFYs2YNJk+ejJEjR+L48ePYs2cPDh06pPpdkZGRGDZsGF555RW8+uqrWLFiBZ48eYIRI0YAAORyOUJCQhAZGQkHBwfY2dlh3LhxCAgIQOvWrQEAXbp0QaNGjTBkyBAsWrQIKSkpmDFjBsLCwjjSRURGLTU1FWvWrAEAXLjwMr77rjsEwQQymQI9ehxEixa/AQDCw8Ph6OgoZleNTmpqKrKzs0s8Xq1aNZ3+mwQHB2PLli3Iy8vDvXv3cPjwYXz44Yf4+uuvceDAAYOss6kXz8ja2hrR0dGYPXs2njx5Ajc3NwQHB2PGjBmqoMbExATfffcdxo0bh3bt2sHGxgZdu3bF0qVLVefx8fHBoUOHMH78eKxcuRIeHh748ssvVTXCAKBfv3548OABZs2ahZSUFDRv3hyHDx9WS7Rfvnw5TExM0KdPH7VirUqmpqY4ePAgxo4di4CAANjY2GDYsGH4+OOPq+BqERFJl/Imn5FhqwrAAEAQTPDdd93h63sDcvmjUoMB0r6CwXFpdBkcW1hYqFJ2atWqhRYtWqB169bo3Lkztm7dilGjRmHZsmXYsmUL/v77bzg4OKBHjx5YtGgRqlevjpMnT6oGTJRJ87Nnz8acOXOwfft2rFy5EteuXYONjQ06deqEFStWqOp/ikUvgrCmTZvi+PHjZbZzd3fHvn37Sm3ToUMH/Pbbb6W2CQ8PR3h4eInHLS0tsXbtWqxdu7bENl5eXvj+++9L7zARkZFKS3NE4SpJgmCCtDQHyOWPROqV8Spv0FvVwXGnTp3QrFkzREdHY9SoUTAxMcGqVavg4+ODv//+G++//z4mT56MdevWoU2bNlixYgVmzZqlWpBXvXp1APllJD755BPUr18f9+/fR2RkJIYPHy76fVovgjAiIjIsDg6pkMkUaoGYTKaAg0NaKT9FxqhBgwa4dOkSACAiIkL1uLe3Nz799FOMGTMG69atQ7Vq1SCXyyGTyYosghs5cqTq73Xq1MGqVavQsmVLPH78WBWoiUGv6oQREZFhkMsfoUePg5DJ8pOulTlhHAWjwgRBUE0vHjt2DJ07d0atWrVga2uLIUOGIDU1FU+fPi31HPHx8ejRowdq164NW1tbtG/fHkB+9QQxcSSMiIhE0aLFb/D1vYG0NAc4OKQxAKNiJSQkwMfHBzdv3kT37t0xduxYzJs3Dw4ODvj5558REhKC7OzsEncKePLkCYKCghAUFIQdO3bA2dkZt2/fRlBQkOi5hwzCiIhINHL5IwZfVKLjx4/j8uXLGD9+POLj46FQKLB06VKYmORP5O3Zs0etfbVq1ZCXl6f22NWrV5GamooFCxaodqL59ddfq+YJlIHTkURERCS6rKwspKSk4N9//8WFCxfw2Wef4a233kL37t0xdOhQ1K1bFzk5OVi9ejX+/vtvbN++HRs2bFA7h7e3Nx4/fozY2Fg8fPgQT58+Re3atVGtWjXVzx04cACffPKJSM9SHYMwIjJoBQuDFvfFwqBVq6QC3BVtR4bj8OHDcHNzg7e3N4KDg3HixAmsWrUK3377LUxNTdGsWTMsW7YMCxcuRJMmTbBjxw7Mnz9f7Rxt2rTBmDFj0K9fPzg7O2PRokVwdnbG1q1bsXfvXjRq1AgLFizAkiVLRHqW6mSCcvNFkpzMzEzI5XJkZGTAzs5O7O4Q6R0p1D6iosQuCmqonj9/jqSkJPj4+MDS0lKjn+X/Fc2Vdr3Le/9mThgRSVZlb9aFfzYjwxZpaY5wcEhVy0MSOznX2PAmLj2Ojo4IDw9ncFzFGIQR6TFDHlHQ9ifz0rbIISIGx2JgEEakpwx9+kCbo1hlbZFDhsWQP5yQYWEQRqSnjGmqrbKjWNwix3gY+ocTMiwMwogMgCFPtWljFItb5BgPY/pwQvqPQRiRnjP0qTZtjGIpt8gpHKgawvWhkhnyhxMyDAzCiPScvky1VTRPR1ujWNwix7jo+sMJ885IGxiEEek5fZhqq0yeTmVGsQoX/CxpixwWBjU8uvxwwrwz0hYGYUR6Th+m2sqbf1NSu4qOYrH2kfHS5YcT5p2RtjAIIzIA+jbVVtJNqyBtjWIxwDJOVfXhpKy8M05bSsPJkyfRsWNH/Pfff7C3ty/Xz3h7eyMiIgIRERE66xeDMCI9pa9TbeVNluYoFlWWrj+clJV3dufOHXz//fdlnofTlsDw4cOxbds2vPfee0U25Q4LC8O6deswbNgwbN26VZwO6giDMCI9pY9BiqbJ0lLqO+mHqvxwUlbeWeEAjNOWpfP09MSuXbuwfPlyWFlZAcjfnzEqKgq1a9cWuXe6wSCMSI/pW5CiLys5SX9V5YcTTfLOTp8OQExMIACWyyhJixYtkJiYiOjoaAwaNAgAEB0djdq1a8PHx0fVLisrC5MmTcKuXbuQmZmJV155BcuXL0fLli1Vbb7//ntERETgn3/+QevWrTFs2LAiv+/nn3/GtGnT8Ouvv8LJyQlvv/025s+fDxsbG90/2f9nUnYTIiLtUN60Cip403r48CGSk5ORnJyM1NRUMbpIBsDR0RFubm4lfmnrw4sy70z5mi4p7yw/AHsDyluucgQ4I8NWK/3QhTt3gBMn8v+sSiNHjsSWLVtU32/evBkjRoxQazN58mTs27cP27Ztw4ULF1C3bl0EBQUhLS3/feSff/5B79690aNHD1y8eBGjRo3C1KlT1c6RmJiI4OBg9OnTB5cuXcLu3bvx888/Izw8XPdPsgCOhBFRlSkrWTo6OlqtPXNlSOrKyjvLyLDFsWOBAGRqj0t5BHjTJiA0FFAoABMTYONGICSkan734MGDMW3aNNy6dQsAcPr0aezatQsnT54EADx58gTr16/H1q1b0bVrVwDAF198gZiYGGzatAmTJk3C+vXr4evri6VLlwIA6tevj8uXL2PhwoWq3zN//nwMGjRIlXTv5+eHVatWoX379li/fj0sLS2r5PkyCCMinSuYf6NJsjRzZUiKypt3BhQ/BZ9PWrX8lO7ceRGAAfl/vvceEBQEeHjo/vc7OzujW7du2Lp1KwRBQLdu3eDk5KQ6npiYiJycHLz22muqx8zNzfHqq68iISEBAJCQkIBWrVqpnTcgIEDt+99//x2XLl3Cjh07VI8JggCFQoGkpCQ0bNhQF0+vCAZhRJXA5eflUzhP5+HDh0VGvYj0RXnyztLT07Fnz55i88YAAW+8cUySo2DXr78IwJTy8oAbN6omCAPypySV04Jr164ts31ubi4UCgUUCgWys7PV/g4AJiZFg+DHjx/jvffewwcffFDkWFUuAmAQRnpHKoEPq2ZrprRrUJ66YURSUt7/08VNwQcGHsNrr8XpuIcV4+eXPwVZMBAzNQXq1q26PgQHByM7OxsymQxBQUFqx3x9fVGtWjWcPn0aXl5eyM3Nxb///otffvkFo0ePxr17aahVywexsYfx8OFD1c+dOXNG7TwtWrTAn3/+ibpV+cSKwSCM9IqUAp/KVoGnfNxkmQxdWVPwUqrl5+GRnwP23nv5I2CmpsDnn1fdKBgAmJqaqqYWTU1N1Y7Z2Nhg7NixmDRpEhwcHODm5oZ58+bh+fPneOutkbh3zwVvvhmJL79cj1mz5mPo0Hdw+fJlfPXVV2rnmTJlClq3bo3w8HCMGjUKNjY2+PPPPxETE1Oue4y2MAgjvSLl7UI4mqM5XW+yTCWTyoiyoSpv3tjgwYMld51DQvJzwG7cyB8Bq8oATMnOzq7EYwsWLIBCocCQIUPw6NEjvPTSS9i+fScEwQuADK6utbFw4T4sXz4e//vfF2jevDk+/vhjhIaGqs7x0ksv4dSpU5g+fTratm0LQRDg6+uLfv36VcGze4FBGOktKY2gSKkv+oR1w8QhpRFlQ6WPxZQL8vCo2uCrrEr4+/fvV/3d0tISq1atwqpVq5CdnY2HDx8iK6saUlNfrEBt27Y72rbtDkfHh7CwyIaTkxNGjx6tds6WLVvi6NGjJf7OmzdvVuSpaIRBGOklKY2gSKkv+kaXmyxTyTiVXjWkGmAZIjOzXAAC1EuBCP//uHSxWCvppdJGUIy5L/pCOVVTVrFLKeXKGLKMDFskJXlLungoUWlMTRWwt89AfiAGAALs7TNgaqoo7cdEx5Ew0ktSGkGRUl/0ReGpmlmzHuDmTTN4e+fC3b0lgJaSnqoxJJxKJ0Nhbf0UFhbPkZtrBjOzXMkHYACDMNJTZVVeN9a+6JOCAZabG+DvL2JnjBSn0snQmJoqYGqqP9PoDMJIb2lSeV0XylsFnlNqJFVcGGGYBEEou5GBKK4Qa2XaaUIb15lBGOmV8i77rorAR99XPxFxKt2wmJubAwCePn0KKysrkXtTNczMzFCzZk0oCpf5L8DExARmZtoPd54+fQrgxXWvCAZhpFekFvgwwCJ9xql0w2Jqagp7e3vcv38fAGBtbQ2ZTFbGTxk+hUKB3FztrZIUBAFPnz7F/fv3YW9vX6SgrCYYhJHeYeBDVDmcSjdcrq6uAKAKxEh37O3tVde7omSCMU0e65nMzEzI5XJkZGSUWj2YiEhTrJhv2PLy8pCTkyN2NwyWubl5qSNg5b1/cySMiMgIMcAybKamppWaJqOqwSCMiKgSOKJERBXFIIyIqIK4ByMRVQaDMCPBT+tE2sc9GImoMhiEGQF+WiciIpIebuBtBAp/Ci9ps15+WiciIqo6HAkzMtysl0h3MjJskZbmCAeHVBY8JaIyMQgzIlLYrJe5aWSo+AGHKoPvjcaJQZgREXuzXuamkaGSwgcc0l98bzRezAkzIsrNeguqys16mZtGhqq0DzhEZeEqW+PFkTAjIqXNejl1Q4ZAubei8gNOwUCs4Acc7sFIRMVhEGZkStust6pw6kY/MWelKEdHR4SHhyM7Oxu1amViyhQ58vJkMDUVsHBhJgYOHGCU14Uqhws8jAeDMCNQ+FO4XP6o2P/YVfVpXezcNNIcc1ZKpny+EyYA/foBN24AdevK4OFhD8BezK6RHuIsgXFhEGYECn5aL0lVflova+qGpIc5K+Xj4ZH/RVQRnCUwPgzCjISURieklJtGRCQVnCUwPgzCSBRSyE2jimPOCpH2cZbA+DAIoyojtdw0qhjmrBBpl/I9r6xZAr43Gh4GYVRlpJabRppjzgqR9hV+b5w16wFu3jSDt3cu3N1bAmjJ90YDxSCMqhTfRPQbc1aIdKPge6ObG+DvX3w7looxLAzCiKjcmLNCJB6WijE83LaIiMpUOGdFuf0Vc1aIqg5LxRgejoQRUZmYs0IkPVylrP8YhBFRuZQ3Z4WIdI+rlA0DgzAiIiI9UtlVykzulw4GYURERHqkMquUmdwvLUzMJyIi0iPKVcoFlXeVMpP7pYVBGBERkR4pa5WyJjIybJGU5I2MDFttd5PKgdORREREeqBgCZjS9t8tb6kYJveLj0EYERGRHtDm1m9lJfc/fPiwUuen8mEQRkSkJ7iqjbT171tWcn90dHSJP8ukfe3Rm5ywnj17onbt2rC0tISbmxuGDBmCu3fvqo7PmTMHMpmsyJeNjY3aefbu3YsGDRrA0tISTZs2xffff692XBAEzJo1C25ubrCyskJgYCCuX7+u1iYtLQ2DBg2CnZ0d7O3tERISgsePH6u1uXTpEtq2bQtLS0t4enpi0aJFWr4iRGRMlKvaNm7cWOLXmjVrkJqaKnZXSQ9URXI/lU1vgrCOHTtiz549uHbtGvbt24fExET07dtXdXzixIlITk5W+2rUqBHeeecdVZszZ85gwIABCAkJwW+//YZevXqhV69euHLliqrNokWLsGrVKmzYsAHnzp2DjY0NgoKC8Pz5c1WbQYMG4Y8//kBMTAwOHjyIH3/8EaGhoarjmZmZ6NKlC7y8vBAfH4/Fixdjzpw52Lhxo46vEhEZKq5qI20qT3I/k/Z1TyYIgiB2JyriwIED6NWrF7KysmBubl7k+O+//47mzZvjxx9/RNu2bQEA/fr1w5MnT3Dw4EFVu9atW6N58+bYsGEDBEGAu7s7JkyYgIkTJwIAMjIy4OLigq1bt6J///5ISEhAo0aNcP78ebzyyisAgMOHD+PNN9/EnTt34O7ujvXr12P69OlISUlRJUhOnToV+/fvx9WrV8v9HDMzMyGXy5GRkQE7O7sKXysi0n/Jycnl+iAXGhoKNze3KugR6aPCdcLytz4qmtxfWtI+X2NlK+/9Wy9zwtLS0rBjxw60adOm2AAMAL788kvUq1dPFYABQFxcHCIjI9XaBQUFYf/+/QCApKQkpKSkIDAwUHVcLpejVatWiIuLQ//+/REXFwd7e3tVAAYAgYGBMDExwblz5/D2228jLi4O7dq1U1uhEhQUhIULF+K///5DjRo1tHEZiIiINFJacv/Dhw8RHR1d6Yr8VH56FYRNmTIFa9aswdOnT9G6dWu1Ea2Cnj9/jh07dmDq1Klqj6ekpMDFxUXtMRcXF6SkpKiOKx8rrU3NmjXVjpuZmcHBwUGtjY+PT5FzKI+VFIRlZWUhKytL9X1mZmax7YiIuHkzVVRZSfWVqchPmhE1J2zq1KnFJtMX/Co4fTdp0iT89ttvOHr0KExNTTF06FAUN5v6zTff4NGjRxg2bFhVPp1Kmz9/PuRyuerL09NT7C4RkQRduPAyVqyIwLZtw7BiRQQuXHhZ7C6RAalM0j5pRtSRsAkTJmD48OGltqlTp47q705OTnByckK9evXQsGFDeHp64uzZswgICFD7mS+//BLdu3cvMqLl6uqKe/fuqT127949uLq6qo4rHys4333v3j00b95c1eb+/ftq58jNzUVaWpraeYr7PQV/R3GmTZumNl2amZnJQIzIiBUsSaGs28SpItI1ZdJ+4Zwwvr60T9QgzNnZGc7OzhX6WYUiP0ovOH0H5Od1nThxAgcOHCjyMwEBAYiNjUVERITqsZiYGFUQ5+PjA1dXV8TGxqqCrszMTJw7dw5jx45VnSM9PR3x8fHw9/cHABw/fhwKhQKtWrVStZk+fTpycnJUOWsxMTGoX79+qflgFhYWsLCwqMDVICJDU9JGy5wqIl3RdkV+Kpte5ISdO3cO58+fx+uvv44aNWogMTERM2fOhK+vb5FRsM2bN8PNzQ1du3Ytcp4PP/wQ7du3x9KlS9GtWzfs2rULv/76q2rFkUwmQ0REBD799FP4+fnBx8cHM2fOhLu7O3r16gUAaNiwIYKDgzF69Ghs2LABOTk5CA8PR//+/eHu7g4AGDhwIObOnYuQkBBMmTIFV65cwcqVK7F8+XLdXigiMhgllZpQThUVDMQKThXxBkkVpc2K/FQ+ehGEWVtbIzo6GrNnz8aTJ0/g5uaG4OBgzJgxQ23kSKFQYOvWrRg+fDhMTU2LnKdNmzaIiorCjBkz8NFHH8HPzw/79+9HkyZNVG0mT56MJ0+eIDQ0FOnp6Xj99ddx+PBhWFpaqtrs2LED4eHh6Ny5M0xMTNCnTx+sWrVKdVwul+Po0aMICwuDv78/nJycMGvWLLVaYkREFVF4qsjERMCiRZkYOHAAb5BUaXz9VC29rRNmDFgnjMh4lVUXTFnfady4rvD3dymxnVi4xRIZM4OuE0ZEZGwKl6RQfrm7K8r+4SpWUj5bYdyDkIwdgzAiIokrrXq5FHGLJaLy0Zu9I4mIjFFJJSm4nx+R/mMQRkQkYaWVpCAi/cbpSCIiCVKWmpBiSYqyku4zMjIKfc8tloiKwyCMiEiCCtZsqlUrE1OmyJGXJ4OpqYCFC8UrSVHepHslfctnI6pKDMKIiCRKGWBNmAD06wfcuAHUrSuDh4c9AHtR+qRJMj23WCIqHYMwIiI94OGR/6VPuMUSUekYhBFJEAtdkr4oLd9LivlsRFLCIIyMkpSDHBa6JH1RWr7Xu+++C3t7e0nlsxFJDYMwMjpSD3JY6JL0QVn5Xvb29nBzc5NUPhuR1DAII6NTOHgpaTpFKkEOl/eTFGmS76WP+WxEVYFBGBk1qS+fl3r/yHiVle9F0iHl9AtjxyCMjJbUl89LvX9knJTJ9HL5I/TocbDIhwTla5NJ99Ig9fQLY1ehIOzEiRPo2LGjtvtCVKWkvnxe6v0j41SwiCwAzJr1ADdvmsHbOxfu7i0BtOTIioQwx1TaKhSEBQcHw8PDAyNGjMCwYcPg6emp7X4R6ZzUp1Ok3j8yXgUDLDc3wN9fxM6QRphjKi0V2sD733//RXh4OL7++mvUqVMHQUFB2LNnDyNp0ivK6RSZTAEARaZTxCb1/hGRfrlw4WWsWBGBbduGYcWKCFy48LLYXTJ6FRoJc3Jywvjx4zF+/HhcuHABW7Zswfvvv4/3338fAwcOREhICJo1a6btvhJpXYsWv8HX9wbS0hzg4JAmiQCnYC5Naf1jzg0RlRdzTKWp0on5LVq0gKurKxwdHbFgwQJs3rwZ69atQ0BAADZs2IDGjRtro59EWlM4eJHLHxX7JiRWkFM456Y4zLkhQ8cVfdrFHFNpqnAQlpOTg2+//RabN29GTEwMXnnlFaxZswYDBgzAgwcPMGPGDLzzzjv4888/tdlfokrThyCHNxcyZlzRp33MMZWmCgVh48aNw86dOyEIAoYMGYJFixahSZMmquM2NjZYsmQJ3N3dtdZRIm3iGzeRdHFFn/aVVVKExFGhIOzPP//E6tWr0bt3b1hYWBTbxsnJCSdOnKhU54iIqHicrqPyYI6ptFUoCIuNjS37xGZmaN++fUVOT0REpTC26TqWVag4fUi/MGYVzgm7du0aVq9ejYSEBABAw4YNMW7cONSvX19rnSMioqKMabqOW3dVHgMs6apQnbB9+/ahSZMmiI+PR7NmzdCsWTNcuHABTZo0wb59+7TdRyIiKkVGhi2SkryRkWErdle0qqSyCob2PMl4VWgkbPLkyZg2bRo+/vhjtcdnz56NyZMno0+fPlrpHBGRVEklJ8uQR4pYVoEMXYWCsOTkZAwdOrTI44MHD8bixYsr3SkiIimTSk6WoRfgZFkFMnQVmo7s0KEDfvrppyKP//zzz2jbtm2lO0VEJGVSyckqbaRInylX6pW1dRdX9JG+q9BIWM+ePTFlyhTEx8ejdevWAICzZ89i7969mDt3Lg4cOKDWlojIkIm1es9QR4oKr+ibNesBbt40g7d3LtzdWwJoqTbdK5WpYSJNVSgIe//99wEA69atw7p164o9BgAymQx5eXmV6B4RkbSJmZNlyAU4CwZNbm6Av3/x7aQyNUxUERUKwhQKhbb7QUSkd8TKyWIBzhekMjUsBo4A6r9Kb+BNRGSsxFq9xwKcJTOWwq6GMALIIFKDIGzVqlXlPukHH3xQoc4QEekTMXOyDP3mVBGGXK6jsMLBS0nBp1RHAAsHkSX1X8pBpDaUOwhbvnx5udrJZDIGYURkFAw5J0vfGHq5jtLoY/BZMDgsrf9SDSK1pdxBWFJSki77QUSkN5iTJT3GWthV34NPfe9/ZTEnjIhIQ8zJkh5DLddRFn0PPvW9/5VV4SDszp07OHDgAG7fvl3kjWjZsmWV7hiR2Aomjd69a4KkJDP4+OTC3T1/dTBvssaN//bSYqxTw/oefOp7/yurQkFYbGwsevbsiTp16uDq1ato0qQJbt68CUEQ0KJFC233kajKFUwaLS1fwdCTRvUdV18ZPmOfGtb34FPf+19ZFQrCpk2bhokTJ2Lu3LmwtbXFvn37ULNmTQwaNAjBwcHa7iNRlVPeuMvKVzD0pFF9ZghL+KlsnBouPfjUB/re/8qoUBCWkJCAnTt35p/AzAzPnj1D9erV8fHHH+Ott97C2LFjtdpJIrEYe76CPtP3JfxUfoYcYJWk8MieXP6o2PckfRkBLKn/hq5CQZiNjY3qjcvNzQ2JiYlo3LgxAODhw4fa6x2RyIw9X8FQ6OMSfqLS6PsIYHmDQ30JIiuqQkFY69at8fPPP6Nhw4Z48803MWHCBFy+fBnR0dGqDb2JDIGx5ysYAmNfAk+GS6oBVnnoexCpLRUKwpYtW4bHjx8DAObOnYvHjx9j9+7d8PPz48pIMjjGnK9gCDilTCRNhh5glUeFgrA6deqo/m5jY4MNGzZorUNEUmSs+QqGgFPKRCRVlSrWmp2djfv370OhUKg9Xrt27Up1isRz5w5w/Trg5wd4eIjdG6LK45QyGQOWY9FPFQrC/vrrL4SEhODMmTNqjwuCAJlMhry8PK10jqrWpk1AaCigUAAmJsDGjUBIiNi9EgeTRg2LMU4p86ZsPFiORX9VKAgbMWIEzMzMcPDgQbi5uUEmk2m7X1SFUlNTcfNmLkJDa0KhyP+3VCiA994T0Lz5fXh7mxndf1wmjeo/Q1vCrwnelI0Ly7HorwoFYRcvXkR8fDwaNGig7f5QFVO+WScleUOhGKZ2LC9PhtWrf4CPzy2jfLM2tudraIw5kOZN2XixHIt+qVAQ1qhRI9YDMxDKN+Gykpf5Zk36yBADLE3xpmw8WI5F/5iU3SRfZmam6mvhwoWYPHkyTp48idTUVLVjmZmZuuwv6YgyeVkmy19kweRlIv1X0k05I8NW5J6RLpRWjoWkqdwjYfb29mq5X4IgoHPnzmptmJiv34wxeZnIkLFGmnExxHIsBReY3L1rgqQkM/j45MLdPX/AQN9TCsodhJ04cUKX/SCJYD0sIsNhiDdlKpmhlWMpuMCktGl1fc5ZLncQ1r59e9Xfb9++DU9PzyKrIgVBwD///KO93hERUYUZ2k2ZymZIMxrKEbCyct30OWe5Qon5Pj4+SE5ORs2aNdUeT0tLg4+PD6cjiYgkwpBuylQ8Qy/HYsjT6hUKwpS5X4U9fvwYlpaWle4UEek3FgoVl6HflEmdoZdjMeRpdY2CsMjISACATCbDzJkzYW1trTqWl5eHc+fOoXnz5lrtIOkWK8OTthUuFFpSjSp9zuOQOkO/KVNRhvxvacjT6hoFYb/9lp8EJwgCLl++rHZjrlatGpo1a4aJEydqt4ekU3yzJm0r+FoqLZlWn/M49AH/z5IhMdRpdY2CMOUKyREjRmDlypWws7PTSaeoavHNmnSBhSOJSJsMcfV+uYu1FrRlyxYGYERUKhaOJCIqXYUS8588eYIFCxYgNjYW9+/fh0KhUDv+999/a6VzRKS/DDmZloh0zxhylisUhI0aNQqnTp3CkCFD4ObmVuxKSdI/d+4A168Dfn6Ah4fYvSF9Z8jJtESke8aQs1yhIOyHH37AoUOH8Nprr2m7PySSTZuA0FBAoQBMTICNG4GQELF7RfrOUJNpiahq6HOAVR4VygmrUaMGHByY12Eo7tx5EYAB+X++917+40SVJZc/go/PLQZgRESFVCgI++STTzBr1iw8ffpU2/2hKpaamoqzZ1NRKK0PeXnAuXOpSE1NFadjpLeMIY+DiEgbKjQduXTpUiQmJsLFxQXe3t4wNzdXO37hwgWtdI50S1lUMyPDFjJZRJEE6tOnt+HKlUcsqvn/mDNXPsaQx0FEpA0VCsJ69eql5W6QGJQ3ybISqI25qKZy+52oKCtMniyHQiGDiYmARYsyMHDgM4MOJgpuPXT3rgmSkszg45MLd/f8YdPSnruhXhMiIm2qUBA2e/ZsbfeDRMYE6qIKjhSuWBEBQchfBaxQyDBpkh3+/Xcz5HLDHCksuPVQaVXvDfG5K3H/SyLSNY2CsF9++QX+/v4wNTUt9nhWVha+/fZbvPvuu1rpHFUtQ6xGXBnKG3BpRUfl8kcGOVKofE5lVb03xOcOcP9LIqoaGiXmBwQEqCVq29nZqRVmTU9Px4ABA7TXuwJ69uyJ2rVrw9LSEm5ubhgyZAju3r2r1ubIkSNo3bo1bG1t4ezsjD59+uDmzZtqbU6ePIkWLVrAwsICdevWxdatW4v8rrVr18Lb2xuWlpZo1aoVfvnlF7Xjz58/R1hYGBwdHVG9enX06dMH9+7dU2tz+/ZtdOvWDdbW1qhZsyYmTZqE3NxcrVwLqlrKoqMFGUvRUWOtel94/8sVKyKwbdswrFgRgQsXXi62HRGRpjQKwgRBKPX7kh7Tho4dO2LPnj24du0a9u3bh8TERPTt21d1PCkpCW+99RY6deqEixcv4siRI3j48CF69+6t1qZbt27o2LEjLl68iIiICIwaNQpHjhxRtdm9ezciIyMxe/ZsXLhwAc2aNUNQUBDu37+vajN+/Hh899132Lt3L06dOoW7d++q/Z68vDx069YN2dnZOHPmDLZt24atW7di1qxZOrk2pFvKnDllIGZMRUeNOQAFSh4JzMiwFblnRGQIKpQTVhpdVc8fP3686u9eXl6YOnUqevXqhZycHJibmyM+Ph55eXn49NNPYWKS/4Y5ceJEvPXWW6o2GzZsgI+PD5YuXQoAaNiwIX7++WcsX74cQUFBAIBly5Zh9OjRGDFiBABgw4YNOHToEDZv3oypU6ciIyMDmzZtQlRUFDp16gQgfy/Nhg0b4uzZs2jdujWOHj2KP//8E8eOHYOLiwuaN2+OTz75BFOmTMGcOXO4NL+cpLQa0Vhz5oy96n1ZU9FERJVRoTphYktLS8OOHTvQpk0bVXkMf39/mJiYYMuWLcjLy0NGRga2b9+OwMBAVZu4uDgEBgaqnSsoKAhxcXEA8qcW4uPj1dqYmJggMDBQ1SY+Ph45OTlqbRo0aIDatWur2sTFxaFp06ZwcXFR+z2ZmZn4448/SnxeWVlZyMzMVPsyVps2AV5eQKdO+X9u2iR2j4y36GiLFr8hImIFhg3bioiIFaqkfGNg7COBRKRbGgdhf/75Jy5duoRLly5BEARcvXpV9X1pAYY2TJkyBTY2NnB0dMTt27fx7bffqo75+Pjg6NGj+Oijj2BhYQF7e3vcuXMHe/bsUbVJSUlRC4wAwMXFBZmZmXj27BkePnyIvLy8YtukpKSozlGtWjXY29uX2qa4cyiPlWT+/PmQy+WqL09Pz3JemYqRYlHN1NRUxMffQ2ioUKiCv4D4+HssHisSYw1AjXkqmoh0T+PpyM6dO6vlfXXv3h1A/jSkIAgaTUdOnToVCxcuLLVNQkICGjRoAACYNGkSQkJCcOvWLcydOxdDhw7FwYMHIZPJkJKSgtGjR2PYsGEYMGAAHj16hFmzZqFv376IiYnRi03Gp02bhsjISNX3mZmZOg3EpFZUU7kiLSnJGwrFMLVjeXkyrF79A3x8bnFFGlUpY52KZokOIt3TKAhLSkrS6i+fMGEChg8fXmqbOnXqqP7u5OQEJycn1KtXDw0bNoSnpyfOnj2LgIAArF27FnK5HIsWLVK1/9///gdPT0+cO3cOrVu3hqura5FVjPfu3YOdnR2srKxgamoKU1PTYtu4uroCAFxdXZGdnY309HS10bDCbQqvqFSeU9mmOBYWFrCwsCj1emiblN5ElW/4yimgwhX8lVNAVbUiTYojhVXFmJ97cYytfAtLdBBVDY2CMC8vL41O/v777+Pjjz+Gk5NTscednZ3h7Oys0TmVFP8/V5WVlQUAePr0qSohX0lZz0zZNiAgAN9//71am5iYGAQEBADIv6H4+/sjNjZWtSuAQqFAbGwswsPDAeTnnpmbmyM2NhZ9+vQBAFy7dg23b99WnScgIADz5s3D/fv3UbNmTdXvsbOzQ6NGjSr0fI2JVJLBpTZSWJWM+bmnpqYiPT0dQMnBh5KhBqGFS3SUVKyXJTqIKkfrqyML+t///oeJEyeWGISV17lz53D+/Hm8/vrrqFGjBhITEzFz5kz4+vqqAp9u3bph+fLl+Pjjj1XTkR999BG8vLzw8sv5dX3GjBmDNWvWYPLkyRg5ciSOHz+OPXv24NChQ6rfFRkZiWHDhuGVV17Bq6++ihUrVuDJkyeq1ZJyuRwhISGIjIyEg4MD7OzsMG7cOAQEBKB169YAgC5duqBRo0YYMmQIFi1ahJSUFMyYMQNhYWFVPtKlr6QyBWSIQUZ5GeNzL+9OAf369YOzs7PBX6OyivUSUeXodHWktmqGWVtbIzo6Gp07d0b9+vUREhKCl156CadOnVIFNZ06dUJUVBT279+Pl19+GcHBwbCwsMDhw4dhZWUFID95/9ChQ4iJiUGzZs2wdOlSfPnll6ryFED+m+uSJUswa9YsNG/eHBcvXsThw4fVEu2XL1+O7t27o0+fPmjXrh1cXV0RHR2tOm5qaoqDBw/C1NQUAQEBGDx4MIYOHYqPP/5YK9fDWBhrMjiJp6ydApT1weRyucEHYIDxFuslqio6HQnTlqZNm+L48eNltuvfvz/69+9fapsOHTrgt99KX2IfHh6umn4sjqWlJdauXYu1a9eW2MbLy6vI1CcR6QfWB8tXVn4mEVWOXtYJIyqvO3eAEyfy/yQqL9YHy8cSHUS6pRcjYUQVsWkTEBqaX2fMxATYuBEICRG7V6QPpLI4RAqkkp9JZIgYhJFkaKssQmpqKm7ezEVoaE0oFPn14ZQFX5s3vw9vbzOjyOehymHw8YKxleggqio6DcIGDx4MOzs7Xf4KMiDaKIvAgq+kTcYafLBOHFHVqFAQplAoitTkUj5+584d1K5dGwCwfv36yvWOjE5lAyOpFXwl0kfGXCeOqCpplJifmZmJd999FzY2NnBxccGsWbOQl5enOv7gwQP4+PhovZNEmmJCMVUER4BecHR0hJubW4lfDMCIKk+jkbCZM2fi999/x/bt25Geno5PP/0UFy5cQHR0tOpNSVu1wYgqizk9pCmOABFRVdIoCNu/fz+2bduGDh06AAB69eqFbt26oUePHjhw4AAA6MVG2WQ8jDWnhyqOAZZ+K7jx+N27JkhKMoOPTy7c3fNHxRlEk5RoFIQ9ePBAbf9IJycnHDt2DEFBQXjzzTfx5Zdfar2DRERE5VHebae4MIekQqOcsNq1ayMhIUHtMVtbWxw9ehTPnj3D22+/rdXOERERlVd5t53iwhySCo2CsC5dumDLli1FHq9evTqOHDkCS0tLrXWMiIioIrjnJekLjaYj586di7t37xZ7zNbWFjExMbhw4YJWOkZUEVzdRlWtYA5ScZiDVPW45yXpC42CsBo1aqBGjRolHre1tUX79u0r3SmiiuLqNqpKBXOQgPxpsLQ0Rzg4pKotCHn33Xdhb29f7Dn4etQ+bjtVMi5ckBaNi7Xm5uZi+fLl2LlzJ/766y8AQL169TBw4EB8+OGHMDc313oniTTBNxCqKgWD/dISwffs2QOg5CCNieLaxxI1RenbwoU7d4Dr1wE/P8DDQ+ze6IZGQdizZ8/wxhtvIC4uDoGBgWjXrh0AICEhAVOmTMGBAwdw9OhR5oYRkVEpKRHc1/eG6uZf2k2PieK6wRI16spauKB8vYr5elSO1EVFWWHyZDkUChlMTAQsWpSBgQOfGdxInUZB2IIFC/DPP//gt99+w0svvaR27Pfff0fPnj2xYMECzJkzR5t9JBKFMXwKI+0oLRFcLn9UriBNF5ivRsUp6/UqFuVIXUaGLVasiIAg5NcdVShkmDTJDv/+uxly+SPJjNRpg0ZB2K5du7Bs2bIiARgANGvWDEuWLMH06dMZhJHeMrZPYaQdZSWCi3HTK2++miHd0Lgwp3ykunBB+YGhrP8vhjRyrFEQduvWLbz66qslHm/dujVu375d6U4RicEYP4WRdpSVCC7GTa+8+WqGdEPjwpzykfrCBakGibqgURBmZ2eH+/fvw9PTs9jjKSkpsLW11UrHiKqaMX4KI+0pLRFczJueWFOhYjH2AKu8pLxwQepBojZpFIR17NgRn332Gfbt21fs8QULFqBjx45a6RiRWIzpUxhpV2mJ4GLd9KSa/0Pik/LCBSkHidqkURA2e/ZstGrVCq1bt0ZkZCQaNGgAQRCQkJCA5cuX488//8TZs2d11VeiKmFMn8KocjTNLRLjpscPFaSvpBwkaotGQVijRo0QExODkJAQ9O/fHzJZfs6MIAho0KABjh49isaNG+uko0RVyVg+hVHllJWDlJGRgd27d5d5Hl0miuvDhwqu4qwaXLggPRoXa23dujX++OMPXLx4Ua1Ya/PmzbXdNyJRGcOnMKq80oIDNzc3SSSKS/lDhTGu4hQLFy5Ij8ZBWGZmJqpXr47mzZurBV4KhQKPHz+GnZ2dNvtHRKTXpHJDk+qHCmNcxSkmqbwei2OMI3UaBWHffPMNpkyZgosXL8La2lrt2LNnz9CyZUssWbIEPXr00GoniYhIM/p2QzO2VZxUlDGO1GkUhK1fvx6TJ08uEoABgI2NDaZMmYI1a9YwCCO9pG83LalgPo806dsNjas4CZD2SJ0uaBSEXblyBevWrSvxeLt27TBjxoxKd4pIDPp205IC5vNImz5dc67iJGOkURD233//ITc3t8TjOTk5+O+//yrdKSKx6NNNSwqYz0Paog+rOIm0TaMgzNvbG7/++isaNGhQ7PFff/0VXl5eWukYEekP5vOQNkh5FSeRLpiU3eSF3r17Y/r06bh3716RYykpKZgxYwb69Omjtc4RkX4oLZ+HSBNy+SP4+NxiAEZGQaORsKlTp+Lbb7+Fn58fBg8ejPr16wMArl69ih07dsDT0xNTp07VSUeJSLqYz0MVxQUxZMw0CsJsbW1x+vRpTJs2Dbt371blf9nb22Pw4MGYN28eN/AmMkLM59EeY1ttygUxZMw0LtYql8uxbt06rF27Fg8fPoQgCHB2dlZtYVTQ6dOn8corr8DCwkIrnSUi6WI+T+UZ62pTQ3ouRJrQOAhTkslkcHZ2LrVN165dcfHiRdSpU6eiv4aI9IhUq7LrC642JTIuGiXma0oQBF2enohExnwe3ShptWlGBtM9iAxJhUfCiIiYz6MbrB5PZBwYhBFRpTDA0j6uNiUyDgzCiIgkhqtNydAZ2yrgkug0CCtuxSQREZWttNWmDx8+VGtrLDcsMgzGugq4ODoNwpiYT0RUcSWtNo2Oji7ymDHcsMgwcBXwCzoNwh494tC5MeHwMlHllGcVaUmjBsZwwzJUxvreyT1nNQzCOnXqVK52x48fr1BnSH9xeJmo8opbbfrw4UPVyFdpowaknwq/d5bEEN87uQpYwyDs5MmT8PLyQrdu3WBubq6rPpEe4vAykXaUdKPlqIFhKvyeaEwjnVwFrGEQtnDhQmzZsgV79+7FoEGDMHLkSDRp0kRXfSM9xBsFGSqxp4w4amD4jG2kk6uANQzCJk2ahEmTJiEuLg6bN2/Ga6+9hvr162PkyJEYOHAg7OzsdNVPqqSquoHwRkGGSApTRhw1MGzG+gHW2PecrVBifkBAAAICArBy5Urs3bsXa9euxcSJE3H37l0GYhJUlflavFGQIZLClBFHDQybMX+ANeY9Zyu1OvLChQs4deoUEhIS0KRJE+aJSVRV5mvxRkGGTswpI2MfNTBk+vwBVtOZFu45+4LGQdjdu3exdetWbN26FZmZmRg8eDDOnTuHRo0a6aJ/pEVVNdzNGwUZKjGmjArfiEoaNTCGG5Yh09cPsBWZaeGesy9oFIS9+eabOHHiBLp06YLFixejW7duMDPjzkf6oiqHu415eJkMlxhTRrxhGQ99/ABb0ZkWvl7zaRRBHT58GG5ubrh9+zbmzp2LuXPnFtvuwoULWukcaZcuh7s5vEz6rrQpFeU2QWJNGfGGZbgMZaTTWBcWVJZGQdjs2bN11Q+qAroc7uanddJn5V39qK9TRiRdhvLeacwLCyqDQZiR0eVwt9TfJIhKosmiFH2cMiJpM4T3Tn1eWCAmrSR0nTp1Ck+ePEFAQABq1KihjVOSDjFfi6h0JSUXK+nrlJGuiF3IlsTHUeKK0bhi/uPHj/HJJ58AAARBQNeuXXH06FEAQM2aNREbG4vGjRtrv6dUYczXIiq/0pKLe/fuDScnp2J/zlgDDSkUsqUXxAyIOUqsOY2CsN27d2PKlCmq77/++mv8+OOP+Omnn9CwYUMMHToUc+fOxZ49e7TeUao4Q8k5INK1spKLnZyc4ObmJnIvpaW8U7mGuPeh1EghIOZMi2Y0CsKSkpLw0ksvqb7//vvv0bdvX7z22msAgBkzZuCdd97Rbg9JKxhgEZWNycWVV9ZULumOGAExZ1oqR6MgLDc3FxYWFqrv4+LiEBERofre3d1dtZSbiEjfMLm4coxtA2qpq4qAmDMtlaNREObr64sff/wRderUwe3bt/HXX3+hXbt2quN37tzhhSYivcXk4opjnShpqcqAmPf9itMoCAsLC0N4eDh++uknnD17FgEBAWrbFR0/fhwvv/yy1jtJRKRLBadKSksu5pRKyXQ5lcvVl5phQKw/NArCRo8eDVNTU3z33Xdo165dkbphd+/exciRI7XaQSIiXeOUSuXpaipXCsnm+oa5jfpD4zphI0eOLDHQWrduXaU7REQkBt7AK0dXU7lcfak55jbqD+6+TUREFVbVU7lcfVk25jbqD42CsJycHEyfPh3R0dFwcHDAmDFj1EbF7t27B3d3d+Tl5Wm9o0REJD1VOZXL1ZelY26j/tEoCJs3bx6++uorTJw4Eenp6YiMjMS5c+fw+eefq9oIgqD1ThIRkXRVxVQuk83LxtxG/aNRELZjxw58+eWX6N69OwBg+PDh6Nq1K0aMGIHNmzcDAGQymfZ7SVWGq5CISIqYbF4+fH/WLxoFYf/++y+aNGmi+r5u3bo4efIkOnXqhCFDhmDRokVa7yBVHa5CIiKpYrI5GSKTspu84OrqisTERLXHatWqhRMnTuD8+fMYPny4NvtGVYyrkIhIqpTJ5jKZAgCYbE4GQaMgrFOnToiKiiryuLu7O44fP46kpCStdaywnj17onbt2rC0tISbmxuGDBmCu3fvqrXZs2cPmjdvDmtra3h5eWHx4sVFznPy5Em0aNECFhYWqFu3LrZu3Vqkzdq1a+Ht7Q1LS0u0atUKv/zyi9rx58+fIywsDI6OjqhevTr69OmDe/fuqbW5ffs2unXrBmtra9SsWROTJk1Cbm5u5S8EEZERKZxsHhGxAsOGbUVExAq1pHxtJ5unpqYiOTm5xK/U1FSt/j4yThpNR86cORNXr14t9litWrVw6tQpxMTEaKVjhXXs2BEfffQR3Nzc8O+//2LixIno27cvzpw5AwD44YcfMGjQIKxevRpdunRBQkICRo8eDSsrK4SHhwPI34C8W7duGDNmDHbs2IHY2FiMGjUKbm5uCAoKAgDs3r0bkZGR2LBhA1q1aoUVK1YgKCgI165dQ82aNQEA48ePx6FDh7B3717I5XKEh4ejd+/eOH36NAAgLy8P3bp1g6urK86cOYPk5GQMHToU5ubm+Oyzz3RyfaSGuWVEpA1iJJszNYOqikzQ0+WMBw4cQK9evZCVlQVzc3MMHDgQOTk52Lt3r6rN6tWrsWjRIty+fRsymQxTpkzBoUOHcOXKFVWb/v37Iz09HYcPHwYAtGrVCi1btlT9B1QoFPD09MS4ceMwdepUZGRkwNnZGVFRUejbty8A4OrVq2jYsCHi4uLQunVr/PDDD+jevTvu3r0LFxcXAMCGDRswZcoUPHjwoNyf2DIzMyGXy5GRkQE7OzutXLfSJCcnY+PGjWW2Cw0NhZubW4nH+QZGRPpMW++Fho4ftktW3vt3hYq17t27Fzt37sRff/0FAKhXrx4GDhyoCkp0LS0tDTt27ECbNm1gbm4OAMjKyoK1tbVaOysrK9y5cwe3bt2Ct7c34uLiEBgYqNYmKCgIERERAPJzneLj4zFt2jTVcRMTEwQGBiIuLg4AEB8fj5ycHLXzNGjQALVr11YFYXFxcWjatKkqAFP+nrFjx+KPP/7Qm/01K1oUkbllRGRIWCC2KH7Y1g6NgjCFQoEBAwZg7969qFevHho0aAAA+OOPP9CvXz+888472Llzp87KVEyZMgVr1qzB06dP0bp1axw8eFB1LCgoCOPHj8fw4cPRsWNH3LhxA0uXLgWQ/6nG29sbKSkpaoERALi4uCAzMxPPnj3Df//9h7y8vGLbKKdhU1JSUK1aNdjb2xdpk5KSompT3DmUx0qSlZWFrKws1feZmZnluSw6waKIRC/wE7/x4nth8fhhWzs0CsJWrlyJY8eO4cCBA6paYUoHDhzAiBEjsHLlStXIUlmmTp2KhQsXltomISFBFexNmjQJISEhuHXrFubOnYuhQ4fi4MGDkMlkGD16NBITE9G9e3fk5OTAzs4OH374IebMmQMTE43WH4hm/vz5mDt3rtjdYFFEogL4id948b2w/DhaWDEaBWFbtmzB4sWLiwRgQP7qxUWLFmkUhE2YMKHMshZ16tRR/d3JyQlOTk6oV68eGjZsCE9PT5w9exYBAQGQyWRYuHAhPvvsM6SkpMDZ2RmxsbFq53B1dS2yivHevXuws7ODlZUVTE1NYWpqWmwbV1dX1Tmys7ORnp6uNhpWuE3hFZXKcyrbFGfatGmIjIxUfZ+ZmQlPT89Sr482KXPVyiqKyC0vyJjwE7/xYoHY8uFoYcVpFIRdv369SE5VQYGBgaqViOXh7OwMZ2dnTbqgolDk14opOH0HAKampqhVqxYAYOfOnQgICFD9joCAAHz//fdq7WNiYhAQEAAgPwjx9/dHbGwsevXqpfo9sbGxqufl7+8Pc3NzxMbGok+fPgCAa9eu4fbt26rzBAQEYN68ebh//75qRWVMTAzs7OzQqFGjEp+ThYUFLCwsKnQ9tEG5CunmzVxs3y5AoXgxrWxqKmDcuK7w9jbT+NM+PyERkT5igdiycbSwcjQKwqysrJCeno7atWsXezwzMxOWlpZa6VhB586dw/nz5/H666+jRo0aSExMxMyZM+Hr66sKfB4+fIivv/4aHTp0wPPnz7Flyxbs3bsXp06dUp1nzJgxWLNmDSZPnoyRI0fi+PHj2LNnDw4dOqRqExkZiWHDhuGVV17Bq6++ihUrVuDJkycYMWIEAEAulyMkJASRkZFwcHCAnZ0dxo0bh4CAALRu3RoA0KVLFzRq1Ei1i0BKSgpmzJiBsLAwUYOs4hSX6+LuDixalIEpU+TIy5PB1BT4/HMZ/P1dSjhLyfgJiQwNP1QYD2WB2MLvYfx3f4GjhZWjURAWEBCA9evXY/369cUeX7t2rSoo0iZra2tER0dj9uzZePLkCdzc3BAcHIwZM2aoBTXbtm3DxIkTIQgCAgICcPLkSbz66quq4z4+Pjh06BDGjx+PlStXwsPDA19++aWqRhgA9OvXDw8ePMCsWbOQkpKC5s2b4/Dhw2qJ9suXL4eJiQn69OmDrKwsBAUFYd26darjpqamOHjwIMaOHYuAgADY2Nhg2LBh+Pjjj7V+bSqjrFyXDz6wRVqaAyZMeAtNm9bQ+Pz8hESGRmofKrhgQDcKF4j19b2BtDQHODikqb13MTWDo4WVpVEQNn36dHTo0AGpqamYOHEiGjRoAEEQkJCQgKVLl+Lbb7/FiRMntN7Jpk2b4vjx46W2cXJyUpWRKE2HDh3w22+lv2mGh4eXOq1qaWmJtWvXYu3atSW28fLyKjL1KTVl5bDI5Y8glz+Ck9Nzjc7L3DIyRFL7UMEFA7ojRoFYfcXRwsrRKAhr06YNdu/ejdDQUOzbt0/tWI0aNbBz50689tprWu0g6R9d5ZYRiUlq0y5cMKBbfH8qHUcLtUPjYq1vv/02goKCcOTIEVy/fh1AfrHWLl26FCmWSsbL0dERjo7Axo3Ae+8BeXmoVG4Zkdg47UL0AkcLtUOjIOz48eMIDw/H2bNn8fbbb6sdy8jIQOPGjbFhwwa0bdtWq50k/RUSAgQFATduAHXrAh4eYveISDPKT/JlTbvwEz8ZGwZYladRELZixQqMHj262H2Q5HI53nvvPSxbtoxBGKnx8GDwRfqr8Cf+WbMe4OZNM3h758LdvSWAlpL4xM9Vm0T6R6Mg7Pfffy+1wn2XLl2wZMmSSneKiEhKCgZYbm6Av7+InSmG1FZtGhquQiVd0SgIu3fvnmrD7GJPZmaGBw8eVLpTRERUPlJbtWlouAqVdEmjTRVr1aqFK1eulHj80qVLcHNzq3SnqGqUN4eFuS5E0lXaqk2qPK5CJV3SaCTszTffxMyZMxEcHFykMv6zZ88we/bsYveVJGkqnOty964JkpLM4OOTC3f3/G2hOMxOJE3KD0dlrdrkhygi6dIoCJsxYwaio6NRr149hIeHo379+gCAq1evYu3atcjLy8P06dN10lHSDWWAtWkTEBoKKBSAiUl+aYmQEJE7R0QlKvghqlatzALbjAlYuDATAwcO4IcoHeACCNImmSAIgiY/cOvWLYwdOxZHjhyB8kdlMhmCgoKwdu1a+Pj46KSjxigzMxNyuRwZGRnFrkjVljt3AC+v/ABMydQUuHmTqxqJ9MWdOywFowvJycnYuHEjgNIXQISGhjIdh1TKe//WuFircjue//77Dzdu3IAgCPDz80ONGprvLUjScP26egAG5BdXvXGDb+ZE+oKlYHSLCyBIFzQOwpRq1KiBli1barMvJBI/v/wpyMIjYXXritcnIiJNaLOMRMFzPXz4EID2tq1iuQsqqMJBGBkOD4/ithcy3E/VfBMkMizaLCNR0rm0sW0Vy11QYQzCCIDxbC/EN0Eiw6PNMhIltdHGtlUsd0GFMQgjFWPIKeGbIBFVVIsWv8HX9wbS0hwwaFArNGkinW2rSD8xCCMiIionufwR5PJHaNIkqNKrIVnughiEERGRQdFmcKOrQIn7fRLAIIyIiAyINoMbXQVKLHdBSgzCiIioSuh6ZbI2gxtdBkraKndB+o9BGBER6VxVrEzWZnCjy0BJG+UuyDCYlN2EiIiocnS5MrnwZuYFabqZuTbPVdK5leUulOevSLkLMgwcCSOjUt43N74JEukPbW5mrsuN0QueGwBmzXqAmzfN4O2dC3d3lrswRhpv4E1Vp6o28DY2BfNS7t41QVKSGXx8cuHunv+plG+CRNpXcCNsoORVh6VthF3enDJtbmZuDBujcxcR7dPZBt5E+k75ZrJpExAamr9npolJ/tZNISEid47ICFRk1aEmOWUeHo5aC5gMvYg1dxERF3PCyCjdufMiAAPy/3zvvfzHiUh3Slp1mJFhW+rPcbcL3eB1FReDMDJK16+/CMCU8vLypx2ISHdKW3VIZGwYhJFR8vPLn4IsyNQ0P++DiHSnrFWH5ZWRYYukJO8yR9CIpIw5YWSUPDzyc8Deey9/BMzUFPj8c8PO/SASU+HyDIVzwjQpz8Atf3SH+1lWLQZhZLRCQoCgIMNf+UQkBdoqz8Atf3SHwW3VYxBGRs3QVz4RSUnBAMvNDfD31/wc3PJHNxjcioM5YUREpDe0lVNG6rhgQhwMwoiISPK45Y9u6HKbJiobK+ZLGCvmExG9UHi3ixc5ZdztojKU1zUqyqrQNk0ZGDjwGa9rBZT3/s0gTMIYhBGRMeI2OuIxhm2aqgK3LSIiIr3DbXTExcVKVYtBGJEe4MgAGYvybo9z//59/p8gvccgjEjiODJAVNSePXvKbMP/EyR1XB1JJHHcYJeMWWW2J+L/CZI6joQREZEksYI7GTqOhBERkeSUVMG9uBExbuZN+oojYUR6hhvskjEo7/ZEHC0jfcYgjEiP8IZDxkJZwb1gIFZ4eyLud6hbXJWtewzCiPQEbzhkDApvT1T4Q0fB1zo389YdrsquGgzCiPQEbzhkDBwdHREeHq4agZk160GB7YlaAmiJjIwM7N69u1yjZVQxXJVdNRiEEUlc4Q12S7rhcINdMhQFR1bc3AB/f/Xj5R0t4/8JkjoGYUQSV3BkoFatzEIb7GZi4MABzM0go1Ke0TL+nyB9wCCMSA8obyYTJgD9+ik32JXBw8MegL2YXSMSRVmjZaRdXJWtGwzCiPQMN9gloqrEVdm6wyCMDBaXVxMRVQ5XZesWgzAySFxeTURUeVyVrVsMwsggcXk1EVHFGeqqbKnNkDAIIyIiIjWGuCpbijMkDMLIKHBlDxGRZgxtVbYUZ0gYhJHB48oeIqLK4aps3TApuwmR/ippZU9Ghq3IPSMiImPHIIwMWmkre4iIiMTEIIwMmnJlT0Hc4JeIiKSAQRgZpMIb/CoDMW7wS0REQH66SlKSt6jpKUzMJ4PEDX6JpEFqdZmIAOks2GIQRgaLG/wSiUuKdZnIeClnPsraiqkqZ0gYhBERkU4UHgErqV4fd66gqqCcITlxAli+vOiCrddeG4YOHcCK+USkW3fuANevA35+rP1DVUMq0z9k3BwdHdG6NWBiAigKrNkyNQVatXJEVQ/IMjGfyMhs2gR4eQGdOuX/uWmT2D0iQ8d6fSQlHh7Axo35gReQ/+fnn4vzgZRBGJERuXMHCA198QlQoQDeey//cSJdYb0+kpqQEODmTeDEifw/Q0LE6QenI4mMyPXr6kPwAJCXl78nHKclSVeU9foKBmKs10dik8JWTAzCqMKYV6R//PyKz4WoW1e8PpHhU9brK5wTVjA531iwZAcVxCCMKmTTphfTWiYm+fPrYg3nUvkpcyHeey9/BEzMXAgyLi1a/AZf3xtIS3OAg0Oa0QZgLNlBBTEII42VlFcUFMSbuT4ICcn/t7pxI38EjP9mpCuF6y3J5Y+KDb6MZeeK8pbiYMkO46F3iflZWVlo3rw5ZDIZLl68qHbs0qVLaNu2LSwtLeHp6YlFixYV+fm9e/eiQYMGsLS0RNOmTfH999+rHRcEAbNmzYKbmxusrKwQGBiI69evq7VJS0vDoEGDYGdnB3t7e4SEhODx48ca90VflZZXRNKVmpqK5ORkJCcnw9Q0GfXr5/+pfCw1NVXsLpKBUdZlCg0NLfGLoz5kzPRuJGzy5Mlwd3fH77//rvZ4ZmYmunTpgsDAQGzYsAGXL1/GyJEjYW9vj9DQUADAmTNnMGDAAMyfPx/du3dHVFQUevXqhQsXLqBJkyYAgEWLFmHVqlXYtm0bfHx8MHPmTAQFBeHPP/+EpaUlAGDQoEFITk5GTEwMcnJyMGLECISGhiIqKqrcfdFnzCvSP5wGIbHw9VSykorXkvHQqyDshx9+wNGjR7Fv3z788MMPasd27NiB7OxsbN68GdWqVUPjxo1x8eJFLFu2TBX4rFy5EsHBwZg0aRIA4JNPPkFMTAzWrFmDDRs2QBAErFixAjNmzMBbb70FAPjqq6/g4uKC/fv3o3///khISMDhw4dx/vx5vPLKKwCA1atX480338SSJUvg7u5err7oM+YV6R9OgxBJC4vXEqBH05H37t3D6NGjsX37dlhbWxc5HhcXh3bt2qnlFgQFBeHatWv477//VG0CAwPVfi4oKAhxcXEAgKSkJKSkpKi1kcvlaNWqlapNXFwc7O3tVQEYAAQGBsLExATnzp0rd1+Kk5WVhczMTLUvqZJKjRUiIn3D4rWkpBdBmCAIGD58OMaMGaMW/BSUkpICFxcXtceU36ekpJTapuDxgj9XUpuaNWuqHTczM4ODg0OZv6fg7yjO/PnzIZfLVV+enp4ltpUCDw+gQweOgBERaYLFa0lJ1CBs6tSpkMlkpX5dvXoVq1evxqNHjzBt2jQxu6tz06ZNQ0ZGhurrn3/+EbtLRESkZcritQWxeK1xEjUnbMKECRg+fHipberUqYPjx48jLi4OFhYWasdeeeUVDBo0CNu2bYOrqyvu3bundlz5vaurq+rP4toUPK58zM3NTa1N8+bNVW3u37+vdo7c3FykpaWV+XsK/o7iWFhYFHmORERkGJQpKmUVrzWWkh0kchDm7OwMZ2fnMtutWrUKn376qer7u3fvIigoCLt370arVq0AAAEBAZg+fTpycnJgbm4OAIiJiUH9+vVRo0YNVZvY2FhERESozhUTE4OAgAAAgI+PD1xdXREbG6sKujIzM3Hu3DmMHTtWdY709HTEx8fD398fAHD8+HEoFAqN+kJERMZFWbJDuQBm1qwHuHnTDN7euXB3bwmgJSvmGxm9WB1Zu3Ztte+rV68OAPD19YXH/yckDRw4EHPnzkVISAimTJmCK1euYOXKlVi+fLnq5z788EO0b98eS5cuRbdu3bBr1y78+uuv2LhxIwBAJpMhIiICn376Kfz8/FQlKtzd3dGrVy8AQMOGDREcHIzRo0djw4YNyMnJQXh4OPr37w93d/dy94WIiIxPwQDLzQ34/8/yZKT0IggrD7lcjqNHjyIsLAz+/v5wcnLCrFmz1EpCtGnTBlFRUZgxYwY++ugj+Pn5Yf/+/aoaYUB+HbInT54gNDQU6enpeP3113H48GFVjTAgvxxGeHg4OnfuDBMTE/Tp0werVq3SqC9EVam80xucBiEiqjoyQRAEsTtBxcvMzIRcLkdGRgbs7OzE7g7pOW4cTERUNcp7/zaYkTAiKh0DLCIiaWEQRkREREZBajMCDMKIiIi0SGo3esonxT10GYQRERFpiRRv9JRPinvo6sW2RURERPpAijd6ki4GYUREREQiYBBGRFSMO3eAEyfy/yQi0gUGYUREhWzaBHh5AZ065f+5aZPYPSIiQ8TEfNIIV/2QobtzBwgNBRSK/O8VCuC994CgIOD/d0kjKreMDFukpTnCwSFVtUE3kRKDMCo3rvohY3D9+osATCkvD7hxg0EYaebChZfx3XfdIQgmkMkU6NHjIFq0+E3sbpGEcDqSyo2rfsgY+PkBJoXeGU1Ngbp1xekP6aeMDFtVAAYAgmCC777rjowMW5F7ZrykuIcuR8KIiArw8AA2bsyfgszLyw/APv+co2BUPsobeFqaoyoAUxIEE6SlOUAuf1SlN3rK5+joiPDwcEml1DAIIyIqJCQkPwfsxo38ETAGYFReyhv9zZu52L5dgEIhUx0zNRUwblxXeHubMWVDJFK77gzCiIj+X8GFJ6amQP36+Y8nJ+f/yYUnVB6Ojo5wdCxuRFUGf38XsbtH/+/OnfwcUD8/8T5oMQgjIgIXnpD2cURVujZterEK2sQkP2AOCan6fjAxn4gIXHhCuuHhAXTowABMSkoqQyNGYWaOhBERkdpU7N27JkhKMoOPTy7c3fPvVJyKJUMhpTI0DMKo3KS4vJeIKq/gVGxpta04FUuGQFmGpmAgJlYZGgZhVG5SXN5LRJWn/D9dUm0rX98bkMsfcSqWDIKUytAwCCONMMAiMlxl1bYiMhRSWTTBIIyIiAAADg6pkMkUaoGYTKaAg0OaiL0i0g0PD/EXTHB1JBERAQDk8kfo0eMgZLL8ZBllThhHwYh0gyNhRETgwhOlFi1+g6/vDaSlOcDBIY0BGJEOMQgjIgIXnhQklz9i8EVUBRiEERH9P2MIsIhIOpgTRkRk5DgVSyQOjoQRERk5TsUSiYNBGBERMcAiEgGnI4mIiIhEwCCMiIiISAQMwoiIiIhEwCCMiIiISAQMwoiIiIhEwCCMiIiISAQMwoiIiIhEwCCMiIiISAQMwoiIiIhEwIr5EiYIAgAgMzNT5J4QERFReSnv28r7eEkYhEnYo0ePAACenp4i94SIiIg09ejRI8jl8hKPy4SywjQSjUKhwN27d2FrawuZTCZ2d6pMZmYmPD098c8//8DOzk7s7ug1Xkvt4HXUHl5L7eB11B5dXEtBEPDo0SO4u7vDxKTkzC+OhEmYiYkJPDw8xO6GaOzs7PjmoiW8ltrB66g9vJbaweuoPdq+lqWNgCkxMZ+IiIhIBAzCiIiIiETAIIwkx8LCArNnz4aFhYXYXdF7vJbaweuoPbyW2sHrqD1iXksm5hMRERGJgCNhRERERCJgEEZEREQkAgZhRERERCJgEEZEREQkAgZhJJoff/wRPXr0gLu7O2QyGfbv3692XBAEzJo1C25ubrCyskJgYCCuX78uTmclrqxrOXz4cMhkMrWv4OBgcTorYfPnz0fLli1ha2uLmjVrolevXrh27Zpam+fPnyMsLAyOjo6oXr06+vTpg3v37onUY2kqz3Xs0KFDkdfkmDFjROqxdK1fvx4vvfSSqpBoQEAAfvjhB9Vxvh7Lp6zrKNbrkUEYiebJkydo1qwZ1q5dW+zxRYsWYdWqVdiwYQPOnTsHGxsbBAUF4fnz51XcU+kr61oCQHBwMJKTk1VfO3furMIe6odTp04hLCwMZ8+eRUxMDHJyctClSxc8efJE1Wb8+PH47rvvsHfvXpw6dQp3795F7969Rey19JTnOgLA6NGj1V6TixYtEqnH0uXh4YEFCxYgPj4ev/76Kzp16oS33noLf/zxBwC+HsurrOsIiPR6FIgkAIDwzTffqL5XKBSCq6ursHjxYtVj6enpgoWFhbBz504Reqg/Cl9LQRCEYcOGCW+99ZYo/dFn9+/fFwAIp06dEgQh/zVobm4u7N27V9UmISFBACDExcWJ1U3JK3wdBUEQ2rdvL3z44YfidUqP1ahRQ/jyyy/5eqwk5XUUBPFejxwJI0lKSkpCSkoKAgMDVY/J5XK0atUKcXFxIvZMf508eRI1a9ZE/fr1MXbsWKSmpordJcnLyMgAADg4OAAA4uPjkZOTo/a6bNCgAWrXrs3XZSkKX0elHTt2wMnJCU2aNMG0adPw9OlTMbqnN/Ly8rBr1y48efIEAQEBfD1WUOHrqCTG65EbeJMkpaSkAABcXFzUHndxcVEdo/ILDg5G79694ePjg8TERHz00Ufo2rUr4uLiYGpqKnb3JEmhUCAiIgKvvfYamjRpAiD/dVmtWjXY29urteXrsmTFXUcAGDhwILy8vODu7o5Lly5hypQpuHbtGqKjo0XsrTRdvnwZAQEBeP78OapXr45vvvkGjRo1wsWLF/l61EBJ1xEQ7/XIIIzICPTv31/196ZNm+Kll16Cr68vTp48ic6dO4vYM+kKCwvDlStX8PPPP4vdFb1W0nUMDQ1V/b1p06Zwc3ND586dkZiYCF9f36rupqTVr18fFy9eREZGBr7++msMGzYMp06dErtbeqek69ioUSPRXo+cjiRJcnV1BYAiq3zu3bunOkYVV6dOHTg5OeHGjRtid0WSwsPDcfDgQZw4cQIeHh6qx11dXZGdnY309HS19nxdFq+k61icVq1aAQBfk8WoVq0a6tatC39/f8yfPx/NmjXDypUr+XrUUEnXsThV9XpkEEaS5OPjA1dXV8TGxqoey8zMxLlz59Tm8Kli7ty5g9TUVLi5uYndFUkRBAHh4eH45ptvcPz4cfj4+Kgd9/f3h7m5udrr8tq1a7h9+zZflwWUdR2Lc/HiRQDga7IcFAoFsrKy+HqsJOV1LE5VvR45HUmiefz4sdqnjKSkJFy8eBEODg6oXbs2IiIi8Omnn8LPzw8+Pj6YOXMm3N3d0atXL/E6LVGlXUsHBwfMnTsXffr0gaurKxITEzF58mTUrVsXQUFBIvZaesLCwhAVFYVvv/0Wtra2qrwauVwOKysryOVyhISEIDIyEg4ODrCzs8O4ceMQEBCA1q1bi9x76SjrOiYmJiIqKgpvvvkmHB0dcenSJYwfPx7t2rXDSy+9JHLvpWXatGno2rUrateujUePHiEqKgonT57EkSNH+HrUQGnXUdTXY5WvxyT6fydOnBAAFPkaNmyYIAj5ZSpmzpwpuLi4CBYWFkLnzp2Fa9euidtpiSrtWj59+lTo0qWL4OzsLJibmwteXl7C6NGjhZSUFLG7LTnFXUMAwpYtW1Rtnj17Jrz//vtCjRo1BGtra+Htt98WkpOTxeu0BJV1HW/fvi20a9dOcHBwECwsLIS6desKkyZNEjIyMsTtuASNHDlS8PLyEqpVqyY4OzsLnTt3Fo4ePao6ztdj+ZR2HcV8PcoEQRB0G+YRERERUWHMCSMiIiISAYMwIiIiIhEwCCMiIiISAYMwIiIiIhEwCCMiIiISAYMwIiIiIhEwCCMiIiISAYMwIiIiIhEwCCMiyUpJScG4ceNQp04dWFhYwNPTEz169FDbK+/MmTN48803UaNGDVhaWqJp06ZYtmwZ8vLyVG1u3ryJkJAQ+Pj4wMrKCr6+vpg9ezays7PVft8XX3yBZs2aoXr16rC3t8fLL7+M+fPnq47PmTMHMpkMwcHBRfq6ePFiyGQydOjQoVzPTXkumUwGMzMzeHt7Y/z48Xj8+LGGV4mI9BX3jiQiSbp58yZee+012NvbY/HixWjatClycnJw5MgRhIWF4erVq/jmm2/w7rvvYsSIEThx4gTs7e1x7NgxTJ48GXFxcdizZw9kMhmuXr0KhUKBzz//HHXr1sWVK1cwevRoPHnyBEuWLAEAbN68GREREVi1ahXat2+PrKwsXLp0CVeuXFHrl5ubG06cOIE7d+7Aw8ND9fjmzZtRu3ZtjZ5j48aNcezYMeTm5uL06dMYOXIknj59is8//7xI2+zsbFSrVq0CV1J3pNgnIr2i842RiIgqoGvXrkKtWrWEx48fFzn233//CY8fPxYcHR2F3r17Fzl+4MABAYCwa9euEs+/aNEiwcfHR/X9W2+9JQwfPrzUPs2ePVto1qyZ0L17d+HTTz9VPX769GnByclJGDt2rNC+fftyPLsX5ypo9OjRgqurq9rxL774QvD29hZkMpkgCPnPPSQkRHBychJsbW2Fjh07ChcvXlSd4+LFi0KHDh2E6tWrC7a2tkKLFi2E8+fPC4IgCDdv3hS6d+8u2NvbC9bW1kKjRo2EQ4cOCYIgCFu2bBHkcrlaf7755huh4G2ion0iouJxOpKIJCctLQ2HDx9GWFgYbGxsihy3t7fH0aNHkZqaiokTJxY53qNHD9SrVw87d+4s8XdkZGTAwcFB9b2rqyvOnj2LW7duldm/kSNHYuvWrarvN2/ejEGDBlV6VMjKykptivTGjRvYt28foqOjcfHiRQDAO++8g/v37+OHH35AfHw8WrRogc6dOyMtLQ0AMGjQIHh4eOD8+fOIj4/H1KlTYW5uDgAICwtDVlYWfvzxR1y+fBkLFy5E9erVNepjRfpERMXjdCQRSc6NGzcgCAIaNGhQYpu//voLANCwYcNijzdo0EDVprjzr169WjUVCQCzZ89G79694e3tjXr16iEgIABvvvkm+vbtCxMT9c+r3bt3x5gxY/Djjz/C398fe/bswc8//4zNmzdr+lRV4uPjERUVhU6dOqkey87OxldffQVnZ2cAwM8//4xffvkF9+/fh4WFBQBgyZIl2L9/P77++muEhobi9u3bmDRpkura+fn5qc53+/Zt9OnTB02bNgUA1KlTR+N+VqRPRFQ8BmFEJDmCIOikLQD8+++/CA4OxjvvvIPRo0erHndzc0NcXByuXLmCH3/8EWfOnMGwYcPw5Zdf4vDhw2qBmLm5OQYPHowtW7bg77//Rr169fDSSy9p1A8AuHz5MqpXr468vDxkZ2ejW7duWLNmjeq4l5eXKtgBgN9//x2PHz+Go6Oj2nmePXuGxMREAEBkZCRGjRqF7du3IzAwEO+88w58fX0BAB988AHGjh2Lo0ePIjAwEH369NG43xXpExEVj0EYEUmOn5+fKqG+JPXq1QMAJCQkoE2bNkWOJyQkoFGjRmqP3b17Fx07dkSbNm2wcePGYs/bpEkTNGnSBO+//z7GjBmDtm3b4tSpU+jYsaNau5EjR6JVq1a4cuUKRo4cqelTBADUr18fBw4cgJmZGdzd3YtMZxaein38+DHc3Nxw8uTJIueyt7cHkL/qcuDAgTh06BB++OEHzJ49G7t27cLbb7+NUaNGISgoCIcOHcLRo0cxf/58LF26FOPGjYOJiUmRgDYnJ6fI76lIn4ioeMwJIyLJcXBwQFBQENauXYsnT54UOZ6eno4uXbrAwcEBS5cuLXL8wIEDuH79OgYMGKB67N9//0WHDh3g7++PLVu2FJliLI4yiCuuD40bN0bjxo1x5coVDBw4UJOnp1KtWjXUrVsX3t7e5cona9GiBVJSUmBmZoa6deuqfTk5Oana1atXD+PHj8fRo0fRu3dvbNmyRXXM09MTY8aMQXR0NCZMmIAvvvgCAODs7IxHjx6pPVdlzpc2+kRERTEIIyJJWrt2LfLy8vDqq69i3759uH79OhISErBq1SoEBATAxsYGn3/+Ob799luEhobi0qVLuHnzJjZt2oThw4ejb9++ePfddwG8CMBq166NJUuW4MGDB0hJSUFKSorq940dOxaffPIJTp8+jVu3buHs2bMYOnQonJ2dERAQUGwfjx8/juTk5Cob8QkMDERAQAB69eqFo0eP4ubNmzhz5gymT5+OX3/9Fc+ePUN4eDhOnjyJW7du4fTp0zh//rwqby4iIgJHjhxBUlISLly4gBMnTqiOtWrVCtbW1vjoo4+QmJiIqKgotcUHFe0TEZWM05FEJEl16tTBhQsXMG/ePEyYMAHJyclwdnaGv78/1q9fDwDo27cvTpw4gXnz5qFt27Z4/vw5/Pz8MH36dEREREAmkwEAYmJicOPGDdy4cUOtthfwIqcsMDAQmzdvxvr165GamgonJycEBAQgNja2SL6TUnErN3VJJpPh+++/x/Tp0zFixAg8ePAArq6uaNeuHVxcXGBqaorU1FQMHToU9+7dg5OTE3r37o25c+cCAPLy8hAWFoY7d+7Azs4OwcHBWL58OYD80cf//e9/mDRpEr744gt07twZc+bMKTOxvqw+EVHJZIKmWa1EREREVGmcjiQiIiISAYMwIiIdqF69eolfP/30k9jdIyIJ4HQkEZEO3Lhxo8RjtWrVgpWVVRX2hoikiEEYERERkQg4HUlEREQkAgZhRERERCJgEEZEREQkAgZhRERERCJgEEZEREQkAgZhRERERCJgEEZEREQkAgZhRERERCL4PwM6cqQOq5s2AAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Import training data\n", + "np.set_printoptions(precision=7, suppress=True)\n", + "\n", + "csv_data = pd.read_csv(datafile_path(\"500_Points_DataSet.csv\"))\n", + "\n", + "### ALAMO only accepts alphanumerical characters (A-Z, a-z, 0-9) or underscores as input/output labels\n", + "cols = csv_data.columns\n", + "cols = [item.replace(\".\", \"_\") for item in cols]\n", + "csv_data.columns = cols\n", + "\n", + "data = csv_data.sample(n=500, random_state=0)\n", + "\n", + "input_data = data.iloc[:, :2]\n", + "output_data = data.iloc[:, 2:4]\n", + "\n", + "# Define labels, and split training and validation data\n", + "input_labels = input_data.columns\n", + "output_labels = output_data.columns\n", + "\n", + "n_data = data[input_labels[0]].size\n", + "data_training, data_validation = split_training_validation(data, 0.8, seed=n_data)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAHHCAYAAAARcURhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB74ElEQVR4nO3deViUVfsH8O+wL8IgOwgK4i6moqajuRWK5pIvmktqqBhlkppmau6ZpVZuueWb21uaK5V7IpqVIplrFpoabgkuIANugMz5/cFvHhmYgRkYGGC+n+uaC+d5zjxz5mmM23Pucx+ZEEKAiIiIiEzGwtQdICIiIjJ3DMiIiIiITIwBGREREZGJMSAjIiIiMjEGZEREREQmxoCMiIiIyMQYkBERERGZGAMyIiIiIhNjQEZERERkYgzIiIioSOvXr4dMJsPVq1dN3RWiKosBGRGZ3IkTJxAdHY3GjRvD0dERNWvWRP/+/fH3338XatupUyfIZDLIZDJYWFjA2dkZ9evXx9ChQxEbG2vQ++7atQsdO3aEp6cnHBwcULt2bfTv3x/79+831kcr5OOPP8b3339f6PixY8cwa9YspKenl9l7FzRr1izpXspkMjg4OKBRo0aYNm0aMjIyjPIemzZtwuLFi41yLaKqjAEZEZnc/PnzsWPHDrz00ktYsmQJoqKi8PPPPyMkJATnz58v1N7Pzw9ff/01/ve//+HTTz9F7969cezYMXTt2hUDBgxATk5Ose/52WefoXfv3pDJZJgyZQoWLVqEvn374tKlS9i8eXNZfEwARQdks2fPLteATG3lypX4+uuvsXDhQjRo0ABz585Ft27dYIytjhmQEenHytQdICIaP348Nm3aBBsbG+nYgAED0KRJE8ybNw/ffPONRnu5XI4hQ4ZoHJs3bx7GjBmDFStWICAgAPPnz9f5fk+fPsWcOXPQpUsXHDhwoND5O3fulPITVRyPHj2Cg4NDkW369esHd3d3AMBbb72Fvn37IiYmBsePH4dCoSiPbhKZPY6QEZHJtW3bViMYA4C6deuicePGSExM1OsalpaWWLp0KRo1aoRly5ZBqVTqbHvv3j1kZGSgXbt2Ws97enpqPH/y5AlmzZqFevXqwc7ODj4+PggPD8eVK1ekNp999hnatm0LNzc32Nvbo0WLFti+fbvGdWQyGR4+fIgNGzZI04TDhg3DrFmzMHHiRABAYGCgdC5/ztY333yDFi1awN7eHq6urhg4cCBu3Lihcf1OnTohODgYJ0+eRIcOHeDg4IAPPvhAr/uX34svvggASEpKKrLdihUr0LhxY9ja2sLX1xejR4/WGOHr1KkT9uzZg2vXrkmfKSAgwOD+EJkDjpARUYUkhMDt27fRuHFjvV9jaWmJQYMGYfr06fj111/Ro0cPre08PT1hb2+PXbt24Z133oGrq6vOa+bm5qJnz56Ii4vDwIEDMXbsWGRmZiI2Nhbnz59HUFAQAGDJkiXo3bs3Bg8ejOzsbGzevBmvvvoqdu/eLfXj66+/xsiRI/H8888jKioKABAUFARHR0f8/fff+Pbbb7Fo0SJptMrDwwMAMHfuXEyfPh39+/fHyJEjcffuXXzxxRfo0KEDTp8+DRcXF6m/qamp6N69OwYOHIghQ4bAy8tL7/unpg403dzcdLaZNWsWZs+ejdDQUIwaNQoXL17EypUrceLECRw9ehTW1taYOnUqlEolbt68iUWLFgEAqlWrZnB/iMyCICKqgL7++msBQKxZs0bjeMeOHUXjxo11vu67774TAMSSJUuKvP6MGTMEAOHo6Ci6d+8u5s6dK06ePFmo3dq1awUAsXDhwkLnVCqV9OdHjx5pnMvOzhbBwcHixRdf1Dju6OgoIiIiCl3r008/FQBEUlKSxvGrV68KS0tLMXfuXI3jf/zxh7CystI43rFjRwFArFq1Sufnzm/mzJkCgLh48aK4e/euSEpKEl9++aWwtbUVXl5e4uHDh0IIIdatW6fRtzt37ggbGxvRtWtXkZubK11v2bJlAoBYu3atdKxHjx6iVq1aevWHyJxxypKIKpwLFy5g9OjRUCgUiIiIMOi16hGYzMzMItvNnj0bmzZtQvPmzfHjjz9i6tSpaNGiBUJCQjSmSXfs2AF3d3e88847ha4hk8mkP9vb20t/vn//PpRKJdq3b49Tp04Z1P+CYmJioFKp0L9/f9y7d096eHt7o27dujh8+LBGe1tbWwwfPtyg96hfvz48PDwQGBiIN998E3Xq1MGePXt05p4dPHgQ2dnZGDduHCwsnv0aeeONN+Ds7Iw9e/YY/kGJzBynLImoQklJSUGPHj0gl8uxfft2WFpaGvT6Bw8eAACcnJyKbTto0CAMGjQIGRkZSEhIwPr167Fp0yb06tUL58+fh52dHa5cuYL69evDyqro/13u3r0bH330Ec6cOYOsrCzpeP6grSQuXboEIQTq1q2r9by1tbXG8xo1ahTKxyvOjh074OzsDGtra/j5+UnTsLpcu3YNQF4gl5+NjQ1q164tnSci/TEgI6IKQ6lUonv37khPT8cvv/wCX19fg6+hLpNRp04dvV/j7OyMLl26oEuXLrC2tsaGDRuQkJCAjh076vX6X375Bb1790aHDh2wYsUK+Pj4wNraGuvWrcOmTZsM/gz5qVQqyGQy7Nu3T2twWjAnK/9Inb46dOgg5a0RkWkwICOiCuHJkyfo1asX/v77bxw8eBCNGjUy+Bq5ubnYtGkTHBwc8MILL5SoHy1btsSGDRuQnJwMIC/pPiEhATk5OYVGo9R27NgBOzs7/Pjjj7C1tZWOr1u3rlBbXSNmuo4HBQVBCIHAwEDUq1fP0I9TJmrVqgUAuHjxImrXri0dz87ORlJSEkJDQ6VjpR0hJDIXzCEjIpPLzc3FgAEDEB8fj23btpWo9lVubi7GjBmDxMREjBkzBs7OzjrbPnr0CPHx8VrP7du3D8Cz6bi+ffvi3r17WLZsWaG24v8Lp1paWkImkyE3N1c6d/XqVa0FYB0dHbUWf3V0dASAQufCw8NhaWmJ2bNnFyrUKoRAamqq9g9ZhkJDQ2FjY4OlS5dq9GnNmjVQKpUaq1sdHR2LLEFCRHk4QkZEJjdhwgTs3LkTvXr1QlpaWqFCsAWLwCqVSqnNo0ePcPnyZcTExODKlSsYOHAg5syZU+T7PXr0CG3btkWbNm3QrVs3+Pv7Iz09Hd9//z1++eUX9OnTB82bNwcAvP766/jf//6H8ePH47fffkP79u3x8OFDHDx4EG+//TZeeeUV9OjRAwsXLkS3bt3w2muv4c6dO1i+fDnq1KmDc+fOabx3ixYtcPDgQSxcuBC+vr4IDAxE69at0aJFCwDA1KlTMXDgQFhbW6NXr14ICgrCRx99hClTpuDq1avo06cPnJyckJSUhO+++w5RUVF47733SnX/DeXh4YEpU6Zg9uzZ6NatG3r37o2LFy9ixYoVaNWqlcZ/rxYtWmDLli0YP348WrVqhWrVqqFXr17l2l+iSsGUSzyJiIR4Vq5B16OottWqVRN169YVQ4YMEQcOHNDr/XJycsR///tf0adPH1GrVi1ha2srHBwcRPPmzcWnn34qsrKyNNo/evRITJ06VQQGBgpra2vh7e0t+vXrJ65cuSK1WbNmjahbt66wtbUVDRo0EOvWrZPKSuR34cIF0aFDB2Fvby8AaJTAmDNnjqhRo4awsLAoVAJjx44d4oUXXhCOjo7C0dFRNGjQQIwePVpcvHhR494UVRKkIHX/7t69W2S7gmUv1JYtWyYaNGggrK2thZeXlxg1apS4f/++RpsHDx6I1157Tbi4uAgALIFBpINMCCNsVkZEREREJcYcMiIiIiITY0BGREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRERERCbGwrAVmEqlwq1bt+Dk5MTtR4iIiCoJIQQyMzPh6+sLCwv9xr4YkFVgt27dgr+/v6m7QURERCVw48YN+Pn56dWWAVkF5uTkBCDvP2hR+/IRERFRxZGRkQF/f3/p97g+GJBVYOppSmdnZwZkRERElYwh6UZM6iciIiIyMQZkRERERCbGgIyIiIjIxJhDVsmpVCpkZ2ebuhtVmo2Njd7LlomIiEqi0gRkvXv3xpkzZ3Dnzh1Ur14doaGhmD9/Pnx9faU2Qgh8/vnnWL16Na5duwZ3d3e8/fbbmDp1qtTmp59+wvjx4/Hnn3/C398f06ZNw7BhwzTea/ny5fj000+RkpKCpk2b4osvvsDzzz8vnX/y5AkmTJiAzZs3IysrC2FhYVixYgW8vLykNtevX8eoUaNw+PBhVKtWDREREfjkk09gZWW8W56dnY2kpCSoVCqjXZMKs7CwQGBgIGxsbEzdFSIiqqIqTUDWuXNnfPDBB/Dx8cG///6L9957D/369cOxY8ekNmPHjsWBAwfw2WefoUmTJkhLS0NaWpp0PikpCT169MBbb72FjRs3Ii4uDiNHjoSPjw/CwsIAAFu2bMH48eOxatUqtG7dGosXL0ZYWBguXrwIT09PAMC7776LPXv2YNu2bZDL5YiOjkZ4eDiOHj0KAMjNzUWPHj3g7e2NY8eOITk5Ga+//jqsra3x8ccfG+V+CCGQnJwMS0tL+Pv7cwSnjKiL8yYnJ6NmzZos0EtERGVDVFI//PCDkMlkIjs7WwghxF9//SWsrKzEhQsXdL7m/fffF40bN9Y4NmDAABEWFiY9f/7558Xo0aOl57m5ucLX11d88sknQggh0tPThbW1tdi2bZvUJjExUQAQ8fHxQggh9u7dKywsLERKSorUZuXKlcLZ2VlkZWXp/RmVSqUAIJRKZaFz2dnZ4q+//hLp6el6X49KJj09Xfz111/Sd42IiKgoRf3+1qVSDqukpaVh48aNaNu2LaytrQEAu3btQu3atbF7924EBgYiICAAI0eO1Bghi4+PR2hoqMa1wsLCEB8fDyBvCvDkyZMabSwsLBAaGiq1OXnyJHJycjTaNGjQADVr1pTaxMfHo0mTJhpTmGFhYcjIyMCff/6p83NlZWUhIyND46FLbm4uAHAarRyo77H6nhMRERlbpQrIJk2aBEdHR7i5ueH69ev44YcfpHP//PMPrl27hm3btuF///sf1q9fj5MnT6Jfv35Sm5SUFI0gCQC8vLyQkZGBx48f4969e8jNzdXaJiUlRbqGjY0NXFxcimyj7Rrqc7p88sknkMvl0kOfbZM4hVb2eI+JiKismTQgmzx5MmQyWZGPCxcuSO0nTpyI06dP48CBA7C0tMTrr78OIQSAvFyfrKws/O9//0P79u3RqVMnrFmzBocPH8bFixdN9RENMmXKFCiVSulx48YNU3eJiIiIyoFJk/onTJhQaIVjQbVr15b+7O7uDnd3d9SrVw8NGzaEv78/jh8/DoVCAR8fH1hZWaFevXpS+4YNGwLIW/FYv359eHt74/bt2xrXv337NpydnWFvbw9LS0tYWlpqbePt7Q0A8Pb2RnZ2NtLT0zVGyQq2+e233wpdQ31OF1tbW9ja2hZ5P4iIiKjqMekImYeHBxo0aFDkQ1eOlLrUQ1ZWFgCgXbt2ePr0Ka5cuSK1+fvvvwEAtWrVAgAoFArExcVpXCc2NhYKhQJAXq5QixYtNNqoVCrExcVJbVq0aAFra2uNNhcvXsT169elNgqFAn/88Qfu3Lmj8T7Ozs5o1KhRCe5U1TFs2DBp9NPa2hpeXl7o0qUL1q5da1D5jvXr1xeaNiYiIipKamoqkpOTkZycjJMnb2P79lScPHlbOpaammqyvlWKshcJCQk4ceIEXnjhBVSvXh1XrlzB9OnTERQUJAVBoaGhCAkJwYgRI7B48WKoVCqMHj0aXbp0kUbN3nrrLSxbtgzvv/8+RowYgUOHDmHr1q3Ys2eP9F7jx49HREQEWrZsieeffx6LFy/Gw4cPMXz4cACAXC5HZGQkxo8fD1dXVzg7O+Odd96BQqFAmzZtAABdu3ZFo0aNMHToUCxYsAApKSmYNm0aRo8eXWFGwFJTU4ssKGtjYwM3N7cyee9u3bph3bp1yM3Nxe3bt7F//36MHTsW27dvx86dO41aq42IiAjI+723bNkyAMCpU82xa1dPCGEBmUyFXr12IyTkNAAgOjq6zH7/FaVS/OZzcHBATEwMZs6ciYcPH8LHxwfdunXDtGnTpADHwsICu3btwjvvvIMOHTrA0dER3bt3x+effy5dJzAwEHv27MG7776LJUuWwM/PD1999ZVUgwwABgwYgLt372LGjBlISUlBs2bNsH//fo0k/UWLFsHCwgJ9+/bVKAyrZmlpid27d2PUqFFQKBRwdHREREQEPvzww3K4W8XL/6UsSll9KW1tbaWp2xo1aiAkJARt2rTBSy+9hPXr12PkyJFYuHAh1q1bh3/++Qeurq7o1asXFixYgGrVquGnn36SAmR1wv3MmTMxa9YsfP3111iyZAkuXrwIR0dHvPjii1i8eLFUQ46IiMyTehBCqXSSgjEAEMICu3b1RFDQZcjlmSbb/aZSBGRNmjTBoUOHim3n6+uLHTt2FNmmU6dOOH36dJFtoqOjER0drfO8nZ0dli9fjuXLl+tsU6tWLezdu7foDpuIvl+28vxSvvjii2jatCliYmIwcuRIWFhYYOnSpQgMDMQ///yDt99+G++//z5WrFiBtm3bYvHixZgxY4a0YKNatWoAgJycHMyZMwf169fHnTt3MH78eAwbNqzC/rcgIqLylZbmhoJVv4SwQFqaK+TyTBP1qpIEZGQeGjRogHPnzgEAxo0bJx0PCAjARx99hLfeegsrVqyAjY0N5HI5ZDJZoUUSI0aMkP5cu3ZtLF26FK1atcKDBw+koI2IiMyXq2sqZDKVRlAmk6ng6ppWxKvKXqWqQ0ZVmxBCmoI8ePAgXnrpJdSoUQNOTk4YOnQoUlNT8ejRoyKvcfLkSfTq1Qs1a9aEk5MTOnbsCCBvpS0REZFcnolevXZDJstbSKbOITPl6BjAETKqQBITExEYGIirV6+iZ8+eGDVqFObOnQtXV1f8+uuviIyMRHZ2NhwcHLS+/uHDhwgLC0NYWBg2btwIDw8PXL9+HWFhYSbLCSAiooonJOQ0goIuIy3NFa6uaSYPxgAGZFRBHDp0CH/88QfeffddnDx5EiqVCp9//rm0afrWrVs12tvY2BTayujChQtITU3FvHnzpF0Ofv/99/L5AEREVKnI5ZkVIhBT45QllbusrCykpKTg33//xalTp/Dxxx/jlVdeQc+ePfH666+jTp06yMnJwRdffIF//vkHX3/9NVatWqVxjYCAADx48ABxcXG4d+8eHj16hJo1a8LGxkZ63c6dOzFnzhwTfUoiIiL9MSCjcrd//374+PggICAA3bp1w+HDh7F06VL88MMPsLS0RNOmTbFw4ULMnz8fwcHB2LhxIz755BONa7Rt2xZvvfUWBgwYAA8PDyxYsAAeHh5Yv349tm3bhkaNGmHevHn47LPPTPQpiYioLOQv7qrtoau4q65C8yVtZ2wyod4MkiqcjIwMyOVyKJVKODs7a5x78uQJkpKSEBgYCDs7O4Oua+o6ZJVNae41EREZT2l/f5VXUfSifn/rwhwyM+Tm5obo6GiTVeonIiIyhDqQunfvnsZxpdIJaWlucHVN1cgH0/X7rSL/XmNAZqYq8peSiIhIHYSlp6cXWtgFFL39UWXEgIyIiIgqlKKmJpVKJ9y44V/k9keVEQMyIiIiqlAKTjmqpyZv3fLBwYOhhbY+AirG9kelwYCMiIiIKqz8U5OAACDT2q4ibH9UGix7QURERBWSUumkMTVZVDBWEbY/Kg2OkBEREZFJ5C9DoVQqkZOTAwC4f/8+ACAtzU3r9OQzKvTrtx3+/jcrdTAGMCAjIiIiE9CnppiraypkMpWOoEyF3r13Izg4sdAZUxV3LQ0GZERERFTuiqqFmb++WGjoQcTGdkH+6UqZTIXIyK/g55csHQsPD4e7u3ulraPJHDKqUn766SfIZDKkp6fr/ZqAgAAsXry4zPpERESaUlNTtRZ5TUoKwNGjCixePA4bNkRg8eJxsLd/gi5dYgGoADzLF8sfjAGAr68vfHx8KmUwBnCEjMrZsGHDsGHDBrz55puFNgwfPXo0VqxYgYiICKxfv940HSQiojJ15coVfPPNNxrHdK2kVNcXGzduMYKDzyMtzRWurmka+WLh4eHw9fWttIGYGkfIqNz5+/tj8+bNePz4sXTsyZMn2LRpE2rWrGnCnhERUVlKTU0tFIzdvOmDnTt1r6TMX18sMPBaoeT9qhCMAQzIyARCQkLg7++PmJgY6VhMTAxq1qyJ5s2bS8eysrIwZswYeHp6ws7ODi+88AJOnDihca29e/eiXr16sLe3R+fOnXH16tVC7/frr7+iffv2sLe3h7+/P8aMGYOHDx+W2ecjIiLtCuaNHT2qwFdfjURR4Uj++mLh4eGIioqSHro2Ea+MGJARbt4EDh/O+1leRowYgXXr1knP165di+HDh2u0ef/997Fjxw5s2LABp06dQp06dRAWFoa0tLy/mDdu3EB4eDh69eqFM2fOYOTIkZg8ebLGNa5cuYJu3bqhb9++OHfuHLZs2YJff/0V0dHRZf8hiYjMVGpqKpKTkws98ueNHT2q+P9kfW2hiABQuL6Yu7s7fHx8pEdVCcYA5pCZvTVrgKgoQKUCLCyA1auByMiyf98hQ4ZgypQpuHbtGgDg6NGj2Lx5M3766ScAwMOHD7Fy5UqsX78e3bt3BwD897//RWxsLNasWYOJEydi5cqVCAoKwueffw4AqF+/Pv744w/Mnz9fep9PPvkEgwcPxrhx4wAAdevWxdKlS9GxY0esXLkSdnZ2Zf9hiYjMiD7lLJRKJxw8GArthV5V6NLlIHx9bxXKF6vKGJCZsZs3nwVjQN7PN98EwsIAP7+yfW8PDw/06NED69evhxACPXr0gLu7u3T+ypUryMnJQbt27aRj1tbWeP7555GYmFdzJjExEa1bt9a4rkKh0Hh+9uxZnDt3Dhs3bpSOCSGgUqmQlJSEhg0blsXHIyIyW0WVs1DTXfBVhZEjvyq0glKtMtYX0xcDMjN26dKzYEwtNxe4fLnsAzIgb9pSPXW4fPnyMnmPBw8e4M0338SYMWMKneMCAiKi0slfaV8tKSmp2NdpL/gq0KXLQSkY69y5Mzw8PODi4gIAlba+mL4YkJmxunXzpinzB2WWlkCdOuXz/t26dUN2djZkMhnCwsI0zgUFBcHGxgZHjx5FrVq1AAA5OTk4ceKENP3YsGFD7Ny5U+N1x48f13geEhKCv/76C3XK60MREZmB1NRU3L17F1u2bCmynVLphBs3/AEA/v43pOlHuTwTvXrtlkpdyGQqhIYeRLt28dJr69atCx8fn7L7EBUMAzIz5ueXlzP25pt5I2OWlsCXX5bP6BgAWFpaStOPlpaWGuccHR0xatQoTJw4Ea6urqhZsyYWLFiAR48eIfL/k9zeeustfP7555g4cSJGjhyJkydPFqpfNmnSJLRp0wbR0dEYOXIkHB0d8ddffyE2NrbYHAciIipMnxwxIK+22M6dPfEsaV+gd+9dCAk5DQAICTmNoKDLWmuLAVV7elIbBmRmLjIyL2fs8uW8kbHyCsbUnJ2ddZ6bN28eVCoVhg4diszMTLRs2RI//vgjqlevDiBvynHHjh1499138cUXX+D555/Hxx9/jBEjRkjXeO6553DkyBFMnToV7du3hxACQUFBGDBgQJl/NiKiqqjgFKV6myNr6yzk5NjC1TUVAAoEYwAgw65dPREUdFljpExb0v6QIUOq9PSkNjIhhDB1J0i7jIwMyOVyKJXKQoHLkydPkJSUhMDAQK4ULGO810REzyQnJ2P16tUAtFfYl8lUUCjicexYO62vj4hYj8DAa9LekwVVhVyxon5/68IRMiIiIjKYUumULxgD8m93FB+vQN7ek5orKfMXeVXXFKM8LAxLREREBtNduiIvKGvbNh7qDcGBwkVezS1HrDgcISMiIiKDaS9dkUcmU6F16wS0bp2AGzfykpP9/W9KwdiAAQMq/bSksTEgIyIiIoPJ5ZkIDT34/9sf5a+4LxAaejBf4n6iltfKy6eTlQinLCs5rskoe7zHRETa+fomo/D2RzL4+t4q8nWcriyMI2SVlLpuV3Z2Nuzt7U3cm6pNvcS7YK00IiJzlD+Y0jZtmT9xv0uXLggMDCz0ek5XFsaArJKysrKCg4MD7t69C2tra1hYcLCzLKhUKty9excODg6wsuJfFyIiNzc39O/fH1u3btVacT9/4n5gYCBXUuqJv2EqKZlMBh8fHyQlJeHatWum7k6VZmFhgZo1a0ImKzgsT0Rknjw9PaU/F1Vxn1OT+mNh2ApMn8JyKpWqUNVkMi4bGxuOQBIRFaBtY/H8zHlqkoVhzZCFhQWrxxMRUbkz12CrrDAgIyIiMgMc0arYGJARERFVcampqVi2bFmx7aKjoxmUmQgDMiIioiqgqBGwe/fu6XUN5iSbDgMyIiKiSk7fETCquLh0jIiIqJIrOLKlVDohKSkASqWTiXpEhuIIGRERURVy6lTzQoVaQ0JOa7RRKp2QluYGV9dUjbphZDoMyIiIiCqh/Dlj6hwxpdJJCsYAQAgL7NrVE0FBl6XAS5+AjcofAzIiIqJKRlfOWFqam8a+kkBeUJaW5gq5PFOvgI1MgzlkRERElYyunDFr6yzIZCqNc/k3+y4qYCPT4ggZERFRJVZwCvK5587h3LnntG727eqaCplMpRGU5Q/YuPek6TAgIyIiqgT0zRk7d+45REZ+hfR0FwAy+PvfkK4hl2di5sxbmDOnBnJzZbC0FJg/PwOvvTaIlfpNjAEZERFRBWdozthffzVGfLxCa+J+VJQlIiNluHwZqFNHBj8/FwAuZf8hqEgMyIiIiCo4XRX0dU1BHjumgDpNXFvivp9f3oMqDib1ExERVVJyeSZ69dotJfLLZCooFPEo+OudifsVH0fIiIiIKpn8hV1DQk4jKOgy0tJcpeR89XSlWv7EfaqYGJARERFVIroKu+avI9ar1+5CbdTnuZKyYmJARkREVEkUV9i1S5cucHJyQng48O67/yA1tToCAp7C17cVgFZcSVmBMSAjIiKqIPKXtshPXeaiuEr8gYGB8PHxKZe+knExICMiIqoAdJW2yK+4wq5UeXGVJRERUQWgq7RFftpWVTI/rGrgCBkREVEFlH8lZf6E/Y8+CsSMGXdx9aoV88OqEAZkREREFYyulZQA4O7uDh8fL7RoYeJOklExICMiIipHxSXuF7eSkqomBmRERETlRJ/E/eJWUlLVxKR+IiKicqJP4r56JWV+XElZ9TEgIyIiMhGl0glJSQFQKp2kY8WtpKSqiVOWREREJlBU4n7B/SnzB2MsbVE1MSAjIiIyIl1J+4D+ifvh4eFwd3cv9HqWtqi6GJARERGVUMHgKz09HVu3bi32dcUl7ueVtuAWSOak0uSQ9e7dGzVr1oSdnR18fHwwdOhQ3Lp1Szo/a9YsyGSyQg9HR0eN62zbtg0NGjSAnZ0dmjRpgr1792qcF0JgxowZ8PHxgb29PUJDQ3Hp0iWNNmlpaRg8eDCcnZ3h4uKCyMhIPHjwQKPNuXPn0L59e9jZ2cHf3x8LFiww8h0hIiJTUq+YXL16tfTQJxgDmLhPhVWagKxz587YunUrLl68iB07duDKlSvo16+fdP69995DcnKyxqNRo0Z49dVXpTbHjh3DoEGDEBkZidOnT6NPnz7o06cPzp8/L7VZsGABli5dilWrViEhIQGOjo4ICwvDkydPpDaDBw/Gn3/+idjYWOzevRs///wzoqKipPMZGRno2rUratWqhZMnT+LTTz/FrFmzsHr16jK+S0REVF70WTGpLWkfYOI+FSYTQghTd6Ikdu7ciT59+iArKwvW1taFzp89exbNmjXDzz//jPbt2wMABgwYgIcPH2L37t1SuzZt2qBZs2ZYtWoVhBDw9fXFhAkT8N577wEAlEolvLy8sH79egwcOBCJiYlo1KgRTpw4gZYtWwIA9u/fj5dffhk3b96Er68vVq5cialTpyIlJUVKvpw8eTK+//57XLhwQe/PmJGRAblcDqVSCWdn5xLfKyIiMr7k5OQi/6FdVNK+Wt72SIUT96Ojo5krVomV5Pd3pcwhS0tLw8aNG9G2bVutwRgAfPXVV6hXr54UjAFAfHw8xo8fr9EuLCwM33//PQAgKSkJKSkpCA0Nlc7L5XK0bt0a8fHxGDhwIOLj4+Hi4iIFYwAQGhoKCwsLJCQk4D//+Q/i4+PRoUMHjZUwYWFhmD9/Pu7fv4/q1asb4zYQEVEFVdKkfYCJ++aqUgVkkyZNwrJly/Do0SO0adNGY6QrvydPnmDjxo2YPHmyxvGUlBR4eXlpHPPy8kJKSop0Xn2sqDaenp4a562srODq6qrRJjAwsNA11Od0BWRZWVnIysqSnmdkZGhtR0REFU/+zcCZtE+GMmkO2eTJk7Um4ud/5J/imzhxIk6fPo0DBw7A0tISr7/+OrTNuH733XfIzMxEREREeX6cUvvkk08gl8ulh7+/v6m7REREejh1qjkWLx6HDRsisHjxONy65cOkfTKISUfIJkyYgGHDhhXZpnbt2tKf3d3d4e7ujnr16qFhw4bw9/fH8ePHoVAoNF7z1VdfoWfPnoVGury9vXH79m2NY7dv34a3t7d0Xn0s/79cbt++jWbNmklt7ty5o3GNp0+fIi0tTeM62t4n/3toM2XKFI0p1YyMDAZlREQmUFQtMUCzOKu26cmDB0MRGnoQBw+GauSQMWmfdDFpQObh4QEPD48SvValyvuXR/4pPiAvD+zw4cPYuXNnodcoFArExcVh3Lhx0rHY2FgpoAsMDIS3tzfi4uKkACwjIwMJCQkYNWqUdI309HScPHkSLVq0AAAcOnQIKpUKrVu3ltpMnToVOTk5Uo5bbGws6tevX2T+mK2tLWxtbUtwN4iIyFj02QAcyFsoBuiuKebrewvjxi1mtX3SS6XIIUtISMCJEyfwwgsvoHr16rhy5QqmT5+OoKCgQqNja9euhY+PD7p3717oOmPHjkXHjh3x+eefo0ePHti8eTN+//13aZWMTCbDuHHj8NFHH6Fu3boIDAzE9OnT4evriz59+gAAGjZsiG7duuGNN97AqlWrkJOTg+joaAwcOBC+vr4AgNdeew2zZ89GZGQkJk2ahPPnz2PJkiVYtGhR2d4oIiIqNX3KWQCQUmbUNcXyB2Xq6Um5PBNRUS9DLpdL55i0T9pUioDMwcEBMTExmDlzJh4+fAgfHx9069YN06ZN0xhRUqlUWL9+PYYNGwZLS8tC12nbti02bdqEadOm4YMPPkDdunXx/fffIzg4WGrz/vvv4+HDh4iKikJ6ejpeeOEF7N+/H3Z2dlKbjRs3Ijo6Gi+99BIsLCzQt29fLF26VDovl8tx4MABjB49Gi1atIC7uztmzJihUauMiIgqNxcXF0RHRyM7Oxs1amRg0iQ5cnNlsLQUmD8/A6+9NojBF+mt0tYhMwesQ0ZEVLa05Yrdu3cPMTExxb42KipKI9/45k3g8mWgTh3Az8/oXaVKxGzqkBEREZWWvrli+ctZFJWU7+fHQIxKjgEZERGZJX1yxfSptk9kDJVmL0siIqLypKvafsF9KYmMgQEZERGRFkVV2ycyNk5ZEhFRlacreT+/grliRZWzAFhLjIyLARkREVVp+iTv68oV69VrN3bv7gWViuUsqGwxICMioiqtuOR9XbliQUGXERJyGjNmtEZmphfq1JHBz88FgEuZ95nMDwMyIiIya0XlisnlmfD1VSFfuTGiMsGAjIiIKiV9NgDXNq3IXDGqiBiQERFRpZA/AFMqldiyZUuxr4mOjtZ4zlwxqqgYkBERUYWnb1X9gvKPoDFXjCoyBmRERFThFZyaLDjtqM/2RswVo4qMARkREVUqBacdn3vuHM6de67Y7Y2KyxUjMiVW6iciokpD27Tj2bNNdW5vpFQqpaR8uTwTvXrthkymAgApeFOPqDF5n0ypRCNkhw8fRufOnY3dFyIioiJpm3YEZBrP8k9D5uTkwM3NDdHR0dK054wZd3H1qhUCAp7C17cVgFZM3ieTK1FA1q1bN/j5+WH48OGIiIiAv7+/sftFRERUiLZpR0Agf1CmbRoyf7Dl4wO0aFHGHSUyUImmLP/9919ER0dj+/btqF27NsLCwrB169ZiqyETERGVhrZpRz+/G8gLygBA4LnnzulM7CeqqEoUkLm7u+Pdd9/FmTNnkJCQgHr16uHtt9+Gr68vxowZg7Nnzxq7n0RERACAkJDTGDduMSIi1iMy8iv8+68fno2QyXDu3HNSDpmVFdeuUeVQ6m9qSEgIvL294ebmhnnz5mHt2rVYsWIFFAoFVq1ahcaNGxujn0REZAZ0Vd9XKpUaz+XyTMjlmUhKCiiylIWLi0tZdpfIaEockOXk5OCHH37A2rVrERsbi5YtW2LZsmUYNGgQ7t69i2nTpuHVV1/FX3/9Zcz+EhFRFaVv8df+/fvj6dOniImJYSkLqjJKFJC98847+PbbbyGEwNChQ7FgwQIEBwdL5x0dHfHZZ5/B19fXaB0lIqKqTd885PyjXuqcsoLbITGHjCqbEgVkf/31F7744guEh4fD1tZWaxt3d3ccPny4VJ0jIqKqSdvU5L179/R+ff6aYSEhpxEUdBlpaa5wdU3TCMZYW4wqixIFZHFxccVf2MoKHTt2LMnliYioCtN3arKo7ZAK1hbThrXFqDIpcQ7ZxYsX8cUXXyAxMREA0LBhQ7zzzjuoX7++0TpHRERVjz5TkwW3R9K2HRKDLapKSlT2YseOHQgODsbJkyfRtGlTNG3aFKdOnUJwcDB27Nhh7D4SEVEVplQ6ISkpIN92R4W3R8q/HRJRVVSiEbL3338fU6ZMwYcffqhxfObMmXj//ffRt29fo3SOiIgqL10lLPLnimkbCate/X6RpSyIqqISBWTJycl4/fXXCx0fMmQIPv3001J3ioiIKjd98sR0jYRFRn7FUhZkdko0ZdmpUyf88ssvhY7/+uuvaN++fak7RURElZs+eWLaNgoXwgI5OTaFtkfKX8qCKyepKirRCFnv3r0xadIknDx5Em3atAEAHD9+HNu2bcPs2bOxc+dOjbZERGQ+UlNTC5Ww0LZisqiiroGB1xAdXRcZGZ4ICHgKX99WAFpx5SRVWTIhhCi+mSYLC/0G1mQyGXJzcw3uFOXJyMiAXC6HUqmEs7OzqbtDRFQsbVOVRa2YLOpcVFQUfHx8yv0zEJVWSX5/l2iETKVSleRlRERUxd29e1fjua48saCgy5DLM1nUlej/lXpzcSIiIgC4cuUKtmzZonHsxg3/IldMhoeHw93dvdC1ODVJ5kbvgGzp0qV6X3TMmDEl6gwREVVOqamp+Oabb6TnSqUTfv65PU6ebFGobf4Vk+7u7pyWJIIBAdmiRYv0aieTyRiQERGZmfyrKk+dao6dO3tC20J+bv5NpJ3eAVlSUlJZ9oOIiKoApdJJZzAGAH37bkdwcKL0nHliRHmYQ0ZEREaTluYG3SUuVfD3vwkACA8Ph6+vL/PEiP5fiQOymzdvYufOnbh+/XqhAoALFy4sdceIiKjs5d/e6NYtCyQlWSEw8Cl8ffNW0xuaXO/qmgpAhcJBmUCXLgelqUp3d3cGY0T5lCggi4uLQ+/evVG7dm1cuHABwcHBuHr1KoQQCAkJMXYfiYioDOSvGVZUPbD+/fvDxcVFr+BMLs9E7967C0xbCnTpEot27eKldpyqJNJUooBsypQpeO+99zB79mw4OTlhx44d8PT0xODBg9GtWzdj95GIiMqAemSsuFphW7dulV4THR1dbFCmri1244YfAMDf/6ZGEn///v05OkZUQIn2skxMTJQ2F7eyssLjx49RrVo1fPjhh5g/f75RO0hERGVL156Sf/7ZCEqlk8ZxffaoBPJGyoKDExEcnFhoRaWnp2fpOkxUBZUoIHN0dJT+Uvr4+ODKlSvSuYL7lxERUcWm3lNSk8CBA92wePE4nDrVvNhr6DsFOWTIEI6OEWlRoinLNm3a4Ndff0XDhg3x8ssvY8KECfjjjz8QExMjbTZORESVg1yeiV69duebthQAZAAKT1/q4ubmhujo6CJH0Fh9n0i3EgVkCxcuxIMHDwAAs2fPxoMHD7BlyxbUrVuXKyyJiCohdd7Xn382woEDmrnA+bc6KgqDLaKSK1FAVrt2benPjo6OWLVqldE6REREpiGXZ6Jx478QG9tVI6cs/1ZHRFQ2SlUYNjs7G3fu3IFKpZl7ULNmzVJ1ioiIinfzJnDpElC3LuDnZ9hrU1NTteb8Fpy+5FZHROWjRAHZ33//jcjISBw7dkzjuBACMpkMubm5RukcERFpt2YNEBUFqFSAhQWwejUQGam9bf7irwCgVCqxZcsWnddWT1+mpbnC1TWNwRhROShRQDZ8+HBYWVlh9+7d8PHxgUwmM3a/iIhIi9TUVFy9+hRRUZ5QqfL+36tSAW++KdCs2R0EBFhp5HLlL/6qi1LphLQ0N7i6pkrBl1yeqTUQY0FXorJRooDszJkzOHnyJBo0aGDs/hARkQ7q4CopKQAqVYTGudxcGb74Yh8CA69pFG8tuOqxYPBVVIX+8PBwuLu7S6/lKkmislOigKxRo0asN0ZEVM7UwZW6bpiuxHtdpScKBl+hoQdx8GCozgr97u7u8PHxKeNPRUSAAYVhMzIypMf8+fPx/vvv46effkJqaqrGuYyMjLLsLxGR2VMn3quLueqTeK9te6TY2FCtFfrT0lzLrvNEpJXeI2QuLi4auWJCCLz00ksabZjUT0RUPvRJvM+/kvLGDf9CwRdgUeRIGxGVH70DssOHD5dlP4iIyEC6Eu8BzWR+9VRlQQWnLVnigsh09A7IOnbsKP35+vXr8Pf3L7S6UgiBGzduGK93RERUIuo8soJTlc88S+APDj7PEhdEJlaipP7AwEAkJyfD09NT43haWhoCAwM5ZUlEVEGkpblpCcaAfv22Izg4EQBLXBBVBCUKyNS5YgU9ePAAdnZ2pe4UEREVLuhaktXtulZk+vvf1GjXv39/uLi4SM9Z4oKofBkUkI0fPx4AIJPJMH36dDg4OEjncnNzkZCQgGbNmhm1g0RE5qhgQddn9cOcip1WtLGxkQK54rZCCg8Ph6+vL4MvIhMzKCA7fTqvWKAQAn/88YfGcLaNjQ2aNm2K9957z7g9JCIyQ/lHxkpSvDU5OVk6VtSKTHd3dwZjRBWAQQGZeqXl8OHDsWTJEjg7O5dJp4iIKI+2+mElKd5a1IpMIjI9vQvD5rdu3ToGY0RE5UBbUj6LtxJVPSVK6n/48CHmzZuHuLg43LlzByqVSuP8P//8Y5TOERGZu+K2SdJF3xWSXElJVDGUKCAbOXIkjhw5gqFDh8LHx0friksiInN08yZw6RJQty7g51f66xWXlK+Lm5sboqOjde5rCXAlJVFFUqKAbN++fdizZw/atWtn7P4QEVVaa9YAUVGASgVYWACrVwORkaW/rj7bJGnDYIuo8ihRDln16tXh6sr8BSIitZs3nwVjQN7PN9/MO24McnkmAgOvMTGfqIoqUUA2Z84czJgxA48ePTJ2f4iIKp3U1FQcP56KAum0yM0FEhJSkZqaavA1mQNGZF5KNGX5+eef48qVK/Dy8kJAQACsra01zp86dcoonSMiqujUBVyVSifIZOMKrIhU4ejRDTh/PhPR0dEGTSEyB4zIvJQoIOvTp4+Ru0FEVDkVrIi/c2dPPJt8kOH8+WD4+ibj11+v4vnn89rqG0gx2CIyHyUKyGbOnGnsfhARVXpBQZchkwFCqI/IEBvbBYAM//ufZoX9/v37w9PTk0EXEQEwMIfst99+Q25urs7zWVlZ2Lp1a6k7RURUGWkr4grklQUSwgI7d/bEzZt5VfW3bt2KZcuWlSi/jIiqHoMCMoVCofE/D2dnZ40isOnp6Rg0aJDxepdP7969UbNmTdjZ2cHHxwdDhw7FrVu3NNr8+OOPaNOmDZycnODh4YG+ffvi6tWrGm1++uknhISEwNbWFnXq1MH69esLvdfy5csREBAAOzs7tG7dGr/99pvG+SdPnmD06NFwc3NDtWrV0LdvX9y+fVujzfXr19GjRw84ODjA09MTEydOxNOnT41yL4ioYlIXcdXNAmvWjMSpU82lI0XliBGR+TAoIBPPxuG1Ptd1zBg6d+6MrVu34uLFi9ixYweuXLmCfv36SeeTkpLwyiuv4MUXX8SZM2fw448/4t69ewgPD9do06NHD3Tu3BlnzpzBuHHjMHLkSPz4449Smy1btmD8+PGYOXMmTp06haZNmyIsLAx37tyR2rz77rvYtWsXtm3bhiNHjuDWrVsa75Obm4sePXogOzsbx44dw4YNG7B+/XrMmDGjTO4NEVUM6jyyZ0GZtv9H5u1FqVQ6lW/niKhCkwkDIigLCwukpKTA09MTAODk5ISzZ8+idu3aAIDbt2/D19e3yGlNY9m5cyf69OmDrKwsWFtbY/v27Rg0aBCysrJgYZEXZ+7atQuvvPKK1GbSpEnYs2cPzp8/L11n4MCBSE9Px/79+wEArVu3RqtWrbBs2TIAgEqlgr+/P9555x1MnjwZSqUSHh4e2LRpkxQQXrhwAQ0bNkR8fDzatGmDffv2oWfPnrh16xa8vLwAAKtWrcKkSZNw9+5dvZepZ2RkQC6XQ6lUcu9QonKmb8X95ORkrF69WuOYUumEtDRX3Lrli9jYUGj7t29ExHoEBl5DVFSUXpuDE1HlUZLf3yWqQ2ZqaWlp2LhxI9q2bSuV3GjRogUsLCywbt065ObmQqlU4uuvv0ZoaKjUJj4+HqGhoRrXCgsLQ3x8PIC8qYOTJ09qtLGwsEBoaKjU5uTJk8jJydFo06BBA9SsWVNqEx8fjyZNmkjBmPp9MjIy8Oeff+r8XFlZWcjIyNB4EFH5W7MGqFULePHFvJ9r1hj2enUR13bt4jFy5FeFpjH12YuSiMyLwQHZX3/9hXPnzuHcuXMQQuDChQvS86KCDWOYNGkSHB0d4ebmhuvXr+OHH36QzgUGBuLAgQP44IMPYGtrCxcXF9y8eVNjkUFKSopGkAQAXl5eyMjIwOPHj3Hv3j3k5uZqbZOSkiJdw8bGBi4uLkW20XYN9TldPvnkE8jlcunh7++v550hImNITU3FyZO3ERUlClTcFzh58rbWBPziRrz9/JI1pjH13YuSiMyLwQHZSy+9hGbNmqFZs2Z49OgRevbsiWbNmqF58+aFRp+KM3nyZMhksiIfFy5ckNpPnDgRp0+fxoEDB2BpaYnXX39dyllLSUnBG2+8gYiICJw4cQJHjhyBjY0N+vXrV2Z5bcY2ZcoUKJVK6XHjxg1Td4nIbKgLvH7xxX6oVDKNc7m5Mnzxxb5CqyJTU1ORnZ2NLl26FHntkJDTGDduMSIi1mPcuMVS6QsiIjWD6pAlJSUZ9c0nTJiAYcOGFdlGnZ8GAO7u7nB3d0e9evXQsGFD+Pv74/jx41AoFFi+fDnkcjkWLFggtf/mm2/g7++PhIQEtGnTBt7e3oVWQ96+fRvOzs6wt7eHpaUlLC0ttbbx9vYGAHh7eyM7Oxvp6ekao2QF2xRcmam+prqNNra2trC1tS3yfhBR2VCvdlSvlMxfviL/FKO6nTqAU8vLG3ODq2uq1tEvuTyTo2JEpJNBAVmtWrUMuvjbb7+NDz/8EO7u7lrPe3h4wMPDw6Brqqn+fz4hKysLAPDo0SMpmV/N0tJSo61CocDevXs12sTGxkKhUADIm3po0aIF4uLipN0IVCoV4uLiEB0dDSAvV83a2hpxcXHo27cvAODixYu4fv26dB2FQoG5c+fizp070gKI2NhYODs7o1GjRiX6vERUPtQrJXft6gkhLApNMZ4/n46jR20glz9beX3qVPNC7fUdBeNelEQEGLjK0lDOzs44c+aMxihXSSQkJODEiRN44YUXUL16dVy5cgXTp0/H7du38eeff8LW1haHDh1CaGgoZs2ahUGDBiEzMxMffPABLly4gMTERNjb2yMpKQnBwcEYPXo0RowYgUOHDmHMmDHYs2cPwsLCAOSVvYiIiMCXX36J559/HosXL8bWrVtx4cIFKQ9s1KhR2Lt3L9avXw9nZ2e88847AIBjx44ByCt70axZM/j6+mLBggVISUnB0KFDMXLkSHz88cd6f26usiQqPwVXS6pXSrq6pknBmLbAKyjoMhYvHldoRG3cuMWQyzMRHh6u8x+l3IuSqGoqye/vEm2dpC9jxXoODg6IiYnBzJkz8fDhQ/j4+KBbt26YNm2aNMX34osvYtOmTViwYAEWLFgABwcHKBQK7N+/H/b29gDyEv/37NmDd999F0uWLIGfnx+++uorKRgDgAEDBuDu3buYMWMGUlJS0KxZM+zfv18jSX/RokWwsLBA3759kZWVhbCwMKxYsUI6b2lpid27d2PUqFFQKBRwdHREREQEPvzwQ6PcDyIqewWnGJVKJykYA57VE+vbd0eh6vxCWCAtzRVyeSbc3d1Z1oKIilWmI2QF65SRYThCRlR+tNUTyy8pKQAbNkQUOt6v31bs2NFP5wgZ64wRmR+zqUNGRGSomzeBw4fzfpaEtm2RZDIV/P1vsqwFEZVamU5ZEhFVBGvWAFFReTXFLCyA1auByEjDrlFUsn9IyGkEBV0ulHNGRKQvBmREVGWlpqbi6tWniIrylGqLqQu9Nmt2BwEBVlJSvT6rHYsKvFjWgohKo0wDsiFDhjD3iYhMQl0nLCkpACqVZu6XutBrYOA1REdHw83NDW5uboiOjpbqjKndu3cPMTEx0nNDAy+WtSAifZQoIFOpVIVqfqmP37x5EzVr1gQArFy5snS9IyIqIUMLvQIoVQkKbeUtWNaCiPRlUFJ/RkYG+vfvD0dHR3h5eWHGjBnIzc2Vzt+9exeBgYFG7yQRUUmpc79KmnSv7wiXr68vfHx8NB4MxohIXwaNkE2fPh1nz57F119/jfT0dHz00Uc4deoUYmJipP9pVZZ9I4nIfJQm6V7XVGZ+HAkjotIyKCD7/vvvsWHDBnTq1AkA0KdPH/To0QO9evXCzp07AQAymayIKxARmYau3K979+7h1i0LJCVZITDwKXx980bS8gdZDLaIqKwZNGV59+5djf0s3d3dcfDgQWRmZuLll1/Go0ePjN5BIqKyNG1aElq18sCrr7qhVSsPvPXWCaxevRrLli1DamqqqbtHRGbCoICsZs2aSExM1Djm5OSEAwcO4PHjx/jPf/5j1M4REZUlXdshKZVOAFDkNCURkTEZFJB17doV69atK3S8WrVq+PHHH2FnZ2e0jhERlbW0NDed+1ASEZUng3LIZs+ejVu3bmk95+TkhNjYWJw6dcooHSMiMkRqaqrGiJZSqSz2NcWVxCAiKi8GBWTVq1dH9erVdZ53cnJCx44dS90pIiJ9paam4s6dO9i6dat0TKl0QlqaG1xdnTQS+Zs27YHUVFfI5Xfw558/FrkdEhFReTK4MOzTp0+xaNEifPvtt/j7778BAPXq1cNrr72GsWPHwtra2uidJCLSRl2NX02pdEJCQmscO6YA8CzACgk5jVOnmmPWrBDkZWoEoHfvOwgJOc19KImoQjAoIHv8+DG6dOmC+Ph4hIaGokOHDgCAxMRETJo0CTt37sSBAweYS0ZE5SL/FOWpU801EvSBZ0n6np4p2LmzJ56lzVpg586eCAq6LJXDYCBGRKZkUEA2b9483LhxA6dPn8Zzzz2nce7s2bPo3bs35s2bh1mzZhmzj0RkJm7eBC5dAurWBfz8im6bmpqKe/fuASi8WjI/ISzw9991UXgNkwVu3PCDXJ5Y6DVEROXNoFWWmzdvxsKFCwsFYwDQtGlTfPbZZ9i0aZPROkdEVV9qaiqSk5Px+efpqFVL4MUXgVq1BD7/PB3Jyclaa4GppyrVm37fuOGvNRgD8pL0q1V7UKK+cWNwIiovBo2QXbt2Dc8//7zO823atMH169dL3SkiMg/qwEqpdMLixeMgRN5OHyqVDBMnOuPff9dCLs9EdHS0RrV8bVOV2uXlkAUFXcbevQLAs51EZDIV/P1vAgA6d+6MunXraryS2yERUXkyKCBzdnbGnTt34O/vr/V8SkoKnJycjNIxIqr61IFVUfXA5PJMnQVadU9VqtC2bTxat06QcsN6996lczVl9erV4ePjY9wPR0RkAIMCss6dO+Pjjz/Gjh07tJ6fN28eOnfubJSOEZH5KGk9MG2BHAD067cdwcGauWFcTUlEFZlBAdnMmTPRunVrtGnTBuPHj0eDBg0ghEBiYiIWLVqEv/76C8ePHy+rvhJRFVXSemC6Ajn1VKS292EgRkQVkUEBWaNGjRAbG4vIyEgMHDgQMllePoYQAg0aNMCBAwfQuHHjMukoEVVtRY1gqVdTFnxurMKuVlYGl2QkIjIqg/8v1KZNG/z55584c+aMRmHYZs2aGbtvRGRmdI1grVsX+/+V91MLnS8qkOvcuTMOHz5c7Pu6uLiUuu9ERKVhcECWkZGBatWqoVmzZhpBmEqlwoMHD+Ds7GzM/hGRmctf8DV/5f38dAVyHh4eer0Hy1sQkakZFJB99913mDRpEs6cOQMHBweNc48fP0arVq3w2WefoVevXkbtJBGZp4KrKNWV99UV9ovj6emJ6Ohonas0AZa3IKKKwaCAbOXKlXj//fcLBWMA4OjoiEmTJmHZsmUMyIgIQF6dsaKCoUePHhX5+uLKYYSHh8Pd3V3raxloEVFlYlBAdv78eaxYsULn+Q4dOmDatGml7hQRVX7aNv7Wlgc2ZMiQQv/Iu3fvHmJiYooth+Hu7s76YURUJRgUkN2/fx9Pnz7VeT4nJwf3798vdaeIqPLTtfF3wTwwBwcHnUGVsVZREhFVdAYFZAEBAfj999/RoEEDred///131KpVyygdI6KqobR5YCzoSkTmwKDNxcPDwzF16lTcvn270LmUlBRMmzYNffv2NVrniKjyKyoPTF9yeSYCA68xGCOiKsugEbLJkyfjhx9+QN26dTFkyBDUr18fAHDhwgVs3LgR/v7+mDx5cpl0lIgqp5Jsi6RvGQqWqyCiqsKggMzJyQlHjx7FlClTsGXLFilfzMXFBUOGDMHcuXO5uTiRmVOvrCxNNX03NzeWqyAisyITQoiSvFAIgXv37kEIAQ8PD2kbpfyOHj2Kli1bwtbWttQdNUcZGRmQy+VQKpUsuEuVQlErKwFozQOLioriSkkiqlJK8vu7xBu4yWSyYqtgd+/eHWfOnEHt2rVL+jZEVInou7KSiIg0GZTUb6gSDr4RUSWna2WlUlk4pYF5YEREpRghIyLSRd8K+8wDIyLKw4CMiIyOFfaJiAxTplOWRGSe1CsrZTIVABRaWXnv3j2kpqaasotERBVKmY6QaVt5SUSVU3EbhRfMBctfYd/aOhs5ObZQKp0gl2ciJiYGABAdHc0pSyIilHFAxqR+oqqhYDkLXfr376/xXC7PxJUrdXSutiwqwCMiMidlGpBlZnKbE6Lyps9IlqGjUgWvl7++WP6aYupi0fnblWYfSyIic2FQQPbiiy/q1e7QoUMl6gwRlU5RhVnzB0ClmSosqr5YbGysRtviVlsSEVEegwKyn376CbVq1UKPHj1gbW1dVn0iohLStzBrSacKixrxAlAo+CvJPpZERObIoIBs/vz5WLduHbZt24bBgwdjxIgRCA4OLqu+EVEJGTpVWNw0p1KpBKB7xCshoTXi4xWFgr+S7GNJRGSODArIJk6ciIkTJyI+Ph5r165Fu3btUL9+fYwYMQKvvfYa91skKmOlDZy0TRXqm7APaB/xAlRSMKZ+n/zBX/7VlgX3sSQiojwlSupXKBRQKBRYsmQJtm3bhuXLl+O9997DrVu3GJQRlRF988MAw6YK9U3YB6B1xEuhiMexY+002hUM/uTyTAZiRERFKNUqy1OnTuHIkSNITExEcHAw88qIypAhG3eXdKpQnw3BC454AdAYIQP0zxPjPpZERHkMDshu3bqF9evXY/369cjIyMCQIUOQkJCARo0alUX/iKgAffPDDJ0q1Pe62kbQigr+1PtWFsR9LImInjEoIHv55Zdx+PBhdO3aFZ9++il69OgBKytuh0lUngzJDzNkqlCf6+oaQSsq+OO+lURExTMomtq/fz98fHxw/fp1zJ49G7Nnz9ba7tSpU0bpHBEVZoxSEunp6QA0pwyLu25xI2i6gj9OSxIRFc+ggGzmzJll1Q8i0lNx+WH9+/eHi4sLlEoltmzZovUaW7dulf48YMAAva5b3AiatqlJTksSEemHARlRJVTUFKGLi4tBU4Q5OTl6Xbe4ETROTRIRlZxF8U2Kd+TIEezdu7fQPnZEVHbk8kwEBl7TO0dMqXRCUlIAlEonjeMF95zVdV31CJpMpgIAFnklIjIigyv1P3jwAHPmzAEACCHQvXt3HDhwAADg6emJuLg4NG7c2Pg9JTJz+uZiaWunz/6TXbt2RbVq1aTXWFlZwcXFBffu3UNMTAwAw1duEhGRfgwKyLZs2YJJkyZJz7dv346ff/4Zv/zyCxo2bIjXX38ds2fP1shPISLjcHNzQ3R0dJGV+rXlbOlbzkL9D6v8oqOjC+WFscgrEZHxGRSQJSUl4bnnnpOe7927F/369UO7dnlVuqdNm4ZXX33VuD0kIklJEuR1JePfuOEHuTyxyNdmZ2eXamSOiIj0Y1BA9vTpU9ja2krP4+PjMW7cOOm5r68v7t27Z7TOEVHpad9/Eti+vR+ys/OmLovaLqmkI3NERKQ/gwKyoKAg/Pzzz6hduzauX7+Ov//+Gx06dJDO37x5k/9TJqpgCpazeCZv6vLxYzscPBha5HZJ/HtNRFS2DArIRo8ejejoaPzyyy84fvw4FAqFxpZJhw4dQvPmzY3eSSLST2pqqjSSpVQqpeMhIadhY5OF7ds1UwqEsEBsbCjUC6515ZcREVHZMigge+ONN2BpaYldu3ahQ4cOheqS3bp1CyNGjDBqB4lIP6mpqVi2bJnO8/7+N7TWEdN3GyYiIio7Bm9EOWLECJ1B14oVK0rdISIqmaJyvADtlfhDQw9K05Vqhm7DREREpcedwYmqKG2J+trqiNnbP9G5XRIREZUPgwKynJwcTJ06FTExMXB1dcVbb72lMVp2+/Zt+Pr6Ijc31+gdJSL9FVUIdvjwLrCyspLqBRZV7JWlLIiIyodBAdncuXPxv//9D++99x7S09Mxfvx4JCQk4Msvv5TaCCGM3kki0l9xhWDVe06ylAURUcVhUEC2ceNGfPXVV+jZsycAYNiwYejevTuGDx+OtWvXAgBkMpnxe0lUAeRfwahNRQlgdBWCLZioXxH6SkREeQwKyP79918EBwdLz+vUqYOffvoJL774IoYOHYoFCxYYvYNEFUFxKxjVoqOjTR7oaCsEy0R9IqKKzaL4Js94e3vjypUrGsdq1KiBw4cP48SJExg2bJgx+0ZUYRS3gtHQdmVJvZpSJlMBABP1iYgqAYMCshdffBGbNm0qdNzX1xeHDh1CUlKS0TpWUO/evVGzZk3Y2dnBx8cHQ4cOxa1btzTabN26Fc2aNYODgwNq1aqFTz/9tNB1fvrpJ4SEhMDW1hZ16tTB+vXrC7VZvnw5AgICYGdnh9atW+O3337TOP/kyROMHj0abm5uqFatGvr27Yvbt29rtLl+/Tp69OgBBwcHeHp6YuLEiXj69GnpbwSZpdTUVCQnJ+t8pKamaiTgh4ScxrhxixERsR7jxi3WqLzPRH0ioorHoCnL6dOn48KFC1rP1ahRA0eOHEFsbKxROlZQ586d8cEHH8DHxwf//vsv3nvvPfTr1w/Hjh0DAOzbtw+DBw/GF198ga5duyIxMRFvvPEG7O3tER0dDSBvc/QePXrgrbfewsaNGxEXF4eRI0fCx8cHYWFhAIAtW7Zg/PjxWLVqFVq3bo3FixcjLCwMFy9ehKenJwDg3XffxZ49e7Bt2zbI5XJER0cjPDwcR48eBQDk5uaiR48e8Pb2xrFjx5CcnIzXX38d1tbW+Pjjj8vk/lDZUOeNmXKPVkOmS5moT0RUOclEJV0WuXPnTvTp0wdZWVmwtrbGa6+9hpycHGzbtk1q88UXX2DBggW4fv06ZDIZJk2ahD179uD8+fNSm4EDByI9PR379+8HALRu3RqtWrWSfgGqVCr4+/vjnXfeweTJk6FUKuHh4YFNmzahX79+AIALFy6gYcOGiI+PR5s2bbBv3z707NkTt27dgpeXFwBg1apVmDRpEu7evav3CEVGRgbkcjmUSiWcnZ2Nct9If/oGQvlFRUXBx8fHqP1ITk7G6tWri20XHh4OX19fBlxERCZWkt/fBk1Zqm3btg3h4eEIDg5GcHAwwsPDsX379pJcqkTS0tKwceNGtG3bFtbW1gCArKws2NnZabSzt7fHzZs3ce3aNQBAfHw8QkNDNdqEhYUhPj4eQF7+z8mTJzXaWFhYIDQ0VGpz8uRJ5OTkaLRp0KABatasKbWJj49HkyZNpGBM/T4ZGRn4888/jXUbqIwVNdKkVDohKSkASqVTOfao6PeOiYnBsmXLkJqaWu59IiKi0jFoylKlUmHQoEHYtm0b6tWrhwYNGgAA/vzzTwwYMACvvvoqvv322zIrfTFp0iQsW7YMjx49Qps2bbB7927pXFhYGN59910MGzYMnTt3xuXLl/H5558DyBthCAgIQEpKikaQBABeXl7IyMjA48ePcf/+feTm5mpto56qTUlJgY2NDVxcXAq1SUlJkdpou4b6nC5ZWVnIysqSnmdkZOhzW6icFVV0tSjGKJuhz3tXhIUFRERkGIMCsiVLluDgwYPYuXOnVItMbefOnRg+fDiWLFmCcePG6XW9yZMnY/78+UW2SUxMlAK/iRMnIjIyEteuXcPs2bPx+uuvY/fu3ZDJZHjjjTdw5coV9OzZEzk5OXB2dsbYsWMxa9YsWFiUaCCw3H3yySeYPXu2qbtBRSiu6Kouxiiboe29d+7sCU/PFPj5JZfg0xARUUVhUKSybt06fPrpp4WCMSBvFeSCBQukArH6mDBhAhITE4t81K5dW2rv7u6OevXqoUuXLti8eTP27t2L48ePA8grSDt//nw8ePAA165dQ0pKCp5//nkAkK7h7e1daDXk7du34ezsDHt7e7i7u8PS0lJrG29vb+ka2dnZSE9PL7KNtmuoz+kyZcoUKJVK6XHjxg297iOVn6KKrgK6VzAao2yGtvcGLLBmzUicOtVcr+sTEVHFZNAI2aVLlwrlYOUXGhoqrWjUh4eHBzw8PAzpgkSlyquxlH+KDwAsLS1Ro0YNAMC3334LhUIhvYdCocDevXs12sfGxkKhUADI+2XaokULxMXFoU+fPtL7xMXFSZ+rRYsWsLa2RlxcHPr27QsAuHjxIq5fvy5dR6FQYO7cubhz5460MjM2NhbOzs5o1KiRzs9ka2sLW1vbEt0PKntKpRMePnQoVHTVwkLgnXe6IyDAqkwT6rUVfAX0H6UjIqKKy6CAzN7eHunp6ahZs6bW8xkZGYUS640hISEBJ06cwAsvvIDq1avjypUrmD59OoKCgqQg6N69e9i+fTs6deqEJ0+eYN26ddi2bRuOHDkiXeett97CsmXL8P7772PEiBE4dOgQtm7dij179khtxo8fj4iICLRs2RLPP/88Fi9ejIcPH2L48OEAALlcjsjISIwfPx6urq5wdnbGO++8A4VCgTZt2gAAunbtikaNGkm7F6SkpGDatGkYPXo0A65yZqztjvLnbgEqKTCSyVRYsCADLVp4FXuN/JRKJ6SlucHVNVXvIEpd8HXnzp4oOLitbWskIiKqPAwKyBQKBVauXImVK1dqPb98+XIpQDImBwcHxMTEYObMmXj48CF8fHzQrVs3TJs2TSPA2bBhA9577z0IIaBQKPDTTz9J05YAEBgYiD179uDdd9/FkiVL4Ofnh6+++kqqQQYAAwYMwN27dzFjxgykpKSgWbNm2L9/v0aS/qJFi2BhYYG+ffsiKysLYWFhWLFihXTe0tISu3fvxqhRo6BQKODo6IiIiAh8+OGHRr83pJuxtjsqmLsFWEAIFfr12wp//5t47bVBAFy0vr86GMxfx8zQRQEFC756eqZgzZqR3BqJiKgKMSggmzp1Kjp16oTU1FS89957aNCgAYQQSExMxOeff44ffvgBhw8fNnonmzRpgkOHDhXZxt3dXSo7UZROnTrh9OmiV8SpC2zqYmdnh+XLl2P58uU629SqVavQ9CiVr9LmbakDIV25W46OjyCXZ2rNG9MVDJZkUYCbmxuio6Nx69YtxMTEwM8vGb167S4U1HF0jIio8jIoIGvbti22bNmCqKgo7NixQ+Nc9erV8e2336Jdu3ZG7SCRqagDoatXn+LrrwVUqmflXCwti84b0xXkFbUooKiAquB7hIScRlDQZaSlucLVNU3jtdwaiYio8jEoIAOA//znPwgLC8OPP/6IS5cuAQDq1auHrl27wsHBwegdJDIlNzc3uLkBq1cDb74J5OYClpbAl1/KDM4bA7Qn5us73agOELk1EhFR1WNQQHbo0CFER0fj+PHj+M9//qNxTqlUonHjxli1ahXat29v1E4SmVpkJBAWBly+DNSpA/j5lew66sR8XdONxY1uMdgiIqqaDArIFi9ejDfeeEPrvkxyuRxvvvkmFi5cyICMqiQ/v5IHYvlXVeafbhw8uDWCg1sBaMXRLSIiM2ZQQHb27NkiK+t37doVn332Wak7RVSV6FpVKZdnwt+/jdE3IyciosrHoEr9t2/fljbz1sbKygp3794tdaeIqgpdqyrVG4Nv2bKFm4ETEZFhAVmNGjVw/vx5nefPnTvHf+1ThaHvasOyXJVY3FZLADcDJyIiA6csX375ZUyfPh3dunUrVJH/8ePHmDlzptZ9LolMoeCqxFu3LJCUZIXAwKfw9c3bequs8rbUQV5pVlUSEZH5kAkhhL6Nb9++jZCQEFhaWiI6Ohr169cHAFy4cAHLly9Hbm4uTp06pVHVnkouIyMDcrkcSqVS60IK0t+aNUBUFKBSARYWeWUsIiPL9j0TExOxdevWQtsudelyEO3aPStiHBUVxZFlIqIqpCS/vw0aIfPy8sKxY8cwatQoTJkyBepYTiaTISwsDMuXL2cwRhXOzZvPgjEg7+ebb+aVsSjpqkl9uLi4AMgr4vr4sR0OHgyFEBY4eDAU9vZPitwuiYiIzIvBhWHVWwLdv38fly9fhhACdevWRfXq1cuif0SldunSs2BMLTc3r6ZYWQZkakqlkxSMAfptl0RERObF4IBMrXr16mjVqpUx+0JUJurWzZumzB+UWVrmFXgtqdTUVNy9exc5OTnIzMzE06dPNc5bWT37q1XS7ZKIiMh8lDggIzK11NRUvbYR8vPTtvVRyUfHdG0crgsT+4mIqDgMyKhS0jcoio6Ohpubm9G2PgIML1NR2u2SiIio6mNARpWSvkFR/nal2fqotD76KBAzZtzF1atWCAh4Cl9fbpdERETPMCAjMqL8e1bmzw9zd3eHj48XWrQwYeeIiKjCYkBGVEpKpRNu3PBHUlIATp5sAUBzz0oiIqLiMCAjKoVTp5pj586eKLgLGUtbEBGRIRiQERVQ3OpNpVL5/z+dtAZjaixtQURE+mJARpSPISUt0tLcoCsYA1jagoiI9Kf7twmRGTKkpIWrayoAlY6zLG1BRET64wgZVUr6BjhlFQj1798fMpkMcvktzJ5dA0LIAAAymcCAATcxYMBtNGhQD3I5S1sQEVHxGJBRpeTm5obo6GhpROvWLQskJVkhMPApfH3zRq0MCYTUeWP37t3TOK6rjMXTp0/h6+uLmTPzis7Gx+cdVyhk8PPzB+Bf+g9JRERmQyaEEKbuBGmXkZEBuVwOpVIJZ2dnU3enwlqzBoiKytur0sIib5ukyEj9X68rb+zUqeaFqusXLGOh3gmAiIhIrSS/v5lDRpXazZvPgjEg7+ebb+Yd15e2vDGl0kkKxoBnZSyUSqdiX0tERGQoBmRUqV269CwYU8vNzduzsjTS0tw0NgMHnpWxICIiMjYGZFSp1a2bN02Zn6Vl3gbiJaVUOuHhQwfIZJqRHstYEBFRWWFSP1Vqfn55OWNvvpk3MmZpCXz5Zck3Ec+fNwaoIJOppBwyhSLeqH0nIiJS4wgZVXqRkcDVq8Dhw3k/DUnoz69g3hhgASGAFi1OQAjg2LF2WLx4HE6dam6knhMREeXhCBlVCX5+JR8VU9OWNwZY4NSpvA3DAe5RSUREZYMjZET/z9U1tVDeGKBicj8REZU5BmRk9tTV/OXyTPTqtVsKymQyFbp0OVhkcj+3RCIiImNgYdgKjIVhy4+6Uj+QV/X/6lUruLndh5vbY8TEVMeHH9aASiWDpaXA/PlKvPbaY26JREREWpXk9zcDsgqMAVnJ5Q+wtDE0mLp5M6+2WZ06pc9VIyKiqq0kv7+Z1E9Vjq6tkAoyZNsjYywaICIi0oUBGZmUsUeyAODOnTt6teO2R0REVFEwICOTKYuRrNTUVGzdurW0XSMiIipXXGVJJqPvCJUhI1m6NgpPSgootDE4ERFRRcERMqrS8m+FJJOp0KvXboSEnDZ1t4iIiDRwhIyqrIJbIamr7HOkjIiIKhoGZFRhGHtqMSGhNavsExFRpcApS6oQjDW1mJ6eDiAvuDt2TFHofP4q+0RERBUFR8jI5Iw1tZh/hWVamhu0fb0VinhpU3Bue0RERBUFAzIyubQ0N6NMLeZfYalro/DWrRMAAAMGDOC2R0REVGEwICOTUY9QaQueSruBt7aNwnv33i2Njnl4eJSm60REREbFHDIyGTc3N0RHRyM7Oxs1amRg0iQ5cnPVG3hn4LXXBpVqA++QkNMICrqMtDRXuLqmScEYR8eIiKiiYUBGJqUOjCZMAAYMUG/gLYOfnwsAl1JdW6l0QlqaG1xdU6VgDADkcnmprktERGRsDMiowjDmBt4sCEtERJUJAzIyWFlsCG5MulZtBgVd1hgpIyIiqigYkJFBymJDcGMratUmAzIiIqqIGJCRQcpiQ3BDFDU6py4Kq161mT8oK+2qTSIiorLEgIwqDX1H56KiXi6TVZtERERlhQEZlYqulYxlQd9RN7lcjgkTXIy+apOIiKisMCCjEqvoKxmNuWqTiIioLLFSP5WIsfafJCIiIgZkVELG2n+SiIiIGJBRCRW3/yQRERHpjwEZGURdMkLb5t29ej3bvLs8SksolU5ISgrgNCkREVV6TOong+TfEBwAZsy4i6tXrRAQ8BS+vq0AtNKrtERpq/1X9AUFREREhmBARgbLHyj5+AAtWhj2+pJW+1ePuhW3NRILvxIRUWXDgIzKXcGRMV21zAq2U4/OHT4MLFpUeEFBu3YR6NQJLPxKRESVDgMyKpWbN4FLl4C6dUtW88vQqUc3Nze0aQNYWACqfGsKLC2B1q3dwFiMiIgqIyb1U4mtWQPUqgW8+GLezzVrDHt9SWuZ+fkBq1fnBWFA3s8vv2QRWCIiqrwYkFGJ3LwJREU9G6VSqYA338w7rq/S1DKLjASuXgUOH877GRmp//sSERFVNJyypBK5dElzyhAAcnPz9o7Ud6RKXcssf1BmSC0zbo1ERERVBUfIzNDNm3kjS4aMZhVUt25eHld+lpZAnTpFvy41NRX37t0DUHwtMyIiInPBETIzs2bNs6lGC4u8XKySTPep87jefDNvZEyfPC5t5S5CQk4jKOgy0tJc4eqaxmCMiIjMEgMyM6Ir7yssrGRTf5GRea+9fDlvZKy4a+gqBCuXZ2oNxFhPjIiIzEWlm7LMyspCs2bNIJPJcObMGY1z586dQ/v27WFnZwd/f38sWLCg0Ou3bduGBg0awM7ODk2aNMHevXs1zgshMGPGDPj4+MDe3h6hoaG4dOmSRpu0tDQMHjwYzs7OcHFxQWRkJB48eGBwX8pbUXlfhkhNTUVycjKSk5NhaZmM+vXzfqqPpaamlqqf4eHhhYrCEhERVWWVboTs/fffh6+vL86ePatxPCMjA127dkVoaChWrVqFP/74AyNGjICLiwuioqIAAMeOHcOgQYPwySefoGfPnti0aRP69OmDU6dOITg4GACwYMECLF26FBs2bEBgYCCmT5+OsLAw/PXXX7CzswMADB48GMnJyYiNjUVOTg6GDx+OqKgobNq0Se++mII676tg/a7i8r7yK2mVfW10FYR1d3dnMEZERGalUgVk+/btw4EDB7Bjxw7s27dP49zGjRuRnZ2NtWvXwsbGBo0bN8aZM2ewcOFCKQhasmQJunXrhokTJwIA5syZg9jYWCxbtgyrVq2CEAKLFy/GtGnT8MorrwAA/ve//8HLywvff/89Bg4ciMTEROzfvx8nTpxAy5YtAQBffPEFXn75ZXz22Wfw9fXVqy+mUJK8r4KK2n/SkHbci5KIiOiZSjNlefv2bbzxxhv4+uuv4eDgUOh8fHw8OnTooJF3FBYWhosXL+L+/ftSm9DQUI3XhYWFIT4+HgCQlJSElJQUjTZyuRytW7eW2sTHx8PFxUUKxgAgNDQUFhYWSEhI0Lsv2mRlZSEjI0PjYWwVoX5XSQvCEhERVVWVIiATQmDYsGF46623NAKh/FJSUuDl5aVxTP08JSWlyDb5z+d/na42np6eGuetrKzg6upa7Pvkfw9tPvnkE8jlcunh7++vs21p+PkBnTqZroZXaQrCEhERVUUmDcgmT54MmUxW5OPChQv44osvkJmZiSlTppiyu2VuypQpUCqV0uPGjRum7lKZUBeEzc+QgrBERERVjUlzyCZMmIBhw4YV2aZ27do4dOgQ4uPjYWtrq3GuZcuWGDx4MDZs2ABvb2/cvn1b47z6ube3t/RTW5v859XHfHx8NNo0a9ZManPnzh2Nazx9+hRpaWnFvk/+99DG1ta20GesStRTuOqCsAVzyNSJ/Sx3QURE5sakAZmHhwc8PDyKbbd06VJ89NFH0vNbt24hLCwMW7ZsQevWrQEACoUCU6dORU5ODqytrQEAsbGxqF+/PqpXry61iYuLw7hx46RrxcbGQqFQAAACAwPh7e2NuLg4KQDLyMhAQkICRo0aJV0jPT0dJ0+eRIsWLQAAhw4dgkqlMqgv5sjNzQ3R0dFSwv+MGXdx9aoVAgKewte3FYBWsLGx4QpLIiIyO5VilWXNmjU1nlerVg0AEBQUBL//T4R67bXXMHv2bERGRmLSpEk4f/48lixZgkWLFkmvGzt2LDp27IjPP/8cPXr0wObNm/H7779j9erVAACZTIZx48bho48+Qt26daWyF76+vujTpw8AoGHDhujWrRveeOMNrFq1Cjk5OYiOjsbAgQPh6+urd1/MVf5gy8cH+P+YloiIyKxVioBMH3K5HAcOHMDo0aPRokULuLu7Y8aMGRplJtq2bYtNmzZh2rRp+OCDD1C3bl18//33Ug0yIK/O2cOHDxEVFYX09HS88MIL2L9/v1SDDMgrsREdHY2XXnoJFhYW6Nu3L5YuXWpQXyorfacTOe1IRESkP5kQQpi6E6RdRkYG5HI5lEolnJ2dTd0dSWpqapF1xjjtSERE5qwkv7+rzAgZlR8GW0RERMbFgIxKjCNlRERExsGAjAyiDsKUSiW2bNlSbHtuEk5ERFQ8BmSkN303Fs9P370viYiIzFml2DqJKgYGV0RERGWDARkRERGRiTEgI8nNm8Dhw3k/iYiIqPwwICMAwJo1QK1awIsv5v1cs8bUPSIiIjIfTOo3E0WVqLh1ywJRUZ5QqWQAAJUKePNNICwM+P+dqbRSKp2QluYGV9dUaWNwIiIiMhwDMjNQ3OrIpKQAqFQRGsdyc4HLl3UHZKdONceuXT0hhAVkMhV69dqNkJDTxuw2ERGR2eCUpRkobnWkq2sqZDKVxjFLS6BOHe3tlUonKRgDACEssGtXTyiVToXack9LIiKi4nGEjCCXZ6JXr93Ys6cXcnNlsLQEvvyy8OiYOrhKS3OTgjE1ISyQluYKuTwT/fv3h4uLCyv1ExER6Ymbi1dgxtpcPDk5GatXry62Xc+ebyEz0wt16uieqkxNTcXVq0/x/PPPcs4AwNJSICHhDgICrBiEERGRWePm4lQqNjZ3UL9+3tRlcrL6mOYol5ubG9zcgNWr8xL/c3Pzpjc/+USGjAwvPH5sip4TERFVbgzISBITE6P1uLb9KCMj81ZhXr4M/P47MGlS3upMC4u8YC0ysjx6TEREVDUwIKNi6VoUoJ7WfOmlvGAM0L9kBhERET3DVZYEpdIJSUkBWldJFufSpWfBmJq6ZAYRERHphyNkZqCo0hOlrSdWt27eNGX+oKyokhlERERUGAMyM+Dm5obo6Ghp6vHevXuIiYnRWU8sKOiy3pX3/fwKJ/hrK5lBREREujEgMxPaSlEUV09MX/kT/IsqmUFERETaMSAzY+oK/fmDMplMBVfXNIOv5efHQIyIiKikmNRvxtQV+tXbJqlzyLhROBERUfniCJmZCwk5jaCgy0hLc4Wra5rWYIz7URIREZUtBmQEuTxTayAWHh4OX19fboVERERUxjhlSTq5u7szGCMiIioHDMjMkL5TkJyqJCIiKh+csjRDBeuSaVNwU3EiIiIqOwzIzBSDLSIiooqDU5ZEREREJsaAjIiIiMjEGJARERERmRgDMiIiIiITY0BGREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRERERCbGSv0VmBACAJCRkWHinhAREZG+1L+31b/H9cGArALLzMwEAPj7+5u4J0RERGSozMxMyOVyvdrKhCHhG5UrlUqFW7duwcnJCTKZrMTXycjIgL+/P27cuAFnZ2cj9rBy4X3Iw/uQh/chD+/DM7wXeXgf8pTmPgghkJmZCV9fX1hY6JcdxhGyCszCwgJ+fn5Gu56zs7NZ/+VS433Iw/uQh/chD+/DM7wXeXgf8pT0Pug7MqbGpH4iIiIiE2NARkRERGRiDMjMgK2tLWbOnAlbW1tTd8WkeB/y8D7k4X3Iw/vwDO9FHt6HPOV9H5jUT0RERGRiHCEjIiIiMjEGZEREREQmxoCMiIiIyMQYkBERERGZGAOySmrlypV47rnnpIJ1CoUC+/btk84/efIEo0ePhpubG6pVq4a+ffvi9u3bGte4fv06evToAQcHB3h6emLixIl4+vRpeX8Uo5o3bx5kMhnGjRsnHTOHezFr1izIZDKNR4MGDaTz5nAP1P79918MGTIEbm5usLe3R5MmTfD7779L54UQmDFjBnx8fGBvb4/Q0FBcunRJ4xppaWkYPHgwnJ2d4eLigsjISDx48KC8P0qJBQQEFPo+yGQyjB49GoD5fB9yc3Mxffp0BAYGwt7eHkFBQZgzZ47G/oLm8H0A8rbwGTduHGrVqgV7e3u0bdsWJ06ckM5X1fvw888/o1evXvD19YVMJsP333+vcd5Yn/vcuXNo37497Ozs4O/vjwULFhjeWUGV0s6dO8WePXvE33//LS5evCg++OADYW1tLc6fPy+EEOKtt94S/v7+Ii4uTvz++++iTZs2om3bttLrnz59KoKDg0VoaKg4ffq02Lt3r3B3dxdTpkwx1Ucqtd9++00EBASI5557TowdO1Y6bg73YubMmaJx48YiOTlZety9e1c6bw73QAgh0tLSRK1atcSwYcNEQkKC+Oeff8SPP/4oLl++LLWZN2+ekMvl4vvvvxdnz54VvXv3FoGBgeLx48dSm27duommTZuK48ePi19++UXUqVNHDBo0yBQfqUTu3Lmj8V2IjY0VAMThw4eFEObzfZg7d65wc3MTu3fvFklJSWLbtm2iWrVqYsmSJVIbc/g+CCFE//79RaNGjcSRI0fEpUuXxMyZM4Wzs7O4efOmEKLq3oe9e/eKqVOnipiYGAFAfPfddxrnjfG5lUql8PLyEoMHDxbnz58X3377rbC3txdffvmlQX1lQFaFVK9eXXz11VciPT1dWFtbi23btknnEhMTBQARHx8vhMj7klpYWIiUlBSpzcqVK4Wzs7PIysoq976XVmZmpqhbt66IjY0VHTt2lAIyc7kXM2fOFE2bNtV6zlzugRBCTJo0Sbzwwgs6z6tUKuHt7S0+/fRT6Vh6erqwtbUV3377rRBCiL/++ksAECdOnJDa7Nu3T8hkMvHvv/+WXefL0NixY0VQUJBQqVRm9X3o0aOHGDFihMax8PBwMXjwYCGE+XwfHj16JCwtLcXu3bs1joeEhIipU6eazX0oGJAZ63OvWLFCVK9eXePvxqRJk0T9+vUN6h+nLKuA3NxcbN68GQ8fPoRCocDJkyeRk5OD0NBQqU2DBg1Qs2ZNxMfHAwDi4+PRpEkTeHl5SW3CwsKQkZGBP//8s9w/Q2mNHj0aPXr00PjMAMzqXly6dAm+vr6oXbs2Bg8ejOvXrwMwr3uwc+dOtGzZEq+++io8PT3RvHlz/Pe//5XOJyUlISUlReNeyOVytG7dWuNeuLi4oGXLllKb0NBQWFhYICEhofw+jJFkZ2fjm2++wYgRIyCTyczq+9C2bVvExcXh77//BgCcPXsWv/76K7p37w7AfL4PT58+RW5uLuzs7DSO29vb49dffzWb+1CQsT53fHw8OnToABsbG6lNWFgYLl68iPv37+vdH24uXon98ccfUCgUePLkCapVq4bvvvsOjRo1wpkzZ2BjYwMXFxeN9l5eXkhJSQEApKSkaPzPVn1efa4y2bx5M06dOqWRD6GWkpJiFveidevWWL9+PerXr4/k5GTMnj0b7du3x/nz583mHgDAP//8g5UrV2L8+PH44IMPcOLECYwZMwY2NjaIiIiQPou2z5r/Xnh6emqct7Kygqura6W6F2rff/890tPTMWzYMADm83cCACZPnoyMjAw0aNAAlpaWyM3Nxdy5czF48GAAMJvvg5OTExQKBebMmYOGDRvCy8sL3377LeLj41GnTh2zuQ8FGetzp6SkIDAwsNA11OeqV6+uV38YkFVi9evXx5kzZ6BUKrF9+3ZERETgyJEjpu5Wubpx4wbGjh2L2NjYQv/6Myfqf/EDwHPPPYfWrVujVq1a2Lp1K+zt7U3Ys/KlUqnQsmVLfPzxxwCA5s2b4/z581i1ahUiIiJM3DvTWLNmDbp37w5fX19Td6Xcbd26FRs3bsSmTZvQuHFjnDlzBuPGjYOvr6/ZfR++/vprjBgxAjVq1IClpSVCQkIwaNAgnDx50tRdo//HKctKzMbGBnXq1EGLFi3wySefoGnTpliyZAm8vb2RnZ2N9PR0jfa3b9+Gt7c3AMDb27vQqir1c3WbyuDkyZO4c+cOQkJCYGVlBSsrKxw5cgRLly6FlZUVvLy8zOZe5Ofi4oJ69erh8uXLZvV98PHxQaNGjTSONWzYUJq+VX8WbZ81/724c+eOxvmnT58iLS2tUt0LALh27RoOHjyIkSNHSsfM6fswceJETJ48GQMHDkSTJk0wdOhQvPvuu/jkk08AmNf3ISgoCEeOHMGDBw9w48YN/Pbbb8jJyUHt2rXN6j7kZ6zPbay/LwzIqhCVSoWsrCy0aNEC1tbWiIuLk85dvHgR169fh0KhAAAoFAr88ccfGl+02NhYODs7F/qFVpG99NJL+OOPP3DmzBnp0bJlSwwePFj6s7nci/wePHiAK1euwMfHx6y+D+3atcPFixc1jv3999+oVasWACAwMBDe3t4a9yIjIwMJCQka9yI9PV1j5ODQoUNQqVRo3bp1OXwK41m3bh08PT3Ro0cP6Zg5fR8ePXoECwvNX3OWlpZQqVQAzO/7AACOjo7w8fHB/fv38eOPP+KVV14xy/sAGO+/v0KhwM8//4ycnBypTWxsLOrXr6/3dCUAlr2orCZPniyOHDkikpKSxLlz58TkyZOFTCYTBw4cEELkLWuvWbOmOHTokPj999+FQqEQCoVCer16WXvXrl3FmTNnxP79+4WHh0elW9auTf5VlkKYx72YMGGC+Omnn0RSUpI4evSoCA0NFe7u7uLOnTtCCPO4B0LklT6xsrISc+fOFZcuXRIbN24UDg4O4ptvvpHazJs3T7i4uIgffvhBnDt3Trzyyital7k3b95cJCQkiF9//VXUrVu3wi/vLyg3N1fUrFlTTJo0qdA5c/k+REREiBo1akhlL2JiYoS7u7t4//33pTbm8n3Yv3+/2Ldvn/jnn3/EgQMHRNOmTUXr1q1Fdna2EKLq3ofMzExx+vRpcfr0aQFALFy4UJw+fVpcu3ZNCGGcz52eni68vLzE0KFDxfnz58XmzZuFg4MDy16YixEjRohatWoJGxsb4eHhIV566SUpGBNCiMePH4u3335bVK9eXTg4OIj//Oc/Ijk5WeMaV69eFd27dxf29vbC3d1dTJgwQeTk5JT3RzG6ggGZOdyLAQMGCB8fH2FjYyNq1KghBgwYoFF7yxzugdquXbtEcHCwsLW1FQ0aNBCrV6/WOK9SqcT06dOFl5eXsLW1FS+99JK4ePGiRpvU1FQxaNAgUa1aNeHs7CyGDx8uMjMzy/NjlNqPP/4oABT6bEKYz/chIyNDjB07VtSsWVPY2dmJ2rVri6lTp2qUJzCX78OWLVtE7dq1hY2NjfD29hajR48W6enp0vmqeh8OHz4sABR6RERECCGM97nPnj0rXnjhBWFraytq1Kgh5s2bZ3BfZULkK1lMREREROWOOWREREREJsaAjIiIiMjEGJARERERmRgDMiIiIiITY0BGREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRFTmUlJS8M4776B27dqwtbWFv78/evXqpbGH3LFjx/Dyyy+jevXqsLOzQ5MmTbBw4ULk5uZKba5evYrIyEgEBgbC3t4eQUFBmDlzJrKzszXe77///S+aNm2KatWqwcXFBc2bN5c2lAaAWbNmQSaToVu3boX6+umnn0Imk6FTp07Ffq6AgADIZDKdj2HDhhl+syq4Tp06Ydy4cabuBlGVY2XqDhBR1Xb16lW0a9cOLi4u+PTTT9GkSRPk5OTgxx9/xOjRo3HhwgV899136N+/P4YPH47Dhw/DxcUFBw8exPvvv4/4+Hhs3boVMpkMFy5cgEqlwpdffok6derg/PnzeOONN/Dw4UN89tlnAIC1a9di3LhxWLp0KTp27IisrCycO3cO58+f1+iXj48PDh8+jJs3b8LPz086vnbtWtSsWVOvz3bixAkpYDx27Bj69u2LixcvwtnZGQBgb29vjFtYLnJycmBtbV1u75ednQ0bG5tyez+iCq+E20MREemle/fuokaNGuLBgweFzt2/f188ePBAuLm5ifDw8ELnd+7cKQCIzZs367z+ggULRGBgoPT8lVdeEcOGDSuyTzNnzhRNmzYVPXv2FB999JF0/OjRo8Ld3V2MGjVKdOzYUY9P94x6z7z79+9Lx77//nvRvHlzYWtrKwIDA8WsWbM09oMEIFatWiV69Ogh7O3tRYMGDcSxY8fEpUuXRMeOHYWDg4NQKBQa+5Kq+75q1Srh5+cn7O3txauvvqqxL6EQQvz3v/8VDRo0ELa2tqJ+/fpi+fLl0rmkpCTpvnbo0EHY2tqKdevWiXv37omBAwcKX19fYW9vL4KDg8WmTZuk10VERBTaEzApKUmsW7dOyOVyjff/7rvvRP5fMep+//e//xUBAQFCJpMJIfK+A5GRkcLd3V04OTmJzp07izNnzhh074mqAk5ZElGZSUtLw/79+zF69Gg4OjoWOu/i4oIDBw4gNTUV7733XqHzvXr1Qr169fDtt9/qfA+lUglXV1fpube3N44fP45r164V278RI0Zg/fr10vO1a9di8ODBRhm5+eWXX/D6669j7Nix+Ouvv/Dll19i/fr1mDt3rka7OXPm4PXXX8eZM2fQoEEDvPbaa3jzzTcxZcoU/P777xBCIDo6WuM1ly9fxtatW7Fr1y7s378fp0+fxttvvy2d37hxI2bMmIG5c+ciMTERH3/8MaZPn44NGzZoXGfy5MkYO3YsEhMTERYWhidPnqBFixbYs2cPzp8/j6ioKAwdOhS//fYbAGDJkiVQKBR44403kJycjOTkZPj7++t9Ty5fvowdO3YgJiYGZ86cAQC8+uqruHPnDvbt24eTJ08iJCQEL730EtLS0gy53USVn6kjQiKquhISEgQAERMTo7PNvHnzCo0s5de7d2/RsGFDrecuXboknJ2dxerVq6Vjt27dEm3atBEARL169URERITYsmWLyM3NldqoR2uys7OFp6enOHLkiHjw4IFwcnISZ8+eFWPHji31CNlLL70kPv74Y402X3/9tfDx8ZGeAxDTpk2TnsfHxwsAYs2aNdKxb7/9VtjZ2Wn03dLSUty8eVM6tm/fPmFhYSGSk5OFEEIEBQVpjGwJIcScOXOEQqEQQjwbIVu8eHGxn6tHjx5iwoQJ0vOOHTuKsWPHarTRd4TM2tpa3LlzRzr2yy+/CGdnZ/HkyRON1wYFBYkvv/yy2L4RVSXMISOiMiOEKJO2APDvv/+iW7duePXVV/HGG29Ix318fBAfH4/z58/j559/xrFjxxAREYGvvvoK+/fvh4XFs4kBa2trDBkyBOvWrcM///yDevXq4bnnnjOoH7qcPXsWR48e1RgRy83NxZMnT/Do0SM4ODgAgMb7eXl5AQCaNGmicezJkyfIyMiQctNq1qyJGjVqSG0UCgVUKhUuXrwIJycnXLlyBZGRkRr35enTp5DL5Rp9bNmypcbz3NxcfPzxx9i6dSv+/fdfZGdnIysrS+pradWqVQseHh7S87Nnz+LBgwdwc3PTaPf48WNcuXLFKO9JVFkwICOiMlO3bl0pGV+XevXqAQASExPRtm3bQucTExPRqFEjjWO3bt1C586d0bZtW6xevVrrdYODgxEcHIy3334bb731Ftq3b48jR46gc+fOGu1GjBiB1q1b4/z58xgxYoShH1GnBw8eYPbs2QgPDy90zs7OTvpz/kR6mUym85hKpdL7fYG8laatW7fWOGdpaanxvOA08qeffoolS5Zg8eLFaNKkCRwdHTFu3LhCq1gLsrCwKBRQ5+TkFGpX8P0ePHgAHx8f/PTTT4Xauri4FPmeRFUNAzIiKjOurq4ICwvD8uXLMWbMmEK/kNPT09G1a1e4urri888/LxSQ7dy5E5cuXcKcOXOkY//++y86d+6MFi1aYN26dRojXrqoA7qHDx8WOte4cWM0btwY586dw2uvvVaSj6lVSEgILl68iDp16hjtmmrXr1/HrVu34OvrCwA4fvw4LCwsUL9+fXh5ecHX1xf//PMPBg8ebNB1jx49ildeeQVDhgwBkBcE/v333xoBsY2NjUYpEgDw8PBAZmYmHj58KP03VueIFSUkJAQpKSmwsrJCQECAQX0lqmoYkBFRmVq+fDnatWuH559/Hh9++CGee+45PH36FLGxsVi5ciUSExPx5ZdfYuDAgYiKikJ0dDScnZ0RFxeHiRMnol+/fujfvz+AvGCsU6dOqFWrFj777DPcvXtXeh9vb28AwKhRo+Dr64sXX3wRfn5+SE5OxkcffQQPDw8oFAqtfTx06BBycnKMOiozY8YM9OzZEzVr1kS/fv1gYWGBs2fP4vz58/joo49KdW07OztERETgs88+Q0ZGBsaMGYP+/ftL92D27NkYM2YM5HI5unXrhqysLPz++++4f/8+xo8fr/O6devWxfbt23Hs2DFUr14dCxcuxO3btzUCsoCAACQkJODq1auoVq0aXF1d0bp1azg4OOCDDz7AmDFjkJCQoLFYQpfQ0FAoFAr06dMHCxYsQL169XDr1i3s2bMH//nPfwpNqRJVZVxlSURlqnbt2jh16hQ6d+6MCRMmIDg4GF26dEFcXBxWrlwJAOjXrx8OHz6M69evo3379qhfvz4WLVqEqVOnYvPmzdK0XWxsLC5fvoy4uDj4+fnBx8dHeqiFhobi+PHjePXVV1GvXj307dsXdnZ2iIuLK5SrpObo6Gj0KbKwsDDs3r0bBw4cQKtWrdCmTRssWrQItWrVKvW169Spg/DwcLz88svo2rUrnnvuOaxYsUI6P3LkSHz11VdYt24dmjRpgo4dO2L9+vUIDAws8rrTpk1DSEgIwsLC0KlTJ3h7e6NPnz4abd577z1YWlqiUaNG8PDwwPXr1+Hq6opvvvkGe/fuRZMmTfDtt99i1qxZxX4OmUyGvXv3okOHDhg+fDjq1auHgQMH4tq1a1I+HZG5kAlDM2mJiMhkZs2ahe+//16vKUEiqjw4QkZERERkYgzIiIiKUK1aNZ2PX375xdTdI6IqglOWRERFuHz5ss5zNWrUqFT7VRJRxcWAjIiIiMjEOGVJREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRERERCbGgIyIiIjIxBiQEREREZkYAzIiIiIiE/s/cQ2omzjrMrQAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2 Training Surrogate with ALAMO\n", + "\n", + "IDAES provides a Python wrapper for the ALAMO machine learning tool via an imported AlamoTrainer class. Regression settings can be directly set as config attributes, as shown below. In this example, allowed basis terms include constant and linear functions, monomial power order 2 and 3, variable product power order 1 and 2, and variable ratio power order 1 and 2. ALAMO seeks to minimize the number of basis terms; here, we restrict each surrogate expression to a maximum of 10 basis terms.\n", + "\n", + "Finally, after training the model we save the results and model expressions to a JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrJklEQVR4nO3deXxM5/4H8M9kJBEkk1UWiSSSoHbSltDaK9RSVxelagvBtVxLbVdtVbXWrlQv4bq02qIXXYSiVcJVmipFRROkkmBCYmkjMuf3x/xmZJLMJDOZmXNmzuf9euWlM+fkzDPTyTnf8zzf5/soBEEQQERERCQDLmI3gIiIiMheGPgQERGRbDDwISIiItlg4ENERESywcCHiIiIZIOBDxEREckGAx8iIiKSDQY+REREJBsMfIiIiEg2GPgQEUnQ5s2boVAokJGRIXZTiJwKAx8imTp16hTGjBmDhg0bonr16qhduzZee+01/Pbbb6X2bd++PRQKBRQKBVxcXODl5YV69erhzTffxIEDB8x63b1796Jdu3aoWbMmqlWrhjp16uC1117DN998Y623Vsp7772HL774otTzx48fx5w5c3D37l2bvXZJc+bM0X+WCoUC1apVQ4MGDfD2228jPz/fKq+xfft2rFixwirHInI2DHyIZGrRokXYuXMnOnXqhJUrVyIxMRHff/89WrRogXPnzpXaPzQ0FFu3bsW///1vLFmyBL169cLx48fRpUsX9O3bF4WFheW+5tKlS9GrVy8oFApMnz4dy5cvx8svv4zLly/jk08+scXbBGA68Jk7d65dAx+ddevWYevWrVi2bBnq16+P+fPno2vXrrDG8okMfIiMqyJ2A4hIHBMnTsT27dvh5uamf65v375o3LgxFi5ciP/85z8G+6tUKgwYMMDguYULF2LcuHH44IMPEBERgUWLFhl9vcePH2PevHl44YUXkJycXGr7zZs3K/mOpOPhw4eoVq2ayX1eeeUV+Pv7AwBGjhyJl19+Gbt27cKJEycQFxdnj2YSyRJ7fIhkqnXr1gZBDwDExMSgYcOGuHDhQoWOoVQqsWrVKjRo0ABr1qxBXl6e0X1v376N/Px8tGnTpsztNWvWNHj8119/Yc6cOahbty6qVq2K4OBg9OnTB1euXNHvs3TpUrRu3Rp+fn7w8PBAbGwsPv/8c4PjKBQKPHjwAFu2bNEPLw0ePBhz5szB5MmTAQCRkZH6bcVzav7zn/8gNjYWHh4e8PX1xeuvv47r168bHL99+/Zo1KgRTp8+jbZt26JatWr45z//WaHPr7iOHTsCANLT003u98EHH6Bhw4Zwd3dHSEgIRo8ebdBj1b59e3z55Ze4evWq/j1FRESY3R4iZ8UeHyLSEwQBOTk5aNiwYYV/R6lUol+/fpg5cyZ++OEHdO/evcz9atasCQ8PD+zduxdjx46Fr6+v0WMWFRWhR48e+Pbbb/H666/jH//4B+7du4cDBw7g3LlziIqKAgCsXLkSvXr1whtvvIFHjx7hk08+wauvvop9+/bp27F161YMGzYMzz77LBITEwEAUVFRqF69On777Td8/PHHWL58ub73JSAgAAAwf/58zJw5E6+99hqGDRuGW7duYfXq1Wjbti1++ukneHt769urVqvRrVs3vP766xgwYAACAwMr/Pnp6AI6Pz8/o/vMmTMHc+fORefOnTFq1ChcunQJ69atw6lTp3Ds2DG4urpixowZyMvLQ2ZmJpYvXw4AqFGjhtntIXJaAhHR/9u6dasAQNi4caPB8+3atRMaNmxo9Pd2794tABBWrlxp8vizZs0SAAjVq1cXunXrJsyfP184ffp0qf02bdokABCWLVtWaptGo9H/98OHDw22PXr0SGjUqJHQsWNHg+erV68uDBo0qNSxlixZIgAQ0tPTDZ7PyMgQlEqlMH/+fIPnf/nlF6FKlSoGz7dr104AIKxfv97o+y5u9uzZAgDh0qVLwq1bt4T09HThww8/FNzd3YXAwEDhwYMHgiAIQlJSkkHbbt68Kbi5uQldunQRioqK9Mdbs2aNAEDYtGmT/rnu3bsL4eHhFWoPkdxwqIuIAAAXL17E6NGjERcXh0GDBpn1u7oehXv37pncb+7cudi+fTuaN2+O/fv3Y8aMGYiNjUWLFi0Mhtd27twJf39/jB07ttQxFAqF/r89PDz0/33nzh3k5eXh+eefx5kzZ8xqf0m7du2CRqPBa6+9htu3b+t/goKCEBMTg8OHDxvs7+7ujiFDhpj1GvXq1UNAQAAiIyMxYsQIREdH48svvzSaG3Tw4EE8evQI48ePh4vLk1P38OHD4eXlhS+//NL8N0okQxzqIiJkZ2eje/fuUKlU+Pzzz6FUKs36/fv37wMAPD09y923X79+6NevH/Lz83Hy5Els3rwZ27dvR8+ePXHu3DlUrVoVV65cQb169VCliulT1L59+/Duu+8iNTUVBQUF+ueLB0eWuHz5MgRBQExMTJnbXV1dDR7XqlWrVL5UeXbu3AkvLy+4uroiNDRUP3xnzNWrVwFoA6bi3NzcUKdOHf12IjKNgQ+RzOXl5aFbt264e/cujh49ipCQELOPoZv+Hh0dXeHf8fLywgsvvIAXXngBrq6u2LJlC06ePIl27dpV6PePHj2KXr16oW3btvjggw8QHBwMV1dXJCUlYfv27Wa/h+I0Gg0UCgW+/vrrMoPAkjkzxXueKqpt27b6vCIish8GPkQy9tdff6Fnz5747bffcPDgQTRo0MDsYxQVFWH79u2oVq0annvuOYva8fTTT2PLli3IysoCoE0+PnnyJAoLC0v1rujs3LkTVatWxf79++Hu7q5/PikpqdS+xnqAjD0fFRUFQRAQGRmJunXrmvt2bCI8PBwAcOnSJdSpU0f//KNHj5Ceno7OnTvrn6tsjxeRM2OOD5FMFRUVoW/fvkhJScFnn31mUe2YoqIijBs3DhcuXMC4cePg5eVldN+HDx8iJSWlzG1ff/01gCfDOC+//DJu376NNWvWlNpX+P8Cf0qlEgqFAkVFRfptGRkZZRYqrF69eplFCqtXrw4Apbb16dMHSqUSc+fOLVVQUBAEqNXqst+kDXXu3Blubm5YtWqVQZs2btyIvLw8g9l01atXN1lagEjO2ONDJFOTJk3Cnj170LNnT+Tm5pYqWFiyWGFeXp5+n4cPHyItLQ27du3ClStX8Prrr2PevHkmX+/hw4do3bo1WrVqha5duyIsLAx3797FF198gaNHj6J3795o3rw5AGDgwIH497//jYkTJ+J///sfnn/+eTx48AAHDx7E3//+d7z00kvo3r07li1bhq5du6J///64efMm1q5di+joaJw9e9bgtWNjY3Hw4EEsW7YMISEhiIyMRMuWLREbGwsAmDFjBl5//XW4urqiZ8+eiIqKwrvvvovp06cjIyMDvXv3hqenJ9LT07F7924kJibirbfeqtTnb66AgABMnz4dc+fORdeuXdGrVy9cunQJH3zwAZ555hmD/1+xsbHYsWMHJk6ciGeeeQY1atRAz5497dpeIskSc0oZEYlHNw3b2I+pfWvUqCHExMQIAwYMEJKTkyv0eoWFhcJHH30k9O7dWwgPDxfc3d2FatWqCc2bNxeWLFkiFBQUGOz/8OFDYcaMGUJkZKTg6uoqBAUFCa+88opw5coV/T4bN24UYmJiBHd3d6F+/fpCUlKSfrp4cRcvXhTatm0reHh4CAAMprbPmzdPqFWrluDi4lJqavvOnTuF5557TqhevbpQvXp1oX79+sLo0aOFS5cuGXw2pqb6l6Rr361bt0zuV3I6u86aNWuE+vXrC66urkJgYKAwatQo4c6dOwb73L9/X+jfv7/g7e0tAODUdqJiFIJghYVhiIiIiBwAc3yIiIhINhj4EBERkWww8CEiIiLZYOBDREREssHAh4iIiGSDgQ8RERHJBgsYlqDRaHDjxg14enqy7DsREZGDEAQB9+7dQ0hICFxcjPfrMPAp4caNGwgLCxO7GURERGSB69evIzQ01Oh2Bj4leHp6AtB+cKbWHSIiIiLpyM/PR1hYmP46bgwDnxJ0w1teXl4MfIiIiBxMeWkqTG4mIiIi2WDgQ0RERLLBwIeIiIhkgzk+REREVlBUVITCwkKxm+G0XF1doVQqK30cBj5ERESVIAgCsrOzcffuXbGb4vS8vb0RFBRUqTp7DHyIiIgqQRf01KxZE9WqVWPxWxsQBAEPHz7EzZs3AQDBwcEWH4uBDxERkYWKior0QY+fn5/YzXFqHh4eAICbN2+iZs2aFg97MbmZiIjIQrqcnmrVqoncEnnQfc6VyaVi4ENERFRJHN6yD2t8zhzqsiG1Wo1Hjx4Z3e7m5sauUSIiIjti4GMjarUaa9asKXe/MWPGMPghIiKyEw512Yipnh5L9hObWq1GVlaW0R+1Wi12E4mIyAyDBw+GQqGAQqGAq6srAgMD8cILL2DTpk3QaDQVPs7mzZvh7e1tu4ZaGXt8qFzsvSIisg2xUyK6du2KpKQkFBUVIScnB9988w3+8Y9/4PPPP8eePXtQpYrzhQnO947I6pyt94qISAqkcFPp7u6OoKAgAECtWrXQokULtGrVCp06dcLmzZsxbNgwLFu2DElJSfj999/h6+uLnj17YvHixahRowaOHDmCIUOGAHiSeDx79mzMmTMHW7duxcqVK3Hp0iVUr14dHTt2xIoVK1CzZk2bvJeK4lAXmS0vzxPp6RHIy/MUuyl2V3zI7/TpHHz+uRqnT+dwyI+IzCbVm8qOHTuiadOm2LVrFwDAxcUFq1atwvnz57FlyxYcOnQIU6ZMAQC0bt0aK1asgJeXl/48+NZbbwHQTjmfN28efv75Z3zxxRfIyMjA4MGD7fpeysIeHzLLmTPNsXdvDwiCCxQKDXr23IcWLX4Su1l2UfzuzNTnwCE/InJ09evXx9mzZwEA48eP1z8fERGBd999FyNHjsQHH3wANzc3qFQqKBQKfc+RztChQ/X/XadOHaxatQrPPPMM7t+/jxo1atjlfZSFPT5UYXl5nvqLPQAIggv27u0hm54f3V1XeZ8Dh/yIyNEJgqAfujp48CA6deqEWrVqwdPTE2+++SbUajUePnxo8hinT59Gz549Ubt2bXh6eqJdu3YAgGvXrtm8/aYw8KEKy83101/sdQTBBbm5vnZrgxRml0nhcyAisqULFy4gMjISGRkZ6NGjB5o0aYKdO3fi9OnTWLt2LQDTN3kPHjxAfHw8vLy8sG3bNpw6dQq7d+8u9/fsgUNdNuLm5mbV/aTA11cNhUJjcNFXKDTw9c21y+tLIREQEP9zICKypUOHDuGXX37BhAkTcPr0aWg0Grz//vtwcdGe8z799FOD/d3c3FBUVGTw3MWLF6FWq7Fw4UKEhYUBAH788Uf7vIFyMPCxET8/P4wZM0YSlZutNV1SpbqHnj33lcptUanuWbO5RpV8D3l5nsjN9YOvr9qgDba+mxD7cyAispaCggJkZ2cbTGdfsGABevTogYEDB+LcuXMoLCzE6tWr0bNnTxw7dgzr1683OEZERATu37+Pb7/9Fk2bNkW1atVQu3ZtuLm5YfXq1Rg5ciTOnTuHefPmifQuDTHwsaHiwURmJnD5MhATA4SG2q8N1uglKd4r1aLFT4iKSkNuri98fXMNLvb27L0SO8na1Ofg6MSuK0JE9vPNN98gODgYVapUgY+PD5o2bYpVq1Zh0KBBcHFxQdOmTbFs2TIsWrQI06dPR9u2bbFgwQIMHDhQf4zWrVtj5MiR6Nu3L9RqtX46++bNm/HPf/4Tq1atQosWLbB06VL06tVLxHerxcDHDjZuBBITAY0GcHEBNmwAEhLs89rWmC4ppd4rwHhycVRUml0DEJXqnlMFPEDpQNlYr1p5w4nFg6cbN1yQnl4FkZGPERKirQbL4IlI/JSIzZs3Y/PmzeXuN2HCBEyYMMHguTfffNPg8bp167Bu3TqD5/r164d+/foZPCcIgmWNtSIGPjaWmfkk6AG0/44YAcTH27fnp7KkdJEylVzsbIFIZZnbe1N8X1O9aqaOyWn/RBUjtZtKuWDgY2OXLz8JenSKioC0NMcKfKRErORise/OzFWZYc7K9KqVN+1fdwyxZ3bImVhD71Qagxr7Y+BjYzEx2uGt4sGPUglER4vTHmNDF45ErORiR7s7q0wyuDV61dgzJ01iDr0TSQEDHxsLDdWeWEaM0Pb0KJXAhx+Kc5cldkKwNYmVXCyVoMZc5v6/t0avGqf9S4+zDL0TVQYLGNpBQgKQkQEcPqz9V4y7K2eoulxyCEmluofIyKulgh6pDDVJhSX/73W9agqF9gppSa+aNY5B1qNWq3HihLrMofeTJ9VcZ45kgz0+dhIaKu4dlTMMOzjaUJNUlPf//vbt2/rn8/Ly9P9tjV41Z57270h0+V55eZ5QKMaX6oU7dmwLzp27x4RzkgUGPk5O1/tR3rCDo/SS8KRsvvL+3+tWYC6LNabsO+O0f0eju1koLz+OCeckBwx8nFzxXpJatfIxdaoKRUUKKJUCFi3KR//+/dhL4uRskQzuKIEylcZeOJI7Bj4yoAtqJk0C+vbVTqWPjlYgNNQbgLeYTSM7KetiZ2yW12uvvQZvb2+jxyovUHa0af9yxF44kjOHCny+//57LFmyBKdPn0ZWVhZ2796N3r1767cLgoDZs2fjo48+wt27d9GmTRusW7cOMTEx4jVaYsTONSL7KSsZXHexMzXLy9vbG8HBwRa/LnOxiAgAjhw5gg4dOuDOnTsmb6aKi4iIwPjx4zF+/HibtcuhZnU9ePAATZs2xdq1a8vcvnjxYqxatQrr16/HyZMnUb16dcTHx+Ovv/6yc0uJxKcLQBITE5GYmIg+ffoAsM8MPz8/PwQHBxv9YdBDJL7BgwdDoVBg5MiRpbaNHj0aCoUCgwcPtn/DbMyheny6deuGbt26lblNEASsWLECb7/9Nl566SUAwL///W8EBgbiiy++wOuvv27PphJJQlkBhjPM8CMi6wgLC8Mnn3yC5cuXw8PDAwDw119/Yfv27ahdu7bIrbMNh+rxMSU9PR3Z2dno3Lmz/jmVSoWWLVsiJSXF6O8VFBQgPz/f4IfImelmeRXHwoJE8tSiRQuEhYUZzO7ctWsXateujebNm+ufKygowLhx41CzZk1UrVoVzz33HE6dOmVwrK+++gp169aFh4cHOnTogIyMjFKv98MPP+D555+Hh4cHwsLCMG7cODx48MBm768sThP4ZGdnAwACAwMNng8MDNRvK8uCBQugUqn0P2FhYTZtJ5HYWFhQfphw7hgyM7WFbjMz7fu6Q4cORVJSkv7xpk2bMGTIEIN9pkyZgp07d2LLli04c+YMoqOjER8fj9xc7Q3T9evX0adPH/Ts2ROpqakYNmwYpk2bZnCMK1euoGvXrnj55Zdx9uxZ7NixAz/88APGjBlj+zdZjEMNddnC9OnTMXHiRP3j/Px8Bj/klIpf1ExNaebFz/nYI+FcrVbrj3/jhgvS06sgMvIxQkI0Vjm+sxNzDbUBAwZg+vTpuHr1KgDg2LFj+OSTT3DkyBEA2vzadevWYfPmzfp0k48++ggHDhzAxo0bMXnyZKxbtw5RUVF4//33AQD16tXDL7/8gkWLFulfZ8GCBXjjjTf0icsxMTFYtWoV2rVrh3Xr1qFq1ap2eb9OE/gEBQUBAHJycgxmpOTk5KBZs2ZGf8/d3R3u7u62bh6R6DjbSt5s+f9VVxkaMD1jkJWhyyb2GmoBAQHo3r07Nm/eDEEQ0L17d/j7++u3X7lyBYWFhWjTpo3+OVdXVzz77LO4cOECAODChQto2bKlwXHj4uIMHv/88884e/Ystm3bpn9OEARoNBqkp6fjqaeessXbK8VpAp/IyEgEBQXh22+/1Qc6+fn5OHnyJEaNGiVu44gkghcdsgVdMG1sxmBUVBpUqnusDG3E5csocw21tDT7lR8ZOnSofsjJ2Mzpyrp//z5GjBiBcePGldpmz0Rqhwp87t+/j7S0NP3j9PR0pKamwtfXF7Vr18b48ePx7rvvIiYmBpGRkZg5cyZCQkIMav0QEZFtcMagZWJitMNbxYMfpRKIjrZfG7p27YpHjx5BoVAgPj7eYFtUVBTc3Nxw7NgxhIeHAwAKCwtx6tQp/bDVU089hT179hj83okTJwwet2jRAr/++iui7fnGyuBQgc+PP/6IDh066B/rcnMGDRqEzZs3Y8qUKXjw4AESExNx9+5dPPfcc/jmm2/sNm5IZG3F8ybKwqEpx+Ls/z/LWxeuspw1jyg0VJvTM2KEtqdHqQQ+/NC+xWaVSqV+2EqpVBpsq169OkaNGoXJkyfrOxoWL16Mhw8fIuH/E5FGjhyJ999/H5MnT8awYcNw+vRpbN682eA4U6dORatWrTBmzBgMGzYM1atXx6+//ooDBw7oh0rtwaECn/bt20MQBKPbFQoF3nnnHbzzzjt2bBWRbRTPmzCFeROOQQ7/P22xLpyOs+cRJSRoc3q0SwqJU2Hfy8vL6LaFCxdCo9HgzTffxL179/D0009j//798PHxAaAdqtq5cycmTJiA1atX49lnn8V7772HoUOH6o/RpEkTfPfdd5gxYwaef/55CIKAqKgo9O3b1+bvrTiHCnyI5KSi+RDMm3AMcvn/aatFUM3JI3LUnjV7LylUskempC+++EL/31WrVsWqVauwatUqo/v36NEDPXr0MHiu5LT4Z555BsnJyUaPUVbtH2tj4ENEDsdRL2zFGVsk1hnYchHU8vKIMjMz8dVXX5V7HEftGaLKY+BDRA7FGYaMTA3VkGnl5REVD3ry8jxx/bq2LltY2HWDYMzRe9bIcgx8iMihOPqQUXlDNY7InpWhK5pHdOZMc+zZ0xOA4v+f0aBXLwaYxMCHyGE489CInDjjlG97F8csL49IF1w+CXoAwAV79jh2gEnWwcCHyAFwaMR52HrKt1jsPaxoKo+orOBSy3YBpqkZx2Q91vicnWaRUiJnZWxoJC/PU+SWSUNenifS0yMc5vPgIrG2pwsuS7N+gOnq6goAePjwoVWPS2XTfc66z90S7PEhkihdPkR5QyNyXlTUkXrCuEhs5ZjzuZTMA9LS5vhYO8BUKpXw9vbGzZs3AQDVqlWDQqEo57fIXIIg4OHDh7h58ya8vb1LFVk0BwMfIonS5U1kZDzG1q0CNJonJ1OlUsDYsd0QEVFFsjOXbM3RkoS5SGzlVOTzu3v3Lj799FMAT4LL69e1hXHCwjJt9r3QLZKtC37Idry9vfWft6UY+BBJmJ+fH/z8yipnr0BsbKDYzROVIyYJM6ipHHM/P20e0IUyt1mzZ02hUCA4OBg1a9ZEYWGh1Y5LhlxdXSvV06PDwIfIAUihnL1U6C5Y5SUJc8hIfir6/3zAgAE2CUKVSqVVLsxkWwqBqegG8vPzoVKpkJeXZ3LdEiISj65y8/btHpg6VYWiIgWUSgGLFuWhf/8/OWQkY85Q1dsRSPFzruj1m4FPCQx8bEeKfyjk+DIz2RNGZE9SrZ5e0es3h7rILqT6h0KOz94LOxLJnaNXT2cdH7KLkn8AxmqvSPUPhYiInAN7fMjuHKn2ChERORf2+JBdsQoxERGJiT0+ZFeOWHuFiJwTJ1zIEwMfsiupLtDIEyCRvHDChfXk5XkiN9cPvr5qh7iBZeBDdlVyDR0pLNDIEyCR/Dj6zCSpcMScTQY+ZHemFmgUA0+AREQVp6uQXd56eVKtns7Ah+yi5B+Adg2d0gGPFP5QHK3blmyLw6DywL/7itMtGHv4MLB8eemczTZtBqF9e+muTcfAh+zCUVamdsRuW7IdDoPKA//uzefn54dWrQAXF0CjefK8Ugm0bKldXFmqGPiQ3Uj9wlBety3JD4dBnR//7i0XGgps2ACMGAEUFWmDng8/lH4ldQY+EpCZCVy+DMTESP8L48w41Z5Ifiryd8/hTuMSEoD4eMdaL4+Bj8g2bgQSE7VdhS4u2ug5IUHsVsmTVKfak30Vv8jdvn1b5NaQrZX3d5+Xl4cdO3aUexw5D3c62np5DHxEolarkZHxGImJNaHRKABog58RIwQ0a3YTERFVZPtHJBYpTrUn+yovp4cJsM5DN5GivL97QRAqdDwOdzoOBj4i0J1c09MjoNEMMthWVKTA6tVfIzLyqqzvIOyp+EwyU1PtpTDjjGzL1MWLCbDOpeSEi1mzbiEjowoiIh4jJOQZAM/Azc2NAY0TYuAjAt0fUnldrPyDsw9HmXFG4mECrHMq/jcdHAzExpbeJysry+Axe/0cHwMfEXFoRToY1JApTHwnoHK9fkyQlg6nDHzWrl2LJUuWIDs7G02bNsXq1avx7LPPit2sMkmtijERPaG7u3d1LTDZO8thUOdXmV4/1oOSFqcLfHbs2IGJEydi/fr1aNmyJVasWIH4+HhcunQJNWvWFLt5ZTJWxZiIxFPy7r5Jk7M4e7YJBMEFLi4CFi/OR//+/XinLhOV6fVjPShpcbrAZ9myZRg+fDiGDBkCAFi/fj2+/PJLbNq0CdOmTRO5dWQO1jcisZR1d3/2bBMkJPwLhYVuGDu2G2JjAwF4i9rOkjicYjssd+E8nCrwefToEU6fPo3p06frn3NxcUHnzp2RkpIiYsuoonQn7u3bPTBligoajeL/767z0L//nzxxk10Yu7svLHRDZORVhIRojPymeDicYhsVnfZuznCnsQRpY3WjeN6zLqcKfG7fvo2ioiIEBgYaPB8YGIiLFy+W+TsFBQUoKCjQP87Pz7dpG8k43Yk7L88TK1aMhyDo6hspMHmyF/74YxNUqns8cZPN6C5e5d3di5HTU15vTl5eXoWOw+EU81R02ntFz0mmEqR37dpl9Pd43rMepwp8LLFgwQLMnTvXrq9Z/KRpamqk3BImdSeW8sbSeeImWyl+katVKx9Tp6pQVKSAUilg0SLxcnoq2ptDtlGRae8VUZkEaZ73rMepAh9/f38olUrk5OQYPJ+Tk4OgoKAyf2f69OmYOHGi/nF+fj7CwsJs2k7dyXXzZiXeeaf0cA4g765NjqWTmHR/d5MmAX376tYgUiA01Bti5fRYctFjvRnpYVkEaXCqwMfNzQ2xsbH49ttv0bt3bwCARqPBt99+izFjxpT5O+7u7nB3d7djK7X+/NMPU6Zol6kAtMM5U6d6o29fb9kn8rK+EUmFo61BpMMq09JUkZs6Bqy251SBDwBMnDgRgwYNwtNPP41nn30WK1aswIMHD/SzvKTi8uUnQY9OUZH27tIRT7TWxvpGRMaZujiyyrT0VDRBmgGrfThd4NO3b1/cunULs2bNQnZ2Npo1a4ZvvvmmVMKzmNRqNby8HsPF5ckCpQCgVArw9LwJtZoLlAKsb0RUlvIujhxOkR5TCdJubpHYtesnBqx25HSBD6DNfjc2tCW24kmKPXoYnsC6d9+Hffu0JzBm8BNRSRW5ODJHTpqMJUhnZWm7/hmw2o9TBj5SVjxJ0dRwDjP4iaikilwcrVlvhuyHAav9MPARGYdznqjoCZknbpKr8i6Or732Gry9vQFUvt4M2YctCiSSaQx8SDJKjoOXhSdueRN7SQaxXr+iF8eaNWvqX78y9WbIfqxdIJHKx8CHJIV/3GSM2EsyiPn6vDg6N2sVSKSKYeBDRA5B7BWuxX59XhyJrIOBDxE5JLELvYn9+rYg9lAikT0w8CEihyN2oTexX98WxB5KJLIXBj52xplLRJUjdqE3sV/fVkr29Bjr0WKpjYph75l0MfCxM85cImdn6xO+2IXexH59e3DGHi17Yu+ZtDHwEYFUv+iZmdo1xGJiuF4YWcYeJ3yxC72J/fq25qw9WvbE3jNpcyl/F5KDjRuB8HCgY0ftvxs3it0ickRlnfDT0yOQl+dpcj9z6GrZKBTaUv8la9nYmtivb2umerTIfGfONMeKFeOxZcsgrFgxHmfONBe7SbLHHh9CZiaQmPhktXiNBhgxAoiPZ88PWc7awyXF895MLfdiq/w4sV/fXpy9R8ue2HsmTQx8CJcvPwl6dIqKgLQ08QMfDr85Jluc8MXOjxP79e2lvOrQVHFyyAdzRAx8CDExgIuLYfCjVALR0eK1CdAOt+l6olxcgA0bgIQEcdtEFWOrE77YQYXYr28vpnq0AM5Yqij2nkkTAx+ZU6vVUCofYfFiD0ydqkJRkQJKpYBFi/KgVP4Jtdr+JzC1Wo2MjMdITKwJjUYBQDf8JqBZs5uIiKjCk6rE8YTveEoO0RlbQPnhw4fYsGGD/rGxxF3OWGLvmVQx8JGxkjNwxo3z1N/h3b9/D7pzmz1PYLo2padHQKMZZLCtqEiB1au/RmTkVZ5UJY4nfMdT0aG84ttN5XFxxpJWeb1nZH8MfGSs5InJ2B2ePU9gutcqr8eAJ1Xp4wnf8VTkZiIrKwsAE3dNqWjvmaMnwjsqBj4kSewxMJ8U8i54wpcPJu4aJ5dEeEfFwIckiz0GFVdy2FKsvAue8OWDeVym8TsuXQx8SNKM9RiQISnlXfCELw9y7ZUt3rN644YL0tOrIDLyMUJCtNNiGdhLHwMfIifCvAvxSGGo0d7k1itbvGfV1A0GJ19IGwMfsjoWHRQP8y7EIZWhRjHIqVdWF9iWd4PByRfSxsCHrIpFB8XFvAtxSGmo0dYqmpjuzAnsvMFwbAx8ZMzaJzBrrPnFk2rlyDXvQirkMNTIBHbHvsGQ45BsSQx8ZMzaJzBrrPkl95OqNRIn5ZZ3ISVy6Qlw1r+/inLUG4ySQ7LGOOOQbHEMfGTOWl9utVoNL6/HcHF5sswEACiVAjw9b0KtrvgyE878B2eKNRMn5ZR3ISWO3BNA5nHEG4ySN5TGctGcYUjWFAY+VGnFL9g9ehhesLt334d9+zjToSIqkzjJIUJpcNSeALKMI99gmLq5cnYWBT4PHjxA9erVrd0WclDFL8Sm7oKc/S7CWiwZLpH7EKGUOGJPAMmLHHLRTLEo8AkMDMRrr72GoUOH4rnnnrN2m8jBOfJdkBRYOlzCoEY6+DfgnEz1mBYfNpJ6z6pcctGMsSjw+c9//oPNmzejY8eOiIiIwNChQzFw4ECEhIRYu31EssPhEsfDoUZ5MNazun27B955RwWNRgEXFwENGyokXcZD7rloFgU+vXv3Ru/evXHr1i1s3boVmzdvxsyZMxEfH4+hQ4eiV69eqFKF6UNEluJwiWPhUKN8FP9/qFarkZHxGFOmqPSTOjQaBUaMENCs2U1ERFR8Uoc9yf3mqlLRSUBAACZOnIiJEydi9erVmDx5Mr766iv4+/tj5MiRmDZtGqpVq2aVhs6fPx9ffvklUlNT4ebmhrt375ba59q1axg1ahQOHz6MGjVqYNCgQViwYAGDMHJIHC5xLFK8wJHt6CZ1pKdHQKMZZLCtqEiB1au/RmTkVclO6pDzzVWlIoKcnBxs2bIFmzdvxtWrV/HKK68gISEBmZmZWLRoEU6cOIHk5GSrNPTRo0d49dVXERcXh40bN5baXlRUhO7duyMoKAjHjx9HVlYWBg4cCFdXV7z33ntWaQMR2RaLq5Gj0H1Pyxs2ktKkjpJDrcZurpx9SNaiwGfXrl1ISkrC/v370aBBA/z973/HgAED4O3trd+ndevWeOqpp6zVTsydOxcAsHnz5jK3Jycn49dff8XBgwcRGBiIZs2aYd68eZg6dSrmzJnj9P8jyfHJPU9EzutdkeNypGEjDslqWRT4DBkyBK+//jqOHTuGZ555psx9QkJCMGPGjEo1zhwpKSlo3LgxAgMD9c/Fx8dj1KhROH/+PJo3b17m7xUUFKCgoED/OD8/3+ZtdTZyv2Bbi9xPSnJa74qciyMNGznr+cMcFgU+WVlZ5ebueHh4YPbs2RY1yhLZ2dkGQQ8A/ePs7Gyjv7dgwQJ9bxJZRu4XbGviZ8QaI+SYmJPnOCwKfKpVq4aioiLs3r0bFy5cAAA89dRT6N27t1mJxNOmTcOiRYtM7nPhwgXUr1/fkmZWyPTp0zFx4kT94/z8fISFhdns9ZwVL9hkLXKvMUJEtmVR4HP+/Hn07NkTOTk5qFevHgBg0aJFCAgIwN69e9GoUaMKHWfSpEkYPHiwyX3q1KlToWMFBQXhf//7n8FzOTk5+m3GuLu7w93dvUKvQUS2J/caI0RkWxYFPsOGDUOjRo1w+vRp+Pj4AADu3LmDwYMHIzExEcePH6/QcQICAhAQEGBJE0qJi4vD/PnzcfPmTdSsWRMAcODAAXh5eaFBgwZWeQ2yvcxM7SrvMTEVX9GdnIsjJYsSOaPisytv3HBBenoVREY+RkiIBoDjpy5YFPikpqbixx9/1Ac9AODj44P58+cbTXaurGvXriE3NxfXrl1DUVERUlNTAQDR0dGoUaMGunTpggYNGuDNN9/E4sWLkZ2djbfffhujR49mj46D2LgRSEwENBrAxQXYsAGSrn5K1qNWq3H79m39Y0dKFiV5ctZJHcVnV5qaZODIsystCnzq1q2LnJwcNGzY0OD5mzdvIjo62ioNK2nWrFnYsmWL/rFultbhw4fRvn17KJVK7Nu3D6NGjUJcXByqV6+OQYMG4Z133rFJe8i6MjOfBD2A9t8RI4D4ePb8ODtT09gjI6+K2DIi45x1Uofu/ZQ3ycCRZ1daFPgsWLAA48aNw5w5c9CqVSsAwIkTJ/DOO+9g0aJFBlPCvby8rNLQzZs3G63hoxMeHo6vvvrKKq9H9qNWq3HiBKDRGJ4gioqAkyfV8PBg8rQzq+g0dh1Hu4Mm5+XM5yVnnmRgUeDTo0cPAMBrr70GhUK7PokgCACAnj176h8rFAoUFRVZo53kpHR3+3l5nlAoxpdKaD12bAvOnbvn0N2qVDHl3WH26dMHISEh/B4Q2YEzTzKwKPA5fPiwtdtBMqW72y8vodWRu1WpYsq7w/T395dN0MMkfxKbM08ysCjwadeunbXbQcSEVplz5jvMitDNpNm+3UO/2reLi4DFi/PQv/+fDpkvQo7NWc/JFi9SevfuXWzcuFFfwLBhw4YYOnQoVCqV1RpH8sPqp/LlzHeY5Sk+5LtixXgIgjaFQKNRYPJkL/zxxyaoVBzyJftzxnOyRYHPjz/+iPj4eHh4eODZZ58FACxbtgzz589HcnIyWrRoYdVGEpE8OOsdZnl0Q7nlDfdxyJeo8iwKfCZMmIBevXrho48+0i9R8fjxYwwbNgzjx4/H999/b9VGEpF8OOMdZkXJfbiPxOes9YmKs7jHp3jQAwBVqlTBlClT8PTTT1utcUTk/ORwoq0oOQ/3kTQ4a32i4iwKfLy8vHDt2rVSi4dev34dnp6eVmkYEcmDHE605pDrcB9Jh7P/rVkU+PTt2xcJCQlYunQpWrduDQA4duwYJk+ejH79+lm1geTceLdPgPOfaM0l5+E+IluzKPBZunQpFAoFBg4ciMePHwMAXF1dMWrUKCxcuNCqDSTnxrt9IiKyJ7MDn6KiIpw4cQJz5szBggULcOXKFQBAVFQUqlWrZvUGOgsWJDOOQQ0REdmLS/m7GFIqlejSpQvu3r2LatWqoXHjxmjcuDGDHhM2bgTCw4GOHbX/btxom9fJzAQOH9b+S0SOg0O+RPZj0VBXo0aN8PvvvyMyMtLa7XEqarUaGRmPkZhYExqNriAZMGKEgGbNbiIioorVejs2bnyyurmLC7BhA5CQYJVDE0mOrsqxMY42PMohXyL7UQi61UXN8M0332D69OmYN28eYmNjUb16dYPt1lqRXQz5+flQqVTIy8ur1PvQVWJNT4/Ali2DSm0fNGgzIiOvWqUSa2amtidJo3nynFIJZGRwWI2cj+5vSycvzxO5uX7w9VUbJASzyjGRvFT0+m1Rj8+LL74IAOjVq5d+dXaAK7IXp7tzK68gWWUrsarVapw4AWg0hif4oiLg5Ek1PDyYQ0POpfjfzJkzzUvVvGnR4icAwI0bN4z+fbH3xHaYz0hSx9XZbcyWBcmKr++jUIwvFVwdO7YF585xfR9yTnl5nvq/K0C7tMPevT0QFZUGleoedu3apd+PPUL2wSF3cgQWBT6RkZEICwsz6O0BtD0+169ft0rDnImtCpLp7mbLC664vg85o/LWtQJM9wjx78K6MjOfBD2ALp8RiI9nzw9Ji8WBT1ZWFmrWrGnwfG5uLiIjIznUVQZbFyRjtVeSm/KGkcvrESLr4ZA7ORKLAh9dLk9J9+/fR9WqVSvdKLIMq73Kh7PNarJEeT2dFekRosrjkDs5GrMCn4kTJwIAFAoFZs6caVC7p6ioCCdPnkSzZs2s2kAiMlRyVpMxcrjQmOrpFGul8+JB6Y0bLkhPr4LIyMcICdGOATlbUMohd3I0ZgU+P/2kHRsXBAG//PKLQTEtNzc3NG3aFG+99ZZ1W0hEBkpeQIwl78rlQmOsp1OMlc6LB6Wm8oucNSjlkDs5ArMCH91sriFDhmDlypUOXa/H1liJlezB1MXVWZnzN2PvC7Eu2Cwvv8iZg1IOuZPUWZTjk5SUZO12OB1WYiVbk2vybnl/W7dv39ZPZQfEuRAzv4hIuiwKfB48eICFCxfi22+/xc2bN6EpXjIYwO+//26Vxjk6Wwc17FWSNzlfXE39bUnh70Ks/CKSPhZ4FJ9Fgc+wYcPw3Xff4c0330RwcHCZM7zI9tirJG+8uJZNCn8XYuQXkfSxwKM0WBT4fP311/jyyy/Rpk0ba7eHzMSgRr54cTVOCn8XTPSl4ljgUTosCnx8fHzg6+tr7bYQkZl4cZU2OST6SmFo0RFcvmy4kDSgLfCYlsbAx94sCnzmzZuHWbNmYcuWLQa1fIjI9kpeQIxdXOV+oaGKq0zeiRSGFqVOrVbDy+sxXFxqQqN5khqiVArw9LwJtbqKrD8fe7Mo8Hn//fdx5coVBAYGIiIiAq6urgbbz5w5Y5XGEVFpvNBIlyP1fugKLW7f7oEpU1TQaBRwcRGweHEe+vf/06zvEL9rxhWv7dSjh2H5ie7d92HfPueu7SRFFgU+vXv3tnIziMgcPEFKk6MEpcWXmVixYjwEQdsLodEoMHmyF/74YxNUKi4zYQ3FvwumhqalUttJDrPOLAp8Zs+ebe12mJSRkYF58+bh0KFDyM7ORkhICAYMGIAZM2YY3DmdPXsWo0ePxqlTpxAQEICxY8diypQpdm0rEcmbIwQKuotseSURpHIxdiZSzvuSy6wzl/J3eeJ///ufyZXXCwoK8Omnn1a6USVdvHgRGo0GH374Ic6fP4/ly5dj/fr1+Oc//6nfJz8/H126dEF4eDhOnz6NJUuWYM6cOdiwYYPV20NE5Ax0JRGKY0kE+VGr1Th9OgeJiUKJWWcCTp/OgVqtFreBVmZW4BMXF2fwAXh5eRkUK7x79y769etnvdb9v65duyIpKQldunRBnTp10KtXL7z11lsG1Vm3bduGR48eYdOmTWjYsCFef/11jBs3DsuWLbN6e4iInIGuJIIu+GFJBPnRDXuuXv2NQeI1ABQVKbB69ddYs2aNUwU/Zg11CYJg8rGx52whLy/PYEp9SkoK2rZtazD0FR8fj0WLFuHOnTvw8fEp8zgFBQUoKCjQP87Pz7ddo4lIkoqvqF4WKeTl2ApLIsib7ntfXkFUZxr2tCjHxxR7VHFOS0vD6tWrsXTpUv1z2dnZiIyMNNgvMDBQv81Y4LNgwQLMnTvXdo0lIkkrPusGML7avTMn+ko574TsQ04FUa0e+Jhj2rRpWLRokcl9Lly4gPr16+sf//HHH+jatSteffVVDB8+vNJtmD59OiZOnKh/nJ+fj7CwsEofl4gcQ/E7WVOr3TvTHS9RWeTS+2d24PPrr78iOzsbgHZY6+LFi7h//z4A7arI5pg0aRIGDx5scp86dero//vGjRvo0KEDWrduXSppOSgoCDk5OQbP6R4HBQUZPb67uzvc3d3NajcROR+5rnZPtuVItZ0AefT+mR34dOrUySCPp0ePHgC0Q1yCIJg11BUQEICAgIAK7fvHH3+gQ4cOiI2NRVJSElxcDPOy4+LiMGPGDBQWFuoLKh44cAD16tUzOsxFRKQjp9XuHe1i7MgcpbaTnJgV+KSnp9uqHSb98ccfaN++PcLDw7F06VLcunVLv03Xm9O/f3/MnTsXCQkJmDp1Ks6dO4eVK1di+fLlorS5ouScVEkkJXJa7Z4XY/vi5ygtZgU+4eHhZh3873//O9555x34+/ub9XslHThwAGlpaUhLS0NoiVKSut4nlUqF5ORkjB49GrGxsfD398esWbOQmJhYqde2pZJJlcY4c1IlkVTIKbkT4MWY5Mumyc3/+c9/8NZbb1U68Bk8eHC5uUAA0KRJExw9erRSr2VPFU2WZFIlkX2YSu4smcPIHhFyBnIc9rRp4GOvmj7Owtg0WiKyH2PJncULpuqwN5YcnRyHPUWdzk5PmJpGSyRX9siBq8ydLHtjyRk4U1BTEQx8JIDTaIlKs1cOXFl3vLdv3zbo4WFvLJHzYOAjAXKaRktUUfbMgTMVOLE3lsi5mLVIKdkGV0gmkiZjvbF5eZ4it4yILGXTHp8BAwbAy8vLli/hFKw1jZY1gYisi72xRM7HosBHo9GUqpysez4zMxO1a9cGAKxbt65yrXNyxZMqTU2jrUjyJWsCkbMTI89GTkUNieTCrMAnPz8fw4YNw969e+Hl5YURI0Zg9uzZUCqVAIBbt24hMjISRUVFNmmss7HmNELWBCJHZKqXsnjdHLHybORW1JBIDswKfGbOnImff/4ZW7duxd27d/Huu+/izJkz2LVrl75XgrV7zMPeF5KrivZSijHr0Zq9sSR9mZnA5ctATAxQYnEAckJmBT5ffPEFtmzZgvbt2wMAevfuje7du6Nnz57Ys2cPAJi1SCkRyVdFex/FyLORY1E3udq4EUhMBDQawMUF2LABSEgQu1VkS2YFPrdu3TJYr8vf3x8HDx5EfHw8XnzxRfzrX/+yegOdjb0SkFl3hJxFeXk2tup1YVDj3NRqNTIyHiMxsSY0Gu0Nu0YDjBghoFmzm4iIqOK03wG593CZFfjUrl0bFy5cQGRkpP45T09PJCcno0uXLvjb3/5m9QY6E3slILPuCDmTIUNeQK1a+Zg6VYWiIgWUSgGLFuWjf/9+7HUhi+jOxenpEdBoBhlsKypSYPXqrxEZedWpJoPobrq3b/fAlCkqaDQKuLgIWLw4D/37/ymrvyWzAp8uXbogKSkJL774osHzNWrUwP79+/HCCy9YtXHOxh4JyKwCTY7KWC+lv78/Jk3yRt++QFoaEB2tQGioNwBvsZpKDk53ji2vN9FZJoPoAr28PE+sWDEegqDr4VJg8mQv/PHHJqhU95wq0DPFrMBn7ty5uHHjRpnbPD09ceDAAZw5c8YqDSPLsO4IOaKK9FKGhsqzW55sRy6z9nQBXHnXB2cJ9MpjVuDj4+MDHx8fo9s9PT3Rrl27SjeKzKfLcxArH4LIUuylJDGZmrXnbFiXSsvsAoaPHz/G8uXL8fHHH+O3334DANStWxf9+/fHP/7xD7i6ulq9kVS+4rNQmA9BjoS9lCQ2leqeLL5rcunhKo9Zgc+ff/6JF154ASkpKejcuTPatm0LALhw4QKmTp2KPXv2IDk5GVWrVrVJY8k0XVAzaRKYD0GSx15KIvuTUw+XMWYFPgsXLsT169fx008/oUmTJgbbfv75Z/Tq1QsLFy7EnDlzrNlGp2XLKefMhyCpYy9l5XBtPrKUXHq4jDEr8Pnkk0+wbNmyUkEPADRt2hRLly7FjBkzGPhUAKecE7GX0lJcm4905F6TxxKlVxo14erVq3j22WeNbm/VqhWuXbtW6UY5K12XvbFkzrw8T4P9iOQkNBRo354n74oo2dOTl+eJ9PQI/TnE2H6kVdFzrFTPxWq1GllZWXj//bsIDxfQsSMQHi7g/ffvIisrC2q1WuwmSppZPT5eXl64efMmwsLCytyenZ0NT0/PMrfRk679w4eB5ctLJ3O2aTMI7duzYiwRVRx7j83nyEuSWFKTx9EDPWszK/Dp0KED3nvvPezcubPM7QsXLkSHDh2s0jBn5efnh1attGvCaDRPnlcqgZYt/SDBvzMikiiWArCcFIOairCkJo8jB3q2YFbgM3v2bLRs2RKtWrXCxIkTUb9+fQiCgAsXLmD58uX49ddfceLECVu11WmEhmoXwhsxAigq0gY9H37ILn4iMg9LAciXuTV55BLUVIRZgU+DBg1w4MABJCQk4PXXX9evxC4IAurXr4/k5GQ0bNjQJg11NgkJQHy8LpmTQQ8RmY8F6eSLNXksZ3YBw1atWuH8+fNITU01KGDYrFkza7fN6XHKORFVhi0vfpwubxl7zrJiTR7LmB345Ofno0aNGmjWrJlBsKPRaHD//n14eXlZs31ERGSCLS5+nC5vHjFXPpd7TR5LmDWdfffu3Xj66afx119/ldr2559/4plnnsHevXut1jgiIiqt5OwbleoeIiOvlroAWjpLp6LT4Dld/kmQuGTJx5g82QsajeEsqyVLPsaaNWs4xVxCzOrxWbduHaZMmYJq1aqV2la9enVMnToVa9asQc+ePa3WQCIiMmTvWTq2rDLv6LjyueMxK/A5d+4cPvjgA6Pb27Zti7fffrvSjSIiItPsNcTEOkEVY69Ec9bkqTyzAp87d+7g8ePHRrcXFhbizp07lW4UERGJj3WCKs5es6xYk6fyzAp8IiIi8OOPP6J+/fplbv/xxx8RHh5ulYaV1KtXL6SmpuLmzZvw8fFB586dsWjRIoSEhOj3OXv2LEaPHo1Tp04hICAAY8eOxZQpU2zSHiIiZ8c6Qeax1ywrBjWVY1Zyc58+fTBjxgzk5OSU2padnY23334bL7/8stUaV1yHDh3w6aef4tKlS9i5cyeuXLmCV155Rb89Pz8fXbp0QXh4OE6fPo0lS5Zgzpw52LBhg03aQ0Tk7HTDN8WxTpBpxhLNSTrM6vGZNm0a/vvf/yImJgYDBgxAvXr1AAAXL17Etm3bEBYWhmnTptmkoRMmTND/d3h4OKZNm4bevXujsLAQrq6u2LZtGx49eoRNmzbBzc0NDRs2RGpqKpYtW4bExESbtImIbId1ZMTHInnkjMwKfDw9PXHs2DFMnz4dO3bs0OfzeHt7Y8CAAZg/f75dFinNzc3Ftm3b0Lp1a7i6ugIAUlJS0LZtW4OErvj4eCxatAh37tyBj4+PzdtFRNbBOjLiKn4eNTV8wwRackRmFzBUqVT44IMPsHbtWty+fRuCICAgIEC/fEVxx44dw9NPPw13d3erNFY3Xf7hw4do1aoV9u3bp9+WnZ2NyMhIg/0DAwP124wFPgUFBSgoKNA/zs/Pt0pbichyrCMjLibQVhxnWTkeswMfHYVCgYCAAJP7dOvWDampqahTp06Z26dNm4ZFixaZPMaFCxf0ydSTJ09GQkICrl69irlz52LgwIHYt29fmUFXRS1YsABz5861+PeJiJwRg5qKYZDoeCwOfCpCEAST2ydNmoTBgweb3Kd40OTv7w9/f3/UrVsXTz31FMLCwnDixAnExcUhKCioVNK17nFQUJDR40+fPh0TJ07UP87Pz0dYWJjJNhERkfU5al6XFNtExtk08ClPQEBAub1Gxmg02pkGumGquLg4zJgxQ5/sDAAHDhxAvXr1TOb3uLu7W20ojoiILMO8LrIXs6azi+XkyZNYs2YNUlNTcfXqVRw6dAj9+vVDVFQU4uLiAAD9+/eHm5sbEhIScP78eezYsQMrV6406M0hIiJpKtnTk5fnifT0COTleZrcj8hcovb4VFS1atWwa9cuzJ49Gw8ePEBwcDC6du2Kt99+W99bo1KpkJycjNGjRyM2Nhb+/v6YNWsWp7ITETkYLpNBtmTTwKcyScfFNW7cGIcOHSp3vyZNmuDo0aNWeU0iIrI/LpNBtiZqcjPJh6MmLZI4Sk79NbY6uBhThPldti0uk0G2ZtPA5949fkmJSYtkvuJThLdv98A776ig0Sjg4iJg8eI89O//pygBBr/LtmevVc5JvswKfDp27Fih/SoyLEXywWJ0ZAk/Pz9kZgJTpgD/P4kTGo0CU6d6o29fb4gRV/C7bHtcJsM09jhWnlmBz5EjRxAeHo7u3bvrp4wTEdnK5ctPgh6doiIgLQ0IDRWnTWR79lrl3NGwx9E6zAp8Fi1ahKSkJHz22Wd44403MHToUDRq1MhWbSMimYuJAVxcDIMfpRKIjhavTWQbJfO1VKp7ZQY8cl76oawp/2XlvrHH0TSzAp/Jkydj8uTJSElJwaZNm9CmTRvUq1cPQ4cORf/+/eHl5WWrdhKRDIWGAhs2ACNGaHt6lErgww/Z2+OMuPSDeTjl33IWJTfHxcUhLi4OK1euxGeffYa1a9firbfewo0bNxj8EJFVJSQA8fHa4a3oaAY9zoxBTcVwyn/lVGpW15kzZ/Ddd9/hwoULaNSoEfN+iMgmQkMZ8BDpcMp/5Zi9ZMWNGzfw3nvvoW7dunjllVfg6+uLkydP4sSJE/Dw8LBFG4mIJMnYsgpEtqSb8l8cp/xXnFk9Pi+++CIOHz6MLl26YMmSJejevTuqVHGIVS9IRBVNRpRz0iI5huLfUVM5Fvwuky1xyn/lKAQzyiu7uLggODgYNWvWNLkcxZkzZ6zSODHk5+dDpVIhLy+P+UpWxNoT5CzUajUyMh7j2WdrQqN5ch5UKgWcPHkTERFV+F0mm8jKysKGDRv0j7WzukpP+U9MTERwcLAYTRRVRa/fZnXXzJ49u9INI3nihYCchZ+fH86eLau+kAL37gWKUliR5IFT/q3DrB4fOWCPj+1lZmoL08XEMGGVHFNmJhAeXrq+UEYGv9PWwB5i4/jZGGeTHh9jvvvuOzx48ABxcXHw8fGxxiHJSW3cCCQmai8YLi7aGi0JCWK3isg8rC9kO6xObJoc37O1mV25+f79+5g3bx4A7err3bp1Q3JyMgCgZs2a+Pbbb9GwYUPrt5QcXmbmk6AH0P47YoS2RgsvGORoWF/INrgeGtmaWdPZd+zYYbBExeeff47vv/8eR48exe3bt/H0009j7ty5Vm8kOQdT6y4ROaLQUKB9ewY9RI7ErMAnPT0dTZo00T/+6quv8Morr6BNmzbw9fXF22+/jZSUFKs3kpyDbt2l4rjuEhGZwlpJZG1mDXU9fvwY7u7u+scpKSkYP368/nFISAhu375ttcaRc2FeBBGZg+tRkS2Y1eMTFRWF77//HgBw7do1/Pbbb2jbtq1+e2ZmJhOvyKSEBO3Ml8OHtf8ysZmIymJsPSr2/FBlmdXjM3r0aIwZMwZHjx7FiRMnEBcXhwYNGui3Hzp0CM2bN7d6I8m5cN0lIioP16MiWzEr8Bk+fDiUSiX27t2Ltm3blipoeOPGDQwdOtSqDSQiImmyZU0Z3XpUxYMfrkdF1mB2HZ+hQ4caDW4++OCDSjeIiIikz9r1dnRBVF5eHoDy16NidWKyFFcYJSIis1mz3o6xIKpFi58QFZWmX49q+PBu8PZ+xuyeJFY7puLMCnwKCwsxY8YM7Nq1C76+vhg5cqRB709OTg5CQkJQVFRk9YYSEZFzMhWUFF+Pytvb2+zFN1kJmkoya1bX/Pnz8e9//xsjR45Ely5dMHHiRIwYMcJgHy79RUREUsFK0FSSWT0+27Ztw7/+9S/06NEDADB48GB069YNQ4YMwaZNmwAACoXC+q0kIiIisgKzenz++OMPgyUroqOjceTIERw/fhxvvvkmh7iIiGTKmhWWbVmtmZWgyawen6CgIFy5cgURERH652rVqoXDhw+jQ4cOGDx4sJWbR0RElrJXUq81KyzbslozK0ETYGbg07FjR2zfvh2dOnUyeD4kJASHDh1C+/btrdk2IiKykL2Seo1VWI6KSjO70KA1j2XPY5NjMSvwmTlzJi5evFjmtlq1auG7777DgQMHrNIwIiKynK2TenV1dMqrsGxOvR1bVmtmJWjSMSvwCQ8PR3h4uNHtISEhGDRoUKUbRURE0ubn54cxY8YgI+Mxtm4VoNE8mdiiVAoYO7YbIiKqVKg3SRcclVetuTJFC1kJmnTMSm7W+eyzz9CnTx80atQIjRo1Qp8+ffD5559bu21lKigoQLNmzaBQKJCammqw7ezZs3j++edRtWpVhIWFYfHixXZpExGRHPn5+SE2NhAbNiigVGqfUyqBDz9UIDY2sMJDaLogavLkfliyJB9KpfD/xxKwZEk+Jk/uZ/GQnC5Y0lWCVig0AMBK0DJmVo+PRqNBv3798Nlnn6Fu3bqoX78+AOD8+fPo27cvXn31VXz88cc2ndI+ZcoUhISE4OeffzZ4Pj8/H126dEHnzp2xfv16/PLLLxg6dCi8vb2RmJhos/YQETmziiRIJyT4IT4eSEsDoqMtW4RYF9RMmgT07as7lgKhod4AvC1qu+64Y8aM0b+HWbNuISOjCiIiHiMk5BkA5leCJsdmVuCzcuVKHDx4EHv27NHX8tHZs2cPhgwZgpUrV2L8+PHWbKPe119/jeTkZOzcuRNff/21wbZt27bh0aNH2LRpE9zc3NCwYUOkpqZi2bJlDHyIiCxgToJ0aKifRQFPWUJDLQuejCke1AQHA7Gx1js2OR6zhrqSkpKwZMmSUkEPAPTq1QuLFy/WFzK0tpycHAwfPhxbt25FtWrVSm1PSUlB27ZtDbor4+PjcenSJdy5c8focQsKCpCfn2/wQ0TkbCypX8Oqx+SMzAp8Ll++jM6dOxvd3rlzZ1y+fLnSjSpJEAQMHjwYI0eOxNNPP13mPtnZ2QgMDDR4Tvc4Ozvb6LEXLFgAlUql/wkLC7New4mIJODMmeZYsWI8tmwZhBUrxuPMmeZiN4lINGYFPh4eHrh7967R7fn5+ahatWqFjzdt2jQoFAqTPxcvXsTq1atx7949TJ8+3ZzmVsj06dORl5en/7l+/brVX4OIyN50vd/G6tfoen6Y1EtyY1aOT1xcHNatW4d169aVuX3t2rWIi4ur8PEmTZpUbrXnOnXq4NChQ0hJSYG7u7vBtqeffhpvvPEGtmzZgqCgIOTk5Bhs1z0OCgoyenx3d/dSxyUC7Ff1lsgWdEm9hw8Dy5eXrl/Tps0gtG8PfodJdswKfGbMmIH27dtDrVbjrbfeQv369SEIAi5cuID3338f//3vf3H48OEKHy8gIAABAQHl7rdq1Sq8++67+sc3btxAfHw8duzYgZYtWwLQBmUzZsxAYWEhXF1dAQAHDhxAvXr14OPjY87bJLJb1VsiW/Lz80OrVoCLC6DRPHleqQRatvQDv7ri4Y2VeMwKfFq3bo0dO3YgMTERO3fuNNjm4+ODjz/+GG3atLFqAwGgdu3aBo9r1KgBAIiKikLo/6f+9+/fH3PnzkVCQgKmTp2Kc+fOYeXKlVi+fLnV20POj0md5CxCQ4ENG4ARI4CiIl2dHctmTeXleSI31w++vmpWO64E3liJy6zABwD+9re/IT4+Hvv379cnMtetWxddunQpc7aVvahUKiQnJ2P06NGIjY2Fv78/Zs2axansRCR7CQmodJ0dLvBpPbyxEpdZgc+hQ4cwZswYnDhxAn/7298MtuXl5aFhw4ZYv349nn/+eas2sqSIiAgIglDq+SZNmuDo0aM2fW0iIkdkSW2c8hKkdQt8MkGaHIlZs7pWrFiB4cOHw8vLq9Q2lUqFESNGYNmyZVZrHBERiUeXIN269aAyF/hs02YQh2PI4ZgV+Pz888/o2rWr0e1dunTB6dOnK90oIiKSBm2CtB9cSlwtniRIM+ipLEuKS5LlzBrqysnJ0c+YKvNgVarg1q1blW4UERFJhzUTpMkQc6fsz6wen1q1auHcuXNGt589exbBwcGVbhQREUlLQgKQkQEcPqz9NyFB7BY5vvKKS5JtmBX4vPjii5g5cyb++uuvUtv+/PNPzJ49u8x1vIgcTUWTNZnUSXISGgq0b8+eHmvJzfUrM3cqN9dXpBbJg1lDXW+//TZ27dqFunXrYsyYMahXrx4A4OLFi1i7di2KioowY8YMmzSUyJ50SZ266aQ3brggPb0KIiMfIyREWwmOBcbImbCgnv3obph8fdVQKDQGwY9CoYGvb67BfmRdCqGseeEmXL16FaNGjcL+/fv1U8oVCgXi4+Oxdu1aREZG2qSh9pKfnw+VSoW8vLwyZ6+R/GzcCCQmaivfurhocx3YzU/OhAX17E8XaG7f7oGpU1UoKlJAqRSwaFEe+vf/k4GmBSp6/TY78NG5c+cO0tLSIAgCYmJinGZZCAY+VFxmJhAeXrrcf0YGu/vJeWRlZWHDhg3l7peYmMg8ThvIzKxccUnSquj12+zKzTo+Pj545plnLP11Iodw+bJh0ANoZ7WkpfEERfJz9+5dk9vZS2EZS4pLkuUsDnyIyuJseQIxMWUv8BgdLV6biMTy6aeflrsPh8NI6hj4kNU4Y54A65cQmYfrS5HUMfAhqyl5wjO2krOjnRitscAjERFJAwMfsglnq0bKMXiSE2M3LUTOgIEPWV15KzkTkXQ5200LUUlmVW4mqghWIyVyLLpCeeYsocCFNclRsceHrK68aqREJC26SuWHDwPLl5e+aWnTZhAaNryFHTt2AGCvEDk29viQ1alU99Cz5z4oFNo54LoTI4e5iKTLz88PrVr5waXEVUGpBFq29INKpQLAhTXJ8bHHh2yiRYufEBWVhtxcX/j65jLoIXIApso3qNXa4TBTQ9kq1T2uL0WSx8DHwWRmaqsJx8RIb5ZRyROeSnWvzICHJ0Yi6TJWvkE3HJaR8RhbtwrQaBT631EqBYwd2w0REVUcpkYXyZfFa3U5Kymv1eUIi2U6W+VmIipt48bSvUJSOxeR/Nh8kVJnJdXAh4tlEpGUcGFN2+DNo+Vsvkgp2RcXyyQiKWFRT+tzxmV/pIizuhyEbrHM4rhYJhGR86jocj6OtuyP1DDwcRC62RZKpfYxF8skIiIyH4e6HAgXyyQiIqocBj4OhuPqREREluNQFxERkQRxPTTbYI8PERGRxHA9NNthjw8REZGEcD0022LgQ0REJAG65XxMrYdWfD+yjMMEPhEREVAoFAY/CxcuNNjn7NmzeP7551G1alWEhYVh8eLFIrWWiIjIPLr10MaO7QoXF8NFFXTrobF4YeU5VI7PO++8g+HDh+sfe3o+6fbLz89Hly5d0LlzZ6xfvx6//PILhg4dCm9vbyQmJorRXCIiIrP4+fnBz09bt81wPTQFYmMDxW6eU3CowMfT0xNBQUFlbtu2bRsePXqETZs2wc3NDQ0bNkRqaiqWLVvGwIeIiBwK67bZjsMMdQHAwoUL4efnh+bNm2PJkiV4/PixfltKSgratm1rMPYZHx+PS5cu4c6dO0aPWVBQgPz8fIMfIiIisYWGAu3bM+ixNofp8Rk3bhxatGgBX19fHD9+HNOnT0dWVhaWLVsGAMjOzkZkZKTB7wQGBuq3+fj4lHncBQsWYO7cubZtPBEREUmCqIHPtGnTsGjRIpP7XLhwAfXr18fEiRP1zzVp0gRubm4YMWIEFixYAHd3d4vbMH36dINj5+fnIywszOLjERER0RNqtdrkwqpubm52TdgWNfCZNGkSBg8ebHKfOnXqlPl8y5Yt8fjxY2RkZKBevXoICgpCTk6OwT66x8byggDA3d29UoETERERlU2tVmPNmjXl7mfP2WqiBj4BAQEICAiw6HdTU1Ph4uKCmjVrAgDi4uIwY8YMFBYWwtXVFQBw4MAB1KtXz+gwF5E9ZWYCly8DMTEcsycieTDV02PJftbgEMnNKSkpWLFiBX7++Wf8/vvv2LZtGyZMmIABAwbog5r+/fvDzc0NCQkJOH/+PHbs2IGVK1caDGMRiWXjRiA8HOjYUfvvxo1it4iISJ4cIrnZ3d0dn3zyCebMmYOCggJERkZiwoQJBkGNSqVCcnIyRo8ejdjYWPj7+2PWrFmcyk6iy8wEEhMBjUb7WKPR1ueIj2fPDxGRvTlE4NOiRQucOHGi3P2aNGmCo0eP2qFFRBV3+fKToEenqEhbn4OBD9mC1JJJiaTEIQIfIkcWEwO4uBgGP0qltigZkbVJMZmUSEocIseHyJGFhmrLzyuV2sfa8vPs7SHbkGIyKZGUsMeHyA5Yfp7EkpfnidxcP/j6qqFS3RO7OUSiY+BDZCehoQx4yL7OnGmOvXt7QBBcoFBo0LPnPrRo8ZPYzSIZKb6MlDX2swYGPkRETigvz1Mf9ACAILhg794eiIpKY88P2Y2fnx/GjBkjqWR7Bj5ENsTZNSSW3Fw/fdCjIwguyM31ZeBDdiW1cxwDHyIb4ewaEpOvrxoKhcYg+FEoNPD1zRWxVSR3Uqhgz1ldRDbC2TUkJpXqHnr23AeFQltHQZfjw94eEotUKtizx4eIyIkUTxJt0eInREWlITfXF76+uQZBjz2TSYmkVMGegQ8RkRORYjIpkZQq2DPwISJyMgxqSGqkVMGegQ8RETktzqyUBl0F+xEjtD09YlawZ+BDREROiTMrpUUqFewZ+BARkVPizErpkUIFe05nJ7IRKZZqJyKSO/b4ENkIZ9cQSQsXbCWAgQ+RTTGoIZIGLthKOhzqIiIip2Zswda8PE+RW0ZiYOBDREROzdSCrSQ/DHyIiMip6RZsLY4LtsoXAx8iInJKuhmT5S3YypmV8qIQBEEQuxFSkp+fD5VKhby8PHh5eYndHCIiqoTilZtv3HBBRkYVREQ8RkiINgjizErnUdHrN2d1ERGR0yoe1AQHA7GxIjaGJIFDXURERCQbDHyIiIhINhj4EBERkWww8CEiIiLZYOBDREREssHAh4iIiGSDgQ8RERHJhkMFPl9++SVatmwJDw8P+Pj4oHfv3gbbr127hu7du6NatWqoWbMmJk+ejMePH4vTWCtSq9XIysoy+qNWq8VuIhERkUNwmAKGO3fuxPDhw/Hee++hY8eOePz4Mc6dO6ffXlRUhO7duyMoKAjHjx9HVlYWBg4cCFdXV7z33nsitrxy1Go11qxZU+5+Y8aMYfVRIiKicjhE4PP48WP84x//wJIlS5CQkKB/vkGDBvr/Tk5Oxq+//oqDBw8iMDAQzZo1w7x58zB16lTMmTPHYddi0ZVat9Z+REREcuYQQ11nzpzBH3/8ARcXFzRv3hzBwcHo1q2bQY9PSkoKGjdujMDAQP1z8fHxyM/Px/nz58VoNhEREUmMQwQ+v//+OwBgzpw5ePvtt7Fv3z74+Pigffv2yM3NBQBkZ2cbBD0A9I+zs7ONHrugoAD5+fkGP0REROScRA18pk2bBoVCYfLn4sWL0Gi0q+jOmDEDL7/8MmJjY5GUlASFQoHPPvusUm1YsGABVCqV/icsLMwab42IiIgkSNQcn0mTJmHw4MEm96lTpw6ysrIAGOb0uLu7o06dOrh27RoAICgoCP/73/8MfjcnJ0e/zZjp06dj4sSJ+sf5+fkMfoiIHIxarTaZ6+jm5sYJIARA5MAnICAAAQEB5e4XGxsLd3d3XLp0Cc899xwAoLCwEBkZGQgPDwcAxMXFYf78+bh58yZq1qwJADhw4AC8vLwMAqaS3N3d4e7uboV3Q0SVlZkJXL4MxMQAoaFit4YcBWe/kjkcYlaXl5cXRo4cidmzZyMsLAzh4eFYsmQJAODVV18FAHTp0gUNGjTAm2++icWLFyM7Oxtvv/02Ro8ezcCGyAFs3AgkJgIaDeDiAmzYABSbxElkFGe/SpvUeuMcIvABgCVLlqBKlSp488038eeff6Jly5Y4dOgQfHx8AABKpRL79u3DqFGjEBcXh+rVq2PQoEF45513RG555VR0Gr6jTtcnArQ9PbqgB9D+O2IEEB/Pnh8iRybF3jiHCXxcXV2xdOlSLF261Og+4eHh+Oqrr+zYKtvz8/PDmDFjJBUtE1nb5ctPgh6doiIgLY2BD5kvL88Tubl+8PVVQ6W6J3ZzZE2KvXEOE/jIGYMacnYxMdrhreLBj1IJREeL1yZyTGfONMfevT0gCC5QKDTo2XMfWrT4SexmkYQ4RB0fInJuoaHanB6lUvtYqQQ+/JC9PWSevDxPfdADAILggr17eyAvz1PklpGUsMeHiCQhIUGb05OWpu3pYdBD5srN9dMHPTqC4ILcXF8OeZEeAx8ikozQUAY8ZDlfXzUUCo1B8KNQaODrmytiq0hqONRFREQOTTerVaW6h54990Gh0CaL6XJ8dL09nP1KAHt8iIjIwZWc/Tpr1i1kZFRBRMRjhIQ8A+AZzn4lPQY+RCQqqRU3I8dU/DsSHAzExorYGNKTYi06Bj5EJBopFjcjIuuRYi06Bj5EJBopFjcjIuuS2k0Lk5uJiIhINhj4EBERkWww8CEikoDMTODwYe2/RGQ7DHyIiES2cSMQHg507Kj9d+NGsVtE5LwY+BARiSgzE0hMfLJAq0YDjBjBnh9yTlLo2WTgQ0QkErVajRMn1Aar0gNAURFw8qQaarVanIYR2YBUejYZ+BCRaKRY3MxedDWMjh/fol9iQUeh0ODYsS1Ys2YNgx9yClLq2WQdHyISjRSLm9mL7j3r1pfau7cHBMGl1PpSrGFEzuDyZZTZs5mWZv+FiRn4EJGonDGoMVeLFj8hKioNubm+8PXN1Qc9RM4iJgZwcTEMfpRKIDra/m3hUBcRkQSoVPcQGXmVQQ85pdBQYMMGbbADaP/98EP79/YA7PEhIiIiO0hIAOLjtcNb0dHiBD0AAx8iIiKyk9BQ8QIeHQ51ERERkWww8CEiIiLZYOBDRCQCOdcwIhITc3yIiEQg5xpGRGJi4ENEJBIGNUT2x6EuIiIikg0GPkRERCQbDHyIiIhINhj4EBERkWww8CEiIiLZcIjA58iRI1AoFGX+nDp1Sr/f2bNn8fzzz6Nq1aoICwvD4sWLRWw1ERERSY1DTGdv3bo1srKyDJ6bOXMmvv32Wzz99NMAgPz8fHTp0gWdO3fG+vXr8csvv2Do0KHw9vZGYmKiGM0mIiIiiXGIwMfNzQ1BQUH6x4WFhfjvf/+LsWPHQqFQAAC2bduGR48eYdOmTXBzc0PDhg2RmpqKZcuWMfAhIiIiAA4y1FXSnj17oFarMWTIEP1zKSkpaNu2rUF59/j4eFy6dAl37twxeqyCggLk5+cb/BAREZFzcogen5I2btyI+Ph4hBZb2z47OxuRkZEG+wUGBuq3+fj4lHmsBQsWYO7cuaWeZwBERETkOHTXbUEQTO4nauAzbdo0LFq0yOQ+Fy5cQP369fWPMzMzsX//fnz66adWacP06dMxceJE/eM//vgDDRo0QFhYmFWOT0RERPZz7949qFQqo9tFDXwmTZqEwYMHm9ynTp06Bo+TkpLg5+eHXr16GTwfFBSEnJwcg+d0j4vnB5Xk7u4Od3d3/eMaNWrg+vXr8PT01OcPyUF+fj7CwsJw/fp1eHl5id0ch8bP0jr4OVoPP0vr4OdoPbb4LAVBwL179xASEmJyP1EDn4CAAAQEBFR4f0EQkJSUhIEDB8LV1dVgW1xcHGbMmIHCwkL9tgMHDqBevXpGh7nK4uLiYjCEJjdeXl78g7YSfpbWwc/RevhZWgc/R+ux9mdpqqdHx6GSmw8dOoT09HQMGzas1Lb+/fvDzc0NCQkJOH/+PHbs2IGVK1caDGMRERGRvDlUcvPGjRvRunVrg5wfHZVKheTkZIwePRqxsbHw9/fHrFmzOJWdiIiI9Bwq8Nm+fbvJ7U2aNMHRo0ft1Brn4u7ujtmzZxvkO5Fl+FlaBz9H6+FnaR38HK1HzM9SIZQ374uIiIjISThUjg8RERFRZTDwISIiItlg4ENERESywcCHiIiIZIOBj8x8//336NmzJ0JCQqBQKPDFF18YbBcEAbNmzUJwcDA8PDzQuXNnXL58WZzGSlx5n+XgwYOhUCgMfrp27SpOYyVswYIFeOaZZ+Dp6YmaNWuid+/euHTpksE+f/31F0aPHg0/Pz/UqFEDL7/8cqlK7XJXkc+xffv2pb6TI0eOFKnF0rVu3To0adJEX1wvLi4OX3/9tX47v48VU97nKNb3kYGPzDx48ABNmzbF2rVry9y+ePFirFq1CuvXr8fJkydRvXp1xMfH46+//rJzS6WvvM8SALp27YqsrCz9z8cff2zHFjqG7777DqNHj8aJEydw4MABFBYWokuXLnjw4IF+nwkTJmDv3r347LPP8N133+HGjRvo06ePiK2Wnop8jgAwfPhwg+/k4sWLRWqxdIWGhmLhwoU4ffo0fvzxR3Ts2BEvvfQSzp8/D4Dfx4oq73MERPo+CiRbAITdu3frH2s0GiEoKEhYsmSJ/rm7d+8K7u7uwscffyxCCx1Hyc9SEARh0KBBwksvvSRKexzZzZs3BQDCd999JwiC9jvo6uoqfPbZZ/p9Lly4IAAQUlJSxGqm5JX8HAVBENq1ayf84x//EK9RDszHx0f417/+xe9jJek+R0EQ7/vIHh/SS09PR3Z2Njp37qx/TqVSoWXLlkhJSRGxZY7ryJEjqFmzJurVq4dRo0ZBrVaL3STJy8vLAwD4+voCAE6fPo3CwkKD72X9+vVRu3Ztfi9NKPk56mzbtg3+/v5o1KgRpk+fjocPH4rRPIdRVFSETz75BA8ePEBcXBy/jxYq+TnqiPF9dKjKzWRb2dnZAIDAwECD5wMDA/XbqOK6du2KPn36IDIyEleuXME///lPdOvWDSkpKVAqlWI3T5I0Gg3Gjx+PNm3aoFGjRgC030s3Nzd4e3sb7MvvpXFlfY6Adk3D8PBwhISE4OzZs5g6dSouXbqEXbt2idhaafrll18QFxeHv/76CzVq1MDu3bvRoEEDpKam8vtoBmOfIyDe95GBD5GNvP766/r/bty4MZo0aYKoqCgcOXIEnTp1ErFl0jV69GicO3cOP/zwg9hNcWjGPsfiaxc2btwYwcHB6NSpE65cuYKoqCh7N1PS6tWrh9TUVOTl5eHzzz/HoEGD8N1334ndLIdj7HNs0KCBaN9HDnWRXlBQEACUmp2Qk5Oj30aWq1OnDvz9/ZGWliZ2UyRpzJgx2LdvHw4fPozQ0FD980FBQXj06BHu3r1rsD+/l2Uz9jmWpWXLlgDA72QZ3NzcEB0djdjYWCxYsABNmzbFypUr+X00k7HPsSz2+j4y8CG9yMhIBAUF4dtvv9U/l5+fj5MnTxqMyZJlMjMzoVarERwcLHZTJEUQBIwZMwa7d+/GoUOHEBkZabA9NjYWrq6uBt/LS5cu4dq1a/xeFlPe51iW1NRUAOB3sgI0Gg0KCgr4fawk3edYFnt9HznUJTP37983iKbT09ORmpoKX19f1K5dG+PHj8e7776LmJgYREZGYubMmQgJCUHv3r3Fa7REmfosfX19MXfuXLz88ssICgrClStXMGXKFERHRyM+Pl7EVkvP6NGjsX37dvz3v/+Fp6enPk9CpVLBw8MDKpUKCQkJmDhxInx9feHl5YWxY8ciLi4OrVq1Ern10lHe53jlyhVs374dL774Ivz8/HD27FlMmDABbdu2RZMmTURuvbRMnz4d3bp1Q+3atXHv3j1s374dR44cwf79+/l9NIOpz1HU76Pd55GRqA4fPiwAKPUzaNAgQRC0U9pnzpwpBAYGCu7u7kKnTp2ES5cuidtoiTL1WT58+FDo0qWLEBAQILi6ugrh4eHC8OHDhezsbLGbLTllfYYAhKSkJP0+f/75p/D3v/9d8PHxEapVqyb87W9/E7KyssRrtASV9zleu3ZNaNu2reDr6yu4u7sL0dHRwuTJk4W8vDxxGy5BQ4cOFcLDwwU3NzchICBA6NSpk5CcnKzfzu9jxZj6HMX8PioEQRBsG1oRERERSQNzfIiIiEg2GPgQERGRbDDwISIiItlg4ENERESywcCHiIiIZIOBDxEREckGAx8iIiKSDQY+REREJBsMfIjIQHZ2NsaOHYs6derA3d0dYWFh6Nmzp8HaRMePH8eLL74IHx8fVK1aFY0bN8ayZctQVFSk3ycjIwMJCQmIjIyEh4cHoqKiMHv2bDx69Mjg9T766CM0bdoUNWrUgLe3N5o3b44FCxbot8+ZMwcKhQJdu3Yt1dYlS5ZAoVCgffv2FXpvumMpFApUqVIFERERmDBhAu7fv2/mp0REjoprdRGRXkZGBtq0aQNvb28sWbIEjRs3RmFhIfbv34/Ro0fj4sWL2L17N1577TUMGTIEhw8fhre3Nw4ePIgpU6YgJSUFn376KRQKBS5evAiNRoMPP/wQ0dHROHfuHIYPH44HDx5g6dKlAIBNmzZh/PjxWLVqFdq1a4eCggKcPXsW586dM2hXcHAwDh8+jMzMTIMVxzdt2oTatWub9R4bNmyIgwcP4vHjxzh27BiGDh2Khw8f4sMPPyy176NHj+Dm5mbBJ2k7UmwTkUOx+aIYROQwunXrJtSqVUu4f/9+qW137twR7t+/L/j5+Ql9+vQptX3Pnj0CAOGTTz4xevzFixcLkZGR+scvvfSSMHjwYJNtmj17ttC0aVOhR48ewrvvvqt//tixY4K/v78watQooV27dhV4d0+OVdzw4cOFoKAgg+0fffSREBERISgUCkEQtO89ISFB8Pf3Fzw9PYUOHToIqamp+mOkpqYK7du3F2rUqCF4enoKLVq0EE6dOiUIgiBkZGQIPXr0ELy9vYVq1aoJDRo0EL788ktBEAQhKSlJUKlUBu3ZvXu3UPzUbGmbiKhsHOoiIgBAbm4uvvnmG4wePRrVq1cvtd3b2xvJyclQq9V46623Sm3v2bMn6tati48//tjoa+Tl5cHX11f/OCgoCCdOnMDVq1fLbd/QoUOxefNm/eNNmzbhjTfeqHTvh4eHh8HwW1paGnbu3Ildu3YhNTUVAPDqq6/i5s2b+Prrr3H69Gm0aNECnTp1Qm5uLgDgjTfeQGhoKE6dOoXTp09j2rRpcHV1BaBdNb2goADff/89fvnlFyxatAg1atQwq42WtImIysahLiICoL24CoKA+vXrG93nt99+AwA89dRTZW6vX7++fp+yjr969Wr9MBcAzJ49G3369EFERATq1q2LuLg4vPjii3jllVfg4mJ4X9ajRw+MHDkS33//PWJjY/Hpp5/ihx9+wKZNm8x9q3qnT5/G9u3b0bFjR/1zjx49wr///W8EBAQAAH744Qf873//w82bN+Hu7g4AWLp0Kb744gt8/vnnSExMxLVr1zB58mT9ZxcTE6M/3rVr1/Dyyy+jcePGAIA6deqY3U5L2kREZWPgQ0QAAEEQbLIvAPzxxx/o2rUrXn31VQwfPlz/fHBwMFJSUnDu3Dl8//33OH78OAYNGoR//etf+OabbwyCH1dXVwwYMABJSUn4/fffUbduXTRp0sSsdgDAL7/8gho1aqCoqAiPHj1C9+7dsWbNGv328PBwfYABAD///DPu378PPz8/g+P8+eefuHLlCgBg4sSJGDZsGLZu3YrOnTvj1VdfRVRUFABg3LhxGDVqFJKTk9G5c2e8/PLLZrfbkjYRUdkY+BARAG0vhS4p2Zi6desCAC5cuIDWrVuX2n7hwgU0aNDA4LkbN26gQ4cOaN26NTZs2FDmcRs1aoRGjRrh73//O0aOHInnn38e3333HTp06GCw39ChQ9GyZUucO3cOQ4cONfctAgDq1auHPXv2oEqVKggJCSk1VFZymO/+/fsIDg7GkSNHSh3L29sbgHa2WP/+/fHll1/i66+/xuzZs/HJJ5/gb3/7G4YNG4b4+Hh8+eWXSE5OxoIFC/D+++9j7NixcHFxKRVEFhYWlnodS9pERGVjjg8RAQB8fX0RHx+PtWvX4sGDB6W23717F126dIGvry/ef//9Utv37NmDy5cvo1+/fvrn/vjjD7Rv3x6xsbFISkoqNXxVFl3gVFYbGjZsiIYNG+LcuXPo37+/OW9Pz83NDdHR0YiIiKhQflCLFi2QnZ2NKlWqIDo62uDH399fv1/dunUxYcIEJCcno0+fPkhKStJvCwsLw8iRI7Fr1y5MmjQJH330EQAgICAA9+7dM3ivuhwea7SJiEpj4ENEemvXrkVRURGeffZZ7Ny5E5cvX8aFCxewatUqxMXFoXr16vjwww/x3//+F4mJiTh79iwyMjKwceNGDB48GK+88gpee+01AE+Cntq1a2Pp0qW4desWsrOzkZ2drX+9UaNGYd68eTh27BiuXr2KEydOYODAgQgICEBcXFyZbTx06BCysrLs1rPRuXNnxMXFoXfv3khOTkZGRgaOHz+OGTNm4Mcff8Sff/6JMWPG4MiRI7h69SqOHTuGU6dO6fOgxo8fj/379yM9PR1nzpzB4cOH9dtatmyJatWq4Z///CeuXLmC7du3GyRwW9omIjKOQ11EpFenTh2cOXMG8+fPx6RJk5CVlYWAgADExsZi3bp1AIBXXnkFhw8fxvz58/H888/jr7/+QkxMDGbMmIHx48dDoVAAAA4cOIC0tDSkpaUZ1N4BnuQIde7cGZs2bcK6deugVqvh7++PuLg4fPvtt6XyV3TKmnFmSwqFAl999RVmzJiBIUOG4NatWwgKCkLbtm0RGBgIpVIJtVqNgQMHIicnB/7+/ujTpw/mzp0LACgqKsLo0aORmZkJLy8vdO3aFcuXLweg7WX7z3/+g8mTJ+Ojjz5Cp06dMGfOnHKTk8trExEZpxDMzVIkIiIiclAc6iIiIiLZYOBDRE6jRo0aRn+OHj0qdvOISAI41EVETiMtLc3otlq1asHDw8OOrSEiKWLgQ0RERLLBoS4iIiKSDQY+REREJBsMfIiIiEg2GPgQERGRbDDwISIiItlg4ENERESywcCHiIiIZIOBDxEREcnG/wGBBQm9y8tLyAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ***************************************************************************\n", + " ALAMO version 2023.2.13. Built: WIN-64 Mon Feb 13 21:30:56 EST 2023\n", + "\n", + " If you use this software, please cite:\n", + " Cozad, A., N. V. Sahinidis and D. C. Miller,\n", + " Automatic Learning of Algebraic Models for Optimization,\n", + " AIChE Journal, 60, 2211-2227, 2014.\n", + "\n", + " ALAMO is powered by the BARON software from http://www.minlp.com/\n", + " ***************************************************************************\n", + " Licensee: Javal Vyas at Carnegie Mellon University, jvyas@andrew.cmu.edu.\n", + " ***************************************************************************\n", + " Reading input data\n", + " Checking input consistency and initializing data structures\n", + " \n", + " Step 0: Initializing data set\n", + " User provided an initial data set of 400 data points\n", + " We will sample no more data points at this stage\n", + " ***************************************************************************\n", + " Iteration 1 (Approx. elapsed time 0.62E-01 s)\n", + " \n", + " Step 1: Model building using BIC\n", + " \n", + " Model building for variable CO2SM_CO2_Enthalpy\n", + " ----\n", + " BIC = 0.750E+04 with CO2SM_CO2_Enthalpy = - 0.38E+06\n", + " ----\n", + " BIC = 0.569E+04 with CO2SM_CO2_Enthalpy = 58. * CO2SM_Temperature - 0.42E+06\n", + " ----\n", + " BIC = 0.542E+04 with CO2SM_CO2_Enthalpy = 55. * CO2SM_Temperature - 0.61E+05 * CO2SM_Pressure/CO2SM_Temperature - 0.41E+06\n", + " ----\n", + " BIC = 0.516E+04 with CO2SM_CO2_Enthalpy = 49. * CO2SM_Temperature + 4.0 * CO2SM_Pressure^2 - 0.15E+06 * CO2SM_Pressure/CO2SM_Temperature - 0.41E+06\n", + " ----\n", + " BIC = 0.502E+04 with CO2SM_CO2_Enthalpy = 0.16E+03 * CO2SM_Temperature - 0.16 * CO2SM_Temperature^2 + 0.76E-04 * CO2SM_Temperature^3 - 0.56E+05 * CO2SM_Pressure/CO2SM_Temperature - 0.44E+06\n", + " ----\n", + " BIC = 0.484E+04 with CO2SM_CO2_Enthalpy = 0.14E+03 * CO2SM_Temperature + 2.5 * CO2SM_Pressure^2 - 0.14 * CO2SM_Temperature^2 + 0.66E-04 * CO2SM_Temperature^3 - 0.11E+06 * CO2SM_Pressure/CO2SM_Temperature - 0.43E+06\n", + " \n", + " Model building for variable CO2SM_CO2_Entropy\n", + " ----\n", + " BIC = 0.219E+04 with CO2SM_CO2_Entropy = - 0.48E+03 * CO2SM_Pressure/CO2SM_Temperature\n", + " ----\n", + " BIC = 0.147E+04 with CO2SM_CO2_Entropy = 1.9 * CO2SM_Pressure - 0.15E+04 * CO2SM_Pressure/CO2SM_Temperature\n", + " ----\n", + " BIC = 0.115E+04 with CO2SM_CO2_Entropy = 0.77E-01 * CO2SM_Temperature - 0.38E+03 * CO2SM_Pressure/CO2SM_Temperature - 50.\n", + " ----\n", + " BIC = 713. with CO2SM_CO2_Entropy = 0.20 * CO2SM_Temperature - 0.94E-04 * CO2SM_Temperature^2 - 0.34E+03 * CO2SM_Pressure/CO2SM_Temperature - 89.\n", + " ----\n", + " BIC = 443. with CO2SM_CO2_Entropy = 0.52 * CO2SM_Temperature - 0.60E-03 * CO2SM_Temperature^2 + 0.26E-06 * CO2SM_Temperature^3 - 0.34E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.15E+03\n", + " ----\n", + " BIC = 317. with CO2SM_CO2_Entropy = 0.54 * CO2SM_Temperature - 0.63E-03 * CO2SM_Temperature^2 + 0.27E-06 * CO2SM_Temperature^3 - 0.26E+03 * CO2SM_Pressure/CO2SM_Temperature + 0.79E-01 * CO2SM_Temperature/CO2SM_Pressure - 0.16E+03\n", + " ----\n", + " BIC = 259. with CO2SM_CO2_Entropy = 0.47 * CO2SM_Temperature + 0.15E-01 * CO2SM_Pressure^2 - 0.53E-03 * CO2SM_Temperature^2 + 0.23E-06 * CO2SM_Temperature^3 - 0.70E-03 * CO2SM_Pressure*CO2SM_Temperature - 0.46E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.13E+03\n", + " ----\n", + " BIC = 240. with CO2SM_CO2_Entropy = - 2.1 * CO2SM_Pressure + 0.55 * CO2SM_Temperature + 0.76E-01 * CO2SM_Pressure^2 - 0.63E-03 * CO2SM_Temperature^2 - 0.94E-03 * CO2SM_Pressure^3 + 0.27E-06 * CO2SM_Temperature^3 - 0.23E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.15E+03\n", + " ----\n", + " BIC = 224. with CO2SM_CO2_Entropy = - 1.9 * CO2SM_Pressure + 0.49 * CO2SM_Temperature + 0.83E-01 * CO2SM_Pressure^2 - 0.57E-03 * CO2SM_Temperature^2 - 0.10E-02 * CO2SM_Pressure^3 + 0.25E-06 * CO2SM_Temperature^3 - 0.73E-08 * (CO2SM_Pressure*CO2SM_Temperature)^2 - 0.36E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.13E+03\n", + " ----\n", + " BIC = 193. with CO2SM_CO2_Entropy = - 3.9 * CO2SM_Pressure + 0.52 * CO2SM_Temperature + 0.17 * CO2SM_Pressure^2 - 0.56E-03 * CO2SM_Temperature^2 - 0.21E-02 * CO2SM_Pressure^3 + 0.24E-06 * CO2SM_Temperature^3 - 0.10E-02 * CO2SM_Pressure*CO2SM_Temperature - 0.36E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.20 * CO2SM_Temperature/CO2SM_Pressure - 0.12E+03\n", + " \n", + " Calculating quality metrics on observed data set.\n", + " \n", + " Quality metrics for output CO2SM_CO2_Enthalpy\n", + " ---------------------------------------------\n", + " SSE OLR: 0.515E+08\n", + " SSE: 0.659E+08\n", + " RMSE: 406.\n", + " R2: 0.999\n", + " R2 adjusted: 0.999\n", + " Model size: 6\n", + " BIC: 0.484E+04\n", + " Cp: 0.659E+08\n", + " AICc: 0.482E+04\n", + " HQC: 0.483E+04\n", + " MSE: 0.168E+06\n", + " SSEp: 0.659E+08\n", + " RIC: 0.659E+08\n", + " MADp: 0.594\n", + " \n", + " Quality metrics for output CO2SM_CO2_Entropy\n", + " --------------------------------------------\n", + " SSE OLR: 541.\n", + " SSE: 558.\n", + " RMSE: 1.18\n", + " R2: 0.997\n", + " R2 adjusted: 0.997\n", + " Model size: 10\n", + " BIC: 193.\n", + " Cp: 178.\n", + " AICc: 154.\n", + " HQC: 169.\n", + " MSE: 1.43\n", + " SSEp: 558.\n", + " RIC: 606.\n", + " MADp: 0.130E+04\n", + " \n", + " Total execution time 0.52 s\n", + " Times breakdown\n", + " OLR time: 0.30 s in 3863 ordinary linear regression problem(s)\n", + " MINLP time: 0.0 s in 0 optimization problem(s)\n", + " Simulation time: 0.0 s to simulate 0 point(s)\n", + " All other time: 0.22 s in 1 iteration(s)\n", + " \n", + " Normal termination\n", + " ***************************************************************************\n" + ] + } + ], + "source": [ + "# Create ALAMO trainer object\n", + "has_alamo = alamo.available()\n", + "if has_alamo:\n", + " trainer = AlamoTrainer(\n", + " input_labels=input_labels,\n", + " output_labels=output_labels,\n", + " training_dataframe=data_training,\n", + " )\n", + "\n", + " # Set ALAMO options\n", + " trainer.config.constant = True\n", + " trainer.config.linfcns = True\n", + " trainer.config.multi2power = [1, 2]\n", + " trainer.config.monomialpower = [2, 3]\n", + " trainer.config.ratiopower = [1]\n", + " trainer.config.maxterms = [10] * len(output_labels) # max terms for each surrogate\n", + " trainer.config.filename = os.path.join(os.getcwd(), \"alamo_run.alm\")\n", + " trainer.config.overwrite_files = True\n", + "\n", + " # Train surrogate (calls ALAMO through IDAES ALAMOPy wrapper)\n", + " success, alm_surr, msg = trainer.train_surrogate()\n", + "\n", + " # save model to JSON\n", + " model = alm_surr.save_to_file(\"alamo_surrogate.json\", overwrite=True)\n", + "\n", + " # create callable surrogate object\n", + " surrogate_expressions = trainer._results[\"Model\"]\n", + " input_labels = trainer._input_labels\n", + " output_labels = trainer._output_labels\n", + " xmin, xmax = [7, 306], [40, 1000]\n", + " input_bounds = {\n", + " input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))\n", + " }\n", + "\n", + " alm_surr = AlamoSurrogate(\n", + " surrogate_expressions, input_labels, output_labels, input_bounds\n", + " )\n", + "else:\n", + " print(\"Alamo not found.\")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHHCAYAAAC4BYz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0gUlEQVR4nO3dd3iTVfsH8G86aaFN96KlLWXJpkWhKFOkIENelCGgBYpFBAFBlmwRWcpwgSjrRVBQqj/AwRYRCiLTKiBgCxRaRkpThnTl/P7Im9C0zWqTZn0/19ULkufJk5PHam7Puc99S4QQAkREREQOxsnSAyAiIiKyBAZBRERE5JAYBBEREZFDYhBEREREDolBEBERETkkBkFERETkkBgEERERkUNiEEREREQOiUEQEREROSQGQUREVmjdunWQSCTIyMiw9FCI7BaDICIHdezYMYwePRqNGjVC9erVUatWLfTr1w9///13mXM7dOgAiUQCiUQCJycneHt7o379+njppZewe/duo953+/btaN++PYKCguDp6YnatWujX79++Omnn0z10cp499138d1335V5/vDhw5g9ezZyc3PN9t6lzZ49W30vJRIJPD090bBhQ0yfPh15eXkmeY9NmzZh2bJlJrkWkT1jEETkoBYuXIitW7fi6aefxvLly5GcnIxffvkFsbGxSEtLK3N+eHg4NmzYgP/+979YvHgxevXqhcOHD6NLly7o378/CgsL9b7ne++9h169ekEikWDq1KlYunQpnn/+eVy4cAFfffWVOT4mAN1B0Jw5c6o0CFJZsWIFNmzYgCVLlqBBgwaYN28eunbtClO0c2QQRGQYF0sPgIgsY/z48di0aRPc3NzUz/Xv3x9NmjTBggUL8MUXX2icL5VKMXjwYI3nFixYgDFjxuCTTz5BVFQUFi5cqPX9ioqKMHfuXDzzzDPYtWtXmeM3b96s5CeyHg8ePICnp6fOc1544QUEBAQAAF599VU8//zzSElJwZEjRxAfH18VwyRyeJwJInJQbdq00QiAAKBu3bpo1KgRzp49a9A1nJ2d8cEHH6Bhw4b46KOPIJfLtZ57+/Zt5OXl4cknnyz3eFBQkMbjhw8fYvbs2ahXrx6qVauG0NBQ9OnTB5cuXVKf895776FNmzbw9/eHh4cH4uLi8M0332hcRyKR4P79+1i/fr16CWrIkCGYPXs2Jk6cCACIjo5WHyuZg/PFF18gLi4OHh4e8PPzw4ABA3D16lWN63fo0AGNGzfG8ePH0a5dO3h6euKtt94y6P6V1KlTJwBAenq6zvM++eQTNGrUCO7u7ggLC8OoUaM0ZrI6dOiA77//HpcvX1Z/pqioKKPHQ+QIOBNERGpCCNy4cQONGjUy+DXOzs548cUXMWPGDPz666/o3r17uecFBQXBw8MD27dvx+uvvw4/Pz+t1ywuLkaPHj2wd+9eDBgwAGPHjsXdu3exe/dupKWlISYmBgCwfPly9OrVC4MGDUJBQQG++uor9O3bFzt27FCPY8OGDRg+fDieeOIJJCcnAwBiYmJQvXp1/P333/jyyy+xdOlS9axMYGAgAGDevHmYMWMG+vXrh+HDh+PWrVv48MMP0a5dO5w8eRI+Pj7q8cpkMnTr1g0DBgzA4MGDERwcbPD9U1EFd/7+/lrPmT17NubMmYPOnTtj5MiROH/+PFasWIFjx47h0KFDcHV1xbRp0yCXy5GZmYmlS5cCAGrUqGH0eIgcgiAi+p8NGzYIAGL16tUaz7dv3140atRI6+u+/fZbAUAsX75c5/VnzpwpAIjq1auLbt26iXnz5onjx4+XOW/NmjUCgFiyZEmZYwqFQv33Bw8eaBwrKCgQjRs3Fp06ddJ4vnr16iIxMbHMtRYvXiwAiPT0dI3nMzIyhLOzs5g3b57G83/88YdwcXHReL59+/YCgFi5cqXWz13SrFmzBABx/vx5cevWLZGeni4+/fRT4e7uLoKDg8X9+/eFEEKsXbtWY2w3b94Ubm5uokuXLqK4uFh9vY8++kgAEGvWrFE/1717dxEZGWnQeIgcGZfDiAgAcO7cOYwaNQrx8fFITEw06rWqmYa7d+/qPG/OnDnYtGkTWrRogZ07d2LatGmIi4tDbGysxhLc1q1bERAQgNdff73MNSQSifrvHh4e6r/fuXMHcrkcbdu2xYkTJ4waf2kpKSlQKBTo168fbt++rf4JCQlB3bp1sX//fo3z3d3dMXToUKPeo379+ggMDER0dDRGjBiBOnXq4Pvvv9eaS7Rnzx4UFBRg3LhxcHJ69J/uV155Bd7e3vj++++N/6BEDo7LYUSE7OxsdO/eHVKpFN988w2cnZ2Nev29e/cAAF5eXnrPffHFF/Hiiy8iLy8PR48exbp167Bp0yb07NkTaWlpqFatGi5duoT69evDxUX3f6J27NiBd955B6dOnUJ+fr76+ZKBUkVcuHABQgjUrVu33OOurq4aj2vWrFkmv0qfrVu3wtvbG66urggPD1cv8Wlz+fJlAMrgqSQ3NzfUrl1bfZyIDMcgiMjByeVydOvWDbm5uTh48CDCwsKMvoZqS32dOnUMfo23tzeeeeYZPPPMM3B1dcX69etx9OhRtG/f3qDXHzx4EL169UK7du3wySefIDQ0FK6urli7di02bdpk9GcoSaFQQCKR4Mcffyw3ICydY1NyRspQ7dq1U+chEZFlMAgicmAPHz5Ez5498ffff2PPnj1o2LCh0dcoLi7Gpk2b4OnpiaeeeqpC42jZsiXWr1+PrKwsAMrE5aNHj6KwsLDMrIvK1q1bUa1aNezcuRPu7u7q59euXVvmXG0zQ9qej4mJgRAC0dHRqFevnrEfxywiIyMBAOfPn0ft2rXVzxcUFCA9PR2dO3dWP1fZmTAiR8GcICIHVVxcjP79+yM1NRVff/11hWrTFBcXY8yYMTh79izGjBkDb29vrec+ePAAqamp5R778ccfATxa6nn++edx+/ZtfPTRR2XOFf8rJujs7AyJRILi4mL1sYyMjHKLIlavXr3cgojVq1cHgDLH+vTpA2dnZ8yZM6dM8UIhBGQyWfkf0ow6d+4MNzc3fPDBBxpjWr16NeRyucauvOrVq+ssV0BESpwJInJQEyZMwLZt29CzZ0/k5OSUKY5YujCiXC5Xn/PgwQNcvHgRKSkpuHTpEgYMGIC5c+fqfL8HDx6gTZs2aN26Nbp27YqIiAjk5ubiu+++w8GDB9G7d2+0aNECAPDyyy/jv//9L8aPH4/ffvsNbdu2xf3797Fnzx689tpreO6559C9e3csWbIEXbt2xcCBA3Hz5k18/PHHqFOnDs6cOaPx3nFxcdizZw+WLFmCsLAwREdHo1WrVoiLiwMATJs2DQMGDICrqyt69uyJmJgYvPPOO5g6dSoyMjLQu3dveHl5IT09Hd9++y2Sk5Px5ptvVur+GyswMBBTp07FnDlz0LVrV/Tq1Qvnz5/HJ598gscff1zjn1dcXBw2b96M8ePH4/HHH0eNGjXQs2fPKh0vkU2w5NY0IrIc1dZubT+6zq1Ro4aoW7euGDx4sNi1a5dB71dYWCg+++wz0bt3bxEZGSnc3d2Fp6enaNGihVi8eLHIz8/XOP/Bgwdi2rRpIjo6Wri6uoqQkBDxwgsviEuXLqnPWb16tahbt65wd3cXDRo0EGvXrlVvQS/p3Llzol27dsLDw0MA0NguP3fuXFGzZk3h5ORUZrv81q1bxVNPPSWqV68uqlevLho0aCBGjRolzp8/r3FvdJUPKE01vlu3buk8r/QWeZWPPvpINGjQQLi6uorg4GAxcuRIcefOHY1z7t27JwYOHCh8fHwEAG6XJ9JCIoQJGtUQERER2RjmBBEREZFDYhBEREREDolBEBERETkkBkFERETkkBgEERERkUNiEEREREQOicUSS1EoFLh+/Tq8vLxYep6IiMhGCCFw9+5dhIWFwcnJsDkeBkGlXL9+HREREZYeBhEREVXA1atXER4ebtC5DIJK8fLyAqC8ibr6IBEREZH1yMvLQ0REhPp73BAMgkpRLYF5e3szCCIiIrIxxqSyMDGaiIiIHBKDICIiInJIDIKIiIjIITEnqAKKi4tRWFho6WHYLVdXVzg7O1t6GEREZOcYBBlBCIHs7Gzk5uZaeih2z8fHByEhIazVREREZsMgyAiqACgoKAienp78gjYDIQQePHiAmzdvAgBCQ0MtPCIiIrJXDIIMVFxcrA6A/P39LT0cu+bh4QEAuHnzJoKCgrg0RkREZsHEaAOpcoA8PT0tPBLHoLrPzL0iIiJzYRBkJC6BVQ3eZyIiMjcuhxEREVWQTCZDQUGB1uNubm5MobBiDIKIiIgqQCaT4aOPPtJ73ujRoxkIWSkuhzmAIUOGQCKRQCKRwNXVFcHBwXjmmWewZs0aKBQKg6+zbt06+Pj4mG+gREQ2RNcMUEXO00cmkyErK0vrj0wmM8n7OBLOBFUhS06bdu3aFWvXrkVxcTFu3LiBn376CWPHjsU333yDbdu2wcWFvwpERNaKs07mwW++KmLpX2B3d3eEhIQAAGrWrInY2Fi0bt0aTz/9NNatW4fhw4djyZIlWLt2Lf755x/4+fmhZ8+eWLRoEWrUqIGff/4ZQ4cOBfAoaXnWrFmYPXs2NmzYgOXLl+P8+fOoXr06OnXqhGXLliEoKMjkn4OIyBFV9ayTo+ByWBWxxl/gTp06oVmzZkhJSQEAODk54YMPPsCff/6J9evXY9++fZg0aRIAoE2bNli2bBm8vb3VU69vvvkmAOU29rlz5+L06dP47rvvkJGRgSFDhlTZ5yAicjRyuRfS06Mgl3uZ9Loll9yOH7+Bb76R4fjxG3a75MaZIAfXoEEDnDlzBgAwbtw49fNRUVF455138Oqrr+KTTz6Bm5sbpFIpJBKJekZJZdiwYeq/165dGx988AEef/xx3Lt3DzVq1KiSz0FE5ChOnGiB7dt7QAgnSCQK9Oy5A7GxJyt93ZIrFrrew56W3DgT5OCEEOrlrT179uDpp59GzZo14eXlhZdeegkymQwPHjzQeY3jx4+jZ8+eqFWrFry8vNC+fXsAwJUrV8w+fiIiRyKXe6mDEwAQwgnbt/cwyYyQaiVC33vY05IbgyAHd/bsWURHRyMjIwM9evRA06ZNsXXrVhw/fhwff/wxAN2/8Pfv30dCQgK8vb2xceNGHDt2DN9++63e1xERkfFycvzVwYmKEE7IyfEDANy+fbvSS1b63sOecDnMge3btw9//PEH3njjDRw/fhwKhQLvv/8+nJyUv/xbtmzRON/NzQ3FxcUaz507dw4ymQwLFixAREQEAOD333+vmg9ARGRBbm5uJj3PEH5+MkgkCo0gRSJRwM8vBwDUOZ6VWbLS9x72hEGQg8jPz0d2drbGFvn58+ejR48eePnll5GWlobCwkJ8+OGH6NmzJw4dOoSVK1dqXCMqKgr37t3D3r170axZM3h6eqJWrVpwc3PDhx9+iFdffRVpaWmYO3euhT4lEZF5lS510r9/f40ehy4uLhr11Exd+kQqvYuePXeUWK5SID4+tcx5lZmJL/0eqpwgqfRuJUZunRgEOYiffvoJoaGhcHFxga+vL5o1a4YPPvgAiYmJcHJyQrNmzbBkyRIsXLgQU6dORbt27TB//ny8/PLL6mu0adMGr776Kvr37w+ZTKbeIr9u3Tq89dZb+OCDDxAbG4v33nsPvXr1suCnJSIyPX2lTuRyL+Tk+GPChF5o0sTXpO9dcjYpNvYkYmIu4ujRVkhNjcfhw08iNTXeZAnSJd8jJ8cPfn45GgHQ7du31WOy9QRpiRBCWHoQ1iQvLw9SqRRyuRze3t7q5x8+fIj09HRER0ejWrVqRl/X0nWCbE1l7zcRkallZWVh1apV5R4ruZvKyUlg1SoJkpJM+/4ymQzXr19HSkoK5HIvLFs2rsyS1bhxyyCV3kVycjJCQ0ONur6uz6cK8Pz8lPlGqr+/8ko3+Pj4WEVApO37WxfOBFURf39/jB49mo32iIjsTOndVAqFBCNGAAkJQHi46d7H399f/R2iK3lZ37KVtu4Fqhme0koGeIACgASABBKJApcu2fbWeQZBVcjWfjmIiEi/8gKS4mLg4kXTBkElVTR52dBVCZXSAV7JTeWqrfMxMRchld41KA8pMxO4cAGoW9d898YY3CJPRERUAaqqza6u+ZBINJtROzsDdeqY771Vycuq9zU0ebl0oKKt8nTHjh0BlB/glWTM1vnVq4HISKBTJ+Wfq1cb9DKz4kwQERGRkUpXVG7a9AzOnGkKIZzg7Czw6acSs8906EpeNoSuqtC+vsrE7vJmnEoydOt8ZiaQnAwo/hcrKhQwy5KhsTgTREREZITyKiqfOdMUSUmfIzFxHY4evWnypGiV0jWHpNK7iI6+XCYA0lebyNDK06VnnACF0bNPMpkMR47I1AGQSnExcPSozKL9yDgTREREZARtScmFhW6Ijr6MsDCFlldWnq5NNnK5HIWFhXBxcUFBQQGysrI0jpcMjIxJrC4946R8vWGzT6ocJLncCxJJ2d1shw6tR1raXYslVTMIIiIiMoAqiNCXlGzKCtHlKS9YkMlk2Lx5s97X9u/fH4DxidVS6V2NgMfQpTdVsKavAKOl2iwxCCIiIjJAyVmYmjXzMHmyFMXFEjg7CyxcmIeBA1+0WKkTQ4MIVXVrfUGJi4vpw4PK5jCZA4MgIiIiA6kCnAkTgP79ldvg69SRIDzcB4CPJYemoWRxQ23Bhq6gxMfHRx3wyeVyg2aZDJkBKz2jZGk2FQT98ssvWLx4MY4fP46srCx8++236N27t/q4EAKzZs3CZ599htzcXDz55JNYsWIF6tata7lBO4Cff/4ZHTt2xJ07dzR65ugSFRWFcePGYdy4cWYdGxGRuYSHW0etm9J07foqPcOjLSgpOaMVGhpqt8V+bSoIun//Ppo1a4Zhw4ahT58+ZY4vWrQIH3zwAdavX4/o6GjMmDEDCQkJ+Ouvvxy69cKQIUOwfv16jBgxokxT1FGjRuGTTz5BYmIi1q1bZ5kBEhGRSWjb9aUqaFhyhkeb8gIaWwxwDGFTQVC3bt3QrVu3co8JIbBs2TJMnz4dzz33HADgv//9L4KDg/Hdd99hwIABVTlUqxMREYGvvvoKS5cuhYeHBwBlf65NmzahVq1aFh4dERGZgiG7vuw1oKkIu6kTlJ6ejuzsbHTu3Fn9nFQqRatWrZCamqr1dfn5+cjLy9P4sUexsbGIiIhASkqK+rmUlBTUqlULLVq0UD+Xn5+PMWPGICgoCNWqVcNTTz2FY8eOaVzrhx9+QL169eDh4YGOHTsiIyOjzPv9+uuvaNu2LTw8PBAREYExY8bg/v37Zvt8RET0aNdXSYYWNHREdhMEZWdnAwCCg4M1ng8ODlYfK8/8+fMhlUrVPxEREWYdp0pmJrB/v/LPqjJs2DCsXbtW/XjNmjUYOnSoxjmTJk3C1q1bsX79epw4cQJ16tRBQkICcnKU/wJdvXoVffr0Qc+ePXHq1CkMHz4cU6ZM0bjGpUuX0LVrVzz//PM4c+YMNm/ejF9//RWjR482/4ckInJgFW2nYS6Glgswd1kBbWxqOcwcpk6divHjx6sf5+XlmT0QWr36UflwJydg1SqYrbpoSYMHD8bUqVNx+fJlAMChQ4fw1Vdf4eeffwagzLlasWIF1q1bp152/Oyzz7B7926sXr0aEydOxIoVKxATE4P3338fAFC/fn388ccfWLhwofp95s+fj0GDBqmTnuvWrYsPPvgA7du3x4oVKxw6P4uIyBxKBhG6dn0ZEmyU7DJ//boT0tNdEB1dpC4CaUwStK7ijiXHZKklOrsJgkJCQgAAN27cQGhoqPr5GzduoHnz5lpf5+7uDnd3d3MPT82S/VMCAwPRvXt3rFu3DkIIdO/eHQEBAerjly5dQmFhIZ588kn1c66urnjiiSdw9uxZAMDZs2fRqlUrjevGx8drPD59+jTOnDmDjRs3qp8TQkChUCA9PR2PPfaYOT4eEZHDMlWwUbLLvK5dZsZUeLbmHCS7CYKio6MREhKCvXv3qoOevLw8HD16FCNHjrTs4Eq4cAHl9k+5eLFqtloOGzZMvSz18ccfm+U97t27hxEjRmDMmDFljjEJm4jIPEwRbKiCKH27zCxV4dnUbCoIunfvHi5evKh+nJ6ejlOnTsHPzw+1atXCuHHj8M4776Bu3brqLfJhYWEatYQsrW5d5RJYyUDI2RmoU6dq3r9r164oKCiARCJBQkKCxrGYmBi4ubnh0KFDiIyMBKCsLnrs2DH10tZjjz2Gbdu2abzuyJEjGo9jY2Px119/oU5VfSgiIjIpY3qL2TKbCoJ+//13dOzYUf1YlcujqnEzadIk3L9/H8nJycjNzcVTTz2Fn376yapyUMLDlTlAI0YoZ4CcnYFPP626glvOzs7qpS1nZ2eNY9WrV8fIkSMxceJEdWC5aNEiPHjwAEn/S1p69dVX8f7772PixIkYPnw4jh8/Xqa+0OTJk9G6dWuMHj0aw4cPR/Xq1fHXX39h9+7d6mlWIiJbUDI/pjxVnc9i6vGUzv85depfyOVeRvcWs1U2FQR16NABQgitxyUSCd5++228/fbbVTgq4yUlKXOAlOXWq77iqLe3t9ZjCxYsgEKhwEsvvYS7d++iZcuW2LlzJ3x9fQEol7O2bt2KN954Ax9++CGeeOIJvPvuuxg2bJj6Gk2bNsWBAwcwbdo0tG3bFkIIxMTEqBv3ERHZgpL5MbpUVQd0U4+n/PyfYEgk49Cz5w6dvcXshUToiiocUF5eHqRSKeRyuUaw8PDhQ6SnpyM6OtqqZpbsFe83EVlaVlYWVq1apfe85ORkjQ051jqe0rNIt2/fRkpKCuRyLyxbNq7MrM+4ccsAoNxdZlX1mY2h7ftbF5uaCSIiIrIl5lxOM6RJqsqlS5fwxRdflHtMV/5PdPRlu5v9KYlBEBERkRmYczlN1/b18sZRMgCSy71w9aqyHl5ExFWHyf8pD4MgIiIiMzB0G7mx2831bV/Xdf0TJ1pg27aeACT/e0aBXr2Mz/+xVIVnU2MQREREZABjlp/MqaLb11XB06MACACcsG1bD7zxxjKMG7es3PyfPn36aBTWtWSFZ1NjEGQk5pFXDd5nIrImxiw/mVtFl6/KC56UdOf/BAQEWF0StKnYTQNVc3N1dQUAPHjwwMIjcQyq+6y670RElqJt+Uku9zL6OunpUUa/rrSKNkktr8O8kmPk/5SHM0EGcnZ2ho+PD27evAkA8PT0hEQi0fMqMpYQAg8ePMDNmzfh4+NTpqAjEVFVUeW96Ft+MiQ/xhQzSZVtkqoKnkoGdKqcIEfI/ykPgyAjqJq0qgIhMh8fHx/1/SYisgRVU9KMjCJs2CCgUDz6H19nZ4HXX++GqCgXvfkxxiYy6xtPZbbcq4Knq1eVVXojIjIdJv+nPAyCjCCRSBAaGoqgoCAUFhZaejh2y9XVlTNARGQV/P394e9fXrsjCeLigg26hin7cJkiIJFK70IqPVvusbCwMLsOekpjEFQBzs7O/JImInIgFWl3pFpG0pfIbO7lJkOvP3jwYIcKgAC2zSijImW3iYiIyqOqGL1pkwcmT5aiuFgCZ2eBhQvlGDjwX5MsNxlSlRrQXY/IHpa9KvL9zSCoFAZBRESPWFsXdVuWmWn6xtnW1uTVktg7jIiITIZfsKYVHm664EfFXFWpHQXrBBERUblKf3Fqq3PDL1iyVZwJIiIivaypYjKRqXAmiIiIdDJVxWQia8OZICIi0smUdW7sEZPHbReDICIi0klfnZvbt28DcMwve2tLHreWTve2gkEQERHpVLrnVOmGnSkpKepzHW2nmDXtzmLelvEYBBERkV66GnaWxJ1iVUtVCFFffzJ7boJaGQyCiIioXKW/OJU9p5TBjyWXXaw5B6eq74uqqer+/cDSpWXztp58MhEdOpim55g9YhBERETlKtm1/Pbt2+plL0suu1hbDk5Jlrov/v7+aN0acHICFIpHzzs7A61aKRvAUvm4RZ6IiLTy9/dHaGgoAgICAFh+u7w15eCUZOn7Eh6u7HSv6u2t7HRv+grV9oYzQURERsjMBC5cAOrWdcwvGHvcLm+K5TVruC8V6XTv6BgEEREZaPVqIDlZueTg5KT8P++kJEuPqmrp2y5fGYZ2QzclUy2vmfO+GMMc/cnsGYMgIiI9ZDIZMjKKkJwcBIVCAkAZCI0YIdC8+U1ERbk4TOKpvu3yFWVoMNK/f3+Nx5VNRK7s8poqMNN3X7g7yzoxCCIi0kH15ZyeHgWFIlHjWHGxBB9++COioy/bfX2ckl/iurbLV/TL3tBgpLCwUP13a6iLUzJ5HABmzryFjAwXREUVISzscQCPO2QRSVvBIIiISAfVl5u+5Q57r49T+su+PFX5Za+vLk5lrmvszFLJzxwaCsTFVfjtqYoxCCIiMoC5loFsiTXNZhibiKwt30jV8gOwjpklqlp2GQR9/PHHWLx4MbKzs9GsWTN8+OGHeOKJJyw9LCKycYZWTabK0zYj4+Ki/NrSNzNXclnOkHwjc80skXWzuyBo8+bNGD9+PFauXIlWrVph2bJlSEhIwPnz5xEUFGTp4RGRjStZNZnMQ9eMjI+Pj3pZrmbNPEyeLEVxsQTOzgILF+Zh4MAXyyzLGbJUaQ1b3Knq2V0QtGTJErzyyisYOnQoAGDlypX4/vvvsWbNGkyZMsXCoyMi0uSIdYfKW5pSLUsZMiOjCnAmTAD691fVxZEgPNwHgE+FxmQtW9ypatlVEFRQUIDjx49j6tSp6uecnJzQuXNnpKamWnBkRESPqIKATZs8MGmSFAqFBE5OAosWyTFw4L92vZtI39KUsTMyqro4MpkMWVnlz/iUzPsByl9q4xZ3x2RXQdDt27dRXFyM4OBgjeeDg4Nx7ty5cl+Tn5+P/Px89eO8vDyzjpGIHJsqCJDLvbBs2TgIoao7JMHEid64dm0NpNK7Nr/l3pBE5PIYk+tT8r0MqTEE6F5qe+edaG5xdzB2FQRVxPz58zFnzhxLD4OIKsGcS0qGzgAYep4qMNA342HLW+6NCUpKU83I7NjREwqF7lwfFUPvlb6ltoCAAISGBnOLuwOxqyAoICAAzs7OuHHjhsbzN27cQEhISLmvmTp1KsaPH69+nJeXh4iICLOOk4hMx9ytLMxVH8eec1CMCeDKW5qKjT2JmTNb4e7d4Ern+pTE5Gcqza6CIDc3N8TFxWHv3r3o3bs3AEChUGDv3r0YPXp0ua9xd3eHu7t7FY6SiEwlM/NRAASoWlkom0iackbIHEshrDuke2kqLEyB0NCKXVfb9np7DjypYuwqCAKA8ePHIzExES1btsQTTzyBZcuW4f79++rdYkRkPy5ceBQAqRQXK3cL2cJOK0epO1ReUGKuujy6AismP1NpdhcE9e/fH7du3cLMmTORnZ2N5s2b46effiqTLE1Etk0mk8HbuwhOTo+amgKAs7OAl9dNyGS20dTU3usOaQtKzLE0pS+w6tOnD5KTA5j8TGp2FwQBwOjRo7UufxGR7SuZeNujh+aXbPfuO7Bjh/L//G19h5Wt0xWUmGNpSl9gpUx8DmV/L1KzyyCIiOxbycRbXUtKtrzDyh7oCkqioy+bfGmKOT9kLAZBRGTzbGlJydRb7q2ZvqDEVHV5VPeKOT9kLAZBRERVyFxb7lW0FSkEgNzcXEgkEkilUpO/b+nrAPqDkrCwMPj7+1d6aar0PWXODxmKQRARURUz15dxZYoUqpgij8oSQUnJazHnhwzFIIiIyE6YIgfKVHlUDErIFjAIIiKyU9qKBuo6Vl5vLy4lkb1iEEREZId0FQ3UdSwlJaXc67HcANkjBkFEZHMcaYdVReiqzwNAZ0FBbTNEqmUyXYnXAGeNyLYwCCIim2PuHVZVyRxBha76PIBE67FLl+ponSFSjdWQxGvOGpGtYBBERFYjM1PZD6xuXf29v+zhS9ZcQYW++jzlHXN1LdDby6t0sKZv1ojI2jnpP4WIyPxWrwYiI4FOnZR/rl5t6RGZX3lBRXp6FORyL53n6aOqzyORKLvLlqzPo+1YYaG7jtmjsk6caIFly8Zh/fpELFs2DidOtDBqjETWgDNBRGRxmZlAcvKjjvAKBTBiBJCQYBvd4E1BV7KyoUrmQOlqJ1LeMbncy+CWE+bqAE9U1RgEEZHFXbjwKABSKS4GLl40PAgyZinN2pgqqNCXK1Vexejbt28jJSVFb3XnkszRAZ7IEhgEEZHF1a0LODlpBkLOzkCdOoa9fvXqRzNJTk7AqlVAUpJ5xmoOpggqDEmwfuyxx3ReQ9fsUUlsVEr2gkEQEVmUTCaDs3MBFi3ywOTJUhQXS+DsLLBwoRzOzv9CJtO+O0omkyEjowjJyUFQKCQAVEtpAs2b30RUlItNJFBXNqgonWCtLWG5vATr0mUEtDWjdXNzUwdZxswaEVkzBkFEZDGlv7zHjPFSz0Lcu3cXq1Ypny/vy1v12vT0KCgUiRrHiosl+PDDHxEdfdkmtmtXNqgoOQOkK7eovJkiY8oNZGVlqZ8zdNaIyJoxCCIiiyn9xattFqK8L2jVc/pmUWxlu7YpgoqK5hYZGiQaM2tEZAsYBBGRTTPl0kxVV0M2dVBh7oRleypSSQQwCCIiO2CKWZTK5NVUlKmDiqpIWGaAQ/aEQRAR2QVtsyiGqkxeTWWYIqiQy+UAlPegc+c92L27MwAmLBPpwyCIiKgEU9XsqaqlNZlMhs2bNwNQBm979jwKgDp33mN0wUUiR8IgiIjMwlaLF5qqZk9VLa2pAq3ygrc9ezqjceM0zgQRacEgiIhMzpaLF5oir8YSS2uGBG/ctUWkiQ1UiciktPUBy8wse66hX8rlnVeZ1+qiq/mosbQtrZVukFoZubm5AB4FbyWVDN769evHpGaiUjgTREQmZUwfsMrsjir52tzcXBQVFQEAsrNdcOWKO2rVykdEhAQFBQWQyWRGBQCmKgRo7i3rMpkMW7ZsAaC/VICPj0+l34/I3jAIIiKTkclk8PYugpPTozYWAODsLODldRMyWdk2FpWZnfD399cIBHQtPRmbf1PZ3WaA+beslw4eY2Iu4vnntwIQiIjIZC4QkR4MgojIJEomA/fooRmMdO++Azt2VCwY0UdXYnDJXV368m/MsbxWlT22dAWARFS+CgVB9+/fR/Xq1U09FiKyYSWDDF3LSeZqY1HZpSdzVUOuih5bptrWT+RoKhQEBQcHo1+/fhg2bBieeuopU4+JiOyAKZaTjGGKpSdzJQ6Xdy/kci8cOuSG1q0rX0KAO8OIKqZCu8O++OIL5OTkoFOnTqhXrx4WLFiA69evm3psREQGM+WursrSF3CcONECy5aNQ9++/oiMVJYUqAx9O8P69+/PnWFE5ajQTFDv3r3Ru3dv3Lp1Cxs2bMC6deswY8YMJCQkYNiwYejVqxdcXJhuRERVqyqWngyhbWlNLpfj6lWBt99uACGUiePKEgICzZvfRFRU2cRxQ+jLPZJKpZX/UER2qFJ1ggIDAzF+/HicOXMGS5YswZ49e/DCCy8gLCwMM2fOxIMHD0w1TsybNw9t2rSBp6en1q2eV65cQffu3eHp6YmgoCBMnDhRvW2WiByDVHoX0dGXLZ4L4+/vj9DQUPWPm5sbNm/ejI0bf9PYOQcAxcUSfPjhj/joo48gk8kq9H6xsScxbtwyJCauw7hxy5gUTWSASk3X3LhxA+vXr8e6detw+fJlvPDCC0hKSkJmZiYWLlyII0eOYNeuXSYZaEFBAfr27Yv4+HisLmfuuLi4GN27d0dISAgOHz6MrKwsvPzyy3B1dcW7775rkjEQke26ffs2ANP17DKWalZIX+6SMYnjpZfdtOVhMR+IqHwVCoJSUlKwdu1a7Ny5Ew0bNsRrr72GwYMHa8zQtGnTBo899pipxok5c+YAANatW1fu8V27duGvv/7Cnj17EBwcjObNm2Pu3LmYPHkyZs+ezf8IENkpXf9ul+zZlZKSon7e1Nv0jWHKbfPm2tFG5CgqFAQNHToUAwYMwKFDh/D444+Xe05YWBimTZtWqcEZIzU1FU2aNEFwcLD6uYSEBIwcORJ//vknWrRoUe7r8vPzkZ+fr36cl5dn9rES2SNztbHQp2QgcPv2bXWwU1U9uyrClLlLDHCIKq5CQVBWVhY8PT11nuPh4YFZs2ZVaFAVkZ2drREAAVA/zs7O1vq6+fPnq2eZiKjiLDkrUfqatlA3p6pLCBBRWRUKgjw9PVFcXIxvv/0WZ8+eBQA89thj6N27t1G7wqZMmYKFCxfqPOfs2bNo0KBBRYZpkKlTp2L8+PHqx3l5eYiIiDDb+xHZM2uZlTB3zy4isg8VCoL+/PNP9OzZEzdu3ED9+vUBAAsXLkRgYCC2b9+Oxo0bG3SdCRMmYMiQITrPqV27tkHXCgkJwW+//abx3I0bN9THtHF3d4e7u7tB70FEtsHcPbuIyD5UKAgaPnw4GjdujOPHj8PX1xcAcOfOHQwZMgTJyck4fPiwQdcJDAxEYGBgRYZQRnx8PObNm4ebN28iKCgIALB79254e3ujYcOGJnkPInuUmans/F63buUrF1uLquzZVZpMJlMvCV6/7oT0dBdERxfBze222d+biIxToSDo1KlT+P3339UBEAD4+vpi3rx5WhOlK+vKlSvIycnBlStXUFxcjFOnTgEA6tSpgxo1aqBLly5o2LAhXnrpJSxatAjZ2dmYPn06Ro0axZkeIi1WrwaSk5UF+5ycgFWrgKQkS49KqWQwUR59+UWWKJxYsols2cTso4iN1X8N7mQlqjoVCoLq1auHGzduoFGjRhrP37x5E3Xq1DHJwEqbOXMm1q9fr36s2u21f/9+dOjQAc7OztixYwdGjhyJ+Ph4VK9eHYmJiXj77bfNMh4iW5eZ+SgAAlSVi4GEBMvPCJUMJgDNre4lgxl9W92rOvnY0I72ffr0QUBAQJnXczs7UdWqUBA0f/58jBkzBrNnz0br1q0BAEeOHMHbb7+NhQsXamwz9/b2NslA161bp7VGkEpkZCR++OEHk7wfkT2TyWQ4cgRQKDS/cIuLgaNHZfDwsGySc8kZIGO2ultqm35p+hKzAwICEBoaatYxEJF+FQqCevToAQDo168fJBJl+XchBACgZ8+e6scSiQTFxcWmGCcRmYhqlkUu94JEMq5M8vChQ+uRlnbXogUFVYzd6m4txQOZmE1kGyoUBO3fv9/U4yCiKqIKEPQlD1u6oCCgf0bl+nUnnDunmdRt6cANsGxiNhEZrkJBUPv27U09DiKyAGvpuq6NrhmVEyda4O23g/6X1C2waJEcAwf+azV5NdZ+b4moEg1Uc3NzsXr1anWxxEaNGmHYsGGQSqUmGxwRmZ81Vy7WNqMC4H/PKZfjFQoJJk70xrVrayCVWsdSHmDd95aIKhgE/f7770hISICHhweeeOIJAMCSJUswb9487Nq1C7GG7AMlIjJAeTMq6elROpfJrGEpj4isX4WCoDfeeAO9evXCZ599pm6TUVRUhOHDh2PcuHH45ZdfTDpIInJspWdUrDXx2Fp2pxGRYSo8E1QyAAIAFxcXTJo0CS1btjTZ4IjIMekLEqw18dhadqcRkWEqFAR5e3vjypUrZRqbXr16FV5eXiYZGBE5Lm3BxO3bt5GSkgLAehOPGeAQ2Y4KBUH9+/dHUlIS3nvvPbRp0wYAcOjQIUycOBEvvviiSQdIRKZlK0s2hgQTTDwmosqoUBD03nvvQSKR4OWXX0ZRUREAwNXVFSNHjsSCBQtMOkAiMi0u2RARKRkdBBUXF+PIkSOYPXs25s+fj0uXLgEAYmJi4OnpafIBElkTe+m4zgCHiAhw0n+KJmdnZ3Tp0gW5ubnw9PREkyZN0KRJEwZAZPdWrwYiI4FOnZR/rl5d/nmZmcD+/co/ybRsZSmPiGxDhZbDGjdujH/++QfR0dGmHg+R1ZHJZMjIKEJychAUClVxPmDECIHmzW8iKspFPbOyevWjzuxOTsCqVUBSkiVHbz4ymazKl9S4lEdEpiQRqs6nRvjpp58wdepUzJ07F3FxcahevbrGcVN1jreEvLw8SKVSyOVym/4cZBqqZqPp6VFYvz6xzPHExHWIjr6M0aNH499//REZqQyAVJydgYwM2146K4/qvqjI5V7IyfGHn59MI1HZWio3E5H9q8j3d4Vmgp599lkAQK9evdRd5AF2jif7o5px0Fec7+bNm/jzT0Ch0PzCLy4Gjh6VwcPDvvJwbt26pf77iRMtytTriY09CUB7E1Z7ya0iItvGLvJEBtBXnG/Lli2Qy70gkYwrEygdOrQeaWnW08+qsmQyGTZv3gxAOQO0bVsPqNILhXDC9u09EBNzUevWdUdaMiQi61ahICg6OhoREREas0CAcibo6tWrJhkYkbXRV5xPX6BkL/2sSn6Oo0dbofT+ipI9vErLzHwUAAGq3CogIYEzQkRU9SocBGVlZSEoKEjj+ZycHERHR3M5jOyWvuJ81lrF2Bzkci+kpsaXc6T8Hl4ymQxHjjjOkiERWb8KBUGq3J/S7t27h2rVqlV6UES2zNJVjKtq11ZOjn+ZTu4A0KZNapnPr0qkdpQlQyKyDUYFQePHjwcASCQSzJgxQ6M2UHFxMY4ePYrmzZubdIBEZLjSu7a0qWiwIZPJcPv2bQCAq2s+AAVKLodJJAq0anW0zOtUQZmjLBkSkW0wKgg6eVK540MIgT/++EOjIJmbmxuaNWuGN99807QjJCKDlQ4itG1dr0iwUTLAUu0IUwZAAoDE4E7ujrRkSETWzaggSLUrbOjQoVi+fDnr6JDds+XKw7q2rleEKnCSy73U11VSBkBJSZ8jPDxL4zXa7p+llwyJiIAK5gStXbvW1OMgskqGVCiWy+XqLePWonSgYsjWdUOVlwskhBMKCzUDnn79+jG/h4isWoWCoPv372PBggXYu3cvbt68CUXJErkA/vnnH5MMjsga6Psit8Z+VtoCFW1b142hr3Ckimr3aGYmcOSIG+RyL87+EJFVqVAQNHz4cBw4cAAvvfQSQkNDy90pRuQorLGflaGBSkXoS27u06cPwsLC4O/vX6Iwoj8kknGVXpIjIjKlCgVBP/74I77//ns8+eSTph4PkU2ytmUffYFKZelKbg4ICIC/v3+ZwoimXJIjIjKFCgVBvr6+8PPzM/VYiMiEzL0LS19y84ULms1kAf1LcraciE5EtqdCQdDcuXMxc+ZMrF+/XqNWEBFZVukgQlugYkiwUZkmpzKZDN7eRXByCoJC8Wi53MlJYNCgVggPbwUfH58yY7K2GTUism8VCoLef/99XLp0CcHBwYiKioKrq6vG8RMnTphkcERknMrmJ6mqTW/a5IFJk6RQKCRwchJYtEiO7t3lBo3hwYMHWLVqFQCgRw/Nbfo9euzA4cPKnCBWhyYiS6tQENS7d28TD4OITKWigUXJ1hbLlo2DEMoZHIVCgokTvXHt2hpIpcqt76VncVTc3Nw0ArDY2JMICsrGlSu1UKvWFY06QqwOTUSWVqEgaNasWaYeh04ZGRmYO3cu9u3bh+zsbISFhWHw4MGYNm2axrT+mTNnMGrUKBw7dgyBgYF4/fXXMWnSpCodK5GtUgUl+rbX+/j4IDQ0VOt1srIeBTqmLthIRGRKZbsf6vDbb7/p7BCfn5+PLVu2VHpQpZ07dw4KhQKffvop/vzzTyxduhQrV67EW2+9pT4nLy8PXbp0QWRkJI4fP47Fixdj9uzZ6ml5IjKMant9SRXZXq+tYKNc7mWysRIRVYZRQVB8fDxkMpn6sbe3t0ZhxNzcXLz44oumG93/dO3aFWvXrkWXLl1Qu3Zt9OrVC2+++SZSUlLU52zcuBEFBQVYs2YNGjVqhAEDBmDMmDFYsmSJycdDZM9U2+tVgZCx2+vlcmXukK4ZpZLnERFZilHLYUIInY+1PWcOcrlcY5t+amoq2rVrp7E8lpCQgIULF+LOnTvw9fUt9zr5+fnIz89XP87LyzPfoInMRJXQrI2xO68qs72+sLAQgP6CjarziIgspUI5QbpURfXoixcv4sMPP8R7772nfi47OxvR0dEa5wUHB6uPaQuC5s+fjzlz5phvsERmVrK7O6C9c7yxu7Eq2+TU3AUbiYgqy+RBkDGmTJmChQsX6jzn7NmzaNCggfrxtWvX0LVrV/Tt2xevvPJKpccwdepUjB8/Xv04Ly8PERERlb4uUVUpOQOkKxHZEruxzF2wkYioMowOgv766y9kZ2cDUC59nTt3Dvfu3QMA3L5926hrTZgwAUOGDNF5Tu3atdV/v379Ojp27Ig2bdqUSXgOCQnBjRs3NJ5TPQ4JCdF6fXd3d7i7uxs1biJrZM7O8cZwcdH8z4q2GaXS5xERVTWj/yv09NNPa+T99OjRA4ByGUwIYdRyWGBgIAIDAw0699q1a+jYsSPi4uKwdu1aODlpJlzGx8dj2rRpKCwsVBdv3L17N+rXr691KYzInlS2c7yhLSv0naethlBFzyMiMhejgqD09HRzjUOna9euoUOHDoiMjMR7772HW7duqY+pZnkGDhyIOXPmICkpCZMnT0ZaWhqWL1+OpUuXWmTMZBqmTvi1Z5XtHF/ZatNERLbGqCAoMjLSqIu/9tprePvttxEQEGDU60rbvXs3Ll68iIsXLyK8VBMj1ayUVCrFrl27MGrUKMTFxSEgIAAzZ85EcnJypd6bLKd0wq82bL+gZIpEZN5HInIkZl2U/+KLL/Dmm29WOggaMmSI3twhAGjatCkOHjxYqfci62FoIq89t18wZCasJGtIRDbVshoRkbmZNQiqqppB5Bi0bf22V4bOhPXr10/jcWW3tlcWl9WIyFZwewbZBHvsQaVvlsfQisqGbkaoypkXBjhEZAsYBJHVs5at36Zk6CxPSdpmwqRSKWdeiIgqgEEQWb3Kbv22RsbmMembCWOAQ0RkPKMaqBJZgqm6mtsqdmMnIjIPswZBgwcPhre3tznfguyQTCZDVlaWugJ5Zbua2zp93diJiKhiKrQcplAoylRsVj2fmZmJWrVqAQBWrFhRudGRw9GWK6Nr67c9bLXWtfOtskUQiYiofEYFQXl5eRg+fDi2b98Ob29vjBgxArNmzYKzszMA4NatW4iOjkZxcbFZBkv2T1euTMmt33369EFAQIBVJvwaW9tHX74Pu7ETEZmHUUHQjBkzcPr0aWzYsAG5ubl45513cOLECaSkpKj/w87aQFQVAgICEBoaaulhlGHorq/+/fsDMHznm7aZMLncC0ePeqJlS6BUMXUiItLDqCDou+++w/r169GhQwcAQO/evdG9e3f07NkT27ZtA2B4zRIie2Torq/CwkIA+ne+9evXT2uj0U2bPPD221IsXSqBkxOwahWQlFSp4RMRORSjgqBbt25p9A8LCAjAnj17kJCQgGeffRaff/65yQdItseUTU/ttUq0i4vyXz19+T5BQUFl7pVMJkNGRhEmTZJCoVD+T4dCAYwYIdC8+U1ERbnA398fmZnAhQtA3bqcJSIiKo9RQVCtWrVw9uxZREdHq5/z8vLCrl270KVLF/znP/8x+QDJtpiy6ak9VolW8fHxURc4rFkzD5MnS1FcLIGzs8DChXkYOPDFcoNF1f1NT4+CQpGocay4WIIPP/wR0dGX4eycjFmzQqBQSODkJLBokRwDB/5rlTlURESWYtQW+S5dumDt2rVlnq9RowZ27tyJatWqmWxgZJtM1fTUXmrjyOVeSE+PKnfc/v7+CA0NxYQJPsjIkGD/fiAjQ4IJE3wQGhpabrCium+6aifJ5V6YOTO4xCyRBBMnemPx4i/x0UcfQSaTmeGTEhHZHqNmgubMmYPr16+Xe8zLywu7d+/GiRMnTDIwcmz2UCXamJms8HDjlqx07RhLT4/See+MrVZNRGSvjAqCfH194evrq/W4l5cX2rdvX+lBkeNS7TLUlytj7bWBqqLfmbYdY6wrRERkGKOLJRYVFWHp0qX48ssv8ffffwMA6tWrh4EDB2Ls2LFwdXU1+SDJcfj7+1coV8baVNVMVsnaSSWfY10hIiL9jAqC/v33XzzzzDNITU1F586d0a5dOwDA2bNnMXnyZGzbtg27du1ibhBViirAmTAB6N8fuHgRqFNHgvBwHwA+lhyaXtYyk6WrwjYRESkZFQQtWLAAV69excmTJ9G0aVONY6dPn0avXr2wYMECzJ4925RjJBtW2S3uxubKWFrJmSw/v2zMmhWq3qE1c+Z19OnzDFxdXVFQUACZTGbWGa3yZomIiOgRo4Kgr776CkuWLCkTAAFAs2bN8N5772HatGkMggiAfW9x18Xf3x8ymQzFxR9h7Fgv9WwMcBcpKZrnGlIqAIC65o+3t1l7HhMRORSj/ot6+fJlPPHEE1qPt27dGleuXKn0oMh2qZZ59G1xt/bE5spS7cCSSu8iOvoyAJS7VV7XTi2ZTIasrCy8/34uIiMFOnUCnngiCCdOtDDfwImIHIhRM0He3t64efMmIiIiyj2enZ0NLy/bquNCpqVaDtq/H1i6tGxi8JNPJqJDB1h9YrMpVWRGTFUUUS73wrJl4yDEo5o/JXeZlWyrkZubiy1btugdj70HoEREhjIqCOrYsSPeffddbN26tdzjCxYsQMeOHU0yMLJd/v7+aN0acHJStnNQcXYGWrXyhwPFPxXeKq+aIdK3y8zHx0fdSDY0NFSdj6SNLeysIyKqKkYFQbNmzUKrVq3QunVrjB8/Hg0aNIAQAmfPnsXSpUvx119/4ciRI+YaK9mQ8HBlQ88RI4DiYmUA9OmntpXkbAqV3SpvbM0fBjhERIYzKghq2LAhdu/ejaSkJAwYMEDdMV4IgQYNGmDXrl1o1KiRWQZKticpCUhIUG1xd7wACKh84ULW/CEiMh+jiyW2bt0af/75J06dOqVRLLF58+amHhvZAVvb4l4RMpmszBLU7du3AWgPYgBlovT1607432qWVqz5Q0RkHkYHQXl5eahRowaaN2+uEfgoFArcu3cP3t7ephwfkVVTJTDrUjqIuXSpzv+SnZ2wYYPAokW5eju8s+YPEZHpGbVF/ttvv0XLli3x8OHDMsf+/fdfPP7449i+fbvJBkdk7QxtRlpyq3zJRGl2eCcishyjgqAVK1Zg0qRJ8PT0LHOsevXqmDx5st7/KyayZ3K5V7n1gFS7JnUlSgOGB1VERFR5Ri2HpaWl4ZNPPtF6vF27dpg+fXqlB0Vki3TVA/L19QVgeKK0obV8WPOHiKjijAqC7ty5g6KiIq3HCwsLcefOnUoPisjWGFoPyNDdXiV7kGnDmj9ERJVjVBAUFRWF33//HQ0aNCj3+O+//47IyEiTDKy0Xr164dSpU7h58yZ8fX3RuXNnLFy4EGFhYepzzpw5g1GjRuHYsWMIDAzE66+/jkmTJpllPEQlGVMPyNDdXgxwiIjMy6icoD59+mDatGm4ceNGmWPZ2dmYPn06nn/+eZMNrqSOHTtiy5YtOH/+PLZu3YpLly7hhRdeUB/Py8tDly5dEBkZiePHj2Px4sWYPXs2Vq1aZZbxEJWkWuYqSVc9IFWiNHd8ERFZjlEzQVOmTMH//d//oW7duhg8eDDq168PADh37hw2btyIiIgITJkyxSwDfeONN9R/j4yMxJQpU9C7d28UFhbC1dUVGzduREFBAdasWQM3Nzc0atQIp06dwpIlS5CcnGyWMZH1K6+GT0mmWlJiUUMiIttjVBDk5eWFQ4cOYerUqdi8ebM6/8fHxweDBw/GvHnzqqSBak5ODjZu3Ig2bdrA1dUVAJCamop27dppJIomJCRg4cKFuHPnjjoxlRyHITV8AGD06NEVDoRK/r7pWuZycTG6JBcREZmZ0f9llkql+OSTT/Dxxx/j9u3bEEIgMDBQ3UKjpEOHDqFly5Zwd3c3yWBVW/AfPHiA1q1bY8eOHepj2dnZiI6O1jg/ODhYfUxbEJSfn4/8/Hz147y8PJOMlSzP0O3mldmWbmgCs6G424uIqOpU+H9PJRIJAgMDdZ7TrVs3nDp1CrVr1y73+JQpU7Bw4UKd1zh79qw6EXvixIlISkrC5cuXMWfOHLz88svYsWNHuQGYoebPn485c+ZU+PVEhs4icbcXEZF1MescvRBC5/EJEyZgyJAhOs8pGUAFBAQgICAA9erVw2OPPYaIiAgcOXIE8fHxCAkJKZOwrXocEhKi9fpTp07F+PHj1Y/z8vIQERGhc0zkGEydT8QAh4jIulg0USEwMFDvbJI2CoVyJ45qKSs+Ph7Tpk1TJ0oDwO7du1G/fn2d+UDu7u4mW64j+1EV+URERGRZRm2Rt5SjR4/io48+wqlTp3D58mXs27cPL774ImJiYhAfHw8AGDhwINzc3JCUlIQ///wTmzdvxvLlyzVmeYgMVXoGSFs7DLa5ICKyXTaxZcXT0xMpKSmYNWsW7t+/j9DQUHTt2hXTp09Xz+JIpVLs2rULo0aNQlxcHAICAjBz5kxuj6dK09UOg4iIbJdZg6DKJCyX1KRJE+zbt0/veU2bNsXBgwdN8p5EgOHtMIiIyPZYNDGabE9VFR+sqJLjy83N1Tgml3shJ8cffn4yjQBG17Z0Y9phEBGRbTFrEHT3Lr8k7Im1JwvrGl/JJS0nJ4FFi+QYOPBfvUGboV3fiYjI9hgVBHXq1Mmg8wxZuiLbUxXFBytD2/uWXtJSKCSYPNkH/fv7QF+spq8dxu3bty0++0VERBVjVBD0888/IzIyEt27d1dvQyeyduUtaRUXAxcvAuHh+l+vqx1GSkoKAG6VJyKyRUYFQQsXLsTatWvx9ddfY9CgQRg2bBgaN25srrERmUR5S1rOzkCdOtpfUzpPSCq9C6n0rnqrfOm8Im6VJyKyPUbVCZo4cSL++usvfPfdd7h79y6efPJJPPHEE1i5ciV7bpHVUi1pSSTKApvOzgKffqp7FkjVE6xPnz7q506caIFly8Zh/fpELFs2DidOtDD30ImIyIwqVCwxPj4en332GbKysjBq1CisWbMGYWFhDITIasXGnsS4ccuQmLgOR4/eRFKS/tf4+/sjICAAgPat8qWLJxIRke2o1O6wEydO4MCBAzh79iwaN27MPCGyaqolrbAwhdGv5VZ5IiL7Y/RM0PXr1/Huu++iXr16eOGFF+Dn54ejR4/iyJEj8PDwMMcYiSpEW6uLilDlFZXErfJERLbNqJmgZ599Fvv370eXLl2wePFidO/eHS4uNtF5g0xAV1HBipxnaiXfV1eri4qMT99WeSIisj0SYURZZycnJ4SGhiIoKEhnS4wTJ06YZHCWkJeXB6lUCrlcDm9vb0sPx+rYQsXojIwiPPFEEBSKR7+jzs4CR4/eRFSUi1Hjy8rKwqpVq9SPlVWny26VT05ORmhoqGk+BBERGa0i399GTePMmjWrQgMj+2HttXD8/f1x5gygKJX2U1wswd27wXqLI5ambau8vvOIiMj6GTUT5Ag4E2S4zEzgwgWgbl3Dig5WlT/+uIPmzX3KnQkKC1MYPVtl7bNfRERUBTNB2hw4cAD3799HfHw8fH19TXFJsnKrVwPJycoZFycnYNUqGLTt3NxkMhlSUj5Cjx6aOUHdu+/Ajh0n1ecZU+GZAQ4RkX0yumL0vXv3MHfuXADKLvHdunXDrl27AABBQUHYu3cvGjVqZPqRktXIzHwUAAHKP0eMABISLD8jpJqx0dXqouR5RETkuIzaIr9582aNNhnffPMNfvnlFxw8eBC3b99Gy5YtMWfOHJMPkqzLhQvl5dwoe3FZE6n0LqKjL3MHFxERlcuoICg9PR1NmzZVP/7hhx/wwgsv4Mknn4Sfnx+mT5+O1NRUkw+SrEvdusolsJL09eKyFFPWCiIiIvti1HJYUVER3N3d1Y9TU1Mxbtw49eOwsDDcvn3bZIMj6xQerswBGjFCOQPk7Ay9vbgsQVetICIiIqNmgmJiYvDLL78AAK5cuYK///4b7dq1Ux/PzMxkEqmDSEoCMjKA/fuVf1pDUnRJ7PVFRET6GDUTNGrUKIwePRoHDx7EkSNHEB8fj4YNG6qP79u3Dy1asLO2owgPt77ZHxX2+iIiIn2MCoJeeeUVODs7Y/v27WjXrl2Z4onXr1/HsGHDTDpAIhVD6vWoqHp9lQyE2OuLiIhKMrpO0LBhw7QGOp988kmlB0RUHplMho8++kjveb169QKgv9cXKzwTERErRpfCitHWqXQPL12effZZ1KhRAz4+Prh+3QkZGS6IiipCWJhyXz8rPBMR2Z+KfH8blRhdWFiISZMmoU6dOnjiiSewZs0ajeM3btyAs7OzMZckMrkffvgBW7ZsgZubG+LigvH88/6IiwtGaGgoQkNDGQAREREAI4OgefPm4b///S9effVVdOnSBePHj8eIESM0zuHEElkLVoUmIiJdjMoJ2rhxIz7//HP06NEDADBkyBB069YNQ4cOVc8KSSQSXZcgIiIisgpGzQRdu3ZNo21GnTp18PPPP+Pw4cN46aWXUFxcbPIBEpVHLvdCWlpDpKU1RGZmKKtCExGR0YyaCQoJCcGlS5cQFRWlfq5mzZrYv38/OnbsiCFDhph4eOQIjNn6DigrQW/b1gOPYngBQMKq0EREZBSjgqBOnTph06ZNePrppzWeDwsLw759+9ChQwdTjo0cgKFb3/v37w9AOQOkGQABgHIJVlUVOibmIgsiEhGRXkYFQTNmzMC5c+fKPVazZk0cOHAAu3fvNsnAyDEYmrysSrjPyfGHrlVcVoUmIiJDGZUTFBkZiYSEBK3Hw8LCkJiYWOlBEZXm4+ODwYMHw89PBkCh9TxWhSYiIkMZFQSpfP311+jTpw8aN26Mxo0bo0+fPvjmm29MPbZy5efno3nz5pBIJDh16pTGsTNnzqBt27aoVq0aIiIisGjRoioZE1WNmJgYTJuWiLlzs6EZCClniVgVmoiIjGHUcphCocCLL76Ir7/+GvXq1UODBg0AAH/++Sf69++Pvn374ssvvzTrNvlJkyYhLCwMp0+f1ng+Ly8PXbp0QefOnbFy5Ur88ccfGDZsGHx8fJCcnGy28VDFyWQy3L5926jX+Pv7Y/p04Lnn7iA1VblMFhFRjH//dfpfVejHATzOqtBERKSXUUHQ8uXLsWfPHmzbtk1dK0hl27ZtGDp0KJYvX45x48aZcoxqP/74I3bt2oWtW7fixx9/1Di2ceNGFBQUYM2aNXBzc0OjRo1w6tQpLFmyhEGQFTI0IVqbJk180aSJCQdEREQOx6jlsLVr12Lx4sVlAiBA2bhy0aJFZVppmMqNGzfwyiuvYMOGDfD09CxzPDU1Fe3atdNYAklISMD58+dx584drdfNz89HXl6exg+Zn7aEaLncizV/iIioShgVBF24cAGdO3fWerxz5864cOFCpQdVmhACQ4YMwauvvoqWLVuWe052djaCg4M1nlM9zs7O1nrt+fPnQyqVqn8iIiJMN3AyyokTLbBs2TisX5+IZcvG4cSJFpYeEhER2TGjgiAPDw/k5uZqPZ6Xl4dq1aoZfL0pU6ZAIpHo/Dl37hw+/PBD3L17F1OnTjVmuAaZOnUq5HK5+ufq1asmfw/STy73wvbtPSCE8ldSVfNHNSPEJGciIjI1o3KC4uPjsWLFCqxYsaLc4x9//DHi4+MNvt6ECRP0VpmuXbs29u3bh9TUVLi7u2sca9myJQYNGoT169cjJCQEN27c0DiuehwSEqL1+u7u7mWua+8MqdBc1UnFOTn+6gBIRQgnNG7cG889J2WSMxERmZxRQdC0adPQoUMHyGQyvPnmm2jQoAGEEDh79izef/99/N///R/2799v8PUCAwMRGBio97wPPvgA77zzjvrx9evXkZCQgM2bN6NVq1YAlAHatGnTUFhYCFdXVwDA7t27Ub9+ffj6+hrzMe2aoQnJo0ePrtLAw89PBolEoREISSQKRETko6CgAFlZWdzxRUREJmVUENSmTRts3rwZycnJ2Lp1q8YxX19ffPnll3jyySdNOkAAqFWrlsbjGjVqAFDWjQkPDwcADBw4EHPmzEFSUhImT56MtLQ0LF++HEuXLjX5eGyZoRWaDT3PlOLjU5GaGg8hnNQ1fw4fPonDhx+dU9XBGRER2S+jgiAA+M9//oOEhATs3LlTnQRdr149dOnSpdxdW1VFKpVi165dGDVqFOLi4hAQEICZM2dye7wNOHGiRYl8IAXatDmEVq2Oltv6whLBGRER2SejgqB9+/Zh9OjROHLkCP7zn/9oHJPL5WjUqBFWrlyJtm3bmnSQpUVFRal7SZXUtGlTHDx40KzvTaahSnQunRANOCE1NR6tWh213OCIiMghGLU7bNmyZXjllVfg7e1d5phUKsWIESOwZMkSkw2O7Je/vz9Gjx6NNm0Sy02Izsnxs9DIiIjIURgVBJ0+fRpdu3bVerxLly44fvx4pQdFjsHf3x+tW/vDqdRvoUSigKtrAYsmEhGRWRm1HHbjxg31zqtyL+biglu3blV6UOQ4wsOBVauAESMEioslkEgUaNr0DFavHq6RIB0be9LSQyUiIjtj1ExQzZo1kZaWpvX4mTNnEBoaWulBkWNJSgKOHr2JxMR1SEr6HGfONNVaNJGIiMhUjAqCnn32WcyYMQMPHz4sc+zff//FrFmzyu0rRtbD0MrLVV2hOSxMgejoyygsdGeOEBERVQmjlsOmT5+OlJQU1KtXD6NHj0b9+vUBAOfOncPHH3+M4uJiTJs2zSwDJdNQJSSrtppfv+6E9HQXREcXISxMAaBiFaMrW4VaFXRpK5ro55ejcR4REVFlSUR5e811uHz5MkaOHImdO3eqt6lLJBIkJCTg448/RnR0tFkGWlXy8vIglUohl8vL3QVnT1avBpKTAYUCcHJS5uYkJRl/HVNVoVYFUps2eWDyZCmKiyVwdhZYuFCOgQP/ZcVoIiLSqiLf30YHQSp37tzBxYsXIYRA3bp17aY1haMEQZmZQGSkMgBScXYGMjKUycrGyMrKwqpVq/Sel5ycbHDOWGYmcPEiUKeO8eMhIiLHU5Hvb6MrRqv4+vri8ccfr+jLycIuXNAMgACguFgZeFhD0BEebh3jICIi+1XhIIiqlqk7v9etq1wCKz0TVKeO8WPLzc01+DzuHiQiImvBIMgGmKPz+6P6PMoZIGdn4NNPKzb7UlRUZNLziIiIqgKDIBtQegZILvdCTo4//PxkGk1GjW0umpQEJCQw94aIiBwTgyAbU7LjuimqKZsj90ZbkEZERGRNGATZkNId11XVlGNiLlpNsGHqII2IiMhcjKoYTZaVk+NvldWUVf3ktAVpqpYXuvrOERERVTUGQTZEVU25pJLVlC1FKpUC0B+kqc4jIiKyBgyCbIhUehc9e+5QB0Kq5SZrWQpzdc0HULr2poCrq3EJ20RERFWBOUE2Jjb2JGJiLiInxw9+fjlWEQCp+nkVFroDkJQ6KkFhoZvGeURERNaAQVAVycxUVmmuW9f43Vilgwep9G65wY+lggxVU9aMjCJs2CCgUDwKhJydBV5/vRuiolzY94uIiKxKhXuH2Stz9A4zRaNSU1eMNpfVq8sWYKxIU1YiIiJjVGkDVXtl6iDIlI1KrVF5wdn1607IyHBBVFQRZ4CIiKhKVGkDVTKMtTcqrQx97TzS0pR/GtPOg4iIqKpwd5iZqRqVllTRRqXWxtA2Hca28yAiIqoKDILMTNWo1NlZ+bgyjUqJiIjIdLgcVgXYqJSIiMj6MAiqIuZoVEpEREQVx+UwMhm53Avp6VHqXmFERETWjDNBZBLsHk9ERLaGM0FUafq6xxMREVkjBkFUYao2Hfq6x7NnGBERWSObCYKioqIgkUg0fhYsWKBxzpkzZ9C2bVtUq1YNERERWLRokYVG6xhUPcNef70rnJw0C4+reoaxUCIREVkrm8oJevvtt/HKK6+oH3t5PVpuycvLQ5cuXdC5c2esXLkSf/zxB4YNGwYfHx8kJydbYrgOwd/fH/7+ylpImj3DJIiLC7b08IiIiLSyqSDIy8sLISEh5R7buHEjCgoKsGbNGri5uaFRo0Y4deoUlixZwiCoCrAWEhER2RqbWQ4DgAULFsDf3x8tWrTA4sWLUVRUpD6WmpqKdu3aaeSfJCQk4Pz587hz547Wa+bn5yMvL0/jhyomPBzo0IEBEBER2QabmQkaM2YMYmNj4efnh8OHD2Pq1KnIysrCkiVLAADZ2dmIjo7WeE1wcLD6mK+vb7nXnT9/PubMmWPewRMREZHVsWgQNGXKFCxcuFDnOWfPnkWDBg0wfvx49XNNmzaFm5sbRowYgfnz58Pd3b3CY5g6darGtfPy8hAREVHh69kjmUymswmqm5sbk5+JiMjmWDQImjBhAoYMGaLznNq1a5f7fKtWrVBUVISMjAzUr18fISEhuHHjhsY5qsfa8ogAwN3dvVJBlL2TyWT46KOP9J7HXWBERGRrLBoEBQYGIjAwsEKvPXXqFJycnBAUFAQAiI+Px7Rp01BYWAhXV1cAwO7du1G/fn2tS2G2KjMTuHABqFvX/Pk3umaAKnIeERGRtbCJxOjU1FQsW7YMp0+fxj///IONGzfijTfewODBg9UBzsCBA+Hm5oakpCT8+eef2Lx5M5YvX66x1GUPVq8GIiOBTp2Uf65ebekRERER2SabSIx2d3fHV199hdmzZyM/Px/R0dF44403NAIcqVSKXbt2YdSoUYiLi0NAQABmzpxpV9vjMzOB5GRAoVA+ViiUtXkSErgji4iIyFg2EQTFxsbiyJEjes9r2rQpDh48WAUjsowLFx4FQCrFxcraPIYEQUxwJiIiesQmgiBSqlsXcHLSDIScnZXFCfVhgjMREZEmm8gJIqXwcGV7Cmdn5WNlewrDZoGY4ExERKSJM0E2xlTtKeRyL+Tk+MPPTwap9K5pB0lERGQDGATZoPDwyiVCnzjRAtu394AQTpBIFOjZcwdiY0+We27JNiS6GHoeERGRtWAQ5GDkci91AAQAQjhh+/YeiIm5WO6MkL+/P0aPHs2EaiIisjsMgmyEqXZ25eT4qwMgFSGckJPjp3VZjAEOERHZIwZBNsCUO7v8/GSQSBQagZBEooCfX45BY6nKatVERETmxN1hNsCUO7uk0rvo2XMHJBLlPntVTpAhydGsVk1ERPaEM0EOomTicmzsScTEXEROjh/8/HI0AiBtCc6sVk1ERPaGQZCDqGyCc2WrVRMREVkbBkEOpDIJzpWpVk1ERGSNGATZOVPtKlNVqx4xQjkDZEy1aiIiImvEIMiOmbpfmKmqVRMREVkDBkF2zBz9wipbrZqIiMhacIu8DWDrCiIiItPjTJANMFXrCjZNJSIieoRBkI2obOsKY5qmEhEROQIuhzkAbU1T5XIvC4+MiIjIchgEOQBdTVOJiIgcFYMgB6BqmlqSMU1TiYiI7BGDIDum2i2mr2kqd5UREZEjkgghhKUHYU3y8vIglUohl8vh7e1t6eFUWsmK0devOyEjwwVRUUUIC1MGRIZWjCYiIrJmFfn+5u4wO1cywAkNBeLiLDgYIiIiK8LlMCIiInJIDIKIiIjIITEIIiIiIofEIIiIiIgcEoMgIiIickgMgoiIiMghMQgiIiIih2RTQdD333+PVq1awcPDA76+vujdu7fG8StXrqB79+7w9PREUFAQJk6ciKKiIssMFspChVlZWVp/ZDKZxcZGRETk6GymWOLWrVvxyiuv4N1330WnTp1QVFSEtLQ09fHi4mJ0794dISEhOHz4MLKysvDyyy/D1dUV7777bpWPVyaT4aOPPtJ73ujRo1mxmYiIyAJsIggqKirC2LFjsXjxYiQlJamfb9iwofrvu3btwl9//YU9e/YgODgYzZs3x9y5czF58mTMnj27yvtjqVpVmOo8IiIiMi2bWA47ceIErl27BicnJ7Ro0QKhoaHo1q2bxkxQamoqmjRpguDgYPVzCQkJyMvLw59//mmJYRMREZEVs4kg6J9//gEAzJ49G9OnT8eOHTvg6+uLDh06ICcnBwCQnZ2tEQABUD/Ozs7Weu38/Hzk5eVp/BAREZH9s2gQNGXKFEgkEp0/586dg0Kh7Hg+bdo0PP/884iLi8PatWshkUjw9ddfV2oM8+fPh1QqVf9ERESY4qMRERGRlbNoTtCECRMwZMgQnefUrl0bWVlZADRzgNzd3VG7dm1cuXIFABASEoLffvtN47U3btxQH9Nm6tSpGD9+vPpxXl6e1QVCMplMZ+6Qm5sbk6uJiIiMZNEgKDAwEIGBgXrPi4uLg7u7O86fP4+nnnoKAFBYWIiMjAxERkYCAOLj4zFv3jzcvHkTQUFBAIDdu3fD29tbI3gqzd3dHe7u7ib4NMaTy71w6JAbWrcGwsPLP4e7zIiIiMzDJnKCvL298eqrr2LWrFnYtWsXzp8/j5EjRwIA+vbtCwDo0qULGjZsiJdeegmnT5/Gzp07MX36dIwaNcpiQY4uJ060wLJl49C3rz8iI4HVq8s/z9DdY9evX2ftISIiIiPYxBZ5AFi8eDFcXFzw0ksv4d9//0WrVq2wb98++Pr6AgCcnZ2xY8cOjBw5EvHx8ahevToSExPx9ttvW2S8urbky+Ve2L69B4RQxqAKBTBiBJCQoH1GSJ+UlBT13zkrREREpJ9ECCEsPQhrkpeXB6lUCrlcDm9v70pdS1suz6FDbujbt2yQsn8/0KGD5nNZWVlYtWqV+rFc7oWcHH/4+ckgld4t932Tk5MRGhpaqbETERHZkop8f9vMTJAt0jYb07o14OSknAFScXYG6tTRfb0TJ1qoZ5AkEgV69tyB2NiTJhwxERGR47CJnCB7Ex4OrFqlDHwA5Z+ffqp7Kaz0EpoQTti+vQfkcq8qGDEREZH94UyQhSQlKXOALl5UzgDpywXKyfFXB0AqQjghJ8dP67IYERERaccgyILCww1PhPbzk0EiUWgEQhKJAn5+OWYaHRERkX3jcpiVU+0yk0rvomfPHZBIlIlEqpwgzgIRERFVDGeCrJy/vz9Gjx6NgoIC3L59GzExy5CT4wc/vxwGQERERJXAIKiKVaQFhuqxm5sbpNK7eoMfXTWKiIiISIlBUBWqbAuMkrNC2rCPGBERkWEYBFUhQ1tg6DqPAQ4REZFpMDGaiIiIHBKDICIiInJIDIIsRC73Qnp6FCs+ExERWQhzgiyAPcCIiIgsjzNBVcyUPcAyM5Wd5zMzTT1KIiIi+8cgqArl5ubq7AFmjNWrgchIoFMn5Z+rV5typERERPaPQVAVkclk2LJli7oHWEmle4DpK3aYmQkkJwOK/11GoQBGjOCMEBERkTEYBFURVe0ffT3A+vfvr7cW0IULjwIgleJiZUd6IiIiMgwToy0gNvYkYmIultsDTCqV6n193bqAk5NmIOTsDNSpY47REhER2SfOBFmIVHoX0dGXK9QENTwcWLVKGfgAyj8//VT5PBERERmGM0E2KikJSEhQLoHVqcMAiIiIyFgMgmxYeDiDHyIioorichgRERE5JAZBRERE5JAYBFURfbV/jD2PiIiIKoc5QVXE398fo0ePVtcLKo+bm5veGkFERERkGgyCqhADHCIiIuvB5TAiIiJySAyCiIiIyCExCCIiIiKHxCCIiIiIHBKDICIiInJINhEE/fzzz5BIJOX+HDt2TH3emTNn0LZtW1SrVg0RERFYtGiRBUdNRERE1swmtsi3adMGWVlZGs/NmDEDe/fuRcuWLQEAeXl56NKlCzp37oyVK1fijz/+wLBhw+Dj44Pk5GRLDJuIiIismE0EQW5ubggJCVE/LiwsxP/93//h9ddfh0QiAQBs3LgRBQUFWLNmDdzc3NCoUSOcOnUKS5YsYRBEREREZdjEclhp27Ztg0wmw9ChQ9XPpaamol27dhptJxISEnD+/HncuXNH67Xy8/ORl5en8UNERET2zyZmgkpbvXo1EhISEB4ern4uOzsb0dHRGucFBwerj/n6+pZ7rfnz52POnDllnmcwREREZDtU39tCCINfY9EgaMqUKVi4cKHOc86ePYsGDRqoH2dmZmLnzp3YsmWLScYwdepUjB8/Xv342rVraNiwISIiIkxyfSIiIqo6d+/ehVQqNehciwZBEyZMwJAhQ3SeU7t2bY3Ha9euhb+/P3r16qXxfEhICG7cuKHxnOpxyXyi0tzd3eHu7q5+XKNGDVy9ehVeXl7qfKOKyMvLQ0REBK5evQpvb+8KX8fW8T4o8T4o8T4o8T4o8T48wnuhVJn7IITA3bt3ERYWZvBrLBoEBQYGIjAw0ODzhRBYu3YtXn75Zbi6umoci4+Px7Rp01BYWKg+tnv3btSvX1/rUlh5nJycNJbZKsvb29uhf6FVeB+UeB+UeB+UeB+UeB8e4b1Qquh9MHQGSMWmEqP37duH9PR0DB8+vMyxgQMHws3NDUlJSfjzzz+xefNmLF++XGOpi4iIiEjFphKjV69ejTZt2mjkCKlIpVLs2rULo0aNQlxcHAICAjBz5kxujyciIqJy2VQQtGnTJp3HmzZtioMHD1bRaHRzd3fHrFmzNPKNHBHvgxLvgxLvgxLvgxLvwyO8F0pVfR8kwpi9ZERERER2wqZygoiIiIhMhUEQEREROSQGQUREROSQGAQRERGRQ2IQZIQVK1agadOm6iJO8fHx+PHHH9XHHz58iFGjRsHf3x81atTA888/X6aK9ZUrV9C9e3d4enoiKCgIEydORFFRUVV/FJNZsGABJBIJxo0bp37OUe7D7NmzIZFINH5Klm9wlPsAKNvNDB48GP7+/vDw8ECTJk3w+++/q48LITBz5kyEhobCw8MDnTt3xoULFzSukZOTg0GDBsHb2xs+Pj5ISkrCvXv3qvqjVFhUVFSZ3weJRIJRo0YBcJzfh+LiYsyYMQPR0dHw8PBATEwM5s6dq9HPyRF+HwBl+4Zx48YhMjISHh4eaNOmDY4dO6Y+bq/34ZdffkHPnj0RFhYGiUSC7777TuO4qT73mTNn0LZtW1SrVg0RERFYtGiR8YMVZLBt27aJ77//Xvz999/i/Pnz4q233hKurq4iLS1NCCHEq6++KiIiIsTevXvF77//Llq3bi3atGmjfn1RUZFo3Lix6Ny5szh58qT44YcfREBAgJg6daqlPlKl/PbbbyIqKko0bdpUjB07Vv28o9yHWbNmiUaNGomsrCz1z61bt9THHeU+5OTkiMjISDFkyBBx9OhR8c8//4idO3eKixcvqs9ZsGCBkEql4rvvvhOnT58WvXr1EtHR0eLff/9Vn9O1a1fRrFkzceTIEXHw4EFRp04d8eKLL1riI1XIzZs3NX4Xdu/eLQCI/fv3CyEc5/dh3rx5wt/fX+zYsUOkp6eLr7/+WtSoUUMsX75cfY4j/D4IIUS/fv1Ew4YNxYEDB8SFCxfErFmzhLe3t8jMzBRC2O99+OGHH8S0adNESkqKACC+/fZbjeOm+NxyuVwEBweLQYMGibS0NPHll18KDw8P8emnnxo1VgZBleTr6ys+//xzkZubK1xdXcXXX3+tPnb27FkBQKSmpgohlL8YTk5OIjs7W33OihUrhLe3t8jPz6/ysVfG3bt3Rd26dcXu3btF+/bt1UGQI92HWbNmiWbNmpV7zJHuw+TJk8VTTz2l9bhCoRAhISFi8eLF6udyc3OFu7u7+PLLL4UQQvz1118CgDh27Jj6nB9//FFIJBJx7do18w3ejMaOHStiYmKEQqFwqN+H7t27i2HDhmk816dPHzFo0CAhhOP8Pjx48EA4OzuLHTt2aDwfGxsrpk2b5jD3oXQQZKrP/cknnwhfX1+NfzcmT54s6tevb9T4uBxWQcXFxfjqq69w//59xMfH4/jx4ygsLETnzp3V5zRo0AC1atVCamoqACA1NRVNmjRBcHCw+pyEhATk5eXhzz//rPLPUBmjRo1C9+7dNT4vAIe7DxcuXEBYWBhq166NQYMG4cqVKwAc6z5s27YNLVu2RN++fREUFIQWLVrgs88+Ux9PT09Hdna2xr2QSqVo1aqVxr3w8fFBy5Yt1ed07twZTk5OOHr0aNV9GBMpKCjAF198gWHDhkEikTjU70ObNm2wd+9e/P333wCA06dP49dff0W3bt0AOM7vQ1FREYqLi1GtWjWN5z08PPDrr786zH0ozVSfOzU1Fe3atYObm5v6nISEBJw/fx537twxeDw2VTHaGvzxxx+Ij4/Hw4cPUaNGDXz77bdo2LAhTp06BTc3N/j4+GicHxwcjOzsbABAdna2xn/gVMdVx2zFV199hRMnTmisbatkZ2c7zH1o1aoV1q1bh/r16yMrKwtz5sxB27ZtkZaW5lD34Z9//sGKFSswfvx4vPXWWzh27BjGjBkDNzc3JCYmqj9LeZ+15L0ICgrSOO7i4gI/Pz+buhcq3333HXJzczFkyBAAjvXvxZQpU5CXl4cGDRrA2dkZxcXFmDdvHgYNGgQADvP74OXlhfj4eMydOxePPfYYgoOD8eWXXyI1NRV16tRxmPtQmqk+d3Z2NqKjo8tcQ3XM0MbpDIKMVL9+fZw6dQpyuRzffPMNEhMTceDAAUsPq8pcvXoVY8eOxe7du8v8H46jUf2fLaBs2dKqVStERkZiy5Yt8PDwsODIqpZCoUDLli3x7rvvAgBatGiBtLQ0rFy5EomJiRYenWWsXr0a3bp1Q1hYmKWHUuW2bNmCjRs3YtOmTWjUqBFOnTqFcePGISwszOF+HzZs2IBhw4ahZs2acHZ2RmxsLF588UUcP37c0kOj/+FymJHc3NxQp04dxMXFYf78+WjWrBmWL1+OkJAQFBQUIDc3V+P8GzduICQkBAAQEhJSZjeI6rHqHGt3/Phx3Lx5E7GxsXBxcYGLiwsOHDiADz74AC4uLggODnaI+1AeHx8f1KtXDxcvXnSY3wcACA0NRcOGDTWee+yxx9RLg6rPUt5nLXkvbt68qXG8qKgIOTk5NnUvAODy5cvYs2cPhg8frn7OkX4fJk6ciClTpmDAgAFo0qQJXnrpJbzxxhuYP38+AMf6fYiJicGBAwdw7949XL16Fb/99hsKCwtRu3Zth7oPJZnqc5vq3xcGQZWkUCiQn5+PuLg4uLq6Yu/evepj58+fx5UrVxAfHw8AiI+Pxx9//KHxD3f37t3w9vYu8yVirZ5++mn88ccfOHXqlPqnZcuWGDRokPrvjnAfynPv3j1cunQJoaGhDvP7AABPPvkkzp8/r/Hc33//jcjISABAdHQ0QkJCNO5FXl4ejh49qnEvcnNzNf4Ped++fVAoFGjVqlUVfArTWbt2LYKCgtC9e3f1c470+/DgwQM4OWl+tTg7O0OhUABwvN8HAKhevTpCQ0Nx584d7Ny5E88995xD3gfAdP/84+Pj8csvv6CwsFB9zu7du1G/fn2Dl8IAcIu8MaZMmSIOHDgg0tPTxZkzZ8SUKVOERCIRu3btEkIot8DWqlVL7Nu3T/z+++8iPj5exMfHq1+v2gLbpUsXcerUKfHTTz+JwMBAm9sCW1rJ3WFCOM59mDBhgvj5559Fenq6OHTokOjcubMICAgQN2/eFEI4zn347bffhIuLi5g3b564cOGC2Lhxo/D09BRffPGF+pwFCxYIHx8f8X//93/izJkz4rnnnit3S2yLFi3E0aNHxa+//irq1q1r9VuBSysuLha1atUSkydPLnPMUX4fEhMTRc2aNdVb5FNSUkRAQICYNGmS+hxH+X346aefxI8//ij++ecfsWvXLtGsWTPRqlUrUVBQIISw3/tw9+5dcfLkSXHy5EkBQCxZskScPHlSXL58WQhhms+dm5srgoODxUsvvSTS0tLEV199JTw9PblF3pyGDRsmIiMjhZubmwgMDBRPP/20OgASQoh///1XvPbaa8LX11d4enqK//znPyIrK0vjGhkZGaJbt27Cw8NDBAQEiAkTJojCwsKq/igmVToIcpT70L9/fxEaGirc3NxEzZo1Rf/+/TVq4zjKfRBCiO3bt4vGjRsLd3d30aBBA7Fq1SqN4wqFQsyYMUMEBwcLd3d38fTTT4vz589rnCOTycSLL74oatSoIby9vcXQoUPF3bt3q/JjVNrOnTsFgDKfTQjH+X3Iy8sTY8eOFbVq1RLVqlUTtWvXFtOmTdPYyuwovw+bN28WtWvXFm5ubiIkJESMGjVK5Obmqo/b633Yv3+/AFDmJzExUQhhus99+vRp8dRTTwl3d3dRs2ZNsWDBAqPHKhGiRBlPIiIiIgfBnCAiIiJySAyCiIiIyCExCCIiIiKHxCCIiIiIHBKDICIiInJIDIKIiIjIITEIIiIiIofEIIiIiIgcEoMgIjuVnZ2N119/HbVr14a7uzsiIiLQs2dPjZ49hw8fxrPPPgtfX19Uq1YNTZo0wZIlS1BcXKw+JyMjA0lJSYiOjoaHhwdiYmIwa9YsFBQUaLzfZ599hmbNmqFGjRrw8fFBixYt1E0zAWD27NmQSCTo2rVrmbEuXrwYEokEHTp00Pu5oqKiIJFItP4MGTLE+Jtl5Tp06IBx48ZZehhEdsfF0gMgItPLyMjAk08+CR8fHyxevBhNmjRBYWEhdu7ciVGjRuHcuXP49ttv0a9fPwwdOhT79++Hj48P9uzZg0mTJiE1NRVbtmyBRCLBuXPnoFAo8Omnn6JOnTpIS0vDK6+8gvv37+O9994DAKxZswbjxo3DBx98gPbt2yM/Px9nzpxBWlqaxrhCQ0Oxf/9+ZGZmIjw8XP38mjVrUKtWLYM+27Fjx9RB2uHDh/H888/j/Pnz8Pb2BgB4eHiY4hZWicLCQri6ulbZ+xUUFMDNza3K3o/I6lWwNQgRWbFu3bqJmjVrinv37pU5dufOHXHv3j3h7+8v+vTpU+b4tm3bBADx1Vdfab3+okWLRHR0tPrxc889J4YMGaJzTLNmzRLNmjUTPXr0EO+88476+UOHDomAgAAxcuRI0b59ewM+3SOqHkV37txRP/fdd9+JFi1aCHd3dxEdHS1mz56t0X8LgFi5cqXo3r278PDwEA0aNBCHDx8WFy5cEO3btxeenp4iPj5eow+cauwrV64U4eHhwsPDQ/Tt21ejD5QQQnz22WeiQYMGwt3dXdSvX198/PHH6mPp6enq+9quXTvh7u4u1q5dK27fvi0GDBggwsLChIeHh2jcuLHYtGmT+nWJiYllejClp6eLtWvXCqlUqvH+3377rSj5n3XVuD/77DMRFRUlJBKJEEL5O5CUlCQCAgKEl5eX6Nixozh16pRR957IHnA5jMjO5OTk4KeffsKoUaNQvXr1Msd9fHywa9cuyGQyvPnmm2WO9+zZE/Xq1cOXX36p9T3kcjn8/PzUj0NCQnDkyBFcvnxZ7/iGDRuGdevWqR+vWbMGgwYNMskMxcGDB/Hyyy9j7Nix+Ouvv/Dpp59i3bp1mDdvnsZ5c+fOxcsvv4xTp06hQYMGGDhwIEaMGIGpU6fi999/hxACo0eP1njNxYsXsWXLFmzfvh0//fQTTp48iddee019fOPGjZg5cybmzZuHs2fP4t1338WMGTOwfv16jetMmTIFY8eOxdmzZ5GQkICHDx8iLi4O33//PdLS0pCcnIyXXnoJv/32GwBg+fLliI+PxyuvvIKsrCxkZWUhIiLC4Hty8eJFbN26FSkpKTh16hQAoG/fvrh58yZ+/PFHHD9+HLGxsXj66aeRk5NjzO0msn2WjsKIyLSOHj0qAIiUlBSt5yxYsKDMDEpJvXr1Eo899li5xy5cuCC8vb01OsVfv35dtG7dWgAQ9erVE4mJiWLz5s2iuLhYfY5qVqKgoEAEBQWJAwcOiHv37gkvLy9x+vRpMXbs2ErPBD399NPi3Xff1Thnw4YNIjQ0VP0YgJg+fbr6cWpqqgAgVq9erX7uyy+/FNWqVdMYu7Ozs8jMzFQ/9+OPPwonJyd1J/iYmBiNGRwhhJg7d66Ij48XQjyaCVq2bJnez9W9e3cxYcIE9eP27duLsWPHapxj6EyQq6uruHnzpvq5gwcPCm9vb/Hw4UON18bExIhPP/1U79iI7AlzgojsjBDCLOcCwLVr19C1a1f07dsXr7zyivr50NBQpKamIi0tDb/88gsOHz6MxMREfP755/jpp5/g5PRo0tnV1RWDBw/G2rVr8c8//6BevXpo2rSpUePQ5vTp0zh06JDGzE9xcTEePnyIBw8ewNPTEwA03i84OBgA0KRJE43nHj58iLy8PHWuUa1atVCzZk31OfHx8VAoFDh//jy8vLxw6dIlJCUladyXoqIiSKVSjTG2bNlS43FxcTHeffddbNmyBdeuXUNBQQHy8/PVY62syMhIBAYGqh+fPn0a9+7dg7+/v8Z5//77Ly5dumSS9ySyFQyCiOxM3bp11QnN2tSrVw8AcPbsWbRp06bM8bNnz6Jhw4Yaz12/fh0dO3ZEmzZtsGrVqnKv27hxYzRu3BivvfYaXn31VbRt2xYHDhxAx44dNc4bNmwYWrVqhbS0NAwbNszYj6jVvXv3MGfOHPTp06fMsWrVqqn/XjIZWSKRaH1OoVAY/L6Acodcq1atNI45OztrPC69RLl48WIsX74cy5YtQ5MmTVC9enWMGzeuzO670pycnMoEsYWFhWXOK/1+9+7dQ2hoKH7++ecy5/r4+Oh8TyJ7wyCIyM74+fkhISEBH3/8McaMGVPmSzA3NxddunSBn58f3n///TJB0LZt23DhwgXMnTtX/dy1a9fQsWNHxMXFYe3atRozO9qogqj79++XOdaoUSM0atQIZ86cwcCBAyvyMcsVGxuL8+fPo06dOia7psqVK1dw/fp1hIWFAQCOHDkCJycn1K9fH8HBwQgLC8M///yDQYMGGXXdQ4cO4bnnnsPgwYMBKAOvv//+WyMIdXNz0yhbAACBgYG4e/cu7t+/r/5nrMr50SU2NhbZ2dlwcXFBVFSUUWMlsjcMgojs0Mcff4wnn3wSTzzxBN5++200bdoURUVF2L17N1asWIGzZ8/i008/xYABA5CcnIzRo0fD29sbe/fuxcSJE/HCCy+gX79+AJQBUIcOHRAZGYn33nsPt27dUr9PSEgIAGDkyJEICwtDp06dEB4ejqysLLzzzjsIDAxEfHx8uWPct28fCgsLTTr7MHPmTPTo0QO1atXCCy+8ACcnJ5w+fRppaWl45513KnXtatWqITExEe+99x7y8vIwZswY9OvXT30P5syZgzFjxkAqlaJr167Iz8/H77//jjt37mD8+PFar1u3bl188803OHz4MHx9fbFkyRLcuHFDIwiKiorC0aNHkZGRgRo1asDPzw+tWrWCp6cn3nrrLYwZMwZHjx7VSDjXpnPnzoiPj0fv3r2xaNEi1KtXD9evX8f333+P//znP2WW64jsGXeHEdmh2rVr48SJE+jYsSMmTJiAxo0b45lnnsHevXuxYsUKAMALL7yA/fv348qVK2jbti3q16+PpUuXYtq0afjqq6/US0K7d+/GxYsXsXfvXoSHhyM0NFT9o9K5c2ccOXIEffv2Rb169fD888+jWrVq2Lt3b5ncE5Xq1aubfPklISEBO3bswK5du/D444+jdevWWLp0KSIjIyt97Tp16qBPnz549tln0aVLFzRt2hSffPKJ+vjw4cPx+eefY+3atWjSpAnat2+PdevWITo6Wud1p0+fjtjYWCQkJKBDhw4ICQlB7969Nc5588034ezsjIYNGyIwMBBXrlyBn58fvvjiC/zwww9o0qQJvvzyS8yePVvv55BIJPjhhx/Qrl07DB06FPXq1cOAAQNw+fJldX4UkaOQCGMzI4mIHMzs2bPx3XffGbTcRES2gzNBRERE5JAYBBGR1alRo4bWn4MHD1p6eERkJ7gcRkRW5+LFi1qP1axZ06b6gxGR9WIQRERERA6Jy2FERETkkBgEERERkUNiEEREREQOiUEQEREROSQGQUREROSQGAQRERGRQ2IQRERERA6JQRARERE5pP8HSi3/nfWVEUYAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.3 Visualizing Surrogates\n", + "\n", + "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHHCAYAAADZHa63AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlzUlEQVR4nO3de1zO5+M/8Nfd4e6oQulAkUPk8KNl6m4zbE05xcaGGZqYnDbLqcYkhpxmc97m0GxOsaFhQtiBNCwMFaOcklMqQsfr90ff3h+3+y5FdXffvZ6Px/3gvt7X/b6v9/1W98t1va/rLRNCCBARERGRVtPTdAOIiIiI6OUx1BERERHpAIY6IiIiIh3AUEdERESkAxjqiIiIiHQAQx0RERGRDmCoIyIiItIBDHVEREREOoChjoiIiEgHMNQREb0kmUyGGTNmaLoZEn9/fzRq1EjTzSCiKsZQR0Q6KSIiAjKZTHoYGxvDxcUFY8eOxa1btyr1vY8ePYoZM2YgIyOjQvfbuXNnpWOqU6cOXn31VaxduxaFhYUV8h5z5szBjh07KmRfRFS1DDTdACKiyjRz5kw4OzvjyZMn+Ouvv7By5Urs2bMHZ8+ehampaYW8x+PHj2Fg8L9fp0ePHkVYWBj8/f1hZWVVIe9RrEGDBpg7dy4A4M6dO1i/fj0CAgJw4cIFhIeHv/T+58yZg379+qFPnz4vvS8iqloMdUSk07p164b27dsDAIYPH466deviq6++ws6dOzFw4MAX3m9hYSFyc3NhbGwMY2Pjimruc1laWuLDDz+Uno8cORLNmzfHsmXLMGvWLBgaGlZZW4ioeuHwKxHVKG+++SYAIDk5GQCwcOFCeHl5oW7dujAxMYG7uzu2bdum8jqZTIaxY8diw4YNaNWqFYyMjLB3715pW/E1dTNmzMCkSZMAAM7OztJQaUpKCjp16oS2bduqbVfz5s3h4+NT7uMxNTWFp6cnsrOzcefOnRLrZWdnY8KECXB0dISRkRGaN2+OhQsXQgihdIzZ2dn44YcfpHb7+/uXu01EpBnsqSOiGuXSpUsAgLp16wIAvvnmG/j5+WHQoEHIzc3F5s2b8d5772HXrl3o0aOH0msPHjyIyMhIjB07FtbW1monI7z77ru4cOECNm3ahMWLF8Pa2hoAYGNjg8GDB2PEiBE4e/YsWrduLb3m+PHjuHDhAqZNm/ZCx3T58mXo6+uXONQrhICfnx8OHTqEgIAAtGvXDtHR0Zg0aRJu3LiBxYsXAwB+/PFHDB8+HB06dMDHH38MAGjSpMkLtYmINEAQEemgdevWCQDiwIED4s6dO+LatWti8+bNom7dusLExERcv35dCCHEo0ePlF6Xm5srWrduLd58802lcgBCT09PnDt3TuW9AIjQ0FDp+YIFCwQAkZycrFQvIyNDGBsbiylTpiiVf/LJJ8LMzEw8fPiw1GPq1KmTaNGihbhz5464c+eOSEhIEJ988okAIHr16iXVGzp0qGjYsKH0fMeOHQKA+PLLL5X2169fPyGTycR///0nlZmZmYmhQ4eW2g4iqp44/EpEOs3b2xs2NjZwdHTEgAEDYG5uju3bt6N+/foAABMTE6nu/fv3kZmZiY4dO+Kff/5R2VenTp3QsmXLF26LpaUlevfujU2bNknDngUFBdiyZQv69OkDMzOz5+4jMTERNjY2sLGxgaurK5YuXYoePXpg7dq1Jb5mz5490NfXxyeffKJUPmHCBAgh8Ntvv73wMRFR9cHhVyLSacuXL4eLiwsMDAxga2uL5s2bQ0/vf/+f3bVrF7788kucOnUKOTk5UrlMJlPZl7Oz80u3Z8iQIdiyZQv+/PNPvPHGGzhw4ABu3bqFwYMHl+n1jRo1wvfffy8t09KsWTPUq1ev1NdcuXIFDg4OqFWrllK5q6urtJ2ItB9DHRHptA4dOkizX5/1559/ws/PD2+88QZWrFgBe3t7GBoaYt26ddi4caNK/ad79V6Uj48PbG1t8dNPP+GNN97ATz/9BDs7O3h7e5fp9WZmZmWuS0Q1C4dfiajG+vnnn2FsbIzo6GgMGzYM3bp1q5DApK6Xr5i+vj4++OADbNu2Dffv38eOHTswcOBA6Ovrv/T7lqRhw4ZITU3FgwcPlMoTExOl7cVKazsRVW8MdURUY+nr60Mmk6GgoEAqS0lJeek7KhRfG1fSHSUGDx6M+/fvY+TIkXj48KHSunOVoXv37igoKMCyZcuUyhcvXgyZTIZu3bpJZWZmZhV+JwwiqhocfiWiGqtHjx746quv4Ovriw8++AC3b9/G8uXL0bRpU5w5c+aF9+vu7g4AmDp1KgYMGABDQ0P06tVLCntubm5o3bo1tm7dCldXV7zyyisVcjwl6dWrF7p06YKpU6ciJSUFbdu2xb59+7Bz506MHz9eadkSd3d3HDhwAF999RUcHBzg7OwMDw+PSm0fEVUM9tQRUY315ptvYs2aNUhLS8P48eOxadMmzJs3D++8885L7ffVV1/FrFmzcPr0afj7+2PgwIEqCwMPGTIEAMo8QeJl6OnpISoqCuPHj8euXbswfvx4nD9/HgsWLMBXX32lVPerr76Cu7s7pk2bhoEDB2LlypWV3j4iqhgyIZ5aTpyIiKrEN998g88++wwpKSlwcnLSdHOISAcw1BERVTEhBNq2bYu6devi0KFDmm4OEekIXlNHRFRFsrOzERUVhUOHDuHff//Fzp07Nd0kItIh7KkjIqoiKSkpcHZ2hpWVFUaPHo3Zs2druklEpEMY6oiIiIh0AGe/EhEREekAhjoiIiIiHcCJEtVYYWEhUlNTUatWLd66h4iISEsIIfDgwQM4ODhAT6/q+s8Y6qqx1NRUODo6aroZRERE9AKuXbuGBg0aVNn7MdRVY7Vq1QJQ9I/CwsJCw60hIiKissjKyoKjo6P0PV5VGOqqseIhVwsLC4Y6IiIiLVPVl05xogQRERGRDmCoIyIiItIBDHVEREREOoDX1Gm5goIC5OXlaboZVAUMDQ2hr6+v6WYQEVE1pTWhzs/PD6dOncLt27dRu3ZteHt7Y968eXBwcJDqCCGwaNEifPfdd7hy5Qqsra0xevRoTJ06Vapz+PBhBAUF4dy5c3B0dMS0adPg7++v9F7Lly/HggULkJaWhrZt22Lp0qXo0KGDtP3JkyeYMGECNm/ejJycHPj4+GDFihWwtbWV6ly9ehWjRo3CoUOHYG5ujqFDh2Lu3LkwMKiYj1wIgbS0NGRkZFTI/kg7WFlZwc7OjusWEhGRCq0JdV26dMHnn38Oe3t73LhxAxMnTkS/fv1w9OhRqc6nn36Kffv2YeHChWjTpg3S09ORnp4ubU9OTkaPHj0QGBiIDRs2ICYmBsOHD4e9vT18fHwAAFu2bEFQUBBWrVoFDw8PfP311/Dx8UFSUhLq1asHAPjss8+we/dubN26FZaWlhg7dizeffddHDlyBEBR71mPHj1gZ2eHo0eP4ubNmxgyZAgMDQ0xZ86cCvk8igNdvXr1YGpqyi95HSeEwKNHj3D79m0AgL29vYZbRERE1Y7QUjt37hQymUzk5uYKIYQ4f/68MDAwEImJiSW+ZvLkyaJVq1ZKZf379xc+Pj7S8w4dOogxY8ZIzwsKCoSDg4OYO3euEEKIjIwMYWhoKLZu3SrVSUhIEABEbGysEEKIPXv2CD09PZGWlibVWblypbCwsBA5OTllPsbMzEwBQGRmZiqV5+fni/Pnz4u7d++WeV+kG+7evSvOnz8v8vPzNd0UIiIqQUnf35VNKydKpKenY8OGDfDy8oKhoSEA4Ndff0Xjxo2xa9cuODs7o1GjRhg+fLhST11sbCy8vb2V9uXj44PY2FgAQG5uLk6ePKlUR09PD97e3lKdkydPIi8vT6lOixYt4OTkJNWJjY1FmzZtlIZjfXx8kJWVhXPnzpV4XDk5OcjKylJ6qFN8DZ2pqenzPyzSKcXnnNdREhHRs7Qq1E2ZMgVmZmaoW7curl69ip07d0rbLl++jCtXrmDr1q1Yv349IiIicPLkSfTr10+qk5aWphS0AMDW1hZZWVl4/Pgx7t69i4KCArV10tLSpH3I5XJYWVmVWkfdPoq3lWTu3LmwtLSUHs+7RRiHXGsennMiIiqJRkNdcHAwZDJZqY/ExESp/qRJkxAfH499+/ZBX18fQ4YMgRACAFBYWIicnBysX78eHTt2ROfOnbFmzRocOnQISUlJmjrEcgkJCUFmZqb0uHbtmqabRERERFpCoxMlJkyYoDLz9FmNGzeW/m5tbQ1ra2u4uLjA1dUVjo6OOHbsGBQKBezt7WFgYAAXFxepvqurK4CimajNmzeHnZ0dbt26pbT/W7duwcLCAiYmJtDX14e+vr7aOnZ2dgAAOzs75ObmIiMjQ6m37tk6f//9t8o+ireVxMjICEZGRqV+HkRERETqaLSnzsbGBi1atCj1IZfL1b62sLAQQNF1aADw2muvIT8/H5cuXZLqXLhwAQDQsGFDAIBCoUBMTIzSfvbv3w+FQgEAkMvlcHd3V6pTWFiImJgYqY67uzsMDQ2V6iQlJeHq1atSHYVCgX///VeaqVj8PhYWFmjZsuULfFK6w9/fX+qFNTQ0hK2tLd5++22sXbtWOqdlERERoTIETkREVJNpxTV1cXFxWLZsGU6dOoUrV67g4MGDGDhwIJo0aSIFKW9vb7zyyisYNmwY4uPjcfLkSYwcORJvv/221HsXGBiIy5cvY/LkyUhMTMSKFSsQGRmJzz77THqvoKAgfP/99/jhhx+QkJCAUaNGITs7Gx999BEAwNLSEgEBAQgKCsKhQ4dw8uRJfPTRR1AoFPD09AQAdO3aFS1btsTgwYNx+vRpREdHY9q0aRgzZgx74gD4+vri5s2bSElJwW+//YYuXbrg008/Rc+ePZGfn6/p5hEREWmnKp1r+4LOnDkjunTpIurUqSOMjIxEo0aNRGBgoLh+/bpSvRs3boh3331XmJubC1tbW+Hv7y/u3bunVOfQoUOiXbt2Qi6Xi8aNG4t169apvN/SpUuFk5OTkMvlokOHDuLYsWNK2x8/fixGjx4tateuLUxNTcU777wjbt68qVQnJSVFdOvWTZiYmAhra2sxYcIEkZeXV67jLmlK9OPHj8X58+fF48ePy7W/6mDo0KGid+/eKuUxMTECgPj++++FEEIsWrRItG7dWpiamooGDRqIUaNGiQcPHgghis4hAKVHaGioEEKI9evXC3d3d+nfwMCBA8WtW7eq6vAqnTafeyKi6mTnTiEUiqI/K5qmljSRCfF/Mw2o2snKyoKlpSUyMzNhYWEhlT958gTJyclwdnaGsbExgKLFaTW1zIWhoWGZZ2X6+/sjIyMDO3bsUNnWrl07ODg4YM+ePfj666/Rtm1bODs74/Llyxg9ejTefPNNrFixArm5uVi5ciWmT58uTYIxNzeHubk51q5dC3t7ezRv3hy3b99GUFAQrKyssGfPnoo8ZI1Rd+6JiKj8vL3v4cQJA7RsaYmn7mNQIUr6/q5sWnNHCSpdXl4e5s6dq5H3DgkJKfHax/Jo0aIFzpw5AwAYP368VN6oUSN8+eWXCAwMxIoVKyCXy2FpaQmZTKYy8WTYsGHS3xs3bowlS5bg1VdfxcOHD2Fubv7SbSQiIu1WWFiIefPmoWPHXHh4mKBDh0kAdGO5KK24po5qBiGE1ON34MABvPXWW6hfvz5q1aqFwYMH4969e3j06FGp+zh58iR69eoFJycn1KpVC506dQJQNAOaiIhqtlu3bmHWrFnIzc0FAFhYCPTurRuBDmBPnc4wNDRESEiIxt67IiQkJMDZ2RkpKSno2bMnRo0ahdmzZ6NOnTr466+/EBAQgNzc3BLvpJGdnQ0fHx/4+Phgw4YNsLGxwdWrV+Hj4yP9ABMRUc0UExODv/76S3ru5OT03GXVtA1DnY6QyWQVMgSqKQcPHsS///6Lzz77DCdPnkRhYSEWLVoEPb2izuTIyEil+nK5HAUFBUpliYmJuHfvHsLDw6W7cZw4caJqDoCIiKql/Px8zJ49W6nsvffe08klxhjqqMrl5OQgLS0NBQUFuHXrFvbu3Yu5c+eiZ8+eGDJkCM6ePYu8vDwsXboUvXr1wpEjR7Bq1SqlfTRq1AgPHz5ETEwM2rZtC1NTUzg5OUEul2Pp0qUIDAzE2bNnMWvWLA0dJRERadr169exZs0apbJJkybp7L3TeU0dVbm9e/fC3t4ejRo1gq+vLw4dOoQlS5Zg586d0NfXR9u2bfHVV19h3rx5aN26NTZs2KAyCcTLywuBgYHo378/bGxsMH/+fNjY2CAiIgJbt25Fy5YtER4ejoULF2roKImISJN2796tFOiaN2+O0NBQnQ10AMAlTaqx8ixpQjUDzz0RUelyc3NVOgIGDRqEpk2bVlkbuKQJERER0UtITk7G+vXrlcqCg4NrzN2cGOqIiIhI661bt05p+ap27dqhd+/eGmxR1WOoIyIiIq2VkZGBb775RqnM398fDRs21FCLNIehjoiIiLTSr7/+in/++UepbP/+zxEaWjHrp2obhjoiIiLSOmFhYSpl0dGhCA7WQGOqCYY6IiIi0hrnzp3Dtm3bninrichId4SGaqhR1QRDHREREWkFdb1zMTFTMHEil3gCGOqIiIiomhNCYObMmSrlbm6hNb537mkMdURERFRtRUdH49ixY0plWVl26NRpJPz8NNSoaoqhjnSSv78/MjIysGPHDgBA586d0a5dO3z99dcvvM+K2AcREZWduuHWmrSYcHnx3q9Upfz9/SGTySCTySCXy9G0aVPMnDkT+fn5lfq+v/zyC2bNmlWmuocPH4ZMJkNGRsYL74OIiF5cXl6e2kAXGhrKQFcK9tRRlfP19cW6deuQk5ODPXv2YMyYMTA0NERISIhSvdzcXMjl8gp5zzp16lSLfRARUelmzZqFwsJCpbIrV1pj7dq+GmqR9mBPHVU5IyMj2NnZoWHDhhg1ahS8vb0RFRUFf39/9OnTB7Nnz4aDgwOaN28OALh27Rref/99WFlZoU6dOujduzdSUlKk/RUUFCAoKAhWVlaoW7cuJk+eDCGE0nt27twZ48ePl57n5ORgypQpcHR0hJGREZo2bYo1a9YgJSUFXbp0AQDUrl0bMpkM/v7+avdx//59DBkyBLVr14apqSm6deuGixcvStsjIiJgZWWF6OhouLq6wtzcHL6+vrh586ZU5/Dhw+jQoQPMzMxgZWWF1157DVeuXKmgT5qISLuEhYWpBLpZs6bh6FEGurJgqCONMzExQW5uLgAgJiYGSUlJ2L9/P3bt2oW8vDz4+PigVq1a+PPPP3HkyBEpHBW/ZtGiRYiIiMDatWvx119/IT09Hdu3by/1PYcMGYJNmzZhyZIlSEhIwLfffgtzc3M4Ojri559/BgAkJSXh5s2bKrefKebv748TJ04gKioKsbGxEEKge/fuyMvLk+o8evQICxcuxI8//og//vgDV69excSJEwEA+fn56NOnDzp16oQzZ84gNjYWH3/8MWQy2Ut/pkRE2iQzM1PtcKubWyg6dNDH/PkaaJQW4vAraYwQAjExMYiOjsa4ceNw584dmJmZYfXq1dKw608//YTCwkKsXr1aCjvr1q2DlZUVDh8+jK5du+Lrr79GSEgI3n33XQDAqlWrEB0dXeL7XrhwAZGRkdi/fz+8vb0BAI0bN5a2Fw+z1qtXD1ZWVmr3cfHiRURFReHIkSPw8vICAGzYsAGOjo7YsWMH3nvvPQBF14WsWrUKTZo0AQCMHTtWmpaflZWFzMxM9OzZU9ru6upa/g+SiEiLqQtzt2+7YPnygQDAGa7lwJ46QlQU4OVV9GdV2LVrF8zNzWFsbIxu3bqhf//+mDFjBgCgTZs2StfRnT59Gv/99x9q1aoFc3NzmJubo06dOnjy5AkuXbqEzMxM3Lx5Ex4eHtJrDAwM0L59+xLf/9SpU9DX10enTp1e+BgSEhJgYGCg9L5169ZF8+bNkZCQIJWZmppKgQ0A7O3tcfv2bQBF4dHf3x8+Pj7o1asXvvnmG6WhWSIiXacu0C1cOB0+PgM10Brtx546Qng4EBtb9GdV/I+oS5cuWLlyJeRyORwcHGBg8L9/hmZmZkp1Hz58CHd3d2zYsEFlPzY2Ni/0/iYmJi/0uhdhaKh8U2mZTKZ0vd+6devwySefYO/evdiyZQumTZuG/fv3w9PTs8raSERU1W7cuIHVq1erlEdHh2LDBvbOvSj21BGCgwGFAlV2E2QzMzM0bdoUTk5OSoFOnVdeeQUXL15EvXr10LRpU6WHpaUlLC0tYW9vj7i4OOk1+fn5OHnyZIn7bNOmDQoLC/H777+r3V7cU1hQUFDiPlxdXZGfn6/0vvfu3UNSUhJatmxZ6jE9y83NDSEhITh69Chat26NjRs3luv1RETaJCwsTCXQtW3bFqGhoTh6lIHuZTDUEfz8UG1/kAYNGgRra2v07t0bf/75J5KTk3H48GF88sknuH79OgDg008/RXh4OHbs2IHExESMHj1aZY25pzVq1AhDhw7FsGHDsGPHDmmfkZGRAICGDRtCJpNh165duHPnDh4+fKiyj2bNmqF3794YMWIE/vrrL5w+fRoffvgh6tevj969e5fp2JKTkxESEoLY2FhcuXIF+/btw8WLF3ldHRHprJLWnuvTp0/VN0YHMdRRtWZqaoo//vgDTk5OePfdd+Hq6oqAgAA8efIEFhYWAIAJEyZg8ODBGDp0KBQKBWrVqoV33nmn1P2uXLkS/fr1w+jRo9GiRQuMGDEC2dnZAID69esjLCwMwcHBsLW1xdixY9XuY926dXB3d0fPnj2hUCgghMCePXtUhlxLO7bExET07dsXLi4u+PjjjzFmzBiMHDmyHJ8QEVH1t27dqRJnt1LFkYlnF/SiaiMrKwuWlpbIzMyUAgwAPHnyBMnJyXB2doaxsbEGW0hVjeeeiLSNujCXlPQ2Nm3ygkJRNFKka0r6/q5snChBRERElaKk3jk3NyAlpequ5a4pGOqIiIioQm3evBlJSUkq5TNmhEq9c9XxOm5tx1BHREREFUZd79y///ZB8+Ztq3SlhZqIoY6IiIgqREnDraGcD1ElGOq0GOe41Dw850RUHYWHhyMnJ0elvHi4lUOtVYOhTgsVL5nx6NGjKr07Amneo0ePAKjeqYKISFPU9c75+/vj9OmGHG6tYgx1WkhfXx9WVlbSPURNTU2lm92TbhJC4NGjR7h9+zasrKygr6+v6SYRUQ1XWFiIWbNmqZSH/t9Ya8OG7KGragx1WsrOzg4ApGBHNYOVlZV07omINEVd7xzwv0BHmsFQp6VkMhns7e1Rr1495OXlabo5VAUMDQ3ZQ0dEGqcu0H366aewsrKq+saQEoY6Laevr88veiIiqnRPnjzBvHnzVMrZO1d9MNQRERFRqTjcqh0Y6oiIiKhE6gJdSEgI5HK5BlpDpWGoIyIiIhX37t3DsmXLVMrZO1d9MdQRERGREg63aieGOiIiIpKoC3TTp0/neqhagKGOiIiIkJSUhM2bN6uUs3dOezDUERER1XDqeufkcjlCQkI00Bp6UXqabgARERFpjrpA5+YWil9/DUFUlAYaRC+MPXVEREQ10IEDB3DkyBGVcje3UISHA7GxQHg479+qTRjqiIiIahh1vXPOzs4YMmSI9Dw8HAgOrspW0ctiqCMiIqpB1AW6ZydD+Pmxh04bMdQRERHVAF999RUePHigUs7ZrbqDoY6IiEjHqeudS0z0xMCBPhpoDVUWhjoiIiIdpi7QzZgRCoWCQ6y6hqGOiIhIB5V0qy83t6JAx0kQuoehjoiISMeoC3R9+/ZF69atAbCHTldx8WEiIiIdUVhYqDbQRUeH4vLl1hpoEVUl9tQRERHpgJKGW6OjQ7mQcA3BUEdERKTl1AW6kSNHws7ODm5uXEi4pmCoIyIi0lKPHj3CggULVMqfXnuOCwnXHAx1REREWqik4VYuJlxzMdQRERFpGXWBbvLkyTAxMdFAa6i6YKgjIiLSEjdv3sR3332nUu7mFgrmOWKoIyIi0gIlDbfy7hBUjKGOiIiomlMX6KZPn45ff5Xx7hAkYagjIiKqpk6cOIHdu3erlBdPhuDMVnoaQx0REVE1xNmtVF4MdURERNWMukDn5hbKXjkqFUMdERFRNbFt2zacO3dOpZyTIags9DTdgLLy8/ODk5MTjI2NYW9vj8GDByM1NVXaPmPGDMhkMpWHmZmZ0n62bt2KFi1awNjYGG3atMGePXuUtgshMH36dNjb28PExATe3t64ePGiUp309HQMGjQIFhYWsLKyQkBAAB4+fKhU58yZM+jYsSOMjY3h6OiI+fPnV/AnQkREuiQsLEwl0Onr68PNLZSTIahMtCbUdenSBZGRkUhKSsLPP/+MS5cuoV+/ftL2iRMn4ubNm0qPli1b4r333pPqHD16FAMHDkRAQADi4+PRp08f9OnTB2fPnpXqzJ8/H0uWLMGqVasQFxcHMzMz+Pj44MmTJ1KdQYMG4dy5c9i/fz927dqFP/74Ax9//LG0PSsrC127dkXDhg1x8uRJLFiwADNmzFC7thAREZG64dbQ0FBMmzYNfn7A0aPspaPnkwkhhKYb8SKioqLQp08f5OTkwNDQUGX76dOn0a5dO/zxxx/o2LEjAKB///7Izs7Grl27pHqenp5o164dVq1aBSEEHBwcMGHCBEycOBEAkJmZCVtbW0RERGDAgAFISEhAy5Ytcfz4cbRv3x4AsHfvXnTv3h3Xr1+Hg4MDVq5cialTpyItLQ1yuRwAEBwcjB07diAxMbHMx5iVlQVLS0tkZmbCwsLihT8rIiKqnjgZQjdp6vtba3rqnpaeno4NGzbAy8tLbaADgNWrV8PFxUUKdAAQGxsLb29vpXo+Pj6IjY0FACQnJyMtLU2pjqWlJTw8PKQ6sbGxsLKykgIdAHh7e0NPTw9xcXFSnTfeeEMKdMXvk5SUhPv377/k0RMRkS5QF+hatWrFQEcvTKtC3ZQpU2BmZoa6devi6tWr2Llzp9p6T548wYYNGxAQEKBUnpaWBltbW6UyW1tbpKWlSduLy0qrU69ePaXtBgYGqFOnjlIddft4+j3UycnJQVZWltKDiIh0j7pAFx0dqnRZEVF5aTTUBQcHq53c8PTj6eHKSZMmIT4+Hvv27YO+vj6GDBkCdaPH27dvx4MHDzB06NCqPJyXNnfuXFhaWkoPR0dHTTeJiIgqUFhYWImBjhMh6GVpdEmTCRMmwN/fv9Q6jRs3lv5ubW0Na2truLi4wNXVFY6Ojjh27BgUCoXSa1avXo2ePXuq9JbZ2dnh1q1bSmW3bt2CnZ2dtL24zN7eXqlOu3btpDq3b99W2kd+fj7S09OV9qPufZ5+D3VCQkIQFBQkPc/KymKwIyLSEerCXIMGvlizxgPBwZwIQS9Po6HOxsYGNjY2L/TawsJCAEVDlk9LTk7GoUOHEBUVpfIahUKBmJgYjB8/Xirbv3+/FAqdnZ1hZ2eHmJgYKcRlZWUhLi4Oo0aNkvaRkZGBkydPwt3dHQBw8OBBFBYWwsPDQ6ozdepU5OXlSdf87d+/H82bN0ft2rVLPCYjIyMYGRm9wKdBRETVlRACM2fOVCkPDQ2FlxcQGwuEhzPU0cvTisWH4+LicPz4cbz++uuoXbs2Ll26hC+++AJNmjRR6aVbu3Yt7O3t0a1bN5X9fPrpp+jUqRMWLVqEHj16YPPmzThx4oS01IhMJsP48ePx5ZdfolmzZnB2dsYXX3wBBwcH9OnTBwDg6uoKX19fjBgxAqtWrUJeXh7Gjh2LAQMGwMHBAQDwwQcfICwsDAEBAZgyZQrOnj2Lb775BosXL67cD4qIiKqV581uDQ4uCnQceqWKoBVLmvz777/49NNPcfr0aWRnZ8Pe3h6+vr6YNm0a6tevL9UrLCxEw4YNMWTIEMyePVvtvrZu3Ypp06YhJSUFzZo1w/z589G9e3dpuxACoaGh+O6775CRkYHXX38dK1asgIuLi1QnPT0dY8eOxa+//go9PT307dsXS5Ysgbm5uVTnzJkzGDNmDI4fPw5ra2uMGzcOU6ZMKddxc0kTIiLtpS7QBQQEoEGDBhpoDVUlTX1/a0Woq6kY6oiItM+jR4+wYMEClXIuVVJzaOr7WyuGX4mIiLQBFxMmTWKoIyIiqgDqAt3EiRNV7kFOVFm0avFhIiKi6ubGjRtqA52bWyjeftsMahZjIKoU7KkjIiJ6QaUNt3K5EqpqDHVEREQvQF2g++KLL6CnVzQIxuVKqKox1BEREZVDXFwc9u7dq1Lu5hYKvacuavLzYw8dVS2GOiIiojIqabh1xoxQKBQMcaRZDHVERERloC7QhYaGIioKUCg4zEqax1BHRERUisjISCQkJKiUF689x2FWqi4Y6oiIiErAxYRJm3CdOiIiIjXUBbro6FC4uTHQUfXEnjoiIqKnlNQ7Fx0dynXnqFpjqCMiIvo/6gJdkyZN8OGHH8LNjevOUfXGUEdERISSh1uPHi36OydEUHXHUEdERDVaacOt7JUjbcJQR0RENZa6QHfhwlvo3/91cIIraRuGOiIiqnGEEJg5c6ZKOZcqIW3GUEdERDUK154jXcV16oiIqMZQF+h++GEIoqMZ6Ej7MdQREZHOe/TokdpA5+YWCjs7Z06IIJ3A4VciItJpzxtu5TIlpCsY6oiISGepC3RBQUGoVauWBlpDVLkY6oiISOdcu3YNa9euVSnnZAjSZQx1RESkUzi7lWoqhjoiItIZ6gLdvn1f4MgRzgsk3cdQR0REWu/PP//EwYMHVcp5qy+qSRjqiIhIq5U23MoRV6pJ2B9NRERaS12gmzEjlIsJU43EnjoiItI633//PVJTU1XK3dxCoVCAQ65UIzHUERGRVuFiwkTqMdQREZHWUBfouFQJURGGOiIiqvZK6p2LjuZkCKJiDHVERFStqQt0BgZm2L17Iq+dI3oKQx0REVVbpQ23Tp1a1a0hqt4Y6oiIqNrhcCtR+THUERFRtaIu0CUleSAlxZfDrUSlYKgjIqJqQQiBmTNnqpQX3+qLS5UQlY6hjoiINI63+iJ6eQx1RESkEVFRQHg44OOjGuj69++PFi1aaKBVRNqLoY6IiDRi0aJH8PFZoFLOxYSJXgxDHRERVbmwsDC8+aZqOQMd0YtjqCMioiql7vq5Tz75BLVr19ZAa4h0B0MdERFViStXriAiIkKlnL1zRBWj3KFOX18fN2/eRL169ZTK7927h3r16qGgoKDCGkdERLqhpNmtbm4MdEQVpdyhTgihtjwnJwdyufylG0RERLpFXaCbNm0a9PX1NdAaIt1V5lC3ZMkSAIBMJsPq1athbm4ubSsoKMAff/zB6edERCQ5fPgwfv/9d5VyDrcSVY4yh7rFixcDKOqpW7VqldL/sORyORo1aoRVq1ZVfAuJiKjaK15zrvjOD6UtJkxElaPMoS45ORkA0KVLF/zyyy+cpURERJLwcCA2FpgyBYiPVw10DHNEla/c19QdOnSoMtpBRERaLDgYOHLkG5iaZqhsY6AjqhrlDnXDhg0rdfvatWtfuDFERKSd4uPDYGqqWs5AR1R1yh3q7t+/r/Q8Ly8PZ8+eRUZGBt5Utzw4ERHpNHXXzzHMEVW9coe67du3q5QVFhZi1KhRaNKkSYU0ioiIqj+uPUdUvchESQvPlVNSUhI6d+6MmzdvVsTuCEBWVhYsLS2RmZkJCwsLTTeHiEia5erjw9mtRCXR1Pd3hd0m7NKlS8jPz6+o3RERUTVUUqBjmCPSvHKHuqCgIKXnQgjcvHkTu3fvxtChQyusYUREVL2EhYXBx0e1nIGOqHood6iLj49Xeq6npwcbGxssWrTouTNjiYhIO6m7fq5p06YYNGiQBlpDROpwnToiIiqREAIzZ85UKWfvHFH188LX1N2+fRtJSUkAgObNm6NevXoV1igiItI83uqLSLuUO9RlZWVhzJgx2LRpEwoLCwEA+vr66N+/P5YvXw5LS8sKbyQREVUtdYHOz88Pbm5uGmgNEZWFXnlfMGLECMTFxWH37t3IyMhARkYGdu3ahRMnTmDkyJGV0UYiIqoi2dnZJS4mzEBHVL2Ve506MzMzREdH4/XXX1cq//PPP+Hr64vs7OwKbWBNxnXqiKgqcbiVqGJozTp1devWVTvEamlpidq1a1dIo4iIqGqpC3SjR4+GjY2NBlpDRC+i3MOv06ZNQ1BQENLS0qSytLQ0TJo0CV988UWFNo6IiCpWVBTg5VX0JwAkJyeXONzKQEekXco9/Orm5ob//vsPOTk5cHJyAgBcvXoVRkZGaNasmVLdf/75p+JaWgNx+JWIKpqXFxAbCygUvNUXUWXRmuHX3r17QyaTVUZbiIiokgUHl3yrr6lTp8LAoMLuHklEVazcPXVUddhTR0QVISqqKMgFBwOmpgdw5MgRlTrsnSOqOJr6/i73NXWNGzfGvXv3VMozMjLQuHHjCmkUERFVnPDwoiHX+PgwBjoiHVbufvaUlBQUFBSolOfk5OD69esV0igiIqoYUVFAejowY4b6yRBEpDvK3FMXFRWFqP+bLhUdHS09j4qKwvbt2zFr1iw4OztXWkP9/Pzg5OQEY2Nj2NvbY/DgwUhNTVWqEx0dDU9PT9SqVQs2Njbo27cvUlJSlOocPnwYr7zyCoyMjNC0aVNERESovNfy5cvRqFEjGBsbw8PDA3///bfS9idPnmDMmDGoW7cuzM3N0bdvX9y6dUupztWrV9GjRw+YmpqiXr16mDRpEvLz8yvksyAiKouoKCA2dh4GDmSgI6oJynxNnZ5eUf6TyWR49iWGhoZo1KgRFi1ahJ49e1Z8KwEsXrwYCoUC9vb2uHHjBiZOnAgAOHr0KICiafmurq4ICgpCQEAAMjMz8dlnn+HBgwfSLNzk5GS0bt0agYGBGD58OGJiYjB+/Hjs3r0bPj4+AIAtW7ZgyJAhWLVqFTw8PPD1119j69atSEpKku5vO2rUKOzevRsRERGwtLTE2LFjoaenJw1rFBQUoF27drCzs8OCBQtw8+ZNDBkyBCNGjMCcOXPKfMy8po6IXgYXEybSDE19f5d7ooSzszOOHz8Oa2vrympTmURFRaFPnz7IycmBoaEhtm3bhoEDByInJ0cKoL/++it69+4t1ZkyZQp2796Ns2fPSvsZMGAAMjIysHfvXgCAh4cHXn31VSxbtgwAUFhYCEdHR4wbNw7BwcHIzMyEjY0NNm7ciH79+gEAEhMT4erqitjYWHh6euK3335Dz549kZqaCltbWwDAqlWrMGXKFNy5cwdyubxMx8hQR0QvqqS154io8mnNRInk5GSNB7r09HRs2LABXl5eMDQ0BAC4u7tDT08P69atQ0FBATIzM/Hjjz/C29tbqhMbGwtvb2+lffn4+CA2NhYAkJubi5MnTyrV0dPTg7e3t1Tn5MmTyMvLU6rTokULODk5SXViY2PRpk0bKdAVv09WVhbOnTtX4nHl5OQgKytL6UFEVB5hYWEMdEQ1VLknSsycObPU7dOnT3/hxjzPlClTsGzZMjx69Aienp7YtWuXtM3Z2Rn79u3D+++/j5EjR6KgoAAKhQJ79uyR6qSlpSkFLQCwtbVFVlYWHj9+jPv376OgoEBtncTERGkfcrkcVlZWKnWK77JR0vsUbyvJ3LlzSxwuISJ61tNLlfj5cbiVqKYrd0/d9u3blR6RkZGYN28eFi1ahB07dpRrX8HBwZDJZKU+isMUAEyaNAnx8fHYt28f9PX1MWTIEOn6vrS0NIwYMQJDhw7F8ePH8fvvv0Mul6Nfv34q1wBWVyEhIcjMzJQe165d03STiKgaK16qJDy85OFWBjqimqPcPXXx8fEqZVlZWfD398c777xTrn1NmDAB/v7+pdZ5eu07a2trWFtbw8XFBa6urnB0dMSxY8egUCiwfPlyWFpaYv78+VL9n376CY6OjoiLi4Onpyfs7OxUZqneunULFhYWMDExgb6+PvT19dXWsbOzAwDY2dkhNzcXGRkZSr11z9Z5dsZs8T6L66hjZGQEIyOjUj8PIqJiwcFFa8+pwzBHVPOUu6dOHQsLC4SFheGLL74o1+tsbGzQokWLUh8lTSooLCwEUHQdGgA8evRImiBRTF9fX6muQqFATEyMUp39+/dDoVAAAORyOdzd3ZXqFBYWIiYmRqrj7u4OQ0NDpTpJSUm4evWqVEehUODff//F7du3ld7HwsICLVu2LNdnRESkTlSU+kDn6OjIQEdUQ1XYTf6KhwwrQ1xcHI4fP47XX38dtWvXxqVLl/DFF1+gSZMmUpDq0aMHFi9ejJkzZ2LgwIF48OABPv/8czRs2BBubm4AgMDAQCxbtgyTJ0/GsGHDcPDgQURGRmL37t3SewUFBWHo0KFo3749OnTogK+//hrZ2dn46KOPAACWlpYICAhAUFAQ6tSpAwsLC4wbNw4KhQKenp4AgK5du6Jly5YYPHgw5s+fj7S0NEybNg1jxoxhTxwRvTQhBOLjVa9vZpgjqtnKHeqWLFmi9FwIgZs3b+LHH39Et27dKqxhTzM1NcUvv/yC0NBQZGdnw97eHr6+vpg2bZoUkt58801s3LgR8+fPx/z582FqagqFQoG9e/fCxMQEQNFkit27d+Ozzz7DN998gwYNGmD16tXSGnUA0L9/f9y5cwfTp09HWloa2rVrh7179ypNfFi8eDH09PTQt29f5OTkwMfHBytWrJC26+vrY9euXRg1ahQUCgXMzMwwdOjQ504yISIqTUm9cwADHRG94Dp1T9PT04ONjQ3efPNNhISEoFatWhXawJqM69QR0dPUTYbo1q0bOnTooIHWEFFJNPX9Xe6euuTk5MpoBxERleDRo0dYsGCBSjl754joaS90TV1GRgb+++8/AEDTpk1V1mwjIqKKwbXniKisyjX7NSUlBT169IC1tTU8PDzg4eEBa2tr9OzZEykpKZXURCKimiEqCvDyKvoTUB/oAgMDGeiISK0yX1N37do1vPrqqzA0NMTo0aPh6uoKADh//jxWrlyJ/Px8HD9+HA0aNKjUBtckvKaOqGbx8ipaTLh79xR06PCDynaGOSLtoKnv7zKHuoCAAPz333+Ijo6GsbGx0rbHjx/D19cXzZo1w+rVqyuloTURQx1RzcLZrUS6odpPlNi7dy+2bNmiEugAwMTEBLNmzcKAAQMqtHFERDWJukD3+eefw9DQUAOtISJtU+ZQd/fuXTRq1KjE7Y0bN0Z6enpFtImIqEaJiYnBX3/9pVLO3jkiKo8yhzp7e3ucP3++xGvmzp49W+p9TYmISBVntxJRRSlzqOvTpw8mTpyImJgY2NjYKG27ffs2pkyZgj59+lR0+4iIdJa6QMcwR0QvqswTJe7fvw8PDw+kpaXhww8/RIsWLSCEQEJCAjZu3Ag7OzscO3YMderUqew21xicKEGkm2bPXoj8/GyVcgY6It1Q7SdK1K5dG3Fxcfj888+xefNmZGRkAACsrKzwwQcfYM6cOQx0RETPweFWIqos5b73KwAIIXDnzh0AgI2NDWQyWYU3jNhTR6RrONxKVDNU+566p8lkMtSrV6+i20JEpJPYO0dEVaFctwkjIqLyYaAjoqryQj11RERUsqgoIDwc8PHhcCsRVR321BERVZCoqKL7t8bHhzHQEVGVY08dEVEFKal3zszMERMnDtNAi4ioJilTqFuyZEmZd/jJJ5+8cGOIiLRN8VDrlCkCPj4zVbazd46IqkqZljRxdnYu285kMly+fPmlG0VFuKQJUfXn5aW+dw5goCOqqar1kibJycmV3Q4iIq2kLtD5+vrCw8NDA60hoprsha+py83NRXJyMpo0aQIDA16aR0Q1y5MnTzBv3jyVcvbOEZGmlHv266NHjxAQEABTU1O0atUKV69eBQCMGzcO4eHhFd5AIqLqJiwsjIGOiKqdcoe6kJAQnD59GocPH4axsbFU7u3tjS1btlRo44iIqht1iwkHBgYy0BGRxpV73HTHjh3YsmULPD09le752qpVK1y6dKlCG0dEVF3cuHEDq1evVilnmCOi6qLcoe7OnTtq7/uanZ2tFPKIiHQFb/VFRNqg3KGuffv22L17N8aNGwcAUpBbvXo1FApFxbaOiEjD1AW6zz//HIaGhhpoDRFRycod6ubMmYNu3brh/PnzyM/PxzfffIPz58/j6NGj+P333yujjUREVS4uLg579+5VKWfvHBFVV+WeKPH666/j1KlTyM/PR5s2bbBv3z7Uq1cPsbGxcHd3r4w2EhFVqbCwMAY6ItI6ZbqjBGkG7yhBVLWiooD4eNXhVoY5IiqPan1HiaysrDLvkOGDiLTRmjVrcP36dZVyBjoi0hZlCnVWVlZlntlaUFDwUg0iIqpqnN1KRLqgTKHu0KFD0t9TUlIQHBwMf39/abZrbGwsfvjhB8ydO7dyWklEVEnUBTqGOSLSRuW+pu6tt97C8OHDMXDgQKXyjRs34rvvvsPhw4crsn01Gq+pI6o87J0josqiqe/vcs9+jY2NRfv27VXK27dvj7///rtCGkVEVJkY6IhIF5V7nTpHR0d8//33mD9/vlL56tWr4ejoWGENIyKqDBxuJSJdVe5Qt3jxYvTt2xe//fYbPDw8AAB///03Ll68iJ9//rnCG0hEVBHYO0dEuq7cw6/du3fHxYsX0atXL6SnpyM9PR29evXChQsX0L1798poIxHRS1EX6MzNnRnoiEincPHhaowTJYhejhACM2fOVClnmCOiylStFx9+VkZGBtasWYOEhAQAQKtWrTBs2DBYWlpWaOOIiF4Uh1uJqKYpd0/diRMn4OPjAxMTE3To0AEAcPz4cTx+/Bj79u3DK6+8UikNrYnYU0f0YtQFum7dukm/s4iIKpOmvr/LHeo6duyIpk2b4vvvv4eBQVFHX35+PoYPH47Lly/jjz/+qJSG1kQMdUTls317Ds6cCVcpZ+8cEVUlrQl1JiYmiI+PR4sWLZTKz58/j/bt2+PRo0cV2sCajKGOqOw43EpE1YXWXFNnYWGBq1evqoS6a9euoVatWhXWMCKislIX6D7++GPY29troDVERJpR7lDXv39/BAQEYOHChfDy8gIAHDlyBJMmTVK5dRgRUWWaNu0mDA2/Uyln7xwR1UTlDnULFy6ETCbDkCFDkJ+fDwAwNDTEqFGjEB6uei0LEVFlCAsLg6GharmbGwMdEdVML7xO3aNHj3Dp0iUAQJMmTWBqalqhDSNeU0dUEnXDrSEhIZDL5RpoDRGRMq25pq6Yqakp2rRpU5FtISIq1YkTJ7B7926Vcg63EhGVI9QNGzasTPXWrl37wo0hIioJZ7cSEZWuzKEuIiICDRs2hJubG3hnMSKqSuoCHcMcEZGyMoe6UaNGYdOmTUhOTsZHH32EDz/8EHXq1KnMthFRDRcZGSndjvBpubkMdEREzyrXRImcnBz88ssvWLt2LY4ePYoePXogICAAXbt2hUwmq8x21kicKEE1GYdbiUhbac0dJYpduXIFERERWL9+PfLz83Hu3DmYm5tXdPtqNIY6qqnUBTo3t1D4+WmgMURE5aR1s1/19PQgk8kghEBBQUFFtomIaij2zhERvTi98lTOycnBpk2b8Pbbb8PFxQX//vsvli1bhqtXr7KXjoheCgMdEdHLKXNP3ejRo7F582Y4Ojpi2LBh2LRpE6ytrSuzbURUQ3B2KxHRyyvzNXV6enpwcnKCm5tbqZMifvnllwprXE3Ha+pI15XUOxcdHYqjR6u4MUREFaTaX1M3ZMgQznAlogqjLtBZWbXEli3vIThYAw0iItJyLzz7lSofe+pIV3G4lYh0WbXvqSMielmlDbcy0xERvRyGOiKqEuoCXX5+H8TEtOVwKxFRBWCoI6JKlZeXhzlz5qiUFw+3zppV1S0iItJNDHVEVGm49hwRUdVhqCOiSqEu0AUGBsLW1lYDrSEi0n0MdURUoe7du4dly5aplLu5hYJ5joio8jDUEVGFKWm4dcaMUCgUgJ9fFTeIiKgGYagjogqhLtCFhIRg7145FApwhisRUSVjqCOil3Lu3Dls27ZNpbx4MoSfH3voiIiqgp6mG1BWfn5+cHJygrGxMezt7TF48GCkpqYq1YmMjES7du1gamqKhg0bYsGCBSr7OXz4MF555RUYGRmhadOmiIiIUKmzfPlyNGrUCMbGxvDw8MDff/+ttP3JkycYM2YM6tatC3Nzc/Tt2xe3bt1SqnP16lX06NEDpqamqFevHiZNmoT8/PyX/yCIqpGwsLBSAx0REVUdrQl1Xbp0QWRkJJKSkvDzzz/j0qVL6Nevn7T9t99+w6BBgxAYGIizZ89ixYoVWLx4sdIF28nJyejRowe6dOmCU6dOYfz48Rg+fDiio6OlOlu2bEFQUBBCQ0Pxzz//oG3btvDx8cHt27elOp999hl+/fVXbN26Fb///jtSU1Px7rvvStsLCgrQo0cP5Obm4ujRo/jhhx8QERGB6dOnV/KnRFR11A23Tp8+nYGOiEhDtPber1FRUejTpw9ycnJgaGiIDz74AHl5edi6datUZ+nSpZg/fz6uXr0KmUyGKVOmYPfu3Th79qxUZ8CAAcjIyMDevXsBAB4eHnj11VelMFhYWAhHR0eMGzcOwcHByMzMhI2NDTZu3CiFysTERLi6uiI2Nhaenp747bff0LNnT6SmpkrLN6xatQpTpkzBnTt3IJfLy3SMvPcrVUe//fabSu81wN45IqJimvr+1pqeuqelp6djw4YN8PLygqGhIQAgJycHxsbGSvVMTExw/fp1XLlyBQAQGxsLb29vpTo+Pj6IjY0FAOTm5uLkyZNKdfT09ODt7S3VOXnyJPLy8pTqtGjRAk5OTlKd2NhYtGnTRmk9Lh8fH2RlZeHcuXMlHldOTg6ysrKUHkTVSVhYGAMdEVE1pVWhbsqUKTAzM0PdunVx9epV7Ny5U9rm4+ODX375BTExMSgsLMSFCxewaNEiAMDNmzcBAGlpaSoLn9ra2iIrKwuPHz/G3bt3UVBQoLZOWlqatA+5XA4rK6tS66jbR/G2ksydOxeWlpbSw9HRsawfDVGlUzfcGhoaykBHRFRNaDTUBQcHQyaTlfpITEyU6k+aNAnx8fHYt28f9PX1MWTIEBSPHo8YMQJjx45Fz549IZfL4enpiQEDBgAo6m3TBiEhIcjMzJQe165d03STiPDtt9+WGOiiogAvLyAqSgMNIyIiJRpd0mTChAnw9/cvtU7jxo2lv1tbW8Pa2houLi5wdXWFo6Mjjh07BoVCAZlMhnnz5mHOnDlIS0uDjY0NYmJilPZhZ2enMkv11q1bsLCwgImJCfT19aGvr6+2jp2dnbSP3NxcZGRkKPXWPVvn2SGq4n0W11HHyMgIRkZGpX4eRFVJXZjLzjbFX39NQmgoEB4OxMYW/cllS4iINEujoc7GxgY2NjYv9NrCwkIARdehPU1fXx/169cHAGzatAkKhUJ6D4VCgT179ijV379/PxQKBQBALpfD3d0dMTEx6NOnj/Q+MTExGDt2LADA3d0dhoaGiImJQd++fQEASUlJuHr1qrQfhUKB2bNn4/bt26hXr570PhYWFmjZsuULHS9RVVMX6DZvDkXt2v9bSDg4uCjQcWFhIiLN04rFh+Pi4nD8+HG8/vrrqF27Ni5duoQvvvgCTZo0kYLU3bt3sW3bNnTu3BlPnjzBunXrpCVHigUGBmLZsmWYPHkyhg0bhoMHDyIyMhK7d++W6gQFBWHo0KFo3749OnTogK+//hrZ2dn46KOPAACWlpYICAhAUFAQ6tSpAwsLC4wbNw4KhQKenp4AgK5du6Jly5YYPHgw5s+fj7S0NEybNg1jxoxhTxxVeyXd6is6OhTz5in3yHFhYSKi6kMrQp2pqSl++eUXhIaGIjs7G/b29vD19cW0adOUQtIPP/yAiRMnQggBhUKBw4cPo0OHDtJ2Z2dn7N69G5999hm++eYbNGjQAKtXr4aPj49Up3///rhz5w6mT5+OtLQ0tGvXDnv37lWa+LB48WLo6emhb9++yMnJgY+PD1asWCFt19fXx65duzBq1CgoFAqYmZlh6NChmDlzZiV/UkQvR12g69ChA7p16wY3t6JeOYBBjoioOtLadepqAq5TR1VJXaCLjg5FcHBRiPPyKrp+TqEAjh7VQAOJiLSEpr6/taKnjogqT2nDrU9PguD1c0RE1RtDHVENpi7Q9e/fHy1atJCGW4tDHK+fIyKq3hjqiGqg/Px8zJ49W6X86YWEGeKIiLQLQx1RDVPScCvvDEFEpN0Y6ohqEHWBbuzYsahbt64GWkNERBVJO+6fRUQvJSsrq8TZrUeOMNAREekC9tQR6biyzm4lIiLtxlBHpMPUBbqQkBDI5XKV2a1ERKTdGOqIdNCVK1cQERGhUs7ZrUREuovX1BHpmLCwsOcGuqdFRRXdLSIqqpIbRkRElYqhjkiHqBtunTFjOqKjS16uJDwc0rV1RESkvTj8SqQDjh07hujoaJVyN7dQKBSlXzfH238REekGmRBCaLoRpJ6mbghM2oWLCRMRVS+a+v5mTx2RFlMX6BjmiIhqJoY6Ii20efNmJCUlqZQz0BER1VwMdURaRl3vnIODA0aMGKGB1hARUXXBUEekRTjcSkREJWGoI9ICERERuHLlikp5bi4DHRERFWGoI6rm1PXO7dnTC3///QqMjYHZszXQKCIiqna4+DBRNVbScOuNG68AAOrWreoWERFRdcWeOqJq6Hlrz61YwQWDiYhIGUMdUTWjLtB99NFHcHJykp77+RU9iIiIijHUEVUThYWFmDVrlko5Z7cSEVFZMNQRVQPludVXVNT/hl7ZW0dERMU4UYJIw9QFusOHP4Obm/oeuvBwIDa26E8iIqJi7Kkj0pBHjx5hwYIFKuXR0aGIjQVyctT3xAUHc5IEERGpYqgj0oDShlvd3EoPbZwkQURE6jDUEVUxdYHu888/h6GhIQCGNiIiejG8po6oiqSlpakNdNHRofjtN0MNtIiIiHQJe+qIqkBJw60LF4bi4cOi4Vb2zhER0ctgqCOqZOoC3fTp0/HaazI8fAiYm3PSAxERvTwOvxJVkrNnz5Z471aZTIbgYEChADZsYC8dERG9PPbUEVUCdWHOyMgIwU91yXFCBBERVSSGOqIKVlLvHBERUWViqCOqIPv27UNsbKxKOQMdERFVBYY6ogqgrneuZcuWeO+99zTQGiIiqokY6oheEodbiYioOmCoI3pB69evR3Jysko5Ax0REWkCQx3RC1DXO9e1a1coFAoNtIaIiIihjqjc1AU6N7dQMM8REZEmMdQRldHy5ctx9+5dlfIZM4oCHdecIyIiTWKoIyoDdb1zsbEj4O7uAIWCt/kiIiLNY6gjKkVhYSFmzZqlUr55cygSE4ErV4CEBA00jIiI6BkMdUQlUNc7BxTNbt20qejvQlRhg4iIiErBUEekhrpAFxQUhFq1agEA5s8HwsM57EpERNUHQx3RU3JychAeHq5S/uzac35+nBhBRETVC0Md0f8pbbiViIioumOoI4L6QDd16lQYGPBHhIiItIOephtApEkZGRklLib8xhsGiIrSQKOIiIheALshqMZSF+Zq1aqFoKAgeHkBsbFFkyF47RwREWkDhjqqkdQFuunTp0MmkwEomtXK2a1ERKRNGOqoRklNTcX333+vUs7ZrUREpO0Y6qjGUNc717JlS7z33nsaaA0REVHFYqijGkFdoONSJUREpEsY6kinJSQkIDIyUqU8OjoUbm4cYiUiIt3BUEc6S13vnK+vLz77zIMzW4mISOcw1JFOKm24lTNbiYhIFzHUkU75888/cfDgQZXyp6+f48xWIiLSRQx1pDPU9c4NGjQITZs21UBriIiIqhZvE0Y6oaTh1uJAFxUFeHmBt/0iIiKdxZ460mrbtm3DuXPnVMqfXa4kPJy3/SIiIt3GUEdaS13v3KhRo1CvXj2Vck6OICIiXcdQR1pHCIGZM2eqlJe2mDAnRxARka7jNXVULZT1mreIiIhyBzoiIqKagD11VC2U5Zo3dcOtrVtPRN++ZpXcOiIiouqPoY6qhdKuecvLy8OcOXNUytk7R0RE9D8MdVQtlHTN2+zZs5Gfn69UZmZmhokTJ1ZRy4iIiLQDr6mjUmlyfbewsDCVQDd16lQGOiIiIjW0LtTl5OSgXbt2kMlkOHXqlNK2M2fOoGPHjjA2NoajoyPmz5+v8vqtW7eiRYsWMDY2Rps2bbBnzx6l7UIITJ8+Hfb29jAxMYG3tzcuXryoVCc9PR2DBg2ChYUFrKysEBAQgIcPH5a7Ldrg6WvdqsqjR49KXEzYwICdy0REROpoXaibPHkyHBwcVMqzsrLQtWtXNGzYECdPnsSCBQswY8YMfPfdd1Kdo0ePYuDAgQgICEB8fDz69OmDPn364OzZs1Kd+fPnY8mSJVi1ahXi4uJgZmYGHx8fPHnyRKozaNAgnDt3Dvv378euXbvwxx9/4OOPPy5XW7RFcDCgUFTd+m5hYWFYsGCBUlnTpk15/RwREdFzyIQQQtONKKvffvsNQUFB+Pnnn9GqVSvEx8ejXbt2AICVK1di6tSpSEtLg1wuBwAEBwdjx44dSExMBAD0798f2dnZ2LVrl7RPT09PtGvXDqtWrYIQAg4ODpgwYYI0xJeZmQlbW1tERERgwIABSEhIQMuWLXH8+HG0b98eALB37150794d169fh4ODQ5naUhZZWVmwtLREZmYmLCwsXvrzq+7U9c5Nnz4dMplMA60hIiJ6MZr6/taanrpbt25hxIgR+PHHH2FqaqqyPTY2Fm+88YYUogDAx8cHSUlJuH//vlTH29tb6XU+Pj6IjY0FACQnJyMtLU2pjqWlJTw8PKQ6sbGxsLKykgIdAHh7e0NPTw9xcXFlbos6OTk5yMrKUnrUBBkZGWoDXXR0KH79lYGOiIioLLQi1Akh4O/vj8DAQKUw9bS0tDTY2toqlRU/T0tLK7XO09uffl1JdZ69DZWBgQHq1Knz3Pd5+j3UmTt3LiwtLaWHo6NjiXV1RVhYGL755hulMm9vb0RHh1b5tXxERETaTKOhLjg4GDKZrNRHYmIili5digcPHiAkJESTza10ISEhyMzMlB7Xrl3TdJMqVUmTIV577bUqv5aPiIhI22l0KuGECRPg7+9fap3GjRvj4MGDiI2NhZGRkdK29u3bY9CgQfjhhx9gZ2eHW7duKW0vfm5nZyf9qa7O09uLy+zt7ZXqFF+7Z2dnh9u3byvtIz8/H+np6c99n6ffQx0jIyOVY9RFqamp+P7771XKn54MwXu1EhERlY9GQ52NjQ1sbGyeW2/JkiX48ssvpeepqanw8fHBli1b4OHhAQBQKBSYOnUq8vLyYGhoCADYv38/mjdvjtq1a0t1YmJiMH78eGlf+/fvh0KhAAA4OzvDzs4OMTExUojLyspCXFwcRo0aJe0jIyMDJ0+ehLu7OwDg4MGDKCwsLFdbaip1vXMffvghmjRpooHWEBER6Q6tmv1aLCUlBc7OzkqzXzMzM9G8eXN07doVU6ZMwdmzZzFs2DAsXrxYWm7k6NGj6NSpE8LDw9GjRw9s3rwZc+bMwT///IPWrVsDAObNm4fw8HD88MMPcHZ2xhdffIEzZ87g/PnzMDY2BgB069YNt27dwqpVq5CXl4ePPvoI7du3x8aNG8vclrLQtdmvJQ23EhER6RJNfX/rzEqulpaW2LdvH8aMGQN3d3dYW1tj+vTpSiHKy8sLGzduxLRp0/D555+jWbNm2LFjhxTogKJ18LKzs/Hxxx8jIyMDr7/+Ovbu3SsFOgDYsGEDxo4di7feegt6enro27cvlixZUq621CQXL16UAu/TGOiIiIgqjlb21NUUutBTp653buTIkaVeW0hERKTN2FNHOofDrURERFWHoY4q3IkTJ7B7926VcgY6IiKiysNQRxVKXe/cZ599prXDx0RERNqCoY4qhBACM2fOVCln7xwREVHVYKijl3bgwAEcOXJEqaxevXrS2n5ERERU+Rjq6KWoG26dMmWK0hIwREREVPkY6uiFFBYWYtasWSrlHG4lIiLSDIY6Krfjx49jz549SmWvvfYavL29NdQiIiIiYqgjREUB4eFAcDDg51d6XXXDrdOmTYO+vn4ltY6IiIjKQk/TDSDNCw8HYmOL/ixJXl5eiYsJM9ARERFpHkMdITgYUCiK/lTn0KFDmDNnjlJZ//794eYWCi+vop4+IiIi0ize+7Uaqw73flXXOzd9+nTIZDJ4eRX18CkUwNGjGmgcERFRNaSp72/21JFaubm5JQ63ymQyAM/v4SMiIqKqw4kSpELd7NaPPvoITk5OSmV+fs+fWEFERERVg6GOlJTUO0dERETVG4dfCQDw6NEjlUD36quvlinQRUWBEyaIiIg0jD11hL/++gsxMTFKZePHj4elpWWZXv/0kigcjiUiItIM9tTVcNu3b1cJdKGhoWUOdAAnTBAREVUH7KmrgaKigIULn+Ctt+YplXfu3BmdOnUq9/44YYKIiEjzGOpqoNWrL+KttzYqlX3++ecwNDTUUIuIiIjoZTHU1UDu7v8LdB4eHvD19dVga4iIiKgiMNTVQG+88Qbi4uIwZMgQODg4aLo5REREVAF4m7BqrDrcJoyIiIjKh7cJIyIiIqIXxlBHREREpAMY6oiIiIh0AEMdERERkQ5gqCMiIiLSAQx1RERERDqAoY6IiIhIBzDUEREREekAhjoiIiIiHcBQR0RERKQDGOqIiIiIdABDHREREZEOYKgjIiIi0gEMdUREREQ6wEDTDaCSCSEAAFlZWRpuCREREZVV8fd28fd4VWGoq8YePHgAAHB0dNRwS4iIiKi8Hjx4AEtLyyp7P5mo6hhJZVZYWIjU1FTUqlULMplM082pdFlZWXB0dMS1a9dgYWGh6eZQCXieqj+eI+3A86QdXuQ8CSHw4MEDODg4QE+v6q50Y09dNaanp4cGDRpouhlVzsLCgr/gtADPU/XHc6QdeJ60Q3nPU1X20BXjRAkiIiIiHcBQR0RERKQDGOqo2jAyMkJoaCiMjIw03RQqBc9T9cdzpB14nrSDNp0nTpQgIiIi0gHsqSMiIiLSAQx1RERERDqAoY6IiIhIBzDUEREREekAhjqqEDk5OWjXrh1kMhlOnTqltO3MmTPo2LEjjI2N4ejoiPnz56u8fuvWrWjRogWMjY3Rpk0b7NmzR2m7EALTp0+Hvb09TExM4O3tjYsXLyrVSU9Px6BBg2BhYQErKysEBATg4cOH5W6LLvLz84OTkxOMjY1hb2+PwYMHIzU1ValOZGQk2rVrB1NTUzRs2BALFixQ2c/hw4fxyiuvwMjICE2bNkVERIRKneXLl6NRo0YwNjaGh4cH/v77b6XtT548wZgxY1C3bl2Ym5ujb9++uHXrllKdq1evokePHjA1NUW9evUwadIk5Ofnv/wHUc2V5TxFR0fD09MTtWrVgo2NDfr27YuUlBSlOjxPlet552nGjBmQyWQqDzMzM6X98Pde5SrLz5MQAgsXLoSLiwuMjIxQv359zJ49W6mOVv08CaIK8Mknn4hu3boJACI+Pl4qz8zMFLa2tmLQoEHi7NmzYtOmTcLExER8++23Up0jR44IfX19MX/+fHH+/Hkxbdo0YWhoKP7991+pTnh4uLC0tBQ7duwQp0+fFn5+fsLZ2Vk8fvxYquPr6yvatm0rjh07Jv7880/RtGlTMXDgwHK1RVd99dVXIjY2VqSkpIgjR44IhUIhFAqFtH3Pnj3CwMBArFy5Uly6dEns2rVL2Nvbi6VLl0p1Ll++LExNTUVQUJA4f/68WLp0qdDX1xd79+6V6mzevFnI5XKxdu1ace7cOTFixAhhZWUlbt26JdUJDAwUjo6OIiYmRpw4cUJ4enoKLy8vaXt+fr5o3bq18Pb2FvHx8WLPnj3C2tpahISEVPKnpHnPO0+XL18WRkZGIiQkRPz333/i5MmT4o033hBubm5KdXieKtfzztODBw/EzZs3lR4tW7YUQ4cOlerw917le955EkKIcePGiebNm4udO3eKy5cvixMnToh9+/ZJ27Xt54mhjl7anj17RIsWLcS5c+dUQt2KFStE7dq1RU5OjlQ2ZcoU0bx5c+n5+++/L3r06KG0Tw8PDzFy5EghhBCFhYXCzs5OLFiwQNqekZEhjIyMxKZNm4QQQpw/f14AEMePH5fq/Pbbb0Imk4kbN26UuS01xc6dO4VMJhO5ublCCCEGDhwo+vXrp1RnyZIlokGDBqKwsFAIIcTkyZNFq1atlOr0799f+Pj4SM87dOggxowZIz0vKCgQDg4OYu7cuUKIovNmaGgotm7dKtVJSEgQAERsbKwQoujfk56enkhLS5PqrFy5UlhYWCidu5rg2fO0detWYWBgIAoKCqQ6UVFRSnV4nqres+fpWadOnRIAxB9//CGV8fde1Xv2PJ0/f14YGBiIxMTEEl+jbT9PHH6ll3Lr1i2MGDECP/74I0xNTVW2x8bG4o033oBcLpfKfHx8kJSUhPv370t1vL29lV7n4+OD2NhYAEBycjLS0tKU6lhaWsLDw0OqExsbCysrK7Rv316q4+3tDT09PcTFxZW5LTVBeno6NmzYAC8vLxgaGgIoGj43NjZWqmdiYoLr16/jypUrAJ5/nnJzc3Hy5EmlOnp6evD29pbqnDx5Enl5eUp1WrRoAScnJ6Vz2aZNG9ja2iq9T1ZWFs6dO1dRH0O1p+48ubu7Q09PD+vWrUNBQQEyMzPx448/wtvbW6rD81S11J2nZ61evRouLi7o2LGjVMbfe1VL3Xn69ddf0bhxY+zatQvOzs5o1KgRhg8fjvT0dOl12vbzxFBHL0wIAX9/fwQGBir9UnlaWlqa0j9SANLztLS0Uus8vf3p15VUp169ekrbDQwMUKdOnee+z9PvocumTJkCMzMz1K1bF1evXsXOnTulbT4+Pvjll18QExODwsJCXLhwAYsWLQIA3Lx5E0DJn19WVhYeP36Mu3fvoqCg4LnnSS6Xw8rKqtQ6PE/qz5OzszP27duHzz//HEZGRrCyssL169cRGRkp1eF5qhqlnaenPXnyBBs2bEBAQIBSOX/vVY3SztPly5dx5coVbN26FevXr0dERAROnjyJfv36SXW07eeJoY5UBAcHq73I9+lHYmIili5digcPHiAkJETTTa6Rynqeik2aNAnx8fHYt28f9PX1MWTIEIj/u6HMiBEjMHbsWPTs2RNyuRyenp4YMGAAgKL/ddKLq8jzlJaWhhEjRmDo0KE4fvw4fv/9d8jlcvTr10+qQy+mIs/T07Zv344HDx5g6NChVXk4Oqsiz1NhYSFycnKwfv16dOzYEZ07d8aaNWtw6NAhJCUlaeoQX4qBphtA1c+ECRPg7+9fap3GjRvj4MGDiI2NVbkfXvv27TFo0CD88MMPsLOzU5nhU/zczs5O+lNdnae3F5fZ29sr1WnXrp1U5/bt20r7yM/PR3p6+nPf5+n30CZlPU/FrK2tYW1tDRcXF7i6usLR0RHHjh2DQqGATCbDvHnzMGfOHKSlpcHGxgYxMTFK+yjp87OwsICJiQn09fWhr6//3HOZm5uLjIwMpf+1Plvn2ZljPE9F52n58uWwtLRUmr34008/wdHREXFxcfD09OR5ekEVeZ6etnr1avTs2VOlF4a/915MRZ4ne3t7GBgYwMXFRarv6uoKoGgmavPmzbXv56nMV98RPePKlSvi33//lR7R0dECgNi2bZu4du2aEOJ/F+k+fQFxSEiIykSJnj17Ku1boVCoXDC8cOFCaXtmZqbaC4ZPnDgh1YmOjlZ7wXBpbakprly5IgCIQ4cOlVhn8ODBSjPFJk+eLFq3bq1UZ+DAgSoXDI8dO1Z6XlBQIOrXr69ywfC2bdukOomJiWovGH565ti3334rLCwsxJMnT17sgLXUs+cpKChIdOjQQalOamqqACCOHDkihOB50oSSfp4uX74sZDKZ+PXXX1Vew997Ve/Z81T8nfXff/9JdYontSQlJQkhtO/niaGOKkxycrLK7NeMjAxha2srBg8eLM6ePSs2b94sTE1NVZY0MTAwEAsXLhQJCQkiNDRU7dR+KysrsXPnTnHmzBnRu3dvtVP73dzcRFxcnPjrr79Es2bNlKb2l6UtuujYsWNi6dKlIj4+XqSkpIiYmBjh5eUlmjRpIv2yuHPnjli5cqVISEgQ8fHx4pNPPhHGxsYiLi5O2k/x1P5JkyaJhIQEsXz5crVT+42MjERERIQ4f/68+Pjjj4WVlZXSjK7AwEDh5OQkDh48KE6cOKGyzEDx1P6uXbuKU6dOib179wobGxudXyqjLOcpJiZGyGQyERYWJi5cuCBOnjwpfHx8RMOGDcWjR4+EEDxPla0s56nYtGnThIODg8jPz1fZD3/vVa6ynKeCggLxyiuviDfeeEP8888/4sSJE8LDw0O8/fbb0n607eeJoY4qjLpQJ4QQp0+fFq+//rowMjIS9evXF+Hh4SqvjYyMFC4uLkIul4tWrVqJ3bt3K20vLCwUX3zxhbC1tRVGRkbirbfekv4nVezevXti4MCBwtzcXFhYWIiPPvpIPHjwoNxt0TVnzpwRXbp0EXXq1BFGRkaiUaNGIjAwUFy/fl2qc+fOHeHp6SnMzMyEqampeOutt8SxY8dU9nXo0CHRrl07IZfLRePGjcW6detU6ixdulQ4OTkJuVwuOnTooLKfx48fi9GjR4vatWsLU1NT8c4774ibN28q1UlJSRHdunUTJiYmwtraWkyYMEHk5eVVzAdSTZXlPAkhxKZNm4Sbm5swMzMTNjY2ws/PTyQkJCjV4XmqPGU9TwUFBaJBgwbi888/L3Ff/L1Xecp6nm7cuCHeffddYW5uLmxtbYW/v7+4d++eUh1t+nmSCcGra4mIiIi0Hae1EREREekAhjoiIiIiHcBQR0RERKQDGOqIiIiIdABDHREREZEOYKgjIiIi0gEMdUREREQ6gKGOiIhUHD58GDKZDBkZGS+1n0aNGuHrr7+ukDYRUekY6oioQqWlpWHcuHFo3LgxjIyM4OjoiF69eiEmJkaqc/ToUXTv3h21a9eGsbEx2rRpg6+++goFBQVSnZSUFAQEBMDZ2RkmJiZo0qQJQkNDkZubq/R+33//Pdq2bQtzc3NYWVnBzc0Nc+fOlbbPmDEDMpkMvr6+Km1dsGABZDIZOnfuXObjy8rKwtSpU9GiRQsYGxvDzs4O3t7e+OWXX/D0Wu7nzp3D+++/DxsbGxgZGcHFxQXTp0/Ho0ePpDrp6ekYN24cmjdvDhMTEzg5OeGTTz5BZmZmmdqSkpICmUym9nHs2LEyH1Pnzp0xfvz4MtcnourJQNMNICLdkZKSgtdeew1WVlZYsGAB2rRpg7y8PERHR2PMmDFITEzE9u3b8f777+Ojjz7CoUOHYGVlhQMHDmDy5MmIjY1FZGQkZDIZEhMTUVhYiG+//RZNmzbF2bNnMWLECGRnZ2PhwoUAgLVr12L8+PFYsmQJOnXqhJycHJw5cwZnz55Vape9vT0OHTqE69evo0GDBlL52rVr4eTkVObjy8jIwOuvv47MzEx8+eWXePXVV2FgYIDff/8dkydPxptvvgkrKyscO3YM3t7e8Pb2xu7du2Fra4u///4bEyZMQExMDA4dOgS5XI7U1FSkpqZi4cKFaNmyJa5cuYLAwECkpqZi27ZtZW7XgQMH0KpVK6WyunXrlvn1RKQjynVTMSKiUnTr1k3Ur19fPHz4UGXb/fv3xcOHD0XdunXFu+++q7I9KipKABCbN28ucf/z588Xzs7O0vPevXsLf3//UtsUGhoq2rZtK3r27Cm+/PJLqfzIkSPC2tpajBo1SnTq1KkMRyfEqFGjhJmZmbhx44bKtgcPHoi8vDxRWFgoWrZsKdq3by8KCgqU6pw6dUrIZLJS770ZGRkp5HJ5me75WNL9lp9WfPzr168XDRs2FBYWFqJ///4iKytLCCHE0KFDBQClR3Jysjh06JAAIA4cOCDc3d2FiYmJUCgUIjExUdr3f//9J/z8/ES9evWEmZmZaN++vdi/f7/S+zds2FAsXrxYeg5ArFixQvj6+gpjY2Ph7Owstm7dKm3v0qWLGDNmjNI+bt++LQwNDcWBAwee+5kQ1WQcfiWiCpGeno69e/dizJgxMDMzU9luZWWFffv24d69e5g4caLK9l69esHFxQWbNm0q8T0yMzNRp04d6bmdnR2OHTuGK1euPLd9w4YNQ0REhPR87dq1GDRoEORy+XNfCwCFhYXYvHkzBg0aBAcHB5Xt5ubmMDAwwKlTp3D+/HkEBQVBT0/5V2zbtm3h7e393GO0sLCAgUHFDaRcunQJO3bswK5du7Br1y78/vvvCA8PBwB88803UCgUGDFiBG7evImbN2/C0dFReu3UqVOxaNEinDhxAgYGBhg2bJi07eHDh+jevTtiYmIQHx8PX19f9OrVC1evXi21PV988QX69u2L06dPY9CgQRgwYAASEhIAAMOHD8fGjRuRk5Mj1f/pp59Qv359vPnmmxX2mRDpIoY6IqoQ//33H4QQaNGiRYl1Lly4AABwdXVVu71FixZSHXX7X7p0KUaOHCmVhYaGwsrKCo0aNULz5s3h7++PyMhIFBYWqry+Z8+eyMrKwh9//IHs7GxERkYqBZTnuXv3Lu7fv1/q8QHPP0ZXV9cSj/Hu3buYNWsWPv744zK3CwC8vLxgbm6u9HhaYWEhIiIi0Lp1a3Ts2BGDBw+WrnG0tLSEXC6Hqakp7OzsYGdnB319fem1s2fPRqdOndCyZUsEBwfj6NGjePLkCYCikDpy5Ei0bt0azZo1w6xZs9CkSRNERUWV2t733nsPw4cPh4uLC2bNmoX27dtj6dKlAIB3330XALBz506pfkREBPz9/SGTycr1uRDVNAx1RFQhxFOTBCqyLgDcuHEDvr6+eO+99zBixAip3N7eHrGxsfj333/x6aefIj8/H0OHDoWvr69KsDM0NMSHH36IdevWYevWrXBxccH/+3//r9LaXN76WVlZ6NGjB1q2bIkZM2aU67VbtmzBqVOnlB5Pa9SoEWrVqiU9t7e3x+3bt8u076c/I3t7ewCQXvvw4UNMnDgRrq6usLKygrm5ORISEp7bU6dQKFSeF/fUGRsbY/DgwVi7di0A4J9//sHZs2fh7+9fpvYS1WScKEFEFaJZs2bSBIeSuLi4AAASEhLg5eWlsj0hIQEtW7ZUKktNTUWXLl3g5eWF7777Tu1+W7dujdatW2P06NEIDAxEx44d8fvvv6NLly5K9YYNGwYPDw+cPXu2XL10AGBjYwMrK6tSjw9QPkY3NzeV7QkJCVKdYg8ePICvry9q1aqF7du3w9DQsFxtc3R0RNOmTUvc/uz+ZDKZ2t7M5722uKes+LUTJ07E/v37sXDhQjRt2hQmJibo16+fygzl8ho+fDjatWuH69evY926dXjzzTfRsGHDl9onUU3AnjoiqhB16tSBj48Pli9fjuzsbJXtGRkZ6Nq1K+rUqYNFixapbI+KisLFixcxcOBAqezGjRvo3Lkz3N3dsW7dOpVr1NQpDoXq2tCqVSu0atUKZ8+exQcffFCew4Oenh4GDBiADRs2IDU1VWX7w4cPkZ+fj3bt2qFFixZYvHixSnA6ffo0Dhw4oHSMWVlZ6Nq1K+RyOaKiomBsbFyudlUEuVyutJxMWR05cgT+/v5455130KZNG9jZ2SElJeW5r3t2uZVjx44pDVe3adMG7du3x/fff4+NGzeWO4AT1VQMdURUYZYvX46CggJ06NABP//8My5evIiEhAQsWbIECoUCZmZm+Pbbb7Fz5058/PHHOHPmDFJSUrBmzRr4+/ujX79+eP/99wH8L9A5OTlh4cKFuHPnDtLS0pCWlia936hRozBr1iwcOXIEV65cwbFjxzBkyBDY2NioDPEVO3jwIG7evAkrK6tyH9/s2bPh6OgIDw8PrF+/HufPn8fFixexdu1auLm54eHDh5DJZFizZg3Onz+Pvn374u+//8bVq1exdetW9OrVCwqFQloTrjjQZWdnY82aNcjKypKOsTwh6969e9Lrih/F172VRaNGjRAXF4eUlBTcvXu3zL14zZo1wy+//IJTp07h9OnT+OCDD8r02q1bt2Lt2rW4cOECQkND8ffff2Ps2LFKdYYPH47w8HAIIfDOO++U+ViIajRNTr0lIt2TmpoqxowZIxo2bCjkcrmoX7++8PPzE4cOHZLq/PHHH8LHx0dYWFgIuVwuWrVqJRYuXCjy8/OlOuvWrVNZaqP4UWzbtm2ie/fuwt7eXsjlcuHg4CD69u0rzpw5I9UpXtKjJJ9++mmZlzQRQoiMjAwRHBwsmjVrJuRyubC1tRXe3t5i+/btorCwUKp35swZ0bdvX1GnTh1haGgomjRpIqZNmyays7OlOsXLhqh7JCcnP7ctxUuaqHts2rSpxONfvHixaNiwofQ8KSlJeHp6ChMTE5UlTe7fvy/Vi4+PV2pbcnKy6NKlizAxMRGOjo5i2bJlolOnTuLTTz+VXqNuSZPly5eLt99+WxgZGYlGjRqJLVu2qBzbgwcPhKmpqRg9evRzPwciKiITopxX8xIREb0gmUyG7du3o0+fPqXWS0lJQZMmTXD8+HG88sorVdM4Ii3HiRJERFRt5OXl4d69e5g2bRo8PT0Z6IjKgdfUERH9n2fXenv68eeff1Z5ewIDA0tsT2BgYJW3pyocOXIE9vb2OH78OFatWqXp5hBpFQ6/EhH9n//++6/EbfXr14eJiUkVtqZoPbisrCy12ywsLFCvXr0qbQ8RVW8MdUREREQ6gMOvRERERDqAoY6IiIhIBzDUEREREekAhjoiIiIiHcBQR0RERKQDGOqIiIiIdABDHREREZEOYKgjIiIi0gH/H1vGzWntUJnfAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACoz0lEQVR4nO2deVxU1fvHP8OqIAyyKJAouK8tauFomRqJ5ZJhiZnlbppY7mbuVl/T3NP0W7llWmpSmZaJS31Lka9pZn5TS364haigDCoqCPf3B811Zpjl3pm7nDvzvF8vX8Lcy51zzz33nM95nuc8R8dxHAeCIAiCIAhCUXzULgBBEARBEIQ3QiKMIAiCIAhCBUiEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYQRAEQRCECpAIIwiCIAiCUAESYQRBEARBECpAIowgCIJwyNq1a6HT6XDmzBm1i0IQHgWJMIIgVOfQoUNIS0tDs2bNEBwcjNq1a6N37974888/K53boUMH6HQ66HQ6+Pj4IDQ0FI0aNcJLL72EjIwMUd/7zTff4PHHH0eNGjUQFBSEunXronfv3ti5c6dUt1aJf/3rX/jqq68qfX7gwAHMnDkThYWFsn23NTNnzuTrUqfTISgoCE2bNsXUqVNRVFQkyXds3LgRixcvluRaBOFpkAgjCEJ15s6di61bt+KJJ57AkiVLMGzYMPznP/9By5Ytcfz48Urn16pVC+vXr8cnn3yC9957Dz169MCBAwfQuXNnpKamorS01Ol3zp8/Hz169IBOp8PkyZOxaNEi9OrVC3/99Rc+//xzOW4TgGMRNmvWLEVFmIkVK1Zg/fr1WLhwIRo3box33nkHXbp0gRRbC5MIIwj7+KldAIIgiLFjx2Ljxo0ICAjgP0tNTUWLFi3w7rvv4tNPP7U4X6/Xo1+/fhafvfvuu3jttdfwwQcfID4+HnPnzrX7fXfv3sVbb72FJ598Ert27ap0/PLly27eETsUFxcjKCjI4TnPPfccIiMjAQDDhw9Hr169kJ6ejoMHD8JgMChRTILwSsgSRhCE6rRt29ZCgAFAgwYN0KxZM5w4cULQNXx9fbF06VI0bdoUy5Ytg9FotHtufn4+ioqK0K5dO5vHa9SoYfH77du3MXPmTDRs2BBVqlRBTEwMUlJSkJ2dzZ8zf/58tG3bFhEREahatSpatWqFL774wuI6Op0ON2/exLp163gX4IABAzBz5kxMmDABAJCQkMAfM4/B+vTTT9GqVStUrVoV4eHh6NOnD86fP29x/Q4dOqB58+Y4fPgw2rdvj6CgILz55puC6s+cTp06AQBycnIcnvfBBx+gWbNmCAwMRGxsLEaOHGlhyevQoQN27NiBs2fP8vcUHx8vujwE4amQJYwgCCbhOA6XLl1Cs2bNBP+Nr68vXnjhBUybNg0///wzunbtavO8GjVqoGrVqvjmm28watQohIeH271mWVkZunXrhj179qBPnz54/fXXcf36dWRkZOD48eOoV68eAGDJkiXo0aMHXnzxRZSUlODzzz/H888/j+3bt/PlWL9+PYYMGYJHHnkEw4YNAwDUq1cPwcHB+PPPP/HZZ59h0aJFvFUqKioKAPDOO+9g2rRp6N27N4YMGYIrV67g/fffR/v27fHrr78iLCyML29BQQGeeuop9OnTB/369UPNmjUF158Jk7iMiIiwe87MmTMxa9YsJCUlYcSIETh16hRWrFiBQ4cOYf/+/fD398eUKVNgNBpx4cIFLFq0CABQrVo10eUhCI+FIwiCYJD169dzALhVq1ZZfP74449zzZo1s/t3X375JQeAW7JkicPrT58+nQPABQcHc0899RT3zjvvcIcPH6503urVqzkA3MKFCysdKy8v538uLi62OFZSUsI1b96c69Spk8XnwcHBXP/+/Std67333uMAcDk5ORafnzlzhvP19eXeeecdi89///13zs/Pz+Lzxx9/nAPArVy50u59mzNjxgwOAHfq1CnuypUrXE5ODvfvf/+bCwwM5GrWrMndvHmT4ziOW7NmjUXZLl++zAUEBHCdO3fmysrK+OstW7aMA8CtXr2a/6xr165cnTp1BJWHILwNckcSBMEcJ0+exMiRI2EwGNC/f39Rf2uytFy/ft3hebNmzcLGjRvx0EMP4fvvv8eUKVPQqlUrtGzZ0sIFunXrVkRGRmLUqFGVrqHT6fifq1atyv987do1GI1GPPbYYzhy5Iio8luTnp6O8vJy9O7dG/n5+fy/6OhoNGjQAPv27bM4PzAwEAMHDhT1HY0aNUJUVBQSEhLwyiuvoH79+tixY4fdWLLdu3ejpKQEo0ePho/PvWFk6NChCA0NxY4dO8TfKEF4IeSOJAiCKfLy8tC1a1fo9Xp88cUX8PX1FfX3N27cAACEhIQ4PfeFF17ACy+8gKKiImRlZWHt2rXYuHEjunfvjuPHj6NKlSrIzs5Go0aN4OfnuLvcvn073n77bRw9ehR37tzhPzcXaq7w119/geM4NGjQwOZxf39/i9/vu+++SvF1zti6dStCQ0Ph7++PWrVq8S5We5w9exZAhXgzJyAgAHXr1uWPEwThGBJhBEEwg9FoxFNPPYXCwkL89NNPiI2NFX0NU0qL+vXrC/6b0NBQPPnkk3jyySfh7++PdevWISsrC48//rigv//pp5/Qo0cPtG/fHh988AFiYmLg7++PNWvWYOPGjaLvwZzy8nLodDp89913NgWpdYyVuUVOKO3bt+fj0AiCUA4SYQRBMMHt27fRvXt3/Pnnn9i9ezeaNm0q+hplZWXYuHEjgoKC8Oijj7pUjtatW2PdunW4ePEigIrA+aysLJSWllayOpnYunUrqlSpgu+//x6BgYH852vWrKl0rj3LmL3P69WrB47jkJCQgIYNG4q9HVmoU6cOAODUqVOoW7cu/3lJSQlycnKQlJTEf+auJZAgPBmKCSMIQnXKysqQmpqKzMxMbNmyxaXcVGVlZXjttddw4sQJvPbaawgNDbV7bnFxMTIzM20e++677wDcc7X16tUL+fn5WLZsWaVzuX+Smfr6+kKn06GsrIw/dubMGZtJWYODg20mZA0ODgaASsdSUlLg6+uLWbNmVUqeynEcCgoKbN+kjCQlJSEgIABLly61KNOqVatgNBotVqUGBwc7TBdCEN4MWcIIglCdcePGYdu2bejevTuuXr1aKTmrdWJWo9HIn1NcXIzTp08jPT0d2dnZ6NOnD9566y2H31dcXIy2bduiTZs26NKlC+Li4lBYWIivvvoKP/30E3r27ImHHnoIAPDyyy/jk08+wdixY/Hf//4Xjz32GG7evIndu3fj1VdfxTPPPIOuXbti4cKF6NKlC/r27YvLly9j+fLlqF+/Po4dO2bx3a1atcLu3buxcOFCxMbGIiEhAYmJiWjVqhUAYMqUKejTpw/8/f3RvXt31KtXD2+//TYmT56MM2fOoGfPnggJCUFOTg6+/PJLDBs2DOPHj3er/sUSFRWFyZMnY9asWejSpQt69OiBU6dO4YMPPsDDDz9s8bxatWqFTZs2YezYsXj44YdRrVo1dO/eXdHyEgSzqLk0kyAIguPupVaw98/RudWqVeMaNGjA9evXj9u1a5eg7ystLeU++ugjrmfPnlydOnW4wMBALigoiHvooYe49957j7tz547F+cXFxdyUKVO4hIQEzt/fn4uOjuaee+45Ljs7mz9n1apVXIMGDbjAwECucePG3Jo1a/gUEOacPHmSa9++PVe1alUOgEW6irfeeou77777OB8fn0rpKrZu3co9+uijXHBwMBccHMw1btyYGzlyJHfq1CmLunGUvsMaU/muXLni8DzrFBUmli1bxjVu3Jjz9/fnatasyY0YMYK7du2axTk3btzg+vbty4WFhXEAKF0FQZih4zgJNgcjCIIgCIIgREExYQRBEARBECpAIowgCIIgCEIFSIQRBEEQBEGoAIkwgiAIgiAIFSARRhAEQRAEoQIkwgiCIAiCIFSAkrUyTHl5OXJzcxESEkJbfxAEQRCERuA4DtevX0dsbCx8fOzbu0iEMUxubi7i4uLULgZBEARBEC5w/vx51KpVy+5xEmEMExISAqDiITraB48gCIIgCHYoKipCXFwcP47bg0QYw5hckKGhoSTCCIIgCEJjOAslosB8giAIgiAIFSARRhAEQRAEoQIkwgiCIAiCIFSARBhBEARBEIQKkAgjCIIgCIJQARJhBEEQBEEQKkAijCAIgiAIQgVIhBEEQRAEQagAiTCCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVEAzIqxHjx6oXbs2qlSpgpiYGLz00kvIzc21OIfjOMyfPx8NGzZEYGAg7rvvPrzzzjsW5/zwww9o2bIlAgMDUb9+faxdu7bSdy1fvhzx8fGoUqUKEhMT8d///tfi+O3btzFy5EhERESgWrVq6NWrFy5dumRxzrlz59C1a1cEBQWhRo0amDBhAu7evStNZRCycOECsG9fxf8EQRAEITeaEWEdO3bE5s2bcerUKWzduhXZ2dl47rnnLM55/fXX8fHHH2P+/Pk4efIktm3bhkceeYQ/npOTg65du6Jjx444evQoRo8ejSFDhuD777/nz9m0aRPGjh2LGTNm4MiRI3jggQeQnJyMy5cv8+eMGTMG33zzDbZs2YIff/wRubm5SElJ4Y+XlZWha9euKCkpwYEDB7Bu3TqsXbsW06dPl7GGlMcTREtBQQEuXryIBQsKUacOh06dgDp1OCxYUIiLFy+ioKBA7SISBOEGntBPER4Mp1G+/vprTqfTcSUlJRzHcdwff/zB+fn5cSdPnrT7NxMnTuSaNWtm8VlqaiqXnJzM//7II49wI0eO5H8vKyvjYmNjuTlz5nAcx3GFhYWcv78/t2XLFv6cEydOcAC4zMxMjuM47ttvv+V8fHy4vLw8/pwVK1ZwoaGh3J07dwTfo9Fo5ABwRqNR8N8oxccfc5yPD8cBFf9//LHaJRJPfn4+N3PmTG7MmAWcTlfGARz/T6cr48aMWcDNnDmTy8/PV7uohIzk5+dzubm5XG5uLvfLL3ncli353C+/5PGf0fPXHqZnOn/+Nc7Hp/yffqqcmz//Gj1TAZw/z3F791b8T7iG0PFbM5Ywc65evYoNGzagbdu28Pf3BwB88803qFu3LrZv346EhATEx8djyJAhuHr1Kv93mZmZSEpKsrhWcnIyMjMzAQAlJSU4fPiwxTk+Pj5ISkrizzl8+DBKS0stzmncuDFq167Nn5OZmYkWLVqgZs2aFt9TVFSE//3vf3bv686dOygqKrL4xxoFBQU4fPgShg3jUF5e8Vl5OfDKKxwOH76kKctRSUkJAODq1QhYvwoc54OrV8MtziM8j4KCAixbtgwffvghhg8/hIcfjsLzz0fg4YejMHz4IXz44YdYtmyZptq1t2N6pu+99xkmTAhFebkOAFBersOECaF4773P6Jk6YNUqoE4d/OMVqPidkA9NibBJkyYhODgYEREROHfuHL7++mv+2P/93//h7Nmz2LJlCz755BOsXbsWhw8ftnBZ5uXlWQgjAKhZsyaKiopw69Yt5Ofno6yszOY5eXl5/DUCAgIQFhbm8Bxb1zAds8ecOXOg1+v5f3FxcQJrRhlMndv77+/kOzYTZWU6vP/+d5rs3MLDC6DTlVt8ptOVIzz8qp2/YBuTi/XixYs4fPgSvviiQjibPtPa85ETk8A2GkPwzTfdeDHOcT745ptuMBpDLM4j2EdrkytW3KVamGCzUldSoqoIe+ONN6DT6Rz+O3nyJH/+hAkT8Ouvv2LXrl3w9fXFyy+/DI7jAADl5eW4c+cOPvnkEzz22GPo0KEDVq1ahX379uHUqVNq3aIoJk+eDKPRyP87f/682kWywNRpORMtrHRuQtHrr6N79+38Pel05ejefTv0+usql0w8ZNlxDWcDNqE9WJ5csRaLqoUJtqda6PzU/PJx48ZhwIABDs+pW7cu/3NkZCQiIyPRsGFDNGnSBHFxcTh48CAMBgNiYmLg5+eHhg0b8uc3adIEQMVKxUaNGiE6OrrSKsZLly4hNDQUVatWha+vL3x9fW2eEx0dDQCIjo5GSUkJCgsLLaxh1udYr6g0XdN0ji0CAwMRGBjosD5YwCRaTJYDpUTLhQvAX38BDRoAtWpJe+2WLX9FvXqncfVqOMLDr2pSgAHOLTv16p2GXn9dc0JZbkwDtrkQY2XAJlxDrX7KGSbBYzSGYPHi0eA4S3fp33+vhl5/HWlpaYiIiFCkTNYTbHvvgVr9xoULwLBhsLLQAcnJ0o8FSqOqCIuKikJUVJRLf1v+z9O4c+cOAKBdu3a4e/cusrOzUa9ePQDAn3/+CQCoU6cOAMBgMODbb7+1uE5GRgYMBgMAICAgAK1atcKePXvQs2dP/nv27NmDtLQ0AECrVq3g7++PPXv2oFevXgCAU6dO4dy5c/x1DAYD3nnnHVy+fBk1atTgvyc0NBRNmzZ16X5ZQynRUlBQgJKSEmzcWBUTJ+pRXq6Djw+HefOM6Nv3FgICAiTrqPT666p20KZ7BYDcXB/k5PghIeEuYmMr2rqYe3Vk2VF7EJIb83q0ha16ZHXA9iZceW7OYHFyJcRdqtZEicX3oKCgAAcPAuXlls++rAzIyipA1apQTKzKgaoiTChZWVk4dOgQHn30UVSvXh3Z2dmYNm0a6tWrxwufpKQktGzZEoMGDcLixYtRXl6OkSNH4sknn+StY8OHD8eyZcswceJEDBo0CHv37sXmzZuxY8cO/rvGjh2L/v37o3Xr1njkkUewePFi3Lx5EwMHDgQA6PV6DB48GGPHjkV4eDhCQ0MxatQoGAwGtGnTBgDQuXNnNG3aFC+99BLmzZuHvLw8TJ06FSNHjtSEpUsocosWoTPGfv368cJbq5juFQCOHHmoUifYsuWvACB4duytlh3zegQqLIJXr0YgPLzAoq3aqkcWB2xvwZ3n5gy1J1f2YPUdZek9MB8DdLrRlepq//51OH5cWauh1GhChAUFBSE9PR0zZszAzZs3ERMTgy5dumDq1Km8qPHx8cE333yDUaNGoX379ggODsZTTz2FBQsW8NdJSEjAjh07MGbMGCxZsgS1atXCxx9/jOTkZP6c1NRUXLlyBdOnT0deXh4efPBB7Ny50yLQftGiRfDx8UGvXr1w584dJCcn44MPPuCP+/r6Yvv27RgxYgQMBgOCg4PRv39/zJ49W4Ha8hyczRizshLRufNufPrpp5p8Cc1n/vn5+QCkcyOyOKNVAvP6cSRm7dUjqwO2p+Puc9MiLL+jrLwHpuftrK603C40IcJatGiBvXv3Oj0vNjYWW7dudXhOhw4d8Ouvvzo8Jy0tjXc/2qJKlSpYvnw5li9fbvecOnXqVHJ9Eq5ha8YIAAcOGJCYmOWy6T4gIEDS88Rge+Yfj5s3gyRzI7I0o1UaZ2KWYBNveG6FhYX8z/XqnUavXlsBcIiLu+Ax9ygHntqfaUKEEd6NXn8dBkMmDhxoZ3XEvRiniIgIpKWlSR6HIgR7M3+gHAAH4N4KJaEuioKCAt6iZoKVGa3SCImJKygogNFoFHQ9OYQ4URkpYhnVnFw5o6CgAJs3bwbg2OKndeRaROWJ/RmJMEIwanZuiYlZOHDAAPOsKlLET6jtwrSe+VfcXzl0Ok6Ui0JoTI234Czexmg0YtOmTU6v07t3b9SoUUP1duItSBEnpebkyhlCVy9rEbkXUXlqn0YijBCMmp2bXn8dPXqwGT/hDrZm/oAPevXajODgYsFmd6ExNSY83bLjLIaktLTU4nx7HXxYWJiig7UcKwS1hFRxUqzXEWurl92dYMuddsOTrYYkwghRqNm5eWJMgL2Zv734kPz8fIcDsbMZdkpKCmJjY5kfpKRAaHthpYO3tmbaQ41FKEqKQ098z60RYvFTcqLk7gRbrrQbhYWFHmk1NIdEGKEpPC0mwNnM39pCk56eDsD+QOysE4yMjPQKAWbCWXthqYO3HqDsWeeUXgkmtzj0xlhGZ+99amqq4u+pFN8nZdoNU/zc1avxTFkNpYZEGMEsrLjM5LYC2Jv5u7JUn9XcQ3JjekZCA+39/Cq6PtbcQiZYss7l5uZafCalOBQby8hKnyAFjix+er1exZK5jpRpN4Rm8Qe03S5IhBHMEhERgX79+uHTTz91eq5cL6GcSSTNsZ75u2qhYTn3kFwItdT07t0bYWFhCAgIENXBKw0r1jlb9Sq1OBQay+ipbnRPtPhJ7U5m0WooJSTCCKapV6+eqiud5Eoi6Uw0umOh8YaYGnOE1n1YWBhiYmIAABcvXgTApmhlxTpnXa8XLsTIJg6dCU9vc6NrHanFpSdaDU2QCCNkQ6q9EFnofKW2TtgLhM3Pz0d6errbFhpPnGELRexSdtZEKyvWOXPX7pEjD2Hbtm4wTxEDSCcOWRGecsNyDjPW8dQ+jUQYIQtS74WoNnIMEo7uW6yFhjr3CoS4y2wlabXXwatRXyxY5woKCvg8aqYJiLUAA6QTh6wIT7lhOYcZoQ4kwghZEJqUUCt7fqkxSIix0FDnLsxaKSZ+TM0krWpb58zbke1cdpBUHLIgPJXCE99BmgS6DokwQlY8xc2g1iAhxgTviZ27GIS0NTHxY0rXp/UAxYp1Ljc3BtZbaQHlGDz4Y9SqdVGy71FbeGoJ1pL60iTQdUiEEbLiSW4GJQYJoQNscXExH1xu7zre1uG50tZY2gqFxYHMaAzB7t1JsBRgHJ58cnclASaFOPTUuB8pUWrFtlik/i5vsa6RCCNkxdPcDHIPEkIG4uLiYkFpO7QSbycVYtsaK7m4zGHtedl2ReoQG3svd5g76SO0NNCyYn2Sa8W2O0i1CMscFiclckAijJAdLbsZlBgkxHbu1hYwVjKrq4V53Ttqa+b5wVjJxcU6QqyL7uTv0spAy+KWUqy0YTkXYan93JWARBghCdZCwlO2IZF7kHC3c2fRmqM0Yp6RScB6Sqyi3DizLvbu3dvtgVILG6SzuKUUK23Y0xZhKQ2JMMJthAoJrSLnICG0Y7J1HiszYRYQ+4w8KVZRbhxZF8PCwtQrmEiksmaxMvFhrQ2zIgq1RuV1xwQhEluzxJyceBiNIU7/loVYD5YQU3eOOj3CMSYLj05XEbOi9VhFqbG1UjMh4Wyl+tHC+1tQUICLFy/a3APT1rvmaGJkb+Ij5H2VGtbasEkUmkMTG+eQJYyQFGf7v0VGRvLnshDrwRJiZ9iszYRdRcmAZzHxY3LCSpC3PbQSq+UMe9YvV61ZrFl7WIi3LSwsBOB5i7CUgkQYIRlC9n8z7d1HWOKKa9ETOj2lA55ZEBcsBnnbgnWBJQRX3Pjm8azWbYHFiY+a8bYFBQXYvHkz/3u9eqfRq9dWABzi4i5oqi9SCxJhhGS4M0tk3TIgN2LqzjTzBNiYCdtC6PN0JybOVdRuR2rcM1GB0RiC//2vmcN3LT093eJYWloa/zMLEx+W0noITZdB2IdEGCEZrs4StWIZkBOhdWc98wTYyaxuQszzJNhKGOvJmIsE6x0AHPVT1mJY7YkPC9Zca2iRkOuQCCMkw9VZIovLv5VGaN0JrYPU1FTVBKu7Kz69SZCQ9UAZrEVChQCrEGKmegeAnJx4m22PtS2lWJuMCrHka2ERhxqQCCMkxd1ZorcNSu4GitsTLXq9Xr5Ci0SosPK2Z0/WA+Wwl/k/OXknmjb9A9nZ9bF48Wi7bY9F6xNLOLPkqzUp1EKYC4kwwm2kmiV646DkTueuBdEitIze+OxZW2nnydgTCU2b/gEAgtqe2oM1yziz5KsxKWR1j01rSIQRbiPVLNFbByVXOgAtiBYxZVTj2as9S2ZxpZ2n4kgk5OTEe2W/IzVqx8pZw+Iem7YgEUZIghSDFQ1KwtGCYBVTRqWfPQuLQVhYaScHaotb6+8yYU8kUL9jiTvPj8Xt6VifsJIII5jBUwclOdDCwCGkjKZB0tmzlzqoV800EawkjJUDFsStOY6s9Pn5+UhPT6d+xwyxz4+ldBn2YH3CSiKMYArWTNqswsLAYW/GbEp2KaSM1oPk9OlXcOaMH+Lj7yI29mEAD/MduGnzbVuwEGArFDmDvNW2Qqklbl25b08Ww64idqW6VG1ZznbL+oSVRBghGLleFNaWf7MMKwOH0BmzkDKat5mYGKBVK9e+yx3ritKpMeQQQqxZoZTC1fumFY+OcRRHZb6rAOBePcndblmYsDqCRBghCDlfFOoM7WNL+Pbu3Rt3794FAPj7+1daeeRuhyhlpnvr/UJdKaPc1hV3VpmqbXkyh8VM/EqIW3fu2xv7FCE4i6Oy3lUAcF0kKZEnkmUPC4kwQhByvyjUGVZGacuGHJnuWd8v1J2gXW+1PAlFrRQq3pbwVw5ciaOSQtzL2WZYXDQAkAgjXEAL+ak8ATksG44sN9YuBjHfp9WBz52gXRYtT+ao+UzUWpFGfZM0OIqjkqtdSd1mtLBoACARRoiE9eW+LOOu68rdzk+o5UYsSg98Ug4CrAftuooSz8RWezYJeTVWpFHfJB324qiys+vL1q6kbjNaCXMhEUaIwtmLkp+fz0TDZg13XVdSDKpiLTJCxI7SA5+QYGEh7U+O1BisWAOVeCbO2rMa4pb1VARawzqOCgC/tRPgXrsyF/Cm91aONqOFcYhEGCEKZy+KKWDTW+Ng7OHuptZKz/CFij6hA58UAexigoWdtT+hqTGEtmGW3GBKiBFn7VnpvG+A51o1lcTRSnWpdhawJ+BZX8UoFyTCCFFYvyhAOQyGzErnqb0VhBqIibcSYzWRa1C1VwYxok/IwCdVALuYehDS/pylxhAKa24wVsRIy5a/Ii2tAYqKargsbsWg1iDO0gpZd7HlwjMltZWqXTla5MXyKka5IBFGiMb0omRlJSIz04ADB9ohM9Pg1UGwYuKtxFpN5BhUHZVBiNgR485zN4Dd9F1qiAshwpoVN5hauw84onnzMMTEyCtA1Myd54krZB1tSSS1yLXXD3lTnkgSYYQgbL0AmZkGZmb/aiNUaLhiNZG683NWBiFiR4w7z1GmeyGYf5den4tZs2L5ekhK2o2rVysGDanbndABlhXLk9QuVjGoGQ+nZgA26ytkpUAukeusHzLPMagla6JYSIQRgjB1dLm5uUhPT2dm9q81xNSbXJ2fszIItaS46s5zZcA2fdewYRdhNC7G1avhyM2Nxe7dSbLFYQkdOFmyPEnlYhUDC/FwnjpAs4BcItdZP8R6jkGpIBFGCMY8Uzors38lkSLmS0y9ydX5OStDSkoKhg2LlMWSIsWAbarPTz55mQlLrJz1xTqsxcOpjRoWQSVi0uRow944htiCRBjhEs5m/2LSBWgBd2K+kpJ2Izb2It8xi3EtSll3QmOGYmNjERERIbklRcoBmyVLrGnGrpTliSVYeg6uIpWIUcMiqOWYNG9dDWkNiTDCZRy5yMSkC9AC7sR8ZWQ8CUBn0TGrsfG2EjFDSiXwVGMWzUoeMBYQuliC9WBqqUSMWhZBrcekeeNqSGtIhBGicJRHxh6sdgByYEtoADoAlTvmgQOftNjcWgmroZwxQ0ok8FRrBSALcU8sYS7o77uvCJMm6VFWpoOvL4e5c4vQt+8LmrCCSyViWLEIsjJRcGRdNBqNFr/bG0NYF/BSQSKMEIV555uTk4OMjAz+mL0OoLCw0OMCLMXEfJnjyYGnSiTwVGMFIMU92cZUx+PGAampwOnTQP36OtSqFQYgTM2iKQ4L8U1KThSciaxNmzY5vUbv3r0RFhZm85gWBLxUkAgjRGN6OcyD0R11AHfv3lWlnNYoEftROZktB5MlDPDOwFNzpEjgqfQKQFasHCxTq1bFP60j1pLESm42JScKUu1BGxYW5lGTUFchEUa4jdEYgm3busOe240FlIr9SElJQUoKUK+e/TQKrNSJWiiRwFMKPCXuSSo8KTO8LVyxJKmZm80cJScKcuxB682QCCPc5vz5OJhbe4CKDuD8+VrQ60/I/v1CBgelYj8iIyMREBDAxzkkJJxF8+bHFQ/CZwGtd7724p58fDhMn56LlJQn4efnh5KSEj4hrRpCRAlxpOVVeEJwx5KkRm42a9R0hzp6zymW0jkkwghNI3RwSE1NtfjdVYHgSjZ5W2jdauAMT+l8zeOeOne+hgULvv7nWV+H2QJgC5QUIkqJI62vwnOG1l3OaqV7cPSeUyylMEiEEW4TF3ceQDkA806sHHFxF2T/bqGdfmlpKf+zKwJBbOyHJwssZ3hq5xsZeRsJCWednqekEPF0cSQXJuuhKa6VhcB6V1Bz30xn77nWha1SkAgjXMbf3x9AhTDp0WM7tm3rhgohVo4ePe4JE9N5SuDMwuWqQJAq9sPT42oA7VsVCOdo2dVsy3qodmC9q6hpdXf2nmtV2CoNiTDCZfR6Pf+zo1mY+XlCcUWsCLFwuSMQ3I398PS4Ggpk9w607mq2169Y92EVefzY33pKrbI5e8+ldJF68uSVRBjhMkITt4oddMWIFRNCLVxqzs7kch2x0kHJkcCTlXuzBYvWILnL5KmuZhPmfZjYPH4st1U5ECKypHCRevrklUQY4TJymcKtr2dvYDE/T6iFi6X9yuzdl/Vm4CZs1SVrHZSUCTxZuzdzWLQGKVEmcjXbhqW2KrcYFBqHJlUyVk+PeyQRRriF1PsMAsKTwJrjzMLl53evqau1d6M5ju4r3d6yO1TuxFnuoNxN4MnqvbFoDVKqTJ4Y5yOF9VBoG8zNza10rpQWMiXEoNqrv1m0QLsDiTBCFYR0FmIGFmcWrrCwMGbSRrgzYGp1tudJsGgNkrtMrGSGlxqlLZr2JlhSWciUmrio5fZj0QLtLiTCCFUQ4nIUMrCIWaLNSryAnAOmp80SWYLFhQdKlYmVzPBSIqf1UOx7SJMr57BogZYCEmGE6tib3XhqYlQh9+WKmPLEWaI5agtMqRceSBG7I8diCEffZUKtzPBSInQyJOQ5mcPSe6j2OyMlLFqgpYBEGKEqzmY3zoLotbgiydl9udKJe+os0YSjOhGzkMFdpFp4IGXsjpSLIbwBMdZDoc+pd+/eAJy/h0qKIpbEoBR4YjwiQCKMUBlnsxtHLkaj0YhNmzY5/Q5Wli4LcZ26KqY8dZYIOK8TMQsZpMSdhQdyxe64uxjCGxBjPTTtCeqMu3fvAnD8HmZn11dMFKk5KZNrYszSynYpIRFGqIqQ2Y29/GMcx1n8LiSVhZo4cp3m5+cjPT3dqZgyt/qYizpPnSUC7glMVp69FGjR6ssqclkP7b2H/v4liooipSZl1m1SjomxmlszKQGJMEJVnM1uOnbsiOrVq/Pn+/v7Q6/Xo7i4GMXFxfznWjG9O+t4nIkpa6tPv379ALC9as1V8SDUbeQNsJSHytMQYz20N9Ez38LN1ntYWhqoqKVaiXdG6Ap3dyfGWoz7FQOJMEJ1HM1u9u3bV+n8fv364dNPP+V/94R4KKEpAKwJCgpyumqtuLgYJSUldl0rcnZg7ogHR26jadNyAWjj2QrBWayQ3KkHyMrmHEcTPb1eb/M9DA29jAMHfoXRGKLIRELJVCLO2pqUE2NPbnskwgjJEdKhC93yyBbmFjDAM+KhrGd7aWmnsGFDFi9KHQ3SjlatFRQU4MMPP3T6/XJZUNwVD/bcRr6+vjC/LS2vAlPbiktWNucImejZeg8LCoADB5SzVKuZSsT8HQSg+YmxUmhGhPXo0QNHjx7F5cuXUb16dSQlJWHu3LmIjY0FAMycOROzZs2q9HdBQUG4efMm//uWLVswbdo0nDlzBg0aNMDcuXPx9NNP88c5jsOMGTPw0UcfobCwEO3atcOKFSvQoEED/pyrV69i1KhR+Oabb+Dj44NevXphyZIlqFatGn/OsWPHMHLkSBw6dAhRUVEYNWoUJk6cKEfVMIWYDt3axGyKizIhdGD197/jEe4q644xIeEsAPcGaVazzruCudvI3KintohxB1etuFKKTk9qI3Lh6kRPDVGkRioR63fQYMjU/MRYKTQjwjp27Ig333wTMTEx+PvvvzF+/Hg899xzOHDgAABg/PjxGD58uMXfPPHEE3j44Yf53w8cOIAXXngBc+bMQbdu3bBx40b07NkTR44cQfPmzQEA8+bNw9KlS7Fu3TokJCRg2rRpSE5Oxh9//IEqVaoAAF588UVcvHgRGRkZKC0txcCBAzFs2DBs3LgRAFBUVITOnTsjKSkJK1euxO+//45BgwYhLCwMw4YNU6K6VEPMvo+ONscVOrCanwdwAHQOXXhac7so5WpVMs2DlGjdFe3K4K5l0alV3Imx8rT8atbYegcPHDB4xMRYCTQjwsaMGcP/XKdOHbzxxhvo2bMnSktL4e/vj2rVqllYon777Tf88ccfWLlyJf/ZkiVL0KVLF0yYMAEA8NZbbyEjIwPLli3DypUrwXEcFi9ejKlTp+KZZ54BAHzyySeoWbMmvvrqK/Tp0wcnTpzAzp07cejQIbRu3RoA8P777+Ppp5/G/PnzERsbiw0bNqCkpASrV69GQEAAmjVrhqNHj2LhwoUeL8LMEZvbyfSZ0IHV+jxAB6Acgwd/jFq1Ksc/adHtIrWr1Z4oVirNg9RuQ626ol3NdO/s3cjPz3dbOGvZtSs1nrpdk5TYegcBHxgM+5GZafCodBJyoBkRZs7Vq1exYcMGtG3bll+VYs3HH3+Mhg0b4rHHHuM/y8zMxNixYy3OS05OxldffQUAyMnJQV5eHpKSkvjjer0eiYmJyMzMRJ8+fZCZmYmwsDBegAFAUlISfHx8kJWVhWeffRaZmZlo3769xYuZnJyMuXPn4tq1axar/cy5c+cO7ty5w/9eVFQkvFIYw53cTkIHVnsvf2mpZYdoeg5adLtIucrJVQuKVPUh9PvFxBSytIWQGOwtOvDx4TB9ei5SUp6Ev78/v6DCNEFx9m6Y3itXhTNZ2SzxxO2apMbeO5iYmIXExCybC66Ie2hKhE2aNAnLli1DcXEx2rRpg+3bt9s87/bt29iwYQPeeOMNi8/z8vJQs2ZNi89q1qyJvLw8/rjpM0fn1KhRw+K4n58fwsPDLc5JSEiodA3TMXsibM6cOTbj2rSIUCFla9YtVHg4Oy8lJQWxsbF2O0gtzPilSlCotttO6Pe7ElMo93Y9cmG+6KBz52tYsODrf9ruddibowh9N1wRzmq3EVbxdHeiuzjro2y1HVYnR2qgqgh74403MHfuXIfnnDhxAo0bNwYATJgwAYMHD8bZs2cxa9YsvPzyy9i+fTt0Op3F33z55Ze4fv06+vfvL1vZ5WDy5MkWlrqioiLExcWpWCLXcZS0MCcnHuHhBXYzSAsVHs7Oi4yMtDsIsz7jlzpBoRBRLKcoFSrKxVgrTTGFnrBdT2TkbX4hhiPkzBquVdcuoQ5C+yhrUlNTmZ4cKY2qImzcuHEYMGCAw3Pq1q3L/xwZGYnIyEg0bNgQTZo0QVxcHA4ePAiDwWDxNx9//DG6detWyaIVHR2NS5cuWXx26dIlREdH88dNn5kHjV+6dAkPPvggf87ly5ctrnH37l1cvXrV4jq2vsf8O2wRGBiIwMBAu8e1hK3B4v77j2HVqiH/dPTlqIjhqhDQ1rNuRy91UFAQ/7MrAkULM36pExQ6s6DIJUqVcht6y3Y9HTt2BLCPb/P+/iUoLQ2E0RjidtulpLiEGKz7KKGr2/V6veJlZRlVRVhUVBSioqJc+tvy8nIAsIihAiriuvbt24dt27ZV+huDwYA9e/Zg9OjR/GcZGRm8iEtISEB0dDT27NnDi66ioiJkZWVhxIgR/DUKCwtx+PBhtPrHLr13716Ul5cjMTGRP2fKlCn8ogHT9zRq1MiuK9ITMRdI/v4lZgIMAKxjuSxn3SkpKYiMjKx0jkl4uCNQtDLjl2K2KCSwWE5RKmafPltowWWsJKb+Q6+/LtlehO4Gn2ttxTEhHVr1NLCEJmLCsrKycOjQITz66KOoXr06srOzMW3aNNSrV6+SFWz16tWIiYnBU089Vek6r7/+Oh5//HEsWLAAXbt2xeeff45ffvmFT2ap0+kwevRovP3222jQoAGfoiI2NhY9e/YEADRp0gRdunTB0KFDsXLlSpSWliItLQ19+vThc5b17dsXs2bNwuDBgzFp0iQcP34cS5YswaJFi+StKAawl4Q1JyfeRhC9Jeaz7sjISIcpLNzp1L1pxu8osDggIAHp6b/KLkpd3aePlY5cDZHhTHxKKZzdCT7X4opjQl604GlgCU2IsKCgIKSnp2PGjBm4efMmYmJi0KVLF0ydOtXCfVdeXo61a9diwIAB8PX1rXSdtm3bYuPGjZg6dSrefPNNNGjQAF999RWfIwwAJk6ciJs3b2LYsGEoLCzEo48+ip07d/I5wgBgw4YNSEtLwxNPPMEna126dCl/XK/XY9euXRg5ciRatWqFyMhITJ8+XRPpKcwHnNxcH+Tk+CEh4S5iYyssj84GHHsmalvCByiHTgfFlzDLGVfDIvYCiy9erHimSopSoW5DVjpyNUSGEPEptXB2NfhciyuOTZAFTx604mlgBU2IsBYtWmDv3r1Oz/Px8cH58+cdnvP888/j+eeft3tcp9Nh9uzZmD17tt1zwsPD+cSs9rj//vvx008/OS4wY5gPOI4GAmcDjq1j9oSP0GBOKZA62F3rsJwDiZWOXGmRIVR8ihHOJDYqQxY8+WDR08DyO6AJEUYog6mROhsIXB1w7AkfpZYwSx3srnVYzoHEYkeuBM7EpynGVKhwVlpsiInhU3Ng1LIFj3VY8zSwLrhJhBGVkNIKIXSj7t69eyMsLIz/G7leBm8RWEJhLQcSy9Y5ORG6ijQqKkqUcFZSbIiJ4WN9YCTEw6qnQcxWempAIoyohJRWCLI+EWJwZJ0LDm6I0tIE+Pn58ZnkzVGiHcm1WtPVVaQsCGdAfAwfa5Yoe8+1sLDQ4d9R33UPJft6V62orCz2MYdEGFEJqc3J1EkRYrBlnauwnGxy+rdyWk7k7sBdXUUqBrlEJCsxfK7g6Llu3rzZ6d8raa1jObYJUKavd9WKyspiH2tIhBE2EZMB2RNhvbPzNlyxnEj5DJXuwOVIPiuniHRmPTftfWmvztXKByfFc1XKWkcu3ApcdS+yOlEgEUbYxV78lqdDnZ32kfoZytmBKyH45RKRQmP4zDOpp6WlWVxDTReRmOeqduJg1ly4riB1WxfTdlhd7EMijJAN6xeusLAQd+/e5X/39/e32MKCFesS64GchPMBUaoBS+5tl5QS/M7EhslSZY2YvID5+fmoV2+xU+u5eZ2r7SISOjCzGEuktigUi9RtXWzbYW3VpgkSYQSP0IFEyHnWL5x1h2GvA2HNusRi5+vtKPlM3N12yRlKWTeciQ1zS5U1YvICirWeq+UiEmrBA9QXiraQ+x2Qwzor9eTWlbbDYpgNiTCCR8rVLebXsO4w7r//GI4du99mB8KSdYnFztfbcfWZuGM1UCJgXi7EiA17uPpOCqlztVxEQnLkGY1GbNq0iblYIrn7JSWss1KISKFtR2iaJLXS3pAIIyyQYw886w7jt98eAKDjf2dV2LDW+RKuPRMprQZyBMybI7WLScjeoXLgrM5ZyAcnNEee0kLRXhjHtWvXAMjfL8kdjiGViBQ6sWA9TZJLImzfvn3o2LGj1GUhGMDdvSOtsdVhmASYCbmFjaumdVYDOb0Zsc9ES9ZMuVxMzvYONSGVABRS5yzv1mCNkrFEQqxQSvZLcrRJKUWkUPciC+3IHi6JsC5duqBWrVoYOHAg+vfvj7i4OKnLRaiAVHtHmmN7424O5kLMvAMxGo2IiYmR5H4A57FpJmzdE6uBnN6Iq5YTrVgz1RaLUg62Quuctd0arFEjA7wQ65JS/ZJcbdJdEcm6e1EsLomwv//+G+vXr8e6deswa9YsdOrUCYMHD0bPnj01c+NEZeTYO9JWh2EeEwaUIylpN/8Sbdq0SdLgfEexaUJi0VgM5PRGXLWcaMWaqaZYlHqw1UqdO4MFN5a9BU316p3G6NG2V6IKHYPteQhMK2XlapPuikgWnouUuCTCIiMjMWbMGIwZMwZHjhzBmjVr8Oqrr+LVV19F3759MXjwYDzwwANSl5VQCKlfPltCpkaNy9i9Owkc54Pdu5NQteptWYPzxQw0njbT8hTEWE5YiDkSg5rCRar3XYo6Zy1JspoDuZgFTSkpKYiMjBRcP2q7Pd2d3GpFYAnB7cD8li1bIjo6GhEREXj33XexevVqfPDBBzAYDFi5ciWaNWsmRTkJBZHj5TMXMkZjCC/AAGVcL2IGGk+baXkjWok5kkMsihUyUr3v7ta50FV5vXv3RlhYmM1jLDxTKRC7oCkyMlJUGIeQ4Hup3Z40ubWNyyKstLQUX3/9NVavXo2MjAy0bt0ay5YtwwsvvIArV65g6tSpeP755/HHH39IWV5CAaR4+Ry9SGq4XsQONJ7QkXs7rMccAdKLRTHpBeQQgO7UuVALuLP9HFnLNWgPW2LZkStQrgVNjsI0pAzHoMmtbVwSYaNGjcJnn30GjuPw0ksvYd68eWjevDl/PDg4GPPnz0dsbKxkBSWURQpzsfULl5OTg4yMDFVcLxRkT7CKlGJRTPLXmJgYpq2Frq7WZCnXoD2ciWWxC5pcRUiYhpQWK28TWEJwSYT98ccfeP/995GSkoLAwECb50RGRmLfvn1uFY5QF3f3jrT3wrkjiNyJGWExyJ61GBjCs3AmZFi1FgpZram1bXvMcSYUnS1okmoS6cwrYYo1s4b6JelwSYTt2bPH+YX9/PD444+7cnnCC3BFELmTbsKEu8JSSmijcLbRukDW6pZbQqwzWr03e9jqy2z1kZ067ZU0TYYzr4TYWDNCPC7HhJ06dQrvv/8+Tpw4AQBo0qQJRo0ahUaNGklWOEJZpNw7UghiBZEr6SaUvicx0EbhbFJQUIDLly87jT0C2BXIaucdcwdn1hln92a+GTnrQhlw3JcNHPgk/Pz8cPfuXf58f39/6PV6/nd37lGMV0LrkxJWcUmEbd26FX369EHr1q1hMBgAAAcPHkTz5s3x+eefo1evXpIWklAGuQMnpRJEQjph82z/qampKC0thZ+fn81VVSx0Hp42s9cqQq2TJlgVyFpJUmsLZ9YZZ/dmvRk5q0IZcN6XibFEuSqShHgl3LXak4Czj0sibOLEiZg8eTJmz55t8fmMGTMwceJEEmEaRs4XQSqR56wTnjo1B99808xM0GS5lO1fKbRstfA07LVNrcUfaTlhqjPrjNh7Y1UoA9KJZbEiSWy6CHes9lKEkXgyLomwixcv4uWXX670eb9+/fDee++5XSjCc5HiJXPUCUuZ7V8ptGy18HSMxhBkZSXiwAEDAPtWStZm+lpcDSx0myB79wYAOTnxmhHKgHRiWaxIcmdCLNZq7+6uJZ6OSyKsQ4cO+Omnn1C/fn2Lz3/++Wc89thjkhSMIOzhaIDJyYnXnKDRstXCkzEfMEzYslKytMBCjf0OpcKZMDAajdi0aROAyveWnV0fixePZtadby3STXFrcohloSLJlbbojtWeLP62cUmE9ejRA5MmTcLhw4fRpk0bABUxYVu2bMGsWbOwbds2i3MJQmrsDTBaFDRatFp4OtYDhjnWol5Mbi650XpCTEflss5rlp+fj/T0dGYHd5PwKiwsdLjIQ0qxLHdduGO1J4u/bVwSYa+++ioA4IMPPsAHH3xg8xgA6HQ6lJWVuVE8grCPrTgGtXKQuQuLOcyEIFedqe3es52xvAJnol7t+DEt1rdQbJWBxcFd7AIPvf46Bg580iInlyt1LndduDPJ1eIEWQlcEmHl5eVSl4MgnCJ0VqhWDjKxaH0vNbnccHJe15nQMGE7YzkAOBb1WlzlypI71RVYHNwdxWgBsNm3SJGTS+66cGeSSxZ/27i9gTdBKIUjV4vJNWFCiRxk7qJ115Fcbjg5ritmc2jA9oBhMGQiMTGrkrvIVA5W3WLO0Hq+OtYHd8vYQu6ff/KIdCXqwh2rvVYt/nIiWIQtXbpU8EVfe+01lwpDEM6QW5AoPZCyKrBcQS43nBTXFSo0dLp7e/M5GjBSU1MRFRWFiIgIXLx4EQCbbjGxaMmSp4VFCJVjC3Uw7f8oV98ih9CR0mrP0q4lLCBYhC1atEjQeTqdjkQYoThSJYL1hIFUDRwN3uYZzK1xZukTel0xFkNH19Tr9S5bJ1l0i4lBSBJkliyzWrAkO4otBKTrW+QObXCnrlnetYQFBIuwnJwcOctBMMyFC8BffwENGgC1aqldGttI1SFrfSBVA2eDt3UGc2vsxRqJva6QmCUhlk4ltoBhEaGZ6FmKDWOlHPawH1tYgVR9ixKC1NW/1YJYVhOKCSNsYgpi3rixKiZO1KO8XAcfHw7z5hnRt+8tJl8aKcqj9YFUDYRaD8XGGtm77vnztXD16i2XYpbksHRqwS0mBKETEFZjw1jEVn/CcYB5TJhUfQtr/bE5LJdNbVwWYRcuXMC2bdtw7ty5Si/lwoUL3S4YoR6mIGajMeSfBIgVMQzl5TpMmBCKv/9eDb3+OlMzYimh4FFxCBm8XYk1sm1FKMfWrc+5HLPkrKyuuNw8ZaZvLRiAisUI1hQWFrq9io8FlErLYd2fANCkSFcKraRLkQqXRNiePXvQo0cP1K1bFydPnkTz5s1x5swZcByHli1bSl1GQmFML4Azq4Enz4i9PXhUTDoHZ9ZDVxc72BIFgI6fFLgS2OysrK663JydW1BQwAfw24KVgcUkGLKyEpGZacCBA+2QmWmwELubN2/W/ARM7rQczmK0TD+npqZCr9cz8/zVxhv3mXRJhE2ePBnjx4/HrFmzEBISgq1bt6JGjRp48cUX0aVLF6nLSKiEN8VHeXPwqLXgMt8epuJ32x1hv379+J8dWQ/FugDtufdu3gzGF188L/g69hBi6ZRygsF6Hi5bbToz0+BQNGt9AiZ3Wg5PsY4qjTfuM+mSCDtx4gQ+++yzigv4+eHWrVuoVq0aZs+ejWeeeQYjRoyQtJCEOrAcH+XOYgFz0ZGb64OcHD8kJNxF7969cffuXfj7+0Ov11f6O0/sNO3PPEOg11932BEGBQU5HGhMudvEinnrAcx8expXJwX2LBNGY4jsmz6ztK2RLUz1nZubi/T0dLuiOSsrEZ0771aljHIiV1oOsX2Ft7nhHKHVnHuu4JIICw4O5htLTEwMsrOz0axZMwCOl6MT2oOl+CgpFguYi47KnW8WWrb8FUZjCO6/vxdatKiC2NiK3SE8tQN0NPNMStqN3buT3F5J6IqYt3VddyYF1kLD1v0qlRNL7W2NbBEREcG3BXsr+g4cMFRKVqt1WBnsWbeWKo27C2jsTbRZ7M9dEmFt2rTBzz//jCZNmuDpp5/GuHHj8PvvvyM9PZ3f0JtgF7FWJBbio6RaLOAsu/mtW1V44WE9MHtyB2irPjIykgBIs5JQKjHvznXMhYZag68WkqHq9ddhMGTiwIF2Vkc8L18eK3kBhbpHc3NzbVrLWBIVUuBOKIzjiTZ7/blLImzhwoW4ceMGAGDWrFm4ceMGNm3ahAYNGtDKSMZZtQoYNgwoLwd8fIAPPwQGD1a7VM6RerGAves4svyYru2JbgPbSSV93IoJlCqBpByJKNUYfFmxutjDvP4SE7Nw4IAB5iLcE+NBWYx7dSQcTG55Tw9Wd8fqLXSixUpcmUsirG7duvzPwcHBWLlypWQFIuShoKAAZ87cxbBhNVBebrIiAa+8wuHBBy8jPt5PEy+wVJ2mvfQHzgZmT129Y69ezV2SYmMCpQpOliPIWYnB1yTWTSEarFhd7BEREYHU1FRs2rQJev119OjBZjyolLAW9+pMOHhLsDrgvvWc9ffNhFvJWktKSnD58mWUl5dbfF67dm23CkVIi0k45OTEo7y8v8WxsjId3n33RwQH38K4cT3QokV1plcKStVp2rqOdQwUUHlg9tTVO/bqtWXLX9G8+XGXO0KphKjUglbOwbegoACXL1/G5s2bLT5n0epijfmCFJbiQeWEpft0JBwAMG1JlQN3QmG08L4BLoqwP//8E4MHD8aBAwcsPuc4DjqdDmVlZZIUjpAGxwG395Jfrl/P/eOeZHt5tZzxRVWr3hY0MLPuWnIFe/XKQkygVMid3d5egLXJYuqOZVEJ5N6DkBVYvU9HwkEty46S4RdSGgBYs3LawyURNnDgQPj5+WH79u2IiYmBTqeTulyEDDhLfllersMrrwDJyUCtWrZfKvOgfjWRShhYX0eowNOKqVssYupVjgFK7g5f7vxNtgKss7IS+fgqk8U1NjaXyYzp3pLfitX7dCYclLbsKB1+IfVzYcnKaQ+XRNjRo0dx+PBhNG7cWOryEDLjLPllWRmQlVWAqlUru4C0GtQvFiFCRCumbmcIHfh79+6NsLAwi7+TeoBSqsNXamA1d1ebMC3+GD16MfT660hJSUFkZCRTwoaVcsgNq/fpyCKttGVHjfALOUIPWBRfJlwSYU2bNqV8YBrGPFGlLSGxf/86HD9+L92DpwT1A9JZG8R0iCyvpmTJIuBJ8XbW7mpzzC2mkZGRHrEPI+EeQt2jall2PDH8ghUEi7CioiL+57lz52LixIn417/+hRYtWsDf39/i3NDQUOlKSMiGMyFRUlLiNKj//fe/Q0LCWdlXA0oVK2BLdFhv0+Po2uZ/J6RD1MJqStYEtCd0+LZTflSgRYspIS+OJkOmHSNMqGHZ0VL4BcsLy2whWISFhYVZxH5xHIcnnnjC4hwKzNcezoSEo6B+88FEbuuElBYb63NiYmIEX9t6E2ZnHaInWXeUQksdvj3sZZ0HXHchsWxRlQpvuEd72LsvFkSFlsIvWLLuC0GwCNu3b5+c5SBUROjMymDI5Df2VWOliZwvjdBru9oheoJ1Rym01OHbw5aV2WDIdHnbH2/Y1kYLVmOhCBWTQs9TW1RoZaWhCdbbhzmCRdjjjz/O/3zu3DnExcVVWhXJcRzOnz8vXekISXB3hmQZYFyOtm33e9weckJxtUP0BOuOUmitw7eHEHe10HdT6LY2WraoeorVWKhg7tevHz799FP+d9ZFpxZWGmoRlwLzExIScPHiRdSoUcPi86tXryIhIYHckYxhLRysYwzsYTQacf48ZxVg7IPMzIqNfL0VVzpET7DuSIm1BaCwsBBXrlzhf9dqhy80wDo1NRVRUVEutSUt7D/pDlq3GgsVzMXFxfzPWhGdrK801CIuiTBT7Jc1N27cQJUqVdwuFCE9rnT2mzZtQk5OPDiuicXnallwxG48zhKeYt1xhhD3CgAHbifL3xMSzspeZimR23WkdYEiBE+yGgsRzEKfqRrxcizEo3k6okTY2LFjAQA6nQ7Tpk1DUFAQf6ysrAxZWVl48MEHJS0goS5qW3BMHc/GjVUxcaIe5eU6+PhwmDfPiL59bzEVYOkMrVp3hCI0pqd37978z9aD1P33H8OxY/c7HLRY7/DlbI+eJFDsoXafIxVCxZWQZ6pWvBwL8WiejigR9uuvFZ0hx3H4/fffLTrDgIAAPPDAAxg/fry0JSQkR8wgpqYFx9TxGI0hWLx4tEVm/wkTQvH336uh119nJmZCCNbmfFNnevx4If+ZVjs1oTE9d+/eBWB7kPrttwcA6PjfzQetlJQUxMbGarJupMJTBIojPMVqLFQwC3mmnhIvJxfmVsLcXB/k5PghIeEuYmMr9rVmuU8VJcJMKyQHDhyIJUuWUD4wjSJkdlNYWMhvQCxlgLEYTOVz1pnZug9WXJeO6sW8M/3kE8vOVEvC0hp3LAAmAWbCOrGpVutEKpwJFHtJtFkehGzhCVZjoYJZjOhU2h2thRWr5mV0JFBZ7VNdiglbs2aN1OUgFEZsY7QXkKmEdULs7J+l7ZXsLYpw1plqeUbrjgUA4GAuxDzNyiMFjgSKqW3ZcwPLvfWUlGg9CFyMuGJ1z1otWOBM363VPtUlEXbz5k28++672LNnDy5fvozy8nKL4//3f/8nSeEI9lHCOiG0M1NjeyUhFjdb3+nJsT3uWABsxYRpvT6kQOiqS3sDpdEYgrlz/6uYBcOVIHJPDAIXY9Fjec9aLSwI0Wqf6pIIGzJkCH788Ue89NJLiImJsblSkiCkxFlnpuT2So4WC3TocAfnz1dB69Z6h25QT47tcdcC0KnTXk27oeRAyLY29gbKW7eqYPfuJMUsGK4mlvWUIHChgtl8YZuz65nqRK14OS0IHK32qS6JsO+++w47duxAu3btpC4PQdjF0UxRqe2VHC0WGD8+FDpdRefkbAWnpwQf28MdC4DW3VBy4Ux82BsoTQLM9LvcFgx3EstKLbDUSOsgRky6sl2aGvFyWhA4Wu1TXRJh1atXR3h4uNRlIRhCq64BuV9ER4sFAB9wXMVPQlZwekLwsSPsiSl/f3+XrsdaW2MN2zF2lfevVNKCoWZiWTW3ehJ6PVe/V+mJilYEjhb7VJdE2FtvvYXp06dj3bp1gk2qhLbQsmtAiRfR/gbN93C2ghPwLKuPUJEUFRVVqW0VFhbyqSuACqGm1+strs1iW2MJWwNlUtJuC0sYoJwFQ+04Ik/a6omFSbHYflWttBFa61NdEmELFixAdnY2atasifj4+Eoz2yNHjkhSOEJd1B70hHQoRmMIsrKCEBd32+JzuV9E6wEPKEfFqj7vXdnnjnCPiYmRs2heg62BsmrV25JZMITuiACwFUek9a2eWJkUC+1XtZ42QklcEmE9e/aUuBgEURlnHc/GjVUxe7Yeixbp4OMTim7dHlK0Y7Ue8LKz6zsd7FiY0cqJt3eoUuFOLJP1QCmVZVhozqjU1FQA7MQRqW2Rkwo13i1X+ysl00ZovU91SYTNmDFD6nIQhE1sdTymVBSmlYlARQyWGh2r+YAnZLBjZUZLsIvYBJlCBhcpLMNCc0aVlpby38lCHBFLFjmt4W5/JXXd23Nx9u7dG3fv3q0UxiCkjGojSoT997//RatWreDr62vz+J07d/D1119b7A1HEFLiKBUFCx2rkMGO1c6AYAOxCTJtDZRGoxGbNm1y+l2uWAfEWJZYCJRmxSInN3LFYLnTX0lZ945dnFn8e5GamoqbN6tb3H9JSQkKCgqY7HvtRxXbwGAwoKCggP89NDTUIjFrYWEhXnjhBelKZ0aPHj1Qu3ZtVKlSBTExMXjppZeQm5trcc7333+PNm3aICQkBFFRUejVqxfOnDljcc4PP/yAli1bIjAwEPXr18fatWsrfdfy5csRHx+PKlWqIDExEf/9738tjt++fRsjR45EREQEqlWrhl69euHSpUsW55w7dw5du3ZFUFAQatSogQkTJlgEHhOuYZ2KwhwhLzerJmmCsMae2DEaQyqdGxERgZiYGP5f48aNkZaWhmHDhtn952o8jiPrBgD4+VnO7fX660hIOOuya95dTBY5U39ha6unixcvWoxtWsMkUD788EMMH34IDz8cheefj8DDD0dh+PBD+PDDD7Fs2TLF79FZ3YvBmYvT9F5MmvQnM/cvBFGWMM60/t7O7/Y+k4KOHTvizTffRExMDP7++2+MHz8ezz33HA4cOAAAyMnJwTPPPIOxY8diw4YNMBqNGDNmDFJSUviFAjk5OejatSuGDx+ODRs2YM+ePRgyZAhiYmKQnJwMANi0aRPGjh2LlStXIjExEYsXL0ZycjJOnTqFGjVqAADGjBmDHTt2YMuWLdDr9UhLS0NKSgr2798PACgrK0PXrl0RHR2NAwcO4OLFi3j55Zfh7++Pf/3rX7LUj7fhzNWRkpKCyMhIi7+RwiRNIk5e1MjrxCruunLkqidn1o2wsDDmXO7WFjkAyMmJR3h4AdLT0/nztBoozvLWPVJbQ51NAli7f2e4FBPmCLmy548ZM4b/uU6dOnjjjTfQs2dPlJaWwt/fH4cPH0ZZWRnefvtt+PhUPIDx48fjmWee4c9ZuXIlEhISsGDBAgBAkyZN8PPPP2PRokW8CFu4cCGGDh2KgQMHAgBWrlyJHTt2YPXq1XjjjTdgNBqxatUqbNy4EZ06dQJQsZdmkyZNcPDgQbRp0wa7du3CH3/8gd27d6NmzZp48MEH8dZbb2HSpEmYOXOmRw/kSm6c7ejljoyMlGXFnbXrR063j7ehhc2C5aagoIDfhJtVN5qQWC8Wno+9zPWu7oGoVsoFMbAa/yblanVH7wWr9+8IyUWYEly9ehUbNmxA27Zt+fQYrVq1go+PD9asWYMBAwbgxo0bWL9+PZKSkvhzMjMzkZSUZHGt5ORkjB49GkDFC3j48GFMnjyZP+7j44OkpCRkZmYCAA4fPozS0lKL6zRu3Bi1a9dGZmYm2rRpg8zMTLRo0QI1a9a0+J4RI0bgf//7Hx566CGb93Xnzh3cuXOH/72oqMiNWlIeNTbOViMnjHlHGxMTU2nWb91Bs9A5awG1NgtmxfpmK7mowZCJAwcMANhKkMlCrJczzCdMzrZ2cragRyspF1gV7lLibBKgtfsXLcL++OMP5OXlAahwPZ48eRI3btwAAH4GJxeTJk3CsmXLUFxcjDZt2mD79u38sYSEBOzatQu9e/fGK6+8grKyMhgMBnz77bf8OXl5eRbCCABq1qyJoqIi3Lp1C9euXUNZWZnNc06ePMlfIyAgAGFhYZXOMdWLve8xHbPHnDlzMGvWLIG1wQ5qbJzNEhEREQ73k+zb95ZqQaFyzN7ltggomVKAJeubIxFqMOxHYmIWU2JHC0kxrZ+Zq5YSlt195ri6IlXqd1rutBH2JgGsrMgVg2gR9sQTT1jEfXXr1g1AhRuS4zhR7sg33ngDc+fOdXjOiRMn0LhxYwDAhAkTMHjwYJw9exazZs3Cyy+/jO3bt0On0yEvLw9Dhw5F//798cILL+D69euYPn06nnvuOWRkZGhik/HJkydj7Nix/O9FRUWIi4tTsUTOUXLjbFZxtJ+ks62LlCgXIN3sXQmLgJIuBbWsb46wNdBnZhqQmJilWBlsofV8TID7liItuLtcyWwv9TutRCoee5MALVhpzRElwnJyciT98nHjxmHAgAEOz6lbty7/c2RkJCIjI9GwYUM0adIEcXFxOHjwIAwGA5YvXw69Xo958+bx53/66aeIi4tDVlYW2rRpg+jo6EqrGC9duoTQ0FBUrVoVvr6+8PX1tXlOdHQ0ACA6OholJSUoLCy0sIZZn2O9otJ0TdM5tggMDERgYKDD+mANpTbOZhlH+0kK2bpI7nJJOXtXwiKghkuFpYSeQgd6pcWOJ+S4c9dSohV3nxgrpVzvtBLtwJ7lWgtWWhOiRFidOnVEXfzVV1/F7NmzK61SMxEVFYWoqChR1zRRXl5hJjXFUBUXF/MB+SZM+cxM51q7JwEgIyMDBoMBQEUH0qpVK+zZs4ffFaC8vBx79uxBWloagIrYM39/f+zZswe9evUCAJw6dQrnzp3jr2MwGPDOO+/g8uXL/IrKjIwMhIaGomnTpi7dL+soZQZmeTbOagctx+xdTouAu23JFdcKSxYOZ+0oJSUFsbGxqogdlgWWUNyxlGjR3SUUlt4BW1j36VrfisqErIH5n376KcaPH29XhAklKysLhw4dwqOPPorq1asjOzsb06ZNQ7169Xjh07VrVyxatAizZ8/m3ZFvvvkm6tSpwwfCDx8+HMuWLcPEiRMxaNAg7N27F5s3b8aOHTv47xo7diz69++P1q1b45FHHsHixYtx8+ZNfrWkXq/H4MGDMXbsWISHhyM0NBSjRo2CwWBAmzZtAACdO3dG06ZN8dJLL2HevHnIy8vD1KlTMXLkSM1ZusSghBnY3dm4nKs3We2g5RCHcgtOV9uSI9eKwZDJx1WlpqZaTABZEtDO2lFkZKRHiCE1ccdS4qht2ouLlttCKMXklKV3wBYRERHo3bs3Nm/e7LLlmkVXuawiTKqcYUFBQUhPT8eMGTNw8+ZNxMTEoEuXLpg6dSovajp16oSNGzdi3rx5mDdvHoKCgmAwGLBz505UrVoVQEXw/o4dOzBmzBgsWbIEtWrVwscff8ynpwAqsu1euXIF06dPR15eHh588EHs3LnTItB+0aJF8PHxQa9evXDnzh0kJyfjgw8+4I/7+vpi+/btGDFiBAwGA4KDg9G/f3/Mnj1bkvpgGSXMwK52Zkqs3mQxHkEOcaiE4HSlLTlyrRw40A4HDhjQo8d2ABVpRUy7e7AmoFlsR1pGagu6vbZpWoGp9OIOKVzFrL0DtjCFADmz2smVJ1IONJGiokWLFti7d6/T8/r06YM+ffo4PKdDhw749VfHJsu0tDTe/WiLKlWqYPny5Vi+fLndc+rUqVPJ9Umog9KrN5WKRxBj1RMzqDty55nP9KUWClIOlLY66QosZ8zmu1iwJny0FNfCOkrFs6m5uEOKPoy1d8Aezqx2cuWJlANNiDCCcBVPW73pLBWGo4FEyKAudKWUmGsKRcqB0lYnbcJRnIuawkfJeEd3cqOxkldNLO6USUids7S4wx2kfAfkSmejBaudUEiEER6NJ63eVCIVhtCVUnIh1eBt3UmbY/7cTYmcnaFELIlS1hp3cqOxlFdNSRw9G1MiWNYD25VG7nQ2WrHaOYNEGOEWLK9WNEfOmZNSdSA2FYY75XJ3QFH7eQP3OumsrES7WedNe7+yYtlR4nvcyY3GYl41pXD2bFgPbLeHXP2XEulsPMFlL6sI69evH0JDQ+X8CkJltJQ7SK6Zk9g6cHeFptDO3p1nIyRNgr1Vz6w8b6Cik+7ceTcSE7PsPndWyqo07lg7PcX1JiVadZHJ3YeThdAxLomw8vLySjm5TJ9fuHABtWvXBgCsWLHCvdIRmkBLg5hcMydndVBQUICLFy+6FMtljZjO3tVnIyRNglYCXwHPmDFLjTuDIw2sttGqi0zOPlxKC6FWPC9iECXCioqKMGTIEHzzzTcIDQ3FK6+8ghkzZvBJUa9cuYKEhASUlZXJUliC0CJyxHIp0dlrcUBhsfNlNZDdncFRq643JSDBb4mUFkIteV6EIkqETZs2Db/99hvWr1+PwsJCvP322zhy5AjS09P5zk+q3GAE4SnIta2REp291gYUUyd9+fJlbN682en5cos2lgPZ3Rkctep6k4Pi4mL+Z3vPF1BngsDKBEDKCZ3Q8sqZmFtKRImwr776CuvWrUOHDh0AAD179kTXrl3RvXt3bNu2DQA0sVE2QagBWQ+UISIigpkZM+uB7O4Mjlq0lEpNQUEBPv30UwCOn2+/fv0UF9msTQCUmNC5k8JHLUSJsCtXrljsHxkZGYndu3cjOTkZTz/9ND7++GPJC0gQ7sBSDIEWrAcs1Ze7sNTZshzI7s7gqDVLqdQIXQEYFBSkWtkANicAUqNECh85ECXCateujRMnTiAhIYH/LCQkBLt27ULnzp3x7LPPSl5AgnAHViwiJtyxHsgpkMzdFu3b98X//Z8vate+g+joiozy/v7+0Ov1/PVZ6sS0AEuB7O60I08S6VLC0vO1Rq0JgNJtRa6wD7kRJcI6d+6MNWvW4Omnn7b4vFq1avj+++/x5JNPSlo4gpAC1gSDq9YDuQSl3EkVCbZc0e60I7UmNazENtmDpedrjVoC0dW2olQKH1YQJcJmzZqF3Nxcm8dCQkKQkZGBI0eOSFIwgiAqI8dAo0RSRW+HNVe0O+3I22ObbMHa8zVHTVEi9HlIGcvF8rOwhSgRVr16dVSvXt3u8ZCQEDz++ONuF4ogCOVh2aViD7n2ppMDCmR3Da3ENrH6fFkXJVpN4SMVopO13r17F4sWLcJnn32GP//8EwDQsGFD9O3bF6+//rrgvdgIwlvQShyN1sz4WnSjensguzsoEdvkrqhn9fmyLEq0nMJHCkSJsFu3buHJJ59EZmYmkpKS0L59ewDAiRMnMGnSJGzbtg27du1ClSpVZCksQWgR1hYH2KPyptflSErazXdkRqORqSz5rLlRbcUtFRYWCvpbtQW4FpDbUqtFUS8G1kWJ1iaBUiFKhL377rs4f/48fv31V9x///0Wx3777Tf06NED7777LmbOnCllGQlC82il027Z8lfculUFu3cngeN8sHt3EqpWvY2WLX/Fpk2bmBqATALH2eBcWFgou3h0HLd077zU1FR+lakJFgS4FpB7kHZF1LNs5RbynUZjCHbtKkXz5pdUd+Er4TY1GkPw7be38OCD6t+vCVEi7PPPP8fChQsrCTAAeOCBBzB//nxMmTKFRBhBaBSjMYQXYADbwfl375rSZ9wBwAEwTxTNwd+/xOI8OREat6TX65myJmoJpWKbxFjcWLZy2ypbYWEhv5MEi9Y+OVP4sHi/gEgRdvbsWTzyyCN2j7dp0wbnzp1zu1AEoSVY2R5DiiB1qV0+SgTOl5YGwlKAAYAOpaXKWx9YTsrqCSgR2yTW4sayFdNe2Vhx4dtCyhQ++fn5SE9PZ/p+RYmw0NBQXL58GXFxcTaP5+XlISQkRJKCEQTLsLY9hjvxLOYzSCldPkrF2LAUS6LFFaZSoVQuL7ljm1hfTSgFntpO7bUvlu9XlAjr2LEj/vWvf2Hr1q02j7/77rvo2LGjJAUjvBtWrEu2YHF7DHeC1CMiItC7d29s3rxZ0gFIqcB5lgZNlgShksiZy0uNuCuWVxOa46rw1VI7NbWl48cL+c/ECnqW71eUCJsxYwYSExPRpk0bjB07Fo0bNwbHcThx4gQWLVqEP/74AwcPHpSrrISHw5p1yR4sb4/h6owvLCyM/1nqAUiJWSgrgyZLglBJ5MzlpVbcFeurCd0Rviy1U0fi2bwtffKJ6xZ0lu7XGlEirGnTpsjIyMDgwYPRp08f6HQVFgCO49C4cWPs2rULzZo1k6WghGfDonXJGSzOrqQqk5QDkFz1ZJ2T0F6Zlc5dyIogVAO5YuJYeedZwl3hy0o7tRbZcsVxsXK/1ohO1tqmTRv873//w9GjRy2StT744INSl43wItS0LrkaPM7i7MqbymSd6sHd86SEdSuKXLAce+MMltNNOMKZWDl+vBD79wcgIeEuAgLyLf6WlXZqq3+Voy2xcr/miBZhRUVFqFatGh588EEL4VVeXo4bN24gNDRUyvIRXobS1iV3g8dZnF25Uia5ByA56omlQZOlsqiJs/c3P/+eCGAlvMCEWLcnK5uKOxIr2dn1MWtWI7M+LQstW7r3fUptFcaip0EORImwL7/8EpMmTcLRo0cRFBRkcezWrVt4+OGHMX/+fHTv3l3SQhLeg9KWHCmCx1mcXYktkxJxN1LXk3WZjUYjSktLLc7x8/NDSUkJLl68KOugyHK+KCWx9/4CQE5OPNasyWBm021biNlwmpVNxe2JFX//Epddw/YmC0ruKiDFWKCFyZEoEbZixQpMnDixkgADgODgYEyaNAnLli0jEUa4hRrWJTlM3+azfhMsD8SslssR5laJTZs28Z+rMShaX9faUmISgyZYbgvuYP3+ZmfX/yfOk71Nt12FpU3F7YmV0tJAh31aSkoKIiMjK13PUbuUY8Wz9Xti3m+6OxZoYXIkSoQdP34cH3zwgd3j7du3x9SpU90uFEEItZpIZRp3Zvp2FFdhjzVrMhQTAizO+JQsE0uDIlDZUmIP1ixBUmF6f+VMXsuCO5CV5Ly2xIrRGOKwT4uMjHR59wapJq32LYoh/HXctaCz/n6JEmHXrl1zuAVIaWkprl275nahCEIIUprGHZm+jxx5SHRchdJCgMUZnxplYmVQtL5ne5Y5rVqCrLEnpOUK1GdF5LK0EMFarMgZ2iFVvJbQyZMnI0qExcfH45dffkHjxo1tHv/ll19Qp04dSQpGEM6Q2jRubzbp6NrmJn2hS6ulggVLgDOU/n6WBkUT3jC42EszIFdwNSsiV83gcSEWZLlCO6QWeK70mZ6yyEWUCEtJScGUKVPw5JNPombNmhbH8vLyMHXqVPTr10/SAhLegTuuKykHXuvZpLNr2zLpKyEEhAYGp6am2k3RwIJIkxrWVlSxYplTArXSuKgpctVMCWPP0mwSwOZllKM8rgg86/CRo0dv8X2XmPg1T+q7RImwN954A19//TUaNGiAfv36oVGjRgCAkydPYsOGDYiLi8Mbb7whS0EJz8Yd15WcA68r1xayTN/dTkSoGd8UrK7m6i0lYS1PGouWOaWRc6ENCyJXyvsTa91W+90VI/Bsh4/UhE43GklJuyWNX1MqjYYUiBJhISEh2L9/PyZPnoxNmzbx8V9hYWHo168f3nnnHdrAm3AZV18KdwZeZxY4V65t/TdAOQyGTP64aZYqhQASMgixEKiuJCzlbmPNMqcWclljWBG5UtyfVGkvhHoViouLXS+sCzgKH9m9OwlJSbuxe3eS25MnJdNoSIHoZK16vR4ffPABli9fjvz8fHAch6ioKH4LI3P279+P1q1bIzAwUJLCEoQ9XB14hZj0Xbm26W+yshKRmWnAgQPtkJlpkFwAORuEWLAUqAErudvcmSBoIebPHkqtjFVL5Mpxf1Kt8I2IiEC/fv3w6aef8p/ZEnSffvqpaCEixX3b67NiY3MxevRitydPcqTRkBPRIsyETqdDVFSUw3OeeuopHD16FHXr1nX1awhCMK4OvEI6IVevnZlpkFUAORuEWLEUyA2LKTpMuBo7w8LqP1dRamWsWu5nOe9PiomTeS5PKS3hUty3oz5LysmTVvo+l0WYEDiOk/PyBMEU1gO8Ep2As0HIW9xhrKXosG4L9gYXe6KQldV/7qBUXavlfpbr/qTsN+SwhKshnF2ZPGml75NVhBGEqwhxxchp/XDl2iYhkJubK+vyfGtMg9D587UA6BAXd54/xlqgupywZBGSUhR6Q4oLsbgrcm3BivtXyn6DVWuQI+Es1UpIrfR9JMII5hAToCq19cO8I05NTbW5F2FYWJjda0dERPB/r2QnkJ1d3+5A7ajD09rWSlpCijr01pg+Z0ht+WRpL0gp+w2WrUH2hLM7mfytcdb3sbBykkQYwRxiAlSlelkB6eJwCgsL+Z/lcpWYz/CFDNT2Ojwlt1ZSG3ctHWpYSli1ZLCAlHXN2rZXUvUb7go6VqyD7mCv75s6NQfffNNM9ZWTsoowWysmCXZg/QVT2gogRRxOQUEBNm/e7PQa7hIREYHU1FRs2rTJ5YGahcFGKdwV2GoFyrNsyfBEWLI8ShWk7qqgk9o6yNLiGZZWTlJgvpfCkvndHmpaAVyNwxGzF5q7nY0pE76zgVrNrZVYwV2BrVagvFbiWjwFNfscOUWKK4JOauugUotnhNQPSxZmWUXY9evUUbAKa+Z3W6hlBZBCoDi7RmpqKiIiIiSxRjobqNXaWolV3A10VzpQnqXks56OmpZHKUWKlIJOygmbEhN6R/Uo956mriBKhHXq1EnQeXv37nWpMITysGwRcSYuzIPKpXSdSiFQnF1Dr9dL6uISO1Cz1AkpibvtXan3RerVf6yHHrCC2pZHqZ6BlIJOixM2dyeuSiJKhP3www+oU6cOunbtCn9/f7nKRCgI6y+YLXFhcgWtWZMhi+tUCoEi5BpSu7jEuBxY6oSUxN32rtT7IuUgqvXEr0rjKZZHqZ6lp07YWHnOokTY3LlzsWbNGmzZsgUvvvgiBg0ahObNm8tVNkIBtPCCmYsLJVynUggUsddwxcXlrsuBlU5ISdxt70q+L1INokLfC09bjOEOrGx7xQKePGFj4TmLEmETJkzAhAkTkJmZidWrV6Ndu3Zo1KgRBg0ahL59+yI0NFSuchIyweILZk80KOk6lUKgCL2Gq/clhbWEhU5ISdxt7yy+L2KRa8WulmFp5R6LeOOETSlcCsw3GAwwGAxYsmQJtmzZguXLl2P8+PHIzc0lIaZBWHvBrMWFKZhSbleQHFm4hYgcd+5LrLWEBhv327s7f692bBZl37cNa9tesYgnTNhY7P/cWh155MgR/Pjjjzhx4gSaN29OcWIahrUXzFZnJ7crSIqOWOjLW1xcjOLiYgDKu7i8cbBxV2BLIdDVjs1iaRGO2mLUFp7W5t2FRcHiLiz2f6JFWG5uLtauXYu1a9eiqKgI/fr1Q1ZWFpo2bSpH+QiZ0OILpoXsz0Je8uLiYnz66af870q7uLxxsHG385Wi81Z7U25WFuGoLUYJYbAmWKTqv1lrU6JE2NNPP419+/ahc+fOeO+999C1a1f4+dHOR1qEtRdMKM5cQfZe1MLCQotM9vaQouN39vcXL16s9BlrLmFPRO7nKgY13IKsLMKhhQLagZX+XwvJxV1FlILauXMnYmJicO7cOcyaNQuzZs2yed6RI0ckKRwhL1prrCbsuYKECi1HqNHxm3coCQlnKx1nyRpJuI9abkFWFxXQQgHvRah1SwvJxV1FlAibMWOGXOUgCLsIFSFi9iplpeN31KGkpKQgNjZWs2KZsI3SbkHz98eRxVUNsU8LBbwXMdYt83NYiWuUChJhBPMIdZ0KjblhpeN31qFERkaSAPNAlHYLshp64IkDKiEcodat3Nxc/jxW4hqlRJKArh9//BE3b96EwWBA9erVpbgkQVggZIAwj7Wy91Kz1PF7YodCOEcNt6D5+2PLBVRSUsK/P0oJMmr/BGBfjNeokYfS0kCLnVFYiWuUEtEZ82/cuIG33noLAMBxHJ566ins2rULAFCjRg3s2bMHzZo1k76kBCEQR0KLpY7fEzsUQhhqLcRgaWUitX8CsC/GP/54CADLSTSrcY3u4OP8lHts2rTJYpuiL774Av/5z3/w008/IT8/H61bt7YbrE8QSuFIaJk6fnPU6vhNHYqpPJ7QoRD2sZVrLCHhbKXnLWdsli2XfU5OPIzGEIfnyQG1fwKAzT4Z4GCSJ6ZJtKmNtmz5K0aPXoz+/ddi9OjFmo8hFGUJy8nJwf3338///u233+K5555Du3btAABTp07F888/L20JCY9H6vxdjmbYLMykWA6U9kRYSQzKWmyWWrGR1P4Jc2z1yc68FawlF3cHUSLs7t27CAwM5H/PzMzE6NGj+d9jY2ORn58vWeEIz0cO94gzoaV2x8/aYCwVSoodod/FkvsNYCctjJqxkZ7a/gnXMe+T/f1LsGrVEJfc1FoU7qJEWL169fCf//wHdevWxblz5/Dnn3+iffv2/PELFy7Qi0OIQsrEjUJn2KmpqdDr9Tb/Xqn262nviZJiR8x3UWJQ26gdG+lp7Z+wj70Jk7XBxty65WgSnZKSgsjIyErX06pwFyXCRo4cibS0NPz00084ePAgDAaDxXZFe/fuxUMPPSR5IQlCCDTDVg8lxQ4JK/ehoHhCCYROmKxxNImOjIxETEyMlMVUFVEibOjQofD19cU333yD9u3bV8oblpubi0GDBklaQMK7cDeJKgks27ASF6U2rCTpVRsWYiO1iNLvkdbfW6G5G1NSUgAA6enp/GdC4r60Xj+AC3nCBg0aZFdoffDBB24XiFAWlhoxK0lUPQ014qKUFDtCv4valyW0X6k4lH6PWItndBdH719kZKTgeC7TeZ6ynyTtvu3FsPSSs5RE1dNQ2n0nldgREksi9LuofVVgK02GrfvXYoCz3Cj9Hgm1ImnB7S7k/RMbTuIp+0mKEmGlpaWYMmUK0tPTER4ejuHDh1tYxS5duoTY2FiUlZVJXlBCeoQ2ztzcXLvnSmUpUztQmJAGqcSOkAmCmO+i9lUBxU1Kh5LWXikmNmp6PYS+f658v9YnWKJE2DvvvINPPvkE48ePR2FhIcaOHYusrCz8+9//5s/hOE7yQhLqYu6nt4UUljJPDRRmyd1rQs7BQyqxI2SCIOa7PLV9uQIJLPdR0rUthchQ2+sh5/un9QmWqIz5GzZswMcff4zx48fj7bffxi+//IK9e/di4MCBvPjS6XSyFLRHjx6oXbs2qlSpgpiYGLz00ksWG3sCwObNm/Hggw8iKCgIderUwXvvvVfpOj/88ANatmyJwMBA1K9fH2vXrq10zvLlyxEfH48qVaogMTER//3vfy2O3759GyNHjkRERASqVauGXr164dKlSxbnnDt3Dl27dkVQUBBq1KiBCRMm4O7du+5XBIO4Y+41uT2cZc/WonvE1PF9+OGHdv8tW7YMBQUFipXpyJGHsHjxaKxb1x+LF4/GkSPSrmZWckcCId/lye2LUAd7osh61wGpcCQyhHL58mVB58nlupNzdwSWdkFxBVGWsL///tti26L69evjhx9+QKdOnfDSSy9h3rx5khfQRMeOHfHmm28iJiYGf//9N8aPH4/nnnsOBw4cAAB89913ePHFF/H++++jc+fOOHHiBIYOHYqqVasiLS0NQEXG/65du2L48OHYsGED9uzZgyFDhiAmJgbJyckAKrZmGjt2LFauXInExEQsXrwYycnJOHXqFGrUqAEAGDNmDHbs2IEtW7ZAr9cjLS0NKSkp2L9/PwCgrKwMXbt2RXR0NA4cOICLFy/i5Zdfhr+/P/71r3/JVkfuosbKMWv3yPTpV3DmjB/i4+8iNvZhAA9r1j3CWioFOc321mLH3qo7KcWOkO/y5PZFqIPSlhd3rUgFBQXYvHmzxWdq9PVyLQTR+kpfUSIsOjoa2dnZiI+P5z+77777sG/fPnTs2BEDBgyQuHj3GDNmDP9znTp18MYbb6Bnz54oLS2Fv78/1q9fj549e2L48OEAgLp162Ly5MmYO3cuRo4cCZ1Oh5UrVyIhIQELFiwAADRp0gQ///wzFi1axIuwhQsXYujQoRg4cCAAYOXKldixYwdWr16NN954A0ajEatWrcLGjRvRqVMnAMCaNWvQpEkTHDx4EG3atMGuXbvwxx9/YPfu3ahZsyYefPBBvPXWW5g0aRJmzpzJ5KxbzZVj5gNgTAzQqpUiX+t1yDl4yC127A0ab7+d4PS7WGtfLLqovQUp6l5p17a7IsP6fvfvN2D37iRF+nqlFoJoeaWvKBHWqVMnbNy4EU888YTF57Gxsdi7dy86dOggZdnscvXqVWzYsAFt27aFv78/AODOnTsICgqyOK9q1aq4cOECzp49i/j4eGRmZiIpKcninOTkZH7rpZKSEhw+fBiTJ0/mj/v4+CApKQmZmZkAgMOHD6O0tNTiOo0bN0bt2rWRmZmJNm3aIDMzEy1atEDNmjUtvmfEiBH43//+Zzeh7Z07d3Dnzh3+96KiIhdqRzxaD2wkhOHO4CF28JJS7Dhb2h4TU1N1YSUUtWNzvBmp6l4Ny4tUImP/fgMyMp4EUBE2JHdfr+RCEK3uJylKhE2bNg0nT560eey+++7Djz/+iIyMDEkKZotJkyZh2bJlKC4uRps2bbB9+3b+WHJyMsaMGYMBAwagY8eOOH36NG/xunjxIuLj45GXl2chjACgZs2aKCoqwq1bt3Dt2jWUlZXZPMd033l5eQgICEBYWFilc/Ly8vhzbF3DdMwec+bMwaxZs0TUiDQItZDYs0bk5+fT7J1h3HUVqikcPG2CwJqL2ptwt+6FbotmNBol6Q+ltiIZjSHIyEiCSYCZkDuIXa5xQWxeMVYRJcLq1KmDOnXq2D0eGxuL/v37C77eG2+8gblz5zo858SJE2jcuDEAYMKECRg8eDDOnj2LWbNm4eWXX8b27duh0+kwdOhQZGdno1u3bigtLUVoaChef/11zJw5Ez4+otYfqMbkyZMxduxY/veioiLExcXJ9n2mxinEQuLIGmFaPUmzd8eola3dXVehmsJB6yufCM/B9B5dvnwZmzdvtiuKNm3aBMD9/lBqK9LVqxGwtRZPS0Hs5nhKuhWXkrVu2bIFn332Gf78808AQMOGDdG3b18899xzoq4zbtw4p3FkdevW5X+OjIxEZGQkGjZsiCZNmiAuLo7fw1Kn02Hu3Ln417/+hby8PERFRWHPnj0W14iOjq60ivHSpUsIDQ1F1apV4evrC19fX5vnREdH89coKSlBYWGhhTXM+hzrFZWma5rOsUVgYCACAwMd1oeUmDfi++4rwqRJepSV6eDry2Hu3CJ07vwk0tPTBVsjaPZuH7WztbMWF+UMoRME1me5LEIxaRW4MimKiIhQdFIi5XOw9S4BHJKSdmt2QuMJ7VSUCCsvL8cLL7yALVu2oGHDhryF6n//+x9SU1Px/PPP47PPPhOcpiIqKgpRUVHiS/1PWQBYxFABgK+vL+677z4AwGeffQaDwcB/h8FgwLfffmtxfkZGBgwGA4CKzqdVq1bYs2cPevbsyX/Pnj17+BWWrVq1gr+/P/bs2YNevXoBAE6dOoVz587x1zEYDHjnnXdw+fJlfkVlRkYGQkNDLTY8ZwFTIx43DkhNBU6fBurX16FWrTAUFFQk3SVrhHt4mktNCZxNEPr2fcEjxILS1lE1XMssij61J0XWWNeR0WhEaWkp/7ufn5/FpN+VOrMORwDK8eSTu9GuXabFdQllESXClixZgt27d2Pbtm3o1q2bxbFt27Zh4MCBWLJkCR/oLhVZWVk4dOgQHn30UVSvXh3Z2dmYNm0a6tWrxwuf/Px8fPHFF+jQoQNu376NNWvWYMuWLfjxxx/56wwfPhzLli3DxIkTMWjQIOzduxebN2/Gjh07+HPGjh2L/v37o3Xr1njkkUewePFi3Lx5k18tqdfrMXjwYIwdOxbh4eEIDQ3FqFGjYDAY0KZNGwBA586d0bRpUz5tR15eHqZOnYqRI0cqaukSS61aFf9MmAbCI0cu45NPKNGlWEwdmjMRq7WOTynh4GiCAITJ9r1CkEJYqCEElHYts7gQQepJkbvvg9A6ssaVOnMUy5aamqr5SY0WESXC1qxZg/fee6+SAAMqkqnOmzdPFhEWFBSE9PR0zJgxAzdv3kRMTAy6dOmCqVOnWoiadevWYfz48eA4DgaDAT/88AMeeeQR/nhCQgJ27NiBMWPGYMmSJahVqxY+/vhjPj0FUNEQr1y5gunTpyMvLw8PPvggdu7caRFov2jRIvj4+KBXr164c+cOkpOTLTYv9/X1xfbt2zFixAgYDAYEBwejf//+mD17tqT1ogQRERFo3rxEk3lY1J6Bm0TsmTN3sX49h/LyexZiX18Oo0Y9hfh4P011fGpZEKwnCGoihbDwFusoiwsRpLTsS/E+uHrvQv9OaIC/q14pwj1EibC//vqrUooHc5KSkni3nZS0aNECe/fudXhOZGQkn0bCER06dMCvvzp+SdLS0hzeR5UqVbB8+XIsX77c7jl16tSp5PrUMlrLw8LKDDwiIgIREcCHHwKvvAKUlQG+vsC//61Dq1Y1nV/ADKlFpdjreYtwcIYUwoIVF79ai0XURKo8X3K9D1I/E08JYBeL2pNwoYgSYVWrVkVhYSFq165t83hRURGqVKkiScEI9tBSHhbWZuCDBwPJySaXmnOrjnUHUlhYWCnrtS2EikoxItUEK8JBy7C04EANq6Zaoq+goACFhYUApNvVQY73wdYzqZj8uldnLIgNqXEksoxGI79K1REsrOgXJcIMBgNWrFiBFStW2Dy+fPlyPkaL8Fy8cfYsBUJdaq7GiADSi8+SkhKmhAOLiHkfWFlwoIZVUy1Xtq33yZZlPzU1FVFRUYLrXurM+baeybZt3aDTgZkFBKzgTh9pDgsr+kWJsClTpqBDhw4oKCjA+PHj0bhxY3AchxMnTmDBggX4+uuvsW/fPrnKSkiEWDOt+eDqqCP11kFYaljoGMxhRTiwiCvCgoUFB0pbNdV0Zdt7n6wt+3q9XlAblmufVFvPBPABx1X85K3uf1uI7SNZNhyIEmFt27bFpk2bMGzYMGzdutXiWPXq1fHZZ5+hXbt2khaQkBZXYqXMA8xnz64Bjru35cWOHd0xfXqi5gLMCXGwIBxYw5mwyM/Pr/Q31mJVrQUHSu9/6EmubLn2SbWdx8sSrdaZ3DgSWaylI7FGdLLWZ599FsnJyfj+++/x119/AahI1tq5c+dKezcS7OGquyoiIgLHjgH/pGfjKSvT4fr1mmBJfxUUFNgcAAlpYGmlopo4ExamnSSsUTMORS4rjjOUFn2OkMIqIkfyY1t5vCq2GLq3qppSA1XGkcjSwmIiUSJs7969SEtLw8GDB/Hss89aHDMajWjWrBlWrlyJxx57TNJCEmzQoAHg42MpxHx9KwLN3UHKVSxSxQqwjtTmdZbN9aziqrBQ090slxXHHmqJPnvIbRVxpS9ztCdldnZ91euMZZyJLC1YYEWJsMWLF2Po0KEIDQ2tdEyv1+OVV17BwoULSYR5KLVq2Uq14J5VROpUEvZXy3iOyJB6IGHdXM8aQoUFq0hlxREqOJQUfY6Q2yrial9mK4WEecb8tLRTyM0NQvPmVRSvM9ZxJrJYssDaQ5QI++233xxuuN25c2fMnz/f7UIR7OIo1YIrs0AlUklofTGBuYAEIHm2b9bN9axhT1iEhl7GgQPeIV5dFRxy71tqqw8yhSbIbRVxpy+z7hdjYmL4n1u0cK9cnowzkaWFiZIoEXbp0iX4+/vbv5ifH65cueJ2oQi2sRUTxEpyVGvsiYy0tAZo2bIG87NJawFpMGRKsgWSJ26ppGRyRlvC4uLFEhw4cO8cT7K+WsNaHj7AeR+kBauIGmglqakthIgsR4nGWejfRImw++67D8ePH0d9O0FAx44ds1DwhPcgtLPNzc21OFfuAHp7IqOoiF0BZuoYbAnIzEwDKgJ2792TK1sgedqWSqxNAsjFqzzO+iCl49K0IMJZe2+E4iiOzryue/fubbHxufU1WLgnUSLs6aefxrRp09ClS5dKmfFv3bqFGTNm2NxXkiBM2FsxJhf2Zr/x8XcVLYcYTAJp3z5g0aLKAnL48Bv46KPgf3J1ubYFkul7pNpSSW1Yssx4o4tXC4IDqBiw09IaoKiohqxxaVoR4Sy9N2LwpK2YRImwqVOnIj09HQ0bNkRaWhoaNWoEADh58iSWL1+OsrIyTJkyRZaCEtIg1l2ldezNfis6X3aJiIhAmza2V6NOmVINU6YI3wLJGWK3VCIco4UVWVLCquCwJwybNw9DTIx8g7M3inA10ILAEoIoEVazZk0cOHAAI0aMwOTJk8H9k8pXp9MhOTkZy5cvR82a2ppBexueNIMQim1zNdsiDHC+GlVKsUS5v9zHG7d3YlVwqCkMtSzCtWLR9CREJ2utU6cOvv32W1y7dg2nT58Gx3Fo0KABqlevLkf5CBkwF1gXLgB//VWRA8wTBmHrAc68U0lIOGv3PFZhwUqlxcBdNQYTb9zeiUXBobYw1OoCAFYtmp6OaBFmonr16nj4YfatCYR9Vq0Chg2rcHf5+FRYXQYPVrtUthEqmswHwo0bq2L2bD3Ky3Xw8eEwb54Rffve0txAqKaVSouBu2oOJt62vROLgkMtYchaYloxqC1cvRmXRRihbS5cuCfAgIr/X3mlwuqi1oCfkpKCkpIayMnxQ0LCXcTGVhROrGiKiIjAhQvAxInm96fDpElhSE0NY2qLJdbRWuAuS4OJJ7t4WRYcaglDlhLTioVFi6a3QCLMS/nrL1v7QFbM3F0ZOKTobHftisPEiWGSWOakvj+10aJLUA1oMFEGFgUHC8JQycS0UsKiRdNbIBHmpUi9D6SjgP/8/HynqSmMxpB/XIcVv7trmZNrn0s10KJLUGm8MShebWHOmuBgURiyjljhqnab80RIhHkpcuwDaS/gPzbW+cB39WqERcJQwD3LlRz3pxZacwmqgbcFxZMwtw1rwpB1xAhXanPyQCLMi5Fr5V3lgH/naTHy86tg/XppLVcsrCz0NFhewu5NQfEkzAmpECpcqc3JA4kwL0fq4GH7Af8R/PfYSosREyOP5cqTg6OVRktL2Om5EwShBUiEES5jKz7g4MEAlJdbmqLN3YqO0mKQ5YpdWFp1SFTGnoXSfG9WT3LHEoSnQCKMcAl78QFGYwh0utEWgdEmt6KQtBhkwWALU0Cus1WHnhTwrjUcWSitF8SkpqZCr9fbvA6JNGFQcHoFLIcmaAkSYYRL2OuErFfZ+Ppy+Pe/dahVC9i3z7PSRngDpsDdM2fuYv16zmLxhK8vh1GjnkJ8vJ9XDDosItZCuWnTJofXYyWomlWhQ8HpFWgpNIF1SIQRkmO+V+OoUU+hVauK/UQ9KW2Emig9A42IiEBEhK2YPR3/bAl1kDovGgtB1SwLHQpOp9AEqSERRsiCXn/9HzfVZVy8WKG6fH2BhQtDMG5cNc2njVASc1efoxmo3C5BitljD09MsklCh20oIbK0kAgjZMVWktZff30NBQXVaSAXiLlLcPbsGuC4Cpcgx/lgx47umD49UTGXIMXssYGzJJsAkJMTb9daSvE8hFi8MSGyEpAIIxQnMvI2WrRQuxTaIiIiAseO2Yqp0+H69Zq0H6aXYZ1kMy3tFDZsyEJ4+FVkZ9fH4sWj7cbrCInnYSkmi2XByHLZpMbbEiIrBYkwghCBmoOT1DF1LA20hHisn01Cwlmn8TpC4nlYisliOQCc5bLJhTclRFYKEmEEIRC1Bycpt2JS+14IeXAWryMknoeVmCwlA8DFTkg8ITjd3UkYhSZIA4kwwiW80e/PwuAkVXC8u/dCVjS2EBqvo6VAfqUCwMVMSJQum1zQJIwdSIQRLmEdkwJUZOe2FYhvDxrIXUPtGSh14OzhLF7n6aefwubNm+0G8puEQ0BAQKV3Uq24J6UEo5gJiacEp7MwoSQqIBFGuIw7AywN5NrDJJrNt8JxBHXgyuIsXsd80jR9+hWcOeOH+Pi7iI19GMDD/KTn4sWL/DXViHtytvLTXDAqDQWnE1JDIoxQBU+eiZlEiid1xkJFsxKQBdU5tqyl5nUSEwO0auX4GmrFPVlb2R0JRjlwZvmj4HRCSkiEEZJw4QLwyy9BMBpDnHbQtlwenoS5S1YrljxnAw8rz4ssqMqhZtyTWMEoFWItf2qHBkiFN6XaYA0SYYTbrFpl2phbDx+fMZg3z4i+fW/ZPNeWy8OTYUW8OMJdl5OSHbgnW1BZg+UgfjmsoZ6w4tEVvDHVBkuQCCPc4sIFkwCr+L28XIdJk8KQmhrmETNER3jC7NHdgYc6cM+D5ZgsQD5rqNZXPLqCtwpPliARRrjFX3/ZyuJeESfhaSJM6B6OWsB0L84GHnsDrdEYgvPn41zqwKW0YniCEGYNtWOynCGXNZRly59ceKPwZA0SYYRbOMrifuFChUhr0MAzBJmjPRy1Nns0v5f16zmUl+v4Y76+HEaNesrufpTmAtQaZx24lFYMrQthllErJssV3BXirFv+5MBTUm14AiTCCLewl8X9++/vuSl9fCrOGTxY7dK6j709HLU4e4yIiEBEhK3np0OrVjVt/o21+8IaZx24UOtEbm4uX0Yh5dCiECbcRwohzrrlTw4o1QY7kAgj3MY6izsA1KljHidWMcgnJ9+ziAmdYbE4E6uw/llaj3S6cty8GSxodShriMnCb8t9YUKnK8eMGbkYNkx4B27PimFaYWrPIkZuFO/AluvalAJGSiGuJcufVFCqDTYgEUZIgvlS7X37nMeJ2cq4bw2rM7FatYB584yYMCGUn4FzHPDFF89r1i3mbKm9I/cFUI7nnvsCcXEXkJbWX/AzE2LFsNc+vDF+x9tw5romIS4dWki14an5AUmEEZLjKE7MHPMXRmvxYwMGlOHvvxfj/Pla+OKL5wDYno2zaMlzBefui8dEB9TbsmLUqJGHWrXspy/xxvgdb8WZ65qEuPfgyfkBSYQRkmMvTsyeuLqXZ0w78WMRERGYMqU/9u0Dvvii8my8Xbv+6NDBva2dWENK94U9K8bHHw9Bjx72LYneGL9D2MaZECc8B0/OD0gijJAFoXFGlfOMVY4fY5WIiAi0aWPb6peYWBH07qm4676w7dYEAOdxPd4Yv0PYjh9s2fJX1Kt3GlevhiM8/KpFmyFrKKEFSIQRsiFkoNZ6njGxVj+iAmsrhjneFNfjqXEuUuMoflCvv46BA59EZGQkfz7VG6EVSIQRqiI0foxlxKwu9HbMrRMtW/6KGjXy8PHHQ2CKqQO8J67HOs7F3kpRLca5SImt+MFt2yytpZGRkYiJiVGzmAThErbXmhOEQpgsSb6+Fb9r1ZJUqxbQoYP2yq00ppiulJQUAECtWhfRo8d26HQVKtyb4nrMLWBHjjyExYtHY926/li8eDSOHHnI5nneiO20KD7IykpUpTyE+hiNIcjJiYfRGKJ2UdyGLGGE6pAlybuwtup4e1wPJZ51THh4AYByWNsMMjMNSEzMojryMjxtpwwSYQQTaCFPDXEP81im3Fwf5OT4ISHhLmJjKyxazmJytJwnTmoo35VtzNORtG2biQMH2lkcpzryPjxxwkIijCAIUZjHMjmalTqLZfIGgeWIwsJCAJTvyh4RERHo3bs3Nm/ejMTELGRmGqiOvBSTIHc2YdGi5ZxiwgiCcMiFCxW7IFy4UPG7yXplb1ZqitPw9lgmRxQUFGDz5s0AgOzs+uC4e8e8KS7OGWFhYQDurab1xthB4p7lfNSoLvDx4SyO+fpyGDXqKc0uYCFLGEF4KO7sQmByN27cWBUTJ+pRXq6Djw+HefOM6Ny5Yu8+cqO5jrWQNZ8PcxxQr95plUrGFtarab05dlDruJuOJSKiIvdi5ZRAOrRqVVOOIisCiTCC8EDc2YXA5G40GkOwePFocFzFRuXl5TpMmBCKv//OgF5v343m71+CnJx45Ob6gLIGOMbeyj8SshVQ7KBnIOW2Q562kItEGEF4EAUFBThz5i6GDauB8nKTeAJeeYXDgw9eRny8n9NOzjTgObN02do25v77j2HVqiHgOB+sX89pYgsqNRESD+btVh4SWNpH6m2HPGkhF4kwgvAQTLPNnJx4lJf3tzhWVqbD++9/h4SEs4JjJ4QIBHMXkb9/CS/AgArLmRjx54042/8wNTWV6o0gPBgSYQRhB3diqtTANIt0Jp6EzjaFbpBssorl5MRXspy5Iv68DUexTnq9XsWSEQQhNyTCCMIG7sRUqY1Q8SQERwLBGqnEnzdiErIEQXgXJMIIwooLF+4JMMAUU1URDKoFixggTjw5Q6hAkFL8EQRBuIK7qzCVhkQYQVjx11+WG4oDFcuhT5/WjggD5LeupKSkIDIyEvn5+UhPTwcgrfjzZIQG23t6UD6LAyaLZfI07G1W7y5SrsJUChJhBGFFgwYVLkhzIebrW7EcmrhHZGQkYmzkoCDXmnO0lHpBLlHC4oDJYpk8DTn3fpR6FaYSkAgjCDMKCgrg61uCefOqYtIkPcrKdPD15TB3rhG+vrdQUMDGwCgGsbNOstIogxbakbUosdeWXBEl1gOhvWsrOWBqcRDXAqa+wtnej97Yp5AII4h/sB5wXnsthHer3bhxHR9+WPG5q7NgNVZb2pp1OsOelcZ8o25KOeEdmLcBRxYMd0WJnNYRQn1Mfcq+fcCiRZVzD7Zr1x8dOmhjYiI1tHckQfyD9UCi119HQsLZStYjVwacVauAOnWATp0q/l+1yq2i2sR6Fmlv1pmfX8XptSIiIhATE8P/+/bbGDzySE08/3wEHnmkJr76yvs6S2/G2T6hrF7bXYzGEOTkxDNRFq0TERGBNm0i4GOlOnx9gcTECK8UYIAGRdidO3fw4IMPQqfT4ejRoxbHjh07hsceewxVqlRBXFwc5s2bV+nvt2zZgsaNG6NKlSpo0aIFvv32W4vjHMdh+vTpiImJQdWqVZGUlIS//vrL4pyrV6/ixRdfRGhoKMLCwjB48GDcuHFDdFkI78DeakvThthSYZptDhs2DMOGDUPbtv1tZrwvKKgu6rrOyk/uS2Ww3khdSRztnsDytd3hyJGHsHjxaKxb1x+LF4/GkSMPqVoeT6BWrYp0P76+Fb9X7P2orQVPUqM5d+TEiRMRGxuL3377zeLzoqIidO7cGUlJSVi5ciV+//13DBo0CGFhYRg2bBgA4MCBA3jhhRcwZ84cdOvWDRs3bkTPnj1x5MgRNG/eHAAwb948LF26FOvWrUNCQgKmTZuG5ORk/PHHH6hSpcKC8OKLL+LixYvIyMhAaWkpBg4ciGHDhmHjxo2Cy0J4D0qutjSfTbZpI80CA2fl11KQudZwtJF63763FKtXIbsnsHhtV3EWu0S4jqft/egumhJh3333HXbt2oWtW7fiu+++szi2YcMGlJSUYPXq1QgICECzZs1w9OhRLFy4kBc+S5YsQZcuXTBhwgQAwFtvvYWMjAwsW7YMK1euBMdxWLx4MaZOnYpnnnkGAPDJJ5+gZs2a+Oqrr9CnTx+cOHECO3fuxKFDh9C6dWsAwPvvv4+nn34a8+fPR2xsrKCySEV5eTkFiUpEaWkpgoODK31eXFwMjuNcvq5aqy1Ns85XXqkQTa7OOoWUnwSWOITEBzrfSH019PrriqzUkzMHHIv55Zztm0q4h1J7P8qVCkNKNCPCLl26hKFDh+Krr75CUFBQpeOZmZlo3769hcsjOTkZc+fOxbVr11C9enVkZmZi7NixFn+XnJyMr776CgCQk5ODvLw8JCUl8cf1ej0SExORmZmJPn36IDMzE2FhYbwAA4CkpCT4+PggKysLzz77rKCy2OLOnTu4c+cO/3tRUZHDOikpKUFOTg7Krc0UhEuUlZWhXbt2lT6/desWDh06hNu3b7t0XanEkCtIMeuUq/xa2xZKKoTuxiB0I3VXJmGu1L2cOeBYyy/HonWOcI75mOtosQdLoRGaEGEcx2HAgAEYPnw4WrdujTNnzlQ6Jy8vDwkJCRaf1axZkz9WvXp15OXl8Z+Zn5OXl8efZ/539s6pUaOGxXE/Pz+Eh4dbnOOsLLaYM2cOZs2aZbsSrOA4DhcvXoSvry/i4uLgYx3tSIimpKQEhYWFFp9xHIdr166hUaNGlVzgYlDTBC/FrFPq8mt5Wyh3cGU3BqkEgRSuTSlzwFkPhPaureSAafouZ9Y5lgZx4h6m0IgzZ+5i9uwavPWY43ywY0d3TJ+eyNzKblVF2BtvvIG5c+c6POfEiRPYtWsXrl+/jsmTJytUMnWYPHmyhaWuqKgIcXFxNs+9e/cuiouLERsba9MySIjHx8cHfn6VXwm9Xo+oqCgEBAS45fpVygQvF1KV3xO2hXKFgoICHDwIlJdbDgBlZUBWVgGqVrXt1pXCXeeqa1PORRcsxhJal2n69Cs4c8YP8fF3ERv7MICHKb6RcSIiInDsmK04Vh2uX68J1h6dqiJs3LhxGDBggMNz6tati7179yIzMxOBgYEWx1q3bo0XX3wR69atQ3R0NC5dumRx3PR7dHQ0/7+tc8yPmz4zzwR+6dIlPPjgg/w5ly9ftrjG3bt3cfXqVaffY/4dtggMDKx0j/YoKysDQDMyKbFnTfTx8YGPjw/8/f1RUlKiiTqXKsu5HNnSPWVbKDGYiyCdbnQlq9b+/etw/Lj9+C533XWuujblFkosihnzMsXEAK1aqVgYwiW0tOuJqiIsKioKUVFRTs9bunQp3n77bf733NxcJCcnY9OmTUhMTAQAGAwGTJkyBaWlpfD39wcAZGRkoFGjRrz7z2AwYM+ePRg9ejR/rYyMDBgMBgBAQkICoqOjsWfPHl50FRUVISsrCyNGjOCvUVhYiMOHD6PVP2/n3r17UV5eLqosUqHT6SS9njfj5+eHGjVqVIqxu337Nq5fv47evXsjODiYyYHDHKm2XpFrCxctdZBSYRIxzqxajsSOFK5AV1ybrLd3grBGzThcsWgiJqx27doWv1erVg0AUK9ePdT6p1b79u2LWbNmYfDgwZg0aRKOHz+OJUuWYNGiRfzfvf7663j88cexYMECdO3aFZ9//jl++eUXfPhPKnSdTofRo0fj7bffRoMGDfgUFbGxsejZsycAoEmTJujSpQuGDh2KlStXorS0FGlpaejTpw9iY2MFl4VgE1vuyPLycvj6+qJGjRp8mhIlcDVwXaqtV+TawkVLHaQcqBmEzuJKRIKQA62kwtCECBOCXq/Hrl27MHLkSLRq1QqRkZGYPn26RUqItm3bYuPGjZg6dSrefPNNNGjQAF999RWfIwyoyEN28+ZNDBs2DIWFhXj00Uexc+dOi8F3w4YNSEtLwxNPPAEfHx/06tULS5cuFVUWb2XAgAFYt24dgHsLGu6//3688MILGDBggOAFBmvXrsXo0aMrBdJ7Cp4euM5yB6nEqk01NzlnbSUiQciFFuJwNSnC4uPjbeZtuv/++/HTTz85/Nvnn38ezz//vN3jOp0Os2fPxuzZs+2eEx4ezidmtYeQsngrXbp0wZo1a1BWVoZLly5h586deP311/HFF19g27ZtNq1RWsWVmCpvCVxnsYNkSfzKGRSvpggkCOIenjPaEaKQI+BaKIGBgfwChfvuuw8tW7ZEmzZt8MQTT2Dt2rUYMmQIFi5ciDVr1uD//u//EB4eju7du2PevHmoVq0afvjhBwwcOBDAvZi4GTNmYObMmVi/fj2WLFmCU6dOITg4GJ06dcLixYsrpRVRAldjqpQIXDcaQ7B/fwDatGFPCKkFa+KXxdWDBEFIC4kwL0SugGt36NSpEx544AGkp6djyJAh8PHxwdKlS5GQkID/+7//w6uvvoqJEyfigw8+QNu2bbF48WJMnz4dp06dAnAvTrC0tBRvvfUWGjVqhMuXL2Ps2LEYMGBApT1ClcDVmCq5A9dNSQwXLfJR3Nqjpvh3BourNklgEYRnQyLMC5Er4NpdGjdujGPHjgGAxQrW+Ph4vP322xg+fDg++OADBAQEQK/XQ6fTVUr5MWjQIP7nunXrYunSpXj44Ydx48YNXqixjpyB69Z74ilp7WFR/Jvjyas2WdhknWUBThBqQSKMYAaO43j34u7duzFnzhycPHkSRUVFuHv3Lm7fvo3i4mKHyWkPHz6MmTNn4rfffsO1a9f4dBPnzp1D06ZNFbkPKZArcN1WniilrD2sin8TcopftUWQ2q5NawFub08/tQQ4QagFiTCCGU6cOIGEhAScOXMG3bp1w4gRI/DOO+8gPDwcP//8MwYPHoySkhK7IuzmzZtITk5GcnIyNmzYgKioKJw7dw7Jycma3OTc1cB1RwO5rTxR9qw9agsHJTFZaZ5+GsjK8jHLkl6OixfdFyhqiyBTGdTC/L4d7emnxfeUINyBRBjBBHv37sXvv/+OMWPG4PDhwygvL8eCBQv4lBWbN2+2OD8gIIDfNcDEyZMnUVBQgHfffZff7umXX35R5gYYwtmAf999RZg0SY+yMp1Daw8LwkEJ7LlJjx+3/N1dK43S9cTiBunW7nCO88E333RDvXqnabUm4ZWQCCMU586dO8jLy7NIUTFnzhx069YNL7/8Mo4fP47S0lK8//776N69O/bv34+VK1daXCM+Ph43btzAnj178MADDyAoKAi1a9dGQEAA3n//fQwfPhzHjx/HW2+9pdJdqoujAX/cOCA1VZirU+sCSwisu0ldgaVUG+Y42zaJILwNYZkxCUJCdu7ciZiYGMTHx6NLly7Yt28fli5diq+//hq+vr544IEHsHDhQsydOxfNmzfHhg0bMGfOHItrtG3bFsOHD0dqaiqioqIwb948REVFYe3atdiyZQuaNm2Kd999F/Pnz1fpLtmmVi2gQwd2LCQmTKkzLlxQuyTSceECsG8fFLmngoICHD58CcOGcVapNjgcPnwJBQUF8hfCASZ3uDnOtk0iCE+GLGGEoqxduxZr1651et6YMWMwZswYi89eeukli99XrFiBFStWWHz2wgsv4IUXXrD4zFZiXyXwppgqKVAzdYZcKGmRMrlVc3LiUV7e3+JYWZkO77//HRISzqoa/O5s26TCwkLExMSoUjaCUAMSYV4IiQNl8JaYKilQM3WGXCid/NXUzpxt0q22W9W0bdL587UA6BAXd54/tnnzZlohSXgVJMK8EBIHykF1eA9Hol7N1BlyoVbyV6U36RaS/8ua7Oz6tEKSIEAizGshcUAojSPxn5vrg/XrOZSX6/jPtJwotaCgAKGhd+HjU8PqnjiEhFxGQYGfrO+gUpt0C83/1a9fP4tzaIUkQVRAIowgCMWwJzxiYuRLlKo05sKkWzfLnFhdu27H9u0VFh+53W5KbNItNP9XUFAQUlNTsWnTJlohKRDaYcA7IBFGEAzhzR2vXLsEOEPqGEnz5+fIIuVJbjch1i29Xg/Aecwawf4WX4R0kAgjCEaQu+PVgsBzdZcAd5A7RlIJi5TaiLFuKR2zpkU8MXcdYRsSYQTBCHJ2vDSzdow33rOUiLVuKRWz5unk5+fb/JyFCRUhDBJhBOEF0Mza81Ez9Ywr1i25LYRasPy6S3p6ut1j3jqh0hokwgiCUBVvGCyVQO3UM86sW0qKRLL80oRKK5AIIzyKH374AR07dsS1a9cQFhYm6G/i4+MxevRojB49WtayEZWhwVJa1K4jR9YtJUUiWX4JrUB7RxKKMmDAAOh0OgwfPrzSsZEjR0Kn02HAgAHKF4xQBRostY1Y61ZERARiYmLs/lNbRBKE0pAljFCcuLg4fP7551i0aBGqVq0KALh9+zY2btyI2rVrq1w6gnAPb9oWTG0XKEFoHRJhhOK0bNkS2dnZSE9Px4svvgigIsC0du3aSEhI4M+7c+cOJkyYgM8//xxFRUVo3bo1Fi1ahIcffpg/59tvv8Xo0aNx/vx5tGnTBv3796/0fT///DMmT56MX375BZGRkXj22WcxZ84cBAcHy3+zhNfhbcJEC/dhL5M/q1gLdK2VnxAOiTBCFQYNGoQ1a9bwImz16tUYOHAgfvjhB/6ciRMnYuvWrVi3bh3q1KmDefPmITk5GadPn0Z4eDjOnz+PlJQUjBw5EsOGDcMvv/yCcePGWXxPdnY2unTpgrfffhurV6/GlStXkJaWhrS0NKxZs0bJW3aKN1lQPB0tCBNvwVEmf1YxF/IbN1bF7Nl6lJfr4OPDYfr0vwGsUruIhESQCCNw4ULFZsMNGiiXKLNfv36YPHkyzp49CwDYv38/Pv/8c16E3bx5EytWrMDatWvx1FNPAQA++ugjZGRkYNWqVZgwYQJWrFiBevXqYcGCBQCARo0a4ffff8fcuXP575kzZw5efPFFPui+QYMGWLp0KR5//HGsWLECVapUUeaGBSCnBYUEHuGNaHmfyoiICFy4AEyceG8j+PJyHd566z689loI8+UnhEEizMtZtQoYNqziJffxqdi/b/Bg+b83KioKXbt2xdq1a8FxHLp27YrIyEj+eHZ2NkpLS9GuXTv+M39/fzzyyCM4ceIEAODEiRNITEy0uK7BYLD4/bfffsOxY8ewYcMG/jOO41BeXo6cnBw0adJEjttzGbksKN7mIiMIQFwmfxb56697AsxEWZlOUPlpQqUNSIR5MRcu3BNgQMX/r7xSsX+fEhaxQYMGIS0tDQCwfPlyWb7jxo0beOWVV/Daa69VOuZtiwBIYBHegkmAOMvkz7pQadCgYnJsLsR8fYFx455BZORtAEBurg9ycvyQkHAXsbEVJ9KESjuQCPNibM+yKjZQVkKEdenSBSUlJdDpdEhOTrY4Vq9ePQQEBGD//v2oU6cOAKC0tBSHDh3iXYtNmjTBtm3bLP7u4MGDFr+3bNkSf/zxB+rXry/fjRAuQ25SQg7MLb/33VeESZP0KCvTwdeXw9y5Rejb9wVNCJVatSq8E6+8UtE3+/oC//430KJFdQDqeTII6SAR5sXYm2UppVd8fX1516Kvr6/FseDgYIwYMQITJkxAeHg4ateujXnz5qG4uBiD/+llhg8fjgULFmDChAkYMmQIDh8+jLVr11pcZ9KkSWjTpg3S0tIwZMgQBAcH448//kBGRoagJKGEvJCblJALU5sZNw5ITa2YXNavr0OtWmEAwtQsmigGD67wTlSU/94EWW1PBiENJMK8GHuzLCVf4NDQULvH3n33XZSXl+Oll17C9evX0bp1a3z//feoXr1iFli7dm1s3boVY8aMwfvvv49HHnkE//rXvzBo0CD+Gvfffz9+/PFHTJkyBY899hg4jkO9evWQmpoq+70RwiCBRchNrVraFia2yq+2J4OQBh3HcZzahSBsU1RUBL1eD6PRWEms3L59Gzk5OUhISHB7hd+FC5VnWcQ9pKxrgiAIKbhwAahTp7In48wZ6sdZwNH4bQ5tW0SgVi2gQwd6cQmCILSCyZNhiuRQw5NBuA+5IwmCIAhCg9iLFyO0A4kwgiAIgtAoWo9383bIHUkQBEEQBKECJMIIgiAIgiBUgESYxqHFrfJDdUwQBEHIAYkwjWJKbuooySUhDaY6tk4oSxAEQRDuQIH5GsXPzw9BQUG4cuUK/P394eNDeloOysvLceXKFQQFBcHPj14XgiAIQjpoVNEoOp0OMTExyMnJwdmzZ9Uujkfj4+OD2rVrQ6fTqV0UgiAIwoMgEaZhAgIC0KBBA3JJykxAQABZGgmCIAjJIRGmcXx8fGgrHYIgCILQIDS9JwiCIAiCUAESYQRBEARBECpAIowgCIIgCEIFKCaMYUxJQouKilQuCUEQBEEQQjGN286SfZMIY5jr168DAOLi4lQuCUEQBEEQYrl+/Tr0er3d4zqO9mRhlvLycuTm5iIkJMQrc1QVFRUhLi4O58+fR2hoqNrF0SxUj9JA9eg+VIfSQPUoDXLWI8dxuH79OmJjYx2mOCJLGMP4+PigVq1aahdDdUJDQ6mjkQCqR2mgenQfqkNpoHqUBrnq0ZEFzAQF5hMEQRAEQagAiTCCIAiCIAgVIBFGMEtgYCBmzJiBwMBAtYuiaagepYHq0X2oDqWB6lEaWKhHCswnCIIgCIJQAbKEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYoTr/+c9/0L17d8TGxkKn0+Grr76yOM5xHKZPn46YmBhUrVoVSUlJ+Ouvv9QpLKM4q8MBAwZAp9NZ/OvSpYs6hWWYOXPm4OGHH0ZISAhq1KiBnj174tSpUxbn3L59GyNHjkRERASqVauGXr164dKlSyqVmE2E1GOHDh0qtcnhw4erVGI2WbFiBe6//34+majBYMB3333HH6e2KAxn9ahmWyQRRqjOzZs38cADD2D58uU2j8+bNw9Lly7FypUrkZWVheDgYCQnJ+P27dsKl5RdnNUhAHTp0gUXL17k/3322WcKllAb/Pjjjxg5ciQOHjyIjIwMlJaWonPnzrh58yZ/zpgxY/DNN99gy5Yt+PHHH5Gbm4uUlBQVS80eQuoRAIYOHWrRJufNm6dSidmkVq1aePfdd3H48GH88ssv6NSpE5555hn873//A0BtUSjO6hFQsS1yBMEQALgvv/yS/728vJyLjo7m3nvvPf6zwsJCLjAwkPvss89UKCH7WNchx3Fc//79uWeeeUaV8miZy5cvcwC4H3/8keO4irbn7+/PbdmyhT/nxIkTHAAuMzNTrWIyj3U9chzHPf7449zrr7+uXqE0SvXq1bmPP/6Y2qKbmOqR49Rti2QJI5gmJycHeXl5SEpK4j/T6/VITExEZmamiiXTHj/88ANq1KiBRo0aYcSIESgoKFC7SMxjNBoBAOHh4QCAw4cPo7S01KI9Nm7cGLVr16b26ADrejSxYcMGREZGonnz5pg8eTKKi4vVKJ4mKCsrw+eff46bN2/CYDBQW3QR63o0oVZbpA28CabJy8sDANSsWdPi85o1a/LHCOd06dIFKSkpSEhIQHZ2Nt5880089dRTyMzMhK+vr9rFY5Ly8nKMHj0a7dq1Q/PmzQFUtMeAgACEhYVZnEvt0T626hEA+vbtizp16iA2NhbHjh3DpEmTcOrUKaSnp6tYWvb4/fffYTAYcPv2bVSrVg1ffvklmjZtiqNHj1JbFIG9egTUbYskwgjCC+jTpw//c4sWLXD//fejXr16+OGHH/DEE0+oWDJ2GTlyJI4fP46ff/5Z7aJoGnv1OGzYMP7nFi1aICYmBk888QSys7NRr149pYvJLI0aNcLRo0dhNBrxxRdfoH///vjxxx/VLpbmsFePTZs2VbUtkjuSYJro6GgAqLTi59KlS/wxQjx169ZFZGQkTp8+rXZRmCQtLQ3bt2/Hvn37UKtWLf7z6OholJSUoLCw0OJ8ao+2sVePtkhMTAQAapNWBAQEoH79+mjVqhXmzJmDBx54AEuWLKG2KBJ79WgLJdsiiTCCaRISEhAdHY09e/bwnxUVFSErK8vCn0+I48KFCygoKEBMTIzaRWEKjuOQlpaGL7/8Env37kVCQoLF8VatWsHf39+iPZ46dQrnzp2j9miGs3q0xdGjRwGA2qQTysvLcefOHWqLbmKqR1so2RbJHUmozo0bNyxmHDk5OTh69CjCw8NRu3ZtjB49Gm+//TYaNGiAhIQETJs2DbGxsejZs6d6hWYMR3UYHh6OWbNmoVevXoiOjkZ2djYmTpyI+vXrIzk5WcVSs8fIkSOxceNGfP311wgJCeFja/R6PapWrQq9Xo/Bgwdj7NixCA8PR2hoKEaNGgWDwYA2bdqoXHp2cFaP2dnZ2LhxI55++mlERETg2LFjGDNmDNq3b4/7779f5dKzw+TJk/HUU0+hdu3auH79OjZu3IgffvgB33//PbVFETiqR9XboiprMgnCjH379nEAKv3r378/x3EVaSqmTZvG1axZkwsMDOSeeOIJ7tSpU+oWmjEc1WFxcTHXuXNnLioqivP39+fq1KnDDR06lMvLy1O72Mxhqw4BcGvWrOHPuXXrFvfqq69y1atX54KCgrhnn32Wu3jxonqFZhBn9Xju3Dmuffv2XHh4OBcYGMjVr1+fmzBhAmc0GtUtOGMMGjSIq1OnDhcQEMBFRUVxTzzxBLdr1y7+OLVFYTiqR7Xboo7jOE5+qUcQBEEQBEGYQzFhBEEQBEEQKkAijCAIgiAIQgVIhBEEQRAEQagAiTCCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVIBEGEEQBEEQhAqQCCMIgiAIglABEmEEQTBLXl4eRo0ahbp16yIwMBBxcXHo3r27xX55Bw4cwNNPP43q1aujSpUqaNGiBRYuXIiysjL+nDNnzmDw4MFISEhA1apVUa9ePcyYMQMlJSUW3/fRRx/hgQceQLVq1RAWFoaHHnoIc+bM4Y/PnDkTOp0OXbp0qVTW9957DzqdDh06dBB0b6Zr6XQ6+Pn5IT4+HmPGjMGNGzdE1hJBEFqF9o4kCIJJzpw5g3bt2iEsLAzvvfceWrRogdLSUnz//fcYOXIkTp48iS+//BK9e/fGwIEDsW/fPoSFhWH37t2YOHEiMjMzsXnzZuh0Opw8eRLl5eX497//jfr16+P48eMYOnQobt68ifnz5wMAVq9ejdGjR2Pp0qV4/PHHcefOHRw7dgzHjx+3KFdMTAz27duHCxcuoFatWvznq1evRu3atUXdY7NmzbB7927cvXsX+/fvx6BBg1BcXIx///vflc4tKSlBQECACzUpHyyWiSA0hSKbIxEEQYjkqaee4u677z7uxo0blY5du3aNu3HjBhcREcGlpKRUOr5t2zYOAPf555/bvf68efO4hIQE/vdnnnmGGzBggMMyzZgxg3vggQe4bt26cW+//Tb/+f79+7nIyEhuxIgR3OOPPy7g7u5dy5yhQ4dy0dHRFsc/+ugjLj4+ntPpdBzHVdz74MGDucjISC4kJITr2LEjd/ToUf4aR48e5Tp06MBVq1aNCwkJ4Vq2bMkdOnSI4ziOO3PmDNetWzcuLCyMCwoK4po2bcrt2LGD4ziOW7NmDafX6y3K8+WXX3Lmw4SrZSIIwjbkjiQIgjmuXr2KnTt3YuTIkQgODq50PCwsDLt27UJBQQHGjx9f6Xj37t3RsGFDfPbZZ3a/w2g0Ijw8nP89OjoaBw8exNmzZ52Wb9CgQVi7di3/++rVq/Hiiy+6bRWqWrWqhYv09OnT2Lp1K9LT03H06FEAwPPPP4/Lly/ju+++w+HDh9GyZUs88cQTuHr1KgDgxRdfRK1atXDo0CEcPnwYb7zxBvz9/QEAI0eOxJ07d/Cf//wHv//+O+bOnYtq1aqJKqMrZSIIwjbkjiQIgjlOnz4NjuPQuHFju+f8+eefAIAmTZrYPN64cWP+HFvXf//993lXJADMmDEDKSkpiI+PR8OGDWEwGPD000/jueeeg4+P5Xy1W7duGD58OP7zn/+gVatW2Lx5M37++WesXr1a7K3yHD58GBs3bkSnTp34z0pKSvDJJ58gKioKAPDzzz/jv//9Ly5fvozAwEAAwPz58/HVV1/hiy++wLBhw3Du3DlMmDCBr7sGDRrw1zt37hx69eqFFi1aAADq1q0rupyulIkgCNuQCCMIgjk4jpPlXAD4+++/0aVLFzz//PMYOnQo/3lMTAwyMzNx/Phx/Oc//8GBAwfQv39/fPzxx9i5c6eFEPP390e/fv2wZs0a/N///R8aNmyI+++/X1Q5AOD3339HtWrVUFZWhpKSEnTt2hXLli3jj9epU4cXOwDw22+/4caNG4iIiLC4zq1bt5CdnQ0AGDt2LIYMGYL169cjKSkJzz//POrVqwcAeO211zBixAjs2rULSUlJ6NWrl+hyu1ImgiBsQyKMIAjmaNCgAR9Qb4+GDRsCAE6cOIG2bdtWOn7ixAk0bdrU4rPc3Fx07NgRbdu2xYcffmjzus2bN0fz5s3x6quvYvjw4Xjsscfw448/omPHjhbnDRo0CImJiTh+/DgGDRok9hYBAI0aNcK2bdvg5+eH2NjYSu5Ma1fsjRs3EBMTgx9++KHStcLCwgBUrLrs27cvduzYge+++w4zZszA559/jmeffRZDhgxBcnIyduzYgV27dmHOnDlYsGABRo0aBR8fn0qCtrS0tNL3uFImgiBsQzFhBEEwR3h4OJKTk7F8+XLcvHmz0vHCwkJ07twZ4eHhWLBgQaXj27Ztw19//YUXXniB/+zvv/9Ghw4d0KpVK6xZs6aSi9EWJhFnqwzNmjVDs2bNcPz4cfTt21fM7fEEBASgfv36iI+PFxRP1rJlS+Tl5cHPzw/169e3+BcZGcmf17BhQ4wZMwa7du1CSkoK1qxZwx+Li4vD8OHDkZ6ejnHjxuGjjz4CAERFReH69esW92qK+ZKiTARBVIZEGEEQTLJ8+XKUlZXhkUcewdatW/HXX3/hxIkTWLp0KQwGA4KDg/Hvf/8bX3/9NYYNG4Zjx47hzJkzWLVqFQYMGIDnnnsOvXv3BnBPgNWuXRvz58/HlStXkJeXh7y8PP77RowYgbfeegv79+/H2bNncfDgQbz88suIioqCwWCwWca9e/fi4sWLill8kpKSYDAY0LNnT+zatQtnzpzBgQMHMGXKFPzyyy+4desW0tLS8MMPP+Ds2bPYv38/Dh06xMfNjR49Gt9//z1ycnJw5MgR7Nu3jz+WmJiIoKAgvPnmm8jOzsbGjRstFh+4WiaCIOxD7kiCIJikbt26OHLkCN555x2MGzcOFy9eRFRUFFq1aoUVK1YAAJ577jns27cP77zzDh577DHcvn0bDRo0wJQpUzB69GjodDoAQEZGBk6fPo3Tp09b5PYC7sWUJSUlYfXq1VixYgUKCgoQGRkJg8GAPXv2VIp3MmFr5aac6HQ6fPvtt5gyZQoGDhyIK1euIDo6Gu3bt0fNmjXh6+uLgoICvPzyy7h06RIiIyORkpKCWbNmAQDKysowcuRIXLhwAaGhoejSpQsWLVoEoML6+Omnn2LChAn46KOP8MQTT2DmzJlOA+udlYkgCPvoOLFRrQRBEARBEITbkDuSIAiCIAhCBUiEEQRByEC1atXs/vvpp5/ULh5BEAxA7kiCIAgZOH36tN1j9913H6pWrapgaQiCYBESYQRBEARBECpA7kiCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVIBEGEEQBEEQhAqQCCMIgiAIglABEmEEQRAEQRAqQCKMIAiCIAhCBUiEEQRBEARBqMD/A73T4mqlkO6gAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXbElEQVR4nOzdeVxU1f8/8NcdBASFYUcIVERccUMTB9OyQDSX/KqhpqWJWf2kQkvNT+XyqT6VbVa2maa2aK4VaqmgpqZEhStuKaFCiMsgA2oJMuf3xzSXubOwyc7r+XjwAO49c+fcG8abc97nfSQhhAARERER1ShVbXeAiIiIqDFiEEZERERUCxiEEREREdUCBmFEREREtYBBGBEREVEtYBBGREREVAsYhBERERHVAgZhRERERLWAQRgRERFRLWAQRkREpVqxYgUkScLZs2druytEDQqDMCKqdb/99hvi4uLQuXNnNGvWDC1btkRMTAz++OMPi7b33HMPJEmCJElQqVRwdXVF+/bt8fDDDyMxMbFC77tp0ybcfffd8PHxgbOzM9q0aYOYmBhs3bq1qm7Nwv/+9z989913Fsf379+P+fPnIy8vr9re29z8+fPlZylJEpydndGpUye8+OKLyM/Pr5L3WLVqFRYtWlQl1yJqaBiEEVGte+ONN7Bhwwbcd999eO+99zB16lTs2bMHYWFhSEtLs2gfEBCAL7/8El988QXefPNNDB8+HPv378fAgQMxZswYFBUVlfmeb731FoYPHw5JkjBnzhy8++67GDVqFE6fPo1vvvmmOm4TQOlB2IIFC2o0CDP6+OOP8eWXX+Kdd95Bhw4d8Oqrr2LQoEGoiq2FGYQR2daktjtARDRjxgysWrUKDg4O8rExY8agS5cueP311/HVV18p2qvVakyYMEFx7PXXX8fTTz+Njz76CK1bt8Ybb7xh8/1u3bqFl19+GVFRUdi+fbvF+UuXLt3mHdUdN27cgLOzc6ltRo8eDS8vLwDAE088gVGjRmHjxo345ZdfoNFoaqKbRI0SR8KIqNZFREQoAjAACAkJQefOnXHixIlyXcPOzg7vv/8+OnXqhMWLF0On09lse+XKFeTn56Nv375Wz/v4+Ci+/+effzB//ny0a9cOTZs2hZ+fH0aOHIn09HS5zVtvvYWIiAh4enrCyckJPXv2xPr16xXXkSQJ169fx8qVK+UpwEmTJmH+/PmYOXMmACAoKEg+Z5qD9dVXX6Fnz55wcnKCh4cHxo4di8zMTMX177nnHoSGhiI1NRX9+/eHs7Mz/vOf/5Tr+Zm69957AQAZGRmltvvoo4/QuXNnODo6wt/fH9OmTVOM5N1zzz3YsmULzp07J99T69atK9wfooaKI2FEVCcJIXDx4kV07ty53K+xs7PDuHHj8NJLL+Hnn3/GkCFDrLbz8fGBk5MTNm3ahKeeegoeHh42r1lcXIyhQ4dix44dGDt2LJ555hkUFBQgMTERaWlpCA4OBgC89957GD58OMaPH4/CwkJ88803ePDBB7F582a5H19++SWmTJmC3r17Y+rUqQCA4OBgNGvWDH/88QdWr16Nd999Vx6V8vb2BgC8+uqreOmllxATE4MpU6bg8uXL+OCDD9C/f38cPHgQbm5ucn+1Wi0GDx6MsWPHYsKECfD19S338zMyBpeenp4228yfPx8LFixAZGQknnzySZw6dQoff/wxfvvtN+zbtw/29vZ44YUXoNPpkJWVhXfffRcA0Lx58wr3h6jBEkREddCXX34pAIhly5Ypjt99992ic+fONl/37bffCgDivffeK/X6c+fOFQBEs2bNxODBg8Wrr74qUlNTLdp9/vnnAoB45513LM7p9Xr56xs3bijOFRYWitDQUHHvvfcqjjdr1kxMnDjR4lpvvvmmACAyMjIUx8+ePSvs7OzEq6++qjh+9OhR0aRJE8Xxu+++WwAQn3zyic37NjVv3jwBQJw6dUpcvnxZZGRkiE8//VQ4OjoKX19fcf36dSGEEMuXL1f07dKlS8LBwUEMHDhQFBcXy9dbvHixACA+//xz+diQIUNEq1atytUfosaG05FEVOecPHkS06ZNg0ajwcSJEyv0WuNIS0FBQantFixYgFWrVqFHjx7Ytm0bXnjhBfTs2RNhYWGKKdANGzbAy8sLTz31lMU1JEmSv3ZycpK/vnr1KnQ6Hfr164cDBw5UqP/mNm7cCL1ej5iYGFy5ckX+aNGiBUJCQrBr1y5Fe0dHRzz66KMVeo/27dvD29sbQUFBePzxx9G2bVts2bLFZi5ZUlISCgsLER8fD5Wq5NfIY489BldXV2zZsqXiN0rUCHE6kojqlJycHAwZMgRqtRrr16+HnZ1dhV5/7do1AICLi0uZbceNG4dx48YhPz8fKSkpWLFiBVatWoVhw4YhLS0NTZs2RXp6Otq3b48mTUr/3+XmzZvxyiuv4NChQ7h586Z83DRQq4zTp09DCIGQkBCr5+3t7RXf33HHHRb5dWXZsGEDXF1dYW9vj4CAAHmK1ZZz584BMARvphwcHNCmTRv5PBGVjkEYEdUZOp0OgwcPRl5eHvbu3Qt/f/8KX8NY0qJt27blfo2rqyuioqIQFRUFe3t7rFy5EikpKbj77rvL9fq9e/di+PDh6N+/Pz766CP4+fnB3t4ey5cvx6pVqyp8D6b0ej0kScKPP/5oNSA1z7EyHZErr/79+8t5aERUcxiEEVGd8M8//2DYsGH4448/kJSUhE6dOlX4GsXFxVi1ahWcnZ1x1113VaofvXr1wsqVK3HhwgUAhsT5lJQUFBUVWYw6GW3YsAFNmzbFtm3b4OjoKB9fvny5RVtbI2O2jgcHB0MIgaCgILRr166it1MtWrVqBQA4deoU2rRpIx8vLCxERkYGIiMj5WO3OxJI1JAxJ4yIal1xcTHGjBmD5ORkrFu3rlK1qYqLi/H000/jxIkTePrpp+Hq6mqz7Y0bN5CcnGz13I8//gigZKpt1KhRuHLlChYvXmzRVvxbzNTOzg6SJKG4uFg+d/bsWatFWZs1a2a1IGuzZs0AwOLcyJEjYWdnhwULFlgUTxVCQKvVWr/JahQZGQkHBwe8//77ij4tW7YMOp1OsSq1WbNmpZYLIWrMOBJGRLXu2WefRUJCAoYNG4bc3FyL4qzmhVl1Op3c5saNGzhz5gw2btyI9PR0jB07Fi+//HKp73fjxg1ERESgT58+GDRoEAIDA5GXl4fvvvsOe/fuxYgRI9CjRw8AwCOPPIIvvvgCM2bMwK+//op+/frh+vXrSEpKwv/7f/8PDzzwAIYMGYJ33nkHgwYNwkMPPYRLly7hww8/RNu2bXHkyBHFe/fs2RNJSUl455134O/vj6CgIISHh6Nnz54AgBdeeAFjx46Fvb09hg0bhuDgYLzyyiuYM2cOzp49ixEjRsDFxQUZGRn49ttvMXXqVDz33HO39fwrytvbG3PmzMGCBQswaNAgDB8+HKdOncJHH32EO++8U/Hfq2fPnlizZg1mzJiBO++8E82bN8ewYcNqtL9EdVZtLs0kIhKipLSCrY/S2jZv3lyEhISICRMmiO3bt5fr/YqKisRnn30mRowYIVq1aiUcHR2Fs7Oz6NGjh3jzzTfFzZs3Fe1v3LghXnjhBREUFCTs7e1FixYtxOjRo0V6errcZtmyZSIkJEQ4OjqKDh06iOXLl8slIEydPHlS9O/fXzg5OQkAinIVL7/8srjjjjuESqWyKFexYcMGcdddd4lmzZqJZs2aiQ4dOohp06aJU6dOKZ5NaeU7zBn7d/ny5VLbmZeoMFq8eLHo0KGDsLe3F76+vuLJJ58UV69eVbS5du2aeOihh4Sbm5sAwHIVRCYkIapgczAiIiIiqhDmhBERERHVAgZhRERERLWAQRgRERFRLWAQRkRERFQLGIQRERER1QIGYURERES1gMVa6zC9Xo/s7Gy4uLhw6w8iIqJ6QgiBgoIC+Pv7Q6WyPd7FIKwOy87ORmBgYG13g4iIiCohMzMTAQEBNs8zCKvDXFxcABj+I5a2Dx4RERHVHfn5+QgMDJR/j9vCIKwOM05Burq6MggjIiKqZ8pKJWJiPhEREVEtYBBGREREVAsYhBERERHVAuaE1XN6vR6FhYW13Y0GzcHBodQlxkRERJXBIKweKywsREZGBvR6fW13pUFTqVQICgqCg4NDbXeFiIgaEAZh9ZQQAhcuXICdnR0CAwM5UlNNjAVzL1y4gJYtW7JoLhERVRkGYfXUrVu3cOPGDfj7+8PZ2bm2u9OgeXt7Izs7G7du3YK9vX1td4eIiBoIDp/UU8XFxQDAKbIaYHzGxmdORERUFRiE1XOcHqt+fMZERFQdGIQRERER1QIGYURERES1oN4EYcOHD0fLli3RtGlT+Pn54eGHH0Z2draijRACb731Ftq1awdHR0fccccdePXVVxVtfvrpJ4SFhcHR0RFt27bFihUrLN7rww8/ROvWrdG0aVOEh4fj119/VZz/559/MG3aNHh6eqJ58+YYNWoULl68qGhz/vx5DBkyBM7OzvDx8cHMmTNx69atqnkY9dikSZMgSRIkSYK9vT18fX0RFRWFzz//vEKlNlasWAE3N7fq6ygRETVIWVnArl2Gz7Wt3gRhAwYMwNq1a3Hq1Cls2LAB6enpGD16tKLNM888g6VLl+Ktt97CyZMnkZCQgN69e8vnMzIyMGTIEAwYMACHDh1CfHw8pkyZgm3btslt1qxZgxkzZmDevHk4cOAAunXrhujoaFy6dEluM336dGzatAnr1q3D7t27kZ2djZEjR8rni4uLMWTIEBQWFmL//v1YuXIlVqxYgblz51bjE6oYrVaLCxcu2PzQarXV9t6DBg3ChQsXcPbsWfz4448YMGAAnnnmGQwdOpSBKhERVbmjR69i/XotXnpJh1atBO69F2jVSuDJJ68hNfVitf7OK5Wop77//nshSZIoLCwUQghx/Phx0aRJE3Hy5Embr5k1a5bo3Lmz4tiYMWNEdHS0/H3v3r3FtGnT5O+Li4uFv7+/eO2114QQQuTl5Ql7e3uxbt06uc2JEycEAJGcnCyEEOKHH34QKpVK5OTkyG0+/vhj4erqKm7evFnue9TpdAKA0Ol0Fuf+/vtvcfz4cfH333+X+3pGV65cEfPnzy/z48qVKxW+dlkmTpwoHnjgAYvjO3bsEADEZ599JoQQ4u233xahoaHC2dlZBAQEiCeffFIUFBQIIYTYtWuXAKD4mDdvnhBCiC+++EL07NlTNG/eXPj6+opx48aJixcv3lafb+dZExFR7Vq0qEBIUrEAhAD0/342/SgWw4d/L06cOFFlv/dK+/1tqt6MhJnKzc3F119/jYiICLlu06ZNm9CmTRts3rwZQUFBaN26NaZMmYLc3Fz5dcnJyYiMjFRcKzo6GsnJyQAMFehTU1MVbVQqFSIjI+U2qampKCoqUrTp0KEDWrZsKbdJTk5Gly5d4Ovrq3if/Px8HDt2zOZ93bx5E/n5+YqP6lDebY5qcjuke++9F926dcPGjRsBGJ77+++/j2PHjmHlypXYuXMnZs2aBQCIiIjAokWL4OrqKo/cPffccwCAoqIivPzyyzh8+DC+++47nD17FpMmTaqx+yAiorpBq9UiNfUiZsxohpJwx9pqdxU2bRqKJUt+wOLFi2t0VKxeBWGzZ89Gs2bN4OnpifPnz+P777+Xz/355584d+4c1q1bhy+++AIrVqxAamqqYsoyJydHERgBgK+vL/Lz8/H333/jypUrKC4uttomJydHvoaDg4NFPpJ5G2vXMJ6z5bXXXoNarZY/AgMDy/lkGoYOHTrg7NmzAID4+HgMGDAArVu3xr333otXXnkFa9euBWCo26VWqyFJElq0aIEWLVqgefPmAIDJkydj8ODBaNOmDfr06YP3338fP/74I65du1Zbt0VERDUsPT0dixcvxuuv74FeX3aZISFUyM31AFCzAxC1GoQ9//zzcpK2rY+TJ0/K7WfOnImDBw9i+/btsLOzwyOPPAIhBADD9jI3b97EF198gX79+uGee+7BsmXLsGvXLpw6daq2brFC5syZA51OJ39kZmbWdpdqlBBCrsmVlJSE++67D3fccQdcXFzw8MMPQ6vV4saNG6VeIzU1FcOGDUPLli3h4uKCu+++G4BhoQQRETV8Wq0WX331FQ4c6IH160eV6zWSpIeHR27ZDatYrW5b9Oyzz5Y5VdSmTRv5ay8vL3h5eaFdu3bo2LEjAgMD8csvv0Cj0cDPzw9NmjRBu3bt5PYdO3YEYPgF3L59e7Ro0cJiFePFixfh6uoKJycn2NnZwc7OzmqbFi1aAABatGiBwsJC5OXlKUbDzNuYr6g0XtPYxhpHR0c4OjqW+jwashMnTiAoKAhnz57F0KFD8eSTT+LVV1+Fh4cHfv75Z8TGxqKwsNDmNk3Xr19HdHQ0oqOj8fXXX8Pb2xvnz59HdHR0jf5lQ0REtSMrC/jlFyAryw8JCUNRvrEmPYYN2wy1uqC6u2ehVoMwb29veHt7V+q1xnIGN2/eBAD07dsXt27dQnp6OoKDgwEAf/zxBwCgVatWAACNRoMffvhBcZ3ExERoNBoAhmmunj17YseOHRgxYoT8Pjt27EBcXBwAoGfPnrC3t8eOHTswapQhwj516hTOnz8vX0ej0eDVV1/FpUuX4OPjI7+Pq6srOnXqVKn7beh27tyJo0ePYvr06UhNTYVer8fbb78tb0xunIo0cnBwsNhG6OTJk9BqtXj99dflqdzff/+9Zm6AiIhqhVarxaVLl/DZZ3osWtQJQngCeAzW879MCURE7Ed4eEqtBGBAPdnAOyUlBb/99hvuuusuuLu7Iz09HS+99BKCg4PlwCcyMhJhYWGYPHkyFi1aBL1ej2nTpiEqKkoeHXviiSewePFizJo1C5MnT8bOnTuxdu1abNmyRX6vGTNmYOLEiejVqxd69+6NRYsW4fr163j00UcBAGq1GrGxsZgxYwY8PDzg6uqKp556ChqNBn369AEADBw4EJ06dcLDDz+MhQsXIicnBy+++CKmTZvWqEe6jG7evImcnBwUFxfj4sWL2Lp1K1577TUMHToUjzzyCNLS0lBUVIQPPvgAw4YNw759+/DJJ58ortG6dWtcu3YNO3bsQLdu3eDs7IyWLVvCwcEBH3zwAZ544gmkpaXh5ZdfrqW7JCKi6qTVanH58mWsWbMGWVl+WLZsCoQwBl4SDIvnrQdikqRHbOxSBARcqKnuWlUvEvOdnZ2xceNG3HfffWjfvj1iY2PRtWtX7N69Ww5qVCoVNm3aBC8vL/Tv3x9DhgxBx44d8c0338jXCQoKwpYtW5CYmIhu3brh7bffxtKlSxEdHS23GTNmDN566y3MnTsX3bt3x6FDh7B161ZFov27776LoUOHYtSoUejfvz9atGghr+oDADs7O2zevBl2dnbQaDSYMGECHnnkEfz3v/+tgadV923duhV+fn5o3bo1Bg0ahF27duH999/H999/Dzs7O3Tr1g3vvPMO3njjDYSGhuLrr7/Ga6+9prhGREQEnnjiCYwZMwbe3t5YuHAhvL29sWLFCqxbtw6dOnXC66+/jrfeequW7pKIiKqLMfF+zZo1OHCgB5YunQLLgg/GQMzI8LUkGaYfazsAAwBJGDPbqc7Jz8+HWq2GTqeDq6ur4tw///yDjIwMBAUFoWnTphW6rlarxeLFi8tsFxcXB09PzwpduyG6nWdNRERVy/R3mE7ngkWL4q0EYKYE7r03CW3aZKCoyAEeHrmlTj9OnToVfn5+t9XH0n5/m6oX05FUtTw9PREXF1dqsrqDgwMDMCIiqjOMuV+XL1+Wj+3Z06+MAAwAJNjbF5d75MvBweE2elkxDMIaKQZYRERUX5jP4GRl+WHPnv7444/25Xi1QGBg6WWKBg4ciNatW9f4AASDMCIiIqqztFotsrOz5e+//fYBHD7cDWWvfgQAgW7dDpc5CtauXbtaGZxgEEZERER1jlarRXp6On788Uf5WFaWX7kCMEnSo3//3QgJOV1mADZhwoRamx1iEEZERER1ivn0o07ngtxcT5w82Q62AzBDSQrj6sewsIM2rz9y5Eh4eXnVev4zgzAiIiKqdcbE+6tXryr2WT5woAc2bRr6bwK+7YIOXbocRljYoTJXPwKAv79/nciNZhBGREREtcr6yFdr2NvfRELCMJSMftkaBdMjMnKn1eArODgY3t7ecHd3R2BgYK2PfpliEEZERES1yrRkknLkS4/y5H+Vtvfjfffdd9t1v6oLgzAiIiKqUVqtVg68Tp68hsOHb0CncwEAkwAMKH1jHz1Gj16PwMCsUqcfa7LuV0UxCKMG5aeffsKAAQNw9epVuLm5les1rVu3Rnx8POLj46u1b0REpJx6NB31kqQu0GiSy1F8FQAEoqKSEBp6wurZupJ4X5Z6sXckNRyTJk2CJEl44oknLM5NmzYNkiRh0qRJNd8xIiKqEcYRMJ3ORTHqJYQK+/drUFryvYEeUVGJ6Ns32WYLf39/+Pn51ekADOBIGNWCwMBAfPPNN3j33Xfh5OQEwLA/46pVq9CyZcta7h0REVWnvLw8AEBurqeVUa/Spx/vv38L2rc/bXP6ceTIkXVm5WN5cCSMalxYWBgCAwOxceNG+djGjRvRsmVL9OjRQz528+ZNPP300/Dx8UHTpk1x11134bffflNc64cffkC7du3g5OSEAQMG4OzZsxbv9/PPP6Nfv35wcnJCYGAgnn76aVy/fr3a7o+IiEpotVpcuHABFy5cwIkTJ7B27VoAgIeHFpKkL+dVDNOPvXsfKDX/qz4FYABHwghAVhZw+jQQEgIEBNTMe06ePBnLly/H+PHjAQCff/45Hn30Ufz0009ym1mzZmHDhg1YuXIlWrVqhYULFyI6OhpnzpyBh4cHMjMzMXLkSEybNg1Tp07F77//jmeffVbxPunp6Rg0aBBeeeUVfP7557h8+TLi4uIQFxeH5cuX18zNEhE1UualJ4x0OhekpIRDlDXzCMPqx8jIJKvTj4MHD0ZgYCAA1Pn8L2sYhDVyy5YBU6cCej2gUgFLlgCxsdX/vhMmTMCcOXNw7tw5AMC+ffvwzTffyEHY9evX8fHHH2PFihUYPHgwAOCzzz5DYmIili1bhpkzZ+Ljjz9GcHAw3n77bQBA+/btcfToUbzxxhvy+7z22msYP368nHQfEhKC999/H3fffTc+/vhjNG3atPpvloioETFd+XjlyhXFOWPwZcj9Kn0yTpL0GDXK+urHmJgY+Pj41LugyxyDsEYsK6skAAMMnx9/HIiOrv4RMW9vbwwZMgQrVqyAEAJDhgyBl5eXfD49PR1FRUXo27evfMze3h69e/fGiROG1TAnTpxAeHi44roajUbx/eHDh3HkyBF8/fXX8jEhBPR6PTIyMtCxY8fquD0iokbFGHjpdDqsWbPGahtl/a+yGGp/GVc/9urVCx4eHnB3d4e3t3e9D76MGIQ1YqdPlwRgRsXFwJkzNTMtOXnyZMTFxQEAPvzww2p5j2vXruHxxx/H008/bXGOiwCIiG6frSlHU+YrIUsjSXrExi5VbLwdFhZWZwuu3g4GYY1YSIhhCtI0ELOzA9q2rZn3HzRoEAoLCyFJEqKjoxXngoOD4eDggH379qFVq1YAgKKiIvz222/y1GLHjh2RkJCgeN0vv/yi+D4sLAzHjx9H25q6KSKiRsa02j1Qstm2h4cWgGEV5OXL1lZCmlJuvm0agAF1u+Dq7WAQ1ogFBBhywB5/3DACZmcHfPppzSXn29nZyVOLdnZ2inPNmjXDk08+iZkzZ8LDwwMtW7bEwoULcePGDcT+m7T2xBNP4O2338bMmTMxZcoUpKamYsWKFYrrzJ49G3369EFcXBymTJmCZs2a4fjx40hMTCzzLzciIiqdVqtVrEq3vuWQhNJqf3XufBQaTTKKihwsNt8eM2ZMg5p+NMcgrJGLjTXkgJ05YxgBq6kAzMjV1dXmuddffx16vR4PP/wwCgoK0KtXL2zbtg3u7u4ADNOJGzZswPTp0/HBBx+gd+/e+N///ofJkyfL1+jatSt2796NF154Af369YMQAsHBwRgzZky13xsRUUNmbdNt21sOWd//UZL0GDgw0SLxvr7V+6osSYjyLBCl2pCfnw+1Wg2dTmcRrPzzzz/IyMhAUFAQV/hVMz5rImrsTBPvr169iqKiIhQUFOD333+X22RktMbKlRPLfU3j1GNY2EGLc3FxcfU6ACvt97cpjoQRERGRTeVJvAfwbw6YHmXXgbe98XZjGQEzYhBGRERENpWWeG8aRKWlhcLWtKN54r2tjbcbUwAGMAgjIiKicjJPvO/ZMxVBQWdx8aIP9u7tD9tBmITo6K3o1Om4InAbMGAA3N3dYW9v36AT8G1hEEZERERlspZ4n5p6J1JT74RxpMsWSdJbBGAA0Llz50YXeJliEFbPcV1F9eMzJqLGxHTbIaBk66Hc3NJqfZUegA0btlkOwEaOHAkvL696uddjVWMQVk8Z62oVFhbCycmplnvTsBn/Z2Rey4yIqKEpLQm//In3RtYT8Btb3ldpGITVU02aNIGzszMuX74Me3t7qFTl/UdBFaHX63H58mU4OzujSRP+cyGihu3SpUs2z6nVBYiISMb+/X1ttDCdktRj+HDLBPwJEyYwADPB3yr1lCRJ8PPzQ0ZGBs6dO1fb3WnQVCoVWrZsCUmyPdxORFTfaLVaXL58Wa75lZ+fj7/++stqW+OKyE6djiE5WWNlWlKPqKgkqNV5AGAx+hUTEwMfHx8GYGYYhNVjDg4OCAkJsVg+TFXLwcGBI41EVO+Z5nrpdDqsWbOmzNfodC5ISQmXAy9J0qNr1yM4cqSr/H1YWCr6999rsd2QWq0GAOZ+lYJBWD2nUqlYxZ2IiEpV3oKrpvbt0yAxMQqmSfdCqHDkSFfExi61utdjVFQU2rdvz6CrnBiEERERNXDlLbhqtGPHPTbrfgmhQlGRA4KCLFNhgoKCGIBVAIMwIiKiBkyr1cplJgBlwVVj+Yjg4DPIzfWEvf1NpKT0xtGj3VDaptseHrlWzzk4OFTHLTRYDMKIiIgaqPT0dHz11Vfy9+YFV4VQISFh6L9nVShP0VVrNb8A5n5VBoMwIiKiBsI0+T4rKws//PCD4rz1gqum35e2ClyP2NilCAi4IB/x8vKCn5/f7XW6EWMQRkRE1ACUJ/new0MLSdKXUvneFkPdL9MADOD04+1iEEZERFTPabVaZGdnK46ZJ9/rdC7IzAxEWFgqUlN7onyV7wW6dDmMyMid8hRkVFQUgoKCOP1YBRiEERER1WPWRsDMk++7dj2Cw4dNk+3LsyeuoQBr377JiqMsQVF1GIQRERHVU7ZGwMyT75UBGFBW7lfPnsoCrBEREQgMDIS3tzcDsCrEIIyIiKgespUDZj35vjzbrukREZGM8PAUqNUFctV7TjtWHwZhRERE9YDpykcAitpfpuztbwLQo3w5XwCgx/33b0H79qdx333t4ePTD23atGHgVQMYhBEREdVRxsArLy8Pa9euLbWtcZ/H/fs1KE/NL6OIiGT07n0AABAWFsaSEzWIQRgREVEdVJH9Hk0T8UuUbwoyPDylUv2j21fRQiFERERUzawl3NtinohfNj0AQ/X74cM3K/aOZN2vmsWRMCIiojrE1giYad0vAPLX1hPxbdFjypSlKCpywMCBbTBgwJ0A7gTAbYdqA4MwIiKiOsJWyYmUlHAkJ2v+DbbEvx+GGmCRkUnlrIKvrHofHT2MQVctYxBGRERUB9gqumrYYNs818uQ7yWEComJkaVeV5L0GDVqPQIDszB16v1Qq+/kqFcdwSCMiIiolpiWncjIyFCcM+Z6lZ2+bfu8JOkxbNhmzJ3bEf7+9zHwqmMYhBEREdWCslY/ZmYGVmKjbSNl4VUvrzsZgNVBDMKIiIhqgWnhVXPGkhOVY0i+N+Z+AVz1WFcxCCMiIqpBxilI84r3xtWP9vY3K1hyAjAWZjVOPxoDsJiYGPj4+HAUrI5iEEZERFTNjIGXTqfDmjVrLM6bFlu1vdLRVgV8gX799qBNmwx4eOTi0Uej4OXF5Pv6gEEYERFRNUpPT8dXX31l87x5sdWSMhTmAZdkctz4WY+oqCT07Zsst/L392fwVU8wCCMiIqoGWq0Wly5dstjz0bzo6rFjna2MfNnackhCdPRWBAaeR1GRAzw8chUV7ydMmMAArB5hEEZERFRFKjLtaNg+yFjzq3ybbUuSHp06HYdaXYCRI0fCy8tLPsfpx/qHQRgREVEVKKvkhOUej+YFWMsKxAxJ98aRL0471n8MwoiIiKqAeckJ02lHtbqgHHs82g7AJEmP2FhD2YkxY8bA29ubAVgDwCCMiIioCuh0Ovlr89WOkZFJyM11R3mnHU1Jkh4zZ57BpEn9WG6igWEQRkREVAnG/K+8vDzk5eVh+/btAKyvdkxMjEJFgy9Aj/vv34L27U9j1qyJDL4aIAZhREREFVRa/pf1aceKj34NG7YZYWEHMWbMGAZgDRSDMCIiogrQarXIzs5WHDPN//Lw0JZScLUsJaNfxgR8b2/vKug11UUMwoiIiGww1vq6desWCgoKkJ+fj5SUFEUb8/yvYcM2Y9iwzUhIGArDCsjy5oHpMXy4YfQL4JZDjQGDMCIiIivKKjkBWM//2rRpKO66ay9KAi9rle5N6RERkYzw8BSo1QVc/diIMAgjIiL6lzHZHoDFBtvWZGYGWkw7CqHC3r39oQy2DFsM9eu3Fz//3E8u1tqzZyr699/L4KuRqsyEda0YPnw4WrZsiaZNm8LPzw8PP/ywYk5+/vz5kCTJ4qNZs2aK66xbtw4dOnRA06ZN0aVLF/zwww+K80IIzJ07F35+fnByckJkZCROnz6taJObm4vx48fD1dUVbm5uiI2NxbVr1xRtjhw5gn79+qFp06YIDAzEwoULq/iJEBFRVTKOfC1ZsgRLlizBxo0bFed1OhekpXVCWlon6HQuOHCgB9avH2XjatamH1Vo0yYD8fGLsGzZn/j998vYtCkAM2eOQ1xcHDp06MAArJGpNyNhAwYMwH/+8x/4+fnhr7/+wnPPPYfRo0dj//79AIDnnnsOTzzxhOI19913H+688075+/3792PcuHF47bXXMHToUKxatQojRozAgQMHEBoaCgBYuHAh3n//faxcuRJBQUF46aWXEB0djePHj6Np06YAgPHjx+PChQtITExEUVERHn30UUydOhWrVq0CAOTn52PgwIGIjIzEJ598gqNHj2Ly5Mlwc3PD1KlTa+JxERFRBV26dEnxvWmyfXp6WyQkDENJcKX/93NFxjL08l6Pgwc7wc/Ptwp6TfWZJIQQtd2JykhISMCIESNw8+ZN2NvbW5w/fPgwunfvjj179qBfv34AgDFjxuD69evYvHmz3K5Pnz7o3r07PvnkEwgh4O/vj2effRbPPfccAEPxPV9fX6xYsQJjx47FiRMn0KlTJ/z222/o1asXAGDr1q24//77kZWVBX9/f3z88cd44YUXkJOTAwcHBwDA888/j++++w4nT54s9z3m5+dDrVZDp9PB1dW10s+KiIhs02q1uHz5smKvR/Nke8NvytuZPFIm3cfFxXHUqwEr7+/vejMdaSo3Nxdff/01IiIirAZgALB06VK0a9dODsAAIDk5GZGRkYp20dHRSE5OBgBkZGQgJydH0UatViM8PFxuk5ycDDc3NzkAA4DIyEioVCp5xUxycjL69+8vB2DG9zl16hSuXr1q875u3ryJ/Px8xQcREVUPrVaLkydPYvHixYoAzFqyfeV/XQp06XII06cvUqx6ZABGQD0LwmbPno1mzZrB09MT58+fx/fff2+13T///IOvv/4asbGxiuM5OTnw9VUO//r6+iInJ0c+bzxWWhsfHx/F+SZNmsDDw0PRxto1TN/Dmtdeew1qtVr+CAwMtNmWiIgqz5j/ZRp8AYYA7NixzpWs8WVOj6ioRIwa9b1c8wuAxe8QarxqNQh7/vnnrSbTm36YTt/NnDkTBw8exPbt22FnZ4dHHnkE1mZTv/32WxQUFGDixIk1eTu3bc6cOdDpdPJHZmZmbXeJiKhBsrbZ9vbtkVi0KB7bt0fDUErClLByzDpJ0qNnz98wffoi9O2bLB+PiYnhNCQp1Gpi/rPPPotJkyaV2qZNmzby115eXvDy8kK7du3QsWNHBAYG4pdffoFGo1G8ZunSpRg6dKjFaFSLFi1w8eJFxbGLFy+iRYsW8nnjMT8/P0Wb7t27y23Mkzdv3bqF3NxcxXWsvY/pe1jj6OgIR0dHm+eJiKjqHTjQw6SwqpH56kaBoKA/kZERbOWckR6jR69HYGAWRozoBXf3KNjb20OtVsPBwYHBF1mo1SDM29u70tsx6PWGlSk3b95UHM/IyMCuXbuQkJBg8RqNRoMdO3YgPj5ePpaYmCgHcUFBQWjRogV27NghB13G6shPPvmkfI28vDykpqaiZ8+eAICdO3dCr9cjPDxcbvPCCy+gqKhIzllLTExE+/bt4e7uXqn7JSKiqqPT6f79bMj/KntiSIWMjLYoGREzBmKGr42V8kNDTwAAOnfuzKCLylQvSlSkpKTgt99+w1133QV3d3ekp6fjpZdeQnBwsMUo2Oeffw4/Pz8MHjzY4jrPPPMM7r77brz99tsYMmQIvvnmG/z+++9YsmQJAECSJMTHx+OVV15BSEiIXKLC398fI0aMAAB07NgRgwYNwmOPPYZPPvkERUVFiIuLw9ixY+Hv7w8AeOihh7BgwQLExsZi9uzZSEtLw3vvvYd33323eh8UERHZZCzEqtPp5Fww65ttl8ZQ9f7eexPh4XEVERH+UKv90aaNHu3b3wngTo56UbnViyDM2dkZGzduxLx583D9+nX4+flh0KBBePHFFxXTd3q9HitWrMCkSZNgZ2dncZ2IiAisWrUKL774Iv7zn/8gJCQE3333nVwjDABmzZqF69evY+rUqcjLy8Ndd92FrVu3yjXCAODrr79GXFwc7rvvPqhUKowaNQrvv/++fF6tVmP79u2YNm0aevbsCS8vL8ydO5c1woiIaoBp1fvsbBUyMprA0zMXe/assmhbuc22JdjbFyM09AQiIzuiS5c2Zb+EyIp6WyesMWCdMCKiijHd79HaxtrGMhGmTNuVj8CUKZ8hIOACRo4ciS5dulThHVBD0KDrhBEREVljHAGztbG2Tudi8Zrg4DMYNWoD7r9/E2yvgBTy527dDiMg4AIAQ4kiosriTw8RETU41nK9hFAhN9dDUbNr3z4NkpIi5dGyTp2O4/jxTjBdASlJeowduxq5uZ4IDDwvB2AAa37R7WEQRkREDYJWq8WVK1cAWM/1kiTD3o2AYaRsz55+SE3tBWPAJYQKJ050RL9+e7B3bz8AKqhUAs89dwYPPBAEd3d3uLl1k6/HBHy6XQzCiIio3jPNBQMAtboAw4ZttsgJU6sLsG+fBomJUbBW70sIFdq0yUCvXqno23ciwsM9ERDQDkC7mrsZajQYhBERUb1huvIRMNT7Kioqwl9//WXRNizsIIKDzyA310MeAduw4QEcPdoNpRVc9fDIhVpdgIiIQpjU7SaqcgzCiIioXjAf7SoPtbqgzNEvUz17pso5Yw4ODpXtKlG5MAgjIqI6SavV4tKlS7h16xYA4OrVq4rzOp0LcnM94eGhVSTbm5/7/fee2Lu3P8oKwACB/v33AgCioqKY70XVjkEYERHVOeajXjqdCzIzAwF0QmBgJtLT29qsAabcC9JYWsJWAKbcdsgYzHl4eFTTnRGVYBBGRER1jmnelyGoGoaSQEr/79clqxo3bRoKH58c5OW5m23GXdrol0Dv3r+gY8dTch6YUWX3NSaqCAZhRERUZ5VssG0aTFnWGRdChaVLH0PZU47yKxAVlYi+fZMBAPfffz8CAgIAsPQE1ZxKBWG7du3CgAEDqrovRETUyJiudjx58hr+/NMOLVvehKPjZQAV2WDbMK1YnnZduhxGZOROeeRrzJgx6NChQ+VugOg2VCoIGzRoEAICAvDoo49i4sSJCAwMrOp+ERFRA5eeno6vvvoKgOU+j5GRmfD3bw17+5s2NtjWQ5Lw7/GyAjDjeT2iopLk0S8jTj1SbalUEPbXX3/hyy+/xMqVK7FgwQLce++9iI2NxYgRI7ikl4iIyqTVauUATKdzUeRxCaGSy0lIkh5dux7BkSNdTQIxQzBlb1+IH34YgrICsH799qBNmwyLvK/BgwcjODiYU49UayQhhK3dSsvlwIEDWL58OVavXg0AeOihhxAbG4tu3bqV8UoqS3l3YSciqm8uXLiAJUuWAAC2b4/E/v19bbaVJD1iY5ciL88NAKDTucn7PZbOcuRr5MiR8PLyYt4XVavy/v6+7cT8sLAwtGjRAp6ennj99dfx+eef46OPPoJGo8Enn3yCzp073+5bEBFRA6XTuSA5WVNqGyFUKCpyQGBgFjIzA8sRgAlEROxHeHiKRf0wf39/Bl9UZ1Q6CCsqKsL333+Pzz//HImJiejVqxcWL16McePG4fLly3jxxRfx4IMP4vjx41XZXyIiakDKk3gvSXpkZ/vjiy8eKbNtu3YnMWTID4rgi6NfVFdVKgh76qmnsHr1aggh8PDDD2PhwoUIDQ2Vzzdr1gxvvfUW/P39q6yjRETU8Hh4aK0k3ot/PwxJ+mFhqeWafpQkvUUABnD0i+quSgVhx48fxwcffICRI0fC0dHRahsvLy/s2rXrtjpHRET1k1arxeXLl1FUVGT1fEGBIVBSqwswbNhms5WRSVCrdTh1KgRHj3ZFauqdpbyT9Yr3HP2i+uC2E/Op+jAxn4jqI2tbDtna41HZxgPZ2f4mo16llZ7QY/To9XBzy0NRkYPFyse4uDgGX1Rrqj0x/9SpU/jggw9w4sQJAEDHjh3x1FNPoX379pW9JBERNQDmWw4ZR7ls1ekCIAdQK1dOREngZT0AM456hYYafv8MGDAA7u490aRJE7i5uXH0i+qNSgVhGzZswNixY9GrVy9oNIZVLb/88gtCQ0PxzTffYNSoUVXaSSIiqttMK9+npeUhI8NQaLUkAAMAY/0vWA3EDBt0l1bzyzD6FRiYpRj1CgkJgZ+fXxXdCVHNqVQQNmvWLMyZMwf//e9/FcfnzZuHWbNmMQgjImpETKcfS0a+OtqodC8hKSkSarUOgYGZKChojvPnW6Fly3NlvItAVFSSPPplikXCqb6qVBB24cIFPPLIIxbHJ0yYgDfffPO2O0VERPWHcQTMuNm2MfCyldclhArr1z8IQP/vOQmAQKdOx/89pgzcjMn6pqNnMTExnHqkeq9SQdg999yDvXv3om3btorjP//8M/r161clHSMiovrFes0vQ4BlfZpRpWh3/Hgn9Ou3B3v39vv3nB4REckWRVcnTJiA4ODgqu4+UY2rVBA2fPhwzJ49G6mpqejTpw8AQ07YunXrsGDBAiQkJCjaEhFRw2et5pck6XHnnSn49dc+KD3fCwAkODv/jenTFyE318NixWNMTAx8fHw48kUNRqVKVKhUZe3X9e/FJQnFxcUV7hQZsEQFEdUVxsR7nU6Hq1evKup/Xb58GWlpaQAsV0NGRCTD3z/73+nHsghMmfIZAgIuYMCAAQgJCZHPcNqR6pNqLVGh1+sr3TEiIqpfKlL3KyzsIIKDzyAlJRzJyZp/N+bWo/SaXwAg0K3bYQQEXAAAuLu7c8UjNXi3vYE3ERE1bLbqfhnrdYWFHZTP63QuyMwMRHKyRlGaomQrImOOGOSv/f2zcf/9W+QAjKixKHcQ9v7775f7ok8//XSlOkNERHWXtdWPCQlDcfGiF7p0ScOlSy3M6oKZMgRc99+/Ce3bn0ZBQXNkZrZEYOB5q8FXkyYcI6CGr9w/5e+++2652kmSxCCMiKieM9378erVqwBsrX5UISUlAikpGhg33bZNQnGxPdTqAqjVBaWOfPn4+NzuLRDVeeUOwjIyMqqzH0REVAuysoDTp4GQECAgwHDMPAfMyNrqxxLGel+lEQgMPA8A6NWrF1q2bKk4y22HqLHheC8RUSNjXOm4apUTZs1SQ6+XoFIJLFyow0MP/Y28vDxFe2OeFwBERiYhMTESpY94GSmLsZom3rds2RJdunSpwrsiqn8qHYRlZWUhISEB58+fVyRtAsA777xz2x0jIqKqZxzl0ulcsGhRPIQwjF7p9RJmznTFX399rljxeOBADyQkDEVJ0CXQu3cKfv01HJYjX8bk+5KkfR+fHKu5X8z5IqpkELZjxw4MHz4cbdq0wcmTJxEaGoqzZ89CCIGwsLCq7iMREVUR4x/N1vK7hFAhN9dDDsJ0OhezAAwAJJMAzLTshGGk6957d1oUWrWW+8WcL6JKBmFz5szBc889hwULFsDFxQUbNmyAj48Pxo8fj0GDBlV1H4mIqIpZz+/S4/r1ZtDpXKBWFyA31xPWpx0lk896hIf/gi5d0uRgy7x2GFCy1yPAwqtERpUKwk6cOIHVq1cbLtCkCf7++280b94c//3vf/HAAw/gySefrNJOEhFR5Wm1Wpw9ewsZGU1QWHgNGRmt4eGhxbBhmxXV7QEJ69c/CEnSQ6NJRqdOx1B2kVUVOnT4w2K0a8yYMVCr1QAYdBHZUqkgrFmzZvKQtp+fH9LT09G5c2cAwJUrV6qud0REVGnp6em4ePEi3njjism0ogeAEDlny1qivRAq7N/fF/v3a8rxLnp4eOQCAEaOHAkvLy8GXUTlVKkgrE+fPvj555/RsWNH3H///Xj22Wdx9OhRbNy4Ud7Qm4iIaoa1MhPp6en46quv/s3rikdJkGUY1TIWWpUkwPZKx7JWQApERSXJ049eXl7caoioAioVhL3zzju4du0aAGDBggW4du0a1qxZg5CQEK6MJCKqQcuWAVOnAno9oFIB77xzDTExBfjrr78A4N/SEraDLCFsnCqDJOkRGZmEvn2T5WMODg6VuxhRI1WpIKxNmzby182aNcMnn3xSZR0iIqKyGfO8pk71gV5vLDMBTJ/ujHPnlkCtLoBO54JLl7xLuYoekgQbxVdtvyYiIhnh4SmKBPyYmBhOQRJV0G0VaiksLMSlS5eg1+sVx82rIBMRUdXIygJ+/12HPXtWIjfXE3r9RMV5Y5mJ9PS2Jkn31pLr9Rg+fDMAlNGuRHj4fkRE/GJ19aNx5SMRlV+lgrA//vgDsbGx2L9/v+K4EAKSJKG4uLhKOkdERCVKph7VkKR4REYmWZSZkCQ97O0LzTbSLqnpJUl6dOx4DBERyfKKxuDgMzh2rBO2b7ddYkiS9DYDMIBTkUSVUakg7NFHH0WTJk2wefNm+Pn5QZLK2i+MiIhux2+/AY89BjmHSwgVkpIiERmZhKSkSAhRUqW+qMjRyhSjhHbtTuKPP9rh+PEuOH68s2JasXPn40hMHGj2upLAbdiwzXIA1rFjRwQEBMDd3Z17PRLdhkoFYYcOHUJqaio6dOhQ1f0hIiIz7713DdOnN5O3GDISQgV//2zExy9SVKnPyvKzutH2H3+0R8l0o6EMRXKyBsOGbUZY2EFF3TBj4r2/f7ai+j1gCMK47yPR7atUENapUyfWAyMiqmZarRZHjuRi+vRgiwAMMEwRGgMkY5B04ECPUnK8LK8hhAqbNg1FcPAZhIUdRHDwGYtth8zZ29tXwd0RUbmDsPz8fPnrN954A7NmzcL//vc/dOnSxeIfpKura9X1kIioETJutJ2R0RpChFhpYahqb0qnc7GSC1Y20z0jTQM6W7y9S1txSUTlVe4gzM3NTZH7JYTAfffdp2jDxHwioqph3JXE+h6PhsQw8+lEa5tyW7JcAWkcUSuNcRsi5n8RVZ1yB2G7du2qzn4QETVq1qreA4bNsM1ztQzJ+YZgy3Q60cNDC8MekMpNuY21wIx5XtevN0NyskaRzG8c/TJuPWSKgRdR9Sh3EHb33XfLX58/fx6BgYEWqyKFEMjMzKy63hERNQLmVe+XLAHuv7/kvGmu1vXrzbB+/YOK1wuhwrFjnf4dBTP9/7KhFpi1PK/w8BSruV/ceoio5lQqMT8oKAgXLlyAj4+P4nhubi6CgoI4HUlEVA62qt4//rjA+vV/Kdoac7V0Oher05OGGl+WifjBwWes5nmVJ/eLiKpXRfaqkBlzv8xdu3YNTZs2ve1OERE1dMbE+9df3yMHYEbFxRK++y5N/l6nc0FaWiekpXUCAAwbthmSZNypxDTwMv//soTMzABUBIuuEtWcCo2EzZgxAwAgSRJeeuklODs7y+eKi4uRkpKC7t27V2kHiYgaGq1Wi+zsbLmchDnTRPl9+zRITIxEyd/MAsOHb0J8/CKkpvbAnj0Dyv2+EyZMUPx/2xxzv4hqVoWCsIMHDwIwjIQdPXpU8ReTg4MDunXrhueee65qe0hE1IAYR8AM5STiraxmLEmUNwRgUTCfYty0aSgiI5OwZ8/dKJ0egYFZAICoqCgEBwdX4Z0Q0e2qUBBmXCH56KOP4r333mM9MCKiCsjKAn75xTC9aKucRM+eqQgLOwidzgVJSZGwVWBVOTpmjUBUVJKc9+Xi4lI1N0FEVaZSifnLly+v6n4QETVoJSsgPW1uvg0Aqak90b//3jJqfglYD8AM5SmMpSj69k220oaI6opKBWHXr1/H66+/jh07duDSpUvQ6/WK83/++WeVdI6IqL6ztgLSuPl2WFgqUlPvNHuFCpmZAcjICIK1wqrWjxncf/8WeHtrrW45xK2GiOqeSgVhU6ZMwe7du/Hwww/Dz8/P6kpJIqLGLj09HR9++D22bx8Ivd5XcU4IFYKCMpCa2hPmxVU3bBhtZRRMICgoHRkZba2+lyTp0b79aZtlJ7jVEFHdU6kg7Mcff8SWLVvQt2/fqu4PEVG9p9VqcenSJTz//GkbyfeGoCkwMAvDh2822e9RD0Cyulk3IKFnzwM4e7ZNqcn8ANCrVy+0bNkSgGEEzNvbm6seieqgSgVh7u7u8PDwqOq+EBHVe2WvfjTQaJKhVhcoquGnpXW2Mj1pYAzazLcw0miSER6eohgBa9myJbp06VIt90dEVadSQdjLL7+MuXPnYuXKlaXWnCEiamyMG2+XnlivR3h4ivydWl2AgoLmSE3tZbO9caTLNGizlvsFAE2aVOp/7URUwyr1L/Xtt99Geno6fH190bp1a4uEzwMHDlRJ54iI6ipbG24beXhora5+NO7naBo8HTjQAwkJQ2Et4b5z56MYODBR0b6sLYfc3NwqeDdEVBsqFYSNGDGiirtBRFR/WNtwOzZW2UatLrA5dQgAGRmt4eGhBYB/AzDrJSfMA7Dy4NZDRPVDpYKwefPmVXU/iIjqvNI23O7e/RJat1b+L9V06tDevhBFRY5ISwtFUlKkHJiFhaXCVtHViIhkqwFYVFSURfFVe3t7qNVqbj1EVI9UKAj79ddf0bNnT9jZ2Vk9f/PmTXz//feIiYmpks4REdUVxoT7jIzW0OsnKs4VF0v44IMfERR0DmPGjFGcU6sLkJ7e1mQFZEmdLyFU/+aBGYqsKinzxgBgzJgxXOlI1ICUtueFBY1GA61WK3/v6uqqKMyal5eHcePGVV3vTAwfPhwtW7ZE06ZN4efnh4cffhjZ2dmKNtu2bUOfPn3g4uICb29vjBo1CmfPnlW0+emnnxAWFgZHR0e0bdsWK1assHivDz/8EK1bt0bTpk0RHh6OX3/9VXH+n3/+wbRp0+Dp6YnmzZtj1KhRuHjxoqLN+fPnMWTIEDg7O8PHxwczZ87ErVu3quRZEFHNMybcG3O9TJluuJ2bm6s4Z1glOdQkN8w878v4fck1Jckyb2zChAno0KEDAzCiBqRCQZgQotTvbR2rCgMGDMDatWtx6tQpbNiwAenp6Rg9erR8PiMjAw888ADuvfdeHDp0CNu2bcOVK1cwcuRIRZshQ4ZgwIABOHToEOLj4zFlyhRs27ZNbrNmzRrMmDED8+bNw4EDB9CtWzdER0fj0qVLcpvp06dj06ZNWLduHXbv3o3s7GzF+xQXF2PIkCEoLCzE/v37sXLlSqxYsQJz586tlmdDRDXHmOtlDMQkSVmjKzExUW6r07ng2LHOpaySNFJh9Oj1GD16LUaPXov4+EUICzsonx0zZgw33yZqgCRRgahJpVIhJycHPj4+AAwbwh4+fBht2rQBAFy8eBH+/v4oLi6unt6aSEhIwIgRI3Dz5k3Y29tj/fr1GDduHG7evAmVyvA/vE2bNuGBBx6Q28yePRtbtmxBWlqafJ2xY8ciLy8PW7duBQCEh4fjzjvvxOLFiwEAer0egYGBeOqpp/D8889Dp9PB29sbq1atkoPAkydPomPHjkhOTkafPn3w448/YujQocjOzoavr6FK9ieffILZs2fj8uXL5U6azc/Ph1qthk6n42bpRNWorJWOAHDhwgUsWbJE/l6nc0FmZgAACYGBmRa5W/v2aeTcr9K2GgIMgVx8/CKbCfhTp06Fn59fBe+KiGpLeX9/V2gkrK7Izc3F119/jYiICLk8Rs+ePaFSqbB8+XIUFxdDp9Phyy+/RGRkpNwmOTkZkZGRimtFR0cjOdmwyW1hYSFSU1MVbVQqFSIjI+U2qampKCoqUrTp0KEDWrZsKbdJTk5Gly5d5ADM+D75+fk4duyYzfu6efMm8vPzFR9EVL2WLQNatQLuvdfwedkyw/GsLGDXLsNnwJBuYSo9vS02bBiN9esfxLvvxmP79kjodIZk+X37NEhMjDKbgrT1965AZGRShVdAElH9V+HVkcePH0dOTg4Aw9TjyZMnce3aNQDAlStXqrZ3ZmbPno3Fixfjxo0b6NOnDzZv3iyfCwoKwvbt2xETE4PHH38cxcXF0Gg0+OGHH+Q2OTk5isAIAHx9fZGfn4+///4bV69eRXFxsdU2J0+elK/h4OBgUYfH19dXfi623sd4zpbXXnsNCxYsKOfTIKLbYWul49SpAgcPnsPHH7eCXi9BkgRGjsyAu/teFBUZykoUFDQ3Kyuhwv79fZGcrMFdd+3F3r39YC33q3Pnozh2LBSmeWBRUUno2ze51L6y5ARRw1ThIOy+++5T5H0NHToUACBJEoQQFdrM+/nnn8cbb7xRapsTJ06gQ4cOAICZM2ciNjYW586dw4IFC/DII49g8+bNkCQJOTk5eOyxxzBx4kSMGzcOBQUFmDt3LkaPHo3ExMR6scn4nDlzMGPGDPn7/Px8BAYG1mKPiBqm0lY66vUSPvqopbx/oxASNmxoA+AxlIxoCVibSBBChb17+8Pa1KMkGWp+DRyY+O80JhAYmGUxAjZy5Eh4eXnJ37PkBFHDVaEgLCMjo0rf/Nlnn8WkSZNKbWPMNwMALy8veHl5oV27dujYsSMCAwPxyy+/QKPR4MMPP4RarcbChQvl9l999RUCAwORkpKCPn36oEWLFharGC9evAhXV1c4OTnBzs4OdnZ2Vtu0aNECANCiRQsUFhYiLy9PMRpm3sZ8RaXxmsY21jg6OsLR0bHU50FEt898paMycd5alXugJLCSUFp+l/VzyilHtfqEzVd7eXkx/4uokahQTlirVq3K9WH0//7f/yt1itLb2xsdOnQo9cPWMLxeb1iZdPPmTQDAjRs35IR8I2M9M2NbjUaDHTt2KNokJiZCo9EAMPzF2bNnT0UbvV6PHTt2yG169uwJe3t7RZtTp07h/PnzchuNRoOjR48qVlQmJibC1dUVnTp1svk8iKhmWVvpGBWVZFGC4vboERWVWOaUoxGnHokajwqtjqwoV1dXHDp0SDGaVRkpKSn47bffcNddd8Hd3R3p6el46aWXcPHiRRw7dgyOjo7YuXMnIiMjMX/+fHk68j//+Q9OnjyJEydOwMnJCRkZGQgNDcW0adMwefJk7Ny5E08//TS2bNmC6OhoAIYSFRMnTsSnn36K3r17Y9GiRVi7di1Onjwp53U9+eST+OGHH7BixQq4urriqaeeAgDs378fgKFERffu3eHv74+FCxciJycHDz/8MKZMmYL//e9/5b5vro4kqlrGVZCurhexefMn8nGdzkWxIbYxsb70ES8jY8BmfduhKVOWIiDgQrn6N2HCBJaiIGoAyvv7u1LbFpVXVcV3zs7O2LhxI+bNm4fr16/Dz88PgwYNwosvvihP3917771YtWoVFi5ciIULF8LZ2RkajQZbt26Fk5MTAEPy/pYtWzB9+nS89957CAgIwNKlS+UADDDU47l8+TLmzp2LnJwcdO/eHVu3blUk2r/77rtQqVQYNWoUbt68iejoaHz00UfyeTs7O2zevBlPPvkkNBoNmjVrhokTJ+K///1vlTwPIqo45X6PPhg6tIdci8t0Q+wDB3ogMTESlgGYscxESU6YsUaYg8NNrF//oMV7RkQkWw3ABg4ciObNm8vf29vbsxI+USNUrSNh5nXEqGI4EkZ0+4yrIHv3LlkFaWAYpSoqcoSHhxZqdQF0OhcsWhRvs7iqYXVjZxgDsMhIw8pGa6+zVftrzJgx8mIjImqY6sRIGBFRbSptFSSgwtKlU2A6ouXufrWU6vZ6OQADDCshk5IiERqaJueWGbcnMq+ib8rb27sqb5GI6jEGYUTUYJmugrS+SXZJQLVp01CMHbvaympJw6hWmzbpSE8PURwXQoXcXA+o1QUICzuI4OAzitwyUyNHjoS/vz+nHIlIVi8r5hMRVYRaXYCIiNJXJwqhwurV40y2GQIAgeDgM4iNXYo//7SWMF+ycbfxfYKCzlkdAWMARkTmqjUImzBhAnOZiKjGGbccys4u+V9ceHhKGaUnTAuwltQE+/PPNsjLc7c6TRkRkVyu7YZiYmIYgBGRhUoFYca6W9aOnz9/Xv7+448/VlR+JiKqLlqtFhcuXMDbb+ehVSuBe+8Fevf2wYEDPQBYrwlmLC9h+Np6OQrjyJh5ACdJeoSHp5Srbz4+PpW6JyJq2CqUE5afn48pU6Zg06ZNcHV1xeOPP4558+bJRVEvX76MoKAgFBcXV0tniYisMSbgl6xSNO4FKWHTpqEIDj5jNW8LAHJzPWBvX4hly6ZYHe2SJD0CA7PKTLw3327IiNsOEZEtFQrCXnrpJRw+fBhffvkl8vLy8Morr+DAgQPYuHGjXOW5GiteEBFZZUzAz831tAikhFAhMzMAubl/y6UojMGTTucC4wiYRpOM/fs1MEwQGGqCmQZbZSXeM+eLiCqqQkHYd999h5UrV+Kee+4BAIwYMQJDhgzBsGHDkJCQAAD1YqNsImqYrO0FKUl6rF8/GqalKMLCDuLAgR7yyJZp0KXR7EOnTsdQVORgEWyZBnCmmPNFRJVRoZywy5cvK/aG9PLyQlJSEgoKCnD//ffjxo0bVd5BIqLyspb3ZRicV5aiyMryMwnAAONomBAqJCdr4OJyzeYqR2vc3Nyq9kaIqFGo0EhYy5YtceLECQQFBcnHXFxcsH37dgwcOBD/93//V+UdJCIypdVq5enH7GwVMjKaQK3Ok8+bThtev97MYjshw/RkS5tFWU1rf5UXN90mosqoUBA2cOBALF++HPfff7/iePPmzbFt2zZERUVVaeeIiEwZE/ABKKYTJckdw4ZZ7gWp07lYnZ60XbzVeN6QtD9gwAA0bdoUTk5OaNKkidURLybeE1FlVSgIW7BgAbKzs62ec3FxQWJiIg4cOFAlHSMiMmccAdPpXBTTicZpRuMqSGOb3FxPREYmISkpUs79EkKFb74Zh44dT+DEiU5QlqYQiIxMkq8REhICPz+/GrxDImpMKhSEubu7w93d3eZ5FxcX3H333bfdKSIic1qtFleuXAEAZGYGWl0FaZxGVI6S6XHXXXuxd28/mOaGnTzZEf367cHPP/f791p6REUZNuQmIqoJFd478tatW3j33XexevVq/PHHHwCAdu3a4aGHHsIzzzwDe3v7Ku8kETVu5tOQCQlDLdoYpxGzsvz+PV8ScJkGYEZCqNCmTQZ69Uq1WXaCiKg6VSgI+/vvvxEVFYXk5GRERkaif//+AIATJ05g9uzZSEhIwPbt29G0adNq6SwRNWzmSfdHj/4DN7fLsLe/CJ3OBZmZgdi0qSTAMjKWnkhPb2v1vLE8hWVuWK7NshNERNWtQkHY66+/jszMTBw8eBBdu3ZVnDt8+DCGDx+O119/HfPnz6/KPhJRI2A76T4QXbsewZEjg22uaBw1aj3c3PKwdOkU2Eq2N80Ns1bxnoioplUoCPvmm2/wzjvvWARgANCtWze89dZbeOGFFxiEEVGFlZZ0f/hwN9ja21GS9NDp3LBhg6Egq6WSAq2hoWkVmnpk6Qkiqk4VCsLOnTuH3r172zzfp08fxQbeRETmsrKA06cBL6+r8PL6B3l5ecjKAo4dK0RWlh/On29lZcTL1k4cerPVj+YExo1bjfbtzwCwXfHe2r6PLD1BRNWtQkGYq6srLl26hMDAQKvnc3Jy4OLiUiUdI6KGw5jrtWqVE2bNUkOvlyBJagwbthcATEa+usIQcAmYl46wFoiNHr0ezZr9bXOaEpDg4FBUZv+8vLxYioKIalyFgrABAwbgf//7HzZs2GD1/Ouvv44BAwZUSceIqP4yjnaFhABOToZcL53OBYsWxUOIki2CDMEXUDKNKJl8LtnPsW3b0zh9uh2UgZgegAR7+5sWSfdGpoVXiYjqmgoFYfPmzUN4eDj69OmDGTNmoEOHDhBC4MSJE3j33Xdx/Phx/PLLL9XVVyKqw6yNdqlUAnPn/g0AyM31tFrbyzYJ0dFboderkJQUCeUImSEAW7/+QUiS/t/E/a4Wm3GXN/meuV9EVBsqFIR16tQJiYmJiI2NxdixYyFJxr9oBTp06IDt27ejc+fO1dJRIqq7jCsbzUe79HoJCxb4Iz7eBR4eWqtlIpQjYVCcCww8j2XLpphttC0U7YVQ4ciRroiNXYqiIgfY2xeiqMjBIvl+wIABCAkJsXgf5n4RUW2pcLHWPn364NixYzh06JCiWGv37t2rum9EVE9cvnwZgO3RrtxcDwQFncOwYZsVleyHDdsMwDQnTDmKVVTkWK4kfSFUKCpyQFDQOZt99Pb2Zt4XEdUpFQ7C8vPz0bx5c3Tv3l0ReOn1ely7dg2urq5V2T8iquO0Wi3WrFkDAMjO9oN5Er1pXlZY2EEEB5+xKBNhPGY+irVjxz0W17OmPLlf1jbfJiKqTaUlZFj49ttv0atXL/zzzz8W5/7++2/ceeed2LRpU5V1jojqPtP6XiW5W0bKDbEBQ5mIoKBzFsc8PHJRVOQIe/tC5OZ6YseOe7B3b3+L65krb+4X876IqK6p0EjYxx9/jFmzZsHZ2dniXLNmzTB79mwsXrwYw4YNq7IOElHdY7q9kHFTbWtTkYAEf/9sAIYgLTfXEx4eWouAybRCfsnIl7URMGNSvmHD7YiIZISHp1jkfrm7uwMAmjRpAjc3N+Z9EVGdVKEgLC0tDR999JHN8/3798eLL754250iorrDNOA6deo6jh79BxkZ2wEYAi97+5soKmpttVSEcZpQuQ1RSQV7wLJCvrJMhTk9pkxZajXx3igkJIS5X0RUL1QoCLt69Spu3bpl83xRURGuXr16250iorrB1n6OQCcYgiRlPS/TUhHWE+9L6oMFB5+BWl1gYwTNGoGoqCQEBFyohjslIqp5FQrCWrdujd9//x0dOnSwev73339Hq1atqqRjRFT7bO3nqEwnLSm+aloqwjhSlZHR2uqKyczMAOTm/l1qsdUSekRFJaFv3+Qy+8zcLyKqLyoUhI0cORIvvPACoqKi4OvrqziXk5ODF198ERMmTKjSDhJR7SvvaJW1UhH29jdhbRui9euNG27r0anTCZw40dHme4wevR6hoScUx5j7RUT1XYWCsOeffx7ff/89QkJCMGHCBLRv3x4AcPLkSXz99dcIDAzE888/Xy0dJaKapdVq5aR7a4VWrbFWKqKoyBHWE+yNx1Q4frwT+vXbA1/fi9iwYbRFXllgYJbFezH3i4jquwoFYS4uLti3bx/mzJmDNWvWyPlfbm5umDBhAl599VVu4E3UAJjmghlpNMnYv18Dy8o2pW8TVL4ATsLevf0wffoiqwVdrSXgc9qRiOq7ChdrVavV+Oijj/Dhhx/iypUrEELA29tb3sLI1L59+9CrVy84OjpWSWeJqGYYc8EAa+UjzEno338XevY8qAiWQkNDkZaWBrW6QBFY2S6+asgTs1XQ1dSECRM47UhE9V6FgzAjSZLg7e1dapvBgwfj0KFDaNOmTWXfhohqke3yEUo+PpctgqW0tDT567Cwg7h6VW2l+Kp1anWB1eBr5MiR8Pf3ZwBGRA1CpYOw8hDC2l/NRFQXlb8Aqzk93NzykJHR2mohVsAQzO3d2w+lBWC2cr9MMQAjooakWoMwIqp9psGVNcbcKtMcMEN1e9sFWA1/XxlWNnbrdgTLlk2xWog1IiIC+/fvR26uJ6zvkmY9n2zAgAEICQmx6CcDMCJqSBiEETVg5gn2trYOioiIkL82r25vrQCr6YbbxgAMsCzE+uOPR20Gc4BAv3570KZNhkXul7u7O1c+ElGDxyCMqAGzlWBvPmK1f/9+AEBWlp9FdXtrBVgBlFqINSUlHF5eWpvBXEWKrxIRNVTVGoRZWzFJRFWnrKnGvLw8AJYJ9kKokJAwFA4ONxEYmAm1ugAHDvRAQsJQmE8bWivAamSr/MT+/RpIEsoVzFnTpAn/PiSiho+J+UT1VHmnGgFbCfYqrF//ICRJj8jIJCQlRcJ63pYe9vbWAz21uuDf+mF9La5t/s+/tGDOnI+PT5ltiIjqu2oNwgoKbP+lS0S3p7xTjUDpBVOFUCEpKbKUVZAqLF36GIYP3yRfc8CAAdi1axcAIDw8pdQirkbWqukbDR48GIGBgQCYgE9EjUeFgrB77723XO127txZqc4QUcVZm2o0TY4HShuxgvwaQA/rI2EAICmuaVojUK0uQESEtWtLcuBnvvpx5MiR8PLyAsCgi4garwoFYT/99BNatWqFIUOGwN7evrr6REQVYG2qUQgVcnM9FNOSnTodszFiBcWUpK0RMdNrurm5YcyYMVizZg0Aw2hYcrLGopSFrRwwLy8vrn4kokavQkHYG2+8geXLl2PdunUYP348Jk+ejNDQ0OrqGxGVg/WpRoHsbH85/8o4XWkIwIzThMoaXWFhBxEamobMzACsXz8a5sGa+XSiWq02+brA6p6PAQEXqumuiYjqvwoFYTNnzsTMmTORnJyMzz//HH379kX79u0xefJkPPTQQ3B1da2ufhKRDWp1ASIjk5CYGIWSHCwJSUmRCA01bB1kvvWQJOkxduxqODgUWZSdALL+nV4sGTWztpG2+Qba5dnzkYiISlQqMV+j0UCj0eC9997DunXr8OGHH+K5555DdnY2AzGiWuDvfwHmWwIZpw8Byep0pYNDkcVKRfME/7Cw3xAUlIHAwCyLoMrT0xMxMTFYu3atfMzWno/mzAM4IqLG6LZWRx44cAC7d+/GiRMnEBoayjwxohpgrA1m3N8RsD4laTp9WNo5I2sJ/gcO9ET//nstAitjEFXeUhIxMTFwc3OTX8tEfCKiSgRh2dnZWLFiBVasWIH8/HxMmDABKSkp6NSpU3X0j6hRMy/GmpeXpxh5MrKVk2UMnszPRUYm/bufI+Q2ZSX49+rVC+7u7vD19ZWDKE9PT8TFxZW5NyWDLiIiSxUKwu6//37s2rULAwcOxJtvvokhQ4awsjVRFTMGXrYCLltKy8kyPZed7S+vgjRNyrc1mnb9ejPodC74/fff5eNxcXGKQIyIiCpOEhUoa69SqeDn5wcfH59StyQ6cOBAlXSuscvPz4darYZOp2OuXSNhXgW/LKVVybfVftGieItAa9SoDQgMzER6elvFiJnh/w6WBWCnTp3KEhNERDaU9/d3hYax5s2bd9sdIyLbSpvWMw+4yqqSb2rgwIHYvn27zSlH4/ZFw4ZtRmzsUvzxRzvs2dMfxtWR1grAEhHR7WEQRlSHGQOv7Gw/xRSieWFV8yDJvCK9Mbgra/uihIShio23zc+bF4AlIqLKq5KErt27d+P69evQaDRwd3eviksSNXqmI12m+zDa2uvRVpBkupLSPIHfkuXG20al7f1IREQVV+GK+deuXcPLL78MABBCYPDgwdi+fTsAw3L1HTt2oHPnzlXfU6JGxLxchLUaYOZ7PZoGSRs3brR5bWOSvq3K+NZYK9ZKRES3p+z/+5pYs2aNYpui9evXY8+ePdi7dy+uXLmCXr16YcGCBVXeSaLGxlrulilJ0iMqKgmSpJe/Nw2SdDoXZGS0hk7nYvX1anUBQkNPICoqCYZRNlv0GD16LeLjF9nMNyMiosqp0EhYRkYGunbtKn//ww8/YPTo0ejbty8A4MUXX8SDDz5YtT0kqsfM63yZs1VDy9Z+kNb2ejQvSVFawv7IkSPRpEkTufSFtUr7RsbXhoaeqNS9ExFR6SoUhN26dQuOjo7y98nJyYiPj5e/9/f3V1TxJmrMyltuwlhzS6vV2szdMibj+/tnW+z1OG5cPzRt2hQbN260WvXeNGHfy8sLfn5+GDNmDNasWWMj2NNj9Oj1VrcqMuK2Q0REt69CQVhwcDD27NmDNm3a4Pz58/jjjz/Qv39/+XxWVhYLNxL9q7QRMPN21gK28m6IHRAQIH9dVtX7K1euwMHBAWq1GoDtSvvWRr+MKy5ZAZ+IqGpUKAibNm0a4uLisHfvXvzyyy/QaDSK7Yp27tyJHj16VHkniRo6WwFbeTfENiprD0ljwn5MTIx8vrzBnr+/P4MvIqIqVKEg7LHHHoOdnR02bdqE/v37W9QNy87OxuTJk6u0g0QNha3q9uWdwrf1+oyMDNy6dQuAtRIUemg0yRbXMrY3shXscfSLiKj6VGjbIqpZ3Laobqlokv2FCxewZMkSAKUny1tjGnABQEpKOJKTNRV6fUpKOPbv18CwCFqP4cNLXnP//ffjhx9+KPOeTfeIJCKi8qmWbYuIGquKJtmbKitZ3pyySKsehtWLJSsYS3u9MXizt79pEoABgKEavvE1TZs2RVxcXKVWbhIRUdWoUBBWVFSEF154ARs3boSHhweeeOIJxfTjxYsX4e/vj+Li4irvKFFtMI5+lXfK0FpQU1ayvCnLIq3Wa4WZv97ayJfla1XIzAyAWm1IumeARURUuyoUhL366qv44osv8NxzzyEvLw8zZsxASkoKPv30U7kNZzepoSjv6Jcp02DN+HVpyfLmeV5lFWk1fz1gPnJmVKE6zEREVAsq9H/qr7/+GkuXLsVzzz2HV155Bb///jt27tyJRx99VA6+JMl64cfbNXz4cLRs2RJNmzaFn58fHn74YWRnZyvarF27Ft27d4ezszNatWqFN9980+I6P/30E8LCwuDo6Ii2bdtixYoVFm0+/PBDtG7dGk2bNkV4eDh+/fVXxfl//vkH06ZNg6enJ5o3b45Ro0bh4sWLijbnz5/HkCFD4OzsDB8fH8ycOdMiGZrqtvKWmDC1ceNGLFmyBEuWLJFXIhqT5c2r26ent8WiRfFYuXIiFi2Kx4EDPeSArTSm1fEtR85Kf11gYFaF74mIiKpHhYKwv/76S7FtUdu2bfHTTz9h//79ePjhh6t1GnLAgAFYu3YtTp06hQ0bNiA9PR2jR4+Wz//4448YP348nnjiCaSlpeGjjz7Cu+++qxjJyMjIwJAhQzBgwAAcOnQI8fHxmDJlCrZt2ya3WbNmDWbMmIF58+bhwIED6NatG6Kjo3Hp0iW5zfTp07Fp0yasW7cOu3fvRnZ2NkaOHCmfLy4uxpAhQ1BYWIj9+/dj5cqVWLFiBebOnVttz4dqVlnbApkLCzuIbdtOYdmyPxEfvwjBwWes5okBUARsgF7xdUTEPsUWQpmZgaUEYHqb2xoREVHtq9DqyDZt2uCzzz7DfffdpzienZ2NAQMGoFWrVtixY0eN5IQlJCRgxIgRuHnzJuzt7fHQQw+hqKgI69atk9t88MEHWLhwIc6fPw9JkjB79mxs2bIFaWlpcpuxY8ciLy8PW7duBQCEh4fjzjvvlIM3vV6PwMBAPPXUU3j++eeh0+ng7e2NVatWyUHgyZMn0bFjRyQnJ6NPnz748ccfMXToUGRnZ8PX1xcA8Mknn2D27Nm4fPlyuauNc3Vk7TJd3WiqoisdjaZOnQqdToc1a9YgI6M1Vq6caNFm4sQVCAo6B53OBd7eGoSEGEaWT58WuHw5uZQcMHOG1ZC26n/FxMSgY8eO5XsQRERUIeX9/V2hkbB7770Xq1atsjju7++PnTt3IiMjo+I9rYTc3Fx8/fXXiIiIgL29PQDg5s2baNq0qaKdk5MTsrKycO7cOQCGbZYiIyMVbaKjo5GcbKijVFhYiNTUVEUblUqFyMhIuU1qaiqKiooUbTp06ICWLVvKbZKTk9GlSxc5ADO+T35+Po4dO2bzvm7evIn8/HzFB9UttlY6lmdEzBiAAbAx7SiQne0PwDCFWVi4HceObcOxY9tQWLhdsTfku+/GY//+vjD/JyxJhtGy6dMNo2VqdQGCgs5ZjIC5ublV/OaJiKhKVSgIe+mllxSVtk3dcccd2L17Nz7//PMq6Zg1s2fPRrNmzeDp6Ynz58/j+++/l89FR0dj48aN2LFjB/R6Pf744w+8/fbbAAwjGgCQk5OjCIwAwNfXF/n5+fj7779x5coVFBcXW22Tk5MjX8PBwcHil5h5G2vXMJ6z5bXXXoNarZY/AgMDy/toqIK0Wi0uXLhg80Or1Vq8RqdzwbFjnW2udCxLbm6u/LVaXYDIyCQYNuU2kpCUFFlqQGcMAm390x01aj0GDkwqc9qRez8SEdW+Cq2ObNWqFVq1amXzvL+/PyZOtJxiseX555/HG2+8UWqbEydOoEOHDgCAmTNnIjY2FufOncOCBQvwyCOPYPPmzZAkCY899hjS09MxdOhQFBUVwdXVFc888wzmz58Plap+rBSbM2cOZsyYIX+fn5/PQKwalHfV45gxY+SvlSsQBUzrdpmuVARsV7Y3X5jh739BcR3AdukKo9JWT5om3vfq1QseHh5o3rw5mjRpovijgfW/iIjqhkoVa123bh1Wr16NP/74AwDQrl07PPTQQ4pE+fJ49tlnMWnSpFLbtGnTRv7ay8sLXl5eaNeuHTp27IjAwEB5D0tJkvDGG2/gf//7H3JycuDt7Y0dO3YortGiRQuLVYwXL16Eq6srnJycYGdnBzs7O6ttWrRoIV+jsLAQeXl5il9s5m3MV1Qar2lsY42joyMcHR1LfR50+8q76rGoqAiAtdpdEoyBmCTp8dRTaYqpQlv5Yjdu3FBcv6x9Hq0Fc9ZeY3ydaeJ9WFgY/Pz8yv1MiIio5lUoCNPr9Rg3bhzWrVuHdu3aySNUx44dw5gxY/Dggw9i9erV5S5T4e3tDW9v74r3+t++AIY8KlN2dna44447AACrV6+GRqOR30Oj0Vhs1ZKYmAiNRgPAMELQs2dP7NixAyNGjJDfZ8eOHYiLiwMA9OzZE/b29tixYwdGjRoFADh16hTOnz8vX0ej0eDVV1/FpUuX4OPjI7+Pq6urYsNzqtuaNDH887A++iQhOnorOnU6jgcf1GD79rIr46ekpFi8h0aTLCfXmwZStoI5a3tDRkQkIzw8RTF6xulGIqK6r0JB2HvvvYekpCQkJCRg6NChinMJCQl49NFH8d577yE+Pr4q+4iUlBT89ttvuOuuu+Du7o709HS89NJLCA4OlgOfK1euYP369bjnnnvwzz//YPny5XIJCaMnnngCixcvxqxZszB58mTs3LkTa9euxZYtW+Q2M2bMwMSJE9GrVy/07t0bixYtwvXr1/Hoo48CANRqNWJjYzFjxgx4eHjA1dUVTz31FDQaDfr06QMAGDhwIDp16oSHH34YCxcuRE5ODl588UVMmzaNI131iJubG+Li4nD27C18+aWAXl/yx4WdncCrr/ZA69Z3yuVLKlIZ3zzI0mj2yYGUTueChISSvC/zYC4s7KDNVY8jR46Ev78/pxuJiOqBCiVLLV++HG+++aZFAAYYiqkuXLiwWhLznZ2dsXHjRtx3331o3749YmNj0bVrV+zevVsR1KxcuRK9evVC3759cezYMfz000/o3bu3fD4oKAhbtmxBYmIiunXrhrfffhtLly5FdHS03GbMmDF46623MHfuXHTv3h2HDh3C1q1bFYn27777LoYOHYpRo0ahf//+aNGihVyYEzCMxm3evBl2dnbQaDSYMGECHnnkEfz3v/+t8mdD1cvT0xM9e/piyRIJdnaGY3Z2wKefSujZ0xeenp7ytLRhs23zFY/KfDHA+ohZcrJGPp+SEg7zf5rmyf+2Vj0yACMiqj8qVCfMyckJp06dQsuWLa2eP3fuHDp06IC///67yjrYmLFOWPU4ceIE1q5dW2a7qKgouLu7ywn1OTlNkJnpiDZt9GjfvhkAw7RfYWEhlixZAp3OBe++Ox3mSfvx8YsUwVJpNcLs7QuxdOljME/YB/SYPt1wnZEjR8LLy8vi9Uy4JyKqG8r7+7tC05FOTk7Iy8uzGYTl5+db1OoiqmvKu31UYmKi1eOZmYDJLLdctiU31xPlWe2Yne0Hayss//wzCHv39rO4BgBERJQUauVoFxFRw1Ch6UiNRoOPP/7Y5vkPP/xQztEiqi8qugWROeNCFOsFWPWwty9ZjanTuSApKRLKQEvA2/sS9u7tD2v/JCVJj/BwQ1J/TEwMAzAiogaiQiNhL7zwAu655x5otVo899xz6NChA4QQOHHiBN5++218//332LVrV3X1lQiAoc5XaWUmypqWM+6yAFR+CyJTarUacXFxyM7ORnr6ZrN6YiosWzZFvq6tlZaXLvnC2giYeekJ42pbIiKq/yoUhEVERGDNmjWYOnUqNmzYoDjn7u6O1atXo2/fvlXaQSJT5S20GhcXZzMQU6vVAMouKVFeV65ckXO0wsIOwscnB8uWTbF63ZLkfctAzJIesbFLERBwAQMGDEDnzp05CkZE1IBUuFjr//3f/yE6Ohrbtm3D6dOnARiKtQ4cOBDOzs5V3kEiU+UttJqdnW2zrU6nA1CxkhKlMV0ZCwBFRY42r+vhkYuePVORmtoL5lOSloGYBBeXawAMf+QwACMialgqFITt3LkTcXFx+OWXX/B///d/inM6nQ6dO3fGJ598gn79+lVpJ4kqyjwwsqasivWAsmo9AKvbEZX3utnZ/vjii0fkIqv/noH1AMxwzhgQGgvHEhFRw1Gh/7MvWrQIjz32mNXllmq1Go8//jjeeecdBmFUL5hXnzfPv7LcL9KQ41VW7pi160ZGJiEpKdIkMDMEYv3778aePfdYvY5pQGi+YTwREdV/FQrCDh8+XOqG2wMHDsRbb711250iskar1eLKlStVfl1jpTzjZ53OBZmZgYqq9YaRKunfdmXnjplXtbeekK+Cj8+lcu0FSUREDU+FgrCLFy8qVpZZXKxJE1y+fPm2O0VkrrwJ+eUVExODGzc88N//+qBkKlCFhIShkCRYCZiUhFAhMzMAubl/25yeVKsLFMetTVEGBmZxL0giokaqQkHYHXfcgbS0NLRt29bq+SNHjsDPz69KOkZkqqqDezc3N+Tk+EJvXtYLKpRvDwk9NmwYXWZpC9OcMltTn6XtBRkTEwMfHx8m5RMRNUAVCsLuv/9+vPTSSxg0aJBFZfy///4b8+bNs7qvJNHt0Gq1WLNmTZVfNyQEUKlgJRCzZBjFAoy5XIAEIUqmJxMShsLB4SYCAzOt5pQZg674+EXIzfXA+PHhCAgIwa1bQbC3t5fLZpjiNkRERA1bhYKwF198ERs3bkS7du0QFxeH9u3bAwBOnjyJDz/8EMXFxXjhhReqpaPUeJW3LEVFBQQAS5YAjz8OFBcDxuDKfDuhUaPWIzAwCwCQm+uB69ebYf36B82upvr3mB5RUUkIDU2zWoMsPn4RgoLOITQ0mqPGRESNXIWCMF9fX+zfvx9PPvkk5syZA+Pe35IkITo6Gh9++CF8fX2rpaNE1SE2FoiOBlJStNi3byXS09tajF6Fhp6Q26vVBdDpXKwm0xuokJgYhZwc3yqpQUZERA1XhYsPtWrVCj/88AOuXr2KM2fOQAiBkJAQuLu7V0f/iEplmnNlLbixdd5YsNXBwQEBAZ6wsytEWlpJflZmZgAACYGBmYrrjRkzBmq1Gmp1NhYs8LcRiEk4erSr5VGzGmRERNS4VboCpLu7O+68886q7AtRhZS172Np501zzOLi4hTXtTYaZnydWq2Gn58fpk69AJ1uETIzA7B+/WiUtQ2ReckJrnYkIiKW4aZ6ydq+jwkJQ3HXXd1w772GRSP//a+PInneVm0v05yz8u4n6eDg8G8JihPQ6ZKQmBgF61XvDUaNWo/Q0BMYOXIk/P39mXBPREQWf74T1Qu2ip/OmtUKvXv7YOnSZtDrlUGRMSerote19jpPT09MmDABANC3bzKiohIhScZllsoaF8Z6YADg5eXFAIyIiABwJIzqKWv7Mxrp9RI+/dQZhtWOtveFNLpy5Yq8N2NZ+0nm5eXJx52dnRETE4Nbt25h8OC/ERpqKD+Rne0vb1HEaUgiIrKFQRjVebYCF40mGfv3a2BtQFcIFSIi9iE5WWM1GDJlutm3+b6PKpXAggUXUVxseN3atWtt9nPatAlwdnYGAGRnX8bZs03QuvUt+PvfCeBO1v0iIiIFSYjy1Qenmpefnw+1Wg2dTmd10/TGRKvVyrlbq1Y5YdYsNfR6CZKkR1hYKg4c6GkxehUfvwgA5Er0hq9tr6Q0ZVhV6YGnnhoMf389lixZUmYfp06dytpfRERU7t/fHAmjesE4gpSVBcycabrptgoHDvREZGSSzSlAtbqgzJWU5oz7Pvr7l6OcPhERUSUwCKNqYzp6ZU1lpufee68kADMSQgV//2x5SyDz/RfLs+KxrHpjREREVY1BGFULrVaLxYsXl9kuLi6u3IFYVhbwzjvWzujlwMtaAFXaiseyRsny8vLg5uameC0DNiIiqgoMwqhalHe/x4rsC3n6tPXNtiMikm0GQzExMcjKAr74wvqKx7JGydauXYuYmBj5dRWd1iQiIrKFdcKo3ggJAVRmP7GSpEd4eAp0OhdkZLSGTueiOO/m5obQUDcMG7ZZruNlmjNWnrpgt27dAmB7WtP8PYmIiMqDI2FUpYx5YFeuXKnyawcEAEuWAI8/DhQXlwRTpW0z5ODggMLCQnlPSPOcsbLqgpkqa1qTiIioIhiEUZUpbx7Y7YiNBaKjgTNnAE9PHQoLw9G7t3J7oi1bhmHu3HC0bt0Enp6euHDhAoCSFY86nQvS0joBAAIDMxV1wazVE7O3twdQdsDGQqxERFQRDMKoylQkv+t2BAQYPgB37NplmSdWXCwhK6sp/P1v4MKFC4pRuQMHeiAhYRhK9nnUIyIiGbGxS5GX5wZAQmBgpuJ6arUacXFxKCwsxB135GP2bDWKiyXY2Qm88UY+HnpoHAuxEhFRhTEIo1plbdrSOKJUnvIWxjwx00DMzk5g9+5lOHRIOUVozOlSbrStwv79fbF/fwQMez5aT7g3BljPPguMGWMYiWvbVkJAgBsAtwrdMxEREcAgjGqZ6ZZBFRUXF4eAAE9FnpidHfDGGzpcu1a+UhUlJBiDM2t1xEyVjMQRERFVHldHUr11+fJlAIY8sbNngV27DJ8feuhvq+2NOV3lYb5CkoiIqKoxCKPbptVqLXKvasKaNWug1WoBGEam7rnH+giVsXwFAEWpitIw4Z6IiKobpyPpttTEisjSlLUYwFpx1fj4RcjMDEBGRpC88bdh1SNgzAn7738vIjaWCfdERFR9GITRbampFZG25OXlwc/Pz+o5W8VVR43agMDATISGnkD//nvl2mEAkJvrgUmT7sI997StsXsgIqLGidORVCNsVbS/3deuXbtWnpI0Z6u46vr1D2LRonjs26f5dw/Ikn0ng4LOoX37ZhXuIxERUUVxJIyq3e3st2j6WkCPqKgk9O2brGhTWFgoV+oHSspeWCuuaiSEComJUQAk7gFJRES1gkEYVauyNsjW6Vz+HY3SWpSDMH8tYAycoAjE8vLysHbtWov3VqsLFNXwLZWvJAUREVF1YBBG1aq0/RZL2/MRADIzA60ETxKSkiIRGpomB0zGDbatMe4ZmZkZgPXrR8PWDDz3gCQioprGnDCqNjqdC65fdwagLAkhSXrY2xdaHSEz5n0dONADGzaMsnpdIVRISQkv9X1Nc8jU6gKEhp7A8OGm5SmERZ9YkoKIiGoSR8KoWihzuQQMgVjJiFdRkaPNETIApUwhGuzfr0F4eIrFyFVp+WevvBKE+Ph0ZGTYIS3NCe+91wJ6vQSVSmDhQu4BSURENYtBGN0Wa6NGlrlcEiRJYNSotQgMzAJgmGo0T5o3jkZZn4Y0VzJ9ePXqVavva57r5eXlhS5d/DBggOEKM2ZwD0giIqo9DMLotnh6eiIuLk5RL2zfPge8+67lKFezZjcUeWCAXg7EjKNWxvOWBEw33jadPty1axeA0vPPuAckERHVNQzC6LaZTt9lZQF6PaBSGT4bWcsDA1QQQo/Ro0tGyBYtircyCqZHt25HcORIV0XAZh5YWStJYRqsERER1SUMwqjKLFsGTJ1qCL4kqSQQs7MD3n77Bu64YxSWLjUPsAwjZGp1AbZvj7Q6DTl69HqEhp7A9Ola7NqVKRdXNWdeksJWsEZERFQXMAijKpGVVRKAAYAQhkBs7VpAowECApojK6u5xQiZnZ2Ah0cudDoX7N+vsbiuJOnlUbKzZ39GUFDJOWs1xowlKYxbEZkGYFz1SEREdQmDMKoSp08rgyvA8L23d0neVUAAsGQJ8PjjQHGxYYTsjTd0uHatABkZrWGtYopGk2x1JKu0VZDGLYhMxcTEcNUjERHVKawTRlUiJMQw/WjKzg5oa7YPdmwscPYssGuX4fNDD/0NoCSfS0mPTp2OKY7odC5IS+uEhATbNcascXNzq/hNERERVSMGYVQljKNcdnaG7+3sgE8/tb76MCAAuOce5TljPpeymKoKy5ZNwYEDPQAYRr8WLYrH+vUPwvxH17gK8nY2CiciIqpJnI6kKhMbC0RHG2tvla/8g2meVljYQfj45GDZsikWo1w+PjmlFnCVJD2ys/3xxRePVGqjcCIioprGIIyqlHntLa1WK9cQy85WISOjCYKCbsHf3zDi5eDggLi4OGRnZ2Pjxo02K+lnZrYsNQCLjExCUlKkzUKtREREdQ2DMKo2Wq0WixcvBlB6In1MTAxycpogI6M17O1vWq31FRh43urxUaPWIzAwq8xCrVwZSUREdQ2DMKo2hYWF0OlckJkZiISEoTDmcZmPUj3//Ol/A7SOkCQ9una1LMwaEHDBag2w0NATAIDBgwfjyy8F9PqSqvp2dgJPPTUYrVs34cpIIiKqcxiEUZU7evQqTp3SY/9+YaMCvu3NuoVQ4ciRroiNXYqiIgdFra/SaoCFhflgyRJJUf7i008l9OzpWwN3TEREVHEMwqhKvffeNUyfrv43qFLu92jKuJ2QrWnEoiIHBAWds3idsQZYTEyMXHbCwcEBnp6elVoYQEREVFsYhFGV0Gq1OHv2FmbM8IEQxsDLdgBmup1QZfZ7dHNzg5+fn8VxbspNRET1BYMwum3GBPyMjNbQ6yeW0lLg/vs3o33703IAxv0eiYiosWIQRuWWlWXYnigkRDnaZCxBYax6b6uUBCDB21trEWCVlutFRETUULFiPpXLsmVAq1bAvfcaPi9bZtnGetX7EqVNM6rVBQgKOscAjIiIGg2OhFGZsrKAqVNLNujW6w2bcEdHW+ZfmY5qZWf7ywVUOc1IRESkxCCMynT6dEkAZlRcbFiFaC0J3riCMSjoHEJD06xOM7Zt2xZnzpwp8711Ohfk5nrCw8NyGpOIiKg+YxBGZQoJAVQqZSBmZ2coA1EWY0BmrjwBWGlV9omIiOo75oRRqbRaLezsLmDhwjzY2RlyvFQqgTlzdLCzuwCtVlvua+l0LsjIaA2dzkXxta225kVcN20aKrfnNkRERFTfcSSMbDp69CrefnuzPBV4770aJCZGQq9X4ZVXXJCSkoK+fZMxZsyYMq9lOqplSNgXAGyPcNkq4tq370Tccw+4DREREdV7DMLIqmXLgKlT3aDXT4Qk6REZmYSkpEiUDJ6qkJgYBQCIiRE2rwNYjmoZirgaCrkKoUJCQsk+kkbWyl3Y2QHh4Z5g/EVERA1BvZuOvHnzJrp37w5JknDo0CHFuSNHjqBfv35o2rQpAgMDsXDhQovXr1u3Dh06dEDTpk3RpUsX/PDDD4rzQgjMnTsXfn5+cHJyQmRkJE6fPq1ok5ubi/Hjx8PV1RVubm6IjY3FtWvXKtyXuqpkNWRJoGRc5agkISkpEjdueCAuLg5Tp06VR8VMpxutjWopqZCSEq44Yl7uws5O4NNPWQ2fiIgajnoXhM2aNQv+/v4Wx/Pz8zFw4EC0atUKqampePPNNzF//nwsWbJEbrN//36MGzcOsbGxOHjwIEaMGIERI0YgLS1NbrNw4UK8//77+OSTT5CSkoJmzZohOjoa//zzj9xm/PjxOHbsGBITE7F582bs2bMHU6dOrVBf6jJrqyENQZTeoq0QKpw92wSenp5wcHCAWq2Gnd1UvPfedKxcORGLFsUjO9vPpHaYdcnJGov8sLCwg4iPX4SJE1cgJeUSYmNv986IiIjqEFGP/PDDD6JDhw7i2LFjAoA4ePCgfO6jjz4S7u7u4ubNm/Kx2bNni/bt28vfx8TEiCFDhiiuGR4eLh5//HEhhBB6vV60aNFCvPnmm/L5vLw84ejoKFavXi2EEOL48eMCgPjtt9/kNj/++KOQJEn89ddf5e5Leeh0OgFA6HS6Cr3udmVmCqFSCQGUfEhSsejX7ycB6C2O//57jjhyJFdMnLhCTJnyqZCkYos2UVHbTI4rr2H8mDhxuZg+/W0xceIKMX3622L+/PnyR3Z2do0+AyIiosoq7+/vejMSdvHiRTz22GP48ssv4ezsbHE+OTkZ/fv3V6yai46OxqlTp3D16lW5TWRkpOJ10dHRSE5OBgBkZGQgJydH0UatViM8PFxuk5ycDDc3N/Tq1UtuExkZCZVKhZSUlHL3xZqbN28iPz9f8VEbAgKAJUsgr4Y05oS1aXMW/frtkUe1jEn1P/3kiO7d3bBy5UQsXfqY1YR6f/9seVRrypTPLEbGJEmP7Gx/LFoUL4+gHTjQQz7P1ZBERNTQ1IvEfCEEJk2ahCeeeAK9evXC2bNnLdrk5OQgKChIcczX11c+5+7ujpycHPmYaZucnBy5nenrbLXx8fFRnG/SpAk8PDwUbcrqizWvvfYaFixYYP0h1LDYWKB790v44IMfLSrfR0Ymwd8/W96CaNasYXL+mDHh3pRxuyLTmmHmm3YbE/9NS1Js2TIMc+eGo3XrJlwNSUREDU6tjoQ9//zzkCSp1I+TJ0/igw8+QEFBAebMmVOb3a12c+bMgU6nkz8yMzNrtT/+/obgyTw4SkqKlIOq3FxPkwDMkq3tikzzvb799iDGjGlrMYJWXCyhoMCXARgRETVItToS9uyzz2LSpEmltmnTpg127tyJ5ORkODo6Ks716tUL48ePx8qVK9GiRQtcvHhRcd74fYsWLeTP1tqYnjce8/PzU7Tp3r273ObSpUuKa9y6dQu5ubllvo/pe1jj6OhocY+1ycHBwWa9rtxcD6jVBVZLSZgaNWo9QkNPyN+PHDkSXl5eivfw9PREVlblq/ITERHVR7U6Eubt7Y0OHTqU+uHg4ID3338fhw8fxqFDh3Do0CG5rMSaNWvw6quvAgA0Gg327NmDoqIi+fqJiYlo3769PP2n0WiwY8cORR8SExOh0WgAAEFBQWjRooWiTX5+PlJSUuQ2Go0GeXl5SE1Nldvs3LkTer0e4eHh5e5LfeDp6YkpU+62mr9lnIo0LyVh3i4wMEtxzMvLC35+fvKHcZSrJA/N0M7ODixJQUREDVq9SMxv2bIlQkND5Y927doBAIKDgxHw72/phx56CA4ODoiNjcWxY8ewZs0avPfee5gxY4Z8nWeeeQZbt27F22+/jZMnT2L+/Pn4/fffERcXBwCQJAnx8fF45ZVXkJCQgKNHj+KRRx6Bv78/RowYAQDo2LEjBg0ahMceewy//vor9u3bh7i4OIwdO1YunVGevtQFWVnArl2Gz7YEBzsqgixr04vGqcWIiH0wlrGwNQ1ZmthY4OxZQ5/OngVLUhARUYNWLxLzy0OtVmP79u2YNm0aevbsCS8vL8ydO1dRvysiIgKrVq3Ciy++iP/85z8ICQnBd999h9DQULnNrFmzcP36dUydOhV5eXm46667sHXrVjRt2lRu8/XXXyMuLg733XcfVCoVRo0ahffff79Cfalthor4huk/lcowCmUr6AkOPoNRozYAEAgMzLIaWKnVBRg4MAnh4SnIzfWQc8YqKiCAo19ERNQ4SEKI0vecoVqTn58PtVoNnU4HV1fXKrtuVhbQqpVl/tXZs4CTkxaFhYXy8SVLirFggb+8itHaPo8VERcXx0R7IiJq0Mr7+7vBjIRR+VmriF9cDKSm6nDo0GL5mE7ngkWL4hUrIzdtstznsTxGjhwJf39/BmBERET/qhc5YVS1QkIAyayqhCQBAQH/KI6VtjKyory8vBiAERERmWAQRgAsgzIAcvkJZbuSlZEVwYr3RERESpyObIROnzbs1mhKrwfOnlX+OBjLT5hWtjeueNTpXJCb6wkPD22pU5NjxoyBt7c3R8GIiIjMMAhrhEJCrBdGbd36FtLSlG3Dwg4iOPiMYsXjgQM9LAIzY7K+aTFWYyFWIiIissTpyEbIVmFUf3/LgqslI1658giYMQADSpL1dToXAMpirAzAiIiIbONIWCMVGwtERwNnzhi2BgoIAC5cULaxNuLl7n611G2MiIiIqHw4EtYIGSvlA8A99yiLo+p0LsjIaI2sLD+rI1729jerLFmfiIioMeNIWCNTWqX8tWtL6oJZ25RbCBWKihxsJusTERFR+TEIa0SyskoCMMDw+fHHDdOSADBjRnN51aQhABMASmpXGEe8goLOWSTrExERUcUwCGtEbFXKP3PGULLC/JwhABPy565dj8gBl1pdwOCLiIjoNjAnrBExlqYwZWcHeHpehSSdscj1Uo6ESThypKu8CtIWFmUlIiIqH46ENSLG0hSPP24YAbOzA95++xo2bnwfADBsWA+TZHzlVCRguQrStCYYwLpgREREFcEgrJEZMUKL7t1v4ezZJmjd+hYcHC5h40bDubCwg/DxycGyZVMskvIBy1WQ3JCbiIio8hiENSJarRaLFy+Wvzevjg8ARUWOVgMwQLkKMioqigEYERHRbWAQ1ohcvny5zDbGTbtNAzFJ0iM2dikCAkqqubq4lJ4bRkRERKVjYn4jUlRUVGYb46bdxiR9Yx0w0wAMAJo0YfxORER0O/ibtJHQarW4evVqudpa27TbnI+PT1V3kYiIqFFhENYImOeClYetOmAjR45kQj4REVEV4HRkI1BYWFhl12IARkREVDUYhFG5xcTEMAAjIiKqIgzCGjmdzgUZGa0VlfCtHQOYB0ZERFSVmBPWiB04UFIh37gKEoDi2Lx52Zg61Y7V8ImIiKoYg7BGSqdzMdmiyLAlUULCUEgSFMdefvkOxMZKYPxFRERUtTgd2Ujl5npaqYyvsjhWXCzhzJma6xcREVFjwSCskTJWxlfSWxyzswPatq25fhERETUWDMIaAQcHB4tj5pXxAQHDj4MESRIADAHYp58CAQE11lUiIqJGQxJCiNruBFmXn58PtVoNnU4HV1fX27qWVqu1Wi/s4MEmGDrUC0JI8jGVCvjmG0CjYQBGRERUUeX9/c3E/EbC1srGkycB8zBcrwe8vRmAERERVSdORzZyISGGkS9TzAMjIiKqfgzCGrmAAGDJEkPgBTAPjIiIqKZwOpIQGwtERwNnzhhGwBiAERERVT8GYQTAEHgx+CIiIqo5nI4kIiIiqgUMwoiIiIhqAYMwIiIiolrAIIyIiIioFjAIIyIiIqoFDMKIiIiIagGDMCIiIqJawCCMiIiIqBYwCCMiIiKqBQzCiIiIiGoBgzAiIiKiWsC9I+swIQQAID8/v5Z7QkREROVl/L1t/D1uC4OwOqygoAAAEBgYWMs9ISIioooqKCiAWq22eV4SZYVpVGv0ej2ys7Ph4uICSZIqfZ38/HwEBgYiMzMTrq6uVdjD+oPPgM8A4DMA+AwAPgOAzwCo3mcghEBBQQH8/f2hUtnO/OJIWB2mUqkQEBBQZddzdXVttP/YjPgM+AwAPgOAzwDgMwD4DIDqewaljYAZMTGfiIiIqBYwCCMiIiKqBQzCGgFHR0fMmzcPjo6Otd2VWsNnwGcA8BkAfAYAnwHAZwDUjWfAxHwiIiKiWsCRMCIiIqJawCCMiIiIqBYwCCMiIiKqBQzCiIiIiGoBg7B66uOPP0bXrl3lInMajQY//vijfP6ff/7BtGnT4OnpiebNm2PUqFG4ePGi4hrnz5/HkCFD4OzsDB8fH8ycORO3bt2q6VupMq+//jokSUJ8fLx8rKE/h/nz50OSJMVHhw4d5PMN/f6N/vrrL0yYMAGenp5wcnJCly5d8Pvvv8vnhRCYO3cu/Pz84OTkhMjISJw+fVpxjdzcXIwfPx6urq5wc3NDbGwsrl27VtO3UimtW7e2+DmQJAnTpk0D0Dh+DoqLi/HSSy8hKCgITk5OCA4Oxssvv6zYu6+h/xwAhm1y4uPj0apVKzg5OSEiIgK//fabfL6hPYM9e/Zg2LBh8Pf3hyRJ+O677xTnq+p+jxw5gn79+qFp06YIDAzEwoULq+YGBNVLCQkJYsuWLeKPP/4Qp06dEv/5z3+Evb29SEtLE0II8cQTT4jAwECxY8cO8fvvv4s+ffqIiIgI+fW3bt0SoaGhIjIyUhw8eFD88MMPwsvLS8yZM6e2bum2/Prrr6J169aia9eu4plnnpGPN/TnMG/ePNG5c2dx4cIF+ePy5cvy+YZ+/0IIkZubK1q1aiUmTZokUlJSxJ9//im2bdsmzpw5I7d5/fXXhVqtFt999504fPiwGD58uAgKChJ///233GbQoEGiW7du4pdffhF79+4Vbdu2FePGjauNW6qwS5cuKX4GEhMTBQCxa9cuIUTj+Dl49dVXhaenp9i8ebPIyMgQ69atE82bNxfvvfee3Kah/xwIIURMTIzo1KmT2L17tzh9+rSYN2+ecHV1FVlZWUKIhvcMfvjhB/HCCy+IjRs3CgDi22+/VZyvivvV6XTC19dXjB8/XqSlpYnVq1cLJycn8emnn952/xmENSDu7u5i6dKlIi8vT9jb24t169bJ506cOCEAiOTkZCGE4QdXpVKJnJwcuc3HH38sXF1dxc2bN2u877ejoKBAhISEiMTERHH33XfLQVhjeA7z5s0T3bp1s3quMdy/EELMnj1b3HXXXTbP6/V60aJFC/Hmm2/Kx/Ly8oSjo6NYvXq1EEKI48ePCwDit99+k9v8+OOPQpIk8ddff1Vf56vJM888I4KDg4Ver280PwdDhgwRkydPVhwbOXKkGD9+vBCicfwc3LhxQ9jZ2YnNmzcrjoeFhYkXXnihwT8D8yCsqu73o48+Eu7u7op/C7Nnzxbt27e/7T5zOrIBKC4uxjfffIPr169Do9EgNTUVRUVFiIyMlNt06NABLVu2RHJyMgAgOTkZXbp0ga+vr9wmOjoa+fn5OHbsWI3fw+2YNm0ahgwZorhfAI3mOZw+fRr+/v5o06YNxo8fj/PnzwNoPPefkJCAXr164cEHH4SPjw969OiBzz77TD6fkZGBnJwcxXNQq9UIDw9XPAc3Nzf06tVLbhMZGQmVSoWUlJSau5kqUFhYiK+++gqTJ0+GJEmN5ucgIiICO3bswB9//AEAOHz4MH7++WcMHjwYQOP4Obh16xaKi4vRtGlTxXEnJyf8/PPPjeIZmKqq+01OTkb//v3h4OAgt4mOjsapU6dw9erV2+ojN/Cux44ePQqNRoN//vkHzZs3x7fffotOnTrh0KFDcHBwgJubm6K9r68vcnJyAAA5OTmK/+EazxvP1RfffPMNDhw4oMh5MMrJyWnwzyE8PBwrVqxA+/btceHCBSxYsAD9+vVDWlpao7h/APjzzz/x8ccfY8aMGfjPf/6D3377DU8//TQcHBwwceJE+T6s3afpc/Dx8VGcb9KkCTw8POrNczD67rvvkJeXh0mTJgFoHP8OAOD5559Hfn4+OnToADs7OxQXF+PVV1/F+PHjAaBR/By4uLhAo9Hg5ZdfRseOHeHr64vVq1cjOTkZbdu2bRTPwFRV3W9OTg6CgoIsrmE85+7uXuk+Mgirx9q3b49Dhw5Bp9Nh/fr1mDhxInbv3l3b3aoxmZmZeOaZZ5CYmGjxl19jYfwrHwC6du2K8PBwtGrVCmvXroWTk1Mt9qzm6PV69OrVC//73/8AAD169EBaWho++eQTTJw4sZZ7V/OWLVuGwYMHw9/fv7a7UqPWrl2Lr7/+GqtWrULnzp1x6NAhxMfHw9/fv1H9HHz55ZeYPHky7rjjDtjZ2SEsLAzjxo1DampqbXeNrOB0ZD3m4OCAtm3bomfPnnjttdfQrVs3vPfee2jRogUKCwuRl5enaH/x4kW0aNECANCiRQuL1VHG741t6rrU1FRcunQJYWFhaNKkCZo0aYLdu3fj/fffR5MmTeDr69sonoMpNzc3tGvXDmfOnGk0Pwd+fn7o1KmT4ljHjh3laVnjfVi7T9PncOnSJcX5W7duITc3t948BwA4d+4ckpKSMGXKFPlYY/k5mDlzJp5//nmMHTsWXbp0wcMPP4zp06fjtddeA9B4fg6Cg4Oxe/duXLt2DZmZmfj1119RVFSENm3aNJpnYFRV91ud/z4YhDUger0eN2/eRM+ePWFvb48dO3bI506dOoXz589Do9EAADQaDY4ePar44UtMTISrq6vFL7S66r777sPRo0dx6NAh+aNXr14YP368/HVjeA6mrl27hvT0dPj5+TWan4O+ffvi1KlTimN//PEHWrVqBQAICgpCixYtFM8hPz8fKSkpiueQl5enGC3YuXMn9Ho9wsPDa+Auqsby5cvh4+ODIUOGyMcay8/BjRs3oFIpf6XZ2dlBr9cDaFw/BwDQrFkz+Pn54erVq9i2bRseeOCBRvcMqup+NRoN9uzZg6KiIrlNYmIi2rdvf1tTkQBYoqK+ev7558Xu3btFRkaGOHLkiHj++eeFJEli+/btQgjDkvSWLVuKnTt3it9//11oNBqh0Wjk1xuXpA8cOFAcOnRIbN26VXh7e9erJenWmK6OFKLhP4dnn31W/PTTTyIjI0Ps27dPREZGCi8vL3Hp0iUhRMO/fyEM5UmaNGkiXn31VXH69Gnx9ddfC2dnZ/HVV1/JbV5//XXh5uYmvv/+e3HkyBHxwAMPWF2m3qNHD5GSkiJ+/vlnERISUmeX5VtTXFwsWrZsKWbPnm1xrjH8HEycOFHccccdcomKjRs3Ci8vLzFr1iy5TWP4Odi6dav48ccfxZ9//im2b98uunXrJsLDw0VhYaEQouE9g4KCAnHw4EFx8OBBAUC888474uDBg+LcuXNCiKq537y8POHr6ysefvhhkZaWJr755hvh7OzMEhWN2eTJk0WrVq2Eg4OD8Pb2Fvfdd58cgAkhxN9//y3+3//7f8Ld3V04OzuL//u//xMXLlxQXOPs2bNi8ODBwsnJSXh5eYlnn31WFBUV1fStVCnzIKyhP4cxY8YIPz8/4eDgIO644w4xZswYRX2shn7/Rps2bRKhoaHC0dFRdOjQQSxZskRxXq/Xi5deekn4+voKR0dHcd9994lTp04p2mi1WjFu3DjRvHlz4erqKh599FFRUFBQk7dxW7Zt2yYAWNyXEI3j5yA/P18888wzomXLlqJp06aiTZs24oUXXlCUFWgMPwdr1qwRbdq0EQ4ODqJFixZi2rRpIi8vTz7f0J7Brl27BACLj4kTJwohqu5+Dx8+LO666y7h6Ogo7rjjDvH6669XSf8lIUzKCRMRERFRjWBOGBEREVEtYBBGREREVAsYhBERERHVAgZhRERERLWAQRgRERFRLWAQRkRERFQLGIQRERER1QIGYURERES1gEEYEVW7nJwcPPXUU2jTpg0cHR0RGBiIYcOGKfZ0279/P+6//364u7ujadOm6NKlC9555x0UFxfLbc6ePYvY2FgEBQXByckJwcHBmDdvHgoLCxXv99lnn6Fbt25o3rw53Nzc0KNHD3kjZwCYP38+JEnCoEGDLPr65ptvQpIk3HPPPWXeV+vWrSFJks2PSZMmVfxh1XH33HMP4uPja7sbRA1Ck9ruABE1bGfPnkXfvn3h5uaGN998E126dEFRURG2bduGadOm4eTJk/j2228RExODRx99FLt27YKbmxuSkpIwa9YsJCcnY+3atZAkCSdPnoRer8enn36Ktm3bIi0tDY899hiuX7+Ot956CwDw+eefIz4+Hu+//z7uvvtu3Lx5E0eOHEFaWpqiX35+fti1axeysrIQEBAgH//888/RsmXLct3bb7/9JgeJ+/fvx6hRo3Dq1Cm4uroCAJycnKriEdaIoqIi2Nvb19j7FRYWwsHBocbej6hOqpLNj4iIbBg8eLC44447xLVr1yzOXb16VVy7dk14enqKkSNHWpxPSEgQAMQ333xj8/oLFy4UQUFB8vcPPPCAmDRpUql9mjdvnujWrZsYOnSoeOWVV+Tj+/btE15eXuLJJ58Ud999dznuroRxD7urV6/Kx7777jvRo0cP4ejoKIKCgsT8+fMV+zECEJ988okYMmSIcHJyEh06dBD79+8Xp0+fFnfffbdwdnYWGo1GsR+ose+ffPKJCAgIEE5OTuLBBx9U7A8ohBCfffaZ6NChg3B0dBTt27cXH374oXwuIyNDfq79+/cXjo6OYvny5eLKlSti7Nixwt/fXzg5OYnQ0FCxatUq+XUTJ0602KMvIyNDLF++XKjVasX7f/vtt8L0V4yx35999plo3bq1kCRJCGH4GYiNjRVeXl7CxcVFDBgwQBw6dKhCz56ovuJ0JBFVm9zcXGzduhXTpk1Ds2bNLM67ublh+/bt0Gq1eO655yzODxs2DO3atcPq1attvodOp4OHh4f8fYsWLfDLL7/g3Llz/7+9ew2J6nnjAP51zRCvv4zNa2qpa3l7sVa6hummqVSUmYqoKVlaiexGFnQx0bwQZakvTBRLo8KSkqi8kGxl4i2sNKTFvFCSWgYVpuV9/i/C8/udzMp/yVY8H1hwZp6dmXP2hQ8zc3a/O7+oqCgUFRVx5XPnziEsLOyXrNDU1NQgIiICcrkcT58+RV5eHoqKipCWlsaLS0lJQUREBJqbm7Fs2TKEhoZi165dOHToEJqamsAYQ1xcHO89HR0dKCkpwc2bN1FZWYnHjx8jNjaWa7906RISExORlpYGpVKJ9PR0HD16FOfPn+f1c/DgQcjlciiVSvj6+mJ4eBjOzs4oKytDa2srYmJisG3bNjx48AAAkJ2dDYlEgujoaPT19aGvrw+LFy/+4XvS0dGBa9euobS0FM3NzQCAoKAg9Pf3o6KiAg8fPoRYLIaXlxfevn07m9tNyJ9J1VkgIeTv1djYyACw0tLSGWOOHz8+bQXpvzZt2sSWL1/+1bb29namp6fH8vPzubre3l7m6urKADCRSMQiIyPZlStX2MTEBBcztSozOjrKFi1axKqrq9ng4CDT1dVlLS0tTC6X//RKmJeXF0tPT+fFXLhwgRkbG3NlACwhIYEr19fXMwDs7NmzXF1xcTHT1NTkzV1dXZ29fPmSq6uoqGACgYD19fUxxhizsrLirWAxxlhKSgqTSCSMsX9XwrKysr57XRs2bGDx8fFc2cPDg8nlcl7Mj66EaWhosP7+fq6upqaG6enpseHhYd57raysWF5e3nfnRsifjs6EEULmDGNsTmIBoKenB35+fggKCkJ0dDRXb2xsjPr6erS2tuL+/fuoq6tDZGQkCgoKUFlZCYHg3w0ADQ0NhIeHo7CwEF1dXRCJRHBycprVPGbS0tKC2tpa3srXxMQEhoeH8fHjR2hpaQEAbzxDQ0MAgKOjI69ueHgYAwMD3Fkzc3NzmJqacjESiQSTk5Noa2uDrq4uOjs7sWPHDt59GR8fh76+Pm+OK1as4JUnJiaQnp6OkpIS9PT0YHR0FCMjI9xcf5aFhQWEQiFXbmlpweDgIBYuXMiL+/TpEzo7O3/JmIT8zigJI4TMGRsbG+5A/UxEIhEAQKlUws3NbVq7UqmEnZ0dr663txdSqRRubm7Iz8//ar8ODg5wcHBAbGwsdu/eDXd3d1RXV0MqlfLioqKi4OLigtbWVkRFRc32Emc0ODiI5ORkBAQETGvT1NTk/v7vYXg1NbUZ6yYnJ394XODzE6IuLi68NnV1dV75yy3ikydPIjs7G1lZWXB0dIS2tjb27t077enTLwkEgmlJ9NjY2LS4L8cbHByEsbEx7t27Ny32n3/++eaYhPwNKAkjhMwZAwMD+Pr6IicnBzKZbNo/4ffv38PHxwcGBgY4derUtCTsxo0baG9vR0pKClfX09MDqVQKZ2dnFBYW8la2ZjKVxA0NDU1rs7e3h729PZ48eYLQ0ND/5zK/SiwWo62tDdbW1r+szynd3d3o7e2FiYkJAKChoQECgQC2trYwNDSEiYkJurq6EBYWNqt+a2trsXnzZoSHhwP4nPg9e/aMlwTPnz+f97UhACAUCvHhwwcMDQ1xn/HUma9vEYvFePXqFebNmwdLS8tZzZWQvwElYYSQOZWTk4PVq1dj1apVOHbsGJycnDA+Po6qqirk5uZCqVQiLy8PISEhiImJQVxcHPT09KBQKHDgwAEEBgYiODgYwOcEzNPTExYWFsjIyMCbN2+4cYyMjAAAe/bsgYmJCdauXQszMzP09fUhNTUVQqEQEonkq3O8c+cOxsbGfunqS2JiIjZu3Ahzc3MEBgZCIBCgpaUFra2tSE1N/am+NTU1ERkZiYyMDAwMDEAmkyE4OJi7B8nJyZDJZNDX14efnx9GRkbQ1NSEd+/eYd++fTP2a2Njg6tXr6Kurg4LFizA6dOn8fr1a14SZmlpicbGRjx//hw6OjowMDCAi4sLtLS0cPjwYchkMjQ2NvIeeJiJt7c3JBIJ/P39ceLECYhEIvT29qKsrAxbtmyZtl1KyN+Gno4khMyppUuX4tGjR5BKpYiPj4eDgwPWrVsHhUKB3NxcAEBgYCDu3r2L7u5uuLu7w9bWFpmZmThy5AguX77MbclVVVWho6MDCoUCZmZmMDY25l5TvL290dDQgKCgIIhEImzduhWamppQKBTTzh5N0dbW/uXbX76+vrh16xZu376NlStXwtXVFZmZmbCwsPjpvq2trREQEID169fDx8cHTk5OOHPmDNe+c+dOFBQUoLCwEI6OjvDw8EBRURGWLFnyzX4TEhIgFovh6+sLT09PGBkZwd/fnxezf/9+qKurw87ODkKhEN3d3TAwMMDFixdRXl4OR0dHFBcXIykp6bvXoaamhvLycqxZswbbt2+HSCRCSEgIXrx4wZ2PI+RvpsZmexqWEEKIyiQlJeH69es/tN1HCPm90UoYIYQQQogKUBJGCCHfoKOjM+OrpqZG1dMjhPzBaDuSEEK+oaOjY8Y2U1PTP+r3IQkhvxdKwgghhBBCVIC2IwkhhBBCVICSMEIIIYQQFaAkjBBCCCFEBSgJI4QQQghRAUrCCCGEEEJUgJIwQgghhBAVoCSMEEIIIUQFKAkjhBBCCFGB/wH9UcF9FZ+yuQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACeW0lEQVR4nO2deXwTZf7HP2lpa4E2pRe0FGgpCAKiUhEKKyJWQAGXBaWKrCDl0AUVUUB+KIjHIoeA98klioKCLqIoVPHiWgURcQEFW6S2XMGmhSI9Mr8/4oQknckcmeOZ5Pt+vXxJkunkmcnM83zme9o4juNAEARBEAQRBkSYPQCCIAiCIAijIOFDEARBEETYQMKHIAiCIIiwgYQPQRAEQRBhAwkfgiAIgiDCBhI+BEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNpDwIQiCIAgibCDhQxAEwSDLly+HzWZDcXGx2UMhiJCChA9BhCnffvstJk6ciI4dO6JRo0Zo2bIlhg0bhp9//rnetr1794bNZoPNZkNERATi4+PRrl07/POf/8TmzZsVfe+HH36Ia665BqmpqWjYsCFat26NYcOG4ZNPPtHq0Orx73//Gx988EG997dt24ZHH30U5eXlun23P48++qjnXNpsNjRs2BAdOnTAww8/jIqKCk2+Y9WqVVi8eLEm+yKIUIOED0GEKXPnzsXatWtx3XXX4ZlnnsG4cePw1VdfoUuXLti3b1+97TMyMrBy5Uq88cYbmD9/Pm666SZs27YNffv2RX5+PmpqaiS/c8GCBbjppptgs9kwffp0LFq0CEOHDsUvv/yCd955R4/DBBBY+MyePdtQ4cPz0ksvYeXKlVi4cCHat2+PJ598Ev3794cW7RNJ+BCEOA3MHgBBEOYwefJkrFq1CtHR0Z738vPzcemll+Kpp57Cm2++6bO93W7HiBEjfN576qmncO+99+LFF19EZmYm5s6dK/p9tbW1ePzxx3H99ddj06ZN9T4/ceJEkEfEDlVVVWjYsGHAbW6++WYkJycDAO666y4MHToU69atw44dO5Cbm2vEMAkiLCGLD0GEKT169PARPQDQtm1bdOzYEfv375e1j8jISDz77LPo0KEDnn/+eTidTtFtT506hYqKCvTs2VPw89TUVJ/Xf/75Jx599FFcfPHFuOiii5CWloYhQ4bg8OHDnm0WLFiAHj16ICkpCbGxscjJycF7773nsx+bzYazZ89ixYoVHvfSqFGj8Oijj2LKlCkAgKysLM9n3jE1b775JnJychAbG4vExETceuutOHr0qM/+e/fujU6dOmHXrl3o1asXGjZsiP/7v/+Tdf686dOnDwCgqKgo4HYvvvgiOnbsiJiYGKSnp2PChAk+FqvevXvjo48+wpEjRzzHlJmZqXg8BBGqkMWHIAgPHMfh+PHj6Nixo+y/iYyMxG233YZHHnkE33zzDQYMGCC4XWpqKmJjY/Hhhx/innvuQWJioug+6+rqMHDgQHz22We49dZbcd9996GyshKbN2/Gvn37kJ2dDQB45plncNNNN+H2229HdXU13nnnHdxyyy3YsGGDZxwrV67EmDFjcNVVV2HcuHEAgOzsbDRq1Ag///wz3n77bSxatMhjfUlJSQEAPPnkk3jkkUcwbNgwjBkzBidPnsRzzz2HXr164fvvv0dCQoJnvA6HAzfccANuvfVWjBgxAk2bNpV9/nh4QZeUlCS6zaOPPorZs2cjLy8Pd999Nw4ePIiXXnoJ3377LbZu3YqoqCjMmDEDTqcTJSUlWLRoEQCgcePGisdDECELRxAE8RcrV67kAHBLlizxef+aa67hOnbsKPp377//PgeAe+aZZwLuf+bMmRwArlGjRtwNN9zAPfnkk9yuXbvqbbd06VIOALdw4cJ6n7lcLs+/q6qqfD6rrq7mOnXqxPXp08fn/UaNGnEjR46st6/58+dzALiioiKf94uLi7nIyEjuySef9Hn/xx9/5Bo0aODz/jXXXMMB4F5++WXR4/Zm1qxZHADu4MGD3MmTJ7mioiLulVde4WJiYrimTZtyZ8+e5TiO45YtW+YzthMnTnDR0dFc3759ubq6Os/+nn/+eQ4At3TpUs97AwYM4Fq1aiVrPAQRbpCriyAIAMCBAwcwYcIE5ObmYuTIkYr+lrcoVFZWBtxu9uzZWLVqFa644gp8+umnmDFjBnJyctClSxcf99ratWuRnJyMe+65p94+bDab59+xsbGef//xxx9wOp24+uqrsXv3bkXj92fdunVwuVwYNmwYTp065fmvWbNmaNu2LbZs2eKzfUxMDO68805F39GuXTukpKQgKysL48ePR5s2bfDRRx+JxgYVFhaiuroakyZNQkTEhal77NixiI+Px0cffaT8QAkiDCFXF0EQOHbsGAYMGAC73Y733nsPkZGRiv7+zJkzAIC4uDjJbW+77TbcdtttqKiowM6dO7F8+XKsWrUKgwYNwr59+3DRRRfh8OHDaNeuHRo0CDxFbdiwAU888QT27NmD8+fPe973Fkdq+OWXX8BxHNq2bSv4eVRUlM/r5s2b14uXkmLt2rWIj49HVFQUMjIyPO47MY4cOQLALZi8iY6ORuvWrT2fEwQRGBI+BBHmOJ1O3HDDDSgvL8fXX3+N9PR0xfvg09/btGkj+2/i4+Nx/fXX4/rrr0dUVBRWrFiBnTt34pprrpH1919//TVuuukm9OrVCy+++CLS0tIQFRWFZcuWYdWqVYqPwRuXywWbzYaNGzcKikD/mBlvy5NcevXq5YkrIgjCOEj4EEQY8+eff2LQoEH4+eefUVhYiA4dOijeR11dHVatWoWGDRvib3/7m6pxXHnllVixYgXKysoAuIOPd+7ciZqamnrWFZ61a9fioosuwqeffoqYmBjP+8uWLau3rZgFSOz97OxscByHrKwsXHzxxUoPRxdatWoFADh48CBat27teb+6uhpFRUXIy8vzvBesxYsgQhmK8SGIMKWurg75+fnYvn073n33XVW1Y+rq6nDvvfdi//79uPfeexEfHy+6bVVVFbZv3y742caNGwFccOMMHToUp06dwvPPP19vW+6vAn+RkZGw2Wyoq6vzfFZcXCxYqLBRo0aCRQobNWoEAPU+GzJkCCIjIzF79ux6BQU5joPD4RA+SB3Jy8tDdHQ0nn32WZ8xLVmyBE6n0yebrlGjRgFLCxBEOEMWH4IIUx544AGsX78egwYNwunTp+sVLPQvVuh0Oj3bVFVV4dChQ1i3bh0OHz6MW2+9FY8//njA76uqqkKPHj3QvXt39O/fHy1atEB5eTk++OADfP311xg8eDCuuOIKAMAdd9yBN954A5MnT8Z///tfXH311Th79iwKCwvxr3/9C3//+98xYMAALFy4EP3798fw4cNx4sQJvPDCC2jTpg327t3r8905OTkoLCzEwoULkZ6ejqysLHTr1g05OTkAgBkzZuDWW29FVFQUBg0ahOzsbDzxxBOYPn06iouLMXjwYMTFxaGoqAjvv/8+xo0bhwcffDCo86+UlJQUTJ8+HbNnz0b//v1x00034eDBg3jxxRfRtWtXn98rJycHq1evxuTJk9G1a1c0btwYgwYNMnS8BMEsZqaUEQRhHnwatth/gbZt3Lgx17ZtW27EiBHcpk2bZH1fTU0N99prr3GDBw/mWrVqxcXExHANGzbkrrjiCm7+/Pnc+fPnfbavqqriZsyYwWVlZXFRUVFcs2bNuJtvvpk7fPiwZ5slS5Zwbdu25WJiYrj27dtzy5Yt86SLe3PgwAGuV69eXGxsLAfAJ7X98ccf55o3b85FRETUS21fu3Yt97e//Y1r1KgR16hRI659+/bchAkTuIMHD/qcm0Cp/v7w4zt58mTA7fzT2Xmef/55rn379lxUVBTXtGlT7u677+b++OMPn23OnDnDDR8+nEtISOAAUGo7QXhh4zgNGsMQBEEQBEFYAIrxIQiCIAgibCDhQxAEQRBE2EDChyAIgiCIsIGED0EQBEEQYQMJH4IgCIIgwgYSPgRBEARBhA1UwNAPl8uF0tJSxMXFUdl3giAIgrAIHMehsrIS6enpiIgQt+uQ8PGjtLQULVq0MHsYBEEQBEGo4OjRo8jIyBD9nISPH3FxcQDcJy5Q3yGCIAiCINihoqICLVq08KzjYpDw8YN3b8XHx5PwIQiCIAiLIRWmQsHNBEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNlCMD0EQBEFoQF1dHWpqasweRsgSFRWFyMjIoPdDwocgCIIggoDjOBw7dgzl5eVmDyXkSUhIQLNmzYKqs0fChyAIgiCCgBc9qampaNiwIRW/1QGO41BVVYUTJ04AANLS0lTvi4QPQRAEQaikrq7OI3qSkpLMHk5IExsbCwA4ceIEUlNTVbu9KLiZIAiCIFTCx/Q0bNjQ5JGEB/x5DiaWioQPQRAEQQQJubeMQYvzTMKHIAiCIIiwgWJ8GMfhcKC6ulr08+joaPIrEwRBEIRMSPgwjMPhwPPPP+957XTG4fTpJCQmOmC3V3renzhxIokfgiAIQhGjRo3CihUrAAANGjRAYmIiOnfujNtuuw2jRo1CRIQ8p9Dy5csxadIky6Tzk/BhGG9Lz+7dV+DDDweC4yJgs7kwaNAGdOnyfb3tCIIgCOtgtlW/f//+WLZsGerq6nD8+HF88sknuO+++/Dee+9h/fr1aNAg9GRC6B1RCOJ0xnlEDwBwXAQ+/HAgsrMP+Vh+CIIgCOvgb9UXQ0+rfkxMDJo1awYAaN68Obp06YLu3bvjuuuuw/LlyzFmzBgsXLgQy5Ytw6+//orExEQMGjQI8+bNQ+PGjfHFF1/gzjvvBHAh8HjWrFl49NFHsXLlSjzzzDM4ePAgGjVqhD59+mDx4sVITU3V5VjkYpng5jlz5qBr166Ii4tDamoqBg8ejIMHD/ps8+eff2LChAlISkpC48aNMXToUBw/ftykEWvH6dNJHtHDw3EROH060aQREQRBEMEi11pvtFW/T58+uOyyy7Bu3ToAQEREBJ599ln89NNPWLFiBT7//HNMnToVANCjRw8sXrwY8fHxKCsrQ1lZGR588EEA7pTzxx9/HD/88AM++OADFBcXY9SoUYYeixCWET5ffvklJkyYgB07dmDz5s2oqalB3759cfbsWc82999/Pz788EO8++67+PLLL1FaWoohQ4aYOGptSEx0wGZz+bxns7mQmHjapBFpR0kJsGWL+/8EQRAEG7Rv3x7FxcUAgEmTJuHaa69FZmYm+vTpgyeeeAJr1qwB4HbF2e122Gw2NGvWDM2aNUPjxo0BAKNHj8YNN9yA1q1bo3v37nj22WexceNGnDlzxqzDAmAhV9cnn3zi83r58uVITU3Frl270KtXLzidTixZsgSrVq1Cnz59AADLli3DJZdcgh07dqB79+5mDFsT7PZKDBq0oV6Mj95urpIS4JdfgLZtgYwM7fe/ZAkwbhzgcgEREcCrrwIFBdp/D0EQBKEMjuM8rqvCwkLMmTMHBw4cQEVFBWpra/Hnn3+iqqoqYOHGXbt24dFHH8UPP/yAP/74Ay6X+wH+t99+Q4cOHQw5DiEsY/Hxx+l0AgASE93unl27dqGmpgZ5eXmebdq3b4+WLVti+/btovs5f/48KioqfP5jkS5dvsekSYsxcuRyTJq02BPYrBdLlgCtWgF9+rj/P2WKtlaZkpILogdw/3/8eLL8EARBsMD+/fuRlZWF4uJiDBw4EJ07d8batWuxa9cuvPDCCwACu+DOnj2Lfv36IT4+Hm+99Ra+/fZbvP/++5J/ZwSWFD4ulwuTJk1Cz5490alTJwDuJnHR0dFISEjw2bZp06Y4duyY6L7mzJkDu93u+a9FixZ6Dj0o7PZKZGUd0dXS43A4sGvXcYwbx/mIkgULgJYtOTzzjDYmyl9+uSB6eOrqgEOHNNk9QRAEoZLPP/8cP/74I4YOHYpdu3bB5XLh6aefRvfu3XHxxRejtLTUZ/vo6GjU1dX5vHfgwAE4HA489dRTuPrqq9G+fXtPg1GzsaTwmTBhAvbt24d33nkn6H1Nnz4dTqfT89/Ro0c1GKE2REdHa7qdFHyGwXPPfQKXq35ZcI6z4f77G+KLLw7B4XAE9V1t27rdW95ERgJt2gS1W4IgCEIB58+fx7Fjx/D7779j9+7d+Pe//42///3vGDhwIO644w60adMGNTU1eO655/Drr79i5cqVePnll332kZmZiTNnzuCzzz7DqVOnUFVVhZYtWyI6Otrzd+vXr8fjjz9u0lH6YpkYH56JEydiw4YN+Oqrr5DhFXjSrFkzVFdXo7y83Mfqc/z4cU+qnhAxMTGIiYnRc8iqSUpKwsSJEw2r8cB/Dx9M7Z9JBrizyZYv/wZZWUdUp1g6HA5ERlZj3rxYTJtmR12dDZGRHObOdSIy8hwcDqpGTRAEYQSffPIJ0tLS0KBBAzRp0gSXXXYZnn32WYwcORIRERG47LLLsHDhQsydOxfTp09Hr169MGfOHNxxxx2effTo0QN33XUX8vPz4XA4POnsy5cvx//93//h2WefRZcuXbBgwQLcdNNNJh6tGxvHcZzZg5ADx3G455578P777+OLL75A27ZtfT53Op1ISUnB22+/jaFDhwIADh48iPbt22P79u2yg5srKipgt9vhdDoRHx+v+XHoTTDFsMrKyvDqq68C8C2Y6I3N5sKkSYtht1di3LhxSEtLUzy++tWoE5GYeJqqURMEYTn+/PNPFBUVISsrCxdddJGiv2Whjo/VCHS+5a7flrH4TJgwAatWrcJ//vMfxMXFeeJ27HY7YmNjYbfbUVBQgMmTJyMxMRHx8fG45557kJuba+mMLiVoeRN16fI9srMPYefObti2LReANtlk/qLMbq8U3J/ZwW8EQRB6Y7RVn3BjGeHz0ksvAQB69+7t8/6yZcs8BZEWLVqEiIgIDB06FOfPn0e/fv3w4osvGjxS8/C/ecR6e8kVFXZ7Jfr2LUS3bjsFrTIEQRBEcJCoMR7LCB85HrmLLroIL7zwgifVLtTxd2udOnXK8+9Avb2UImaVIQiCIAirYRnhQ/gSyK1Fvb3UoVXBRr0LPxIEQRDqsWQ6OxHYXUW9veTh3S7Dv2DjkiXq9qnVfgiCIAh9IOETgqjt7aVVPSAr4C1QWrYExo4Nvoo0VaMmCIJgHxI+IYLTGYeiokw4nXGe3l68+JGbjcVnGAwbNkzWdxollLRsZCpUmZrj3P95U1cH7NzpUFSokapREwRBsA/F+IQAYoHM2dmHFGdjJSUl6ZpiKVcsVVVVoaysDKtWxWLqVDtcLhsiIjjMm+fE8OHnVH0/HxdVVJQJl2tkwG1tNhe2bl2BffsqZaX/OxwOxMfXIiIi1afqdWQkh7i4E3A4GlD2BkEQBAOQ8GEcsYKEfAaXVCCzkODhxUcwxQ7VIkdUVVVV4c0334TTGYfFiyeB49xCwuWyYcqUePz++1LY7fIEiTeBK1O7YLPBRzzy504q/d870HzgQF8ROmDABmzY4M6moyJkBEEQ5kPCh2HkFCQMFMhst1diyJAhSE5O9nzGixkzK4ZK7a+srAyA9LGpLXLIuwL9rWS8hSwqqho1NTEet6EU/Diczjg0afIHCgpeR01NdD1LGxVlJAginPjiiy9w7bXX4o8//qjXQFyMzMxMTJo0CZMmTdJtXCR8GEbOQilkvfAOZE5OThZsKyF3ETZzsZY6tmAQcwUePtymniA6deqUqPXL4XDg1KlTgu7GrKwjQY+TIAhCL0aNGoUVK1Zg/Pjx9RqPTpgwAS+++CJGjhyJ5cuXmzNAnaDgZosjFcgsN6bGOziaFdQGaSvZf1bWEc/+xNyGy5ZtxvPPP18v0Jm3mi1btlnw71g6lyyjZfA6QRDKaNGiBd555x2cO3fO896ff/6JVatWoWXLliaOTD/I4hMC8NaLyy+/GR07xiA9vSuArrJjdLSs8qw1aoO01aDUtca/lvo7QpwlSy6UAIiIAF59FSgoMHtUBBE+dOnSBYcPH8a6detw++23AwDWrVuHli1bIisry7Pd+fPnMWXKFLzzzjuoqKjAlVdeiUWLFqFr166ebT7++GNMmjQJR48eRffu3TFyZP0kkm+++QbTp0/Hd999h+TkZPzjH//AnDlz0KhRI/0P9i/I4hMi2O2VuP76KOTkNEVaWhrS0tJkiR4xKwdL1gp/y4xeqK1/pPbvwh2qe0QQvphl/Rw9ejSWLVvmeb106VLceeedPttMnToVa9euxYoVK7B79260adMG/fr1w+nT7nnu6NGjGDJkCAYNGoQ9e/ZgzJgxeOihh3z2cfjwYfTv3x9Dhw7F3r17sXr1anzzzTeYOHGi/gfpBQkfC6GHO4qqPF9ArWtNb5ec1ZA7eVPdI4K4gJlV30eMGIFvvvkGR44cwZEjR7B161aMGDHC8/nZs2fx0ksvYf78+bjhhhvQoUMHvPbaa4iNjcWSvwb60ksvITs7G08//TTatWuH22+/3dNAnGfOnDm4/fbbMWnSJLRt2xY9evTAs88+izfeeAN//vmnYcdLri6LoJc7Ss8AYtaQE++k1rVmpEuOZeS6rqjuEUFcQMz62a+fMf3+UlJSMGDAACxfvhwcx2HAgAE+2cCHDx9GTU0Nevbs6XkvKioKV111Ffbv3w8A2L9/P7p16+az39zcXJ/XP/zwA/bu3Yu33nrL8x7HcXC5XCgqKsIll1yix+HVg4SPBZDbdPSXX35BeXk5UlNTZS8aYqndZi7ccgOylVaO5msInTx5EqtXr/a873TG4fTpJCQmOjy1j4SOv7y83Oc1X0uJR6qLfSi3BHE4HCgursW4cReEjHvy5nD55SeQmXlByFDdI4LwJZD106hGx6NHj/a4nF544QVdvuPMmTMYP3487r333nqfGRlITcKHYfiFUswddfRoBuz2/Z73tmzZ4vm31KLhvQgHslaYsVjrWTk6KSnJZ79KLGlr1qzx/PuCWJKu9TNkyBCkp6eH7CIeqCJ2XZ0Nzz23EVlZRzzXpPf5D3TtUd0jIlxo29ZtIfUWP5GRQJs2xo2hf//+qK6uhs1mQ79+/Xw+y87ORnR0NLZu3YpWrVoBAGpqavDtt9966u1ccsklWL9+vc/f7dixw+d1ly5d8L///Q9tjDwwAUj4MAwvAHbvPoE33vCvNAysXXszqquFF2qpRUNPcaEFRnyvXEuaP0rdjsnJySEreoDAFbG93abe15qQlY0gwpWMDLdbePx4t6UnMhJ45RXjrD0AEBkZ6XFbRUZG+nzWqFEj3H333ZgyZQoSExPRsmVLzJs3D1VVVSj4y5d911134emnn8aUKVMwZswY7Nq1q179n2nTpqF79+6YOHEixowZg0aNGuF///sfNm/eLKugrlaQ8GGcpKQkdOpUjUGDNmD9+oHwjkeXu1AH2nc4oyYNXY1YCmUXlzdSblOn0wkAePXVur9akbBXPoEgzKKgwB3Tc+iQ29JjpOjhiY+PF/3sqaeegsvlwj//+U9UVlbiyiuvxKeffoomTZoAcLuq1q5di/vvvx/PPfccrrrqKvz73//G6NGjPfvo3LkzvvzyS8yYMQNXX301OI5DdnY28vPzdT82b0j4WIDo6Gh06fI9oqPP4733bvH5jOrFqEfKQuHd7uPo0aPYuHGj6hYhoYZ3nzfvWKdArqvVq1d79V9TZmUjrEVJiTtupW1bcxZwq5KRYez5kqrI/MEHH3j+fdFFF+HZZ5/Fs88+K7r9wIEDMXDgQJ/3/NPiu3btik2bNonuo7i4OOCYtICEjwXwdnmtXRseGVhGIGWh4Nt9OBwObNy4EYD6FiGhhH+fN7fbKlMyOBygYo/hABWlJFiHhI9F8HZ5XXC1uNClyy4cPdoCwFFaOFQgJw3dOzbFbq9EXl4hCgvzmMmCMxq1weFAeJVPCEfMTssmCDlQAUOL0aXL95g0aTF69NgKANi1qyvee+8WLFp0P3bvvsLk0VkTJZWhd+++wiN6ABfy8grDNj5FTdVvlos9hnvPMC2On4pSElaALD4WZdu2XPjqVhvFSgjgHYvC41+PRwx+Oz6GxX+hByJQWJiHTp32heU5V+u2klvs0YigcP76WLUqFlOn2uFy2RARwWHePCeGDz8XsjFa/mjlnmIhLZsgpCDhYyG86/oIGeu8Fx29Fw0hQeGNUQtGoHE4nU6fQoVi5Ofnw2631/sb77o9gLyF3swMLiW/iRa/n1q3lX8quzd8cLgR1w8fq3Qh4JovvGjDlCnx+P33pbDbK0O+kKJW7imHw4HIyGrMmxeLadPsqKuzITKSw9y5TkRGnoPDEdoikuM4s4cQFmhxnkn4WAg+yPnHH//AG29wnomaJyKCw8iRPdG58yDBCUZqsauqqkLDhg1FP+cXI//gVjH4KqDBLLBaCBsp7Ha7rIBkqYU+Pz/ftIld6W8id9tAxyMVHM6LmFOnTmHdunUApGOCjAwO568rKUEbyoUUHQ4HduwAXC7f37muDti504HYWHllL/yvv3vvjfNY9M6cqcSrr7rfZ0VEapl1FhUVBcA9f8bGxmowOiIQVVVVAC6cdzWQ8LEYSUlJ6N07Ca+9BowdC/Di122etuHaa9sK/p3chVEKqaKH3pw4caKe1URsn2JCzciiVlJILfS81cgM5P4mShZxOdsGclv5ixi1BSP1htWAa2/RX1oagaKiBsjKqkV6uts0E6xVzNviZbNNqnf8W7euwL598ixe/teKWGYfCyJS66yzyMhIJCQk4MSJEwCAhg0bwmazSfwVoRSO41BVVYUTJ04gISGhXpFFJZDwsSh8savt292vc3MDP7loNeEo2U9tbW1Q+9R6kgzkYpH7N2qakWplaVOCkmNVc168kVt5mVVXIWv96hwOh6efnNMZh507u2H79lxBK1kwFhT+mpQ6fhbEilbolXXWrFkzAPCIH0I/EhISPOdbLSR8LExGBnDLLdLb6U2wC6dW3xPoczXd7cX+RmyhF1q0tbS08W5GoYXIu4igkmNVc17UNpFl2VWoRtDqgff1snv3FZLV2rUQJU5nHJo0+QMFBa+jpiba1OPXE63cekLYbDakpaUhNTUVNTU1qvZx7Bhw5AjQqhUQ5LoeskRFRQVl6eEh4RMiSFkV+HYBF16rFxHeKFk4gxFIUt/j/3leXiHS08uQmOgAAMUuFim3jNwKzVpa2uSIKCXuJLWuJ7V93lh2FfLjM3vBP3nyJAD3b+Mveni0KPjocDhw6tQpwfsqK+uI6v2yipZuvUBERkaqWpip6KOxkPAJAZRaFZSKCDExo2ThVGNZkPs9Qp9v3nw9ABtsNhdyc7crTruWcsuYUaFZjohSkmIeTBVltYuDmZYV/4cDbysZCzgcDk+w/s6d3SBWZi3Y+CNvEfDhh+HRPoT/3Q8fbgPvpCCz3XoOhwPFxbUYNy4VLhefVQiMH8/h8stPIDOzARPB4KEGCR8GCDa1WMnNqkZE+E+GfH0buQtnsEGtUt8j9Dlg82y3bVuu4uBVswJeg3UbKhm31Lb+VkJ/5MYe+bu8xCwr5eXluqWxsxYoLwR/Hzudcdi+PVdwGy3ij+Rms4US5eXlnnnI13UIZGebU12RvyaLijLhco30+ayuzobnntuIrKwjzGTChRIkfExGSRqyFhe/GhHh/XlxcbGnwZzcRTbYCVbqe4Q+9yUCublb6wWICgXU8v+WcsuoDcLVMg5JaF9S4/a2ckhtK6dUgJzrkneN8QG7YvAZgHpM9ME8yRsdcC0s5IGOHX9E376bNRMlrGazaY3D4cCaNWtw+nSmwHk1T+jx16TU7xBKweWsQMLHZPRIQw60uKoREd6fe3fVlVo4+ToLwU6w0rEhvp8DHHiLD/9d3brtRLduO9Gq1XXo0CEazZplAciqVwvCP35l5syTKC5ugMzMWqSndwXQVbVVIpCwUWoVC7SvQO4kvp4OT7CuJ7nXZVJSki7XulrE7hG5sVt6Ina/aCl6AG2z2dQGvBuBXIFhFqxlFYYDJHxCDCmrgZybLDd3u6clhtRNmJ19CEOHrgXAoUWLEs92+fn5SElJkfWdYpOh9/uBFuhhw4YhP9+G7OzFOH06EaWl6aJNRMvLP8C2bfW/y9vK4L3QpaUBOTliZ1s+UsJGiVVMTuA1UF/kCOG/0POUl5fLqsHEW5Cs1Noh0D1iRuyWP0YuhHKErxyxojbg3UhYFhisZBXysFKZXy9I+IQQYgtiauox1NTEeJ5uxcSK/4KQm7sV3brthN1eiWuvvRZbtmzx+b5AC4jdbg/aeqJ0Mp0xI8Wr4Jv7u+LjT2DbNukgar2tDFLCRsnTqJzAa7nIXejFLCTe4kqpi0pNPFOwEzKrRRT9MbKfmVjM1ZAhQ5Ceni77N7XCQsiawPBGTVahHgLFP/xC7D61cuwRCR/GCCa4VWxBfP31MeCtN50778XevZ3riRWhBWH79lx067YTANCkSROf/ZaUpMlaQIK1nii5sYS+q6ysWtDC449Yhk+wTzb8wiQlbORYxeSa7LXOVpIbe6REPKrJ8tMiHs5KAb2BFsJhw4YhNTVV14UnOTlZk/2rXZz1sjqwULZAC/QSKN7nPNB9auXYIxI+DBFMyjcgFuTLgc9i4LgI/PDDZfDOeOLFipIFQaiwWqDtWTKbyrFc+BPMk4231ap58wq/5o0VGD78Np/KzYGsYg6HuyaRlEgSOha1gloPC4nafWoRI6RHnIfR1/ewYcNwySWXaLY/PeDPiVyXqf89ZpbVwcwmw0rRS6DwWbtWsY6qgYQPIwRzkQXKRBJL8+bhxYrcBUEoJTTQ9kZnrQVCrbAUmjiULHb8/x94AMjPBw4dAtq0sSEjIwFAgs/fBbKKCbkOf/jhLPbt+0CzIpP+6GEhMdPqonWch5bXt9xFNzU1VdZ2wX6PWhEQ6JyICRj/e8kMq4NU5XCWHuC80VKg8BlwgLWso0oh4cMIwRaT814QJ048iLfe2omoqGosWTJGwALkm/HE+7rlLAhiqbZi27OSyaP15KB2scvICK4nkL87Lz29DEePio8/2OMWE8RnzzaC0xmnS60hsfpBwbjw5AbKK13stby+gwkQVirE9QxE9t8vL3ZKS9PqJR3wAsb7t/X+DYy0OgSqHK6HBUorAaqlQPH+7VjNgtMCEj4mU1VVBUD6IuO3E8P/ZuPLzvuLGaEYH/7mCLQgBEpNB1woKHgdGRllnnfEblaj+nr5I2dykDs2VsScHNROioGtiMB7792i2Hokt0aSnPpBgLJryQpZR4C6AGE1Qtyo4/S21ng/dPkLGH/37LBhwwBos6hrITD0sEBpdU3qJVDs9krk5RWKZshaGRI+JsPHdkgtBoG6d3vjcDg8PlpAWMz06fO5aFp4QkJCvX16Twhi4+RFT6Cgy2BjmIJBanIINDaxp1EW8RcDUsctdjzek/KpU6eQnb0YR49m4L33boZ3zJiSp285WX5yY0LUXEtGLPZmCHtWhbi/tUbIzX70aAZOnz5X73zV1tYC0GZR11L0am2BCuaa5Od5vdL0d+++wiN6AHf/Q6Pma70h4cMQXbp8j9TUY/jtt5Zo2fI3HwuKHMSe/PyzGPxfy80QCSY13axAOTlWBqmxiT2Neh+bGVYsf8TEwKBBG7BhwyC4XL5B1VKTvfdn7lpD5yA3oF3OPtXWSGI16NJMYe+NUdejmHuNf1AQc4vz2Gwuj5AWO19aLepaiV5W4l68Y3EA7dP064vWCBQW5qFTp31k8SG0JdiJU8y3zk+AYhNiQkKCrIkhmEXLrAkjkJUhOjoL69Z9r3hs/NMowNZiJyYGunT5HjNndkNlZVPRoOpAyE3JN8oaxsri441RYkxIbHhbJI26HuW418SzTG0el6kc6yFLtXdYiXsREpxapunLucdYt34HgoQPI2g9cfpPgGL1e4zCzAlDTLCVlbmCGpvUb6ZXbSAhpCaq9HQX5BYkFlpchw0bhtraWtjtpXjsseaKrUdqERLrrAgwb4wQY1Jiw0hLmBy3mZC1Ji+vEOnppTh7thHee+8Wn+0DnS9Wau+wUv3ZO5wBCGzlU3M/SN1jUhlwrEPChxG0nDiFJkCx+j1G3bCsTBjeSLnBAKCoKFPUZSD1m+lVG0joGLQSA3Ke5O+7Lw7XXFOAnBy7YuuREsSsF3Z7JaZMOYQFC9rC5bIhIoLDvHn6CjApjBD2UmLDTEuY2MIrZq1xOuMCni//HnpimCFyzbZA+bu5Aln51AoUqfk6UAacFSDhwwhaTpzCvnXh+j1uF5hTt/5EeqURa4FYGYDExNM4fLgNFi+eFNBCFsxvplWgqZwCiUrEgNwn+auuqkJamn6Tn5T1omHDt3HffXGea2nUqJFISjK+x5bcTDUjrm+zrKpy+gP6iwM5CyvLWXhmWqC8z4nUfaJUoLA8X2sJCR9G0NIiEsi3foELE2JNTU1QYw8E62nEQmUApCYT/mk0mN8sUE0apedDSYFEqyDHeuG9+JhVOiDYfnTB4G9lMcOqKqdhrnfvuFOnTnksoVKWE5ZcKUYUfVQzR2pt5WN9vtYKEj4mo4fC9p8AARf8LT42m+Cf6oLcm4SVyqhSk4n/06hQwLQUUp3T1brC+AKJDocDZWX6nUsh4abF7yPXdWc2YtdqeroL6enVul+rYlYWo5/S5TTM9bYm+49BzHLCmkVBT0EQTEFUPe4Tq4saOZDwMRm9bijvCVBpIKEWKBUxLLW2kDOZSAVM86hNLQ7GgqHluVTa2yzY38ffdTd1qh0ul42JmDAeI69V7/uIF5tSVpY777zex8oC6PfQoHTh1WK+M+sBSa95J5g6TIcPt/krO84NC/cJKw+wgSDhwwBaXQRiT1NSgYQNGmh7GahZGKRS8Xn0dGloHa9hVqq7VgXt1Ixfi9/H23XXu/dxPPfcRo/1goWaSUYVDBS7j5RaWfREjXstmPmOpQcko+GFr78A9q6txXFAdvYhz+tAc5UeAsUqvw8JnxDC/2mK96dLTU5C1ZqDIVgRY5Zg0DJeg9Uie3JhZfzp6S5P+xVWaiYZhdj9wYIbMFgXvdpFl9Uq1Voi18oqnMRyQQAHyujSS6BY5fch4RNiiF2kwaRgek9SpaURKCpqgKysWqSnu906gcSA0sXK7AVXi8rCgPygQxYsGEKwViTQ7OuCJVjIIAu2oaoVrAJmoGS+lBLAgTK6rCJQ9IKETxihJgXTe5IKdFMKTVJqFivWFlylKAnONcqCIUdc8eKW74zOglXBG62uCz3M+2aIV+8Hmdtv74ZOnfTNIBNCq+7twWzH6oODGpTOl0oFsFC8WLhCwochgrGsCKFlV2Kpm1JoklKzWLG24CpFqq5O377XY926dYZZMOSIK6EncKlJ1agFR8sCjXpYGox0vwmlr9vtlejUqZ9hMT16oPZaMtP1qYeADjRf8p/7n6MnnsiS5ZKXe+2HCyR8GCEYy4oYWmaMSYmYU6dOecSa3V4OQJ2IYbHCs1IC1dUpKzsHwBjLllxxJXZ9iLlHjVxwtCzQqMbSEKg3lpHut1CNb1J7XGa6PvVy1YnNl6Wl6XjjjTsEz5E7kL2ppEs+VF1WaiHhwwjBWFYCoZXZW0rEPPxwET78sONfN2cTDBp0haczuFIRY3ZJeC3h6+rwGNnwUwtx5e8eNWPBMatAo9QCZ5RbNlTim3gRqYVwNNMlrnV8TKBs0ry8QhQW5un+24eSy1AOJHx0RI3ritUYl0CWGKnO4HJEjFULmylF6xYTQugprqSuT71/H38hqSdSC5dRzVJZnROUICQigzkuq7vEvRHKJv3hh7PYt+8DQ357Pa2JrAoqEj46odZ1xfINLSZipCsdS4uYcCmVDuhvwQhWXIlNVsOGDUNVVSJWruTgcl0o/R0ZyeGee25AZmYDS/0+wU7K/MPAhg2DVHWrl4oTqaqqAsBmN3qlCB2nmrmOpd5oPFos7v7ZpOnpZTh61L2vQOfIO0i5qqoKDRs2FNy/WDCz1tZE7/MeaN0z+5ol4aMTUq6r1NRjqKmJQXFxLbznR9ZjXIREjNQE5t+vBxAWMVZaNLVCLwuGWnEVaLKqrXVbK+fNc/qIqVdesSEnp6n2B6EjgY6TXyTKy8sl99Oly/eYOLEtqqrSFXWrlxsnMmLECDRs2FA366BZ8GLB25Ujt/ih9wPS/ff/il9/jUCLFufRrFkWgCw0aNAA1dXVKCsrM611SLDIFXhSrW/E4M//2bMNNbXg8r9PcXEtHnssFRxn8+zzo48GYebMbkw8IJHw0Rkxa8iSJWPAcRFYuZLDvHnl6Nv3giK3WoyL1M1pZCVZKaxQTl1r5Iorqac/70n23nsvdEYfPHgkAG3PmZ6/k5Lj9P87oSf7bdvWAAD+9reJkHse5MZ/NGzYEGlpaSHVgNZfLOTlFSI9vVR28UP+d3c4HPjyy1cBAEePin/fsGHD6hVp1eI+1zP2yl/gTZx4EG+9tVOT9cD//Lt7OV5Yo4K14CYlJWHvXsDl270HdXU2VFY2BQvTKwkfnRHrlM6/drlsmDIlHr//vhne9abU1NzRA7mKX61Y0zqFX+q7qHCaOEriCbyvT60zRvT+ndTETch5stc7c8bI+Ca9EBILhYV5mDRpMez2C93cq6qqPFYbIaKjo2Wf7zVr1gi+H+x9rnf8jf/Y+ArmwSB0/t3rk1v8aGXBbdsWiIjwFT+RkUCbNkHtVjNI+OiMvzXEX10D0jeL95Om0QSKveFbYvAoFWt6pPAHgoV+YCyiVUd0raw0elWVVXucoZJVxQJy+oxFR0fj1VdfldzXsGHDfF4rjbUJ9j6Xuo6842pYsSSLnf+bb16DRo2q8MADf8ellzYJ+nsyMoBXXwXGjwfq6tyi55VX2BHuJHwMwNsaEhVV7XFz8QSadP0FQatWVbjvPqNG7oa/YUtKgF9+cat5LS5gvVL45RCqdVHUIBYMHRHBYeBAefFlVrCmeR+n3V6K2bPTZcWWGFVzicXsF62RIzrl3u+1tbWefxt5P6uNv9Hy2ld7vdx++1WCyQkPPXTNX66t4EUPT0EB0K8f755lR/QAJHwMw9saEuhm4U29TqcTu3dHYvbsNj4BYg880Ah/+9txwwPEliwBxo1zmy4jItxqfvDg4CtDA8an69ITfH2EgqHj4k5gw4YLi0egydYqvX/44xw3rgxO52KPaxYAiooyBY9NbLGOitLmWMJJhOuRvCF1P2stKtXG32h17cu5XsSOuVOnBLz6qs3PEiPs2tLCgsuqe5aEjwkEiofhTb3Tpv2M9esHArD5/G1dnQ3PPbcRWVlHDHl6djgcKC6uxbhxqZ6nBJcLGD+ew+WX13qyTsSQc3MYncIfCnVR9ISfrMrKLjjozVyc9bKG8A8jgY4tPz8fNTU1OHzY213NeRIUxM6D1KLBZ4ypFeFWC9JX0s1drkuaJ9D9fPhwG12uWz3ib+Qg53qRulflWGKsYMENhpAUPi+88ALmz5+PY8eO4bLLLsNzzz2Hq666ytAxSFk5AsXDFBfX4sMPB8I/FgjwFQR6Pz3zF39RUSZcrpE+nwUjwHiXWXy8+/iMTuFnuVYSi5hpIdNbcEkdG9/hukuXdUhNPYbXXx8D/r4UOw9K+iKpEeFWXJSU1OnyDmiW8/sHssiZcd3q6baUul7k3qtSlhirWHDVEnLCZ/Xq1Zg8eTJefvlldOvWDYsXL0a/fv1w8OBBpKamGjYO/xvdPxBYDKfTiT17osFx9U2PRtf04ccuJRTkXPz8E+qqVbGYOtUOl8uGiIhUDBzobm1hZAo/67WSWEPN4qzF5K+n4OK70Cs5tpqaGMhJTFCyGKgpTmjVRUlN13s5v7/Y/VxTE2O4ZVfvuj5S14vZldWtQsgJn4ULF2Ls2LG48847AQAvv/wyPvroIyxduhQPPfSQoWNR87S1evVqOJ1xsNkm+V3ALhQUvI6MDOH0Tj0JVijwT6hOZxwWL57kiVlyuWyeiQwQ7j6sF1arlWQGSlpfeC+yWk3+erkkHQ4HVq9eDUCZ8NC6gnJ+fj7sdnvIFSfUCqnfPyoqyvO+0P3snkeNs+waVdcnMfEYZs1K++vhkcO0aUWIiXHvP9A1OmLEiLC+nrwJKeFTXV2NXbt2Yfr06Z73IiIikJeXh+3btwv+zfnz53H+/HnP64qKCl3GpmRSFBMaZogenmCEAr8oik1kO3d2w/btubrHj4RLPzCtUNL6gndPaDH5693I1VukBRL1w4YN8ywUerQAsdvtmhQnVGJds1JskNTvb7fbBd1nTqcTq1evNrythRF1fRwOB+rqnsd9910oIMqLHiDw9RwoFjPcCCnhc+rUKdTV1aFpU183UdOmTXHgwAHBv5kzZw5mz56t+9jk+LjLy8s9xbZYtEgEW1RRuJijyyN6AOGFUqsJKpz6gWmF0tYXWkz+RjRy9UbsXvOu9qtHCxDvOi+RkUC7du5/Oxzyj02JdY2F2CA5wktJPy6hcaalpdVr+llc3ACZmbVIT+8KoKsu97kRsYP8MQWai1lcO1gjpISPGqZPn47Jkyd7XldUVKBFixa6fJfSG42V6s1aITSR5eZux7ZtPX22814ovZ+6eYKpJ0SiRj2BAiK1ttLo3cjVG6XxSHq0APFHjviQ2j8vrPhF3uzYICXCK1jh4t/0Mycn6OGLwmLjVK3XjlCrMxVSwic5ORmRkZE4fvy4z/vHjx9Hs2bNBP8mJiYGMTExRgzPkmh9wfs/jQDwsfgAvgsl/9QtHBzNYd48J4YPPxdWlhoW3RVaWWmEjk2tNUQOemaNBWP9kiM+pPbvLawmTpxY7++NXsyUCC/v3n56C5dg8bckG2VhAoR/Q61/11CsMxVSwic6Oho5OTn47LPPMHjwYACAy+XCZ599JnjjWx29nyBWrYr9KxhZ2wve/2lEKnA6UHC0u8/ZUtjtlUyl7+oFC+4KMYKx0jgcDpw4cUK0r5I3Wh2b3mn6ers+lOzfX3SwsJiJLdDeLkB/WH3AMdLCxCP0GwLQ5Hfl1xape8Sq8ZAhJXwAYPLkyRg5ciSuvPJKXHXVVVi8eDHOnj3ryfIKBYYMGYL09HRdJ4CSEmDqVDu8q0aLLQrBXvxSPmmp4Gj+CZe19F090NNdoaUlSUnFViV1bwDtXDFaBqN6nzu+OKGcbEg1T+eBXCt5eYU4fTrJ87kQLFQuDyS8pMp+hMMDjhRCv+H69QNhs0GT35W3Ym3ZAixaVP8e6dlzJHr3tm7oQMgJn/z8fJw8eRIzZ87EsWPHcPnll+OTTz6pF/BsZZKTk3W94BwOB3bsAFwu3+/guAh06jQYPXpUewq7afUEJscnTYUH66PVU7OZliSzBKtW11Ogc+ct6keN+huSkrKwbp17gVdrdfF2rZw6dQrZ2e7WG6Wl6SgszJPcn9mVy+UKL2oiLI7QbwhEgON83wnmd01KSkL37sJd1rt1S4JFNQ+AEBQ+wIXgOKsh13Kip3nR263kX0vIZnNh374PcPSoMreSVuMNpcKDQtYVp9OJmpoaAECDBg18soqA+udRy6dmswNfhZCyhqi1UGkdjCp1TnhR365dPwCNPMcWjNXF+7j47d944w5Z+zP7AUKO8GLBFcfDYkydWIast8UHCL78A+td1tUSksLHqrCQbu2dLhloURAao1i2ldBxya1k7U8opGoqde14M2zYMADBL5xSi7UcS5LaYGVvhCZjpzMOO3d2w7ZtuQCEF75gLFR6B6PKcV9pbXVRsj+pe9vfWqj1nCMlvFhwxfGwFlMnJdrPnbuontXPbq9Efn6+6vGx3GVdLSR8GIMln6kSkSHUvb2g4MLn/selxLrlv3DKcYt5L7ilpREoKmqArKxapKe7PPs161zLacIotnjW1tYCkL/QqYkhUWJJCjThy100eDHn/93ex+W/8AVrodIrGFWupUJrq4uc/cltFCr0QDJs2LB6Fkjv/Sq5l6SEl9muOG/kNkw1yhIaqDP84cNtPKIHcMd78dceH5qgFla7rKuFhA8REDkio6TkgugB+O7t7qcEsZtFbdNCOXgvuIEWIhaCJNVmZshZ6NS4C5Q+bQf6/eQuBryY8/9ub8xa+JQg59zpVfNFjhtYjuVVbGGXyraTcy/JFV5muOLELJPe1i9W3G9CneHr3zsRKCzMQ6dO+0y7Z1h0EfKQ8AkBginoFyxigdB1dcDOnQ7ExopbsfS66PmbTWohMjtIMpjMDKmFTq27QOxp++jRDJw+fS7opqOBrE/CAZtupBY+FgqsybFUaO1mkysm+O0C7VfOwh6MxUPqYYcXYUbH8smxTBrhfgtGKBhhJVMyPtZchP6Q8LE4Ui4mPXA647B1azTatfsD69aJB0Jv3boC+/YFX19HbdA3SyZzIdRkZkg1Zgy0bznHLhY0uXbtzUE96cpZVIW/2/39/tYQPZqiBotcS4WWbjat4gLlLOxanGe584CRsXxy3Fl6zyVqhYLciul8iQUh5MbqKRkfi8kS3pDwsTBqXEzBwk9+ixZFICKCw8CBV6BLl+8VB0IrQe3kbnb2ihRqMjPEGjPy8E/Nao/d/2kbcAGwQU49JzGkFtUzZ84Ifjff0qRbt52eAM2UlBTNm6JqhRJLhZZuAC2emKUWdrntMZSO3RsWmggLibvs7EM4e7Yh3PeCPnOJWqEgVTF9wIAbsXr16qBdlawLGaWQ8LEwv/ziW18BcLuYDh3SR/j4T34ul80z+en9hOZ9U8p17bGe/i42PqB+jI9/rIbafYsdu5jL5OzZRnjvvVt8tlX6pCu1qG7atAmAO4B23LgEP/dPawCtRRdTFqx6St1NLLoBpISykvYYgLqxG5HVKiQ4edEmJu7cFtgIABx48aNmLgkkdv0z6ZS4bgNVTC8rOydrbFYRLFpBwseiOBwOxMfXIiIiFS6XzfN+ZCSHuLgTcDgaaPLU5Y3U5CcnEDpYlLr2hBYiflIpLY2AV0sgUxBbKNWKSKWLMI//osNbjtxuzOCsZmKLalSU72SbkJCAtLQ0Re4fFqx6Shds1jKFAGmhHOg3LCrK1Gzsehdm9RacvuddfH67gA02G4ehQ9egRYsSxaJHbgmLYFyKoZZ9pRckfCyI9000cKDvTTJgwAZs2KA+a0lsEnc6nTh6lMPKlZyP0DJqkXE4HCgursW4cReEntu1xyEt7RSqq6Nx5ZV2wZveW5B5TyorV3KYN6/c8Canckz6as38wTw1C72nhdWsvvuMA8dFYMmSMUH3EpIO8nYG3IdWv7na/bASnwQEFspC57lz571YsmQME2OXg1RcWHb2IZEYswtwXAQaNaqqd/1L3Zdyxa7erlutkgBYSCYIBhI+FsT7Jgo0WWn11OVwOLB69WoA9YWWEa4jXugVFWXC5Rrp81ldnQ0DB7qf1CIiOLz6qg033ii8HyFXnRlNTgOJS6nKzXLGp/QYxKpI8yixHPmP13sfqanH8PrrY8DHSQQzqUtlR5WXt8WaNWs8160YZpY0kBs3o6colxtXA/heB1FR1R7RIzR2lhE775MmLa4n7i64udx4P+gNGTIEycnJin+fQGJXT9etViJbbZkMloSSKuFz9uxZNGrUSOuxECrR28UkV2jp/f3CwcCcj5AZP57D5s1nBPfDUpNToYkyzQS/m1wT/NixNygWYrw4KS0txbp161BTEwPvRQQIvpcQj5R7jAV3kj9i1+NPP3VAx47/84mb0UugSVkInU6nj3jk55qiokzTY6vUEmge8J/fDh9uI/qgx4ue6upq0Vpj/veIlNjVy3WrlSVJzX5YsmryqBI+TZs2xbBhwzB69Gj87W9/03pMBOMYEcsj9r31M458J7C6OhtWrNiKrCx3w1q73R50plMoI9cEz8ffKMU7tdWs88/ixAuIC/lNm/pj8+a+PuM8ceKEblafQPtNS0sTjP1i9V7ytl6Wl5d7imMCwB9//AFA+jr0nt8CPej5i0Kxe8e7b6ScOEk92oloZUmSux/ekigllPTM0AuEKuHz5ptvYvny5ejTpw8yMzMxevRo3HHHHUhPT9d6fEQIoOXFHcjcDtRP/fZerFnP8jIbvQWCnuefX/D4xY5f5FhKd/dHKPYJEC4bsGbNGtPccnrFfmlNoOBlAH/9O05y7Ndffz02b97s2Y/Ygx7nVXAr0L3j/XAhRzAqbSci57oIVqjKrRfkXShz4sSJ2LIFWLSovlDq2XMkevc2r0WTKuEzePBgDB48GCdPnsTKlSuxfPlyPPLII+jXrx9Gjx6Nm266CQ0aUPhQuMH7vL3RIz7BeyJSOvmGQpNTb+TWg5EqyW+UQNDj/Ady17GQ7h4I/nz89FMHbNrU3+czjovAzp3d0LdvIQD2Uo5Zu5fEgpfdgpKDf8NbsbFnZWXJShCQWyHeGynR5T2Hym0nIjRO7wcBOd+rJGlCqF7Q8OG31Zvrk5KS0L27O/vWu+xKZCTQrVsSzOwWFJQ6SUlJweTJkzF58mQ899xzmDJlCj7++GMkJyfjrrvuwkMPPYSGDRtqNVaCcZKTkw2PU1Ez+ZrlqtOawOm5F45vxIgRePPNNwNup6dA0LswnZi7LirqPM6ebcicS0bofHTs+D9s3ty33m+wbVuup4AjC7BQZFCK+n2rbBCzpImdVzkPa3xcj9J7J9CcJTaHKrHGij0I+H/vuHE3wm6X3yIlUL0gIEHwbzIy3CVHxo9315iLjAReecX8lPughM/x48exYsUKLF++HEeOHMHNN9+MgoIClJSUYO7cudixY4enOBlB6EWoCBmlyG3bUFVVJbldVNR56FWZ1ojCdDz1n/RtcFfDdjHjkvE+H979qXJzt2Pbtp5+W7NjnQKC/y29LY+lpREoKmqArKxapKe7JP9WLoF6vgHSgl6paJPjRgpGMAbbONj/QYf/G/9QACUoqRdUUODuJuAWSuaLHkCl8Fm3bh2WLVuGTz/9FB06dMC//vUvjBgxwifro0ePHrjkkku0GifhhdreVWahdxNV1lIljUbuxCi23blzF6GwMA8XqtPaNBcIRvjyhZ/0AXf/Mxduvll54Tm9EDof3brtxLZtudCrLYJWqP0tvS0RgYR6sLFM4j3f3AilpPOoEV5y4p2CEYzBWGNZCexnrbCiKuFz55134tZbb8XWrVvRtWtXwW3S09MxY8aMoAZHCGPkEzS/L7XbadFENdD3y7mxrSYUlSJ3YhTbbvNmXvQAvOgpKHgdGRnCKbqsEvhJX13hOSOx2ytx001sBQxridyYmGBjmYSECF+PRyglXQv3vByXu9r5WG1gMsuB/WajSviUlZVJxu7ExsZi1qxZqgZFSGNkNLxaoaVVE9VA7RTk3NhGC0WjkTsxim0nJIZqanwFAUsCQYxAT/paFJ7TA//zylrAsB4YEXDufx7d36vvOdXL5a42g471wH4zUSV8GjZsiLq6Orz//vvYv38/AOCSSy7B4MGDKZsrRFFTDXjHDsDl8v27ujpg504HYmOV7dN7Wz5mRerG9o5tMXuB0xO5E6PQdnl5hSgszBMVTUOGDEF6erolzp9YengwT/ladlEXIikpCfn5+YJFAkMVo2oA+Z9HqXOq1CVvpCVZjSBmtdYSC6hSKT/99BMGDRqE48ePo127dgCAuXPnIiUlBR9++CE6deqk6SAJa8H78t0NLifVu/G2bl2BffvUt4jgrY1SN3Y4ZRTKnRiFtouN/TNgdVoriB4e/zpPNTXRqp/y5WbNBRuTkpKSIms7K1jd5KBXDSA156eqqgplZWVYtSoWU6fa4XLZEBHBYd48p2QPP70tycFm0LFYa4kVVAmfMWPGoFOnTti1axeaNGkCwF0Vc9SoURg3bhy2bdum6SAJa8FPBFI3nh6+/HC+seVaCvy3s7p7RUm/KaHtxZCbNRfsdRzqrlgh9Ljm/M+jf+VmAIiKioLdbgfgFj1vvvkmnM44LF48CRzHNz/27eHXq9dwOByJgtlnev4mWlwXVr+39UKV8NmzZw++++47j+gBgCZNmuDJJ58UDXYmwhO9b7xwvrHlLuByLF9Wdq94LxBCix1wYcFTIyCMCBJlRdTonYHpjR7XnG//tsDuTDl1eA4fboPZs7N1yT6Tg5r9q7EU6e3SZQ1Vwufiiy/G8ePH0bFjR5/3T5w4gTZt2mgyMCJ00HtRtfKiHQxKngj9tysvL8eaNWskv8Mq7hV+UtajgGaoB4nyi54ad08oIOYyj4qq1jX7TC+UWorkNio2q2WKHqgSPnPmzMG9996LRx99FN27dwcA7NixA4899hjmzp2LiooKz7bx8fHajJQgLIIRRdp45O7Hfzv/5pNChPqCJxepWDL/xpE8Vjh/3vF4gdw9Wix6rJaVEHOZ19TEWFbwKvmt5DYqZlXoqUGV8Bk4cCAAYNiwYbDZ+FLg7oZtgwYN8ry22Wyoq6vTYpwEYQmMKtKmBWZ/v1WQiiXjSysILRbDhg3zKezKmhjiFzMpq5YWix7LsUxCLnN3ckZ4ZUUFU/DQSu4yVcJny5YtWo+DIEICvYq06WVFstJkZSaBYsnEFgunMw5z5/5X8ywwPTAq9dmo45YbqyTWzgEwN3nCSKsxTzCxbFZzl6kSPtdcc43W4yAI2agxmQcTtKlmEtIyLkQvK5JR6dqhglAsmVQbED2ywPQglDIk5VaLX7Uq9i/3nrh1w4zkCbOsxsHMWXKvaVaufdXVBsvLy7FkyRJPAcOOHTti9OjRnlRBInzR25cv12QOQHWNDh61k5CWT9B6WZGMSte2KnKuT7HFwrsopBmtAtQIfatnSDocDhQX12LcuFS4XHysEjB+PIfLLz+BzMwGSEpK8mw3dWqqJ6Yp0G9kdPKEUa09/NFyzmK9f6Iq4fPdd9+hX79+iI2NxVVXXQUAWLhwIZ588kls2rQJXbp00XSQhLUwwpcvV7AEG7SpdhLS4wlar+wi6unjRsjtl5+fj5qaGgBAgwYNPPE6fNsU4TYZwm1A9A6K1SI7y6oZkvz9XlSUCZdrpM9ndXU2PPfcRmRlHcGIESPw5ptvCm4X6DcyYyE3OptQqzmLlcaogVAlfO6//37cdNNNeO211zwtKmprazFmzBhMmjQJX331laaDJIxByxoeZrtGtA7aVDMJyX2ClnKllZeXA9AvDiPU07XloNbtp6YNiJ7jNyI7i0X4+0fqHuHb2Ci5l8QWcr2zz8xoORGs1c8qD1GqLT7eogdwPw1NnToVV155pWaDI4xDiy7qLKLV5KF2P1JP0HJdafy+9IjDMHqCZTGgOhi3n9I2IEqQG19mZHaWEowsiAgE17fOe7v8/HxwHIeSEuCxx9r7uMQ2bBiE++/vwMyxBEuwrTG8scpDlCrhEx8fj99++w3t27f3ef/o0aOIi4vTZGCEcWjVRZ1FtJo89JqE5LrSePSIw9Di2OSKGdYDqtU+serRBkRJfBmPUhGrZzyeWQ9TwfSt82bNmjV/ucQu8Xnf5bJh+fJvkJV1RPfr1Ii4Ky1DE6zSGFWV8MnPz0dBQQEWLFiAHj16AAC2bt2KKVOm4LbbbtN0gIT+/PLLBdHDU1cHHDpkfeEDaDd5yNmP2oVEyZOSHnEYwZwjuWKGf4rmYSWg2uFweIoQHj3aQtbvIOd3DvZ3UhNfplTE6hGPJzfIWE/U9q3j4eO6pBZy465Tm6571+r3sEp2oCrhs2DBAthsNtxxxx2evjhRUVG4++678dRTT2k6QEJfHA4H4uNrERFxYZICgMhIDnFxJ+Bw6D9JGYFWYkFqP2oXEhaelNSeo0Buotzc7ejWbSfs9kqsXr3asx0rsQBCVhV/hH4Hod/Z6XT6HKMYSq0nSt0HSkWslve33CBjq8Qamb2QWyFQGPC9pgNdf6y0wFEsfOrq6rBjxw48+uijmDNnDg4fPgwAyM7OltUMkWAH70l/4EDfG2zAgA3YsIGdKsNWQs250mKCVTqpaO3mEBIz27b1xLZtubjpJt8Jm5VYADGrygXEfwej2oCoEcVmZWfJDTK2UokEo9P8+QBsqYcDfjsWYLkqtxCKhU9kZCT69u2L/fv3IysrC5deeqke4yIMwPsiDXRzW2mS0hoj+wsF+g3y8/MD1shSM6loPVkJiRk39a05LFi4vBEb+803v4dOnfbL3o8eE7vZVgc1WHHMgTBSSPIGBKmHA7MNDSwmKchFlaurU6dO+PXXX5GVlaX1eAgTsWoNDyG0EixGP8mI/QZ2u12XzuNaTkzCNW3c+FtzWFsYxYRYixYlpozHHysWF/QfMwAUFWUiMdGh+XfJvd/ligXvjGWzYO3hwBvWkxSkUPXrPvHEE3jwwQfx+OOPIycnB40aNfL5nDqyE3ojlSarpWDR68b1DqplvdKpHPzFjDdCEzZLi7lcIWZmjEKgBxOWO5/b7ZX1YlWaN6/AAw8o21ege17J/S5nOxas3Kw9HHhj9arvqoTPjTfeCAC46aabPN3ZAerITqhDbq0PpZVpWXzS4FFSvwdgJyhQCl7M7NzZDdu25QIIPGGzZGUMJMSGDBmC9PR0Zq8plmMshGJVpk61o3fv47IzvOSkxss9NjnblZWVydqXN3rULArm4cCIGkqsJCkohbqzE0ER7M0lt9ZHqFWmlZuqzPqCK4TdXom+fQvRrdtO1dYcs4SemBBLTk42/DdQasVh9RoRilVxueRleJmVGq/03OtZs0jJw4EWbUuUwEqSglJUCZ+srCy0aNHCx9oDuC0+R48e1WRgBPsEc7MrndBYrUwbLFLHY8aCqxSxRUJswtYjUDsUYdmKowS1GV5mpsYraYS8a9dxU2sW8ZjxcMhyHFIgVAufsrIypKam+rx/+vRpZGVlkatLJkaXc9eKYJ/CgpnQrHqjiREKx8MvEidOnMCaNWskt09JSWFmsTYrNkbuvc/KeZKL0HlSG6tidmq83EbIrNQsMuPhkOU4pECoEj58LI8/Z86cwUUXXRT0oMIBFnpjqZn0tbjZg5nQWLvR5PZSEoM/nvXrBwKIQKC6MSyTlJRkSQuFkWPWyg3B8gOT9/nkO9gDwcWqsHbP82gpzLx/09jY4MS40Q9TLCUpyEWR8Jk8eTIAwGaz4ZFHHvFJDayrq8POnTtx+eWXazrAUIOFcu48aiZ9LW92qQmttDQCBw64J4PIyAt/x8qNpqSXkv9v6nQ6fV7bbADHuf/vv50eaex6wYqoUSJIjRhzsG4Io2M3gkFsHMEEskvd82aKwWCFWf2H4ODEuNZCUehestvL632nFQQPjyLh8/337omc4zj8+OOPPoozOjoal112GR588EFtRxhCsGYaBdRP+lrdXGIT2u7dV+Cxx1L/mgw4zJzp6z5l4UZT00uJh+8FJPW3/HYswXrhsmAEqV4E44YItcB+tYjd824xaK71XO3DmHiD6KSgBJxWD4fi91ITDBp0hU/2qVBJDpaqS3ujSPjw2Vx33nknnnnmGarXoxCzfdZao9XN5T+hXRADFyb42bPTMWlSnOR3eFuJjHryCyazwWpZEf6Fy8QwcxEORpDqjRo3RKgG9muB0xmHxx6z+wkH463ngPKHMYfDgR07AJfLd4x1dcDOnQ7ExgZnjdTi4VDuvST2gPHmm28yKciF6stLsmzZMhI9QcBbS2w2993Kis9aDXZ7JbKyjmg69kATfCB2774CV12Vij59gFatODz9dDnKysrgcGhfKdYbfjHzRmox4yvDSv2tmgqyDocDZWVlov8Fcz5OnDjh89rpjENRUSaczjif91lYhNVeR3oSzL2v5joLdU6fTvJprgxcsJ4///zzut/7auEfILZtWyH4m27duoKp8Qe6l8REET8nsDAX+KMquPns2bN46qmn8Nlnn+HEiRNwuXx/uF9//VWTwYUyrMSpiGGmz1zNU7GQlcgoN4Aat19CQoKsv+W3k4ueFhmHw+GTtbV1ay4KC/OY7RzNasac2nuf1SBfMYzImLOq9Zwfl9Rvysr4A51nq1mtAZXCZ8yYMfjyyy/xz3/+E2lpaYIZXoQ0LMSpeCMngNIIpCaDIUOGIDk5GQA8mSNmuwGCEbJaimD/4xRrhaHmfHj/zdatudi8+XoA7nufxYqtLAsFtfc+6w9M3gSbMSdnvmH5N5aLVr+pnkKzfjsaF/LyCj1jZfEBIxCqhM/GjRvx0UcfoWfPnlqPhzAJuQGU+fn5QX+XnBsv0GSQnJxcL9OJhaf7YISsHiJYTisMNTidcdi8OQ+86OFh8SnPSkJBLqw9MAUiGCtrIOHknSqfnX0IQ4euBcChRYsSw86NlkJDi99U79IMXbp8j3PnLvJYeQsL8xAb+ye6dPnecuJTlfBp0qQJEhPN85MT2iM3gJLjOFn7C3Szi92g3pMZoGwykHrys1paeLDo2UPn9OkkCIUHGi00xbLL+MavPFYSCoQvUou0XuJe7thYq1vl/11ahiw4nXEe0QP4zilWe8BQJXwef/xxzJw5EytWrPCp5UNYHynLSUJCgiY3ux6TAX/zHT2aAcCGFi0utE9ZvXq15nE+wTzx6R3/oKffXegaATgf07fe+Mcysd7dntXu6XJhsWgiCw0yWctW8kbrIrlSc4qVHjBUCZ+nn34ahw8fRtOmTZGZmYmoqCifz3fv3q3J4EINK0x+cnzmLN/shw+3EX0C1CLOx9/KkJ+f71Nrp0GDBj4ByWIiUO+nRT1df0L+/uuvL0TPntuD3rdcvM+b2qd+I++zYH5vs+cNFqrM+1NeXm6JoFozBKOWRXK9rykWwgm0QpXwGTx4sMbDCA9YNI0KYZbZMtgJXu8nQK0zpvT8nfUO+pS6RowSFXK62/OB8P7jM/o+U/t9Zs0bLFWZ9x/XmjVrkJgYx/RCbIZg1LpIblJSEoYNG4Y1a9aonlNYtGKqEj6zZs3Sehxhg9miRi5CRQVPn07Cvn3lnve0mGy1sqAA+hcDlJsxVVpaKrpIGbng6i1gxUzb+fn5hh2jnO72oRDbZfS8wWKVeR65qeCAeYuueEVmt+VHLyueHkVyveffQHOK0EMGCw/yQigSPv/973+Rk5ODSO/GSV6cP38e//nPfzBs2DBNBkewgbcr4Y03tCv7LzdOI9B3mGWKDeRe8Q7QFkLPxcJ/ohQTJ2oWBLl/k5KSonjfagkl8ztLmFVlXqlrKNBCbKQA90ZuRWY9rXh6WnzF5hQrPWQoEj65ubkoKytDamoqACA+Ph579uxB69atAbj9rrfddhsJnxBCz7L/cuM0An2HFqZYpch1qWlZQ0cuek6oQvt2Op31LHTV1dUoKysL6rvkEgp1XFjGyPOr1jUkthDb7XbNxyiFd1kQm21SPcG4desK7NtnTF81q2VaGYki4eOfyiyU2iw33ZlgC7GneSMCCIONzZFritUKOefE7DRbI/btcDiwevVqyb/Re5KnCV5f9D6/rMYSqYG1isxWyrQyElUxPoGgKs7WxP9pnq+pY4QrIVhxVV5eLvBu/euwvLxcE1Os1DlhIc3WCPSsEq2UcJ3gvWPkSksjUFTUAFlZtUhPdweXaGVx0+v8shxLFCyhIsiVxCOxWPZACM2FD2FdhCYWI0zdwYorb7EdyNKilSiXOidWSLPVGqMtXGaneLOAd4xcoPPPsmgwK5bIKKwgyKXEipT7vLy8HDabDcuXR2LqVE6w1RFr159i4fO///0Px44dA+B2ax04cABnzpwBUL9iKhEaGJEdFIy44n35UpYWLX3+gYolhlvArRkWLrHJuLy8HLW1tQCAqKgon3gjgN0sEzXwx65nHJ5RhFOsltMZh61bo9G9u/lWEblxVWL3DF9aQKrVEWviW7Hwue6663zieAYOHAjA/TTNcRy5ukIUvZ9ctBBXci0tYq0OeOQWkhMrlig1iQs9IFh5QTbLwuV/vvy7x4vB2iQcLKFiYZQ7B1jZ2sdb5hYtitClto/cY66qqsKuXceDjquS2+qINfGtSPgUFRXpNY6AFBcX4/HHH8fnn3+OY8eOIT09HSNGjMCMGTN8fui9e/diwoQJ+Pbbb5GSkoJ77rkHU6dONWXMhHKCFVdyLC3BFCFMSkpCfn4+Vq9eLfmUHWgSF0t3t+qCzIqFi6WYIyMRO/9RUdUoKspEaWkElIa2mSUu5MwBVikE64//nOFf20cL5JybqqoqvPnmm5rGVbEyB8hFkfBp1aqVop3/61//wmOPPSZYOVUJBw4cgMvlwiuvvII2bdpg3759GDt2LM6ePYsFCxYAACoqKtC3b1/k5eXh5Zdfxo8//ojRo0cjISEB48aNC+r7wxEjJj6tv0OOuVzuoie2He8uk/OUrVTIWXVBZtFNYWZWndEInf/OnfdiyZIx4LgIrFzJYd68ckXxFqyLC1ZEjZJgXqE5w7+2jxZI7Yd3/WoZV8XiHBAIXYOb33zzTTz44INBC5/+/fujf//+ntetW7fGwYMH8dJLL3mEz1tvvYXq6mosXboU0dHR6NixI/bs2YOFCxeS8FGBkokvkOuID3wTi68ZMWJEwEa3SidXpS4ztc0tpSYN7yqm/l3nWW+oqQaWMljCJavOG+/zHxVV7RE9gPp4C1bEBasIxccMHiz+kCY2ZxhZ28cbrcUKS3OAFLoKHz1r+jidTiQmJnpeb9++Hb169fKxDvTr1w9z587FH3/8gSZNmug2llBFzk2oRZdsrW94uZaWYKwCUpOGWBXTULJE6FklOhhCJeZFKfz5LyrKtFS8hVrMSp0OXHeoFiNGjEB5eWNPaYHo6BNYt24dM7V9vNFarFghiw2waDr7oUOH8Nxzz3msPQBw7NgxZGVl+WzXtGlTz2diwuf8+fM4f/6853VFRYUOIw5dlHTJ1ivmQonLTG4mjJzvCjRpCI0p1CwRrLpDrBZvoDVWOn617m6zOsbLqTv0xx+J2LBh0F9p3cC8eTGebVi0iugtVpzOOHz88TlcfvlxzetLqcVU4fPQQw9h7ty5AbfZv38/2rdv73n9+++/o3///rjlllswduzYoMcwZ84czJ49O+j9KEFtVhHLSC3qelo6lCzAvH9brVUgmMU+FC0RLF6nwZjwrXRviokGo+IttLC4KL2fzK7yLFV3KCqq+q/zfmFs06bZce+9capj/8xAq5R7VutLmSp8HnjgAYwaNSrgNnwfMMDd9fraa69Fjx498Oqrr/ps16xZMxw/ftznPf51s2bNRPc/ffp0TJ482fO6oqICLVq0kHsIigkmq0jrcWg5wQda1AHobumQGqvD4UBZWZknlTyYp2K1v4uVnsS1wiwhoebJmpV7Uy5i1dYB/SwL/O+5alUspk61a1KsTu72LFV5FhOXNTUxAgHMNk0fbvR28fmm3Af+bQNZ7FiuL2Wq8ElJSZHdyfn333/Htddei5ycHCxbtgwREb4XV25uLmbMmIGamhpERUUBADZv3ox27doFjO+JiYlBTEyM6OdaE2xWkRboMcEHWtTNtnQIHa8ZWQhWy3wIFqOFRLAxR1ZMhw903rS2LHg34DSjWB1rVZ6FxKW7Oal+Dzd6u/jqp9wH/m2FLHa8ADd73g+ErsJnxIgRiI+PD3o/v//+O3r37o1WrVphwYIFOHnypOcz3pozfPhwzJ49GwUFBZg2bRr27duHZ555BosWLQr6+/XEjAwfPSZ4qUXdTEuH2HEojdFRSzBxQVZGC5GvxGKkZcxRKAWhawUrxepYeoDwF5d6jU1LF1+geUbNbyv2vSxbuFUJH5fLVc/iwr9fUlKCli1bAgBeeuml4Eb3F5s3b8ahQ4dw6NAhZPjZ9vjMMbvdjk2bNmHChAnIyclBcnIyZs6cyXQqe6DJNVD7Dy3dA1pO8GKLOksTlT/eExefgq61+4XVIGDWUWMx0uIchloQutawsKCxGCTMo/XYtHbxBbLSaPnbsjzvKxI+FRUVGDNmDD788EPEx8dj/PjxmDVrFiIjIwEAJ0+eRFZWFurq6jQd5KhRoyRjgQCgc+fO+PrrrzX9br2QmlzFqvvyaGFO1mOCFzOvszRRiVm4xFLQtYBEjXLrplluYZZN9IEwqtoyKwuaHkHCWsXPqBmblAtWSxef93xUUgIcPBgNpzMubGr7KBI+jzzyCH744QesXLkS5eXleOKJJ7B7926sW7fO86PpWbsnlAh2ctVistdiglcyibJQ54VcGOagxXk3yi3MgkVDDUZaFlld0ILBiBR578Km3sj5XfQQnBeOOQk22yTPfRnqtX0UCZ8PPvgAK1asQO/evQEAgwcPxoABAzBo0CCsX78eAKhJqUxYmFy1GIPUZCtVudlIFw+5MMxBi/NupGBlxaKhBqMr/1rhnEihJH5GyUOakFAP1qqslSgROmb/+zIUflsxFAmfkydP+vTrSk5ORmFhIfr164cbb7wRr7/+uuYDDFXkTq56PuVqNcEHmmz1ch2pwaouDKsT7Hk3Q7CGokWDqI/S+BmxBz3/tjR6CvVgRElJCfDdd0589dUKnD6dVO+YtZgPzWpwqwRFwqdly5bYv3+/T4XkuLg4bNq0CX379sU//vEPzQcYasjN8AGMecoNpwmeBStbOBLseTdKsLLagiNckIqv0WNBVRM/I2VVCyTUy8vLDX8YrF97yQ6bbRLy8gp1mQ+tkMyhSPj07dsXy5Ytw4033ujzfuPGjfHpp5/i+uuv13RwoYjURcE/Oej5lBtuEzx/HFIWrlA5XlbQ6rwbJVitMGGbiR7CQ0lBRD1/n2Ct397HHEior1mzxtACmGK1lzguAoWFecjLK0RhYZ7sY5b727J+jygSPrNnz0ZpaangZ3Fxcdi8eTN2796tycBCGTkXhZ5PueE2wfsf78yZJ1Fc3ACZmbVIT+8KoGtIHS8raHXeg12UlNYC0gortb+Qg9bzhpqCiHqer2Cs30lJScjPz8fq1auZKbDo/V1i60l6eikmTVoseMz+gdhWu14DoUj4NGnSJGAV5Li4OFxzzTVBD4qQfso9depUUBdiqFzAcvE+3rQ0ICfHxMGEEcGcdy0KP5rVhsJq7S/kouVYWSmI6E0w8TN8AofWwfFaWNoCrSdix6w0ENtb6JeWRni607PSmNQbxQUMa2trsWjRIrz99tv4+eefAQAXX3wxhg8fjvvuu8/TLoJQh1z3AB9IZ7WJkyDkooWFwaxaQFZsf2EWoRh7p2XspBb3gd6Zit5Cn9XGpN4oEj7nzp3D9ddfj+3btyMvLw+9evUC4O6gPm3aNKxfvx6bNm3CRRddpMtgwwH+Ine7FNdJ3jw0cRKhDAuTZLBQ7ajAWLl8QCC0SAm/EPCdFHRDUj0TWfh1iOXGpN4oEj5PPfUUjh49iu+//x6dO3f2+eyHH37ATTfdhKeeegqPPvqolmMMO5KSkjwXSKjXUyCIUIZqR8kjnLJL5aJHQUW91xOrlAyp33ArAO+88w4WLlxYT/QAwGWXXYYFCxZg1apVmg2OIAhCS5zOOBQVZcLpjDPk+wItBIQvdnslsrKOGLpAslhzxuFwYNeu4xg3joPLHR7jKai4a9dxOBwOQ8ah5ph5t6U3LLotFVl8jhw5gquuukr08+7du+O3334LelAEEQoYkdUTaplDemKGyykU41dCCdYyXLVuSCoXrTK4pNyWYs23jZ6nFAmf+Ph4nDhxAi1atBD8/NixY4iLM+ZJKtwwqk9RKMCCGDAiqydUM4f0wCyXE0vxKyzcFyyi1TFrYT3SuiGp3DGlp6drdh4CuS0DNd82cp5SJHyuvfZa/Pvf/8batWsFP3/qqadw7bXXajIw4gIUHCkfVsSAEdlERmcsWXnhNDP2gIX4FVbuC29YdDMFg5bWIy3bCZlh0QoUS8RChqMi4TNr1ix069YN3bt3x+TJk9G+fXtwHIf9+/dj0aJF+N///ocdO3boNdawhIIjlWFW+nKoo3ThZEUk8Yum1BO01osra9XRWUyvZ83NpAVajlUrwczS+WPlIV6R8OnQoQM2b96MgoIC3HrrrZ5O7BzHoX379ti0aRM6duyoy0CtjtKFgJ8QpZ5UrfI0RFgbJYKSJeuC9+LavHkFpk2zo67OhshIDnPnVmD48Nt0WVz9F/Xy8nLU1tb6bBMVFYXq6mqUlZUZusCzsvgAbC3KLGKVrF456xBLD/GKCxh2794dP/30E/bs2eNTwPDyyy/Xemwhg5qFgJ84i4trsXIlB5fL5tkuMpLDPffcgMzMBjRxEMzBmtWNv0ceeADIzwcOHQLatLEhIyMBQILu3+twOLBmzRrJ7Y0QgiwtPkToEMh6x/efZCnVXbHwqaioQOPGjXH55Zf7iB2Xy4UzZ84gPj5ey/GFBGoXgqSkJCQlues3jB8P1NUBkZHAK6/YkJPTVI+hEkRIk5Eh3PlbT1gSgiwtPkRoISXaWcpwVFTH5/3338eVV16JP//8s95n586dQ9euXfHhhx9qNjjCTUEBUFwMbNni/n+wRayI0ESLGjUOhwNlZWX1/hNLQyWshVXqrBChBx+wzV9/ZmY4KrL4vPTSS5g6dSoaNmxY77NGjRph2rRpeP755zFo0CDNBki4MeNJVQ2sBLWyht7lCLSI25DrkiWCw8zSFCyl1xP1CbVMN39YyHAEFAqfffv24cUXXxT9vFevXnj44YeDHhRhTVgKauUxa5HxnpgCiZJgJjD+b6XiNuR+h16uFqpBdQEWAotZWXyI+oRiphtrGY6AQuHzxx9/1MtM8KampgZ//PFH0IMirAkLsQxGCA45eAenP/ZYKjiOz4CMwEcfDcLMmd2CDk7nv2PLFmDRovpxGz17jkTv3vpkzsgVMyws9KxgZmAxi4sPIQxLokYLCz6LYk6R8MnMzMR3332H9u3bC37+3XffoVWrVpoMjCDUYITgUDKWvXvh6bfDU1dnQ2VlU0gNQe6k0727u4mh9/dERgLduiVJfocapASl3E7N4YaZgcUsLj6EOcidV/wt+GIPO3Is+KxdV4qEz5AhQzBjxgxcf/31aNrUN6vo2LFjePjhhzFixAhNB0gQSglWcGhJ27bCoqRNm8B/p8RtmJGRJJD5p09MmNMZhw0bBgUUlHwTRapB5YvZWS2sLT6E8SgRM97iKNDDjhWLwSoSPg899BD+85//oG3bthgxYgTatWsHADhw4ADeeusttGjRAg899JAuA7Uy/hO82MUWbguBnqgVHFqTkSFUjkBalCh1GxYUAP368TVq9AuEP306yaemFFBfUFINKl/4+1oqsJjuf0Jv5IqZ0tJSz3ahaLlVJHzi4uKwdetWTJ8+HatXr/bE8yQkJGDEiBF48sknqUmpAN5m5lWrYvHYY3a4XDZERHCYN8+J4cPPqTYzq/XBhnr2lVrBoQdGiRIjMv8SEx2IiPAXM/UFJdWguoC/m2nmzJMoLm6AzMxapKd3BdDV8vcbYS3ExExq6jHU1MRg2bLNHlETirWfFBcwtNvtePHFF/HCCy/g1KlT4DgOKSkpnvYV3mzduhVXXnklYmJiNBmslUlKSkJJCTB16gUrhMtlw7RpCcjPT1DlflGbRcVi9pUeGCU45GCVcgRS2O2VmDfPiWnTEmQJSpZ+AzPxvo/S0oCcHBMHQ4Q9YmLm9dfHAPC1AJntotUDxcKHx2azISUlJeA2N9xwA/bs2YPWrVur/ZqQ4pdfhOJO3IuCmgVBbRaVHtlXDoeDySJ3wQqOULeMeSPXJTtqVJ1X6wfp8xsqoo8gQgUhMQNw4Gsa+7uzQq32k2rhIweO4/TcveVgJe5Ea8QsSFaLZfIXOeXl5cz0WDICpS5Zq4iZcBKvoQj9ftojJGYCubNCrfaTrsKH8MWsuBN/S4zWlhmhSUkocO6JJ7KQnp7O5CQVTNViuZYxK0zgerhkzSRc3LqhipYp1XK/j/V7VCu8xUxUVDWWLBkT0J1llU7xciDhYzBmxDysW7dO/y/xQixwbubMk8xOGnqnZFppAdbaJWsmLBTVJNRjZEq10SJLT8QEnP9Dr7eYUevOYtWCHwgSPiYQ6jEPYoFzxcUNwjaoU+kCbGbPnlB1yRLWxYiU6lCpWyNXwPkTyJ01ZMgQJCcn1/sbq1rAdBU+QpleROgjlgWQmSne7oTwxT8FurQ0AkVFDZCVVYv0dLci0WvSYakUAEEAxqZUW71ujVwBN2TIEAC+HgExd1ZycjLS0tJ0HrlxUHAzoTliWQDumiWEXHhRs2QJMG6c2wITEeEWJQUF+n43a2no4RR7QdTHyJTqUKlbIyXgkpOTVVmWQ+Fe1FX4VFZa5yKxIlq5OfTIvhI2m5LwUUpJyQXRA7j/P368W5ToLUZYcclaKT5KjFBYLNSixbEbmVKtpcgy83eXI+CU9nALhXsRUCh8+vTpI2u7zz//XNVgCGUEcodER5+QGdRcgGeeaa5ZJWlvQikLwCxCKdBYLVYPUA6VxUINWh67USnVWomsw4cP48033/S8NjpYWq6AU/Ld/veY2DGxei/yKBI+X3zxBVq1aoUBAwYgKipKrzERChBzh8ybJ10t2+mM84geQH3acrj3ItPzuCjQWFvkBnpqidWFWzBofexGPUwFK7IcDoeP6Nm6NReFhXmGBkvrbSULFD/EOoqEz9y5c7Fs2TK8++67uP322zF69Gh06tRJr7ERMhFyh0ybZse998YFvMiFG04qtybo2YvMKOSIF6czDpdddjM6dYrRPcCYhwKNg8P7dw00UYeaKGfVtaZUeMr9XZxOp+bHFIzI8j73W7fmYvPm6wG451ojg6X1spJZPQBckfCZMmUKpkyZgu3bt2Pp0qXo2bMn2rVrh9GjR2P48OGIj4/Xa5xEAITdITbJYDy5DSflYPXCd1JZVL6CTnmAcTDp6awFGlsJ707xjz2WCo67sPh89NEgzJzZLeQ6xbPqWlNjIeB/vxMnTgSsor569WoAwR2THiUknM44bN6cB1708BgZLK2HlczqAeCqgptzc3ORm5uLZ555Bu+++y5eeOEFPPjggygtLSXxYwJi7pAHHvg7kpP/BCCeDt2xo00za4LV41HE3IZz5wLTpgUXYBxsejorgcZWJCkpCXv3Cj8cVFY2ZV6UK4VF11owFoKkpCRDjklpoK8cTp9OAt//yhs9m3waUQPM6o1Lg8rq2r17N7788kvs378fnTp1orgfkxBzh1x6aRMAgdOhtbQmhEI8irDbUBtBZ2Z6erjD0rVpRpyR2WhtIdDrHGptARNrBpqXV6jbb6+HgPPH6o1LFQuf0tJSLF++HMuXL0dFRQVGjBiBnTt3okOHDnqMj5CJmICRkw6tlTUhFOJRhKxWLhdgswHeZanULppmpqeHOmI96KKjo5GRkcTEtWnlgNBg0NJCoNU5NCIOyl8gAC5cf30hevbcHtR+pTDChWnlxqWKhM+NN96ILVu2oG/fvpg/fz4GDBiABg2o6wUrCAkYo91PVo9HEbMMzJkDTJ8e/KJpdXegGcjNGgxUvmHixIkoKEgy9do0KyCUBQuTVhYCrc6h3DioYcOGISEhAYB6IWRlgeCP/70oFj/EerKAItXyySefIC0tDb/99htmz56N2bNnC263e/duTQZHBI8ZJn4rx6OIWa0KCoDbbgt+0WTJ5WIVAmUNzpz5O4Alkvvgn+zNuDb5RUDK3aPHYmG2hcn7mAIJALnHrpXLTG4skH9Atdrg6UABxqyLBG+McKMZgSLhM2vWLL3GQchEqXk2FNxPRiNmtdJi0Qy138OotGmxrMHHH28uWbbBbLwzy1au9M+i5HDPPTfokllmdsoxf20MGzYMtbX1+/RFRUXBbrcrukb0CqqVaxWTK5jkipkRI0YwLxL8sdp4hSDhYyHUpqla3f1kBnpaBkLl9zA6bVpt2QYWSEpKQlKSkOi1ISenqS7faWbKsV7Xhh5BtUJWMbdlSr17MFQsI6GKJgE6X375Jc6ePYvc3Fw0adJEi10SAgST0mll91MoIvV7sFqAzhuj06aF3YScZVJoAWNEL29tkLKO6Oli0fra0NplxiNkFVu/fuBfyQzBuQfNvj8JcRRXbj5z5gwef/xxAO7u6zfccAM2bdoEAEhNTcVnn32Gjh07aj9SgggTWC1AZzZCbsK5c504c4Zta48/ej+EeFsbmjevwLRpdtTV2RAZyWHu3AoMH34bE8JZCXpZUISsYkCEJ4PTahWJCXkoEj6rV6/GtGnTPK/fe+89fPXVV/j6669xySWX4I477sDs2bMDVtgkCCtgpsWFxQJ0rOBvMYmMPIdXXzV7VMYh97rkr80HHgDy8/nzZUNGRgKABEPG6o0WmWVGNfL0x0oViQl5KBI+RUVF6Ny5s+f1xx9/jJtvvhk9e/YEADz88MO45ZZbtB0hQRgMWVzYxttiUlZm7liMRO11abab2+zMskAI1dlxt5e4EIBupYrEZmMFFz2gUPjU1tYiJuZC1+/t27dj0qRJntfp6emiRcQI4/D+DVi50KwEWVysg9waP1ZKGRbDitelEZllahbbQDFDhw+3sWxFYr0JdK6dTqenZ1ogWHhgVCR8srOz8dVXX6F169b47bff8PPPP6NXr16ez0tKSkw/IKJ+ITcWLjSC0INANX7mzXNi+PBzJP51Rmgx5B++9M4sU2sF848Z8l60tQyeDiXknmspWBDmioTPhAkTMHHiRHz99dfYsWMHcnNzfVpVfP7557jiiis0HyQRHCxcaAShF2I1fqZNS0B+fkLINSFlCanFUO9mlsFYwbyFUFpaGqWfSxBK64gi4TN27FhERkbiww8/RK9everV9SktLcXo0aM1HSBxgXB+2iDYw4gu0HKhViDmILUYStXdYWlOC2dRE24oruMzevRoUXHz4osvBj0gQhx/8+ypU6cC9iciCD1hqUhbOLYCYaEHlxy6dPkeEye2RUVFKjIza5Ge3hVAV12uDauck3CA5d+COoxaDO+JorQ0AkVFmUxeWIR6WLKkSOF9PZaUuC0vbdsab2UJtVYgUrCcKSVEp04JSEvTVwBb7ZxYnUDChvXfQpHwqampwYwZM7Bu3TokJibirrvu8rH+HD9+HOnp6airq9N8oIQvS5YA48alwuUayeSFRaiHJUuKXNzXo9viEhHhFiEFBcaOIVRagUhhdg8uqbGZ8ZTP8jkJRQIJGyv8FoqEz5NPPok33ngDDz74IMrLyzF58mTs3LkTr7zyimcbji95SehGSQm/yLhrTbB4YVkZFiwuLIkaKS5cj+7XLpfb8tKvnzmWn1AVPGZ2eZeDmU/5ZvYlU4pVat2IISVsrPBbKBI+b731Fl5//XUMHDgQADBq1CjccMMNuPPOO7F06VIAgM1mC7QLQgOEAjlZu7CsDGsWFzNdSHIIp8BiMxcts7q8y8Hsp3y9s8e0IhSKo0oJGzN7xMlFkfD5/fff0alTJ8/rNm3a4IsvvkCfPn3wz3/+E/PmzdN8gER9hAI5A93kLFxoVoOVSYcFF5IU4RJYzMKiZUaXdzmY9ZTPz21WyR6zYhFKHrnNb8eOvYH5HnGKhE+zZs1w+PBhZGZmet5r3rw5tmzZgmuvvRajRo3SeHiEEPUDOS9cWP6wcqFZGbMsLiy5kAIRLoHFLC1arMQzmd0J3t86O3PmSRQXN9A9eywcUdL89pJL2OgRJ4Yi4dOnTx+sWrUK1113nc/76enp+Pzzz9G7d28tx0YEwHfic19YJSUJkgu0Ff3LZo7ZTIuLlVxIrCzE4QQL8UwsdIL3LUQI5OTo9lWaw3LKtxBKmt+ycH2KoUj4PPLIIzhw4IDgZ82bN8eXX36JzZs3azIwQhrvC0vOAs2CqV4pZo7ZbIuL1VxILE90hH6w1gneKrCe8i2Fle/3COlNLtCqVSv069dP9PP09HSMHDky6EERyhBboEtKfLdjyVQvFzPHHMjiYgS8Cyky0v06VF1IROiQkQH07k3XqBRiweBOZ5zJIwsPFAkfnnfffRdDhgxBp06d0KlTJwwZMgTvvfee1mMT5Pz587j88sths9mwZ88en8/27t2Lq6++GhdddBFatGgRNsHWZi/QoQpvcfHGaItLQQFQXAxs2eL+P2uBzQRBKCdQMDihP4pcXS6XC7fddhveffddXHzxxWjfvj0A4KeffkJ+fj5uueUWvP3227qmtE+dOhXp6en44YcffN6vqKhA3759kZeXh5dffhk//vgjRo8ejYSEBIwbN0638bCA1VwiVoGVoF0rm5TDEb4zeVVVFRo2bCi6HYvxdIQxWCX9PlRRJHyeeeYZFBYWYv369Z5aPjzr16/HnXfeiWeeeQaTJk3ScoweNm7ciE2bNmHt2rXYuHGjz2dvvfUWqqursXTpUkRHR6Njx47Ys2cPFi5cGPLCh5UFOhTROmjXisHlhDKU9M9jKZ6O0B+rpd+HKoqEz7JlyzB//vx6ogcAbrrpJsybN0834XP8+HGMHTsWH3zwgeBT1Pbt29GrVy+fC6Zfv36YO3cu/vjjDzRp0kRwv+fPn8f58+c9rysqKjQfuxFQVo1+aGVxsWJwOXEB/8VIi4wcluLpCP1Rk35PD0vao0j4/PLLL8jLyxP9PC8vDxMnTgx6UP5wHIdRo0bhrrvuwpVXXoni4uJ62xw7dgxZWVk+7zVt2tTzmZjwmTNnDmbPnq35mM0gnF0ivHuB5Ukg2EBtmgDNxXvRevXVOixenG7ZjBzCPJSk39PDkj4oEj6xsbEoLy9Hy5YtBT+vqKjARRddJHt/Dz30EObOnRtwm/3792PTpk2orKzE9OnTlQxXFtOnT8fkyZM9rysqKtCiRQvNv4dFrFZDIhDe7oVQnARoAmSDpKQklJQAjz3GgeNCq1ceCWv2sGImrhVQJHxyc3Px0ksv4aWXXhL8/IUXXkBubq7s/T3wwAOS1Z5bt26Nzz//HNu3b0dMTIzPZ1deeSVuv/12rFixAs2aNcPx48d9PudfN2vWTHT/MTEx9fYbqnib6gPVkGDJv6xmLKE4CdAEyA7uLErfBA6r98ojYU2EE4qEz4wZM9C7d284HA48+OCDaN++PTiOw/79+/H000/jP//5D7Zs2SJ7fykpKUhJSZHc7tlnn8UTTzzheV1aWop+/fph9erV6NatGwC3KJsxYwZqamoQFRUFANi8eTPatWsn6uYKN7ybHD72WKrPE+tHHw3CzJndTGtyKIa3e+HUqVNYtmxzyFipCGvizqL0bRJq9YwcloU1WaIIrVEkfHr06IHVq1dj3LhxWLt2rc9nTZo0wdtvv42ePXtqOkAA9VxrjRs3BgBkZ2cj46+gluHDh2P27NkoKCjAtGnTsG/fPjzzzDNYtGiR5uOxMklJSdi7V6jujw2VlU3B4vzBT2qrVsVi8eJJYRVXwU/6fAwTYT4ZGcC8eU5MmRIvmJFDaAdZonwJpfAEM1EkfADgH//4B/r164dPP/0Uv/zyCwDg4osvRt++fQPWrNAbu92OTZs2YcKECcjJyUFycjJmzpwZ8qnsarBi3Z+SEmDqVHvIxVUEQu6kTxjP8OHn8PvvS3H6dKLH0lNUlCm6IMlZsMiyUR+WLVFGY/UWFyyhSPh8/vnnmDhxInbs2IF//OMfPp85nU507NgRL7/8Mq6++mpNB+lPZmYmOI6r937nzp3x9ddf6/rdoYAV6/6EYlyFFOEwmVuV6Oho2O2VsNsrJRckOfF0ZNkgAiHW4iKUH/z0RJHwWbx4McaOHYv4+Ph6n9ntdowfPx4LFy7UXfgQwWO1uj+hEFchN1CbpeBygCwRQsiJl0tIOIPy8say4unIskEEIlCLCxI+ylEkfH744YeA6ed9+/bFggULgh4UYQxWqvsTCnEV/sXLSksjUFTUAFlZtUhPd/sdWRMRZIkQRypeLienKbZssVY8HQ+rsSSsjksv+IcgqRYXrD0ssY4i4XP8+HFPxpTgzho0wMmTJ4MeFEEIMWpUHX7/fbFkXAXLkwAvDpYsAcaNcy+KERFu16MWDUi1PnayRARGKl7OivF0rMaSsDouPfF+WGrevALTptlRV2dDZCSHuXMrMHz4bcw9LFkBRcKnefPm2LdvH9qI3LV79+5FWlqaJgMjCH+SkpIwY8ZIVFdXY9WqWEydaofLZUNEBId585wYPvycJSaBkpILogdw/3/8eLfrUY0FbsiQIUhOTrbEsYcaUvFyVomn4wWzVCyJlsJajguVJ5xjXPh7+oEHgPx8PjzBhoyMBAAJZg7NsigSPjfeeCMeeeQR9O/fv16F5nPnzmHWrFmCfbwIQiv4yrlTp3oLBxumTUtAfn4C0+4DHnegtu97dXXuCU3uguht8k9OTqYHDhORipezQjwdb1nYsgVYtKh+LEnPniPRuzc0E9ZyXaj5+fkAKMaFx0rhCSyjSPg8/PDDWLduHS6++GJMnDgR7dq1AwAcOHAAL7zwAurq6jBjxgxdBkoQPFoIBzMJ1v3hb/Jv3rwCDzwQ+G8oQFlfpBYkpQuWGbEsSUlJ6N5d+Nrs1i1J04cKua5RPnuXYlwILVEkfJo2bYpt27bh7rvvxvTp0z0Xpc1mQ79+/fDCCy94GoMShF5YMW7CG7nuD6Fu4EePtqhn8p82zY78fPGFlQKUrYWZsSysueYSEhJCKsaFHkDYQHEBw1atWuHjjz/GH3/8gUOHDoHjOLRt25baQhCGwdrkrAY57g/vwMZVq2Lx2GP2erWMAHeWUCBrl9yn69LSUs/3EsZiRoyNGKy55kIlxoUeQNhBsfDhadKkCbp27arlWAhCNqxNzmqQ4/4QimnyRytrF9/hniZe4zE6xkYKo2NJ5Lr2rBzjQhmS7KBa+BCE2Vh5ElSCUEwTjx7WLu+JV8jdJrRAUYxF8BgZY6MUPV004ZimTpgLCR+CYByhmKaICOCdd4DcXH3Fn5i7zWolBKwCi25cPV004ZymTphHhPQmBEGYCb8YRka6X0dGul/fcosxC2JSUhLq6tIwdWqCJ8aILyFQV5dGokdjCgqA4mJgyxb3/7UobBkMerpoAqWpE4RekMWHICyA2TFNVi8hYDVC3Y1LrRjCr/0GS5DwIQiLoNViqGbCtXoJAYItwr0VA8U1mQsJH4IIcbyfmtVOuCzGnhDWJlTS1JVCcU3mQ8KHIEIc/ul69+4TmD27Xb0JNzX1GDIyyiT3Y7a7jWADPVw0oe7aAy48gEi13whl9x4rkPAhiDAgKSkJZ882EJxwX399DG666YLlJ9DEGw4LVLjjn7p+6tQpz7/JRaMe/gGkuLgWK1dyPsVIIyM53HPPDcjMbBCy7j2WIOFDEGHClVfaERHBCVR/jsBHHw3CzJndaOINcwKlrpOLJniSktz1mOq7jW3IyaF2T0ZBwocgwgR3nI4N48YJZWjZUFnZ1BLd7YOF+iWJE+i8kItGO8htbC4kfAgijCgoADp3Brp1A/7qMQwgfDK0qF+SeoRSz8lFox5yG5sHFTAkiDCja1fgtdd8CyKGS4YW9UtSj91eiUGDNsBmc5sLvV00JHoIK0EWH4IpSkrcxfLatg2PhVguWrtnyNROCOF0Ov1e+2ZwdenyPbKzD+Hyy29Gnz4t6bohLAkJH4IZliyBJ/4kIsIdAGh2uX4W0Ms9Q6Z2wp+amhrPv8UyuOz2SlxxhZOuHcKykPAhmKCkBD5Bty6XO+uhX7/wWZzFrDre6cSAeB0Vcs8QWkEZXAQQuokAJHwIJgiVXlBqXXX+Vh0xcUN1VLSF+iUJI5XBRYQ+oZwIQMKHYIJQ6AUVjKvO+6lKTNzQU3jwlJeXe/5NIrI+DRq4lwSp5qH8dkToEsqJAJTVRTAB3wvKiplGDocDu3Ydx7hxnJ+rjsOuXcfhcDhk70tM3PCWCbGncEIah8OBNWvWAAh8nsOZhIQEAO4Mrs6d9wLgax5w6Nx5r0dg89sRhBUh4UMwQ0EBUFwMbNni/r8VApt5c/Bzz31SryJyXZ0Nzz23Ec8//7xs8RNI3PBP4d54P4UTgfF+MpUSkeFejM/pjMPevZ0B8Ne0DXv3dg57YUiEBiR8CKbIyAB697aGpQe4sJhKiRK55uBA+/Gvo8K7Z+z2Sjidcdi6NRolJcEeUXgQ6Dzn5+dbLmZBa8i6SIQy5KglCA3gRYl/zIjS2Bup/fB1VNwWILcY4mNVFi2KQEQEh3nznBg+/JxlMy6MwG6vRF5eIQoL8+qdZ7vdbvbwTIO3dEnF+IS7RYywNiR8CEIjhESJHvtxL87u9/xjVVwuG6ZMicfvvy+F3V5pyYwLI9i9+wqP6AFcyMsrDPvAZuBCB/Hq6mo0b16BadPsqKuzITKSw9y5FRg+/DYS1ITlIeFDEBriLUr02M+QIUOQnJyMU6dOYd26dZJpx1bMuNAbf7EIRKCwMA+dOu2j7DjAI2oeeADIz+ere9uQkZEAIMHMoRGEJpDwIQgGkOs6SE9P93nalnJJEPWhGjXyoere4Yv/nCRW88qKbk8SPkTIYqW+X94uBjGEXAxaxRaFEyQWCUIa7zlp1apYPPaYHS6XLSTiCEn4EKajR1l0K/b9UjuBaBVbFOrwT6ZSYtGKT7AEoQdJSUkoKQGmTvVuJ2TDtGkJyM9PgAU1DwASPoTJ6FEW3ci+X3IXSb0XU61ii0IZf6vazJknUVzcAJmZtUhP7wqgq2WfYAlCL0KlnZA3JHwIU9GjLLqRN6paFxVhDt6/Q1oakJNj4mAIwgKEQjshf0j4ECGH0TeqkKjxji8izUMQhBloEUbAtxMaP979AGmldkJikPAhQg6zb1Qj4otYcbERBMEmWoYRFBS4QwXcpQ2sLXoAEj5EiGLWjWpUfBG52AiCCITWYQShVNqAhA8Rsphxo2odXxQoJZ9EDUEQhHJI+BCEhmgZX2TFlHyCffQoH0EQVoKED0FoiFbxRUam5BPsoZc40aN8BEFYDRI+hKmEYpCuFvFFoVg7g5CHnuJEj/IRWkBWKMJISPgQphKqQbrBxheFYu0MQh7+94JYjyQtxInYvo2ErFDGwMJvzQokfAjTocmsPman5BNssHv3FfVaa3Tp8j3z+1YCq1aoUELv39pqFjsSPgTBKKFWO4NQhtMZ51msAHcH+Q8/HIjs7ENBP7Hrue9gIcuENvDhAVK/dbBhBFa02JHwIQiGCaXaGVYkUDkBvTl9OsmngzzgXrROn04MWhDoue9gYMUKFQrwYQRbtgCLFtX/rXv2HInevYO3uFvRYhchvQlBEET44HA4UFZWhqefLkerVhz69AFateLw9NPlKCsrg8PhMGQciYkO2Gy+Ee42mwuJiaeZ3rdaxCwTTmecaWOyOklJSejePQkRfit9ZCTQrVsSMxYYoyHhQxBhREkJsGWL+/9EfXiz/fz5b2PKlHi4XDYAgMtlw5Qp8Zg//208//zzhogfu70SgwZt8AgU3gKihUVGz32rJZAVilAPHy8YGel+TfGC5OoiCB+CcW1oFeCnV6AgFUSUhj/vUq4go8z2Xbp8j+zsQzh9OhGJiaeDFibe8RyB9m1G+QjeCuV93s22QoUKFC/oCwkfgviLYISBVgF+egUKUkFEZaLWzEXYX3TY7ZWCgkeNOGG5fARvhfKP8aEAZ22geMELkPAhCAQvDLQK8NMrUDDcCyIqFbVmLsJ6ixPW4jpYtkIRoQkJH4JA6AuDcC2I6HA4UFxci3HjUr3idYDx4zlcfvkJZGY2EBUCWriZvN2WpaURKCpqgKysWqSnu38IMQHDmjjRE5atUERoQsKHIBD6wiAcCyLybsOioky4XCN9Pqurs+G55zYiK+tIQLehmJtJyfcDgdO0WapvYhbhfvxWxopth0j4ECGF2sDgcBAG4RbgyF8HUvE6egUq8/uVKiDHUn0TglCKFS12JHyIkCHYwOBwEAbhGOBodtAsq8UCCUIrvOdTM4t+yoWEDxEyaBEYrKcwcDrjsHVrNLp3Z3dCCFXkxuvoYbanNG0iXLBKyQwSPgRhAHyMx6JFEUxPCKGMnHgdPcz2ZlucCMIIrFQyg4QPQWhAIAuAf4xHoAnBioGCoYYesQhaFyIkCNawUmYsCR+C0IBAloKtW6PrNQkUmxD0sDjoVQlaK6wQE6AFwWSIEQTrWCkzloQPQWiEmHjo3l3ZhKClCNGrErRWWCUmgCCIwFgpM5aalBKEzpjZJFCvStBaIBYToFUDVbPdhmZ/P0EYTUEBUFzsboRcXMzuQwxZfAjCAMIhVV4pescEmF1fxOzvJwgzsELJDEsJn48++giPPfYY9u7di4suugjXXHMNPvjgA8/nv/32G+6++25s2bIFjRs3xsiRIzFnzhw0aGCpwyRUwvoTthUmBCMxIibAbFFh9vcTBFEfyyiCtWvXYuzYsfj3v/+NPn36oLa2Fvv27fN8XldXhwEDBqBZs2bYtm0bysrKcMcddyAqKgr//ve/TRw5YRT0hG0trBQTQBBE6GDjOI4zexBS1NbWIjMzE7Nnz0aBiNNw48aNGDhwIEpLS9G0aVMAwMsvv4xp06bh5MmTsp/yKyoqYLfb4XQ6ER8fr9kxEIQZlJWV4dVXX5Xcbty4cUhLSzNgRPUpKSEXoB6wns1HEFojd/22hMVn9+7d+P333xEREYErrrgCx44dw+WXX4758+ejU6dOAIDt27fj0ksv9YgeAOjXrx/uvvtu/PTTT7jiiisE933+/HmcP3/e87qiokLfgyEIwmdRjowE2rVzv19W5v4/LcrB4Z/N53TG4fTpJCQmOnxS6qlBKhGOWEL4/PrrrwCARx99FAsXLkRmZiaefvpp9O7dGz///DMSExNx7NgxH9EDwPP62LFjovueM2cOZs+erd/gCYLwgfUU+1DA29ITqDM8NUglwhFT09kfeugh2Gy2gP8dOHAArr+iH2fMmIGhQ4ciJycHy5Ytg81mw7vvvhvUGKZPnw6n0+n57+jRo1ocGkEwAYsB3yyn2IcaYp3hnc44k0dGEOZhqsXngQcewKhRowJu07p1a5T9Zf/u0KGD5/2YmBi0bt0av/32GwCgWbNm+O9//+vzt8ePH/d8JkZMTAxiYmLUDJ8gmIcCvo2FtSrU1BmeIOpjqvBJSUlBSkqK5HY5OTmIiYnBwYMH8be//Q0AUFNTg+LiYrRq1QoAkJubiyeffBInTpxAamoqAGDz5s2Ij4/3EUwEEW4EEjUlJcDevews1FaGxSrU1BmeIOpjicrN8fHxuOuuuzBr1ixs2rQJBw8exN133w0AuOWWWwAAffv2RYcOHfDPf/4TP/zwAz799FM8/PDDmDBhAll0CEKAJUuAVq2APn3c/1+yxOwRaUdJibt6rFZVoOV8n55VqNXCd4a32dwDo87wBGGR4GYAmD9/Pho0aIB//vOfOHfuHLp164bPP/8cTZo0AQBERkZiw4YNuPvuu5Gbm4tGjRph5MiReOyxx0weOUGwh9hCLdQx3moYbXlxOBzYsQNwuXwta3V1wM6dDsTGmlvIkDrDE4QvlhE+UVFRWLBgARYsWCC6TatWrfDxxx8bOCqCsCZ6t4swC6MFHZ+h5nTGwWabVM+ltHXrCuzbV2l6hhp1hieIC1jC1UUQhLbw7SK80bpdhBkEEnR6wAeNS7mUjM5QYzGbjyBYwTIWH4IgtMPMdhF6LspG9P8SgyWXknc2X3l5OWprawEAx441wG+/xaBly/No0cKG6upqOBwOyuojwgoSPkTYE66l/c3qGK9nir3Z/b9YciklJSXB4XBgzZo1AAIXMjTbFUcQRkLChwhrwr2KsFkd4/U8l2YJOjOQqhvEi0uxQobZ2Ydgt1dSsUgirCDhQ4Q1elcRDldrkhmES/8v/jhXrYrF1Kl2uFw2RERwmDfPieHDzwkeJxUyJIgLkPAhCJ0Id2uSkYTLufbOIlu8eBI4zgYAcLlsmDIlHr//vhR2e/0sMipkSBAXoKwugtAJ6kllHOFyrvnxB7LgeG/HQ4UMCeICZPEhCIJQiVlp42osOCxlnRGEmZDwIQiCUIlZTWB5C45/lpaUmGEp64wgzIKED0EQRBCYFTNEFhyCUAcJH4IgCIsiZcGhCs4EUR8SPkRYQwsDEcqY5YqzKlR+Ijwg4UOENeG4MNDkHl7QbymPcCmJQJDwIQjdJjEWrUmhOrmzeK71IFyO0wzCpSQCQcKHIHSDRWtSqE7uLJ5rPQiX4yQIPSHhQxA6QguQcYTLuWb5OMPBjXrq1CnB90Ph2MIFEj4EQRBE0ISqG9WfdevWiX5m9WMLF6hlBUEQBBE0oeZGdTrjUFSUCaczTvbfWOXYwh2y+BAEQRCa43TG4fTpJCQmOixXXHH37ivqVcXu0uV7s4dFaAQJH4IgCEJTrCwcnM44z9gBd/PXDz8ciOzsQ5YTcIQw5OoiCIIgNENMOChxGZkBXwLg9OnAne8J60PChyDCCKoDQ+iNVYUDXyrgnnv6IyKC8/ksIoJDYuJpk0ZGaA25uggijKA6MITeJCY6YLO5fMSPzeayhHBISkpCUhLw6qvA+PFAXR0QGQnMnevEmTPk5goVSPgQRJhBoobQE7u9EoMGbagX42Ol+JiCAqBfP+DQIaBNGyAy8hxeffXC51YO3CZI+BAEQRAa4O0e7dLle2RnH8Lp04lITDztIw6s4kbNyHD/BwAOx4UxBwrctsqxhTs2juM46c3Ch4qKCtjtdjidTsTHx5s9HIIgCMsQypWbHQ4HiotrcdVVqXC5bJ73IyM57Nx5ApmZDSx7bKGC3PWbLD4EQRCEJoTywp+UlIS9ewGXy/f9ujobKiubIoQPPeSgrC6CIAiCkEHbtkCE36oZGemOAyKsAwkfgiAIgpBBRoY74ysy0v06MhJ45ZULsUCENSBXF0EQBEHIxD/ji0SP9SDhQxAEQRAK8M74IqwHuboIgiAIgggbSPgQBEEQBBE2kPAhCIIgCCJsIOFDEARBEETYQMKHIAiCIIiwgYQPQRAEQRBhAwkfgiAIgiDCBhI+BEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNpDwIQiCIAgibKBeXX5wHAcAqKioMHkkBEEQBEHIhV+3+XVcDBI+flRWVgIAWrRoYfJICIIgCIJQSmVlJex2u+jnNk5KGoUZLpcLpaWliIuLg81mM3s4hlNRUYEWLVrg6NGjiI+PN3s4loXOY/DQOdQGOo/aQOdRG/Q8jxzHobKyEunp6YiIEI/kIYuPHxEREcjIyDB7GKYTHx9PN7cG0HkMHjqH2kDnURvoPGqDXucxkKWHh4KbCYIgCIIIG0j4EARBEAQRNpDwIXyIiYnBrFmzEBMTY/ZQLA2dx+Chc6gNdB61gc6jNrBwHim4mSAIgiCIsIEsPgRBEARBhA0kfAiCIAiCCBtI+BAEQRAEETaQ8CEIgiAIImwg4ROGfPXVVxg0aBDS09Nhs9nwwQcf+HzOcRxmzpyJtLQ0xMbGIi8vD7/88os5g2UYqfM4atQo2Gw2n//69+9vzmAZZs6cOejatSvi4uKQmpqKwYMH4+DBgz7b/Pnnn5gwYQKSkpLQuHFjDB06FMePHzdpxGwi5zz27t273jV51113mTRiNnnppZfQuXNnT4G93NxcbNy40fM5XYvSSJ1Ds69DEj5hyNmzZ3HZZZfhhRdeEPx83rx5ePbZZ/Hyyy9j586daNSoEfr164c///zT4JGyjdR5BID+/fujrKzM89/bb79t4AitwZdffokJEyZgx44d2Lx5M2pqatC3b1+cPXvWs83999+PDz/8EO+++y6+/PJLlJaWYsiQISaOmj3knEcAGDt2rM81OW/ePJNGzCYZGRl46qmnsGvXLnz33Xfo06cP/v73v+Onn34CQNeiHKTOIWDydcgRYQ0A7v333/e8drlcXLNmzbj58+d73isvL+diYmK4t99+24QRWgP/88hxHDdy5Eju73//uynjsTInTpzgAHBffvklx3Hu6y8qKop79913Pdvs37+fA8Bt377drGEyj/955DiOu+aaa7j77rvPvEFZlCZNmnCvv/46XYtBwJ9DjjP/OiSLD+FDUVERjh07hry8PM97drsd3bp1w/bt200cmTX54osvkJqainbt2uHuu++Gw+Ewe0jM43Q6AQCJiYkAgF27dqGmpsbnmmzfvj1atmxJ12QA/M8jz1tvvYXk5GR06tQJ06dPR1VVlRnDswR1dXV45513cPbsWeTm5tK1qAL/c8hj5nVITUoJH44dOwYAaNq0qc/7TZs29XxGyKN///4YMmQIsrKycPjwYfzf//0fbrjhBmzfvh2RkZFmD49JXC4XJk2ahJ49e6JTp04A3NdkdHQ0EhISfLala1IcofMIAMOHD0erVq2Qnp6OvXv3Ytq0aTh48CDWrVtn4mjZ48cff0Rubi7+/PNPNG7cGO+//z46dOiAPXv20LUoE7FzCJh/HZLwIQiduPXWWz3/vvTSS9G5c2dkZ2fjiy++wHXXXWfiyNhlwoQJ2LdvH7755huzh2JpxM7juHHjPP++9NJLkZaWhuuuuw6HDx9Gdna20cNklnbt2mHPnj1wOp147733MHLkSHz55ZdmD8tSiJ3DDh06mH4dkquL8KFZs2YAUC9L4fjx457PCHW0bt0aycnJOHTokNlDYZKJEydiw4YN2LJlCzIyMjzvN2vWDNXV1SgvL/fZnq5JYcTOoxDdunUDALom/YiOjkabNm2Qk5ODOXPm4LLLLsMzzzxD16ICxM6hEEZfhyR8CB+ysrLQrFkzfPbZZ573KioqsHPnTh//LKGckpISOBwOpKWlmT0UpuA4DhMnTsT777+Pzz//HFlZWT6f5+TkICoqyueaPHjwIH777Te6Jr2QOo9C7NmzBwDompTA5XLh/PnzdC0GAX8OhTD6OiRXVxhy5swZH2VdVFSEPXv2IDExES1btsSkSZPwxBNPoG3btsjKysIjjzyC9PR0DB482LxBM0ig85iYmIjZs2dj6NChaNasGQ4fPoypU6eiTZs26Nevn4mjZo8JEyZg1apV+M9//oO4uDhPrITdbkdsbCzsdjsKCgowefJkJCYmIj4+Hvfccw9yc3PRvXt3k0fPDlLn8fDhw1i1ahVuvPFGJCUlYe/evbj//vvRq1cvdO7c2eTRs8P06dNxww03oGXLlqisrMSqVavwxRdf4NNPP6VrUSaBziET16Fp+WSEaWzZsoUDUO+/kSNHchznTml/5JFHuKZNm3IxMTHcddddxx08eNDcQTNIoPNYVVXF9e3bl0tJSeGioqK4Vq1acWPHjuWOHTtm9rCZQ+gcAuCWLVvm2ebcuXPcv/71L65JkyZcw4YNuX/84x9cWVmZeYNmEKnz+Ntvv3G9evXiEhMTuZiYGK5NmzbclClTOKfTae7AGWP06NFcq1atuOjoaC4lJYW77rrruE2bNnk+p2tRmkDnkIXr0MZxHGeMxCIIgiAIgjAXivEhCIIgCCJsIOFDEARBEETYQMKHIAiCIIiwgYQPQRAEQRBhAwkfgiAIgiDCBhI+BEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNpDwIQjCh2PHjuGee+5B69atERMTgxYtWmDQoEE+/Ym2bduGG2+8EU2aNMFFF12ESy+9FAsXLkRdXZ1nm+LiYhQUFCArKwuxsbHIzs7GrFmzUF1d7fN9r732Gi677DI0btwYCQkJuOKKKzBnzhzP548++ihsNhv69+9fb6zz58+HzWZD7969ZR0bvy+bzYYGDRogMzMT999/P86cOaPwLBEEYVWoVxdBEB6Ki4vRs2dPJCQkYP78+bj00ktRU1ODTz/9FBMmTMCBAwfw/vvvY9iwYbjzzjuxZcsWJCQkoLCwEFOnTsX27duxZs0a2Gw2HDhwAC6XC6+88gratGmDffv2YezYsTh79iwWLFgAAFi6dCkmTZqEZ599Ftdccw3Onz+PvXv3Yt++fT7jSktLw5YtW1BSUuLTcXzp0qVo2bKlomPs2LEjCgsLUVtbi61bt2L06NGoqqrCK6+8Um/b6upqREdHqziT+sHimAjCUhjWHIMgCOa54YYbuObNm3Nnzpyp99kff/zBnTlzhktKSuKGDBlS7/P169dzALh33nlHdP/z5s3jsrKyPK///ve/c6NGjQo4plmzZnGXXXYZN3DgQO6JJ57wvL9161YuOTmZu/vuu7lrrrlGxtFd2Jc3Y8eO5Zo1a+bz+WuvvcZlZmZyNpuN4zj3sRcUFHDJyclcXFwcd+2113J79uzx7GPPnj1c7969ucaNG3NxcXFcly5duG+//ZbjOI4rLi7mBg4cyCUkJHANGzbkOnTowH300Uccx3HcsmXLOLvd7jOe999/n/OemtWOiSAIYcjVRRAEAOD06dP45JNPMGHCBDRq1Kje5wkJCdi0aRMcDgcefPDBep8PGjQIF198Md5++23R73A6nUhMTPS8btasGXbs2IEjR45Ijm/06NFYvny55/XSpUtx++23B239iI2N9XG/HTp0CGvXrsW6deuwZ88eAMAtt9yCEydOYOPGjdi1axe6dOmC6667DqdPnwYA3H777cjIyMC3336LXbt24aGHHkJUVBQAd9f08+fP46uvvsKPP/6IuXPnonHjxorGqGZMBEEIQ64ugiAAuBdXjuPQvn170W1+/vlnAMAll1wi+Hn79u092wjt/7nnnvO4uQBg1qxZGDJkCDIzM3HxxRcjNzcXN954I26++WZERPg+lw0cOBB33XUXvvrqK+Tk5GDNmjX45ptvsHTpUqWH6mHXrl1YtWoV+vTp43mvuroab7zxBlJSUgAA33zzDf773//ixIkTiImJAQAsWLAAH3zwAd577z2MGzcOv/32G6ZMmeI5d23btvXs77fffsPQoUNx6aWXAgBat26teJxqxkQQhDAkfAiCAABwHKfLtgDw+++/o3///rjlllswduxYz/tpaWnYvn079u3bh6+++grbtm3DyJEj8frrr+OTTz7xET9RUVEYMWIEli1bhl9//RUXX3wxOnfurGgcAPDjjz+icePGqKurQ3V1NQYMGIDnn3/e83mrVq08AgMAfvjhB5w5cwZJSUk++zl37hwOHz4MAJg8eTLGjBmDlStXIi8vD7fccguys7MBAPfeey/uvvtubNq0CXl5eRg6dKjicasZE0EQwpDwIQgCgNtKwQcli3HxxRcDAPbv348ePXrU+3z//v3o0KGDz3ulpaW49tpr0aNHD7z66quC++3UqRM6deqEf/3rX7jrrrtw9dVX48svv8S1117rs93o0aPRrVs37Nu3D6NHj1Z6iACAdu3aYf369WjQoAHS09Prucr83XxnzpxBWloavvjii3r7SkhIAODOFhs+fDg++ugjbNy4EbNmzcI777yDf/zjHxgzZgz69euHjz76CJs2bcKcOXPw9NNP45577kFEREQ9EVlTU1Pve9SMiSAIYSjGhyAIAEBiYiL69euHF154AWfPnq33eXl5Ofr27YvExEQ8/fTT9T5fv349fvnlF9x2222e937//Xf07t0bOTk5WLZsWT33lRC8cBIaQ8eOHdGxY0fs27cPw4cPV3J4HqKjo9GmTRtkZmbKig/q0qULjh07hgYNGqBNmzY+/yUnJ3u2u/jii3H//fdj06ZNGDJkCJYtW+b5rEWLFrjrrruwbt06PPDAA3jttdcAACkpKaisrPQ5Vj6GR4sxEQRRHxI+BEF4eOGFF1BXV4errroKa9euxS+//IL9+/fj2WefRW5uLho1aoRXXnkF//nPfzBu3Djs3bsXxcXFWLJkCUaNGoWbb74Zw4YNA3BB9LRs2RILFizAyZMncezYMRw7dszzfXfffTcef/xxbN26FUeOHMGOHTtwxx13ICUlBbm5uYJj/Pzzz1FWVmaYZSMvLw+5ubkYPHgwNm3ahOLiYmzbtg0zZszAd999h3PnzmHixIn44osvcOTIEWzduhXffvutJw5q0qRJ+PTTT1FUVITdu3djy5Ytns+6deuGhg0b4v/+7/9w+PBhrFq1yieAW+2YCIIQh1xdBEF4aN26NXbv3o0nn3wSDzzwAMrKypCSkoKcnBy89NJLAICbb74ZW7ZswZNPPomrr74af/75J9q2bYsZM2Zg0qRJsNlsAIDNmzfj0KFDOHTokE/tHeBCjFBeXh6WLl2Kl156CQ6HA8nJycjNzcVnn31WL36FRyjjTE9sNhs+/vhjzJgxA3feeSdOnjyJZs2aoVevXmjatCkiIyPhcDhwxx134Pjx40hOTsaQIUMwe/ZsAEBdXR0mTJiAkpISxMfHo3///li0aBEAt5XtzTffxJQpU/Daa6/huuuuw6OPPioZnCw1JoIgxLFxSqMUCYIgCIIgLAq5ugiCIAiCCBtI+BAEETI0btxY9L+vv/7a7OERBMEA5OoiCCJkOHTokOhnzZs3R2xsrIGjIQiCRUj4EARBEAQRNpCriyAIgiCIsIGED0EQBEEQYQMJH4IgCIIgwgYSPgRBEARBhA0kfAiCIAiCCBtI+BAEQRAEETaQ8CEIgiAIImwg4UMQBEEQRNjw/4yQWz4vK+05AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChS0lEQVR4nOzde1wU9foH8M8uNwFhERAEQUFETUkTNERPpoa3vJwOGpRampjVkZKjqfmzvGSlpnnpnmValqWplVqWUGalSOU1zEwNDAS8LLKgqFz2+/tjnWFmd2Z2FpbrPu/Xy1eyOzv7ndFz5vH7fb7Po2GMMRBCCCGEOABtQw+AEEIIIaS+UOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGN0IYNG6DRaJCTk9PQQyGkWaHAhxAH9euvvyIlJQXdunWDp6cn2rVrh8TERPz1118Wxw4YMAAajQYajQZarRbe3t7o3LkzHnroIaSlpdn0vTt37sTdd9+NgIAAeHh4oEOHDkhMTMQ333xjr0uz8NJLL+GLL76weP3AgQNYuHAhiouL6+y7zS1cuJC/lxqNBh4eHujatSueffZZlJSU2OU7Nm3ahNWrV9vlXIQ0NxT4EOKgli1bhm3btuGee+7BmjVrMHXqVPz444+Ijo5GVlaWxfEhISHYuHEjPvzwQyxfvhyjR4/GgQMHMGTIECQlJaGiosLqd65YsQKjR4+GRqPB3LlzsWrVKowZMwanT5/Gp59+WheXCUA58Fm0aFG9Bj6ct956Cxs3bsTKlSvRpUsXvPjiixg2bBjs0T6RAh9C5Dk39AAIIQ1jxowZ2LRpE1xdXfnXkpKScPvtt2Pp0qX46KOPRMfrdDpMmDBB9NrSpUvx1FNP4c0330RYWBiWLVsm+32VlZVYvHgxBg8ejD179li8f/HixVpeUeNRVlYGDw8PxWPGjh0Lf39/AMDjjz+OMWPGYPv27Th48CDi4uLqY5iEOCSa8SHEQfXt21cU9ABAZGQkunXrhpMnT6o6h5OTE1599VV07doVr7/+OgwGg+yxly9fRklJCfr16yf5fkBAgOjnGzduYOHChejUqRNatGiBoKAgJCQk4OzZs/wxK1asQN++feHn5wd3d3fExMRg69atovNoNBpcu3YNH3zwAb+8NGnSJCxcuBCzZs0CAISHh/PvCXNqPvroI8TExMDd3R2+vr544IEHkJubKzr/gAEDEBUVhUOHDqF///7w8PDA//3f/6m6f0KDBg0CAGRnZyse9+abb6Jbt25wc3NDcHAwpk2bJpqxGjBgAL766iucO3eOv6awsDCbx0NIc0UzPoQQHmMMFy5cQLdu3VR/xsnJCQ8++CCee+45/PzzzxgxYoTkcQEBAXB3d8fOnTvx5JNPwtfXV/acVVVVGDlyJL777js88MADmD59OkpLS5GWloasrCxEREQAANasWYPRo0dj/PjxKC8vx6effor7778fu3bt4sexceNGTJkyBXfeeSemTp0KAIiIiICnpyf++usvfPLJJ1i1ahU/+9K6dWsAwIsvvojnnnsOiYmJmDJlCi5duoTXXnsN/fv3x5EjR+Dj48OPV6/XY/jw4XjggQcwYcIEBAYGqr5/HC6g8/Pzkz1m4cKFWLRoEeLj4/HEE0/g1KlTeOutt/Drr79i//79cHFxwbx582AwGJCXl4dVq1YBAFq2bGnzeAhpthghhNyyceNGBoCtW7dO9Prdd9/NunXrJvu5zz//nAFga9asUTz//PnzGQDm6enJhg8fzl588UV26NAhi+Pef/99BoCtXLnS4j2j0cj/vqysTPReeXk5i4qKYoMGDRK97unpySZOnGhxruXLlzMALDs7W/R6Tk4Oc3JyYi+++KLo9d9//505OzuLXr/77rsZAPb222/LXrfQggULGAB26tQpdunSJZadnc3eeecd5ubmxgIDA9m1a9cYY4ytX79eNLaLFy8yV1dXNmTIEFZVVcWf7/XXX2cA2Pvvv8+/NmLECNa+fXtV4yHE0dBSFyEEAPDnn39i2rRpiIuLw8SJE236LDejUFpaqnjcokWLsGnTJvTs2RPffvst5s2bh5iYGERHR4uW17Zt2wZ/f388+eSTFufQaDT8793d3fnfX7lyBQaDAXfddRcOHz5s0/jNbd++HUajEYmJibh8+TL/q02bNoiMjMTevXtFx7u5ueGRRx6x6Ts6d+6M1q1bIzw8HI899hg6duyIr776SjY3KD09HeXl5UhNTYVWW/1/3Y8++ii8vb3x1Vdf2X6hhDggWuoihKCwsBAjRoyATqfD1q1b4eTkZNPnr169CgDw8vKyeuyDDz6IBx98ECUlJcjMzMSGDRuwadMmjBo1CllZWWjRogXOnj2Lzp07w9lZ+f+idu3ahRdeeAFHjx7FzZs3+deFwVFNnD59GowxREZGSr7v4uIi+rlt27YW+VLWbNu2Dd7e3nBxcUFISAi/fCfn3LlzAEwBk5Crqys6dOjAv08IUUaBDyEOzmAwYPjw4SguLsZPP/2E4OBgm8/BbX/v2LGj6s94e3tj8ODBGDx4MFxcXPDBBx8gMzMTd999t6rP//TTTxg9ejT69++PN998E0FBQXBxccH69euxadMmm69ByGg0QqPRYPfu3ZJBoHnOjHDmSa3+/fvzeUWEkPpDgQ8hDuzGjRsYNWoU/vrrL6Snp6Nr1642n6OqqgqbNm2Ch4cH/vWvf9VoHL169cIHH3yAgoICAKbk48zMTFRUVFjMrnC2bduGFi1a4Ntvv4Wbmxv/+vr16y2OlZsBkns9IiICjDGEh4ejU6dOtl5OnWjfvj0A4NSpU+jQoQP/enl5ObKzsxEfH8+/VtsZL0KaM8rxIcRBVVVVISkpCRkZGfjss89qVDumqqoKTz31FE6ePImnnnoK3t7esseWlZUhIyND8r3du3cDqF7GGTNmDC5fvozXX3/d4lh2q8Cfk5MTNBoNqqqq+PdycnIkCxV6enpKFin09PQEAIv3EhIS4OTkhEWLFlkUFGSMQa/XS19kHYqPj4erqyteffVV0ZjWrVsHg8Eg2k3n6empWFqAEEdGMz6EOKiZM2dix44dGDVqFIqKiiwKFpoXKzQYDPwxZWVlOHPmDLZv346zZ8/igQcewOLFixW/r6ysDH379kWfPn0wbNgwhIaGori4GF988QV++ukn3HfffejZsycA4OGHH8aHH36IGTNm4JdffsFdd92Fa9euIT09Hf/973/x73//GyNGjMDKlSsxbNgwjBs3DhcvXsQbb7yBjh074vjx46LvjomJQXp6OlauXIng4GCEh4cjNjYWMTExAIB58+bhgQcegIuLC0aNGoWIiAi88MILmDt3LnJycnDffffBy8sL2dnZ+PzzzzF16lQ8/fTTtbr/tmrdujXmzp2LRYsWYdiwYRg9ejROnTqFN998E7179xb9ecXExGDz5s2YMWMGevfujZYtW2LUqFH1Ol5CGq2G3FJGCGk43DZsuV9Kx7Zs2ZJFRkayCRMmsD179qj6voqKCvbuu++y++67j7Vv3565ubkxDw8P1rNnT7Z8+XJ28+ZN0fFlZWVs3rx5LDw8nLm4uLA2bdqwsWPHsrNnz/LHrFu3jkVGRjI3NzfWpUsXtn79en67uNCff/7J+vfvz9zd3RkA0db2xYsXs7Zt2zKtVmuxtX3btm3sX//6F/P09GSenp6sS5cubNq0aezUqVOie6O01d8cN75Lly4pHme+nZ3z+uuvsy5dujAXFxcWGBjInnjiCXblyhXRMVevXmXjxo1jPj4+DABtbSdEQMOYHRrDEEIIIYQ0AZTjQwghhBCHQYEPIYQQQhwGBT6EEEIIcRgU+BBCCCHEYVDgQwghhBCHQYEPIYQQQhwGFTA0YzQakZ+fDy8vLyr7TgghhDQRjDGUlpYiODgYWq38vA4FPmby8/MRGhra0MMghBBCSA3k5uYiJCRE9n0KfMx4eXkBMN04pb5DhBBCCGk8SkpKEBoayj/H5VDgY4Zb3vL29qbAhxBCCGlirKWpUHIzIYQQQhwGBT6EEEIIcRgU+BBCCCHEYVCOTw1UVVWhoqKioYfRbLm4uMDJyamhh0EIIaQZosDHBowxFBYWori4uKGH0uz5+PigTZs2VEuJEEKIXVHgYwMu6AkICICHhwc9lOsAYwxlZWW4ePEiACAoKKiBR0QIIaQ5ocBHpaqqKj7o8fPza+jhNGvu7u4AgIsXLyIgIICWvQghhNgNJTerxOX0eHh4NPBIHAN3nymXihBCiD1R4GMjWt6qH3SfCSGE1AUKfAghhBDiMCjHhxBCCCF2odfrUV5eLvu+q6trg+fJUuDjACZNmoQPPvgAAODs7AxfX190794dDz74ICZNmgStVt3E34YNG5Camkrb+QkhhFjQ6/V4/fXX+Z8NBi8UFfnB11cPna6Ufz0lJaVBgx8KfOpRQ0bCw4YNw/r161FVVYULFy7gm2++wfTp07F161bs2LEDzs70V4EQQkjNCZ9vhw/3xM6dI8GYFhqNEaNG7UJ09BGL4xoCPe3qiXkkLKeuImE3Nze0adMGANC2bVtER0ejT58+uOeee7BhwwZMmTIFK1euxPr16/H333/D19cXo0aNwssvv4yWLVvihx9+wCOPPAKgOvF4wYIFWLhwITZu3Ig1a9bg1KlT8PT0xKBBg7B69WoEBATY/ToIIYQ0bgaDFx/0AABjWuzcORIREWdEMz8NpckkNy9ZsgS9e/eGl5cXAgICcN999+HUqVOiY27cuIFp06bBz88PLVu2xJgxY3DhwoUGGrGY2gi3PiPhQYMGoUePHti+fTsAQKvV4tVXX8WJEyfwwQcf4Pvvv8fs2bMBAH379sXq1avh7e2NgoICFBQU4OmnnwZg2nK+ePFiHDt2DF988QVycnIwadKkersOQgghjUdRkR8f9HAY06KoyLeBRiTWZAKfffv2Ydq0aTh48CDS0tJQUVGBIUOG4Nq1a/wx//vf/7Bz50589tln2LdvH/Lz85GQkNCAo278unTpgpycHABAamoqBg4ciLCwMAwaNAgvvPACtmzZAsC0DKfT6aDRaNCmTRu0adMGLVu2BABMnjwZw4cPR4cOHdCnTx+8+uqr2L17N65evdpQl0UIIaSB+PrqodEYRa9pNEZcu+YJg8GrgUZVrcksdX3zzTeinzds2ICAgAAcOnQI/fv3h8FgwLp167Bp0yYMGjQIALB+/XrcdtttOHjwIPr06dMQw270GGP80lV6ejqWLFmCP//8EyUlJaisrMSNGzdQVlamWLjx0KFDWLhwIY4dO4YrV67AaDT9hf/nn3/QtWvXerkOQgghDSMvDzh9GvD2Ns2l6HSlGDVqlyjHhzFg69b7odEY0bZtCWbObLjxNpkZH3MGgwEA4Otrmjo7dOgQKioqEB8fzx/TpUsXtGvXDhkZGbLnuXnzJkpKSkS/HMnJkycRHh6OnJwcjBw5Et27d8e2bdtw6NAhvPHGGwCUl9+uXbuGoUOHwtvbGx9//DF+/fVXfP7551Y/RwghpGnLywNmzQLatwcGDQLuvDMAhw/3BABERx9BaupqjB27BYwBXLjBmBZz5uiQl9dw426SgY/RaERqair69euHqKgoAKYGoq6urvDx8REdGxgYiMLCQtlzLVmyBDqdjv8VGhpal0NvVL7//nv8/vvvGDNmDA4dOgSj0YhXXnkFffr0QadOnZCfny863tXVFVVVVaLX/vzzT+j1eixduhR33XUXunTpwjcYJYQQ0jytWXMV7doxrFgB3Jrkh9Gowc6dI/nlLJ2uFJ6e12EealRVaXDmTD0PWKBJBj7Tpk1DVlYWPv3001qfa+7cuTAYDPyv3NxcO4yw8bl58yYKCwtx/vx5HD58GC+99BL+/e9/Y+TIkXj44YfRsWNHVFRU4LXXXsPff/+NjRs34u233xadIywsDFevXsV3332Hy5cvo6ysDO3atYOrqyv/uR07dmDx4sUNdJWEEELqkl6vxw8/nMH//ucBxixbC5knMUvl+zg5MXTsWOdDldXkAp+UlBTs2rULe/fuRUhICP96mzZtUF5eblFc78KFC/w2bilubm7w9vYW/WqOvvnmGwQFBSEsLAzDhg3D3r178eqrr+LLL7+Ek5MTevTogZUrV2LZsmWIiorCxx9/jCVLlojO0bdvXzz++ONISkpC69at8fLLL6N169bYsGEDPvvsM3Tt2hVLly7FihUrGugqCSGE1BWuLMuGDfstdm1xNBojfH2LAACDBw/GI48MxoIF+dBqGQBAq2VYtswAJ6cC6PX6ehu7aIyMmVbfGjvGGJ588kl8/vnn+OGHHxAZGSl632AwoHXr1vjkk08wZswYAMCpU6fQpUsXZGRkqE5uLikpgU6ng8FgEAVBN27cQHZ2NsLDw9GiRQubx9/QdXyamtreb0IIIWK1LaJbUFCAtWvXwmDwwurVqRbBj3mhQiFTFWdf+PoW1VkVZ7nnt7kms6tr2rRp2LRpE7788kt4eXnxeTs6nQ7u7u7Q6XRITk7GjBkz4OvrC29vbzz55JOIi4trFDu6/Pz8kJKS0uh7mBBCCGl+7PmPb/NdW4ARfftmIDY2U7ZAoU5XKvleQ2yCaTKBz1tvvQUAGDBggOj19evX88XyVq1aBa1WizFjxuDmzZsYOnQo3nzzzXoeqTwKagghhDQE8wBDro+W2kAkOvoIIiLOSM7iNHZNJvBRsyLXokULvPHGG/w2bEIIIaS5qunSlVIfLVvIzeI0dk0m8CGEEEKISU2Xruqqj5b5DJLcjFJjQIEPIYQQ0sTUtP+jUh8tWwIUYWBz9mxH0QxS9+7Hcfx491rPKNUVCnwIIYQQB8HV1REGP8It6GoIl8oAIwDNrV+mIOrYsR6inxtTZ3agCdbxIYQQQoiYweCF7Owwq01AuR1ZXFFBbkaGW57av99Vtp1EWVmZxVKZKYwwL2Qo/rkxdWYHaMaHEEIIadJsTVaW2pHFnWPVKi20WoaXXzZg3LjrfIK0Xq/HRx99hKKiMNnihdUYhMGP0oySq6trDa64dijwIYQQQupIbYoGKn328uXLANQnK5sHGMIdWebnMBo1mDXLG+fPvw+drlRUg05qqQwwQqOBYo4P911JSUnQ6XRWr70uUeBDau2HH37AwIEDceXKFYsmsXLCwsKQmpqK1NTUOh0bIYQ0lNoUDVT7WbXJylJFdC9fvozt27fLniM3NwRFRdeRk1OJ4ODqhOb4+HSkp8eLAhvzGaRBg76XrPGj0+kQFBRk9brqEgU+DmDSpEn44IMP8Nhjj1k0Hp02bRrefPNNTJw4ERs2bGiYARJCSDNU051XtnzWlmRludkVuVmcbdvGgjEtNm5kGDLkAr79NpUPduLj0xEcnC8KbMQBTuOt8UPJzQ4iNDQUn376Ka5fv86/duPGDWzatAnt2rVrwJERQkjTpdfrUVBQIPmLW46yB7nkZaVkZUBdDo35ObidWsKlr2++CRQtp6Wnx9tUsZkbf35+w4cdNOPjIKKjo3H27Fls374d48ePBwBs374d7dq1Q3h4OH/czZs3MWvWLHz66acoKSlBr169sGrVKvTu3Zs/5uuvv0Zqaipyc3PRp08fTJw40eL7fv75Z8ydOxe//fYb/P398Z///AdLliyBp6dn3V8sIYTUA7XLUbWllLyckJCAqVP9MX/+JeTkOCMsrBLBwb0B9LYph0aY8Hztmie2br3f7AjpnVpqAh/h+DduZFi7FkhOVjWsOtHwoZeDyssD9u6F7LbBujB58mSsX7+e//n999/HI488Ijpm9uzZ2LZtGz744AMcPnwYHTt2xNChQ1FUZJo2zc3NRUJCAkaNGoWjR49iypQpeOaZZ0TnOHv2LIYNG4YxY8bg+PHj2Lx5M37++WekpKTU/UUSQkg9qY8Gm3LJy9zMj7+/P4KCghATE4gxY/wQExOIoKAgBAUF2Zw4rNOVIjz8HEJDcwWzPxxx2yi1tX+kEqcfe6x+n33mKPBpAOvWAe3bA4MGmf67bl39fO+ECRPw888/49y5czh37hz279+PCRMm8O9fu3YNb731FpYvX47hw4eja9euePfdd+Hu7o51twb51ltvISIiAq+88go6d+6M8ePH801iOUuWLMH48eORmpqKyMhI9O3bF6+++io+/PBD3Lhxo34ulhBCGhm1tXaElJKX64rU8lmPHsdkl9MA+WuTGn9VFXDmTJ0N3ypa6qpneXnA1KmA8VYwbTQCjz0GDB0KhITU7Xe3bt0aI0aMwIYNG8AYw4gRI+Dv78+/f/bsWVRUVKBfv378ay4uLrjzzjtx8uRJAMDJkycRGxsrOm9cXJzo52PHjuH48eP4+OOP+dcYYzAajcjOzsZtt91WF5dHCCGNVk0bg6pNXq7NtnkpUrV+5HZqKV2b1PidnBi8vC5Cr3em7eyO4PTp6qCHw0W/dR34AKblLm7Jqa662F+9ehWPPfYYnnrqKYv3KJGaENJYccGDwWBARUWFxfvOzs7w8fGxOYioTWNQbvbFPLAQfs4810iuQah5DR1ric/mO7OkdmqZrm0UGJNuUSE1/hEjdmHXLlNgJLWVv65R4FPPIiMBrVYc/Dg5AR071s/3Dxs2DOXl5dBoNBg6dKjovYiICLi6umL//v1o3749AKCiogK//vorX2/ntttuw44dO0SfO3jwoOjn6Oho/PHHH+hYXxdFCCG1ZGuislTOolzAYa3WjlQAInxNavZFeJxwpkdq9sX0WT+sXfu16LMpKSmi2j5cXR9bmK5NOfFZafz1kSdljgKfehYSAqxda1reqqoyBT3vvFM/sz0A4OTkxC9bOTk5id7z9PTEE088gVmzZsHX1xft2rXDyy+/jLKyMiTfSsF//PHH8corr2DWrFmYMmUKDh06ZFH/Z86cOejTpw9SUlIwZcoUeHp64o8//kBaWlq97IAghBBb2foANj9eabln/Pg7sXEjg9FYHSA4OTE8+eRwhIVJL/dIFRw0x808FRQUAJCfWWIMACzHVV5ebnMxQfPgTu1SXGOq60OBTwNITjbl9Jw5Y5rpqa+gh+Pt7S373tKlS2E0GvHQQw+htLQUvXr1wrfffotWrVoBMC1Vbdu2Df/73//w2muv4c4778RLL72EyZMn8+fo3r079u3bh3nz5uGuu+4CYwwRERFISkqq82sjhJD6Zm0pKyrKB2vXasz+watBTEyg4nltXQKSm1kS/l5pic3a0pdccGdtKa6xocCngYSE1F/AY60i8xdffMH/vkWLFnj11Vfx6quvyh4/cuRIjBw5UvSa+bb43r17Y8+ePbLnyMnJURwTIYQ0dlygoGYpqzb/4LWWuFxcXAxArgKzmFT9HeH5k5KSRPlNhYWFOHDggGJwp7SUZU5uObA+UeBDCCGE1AC3HJWTU6lqKasm/+C1JfdIKpGYW+bimC9DqU2MthbcqVnKkpoxaggU+BBCCCFmuADAxeUmKircZGco/Pz84OcnlbtpfSlLDfOZHmszJuazL2fPdlRchrKWGK20LV1tEUNu3FIzRvPnX0J99yylwIcQQggREAYAporFGqu1d+ojd1NtLSDh7IvSMpSwl5jSUhYA2a7s5kUM5YIyuRmjnBxnxMTU8sbYiAIfQggh5BbzAIDrUaWm9g63lGVqXCqeqSkuLkZlZSUAU2FYrp4Ox1ptoNrWApI6Rrh1XS4wycyMRUZGnGJXdsB6UCY3Y9SpU/03kKDAx0aMMesHkVqj+0wIqStSycJcgrBUAMAxT1iWOo/BYMDmzZtrNC6lYn7Wcmz69euHwEDT0tr169exe/duxe9Ssy0dMPJBD/d96enxSE1dbTHTIxeUPfrocABAZWUldLp8PP98WxiNGmi1DIsWXYC/v+nPoz6LGFLgo5KLiwsAoKysDO7u7g08muavrKwMQPV9J4QQOXK7nrhZFuEMi7XARGlnlFbLcN99UQgM7IxTp04hLS3NfhcB5VpC1nJs9u/fLzp+woQJ8PDw4H8WFidUuy09Li4DBw70E51XaleYXFDWrl0SDh0CDh/ezB8/fboXv+xWVVWKtWtNx9dnBWcKfFRycnKCj48PLl68CADw8PCARqOx8iliK8YYysrKcPHiRfj4+FgUWSSEECFbKy5bY74zSpjjM3LkLhw7Zr2/Vl1Q07pCyMPDQ7I4oS3b0gGIZnwA6YRmudmiGTOCbo01lQ+u5Jbd6rOCMwU+NmjTpg0A8MEPqTs+Pj78/SaEEDl18cAUBgAuLuWoqHC1Wp9GjlTCb01r2XDjys0NAaBBaGiuzedSsy2dOy4/PwjCrAO5YMsyWDQC0Mj272poFPjYQKPRICgoCAEBAZIN7Ih9uLi40EwPIaReyAUOcg055YIMqffk6tbIJQFnZ2dbJDmbV1MWbk83zUYxSLWjkGNtyUxqRxuHMfC7vABg4MCB2Lt3LwBxsHjtmie2br1f9L1SS2QNhQKfGnBycqIHMyGE2Im1ysS2dEOXC07UBCamHUsFkoGNUvPP/Pwgi23eERFnFPtmCV/jZkLS0tKQlpYmynfx8/NDYmIitmzZIrPjzLZZFakls/j4dBQV+aG0tKXkjrZq4uClVatWFvdVpyuFweAlsfTFkJ8fjPDwc2r+GOsUBT6EEEIajNocHTXJr3JJu3JBi3lgkpY2GFI1e6TyYnbsGAmNBhYzI1wAMmbMNsW+WcLXzGdCzINAHx8fAMo7zszPZTAYZBuQCmdn8vODRUGb0vnN83u2b2+F1atTLe63TleK+Ph0/n7e+jTS0+MRFZXV4LM+FPgQQgiptZrO2qjN0cnPz8fFixctdmlxRfjkknYDAgolX5cKTORmT6QDDq0g/0U8M8IFQ1JLStZaSACWvQy5a7TWi0t4rs2bN4uCRfMlMy74+PDDh0X3xnx5SyguLkOUp7RmTVvZPJ7g4ALJ+9IYlrso8CGEEFIrtszaAMClS5f4PMkrV66o+g5hsT0pckm7ubntZGZeLAMT82O4h7Sa5p9CGo0RoaF5kktKFy8G4NixHjAFBQwdOpy1+Lxcg2elXlzW2lFwfcXKy8v5re3SAZ0GpuRk89eNiI3N5H8qKvIT9SYDrN8zW1pc1CUKfAghhNSK2lmbixcvYsuWLYrH1HTHk9yDNjT0H5nX8yS3rQuP4R7ScruWxDMa4tYWOl0poqOP4Pr1FkhLi7+1lBZv9jkNzp6NxKpVqRg92npiMmDZggKAaJeXEvMZN7l7lpz8Hv74o5uoYrN5UGUtsLF1+735jFRdosCHEEJIveBaNshRSiC2lqws96ANCSmQfQAr5bqYP6StNf+UauVgMHghPT0e1bMncjNG6hKTExIS4O/vj+zsbL54otr+XVKU7llISAFiYzMle3wpfVbpngnf464FsC153R4o8CGEENIgDAYv5OaGAgB8fK4o7oKylqwcHX0E0dFHkJISiZKSAISFVcLDIxKVleEYPLgUERGrJR/AXNAUHn4Os2aF8p8NDu4NoDfKyspEFZANBgO/TJeScgr5+R4IDi7DgQMZFtdnLRlZSJyYLD3r5e/vL0pYrk3/Lo5ScCJXbNDaZ6WCUnPm11KfKPAhhBBiV2qWqw4f7okdO0aiehbEMqlWGDRYS1bmHvahoRrodNzSmw//eWsPcQCIivJBUJBp5oFL1hYGPabzmJKqXV1dcfvtpmMLCgpw4IDl+eQqGlfvBhNdLfLzg3Hliq/qGRxrxQizs7NFHdgBwNnZ2WLmTc29EVIKbGozA1VfKPAhhBBiN2oefAaDl1nQA3DJvnI7igDTQ928hQL3OvewV9Mg1FpgVtst9sLzSy0HRUScwY8/3oVDh3rBfLu3Up0fc9bybIS9xGqaO2VO6c/XHjNQ9YECH0IIIXah9sFXVOQH6XwXDf8gl9r6DQAnTnSr1W4hNYGZ2mRtqeOkzp+aarnMFhX1Bw4d6i36rNo6PxxreTZcsCNVYLEmszDW/nytzUA1FhT4EEKIg7FnpWQhtQ8+X189pLZMczuKuN5YmZmxFt3BAS3i4vYr7jiSY+8ZCYPBAMB6LaHk5PcsKhbLzdaoqfNTVlbG/96yr5gbDAYvidYW4no7rq43ERqaK7rupKQkMMZQWVmJ0tJSi+7z1v58bdnCXp+7uMxR4EMIIQ7EnpWSOdxDzNqDz8XFBYBppmL06F2i5S5uZ1RFhRu/HBMbm4kDB+JgHgjExmYq7jjimC/v2HtGwnxZTe787703RXK7elxchkUAB1j28uLGVlZWBr1ej48++kh0Hp2u1GKXmTiAssyd2rr1fovZH51OxyccFxQUiD5jMHjh2jWPWm1h53Zy1fcuLnMU+BBCiANRu4xz4sQJtGrVyuJ1FxcXtG7dWvTgEhbHa9u2BHPm6FBVpYGTE8OyZSUYN+5Bi3/hizuNAwaDj+RyzOjR8g/SsWP7wMvLC87OzvDx8UFxcTFfJ0hua3xNlsnU5sfIFzoUzyyJG4Ea0bfvfnTteoIP+qSWxgDAw8PD4s+P2xlnPtOkhtoZL/PxCpcjbdnC3pA7uYQo8CGEEAcm91Dnum7LMZ8R4n4/cyaQlAScOQN07KhBSIgPhLurUlJS+MrNV65cwd69e2EweGHbtrGSS1BKD1LhUkxKSgrf00ppyUlpRkJq+cWWXUqWhQ6rcTNLAMzeNyVsczNbwmap1ogDEmukE8etzXhZNkbVgjEjxo7dgtDQPNnco8aU02OOAh9CCHFQ1h7qwjo75vkgSjNHISGmX1L8/Pz4IKmgoAB79+61ugSl5kEqHI+1JSduRmX8+FhERZnq9Ugtv9QkJyg6+ggCAgrx3ntTIJWrIzc24e/lmqUqjc2ceTuL+Ph06HTF2Lp1rOS45Mj1KfP0LLM5uGnIvB4hCnwIIcQBWXuom+rsjEL1LIFRdVsFW9m7r5O1JafU1NUIDz+H0NA+iksvtuQECWfOQkIKFJforPf9km78aW1s/KdFVa+rZ8oMBi/07Zshml2ylhhuy59NYmIiP+tmrqHzeoQo8CGEEAfC7URSeqgDpuUY8dKIFjt21E1NFlv6Oinl23AzCmqWnLiaP0lJSXxRQk5xcTEA9Q99uZkzqSU6pUajUuQCLbniiGPHbhUtQXH/NR9jXNx+xMZmWv2zbCoJy7agwIcQQhyEXq/ndyJJbSlXWo4xsW9NFuHSh1IuD8fa0hyXZJ2fnw9gu+KSE0ep4KFOV4rnn7+AhQvbWCRrc4nU1mbOpK5Dqu+XZUFH6fEKxyYVkERFnbQ4VmqMGRlxom7r5tT+2QQHBzeZgIdDgQ8hhDgIYR7M2bMdIZ7RUbMcU/PlJynC3WDFxcV8KwUu6VlIbb6N8CFsbclJjeRkYNIkjWyyttrlMKk2D9z7pt1muDXzIyQe7+XLl/mSAIC6YNGWMQqDHeGfjZymNMsjRIEPIYQ4GC6IEAY+Go3pAQzILRWZcnyED2FObR6Afn5+0Ov1/DZ0OdYe3uY9qYYPH47du3erDg7kXL58GcHBrhgwQHx9amsXAdZnquRm2MaO3Sqawdm+fbvFMcIASm4Z0NoYExISJGdummJQowYFPoQQ4mDUzACY19kx37ps/hC2peChOWu1hbjieXJLc1LjEeLGbWqVAZuCH+68SUlJovpFcrWLtFqG+fPzMXBgL36rvrWZKrnAJDQ0T3JMgwcPhpeXl2hmTCm4span4+/v32yDHCkU+BBCiINRm7Rrmk0Q54zIzSqoLYxoK3GtGgYu+LFl2Upt41SlIoVcLpAwwBPWLhoy5ApeeeXLW/ewFNxKnZog05bkbgAWrSTUBFdKM1+NZZt5faHAhxBCHIzUgzY+Pl1yRqRXr1747bffANhWzM8eLGvVaKDRMIwZI188z9o5pIICW67r0qVLMkHeZYt+XID6IFMqMFFbMdpacMXtvJLSVPN0aoMCH0IIaSaEzUfz87XIznZGeHglgoONAKq3aQPiB21+frBs9+527drht99+s3uDTyXcA//aNQ/JB7otxfOsBQW2XpfSLjAptszmCPN1bAnGrAVXjaVVRGNBgQ8hhDQDwuajah+a3EP2ww8ftvrgt3eDT27M5eXlosRk875Q5q0WNBojXFzUL6tZCwrkris3N8Rimc8WwtkaYZA5cmQXBAT4QKkjiK3BmLXgytGWsqyhwIcQQuqBtdmY2i45cOe29aGpNqCxd3VlqS7xUn2hTE0xGZ/jw5gW69ZNEQVzSktCplo8hVi4MEhUi+fee4djy5YtslWet20bi/z8DMUif3LfKxd46nSlOHHiHE6cUD6PrUFmQkICpk71x/z5l5CT44ywsEoEB8u34nB0FPgQQkgdUzsbY+vOKGEwlZVVjOzsMNnlIe6hyVUqvnz5MrZv325TorMtCbjWSOXJyPWFGj58J77+egS4HV3CYO7s2Y5WZ7eSkzWStXi4Yodnz+6yKCDImBYHDvTDgQNxkq065P4cbQ087dFFnlvKCgoCYmKk7zepRoEPIYTUMbWzMbbsjJIOpm6DRmOE0rZvnU4nyvewJaCpbU0ca+SCMA+PGzCvaswtR6kNMswbpwqDxujoI3B1vYmtW++XGJXlOZX+HG3t71WTLvKkdijwIYQQlWq7XGXPPBmlYMoUPKjf9q0U0AgrBQPiBFwhe+SRyAVhoaG5kgERoKnR/ZRaZpP6DrlzKv052rIkqLaLvK27vIgyCnwIIUQFeyxX2TtPBpB/eI4duwWenmWyMzPmgYpcQNO6det6aV3APdQjIs6IHviPPjocPj694et7AQsWtIHRqFEMiADryc9S16LU2NT8z0iuQSh3r9XO1qjtIg8o/52j5GXbUOBDCCFW5OUBBw+aHs4AarxcZe88GUC56q/See3Vi4mbBSsoKKjxOZQe6leuXIFGo0FV1WZMn+5lMSslDlYYAMvkZ+E4AVi0tzAPujIzY3HgQBzkZsy4P0dxXpAGZ892RHT0EURHH8FDDwVg164/FWdr1HaR799/HJ5/viMY0/DvffXVKMyfH4uwMGdKXrYRBT6EECKBe1Bu2uSO2bN1MBr9oNGkIi4uo1bLVfbOk7E1mDIYDHyOT20fmFJLRlK4hGohLviwlvckrFIsNSsVEXEGw4d/fSv5WSN5juzsbItqxxypoGvIkHTExmYiKuo+ZGV9IXkvLRuLakTf2bmzJ06csD5bM2eOP5KSzmLChOrABgC0WoYnnxyOsDBnHD/uB6NR/P1VVRqUlgaCYh7bUeBDCCFmuAe6weCF1atTRf/SzsiIg1LysBpyy0pS45DLKRLOWtgSTG3evLlWfbWE1CZjKxX9q03ek7jmj5jwHHJBj7Wgq3fva8jNrV3Hc2vfER4ejr59g3D9OvDYY0BVFeDkBLzzjgYxMYEAgMhIQKuFKPhxcgI6dlS8PUQGBT6EEGKGe6Dn5oZKPtz69t2PjIy4Ot1xY2tBQqlgqq76akkVHqypmuY9Wdb8EVM6h7XK0GqCLmvj5pLCrQVIXH5OcjIwdChubbkX70ALCQHWrjUPjMTHEPUo8CGEEAlcsGFOozEiNjYTsbGZVmdY8vKA06cBf/8Wqr5TmKRa04KE5uNX0/LAFmqXt9SqSd6TweCFEye6KQY9cudQUxnaWsDEBZJK4+aSwnNyKrFxI4PRWP0dTk7Vy1jCmTfzLfdCSoERsQ0FPoQQh8UFJpGR1Q8SvV6PrKximdkE8cNN6eG8bh0wdappeUKrbYWVK2ciMVH+eLkk4JosBdVlXy2l2aKabrfmlupyc0MAaBAamquqKrJ50AIYMXbsVsnEboPBC7m5oWYJyeLK0LYETIMHp6Nfvwx+iXH8+FhERVlWS/bzk5qtqV7GsoVSYETUo8CHEOKQxIGJ6eF0332m2Yzs7DAwdpvFZ8aO3YqoKOX+TQaDAfn5WkydGsD/K99oBGbO9MS//nXN5l041pZUhJ23uWrMddFXyxo1M0xKgZGwArNpJkYDUzd2+arIpmOY6LioqJMwGLyQnR3Gf49SLhCgxZgx0lv/nZ2d+XGbt9JISxsMAOjXLwM6XSmioobKNgKl2ZrGpVkGPm+88QaWL1+OwsJC9OjRA6+99hruvPPOhh4WIaSRyMurDnoA038fewy4445KAMpbxK3ZvHkzsrPDYDROFL1eVaXB0qX7EBV10qbkYmtLKlKdt+uiXpASNTNMSoGRdI8uWJxLuqWFBkOHfoOuXf+wCHI0GiPi49P5zvNS5Lb+C3eiyX1veno8oqKyVAWTNFvTeDS7wGfz5s2YMWMG3n77bcTGxmL16tUYOnQoTp06hYCAgIYeHiGkgen1ehw8CBiN4sCjqgo4duwaAPV5J8LZFgAoLi5WbHy5detYlJfvQn5+PgD128lt3QJfF/WCOMXFxaKf5fJthDNM1gIj6cDC8lxyAR0X9Eh9T1paPMzbXVSTvy86nY7PufL11cN8J5/5NVIRwaaj2QU+K1euxKOPPopHHnkEAPD222/jq6++wvvvv49nnnmmgUdHCGlIwm3qGk2qxQPUVLPF9LOaYENqtgWQK3AHVPd9Wg2drtTmmZ+a5M3Ys6+WXq/Hli1b+J+V8m2EM0zWlt7kKxiLz2XeaV2rZZgzJxtubvKtJLgihFLn1mhM9XjkcEUeL126BOACVq1qI7pGrZZh4sR+6N59FBURbEKaVeBTXl6OQ4cOYe7cufxrWq0W8fHxyMjIkPzMzZs3cfPmTf7nkpKSOh8nIaRhcIm5amdErAUb1v+Vr7F4RfjAr+22cmvjsXdfLeF4reXbTJ/+B//dci0erl3zhMHgJfHnYaoKyJgpuHn55RKMG/cgnzQ8aRJw6JAB+/at44Meue9RWu5Sk/fk5+cHPz8/rFwJBAcDc+aYlka5JOWBAyNrcitJA2pWgc/ly5dRVVWFwEBxtnxgYCD+/PNPyc8sWbIEixYtqo/hEUIakdrMiCQkJCA4ONjiX/kGg+HWf71ubYW3DHzU5tqoDU6Ex9mrDYUc7voA+bwXYb4N5+zZjoIKxwCXvLx16/2ifJ+IiDPo128iYmNN4zMlA2sQEuIDwIf/dEgI4ORUhqNHLQNVqYA2OvoI2rfPwXvvTUFtCk8+/TTwwAOUpNzUNavApybmzp2LGTNm8D+XlJQgNDS0AUdECKkvti4fcfz9/SWDh4qKCis1ZtTn2tQ0iKmrJRe9Xi+qwGwt34ZTHQQK74cGcu0l+vYtB7d6WJPAQi6gDQkpwOjRlkERANEOMGsoSbnpa1aBj7+/P5ycnHDhwgXR6xcuXECbNm0kP+Pm5gY3N7f6GB4hpJGoab0ZOVwl448+crvV4kI65yU5+T2EhEg385TCBTHC1hVCXHNQuVkcuc9xbJn9MT+P+SyO3HKh3MyQkHDJyTx5Wu2YuT9TF5ebqKhws/izTUhIwNSp/khJOYWPP86Er28Rzp7tyP952bPII2ncmlXg4+rqipiYGHz33Xe47777AABGoxHfffcdUlJSGnZwhJBGwR4VjYXLS5Z9veRrzNgS9Jif3xphorRer8fFixdFichqPqeW1CwOY9KJwvn5QbAsNCifCK12zEJSSdbmf7ZcIrqrqysOHDhndacZ7dJqvppV4AMAM2bMwMSJE9GrVy/ceeedWL16Na5du8bv8iKEOK78fK2qisbm29SFzGccuJkQW3JebKE2AfrSpUvw8/OzuaVEfn6+5HcozQbJ7Z7644+uoms1GLyQnh4Py6BHyPat9taTrOX/bLklxL17gVWrLJOd+/WbiAED6m7JkDS8Zhf4JCUl4dKlS5g/fz4KCwtxxx134JtvvrFIeCaEOBa9Xo+jR6+BMfH/F0jt7JHbpq5Ebc6LtTGaByHmjUDllum4ruu27hTbvn277Htys0FyszjffjsMe/YMwahRuxARcUYm10m8zCXcUj548GDZTupylGoAye3a8vPzQ58+0h3PY2P9QDFP89bsAh/A9D9WWtoihHCs1e8x39lTk2WOmhQNzM7O5gObq1evYs+ePYrfYW2ZjiuMKKUmeU1SQZT8LE71TMuOHSOh0UCmn5aYMDjx8vJSNS4hpRpAwj9b8z9T6njuuJpl4EMIIUB1E1Jvb1MrCmvBidw2dbVs3SJvy+yGVE7Kjh3ipRyp2RuDwQuZmbE4cCAOXDE/84BJLigSzjZxScdqkpUBrSDxWZzrZHpd3ZZypWCNC2TM/0zNc3wefXQ4AgICJP9MqYeWY6LAhxDSLImbkAZg5MieiI4+ohicmG9TFy495edrkZ3tjPDwSgQHm9ZHpGaG1G6Rt7YLyfyhL5dXk5kZiyFD0iW/Q6o5p3nui9IsklQgJT3DojyrI8x1EjYjVdsNXSpYM9/uP3/+JeTkOMPd3Yjr17UIC6tEWFg/q0EsbU93PBT4EEKaHcsmpBrRw15NcCJMElZ6CCclJaka08CBA7F3716L80ntQpL6PlMejGW/qIyMOMTGZlpcj2XSbzVueQmAZLJ3QEChZDAGSM+ade9+HMePd7forM4R5jopBZ4uLi6SY1dKVOYEBQExMdb+FAihwIcQ0kC4ZajISPv+i1uuCama9gRC3EyCtYdwRUWFqvO1atVK8nzmu5ACAgolvy81dTX69s3AgQP9FK+Lmym6ds3Dau8ruR5aXIVjue3+UsHLoEHfo6jIFy4u5bc+rxGcU/z9coEnu3Wgtd5ehNQGBT6EkHonXoYyJZkmJ1v/nLVgydYkZjWsPYSdndX93yh3nLVdSP/80072+2JjM/lcnWrV1yWeSTJCeglKvLwknRgsP9MiXIILDz/Hf4ILZrKzw2DZDV1d0KLRmMYqt0NOLlGZEFtQ4EMIqVeWy1CmnTVDhyrP/KgJlmxtQqqGtYewj4+PqtYS3PvWdiH5+ekhtVXcxYU7v+V2cEBqJskU/Gg0jL8HcXEZomUx+S7ygm8WBHn798fxzT7lZoOs3S8lOp2Ov5dt25Zgzhwdqqo0cHJiWLZM3KiUkJqiwIcQUq9OnxbXTgFM24nPnJEPfGoSLEVHH0FAQCFyc9shNPSfGlVNBtQFUWoexAUFBZLnM8/xcXWthOUsjQYVFa4oKvKzeK86X0cjOXMzZswWeHqWye4yi44+AlfXm9i69X7JcXNBy/79cUhLGwyppTlhPlBtg07uXs6cCSQlyTcqJaSmKPAhhNQbvV4Pb+9KaLUBMBqrH+BOTgxeXheh1ztLBhE1CZas7QqS2iott4RSm07u1s7n4lKOigrXW/91g4vLTcUZE6n3XFzKUVzcSvK90NA8yWUq4TWEhubKzEJVN/JMSzOv3SOfD2Sv+0U7rkhdoMCHEFIvhLukRo4UByUjRuzCrl2moMS8WnBNgqW8vCDR8o15rkpZ2YNYsyYSRqMGWi3D/PnnkZR0VXH8Ne3kzjEPqoTnMw/ShLukzGdMpHZUrVs3hc/r4QIY888pBYLmDUcBhr59DyA2NhMAcOJEN0gvhTEI7/GOHSPh6noToaG5/PUZDF42dT8npK5R4EMIqRfCHBilGQHhcbYGS8XFxfwD3vxBLdzCvXp1RzBmCqKMRg0WLQqGwbAaOl2pzU07zVtKCAnzUYR1ZwwGA86dO4eDBw9K7ho7frw7kpPfQ0WFq8X9MZ8tqg56AFPhQCPGjt2C0NA83HdfL+zdq7wzDYDE/WKIjc0U1dyx1miU+/6tW+/nAyvu3ObBVk2qSBNiLzUKfK5duwZPT097j4UQ4kDUzKDYEizp9XqcOGGQrV1jbQs3l8DLfafanUNKva4A8QwW99+goCB+G7zceCoqXPldU+aBgnAHlVRej6dnGXS6Un4LvdI1y+UG5eaGSGy754IdI+666yf8/PNdsnWCTJ81nUv42vXrLawmSBNSl2oU+AQGBiIxMRGTJ0/Gv/71L3uPiRBCJMkFS8XFxdiyZcutQKCPxCeVt3BL7Toyrwxs7vLly6KgR24Ww1rTUF9fPSwLE0pvUTcPFKztoPrrr79UHSf1nnRAJO4236qVfKAp95opV0h6CZK2qZP6UKPA56OPPsKGDRswaNAghIWFYfLkyXj44YcRHBxs7/ERQohVlZWmXlxyD/jk5Pf4XV227DpSu+SlFJycPn2aXw5zcXGBTqeTeMBb7uLKzQ1FaekVxeKJctdSWtoSJ050Q17eOYSEmK65e/fjOHasB7iZm+7dj8vmDY0atUsy4dm82zw3C5ebG4Jt28ZaHCvVl0tq5qlfv4kYMED9/SakNmoU+Nx333247777cOnSJWzcuBEbNmzAc889h6FDh2Ly5MkYPXq06qJehBBiL3KBgPlWdqVls5ycHIu8HWdnZ/j4+ACARR0Za5WduTYV5gYPHgwAklvUAc2t7eWWLSrMKxibX8v33w/Cjh2jwAU4PXocw6BB3+P48e6C79Hg2LHu6N37F4SEFMjeD6UAceDAgXBxccGePXug051EebnlsUB1jo+TE8PcuaV46SVvsyR1IDbWDxTzkPpSq+ikdevWmDFjBmbMmIHXXnsNs2bNwtdffw1/f388/vjjeOaZZ+Dh4WGvsRJCiFVqt1LLLZt99lkGv2QFQHL5KiUlhf+9XP5Mbm4IioquyzYh5SgVNDQFPeIkYqllOe5a8vKCBLM6gCnA6YG2bfMk83jWrZvCz05J3Q+lexkZGYmgoCB06tTJolFoWFglgoN7AwBeeMEAvb7VrVo8OoSFmWowVVWZgp533qEt66R+1SrwuXDhAj744ANs2LAB586dw9ixY5GcnIy8vDwsW7YMBw8exJ49e+w1VkIIUaWmW88tWz6Ymm2aL18J83akAxejYOnHsgkpAHh5efFjFRc0NKeR3aKekJAAf39/nD59Gnv37sU//7SH1OzR1auesstMUs0/heTuJbdcZ61RaFCQ+OfkZFPhSVNhQgp6SP2rUeCzfft2rF+/Ht9++y26du2K//73v5gwYQI/FQwAffv2xW233WavcRJCmiiuv5a/fwurxxoMXsjM9ECvXvX/QJRu+WCiFCBYBi5cYnD1rIu1cwhzZbZuHQvL5S2gb9/9Fl3Y/f39ERQUxC/NtWt3DlLbzjt1Og0fn1LJ1hTCpbOBAwciMjISBoMBFRUVoiU+odq2jaDChKQh1SjweeSRR/DAAw9g//796N27t+QxwcHBmDdvXq0GRwhp2sT9tVph5cqZSEyUnlnYtMkdzz+vw6pVGr4X1333qdvl4+LiUuuxKjUPBZS7gwuXhK5d85Rt/yA8h/mYTTMr4lyZalpkZMTxBQXlhIQUoEePY6Ik5h49jiEkpAAhIQXw9CzFJ5+Mg1wfsFatWiEoKAhB5tM0hDQjNQp8CgoKrObuuLu7Y8GCBTUaFCGk6ZPqrzVzZkuMGdNS9K99vV6PnJxKzJ6t45NeTb24GO64oxITJkxQ/P8bYQNQa4YMGQIfHx/RLAa3LV0518Yyt0auErOpM7x8E1LuHMKGnMKt8XK9s6QCL6nt3//5z5fo3fsXyR5lSn3ACHEUNQp8PDw8UFVVhc8//xwnT54EANx222247777aDcXIQR6vR4HDwJGo3g5pKoKyMzUw93dlBvCVWbOzg6D0TjR7FgNXnttN8LDz1mtpqzX61WNq1OnTrLnUc61YYiPT+eDjsuXL8Pf3x+JiYn8VvorV65g7969VpuQWmtuajB43fqdeEeXMGhKSEhAcHCw7LVwMzzmatM5nZDmokZRyokTJzBq1ChcuHABnTt3BgAsW7YMrVu3xs6dOxEVFWXXQRJCmg4umDHNfKRaPGT37/8AWVmlouKA1h7I1mZ0rBUbBNTlpXBLVpmZsThwIA6mwMOIwYPT0a9fBn/c9u3bFdsuSDUhVdphVlZWBsA8uZqBC37MgyZ/f3/RtajdPWuthhH9w5U4ghr9LZ8yZQqioqJw6NAhviT6lStXMGnSJEydOhUHDhyw6yAJIU0HF3xYe8gKgxRbigrKsVfxO52uFEOGpCM2NlN2S7y1zu/ceZTGX1ZWhoKCAhQXF+Pdd3cjN7erWfKxBhoNw5gxW0Qd1qVERERgwoQJfABljpuNApS3qEslMhPS3NQo8Dl69Ch+++03PugBTElxL774omyyMyHE8aitqWPrsfYk1yZBLnCRKli4Y8dIBAQUIiSkAAkJCXB2duaXwIS4ys1lZWX46KOPAHBBVKpkThBj1X23hC5fvmwxgxURESF7jXq9XlRI0doWdUKasxoFPp06dcKFCxfQrVs30esXL15Ex44d7TIwQkjzYEtNnZrW36kNbpns4sWL2LJli9XjpXd/VRcDTEgAAgICFGegCgpM+TeWW+jF5PJvuERotZ3k7bUUSEhzUKPAZ8mSJXjqqaewcOFC9Oljagh48OBBPP/881i2bBlKSkr4Y729ve0zUkKIQ5DKnSkuLq7zLdY+Pj6iZGUhFxcXVFRUKO7+qq7Tsxo6XamqoERpC71wua+mDVCFKKghxKRGgc/IkSMBAImJidBouOJcDAAwatQo/meNRoOqqip7jJMQ4gDkcme2bNmienbDFnq93mKmRy7ISEpKAlCdj2StGKCaoEQuqXvMmK18Xo+afCJCiHo1Cnzkmu4RQkhNyeXOuLreRGhoLk6cOIFWrVrxeTJCNVmm4XafCb9fuJvLPMioqKjgj42OPoKAgEK8996jsNZHS6/X80FQfr4W2dnO0OmKAcgndUdFnZS9J9ZaTBBClNUo8Ln77rvtPQ5CSBPHtabw9rZcupGaRTEYDGjdujV/jFzuzNat90OjMeLs2V2Ijt4rOyNj64yQcEZGvI3cxFqQcfFiG5i3h2AMOHu2Ix8sCYMr8cxNK4wa1RPR0UcUk7rlGqDKVZAmhFhX46INxcXFWLduHV/AsFu3bpg8ebLFv8QIIc0XN5uxaZM7X3lZqw3AyJE9+Ye/3FLN5s2bkZKSgqSkJGzevFmxcjIXhFy/3gLp6fGSyz625LsIKSUYC4MMYY0b7jPmS11AdbBUXFzMbw+3NnMjTOoWBnZUcJAQ+5NvTKPgt99+Q0REBFatWoWioiIUFRVh5cqViIiIwOHDh+09RkJII8TNZixf/glmzfIWtJvQYOfOkTAYvGQf+Fx14vLycv4fS9yyj0ZjlPw+xrRIS4uXPRc3poKCAtlfwgrPxcXFAIDMzFhVu6p8fHwwYcIEGAxeOHGim+xnuGBpy5Yt/HcozdwIHT7cE6tXp+KDDyZi9epUnD3bUXRPalLfiBAiVqMZn//9738YPXo03n33Xf5fQZWVlZgyZQpSU1Px448/2nWQhBDruKWmyMj66XzNzbAoP9Q1ku/l5oZApzuJy5cvi2ZShF3Kt20bazHTobTsYzAYsHnzZv49pSUxANiyZQsMBq9bOT1SLIOML77ww+rVXM0d8y7o1ePkgiVuh5iamRu5IDE1dTVSU1fXe30jQpqrGgU+v/32myjoAUylzmfPno1evXrZbXCEEHXEXdBNnc2Tk+vnu6091KUClq1bx6K8fBeA7Rbnk+pSrtEYER+fzi9zSX2PMPlYannNlEfjh8OHL6JNG1NAkpsbCqmJ727dfseQIWmiICMrqxizZ7cBY1ywY+p+Lvyv3IyMmsrUSgFkePg5KjhIiJ3UKPDx9vbGP//8gy5duohez83NhZeXl8ynCCF1QaoL+mOPAUOH1s/Mj7WHunTjT+u7k8yTfgHg2jVPi11X5p+X2x2m0Zh+/+GHps8BPW9tSTdntAh6AODjj3+B0Xib2bEaDB36DUJD/7Haj8taZWprAWRCQgL8/f3596jgICE1U6PAJykpCcnJyVixYgX69u0LANi/fz9mzZqFBx980K4DJIQoO326OujhVFUBZ87UT+ADKD/Uo6OPwNX1JrZuvV/0GbndSeZLVFK1bOLi9qNr1xOoqHCDweAFna4UV65cASC/O+xWqTF+Ccn0s/g4pRwaF5ebkOqY3rXrH3apTG0tgPT396/zIo6EOIIaBT4rVqyARqPBww8/zK9hu7i44IknnsDSpUvtOkBCiDy9Xg9v70potQF8cjEAODkxeHldhF7vXG+zAkoP9dDQXFU5LpmZscjIiLNYojKfwTlwIM7iOMBUX0xpdxhH7r0xY7byNXQ4ffr0wZtv3hTs4lJe1qoNpQCSlrUIsQ+bA5+qqiocPHgQCxcuxJIlS3D27FkApgZ5Hh4edh8gIUSasEbMyJHiGZERI3Zh1y7TNu+6qHhsK2uzGYcP97SohMzNzIwZs03VDI5wa7h4ec0IUx6OuNCg+YyPRmNEaGiexdi//faEWRNRU9CTnPweQkIKFK/bxcVFze3BhAkTFP//k5a1CLEfmwMfJycnDBkyBCdPnkR4eDhuv/32uhgXIcQKYd0apZmCmta3sTe5McrXxOFmZpiqGRzhspn5d50929Ei6AKgmGzMkUs6rqiwPgOj0+moOSghjUyNlrqioqLw999/Izw83N7jIYTUUH13Nq/J0ovUGK016gwNzVM1g8MtmwlzhMLDzwGQD7qUko05cknHLi7WA0oKaghpfGoU+Lzwwgt4+umnsXjxYsTExMDT01P0PnVkJ6RxqW2NH6l+U+HhlUhKSkJFRQWcnZ35KsVC5rV1pMjl5AhnYdTM4Oh0pdi/P062srNU0KUmWLRcOmNgTIt166aIzt+rVy+0a9eO7yVGQQ8hjVONAp97770XADB69Gi+OztAHdkJaQhyhfo4a9dW4fnn2a12Egwvv2zAuHHXVT+Y5ftNGTFqVCb/4JfKJVIzKySVk9O3bwZiYzNF1yMMUqRmcPbvj0Na2mBwM0HC3B8AsvdI6v4lJCTA2dmZ79pe3ZR0CrglOfPconbt2tHSPyFNAHVnJ6SRU5qtkeuDxTEYvLB6dTBfdM9o1GDWLG+cP/8+dLpSVYnP3EyPtX5TUnksfn5+sjkuly9fxvbtpgKG1mrcSDHvb5WWFg/zSsqMaSV3ilnrIybVAb6iwg3meUhyvbwIIY1Xjf6XGh4ejtDQUNFsD2Ca8cnNzbXLwAgh8hWZ9Xo9srKKFQMRwHp3b1sSn2vaKVztco+1ZafBgwcjLS1NdmxSydEajZEveMiNVzgLJHf/Nm/ejMTERNG5rBUYlFrqI4Q0PjVqUhoeHo5Lly5ZvF5UVEQJz8Sh5OUBe/ea/mtPer0ehw5dwNSpzKwiM8MPP5zB66+/jo8//sVq40vuYS1U0+7e9jwXUL0MZjB4ITs7TNRsVCgxMREpKSno3LmzTWMDGKKjD0FulsZa41CuRhnHvIkqNQwlpGmq0YwPl8tj7urVq2jRokWtB0VIU1BX/bG4nJrs7DAYjRNF71VVabBhw88ID1fX+FKpfo7B4IWvv76OiIgz8PO7DgC4fLkF9HpfhIdXIjjY9IA3GAxWz1WTaywvL4eT01SsWdMGRqMGGg1DamohHnnkMp8sbZ6HZL5sJlwui4vLEMzuGDF4cDqiorJw+HCM6j5iwvekavDUZEmOENK42BT4zJgxAwCg0Wjw3HPPiQpuVVVVITMzE3fccYddB0hIY6PX65GTU4mpU6urJXOzMXfccRFhYbWrlsw92KV3Oxlx7Zon36ZBTSAi9bCWym0BLOvaCPOF5M5lfm+kdn9xQRQ3y/P666/fyj9K5fOPGNNg1ao2yMr6Hf36ZWDChAkICgoyy3GyvK9S7SyEidHmidNxcRkArAdyXA2e/Px8PrjiPkcBDyFNl02Bz5Ejpv8TZIzh999/F+3YcHV1RY8ePfD000/bd4SENCLWZmNee203wsPP2aVaslwF4q1b7xcFJmpmIMwTgZWaeHKvyTURlXvwC7euKyVdJyUlAZCr36NBeno8oqKy8NFHH8HHZyZmzGgpO6uWn6+1uJaMjDjExmbyx3D36Mcf78KhQ71w4EA/ZGTEqbp/tvwZUksJQpoGmwIfbjfXI488gjVr1lC9HuJwlGZjhMsk9qqWzD2Yc3NDsG3bWMHsiOmBHxBQiJCQAptmIKw18eSoSVwWqqioAGB99xd3nK+vHuZNP4XfCwDPP+9pkePEzaoBwNGj18BYoNVxZ2VF4dChXpDa6m5tBkdpZxqHavYQ0nTUKMdn/fr19h4HIU2KPfNd1HxXUdF1yUTc996bgtGjLZeklMgtoQlnfADpJqJK9YK47dxqd3/pdKUYPDhdVHtH+L1FRX6ixquAeFaNG5NGk2p13HJb3dUGdhTUENJ81CjwuXbtGpYuXYrvvvsOFy9ehNEo3k3x999/22VwhDRmapeZals1GVDqOC6/JCVHLmgDLHN8ACA7Owz5+UGyFZETEhIQHBysejZMqF8/U76N+bm5a6lN8jZHaat7TXekEUKarhoFPlOmTMG+ffvw0EMPISgoSHKHFyGOQCnfBQA2bXLH7Nm6GldNFn6PON+nmtzMRWJioqi2jFzBQBeXclRUuMHXV4/U1NWithCm5GNTmwa5ZSJ/f3/4+fmhoKBAcqzWZsP69ctAVFSWRQCp9jwREWcwZsw2AAyhoXkW70sHjQzx8emKwSLl7BDSPNUo8Nm9eze++uor9OvXz97jIaRZ2Lx5s8WupZpUTRaSapsAyM9cBAQEKJ5fpyuV7HkVHX3EIk/H1mUipdmwwkJnZGeHiZbM5AJIa7Nq1ipXc+c2TxIfPDidn20CTLNW/v7+/M+Us0NI81WjwKdVq1bw9fW1fiAhDqwmVZP1ej2Ki4tlzxkSUoDRo+VnQbgHuJoHt1ISslLHdEDdMpFUMHP4cE88/3wXGI23yQYq5mNU6rFlrXI1x1oA5e/vj6CgIMXrIYQ0DzUKfBYvXoz58+fjgw8+ENXyIYRUsyXXBRA3AwXkH/pKD3GlB7j50o1SYCa3PARoFJeu1AUq0ktm5qzN5tjaQoPq7xBCgBoGPq+88grOnj2LwMBAhIWFWVQ4PXz4sF0GR0hjY0veh625LsIZIGsP/Zo8xLlt2VxBPqXAjBv7jh0jIVxW69t3v0XXdM6WLV58TlBtAxU1szm2BpZKKJ+HEMdRo8Dnvvvus/MwCGka1NR0KS4uxpYtWwDUrMWBLUs4NRk/N3ZrgVlExJlbW9y5T2ssigMCQFlZGQ4duoAZMwJEszm7do1CSkokdLpS7N69W6ZuT3WgwhU23Lx5s6ogyV4lBSZMmED5PIQ4kBoFPgsWLLD3OAhpMvz8/BRbM0g1t5R6GBcXF0suS8k99HNzQ1BUdF22jk5NKAVm1oKPhIQEeHh44KOPPpKsZG00avDxx5l8zR0TcZK0cEOoTqfjf692NsdaYDlhwgTF5XhKYibE8dgU+Pzyyy+IiYmBk5OT5Ps3b97El19+icTERLsMjpDGSJiLo2ZXESCd+7JlyxbJnV1yD/2tW8cCUP4eNUs25sfIBWbWgg9uF5TB4IVr1zxgPptjHqiY6umo2x1my2yO3PgTExMREREhfRMIIQ7LpsAnLi4OBQUFCAgIAAB4e3vj6NGj6NChAwDTv2AffPBBCnxIs8bN9KhdklIKjqSWzKQe+qblJunvGThwICIjI/mAhqunI4Wb4VBarsvOzkZaWpqq4GPTJnezWj+m4EfqWGuBlMFgEM361LYTurCGESGEcGwKfJhZMx/zn+VeI6Q5UpOHYi04ysvL4z97+fJl/vfCh/61a57YuvV+2e9p1aoVgoKCLHaFybGlfpBS8JGVVYzZs9vweT2mHV8MY8ZskSwkaC2Q4np4mX+GdmIRQuypRjk+SqiKM3EUavJQrAVHX3/9tez5uYd+Xl4QhJWTb50FLi7iGRvzGRy5reVKidl6vZ4PwISfF+fpmHz88S8wGm+zuDZPzzJVhQ25itEGg1edBDe0U4sQIsXugQ8hjkLNUpBcPZz8/GDJYEJKRYUbzHNjAA0qKuQf7Gpzj4RszV1Sm4BsHoDJVYweOPCKRWkMOUlJSaJlMXOUtEwIkWNz4PPHH3+gsLAQgGlZ688//8TVq1cBiKfqCXEE1vJQdLpSxMebdyDXID09HlFRWaLj5WZobK1XY215TW43mdrcpYEDB2Lv3r2Ca4uHXF6PVAAVEXFG5vyrbWi0qqNKy4SQGrE58LnnnntEeTwjR44EYFriYozRUhdxONbyUIKDC2BtN5PSDIu1mSXzWRJry2tyu8nUfr5Vq1b8mNPTq4Oe+Ph00ayQXAA1Zsw2myouS6FlLEJITdkU+GRnZ9fVOBTl5ORg8eLF+P7771FYWIjg4GBMmDAB8+bNE/0f4PHjxzFt2jT8+uuvaN26NZ588knMnj27QcZMCMf6bibru8OUZpbMl3zUzBBxszt5ecDp00BkJMBVqVDzeakxm89iyQVQAFM8v3lXeXO0jEUIqQ2bAp/27dvbdPL//ve/eP7550Vdj2vizz//hNFoxDvvvIOOHTsiKysLjz76KK5du4YVK1YAAEpKSjBkyBDEx8fj7bffxu+//47JkyfDx8cHU6dOrdX3EyJk62yDtRkbta0c5GaWpOryiLuRm6ovnz3bkZ+RuXz5MjZtcsfs2ToYjRpotQzz51fJjjc+Pv1WHR6gtLRU1ZjlAqjQ0DzF++Hj40PLWISQOlOnyc0fffQRnn766VoHPsOGDcOwYcP4nzt06IBTp07hrbfe4gOfjz/+GOXl5Xj//ffh6uqKbt264ejRo1i5ciUFPsQqrhJzcXGxReVlwLScpNPpFOvgXL58Gdu3b+d/FubsKM3YuLjcVJwB4TquS5Gb/YiIOANxZQnxLNL69Wm36u+YluCMRg0WLQpGaqpph5VwvPn5wUhPj+eDlLNndyEiwvqskFLAV9saPYQQUlN1GvjUZU0fg8EAX19f/ueMjAz0799f9K/foUOHYtmyZbhy5Qqfl0CIObVd0Tlq6uDI5eyYn094nFz3c6WO60LCv/um2Rn5GRmlthg63Un+Hri43OSDHu6YnTtHIjV1tarKyspLdFSjhxBS/5rkdvYzZ87gtdde42d7AKCwsBDh4eGi4wIDA/n35AKfmzdv4ubNm/zPJSUldTBi0pgpdUWPi8uw6EauVAcHUF/R2fw4UwK0EcnJ7yEkpLr6stqlNT8/PyQlJWHz5s1W83Skt9kDW7eOxenTx3H8eHdB1WjpAEptTR4KcAghjUmDBj7PPPMMli1bpnjMyZMn0aVLF/7n8+fPY9iwYbj//vvx6KOP1noMS5YswaJFi2p9HlI3hM1Apdgz0VUqYDlwoB8OHIjD6NHW6+BwrOW/cNvBpY4DtHx9noSEBAQHB4uuz9r94FjL05HKA+K+/9ixHuB2oQlnoqoZ+eKJcjV51N4rQgipbw0a+MycOROTJk1SPIbrAwYA+fn5GDhwIPr27Yu1a9eKjmvTpg0uXLggeo37uU2bNrLnnzt3LmbMmMH/XFJSgtDQULWXQOpQTVsw1DRYkg5EAPP8GKl6VcJZGWuzLdzso9rdV3q9nu8Ir+Z+cJTydLjgxNX1pkU7DKliidUNSBkALdatm2KlJs+ZGs/y0FZ1QkhdatDAp3Xr1mjdurWqY8+fP4+BAwciJiYG69evh1YrfkDFxcVh3rx5qKio4OuapKWloXPnzor5PW5ubnBzc6v5RZA6o2Zmw/y42vSrklv+AcQzNsIEZiGuOa/azuLWjhN+j1QytbVcJO47AODDDx+WDE5CQ3MlK0sLgx+NxogHHvgEn376oF1r8kglbdNWdUJIXavTwGfChAnw9vau9XnOnz+PAQMGoH379lixYgUuXbrEv8fN5owbNw6LFi1CcnIy5syZg6ysLKxZswarVq2q9feTxkHNg742/arkl3+UKyVXH1MdLCgl9Xp4eKg6TujSpUuiej1KBQ+5OjjcLjOlpbfw8HNm12zZEyw+Ph2urpU1qsmjxHwZjxBC6kONAh+j0Wgx48K9npeXh3bt2gEA3nrrrdqN7pa0tDScOXMGZ86cQUhIiOg9bueYTqfDnj17MG3aNMTExMDf3x/z58+nrexNELdUJVxSqknvqZp8hgtEMjNjceBAHORaMUjR6XSSMzNC5tvhueDE2rk3b96MpKQkANaTp83r4FhbUuOu+cSJrtizZxjENAgOzoevb1GNavLIbcWnmR1CSEOxKfApKSnBlClTsHPnTnh7e+Oxxx7DggUL4HSr5OulS5cQHh6Oqqoquw5y0qRJVnOBAKB79+746aef7PrdpH5JLVWp3SVV289wdLpSDBmSjtjYTMmZGKWZJ7UPc7njlM5dUVEBQH3BQ+H1WOupBQDe3qWozuUx4QKkmtbkUbsVnxBC6otNgc9zzz2HY8eOYePGjSguLsYLL7yAw4cPY/v27XxCYl3W7iHNn9Rsia0Pels/I5dMK7UNuyazSGqJa/oYMXhwOvr1y7A4ztampdZ6alnWEjJCKkCimjyEkObApsDniy++wAcffIABAwYAAO677z6MGDECo0aNwo4dOwCI8xwIsQdbH/S2fka49CRVufnKlSvYu3dvrWaRrLGs6aO91dEdFsGP2uRpg8FgtaeWVC0hjYZhzJgtCA3No5o8hJBmx6bA59KlS6J+Xf7+/khPT8fQoUNx77334r333rP7AIlj45Z+4uPTLbZjKz2A1QYHHG7pSWpZpqCgQLbujq1dxeVIb6XXWDT+5FhLitbr9di8eTMyM+Mlx3ziRFd06/aH7DV5epbZJcChremEkMbGpsCnXbt2OHnypKhCspeXF/bs2YMhQ4bgP//5j90HSByX+bJSfHw6n2grfCjLPVzt3Q+qJjNPtpzbPL8GEAdWzs7i/7kKm5wKf3Z1dcXFixdhMHjdStA2x7BnzzCkpQ1BfHy6Xa6JtqYTQpoKmwKfIUOGYP369bj33ntFr7ds2RLffvstBg8ebNfBEcclt0STmroaOl0p/6A1f7hKdSpX09FcCXestVmkmsxuCM89eHD6reUtcQ0dLgjx8fFBSkoKLl68iMrKSmzf3gpr1rQVdFc/j6SkqyguLsaWLVtQVBQG80Dq1lkBVN9TW2fTpNDWdEJIU2FT4LNo0SLk5+dLvufl5YW0tDQcPnzYLgMjjs3aspLcbiG5zulCts5EmJ9z/vxLyMlxRlhYJYKDewPoLXtOpSrSBoMBjDEMHjwYaWlpfC6PtSBky5YtMBi8JLurGwyr+eOVCjJyGNMiODgfqamrrc6MDR482KIfHkAzO4SQpsWmwKdVq1aKVZC9vLxw991313pQpHlS00qCU5tlpbp4CAvPGRQExMRY/4ytLSYAUyJzVFSWZBDi6urK3z81+UaWBRmNMM32WM4oqUla7ty5MwU4hJAmz+YChpWVlVi1ahU++eQT/PXXXwCATp06Ydy4cZg+fTrfLoIQIbVBwIQJEwDUzbJSfVPbcgOwrN9jXgCQm1UpKDB1bVcbGJr36+J2iplYX9aSW1IkhJCmyqbA5/r16xg8eDAyMjIQHx+P/v37AzB1UJ8zZw527NiBPXv2oEWLFnUyWNJ0qQ0CPDw8arys1FQp1QaSW9KTms2Jj0+XLWAImPp1iWd7gIiIM4pjowKEhJDmxqbAZ+nSpcjNzcWRI0fQvXt30XvHjh3D6NGjsXTpUixcuNCeYyQOpibLSk1VbWoDRUcfwfXrLficoPT0eLi735AsqFiXW/EJIaQpkc96lPDpp59i5cqVFkEPAPTo0QMrVqzApk2b7DY4QpoTg8EL2dlhMBi8+NeUAhI15+OCHu5zO3eOFJ2fwy2NCanJmWoKS4qEEGILm2Z8zp07hzvvvFP2/T59+uCff/6p9aAIsTe5xGqDwYCKigo4OzvDx8fH4n17LavJLWfVJonbllkcNQUdzWvxNLclRUIIAWwMfLy9vXHx4kWEhoZKvl9YWAgvL8t/bRJiTqkZp1pqdon5+fnVaHeVUEpKSq0CAGvLWbZUmBayNWiyVtCRavEQQhyBTYHPwIED8dJLL2Hbtm2S7y9duhQDBw60y8BI82WPRp9qgxlrNX3UyM/PR3l5eY1nQKzNzNhSYVq49CQXNAFAdnaYZFApt209MTGRgh5CiEOwKfBZsGABYmNj0adPH8yYMQNdunQBYwwnT57EqlWr8Mcff+DgwYN1NVbSDNir0afaYKa2QQ8AbN++nf99YmIiAgICVAUJXJAiNzPj4lI9NrUVpv38/JCYmIgtW7YAsJzFOXu2463ChrYFlVLLfIQQ0hzZFPh07doVaWlpSE5OxgMPPMB3YmeMoUuXLtizZw+6detWJwMlDUvtspLS+4D12Y/GnkzLBRzc8pe1+zJhwgSUlZXh7Fnh1nMGxrRYt26KKDBRm2NjHqRwQVNtgsrGft8JIcRebC5g2KdPH5w4cQJHjx4VFTC844477D020kjYsqwkF/xwbR9yciqxcSOD0VhdT8bJieHJJ4cjLMy5ySy3lJeXq74viYmJiI4+goCAQrz33hRwmynNA5Pa1syxFlRKNRIFKImZEOJYbA58SkpK0LJlS9xxxx2iYMdoNOLq1avw9va25/hII2CvZSU/Pz/4+QFr1wKPPQZUVQFOTsA772gQExNoj6HWK7X3pbKyEgBQUeEGpe7rtWUt2ZmKERJCiI11fD7//HP06tULN27csHjv+vXr6N27N3bu3Gm3wZHmKTkZyMkB9u41/Tc5uaFHZCJVZ8eealpLRy0u2Zn7jpp2WieEkObMphmft956C7Nnz4aHh4fFe56enpgzZw5ef/11jBo1ym4DJM2HMB/GyQno3Nn0+q32U/W25CK1ld4eO82sbdGvzdZ1IaV8HFt2iBFCiCOyKfDJysrCm2++Kft+//798eyzz9Z6UKT5sUeekBKloEMYKEgFOBERZ2STggGoqjekNnCyR2DC5UtxQaTBYMDmzZv599XuECOEEEdkU+Bz5coVPl9BSkVFBa5cuVLrQZHmx97bz60FM1zQwc0iJSUlYe3aryUDnDFjtkkmBX/77WCcPNnNajBjbTeVi4uL6Hi5wKS4uFjxeoUBobifWZDVekWUwEwIISY2BT5hYWH47bff0KVLF8n3f/vtN7Rv394uAyNEiZ+fHyZMmIC//y7H8893AWNcaQUtdu0ahZSUSHToUP2w1+l0srueAGaRFAww/PHH7aLj5LaGW9tNpdPpLAITrlUGAFy9ehV79uzht8rLzV5Z2zVHCCHEOpsCn4SEBMybNw+DBw9GYKB4F05hYSGeffZZTJgwwa4DJESKXq/HRx99hOzsMBiNt4neMxo1+PjjTISHnxMFC3K7nkJD80S5NwADoIE583pDXCCjpnWEMDDR6/WipSlToGOqtHz2bEfZ2St7FGMkhBBHZ1Pg88wzz+DLL79EZGQkJkyYgM63slP//PNPfPzxxwgNDcUzzzxTJwMlDcc8N0RuRqI+c0jUBh3CYEEpuZjLvdHpkrFwoU7yO83rDen1eqvnBcT3Ra/XIz8/n/9ZuEwHGGEKuKpnr2pS1ZoQQog8mwIfLy8v7N+/H3PnzsXmzZv5fB4fHx9MmDABL774IjUpbWa4nViJiYmorKzE9u2tsGZNWxiNGmi1DLNnn8W4cdfh7OyM8vJyFBQU1Gs+ia07pZSSi3W6UowceQPPP6+DUbzrXLLekHmS8fz5l5CT44ywsEoEB/cG0Ft0L8wTvPPygkS5QVLVJexZ54cQQkgNChjqdDq8+eabeOONN3D58mUwxtC6dWu+fYXQ/v370atXL7i5udllsKR+mT+oDQavW32gTH/WRqMGy5Z1wM2bqy0ezLXtaG4LW3dKySUXA0BwsFFUYFGrBWbMAKZPB0JCLI8XJxkDMTHy3yucfTp8uCd27BgJa6W07FnnhxBCSA0CH45Go0Hr1q0Vjxk+fDiOHj2KDh061PRrSAMyzymxlsQrxHU05xgMBlXfefnyZcnXrc0iKQUz3OeFlJbrkpOBoUOBM2eAjh2lA57a4HaBSQc9Rmg0qFWdH0IIIfJqHPiowRiry9OTeqYmiZcj7GguRS7wUPpcTWeRrC3XLVpUiORkcXAVEmIZ8NS2UStHKoAEIKorRAUICSGkbtRp4EOaNvNZmtpWHk5MTISPjw82bXK/lUejsalKMjeLZEsStXlxP6nluvnzA/Hvfxtw++2tZM8jtewnFbglJSVBp9MpBkFSASRgRHLyewgJMZWxpoCHEELqBgU+RJL5lmtObSoP+/j4oKoqCLNng08etmXnknA2KDExUdV3crVyOHLLdX/9ZcTtt0OWeX6OMPiLj09HcHABfH3F94wL9ADxUptcAMkFPXKo8jIhhNQeBT5EktKSjrV8GiWnT8Nix1RNdi5JJdNLcXYW/xWXW64LC5OvSC4kVaU5LW0wAI3ZUpUf3n13t+iahMGamgDSPHCiIoWEEFJ7dRr4qH04EccRGWnaKSUMfmqyc8m8GnJ+vhbZ2c4ID69EcLDp5MIig9Wfk55tMW0/t046P6e67s6OHSMtkpO5ZTzzdi9yAWRCQgKCg4Mp0CGEkDpAyc2kXoWE4NZ2cYaqKk2tdi5xgcGaNVcxY4Ynn6z88ssGjBt3HeXl5ZK7xKRnW9QFPtL5OUJacH/trfXskkNBDyGE1J06DXxKSylBs7lT6oouJzkZuOOOi3jttd213rn0++9X8L//6UTJyrNmeeP8+fcVz2s+2yK3jR4wzRxxDUTNZ4zk2ltwzJfxqJkoIYQ0LJsCn0GDBqk67vvvv6/RYEjjZh7kHD7cE7t2jbJ5dxZgKhQYHn6u1mM6dcpy9qUmOUPWtt8LRUScwZgx2wAwGAw+SE+Pl2w5AYiX8SoqKiioIYSQBmZT4PPDDz+gffv2GDFihOppe9I8SO1kMj3wLftKAai3Xl7h4ZWqawsBNZuhEn42MzMWGRlxohye1NTV/LLZ998PwrFjPWAKfhi6dz9OW9MJIaQRsSnwWbZsGdavX4/PPvsM48ePx+TJkxEVFVVXYyONhPROpniYVx5mTIvr16di7VrLfBvzJRylIMiW4CQ42Ki6tpB58CY1QyX33VItJrhgLzV1NcLDz8Fg8MLx491RPeOjwfHj3TFo0PcU/BBCSCNhU+Aza9YszJo1CxkZGXj//ffRr18/dO7cGZMnT8a4cePg7e1dV+Mk9UwYmEjvZNJazLSYGnm25JN7jUYN5szxQVKSD8xXeMwbfHK7sjIzK7B6dYBicGI+PjVbw6WCN/P6QXKBkVKLCeGymi0tPQghhDSMGiU3x8XFIS4uDmvWrMFnn32GN954A08//TTy8/Mp+GkmhIFJfr4WH37I+GUtAHByYnjuuetYvNgTVVWmoOd//wNWrBCfp6rK1PNKqcHnunXA1KnS9X127RqFe++9C716lYu2qZvnylirLWQtKFEKjORaTADiZTVrLT3MawoRQgipf8qtoa04fPgw9u3bh5MnTyIqKoryfpoZPz8/BAUF4ejRQIgTdoF33tFgwQJP5OQAe/cCOTmmDuZas79RTk6mRp9y8vKkgx6O0ajB44+3wp13BuLrr4MQFBRUowRhLigREgYlSoGR1Ge5zwuX1bgdX9yx5u9zxQgJIYQ0HJv/CZqfn48NGzZgw4YNKCkpwYQJE5CZmYmuXbvWxfhIA+MCE2FJJq3W1L0csGzmaarRA34W6J13lLubS1VylmI0mmr/3HHHRX7mB1Dehi509mxH0TWYByX5+UEw35rOBUaWW9iN6Ns3A7GxmRazTLVp6UEIIaTu2RT43Hvvvdi7dy+GDBmC5cuXY8SIETR938xJBSZKy1fJyaag6MwZ00yPUtADSFdyllNVpcFrr+1W3AYvlZwslaPDGPgdaAaDF9LT4yGux8MQH5/On8OWgEZu2Y16bRFCSMOzKWr55ptvEBQUhH/++QeLFi3CokWLJI87fPiwXQZHGp5UYGJt+cp8FkhJdSXn6lmipUuB9u2BpCRYzNLIbVNPSEjAnj2hfNd3rZZh0aICVFW9K5ucnZkZiyFD0mXbUAQH54tesZZHxHVml0KFCQkhpHGwKfBZsGBBXY2D2Iler7drZWCpwMTa8pUt9Ho97r23HJmZWuTkOCMsrLrX1vLl7pg9WycqkCgXeJSXB2D2bB8+QDMaNVi4MAhbt46AwfAjTMUFxcFNRkYcunY9gWvXPGyqBWQuMTERAQEBFNgQQkgToGHUUEukpKQEOp0OBoOhye1Q0+v1eP31160el5KSYvNDOi9P/fKVWmrGa1q6sr681K1bCu6/3/KaJk7cgPDwc9izJx4HDvST+CQXEBllm4smJCTA399f8ntpJocQQhoHtc9vuyTo7Nu3D9euXUNcXBxatWplj1OSGlCa6anJcUK2LF+pnXVSMw5ry0uc8PBKxa7vsbGZfMXlagzVs0BaMGbE2LFbEBqaJ/pOahpKCCHNh82Vm69evYrFixcDMHVfHz58OPbs2QMACAgIwHfffYdu3brZf6SkSbBl1smegoONoiU5ua3mwgKFUnk/3LEDBw5EZGQkzegQQkgzY1Pgs3nzZsyZM4f/eevWrfjxxx/x008/4bbbbsPDDz+MRYsWYcuWLXYfKGkcrM3mGAwGVeepyayTksuXL+O++1wxdKgfMjP12L//A9GurqIiP0REnOH7al265I+vvx4pe75WrVohKCjIrmMkhBDS8GwKfLKzs9G9e3f+56+//hpjx45Fv36m3Ilnn30W999/v31HSBoNtbM5DYHrrp6SkoK+fcuRlaXchsLXtwhff21Ztyc0NA8AcPXq1Xq/BkIIIXXPpsrNlZWVcHNz43/OyMhA3759+Z+Dg4NVF5Qj9qPX61FQUFDn997eszQ1YTB4ITs7DAaDl+T7+fn5/H2Qa0NhMHhBpyvF6NE7Zass79mzB3q9vh6uiBBCSH2yacYnIiICP/74Izp06IB//vkHf/31F/r378+/n5eXR/kQ9awxz8LYS1JSEioqKvDss9lWu6tzMz+A9f5c1ooSNoZAjxBCiH3ZFPhMmzYNKSkp+Omnn3Dw4EHExcWJWlV8//336Nmzp90HSeQ5wsNZp9MhP1+LnTu7KXZXN2etaajp3Op2jRFCCGkebFrqevTRR/Hqq6+iqKgI/fv3x7Zt20Tv5+fnY/LkyXYdILG/xtI6Qe04XF1dkZ3tLDt7I8da01BCCCGOx+Y6PpMnT5YNbt58881aD4jUDa4IX2Panu3n54eUlBRVNX/Cwy9IbEE3wsXF8rPCfl3C5ayRI7vgxIkjisdTUEQIIc0bdRhtxoQPdH9//0a1PZub7REGYXl5pqaokZGWxRKDg41mHdJNxQfXrZsiyvWR28Wl05Wic+cYnDhRfU6DwQuZmbF8YUO5vCFCCCHNh02BT0VFBebNm4ft27fD19cXjz/+uGj258KFCwgODkZVVZXdB0psYx4AtG1bgpkz6+e7ExMT4ePjI/u+1KzTunXA1Kmmystarak/WHKy+HPR0UcQEFCIdeumiHJ9duwYiYCAQnh5XZXcxSWVB3T4cE/s2GHesd163hAhhJCmzabA58UXX8SHH36Ip59+GsXFxZgxYwYyMzPxzjvv8MdQ66+GJ7WNe84cHZKSatdnS21Ojq0NO/PyqoMewPTfxx4Dhg6tHi/33RUVbpIVl9etm4K4uAzFXVwc7v5IpbhJHU8IIaT5sCnw+fjjj/Hee+9h5EhTxdtJkyZh+PDheOSRR/D+++8DADQajdIpSD2Q2sZdVaXBmTO1C3xsycnhmC9fSVV+PnjQFUajOFCqqoJovNx3Hz58ER9+aNlugjEtDhyIU9VlXer+SB3fWJLACSGE2I9Ngc/58+cRFRXF/9yxY0f88MMPGDRoEB566CG8/PLLdh8gUSb1cJbaxu3kxNCxY+2DUltmcsyXr1auvIriYsuaQwaDFzSaVLPxmjrBm393VFQ5Ro3aZbFMZaJFXNx+i5wdbvbGw8MDgPT9Aap3fT366HCbZ60IIYQ0DTYFPm3atMHZs2cRFhbGv9a2bVvs3bsXAwcOxKRJk+w8PGKN3CxM27YlmDNHh6oqDZycGN55R1Or2R4pSsnIUstXM2d64qmnvCyWkcwbiCqN19XVVTLXBzAFLrGxmYiNzRQVJUxISOA7rHP3Snh/tFqGqVOvYcqUawgL60cBDyGENGMaZkNSzpQpU8AYw7p16yzeO3/+PAYMGIC///67SSc3l5SUQKfTwWAwwNvbu6GHI0uuWWh+vhbZ2c7o3FmLVq1a4cwZ08yJu7tyc1Fbt7lbS0beuxcYNMjycxMnbkB4+DnJc5p2ofniySeHIyYmUPa7uWtfu7YKixYF87M78fHpCA4usNiWPnXqVMkdbXl54O+PvYNCQggh9Uvt89umGZ/nnnsOf/75p+R7bdu2xb59+5CWlmbbSInN5NpUmO/kWrXqKqZPb6m6rUVKSoqq4EdNMnJkpCkg4o4BTMtt5vk2QlwV5eBgo+wxQPVy29SpBTAYTN3W8/ODkZ4eb9O29JAQCngIIcTR2FS5uX379hg6dKjs+8HBwZg4cWKtB0WUSc3cSO3kmjnTE3l56ttaqD3u9GlxQANUJyNzQkJMs0BOTqafnZyAZcsMdt8tpdOVwte3iA96AHEzUkIIIUTIpsCH89lnnyEhIQFRUVGIiopCQkICtm7dau+xSbp58ybuuOMOaDQaHD16VPTe8ePHcdddd6FFixYIDQ11qGRrpZ1c9sbN5ghJJSMnJwM5OaZlr5wcYNy46/YfDJSbkRJCCCFCNgU+RqMRSUlJSEpKwh9//IGOHTuiY8eOOHHiBJKSkvDAAw/UeR2f2bNnIzg42OL1kpISDBkyBO3bt8ehQ4ewfPlyLFy4EGvXrq3T8TQW3E4lIdNOLvt/l9RszjvvWC4b6fV6lJaehJ/f77hy5XecPn3a/oOB9LVLbWMnhBBCbMrxWbNmDdLT07Fjxw6+lg9nx44deOSRR7BmzRqkpqbac4y83bt3Y8+ePdi2bRt2794teu/jjz9GeXk53n//fbi6uqJbt244evQoVq5cialTp9bJeBoT851RGo0Ry5aVICTEBwUF6s5RXFys+L4wATo52ZTTI5ccrDavqDa4rfxS1y7cxk71eAghhHBsCnzWr1+P5cuXWwQ9ADB69Gi8/PLLdRb4XLhwAY8++ii++OILvh6LUEZGBvr37y96yA0dOhTLli3DlStX0KpVK8nz3rx5Ezdv3uR/LikpsfvY64uwIaevbxHGjXsQgI/qz2/ZssXqMcIEaKXkYDX5QnLNQbk/Q7mda8LjhFv558+/hJwcZ4SFVSI4uDeA3o2qKSshhJCGZ1Pgc/r0acTHx8u+Hx8fj5SUlFoPyhxjDJMmTcLjjz+OXr16IScnx+KYwsJChIeHi14LDAzk35MLfJYsWYJFixbZfcwNhdsZBQAGgwEAcPnyZbud/9KlS3YJJIQ70LRahpdfNmDcuOt8oGLLTjRuq3pQEBATU+uhEUIIacZsyvFxd3dXXA4pKSlBixYtVJ/vmWeegUajUfz1559/4rXXXkNpaSnmzp1ry3BVmTt3LgwGA/8rNzfX7t9R1wwGL2Rnh1nsYtq8eTPWrl2L7du32+27Nm/eDL1eX6tzmO9AMxo1t4oJBvFBlb13ohFCCCGAjTM+cXFxeOutt/DWW29Jvv/GG28gLi5O9flmzpxptdpzhw4d8P333yMjIwNubm6i93r16oXx48fjgw8+QJs2bXDhwgXR+9zPbdq0kT2/m5ubxXkbO+FynnntHjX1a2qrtsGG3A60Q4cMCAnR1erchBBCiBKbAp958+ZhwIAB0Ov1ePrpp9GlSxcwxnDy5Em88sor+PLLL7F3717V52vdujVat25t9bhXX30VL7zwAv9zfn4+hg4dis2bNyM2NhaAKSibN28eKioq4OLiAgBIS0tD586dZZe5miqu9UJOTiWefz4AjJl6cDGmxVdfjcL8+bHw8CiSzdkR5tY88shg+Pv7w2AwYPPmzfUyfqleWRqNER4e+SgoKKNkZEIIIXXGpsCnb9++2Lx5M6ZOnYpt27aJ3mvVqhU++eQT9OvXz64DBIB27dqJfm7ZsiUAICIiAiG3smvHjRuHRYsWITk5GXPmzEFWVhbWrFmDVatW2X08jYGfnx+OH5cqJKhBaWmgbPVj8xmitm1LMGlSFSoqKuph1CZyu7AOHDiCAwdMxyQmJoo+I5cITQghhNjCpsAHAP7zn/9g6NCh+Pbbb/m6LJ06dcKQIUMkd1vVF51Ohz179mDatGmIiYmBv78/5s+f36y3sku3hbAsJMiRqu48e7YO58+vskswIdyFZZ5QbTB4ITc3FAAQGpprsQPN/PsrKyv53zfEch4hhJDmyabA5/vvv0dKSgoOHjyI//znP6L3DAYDunXrhrfffht33XWXXQdpLiwsTLJQYvfu3fHTTz/V6Xc3JlwhwcceM7WMEBYSlKrdI5VbYzRqUFTkW+vAR2kX1uHDPbFjxygAGu5bMXq0KXix9r1SwdrOnSMREXGGZn4IIYTYzKZdXatXr8ajjz4q2fVUp9Phsccew8qVK+02OGKdeVsIYYd0c1IVjrVa5cahUqR29sklPHOBS3XQAwBa7NihrpcWtaMghBBiTzYFPseOHcOwYcNk3x8yZAgOHTpU60ER24SEAAMGWO80zuXWcMGPRmPE/PnnJWdO5LbIA6ZCh2q3tEsFLiZa5OaGyH4Pl6BurR0FJUITQgixhU1LXRcuXOAfSJInc3bGpUuXaj0oUnvmAQGXHBwRcQapqav53JrExOEw3/ylJqdG7ZZ2qR1cnK1b7wfAAFh+j06n46syt21bcqvOjwZOTgzLlpVg3LgHqSozIYQQm9kU+LRt2xZZWVnoKJM9e/z4cb6KLmlY3Jb38vJybNrkjuef18Fo1PBVkmfNMlVJNg9g7J1TY76DS0wDbglM6nu4oGbmTCApiesLpkFIiA9sacVBCCGEcGxa6rr33nvx3HPP4caNGxbvXb9+HQsWLJDs40Uahp+fH6qqgjB7tg+MRlOAYaqS7COqkixUFzk10dFHkJq6Gv37K9d4Uvoetct5hBBCiBKbAp9nn30WRUVF6NSpE15++WV8+eWX+PLLL7Fs2TJ07twZRUVFmDdvXl2NldTA6dNStX5Msyd6vd5i27lUTg3AkJ8fbNP3mufu6HSliIk5InHuapS7QwghpK7ZtNQVGBiIAwcO4IknnsDcuXP5LeUajQZDhw7FG2+8wTcGJY2DXK0fP78rstvPo6MP4dChXqjeiaVBeno8oqKyVC13yeUIWRYuNP39YYxydwghhNQPmwsYtm/fHl9//TWuXLmCM2fOgDGGyMjIZtcWormQq/Xj7FxocawwYDHHLUPJBT7cDI21HCHzwoUAcPfdyYiJ0VHuDiGEkDpnc+DDadWqFXr37m3PsZA6kpwMDB3KJQcD7u56vP66eCuXecBiTrgMJYVLpt67F1i1yjJH6I8/uqJr1z+g05Xyvzh33lmGoCBqTkoIIaTu1TjwIU1LSEh1YnBBgeVWdPl6O6agJz4+XRSsuLq6ilpUcMLDtdBqGZ9MbcLw7bfDsGfPEGo3QQghpEFR4EMAyNXbMQLQgDEtvvtuMIYOvRPjxl3nl7XkcoRGjhQumTEobVknhBBC6pNNu7pI8yVV1dlEehu8UgFDbvv60KHfQNyqgtpNEEIIaVg040N4wsTja9c8b1VWrsZtg1dTS0enK0XXrn9gz54holkkjcYIFxd1VZ8JIYQQe6MZHwKguu4OAISHn0NoaK5FzR0nJ1NytFrms0gAA2NarFs3BYcP97TPwAkhhBAb0IwPka27M2rULnz11ahbPbJM2+BtrZwcHX0EAQGFeO+9KeDibMr1IYQQ0lBoxsfBydXdMRi8sGxZJ+TkaLB3L5CTY9oWr3QeuW7uFRVuMP+rJsz1oSrNhBBC6gvN+DggYaCRmRkr25urdevW8PMz1f0pLy9HQUH1McJWF0rd3JOSknDtWits3Cje4u7kxPDkk8MRFuZMVZoJIYTUGwp8HBBXbDAnpxKLFgVYvK/VMsyc+W/4+bWCXq+X3bYOWK/UrNPp0KVLoET1aA1iYqi9CSGEkPpFgY+D8vPzw/HjwK12ayKPPXYN/v43UFBQAIPBoHgepW7uOl0pP7tkXj2auqwTQghpCBT4ODB//yvQaHQWRQtbtFiLtWvVJR1LFT6UW8YSVo8mhBBCGgIlNzswf/8bFkULR4/eZdNOK27LupOTaepIuIxFuTuEEEIaG5rxaeTy8oDTp4HISPWzJVI9tIRcXV35oMS8W7q1oMdg8EJRkR98ffX8sdHRRzB/fixKSwNpGYsQQkijRoFPI7ZuHTB1KmA0AlotsHat8pZyAFaTkTkpKSn87827pctR2r0VHGxEUJDVUxBCCCENigKfRiovrzroAUz/fewxU4Kw1IwKN8sj3GYOSM/QAFCcEZJibfeW+fcKZ5UIIYSQxoICn0bq9OnqoIcj1ytLr9fjxRc/4AMcwBTs5OcHIT09XnKGRopckARY3721fft2i/OlpKRQ8EMIIaRRocCnkYqMNC1vCYMfuV5ZGzY4YfXq1FuBiRGmjugaAAxcd3RrMzRKy1gGgxeuXfO4dW5xw1Ff3yLZa7B1VokQQgipaxT4NFIhIZAo+iee7dHr9cjJqcTs2QFgjKuKLJyV0QhPKTtDo7SMdfZsR8F7DFzwwwVH1GuLEEJIU0KBTyOmVPSPS2LOzg6D0ThR1fnkZmjklrFyc0NEARGggUbDMGbMFoSG5lHQQwghpMmhwKeRkyv6xy0jSRUQFDMtdynN0Eidw1TbRyMZEHl6llHQQwghpEmiwKeJ4woIipejTEtcGo0R8fHpCA7Ol6zRI0xmFp5Dq2UYOXIXQkNzJQMipbweQgghpDGjwKcZiI4+goCAQqxbN0UUpDAGREVlSc7OSCUzp6auRlGR7612E/1QXt4bbduWYM4cHaqqNHByYli2rARDhgyW3MVFCCGENHbUsqKZqKhwk1juMiUzcwYOHAhAPpkZAMLDzyE42Ag/Pz8EBQVh5kwf5ORosHcvkJOjwcyZPvD396+XayKEEELsjWZ8mgm5PB3hslRAQAAA6zV5zJnnGXEd1zly9X/MjyOEEEIaGgU+jUxNenMBlrk+5snMSUlJ0Ol0ANQFSUr8/PyQkpKC8vJybNrkjuef18Fo1ECrZXj5ZQPGjbtOlZsJIYQ0ShT4NCLi3lzVQYQ5uZkUpYajOp2O/5y1IEnNTI2fnx/y8oDZs4VtNTSYM8cHSUk+oJiHEEJIY0SBTyNh2ZtLg1mzvHH+/PuSy08TJkyQPI9Sw1HhTA0AzJ9/CTk5zggLq0RwcG8AvW2aqbGlrQYhhBDSGFDg00hIBRFKeTceHh5ISUlBfn6+TTushEFNUBAQE1PjIdvUVoMQQghpDCjwaSSkgggu70YuedjPz89u/bC47u5ypGaC1LTVIIQQQhoTCnwaieoggqGqqrrSsrBXllSHdbU7p5SO49pfWCPVbV2prQYhhBDS2FDg04gkJwN33HERr722m99hVd11Xdw8lGOetyPFWt6O2lkjuePk2moQQgghjQ0FPo1McLAR4eHnAADZ2WGy9XaEaNs4IYQQog4FPo2YdANShvz8YNXnUJO7QwghhDgKCnwaMZ2uFPHx6UhLGwyu8SigQXp6PPLzLyEoSPpzXLBTXFyMLVu2WP2exMREu42ZEEIIacwo8GlkzGdggoMLUB30mDCmRV5eC8mt6GoTlYWKi4ttHCUhhBDSNFHg08iYJyvn52uxcSOD0Vgd/Dg5McTE6CQ/b76sJdwKD0ByW/yePXtkPyNXDJEQQghpiijwaYTMiwxa1srRqNpFdfhwT0EXdnbrl/S2eKnPKB1HCCGENEVa64eQhpacDOTkAHv3mv6bnGz9MwaDlyDoAUzLZdXb4nfsGAmDwUvxM9z2ee44SoQmhBDS1NGMTxOhplZOXh5w8KArv1RlvhVeTIvMzFgMGZLOvyL1Gca06NdvIgYMoG3zhBBCmj4KfJo4bgfXpk3umD1bB6PRDxpNKuLj0yW2wotlZMQhNjaTz+OR2j7v5ATExvpRt3VCCCHNAi11NWJ5eablrbw86fe5HVzLl3+CWbO8+QRoxrRIT4/ngx8TZvF582KIOl0pRo3axX/GyYlR7y1CCCHNCs341LO8PFMn9shI5YBizZqrmDHDE0ajBlotw/z555GQcIV/39nZGRqNKdCRW6IKDs5HaupqFBX5wsWlHOvWTREdxzVBFYqOPoKIiDMoKvLFk08OR0xMoB2umhBCCGkcKPCpR+vWAVOnmjqwa7Wm3VpSicq//34F//ufDoyZAhujUYNFi4JhMGwRbS835fKEwcXlpsUSFRfU6HSl/GdGjdplsWNLars695ngYKPFe4QQQkhTRoFPPcnLqw56ANN/H3vM1NncfObn1CnL3BxuWYoLVMy3nXfvfhzHj3dXDGqEszlcUEQIIYQ4Egp86snp09VBD6eqCjhzxjLwCQ+vlJ3BAaS3nR8/3h0PPPAJXF0rLIKapKQk6HTVBQ8vX76M7du32/kKCSGEkMaPkpvrSWSkaXlLyMkJ6NjR8tjgYKMoydh8Bkcup+eTTx7ElSu+FjM5Op0OQUFB/K/gYHVNTqluDyGEkOaGZnzqSUiIVAVm0+vmHdQvX76suCwl3bUdAEwFByMiziguY5m3xZDi6upKdXsIIYQ0OxT41KPkZFNOz5kzppkeLuiRayoqTEw2f12YqCxkngskRxjUqN1pRgghhDR1tNTVAJigpI7SrIuS6OgjSE5+D4A4cUhqi7rSktW6dUD79sCgQab/rltXo+EQQgghTQIFPvXI3kFGSEgBRo+WzwVKSEhASkqK7JKV3E4zuYKJhBBCSFNHS131RC7IyMysXeyplAvk7++vmKdjy04zQgghpDmgwKeeyAUZOTnSfwRco1FfXz10ulL06tULAPDbb79ZHCuXC2QNt9NMOC65nWaEEEJIc0CBTz2RCzLCwiqRlSU+1rw44ahRuwBYBjy1pbTTjBBCCGmOKMennnBBhpOT6WcuyDBvCyFVnHDnzpEwGLxs/k41dXiSk4GcHFMz1Jwc6RYahBBCSHNBMz71SGo7e0GB+Bi54oTCLeoJCQlwdnZGZWWlxXe4uLhAp9PZVIcnJIRmeQghhDiGJhX4fPXVV3j++edx/PhxtGjRAnfffTe++OIL/v1//vkHTzzxBPbu3YuWLVti4sSJWLJkCZydG89lmgcZ5rMyUsUJzbeo+/v7IygoqM7HSgghhDQ3jScisGLbtm149NFH8dJLL2HQoEGorKxEliA5pqqqCiNGjECbNm1w4MABFBQU4OGHH4aLiwteeumlBhy5MmEVZa6Hltou6oQQQgixjYYxYTm9xqmyshJhYWFYtGgRkmWSUHbv3o2RI0ciPz8fgYGBAIC3334bc+bMwaVLl1T3nSopKYFOp4PBYIC3t7fdrkGNgoICrF27FgC3q0u6i3pCQgL8/f0BUGsJQgghBFD//G4SMz6HDx/G+fPnodVq0bNnTxQWFuKOO+7A8uXLERUVBQDIyMjA7bffzgc9ADB06FA88cQTOHHiBHr27Cl57ps3b+LmzZv8zyUlJXV7MQqKi4v530ttUee2uK9fnyZ6T6lIISGEEEKqNYnA5++//wYALFy4ECtXrkRYWBheeeUVDBgwAH/99Rd8fX1RWFgoCnoA8D8XFhbKnnvJkiVYtGhR3Q1eJb1ejy1btsi+L7XFPTr6CICat70ghBBCHE2Dbmd/5plnoNFoFH/9+eefMN4qfjNv3jyMGTMGMTExWL9+PTQaDT777LNajWHu3LkwGAz8r9zcXHtcms2Ughd7bnEnhBBCHFmDzvjMnDkTkyZNUjymQ4cOKLi157tr1678625ubujQoQP++ecfAECbNm3wyy+/iD574cIF/j05bm5ucHNzq8nw64x51WY1W9wJIYQQYl2DBj6tW7dG69atrR4XExMDNzc3nDp1Cv/6178AABUVFcjJyUH79u0BAHFxcXjxxRdx8eJFBAQEAADS0tLg7e0tCpgaSl6eqW1FZKRyzRypJa2IiDNWt7gTQgghxLomUbnZ29sbjz/+OBYsWIA9e/bg1KlTeOKJJwAA999/PwBgyJAh6Nq1Kx566CEcO3YM3377LZ599llMmzatwWd0rHVlz8sD9u93RV5ekOSSFgCMGiXfhZ0QQggh6jSJ5GYAWL58OZydnfHQQw/h+vXriI2Nxffff49WrVoBAJycnLBr1y488cQTiIuLg6enJyZOnIjnn3++Qcct15V96FDTzM+6ddz7ftBopsguaSl1YSeEEEKIOk0m8HFxccGKFSuwYsUK2WPat2+Pr7/+uh5HZZ1cV/YzZ0y/FwZFpqCHAdDwxwqXtGrahZ0QQgghJk1iqasp47qyCzk5mXp1SQVFpqDHtiUttcUZCSGEEEfXZGZ8miquK/tjj5lmeriu7FyCs1YrDn40GiMeeOAT6PV+aNfuH4SEiLuYJiYmwsfHh/+ZKjcTQggh6jWJlhX1qS5aVuj1euTkVCInxxlhYZUIDq6OdDZtcsfs2ToYjRpoNEZ0734cx493lyxUeO+996J37952GRMhhBDSnDSrlhVNmV6vx+uvv87/LOiryps+3Qu5uSEoK3PH11+PALcCye3qiog4A52uFC1atKinURNCCCHNEwU+dUxNO4mzZzuKtrELUaFCQgghxH4oubmOGQwGK+97yQY9ABUqJIQQQuyJAp86VlFRofi+VDsKDhUqJIQQQuyLlroamK+vXrIdxZgxWxEamicKepyd6Y+LEEIIqQ2a8WlgOl2pZDuKqKiTFjM9wm3shBBCCLEdTSE0AtSOghBCCKkfFPg0EmraUVCFZkIIIaR2KPCpY7XNy0lISIC/vz9VaCaEEELsgAKfOqTX61FZWVmrc7i4uCAoKMhOIyKEEEIcGwU+dcS8YnNNUUcRQgghxH5oV1cdUVOxWQ3ayUUIIYTYDwU+hBBCCHEYFPgQQgghxGFQ4NNIGAxeyM4Og8Hg1dBDIYQQQpotSm5uAAaDF4qK/ODrq4dOV4rDh3vyjUq5ys3R0UcaepiEEEJIs0OBTz0zD3Li49ORnh7P9+piTIudO0ciIuIMVXAmhBBC7IyWuuqRweDFBz2AKchJS4u36M7OmBZFRb4AqFozIYQQYk8041NHpAKWoiI/iyAH0Fp0Z9dqGZ58cjjCwpypWjMhhBBiRxT41BE/Pz+kpKSgvLwcly9fxvbt2+Hrq7cIcsyXuzQaI15+uQQxMYENOHpCCCGkeaLApw6Zz9bodKUYNWqXKMcnLi4DUVFZiIrK4ruzjxv3IACfBhkzIYQQ0pxR4FMPhMte0dFHEBFxBpmZsThwIA4HDvRDRkacaCcX5fUQQgghdUPDqBmUSElJCXQ6HQwGA7y9ve12Xr1ej/LychQXFyMvDxg2rAuMRg3/vlbL8MsvFymvhxBCCKkBtc9vmvGpJ1wwExQUhMJCwGgUv280alBaGgiKeQghhJC6Q9vZG0BkJKA1u/NOTkDHjg0zHkIIIcRRUODTAEJCgLVrTcEOYPrvO++YXieEEEJI3aGlrgaSnAwMHQqcOWOa6aGghxBCCKl7FPg0oJAQCngIIYSQ+kRLXYQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBvbrMMMYAACUlJQ08EkIIIYSoxT23uee4HAp8zJSWlgIAQkNDG3gkhBBCCLFVaWkpdDqd7PsaZi00cjBGoxH5+fnw8vKCRqOp8XlKSkoQGhqK3NxceHt723GETQfdA7oHAN0DgO4BQPcAoHsA1O09YIyhtLQUwcHB0GrlM3loxseMVqtFSEiI3c7n7e3tsH/BOXQP6B4AdA8AugcA3QOA7gFQd/dAaaaHQ8nNhBBCCHEYFPgQQgghxGFQ4FNH3NzcsGDBAri5uTX0UBoM3QO6BwDdA4DuAUD3AKB7ADSOe0DJzYQQQghxGDTjQwghhBCHQYEPIYQQQhwGBT6EEEIIcRgU+BBCCCHEYVDgY4O33noL3bt35wsvxcXFYffu3fz7N27cwLRp0+Dn54eWLVtizJgxuHDhgugc//zzD0aMGAEPDw8EBARg1qxZqKysrO9LsZulS5dCo9EgNTWVf62534eFCxdCo9GIfnXp0oV/v7lfP+f8+fOYMGEC/Pz84O7ujttvvx2//fYb/z5jDPPnz0dQUBDc3d0RHx+P06dPi85RVFSE8ePHw9vbGz4+PkhOTsbVq1fr+1JqJCwszOLvgUajwbRp0wA4xt+DqqoqPPfccwgPD4e7uzsiIiKwePFiUa+k5v73ADC1SEhNTUX79u3h7u6Ovn374tdff+Xfb2734Mcff8SoUaMQHBwMjUaDL774QvS+va73+PHjuOuuu9CiRQuEhobi5Zdfts8FMKLajh072FdffcX++usvdurUKfZ///d/zMXFhWVlZTHGGHv88cdZaGgo++6779hvv/3G+vTpw/r27ct/vrKykkVFRbH4+Hh25MgR9vXXXzN/f382d+7chrqkWvnll19YWFgY6969O5s+fTr/enO/DwsWLGDdunVjBQUF/K9Lly7x7zf362eMsaKiIta+fXs2adIklpmZyf7++2/27bffsjNnzvDHLF26lOl0OvbFF1+wY8eOsdGjR7Pw8HB2/fp1/phhw4axHj16sIMHD7KffvqJdezYkT344IMNcUk2u3jxoujvQFpaGgPA9u7dyxhzjL8HL774IvPz82O7du1i2dnZ7LPPPmMtW7Zka9as4Y9p7n8PGGMsMTGRde3ale3bt4+dPn2aLViwgHl7e7O8vDzGWPO7B19//TWbN28e2759OwPAPv/8c9H79rheg8HAAgMD2fjx41lWVhb75JNPmLu7O3vnnXdqPX4KfGqpVatW7L333mPFxcXMxcWFffbZZ/x7J0+eZABYRkYGY8z0l0Wr1bLCwkL+mLfeeot5e3uzmzdv1vvYa6O0tJRFRkaytLQ0dvfdd/OBjyPchwULFrAePXpIvucI188YY3PmzGH/+te/ZN83Go2sTZs2bPny5fxrxcXFzM3NjX3yySeMMcb++OMPBoD9+uuv/DG7d+9mGo2GnT9/vu4GX0emT5/OIiIimNFodJi/ByNGjGCTJ08WvZaQkMDGjx/PGHOMvwdlZWXMycmJ7dq1S/R6dHQ0mzdvXrO/B+aBj72u980332StWrUS/W9hzpw5rHPnzrUeMy111VBVVRU+/fRTXLt2DXFxcTh06BAqKioQHx/PH9OlSxe0a9cOGRkZAICMjAzcfvvtCAwM5I8ZOnQoSkpKcOLEiXq/htqYNm0aRowYIbpeAA5zH06fPo3g4GB06NAB48ePxz///APAca5/x44d6NWrF+6//34EBASgZ8+eePfdd/n3s7OzUVhYKLoPOp0OsbGxovvg4+ODXr168cfEx8dDq9UiMzOz/i7GDsrLy/HRRx9h8uTJ0Gg0DvP3oG/fvvjuu+/w119/AQCOHTuGn3/+GcOHDwfgGH8PKisrUVVVhRYtWohed3d3x88//+wQ90DIXtebkZGB/v37w9XVlT9m6NChOHXqFK5cuVKrMVKTUhv9/vvviIuLw40bN9CyZUt8/vnn6Nq1K44ePQpXV1f4+PiIjg8MDERhYSEAoLCwUPR/ctz73HtNxaefforDhw+L1rA5hYWFzf4+xMbGYsOGDejcuTMKCgqwaNEi3HXXXcjKynKI6weAv//+G2+99RZmzJiB//u//8Ovv/6Kp556Cq6urpg4cSJ/HVLXKbwPAQEBovednZ3h6+vbZO4D54svvkBxcTEmTZoEwDH+dwAAzzzzDEpKStClSxc4OTmhqqoKL774IsaPHw8ADvH3wMvLC3FxcVi8eDFuu+02BAYG4pNPPkFGRgY6duzoEPdAyF7XW1hYiPDwcItzcO+1atWqxmOkwMdGnTt3xtGjR2EwGLB161ZMnDgR+/bta+hh1Zvc3FxMnz4daWlpFv/CcRTcv2YBoHv37oiNjUX79u2xZcsWuLu7N+DI6o/RaESvXr3w0ksvAQB69uyJrKwsvP3225g4cWIDj67+rVu3DsOHD0dwcHBDD6VebdmyBR9//DE2bdqEbt264ejRo0hNTUVwcLBD/T3YuHEjJk+ejLZt28LJyQnR0dF48MEHcejQoYYeGpFAS102cnV1RceOHRETE4MlS5agR48eWLNmDdq0aYPy8nIUFxeLjr9w4QLatGkDAGjTpo3Frg7uZ+6Yxu7QoUO4ePEioqOj4ezsDGdnZ+zbtw+vvvoqnJ2dERgY6BD3QcjHxwedOnXCmTNnHObvQVBQELp27Sp67bbbbuOX/LjrkLpO4X24ePGi6P3KykoUFRU1mfsAAOfOnUN6ejqmTJnCv+Yofw9mzZqFZ555Bg888ABuv/12PPTQQ/jf//6HJUuWAHCcvwcRERHYt28frl69itzcXPzyyy+oqKhAhw4dHOYecOx1vXX5vw8KfGrJaDTi5s2biImJgYuLC7777jv+vVOnTuGff/5BXFwcACAuLg6///676A88LS0N3t7eFg+Rxuqee+7B77//jqNHj/K/evXqhfHjx/O/d4T7IHT16lWcPXsWQUFBDvP3oF+/fjh16pTotb/++gvt27cHAISHh6NNmzai+1BSUoLMzEzRfSguLhb9q/j777+H0WhEbGxsPVyFfaxfvx4BAQEYMWIE/5qj/D0oKyuDVit+jDg5OcFoNAJwrL8HAODp6YmgoCBcuXIF3377Lf7973873D2w1/XGxcXhxx9/REVFBX9MWloaOnfuXKtlLgC0nd0WzzzzDNu3bx/Lzs5mx48fZ8888wzTaDRsz549jDHT9tV27dqx77//nv32228sLi6OxcXF8Z/ntq8OGTKEHT16lH3zzTesdevWTWr7qhThri7Gmv99mDlzJvvhhx9YdnY2279/P4uPj2f+/v7s4sWLjLHmf/2MmUoZODs7sxdffJGdPn2affzxx8zDw4N99NFH/DFLly5lPj4+7Msvv2THjx9n//73vyW3tPbs2ZNlZmayn3/+mUVGRjbaLbxSqqqqWLt27dicOXMs3nOEvwcTJ05kbdu25bezb9++nfn7+7PZs2fzxzjC34NvvvmG7d69m/39999sz549rEePHiw2NpaVl5czxprfPSgtLWVHjhxhR44cYQDYypUr2ZEjR9i5c+cYY/a53uLiYhYYGMgeeughlpWVxT799FPm4eFB29nr2+TJk1n79u2Zq6sra926Nbvnnnv4oIcxxq5fv87++9//slatWjEPDw/2n//8hxUUFIjOkZOTw4YPH87c3d2Zv78/mzlzJquoqKjvS7Er88Cnud+HpKQkFhQUxFxdXVnbtm1ZUlKSqH5Nc79+zs6dO1lUVBRzc3NjXbp0YWvXrhW9bzQa2XPPPccCAwOZm5sbu+eee9ipU6dEx+j1evbggw+yli1bMm9vb/bII4+w0tLS+ryMWvn2228ZAIvrYswx/h6UlJSw6dOns3bt2rEWLVqwDh06sHnz5om2IDvC34PNmzezDh06MFdXV9amTRs2bdo0VlxczL/f3O7B3r17GQCLXxMnTmSM2e96jx07xv71r38xNzc31rZtW7Z06VK7jF/DmKDEJiGEEEJIM0Y5PoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQ0U4WFhXjyySfRoUMHuLm5ITQ0FKNGjRL10Dlw4ADuvfdetGrVCi1atMDtt9+OlStXoqqqij8mJycHycnJCA8Ph7u7OyIiIrBgwQKUl5eLvu/dd99Fjx490LJlS/j4+KBnz558s0oAWLhwITQaDYYNG2Yx1uXLl0Oj0WDAgAFWryssLAwajUb216RJk2y/WY3cgAEDkJqa2tDDIKRZcG7oARBC7C8nJwf9+vWDj48Pli9fjttvvx0VFRX49ttvMW3aNPz555/4/PPPkZiYiEceeQR79+6Fj48P0tPTMXv2bGRkZGDLli3QaDT4888/YTQa8c4776Bjx47IysrCo48+imvXrmHFihUAgPfffx+pqal49dVXcffdd+PmzZs4fvw4srKyROMKCgrC3r17kZeXh5CQEP71999/H+3atVN1bb/++isfmB04cABjxozBqVOn4O3tDQBwd3e3xy2sFxUVFXBxcam37ysvL4erq2u9fR8hjZJdGl8QQhqV4cOHs7Zt27KrV69avHflyhV29epV5ufnxxISEize37FjBwPAPv30U9nzv/zyyyw8PJz/+d///jebNGmS4pgWLFjAevTowUaOHMleeOEF/vX9+/czf39/9sQTT7C7775bxdVV43oGXblyhX/tiy++YD179mRubm4sPDycLVy4UNT/CgB7++232YgRI5i7uzvr0qULO3DgADt9+jS7++67mYeHB4uLixP1X+PG/vbbb7OQkBDm7u7O7r//flE/JsYYe/fdd1mXLl2Ym5sb69y5M3vjjTf497Kzs/n72r9/f+bm5sbWr1/PLl++zB544AEWHBzM3N3dWVRUFNu0aRP/uYkTJ1r0RMrOzmbr169nOp1O9P2ff/45E/7fOjfud999l4WFhTGNRsMYM/0dSE5OZv7+/szLy4sNHDiQHT161KZ7T0hTRUtdhDQzRUVF+OabbzBt2jR4enpavO/j44M9e/ZAr9fj6aeftnh/1KhR6NSpEz755BPZ7zAYDPD19eV/btOmDQ4ePIhz585ZHd/kyZOxYcMG/uf3338f48ePt8tMxE8//YSHH34Y06dPxx9//IF33nkHGzZswIsvvig6bvHixXj44Ydx9OhRdOnSBePGjcNjjz2GuXPn4rfffgNjDCkpKaLPnDlzBlu2bMHOnTvxzTff4MiRI/jvf//Lv//xxx9j/vz5ePHFF3Hy5Em89NJLeO655/DBBx+IzvPMM89g+vTpOHnyJIYOHYobN24gJiYGX331FbKysjB16lQ89NBD+OWXXwAAa9asQVxcHB599FEUFBSgoKAAoaGhqu/JmTNnsG3bNmzfvh1Hjx4FANx///24ePEidu/ejUOHDiE6Ohr33HMPioqKbLndhDRNDR15EULsKzMzkwFg27dvlz1m6dKlFjMlQqNHj2a33Xab5HunT59m3t7eom7s+fn5rE+fPgwA69SpE5s4cSLbvHkzq6qq4o/hZh/Ky8tZQEAA27dvH7t69Srz8vJix44dY9OnT6/1jM8999zDXnrpJdExGzduZEFBQfzPANizzz7L/5yRkcEAsHXr1vGvffLJJ6xFixaisTs5ObG8vDz+td27dzOtVst3XI+IiBDN1DDG2OLFi1lcXBxjrHrGZ/Xq1Vava8SIEWzmzJn8z3fffTebPn266Bi1Mz4uLi7s4sWL/Gs//fQT8/b2Zjdu3BB9NiIigr3zzjtWx0ZIU0c5PoQ0M4yxOjkWAM6fP49hw4bh/vvvx6OPPsq/HhQUhIyMDGRlZeHHH3/EgQMHMHHiRLz33nv45ptvoNVWTy67uLhgwoQJWL9+Pf7++2906tQJ3bt3t2kcco4dO4b9+/eLZniqqqpw48YNlJWVwcPDAwBE3xcYGAgAuP3220Wv3bhxAyUlJXzuULt27dC2bVv+mLi4OBiNRpw6dQpeXl44e/YskpOTRfelsrISOp1ONMZevXqJfq6qqsJLL72ELVu24Pz58ygvL8fNmzf5sdZW+/bt0bp1a/7nY8eO4erVq/Dz8xMdd/36dZw9e9Yu30lIY0aBDyHNTGRkJJ+ULKdTp04AgJMnT6Jv374W7588eRJdu3YVvZafn4+BAweib9++WLt2reR5o6KiEBUVhf/+9794/PHHcdddd2Hfvn0YOHCg6LjJkycjNjYWWVlZmDx5sq2XKOvq1atYtGgREhISLN5r0aIF/3thQrFGo5F9zWg0qv5ewLSzLTY2VvSek5OT6Gfz5cfly5djzZo1WL16NW6//XZ4enoiNTXVYtecOa1WaxG4VlRUWBxn/n1Xr15FUFAQfvjhB4tjfXx8FL+TkOaAAh9CmhlfX18MHToUb7zxBp566imLB19xcTGGDBkCX19fvPLKKxaBz44dO3D69GksXryYf+38+fMYOHAgYmJisH79etEMjhwucLp27ZrFe926dUO3bt1w/PhxjBs3riaXKSk6OhqnTp1Cx44d7XZOzj///IP8/HwEBwcDAA4ePAitVovOnTsjMDAQwcHB+PvvvzF+/Hibzrt//378+9//xoQJEwCYgq2//vpLFHi6urqKSgwAQOvWrVFaWopr167xf8ZcDo+S6OhoFBYWwtnZGWFhYTaNlZDmgAIfQpqhN954A/369cOdd96J559/Ht27d0dlZSXS0tLw1ltv4eTJk3jnnXfwwAMPYOrUqUhJSYG3tze+++47zJo1C2PHjkViYiIAU9AzYMAAtG/fHitWrMClS5f472nTpg0A4IknnkBwcDAGDRqEkJAQFBQU4IUXXkDr1q0RFxcnOcbvv/8eFRUVdp1lmD9/PkaOHIl27dph7Nix0Gq1OHbsGLKysvDCCy/U6twtWrTAxIkTsWLFCpSUlOCpp55CYmIifw8WLVqEp556CjqdDsOGDcPNmzfx22+/4cqVK5gxY4bseSMjI7F161YcOHAArVq1wsqVK3HhwgVR4BMWFobMzEzk5OSgZcuW8PX1RWxsLDw8PPB///d/eOqpp5CZmSlKGpcTHx+PuLg43Pf/7d29aiJRGMbxR9IIWgkBg0JQwgTEsRACNn6BH2BlooG0Ae9AOy2mTjOdNoIWAS0t1EIZLGxSeQXTxCK3sVtFWEL2g11Y4/x/cKozHGa6h3neYep1PT09yTAMvb29abFY6Pb29kMVB5wavuoCTlA8Htdut1OxWFS73VYymVS5XJbjOBoMBpKkZrOpzWaj/X6vbDar6+tr2batbrer6XR6qHvW67Vc15XjOIpGo7q4uDisd6VSSS8vL7q/v5dhGGo0GvL7/XIc58MsybtAIPDPq5Vqtar5fK7VaqWbmxtlMhnZtq3Ly8u/Pvvq6kp3d3eq1WqqVCpKpVLq9/uH/VarpeFwqNFoJNM0lc/nNR6PFYvFfnpur9dTOp1WtVpVoVBQOBxWvV7/4ZpOp6OzszMlEgmdn59rv98rFArp+flZy+VSpmlqMpnIsqxfPofP59NyuVQul9Pj46MMw9DDw4NeX18P807AKfN9+9PpRgDwGMuyNJvNfqtKAnDceOMDAAA8g+AD4OgEg8FP13a7/d+3B+ALo+oCcHRc1/10LxKJfKn/cQE4LgQfAADgGVRdAADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAM74DHWoJY2tegQAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1MklEQVR4nO3dd1gUV9sG8HspSxVQQUEDggXB8lqjLK+JkvCKxl6SWKISW2wxdrCiMSoqxl6S2BN7YsESUVFjoogNCwrYQFREjUgRlXq+P/gYGQEFBXYX7t917UXmnDMzz+4E9vHMnHMUQggBIiIiItJoOuoOgIiIiIjejkkbERERkRZg0kZERESkBZi0EREREWkBJm1EREREWoBJGxEREZEWYNJGREREpAWYtBERERFpASZtRERERFqASRsR0XtSKBSYPn26usOQeHp6wt7eXt1hEFERY9JGRKXS+vXroVAopJehoSEcHR0xYsQIPHz4sFjPferUKUyfPh3x8fFFetxWrVrJ3lOFChXw4YcfYu3atcjMzCySc8yePRu7d+8ukmMRUdHSU3cARETF6fvvv4eDgwNevnyJf/75BytXrsSBAwcQGhoKY2PjIjnHixcvoKf36s/pqVOnMGPGDHh6esLCwqJIzpHtgw8+wJw5cwAAjx8/xsaNGzFgwABcv34dvr6+73382bNno3v37ujcufN7H4uIihaTNiIq1dq2bYumTZsCAAYOHIiKFSvixx9/xJ49e9CzZ893Pm5mZiZSU1NhaGgIQ0PDogr3rczNzfHVV19J29988w1q166NZcuWYebMmdDX1y+xWIioZPH2KBGVKZ988gkAIDIyEgDg5+cHV1dXVKxYEUZGRmjSpAl+//33XPspFAqMGDECmzZtQt26dWFgYICDBw9KddnPtE2fPh3jx48HADg4OEi3MqOiotCyZUs0aNAgz7hq164NDw+PQr8fY2NjuLi4IDk5GY8fP863XXJyMsaOHQtbW1sYGBigdu3a8PPzgxBC9h6Tk5OxYcMGKW5PT89Cx0RExYM9bURUpty6dQsAULFiRQDA4sWL0bFjR/Tu3RupqanYunUrPv/8c+zbtw/t2rWT7Xv06FFs374dI0aMgKWlZZ4P+3ft2hXXr1/Hli1bsHDhQlhaWgIArKys0KdPHwwaNAihoaGoV6+etM/Zs2dx/fp1TJky5Z3e0+3bt6Grq5vvrVghBDp27Ihjx45hwIABaNiwIQICAjB+/Hjcv38fCxcuBAD8+uuvGDhwIJo1a4bBgwcDAGrUqPFOMRFRMRBERKXQunXrBABx5MgR8fjxY3H37l2xdetWUbFiRWFkZCTu3bsnhBDi+fPnsv1SU1NFvXr1xCeffCIrByB0dHTE1atXc50LgPDx8ZG258+fLwCIyMhIWbv4+HhhaGgovLy8ZOUjR44UJiYm4tmzZ298Ty1bthROTk7i8ePH4vHjxyIsLEyMHDlSABAdOnSQ2vXr109Uq1ZN2t69e7cAIH744QfZ8bp37y4UCoW4efOmVGZiYiL69ev3xjiISD14e5SISjV3d3dYWVnB1tYWPXr0gKmpKXbt2oWqVasCAIyMjKS2T58+RUJCAj766CNcuHAh17FatmyJOnXqvHMs5ubm6NSpE7Zs2SLdlszIyMC2bdvQuXNnmJiYvPUY4eHhsLKygpWVFZydnbF06VK0a9cOa9euzXefAwcOQFdXFyNHjpSVjx07FkII/Pnnn+/8noio5PD2KBGVasuXL4ejoyP09PRQuXJl1K5dGzo6r/69um/fPvzwww+4ePEiUlJSpHKFQpHrWA4ODu8dT9++fbFt2zb8/fff+Pjjj3HkyBE8fPgQffr0KdD+9vb2+OWXX6RpTGrVqoVKlSq9cZ87d+6gSpUqKFeunKzc2dlZqicizcekjYhKtWbNmkmjR1/3999/o2PHjvj444+xYsUK2NjYQF9fH+vWrcPmzZtztc/ZK/euPDw8ULlyZfz222/4+OOP8dtvv8Ha2hru7u4F2t/ExKTAbYmodOHtUSIqs/744w8YGhoiICAA/fv3R9u2bYskIcqrly6brq4uevXqhd9//x1Pnz7F7t270bNnT+jq6r73efNTrVo1xMTEICkpSVYeHh4u1Wd7U+xEpF5M2oiozNLV1YVCoUBGRoZUFhUV9d4rAmQ/m5bfigh9+vTB06dP8c033+DZs2eyedeKw2effYaMjAwsW7ZMVr5w4UIoFAq0bdtWKjMxMSnylRyIqGjw9igRlVnt2rXDjz/+iDZt2qBXr1549OgRli9fjpo1a+Ly5cvvfNwmTZoAACZPnowePXpAX18fHTp0kJK5Ro0aoV69etixYwecnZ3RuHHjInk/+enQoQPc3NwwefJkREVFoUGDBjh06BD27NmDUaNGyab1aNKkCY4cOYIff/wRVapUgYODA5o3b16s8RFRwbCnjYjKrE8++QRr1qxBbGwsRo0ahS1btmDu3Lno0qXLex33ww8/xMyZM3Hp0iV4enqiZ8+euSa+7du3LwAUeADC+9DR0YG/vz9GjRqFffv2YdSoUbh27Rrmz5+PH3/8Udb2xx9/RJMmTTBlyhT07NkTK1euLPb4iKhgFELkmA6biIhKxOLFizF69GhERUXBzs5O3eEQkRZg0kZEVMKEEGjQoAEqVqyIY8eOqTscItISfKaNiKiEJCcnw9/fH8eOHcOVK1ewZ88edYdERFqEPW1ERCUkKioKDg4OsLCwwLBhwzBr1ix1h0REWoRJGxEREZEW4OhRIiIiIi3ApI2IiIhIC3AgggbLzMxETEwMypUrx6VliIiItIQQAklJSahSpQp0dIquf4xJmwaLiYmBra2tusMgIiKid3D37l188MEHRXY8Jm0arFy5cgCyLrqZmZmaoyEiIqKCSExMhK2trfQ9XlSYtGmw7FuiZmZmTNqIiIi0TFE/2sSBCERERERagEkbERERkRZg0kZERESkBfhMm5bLyMhAWlqausOgEqCvrw9dXV11h0FERGrCpE1LCSEQGxuL+Ph4dYdCJcjCwgLW1tact4+IqAxi0qalshO2SpUqwdjYmF/ipZwQAs+fP8ejR48AADY2NmqOiIiIShqTNi2UkZEhJWwVK1ZUdzhUQoyMjAAAjx49QqVKlXirlIiojOFABC2U/QybsbGxmiOhkpZ9zfkcIxFR2cOkTYvxlmjZw2tORFR2MWkjIiIi0gJM2oiIiIi0gNYkbR07doSdnR0MDQ1hY2ODPn36ICYmRtZGCAE/Pz84OjrCwMAAVatWxaxZs2Rtjh8/jsaNG8PAwAA1a9bE+vXrc51r+fLlsLe3h6GhIZo3b44zZ87I6l++fInhw4ejYsWKMDU1Rbdu3fDw4UNZm+joaLRr1w7GxsaoVKkSxo8fj/T09KL5MLSYp6cnFAoFFAoF9PX1UblyZfzvf//D2rVrkZmZWeDjrF+/HhYWFsUXKBERkYbRmqTNzc0N27dvR0REBP744w/cunUL3bt3l7X57rvvsHr1avj5+SE8PBz+/v5o1qyZVB8ZGYl27drBzc0NFy9exKhRozBw4EAEBARIbbZt24YxY8bAx8cHFy5cQIMGDeDh4SFNtQAAo0ePxt69e7Fjxw789ddfiImJQdeuXaX6jIwMtGvXDqmpqTh16hQ2bNiA9evXY9q0acX4CWmPNm3a4MGDB4iKisKff/4JNzc3fPfdd2jfvj0TWyIiovwILbVnzx6hUChEamqqEEKIa9euCT09PREeHp7vPhMmTBB169aVlX355ZfCw8ND2m7WrJkYPny4tJ2RkSGqVKki5syZI4QQIj4+Xujr64sdO3ZIbcLCwgQAERQUJIQQ4sCBA0JHR0fExsZKbVauXCnMzMxESkpKgd9jQkKCACASEhJk5S9evBDXrl0TL168KPCxNEW/fv1Ep06dcpUHBgYKAOKXX34RQgixYMECUa9ePWFsbCw++OADMXToUJGUlCSEEOLYsWMCgOzl4+MjhBBi48aNokmTJsLU1FRUrlxZ9OzZUzx8+LCk3l6x0+ZrT0SkCfbsEcLJSYiqVbN+7tlT9OfI7/v7fWlNT1tOcXFx2LRpE1xdXaGvrw8A2Lt3L6pXr459+/bBwcEB9vb2GDhwIOLi4qT9goKC4O7uLjuWh4cHgoKCAACpqak4f/68rI2Ojg7c3d2lNufPn0daWpqsjZOTE+zs7KQ2QUFBqF+/PipXriw7T2JiIq5evZrv+0pJSUFiYqLsVVBCCKSmpqrlJYQocJz5+eSTT9CgQQPs3LkTQNbnvmTJEly9ehUbNmzA0aNHMWHCBACAq6srFi1aBDMzMzx48AAPHjzAuHHjAGRNhTFz5kxcunQJu3fvRlRUFDw9Pd87PiIiKh18fYHwcOD+/ayfvr7qjqjgtGpyXS8vLyxbtgzPnz+Hi4sL9u3bJ9Xdvn0bd+7cwY4dO7Bx40ZkZGRg9OjR6N69O44ePQogaxWBnIkUAFSuXBmJiYl48eIFnj59ioyMjDzbhIeHS8dQKpW5nqeqXLkyYmNj33ie7Lr8zJkzBzNmzCjEJ/JKWloa5syZ8077vq+JEydCqVS+93GcnJxw+fJlAMCoUaOkcnt7e/zwww8YMmQIVqxYAaVSCXNzcygUClhbW8uO0b9/f+m/q1evjiVLluDDDz/Es2fPYGpq+t4xEhGRdvL3z0rQqlYFjIyyXpUqAd7e6o6s4NTa0+bt7S09lJ7fKztZAoDx48cjJCQEhw4dgq6uLvr27Sv18mRmZiIlJQUbN27ERx99hFatWmHNmjU4duwYIiIi1PUWC2XixIlISEiQXnfv3lV3SCVKCCHNQ3bkyBF8+umnqFq1KsqVK4c+ffrgyZMneP78+RuPcf78eXTo0AF2dnYoV64cWrZsCSBrYAgREZVN/v5A795AUBBw8CBQt+5ZjBw5A5Mn/4aOHdUdXcGptadt7Nixb711Vb16dem/LS0tYWlpCUdHRzg7O8PW1hanT5+GSqWCjY0N9PT04OjoKLV3dnYGkPWFXbt2bVhbW+ca5fnw4UOYmZnByMgIurq60NXVzbNNdo+OtbU1UlNTER8fL+tte73N6yNOs4/5es9QTgYGBjAwMHjj55EffX19TJw48Z32fV/Zt6jfV1hYGBwcHBAVFYX27dtj6NChmDVrFipUqIB//vkHAwYMQGpqar4rQSQnJ8PDwwMeHh7YtGkTrKysEB0dDQ8PD6SmphZJjEREpB2ye9a8vbN+PnsG6OpmYtSoBdDTy+oAuHXrlqzDQNOpNWmzsrKClZXVO+2bPT1ESkoKAOC///0v0tPTcevWLdSoUQMAcP36dQBAtWrVAAAqlQoHDhyQHefw4cNQqVQAAKVSiSZNmiAwMBCdO3eWzhMYGIgRI0YAAJo0aQJ9fX0EBgaiW7duAICIiAhER0dLx1GpVJg1a5a0RmT2eczMzFCnTp13er9vo1AoiuQWpbocPXoUV65cwejRo3H+/HlkZmZiwYIF0NHJ6gzevn27rL1SqURGRoasLDw8HE+ePIGvry9sbW0BAOfOnSuZN0BERBrF1zerZy07cRs1Khb9+v0kazNy5EitSdgALXmmLTg4GGfPnkWLFi1Qvnx53Lp1C1OnTkWNGjWkRMnd3R2NGzdG//79sWjRImRmZmL48OH43//+J/W+DRkyBMuWLcOECRPQv39/HD16FNu3b8f+/fulc40ZMwb9+vVD06ZN0axZMyxatAjJycn4+uuvAQDm5uYYMGAAxowZgwoVKsDMzAzffvstVCoVXFxcAACtW7dGnTp10KdPH8ybNw+xsbGYMmUKhg8f/s49aaVJSkoKYmNjkZGRgYcPH+LgwYOYM2cO2rdvj759+yI0NBRpaWlYunQpOnTogJMnT2LVqlWyY9jb2+PZs2cIDAxEgwYNYGxsDDs7OyiVSixduhRDhgxBaGgoZs6cqaZ3SURE6uTmBly5kvVTX/9P9Ov36g5Y1apVMWDAAK1K2ABox5Qfly9fFm5ubqJChQrCwMBA2NvbiyFDhoh79+7J2t2/f1907dpVmu7B09NTPHnyRNbm2LFjomHDhkKpVIrq1auLdevW5Trf0qVLhZ2dnVAqlaJZs2bi9OnTsvoXL16IYcOGifLlywtjY2PRpUsX8eDBA1mbqKgo0bZtW2FkZCQsLS3F2LFjRVpaWqHed2md8gP/P02Hnp6esLKyEu7u7mLt2rUiIyNDavfjjz8KGxsbYWRkJDw8PMTGjRsFAPH06VOpzZAhQ0TFihVlU35s3rxZ2NvbCwMDA6FSqYS/v78AIEJCQkr2jRYTbb72REQlZc8eIfT1hVAqX4rp06fLXteuXSv28xfXlB8KIYpgvgYqFomJiTA3N0dCQgLMzMyk8pcvXyIyMhIODg4wNDRUY4RU0njtiYjeztUVePLkOnr12iIr9/LyKpG/nfl9f78vrbg9SkRERPQm2QMPvLwEunXbgGfP7kh1jRs3RocOHdQYXdFg0kZERERaz9cXuHYtARcvLpKVOzoORIcOVdUTVBFj0kZERERaKee0Hv37n8b9+6/WElcqlZgwYQJ0dXXVGGHRYtJGREREWiU7WXv6FLh+PQOnT8+DgcGr+TirVvXAwIEuaoyweDBpIyIiIq2SPQebShWDadN+kdWNGjUK5ubmaoqseDFpIyIiIq3i7Q34+++Dre15qezhw2pYvryf9s29VghM2oiIiEhr7Nr1Epcvz8X/L3wDALhwoQcGDKiNUpyvAWDSRkRERFpi48YwREbKlzX09vYuM6sNMWkjIiIijSaEgJ/fGjx/fl8qO3/+Qwwc+BnKSL4GANBRdwBExcHT0xOdO3eWtlu1aoVRo0a91zGL4hhERFQ48fHx+P7772UJ28GDgzFw4Gfo2FGNgakBe9qoRHl6emLDhg0AAH19fdjZ2aFv376YNGkS9PSK73/HnTt3Ql9fv0Btjx8/Djc3Nzx9+hQWFhbvdAwiIno//v7A1q0nUbv2EaksOdkY//3vWPj4lM0+JyZtVOLatGmDdevWISUlBQcOHMDw4cOhr6+PiRMnytqlpqZCqVQWyTkrVKigEccgIqK3y8jIwPnzs1G7dqZUduTIZ/j44w/RqZMaA1OzspmqkloZGBjA2toa1apVw9ChQ+Hu7g5/f3/pluasWbNQpUoV1K5dGwBw9+5dfPHFF7CwsECFChXQqVMnREVFScfLyMjAmDFjYGFhgYoVK2LChAkQQsjO+fqtzZSUFHh5ecHW1hYGBgaoWbMm1qxZg6ioKLi5uQEAypcvD4VCAU9PzzyP8fTpU/Tt2xfly5eHsbEx2rZtixs3bkj169evh4WFBQICAuDs7AxTU1O0adMGDx48kNocP34czZo1g4mJCSwsLPDf//4Xd+68Wi+PiKisuXfvHn744Qfo6LxK2EaPHo2///4Qs2apMTANwKSN1M7IyAipqVkzWQcGBiIiIgKHDx/Gvn37kJaWBg8PD5QrVw5///03Tp48KSU/2fssWLAA69evx9q1a/HPP/8gLi4Ou3bteuM5+/btiy1btmDJkiUICwvDTz/9BFNTU9ja2uKPP/4AAERERODBgwdYvHhxnsfw9PTEuXPn4O/vj6CgIAgh8NlnnyEtLU1q8/z5c/j5+eHXX3/FiRMnEB0djXHjxgEA0tPT0blzZ7Rs2RKXL19GUFAQBg8eXKrnGCIiepPdu3djzZo10va//9aAj48PzMzM1BiV5uDtUVIbIQQCAwMREBCAb7/9Fo8fP4aJiQlWr14t3Rb97bffkJmZidWrV0vJzLp162BhYYHjx4+jdevWWLRoESZOnIiuXbsCAFatWoWAgIB8z3v9+nVs374dhw8fhru7OwCgevXqUn32bdBKlSrJnmnL6caNG/D398fJkyfh6uoKANi0aRNsbW2xe/dufP755wCAtLQ0rFq1CjVq1AAAjBgxAt9//z0AIDExEQkJCWjfvr1U7+zsXPgPkohIy+3c+QJXrsyTlf3+e2/MmlVTTRFpJva0Efz9AVfXrJ8lYd++fTA1NYWhoSHatm2LL7/8EtOnTwcA1K9fX/Yc26VLl3Dz5k2UK1cOpqamMDU1RYUKFfDy5UvcunULCQkJePDgAZo3by7to6enh6ZNm+Z7/osXL0JXVxctW7Z85/cQFhYGPT092XkrVqyI2rVrIywsTCozNjaWEjIAsLGxwaNHjwBkJYeenp7w8PBAhw4dsHjxYtmtUyKi0s7fH+jaNTRXwnbkyETMmlWzzI0OfRv2tJG0hpuvL0rkF8TNzQ0rV66EUqlElSpVZKNGTUxMZG2fPXuGJk2aYNOmTbmOY2Vl9U7nNzIyeqf93sXro00VCoXsebt169Zh5MiROHjwILZt24YpU6bg8OHDcHEpfQsdExHlJITAX3/9hAYNHkpllSqpMHRoa/j4qDEwDcaeNoK3N6BSZf0sCSYmJqhZsybs7OzeOs1H48aNcePGDVSqVAk1a9aUvczNzWFubg4bGxsEBwdL+6Snp+P8+fP5HrN+/frIzMzEX3/9lWd9dk9fRkZGvsdwdnZGenq67LxPnjxBREQE6tSp88b39LpGjRph4sSJOHXqFOrVq4fNmzcXan8iIm0TFxeH77//HmZmrxK2kyeHYujQ1mqMSvMxaSN07AicOlUyvWyF1bt3b1haWqJTp074+++/ERkZiePHj2PkyJG4d+8eAOC7776Dr68vdu/ejfDwcAwbNgzx8fH5HtPe3h79+vVD//79sXv3bumY27dnLY1SrVo1KBQK7Nu3D48fP8azZ89yHaNWrVro1KkTBg0ahH/++QeXLl3CV199hapVq6JTAcejR0ZGYuLEiQgKCsKdO3dw6NAh3Lhxg8+1EVGpduLECSxdulTaTkgww4IFUzFiRCU1RqUdmLSRRjM2NsaJEydgZ2eHrl27wtnZGQMGDMDLly+l0URjx45Fnz590K9fP6hUKpQrVw5dunR543FXrlyJ7t27Y9iwYXBycsKgQYOQnJwMAKhatSpmzJgBb29vVK5cGSNGjMjzGOvWrUOTJk3Qvn17qFQqCCFw4MCBAk/Aa2xsjPDwcHTr1g2Ojo4YPHgwhg8fjm+++aYQnxARkXZIT0/HjBkzcOzYsRxlHXD69Gj89puORnYcaBqFeH1CK9IYiYmJMDc3R0JCgmy488uXLxEZGQkHBwcYGhqqMUIqabz2RKSN7ty5g/Xr18vK/PzGon59U5w6pZ6YilN+39/viwMRiIiIqNgsXvwH4uNDpe379x1x4EBPfPBByT1LXVowaSMiIqIi9/z5c8yfP19WVrNmH/j4VM9nD3obJm1ERERUpC5fvpxrZZpZsyahaVN99O6tpqBKASZtREREVCSEEJg7dzlSUp5IZUFBLRAQ8ClMTXk79H0xadNiHENS9vCaE5Gm+vfff7F8+XJZ2bJlw/Dvv1YwNQU2bdLMqaW0CZM2LZQ9pcTz589LdHZ/Ur/nz58DyL3SAhGRuvj7Azt2HEPNmieksidPKmDZshEAFHByAubOZcJWFJi0aSFdXV1YWFhIa1gaGxtLi6lT6SSEwPPnz/Ho0SNYWFhAV1dX3SERESEtLQ0hIbNRM8e67p06dcKOHQ1hYgKMHAnMmqW++EobztOmwd40z4sQArGxsW+c+Z9KHwsLC1hbWzNJJyK1i4yMxMaNG2Vl48aNy7WGdFnEedpIRqFQwMbGBpUqVUJaWpq6w6ESoK+vzx42ItII27ZtQ3h4uLRdp04dfP7552qMqGxg0qbldHV1+UVOREQlIjk5GX5+frKyfv36wd7eXj0BlTFM2oiIiOit1q0LQXS0v6xs+/bJ8PFhKlFS+EkTERFRvoQQWLx4MRISEqSy8+dbYu/eVqhaVY2BlUFM2oiIiChPjx49wsqVK2Vl+/ePQExMRQCAqak6oiq7mLQRERFRLocPH8apU6ek7YcPK2HduiF4+TJr7jWViisclDQmbURERCRJS0vD7NmzZWW//94VoaH1AWT1rnGyXPVg0kZEREQAgFu3buG3336Tlc2fPx7JycYAAENDLkelTkzaiIiICJs2bcLNmzel7fr168PPryuSkwGFAqhSBVixggmbOumoOwAiIiJSn6SkJMyYMUOWsG3e/DXOn+8Kb++sZ9d27wbu3WPCpm5cxkqDFdcyGERERABw7tw57N+/X9rOzFRg1qxJyMjQg6kpkJSkxuC0GJexIiIioiKRmZmJH3/8EcnJyVLZmTOf4s8/W0AIQEcna7F30ixM2oiIiMqQ2NhY/PTTT7KyOnVGws+vPITIGh3KwQaaiUkbERFRGXHw4EEEBwdL23FxNggIGASFQoFnz5iwaTombURERKVcSkoKfH19ZWX+/p/jwoU6AIDatV9NlsuETXMxaSMiIirFrl+/ji1btsjK/vhjAq5cMYK+PlC9OjBvHpM1bcCkjYiIqBQSQmDjxo2IioqSyipUaIhvv+2E7ByuenUgPFw98VHhMWkjIiIqZRITE7Fw4UJZ2S+/DES5clXx7bdZPWu+vlw7VNswaSMiIipFgoODcfDgQWk7LU0Pc+Z4IzNTF7VrZ5V17MjbodqISRsREVEpkJmZifnz5+Ply5dSWUBAa4SEqGBjkzUydN48NQZI741JGxERkZaLiYnBL7/8IitbuPA7JCVZwNsbmDVLTYFRkWLSRkREpMX279+Pc+fOSdv37tli9eqvoaOjQGYmcOyYGoOjIsWkjYiISAvlNffahQtfwt/fCaamWctQHTvGwQalCZM2IiIiLRMeHo5t27bJyn7/3RtpaQZwcgLmzuVAg9KISRsREZGWEEJg7dq1uHfvnlRmadkUmza1Q1oaEBGRtbIBE7bSiUkbERGRFoiPj8fixYtlZbVrD8b06TZQKIBu3Xg7tLRj0kZERKThTp06hcOHD0vbL14YQld3PJYs0UFERFbZsWPAqVNqCpBKBJM2IiIiDZWRkQFfX1+kp6dLZQcOtMGZM81hagps2gRMmAAoFOxhKwuYtBEREWmge/fuYc2aNbKyPXtG484dMxgZZY0O5coGZQuTNiIiIg2zZ88eXLx4Udq+f98Bv/7aB2PGKDhRbhmmEEIIdQdBeUtMTIS5uTkSEhJgZmam7nCIiKiYvXjxAvNeW2tq06aeuHHDEUDWUlRJSeqIjAqjuL6/2dNGRESkAa5du4YdO3bIymbPnojUVCUAwNAw65YolV1M2oiIiNRICIGff/4ZsbGxUpmLiwtmzPBAaiqgowOuH0oAmLQRERGpTVxcHJYuXSorGzJkCCpXroyUFMDXNyth42ADApi0ERERqcXff/+No0ePSttJSab4+efRaNRIRxoVymSNctJRdwAF1bFjR9jZ2cHQ0BA2Njbo06cPYmJipPrp06dDoVDkepmYmMiOs2PHDjg5OcHQ0BD169fHgQMHZPVCCEybNg02NjYwMjKCu7s7bty4IWsTFxeH3r17w8zMDBYWFhgwYACePXsma3P58mV89NFHMDQ0hK2tba4HS4mIqGxKT0/HjBkzZAnb3r3tsGDBWCQl6eC1NeCJJFqTtLm5uWH79u2IiIjAH3/8gVu3bqF79+5S/bhx4/DgwQPZq06dOvj888+lNqdOnULPnj0xYMAAhISEoHPnzujcuTNCQ0OlNvPmzcOSJUuwatUqBAcHw8TEBB4eHnj58qXUpnfv3rh69SoOHz6Mffv24cSJExg8eLBUn5iYiNatW6NatWo4f/485s+fj+nTp+Pnn38u5k+JiIg0WXR0NGa99nDa8eNjEBLSFEDW6FBOkkv50dopP/z9/dG5c2ekpKRAX18/V/2lS5fQsGFDnDhxAh999BEA4Msvv0RycjL27dsntXNxcUHDhg2xatUqCCFQpUoVjB07FuPGjQMAJCQkoHLlyli/fj169OiBsLAw1KlTB2fPnkXTplm/ZAcPHsRnn32Ge/fuoUqVKli5ciUmT56M2NhYKJVZo368vb2xe/duhIeHF/g9csoPIqLSY+fOnbhy5Yq0ff16LWze3AsKBSAEpBUOeEtU+xXX97fW9LTlFBcXh02bNsHV1TXPhA0AVq9eDUdHRylhA4CgoCC4u7vL2nl4eCAoKAgAEBkZidjYWFkbc3NzNG/eXGoTFBQECwsLKWEDAHd3d+jo6CA4OFhq8/HHH0sJW/Z5IiIi8PTp03zfV0pKChITE2UvIiLSbs+fP8eMGTNkCdtvv32FXbt6AQAqVABUKiZs9HZalbR5eXnBxMQEFStWRHR0NPbs2ZNnu5cvX2LTpk0YMGCArDw2NhaVK1eWlVWuXFkaZp39821tKlWqJKvX09NDhQoVZG3yOkbOc+Rlzpw5MDc3l162trb5tiUiIs135coVzJ8/X1a2YMFE3LxZQ0rW1q7NWuidCRu9jVqTNm9v7zwHD+R85bydOH78eISEhODQoUPQ1dVF3759kdfd3V27diEpKQn9+vUrybfz3iZOnIiEhATpdffuXXWHRERE70AIgRUrVmDnzp1S2e3b/8WWLT5ISsq6C1OuHJM1Khy1TvkxduxYeHp6vrFN9erVpf+2tLSEpaUlHB0d4ezsDFtbW5w+fRoqlUq2z+rVq9G+fftcvV3W1tZ4+PChrOzhw4ewtraW6rPLbGxsZG0aNmwotXn06JHsGOnp6YiLi5MdJ6/z5DxHXgwMDGBgYJBvPRERab7t258gLGyZrMzJaRh8fKzg7w94eWU9wzZ3rpoCJK2l1qTNysoKVlZW77RvZmYmgKznwHKKjIzEsWPH4O/vn2sflUqFwMBAjBo1Sio7fPiwlPQ5ODjA2toagYGBUpKWmJiI4OBgDB06VDpGfHw8zp8/jyZNmgAAjh49iszMTDRv3lxqM3nyZKSlpUnP3B0+fBi1a9dG+fLl3+n9EhGR5jt+/DjCwv6Stp8+tcCSJSNRu7YCX37Judfo/WjF5LrBwcE4e/YsWrRogfLly+PWrVuYOnUqatSokauXbe3atbCxsUHbtm1zHee7775Dy5YtsWDBArRr1w5bt27FuXPnpKk4FAoFRo0ahR9++AG1atWCg4MDpk6diipVqqBz584AAGdnZ7Rp0waDBg3CqlWrkJaWhhEjRqBHjx6oUqUKAKBXr16YMWMGBgwYAC8vL4SGhmLx4sVYuHBh8X5QRESkFunp6bmm8ggN7Yg//mgEIbJ61ojel1YkbcbGxti5cyd8fHyQnJwMGxsbtGnTBlOmTJHdTszMzMT69evh6ekJXV3dXMdxdXXF5s2bMWXKFEyaNAm1atXC7t27Ua9ePanNhAkTkJycjMGDByM+Ph4tWrTAwYMHYWhoKLXZtGkTRowYgU8//RQ6Ojro1q0blixZItWbm5vj0KFDGD58OJo0aQJLS0tMmzZNNpcbERGVDlFRUdiwYYOsbP78ccjIMJGm8uD86lQUtHaetrKA87QREWm27du3IywsTNp2cnLC2LFf4v79rKk8atfm2qFlUXF9f2tFTxsREZEm+eOPZISG+snK+vbtCwcHB/j4ZG1bWWWNDiUqKlo1TxsREZG6Xbx4MVfCNmnSJDg4OADIuhWqUvGWKBU99rQREREVwJ49AqdOLYWx8auVbUJDP0afPm7IuTgPR4hScWHSRkRE9BaPHz/GxYsrYGz8quznn4cjJsYS9+8zSaOSwaSNiIjoDQIDA/HPP/9I2wkJlli0aBiEUMDUNGugAVFJYNJGRESUh7S0NMyePVtWVq1aF/j6/gdVqryayoO9bFRSmLQRERG95vbt2/j1119lZUePjsfDh8aIiMgaaMCRoVTSmLQRERHlsHnzZty4cUPaDg2th6Cgbrh/H3ByykrYeEuU1IFJGxEREYBnz55hwYIFsrK1a79GdLQdDA1fJWu8HUrqwqSNiIjKNH9/4KefzqNZs32y8pkzJ8PaWg+mpsDIkcBrS4sSlTgmbUREVGZlZmYiKGgRmjVLksqOHnXD1asfo2ZNDjQgzcKkjYiIyqSHDx9i1apVMDR8VbZkybeIi6sAAHB0ZMJGmoVJGxERlRn+/oCvL9CnzyE8ehQklT94YI0NGwbj5UsFDA0Be3sONiDNw6SNiIjKjPnzU+HhMQePHr0qO3myOw4frouqVQE7Ow42IM3FpI2IiMqEX3+9AXf3zbKyo0cnYOxYIzx7xmSNNB+TNiIiKvV+/fVX3L59W9oOCWmIQ4c6YetWLvBO2oNJGxERlVqJiYlYuHChrCwtbQAePfpAStiItAWTNiIiKpXOnDmDP//8U9pOT9fF0aMTcfKkrhqjInp3TNqIiKhUyczMhJ+fH168eCGVhYS4IyLiv5g7V42BEb0nJm1ERFQq+PsDy5c/gKvrz7LyLVu+Q0SEBVQq3g4l7cakjYiISoU9ew7A1fWstH3//gf45Zf+MDJScJF3KhWYtBERkVZLSUmBr68v7OxelW3d+gWSkpy5biiVKkzaiIhIK/n7A2vWRKBx462y8v/8xwsBAYaYO5e3Q6l0YdJGRERaRwiBgID1aNw4Wiq7dKkxnJ07oEsXoEsXNQZHVEyYtBERkVZJSEjAokWLUKnSq7K1awchOroKYmPVFxdRcWPSRkREWiMoKAiHDh2Stl++NMC8eeOhq6vLwQZU6jFpIyIijZeRkYG5c+ciLS1NKqta1QPTp7tAqQTGjOFgAyr9mLQREZHG8vcHVqy4D5Vqtay8bt1R6N7dHAMHqikwIjVg0kZERBrL338vVKoL0vbDh/ZYubIvVCoFundXY2BEasCkjYiINM7Lly8xd+5c2Nq+Ktu8uScUCkc+u0ZlFpM2IiLSKNeuXcOOHTtkZT/+6A0bGwPMm8e516jsYtJGREQaQQiB1atXIyYmRioLDm6Gy5fb4tdfmawR6ag7ACIiKpv8/QFX16yfT58+xffffy9L2E6d+gZDhrTFvXtM2IgA9rQREZGa+PoCQUHA1q0nERJyRCo3MTHBmDFjoKPDfgWinJi0ERGRWkyYkIGQkFnQ0RFSWUDAZzh16kM1RkWkuZi0ERFRiduw4Sqion5Hzs60BQvGwMysnPqCItJwTNqIiKhEzZw5B5mZqdJ2jRo1YGb2FerV41QeRG/CpI2IiIqVvz/g5QVkZCSid++FsrpDh9ri5MlmADjYgOht+JQnEREVG39/oEcPwMbmaK6EzdfXC61aNVNTZETap9BJm66uLh49epSr/MmTJ9DV1S2SoIiISDvlnMYDAHx9Bby8ZqBly7+lNk+eVMaWLT7Yts2Qi7wTFUKhb48KIfIsT0lJgVKpfO+AiIhIe2VP49G7N/Ddd/fh4SFf6L1mzb7w8XFQU3RE2q3ASduSJUsAAAqFAqtXr4apqalUl5GRgRMnTsDJyanoIyQiIq3h7Z2VsHXp8iv09W/L6qZOncq514jeQ4GTtoULs55FEEJg1apVsluhSqUS9vb2WLVqVdFHSEREGsnfP6tnzdv71SCCNm1SMW7cHFk7S8umGD68nRoiJCpdFCK/+535cHNzw86dO1G+fPniion+X2JiIszNzZGQkAAzMzN1h0NEJOPqmnUrVKUCTp0CLl++jF27dsnafPvtt6hQoYKaIiRSj+L6/i70M23Hjh0rspMTEZH2ye5hc3PL2vb2BqZP/x4KhbwPwMfHRw3REZVehU7a+vfv/8b6tWvXvnMwRESk+bIHGwDAmDHxCAlZDIXiVX1oaAf06dNYPcERlWKFTtqePn0q205LS0NoaCji4+PxySefFFlgRESkmdzcgCtXAHf3Q7h6NUhWl5rqjR07DNQUGVHpVuik7fXnFQAgMzMTQ4cORY0aNYokKCIi0lzHjgmMG/e9rMzE5AOMGzdATRERlQ2FHoiQn4iICLRq1QoPHjwoisMROBCBiDRPdHQ01q1bJyv7+uuvYWdnp6aIiDRPcX1/F9mEObdu3UJ6enpRHY6IiNTs9dUN/PzW5krYpk6dyoSNqIQU+vbomDFjZNtCCDx48AD79+9Hv379iiwwIiJSr+wBB/PnpyAkxFdWp1Kp0Lp1azVFRlQ2FTppCwkJkW3r6OjAysoKCxYseOvIUiIi0h7e3sCvv15AvXp7ZeV79nwHHx8L9QRFVIZxnjYiIpJkz8FWtSpQr94M1Kv3qk4IYNs2H8ydq774iMqyQidt2R49eoSIiAgAQO3atVGpUqUiC4qIiEqev3/WuqH6+k/h4bFEVnf5cmf069cA06erJzYieoekLTExEcOHD8eWLVuQmZkJANDV1cWXX36J5cuXw9zcvMiDJCKi4pWdsH388QE0a3ZWVvef/0yEj49STZERUbZCjx4dNGgQgoODsX//fsTHxyM+Ph779u3DuXPn8M033xRHjEREVAxyjg718srEuHEzZAmbqakDfHx80KULEzYiTVDoedpMTEwQEBCAFi1ayMr//vtvtGnTBsnJyUUaYFnGedqIqDhlL/jerl0kPvxwo6xuwIAB+OCDD9QUGZF205gF4ytWrJjnLVBzc3OUL1++SIIiIqLik3PB92bNfkL58rGy+mnTpkGRczFRItIIhb49OmXKFIwZMwaxsa9+yWNjYzF+/HhMnTq1SIMjIqKilf3sWkjISyiVM2QJ261bLdCokQ8TNiINVejbo40aNcLNmzeRkpIizYIdHR0NAwMD1KpVS9b2woULRRdpGcTbo0RU1FxdgbS0s2jf/oCsvG7d0ejenX9niIqCxtwe7dSpE/8VRkSkhfz9AQ+PGbIyHR0lpk6dqKaIiKgwimzBeCp67GkjoqLg7w8sWfIvPvpouay8e/fuqFu3rpqiIiq9NGbB+OrVq+PJkye5yuPj41G9evUiCYqIiN7d6wu9793rnythmzRpEhM2Ii1T6NujUVFRyMjIyFWekpKCe/fuFUlQRET07rIXep87NwMhIT8g58wdjo6O6Nmzp/qCI6J3VuCeNn9/f/j//z/bAgICpG1/f3/s2rULM2fOhIODQ7EF2rFjR9jZ2cHQ0BA2Njbo06cPYmJiZG0CAgLg4uKCcuXKwcrKCt26dUNUVJSszfHjx9G4cWMYGBigZs2aWL9+fa5zLV++HPb29jA0NETz5s1x5swZWf3Lly8xfPhwVKxYEaampujWrRsePnwoaxMdHY127drB2NgYlSpVwvjx45Genl4knwURUV78/QEnJyA6GmjV6iZat/5BVj948GAmbERarMDPtOnoZOV3CoUCr++ir68Pe3t7LFiwAO3bty/6KAEsXLgQKpUKNjY2uH//PsaNGwcAOHXqFAAgMjISzs7OGDNmDAYMGICEhASMHj0aSUlJ0ijWyMhI1KtXD0OGDMHAgQMRGBiIUaNGYf/+/fDw8AAAbNu2DX379sWqVavQvHlzLFq0CDt27EBERIS0vurQoUOxf/9+rF+/Hubm5hgxYgR0dHRw8uRJAEBGRgYaNmwIa2trzJ8/Hw8ePEDfvn0xaNAgzJ49u8Dvmc+0EVFhZE+WO2LEMlhayh9jadhwGjp14iAyopJQXN/fhR6I4ODggLNnz8LS0rLIgngX/v7+6Ny5M1JSUqCvr4/ff/8dPXv2REpKipRg7t27F506dZLaeHl5Yf/+/QgNDZWO06NHD8THx+PgwYMAgObNm+PDDz/EsmXLAACZmZmwtbXFt99+C29vbyQkJMDKygqbN29G9+7dAQDh4eFwdnZGUFAQXFxc8Oeff6J9+/aIiYlB5cqVAQCrVq2Cl5cXHj9+DKWyYEvCMGkjosLYufM5rlyZLyu7caMVvviiJTp2VFNQRGWQxgxEiIyMVHvCFhcXh02bNsHV1RX6+voAgCZNmkBHRwfr1q1DRkYGEhIS8Ouvv8Ld3V1qExQUBHd3d9mxPDw8EBQUBABITU3F+fPnZW10dHTg7u4utTl//jzS0tJkbZycnGBnZye1CQoKQv369aWELfs8iYmJuHr1ar7vKyUlBYmJibIXEdHb+PsDPXsG5UrYxo4di99+Y8JGVFoUeiDC999//8b6adOmvXMwb+Pl5YVly5bh+fPncHFxwb59+6Q6BwcHHDp0CF988QW++eYbZGRkQKVS4cCBVxNIxsbGyhIpAKhcuTISExPx4sULPH36FBkZGXm2CQ8Pl46hVCphYWGRq032KhH5nSe7Lj9z5szBjBkz8q0nIspegsrbG+jYEZg8WUCp/B5OTq/amJiYSI+QEFHpUeietl27dsle27dvx9y5c7FgwQLs3r27UMfy9vaGQqF44ys7WQKA8ePHIyQkBIcOHYKuri769u0rPV8XGxuLQYMGoV+/fjh79iz++usvKJVKdO/ePdczeJpq4sSJSEhIkF53795Vd0hEpGGyR4b27g1MmfIISqX8H9JffvklEzaiUqrQPW0hISG5yhITE+Hp6YkuXboU6lhjx46Fp6fnG9vknPvN0tISlpaWcHR0hLOzM2xtbXH69GmoVCosX74c5ubmmDdvntT+t99+g62tLYKDg+Hi4gJra+tcozwfPnwIMzMzGBkZQVdXF7q6unm2sba2BgBYW1sjNTUV8fHxst6219u8PuI0+5jZbfJiYGAAAwODN34eRFS2ubllJW2tW++Evv4VWd3kyZOhp1foP+tEpCWK5LfbzMwMM2bMQIcOHdCnT58C72dlZQUrK6t3OmdmZiaArOfAAOD58+fSAIRsurq6srav3y4FgMOHD0OlUgEAlEolmjRpgsDAQHTu3FnaNzAwECNGjACQ9eycvr4+AgMD0a1bNwBAREQEoqOjpeOoVCrMmjULjx49kkacHj58GGZmZqhTp847vV8iKtuyb4vGx2dg+nT5VB4WFnXw3XefqykyIiopRfZPsuxbesUhODgYZ8+eRYsWLVC+fHncunULU6dORY0aNaREqV27dli4cCG+//579OzZE0lJSZg0aRKqVauGRo0aAQCGDBmCZcuWYcKECejfvz+OHj2K7du3Y//+/dK5xowZg379+qFp06Zo1qwZFi1ahOTkZHz99dcAAHNzcwwYMABjxoxBhQoVYGZmhm+//RYqlQouLi4AgNatW6NOnTro06cP5s2bh9jYWEyZMgXDhw9nTxoRvRNfX+DJkwj06rVVVj5kyJBcz9ASUelU6KRtyZIlsm0hBB48eIBff/0Vbdu2LbLAcjI2NsbOnTvh4+OD5ORk2NjYoE2bNpgyZYqUBH3yySfYvHkz5s2bh3nz5sHY2BgqlQoHDx6EkZERgKzBCvv378fo0aOxePFifPDBB1i9erU0RxuQ9TzI48ePMW3aNMTGxqJhw4Y4ePCg7I/iwoULoaOjg27duiElJQUeHh5YsWKFVK+rq4t9+/Zh6NChUKlUMDExQb9+/d46iIOIKC/+/kCLFgthYiIfUT5t2jQoFJx7jaiseKd52nLS0dGBlZUVPvnkE0ycOBHlypUr0gDLMs7TRlQ2Zd8KdXMDTp5Mhpubn6ze3d0d//3vf9UUHRG9TXF9fxe6py0yMrLITk5ERLlljxDV0/sbn356VFY3btw4mJiYqCkyIlKnd3qmLT4+Hjdv3gQA1KxZM9ecZUREVHj+/oCXF5CUJDB9uvxxCgsLC3z33XdqioyINEGhkraoqCgMHz4cAQEB0txnCoUCbdq0wbJly2Bvb18cMRIRlQkTJgAJCbEYMuQnWXmvXr1Qq1YtNUVFRJqiwEnb3bt34eLiAn19fcycORPOzs4AgGvXrmHlypVQqVQ4e/YsPvjgg2ILloiotPL3Bxo12gYnp3BZ+ZQpU6Tpi4iobCvwQIQBAwbg5s2bCAgIgKGhoazuxYsXaNOmDWrVqoXVq1cXS6BlEQciEJUN6enpmDVrlqysQYMG0nyRRKRd1D4Q4eDBg9i2bVuuhA0AjIyMMHPmTPTo0aPIAiMiKs2yR4gOGXINkZE7ZHXOzsPQufO7TTxORKVXgZO2f//9943PrFWvXh1xcXFFERMRUann6wt8/PFcREa+lJX7+PioKSIi0nQFTtpsbGxw7dq1fJ9ZCw0NfeO6mkRElCUpKQkeHj/Kytq0aYPmzZurKSIi0gY6b2+SpXPnzhg3bhweP36cq+7Ro0fw8vLi8xdERPmYPBlQKoFPPz2OH3+UJ2wTJkxgwkZEb1XggQhPnz5F8+bNERsbi6+++gpOTk4QQiAsLAybN2+GtbU1Tp8+jQoVKhR3zGUGByIQlR7lygmMGyefe61SpUoYOnSomiIiouKi9oEI5cuXR3BwMCZNmoStW7ciPj4eQNaEj7169cLs2bOZsBER5ZA92GDkyBiMG/eLrK5Pnz6oXr26miIjIm1U6LVHgaxF4rNvk1pZWXHB4mLCnjYi7ebqCtSo8Rtq1rwlK586dSp0dAr8dAoRaRm197TlpFAoUKlSpSILgoiotMjuXZswIQ0eHrNldU2aNEH79u3VFBkRabt3StqIiChvvr5AUtIVXLq0U1b+7bff8hESInovTNqIiIqIvz/g7v4DdHUzZOWce42IigKTNiKi9+TvDyxalICWLRch5zKhtrbt0b9/E/UFRkSlCpM2IqJ35O8PeHkB1aodQcuWJ2V1Xl5eeS77R0T0rgqUtC1ZsqTABxw5cuQ7B0NEpC0mTwbmzBHw8ZHPvValShUMGjRITVERUWlWoCk/HBwcCnYwhQK3b99+76AoC6f8INJctWvfRa9ea2Vlnp6eqFatmpoiIiJNodYpPyIjI4vshERE2ih7Ko+qVQFz8/Xo1euOrJ5zrxFRcXvnZ9pSU1MRGRmJGjVqQE+Pj8YRUenm6wucP58CDw9fWXnz5s3Rpk0bNUVFRGVJof9Z+Pz5cwwYMADGxsaoW7cuoqOjAWTNQeTr6/uWvYmItIe/f9aqBpMnAwYGFzFpkvxv3MiRI5mwEVGJKXTSNnHiRFy6dAnHjx+XjYxyd3fHtm3bijQ4IiJ18vUFgoIApXIGWrXaI6vz8fFB+fLl1RQZEZVFhb6vuXv3bmzbtg0uLi6yNUfr1q2LW7duvWFPIiLtMnr0U3h4yEfP29l1wtdfN1RPQERUphU6aXv8+HGe644mJydz4Xgi0nrZc681avQnatc+I6ubOHEilEqlmiIjorKu0LdHmzZtiv3790vb2Yna6tWroVKpii4yIqIS5u8PfPVVJnr0mCFL2KpVqwYfHx8mbESkVoXuaZs9ezbatm2La9euIT09HYsXL8a1a9dw6tQp/PXXX8URIxFRifDzi8LYsRtkZf3794etra2aIiIieqXQPW0tWrTAxYsXkZ6ejvr16+PQoUOoVKkSgoKC0KQJ19gjIu2SPULUx+dnfPqpPGGbNm0aEzYi0hjvNMFajRo18MsvvxR1LEREJWryZGDBgpeYOHGurPzatf+id2938DFdItIkBUraEhMTC3xALrdERNri+PFzmDhxv6ysbt1R8PExV1NERET5K1DSZmFhUeCRoRkZGe8VEBFRSZgxYwZat361LYQepk+frL6AiIjeokBJ27Fjx6T/joqKgre3Nzw9PaXRokFBQdiwYQPmzJlTPFESERUBf3/g+++foEOHZbLyrl27on79+mqKioioYBRCCFGYHT799FMMHDgQPXv2lJVv3rwZP//8M44fP16U8ZVpiYmJMDc3R0JCAm87E70Hf3/g668BV9e9aNr0gqyuQYNJ6NxZX02REVFpVFzf34VO2oyNjXHp0iXUqlVLVn79+nU0bNgQz58/L7LgyjombUTvL3vutbFjZ8rKzcxqYvTo3mqKiohKs+L6/i70lB+2trZ5jhxdvXo1h8YTkcb5+efbuRK2QYMGMWEjIq1T6Ck/Fi5ciG7duuHPP/9E8+bNAQBnzpzBjRs38McffxR5gERE72ru3BX48MPHsrJp06ZxyT0i0kqFvj0KAPfu3cOKFSsQHh4OAHB2dsaQIUPY01bEeHuU6N28ePEC8+bNk5W1bNkSrVq1Uk9ARFSmaMwzbVRymLQRFd7q1cG4f/+grKxevTHo1q2cmiIiorKmuL6/32lFhPj4eKxZswZhYWEAgLp166J///4wN+eElESkHpMnCyiV38vKjIyMMGHCBDVFRERUtAo9EOHcuXOoUaMGFi5ciLi4OMTFxeHHH39EjRo1cOHChbcfgIioiE2e/DhXwubg8AUTNiIqVQp9e/Sjjz5CzZo18csvv0BPL6ujLj09HQMHDsTt27dx4sSJYgm0LOLtUaK3mzZtF3R1L8vKGjSYjM6d3+lGAhHRe9OYZ9qMjIwQEhICJycnWfm1a9fQtGlTztNWhJi0EeVv9+4MXLr0g6wsM9MZM2Z8oaaIiIiyaMwzbWZmZoiOjs6VtN29exflyvFBXyIqftevX8elS1tkZb/88g3u3bNWU0RERMWv0Enbl19+iQEDBsDPzw+urq4AgJMnT2L8+PG5lrYiIipqixcvRnx8vKzMz28aRo7k3GtEVLoVOmnz8/ODQqFA3759kZ6eDgDQ19fH0KFD4evrW+QBEhEBQHJyMvz8/GRln376KVq0aAEfHzUFRURUgt55nrbnz5/j1q1bAIAaNWrA2Ni4SAMjPtNGlO3kyZM4cuSIrOzYsXE4ftxETREREeVPY55py2ZsbIz69esXWSBERK8TQuD77+VTeTx7Zoa9e0fjtQUPiIhKvQInbf379y9Qu7Vr175zMERE2R4+fIhVq1bJyjZv7oGKFWvj/1fQIyIqUwqctK1fvx7VqlVDo0aNwJWviKg4bd++XVpxJVuDBlMQEKALb281BUVEpGYFTtqGDh2KLVu2IDIyEl9//TW++uorVKhQoThjI6IyJj09HbNmzZKV1a9fH127dgUAdO6shqCIiDREgZexWr58OR48eIAJEyZg7969sLW1xRdffIGAgAD2vBHRewsLC8uVsP3zz1ApYSMiKuveefTonTt3sH79emzcuBHp6em4evUqTE1Nizq+Mo2jR6msmD9/fq7VVAICpsHbW4GOHdUUFBHRO9K40aM6OjpQKBQQQiAjI6PIAiKisuPZs2dYsGCBrOzgwda4e1eFe/fUFBQRkYYq8O1RAEhJScGWLVvwv//9D46Ojrhy5QqWLVuG6Oho9rIRUaH89ddfuRK2uXPHIzRUhRUr1BQUEZEGK3BP27Bhw7B161bY2tqif//+2LJlCywtLYszNiIqhfKae+3JE0ssXTocpqbApk3gLVEiojwU+Jk2HR0d2NnZoVGjRlAo8l/jb+fOnUUWXFnHZ9qotHnw4AF+/vlnWVnv3r1x7VpN+PoC3t5M2IhI+6n9mba+ffu+MVkjInqTLVu24Pr167Kyhg2noGZNXdSsyWSNiOht3nn0KBU/9rRRaZCWlobZs2fLys6fb4R//+2IU6fUFBQRUTFSe08bEVFhhYaG4o8//pCVOTuPQEBARa5sQERUSEzaiKhYzJ49G2lpabIyHx8fAMAXX6gjIiIi7cakjYiKVGJiIhYuXCgr++yzz/Dhhx+qKSIiotKBSRsRFZmjR4/i77//lpUtXeqF1FRDMGcjIno/HIigwTgQgbRFXnOvxcTYYN26wUhLA0xNgaQkNQVHRFTCOBCBiDTSvXv3sGbNGlnZxo19cfu2A/T1sxK2kSPVFBwRUSlSqGWs1Kljx46ws7ODoaEhbGxs0KdPH8TExMjabN++HQ0bNoSxsTGqVauG+fPn5zrO8ePH0bhxYxgYGKBmzZpYv359rjbLly+Hvb09DA0N0bx5c5w5c0ZW//LlSwwfPhwVK1aEqakpunXrhocPH8raREdHo127djA2NkalSpUwfvx4pKenv/8HQaRBNm7cmCth27p1Knr0cICpKTB+fFYP26xZagqQiKgU0Zqkzc3NDdu3b0dERAT++OMP3Lp1C927d5fq//zzT/Tu3RtDhgxBaGgoVqxYgYULF2LZsmVSm8jISLRr1w5ubm64ePEiRo0ahYEDByIgIEBqs23bNowZMwY+Pj64cOECGjRoAA8PDzx69EhqM3r0aOzduxc7duzAX3/9hZiYGHTt2lWqz8jIQLt27ZCamopTp05hw4YNWL9+PaZNm1bMnxJRyUhNTcWMGTMQGRkplQUHf4jvv/dB1646mDWLyRoRUVHT2mfa/P390blzZ6SkpEBfXx+9evVCWloaduzYIbVZunQp5s2bh+joaCgUCnh5eWH//v0IDQ2V2vTo0QPx8fE4ePAgAKB58+b48MMPpWQvMzMTtra2+Pbbb+Ht7Y2EhARYWVlh8+bNUtIYHh4OZ2dnBAUFwcXFBX/++Sfat2+PmJgYVK5cGQCwatUqeHl54fHjx1AqlQV6j3ymjTTRpUuXsHv3bllZnToj0b9/eTx7BqhU4KS5RFSmFdf3t9b0tOUUFxeHTZs2wdXVFfr6+gCAlJQUGBoaytoZGRnh3r17uHPnDgAgKCgI7u7usjYeHh4ICgoCkNV7cP78eVkbHR0duLu7S23Onz+PtLQ0WRsnJyfY2dlJbYKCglC/fn0pYcs+T2JiIq5evZrv+0pJSUFiYqLsRaRJZsyYkStha9TIBwYG5VG1KuDkBE6aS0RUTLQqafPy8oKJiQkqVqyI6Oho7NmzR6rz8PDAzp07ERgYiMzMTFy/fh0LFiwAkLVINQDExsbKEikAqFy5MhITE/HixQv8+++/yMjIyLNNbGysdAylUgkLC4s3tsnrGNl1+ZkzZw7Mzc2ll62tbUE/GqJiFR8fjxkzZsjK9uzpiOnTfeDrC/j6AhERQPnyXEOUiKi4qDVp8/b2hkKheOMrPDxcaj9+/HiEhITg0KFD0NXVRd++fZF9d3fQoEEYMWIE2rdvD6VSCRcXF/To0QNAVm+ZNpg4cSISEhKk1927d9UdEhECAgKwePFiWdmOHd548aIRatfO6lnz9s66LcpeNiKi4qPWKT/Gjh0LT0/PN7apXr269N+WlpawtLSEo6MjnJ2dYWtri9OnT0OlUkGhUGDu3LmYPXs2YmNjYWVlhcDAQNkxrK2tc43yfPjwIczMzGBkZARdXV3o6urm2cba2lo6RmpqKuLj42W9ba+3eX3EafYxs9vkxcDAAAYGBm/8PIhKSmZmJmbOnCkrMzGxw5o1XyMpCShXDpg371XPGnvYiIiKl1q7oKysrODk5PTGV34P7WdmZgLIeg4sJ11dXVStWhVKpRJbtmyBSqWClZUVAEClUkmJXLbDhw9DpVIBAJRKJZo0aSJrk5mZicDAQKlNkyZNoK+vL2sTERGB6OhoqY1KpcKVK1dkI04PHz4MMzMz1KlT550+K6KSdOfOnVwJW61aX2PcuK9Rvjxw/z4QHp51W5SIiEqGVkyuGxwcjLNnz6JFixYoX748bt26halTp6JGjRpSovTvv//i999/R6tWrfDy5UusW7dOmpIj25AhQ7Bs2TJMmDAB/fv3x9GjR7F9+3bs379fajNmzBj069cPTZs2RbNmzbBo0SIkJyfj66+/BgCYm5tjwIABGDNmDCpUqAAzMzN8++23UKlUcHFxAQC0bt0aderUQZ8+fTBv3jzExsZiypQpGD58OHvSSOOtWbMG9+7dk5XNmDENLi4K9OqVdQt0wgRAoeDtUCKiEiW0wOXLl4Wbm5uoUKGCMDAwEPb29mLIkCHi3r17UpvHjx8LFxcXYWJiIoyNjcWnn34qTp8+netYx44dEw0bNhRKpVJUr15drFu3LlebpUuXCjs7O6FUKkWzZs1yHefFixdi2LBhonz58sLY2Fh06dJFPHjwQNYmKipKtG3bVhgZGQlLS0sxduxYkZaWVqj3nZCQIACIhISEQu1H9C5evnwppk+fLnt9+WWAAIQwNRVizx51R0hEpB2K6/tba+dpKws4TxuVlAsXLmDv3r2ysoULRyElxRz29sDcuXxmjYiooLj2KBEVi9en8sjM1EF6+lRkZAAvX3IaDyIiTcGkjaiMiouLw9KlS2VlQUFdEBDwH6hUwKZNWQMN+NwaEZFmYNJGVAbt378f586dk5XNmjUR5coppfnWOnZkDxsRkSZh0kZUhuQ191q5ctUxblwfCAG8eJGVsGVP5cGkjYhIc2jHUgFE9N5u376dK2FzdByI33/PSth0dIDRo7MStqAgzsFGRKRp2NNGVAasWrUq10of2XOvZfesZd8S9ffns2xERJqIU35oME75Qe/rxYsXmDdvnqzsr78+QlDQJ5zKg4iomBTX9zdvjxKVUmfOnMmVsNWtOxpnz36Cly+B69eB4GA1BUdERIXG26NEpdDrc68ZGBjA+//vdyqVQJcuQGZm1m3Q5s3Z20ZEpA3Y00ZUiiQmJuZK2Lp37y4lbNnPq3XtmjXwIDtxIyIizcekjaiUOHv2LBYuXCgrS02dhEGD6sLfP2s7e2To/fvArl2Q5mQjIiLNx4EIGowDEaggMjMzsWDBAjx//lwqi4n5D37+uQtMTYFnz7KSs1On5CNDeUuUiKh4cO1RIsrlwYMH+Pnnn2VldeqMxJYt5eHklHUb9NixV71pXOWAiEh7MWkj0lJ//vknzpw5I20bG1fFrl0DsGWLAhERWb1rs2apMUAiIipSTNqItExKSgp8Xxs9EBLyBSIinBEeDjg58Vk1IqLSiAMRiLRIREREroQtMNALe/Y4IyoqK2GbOzfr+TUAcHUFJk/O+pk9GIGIiLQTe9qItIAQAhs2bMCdO3ekssaNG6NDhw5o1AgICckacFC+/Ktn1rJHil65klXn68vn2YiItBmTNiINl5CQgEWLFsnKBg4ciKpVqwLISsQ2bXo1KjR7hKibW1ZbNzf5YAQiItJOTNqINNjp06cREBAgbSuVSkyYMAG6urqydjlHhbq6ZvWwAa9ukxIRkfZj0kakgTIyMjBv3jykpqZKZR4eHnBxcXnrvt7er3rdiIio9GDSRqRhYmJi8Msvv8jKRo0aBXNz8zful3PiXPawERGVPhw9SqRB9u7dK0vYqlWrhmnTpsHc3Bz+/m8eBZo98IBriRIRlU5M2og0wMuXLzFjxgxcuHBBKuvRowc8PT2hUCgA5J2U5UzkvL05PxsRUWnGtUc1GNceLRvCwsKwfft2Wdnvv3sjLc0A8+a9GmCQ17qh2YMOstcWJSIi9Suu728mbRqMSVvpJoTAmjVrcP/+fansww8/xA8/fCaN/nxbMsYF4ImINA8XjCcqRZ4+fYolS5bIygYPHgwbGxukpwPDhgFPnryaay0/XACeiKjsYNJGVMJOnjyJI0eOSNvGxsYYO3YsdHSyHjHt2DGr9+z+/axJcYmIiAAmbUQlJiMjA7Nnz0ZmZqZU9tlnn+HDDz/M1ZZzrRER0euYtBGVgHv37mHNmjWystTU0fjkEzOMHAnMmiVvz9ueRET0Og5E0GAciFA67N69G5cuXZK2y5WrgV9++QoREYAQgKkpkJSkxgCJiKhIcSACkZZ58eIF5s2bJyvr3bs3+vatifDwrG0dHWDkSDUER0REWodJG1ExCA0NxR9//CErmzhxIpRKJby9AS+vrF62nPOwERERvQmTNqIiJITATz/9hIcPH0plKpUKrVu3lrb5vBoREb0LJm1ERSQuLg5Lly6VlZ08ORSNGlVSU0RERFSaMGkjKgInTpzAsRyTqpmZmWHHju8QFKSDZ8/Ys0ZERO+PSRvRe0hPT8es1+brsLXtgNWrG0urGXCuNSIiKgpM2oje0Z07d7B+/XpZWWrqWAwcaAohgKdPgbCw/PfnuqFERFQYTNqI3sEff/yB0NBQadvR0RE9e/ZEuXJZo0KBVz/z4+sLBAVl/WTSRkREb6Oj7gCItMnz588xY8YMWcJWs2Yf9OzZE0DWnGv6+lmvbt3efCxvb0Cl4u1TIiIqGPa0ERXQ5cuXsWvXLlnZrFmTYGCgj3LlsnrLZs3KWuQ9KOjti71z6g8iIioM9rQRvYUQAsuWLZMlbLdvt0Bqqg8MDPTx7FnWLc5sefWg+fsDrq5ZP4mIiN4F1x7VYFx7VP3+/fdfLF++XFb2zz/DcOSIlZSYFWQwgatrVu+bSgWcOlXMQRMRkVpx7VGiEnbs2DGcOHFC2jYwqAAvrxHYu1eB5GTAza3goz9zJndERETvgj1tGow9beqRlpaG2bNny8p27eoEY+OGsl4y9p4REVFeiuv7m8+0EeUQGRmZK2FLTR0HY+OGuXrJsp9dc3Pj82pERFT82NOmwdjTVrK2bduG8PBwaTs6ug7Wrv38rT1p7HEjIqKc+EwbUTFJTk6Gn5+frGzdun4wMrIv0DxqfF6NiIhKApM2KtNCQkLg/9p9zQYNJqNKFb0CLy/F+daIiKgkMGmjMkkIAV/fxUhNTZDKrK1b4ptvWgEAOndWT1xERET5YdJGZc6jR4+wcuVKWdnSpSNgaVkRGzZwAXciItJMHD1KZcrhw4dlCVtSUiWkpk6Do2NFKBSvFnAnIiLSNOxpo1LN3z8rCRs/PhWXL8+R1XXt2hX169fP1ZYDCoiISBMxaaNSJ2fyNWECkJ5+C5cv/yZrM378eBgbG8vKOKCAiIg0GZM2KnV8fV/d5mzZchOqVLkp1dWvXx9du3ZVY3RERETvhs+0Uang7/9qVQJvb6BVqyR4eMyQJWxff/01EzYiItJa7GkjrefvD/TuDTx7ltW7tmTJObRqtV+qVygUmDRpEvT0+L87ERFpL36Lkdbz9c1K2MqVy0S7dj9i//5kqe7TTz9FixYt1BgdERFR0eDtUdJoOW975sfbG2jdOhZjx85EevqrhG3kyJFM2IiIqNRgTxtptJyDCvIb2alUHoSra7C0bWNjg0GDBkGhUJRQlERERMWPSRtptDctxp6SkgLf12bC/fzzz1GnTp0Sio6IiKjk8PYoabSOHYFTp3L3sl2/fj1Xwubl5YWbN+u89XYqERGRNmJPG2kVIQQ2btyIqKgoqaxhw4bo1KkTgILdTiUiItJGTNpIayQmJmLhwoWysoEDB6Jq1arS9ptupxIREWkzJm1UonIuMVXQnjB/f2Dz5mA4Ox+UyvT19eHl5QVdXV1ZWy5FRUREpZXWPdOWkpKChg0bQqFQ4OLFi7K6y5cv46OPPoKhoSFsbW0xb968XPvv2LEDTk5OMDQ0RP369XHgwAFZvRAC06ZNg42NDYyMjODu7o4bN27I2sTFxaF3794wMzODhYUFBgwYgGfPnhU6ltIsv6k6sm9f9u5dsOfOMjMzceaMryxhu3ChNSZNmpQrYSMiIirNtC5pmzBhAqpUqZKrPDExEa1bt0a1atVw/vx5zJ8/H9OnT8fPP/8stTl16hR69uyJAQMGICQkBJ07d0bnzp0RGhoqtZk3bx6WLFmCVatWITg4GCYmJvDw8MDLly+lNr1798bVq1dx+PBh7Nu3DydOnMDgwYMLFUtpl/PZspy8vQFT01erF+T0eqIXExODmTNnQl8/RWqzcOF3uH5dVczRExERaSChRQ4cOCCcnJzE1atXBQAREhIi1a1YsUKUL19epKSkSGVeXl6idu3a0vYXX3wh2rVrJztm8+bNxTfffCOEECIzM1NYW1uL+fPnS/Xx8fHCwMBAbNmyRQghxLVr1wQAcfbsWanNn3/+KRQKhbh//36BYymIhIQEAUAkJCQUaj9NsGePECpV1s+C1qlUQgBZP/ft2yemT58uvdasWSN2787M95hERESaori+v7Wmp+3hw4cYNGgQfv31VxgbG+eqDwoKwscffwylUimVeXh4ICIiAk+fPpXauLu7y/bz8PBAUFAQACAyMhKxsbGyNubm5mjevLnUJigoCBYWFmjatKnUxt3dHTo6OggODi5wLHlJSUlBYmKi7KWt8puq40113t5AixYp8PCYgXPnzknlX375Jfr3749OnRQ4dSqrjNN6EBFRWaMVSZsQAp6enhgyZIgsWcopNjYWlStXlpVlb8fGxr6xTc76nPvl16ZSpUqyej09PVSoUOGt58l5jrzMmTMH5ubm0svW1jbfttosv+fdHB3D4e4uv2fq7e0NJycnWVl+t16JiIhKM7Umbd7e3lAoFG98hYeHY+nSpUhKSsLEiRPVGW6xmzhxIhISEqTX3bt31R1SoRVkrdDXByMIIbBmzRps27ZNatO0aVP4+PjAwMAg1/7e3oBKxWk9iIiobFHrlB9jx46Fp6fnG9tUr14dR48eRVBQUK4v8KZNm6J3797YsGEDrK2t8fDhQ1l99ra1tbX0M682Oeuzy2xsbGRtGjZsKLV59OiR7Bjp6emIi4t763lyniMvBgYGeSYp2qQgk9t6e2clbM+eAYsWxSMkZLGsfvDgwbLP/3Wc1oOIiMoitfa0WVlZwcnJ6Y0vpVKJJUuW4NKlS7h48SIuXrwoTdOxbds2zJo1CwCgUqlw4sQJpKWlScc/fPgwateujfLly0ttAgMDZTEcPnwYKlXWaEQHBwdYW1vL2iQmJiI4OFhqo1KpEB8fj/Pnz0ttjh49iszMTDRv3rzAsZRWBekF69gR2LQJ6NHjFFq2fJWwGRkZYerUqW9M2IiIiMqsIh3WUEIiIyNzjR6Nj48XlStXFn369BGhoaFi69atwtjYWPz0009Sm5MnTwo9PT3h5+cnwsLChI+Pj9DX1xdXrlyR2vj6+goLCwuxZ88ecfnyZdGpUyfh4OAgXrx4IbVp06aNaNSokQgODhb//POPqFWrlujZs2ehYikIbR49+ibp6enihx9+kI0ODQ4OVndYRERERaK4vr9LzYoI5ubmOHToEIYPH44mTZrA0tIS06ZNk82f5urqis2bN2PKlCmYNGkSatWqhd27d6NevXpSmwkTJiA5ORmDBw9GfHw8WrRogYMHD8LQ0FBqs2nTJowYMQKffvopdHR00K1bNyxZsqRQsZRV9+7dw5o1a2Rlo0ePhpmZmZoiIiIi0g4KIYRQdxCUt8TERJibmyMhIaFEkpp3WWKqMPbs2SNbxcLBwQF9+vSBQqEo+pMRERGpSXF9f2vFlB9UMgo7lUZBRooCwIsXLzBjxgxZwtarVy/07duXCRsREVEBMWkjSWGn0ihIknft2rVc665OnDgRtWrVeo9IiYiIyp5S80wbvZ93uTXq7f1qn9cJIfDzzz/LJhN2cXGBh4dHEUVMRERUtvCZNg1Wks+0ubpm9ZqpVJCWinpXcXFxWLp0qaxsyJAhuVaJICIiKo2K6/ubPW0E4M29ZgXl7w9s2/Y3HB2PSmWmpqYYPXo0dHR4J56IiOh9MGkjAO+/ykB6ejpCQmbB0fFVWfv27dGkSZP3D46IiIiYtNH7i46Oxrp162RlY8aMQbly5dQUERERUenDe1ZUKK9P87Fz505ZwlarVi34+PgwYSMiIipi7GmjPOU3mjR7mo8FC54jJGS+bJ+vvvoKNWrUKOFIiYiIygb2tJVBBZkUN7852Ly9ga5dr+CTT+QJ26RJk5iwERERFSMmbWVQQSbFzWuiXSEE7t1bgf/8Z6dU9t///hc+Pj7Q19cvxoiJiIiIt0fLoIJM7/H6aNLt258gLGyZrM2wYcNgZWVVTFESERFRTkzayqDCTu9x/PhxhIX9JW1bWFhg5MiRXDeUiIioBDFpo3zt3p2OS5dmycrs7Dri668bqSkiIiKisotJG+UpKioKly5tkJWNGzcOJiYmaoqIiIiobGPSRrls374dYWFh0ra5uTNGjfpCjRERERERkzaSJCcnw8/PT1bWt29fODg4qCkiIiIiysakjQAAFy9exJ49e2RlkyZN4lQeREREGoJJWxknhMDSpUvx9OlTqezjjz+Gm5ubGqMiIiKi1zFpK8MeP36MFStWyMqGDx8OS0tLNUVERERE+WHSVkYFBgbin3/+kbYtLS0xbNgwzr1GRESkoZi0lUEbN25EZGSktN2lSxf85z//UWNERERE9DZM2sqgf//9V/rv8ePHw9jYWI3REBERUUFwwfgyqF+/fujXrx8aNfKBu7sx/P1f1fn7A66ukJURERGR+imEEELdQVDeEhMTYW5ujoSEBJiZmRX58V1dgaAgQKUCTp3Kv4yIiIgKrri+v9nTVoZ5e2clZ97eby4jIiIi9WNPmwYr7p42IiIiKnrsaaNiwWfYiIiItAOTtjLO1zfrGTZfX3VHQkRERG/CpK2M4zNsRERE2oHztJVxHTtmvYiIiEizsaeNiIiISAswaSMiIiLSAkzaiIiIiLQAkzYiIiIiLcCkjYiIiEgLMGkjIiIi0gJM2oiIiIi0AJM2IiIiIi3ApI2IiIhICzBpIyIiItICTNqIiIiItACTNiIiIiItwKSNiIiISAvoqTsAyp8QAgCQmJio5kiIiIiooLK/t7O/x4sKkzYNlpSUBACwtbVVcyRERERUWElJSTA3Ny+y4ylEUaeBVGQyMzMRExODcuXKQaFQqDucEpWYmAhbW1vcvXsXZmZm6g6HcuC10Vy8NpqL10azFfX1EUIgKSkJVapUgY5O0T2Jxp42Daajo4MPPvhA3WGolZmZGf/AaSheG83Fa6O5eG00W1Fen6LsYcvGgQhEREREWoBJGxEREZEWYNJGGsnAwAA+Pj4wMDBQdyj0Gl4bzcVro7l4bTSbtlwfDkQgIiIi0gLsaSMiIiLSAkzaiIiIiLQAkzYiIiIiLcCkjYiIiEgLMGmjIpeSkoKGDRtCoVDg4sWLsrrLly/jo48+gqGhIWxtbTFv3rxc++/YsQNOTk4wNDRE/fr1ceDAAVm9EALTpk2DjY0NjIyM4O7ujhs3bsjaxMXFoXfv3jAzM4OFhQUGDBiAZ8+eFTqW0qJjx46ws7ODoaEhbGxs0KdPH8TExMjabN++HQ0bNoSxsTGqVauG+fPn5zrO8ePH0bhxYxgYGKBmzZpYv359rjbLly+Hvb09DA0N0bx5c5w5c0ZW//LlSwwfPhwVK1aEqakpunXrhocPH8raREdHo127djA2NkalSpUwfvx4pKenv/8HoYEKcm0CAgLg4uKCcuXKwcrKCt26dUNUVJSsDa9N8Xjb9Zk+fToUCkWul4mJiew4/LtW9AryuyOEgJ+fHxwdHWFgYICqVati1qxZsjZa9bsjiIrYyJEjRdu2bQUAERISIpUnJCSIypUri969e4vQ0FCxZcsWYWRkJH766SepzcmTJ4Wurq6YN2+euHbtmpgyZYrQ19cXV65ckdr4+voKc3NzsXv3bnHp0iXRsWNH4eDgIF68eCG1adOmjWjQoIE4ffq0+Pvvv0XNmjVFz549CxVLafLjjz+KoKAgERUVJU6ePClUKpVQqVRS/YEDB4Senp5YuXKluHXrlti3b5+wsbERS5culdrcvn1bGBsbizFjxohr166JpUuXCl1dXXHw4EGpzdatW4VSqRRr164VV69eFYMGDRIWFhbi4cOHUpshQ4YIW1tbERgYKM6dOydcXFyEq6urVJ+eni7q1asn3N3dRUhIiDhw4ICwtLQUEydOLOZPST3edm1u374tDAwMxMSJE8XNmzfF+fPnxccffywaNWoka8NrUzzedn2SkpLEgwcPZK86deqIfv36SW34d614vO3aCCHEt99+K2rXri327Nkjbt++Lc6dOycOHTok1Wvb7w6TNipSBw4cEE5OTuLq1au5krYVK1aI8uXLi5SUFKnMy8tL1K5dW9r+4osvRLt27WTHbN68ufjmm2+EEEJkZmYKa2trMX/+fKk+Pj5eGBgYiC1btgghhLh27ZoAIM6ePSu1+fPPP4VCoRD3798vcCyl2Z49e4RCoRCpqalCCCF69uwpunfvLmuzZMkS8cEHH4jMzEwhhBATJkwQdevWlbX58ssvhYeHh7TdrFkzMXz4cGk7IyNDVKlSRcyZM0cIkXWt9PX1xY4dO6Q2YWFhAoAICgoSQmT9P6SjoyNiY2OlNitXrhRmZmay61VavX5tduzYIfT09ERGRobUxt/fX9aG16bkvH59Xnfx4kUBQJw4cUIq49+1kvH6tbl27ZrQ09MT4eHh+e6jbb87vD1KRebhw4cYNGgQfv31VxgbG+eqDwoKwscffwylUimVeXh4ICIiAk+fPpXauLu7y/bz8PBAUFAQACAyMhKxsbGyNubm5mjevLnUJigoCBYWFmjatKnUxt3dHTo6OggODi5wLKVVXFwcNm3aBFdXV+jr6wPIuqVtaGgoa2dkZIR79+7hzp07AN5+bVJTU3H+/HlZGx0dHbi7u0ttzp8/j7S0NFkbJycn2NnZya5f/fr1UblyZdl5EhMTcfXq1aL6GDRSXtemSZMm0NHRwbp165CRkYGEhAT8+uuvcHd3l9rw2pSMvK7P61avXg1HR0d89NFHUhn/rhW/vK7N3r17Ub16dezbtw8ODg6wt7fHwIEDERcXJ+2nbb87TNqoSAgh4OnpiSFDhsj+qOQUGxsr+x8WgLQdGxv7xjY563Pul1+bSpUqyer19PRQoUKFt54n5zlKGy8vL5iYmKBixYqIjo7Gnj17pDoPDw/s3LkTgYGByMzMxPXr17FgwQIAwIMHDwDk/5klJibixYsX+Pfff5GRkfHWa6NUKmFhYfHGNrw2r66Ng4MDDh06hEmTJsHAwAAWFha4d+8etm/fLrXhtSleb7o+Ob18+RKbNm3CgAEDZOX8u1Z83nRtbt++jTt37mDHjh3YuHEj1q9fj/Pnz6N79+5SG2373WHSRm/k7e2d50O2OV/h4eFYunQpkpKSMHHiRHWHXGYU9NpkGz9+PEJCQnDo0CHo6uqib9++EP+/IMqgQYMwYsQItG/fHkqlEi4uLujRoweArH9VUuEU5bWJjY3FoEGD0K9fP5w9exZ//fUXlEolunfvLrWhwinK65PTrl27kJSUhH79+pXk2ylVivLaZGZmIiUlBRs3bsRHH32EVq1aYc2aNTh27BgiIiLU9Rbfi566AyDNNnbsWHh6er6xTfXq1XH06FEEBQXlWretadOm6N27NzZs2ABra+tco2myt62traWfebXJWZ9dZmNjI2vTsGFDqc2jR49kx0hPT0dcXNxbz5PzHJquoNcmm6WlJSwtLeHo6AhnZ2fY2tri9OnTUKlUUCgUmDt3LmbPno3Y2FhYWVkhMDBQdoz8PjMzMzMYGRlBV1cXurq6b71+qampiI+Pl/2r9PU2r4/MKsvXZvny5TA3N5eNAvztt99ga2uL4OBguLi48NoUUlFen5xWr16N9u3b5+pR4d+1givKa2NjYwM9PT04OjpK7Z2dnQFkjeSsXbu29v3uFPjpN6I3uHPnjrhy5Yr0CggIEADE77//Lu7evSuEePWQbM4HeCdOnJhrIEL79u1lx1apVLke2PXz85PqExIS8nxg99y5c1KbgICAPB/YfVMspdmdO3cEAHHs2LF82/Tp00c2EmvChAmiXr16sjY9e/bM9cDuiBEjpO2MjAxRtWrVXA/s/v7771Kb8PDwPB/YzTky66effhJmZmbi5cuX7/aGtcjr12bMmDGiWbNmsjYxMTECgDh58qQQgtemJOX3u3P79m2hUCjE3r17c+3Dv2sl4/Vrk/09dPPmTalN9kCRiIgIIYT2/e4waaNiERkZmWv0aHx8vKhcubLo06ePCA0NFVu3bhXGxsa5pvzQ09MTfn5+IiwsTPj4+OQ5NN7CwkLs2bNHXL58WXTq1CnPofGNGjUSwcHB4p9//hG1atWSDY0vSCylxenTp8XSpUtFSEiIiIqKEoGBgcLV1VXUqFFD+mPx+PFjsXLlShEWFiZCQkLEyJEjhaGhoQgODpaOkz00fvz48SIsLEwsX748z6HxBgYGYv369eLatWti8ODBwsLCQjZiasiQIcLOzk4cPXpUnDt3Ltcw/eyh8a1btxYXL14UBw8eFFZWVqVyWomCXJvAwEChUCjEjBkzxPXr18X58+eFh4eHqFatmnj+/LkQgtemuBTk+mSbMmWKqFKlikhPT891HP5dK3oFuTYZGRmicePG4uOPPxYXLlwQ586dE82bNxf/+9//pONo2+8OkzYqFnklbUIIcenSJdGiRQthYGAgqlatKnx9fXPtu337duHo6CiUSqWoW7eu2L9/v6w+MzNTTJ06VVSuXFkYGBiITz/9VPpXU7YnT56Inj17ClNTU2FmZia+/vprkZSUVOhYSoPLly8LNzc3UaFCBWFgYCDs7e3FkCFDxL1796Q2jx8/Fi4uLsLExEQYGxuLTz/9VJw+fTrXsY4dOyYaNmwolEqlqF69uli3bl2uNkuXLhV2dnZCqVSKZs2a5TrOixcvxLBhw0T58uWFsbGx6NKli3jw4IGsTVRUlGjbtq0wMjISlpaWYuzYsSItLa1oPhANUpBrI4QQW7ZsEY0aNRImJibCyspKdOzYUYSFhcna8NoUvYJen4yMDPHBBx+ISZMm5Xss/l0rWgW9Nvfv3xddu3YVpqamonLlysLT01M8efJE1kabfncUQvBJViIiIiJNx2FhRERERFqASRsRERGRFmDSRkRERKQFmLQRERERaQEmbURERERagEkbERERkRZg0kZERESkBZi0ERFRLsePH4dCoUB8fPx7Hcfe3h6LFi0qkpiIyjombURUpGJjY/Htt9+ievXqMDAwgK2tLTp06CAtQA8Ap06dwmeffYby5cvD0NAQ9evXx48//oiMjAypTVRUFAYMGAAHBwcYGRmhRo0a8PHxQWpqqux8v/zyCxo0aABTU1NYWFigUaNGmDNnjlQ/ffp0KBQKtGnTJles8+fPh0KhQKtWrQr8/hITEzF58mQ4OTnB0NAQ1tbWcHd3x86dO5FzrvKrV6/iiy++gJWVFQwMDODo6Ihp06bh+fPnUpu4uDh8++23qF27NoyMjGBnZ4eRI0ciISGhQLFERUVBoVDk+Tp9+nSB31OrVq0watSoArcnIvXQU3cARFR6REVF4b///S8sLCwwf/581K9fH2lpaQgICMDw4cMRHh6OXbt24YsvvsDXX3+NY8eOwcLCAkeOHMGECRMQFBSE7du3Q6FQIDw8HJmZmfjpp59Qs2ZNhIaGYtCgQUhOToafnx8AYO3atRg1ahSWLFmCli1bIiUlBZcvX0ZoaKgsLhsbGxw7dgz37t3DBx98IJWvXbsWdnZ2BX5/8fHxaNGiBRISEvDDDz/gww8/hJ6eHv766y9MmDABn3zyCSwsLHD69Gm4u7vD3d0d+/fvR+XKlXHmzBmMHTsWgYGBOHbsGJRKJWJiYhATEwM/Pz/UqVMHd+7cwZAhQxATE4Pff/+9wHEdOXIEdevWlZVVrFixwPsTkZYo1KJXRERv0LZtW1G1alXx7NmzXHVPnz4Vz549ExUrVhRdu3bNVe/v7y8AiK1bt+Z7/Hnz5gkHBwdpu1OnTsLT0/ONMfn4+IgGDRqI9u3bix9++EEqP3nypLC0tBRDhw4VLVu2LMC7E2Lo0KHCxMRE3L9/P1ddUlKSSEtLE5mZmaJOnTqiadOmIiMjQ9bm4sWLQqFQvHE9yO3btwulUlmgNQnzW+M3p+z3v3HjRlGtWjVhZmYmvvzyS5GYmCiEEKJfv34CgOwVGRkpjh07JgCII0eOiCZNmggjIyOhUqlEeHi4dOybN2+Kjh07ikqVKgkTExPRtGlTcfjwYdn5q1WrJhYuXChtAxArVqwQbdq0EYaGhsLBwUHs2LFDqndzcxPDhw+XHePRo0dCX19fHDly5K2fCVFpxtujRFQk4uLicPDgQQwfPhwmJia56i0sLHDo0CE8efIE48aNy1XfoUMHODo6YsuWLfmeIyEhARUqVJC2ra2tcfr0ady5c+et8fXv3x/r16+XtteuXYvevXtDqVS+dV8AyMzMxNatW9G7d29UqVIlV72pqSn09PRw8eJFXLt2DWPGjIGOjvxPbIMGDeDu7v7W92hmZgY9vaK7EXLr1i3s3r0b+/btw759+/DXX3/B19cXALB48WKoVCoMGjQIDx48wIMHD2BrayvtO3nyZCxYsADnzp2Dnp4e+vfvL9U9e/YMn332GQIDAxESEoI2bdqgQ4cOiI6OfmM8U6dORbdu3XDp0iX07t0bPXr0QFhYGABg4MCB2Lx5M1JSUqT2v/32G6pWrYpPPvmkyD4TIm3EpI2IisTNmzchhICTk1O+ba5fvw4AcHZ2zrPeyclJapPX8ZcuXYpvvvlGKvPx8YGFhQXs7e1Ru3ZteHp6Yvv27cjMzMy1f/v27ZGYmIgTJ04gOTkZ27dvlyUgb/Pvv//i6dOnb3x/wNvfo7Ozc77v8d9//8XMmTMxePDgAscFAK6urjA1NZW9csrMzMT69etRr149fPTRR+jTp4/0jKG5uTmUSiWMjY1hbW0Na2tr6OrqSvvOmjULLVu2RJ06deDt7Y1Tp07h5cuXALKS0G+++Qb16tVDrVq1MHPmTNSoUQP+/v5vjPfzzz/HwIED4ejoiJkzZ6Jp06ZYunQpAKBr164AgD179kjt169fD09PTygUikJ9LkSlDZM2IioSIsdD+EXZFgDu37+PNm3a4PPPP8egQYOkchsbGwQFBeHKlSv47rvvkJ6ejn79+qFNmza5Ejd9fX189dVXWLduHXbs2AFHR0f85z//KbaYC9s+MTER7dq1Q506dTB9+vRC7btt2zZcvHhR9srJ3t4e5cqVk7ZtbGzw6NGjAh0752dkY2MDANK+z549w7hx4+Ds7AwLCwuYmpoiLCzsrT1tKpUq13Z2T5uhoSH69OmDtWvXAgAuXLiA0NBQeHp6FiheotKMAxGIqEjUqlVLGkCQH0dHRwBAWFgYXF1dc9WHhYWhTp06srKYmBi4ubnB1dUVP//8c57HrVevHurVq4dhw4ZhyJAh+Oijj/DXX3/Bzc1N1q5///5o3rw5QkNDC9XLBgBWVlawsLB44/sD5O+xUaNGuerDwsKkNtmSkpLQpk0blCtXDrt27YK+vn6hYrO1tUXNmjXzrX/9eAqFIs/eyLftm93Tlb3vuHHjcPjwYfj5+aFmzZowMjJC9+7dc43wLayBAweiYcOGuHfvHtatW4dPPvkE1apVe69jEpUG7GkjoiJRoUIFeHh4YPny5UhOTs5VHx8fj9atW6NChQpYsGBBrnp/f3/cuHEDPXv2lMru37+PVq1aoUmTJli3bl2uZ8Tykp305RVD3bp1UbduXYSGhqJXr16FeXvQ0dFBjx49sGnTJsTExOSqf/bsGdLT09GwYUM4OTlh4cKFuRKjS5cu4ciRI7L3mJiYiNatW0OpVMLf3x+GhoaFiqsoKJVK2XQrBXXy5El4enqiS5cuqF+/PqytrREVFfXW/V6fjuT06dOy28n169dH06ZN8csvv2Dz5s2FTrCJSismbURUZJYvX46MjAw0a9YMf/zxB27cuIGwsDAsWbIEKpUKJiYm+Omnn7Bnzx4MHjwYly9fRlRUFNasWQNPT090794dX3zxBYBXCZudnR38/Pzw+PFjxMbGIjY2Vjrf0KFDMXPmTJw8eRJ37tzB6dOn0bdvX1hZWeW6BZft6NGjePDgASwsLAr9/mbNmgVbW1s0b94cGzduxLVr13Djxg2sXbsWjRo1wrNnz6BQKLBmzRpcu3YN3bp1w5kzZxAdHY0dO3agQ4cOUKlU0pxo2QlbcnIy1qxZg8TEROk9FiaJevLkibRf9iv7ubOCsLe3R3BwMKKiovDvv/8WuBeuVq1a2LlzJy5evIhLly6hV69eBdp3x44dWLt2La5fvw4fHx+cOXMGI0aMkLUZOHAgfH19IYRAly5dCvxeiEo1dQ5dJaLSJyYmRgwfPlxUq1ZNKJVKUbVqVdGxY0dx7Ngxqc2JEyeEh4eHMDMzE0qlUtStW1f4+fmJ9PR0qc26detyTUWR/cr2+++/i88++0zY2NgIpVIpqlSpIrp16yYuX74stcme8iI/3333XYGn/BBCiPj4eOHt7S1q1aollEqlqFy5snB3dxe7du0SmZmZUrvLly+Lbt26iQoVKgh9fX1Ro0YNMWXKFJGcnCy1yZ5WI69XZGTkW2PJnvIjr9eWLVvyff8LFy4U1apVk7YjIiKEi4uLMDIyyjXlx9OnT6V2ISEhstgiIyOFm5ubMDIyEra2tmLZsmWiZcuW4rvvvpP2yWvKj+XLl4v//e9/wsDAQNjb24tt27blem9JSUnC2NhYDBs27K2fA1FZoRCikE/LEhERvSOFQoFdu3ahc+fOb2wXFRWFGjVq4OzZs2jcuHHJBEek4TgQgYiINEZaWhqePHmCKVOmwMXFhQkbUQ58po2I6P+9PtdZztfff/9d4vEMGTIk33iGDBlS4vGUhJMnT8LGxgZnz57FqlWr1B0OkUbh7VEiov938+bNfOuqVq0KIyOjEowmaz60xMTEPOvMzMxQqVKlEo2HiNSLSRsRERGRFuDtUSIiIiItwKSNiIiISAswaSMiIiLSAkzaiIiIiLQAkzYiIiIiLcCkjYiIiEgLMGkjIiIi0gJM2oiIiIi0wP8BJcx+rwECsLgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjNElEQVR4nO3dd1QU198G8GdBekdBFBGsYIsxtoCJij8jGms00dixYMPeADUiVuxRY9QkisQYeyNoxIYliokNFQWs2AAbTVD6vH/sy8hQFHRhWfb5nLNH587s8l03cR/vvXOvTBAEAURERERqQEPZBRARERGVFgYfIiIiUhsMPkRERKQ2GHyIiIhIbTD4EBERkdpg8CEiIiK1weBDREREaoPBh4iIiNQGgw8RERGpDQYfIlJJMpkMc+bMUXYZIldXV9jZ2Sm7DCJ6DwYfIlKYzZs3QyaTiQ9dXV3UrVsXY8eOxdOnT0v0Z587dw5z5sxBQkKCQl+3bdu2kvdkbm6O5s2bY9OmTcjOzlbIz1i4cCH279+vkNcioneroOwCiKj8mTt3LmrUqIHU1FT8888/WLduHQ4dOoSwsDDo6+sr5Ge8efMGFSq8/Svs3Llz8PHxgaurK0xNTRXyM3JUq1YNixYtAgA8f/4cv//+O4YNG4Zbt27B19f3o19/4cKF+Pbbb9GjR4+Pfi0iejcGHyJSuE6dOqFZs2YAgOHDh6NixYpYsWIFDhw4gL59+37w62ZnZyM9PR26urrQ1dVVVLnvZWJiggEDBojHI0eOhL29PX766SfMmzcPWlpapVYLEX0cDnURUYlr164dAOD+/fsAgGXLlsHJyQkVK1aEnp4emjZtit27d+d7nkwmw9ixY7F161Y0aNAAOjo6OHz4sHguZ47PnDlzMG3aNABAjRo1xGGpqKgotGnTBo0bNy6wLnt7e7i4uBT7/ejr6+Pzzz9HSkoKnj9/Xuh1KSkpmDJlCmxsbKCjowN7e3ssW7YMgiBI3mNKSgr8/f3Ful1dXYtdExEVDXt8iKjE3b17FwBQsWJFAMCqVavQrVs39O/fH+np6di+fTu+++47BAYGonPnzpLnnjhxAjt37sTYsWNRqVKlAicQ9+zZE7du3cK2bduwcuVKVKpUCQBgYWGBgQMHws3NDWFhYWjYsKH4nAsXLuDWrVuYNWvWB72ne/fuQVNTs9BhNUEQ0K1bNwQHB2PYsGH49NNPERQUhGnTpuHJkydYuXIlAGDLli0YPnw4WrRogREjRgAAatWq9UE1EVERCERECuLn5ycAEI4dOyY8f/5cePTokbB9+3ahYsWKgp6envD48WNBEATh9evXkuelp6cLDRs2FNq1aydpByBoaGgIN27cyPezAAje3t7i8dKlSwUAwv379yXXJSQkCLq6uoKHh4ekffz48YKBgYGQnJz8zvfUpk0bwcHBQXj+/Lnw/PlzITw8XBg/frwAQOjatat43eDBgwVbW1vxeP/+/QIAYf78+ZLX+/bbbwWZTCbcuXNHbDMwMBAGDx78zjqISDE41EVECte+fXtYWFjAxsYG33//PQwNDbFv3z5YW1sDAPT09MRr4+PjkZiYiC+//BKXL1/O91pt2rRB/fr1P7gWExMTdO/eHdu2bROHmLKysrBjxw706NEDBgYG732NiIgIWFhYwMLCAvXq1cOaNWvQuXNnbNq0qdDnHDp0CJqamhg/frykfcqUKRAEAX///fcHvyci+nAc6iIihVu7di3q1q2LChUqoHLlyrC3t4eGxtt/ZwUGBmL+/PkIDQ1FWlqa2C6TyfK9Vo0aNT66nkGDBmHHjh04c+YMWrdujWPHjuHp06cYOHBgkZ5vZ2eHX3/9VbxFv06dOrC0tHzncx48eICqVavCyMhI0l6vXj3xPBGVPgYfIlK4Fi1aiHd15XXmzBl069YNrVu3xs8//4wqVapAS0sLfn5++PPPP/Ndn7t36EO5uLigcuXK+OOPP9C6dWv88ccfsLKyQvv27Yv0fAMDgyJfS0RlG4e6iKhU7dmzB7q6uggKCsLQoUPRqVMnhYSKgnqLcmhqaqJfv37YvXs34uPjsX//fvTt2xeampof/XMLY2tri+joaLx69UrSHhERIZ7P8a7aiUixGHyIqFRpampCJpMhKytLbIuKivrolYtz5uoUtnLzwIEDER8fj5EjRyI5OVmyLk9J+Prrr5GVlYWffvpJ0r5y5UrIZDJ06tRJbDMwMFD4itNEVDAOdRFRqercuTNWrFiBjh07ol+/fnj27BnWrl2L2rVr49q1ax/8uk2bNgUAzJw5E99//z20tLTQtWtXMRA1adIEDRs2xK5du1CvXj189tlnCnk/henatSucnZ0xc+ZMREVFoXHjxjhy5AgOHDiAiRMnSm5Zb9q0KY4dO4YVK1agatWqqFGjBlq2bFmi9RGpK/b4EFGpateuHTZu3IjY2FhMnDgR27Ztw+LFi/HNN9981Os2b94c8+bNw9WrV+Hq6oq+ffvmW1xw0KBBAFDkSc0fQ0NDAwEBAZg4cSICAwMxceJE3Lx5E0uXLsWKFSsk165YsQJNmzbFrFmz0LdvX6xbt67E6yNSVzJByLWEKBFRObZq1SpMmjQJUVFRqF69urLLISIlYPAhIrUgCAIaN26MihUrIjg4WNnlEJGScI4PEZVrKSkpCAgIQHBwMK5fv44DBw4ouyQiUiL2+BBRuRYVFYUaNWrA1NQUY8aMwYIFC5RdEhEpEYMPERERqQ3e1UVERERqg8GHiIiI1AYnN+eRnZ2N6OhoGBkZcRl5IiIiFSEIAl69eoWqVatKNkXOi8Enj+joaNjY2Ci7DCIiIvoAjx49QrVq1Qo9z+CTh5GREQD5H5yxsbGSqyEiIqKiSEpKgo2Njfg9XhgGnzxyhreMjY0ZfIiIiFTM+6apcHIzERERqQ0GHyIiIlIbDD5ERESkNjjH5wNkZWUhIyND2WVQKdDS0oKmpqayyyAiIgVh8CkGQRAQGxuLhIQEZZdCpcjU1BRWVlZc14mIqBxg8CmGnNBjaWkJfX19fhGWc4Ig4PXr13j27BkAoEqVKkquiIiIPhaDTxFlZWWJoadixYrKLodKiZ6eHgDg2bNnsLS05LAXEZGK4+TmIsqZ06Ovr6/kSqi05XzmnNdFRKT6GHyKicNb6oefORFR+cHgQ0RERGqDwYeIiIjUBoOPGnB1dYVMJoNMJoOWlhYqV66Mr776Cps2bUJ2dnaRX2fz5s0wNTUtuUKJiIhKGIOPmujYsSNiYmIQFRWFv//+G87OzpgwYQK6dOmCzMxMZZdHRERUKhh81ISOjg6srKxgbW2Nzz77DDNmzMCBAwfw999/Y/PmzQCAFStWoFGjRjAwMICNjQ3GjBmD5ORkAMDJkycxZMgQJCYmir1Hc+bMAQBs2bIFzZo1g5GREaysrNCvXz9x7RsiIqIcAQGAk5P8V2VRmeCzaNEiNG/eHEZGRrC0tESPHj0QGRkpuSY1NRXu7u6oWLEiDA0N0atXLzx9+rTEahIEAenp6Up5CILw0fW3a9cOjRs3xt69ewEAGhoaWL16NW7cuAF/f3+cOHEC06dPBwA4OTnhxx9/hLGxMWJiYhATE4OpU6cCkN/mPW/ePFy9ehX79+9HVFQUXF1dP7o+IiIqPx4/fowrV3zg4uIDX1/l1aEyCxieOnUK7u7uaN68OTIzMzFjxgx06NABN2/ehIGBAQBg0qRJOHjwIHbt2gUTExOMHTsWPXv2xNmzZ0ukpoyMDCxatKhEXvt9vLy8oK2t/dGv4+DggGvXrgEAJk6cKLbb2dlh/vz5GDVqFH7++Wdoa2vDxMQEMpkMVlZWktcYOnSo+PuaNWti9erVaN68OZKTk2FoaPjRNRIRkWo7cOAAQkNDxWMPDwGAcpYKUZngc/jwYcnx5s2bYWlpiUuXLqF169ZITEzExo0b8eeff6Jdu3YAAD8/P9SrVw/nz5/H559/royyyzxBEMR1ao4dO4ZFixYhIiICSUlJyMzMRGpqKl6/fv3OhRsvXbqEOXPm4OrVq4iPjxcnTD98+BD169cvlfdBRERlT2pqKhYvXixp69evH+rUUd76aCoTfPJKTEwEAJibmwOQf/lmZGSgffv24jUODg6oXr06QkJCCg0+aWlpSEtLE4+TkpKKXIOWlha8vLw+pPyPpqWlpZDXCQ8PR40aNRAVFYUuXbpg9OjRWLBgAczNzfHPP/9g2LBhSE9PLzT4pKSkwMXFBS4uLti6dSssLCzw8OFDuLi4ID09XSE1EhFR2RMQAPj6Ap6eQLdu+c+Hh4dj586dkjZFjVZ8DJUMPtnZ2Zg4cSJatWqFhg0bApBvIKqtrZ3vduvKlSsjNja20NdatGgRfHx8PqgOmUym9A/wY5w4cQLXr1/HpEmTcOnSJWRnZ2P58uXQ0JBP/cr7H6y2tjaysrIkbREREXj58iV8fX1hY2MDALh48WLpvAEiIlIaX18gJASYPl0agARBgJ+fHx49eiRe26JFC3Tq1EmJ1b6lMpObc3N3d0dYWBi2b9/+0a/l5eWFxMRE8ZH7gypP0tLSEBsbiydPnuDy5ctYuHAhunfvji5dumDQoEGoXbs2MjIysGbNGty7dw9btmzB+vXrJa9hZ2eH5ORkHD9+HC9evMDr169RvXp1aGtri88LCAjAvHnzlPQuiYiotHh6Avb2wMOH8gDk6ysfjZk7d67ku3TEiBFlJvQAKhh8xo4di8DAQAQHB6NatWpiu5WVFdLT05GQkCC5/unTp/km4+amo6MDY2NjyaM8Onz4MKpUqQI7Ozt07NgRwcHBWL16NQ4cOABNTU00btwYK1aswOLFi9GwYUNs3bo138RtJycnjBo1Cn369IGFhQWWLFkCCwsLbN68Gbt27UL9+vXh6+uLZcuWKeldEhFRaenWDTA3B968AQwNgaFD/8WPP/4ontfV1cUPP/yAKlWqKK/IAsgERdwXXQoEQcC4ceOwb98+nDx5EnXq1JGcT0xMhIWFBbZt24ZevXoBACIjI+Hg4PDOOT55JSUlwcTEBImJiZIQlJqaivv376NGjRrQ1dVV3BujMo+fPRFRwQICgMWLs9Gp01JkZaWK7S4uLqV+U1Fh3995qcwcH3d3d/z55584cOAAjIyMxHk7JiYm0NPTg4mJCYYNG4bJkyfD3NwcxsbGGDduHBwdHXlHFxERUQlo0SIWHTpsQO7pnxMmTCjT2xupTPBZt24dAKBt27aSdj8/P3GxvJUrV0JDQwO9evVCWloaXFxc8PPPP5dypUREROXf4cOH8e+//4rHNjY2GDJkiLhESlmlMsGnKCNyurq6WLt2LdauXVsKFREREamf9PT0fHNAe/fujXr16impouJRmeBDREREynXnzh1s3bpV0ubh4aFS8x8ZfIiIiOi9tm7dijt37ojHT558il9+6a7Eij6Myt3OTkRERIqVs2v6zJn5d09PTk6Gj4+PJPScPz8UXbqoXugB2ONDRESk9nJWYf73XyA7W37crRtw+fJl/PXXX+J1MpkMM2fOhKamphKr/TgMPkRERGrO0xPo3x9ITpYvRujhIeDHH1eJ+2ICgLOzM1q3bq3EKhWDQ11ERERqrls3YPx4eegZP/45QkPnSkLPmTNjkZCg+qEHYPAhBXJ1dUWPHj3E47Zt22LixIkf9ZqKeA0iInq/4GCgRYsT0NZ+u/6dhYUFgoJm4/jxivD1VWJxCsShLjXg6uoKf39/AICWlhaqV6+OQYMGYcaMGahQoeT+E9i7dy+0tLSKdO3Jkyfh7OyM+Ph4yYqfxXkNIiL6MBkZGXBxWShp++abb/DJJ5+gWrW3u6+XBww+aqJjx47w8/NDWloaDh06BHd3d2hpacHLy0tyXXp6OrS1tRXyM83NzcvEaxARkVRAAODhAQgC8MMPUbhzx19yfurUqTAwMAAgHwbr1k0ZVZYMDnWpCR0dHVhZWcHW1hajR49G+/btERAQIA5PLViwAFWrVoW9vT0A4NGjR+jduzdMTU1hbm6O7t27IyoqSny9rKwsTJ48GaampqhYsSKmT5+eb3XtvMNUaWlp8PDwgI2NDXR0dFC7dm1s3LgRUVFRcHZ2BgCYmZlBJpOJ25DkfY34+HgMGjQIZmZm0NfXR6dOnXD79m3x/ObNm2FqaoqgoCDUq1cPhoaG6NixI2JiYsRrTp48iRYtWsDAwACmpqZo1aoVHjx4oKA/aSKiss/XF4iIABo12i0JPfXq1YO3t7cYesojBh81paenh/T0dADA8ePHERkZiaNHjyIwMPD/uzxdYGRkhDNnzuDs2bNigMh5zvLly7F582Zs2rQJ//zzD+Li4rBv3753/sxBgwZh27ZtWL16NcLDw7FhwwYYGhrCxsYGe/bsAQBERkYiJiYGq1atKvA1XF1dcfHiRQQEBCAkJASCIODrr79GRkaGeM3r16+xbNkybNmyBadPn8bDhw8xdepUAEBmZiZ69OiBNm3a4Nq1awgJCcGIESPK/N4yREQfImd9ntzr8gDA1KmvMWeODxo2vCG21a49CL179y7lCksfh7rUjCAIOH78OIKCgjBu3Dg8f/4cBgYG+O2338Qhrj/++APZ2dn47bffxEDg5+cHU1NTnDx5Eh06dMCPP/4ILy8v9OzZEwCwfv16BAUFFfpzb926hZ07d+Lo0aNo3749AKBmzZri+ZwhLUtLy0J39b19+zYCAgJw9uxZODk5AZCvJGpjY4P9+/fju+++AyAfq16/fj1q1aoFABg7dizmzp0LAEhKSkJiYiK6dOkinleV/WWIiIorZ32enHV5AOD69eu4fn2v5Lr582egeXMt9O+vhCJLGXt8lKSwFF5SAgMDYWhoCF1dXXTq1Al9+vTBnDlzAACNGjWSzOu5evUq7ty5AyMjIxgaGsLQ0BDm5uZITU3F3bt3kZiYiJiYGLRs2VJ8ToUKFdCsWbNCf35oaCg0NTXRpk2bD34P4eHhqFChguTnVqxYEfb29ggPDxfb9PX1xVADAFWqVMGzZ88AyAOWq6srXFxc0LVrV6xatUoyDEZEVJ54egKOjvJfBUHA+vXrsXfv29DTqlUrNGnijebNtcrN5OX3YfBRktwpvDQ4OzsjNDQUt2/fxps3b+Dv7y+O4eYdy01OTkbTpk0RGhoqedy6dQv9+vX7oJ+vp6f30e+hqPLeBSaTySTzj/z8/BASEgInJyfs2LEDdevWxfnz50utPiKikpbzj2sAOHcO+OKLOMydOxdPnz4Vr8mZ76luGHyUJHcKLw0GBgaoXbs2qlev/t5b2D/77DPcvn0blpaWqF27tuRhYmICExMTVKlSBf/++6/4nMzMTFy6dKnQ12zUqBGys7Nx6tSpAs/n9DhlZWUV+hr16tVDZmam5Oe+fPkSkZGRqF+//jvfU15NmjSBl5cXzp07h4YNG+LPP/8s1vOJiMqy3P+4/ueff7BmzRrxnLGxMX744QdYWlrmu1YdMPgoSbdu8hReFm8R7N+/PypVqoTu3bvjzJkzuH//Pk6ePInx48fj8ePHAIAJEybA19cX+/fvR0REBMaMGYOEhIRCX9POzg6DBw/G0KFDsX//fvE1d+7cCQCwtbWFTCZDYGAgnj9/juTk5HyvUadOHXTv3h1ubm74559/cPXqVQwYMADW1tbo3r1om+Xdv38fXl5eCAkJwYMHD3DkyBHcvn2b83yIqFzx9ATq1cvCV1/Nw/Hjx8X2Ll26YNKkSdDQ0JBcW5r/EFc2Bh/KR19fH6dPn0b16tXRs2dP1KtXD8OGDUNqaiqMjY0BAFOmTMHAgQMxePBgODo6wsjICN988807X3fdunX49ttvMWbMGDg4OMDNzQ0pKSkAAGtra/j4+MDT0xOVK1fG2LFjC3wNPz8/NG3aFF26dIGjoyMEQcChQ4eKvMihvr4+IiIi0KtXL9StWxcjRoyAu7s7Ro4cWYw/ISKisi0l5TH69JkPDY1ssW3y5Mlo2rRpvjmmZfkf4iVBJuRdfEXNJSUlwcTEBImJieKXPACkpqbi/v37qFGjBnR1dZVYIZU2fvZEVNYFBOReXTkAV65cEc8ZGdXE5MkDxWMnJ/nQlqOjPPCUF4V9f+fF29mJiIhUnK8vcPlyKq5cWSxpr1mzHwYOrCNp8/QsX1tQFBeDDxERURmXu0enoCGpUaMicP/+Dkmbp6cndHR08l1b3ragKC4GHyIiojKuoIUIAeDAAQHBwZthZvZQbGvevDm+/vprJVSpGji5mYiIqIwr6M6rxMREhIbOlYQeNzc3ZGZ+DQcHoF690lskV5Uw+BQT54KrH37mRKQseRciBOTHGzf+hx9//FG8LjVVB0eOzELVqlXh6wtERso3IVWXtXmKg8GniHJul379+rWSK6HSlvOZF/WWeSIiRcm7uODixdn48sslePz4b/Eaa+sOOHXKEx4emgDkvUL29oCDg/pOYH4XzvEpIk1NTZiamop7Punr63NH73JOEAS8fv0az549g6mpKTQ1NZVdEhGpmdx3YMXGxqJDhw2S8xMmTICpqSmGD3/bpu6Tl9+H6/jk8a51AARBQGxs7DtXKKbyx9TUFFZWVgy6RFTiCrt7KygoSLKnYEKCNVasGMa/l3Ip6jo+DD55FOUPLisrCxkZGaVcGSmDlpYWe3qIqNTkLC7o4ACYmQHTpqXj2rVFkmtCQ7/DkCH12auTBxcwLEGampr8MiQiIoXz9AQ8PICoKCAj4y6uXftDct7ffzp+/FGPoecjMPgQEREpUc7wlrMzEBwMCALwzTfbYG9/S7wmNLQx9u/vASD/Wj5UPAw+RERESjR9uvz284sXAW3tZEybtlxyfuPGIXj0qDoAwNqad2p9LAYfIiIiJcqZn9y48RV06SJdcXDevJnIypJ/Vc+YASxYUNrVlT8MPkRERErk6yvg3Lk10NePF9tu326L3r3boGVL+cKFTk4MPYrC4ENERKQkL168QGjoWujrv23bsGEsYmIq4tIlIDxcebWVVww+REREShAcHIzTp0+Lx4JQCcuXj0Fysuz/j5VVWfnG4ENERFSKMjMzsSDPuNW+fT1w925jJCcDurqAnR2weLFy6ivvGHyIiIhKyZ9/PsDt25slbUuWTMXr1waYMUN+O3veVZtJsRh8iIiISlhAAHDw4F5UrXpdbAsPd8COHX0AABUqcPJyaWHwISIiKiEBAcDy5W/Qrt0SVK36tn3LloG4e7emeFy5shKKU1MMPkRERCVk8+YwtGu3R9J29OgM3L2rBUC+IGH16lyUsDQx+BARESnYgQMCgoN/QePGsWLb/ftO6NnzK2zfLg88RkbyCcycz1O6GHyIiIgUKD4+HqGhq2Fm9rZt48ZRyM6ujH//BSIiAEdH+cKEVPoYfIiIiBTk7NmzOHbsmHiclGSElSsnQhA0AAD29vLQw6Et5WHwISIi+khZWVnw9fVFZmam2BYY2BkXLzaDhoZ8MUJdXWDJEg5tKRuDDxER0Ud48uQJfvvtN0nb8uWT8OqVMQCgSpW3E5gZepSPwYeIiOgDBQYG4tKlS+LxvXs1EBg4ECkpMjg5yXt6GHjKFgYfIiKiYkpLS4Ovr6+k7c8/++L27bqoWhWIi5OHHk5gLnsYfIiIiIphy5ZI3Lu3XdK2e7cnoqN1IAiAoSEnMJdlDD5ERERFIAgC/P398eDBA7EtK6sZVq7sjPHjgZYtAV9fDm2VdQw+RERE75GUlISVK1dK2oKC3BAXVxXJyfLNRRcsYOBRBQw+RERE73DhwgUcOnRIPNbS0sK6dR54/FgT5uYc1lI1DD5EREQFyM7OxooVK5CSkiK2ffXVV3jxwglPnsiP37zhBGZVw+BDRESUx9OnT7F+/XpJ2y+/TECTJqbw9ZXfsaWhAUyapKQC6YMx+BAREf2/gABg794jqFEjRGx7+bIqfvttON68kcHDQ76xKCcxqy4GHyIiIgDp6em4cmURatR42/bXX99CR6cBUlPlx4IgDzsMPKqLwYeIiNRaQADwyy/30Lz5Fkn7hg3TEROjJx5raMj32iLVxuBDRERqKSBAPmTVoMF2NG8eKbZHR3+CX375BjLZ22s1NDi0VV5oKLsAIiIiZVixIgUuLj6oVu1t6BkyZAgqVfpGXH1ZVxewtgb27ZOv00Oqjz0+RESkVgICgN9/D4Wz8wFJ+8yZM1GhQgUEBwPJycDLl0CTJuzpKW/Y40NERGpDEAT8888aNGr0NvRYWbXBr796w8ioAmbOlAcdR0dAJgNCQuTDYVR+MPgQEVG5FRAAODnJf33x4gXmzp0LA4M48Xy9eu5YubItnjwBUlOB1avlvTvnzslvW+eqzOUPh7qIiKjc8vWV99rs2nUSV66cEttTUsyxbNlYGBjIYGIib5PJgPHj3z6Xt62XTww+RERULgUEAAkJmZgzRzoruXv37nj48FOsWyefy2Nt/bZnh0Gn/ONQFxERlQu5h7UAYP36h+jTRxp6Gjacik8//RTdugFbt8oDz5Il8qEthh71wB4fIiJSeQEBQP/+8h4cX18gK2sfWra8Jp6/c6cu/vijr7gez4IFHMpSV+Wyx2ft2rWws7ODrq4uWrZsif/++0/ZJRERkYLl7uHx9ZWHnkqV3sDFxQfXrr0NPTt2DMCePX0BANnZwIoVyqqYyoJyF3x27NiByZMnw9vbG5cvX0bjxo3h4uKCZ8+eKbs0IiJSoJyJyzkbhvbocQNjx0r3lFi1ygvh4bXw5s3btooVS7lQKlPKXfBZsWIF3NzcMGTIENSvXx/r16+Hvr4+Nm3apOzSiIhIQQICgLg4wMEB8PAQEBv7Cz79dLd43tLSEcuWeSM+Xluy9YS1NfDzz0oomMqMcjXHJz09HZcuXYKXl5fYpqGhgfbt2yMkJKTA56SlpSEtLU08TkpKKvE6iYjo4/j6ApGRgLNzAkJDV0nOjRo1Cm3aVEZysnzLicmTgeBg3rVFcuUq+Lx48QJZWVmoXLmypL1y5cqIiIgo8DmLFi2Cj49PaZRHREQfKWc+j7MzYGt7Dg4OR8VzBgYGmDx5MjQ0NMReHjs77rFFUuVuqKu4vLy8kJiYKD4ePXqk7JKIiKgQvr7Av/9mQUNjoST0XLz4NX77bSoCA+VfazmrLi9erKxKqawqVz0+lSpVgqamJp4+fSppf/r0KaysrAp8jo6ODnR0dEqjPCIi+kjjx0cjMvJXSdvJk5Nw8qQxAHkwyrlNncNaVJBy1eOjra2Npk2b4vjx42JbdnY2jh8/DkdHRyVWRkREHyL3LesHDx6UhB5DQzsEBc2Gk5MxHBzkE5fj498uYEhUkHIVfABg8uTJ+PXXX+Hv74/w8HCMHj0aKSkpGDJkiLJLIyKid8i78jIg78G5dCkNV6744OLFi2J7Rsb3mDVrMEJCZNizBwgPB6pXByIiuJs6vVu5GuoCgD59+uD58+eYPXs2YmNj8emnn+Lw4cP5JjwTEVHZkntdnpxhqtGjb+HevW2S6xYt8oSWlg5SU+XHOROZPT3frulDVBiZIAiCsosoS5KSkmBiYoLExEQYGxsruxwiIrWRc8eWpyfQtauALVu24P79++L5ixebIjCwCwwN5buo79kjDz2LF3M+DxX9+5vBJw8GHyIi5Xr16hVW5NlXYvPm4YiKsoaGBrBvH4MO5VfU7+9yN9RFRESq6+LFizh48KB4nJFRAYsWeaJKFU2xp4ehhz4Ggw8REZWq3ENaOSEmOzsbK1euRHJysnjd8ePtceZMK8hkwODBXIiQFINDXXlwqIuIqGQ5OcknMTs4AGZmwIQJzxARsU5yzY8/jkdCghk0NOQ7qjs6AufOKalgUgkc6iIiojIp5+6ruDjAwOAYIiLOiudiYqywadMIaGrKYG0t7+nJ2WeLSBEYfIiIqEQUNKQFyH/fqVMGFi5cKLl+165eiIhoCA8PDmtRyeFQVx4c6iIiUgwHB/kO6vb28oUFc9y/fx+///675NrFi6fhzRt9DmnRB+NQFxERKVXOwoI5vwLAjh07EJErBd282RBnz/aCuTlgaMghLSp5DD5ERKRwAQGAIMh7fRYvBlJSUrBs2TLJNVu3umLZMlvs2KGkIkktMfgQEZHC+frKh7kMDYELF67iypX9kvPz589E7doVuCYPlToGHyIiUpicCc3OzsD16wIGD/4ZFSq8EM+fPNkaZ886o0IFoGdPJRZKaovBh4iIFCZno1F9/ZeYOvUnybmffnJHYmIlZGQAGRnA3r1vb1Vnzw+VFgYfIiJSGE9PwN//ND75JFhs09Y2w19/jcPGjfJZzh4e8vk/gpB/N3aiksbgQ0RECrF/fyauXl2ATz5523b9ejfs3t0EXl5v23JCTu51fohKC4MPERF9tFmzHkFLa5OkbfXqKfDzMyz0Od26saeHSh+DDxERfZQ1a/ZDS+uqePzwYR2Eh/eDnx+DDZU9DD5ERPRB9u59g+vXl0jaDh0agJkza2HjRiUVRfQeDD5ERFRkOfNy2rW7CS2tXZJzO3d64cYNbSVVRlQ0DD5ERFSggABg+nT5lhOLF8uHrXx9Bbi4zJVcFxLyOU6ccMHu3UoqlKgYGHyIiKhAOasv5/y+RYtYuLhskFyTkTESSUlW2L2b83lINTD4EBFRgTw93/b49OmzGxs23JCc/+GHH6ChoaGk6og+DIMPERHlkzOXx9c3C1evzkdCwttzn3zyCb755hul1Ub0MRh8iIgoH19f4MWLW7h6dZukffTo0bC0tFRSVUQfj8GHiIhEOT09HTqshkwWLzk3e/ZsyGQyJVVGpBgMPkREJAaelJTX6NlzqeRc1ar/g5vbF0qqjEixGHyIiAi+vkB29r/o2fOwpH3q1KkwMDBQUlVEisfgQ0SkxnJ6elxcfCTtBgYGmDp1qpKqIio5DD5ERGps3ryX6NLlJ0nblSu9sX9/PSVVRFSyuAADEZGamDkTMDICvvsOqFYN+Oabv/KFnqNHZ2DoUIYeKr9kgiAIyi6iLElKSoKJiQkSExNhbGys7HKIiBQiIADo0QMQBEBDIxuzZ8+TnDc2rotJk/oqpzgiBSjq9zeHuoiIyrmAAKB/f3nosbOLgqurv+S8m5sbqlatqqTqiEoXgw8RUTmVM3E5Ph5ITgZGjPgNVas+kVwTFDQb3t5cm4fUB+f4EBGVAwEBgJOT/Nccvr5ASAjw6FEa5szxkYSeypW/QFCQNzw9GXpIvXCOTx6c40NEqsjJSR5yHBwAMzPA2RnYuxcwMrqCzp0DJNdOnDgRJiYmSqqUqGRwjg8RkRrx9JT38MTFyQPQ9evA1Kk+ea6Swdt7tlLqIyorGHyIiMqRRo2A+PhEjBnzo6S9R48eaNy4sXKKIipDij3HR1NTE8+ePcvX/vLlS2hqaiqkKCIiKp6c+TyJicfyhZ5PPvFk6CH6f8Xu8SlsSlBaWhq0tbU/uiAiIio+Dw8BoaFzJW0GBjaYOnWokioiKpuKHHxWr14NAJDJZPjtt99gaGgonsvKysLp06fh4OCg+AqJiOidnjx5gtDQ3yRtrq6usLW1VVJFRGVXkYPPypUrAch7fNavXy8Z1tLW1oadnR3Wr1+v+AqJiEiUszaPp6f8+MiRrbCwuCO55ocffoCGBlcrISpIkYPP/fv3AQDOzs7Yu3cvzMzMSqwoIiJ6K3fYmT4diIwE+vfPwNSpC2Fh8fa6Zs2aoXPnzsorlEgFcB2fPLiODxGVJQEBQJ8+QGoqoKsLVKwImJjcQO/euyXXjR07FhUrVlRSlUTKV2Lr+Awd+u6Jcps2bSruSxIRUQFy9thKTZUfp6YCgwYtgY7OG8l13t7eSqiOSDUVO/jEx8dLjjMyMhAWFoaEhAS0a9dOYYUREak7X1/5Hlu6ukC1askYMGC55HynTp3QokULJVVHpJqKHXz27duXry07OxujR49GrVq1FFIUEZG6yj2fx9lZvgLzxIlnUKHCCcl106dPh56enpKqJFJdCpvjExkZibZt2yImJkYRL6c0nONDRMqQE3ji4uSTl3V1gawsATNnStfmqVixIsaOHaukKonKrlLfq+vu3bvIzMxU1MsREamNnLk8ycmAnh6gqQkYGz/FmDHSJUL69euHOnXqKKlKovKh2MFn8uTJkmNBEBATE4ODBw9i8ODBCiuMiEhd5MzlkcmAN2+Anj334pNPrkuumTVrFrcFIlKAYgefK1euSI41NDRgYWGB5cuXv/eOLyIiyi9nLo+ubhbGjp0vOdewYUP06tVLSZURlT/FDj7BwcElUQcRkdoKDgasrG5jwIA/Je2jRo1C5cqVlVQVUfn0wXN8nj17hsjISACAvb09LC0tFVYUEVF5lvvOrW7dgA4dfoJM9lJyzezZsyGTyZRUIVH5Vezgk5SUBHd3d2zbtg3Z2dkAAE1NTfTp0wdr166FiYmJwoskIiovck9kXr78Da5cWYLc+ebWrXbo0+dLMPMQlYxi72Ln5uaGf//9FwcPHkRCQgISEhIQGBiIixcvYuTIkSVRIxGRygoIAJyc5L8Cbycyf/nlf2jXbonk2oYNp2Dr1i/RrZsSCiVSE8Vex8fAwABBQUH44osvJO1nzpxBx44dkZKSotACSxvX8SEiRXJyAkJCAENDYOtWeduVKz6Sa9LT9dCy5XQGHqKPUGLr+FSsWLHA4SwTExPu2E5ElEtAgHxBQj09eS+Pp+dL9Onzk+Sa7777DvXr11dShUTqp9hDXbNmzcLkyZMRGxsrtsXGxmLatGn44YcfFFocEZGqyT205esrX4W5enVg6NCD+ULPjBkzGHqISlmxh7qaNGmCO3fuIC0tDdWrVwcAPHz4EDo6OvlWFL18+bLiKi0lHOoioo+RM7Tl6Ci/a8vXNxsuLvMk12Rn14aPT38lVUhUPpXYUFf37t15iyURUSE8PYHp04H4eCA5+QFcXDZLzg8fPhzW1tbKKY6IFLdJaXnBHh8iKq686/LUqwe0arURNjaPJddxbR6iklPU7+9iz/GpWbMmXr58ma89ISEBNWvWLO7LERGpPF9f+fCWry+QlpaG77/3kYSee/daoUkTb4YeojKg2ENdUVFRyMrKyteelpaGx48fF/AMIqLyTT6XB3Bzuwpf3/2Sc6dOTcCJE6ZKqYuI8ity8AnIWX0LQFBQkOSW9qysLBw/fhw1atRQbHVERGVYQADg4QEIAvD99z54+FB6PijIG56eyqmNiApW5Dk+GhryUTGZTIa8T9HS0oKdnR2WL1+OLl26KL7KUsQ5PkT0Lrnn8/j6AjduJGLy5B8l11y/3g27dzdRToFEakrhc3yys7ORnZ2N6tWr49mzZ+JxdnY20tLSEBkZWWKhJyoqCsOGDUONGjWgp6eHWrVqwdvbG+np6ZLrrl27hi+//BK6urqwsbHBkiVLCnlFIqLiyVmfx8Pj7XyeQYOO5ws9u3Z5YtAghh6isqrYc3zu379fEnW8U0REBLKzs7FhwwbUrl0bYWFhcHNzQ0pKCpYtWwZAnvQ6dOiA9u3bY/369bh+/TqGDh0KU1NTjBgxotRrJqLyJWcCs7094OgowMVlLp4+fXv+8WNr3LgxHGFhyquRiN6v2MFn7ty57zw/e/bsDy6mMB07dkTHjh3F45o1ayIyMhLr1q0Tg8/WrVuRnp6OTZs2QVtbGw0aNEBoaChWrFjB4ENEH83ZGbh+Hfj222hoaf0qOVe79mAEBdlxPg+RCih28Nm3b5/kOCMjA/fv30eFChVQq1atEgk+BUlMTIS5ubl4HBISgtatW0NbW1tsc3FxweLFixEfH899xIioWPKuzRMcDHTr9ie0tG5Lrjty5Ad4e2ugPxdiJlIJxQ4+V65cydeWlJQEV1dXfPPNNwop6n3u3LmDNWvWiL09gHy/sLx3lVWuXFk8V1jwSUtLQ1pamniclJRUAhUTkarJvTZPp04ZcHFZKDmfldUUx451YS8PkYop9gKGBTE2NoaPj0+xNyn19PSETCZ75yMiIkLynCdPnqBjx4747rvv4Obm9tG1L1q0CCYmJuLDxsbmo1+TiFRPzuTlmTPlvzo7y/fbGjUqHAsXSkPPmjVjcexYF5w7J+8NIiLVUewen8IkJiYiMTGxWM+ZMmUKXF1d33lN7tWgo6Oj4ezsDCcnJ/zyyy+S66ysrPA090xDQDy2srIq9PW9vLwwefJk8TgpKYnhh0gN5fTwXL8OJCfLf/X0XIb791Mk123b5g0LC7Cnh0hFFTv4rF69WnIsCAJiYmKwZcsWdOrUqVivZWFhAQsLiyJd++TJEzg7O6Np06bw8/MT1xXK4ejoiJkzZyIjIwNaWloAgKNHj8Le3v6d83t0dHSgo6NTrLqJqPxxdgZCQwFtbaBixRSMG7cMmZlvzx8/3hFTp7aEt7fSSiQiBSj2JqV559FoaGjAwsIC7dq1g5eXF4yMjBRaICAPPW3btoWtrS38/f2hqakpnsvpzUlMTIS9vT06dOgADw8PhIWFYejQoVi5cmWx7uriAoZE6iPvYoQhIUCrVv/gq6+OS647cWIapkzR57AWURlW1O9vldidffPmzRgyZEiB53KXf+3aNbi7u+PChQuoVKkSxo0bBw8Pj2L9LAYfIvXh5CQPO46OgIeHgNBQ6XIdZmZmGD9+vJKqI6LiKNHgk5CQgDt37gAAateuDVNT0w8utKxh8CFSHzk9PhMmPENExDrJuZo1+2LgwLpKqoyIiquo39/FmuMTFRUFd3d3BAUFiT0tMpkMHTt2xE8//QQ7O7uPKpqIqDR16wZkZe3DtWvXJO3z5s1CixaaGDhQSYURUYkpcvB59OgRPv/8c2hpaWHevHmoV68eAODmzZtYt24dHB0dceHCBVSrVq3EiiUi+lABAcD06YBMBixeDHTunIX58+dLrrl7twG2b/8WVla8a4uovCryUNewYcNw584dBAUFQVdXV3LuzZs36NixI+rUqYPffvutRAotLRzqIiqfcubzAECXLnfQrNlWyfm//x6Ff/+VL3rq6AicO1faFRLRx1D47uyHDx/GggUL8oUeANDT08O8efNw6NChD6uWiKgE5CxKGBAg78GxtwcmTfo5X+iZM2c2EhMrw8FBfg17e4jKryIPdb148eKdc3hq1qyJuLg4RdRERKQQ06cDkZHyX69ceYO+fZdIzt++7Qxb29ZwdHy7JxcRlW9FDj5VqlTBzZs3C53DExYW9s4VkomISltysvxXG5sLWLJE2iMdHDwFp04ZcliLSM0UOfj06NEDU6dOxfHjx/Ottvzs2TN4eHigR48eiq6PiOiDGRoCc+b4SNp0dXXh4eGBJk2A9HQOaxGpmyJPbo6Pj0fLli0RGxuLAQMGwMHBAYIgIDw8HH/++SesrKxw/vx5mJubl3TNJYqTm4nKh7i4OKxZs0bS9u2336JBgwZKqoiISpLC1/ExMzPDv//+ixkzZmD79u1ISEgAAJiamqJfv35YuHChyoceIlJtOQsSDhjwN54//09ybsaMGeI+fkSkvj5o5WZBEPD8+XMA8o1GZTKZwgtTFvb4EKkuJ6dsuLjMk7TVrFkTA7kSIVG5p/Db2XOTyWSwtLSEpaVluQo9RKQ6ct+qDgAPHz7MF3rOnx/G0ENEEsXasoKIqKzI2U3d1xd4+dIPDx8+lJwPCpoNT0/+w4yIpD6ox4eISNk8PYEvvkiHi4uPJPRYWjoiKMgbnp4yrstDRPkw+BCRSrKzu4b27RdJ2iZMmIAtWzqIPUFERHlxqIuIVM78+fORlZUlafP29kZAABAfz20niKhwRQo+q1evLvILjh8//oOLISJ6l6SkJKxcuVLS1rVrV3z22WcA5L08ERHyTUY5zEVEBSnS7ew1atQo2ovJZLh3795HF6VMvJ2dqGw6ceIEzpw5I2nz9PSEjo6OeJyzjg/33SJSPwpdwPD+/fsKK4yIqDgEQcDcuXMlbbGxVdCp0wjkyjwA5GGHgYeI3uWDJzenp6cjMjISmZmZiqyHiEgUExOTL/RcuDAInTqNYMAhog9S7MnNr1+/xrhx4+Dv7w8AuHXrFmrWrIlx48bB2toanpxRSEQKsH37dkRGRkrafvjhB2ho8GZUIvpwxf4bxMvLC1evXsXJkyehq6srtrdv3x47duxQaHFEpH4yMzPh4+MjCT1NmjSBt7e3GHryrtpMRFRUxe7x2b9/P3bs2IHPP/9csl1FgwYNcPfuXYUWR0TqJSIiIt8/oP75xx1NmlQSjwMCgP79geRk+URmDnkRUXEUO/g8f/4clpaW+dpTUlK4bxcRfbAVK1bg1atXkragIG+EhACPHslDjrMzsHq1PPQYGnKtHiIqvmIHn2bNmuHgwYMYN24cAIhh57fffoOjo6NiqyOici8lJQXLli2TtHXo0AGOjo5o0kQeeB4+BCIjgStXgNRUeejZupW9PURUfMUOPgsXLkSnTp1w8+ZNZGZmYtWqVbh58ybOnTuHU6dOlUSNRFRO/frrOURHH5W0TZs2Dfr6+gDe3p7u4CA/V7EiUL061+khog9X7MnNX3zxBUJDQ5GZmYlGjRrhyJEjsLS0REhICJo2bVoSNRJROXPggAAfHx9J6DExMYG3t7cYenJbskS+GvPPPwPnzjH0ENGH+6C9umrVqoVff/1V0bUQkRp4/vw5QkN/lrTVrPk9Bg60z3dt7pWYz50rrQqJqDwrUvBJSkoq8gtymwciKkhAABAYuB/W1lcl7TNnzkSFCgX/VeTrC3GndfbyEJEiFCn4mJqaFvmOrbw7JhMRZWVl4cqV+bC2fttWv359fPfdd+98nqfn2x4fIiJFKFLwCQ4OFn8fFRUFT09PuLq6indxhYSEwN/fH4sWLSqZKolIZT19+hTr16+XtI0cORJWVlaStoI2GOXeW0SkaEXanT23//3vfxg+fDj69u0raf/zzz/xyy+/4OTJk4qsr9Rxd3YixTly5AhCQkIkbbNnz87Xg5x7UUJHR87nIaLiU+ju7LmFhITk+9cbIF/fZ/jw4cV9OSIqh/btS8e1a9Ie4Jy1eQri68tFCYmodBT7dnYbG5sC7+j67bffYGNjo5CiiEh1/fHHvXyhZ/r06e9c4NTTU97Tw0UJiaikFbvHZ+XKlejVqxf+/vtvtGzZEgDw33//4fbt29izZ4/CCyQi1RAQAAQFbYOl5S2xzczsE4wf/817n8u5PERUWord4/P111/j9u3b6Nq1K+Li4hAXF4euXbvi1q1b+Prrr0uiRiIq45KTk3Hlio8k9NSpM6TQ0MPd1YlIWYo9ubm84+RmouIJDQ3FgQMHJG3vWpsHkIeekBBOZCYixSmxyc0AkJCQgI0bNyI8PBwA0KBBAwwdOhQmJiYfVi0RqRxBEPDTTz8hLi5ObGvbti3atGmT79q8t6pzfR4iUpZi9/hcvHgRLi4u0NPTQ4sWLQAAFy5cwJs3b3DkyBF89tlnJVJoaWGPD9H77dz5AuHhayVt7u7uqFSpUoHX16sHRETINxv9/38vEREpVFG/v4sdfL788kvUrl0bv/76q9iVnZmZieHDh+PevXs4ffr0x1WuZAw+RO+2YcNJxMaeEo9fvKiIS5fcce7c27V5cnp4nJ2B4GDg4UPgyRPA3l4egIiIFK3EhrouXrwoCT0AUKFCBUyfPh3NmjX7sGqJqMzLzMzEggULJG2PH3fHjRuf5huyytljKzQUePMGsLaWz+fh0BYRKVuxg4+xsTEePnwIBwcHSfujR49gZGSksMKIqOx4+PAh/Pz8JG1Ll07FJ58YFDg52dkZuH4d0NaWBx9DQ05iJqKyodjBp0+fPhg2bBiWLVsGJycnAMDZs2cxbdq0fNtYEJHq27t3L65fvy4e29vbQ1//e3zyScE9ODNnynt8srPlc3rs7dnTQ0RlR7GDz7JlyyCTyTBo0CBkZmYCALS0tDB69Gj4+voqvEAiUo43b95gyZIlkraBAweiZs2a71x/Z/VqeejR0AAWL+bChERUtnzwOj6vX7/G3bt3AQC1atWCvr6+QgtTFk5uJgJu3LiB3bt3S9qOHp2Bf/7RAvDudXhmzpSHn/HjgTxTgoiISkyJ3dVV3jH4kDoTBAG//vorYmJixDZLS0esWtUBMtnbHpy8d23lrM9DRKQsCg8+Q4cOLdIP3rRpU9EqLKMYfEhdxcfHY/Xq1ZK2UaNGoXLlyoX28HAFZiIqKxR+O/vmzZtha2uLJk2agJ1EROXLuXPncPToUfG4QgVDeHlNgoaGfDu/wlZa5grMRKRqitzj4+7ujm3btsHW1hZDhgzBgAEDYG5uXtL1lTr2+JA6ycrKgq+vr3ijAgAEBn4NLa3m7MEhIpVS1O/vIu/OvnbtWsTExGD69On466+/YGNjg969eyMoKIg9QEQqKDo6GvPnz5eEnuXLJyEiojl7cIio3Prgyc0PHjzA5s2b8fvvvyMzMxM3btyAoaGhousrdezxIXUQGBiIS5cuicd2dnYwNR2ExYtlnKhMRCqpRHdnBwANDQ3IZDIIgoCsrKwPfRkiKkVpaWn51tuqWfN7rFtnD09PTlAmovKvyENdgPwvzW3btuGrr75C3bp1cf36dfz00094+PBhuejtISrPbt26lS/0eHp6Yt06e4SEyCcpExGVd0Xu8RkzZgy2b98OGxsbDB06FNu2bUOlSpVKsjYiUgBBELBlyxbcv39fbGvatCm6dOkCQHpnVs76PBzuIqLyqshzfDQ0NFC9enU0adIEMpms0Ov27t2rsOKUgXN8qDxJSkrCypUrJW3Dhw+HtbV1gddzXR4iUlUKn+MzaNCgdwYeIipbLly4gEOHDonHWlpa8PDwgKamZqHP4bo8RFTeccuKPNjjQ6ouOzsbK1euRHJystj21VdfwcnJSYlVERGVLIWv40NEZd/Tp08xb948SegJCBiPYcOcMHOmfCjrXTurExGVdww+ROXE0aNHsX79evG4SpUq2L59Ni5fNkNEhHzH9Lx3bwUEAA4OQL16DEREpB4+eB0fIiobMjIysHDhQknbt99+i7t3GyAqSn6sqwuMH/92J/Ucvr5AZOTb3/NOLiIq7xh8iFTYvXv3sGXLFknb9OnToaenBzc3IDUVMDQEtm4tONR4egLTpwMyGSc0E5F6YPAhUlE7duxARESEeNyoUSP07NlTPM59h1bu0JN3rR728hCROuFdXXnwri4q61JSUrBs2TJJm6urK2xtbYv0fK7VQ0TlUYnv1UVEpS80NBQHDhyQtM2cORMVKrz/f+Wcnh5nZ/kxh7aISB0x+BCpAEEQsHbtWrx8+VJss7JqA3//tmjSpPDhqtzDWr6+8p4egD09RKS+VO529rS0NHz66aeQyWQIDQ2VnLt27Rq+/PJL6OrqwsbGBkuWLFFOkUQK9PLlS8ydO1cSetzd3eHv3/a9m4vmhJ2c8OPoyJ4eIlJvKhd8pk+fjqpVq+ZrT0pKQocOHWBra4tLly5h6dKlmDNnDn755RclVEmkGKdOncJPP/0kHpubm2P27NmoVKlSkYJM7mu6dZP39HAyMxGpM5Ua6vr7779x5MgR7NmzB3///bfk3NatW5Geno5NmzZBW1sbDRo0QGhoKFasWIERI0YoqWKiD5OZmYkFCxZI2rp164YmTZrkOn5/iOFdW0REUioTfJ4+fQo3Nzfs378f+vr6+c6HhISgdevW0NbWFttcXFywePFixMfHw8zMrMDXTUtLQ1pamniclJSk+OKJiuHRo0fYtGmTpG3KlCkwNDRUUkVEROWHSgx1CYIAV1dXjBo1Cs2aNSvwmtjYWFSuXFnSlnMcGxtb6GsvWrQIJiYm4sPGxkZxhRMV0/79+yWhp27duvD29mboISJSEKUGH09PT8hksnc+IiIisGbNGrx69QpeXl4Kr8HLywuJiYni49GjRwr/GUTv8+bNG/j4+ODq1ati24ABA9C3b1/JdQEB3GiUiOhjKHWoa8qUKXB1dX3nNTVr1sSJEycQEhICHR0dyblmzZqhf//+8Pf3h5WVFZ4+fSo5n3NsZWVV6Ovr6Ojke12i0nTz5k3s2rVL0ubl5SUZts2R+y4tzt0hIio+pQYfCwsLWFhYvPe61atXY/78+eJxdHQ0XFxcsGPHDrRs2RIA4OjoiJkzZyIjIwNaWloA5LtV29vbFzq/h0iZBEHAxo0b8eTJE7Ht888/h4uLS75rufggEZFiqMTk5urVq0uOc+Y71KpVC9WqVQMA9OvXDz4+Phg2bBg8PDwQFhaGVatWYeXKlaVeL9H7JCQkYNWqVZK2kSNHFto7ycUHiYgUQyWCT1GYmJjgyJEjcHd3R9OmTVGpUiXMnj2bt7JTmRMSEoIjR46Ix/r6+pgyZQo0NPJPuWNPDxGRYqlk8LGzs0NBe6t+8sknOHPmjBIqInq/rKwsLFmyBOnp6WJbtWqdsHFjC9jbFzxnhz09RESKpRK3sxOpuujoaMyfP18SeiZNmoSNG1uIk5UDAgAHB6Bevbd3bXGbCSIixZIJBXWdqLGibmtPVFSHDh3ChQsXxGNbW1sMHjwYMpms0E1EHR3Zw0NEVBxF/f5WyaEuIlWQlpYG3zw7iPbp0wcODg7icd4tJaZPB2Qy9vAQEZUUDnURlYBbt27lCz0eHh64dcsh33AW8HYS85IlQHg41+ghIiopHOrKg0Nd9LG2bNmCe/fuicefffYZunbtCkC+6nLOcJaDA2BmJh3m4hAXEdGH4VAXUSl79eoVVqxYIWkbPnw4rK2txWNPz7fDWYLwdhXmnPDDIS4iopLF4EOkAJcuXUJgYKB4rKmpCS8vL2hqakquyz2nZ+ZMYPVq+Ro9eef6EBFRyWDwIfoI2dnZ+PHHH/Hq1SuxrX379mjVqpV4nPvOrdzhJjgYSE6W/0pERKWDk5uJPtCzZ88wb948SegZP368JPQAb+fv9O8vndDMNXqIiEofJzfnwcnNVBTHjh3D2bNnxWMrKyuMGDECMpks37UBAfLQk5zMyctERCWlqN/f7PEhKoaMjAz4+PhIQk+vXr1QpcpItGolk/To5OjWDdi6lb07RERlAXt88mCPDxXm/v37+P333yVt06ZNg76+vnibek6PTmHzeoiIqGTwdnYiBdq5cyfCw8PF44YNG6JXr17icd7b0XPm9fj6MvgQEZUlDD5E75CSkoJly5ZJ2lxdXWFraytpy3s7OtflISIqmzjHh6gQ165dyxd6Zs6ciatXbeHkhALn8+To1k0+5MXeHiKisoVzfPLgHB8SBAE///wzXrx4IbZ9+eWXaNeuHYC3207Y2wPm5pzHQ0RUFvCuLqIPEBcXh7lz50pCz5gxY8TQA7xdf0cmezuPh4iIVAPn+BD9v9OnTyM41zLKpqamGD9+PP76S5Zv4nJBvyciorKPQ115cKhL/WRmZmLBggWStq5du+Kzzz4DAMmt6gB3USciKot4OztRETx69AibNm2StE2ZMgWGhobicUG3qrOXh4hINbHHJw/2+KiPAwcOIDQ0VDyuU6cO+vXrp7yCiIjog7HHh6gQqampWLx4saStf//+qF27tpIqIiKi0sLgQ2olPDwcO3fulLR5eXlBW1tbSRUREVFp4u3sVGYFBOC9CwUWlSAI2LhxoyT0tGzZEk2aeKNtW22F/AwiIir7OMcnD87xKTvybvz5oRITE/Hjjz9K2kaOHAkrKyuF/QwiIlIuLmBIKi9nocCPuYPq/PnzktCjp6eHH374AVZWVgr7GUREpDrY45MHe3xUV0DA21vNBSEbFy4sgZZWmng+PLwj+vVrKV7DbSaIiMqPon5/M/jkweCjunKGrTp0iIGT0y+ScwcOTMSbNyYAgIgIDm0REZU3HOoitePpCQwZ8rck9BgYVMfs2bOhq2uCiAhAEDi0RUSkzng7O5UL6enpuHJlEWxt37b16dMHDg4OAKSrL3OIi4hIfTH4kErKPZ+nXr3b+PPPPyXnPTw8oKurKx5368bAQ0REDD6konx95fN5jh79A1eu3BXbHz9ugq5duyFX5iEiIhIx+JBKmjLlFcLCVkjazp8fhsOHq+HGDfbuEBFRwRh8SOVcunQJYWGB4rGGhgZmzJiBgwc1kZjIictERFQ4Bh9SGYIgYNWqVUhMTBTb2rVrhy+//BKAdB5P7jlA7P0hIqIcvJ2dikyRe2cV1/PnzzF37lxJ6Bk3bpwYevLKmQPk61taFRIRkSpg8KEiU1aYOHHiBH7++WfxuHLlypg9ezbMzc0LfQ63oiAiooJwqIuKLPdaOKUhIyMDCxculLT17NkTjRo1eu9zefs6EREVhMGHiqw0w0RUVBT8/f0lbdOmTYO+vn7pFEBEROUSh7pIIRQ5/2f37t2S0NOgQQN4e3sz9BAR0Udjjw8pRO75Px/aK/T69WssXbpU0jZ48GDY2dl9fIFERERg8CEF+dj5P9evX8fevXslbTNmzICWlpYCqiMiIpJj8KGP9jFr5giCgPXr1+PZs2di2xdffIH//e9/Cq6SiIiIwYcU4EOHueLi4rBmzRpJ25gxY2BhYaHgComIiOQYfOijfcgw15kzZ3DixAnx2MTEBBMmTIBMJiuBComIiOQYfOijFec296ysLCxYsACCIIhtXbt2xWeffVZC1REREb3F29mp1Dx+/Bjz58+XhJ7JkyeLoUeZW2IQEZF6YPChUhEQEICNGzeKx3fu1EJQkDeMjIzENu6vRUREJY1DXVSiUlNTsXjxYknb33/3R0JCbSxZIr22tLfEICIi9cPgQwqV+9b2unUjsGPHDsn5hQu90LSpNiIi8j+X+2sREVFJY/AhhZIPVwk4ccIPV648EttbtGiBjIxOaNqUPTpERKQ8DD4k8TGLEQLA5MmJuHHjR0nbiBEjUKVKFQDs0SEiIuXi5GYVU9J3Pn3MBON///1XEnp0dXXxww8/iKGHiIhI2Rh8VExJ3/nk6Qk4Or5/OCp3AMvOzsaSJUtw+PBh8byLiws8PDygocH/xIiIqOyQCbkXVSEkJSXBxMQEiYmJMDY2VnY5+XzsUJSiODnJA1iHDrFwctogOTdhwgSYmpoqpzAiIlJLRf3+5hwfFVMW7nwKCADi4oC+fQ/D3v5fsd3GxgZDhgzhthNERFRmMfhQsS1dmo6+fRdJ2nr37o169eopqSIiIqKiYfChYrlz5w7at98qafPw8ICurq6SKiIiIio6zjylItu6dSu2bn0bej799FN4e3u/M/Rw/y0iIipLGHxUgLLDQ3JyMnx8fHDnzh2xbejQoejevft7n8v9t4iIqCxh8FEBygwPV65cwfLly8VjmUyGWbNmwcbGpkjPL+rt8URERKWBc3xUgDI27xQEAatXr0ZCQoLY5uzsjNatWxfrdcrCXWhEREQ52OOjArp1A86d+7gAUZzhsufPn2Pu3LmS0DN27Nhihx4iIqKyhj0+aiL3cNm7AlRwcDBOnz4tHltYWGD06NFcm4eIiMoFlerxOXjwIFq2bAk9PT2YmZmhR48ekvMPHz5E586doa+vD0tLS0ybNg2ZmZnKKbaMed9cm8zMTPj4+EhCzzfffIMxY8Yw9BARUbmhMj0+e/bsgZubGxYuXIh27dohMzMTYWFh4vmsrCx07twZVlZWOHfuHGJiYjBo0CBoaWlh4cKFSqy8bHjXXJuoqCj4+/tL2qZOnQoDA4NSqIyIiKj0qMReXZmZmbCzs4OPjw+GDRtW4DV///03unTpgujoaFSuXBkAsH79enh4eOD58+fQ1tYu0s8q63t1Kdru3btx48YN8bhevXro3bu3EisiIiIqvqJ+f6vEUNfly5fx5MkTaGhooEmTJqhSpQo6deok6fEJCQlBo0aNxNADyHcIT0pKknyx55WWloakpCTJQx28fv0aPj4+kj+bQYMGMfQQEVG5phLB5969ewCAOXPmYNasWQgMDISZmRnatm2LuLg4AEBsbKwk9AAQj2NjYwt97UWLFsHExER8FHV9GlUWFhaGpUuXStpmzJiBGjVqKKkiIiKi0qHU4OPp6QmZTPbOR0REBLKzswEAM2fORK9evdC0aVP4+flBJpNh165dH1WDl5cXEhMTxcejR48U8dbKpAMHBEyZsh579uwR21q1agVvb29oaWkpsTIiIqLSodTJzVOmTIGrq+s7r6lZsyZiYmIAAPXr1xfbdXR0ULNmTTx8+BAAYGVlhf/++0/y3KdPn4rnCqOjowMdHZ0PKV+lxMXFITR0DXIPe44ePRqWlpbKK4qIiKiUKTX4WFhYwMLC4r3XNW3aFDo6OoiMjMQXX3wBAMjIyEBUVBRsbW0BAI6OjliwYAGePXsmfpkfPXoUxsbGksCkjv755x8cP35cPNbSMoan5wRoaKjESCcREZHCqMTt7MbGxhg1ahS8vb1hY2MDW1tbcY7Kd999BwDo0KED6tevj4EDB2LJkiWIjY3FrFmz4O7urhY9OgEBb7e1yLltPSsrC4sWLUJWVpZ4XZcuXdC0aVMlVUlERKRcKvNP/qVLl+L777/HwIED0bx5czx48AAnTpyAmZkZAEBTUxOBgYHQ1NSEo6MjBgwYgEGDBmHu3LlKrrxwitx1Pe9Gpk+ePMH8+fMloWfy5MkMPUREpNZUYh2f0lSa6/g4OcnDiqOjfC+udymoR6ew80AArly5Ip6rWbMmBg4cqNDaiYiIypKifn8z+ORRmsHnfWEmt6KEpNTUVCxevFjS1q9fP9SpU0dBFRMREZVNRf3+Vok5PuXVu7aRyMvTM3ePTn6RkZHYvn17nud4qsX8JiIioqJi8FERhYUkQRDg7++PBw8eiG3NmzfH119/XYrVERERqQYGHxUVEACsXJmEtm1XStrd3NxQtWpVJVVFRERUtjH4qKitW/9D27Z/i8c6OjqYNm0aNDU1lVgVERFR2aYyt7Ors9y3vWdnZ2Pp0qWoX/9t6OnQoQM8PT0ZeoiIiN6DPT4qIGeNnrVrY3HlygbJuQkTJsDU1FQ5hREREakYBh8V4OkJ7N17BDVqhIht1tbWGDZsGGQymRIrIyIiUi0MPmVceno6rlxZhBo13rZ99913ar//GBER0Ydg8CnD7t69iz/++EPSNn36dOjp6SmpIiIiItXG4FNGbdu2Dbdu3RKPGzdujB49eiivICIionKAwaeMSU5OxvLlyyVtQ4YMQfXq1ZVUERERUfnB4FOGhIaG4sCBA5K2mTNnokIFfkxERESKwG/UMkAQBKxZswbx8fFiW9u2bdGmTRslVkVERFT+MPgo2YsXL7B27VpJ29ixY1GxYkUlVURERFR+Mfgo0cmTJ3Hq1CnxuFKlShgzZgzX5iEiIiohDD5KkJmZiQULFkjaevTogcaNGyupIiIiIvXA4FPKHjx4gM2bN0vapk6dCgMDA+UUREREpEYYfErR3r17cf36dfHYwcEBffr0UWJFRERE6oW7s5eSX375RRJ6Bg4cKIae3LuvExERUclh8CklL1++EX8/Y8YM1KxZUzzO2X3d11cZlREREakPDnWVkiNHhuDmzVTUqmUJb2/pOU9Peejx9FRObUREROqCPT6lZNIkY9SqZVlguOnWDTh3Tv4rERERlRz2+JSSbt0YbIiIiJSNPT5ERESkNhh8Sgnv3CIiIlI+Bp9Swju3iIiIlI/Bp5R4egKOjrxzi4iISJk4ubmUcHIzERGR8rHHh4iIiNQGgw8RERGpDQYfIiIiUhsMPkRERKQ2GHyIiIhIbTD4EBERkdpg8CEiIiK1weBDREREaoPBh4iIiNQGgw8RERGpDQYfIiIiUhsMPkRERKQ2GHyIiIhIbXB39jwEQQAAJCUlKbkSIiIiKqqc7+2c7/HCMPjk8erVKwCAjY2NkishIiKi4nr16hVMTEwKPS8T3heN1Ex2djaio6NhZGQEmUym7HJKVFJSEmxsbPDo0SMYGxsruxzKhZ9N2cTPpWzi51J2leZnIwgCXr16hapVq0JDo/CZPOzxyUNDQwPVqlVTdhmlytjYmH9ZlFH8bMomfi5lEz+Xsqu0Ppt39fTk4ORmIiIiUhsMPkRERKQ2GHzUmI6ODry9vaGjo6PsUigPfjZlEz+XsomfS9lVFj8bTm4mIiIitcEeHyIiIlIbDD5ERESkNhh8iIiISG0w+BAREZHaYPBRYwcPHkTLli2hp6cHMzMz9OjRQ3L+4cOH6Ny5M/T19WFpaYlp06YhMzNTOcWqobS0NHz66aeQyWQIDQ2VnLt27Rq+/PJL6OrqwsbGBkuWLFFOkWoiKioKw4YNQ40aNaCnp4datWrB29sb6enpkuv4uSjH2rVrYWdnB11dXbRs2RL//fefsktSK4sWLULz5s1hZGQES0tL9OjRA5GRkZJrUlNT4e7ujooVK8LQ0BC9evXC06dPlVIvg4+a2rNnDwYOHIghQ4bg6tWrOHv2LPr16yeez8rKQufOnZGeno5z587B398fmzdvxuzZs5VYtXqZPn06qlatmq89KSkJHTp0gK2tLS5duoSlS5dizpw5+OWXX5RQpXqIiIhAdnY2NmzYgBs3bmDlypVYv349ZsyYIV7Dz0U5duzYgcmTJ8Pb2xuXL19G48aN4eLigmfPnim7NLVx6tQpuLu74/z58zh69CgyMjLQoUMHpKSkiNdMmjQJf/31F3bt2oVTp04hOjoaPXv2VE7BAqmdjIwMwdraWvjtt98KvebQoUOChoaGEBsbK7atW7dOMDY2FtLS0kqjTLV26NAhwcHBQbhx44YAQLhy5Yp47ueffxbMzMwkn4OHh4dgb2+vhErV15IlS4QaNWqIx/xclKNFixaCu7u7eJyVlSVUrVpVWLRokRKrUm/Pnj0TAAinTp0SBEEQEhISBC0tLWHXrl3iNeHh4QIAISQkpNTrY4+PGrp8+TKePHkCDQ0NNGnSBFWqVEGnTp0QFhYmXhMSEoJGjRqhcuXKYpuLiwuSkpJw48YNZZStNp4+fQo3Nzds2bIF+vr6+c6HhISgdevW0NbWFttcXFwQGRmJ+Pj40ixVrSUmJsLc3Fw85udS+tLT03Hp0iW0b99ebNPQ0ED79u0REhKixMrUW2JiIgCI/39cunQJGRkZks/JwcEB1atXV8rnxOCjhu7duwcAmDNnDmbNmoXAwECYmZmhbdu2iIuLAwDExsZKQg8A8Tg2NrZ0C1YjgiDA1dUVo0aNQrNmzQq8hp+N8t25cwdr1qzByJEjxTZ+LqXvxYsXyMrKKvDPnX/mypGdnY2JEyeiVatWaNiwIQD5f//a2towNTWVXKusz4nBpxzx9PSETCZ75yNnrgIAzJw5E7169ULTpk3h5+cHmUyGXbt2KfldlE9F/WzWrFmDV69ewcvLS9klq4Wifi65PXnyBB07dsR3330HNzc3JVVOVDa5u7sjLCwM27dvV3Yphaqg7AJIcaZMmQJXV9d3XlOzZk3ExMQAAOrXry+26+jooGbNmnj48CEAwMrKKt+dETkz8K2srBRYtXoo6mdz4sQJhISE5NvXplmzZujfvz/8/f1hZWWV724IfjYfpqifS47o6Gg4OzvDyckp36Rlfi6lr1KlStDU1Czwz51/5qVv7NixCAwMxOnTp1GtWjWx3crKCunp6UhISJD0+ijtcyr1WUWkdImJiYKOjo5kcnN6erpgaWkpbNiwQRCEt5Obnz59Kl6zYcMGwdjYWEhNTS31mtXFgwcPhOvXr4uPoKAgAYCwe/du4dGjR4IgvJ1Em56eLj7Py8uLk2hL2OPHj4U6deoI33//vZCZmZnvPD8X5WjRooUwduxY8TgrK0uwtrbm5OZSlJ2dLbi7uwtVq1YVbt26le98zuTm3bt3i20RERFKm9zM4KOmJkyYIFhbWwtBQUFCRESEMGzYMMHS0lKIi4sTBEEQMjMzhYYNGwodOnQQQkNDhcOHDwsWFhaCl5eXkitXL/fv3893V1dCQoJQuXJlYeDAgUJYWJiwfft2QV9fXwytpHiPHz8WateuLfzvf/8THj9+LMTExIiPHPxclGP79u2Cjo6OsHnzZuHmzZvCiBEjBFNTU8kdqVSyRo8eLZiYmAgnT56U/L/x+vVr8ZpRo0YJ1atXF06cOCFcvHhRcHR0FBwdHZVSL4OPmkpPTxemTJkiWFpaCkZGRkL79u2FsLAwyTVRUVFCp06dBD09PaFSpUrClClThIyMDCVVrJ4KCj6CIAhXr14VvvjiC0FHR0ewtrYWfH19lVOgmvDz8xMAFPjIjZ+LcqxZs0aoXr26oK2tLbRo0UI4f/68sktSK4X9v+Hn5yde8+bNG2HMmDGCmZmZoK+vL3zzzTeSfziUJtn/F01ERERU7vGuLiIiIlIbDD5ERESkNhh8iIiISG0w+BAREZHaYPAhIiIitcHgQ0RERGqDwYeIiIjUBoMPERERqQ0GH6JyJjY2FuPGjUPNmjWho6MDGxsbdO3aFcePHxevOXfuHL7++muYmZlBV1cXjRo1wooVK5CVlSVeExUVhWHDhqFGjRrQ09NDrVq14O3tjfT0dMnP+/XXX9G4cWMYGhrC1NQUTZo0waJFi8Tzc+bMgUwmQ8eOHfPVunTpUshkMrRt27bI7y8pKQkzZ86Eg4MDdHV1YWVlhfbt22Pv3r3IvR7rjRs30Lt3b1hYWEBHRwd169bF7Nmz8fr1a/GauLg4jBs3Dvb29tDT00P16tUxfvx4JCYmFqmWqKioQnd1P3/+fJHfU9u2bTFx4sQiX09EH467sxOVI1FRUWjVqhVMTU2xdOlSNGrUCBkZGQgKCoK7uzsiIiKwb98+9O7dG0OGDEFwcDBMTU1x7NgxTJ8+HSEhIdi5cydkMhkiIiKQnZ2NDRs2oHbt2ggLC4ObmxtSUlKwbNkyAMCmTZswceJErF69Gm3atEFaWhquXbuGsLAwSV1VqlRBcHAwHj9+LNm1edOmTahevXqR319CQgK++OILJCYmYv78+WjevDkqVKiAU6dOYfr06WjXrh1MTU1x/vx5tG/fHu3bt8fBgwdRuXJl/Pfff5gyZQqOHz+O4OBgaGtrIzo6GtHR0Vi2bBnq16+PBw8eYNSoUYiOjsbu3buLXNexY8fQoEEDSVvFihWL/PyiEAQBWVlZqFCBf20TfRSlbJRBRCWiU6dOgrW1tZCcnJzvXHx8vJCcnCxUrFhR6NmzZ77zAQEBAgBh+/bthb7+kiVLhBo1aojH3bt3F1xdXd9Zk7e3t9C4cWOhS5cuwvz588X2s2fPCpUqVRJGjx4ttGnTpgjvTr4ZooGBgfDkyZN85169eiVkZGQI2dnZQv369YVmzZoJWVlZkmtCQ0MFmUz2zj20du7cKWhraxdpX7rC9lLLLef9//7774Ktra1gbGws9OnTR0hKShIEQRAGDx6cb4+j+/fvC8HBwQIA4dChQ8Jnn30maGlpCcHBwUJqaqowbtw4wcLCQtDR0RFatWol/Pfff+LPy3leYGCg0KhRI0FHR0do2bKlcP36dUEQBCE5OVkwMjISdu3aJalz3759gr6+vlgXUXnFoS6iciIuLg6HDx+Gu7s7DAwM8p03NTXFkSNH8PLlS0ydOjXf+a5du6Ju3brYtm1boT8jMTER5ubm4rGVlRXOnz+PBw8evLe+oUOHYvPmzeLxpk2b0L9/f2hra7/3uQCQnZ2N7du3o3///qhatWq+84aGhqhQoQJCQ0Nx8+ZNTJ48GRoa0r/iGjdujPbt27/3PRobGyu0Z+Xu3bvYv38/AgMDERgYiFOnTsHX1xcAsGrVKjg6OsLNzQ0xMTGIiYmBjY2N+FxPT0/4+voiPDwcn3zyCaZPn449e/bA398fly9fRu3ateHi4oK4uDjJz5w2bRqWL1+OCxcuwMLCAl27dkVGRgYMDAzw/fffw8/PT3K9n58fvv32WxgZGSnsfROVRQw+ROXEnTt3IAgCHBwcCr3m1q1bAIB69eoVeN7BwUG8pqDXX7NmDUaOHCm2eXt7w9TUFHZ2drC3t4erqyt27tyJ7OzsfM/v0qULkpKScPr0aaSkpGDnzp0YOnRokd/fixcvEB8f/873B7z/PdarV6/Q9/jixQvMmzcPI0aMKHJdAODk5ARDQ0PJI7fs7Gxs3rwZDRs2xJdffomBAweKc65MTEygra0NfX19WFlZwcrKCpqamuJz586di6+++gq1atWCjo4O1q1bh6VLl6JTp06oX78+fv31V+jp6WHjxo2Sn+nt7Y2vvvoKjRo1gr+/P54+fYp9+/YBAIYPH46goCDExMQAAJ49e4ZDhw4V6/MgUlUMPkTlhJBrYq8irwWAJ0+eoGPHjvjuu+/g5uYmtlepUgUhISG4fv06JkyYgMzMTAwePBgdO3bMF360tLQwYMAA+Pn5YdeuXahbty4++eSTEqu5uNcnJSWhc+fOqF+/PubMmVOs5+7YsQOhoaGSR252dnaSnpQqVarg2bNnRXrtZs2aib+/e/cuMjIy0KpVK7FNS0sLLVq0QHh4uOR5jo6O4u/Nzc1hb28vXtOiRQs0aNAA/v7+AIA//vgDtra2aN26ddHeMJEKY/AhKifq1KkjTkouTN26dQEg35dkjvDwcPGaHNHR0XB2doaTkxN++eWXAp/XsGFDjBkzBn/88QeOHj2Ko0eP4tSpU/muGzp0KHbt2oW1a9cWu3fBwsICpqam73x/wIe9x1evXqFjx44wMjLCvn37oKWlVazabGxsULt2bckjt7yvJ5PJCuwVK0hBw5aKMHz4cHHo0c/PD0OGDIFMJiuRn0VUljD4EJUT5ubmcHFxwdq1a5GSkpLvfEJCAjp06ABzc3MsX7483/mAgADcvn0bffv2FduePHmCtm3bomnTpvDz88s3Z6Yg9evXB4ACa2jQoAEaNGiAsLAw9OvXrzhvDxoaGvj++++xdetWREdH5zufnJyMzMxMfPrpp3BwcMDKlSvzhYurV6/i2LFjkveYlJSEDh06QFtbGwEBAdDV1S1WXYqgra0tWUqgMLVq1YK2tjbOnj0rtmVkZODChQvin3uO3LfTx8fH49atW5LhvwEDBuDBgwdYvXo1bt68icGDByvgnRCVfQw+ROXI2rVrkZWVhRYtWmDPnj24ffs2wsPDsXr1ajg6OsLAwAAbNmzAgQMHMGLECFy7dg1RUVHYuHEjXF1d8e2336J3794A3oae6tWrY9myZXj+/DliY2MRGxsr/rzRo0dj3rx5OHv2LB48eIDz589j0KBBsLCwkAy15HbixAnExMTA1NS02O9vwYIFsLGxQcuWLfH777/j5s2buH37NjZt2oQmTZogOTkZMpkMGzduxM2bN9GrVy/8999/ePjwIXbt2oWuXbvC0dFRXDMnJ/SkpKRg48aNSEpKEt9jUYJIjpcvX4rPy3mkpqYW+fl2dnb4999/ERUVhRcvXhTaG2RgYIDRo0dj2rRpOHz4MG7evAk3Nze8fv0aw4YNk1w7d+5cHD9+HGFhYXB1dUWlSpXQo0cP8byZmRl69uyJadOmoUOHDpJlBojKNaXeU0ZEChcdHS24u7sLtra2gra2tmBtbS1069ZNCA4OFq85ffq04OLiIhgbGwva2tpCgwYNhGXLlgmZmZniNX5+fvlus8555Ni9e7fw9ddfC1WqVBG0tbWFqlWrCr169RKuXbsmXpNzO3dhJkyYUOTb2QVBEBISEgRPT0+hTp06gra2tlC5cmWhffv2wr59+4Ts7GzxumvXrgm9evUSzM3NBS0tLaFWrVrCrFmzhJSUFPGanFu/C3rcv3//vbXk3M5e0GPbtm2Fvv+VK1cKtra24nFkZKTw+eefC3p6evluZ4+Pj5c8982bN8K4ceOESpUqvfN29r/++kto0KCBoK2tLbRo0UK4evVqvvqPHz8uABB27tz53vdKVF7IBKGYMwCJiKjMOnnyJJydnREfH//eXrUtW7Zg0qRJiI6OLvKyAkSqjkuAEhGpmdevXyMmJga+vr4YOXIkQw+pFc7xIaIyI+9aOLkfZ86cKfV6Ro0aVWg9o0aNKvV6FGXJkiVwcHCAlZUVvLy8lF0OUaniUBcRlRl37twp9Jy1tTX09PRKsRr5wn5JSUkFnjM2NoalpWWp1kNEH4/Bh4iIiNQGh7qIiIhIbTD4EBERkdpg8CEiIiK1weBDREREaoPBh4iIiNQGgw8RERGpDQYfIiIiUhsMPkRERKQ2/g/cF/AoD44LLwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+y0lEQVR4nO3deVxU9f4/8NeAgiwCIiigbKK4opYr7iZfccmuoqVp5ZKaipZZuVSmtmHWbb2mXUv93VuaaVqWLe6agmbue8oFcQEVlUEQEeH8/qCZZjln5pxZmBnm9Xw8eJRzzsx8zpmzvM9neX9UgiAIICIiInJjHo4uABEREZGjMSAiIiIit8eAiIiIiNweAyIiIiJyewyIiIiIyO0xICIiIiK3x4CIiIiI3B4DIiIiInJ7DIiIiIjI7TEgIiKXMX/+fKhUKlnrqlQqzJ8/367l6dWrF3r16uW0n0dE8jEgIiLFVq5cCZVKpf2rUaMGGjRogDFjxuDy5cuOLp7TiYmJ0dtf9erVQ/fu3bFhwwabfP6dO3cwf/587Ny50yafR+SOGBARkcVef/11/Pe//8XSpUvRv39/fPnll+jZsyfu3r1rl+979dVXUVJSYpfPtre2bdviv//9L/773//ixRdfxJUrV5CSkoKlS5da/dl37tzBggULGBARWaGGowtARK6rf//+aN++PQBg/PjxCAkJwTvvvIONGzfiscces/n31ahRAzVquOZlq0GDBnjiiSe0/37qqafQuHFjfPDBB5g0aZIDS0ZEAGuIiMiGunfvDgDIzMzUe/3MmTMYNmwYgoODUatWLbRv3x4bN27UW6esrAwLFixAkyZNUKtWLdStWxfdunXDli1btOuI9SEqLS3F888/j9DQUNSuXRuPPPIILl26ZFS2MWPGICYmxuh1sc9csWIFHnroIdSrVw/e3t5o0aIFlixZomhfmBMWFobmzZsjKyvL5HrXrl3D008/jfr166NWrVpo06YN/t//+3/a5dnZ2QgNDQUALFiwQNssZ+/+U0TVjWs+ahGRU8rOzgYA1KlTR/vayZMn0bVrVzRo0ACzZ8+Gn58fvvnmGwwePBjffvsthgwZAqAyMElLS8P48ePRsWNHFBYW4o8//sChQ4fwf//3f5LfOX78eHz55ZcYOXIkunTpgu3bt2PgwIFWbceSJUvQsmVLPPLII6hRowZ++OEHTJkyBRUVFUhNTbXqszXKyspw8eJF1K1bV3KdkpIS9OrVC+fPn8fUqVMRGxuLtWvXYsyYMSgoKMBzzz2H0NBQLFmyBJMnT8aQIUOQkpICAGjdurVNyknkNgQiIoVWrFghABC2bt0qXL9+Xbh48aKwbt06ITQ0VPD29hYuXryoXbdPnz5CQkKCcPfuXe1rFRUVQpcuXYQmTZpoX2vTpo0wcOBAk987b948QfeydeTIEQGAMGXKFL31Ro4cKQAQ5s2bp31t9OjRQnR0tNnPFARBuHPnjtF6ycnJQqNGjfRe69mzp9CzZ0+TZRYEQYiOjhb69u0rXL9+Xbh+/bpw9OhRYcSIEQIAYdq0aZKf9+GHHwoAhC+//FL72r1794TExETB399fKCwsFARBEK5fv260vUSkDJvMiMhiSUlJCA0NRWRkJIYNGwY/Pz9s3LgRDRs2BADcvHkT27dvx2OPPYbbt28jPz8f+fn5uHHjBpKTk3Hu3DntqLSgoCCcPHkS586dk/39P/30EwDg2Wef1Xt9+vTpVm2Xj4+P9v/VajXy8/PRs2dP/O9//4NarbboMzdv3ozQ0FCEhoaiTZs2WLt2LZ588km88847ku/56aefEBYWhscff1z7Ws2aNfHss8+iqKgIu3btsqgsRGSMTWZEZLHFixcjPj4earUay5cvx+7du+Ht7a1dfv78eQiCgLlz52Lu3Lmin3Ht2jU0aNAAr7/+Ov7xj38gPj4erVq1Qr9+/fDkk0+abPq5cOECPDw8EBcXp/d606ZNrdquvXv3Yt68ecjIyMCdO3f0lqnVagQGBir+zE6dOuHNN9+ESqWCr68vmjdvjqCgIJPvuXDhApo0aQIPD/1n1+bNm2uXE5FtMCAiIot17NhRO8ps8ODB6NatG0aOHImzZ8/C398fFRUVAIAXX3wRycnJop/RuHFjAECPHj2QmZmJ77//Hps3b8bnn3+ODz74AEuXLsX48eOtLqtUQsfy8nK9f2dmZqJPnz5o1qwZ3n//fURGRsLLyws//fQTPvjgA+02KRUSEoKkpCSL3ktE9seAiIhswtPTE2lpaejduzf+9a9/Yfbs2WjUqBGAymYeOcFAcHAwxo4di7Fjx6KoqAg9evTA/PnzJQOi6OhoVFRUIDMzU69W6OzZs0br1qlTBwUFBUavG9ay/PDDDygtLcXGjRsRFRWlfX3Hjh1my29r0dHROHbsGCoqKvRqic6cOaNdDkgHe0QkH/sQEZHN9OrVCx07dsSHH36Iu3fvol69eujVqxc+++wz5ObmGq1//fp17f/fuHFDb5m/vz8aN26M0tJSye/r378/AODjjz/We/3DDz80WjcuLg5qtRrHjh3Tvpabm2uULdrT0xMAIAiC9jW1Wo0VK1ZIlsNeBgwYgLy8PKxZs0b72v379/HJJ5/A398fPXv2BAD4+voCgGjAR0TysIaIiGzqpZdewqOPPoqVK1di0qRJWLx4Mbp164aEhARMmDABjRo1wtWrV5GRkYFLly7h6NGjAIAWLVqgV69eaNeuHYKDg/HHH39g3bp1mDp1quR3tW3bFo8//jg+/fRTqNVqdOnSBdu2bcP58+eN1h0xYgRmzZqFIUOG4Nlnn8WdO3ewZMkSxMfH49ChQ9r1+vbtCy8vLwwaNAjPPPMMioqKsGzZMtSrV080qLOniRMn4rPPPsOYMWNw8OBBxMTEYN26ddi7dy8+/PBD1K5dG0BlJ/AWLVpgzZo1iI+PR3BwMFq1aoVWrVpVaXmJXJqjh7kRkevRDLs/cOCA0bLy8nIhLi5OiIuLE+7fvy8IgiBkZmYKTz31lBAWFibUrFlTaNCggfDwww8L69at077vzTffFDp27CgEBQUJPj4+QrNmzYS33npLuHfvnnYdsSHyJSUlwrPPPivUrVtX8PPzEwYNGiRcvHhRdBj65s2bhVatWgleXl5C06ZNhS+//FL0Mzdu3Ci0bt1aqFWrlhATEyO88847wvLlywUAQlZWlnY9JcPuzaUUkPq8q1evCmPHjhVCQkIELy8vISEhQVixYoXRe9PT04V27doJXl5eHIJPZAGVIOjUCxMRERG5IfYhIiIiIrfHgIiIiIjcHgMiIiIicnsMiIiIiMjtMSAiIiIit+fQgCgtLQ0dOnRA7dq1Ua9ePQwePNgow2yvXr2gUqn0/iZNmqS3Tk5ODgYOHAhfX1/Uq1cPL730Eu7fv6+3zs6dO/Hggw/C29sbjRs3xsqVK+29eUREROQiHJqYcdeuXUhNTUWHDh1w//59vPzyy+jbty9OnToFPz8/7XoTJkzA66+/rv23JisrUDkP0cCBAxEWFob09HTk5ubiqaeeQs2aNfH2228DALKysjBw4EBMmjQJX331FbZt24bx48cjPDxccn4lQxUVFbhy5Qpq167NNPlEREQuQhAE3L59GxEREUYTJRuu6DSuXbsmABB27dqlfa1nz57Cc889J/men376SfDw8BDy8vK0ry1ZskQICAgQSktLBUEQhJkzZwotW7bUe9/w4cOF5ORk2WXTJHrjH//4xz/+8Y9/rvd38eJFk/d5p5q6Q61WA6ic4FHXV199hS+//BJhYWEYNGgQ5s6dq60lysjIQEJCAurXr69dPzk5GZMnT8bJkyfxwAMPICMjw2hiyeTkZEyfPl2yLKWlpXpzKAl/5a+8ePEiAgICrNpOIiIiqhqFhYWIjIzUTnUjxWkCooqKCkyfPh1du3bVm39n5MiRiI6ORkREBI4dO4ZZs2bh7NmzWL9+PQAgLy9PLxgCoP13Xl6eyXUKCwtRUlICHx8fo/KkpaVhwYIFRq8HBAQwICIiInIx5rq7OE1AlJqaihMnTmDPnj16r0+cOFH7/wkJCQgPD0efPn2QmZmJuLg4u5Vnzpw5mDFjhvbfmgiTiIiIqh+nGHY/depU/Pjjj9ixYwcaNmxoct1OnToBgHY267CwMFy9elVvHc2/w8LCTK4TEBAgWjsEAN7e3traINYKERERVW8ODYgEQcDUqVOxYcMGbN++HbGxsWbfc+TIEQBAeHg4ACAxMRHHjx/HtWvXtOts2bIFAQEBaNGihXadbdu26X3Oli1bkJiYaKMtISIiIlfm0Nnup0yZglWrVuH7779H06ZNta8HBgbCx8cHmZmZWLVqFQYMGIC6devi2LFjeP7559GwYUPs2rULQOWw+7Zt2yIiIgKLFi1CXl4ennzySYwfP15v2H2rVq2QmpqKcePGYfv27Xj22WexadMm2cPuCwsLERgYCLVazdoiIqoy5eXlKCsrc3QxiJxWzZo14enpKblc7v3boQGRVAenFStWYMyYMbh48SKeeOIJnDhxAsXFxYiMjMSQIUPw6quv6m3UhQsXMHnyZOzcuRN+fn4YPXo0Fi5ciBo1/u4itXPnTjz//PM4deoUGjZsiLlz52LMmDGyy8qAiIiqkiAIyMvLQ0FBgaOLQuT0goKCEBYWJhpXuERA5EoYEBFRVcrNzUVBQQHq1asHX19fJoQlEiEIAu7cuYNr164hKChI251Gl9z7t9OMMiMiokrl5eXaYKhu3bqOLg6RU9MMjrp27Rrq1atnsvnMFKcYZUZERH/T9BnSnaaIiKRpzhVr+tsxICIiclJsJiOSxxbnCgMiIiIicnsMiIiIiMjIzp07oVKprB7pGBMTgw8//NAmZbInBkREMuSqS5CemY9cdYmji0Lk9PLy8jBt2jQ0atQI3t7eiIyMxKBBg/QS5Kanp2PAgAGoU6cOatWqhYSEBLz//vsoLy/XrpOdnY2nn34asbGx8PHxQVxcHObNm4d79+7pfd+yZcvQpk0b+Pv7IygoCA888ADS0tK0y+fPnw+VSoV+/foZlfXdd9+FSqVCr169ZG9fYWEhXnnlFTRr1gy1atVCWFgYkpKSsH79eugO3D558iQee+wxhIaGwtvbG/Hx8Xjttddw584d7To3b97EtGnT0LRpU/j4+CAqKgrPPvusdrJzc7Kzs6FSqUT/9u3bJ3ubevXqZXLCc3fAUWZEZqw5kIM564+jQgA8VEBaSgKGd4hydLGInFJ2dja6du2KoKAgvPvuu0hISEBZWRl+/fVXpKam4syZM9iwYQMee+wxjB07Fjt27EBQUBC2bt2KmTNnIiMjA9988w1UKhXOnDmDiooKfPbZZ2jcuDFOnDiBCRMmoLi4GO+99x4AYPny5Zg+fTo+/vhj9OzZE6WlpTh27BhOnDihV67w8HDs2LEDly5d0psiavny5YiKkn8+FxQUoFu3blCr1XjzzTfRoUMH1KhRA7t27cLMmTPx0EMPISgoCPv27UNSUhKSkpKwadMm1K9fH7///jteeOEFbNu2DTt27ICXlxeuXLmCK1eu4L333kOLFi1w4cIFTJo0CVeuXMG6detkl2vr1q1o2bKl3mscoaiQQLKo1WoBgKBWqx1dFKpCVwruCLGzfxSiZ/3912j2JuFKwR1HF42qsZKSEuHUqVNCSUmJo4uiWP/+/YUGDRoIRUVFRstu3bolFBUVCXXr1hVSUlKMlm/cuFEAIHz99deSn79o0SIhNjZW++9//OMfwpgxY0yWad68eUKbNm2Ehx9+WHjzzTe1r+/du1cICQkRJk+eLPTs2VPG1gnC5MmTBT8/P+Hy5ctGy27fvi2UlZUJFRUVQosWLYT27dsL5eXleuscOXJEUKlUwsKFCyW/45tvvhG8vLyEsrIys+XJysoSAAiHDx+WXEez/f/5z3+E6OhoISAgQBg+fLhQWFgoCIIgjB49WgCg95eVlSXs2LFDACBs3bpVaNeuneDj4yMkJiYKZ86c0X72+fPnhUceeUSoV6+e4OfnJ7Rv317YsmWL3vdHR0cLH3zwgfbfAIRPP/1U6Nevn1CrVi0hNjZWWLt2rXZ57969hdTUVL3PuHbtmlCzZk1h69atotto6pyRe/9mkxmRCVn5xagwSF1aLgjIzr8j/gYiJ1OVzb03b97EL7/8gtTUVPj5+RktDwoKwubNm3Hjxg28+OKLRssHDRqE+Ph4rF69WvI71Go1goODtf8OCwvDvn37cOHCBbPlGzduHFauXKn99/LlyzFq1Ch4eXmZfS8AVFRU4Ouvv8aoUaMQERFhtNzf3x81atTAkSNHcOrUKcyYMQMeHvq32TZt2iApKcnsNgYEBOjNtmCtzMxMfPfdd/jxxx/x448/YteuXVi4cCEA4KOPPkJiYiImTJiA3Nxc5ObmIjIyUvveV155Bf/85z/xxx9/oEaNGhg3bpx2WVFREQYMGIBt27bh8OHD6NevHwYNGoScnByT5Zk7dy6GDh2Ko0ePYtSoURgxYgROnz4NABg/fjxWrVqF0tJS7fpffvklGjRogIceeshm+8QQAyIiE2JD/OBhMJrTU6VCTAjzw5DzW3MgB10XbsfIZfvRdeF2rDlg+iZlrfPnz0MQBDRr1kxynT///BMA0Lx5c9HlzZo1064j9vmffPIJnnnmGe1r8+bNQ1BQEGJiYtC0aVOMGTMG33zzDSoqKoze//DDD6OwsBC7d+9GcXExvvnmG72buzn5+fm4deuWye0DzG9j8+bNJbcxPz8fb7zxBiZOnCi7XADQpUsX+Pv76/3pqqiowMqVK9GqVSt0794dTz75pLZPV2BgILy8vODr64uwsDCEhYXpJTd866230LNnT7Ro0QKzZ89Geno67t69C6AywHvmmWfQqlUrNGnSBG+88Qbi4uKwceNGk+V99NFHMX78eMTHx+ONN95A+/bt8cknnwAAUlJSAADff/+9dv2VK1dizJgxdk1FwYCIyITwQB+kpSTA86+T0FOlwtsprRAe6OPgkhGZlqsu0fZ9A4AKAXh5/Qm71hQJCmaCUrIuAFy+fBn9+vXDo48+igkTJmhfDw8PR0ZGBo4fP47nnnsO9+/fx+jRo9GvXz+joKhmzZp44oknsGLFCqxduxbx8fFo3bq13cqsdP3CwkIMHDgQLVq0wPz58xW9d82aNThy5Ijen66YmBjUrl1b++/w8HBcu3ZN1mfr7iPN1Bia9xYVFeHFF19E8+bNERQUBH9/f5w+fdpsDVFiYqLRvzU1RLVq1cKTTz6J5cuXAwAOHTqEEydOKJp/1BLsVE1kxvAOUegRH4rs/DuICfFlMEQuwVRzr72O4SZNmmg7Q0uJj48HAJw+fRpdunQxWn769Gm0aNFC77UrV66gd+/e6NKlC/7973+Lfm6rVq3QqlUrTJkyBZMmTUL37t2xa9cu9O7dW2+9cePGoVOnTjhx4oSi2iEACA0NRVBQkMntA/S38YEHHjBafvr0ae06Grdv30a/fv1Qu3ZtbNiwATVr1lRUtsjISDRu3FhyueHnqVQq0Vo0c+/V1NBo3vviiy9iy5YteO+999C4cWP4+Phg2LBhRiMBlRo/fjzatm2LS5cuYcWKFXjooYcQHR1t1WeawxoiIhnCA32QGFeXwRC5DEc09wYHByM5ORmLFy9GcXGx0fKCggL07dsXwcHB+Oc//2m0fOPGjTh37hwef/xx7WuXL19Gr1690K5dO6xYscKoT44YTUAlVoaWLVuiZcuWOHHiBEaOHKlk8+Dh4YERI0bgq6++wpUrV4yWFxUV4f79+2jbti2aNWuGDz74wCjoOHr0KLZu3aq3jYWFhejbty+8vLywceNG1KpVS1G5bMHLy0sv5YFce/fuxZgxYzBkyBAkJCQgLCwM2dnZZt9nmBJg3759ek2MCQkJaN++PZYtW4ZVq1YpDl4twYCIiKgaclRz7+LFi1FeXo6OHTvi22+/xblz53D69Gl8/PHHSExMhJ+fHz777DN8//33mDhxIo4dO4bs7Gx88cUXGDNmDIYNG4bHHnsMwN/BUFRUFN577z1cv34deXl5yMvL037f5MmT8cYbb2Dv3r24cOEC9u3bh6eeegqhoaFGzTIa27dvR25uLoKCghRv31tvvYXIyEh06tQJ//nPf3Dq1CmcO3cOy5cvxwMPPICioiKoVCp88cUXOHXqFIYOHYrff/8dOTk5WLt2LQYNGoTExERtzh9NMFRcXIwvvvgChYWF2m1UEqDcuHFD+z7Nn6afjxwxMTHYv38/srOzkZ+fL7v2qEmTJli/fj2OHDmCo0ePYuTIkbLeu3btWixfvhx//vkn5s2bh99//x1Tp07VW2f8+PFYuHAhBEHAkCFDZG+LxUyOQSMtDrsnoqpiy2H3VwruCOnn86s0VcSVK1eE1NRUITo6WvDy8hIaNGggPPLII8KOHTu06+zevVtITk4WAgICBC8vL6Fly5bCe++9J9y/f1+7zooVK4yGg2v+NNatWycMGDBACA8PF7y8vISIiAhh6NChwrFjx7TraIadS3nuuedkD7sXBEEoKCgQZs+eLTRp0kTw8vIS6tevLyQlJQkbNmwQKioqtOsdO3ZMGDp0qBAcHCzUrFlTiIuLE1599VWhuLhYu45maLvYX1ZWltmyaIbdi/2tXr1acvs/+OADITo6Wvvvs2fPCp07dxZ8fHyMht3funVLu97hw4f1ypaVlSX07t1b8PHxESIjI4V//etfQs+ePYXnnntO+x6xYfeLFy8W/u///k/w9vYWYmJihDVr1hht2+3btwVfX19hypQpZveDLYbdq/4qHJlRWFiIwMBA7XBIIiJ7uXv3LrKyshAbG+uQ5hMie1KpVNiwYQMGDx5scr3s7GzExcXhwIEDePDBB02ua+qckXv/ZqdqIiIichplZWW4ceMGXn31VXTu3NlsMGQr7ENERET0F8NcPrp/v/32W5WXZ9KkSZLlmTRpUpWXpyrs3bsX4eHhOHDgAJYuXVpl38saIiIior8Y5u/R1aBBg6oryF9ef/110azeAFy2+4a5njq9evVSnMPJFhgQERER/cVULh9HqFevHurVq+foYrgFNpkRERGR22NARETkpOTmgiFyd7Y4V9hkRkTkZLy8vODh4YErV64gNDQUXl5edp3UkshVCYKAe/fu4fr16/Dw8ICXl5fFn8WAiIjIyXh4eCA2Nha5ubmiU0QQkT5fX19ERUXJmtpFCgMiIiIn5OXlhaioKNy/f9+iOaaI3IWnpydq1KhhdS0qAyIiIielUqlQs2ZNxTOfE5Fy7FRNREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2GBARERGR22NARERERG6PARERERG5PQZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2GBARERGR22NARORgueoSpGfmI1dd4uiiEBG5rRqOLgCRO1tzIAdz1h9HhQB4qIC0lAQM7xDl6GIREbkd1hAROUiuukQbDAFAhQC8vP4Ea4qIiByAARGRg2TlF2uDIY1yQUB2/h3HFIiIyI0xICJykNgQP3io9F/zVKkQE+LrmAIREbkxBkREDhIe6IO0lAR4qiqjIk+VCm+ntEJ4oI+DS0ZE5H7YqZrIgYZ3iEKP+FBk599BTIgvgyEiIgdhQETkYOGBPgyEiIgcjE1mRERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hwaEKWlpaFDhw6oXbs26tWrh8GDB+Ps2bN669y9exepqamoW7cu/P39MXToUFy9elVvnZycHAwcOBC+vr6oV68eXnrpJdy/f19vnZ07d+LBBx+Et7c3GjdujJUrV9p784iIiMhFODQg2rVrF1JTU7Fv3z5s2bIFZWVl6Nu3L4qLi7XrPP/88/jhhx+wdu1a7Nq1C1euXEFKSop2eXl5OQYOHIh79+4hPT0d/+///T+sXLkSr732mnadrKwsDBw4EL1798aRI0cwffp0jB8/Hr/++muVbi8RERE5J5UgCIL51arG9evXUa9ePezatQs9evSAWq1GaGgoVq1ahWHDhgEAzpw5g+bNmyMjIwOdO3fGzz//jIcffhhXrlxB/fr1AQBLly7FrFmzcP36dXh5eWHWrFnYtGkTTpw4of2uESNGoKCgAL/88ousshUWFiIwMBBqtRoBAQG233giIiKyObn3b6fqQ6RWqwEAwcHBAICDBw+irKwMSUlJ2nWaNWuGqKgoZGRkAAAyMjKQkJCgDYYAIDk5GYWFhTh58qR2Hd3P0Kyj+QwxpaWlKCws1PsjIiKi6slpAqKKigpMnz4dXbt2RatWrQAAeXl58PLyQlBQkN669evXR15ennYd3WBIs1yzzNQ6hYWFKCkpES1PWloaAgMDtX+RkZFWbyMRERE5J6cJiFJTU3HixAl8/fXXji4KAGDOnDlQq9Xav4sXLzq6SERERGQnTjGX2dSpU/Hjjz9i9+7daNiwofb1sLAw3Lt3DwUFBXq1RFevXkVYWJh2nd9//13v8zSj0HTXMRyZdvXqVQQEBMDHR3wOKW9vb3h7e1u9bUREROT8HFpDJAgCpk6dig0bNmD79u2IjY3VW96uXTvUrFkT27Zt07529uxZ5OTkIDExEQCQmJiI48eP49q1a9p1tmzZgoCAALRo0UK7ju5naNbRfAYRERG5N4eOMpsyZQpWrVqF77//Hk2bNtW+HhgYqK25mTx5Mn766SesXLkSAQEBmDZtGgAgPT0dQOWw+7Zt2yIiIgKLFi1CXl4ennzySYwfPx5vv/02gMph961atUJqairGjRuH7du349lnn8WmTZuQnJwsq6wcZUZEROR65N6/HRoQqVQq0ddXrFiBMWPGAKhMzPjCCy9g9erVKC0tRXJyMj799FNtcxgAXLhwAZMnT8bOnTvh5+eH0aNHY+HChahR4+8WwZ07d+L555/HqVOn0LBhQ8ydO1f7HXIwICIiInI9LhEQuRIGRERERK7HJfMQERERETkCAyIiIiJyewyIiIiIyO0xICK3k6suQXpmPnLV4lnKiYjI/ThFYkaiqrLmQA7mrD+OCgHwUAFpKQkY3iHK0cUiIiIHYw0RuY1cdYk2GAKACgF4ef0J1hQREREDInIfWfnF2mBIo1wQkJ1/xzEFIiIip8GAiNxGbIgfPAxygXqqVIgJ8XVMgYiIyGkwICK3ER7og7SUBHj+lSHdU6XC2ymtEB4oPsEvERG5D3aqJrcyvEMUesSHIjv/DmJCfBkMERERAAZE5IbCA30YCBERkR42mREREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2GBARERGR22NARERERG6PARERERG5PQZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2LAqIduzYYetyEBERETmMRQFRv379EBcXhzfffBMXL160dZmIiIiIqpRFAdHly5cxdepUrFu3Do0aNUJycjK++eYb3Lt3z9blIyIiIrI7iwKikJAQPP/88zhy5Aj279+P+Ph4TJkyBREREXj22Wdx9OhRW5eTiIiIyG6s7lT94IMPYs6cOZg6dSqKioqwfPlytGvXDt27d8fJkydtUUYiIiIiu7I4ICorK8O6deswYMAAREdH49dff8W//vUvXL16FefPn0d0dDQeffRRW5aViIiIyC5UgiAISt80bdo0rF69GoIg4Mknn8T48ePRqlUrvXXy8vIQERGBiooKmxXWkQoLCxEYGAi1Wo2AgABHF4eIiIhkkHv/rmHJh586dQqffPIJUlJS4O3tLbpOSEgIh+cTERGRS7CohsgdsYaIiIjI9di1hggAzp49i08++QSnT58GADRv3hzTpk1D06ZNLf1IIiIiIoewqFP1t99+i1atWuHgwYNo06YN2rRpg0OHDqFVq1b49ttvbV1GIiIiIruyqMksLi4Oo0aNwuuvv673+rx58/Dll18iMzPTZgV0FmwyIyIicj1y798W1RDl5ubiqaeeMnr9iSeeQG5uriUfSUREROQwFgVEvXr1wm+//Wb0+p49e9C9e3erC0VEjpWrLkF6Zj5y1SWOLgoRUZWwqFP1I488glmzZuHgwYPo3LkzAGDfvn1Yu3YtFixYgI0bN+qtS0SuY82BHMxZfxwVAuChAtJSEjC8Q5Sji0VEZFcW9SHy8JBXsaRSqVBeXq64UM6IfYjIHeSqS9B14XZU6FwVPFUq7JndG+GBPo4rGBGRhew67L66ZJ8mIn1Z+cV6wRAAlAsCsvPvMCAiomrN6sldiaj6iA3xg4dK/zVPlQoxIb6OKRARURWRXUP08ccfy/7QZ5991qLCEJFjhQf6IC0lAS+vP4FyQYCnSoW3U1qxdoiIqj3ZfYhiY2PlfaBKhf/9739WFcoZsQ8RuZNcdQmy8+8gJsSXwRARuTSb9yHKysqyScGIyPmFB/owECIit8I+REREROT2LJ7c9dKlS9i4cSNycnJw7949vWXvv/++1QUjIiIiqioWBUTbtm3DI488gkaNGuHMmTNo1aoVsrOzIQgCHnzwQVuXkYiIiMiuLGoymzNnDl588UUcP34ctWrVwrfffouLFy+iZ8+eePTRR21dRiIiIiK7siggOn36tHZy1xo1aqCkpAT+/v54/fXX8c4779i0gERERET2ZlFA5Ofnp+03FB4ejszMTO2y/Px825SMiIiIqIpY1Ieoc+fO2LNnD5o3b44BAwbghRdewPHjx7F+/XrtZK9ERERErsKiGqL3338fnTp1AgAsWLAAffr0wZo1axATE4MvvvhC9ufs3r0bgwYNQkREBFQqFb777ju95WPGjIFKpdL769evn946N2/exKhRoxAQEICgoCA8/fTTKCoq0lvn2LFj6N69O2rVqoXIyEgsWrTIks12GbnqEqRn5iNXXeLoohAREbkEi2qIGjVqpP1/Pz8/LF261KIvLy4uRps2bTBu3DikpKSIrtOvXz+sWLFC+29vb2+95aNGjUJubi62bNmCsrIyjB07FhMnTsSqVasAVGao7Nu3L5KSkrB06VIcP34c48aNQ1BQECZOnGhRuZ3ZmgM5mLP+OCoEwEMFpKUkYHiHKEcXi4iIyKlZnIcIAO7du4dr166hoqJC7/WoKHk34P79+6N///4m1/H29kZYWJjostOnT+OXX37BgQMH0L59ewDAJ598ggEDBuC9995DREQEvvrqK9y7dw/Lly+Hl5cXWrZsiSNHjuD999+vdgFRrrpEGwwBQIUAvLz+BHrEhzLrMBERkQkWNZn9+eef6N69O3x8fBAdHY3Y2FjExsYiJiZG9pxncu3cuRP16tVD06ZNMXnyZNy4cUO7LCMjA0FBQdpgCACSkpLg4eGB/fv3a9fp0aMHvLy8tOskJyfj7NmzuHXrlk3L6mhZ+cXaYEijXBCQnX/HMQUiIiJyERbVEI0dOxY1atTAjz/+iPDwcKhUKluXC0Blc1lKSgpiY2ORmZmJl19+Gf3790dGRgY8PT2Rl5eHevXq6b2nRo0aCA4ORl5eHgAgLy/PKEirX7++dlmdOnVEv7u0tBSlpaXafxcWFtpy0+wiNsQPHiroBUWeKhViQnwdVygiIiIXYFFAdOTIERw8eBDNmjWzdXn0jBgxQvv/CQkJaN26NeLi4rBz50706dPHrt+dlpaGBQsW2PU7bC080AdpKQl4ef0JlAsCPFUqvJ3Sis1lREREZlgUELVo0cIh+YYaNWqEkJAQnD9/Hn369EFYWBiuXbumt879+/dx8+ZNbb+jsLAwXL16VW8dzb+l+iYBldm4Z8yYof13YWEhIiMjbbUpdjO8QxR6xIciO/8OYkJ8GQwRERHJILsPUWFhofbvnXfewcyZM7Fz507cuHFDb5k9m5YuXbqEGzduIDw8HACQmJiIgoICHDx4ULvO9u3bUVFRoU0LkJiYiN27d6OsrEy7zpYtW9C0aVPJ5jKgsjN3QECA3p+rCA/0QWJcXQZDREREMqkEQRDMrwZ4eHjo9RUSBMGo75DmtfLycllfXlRUhPPnzwMAHnjgAbz//vvo3bs3goODERwcjAULFmDo0KEICwtDZmYmZs6cidu3b+P48ePa4ff9+/fH1atXsXTpUu2w+/bt22uH3avVajRt2hR9+/bFrFmzcOLECYwbNw4ffPCBolFmhYWFCAwMhFqtdqngCKgcfZaVX4zYED8GSQ7G34KIqGrJvX/LDoh27dol+8t79uwpa72dO3eid+/eRq+PHj0aS5YsweDBg3H48GEUFBQgIiICffv2xRtvvKHtFA1UJmacOnUqfvjhB3h4eGDo0KH4+OOP4e/vr13n2LFjSE1NxYEDBxASEoJp06Zh1qxZsrcHcN2AiHmJnAd/CyKiqmfzgEhXTk4OIiMjRWuILl68KDsPkStxxYAoV12Crgu3G4062zO7N2snqhh/CyIix5B7/7YoD1FsbCyuX79u9PrNmzdtnoeILMe8RM6DvwURkXOzKCAS6z8EVPYJqlWrltWFItvQ5CXSxbxEjsHfgojIuSkadq8Zhq5SqTB37lz4+v59MS8vL8f+/fvRtm1bmxaQLMe8RM6DvwURkXNTFBAdPnwYQGUN0fHjx/Wmw/Dy8kKbNm3w4osv2raEZBXmJXIe/C2IiJyXRZ2qx44di48++shlOhfbgit2qiYiInJ3cu/fFmWqXrFihcUFIyIiInI2FgVExcXFWLhwIbZt24Zr166hoqJCb/n//vc/mxSOiIiIqCpYFBCNHz8eu3btwpNPPmnX2e6JiIiIqoJFAdHPP/+MTZs2oWvXrrYuDxE5AKcUISJ3Z1FAVKdOHQQHB9u6LETkAJxShIjIwsSMb7zxBl577TXcucMsu0SuLFddog2GAKBCAF5efwK56hLHFoyIqIpZVEP0z3/+E5mZmahfvz5iYmJQs2ZNveWHDh2ySeGIyL5MTSnCpjMicicWBUSDBw+2cTGIyBE0U4oYTjrLKUWIyN1YlJjRHTExI1VXaw7kGE0pwj5ERFRd2CUx4++//4527drB09NTdHlpaSm+//57PPbYY8pKS0QOwylFiIgUdqpOTEzEjRs3tP8OCAjQS8JYUFCAxx9/3HalI6IqER7og8S4ugyGiMhtKQqIDFvXxFrb2AJHRERErsaiYfemMGs1kf3lqkuQnpnP4fFERDZi0SgzInIcJlIkIrI9xQHRqVOnkJeXB6CyeezMmTMoKioCAOTn59u2dESkRyqRYo/4UPb/ISKyguKAqE+fPnr9hB5++GEAlU1lgiCwyYzIjphIkYjIPhQFRFlZWfYqBxHJwESKRET2oSggio6OVvThU6ZMweuvv46QkBBF7yMiceGBPkhLSTBKpMjaISIi69g1U3VAQACOHDmCRo0a2esrqgwzVZMzyVWXMJEiEZEMdslUrRRzEhHZR3igDwMhIiIbsnkeIiIiIiJXw4CIiIiI3B4DIiIiInJ7DIiIiIjI7dk1IHriiSc4IouIiIicnkUBUUVFheTrOTk52n8vWbKEOYiIiIjI6SkKiAoLC/HYY4/Bz88P9evXx2uvvYby8nLt8uvXryM2NtbmhaSqxZnUiYjI3SjKQzR37lwcPXoU//3vf1FQUIA333wThw4dwvr16+Hl5QWAuYdcHWdSJyIid6Sohui7777DZ599hmHDhmH8+PH4448/cP36dQwaNAilpaUAwMldXZjUTOqsKSIioupOUUB0/fp1vfnMQkJCsHXrVty+fRsDBgzAnTt3bF5Ad+LopipTM6kTERFVZ4oCoqioKJw+fVrvtdq1a2Pz5s0oKSnBkCFDbFo4d7LmQA66LtyOkcv2o+vC7VhzIMf8m2xMM5O6Ls6kTkRE7kBRQNS3b1+sWLHC6HV/f3/8+uuvqFWrls0K5k7s3VQlt+ZJM5O651/NnpxJnYiI3IWiTtULFizAlStXRJfVrl0bW7ZswaFDh2xSMHdiqqnK2mDEXCfpXHUJsvKLERvih/BAHwzvEIUe8aGcSZ2IiNyKooCoTp06qFOnjuTy2rVro2fPnlYXyt1omqp0gyJbNFVJ1Tz1iA9FeKCPZLDEmdSJiMjdKE7MeP/+fbz77rt48MEH4e/vD39/fzz44IN47733UFZWZo8yVnv2aqoyVfPEEWVERER/U1RDVFJSgv/7v/9DRkYGkpKS0KNHDwDA6dOnMWvWLGzcuBGbN29mXyIL2KOpylTNkz2b6YiIiFyNooBo4cKFuHjxIg4fPozWrVvrLTt69CgeeeQRLFy4EPPnz7dlGd2GrZuqNDVPL68/gXJBMKp5skczHRERkStSCQpSSzdt2hRvv/02hg4dKrp87dq1eOWVV/Dnn3/arIDOorCwEIGBgVCr1S43YW2uukS05mnNgRyjYIlZqYmIqDqRe/9WFBDVqlUL586dQ2RkpOjyixcvokmTJrh7967yEjs5Vw6ITJEKloiIiKoDufdvRU1mAQEBuHbtmmRAlJeXh9q1aysrKTkUR5QREREpHGXWu3dvvP3225LLFy5ciN69e1tdKCIiIqKqpKiGaN68eejUqRM6d+6MGTNmoFmzZhAEAadPn8YHH3yAU6dOYd++ffYqKxEREZFdKAqIWrRogS1btuDpp5/GiBEjtDPbC4KAZs2aYfPmzWjZsqVdCkpERERkL4oCIgDo3LkzTp48iSNHjmhHk8XHx6Nt27a2LhsRERFRlVAcEBUWFsLf3x9t27bVC4IqKipQVFRUrUZgERERkXtQ1Kl6w4YNaN++veiw+pKSEnTo0AE//PCDzQpHREREVBUUBURLlizBzJkz4etrnM3Yz88Ps2bNwr/+9S+bFY6I3FeuugTpmfmcX4+IqoSigOjEiRPo1auX5PIePXrg+PHj1paJiNzcmgM56LpwO0Yu24+uC7djzYEcRxeJiKo5RQHRrVu3cP/+fcnlZWVluHXrltWFIiL3lasuwZz1x7Xz7FUIwMvrT7CmiIjsSlFAFBMTgz/++ENy+R9//IHo6GirC0VE7isrv1hv0mEAKBcEZOffcUyBiMgtKAqIUlJS8Morr+Dq1atGy/Ly8vDqq69KTvxKZA32J3EfsSF+8FDpv+apUiEmxLjvIpEz4XXKtSma3PX27dtITExETk4OnnjiCTRt2hQAcObMGXz11VeIjIzEvn37quV8ZtV1cldXsOZAjrYJxUMFpKUkYHiHKEcXi+xozYEcvLz+BMoFAZ4qFd5OacXfnJwar1POyy6z3QOAWq3GnDlzsGbNGm1/oaCgIIwYMQJvvfUW6tSpY13JnZQ7BkS56hJk5RcjNsTPYRPA5qpL0HXhdr0mFE+VCntm9+aktNVcrroE2fl3EBPiy9+anBqvU87NLrPdA0BgYCA+/fRTLF68GPn5+RAEAaGhodppPHTt3bsX7du3h7e3t9KvIQdzlqcdU/1JeKGp3sIDffgbk0vgdap6UNSHSJdKpUJoaCjq1asnGgwBQP/+/XH58mXJz9i9ezcGDRqEiIgIqFQqfPfdd3rLBUHAa6+9hvDwcPj4+CApKQnnzp3TW+fmzZsYNWoUAgICEBQUhKeffhpFRUV66xw7dgzdu3dHrVq1EBkZiUWLFlm20W7CmUb5sD8JETk7XqeqB4sDIjnMtcYVFxejTZs2WLx4sejyRYsW4eOPP8bSpUuxf/9++Pn5ITk5WS9T9qhRo3Dy5Els2bIFP/74I3bv3o2JEydqlxcWFqJv376Ijo7GwYMH8e6772L+/Pn497//bZuNrIacaZRPeKAP0lIS4PlX0K3pT8KnLiJyFrxOVQ+K+xApUbt2bRw9ehSNGjUyXxCVChs2bMDgwYMBVAZTEREReOGFF/Diiy8CqOy/VL9+faxcuRIjRozA6dOn0aJFCxw4cADt27cHAPzyyy8YMGAALl26hIiICCxZsgSvvPIK8vLy4OXlBQCYPXs2vvvuO5w5c0b2trhTHyJnbA9nfxIicna8Tjknufdvu9YQWSMrKwt5eXlISkrSvhYYGIhOnTohIyMDAJCRkYGgoCBtMAQASUlJ8PDwwP79+7Xr9OjRQxsMAUBycjLOnj3LJJISnPFpJzzQB4lxdXmRISKnxeuUa1Pcqbqq5OXlAQDq16+v93r9+vW1y/Ly8lCvXj295TVq1EBwcLDeOrGxsUafoVkmNSqutLQUpaWl2n8XFhZasTWuZ3iHKPSID+XTDhERuQW71hBJdbZ2BWlpaQgMDNT+RUZGOrpIVY5PO0RE5C4c2qnalLCwMAAwyop99epV7bKwsDBcu3ZNb/n9+/dx8+ZNvXXEPkP3O8TMmTMHarVa+3fx4kWLt4WIiIicm10Dotu3b8vqUC0mNjYWYWFh2LZtm/a1wsJC7N+/H4mJiQCAxMREFBQU4ODBg9p1tm/fjoqKCnTq1Em7zu7du1FWVqZdZ8uWLWjatKnJJJLe3t4ICAjQ+yMiIqLqSVEfooceekjWetu3b5e1XlFREc6fP6/9d1ZWFo4cOYLg4GBERUVh+vTpePPNN9GkSRPExsZi7ty5iIiI0I5Ea968Ofr164cJEyZg6dKlKCsrw9SpUzFixAhEREQAAEaOHIkFCxbg6aefxqxZs3DixAl89NFH+OCDD5RsOhEREVVjigKinTt3Ijo6GgMHDkTNmjWt/vI//vgDvXv31v57xowZAIDRo0dj5cqVmDlzJoqLizFx4kQUFBSgW7du+OWXX1CrVi3te7766itMnToVffr0gYeHB4YOHYqPP/5YuzwwMBCbN29Gamoq2rVrh5CQELz22mt6uYqIiIjIvSnKQ/Tuu+9ixYoVuHHjBkaNGoVx48ahVatW9iyf03CnPERERETVhV3yEL300ks4deoUvvvuO9y+fRtdu3ZFx44dsXTpUrcblk5ERETVh1WZqu/cuYO1a9di8eLFOHXqFK5cuVJta09YQ0REROR6qiRT9aFDh7Br1y6cPn0arVq1skm/IiIiIqKqpjggunLlCt5++23Ex8dj2LBhCA4Oxv79+7Fv3z74+DCBHxEREbkeRaPMBgwYgB07dqBv37549913MXDgQNSo4bSzfxARERHJoqgPkYeHB8LDw1GvXj2T03IcOnTIJoVzJuxDRERE5Hrk3r8VVe/MmzfP6oIRETlKrroEWfnFiA3x4xx9RKTHqlFm7oQ1RNbjzYgcac2BHMxZfxwVAuChAtJSEjC8Q5Sji0VEdmaXGiIpu3btQnFxMRITE03OD0buizcjcqRcdYn2+AOACgF4ef0J9IgPZXBORAAUjjJ75513MHfuXO2/BUFAv3790Lt3bzz88MNo3rw5Tp48afNCkmuTuhnlqkscWzByG1n5xdrjT6NcEJCdf8cxBSKXlasuQXpmPq9f1ZCigGjNmjV6U3WsW7cOu3fvxm+//Yb8/Hy0b98eCxYssHkhybXxZkSOFhviBw+DcSCeKhViQnwdUyBySWsO5KDrwu0YuWw/ui7cjjUHchxdJLIhRQFRVlYWWrdurf33Tz/9hGHDhqFr164IDg7Gq6++ioyMDJsXklwbb0bkaOGBPkhLSYDnX6NjPVUqvJ3Sis1lJBtruqs/RX2I7t+/D29vb+2/MzIyMH36dO2/IyIikJ+fb7PCUfWguRm9vP4EygWBNyNyiOEdotAjPhTZ+XcQE+LL448UMVXTzWOpelAUEMXFxWH37t1o1KgRcnJy8Oeff6JHjx7a5ZcuXULdunVtXkhyfbwZkTMID/ThsUcW0dR06wZFrOmuXhQFRKmpqZg6dSp+++037Nu3D4mJiWjRooV2+fbt2/HAAw/YvJBUPfBmRESuijXd1Z+igGjChAnw9PTEDz/8gB49ehglarxy5QrGjRtn0wISERE5A9Z0V29MzCgTEzMSERG5Hrn3b8Wz3RMRERFVN4oCorKyMsycORONGzdGx44dsXz5cr3lV69ehaenp00LSERERGRvigKit956C//5z38wadIk9O3bFzNmzMAzzzyjtw5b4IiIiMjVKOpU/dVXX+Hzzz/Hww8/DAAYM2YM+vfvj7Fjx2pri1QqlamPILILThxLRETWUFRDdPnyZb2pOxo3boydO3ciPT0dTz75JMrLy21eQDKN8+ownT4REVlPUUAUFhaGzMxMvdcaNGiAHTt24MCBAxgzZowty0ZmMBBgOn0iIlfgCg/vigKihx56CKtWrTJ6PSIiAtu3b0dWVpbNCkamMRCoxIljiYicm6s8vCvqQzR37lycOXNGdFmDBg2wa9cubNmyxSYFI9M4r04lptMnInJeUg/vPeJDne5epaiGKDo6GsnJyZLLIyIiMHr0aKsLReZxBvlKnMWciMh5uVItvqIaIo21a9di9erV+PPPPwEA8fHxGDlyJIYNG2bTwpE0zqvzN6bTJyJyTq5Ui69o6o6Kigo8/vjjWLt2LeLj49GsWTMAwOnTp3H+/Hk8+uijWL16dbUceu+sU3fkqksYCBARkdNacyDH6OF9eIeoKvt+ufdvRTVEH330EbZu3YqNGzdqcxFpbNy4EWPHjsVHH32E6dOnW1RoUs4VZ5BnziAiIvfhKrX4imqIWrdujenTp0vOaP/FF1/go48+wrFjx2xWQGfhrDVErmbNgRxtBzsPFZCWklClTwpERORe7DK567lz55CUlCS5PCkpCefOnVPykeRGqluqAFfIq0FERPIoajLz8fFBQUEBoqLEn+gLCwtRq1YtmxSMqp/qlCqANV1ERNWLohqixMRELFmyRHL54sWLkZiYaHWhqHqqLqkCqltNFxERKQyIXnnlFXzxxRd47LHH8Pvvv6OwsBBqtRr79u3Do48+iuXLl+OVV16xV1nJxVWXnEGulFeDiIjkUdRk1qVLF6xZswYTJ07Et99+q7esTp06WL16Nbp27WrTAlL14iqjDUxxpbwaREQkj6JRZhp37tzBr7/+qu1AHR8fj759+8LXt/reEDjKjHQ5Oq8GERHJI/f+rSgg2r59O6ZOnYp9+/YZfaharUaXLl2wdOlSdO/e3fKSOykGRGSISTGJiJyfXYbdf/jhh5gwYYLoBwYGBuKZZ57B+++/r7y0RC4oPNAHiXF1GQwREVUDigKio0ePol+/fpLL+/bti4MHD1pdKCIiIqKqpCggunr1KmrWrCm5vEaNGrh+/brVhSIiqipMsElEgMJRZg0aNMCJEyfQuHFj0eXHjh1DeHi4TQpGRGRvTLBJRBqKaogGDBiAuXPn4u7du0bLSkpKMG/ePKNJX4mqGp/4SQ4m2CQiXYpqiF599VWsX78e8fHxmDp1Kpo2bQoAOHPmDBYvXozy8nImZiSH4hM/yVWdppIhqmq56hJk5RcjNsSv2pwvigKi+vXrIz09HZMnT8acOXOgGbGvUqmQnJyMxYsXo379+nYpKJE5Uk/8PeJDq80JS7bDBJtElqmuD56KAiIAiI6Oxk8//YRbt27h/PnzEAQBTZo0QZ06dexRPiLZ+MRPSmimkjFMsMljhUhadX7wVBwQadSpUwcdOnSwZVmIrMInflKqOkwlQ1SVqvODp6JO1UTOrComj2WH7eqHCTaJ5NM8eOqqLg+eFtcQETkjez7xV9d2cyIiuapzU7NFk7u6I85l5t5y1SXounC7UXPcntm9q8WFgIhICVeay1Hu/Zs1REQyOGO7eXUc9kpEriE80KfaXXcYEFVjvGHajrN12GbzHRGRbbFTdTW15kAOui7cjpHL9qPrwu1YcyDH0UVyaaY6bFd1R2slGZbZCZyITOE14m+sIXJRpmp/qnOeCEcS67DtiJoauc13rEUiIlN4jdDHGiIX9NnuTHQxUftj6oZJ1tEdou2oubDkDHvlPF1E1YO9anB4jTDGgMjJmDv4P9uVibSfzkAwcRBX5zwRzsRRgaecfEsMiolcnz27PvAaYYxNZg6m2/S1+8/rJqsvc9UlWPjzGaPPMGwuqc55IpyJko7Wtu7gbi7fkrN1AiciZezd9YHXCGMMiBxIt/1WU6GjOTbFDv6s/GIIIp/joQLyi+4iV12iXZdTEtif3MDTXu30poa9Migmcm32TvXBa4QxBkQOYhj9iwU6hge/WEQPVP572uojRjfb6pgnwtmYCzwd2cGdQbHzYAoMUqoqanB4jdDHPkQOIhb9GzI8+A37jhh0E2KnOAcxNReWo9vpOU+X4zEFBlmiKuZm1HyPNdeI6jRsnzVEDiIW/asAqP56Terg143oz10rxGvfn9Jb7ujsyaRP6VMeaxKqF6bAIGs4ew1OdRu27/Q1RPPnz4dKpdL7a9asmXb53bt3kZqairp168Lf3x9Dhw7F1atX9T4jJycHAwcOhK+vL+rVq4eXXnoJ9+/fr+pN0SMW/S8cmoC9sx/C6gmdsWd2b8kDKzzQBzk3izF/4ymjZe7eKc7ZKHnKY01C9ePoGkJyfc5ay1sdh+27RA1Ry5YtsXXrVu2/a9T4u9jPP/88Nm3ahLVr1yIwMBBTp05FSkoK9u7dCwAoLy/HwIEDERYWhvT0dOTm5uKpp55CzZo18fbbb1f5tuiSiv51sx/LSbyo4QG4fac4ZyTnKY81CdUTR/JQdeWM8ztayyUCoho1aiAsLMzodbVajS+++AKrVq3CQw89BABYsWIFmjdvjn379qFz587YvHkzTp06ha1bt6J+/fpo27Yt3njjDcyaNQvz58+Hl5dXVW+OHrGOz+aqIaX6H30y8gEMbB1h7yKTBcx1cK+OFxfiSB6qvqpjsO/0TWYAcO7cOURERKBRo0YYNWoUcnIqmxIOHjyIsrIyJCUladdt1qwZoqKikJGRAQDIyMhAQkIC6tevr10nOTkZhYWFOHnypOR3lpaWorCwUO+vKsiphpRKvPhgdJ0qKSPZHpNpuhYlHUmHd4jCntm9zTaFE7mSqur0XZWcvoaoU6dOWLlyJZo2bYrc3FwsWLAA3bt3x4kTJ5CXlwcvLy8EBQXpvad+/frIy8sDAOTl5ekFQ5rlmmVS0tLSsGDBAttujAxyagqc9amTHYItZ/ibegCY2a8p96MTsqQjKVNgUHXk7J2+lXL6gKh///7a/2/dujU6deqE6OhofPPNN/Dxsd/OnzNnDmbMmKH9d2FhISIjI+32fRpyqyGd7UCsbqMNHGF4hygUlJRh4c9nUCEA7/xyBkG+NbkfnQj7ehEZP/xWl2PfJZrMdAUFBSE+Ph7nz59HWFgY7t27h4KCAr11rl69qu1zFBYWZjTqTPNvsX5JGt7e3ggICND7qwpKqiGdZfRBdRxt4Ai56hK887PpeepcUXXKU8JRY+TuqvNoWJcLiIqKipCZmYnw8HC0a9cONWvWxLZt27TLz549i5ycHCQmJgIAEhMTcfz4cVy7dk27zpYtWxAQEIAWLVpUefnlcLU+B7xJ2EZ13I/V7eLJvl7kzqr7w6/TB0Qvvvgidu3ahezsbKSnp2PIkCHw9PTE448/jsDAQDz99NOYMWMGduzYgYMHD2Ls2LFITExE586dAQB9+/ZFixYt8OSTT+Lo0aP49ddf8eqrryI1NRXe3t4O3jppzlL7I4elN4nqVHNgC9XtZlsdL57VsSMpkVzV8aFNl9P3Ibp06RIef/xx3LhxA6GhoejWrRv27duH0NBQAMAHH3wADw8PDB06FKWlpUhOTsann36qfb+npyd+/PFHTJ48GYmJifDz88Po0aPx+uuvO2qTqgXDNmSlnbzZ58iYs3aWt1R1TSXgbP33iKpKdRxqr0slCIJIRhsyVFhYiMDAQKjV6irrT+SspIKZXHWJrJtErroEXRduNzqp9szurX2fO49Yk7sfnZ2c35mIXMuaAzlGD23O/jAr9/7t9DVEpM/RgYK5UTZSWZh1y2yu5sDda49Mjdpw9O+vRHWr8aLqz5XOL7lsvU3VuYaUAZELcYZAQWkziFiZe8SHSla7VtWwZle88DnD769Udb54UvXiiueXOfbapuo01F6X03eqpkrO0kFVScdfqTIDkOyYWhWd9lxx5JOz/P6WcKUBAmRfueoS/HjsCn44etmpjl1XPr+kVMdtsjfWELkIZ+mgqqQZxFSZpWoO7N1pz1UT60nty4PZtxDs71o1XeSe1hzIwexvj0NzGKsALBzqHLUwznJ9taXquE32xoDIRThT7365zSDmyixW7WrvfieuepEQ25cqAM9+fbhaVfFT9aR5ENE99QQAc7497hQPI850fbWV6rhN9sYmMxfhyPwnYvmC5DSDWFpmeyamdNVcP4b7UnPiGtZ0Hb14i7mdXIw75OMSexABgArAKXLYVMf8UtVxm+yNw+5lcpZh91U9JNsWnfKcbRi5Kw4b1dDsyxvFpZi66rDRcpUKEFhjZMRZO9FXx468YsRSMACVgf3eOQ85zW/ibNcqW6iO26SU3Ps3AyKZnCUgqkqunkfG1E3Q1S8SUjcYXa70W9mTswYdrn5+KbXmQA5mrz+unavPmfoQUfXGPERkNVftbwOYvwm6+rBRw75WHqhsftDlKr+VLUgFv47sRG+uVsqVzy9LaPoeHrpwC4IAtIupUy23k1wXAyKS5Kqd8lx1JJlSup3bfb08MOTTdJf7rWzBVPBrSdBhi+Y1ObVSrnp+WSM80AcDW1efc9AenLV51x2wUzVJcrVOeZrOqQcv3JKdy8jVO7RqOre3iazjUr+VrZjLtaK0E70lOaoMj6GjF29htoz8L652fpH9uWKOtOqENURkktgQe2d8gtF9Ileh8k83JhK7CTpr3xJLVWVWaEcfA5rvv1l8z2QNkJI0DpbULBoeQ0MeaID1hy7DsGuXVK2ULX4zR/8WZBvuUrPtzBgQkVm6/W2cMYgwvJCI9TMe/ECE0/Qtsaeq6Bvl6GPAXPALAMcuFyAxri4A+UGH0uY1sWPo20OXRT/bVK2UNXPXOfq3INtxtz5lzohNZiSbs6aCl8pxouu7w1f0ylkVU4RUlaps9jN3DNi7LGLBr9hPv+jns4rzZiltXpNz3AGVgYolTWHmmk+c9Xwky7hqjjQ5XKVrAmuISDapIGLb6atoFOrvsCp7sc6phgyftKpLh1a5NQS2alYxFUhuPHIFC38+AwH2q62QG4RY8mQt1rw2s39TZOUXa5frknPcqQDMf6QFesSHyi4HIK8Gk9O5VC/2ztLvKFLXKGds6mVARLJJ3QBe/e4kAMdV2YsNQTesOTAMdmx98XHEyS232c+WzSpSgeSe89exeEem9jV7NUGKfb8HABi+pgJ8vZRXgOs2rx27VIB3fj5jMnVDWkqC3m+gS/Ow/9r3pzB/4ynR/S513MhpPuF0Ln9zxpurJaqyH6Ctif0GUteogjtleOcX6XPLUZiYUSZ3TMwoRvfmKsaRieVy1SU4mH0LUAGXb5Vg0S9nzWajtkWCRkf140jPzMfIZfuNXl888gEMbB0BwHzyP0tuJIaZvmf2b1pZMyRyTKye0Fnbl8dWxDKNA9C+pmHNb6EkaeIPRy9j2uojZj/T8P2mjhu536+7L6QeBKprokcN9qNyfEAo9Ru8vekU/v1bltH6YoNe7HmcMjEj2cXwDlHw9fKUvAE4shPg7j+v652Us/o3Q+sGQSaDHWs7ITuyc7ZUjd3UVYdRVHofwztEmW7iOnpFG8gouZEYPsVm5ReLBkMegF2aIKWeopuF1cbgxenaC601v4WSDq7tY4JFa61MJco0d9zIrcHU3Rdi07nY+nx09I1XrDy2Ov+cbdvkcnRAKPUbNAurjWUiwZDYNctZOo+zUzUpprkBiLFlPxwlHfHETspFP5+1e7WzIztna26ahr+FgL8710p11Nxz7jrSfvq7Vkdph1xNJ2UAuFl8D2KHw6z+zey278U6SRffK5cc7q6Ukg6uYvmEZvVvZvL9co4buZMca/ZFu+g6Rr+DCpY1HYqxJkeOpZ1qzb3PVuefq+b/cYaO9VK/wYHsW6IDHkZ0iHLazuOsISJJUk9Mhk+vGrbsBKj0qccWQ1YteUK0tnO2tU+lUjV2mm1PjKsr2lF44U9njD5LaQZnqeHvmtq5Z3rEKd4eJQzLY8uO8kr7mInVWgX51vy7OUsFjOsWo10/NsRPVq4sa2swBQBDPk23utbAmpoYJeey7m9qWONrr2zfrpyCw55D9eVem45fUhu95qlSoUNMHdGa02l9GqNNZKBTdh5nQESizF3EDKeNuHOvQq82xpobvSUXKGsvjJZWO1vaOTtXXYLle7LwxZ4sq6u6xZpsdLddtIlL5HM8VNJNXIbBz+MdI/H1gYt6w989VMAnIx6weo4qOceO1O9laUd5se9U2sHVMHjRvH/F3iws252FZb9V/t5pKQlG71XBsqH5uqR+V1vc4C298So5lw2PMQBmmz9tMTjClfP/2Gu0rJLRq+/8YvxwNbN/U7SJrINZ/ZpVDkyA/gOzs3YeZ0BERuRexKSeXq1t07bkAmXNhdHaJ0SlJ/eaAzmY/e1xvZuXNTctOdtu+FuJteNLNXGJ5f5Z9ftFo/UqBKCuv7dVFzfDm+KE7rEY2y1WdlJNSy60po5XWyS6/Py3LL0b+5xvjwMq/dohlaqyD1R6Zr7JQNBUsGgqDYC1N3hLb7xyz2U5yVXtle3blVNwWPNAJnUcmTq/AOi9TyoNRusGQVhzIKdyJBkqj++Z/Zs6/QTbDIjIiDVPTLaofrb0AmXphdEWT4hiJ7fhRSdXXYKDF24ZBUO633kw+xYebiMelJiqNTGssSu+V45cdYnoumJpCkw1ccnN/WPtTUTspvjv37Lw+V+1KnInbFVyobV3c4lYWSsAozt+hQAM/jTdZAd3cw8a2jQA3x436tBtbTOupTdeueeynGPM8H2G5TRXUyV1/tiilsmRLHkgM3UcSZ1fK/Zk4/M9/9N7X4/4UNHf19fLQ/9c/qtP5yNtIpx6vzIgIiPWPDFZG0xpLlqWXqAseeqwxxOi2BxXGw5fNnvRf/brwyi+d19v+PWKPVnaoasqAAuHite4hQf6yOp3ASi7iMpJQGiLm4jUTdEwSLHl72Xv5hK5eZMAGHVw1w3K5AZu2mY6nZuX1G8jFiSYulla8sBhLtjQlMHPy9PkMWbYpKikFlrOus7WhKO0y4Hc656c40jqmNUcT7rv2zO7t+jvW3yv3CWbIRkQkRFrnpgsvVmJXbT2zO6NQxduoUIQ0D4m2NrNkmTrJ0Qlc1wZ0r1A6QY3GgKA2d8eF63BUFrbIfciaqrmwQPAJyMfwIPR1vUbAuQ3+djy9zJ1vNpiGLZUWQHo1dCZGqIPKAvcwgN98PLA5hjbLUbyBi92vvWIDzV7/FjywCEVbIg9NHx3+IreQA0NlQraJhslx7mSdZ2lCceew+jlHEdix+zT3WKM8glp3ic1AbhUzZG5ZmFHYkDkIqo6R4alT0yW3KykLloz+zcVzRRsq32h+zm2fEKU28QkRTMdytzvT4rm9xEA0aY1e9Z2mKp50CSBtJaSJh9b/V5Sx6vcmjY5pMqq28Q55NN0oyfyG8Wl2mZPSx40dG/wmuZaQRAQFewrer59OKKN3Y4fw2BD7Jz/7vAVrJ+SiAPZt/DmptN6768QoC2HkuN8xV+DFuyxTfZg7yZcuceR4TELAJ8b7Evd9xn+vmLn1eAHIrTHubMm0GRA5AIclXjL0icmpTcrqQucbvZjzYXBVMp3JYGS1D6V6lSsJACT08Skofpr7LVhB1vNdCgm32fAz8tT1lBuS0nVPOSqS/BH9k2oVCq0s7KmSEmTj62e6MUu/rpZom1xUxIrq+5rujcPzW84ddVhm4ygE+vEb6gyNYCqylJISJ3zd+5VoENMHZPHsdybeq66RDIxoK1qAG3N3k244YE+mNW/mfZB09xxJPz1K1jyoGvYr1E36Ld1oGcrDIicnKvmyFBys5Jqs5YMkv76t1TzkljQqHvxA2C0T+d8exx+3jWMbuiWBKOmajoMCUJlcOMhVDabeKggWiukS6UCHoyuo/eappyGNxF7dA7V/W0Nb7am+jgB8m6acpp8bE13m9Iz86u8VkFz8ziYfUs7Fxlg/Qg6zfXDXGzuqVLhweg6ks175po5lJ4nUkHNscuV88eZOo7l3pyl0hCM79bIpjWAtmTvEW9rDuRogyEVgJn9moput9TvaUkfsvBAH1nnlDMEqAyInJwr58iQS+wCN7NfU21NkIZUyvdDF26ZDBoNT+7x3WJFR/4YPpHnqkv0bvYVAjB7/XE0C6uN4nvlJk/c4R2i4Oddw2gqBTGCAPxr5AMI9vNGftFdk/NiqQAsTEkw2fyg2VfrpySiTWQdu11oDPcPUPlUP2e9eB8npTdNR/XpcNQw7PBAHwT7224EHWC6+Vazjabyw+z+87q2tkzqN7PkoU3ynP/Z+JzXHMe65NycpR60BrYOc3hthdyktx4AntZJ6GntdxqO4lz0y1k80jbC5PXEcP/Yuq8e4PjpRzQYEDk5V86RoYS5TL+aDMuGF0xPlQoVgiB5EwGMa4OW/ZZlVCWvoXvyH7xgnHpeEIB/LE4HUBmczO7fDM/0FB+u3i5aJFPrXzVAhk/Amk7JYp0Rdf1LZ+JWDdGh3QJw516F3TtoSu1Dc3lmnLmm05adtpWy9fku1XzrAWDDlC5GCVWBvwNRub+ZuekzpIJxsYShUsexGFM3Z03AMat/Myz6WX+SZ0ePgJI6JzVl7hEfij2ze2ubjcVST1hC7sO1PR7CTZ1TznRtYEDk5Bx5ca5qhhc40SDJp6bRvjCVqVns5BagP9WEIc3JL5hpuxIApP18BlBBNIeP1G8HQPL3NNex2LCpDJC+iRrmArFHB02xfaiC8fxZrlbT6ahh2LY+3zWfN3v9cW1TrApA2tAEo1oXQ3J/M1PNX6M+32cyGDc85+X2DTJV42kYcMzq1wytGwbp9Xlz1EOm1M3fsG/krH7NRIe5mzp3ze0XuSMq7fUQPrxDFJqF1caB7FvoEFNHe/w507VBJZi76hMAoLCwEIGBgVCr1QgICKjy789VlzhNjgxHE9sXaw7kGN1ENE9dXdK2S05V8UibCHx35Ire654qFfbM7g0Aku81/Jy9sx8yeaEyLK+537My/5Bxx2JTuVYMtz8y2Bcjl+03WvfVgc0xsHW4TY4jqQ67Yh3edTsqA3/vZ2c6np2hH4OmHLY833PVJTh04RYEAbKnVlHymxkef2JN3nJ+b6nzWHe5ub6Ccsps7nvsJT0zX/ScNHywEEvFAACrJ3TWTqqsS25NsNh2AzB6L2D80Gbt/jFVM2bva4Pc+zcDIpkcHRCRNN3kboZNAOZG2KhEOjHP0WkGW3MgR1tbI1WjBEhfqKyl5MZouK7YhUbDQwU83S0W4wymxTD8PM1+NdVnKlddgq2nruK1708aNQXqXtQcdROSy979GGwdbFVF8KbkN9M9/rLyi0Vv/FLnieGgB7FjXs6N84ejl0X74Il9r5xzSyzbvDX7XGwbpJrIDa9NUkGCqf0CGDdZ6m43AJPvtVVQLrrdADakdkGbyDp2vzbIvX+zyYxcmthNTHPhMzfCRmwkGwC0bhik/X/DppONR65UNpPpsGd1u5JOjIbrGja/6NL0pfr8tyzRUWG6+1XDVLNHXD1/o/1sWO3dIz4UH45oA3VJGQJ9aiIq2NdpkrTZux+DrYOtquqEqqTp0JLmL0D+tphrWtF8jiGp7zV3bpnKNq9knxsGUUadySX6Rs7s39So/5NhgJiVX4wbRaWi+2XF3srz27C8ckdUJsbVtdl5KTWFzeBP07HQwhFs9sCAyA05S7OAtczdxEyNsDFVrW+YTVX3AvJMzzhABdl5PBxNc6HZdCzXKNkdUFnjZW6aCA1TQYLoiB7V332JxAIs3fUcPezZnv0YbB1sVXUnVM1nZuUX6/3b3Hvk9IVSsi3m+sCIHV8egEXnp7ls8+b2ueYae/yyWi+57Kx+zZDQMBDrpyTq1WaL9Y0c3iEKj7SJEA0SDIM1oyY3FbBsd5ZoihI5/b9s/YAn1blfEKwfwWZLDIjcjLMMb7QFczcxsZNQBeCNwS3Rp3l90ZFscrKpPtMjTvJC5YzCA30wsHU43v7ptGhAImeaCKl1db/DsPNuhQAMXpyO2f2bGQWeupxhxJlUQGeLG4Otgy0lM8jb4sFHapoPc01Jcp76lU5JIhVkidV0AMDUPo21U34oISfbvFQ5pYL/CgHa2mXD2mypfSUWJIgFa7q5zDxVKozrFmOUlFKsvFU1aMfUYBFnGlzBgMiNONPwRlsw93Qj1mQkAHjt+5Oo6emB4R2iLM6m6gxPM0poL0giF2rDJ0JTmbZNPT32iA816o8lAHrJNKU4OkmbWEAnCMDuP69b/cBQFUPpDT/PVg8+YteM2d8eh+qv7zfXlGTuPFGyb3LVJYgM9jWqXZH6HAD4eNt5fLLtvMn0GHLLZUhqBJxUTagusWuL3GuK6MhZ4e9cZpoyfWFiqg1dVdVcpRllNvjTdKO+Uc6SRsbD/CpUXUg9jR3MvoX0zHzkqkvs8r256hK7fL7mJub51zwWYk83wztEYf2URL2pLjQXI015wgN9kBhX12R+kupgeIco7J39ECb2iNWe+GL7zHC/wsS6ujRNKoYEiE81YvjZuknaui7cjpHL9qPrwu1YcyBH1vYpZXhc9ogP1Wt30DQnWnvcyjlObfl5Ug8+lmyHVNoKw6YkS79L7r7RPSaGfJqOnJvFso5ZTXnTfj6Dz3ZnyiqTVLmGPtjAbDmVzGNo6bVFE6zp0qTk0PT7UXrMaa6BtursL3W9bxNZBwtteC7YGmuI3IhUE5JmqgA5T5JST+5Sr8t5UjVXG2BquZynm+J75UY1F0ryqSidy8ncqKyqZrj/Xh7QAmO7xprcZ4Y1Z2IJ/AxJ5SXyUEFv/iRDjkjSJnZcRgb7mu0YbilbP4Wb+jxbNtEpmZfP0u8yt2/kHhPm+su98/MZPNImwqpyvZjcVHF2bCmWNsnKbeay9TEnp9ZWzvXeWTpQi2FA5ITs1VxgeCJ5wPhpz9TNR+pgN5VfwtyFzNwJJOcEs1W1vDXt6UpGZVUlU5PYmtsupc2C4YE+WDg0QX9uM528JrpB6cQesRiYEG4UaMm5mSs9P8SGTosdl+unJNq1g6mtm1mlPs+WTXRS1wxT93tLvsvUvjE3Y73h7zuwdTje2nTaqIwVgnEGdaXlMvcbhgf6YFa/ZkYjUcXM6t/M4uNBblBhq2NO7oOt3IcZZ+1ywIDIyZhL625tkKSbLdS7hgfmfq8/q7rU053Uwd4srLbkSWDu5mbuBLJVbYGSQMeaCTTljsqqqv4xSvefLcqlO0mp7iS0XRfqJ7j84rdsjO1qnAPJ1nMeSdUEiR2Xd+5VODwrvDW/ge57lWyHue80PCfe+/Ws3ogrXbbeZ+ZmrJc6Hmb3Nw5K7NlXRXcfJjQMFF1Hk2xRBWBEx0g80iZCdD25qiqosMUULo64/lmCAZETkUzrXlKmN3TTmloH3QuI2PQVUhcNqYP9QPYtyZPA3M3N3Alky6p/a/KpmKNkVFZVjvJTsv9sWa7wQB883Obvz1cye7yp4PXoxVtGk+2aC/CU1gQlxtUVPU6qKgmipb+B2Hv3zO5t9niX+52acyJXXYINh8WDIQ9YNqGwqXVNzVgPGM9TqHlIS2gYiKm94/DpzkxUCPbtqyI2VYjY8bV+SiI2Hc/Fst1ZWP37Raw5cNGq86yqAgtrp3CxR2d/e2FA5ESkDryFP5/RG8psaZ8KsdmOVfg7gZqHSjpnh9TB3iHGeAJT3ZNgfLfYyuRgML4omTuBbD06x15PVHJHZVX1KD+5+89w1voKAZj914z1gPTknHL5eXnKDrwB8eB1zYGcyhFgBuuaCpClzidzNUGGx0lVXMStOTak3rtndm8kxtXVdnIV6/en9DtNBf8VUD6hsLl1pWasH9stRvL3Hbw4HQLE5zGzVK66BH9k34RKpUK76L+nPhEL0hf9clZ0Utl6AbXw+W/mcwPJ8dmuTO3oTXsHFrbqcuAKo5wZEDkRqZPfVrUkUiNGdIcZS5E62NtE1hF9ffef1/UudBO7NcLYbjFG7fHmbkyObsKQw7CcGrpzBaVn5ktmlLVXDg65++/ghVtGgYYgAJ9sO4evD1y0KhDQ3PAMgyFzv6NuUKLNOG4m4DR0/JJacn2pmiBDVXURl7q5bzqWa3beOVNP8Ibnoe5vaEkNrLngX8mEwnL2rbljWDTZH/7+vEW/nLV6TizD6X9UABYOrewXJxWkt24QZFRDp6Sm1JTPdmfqNQfau2neVl0OnGkSVykMiJyI2IEnlU3ZkloScyMgBJi+2Esd7IavA/rz41QIwOd7/oeEhgFoHxOs99nmmrKceUSCLqlRWbv/vK7dF2IZZe2dg0PO/pOaznDV7xe1/29JICDWt8pD9XezilxStRKmshDnqkvwzi/GHVtn9m8qWRMk97vLBQGHLtzCwNa2Oxalzs03N53G2z+dNhmMSj3BmwtOLKmBNRf8m0pdIdYcJmddU0kL01ISTM5VaO0N17D2FKg8f03lGvJAZYZ2w+NL6oH3RnEpctUlsvsrLhTpsG3vpnlbdDmoqqzY1mBA5GTEDjzDbMqW1pIYXszELsDmLiBSB7vu62JPQhUCMG31EdGTU86NSTCb2s/xDLdDTkbZqqjxMrd/28cEGwVqYsPnld5cROcvEiqbVZSQyiK9YUoXycBKKohq3SDI6u8GgKmrDqOo9L7Nmil2/3ldsobWXDAq9QQvFZwczL6FYH/lna81TKVkyFWXyG6mvVFUanIqDt3aDaljuEd8qOgEzaa+WwmpPkxSwRBQeW4P+TRd9Dqnu78159jUVYdlBy1Z+cWi2+oB2L1pXuo3kFsT5Qo1/gyInJDhgWdNLYnhwWoqMzNgm4jdVE2U0pPT1JOOM49WyFWX4MdjV4yr8wX9jLLOUO7wwMrh8pq0+h4AZg0wzhuk9Niw1ROhqeZaS75byXGj+W7DGgFztalKmJuEGDAdjEplcBYLTsTyjsnpfG3I1IORbs4psZue0cCOvwIaqeZ2U4GCufkKLZ3HTHN8SOXWMkfqOqc7ClPzO2jWn/PtcbPHk9S1VTOEP1ddgrd+PFVlTVNKa6KcvcafAZGLkFOLYkhODhqlEbucm4mpp11APK+MWIdFU086Si6aVc3URKaajLLOdiEQrZkUmXBSSblt+USo9EIq9d2WHDfDO0TB18sT01Yf0XvdVjcZOdmNlcwUr5kfy6hGGOJ5xzSdr21hzYEcbTCkAjCzX1O9/Ss6sEMAFo98QC9Fg9zaDanaw49HPIB2McrPM71gTQXM7t/MOLcW5AVIpkZSBvuLz/6+Yk82Xh7YXPIzxWr5Z/Vvhmd6xJmdQNlw0mprWVoTZcm9rKowIKqmlGZ3lXOjUZKcy9QFwzCvjFiHxeEdokxONWLJiWhNRmw5y3W3XyoYcrYqYl2aC5VmVFKP+FCLag90KTm+zO1fpRdSOX3b5NbytI8Jtlv/B6kM8pr5wjR9CQ1nm5dzjuvugxvFpZi66rDed9uy5kAs2Fn0y1k80vbv7NBSAzuOXlRjYOsIxR2PpQLfhyVy/Jg6xozKLwBpP53BnP7NkD7nIe0UR7p96zQ8/qrlkts/UKrm6fM9/zMafGJI7JwyN4dat8YhZietVsoVOkkrxYComlI6i7S5A1hugHXwgnFeIuDvpGSG0zRIdVjsER8q2ewBC/o+WZIRW3dGb7k1C1JP+3MHNscAM6OFDDmiSdBUYlBLny7lHF/2Gtpurm+b3Au4LWu7xPrHiH225qZ37HKBaB4yuee45js+22U8l5ctO7XKKY+5QMCSZla5Qbe5Y0zq3H3n5zN4pG0E2sXUwbNfHzZarvksALKPj/BAH0zoHot/GySdrBDkZdM2PKdM1TKqAPx2Pt8mqVt0uUInaaUYEFVTtj5Y5VzsNLU9hjRJycSmaZDqsJidfweJcXVFbxTtok3nPjJkSUZs3Rm9VX99jubrTF1QpPa70mDIEQnMJBOD3inTjnS0R1mUJly0lLXnhKVZzHWDH6nf1dRnj/p8n+ixq3SmeFOj7sSCb6UBuZzymAsEpM55pQGC2Pabe6CLDfET7aBdgcqyCRBEg46PRzygrZFScnyM7RaLz2XOSG+OVN8iDwBdm4Tgt3P5eq+bexCQMy+jK3SSVooBUTVl64PV3MVOqqlMk+xRrAOsqclANZ8rdaNQsm2WZMQWoJOfSeQzTV1Qnu4Wiy/+utBZst8dlcDMZGJQ2KcsliRctJQtzgklzXZiGYx1U2gY7kuxzzZ17CoJHkyNuhML0gAoDsjl7l9zgYBYU6e1fV/kPNCFB/pUTvnxk/SUH2LXwHYxf1/blBwflhyPUkGqWN+i8d0aYWDrMAxenC76WccuF4j2HRPri6QCMKF7LMZ2059ux9k7SSvFgKgas8UTrYa5k1fqgqv79CRmQvdYLNPJ3qqZDFSsyt/SbbMkI7Y5Yk9yhqNnJvaIFZ2vS4pm35tK4AhYnzlailQHVal+XLrTc1jCVMJFQPqCbQ2p48bWzZNiQe07P5+BYcIBSxMhHrtUoE0u+eGINvAw01lfSa4izW9iSRAs57wUu5bM7K/fR0rzZ6uaUqkcQIYdjZ/pEQfo/FaG1zmxPHGGfbuUkOoPJHYsmtsXYp+Vnpkv2Z9z0c9n8UibCL3vkOqLJAD4929Z+HxPlkVpU6Q420hhlSCVlY30FBYWIjAwEGq1GgEBAY4ujl3I7TQtdvL6eXmKDuGXyhJr+F0jOkSha+O6dhuBteZAjlEwZ9iHyNSM3oadXA3fn6su0euwa277xcqnuz/EOmjO7N/UZnPamSqH4Y3KcPg9YJvvT8/Mx8hl+yWXK9l/1jDXf0ys8625i7jUthk2ycjZxs92Z4rWWig9HsTOgchgX5O/ga7VEzrbNEDVXEuOXSoQbZK19pwyZDiAA/h7xJhYSg+poE5bbom+XdYw1YfPkn0h9j5drw5srpcJ3dw5Kfd75ajKbgFy79+sISIA8vrZaG4Cmoui4QE95IEG+O7wFbPVv2LftebARUzr09huNz+lGbF3/3ldspOr2PutGXEhJ4HjzH76gYm9mtGkht9rchRp2OL7zdXMVcWIlaMXb1U22Un0HzO8UMu9iEvVyMzs39Rojitz25fQINDotXJBwMKflDVlStVGyKkdtUdnWU05pfpI2XoUk1gSR6n9Z6rWw1y5raktkboGW7ovNLVxhuevhmEmdDm15bY4L511XjMGRARA+XxIPeJDjQ7o7w5fEe08reS77HkymKva1V1uaroAMdZ02BXtwyToJ3Csyn1muJ+Gd4iCn3cNmw/ZNmw6MWTvEStiNQaAfv8xTROSr5cnooJ9JWdXN+x4KtXEPLxDFB5pE6GoGVvqJmVJvyvD31Z7wzQxZFuTT8iapiEppuZwMzdxtC2+y/B75R7PSs5Huc1Cpj7TmuuL5lq2Yk82Pt/zP6PvMAxGTJ2TSr7XFGcdss+AqBqSSnRoitL5kD56vK3oAX3nXoXZanVrTu6qanNW+j3WdNiV2h+GzYeOHOIqNbLPVLI3OftQN/Dcc/46luzMtLgzuhJy8mVpVAiV086IDQAwnF1dt8bIVFCttCO3uaAFsPx4kEo8qcteowxNzeGmpNbZmu/SMDVCz/A4lnsNU9IsZOozrbm+AJXH0MsDm2NstxhsOpaLNzed1luuG4wYzmaw6VieNpAy971yr5vOOmSfAVE1YyrRoSHDg1fJfEgQLL9BW3pyV1Wbs6XfY+mICzn7w9oLorXEvn/wAxGSyd6U7MPwQB/s/vPvYEgsw7GtSdUWGKZY0CUVi5hqtjIX/Mi9gZgLWqw9HsQST2oY1pjZsmnDVI2EklpnS75L9VeEK0B6/5nK9m/ufFTaLGTuM5V0wDa1Dwa2DsfbP502ee3WPW7bRNbB2G4xotc13e9XkgXe0dczKexULZMzd6rW7diseVrV5aEC9s5+CADMHrxinaalOvOJ9bNRchMz1XFRbF1bdrA09T1d0rYbdWiuis69cvaH3H1mr5o0zfdLzYO3Z3ZvAFD0Wx29eAuDP01X3NlYt0xytlV3PbEyegDYkNoFZ/Jum2wy0AQOUgGE3M7HSgNvsXPAA8Anf017YZNOrhJ9TQzZo4O1WM2Fvb5Ld0i/qc7T5o5jU+ejVAdlc9sj9xw3HNU6u38zPNMzztzmG71XM/1HQoNARdcLw+8HjAeCyOn0XRVD9tmpWsTixYvx7rvvIi8vD23atMEnn3yCjh07OrpYVjE1f41GhQC99mPDUUym+kIA0nl1rM1BoaTpoKranJfvyaqSnDhi5OwPOevYsyZN8/2msj6LJbCT2odS/Xjk7nO52yq2ntSEsW0i66BHfCgOXbiFqasOG13kNTUW1kyObEmnUsOnas2NbGBr6bQWSoj1NREbcWmvDtZyai5s9V2Gta9i5OYusnW/QqnPNAzoDadJSfv5DKBCZeoAGXRr/TQd9KXyDYmVxfD7DZULAg5duIWBreX3aXM0twmI1qxZgxkzZmDp0qXo1KkTPvzwQyQnJ+Ps2bOoV6+eo4tnEXPz12ioAL3OdGLrlwuC9ildLDmbVF6dqjqgq6LNOVddgi/2ZBm97gE4vG1bLrk3WmtrkMz9HnJ+K1P9eOT8tkq2VSzXzoYpXSTnaqu8QfugqPS+aNCkYWm1v6UB/vAOUSi4U4aFf404fOfnMwjyqWnTgFfT18TUiEt7nPOWNKPYs0+htdccWzYLGQb0T3eLFb2Ov/PzGaPcQobEzjtB579S+YZ0yZmQGACmrjqMotL7TjPxtjluExC9//77mDBhAsaOHQsAWLp0KTZt2oTly5dj9uzZDi6dZeQclCoVMKGbcap8MYYja3RrkQQAX/yWjbFdY60qs6Wqos1Zan+O7yE/uaKjyZ1ixdoaJHO/h5zfSmp/a7Kbm9vncoMKsfUqBGDw4nTJ/nUaStM1yD1OLL3ZaqbgMNVvyRZ0H3SqMhuxrSebtoYtrjm22HdiAb3Yg5tmmbmgWs59w9xxZW5CYg0BzjGcXi63CIju3buHgwcPYs6cOdrXPDw8kJSUhIyMDNH3lJaWorS0VPvvwsJCu5dTKXOjJp59qDEe71R5gTBMla9SASqhMs+NZuJVXVK1SI4cFmnvC7NUpmZHBYGWkDvFipKmGimmfg85v5VU9uANU7qITvWidFtNrQfIv1ibqwW1pJbU0puts6asqOrvqqo8Nra45li776QC+pEdI7Hq94t6r8sJquVm5jd1XEkdv2Id/x1931DCw9EFqAr5+fkoLy9H/fr19V6vX78+8vLyRN+TlpaGwMBA7V9kZGRVFFURzUEp9iN6qlR4vFOU9mRMS0monCn+r2ULUxKwd85DWD2hMzakdoGHSv/9Hqq/O8rpfqajm47CA32QGFfXrlX2uvvJcBoRZye2DeamWNGdFsSS75P6Pcz9VqL7e2iCrGBI6v1iQYX2PDE8oGHdtltreIco7JndG6sndMae2b1l1W5obma6nOG8rGq2Po5Nsec1Rw6p33xanyaYM6CZdpmSiXB1zxuR00L7eaaOK7HjVzNaUcnnOBO3GGV25coVNGjQAOnp6UhMTNS+PnPmTOzatQv79xuPBBCrIYqMjHTaUWa6HSGlRnyZ6tEvltYfgFWjyFxVVY18sCepbaiq0XpKWLu/5b7/6MVbRqMwHb3tljA3DY07cMbj2J5M/eaWnj+Go+3k3EOsLaujyB1l5hYB0b179+Dr64t169Zh8ODB2tdHjx6NgoICfP/992Y/w5mH3WvY48ZSHYID0ueMF6yqUl22nedl9fkt5aqK39xW3+FsxycDIgOdOnVCx44d8cknnwAAKioqEBUVhalTp8rqVO0KARGRXM52wapK7rzt1Q1/S5KDeYgMzJgxA6NHj0b79u3RsWNHfPjhhyguLtaOOiNyJ86W/6MqufO2Vzf8LcmW3CYgGj58OK5fv47XXnsNeXl5aNu2LX755RejjtZERETkftymycxabDIjIiJyPXLv324x7J6IiIjIFAZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT23mbrDWpqE3oWFhQ4uCREREcmluW+bm5iDAZFMt2/fBgBERkY6uCRERESk1O3btxEYGCi5nHOZyVRRUYErV66gdu3aUKlUji5OlSssLERkZCQuXrzIudyswP1oPe5D2+B+tA3uR9uw534UBAG3b99GREQEPDykewqxhkgmDw8PNGzY0NHFcLiAgACe9DbA/Wg97kPb4H60De5H27DXfjRVM6TBTtVERETk9hgQERERkdtjQESyeHt7Y968efD29nZ0UVwa96P1uA9tg/vRNrgfbcMZ9iM7VRMREZHbYw0RERERuT0GREREROT2GBARERGR22NARERERG6PARFp7d69G4MGDUJERARUKhW+++47veWCIOC1115DeHg4fHx8kJSUhHPnzjmmsE7M3H4cM2YMVCqV3l+/fv0cU1gnlpaWhg4dOqB27dqoV68eBg8ejLNnz+qtc/fuXaSmpqJu3brw9/fH0KFDcfXqVQeV2DnJ2Y+9evUyOiYnTZrkoBI7pyVLlqB169baxIGJiYn4+eeftct5LJpnbh86+jhkQERaxcXFaNOmDRYvXiy6fNGiRfj444+xdOlS7N+/H35+fkhOTsbdu3eruKTOzdx+BIB+/fohNzdX+7d69eoqLKFr2LVrF1JTU7Fv3z5s2bIFZWVl6Nu3L4qLi7XrPP/88/jhhx+wdu1a7Nq1C1euXEFKSooDS+185OxHAJgwYYLeMblo0SIHldg5NWzYEAsXLsTBgwfxxx9/4KGHHsI//vEPnDx5EgCPRTnM7UPAwcehQCQCgLBhwwbtvysqKoSwsDDh3Xff1b5WUFAgeHt7C6tXr3ZACV2D4X4UBEEYPXq08I9//MMh5XFl165dEwAIu3btEgSh8virWbOmsHbtWu06p0+fFgAIGRkZjiqm0zPcj4IgCD179hSee+45xxXKRdWpU0f4/PPPeSxaQbMPBcHxxyFriEiWrKws5OXlISkpSftaYGAgOnXqhIyMDAeWzDXt3LkT9erVQ9OmTTF58mTcuHHD0UVyemq1GgAQHBwMADh48CDKysr0jslmzZohKiqKx6QJhvtR46uvvkJISAhatWqFOXPm4M6dO44onksoLy/H119/jeLiYiQmJvJYtIDhPtRw5HHIyV1Jlry8PABA/fr19V6vX7++dhnJ069fP6SkpCA2NhaZmZl4+eWX0b9/f2RkZMDT09PRxXNKFRUVmD59Orp27YpWrVoBqDwmvby8EBQUpLcuj0lpYvsRAEaOHIno6GhERETg2LFjmDVrFs6ePYv169c7sLTO5/jx40hMTMTdu3fh7++PDRs2oEWLFjhy5AiPRZmk9iHg+OOQARFRFRsxYoT2/xMSEtC6dWvExcVh586d6NOnjwNL5rxSU1Nx4sQJ7Nmzx9FFcWlS+3HixIna/09ISEB4eDj69OmDzMxMxMXFVXUxnVbTpk1x5MgRqNVqrFu3DqNHj8auXbscXSyXIrUPW7Ro4fDjkE1mJEtYWBgAGI2auHr1qnYZWaZRo0YICQnB+fPnHV0UpzR16lT8+OOP2LFjBxo2bKh9PSwsDPfu3UNBQYHe+jwmxUntRzGdOnUCAB6TBry8vNC4cWO0a9cOaWlpaNOmDT766CMeiwpI7UMxVX0cMiAiWWJjYxEWFoZt27ZpXyssLMT+/fv12n9JuUuXLuHGjRsIDw93dFGciiAImDp1KjZs2IDt27cjNjZWb3m7du1Qs2ZNvWPy7NmzyMnJ4TGpw9x+FHPkyBEA4DFpRkVFBUpLS3ksWkGzD8VU9XHIJjPSKioq0ovEs7KycOTIEQQHByMqKgrTp0/Hm2++iSZNmiA2NhZz585FREQEBg8e7LhCOyFT+zE4OBgLFizA0KFDERYWhszMTMycORONGzdGcnKyA0vtfFJTU7Fq1Sp8//33qF27trYvRmBgIHx8fBAYGIinn34aM2bMQHBwMAICAjBt2jQkJiaic+fODi698zC3HzMzM7Fq1SoMGDAAdevWxbFjx/D888+jR48eaN26tYNL7zzmzJmD/v37IyoqCrdv38aqVauwc+dO/PrrrzwWZTK1D53iOHTY+DZyOjt27BAAGP2NHj1aEITKofdz584V6tevL3h7ewt9+vQRzp4969hCOyFT+/HOnTtC3759hdDQUKFmzZpCdHS0MGHCBCEvL8/RxXY6YvsQgLBixQrtOiUlJcKUKVOEOnXqCL6+vsKQIUOE3NxcxxXaCZnbjzk5OUKPHj2E4OBgwdvbW2jcuLHw0ksvCWq12rEFdzLjxo0ToqOjBS8vLyE0NFTo06ePsHnzZu1yHovmmdqHznAcqgRBEKom9CIiIiJyTuxDRERERG6PARERERG5PQZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQEREsuTl5WHatGlo1KgRvL29ERkZiUGDBunN35Seno4BAwagTp06qFWrFhISEvD++++jvLxcu052djaefvppxMbGwsfHB3FxcZg3bx7u3bun933Lli1DmzZt4O/vj6CgIDzwwANIS0vTLp8/fz5UKhX69etnVNZ3330XKpUKvXr1krVtms9SqVSoUaMGYmJi8Pzzz6OoqEjhXiIiV8W5zIjIrOzsbHTt2hVBQUF49913kZCQgLKyMvz6669ITU3FmTNnsGHDBjz22GMYO3YsduzYgaCgIGzduhUzZ85ERkYGvvnmG6hUKpw5cwYVFRX47LPP0LhxY5w4cQITJkxAcXEx3nvvPQDA8uXLMX36dHz88cfo2bMnSktLcezYMZw4cUKvXOHh4dixYwcuXbqkN4P78uXLERUVpWgbW7Zsia1bt+L+/fvYu3cvxo0bhzt37uCzzz4zWvfevXvw8vKyYE/ajzOWicilVNkkIUTksvr37y80aNBAKCoqMlp269YtoaioSKhbt66QkpJitHzjxo0CAOHrr7+W/PxFixYJsbGx2n//4x//EMaMGWOyTPPmzRPatGkjPPzww8Kbb76pfX3v3r1CSEiIMHnyZKFnz54ytu7vz9I1YcIEISwsTG/5smXLhJiYGEGlUgmCULntTz/9tBASEiLUrl1b6N27t3DkyBHtZxw5ckTo1auX4O/vL9SuXVt48MEHhQMHDgiCIAjZ2dnCww8/LAQFBQm+vr5CixYthE2bNgmCIAgrVqwQAgMD9cqzYcMGQfeSbWmZiEgcm8yIyKSbN2/il19+QWpqKvz8/IyWBwUFYfPmzbhx4wZefPFFo+WDBg1CfHw8Vq9eLfkdarUawcHB2n+HhYVh3759uHDhgtnyjRs3DitXrtT+e/ny5Rg1apTVtSU+Pj56zXjnz5/Ht99+i/Xr1+PIkSMAgEcffRTXrl3Dzz//jIMHD+LBBx9Enz59cPPmTQDAqFGj0LBhQxw4cAAHDx7E7NmzUbNmTQCVs9CXlpZi9+7dOH78ON555x34+/srKqMlZSIicWwyIyKTzp8/D0EQ0KxZM8l1/vzzTwBA8+bNRZc3a9ZMu47Y53/yySfa5jIAmDdvHlJSUhATE4P4+HgkJiZiwIABGDZsGDw89J/jHn74YUyaNAm7d+9Gu3bt8M0332DPnj1Yvny50k3VOnjwIFatWoWHHnpI+9q9e/fwn//8B6GhoQCAPXv24Pfff8e1a9fg7e0NAHjvvffw3XffYd26dZg4cSJycnLw0ksvafddkyZNtJ+Xk5ODoUOHIiEhAQDQqFEjxeW0pExEJI4BERGZJAiCXdYFgMuXL6Nfv3549NFHMWHCBO3r4eHhyMjIwIkTJ7B7926kp6dj9OjR+Pzzz/HLL7/oBUU1a9bEE088gRUrVuB///sf4uPj0bp1a0XlAIDjx4/D398f5eXluHfvHgYOHIh//etf2uXR0dHawAMAjh49iqKiItStW1fvc0pKSpCZmQkAmDFjBsaPH4///ve/SEpKwqOPPoq4uDgAwLPPPovJkydj8+bNSEpKwtChQxWX25IyEZE4BkREZFKTJk20naGlxMfHAwBOnz6NLl26GC0/ffo0WrRooffalStX0Lt3b3Tp0gX//ve/RT+3VatWaNWqFaZMmYJJkyahe/fu2LVrF3r37q233rhx49CpUyecOHEC48aNU7qJAICmTZti48aNqFGjBiIiIoya3AybC4uKihAeHo6dO3cafVZQUBCAytFrI0eOxKZNm/Dzzz9j3rx5+PrrrzFkyBCMHz8eycnJ2LRpEzZv3oy0tDT885//xLRp0+Dh4WEUXJaVlRl9jyVlIiJx7ENERCYFBwcjOTkZixcvRnFxsdHygoIC9O3bF8HBwfjnP/9ptHzjxo04d+4cHn/8ce1rly9fRq9evdCuXTusWLHCqBlMjCagEitDy5Yt0bJlS5w4cQIjR45UsnlaXl5eaNy4MWJiYmT1P3rwwQeRl5eHGjVqoHHjxnp/ISEh2vXi4+Px/PPPY/PmzUhJScGKFSu0yyIjIzFp0iSsX78eL7zwApYtWwYACA0Nxe3bt/W2VdNHyBZlIiJjDIiIyKzFixejvLwcHTt2xLfffotz587h9OnT+Pjjj5GYmAg/Pz989tln+P777zFx4kQcO3YM2dnZ+OKLLzBmzBgMGzYMjz32GIC/g6GoqCi89957uH79OvLy8pCXl6f9vsmTJ+ONN97A3r17ceHCBezbtw9PPfUUQkNDkZiYKFrG7du3Izc3t8pqQpKSkpCYmIjBgwdj8+bNyM7ORnp6Ol555RX88ccfKCkpwdSpU7Fz505cuHABe/fuxYEDB7T9rKZPn45ff/0VWVlZOHToEHbs2KFd1qlTJ/j6+uLll19GZmYmVq1apddx3NIyEZE0NpkRkVmNGjXCoUOH8NZbb+GFF15Abm4uQkND0a5dOyxZsgQAMGzYMOzYsQNvvfUWunfvjrt376JJkyZ45ZVXMH36dKhUKgDAli1bcP78eZw/f14vdxDwdx+kpKQkLF++HEuWLMGNGzcQEhKCxMREbNu2zah/jIbYCDh7UqlU+Omnn/DKK69g7NixuH79OsLCwtCjRw/Ur18fnp6euHHjBp566ilcvXoVISEhSElJwYIFCwAA5eXlSE1NxaVLlxAQEIB+/frhgw8+AFBZK/fll1/ipZdewrJly9CnTx/Mnz/fbKdoc2UiImkqQWkvSCIiIqJqhk1mRERE5PYYEBFRtefv7y/599tvvzm6eETkBNhkRkTV3vnz5yWXNWjQAD4+PlVYGiJyRgyIiIiIyO2xyYyIiIjcHgMiIiIicnsMiIiIiMjtMSAiIiIit8eAiIiIiNweAyIiIiJyewyIiIiIyO0xICIiIiK39/8BsD/kfBQ/TBAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0CklEQVR4nO3dd3gU1d4H8O8mkJCEkEICBAxJCIQACRFpN6AURSAgiqCCWOhKE9GrCHoVvJYEsXt5kYsSvSpFERBFBZEmTelFihATCBBKKBtSCJDM+wfuumVmd2Z3dmc2+X6eJ88Du7M7Z2bPnPnNqQZBEAQQERER6ZCf1gkgIiIiksJAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREusVAhYjcNn36dBgMBlnbGgwGTJ8+3aPp6datG7p166bb7yMi+RioEFUhn3zyCQwGg/mvRo0aaNSoEYYNG4aTJ09qnTzdiY+Ptzpf9erVw2233YalS5eq8v2lpaWYPn061q1bp8r3EVVHDFSIqqB///vf+Oyzz/Dhhx8iIyMDn3/+Obp27YorV654ZH//+te/UFZW5pHv9rSbb74Zn332GT777DM888wzOHXqFAYMGIAPP/zQ7e8uLS3Fyy+/zECFyA01tE4AEakvIyMD7dq1AwCMGjUKUVFRmDFjBpYvX44HHnhA9f3VqFEDNWr4ZnHSqFEjPPzww+b/P/roo2jatCneeecdjBkzRsOUERHAGhWiauG2224DAOTk5Fi9fujQIdx3332IjIxErVq10K5dOyxfvtxqm2vXruHll19Gs2bNUKtWLdStWxe33norfvrpJ/M2Yn1UysvL8dRTTyE6OhqhoaG4++67ceLECbu0DRs2DPHx8Xavi31ndnY2br/9dtSrVw+BgYFo2bIlZs+erehcONOgQQO0aNECubm5Drc7e/YsRo4cifr166NWrVpIS0vDp59+an4/Ly8P0dHRAICXX37Z3Lzk6f45RFWNbz4CEZEieXl5AICIiAjza7///js6d+6MRo0aYcqUKQgJCcGXX36J/v374+uvv8a9994L4EbAkJmZiVGjRqFDhw4oKirC9u3bsXPnTtx5552S+xw1ahQ+//xzDBkyBJ06dcKaNWvQt29ft45j9uzZaNWqFe6++27UqFED3377LcaNG4fKykqMHz/ere82uXbtGvLz81G3bl3JbcrKytCtWzccPXoUEyZMQEJCAr766isMGzYMly5dwpNPPono6GjMnj0bY8eOxb333osBAwYAAFq3bq1KOomqDYGIqozs7GwBgLB69Wrh3LlzQn5+vrB48WIhOjpaCAwMFPLz883b3nHHHUJqaqpw5coV82uVlZVCp06dhGbNmplfS0tLE/r27etwv9OmTRMsi5Pdu3cLAIRx48ZZbTdkyBABgDBt2jTza0OHDhXi4uKcfqcgCEJpaanddr169RKaNGli9VrXrl2Frl27OkyzIAhCXFyc0LNnT+HcuXPCuXPnhD179giDBw8WAAhPPPGE5Pe9++67AgDh888/N7929epVIT09Xahdu7ZQVFQkCIIgnDt3zu54iUgZNv0QVUE9evRAdHQ0YmNjcd999yEkJATLly/HTTfdBAC4cOEC1qxZgwceeACXL19GYWEhCgsLcf78efTq1QtHjhwxjxIKDw/H77//jiNHjsje//fffw8AmDhxotXrkyZNcuu4goKCzP82Go0oLCxE165d8eeff8JoNLr0natWrUJ0dDSio6ORlpaGr776Co888ghmzJgh+Znvv/8eDRo0wIMPPmh+rWbNmpg4cSKKi4uxfv16l9JCRPbY9ENUBc2aNQtJSUkwGo2YN28eNmzYgMDAQPP7R48ehSAIePHFF/Hiiy+KfsfZs2fRqFEj/Pvf/8Y999yDpKQkpKSkoHfv3njkkUccNmEcO3YMfn5+SExMtHq9efPmbh3Xpk2bMG3aNGzZsgWlpaVW7xmNRoSFhSn+zo4dO+LVV1+FwWBAcHAwWrRogfDwcIefOXbsGJo1awY/P+tnvRYtWpjfJyJ1MFAhqoI6dOhgHvXTv39/3HrrrRgyZAgOHz6M2rVro7KyEgDwzDPPoFevXqLf0bRpUwBAly5dkJOTg2+++QarVq3CRx99hHfeeQcffvghRo0a5XZapSaKq6iosPp/Tk4O7rjjDiQnJ+Ptt99GbGwsAgIC8P333+Odd94xH5NSUVFR6NGjh0ufJSLPY6BCVMX5+/sjMzMT3bt3x3/+8x9MmTIFTZo0AXCjuULOTToyMhLDhw/H8OHDUVxcjC5dumD69OmSgUpcXBwqKyuRk5NjVYty+PBhu20jIiJw6dIlu9dtayW+/fZblJeXY/ny5WjcuLH59bVr1zpNv9ri4uKwd+9eVFZWWtWqHDp0yPw+IB2EEZF87KNCVA1069YNHTp0wLvvvosrV66gXr166NatG+bMmYOCggK77c+dO2f+9/nz563eq127Npo2bYry8nLJ/WVkZAAA3n//favX3333XbttExMTYTQasXfvXvNrBQUFdrPD+vv7AwAEQTC/ZjQakZ2dLZkOT+nTpw9Onz6NRYsWmV+7fv06PvjgA9SuXRtdu3YFAAQHBwOAaCBGRPKwRoWomnj22Wdx//3345NPPsGYMWMwa9Ys3HrrrUhNTcXo0aPRpEkTnDlzBlu2bMGJEyewZ88eAEDLli3RrVs3tG3bFpGRkdi+fTsWL16MCRMmSO7r5ptvxoMPPoj/+7//g9FoRKdOnfDzzz/j6NGjdtsOHjwYzz33HO69915MnDgRpaWlmD17NpKSkrBz507zdj179kRAQAD69euHxx9/HMXFxZg7dy7q1asnGmx50mOPPYY5c+Zg2LBh2LFjB+Lj47F48WJs2rQJ7777LkJDQwHc6PzbsmVLLFq0CElJSYiMjERKSgpSUlK8ml4in6b1sCMiUo9pePK2bdvs3quoqBASExOFxMRE4fr164IgCEJOTo7w6KOPCg0aNBBq1qwpNGrUSLjrrruExYsXmz/36quvCh06dBDCw8OFoKAgITk5WXjttdeEq1evmrcRG0pcVlYmTJw4Uahbt64QEhIi9OvXT8jPzxcdrrtq1SohJSVFCAgIEJo3by58/vnnot+5fPlyoXXr1kKtWrWE+Ph4YcaMGcK8efMEAEJubq55OyXDk50NvZb6vjNnzgjDhw8XoqKihICAACE1NVXIzs62++zmzZuFtm3bCgEBARyqTOQCgyBY1KMSERER6Qj7qBAREZFuMVAhIiIi3WKgQkRERLrFQIWIiIh0i4EKERER6RYDFSIiItItn57wrbKyEqdOnUJoaCinqiYiIvIRgiDg8uXLaNiwod3inrZ8OlA5deoUYmNjtU4GERERuSA/Px833XSTw218OlAxTVOdn5+POnXqaJwaIiIikqOoqAixsbHm+7gjPh2omJp76tSpw0CFiIjIx8jptsHOtERERKRbDFSIiIhItxioEBERkW75dB8VIiK9qaysxNWrV7VOBpGmatasCX9/f1W+i4EKEZFKrl69itzcXFRWVmqdFCLNhYeHo0GDBm7Pc6ZpoFJRUYHp06fj888/x+nTp9GwYUMMGzYM//rXvziBGxH5FEEQUFBQAH9/f8TGxjqdxIqoqhIEAaWlpTh79iwAICYmxq3v0zRQmTFjBmbPno1PP/0UrVq1wvbt2zF8+HCEhYVh4sSJWiaNiEiR69evo7S0FA0bNkRwcLDWySHSVFBQEADg7NmzqFevnlvNQJoGKps3b8Y999yDvn37AgDi4+OxYMEC/Pbbb1omi4hIsYqKCgBAQECAxikh0gdTwH7t2jW3AhVN6yY7deqEn3/+GX/88QcAYM+ePdi4cSMyMjJEty8vL0dRUZHVHxGRnrDZmugGta4FTWtUpkyZgqKiIiQnJ8Pf3x8VFRV47bXX8NBDD4lun5mZiZdfftnLqSQiIiKtaFqj8uWXX+KLL77A/PnzsXPnTnz66ad488038emnn4puP3XqVBiNRvNffn6+l1NMRERE3qRpoPLss89iypQpGDx4MFJTU/HII4/gqaeeQmZmpuj2gYGB5nV9uL4PFRjLsDmnEAXGMq2TQuTzTp8+jSeeeAJNmjRBYGAgYmNj0a9fP/z888/mbTZv3ow+ffogIiICtWrVQmpqKt5++21z/xwAyMvLw8iRI5GQkICgoCAkJiZi2rRpdnPLzJ07F2lpaahduzbCw8PRpk0bq7J/+vTpMBgM6N27t11aZ86cCYPBgG7dusk+vqKiIrzwwgtITk5GrVq10KBBA/To0QNLliyBIAjm7X7//Xc88MADiI6ORmBgIJKSkvDSSy+htLTUvM2FCxfwxBNPoHnz5ggKCkLjxo0xceJEGI1GWWnJy8uDwWAQ/du6davsY+rWrRsmTZoke3tfpWnTT2lpqd0QPn9/f85BQE4t2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIvJJeXl56Ny5M8LDwzFz5kykpqbi2rVrWLlyJcaPH49Dhw5h6dKleOCBBzB8+HCsXbsW4eHhWL16NSZPnowtW7bgyy+/hMFgwKFDh1BZWYk5c+agadOm2L9/P0aPHo2SkhK8+eabAIB58+Zh0qRJeP/999G1a1eUl5dj79692L9/v1W6YmJisHbtWpw4cQI33XST+fV58+ahcWP51/ulS5dw6623wmg04tVXX0X79u1Ro0YNrF+/HpMnT8btt9+O8PBwbN26FT169ECPHj2wYsUK1K9fH7/99hv++c9/4ueff8batWsREBCAU6dO4dSpU3jzzTfRsmVLHDt2DGPGjMGpU6ewePFi2elavXo1WrVqZfVa3bp1ZX9eDkEQUFFRgRo1fHjaNEFDQ4cOFRo1aiR89913Qm5urrBkyRIhKipKmDx5sqzPG41GAYBgNBo9nFLSk1OXSoWEKd8Jcc/9/ddkygrh1KVSrZNG1VhZWZlw4MABoaysTOukKJaRkSE0atRIKC4utnvv4sWLQnFxsVC3bl1hwIABdu8vX75cACAsXLhQ8vvfeOMNISEhwfz/e+65Rxg2bJjDNE2bNk1IS0sT7rrrLuHVV181v75p0yYhKipKGDt2rNC1a1cZRycIY8eOFUJCQoSTJ0/avXf58mXh2rVrQmVlpdCyZUuhXbt2QkVFhdU2u3fvFgwGg5CVlSW5jy+//FIICAgQrl275jQ9ubm5AgBh165dktuYjv9///ufEBcXJ9SpU0cYNGiQUFRUJAjCjfsnAKu/3NxcYe3atQIA4fvvvxduueUWoWbNmsLatWuFK1euCE888YQQHR0tBAYGCp07dxZ+++038/5Mn/vuu++E1NRUITAwUOjYsaOwb98+QRAEobi4WAgNDRW++uorq3QuXbpUCA4ONqfLkqNrQsn9W9Omnw8++AD33Xcfxo0bhxYtWuCZZ57B448/jldeeUXLZJHO5RaWoFKwfq1CEJBXWCr+ASIf481mzQsXLuDHH3/E+PHjERISYvd+eHg4Vq1ahfPnz+OZZ56xe79fv35ISkrCggULJPdhNBoRGRlp/n+DBg2wdetWHDt2zGn6RowYgU8++cT8/3nz5uGhhx6SPQy8srISCxcuxEMPPYSGDRvavV+7dm3UqFEDu3fvxoEDB/D000/b1fSnpaWhR48eTo+xTp06qtZc5OTkYNmyZfjuu+/w3XffYf369cjKygIAvPfee0hPT8fo0aNRUFCAgoICxMbGmj87ZcoUZGVl4eDBg2jdujUmT56Mr7/+Gp9++il27tyJpk2bolevXrhw4YLVPp999lm89dZb2LZtG6Kjo9GvXz9cu3YNISEhGDx4MLKzs622z87Oxn333YfQ0FDVjtuWpoFKaGgo3n33XRw7dgxlZWXIycnBq6++ynkIyKGEqBD42Yx68zcYEB/FSbbI9y3adhyds9ZgyNxf0TlrDRZtO+7R/R09ehSCICA5OVlyG9MUEi1atBB9Pzk52byN2Pd/8MEHePzxx82vTZs2DeHh4YiPj0fz5s0xbNgwfPnll6LN/nfddReKioqwYcMGlJSU4Msvv8SIESNkH19hYSEuXrzo8PgA58fYokULyWMsLCzEK6+8gscee0x2uoAbU3TUrl3b6s9SZWUlPvnkE6SkpOC2227DI488Yu4zFBYWhoCAAAQHB6NBgwZo0KCB1Vwl//73v3HnnXciMTERgYGBmD17NmbOnImMjAy0bNkSc+fORVBQED7++GOrfU6bNg133nknUlNT8emnn+LMmTNYunQpAGDUqFFYuXIlCgoKANyYzO37779X9Hu4gnM8k8+JCQtC5oBU+P81Rt/fYMDrA1IQExakccqI3FNgLDP3vQKASgF4fsl+j9asCILgfCMXtgWAkydPonfv3rj//vsxevRo8+sxMTHYsmUL9u3bhyeffBLXr1/H0KFD0bt3b7tgpWbNmnj44YeRnZ2Nr776CklJSWjdurXH0qx0+6KiIvTt2xctW7bE9OnTFX120aJF2L17t9Wfpfj4eKuaipiYGPO09M60a9fO/O+cnBxcu3YNnTt3Nr9Ws2ZNdOjQAQcPHrT6XHp6uvnfkZGRaN68uXmbDh06oFWrVuaRuZ9//jni4uLQpUsXeQfsIh/uXUPV2aD2jdElKRp5haWIjwpmkEJVgqNmTU/l8WbNmpk7wUpJSkoCABw8eBCdOnWye//gwYNo2bKl1WunTp1C9+7d0alTJ/z3v/8V/d6UlBSkpKRg3LhxGDNmDG677TasX78e3bt3t9puxIgR6NixI/bv36/46T06Ohrh4eEOjw+wPsY2bdrYvX/w4EHzNiaXL19G7969ERoaiqVLl6JmzZqK0hYbG4umTZtKvm/7fQaDQfZgE7FmPDWMGjUKs2bNwpQpU5CdnY3hw4d7fJJD1qiQz4oJC0J6Yl0GKVRlaNGsGRkZiV69emHWrFkoKSmxe//SpUvo2bMnIiMj8dZbb9m9v3z5chw5cgQPPvig+bWTJ0+iW7duaNu2LbKzs2Ut0GgKdMTS0KpVK7Rq1Qr79+/HkCFDlBwe/Pz8MHjwYHzxxRc4deqU3fvFxcW4fv06br75ZiQnJ+Odd96xCwb27NmD1atXWx1jUVERevbsiYCAACxfvhy1atVSlC41BAQEWA0Nl5KYmIiAgABs2rTJ/Nq1a9ewbds2uwDTcnj0xYsX8ccff1g1hz388MM4duwY3n//fRw4cABDhw5V4UgcY6BCRKQTWjVrzpo1CxUVFejQoQO+/vprHDlyBAcPHsT777+P9PR0hISEYM6cOfjmm2/w2GOPYe/evcjLy8PHH3+MYcOG4b777sMDDzwA4O8gpXHjxnjzzTdx7tw5nD59GqdPnzbvb+zYsXjllVewadMmHDt2DFu3bsWjjz6K6Ohoq6YHS2vWrEFBQQHCw8MVH99rr72G2NhYdOzYEf/73/9w4MABHDlyBPPmzUObNm1QXFwMg8GAjz/+GAcOHMDAgQPx22+/4fjx4/jqq6/Qr18/pKenm+csMQUpJSUl+Pjjj1FUVGQ+RjmBg8n58+fNnzP9XblyRfbn4+Pj8euvvyIvLw+FhYWStS0hISEYO3Ysnn32Wfz44484cOAARo8ejdLSUowcOdJq23//+9/4+eefsX//fgwbNgxRUVHo37+/+f2IiAgMGDAAzz77LHr27Gk1bNxjnI4L0jEOTyYivVBzePKpS6XC5qOFXh1yf+rUKWH8+PFCXFycEBAQIDRq1Ei4++67hbVr15q32bBhg9CrVy+hTp06QkBAgNCqVSvhzTffFK5fv27eJjs7227YrOnPZPHixUKfPn2EmJgYISAgQGjYsKEwcOBAYe/eveZtTMNzpTz55JOyhycLgiBcunRJmDJlitCsWTMhICBAqF+/vtCjRw9h6dKlQmVlpXm7vXv3CgMHDhQiIyOFmjVrComJicK//vUvoaSkxLyNaSiv2F9ubq7TtJiGJ4v9LViwQPL433nnHSEuLs78/8OHDwv/+Mc/hKCgILvhyRcvXrT6bFlZmfDEE08IUVFRDocnf/vtt0KrVq2EgIAAoUOHDsKePXvs0v/zzz8LAIQvv/zS4XGqNTzZIAgKew7pSFFREcLCwszDwoiItHLlyhXk5uYiISFBk2YAInesW7cO3bt3x8WLF53WWn322Wd46qmncOrUKYejdB1dE0ru3+xMS0RERE6VlpaioKAAWVlZePzxx702lQj7qBARkU+znYvE8u+XX37xenrGjBkjmZ4xY8Z4PT1qeeONN5CcnIwGDRpg6tSpXtsvm36IiFTAph/tHD16VPK9Ro0aISjIuyMDz549i6KiItH36tSpg3r16nk1PVph0w8RERHgcC4SLdSrV6/aBCPewKYfIiIi0i0GKkREKvLh1nQiVcmdRdcZNv0QEamgZs2aMBgMOHfuHKKjoz0+rTiRXgmCgKtXr+LcuXPw8/Nze3QQAxUiIhX4+/vjpptuwokTJ5CXl6d1cog0FxwcjMaNG8taQsERBipERCqpXbs2mjVrhmvXrmmdFCJN+fv7o0aNGqrULDJQISJSkb+/P/z9/bVOBlGVwc60REREpFsMVIiIiEi3GKgQERGRbjFQISIiIt1ioEJERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt1ioEJERES6xUCFiIiIdIuBChEREemWpoFKfHw8DAaD3d/48eO1TBYRERHpRA0td75t2zZUVFSY/79//37ceeeduP/++zVMFREREemFpoFKdHS01f+zsrKQmJiIrl27apQiIiIi0hPd9FG5evUqPv/8c4wYMQIGg0Hr5BAREZEOaFqjYmnZsmW4dOkShg0bJrlNeXk5ysvLzf8vKiryQsqIiIhIK7qpUfn444+RkZGBhg0bSm6TmZmJsLAw819sbKwXU0hERETeZhAEQdA6EceOHUOTJk2wZMkS3HPPPZLbidWoxMbGwmg0ok6dOt5IKhEREbmpqKgIYWFhsu7fumj6yc7ORr169dC3b1+H2wUGBiIwMNBLqSIiIiKtad70U1lZiezsbAwdOhQ1augibiIiIiKd0DxQWb16NY4fP44RI0ZonRQiIiLSGc2rMHr27AkddJMhIiIiHdK8RoWIiIhICgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREusVAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIRBQYy7A5pxAFxjKtk0JEVK1pvighkd4s2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIiKqllijQmShwFhmDlIAoFIAnl+ynzUrREQaYaBCZCG3sMQcpJhUCALyCku1SRARUTXHQIXIQkJUCPwM1q/5GwyIjwrWJkFERNUcAxUiCzFhQcgckAp/w41oxd9gwOsDUhATFqRxyoiIqid2piWyMah9Y3RJikZeYSnio4IZpBARaYiBCpGImLAgBihERDrAph8iIiLSLQYqREREpFsMVIiIiEi3GKiQbnDaeiIissXOtKQLnLaeiIjEsEaFNMdp64mISAoDFdIcp60nIiIpDFRIc5y2noiIpDBQIc1x2noiIpLCzrSkC5y2noiIxDBQId3gtPVERGSLTT9ERESkWwxUiIiISLc0D1ROnjyJhx9+GHXr1kVQUBBSU1Oxfft2rZNFREREOqBpH5WLFy+ic+fO6N69O3744QdER0fjyJEjiIiI0DJZREREpBOaBiozZsxAbGwssrOzza8lJCRomCIiIiLSE02bfpYvX4527drh/vvvR7169dCmTRvMnTtXcvvy8nIUFRVZ/REREVHVpWmg8ueff2L27Nlo1qwZVq5cibFjx2LixIn49NNPRbfPzMxEWFiY+S82NtbLKSYiIiJvMgiCIDjfzDMCAgLQrl07bN682fzaxIkTsW3bNmzZssVu+/LycpSXl5v/X1RUhNjYWBiNRtSpU8craSYiIiL3FBUVISwsTNb9W9MalZiYGLRs2dLqtRYtWuD48eOi2wcGBqJOnTpWf0RERFR1aRqodO7cGYcPH7Z67Y8//kBcXJxGKSIiIiI90TRQeeqpp7B161a8/vrrOHr0KObPn4///ve/GD9+vJbJIiIiIp3QNFBp3749li5digULFiAlJQWvvPIK3n33XTz00ENaJouIiIh0QtPOtO5S0hmHiIiI9MFnOtMSEREROcJAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREuuVSoFJSUqJ2OoiIiIjsuBSo1K9fHyNGjMDGjRvVTg8RERGRmUuByueff44LFy7g9ttvR1JSErKysnDq1Cm100ZERETVnEuBSv/+/bFs2TKcPHkSY8aMwfz58xEXF4e77roLS5YswfXr19VOJxEREVVDqq2e/MEHH+DZZ5/F1atXERUVhTFjxmDKlCkIDg5W4+tFcfVkIiIi36Pk/l3DnR2dOXMGn376KT755BMcO3YM9913H0aOHIkTJ05gxowZ2Lp1K1atWuXOLoiIiKgacylQWbJkCbKzs7Fy5Uq0bNkS48aNw8MPP4zw8HDzNp06dUKLFi3USicRERFVQy4FKsOHD8fgwYOxadMmtG/fXnSbhg0b4oUXXnArcURERFS9udRHpbS01KN9T+RiHxUiIiLf4/E+KsHBwaioqMDSpUtx8OBBAECLFi3Qv39/1KjhVrcXIiIiIjOXoorff/8d/fr1w5kzZ9C8eXMAwIwZMxAdHY1vv/0WKSkpqiaSiIiIqieX5lEZNWoUUlJScOLECezcuRM7d+5Efn4+Wrdujccee0ztNBIREVE15VKNyu7du7F9+3ZERESYX4uIiMBrr70m2bmWiIiISCmXalSSkpJw5swZu9fPnj2Lpk2bup0oIiIiIsDFQCUzMxMTJ07E4sWLceLECZw4cQKLFy/GpEmTMGPGDBQVFZn/iIiIiFzl0vBkP7+/4xuDwQAAMH2N5f8NBgMqKirUSKcoDk8mIiLyPR4fnrx27VqXEkZERESkhEuBSteuXdVOBxEREZEdl2dnu3TpEj7++GPzhG+tWrXCiBEjEBYWplriiIiIqHpzqTPt9u3bkZiYiHfeeQcXLlzAhQsX8PbbbyMxMRE7d+5UO41ERERUTbnUmfa2225D06ZNMXfuXPOU+devX8eoUaPw559/YsOGDaonVAw70xIREfkeJfdvlwKVoKAg7Nq1C8nJyVavHzhwAO3atUNpaanSr3QJAxUiIiLfo+T+7VLTT506dXD8+HG71/Pz8xEaGurKVxIRERHZcSlQGTRoEEaOHIlFixYhPz8f+fn5WLhwIUaNGoUHH3xQ9vdMnz4dBoPB6s+2loaIiIiqL5dG/bz55pswGAx49NFHcf36dQBAzZo1MXbsWGRlZSn6rlatWmH16tV/J6iGywORiIiIqIpRHBVUVFRg69atmD59OjIzM5GTkwMASExMRHBwsPIE1KiBBg0aKP4cERERVX2Km378/f3Rs2dPXLp0CcHBwUhNTUVqaqpLQQoAHDlyBA0bNkSTJk3w0EMPifZ9MSkvL7daR4hrCREREVVtLvVRSUlJwZ9//un2zjt27IhPPvkEP/74I2bPno3c3FzcdtttuHz5suj2mZmZCAsLM//Fxsa6nQYiIiLSL5eGJ//444+YOnUqXnnlFbRt2xYhISFW77s6VPjSpUuIi4vD22+/jZEjR9q9X15ejvLycvP/i4qKEBsby+HJREREPsTjixL26dMHAHD33XebV0sG3F8xOTw8HElJSTh69Kjo+4GBgQgMDHTpu4mIiMj36Gr15OLiYuTk5OCRRx7xyPcTERGRb3EpUElISEBsbKxVbQpwo0YlPz9f9vc888wz6NevH+Li4nDq1ClMmzYN/v7+iuZiISIioqrL5UCloKAA9erVs3r9woULSEhIkN30c+LECTz44IM4f/48oqOjceutt2Lr1q2Ijo52JVlERERUxbgUqJj6otgqLi5GrVq1ZH/PwoULXdk9ERERVROKApWnn34aAGAwGPDiiy9azZ1SUVGBX3/9FTfffLOqCSSivxUYy5BbWIKEqBDEhAVpnRwiIo9TFKjs2rULwI0alX379iEgIMD8XkBAANLS0vDMM8+om0IiAgAs2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIiLyKEWBimm0z/Dhw/Hee+9x7hIiLykwlpmDFACoFIDnl+xHl6Ro1qwQUZXm0sy02dnZDFKIvCi3sMQcpJhUCALyCku1SRARkZe41Jm2pKQEWVlZ+Pnnn3H27FlUVlZava/G9PpE9LeEqBD4GWAVrPgbDIiPcm2NLSIiX+FSoDJq1CisX78ejzzyCGJiYkRHABGRemLCgpA5IBXPL9mPCkGAv8GA1weksNmHiKo8l9b6CQ8Px4oVK9C5c2dPpEk2JWsFEFUFBcYy5BWWIj4qmEEKEfksj6/1ExERgcjISJcSR0SuiwkLYoBCRNWKS51pX3nlFbz00ksoLWVHPiIiIvIcl2pU3nrrLeTk5KB+/fqIj49HzZo1rd7fuXOnKokjIiKi6s2lQKV///4qJ4OIiIjInkudafWCnWmJiIh8j5L7t6I+Kr/99pvDlZHLy8vx5ZdfKvlKIiIiIkmKApX09HScP3/e/P86depYTe526dIlPPjgg+qljoiIiKo1RYGKbSuRWKuRD7ckERERkc64NDzZEc5SS0RERGpRPVAhIiIiUovi4ckHDhzA6dOnAdxo5jl06BCKi4sBAIWFheqmjoiIiKo1RcOT/fz8YDAYRPuhmF43GAwORwapicOTiYiIfI/H1vrJzc11K2FERERESigKVOLi4hR9+bhx4/Dvf/8bUVFRij5HREREBHi4M+3nn3+OoqIiT+6CiIiIqjCPBiqcU4WIiIjcweHJREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt3yaKDy8MMPcyI2IiIicplLgUplZaXk68ePHzf/f/bs2ZxDhYiIiFymKFApKirCAw88gJCQENSvXx8vvfSS1XT5586dQ0JCguqJJCIioupJ0cy0L774Ivbs2YPPPvsMly5dwquvvoqdO3diyZIlCAgIAMC5U4iIiEg9impUli1bhjlz5uC+++7DqFGjsH37dpw7dw79+vVDeXk5gBuLE7oiKysLBoMBkyZNcunzpI0CYxk25xSiwFimdVKIiKgKUhSonDt3zmq9n6ioKKxevRqXL19Gnz59UFpa6lIitm3bhjlz5qB169YufZ60sWjbcXTOWoMhc39F56w1WLTtuPMPERERKaAoUGncuDEOHjxo9VpoaChWrVqFsrIy3HvvvYoTUFxcjIceeghz585FRESE4s+TNgqMZZi6ZB8q/2rpqxSA55fs99maFdYMERHpk6JApWfPnsjOzrZ7vXbt2li5ciVq1aqlOAHjx49H37590aNHD8WfJe3kFpaYgxSTCkFAXqFrtWpaYs0QEZF+KepM+/LLL+PUqVOi74WGhuKnn37Czp07ZX/fwoULsXPnTmzbtk3W9uXl5ea+MAC4MrOGEqJC4GeAVbDibzAgPipYu0S5QKpmqEtSNGLCgrRNHBERKatRiYiIQKtWrSTfDw0NRdeuXWV9V35+Pp588kl88cUXsmtiMjMzERYWZv6LjY2V9TlSX0xYEDIHpML/r87T/gYDXh+Q4nM396pUM0REVBUZBIXjia9fv4533nkHCxYswB9//AEASEpKwpAhQ/Dkk0+iZs2asr5n2bJluPfee+Hv729+raKiAgaDAX5+figvL7d6DxCvUYmNjYXRaOQMuBopMJYhr7AU8VHBPhekADfS3zlrjV3N0MYp3X3yeIiIfEFRURHCwsJk3b8VBSplZWW48847sWXLFvTo0QMtWrQAABw8eBCrV69G586dsWrVKlk1JJcvX8axY8esXhs+fDiSk5Px3HPPISUlxel3KDlQIimLth3H80v2o0IQzDVDg9o31jpZRERVlpL7t6I+KllZWcjPz8euXbvshhLv2bMHd999N7KysjB9+nSn3xUaGmoXjISEhKBu3bqyghQitQxq3xhdkqJ9umaIiKiqUtRHZeHChXj77bdF5ztJS0vDm2++ifnz56uWOCJviQkLQnpiXQYpREQ6o6hG5dixY+jQoYPk+//4xz+sFiVUat26dS5/loiIiKoeRTUqderUwdmzZyXfP336NEJDQ91OFBERERGgMFDp3r07Xn/9dcn3s7Ky0L17d7cTRURERAQobPqZNm0aOnbsiH/84x94+umnkZycDEEQcPDgQbzzzjs4cOAAtm7d6qm0EhERUTWjKFBp2bIlfvrpJ4wcORKDBw82r5QsCAKSk5OxatUqhxPCERERESmhKFABbnSY/f3337F7926rCd9uvvlmtdNGRERE1ZziQKWoqAi1a9fGzTffbBWcVFZWori4mBOvERERkWoUdaZdunQp2rVrhytXrti9V1ZWhvbt2+Pbb79VLXFERERUvSkKVGbPno3JkycjONh+hdyQkBA899xz+M9//qNa4oiIiKh6UxSo7N+/H926dZN8v0uXLti3b5+7aSIiIiICoDBQuXjxIq5fvy75/rVr13Dx4kW3E0VEREQEKAxU4uPjsX37dsn3t2/fjri4OLcTRURERAQoDFQGDBiAF154AWfOnLF77/Tp0/jXv/6FgQMHqpY4IiIiqt4MgiAIcje+fPky0tPTcfz4cTz88MNo3rw5AODQoUP44osvEBsbi61bt3ptvZ+ioiKEhYXBaDRyWDQREZGPUHL/VjSPSmhoKDZt2oSpU6di0aJF5v4o4eHhePjhh/Haa69xUUIiIiJSjaIaFUuCIKCwsBCCICA6Oto8nb6lTZs2oV27dggMDHQ7oWJYo0JEROR7lNy/FfVRsWQwGBAdHY169eqJBikAkJGRgZMnT7q6CyIiIqrmXA5U5HCxsoaIABQYy7A5pxAFxjKtk0JEpBnFa/0Qkect2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIiLyOo/WqBCRcgXGMnOQAgCVAvD8kv2sWSGiaomBCpHO5BaWmIMUkwpBQF5hqTYJIiLSkEcDFalOtkQkLSEqBH42l46/wYD4KPvFQImIqjp2piXSmZiwIGQOSIX/X4G+v8GA1wekICYsSOOUERF5n0c7016+fNmTX0+kKwXGMuQWliAhKsTtoGJQ+8bokhSNvMJSxEcFM0ghompLUaBy++23y9puzZo1LiWGyFd5YpROTFgQAxQiqvYUBSrr1q1DXFwc+vbti5o1a3oqTUQ+RWqUTpekaAYaRERuUhSozJgxA9nZ2fjqq6/w0EMPYcSIEUhJSfFU2oh8gqNROgxUiIjco6gz7bPPPosDBw5g2bJluHz5Mjp37owOHTrgww8/RFFRkafSSKRrHKVDROQ5Lo36SU9Px9y5c1FQUIDx48dj3rx5aNiwIYMVqpY4SoeIyHPcGvWzc+dOrF+/HgcPHkRKSgr7rVC1xVE6RESeoThQOXXqFD755BN88sknKCoqwsMPP4xff/0VLVu29ET6iHwGR+kQEalPUaDSp08frF27Fj179sTMmTPRt29f1KjBdQ2JiIjIMwyCgulj/fz8EBMTg3r16jmcHn/nzp2qJM6ZoqIihIWFwWg0ok6dOl7ZJxEREblHyf1bUXXItGnT3EqYrdmzZ2P27NnIy8sDALRq1QovvfQSMjIyVN0PERER+SZFNSpq+/bbb+Hv749mzZpBEAR8+umnmDlzJnbt2oVWrVo5/TxrVIiIiHyPkvu3KoHK+vXrUVJSgvT0dERERLj1XZGRkZg5cyZGjhzpdFsGKkRERL7HY00/M2bMQHFxMV555RUAN1ZHzsjIwKpVqwAA9erVw88//yyrNsRWRUUFvvrqK3PAI6a8vBzl5eXm/3PeFiIioqpN0YRvixYtspoyf/HixdiwYQN++eUXFBYWol27dnj55ZcVJWDfvn2oXbs2AgMDMWbMGCxdulRyqHNmZibCwsLMf7GxsYr2RURERL5FUdNPREQENm/ejBYtWgAAhg8fjoqKCvzvf/8DAGzduhX3338/8vPzZSfg6tWrOH78OIxGIxYvXoyPPvoI69evFw1WxGpUYmNj2fRDRETkQzzW9HP9+nUEBgaa/79lyxZMmjTJ/P+GDRuisLBQUWIDAgLQtGlTAEDbtm2xbds2vPfee5gzZ47dtoGBgVb7JyIioqpNUdNPYmIiNmzYAAA4fvw4/vjjD3Tp0sX8/okTJ1C3bl23ElRZWWlVa0JERETVl6IalfHjx2PChAn45ZdfsHXrVqSnp1s10axZswZt2rSR/X1Tp05FRkYGGjdujMuXL2P+/PlYt24dVq5cqSRZREREVEUpClRGjx4Nf39/fPvtt+jSpYvdBHCnTp3CiBEjZH/f2bNn8eijj6KgoABhYWFo3bo1Vq5ciTvvvFNJsoiIiKiK0nTCN3dxHhUiIiLfo+T+raiPChEREZE3KQpUrl27hsmTJ6Np06bo0KED5s2bZ/X+mTNn4O/vr2oCiYiIqPpSFKi89tpr+N///ocxY8agZ8+eePrpp/H4449bbePDLUlERESkM4o6037xxRf46KOPcNdddwEAhg0bhoyMDAwfPtxcu2IwGNRPJREREVVLimpUTp48aTWFftOmTbFu3Tps3rwZjzzyCCoqKlRPIBEREVVfigKVBg0aICcnx+q1Ro0aYe3atdi2bRuGDRumZtqIiIiomlMUqNx+++2YP3++3esNGzbEmjVrkJubq1rCiFxVYCzD5pxCFBjLquX+iYiqEkV9VF588UUcOnRI9L1GjRph/fr1+Omnn1RJGJErFm07jqlL9qFSAPwMQOaAVAxq37ja7J+IqKrhhG9UZRQYy9A5aw0qLXK0v8GAjVO6IyYsqMrvn4jIV3h8wrevvvoKAwYMQEpKClJSUjBgwAAsXrzYpcQSqSW3sMQqSACACkFAXmFptdg/EVFVpChQqaysxKBBgzBo0CAcOHAATZs2RdOmTfH7779j0KBBGDx4MOdRIc0kRIXAz2Z0vL/BgPio4GqxfyKiqkhRoPLee+9h9erVWL58OQ4dOoRly5Zh2bJlOHz4MJYuXYqffvoJ7733nqfSSuRQTFgQMgekwv+vuXz8DQa8PiDFa80uWu/fW9hZmIi8SVEfldatW2PSpEmSKyR//PHHeO+997B3717VEugI+6iQmAJjGfIKSxEfFaxJkKD1/j2JnYWJSA1K7t+KApWgoCAcPnwYjRuLF0zHjh1DcnIyysq886TlS4FKgbEMuYUlSIgKqXI3L6oe2FmYiNSi5P6taHhyUFAQLl26JBmoFBUVoVatWkq+slrgUyhVBY46CzNQISJPUdRHJT09HbNnz5Z8f9asWUhPT3c7UVVJgbHMHKQAQKUAPL9kP9v3yeewszARaUFRoPLCCy/g448/xgMPPIDffvsNRUVFMBqN2Lp1K+6//37MmzcPL7zwgqfS6pM4ZJWqiurSWZiI9EVR00+nTp2waNEiPPbYY/j666+t3ouIiMCCBQvQuXNnVRPo60xPobbt+nwKJS252mdqUPvG6JIUXWU7CxNVN77Qf9KlmWlLS0uxcuVKHDlyBACQlJSEnj17IjjYuzdfX+lMu2jbcTy/ZD8qBMH8FMo+KqQV9pkiIkDbssBjo37WrFmDCRMmYOvWrXZfbDQa0alTJ3z44Ye47bbbXEu5Qr4SqADiQ1Z9IZKlqkWPI3d4HRB5n9ZlgcdG/bz77rsYPXq06JeGhYXh8ccfx9tvv+21QMWXxIQFWf34fKolLeht5A6vAyJt6K0scERRZ9o9e/agd+/eku/37NkTO3bscDtRVR1HApFW9DRyh9cBkXb0VBY4oyhQOXPmDGrWrCn5fo0aNXDu3Dm3E1XVcSSQ79mTfxFzf8nBnvyLWifFLXoaucPrgEg7eioLnFHU9NOoUSPs378fTZs2FX1/7969iImJUSVhVRlHAqnL030c/vnlbny986T5/wNvaYS3HrhZ9f14i15G7vA6INKWXsoCZxTVqPTp0wcvvvgirly5YvdeWVkZpk2bhrvuuku1xFVVvhTJ6t2ibcfROWsNhsz9FZ2z1mDRtuOqfv+e/ItWQQoAfL3zZJWoWUlPrKtpnuN1QKQ9PZQFziga9XPmzBnccsst8Pf3x4QJE9C8eXMAwKFDhzBr1ixUVFRg586dqF+/vscSbMmXRv2IqcqL13mDs17ratS0zP0lB6+tOGT3+ot9W2DkbU0UpZUjW8TxOiCqfjw26qd+/frYvHkzxo4di6lTp8IU4xgMBvTq1QuzZs3yWpBSFdiOBCJlHPVx2PDHOVVGk3SIjxR9vV18hOzv4MgWx3gdEJEjigIVAIiLi8P333+Pixcv4ujRoxAEAc2aNUNEhPyCm6oHT9ciSPVxCA7wEx1N0iUpWnE60mIjMPCWRnZ9VNJi5eV3qZEtrqSFiKg6UhyomERERKB9+/ZqpoWqEG/UIpj6ONjO+ltytULV+QHeeuBmPJoeh+15F9EuPkJ2kAL41lwFRER65HKgQp7ly30avFmLINZrvcBYpvpokrRYZQGKCUe2EBG5R9GoH/IOT49k8TRvz49h22tdT6NJ9JQWIiJfxBoVnakKfRr0UIugp/kB9JQWIiJfo2mNSmZmJtq3b4/Q0FDUq1cP/fv3x+HDh7VMkua0mK2zwFiGzTmFqk1drpdaBD3ND6CntBAR+RJNa1TWr1+P8ePHo3379rh+/Tqef/559OzZEwcOHEBISIiWSdOMt2sjPNXptbrXIvhyHyMiIj1RNOGbp507dw716tXD+vXr0aVLF6fbV4UJ38RuZou2HbcbyeKJeTe0Xua7qpqzIQdZPxyCwHlTiIhEeWzCN08zGo0AgMhI8Um2ysvLUV5ebv5/UVGRV9LlCY5qMrxVG8Ghs+qbsz4HmT/8PZOtL/Yx8ibWPBGRM7oZ9VNZWYlJkyahc+fOSElJEd0mMzMTYWFh5r/Y2Fgvp1Idcpa3l+rToGZ/El9a5tsXFBjLkPWD/XT7XBFYnK+PbiMi79BNoDJ+/Hjs378fCxculNxm6tSpMBqN5r/8/HwvplA9rnaYVbtg10un16oit7AEYu2ofgZoFvyp3VFaLXKCdSIiQCdNPxMmTMB3332HDRs24KabbpLcLjAwEIGBgV5MmWe40mHWU8OWq3unVzWJ/a4A8FxGsibnVc9rDLHZkYjk0rRGRRAETJgwAUuXLsWaNWuQkJCgZXK8xpWaDE8OW+bQWXXY/q5+AKZmJOPxLoleT4veayzY7EhEcmlaozJ+/HjMnz8f33zzDUJDQ3H69GkAQFhYGIKCqvZNU2lNxr4TRrvXWLDrj15qqPReYyG1TpMe0kZE+qJpoDJ79mwAQLdu3axez87OxrBhw7yfIC+Tu7x9gbEMM36076Q5OaO51wt2jtJwTu7v6kl6mB3YRCrPeDuoY94l8k2aBio6msLFIa0LOLGnYwBo3Sjcq+nQc58HsqaXGgtnecZbQR3zLpHv0kVnWj1Tu4BzJejRw9NxVViDqLrRuhlKL3lGL+kgItfoZniyHqndIdHV4cV6GEasxRpE5D4tO0rrJc9IpWPF3gLddC4mImmsUXFAzQ6J7j7Vaf107G6tjtbNZ+R9eqgJlEoHALy64iBe//4gm4GIdI41Kg6oOYRSjadLTz4dO5sYzJ1aHc5AWj3poSZQLB2W9DZsWyt6nRiQCGCNikNqdkjUy9OlGLn9cFyp1WH/gOpN65pA23Ss2FuAV1cctHpPT8O2tcCOxlVTVarFZqDihFoFrV5GYdhSGkgoHaWh9/k8qhK9Fkx6GK5tSkff1jF4/fuDTh8Y9Hou1cYHiaqpqgWfDFRkUKug1cvTpSVPBxJ6rkmqSqpaweQpch4YqtO55INE1VMVg08GKl6ml6dLE08HEnqtSapKqmLB5EmOHhiq27nkg0TVUxWDTwYq1Zw3Agk91iT5CjlNEFWxYPI0qQeG6nYu+SBR9VTF4JOBCnklkNBbTZIvkNsEURULJq1Ux3PJB4mqxZ3gU699swyCr8xjL6KoqAhhYWEwGo2oU6eO1snxKrkZSq8ZjxwrMJahc9YauxvmxindRX/HRduO2xVMVbVfhafxXFJVUGAsUxR8ertvlpL7N2tUfJDcDFWdOgVWNUqbIPhUrB6ey6qluj6sKanF1nvfLAYqPkZuhtJ7xtMLvRZirjRBVMXmNa1+n6p4LqsjX31Y83a+13vfLAYqPkZuhnI142l94/bm/h0VYlqfB3Zy9N2bDOmDrz6saZHv9d43i4GKj5GboVzJeFrfGLy5f0eF2IY/zuniBqnHJghvBXC+dJPROqglcXqvJRCjVb7X+4MRAxUfIzdDKc14Wt8YvL1/qUJs57GLXkmH3JubZROE1jdEbwaSvnKT0Tq4J2l6ryUQo2W+1+ODkQkDFR/kbMIq081MScbT+sbg7f1LFWKVguDxdLhyc3P3huhukOPtQNIXbjJaB/fkmN5rCcRone/12jeLgYqPEstQUjczsYxne+PS+gLx9v6lCrF28ZEeTYcrNzd3b4hqPPV7O5D01k3GnQBO6+CenNNzLYEYvQRXWtfe2mKgUkUouZlJ3bi0vEBcaapy90KSKsQ8eR5cubm5c0NU66lfi0DW0zcZdwM4rYP76sSd612vtQRStA6u9NicyUClipB7M3N049L6ApG7fzUvJLFCzJPnwZWbmzs3RLWe+rV60vPUTUaNAE4vT79VnbdunHqqRXAn37tzHHptzmSgUkXIvZk5u3Fp/fThbP/eupA8dR5cubm5c0NUGuQ4KuS0DmTVpFYAV5XOiR5563rXYy2CK9w9Dr02ZzJQqSLk3sx8vbparxeSEq7c3Fy9ISoJcuQUcloHsmpR8zqoKufEW5Q88at9vYvt21kwpKeaFkfUCOr0en9goFKFyLmZ+Xp1tV4vJKVcubm5ekOUky/0WuXrKVpcB75yw/OkRduOY8rX+yAAMADIGuj4iV/N610qEHcUDOllTiU51Ajq9Hp/YKDiIXqe+tuXq6v1eiHpnbN8URVqqpTy5nWgdtOCLwY9BcYyc5ACAAKAKV/vcxgMq3W9OwrE95002m3vbzAgOMDPp4J3tYI6Pd4fGKioxLLg8IUo3Jerq/V4Ifm6qlJTpZQ3rgO1a6t8tT/F9rwLsImFIQDYkXcRd6VJnwe517uj4E0qEF/w63H8Z+1Ru++a3Ls5Sq5WSAbvpu/UU6Co5kOc3u4PDFRUYFtwCALMF6Teo3BfpbcLydexpkqau7UXatZW+UoTndg5MxgMottKvGzF2fXuLHgTC8QB4P019kEKALS+KRzxUcGiwfvek5fw0EdbdRkoVtWHOAYqbhIrOGxVCILTpwZv8MXqYhNfTruvqKqFnDvUqL1Qs7ZKT010Utek1DlrGxcBA2BVq2IwALfERbidDmfBm20g7ojptxEL3if3bo4ZPxzSdaBYFR/iGKi4SazgEDNx4S6UXL2uWeTtq9XFgG+n3ddUxULOVWrVXqhZWyUV9AQH+GFzTqHXAnmpa9LZOcsamGr3OXfTKzd4MwXiK/YW4NUVB0W/y/a3sQ3elQaKfMBSBwMVN4kVHIa/Hhss87OWkbevVBeL8eW0k3u0LuTVrL1Qq7ZKLOjp36Yh7v2/zV4L5B1dk47OGQDERgZj6bhOKL1a6XatnSl/hAT4y66xigkLQt/WMXj9+4NW2/sB+Hf/VggLqol28ZF2n7FMp9x98QFLPQxU3CT1tBQSWAMT5u+y2larKlo9VRcD2s6jQL5BD4W82h2M1aqtsgx6ggP8zEEK4J1A3tE1KXXO9p6w79eRnljX5TTY5o972zTCsl2nZNVYSQV7L33zu9P8Jrd2zNU1vVj7Io6BigpsC46SqxWKony1SGV0LUd02KZJ6Q3I02ln4aA/eqlF03MHY1PQszmn0GOBvCvliWi/jgx1+3WI5Y9lu05hybh02TU17gR7cmrHlD5gOSsXbX+L6lZuaRqobNiwATNnzsSOHTtQUFCApUuXon///lomSZKzjBETFmQ3LNk2yh/TtQm+23sKHeIjkRbrXgcyW44yulYFrm2anuudjBk/KiuwPJl2PTy1a02PBZ6eatH03sHYU4G8O+WJu/06nJH6vtKrlYpqadwJ9pzVjin5XZwF5mK1R0t3naxW5ZamgUpJSQnS0tIwYsQIDBgwQMukOCTnhuYsyv9sax5mrcsxbz/wlkZ464GbVUmf2L6nLtmH5Aah5oDI2wWuWJpm/HAIlTbbySmwPJF2vTy1a0mvgZre5nTRcwdjTwTycq4NZ9ekq/065FA7f7j6fY6CfCW/i7N+Pba/xdc7T5q3qy7llqaBSkZGBjIyMrRMglNyb2hSmS3/QhliI4Pw/b7TVu99vfMkHk2PU6VmRWzflQJwz6zNmNonGY93SQSgXoEr5ylcNE0i28ktYNS+WejpqV0Leg7U9NzkokdiQYM7NWVyrw2516S7v6ftscj5PiXH70r65AT5ch+wHAVKckaVVodyy6f6qJSXl6O8vNz8/6KiIo/vU+5FKzWh0MSFu5CR0kD0u7fnXVQlUJHaNwBkfn8IEIDHuya6vR9A/lO4ozRZmpzRXJMLTG9P7WqRW0DrPVDTe5OL3lgGDe7UlBUYy3C+uFz1a8PV31PqWBx9nyvHryR9SoJ8ucHcqFsT8NEvuaiE/RBpZ+Wou7U/vsBP6wQokZmZibCwMPNfbGysx/dpuqFZEssYpqjc9oRWCsAP+09DTLt49fqpjLw1wS6dJjN+OIQCY5nb+5C6QMW+23Q+/P+adlIqo7VuFO52ulwRExaE53onm9NVFZ7aF207js5ZazBk7q/onLUGi7YdN79XYCzD5pxC828lN1+7y3a/SsSEBSE9sa5P/ybeJtoM/PU+fLf3lNPfwJR/nliwG4Lw94yxal0bjn5PsXwi1aS9J/+i5PcpKaOUpM+Ss6YaJUzn/L+/5AIG4LHbmmDjlO52/YFM5aiYyb0dP+w5Khd8hU8FKlOnToXRaDT/5efne3yfthnF0UU7qH1jvD+kjd3rlQLQpVmU1WsDb2mkSm2KKRPO/SVXMuquBFy6iGwpvUAHtW+MjVO6Y8Hof2Dp+E6Kbozu3ODkWLTt+I2OvbhRIE/OaK6L/hmuclRAixVUSvK1qzxRQHo6X/g6qSbXCfN3OfwNbPOPAMAgALOGtLG6cXqCVD6RatLuP2uz5HGoGURIkQryTZPuyc2bYtfsxxtz7bYzlaP/6ttC9Hta3xSuaB9yAzc98ammn8DAQAQGBnp9v0qqBdvGRYhWm864rzXOFl3B9ryLaBcfoUqQYpsJAdhNUW3avxpPyq40l5iqPguMZQ6rNy15upOnXaEsAG/8cBh3pzXU/Ond1SpaqQJ657GLktXUnmxe8UQfGL12/tUTR02ujn4DqQAnMiTQo9eEo3widSwCpI/DG026UvOwmIY4GwBMyUh22tzurPnVtizo2zoGr604aFW+Ozs2vTfxyuVTgYqW1Og4FhMWpOqwZLFMKAAY0jEWC3/NdxoQKOVqpzjbG8xjtzbB8FvjJauAPd3JU68Xrys3Ymezc1YKgsNj9dSIFrXP8Z78i5jy9T4u9umE7TVqS+o3UDqcVq3+Do7ySXpiXWQOSLV7GHN0HN7qiO1oHhYBQOYPhwADzAMZxEgFYntPXMLxCyV2ZYEtA2A+Nj3OoaUmTQOV4uJiHD369+qVubm52L17NyIjI9G4sW88KYllEG91BJTKhE/c3gxP3N7MI/tXemxS1ZvDb40X3d4bQYSeLl7LQENpgCZnds528ZGaHKua53jRtuOYsmSfXU2hHoJLtakRBJiu0R15FzFx4S5Zv4HcG7zatVrO8smg9o2R3CAU/Wdtll2T4K3y1xTki83DAtzoG+ioljYmLAjPZSTfGPBg8zlYnBNTPyMY7Bd07JIUrcs5tNSmaaCyfft2dO/e3fz/p59+GgAwdOhQfPLJJxqlSj5nGcTTmcFZJlRr/2LDA+V+t9LAQ+kNzpWCXS8Xr2X+MRhuNEFZcrbYmdzZOb15rJa/hxr7NR2n2IK3aucLb3CULneDANvvvistCCVXr0v+BrbbO7vBe6K2U861mBYbgayByvKSJ8pfR7UWYk3ulcLffQOlfvPCy+WwVQn7LxN9TYDDpl1vPzh7kqaBSrdu3SA4WXJbr/QyD4WnM6GjVVLl3AiUBh5Kggh3CnatL16xfjK2HJ0nJbNzeutYxX6PjVO6u7VfqXkkDABGSNTKOcoXWgYwztLlTnnibBjvzmMXUSkI5gX3pLZ3dIN31A+qb2vxz8g533Lyp9bXq7OH0ikZyTeaeyxIrXFk+ZuLdZ414MaDi+W59vvrDaVNuybeeHD2JPZRcZGe+jl4KhNKFZ6Xyq6Z1+5wFry4UnshtnZSgbFM1jBEJYGilhev1A3YD5DVt0irPgVSCoxldn1IpizZh81Tbndr8TnR1clx4+Fy7i+5+Hhjruwbvu0SF97sjOssv7pTnjj7btvjdmUpC0C6T8WE+btQXH7d7lwqeZCQcy1qdb3KKWse75oIGGAuF+WscSRVBozukoDE6Np2ZSYAu9fUatrVaw2kCQMVF+mpn4OnSBWeWT8cMtcAmIOX0mvmws8AYPRtCRh+a4KsKmUxYgWsZUGnp0DRFVL5x9R0IxWgmcgJAAuMZZi38cbN3NM35x3HLtpVfQt/VU1LPW3LYXucfjZNZHJv+At+PY7/rD2qSQ1ogbEM3+095TC/ulOeKJ2C3dWlLEy/hW3nVgH251IvNc5qkFvWPN4lEXenNXS6xtGKvQXo2zpG9Df3MwDDO98oN8XKTLHX3G1i9YXRdAxUXKSXfg6eJHohwf6Jyhy8/PV/AcB/f8nFRxZPu0qfhpwVdFoEimo+dUjln7TYCNkFh7PZOS1rOADHNwt3j02qCVeNll3L4ywsvoInFuy2et/ZDR8A3l9zFLa8Edha/pa2LPOrO+WJ1HUqdbM0zR0kuHDtDGrfGMEB/g5/A8D3HyQsKSlrbMs5sbz46oqDeP37g8gckOq0j6HtuRJ7zZ1mMV8JKBmoyCBViGvdbuppYoXn5N7NraqNAekpnk2ZPrlBKEquVii6CTor6OTWKIj9bo5uylLveeKpQ2qNFiUFh1jBZe6AKrJPsZuF3EU3HQUy7eIj7ToUGgC0VWn2ZdNxFhjLHN40bPOFI94IbB0FKbb5VU554qh51TIwFQBs+OMcuiRFi56vyRnN8cYPh116yJLT3KBljbPazRjuBJGWc0dZMl3XS8al493BafAzGHBLXIRbnZLV6gOmx4CSgYoTzgpxX++k5IxY4RkeXNM6eLFpi7VUIQjmoYVK5gaRs96IK+t9OPo9HXUcVvOpQ2wUlYkaBYejhcxsz6GcY5MTyMSEBSFrYCqmfr0PlbjxRJ85MFX1a0POTcOUL1bsLcCrKw5Kngd3akCd3QylmnsA4MW+LdCndQwAYHNOIRKiQgD8PTJEqk+Po9+hS1K0VS2JqTlm45TuoudrUPvGVs0USs6DnN9AqxpnTzVjKH0otU1H35QYrNhXYLVNhSCg//9thuDhJhfLKRBsHxh9pQuDQfDVYTe4sShhWFgYjEYj6tSpo/r3FxjL0Dlrjd2PuHFK9yodnMhRYCyzumgXbTtuvkk54uz8WQ3ZBW7MHSDAqoCVkzax323JuHSriZks0wNA8rfOLSzBkLm/2u1nweh/KO4o6qwgVSPPiX0HIL6/zTmFDo9NaXps84Xte2o96Traj+U2tmn3A/DBkDZuPb06+w2dNfdsnNLdqv+VaTZ2R8G8s99Bzu+ods2v3N/AUzXOtvlJL+X1zwdPY9SnO6xqF019qxzdbD2RVrG8KPaAJhbIepqS+zdrVBzwlWoxLdjWBJieOLI35uGjjX+aC3El509svRE/AfiPwhuL1O+2Le+iZHoESA/zU+upQ07thRpPojFhNxZcNHWa9AMwqkuCuZOeJWfHpvQakKphVPtJ17IvhOX/bW9eYueyb+uGivcnd2I+29FPlixHb9jmc5NK4cbkXra1da50zLRtEvNE7Zaz7/RUjbNYfoqNDNa8vP7nl7vx9c6Tdq9XCsBjXRLw8S95NzqFAy51aFZCqunRtkm+S1K029MIeBoDFQc8VS3mreGi3h5uFhMWhOf7tsDwW+NFp5YGlM8N4sp6I1K/W/t48XWYTOmRek+tamy5N313+z7ZLrj4XEay5FTezo5NjWvAE01nYqOZAIgGQ+50NMwtLMG+k0Zz06bYxF6Wv6HY6CfgxueWjEtHWmyE5EymJpUAsjfm4XmLReikOgnL7ZhZlUjlpyXj0jVtxtiTf1E0SDGlY3jnGw8LrpSNrnDUBOytZie1MFBxwBPtrN4YCqb1cDPLpyhH5882mHJ3bhBns6KmxUY4TM9zGclW8yBYvqdGx2l3Rg/I5cqCi46OTY1rwN05Qix/Z6nRTKbZawWL1yyDIaUBSvbGXMz9Jdd+yLXI9pa/oeToJwClV288QztaONDko41/Wq2H5aiTsOlYN07prsqTsd7n1HA02aGWwdpveRdEXzcYYDeaB/D8jNH7Thgdvm87xYTeRvpYYqDihJoje6SeBFwZFaN0H1plQqnzJxVMubreCGD/NC1WaDtKj+VT8+TezUUnsXP3HMpdQdpVrgYFjo7Ncu0YGG6sEK6Eq7Uytr+zKZAUu79LdeRWWpXuqH+JJdPx2P6GpplfxbZXMjKpUoBkTZtYJ2HLhfz0/iDlLkf5KT2xrmYjMTtI/PYfPdoWd7RoYPe6p1cvn/HjIdH3vNHspDYGKjKo1c4qdRORUwUn9ylHj/1qbM+fo2DK9uIF/h4ZYeoDYPtZqafpjVO6i3Z2dZYeAcAbPx62mmnS1WG7JkpWkHaHp5or3ZnV1ZVaGbHfWWpkGSDeWdHdJioplhPzWd5gTHlhap9kZH3/d0Bl+Ot8STXvOWoGEAuU+7aOwevfH/RIk7SeHnKkOMtPrtSgqVGDlBYbgYG3NLJq/hl4SyPRIMXyWDxxbqWafV7s2wLt4iM83uykNgYqKpGT2aWqfJ1VwSl5yvGF4WZy5kgxVfPL6TDn7tO0khl4lQ7bBZSvIO0OTzRXqnEDU/r0KNpfyUGQYqpVU7uJypZlM6Il27wwJSMZjcKDYDBAsiO4syZSqeDQE7+x1PFbXkd6ahJytTZCrClRzYUg33rgZjyaHofteRfRLj7CLp8o4c75lroP9Gkd4zD/6Ok3tsRARQVyM7ttBpFTBefKBGByCzF3M6Wrn5cTTEnVnCwd10l02ml3nqaVzMBrWWjL/V28XculRpWy5W+rVvqVPD3K6cchNppJyXHL6SNl6TGJkVNieeGNHw9bDTW13Bdgv5qu7W92tuiKef4h03da5i9PNBs4ui712CSktDZCqinR1QBc6pykxToOUOSUm+6eb2f3AbH8o8ff2ISBiptEb6giwwtN5Fb5msi9SVhmfjmFmLuZ0p3PywmmpJ6oV+wrEP0s4PrTtFh6xGbgdXXYrha1XO5UKdsV6L2TZQWWnpwN1JafAVg6rpPdDUHuccvpI2Xr41/yMLxzgt3rzvKC3dxAEJ8zxbImcYrIzMK2+UvtZgOp6/Js0RW7BSf12CTkiNymRLUWgpQidxZoNZrg5NwHhL9+Vb03+zFQcZPUkFrb4YWWnFX5WmYMOTc5R0u2i3E3U3qjKUDq6fajDbnYNPV20Y6y7jxhypmB19Vhu56qqvcEqdqB5zKSJadcn7M+x7zWkydmAxXrPFop/D2KRik5faQcdVhVEoiK9X+yPAapxfzE+th6ownX9jrY8Me5G33obLZTq0bQW00NUg8+tsPNnZ1jU3ovlFxVHOTILTfVrIGVCmZt7xmD28fqrm+jJQYqEuReQAlRIaJzK9gOL5Ti7Ibt7CbnLPOLHcf2vAtuZUpPNAWIdRoceWsC5v6Sa/WZSkBydIO7T5i2n3c2bPfeNtYd5/q3cW0IsJ5I/batG4WLBodzNuQg84e/RxeY8p9aI9liwhx3HnXlRuds8jSpffoBOF9SbreitaNr1NmcKXIW8zPt21vBrek6cBQ0+QEIDvBzeR+OVvb2RPAiFUxO7t0cb/wob80j25oxpUGO3HLT0zWwYveM+b/l222np76NDFREKOkkmVtYggc7xNr90JWC/fBCKbY3SNsL1dFNzlHmF+uMB9zo62FLLFNKFRhy+5g4K2xM22w6Woj/W5tj90Q+4q+hvK72PXFEbmEoFvwUGMuw49hFLLGZ3GnZrlN4pldzh7+lXgMUE0e/rVg+zfrBfgik2pNJSQUCtvl75K0JGHGrfR8SOccIWE+eZtsMZLopTZi/S/SYpK5RZ/1e5CzmJ9XM5WmOOhdXArj3/za7NBJOci6cr/dhz4lLWPBrvuq1c1J5aFD7xrj7ZudrHonVjBkgPUxdjNwAxFHgq0YQJ6fTuDcDYzkYqNiQWz1nG8woja6lOGrGEcs0IQH+ovsODvAT7TsDkUJTLFM6Ctac1SbICfSk5quwPN8AMPo2ZfOOeLqjmqN5NioEATvyLuKuNGWjgrzN0TlS0kyVW1gi+rQNqD+ZlNiwdct1XSoFYO4vufjol1xkDXR8nmPCrJcYsCTWDLQj7yImLtwlq6lTsKlbtT2fBsBu/So5tTPeDlIA50GW2Hlwluf35F8U7X8D3Ah+5v/69wNfpXDjoUqtfhJSwaScBwixm7sA4IPBbVC3dqCsWlIl15YnO7vK6aj+wZA2Li014SkMVGzIqZ4TC2YMhhvr0rgzkZfSCeFMGdc2SHl9QApKrlaI9p0RKyFsM6Wc5qSlu8RrEwA4DfSczVdRIQh2awbJmXfE0x3V5MyzMXHhLpRcvY4uSdG67Jwm5xzJbaaSU+AB4tePK0+FljcUqSYVAc7Ps+USA87SGxMWhMjazssER+dVLMhydG7Fzr9WS2LIGaW489hFRIQ4XwdJrCbFmUoByN6Ui+f7tFTtmFw5f1K1IW3jlS1uqaQJ2LZpXK3yxPZ3teVvMOAWhZM6ehoDFRtyqudEo2vhxuJ5kSGBLhcuSiaEE7tp+hn+Xk+kwFgm6yYilimdBWuO3ne0uJ+zdngTA2AOUgB58454o6OanCpT037fe/Bm3XVOU1LYySnQ7W5kBmBct0T837ocyetHzurRcvuGSeVvJQtfipHTHGO5jdzFJm1rThwdr+X2WtbMORulaDDcaA4T/vq37X3P9FsAsHuokuujDbmiw8K9SUltiJzvUvo5tac4sPxd9568JNlRXi8YqNiQ0z4YEuAvWnBZTuzkSuGiZEI4qV7sppEQolXOsK9QmZzR3C5TOiuYnb3vLNBz9iQu1ufH2UXpqY5qljcSsc+KdaSu+GtSF3fWLVJKzncoLezkfKfYE2JsZLDk9ePsiVvuNWPK32JBh9KFL23ZXhPOblKu3kS8OVTVHZY3VtvA1HL+IkcjlaTOuwHAgx1jsfC3fIf9YVxZF0ptanWIdyWdSvsFAvZz9dgy/a7piXVxd5rzfjpaYqAiQk774L1tGmHZrlMujcSRIreqNa+wVFbGNR1H9sY8zP3lT9GnmdaNwp2mQ2yKakfvO3vykKp6NE3CdHdaQyzcli87mADU6ahmS+xGkjkg1a76WqyPUNt4xwsgOtqH3KdlsdV9HX2HkiBNKl1ihaztE6JUge7ohg44bzK0Zc7fm3Lx0QZ5/ZjkNFeJXROOblKujNIoMJbZzU0yRaQ/ht6WxLA8D4XFV/DEgt1225jKLdvfQmxSxaXjb3QSTrsp3GFThNJ1oTxV6+Rq05GJq+mUKreAG82gtit8A+Jz9QDigZK7x+VpBkFquU8fUFRUhLCwMBiNRtSpU8dj+ykwlll13AOk1/sAbmScIXN/tfueBaP/Ibr2jNj+HE0It2RcOkquVmDfSaNdlZ3YE5lt2i2/y3L2TKl0SEXZjt539lnb47Q9j4u2HRftoe+Iks/IOTap31ys+tsgWBfOpv06O0di+3D0m5g+J7W6r7PvsD1Hk3s3R+pNYVZPYSEB/qL5znISPFenG5c63tzCElWuGTlPhJbnwJac8+/sO+Xk1+/2nsKE+bvsXp8l0l/MlTziiJInekfbOrpG8i+UmRewlHtNm37DvScu2Q0ZdnQuXTlHWvT5UeO3tMznlqPeHLHch546+Cu5f7NGRQZHy4qLFaLujoOXqmr1NxjQv01D803ENGto65vCJQtoyXkZDM6Hn1k+CVv+Xyydjo5BznHacqWaVeozrjxBSP3m2/IuyuqfJOcYXXlalrO6r+2cIJZs26bFnsKkmrOyLFYudqUJwlltllrXjInUzcjqHIjcFN1t85eTX6WeD21fVrNvBKDsid523pDRtyVguMXwb6m0HTp9WXQfcuaMMjdFyBgybKL0OtLqZi2VTsuRgs6YzpHcBTRN+3C11lIvGKjIoDTwULNwcdSZrVKwX1NETtr9IG9eBq2jb1eqI20/4+oxSP3m7eMjnPZPkmJ745QaWu6ov4zcwsl2ThBLpnQ+9NFW83dZfqXY14s1l7jSBGE55Nf0xG1Kk7OJDZU8ATv73V29KTqiJL+2i4+0++0NANrG21+TavaNkHujEps35L+/5OKjjblORzTZDhu33Ifcc6TkXCopn5WeAzl5zt0O4KaRgkomu5PT18rEUT8hy1FbeluI0BIDFRlcCTzUXhguPbGu6JBMZzcLqbQ7WzRre94FXUbfprQZDAaramWpbV09BkfnzZUgVKyP09JdJ0WHliupgXHE0fHKmvTpr0LVNMW20n5DUqRWBZa6ZpQGm64s5OntPB0TFoSsgamY+vU+VOLGw0PmwFS3aiidUVLzIJU/nI1ocqWMksPduX+UTn0vN8+51AH8r9/cxHROL5Vek9206qivlaO5euwGA1iM2nLUoVvrFZUZqMjkSuDhTuEidgF0SYp2qXpcSdqdTWim5fBa23kYDIDDyb3c7Ygodd6U5gWxG+fXNrPa+hmA/z56C4ICathN0W4iVTj54UYnZH8/g9P1aRyNXLNk6muwaFs+5v9248+Av4egqj1XkNQTtyvBphodUL1ROHt7WQUlNQ9SS4MAjs+l1D6CA/ywOafQpfPp7tw/Sqe+N09K5yTPuZI3B7VvjJDAGnb9k5Q2rYoFZ5N7Nzd3AwDs5+qx/YztqC2xfWpdq27CQEUBbz15SV0AG6d0t4rIlUxzLCftzpoWtFz7wXaUBHDjAnM0c6Uaa2ZInTcleUHu/CujPt0h+mRjedO0LWgGt2+MJ+5oam63lloTBxCv1TGNXDP8VXoL+DsI2Zp7wWqYuIAbkxr+Z0gbWU1dcs+FoxufK0GHu7+7ksLZ3YBGST5SY1/PZSSb+yW5Gmw6G2Zvu4Clbb86pSPb3Jn7R+nU91KT0onlOVcD4rZx9s3HrjStyunzY6tLUjTeHZwGP4MBlYJgN2rLcp96GBpvwkBFh5wN4zQ/EhhsP6n+fk08NRGQkjZZsaRVCtJzLJirWi2epkY6mDTOU+TO4Cr2ZCPWTDK5d3Nk/XWzWbjtONJiw8zLLDiaA8i20Fm265TVyDUAVn0NOmWtsUtjJYDIkECX84HSIMKVoMOVploTJYWzN5821djXom3HrTpPT+7dXDQYjgkLkrzepB6ObNP3XO9kNAoPwsXSq3jpm99d7oTtqANqZG3nc4bsOCbS+R3iU9+bF2EUSYdYnnM1IBatDclobv5tTPwAWd8l91q0+40ykh2mX09D4xmo6IizCeXE1u9RM8KV6nj7gRtP0I4oKXylqqL9DM4vZlMVrgDxDoGeJlYw9W/T0FybIfU0tSPvov16TX9VSUsV/FJPWdl/rVJru49teRetRgdZ9jUQG5gip/BUei7EbnxStUhygw5Xm1XkFs7efNpUY19iNQtv/HgYd9/c0C4Yfq53MhpFBNldb1KLI4qlL+uHQzBIBOdKbnZSkyya1l5yNGeIqXbEltTU90pHSLoTEIvlz/Cgmla1OQJu9OdSo5wS+43e+OEwnuudLDnqzdOrOCvBQEUn5EwoJ7Z+j5oRrtSF54nFqVzp8Jg10HqyNcNfBZPUsUs9IVUK4pNrKUm70ip4sYLpmV7NkVdYitKr1zDy0x12n7lYat/xT07BL9bPY+4vuaLpkhodJFUL9FxGstt5zVkQIRbAbpzSXXHQ4UpTrdzC2ZtPm85qWF0dJSIVDGf+tSK2ZX8OR53wpRbsk5qhS+mwc9tJMAXAKuAysSxDAPEp+x1Ny+DKCEl3+hnZ5s8uSdFWyxAIcC0gFcsPUr9/65vCJa8tdwIxtTFQ0QE51fKm6ns1I1yxTO2tDn6uFPSWQ1sNBjit5XHUlCUIwM5jF9G3tfod+2zZjt4yMRVUm3MKRT8XERwg2pZtWaMCOM8DUtX4JmJBoljHu+cykvF4l0SHxyqXVBDhqH+Ws4nf1OgAK6dwLjCW4bu9BXafNf0OanfE3XfCKLqvvScumYeYuzJKxN9gEF1N3cRUS/HB4DYOF9+T27Rp2qfSm51lmXS+pFx0ojwTR2uOAcD7g9vgrjTxBy+p397ZNA6O8rIaa705C37lzFDtKAB3FNB7u8O3FF0EKrNmzcLMmTNx+vRppKWl4YMPPkCHDh20TpbXOJpczLZaXq0I19EN1/R9UhO9iVF6Ubo67XhuYYnsFUudFaBK52R2pQpeTmDjaGVWqWmzLQMIsfWanH2/LbEC0RuFlFjfCFcKazX7izgbQSK1AvDk3s0lh167qsBYhhk/HrJ7fWy3JuahrIBro0ReH5Ai2rHTUqUA1K39d58kqckTxWo9bJuN3ncS8Dhiupk6W2zVzwAUFl9B48hgyWvKESWTRjqi1lpvzspEqVGatvnBnXuHKzWTatM8UFm0aBGefvppfPjhh+jYsSPeffdd9OrVC4cPH0a9evW0Tp5X7Dtp/8QEiFfLqzU/i1qLwwGuXZRKLxx39mE7bwEgPrmWs8JITsc+V/oxODoXUr/3pdJr5g61M344hPCgmk7nb3B0I5EqED1ZSNn+pmO7JcLP4Hz4qC1P9BcRO25HnS0BoFF4kLnvhFrpkKoVDA8OkN2XxpSnpfKS2LpbJo5GjTkqlzb8cc4uP0vVZChhm5dtCQLwxILdTtdjc7YP2+DUk/P4SB2bszQ7G6Vpmx/0UjviCs0DlbfffhujR4/G8OHDAQAffvghVqxYgXnz5mHKlCkap87zCoxlmPGD/ROTiVS1vDuZTM3F4dy5Sci9cNTYh+XCjGKTa7la82HZsc/2c0pqBxydC7E+JzN+VDadvZwbiTcLLrHfdNbaHLvt5KTNW/1FnI2KE2tGcTcdSmdItgzopPK0o7y39+Qlu/XDTDUZzq5By3zqyZvioPaNkdwgFP3/b7NdrajlNSHWfK6Ut+fxUXLenE17ILUoqy8FKCaaBipXr17Fjh07MHXqVPNrfn5+6NGjB7Zs2WK3fXl5OcrLy83/Lyoq8ko6PUnOHBtqF7qOqhi9Mc+FJTkXjhr7eL5vCwy/NV60AHC15sO2Y5/t51xZesGTbdneupHIISffv9q/Fe5oUd9p2rw1OkFywr2/OmiKNaO4mw5H/SacLTngyuy86Yl1cXea/ZICruQ5T94US65WOG26dbQem1xazOMj97w5atLVsuOrJ2gaqBQWFqKiogL169e3er1+/fo4dMi+liEzMxMvv/yyt5LnFXL6D6hd6DqrYvT0PBdKqbUPqQLA1ZoPsY59lp9Ts0+RJU+fD2+Qk+/Lr1XKDkS9MTpBLFAd1SUBwzv/vVCfJ9LhygzJ7gT3YvlCT0NVpdJjS430eXseHyXE9mM5O21VCVIAHTT9KDF16lQ8/fTT5v8XFRUhNjZWwxS5TyyzWc6x4alMLlXIKb3IvHFRenofrtZ8yBmF5YmaC28VhJ7krK8BALRz0vHRkrdqiJztx1PpkAoqpV5XO7DQW57zVrnp6nHrJT9WFQZBar1xL7h69SqCg4OxePFi9O/f3/z60KFDcenSJXzzzTcOP19UVISwsDAYjUbUqVPHw6n1rAJjmVVms/2/1ulRe3tvpEmJRduO2xVGckZruPo5NWidR9RgOobPtuTh+/2nza8PvKUR3nrgZu0SVgV4Im/qLc95q9zU23FXBUru35oGKgDQsWNHdOjQAR988AEAoLKyEo0bN8aECROcdqatSoEKac/VwoiFmDr25F/E9ryLaBcf4XTuCpKHeZP0Ssn9W/Omn6effhpDhw5Fu3bt0KFDB7z77rsoKSkxjwIi8hZX+2z4ak96vUmLZYCiNuZNqgo0D1QGDRqEc+fO4aWXXsLp06dx880348cff7TrYEtERETVj+ZNP+5g0w8REZHvUXL/9vNSmoiIiIgUY6BCREREusVAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLd0nwKfXeYJtUtKirSOCVEREQkl+m+LWdyfJ8OVC5fvgwAiI2N1TglREREpNTly5cRFhbmcBufXuunsrISp06dQmhoKAwGg9bJ8bqioiLExsYiPz+fax25gedRHTyP6uB5VAfPozo8dR4FQcDly5fRsGFD+Pk57oXi0zUqfn5+uOmmm7ROhubq1KnDC1EFPI/q4HlUB8+jOnge1eGJ8+isJsWEnWmJiIhItxioEBERkW4xUPFhgYGBmDZtGgIDA7VOik/jeVQHz6M6eB7VwfOoDj2cR5/uTEtERERVG2tUiIiISLcYqBAREZFuMVAhIiIi3WKgQkRERLrFQMUHbNiwAf369UPDhg1hMBiwbNkyq/cFQcBLL72EmJgYBAUFoUePHjhy5Ig2idUxZ+dx2LBhMBgMVn+9e/fWJrE6lZmZifbt2yM0NBT16tVD//79cfjwYattrly5gvHjx6Nu3bqoXbs2Bg4ciDNnzmiUYn2Scx67detmlx/HjBmjUYr1afbs2WjdurV5MrL09HT88MMP5veZF+Vxdh61zosMVHxASUkJ0tLSMGvWLNH333jjDbz//vv48MMP8euvvyIkJAS9evXClStXvJxSfXN2HgGgd+/eKCgoMP8tWLDAiynUv/Xr12P8+PHYunUrfvrpJ1y7dg09e/ZESUmJeZunnnoK3377Lb766iusX78ep06dwoABAzRMtf7IOY8AMHr0aKv8+MYbb2iUYn266aabkJWVhR07dmD79u24/fbbcc899+D3338HwLwol7PzCGicFwXyKQCEpUuXmv9fWVkpNGjQQJg5c6b5tUuXLgmBgYHCggULNEihb7A9j4IgCEOHDhXuueceTdLjq86ePSsAENavXy8Iwo28V7NmTeGrr74yb3Pw4EEBgLBlyxatkql7tudREASha9euwpNPPqldonxURESE8NFHHzEvusl0HgVB+7zIGhUfl5ubi9OnT6NHjx7m18LCwtCxY0ds2bJFw5T5pnXr1qFevXpo3rw5xo4di/Pnz2udJF0zGo0AgMjISADAjh07cO3aNav8mJycjMaNGzM/OmB7Hk2++OILREVFISUlBVOnTkVpaakWyfMJFRUVWLhwIUpKSpCens686CLb82iiZV706UUJCTh9+jQAoH79+lav169f3/weydO7d28MGDAACQkJyMnJwfPPP4+MjAxs2bIF/v7+WidPdyorKzFp0iR07twZKSkpAG7kx4CAAISHh1tty/woTew8AsCQIUMQFxeHhg0bYu/evXjuuedw+PBhLFmyRMPU6s++ffuQnp6OK1euoHbt2li6dClatmyJ3bt3My8qIHUeAe3zIgMVor8MHjzY/O/U1FS0bt0aiYmJWLduHe644w4NU6ZP48ePx/79+7Fx40atk+LTpM7jY489Zv53amoqYmJicMcddyAnJweJiYneTqZuNW/eHLt374bRaMTixYsxdOhQrF+/Xutk+Ryp89iyZUvN8yKbfnxcgwYNAMCuJ/uZM2fM75FrmjRpgqioKBw9elTrpOjOhAkT8N1332Ht2rW46aabzK83aNAAV69exaVLl6y2Z34UJ3UexXTs2BEAmB9tBAQEoGnTpmjbti0yMzORlpaG9957j3lRIanzKMbbeZGBio9LSEhAgwYN8PPPP5tfKyoqwq+//mrVvkjKnThxAufPn0dMTIzWSdENQRAwYcIELF26FGvWrEFCQoLV+23btkXNmjWt8uPhw4dx/Phx5kcLzs6jmN27dwMA86MTlZWVKC8vZ150k+k8ivF2XmTTjw8oLi62ilxzc3Oxe/duREZGonHjxpg0aRJeffVVNGvWDAkJCXjxxRfRsGFD9O/fX7tE65Cj8xgZGYmXX34ZAwcORIMGDZCTk4PJkyejadOm6NWrl4ap1pfx48dj/vz5+OabbxAaGmpu6w8LC0NQUBDCwsIwcuRIPP3004iMjESdOnXwxBNPID09Hf/4xz80Tr1+ODuPOTk5mD9/Pvr06YO6deti7969eOqpp9ClSxe0bt1a49Trx9SpU5GRkYHGjRvj8uXLmD9/PtatW4eVK1cyLyrg6DzqIi9qNt6IZFu7dq0AwO5v6NChgiDcGKL84osvCvXr1xcCAwOFO+64Qzh8+LC2idYhR+extLRU6NmzpxAdHS3UrFlTiIuLE0aPHi2cPn1a62Tritj5AyBkZ2ebtykrKxPGjRsnRERECMHBwcK9994rFBQUaJdoHXJ2Ho8fPy506dJFiIyMFAIDA4WmTZsKzz77rGA0GrVNuM6MGDFCiIuLEwICAoTo6GjhjjvuEFatWmV+n3lRHkfnUQ950SAIguCdkIiIiIhIGfZRISIiIt1ioEJERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQIfJxp0+fxhNPPIEmTZogMDAQsbGx6Nevn9UaJ5s3b0afPn0QERGBWrVqITU1FW+//TYqKirM2+Tl5WHkyJFISEhAUFAQEhMTMW3aNFy9etVqf3PnzkVaWhpq166N8PBwtGnTBpmZmeb3p0+fDoPBgN69e9uldebMmTAYDOjWrZusYzN9l8FgQI0aNRAfH4+nnnoKxcXFCs8SEfkqrvVD5MPy8vLQuXNnhIeHY+bMmUhNTcW1a9ewcuVKjB8/HocOHcLSpUvxwAMPYPjw4Vi7di3Cw8OxevVqTJ48GVu2bMGXX34Jg8GAQ4cOobKyEnPmzEHTpk2xf/9+jB49GiUlJXjzzTcBAPPmzcOkSZPw/vvvo2vXrigvL8fevXuxf/9+q3TFxMRg7dq1OHHihNWqwPPmzUPjxo0VHWOrVq2wevVqXL9+HZs2bcKIESNQWlqKOXPm2G179epVBAQEuHAmPUePaSLyKV6brJ+IVJeRkSE0atRIKC4utnvv4sWLQnFxsVC3bl1hwIABdu8vX75cACAsXLhQ8vvfeOMNISEhwfz/e+65Rxg2bJjDNE2bNk1IS0sT7rrrLuHVV181v75p0yYhKipKGDt2rNC1a1cZR/f3d1kaPXq00KBBA6v3586dK8THxwsGg0EQhBvHPnLkSCEqKkoIDQ0VunfvLuzevdv8Hbt37xa6desm1K5dWwgNDRVuueUWYdu2bYIgCEJeXp5w1113CeHh4UJwcLDQsmVLYcWKFYIgCEJ2drYQFhZmlZ6lS5cKlkWpq2kiInFs+iHyURcuXMCPP/6I8ePHIyQkxO798PBwrFq1CufPn8czzzxj936/fv2QlJSEBQsWSO7DaDQiMjLS/P8GDRpg69atOHbsmNP0jRgxAp988on5//PmzcNDDz3kdu1CUFCQVXPU0aNH8fXXX2PJkiXm5efvv/9+nD17Fj/88AN27NiBW265BXfccQcuXLgAAHjooYdw0003Ydu2bdixYwemTJmCmjVrArixsnF5eTk2bNiAffv2YcaMGahdu7aiNLqSJiISx6YfIh919OhRCIKA5ORkyW3++OMPAECLFi1E309OTjZvI/b9H3zwgbnZBwCmTZuGAQMGID4+HklJSUhPT0efPn1w3333wc/P+rnnrrvuwpgxY7Bhwwa0bdsWX375JTZu3Ih58+YpPVSzHTt2YP78+bj99tvNr129ehX/+9//EB0dDQDYuHEjfvvtN5w9exaBgYEAgDfffBPLli3D4sWL8dhjj+H48eN49tlnzeeuWbNm5u87fvw4Bg4ciNTUVABAkyZNFKfTlTQRkTgGKkQ+SlCw8LmSbQHg5MmT6N27N+6//36MHj3a/HpMTAy2bNmC/fv3Y8OGDdi8eTOGDh2Kjz76CD/++KNVsFKzZk08/PDDyM7Oxp9//omkpCS0bt1aUToAYN++fahduzYqKipw9epV9O3bF//5z3/M78fFxZkDAgDYs2cPiouLUbduXavvKSsrQ05ODgDg6aefxqhRo/DZZ5+hR48euP/++5GYmAgAmDhxIsaOHYtVq1ahR48eGDhwoOJ0u5ImIhLHQIXIRzVr1szcCVZKUlISAODgwYPo1KmT3fsHDx5Ey5YtrV47deoUunfvjk6dOuG///2v6PempKQgJSUF48aNw5gxY3Dbbbdh/fr16N69u9V2I0aMQMeOHbF//36MGDFC6SECAJo3b47ly5ejRo0aaNiwoV3TkW2zV3FxMWJiYrBu3Tq77woPDwdwYzTRkCFDsGLFCvzwww+YNm0aFi5ciHvvvRejRo1Cr169sGLFCqxatQqZmZl466238MQTT8DPz88u6Lt27ZrdflxJExGJYx8VIh8VGRmJXr16YdasWSgpKbF7/9KlS+jZsyciIyPx1ltv2b2/fPlyHDlyBA8++KD5tZMnT6Jbt25o27YtsrOz7ZpzxJgCHbE0tGrVCq1atcL+/fsxZMgQJYdnFhAQgKZNmyI+Pl5W/5ZbbrkFp0+fRo0aNdC0aVOrv6ioKPN2SUlJeOqpp7Bq1SoMGDAA2dnZ5vdiY2MxZswYLFmyBP/85z8xd+5cAEB0dDQuX75sdaymPihqpImI7DFQIfJhs2bNQkVFBTp06ICvv/4aR44cwcGDB/H+++8jPT0dISEhmDNnDr755hs89thj2Lt3L/Ly8vDxxx9j2LBhuO+++/DAAw8A+DtIady4Md58802cO3cOp0+fxunTp837Gzt2LF555RVs2rQJx44dw9atW/Hoo48iOjoa6enpomlcs2YNCgoKvFZz0KNHD6Snp6N///5YtWoV8vLysHnzZrzwwgvYvn07ysrKMGHCBKxbtw7Hjh3Dpk2bsG3bNnM/nkmTJmHlypXIzc3Fzp07sXbtWvN7HTt2RHBwMJ5//nnk5ORg/vz5Vh2GXU0TEUlj0w+RD2vSpAl27tyJ1157Df/85z9RUFCA6OhotG3bFrNnzwYA3HfffVi7di1ee+013Hbbbbhy5QqaNWuGF154AZMmTYLBYAAA/PTTTzh69CiOHj1qNfcJ8Hcflx49emDevHmYPXs2zp8/j6ioKKSnp+Pnn3+2639hIjYiyZMMBgO+//57vPDCCxg+fDjOnTuHBg0aoEuXLqhfvz78/f1x/vx5PProozhz5gyioqIwYMAAvPzyywCAiooKjB8/HidOnECdOnXQu3dvvPPOOwBu1GJ9/vnnePbZZzF37lzccccdmD59utPOsM7SRETSDILSXnZEREREXsKmHyIiItItBipEpJnatWtL/v3yyy9aJ4+IdIBNP0SkmaNHj0q+16hRIwQFBXkxNUSkRwxUiIiISLfY9ENERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt36f4Yf/NhtfB6xAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACE10lEQVR4nO3deVxU5f4H8M+AgoACIruyiSIqSG4p7qZXXFpMK00z98ols82lMrVFabmt17RN/d1bmllallqaawqau5JLSiAuoKIyyKIgPL8/cKZZzpmNGWaG+bxfL0rmHM4858yZc77nWb6PQgghQEREROTC3OxdACIiIiJ7Y0BERERELo8BEREREbk8BkRERETk8hgQERERkctjQEREREQujwERERERuTwGREREROTyGBARERGRy2NAREROY968eVAoFCatq1AoMG/ePJuWp1evXujVq5fDbo+ITMeAiIjMtnz5cigUCvVPnTp10LhxY4wZMwYXLlywd/EcTnR0tNbxCg4ORvfu3bF27VqrbL+kpATz5s3D9u3brbI9IlfEgIiILPbaa6/hf//7H5YsWYIBAwbgq6++Qs+ePXHz5k2bvN8rr7yC0tJSm2zb1u666y7873//w//+9z+88MILuHjxIoYMGYIlS5ZUe9slJSWYP38+AyKiaqhj7wIQkfMaMGAAOnToAACYMGECAgMD8dZbb2HdunV45JFHrP5+derUQZ06znnZaty4MR577DH1748//jiaNWuG999/H0899ZQdS0ZEAGuIiMiKunfvDgDIzMzUev3kyZN46KGHEBAQgHr16qFDhw5Yt26d1jrl5eWYP38+mjdvjnr16qFRo0bo1q0bNm/erF5Hqg/RrVu38OyzzyIoKAgNGjTA/fffj/Pnz+uVbcyYMYiOjtZ7XWqby5Ytwz333IPg4GB4enqiVatWWLx4sVnHwpjQ0FC0bNkSWVlZBte7fPkyxo8fj5CQENSrVw9JSUn4v//7P/Xy7OxsBAUFAQDmz5+vbpazdf8potrGOR+1iMghZWdnAwAaNmyofu3PP/9E165d0bhxY8yaNQs+Pj749ttvMXjwYHz//fd48MEHAVQFJgsXLsSECRNw9913o7CwEPv378fBgwfxr3/9S/Y9J0yYgK+++gojRoxAly5dsHXrVgwaNKha+7F48WK0bt0a999/P+rUqYOffvoJkydPRmVlJaZMmVKtbauUl5fj3LlzaNSokew6paWl6NWrF86cOYOpU6ciJiYGq1evxpgxY1BQUIBnnnkGQUFBWLx4MSZNmoQHH3wQQ4YMAQC0adPGKuUkchmCiMhMy5YtEwDEb7/9Jq5cuSLOnTsnvvvuOxEUFCQ8PT3FuXPn1Ov26dNHJCYmips3b6pfq6ysFF26dBHNmzdXv5aUlCQGDRpk8H3nzp0rNC9bhw8fFgDE5MmTtdYbMWKEACDmzp2rfm306NEiKirK6DaFEKKkpERvvZSUFNG0aVOt13r27Cl69uxpsMxCCBEVFSX69esnrly5Iq5cuSKOHDkihg8fLgCIp59+WnZ7H3zwgQAgvvrqK/VrZWVlIjk5WdSvX18UFhYKIYS4cuWK3v4SkXnYZEZEFuvbty+CgoIQERGBhx56CD4+Pli3bh2aNGkCALh27Rq2bt2KRx55BDdu3EB+fj7y8/Nx9epVpKSk4PTp0+pRaf7+/vjzzz9x+vRpk99/w4YNAIBp06ZpvT59+vRq7ZeXl5f630qlEvn5+ejZsyf+/vtvKJVKi7a5adMmBAUFISgoCElJSVi9ejVGjRqFt956S/ZvNmzYgNDQUDz66KPq1+rWrYtp06ahqKgIO3bssKgsRKSPTWZEZLFFixYhLi4OSqUSS5cuxc6dO+Hp6alefubMGQghMGfOHMyZM0dyG5cvX0bjxo3x2muv4YEHHkBcXBwSEhLQv39/jBo1ymDTz9mzZ+Hm5obY2Fit11u0aFGt/dq9ezfmzp2L9PR0lJSUaC1TKpXw8/Mze5udOnXCG2+8AYVCAW9vb7Rs2RL+/v4G/+bs2bNo3rw53Ny0n11btmypXk5E1sGAiIgsdvfdd6tHmQ0ePBjdunXDiBEjcOrUKdSvXx+VlZUAgBdeeAEpKSmS22jWrBkAoEePHsjMzMSPP/6ITZs24YsvvsD777+PJUuWYMKECdUuq1xCx4qKCq3fMzMz0adPH8THx+O9995DREQEPDw8sGHDBrz//vvqfTJXYGAg+vbta9HfEpHtMSAiIqtwd3fHwoUL0bt3b/znP//BrFmz0LRpUwBVzTymBAMBAQEYO3Ysxo4di6KiIvTo0QPz5s2TDYiioqJQWVmJzMxMrVqhU6dO6a3bsGFDFBQU6L2uW8vy008/4datW1i3bh0iIyPVr2/bts1o+a0tKioKR48eRWVlpVYt0cmTJ9XLAflgj4hMxz5ERGQ1vXr1wt13340PPvgAN2/eRHBwMHr16oVPP/0Uubm5eutfuXJF/e+rV69qLatfvz6aNWuGW7duyb7fgAEDAAAfffSR1usffPCB3rqxsbFQKpU4evSo+rXc3Fy9bNHu7u4AACGE+jWlUolly5bJlsNWBg4ciLy8PKxatUr92u3bt/Hxxx+jfv366NmzJwDA29sbACQDPiIyDWuIiMiqXnzxRTz88MNYvnw5nnrqKSxatAjdunVDYmIiJk6ciKZNm+LSpUtIT0/H+fPnceTIEQBAq1at0KtXL7Rv3x4BAQHYv38/vvvuO0ydOlX2ve666y48+uij+OSTT6BUKtGlSxds2bIFZ86c0Vt3+PDhmDlzJh588EFMmzYNJSUlWLx4MeLi4nDw4EH1ev369YOHhwfuu+8+PPnkkygqKsLnn3+O4OBgyaDOlp544gl8+umnGDNmDA4cOIDo6Gh899132L17Nz744AM0aNAAQFUn8FatWmHVqlWIi4tDQEAAEhISkJCQUKPlJXJq9h7mRkTORzXsft++fXrLKioqRGxsrIiNjRW3b98WQgiRmZkpHn/8cREaGirq1q0rGjduLO69917x3Xffqf/ujTfeEHfffbfw9/cXXl5eIj4+Xrz55puirKxMvY7UEPnS0lIxbdo00ahRI+Hj4yPuu+8+ce7cOclh6Js2bRIJCQnCw8NDtGjRQnz11VeS21y3bp1o06aNqFevnoiOjhZvvfWWWLp0qQAgsrKy1OuZM+zeWEoBue1dunRJjB07VgQGBgoPDw+RmJgoli1bpve3aWlpon379sLDw4ND8IksoBBCo16YiIiIyAWxDxERERG5PAZERERE5PIYEBEREZHLY0BERERELo8BEREREbk8uwZECxcuRMeOHdGgQQMEBwdj8ODBehlme/XqBYVCofXz1FNPaa2Tk5ODQYMGwdvbG8HBwXjxxRdx+/ZtrXW2b9+Odu3awdPTE82aNcPy5cttvXtERETkJOyamHHHjh2YMmUKOnbsiNu3b+Oll15Cv379cPz4cfj4+KjXmzhxIl577TX176qsrEDVPESDBg1CaGgo0tLSkJubi8cffxx169bFggULAABZWVkYNGgQnnrqKXz99dfYsmULJkyYgLCwMNn5lXRVVlbi4sWLaNCgAdPkExEROQkhBG7cuIHw8HC9iZJ1V3QYly9fFgDEjh071K/17NlTPPPMM7J/s2HDBuHm5iby8vLUry1evFj4+vqKW7duCSGEmDFjhmjdurXW3w0bNkykpKSYXDZVojf+8Ic//OEPf/jjfD/nzp0zeJ93qKk7lEolgKoJHjV9/fXX+OqrrxAaGor77rsPc+bMUdcSpaenIzExESEhIer1U1JSMGnSJPz5559o27Yt0tPT9SaWTElJwfTp02XLcuvWLa05lMSd/JXnzp2Dr69vtfaTiIiIakZhYSEiIiLUU93IcZiAqLKyEtOnT0fXrl215t8ZMWIEoqKiEB4ejqNHj2LmzJk4deoU1qxZAwDIy8vTCoYAqH/Py8szuE5hYSFKS0vh5eWlV56FCxdi/vz5eq/7+voyICIiInIyxrq7OExANGXKFGRkZGDXrl1arz/xxBPqfycmJiIsLAx9+vRBZmYmYmNjbVae2bNn47nnnlP/roowiYiIqPZxiGH3U6dOxc8//4xt27ahSZMmBtft1KkTAKhnsw4NDcWlS5e01lH9HhoaanAdX19fydohAPD09FTXBrFWiIiIqHaza0AkhMDUqVOxdu1abN26FTExMUb/5vDhwwCAsLAwAEBycjKOHTuGy5cvq9fZvHkzfH190apVK/U6W7Zs0drO5s2bkZycbKU9ISIiImdm19nuJ0+ejBUrVuDHH39EixYt1K/7+fnBy8sLmZmZWLFiBQYOHIhGjRrh6NGjePbZZ9GkSRPs2LEDQNWw+7vuugvh4eF4++23kZeXh1GjRmHChAlaw+4TEhIwZcoUjBs3Dlu3bsW0adOwfv16k4fdFxYWws/PD0qlkrVFRFRjKioqUF5ebu9iEDmsunXrwt3dXXa5qfdvuwZEch2cli1bhjFjxuDcuXN47LHHkJGRgeLiYkRERODBBx/EK6+8orVTZ8+exaRJk7B9+3b4+Phg9OjRSE1NRZ06/3SR2r59O5599lkcP34cTZo0wZw5czBmzBiTy8qAiIhqkhACeXl5KCgosHdRiByev78/QkNDJeMKpwiInAkDIiKqSbm5uSgoKEBwcDC8vb2ZEJZIghACJSUluHz5Mvz9/dXdaTSZev92mFFmRERUpaKiQh0MNWrUyN7FIXJoqsFRly9fRnBwsMHmM0McYpQZERH9Q9VnSHOaIiKSp/quVKe/HQMiIiIHxWYyItNY47vCgIiIiIhcHgMiIiIi0rN9+3YoFIpqj3SMjo7GBx98YJUy2RIDIgeRqyxFWmY+cpWl9i4KEVG15OXl4emnn0bTpk3h6emJiIgI3HfffVoJctPS0jBw4EA0bNgQ9erVQ2JiIt577z1UVFSo18nOzsb48eMRExMDLy8vxMbGYu7cuSgrK9N6v88//xxJSUmoX78+/P390bZtWyxcuFC9fN68eVAoFOjfv79eWd955x0oFAr06tXL5P0rLCzEyy+/jPj4eNSrVw+hoaHo27cv1qxZA82B23/++SceeeQRBAUFwdPTE3FxcXj11VdRUlKiXufatWt4+umn0aJFC3h5eSEyMhLTpk1TT3ZuTHZ2NhQKheTPnj17TN6nXr16GZzw3BVwlJkDWLUvB7PXHEOlANwUwMIhiRjWMdLexSIiMlt2dja6du0Kf39/vPPOO0hMTER5eTl+/fVXTJkyBSdPnsTatWvxyCOPYOzYsdi2bRv8/f3x22+/YcaMGUhPT8e3334LhUKBkydPorKyEp9++imaNWuGjIwMTJw4EcXFxXj33XcBAEuXLsX06dPx0UcfoWfPnrh16xaOHj2KjIwMrXKFhYVh27ZtOH/+vNYUUUuXLkVkpOnX24KCAnTr1g1KpRJvvPEGOnbsiDp16mDHjh2YMWMG7rnnHvj7+2PPnj3o27cv+vbti/Xr1yMkJAR//PEHnn/+eWzZsgXbtm2Dh4cHLl68iIsXL+Ldd99Fq1atcPbsWTz11FO4ePEivvvuO5PL9dtvv6F169Zar3GEopkEmUSpVAoAQqlUWnW7FwtKRMysn0XUzH9+ms5aLy4WlFj1fYjIeZSWlorjx4+L0tJSexfFbAMGDBCNGzcWRUVFesuuX78uioqKRKNGjcSQIUP0lq9bt04AEN98843s9t9++20RExOj/v2BBx4QY8aMMVimuXPniqSkJHHvvfeKN954Q/367t27RWBgoJg0aZLo2bOnCXsnxKRJk4SPj4+4cOGC3rIbN26I8vJyUVlZKVq1aiU6dOggKioqtNY5fPiwUCgUIjU1VfY9vv32W+Hh4SHKy8uNlicrK0sAEIcOHZJdR7X///3vf0VUVJTw9fUVw4YNE4WFhUIIIUaPHi0AaP1kZWWJbdu2CQDit99+E+3btxdeXl4iOTlZnDx5Ur3tM2fOiPvvv18EBwcLHx8f0aFDB7F582at94+KihLvv/+++ncA4pNPPhH9+/cX9erVEzExMWL16tXq5b179xZTpkzR2sbly5dF3bp1xW+//Sa5j4a+M6bev9lkZmdZ+cWo1EmNWSEEsvNLpP+AiMgMNdkcf+3aNfzyyy+YMmUKfHx89Jb7+/tj06ZNuHr1Kl544QW95ffddx/i4uKwcuVK2fdQKpUICAhQ/x4aGoo9e/bg7NmzRss3btw4LF++XP370qVLMXLkSHh4eBj9WwCorKzEN998g5EjRyI8PFxvef369VGnTh0cPnwYx48fx3PPPQc3N+3bbFJSEvr27Wt0H319fbVmW6iuzMxM/PDDD/j555/x888/Y8eOHUhNTQUAfPjhh0hOTsbEiRORm5uL3NxcREREqP/25Zdfxr///W/s378fderUwbhx49TLioqKMHDgQGzZsgWHDh1C//79cd999yEnJ8dgeebMmYOhQ4fiyJEjGDlyJIYPH44TJ04AACZMmIAVK1bg1q1b6vW/+uorNG7cGPfcc4/VjokuBkR2FhPoAzed0YLuCgWiA5l/hIiqZ9W+HHRN3YoRn+9F19StWLXP8E2qus6cOQMhBOLj42XX+euvvwAALVu2lFweHx+vXkdq+x9//DGefPJJ9Wtz586Fv78/oqOj0aJFC4wZMwbffvstKisr9f7+3nvvRWFhIXbu3Ini4mJ8++23Wjd3Y/Lz83H9+nWD+wcY38eWLVvK7mN+fj5ef/11PPHEEyaXCwC6dOmC+vXra/1oqqysxPLly5GQkIDu3btj1KhR6j5dfn5+8PDwgLe3N0JDQxEaGqqV3PDNN99Ez5490apVK8yaNQtpaWm4efMmgKoA78knn0RCQgKaN2+O119/HbGxsVi3bp3B8j788MOYMGEC4uLi8Prrr6NDhw74+OOPAQBDhgwBAPz444/q9ZcvX44xY8bYNBUFAyI7C/PzwsIhiXC/8yG7KxRYMCQBYX5edi4ZETmzXGWpum8iAFQK4KU1GTatKRJmzARlzroAcOHCBfTv3x8PP/wwJk6cqH49LCwM6enpOHbsGJ555hncvn0bo0ePRv/+/fWCorp16+Kxxx7DsmXLsHr1asTFxaFNmzY2K7O56xcWFmLQoEFo1aoV5s2bZ9bfrlq1CocPH9b60RQdHY0GDRqofw8LC8Ply5dN2rbmMVJNjaH626KiIrzwwgto2bIl/P39Ub9+fZw4ccJoDVFycrLe76oaonr16mHUqFFYunQpAODgwYPIyMgwa/5RS7BTtQMY1jESPeKCkJ1fguhAbwZDRFRthprjbXWNad68uboztJy4uDgAwIkTJ9ClSxe95SdOnECrVq20Xrt48SJ69+6NLl264LPPPpPcbkJCAhISEjB58mQ89dRT6N69O3bs2IHevXtrrTdu3Dh06tQJGRkZZtUOAUBQUBD8/f0N7h+gvY9t27bVW37ixAn1Oio3btxA//790aBBA6xduxZ169Y1q2wRERFo1qyZ7HLd7SkUCslaNGN/q6qhUf3tCy+8gM2bN+Pdd99Fs2bN4OXlhYceekhvJKC5JkyYgLvuugvnz5/HsmXLcM899yAqKqpa2zSGNUQOIszPC8mxjRgMEZFV2KM5PiAgACkpKVi0aBGKi4v1lhcUFKBfv34ICAjAv//9b73l69atw+nTp/Hoo4+qX7tw4QJ69eqF9u3bY9myZXp9cqSoAiqpMrRu3RqtW7dGRkYGRowYYc7uwc3NDcOHD8fXX3+Nixcv6i0vKirC7du3cddddyE+Ph7vv/++XtBx5MgR/Pbbb1r7WFhYiH79+sHDwwPr1q1DvXr1zCqXNXh4eGilPDDV7t27MWbMGDz44INITExEaGgosrOzjf6dbkqAPXv2aDUxJiYmokOHDvj888+xYsUKs4NXSzAgIiKqhezVHL9o0SJUVFTg7rvvxvfff4/Tp0/jxIkT+Oijj5CcnAwfHx98+umn+PHHH/HEE0/g6NGjyM7OxpdffokxY8bgoYcewiOPPALgn2AoMjIS7777Lq5cuYK8vDzk5eWp32/SpEl4/fXXsXv3bpw9exZ79uzB448/jqCgIL1mGZWtW7ciNzcX/v7+Zu/fm2++iYiICHTq1An//e9/cfz4cZw+fRpLly5F27ZtUVRUBIVCgS+//BLHjx/H0KFD8ccffyAnJwerV6/Gfffdh+TkZHXOH1UwVFxcjC+//BKFhYXqfTQnQLl69ar671Q/qn4+poiOjsbevXuRnZ2N/Px8k2uPmjdvjjVr1uDw4cM4cuQIRowYYdLfrl69GkuXLsVff/2FuXPn4o8//sDUqVO11pkwYQJSU1MhhMCDDz5o8r5YzOAYNFKz1bB7IiJd1hx2f7GgRKSdya/RVB4XL14UU6ZMEVFRUcLDw0M0btxY3H///WLbtm3qdXbu3ClSUlKEr6+v8PDwEK1btxbvvvuuuH37tnqdZcuW6Q0HV/2ofPfdd2LgwIEiLCxMeHh4iPDwcDF06FBx9OhR9TqqYedynnnmGZOH3QshREFBgZg1a5Zo3ry58PDwECEhIaJv375i7dq1orKyUr3e0aNHxdChQ0VAQICoW7euiI2NFa+88oooLi5Wr6Ma2i71k5WVZbQsqmH3Uj8rV66U3f/3339fREVFqX8/deqU6Ny5s/Dy8tIbdn/9+nX1eocOHdIqW1ZWlujdu7fw8vISERER4j//+Y/o2bOneOaZZ9R/IzXsftGiReJf//qX8PT0FNHR0WLVqlV6+3bjxg3h7e0tJk+ebPQ4WGPYveJO4ciIwsJC+Pn5qYdDEhHZys2bN5GVlYWYmBi7NJ8Q2ZJCocDatWsxePBgg+tlZ2cjNjYW+/btQ7t27Qyua+g7Y+r9m52qiYiIyGGUl5fj6tWreOWVV9C5c2ejwZC1sA8RERHRHbq5fDR/fv/99xovz1NPPSVbnqeeeqrGy1MTdu/ejbCwMOzbtw9LliypsfdlDREREdEduvl7NDVu3LjmCnLHa6+9JpnVG4DTdt8w1lOnV69eZudwsgYGRERERHcYyuVjD8HBwQgODrZ3MVwCm8yIiIjI5TEgIiJyUKbmgiFyddb4rrDJjIjIwXh4eMDNzQ0XL15EUFAQPDw8bDqpJZGzEkKgrKwMV65cgZubGzw8PCzeFgMiIiIH4+bmhpiYGOTm5kpOEUFE2ry9vREZGWnS1C5yGBARETkgDw8PREZG4vbt2xbNMUXkKtzd3VGnTp1q16IyICIiclAKhQJ169Y1e+ZzIjIfO1UTERGRy2NARERERC6PARERERG5PAZERERE5PIYEBEREZHLY0BERERELo8BEREREbk8BkRERETk8hgQERERkctjQEREREQujwERERERuTwGREREROTyGBARERGRy2NARERERC6PARERERG5PAZERERE5PIYEBEREZHLY0BERERELo8BEREREbk8BkRERETk8hgQOYhcZSnSMvORqyy1d1GIiIhcTh17F4CAVftyMHvNMVQKwE0BLBySiGEdI+1dLCIiIpfBGiI7y1WWqoMhAKgUwEtrMlhTREREVIMYENlZVn6xOhhSqRAC2fkl9ikQERGRC2JAZGcxgT5wU2i/5q5QIDrQ2z4FIiIickEMiOwszM8LC4ckwl1RFRW5KxRYMCQBYX5edi4ZERGR62CnagcwrGMkesQFITu/BNGB3gyGiIiIahgDIgcR5ufFQIiIiMhO2GRGRERELo8BEREREbk8BkRERETk8hgQERERkctjQEREREQuz64B0cKFC9GxY0c0aNAAwcHBGDx4ME6dOqW1zs2bNzFlyhQ0atQI9evXx9ChQ3Hp0iWtdXJycjBo0CB4e3sjODgYL774Im7fvq21zvbt29GuXTt4enqiWbNmWL58ua13j4iIiJyEXQOiHTt2YMqUKdizZw82b96M8vJy9OvXD8XFxep1nn32Wfz0009YvXo1duzYgYsXL2LIkCHq5RUVFRg0aBDKysqQlpaG//u//8Py5cvx6quvqtfJysrCoEGD0Lt3bxw+fBjTp0/HhAkT8Ouvv9bo/hIREZFjUgghhPHVasaVK1cQHByMHTt2oEePHlAqlQgKCsKKFSvw0EMPAQBOnjyJli1bIj09HZ07d8bGjRtx77334uLFiwgJCQEALFmyBDNnzsSVK1fg4eGBmTNnYv369cjIyFC/1/Dhw1FQUIBffvnFpLIVFhbCz88PSqUSvr6+1t95IiIisjpT798O1YdIqVQCAAICAgAABw4cQHl5Ofr27ateJz4+HpGRkUhPTwcApKenIzExUR0MAUBKSgoKCwvx559/qtfR3IZqHdU2pNy6dQuFhYVaP0RERFQ7OUxAVFlZienTp6Nr165ISEgAAOTl5cHDwwP+/v5a64aEhCAvL0+9jmYwpFquWmZoncLCQpSWlkqWZ+HChfDz81P/REREVHsfiYiIyDE5TEA0ZcoUZGRk4JtvvrF3UQAAs2fPhlKpVP+cO3fO3kUiIiIiG3GIucymTp2Kn3/+GTt37kSTJk3Ur4eGhqKsrAwFBQVatUSXLl1CaGioep0//vhDa3uqUWia6+iOTLt06RJ8fX3h5SU9f5inpyc8PT2rvW9ERETk+OxaQySEwNSpU7F27Vps3boVMTExWsvbt2+PunXrYsuWLerXTp06hZycHCQnJwMAkpOTcezYMVy+fFm9zubNm+Hr64tWrVqp19Hchmod1TaIiIjItdl1lNnkyZOxYsUK/Pjjj2jRooX6dT8/P3XNzaRJk7BhwwYsX74cvr6+ePrppwEAaWlpAKqG3d91110IDw/H22+/jby8PIwaNQoTJkzAggULAFQNu09ISMCUKVMwbtw4bN26FdOmTcP69euRkpJiUlk5yoyIiMj5mHr/tmtApFAoJF9ftmwZxowZA6AqMePzzz+PlStX4tatW0hJScEnn3yibg4DgLNnz2LSpEnYvn07fHx8MHr0aKSmpqJOnX9aBLdv345nn30Wx48fR5MmTTBnzhz1e5iCAREREZHzcYqAyJkwICIiInI+TpmHiIiIiMgeGBARERGRy2NARERERC6PAZGTyFWWIi0zH7lK6czaREREZDmHSMxIhq3al4PZa46hUgBuCmDhkEQM6xhp72IRERHVGqwhcnC5ylJ1MAQAlQJ4aU0Ga4qIiIisiAGRg8vKL1YHQyoVQiA7v8Q+BSIiIqqFGBA5uJhAH7jp5K90VygQHehtnwIRERHVQgyIHFyYnxcWDkmE+52s3u4KBRYMSUCYn/SktERERGQ+dqp2AsM6RqJHXBCy80sQHejNYIiIiMjKGBA5iTA/LwZCRERENsImMyIiInJ5DIiIiIjI5TEgIiIiIpfHgIiIiIhcHgMiIiIicnkMiIiIiMjlMSAiIiIil8eAiIiIiFweAyIiIiJyeQyIiIiIyOUxICIiIiKXx4CIiIiIXB4DIiIiInJ5DIiIiIjI5TEgIiIiIpfHgIiIiIhcHgMiIiIicnkMiIiIiMjlMSAiIiIil8eAiIiIiFyeRQHRtm3brF0OIiIiIruxKCDq378/YmNj8cYbb+DcuXPWLhMRERFRjbIoILpw4QKmTp2K7777Dk2bNkVKSgq+/fZblJWVWbt8RERERDZnUUAUGBiIZ599FocPH8bevXsRFxeHyZMnIzw8HNOmTcORI0esXU4iIiIim6l2p+p27dph9uzZmDp1KoqKirB06VK0b98e3bt3x59//mmNMhIRERHZlMUBUXl5Ob777jsMHDgQUVFR+PXXX/Gf//wHly5dwpkzZxAVFYWHH37YmmUlIiIisgmFEEKY+0dPP/00Vq5cCSEERo0ahQkTJiAhIUFrnby8PISHh6OystJqhbWnwsJC+Pn5QalUwtfX197FISIiIhOYev+uY8nGjx8/jo8//hhDhgyBp6en5DqBgYEcnk9EREROwaIaIlfEGiIiIiLnY9MaIgA4deoUPv74Y5w4cQIA0LJlSzz99NNo0aKFpZskIiIisguLOlV///33SEhIwIEDB5CUlISkpCQcPHgQCQkJ+P77761dRiIiIiKbsqjJLDY2FiNHjsRrr72m9frcuXPx1VdfITMz02oFdBRsMiMiInI+pt6/Laohys3NxeOPP673+mOPPYbc3FxLNklERERkNxYFRL169cLvv/+u9/quXbvQvXv3ahfKleQqS5GWmY9cZam9i0JEROSyLOpUff/992PmzJk4cOAAOnfuDADYs2cPVq9ejfnz52PdunVa65K0VftyMHvNMVQKwE0BLBySiGEdI+1dLCIiIpdjUR8iNzfTKpYUCgUqKirMLpQjsnYfolxlKbqmbkWlxtF3Vyiwa1ZvhPl5VXv7REREZONh97Ul+7Q9ZeUXawVDAFAhBLLzSxgQERER1bBqT+5KlokJ9IGbQvs1d4UC0YHe9ikQERGRCzO5huijjz4yeaPTpk2zqDCuJMzPCwuHJOKlNRmoEALuCgUWDElg7RAREZEdmNyHKCYmxrQNKhT4+++/q1UoR2SrPES5ylJk55cgOtCbwRAREZGVWb0PUVZWllUKRtrC/LwYCBEREdkZ+xARERGRy7N4ctfz589j3bp1yMnJQVlZmday9957r9oFIyIiIqopFgVEW7Zswf3334+mTZvi5MmTSEhIQHZ2NoQQaNeunbXLSERERGRTFjWZzZ49Gy+88AKOHTuGevXq4fvvv8e5c+fQs2dPPPzww9YuIxEREZFNWRQQnThxQj25a506dVBaWor69evjtddew1tvvWXVAhIRERHZmkUBkY+Pj7rfUFhYGDIzM9XL8vPzrVMyIiIiohpiUR+izp07Y9euXWjZsiUGDhyI559/HseOHcOaNWvUk70SEREROQuLaojee+89dOrUCQAwf/589OnTB6tWrUJ0dDS+/PJLk7ezc+dO3HfffQgPD4dCocAPP/ygtXzMmDFQKBRaP/3799da59q1axg5ciR8fX3h7++P8ePHo6ioSGudo0ePonv37qhXrx4iIiLw9ttvW7LbtUaushRpmfnIVZbauyhEREQOwaIaoqZNm6r/7ePjgyVLllj05sXFxUhKSsK4ceMwZMgQyXX69++PZcuWqX/39PTUWj5y5Ejk5uZi8+bNKC8vx9ixY/HEE09gxYoVAKoyVPbr1w99+/bFkiVLcOzYMYwbNw7+/v544oknLCq3M1u1Lwez1xxDpQDcFMDCIYkY1jHS3sUiIiKyK4vzEAFAWVkZLl++jMrKSq3XIyNNu8EOGDAAAwYMMLiOp6cnQkNDJZedOHECv/zyC/bt24cOHToAAD7++GMMHDgQ7777LsLDw/H111+jrKwMS5cuhYeHB1q3bo3Dhw/jvffec7mAKFdZqg6GAKBSAC+tyUCPuCBmyyYiIpdmUZPZX3/9he7du8PLywtRUVGIiYlBTEwMoqOjTZ7zzFTbt29HcHAwWrRogUmTJuHq1avqZenp6fD391cHQwDQt29fuLm5Ye/evep1evToAQ8PD/U6KSkpOHXqFK5fv27Vsjq6rPxidTCkUiEEsvNL7FMgIiIiB2FRDdHYsWNRp04d/PzzzwgLC4NCobB2uQBUNZcNGTIEMTExyMzMxEsvvYQBAwYgPT0d7u7uyMvLQ3BwsNbf1KlTBwEBAcjLywMA5OXl6QVpISEh6mUNGzaUfO9bt27h1q1b6t8LCwutuWt2ERPoAzcFtIIid4UC0YHe9isUERGRA7AoIDp8+DAOHDiA+Ph4a5dHy/Dhw9X/TkxMRJs2bRAbG4vt27ejT58+Nn3vhQsXYv78+TZ9j5oW5ueFhUMS8dKaDFQIAXeFAguGJLC5jIiIXJ5FAVGrVq3skm+oadOmCAwMxJkzZ9CnTx+Ehobi8uXLWuvcvn0b165dU/c7Cg0NxaVLl7TWUf0u1zcJqMrG/dxzz6l/LywsREREhLV2xW6GdYxEj7ggZOeXIDrQm8EQERERzOhDVFhYqP556623MGPGDGzfvh1Xr17VWmbLpqXz58/j6tWrCAsLAwAkJyejoKAABw4cUK+zdetWVFZWqtMCJCcnY+fOnSgvL1evs3nzZrRo0UK2uQyo6szt6+ur9VNbhPl5ITm2EYMhIiKiOxRCCGF8NcDNzU2rr5AQQq/vkOq1iooKk968qKgIZ86cAQC0bdsW7733Hnr37o2AgAAEBARg/vz5GDp0KEJDQ5GZmYkZM2bgxo0bOHbsmHr4/YABA3Dp0iUsWbJEPey+Q4cO6mH3SqUSLVq0QL9+/TBz5kxkZGRg3LhxeP/9980aZVZYWAg/Pz8olUqHCY5ylaXIyi9GTKCP0eDGnHWJiIhqC1Pv3yYHRDt27DD5zXv27GnSetu3b0fv3r31Xh89ejQWL16MwYMH49ChQygoKEB4eDj69euH119/Xd0pGqhKzDh16lT89NNPcHNzw9ChQ/HRRx+hfv366nWOHj2KKVOmYN++fQgMDMTTTz+NmTNnmrw/gOMFRObkE2LuISIiclVWD4g05eTkICIiQrKG6Ny5cybnIXImjhQQ5SpL0TV1q95osV2zeuvV/pizLhERUW1j6v3bojxEMTExuHLlit7r165ds3oeItJnTj4h5h4iIiIyzqKASKr/EFDVJ6hevXrVLhQZpsonpEkun5A56xIREbkqs4bdq4ahKxQKzJkzB97e/9xUKyoqsHfvXtx1111WLSDpMyefEHMPERERGWdWQHTo0CEAVTVEx44d05oOw8PDA0lJSXjhhResW0KSZE4+IeYeIiIiMsyiTtVjx47Fhx9+aPfOxTXJkTpVExERkWlMvX9blKl62bJlFheMiIiIyNFYFBAVFxcjNTUVW7ZsweXLl1FZWam1/O+//7ZK4YiIiIhqgkUB0YQJE7Bjxw6MGjXKprPdExEREdUEiwKijRs3Yv369ejatau1y0Mm4DQcRERE1mVRQNSwYUMEBARYuyxkAk7DQUREZH0WJWZ8/fXX8eqrr6KkhNmOa1KuslQdDAFApQBeWpOBXGWpfQtGRETk5CyqIfr3v/+NzMxMhISEIDo6GnXr1tVafvDgQasUjrQZmoaDTWdERESWsyggGjx4sJWLQaZQTcOhO1Erp+EgIiKqHosSM7oiR0nMuGpfjt40HOxDREREJM0miRn/+OMPtG/fHu7u7pLLb926hR9//BGPPPKIeaUlk3EaDiIiIuszq1N1cnIyrl69qv7d19dXKwljQUEBHn30UeuVjiSF+XkhObYRgyEiIiIrMSsg0m1dk2ptYwscERERORuLht0bwqzVNStXWYq0zHwOvSciIqoGi0aZkWNgkkYiIiLrMDsgOn78OPLy8gBUNY+dPHkSRUVFAID8/Hzrlo5kySVp7BEXxL5FREREZjI7IOrTp49WP6F7770XQFVTmRCCTWY1hEkaiYiIrMesgCgrK8tW5SAzMUkjERGR9ZgVEEVFRZm18cmTJ+O1115DYGCgWX9HxoX5eWHhkES9JI2sHSIiIjKfTTNV+/r64vDhw2jatKmt3qLGOEqmal25ylImaSQiIpJhk0zV5mJOItsL8/NiIERERFRNVs9DRERERORsGBARERGRy2NARERERC6PARERERG5PJsGRI899phDjcgiIiIikmJRQFRZWSn7ek5Ojvr3xYsXMwcREREROTyzAqLCwkI88sgj8PHxQUhICF599VVUVFSol1+5cgUxMTFWLyRZJldZirTMfOQqS+1dFCIiIodmVh6iOXPm4MiRI/jf//6HgoICvPHGGzh48CDWrFkDDw8PAMw95ChW7ctRT/7qpgAWDknEsI6R9i4WERGRQzKrhuiHH37Ap59+ioceeggTJkzA/v37ceXKFdx33324desWAHByVweQqyxVB0NA1XxnL63JYE0RERGRDLMCoitXrmjNZxYYGIjffvsNN27cwMCBA1FSUmL1ApL5svKLtSZ9BYAKIZCdb9vPh010RETkrMwKiCIjI3HixAmt1xo0aIBNmzahtLQUDz74oFULR5aJCfSBm05FnbtCgehAb5u956p9OeiauhUjPt+LrqlbsWpfjvE/IiIichBmBUT9+vXDsmXL9F6vX78+fv31V9SrV89qBSPLhfl5YeGQRLjfab50VyiwYEiCzeY8O3LuOmZ9zyY6IiJyXmZ1qp4/fz4uXrwouaxBgwbYvHkzDh48aJWCUfUM6xiJHnFByM4vQXSgt82CoU93ZGLhxpN6r6ua6DjxLBEROQOzAqKGDRuiYcOGsssbNGiAnj17VrtQZB1hfl42DUg+3SkdDAG2b6IjIiKyJrMTM96+fRvvvPMO2rVrh/r166N+/fpo164d3n33XZSXl9uijOSAcpWlSJUJhtwAmzbRERERWZtZNUSlpaX417/+hfT0dPTt2xc9evQAAJw4cQIzZ87EunXrsGnTJvYlcgFZ+cWQSjmlALB2ShckRcjXJBIRETkaswKi1NRUnDt3DocOHUKbNm20lh05cgT3338/UlNTMW/ePGuWkRyQaiSb7vD+WQPiGQwREZHTMavJ7JtvvsF7772nFwwBQFJSEt59912sWLHCaoUjx6U7ks1NAcweGI8ne8bauWRERETmM6uG6OzZs7j77rtll3fu3Flrcleq3WpqJBsREZGtmRUQ+fr64vLly4iIiJBcnpeXhwYNGlilYOQcbD2SjYiIqCaY1WTWu3dvLFiwQHZ5amoqevfuXe1CEREREdUks2qI5s6di06dOqFz58547rnnEB8fDyEETpw4gffffx/Hjx/Hnj17bFVWIiIiIpswKyBq1aoVNm/ejPHjx2P48OHqme2FEIiPj8emTZvQunVrmxSUiIiIyFbMCoiAqo7Tf/75Jw4fPoy//voLABAXF4e77rrL2mUjIiIiqhFmB0SFhYWoX78+7rrrLq0gqLKyEkVFRfD19bVm+YiIiIhszqxO1WvXrkWHDh1w8+ZNvWWlpaXo2LEjfvrpJ6sVjoiIiKgmmBUQLV68GDNmzIC3t/6knT4+Ppg5cyb+85//WK1wpC9XWYq0zHzkKkvtXRQiIqJaw6yAKCMjA7169ZJd3qNHDxw7dqy6ZSIZq/bloGvqVoz4fC+6pm7Fqn1MgklERGQNZgVE169fx+3bt2WXl5eX4/r169UuFOnLVZZi9ppj6rnDKgXw0poM1hQRERFZgVkBUXR0NPbv3y+7fP/+/YiKiqp2oUhfVn6x3kSqFUIgO7/EPgUiIiKqRcwKiIYMGYKXX34Zly5d0luWl5eHV155BUOHDrVa4VyVVD8h1ezymtwAeHuY9RESERGRBIUQQhhfrcqNGzeQnJyMnJwcPPbYY2jRogUA4OTJk/j6668RERGBPXv21Mr5zAoLC+Hn5welUmnT1AKr9uWom8bcFMDCIYkY1jFSveylNRmo0PjIdNchIiKif5h6/zYrIAIApVKJ2bNnY9WqVer+Qv7+/hg+fDjefPNNNGzYsHold1A1ERDlKkvRNXWrVtOYu0KBXbN6qydQPXLuOgZ/kgZhYB1HkKssRVZ+MWICfRyqXERE5FpMvX+bnZjRz88Pn3zyCRYtWoT8/HwIIRAUFKSexkPT7t270aFDB3h6epr7Ni7JUD8hVVBRXFYB3RBWdx17M1TLRURE5Igs7oCiUCgQFBSE4OBgyWAIAAYMGIALFy7IbmPnzp247777EB4eDoVCgR9++EFruRACr776KsLCwuDl5YW+ffvi9OnTWutcu3YNI0eOhK+vL/z9/TF+/HgUFRVprXP06FF0794d9erVQ0REBN5++23LdtrGpPoJuSsUiA70Nmsde+JoOCIickY27ZFrrDWuuLgYSUlJWLRokeTyt99+Gx999BGWLFmCvXv3wsfHBykpKVqZskeOHIk///wTmzdvxs8//4ydO3fiiSeeUC8vLCxEv379EBUVhQMHDuCdd97BvHnz8Nlnn1lnJ60ozM8LC4ckwv1OgOmuUGDBkAStmh9T1rEnjoYjIiJnZHYfInM0aNAAR44cQdOmTY0XRKHA2rVrMXjwYABVwVR4eDief/55vPDCCwCq+i+FhIRg+fLlGD58OE6cOIFWrVph37596NChAwDgl19+wcCBA3H+/HmEh4dj8eLFePnll5GXlwcPDw8AwKxZs/DDDz/g5MmTJu9LTXWqBqpqWbLzSxAd6C0b6Jiyjj2Y0g+KiIiopph6/3bYMdtZWVnIy8tD37591a/5+fmhU6dOSE9PBwCkp6fD399fHQwBQN++feHm5oa9e/eq1+nRo4c6GAKAlJQUnDp1ymGTSIb5eSE5tpHBAMKUdezB0WuwiIiIpJjdqbqm5OXlAQBCQkK0Xg8JCVEvy8vLQ3BwsNbyOnXqICAgQGudmJgYvW2olsmNirt16xZu3bql/r2wsLAae+NahnWMRI+4IIeswSIiIpJi0xoiuc7WzmDhwoXw8/NT/0RERNi7SE7FUWuwiIiIpNi1U7UhoaGhAKCXFfvSpUvqZaGhobh8+bLW8tu3b+PatWta60htQ/M9pMyePRtKpVL9c+7cOYv3hYiIiBybTQOiGzdumNShWkpMTAxCQ0OxZcsW9WuFhYXYu3cvkpOTAQDJyckoKCjAgQMH1Ots3boVlZWV6NSpk3qdnTt3ory8XL3O5s2b0aJFC4NJJD09PeHr66v1Q0RERLWTWX2I7rnnHpPW27p1q0nrFRUV4cyZM+rfs7KycPjwYQQEBCAyMhLTp0/HG2+8gebNmyMmJgZz5sxBeHi4eiRay5Yt0b9/f0ycOBFLlixBeXk5pk6diuHDhyM8PBwAMGLECMyfPx/jx4/HzJkzkZGRgQ8//BDvv/++ObtOREREtZhZAdH27dsRFRWFQYMGoW7dutV+8/3796N3797q35977jkAwOjRo7F8+XLMmDEDxcXFeOKJJ1BQUIBu3brhl19+Qb169dR/8/XXX2Pq1Kno06cP3NzcMHToUHz00Ufq5X5+fti0aROmTJmC9u3bIzAwEK+++qpWriIiIiJybWblIXrnnXewbNkyXL16FSNHjsS4ceOQkJBgy/I5jJrMQ0RERETWYZM8RC+++CKOHz+OH374ATdu3EDXrl1x9913Y8mSJRyWTkRERE6rWpmqS0pKsHr1aixatAjHjx/HxYsXa23tCWuIiIiInE+NZKo+ePAgduzYgRMnTiAhIcEq/YqIiIiIaprZAdHFixexYMECxMXF4aGHHkJAQAD27t2LPXv2wMuLSfiIiIjI+Zg1ymzgwIHYtm0b+vXrh3feeQeDBg1CnToOO/sHERERkUnM6kPk5uaGsLAwBAcHG5yW4+DBg1YpnCNhHyIiIiLnY+r926zqnblz51a7YGS6XGUpsvKLERPowznBiIiIbKhao8xcSU3XEK3al4PZa46hUgBuCmDhkEQM6xhp8/e1JQZ4RERU02xSQyRnx44dKC4uRnJyssH5wcg0ucpSdTAEAJUCeGlNBnrEBTltIFEbAzwiIqo9zBpl9tZbb2HOnDnq34UQ6N+/P3r37o17770XLVu2xJ9//mn1QrqarPxidTCkUiEEsvNL7FOgapIL8HKVpfYtGBER0R1mBUSrVq3Smqrju+++w86dO/H7778jPz8fHTp0wPz5861eSFcTE+gDN4k+60cvFNR4WayhtgV4RERU+5gVEGVlZaFNmzbq3zds2ICHHnoIXbt2RUBAAF555RWkp6dbvZCuJszPCzP7x+u9/vbGU05ZqyIV4LkrFIgO9LZPgYiIiHSYFRDdvn0bnp6e6t/T09PRpUsX9e/h4eHIz8+3XulcWGITP73XnLVWJczPCwuHJML9TqoGd4UCC4YkOG1/KCIiqn3M6lQdGxuLnTt3omnTpsjJycFff/2FHj16qJefP38ejRo1snohXZGqVkWzqcmZa1WGdYxEj7ggZOeXIDrQm8EQERE5FLMCoilTpmDq1Kn4/fffsWfPHiQnJ6NVq1bq5Vu3bkXbtm2tXkhXpKpVeWlNBiqEqBW1KmF+Xk5dfiIiqr3MCogmTpwId3d3/PTTT+jRo4deosaLFy9i3LhxVi2gK2OtChERUc1gYkYTceoOIiIi52Pq/dvs2e6JiIiIahuzAqLy8nLMmDEDzZo1w913342lS5dqLb906RLc3d2tWkAiIiIiWzMrIHrzzTfx3//+F0899RT69euH5557Dk8++aTWOmyBIyIiImdjVqfqr7/+Gl988QXuvfdeAMCYMWMwYMAAjB07Vl1bpFBIpFgmp8DJV4mIyFWZVUN04cIFrak7mjVrhu3btyMtLQ2jRo1CRUWF1QtINWPVvhx0Td2KEZ/vRdfUrVi1L8cu5chVliItM98pM3ITEZHzMquGKDQ0FJmZmYiOjla/1rhxY2zbtg29e/fGmDFjrFw8qglyk6/GhzZAcVlFjdUYrdqXoy6HmwJYOCQRwzpG2vx9iYiIzKohuueee7BixQq918PDw7F161ZkZWVZrWBUc+QmXx28KK3GaozkgjLWFBERUU0wq4Zozpw5OHnypOSyxo0bY8eOHdi8ebNVCkY1R2qaEABQ/aoKTnrEBdmspkguKMvOL2F/JiIisjmzaoiioqKQkpIiuzw8PByjR4+udqGoZulOvqo7Mz1g+4llVUGZJmeeu42IiJyLWTVEKqtXr8bKlSvx119/AQDi4uIwYsQIPPTQQ1YtHNUczWlCvD3c8OAnaTU6sWxtnLuNiIich1lTd1RWVuLRRx/F6tWrERcXh/j4eADAiRMncObMGTz88MNYuXJlrRx672pTd6zal6MXnNREB+dcZSnnbiMiIqsx9f5tVg3Rhx9+iN9++w3r1q1T5yJSWbduHcaOHYsPP/wQ06dPt6jQ5DjsObGsAJN7EhFRzTKrhqhNmzaYPn267Iz2X375JT788EMcPXrUagV0FK5WQ2QPHHZPRETWZpPJXU+fPo2+ffvKLu/bty9Onz5tziapFrIkuSKH3RMRkT2Z1WTm5eWFgoICREZKP7UXFhaiXr16VikYOSdLa3k47J6IiOzJrBqi5ORkLF68WHb5okWLkJycXO1CkXOqTi0Ph90TEZE9mRUQvfzyy/jyyy/xyCOP4I8//kBhYSGUSiX27NmDhx9+GEuXLsXLL79sq7KSgzNUy2OMbi4kDrsnIqKaZFaTWZcuXbBq1So88cQT+P7777WWNWzYECtXrkTXrl2tWkByHlIZr82p5bHnyDYiInJtZo0yUykpKcGvv/6q7kAdFxeHfv36wdu79jZvcJSZaeyVv4iIiEiKqfdvswKirVu3YurUqdizZ4/eRpVKJbp06YIlS5age/fulpfcQTEgMh2TKxIRkaOwybD7Dz74ABMnTpTcoJ+fH5588km899575peWapUwPy8kxzZiMERERE7DrIDoyJEj6N+/v+zyfv364cCBA9UuFBEREVFNMisgunTpEurWrSu7vE6dOrhy5Uq1C0XVY0liRCIiIldm1iizxo0bIyMjA82aNZNcfvToUYSFhVmlYGQZTn9BRERkPrNqiAYOHIg5c+bg5s2bestKS0sxd+5cvUlfqeZYkhiRtUlERERm1hC98sorWLNmDeLi4jB16lS0aNECAHDy5EksWrQIFRUVTMxoR+ZOf8HaJCIiqim5ylJk5RcjJtDHIQfdmBUQhYSEIC0tDZMmTcLs2bOhGrGvUCiQkpKCRYsWISQkxCYFJePMSYwoV5vUIy7IIU9UIiJyXs7wAG5WQAQAUVFR2LBhA65fv44zZ85ACIHmzZujYcOGtigfmUE1/YVuYkSpAIeTqRIRUU1wlgdwswMilYYNG6Jjx47WLAtZganTX1R3mg0iIiJTOMsDuFmdqsk5mJIY0VkmU2WnbyIi56Z6ANfkiA/gFtcQkfNz9MlUnaHNmYiIDDOnO4c9WTS5qyviXGY1K1dZiq6pW/Wa9HbN6u1wXyIiIjLOXvNcmnr/Zg0R2YWx4ZfO0uZMRESmCfPzcujrNwMiqnGmNIWx07frcvRcJURUO7FTtYuwRudka23DlGzaUp2+Zwxogaz8YnawrsVW7ctB19StGPH5XnRN3YpV+3LsXSQichGsIXIB1uicbK0OzuY0hWl2+j56vgBvbTypfv+Z/eOR2MSPtQi1iLPkKiGi2ok1RLWcJfOb2WIbKuYOvwzz80J0oDfe+uWk1vsv3HiStQi1jKFguaYx3QOR7Tna94wBUS1njZuMNW9UluQ/knp/leoEZ+RYHCVXiTnNdo52QSdyFo7YPM4ms1rOx8MdCgUgqtE52dodnM3NfyT1/po4+qx2cIRcJeY028k1I7NTOJFhjto8zoCoFlNdsHWDIXNvMra4UZkz/FL3/XVx9FntYe9koab2cZO7oBeUlKubd5lMlEjagbPXHTKtCgMiJ2LOk6fuBRuoah9dMzkZSRHmT8Rr7xuVVgfrCwV4e+Mph854SpazZ64SU2tD5QKn1I0noXrZUZ56iRzJqn05mPX9Mb3XHeHBlgGRkzB3lJfUBbsSQElZpcVlMPdGZe2mA9X7J8c2wv1J4Q475Qg5L1NrQ6UCJ6lmXUd46iVyFKoHdd16fjcFHOLBlgGRE7CkvdXeiQ1rYh4yofe1Iqo+U2tDJ3SLwRe/Z6ES/+TJUqWGUHGEp14iRyE3QOaj4W1xb1J4zRdIh8OPMps3bx4UCoXWT3x8vHr5zZs3MWXKFDRq1Aj169fH0KFDcenSJa1t5OTkYNCgQfD29kZwcDBefPFF3L59u6Z3xWKWjPKy52z21hymL8URRydQ7aKqiZT6vqjOv89+zwIUwBPdm2LXrN54skes3b5zRM5AbiRp+2jzu3HYglPUELVu3Rq//fab+vc6df4p9rPPPov169dj9erV8PPzw9SpUzFkyBDs3r0bAFBRUYFBgwYhNDQUaWlpyM3NxeOPP466detiwYIFNb4vlrC0tsde/X5sOQ+ZVLA1+/tj8PGsg/ZRDXnzIZuSOv++3JWFsd2iAdi/rx2RI3OEkaSGOEVAVKdOHYSGhuq9rlQq8eWXX2LFihW45557AADLli1Dy5YtsWfPHnTu3BmbNm3C8ePH8dtvvyEkJAR33XUXXn/9dcycORPz5s2Dh4dHTe+O2apzEtmjg6otm+vk+kZNXXGIo3rI5kwJ9h19Aksie3LkhwaHbzIDgNOnTyM8PBxNmzbFyJEjkZNT1URy4MABlJeXo2/fvup14+PjERkZifT0dABAeno6EhMTERISol4nJSUFhYWF+PPPP2Xf89atWygsLNT6sadhHSOxa1ZvrJzYGbtm9Tbrpl/TyeNs2VwnVeWqwiSNZGuOkjySyJkZapK2J4evIerUqROWL1+OFi1aIDc3F/Pnz0f37t2RkZGBvLw8eHh4wN/fX+tvQkJCkJeXBwDIy8vTCoZUy1XL5CxcuBDz58+37s5UkyVPntbu3GzqyDFbPQUYy0nEUT2uqaaSITp6lT8RWc7hA6IBAwao/92mTRt06tQJUVFR+Pbbb+HlZbuL0OzZs/Hcc8+pfy8sLERERITN3s8WrJ0N1NzgylZNB6pg60D2dUz75hBH9bi4mhjRqMmRq/yJalptyszuFE1mmvz9/REXF4czZ84gNDQUZWVlKCgo0Frn0qVL6j5HoaGheqPOVL9L9UtS8fT0hK+vr9aPs7HmHGS2Hjlm7L11m/zC/Lxwb1I4R/W4OHudl45a5U9Uk2rbiF+nC4iKioqQmZmJsLAwtG/fHnXr1sWWLVvUy0+dOoWcnBwkJycDAJKTk3Hs2DFcvnxZvc7mzZvh6+uLVq1a1Xj5a5I1+zvYayZyY1+46vStIudnr/OSyNXZ8yHZVhw+IHrhhRewY8cOZGdnIy0tDQ8++CDc3d3x6KOPws/PD+PHj8dzzz2Hbdu24cCBAxg7diySk5PRuXNnAEC/fv3QqlUrjBo1CkeOHMGvv/6KV155BVOmTIGnp6ed9862rNm52R6dSU39wvFp3TlZo7M/OzkT2UdtfBhx+D5E58+fx6OPPoqrV68iKCgI3bp1w549exAUFAQAeP/99+Hm5oahQ4fi1q1bSElJwSeffKL+e3d3d/z888+YNGkSkpOT4ePjg9GjR+O1116z1y7VKGv1d7BHZ1Jb5jMi+7JWvx9rn5e1qT8EkS3ZezYEW1AIITFUh/QUFhbCz88PSqXSKfsTWUuusrTGOpPmKkvRNXWr3hdu16zevFk5MVt8rtY4L2u6czaRs1u1L0fvYcTc70xNPISYev92+Boish5rnHg1mXSOQ5xrJ1vU/FV34mFrj8i0FGuoyJnotkAAQFpmvknnb66yFMt2ZeHz37Mg4BgPIQyIXISzPv1Wt8mPNxjHY++qdqnvQkSAt92bZ531O0quTfUwYs75q7muir0eQjQ5fKdqV2KrjNLOPhrA0k7TtW1IaG3hiBMP+3i427VztrN/R8m1mXP+6q6rqUIIHDx73callccaIgdhy6dDV+yc7ChNICTN0SYeLimrtGvzrCt+R6n2MOf8lVpX09QVh1B067ZdakcZEDkAW9+87d1EYQ+8wTg+R5t4ODm2kd0yULvid5RqD3POX6l1NQnY7+GVTWYOwFb5HFRNcACs2kRR05PFWsLHw13ydW8P1zvlneHzqinGmuvsldPKns2IRNVlzvmru65CYrJue+UzYg2RA7DF06FUE9yuWb1r7dBk3c7TxWUVkuuVlFXWcMnsy1E/L3ty1LnIHLVcRKYw5/zVXNfbww0PfpLmELWjrve47ICs/XQo1wQHoFpPv47a8VOq8zQzGDvu52UJa9dyOWp2c0ctF5EpzDl/VesmRTR0mNpR1hA5CGs+Hdqq/4wj9suRu+nvmtXb5XMYOeLnZQnWcpE9qWqffTzcUVxWwRQeNuAotaMMiByItTqZ2qqDpi07flqaL8jQTd9RvmT2Uhs66nK0IFmDpdcXqXw5DMptwx6DLHSxyawWslUHTVttV7fJ69MdmSY3jxhrGnPlJghH6ahbneYuWw84cMbmQzKN6jP+dGemRfnI5PLlOHPTMxnGGqJayla1I9berlQNwMKNJwGY9iRm6vQerpqx2t61ZNVt7rJ2LZcjThdA1idVswNI1zDKXRsM5ctRJRAc1Mb498lVrz2A8+07A6JazFZVkNbcrqGLjqnNI8Zu+q7eB8VeVdHWaO6y5nx2jjpdAFlPrrIU+7OvyWZCBrT70Rm6NhjLl2NKAkFXvvY4476zyYxMYqsmBqkmL02mNo/INY3VppFWzsbS5i7dc21Yx0jsmtUbKyd2xq5ZvS26qBqbLsAeOU/IMnLXIlXT+9MrDxvMhKyqYTR2bdBtctalSiAody1x5WuPs+47a4jIKFtH+uO7xeDLXVmSFzFzm0d0q2hry0grZ2RJc5fcuVbdWi5DNZH26GjubE0J9qY6XscuKPHWxpN654ehgFeTZg1jWma+0WuDZu3z6cuFePXH43rrrz+ai0FtwkyaokIz+K7Nn/+Bs9ed8rrLgIgMsuUoH90mjBGdIhDVyAdvbzyFCiHgpgBmDGhh8vtI3Ux7xAU5/UgrZ7XzrysQGsddoYBec5dmYADAquea5rblmj/cUHWOZeUXA0CNXKydsSnBnkzpD2Rsfiyg6rNeMzkZSRENAZgesKuC8ehAb8xbd1zvfd5YfwILNpzQ+xzltn/0fAFGfrFH9vN39mB51b4czPr+mN7rznDdZZOZizK1CcyWo3x0L3Ir9p4DBDCjfwsoUHUheWvjSYOjQlT7ceTcddlklI4w0spR2aopVPX5ap46CgH0iAtS/647unCZRC2hpeea7rZ3/nVF6zxwUwBPdG+KmQPi8dbGk2aPQLKUszYl2Iuxmh/V+WGs6R0AKqGdqd7cUZiGmtCkPkep7T/VqylS79RwSf2dVJJZZyL1vQeqvm/OcN1lDZELMucJ1Va5bOSe6BZuPAkFoP5CGaol0NwPhQJatREA8xEZY8uaCqnPtxJQV5lLBQZf/J5llXPNULJOzelrAKBr6tYazXHEJlzzGKv50Tw/NJve3e5cD4TMuirmXhtU668/mos31p/QWib1OWpu/+iFAqRuPKkXLKia3TpGN3T6nFtyn9dHw9vi3qTwmi+QmVhD5GLMfUK1VS4bVROJFKkLhm4tge5+6AZDQNXJrZrM1RXzERmq/bF1TYWx/FByAdOEbk2rfa4ZCzpU54Gtaj8N4ZQyxmmet4ZqflTnx86/rqBr6taqVAoCeKJHDHbPugepQ02fbNSca0OYnxcGtQkz+XNUNbe9tfGk5HUKqGp2G7woTfJ8PJB93aRyOQK5z+uCk9SAsobIxVjyhGqLGpadf13RqgkyROpCI/ck4oaqGyvu/P/BT9Ikaz6k2umdve1ek7HaH1vXVBgbLi9X8zi2WzTGdouu1rlmaq2mXL+iXWeuQEDY5DywZhqB2kI1VF6hUOBCQalep+mZ/auaNStR9TnO6N8CbZr4S9byCQBf/p6NsV1jrHLdkrsmmPs5mtLHSW7x098cwpHzBRjXLcbhz5MwPy/M7B+vziWn8vbGU7g/Kdzhy8+AyMVY2gRmzVw2cu3MUuQuNHL78dnj7TDhvwfUT2JS1c5SwUJBSbm6OluhAGYNiMeTPWKtsr+2InexNqUjfE1M62HohmSsw7XUuWZqwGrqzUru4r1oWyYWbcs0uxnR1PKxCfcfqg64UteCSgHMWnMMuNP0pbgzyELze2lspFh1rlvGHirM+Rylvm9SzfwA9B4UhQA+/z0LX/yehVkD4pHYxM+hH9oSm/jpveYszcIMiFyMvZ9Qc5Wl+PnoReMjQhRV7c7toxvKVnNL7YeXRx3ZvkRyfVd0L8hCAAs3nAQE8GRPxwyKDF2sTan9sfZ5YOhJWi43lKEO18b2d2Z/wzcGU29WUhdvFXP6cJjbH8teyTIdSa6yVDYYUtH8LguhX9Ngq8De1NG1pn6OUt+3GQNaqGvDNMs+7/5WmPPjn3rbEDAvi7+9mPuZOFLNPAMiF2SvJ1S54bNA1VOR4s6XSHVzNtYJT2o/cpWlsl9GuWBM7oL81saTuP8ux6vmNXaxNvWCZK3zwNxgQK7/kFw+F0undzHlZmUsG7EpT7acgNYyWfnFJtUSa6puYK978zVn2g5zajmktiv5fbszklbVHLhgSAJ6xAVh7ro/DT40OvI5Zuwz0Tw2O/+64lApKBgQuaiafkI1NHxW80Jg7s1Zdz/knsSW7sqSTf4oR3NUlCMxdrE25yZR3fNAKhiYveaYwQu1XBAil8/FGtO7yNE9VrpMqW2ozs3TkZ6Oa9qxC0qDy609Ukw3cH+wbWOsPXRB8mZcnZonQw8Imt+3Vfty8NYvVcGQqjmwR1yQZPoJKY7cDCX3megeG83P1xGCPAZEVCPkbmpzBrXEQI1aAWt8EbSGup4vQOoG/aGupnDU0T+mXKzNrf2x9MYsWdsjgGW7s/DSwFaSf2MoCDG1v5Om6t4YdIdGqxKDmtqMaMnNs7ZPMmvsfMpVVnWeljJ7QLy60/TOv65YJbCXCty/P3hBvVx13sWHNkBxWQViAn0salI2tbZQapRs6oaTVf0YTbxYOer1SUX3M5E6NrrsHeQxIKIaIXfTGCjRRGINqm2O/GKPRcGQGxw3kZhkLVh//WzLptb+6PXPGRCPxMamddyUC1a+2JmFsV3lR8WYk8/FGrU4xqiOVXJsI9yfFG52TaVmDhxjN09nmWTW0iD50x2Z6gEKcueT3APSohFtMajNP03luoE9UNWR2liTly5TRnlVCIHBi9K0AlTNvFWmHANTawul1hPq/+ibM6glbguhNQLPUa9Pckz5DOwd5DEgIouYeiHSXK+mO3Ob8gWU87HOhdnR6NZqSM3vZArJ/jkb/umfo7qZ+Xi4q5+cdZsox3eLwee/Z2lt15TmxjC/qnwuCzacMKu/09ELBXhrQ1VTgy0CV1VwpMqHY+gc10oOiqocOHKBoLGZ2O39dKzJ0qSdn+7M1Bq1p3k+KXBn9GbPWNkHpCYNvfSOuerzMKfJS5exWkYV3eabXbN6Izm2kdH9NvQ+5qR8kKJ6cNQcmWlqLZIjkRtppxDQ6kNlz/OfARGZzdSLpdR65j5xVYfs/FUSfRM0uSsUaBfV0KZlswbNWjDdPjzxoQ3UczapSAWxxvrnqG5mKlKf97huMfjiTtOPiqlPepb0d8q5VvzP2GQj0zVYypRzXK/ZA//kwDG0PTn2fjpWsbSTeK6yFKkyzWCAxigpBfBkj1i9z31w23A8+Ema5DE3tclLrozGahmlWBKgmno+667nduf46JZMFfAD0BqZKeB4NYpycpWlOHD2OoQQmDkgXq9J2pFSUDAgIrNY2kZu6RNXdUhddCbceYLX7JugAIA7QZLUBcyRO77K9eEZvCgNqUP/uaHI3eDNeVJVbVv38w7z80LqUMtr/1S1PwfPXkelEOgQHSC7rrk3a0s+O1Pfw9TmEVNmYnekJlpLO4ln5RebVHPx1saTuD8pXKvWz9vDTR0MAfrH3NQmr4Nnr6Ohj/TnPaxjJOJDG2DwJ2kmlVMBWBSgmtp/T3c9zWuSm6Iqa/vYbtEI8/Mymm/JUenmmVLVEqr6iFmz76g1MCAis1SnjdweX2C5i5NU3wSpC5ijz0wuF9BoPkEChmeRt8aTs7G+HsaYOvzWnPPK0s/O1PcwtXnE0M1c98bnCCwdYWVqcF0p/mlOVf0Yu+Gbsm2FApi64pDBTurFZRWmNzdVs/ZRyNRB6wbpmtek+NAG2Jd9HR2jG2rV8Pp4uOslbHSUGkU5UvnGBKoC4t2z73GY810TAyIyS3XayO31BZbrXKz7uu46kkPKvz8GH886aB8lnTCypqkCGqkaCNUNRUAYvNlo1tDsOpOPVfvOGa7NUEg/Ocv19TAWiJhT62PqeVWd3ECmvoepzSNS23NDVT+1dmacRzVVU2lOM6bU383+/ph6+hwpbgogv+gmcpWlBkcSah5zqTINbhuOHw5dVNeomDKE25waUSEsS7th6PzX7XM2sXsMxt6ZkkPu71Sv6wZDjlKjKEfuQcBR05kADIjITJa2kTvDF1iXXALBqSsOOVRtkbop4M4IGRXNG4qxG7xmDY2qc3AjH0+8/cspvZojIarWl9p3SwIRc2p9TD2vqlNDac65a0rziNz2zOm0X9M1lZYm7TTWLKWaruLplYe19sOUYy5VphdSWiA7vwT5RTfx9MrDWu8l9Xnrvo/iTrWLVHxkyQOcXF4ubw93RAZ46/U5++z3LHyxKwszB8RrZa3WTAOg+7DjpgDWTE7W6yOoen9TEk/WBNk+nLCsKbImMCByUdX5oljaRu5MwVCushSZV4pkJ6B1tGHSSRENDfbjMZY5Vqpz8JrJyfhgeBKUpeV45Yd/phIw1KHTkkDE3NpEufNK85yubg2lOeeuXA2kpdvTZa9M2Jod7zV/NyYpoiFSJZKjNvH3UjdpAfr7YWpwqRvgqG78pn7ecs3lR88XqB8AzH2AU51714rLJPv0Pb3ysOzcZZUCelN4AFXfm33Z1yW3V1KmXQcnldeqf0IoNmbkQZgQRNsicFIFn7PWHFPvtwLAwqGJDnHNlMKAyAVZ42nTlJuAOes5EkMTTmqqEAIHsq/j3iTH2D9DNxRDy+SCGFWNk1RXCrkgx5JAxFjtgOpirTv031hfL1NqeQzdCEw9d82ZdNaS74K9+uNV5zohdb6lZebrfaekck5Zsk/m1khLBVbJsY1w/13m56DSbQaTe4gy1HdJ9be6Nbwdoxsa/T7J5bXacCxP63e5INqWtY+azfFCQHZuSkfBgMjFcN4lw6Q6Ahoy7ZtDKC677RBNZ4DhG4rcMkMdszX/r0nVD+TIuevIuVYChUKh7ldlSVOpKan+Nd/b2JBs1YhGQ2kerHEjqImmLHv0x5M7ppqZnE1perSkE7qlrFEjbW5AJlW7qoB+E7UmqYBJlVxVt4YqKaKhWbW7hpgyAtIa/SSlOo0PauMc9xYGRA7O2lWZpjxtWjpU2VGHppvD3GSO9ggorX2sdYMYuYu55oVc1Qygu1w11N/SG5PmyBy5i70pQ7JV53RybCPJ97fGg0FNPVzYoz+e3DF9YFEaAMuCv5rYj+rUSFvyvZLLOP3x8LZao95U3BUKrJmcjPVH8/DFrr9RKf7pID2sY6RkDZW5tbtypAZDWLufpKOPyjWGAZEDs8XJJfeU5u3hhrTMfBw7r6yacNCM93T2L4Emc/PyADWbTsBWx9pQThgA6sRxhghoT+xqzvGQ2q+IAG/Zz0HVXBlQvxilZbfNHpJsjWaommzKqun+eMa+B5YGf47ar9DS75Xc9VTVNFR067ZeAJgUUTWkfmy3aL3jIPe9Mbd2V8rMAfEmNXGrmPsZ14bWBzd7F4CkyZ1cucrSam1X9ZTmrqjqGaKZIXbE53uxUGKkg6H3tFU57SXMzwszB8QbTEGiu6ym0gnY+lir+lGoquk1z5EJ3WNMakasFFUdVA1RTYmhKrfcfvl4uMNN5oNQoKq5csTnezH+/w6YPSRZdSPQZO7naI1tmEP1+Zh7c9E93qaa0C3G4PdAFfyZy9L9sJXqfK+krqeqcy9XWYqIAG+smZyMlRM7Y9es3lpBljWOg+77uymAJ7o3xewB8f+8hqoJc5/sEWv073WZ8xkbekBwFqwhclC2fPo0Vhtgzns6SgJGa1m1Lwdv3ZmYEgBGdIrAsA4ROH+9VN0p0NQZuI0xt4pe7lgbys5rKamROF/cmbzUEM1qean9M7UmqEIIlJRVSiaNVNVWSZXF0JBkTZY030j1jbB3agnNaRE6RAeY1E+qR1yQwfNOt5OwHEdPDGiq6nYjkKr1kjrutsrQL5XpPczPy+QO4qq/P5B9HdO+OWRxHy9jrQ/O0J2CAZGDsnUHRNUFXSpDrCZD75mrLMW14jKny6AqR6rPyqo/zuPpe5pr3WBNqfY3FuxYUkUvNzmisey8ltKtpjeW0Vpx5/2lbggzB8Qj3K+e5JP4msnJsud6cmwjreC9pKwSV4tvYeqKQ5JlkBqSDEh/HuY038h9XvZsApKaFkFzuhapmo9Za46p8+5IBUgA9DoJS3GkqUaqy9i11pTvquZ3xR5NR3KZ3k19vzA/L9yb5IXiMv0mPnO2Yc78dI6IAZGDMufpszqdbA21IatGPkjlIZEbauqMCRhV5J4UpYbWG+ojY+wCaukFU6rzsynZeeWYe95o3vx3n7mCRdszIe58/iM6RWLqPc3UTQW6+6c7SayKVE2Q6hwCgJ+OXNAawaYqt6FzVjcYN/R5mNLXydjnVZ2OvJaSmxZh9vfHDHY214xlKwUw6/tjUNw5llXTiMRI17yhqrOtaqqRQW1CUVxWoZVt2tRyG6rRsgdD11pbJxq1BmsGYNUN8M2Zn84RMSByYKacnNXtZCt1MZgxoAXaNPbH0QsF6oRhmtuWGmrqpqgaWeHoeSYMkQsOzRlab8rFqToXTM1zwtTsvFJMPW/k5l0a+UWm+uYqAHzzxzlMvaeZ7P7JkaoJUk102WXhVsnaD91zVnNbqkBKVUUP6M/jphk0mELu81p/NBeD2oRZ5Xy3RvMpoD0tgikdbgX+CZIqBfD571mStSVrJiejpKxS/dlY8tRvrEbLnuSutTWRaLS6rB2AVTfAN9T64OjdKRgQOThDJ6e1ngykLga5ylKM/GKP5LblZlhvVN/TYU90U6hutLpzMZlzXE25OFX3gqk6J46cuy653NujaqyE3E32yLnrWjcmuSBBLmg6cFY/e665E3Gq9lmzNlG1X7nKUr3EmALaI9h0n0Q1b9ZdU7eqyzxeosajEsCyXdl4aVBLwwW8Q25/3lh/Ags2nNB6ULCkptZazaeA9rQIuoGjXMJATQJA92aB2H3mqt7IKEB+agrVJMJy+29KjZa96V5rLe0SUNN9yxxp3khNjlouQxgQOTFrPhnoXgwMbdsZT3RTDesYCR/POnp9VEw9rqbMSm2tC2ZxWYXk6yVllQYnipwlkXhSN0iQC7YLSsuRKtH8ZWgiTl3GJjbNyi+WnS7FUFZjqTJ/uStL8hh9setvk2eYN7Q/6uNSUm52ugq5MpvTfGpsWoQecUH4YHgS9vx9DSv/yDFppvddp/OxdkoXdZBp7LpQKYCZ3x3FrjP5svvvbBN9VrdLQE32LTPlemLrPHFS23eEQQfmYkDkxGwZmBjatjOe6OZoHyWdLl9utITqYnDsglJrhJrq76T6YVnjgmloVIdcluHZGjdQXZpBglxAnKqzf0DVDdDQRJxSc0QZmtg0JtBHsjZDKrGcJrmb9b2JofhZYxoD1esHz143OYOuatJSVWJCTbrHxdo1iobKZGhaBKks36aoRFVQLTUqSq5maufp/H/+XmL/nWmiT2t1CajJvmWGrifm1EBaEjgZ2r6j5p2Sw4DIidkyMDG2bWc70c1hzmgJQzcdNwXwVK+msjUHmv0UNH+XY+qw7+KyCsmbrNREkZo0a2CkarrcIN0M9tHwtrg3ST/AUZXR3Dmiwvy8kDo0Ubu/icYINjlyAeLEHk2xISNPr+xTVxxC0S3pvmFSNwa5GjmpSTtNDWqs0XwqFdSZM6WDLkPvH+bnhfHdYvD579I1bypSc5TZa6JPa/TPcoYuAVI1pvuzr5lcA2lJ060pNZw1GRhWFwMiJ2fLwMTYtp3pRDeXKaMlVDUucjedSgF8si1TtubAnI7NS3dl4cs7eYCMDfuWm/lbaqJITaoaGFW5pGq6VMGd5uvtow3n/AHMP1c0c6MoFJBtXtN9D6kAUZVoUvezEpCen0vuc5Gr5ZjSKxafbM+0KKix1UONsY7tCkA9ukxxJ/KVaxLSDSjGdYvBF3dmVZcjVZtXUxN9apZXbji6IZYEqY42dZGhBzVT5zTTvFbJ7V9ty0PHgKgWsGVgUpuDHmOMjZZYvf+8wZuO1M1TM3OrKU9uuiNzpNbV/YyMBQazZJrNhADWHb6oF/RoJjv0965bY02lYX5eeukOjJEL4od1jIS3h7vkqLzBn6RBiH/yJb0lka1dday10h6gav0ne8YiIsBbdti2sRulLR5qjKXTWDAkQS/xpjnNLalDDeekmtCtqeR+yNVoGWNqwKFbXt20FLO/P4b40AZaecWqm3DT0aYuMlY7KBXcGQpsDAWVta0/KQMikuVoTz32Indz+WpvjsG/k7sZRQd6m5wdV7emRm5dXXI32R5xQbJDjQRQFQxI7Icq2aEzNJXKBfEdogMkP0fNYeeawZCKZi4qQwGXboCxYP1xfH6nJsXYjdLSBw+576jUTX1G/xZo08Rfb+4szb/R3bZc0G4ou7EbgLHdos3eFznm1KTqlldXJYDBn6QhVaLJ25KEm444f5ex2sGUhBC9skld49wUMNgfUVWrWpv6kzIgIkmO9tRjT4ZGGZlDt/Ox1M356IUCdWdWQxc2U57CpG6yciO4VCqh3ydGapScM17wpGp4pII/qQ7dT688hAsFpXiyZ6zs/qtel2qu0Byebm5fMTnGvqPVDV6NBe2qGrzqZDc2Ri7gUN2QfTzc1TdmU/NfCZkmb2M1r1IcscnIWNqLjRl5OHLuulYtmVQfLyGA9UdzJfdPs1Z14ZBE7JrV26EfkkzFgMiJ1FSNjSM+9dib6uay/mgu3lh/wqJtaHY+DvPzwsz+8Vi4UXsI+9sbT+H+pPB/OjZLdNiVGtVlKmMXS1Vizrc3nqoVT3y6jM3jp+4rpVNTJgAs3HgSZ6+V4Ok7GbmlGGquqBTAst1ZeGlgK9nyVac2RKo/VHWCV1ObQ2xZaygXcAxelKbd4V8BzOwfLzm1jap/lO42pAYZmBvMSNaswPoj58y59quCG918aipCAIMXpeklxdStPRYAvpBI1KnaBvDPebdrVm+bzdVWkzjbvZNYtS8HXVO3YsTne9E1dStW7TPcXFMdtWHWYluo6v8QpjfDudyM7JqkOh8nNvHTW081Weub64/jwTtPYer3AfBEjxjsnnWPSaM/pGY4V10sVbNbKxT/TOCpCn6e7BGLXbN6S87QXRuoRr6p+lTpzlT+ZM9YfDSireTfrtibgy4L5b9/xmopvtiZJTuLuimzrqs+V7nkmIM/SbPaNUL3XDEUHKuOqW5HXalz0ByqgEOX7iGuFMDbv5zCTI1Z3t0VCqQOScQPU7pAdzJ3zUEGuq+bE8yojpHmZgSq5hazFkuu/cM6RmL37Hsw4m7p765qQMGRc9fVn5FU7XElqvqDqY6pVMCgujdY4/O2N9YQOYGarrGpbR3lrEmyb8aAFnp9TxQKQCGqLihyNxK5yVqnSExc6gZg7ZQuRmdxB8xvSgH0O9Q6a7OYueRqN9pHNZTN7Ky6mUh9/4zVwBlKRCj3ILJybw4e7RSp1blVM1mgVtmMXCOOnLuOP7Kv4e7oAJPOJVX+pX3Z19ExuqHBzsiaLG1yN9bB2dCxrRACbRr7SzbfpGqMMlTVsKoC4uo29/WIC9KqyTV0fpirOtf+MD8vLBiSiKhA76o8WQZq2lQDCqSu+2O7RWNst2hk55egpKwc4//vgN577TpzBSO/yHT6LhYMiJxATbdTS/W1GG/FTpLOTuom6u+lP/pK7kaiEubnhQfbNsb3By+oX5ProqRKlmeM7rQXchdQqZFprkoq+Avz88KsAfpNmipy3z9j/c0MPVjIBVMfbT2Dj7eeAfBPACRQFRCp1pfqD6Vbxue/Pax1rg1t1xj/fuQurb/RDUgMZTyXC3gsvYmb0sFZqplT99jKBfOafWNUrNHcZ8vrszW2/WSPWHSOCdBrZgS0R+C9vfEUZvaP10uiqvmQlJaZDymG0os4EwZETsDWNTZST3qqC8WyXdn4Ytff+Oz3LHyxK8tpI39r073o6l5YTZkAM1dZirWHLuhuWpZqjjJDlu7Szw9j706ezurJnrGAQnrkmaHvn7Es3XKfg6G+H3I1VR8Pb4tG9T1ln9xV58yRc9e1giEA+P7gBTyeHKUO1nUDErkUBMY6I1tyEzcWRGl+3wxN7Cu1fd3Rmro1ONWtDbXXjAHmSIpoiNSh+rm4NFUIgTZNtGvYAGhl55fLIl9brjnsQ+QEzGnLN5ex9ukvdv1tsE8D/UPVjwKQzjGke9zMmRUeMF5DlKsslZy7yxGnR3AWT/aIxe5Z9+CJHjHqi6Wx75/qAcPbww2JTfywZnKyyf2xhnWMlO2/pMtNAUQEVJ1zXh7Sz7aqc+aP7GuSy/dnXwdwZ8JfnXNWLgWBoc7IgHS/H2M3cXP6LQ7rGIkZA1qo+wUpFMCMAS1kj62t+0Ta8vpszW0P6xiJD4ffJbtcs4YtObaReqJkzXtDmJ8XJnaPMfpeztrFgjVETsIWIzmMPZU54pBSZ2DsuKlumD4e7ibNCg+YdoGRC7Am9Ijh51UNYX5eeGlgK4ztGmP0+yc15F5VQ2jqKBxD/Zc0VQrgwU/SsHBIInrEBRmsSbg7OkByGx2iG0om/1RtX7ccchnPdef6M6VvjmbNtDk1IbnK0qo5AzWawDRHZ+qydg2O5vdXNaLPnjMGmEMuF5fuyFWpe8PsNcfg7eGOQW3C8MWdrPmaVOeKM49MZUDkRKzd0dXYjZudqy1j6LjpNks82LYx1h66IHlxUU2t4AZgRv8WRj97ueRqY7saf6Ij44x9/+SG3JvbpyLMT38uNzmaw54NBSFJEQ0xtF1jvT5Ewb71qkYzSmxblYJAt8lPqjOy1Fx/hnLTSPUXMrXforkPalIDIUy5YUt1JTAU8A7rGGn1IECzDNYY1i7VP3RCjxiM7ar90CQ3n9vTKw/DTQGktA7FxgztCZMVAP4zoq1J0+w4KoUQ1cg050IKCwvh5+cHpVIJX19fexfHKnKVpeiaulXvxr1rVm+tC4DuhYR9iIyTOm7xoQ3UCc1U3BUKrJmcjPXHcvHFziytUWkFpeXq0SFuCmB4xwh0aRaI9gYuOPy87CctMx8jPt8ru3zlxM5Ijm1kck6ZLSfyJPsFyW07OtAb+7OvwU2hkL0pHTl3HfuzryM60BteHnVwteiW3nQmgPZNPldZKhnYqF6Xy+ekeR3R3GcAstcdAOp+i7r97zRrZoy9nxS5/ZAiFbD1iAvSK7c572+IseDL2iO3jB0LqXuDJqlO/MA/57ijMfX+7VI1RIsWLcI777yDvLw8JCUl4eOPP8bdd99t72LZjSlPTs4wVYMjkupk/cCiNL31KoRASVmlXpMMUHXT0BxGveKPc1jxxzkoAL2kanLvy8+r5hibP0yqhtDQTU6uX5AuN1RlOB/5xR6j202KaIiTeTcw8b8H1OsaGr4PyNeMqV6Xm+tPVWOju8/ju8XIrh8d6K3Xb3H298dQUFqu7tOkqln94dBFs2p8TK1hl+tK8OGjdxnskGys07hcEPzpjsyqBx9oB1+mTrYKwOyEvcaOhbHRkqZktHdGLhMQrVq1Cs899xyWLFmCTp064YMPPkBKSgpOnTqF4OBgexfPbky5gbpKThprUx031VB4KZoXEc3jLHWTUREwPA0EPy/7kLuJqG7YgH5n+9lr9CcbVTGW00hlUq9YgxPSapK62atyZmm+je5ILEMMNRFLvd+Xu7Ik+ybJzfFXCSB1w0mtYd0/HLqINZOTUVJWWWPZsSGkp9vRLL8UQ0HwpzsztVI7GAq+pCZbVfVd1wymzK1FkgvWVPeGg2evY+qKQ3pB84DWofj1z0u1KqO9y4wye++99zBx4kSMHTsWrVq1wpIlS+Dt7Y2lS5fau2h2pxpV4Owns6Pan31Nso+GoSk45DL0qlQKuHzmcEc0rGOkOsv3j1O6aI0uk+uXMXhRmmT2Yd0RRlIGJoaia/NAk0dRSZVBCODpPs301jV1JJahkVBy+zyxR4zk+qph3bqkhnWXlFXa5LolN0qufXRDyc/DlCH/UiNOc5WlSJXIc6UZfOm+j+5kqwLQy/9jzihgY6OMw/y8MKhNOGYNjNf721//vGTWCEpn4BI1RGVlZThw4ABmz56tfs3NzQ19+/ZFenq65N/cunULt27dUv9eWFho83JS7aSQuaG99kBrg7OfLxwinzfETcGh9I5KroZOrsbHUG2MZg1uSVk5Jvz3gFYzxa8Zl/Bkj6YmD36Qq83pEx+M/2w9Y/EACrmaZrn3G9s1RnLUnmpY92e/Zxl8P1s2zxjqSqCbJNJYDZWhDuACQjIRqxugDr50y1BcVmGwxtCcUcDmJNBMbOwn+V6qoLS2cImAKD8/HxUVFQgJCdF6PSQkBCdPSmeiXbhwIebPn18TxaNaTmoYtUIB9GkZIvcnADSSY+7Owmc7/7lBKO5UjbNGz7kYCnKNjZJS9dWRmn6hpKzS5FFUcjd7a0xjIRUIGuunKLX9sd1i9IZ1a466rInmGUNdCcxpkjY2UlcqQJ45IF4v+FKVIVdZanRyZlMDRXNG67nKiGOXCIgsMXv2bDz33HPq3wsLCxEREWHHEpGzUg2j1u1HYOoQbFWH6wPZ16FQwKmHtbo61dxgutMomHJzMXRTSo5tZHJnermbva065Ju7XbkgqqYHC1ijL56xgFB3nraZA+LxZI9Y2TLobk9x50lLwPxA0Zwgx9LUBc7GJYbdl5WVwdvbG9999x0GDx6sfn306NEoKCjAjz/+aHQbtXHYPdUsc4b9Uu1maXoEV0qrUJu+L4b2xZL91PwbQH9yZlOZez4562di6v3bJQIiAOjUqRPuvvtufPzxxwCAyspKREZGYurUqZg1a5bRv2dARETWZOnNxVlvSuSYXOF8Yh4iHc899xxGjx6NDh064O6778YHH3yA4uJijB071t5FIyIXZGmTDNMqkDXxfPqHywREw4YNw5UrV/Dqq68iLy8Pd911F3755Re9jtZERETkelymyay62GRGRETkfEy9f7tMYkYiIiIiOQyIiIiIyOUxICIiIiKXx4CIiIiIXB4DIiIiInJ5DIiIiIjI5TEgIiIiIpfHgIiIiIhcHgMiIiIicnkuM3VHdakSehcWFtq5JERERGQq1X3b2MQcDIhMdOPGDQBARESEnUtCRERE5rpx4wb8/Pxkl3MuMxNVVlbi4sWLaNCgARQKhcXbKSwsREREBM6dO+eyc6LxGPAYADwGAI8BwGMA8BgAtj0GQgjcuHED4eHhcHOT7ynEGiITubm5oUmTJlbbnq+vr8ue+Co8BjwGAI8BwGMA8BgAPAaA7Y6BoZohFXaqJiIiIpfHgIiIiIhcHgOiGubp6Ym5c+fC09PT3kWxGx4DHgOAxwDgMQB4DAAeA8AxjgE7VRMREZHLYw0RERERuTwGREREROTyGBARERGRy2NARERERC6PAZEVLF68GG3atFEnlEpOTsbGjRvVy2/evIkpU6agUaNGqF+/PoYOHYpLly5pbSMnJweDBg2Ct7c3goOD8eKLL+L27ds1vStWk5qaCoVCgenTp6tfq+3HYd68eVAoFFo/8fHx6uW1ff9VLly4gMceewyNGjWCl5cXEhMTsX//fvVyIQReffVVhIWFwcvLC3379sXp06e1tnHt2jWMHDkSvr6+8Pf3x/jx41FUVFTTu2KR6OhovfNAoVBgypQpAFzjPKioqMCcOXMQExMDLy8vxMbG4vXXX9eaS6q2nwdA1VQR06dPR1RUFLy8vNClSxfs27dPvby2HYOdO3fivvvuQ3h4OBQKBX744Qet5dba36NHj6J79+6oV68eIiIi8Pbbb1tnBwRV27p168T69evFX3/9JU6dOiVeeuklUbduXZGRkSGEEOKpp54SERERYsuWLWL//v2ic+fOokuXLuq/v337tkhISBB9+/YVhw4dEhs2bBCBgYFi9uzZ9tqlavnjjz9EdHS0aNOmjXjmmWfUr9f24zB37lzRunVrkZubq/65cuWKenlt338hhLh27ZqIiooSY8aMEXv37hV///23+PXXX8WZM2fU66Smpgo/Pz/xww8/iCNHjoj7779fxMTEiNLSUvU6/fv3F0lJSWLPnj3i999/F82aNROPPvqoPXbJbJcvX9Y6BzZv3iwAiG3btgkhXOM8ePPNN0WjRo3Ezz//LLKyssTq1atF/fr1xYcffqhep7afB0II8cgjj4hWrVqJHTt2iNOnT4u5c+cKX19fcf78eSFE7TsGGzZsEC+//LJYs2aNACDWrl2rtdwa+6tUKkVISIgYOXKkyMjIECtXrhReXl7i008/rXb5GRDZSMOGDcUXX3whCgoKRN26dcXq1avVy06cOCEAiPT0dCFE1Unk5uYm8vLy1OssXrxY+Pr6ilu3btV42avjxo0bonnz5mLz5s2iZ8+e6oDIFY7D3LlzRVJSkuQyV9h/IYSYOXOm6Natm+zyyspKERoaKt555x31awUFBcLT01OsXLlSCCHE8ePHBQCxb98+9TobN24UCoVCXLhwwXaFt5FnnnlGxMbGisrKSpc5DwYNGiTGjRun9dqQIUPEyJEjhRCucR6UlJQId3d38fPPP2u93q5dO/Hyyy/X+mOgGxBZa38/+eQT0bBhQ63vwsyZM0WLFi2qXWY2mVlZRUUFvvnmGxQXFyM5ORkHDhxAeXk5+vbtq14nPj4ekZGRSE9PBwCkp6cjMTERISEh6nVSUlJQWFiIP//8s8b3oTqmTJmCQYMGae0vAJc5DqdPn0Z4eDiaNm2KkSNHIicnB4Dr7P+6devQoUMHPPzwwwgODkbbtm3x+eefq5dnZWUhLy9P6zj4+fmhU6dOWsfB398fHTp0UK/Tt29fuLm5Ye/evTW3M1ZQVlaGr776CuPGjYNCoXCZ86BLly7YsmUL/vrrLwDAkSNHsGvXLgwYMACAa5wHt2/fRkVFBerVq6f1upeXF3bt2uUSx0CTtfY3PT0dPXr0gIeHh3qdlJQUnDp1CtevX69WGTm5q5UcO3YMycnJuHnzJurXr4+1a9eiVatWOHz4MDw8PODv76+1fkhICPLy8gAAeXl5Whc/1XLVMmfxzTff4ODBg1pt5Cp5eXm1/jh06tQJy5cvR4sWLZCbm4v58+eje/fuyMjIcIn9B4C///4bixcvxnPPPYeXXnoJ+/btw7Rp0+Dh4YHRo0er90NqPzWPQ3BwsNbyOnXqICAgwGmOg8oPP/yAgoICjBkzBoBrfA8AYNasWSgsLER8fDzc3d1RUVGBN998EyNHjgQAlzgPGjRogOTkZLz++uto2bIlQkJCsHLlSqSnp6NZs2YucQw0WWt/8/LyEBMTo7cN1bKGDRtaXEYGRFbSokULHD58GEqlEt999x1Gjx6NHTt22LtYNebcuXN45plnsHnzZr0nIlehevoFgDZt2qBTp06IiorCt99+Cy8vLzuWrOZUVlaiQ4cOWLBgAQCgbdu2yMjIwJIlSzB69Gg7l67mffnllxgwYADCw8PtXZQa9e233+Lrr7/GihUr0Lp1axw+fBjTp09HeHi4S50H//vf/zBu3Dg0btwY7u7uaNeuHR599FEcOHDA3kUjCWwysxIPDw80a9YM7du3x8KFC5GUlIQPP/wQoaGhKCsrQ0FBgdb6ly5dQmhoKAAgNDRUb5SJ6nfVOo7uwIEDuHz5Mtq1a4c6deqgTp062LFjBz766CPUqVMHISEhLnEcNPn7+yMuLg5nzpxxmfMgLCwMrVq10nqtZcuW6qZD1X5I7afmcbh8+bLW8tu3b+PatWtOcxwA4OzZs/jtt98wYcIE9Wuuch68+OKLmDVrFoYPH47ExESMGjUKzz77LBYuXAjAdc6D2NhY7NixA0VFRTh37hz++OMPlJeXo2nTpi5zDFSstb+2/H4wILKRyspK3Lp1C+3bt0fdunWxZcsW9bJTp04hJycHycnJAIDk5GQcO3ZM60TYvHkzfH199W4ujqpPnz44duwYDh8+rP7p0KEDRo4cqf63KxwHTUVFRcjMzERYWJjLnAddu3bFqVOntF7766+/EBUVBQCIiYlBaGio1nEoLCzE3r17tY5DQUGB1lP01q1bUVlZiU6dOtXAXljHsmXLEBwcjEGDBqlfc5XzoKSkBG5u2rcXd3d3VFZWAnCt8wAAfHx8EBYWhuvXr+PXX3/FAw884HLHwFr7m5ycjJ07d6K8vFy9zubNm9GiRYtqNZcB4LB7a5g1a5bYsWOHyMrKEkePHhWzZs0SCoVCbNq0SQhRNcw2MjJSbN26Vezfv18kJyeL5ORk9d+rhtn269dPHD58WPzyyy8iKCjIqYbZStEcZSZE7T8Ozz//vNi+fbvIysoSu3fvFn379hWBgYHi8uXLQojav/9CVKVcqFOnjnjzzTfF6dOnxddffy28vb3FV199pV4nNTVV+Pv7ix9//FEcPXpUPPDAA5JDb9u2bSv27t0rdu3aJZo3b+6wQ42lVFRUiMjISDFz5ky9Za5wHowePVo0btxYPex+zZo1IjAwUMyYMUO9jiucB7/88ovYuHGj+Pvvv8WmTZtEUlKS6NSpkygrKxNC1L5jcOPGDXHo0CFx6NAhAUC899574tChQ+Ls2bNCCOvsb0FBgQgJCRGjRo0SGRkZ4ptvvhHe3t4cdu8oxo0bJ6KiooSHh4cICgoSffr0UQdDQghRWloqJk+eLBo2bCi8vb3Fgw8+KHJzc7W2kZ2dLQYMGCC8vLxEYGCgeP7550V5eXlN74pV6QZEtf04DBs2TISFhQkPDw/RuHFjMWzYMK38O7V9/1V++uknkZCQIDw9PUV8fLz47LPPtJZXVlaKOXPmiJCQEOHp6Sn69OkjTp06pbXO1atXxaOPPirq168vfH19xdixY8WNGzdqcjeq5ddffxUA9PZLCNc4DwoLC8UzzzwjIiMjRb169UTTpk3Fyy+/rDVU2hXOg1WrVommTZsKDw8PERoaKqZMmSIKCgrUy2vbMdi2bZsAoPczevRoIYT19vfIkSOiW7duwtPTUzRu3FikpqZapfwKITRShxIRERG5IPYhIiIiIpfHgIiIiIhcHgMiIiIicnkMiIiIiMjlMSAiIiIil8eAiIiIiFweAyIiIiJyeQyIiIiIyOUxICJyMXl5eXj66afRtGlTeHp6IiIiAvfdd5/WHENpaWkYOHAgGjZsiHr16iExMRHvvfceKioq1OtkZ2dj/PjxiImJgZeXF2JjYzF37lyUlZVpvd/nn3+OpKQk1K9fH/7+/mjbtq16kk8AmDdvHhQKBfr3769X1nfeeQcKhQK9evUyul/R0dFQKBSyP2PGjDH/YDm4Xr16Yfr06fYuBlGtUMfeBSCimpOdnY2uXbvC398f77zzDhITE1FeXo5ff/0VU6ZMwcmTJ7F27Vo88sgjGDt2LLZt2wZ/f3/89ttvmDFjBtLT0/Htt99CoVDg5MmTqKysxKeffopmzZohIyMDEydORHFxMd59910AwNKlSzF9+nR89NFH6NmzJ27duoWjR48iIyNDq1xhYWHYtm0bzp8/jyZNmqhfX7p0KSIjI03at3379qkDtrS0NAwdOhSnTp2Cr68vAMDLy8sah7BGlJeXo27dujX2fmVlZfDw8Kix9yNySFaZAISInMKAAQNE48aNRVFRkd6y69evi6KiItGoUSMxZMgQveXr1q0TAMQ333wju/23335bxMTEqH9/4IEHxJgxYwyWae7cuSIpKUnce++94o033lC/vnv3bhEYGCgmTZokevbsacLe/UM1p9L169fVr/3www+ibdu2wtPTU8TExIh58+ZpzQ8GQCxZskQMGjRIeHl5ifj4eJGWliZOnz4tevbsKby9vUVycrLW/HSqsi9ZskQ0adJEeHl5iYcfflhrviohhPj8889FfHy88PT0FC1atBCLFi1SL8vKylIf1x49eghPT0+xbNkykZ+fL4YPHy7Cw8OFl5eXSEhIECtWrFD/3ejRo/XmjMrKyhLLli0Tfn5+Wu+/du1aoXm5V5X7888/F9HR0UKhUAghqs6B8ePHi8DAQNGgQQPRu3dvcfjwYbOOPZGzYpMZkYu4du0afvnlF0yZMgU+Pj56y/39/bFp0yZcvXoVL7zwgt7y++67D3FxcVi5cqXseyiVSgQEBKh/Dw0NxZ49e3D27Fmj5Rs3bhyWL1+u/n3p0qUYOXKkVWoufv/9dzz++ON45plncPz4cXz66adYvnw53nzzTa31Xn/9dTz++OM4fPgw4uPjMWLECDz55JOYPXs29u/fDyEEpk6dqvU3Z86cwbfffouffvoJv/zyCw4dOoTJkyerl3/99dd49dVX8eabb+LEiRNYsGAB5syZg//7v//T2s6sWbPwzDPP4MSJE0hJScHNmzfRvn17rF+/HhkZGXjiiScwatQo/PHHHwCADz/8EMnJyZg4cSJyc3ORm5uLiIgIk4/JmTNn8P3332PNmjU4fPgwAODhhx/G5cuXsXHjRhw4cADt2rVDnz59cO3aNXMON5FzsndERkQ1Y+/evQKAWLNmjew6qampejUrmu6//37RsmVLyWWnT58Wvr6+WrPbX7x4UXTu3FkAEHFxcWL06NFi1apVoqKiQr2OqrairKxMBAcHix07doiioiLRoEEDceTIEfHMM89Uu4aoT58+YsGCBVrr/O9//xNhYWHq3wGIV155Rf17enq6ACC+/PJL9WsrV64U9erV0yq7u7u7OH/+vPq1jRs3Cjc3N/UM9rGxsVo1O0II8frrr4vk5GQhxD81RB988IHR/Ro0aJB4/vnn1b/37NlTPPPMM1rrmFpDVLduXXH58mX1a7///rvw9fUVN2/e1Prb2NhY8emnnxotG5GzYx8iIhchhLDJugBw4cIF9O/fHw8//DAmTpyofj0sLAzp6enIyMjAzp07kZaWhtGjR+OLL77AL7/8Aje3fyqp69ati8ceewzLli3D33//jbi4OLRp08ascsg5cuQIdu/erVUjVFFRgZs3b6KkpATe3t4AoPV+ISEhAIDExESt127evInCwkJ136TIyEg0btxYvU5ycjIqKytx6tQpNGjQAJmZmRg/frzWcbl9+zb8/Py0ytihQwet3ysqKrBgwQJ8++23uHDhAsrKynDr1i11WasrKioKQUFB6t+PHDmCoqIiNGrUSGu90tJSZGZmWuU9iRwZAyIiF9G8eXN1Z2g5cXFxAIATJ06gS5cuestPnDiBVq1aab128eJF9O7dG126dMFnn30mud2EhAQkJCRg8uTJeOqpp9C9e3fs2LEDvXv31lpv3Lhx6NSpEzIyMjBu3Dhzd1FWUVER5s+fjyFDhugtq1evnvrfmh2ZFQqF7GuVlZUmvy9QNdKuU6dOWsvc3d21ftdtxnznnXfw4Ycf4oMPPkBiYiJ8fHwwffp0vVF8utzc3PQC2vLycr31dN+vqKgIYWFh2L59u966/v7+Bt+TqDZgQETkIgICApCSkoJFixZh2rRpejfEgoIC9OvXDwEBAfj3v/+tFxCtW7cOp0+fxuuvv65+7cKFC+jduzfat2+PZcuWadX4yFEFVMXFxXrLWrdujdatW+Po0aMYMWKEJbspqV27djh16hSaNWtmtW2q5OTk4OLFiwgPDwcA7NmzB25ubmjRogVCQkIQHh6Ov//+GyNHjjRru7t378YDDzyAxx57DEBVEPbXX39pBaQeHh5aqRAAICgoCDdu3EBxcbH6M1b1ETKkXbt2yMvLQ506dRAdHW1WWYlqAwZERC5k0aJF6Nq1K+6++2689tpraNOmDW7fvo3Nmzdj8eLFOHHiBD799FMMHz4cTzzxBKZOnQpfX19s2bIFL774Ih566CE88sgjAKqCoV69eiEqKgrvvvsurly5on6f0NBQAMCkSZMQHh6Oe+65B02aNEFubi7eeOMNBAUFITk5WbKMW7duRXl5uVVrJV599VXce++9iIyMxEMPPQQ3NzccOXIEGRkZeOONN6q17Xr16mH06NF49913UVhYiGnTpuGRRx5RH4P58+dj2rRp8PPzQ//+/XHr1i3s378f169fx3PPPSe73ebNm+O7775DWloaGjZsiPfeew+XLl3SCoiio6Oxd+9eZGdno379+ggICECnTp3g7e2Nl156CdOmTcPevXu1OqvL6du3L5KTkzF48GC8/fbbiIuLw8WLF7F+/Xo8+OCDek16RLUNR5kRuZCmTZvi4MGD6N27N55//nkkJCTgX//6F7Zs2YLFixcDAB566CFs27YNOTk56N69O1q0aIH3338fL7/8Mr755ht1s9HmzZtx5swZbNmyBU2aNEFYWJj6R6Vv377Ys2cPHn74YcTFxWHo0KGoV68etmzZotdXRcXHx8fqTTQpKSn4+eefsWnTJnTs2BGdO3fG+++/j6ioqGpvu1mzZhgyZAgGDhyIfv36oU2bNvjkk0/UyydMmIAvvvgCy5YtQ2JiInr27Inly5cjJibG4HZfeeUVtGvXDikpKejVqxdCQ0MxePBgrXVeeOEFuLu7o1WrVggKCkJOTg4CAgLw1VdfYcOGDUhMTMTKlSsxb948o/uhUCiwYcMG9OjRA2PHjkVcXByGDx+Os2fPqvtTEdVmCmFu70kiIgJQlWX7hx9+MKlJiogcG2uIiIiIyOUxICIip1G/fn3Zn99//93exSMiJ8YmMyJyGmfOnJFd1rhxY6ear4yIHAsDIiIiInJ5bDIjIiIil8eAiIiIiFweAyIiIiJyeQyIiIiIyOUxICIiIiKXx4CIiIiIXB4DIiIiInJ5DIiIiIjI5f0/0xTfboYSSUIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB75klEQVR4nO3dd3gU1foH8O8mkJAE0kiABNMIhAAJSDd0FIGIBUEFRaVbAJHrVQw2UNQE8VovIhcl+FNpIiAqVUB670jHQCihRFJIIYHk/P6Iu26Z2d3Zkp1Nvp/n4dHszM6emZ2deeec95yjEUIIEBEREamQh6sLQERERCSHgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoR2W3KlCnQaDRWravRaDBlyhSnlqdHjx7o0aOHardHRNZjoEJUhcydOxcajUb3r0aNGmjYsCGGDRuGixcvurp4qhMdHW1wvOrVq4euXbti6dKlDtl+UVERpkyZgt9//90h2yOqjhioEFVB77zzDr799lt8+eWXSE5OxnfffYfu3bvj5s2bTvm8N954A8XFxU7ZtrPdeeed+Pbbb/Htt9/i5ZdfxqVLlzBgwAB8+eWXdm+7qKgIb7/9NgMVIjvUcHUBiMjxkpOT0a5dOwDAqFGjEBISgmnTpmH58uV47LHHHP55NWrUQI0a7nk5adiwIZ588knd308//TQaN26Mjz/+GM8995wLS0ZEAGtUiKqFrl27AgDOnDlj8Prx48fxyCOPIDg4GLVq1UK7du2wfPlyg3Vu3bqFt99+G02aNEGtWrVQt25ddOnSBWvXrtWtI5WjUlJSgn/9618IDQ1FnTp18OCDD+LChQsmZRs2bBiio6NNXpfaZnp6Ou6++27Uq1cP3t7eaN68OWbOnKnoWFjSoEEDNGvWDBkZGWbXu3r1KkaOHIn69eujVq1aaNWqFb755hvd8rNnzyI0NBQA8Pbbb+ual5ydn0NU1bjnIxARKXL27FkAQFBQkO61P/74A507d0bDhg2RkpICPz8/LFq0CP3798ePP/6Ihx9+GEBFwJCamopRo0ahQ4cOyM/Px549e7Bv3z7ce++9sp85atQofPfdd3jiiSfQqVMnrF+/Hv369bNrP2bOnIkWLVrgwQcfRI0aNfDzzz9jzJgxKC8vx9ixY+3attatW7dw/vx51K1bV3ad4uJi9OjRA6dPn8a4ceMQExODH374AcOGDUNubi5efPFFhIaGYubMmXj++efx8MMPY8CAAQCAli1bOqScRNWGIKIqIz09XQAQv/32m7h27Zo4f/68WLx4sQgNDRXe3t7i/PnzunXvuecekZiYKG7evKl7rby8XHTq1Ek0adJE91qrVq1Ev379zH7u5MmThf7l5MCBAwKAGDNmjMF6TzzxhAAgJk+erHtt6NChIioqyuI2hRCiqKjIZL0+ffqIRo0aGbzWvXt30b17d7NlFkKIqKgo0bt3b3Ht2jVx7do1cfDgQTF48GABQLzwwguy2/vkk08EAPHdd9/pXistLRVJSUmidu3aIj8/XwghxLVr10z2l4iUYdMPURXUq1cvhIaGIiIiAo888gj8/PywfPly3HHHHQCA69evY/369Xjsscdw48YNZGdnIzs7G3/99Rf69OmDU6dO6XoJBQYG4o8//sCpU6es/vwVK1YAAMaPH2/w+oQJE+zaLx8fH93/5+XlITs7G927d8eff/6JvLw8m7a5Zs0ahIaGIjQ0FK1atcIPP/yAp556CtOmTZN9z4oVK9CgQQM8/vjjutdq1qyJ8ePHo6CgABs3brSpLERkik0/RFXQjBkzEBcXh7y8PMyZMwebNm2Ct7e3bvnp06chhMCbb76JN998U3IbV69eRcOGDfHOO+/goYceQlxcHBISEtC3b1889dRTZpswzp07Bw8PD8TGxhq83rRpU7v2a+vWrZg8eTK2b9+OoqIig2V5eXkICAhQvM2OHTvi3XffhUajga+vL5o1a4bAwECz7zl37hyaNGkCDw/DZ71mzZrplhORYzBQIaqCOnTooOv1079/f3Tp0gVPPPEETpw4gdq1a6O8vBwA8PLLL6NPnz6S22jcuDEAoFu3bjhz5gx++uknrFmzBl999RU+/vhjfPnllxg1apTdZZUbKK6srMzg7zNnzuCee+5BfHw8PvroI0RERMDLywsrVqzAxx9/rNsnpUJCQtCrVy+b3ktEzsdAhaiK8/T0RGpqKnr27In//ve/SElJQaNGjQBUNFdYc5MODg7G8OHDMXz4cBQUFKBbt26YMmWKbKASFRWF8vJynDlzxqAW5cSJEybrBgUFITc31+R141qJn3/+GSUlJVi+fDkiIyN1r2/YsMFi+R0tKioKhw4dQnl5uUGtyvHjx3XLAfkgjIisxxwVomqgR48e6NChAz755BPcvHkT9erVQ48ePTBr1ixkZWWZrH/t2jXd///1118Gy2rXro3GjRujpKRE9vOSk5MBAJ999pnB65988onJurGxscjLy8OhQ4d0r2VlZZmMDuvp6QkAEELoXsvLy0N6erpsOZzlvvvuw+XLl7Fw4ULda7dv38bnn3+O2rVro3v37gAAX19fAJAMxIjIOqxRIaomXnnlFTz66KOYO3cunnvuOcyYMQNdunRBYmIiRo8ejUaNGuHKlSvYvn07Lly4gIMHDwIAmjdvjh49eqBt27YIDg7Gnj17sHjxYowbN072s+688048/vjj+OKLL5CXl4dOnTph3bp1OH36tMm6gwcPxquvvoqHH34Y48ePR1FREWbOnIm4uDjs27dPt17v3r3h5eWFBx54AM8++ywKCgowe/Zs1KtXTzLYcqZnnnkGs2bNwrBhw7B3715ER0dj8eLF2Lp1Kz755BPUqVMHQEXyb/PmzbFw4ULExcUhODgYCQkJSEhIqNTyErk1V3c7IiLH0XZP3r17t8mysrIyERsbK2JjY8Xt27eFEEKcOXNGPP3006JBgwaiZs2aomHDhuL+++8Xixcv1r3v3XffFR06dBCBgYHCx8dHxMfHi/fee0+Ulpbq1pHqSlxcXCzGjx8v6tatK/z8/MQDDzwgzp8/L9ldd82aNSIhIUF4eXmJpk2biu+++05ym8uXLxctW7YUtWrVEtHR0WLatGlizpw5AoDIyMjQraeke7Klrtdy27ty5YoYPny4CAkJEV5eXiIxMVGkp6ebvHfbtm2ibdu2wsvLi12ViWygEUKvHpWIiIhIRZijQkRERKrFQIWIiIhUi4EKERERqRYDFSIiIlItBipERESkWgxUiIiISLXcesC38vJyXLp0CXXq1OFQ1URERG5CCIEbN24gPDzcZHJPY24dqFy6dAkRERGuLgYRERHZ4Pz587jjjjvMruPWgYp2mOrz58/D39/fxaUhIiIia+Tn5yMiIkJ3HzfHrQMVbXOPv78/AxUiIiI3Y03aBpNpiYiISLUYqBAREZFqMVAhIiIi1XLrHBUiIrUpLy9HaWmpq4tB5FI1a9aEp6enQ7bFQIWIyEFKS0uRkZGB8vJyVxeFyOUCAwPRoEEDu8c5c2mgUlZWhilTpuC7777D5cuXER4ejmHDhuGNN97gAG5E5FaEEMjKyoKnpyciIiIsDmJFVFUJIVBUVISrV68CAMLCwuzanksDlWnTpmHmzJn45ptv0KJFC+zZswfDhw9HQEAAxo8f78qiEREpcvv2bRQVFSE8PBy+vr6uLg6RS/n4+AAArl69inr16tnVDOTSQGXbtm146KGH0K9fPwBAdHQ05s+fj127drmyWEREipWVlQEAvLy8XFwSInXQBuy3bt2yK1Bxad1kp06dsG7dOpw8eRIAcPDgQWzZsgXJycmS65eUlCA/P9/gHxGRmrDZmqiCo34LLq1RSUlJQX5+PuLj4+Hp6YmysjK89957GDJkiOT6qampePvttyu5lEREROQqLq1RWbRoEb7//nvMmzcP+/btwzfffIMPP/wQ33zzjeT6kyZNQl5enu7f+fPnK7nEREREVJlcGqi88sorSElJweDBg5GYmIinnnoK//rXv5Camiq5vre3t25en8qY3ycrrxjbzmQjK6/YqZ9DRORqly9fxgsvvIBGjRrB29sbEREReOCBB7Bu3TrdOtu2bcN9992HoKAg1KpVC4mJifjoo490+TkAcPbsWYwcORIxMTHw8fFBbGwsJk+ebDK2zOzZs9GqVSvUrl0bgYGBaN26tcG1f8qUKdBoNOjbt69JWadPnw6NRoMePXpYvX/5+fl4/fXXER8fj1q1aqFBgwbo1asXlixZAiGEbr0//vgDjz32GEJDQ+Ht7Y24uDi89dZbKCoq0q1z/fp1vPDCC2jatCl8fHwQGRmJ8ePHIy8vz6qynD17FhqNRvLfjh07rN6nHj16YMKECVav765c2vRTVFRk0oXP09NTFWMQLNydiUlLDqNcAB4aIHVAIga1j3R1sYiIHO7s2bPo3LkzAgMDMX36dCQmJuLWrVtYvXo1xo4di+PHj2Pp0qV47LHHMHz4cGzYsAGBgYH47bffMHHiRGzfvh2LFi2CRqPB8ePHUV5ejlmzZqFx48Y4cuQIRo8ejcLCQnz44YcAgDlz5mDChAn47LPP0L17d5SUlODQoUM4cuSIQbnCwsKwYcMGXLhwAXfccYfu9Tlz5iAy0vrrcW5uLrp06YK8vDy8++67aN++PWrUqIGNGzdi4sSJuPvuuxEYGIgdO3agV69e6NWrF3799VfUr18fu3btwr///W+sW7cOGzZsgJeXFy5duoRLly7hww8/RPPmzXHu3Dk899xzuHTpEhYvXmx1uX777Te0aNHC4LW6deta/X5rCCFQVlaGGjXceNg04UJDhw4VDRs2FL/88ovIyMgQS5YsESEhIWLixIlWvT8vL08AEHl5eQ4t16XcIhGT8ouIevWff41SfhWXcosc+jlEVHUUFxeLo0ePiuLiYlcXRbHk5GTRsGFDUVBQYLIsJydHFBQUiLp164oBAwaYLF++fLkAIBYsWCC7/Q8++EDExMTo/n7ooYfEsGHDzJZp8uTJolWrVuL+++8X7777ru71rVu3ipCQEPH888+L7t27W7F3Qjz//PPCz89PXLx40WTZjRs3xK1bt0R5eblo3ry5aNeunSgrKzNY58CBA0Kj0Yi0tDTZz1i0aJHw8vISt27dsliejIwMAUDs379fdh3t/v/f//2fiIqKEv7+/mLQoEEiPz9fCFFx/wRg8C8jI0Ns2LBBABArVqwQbdq0ETVr1hQbNmwQN2/eFC+88IIIDQ0V3t7eonPnzmLXrl26z9O+75dffhGJiYnC29tbdOzYURw+fFgIIURBQYGoU6eO+OGHHwzKuXTpUuHr66srlz5zvwkl92+XNv18/vnneOSRRzBmzBg0a9YML7/8Mp599llMnTrVlcVCRnYhyoXha2VC4Gx2kfQbiIgcqDKbna9fv45Vq1Zh7Nix8PPzM1keGBiINWvW4K+//sLLL79ssvyBBx5AXFwc5s+fL/sZeXl5CA4O1v3doEED7NixA+fOnbNYvhEjRmDu3Lm6v+fMmYMhQ4ZY3Q28vLwcCxYswJAhQxAeHm6yvHbt2qhRowYOHDiAo0eP4qWXXjKp6W/VqhV69eplcR/9/f0dWnNx5swZLFu2DL/88gt++eUXbNy4EWlpaQCATz/9FElJSRg9ejSysrKQlZWFiIgI3XtTUlKQlpaGY8eOoWXLlpg4cSJ+/PFHfPPNN9i3bx8aN26MPn364Pr16waf+corr+A///kPdu/ejdDQUDzwwAO4desW/Pz8MHjwYKSnpxusn56ejkceeQR16tRx2H4bc2mgUqdOHXzyySc4d+4ciouLcebMGbz77rsuH4cgJsQPHka9qjw1GkSHcBAnInKuhbsz0TltPZ6YvROd09Zj4e5Mp37e6dOnIYRAfHy87DraISSaNWsmuTw+Pl63jtT2P//8czz77LO61yZPnozAwEBER0ejadOmGDZsGBYtWiTZ7H///fcjPz8fmzZtQmFhIRYtWoQRI0ZYvX/Z2dnIyckxu3+A5X1s1qyZ7D5mZ2dj6tSpeOaZZ6wuF1AxREft2rUN/ukrLy/H3LlzkZCQgK5du+Kpp57S5QwFBATAy8sLvr6+aNCgARo0aGAwVsk777yDe++9F7GxsfD29sbMmTMxffp0JCcno3nz5pg9ezZ8fHzw9ddfG3zm5MmTce+99yIxMRHffPMNrly5gqVLlwIARo0ahdWrVyMrKwtAxWBuK1asUPR92IJjPEsIC/BB6oBEeP7dB9xTo8H7AxIQFuDj4pIRUVWWlVesy40DgHIBvLbkiFNrVoQQlleyYV0AuHjxIvr27YtHH30Uo0eP1r0eFhaG7du34/Dhw3jxxRdx+/ZtDB06FH379jUJVmrWrIknn3wS6enp+OGHHxAXF4eWLVs6rcxK18/Pz0e/fv3QvHlzTJkyRdF7Fy5ciAMHDhj80xcdHW1QUxEWFqYblt6Sdu3a6f7/zJkzuHXrFjp37qx7rWbNmujQoQOOHTtm8L6kpCTd/wcHB6Np06a6dTp06IAWLVroeuZ+9913iIqKQrdu3azbYRu5cXaNcw1qH4lucaE4m12E6BBfBilE5HTmmp2ddQ1q0qSJLglWTlxcHADg2LFj6NSpk8nyY8eOoXnz5gavXbp0CT179kSnTp3wv//9T3K7CQkJSEhIwJgxY/Dcc8+ha9eu2LhxI3r27Gmw3ogRI9CxY0ccOXJE8dN7aGgoAgMDze4fYLiPrVu3Nll+7Ngx3TpaN27cQN++fVGnTh0sXboUNWvWVFS2iIgING7cWHa58fY0Go3VnU2kmvEcYdSoUZgxYwZSUlKQnp6O4cOHO32QQ9aomBEW4IOk2LoMUoioUrii2Tk4OBh9+vTBjBkzUFhYaLI8NzcXvXv3RnBwMP7zn/+YLF++fDlOnTqFxx9/XPfaxYsX0aNHD7Rt2xbp6elWTdCoDXSkytCiRQu0aNECR44cwRNPPKFk9+Dh4YHBgwfj+++/x6VLl0yWFxQU4Pbt27jzzjsRHx+Pjz/+2CQYOHjwIH777TeDfczPz0fv3r3h5eWF5cuXo1atWorK5QheXl4GXcPlxMbGwsvLC1u3btW9duvWLezevdskwNTvHp2Tk4OTJ08aNIc9+eSTOHfuHD777DMcPXoUQ4cOdcCemMdAhYhIJVzV7DxjxgyUlZWhQ4cO+PHHH3Hq1CkcO3YMn332GZKSkuDn54dZs2bhp59+wjPPPINDhw7h7Nmz+PrrrzFs2DA88sgjeOyxxwD8E6RERkbiww8/xLVr13D58mVcvnxZ93nPP/88pk6diq1bt+LcuXPYsWMHnn76aYSGhho0Pehbv349srKyEBgYqHj/3nvvPURERKBjx474v//7Pxw9ehSnTp3CnDlz0Lp1axQUFECj0eDrr7/G0aNHMXDgQOzatQuZmZn44Ycf8MADDyApKUk3Zok2SCksLMTXX3+N/Px83T5aEzho/fXXX7r3af/dvHnT6vdHR0dj586dOHv2LLKzs2VrW/z8/PD888/jlVdewapVq3D06FGMHj0aRUVFGDlypMG677zzDtatW4cjR45g2LBhCAkJQf/+/XXLg4KCMGDAALzyyivo3bu3Qbdxp7HYL0jFnNU9mYhIKUd2T76UWyS2nc6u1CERLl26JMaOHSuioqKEl5eXaNiwoXjwwQfFhg0bdOts2rRJ9OnTR/j7+wsvLy/RokUL8eGHH4rbt2/r1klPTzfpNqv9p7V48WJx3333ibCwMOHl5SXCw8PFwIEDxaFDh3TraLvnynnxxRet7p4shBC5ubkiJSVFNGnSRHh5eYn69euLXr16iaVLl4ry8nLdeocOHRIDBw4UwcHBombNmiI2Nla88cYborCwULeOtiuv1L+MjAyLZdF2T5b6N3/+fNn9//jjj0VUVJTu7xMnToi77rpL+Pj4mHRPzsnJMXhvcXGxeOGFF0RISIjZ7sk///yzaNGihfDy8hIdOnQQBw8eNCn/unXrBACxaNEis/vpqO7JGiEUZg6pSH5+PgICAnTdwoiIXOXmzZvIyMhATEyMS5oBiOzx+++/o2fPnsjJybFYa/Xtt9/iX//6Fy5dumS2l66534SS+zeTaYmIiMiioqIiZGVlIS0tDc8++2ylDSXCHBUiInJrxmOR6P/bvHlzpZfnueeeky3Pc889V+nlcZQPPvgA8fHxaNCgASZNmlRpn8umHyIiB2DTj+ucPn1adlnDhg3h41O5PTevXr2K/Px8yWX+/v6oV69epZbHVdj0Q0REBJgdi8QV6tWrV22CkcrAph8iIiJSLQYqREQO5Mat6UQOZe0oupaw6YeIyAFq1qwJjUaDa9euITQ01OnDihOplRACpaWluHbtGjw8POzuHcRAhYjIATw9PXHHHXfgwoULOHv2rKuLQ+Ryvr6+iIyMtGoKBXMYqBAROUjt2rXRpEkT3Lp1y9VFIXIpT09P1KhRwyE1iwxUiIgcyNPTE56enq4uBlGVwWRaIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFTLpYFKdHQ0NBqNyb+xY8e6slhERESkEjVc+eG7d+9GWVmZ7u8jR47g3nvvxaOPPurCUhEREZFauDRQCQ0NNfg7LS0NsbGx6N69u4tKRERERGqimhyV0tJSfPfddxgxYgQ0Go2ri0NEREQq4NIaFX3Lli1Dbm4uhg0bJrtOSUkJSkpKdH/n5+dXQsmIiIjIVVRTo/L1118jOTkZ4eHhsuukpqYiICBA9y8iIqISS0hERESVTSOEEK4uxLlz59CoUSMsWbIEDz30kOx6UjUqERERyMvLg7+/f2UUlYiIiOyUn5+PgIAAq+7fqmj6SU9PR7169dCvXz+z63l7e8Pb27uSSkVERESu5vKmn/LycqSnp2Po0KGoUUMVcRMRERGphMsDld9++w2ZmZkYMWKEq4tCREREKuPyKozevXtDBWkyREREpEIur1EhIiIiksNAhYiIiFSLgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoRERGpFgMVC7LyirHtTDay8opdXRQiIqJqx+WTEqrZwt2ZmLTkMMoF4KEBUgckYlD7SFcXi4iIqNpgjYqMrLxiXZACAOUCeG3JEdasEBERVSIGKjIysgt1QYpWmRA4m13kmgIRERFVQwxUZMSE+MFDY/iap0aD6BBf1xSIiIioGmKgIiMswAepAxLhqamIVjw1Grw/IAFhAT4uLhkREVH1wWRaMwa1j0S3uFCczS5CdIgvgxQiIqJKxkDFgrAAHwYoRERELsKmHyIiIlItBipERESkWgxUiIiISLUYqNiJQ+wTERE5D5Np7cAh9omIiJyLNSo24hD7REREzsdAxUYcYp+IiMj5GKjYiEPsExEROR8DFRtxiH0iIiLnYzKtHTjEPhERkXMxULETh9gnIiJyHjb9EBERkWoxUCEiIiLVcnmgcvHiRTz55JOoW7cufHx8kJiYiD179ri6WERERKQCLs1RycnJQefOndGzZ0+sXLkSoaGhOHXqFIKCglxZLCIiIlIJlwYq06ZNQ0REBNLT03WvxcTEuLBEREREpCYubfpZvnw52rVrh0cffRT16tVD69atMXv2bNn1S0pKkJ+fb/CPiIiIqi6XBip//vknZs6ciSZNmmD16tV4/vnnMX78eHzzzTeS66empiIgIED3LyIiopJLTERERJVJI4QQlldzDi8vL7Rr1w7btm3TvTZ+/Hjs3r0b27dvN1m/pKQEJSUlur/z8/MRERGBvLw8+Pv7V0qZiYiIyD75+fkICAiw6v7t0hqVsLAwNG/e3OC1Zs2aITMzU3J9b29v+Pv7G/wjIiKiqsulgUrnzp1x4sQJg9dOnjyJqKgoF5WIiIiI1MSlgcq//vUv7NixA++//z5Onz6NefPm4X//+x/Gjh3rymIRERGRSrg0UGnfvj2WLl2K+fPnIyEhAVOnTsUnn3yCIUOGuLJYREREpBIuTaa1l5JkHCIiIlIHt0mmJSIiIjKHgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFTLpkClsLDQ0eUgIiIiMmFToFK/fn2MGDECW7ZscXR5iIiIiHRsClS+++47XL9+HXfffTfi4uKQlpaGS5cuObpsREREVM3ZFKj0798fy5Ytw8WLF/Hcc89h3rx5iIqKwv33348lS5bg9u3bji4nERERVUMOmz35888/xyuvvILS0lKEhITgueeeQ0pKCnx9fR2xeUmcPZmIiMj9KLl/17Dng65cuYJvvvkGc+fOxblz5/DII49g5MiRuHDhAqZNm4YdO3ZgzZo19nwEERERVWM2BSpLlixBeno6Vq9ejebNm2PMmDF48sknERgYqFunU6dOaNasmaPKSURERNWQTYHK8OHDMXjwYGzduhXt27eXXCc8PByvv/66XYUjIiKi6s2mHJWioiKn5p5YizkqRERE7sfpOSq+vr4oKyvD0qVLcezYMQBAs2bN0L9/f9SoYVfaCxEREZGOTVHFH3/8gQceeABXrlxB06ZNAQDTpk1DaGgofv75ZyQkJDi0kERERFQ92TSOyqhRo5CQkIALFy5g37592LdvH86fP4+WLVvimWeecXQZiYiIqJqyqUblwIED2LNnD4KCgnSvBQUF4b333pNNriUiIiJSyqYalbi4OFy5csXk9atXr6Jx48Z2F4qIiIgIsDFQSU1Nxfjx47F48WJcuHABFy5cwOLFizFhwgRMmzYN+fn5un9EREREtrKpe7KHxz/xjUajAQBoN6P/t0ajQVlZmSPKKYndk4mIiNyP07snb9iwwaaCERERESlhU6DSvXt3R5eDiIiIyITNo7Pl5ubi66+/1g341qJFC4wYMQIBAQEOKxwRERFVbzYl0+7ZswexsbH4+OOPcf36dVy/fh0fffQRYmNjsW/fPkeXkYiIiKopm5Jpu3btisaNG2P27Nm6IfNv376NUaNG4c8//8SmTZscXlApTKYlIiJyP0ru3zYFKj4+Pti/fz/i4+MNXj969CjatWuHoqIipZu0CQMVIiIi96Pk/m1T04+/vz8yMzNNXj9//jzq1KljyyaJiIiITNgUqAwaNAgjR47EwoULcf78eZw/fx4LFizAqFGj8Pjjj1u9nSlTpkCj0Rj8M66lISIiourLpl4/H374ITQaDZ5++mncvn0bAFCzZk08//zzSEtLU7StFi1a4LfffvunQDVs7ohEREREVYziqKCsrAw7duzAlClTkJqaijNnzgAAYmNj4evrq7wANWqgQYMGit9HREREVZ/iph9PT0/07t0bubm58PX1RWJiIhITE20KUgDg1KlTCA8PR6NGjTBkyBDJ3BetkpISg3mEOJcQERFR1WZTjkpCQgL+/PNPuz+8Y8eOmDt3LlatWoWZM2ciIyMDXbt2xY0bNyTXT01NRUBAgO5fRESE3WUgIiIi9bKpe/KqVaswadIkTJ06FW3btoWfn5/Bclu7Cufm5iIqKgofffQRRo4cabK8pKQEJSUlur/z8/MRERHB7slERERuxOmTEt53330AgAcffFA3WzJg/4zJgYGBiIuLw+nTpyWXe3t7w9vb26ZtExERkftR1ezJBQUFOHPmDJ566imnbJ+IiIjci02BSkxMDCIiIgxqU4CKGpXz589bvZ2XX34ZDzzwAKKionDp0iVMnjwZnp6eisZiISIioqrL5kAlKysL9erVM3j9+vXriImJsbrp58KFC3j88cfx119/ITQ0FF26dMGOHTsQGhpqS7GIiIioirEpUNHmohgrKChArVq1rN7OggULbPl4IiIiqiYUBSovvfQSAECj0eDNN980GDulrKwMO3fuxJ133unQArpKVl4xMrILERPih7AAH1cXh4iIqFpSFKjs378fQEWNyuHDh+Hl5aVb5uXlhVatWuHll192bAldYOHuTExachjlAvDQAKkDEjGofaSri0VERFTtKApUtL19hg8fjk8//bRKjl2SlVesC1IAoFwAry05gm5xoaxZISIiqmQ2jUybnp5eJYMUAMjILtQFKVplQuBsdpFrCkRERFSN2ZRMW1hYiLS0NKxbtw5Xr15FeXm5wXJHDK/vKjEhfvDQwCBY8dRoEB1i21xGREREZDubApVRo0Zh48aNeOqppxAWFibZA8hdhQX4IHVAIl5bcgRlQsBTo8H7AxLY7ENEROQCNs31ExgYiF9//RWdO3d2RpmspmSuAKWy8opxNrsI0SG+DFKIiIgcyOlz/QQFBSE4ONimwrmLsAAfBihEREQuZlMy7dSpU/HWW2+hqIgJpkREROQ8NtWo/Oc//8GZM2dQv359REdHo2bNmgbL9+3b55DCERERUfVmU6DSv39/BxeDiIiIyJRNybRq4cxkWiIiInIOJfdvRTkqu3btMjszcklJCRYtWqRkk0RERESyFAUqSUlJ+Ouvv3R/+/v7Gwzulpubi8cff9xxpSMiIqJqTVGgYtxKJNVq5MYtSURERKQyNnVPNqcqjVJLREREruXwQIWIiIjIURR3Tz569CguX74MoKKZ5/jx4ygoKAAAZGdnO7Z0REREVK0p6p7s4eEBjUYjmYeifV2j0ZjtGeRI7J5MRETkfpw2109GRoZdBSMiIiJSQlGgEhUVpWjjY8aMwTvvvIOQkBBF7yMiIiICnJxM+9133yE/P9+ZH0FERERVmFMDFY6pQkRERPZg92QiIiJSLQYqREREpFoMVIiIiEi1GKgQERGRajk1UHnyySc5EBsRERHZzKZApby8XPb1zMxM3d8zZ87kGCpERERkM0WBSn5+Ph577DH4+fmhfv36eOuttwyGy7927RpiYmIcXkgiIiKqnhSNTPvmm2/i4MGD+Pbbb5Gbm4t3330X+/btw5IlS+Dl5QWAY6cQERGR4yiqUVm2bBlmzZqFRx55BKNGjcKePXtw7do1PPDAAygpKQFQMTmhLdLS0qDRaDBhwgSb3q8WWXnF2HYmG1l5xa4uChERkdtTFKhcu3bNYL6fkJAQ/Pbbb7hx4wbuu+8+FBUV2VSI3bt3Y9asWWjZsqVN71eLhbsz0TltPZ6YvROd09Zj4e5My28iIiIiWYoClcjISBw7dszgtTp16mDNmjUoLi7Gww8/rLgABQUFGDJkCGbPno2goCDF71eLrLxiTFpyGOV/t3yVC+C1JUdYs0JERGQHRYFK7969kZ6ebvJ67dq1sXr1atSqVUtxAcaOHYt+/fqhV69eit+rJhnZhbogRatMCJzNtq2WiYiIiBQm07799tu4dOmS5LI6depg7dq12Ldvn9XbW7BgAfbt24fdu3dbtX5JSYkuFwaAqmZm9vPylHzd14tj6hEREdlK0V00KCgILVq0kF1ep04ddO/e3aptnT9/Hi+++CK+//57q2tiUlNTERAQoPsXERFh1fsqQ2FpmeTrRaXSY84QERGRZYof92/fvo3p06ejTZs2qF27NmrXro02bdrgww8/xK1bt6zezt69e3H16lW0adMGNWrUQI0aNbBx40Z89tlnqFGjhsH4LFqTJk1CXl6e7t/58+eVFt9pYkL84GHU4clTo0F0iK9rCkRERFQFaISCgU+Ki4tx7733Yvv27ejVqxeaNWsGADh27Bh+++03dO7cGWvWrLGqhuTGjRs4d+6cwWvDhw9HfHw8Xn31VSQkJFjcRn5+PgICApCXl6eKofoX7s7Ea0uOoEwIeGo0eH9AAga1j3R1sYiIiFRFyf1bUY5KWloazp8/j/3795t0JT548CAefPBBpKWlYcqUKRa3VadOHZNgxM/PD3Xr1rUqSFGjQe0j0S0uFGezixAd4ouwAB9XF4mIiMitKWr6WbBgAT766CPJ8U5atWqFDz/8EPPmzXNY4dxRWIAPkmLrMkghIiJyAEU1KufOnUOHDh1kl991110GkxIq9fvvv9v8XiIiIqp6FNWo+Pv74+rVq7LLL1++jDp16thdKCIiIiJAYaDSs2dPvP/++7LL09LS0LNnT7sLRURERAQobPqZPHkyOnbsiLvuugsvvfQS4uPjIYTAsWPH8PHHH+Po0aPYsWOHs8pKRERE1YyiQKV58+ZYu3YtRo4cicGDB+tmShZCID4+HmvWrDE7IBwRERGREooCFaAiYfaPP/7AgQMHcPLkSQBAXFwc7rzzTkeXjYiIiKo5xYFKfn4+ateujTvvvNMgOCkvL0dBQYEqBl4jIiKiqkFRMu3SpUvRrl073Lx502RZcXEx2rdvj59//tlhhSMiIqLqTVGgMnPmTEycOBG+vqbz1/j5+eHVV1/Ff//7X4cVjoiIiKo3RYHKkSNH0KNHD9nl3bp1w+HDh+0tExEREREAhYFKTk4Obt++Lbv81q1byMnJsbtQRERERIDCQCU6Ohp79uyRXb5nzx5ERUXZXSgiIiIiQGGgMmDAALz++uu4cuWKybLLly/jjTfewMCBAx1WOCIiIqreNEIIYe3KN27cQFJSEjIzM/Hkk0+iadOmAIDjx4/j+++/R0REBHbs2FFp8/3k5+cjICAAeXl57BZNRETkJpTcvxWNo1KnTh1s3boVkyZNwsKFC3X5KIGBgXjyySfx3nvvcVJCIiIichhFNSr6hBDIzs6GEAKhoaG64fT1bd26Fe3atYO3t7fdBZXCGhUiIiL3o+T+rShHRZ9Go0FoaCjq1asnGaQAQHJyMi5evGjrRxAREVE1Z3OgYg0bK2vcVlZeMbadyUZWXrGri0JERFQlKJ7rh6Qt3J2JSUsOo1wAHhogdUAiBrWPdHWxiIiI3JpTa1Sqi6y8Yl2QAgDlAnhtyRHWrBAREdmJgYoDZGQX6oIUrTIhcDa7yDUFIiIiqiKcGqjIJdlWNTEhfvAw2lVPjQbRIaaTNxIREZH1mEzrAGEBPkgdkAjPvwMzT40G7w9IQFiAj4tLRkRE5N6cmkx748YNZ25eVQa1j0S3uFCczS7S1aRsO5ONmBA/BixEREQ2UhSo3H333Vatt379epsK4+7CAnwQFuDDHkBEREQOoihQ+f333xEVFYV+/fqhZs2aziqTW5PrAdQtLpQ1K0RERAopClSmTZuG9PR0/PDDDxgyZAhGjBiBhIQEZ5XNLZnrAcRAhYiISBlFybSvvPIKjh49imXLluHGjRvo3LkzOnTogC+//BL5+fnOKqNbYQ8gIiIix7Gp109SUhJmz56NrKwsjB07FnPmzEF4eDiDFbAHEBERkSPZ1etn37592LhxI44dO4aEhATmrfzNuAcQgxQiIiLbKA5ULl26hLlz52Lu3LnIz8/Hk08+iZ07d6J58+bOKJ/b0vYAIiIiItspClTuu+8+bNiwAb1798b06dPRr18/1KjBeQ2JiIjIOTRCwfCxHh4eCAsLQ7169cwOj79v3z6HFM6S/Px8BAQEIC8vD/7+/pXymURERGQfJfdvRdUhkydPtqtgxmbOnImZM2fi7NmzAIAWLVrgrbfeQnJyskM/h4iIiNyTohoVR/v555/h6emJJk2aQAiBb775BtOnT8f+/fvRokULi+9njQoREZH7UXL/dkigsnHjRhQWFiIpKQlBQUF2bSs4OBjTp0/HyJEjLa7LQIWIiMj9OK3pZ9q0aSgoKMDUqVMBVMyOnJycjDVr1gAA6tWrh3Xr1llVG2KsrKwMP/zwgy7gkVJSUoKSkhLd3xy3hYiIqGpTNODbwoULDYbMX7x4MTZt2oTNmzcjOzsb7dq1w9tvv62oAIcPH0bt2rXh7e2N5557DkuXLpXt6pyamoqAgADdv4iICEWfRURERO5FUdNPUFAQtm3bhmbNmgEAhg8fjrKyMvzf//0fAGDHjh149NFHcf78easLUFpaiszMTOTl5WHx4sX46quvsHHjRslgRapGJSIigk0/REREbsRpTT+3b9+Gt7e37u/t27djwoQJur/Dw8ORnZ2tqLBeXl5o3LgxAKBt27bYvXs3Pv30U8yaNctkXW9vb4PPJyIioqpNUdNPbGwsNm3aBADIzMzEyZMn0a1bN93yCxcuoG7dunYVqLy83KDWhIiIiKovRTUqY8eOxbhx47B582bs2LEDSUlJBk0069evR+vWra3e3qRJk5CcnIzIyEjcuHED8+bNw++//47Vq1crKRYRERFVUYoCldGjR8PT0xM///wzunXrZjIA3KVLlzBixAirt3f16lU8/fTTyMrKQkBAAFq2bInVq1fj3nvvVVIsIiIiqqJcOuCbvTiOChERkftRcv9WlKNCREREVJkUBSq3bt3CxIkT0bhxY3To0AFz5swxWH7lyhV4eno6tIBERERUfSkKVN577z383//9H5577jn07t0bL730Ep599lmDddy4JYmIiIhURlEy7ffff4+vvvoK999/PwBg2LBhSE5OxvDhw3W1KxqNxvGlJCIiompJUY3KxYsXDYbQb9y4MX7//Xds27YNTz31FMrKyhxeQCIiIqq+FAUqDRo0wJkzZwxea9iwITZs2IDdu3dj2LBhjiwbERERVXOKApW7774b8+bNM3k9PDwc69evR0ZGhsMKRo6XlVeMbWeykZVXbNc6RERElUVRjsqbb76J48ePSy5r2LAhNm7ciLVr1zqkYORYC3dnYtKSwygXgIcGSB2QiEHtIxWvQ0REVJk44Fs1kJVXjM5p61Gu9017ajTYktITYQE+Vq9DRETkCE4f8O2HH37AgAEDkJCQgISEBAwYMACLFy+2qbDkfBnZhQYBCACUCYGz2UWK1iEiIqpsigKV8vJyDBo0CIMGDcLRo0fRuHFjNG7cGH/88QcGDRqEwYMHcxwVFYoJ8YOHUa9xT40G0SG+itYhIiKqbIoClU8//RS//fYbli9fjuPHj2PZsmVYtmwZTpw4gaVLl2Lt2rX49NNPnVVWVVNzEmpYgA9SByTC8+8xbjw1Grw/IMGgSceadYiIiCqbohyVli1bYsKECbIzJH/99df49NNPcejQIYcV0By15Ki4SxJqVl4xzmYXITrEVzYAsWYdIiIieyi5fysKVHx8fHDixAlERkrfhM+dO4f4+HgUF1dOrYIaAhVHJqFm5RUjI7sQMSF+DBKIiKjKUnL/VtQ92cfHB7m5ubKBSn5+PmrVqqVkk27PXBKqkmDDXWpliIiIKpOiHJWkpCTMnDlTdvmMGTOQlJRkd6HciSOSULPyinVBCgCUC+C1JUdUme9CRERUmRQFKq+//jq+/vprPPbYY9i1axfy8/ORl5eHHTt24NFHH8WcOXPw+uuvO6usquSIJFR2DSYiIpKmqOmnU6dOWLhwIZ555hn8+OOPBsuCgoIwf/58dO7c2aEFdAeD2keiW1yozUmo2loZ4zwXqVoZteSxqKUcRERUtdk0Mm1RURFWr16NU6dOAQDi4uLQu3dv+PpW7pgbakimdZSFuzPx2pIjKBNCVyuj1iHu1VIOIiJyT07r9bN+/XqMGzcOO3bsMNlwXl4eOnXqhC+//BJdu3a1reQKuSJQcXRNgv72AMjWyqhliHu1lIOIiNyX03r9fPLJJxg9erTkRgMCAvDss8/io48+qrRApbI5uiZByfYc1bvIXmopBxERVQ+KkmkPHjyIvn37yi7v3bs39u7da3eh1MjRPXOUbk8tQ9yrpRxERFQ9KApUrly5gpo1a8our1GjBq5du2Z3odTI0T1zlG7PXO+iyhy+Xy3lICKi6kFR00/Dhg1x5MgRNG7cWHL5oUOHEBYW5pCCqY2SnjnO2p5U7yJXJLYOah+J+AZ1sPtsDtpHB6FVRBATbImIyCkU1ajcd999ePPNN3Hz5k2TZcXFxZg8eTLuv/9+hxVOTRw9aZ+t2wsL8EFSbF1dDYYrBopbuDsTD3+xDe/+egwPf7ENszad4YB1RETkFIp6/Vy5cgVt2rSBp6cnxo0bh6ZNmwIAjh8/jhkzZqCsrAz79u1D/fr1nVZgfa7q9ePISfvs2d62M9l4YvZOk9f/+3hr3N8q3O6ySZHq9aPRAFJn0fzRdyEptq5TykFERO7Lab1+6tevj23btuH555/HpEmToI1xNBoN+vTpgxkzZlRakOIqYQE+Du3dYs/2pJqPAGD8gv0oLL3tlKYXqdwaqSCFCbZEROQIigIVAIiKisKKFSuQk5OD06dPQwiBJk2aICgoyBnlI8iP3aJtPpr042GU662vbXrpFhfq8C7DcsGRPnubxYiIiLQUBypaQUFBaN++vSPLQhIsJakOah8JP+8aGDdvv8H7nDW2iS440stJ0fdmv2a4r2UYgxQiInIIRcm0VLmsTZZtGxVkMraJhwbw9XLO1zuofSSWjukEo4+Ep0bDIIWIiByKgYqKWTvWinEPIqAiqHn4i21YuDvTKWVrFRGEtIGO6wVFREQkxeamH3I+JWOtaMc26T9jG7SrOzNXRfuZ9swaTUREZIlLa1RSU1PRvn171KlTB/Xq1UP//v1x4sQJVxZJVZSOtVJYWgbjtBFrRs+1Z0RZ/XFdiIiIHM2lNSobN27E2LFj0b59e9y+fRuvvfYaevfujaNHj8LPz8+VRVMNS7UW+j2CbBntliPKEhGRmika8M3Zrl27hnr16mHjxo3o1q2bxfVdMeCbmkgFGUBFc0+ZEPDQAK8mx+PZbrGS75cavM1To8GWlJ5OryGR63JNRERVn5L7t6qSafPy8gAAwcHBkstLSkqQn59v8K+6kusR1C0uFBP7NoXm79emrTwum1Dr6IkW5cpp3Ky0cHcmOqetxxOzd6Jz2nqnJfwSEZH7U02gUl5ejgkTJqBz585ISEiQXCc1NRUBAQG6fxEREZVcSvWQCzL2ncvBtFXHTRJqtYGCfuCgbSrS58gRZaUCElfNT0RERO5JNYHK2LFjceTIESxYsEB2nUmTJiEvL0/37/z585VYQnWRCzKuF5XK1pIYBw6bTl5z6ESL+uQCkr3ncpxei0NERFWHKronjxs3Dr/88gs2bdqEO+64Q3Y9b29veHt7V2LJ1EvbI0ibj+Kp0aB/63C8tewPk3U9NRr4enlIBg5bUnpiS0pPh3cxlqvxwd/5NEoSfomIqPpyaaAihMALL7yApUuX4vfff0dMTIwri1MpHJlEqt8jyNfLAw9/sc2ke7KHBnh/QAIKS8tkazKc0b1YrgdS2+ggkwCLA8UREZEclwYqY8eOxbx58/DTTz+hTp06uHz5MgAgICAAPj5V78bljK7A2tmXt53Jlpx757PBrXF/q3Bk5RVXak2GVI2PNiDhQHFERGQtl3ZP1miMZ4upkJ6ejmHDhll8vzt1T3Z2V2Brtr9wd6ZJ4KAkULKlNigrr9hsQMJuykRE6uPsa7OS+7fLm36qC3NdgR1xEpirwdCecN3iQm3OR7G1Nkhb4+PIbRIRkfOo7dqsimTa6sCWUWOVkmpSccQJZ27MFluDLGdsk5yLtV9EVZ8ar82q6Z5c1Smdt8eez9Emx9ozZon+eCvOGBiuMgabI8fhIH1E1YMar82sUalE1iaROurJ1dbmJuNamFf7xju8NqgyapjIMdT4hEVEzqHGazNrVCqZpdmGHfnkasvIs1I3pQ9WncCYHrG6bTmiNqiyapjIfmp8wiIi5zC+NntogBFdol1aJlVNSqiUO/X6sYYzegZJ9fTpFhcqW2Oz7Uw2npi902Q7GgDi7/+mJMfj2e7SEx0qZalXELmeKyevJCLXyMorRvrWDMzelAEBxyfVuk2vHzLkjJ5Bxs1Nm05e0910pE48qWo/ALqB5AQqalgevDPcYb2VLG2HSZyuZa5HGRFVXV9tzjCZN84VTb4MVFTEWW2D2mDAmlyDsAAfPNy6IX7cd1F2e47sVm2J2rrJVVccpI+oenH2kBpKMEdFRZydt2FNrkFWXjGW7pcPUrTlqozEKs60rC6W8quIqOqwJcfRWVijojLO7BlkTY2NVDAD/DORYGVW+6spoiciqk7U1OTLQEWFLOVt2DNKrKUTTy6YWTImCUWl5ZVa7a/GbnJERNZy9/w6tTT5stePm3FEDwxLPW3snRPIkdRUFkdy9wuYNarDPhLJYX6deez14yRquPA6ojnEUo2NWqJotZXFUarDBaw67CORHA6S6FhMprWSWoYQl0pw8tAA2QU3HZpkqpbESW1wWFWClOqQIFwd9pHIHHccJFF/2hS1YaBiBTVdeI17Bmk0gBDAC/MPuM0cLNb+INQSHDqS2i9gjrhYqX0fiZxNTT1mrKH2ay0DFSuo7cI7qH0ktqT0xIwnWgMCJgPy2HKTqaxo2tofRFZeMVJ+NAwOU5YcVmW0r4SaL2COulipeR+JKoM7TREi9yB+8HyOampYmKNiBbX1PtE2hwj8E6Ro2dJ9t7LyCZS02+49l2Oyb0IA+87loF9LH932XJ0zpJSauvzpc2Sbulr3kagyuUt+ndyDeP8Z25wydL4tGKhYQU0XXv2gQoN/5uDRUhpAVWbSl5JEYLnOaNqXpWZ4TrwjwC2CFjVewBw9Zo0j99EdA1IiwLopQlzN0rQpakgEZqBiJXMX3sq6kBoHFdpJAu0ZjK0yB1VTUjPVLjrYJAjTAGgbHSQZXKWuPA5AHdG/NdR2AXNGraEt+2j8W2LvIXVgsFh1GT+ISwUtrh5ok4GKAlIX3sq8kEoFFQLA54Nbo25tb5ueXCuzWUtJzVRYgA/SBiZi0o+HUY6KZKrUgYkIC/DBtjPZkqPnAuqI/t2RGmoNpWrJpq06zi6eLsZgseoxDjy1D+L7zuXgelEp3lr2h1019Y7GQMUOld1XXi6oaBsdZPPnVfYNSkmTgNy6clWVWq6O/t2V3PGujKdpqd/StJXHUW60Hr/byqW28UBYs2M/ucBz08lrkmkFasgxY6Bih8qei8ZZQUVl50woaRKQWtf4OBjzAODrxQ5ttjA+3pX1NC31WyrHP93vtVz9ZFfdqGm+Ldbs2E8u8IxvUMckrcBDU1Fbb8+DsKMwULGDK3oDOSuoUFvOhCX6x+HQxVx8sPKELmgpB/DwF9uq7YXM3FOnkifSynyalvstTUxuqvtu1fBkV92opcej2mp23JVc4Ln7bI7pg4IA6tb2VsXxZaBiB1e167tbUAE4p8pWexySYuvirphg9P9im+7pu7pdyLTH9/CFPF1eh/FTp9InUlufpm35ruV+S4PaR+LBVuGq6iFVnaghdwlQV82OO5MLPNtHB6kiIJXDQMVOauxqqjaVUWVbWFoG41ag6nIh0z+++vSDNQCKn0j9vDwlXzfXrGbPdy33W3LHwLwqUcM1zlU1O1UtJ0aqh8+ILtGo519LFQGpHAYqNjA+eXkhlVdZVbZqqaKubMbH15g2WBMQip9IC0vLJF8vKjVOcZUui7nvWu4GoP3/jOxCg7/NvYecz9XXOFfU7FTVnBht4Jm+NQOzN2Vg9uYMfL0lA6kDErElpacqH7oZqChUVU9eZ6ms5gO1VFFXNqnjq08/WFMayCkN/qz9rg0GLdQAKcnxeLZbrMky/d8Xf3dUmTU71SEn5qvNGSaDum1J6Ymk2LouLZcUBioKVIeT19Fsqemw9aakhipqoHKf/M111TYO1oyrfCcmNzVbPqXBnzXftcmghQJIXXEcEMCDd4Zb1SOBv7vqy9E1O3K/1aqWE2O8n+62fwxUFHC3L9cR7L3pKr3Z2RsMurqKurKf/MMCfCoGRvt7zBFtT5mWDQNNgrVB7SORW3QLaSuP68YpCfSpabZ8SoI/a75ruRqgaSuPo2GQj9U9Eqr6746cz9xvtSo1JUvtZ7e4ULfaPwYqCth78rpbG7ujbrpKbnbuHAw6osYtK68Ye85eh0ajQdso+fELdL18Lv7dywcVzSgTk5vqmlGk3jNt1XHFc3goCf4sfdcxIX4mY6MAFV3KIaSbp9TeI4Hcj6XfalVpSpbbzy0pPd1q/xioKGDPyetubeyObuay9mbnzk8y9gZZC3dnIuXHw7pAQgMgbaDpeSLXy0cI4IOVJ/Bgq3DJz3NGEGgcfFsKxsMCfJCSHF/R3KNHO8Ky1O+rVYT062q9qJL6WfNbUEtTsj3M7ac77R8DFYVs+XKlbvqTlhyGr5cn2kUHq/IEcVXNhjs/ydgTZGXlFRsEKUDF6JCTlhw2CA6t7eUjdbwcHQQaB98Pt26IpfsvWgzGn+0WC+gNke8BYGLfpgCAiGBfLBmThKLScoPfl7W/O3ertSTXsDafytK5pPbzTWo/PQD8VViCrLxilzeVW8ulgcqmTZswffp07N27F1lZWVi6dCn69+/vyiJZRemXKzk8uABemH9AtbUrrqzZcFak7+yLij1BVkZ2IaRij3IBg8BDSS8fR5bPmFTw/eO+iwblNlcD92z3WEADXb5M2srjSFt5XDd0d+qARJPeB5Z+d+5Wa0mOo/1t+3l5orC0zOJv3NJvwZpzyR3ON+P91M7fM27efnhogJFdYjCiS4zqgxWXBiqFhYVo1aoVRowYgQEDBriyKE5lrmeGWnswuLpmw9GRfmVdVGwNsmJC/HQXEX0eGhgEHkp6+TiyfMYsBUyA+dqdrLxiTFt5XJeror8pW3N72DOoepJqCrXmN25uEk5L55I7nW/a/dx7NgcvLNhvMHr37M0Z+GpzhkETsxpriVwaqCQnJyM5OdmVRagUxjd9Y2pNFtU/waEB2kYFubpINqnsi4qlIEvqQhAW4IO0gYmGOSp/X2yNB0QzDiAn9m2KlneY9vKxpnxKc0y0LM1gDSgfc0Wf0t+EuaZK7XJL+6TGCzSZJ9cUak+iuDXN3u6W9B8W4INDFzJMktiBiocE7bHSn0FZTbVEbpWjUlJSgpKSEt3f+fn5LiyNMtqb/r5zORg3b7/BE6Sak0XVeuIqoaaLirmaHf3AUKMB2sj0+nFUrYitOSaAdMDUv3U4lu2/ZPOYK/o8AMnfhFwwIddUeehCLoZ8tcPiPrlDNX5lUFOwZk1ZzAW8SgNVLWuavd0t6T8rrxj/25whu7xMCOw9m6PaWiK3ClRSU1Px9ttvu7oYNgsL8EG/lj4oKLnt0mRRay9G7lS9aY6Si4ozL9TWHM+wAB/c38r548XYm2MCSAdML/dpqmjMFbnE4FHdTNvNzQUTkjVNyU0rEnYlktgjg311uQyA8nmQqqLKCtas+Y1ZU5asvGJcLyyVbDIFlAWq+qxp9nZ107i1tMf69NUbZtfz1GgAiQcHtdQSuVWgMmnSJLz00ku6v/Pz8xEREeHCEtnGUU/EttxUlVyM1FQTYQ9rLyrOvlCr6XjuOXvdrhwTLeOASUkANah9JOIb1EH/GdsMbjQeGmB45xiDda0J8ox/V+aS2PU/a1SXGNV8L65SWQ8l1gYglspiMA0DYBKsyAWq1u6TNddotXfvNT5GcrTXw7ZR6h2vyK0CFW9vb3h7e7u6GA5h7xOxLTdVpRcjd6veNMfSRaUyLtSHL+SZvGZNzQ5gWnVtT82P9tyxpDK+61YRQUgbaDmItDbI0/6uLD1ta5WLijlPqsp5bitnBdHG57E1vzFLZTGZhgEV18DPB7dGRLCPrmu7vftkzTVard17pY6RMQ2Azx9vjbbR/zQxq7WWyK0CFapg603V2h+u/sVFrSeuLcxdVJxd26EdFdaY1Hw7Uk9C+t12AVgdpEoly0o1t3gAeLhNQ6tzTBzJmidTuZyWQxdzTboxW3raNlYO4JkujfD1lowqcZ7bQulDiS3NN3I1V3vP5hg0d1oqi1xNWd3a3mgVYZjwX10DULncHe1vQXvduL9VuMFytdYSuTRQKSgowOnTp3V/Z2Rk4MCBAwgODkZkZPVLZLOWrTdVay5GUjU1rpr629WT+znyoiZ34WjZMNDgb3NPQuUCmPTjYYO2ZHNBqtR3GRHsK1mOz59ojX4tw63OMXE0S0+mYQEVcxqlrjQM9oxH4pV72p76UAu8uewP2VyG4V2iMbxLtOou0JVB+zt7NTkeH6w8YTFYs7X5RqrmCgBeWLAfBy/k6sbzsNRUq2SwNmv3qaqRO0ZSgykaU2MtkUsDlT179qBnz566v7X5J0OHDsXcuXNdVCrruDI73p7kUHMXALkRdJeO6eSwqb+tPW6umNzPmbVH1n5nlrrtaufE0SdXKyZV67ZkTJJkOdr83fVcjRcprcQ7Akxes6bbaLkAYkPrGDQxaRl/z45oWnMnxr+zV/vGm+3qbm1truT3AOCJ9pGYvyvTcARmYTqeh7kne0u/VYMaNQ0wpkcsujQONdlOVfuOrbnWG9c4uQuXBio9evSAkOrYrXKu7spob3Ko3AVA7iLff8Y23QXEEbkRlo6bq3obObPa07iXi4cGkt+ZNd12jbPzrQ14yoRAUWm52zbn2dttNCm2ru779fXykHyyzMorRvqWDMzenGFQRV4VuypL/c4+WHUCW1J66poJjX/rcufVvnM56NfSfPONBsCC3ZmyzXACphMDWupxZjzGk0mNmgBmbDgD/1o1DR62XH0NdzSl13p3wxwVhdTSZdfe5FAleQDaC0hu0a2KmXpt+HErOW7WJNM560nI0TUKxsmEQu8CKvf5qQMSkbLksMk62qACgMVAw9obtrtcwHRV+X3j8cEq+ap8S0G8ue9XaoTTqtxV2dzvTG78JLlrxLh5+1FQclu2u7gHKq4jjuhppiVVRrmmzWkrj+PBO8Ml87T0v2PtcXGnWhZbrvXuhoGKQmrqYuro5FDjp37j92rnYgGUX8CVlMfcTdadnoSMyyrEP602xk+P+rrFhZo073gAWDImSVd1aynQsOeGbY3KrDY3aZ5IjkfLhvLNE46YOFRfVe2q7OflKdmt19fLw+yNT+oaIVCRP+XnXQNt/x6oUP97+KuwBOPm7bdYJiWTeMo1bWo0pg8C5fhnziy5a9F7vx7Fr4cuu1VNWlZeMX45dEk19yRnYaCikDt02ZXrmmlNOc2NbWHPj0HJcZO7yQLuMzCX1IXUmNzxk5qgsBxAUWm57m9rAg1nVf1WZrAo2Tyx8p/mCTlKAzFzuUFq+33bQxtgHr6Qh2mrjptcH94fkIDC0jKzv/VB7SPh6+VpMB4NUHGOaie7054T2u8hK6/YqikXlEziKde0mZIcj9QVhknX+t+hXK3QL4cu/7MvKr62aEnVAGpVpXMWYKCimLOTLu0l1zVTSTmlxrYwHjwJUDa6q9LjJnWT3XYm222eHKyZtE/u+DkyGLa15kSuxqSymz5trcFUUuOTlVeMvwpKJG9eHjDNJXLXJExzNzYPzT81dlJBhfH51y462OxEq8a1K+Zqaz1Q0etMO2WENcfXUtMmREVzTzmkE6bNzb2mpdZrC2C+BtBDYzjsgbuer/oYqNjAkU+qjjyJzA2EpD+ojzWk9jHQp6Zdo7sqPW7GN1k/L0+Tal21PjlIJhNqAI2A5MVTn63BsKPOJXPfob1Nn0rLKHdD8vXywLYz2ZLbMe71kZIcj2e7xVrcVw2gO78qxv1ohOFdog22705Nj/rM3diAiuOrrbGz5vwLC5DuLq7bHgxrV7rFhSIi2BdTHmyOt346arJusJ83wgJ8rD6+lsr4bPdYPHhnuOy1Rnst+vVQFt799ZjkPqj12gKYfxAqF0DaiuOAAAJ9a7rl+WpMI9yx283f8vPzERAQgLy8PPj7+7u6OIo5+qK37Uw2npi90+T1+aPvcmj3YnMJvJ3T1pvcVCxV01tD6mlQe3FS6w9v4e5MkwupkkDN3LGW+ixHnEuWvkN7vmMlZdQPaDadvGYy+aHc5IlS5QOAScnxeLZ7rMlnGK9r7ukegOn6GuDTwXeiXXSwqp9W5a4NWlLfoaXzz9I2tTR/V+tqH5z0c7X0PxswPb6Wzi39MgLKE2HlzhcPAKkDDc8rW2YZdxa5chuTav53xPXYEZTcv1mj4iIHz+cY9OxwRBV6ZeTPODqB1xpST4PGyaVqJFeDZO2xkDrWUhdIRzbHmPsOtcuf7xGLmb+fQbmwvklRSRnNDTro6+WBh7/YJrsduSdN414fGdmF+KugxGRdc0/3UiOrlouKuYPU/rRqrtu73HdoqdnQUld6Lf1HYW0tl4dEzaItTbvaMtoaqJv0TpKoSTOudevSJARbTmW7NOlWqtxS34PxS2puzjKHgYoLzNp0xiTZC7D/JHJ1/oyzAiW5waP0k0utVdlPQvb2rtEndzF2ZIAo9x0euvjPLLRaGgAT+za16iKtZPoGc4MOWrqZxYT4me31YdylVS7hXMnIqtrlak6+DAvwwavJ8bo8M23embneU9ZsM3VAIib9eBhKfolCAP99ojWC/bwNPtvW64e9gbq5Jmmp5vTNp7J1y2393h1xHdIvt6+Xh0kHCClqbs4yx8PVBahuZm2UDlIAx5xEg9pHYktKT8wffRe2pPR0yUB0npqKGWpsCZSy8oqx7Uw2svKKda9pL2D6bDlWC3dnonPaejwxeyc6p63Hwt2ZistiK3u3JXcxzsordtjxAaS/w4l9TROpgYqL9gerTuDg+RyL+2ZtGc0NOrhwd6bF7YQF+CAlOd7k8+W63ULzz0VQ/3yVC45HdWmkOzbG9Gue1Gbh7kzdd6gNMJ/tFouk2LqSv09rz9dB7SOxddLdeKZrI933os31Af4JBvVpR0KW+uxRXWIkvw9zLNUCWiMswEeyPNYkxSv9LKXXIXO05W4VESR53utTW8cPJVijUomy8oqRJpN8JjdSqS0c+RSvlD2JxnI1Bo6oKVL61OXI/CFHbMvcxTgptq5Da9KMv0NzF+syIdD/i226BFRbkx+1LA06uCWlp8XtPNstVrLXh1S3W6VP99o5gfady8G4efsVd/93BalagQ9WndA1hRmz5XztER+Kfi0b6Eb7BSpqsA5dyDW45mlkrnPGn/mMRCKzHEfX5OrXdljTvOWhAbILbiIrr9ihTaBKPds9FueuF2LezvMmy97s1wz3tQxzyyAFYKDiENZW40mNjwFUPHEsHdNJ1fkWStgSKFn6Advb00pJ84gjLyaO2pali7Gjx0wx/g7NXaytzbOypoy65gSZQQfPZhdZtR2pXh9y3W61ibNS5ZALiPq19EFByW3VDlOgz5nnvlRQo5+4P+SrHQbXPI2AbgRY7eftOXvd5DO/3pKB4V2iAVTk8+06ex0dooMlr5GObPKW2p/UAYlI+fGw/ND/CvKUnJHHp3//eeHuJliw67zJOe7OQQrAQMVuSp4+5KLzlPviLQYprs4ydzZrfsD21BRJHXu5JyFHXkwctS1rLsZKjo+S88n4s7U8AJPcBGuTH82RG3TQuInHmnIbHx9bx/Lx9fJAYWmZwbkiFTCp8XeqpIu3I4MaueYz7bbMjeui/cwPV5/Aj/su6l4f2KYh/vPYnSbrKwnUlY4RNDG5qWkyE/55SftyuagYPya+QR3Z67mja3/kAit3CKCVYKBiB6VzRphkaqNiOHC5MR603HXsBiWclYirf1HSP/bahEupJyFry2LvwFRKOarWxJbzyfimXVRabtIDB3Bc84fUoIOOuODaMpaP3Lw32uVSvUO0MxEn3hEgeX5UZkAjFaD1bx2u++4szeWjn2CsX2ZLQY2lbZkb18VTo0FR6S2DIAUAftx3EU8nRcnWrFg6lraMEZS28rjk3FxSRS8H0P+LbUizsgnUAxX5QracA3L3ny0pPXW95NxlLi9LOI6KHeTGEXimayN8teVP2RuBkvExnDk2iTPYO7uy8Y3JnoBM6qLULS5UNr9A/5haKouSm72j98sejj6fnLlv2mYBD5nmmcpg7fEyN66F8fmhZBZxRwYz2uuOXICp3Sep7xSA5G/J0rGROz/MjcGi7ZGU+VchvjeTb+GIMVMsjRFkK0u/qVmbzugCIFsfPitj3Cxn4jgqlUSyOQHQBSmAdBuvkip6NU2CaInSJ3XthdjPyxOFpWXoFhfqsCcBc08bQX5eFscXUNJl0RG5Geb2w5E3K6Xnk6XPrwrzCZlj7fGyNFKofk2ruXPHeC4eR+6/9rpjqYu38XcKGA7Epv9bstTMIHd+yF07P3+iNS7kFEv2MtO6XliqK4+SY2PpuwwLqOjCLdcrUwlLv6lperU0zspbq0oYqNhBqkp1ZJdo/G9zhsF69gQW7nIy2pOEp+XIG5K5i5K1x1QuoJTb9t6zObi/le25GcaccbNWcj4pGc7cmppBJXPvWHMuKQ3ibAn6rD1elnqHaM89ASF7Xi4/eEmymcERPUMs9WQx3if979RcYGNtgrS1ycptooLwwvz9ssfx7qah+OL3MzbN4h4T4mdxotbEhgGS79UeLw8NkJwQhl8PZ5n9LHPX6MrMW6sqGKjYSerp46stGQ4LLNzlZLQnCU/LkV31zF2MrTmm5m5qfl6eUrl1eGH+flzMLTYZqt0WcgOfmUvUM7ct/X2x5nyypbeS3DFT2tQhNWKs8bmkNIhz1Mil5kZxNTfRnf41QKomYcGuTPx08JJsOYxHB1YSbNmbcCmXiK4ksVmKVLLynrPXzTa9rD9xzeQ1cw8J+ufkh6tPmPxm9SfvA+SvG0vGJBl0vV55JMtgHe3YMeXC8nglasxbUzsGKg5g/ENVGli4qnrdkZT8+CyNy+GIZi1LNxhzx9TcTU27TKr4AqiYpE0DiwnSlpgb+CxtoPU1K3L7Yul8UvrUJ/c51gY8xu839+QrF8TJBVHOHLlUbr1DF3PxwcoTkueeQVL33/tpLkjR7r/+6MDWBluOSLjU/pb0p/wQAth08prduTXGycrSQ+lZNn7BfhSW3pbNI5OTuuI4An1q6s7VPWevY3D7iIouvvhnwMPC0jKD/ZG6tlh7jbb34VPq+AqLY9K6NwYqTqAksDB3UzQ+IdUYoGgp+fFZmnfEUc1alr4HqWNqqSeXpQsf8Pe8Mq2kB9OylqWBz6y5yVq6QZt7v5LA09znWBPwSL1fbj4YQD6IS9+agdfua25SPkdUtVv7+9OulxRbFw+2kp69V3te7j2bgxcW7JfsUaJPanRga2vYLA0UaG1eUre4UIPIUaCiK66lgNPc9Uz7mvFgdLaQyvWx5rcKVLwvt+hWRbPb369pUNEpom4dL91x198fe+fxsvXh0/j4Pty6oewEnVUJAxUnsbbdXu4Cb65LpFpZ++OTqyZ3RrOW0gDP3IVdKr9ASrmA3bVC2mNkbuAzS9u3N3HW2sDT3nwgqffLjRgLyAdxX23KwPDOMSZldFWel7lzLyzAB4cuZJgNUsb1jEXnxqGyowNbU8OmZAwVwPx8UsZFLQeQvuUsXuvXDIBt1zNrhqi3lv65rWS7ZUJU1ITqEajoFKE/07NUoG/vb1zJ+6WOr373bUfnMqnpwZiBigvJXeD3nctx2jDLzqb98WnnCrGmOUs7LkdlNGtZ+iFauqlJ5aYYc9RN0NLAZ/buiz5bm4gsfY41AY/c++W6JIcF+GBklxjMNkpa1x9MzHh9V+Z5ZeUVY++5HAgh0C46WPf7MC6/vic6RuDlPoZzt9hSwya173JjqJgLNKQSUYGKm7l2qHtbrmdS371xvkf/1uFYtv+SrqkMGtNJJwHDc9vamZ3ljqu2nMbM5d3J/RZtvflbM26NufIp/Vy19LSTwkDFheQu0OVCvmeA2gMVwLG9RSq7XHI3NQCYs8X0xiKVS+HIm6DcwGfW1Lg5KnHWmjwD48+ZmNwUGdmFuJp/ExHBvgbJiI4IJEZ0icFXmzMszrWjvVg7suu7Egt3ZxoMv64BkDYwERHBvrIBr4cGeOHuJgav2VPDZvxQoD+GirXNdEmxdTG6a4xJj0b92kOpYKYi4JC/nsnNU2UcIL/cp6lBhwXtPEIfrJLOA5I7p+Ib1MHszX/i10OXIfDPmC1pK46bfB8efwdEls4xa3LalN785caAshR8actny1ARan44ZqDiQnI/pnbRwW7RJVlKZZ/w1j41KCmXcU3CppPX0Cl1vWwCrZYHgCVjkhw+Z5O141pYsy+OSJzV0h8HRz8YOXQh12QcDKl5YJSWU19YgI/FkWtd/YSoPef0D602t2Pp2E6SNx0PVJRTP4dDe35bM7WAHG3Aaa6rsaUauOFdYpT3aBRAZLCvTfNU6X+XxgGzLg/oTuk8IHPb/e8TbfF6P8NBNwN9ahoGlH+fLwDMnmMHz+cYvE//t3g1/6ZBArI2r8jXy1NXsyYlK69YcptS49bo1zZJDc5nXCa5z1T7eF0MVFxM7sfkDl2SpVTmCa/kRqS0XPpNWHK9fIyVAygqNZ79xjH0L9SWBuwy914ptuRwyI2D82pyvG6gMn3WXCyV1rApHZTP1u7d1rK2ql57nhgMpa4BRhnNGCx3ftsztYAtzXQAdM24xsO/j/x74kBAetJVIbGv9s5Tpc/S++SWG7+un+Cs0cCg2dFc78AUiWtDmRBI35qB2ZsyTPN6hOUJDD9fd0p2QEqpc16/tslcMPrroSz0k5mcUO3jdTFQUQGpH5M7dEmWUlknvJIakqy8YlwvLJXt8mquVkZJUl5l/bCVzMdiDaVNL+bGwTE3oqgzAlbttjKyC03+tiX51BZZecWYsyUDX/9d26BfVa+dU0qfByrGIEmKrWvT6Mf2XBvCAnzwat/4iu8Jpk2VUrWJxqPAbknpifQtZ/HVlj/xv80Z+GpLhmzThPa8NLevahEW4CM5FovU9Vn3ACNxrntoIBmk6CsX0hMYztp4BvN2mU4boD1npMpj/Ldcfs67vx7D+yuO2dVM7CoMVFSssnM4HKGyTnhra0j0n0o1+CenRCrXQwNgdNcYDO/yT88RuR+9tmugcbWr0v10ZGBhT08xJTc/S8PFyyUcOyOQk6t1cET3bkuy8oqRviVDMm/jtSVHMLFvU8kZd1MH/tO0I/cbNzf6cXDtivPF18sDvxy6hA7RwVbXEi3cnVlR44WK5o2JyU0lb1r6tYnGwdKSMUmS04RYGlLfHa9ncuR+AxW1TKaJ3lK0EximJMcjsWEA/Lw8kbZSevj+wR0jTIJxOcbXB4PPtLOZ2FU4KSE5hZKJF21x8HyOZFu9/kRgB8/noP8X2wyeejw0wGeDW6NtdMWFXWoSMqmEOP3q7sEdI9ApNgRtoyq2Yet+2ptDoX+MpfbFQwN8OvhOs+3htjA3eZt2zA9tkqP+646ejNHSJHPmBvyyd+I2awYTM0ksBbBsbCerggqpfdPvDWNsYJuG+M9jdyreprnJ8+QmvXujXzO8++sxk9e1x9TZv301kDqWHhpg6ZhOqOdfS/K7A8z3GJQL8PXfq9EAKcnxVg0omZVXjF8PZZn9rlxJyf3bo5LKRAppu/dm5RW7uig20Sa7KblQWbvPC3dn4uEvTIMU/ae3hbszKwIZier/urW9zecQ/P3UoS3HoPaR2JLSE/NH34VX74vHgl3nMW7efnROW49NJ68p3k/tvko9rSr5vvWPsVxTxwvzD6Bz2nos3J2pqHyWPjd1QCI8NYbjiGq/g2e7x+qO109jO2H+6LuwJaWnwxNZzdU6ABXf29IxnUxGO7W3ZseawcQ8NKY3HW2+hjXCAiomyPP4u/DaC7XcZ/647yIOns8xu01ztZCA6e9PWyulz1OjQfvoIMnX9ZsmbPlNuBPj34CnRoPUAYloFREkuSxtYCLSBiaaveHKnU5Cb5kQFaPpztp4xqoy9msZZva7chds+rFCZQ+C4+reCq5g7T6vO3bZICMeqFhfv7eNuQRY/bbewxfzZMtjXM2u/d61Q5gDlhNElea+WJvDIbVdc+NGOKPnlaVxcCqjml9un1+Y/89w6nLdu+0pmzV5S2N6xOKL38/YnKu1cHemQb5Pz/hQrDtuOs+Nvj1nc8zW1pjLbZL7/Uk15bSKCFJ1PkNlMddUIjWPUUyIH5aO7WRSy2vO3fH1sP74VZPXp608jgfvtDz6tdpzT6zFQMWCyg4a1N6f3Rms3ed/LzpgMBKjVrkwfFI1dyMRqJijpFtcKKbJtAcDFdWt4xfsN/jeI4J9rQ4uLJ03chO9ZRfcRFZesex3LbfdTSevmb34OSuR1ZXnpLbWIXWF6aii+nP/OLrtXW7wM33NwvxtvkFI1dhYClIAoF20+SYlc716jLvDpvx9/OSOnZrzGSqTud9AWICPZN5YmpnJK/V5AHjxnsbYcOKqac0wrB/9uip8V2z6McMR1fNKWaqerYqs2eeD53MkgxTA9ElVqspaS5tMaW6WVuNqdm3X1uLS25LbPXQh1+Bva84b4+phbe8Qc001cts9eD7HYhdqd6zutUZiwwDJ18sFDM4fe5sj9JtFNp20HDRcLyzVjS2jtOnLmhob49Owa5MQ1POvZXHb+s2Y2jLtPZdj2kwlgH3nKpqS5I5ddWjisYe5B7AtKT3xTNdGJt+j9m9PjQapAyuaklKS42FMAyj6PVv6rtSeasAaFTMqexCcrLxinL56w+zMsVWRNV2ad529Lvlebc8F/Yx4c1nvAP4et0JjWqMB4PMnWkMAGDdvv8F7ygUw6pu9SE5ogBVHLhss+2DVCYNqWLnzxngcA+2Tzr5zORg3b7/snCJactvdfTZHugeC3jDk7ljdaw252g0PjbILuTnGPccg8XnG3vrpj4rkR1SMRGucuGiuWdDS8O9v9muG+1qG4Wr+Tcze/Cd+OXQZm09lo3PaeqtqfI1rAeT6U7hvNwt1MHf/iA7xrZhLSG+ZNhnXuBn1wVbhpiPnyjyI2cIdUg1UUaMyY8YMREdHo1atWujYsSN27drl6iIBkE8mc0bQsHB3JjqlrsdbPx116pDsaiSVfGa8zx2igyXf+3THKExbeRxPzN6Jzmnr8d6vR5GVV6x7cvzv460lv8M2UUGmyXADE9GvZTjaRpkmCwIVN6dVRkEKYFr7I1ej8+6vx0xqS8ICfBDk5yU7wJM+pcmNS8c4L5FVLcICKkao1d997aii5n4zUk+Qcq8Zz+5rrmeGcSAjUNGsor/Nhbsz0Tltve6c1T8ftAHMq33jZS/Ot8sFwgJ8UM+/FlYc/ud8LBcVn/XfDafwy6FLyMorRlZeMf5vewY+WntCNtm2XXSw5JN9WwtNSWSe3O9V261cKvm9qLTcpOZDciA9oxpDW7mi1cAWLq9RWbhwIV566SV8+eWX6NixIz755BP06dMHJ06cQL169VxatspKRDIeMlnLOEm0KrPUjtoqIggD2zQ0aP65L7EBvt15zuBHNntzBr7anKEb1Ov+Vj4oLL0t+R2aG7pbbl4V7fgT+k+bxsGrNndCavAzqdoSuXwV44BY7nyUS26sDucNYH5UUSlST5AADF4b2SUGI7rEWNUM46nR6KYPOH3tBt5c9ofBcgFg79kc3N9KfmwSqRmGX70vHueyizBvl2EzoLYGT3LWaQAfrj4pWc7P1p2W7MasDfYm/XgY5fh7GP+B5gM9skzq96o/IaQxuYdgZw6iqfah87VcPo5Kx44d0b59e/z3v/8FAJSXlyMiIgIvvPACUlJSzL63ssZRcfa4AHLjFQDq6O+uJgfP52DP2Ry0iw5CYWmZ7HEzHh/Clu9QbqyWiclN8cFKw8nQ9GssrBljw/h71Q3H/fd7tE0GUjUhcvtSHcavsJfk+BcAINHUogGQcp90wKll/P3/cuiSSbMhAMx4ojX6tQyX/a3/9/HWuuRt/W1/MrgVXph/wGT9+aPvwqGLuSaJxNb4SWYsF54/zqE9rsYTQuqzNM6Q/lhOjhyTSOnYOo6k5P7t0hqV0tJS7N27F5MmTdK95uHhgV69emH79u0m65eUlKCkpET3d35+fqWU09m9Gyqjnb2qaBURZNANWa4t3/ipwJbvUK5r66D2kXiwlfRkaNaMsSH1NNQtLtTgBNAm/Ur19pLbF1f3wnEHkuPNAJLtOQLABytPGAw5r0+qxrNtVJDkDMJt/h4cUO7pWCpQksul0jYfmOu1Zo5cN2aeP86hPa5Sc/AA/+QcmTv2zuq54y7dl12ao5KdnY2ysjLUr1/f4PX69evj8mXTXIDU1FQEBATo/kVERFRWUZ3K1nb26k77I5PKB3FU1ahULwntZ0tl0csOra35p1xSFwKpduiq3tvLFaTyBjwAyXMIqPgOWt4RiM+eaG2yzLhbPPDPb1k3UJsGSBtgOGS+VD6WVF6UXC7V+wMSUFhaZrFJSo6lbszkHHI5K5aCFC1n9bKSu8apictzVJSYNGkSXnrpJd3f+fn5VSZYUdrOThW0xy19awa+2pQhOdGavZQ8aco9MWtzGOSehtQ+e2lVYW4sEamaMO13EB3ia/X3Y+npV+mM6VLrm6tNNGdgm4bVJndJbdRce6H22jSX5qiUlpbC19cXixcvRv/+/XWvDx06FLm5ufjpp5/Mvp9z/ZA+tbSx29qe7Kx2aDIlda5k5RVLBrxScz456/tRcg4bl2diclPcEeiD64WlCPbz0jU3/Xb0CrILSnB3fD0GKSqgluuUqym5f6simbZDhw74/PPPAVQk00ZGRmLcuHGqSaYlUsrWixEvYq5n7jtQ2/ejtvIQWcttkmkB4KWXXsLQoUPRrl07dOjQAZ988gkKCwsxfPhwVxeNyGa2VqWqvQq2OrA0LLqavh+1lYfIGVweqAwaNAjXrl3DW2+9hcuXL+POO+/EqlWrTBJsiYiIqPpxedOPPdj0Q0RE5H6U3L9VMYQ+ERERkRQGKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoRERGpFgMVIiIiUi2XD6FvD+2guvn5+S4uCREREVlLe9+2ZnB8tw5Ubty4AQCIiIhwcUmIiIhIqRs3biAgIMDsOm491095eTkuXbqEOnXqQKPR2LWt/Px8RERE4Pz589V23iAeAx4DgMcA4DEAeAwAHgPAecdACIEbN24gPDwcHh7ms1DcukbFw8MDd9xxh0O36e/vX21PSC0eAx4DgMcA4DEAeAwAHgPAOcfAUk2KFpNpiYiISLUYqBAREZFqMVD5m7e3NyZPngxvb29XF8VleAx4DAAeA4DHAOAxAHgMAHUcA7dOpiUiIqKqjTUqREREpFoMVIiIiEi1GKgQERGRajFQISIiItWq0oHKzJkz0bJlS91ANUlJSVi5cqVu+c2bNzF27FjUrVsXtWvXxsCBA3HlyhWDbWRmZqJfv37w9fVFvXr18Morr+D27duVvSsOkZaWBo1GgwkTJuheqw7HYMqUKdBoNAb/4uPjdcurwzG4ePEinnzySdStWxc+Pj5ITEzEnj17dMuFEHjrrbcQFhYGHx8f9OrVC6dOnTLYxvXr1zFkyBD4+/sjMDAQI0eOREFBQWXvis2io6NNzgONRoOxY8cCqPrnQVlZGd58803ExMTAx8cHsbGxmDp1qsFcK9XhPLhx4wYmTJiAqKgo+Pj4oFOnTti9e7dueVU8Bps2bcIDDzyA8PBwaDQaLFu2zGC5o/b50KFD6Nq1K2rVqoWIiAh88MEHjtkBUYUtX75c/Prrr+LkyZPixIkT4rXXXhM1a9YUR44cEUII8dxzz4mIiAixbt06sWfPHnHXXXeJTp066d5/+/ZtkZCQIHr16iX2798vVqxYIUJCQsSkSZNctUs227Vrl4iOjhYtW7YUL774ou716nAMJk+eLFq0aCGysrJ0/65du6ZbXtWPwfXr10VUVJQYNmyY2Llzp/jzzz/F6tWrxenTp3XrpKWliYCAALFs2TJx8OBB8eCDD4qYmBhRXFysW6dv376iVatWYseOHWLz5s2icePG4vHHH3fFLtnk6tWrBufA2rVrBQCxYcMGIUTVPw/ee+89UbduXfHLL7+IjIwM8cMPP4jatWuLTz/9VLdOdTgPHnvsMdG8eXOxceNGcerUKTF58mTh7+8vLly4IISomsdgxYoV4vXXXxdLliwRAMTSpUsNljtin/Py8kT9+vXFkCFDxJEjR8T8+fOFj4+PmDVrlt3lr9KBipSgoCDx1VdfidzcXFGzZk3xww8/6JYdO3ZMABDbt28XQlR8uR4eHuLy5cu6dWbOnCn8/f1FSUlJpZfdVjdu3BBNmjQRa9euFd27d9cFKtXlGEyePFm0atVKcll1OAavvvqq6NKli+zy8vJy0aBBAzF9+nTda7m5ucLb21vMnz9fCCHE0aNHBQCxe/du3TorV64UGo1GXLx40XmFd6IXX3xRxMbGivLy8mpxHvTr10+MGDHC4LUBAwaIIUOGCCGqx3lQVFQkPD09xS+//GLweps2bcTrr79eLY6BcaDiqH3+4osvRFBQkMFv4dVXXxVNmza1u8xVuulHX1lZGRYsWIDCwkIkJSVh7969uHXrFnr16qVbJz4+HpGRkdi+fTsAYPv27UhMTET9+vV16/Tp0wf5+fn4448/Kn0fbDV27Fj069fPYF8BVKtjcOrUKYSHh6NRo0YYMmQIMjMzAVSPY7B8+XK0a9cOjz76KOrVq4fWrVtj9uzZuuUZGRm4fPmywTEICAhAx44dDY5BYGAg2rVrp1unV69e8PDwwM6dOytvZxyktLQU3333HUaMGAGNRlMtzoNOnTph3bp1OHnyJADg4MGD2LJlC5KTkwFUj/Pg9u3bKCsrQ61atQxe9/HxwZYtW6rFMTDmqH3evn07unXrBi8vL906ffr0wYkTJ5CTk2NXGd16UkJrHD58GElJSbh58yZq166NpUuXonnz5jhw4AC8vLwQGBhosH79+vVx+fJlAMDly5cNLkra5dpl7mDBggXYt2+fQRus1uXLl6vFMejYsSPmzp2Lpk2bIisrC2+//Ta6du2KI0eOVItj8Oeff2LmzJl46aWX8Nprr2H37t0YP348vLy8MHToUN0+SO2j/jGoV6+ewfIaNWogODjYLY6BsWXLliE3NxfDhg0DUD1+CykpKcjPz0d8fDw8PT1RVlaG9957D0OGDAGAanEe1KlTB0lJSZg6dSqaNWuG+vXrY/78+di+fTsaN25cLY6BMUft8+XLlxETE2OyDe2yoKAgm8tY5QOVpk2b4sCBA8jLy8PixYsxdOhQbNy40dXFqhTnz5/Hiy++iLVr15o8QVQn2idGAGjZsiU6duyIqKgoLFq0CD4+Pi4sWeUoLy9Hu3bt8P777wMAWrdujSNHjuDLL7/E0KFDXVw61/j666+RnJyM8PBwVxel0ixatAjff/895s2bhxYtWuDAgQOYMGECwsPDq9V58O2332LEiBFo2LAhPD090aZNGzz++OPYu3evq4tGMqp804+XlxcaN26Mtm3bIjU1Fa1atcKnn36KBg0aoLS0FLm5uQbrX7lyBQ0aNAAANGjQwCTrX/u3dh0127t3L65evYo2bdqgRo0aqFGjBjZu3IjPPvsMNWrUQP369av8MZASGBiIuLg4nD59ulqcB2FhYWjevLnBa82aNdM1f2n3QWof9Y/B1atXDZbfvn0b169fd4tjoO/cuXP47bffMGrUKN1r1eE8eOWVV5CSkoLBgwcjMTERTz31FP71r38hNTUVQPU5D2JjY7Fx40YUFBTg/Pnz2LVrF27duoVGjRpVm2Ogz1H77MzfR5UPVIyVl5ejpKQEbdu2Rc2aNbFu3TrdshMnTiAzMxNJSUkAgKSkJBw+fNjgC1q7di38/f1NLvxqdM899+Dw4cM4cOCA7l+7du0wZMgQ3f9X9WMgpaCgAGfOnEFYWFi1OA86d+6MEydOGLx28uRJREVFAQBiYmLQoEEDg2OQn5+PnTt3GhyD3Nxcg6fO9evXo7y8HB07dqyEvXCc9PR01KtXD/369dO9Vh3Og6KiInh4GF7yPT09UV5eDqD6nQd+fn4ICwtDTk4OVq9ejYceeqjaHQPAcd97UlISNm3ahFu3bunWWbt2LZo2bWpXsw+Aqt09OSUlRWzcuFFkZGSIQ4cOiZSUFKHRaMSaNWuEEBXdESMjI8X69evFnj17RFJSkkhKStK9X9sdsXfv3uLAgQNi1apVIjQ01G26I0rR7/UjRPU4Bv/+97/F77//LjIyMsTWrVtFr169REhIiLh69aoQouofg127dokaNWqI9957T5w6dUp8//33wtfXV3z33Xe6ddLS0kRgYKD46aefxKFDh8RDDz0k2T2xdevWYufOnWLLli2iSZMmqu6SKaWsrExERkaKV1991WRZVT8Phg4dKho2bKjrnrxkyRIREhIiJk6cqFunOpwHq1atEitXrhR//vmnWLNmjWjVqpXo2LGjKC0tFUJUzWNw48YNsX//frF//34BQHz00Udi//794ty5c0IIx+xzbm6uqF+/vnjqqafEkSNHxIIFC4Svry+7J1syYsQIERUVJby8vERoaKi45557dEGKEEIUFxeLMWPGiKCgIOHr6ysefvhhkZWVZbCNs2fPiuTkZOHj4yNCQkLEv//9b3Hr1q3K3hWHMQ5UqsMxGDRokAgLCxNeXl6iYcOGYtCgQQZjiFSHY/Dzzz+LhIQE4e3tLeLj48X//vc/g+Xl5eXizTffFPXr1xfe3t7innvuESdOnDBY56+//hKPP/64qF27tvD39xfDhw8XN27cqMzdsNvq1asFAJN9E6Lqnwf5+fnixRdfFJGRkaJWrVqiUaNG4vXXXzfoTlodzoOFCxeKRo0aCS8vL9GgQQMxduxYkZubq1teFY/Bhg0bBACTf0OHDhVCOG6fDx48KLp06SK8vb1Fw4YNRVpamkPKrxFCb1hCIiIiIhWpdjkqRERE5D4YqBAREZFqMVAhIiIi1WKgQkRERKrFQIWIiIhUi4EKERERqRYDFSIiIlItBipERESkWgxUiFTg8uXLeOGFF9CoUSN4e3sjIiICDzzwgMH8G9u2bcN9992HoKAg1KpVC4mJifjoo49QVlamW+fs2bMYOXIkYmJi4OPjg9jYWEyePBmlpaUGnzd79my0atUKtWvXRmBgIFq3bq2bnA4ApkyZAo1Gg759+5qUdfr06dBoNOjRo4fF/YqOjoZGo5H9N2zYMOUHS+V69OiBCRMmuLoYRFVGDVcXgKi6O3v2LDp37ozAwEBMnz4diYmJuHXrFlavXo2xY8fi+PHjWLp0KR577DEMHz4cGzZsQGBgIH777TdMnDgR27dvx6JFi6DRaHD8+HGUl5dj1qxZaNy4MY4cOYLRo0ejsLAQH374IQBgzpw5mDBhAj777DN0794dJSUlOHToEI4cOWJQrrCwMGzYsAEXLlzAHXfcoXt9zpw5iIyMtGrfdu/erQuktm3bhoEDB+LEiRPw9/cHAPj4+DjiEFaKW7duoWbNmpX2eaWlpfDy8qq0zyNSLYcMxE9ENktOThYNGzYUBQUFJstycnJEQUGBqFu3rhgwYIDJ8uXLlwsAYsGCBbLb/+CDD0RMTIzu74ceekgMGzbMbJkmT54sWrVqJe6//37x7rvv6l7funWrCAkJEc8//7zo3r27FXv3D+18Izk5ObrXli1bJlq3bi28vb1FTEyMmDJlisHcOQDEl19+Kfr16yd8fHxEfHy82LZtmzh16pTo3r278PX1FUlJSQZzN2nL/uWXX4o77rhD+Pj4iEcffdRgPhchhJg9e7aIj48X3t7eomnTpmLGjBm6ZRkZGbrj2q1bN+Ht7S3S09NFdna2GDx4sAgPDxc+Pj4iISFBzJs3T/e+oUOHmsynkpGRIdLT00VAQIDB5y9dulToX4K15Z49e7aIjo4WGo1GCFFxDowcOVKEhISIOnXqiJ49e4oDBw4oOvZE7oxNP0QudP36daxatQpjx46Fn5+fyfLAwECsWbMGf/31F15++WWT5Q888ADi4uIwf/582c/Iy8tDcHCw7u8GDRpgx44dOHfunMXyjRgxAnPnztX9PWfOHAwZMsQhT/qbN2/G008/jRdffBFHjx7FrFmzMHfuXLz33nsG602dOhVPP/00Dhw4gPj4eDzxxBN49tlnMWnSJOzZswdCCIwbN87gPadPn8aiRYvw888/Y9WqVdi/fz/GjBmjW/7999/jrbfewnvvvYdjx47h/fffx5tvvolvvvnGYDspKSl48cUXcezYMfTp0wc3b95E27Zt8euvv+LIkSN45pln8NRTT2HXrl0AgE8//RRJSUkYPXo0srKykJWVhYiICKuPyenTp/Hjjz9iyZIlOHDgAADg0UcfxdWrV7Fy5Urs3bsXbdq0wT333IPr168rOdxE7svVkRJRdbZz504BQCxZskR2nbS0NJOaCH0PPvigaNasmeSyU6dOCX9/f4PZki9duiTuuusuAUDExcWJoUOHioULF4qysjLdOtqn+9LSUlGvXj2xceNGUVBQIOrUqSMOHjwoXnzxRbtrVO655x7x/vvvG6zz7bffirCwMN3fAMQbb7yh+3v79u0CgPj66691r82fP1/UqlXLoOyenp7iwoULutdWrlwpPDw8dLMhx8bGGtSECCHE1KlTRVJSkhDinxqVTz75xOJ+9evXT/z73//W/W08Q7kQwuoalZo1a4qrV6/qXtu8ebPw9/cXN2/eNHhvbGysmDVrlsWyEVUFzFEhciGhYPJyJesCwMWLF9G3b188+uijGD16tO71sLAwbN++HUeOHMGmTZuwbds2DB06FF999RVWrVoFD49/Klpr1qyJJ598Eunp6fjzzz8RFxeHli1bKiqHnIMHD2Lr1q0GNShlZWW4efMmioqK4OvrCwAGn1e/fn0AQGJiosFrN2/eRH5+vi73JTIyEg0bNtStk5SUhPLycpw4cQJ16tTBmTNnMHLkSIPjcvv2bQQEBBiUsV27dgZ/l5WV4f3338eiRYtw8eJFlJaWoqSkRFdWe0VFRSE0NFT398GDB1FQUIC6desarFdcXIwzZ8445DOJ1I6BCpELNWnSRJcEKycuLg4AcOzYMXTq1Mlk+bFjx9C8eXOD1y5duoSePXuiU6dO+N///ie53YSEBCQkJGDMmDF47rnn0LVrV2zcuBE9e/Y0WG/EiBHo2LEjjhw5ghEjRijdRVkFBQV4++23MWDAAJNltWrV0v2/fgKrRqORfa28vNzqzwUqej517NjRYJmnp6fB38bNcdOnT8enn36KTz75BImJifDz88OECRNMelUZ8/DwMAk0b926ZbKe8ecVFBQgLCwMv//+u8m6gYGBZj+TqKpgoELkQsHBwejTpw9mzJiB8ePHm9yocnNz0bt3bwQHB+M///mPSaCyfPlynDp1ClOnTtW9dvHiRfTs2RNt27ZFenq6QQ2JHG2gU1hYaLKsRYsWaNGiBQ4dOoQnnnjClt2U1KZNG5w4cQKNGzd22Da1MjMzcenSJYSHhwMAduzYAQ8PDzRt2hT169dHeHg4/vzzTwwZMkTRdrdu3YqHHnoITz75JICK4OjkyZMGgaKXl5dBl3EACA0NxY0bN1BYWKj7jrU5KOa0adMGly9fRo0aNRAdHa2orERVBQMVIhebMWMGOnfujA4dOuCdd95By5Ytcfv2baxduxYzZ87EsWPHMGvWLAwePBjPPPMMxo0bB39/f6xbtw6vvPIKHnnkETz22GMAKoKUHj16ICoqCh9++CGuXbum+5wGDRoAAJ5//nmEh4fj7rvvxh133IGsrCy8++67CA0NRVJSkmQZ169fj1u3bjn0Kf6tt97C/fffj8jISDzyyCPw8PDAwYMHceTIEbz77rt2bbtWrVoYOnQoPvzwQ+Tn52P8+PF47LHHdMfg7bffxvjx4xEQEIC+ffuipKQEe/bsQU5ODl566SXZ7TZp0gSLFy/Gtm3bEBQUhI8++ghXrlwxCFSio6Oxc+dOnD17FrVr10ZwcDA6duwIX19fvPbaaxg/fjx27txpkKQsp1evXkhKSkL//v3xwQcfIC4uDpcuXcKvv/6Khx9+2KRpiqgqYq8fIhdr1KgR9u3bh549e+Lf//43EhIScO+992LdunWYOXMmAOCRRx7Bhg0bkJmZia5du6Jp06b4+OOP8frrr2PBggW65o+1a9fi9OnTWLduHe644w6EhYXp/mn16tULO3bswKOPPoq4uDgMHDgQtWrVwrp160xyIbT8/Pwc3tTQp08f/PLLL1izZg3at2+Pu+66Cx9//DGioqLs3nbjxo0xYMAA3HfffejduzdatmyJL774Qrd81KhR+Oqrr5Ceno7ExER0794dc+fORUxMjNntvvHGG2jTpg369OmDHj16oEGDBujfv7/BOi+//DI8PT3RvHlzhIaGIjMzE8HBwfjuu++wYsUKJCYmYv78+ZgyZYrF/dBoNFixYgW6deuG4cOHIy4uDoMHD8a5c+d0+TpEVZ1GKM3QIyJSsSlTpmDZsmVWNa0QkfqxRoWIiIhUi4EKEdmldu3asv82b97s6uIRkZtj0w8R2eX06dOyyxo2bOhW8/kQkfowUCEiIiLVYtMPERERqRYDFSIiIlItBipERESkWgxUiIiISLUYqBAREZFqMVAhIiIi1WKgQkRERKrFQIWIiIhU6/8Bjp8cpm7PK3YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(alm_surr, data_training)\n", + "surrogate_parity(alm_surr, data_training)\n", + "surrogate_residual(alm_surr, data_training)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbm0lEQVR4nO3deVhUZf8/8PeAzLAoA8qmhohauKakSVC5RYKp6NO+KJLmnmaaCmkgruSCppW2KFqZWyXyNRXNNCswy0BFhdTAjUVSZFyS9f79wY/JcWZwBgZme7+uay6b+5w58znxJO/nXs4tEUIIEBEREVkBG2MXQERERNRQGHyIiIjIajD4EBERkdVg8CEiIiKrweBDREREVoPBh4iIiKwGgw8RERFZDQYfIiIishoMPkRERGQ1GHyIyCxJJBLMmTPH2GUoRUREoHXr1sYug4jug8GHiAxm/fr1kEgkype9vT0eeughvPnmmygoKKjX705JScGcOXNw/fp1g163T58+KvfUtGlTPProo1i3bh0qKysN8h0LFy5EYmKiQa5FRDVrZOwCiMjyzJ07F76+vrhz5w5++eUXrF69Grt27UJGRgYcHR0N8h3//vsvGjX676+wlJQUxMbGIiIiAi4uLgb5jmoPPPAAFi1aBAAoLCzEF198gVGjRuGvv/5CXFxcna+/cOFCPP/88xg6dGidr0VENWPwISKDGzBgAHr06AEAeOONN9CsWTPEx8djx44deOWVV2p93crKSpSWlsLe3h729vaGKve+5HI5hg0bpnw/duxY+Pn54cMPP8S8efNgZ2fXYLUQUd1wqIuI6l2/fv0AANnZ2QCApUuXIigoCM2aNYODgwO6d++Ob775Ru1zEokEb775JjZu3IhOnTpBJpNhz549ymPVc3zmzJmD6dOnAwB8fX2Vw1I5OTno3bs3unbtqrEuPz8/hISE6H0/jo6OeOyxx3Dr1i0UFhZqPe/WrVuYNm0avL29IZPJ4Ofnh6VLl0IIoXKPt27dwoYNG5R1R0RE6F0TEemGPT5EVO/OnTsHAGjWrBkA4IMPPkBYWBhee+01lJaWYvPmzXjhhRewc+dODBw4UOWzP/74I7Zu3Yo333wTbm5uGicQP/vss/jrr7+wadMmLF++HG5ubgAAd3d3DB8+HKNHj0ZGRgY6d+6s/Mzvv/+Ov/76C7Nnz67VPf3999+wtbXVOqwmhEBYWBgOHDiAUaNGoVu3bkhOTsb06dNx+fJlLF++HADw5Zdf4o033kDPnj0xZswYAEDbtm1rVRMR6UAQERlIQkKCACB++OEHUVhYKC5evCg2b94smjVrJhwcHMSlS5eEEELcvn1b5XOlpaWic+fOol+/firtAISNjY04efKk2ncBEDExMcr3S5YsEQBEdna2ynnXr18X9vb2YubMmSrtkydPFk5OTuLmzZs13lPv3r1F+/btRWFhoSgsLBSnT58WkydPFgDE4MGDleeNGDFC+Pj4KN8nJiYKAGL+/Pkq13v++eeFRCIRZ8+eVbY5OTmJESNG1FgHERkGh7qIyOCCg4Ph7u4Ob29vvPzyy2jcuDG2b9+Oli1bAgAcHByU5xYVFaG4uBhPPvkk/vzzT7Vr9e7dGx07dqx1LXK5HEOGDMGmTZuUQ0wVFRXYsmULhg4dCicnp/teIzMzE+7u7nB3d0eHDh2watUqDBw4EOvWrdP6mV27dsHW1haTJ09WaZ82bRqEENi9e3et74mIao9DXURkcB999BEeeughNGrUCJ6envDz84ONzX//P2vnzp2YP38+0tPTUVJSomyXSCRq1/L19a1zPeHh4diyZQt+/vln9OrVCz/88AMKCgowfPhwnT7funVrfPbZZ8ol+g8++CA8PDxq/Mz58+fRokULNGnSRKW9Q4cOyuNE1PAYfIjI4Hr27Klc1XWvn3/+GWFhYejVqxc+/vhjNG/eHHZ2dkhISMDXX3+tdv7dvUO1FRISAk9PT3z11Vfo1asXvvrqK3h5eSE4OFinzzs5Oel8LhGZNg51EVGD+vbbb2Fvb4/k5GSMHDkSAwYMMEio0NRbVM3W1havvvoqvvnmGxQVFSExMRGvvPIKbG1t6/y92vj4+CA3Nxc3btxQac/MzFQer1ZT7URkWAw+RNSgbG1tIZFIUFFRoWzLycmp85OLq+fqaHty8/Dhw1FUVISxY8fi5s2bKs/lqQ/PPPMMKioq8OGHH6q0L1++HBKJBAMGDFC2OTk5GfyJ00SkGYe6iKhBDRw4EPHx8QgNDcWrr76KK1eu4KOPPkK7du1w/PjxWl+3e/fuAIBZs2bh5Zdfhp2dHQYPHqwMRP7+/ujcuTO2bduGDh064JFHHjHI/WgzePBg9O3bF7NmzUJOTg66du2KvXv3YseOHZgyZYrKkvXu3bvjhx9+QHx8PFq0aAFfX18EBATUa31E1oo9PkTUoPr164e1a9ciPz8fU6ZMwaZNm/D+++/jf//7X52u++ijj2LevHk4duwYIiIi8Morr6g9XDA8PBwAdJ7UXBc2NjZISkrClClTsHPnTkyZMgWnTp3CkiVLEB8fr3JufHw8unfvjtmzZ+OVV17B6tWr670+ImslEeKuR4gSEVmwDz74AG+//TZycnLQqlUrY5dDREbA4ENEVkEIga5du6JZs2Y4cOCAscshIiPhHB8ismi3bt1CUlISDhw4gBMnTmDHjh3GLomIjIg9PkRk0XJycuDr6wsXFxdMmDABCxYsMHZJRGREDD5ERERkNbiqi4iIiKwGgw8RERFZDU5uvkdlZSVyc3PRpEkTPkaeiIjITAghcOPGDbRo0UJlU+R7MfjcIzc3F97e3sYug4iIiGrh4sWLeOCBB7QeZ/C5R5MmTQBU/YtzdnY2cjVERESkC4VCAW9vb+XvcW0YfO5RPbzl7OzM4ENERGRm7jdNhZObiYiIyGow+BAREZHVYPAhIiIiq8E5PrVQUVGBsrIyY5dBDcDOzg62trbGLoOIiAyEwUcPQgjk5+fj+vXrxi6FGpCLiwu8vLz4XCciIgvA4KOH6tDj4eEBR0dH/iK0cEII3L59G1euXAEANG/e3MgVERFRXTH46KiiokIZepo1a2bscqiBODg4AACuXLkCDw8PDnsREZk5Tm7WUfWcHkdHRyNXQg2t+mfOeV1EROaPwUdPHN6yPvyZExFZDgYfIiIishoMPkRERGQ1GHysQEREBCQSCSQSCezs7ODp6Ymnn34a69atQ2Vlpc7XWb9+PVxcXOqvUCIionrG4GMlQkNDkZeXh5ycHOzevRt9+/bFW2+9hUGDBqG8vNzY5RERkRWorKxERUWFUWtg8LESMpkMXl5eaNmyJR555BG8++672LFjB3bv3o3169cDAOLj49GlSxc4OTnB29sbEyZMwM2bNwEABw8exOuvv47i4mJl79GcOXMAAF9++SV69OiBJk2awMvLC6+++qry2TdEREQAsHv3bsybNw+ff/65Uetg8KkDIQRKS0uN8hJC1Ln+fv36oWvXrvjuu+8AADY2Nli5ciVOnjyJDRs24Mcff8SMGTMAAEFBQVixYgWcnZ2Rl5eHvLw8vPPOOwCqlnnPmzcPx44dQ2JiInJychAREVHn+oiIyPyVlZUhNjYWR44cAVD1MGBD/A6rLT7AsA7KysqwaNEio3x3VFQUpFJpna/Tvn17HD9+HAAwZcoUZXvr1q0xf/58jBs3Dh9//DGkUinkcjkkEgm8vLxUrjFy5EjlP7dp0wYrV67Eo48+ips3b6Jx48Z1rpGIiMzTr7/+ih9++EGlbebMmUZ9TAiDj5UTQij/B/jDDz9g0aJFyMzMhEKhQHl5Oe7cuYPbt2/X+ODGo0ePYs6cOTh27BiKioqUE6YvXLiAjh07Nsh9EBGR6UhKAtLSYlXanJ0fxNtvv2qkiv7D4FMHdnZ2iIqKMtp3G8Lp06fh6+uLnJwcDBo0COPHj8eCBQvQtGlT/PLLLxg1ahRKS0u1Bp9bt24hJCQEISEh2LhxI9zd3XHhwgWEhISgtLTUIDUSEZH5KCoqQlraSpW2n39+ArdvP4W33zZSUXdh8KkDiURikOEmY/nxxx9x4sQJvP322zh69CgqKyuxbNky2NhUTf3aunWryvlSqVRtNn5mZiauXr2KuLg4eHt7AwD++OOPhrkBIiIyKevXr8f58+dV2jp3nobk5MaIjDRSUfdg8LESJSUlyM/PR0VFBQoKCrBnzx4sWrQIgwYNQnh4ODIyMlBWVoZVq1Zh8ODB+PXXX7FmzRqVa7Ru3Ro3b97E/v370bVrVzg6OqJVq1aQSqVYtWoVxo0bh4yMDMybN89Id0lERMYSGxur1hYTEwMAeO65hq5GO67qshJ79uxB8+bN0bp1a4SGhuLAgQNYuXIlduzYAVtbW3Tt2hXx8fF4//330blzZ2zcuFFt4nZQUBDGjRuHl156Ce7u7li8eDHc3d2xfv16bNu2DR07dkRcXByWLl1qpLskIqKGVlhYqBZ62rZtqww9pkYijLmmzAQpFArI5XIUFxfD2dlZ2X7nzh1kZ2fD19cX9vb2RqyQGhp/9kREmmnq5ZkyZQrkcnmD16Lt9/e92ONDREREetM2tFVT6ElKAoKCqv40Fs7xISIiovtKSgLi4oB+/TJhZ7dF5djt2654/PHJ971GXByQmlr1Z1hYfVVaMwYfIiIiuq+4OCAkpG5DW5GRVdcx5govDnURERGRkrbhKE2h535DW/cKCwNSUozX2wMw+BAREdFd7h6OAoCdO3dqnM+TnBxj1Lk6tcXgQ0REREqRkUBgYNWfsbGxOHr0qMrxSZMmITk5RiUcmRMGHyIiIlKqHo66d68tAPD3j0HTpk1VwpG54eRmIiIiUtq8eTOysrLU2u9+IGFYmHHn6dQFgw8REREB0PxsnsmTJ8PV1dUI1dQPsxrqOnToEAYPHowWLVpAIpEgMTFR5bgQAtHR0WjevDkcHBwQHByMM2fOGKdYKxQREYGhQ4cq3/fp0wdTpkyp0zUNcQ0iIqqZEELrAwktKfQAZhZ8bt26ha5du+Kjjz7SeHzx4sVYuXIl1qxZg99++w1OTk4ICQnBnTt3GrhS0xIREQGJRKLcTb5du3aYO3cuysvL6/V7v/vuO503LD148CAkEgmuX79e62sQEZH+li5dirlz56q1m+peW3VlVkNdAwYMwIABAzQeE0JgxYoVmD17NoYMGQIA+OKLL+Dp6YnExES8/PLLDVmqyQkNDUVCQgJKSkqwa9cuTJw4EXZ2doiKilI5r7S0FFKp1CDf2bRpU5O4BhERaaapl2fp0qno0qUJLDT3mFePT02ys7ORn5+P4OBgZZtcLkdAQABSU1O1fq6kpAQKhULlZYlkMhm8vLzg4+OD8ePHIzg4GElJScrhqQULFqBFixbw8/MDAFy8eBEvvvgiXFxc0LRpUwwZMgQ5OTnK61VUVGDq1KlwcXFBs2bNMGPGDNy73+29w1QlJSWYOXMmvL29IZPJ0K5dO6xduxY5OTno27cvAMDV1RUSiQQREREar1FUVITw8HC4urrC0dERAwYMUBnOXL9+PVxcXJCcnIwOHTqgcePGCA0NRV5envKcgwcPomfPnnBycoKLiwsef/xxnD9/3kD/pomITF9FRYXG0OPvH4MuXZqY5WotXVlM8MnPzwcAeHp6qrR7enoqj2myaNEiyOVy5cvb27te6zQVDg4OKC0tBQDs378fWVlZ2LdvH3bu3ImysjKEhISgSZMm+Pnnn/Hrr78qA0T1Z5YtW4b169dj3bp1+OWXX3Dt2jVs3769xu8MDw/Hpk2bsHLlSpw+fRqffPIJGjduDG9vb3z77bcAgKysLOTl5eGDDz7QeI2IiAj88ccfSEpKQmpqKoQQeOaZZ1BWVqY85/bt21i6dCm+/PJLHDp0CBcuXMA777wDACgvL8fQoUPRu3dvHD9+HKmpqRgzZgwkEkmd/50SEZmD2NhYzJ8/X609JibGJJ6sXN/MaqirPkRFRWHq1KnK9wqFwqLDjxAC+/fvR3JyMiZNmoTCwkI4OTnh888/Vw5xffXVV6isrMTnn3+uDAQJCQlwcXHBwYMH0b9/f6xYsQJRUVF49tlnAQBr1qxBcnKy1u/966+/sHXrVuzbt0/ZK9emTRvl8eohLQ8PD7i4uGi8xpkzZ5CUlIRff/0VQUFBAICNGzfC29sbiYmJeOGFFwAAZWVlWLNmDdq2bQsAePPNN5Xj1wqFAsXFxRg0aJDyeIcOHfT/F0lEZIY09fLMnDkT9vb2RqjGOCymx8fLywsAUFBQoNJeUFCgPKaJTCaDs7OzyqshaNsLpb7s3LkTjRs3hr29PQYMGICXXnoJc+bMAQB06dJFZV7PsWPHcPbsWTRp0gSNGzdG48aN0bRpU9y5cwfnzp1DcXEx8vLyEBAQoPxMo0aN0KNHD63fn56eDltbW/Tu3bvW93D69Gk0atRI5XubNWsGPz8/nD59Wtnm6OioDDUA0Lx5c1y5cgVAVcCKiIhASEgIBg8ejA8++EBlGIyIyBKVlpZqXbVlTaEHsKAeH19fX3h5eWH//v3o1q0bgKr/d//bb79h/Pjxxi1Og7v3QmmILsW+ffti9erVkEqlaNGiBRo1+u9H7+TkpHLuzZs30b17d2zcuFHtOu7u7rX6fgcHh1p9rjbs7OxU3kskEpX5RwkJCZg8eTL27NmDLVu2YPbs2di3bx8ee+yxBquRiKghJCVpfgIzYLmrtu7HrHp8bt68ifT0dKSnpwOomtCcnp6OCxcuQCKRYMqUKZg/fz6SkpJw4sQJhIeHo0WLFirPljEVDf24bycnJ7Rr1w6tWrVSCT2aPPLIIzhz5gw8PDzQrl07lVf1XKjmzZvjt99+U36mvLxcbT+Xu3Xp0gWVlZX46aefNB6v7nGqqKjQeo0OHTqgvLxc5XuvXr2KrKwsdOzYscZ7upe/vz+ioqKQkpKCzp074+uvv9br80RE5kBT6Hn33XetNvQAZhZ8/vjjD/j7+8Pf3x8AMHXqVPj7+yM6OhoAMGPGDEyaNAljxozBo48+ips3b2LPnj0m2Y1nyhPIXnvtNbi5uWHIkCH4+eefkZ2djYMHD2Ly5Mm4dOkSAOCtt95CXFwcEhMTkZmZiQkTJqg9g+durVu3xogRIzBy5EgkJiYqr7l161YAgI+PDyQSCXbu3InCwkLcvHlT7RoPPvgghgwZgtGjR+OXX37BsWPHMGzYMLRs2VL5CIP7yc7ORlRUFFJTU3H+/Hns3bsXZ86c4TwfIrIot27d0jq0dW+vuLUxq6GuPn36qC2ZvptEIsHcuXM1PoiJdOfo6IhDhw5h5syZePbZZ3Hjxg20bNkSTz31lHIO1LRp05CXl4cRI0bAxsYGI0eOxP/+9z8UFxdrve7q1avx7rvvYsKECbh69SpatWqFd999FwDQsmVLxMbGIjIyEq+//jrCw8Oxfv16tWskJCTgrbfewqBBg1BaWopevXph165dOv+H7OjoiMzMTGzYsAFXr15F8+bNMXHiRIwdO1b/f1FERCZIU+ABrHdo614SUVOSsEIKhQJyuRzFxcUqE53v3LmD7Oxs+Pr6mmQPEtUf/uyJyBxom8/z3nvvwcbGrAZ4akXb7+97mVWPDxEREam7du0a0tJWqbWzl0cdgw8REZEZ0zS0ZWdnp5xKQKoYfIiIiMyUptATHR3Np9HXwPIH/YiIiCzMuXPnNIae5OQYhp77YI+PnjgX3PrwZ05EpkTbqq3k5BiL3lzUUNjjo6Pq5dK3b982ciXU0Kp/5tb+7AsiMj5Noae0NAb+/pzErCv2+OjI1tYWLi4uyj2fHB0d2Z1o4YQQuH37Nq5cuQIXFxfY2toauyQislJpaWlI0rC5Y/WqraCght0GyZwx+OiherPT6vBD1sHFxaXGjW6JiOqTtqEtf/8YBAVVbX0UGVkVejjUdX98gOE9dHkAUkVFBcrKyhq4MjIGOzs79vQQkdFo23YC+K+XJzCwagska8cHGNYjW1tb/jIkIqJ6c/DgQY2bOt/9QEL28tQOgw8REZEJ0dTL07hxY0ybNk2lLSyM83lqg8GHiIjIRNQ0tEWGweBDRERkZImJiTh27JhaO0OP4TH4EBERGZGmXh4fHx9EREQ0fDFWgMGHiIjISDi01fAYfIiIiBrYxx9/jMLCQrV2hp76x+BDRETUgDT18ly8+Ag+/3ywEaqxPtyri4iIqIFo21E9LIyhp6Gwx4eIiKieadt2IiYmBhzdaljs8SEiIqpHmkJP7969lfN5kpKqtp/QsAcp1QP2+BAREdUTXVZtxcVxZ/WGxOBDRERkYDUNbd2Le241LAYfIiIiA9IUesrLwzBvnr/G87nnVsPiHB8iIiID0RR65syJwYoVmkMPNTz2+BAREdWRtqGt0tIYNG4MTJ7cwAWRVgw+REREekhK+m9OTliY5tDz4osvokOHDgCABQsaukKqCYMPERGRHv5bhSWQljZX7Ti3nTBtDD5ERER6iIwE0tI0D235+8cgKOi/3iAyPQw+REREetAUet544w20bNkSQUF8Jo+ps8hVXR999BFat24Ne3t7BAQE4MiRI8YuiYiIzFx5ebnG+Tz+/jFo2bIlgKqensBAPpPHlEmEEMLYRRjSli1bEB4ejjVr1iAgIAArVqzAtm3bkJWVBQ8Pj/t+XqFQQC6Xo7i4GM7Ozg1QMRERmTptq7bmzIlBYCCQktLABZEaXX9/W1yPT3x8PEaPHo3XX38dHTt2xJo1a+Do6Ih169YZuzQiIjJDmkJPhw5vYvPmGPj5sXfH3FhU8CktLcXRo0cRHBysbLOxsUFwcDBSU1ONWBkREZmbW7duad1ra8WKZsjMBJo25Vwec2NRk5v/+ecfVFRUwNPTU6Xd09MTmZmZGj9TUlKCkpIS5XuFQlGvNRIRkWm6+/k82lZtVS9V5/5a5suienxqY9GiRZDL5cqXt7e3sUsiIiIjqH4+j6bQ8+OP78Df/7/n84SFVc3rYW+P+bGo4OPm5gZbW1sUFBSotBcUFMDLy0vjZ6KiolBcXKx8Xbx4sSFKJSIiEzNlyj+YM0c99CQnx+DQISfExRmhKDI4iwo+UqkU3bt3x/79+5VtlZWV2L9/PwIDAzV+RiaTwdnZWeVFRESWJykJCAqq+vNesbGxOH36I7X2mJgYLlG3MBY1xwcApk6dihEjRqBHjx7o2bMnVqxYgVu3buH11183dmlERGRE/201oTpEpWkC875972LGDDsAVedySMtyWFzweemll1BYWIjo6Gjk5+ejW7du2LNnj9qEZyIisi73TkjOycnBhg0b1M5bujQGN2/y6cuWyuIeYFhXfIAhEZHl0/ZAwk2bYpCVBTRuDGzcyOBjTnT9/W1xPT5EREQ10RR6kpOjkZoqQfv2/83nYeixTAw+RERkFY4dO4bExES19piYGPj7/zcMxsBj2Rh8iIjI4mkb2qp+ICEnMFsPBh8iIrJo2radIOvE4ENERBZp//79+OWXX9TaGXqsG4MPERFZnPsNbZH1YvAhIiKLwqEtqgmDDxERWYSvvvoK586dU2tn6KG7WdReXUREZJ1iY2M1hp6lSxl6SBV7fIiIyKxpGtoqLY3BypXA5MlGKIhMGoMPERGZpYULF6KsrEytvXpoa8GChq6IzAGHuoiIyKQkJQFBQVV/ahMbG6sx9Pj7c2iLasYeHyIiMilxcUBqqvbd0blqi+qCwYeIiExKZOR/+2bdTduzedjLQ/rgUBcREZm8mkIP99gifbDHh4iITMq9Q10c2iJDYvAhIiKTUj3UFRISC00dPQw9VBcMPkREZFLCwoC0NPXE4+npiXHjxhmhIrIkDD5ERGRSOLRF9YnBh4iITAJ3VKeGwOBDRERGlZSkeWirW7duGDJkiBEqIkvG4ENEREaRlPTfJOZ7sZeH6guDDxERGUVaWixCQtTbGXqoPvEBhkREVC+07bmVlKR5Ps/TTz/N0EP1jj0+RERULzTtuSWEQFraXLVzGXiooTD4EBFRvbh3zy2u2iJTwOBDRET1orqXJy5O86qtF198ER06dGjgqsjaMfgQEVG9Wby4DCEhC9Xa2ctDxsLgQ0RE9SI2NhZPP63eztBDxsTgQ0REBqdpPs9DD43CK688YIRqiP7D5exERFQndy9bv3nzpta9thh6yBSYTfBZsGABgoKC4OjoCBcXF43nXLhwAQMHDoSjoyM8PDwwffp0lJeXN2yhRERWpnrZelpaLJYtW6Z2nENbZErMZqirtLQUL7zwAgIDA7F27Vq14xUVFRg4cCC8vLyQkpKCvLw8hIeHw87ODgsXqk+sIyIiw4iM1Lxq66233tL6f1SJjEUihBDGLkIf69evx5QpU3D9+nWV9t27d2PQoEHIzc2Fp6cnAGDNmjWYOXMmCgsLIZVKdbq+QqGAXC5HcXExnJ2dDV0+EZFFyc/PxyeffKLWzl4eami6/v42m6Gu+0lNTUWXLl2UoQcAQkJCoFAocPLkSa2fKykpgUKhUHkREdH9xcbGMvSQ2TGboa77yc/PVwk9AJTv8/PztX5u0aJFWp8mSkREmmn6ezMyMhIymcwI1RDpzqg9PpGRkZBIJDW+MjMz67WGqKgoFBcXK18XL16s1+8jIjJnmZmZWldtMfSQOTBqj8+0adMQERFR4zlt2rTR6VpeXl44cuSISltBQYHymDYymYz/sRIR6YB7bZElMGrwcXd3h7u7u0GuFRgYiAULFuDKlSvw8PAAAOzbtw/Ozs7o2LGjQb6DiMhaaQo97733HmxsLGaqKFkJs5njc+HCBVy7dg0XLlxARUUF0tPTAQDt2rVD48aN0b9/f3Ts2BHDhw/H4sWLkZ+fj9mzZ2PixIns0SEiqqWUlBTs27dPrZ29PGSuzGY5e0REBDZs2KDWfuDAAfTp0wcAcP78eYwfPx4HDx6Ek5MTRowYgbi4ODRqpHu+43J2IrJGSUlVDyKMjKzaVT0pSfOzeQCGHjJNuv7+Npvg01AYfIjIGgUFVT19OTAQSEnRPLTFwEOmzOqe40NERLUXGVkVeoKDExl6yKKZzRwfIiKqP2FhHNoi68DgQ0RE7OUhq8HgQ0RkhaonMw8Z8jHu3ClUO87QQ5aKwYeIyArFxQEhIbG4c0f9GEMPWTIGHyIiKxQSwqEtsk4MPkREVoTbTpC143J2IiIrwdBDxB4fIiKrwFVbRFUYfIiILBh7eYhUcaiLiMhCMfQQqdO7x8fW1hZ5eXnw8PBQab969So8PDxQUVFhsOKIiKh2OLRFpJnewUfbnqYlJSWQSqV1LoiIiHR3767q7OUhqpnOwWflypUAAIlEgs8//xyNGzdWHquoqMChQ4fQvn17w1dIRERqqgNPURGQmVn1z5r22pJKpYiKijJChUSmSefgs3z5cgBVPT5r1qyBra2t8phUKkXr1q2xZs0aw1dIRERq4uKA1FTAz69qV3U+kJBINzoHn+zsbABA37598d1338HV1bXeiiIioppFRv637YQmDD1Emum9quvAgQMMPUREDSwpCQgKqvoTqJrPoyn0tGnThqGHqAZ6T24eOXJkjcfXrVtX62KIiEiz6qGtuDjtk5gZeIjuT+/gU1RUpPK+rKwMGRkZuH79Ovr162ewwoiI6D93D21pWrjF0EOkG72Dz/bt29XaKisrMX78eLRt29YgRRERkaqwMM2rtjw9H8e4ccFGqIjIPEmEtgfz6CkrKwt9+vRBXl6eIS5nNAqFAnK5HMXFxXB2djZ2OUREEEJg7ty5au3s5SH6j66/vw22V9e5c+dQXl5uqMsREVm9pCTNvTwAQw9RbekdfKZOnaryXgiBvLw8fP/99xgxYoTBCiMisnaaQs/gwYPxyCOPGKEaIsugd/BJS0tTeW9jYwN3d3csW7bsviu+iIjo/srLy7FgwQK1dvbyENWd3sHnwIED9VEHERFB+15b/v4MPUSGUOs5PleuXEFWVhYAwM/PT223diIiUnfvpqJ30xR6IiIi4OPj00DVEVk+vZ/crFAoMHz4cLRo0QK9e/dG79690bJlSwwbNgzFxcX1USMRkcW4+0GE1W7duqX1gYQMPUSGpXfwGT16NH777Td8//33uH79Oq5fv46dO3fijz/+wNixY+ujRiIiixEZWbWpaGRk1fvY2FgsXbpU7TzO5yGqH3o/x8fJyQnJycl44oknVNp//vlnhIaG4tatWwYtsKHxOT5E1FA09fJMmjQJTZs2NUI1ROZN19/fevf4NGvWDHK5XK1dLpdz81IiIi3u3mT0ypUrWoe2GHqI6pfewWf27NmYOnUq8vPzlW35+fmYPn063nvvPYMWVy0nJwejRo2Cr68vHBwc0LZtW8TExKC0tFTlvOPHj+PJJ5+Evb09vL29sXjx4nqph4hIX9Vze9LSYrF69Wq14xzaImoYeq/qWr16Nc6ePYtWrVqhVatWAIALFy5AJpOhsLAQn3zyifLcP//80yBFZmZmorKyEp988gnatWuHjIwMjB49Grdu3VKOjSsUCvTv3x/BwcFYs2YNTpw4gZEjR8LFxQVjxowxSB1ERPq4ewVXZKTmBxLOmDEDDg4ORqiOyDrpHXyGDBkCiURSH7VoFRoaitDQUOX7Nm3aICsrC6tXr1YGn40bN6K0tBTr1q2DVCpFp06dkJ6ejvj4eAYfIjKK6l6ezz47hx49vlI7zl4eooand/CZM2dOPZShv+LiYpWx8NTUVPTq1QtSqVTZFhISgvfffx9FRUVa5x+VlJSgpKRE+V6hUNRf0URkVbT18gAMPUTGovccnzZt2uDq1atq7devX0ebNm0MUtT9nD17FqtWrVJZPp+fnw9PT0+V86rf3z0f6V6LFi2CXC5Xvry9veunaCKyOppCz+zZsxl6iIxI7+CTk5ODiooKtfaSkhJcunRJr2tFRkZCIpHU+MrMzFT5zOXLlxEaGooXXngBo0eP1rd8NVFRUSguLla+Ll68WOdrEpF1+/PPP7Wu2rK1tTVCRURUTeehrqSkJOU/Jycnqyxpr6iowP79++Hr66vXl0+bNg0RERE1nnN3L1Jubi769u2LoKAgfPrppyrneXl5oaCgQKWt+r2Xl5fW68tkMshkMr3qJiLSRtteW+zlITINOgefoUOHAgAkEglGjBihcszOzg6tW7fGsmXL9Ppyd3d3uLu763Tu5cuX0bdvX3Tv3h0JCQmwsVHtrAoMDMSsWbNQVlYGOzs7AMC+ffvg5+fH5wsRUYPQFHqio6MbfEEIEWmnc/CprKwEAPj6+uL333+Hm5tbvRV1r8uXL6NPnz7w8fHB0qVLUVhYqDxW3Zvz6quvIjY2FqNGjcLMmTORkZGBDz74AMuXL2+wOonIOu3duxepqalq7f7+MWDmITIteq/qys7Oro86arRv3z6cPXsWZ8+exQMPPKByrHrHDblcjr1792LixIno3r073NzcEB0dzaXsRFSvOLRFZF703qtr7ty5NR6Pjo6uU0HGxr26iEhX2iYwE1HD0/X3t949Ptu3b1d5X1ZWhuzsbDRq1Aht27Y1++BDRHQ/mzZtwl9//aXWztBDZPr0Dj5paWlqbQqFAhEREfjf//5nkKKIiEwVh7aIzJveQ13anDhxAoMHD0ZOTo4hLmc0HOoiIm00hR5//xiEhRmhGCJSUW9DXdpUPwCQiMjSxMfH48aNG2rtc+bEIDAQDD5EZkTv4LNy5UqV90II5OXl4csvv8SAAQMMVhgRkSnQNrTl718VeiIjG7ggIqoTvYe67n06s42NDdzd3dGvXz9ERUWhSZMmBi2woXGoi4iqaQo9yckxSEkxQjFEVKN6G+oyxnN8iIgakrZenuTkGPbwEJm5Ws3xuX79Os6ePQsAaNeuHVxcXAxZExGR0dS0aosLt4jMn167s+fk5GDgwIFwc3NDQEAAAgIC4ObmhkGDBpn9ai4iIm2rtpKTY3DXPs1EZMZ0nuNz8eJFPProo7Czs8OECRPQoUMHAMCpU6ewevVqlJeX4/fff1fbUsLccI4PkfWpqZcnKAhITQUCA8G5PUQmTNff3zoHn1GjRuHs2bNITk6Gvb29yrF///0XoaGhePDBB/H555/XrXIjY/AhsmxJSUBcXNVqrLAwzaHH3d0dEyZM0Hg+EZkmgwefli1bYsuWLXjiiSc0Hj906BBefvll5Obm1q5iE8HgQ2TZ7u7BCQnhXltElsLgq7r++ecftG7dWuvxNm3a4Nq1a3oVSUTUUKp7bvr21Rx4gKpVW/7+7NkhsmQ6T25u3rw5Tp06pfV4RkYGvLy8DFIUEZGhxcVV9fRIpeqhp0uXLkhOjkFqatV5RGS5dO7xGTp0KN555x3s378f7u7uKseuXLmCmTNnYujQoYauj4jIICIjgbQ0zau2qnuCqs8jIsul8xyfoqIiBAQEID8/H8OGDUP79u0hhMDp06fx9ddfw8vLC4cPH0bTpk3ru+Z6xTk+RJaHq7aILJ/B5/i4urrit99+w7vvvovNmzfj+vXrAAAXFxe8+uqrWLhwodmHHiKyPJpCT3BwMB5//HEAVT081au2iMjy6b1XF1C1MWlhYSGAqmWfEonE4IUZC3t8iCyDEAJz585Va+eqLSLLVG97dQGARCKBh4dHrYsjIqpPNQ1tEZF102vLCiIiU6cp9Lz00kuIianadiIoCNx+gsiKMfgQkVmrDjM7dlRoDD0xMTFo3749gP+WtHPJOpH1YvAhIrMWF1f1QML09Plqx+4d2oqMrFq9xYnMRNarVnN8iIhMhaanMKemjsaePS3U2sPC+FRmImunU/BZuXKlzhecPHlyrYshItLVnTt38P7776u1JyfHsEeHiLTSaTm7r6+vbheTSPD333/XuShj4nJ2ItPHVVtEdC+DLmfPzs42WGFERHWhKfRMmTIFcrncCNUQkbmp9eTm0tJSZGVloby83JD1EBGpqF619c03xVpXbTH0EJGu9A4+t2/fxqhRo+Do6IhOnTrhwoULAIBJkyYhjmtEicjAqldtnTy5Qu0Yh7aISF96B5+oqCgcO3YMBw8ehL29vbI9ODgYW7ZsMWhxRESaVm1FRkYy9BBRrei9nD0xMRFbtmzBY489prJHV6dOnXDu3DmDFkdE1is/Px+ffPKJWjsDDxHVhd49PoWFhRr36bp161a9blYaFhaGVq1awd7eHs2bN8fw4cORm5urcs7x48fx5JNPwt7eHt7e3li8eHG91UNE9Sc2NlZj6ElOZughorrRO/j06NED33//vfJ9ddj5/PPPERgYaLjK7tG3b19s3boVWVlZ+Pbbb3Hu3Dk8//zzyuMKhQL9+/eHj48Pjh49iiVLlmDOnDn49NNP660mIjI8TROYu3WbzefzEJFB6PQcn7v98ssvGDBgAIYNG4b169dj7NixOHXqFFJSUvDTTz+he/fu9VWriqSkJAwdOhQlJSWws7PD6tWrMWvWLOTn50MqlQKomgeQmJiIzMxMna/L5/gQGceZM2fw9ddfq7VzaIuIdKHr72+9e3yeeOIJpKeno7y8HF26dMHevXvh4eGB1NTUBgs9165dw8aNGxEUFAQ7OzsAQGpqKnr16qUMPQAQEhKCrKwsFBUVNUhdRFQ7sbGxDD1E1CBqtVdX27Zt8dlnnxm6lvuaOXMmPvzwQ9y+fRuPPfYYdu7cqTyWn5+v9oRpT09P5TFXV1eN1ywpKUFJSYnyvUKhqIfKiUgbTUNb0dHR9TpnkIisl049PgqFQueXPiIjIyGRSGp83T1MNX36dKSlpWHv3r2wtbVFeHg49BypU7No0SLI5XLly9vbu07XIyLdpKWlaX0gIUMPEdUXneb42NjY6PwXUUVFhc5fXlhYiKtXr9Z4Tps2bVSGr6pdunQJ3t7eSElJQWBgIMLDw6FQKJCYmKg858CBA+jXrx+uXbumV4+Pt7c35/gQ1SPutUVEhmbQvboOHDig/OecnBxERkYiIiJCuYorNTUVGzZswKJFi/Qq0t3dHe7u7np9plplZSUAKENLYGAgZs2ahbKyMuW8n3379sHPz09r6AEAmUwGmUxWqxqISH/aenmIiBqC3qu6nnrqKbzxxht45ZVXVNq//vprfPrppzh48KAh6wMA/Pbbb/j999/xxBNPwNXVFefOncN7772HgoICnDx5EjKZDMXFxfDz80P//v0xc+ZMZGRkYOTIkVi+fDnGjBmj83dxVRdR/Thw4AAOHTqk1s7QQ0SGUG+rulJTU9GjRw+19h49euDIkSP6Xk4njo6O+O677/DUU0/Bz88Po0aNwsMPP4yffvpJ2Vsjl8uxd+9eZGdno3v37pg2bRqio6P1Cj1EVD9iY2MZeojIJOjd4+Pn54chQ4aoPRV5xowZ2LFjB7KysgxaYENjjw+RYXFoi4gagkHn+Nxt+fLleO6557B7924EBAQAAI4cOYIzZ87g22+/rX3FRGRRduzYgfT0dLV2hh4iMia9h7qeeeYZnDlzBoMHD8a1a9dw7do1DB48GH/99ReeeeaZ+qiRiMxMbGysWugRAvD3Z+ghIuPSe6jL0nGoi6hu9BnaSkoC4uKAyEggLKy+KyMiS1ZvQ10AcP36daxduxanT58GAHTq1AkjR46EXC6vXbVEZPbWrl2LS5cuqbXXNLQVFwekplb9yeBDRA1B76GuP/74A23btsXy5cuVQ13x8fFo27Yt/vzzz/qokYhMXGxsrFro8fLyuu98nshIIDAQ3HWdiBqM3kNdTz75JNq1a4fPPvsMjRpVdRiVl5fjjTfewN9//61xyao54VAXkX64aouITIGuv7/1Dj4ODg5IS0tD+/btVdpPnTqFHj164Pbt27Wr2EQw+BDp5sMPP9S45QxDDxEZQ73N8XF2dsaFCxfUgs/FixfRpEkT/SslIrOjqZfn0iV/fPYZJ+oQkWnTe47PSy+9hFGjRmHLli24ePEiLl68iM2bN2vcxoKILI+m0JOcHIPBgxl6iMj06d3js3TpUkgkEoSHh6O8vBwAYGdnh/HjxyMuLs7gBRKRaahpR3WObhGRuaj1c3xu376Nc+fOAQDatm0LR0dHgxZmLJzjQ6ROU+h5+umnERQUpHzPZ/IQkTHV2+RmS8fgQ6RK11VbQUFVz+QJDARSUhqiMiKi/xh8cvPIkSN1Om/dunW6XpKITFhNQ1uaREb+1+NDRGSqdA4+69evh4+PD/z9/cFOIiLLpin0PPfcc+jcubPWz4SFcYiLiEyfzsFn/Pjx2LRpE7Kzs/H6669j2LBhaNq0aX3WRkQNTAiBuXPnqrXr8mwezvEhInOg1xyfkpISfPfdd1i3bh1SUlIwcOBAjBo1Cv3794dEIqnPOhsM5/iQtdJ3aOtenONDRMZU75Obz58/j/Xr1+OLL75AeXk5Tp48icaNG9e6YFPB4EPWSFPoiYiIgI+Pj87XYI8PERlTve7ODgA2NjaQSCQQQqCioqK2lyEiI6qsrMS8efPU2muz7QTn+BCROdAr+Nw91PXLL79g0KBB+PDDDxEaGgobG70fAk1ERqRtaMvfn08jJCLLpXPwmTBhAjZv3gxvb2+MHDkSmzZtgpubW33WRkT1RFPo+fnnidi/3w2Bgey5ISLLpXPwWbNmDVq1aoU2bdrgp59+wk8//aTxvO+++85gxRGRYZWVlWHhwoVq7TExMUhKAm7f5nN4iMiy6Rx8wsPDLWblFpE1ut+qLc7RISJroNcDDInIPGkKPdOmTbOIlZhERPqo9aouIjJ9//77LxYvXqzWXptVW0REloDBh8hC1fWBhERElojBh8gCaQo9UVFRkEqlRqiGiMh0MPgQWRCFQoHly5ertbOXh4ioCoMPkYXg0BYR0f3xcctEFkBT6Nmy5T34+1c9nycoqGovLSIia8ceHyIzVlhYiI8//litfc6cql6euLiq96mpVf/M5/QQkbVj8CEyUzXtteXnB0gk/z2FuXrXdCIia2d2waekpAQBAQE4duwY0tLS0K1bN+Wx48ePY+LEifj999/h7u6OSZMmYcaMGcYrlqieaAo90dHRyqer39uzw54eIqIqZjfHZ8aMGWjRooVau0KhQP/+/eHj44OjR49iyZIlmDNnDj799FMjVElUPy5evKgx9MTExHBLGSIiHZhVj8/u3buxd+9efPvtt9i9e7fKsY0bN6K0tBTr1q2DVCpFp06dkJ6ejvj4eIwZM8ZIFRMZjqbA06hRI8yaNcsI1RARmSezCT4FBQUYPXo0EhMT4ejoqHY8NTUVvXr1UnlAW0hICN5//30UFRXB1dVV43VLSkpQUlKifK9QKAxfPFEdaevlISIi/ZjFUJcQAhERERg3bhx69Oih8Zz8/Hx4enqqtFW/z8/P13rtRYsWQS6XK1/e3t6GK5yojrKyshh6iIgMyKjBJzIyEhKJpMZXZmYmVq1ahRs3biAqKsrgNURFRaG4uFj5unjxosG/g6g2YmNjsXnzZpU2T09PZejh83mIiPRn1KGuadOmISIiosZz2rRpgx9//BGpqamQyWQqx3r06IHXXnsNGzZsgJeXFwoKClSOV7/38vLSen2ZTKZ2XSJj06WXJy6Oz+chItKXUYOPu7s73N3d73veypUrMX/+fOX73NxchISEYMuWLQgICAAABAYGYtasWSgrK4OdnR0AYN++ffDz89M6v4fI1Bw+fBjJyclq7ZqGtiIj+XweIiJ9SYQQwthF6CsnJwe+vr4qz/EpLi6Gn58f+vfvj5kzZyIjIwMjR47E8uXL9VrVpVAoIJfLUVxcDGdn53q6AyJ1mnp5fH19ER4eboRqiIjMi66/v81mVdf9yOVy7N27FxMnTkT37t3h5uaG6OhoLmUns8AJzEREDcMse3zqE3t8qCHt27cPKSkpau13T2CuHs7iPB4iIu2srseHyNxo6uXx9/dH2F0JhxOYiYgMi8GHyAh0HdriBGYiIsNi8CFqQDt27EB6erpau7b5PGFh7OkhIjIkBh+iBqKpl6dFi6eRkBAEf38GHCKihmAWW1YQmTttQ1sJCUHKOTxERFT/2ONDVI/Wr1+P8+fPq7VXD21xDg8RUcNi8CGqJ5p6eZ599ll06dJF+Z5zeIiIGhaHuojqgbahrbtDz9244SgRUcNgjw+RAS1fvhwKhUKt/X5PYebzeoiIGgaDD5GBaOrlGT58ONq0aXPfz3KuDxFRw2DwITKAuu61xbk+REQNg8GHqA4WLVqE0tJStXZuMEpEZJoYfIhqSVMvz7hx4+Dp6WmEaoiISBcMPkR6EkJg7ty5au3s5SEiMn1czk6kh2XLltUYergsnYjItLHHh0hHmoa2OnWagueflyvfc1k6EZFpY48P0X1UVFRoXbUllcpVengiI4HAQC5LJyIyVRIhhDB2EaZEoVBALpejuLgYzs7Oxi6HjExT4AH+G9oKCqrq4QkMBFJSGrIyIiK6m66/vznURaSFptAzc+ZM2NvbK9/zwYNEROaFwYfoHqWlpVi0aJFau6ZVW3zwIBGReeEcHyvCFUf3Fxsbq3PoISIi88MeHyvCFUc10zS0NWvWLDRqxP9MiIgsBXt8rAhXHGl2+/Ztrau2GHqIiCwL/1a3IpyPok5T4JFIJIiOjjZCNUREVN8YfMhqaQo97733Hmxs2BFKRGSpGHzI6ty4cQPx8fFq7ZzATERk+Rh8yKpo6uVxdXXF5MmTjVANERE1NAYfshqaQk90dDQkEokRqiEiImPgZAayeFevXtUYevz9Y/D44xI+14iIyIqwx4csmuYd1Tvh+eefV+6zxecaERFZD7Pp8WndujUkEonKKy4uTuWc48eP48knn4S9vT28vb2xePFiI1VLpkDbs3mef/55AHyuERGRNTKrHp+5c+di9OjRyvdNmjRR/rNCoUD//v0RHByMNWvW4MSJExg5ciRcXFwwZswYY5RLRpKbm4vPPvtMrf3eVVt8rhERkfUxq+DTpEkTeHl5aTy2ceNGlJaWYt26dZBKpejUqRPS09MRHx/P4GNFNPXyBAQEIDQ01AjVEBGRqTGboS4AiIuLQ7NmzeDv748lS5agvLxceSw1NRW9evWCVCpVtoWEhCArKwtFRUVar1lSUgKFQqHyIvOkbWiLoYeIiKqZTY/P5MmT8cgjj6Bp06ZISUlBVFQU8vLylA+iy8/Ph6+vr8pnPD09lcdcXV01XnfRokUaf2GS+cjOzsYXX3yh1s4HEhIR0b2MGnwiIyPx/vvv13jO6dOn0b59e0ydOlXZ9vDDD0MqlWLs2LFYtGgRZDJZrWuIiopSubZCoYC3t3etr0cNS1Nofeqpp/DEE08YoRoiIjJ1Rg0+06ZNQ0RERI3ntGnTRmN7QEAAysvLkZOTAz8/P3h5eaGgoEDlnOr32uYFAYBMJqtTcCLj0Ta0RUREpI1Rg4+7uzvc3d1r9dn09HTY2NjAw8MDABAYGIhZs2ahrKwMdnZ2AIB9+/bBz89P6zAXmadTp05h27Ztau0MPUREdD9mMccnNTUVv/32G/r27YsmTZogNTUVb7/9NoYNG6YMNa+++ipiY2MxatQozJw5ExkZGfjggw+wfPlyI1dPhqSpl2fw4MF45JFHjFANERGZG7NY1SWTybB582b07t0bnTp1woIFC/D222/j008/VZ4jl8uxd+9eZGdno3v37pg2bRqio6O5lN0EJSUBQUHQe6sIbUNbDD1ERKQriRBCGLsIU6JQKCCXy1FcXAxnZ2djl2ORqreKCAwEUlLuf/4ff/yB77//Xq2dQ1tERFRN19/fZjHURZYlMrJqfyxdtorQ1Mvz0ksvoX379vVQGRERWToGH2pwum4VwVVbRERkaAw+ZHIOHz6M5ORktXaGHiIiqisGHzIpmnp5RowYgdatWzd8MUREZHEYfMhkaAo9/v4xYOYhIiJDYfAhoztw4AAOHTqk1j5nTgwCA3WbD0RERKQLBh8yKk29PBMmTEBqqjsCA3Vb+UVERKQrBh8ymppWbem68ouIiEgfZvHkZrIsu3btqvVS9do+9ZmIiAhgjw81ME2B56233oKLi4tOn4+Lq3rqc1wce4SIiEh/7PGhBiGE0NrLo2voAarm/HDuDxER1RZ7fKje7dy5E0ePHlVps7W1xezZs/W+Fuf+EBFRXTD4UL3S1MszY8YMODg4GKEaIiKydgw+VC8qKysxb948tXZuO0FERMbE4EMG98033+DkyZMqbS4uLnjrrbeMVBEREVEVBh8yKE1DW1FRUZBKpUaohoiISBWDDxlERUUF5s+fr9bOoS0iIjIlDD5UZ9999x1OnDih0pab2wUDBz5rpIqIiIg0Y/ChOtE0tLV372ykpNjixAkuPSciItPC4EO1UlZWhoULF6q1x8TEwN+/6snKfMggERGZGgYf0tuXX36Jv//+W6UtICAAoaGhAPiQQSIiMl0MPqQXTUNb0dHRkEgkRqiGiIhIPww+pJM7d+7g/fffV2vnqi0iIjInDD50X2vWrEFBQYFKW58+fdC7d28jVURERFQ7DD5UIw5tERGRJWHwIY1u3ryJZcuWqbVzaIuIiMwZgw+pWbp0KW7duqXSFhoaioCAACNVREREZBgMPqRC09AWe3mIiMhSMPgQAKC4uBgrVqxQa2foISIiS8LgQxp7ef73v//h4YcfNkI1RERE9cfG2AXo4/vvv0dAQAAcHBzg6uqKoUOHqhy/cOECBg4cCEdHR3h4eGD69OkoLy83TrFmQtvQFkMPERFZIrPp8fn2228xevRoLFy4EP369UN5eTkyMjKUxysqKjBw4EB4eXkhJSUFeXl5CA8Ph52dncY9pazdP//8g48++kitnUNbRERkySRCCGHsIu6nvLwcrVu3RmxsLEaNGqXxnN27d2PQoEHIzc2Fp6cngKoH782cOROFhYWQSqU6fZdCoYBcLkdxcTGcnZ0Ndg+mRFMvz8svvww/Pz8jVENERFR3uv7+Nouhrj///BOXL1+GjY0N/P390bx5cwwYMEClxyc1NRVdunRRhh4ACAkJgUKhwMmTJ41RtknSNrTF0ENERNbALIJP9U7gc+bMwezZs7Fz5064urqiT58+uHbtGgAgPz9fJfQAUL7Pz8/Xeu2SkhIoFAqVlyUqLCzkUnUiIrJ6Rg0+kZGRkEgkNb4yMzNRWVkJAJg1axaee+45dO/eHQkJCZBIJNi2bVudali0aBHkcrny5e3tbYhbMynz58/Hxx9/rNI2YsQIhh4iIrI6Rp3cPG3aNERERNR4Tps2bZCXlwcA6Nixo7JdJpOhTZs2uHDhAgDAy8sLR44cUfls9caaXl5eWq8fFRWFqVOnKt8rFAqLCj/s5SEiIvqPUYOPu7s73N3d73te9+7dIZPJkJWVhSeeeAIAUFZWhpycHPj4+AAAAgMDsWDBAly5cgUeHh4AgH379sHZ2VklMN1LJpNBJpMZ4G5MS15eHj799FOVNolEgujoaCNVREREZHxmsZzd2dkZ48aNQ0xMDLy9veHj44MlS5YAAF544QUAQP/+/dGxY0cMHz4cixcvRn5+PmbPno2JEydaZLCpiaZengkTJugUMomIiCyZWUxuBoAlS5bg5ZdfxvDhw/Hoo4/i/Pnz+PHHH+Hq6goAsLW1xc6dO2Fra4vAwEAMGzYM4eHhmDt3rpEr119SEhAUVPWnvrQNbTH0EBERmclzfBqSKTzHJygISE0FAgOBlBTdPlNQUIA1a9aotDVp0kRl/hIREZGl0vX3t1kMdVmbyEggLq7qT1188MEHuH79ukrb5MmTlb1hREREVIXBxwSFhVW9dKFpaMvfPwbMPEREROoYfMzU1atX8eGHH6q0Xbrkj88/D0NgoO7BiYiIyJow+JihxMREHDt2TKVt5syZ2LvXHidP6j5ERkREZG0YfMxMTQ8k1GeIjIiIyBox+JiJK1euYPXq1SptQ4YMQbdu3YxTEBERkRli8DEDW7ZsQWZmpkrbu+++Czs7OyNVREREZJ4YfEyYEELtAYzcdoKIiKj2GHxMlKa9tp5//nl06tTJSBURERGZPwYfE/TFF18gOztbpW3WrFlo1Ig/LiIiorrgb1ITomloy8HBATNmzDBSRURERJaFwcdEFBcXY8WKFSptr7zyCh566CHjFERERGSBGHxMwNGjR7Fz506Vtvfeew82NjZGqoiIiMgyMfg0kKSk/zYerX7IoBACH374Ia5du6Y8LyQkBI899piRqiQiIrJsDD4NJC4OSE2t+jMsDCgqKsLKlStVzuGO6kRERPWLYykNJDISCAys+vO3335TCT1NmzZFdHR0rUJPUhIQFFT1JxEREdVMIoQQxi7ClCgUCsjlchQXF8PZ2dmg1xZCYMWKFVAoFMq2gQMHokePHrW+ZlBQVU9SYCCQkmKIKomIiMyPrr+/OdTVQK5evYoPP/xQpW3KlCmQy+V1um5k5H9zh4iIiKhmDD4N5O7Q4+npibFjx0IikdT5utyRnYiISHcMPg2ka9euOHbsGHdUJyIiMiLO8blHfc7xISIiovqh6+9vruoiIiIiq8HgQ0RERFaDwYeIiIisBoMPERERWQ0GHyIiIrIaDD5ERERkNRh8iIiIyGow+BAREZHVYPAhIiIiq8HgQ0RERFbDLILPwYMHIZFINL5+//135XnHjx/Hk08+CXt7e3h7e2Px4sVGrJqIiIhMjVlsUhoUFIS8vDyVtvfeew/79+9Hjx49AFTt0dG/f38EBwdjzZo1OHHiBEaOHAkXFxeMGTPGGGUTERGRiTGL4COVSuHl5aV8X1ZWhh07dmDSpEmQSCQAgI0bN6K0tBTr1q2DVCpFp06dkJ6ejvj4eAYfIiIiAmAmQ133SkpKwtWrV/H6668r21JTU9GrVy9IpVJlW0hICLKyslBUVKT1WiUlJVAoFCovIiIiskxm0eNzr7Vr1yIkJAQPPPCAsi0/Px++vr4q53l6eiqPubq6arzWokWLEBsbq9bOAERERGQ+qn9vCyFqPM+owScyMhLvv/9+jeecPn0a7du3V76/dOkSkpOTsXXrVoPUEBUVhalTpyrfZ2dno1u3bvD29jbI9YmIiKjh3LhxA3K5XOtxowafadOmISIiosZz2rRpo/I+ISEBzZo1Q1hYmEq7l5cXCgoKVNqq3989P+heMpkMMplM+d7HxwcAcOHChRr/xZkrhUIBb29vXLx4Ec7OzsYux6As+d4Ay74/S743wLLvz5LvDbDs+7O0exNC4MaNG2jRokWN5xk1+Li7u8Pd3V3n84UQSEhIQHh4OOzs7FSOBQYGYtasWSgrK1Me27dvH/z8/LQOc2liY1M17Ukul1vE/xC0cXZ2ttj7s+R7Ayz7/iz53gDLvj9LvjfAsu/Pku5Nlw4Ls5rc/OOPPyI7OxtvvPGG2rFXX30VUqkUo0aNwsmTJ7FlyxZ88MEHKsNYREREZN3ManLz2rVrERQUpDLnp5pcLsfevXsxceJEdO/eHW5uboiOjuZSdiIiIlIyq+Dz9ddf13j84Ycfxs8//1yn75DJZIiJiVGZ92NJLPn+LPneAMu+P0u+N8Cy78+S7w2w7Puz5HuriUTcb90XERERkYUwqzk+RERERHXB4ENERERWg8GHiIiIrAaDDxEREVkNBp//7+DBg5BIJBpfv//+u/K848eP48knn4S9vT28vb2xePFiI1atv++//x4BAQFwcHCAq6srhg4dqnL8woULGDhwIBwdHeHh4YHp06ejvLzcOMXqoXXr1mo/t7i4OJVzzP1nB1RtqtutWzdIJBKkp6erHDPX+wsLC0OrVq1gb2+P5s2bY/jw4cjNzVU5x1zvLScnB6NGjYKvry8cHBzQtm1bxMTEoLS0VOU8c72/BQsWICgoCI6OjnBxcdF4jrn+nQIAH330EVq3bg17e3sEBATgyJEjxi6pVg4dOoTBgwejRYsWkEgkSExMVDkuhEB0dDSaN28OBwcHBAcH48yZM8YptiEIEkIIUVJSIvLy8lReb7zxhvD19RWVlZVCCCGKi4uFp6eneO2110RGRobYtGmTcHBwEJ988omRq9fNN998I1xdXcXq1atFVlaWOHnypNiyZYvyeHl5uejcubMIDg4WaWlpYteuXcLNzU1ERUUZsWrd+Pj4iLlz56r8/G7evKk8bu4/u2qTJ08WAwYMEABEWlqast2c7y8+Pl6kpqaKnJwc8euvv4rAwEARGBioPG7O97Z7924REREhkpOTxblz58SOHTuEh4eHmDZtmvIcc76/6OhoER8fL6ZOnSrkcrnacXP+O2Xz5s1CKpWKdevWiZMnT4rRo0cLFxcXUVBQYOzS9LZr1y4xa9Ys8d133wkAYvv27SrH4+LihFwuF4mJieLYsWMiLCxM+Pr6in///dc4BdczBh8tSktLhbu7u5g7d66y7eOPPxaurq6ipKRE2TZz5kzh5+dnjBL1UlZWJlq2bCk+//xzrefs2rVL2NjYiPz8fGXb6tWrhbOzs8o9myIfHx+xfPlyrcfN+WdXbdeuXaJ9+/bi5MmTasHHEu6v2o4dO4REIhGlpaVCCMu6NyGEWLx4sfD19VW+t4T7S0hI0Bh8zPnvlJ49e4qJEycq31dUVIgWLVqIRYsWGbGqurs3+FRWVgovLy+xZMkSZdv169eFTCYTmzZtMkKF9Y9DXVokJSXh6tWreP3115Vtqamp6NWrF6RSqbItJCQEWVlZKCoqMkaZOvvzzz9x+fJl2NjYwN/fH82bN8eAAQOQkZGhPCc1NRVdunSBp6ensi0kJAQKhQInT540Rtl6iYuLQ7NmzeDv748lS5aodKeb888OqNpwd/To0fjyyy/h6Oiodtzc76/atWvXsHHjRgQFBSn33LOUe6tWXFyMpk2bKt9b2v3dzVz/TiktLcXRo0cRHBysbLOxsUFwcDBSU1ONWJnhZWdnIz8/X+Ve5XI5AgICLO5eqzH4aLF27VqEhITggQceULbl5+er/AcMQPk+Pz+/QevT199//w0AmDNnDmbPno2dO3fC1dUVffr0wbVr1wCY9/1NnjwZmzdvxoEDBzB27FgsXLgQM2bMUB4353sTQiAiIgLjxo1Djx49NJ5jzvcHADNnzoSTkxOaNWuGCxcuYMeOHcpj5n5vdzt79ixWrVqFsWPHKtss6f7uZa739s8//6CiokJj7aZcd21U34813Gs1iw8+kZGRWictV78yMzNVPnPp0iUkJydj1KhRRqpad7reX2VlJQBg1qxZeO6559C9e3ckJCRAIpFg27ZtRr4LzfT52U2dOhV9+vTBww8/jHHjxmHZsmVYtWoVSkpKjHwX2ul6f6tWrcKNGzcQFRVl7JJ1pu9/d9OnT0daWhr27t0LW1tbhIeHQ5jwQ+Vr8/fK5cuXERoaihdeeAGjR482UuX3V5t7IzInZrVXV21MmzYNERERNZ7Tpk0blfcJCQlo1qwZwsLCVNq9vLxQUFCg0lb93svLq+7F1oKu95eXlwcA6Nixo7JdJpOhTZs2uHDhAoCqe7h31YIx7682P7tqAQEBKC8vR05ODvz8/Mz6Z/fjjz8iNTVVbT+dHj164LXXXsOGDRtM7v70/dm5ubnBzc0NDz30EDp06ABvb28cPnwYgYGBJndvgP73l5ubi759+yIoKAiffvqpynmmdn91+e/uXqb2d4qu3NzcYGtrq/HnYsp110b1/RQUFKB58+bK9oKCAnTr1s1IVdUzY08yMjWVlZXC19dXZdVFtepJiNWTLoUQIioqyiwmIRYXFwuZTKYyubm0tFR4eHgoV49UT0S8e9XCJ598IpydncWdO3cavOa6+Oqrr4SNjY24du2aEMK8f3bnz58XJ06cUL6Sk5MFAPHNN9+IixcvCiHM+/7udf78eQFAHDhwQAhh/vd26dIl8eCDD4qXX35ZlJeXqx039/sT4v6Tm83x75SePXuKN998U/m+oqJCtGzZ0mInNy9dulTZVv37wlInNzP43OOHH34QAMTp06fVjl2/fl14enqK4cOHi4yMDLF582bh6OhoFstOhRDirbfeEi1bthTJyckiMzNTjBo1Snh4eCjDQfXS0/79+4v09HSxZ88e4e7ubvJLT1NSUsTy5ctFenq6OHfunPjqq6+Eu7u7CA8PV55j7j+7u2VnZ6ut6jLX+zt8+LBYtWqVSEtLEzk5OWL//v0iKChItG3bVvmL0VzvTYiq0NOuXTvx1FNPiUuXLqk8bqGaOd/f+fPnRVpamoiNjRWNGzcWaWlpIi0tTdy4cUMIYb5/pwhRtZxdJpOJ9evXi1OnTokxY8YIFxcXlRVq5uLGjRvKnw0AER8fL9LS0sT58+eFEFXL2V1cXMSOHTvE8ePHxZAhQ7ic3Zq88sorIigoSOvxY8eOiSeeeELIZDLRsmVLERcX14DV1U1paamYNm2a8PDwEE2aNBHBwcEiIyND5ZycnBwxYMAA4eDgINzc3MS0adNEWVmZkSrWzdGjR0VAQICQy+XC3t5edOjQQSxcuFDt/1Ga88/ubpqCjxDmeX/Hjx8Xffv2FU2bNhUymUy0bt1ajBs3Tly6dEnlPHO8NyGqekIAaHzdzVzvb8SIERrvrbq3Tgjz/Dul2qpVq0SrVq2EVCoVPXv2FIcPHzZ2SbVy4MABjT+nESNGCCGqen3ee+894enpKWQymXjqqadEVlaWcYuuRxIhTHgGIREREZEBWfyqLiIiIqJqDD5ERERkNRh8iIiIyGow+BAREZHVYPAhIiIiq8HgQ0RERFaDwYeIiIisBoMPERERWQ0GHyILk5+fj0mTJqFNmzaQyWTw9vbG4MGDsX//fuU5KSkpeOaZZ+Dq6gp7e3t06dIF8fHxqKioUJ6Tk5ODUaNGwdfXFw4ODmjbti1iYmJQWlqq8n2fffYZunbtisaNG8PFxQX+/v5YtGiR8vicOXMgkUgQGhqqVuuSJUsgkUjQp08fne9PoVBg1qxZaN++Pezt7eHl5YXg4GB89913Kju6nzx5Ei+++CLc3d0hk8nw0EMPITo6Grdv31aec+3aNUyaNAl+fn5wcHBAq1atMHnyZBQXF+tUS05OjtYdzA8fPqzzPfXp0wdTpkzR+Xwiqj2L352dyJrk5OTg8ccfh4uLC5YsWYIuXbqgrKwMycnJmDhxIjIzM7F9+3a8+OKLeP3113HgwAG4uLjghx9+wIwZM5CamoqtW7dCIpEgMzMTlZWV+OSTT9CuXTtkZGRg9OjRuHXrFpYuXQoAWLduHaZMmYKVK1eid+/eKCkpwfHjx5GRkaFSV/PmzXHgwAFcunQJDzzwgLJ93bp1aNWqlc73d/36dTzxxBMoLi7G/Pnz8eijj6JRo0b46aefMGPGDPTr1w8uLi44fPgwgoODERwcjO+//x6enp44cuQIpk2bhv379+PAgQOQSqXIzc1Fbm4uli5dio4dO+L8+fMYN24ccnNz8c033+hc1w8//IBOnTqptDVr1kznz+tCCIGKigo0asS/tonqxLg7ZhCRIQ0YMEC0bNlS3Lx5U+1YUVGRuHnzpmjWrJl49tln1Y4nJSUJAGLz5s1ar7948WLh6+urfD9kyBARERFRY00xMTGia9euYtCgQWL+/PnK9l9//VW4ubmJ8ePHi969e+twd0KMHz9eODk5icuXL6sdu3HjhigrKxOVlZWiY8eOokePHqKiokLlnPT0dCGRSGrcC2vr1q1CKpXqtJ+Utn3T7lZ9/1988YXw8fERzs7O4qWXXhIKhUIIoXm/q+zsbOX+Srt27RKPPPKIsLOzEwcOHBB37twRkyZNEu7u7kImk4nHH39cHDlyRPl91Z/buXOn6NKli5DJZCIgIECcOHFCCCHEzZs3RZMmTcS2bdtU6ty+fbtwdHRU1kVkqTjURWQhrl27hj179mDixIlwcnJSO+7i4oK9e/fi6tWreOedd9SODx48GA899BA2bdqk9TuKi4vRtGlT5XsvLy8cPnwY58+fv299I0eOxPr165Xv161bh9deew1SqfS+nwWAyspKbN68Ga+99hpatGihdrxx48Zo1KgR0tPTcerUKUydOhU2Nqp/xXXt2hXBwcH3vUdnZ2eD9qycO3cOiYmJ2LlzJ3bu3ImffvoJcXFxAIAPPvgAgYGBGD16NPLy8pCXlwdvb2/lZyMjIxEXF4fTp0/j4YcfxowZM/Dtt99iw4YN+PPPP9GuXTuEhITg2rVrKt85ffp0LFu2DL///jvc3d0xePBglJWVwcnJCS+//DISEhJUzk9ISMDzzz+PJk2aGOy+iUwRgw+RhTh79iyEEGjfvr3Wc/766y8AQIcOHTQeb9++vfIcTddftWoVxo4dq2yLiYmBi4sLWrduDT8/P0RERGDr1q2orKxU+/ygQYOgUChw6NAh3Lp1C1u3bsXIkSN1vr9//vkHRUVFNd4fcP977NChg9Z7/OeffzBv3jyMGTNG57oAICgoCI0bN1Z53a2yshLr169H586d8eSTT2L48OHKOVdyuRxSqRSOjo7w8vKCl5cXbG1tlZ+dO3cunn76abRt2xYymQyrV6/GkiVLMGDAAHTs2BGfffYZHBwcsHbtWpXvjImJwdNPP40uXbpgw4YNKCgowPbt2wEAb7zxBpKTk5GXlwcAuHLlCnbt2qXXz4PIXDH4EFkIcdfEXkOeCwCXL19GaGgoXnjhBYwePVrZ3rx5c6SmpuLEiRN46623UF5ejhEjRiA0NFQt/NjZ2WHYsGFISEjAtm3b8NBDD+Hhhx+ut5r1PV+hUGDgwIHo2LEj5syZo9dnt2zZgvT0dJXX3Vq3bq3Sk9K8eXNcuXJFp2v36NFD+c/nzp1DWVkZHn/8cWWbnZ0devbsidOnT6t8LjAwUPnPTZs2hZ+fn/Kcnj17olOnTtiwYQMA4KuvvoKPjw969eql2w0TmTEGHyIL8eCDDyonJWvz0EMPAYDaL8lqp0+fVp5TLTc3F3379kVQUBA+/fRTjZ/r3LkzJkyYgK+++gr79u3Dvn378NNPP6mdN3LkSGzbtg0fffSR3r0L7u7ucHFxqfH+gNrd440bNxAaGoomTZpg+/btsLOz06s2b29vtGvXTuV1t3uvJ5FINPaKaaJp2NIQ3njjDeXQY0JCAl5//XVIJJJ6+S4iU8LgQ2QhmjZtipCQEHz00Ue4deuW2vHr16+jf//+aNq0KZYtW6Z2PCkpCWfOnMErr7yibLt8+TL69OmD7t27IyEhQW3OjCYdO3YEAI01dOrUCZ06dUJGRgZeffVVfW4PNjY2ePnll7Fx40bk5uaqHb958ybKy8vRrVs3tG/fHsuXL1cLF8eOHcMPP/ygco8KhQL9+/eHVCpFUlIS7O3t9arLEKRSqcqjBLRp27YtpFIpfv31V2VbWVkZfv/9d+W/92p3L6cvKirCX3/9pTL8N2zYMJw/fx4rV67EqVOnMGLECAPcCZHpY/AhsiAfffQRKioq0LNnT3z77bc4c+YMTp8+jZUrVyIwMBBOTk745JNPsGPHDowZMwbHjx9HTk4O1q5di4iICDz//PN48cUXAfwXelq1aoWlS5eisLAQ+fn5yM/PV37f+PHjMW/ePPz66684f/48Dh8+jPDwcLi7u6sMtdztxx9/RF5eHlxcXPS+vwULFsDb2xsBAQH44osvcOrUKZw5cwbr1q2Dv78/bt68CYlEgrVr1+LUqVN47rnncOTIEVy4cAHbtm3D4MGDERgYqHxmTnXouXXrFtauXQuFQqG8R12CSLWrV68qP1f9unPnjs6fb926NX777Tfk5OTgn3/+0dob5OTkhPHjx2P69OnYs2cPTp06hdGjR+P27dsYNWqUyrlz587F/v37kZGRgYiICLi5uWHo0KHK466urnj22Wcxffp09O/fX+UxA0QWzahryojI4HJzc8XEiROFj4+PkEqlomXLliIsLEwcOHBAec6hQ4dESEiIcHZ2FlKpVHTq1EksXbpUlJeXK89JSEhQW2Zd/ar2zTffiGeeeUY0b95cSKVS0aJFC/Hcc8+J48ePK8+pXs6tzVtvvaXzcnYhhLh+/bqIjIwUDz74oJBKpcLT01MEBweL7du3i8rKSuV5x48fF88995xo2rSpsLOzE23bthWzZ88Wt27dUp5TvfRb0ys7O/u+tVQvZ9f02rRpk9b7X758ufDx8VG+z8rKEo899phwcHBQW85eVFSk8tl///1XTJo0Sbi5udW4nP3//u//RKdOnYRUKhU9e/YUx44dU6t///79AoDYunXrfe+VyFJIhNBzBiAREZmsgwcPom/fvigqKrpvr9qXX36Jt99+G7m5uTo/VoDI3PERoEREVub27dvIy8tDXFwcxo4dy9BDVoVzfIjIZNz7LJy7Xz///HOD1zNu3Dit9YwbN67B6zGUxYsXo3379vDy8kJUVJSxyyFqUBzqIiKTcfbsWa3HWrZsCQcHhwaspurBfgqFQuMxZ2dneHh4NGg9RFR3DD5ERERkNTjURURERFaDwYeIiIisBoMPERERWQ0GHyIiIrIaDD5ERERkNRh8iIiIyGow+BAREZHVYPAhIiIiq/H/AByAXbngZb0WAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.4 Model Validation" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfpUlEQVR4nO3deVxUVf8H8M+AgOyI7AqICyqCmjuZisoDuJWi5Zq7PRpU6s+1MrUsLE3bTG3RniezXNIyLXfEJ8UNQ8UtJRSVRdSYkUVAOL8/fLiPIwPMwKzM5/16zevF3HPm3u+9zMz9zjnnnisTQggQERERmTELQwdAREREZGhMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIyGQsWrQIMplMrboymQyLFi3SaTxhYWEICwsz2vURkfqYEBGRxr755hvIZDLpUa9ePTRq1Ajjx4/HrVu3DB2e0WnSpInS8fLw8ECPHj2wfft2ray/oKAAixYtwqFDh7SyPiJzxISIiGrs7bffxrfffos1a9agX79+2LBhA3r16oUHDx7oZHtvvvkmCgsLdbJuXWvfvj2+/fZbfPvtt5g1axYyMjIQHR2NNWvW1HrdBQUFWLx4MRMiolqoZ+gAiMh09evXD506dQIATJ48GW5ubnj//fexY8cOvPDCC1rfXr169VCvnml+bTVq1AhjxoyRno8dOxbNmzfHypUrMXXqVANGRkQAW4iISIt69OgBAEhNTVVafunSJQwbNgyurq6oX78+OnXqhB07dijVKSkpweLFi9GiRQvUr18fDRs2xDPPPIN9+/ZJdVSNISoqKsKMGTPg7u4OR0dHPPvss7h582aF2MaPH48mTZpUWK5qnevXr0efPn3g4eEBGxsbBAUFYfXq1Rodi+p4eXmhdevWSEtLq7Le7du3MWnSJHh6eqJ+/fpo164d/vWvf0nl165dg7u7OwBg8eLFUrecrsdPEdU1pvlTi4iM0rVr1wAADRo0kJadP38e3bt3R6NGjTBv3jzY29tj8+bNGDx4MH788UcMGTIEwKPEJC4uDpMnT0aXLl2gUChw6tQpnD59Gv/4xz8q3ebkyZOxYcMGjBo1Ck8//TQOHjyIAQMG1Go/Vq9ejTZt2uDZZ59FvXr18Msvv+Dll19GWVkZYmJiarXuciUlJbhx4wYaNmxYaZ3CwkKEhYXh6tWriI2NRUBAALZs2YLx48cjNzcXr732Gtzd3bF69WpMmzYNQ4YMQXR0NACgbdu2WomTyGwIIiINrV+/XgAQ+/fvFzk5OeLGjRti69atwt3dXdjY2IgbN25Idfv27StCQkLEgwcPpGVlZWXi6aefFi1atJCWtWvXTgwYMKDK7S5cuFA8/rWVnJwsAIiXX35Zqd6oUaMEALFw4UJp2bhx44S/v3+16xRCiIKCggr1IiMjRdOmTZWW9erVS/Tq1avKmIUQwt/fX0RERIicnByRk5Mjzpw5I0aMGCEAiFdeeaXS9X300UcCgNiwYYO0rLi4WISGhgoHBwehUCiEEELk5ORU2F8i0gy7zIioxsLDw+Hu7g5fX18MGzYM9vb22LFjBxo3bgwAuHfvHg4ePIgXXngB9+/fx507d3Dnzh3cvXsXkZGRuHLlinRVmouLC86fP48rV66ovf1ff/0VAPDqq68qLZ8+fXqt9svW1lb6Wy6X486dO+jVqxf++usvyOXyGq1z7969cHd3h7u7O9q1a4ctW7bgxRdfxPvvv1/pa3799Vd4eXlh5MiR0jIrKyu8+uqryMvLQ0JCQo1iIaKK2GVGRDW2atUqBAYGQi6XY926dTh8+DBsbGyk8qtXr0IIgQULFmDBggUq13H79m00atQIb7/9Np577jkEBgYiODgYUVFRePHFF6vs+rl+/TosLCzQrFkzpeUtW7as1X4dOXIECxcuRGJiIgoKCpTK5HI5nJ2dNV5n165dsWTJEshkMtjZ2aF169ZwcXGp8jXXr19HixYtYGGh/Nu1devWUjkRaQcTIiKqsS5dukhXmQ0ePBjPPPMMRo0ahcuXL8PBwQFlZWUAgFmzZiEyMlLlOpo3bw4A6NmzJ1JTU/Hzzz9j7969+Oqrr7By5UqsWbMGkydPrnWslU3oWFpaqvQ8NTUVffv2RatWrbBixQr4+vrC2toav/76K1auXCntk6bc3NwQHh5eo9cSke4xISIirbC0tERcXBx69+6Nzz77DPPmzUPTpk0BPOrmUScZcHV1xYQJEzBhwgTk5eWhZ8+eWLRoUaUJkb+/P8rKypCamqrUKnT58uUKdRs0aIDc3NwKy59sZfnll19QVFSEHTt2wM/PT1oeHx9fbfza5u/vj7Nnz6KsrEyplejSpUtSOVB5skdE6uMYIiLSmrCwMHTp0gUfffQRHjx4AA8PD4SFhWHt2rXIzMysUD8nJ0f6++7du0plDg4OaN68OYqKiirdXr9+/QAAn3zyidLyjz76qELdZs2aQS6X4+zZs9KyzMzMCrNFW1paAgCEENIyuVyO9evXVxqHrvTv3x9ZWVnYtGmTtOzhw4f49NNP4eDggF69egEA7OzsAEBlwkdE6mELERFp1ezZs/H888/jm2++wdSpU7Fq1So888wzCAkJwZQpU9C0aVNkZ2cjMTERN2/exJkzZwAAQUFBCAsLQ8eOHeHq6opTp05h69atiI2NrXRb7du3x8iRI/H5559DLpfj6aefxoEDB3D16tUKdUeMGIG5c+diyJAhePXVV1FQUIDVq1cjMDAQp0+flupFRETA2toagwYNwj//+U/k5eXhyy+/hIeHh8qkTpdeeuklrF27FuPHj0dSUhKaNGmCrVu34siRI/joo4/g6OgI4NEg8KCgIGzatAmBgYFwdXVFcHAwgoOD9RovkUkz9GVuRGR6yi+7P3nyZIWy0tJS0axZM9GsWTPx8OFDIYQQqampYuzYscLLy0tYWVmJRo0aiYEDB4qtW7dKr1uyZIno0qWLcHFxEba2tqJVq1bi3XffFcXFxVIdVZfIFxYWildffVU0bNhQ2Nvbi0GDBokbN26ovAx97969Ijg4WFhbW4uWLVuKDRs2qFznjh07RNu2bUX9+vVFkyZNxPvvvy/WrVsnAIi0tDSpniaX3Vc3pUBl68vOzhYTJkwQbm5uwtraWoSEhIj169dXeO3Ro0dFx44dhbW1NS/BJ6oBmRCPtQsTERERmSGOISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIiIjI7DEhIiIiIrPHhIiIiIjMHidmVFNZWRkyMjLg6OjIafKJiIhMhBAC9+/fh4+PT4UbJT+OCZGaMjIy4Ovra+gwiIiIqAZu3LiBxo0bV1rOhEhN5VPk37hxA05OTgaOhoiIiNShUCjg6+srnccrw4RITeXdZE5OTkyIiIiITEx1w104qJqIiIjMHhMiIiIiMntMiIiIiMjscQwREZERKy0tRUlJiaHDIDJaVlZWsLS0rPV6mBARERkhIQSysrKQm5tr6FCIjJ6Liwu8vLxqNU8gEyIiIiNUngx5eHjAzs6OE8ISqSCEQEFBAW7fvg0A8Pb2rvG6mBARERmZ0tJSKRlq2LChocMhMmq2trYAgNu3b8PDw6PG3WccVE1EZGTKxwzZ2dkZOBIi01D+WanNeDsmRERERordZETq0cZnhQkRERERmT0mRERERFTBoUOHIJPJan2lY5MmTfDRRx9pJSZdYkJUR2TKC3E09Q4y5YWGDoWIzFxWVhZeeeUVNG3aFDY2NvD19cWgQYNw4MABqc7Ro0fRv39/NGjQAPXr10dISAhWrFiB0tJSqc61a9cwadIkBAQEwNbWFs2aNcPChQtRXFystL0vv/wS7dq1g4ODA1xcXPDUU08hLi5OKl+0aBFkMhmioqIqxLps2TLIZDKEhYWpvX8KhQJvvPEGWrVqhfr168PLywvh4eHYtm0bhBBSvfPnz+OFF16Au7s7bGxsEBgYiLfeegsFBQVSnXv37uGVV15By5YtYWtrCz8/P7z66quQy+VqxXLt2jXIZDKVj2PHjqm9T2FhYZg+fbra9esiXmVWB2w6mY75286hTAAWMiAuOgTDO/sZOiwiMkPXrl1D9+7d4eLigmXLliEkJAQlJSXYs2cPYmJicOnSJWzfvh0vvPACJkyYgPj4eLi4uGD//v2YM2cOEhMTsXnzZshkMly6dAllZWVYu3YtmjdvjpSUFEyZMgX5+flYvnw5AGDdunWYPn06PvnkE/Tq1QtFRUU4e/YsUlJSlOLy9vZGfHw8bt68icaNG0vL161bBz8/9b8vc3Nz8cwzz0Aul2PJkiXo3Lkz6tWrh4SEBMyZMwd9+vSBi4sLjh07hvDwcISHh2PXrl3w9PTEiRMn8H//9384cOAA4uPjYW1tjYyMDGRkZGD58uUICgrC9evXMXXqVGRkZGDr1q1qx7V//360adNGaRmvUNSQMKDPP/9chISECEdHR+Ho6Ci6desmfv31V6m8sLBQvPzyy8LV1VXY29uL6OhokZWVpbSO69evi/79+wtbW1vh7u4uZs2aJUpKSpTqxMfHi6eeekpYW1uLZs2aifXr12scq1wuFwCEXC6v0b7qSkZugQiYt1P4z/3fo+m8XSIjt8DQoRFRDRUWFooLFy6IwsJCQ4eisX79+olGjRqJvLy8CmV///23yMvLEw0bNhTR0dEVynfs2CEAiB9++KHS9X/wwQciICBAev7cc8+J8ePHVxnTwoULRbt27cTAgQPFkiVLpOVHjhwRbm5uYtq0aaJXr15q7J0Q06ZNE/b29uLWrVsVyu7fvy9KSkpEWVmZCAoKEp06dRKlpaVKdZKTk4VMJhNLly6tdBubN28W1tbWFc5lqqSlpQkA4o8//qi0Tvn+//vf/xb+/v7CyclJDB8+XCgUCiGEEOPGjRMAlB5paWkiPj5eABD79+8XHTt2FLa2tiI0NFRcunRJWvfVq1fFs88+Kzw8PIS9vb3o1KmT2Ldvn9L2/f39xcqVK6XnAMTnn38uoqKiRP369UVAQIDYsmWLVN67d28RExOjtI7bt28LKysrsX//fpX7WNVnRt3zt0G7zBo3boylS5ciKSkJp06dQp8+ffDcc8/h/PnzAIAZM2bgl19+wZYtW5CQkICMjAxER0dLry8tLcWAAQNQXFyMo0eP4l//+he++eYbvPXWW1KdtLQ0DBgwAL1790ZycjKmT5+OyZMnY8+ePXrfX11Iu5OPMqG8rFQIXLtToPoFRGRW9Nmdfu/ePezevRsxMTGwt7evUO7i4oK9e/fi7t27mDVrVoXyQYMGITAwEN9//32l25DL5XB1dZWee3l54dixY7h+/Xq18U2cOBHffPON9HzdunUYPXo0rK2tq30tAJSVleGHH37A6NGj4ePjU6HcwcEB9erVQ3JyMi5cuICZM2fCwkL5NNuuXTuEh4dXu49OTk6oV097nTipqan46aefsHPnTuzcuRMJCQlYunQpAODjjz9GaGgopkyZgszMTGRmZsLX11d67RtvvIEPP/wQp06dQr169TBx4kSpLC8vD/3798eBAwfwxx9/ICoqCoMGDUJ6enqV8SxYsABDhw7FmTNnMHr0aIwYMQIXL14EAEyePBkbN25EUVGRVH/Dhg1o1KgR+vTpo7VjUkGV6ZIBNGjQQHz11VciNzdXWFlZKWWNFy9eFABEYmKiEEKIX3/9VVhYWCi1Gq1evVo4OTmJoqIiIYQQc+bMEW3atFHaxvDhw0VkZKRGcbGFiIj0RVstRD+cuC59PwTM2yl+OHFdSxGqdvz4cQFAbNu2rdI6S5cuFQDE33//rbL82WefFa1bt1ZZduXKFeHk5CS++OILaVlGRobo1q2bACACAwPFuHHjxKZNm5RaZspbSIqLi4WHh4dISEgQeXl5wtHRUZw5c0a89tprarUQZWdnCwBixYoVVdb74Ycfqmy1efXVV4Wtra3KspycHOHn5ydef/31auMR4n8tRLa2tsLe3l7pUW7hwoXCzs5OahESQojZs2eLrl27Ss979eolXnvtNaV1P95CVG7Xrl0CQJXvzTZt2ohPP/1Ueq6qhWjq1KlKr+natauYNm2aEOLR+79BgwZi06ZNUnnbtm3FokWLKt2mybcQPa60tBQ//PAD8vPzERoaiqSkJJSUlCA8PFyq06pVK/j5+SExMREAkJiYiJCQEHh6ekp1IiMjoVAopFamxMREpXWU1ylfR2WKioqgUCiUHsbI29kWcdEhsPzvHAyWMhneiw6Gt7OtgSMjIkPKlBdKYwsBoEwAr29L0WlLkRCi+ko1qAsAt27dQlRUFJ5//nlMmTJFWu7t7Y3ExEScO3cOr732Gh4+fIhx48YhKioKZWVlSuuwsrLCmDFjsH79emzZsgWBgYFo27atzmLWtL5CocCAAQMQFBSERYsWafTaTZs2ITk5WenxuCZNmsDR0VF67u3tLd3uojqPH6PyW2OUvzYvLw+zZs1C69at4eLiAgcHB1y8eLHaFqLQ0NAKz8tbiOrXr48XX3wR69atAwCcPn0aKSkpGD9+vFrx1pTBB1WfO3cOoaGhePDgARwcHLB9+3YEBQUhOTkZ1tbWcHFxUarv6emJrKwsAI+uZHg8GSovLy+rqo5CoUBhYaE05feT4uLisHjxYm3sos4N7+yHnoHuuHanAE3c7JgMEVGV3em6+o5o0aKFNBi6MoGBgQCAixcv4umnn65QfvHiRQQFBSkty8jIQO/evfH000/jiy++ULne4OBgBAcH4+WXX8bUqVPRo0cPJCQkoHfv3kr1Jk6ciK5duyIlJUWp60cd7u7ucHFxqXL/AOV9fOqppyqUX7x4UapT7v79+4iKioKjoyO2b98OKysrjWLz9fVF8+bNKy1/cn0ymaxCwqjOa8snQCx/7axZs7Bv3z4sX74czZs3h62tLYYNG1bhSkBNTZ48Ge3bt8fNmzexfv169OnTB/7+/rVaZ3UM3kLUsmVLJCcn4/jx45g2bRrGjRuHCxcuGDoszJ8/H3K5XHrcuHHD0CFVydvZFqHNGjIZIiIAQICbPSyemLzXUiZDEzfd3Q7E1dUVkZGRWLVqFfLz8yuU5+bmIiIiAq6urvjwww8rlO/YsQNXrlzByJEjpWW3bt1CWFgYOnbsiPXr11cYk6NKeUKlKoY2bdqgTZs2SElJwahRozTZPVhYWGDEiBH47rvvkJGRUaE8Ly8PDx8+RPv27dGqVSusXLmyQtJx5swZ7N+/X2kfFQoFIiIiYG1tjR07dqB+/foaxaUN1tbWSlMeqOvIkSMYP348hgwZgpCQEHh5eeHatWvVvu7JKQGOHTuG1q1bS89DQkLQqVMnfPnll9i4caPGyWtNGDwhsra2RvPmzdGxY0fExcWhXbt2+Pjjj+Hl5YXi4uIKE0JlZ2fDy8sLwKPBdNnZ2RXKy8uqquPk5FRp6xAA2NjYwMnJSelBRGQqDNWdvmrVKpSWlqJLly748ccfceXKFVy8eBGffPIJQkNDYW9vj7Vr1+Lnn3/GSy+9hLNnz+LatWv4+uuvMX78eAwbNgwvvPACgP8lQ35+fli+fDlycnKQlZUl9QAAwLRp0/DOO+/gyJEjuH79Oo4dO4axY8fC3d29QrdMuYMHDyIzM7NCD4Q63n33Xfj6+qJr167497//jQsXLuDKlStYt24dnnrqKeTl5UEmk+Hrr7/GhQsXMHToUJw4cQLp6enYsmULBg0ahNDQUGnOn/JkKD8/H19//TUUCoW0j5okKHfv3pVeV/548OCB2q9v0qQJjh8/jmvXruHOnTtqtx61aNEC27ZtQ3JyMs6cOYNRo0ap9dotW7Zg3bp1+PPPP7Fw4UKcOHECsbGxSnUmT56MpUuXQgiBIUOGqL0vNVblCCMD6N27txg3bpw0qHrr1q1S2aVLl1QOqs7OzpbqrF27Vjg5OYkHDx4IIR4Nqg4ODlbaxsiRI+vMoGoiqnu0edl9Rm6BOHr1jl4vtMjIyBAxMTHC399fWFtbi0aNGolnn31WxMfHS3UOHz4sIiMjhZOTk7C2thZt2rQRy5cvFw8fPpTqrF+/vsLl4OWPclu3bhX9+/cX3t7ewtraWvj4+IihQ4eKs2fPSnXKB1VXRt1B1eVyc3PFvHnzRIsWLYS1tbXw9PQU4eHhYvv27aKsrEyqd/bsWTF06FDh6uoqrKysRLNmzcSbb74p8vPzpTrlA5dVPdLS0qqNpXxQtarH999/X+n+r1y5Uvj7+0vPL1++LLp16yZsbW0rXHb/+AD4P/74Qym2tLQ00bt3b2Frayt8fX3FZ599VmGAtqpB1atWrRL/+Mc/hI2NjWjSpInSAOpy9+/fF3Z2duLll1+u9jhoY1C1QROiefPmiYSEBJGWlibOnj0r5s2bJ2Qymdi7d68QQoipU6cKPz8/cfDgQXHq1CkRGhoqQkNDpdc/fPhQBAcHi4iICJGcnCx2794t3N3dxfz586U6f/31l7CzsxOzZ88WFy9eFKtWrRKWlpZi9+7dGsXKhIiI9MWU5yEiqg4AsX379mrrpaWlCQsLC5GUlFRtXW0kRAYdVH379m2MHTsWmZmZcHZ2Rtu2bbFnzx784x//AACsXLkSFhYWGDp0KIqKihAZGYnPP/9cer2lpSV27tyJadOmSU2x48aNw9tvvy3VCQgIwK5duzBjxgx8/PHHaNy4Mb766itERkbqfX+JiIioaiUlJbh79y7efPNNdOvWDR06dNDLdmX/zdaoGgqFAs7OztKEWUREuvLgwQOkpaUhICDAIANszZmDg0OlZb/99ht69Oihx2iAqVOnYsOGDSrLxowZgzVr1ug1Hm2QyWTYvn07Bg8erLL80KFD6N27NwIDA7F161aEhIRUu86qPjPqnr8Nftk9ERGRsXhy/p7HNWrUSH+B/Nfbb7+tclZvACb747y6dpiwsDCN53DSBiZERERE/1XVXD6G4OHhAQ8PD0OHYRYMftk9ERERkaExISIiMlLqzgVDZO608VlhlxkRkZGxtraGhYUFMjIy4O7uDmtra+mWCUT0P0IIFBcXIycnBxYWFrC2tq7xupgQEREZGQsLCwQEBCAzM1PlLSKISJmdnR38/PzUurVLZZgQEREZIWtra/j5+eHhw4c1uscUkbmwtLREvXr1at2KyoSIiMhIyWQyWFlZaXzncyLSHAdVExERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9gyaEMXFxaFz585wdHSEh4cHBg8ejMuXLyvVCQsLg0wmU3pMnTpVqU56ejoGDBgAOzs7eHh4YPbs2Xj48KFSnUOHDqFDhw6wsbFB8+bN8c033+h694iIiMhEGDQhSkhIQExMDI4dO4Z9+/ahpKQEERERyM/PV6o3ZcoUZGZmSo8PPvhAKistLcWAAQNQXFyMo0eP4l//+he++eYbvPXWW1KdtLQ0DBgwAL1790ZycjKmT5+OyZMnY8+ePXrbVyIiIjJeMiGEMHQQ5XJycuDh4YGEhAT07NkTwKMWovbt2+Ojjz5S+ZrffvsNAwcOREZGBjw9PQEAa9aswdy5c5GTkwNra2vMnTsXu3btQkpKivS6ESNGIDc3F7t371YrNoVCAWdnZ8jlcjg5OdVuR4mIiEgv1D1/G9UYIrlcDgBwdXVVWv7dd9/Bzc0NwcHBmD9/PgoKCqSyxMREhISESMkQAERGRkKhUOD8+fNSnfDwcKV1RkZGIjExUVe7QkRERCaknqEDKFdWVobp06eje/fuCA4OlpaPGjUK/v7+8PHxwdmzZzF37lxcvnwZ27ZtAwBkZWUpJUMApOdZWVlV1lEoFCgsLIStrW2FeIqKilBUVCQ9VygU2tlRIiIiMjpGkxDFxMQgJSUFv//+u9Lyl156Sfo7JCQE3t7e6Nu3L1JTU9GsWTOdxRMXF4fFixfrbP1ERERkPIyiyyw2NhY7d+5EfHw8GjduXGXdrl27AgCuXr0KAPDy8kJ2drZSnfLnXl5eVdZxcnJS2ToEAPPnz4dcLpceN27c0HzHiIiIyCQYNCESQiA2Nhbbt2/HwYMHERAQUO1rkpOTAQDe3t4AgNDQUJw7dw63b9+W6uzbtw9OTk4ICgqS6hw4cEBpPfv27UNoaGil27GxsYGTk5PSg4iIiOomgyZEMTEx2LBhAzZu3AhHR0dkZWUhKysLhYWFAIDU1FS88847SEpKwrVr17Bjxw6MHTsWPXv2RNu2bQEAERERCAoKwosvvogzZ85gz549ePPNNxETEwMbGxsAwNSpU/HXX39hzpw5uHTpEj7//HNs3rwZM2bMMNi+ExERkfEw6GX3MplM5fL169dj/PjxuHHjBsaMGYOUlBTk5+fD19cXQ4YMwZtvvqnUYnP9+nVMmzYNhw4dgr29PcaNG4elS5eiXr3/DZE6dOgQZsyYgQsXLqBx48ZYsGABxo8fr3asvOyeiIjI9Kh7/jaqeYiMGRMiIiIi02OS8xARERERGQITIiIiIjJ7TIiIiIjI7DEhIiIiIrPHhIiIiIjMHhMiIiIiMntMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIiIjI7DEhIiIiIrPHhIiIiIjMHhMiIiIiMntMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIiIjI7DEhIiIiIrNXo4QoPj5e23EQERERGUyNEqKoqCg0a9YMS5YswY0bN7QdExEREZFe1SghunXrFmJjY7F161Y0bdoUkZGR2Lx5M4qLi7UdHxEREZHO1SghcnNzw4wZM5CcnIzjx48jMDAQL7/8Mnx8fPDqq6/izJkz2o6TiIiISGdqPai6Q4cOmD9/PmJjY5GXl4d169ahY8eO6NGjB86fP6+NGImIiIh0qsYJUUlJCbZu3Yr+/fvD398fe/bswWeffYbs7GxcvXoV/v7+eP7557UZKxEREZFOyIQQQtMXvfLKK/j+++8hhMCLL76IyZMnIzg4WKlOVlYWfHx8UFZWprVgDUmhUMDZ2RlyuRxOTk6GDoeIiIjUoO75u15NVn7hwgV8+umniI6Oho2Njco6bm5uvDyfiIiITEKNWojMEVuIiIiITI9OW4gA4PLly/j0009x8eJFAEDr1q3xyiuvoGXLljVdJREREZFB1GhQ9Y8//ojg4GAkJSWhXbt2aNeuHU6fPo3g4GD8+OOP2o6RiIiISKdq1GXWrFkzjB49Gm+//bbS8oULF2LDhg1ITU3VWoDGgl1mREREpkfd83eNWogyMzMxduzYCsvHjBmDzMzMmqySiIiIyGBqlBCFhYXhP//5T4Xlv//+O3r06FHroIiIiIj0qUaDqp999lnMnTsXSUlJ6NatGwDg2LFj2LJlCxYvXowdO3Yo1SUiIiIyZjUaQ2RhoV7DkkwmQ2lpqcZBGSOOISIiIjI9Or3svq7MPk1EREQEaOHmrrURFxeHzp07w9HRER4eHhg8eDAuX76sVOfBgweIiYlBw4YN4eDggKFDhyI7O1upTnp6OgYMGAA7Ozt4eHhg9uzZePjwoVKdQ4cOoUOHDrCxsUHz5s3xzTff6Hr3iIiIyESo3UL0ySefqL3SV199Va16CQkJiImJQefOnfHw4UO8/vrriIiIwIULF2Bvbw8AmDFjBnbt2oUtW7bA2dkZsbGxiI6OxpEjRwAApaWlGDBgALy8vHD06FHpCjgrKyu89957AIC0tDQMGDAAU6dOxXfffYcDBw5g8uTJ8Pb2RmRkpNr7RURERHWT2mOIAgIC1FuhTIa//vqrRsHk5OTAw8MDCQkJ6NmzJ+RyOdzd3bFx40YMGzYMAHDp0iW0bt0aiYmJ6NatG3777TcMHDgQGRkZ8PT0BACsWbMGc+fORU5ODqytrTF37lzs2rULKSkp0rZGjBiB3Nxc7N69W63YOIaIiIjI9Gh9DFFaWppWAquKXC4HALi6ugIAkpKSUFJSgvDwcKlOq1at4OfnJyVEiYmJCAkJkZIhAIiMjMS0adNw/vx5PPXUU0hMTFRaR3md6dOnVxpLUVERioqKpOcKhUIbu0hERERGyKBjiB5XVlaG6dOno3v37ggODgYAZGVlwdraGi4uLkp1PT09kZWVJdV5PBkqLy8vq6qOQqFAYWGhynji4uLg7OwsPXx9fWu9j0RERGScanxz15s3b2LHjh1IT09HcXGxUtmKFSs0Xl9MTAxSUlLw+++/1zQkrZo/fz5mzpwpPVcoFEyKiIiI6qgaJUQHDhzAs88+i6ZNm+LSpUsIDg7GtWvXIIRAhw4dNF5fbGwsdu7cicOHD6Nx48bSci8vLxQXFyM3N1eplSg7OxteXl5SnRMnTiitr/wqtMfrPHllWnZ2NpycnGBra6syJhsbG9jY2Gi8L0RERGR6atRlNn/+fMyaNQvnzp1D/fr18eOPP+LGjRvo1asXnn/+ebXXI4RAbGwstm/fjoMHD1YYuN2xY0dYWVnhwIED0rLLly8jPT0doaGhAIDQ0FCcO3cOt2/flurs27cPTk5OCAoKkuo8vo7yOuXrICIiIjMnasDBwUFcvXpVCCGEi4uLSElJEUIIkZycLPz9/dVez7Rp04Szs7M4dOiQyMzMlB4FBQVSnalTpwo/Pz9x8OBBcerUKREaGipCQ0Ol8ocPH4rg4GAREREhkpOTxe7du4W7u7uYP3++VOevv/4SdnZ2Yvbs2eLixYti1apVwtLSUuzevVvtWOVyuQAg5HK52q8hIiIiw1L3/F2jFiJ7e3tp3JC3tzdSU1Olsjt37qi9ntWrV0MulyMsLAze3t7SY9OmTVKdlStXYuDAgRg6dCh69uwJLy8vbNu2TSq3tLTEzp07YWlpidDQUIwZMwZjx47F22+/LdUJCAjArl27sG/fPrRr1w4ffvghvvrqK85BRERERABqeC+zwYMHY8CAAZgyZQpmzZqFn3/+GePHj8e2bdvQoEED7N+/XxexGhTnISIiIjI9Or2X2YoVK5CXlwcAWLx4MfLy8rBp0ya0aNGiRleYERERERlSjVqIzBFbiIiIiEyPTluIyhUXF+P27dsoKytTWu7n51eb1RIRERHpVY0Soj///BOTJk3C0aNHlZYLISCTyVBaWqqV4IiIiIj0oUYJ0YQJE1CvXj3s3LkT3t7ekMlk2o6LiIiISG9qlBAlJycjKSkJrVq10nY8RERERHpXo3mIgoKCNJpviIiIiMiYqZ0QKRQK6fH+++9jzpw5OHToEO7evatUplAodBkvERERkdap3WXm4uKiNFZICIG+ffsq1eGgaiIiIjJFaidE8fHxuoyDiIiIyGDUToh69eol/Z2eng5fX98KV5cJIXDjxg3tRUdERESkBzUaVB0QEICcnJwKy+/du4eAgIBaB0VERESkTzVKiMrHCj0pLy8P9evXr3VQRERERPqk0TxEM2fOBADIZDIsWLAAdnZ2UllpaSmOHz+O9u3bazVAIiIiIl3TKCH6448/ADxqITp37hysra2lMmtra7Rr1w6zZs3SboREREREOqZRQlR+pdmECRPw8ccf867vREREVCfU6NYd69ev13YcRERERAZTo4QoPz8fS5cuxYEDB3D79m2UlZUplf/1119aCY6IiIhIH2qUEE2ePBkJCQl48cUXebd7IiIiMnk1Soh+++037Nq1C927d9d2PERERER6V6N5iBo0aABXV1dtx0JERERkEDVKiN555x289dZbKCgo0HY8RERERHpXoy6zDz/8EKmpqfD09ESTJk1gZWWlVH769GmtBEdERESkDzVKiAYPHqzlMIiIiIgMRyaEEIYOwhQoFAo4OztDLpdzQkoiIiIToe75W6MxRCdOnEBpaWml5UVFRdi8ebMmqyQiIiIyOI0SotDQUNy9e1d67uTkpDQJY25uLkaOHKm96IiIiIj0QKOE6MneNVW9beyBIyIiIlNTo8vuq8JZq4mIiMjUaD0hIiIiIjI1Gl92f+HCBWRlZQF41D126dIl5OXlAQDu3Lmj3eiIiIiI9ECjy+4tLCwgk8lUjhMqXy6Tyaq8Es1U8bJ7IiIi06Pu+VujFqK0tLRaB0ZERERkbDRKiPz9/TVa+csvv4y3334bbm5uGr2OiIiISJ90Oqh6w4YNUCgUutwEERERUa3pNCHinERERERkCnjZPREREZk9JkRERERk9pgQERERkdljQkRERERmT6cJ0ZgxYziJIRERERm9GiVEZWVllS5PT0+Xnq9evZpzEBEREZHR0yghUigUeOGFF2Bvbw9PT0+89dZbSrfpyMnJQUBAgNaDJCIiItIljWaqXrBgAc6cOYNvv/0Wubm5WLJkCU6fPo1t27bB2toaAOceIiIiItOjUQvRTz/9hLVr12LYsGGYPHkyTp06hZycHAwaNAhFRUUAHt3kVV2HDx/GoEGD4OPjA5lMhp9++kmpfPz48ZDJZEqPqKgopTr37t3D6NGj4eTkBBcXF0yaNAl5eXlKdc6ePYsePXqgfv368PX1xQcffKDJbhMREVEdp1FClJOTo3Q/Mzc3N+zfvx/3799H//79UVBQoNHG8/Pz0a5dO6xatarSOlFRUcjMzJQe33//vVL56NGjcf78eezbtw87d+7E4cOH8dJLL0nlCoUCERER8Pf3R1JSEpYtW4ZFixbhiy++0ChWIiIiqrs06jLz8/PDxYsXlcYJOTo6Yu/evYiIiMCQIUM02ni/fv3Qr1+/KuvY2NjAy8tLZdnFixexe/dunDx5Ep06dQIAfPrpp+jfvz+WL18OHx8ffPfddyguLsa6detgbW2NNm3aIDk5GStWrFBKnIiIiMh8adRCFBERgfXr11dY7uDggD179qB+/fpaC6zcoUOH4OHhgZYtW2LatGm4e/euVJaYmAgXFxcpGQKA8PBwWFhY4Pjx41Kdnj17SmOcACAyMhKXL1/G33//rfV4iYiIyPRo1EK0ePFiZGRkqCxzdHTEvn37cPr0aa0EBjzqLouOjkZAQABSU1Px+uuvo1+/fkhMTISlpSWysrLg4eGh9Jp69erB1dUVWVlZAICsrKwKV755enpKZQ0aNFC57aKiImlcFPCo642IiIjqJo0SogYNGlSaQACPkqJevXrVOqhyI0aMkP4OCQlB27Zt0axZMxw6dAh9+/bV2nZUiYuLw+LFi3W6DSIiIjIOGk/M+PDhQyxbtgwdOnSAg4MDHBwc0KFDByxfvhwlJSW6iFHStGlTuLm54erVqwAALy8v3L59u0J89+7dk8YdeXl5ITs7W6lO+fPKxiYBwPz58yGXy6XHjRs3tLkrREREZEQ0SogKCwsRFhaGefPmwd3dHZMnT8bkyZPh7u6OuXPnom/fvnjw4IGuYsXNmzdx9+5deHt7AwBCQ0ORm5uLpKQkqc7BgwdRVlaGrl27SnUOHz6slKzt27cPLVu2rLK1y8bGBk5OTkoPIiIiqps06jJbunQpbty4gT/++ANt27ZVKjtz5gyeffZZLF26FIsWLVJrfXl5eVJrDwCkpaUhOTkZrq6ucHV1xeLFizF06FB4eXkhNTUVc+bMQfPmzREZGQkAaN26NaKiojBlyhSsWbMGJSUliI2NxYgRI+Dj4wMAGDVqFBYvXoxJkyZh7ty5SElJwccff4yVK1dqsutERERUlwkNBAYGiq1bt1ZavnnzZtGiRQu11xcfHy8AVHiMGzdOFBQUiIiICOHu7i6srKyEv7+/mDJlisjKylJax927d8XIkSOFg4ODcHJyEhMmTBD3799XqnPmzBnxzDPPCBsbG9GoUSOxdOlSTXZbCCGEXC4XAIRcLtf4tURERGQY6p6/ZUKof6+N+vXr48qVK/D19VVZfuPGDbRo0UKn3WaGolAo4OzsDLlczu4zIiIiE6Hu+VujMUROTk4VBjE/LisrC46OjpqskoiIiMjgNEqIevfujffee6/S8qVLl6J37961DoqIiIhInzQaVL1w4UJ07doV3bp1w8yZM9GqVSsIIXDx4kWsXLkSFy5cwLFjx3QVKxEREZFOaJQQBQUFYd++fZg0aRJGjBgh3dleCIFWrVph7969aNOmjU4CJSIiItIVjRIiAOjWrRvOnz+P5ORk/PnnnwCAwMBAtG/fXtuxEREREemFxgmRQqGAg4MD2rdvr5QElZWVIS8vj1dgERERkcnRaFD19u3b0alTJ5WX1RcWFqJz58745ZdftBYcERERkT5olBCtXr0ac+bMgZ2dXYUye3t7zJ07F5999pnWgiMiIiLSB40SopSUFISFhVVa3rNnT5w7d662MRERERHplUYJ0d9//42HDx9WWl5SUoK///671kERERER6ZNGCVGTJk1w6tSpSstPnToFf3//WgdFREREpE8aJUTR0dF44403kJ2dXaEsKysLb775JoYOHaq14IiIiIj0QaObu96/fx+hoaFIT0/HmDFj0LJlSwDApUuX8N1338HX1xfHjh2rk/cz481diYiITI+652+N5iFydHTEkSNHMH/+fGzatEkaL+Ti4oIxY8bg3XffrZPJEBEREdVtGrUQPU4IgTt37kAIAXd3d+k2Ho87cuQIOnXqBBsbm1oHamhsISIiIjI96p6/NRpD9DiZTAZ3d3d4eHioTIYAoF+/frh161ZNN0FERERmIFNeiKOpd5ApLzRYDBrfukMTNWx8IiIiIjOx6WQ65m87hzIBWMiAuOgQDO/sp/c4atxCRERERFQbmfJCKRkCgDIBvL4txSAtRUyIiIiIyCDS7uRLyVC5UiFw7U6B3mNhQkREREQGEeBmD4snhiFbymRo4lbxnqm6ptOEqLLB1kRERETezraIiw6B5X/zBUuZDO9FB8Pb2VbvsXBQNRERERnM8M5+6Bnojmt3CtDEzc4gyRCg44To/v37ulw9ERER1QHezrYGS4TKaZQQ9enTR616Bw8erFEwRERERIagUUJ06NAh+Pv7Y8CAAbCystJVTERERER6pVFC9P7772P9+vXYsmULRo8ejYkTJyI4OFhXsRERERHphUZXmc2ePRsXLlzATz/9hPv376N79+7o0qUL1qxZA4VCoasYiYiIiHSqxjd3BYCCggJs2bIFq1atwoULF5CRkVFnb3zKm7sSERGZHp3f3BUATp8+jYSEBFy8eBHBwcEcV0REREQmSeOEKCMjA++99x4CAwMxbNgwuLq64vjx4zh27BhsbQ17yRwRERFRTWg0qLp///6Ij49HREQEli1bhgEDBqBePZ1OZURERESkcxqNIbKwsIC3tzc8PDyqvC3H6dOntRKcMeEYIiIiItOj7vlbo+adhQsX1jowIiIiImNTq6vMzAlbiIgMJ1NeiLQ7+Qhwszf49P5EZFp00kJUmYSEBOTn5yM0NBQNGjTQxiqJiAAAm06mY/62cygTgIUMiIsOwfDOfoYOi4jqGI2uMnv//fexYMEC6bkQAlFRUejduzcGDhyI1q1b4/z581oPkojMU6a8UEqGAKBMAK9vS0GmvNCwgRFRnaNRQrRp0yalW3Vs3boVhw8fxn/+8x/cuXMHnTp1wuLFi7UeJFFdlikvxNHUOzzJq5B2J19KhsqVCoFrdwoMExAR1VkadZmlpaWhbdu20vNff/0Vw4YNQ/fu3QEAb775Jp5//nntRkhUh7E7qGoBbvawkEEpKbKUydDEzc5wQRFRnaRRC9HDhw9hY2MjPU9MTMTTTz8tPffx8cGdO3e0Fx1RHcbuoOp5O9siLjoElv+d5sNSJsN70cEcWE1EWqdRC1GzZs1w+PBhNG3aFOnp6fjzzz/Rs2dPqfzmzZto2LCh1oMkqouq6g7iCf9/hnf2Q89Ad1y7U4AmbnY8NkSkExolRDExMYiNjcV//vMfHDt2DKGhoQgKCpLKDx48iKeeekrrQRLVRewOUp+3sy0TISLSKY26zKZMmYJPPvkE9+7dQ8+ePfHjjz8qlWdkZGDixIlaDZCormJ3EBGR8eDEjGrixIykK5nyQnYHERHpiF4nZiSimmN3EBGR4WnUZVZSUoI5c+agefPm6NKlC9atW6dUnp2dDUtLS60GSERERKRrGiVE7777Lv79739j6tSpiIiIwMyZM/HPf/5TqY4mPXCHDx/GoEGD4OPjA5lMhp9++qnCut566y14e3vD1tYW4eHhuHLlilKde/fuYfTo0XBycoKLiwsmTZqEvLw8pTpnz55Fjx49UL9+ffj6+uKDDz7QZLeJiIiojtMoIfruu+/w1VdfYdasWViyZAlOnTqFgwcPYsKECVIiJPvvAFF15Ofno127dli1apXK8g8++ACffPIJ1qxZg+PHj8Pe3h6RkZF48OCBVGf06NE4f/489u3bh507d+Lw4cN46aWXpHKFQoGIiAj4+/sjKSkJy5Ytw6JFi/DFF19osutERERUlwkN2NrairS0NKVlN2/eFIGBgWL06NHi1q1bwsLCQpNVSgCI7du3S8/LysqEl5eXWLZsmbQsNzdX2NjYiO+//14IIcSFCxcEAHHy5Empzm+//SZkMpm4deuWEEKIzz//XDRo0EAUFRVJdebOnStatmypUXxyuVwAEHK5vCa7R0RERAag7vlboxYiLy8vpKamKi1r1KgR4uPjcfLkSYwfP15beRrS0tKQlZWF8PBwaZmzszO6du2KxMREAI9mynZxcUGnTp2kOuHh4bCwsMDx48elOj179oS1tbVUJzIyEpcvX8bff/9d6faLioqgUCiUHkRERFQ3aZQQ9enTBxs3bqyw3MfHBwcPHkRaWprWAsvKygIAeHp6Ki339PSUyrKysuDh4aFUXq9ePbi6uirVUbWOx7ehSlxcHJydnaWHr69v7XaIiIiIjJZGCdGCBQvwwgsvqCxr1KgREhISKlx5Zqrmz58PuVwuPW7cuGHokIiIiEhHNJqHyN/fH/7+/pWW+/j4YNy4cbUOCnjUPQc8upTf29tbWp6dnY327dtLdW7fvq30uocPH+LevXvS6728vJCdna1Up/x5eR1VbGxslG5kS0RERHWXRi1E5bZs2YLo6GgEBwcjODgY0dHR2Lp1q1YDCwgIgJeXFw4cOCAtUygUOH78OEJDQwEAoaGhyM3NRVJSklTn4MGDKCsrQ9euXaU6hw8fRklJiVRn3759aNmyJRo0aKDVmImIiMg0aZQQlZWVYfjw4Rg+fDguXLiA5s2bo3nz5jh//jyGDx+OESNGaDQPUV5eHpKTk5GcnAzg0UDq5ORkpKenQyaTYfr06ViyZAl27NiBc+fOYezYsfDx8cHgwYMBAK1bt0ZUVBSmTJmCEydO4MiRI4iNjcWIESPg4+MDABg1ahSsra0xadIknD9/Hps2bcLHH3+MmTNnarLrepUpL8TR1DvIlBcaOhS9Mtf9JiIiI6DJpWsrVqwQrq6u4pdffqlQ9vPPPwtXV1excuVKtdcXHx8vAFR4jBs3Tgjx6NL7BQsWCE9PT2FjYyP69u0rLl++rLSOu3fvipEjRwoHBwfh5OQkJkyYIO7fv69U58yZM+KZZ54RNjY2olGjRmLp0qWa7LYQQn+X3f9w4roImLdT+M/dKQLm7RQ/nLiu0+0ZC3PdbyIi0i11z98a3dy1bdu2mD59eqV3tP/666/x8ccf4+zZs7XP1IyMPm7umikvRPelB1H22H/EUibD7/N61+l7XZnrfhMRke6pe/7WqMvsypUrSvMCPUnVrTVIfWl38pWSAgAoFQLX7hQYJiA9Mdf9JiIi46FRQmRra4vc3NxKyxUKBerXr1/bmMxWgJs9LJ6484mlTIYmbnaGCUhPzHW/iYjIeGiUEIWGhmL16tWVlq9atUq6Aow05+1si7joEFj+935wljIZ3osOrvPdRua630REZDw0mofojTfeQFhYGO7evYtZs2ahVatWEELg4sWL+PDDD/Hzzz8jPj5eV7GaheGd/dAz0B3X7hSgiZud2SQF5rrfRERkHDQaVA0A27dvx0svvYR79+4pLW/QoAHWrl2LoUOHajVAY6GPQdVERESkXeqevzVOiACgoKAAe/bskQZQBwYGIiIiAnZ2dXfMBxMiIiIi06Pu+VujLrODBw8iNjYWx44dw5AhQ5TK5HI52rRpgzVr1qBHjx41i5qIiIjIADQaVP3RRx9hypQpKjMsZ2dn/POf/8SKFSu0FhwRERGRPmiUEJ05cwZRUVGVlkdERCjdV4yIiIjIFGiUEGVnZ8PKyqrS8nr16iEnJ6fWQRERERHpk0YJUaNGjZCSklJp+dmzZ+Ht7V3roIiIiIj0SaOEqH///liwYAEePHhQoaywsBALFy7EwIEDtRYcERERkT5odNl9dnY2OnToAEtLS8TGxqJly5YAgEuXLmHVqlUoLS3F6dOn4enpqbOADYWX3RMREZkenVx27+npiaNHj2LatGmYP38+ynMpmUyGyMhIrFq1qk4mQ0RERFS3aZQQAYC/vz9+/fVX/P3337h69SqEEGjRogUaNGigi/iIiIiIdE7jhKhcgwYN0LlzZ23GQkRERGQQGg2qJiIiIqqLmBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCREREREZVKa8EEdT7yBTXmiwGOoZbMtUpUx5IdLu5CPAzR7ezraGDoeIiEgnNp1Mx/xt51AmAAsZEBcdguGd/fQeBxMiI2Qsbw4iIiJdypQXSuc7ACgTwOvbUtAz0F3vjQHsMjMylb05DNmMSEREpAtpd/Kl8125UiFw7U6B3mNhQmRkdP3mMIZ+WiIiIgAIcLOHhUx5maVMhiZudnqPhQmRkdHlm2PTyXR0X3oQo748ju5LD2LTyfRar5OIiKimvJ1tERcdAkvZoxOfpUyG96KDDTJ2ViaEENVXI4VCAWdnZ8jlcjg5Oel0W5tOpuP1bSkoFUJ6c9R2DFGmvBDdlx5Uan2ylMnw+7zeHLRNREQGlSkvxLU7BWjiZqf1c5K6528OqjZCwzv7oWegu1bfHFV1xTEhIiIiQ/J2tjX4uYgJkZHS9pujvCvuyRYiQ/TTEhERGRuOITITxtRPS0REZGzYQmRGdNEVR0REVBcwITJiupit2hj6aYmIiIwNEyIj9eRs1ZOeCcDEZwKYzBAREemA0Y8hWrRoEWQymdKjVatWUvmDBw8QExODhg0bwsHBAUOHDkV2drbSOtLT0zFgwADY2dnBw8MDs2fPxsOHD/W9K2pTNVv1l/9Jw9Nxhps7iBM6EhFRXWYSLURt2rTB/v37pef16v0v7BkzZmDXrl3YsmULnJ2dERsbi+joaBw5cgQAUFpaigEDBsDLywtHjx5FZmYmxo4dCysrK7z33nt63xd1qLpEHgAEDHOPF95bjYiI6jqjbyECHiVAXl5e0sPNzQ0AIJfL8fXXX2PFihXo06cPOnbsiPXr1+Po0aM4duwYAGDv3r24cOECNmzYgPbt26Nfv3545513sGrVKhQXFxtytyqlarbqcvq+xwvvrUZERObAJBKiK1euwMfHB02bNsXo0aORnv6o2ygpKQklJSUIDw+X6rZq1Qp+fn5ITEwEACQmJiIkJASenp5SncjISCgUCpw/f16/O6Km8kvkVSVF+p47yJhuvGeM2JVIRFQ3GH2XWdeuXfHNN9+gZcuWyMzMxOLFi9GjRw+kpKQgKysL1tbWcHFxUXqNp6cnsrKyAABZWVlKyVB5eXlZZYqKilBUVCQ9VygUWtoj9ZRfIr/+SBq+OpyGMhhm7iBO6Fg5diUSEdUdRp8Q9evXT/q7bdu26Nq1K/z9/bF582bY2uouMYiLi8PixYt1tn51eDvb4vX+QZjQPcBgcweVt1Y9eW81c7/arbKuRH2P7yIiIu0w+oToSS4uLggMDMTVq1fxj3/8A8XFxcjNzVVqJcrOzoaXlxcAwMvLCydOnFBaR/lVaOV1VJk/fz5mzpwpPVcoFPD19dXinqjP0HMHcULHinhvOCKiusUkxhA9Li8vD6mpqfD29kbHjh1hZWWFAwcOSOWXL19Geno6QkNDAQChoaE4d+4cbt++LdXZt28fnJycEBQUVOl2bGxs4OTkpPQwZ97Otght1rBWJ/u6NN5G1cB3diUSEZkuo28hmjVrFgYNGgR/f39kZGRg4cKFsLS0xMiRI+Hs7IxJkyZh5syZcHV1hZOTE1555RWEhoaiW7duAICIiAgEBQXhxRdfxAcffICsrCy8+eabiImJgY2NjYH3znzUtfE27EokIqpbjD4hunnzJkaOHIm7d+/C3d0dzzzzDI4dOwZ3d3cAwMqVK2FhYYGhQ4eiqKgIkZGR+Pzzz6XXW1paYufOnZg2bRpCQ0Nhb2+PcePG4e233zbULpmdujrehl2JRER1h0wIoWIKQHqSQqGAs7Mz5HK52Xefaepo6h2M+vJ4heXfT+mG0GYNDRAREZkjXdwfkoyfuudvo28hItPHS/eJyNDqWrc9aZ/JDaom01M+3sZS9mgUMsfbEJE+1bUZ9+vSBSrGhC1EpBccb0NEhlKXpslgS5fusIWI9EYbl+6X4y8kIlJXXZkmo661dBkbJkRkcjadTEf3pQcx6svj6L70IDadTDd0SERkxOpKtz3vLalb7DIjk1JXL+EnIt2qC932vEBFt9hCRCaFv5CIqKa02W1vCHWlpctYsYWITEL5/CH21pb8hURq4ZwzVBfVhZYuY8WEiIzek1dVDHmqEX76I4O3zKBK6ftKHCZfpE+GvuF3XcWEiIyaqjFDP/2RgW0vh6KguIy/kKgCfY8z42XQpCtMtPWLCREZtcrGDBUUl/G2H6SSPuecqQuD/HnSNU5MtPWPCRHpnSZfwLyqonrmfEJTte/6eM+Ub/duXpHK5Cvp2t9wdTD+/4m2Trrm/B7UhbqQaJsiJkSkV5p+AZdfVfH6thSOGVLBnH9FVrbvun7PPLldGYDHcyIZgFd/+MPo/yfaOulW9x40hWTJ2GKsSzNrmxImRKQ3Nf0C5lUVqpnzr8jq9l1X7xlV25XJAAsBlOHRPCYCMIn/iTZOutX9H7SdsOsicTHGHxVsGTcMzkNEelObOYRMff4QXTDnOZnU2XddvGdUbVcI4NNRT+H7Kd3wyain8ESx0f5PtHE7i6r+D9q+zYQuZqhXFeP8becMfisMY5xvyBxul8QWItIb/urRLnM+noba98q228G/AbydbZEpL9R6XNpuFXl8fbXtWqzq/6DNbh9dtYaqirFMAOuPpOH1/kE1Xq82GFPLuDG2oukCW4hIb4zxV48pM+fjaah9r2672o5L260iT64PAH6f1xvfT+mG3+f11vgkV9X+avOGqrpqDVUVIwB8dTjNKFpCjKFl3JxuKCsTQjzZwksqKBQKODs7Qy6Xw8nJydDhmLRMeaFR/OqpK8z5eBpq36vbrjbiypQXovvSgxVaX36f17vSdVbVmlST9am7/sf3F4BU5/CfORVaoGp6FduTsVsA+GTUU+j439a5mnp31wV8+Z+0Csu/n9KNU3sAOJp6B6O+PF5huSkdH3XP3+wyI73jLKvaZc7H01D7Xt12axNXdZf0V9blVF23Rm27sKpaf/n+qqrz+7zetU4On7xysPzKvtiNf9S6C2fiMwH46j9pSmO/zKXrWR3m1DXPLjMiIiPxeJfWaz8k48nenMpOROp0a6jThVXZwFl11l9ZHQBa6fYZ3tkPv8/rjc9GPgWZ7H9THdS2C8fb2RZLh5pn17M6zKlrni1ERCbG2OZMIe2o7pL+qk5E6rT+VDc/U1UtQOqsXx9z53g728LVQfvbMaYBzMZI1fGpi99DTIiITIi5XO1hjiq7pP+zUU/B1d6myhO1ut0alZ34q7uKS53166trRVfbMXTXs7EnGI8fn7r6PcQuMzI55jAfhirmdLWHOaqsS6uDf4Nqu5w06dZQdeVSdVdxqbN+fXWt1MUuHF3MsaQrdfl7iC1EZFLq6i8TdehrOn9j/6VaV9X2liO16fZRp9VFnfXrq+tJn11cuv48mNqM83X5tiJMiMhkmNoXh7bpo0vCnBNOY1DbE31Nu33UTcbUWb++up70sR1NPg81TZxMLcGoy1edMSEik2FqXxzaVtsWhOqYe8JpLAw1loUDi5Vp8nmozQ8JU0swNPkeMrXWZiZEZDJM7YtDF3R50jL3hJMMP7DYmKj7eajtDwld/9DRBXW+h0yxtZkJEZkMU/zi0AVdnbSMPeE0tV+bZNrU/Txo44eEsbTOafIZq+p7yFRbm5kQkUkxli8OU6BpAmHMCWdNfm0ygdINQx9XfW1f3c+Dtn5IPD6f0+PP9UWbLTqm2trMe5mpifcyI1NS2ZebOicTY7s3Wk3uwaXOl7uuTqyGThh0qTYnTW0cF0N0w6jzedh0Mr3W92wzZBeTNu5zp8v11RbvZUZkpiprrs4tKMH7uy9V+4VrbONIKvu1efr63xjQVvVAzuqa63V18jHFcRPqqk03iDaOi6G6YdT5PNS25drQXUzabtEx5tbmqnBiRjNgrhMZmqvKvtyW/nbJJCdTUzVhIfDoxp6qJrCrbpJBXU0sp8l6a/qZNORnubrjWhltHe+abl9fVE14qS519k2X/3t17nOnqfJ7z30/pRt+n9fbJH4YsIWojqvLv1hJNVVjGp58DphGnz7wv1+bj59UgUc391T1K7q6MR26Gt+g7npr+pk09Ge5pmNltHW8jX3Qf21Ut2+6/t/rqkXH2Fqbq8MWojqsLk+xXhVzbxFTdWuDuf1aVfoL0BSO1/DOfvh4RPsKyytrIZj8TID05fbkl7sufg2ru96afiYN9Vl+/L2h6n01p19LpN3JrzIObR3vunjLjnJV7Zu+/vePt+hsezkUvq52Rv2doAtsIarDTHWkf20Y+le0sVA1psHF1qrCL8DDf+aYzPHq1MS12haCJ///Lz3TFBOeaaLynlu6+DVc3Xpr+pk0xGe5ss9S+fvq7M1cvP+bemPStHW86/JVppXtmz7/997Otib1naBtTIjqsLrcxKyKoQcmGpsnm6uf/MIFoHQliLEfr+pOrKr+/1//noYJzzSpsC5dnVirW29NP5P6/iyr81ka/dUxtd872jzeptYNowlV+1aT/31Nr+gz9+9QdpnVYXW5iVkVXQ+6NIWupeo8PvDT2AepqlLVQE1N96c2g2CrUtV6a/qZ1PdnubpjWZNBwLo63sautt8bmv7vN51MR/elBzHqy+N4eulBrD2cqva2TPE7QZvYQlTH1eUm5ifp8ld0XeyKM5UWxCd/7VbWQmAq+1PTz2RNXlfTloLqjqWhBwGbCm0dB3X/90+28AgBxP16CRDAP3s1q3Y7pvIZ0hW2EBmYPlod1PllVldaP3TxK7quDk43hRbEx3/tdl96UOVl9uV0vT/a/IzUtLVEk9dpcuxUbaeqY2kMg4D1oTb/c3WOgybrV+d/r6qFBwDe/+2S2tsw9u8EXWILkQEZy68oY4lDG3TRIlaXB6cbcwtiTcYz6Gp/TO0zoo2xINUdS2MYBKxLtf2fV3ccdPGeCnCzh0z2qGXocWWA2sffmL8TdI0tRAZiLL+ijCUObdL2WAVdXaZtLIx1bEdNxzNoe39M8TOirbEg1R1LVeV14fOijf95VcdBV+8pb2dbzOvXqsJyTY+/sX4n6BoTIgMxlsFr2oyjLnS7qWLuzciGYiwnVmP5rGrCkMeuLnxetPE/r+o46PI99c+ezTC/X6tK5+GiyrHLzEAC3Owhw6PZdsvJAL1/2WtrEJ2pdSloypybkVXRxw1MdTVfkKZMcaCpOsdOl/9DU/+8aOt/Xtlx0PV76p+9muHZ9j4me/wNhXe7V5O273afKS/E03EHlRMiGXB0Xh+9v3lre6dmbd7ZuC7fKbyu0Hfyq87dxnVNG3czN4TKjp2hfsDo4/OtrW3o+n9uqu8pU8S73Ru5tDv5eDITFUL9gW/aVNtfc9oaRFnXW5nqAkNM3FbdRHz6OMlW9hkx9gRe1bEz1OR7+vh8a3Mbum7lMvVWtLrIrMYQrVq1Ck2aNEH9+vXRtWtXnDhxwmCxGMv4iHK1GUSnjX0xxYGr5sjYxpzV5tJyTT35Ganptg091s4QY6L08fnWZBvq/g+0ObhY1TbNdfCysTKbhGjTpk2YOXMmFi5ciNOnT6Ndu3aIjIzE7du3DRJPXRh4WE4b+2KKA1crY+gTni5pK5Ffm5CKp+Nql8gYMomu6bb1mcBVxhA/xvTx+VZ3G7WZyVldT34HGMP/napnNl1mK1aswJQpUzBhwgQAwJo1a7Br1y6sW7cO8+bNM0hMdanJtLb7YooDV1Wp691+2hjovPZwKuJ+uyQ9r2mXjSHnu6nJto3lPlGGGKyuj8+3Otuo7UzO6njyO2Buv1bSTXAB87s/mCkxi4SouLgYSUlJmD9/vrTMwsIC4eHhSExMVPmaoqIiFBUVSc8VCoVOYqtufIQpqc2+GMsVRbVhLCc8XatN8pspL8TSx5KhcjVJZAyZRNdk28Y0YaG+f4zp4/Otzjaqmsn52fY+OpnV/vFkqJwpTlRpDswiIbpz5w5KS0vh6emptNzT0xOXLlX8cgaAuLg4LF68WB/h0X+ZeouZMZ3wdK2myW/anfwKs+gCj/ruNU1kDJlE12TbxtYKqu8fY/r4fFe3DW3M5FwVVd8BZQIVplgxxdZvc2AWCVFNzJ8/HzNnzpSeKxQK+Pr6GjAi82DKLWbGdsIzRqqOEfCoW6Em/3dDJtGabrsutILWlj4+31Vto3wm57hflX8Ia+tzWtl3wJyolvhg92Wz/b+bCrNIiNzc3GBpaYns7Gyl5dnZ2fDy8lL5GhsbG9jY2OgjPKojeMKr3pPHqHyMxT971nz8hiGTaE23beqtoHXBP3s2A8q7sqDdC1oq+w4Y3tmPEyWaALOZmLFr167o0qULPv30UwBAWVkZ/Pz8EBsbq9agam1PzEh1lzFMJGjseIzI0HT5HuT727hwYsYnzJw5E+PGjUOnTp3QpUsXfPTRR8jPz5euOiPSFlPu9tMXHiMyNF2+B/n+Nk1mkxANHz4cOTk5eOutt5CVlYX27dtj9+7dFQZaExERkfkxmy6z2mKXGRERkelR9/xtNjNVExEREVWGCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmz2xu3VFb5RN6KxQKA0dCRERE6io/b1d3Yw4mRGq6f/8+AMDX19fAkRAREZGm7t+/D2dn50rLeS8zNZWVlSEjIwOOjo6QyWSGDkdvFAoFfH19cePGDd7DrZZ4LLWDx1F7eCy1g8dRe3RxLIUQuH//Pnx8fGBhUflIIbYQqcnCwgKNGzc2dBgG4+TkxA+6lvBYagePo/bwWGoHj6P2aPtYVtUyVI6DqomIiMjsMSEiIiIis8eEiKpkY2ODhQsXwsbGxtChmDweS+3gcdQeHkvt4HHUHkMeSw6qJiIiIrPHFiIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIgIAHD58GIMGDYKPjw9kMhl++uknpXIhBN566y14e3vD1tYW4eHhuHLlimGCNXLVHcvx48dDJpMpPaKiogwTrBGLi4tD586d4ejoCA8PDwwePBiXL19WqvPgwQPExMSgYcOGcHBwwNChQ5GdnW2giI2TOscxLCyswnty6tSpBorYeK1evRpt27aVJg0MDQ3Fb7/9JpXz/aie6o6jod6PTIgIAJCfn4927dph1apVKss/+OADfPLJJ1izZg2OHz8Oe3t7REZG4sGDB3qO1PhVdywBICoqCpmZmdLj+++/12OEpiEhIQExMTE4duwY9u3bh5KSEkRERCA/P1+qM2PGDPzyyy/YsmULEhISkJGRgejoaANGbXzUOY4AMGXKFKX35AcffGCgiI1X48aNsXTpUiQlJeHUqVPo06cPnnvuOZw/fx4A34/qqu44AgZ6PwqiJwAQ27dvl56XlZUJLy8vsWzZMmlZbm6usLGxEd9//70BIjQdTx5LIYQYN26ceO655wwSjym7ffu2ACASEhKEEI/eg1ZWVmLLli1SnYsXLwoAIjEx0VBhGr0nj6MQQvTq1Uu89tprhgvKhDVo0EB89dVXfD/WUvlxFMJw70e2EFG10tLSkJWVhfDwcGmZs7MzunbtisTERANGZroOHToEDw8PtGzZEtOmTcPdu3cNHZLRk8vlAABXV1cAQFJSEkpKSpTel61atYKfnx/fl1V48jiW++677+Dm5obg4GDMnz8fBQUFhgjPZJSWluKHH35Afn4+QkND+X6soSePYzlDvB95c1eqVlZWFgDA09NTabmnp6dURuqLiopCdHQ0AgICkJqaitdffx39+vVDYmIiLC0tDR2eUSorK8P06dPRvXt3BAcHA3j0vrS2toaLi4tSXb4vK6fqOALAqFGj4O/vDx8fH5w9exZz587F5cuXsW3bNgNGa5zOnTuH0NBQPHjwAA4ODti+fTuCgoKQnJzM96MGKjuOgOHej0yIiPRsxIgR0t8hISFo27YtmjVrhkOHDqFv374GjMx4xcTEICUlBb///ruhQzFplR3Hl156Sfo7JCQE3t7e6Nu3L1JTU9GsWTN9h2nUWrZsieTkZMjlcmzduhXjxo1DQkKCocMyOZUdx6CgIIO9H9llRtXy8vICgApXS2RnZ0tlVHNNmzaFm5sbrl69auhQjFJsbCx27tyJ+Ph4NG7cWFru5eWF4uJi5ObmKtXn+1K1yo6jKl27dgUAvidVsLa2RvPmzdGxY0fExcWhXbt2+Pjjj/l+1FBlx1EVfb0fmRBRtQICAuDl5YUDBw5IyxQKBY4fP67U50s1c/PmTdy9exfe3t6GDsWoCCEQGxuL7du34+DBgwgICFAq79ixI6ysrJTel5cvX0Z6ejrfl4+p7jiqkpycDAB8T6qhrKwMRUVFfD/WUvlxVEVf70d2mREAIC8vTyn7TktLQ3JyMlxdXeHn54fp06djyZIlaNGiBQICArBgwQL4+Phg8ODBhgvaSFV1LF1dXbF48WIMHToUXl5eSE1NxZw5c9C8eXNERkYaMGrjExMTg40bN+Lnn3+Go6OjNA7D2dkZtra2cHZ2xqRJkzBz5ky4urrCyckJr7zyCkJDQ9GtWzcDR288qjuOqamp2LhxI/r374+GDRvi7NmzmDFjBnr27Im2bdsaOHrjMn/+fPTr1w9+fn64f/8+Nm7ciEOHDmHPnj18P2qgquNo0Pej3q9rI6MUHx8vAFR4jBs3Tgjx6NL7BQsWCE9PT2FjYyP69u0rLl++bNigjVRVx7KgoEBEREQId3d3YWVlJfz9/cWUKVNEVlaWocM2OqqOIQCxfv16qU5hYaF4+eWXRYMGDYSdnZ0YMmSIyMzMNFzQRqi645ieni569uwpXF1dhY2NjWjevLmYPXu2kMvlhg3cCE2cOFH4+/sLa2tr4e7uLvr27Sv27t0rlfP9qJ6qjqMh348yIYTQbcpFREREZNw4hoiIiIjMHhMiIiIiMntMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiNSSlZWFV155BU2bNoWNjQ18fX0xaNAgpXs3HT16FP3790eDBg1Qv359hISEYMWKFSgtLZXqXLt2DZMmTUJAQABsbW3RrFkzLFy4EMXFxUrb+/LLL9GuXTs4ODjAxcUFTz31FOLi4qTyRYsWQSaTISoqqkKsy5Ytg0wmQ1hYmFr7Vr4umUyGevXqoUmTJpgxYwby8vI0PEpEZKp4LzMiqta1a9fQvXt3uLi4YNmyZQgJCUFJSQn27NmDmJgYXLp0Cdu3b8cLL7yACRMmID4+Hi4uLti/fz/mzJmDxMREbN68GTKZDJcuXUJZWRnWrl2L5s2bIyUlBVOmTEF+fj6WL18OAFi3bh2mT5+OTz75BL169UJRURHOnj2LlJQUpbi8vb0RHx+PmzdvKt3Bfd26dfDz89NoH9u0aYP9+/fj4cOHOHLkCCZOnIiCggKsXbu2Qt3i4mJYW1vX4EjqjjHGRGRSdH5zECIyef369RONGjUSeXl5Fcr+/vtvkZeXJxo2bCiio6MrlO/YsUMAED/88EOl6//ggw9EQECA9Py5554T48ePrzKmhQsXinbt2omBAweKJUuWSMuPHDki3NzcxLRp00SvXr3U2Lv/retxU6ZMEV5eXkrlX375pWjSpImQyWRCiEf7PmnSJOHm5iYcHR1F7969RXJysrSO5ORkERYWJhwcHISjo6Po0KGDOHnypBBCiGvXromBAwcKFxcXYWdnJ4KCgsSuXbuEEEKsX79eODs7K8Wzfft28fhXdk1jIiLV2GVGRFW6d+8edu/ejZiYGNjb21cod3Fxwd69e3H37l3MmjWrQvmgQYMQGBiI77//vtJtyOVyuLq6Ss+9vLxw7NgxXL9+vdr4Jk6ciG+++UZ6vm7dOowePbrWrSW2trZK3XhXr17Fjz/+iG3btiE5ORkA8Pzzz+P27dv47bffkJSUhA4dOqBv3764d+8eAGD06NFo3LgxTp48iaSkJMybNw9WVlYAHt2FvqioCIcPH8a5c+fw/vvvw8HBQaMYaxITEanGLjMiqtLVq1chhECrVq0qrfPnn38CAFq3bq2yvFWrVlIdVev/9NNPpe4yAFi4cCGio6PRpEkTBAYGIjQ0FP3798ewYcNgYaH8O27gwIGYOnUqDh8+jI4dO2Lz5s34/fffsW7dOk13VZKUlISNGzeiT58+0rLi4mL8+9//hru7OwDg999/x4kTJ3D79m3Y2NgAAJYvX46ffvoJW7duxUsvvYT09HTMnj1bOnYtWrSQ1peeno6hQ4ciJCQEANC0aVON46xJTESkGhMiIqqSEEIndQHg1q1biIqKwvPPP48pU6ZIy729vZGYmIiUlBQcPnwYR48exbhx4/DVV19h9+7dSkmRlZUVxowZg/Xr1+Ovv/5CYGAg2rZtq1EcAHDu3Dk4ODigtLQUxcXFGDBgAD777DOp3N/fX0o8AODMmTPIy8tDw4YNldZTWFiI1NRUAMDMmTMxefJkfPvttwgPD8fzzz+PZs2aAQBeffVVTJs2DXv37kV4eDiGDh2qcdw1iYmIVGNCRERVatGihTQYujKBgYEAgIsXL+Lpp5+uUH7x4kUEBQUpLcvIyEDv3r3x9NNP44svvlC53uDgYAQHB+Pll1/G1KlT0aNHDyQkJKB3795K9SZOnIiuXbsiJSUFEydO1HQXAQAtW7bEjh07UK9ePfj4+FTocnuyuzAvLw/e3t44dOhQhXW5uLgAeHT12qhRo7Br1y789ttvWLhwIX744QcMGTIEkydPRmRkJHbt2oW9e/ciLi4OH374IV555RVYWFhUSC5LSkoqbKcmMRGRahxDRERVcnV1RWRkJFatWoX8/PwK5bm5uYiIiICrqys+/PDDCuU7duzAlStXMHLkSGnZrVu3EBYWho4dO2L9+vUVusFUKU+oVMXQpk0btGnTBikpKRg1apQmuyextrZG8+bN0aRJE7XGH3Xo0AFZWVmoV68emjdvrvRwc3OT6gUGBmLGjBnYu3cvoqOjsX79eqnM19cXU6dOxbZt2/B///d/+PLLLwEA7u7uuH//vtK+lo8R0kZMRFQREyIiqtaqVatQWlqKLl264Mcff8SVK1dw8eJFfPLJJwgNDYW9vT3Wrl2Ln3/+GS+99BLOnj2La9eu4euvv8b48eMxbNgwvPDCCwD+lwz5+flh+fLlyMnJQVZWFrKysqTtTZs2De+88w6OHDmC69ev49ixYxg7dizc3d0RGhqqMsaDBw8iMzNTby0h4eHhCA0NxeDBg7F3715cu3YNR48exRtvvIFTp06hsLAQsbGxOHToEK5fv44jR47g5MmT0jir6dOnY8+ePUhLS8Pp06cRHx8vlXXt2hV2dnZ4/fXXkZqaio0bNyoNHK9pTERUOXaZEVG1mjZtitOnT+Pdd9/F//3f/yEzMxPu7u7o2LEjVq9eDQAYNmwY4uPj8e6776JHjx548OABWrRogTfeeAPTp0+HTCYDAOzbtw9Xr17F1atXleYOAv43Bik8PBzr1q3D6tWrcffuXbi5uSE0NBQHDhyoMD6mnKor4HRJJpPh119/xRtvvIEJEyYgJycHXl5e6NmzJzw9PWFpaYm7d+9i7NixyM7OhpubG6Kjo7F48WIAQGlpKWJiYnDz5k04OTkhKioKK1euBPCoVW7Dhg2YPXs2vvzyS/Tt2xeLFi2qdlB0dTERUeVkQtNRkERERER1DLvMiIiIyOwxISKiOs/BwaHSx3/+8x9Dh0dERoBdZkRU5129erXSskaNGsHW1laP0RCRMWJCRERERGaPXWZERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZvf8HoD+tO7SHDZIAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwWUlEQVR4nO3deVxU1fsH8M+wyCYMssgiCIi4myaZYrmTYC6ZWu4rShpYiHvulbnva5ZbfsUtyUxLRVwqRTPM1EJTQs0EFwhwZZv7+4PfjAz7wAz3zszn/XrxUuYeLmeu49xnznnOc2SCIAggIiIioiplInYHiIiIiIwRgzAiIiIiETAIIyIiIhIBgzAiIiIiETAIIyIiIhIBgzAiIiIiETAIIyIiIhIBgzAiIiIiETAIIyIiIhIBgzAiIirV1q1bIZPJcPPmTbG7QmRQGIQRkejOnz+P8PBwNG7cGDY2Nqhduzbeffdd/PXXX0XadujQATKZDDKZDCYmJrCzs0P9+vUxZMgQxMTEaPR7v/vuO7Rv3x41a9aEtbU16tSpg3fffReHDx/W1lMr4rPPPsP+/fuLPH7mzBnMmTMH6enpOvvdhc2ZM0d1LWUyGaytrdGoUSPMmDEDmZmZWvkdUVFRWLFihVbORWRoGIQRkegWLlyIffv2oXPnzli5ciVCQ0Px448/okWLFrhy5UqR9h4eHti+fTu++uorLF68GD179sSZM2fQpUsX9OvXDzk5OWX+ziVLlqBnz56QyWSYNm0ali9fjj59+uD69evYtWuXLp4mgNKDsLlz51ZpEKa0fv16bN++HcuWLUODBg0wb948BAcHQxtbCzMIIyqZmdgdICKKjIxEVFQUqlWrpnqsX79+aNq0KRYsWID//e9/au3lcjkGDx6s9tiCBQvwwQcfYN26dfD29sbChQtL/H25ubn45JNP8MYbb+Do0aNFjt+/f7+Sz0g6nj59Cmtr61Lb9O3bF05OTgCAMWPGoE+fPoiOjsbZs2cREBBQFd0kMkocCSMi0bVp00YtAAMAPz8/NG7cGAkJCeU6h6mpKVatWoVGjRphzZo1yMjIKLHtw4cPkZmZiddee63Y4zVr1lT7/vnz55gzZw7q1asHS0tLuLm5oXfv3khMTFS1WbJkCdq0aQNHR0dYWVnB398fX3/9tdp5ZDIZnjx5gm3btqmmAIcPH445c+Zg0qRJAAAfHx/VsYI5WP/73//g7+8PKysrODg4oH///vjnn3/Uzt+hQwc0adIE8fHxaNeuHaytrfHRRx+V6/oV1KlTJwBAUlJSqe3WrVuHxo0bw8LCAu7u7ggLC1MbyevQoQMOHTqEW7duqZ6Tt7e3xv0hMlQcCSMiSRIEAffu3UPjxo3L/TOmpqYYMGAAZs6ciZ9//hndunUrtl3NmjVhZWWF7777DuPGjYODg0OJ58zLy0P37t0RGxuL/v3748MPP8SjR48QExODK1euwNfXFwCwcuVK9OzZE4MGDUJ2djZ27dqFd955BwcPHlT1Y/v27Rg1ahReffVVhIaGAgB8fX1hY2ODv/76Czt37sTy5ctVo1LOzs4AgHnz5mHmzJl49913MWrUKDx48ACrV69Gu3bt8Ntvv8He3l7V39TUVHTt2hX9+/fH4MGD4eLiUu7rp6QMLh0dHUtsM2fOHMydOxeBgYEYO3Ysrl27hvXr1+P8+fM4ffo0zM3NMX36dGRkZODOnTtYvnw5AKB69eoa94fIYAlERBK0fft2AYCwadMmtcfbt28vNG7cuMSf++abbwQAwsqVK0s9/6xZswQAgo2NjdC1a1dh3rx5Qnx8fJF2mzdvFgAIy5YtK3JMoVCo/v706VO1Y9nZ2UKTJk2ETp06qT1uY2MjDBs2rMi5Fi9eLAAQkpKS1B6/efOmYGpqKsybN0/t8cuXLwtmZmZqj7dv314AIGzYsKHE513Q7NmzBQDCtWvXhAcPHghJSUnC559/LlhYWAguLi7CkydPBEEQhC1btqj17f79+0K1atWELl26CHl5earzrVmzRgAgbN68WfVYt27dBC8vr3L1h8jYcDqSiCTn6tWrCAsLQ0BAAIYNG6bRzypHWh49elRqu7lz5yIqKgovv/wyjhw5gunTp8Pf3x8tWrRQmwLdt28fnJycMG7cuCLnkMlkqr9bWVmp/v7ff/8hIyMDbdu2xYULFzTqf2HR0dFQKBR499138fDhQ9WXq6sr/Pz8cOLECbX2FhYWGDFihEa/o379+nB2doaPjw/ee+891K1bF4cOHSoxl+zYsWPIzs5GREQETExe3EZGjx4NOzs7HDp0SPMnSmSEOB1JRJKSkpKCbt26QS6X4+uvv4apqalGP//48WMAgK2tbZltBwwYgAEDBiAzMxPnzp3D1q1bERUVhR49euDKlSuwtLREYmIi6tevDzOz0t8uDx48iE8//RQXL15EVlaW6vGCgVpFXL9+HYIgwM/Pr9jj5ubmat/XqlWrSH5dWfbt2wc7OzuYm5vDw8NDNcVaklu3bgHID94KqlatGurUqaM6TkSlYxBGRJKRkZGBrl27Ij09HT/99BPc3d01PoeypEXdunXL/TN2dnZ444038MYbb8Dc3Bzbtm3DuXPn0L59+3L9/E8//YSePXuiXbt2WLduHdzc3GBubo4tW7YgKipK4+dQkEKhgEwmww8//FBsQFo4x6rgiFx5tWvXTpWHRkRVh0EYEUnC8+fP0aNHD/z11184duwYGjVqpPE58vLyEBUVBWtra7z++usV6scrr7yCbdu2ITk5GUB+4vy5c+eQk5NTZNRJad++fbC0tMSRI0dgYWGhenzLli1F2pY0MlbS476+vhAEAT4+PqhXr56mT0cnvLy8AADXrl1DnTp1VI9nZ2cjKSkJgYGBqscqOxJIZMiYE0ZEosvLy0O/fv0QFxeHvXv3Vqg2VV5eHj744AMkJCTggw8+gJ2dXYltnz59iri4uGKP/fDDDwBeTLX16dMHDx8+xJo1a4q0Ff6/mKmpqSlkMhny8vJUx27evFlsUVYbG5tiC7La2NgAQJFjvXv3hqmpKebOnVukeKogCEhNTS3+SepQYGAgqlWrhlWrVqn1adOmTcjIyFBblWpjY1NquRAiY8aRMCIS3YQJE3DgwAH06NEDaWlpRYqzFi7MmpGRoWrz9OlT3LhxA9HR0UhMTET//v3xySeflPr7nj59ijZt2qB169YIDg6Gp6cn0tPTsX//fvz000/o1asXXn75ZQDA0KFD8dVXXyEyMhK//PIL2rZtiydPnuDYsWN4//338dZbb6Fbt25YtmwZgoODMXDgQNy/fx9r165F3bp1cenSJbXf7e/vj2PHjmHZsmVwd3eHj48PWrVqBX9/fwDA9OnT0b9/f5ibm6NHjx7w9fXFp59+imnTpuHmzZvo1asXbG1tkZSUhG+++QahoaGYOHFipa6/ppydnTFt2jTMnTsXwcHB6NmzJ65du4Z169ahZcuWav9e/v7+2L17NyIjI9GyZUtUr14dPXr0qNL+EkmWmEsziYgE4UVphZK+SmtbvXp1wc/PTxg8eLBw9OjRcv2+nJwc4YsvvhB69eoleHl5CRYWFoK1tbXw8ssvC4sXLxaysrLU2j99+lSYPn264OPjI5ibmwuurq5C3759hcTERFWbTZs2CX5+foKFhYXQoEEDYcuWLaoSEAVdvXpVaNeunWBlZSUAUCtX8cknnwi1atUSTExMipSr2Ldvn/D6668LNjY2go2NjdCgQQMhLCxMuHbtmtq1Ka18R2HK/j148KDUdoVLVCitWbNGaNCggWBubi64uLgIY8eOFf777z+1No8fPxYGDhwo2NvbCwBYroKoAJkgaGFzMCIiIiLSCHPCiIiIiETAIIyIiIhIBAzCiIiIiETAIIyIiIhIBAzCiIiIiETAIIyIiIhIBCzWKmEKhQJ3796Fra0tt/4gIiLSE4Ig4NGjR3B3d4eJScnjXQzCJOzu3bvw9PQUuxtERERUAf/88w88PDxKPM4gTMJsbW0B5P8jlrYPHhEREUlHZmYmPD09VffxkjAIkzDlFKSdnR2DMCIiIj1TVioRE/OJiIiIRMAgjIiIiEgEDMKIiIiIRMCcMCIiIgOTl5eHnJwcsbthsMzNzWFqalrp8+hNENazZ09cvHgR9+/fR40aNRAYGIiFCxfC3d1d1UYQBCxduhQbN27ErVu34OTkhPfffx/Tp09XtTl58iQiIyPxxx9/wNPTEzNmzMDw4cPVftfatWuxePFipKSkoFmzZli9ejVeffVV1fHnz59jwoQJ2LVrF7KyshAUFIR169bBxcVF1eb27dsYO3YsTpw4gerVq2PYsGGYP38+zMz05pITEZGeEQQBKSkpSE9PF7srBs/e3h6urq6VquOpNxFBx44d8dFHH8HNzQ3//vsvJk6ciL59++LMmTOqNh9++CGOHj2KJUuWoGnTpkhLS0NaWprqeFJSErp164YxY8Zgx44diI2NxahRo+Dm5oagoCAAwO7duxEZGYkNGzagVatWWLFiBYKCgnDt2jXUrFkTADB+/HgcOnQIe/fuhVwuR3h4OHr37o3Tp08DyP8E0q1bN7i6uuLMmTNITk7G0KFDYW5ujs8++6wKrxoRERkTZQBWs2ZNWFtbs9C3DgiCgKdPn+L+/fsAADc3t0qdTC99++23gkwmE7KzswVBEIQ///xTMDMzE65evVriz0yePFlo3Lix2mP9+vUTgoKCVN+/+uqrQlhYmOr7vLw8wd3dXZg/f74gCIKQnp4umJubC3v37lW1SUhIEAAIcXFxgiAIwvfffy+YmJgIKSkpqjbr168X7OzshKysrHI/x4yMDAGAkJGRUe6fISIi45Sbmyv8+eefwsOHD8XuilF4+PCh8Oeffwq5ublFjpX3/q2XiflpaWnYsWMH2rRpA3NzcwDAd999hzp16uDgwYPw8fGBt7c3Ro0apTYSFhcXh8DAQLVzBQUFIS4uDgCQnZ2N+Ph4tTYmJiYIDAxUtYmPj0dOTo5amwYNGqB27dqqNnFxcWjatKna9GRQUBAyMzPxxx9/lPi8srKykJmZqfZFRERUHsocMGtra5F7YhyU17kyuXd6FYRNmTIFNjY2cHR0xO3bt/Htt9+qjv3999+4desW9u7di6+++gpbt25FfHw8+vbtq2qTkpKiFhgBgIuLCzIzM/Hs2TM8fPgQeXl5xbZJSUlRnaNatWqwt7cvtU1x51AeK8n8+fMhl8tVX9yyiIiINMUpyKqhjessahA2depUyGSyUr+uXr2qaj9p0iT89ttvOHr0KExNTTF06FAIggAgf7PrrKwsfPXVV2jbti06dOiATZs24cSJE7h27ZpYT1Ej06ZNQ0ZGhurrn3/+EbtLREREpCOiJuZPmDChyMrEwurUqaP6u5OTE5ycnFCvXj00bNgQnp6eOHv2LAICAuDm5gYzMzPUq1dP1b5hw4YA8lcq1q9fH66urrh3757a+e/duwc7OztYWVnB1NQUpqamxbZxdXUFALi6uiI7Oxvp6elqo2GF2/zyyy9FzqE8VhILCwtYWFiUej2IiIjIMIg6Eubs7IwGDRqU+lWtWrVif1ahUADIz6MCgNdeew25ublITExUtfnrr78AAF5eXgCAgIAAxMbGqp0nJiYGAQEBAIBq1arB399frY1CoUBsbKyqjb+/P8zNzdXaXLt2Dbdv31a1CQgIwOXLl1UrJ5S/x87ODo0aNarAlSIiMhypqalITk5GcnIy4uPv4euvUxEff0/1WGpqqthdpCo2fPhw1QyYubk5XFxc8MYbb2Dz5s2q+315bN26tUi6kJTpRYmKc+fO4fz583j99ddRo0YNJCYmYubMmfD19VUFPoGBgWjRogVGjhyJFStWQKFQICwsDG+88YZqdGzMmDFYs2YNJk+ejJEjR+L48ePYs2cPDh06pPpdkZGRGDZsGF555RW8+uqrWLFiBZ48eYIRI0YAAORyOUJCQhAZGQkHBwfY2dlh3LhxCAgIQOvWrQEAXbp0QaNGjTBkyBAsWrQIKSkpmDFjBsLCwjjSRURGLTU1FWvWrAEAXLjwMr77rjsEwQQymQI9ehxEixa/AQDCw8Ph6OgoZleNTmpqKrKzs0s8Xq1aNZ3+mwQHB2PLli3Iy8vDvXv3cPjwYXz44Yf4+uuvceDAAYOss6kXz8ja2hrR0dGYPXs2njx5Ajc3NwQHB2PGjBmqoMbExATfffcdxo0bh3bt2sHGxgZdu3bF0qVLVefx8fHBoUOHMH78eKxcuRIeHh748ssvVTXCAKBfv3548OABZs2ahZSUFDRv3hyHDx9WS7Rfvnw5TExM0KdPH7VirUqmpqY4ePAgxo4di4CAANjY2GDYsGH4+OOPq+BqERFJl/Imn5FhqwrAAEAQTPDdd93h63sDcvmjUoMB0r6CwXFpdBkcW1hYqFJ2atWqhRYtWqB169bo3Lkztm7dilGjRmHZsmXYsmUL/v77bzg4OKBHjx5YtGgRqlevjpMnT6oGTJRJ87Nnz8acOXOwfft2rFy5EteuXYONjQ06deqEFStWqOp/ikUvgrCmTZvi+PHjZbZzd3fHvn37Sm3ToUMH/Pbbb6W2CQ8PR3h4eInHLS0tsXbtWqxdu7bENl5eXvj+++9L7zARkZFKS3NE4SpJgmCCtDQHyOWPROqV8Spv0FvVwXGnTp3QrFkzREdHY9SoUTAxMcGqVavg4+ODv//+G++//z4mT56MdevWoU2bNlixYgVmzZqlWpBXvXp1APllJD755BPUr18f9+/fR2RkJIYPHy76fVovgjAiIjIsDg6pkMkUaoGYTKaAg0NaKT9FxqhBgwa4dOkSACAiIkL1uLe3Nz799FOMGTMG69atQ7Vq1SCXyyGTyYosghs5cqTq73Xq1MGqVavQsmVLPH78WBWoiUGv6oQREZFhkMsfoUePg5DJ8pOulTlhHAWjwgRBUE0vHjt2DJ07d0atWrVga2uLIUOGIDU1FU+fPi31HPHx8ejRowdq164NW1tbtG/fHkB+9QQxcSSMiIhE0aLFb/D1vYG0NAc4OKQxAKNiJSQkwMfHBzdv3kT37t0xduxYzJs3Dw4ODvj5558REhKC7OzsEncKePLkCYKCghAUFIQdO3bA2dkZt2/fRlBQkOi5hwzCiIhINHL5IwZfVKLjx4/j8uXLGD9+POLj46FQKLB06VKYmORP5O3Zs0etfbVq1ZCXl6f22NWrV5GamooFCxaodqL59ddfq+YJlIHTkURERCS6rKwspKSk4N9//8WFCxfw2Wef4a233kL37t0xdOhQ1K1bFzk5OVi9ejX+/vtvbN++HRs2bFA7h7e3Nx4/fozY2Fg8fPgQT58+Re3atVGtWjXVzx04cACffPKJSM9SHYMwIjJoBQuDFvfFwqBVq6QC3BVtR4bj8OHDcHNzg7e3N4KDg3HixAmsWrUK3377LUxNTdGsWTMsW7YMCxcuRJMmTbBjxw7Mnz9f7Rxt2rTBmDFj0K9fPzg7O2PRokVwdnbG1q1bsXfvXjRq1AgLFizAkiVLRHqW6mSCcvNFkpzMzEzI5XJkZGTAzs5O7O4Q6R0p1D6iosQuCmqonj9/jqSkJPj4+MDS0lKjn+X/Fc2Vdr3Le/9mThgRSVZlb9aFfzYjwxZpaY5wcEhVy0MSOznX2PAmLj2Ojo4IDw9ncFzFGIQR6TFDHlHQ9ifz0rbIISIGx2JgEEakpwx9+kCbo1hlbZFDhsWQP5yQYWEQRqSnjGmqrbKjWNwix3gY+ocTMiwMwogMgCFPtWljFItb5BgPY/pwQvqPQRiRnjP0qTZtjGIpt8gpHKgawvWhkhnyhxMyDAzCiPScvky1VTRPR1ujWNwix7jo+sMJ885IGxiEEek5fZhqq0yeTmVGsQoX/CxpixwWBjU8uvxwwrwz0hYGYUR6Th+m2sqbf1NSu4qOYrH2kfHS5YcT5p2RtjAIIzIA+jbVVtJNqyBtjWIxwDJOVfXhpKy8M05bSsPJkyfRsWNH/Pfff7C3ty/Xz3h7eyMiIgIRERE66xeDMCI9pa9TbeVNluYoFlWWrj+clJV3dufOHXz//fdlnofTlsDw4cOxbds2vPfee0U25Q4LC8O6deswbNgwbN26VZwO6giDMCI9pY9BiqbJ0lLqO+mHqvxwUlbeWeEAjNOWpfP09MSuXbuwfPlyWFlZAcjfnzEqKgq1a9cWuXe6wSCMSI/pW5CiLys5SX9V5YcTTfLOTp8OQExMIACWyyhJixYtkJiYiOjoaAwaNAgAEB0djdq1a8PHx0fVLisrC5MmTcKuXbuQmZmJV155BcuXL0fLli1Vbb7//ntERETgn3/+QevWrTFs2LAiv+/nn3/GtGnT8Ouvv8LJyQlvv/025s+fDxsbG90/2f9nUnYTIiLtUN60Cip403r48CGSk5ORnJyM1NRUMbpIBsDR0RFubm4lfmnrw4sy70z5mi4p7yw/AHsDyluucgQ4I8NWK/3QhTt3gBMn8v+sSiNHjsSWLVtU32/evBkjRoxQazN58mTs27cP27Ztw4ULF1C3bl0EBQUhLS3/feSff/5B79690aNHD1y8eBGjRo3C1KlT1c6RmJiI4OBg9OnTB5cuXcLu3bvx888/Izw8XPdPsgCOhBFRlSkrWTo6OlqtPXNlSOrKyjvLyLDFsWOBAGRqj0t5BHjTJiA0FFAoABMTYONGICSkan734MGDMW3aNNy6dQsAcPr0aezatQsnT54EADx58gTr16/H1q1b0bVrVwDAF198gZiYGGzatAmTJk3C+vXr4evri6VLlwIA6tevj8uXL2PhwoWq3zN//nwMGjRIlXTv5+eHVatWoX379li/fj0sLS2r5PkyCCMinSuYf6NJsjRzZUiKypt3BhQ/BZ9PWrX8lO7ceRGAAfl/vvceEBQEeHjo/vc7OzujW7du2Lp1KwRBQLdu3eDk5KQ6npiYiJycHLz22muqx8zNzfHqq68iISEBAJCQkIBWrVqpnTcgIEDt+99//x2XLl3Cjh07VI8JggCFQoGkpCQ0bNhQF0+vCAZhRJXA5eflUzhP5+HDh0VGvYj0RXnyztLT07Fnz55i88YAAW+8cUySo2DXr78IwJTy8oAbN6omCAPypySV04Jr164ts31ubi4UCgUUCgWys7PV/g4AJiZFg+DHjx/jvffewwcffFDkWFUuAmAQRnpHKoEPq2ZrprRrUJ66YURSUt7/08VNwQcGHsNrr8XpuIcV4+eXPwVZMBAzNQXq1q26PgQHByM7OxsymQxBQUFqx3x9fVGtWjWcPn0aXl5eyM3Nxb///otffvkFo0ePxr17aahVywexsYfx8OFD1c+dOXNG7TwtWrTAn3/+ibpV+cSKwSCM9IqUAp/KVoGnfNxkmQxdWVPwUqrl5+GRnwP23nv5I2CmpsDnn1fdKBgAmJqaqqYWTU1N1Y7Z2Nhg7NixmDRpEhwcHODm5oZ58+bh+fPneOutkbh3zwVvvhmJL79cj1mz5mPo0Hdw+fJlfPXVV2rnmTJlClq3bo3w8HCMGjUKNjY2+PPPPxETE1Oue4y2MAgjvSLl7UI4mqM5XW+yTCWTyoiyoSpv3tjgwYMld51DQvJzwG7cyB8Bq8oATMnOzq7EYwsWLIBCocCQIUPw6NEjvPTSS9i+fScEwQuADK6utbFw4T4sXz4e//vfF2jevDk+/vhjhIaGqs7x0ksv4dSpU5g+fTratm0LQRDg6+uLfv36VcGze4FBGOktKY2gSKkv+oR1w8QhpRFlQ6WPxZQL8vCo2uCrrEr4+/fvV/3d0tISq1atwqpVq5CdnY2HDx8iK6saUlNfrEBt27Y72rbtDkfHh7CwyIaTkxNGjx6tds6WLVvi6NGjJf7OmzdvVuSpaIRBGOklKY2gSKkv+kaXmyxTyTiVXjWkGmAZIjOzXAAC1EuBCP//uHSxWCvppdJGUIy5L/pCOVVTVrFLKeXKGLKMDFskJXlLungoUWlMTRWwt89AfiAGAALs7TNgaqoo7cdEx5Ew0ktSGkGRUl/0ReGpmlmzHuDmTTN4e+fC3b0lgJaSnqoxJJxKJ0Nhbf0UFhbPkZtrBjOzXMkHYACDMNJTZVVeN9a+6JOCAZabG+DvL2JnjBSn0snQmJoqYGqqP9PoDMJIb2lSeV0XylsFnlNqJFVcGGGYBEEou5GBKK4Qa2XaaUIb15lBGOmV8i77rorAR99XPxFxKt2wmJubAwCePn0KKysrkXtTNczMzFCzZk0oCpf5L8DExARmZtoPd54+fQrgxXWvCAZhpFekFvgwwCJ9xql0w2Jqagp7e3vcv38fAGBtbQ2ZTFbGTxk+hUKB3FztrZIUBAFPnz7F/fv3YW9vX6SgrCYYhJHeYeBDVDmcSjdcrq6uAKAKxEh37O3tVde7omSCMU0e65nMzEzI5XJkZGSUWj2YiEhTrJhv2PLy8pCTkyN2NwyWubl5qSNg5b1/cySMiMgIMcAybKamppWaJqOqwSCMiKgSOKJERBXFIIyIqIK4ByMRVQaDMCPBT+tE2sc9GImoMhiEGQF+WiciIpIebuBtBAp/Ci9ps15+WiciIqo6HAkzMtysl0h3MjJskZbmCAeHVBY8JaIyMQgzIlLYrJe5aWSo+AGHKoPvjcaJQZgREXuzXuamkaGSwgcc0l98bzRezAkzIsrNeguqys16mZtGhqq0DzhEZeEqW+PFkTAjIqXNejl1Q4ZAubei8gNOwUCs4Acc7sFIRMVhEGZkStust6pw6kY/MWelKEdHR4SHhyM7Oxu1amViyhQ58vJkMDUVsHBhJgYOHGCU14Uqhws8jAeDMCNQ+FO4XP6o2P/YVfVpXezcNNIcc1ZKpny+EyYA/foBN24AdevK4OFhD8BezK6RHuIsgXFhEGYECn5aL0lVflova+qGpIc5K+Xj4ZH/RVQRnCUwPgzCjISURieklJtGRCQVnCUwPgzCSBRSyE2jimPOCpH2cZbA+DAIoyojtdw0qhjmrBBpl/I9r6xZAr43Gh4GYVRlpJabRppjzgqR9hV+b5w16wFu3jSDt3cu3N1bAmjJ90YDxSCMqhTfRPQbc1aIdKPge6ObG+DvX3w7looxLAzCiKjcmLNCJB6WijE83LaIiMpUOGdFuf0Vc1aIqg5LxRgejoQRUZmYs0IkPVylrP8YhBFRuZQ3Z4WIdI+rlA0DgzAiIiI9UtlVykzulw4GYURERHqkMquUmdwvLUzMJyIi0iPKVcoFlXeVMpP7pYVBGBERkR4pa5WyJjIybJGU5I2MDFttd5PKgdORREREeqBgCZjS9t8tb6kYJveLj0EYERGRHtDm1m9lJfc/fPiwUuen8mEQRkSkJ7iqjbT171tWcn90dHSJP8ukfe3Rm5ywnj17onbt2rC0tISbmxuGDBmCu3fvqo7PmTMHMpmsyJeNjY3aefbu3YsGDRrA0tISTZs2xffff692XBAEzJo1C25ubrCyskJgYCCuX7+u1iYtLQ2DBg2CnZ0d7O3tERISgsePH6u1uXTpEtq2bQtLS0t4enpi0aJFWr4iRGRMlKvaNm7cWOLXmjVrkJqaKnZXSQ9URXI/lU1vgrCOHTtiz549uHbtGvbt24fExET07dtXdXzixIlITk5W+2rUqBHeeecdVZszZ85gwIABCAkJwW+//YZevXqhV69euHLliqrNokWLsGrVKmzYsAHnzp2DjY0NgoKC8Pz5c1WbQYMG4Y8//kBMTAwOHjyIH3/8EaGhoarjmZmZ6NKlC7y8vBAfH4/Fixdjzpw52Lhxo46vEhEZKq5qI20qT3I/k/Z1TyYIgiB2JyriwIED6NWrF7KysmBubl7k+O+//47mzZvjxx9/RNu2bQEA/fr1w5MnT3Dw4EFVu9atW6N58+bYsGEDBEGAu7s7JkyYgIkTJwIAMjIy4OLigq1bt6J///5ISEhAo0aNcP78ebzyyisAgMOHD+PNN9/EnTt34O7ujvXr12P69OlISUlRJUhOnToV+/fvx9WrV8v9HDMzMyGXy5GRkQE7O7sKXysi0n/Jycnl+iAXGhoKNze3KugR6aPCdcLytz4qmtxfWtI+X2NlK+/9Wy9zwtLS0rBjxw60adOm2AAMAL788kvUq1dPFYABQFxcHCIjI9XaBQUFYf/+/QCApKQkpKSkIDAwUHVcLpejVatWiIuLQ//+/REXFwd7e3tVAAYAgYGBMDExwblz5/D2228jLi4O7dq1U1uhEhQUhIULF+K///5DjRo1tHEZiIiINFJacv/Dhw8RHR1d6Yr8VH56FYRNmTIFa9aswdOnT9G6dWu1Ea2Cnj9/jh07dmDq1Klqj6ekpMDFxUXtMRcXF6SkpKiOKx8rrU3NmjXVjpuZmcHBwUGtjY+PT5FzKI+VFIRlZWUhKytL9X1mZmax7YiIuHkzVVRZSfWVqchPmhE1J2zq1KnFJtMX/Co4fTdp0iT89ttvOHr0KExNTTF06FAUN5v6zTff4NGjRxg2bFhVPp1Kmz9/PuRyuerL09NT7C4RkQRduPAyVqyIwLZtw7BiRQQuXHhZ7C6RAalM0j5pRtSRsAkTJmD48OGltqlTp47q705OTnByckK9evXQsGFDeHp64uzZswgICFD7mS+//BLdu3cvMqLl6uqKe/fuqT127949uLq6qo4rHys4333v3j00b95c1eb+/ftq58jNzUVaWpraeYr7PQV/R3GmTZumNl2amZnJQIzIiBUsSaGs28SpItI1ZdJ+4Zwwvr60T9QgzNnZGc7OzhX6WYUiP0ovOH0H5Od1nThxAgcOHCjyMwEBAYiNjUVERITqsZiYGFUQ5+PjA1dXV8TGxqqCrszMTJw7dw5jx45VnSM9PR3x8fHw9/cHABw/fhwKhQKtWrVStZk+fTpycnJUOWsxMTGoX79+qflgFhYWsLCwqMDVICJDU9JGy5wqIl3RdkV+Kpte5ISdO3cO58+fx+uvv44aNWogMTERM2fOhK+vb5FRsM2bN8PNzQ1du3Ytcp4PP/wQ7du3x9KlS9GtWzfs2rULv/76q2rFkUwmQ0REBD799FP4+fnBx8cHM2fOhLu7O3r16gUAaNiwIYKDgzF69Ghs2LABOTk5CA8PR//+/eHu7g4AGDhwIObOnYuQkBBMmTIFV65cwcqVK7F8+XLdXigiMhgllZpQThUVDMQKThXxBkkVpc2K/FQ+ehGEWVtbIzo6GrNnz8aTJ0/g5uaG4OBgzJgxQ23kSKFQYOvWrRg+fDhMTU2LnKdNmzaIiorCjBkz8NFHH8HPzw/79+9HkyZNVG0mT56MJ0+eIDQ0FOnp6Xj99ddx+PBhWFpaqtrs2LED4eHh6Ny5M0xMTNCnTx+sWrVKdVwul+Po0aMICwuDv78/nJycMGvWLLVaYkREFVF4qsjERMCiRZkYOHAAb5BUaXz9VC29rRNmDFgnjMh4lVUXTFnfady4rvD3dymxnVi4xRIZM4OuE0ZEZGwKl6RQfrm7K8r+4SpWUj5bYdyDkIwdgzAiIokrrXq5FHGLJaLy0Zu9I4mIjFFJJSm4nx+R/mMQRkQkYaWVpCAi/cbpSCIiCVKWmpBiSYqyku4zMjIKfc8tloiKwyCMiEiCCtZsqlUrE1OmyJGXJ4OpqYCFC8UrSVHepHslfctnI6pKDMKIiCRKGWBNmAD06wfcuAHUrSuDh4c9AHtR+qRJMj23WCIqHYMwIiI94OGR/6VPuMUSUekYhBFJEAtdkr4oLd9LivlsRFLCIIyMkpSDHBa6JH1RWr7Xu+++C3t7e0nlsxFJDYMwMjpSD3JY6JL0QVn5Xvb29nBzc5NUPhuR1DAII6NTOHgpaTpFKkEOl/eTFGmS76WP+WxEVYFBGBk1qS+fl3r/yHiVle9F0iHl9AtjxyCMjJbUl89LvX9knJTJ9HL5I/TocbDIhwTla5NJ99Ig9fQLY1ehIOzEiRPo2LGjtvtCVKWkvnxe6v0j41SwiCwAzJr1ADdvmsHbOxfu7i0BtOTIioQwx1TaKhSEBQcHw8PDAyNGjMCwYcPg6emp7X4R6ZzUp1Ok3j8yXgUDLDc3wN9fxM6QRphjKi0V2sD733//RXh4OL7++mvUqVMHQUFB2LNnDyNp0ivK6RSZTAEARaZTxCb1/hGRfrlw4WWsWBGBbduGYcWKCFy48LLYXTJ6FRoJc3Jywvjx4zF+/HhcuHABW7Zswfvvv4/3338fAwcOREhICJo1a6btvhJpXYsWv8HX9wbS0hzg4JAmiQCnYC5Naf1jzg0RlRdzTKWp0on5LVq0gKurKxwdHbFgwQJs3rwZ69atQ0BAADZs2IDGjRtro59EWlM4eJHLHxX7JiRWkFM456Y4zLkhQ8cVfdrFHFNpqnAQlpOTg2+//RabN29GTEwMXnnlFaxZswYDBgzAgwcPMGPGDLzzzjv4888/tdlfokrThyCHNxcyZlzRp33MMZWmCgVh48aNw86dOyEIAoYMGYJFixahSZMmquM2NjZYsmQJ3N3dtdZRIm3iGzeRdHFFn/aVVVKExFGhIOzPP//E6tWr0bt3b1hYWBTbxsnJCSdOnKhU54iIqHicrqPyYI6ptFUoCIuNjS37xGZmaN++fUVOT0REpTC26TqWVag4fUi/MGYVzgm7du0aVq9ejYSEBABAw4YNMW7cONSvX19rnSMioqKMabqOW3dVHgMs6apQnbB9+/ahSZMmiI+PR7NmzdCsWTNcuHABTZo0wb59+7TdRyIiKkVGhi2SkryRkWErdle0qqSyCob2PMl4VWgkbPLkyZg2bRo+/vhjtcdnz56NyZMno0+fPlrpHBGRVEklJ8uQR4pYVoEMXYWCsOTkZAwdOrTI44MHD8bixYsr3SkiIimTSk6WoRfgZFkFMnQVmo7s0KEDfvrppyKP//zzz2jbtm2lO0VEJGVSyckqbaRInylX6pW1dRdX9JG+q9BIWM+ePTFlyhTEx8ejdevWAICzZ89i7969mDt3Lg4cOKDWlojIkIm1es9QR4oKr+ibNesBbt40g7d3LtzdWwJoqTbdK5WpYSJNVSgIe//99wEA69atw7p164o9BgAymQx5eXmV6B4RkbSJmZNlyAU4CwZNbm6Av3/x7aQyNUxUERUKwhQKhbb7QUSkd8TKyWIBzhekMjUsBo4A6r9Kb+BNRGSsxFq9xwKcJTOWwq6GMALIIFKDIGzVqlXlPukHH3xQoc4QEekTMXOyDP3mVBGGXK6jsMLBS0nBp1RHAAsHkSX1X8pBpDaUOwhbvnx5udrJZDIGYURkFAw5J0vfGHq5jtLoY/BZMDgsrf9SDSK1pdxBWFJSki77QUSkN5iTJT3GWthV34NPfe9/ZTEnjIhIQ8zJkh5DLddRFn0PPvW9/5VV4SDszp07OHDgAG7fvl3kjWjZsmWV7hiR2Aomjd69a4KkJDP4+OTC3T1/dTBvssaN//bSYqxTw/oefOp7/yurQkFYbGwsevbsiTp16uDq1ato0qQJbt68CUEQ0KJFC233kajKFUwaLS1fwdCTRvUdV18ZPmOfGtb34FPf+19ZFQrCpk2bhokTJ2Lu3LmwtbXFvn37ULNmTQwaNAjBwcHa7iNRlVPeuMvKVzD0pFF9ZghL+KlsnBouPfjUB/re/8qoUBCWkJCAnTt35p/AzAzPnj1D9erV8fHHH+Ott97C2LFjtdpJIrEYe76CPtP3JfxUfoYcYJWk8MieXP6o2PckfRkBLKn/hq5CQZiNjY3qjcvNzQ2JiYlo3LgxAODhw4fa6x2RyIw9X8FQ6OMSfqLS6PsIYHmDQ30JIiuqQkFY69at8fPPP6Nhw4Z48803MWHCBFy+fBnR0dGqDb2JDIGx5ysYAmNfAk+GS6oBVnnoexCpLRUKwpYtW4bHjx8DAObOnYvHjx9j9+7d8PPz48pIMjjGnK9gCDilTCRNhh5glUeFgrA6deqo/m5jY4MNGzZorUNEUmSs+QqGgFPKRCRVlSrWmp2djfv370OhUKg9Xrt27Up1isRz5w5w/Trg5wd4eIjdG6LK45QyGQOWY9FPFQrC/vrrL4SEhODMmTNqjwuCAJlMhry8PK10jqrWpk1AaCigUAAmJsDGjUBIiNi9EgeTRg2LMU4p86ZsPFiORX9VKAgbMWIEzMzMcPDgQbi5uUEmk2m7X1SFUlNTcfNmLkJDa0KhyP+3VCiA994T0Lz5fXh7mxndf1wmjeo/Q1vCrwnelI0Ly7HorwoFYRcvXkR8fDwaNGig7f5QFVO+WScleUOhGKZ2LC9PhtWrf4CPzy2jfLM2tudraIw5kOZN2XixHIt+qVAQ1qhRI9YDMxDKN+Gykpf5Zk36yBADLE3xpmw8WI5F/5iU3SRfZmam6mvhwoWYPHkyTp48idTUVLVjmZmZuuwv6YgyeVkmy19kweRlIv1X0k05I8NW5J6RLpRWjoWkqdwjYfb29mq5X4IgoHPnzmptmJiv34wxeZnIkLFGmnExxHIsBReY3L1rgqQkM/j45MLdPX/AQN9TCsodhJ04cUKX/SCJYD0sIsNhiDdlKpmhlWMpuMCktGl1fc5ZLncQ1r59e9Xfb9++DU9PzyKrIgVBwD///KO93hERUYUZ2k2ZymZIMxrKEbCyct30OWe5Qon5Pj4+SE5ORs2aNdUeT0tLg4+PD6cjiYgkwpBuylQ8Qy/HYsjT6hUKwpS5X4U9fvwYlpaWle4UEek3FgoVl6HflEmdoZdjMeRpdY2CsMjISACATCbDzJkzYW1trTqWl5eHc+fOoXnz5lrtIOkWK8OTthUuFFpSjSp9zuOQOkO/KVNRhvxvacjT6hoFYb/9lp8EJwgCLl++rHZjrlatGpo1a4aJEydqt4ekU3yzJm0r+FoqLZlWn/M49AH/z5IhMdRpdY2CMOUKyREjRmDlypWws7PTSaeoavHNmnSBhSOJSJsMcfV+uYu1FrRlyxYGYERUKhaOJCIqXYUS8588eYIFCxYgNjYW9+/fh0KhUDv+999/a6VzRKS/DDmZloh0zxhylisUhI0aNQqnTp3CkCFD4ObmVuxKSdI/d+4A168Dfn6Ah4fYvSF9Z8jJtESke8aQs1yhIOyHH37AoUOH8Nprr2m7PySSTZuA0FBAoQBMTICNG4GQELF7RfrOUJNpiahq6HOAVR4VygmrUaMGHByY12Eo7tx5EYAB+X++917+40SVJZc/go/PLQZgRESFVCgI++STTzBr1iw8ffpU2/2hKpaamoqzZ1NRKK0PeXnAuXOpSE1NFadjpLeMIY+DiEgbKjQduXTpUiQmJsLFxQXe3t4wNzdXO37hwgWtdI50S1lUMyPDFjJZRJEE6tOnt+HKlUcsqvn/mDNXPsaQx0FEpA0VCsJ69eql5W6QGJQ3ybISqI25qKZy+52oKCtMniyHQiGDiYmARYsyMHDgM4MOJgpuPXT3rgmSkszg45MLd/f8YdPSnruhXhMiIm2qUBA2e/ZsbfeDRMYE6qIKjhSuWBEBQchfBaxQyDBpkh3+/Xcz5HLDHCksuPVQaVXvDfG5K3H/SyLSNY2CsF9++QX+/v4wNTUt9nhWVha+/fZbvPvuu1rpHFUtQ6xGXBnKG3BpRUfl8kcGOVKofE5lVb03xOcOcP9LIqoaGiXmBwQEqCVq29nZqRVmTU9Px4ABA7TXuwJ69uyJ2rVrw9LSEm5ubhgyZAju3r2r1ubIkSNo3bo1bG1t4ezsjD59+uDmzZtqbU6ePIkWLVrAwsICdevWxdatW4v8rrVr18Lb2xuWlpZo1aoVfvnlF7Xjz58/R1hYGBwdHVG9enX06dMH9+7dU2tz+/ZtdOvWDdbW1qhZsyYmTZqE3NxcrVwLqlrKoqMFGUvRUWOtel94/8sVKyKwbdswrFgRgQsXXi62HRGRpjQKwgRBKPX7kh7Tho4dO2LPnj24du0a9u3bh8TERPTt21d1PCkpCW+99RY6deqEixcv4siRI3j48CF69+6t1qZbt27o2LEjLl68iIiICIwaNQpHjhxRtdm9ezciIyMxe/ZsXLhwAc2aNUNQUBDu37+vajN+/Hh899132Lt3L06dOoW7d++q/Z68vDx069YN2dnZOHPmDLZt24atW7di1qxZOrk2pFvKnDllIGZMRUeNOQAFSh4JzMiwFblnRGQIKpQTVhpdVc8fP3686u9eXl6YOnUqevXqhZycHJibmyM+Ph55eXn49NNPYWKS/4Y5ceJEvPXWW6o2GzZsgI+PD5YuXQoAaNiwIX7++WcsX74cQUFBAIBly5Zh9OjRGDFiBABgw4YNOHToEDZv3oypU6ciIyMDmzZtQlRUFDp16gQgfy/Nhg0b4uzZs2jdujWOHj2KP//8E8eOHYOLiwuaN2+OTz75BFOmTMGcOXO4NL+cpLQa0Vhz5oy96n1ZU9FERJVRoTphYktLS8OOHTvQpk0bVXkMf39/mJiYYMuWLcjLy0NGRga2b9+OwMBAVZu4uDgEBgaqnSsoKAhxcXEA8qcW4uPj1dqYmJggMDBQ1SY+Ph45OTlqbRo0aIDatWur2sTFxaFp06ZwcXFR+z2ZmZn4448/SnxeWVlZyMzMVPsyVps2AV5eQKdO+X9u2iR2j4y36GiLFr8hImIFhg3bioiIFaqkfGNg7COBRKRbGgdhf/75Jy5duoRLly5BEARcvXpV9X1pAYY2TJkyBTY2NnB0dMTt27fx7bffqo75+Pjg6NGj+Oijj2BhYQF7e3vcuXMHe/bsUbVJSUlRC4wAwMXFBZmZmXj27BkePnyIvLy8YtukpKSozlGtWjXY29uX2qa4cyiPlWT+/PmQy+WqL09Pz3JemYqRYlHN1NRUxMffQ2ioUKiCv4D4+HssHisSYw1AjXkqmoh0T+PpyM6dO6vlfXXv3h1A/jSkIAgaTUdOnToVCxcuLLVNQkICGjRoAACYNGkSQkJCcOvWLcydOxdDhw7FwYMHIZPJkJKSgtGjR2PYsGEYMGAAHj16hFmzZqFv376IiYnRi03Gp02bhsjISNX3mZmZOg3EpFZUU7kiLSnJGwrFMLVjeXkyrF79A3x8bnFFGlUpY52KZokOIt3TKAhLSkrS6i+fMGEChg8fXmqbOnXqqP7u5OQEJycn1KtXDw0bNoSnpyfOnj2LgIAArF27FnK5HIsWLVK1/9///gdPT0+cO3cOrVu3hqura5FVjPfu3YOdnR2srKxgamoKU1PTYtu4uroCAFxdXZGdnY309HS10bDCbQqvqFSeU9mmOBYWFrCwsCj1emiblN5ElW/4yimgwhX8lVNAVbUiTYojhVXFmJ97cYytfAtLdBBVDY2CMC8vL41O/v777+Pjjz+Gk5NTscednZ3h7Oys0TmVFP8/V5WVlQUAePr0qSohX0lZz0zZNiAgAN9//71am5iYGAQEBADIv6H4+/sjNjZWtSuAQqFAbGwswsPDAeTnnpmbmyM2NhZ9+vQBAFy7dg23b99WnScgIADz5s3D/fv3UbNmTdXvsbOzQ6NGjSr0fI2JVJLBpTZSWJWM+bmnpqYiPT0dQMnBh5KhBqGFS3SUVKyXJTqIKkfrqyML+t///oeJEyeWGISV17lz53D+/Hm8/vrrqFGjBhITEzFz5kz4+vqqAp9u3bph+fLl+Pjjj1XTkR999BG8vLzw8sv5dX3GjBmDNWvWYPLkyRg5ciSOHz+OPXv24NChQ6rfFRkZiWHDhuGVV17Bq6++ihUrVuDJkyeq1ZJyuRwhISGIjIyEg4MD7OzsMG7cOAQEBKB169YAgC5duqBRo0YYMmQIFi1ahJSUFMyYMQNhYWFVPtKlr6QyBWSIQUZ5GeNzL+9OAf369YOzs7PBX6OyivUSUeXodHWktmqGWVtbIzo6Gp07d0b9+vUREhKCl156CadOnVIFNZ06dUJUVBT279+Pl19+GcHBwbCwsMDhw4dhZWUFID95/9ChQ4iJiUGzZs2wdOlSfPnll6ryFED+m+uSJUswa9YsNG/eHBcvXsThw4fVEu2XL1+O7t27o0+fPmjXrh1cXV0RHR2tOm5qaoqDBw/C1NQUAQEBGDx4MIYOHYqPP/5YK9fDWBhrMjiJp6ydApT1weRyucEHYIDxFuslqio6HQnTlqZNm+L48eNltuvfvz/69+9fapsOHTrgt99KX2IfHh6umn4sjqWlJdauXYu1a9eW2MbLy6vI1CcR6QfWB8tXVn4mEVWOXtYJIyqvO3eAEyfy/yQqL9YHy8cSHUS6pRcjYUQVsWkTEBqaX2fMxATYuBEICRG7V6QPpLI4RAqkkp9JZIgYhJFkaKssQmpqKm7ezEVoaE0oFPn14ZQFX5s3vw9vbzOjyOehymHw8YKxleggqio6DcIGDx4MOzs7Xf4KMiDaKIvAgq+kTcYafLBOHFHVqFAQplAoitTkUj5+584d1K5dGwCwfv36yvWOjE5lAyOpFXwl0kfGXCeOqCpplJifmZmJd999FzY2NnBxccGsWbOQl5enOv7gwQP4+PhovZNEmmJCMVUER4BecHR0hJubW4lfDMCIKk+jkbCZM2fi999/x/bt25Geno5PP/0UFy5cQHR0tOpNSVu1wYgqizk9pCmOABFRVdIoCNu/fz+2bduGDh06AAB69eqFbt26oUePHjhw4AAA6MVG2WQ8jDWnhyqOAZZ+K7jx+N27JkhKMoOPTy7c3fNHxRlEk5RoFIQ9ePBAbf9IJycnHDt2DEFBQXjzzTfx5Zdfar2DRERE5VHebae4MIekQqOcsNq1ayMhIUHtMVtbWxw9ehTPnj3D22+/rdXOERERlVd5t53iwhySCo2CsC5dumDLli1FHq9evTqOHDkCS0tLrXWMiIioIrjnJekLjaYj586di7t37xZ7zNbWFjExMbhw4YJWOkZUEVzdRlWtYA5ScZiDVPW45yXpC42CsBo1aqBGjRolHre1tUX79u0r3SmiiuLqNqpKBXOQgPxpsLQ0Rzg4pKotCHn33Xdhb29f7Dn4etQ+bjtVMi5ckBaNi7Xm5uZi+fLl2LlzJ/766y8AQL169TBw4EB8+OGHMDc313oniTTBNxCqKgWD/dISwffs2QOg5CCNieLaxxI1RenbwoU7d4Dr1wE/P8DDQ+ze6IZGQdizZ8/wxhtvIC4uDoGBgWjXrh0AICEhAVOmTMGBAwdw9OhR5oYRkVEpKRHc1/eG6uZf2k2PieK6wRI16spauKB8vYr5elSO1EVFWWHyZDkUChlMTAQsWpSBgQOfGdxInUZB2IIFC/DPP//gt99+w0svvaR27Pfff0fPnj2xYMECzJkzR5t9JBKFMXwKI+0oLRFcLn9UriBNF5ivRsUp6/UqFuVIXUaGLVasiIAg5NcdVShkmDTJDv/+uxly+SPJjNRpg0ZB2K5du7Bs2bIiARgANGvWDEuWLMH06dMZhJHeMrZPYaQdZSWCi3HTK2++miHd0Lgwp3ykunBB+YGhrP8vhjRyrFEQduvWLbz66qslHm/dujVu375d6U4RicEYP4WRdpSVCC7GTa+8+WqGdEPjwpzykfrCBakGibqgURBmZ2eH+/fvw9PTs9jjKSkpsLW11UrHiKqaMX4KI+0pLRFczJueWFOhYjH2AKu8pLxwQepBojZpFIR17NgRn332Gfbt21fs8QULFqBjx45a6RiRWIzpUxhpV2mJ4GLd9KSa/0Pik/LCBSkHidqkURA2e/ZstGrVCq1bt0ZkZCQaNGgAQRCQkJCA5cuX488//8TZs2d11VeiKmFMn8KocjTNLRLjpscPFaSvpBwkaotGQVijRo0QExODkJAQ9O/fHzJZfs6MIAho0KABjh49isaNG+uko0RVyVg+hVHllJWDlJGRgd27d5d5Hl0miuvDhwqu4qwaXLggPRoXa23dujX++OMPXLx4Ua1Ya/PmzbXdNyJRGcOnMKq80oIDNzc3SSSKS/lDhTGu4hQLFy5Ij8ZBWGZmJqpXr47mzZurBV4KhQKPHz+GnZ2dNvtHRKTXpHJDk+qHCmNcxSkmqbwei2OMI3UaBWHffPMNpkyZgosXL8La2lrt2LNnz9CyZUssWbIEPXr00GoniYhIM/p2QzO2VZxUlDGO1GkUhK1fvx6TJ08uEoABgI2NDaZMmYI1a9YwCCO9pG83LalgPo806dsNjas4CZD2SJ0uaBSEXblyBevWrSvxeLt27TBjxoxKd4pIDPp205IC5vNImz5dc67iJGOkURD233//ITc3t8TjOTk5+O+//yrdKSKx6NNNSwqYz0Paog+rOIm0TaMgzNvbG7/++isaNGhQ7PFff/0VXl5eWukYEekP5vOQNkh5FSeRLpiU3eSF3r17Y/r06bh3716RYykpKZgxYwb69Omjtc4RkX4oLZ+HSBNy+SP4+NxiAEZGQaORsKlTp+Lbb7+Fn58fBg8ejPr16wMArl69ih07dsDT0xNTp07VSUeJSLqYz0MVxQUxZMw0CsJsbW1x+vRpTJs2Dbt371blf9nb22Pw4MGYN28eN/AmMkLM59EeY1ttygUxZMw0LtYql8uxbt06rF27Fg8fPoQgCHB2dlZtYVTQ6dOn8corr8DCwkIrnSUi6WI+T+UZ62pTQ3ouRJrQOAhTkslkcHZ2LrVN165dcfHiRdSpU6eiv4aI9IhUq7LrC642JTIuGiXma0oQBF2enohExnwe3ShptWlGBtM9iAxJhUfCiIiYz6MbrB5PZBwYhBFRpTDA0j6uNiUyDgzCiIgkhqtNydAZ2yrgkug0CCtuxSQREZWttNWmDx8+VGtrLDcsMgzGugq4ODoNwpiYT0RUcSWtNo2Oji7ymDHcsMgwcBXwCzoNwh494tC5MeHwMlHllGcVaUmjBsZwwzJUxvreyT1nNQzCOnXqVK52x48fr1BnSH9xeJmo8opbbfrw4UPVyFdpowaknwq/d5bEEN87uQpYwyDs5MmT8PLyQrdu3WBubq6rPpEe4vAykXaUdKPlqIFhKvyeaEwjnVwFrGEQtnDhQmzZsgV79+7FoEGDMHLkSDRp0kRXfSM9xBsFGSqxp4w4amD4jG2kk6uANQzCJk2ahEmTJiEuLg6bN2/Ga6+9hvr162PkyJEYOHAg7OzsdNVPqqSquoHwRkGGSApTRhw1MGzG+gHW2PecrVBifkBAAAICArBy5Urs3bsXa9euxcSJE3H37l0GYhJUlflavFGQIZLClBFHDQybMX+ANeY9Zyu1OvLChQs4deoUEhIS0KRJE+aJSVRV5mvxRkGGTswpI2MfNTBk+vwBVtOZFu45+4LGQdjdu3exdetWbN26FZmZmRg8eDDOnTuHRo0a6aJ/pEVVNdzNGwUZKjGmjArfiEoaNTCGG5Yh09cPsBWZaeGesy9oFIS9+eabOHHiBLp06YLFixejW7duMDPjzkf6oiqHu415eJkMlxhTRrxhGQ99/ABb0ZkWvl7zaRRBHT58GG5ubrh9+zbmzp2LuXPnFtvuwoULWukcaZcuh7s5vEz6rrQpFeU2QWJNGfGGZbgMZaTTWBcWVJZGQdjs2bN11Q+qAroc7uanddJn5V39qK9TRiRdhvLeacwLCyqDQZiR0eVwt9TfJIhKosmiFH2cMiJpM4T3Tn1eWCAmrSR0nTp1Ck+ePEFAQABq1KihjVOSDjFfi6h0JSUXK+nrlJGuiF3IlsTHUeKK0bhi/uPHj/HJJ58AAARBQNeuXXH06FEAQM2aNREbG4vGjRtrv6dUYczXIiq/0pKLe/fuDScnp2J/zlgDDSkUsqUXxAyIOUqsOY2CsN27d2PKlCmq77/++mv8+OOP+Omnn9CwYUMMHToUc+fOxZ49e7TeUao4Q8k5INK1spKLnZyc4ObmJnIvpaW8U7mGuPeh1EghIOZMi2Y0CsKSkpLw0ksvqb7//vvv0bdvX7z22msAgBkzZuCdd97Rbg9JKxhgEZWNycWVV9ZULumOGAExZ1oqR6MgLDc3FxYWFqrv4+LiEBERofre3d1dtZSbiEjfMLm4coxtA2qpq4qAmDMtlaNREObr64sff/wRderUwe3bt/HXX3+hXbt2quN37tzhhSYivcXk4opjnShpqcqAmPf9itMoCAsLC0N4eDh++uknnD17FgEBAWrbFR0/fhwvv/yy1jtJRKRLBadKSksu5pRKyXQ5lcvVl5phQKw/NArCRo8eDVNTU3z33Xdo165dkbphd+/exciRI7XaQSIiXeOUSuXpaipXCsnm+oa5jfpD4zphI0eOLDHQWrduXaU7REQkBt7AK0dXU7lcfak55jbqD+6+TUREFVbVU7lcfVk25jbqD42CsJycHEyfPh3R0dFwcHDAmDFj1EbF7t27B3d3d+Tl5Wm9o0REJD1VOZXL1ZelY26j/tEoCJs3bx6++uorTJw4Eenp6YiMjMS5c+fw+eefq9oIgqD1ThIRkXRVxVQuk83LxtxG/aNRELZjxw58+eWX6N69OwBg+PDh6Nq1K0aMGIHNmzcDAGQymfZ7SVWGq5CISIqYbF4+fH/WLxoFYf/++y+aNGmi+r5u3bo4efIkOnXqhCFDhmDRokVa7yBVHa5CIiKpYrI5GSKTspu84OrqisTERLXHatWqhRMnTuD8+fMYPny4NvtGVYyrkIhIqpTJ5jKZAgCYbE4GQaMgrFOnToiKiiryuLu7O44fP46kpCStdaywnj17onbt2rC0tISbmxuGDBmCu3fvqrXZs2cPmjdvDmtra3h5eWHx4sVFznPy5Em0aNECFhYWqFu3LrZu3Vqkzdq1a+Ht7Q1LS0u0atUKv/zyi9rx58+fIywsDI6OjqhevTr69OmDe/fuqbW5ffs2unXrBmtra9SsWROTJk1Cbm5u5S8EEZERKZxsHhGxAsOGbUVExAq1pHxtJ5unpqYiOTm5xK/U1FSt/j4yThpNR86cORNXr14t9litWrVw6tQpxMTEaKVjhXXs2BEfffQR3Nzc8O+//2LixIno27cvzpw5AwD44YcfMGjQIKxevRpdunRBQkICRo8eDSsrK4SHhwPI34C8W7duGDNmDHbs2IHY2FiMGjUKbm5uCAoKAgDs3r0bkZGR2LBhA1q1aoUVK1YgKCgI165dQ82aNQEA48ePx6FDh7B3717I5XKEh4ejd+/eOH36NAAgLy8P3bp1g6urK86cOYPk5GQMHToU5ubm+Oyzz3RyfaSGuWVEpA1iJJszNYOqikzQ0+WMBw4cQK9evZCVlQVzc3MMHDgQOTk52Lt3r6rN6tWrsWjRIty+fRsymQxTpkzBoUOHcOXKFVWb/v37Iz09HYcPHwYAtGrVCi1btlT9B1QoFPD09MS4ceMwdepUZGRkwNnZGVFRUejbty8A4OrVq2jYsCHi4uLQunVr/PDDD+jevTvu3r0LFxcXAMCGDRswZcoUPHjwoNyf2DIzMyGXy5GRkQE7OzutXLfSJCcnY+PGjWW2Cw0NhZubW4nH+QZGRPpMW++Fho4ftktW3vt3hYq17t27Fzt37sRff/0FAKhXrx4GDhyoCkp0LS0tDTt27ECbNm1gbm4OAMjKyoK1tbVaOysrK9y5cwe3bt2Ct7c34uLiEBgYqNYmKCgIERERAPJzneLj4zFt2jTVcRMTEwQGBiIuLg4AEB8fj5ycHLXzNGjQALVr11YFYXFxcWjatKkqAFP+nrFjx+KPP/7Qm/01K1oUkbllRGRIWCC2KH7Y1g6NgjCFQoEBAwZg7969qFevHho0aAAA+OOPP9CvXz+888472Llzp87KVEyZMgVr1qzB06dP0bp1axw8eFB1LCgoCOPHj8fw4cPRsWNH3LhxA0uXLgWQ/6nG29sbKSkpaoERALi4uCAzMxPPnj3Df//9h7y8vGLbKKdhU1JSUK1aNdjb2xdpk5KSompT3DmUx0qSlZWFrKws1feZmZnluSw6waKIRC/wE7/x4nth8fhhWzs0CsJWrlyJY8eO4cCBA6paYUoHDhzAiBEjsHLlStXIUlmmTp2KhQsXltomISFBFexNmjQJISEhuHXrFubOnYuhQ4fi4MGDkMlkGD16NBITE9G9e3fk5OTAzs4OH374IebMmQMTE43WH4hm/vz5mDt3rtjdYFFEogL4id948b2w/DhaWDEaBWFbtmzB4sWLiwRgQP7qxUWLFmkUhE2YMKHMshZ16tRR/d3JyQlOTk6oV68eGjZsCE9PT5w9exYBAQGQyWRYuHAhPvvsM6SkpMDZ2RmxsbFq53B1dS2yivHevXuws7ODlZUVTE1NYWpqWmwbV1dX1Tmys7ORnp6uNhpWuE3hFZXKcyrbFGfatGmIjIxUfZ+ZmQlPT89Sr482KXPVyiqKyC0vyJjwE7/xYoHY8uFoYcVpFIRdv369SE5VQYGBgaqViOXh7OwMZ2dnTbqgolDk14opOH0HAKampqhVqxYAYOfOnQgICFD9joCAAHz//fdq7WNiYhAQEAAgPwjx9/dHbGwsevXqpfo9sbGxqufl7+8Pc3NzxMbGok+fPgCAa9eu4fbt26rzBAQEYN68ebh//75qRWVMTAzs7OzQqFGjEp+ThYUFLCwsKnQ9tEG5CunmzVxs3y5AoXgxrWxqKmDcuK7w9jbT+NM+PyERkT5igdiycbSwcjQKwqysrJCeno7atWsXezwzMxOWlpZa6VhB586dw/nz5/H666+jRo0aSExMxMyZM+Hr66sKfB4+fIivv/4aHTp0wPPnz7Flyxbs3bsXp06dUp1nzJgxWLNmDSZPnoyRI0fi+PHj2LNnDw4dOqRqExkZiWHDhuGVV17Bq6++ihUrVuDJkycYMWIEAEAulyMkJASRkZFwcHCAnZ0dxo0bh4CAALRu3RoA0KVLFzRq1Ei1i0BKSgpmzJiBsLAwUYOs4hSX6+LuDixalIEpU+TIy5PB1BT4/HMZ/P1dSjhLyfgJiQwNP1QYD2WB2MLvYfx3f4GjhZWjURAWEBCA9evXY/369cUeX7t2rSoo0iZra2tER0dj9uzZePLkCdzc3BAcHIwZM2aoBTXbtm3DxIkTIQgCAgICcPLkSbz66quq4z4+Pjh06BDGjx+PlStXwsPDA19++aWqRhgA9OvXDw8ePMCsWbOQkpKC5s2b4/Dhw2qJ9suXL4eJiQn69OmDrKwsBAUFYd26darjpqamOHjwIMaOHYuAgADY2Nhg2LBh+Pjjj7V+bSqjrFyXDz6wRVqaAyZMeAtNm9bQ+Pz8hESGRmofKrhgQDcKF4j19b2BtDQHODikqb13MTWDo4WVpVEQNn36dHTo0AGpqamYOHEiGjRoAEEQkJCQgKVLl+Lbb7/FiRMntN7Jpk2b4vjx46W2cXJyUpWRKE2HDh3w22+lv2mGh4eXOq1qaWmJtWvXYu3atSW28fLyKjL1KTVl5bDI5Y8glz+Ck9Nzjc7L3DIyRFL7UMEFA7ojRoFYfcXRwsrRKAhr06YNdu/ejdDQUOzbt0/tWI0aNbBz50689tprWu0g6R9d5ZYRiUlq0y5cMKBbfH8qHUcLtUPjYq1vv/02goKCcOTIEVy/fh1AfrHWLl26FCmWSsbL0dERjo7Axo3Ae+8BeXmoVG4Zkdg47UL0AkcLtUOjIOz48eMIDw/H2bNn8fbbb6sdy8jIQOPGjbFhwwa0bdtWq50k/RUSAgQFATduAHXrAh4eYveISDPKT/JlTbvwEz8ZGwZYladRELZixQqMHj262H2Q5HI53nvvPSxbtoxBGKnx8GDwRfqr8Cf+WbMe4OZNM3h758LdvSWAlpL4xM9Vm0T6R6Mg7Pfffy+1wn2XLl2wZMmSSneKiEhKCgZYbm6Av7+InSmG1FZtGhquQiVd0SgIu3fvnmrD7GJPZmaGBw8eVLpTRERUPlJbtWlouAqVdEmjTRVr1aqFK1eulHj80qVLcHNzq3SnqGqUN4eFuS5E0lXaqk2qPK5CJV3SaCTszTffxMyZMxEcHFykMv6zZ88we/bsYveVJGkqnOty964JkpLM4OOTC3f3/G2hOMxOJE3KD0dlrdrkhygi6dIoCJsxYwaio6NRr149hIeHo379+gCAq1evYu3atcjLy8P06dN10lHSDWWAtWkTEBoKKBSAiUl+aYmQEJE7R0QlKvghqlatzALbjAlYuDATAwcO4IcoHeACCNImmSAIgiY/cOvWLYwdOxZHjhyB8kdlMhmCgoKwdu1a+Pj46KSjxigzMxNyuRwZGRnFrkjVljt3AC+v/ABMydQUuHmTqxqJ9MWdOywFowvJycnYuHEjgNIXQISGhjIdh1TKe//WuFircjue//77Dzdu3IAgCPDz80ONGprvLUjScP26egAG5BdXvXGDb+ZE+oKlYHSLCyBIFzQOwpRq1KiBli1barMvJBI/v/wpyMIjYXXritcnIiJNaLOMRMFzPXz4EID2tq1iuQsqqMJBGBkOD4/ithcy3E/VfBMkMizaLCNR0rm0sW0Vy11QYQzCCIDxbC/EN0Eiw6PNMhIltdHGtlUsd0GFMQgjFWPIKeGbIBFVVIsWv8HX9wbS0hwwaFArNGkinW2rSD8xCCMiIionufwR5PJHaNIkqNKrIVnughiEERGRQdFmcKOrQIn7fRLAIIyIiAyINoMbXQVKLHdBSgzCiIioSuh6ZbI2gxtdBkraKndB+o9BGBER6VxVrEzWZnCjy0BJG+UuyDCYlN2EiIiocnS5MrnwZuYFabqZuTbPVdK5leUulOevSLkLMgwcCSOjUt43N74JEukPbW5mrsuN0QueGwBmzXqAmzfN4O2dC3d3lrswRhpv4E1Vp6o28DY2BfNS7t41QVKSGXx8cuHunv+plG+CRNpXcCNsoORVh6VthF3enDJtbmZuDBujcxcR7dPZBt5E+k75ZrJpExAamr9npolJ/tZNISEid47ICFRk1aEmOWUeHo5aC5gMvYg1dxERF3PCyCjdufMiAAPy/3zvvfzHiUh3Slp1mJFhW+rPcbcL3eB1FReDMDJK16+/CMCU8vLypx2ISHdKW3VIZGwYhJFR8vPLn4IsyNQ0P++DiHSnrFWH5ZWRYYukJO8yR9CIpIw5YWSUPDzyc8Deey9/BMzUFPj8c8PO/SASU+HyDIVzwjQpz8Atf3SH+1lWLQZhZLRCQoCgIMNf+UQkBdoqz8Atf3SHwW3VYxBGRs3QVz4RSUnBAMvNDfD31/wc3PJHNxjcioM5YUREpDe0lVNG6rhgQhwMwoiISPK45Y9u6HKbJiobK+ZLGCvmExG9UHi3ixc5ZdztojKU1zUqyqrQNk0ZGDjwGa9rBZT3/s0gTMIYhBGRMeI2OuIxhm2aqgK3LSIiIr3DbXTExcVKVYtBGJEe4MgAGYvybo9z//59/p8gvccgjEjiODJAVNSePXvKbMP/EyR1XB1JJHHcYJeMWWW2J+L/CZI6joQREZEksYI7GTqOhBERkeSUVMG9uBExbuZN+oojYUR6hhvskjEo7/ZEHC0jfcYgjEiP8IZDxkJZwb1gIFZ4eyLud6hbXJWtewzCiPQEbzhkDApvT1T4Q0fB1zo389YdrsquGgzCiPQEbzhkDBwdHREeHq4agZk160GB7YlaAmiJjIwM7N69u1yjZVQxXJVdNRiEEUlc4Q12S7rhcINdMhQFR1bc3AB/f/Xj5R0t4/8JkjoGYUQSV3BkoFatzEIb7GZi4MABzM0go1Ke0TL+nyB9wCCMSA8obyYTJgD9+ik32JXBw8MegL2YXSMSRVmjZaRdXJWtGwzCiPQMN9gloqrEVdm6wyCMDBaXVxMRVQ5XZesWgzAySFxeTURUeVyVrVsMwsggcXk1EVHFGeqqbKnNkDAIIyIiIjWGuCpbijMkDMLIKHBlDxGRZgxtVbYUZ0gYhJHB48oeIqLK4aps3TApuwmR/ippZU9Ghq3IPSMiImPHIIwMWmkre4iIiMTEIIwMmnJlT0Hc4JeIiKSAQRgZpMIb/CoDMW7wS0REQH66SlKSt6jpKUzMJ4PEDX6JpEFqdZmIAOks2GIQRgaLG/wSiUuKdZnIeClnPsraiqkqZ0gYhBERkU4UHgErqV4fd66gqqCcITlxAli+vOiCrddeG4YOHcCK+USkW3fuANevA35+rP1DVUMq0z9k3BwdHdG6NWBiAigKrNkyNQVatXJEVQ/IMjGfyMhs2gR4eQGdOuX/uWmT2D0iQ8d6fSQlHh7Axo35gReQ/+fnn4vzgZRBGJERuXMHCA198QlQoQDeey//cSJdYb0+kpqQEODmTeDEifw/Q0LE6QenI4mMyPXr6kPwAJCXl78nHKclSVeU9foKBmKs10dik8JWTAzCqMKYV6R//PyKz4WoW1e8PpHhU9brK5wTVjA531iwZAcVxCCMKmTTphfTWiYm+fPrYg3nUvkpcyHeey9/BEzMXAgyLi1a/AZf3xtIS3OAg0Oa0QZgLNlBBTEII42VlFcUFMSbuT4ICcn/t7pxI38EjP9mpCuF6y3J5Y+KDb6MZeeK8pbiYMkO46F3iflZWVlo3rw5ZDIZLl68qHbs0qVLaNu2LSwtLeHp6YlFixYV+fm9e/eiQYMGsLS0RNOmTfH999+rHRcEAbNmzYKbmxusrKwQGBiI69evq7VJS0vDoEGDYGdnB3t7e4SEhODx48ca90VflZZXRNKVmpqK5ORkJCcnw9Q0GfXr5/+pfCw1NVXsLpKBUdZlCg0NLfGLoz5kzPRuJGzy5Mlwd3fH77//rvZ4ZmYmunTpgsDAQGzYsAGXL1/GyJEjYW9vj9DQUADAmTNnMGDAAMyfPx/du3dHVFQUevXqhQsXLqBJkyYAgEWLFmHVqlXYtm0bfHx8MHPmTAQFBeHPP/+EpaUlAGDQoEFITk5GTEwMcnJyMGLECISGhiIqKqrcfdFnzCvSP5wGIbHw9VSykorXkvHQqyDshx9+wNGjR7Fv3z788MMPasd27NiB7OxsbN68GdWqVUPjxo1x8eJFLFu2TBX4rFy5EsHBwZg0aRIA4JNPPkFMTAzWrFmDDRs2QBAErFixAjNmzMBbb70FAPjqq6/g4uKC/fv3o3///khISMDhw4dx/vx5vPLKKwCA1atX480338SSJUvg7u5err7oM+YV6R9OgxBJC4vXEqBH05H37t3D6NGjsX37dlhbWxc5HhcXh3bt2qnlFgQFBeHatWv477//VG0CAwPVfi4oKAhxcXEAgKSkJKSkpKi1kcvlaNWqlapNXFwc7O3tVQEYAAQGBsLExATnzp0rd1+Kk5WVhczMTLUvqZJKjRUiIn3D4rWkpBdBmCAIGD58OMaMGaMW/BSUkpICFxcXtceU36ekpJTapuDxgj9XUpuaNWuqHTczM4ODg0OZv6fg7yjO/PnzIZfLVV+enp4ltpUCDw+gQweOgBERaYLFa0lJ1CBs6tSpkMlkpX5dvXoVq1evxqNHjzBt2jQxu6tz06ZNQ0ZGhurrn3/+EbtLRESkZcritQWxeK1xEjUnbMKECRg+fHipberUqYPjx48jLi4OFhYWasdeeeUVDBo0CNu2bYOrqyvu3bundlz5vaurq+rP4toUPK58zM3NTa1N8+bNVW3u37+vdo7c3FykpaWV+XsK/o7iWFhYFHmORERkGJQpKmUVrzWWkh0kchDm7OwMZ2fnMtutWrUKn376qer7u3fvIigoCLt370arVq0AAAEBAZg+fTpycnJgbm4OAIiJiUH9+vVRo0YNVZvY2FhERESozhUTE4OAgAAAgI+PD1xdXREbG6sKujIzM3Hu3DmMHTtWdY709HTEx8fD398fAHD8+HEoFAqN+kJERMZFWbJDuQBm1qwHuHnTDN7euXB3bwmgJSvmGxm9WB1Zu3Ztte+rV68OAPD19YXH/yckDRw4EHPnzkVISAimTJmCK1euYOXKlVi+fLnq5z788EO0b98eS5cuRbdu3bBr1y78+uuv2LhxIwBAJpMhIiICn376Kfz8/FQlKtzd3dGrVy8AQMOGDREcHIzRo0djw4YNyMnJQXh4OPr37w93d/dy94WIiIxPwQDLzQ34/8/yZKT0IggrD7lcjqNHjyIsLAz+/v5wcnLCrFmz1EpCtGnTBlFRUZgxYwY++ugj+Pn5Yf/+/aoaYUB+HbInT54gNDQU6enpeP3113H48GFVjTAgvxxGeHg4OnfuDBMTE/Tp0werVq3SqC9EVam80xucBiEiqjoyQRAEsTtBxcvMzIRcLkdGRgbs7OzE7g7pOW4cTERUNcp7/zaYkTAiKh0DLCIiaWEQRkREREZBajMCDMKIiIi0SGo3esonxT10GYQRERFpiRRv9JRPinvo6sW2RURERPpAijd6ki4GYUREREQiYBBGRFSMO3eAEyfy/yQi0gUGYUREhWzaBHh5AZ065f+5aZPYPSIiQ8TEfNIIV/2QobtzBwgNBRSK/O8VCuC994CgIOD/d0kjKreMDFukpTnCwSFVtUE3kRKDMCo3rvohY3D9+osATCkvD7hxg0EYaebChZfx3XfdIQgmkMkU6NHjIFq0+E3sbpGEcDqSyo2rfsgY+PkBJoXeGU1Ngbp1xekP6aeMDFtVAAYAgmCC777rjowMW5F7ZrykuIcuR8KIiArw8AA2bsyfgszLyw/APv+co2BUPsobeFqaoyoAUxIEE6SlOUAuf1SlN3rK5+joiPDwcEml1DAIIyIqJCQkPwfsxo38ETAGYFReyhv9zZu52L5dgEIhUx0zNRUwblxXeHubMWVDJFK77gzCiIj+X8GFJ6amQP36+Y8nJ+f/yYUnVB6Ojo5wdCxuRFUGf38XsbtH/+/OnfwcUD8/8T5oMQgjIgIXnpD2cURVujZterEK2sQkP2AOCan6fjAxn4gIXHhCuuHhAXTowABMSkoqQyNGYWaOhBERkdpU7N27JkhKMoOPTy7c3fPvVJyKJUMhpTI0DMKo3KS4vJeIKq/gVGxpta04FUuGQFmGpmAgJlYZGgZhVG5SXN5LRJWn/D9dUm0rX98bkMsfcSqWDIKUytAwCCONMMAiMlxl1bYiMhRSWTTBIIyIiAAADg6pkMkUaoGYTKaAg0OaiL0i0g0PD/EXTHB1JBERAQDk8kfo0eMgZLL8ZBllThhHwYh0gyNhRETgwhOlFi1+g6/vDaSlOcDBIY0BGJEOMQgjIgIXnhQklz9i8EVUBRiEERH9P2MIsIhIOpgTRkRk5DgVSyQOjoQRERk5TsUSiYNBGBERMcAiEgGnI4mIiIhEwCCMiIiISAQMwoiIiIhEwCCMiIiISAQMwoiIiIhEwCCMiIiISAQMwoiIiIhEwCCMiIiISAQMwoiIiIhEwIr5EiYIAgAgMzNT5J4QERFReSnv28r7eEkYhEnYo0ePAACenp4i94SIiIg09ejRI8jl8hKPy4SywjQSjUKhwN27d2FrawuZTCZ2d6pMZmYmPD098c8//8DOzk7s7ug1Xkvt4HXUHl5L7eB11B5dXEtBEPDo0SO4u7vDxKTkzC+OhEmYiYkJPDw8xO6GaOzs7PjmoiW8ltrB66g9vJbaweuoPdq+lqWNgCkxMZ+IiIhIBAzCiIiIiETAIIwkx8LCArNnz4aFhYXYXdF7vJbaweuoPbyW2sHrqD1iXksm5hMRERGJgCNhRERERCJgEEZEREQkAgZhRERERCJgEEZEREQkAgZhJJoff/wRPXr0gLu7O2QyGfbv3692XBAEzJo1C25ubrCyskJgYCCuX78uTmclrqxrOXz4cMhkMrWv4OBgcTorYfPnz0fLli1ha2uLmjVrolevXrh27Zpam+fPnyMsLAyOjo6oXr06+vTpg3v37onUY2kqz3Xs0KFDkdfkmDFjROqxdK1fvx4vvfSSqpBoQEAAfvjhB9Vxvh7Lp6zrKNbrkUEYiebJkydo1qwZ1q5dW+zxRYsWYdWqVdiwYQPOnTsHGxsbBAUF4fnz51XcU+kr61oCQHBwMJKTk1VfO3furMIe6odTp04hLCwMZ8+eRUxMDHJyctClSxc8efJE1Wb8+PH47rvvsHfvXpw6dQp3795F7969Rey19JTnOgLA6NGj1V6TixYtEqnH0uXh4YEFCxYgPj4ev/76Kzp16oS33noLf/zxBwC+HsurrOsIiPR6FIgkAIDwzTffqL5XKBSCq6ursHjxYtVj6enpgoWFhbBz504Reqg/Cl9LQRCEYcOGCW+99ZYo/dFn9+/fFwAIp06dEgQh/zVobm4u7N27V9UmISFBACDExcWJ1U3JK3wdBUEQ2rdvL3z44YfidUqP1ahRQ/jyyy/5eqwk5XUUBPFejxwJI0lKSkpCSkoKAgMDVY/J5XK0atUKcXFxIvZMf508eRI1a9ZE/fr1MXbsWKSmpordJcnLyMgAADg4OAAA4uPjkZOTo/a6bNCgAWrXrs3XZSkKX0elHTt2wMnJCU2aNMG0adPw9OlTMbqnN/Ly8rBr1y48efIEAQEBfD1WUOHrqCTG65EbeJMkpaSkAABcXFzUHndxcVEdo/ILDg5G79694ePjg8TERHz00Ufo2rUr4uLiYGpqKnb3JEmhUCAiIgKvvfYamjRpAiD/dVmtWjXY29urteXrsmTFXUcAGDhwILy8vODu7o5Lly5hypQpuHbtGqKjo0XsrTRdvnwZAQEBeP78OapXr45vvvkGjRo1wsWLF/l61EBJ1xEQ7/XIIIzICPTv31/196ZNm+Kll16Cr68vTp48ic6dO4vYM+kKCwvDlStX8PPPP4vdFb1W0nUMDQ1V/b1p06Zwc3ND586dkZiYCF9f36rupqTVr18fFy9eREZGBr7++msMGzYMp06dErtbeqek69ioUSPRXo+cjiRJcnV1BYAiq3zu3bunOkYVV6dOHTg5OeHGjRtid0WSwsPDcfDgQZw4cQIeHh6qx11dXZGdnY309HS19nxdFq+k61icVq1aAQBfk8WoVq0a6tatC39/f8yfPx/NmjXDypUr+XrUUEnXsThV9XpkEEaS5OPjA1dXV8TGxqoey8zMxLlz59Tm8Kli7ty5g9TUVLi5uYndFUkRBAHh4eH45ptvcPz4cfj4+Kgd9/f3h7m5udrr8tq1a7h9+zZflwWUdR2Lc/HiRQDga7IcFAoFsrKy+HqsJOV1LE5VvR45HUmiefz4sdqnjKSkJFy8eBEODg6oXbs2IiIi8Omnn8LPzw8+Pj6YOXMm3N3d0atXL/E6LVGlXUsHBwfMnTsXffr0gaurKxITEzF58mTUrVsXQUFBIvZaesLCwhAVFYVvv/0Wtra2qrwauVwOKysryOVyhISEIDIyEg4ODrCzs8O4ceMQEBCA1q1bi9x76SjrOiYmJiIqKgpvvvkmHB0dcenSJYwfPx7t2rXDSy+9JHLvpWXatGno2rUrateujUePHiEqKgonT57EkSNH+HrUQGnXUdTXY5WvxyT6fydOnBAAFPkaNmyYIAj5ZSpmzpwpuLi4CBYWFkLnzp2Fa9euidtpiSrtWj59+lTo0qWL4OzsLJibmwteXl7C6NGjhZSUFLG7LTnFXUMAwpYtW1Rtnj17Jrz//vtCjRo1BGtra+Htt98WkpOTxeu0BJV1HW/fvi20a9dOcHBwECwsLIS6desKkyZNEjIyMsTtuASNHDlS8PLyEqpVqyY4OzsLnTt3Fo4ePao6ztdj+ZR2HcV8PcoEQRB0G+YRERERUWHMCSMiIiISAYMwIiIiIhEwCCMiIiISAYMwIiIiIhEwCCMiIiISAYMwIiIiIhEwCCMiIiISAYMwIiIiIhEwCCMiyUpJScG4ceNQp04dWFhYwNPTEz169FDbK+/MmTN48803UaNGDVhaWqJp06ZYtmwZ8vLyVG1u3ryJkJAQ+Pj4wMrKCr6+vpg9ezays7PVft8XX3yBZs2aoXr16rC3t8fLL7+M+fPnq47PmTMHMpkMwcHBRfq6ePFiyGQydOjQoVzPTXkumUwGMzMzeHt7Y/z48Xj8+LGGV4mI9BX3jiQiSbp58yZee+012NvbY/HixWjatClycnJw5MgRhIWF4erVq/jmm2/w7rvvYsSIEThx4gTs7e1x7NgxTJ48GXFxcdizZw9kMhmuXr0KhUKBzz//HHXr1sWVK1cwevRoPHnyBEuWLAEAbN68GREREVi1ahXat2+PrKwsXLp0CVeuXFHrl5ubG06cOIE7d+7Aw8ND9fjmzZtRu3ZtjZ5j48aNcezYMeTm5uL06dMYOXIknj59is8//7xI2+zsbFSrVq0CV1J3pNgnIr2i842RiIgqoGvXrkKtWrWEx48fFzn233//CY8fPxYcHR2F3r17Fzl+4MABAYCwa9euEs+/aNEiwcfHR/X9W2+9JQwfPrzUPs2ePVto1qyZ0L17d+HTTz9VPX769GnByclJGDt2rNC+fftyPLsX5ypo9OjRgqurq9rxL774QvD29hZkMpkgCPnPPSQkRHBychJsbW2Fjh07ChcvXlSd4+LFi0KHDh2E6tWrC7a2tkKLFi2E8+fPC4IgCDdv3hS6d+8u2NvbC9bW1kKjRo2EQ4cOCYIgCFu2bBHkcrlaf7755huh4G2ion0iouJxOpKIJCctLQ2HDx9GWFgYbGxsihy3t7fH0aNHkZqaiokTJxY53qNHD9SrVw87d+4s8XdkZGTAwcFB9b2rqyvOnj2LW7duldm/kSNHYuvWrarvN2/ejEGDBlV6VMjKykptivTGjRvYt28foqOjcfHiRQDAO++8g/v37+OHH35AfHw8WrRogc6dOyMtLQ0AMGjQIHh4eOD8+fOIj4/H1KlTYW5uDgAICwtDVlYWfvzxR1y+fBkLFy5E9erVNepjRfpERMXjdCQRSc6NGzcgCAIaNGhQYpu//voLANCwYcNijzdo0EDVprjzr169WjUVCQCzZ89G79694e3tjXr16iEgIABvvvkm+vbtCxMT9c+r3bt3x5gxY/Djjz/C398fe/bswc8//4zNmzdr+lRV4uPjERUVhU6dOqkey87OxldffQVnZ2cAwM8//4xffvkF9+/fh4WFBQBgyZIl2L9/P77++muEhobi9u3bmDRpkura+fn5qc53+/Zt9OnTB02bNgUA1KlTR+N+VqRPRFQ8BmFEJDmCIOikLQD8+++/CA4OxjvvvIPRo0erHndzc0NcXByuXLmCH3/8EWfOnMGwYcPw5Zdf4vDhw2qBmLm5OQYPHowtW7bg77//Rr169fDSSy9p1A8AuHz5MqpXr468vDxkZ2ejW7duWLNmjeq4l5eXKtgBgN9//x2PHz+Go6Oj2nmePXuGxMREAEBkZCRGjRqF7du3IzAwEO+88w58fX0BAB988AHGjh2Lo0ePIjAwEH369NG43xXpExEVj0EYEUmOn5+fKqG+JPXq1QMAJCQkoE2bNkWOJyQkoFGjRmqP3b17Fx07dkSbNm2wcePGYs/bpEkTNGnSBO+//z7GjBmDtm3b4tSpU+jYsaNau5EjR6JVq1a4cuUKRo4cqelTBADUr18fBw4cgJmZGdzd3YtMZxaein38+DHc3Nxw8uTJIueyt7cHkL/qcuDAgTh06BB++OEHzJ49G7t27cLbb7+NUaNGISgoCIcOHcLRo0cxf/58LF26FOPGjYOJiUmRgDYnJ6fI76lIn4ioeMwJIyLJcXBwQFBQENauXYsnT54UOZ6eno4uXbrAwcEBS5cuLXL8wIEDuH79OgYMGKB67N9//0WHDh3g7++PLVu2FJliLI4yiCuuD40bN0bjxo1x5coVDBw4UJOnp1KtWjXUrVsX3t7e5cona9GiBVJSUmBmZoa6deuqfTk5Oana1atXD+PHj8fRo0fRu3dvbNmyRXXM09MTY8aMQXR0NCZMmIAvvvgCAODs7IxHjx6pPVdlzpc2+kRERTEIIyJJWrt2LfLy8vDqq69i3759uH79OhISErBq1SoEBATAxsYGn3/+Ob799luEhobi0qVLuHnzJjZt2oThw4ejb9++ePfddwG8CMBq166NJUuW4MGDB0hJSUFKSorq940dOxaffPIJTp8+jVu3buHs2bMYOnQonJ2dERAQUGwfjx8/juTk5Cob8QkMDERAQAB69eqFo0eP4ubNmzhz5gymT5+OX3/9Fc+ePUN4eDhOnjyJW7du4fTp0zh//rwqby4iIgJHjhxBUlISLly4gBMnTqiOtWrVCtbW1vjoo4+QmJiIqKgotcUHFe0TEZWM05FEJEl16tTBhQsXMG/ePEyYMAHJyclwdnaGv78/1q9fDwDo27cvTpw4gXnz5qFt27Z4/vw5/Pz8MH36dEREREAmkwEAYmJicOPGDdy4cUOtthfwIqcsMDAQmzdvxvr165GamgonJycEBAQgNja2SL6TUnErN3VJJpPh+++/x/Tp0zFixAg8ePAArq6uaNeuHVxcXGBqaorU1FQMHToU9+7dg5OTE3r37o25c+cCAPLy8hAWFoY7d+7Azs4OwcHBWL58OYD80cf//e9/mDRpEr744gt07twZc+bMKTOxvqw+EVHJZIKmWa1EREREVGmcjiQiIiISAYMwIiIdqF69eolfP/30k9jdIyIJ4HQkEZEO3Lhxo8RjtWrVgpWVVRX2hoikiEEYERERkQg4HUlEREQkAgZhRERERCJgEEZEREQkAgZhRERERCJgEEZEREQkAgZhRERERCJgEEZEREQkAgZhRERERCL4PwM6cqQOq5s2AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAHHCAYAAAARcURhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB74ElEQVR4nO3deViUVfsH8O+wL8IgOwgK4i6moqajuRWK5pIvmktqqBhlkppmau6ZpVZuueWb21uaK5V7IpqVIplrFpoabgkuIANugMz5/cFvHhmYgRkYGGC+n+uaC+d5zjxz5mmM23Pucx+ZEEKAiIiIiEzGwtQdICIiIjJ3DMiIiIiITIwBGREREZGJMSAjIiIiMjEGZEREREQmxoCMiIiIyMQYkBERERGZGAMyIiIiIhNjQEZERERkYgzIiIioSOvXr4dMJsPVq1dN3RWiKosBGRGZ3IkTJxAdHY3GjRvD0dERNWvWRP/+/fH3338XatupUyfIZDLIZDJYWFjA2dkZ9evXx9ChQxEbG2vQ++7atQsdO3aEp6cnHBwcULt2bfTv3x/79+831kcr5OOPP8b3339f6PixY8cwa9YspKenl9l7FzRr1izpXspkMjg4OKBRo0aYNm0aMjIyjPIemzZtwuLFi41yLaKqjAEZEZnc/PnzsWPHDrz00ktYsmQJoqKi8PPPPyMkJATnz58v1N7Pzw9ff/01/ve//+HTTz9F7969cezYMXTt2hUDBgxATk5Ose/52WefoXfv3pDJZJgyZQoWLVqEvn374tKlS9i8eXNZfEwARQdks2fPLteATG3lypX4+uuvsXDhQjRo0ABz585Ft27dYIytjhmQEenHytQdICIaP348Nm3aBBsbG+nYgAED0KRJE8ybNw/ffPONRnu5XI4hQ4ZoHJs3bx7GjBmDFStWICAgAPPnz9f5fk+fPsWcOXPQpUsXHDhwoND5O3fulPITVRyPHj2Cg4NDkW369esHd3d3AMBbb72Fvn37IiYmBsePH4dCoSiPbhKZPY6QEZHJtW3bViMYA4C6deuicePGSExM1OsalpaWWLp0KRo1aoRly5ZBqVTqbHvv3j1kZGSgXbt2Ws97enpqPH/y5AlmzZqFevXqwc7ODj4+PggPD8eVK1ekNp999hnatm0LNzc32Nvbo0WLFti+fbvGdWQyGR4+fIgNGzZI04TDhg3DrFmzMHHiRABAYGCgdC5/ztY333yDFi1awN7eHq6urhg4cCBu3Lihcf1OnTohODgYJ0+eRIcOHeDg4IAPPvhAr/uX34svvggASEpKKrLdihUr0LhxY9ja2sLX1xejR4/WGOHr1KkT9uzZg2vXrkmfKSAgwOD+EJkDjpARUYUkhMDt27fRuHFjvV9jaWmJQYMGYfr06fj111/Ro0cPre08PT1hb2+PXbt24Z133oGrq6vOa+bm5qJnz56Ii4vDwIEDMXbsWGRmZiI2Nhbnz59HUFAQAGDJkiXo3bs3Bg8ejOzsbGzevBmvvvoqdu/eLfXj66+/xsiRI/H8888jKioKABAUFARHR0f8/fff+Pbbb7Fo0SJptMrDwwMAMHfuXEyfPh39+/fHyJEjcffuXXzxxRfo0KEDTp8+DRcXF6m/qamp6N69OwYOHIghQ4bAy8tL7/unpg403dzcdLaZNWsWZs+ejdDQUIwaNQoXL17EypUrceLECRw9ehTW1taYOnUqlEolbt68iUWLFgEAqlWrZnB/iMyCICKqgL7++msBQKxZs0bjeMeOHUXjxo11vu67774TAMSSJUuKvP6MGTMEAOHo6Ci6d+8u5s6dK06ePFmo3dq1awUAsXDhwkLnVCqV9OdHjx5pnMvOzhbBwcHixRdf1Dju6OgoIiIiCl3r008/FQBEUlKSxvGrV68KS0tLMXfuXI3jf/zxh7CystI43rFjRwFArFq1Sufnzm/mzJkCgLh48aK4e/euSEpKEl9++aWwtbUVXl5e4uHDh0IIIdatW6fRtzt37ggbGxvRtWtXkZubK11v2bJlAoBYu3atdKxHjx6iVq1aevWHyJxxypKIKpwLFy5g9OjRUCgUiIiIMOi16hGYzMzMItvNnj0bmzZtQvPmzfHjjz9i6tSpaNGiBUJCQjSmSXfs2AF3d3e88847ha4hk8mkP9vb20t/vn//PpRKJdq3b49Tp04Z1P+CYmJioFKp0L9/f9y7d096eHt7o27dujh8+LBGe1tbWwwfPtyg96hfvz48PDwQGBiIN998E3Xq1MGePXt05p4dPHgQ2dnZGDduHCwsnv0aeeONN+Ds7Iw9e/YY/kGJzBynLImoQklJSUGPHj0gl8uxfft2WFpaGvT6Bw8eAACcnJyKbTto0CAMGjQIGRkZSEhIwPr167Fp0yb06tUL58+fh52dHa5cuYL69evDyqro/13u3r0bH330Ec6cOYOsrCzpeP6grSQuXboEIQTq1q2r9by1tbXG8xo1ahTKxyvOjh074OzsDGtra/j5+UnTsLpcu3YNQF4gl5+NjQ1q164tnSci/TEgI6IKQ6lUonv37khPT8cvv/wCX19fg6+hLpNRp04dvV/j7OyMLl26oEuXLrC2tsaGDRuQkJCAjh076vX6X375Bb1790aHDh2wYsUK+Pj4wNraGuvWrcOmTZsM/gz5qVQqyGQy7Nu3T2twWjAnK/9Inb46dOgg5a0RkWkwICOiCuHJkyfo1asX/v77bxw8eBCNGjUy+Bq5ubnYtGkTHBwc8MILL5SoHy1btsSGDRuQnJwMIC/pPiEhATk5OYVGo9R27NgBOzs7/Pjjj7C1tZWOr1u3rlBbXSNmuo4HBQVBCIHAwEDUq1fP0I9TJmrVqgUAuHjxImrXri0dz87ORlJSEkJDQ6VjpR0hJDIXzCEjIpPLzc3FgAEDEB8fj23btpWo9lVubi7GjBmDxMREjBkzBs7OzjrbPnr0CPHx8VrP7du3D8Cz6bi+ffvi3r17WLZsWaG24v8Lp1paWkImkyE3N1c6d/XqVa0FYB0dHbUWf3V0dASAQufCw8NhaWmJ2bNnFyrUKoRAamqq9g9ZhkJDQ2FjY4OlS5dq9GnNmjVQKpUaq1sdHR2LLEFCRHk4QkZEJjdhwgTs3LkTvXr1QlpaWqFCsAWLwCqVSqnNo0ePcPnyZcTExODKlSsYOHAg5syZU+T7PXr0CG3btkWbNm3QrVs3+Pv7Iz09Hd9//z1++eUX9OnTB82bNwcAvP766/jf//6H8ePH47fffkP79u3x8OFDHDx4EG+//TZeeeUV9OjRAwsXLkS3bt3w2muv4c6dO1i+fDnq1KmDc+fOabx3ixYtcPDgQSxcuBC+vr4IDAxE69at0aJFCwDA1KlTMXDgQFhbW6NXr14ICgrCRx99hClTpuDq1avo06cPnJyckJSUhO+++w5RUVF47733SnX/DeXh4YEpU6Zg9uzZ6NatG3r37o2LFy9ixYoVaNWqlcZ/rxYtWmDLli0YP348WrVqhWrVqqFXr17l2l+iSsGUSzyJiIR4Vq5B16OottWqVRN169YVQ4YMEQcOHNDr/XJycsR///tf0adPH1GrVi1ha2srHBwcRPPmzcWnn34qsrKyNNo/evRITJ06VQQGBgpra2vh7e0t+vXrJ65cuSK1WbNmjahbt66wtbUVDRo0EOvWrZPKSuR34cIF0aFDB2Fvby8AaJTAmDNnjqhRo4awsLAoVAJjx44d4oUXXhCOjo7C0dFRNGjQQIwePVpcvHhR494UVRKkIHX/7t69W2S7gmUv1JYtWyYaNGggrK2thZeXlxg1apS4f/++RpsHDx6I1157Tbi4uAgALIFBpINMCCNsVkZEREREJcYcMiIiIiITY0BGREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRERERCbGwrAVmEqlwq1bt+Dk5MTtR4iIiCoJIQQyMzPh6+sLCwv9xr4YkFVgt27dgr+/v6m7QURERCVw48YN+Pn56dWWAVkF5uTkBCDvP2hR+/IRERFRxZGRkQF/f3/p97g+GJBVYOppSmdnZwZkRERElYwh6UZM6iciIiIyMQZkRERERCbGgIyIiIjIxJhDVsmpVCpkZ2ebuhtVmo2Njd7LlomIiEqi0gRkvXv3xpkzZ3Dnzh1Ur14doaGhmD9/Pnx9faU2Qgh8/vnnWL16Na5duwZ3d3e8/fbbmDp1qtTmp59+wvjx4/Hnn3/C398f06ZNw7BhwzTea/ny5fj000+RkpKCpk2b4osvvsDzzz8vnX/y5AkmTJiAzZs3IysrC2FhYVixYgW8vLykNtevX8eoUaNw+PBhVKtWDREREfjkk09gZWW8W56dnY2kpCSoVCqjXZMKs7CwQGBgIGxsbEzdFSIiqqIqTUDWuXNnfPDBB/Dx8cG///6L9957D/369cOxY8ekNmPHjsWBAwfw2WefoUmTJkhLS0NaWpp0PikpCT169MBbb72FjRs3Ii4uDiNHjoSPjw/CwsIAAFu2bMH48eOxatUqtG7dGosXL0ZYWBguXrwIT09PAMC7776LPXv2YNu2bZDL5YiOjkZ4eDiOHj0KAMjNzUWPHj3g7e2NY8eOITk5Ga+//jqsra3x8ccfG+V+CCGQnJwMS0tL+Pv7cwSnjKiL8yYnJ6NmzZos0EtERGVDVFI//PCDkMlkIjs7WwghxF9//SWsrKzEhQsXdL7m/fffF40bN9Y4NmDAABEWFiY9f/7558Xo0aOl57m5ucLX11d88sknQggh0tPThbW1tdi2bZvUJjExUQAQ8fHxQggh9u7dKywsLERKSorUZuXKlcLZ2VlkZWXp/RmVSqUAIJRKZaFz2dnZ4q+//hLp6el6X49KJj09Xfz111/Sd42IiKgoRf3+1qVSDqukpaVh48aNaNu2LaytrQEAu3btQu3atbF7924EBgYiICAAI0eO1Bghi4+PR2hoqMa1wsLCEB8fDyBvCvDkyZMabSwsLBAaGiq1OXnyJHJycjTaNGjQADVr1pTaxMfHo0mTJhpTmGFhYcjIyMCff/6p83NlZWUhIyND46FLbm4uAHAarRyo77H6nhMRERlbpQrIJk2aBEdHR7i5ueH69ev44YcfpHP//PMPrl27hm3btuF///sf1q9fj5MnT6Jfv35Sm5SUFI0gCQC8vLyQkZGBx48f4969e8jNzdXaJiUlRbqGjY0NXFxcimyj7Rrqc7p88sknkMvl0kOfbZM4hVb2eI+JiKismTQgmzx5MmQyWZGPCxcuSO0nTpyI06dP48CBA7C0tMTrr78OIQSAvFyfrKws/O9//0P79u3RqVMnrFmzBocPH8bFixdN9RENMmXKFCiVSulx48YNU3eJiIiIyoFJk/onTJhQaIVjQbVr15b+7O7uDnd3d9SrVw8NGzaEv78/jh8/DoVCAR8fH1hZWaFevXpS+4YNGwLIW/FYv359eHt74/bt2xrXv337NpydnWFvbw9LS0tYWlpqbePt7Q0A8Pb2RnZ2NtLT0zVGyQq2+e233wpdQ31OF1tbW9ja2hZ5P4iIiKjqMekImYeHBxo0aFDkQ1eOlLrUQ1ZWFgCgXbt2ePr0Ka5cuSK1+fvvvwEAtWrVAgAoFArExcVpXCc2NhYKhQJAXq5QixYtNNqoVCrExcVJbVq0aAFra2uNNhcvXsT169elNgqFAn/88Qfu3Lmj8T7Ozs5o1KhRCe5U1TFs2DBp9NPa2hpeXl7o0qUL1q5da1D5jvXr1xeaNiYiIipKamoqkpOTkZycjJMnb2P79lScPHlbOpaammqyvlWKshcJCQk4ceIEXnjhBVSvXh1XrlzB9OnTERQUJAVBoaGhCAkJwYgRI7B48WKoVCqMHj0aXbp0kUbN3nrrLSxbtgzvv/8+RowYgUOHDmHr1q3Ys2eP9F7jx49HREQEWrZsieeffx6LFy/Gw4cPMXz4cACAXC5HZGQkxo8fD1dXVzg7O+Odd96BQqFAmzZtAABdu3ZFo0aNMHToUCxYsAApKSmYNm0aRo8eXWFGwFJTU4ssKGtjYwM3N7cyee9u3bph3bp1yM3Nxe3bt7F//36MHTsW27dvx86dO41aq42IiAjI+723bNkyAMCpU82xa1dPCGEBmUyFXr12IyTkNAAgOjq6zH7/FaVS/OZzcHBATEwMZs6ciYcPH8LHxwfdunXDtGnTpADHwsICu3btwjvvvIMOHTrA0dER3bt3x+effy5dJzAwEHv27MG7776LJUuWwM/PD1999ZVUgwwABgwYgLt372LGjBlISUlBs2bNsH//fo0k/UWLFsHCwgJ9+/bVKAyrZmlpid27d2PUqFFQKBRwdHREREQEPvzww3K4W8XL/6UsSll9KW1tbaWp2xo1aiAkJARt2rTBSy+9hPXr12PkyJFYuHAh1q1bh3/++Qeurq7o1asXFixYgGrVquGnn36SAmR1wv3MmTMxa9YsfP3111iyZAkuXrwIR0dHvPjii1i8eLFUQ46IiMyTehBCqXSSgjEAEMICu3b1RFDQZcjlmSbb/aZSBGRNmjTBoUOHim3n6+uLHTt2FNmmU6dOOH36dJFtoqOjER0drfO8nZ0dli9fjuXLl+tsU6tWLezdu7foDpuIvl+28vxSvvjii2jatCliYmIwcuRIWFhYYOnSpQgMDMQ///yDt99+G++//z5WrFiBtm3bYvHixZgxY4a0YKNatWoAgJycHMyZMwf169fHnTt3MH78eAwbNqzC/rcgIqLylZbmhoJVv4SwQFqaK+TyTBP1qpIEZGQeGjRogHPnzgEAxo0bJx0PCAjARx99hLfeegsrVqyAjY0N5HI5ZDJZoUUSI0aMkP5cu3ZtLF26FK1atcKDBw+koI2IiMyXq2sqZDKVRlAmk6ng6ppWxKvKXqWqQ0ZVmxBCmoI8ePAgXnrpJdSoUQNOTk4YOnQoUlNT8ejRoyKvcfLkSfTq1Qs1a9aEk5MTOnbsCCBvpS0REZFcnolevXZDJstbSKbOITPl6BjAETKqQBITExEYGIirV6+iZ8+eGDVqFObOnQtXV1f8+uuviIyMRHZ2NhwcHLS+/uHDhwgLC0NYWBg2btwIDw8PXL9+HWFhYSbLCSAiooonJOQ0goIuIy3NFa6uaSYPxgAGZFRBHDp0CH/88QfeffddnDx5EiqVCp9//rm0afrWrVs12tvY2BTayujChQtITU3FvHnzpF0Ofv/99/L5AEREVKnI5ZkVIhBT45QllbusrCykpKTg33//xalTp/Dxxx/jlVdeQc+ePfH666+jTp06yMnJwRdffIF//vkHX3/9NVatWqVxjYCAADx48ABxcXG4d+8eHj16hJo1a8LGxkZ63c6dOzFnzhwTfUoiIiL9MSCjcrd//374+PggICAA3bp1w+HDh7F06VL88MMPsLS0RNOmTbFw4ULMnz8fwcHB2LhxIz755BONa7Rt2xZvvfUWBgwYAA8PDyxYsAAeHh5Yv349tm3bhkaNGmHevHn47LPPTPQpiYioLOQv7qrtoau4q65C8yVtZ2wyod4MkiqcjIwMyOVyKJVKODs7a5x78uQJkpKSEBgYCDs7O4Oua+o6ZJVNae41EREZT2l/f5VXUfSifn/rwhwyM+Tm5obo6GiTVeonIiIyhDqQunfvnsZxpdIJaWlucHVN1cgH0/X7rSL/XmNAZqYq8peSiIhIHYSlp6cXWtgFFL39UWXEgIyIiIgqlKKmJpVKJ9y44V/k9keVEQMyIiIiqlAKTjmqpyZv3fLBwYOhhbY+AirG9kelwYCMiIiIKqz8U5OAACDT2q4ibH9UGix7QURERBWSUumkMTVZVDBWEbY/Kg2OkBEREZFJ5C9DoVQqkZOTAwC4f/8+ACAtzU3r9OQzKvTrtx3+/jcrdTAGMCAjIiIiE9CnppiraypkMpWOoEyF3r13Izg4sdAZUxV3LQ0GZERERFTuiqqFmb++WGjoQcTGdkH+6UqZTIXIyK/g55csHQsPD4e7u3ulraPJHDKqUn766SfIZDKkp6fr/ZqAgAAsXry4zPpERESaUlNTtRZ5TUoKwNGjCixePA4bNkRg8eJxsLd/gi5dYgGoADzLF8sfjAGAr68vfHx8KmUwBnCEjMrZsGHDsGHDBrz55puFNgwfPXo0VqxYgYiICKxfv940HSQiojJ15coVfPPNNxrHdK2kVNcXGzduMYKDzyMtzRWurmka+WLh4eHw9fWttIGYGkfIqNz5+/tj8+bNePz4sXTsyZMn2LRpE2rWrGnCnhERUVlKTU0tFIzdvOmDnTt1r6TMX18sMPBaoeT9qhCMAQzIyARCQkLg7++PmJgY6VhMTAxq1qyJ5s2bS8eysrIwZswYeHp6ws7ODi+88AJOnDihca29e/eiXr16sLe3R+fOnXH16tVC7/frr7+iffv2sLe3h7+/P8aMGYOHDx+W2ecjIiLtCuaNHT2qwFdfjURR4Uj++mLh4eGIioqSHro2Ea+MGJARbt4EDh/O+1leRowYgXXr1knP165di+HDh2u0ef/997Fjxw5s2LABp06dQp06dRAWFoa0tLy/mDdu3EB4eDh69eqFM2fOYOTIkZg8ebLGNa5cuYJu3bqhb9++OHfuHLZs2YJff/0V0dHRZf8hiYjMVGpqKpKTkws98ueNHT2q+P9kfW2hiABQuL6Yu7s7fHx8pEdVCcYA5pCZvTVrgKgoQKUCLCyA1auByMiyf98hQ4ZgypQpuHbtGgDg6NGj2Lx5M3766ScAwMOHD7Fy5UqsX78e3bt3BwD897//RWxsLNasWYOJEydi5cqVCAoKwueffw4AqF+/Pv744w/Mnz9fep9PPvkEgwcPxrhx4wAAdevWxdKlS9GxY0esXLkSdnZ2Zf9hiYjMiD7lLJRKJxw8GArthV5V6NLlIHx9bxXKF6vKGJCZsZs3nwVjQN7PN98EwsIAP7+yfW8PDw/06NED69evhxACPXr0gLu7u3T+ypUryMnJQbt27aRj1tbWeP7555GYmFdzJjExEa1bt9a4rkKh0Hh+9uxZnDt3Dhs3bpSOCSGgUqmQlJSEhg0blsXHIyIyW0WVs1DTXfBVhZEjvyq0glKtMtYX0xcDMjN26dKzYEwtNxe4fLnsAzIgb9pSPXW4fPnyMnmPBw8e4M0338SYMWMKneMCAiKi0slfaV8tKSmp2NdpL/gq0KXLQSkY69y5Mzw8PODi4gIAlba+mL4YkJmxunXzpinzB2WWlkCdOuXz/t26dUN2djZkMhnCwsI0zgUFBcHGxgZHjx5FrVq1AAA5OTk4ceKENP3YsGFD7Ny5U+N1x48f13geEhKCv/76C3XK60MREZmB1NRU3L17F1u2bCmynVLphBs3/AEA/v43pOlHuTwTvXrtlkpdyGQqhIYeRLt28dJr69atCx8fn7L7EBUMAzIz5ueXlzP25pt5I2OWlsCXX5bP6BgAWFpaStOPlpaWGuccHR0xatQoTJw4Ea6urqhZsyYWLFiAR48eIfL/k9zeeustfP7555g4cSJGjhyJkydPFqpfNmnSJLRp0wbR0dEYOXIkHB0d8ddffyE2NrbYHAciIipMnxwxIK+22M6dPfEsaV+gd+9dCAk5DQAICTmNoKDLWmuLAVV7elIbBmRmLjIyL2fs8uW8kbHyCsbUnJ2ddZ6bN28eVCoVhg4diszMTLRs2RI//vgjqlevDiBvynHHjh1499138cUXX+D555/Hxx9/jBEjRkjXeO6553DkyBFMnToV7du3hxACQUFBGDBgQJl/NiKiqqjgFKV6myNr6yzk5NjC1TUVAAoEYwAgw65dPREUdFljpExb0v6QIUOq9PSkNjIhhDB1J0i7jIwMyOVyKJXKQoHLkydPkJSUhMDAQK4ULGO810REzyQnJ2P16tUAtFfYl8lUUCjicexYO62vj4hYj8DAa9LekwVVhVyxon5/68IRMiIiIjKYUumULxgD8m93FB+vQN7ek5orKfMXeVXXFKM8LAxLREREBtNduiIvKGvbNh7qDcGBwkVezS1HrDgcISMiIiKDaS9dkUcmU6F16wS0bp2AGzfykpP9/W9KwdiAAQMq/bSksTEgIyIiIoPJ5ZkIDT34/9sf5a+4LxAaejBf4n6iltfKy6eTlQinLCs5rskoe7zHRETa+fomo/D2RzL4+t4q8nWcriyMI2SVlLpuV3Z2Nuzt7U3cm6pNvcS7YK00IiJzlD+Y0jZtmT9xv0uXLggMDCz0ek5XFsaArJKysrKCg4MD7t69C2tra1hYcLCzLKhUKty9excODg6wsuJfFyIiNzc39O/fH1u3btVacT9/4n5gYCBXUuqJv2EqKZlMBh8fHyQlJeHatWum7k6VZmFhgZo1a0ImKzgsT0Rknjw9PaU/F1Vxn1OT+mNh2ApMn8JyKpWqUNVkMi4bGxuOQBIRFaBtY/H8zHlqkoVhzZCFhQWrxxMRUbkz12CrrDAgIyIiMgMc0arYGJARERFVcampqVi2bFmx7aKjoxmUmQgDMiIioiqgqBGwe/fu6XUN5iSbDgMyIiKiSk7fETCquLh0jIiIqJIrOLKlVDohKSkASqWTiXpEhuIIGRERURVy6lTzQoVaQ0JOa7RRKp2QluYGV9dUjbphZDoMyIiIiCqh/Dlj6hwxpdJJCsYAQAgL7NrVE0FBl6XAS5+AjcofAzIiIqJKRlfOWFqam8a+kkBeUJaW5gq5PFOvgI1MgzlkRERElYyunDFr6yzIZCqNc/k3+y4qYCPT4ggZERFRJVZwCvK5587h3LnntG727eqaCplMpRGU5Q/YuPek6TAgIyIiqgT0zRk7d+45REZ+hfR0FwAy+PvfkK4hl2di5sxbmDOnBnJzZbC0FJg/PwOvvTaIlfpNjAEZERFRBWdozthffzVGfLxCa+J+VJQlIiNluHwZqFNHBj8/FwAuZf8hqEgMyIiIiCo4XRX0dU1BHjumgDpNXFvivp9f3oMqDib1ExERVVJyeSZ69dotJfLLZCooFPEo+OudifsVH0fIiIiIKpn8hV1DQk4jKOgy0tJcpeR89XSlWv7EfaqYGJARERFVIroKu+avI9ar1+5CbdTnuZKyYmJARkREVEkUV9i1S5cucHJyQng48O67/yA1tToCAp7C17cVgFZcSVmBMSAjIiKqIPKXtshPXeaiuEr8gYGB8PHxKZe+knExICMiIqoAdJW2yK+4wq5UeXGVJRERUQWgq7RFftpWVTI/rGrgCBkREVEFlH8lZf6E/Y8+CsSMGXdx9aoV88OqEAZkREREFYyulZQA4O7uDh8fL7RoYeJOklExICMiIipHxSXuF7eSkqomBmRERETlRJ/E/eJWUlLVxKR+IiKicqJP4r56JWV+XElZ9TEgIyIiMhGl0glJSQFQKp2kY8WtpKSqiVOWREREJlBU4n7B/SnzB2MsbVE1MSAjIiIyIl1J+4D+ifvh4eFwd3cv9HqWtqi6GJARERGVUMHgKz09HVu3bi32dcUl7ueVtuAWSOak0uSQ9e7dGzVr1oSdnR18fHwwdOhQ3Lp1Szo/a9YsyGSyQg9HR0eN62zbtg0NGjSAnZ0dmjRpgr1792qcF0JgxowZ8PHxgb29PUJDQ3Hp0iWNNmlpaRg8eDCcnZ3h4uKCyMhIPHjwQKPNuXPn0L59e9jZ2cHf3x8LFiww8h0hIiJTUq+YXL16tfTQJxgDmLhPhVWagKxz587YunUrLl68iB07duDKlSvo16+fdP69995DcnKyxqNRo0Z49dVXpTbHjh3DoEGDEBkZidOnT6NPnz7o06cPzp8/L7VZsGABli5dilWrViEhIQGOjo4ICwvDkydPpDaDBw/Gn3/+idjYWOzevRs///wzoqKipPMZGRno2rUratWqhZMnT+LTTz/FrFmzsHr16jK+S0REVF70WTGpLWkfYOI+FSYTQghTd6Ikdu7ciT59+iArKwvW1taFzp89exbNmjXDzz//jPbt2wMABgwYgIcPH2L37t1SuzZt2qBZs2ZYtWoVhBDw9fXFhAkT8N577wEAlEolvLy8sH79egwcOBCJiYlo1KgRTpw4gZYtWwIA9u/fj5dffhk3b96Er68vVq5cialTpyIlJUVKvpw8eTK+//57XLhwQe/PmJGRAblcDqVSCWdn5xLfKyIiMr7k5OQi/6FdVNK+Wt72SIUT96Ojo5krVomV5Pd3pcwhS0tLw8aNG9G2bVutwRgAfPXVV6hXr54UjAFAfHw8xo8fr9EuLCwM33//PQAgKSkJKSkpCA0Nlc7L5XK0bt0a8fHxGDhwIOLj4+Hi4iIFYwAQGhoKCwsLJCQk4D//+Q/i4+PRoUMHjZUwYWFhmD9/Pu7fv4/q1asb4zYQEVEFVdKkfYCJ++aqUgVkkyZNwrJly/Do0SO0adNGY6QrvydPnmDjxo2YPHmyxvGUlBR4eXlpHPPy8kJKSop0Xn2sqDaenp4a562srODq6qrRJjAwsNA11Od0BWRZWVnIysqSnmdkZGhtR0REFU/+zcCZtE+GMmkO2eTJk7Um4ud/5J/imzhxIk6fPo0DBw7A0tISr7/+OrTNuH733XfIzMxEREREeX6cUvvkk08gl8ulh7+/v6m7REREejh1qjkWLx6HDRsisHjxONy65cOkfTKISUfIJkyYgGHDhhXZpnbt2tKf3d3d4e7ujnr16qFhw4bw9/fH8ePHoVAoNF7z1VdfoWfPnoVGury9vXH79m2NY7dv34a3t7d0Xn0s/79cbt++jWbNmklt7ty5o3GNp0+fIi0tTeM62t4n/3toM2XKFI0p1YyMDAZlREQmUFQtMUCzOKu26cmDB0MRGnoQBw+GauSQMWmfdDFpQObh4QEPD48SvValyvuXR/4pPiAvD+zw4cPYuXNnodcoFArExcVh3Lhx0rHY2FgpoAsMDIS3tzfi4uKkACwjIwMJCQkYNWqUdI309HScPHkSLVq0AAAcOnQIKpUKrVu3ltpMnToVOTk5Uo5bbGws6tevX2T+mK2tLWxtbUtwN4iIyFj02QAcyFsoBuiuKebrewvjxi1mtX3SS6XIIUtISMCJEyfwwgsvoHr16rhy5QqmT5+OoKCgQqNja9euhY+PD7p3717oOmPHjkXHjh3x+eefo0ePHti8eTN+//13aZWMTCbDuHHj8NFHH6Fu3boIDAzE9OnT4evriz59+gAAGjZsiG7duuGNN97AqlWrkJOTg+joaAwcOBC+vr4AgNdeew2zZ89GZGQkJk2ahPPnz2PJkiVYtGhR2d4oIiIqNX3KWQCQUmbUNcXyB2Xq6Um5PBNRUS9DLpdL55i0T9pUioDMwcEBMTExmDlzJh4+fAgfHx9069YN06ZN0xhRUqlUWL9+PYYNGwZLS8tC12nbti02bdqEadOm4YMPPkDdunXx/fffIzg4WGrz/vvv4+HDh4iKikJ6ejpeeOEF7N+/H3Z2dlKbjRs3Ijo6Gi+99BIsLCzQt29fLF26VDovl8tx4MABjB49Gi1atIC7uztmzJihUauMiIgqNxcXF0RHRyM7Oxs1amRg0iQ5cnNlsLQUmD8/A6+9NojBF+mt0tYhMwesQ0ZEVLa05Yrdu3cPMTExxb42KipKI9/45k3g8mWgTh3Az8/oXaVKxGzqkBEREZWWvrli+ctZFJWU7+fHQIxKjgEZERGZJX1yxfSptk9kDJVmL0siIqLypKvafsF9KYmMgQEZERGRFkVV2ycyNk5ZEhFRlacreT+/grliRZWzAFhLjIyLARkREVVp+iTv68oV69VrN3bv7gWViuUsqGwxICMioiqtuOR9XbliQUGXERJyGjNmtEZmphfq1JHBz88FgEuZ95nMDwMyIiIya0XlisnlmfD1VSFfuTGiMsGAjIiIKiV9NgDXNq3IXDGqiBiQERFRpZA/AFMqldiyZUuxr4mOjtZ4zlwxqqgYkBERUYWnb1X9gvKPoDFXjCoyBmRERFThFZyaLDjtqM/2RswVo4qMARkREVUqBacdn3vuHM6de67Y7Y2KyxUjMiVW6iciokpD27Tj2bNNdW5vpFQqpaR8uTwTvXrthkymAgApeFOPqDF5n0ypRCNkhw8fRufOnY3dFyIioiJpm3YEZBrP8k9D5uTkwM3NDdHR0dK054wZd3H1qhUCAp7C17cVgFZM3ieTK1FA1q1bN/j5+WH48OGIiIiAv7+/sftFRERUiLZpR0Agf1CmbRoyf7Dl4wO0aFHGHSUyUImmLP/9919ER0dj+/btqF27NsLCwrB169ZiqyETERGVhrZpRz+/G8gLygBA4LnnzulM7CeqqEoUkLm7u+Pdd9/FmTNnkJCQgHr16uHtt9+Gr68vxowZg7Nnzxq7n0RERACAkJDTGDduMSIi1iMy8iv8+68fno2QyXDu3HNSDpmVFdeuUeVQ6m9qSEgIvL294ebmhnnz5mHt2rVYsWIFFAoFVq1ahcaNGxujn0REZAZ0Vd9XKpUaz+XyTMjlmUhKCiiylIWLi0tZdpfIaEockOXk5OCHH37A2rVrERsbi5YtW2LZsmUYNGgQ7t69i2nTpuHVV1/FX3/9Zcz+EhFRFaVv8df+/fvj6dOniImJYSkLqjJKFJC98847+PbbbyGEwNChQ7FgwQIEBwdL5x0dHfHZZ5/B19fXaB0lIqKqTd885PyjXuqcsoLbITGHjCqbEgVkf/31F7744guEh4fD1tZWaxt3d3ccPny4VJ0jIqKqSdvU5L179/R+ff6aYSEhpxEUdBlpaa5wdU3TCMZYW4wqixIFZHFxccVf2MoKHTt2LMnliYioCtN3arKo7ZAK1hbThrXFqDIpcQ7ZxYsX8cUXXyAxMREA0LBhQ7zzzjuoX7++0TpHRERVjz5TkwW3R9K2HRKDLapKSlT2YseOHQgODsbJkyfRtGlTNG3aFKdOnUJwcDB27Nhh7D4SEVEVplQ6ISkpIN92R4W3R8q/HRJRVVSiEbL3338fU6ZMwYcffqhxfObMmXj//ffRt29fo3SOiIgqL10lLPLnimkbCate/X6RpSyIqqISBWTJycl4/fXXCx0fMmQIPv3001J3ioiIKjd98sR0jYRFRn7FUhZkdko0ZdmpUyf88ssvhY7/+uuvaN++fak7RURElZs+eWLaNgoXwgI5OTaFtkfKX8qCKyepKirRCFnv3r0xadIknDx5Em3atAEAHD9+HNu2bcPs2bOxc+dOjbZERGQ+UlNTC5Ww0LZisqiiroGB1xAdXRcZGZ4ICHgKX99WAFpx5SRVWTIhhCi+mSYLC/0G1mQyGXJzcw3uFOXJyMiAXC6HUqmEs7OzqbtDRFQsbVOVRa2YLOpcVFQUfHx8yv0zEJVWSX5/l2iETKVSleRlRERUxd29e1fjua48saCgy5DLM1nUlej/lXpzcSIiIgC4cuUKtmzZonHsxg3/IldMhoeHw93dvdC1ODVJ5kbvgGzp0qV6X3TMmDEl6gwREVVOqamp+Oabb6TnSqUTfv65PU6ebFGobf4Vk+7u7pyWJIIBAdmiRYv0aieTyRiQERGZmfyrKk+dao6dO3tC20J+bv5NpJ3eAVlSUlJZ9oOIiKoApdJJZzAGAH37bkdwcKL0nHliRHmYQ0ZEREaTluYG3SUuVfD3vwkACA8Ph6+vL/PEiP5fiQOymzdvYufOnbh+/XqhAoALFy4sdceIiKjs5d/e6NYtCyQlWSEw8Cl8ffNW0xuaXO/qmgpAhcJBmUCXLgelqUp3d3cGY0T5lCggi4uLQ+/evVG7dm1cuHABwcHBuHr1KoQQCAkJMXYfiYioDOSvGVZUPbD+/fvDxcVFr+BMLs9E7967C0xbCnTpEot27eKldpyqJNJUooBsypQpeO+99zB79mw4OTlhx44d8PT0xODBg9GtWzdj95GIiMqAemSsuFphW7dulV4THR1dbFCmri1244YfAMDf/6ZGEn///v05OkZUQIn2skxMTJQ2F7eyssLjx49RrVo1fPjhh5g/f75RO0hERGVL156Sf/7ZCEqlk8ZxffaoBPJGyoKDExEcnFhoRaWnp2fpOkxUBZUoIHN0dJT+Uvr4+ODKlSvSuYL7lxERUcWm3lNSk8CBA92wePE4nDrVvNhr6DsFOWTIEI6OEWlRoinLNm3a4Ndff0XDhg3x8ssvY8KECfjjjz8QExMjbTZORESVg1yeiV69duebthQAZAAKT1/q4ubmhujo6CJH0Fh9n0i3EgVkCxcuxIMHDwAAs2fPxoMHD7BlyxbUrVuXKyyJiCohdd7Xn382woEDmrnA+bc6KgqDLaKSK1FAVrt2benPjo6OWLVqldE6REREpiGXZ6Jx478QG9tVI6cs/1ZHRFQ2SlUYNjs7G3fu3IFKpZl7ULNmzVJ1ioiIinfzJnDpElC3LuDnZ9hrU1NTteb8Fpy+5FZHROWjRAHZ33//jcjISBw7dkzjuBACMpkMubm5RukcERFpt2YNEBUFqFSAhQWwejUQGam9bf7irwCgVCqxZcsWnddWT1+mpbnC1TWNwRhROShRQDZ8+HBYWVlh9+7d8PHxgUwmM3a/iIhIi9TUVFy9+hRRUZ5QqfL+36tSAW++KdCs2R0EBFhp5HLlL/6qi1LphLQ0N7i6pkrBl1yeqTUQY0FXorJRooDszJkzOHnyJBo0aGDs/hARkQ7q4CopKQAqVYTGudxcGb74Yh8CA69pFG8tuOqxYPBVVIX+8PBwuLu7S6/lKkmislOigKxRo0asN0ZEVM7UwZW6bpiuxHtdpScKBl+hoQdx8GCozgr97u7u8PHxKeNPRUSAAYVhMzIypMf8+fPx/vvv46effkJqaqrGuYyMjLLsLxGR2VMn3quLueqTeK9te6TY2FCtFfrT0lzLrvNEpJXeI2QuLi4auWJCCLz00ksabZjUT0RUPvRJvM+/kvLGDf9CwRdgUeRIGxGVH70DssOHD5dlP4iIyEC6Eu8BzWR+9VRlQQWnLVnigsh09A7IOnbsKP35+vXr8Pf3L7S6UgiBGzduGK93RERUIuo8soJTlc88S+APDj7PEhdEJlaipP7AwEAkJyfD09NT43haWhoCAwM5ZUlEVEGkpblpCcaAfv22Izg4EQBLXBBVBCUKyNS5YgU9ePAAdnZ2pe4UEREVLuhaktXtulZk+vvf1GjXv39/uLi4SM9Z4oKofBkUkI0fPx4AIJPJMH36dDg4OEjncnNzkZCQgGbNmhm1g0RE5qhgQddn9cOcip1WtLGxkQK54rZCCg8Ph6+vL4MvIhMzKCA7fTqvWKAQAn/88YfGcLaNjQ2aNm2K9957z7g9JCIyQ/lHxkpSvDU5OVk6VtSKTHd3dwZjRBWAQQGZeqXl8OHDsWTJEjg7O5dJp4iIKI+2+mElKd5a1IpMIjI9vQvD5rdu3ToGY0RE5UBbUj6LtxJVPSVK6n/48CHmzZuHuLg43LlzByqVSuP8P//8Y5TOERGZu+K2SdJF3xWSXElJVDGUKCAbOXIkjhw5gqFDh8LHx0friksiInN08yZw6RJQty7g51f66xWXlK+Lm5sboqOjde5rCXAlJVFFUqKAbN++fdizZw/atWtn7P4QEVVaa9YAUVGASgVYWACrVwORkaW/rj7bJGnDYIuo8ihRDln16tXh6sr8BSIitZs3nwVjQN7PN9/MO24McnkmAgOvMTGfqIoqUUA2Z84czJgxA48ePTJ2f4iIKp3U1FQcP56KAum0yM0FEhJSkZqaavA1mQNGZF5KNGX5+eef48qVK/Dy8kJAQACsra01zp86dcoonSMiqujUBVyVSifIZOMKrIhU4ejRDTh/PhPR0dEGTSEyB4zIvJQoIOvTp4+Ru0FEVDkVrIi/c2dPPJt8kOH8+WD4+ibj11+v4vnn89rqG0gx2CIyHyUKyGbOnGnsfhARVXpBQZchkwFCqI/IEBvbBYAM//ufZoX9/v37w9PTk0EXEQEwMIfst99+Q25urs7zWVlZ2Lp1a6k7RURUGWkr4grklQUSwgI7d/bEzZt5VfW3bt2KZcuWlSi/jIiqHoMCMoVCofE/D2dnZ40isOnp6Rg0aJDxepdP7969UbNmTdjZ2cHHxwdDhw7FrVu3NNr8+OOPaNOmDZycnODh4YG+ffvi6tWrGm1++uknhISEwNbWFnXq1MH69esLvdfy5csREBAAOzs7tG7dGr/99pvG+SdPnmD06NFwc3NDtWrV0LdvX9y+fVujzfXr19GjRw84ODjA09MTEydOxNOnT41yL4ioYlIXcdXNAmvWjMSpU82lI0XliBGR+TAoIBPPxuG1Ptd1zBg6d+6MrVu34uLFi9ixYweuXLmCfv36SeeTkpLwyiuv4MUXX8SZM2fw448/4t69ewgPD9do06NHD3Tu3BlnzpzBuHHjMHLkSPz4449Smy1btmD8+PGYOXMmTp06haZNmyIsLAx37tyR2rz77rvYtWsXtm3bhiNHjuDWrVsa75Obm4sePXogOzsbx44dw4YNG7B+/XrMmDGjTO4NEVUM6jyyZ0GZtv9H5u1FqVQ6lW/niKhCkwkDIigLCwukpKTA09MTAODk5ISzZ8+idu3aAIDbt2/D19e3yGlNY9m5cyf69OmDrKwsWFtbY/v27Rg0aBCysrJgYZEXZ+7atQuvvPKK1GbSpEnYs2cPzp8/L11n4MCBSE9Px/79+wEArVu3RqtWrbBs2TIAgEqlgr+/P9555x1MnjwZSqUSHh4e2LRpkxQQXrhwAQ0bNkR8fDzatGmDffv2oWfPnrh16xa8vLwAAKtWrcKkSZNw9+5dvZepZ2RkQC6XQ6lUcu9QonKmb8X95ORkrF69WuOYUumEtDRX3Lrli9jYUGj7t29ExHoEBl5DVFSUXpuDE1HlUZLf3yWqQ2ZqaWlp2LhxI9q2bSuV3GjRogUsLCywbt065ObmQqlU4uuvv0ZoaKjUJj4+HqGhoRrXCgsLQ3x8PIC8qYOTJ09qtLGwsEBoaKjU5uTJk8jJydFo06BBA9SsWVNqEx8fjyZNmkjBmPp9MjIy8Oeff+r8XFlZWcjIyNB4EFH5W7MGqFULePHFvJ9r1hj2enUR13bt4jFy5FeFpjH12YuSiMyLwQHZX3/9hXPnzuHcuXMQQuDChQvS86KCDWOYNGkSHB0d4ebmhuvXr+OHH36QzgUGBuLAgQP44IMPYGtrCxcXF9y8eVNjkUFKSopGkAQAXl5eyMjIwOPHj3Hv3j3k5uZqbZOSkiJdw8bGBi4uLkW20XYN9TldPvnkE8jlcunh7++v550hImNITU3FyZO3ERUlClTcFzh58rbWBPziRrz9/JI1pjH13YuSiMyLwQHZSy+9hGbNmqFZs2Z49OgRevbsiWbNmqF58+aFRp+KM3nyZMhksiIfFy5ckNpPnDgRp0+fxoEDB2BpaYnXX39dyllLSUnBG2+8gYiICJw4cQJHjhyBjY0N+vXrV2Z5bcY2ZcoUKJVK6XHjxg1Td4nIbKgLvH7xxX6oVDKNc7m5Mnzxxb5CqyJTU1ORnZ2NLl26FHntkJDTGDduMSIi1mPcuMVS6QsiIjWD6pAlJSUZ9c0nTJiAYcOGFdlGnZ8GAO7u7nB3d0e9evXQsGFD+Pv74/jx41AoFFi+fDnkcjkWLFggtf/mm2/g7++PhIQEtGnTBt7e3oVWQ96+fRvOzs6wt7eHpaUlLC0ttbbx9vYGAHh7eyM7Oxvp6ekao2QF2xRcmam+prqNNra2trC1tS3yfhBR2VCvdlSvlMxfviL/FKO6nTqAU8vLG3ODq2uq1tEvuTyTo2JEpJNBAVmtWrUMuvjbb7+NDz/8EO7u7lrPe3h4wMPDw6Brqqn+fz4hKysLAPDo0SMpmV/N0tJSo61CocDevXs12sTGxkKhUADIm3po0aIF4uLipN0IVCoV4uLiEB0dDSAvV83a2hpxcXHo27cvAODixYu4fv26dB2FQoG5c+fizp070gKI2NhYODs7o1GjRiX6vERUPtQrJXft6gkhLApNMZ4/n46jR20glz9beX3qVPNC7fUdBeNelEQEGLjK0lDOzs44c+aMxihXSSQkJODEiRN44YUXUL16dVy5cgXTp0/H7du38eeff8LW1haHDh1CaGgoZs2ahUGDBiEzMxMffPABLly4gMTERNjb2yMpKQnBwcEYPXo0RowYgUOHDmHMmDHYs2cPwsLCAOSVvYiIiMCXX36J559/HosXL8bWrVtx4cIFKQ9s1KhR2Lt3L9avXw9nZ2e88847AIBjx44ByCt70axZM/j6+mLBggVISUnB0KFDMXLkSHz88cd6f26usiQqPwVXS6pXSrq6pknBmLbAKyjoMhYvHldoRG3cuMWQyzMRHh6u8x+l3IuSqGoqye/vEm2dpC9jxXoODg6IiYnBzJkz8fDhQ/j4+KBbt26YNm2aNMX34osvYtOmTViwYAEWLFgABwcHKBQK7N+/H/b29gDyEv/37NmDd999F0uWLIGfnx+++uorKRgDgAEDBuDu3buYMWMGUlJS0KxZM+zfv18jSX/RokWwsLBA3759kZWVhbCwMKxYsUI6b2lpid27d2PUqFFQKBRwdHREREQEPvzwQ6PcDyIqewWnGJVKJykYA57VE+vbd0eh6vxCWCAtzRVyeSbc3d1Z1oKIilWmI2QF65SRYThCRlR+tNUTyy8pKQAbNkQUOt6v31bs2NFP5wgZ64wRmR+zqUNGRGSomzeBw4fzfpaEtm2RZDIV/P1vsqwFEZVamU5ZEhFVBGvWAFFReTXFLCyA1auByEjDrlFUsn9IyGkEBV0ulHNGRKQvBmREVGWlpqbi6tWniIrylGqLqQu9Nmt2BwEBVlJSvT6rHYsKvFjWgohKo0wDsiFDhjD3iYhMQl0nLCkpACqVZu6XutBrYOA1REdHw83NDW5uboiOjpbqjKndu3cPMTEx0nNDAy+WtSAifZQoIFOpVIVqfqmP37x5EzVr1gQArFy5snS9IyIqIUMLvQIoVQkKbeUtWNaCiPRlUFJ/RkYG+vfvD0dHR3h5eWHGjBnIzc2Vzt+9exeBgYFG7yQRUUmpc79KmnSv7wiXr68vfHx8NB4MxohIXwaNkE2fPh1nz57F119/jfT0dHz00Uc4deoUYmJipP9pVZZ9I4nIfJQm6V7XVGZ+HAkjotIyKCD7/vvvsWHDBnTq1AkA0KdPH/To0QO9evXCzp07AQAymayIKxARmYau3K979+7h1i0LJCVZITDwKXx980bS8gdZDLaIqKwZNGV59+5djf0s3d3dcfDgQWRmZuLll1/Go0ePjN5BIqKyNG1aElq18sCrr7qhVSsPvPXWCaxevRrLli1DamqqqbtHRGbCoICsZs2aSExM1Djm5OSEAwcO4PHjx/jPf/5j1M4REZUlXdshKZVOAFDkNCURkTEZFJB17doV69atK3S8WrVq+PHHH2FnZ2e0jhERlbW0NDed+1ASEZUng3LIZs+ejVu3bmk95+TkhNjYWJw6dcooHSMiMkRqaqrGiJZSqSz2NcWVxCAiKi8GBWTVq1dH9erVdZ53cnJCx44dS90pIiJ9paam4s6dO9i6dat0TKl0QlqaG1xdnTQS+Zs27YHUVFfI5Xfw558/FrkdEhFReTK4MOzTp0+xaNEifPvtt/j7778BAPXq1cNrr72GsWPHwtra2uidJCLSRl2NX02pdEJCQmscO6YA8CzACgk5jVOnmmPWrBDkZWoEoHfvOwgJOc19KImoQjAoIHv8+DG6dOmC+Ph4hIaGokOHDgCAxMRETJo0CTt37sSBAweYS0ZE5SL/FOWpU801EvSBZ0n6np4p2LmzJ56lzVpg586eCAq6LJXDYCBGRKZkUEA2b9483LhxA6dPn8Zzzz2nce7s2bPo3bs35s2bh1mzZhmzj0RkJm7eBC5dAurWBfz8im6bmpqKe/fuASi8WjI/ISzw9991UXgNkwVu3PCDXJ5Y6DVEROXNoFWWmzdvxsKFCwsFYwDQtGlTfPbZZ9i0aZPROkdEVV9qaiqSk5Px+efpqFVL4MUXgVq1BD7/PB3Jyclaa4GppyrVm37fuOGvNRgD8pL0q1V7UKK+cWNwIiovBo2QXbt2Dc8//7zO823atMH169dL3SkiMg/qwEqpdMLixeMgRN5OHyqVDBMnOuPff9dCLs9EdHS0RrV8bVOV2uXlkAUFXcbevQLAs51EZDIV/P1vAgA6d+6MunXraryS2yERUXkyKCBzdnbGnTt34O/vr/V8SkoKnJycjNIxIqr61IFVUfXA5PJMnQVadU9VqtC2bTxat06QcsN6996lczVl9erV4ePjY9wPR0RkAIMCss6dO+Pjjz/Gjh07tJ6fN28eOnfubJSOEZH5KGk9MG2BHAD067cdwcGauWFcTUlEFZlBAdnMmTPRunVrtGnTBuPHj0eDBg0ghEBiYiIWLVqEv/76C8ePHy+rvhJRFVXSemC6Ajn1VKS292EgRkQVkUEBWaNGjRAbG4vIyEgMHDgQMllePoYQAg0aNMCBAwfQuHHjMukoEVVtRY1gqVdTFnxurMKuVlYGl2QkIjIqg/8v1KZNG/z55584c+aMRmHYZs2aGbtvRGRmdI1grVsX+/+V91MLnS8qkOvcuTMOHz5c7Pu6uLiUuu9ERKVhcECWkZGBatWqoVmzZhpBmEqlwoMHD+Ds7GzM/hGRmctf8DV/5f38dAVyHh4eer0Hy1sQkakZFJB99913mDRpEs6cOQMHBweNc48fP0arVq3w2WefoVevXkbtJBGZp4KrKNWV99UV9ovj6emJ6Ohonas0AZa3IKKKwaCAbOXKlXj//fcLBWMA4OjoiEmTJmHZsmUMyIgIQF6dsaKCoUePHhX5+uLKYYSHh8Pd3V3raxloEVFlYlBAdv78eaxYsULn+Q4dOmDatGml7hQRVX7aNv7Wlgc2ZMiQQv/Iu3fvHmJiYooth+Hu7s76YURUJRgUkN2/fx9Pnz7VeT4nJwf3798vdaeIqPLTtfF3wTwwBwcHnUGVsVZREhFVdAYFZAEBAfj999/RoEEDred///131KpVyygdI6KqobR5YCzoSkTmwKDNxcPDwzF16lTcvn270LmUlBRMmzYNffv2NVrniKjyKyoPTF9yeSYCA68xGCOiKsugEbLJkyfjhx9+QN26dTFkyBDUr18fAHDhwgVs3LgR/v7+mDx5cpl0lIgqp5Jsi6RvGQqWqyCiqsKggMzJyQlHjx7FlClTsGXLFilfzMXFBUOGDMHcuXO5uTiRmVOvrCxNNX03NzeWqyAisyITQoiSvFAIgXv37kEIAQ8PD2kbpfyOHj2Kli1bwtbWttQdNUcZGRmQy+VQKpUsuEuVQlErKwFozQOLioriSkkiqlJK8vu7xBu4yWSyYqtgd+/eHWfOnEHt2rVL+jZEVInou7KSiIg0GZTUb6gSDr4RUSWna2WlUlk4pYF5YEREpRghIyLSRd8K+8wDIyLKw4CMiIyOFfaJiAxTplOWRGSe1CsrZTIVABRaWXnv3j2kpqaasotERBVKmY6QaVt5SUSVU3EbhRfMBctfYd/aOhs5ObZQKp0gl2ciJiYGABAdHc0pSyIilHFAxqR+oqqhYDkLXfr376/xXC7PxJUrdXSutiwqwCMiMidlGpBlZnKbE6Lyps9IlqGjUgWvl7++WP6aYupi0fnblWYfSyIic2FQQPbiiy/q1e7QoUMl6gwRlU5RhVnzB0ClmSosqr5YbGysRtviVlsSEVEegwKyn376CbVq1UKPHj1gbW1dVn0iohLStzBrSacKixrxAlAo+CvJPpZERObIoIBs/vz5WLduHbZt24bBgwdjxIgRCA4OLqu+EVEJGTpVWNw0p1KpBKB7xCshoTXi4xWFgr+S7GNJRGSODArIJk6ciIkTJyI+Ph5r165Fu3btUL9+fYwYMQKvvfYa91skKmOlDZy0TRXqm7APaB/xAlRSMKZ+n/zBX/7VlgX3sSQiojwlSupXKBRQKBRYsmQJtm3bhuXLl+O9997DrVu3GJQRlRF988MAw6YK9U3YB6B1xEuhiMexY+002hUM/uTyTAZiRERFKNUqy1OnTuHIkSNITExEcHAw88qIypAhG3eXdKpQnw3BC454AdAYIQP0zxPjPpZERHkMDshu3bqF9evXY/369cjIyMCQIUOQkJCARo0alUX/iKgAffPDDJ0q1Pe62kbQigr+1PtWFsR9LImInjEoIHv55Zdx+PBhdO3aFZ9++il69OgBKytuh0lUngzJDzNkqlCf6+oaQSsq+OO+lURExTMomtq/fz98fHxw/fp1zJ49G7Nnz9ba7tSpU0bpHBEVZoxSEunp6QA0pwyLu25xI2i6gj9OSxIRFc+ggGzmzJll1Q8i0lNx+WH9+/eHi4sLlEoltmzZovUaW7dulf48YMAAva5b3AiatqlJTksSEemHARlRJVTUFKGLi4tBU4Q5OTl6Xbe4ETROTRIRlZxF8U2Kd+TIEezdu7fQPnZEVHbk8kwEBl7TO0dMqXRCUlIAlEonjeMF95zVdV31CJpMpgIAFnklIjIigyv1P3jwAHPmzAEACCHQvXt3HDhwAADg6emJuLg4NG7c2Pg9JTJz+uZiaWunz/6TXbt2RbVq1aTXWFlZwcXFBffu3UNMTAwAw1duEhGRfgwKyLZs2YJJkyZJz7dv346ff/4Zv/zyCxo2bIjXX38ds2fP1shPISLjcHNzQ3R0dJGV+rXlbOlbzkL9D6v8oqOjC+WFscgrEZHxGRSQJSUl4bnnnpOe7927F/369UO7dnlVuqdNm4ZXX33VuD0kIklJEuR1JePfuOEHuTyxyNdmZ2eXamSOiIj0Y1BA9vTpU9ja2krP4+PjMW7cOOm5r68v7t27Z7TOEVHpad9/Eti+vR+ys/OmLovaLqmkI3NERKQ/gwKyoKAg/Pzzz6hduzauX7+Ov//+Gx06dJDO37x5k/9TJqpgCpazeCZv6vLxYzscPBha5HZJ/HtNRFS2DArIRo8ejejoaPzyyy84fvw4FAqFxpZJhw4dQvPmzY3eSSLST2pqqjSSpVQqpeMhIadhY5OF7ds1UwqEsEBsbCjUC6515ZcREVHZMigge+ONN2BpaYldu3ahQ4cOheqS3bp1CyNGjDBqB4lIP6mpqVi2bJnO8/7+N7TWEdN3GyYiIio7Bm9EOWLECJ1B14oVK0rdISIqmaJyvADtlfhDQw9K05Vqhm7DREREpcedwYmqKG2J+trqiNnbP9G5XRIREZUPgwKynJwcTJ06FTExMXB1dcVbb72lMVp2+/Zt+Pr6Ijc31+gdJSL9FVUIdvjwLrCyspLqBRZV7JWlLIiIyodBAdncuXPxv//9D++99x7S09Mxfvx4JCQk4Msvv5TaCCGM3kki0l9xhWDVe06ylAURUcVhUEC2ceNGfPXVV+jZsycAYNiwYejevTuGDx+OtWvXAgBkMpnxe0lUAeRfwahNRQlgdBWCLZioXxH6SkREeQwKyP79918EBwdLz+vUqYOffvoJL774IoYOHYoFCxYYvYNEFUFxKxjVoqOjTR7oaCsEy0R9IqKKzaL4Js94e3vjypUrGsdq1KiBw4cP48SJExg2bJgx+0ZUYRS3gtHQdmVJvZpSJlMBABP1iYgqAYMCshdffBGbNm0qdNzX1xeHDh1CUlKS0TpWUO/evVGzZk3Y2dnBx8cHQ4cOxa1btzTabN26Fc2aNYODgwNq1aqFTz/9tNB1fvrpJ4SEhMDW1hZ16tTB+vXrC7VZvnw5AgICYGdnh9atW+O3337TOP/kyROMHj0abm5uqFatGvr27Yvbt29rtLl+/Tp69OgBBwcHeHp6YuLEiXj69GnpbwSZpdTUVCQnJ+t8pKamaiTgh4ScxrhxixERsR7jxi3WqLzPRH0ioorHoCnL6dOn48KFC1rP1ahRA0eOHEFsbKxROlZQ586d8cEHH8DHxwf//vsv3nvvPfTr1w/Hjh0DAOzbtw+DBw/GF198ga5duyIxMRFvvPEG7O3tER0dDSBvc/QePXrgrbfewsaNGxEXF4eRI0fCx8cHYWFhAIAtW7Zg/PjxWLVqFVq3bo3FixcjLCwMFy9ehKenJwDg3XffxZ49e7Bt2zbI5XJER0cjPDwcR48eBQDk5uaiR48e8Pb2xrFjx5CcnIzXX38d1tbW+Pjjj8vk/lDZUOeNmXKPVkOmS5moT0RUOclEJV0WuXPnTvTp0wdZWVmwtrbGa6+9hpycHGzbtk1q88UXX2DBggW4fv06ZDIZJk2ahD179uD8+fNSm4EDByI9PR379+8HALRu3RqtWrWSfgGqVCr4+/vjnXfeweTJk6FUKuHh4YFNmzahX79+AIALFy6gYcOGiI+PR5s2bbBv3z707NkTt27dgpeXFwBg1apVmDRpEu7evav3CEVGRgbkcjmUSiWcnZ2Nct9If/oGQvlFRUXBx8fHqP1ITk7G6tWri20XHh4OX19fBlxERCZWkt/fBk1Zqm3btg3h4eEIDg5GcHAwwsPDsX379pJcqkTS0tKwceNGtG3bFtbW1gCArKws2NnZabSzt7fHzZs3ce3aNQBAfHw8QkNDNdqEhYUhPj4eQF7+z8mTJzXaWFhYIDQ0VGpz8uRJ5OTkaLRp0KABatasKbWJj49HkyZNpGBM/T4ZGRn4888/jXUbqIwVNdKkVDohKSkASqVTOfao6PeOiYnBsmXLkJqaWu59IiKi0jFoylKlUmHQoEHYtm0b6tWrhwYNGgAA/vzzTwwYMACvvvoqvv322zIrfTFp0iQsW7YMjx49Qps2bbB7927pXFhYGN59910MGzYMnTt3xuXLl/H5558DyBthCAgIQEpKikaQBABeXl7IyMjA48ePcf/+feTm5mpto56qTUlJgY2NDVxcXAq1SUlJkdpou4b6nC5ZWVnIysqSnmdkZOhzW6icFVV0tSjGKJuhz3tXhIUFRERkGIMCsiVLluDgwYPYuXOnVItMbefOnRg+fDiWLFmCcePG6XW9yZMnY/78+UW2SUxMlAK/iRMnIjIyEteuXcPs2bPx+uuvY/fu3ZDJZHjjjTdw5coV9OzZEzk5OXB2dsbYsWMxa9YsWFiUaCCw3H3yySeYPXu2qbtBRSiu6Kouxiiboe29d+7sCU/PFPj5JZfg0xARUUVhUKSybt06fPrpp4WCMSBvFeSCBQukArH6mDBhAhITE4t81K5dW2rv7u6OevXqoUuXLti8eTP27t2L48ePA8grSDt//nw8ePAA165dQ0pKCp5//nkAkK7h7e1daDXk7du34ezsDHt7e7i7u8PS0lJrG29vb+ka2dnZSE9PL7KNtmuoz+kyZcoUKJVK6XHjxg297iOVn6KKrgK6VzAao2yGtvcGLLBmzUicOtVcr+sTEVHFZNAI2aVLlwrlYOUXGhoqrWjUh4eHBzw8PAzpgkSlyquxlH+KDwAsLS1Ro0YNAMC3334LhUIhvYdCocDevXs12sfGxkKhUADI+2XaokULxMXFoU+fPtL7xMXFSZ+rRYsWsLa2RlxcHPr27QsAuHjxIq5fvy5dR6FQYO7cubhz5460MjM2NhbOzs5o1KiRzs9ka2sLW1vbEt0PKntKpRMePnQoVHTVwkLgnXe6IyDAqkwT6rUVfAX0H6UjIqKKy6CAzN7eHunp6ahZs6bW8xkZGYUS640hISEBJ06cwAsvvIDq1avjypUrmD59OoKCgqQg6N69e9i+fTs6deqEJ0+eYN26ddi2bRuOHDkiXeett97CsmXL8P7772PEiBE4dOgQtm7dij179khtxo8fj4iICLRs2RLPP/88Fi9ejIcPH2L48OEAALlcjsjISIwfPx6urq5wdnbGO++8A4VCgTZt2gAAunbtikaNGkm7F6SkpGDatGkYPXo0A65yZqztjvLnbgEqKTCSyVRYsCADLVp4FXuN/JRKJ6SlucHVNVXvIEpd8HXnzp4oOLitbWskIiKqPAwKyBQKBVauXImVK1dqPb98+XIpQDImBwcHxMTEYObMmXj48CF8fHzQrVs3TJs2TSPA2bBhA9577z0IIaBQKPDTTz9J05YAEBgYiD179uDdd9/FkiVL4Ofnh6+++kqqQQYAAwYMwN27dzFjxgykpKSgWbNm2L9/v0aS/qJFi2BhYYG+ffsiKysLYWFhWLFihXTe0tISu3fvxqhRo6BQKODo6IiIiAh8+OGHRr83pJuxtjsqmLsFWEAIFfr12wp//5t47bVBAFy0vr86GMxfx8zQRQEFC756eqZgzZqR3BqJiKgKMSggmzp1Kjp16oTU1FS89957aNCgAYQQSExMxOeff44ffvgBhw8fNnonmzRpgkOHDhXZxt3dXSo7UZROnTrh9OmiV8SpC2zqYmdnh+XLl2P58uU629SqVavQ9CiVr9LmbakDIV25W46OjyCXZ2rNG9MVDJZkUYCbmxuio6Nx69YtxMTEwM8vGb167S4U1HF0jIio8jIoIGvbti22bNmCqKgo7NixQ+Nc9erV8e2336Jdu3ZG7SCRqagDoatXn+LrrwVUqmflXCwti84b0xXkFbUooKiAquB7hIScRlDQZaSlucLVNU3jtdwaiYio8jEoIAOA//znPwgLC8OPP/6IS5cuAQDq1auHrl27wsHBwegdJDIlNzc3uLkBq1cDb74J5OYClpbAl1/KDM4bA7Qn5us73agOELk1EhFR1WNQQHbo0CFER0fj+PHj+M9//qNxTqlUonHjxli1ahXat29v1E4SmVpkJBAWBly+DNSpA/j5lew66sR8XdONxY1uMdgiIqqaDArIFi9ejDfeeEPrvkxyuRxvvvkmFi5cyICMqiQ/v5IHYvlXVeafbhw8uDWCg1sBaMXRLSIiM2ZQQHb27NkiK+t37doVn332Wak7RVSV6FpVKZdnwt+/jdE3IyciosrHoEr9t2/fljbz1sbKygp3794tdaeIqgpdqyrVG4Nv2bKFm4ETEZFhAVmNGjVw/vx5nefPnTvHf+1ThaHvasOyXJVY3FZLADcDJyIiA6csX375ZUyfPh3dunUrVJH/8ePHmDlzptZ9LolMoeCqxFu3LJCUZIXAwKfw9c3bequs8rbUQV5pVlUSEZH5kAkhhL6Nb9++jZCQEFhaWiI6Ohr169cHAFy4cAHLly9Hbm4uTp06pVHVnkouIyMDcrkcSqVS60IK0t+aNUBUFKBSARYWeWUsIiPL9j0TExOxdevWQtsudelyEO3aPStiHBUVxZFlIqIqpCS/vw0aIfPy8sKxY8cwatQoTJkyBepYTiaTISwsDMuXL2cwRhXOzZvPgjEg7+ebb+aVsSjpqkl9uLi4AMgr4vr4sR0OHgyFEBY4eDAU9vZPitwuiYiIzIvBhWHVWwLdv38fly9fhhACdevWRfXq1cuif0SldunSs2BMLTc3r6ZYWQZkakqlkxSMAfptl0RERObF4IBMrXr16mjVqpUx+0JUJurWzZumzB+UWVrmFXgtqdTUVNy9exc5OTnIzMzE06dPNc5bWT37q1XS7ZKIiMh8lDggIzK11NRUvbYR8vPTtvVRyUfHdG0crgsT+4mIqDgMyKhS0jcoio6Ohpubm9G2PgIML1NR2u2SiIio6mNARpWSvkFR/nal2fqotD76KBAzZtzF1atWCAh4Cl9fbpdERETPMCAjMqL8e1bmzw9zd3eHj48XWrQwYeeIiKjCYkBGVEpKpRNu3PBHUlIATp5sAUBzz0oiIqLiMCAjKoVTp5pj586eKLgLGUtbEBGRIRiQERVQ3OpNpVL5/z+dtAZjaixtQURE+mJARpSPISUt0tLcoCsYA1jagoiI9Kf7twmRGTKkpIWrayoAlY6zLG1BRET64wgZVUr6BjhlFQj1798fMpkMcvktzJ5dA0LIAAAymcCAATcxYMBtNGhQD3I5S1sQEVHxGJBRpeTm5obo6GhpROvWLQskJVkhMPApfH3zRq0MCYTUeWP37t3TOK6rjMXTp0/h6+uLmTPzis7Gx+cdVyhk8PPzB+Bf+g9JRERmQyaEEKbuBGmXkZEBuVwOpVIJZ2dnU3enwlqzBoiKytur0sIib5ukyEj9X68rb+zUqeaFqusXLGOh3gmAiIhIrSS/v5lDRpXazZvPgjEg7+ebb+Yd15e2vDGl0kkKxoBnZSyUSqdiX0tERGQoBmRUqV269CwYU8vNzduzsjTS0tw0NgMHnpWxICIiMjYGZFSp1a2bN02Zn6Vl3gbiJaVUOuHhQwfIZJqRHstYEBFRWWFSP1Vqfn55OWNvvpk3MmZpCXz5Zck3Ec+fNwaoIJOppBwyhSLeqH0nIiJS4wgZVXqRkcDVq8Dhw3k/DUnoz69g3hhgASGAFi1OQAjg2LF2WLx4HE6dam6knhMREeXhCBlVCX5+JR8VU9OWNwZY4NSpvA3DAe5RSUREZYMjZET/z9U1tVDeGKBicj8REZU5BmRk9tTV/OXyTPTqtVsKymQyFbp0OVhkcj+3RCIiImNgYdgKjIVhy4+6Uj+QV/X/6lUruLndh5vbY8TEVMeHH9aASiWDpaXA/PlKvPbaY26JREREWpXk9zcDsgqMAVnJ5Q+wtDE0mLp5M6+2WZ06pc9VIyKiqq0kv7+Z1E9Vjq6tkAoyZNsjYywaICIi0oUBGZmUsUeyAODOnTt6teO2R0REVFEwICOTKYuRrNTUVGzdurW0XSMiIipXXGVJJqPvCJUhI1m6NgpPSgootDE4ERFRRcERMqrS8m+FJJOp0KvXboSEnDZ1t4iIiDRwhIyqrIJbIamr7HOkjIiIKhoGZFRhGHtqMSGhNavsExFRpcApS6oQjDW1mJ6eDiAvuDt2TFHofP4q+0RERBUFR8jI5Iw1tZh/hWVamhu0fb0VinhpU3Bue0RERBUFAzIyubQ0N6NMLeZfYalro/DWrRMAAAMGDOC2R0REVGEwICOTUY9QaQueSruBt7aNwnv33i2Njnl4eJSm60REREbFHDIyGTc3N0RHRyM7Oxs1amRg0iQ5cnPVG3hn4LXXBpVqA++QkNMICrqMtDRXuLqmScEYR8eIiKiiYUBGJqUOjCZMAAYMUG/gLYOfnwsAl1JdW6l0QlqaG1xdU6VgDADkcnmprktERGRsDMiowjDmBt4sCEtERJUJAzIyWFlsCG5MulZtBgVd1hgpIyIiqigYkJFBymJDcGMratUmAzIiIqqIGJCRQcpiQ3BDFDU6py4Kq161mT8oK+2qTSIiorLEgIwqDX1H56KiXi6TVZtERERlhQEZlYqulYxlQd9RN7lcjgkTXIy+apOIiKisMCCjEqvoKxmNuWqTiIioLLFSP5WIsfafJCIiIgZkVELG2n+SiIiIGJBRCRW3/yQRERHpjwEZGURdMkLb5t29ej3bvLs8SksolU5ISgrgNCkREVV6TOong+TfEBwAZsy4i6tXrRAQ8BS+vq0AtNKrtERpq/1X9AUFREREhmBARgbLHyj5+AAtWhj2+pJW+1ePuhW3NRILvxIRUWXDgIzKXcGRMV21zAq2U4/OHT4MLFpUeEFBu3YR6NQJLPxKRESVDgMyKpWbN4FLl4C6dUtW88vQqUc3Nze0aQNYWACqfGsKLC2B1q3dwFiMiIgqIyb1U4mtWQPUqgW8+GLezzVrDHt9SWuZ+fkBq1fnBWFA3s8vv2QRWCIiqrwYkFGJ3LwJREU9G6VSqYA338w7rq/S1DKLjASuXgUOH877GRmp//sSERFVNJyypBK5dElzyhAAcnPz9o7Ud6RKXcssf1BmSC0zbo1ERERVBUfIzNDNm3kjS4aMZhVUt25eHld+lpZAnTpFvy41NRX37t0DUHwtMyIiInPBETIzs2bNs6lGC4u8XKySTPep87jefDNvZEyfPC5t5S5CQk4jKOgy0tJc4eqaxmCMiIjMEgMyM6Ir7yssrGRTf5GRea+9fDlvZKy4a+gqBCuXZ2oNxFhPjIiIzEWlm7LMyspCs2bNIJPJcObMGY1z586dQ/v27WFnZwd/f38sWLCg0Ou3bduGBg0awM7ODk2aNMHevXs1zgshMGPGDPj4+MDe3h6hoaG4dOmSRpu0tDQMHjwYzs7OcHFxQWRkJB48eGBwX8pbUXlfhkhNTUVycjKSk5NhaZmM+vXzfqqPpaamlqqf4eHhhYrCEhERVWWVboTs/fffh6+vL86ePatxPCMjA127dkVoaChWrVqFP/74AyNGjICLiwuioqIAAMeOHcOgQYPwySefoGfPnti0aRP69OmDU6dOITg4GACwYMECLF26FBs2bEBgYCCmT5+OsLAw/PXXX7CzswMADB48GMnJyYiNjUVOTg6GDx+OqKgobNq0Se++mII676tg/a7i8r7yK2mVfW10FYR1d3dnMEZERGalUgVk+/btw4EDB7Bjxw7s27dP49zGjRuRnZ2NtWvXwsbGBo0bN8aZM2ewcOFCKQhasmQJunXrhokTJwIA5syZg9jYWCxbtgyrVq2CEAKLFy/GtGnT8MorrwAA/ve//8HLywvff/89Bg4ciMTEROzfvx8nTpxAy5YtAQBffPEFXn75ZXz22Wfw9fXVqy+mUJK8r4KK2n/SkHbci5KIiOiZSjNlefv2bbzxxhv4+uuv4eDgUOh8fHw8OnTooJF3FBYWhosXL+L+/ftSm9DQUI3XhYWFIT4+HgCQlJSElJQUjTZyuRytW7eW2sTHx8PFxUUKxgAgNDQUFhYWSEhI0Lsv2mRlZSEjI0PjYWwVoX5XSQvCEhERVVWVIiATQmDYsGF46623NAKh/FJSUuDl5aVxTP08JSWlyDb5z+d/na42np6eGuetrKzg6upa7Pvkfw9tPvnkE8jlcunh7++vs21p+PkBnTqZroZXaQrCEhERVUUmDcgmT54MmUxW5OPChQv44osvkJmZiSlTppiyu2VuypQpUCqV0uPGjRum7lKZUBeEzc+QgrBERERVjUlzyCZMmIBhw4YV2aZ27do4dOgQ4uPjYWtrq3GuZcuWGDx4MDZs2ABvb2/cvn1b47z6ube3t/RTW5v859XHfHx8NNo0a9ZManPnzh2Nazx9+hRpaWnFvk/+99DG1ta20GesStRTuOqCsAVzyNSJ/Sx3QURE5sakAZmHhwc8PDyKbbd06VJ89NFH0vNbt24hLCwMW7ZsQevWrQEACoUCU6dORU5ODqytrQEAsbGxqF+/PqpXry61iYuLw7hx46RrxcbGQqFQAAACAwPh7e2NuLg4KQDLyMhAQkICRo0aJV0jPT0dJ0+eRIsWLQAAhw4dgkqlMqgv5sjNzQ3R0dFSwv+MGXdx9aoVAgKewte3FYBWsLGx4QpLIiIyO5VilWXNmjU1nlerVg0AEBQUBL//T4R67bXXMHv2bERGRmLSpEk4f/48lixZgkWLFkmvGzt2LDp27IjPP/8cPXr0wObNm/H7779j9erVAACZTIZx48bho48+Qt26daWyF76+vujTpw8AoGHDhujWrRveeOMNrFq1Cjk5OYiOjsbAgQPh6+urd1/MVf5gy8cH+P+YloiIyKxVioBMH3K5HAcOHMDo0aPRokULuLu7Y8aMGRplJtq2bYtNmzZh2rRp+OCDD1C3bl18//33Ug0yIK/O2cOHDxEVFYX09HS88MIL2L9/v1SDDMgrsREdHY2XXnoJFhYW6Nu3L5YuXWpQXyorfacTOe1IRESkP5kQQpi6E6RdRkYG5HI5lEolnJ2dTd0dSWpqapF1xjjtSERE5qwkv7+rzAgZlR8GW0RERMbFgIxKjCNlRERExsGAjAyiDsKUSiW2bNlSbHtuEk5ERFQ8BmSkN303Fs9P370viYiIzFml2DqJKgYGV0RERGWDARkRERGRiTEgI8nNm8Dhw3k/iYiIqPwwICMAwJo1QK1awIsv5v1cs8bUPSIiIjIfTOo3E0WVqLh1ywJRUZ5QqWQAAJUKePNNICwM+P+dqbRSKp2QluYGV9dUaWNwIiIiMhwDMjNQ3OrIpKQAqFQRGsdyc4HLl3UHZKdONceuXT0hhAVkMhV69dqNkJDTxuw2ERGR2eCUpRkobnWkq2sqZDKVxjFLS6BOHe3tlUonKRgDACEssGtXTyiVToXack9LIiKi4nGEjCCXZ6JXr93Ys6cXcnNlsLQEvvyy8OiYOrhKS3OTgjE1ISyQluYKuTwT/fv3h4uLCyv1ExER6Ymbi1dgxtpcPDk5GatXry62Xc+ebyEz0wt16uieqkxNTcXVq0/x/PPPcs4AwNJSICHhDgICrBiEERGRWePm4lQqNjZ3UL9+3tRlcrL6mOYol5ubG9zcgNWr8xL/c3Pzpjc/+USGjAwvPH5sip4TERFVbgzISBITE6P1uLb9KCMj81ZhXr4M/P47MGlS3upMC4u8YC0ysjx6TEREVDUwIKNi6VoUoJ7WfOmlvGAM0L9kBhERET3DVZYEpdIJSUkBWldJFufSpWfBmJq6ZAYRERHphyNkZqCo0hOlrSdWt27eNGX+oKyokhlERERUGAMyM+Dm5obo6Ghp6vHevXuIiYnRWU8sKOiy3pX3/fwKJ/hrK5lBREREujEgMxPaSlEUV09MX/kT/IsqmUFERETaMSAzY+oK/fmDMplMBVfXNIOv5efHQIyIiKikmNRvxtQV+tXbJqlzyLhROBERUfniCJmZCwk5jaCgy0hLc4Wra5rWYIz7URIREZUtBmQEuTxTayAWHh4OX19fboVERERUxjhlSTq5u7szGCMiIioHDMjMkL5TkJyqJCIiKh+csjRDBeuSaVNwU3EiIiIqOwzIzBSDLSIiooqDU5ZEREREJsaAjIiIiMjEGJARERERmRgDMiIiIiITY0BGREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRERERCbGSv0VmBACAJCRkWHinhAREZG+1L+31b/H9cGArALLzMwEAPj7+5u4J0RERGSozMxMyOVyvdrKhCHhG5UrlUqFW7duwcnJCTKZrMTXycjIgL+/P27cuAFnZ2cj9rBy4X3Iw/uQh/chD+/DM7wXeXgf8pTmPgghkJmZCV9fX1hY6JcdxhGyCszCwgJ+fn5Gu56zs7NZ/+VS433Iw/uQh/chD+/DM7wXeXgf8pT0Pug7MqbGpH4iIiIiE2NARkRERGRiDMjMgK2tLWbOnAlbW1tTd8WkeB/y8D7k4X3Iw/vwDO9FHt6HPOV9H5jUT0RERGRiHCEjIiIiMjEGZEREREQmxoCMiIiIyMQYkBERERGZGAOySmrlypV47rnnpIJ1CoUC+/btk84/efIEo0ePhpubG6pVq4a+ffvi9u3bGte4fv06evToAQcHB3h6emLixIl4+vRpeX8Uo5o3bx5kMhnGjRsnHTOHezFr1izIZDKNR4MGDaTz5nAP1P79918MGTIEbm5usLe3R5MmTfD7779L54UQmDFjBnx8fGBvb4/Q0FBcunRJ4xppaWkYPHgwnJ2d4eLigsjISDx48KC8P0qJBQQEFPo+yGQyjB49GoD5fB9yc3Mxffp0BAYGwt7eHkFBQZgzZ47G/oLm8H0A8rbwGTduHGrVqgV7e3u0bdsWJ06ckM5X1fvw888/o1evXvD19YVMJsP333+vcd5Yn/vcuXNo37497Ozs4O/vjwULFhjeWUGV0s6dO8WePXvE33//LS5evCg++OADYW1tLc6fPy+EEOKtt94S/v7+Ii4uTvz++++iTZs2om3bttLrnz59KoKDg0VoaKg4ffq02Lt3r3B3dxdTpkwx1Ucqtd9++00EBASI5557TowdO1Y6bg73YubMmaJx48YiOTlZety9e1c6bw73QAgh0tLSRK1atcSwYcNEQkKC+Oeff8SPP/4oLl++LLWZN2+ekMvl4vvvvxdnz54VvXv3FoGBgeLx48dSm27duommTZuK48ePi19++UXUqVNHDBo0yBQfqUTu3Lmj8V2IjY0VAMThw4eFEObzfZg7d65wc3MTu3fvFklJSWLbtm2iWrVqYsmSJVIbc/g+CCFE//79RaNGjcSRI0fEpUuXxMyZM4Wzs7O4efOmEKLq3oe9e/eKqVOnipiYGAFAfPfddxrnjfG5lUql8PLyEoMHDxbnz58X3377rbC3txdffvmlQX1lQFaFVK9eXXz11VciPT1dWFtbi23btknnEhMTBQARHx8vhMj7klpYWIiUlBSpzcqVK4Wzs7PIysoq976XVmZmpqhbt66IjY0VHTt2lAIyc7kXM2fOFE2bNtV6zlzugRBCTJo0Sbzwwgs6z6tUKuHt7S0+/fRT6Vh6erqwtbUV3377rRBCiL/++ksAECdOnJDa7Nu3T8hkMvHvv/+WXefL0NixY0VQUJBQqVRm9X3o0aOHGDFihMax8PBwMXjwYCGE+XwfHj16JCwtLcXu3bs1joeEhIipU6eazX0oGJAZ63OvWLFCVK9eXePvxqRJk0T9+vUN6h+nLKuA3NxcbN68GQ8fPoRCocDJkyeRk5OD0NBQqU2DBg1Qs2ZNxMfHAwDi4+PRpEkTeHl5SW3CwsKQkZGBP//8s9w/Q2mNHj0aPXr00PjMAMzqXly6dAm+vr6oXbs2Bg8ejOvXrwMwr3uwc+dOtGzZEq+++io8PT3RvHlz/Pe//5XOJyUlISUlReNeyOVytG7dWuNeuLi4oGXLllKb0NBQWFhYICEhofw+jJFkZ2fjm2++wYgRIyCTyczq+9C2bVvExcXh77//BgCcPXsWv/76K7p37w7AfL4PT58+RW5uLuzs7DSO29vb49dffzWb+1CQsT53fHw8OnToABsbG6lNWFgYLl68iPv37+vdH24uXon98ccfUCgUePLkCapVq4bvvvsOjRo1wpkzZ2BjYwMXFxeN9l5eXkhJSQEApKSkaPzPVn1efa4y2bx5M06dOqWRD6GWkpJiFveidevWWL9+PerXr4/k5GTMnj0b7du3x/nz583mHgDAP//8g5UrV2L8+PH44IMPcOLECYwZMwY2NjaIiIiQPou2z5r/Xnh6emqct7Kygqura6W6F2rff/890tPTMWzYMADm83cCACZPnoyMjAw0aNAAlpaWyM3Nxdy5czF48GAAMJvvg5OTExQKBebMmYOGDRvCy8sL3377LeLj41GnTh2zuQ8FGetzp6SkIDAwsNA11OeqV6+uV38YkFVi9evXx5kzZ6BUKrF9+3ZERETgyJEjpu5Wubpx4wbGjh2L2NjYQv/6Myfqf/EDwHPPPYfWrVujVq1a2Lp1K+zt7U3Ys/KlUqnQsmVLfPzxxwCA5s2b4/z581i1ahUiIiJM3DvTWLNmDbp37w5fX19Td6Xcbd26FRs3bsSmTZvQuHFjnDlzBuPGjYOvr6/ZfR++/vprjBgxAjVq1IClpSVCQkIwaNAgnDx50tRdo//HKctKzMbGBnXq1EGLFi3wySefoGnTpliyZAm8vb2RnZ2N9PR0jfa3b9+Gt7c3AMDb27vQqir1c3WbyuDkyZO4c+cOQkJCYGVlBSsrKxw5cgRLly6FlZUVvLy8zOZe5Ofi4oJ69erh8uXLZvV98PHxQaNGjTSONWzYUJq+VX8WbZ81/724c+eOxvmnT58iLS2tUt0LALh27RoOHjyIkSNHSsfM6fswceJETJ48GQMHDkSTJk0wdOhQvPvuu/jkk08AmNf3ISgoCEeOHMGDBw9w48YN/Pbbb8jJyUHt2rXN6j7kZ6zPbay/LwzIqhCVSoWsrCy0aNEC1tbWiIuLk85dvHgR169fh0KhAAAoFAr88ccfGl+02NhYODs7F/qFVpG99NJL+OOPP3DmzBnp0bJlSwwePFj6s7nci/wePHiAK1euwMfHx6y+D+3atcPFixc1jv3999+oVasWACAwMBDe3t4a9yIjIwMJCQka9yI9PV1j5ODQoUNQqVRo3bp1OXwK41m3bh08PT3Ro0cP6Zg5fR8ePXoECwvNX3OWlpZQqVQAzO/7AACOjo7w8fHB/fv38eOPP+KVV14xy/sAGO+/v0KhwM8//4ycnBypTWxsLOrXr6/3dCUAlr2orCZPniyOHDkikpKSxLlz58TkyZOFTCYTBw4cEELkLWuvWbOmOHTokPj999+FQqEQCoVCer16WXvXrl3FmTNnxP79+4WHh0elW9auTf5VlkKYx72YMGGC+Omnn0RSUpI4evSoCA0NFe7u7uLOnTtCCPO4B0LklT6xsrISc+fOFZcuXRIbN24UDg4O4ptvvpHazJs3T7i4uIgffvhBnDt3Trzyyital7k3b95cJCQkiF9//VXUrVu3wi/vLyg3N1fUrFlTTJo0qdA5c/k+REREiBo1akhlL2JiYoS7u7t4//33pTbm8n3Yv3+/2Ldvn/jnn3/EgQMHRNOmTUXr1q1Fdna2EKLq3ofMzExx+vRpcfr0aQFALFy4UJw+fVpcu3ZNCGGcz52eni68vLzE0KFDxfnz58XmzZuFg4MDy16YixEjRohatWoJGxsb4eHhIV566SUpGBNCiMePH4u3335bVK9eXTg4OIj//Oc/Ijk5WeMaV69eFd27dxf29vbC3d1dTJgwQeTk5JT3RzG6ggGZOdyLAQMGCB8fH2FjYyNq1KghBgwYoFF7yxzugdquXbtEcHCwsLW1FQ0aNBCrV6/WOK9SqcT06dOFl5eXsLW1FS+99JK4ePGiRpvU1FQxaNAgUa1aNeHs7CyGDx8uMjMzy/NjlNqPP/4oABT6bEKYz/chIyNDjB07VtSsWVPY2dmJ2rVri6lTp2qUJzCX78OWLVtE7dq1hY2NjfD29hajR48W6enp0vmqeh8OHz4sABR6RERECCGM97nPnj0rXnjhBWFraytq1Kgh5s2bZ3BfZULkK1lMREREROWOOWREREREJsaAjIiIiMjEGJARERERmRgDMiIiIiITY0BGREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRFTmUlJS8M4776B27dqwtbWFv78/evXqpbGH3LFjx/Dyyy+jevXqsLOzQ5MmTbBw4ULk5uZKba5evYrIyEgEBgbC3t4eQUFBmDlzJrKzszXe77///S+aNm2KatWqwcXFBc2bN5c2lAaAWbNmQSaToVu3boX6+umnn0Imk6FTp07Ffq6AgADIZDKdj2HDhhl+syq4Tp06Ydy4cabuBlGVY2XqDhBR1Xb16lW0a9cOLi4u+PTTT9GkSRPk5OTgxx9/xOjRo3HhwgV899136N+/P4YPH47Dhw/DxcUFBw8exPvvv4/4+Hhs3boVMpkMFy5cgEqlwpdffok6derg/PnzeOONN/Dw4UN89tlnAIC1a9di3LhxWLp0KTp27IisrCycO3cO58+f1+iXj48PDh8+jJs3b8LPz086vnbtWtSsWVOvz3bixAkpYDx27Bj69u2LixcvwtnZGQBgb29vjFtYLnJycmBtbV1u75ednQ0bG5tyez+iCq+E20MREemle/fuokaNGuLBgweFzt2/f188ePBAuLm5ifDw8ELnd+7cKQCIzZs367z+ggULRGBgoPT8lVdeEcOGDSuyTzNnzhRNmzYVPXv2FB999JF0/OjRo8Ld3V2MGjVKdOzYUY9P94x6z7z79+9Lx77//nvRvHlzYWtrKwIDA8WsWbM09oMEIFatWiV69Ogh7O3tRYMGDcSxY8fEpUuXRMeOHYWDg4NQKBQa+5Kq+75q1Srh5+cn7O3txauvvqqxL6EQQvz3v/8VDRo0ELa2tqJ+/fpi+fLl0rmkpCTpvnbo0EHY2tqKdevWiXv37omBAwcKX19fYW9vL4KDg8WmTZuk10VERBTaEzApKUmsW7dOyOVyjff/7rvvRP5fMep+//e//xUBAQFCJpMJIfK+A5GRkcLd3V04OTmJzp07izNnzhh074mqAk5ZElGZSUtLw/79+zF69Gg4OjoWOu/i4oIDBw4gNTUV7733XqHzvXr1Qr169fDtt9/qfA+lUglXV1fpube3N44fP45r164V278RI0Zg/fr10vO1a9di8ODBRhm5+eWXX/D6669j7Nix+Ouvv/Dll19i/fr1mDt3rka7OXPm4PXXX8eZM2fQoEEDvPbaa3jzzTcxZcoU/P777xBCIDo6WuM1ly9fxtatW7Fr1y7s378fp0+fxttvvy2d37hxI2bMmIG5c+ciMTERH3/8MaZPn44NGzZoXGfy5MkYO3YsEhMTERYWhidPnqBFixbYs2cPzp8/j6ioKAwdOhS//fYbAGDJkiVQKBR44403kJycjOTkZPj7++t9Ty5fvowdO3YgJiYGZ86cAQC8+uqruHPnDvbt24eTJ08iJCQEL730EtLS0gy53USVn6kjQiKquhISEgQAERMTo7PNvHnzCo0s5de7d2/RsGFDrecuXboknJ2dxerVq6Vjt27dEm3atBEARL169URERITYsmWLyM3NldqoR2uys7OFp6enOHLkiHjw4IFwcnISZ8+eFWPHji31CNlLL70kPv74Y402X3/9tfDx8ZGeAxDTpk2TnsfHxwsAYs2aNdKxb7/9VtjZ2Wn03dLSUty8eVM6tm/fPmFhYSGSk5OFEEIEBQVpjGwJIcScOXOEQqEQQjwbIVu8eHGxn6tHjx5iwoQJ0vOOHTuKsWPHarTRd4TM2tpa3LlzRzr2yy+/CGdnZ/HkyRON1wYFBYkvv/yy2L4RVSXMISOiMiOEKJO2APDvv/+iW7duePXVV/HGG29Ix318fBAfH4/z58/j559/xrFjxxAREYGvvvoK+/fvh4XFs4kBa2trDBkyBOvWrcM///yDevXq4bnnnjOoH7qcPXsWR48e1RgRy83NxZMnT/Do0SM4ODgAgMb7eXl5AQCaNGmicezJkyfIyMiQctNq1qyJGjVqSG0UCgVUKhUuXrwIJycnXLlyBZGRkRr35enTp5DL5Rp9bNmypcbz3NxcfPzxx9i6dSv+/fdfZGdnIysrS+pradWqVQseHh7S87Nnz+LBgwdwc3PTaPf48WNcuXLFKO9JVFkwICOiMlO3bl0pGV+XevXqAQASExPRtm3bQucTExPRqFEjjWO3bt1C586d0bZtW6xevVrrdYODgxEcHIy3334bb731Ftq3b48jR46gc+fOGu1GjBiB1q1b4/z58xgxYoShH1GnBw8eYPbs2QgPDy90zs7OTvpz/kR6mUym85hKpdL7fYG8laatW7fWOGdpaanxvOA08qeffoolS5Zg8eLFaNKkCRwdHTFu3LhCq1gLsrCwKBRQ5+TkFGpX8P0ePHgAHx8f/PTTT4Xauri4FPmeRFUNAzIiKjOurq4ICwvD8uXLMWbMmEK/kNPT09G1a1e4urri888/LxSQ7dy5E5cuXcKcOXOkY//++y86d+6MFi1aYN26dRojXrqoA7qHDx8WOte4cWM0btwY586dw2uvvVaSj6lVSEgILl68iDp16hjtmmrXr1/HrVu34OvrCwA4fvw4LCwsUL9+fXh5ecHX1xf//PMPBg8ebNB1jx49ildeeQVDhgwBkBcE/v333xoBsY2NjUYpEgDw8PBAZmYmHj58KP03VueIFSUkJAQpKSmwsrJCQECAQX0lqmoYkBFRmVq+fDnatWuH559/Hh9++CGee+45PH36FLGxsVi5ciUSExPx5ZdfYuDAgYiKikJ0dDScnZ0RFxeHiRMnol+/fujfvz+AvGCsU6dOqFWrFj777DPcvXtXeh9vb28AwKhRo+Dr64sXX3wRfn5+SE5OxkcffQQPDw8oFAqtfTx06BBycnKMOiozY8YM9OzZEzVr1kS/fv1gYWGBs2fP4vz58/joo49KdW07OztERETgs88+Q0ZGBsaMGYP+/ftL92D27NkYM2YM5HI5unXrhqysLPz++++4f/8+xo8fr/O6devWxfbt23Hs2DFUr14dCxcuxO3btzUCsoCAACQkJODq1auoVq0aXF1d0bp1azg4OOCDDz7AmDFjkJCQoLFYQpfQ0FAoFAr06dMHCxYsQL169XDr1i3s2bMH//nPfwpNqRJVZVxlSURlqnbt2jh16hQ6d+6MCRMmIDg4GF26dEFcXBxWrlwJAOjXrx8OHz6M69evo3379qhfvz4WLVqEqVOnYvPmzdK0XWxsLC5fvoy4uDj4+fnBx8dHeqiFhobi+PHjePXVV1GvXj307dsXdnZ2iIuLK5SrpObo6Gj0KbKwsDDs3r0bBw4cQKtWrdCmTRssWrQItWrVKvW169Spg/DwcLz88svo2rUrnnvuOaxYsUI6P3LkSHz11VdYt24dmjRpgo4dO2L9+vUIDAws8rrTpk1DSEgIwsLC0KlTJ3h7e6NPnz4abd577z1YWlqiUaNG8PDwwPXr1+Hq6opvvvkGe/fuRZMmTfDtt99i1qxZxX4OmUyGvXv3okOHDhg+fDjq1auHgQMH4tq1a1I+HZG5kAlDM2mJiMhkZs2ahe+//16vKUEiqjw4QkZERERkYgzIiIiKUK1aNZ2PX375xdTdI6IqglOWRERFuHz5ss5zNWrUqFT7VRJRxcWAjIiIiMjEOGVJREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRERERCbGgIyIiIjIxBiQEREREZkYAzIiIiIiE/s/cQ2omzjrMrQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrJklEQVR4nO3deXxM5/4H8M9kJBEkk1UWiSSSoHbSltDaK9RSVxelagvBtVxLbVdtVbXWrlQv4bq02qIXXYSiVcJVmipFRROkkmBCYmkjMuf3x/xmZJLMJDOZmXNmzuf9euWlM+fkzDPTyTnf8zzf5/soBEEQQERERCQDLmI3gIiIiMheGPgQERGRbDDwISIiItlg4ENERESywcCHiIiIZIOBDxEREckGAx8iIiKSDQY+REREJBsMfIiIiEg2GPgQEUnQ5s2boVAokJGRIXZTiJwKAx8imTp16hTGjBmDhg0bonr16qhduzZee+01/Pbbb6X2bd++PRQKBRQKBVxcXODl5YV69erhzTffxIEDB8x63b1796Jdu3aoWbMmqlWrhjp16uC1117DN998Y623Vsp7772HL774otTzx48fx5w5c3D37l2bvXZJc+bM0X+WCoUC1apVQ4MGDfD2228jPz/fKq+xfft2rFixwirHInI2DHyIZGrRokXYuXMnOnXqhJUrVyIxMRHff/89WrRogXPnzpXaPzQ0FFu3bsW///1vLFmyBL169cLx48fRpUsX9O3bF4WFheW+5tKlS9GrVy8oFApMnz4dy5cvx8svv4zLly/jk08+scXbBGA68Jk7d65dAx+ddevWYevWrVi2bBnq16+P+fPno2vXrrDG8okMfIiMqyJ2A4hIHBMnTsT27dvh5uamf65v375o3LgxFi5ciP/85z8G+6tUKgwYMMDguYULF2LcuHH44IMPEBERgUWLFhl9vcePH2PevHl44YUXkJycXGr7zZs3K/mOpOPhw4eoVq2ayX1eeeUV+Pv7AwBGjhyJl19+Gbt27cKJEycQFxdnj2YSyRJ7fIhkqnXr1gZBDwDExMSgYcOGuHDhQoWOoVQqsWrVKjRo0ABr1qxBXl6e0X1v376N/Px8tGnTpsztNWvWNHj8119/Yc6cOahbty6qVq2K4OBg9OnTB1euXNHvs3TpUrRu3Rp+fn7w8PBAbGwsPv/8c4PjKBQKPHjwAFu2bNEPLw0ePBhz5szB5MmTAQCRkZH6bcVzav7zn/8gNjYWHh4e8PX1xeuvv47r168bHL99+/Zo1KgRTp8+jbZt26JatWr45z//WaHPr7iOHTsCANLT003u98EHH6Bhw4Zwd3dHSEgIRo8ebdBj1b59e3z55Ze4evWq/j1FRESY3R4iZ8UeHyLSEwQBOTk5aNiwYYV/R6lUol+/fpg5cyZ++OEHdO/evcz9atasCQ8PD+zduxdjx46Fr6+v0WMWFRWhR48e+Pbbb/H666/jH//4B+7du4cDBw7g3LlziIqKAgCsXLkSvXr1whtvvIFHjx7hk08+wauvvop9+/bp27F161YMGzYMzz77LBITEwEAUVFRqF69On777Td8/PHHWL58ub73JSAgAAAwf/58zJw5E6+99hqGDRuGW7duYfXq1Wjbti1++ukneHt769urVqvRrVs3vP766xgwYAACAwMr/Pnp6AI6Pz8/o/vMmTMHc+fORefOnTFq1ChcunQJ69atw6lTp3Ds2DG4urpixowZyMvLQ2ZmJpYvXw4AqFGjhtntIXJaAhHR/9u6dasAQNi4caPB8+3atRMaNmxo9Pd2794tABBWrlxp8vizZs0SAAjVq1cXunXrJsyfP184ffp0qf02bdokABCWLVtWaptGo9H/98OHDw22PXr0SGjUqJHQsWNHg+erV68uDBo0qNSxlixZIgAQ0tPTDZ7PyMgQlEqlMH/+fIPnf/nlF6FKlSoGz7dr104AIKxfv97o+y5u9uzZAgDh0qVLwq1bt4T09HThww8/FNzd3YXAwEDhwYMHgiAIQlJSkkHbbt68Kbi5uQldunQRioqK9Mdbs2aNAEDYtGmT/rnu3bsL4eHhFWoPkdxwqIuIAAAXL17E6NGjERcXh0GDBpn1u7oehXv37pncb+7cudi+fTuaN2+O/fv3Y8aMGYiNjUWLFi0Mhtd27twJf39/jB07ttQxFAqF/r89PDz0/33nzh3k5eXh+eefx5kzZ8xqf0m7du2CRqPBa6+9htu3b+t/goKCEBMTg8OHDxvs7+7ujiFDhpj1GvXq1UNAQAAiIyMxYsQIREdH48svvzSaG3Tw4EE8evQI48ePh4vLk1P38OHD4eXlhS+//NL8N0okQxzqIiJkZ2eje/fuUKlU+Pzzz6FUKs36/fv37wMAPD09y923X79+6NevH/Lz83Hy5Els3rwZ27dvR8+ePXHu3DlUrVoVV65cQb169VCliulT1L59+/Duu+8iNTUVBQUF+ueLB0eWuHz5MgRBQExMTJnbXV1dDR7XqlWrVL5UeXbu3AkvLy+4uroiNDRUP3xnzNWrVwFoA6bi3NzcUKdOHf12IjKNgQ+RzOXl5aFbt264e/cujh49ipCQELOPoZv+Hh0dXeHf8fLywgsvvIAXXngBrq6u2LJlC06ePIl27dpV6PePHj2KXr16oW3btvjggw8QHBwMV1dXJCUlYfv27Wa/h+I0Gg0UCgW+/vrrMoPAkjkzxXueKqpt27b6vCIish8GPkQy9tdff6Fnz5747bffcPDgQTRo0MDsYxQVFWH79u2oVq0annvuOYva8fTTT2PLli3IysoCoE0+PnnyJAoLC0v1rujs3LkTVatWxf79++Hu7q5/PikpqdS+xnqAjD0fFRUFQRAQGRmJunXrmvt2bCI8PBwAcOnSJdSpU0f//KNHj5Ceno7OnTvrn6tsjxeRM2OOD5FMFRUVoW/fvkhJScFnn31mUe2YoqIijBs3DhcuXMC4cePg5eVldN+HDx8iJSWlzG1ff/01gCfDOC+//DJu376NNWvWlNpX+P8Cf0qlEgqFAkVFRfptGRkZZRYqrF69eplFCqtXrw4Apbb16dMHSqUSc+fOLVVQUBAEqNXqst+kDXXu3Blubm5YtWqVQZs2btyIvLw8g9l01atXN1lagEjO2ONDJFOTJk3Cnj170LNnT+Tm5pYqWFiyWGFeXp5+n4cPHyItLQ27du3ClStX8Prrr2PevHkmX+/hw4do3bo1WrVqha5duyIsLAx3797FF198gaNHj6J3795o3rw5AGDgwIH497//jYkTJ+J///sfnn/+eTx48AAHDx7E3//+d7z00kvo3r07li1bhq5du6J///64efMm1q5di+joaJw9e9bgtWNjY3Hw4EEsW7YMISEhiIyMRMuWLREbGwsAmDFjBl5//XW4urqiZ8+eiIqKwrvvvovp06cjIyMDvXv3hqenJ9LT07F7924kJibirbfeqtTnb66AgABMnz4dc+fORdeuXdGrVy9cunQJH3zwAZ555hmD/1+xsbHYsWMHJk6ciGeeeQY1atRAz5497dpeIskSc0oZEYlHNw3b2I+pfWvUqCHExMQIAwYMEJKTkyv0eoWFhcJHH30k9O7dWwgPDxfc3d2FatWqCc2bNxeWLFkiFBQUGOz/8OFDYcaMGUJkZKTg6uoqBAUFCa+88opw5coV/T4bN24UYmJiBHd3d6F+/fpCUlKSfrp4cRcvXhTatm0reHh4CAAMprbPmzdPqFWrluDi4lJqavvOnTuF5557TqhevbpQvXp1oX79+sLo0aOFS5cuGXw2pqb6l6Rr361bt0zuV3I6u86aNWuE+vXrC66urkJgYKAwatQo4c6dOwb73L9/X+jfv7/g7e0tAODUdqJiFIJghYVhiIiIiBwAc3yIiIhINhj4EBERkWww8CEiIiLZYOBDREREssHAh4iIiGSDgQ8RERHJBgsYlqDRaHDjxg14enqy7DsREZGDEAQB9+7dQ0hICFxcjPfrMPAp4caNGwgLCxO7GURERGSB69evIzQ01Oh2Bj4leHp6AtB+cKbWHSIiIiLpyM/PR1hYmP46bgwDnxJ0w1teXl4MfIiIiBxMeWkqTG4mIiIi2WDgQ0RERLLBwIeIiIhkgzk+REREVlBUVITCwkKxm+G0XF1doVQqK30cBj5ERESVIAgCsrOzcffuXbGb4vS8vb0RFBRUqTp7DHyIiIgqQRf01KxZE9WqVWPxWxsQBAEPHz7EzZs3AQDBwcEWH4uBDxERkYWKior0QY+fn5/YzXFqHh4eAICbN2+iZs2aFg97MbmZiIjIQrqcnmrVqoncEnnQfc6VyaVi4ENERFRJHN6yD2t8zhzqsiG1Wo1Hjx4Z3e7m5sauUSIiIjti4GMjarUaa9asKXe/MWPGMPghIiKyEw512Yipnh5L9hObWq1GVlaW0R+1Wi12E4mIyAyDBw+GQqGAQqGAq6srAgMD8cILL2DTpk3QaDQVPs7mzZvh7e1tu4ZaGXt8qFzsvSIisg2xUyK6du2KpKQkFBUVIScnB9988w3+8Y9/4PPPP8eePXtQpYrzhQnO947I6pyt94qISAqkcFPp7u6OoKAgAECtWrXQokULtGrVCp06dcLmzZsxbNgwLFu2DElJSfj999/h6+uLnj17YvHixahRowaOHDmCIUOGAHiSeDx79mzMmTMHW7duxcqVK3Hp0iVUr14dHTt2xIoVK1CzZk2bvJeK4lAXmS0vzxPp6RHIy/MUuyl2V3zI7/TpHHz+uRqnT+dwyI+IzCbVm8qOHTuiadOm2LVrFwDAxcUFq1atwvnz57FlyxYcOnQIU6ZMAQC0bt0aK1asgJeXl/48+NZbbwHQTjmfN28efv75Z3zxxRfIyMjA4MGD7fpeysIeHzLLmTPNsXdvDwiCCxQKDXr23IcWLX4Su1l2UfzuzNTnwCE/InJ09evXx9mzZwEA48eP1z8fERGBd999FyNHjsQHH3wANzc3qFQqKBQKfc+RztChQ/X/XadOHaxatQrPPPMM7t+/jxo1atjlfZSFPT5UYXl5nvqLPQAIggv27u0hm54f3V1XeZ8Dh/yIyNEJgqAfujp48CA6deqEWrVqwdPTE2+++SbUajUePnxo8hinT59Gz549Ubt2bXh6eqJdu3YAgGvXrtm8/aYw8KEKy83101/sdQTBBbm5vnZrgxRml0nhcyAisqULFy4gMjISGRkZ6NGjB5o0aYKdO3fi9OnTWLt2LQDTN3kPHjxAfHw8vLy8sG3bNpw6dQq7d+8u9/fsgUNdNuLm5mbV/aTA11cNhUJjcNFXKDTw9c21y+tLIREQEP9zICKypUOHDuGXX37BhAkTcPr0aWg0Grz//vtwcdGe8z799FOD/d3c3FBUVGTw3MWLF6FWq7Fw4UKEhYUBAH788Uf7vIFyMPCxET8/P4wZM0YSlZutNV1SpbqHnj33lcptUanuWbO5RpV8D3l5nsjN9YOvr9qgDba+mxD7cyAispaCggJkZ2cbTGdfsGABevTogYEDB+LcuXMoLCzE6tWr0bNnTxw7dgzr1683OEZERATu37+Pb7/9Fk2bNkW1atVQu3ZtuLm5YfXq1Rg5ciTOnTuHefPmifQuDTHwsaHiwURmJnD5MhATA4SG2q8N1uglKd4r1aLFT4iKSkNuri98fXMNLvb27L0SO8na1Ofg6MSuK0JE9vPNN98gODgYVapUgY+PD5o2bYpVq1Zh0KBBcHFxQdOmTbFs2TIsWrQI06dPR9u2bbFgwQIMHDhQf4zWrVtj5MiR6Nu3L9RqtX46++bNm/HPf/4Tq1atQosWLbB06VL06tVLxHerxcDHDjZuBBITAY0GcHEBNmwAEhLs89rWmC4ppd4rwHhycVRUml0DEJXqnlMFPEDpQNlYr1p5w4nFg6cbN1yQnl4FkZGPERKirQbL4IlI/JSIzZs3Y/PmzeXuN2HCBEyYMMHguTfffNPg8bp167Bu3TqD5/r164d+/foZPCcIgmWNtSIGPjaWmfkk6AG0/44YAcTH27fnp7KkdJEylVzsbIFIZZnbe1N8X1O9aqaOyWn/RBUjtZtKuWDgY2OXLz8JenSKioC0NMcKfKRErORise/OzFWZYc7K9KqVN+1fdwyxZ3bImVhD71Qagxr7Y+BjYzEx2uGt4sGPUglER4vTHmNDF45ErORiR7s7q0wyuDV61dgzJ01iDr0TSQEDHxsLDdWeWEaM0Pb0KJXAhx+Kc5cldkKwNYmVXCyVoMZc5v6/t0avGqf9S4+zDL0TVQYLGNpBQgKQkQEcPqz9V4y7K2eoulxyCEmluofIyKulgh6pDDVJhSX/73W9agqF9gppSa+aNY5B1qNWq3HihLrMofeTJ9VcZ45kgz0+dhIaKu4dlTMMOzjaUJNUlPf//vbt2/rn8/Ly9P9tjV41Z57270h0+V55eZ5QKMaX6oU7dmwLzp27x4RzkgUGPk5O1/tR3rCDo/SS8KRsvvL+3+tWYC6LNabsO+O0f0eju1koLz+OCeckBwx8nFzxXpJatfIxdaoKRUUKKJUCFi3KR//+/dhL4uRskQzuKIEylcZeOJI7Bj4yoAtqJk0C+vbVTqWPjlYgNNQbgLeYTSM7KetiZ2yW12uvvQZvb2+jxyovUHa0af9yxF44kjOHCny+//57LFmyBKdPn0ZWVhZ2796N3r1767cLgoDZs2fjo48+wt27d9GmTRusW7cOMTEx4jVaYsTONSL7KSsZXHexMzXLy9vbG8HBwRa/LnOxiAgAjhw5gg4dOuDOnTsmb6aKi4iIwPjx4zF+/HibtcuhZnU9ePAATZs2xdq1a8vcvnjxYqxatQrr16/HyZMnUb16dcTHx+Ovv/6yc0uJxKcLQBITE5GYmIg+ffoAsM8MPz8/PwQHBxv9YdBDJL7BgwdDoVBg5MiRpbaNHj0aCoUCgwcPtn/DbMyheny6deuGbt26lblNEASsWLECb7/9Nl566SUAwL///W8EBgbiiy++wOuvv27PphJJQlkBhjPM8CMi6wgLC8Mnn3yC5cuXw8PDAwDw119/Yfv27ahdu7bIrbMNh+rxMSU9PR3Z2dno3Lmz/jmVSoWWLVsiJSXF6O8VFBQgPz/f4IfImelmeRXHwoJE8tSiRQuEhYUZzO7ctWsXateujebNm+ufKygowLhx41CzZk1UrVoVzz33HE6dOmVwrK+++gp169aFh4cHOnTogIyMjFKv98MPP+D555+Hh4cHwsLCMG7cODx48MBm768sThP4ZGdnAwACAwMNng8MDNRvK8uCBQugUqn0P2FhYTZtJ5HYWFhQfphw7hgyM7WFbjMz7fu6Q4cORVJSkv7xpk2bMGTIEIN9pkyZgp07d2LLli04c+YMoqOjER8fj9xc7Q3T9evX0adPH/Ts2ROpqakYNmwYpk2bZnCMK1euoGvXrnj55Zdx9uxZ7NixAz/88APGjBlj+zdZjEMNddnC9OnTMXHiRP3j/Px8Bj/klIpf1ExNaebFz/nYI+FcrVbrj3/jhgvS06sgMvIxQkI0Vjm+sxNzDbUBAwZg+vTpuHr1KgDg2LFj+OSTT3DkyBEA2vzadevWYfPmzfp0k48++ggHDhzAxo0bMXnyZKxbtw5RUVF4//33AQD16tXDL7/8gkWLFulfZ8GCBXjjjTf0icsxMTFYtWoV2rVrh3Xr1qFq1ap2eb9OE/gEBQUBAHJycgxmpOTk5KBZs2ZGf8/d3R3u7u62bh6R6DjbSt5s+f9VVxkaMD1jkJWhyyb2GmoBAQHo3r07Nm/eDEEQ0L17d/j7++u3X7lyBYWFhWjTpo3+OVdXVzz77LO4cOECAODChQto2bKlwXHj4uIMHv/88884e/Ystm3bpn9OEARoNBqkp6fjqaeessXbK8VpAp/IyEgEBQXh22+/1Qc6+fn5OHnyJEaNGiVu44gkghcdsgVdMG1sxmBUVBpUqnusDG3E5csocw21tDT7lR8ZOnSofsjJ2Mzpyrp//z5GjBiBcePGldpmz0Rqhwp87t+/j7S0NP3j9PR0pKamwtfXF7Vr18b48ePx7rvvIiYmBpGRkZg5cyZCQkIMav0QEZFtcMagZWJitMNbxYMfpRKIjrZfG7p27YpHjx5BoVAgPj7eYFtUVBTc3Nxw7NgxhIeHAwAKCwtx6tQp/bDVU089hT179hj83okTJwwet2jRAr/++iui7fnGyuBQgc+PP/6IDh066B/rcnMGDRqEzZs3Y8qUKXjw4AESExNx9+5dPPfcc/jmm2/sNm5IZG3F8ybKwqEpx+Ls/z/LWxeuspw1jyg0VJvTM2KEtqdHqQQ+/NC+xWaVSqV+2EqpVBpsq169OkaNGoXJkyfrOxoWL16Mhw8fIuH/E5FGjhyJ999/H5MnT8awYcNw+vRpbN682eA4U6dORatWrTBmzBgMGzYM1atXx6+//ooDBw7oh0rtwaECn/bt20MQBKPbFQoF3nnnHbzzzjt2bBWRbRTPmzCFeROOQQ7/P22xLpyOs+cRJSRoc3q0SwqJU2Hfy8vL6LaFCxdCo9HgzTffxL179/D0009j//798PHxAaAdqtq5cycmTJiA1atX49lnn8V7772HoUOH6o/RpEkTfPfdd5gxYwaef/55CIKAqKgo9O3b1+bvrTiHCnyI5KSi+RDMm3AMcvn/aatFUM3JI3LUnjV7LylUskempC+++EL/31WrVsWqVauwatUqo/v36NEDPXr0MHiu5LT4Z555BsnJyUaPUVbtH2tj4ENEDsdRL2zFGVsk1hnYchHU8vKIMjMz8dVXX5V7HEftGaLKY+BDRA7FGYaMTA3VkGnl5REVD3ry8jxx/bq2LltY2HWDYMzRe9bIcgx8iMihOPqQUXlDNY7InpWhK5pHdOZMc+zZ0xOA4v+f0aBXLwaYxMCHyGE489CInDjjlG97F8csL49IF1w+CXoAwAV79jh2gEnWwcCHyAFwaMR52HrKt1jsPaxoKo+orOBSy3YBpqkZx2Q91vicnWaRUiJnZWxoJC/PU+SWSUNenifS0yMc5vPgIrG2pwsuS7N+gOnq6goAePjwoVWPS2XTfc66z90S7PEhkihdPkR5QyNyXlTUkXrCuEhs5ZjzuZTMA9LS5vhYO8BUKpXw9vbGzZs3AQDVqlWDQqEo57fIXIIg4OHDh7h58ya8vb1LFVk0BwMfIonS5U1kZDzG1q0CNJonJ1OlUsDYsd0QEVFFsjOXbM3RkoS5SGzlVOTzu3v3Lj799FMAT4LL69e1hXHCwjJt9r3QLZKtC37Idry9vfWft6UY+BBJmJ+fH/z8yipnr0BsbKDYzROVIyYJM6ipHHM/P20e0IUyt1mzZ02hUCA4OBg1a9ZEYWGh1Y5LhlxdXSvV06PDwIfIAUihnL1U6C5Y5SUJc8hIfir6/3zAgAE2CUKVSqVVLsxkWwqBqegG8vPzoVKpkJeXZ3LdEiISj65y8/btHpg6VYWiIgWUSgGLFuWhf/8/OWQkY85Q1dsRSPFzruj1m4FPCQx8bEeKfyjk+DIz2RNGZE9SrZ5e0es3h7rILqT6h0KOz94LOxLJnaNXT2cdH7KLkn8AxmqvSPUPhYiInAN7fMjuHKn2ChERORf2+JBdsQoxERGJiT0+ZFeOWHuFiJwTJ1zIEwMfsiupLtDIEyCRvHDChfXk5XkiN9cPvr5qh7iBZeBDdlVyDR0pLNDIEyCR/Dj6zCSpcMScTQY+ZHemFmgUA0+AREQVp6uQXd56eVKtns7Ah+yi5B+Adg2d0gGPFP5QHK3blmyLw6DywL/7itMtGHv4MLB8eemczTZtBqF9e+muTcfAh+zCUVamdsRuW7IdDoPKA//uzefn54dWrQAXF0CjefK8Ugm0bKldXFmqGPiQ3Uj9wlBety3JD4dBnR//7i0XGgps2ACMGAEUFWmDng8/lH4ldQY+EpCZCVy+DMTESP8L48w41Z5Ifiryd8/hTuMSEoD4eMdaL4+Bj8g2bgQSE7VdhS4u2ug5IUHsVsmTVKfak30Vv8jdvn1b5NaQrZX3d5+Xl4cdO3aUexw5D3c62np5DHxEolarkZHxGImJNaHRKABog58RIwQ0a3YTERFVZPtHJBYpTrUn+yovp4cJsM5DN5GivL97QRAqdDwOdzoOBj4i0J1c09MjoNEMMthWVKTA6tVfIzLyqqzvIOyp+EwyU1PtpTDjjGzL1MWLCbDOpeSEi1mzbiEjowoiIh4jJOQZAM/Azc2NAY0TYuAjAt0fUnldrPyDsw9HmXFG4mECrHMq/jcdHAzExpbeJysry+Axe/0cHwMfEXFoRToY1JApTHwnoHK9fkyQlg6nDHzWrl2LJUuWIDs7G02bNsXq1avx7LPPit2sMkmtijERPaG7u3d1LTDZO8thUOdXmV4/1oOSFqcLfHbs2IGJEydi/fr1aNmyJVasWIH4+HhcunQJNWvWFLt5ZTJWxZiIxFPy7r5Jk7M4e7YJBMEFLi4CFi/OR//+/XinLhOV6fVjPShpcbrAZ9myZRg+fDiGDBkCAFi/fj2+/PJLbNq0CdOmTRO5dWQO1jcisZR1d3/2bBMkJPwLhYVuGDu2G2JjAwF4i9rOkjicYjssd+E8nCrwefToEU6fPo3p06frn3NxcUHnzp2RkpIiYsuoonQn7u3bPTBligoajeL/767z0L//nzxxk10Yu7svLHRDZORVhIRojPymeDicYhsVnfZuznCnsQRpY3WjeN6zLqcKfG7fvo2ioiIEBgYaPB8YGIiLFy+W+TsFBQUoKCjQP87Pz7dpG8k43Yk7L88TK1aMhyDo6hspMHmyF/74YxNUqns8cZPN6C5e5d3di5HTU15vTl5eXoWOw+EU81R02ntFz0mmEqR37dpl9Pd43rMepwp8LLFgwQLMnTvXrq9Z/KRpamqk3BImdSeW8sbSeeImWyl+katVKx9Tp6pQVKSAUilg0SLxcnoq2ptDtlGRae8VUZkEaZ73rMepAh9/f38olUrk5OQYPJ+Tk4OgoKAyf2f69OmYOHGi/nF+fj7CwsJs2k7dyXXzZiXeeaf0cA4g765NjqWTmHR/d5MmAX376tYgUiA01Bti5fRYctFjvRnpYVkEaXCqwMfNzQ2xsbH49ttv0bt3bwCARqPBt99+izFjxpT5O+7u7nB3d7djK7X+/NMPU6Zol6kAtMM5U6d6o29fb9kn8rK+EUmFo61BpMMq09JUkZs6Bqy251SBDwBMnDgRgwYNwtNPP41nn30WK1aswIMHD/SzvKTi8uUnQY9OUZH27tIRT7TWxvpGRMaZujiyyrT0VDRBmgGrfThd4NO3b1/cunULs2bNQnZ2Npo1a4ZvvvmmVMKzmNRqNby8HsPF5ckCpQCgVArw9LwJtZoLlAKsb0RUlvIujhxOkR5TCdJubpHYtesnBqx25HSBD6DNfjc2tCW24kmKPXoYnsC6d9+Hffu0JzBm8BNRSRW5ODJHTpqMJUhnZWm7/hmw2o9TBj5SVjxJ0dRwDjP4iaikilwcrVlvhuyHAav9MPARGYdznqjoCZknbpKr8i6Or732Gry9vQFUvt4M2YctCiSSaQx8SDJKjoOXhSdueRN7SQaxXr+iF8eaNWvqX78y9WbIfqxdIJHKx8CHJIV/3GSM2EsyiPn6vDg6N2sVSKSKYeBDRA5B7BWuxX59XhyJrIOBDxE5JLELvYn9+rYg9lAikT0w8CEihyN2oTexX98WxB5KJLIXBj52xplLRJUjdqE3sV/fVkr29Bjr0WKpjYph75l0MfCxM85cImdn6xO+2IXexH59e3DGHi17Yu+ZtDHwEYFUv+iZmdo1xGJiuF4YWcYeJ3yxC72J/fq25qw9WvbE3jNpcyl/F5KDjRuB8HCgY0ftvxs3it0ickRlnfDT0yOQl+dpcj9z6GrZKBTaUv8la9nYmtivb2umerTIfGfONMeKFeOxZcsgrFgxHmfONBe7SbLHHh9CZiaQmPhktXiNBhgxAoiPZ88PWc7awyXF895MLfdiq/w4sV/fXpy9R8ue2HsmTQx8CJcvPwl6dIqKgLQ08QMfDr85Jluc8MXOjxP79e2lvOrQVHFyyAdzRAx8CDExgIuLYfCjVALR0eK1CdAOt+l6olxcgA0bgIQEcdtEFWOrE77YQYXYr28vpnq0AM5Yqij2nkkTAx+ZU6vVUCofYfFiD0ydqkJRkQJKpYBFi/KgVP4Jtdr+JzC1Wo2MjMdITKwJjUYBQDf8JqBZs5uIiKjCk6rE8YTveEoO0RlbQPnhw4fYsGGD/rGxxF3OWGLvmVQx8JGxkjNwxo3z1N/h3b9/D7pzmz1PYLo2padHQKMZZLCtqEiB1au/RmTkVZ5UJY4nfMdT0aG84ttN5XFxxpJWeb1nZH8MfGSs5InJ2B2ePU9gutcqr8eAJ1Xp4wnf8VTkZiIrKwsAE3dNqWjvmaMnwjsqBj4kSewxMJ8U8i54wpcPJu4aJ5dEeEfFwIckiz0GFVdy2FKsvAue8OWDeVym8TsuXQx8SNKM9RiQISnlXfCELw9y7ZUt3rN644YL0tOrIDLyMUJCtNNiGdhLHwMfIifCvAvxSGGo0d7k1itbvGfV1A0GJ19IGwMfsjoWHRQP8y7EIZWhRjHIqVdWF9iWd4PByRfSxsCHrIpFB8XFvAtxSGmo0dYqmpjuzAnsvMFwbAx8ZMzaJzBrrPnFk2rlyDXvQirkMNTIBHbHvsGQ45BsSQx8ZMzaJzBrrPkl95OqNRIn5ZZ3ISVy6Qlw1r+/inLUG4ySQ7LGOOOQbHEMfGTOWl9utVoNL6/HcHF5sswEACiVAjw9b0KtrvgyE878B2eKNRMn5ZR3ISWO3BNA5nHEG4ySN5TGctGcYUjWFAY+VGnFL9g9ehhesLt334d9+zjToSIqkzjJIUJpcNSeALKMI99gmLq5cnYWBT4PHjxA9erVrd0WclDFL8Sm7oKc/S7CWiwZLpH7EKGUOGJPAMmLHHLRTLEo8AkMDMRrr72GoUOH4rnnnrN2m8jBOfJdkBRYOlzCoEY6+DfgnEz1mBYfNpJ6z6pcctGMsSjw+c9//oPNmzejY8eOiIiIwNChQzFw4ECEhIRYu31EssPhEsfDoUZ5MNazun27B955RwWNRgEXFwENGyokXcZD7rloFgU+vXv3Ru/evXHr1i1s3boVmzdvxsyZMxEfH4+hQ4eiV69eqFKF6UNEluJwiWPhUKN8FP9/qFarkZHxGFOmqPSTOjQaBUaMENCs2U1ERFR8Uoc9yf3mqlLRSUBAACZOnIiJEydi9erVmDx5Mr766iv4+/tj5MiRmDZtGqpVq2aVhs6fPx9ffvklUlNT4ebmhrt375ba59q1axg1ahQOHz6MGjVqYNCgQViwYAGDMHJIHC5xLFK8wJHt6CZ1pKdHQKMZZLCtqEiB1au/RmTkVclO6pDzzVWlIoKcnBxs2bIFmzdvxtWrV/HKK68gISEBmZmZWLRoEU6cOIHk5GSrNPTRo0d49dVXERcXh40bN5baXlRUhO7duyMoKAjHjx9HVlYWBg4cCFdXV7z33ntWaQMR2RaLq5Gj0H1Pyxs2ktKkjpJDrcZurpx9SNaiwGfXrl1ISkrC/v370aBBA/z973/HgAED4O3trd+ndevWeOqpp6zVTsydOxcAsHnz5jK3Jycn49dff8XBgwcRGBiIZs2aYd68eZg6dSrmzJnj9P8jyfHJPU9EzutdkeNypGEjDslqWRT4DBkyBK+//jqOHTuGZ555psx9QkJCMGPGjEo1zhwpKSlo3LgxAgMD9c/Fx8dj1KhROH/+PJo3b17m7xUUFKCgoED/OD8/3+ZtdTZyv2Bbi9xPSnJa74qciyMNGznr+cMcFgU+WVlZ5ebueHh4YPbs2RY1yhLZ2dkGQQ8A/ePs7Gyjv7dgwQJ9bxJZRu4XbGviZ8QaI+SYmJPnOCwKfKpVq4aioiLs3r0bFy5cAAA89dRT6N27t1mJxNOmTcOiRYtM7nPhwgXUr1/fkmZWyPTp0zFx4kT94/z8fISFhdns9ZwVL9hkLXKvMUJEtmVR4HP+/Hn07NkTOTk5qFevHgBg0aJFCAgIwN69e9GoUaMKHWfSpEkYPHiwyX3q1KlToWMFBQXhf//7n8FzOTk5+m3GuLu7w93dvUKvQUS2J/caI0RkWxYFPsOGDUOjRo1w+vRp+Pj4AADu3LmDwYMHIzExEcePH6/QcQICAhAQEGBJE0qJi4vD/PnzcfPmTdSsWRMAcODAAXh5eaFBgwZWeQ2yvcxM7SrvMTEVX9GdnIsjJYsSOaPisytv3HBBenoVREY+RkiIBoDjpy5YFPikpqbixx9/1Ac9AODj44P58+cbTXaurGvXriE3NxfXrl1DUVERUlNTAQDR0dGoUaMGunTpggYNGuDNN9/E4sWLkZ2djbfffhujR49mj46D2LgRSEwENBrAxQXYsAGSrn5K1qNWq3H79m39Y0dKFiV5ctZJHcVnV5qaZODIsystCnzq1q2LnJwcNGzY0OD5mzdvIjo62ioNK2nWrFnYsmWL/rFultbhw4fRvn17KJVK7Nu3D6NGjUJcXByqV6+OQYMG4Z133rFJe8i6MjOfBD2A9t8RI4D4ePb8ODtT09gjI6+K2DIi45x1Uofu/ZQ3ycCRZ1daFPgsWLAA48aNw5w5c9CqVSsAwIkTJ/DOO+9g0aJFBlPCvby8rNLQzZs3G63hoxMeHo6vvvrKKq9H9qNWq3HiBKDRGJ4gioqAkyfV8PBg8rQzq+g0dh1Hu4Mm5+XM5yVnnmRgUeDTo0cPAMBrr70GhUK7PokgCACAnj176h8rFAoUFRVZo53kpHR3+3l5nlAoxpdKaD12bAvOnbvn0N2qVDHl3WH26dMHISEh/B4Q2YEzTzKwKPA5fPiwtdtBMqW72y8vodWRu1WpYsq7w/T395dN0MMkfxKbM08ysCjwadeunbXbQcSEVplz5jvMitDNpNm+3UO/2reLi4DFi/PQv/+fDpkvQo7NWc/JFi9SevfuXWzcuFFfwLBhw4YYOnQoVCqV1RpH8sPqp/LlzHeY5Sk+5LtixXgIgjaFQKNRYPJkL/zxxyaoVBzyJftzxnOyRYHPjz/+iPj4eHh4eODZZ58FACxbtgzz589HcnIyWrRoYdVGEpE8OOsdZnl0Q7nlDfdxyJeo8iwKfCZMmIBevXrho48+0i9R8fjxYwwbNgzjx4/H999/b9VGEpF8OOMdZkXJfbiPxOes9YmKs7jHp3jQAwBVqlTBlClT8PTTT1utcUTk/ORwoq0oOQ/3kTQ4a32i4iwKfLy8vHDt2rVSi4dev34dnp6eVmkYEcmDHE605pDrcB9Jh7P/rVkU+PTt2xcJCQlYunQpWrduDQA4duwYJk+ejH79+lm1geTceLdPgPOfaM0l5+E+IluzKPBZunQpFAoFBg4ciMePHwMAXF1dMWrUKCxcuNCqDSTnxrt9IiKyJ7MDn6KiIpw4cQJz5szBggULcOXKFQBAVFQUqlWrZvUGOgsWJDOOQQ0REdmLS/m7GFIqlejSpQvu3r2LatWqoXHjxmjcuDGDHhM2bgTCw4GOHbX/btxom9fJzAQOH9b+S0SOg0O+RPZj0VBXo0aN8PvvvyMyMtLa7XEqarUaGRmPkZhYExqNriAZMGKEgGbNbiIioorVejs2bnyyurmLC7BhA5CQYJVDE0mOrsqxMY42PMohXyL7UQi61UXN8M0332D69OmYN28eYmNjUb16dYPt1lqRXQz5+flQqVTIy8ur1PvQVWJNT4/Ali2DSm0fNGgzIiOvWqUSa2amtidJo3nynFIJZGRwWI2cj+5vSycvzxO5uX7w9VUbJASzyjGRvFT0+m1Rj8+LL74IAOjVq5d+dXaAK7IXp7tzK68gWWUrsarVapw4AWg0hif4oiLg5Ek1PDyYQ0POpfjfzJkzzUvVvGnR4icAwI0bN4z+fbH3xHaYz0hSx9XZbcyWBcmKr++jUIwvFVwdO7YF585xfR9yTnl5nvq/K0C7tMPevT0QFZUGleoedu3apd+PPUL2wSF3cgQWBT6RkZEICwsz6O0BtD0+169ft0rDnImtCpLp7mbLC664vg85o/LWtQJM9wjx78K6MjOfBD2ALp8RiI9nzw9Ji8WBT1ZWFmrWrGnwfG5uLiIjIznUVQZbFyRjtVeSm/KGkcvrESLr4ZA7ORKLAh9dLk9J9+/fR9WqVSvdKLIMq73Kh7PNarJEeT2dFekRosrjkDs5GrMCn4kTJwIAFAoFZs6caVC7p6ioCCdPnkSzZs2s2kAiMlRyVpMxcrjQmOrpFGul8+JB6Y0bLkhPr4LIyMcICdGOATlbUMohd3I0ZgU+P/2kHRsXBAG//PKLQTEtNzc3NG3aFG+99ZZ1W0hEBkpeQIwl78rlQmOsp1OMlc6LB6Wm8oucNSjlkDs5ArMCH91sriFDhmDlypUOXa/H1liJlezB1MXVWZnzN2PvC7Eu2Cwvv8iZg1IOuZPUWZTjk5SUZO12OB1WYiVbk2vybnl/W7dv39ZPZQfEuRAzv4hIuiwKfB48eICFCxfi22+/xc2bN6EpXjIYwO+//26Vxjk6Wwc17FWSNzlfXE39bUnh70Ks/CKSPhZ4FJ9Fgc+wYcPw3Xff4c0330RwcHCZM7zI9tirJG+8uJZNCn8XYuQXkfSxwKM0WBT4fP311/jyyy/Rpk0ba7eHzMSgRr54cTVOCn8XTPSl4ljgUTosCnx8fHzg6+tr7bYQkZl4cZU2OST6SmFo0RFcvmy4kDSgLfCYlsbAx94sCnzmzZuHWbNmYcuWLQa1fIjI9kpeQIxdXOV+oaGKq0zeiRSGFqVOrVbDy+sxXFxqQqN5khqiVArw9LwJtbqKrD8fe7Mo8Hn//fdx5coVBAYGIiIiAq6urgbbz5w5Y5XGEVFpvNBIlyP1fugKLW7f7oEpU1TQaBRwcRGweHEe+vf/06zvEL9rxhWv7dSjh2H5ie7d92HfPueu7SRFFgU+vXv3tnIziMgcPEFKk6MEpcWXmVixYjwEQdsLodEoMHmyF/74YxNUKi4zYQ3FvwumhqalUttJDrPOLAp8Zs+ebe12mJSRkYF58+bh0KFDyM7ORkhICAYMGIAZM2YY3DmdPXsWo0ePxqlTpxAQEICxY8diypQpdm0rEcmbIwQKuotseSURpHIxdiZSzvuSy6wzl/J3eeJ///ufyZXXCwoK8Omnn1a6USVdvHgRGo0GH374Ic6fP4/ly5dj/fr1+Oc//6nfJz8/H126dEF4eDhOnz6NJUuWYM6cOdiwYYPV20NE5Ax0JRGKY0kE+VGr1Th9OgeJiUKJWWcCTp/OgVqtFreBVmZW4BMXF2fwAXh5eRkUK7x79y769etnvdb9v65duyIpKQldunRBnTp10KtXL7z11lsG1Vm3bduGR48eYdOmTWjYsCFef/11jBs3DsuWLbN6e4iInIGuJIIu+GFJBPnRDXuuXv2NQeI1ABQVKbB69ddYs2aNUwU/Zg11CYJg8rGx52whLy/PYEp9SkoK2rZtazD0FR8fj0WLFuHOnTvw8fEp8zgFBQUoKCjQP87Pz7ddo4lIkoqvqF4WKeTl2ApLIsib7ntfXkFUZxr2tCjHxxR7VHFOS0vD6tWrsXTpUv1z2dnZiIyMNNgvMDBQv81Y4LNgwQLMnTvXdo0lIkkrPusGML7avTMn+ko574TsQ04FUa0e+Jhj2rRpWLRokcl9Lly4gPr16+sf//HHH+jatSteffVVDB8+vNJtmD59OiZOnKh/nJ+fj7CwsEofl4gcQ/E7WVOr3TvTHS9RWeTS+2d24PPrr78iOzsbgHZY6+LFi7h//z4A7arI5pg0aRIGDx5scp86dero//vGjRvo0KEDWrduXSppOSgoCDk5OQbP6R4HBQUZPb67uzvc3d3NajcROR+5rnZPtuVItZ0AefT+mR34dOrUySCPp0ePHgC0Q1yCIJg11BUQEICAgIAK7fvHH3+gQ4cOiI2NRVJSElxcDPOy4+LiMGPGDBQWFuoLKh44cAD16tUzOsxFRKQjp9XuHe1i7MgcpbaTnJgV+KSnp9uqHSb98ccfaN++PcLDw7F06VLcunVLv03Xm9O/f3/MnTsXCQkJmDp1Ks6dO4eVK1di+fLlorS5ouScVEkkJXJa7Z4XY/vi5ygtZgU+4eHhZh3873//O9555x34+/ub9XslHThwAGlpaUhLS0NoiVKSut4nlUqF5ORkjB49GrGxsfD398esWbOQmJhYqde2pZJJlcY4c1IlkVTIKbkT4MWY5Mumyc3/+c9/8NZbb1U68Bk8eHC5uUAA0KRJExw9erRSr2VPFU2WZFIlkX2YSu4smcPIHhFyBnIc9rRp4GOvmj7Owtg0WiKyH2PJncULpuqwN5YcnRyHPUWdzk5PmJpGSyRX9siBq8ydLHtjyRk4U1BTEQx8JIDTaIlKs1cOXFl3vLdv3zbo4WFvLJHzYOAjAXKaRktUUfbMgTMVOLE3lsi5mLVIKdkGV0gmkiZjvbF5eZ4it4yILGXTHp8BAwbAy8vLli/hFKw1jZY1gYisi72xRM7HosBHo9GUqpysez4zMxO1a9cGAKxbt65yrXNyxZMqTU2jrUjyJWsCkbMTI89GTkUNieTCrMAnPz8fw4YNw969e+Hl5YURI0Zg9uzZUCqVAIBbt24hMjISRUVFNmmss7HmNELWBCJHZKqXsnjdHLHybORW1JBIDswKfGbOnImff/4ZW7duxd27d/Huu+/izJkz2LVrl75XgrV7zMPeF5KrivZSijHr0Zq9sSR9mZnA5ctATAxQYnEAckJmBT5ffPEFtmzZgvbt2wMAevfuje7du6Nnz57Ys2cPAJi1SCkRyVdFex/FyLORY1E3udq4EUhMBDQawMUF2LABSEgQu1VkS2YFPrdu3TJYr8vf3x8HDx5EfHw8XnzxRfzrX/+yegOdjb0SkFl3hJxFeXk2tup1YVDj3NRqNTIyHiMxsSY0Gu0Nu0YDjBghoFmzm4iIqOK03wG593CZFfjUrl0bFy5cQGRkpP45T09PJCcno0uXLvjb3/5m9QY6E3slILPuCDmTIUNeQK1a+Zg6VYWiIgWUSgGLFuWjf/9+7HUhi+jOxenpEdBoBhlsKypSYPXqrxEZedWpJoPobrq3b/fAlCkqaDQKuLgIWLw4D/37/ymrvyWzAp8uXbogKSkJL774osHzNWrUwP79+/HCCy9YtXHOxh4JyKwCTY7KWC+lv78/Jk3yRt++QFoaEB2tQGioNwBvsZpKDk53ji2vN9FZJoPoAr28PE+sWDEegqDr4VJg8mQv/PHHJqhU95wq0DPFrMBn7ty5uHHjRpnbPD09ceDAAZw5c8YqDSPLsO4IOaKK9FKGhsqzW55sRy6z9nQBXHnXB2cJ9MpjVuDj4+MDHx8fo9s9PT3Rrl27SjeKzKfLcxArH4LIUuylJDGZmrXnbFiXSsvsAoaPHz/G8uXL8fHHH+O3334DANStWxf9+/fHP/7xD7i6ulq9kVS+4rNQmA9BjoS9lCQ2leqeLL5rcunhKo9Zgc+ff/6JF154ASkpKejcuTPatm0LALhw4QKmTp2KPXv2IDk5GVWrVrVJY8k0XVAzaRKYD0GSx15KIvuTUw+XMWYFPgsXLsT169fx008/oUmTJgbbfv75Z/Tq1QsLFy7EnDlzrNlGp2XLKefMhyCpYy9l5XBtPrKUXHq4jDEr8Pnkk0+wbNmyUkEPADRt2hRLly7FjBkzGPhUAKecE7GX0lJcm4905F6TxxKlVxo14erVq3j22WeNbm/VqhWuXbtW6UY5K12XvbFkzrw8T4P9iOQkNBRo354n74oo2dOTl+eJ9PQI/TnE2H6kVdFzrFTPxWq1GllZWXj//bsIDxfQsSMQHi7g/ffvIisrC2q1WuwmSppZPT5eXl64efMmwsLCytyenZ0NT0/PMrfRk679w4eB5ctLJ3O2aTMI7duzYiwRVRx7j83nyEuSWFKTx9EDPWszK/Dp0KED3nvvPezcubPM7QsXLkSHDh2s0jBn5efnh1attGvCaDRPnlcqgZYt/SDBvzMikiiWArCcFIOairCkJo8jB3q2YFbgM3v2bLRs2RKtWrXCxIkTUb9+fQiCgAsXLmD58uX49ddfceLECVu11WmEhmoXwhsxAigq0gY9H37ILn4iMg9LAciXuTV55BLUVIRZgU+DBg1w4MABJCQk4PXXX9evxC4IAurXr4/k5GQ0bNjQJg11NgkJQHy8LpmTQQ8RmY8F6eSLNXksZ3YBw1atWuH8+fNITU01KGDYrFkza7fN6XHKORFVhi0vfpwubxl7zrJiTR7LmB345Ofno0aNGmjWrJlBsKPRaHD//n14eXlZs31ERGSCLS5+nC5vHjFXPpd7TR5LmDWdfffu3Xj66afx119/ldr2559/4plnnsHevXut1jgiIiqt5OwbleoeIiOvlroAWjpLp6LT4Dld/kmQuGTJx5g82QsajeEsqyVLPsaaNWs4xVxCzOrxWbduHaZMmYJq1aqV2la9enVMnToVa9asQc+ePa3WQCIiMmTvWTq2rDLv6LjyueMxK/A5d+4cPvjgA6Pb27Zti7fffrvSjSIiItPsNcTEOkEVY69Ec9bkqTyzAp87d+7g8ePHRrcXFhbizp07lW4UERGJj3WCKs5es6xYk6fyzAp8IiIi8OOPP6J+/fplbv/xxx8RHh5ulYaV1KtXL6SmpuLmzZvw8fFB586dsWjRIoSEhOj3OXv2LEaPHo1Tp04hICAAY8eOxZQpU2zSHiIiZ8c6Qeax1ywrBjWVY1Zyc58+fTBjxgzk5OSU2padnY23334bL7/8stUaV1yHDh3w6aef4tKlS9i5cyeuXLmCV155Rb89Pz8fXbp0QXh4OE6fPo0lS5Zgzpw52LBhg03aQ0Tk7HTDN8WxTpBpxhLNSTrM6vGZNm0a/vvf/yImJgYDBgxAvXr1AAAXL17Etm3bEBYWhmnTptmkoRMmTND/d3h4OKZNm4bevXujsLAQrq6u2LZtGx49eoRNmzbBzc0NDRs2RGpqKpYtW4bExESbtImIbId1ZMTHInnkjMwKfDw9PXHs2DFMnz4dO3bs0OfzeHt7Y8CAAZg/f75dFinNzc3Ftm3b0Lp1a7i6ugIAUlJS0LZtW4OErvj4eCxatAh37tyBj4+PzdtFRNbBOjLiKn4eNTV8wwRackRmFzBUqVT44IMPsHbtWty+fRuCICAgIEC/fEVxx44dw9NPPw13d3erNFY3Xf7hw4do1aoV9u3bp9+WnZ2NyMhIg/0DAwP124wFPgUFBSgoKNA/zs/Pt0pbichyrCMjLibQVhxnWTkeswMfHYVCgYCAAJP7dOvWDampqahTp06Z26dNm4ZFixaZPMaFCxf0ydSTJ09GQkICrl69irlz52LgwIHYt29fmUFXRS1YsABz5861+PeJiJwRg5qKYZDoeCwOfCpCEAST2ydNmoTBgweb3Kd40OTv7w9/f3/UrVsXTz31FMLCwnDixAnExcUhKCioVNK17nFQUJDR40+fPh0TJ07UP87Pz0dYWJjJNhERkfU5al6XFNtExtk08ClPQEBAub1Gxmg02pkGumGquLg4zJgxQ5/sDAAHDhxAvXr1TOb3uLu7W20ojoiILMO8LrIXs6azi+XkyZNYs2YNUlNTcfXqVRw6dAj9+vVDVFQU4uLiAAD9+/eHm5sbEhIScP78eezYsQMrV6406M0hIiJpKtnTk5fnifT0COTleZrcj8hcovb4VFS1atWwa9cuzJ49Gw8ePEBwcDC6du2Kt99+W99bo1KpkJycjNGjRyM2Nhb+/v6YNWsWp7ITETkYLpNBtmTTwKcyScfFNW7cGIcOHSp3vyZNmuDo0aNWeU0iIrI/LpNBtiZqcjPJh6MmLZI4Sk79NbY6uBhThPldti0uk0G2ZtPA5949fkmJSYtkvuJThLdv98A776ig0Sjg4iJg8eI89O//pygBBr/LtmevVc5JvswKfDp27Fih/SoyLEXywWJ0ZAk/Pz9kZgJTpgD/P4kTGo0CU6d6o29fb4gRV/C7bHtcJsM09jhWnlmBz5EjRxAeHo7u3bvrp4wTEdnK5ctPgh6doiIgLQ0IDRWnTWR79lrl3NGwx9E6zAp8Fi1ahKSkJHz22Wd44403MHToUDRq1MhWbSMimYuJAVxcDIMfpRKIjhavTWQbJfO1VKp7ZQY8cl76oawp/2XlvrHH0TSzAp/Jkydj8uTJSElJwaZNm9CmTRvUq1cPQ4cORf/+/eHl5WWrdhKRDIWGAhs2ACNGaHt6lErgww/Z2+OMuPSDeTjl33IWJTfHxcUhLi4OK1euxGeffYa1a9firbfewo0bNxj8EJFVJSQA8fHa4a3oaAY9zoxBTcVwyn/lVGpW15kzZ/Ddd9/hwoULaNSoEfN+iMgmQkMZ8BDpcMp/5Zi9ZMWNGzfw3nvvoW7dunjllVfg6+uLkydP4sSJE/Dw8LBFG4mIJMnYsgpEtqSb8l8cp/xXnFk9Pi+++CIOHz6MLl26YMmSJejevTuqVHGIVS9IRBVNRpRz0iI5huLfUVM5Fvwuky1xyn/lKAQzyiu7uLggODgYNWvWNLkcxZkzZ6zSODHk5+dDpVIhLy+P+UpWxNoT5CzUajUyMh7j2WdrQqN5ch5UKgWcPHkTERFV+F0mm8jKysKGDRv0j7WzukpP+U9MTERwcLAYTRRVRa/fZnXXzJ49u9INI3nihYCchZ+fH86eLau+kAL37gWKUliR5IFT/q3DrB4fOWCPj+1lZmoL08XEMGGVHFNmJhAeXrq+UEYGv9PWwB5i4/jZGGeTHh9jvvvuOzx48ABxcXHw8fGxxiHJSW3cCCQmai8YLi7aGi0JCWK3isg8rC9kO6xObJoc37O1mV25+f79+5g3bx4A7err3bp1Q3JyMgCgZs2a+Pbbb9GwYUPrt5QcXmbmk6AH0P47YoS2RgsvGORoWF/INrgeGtmaWdPZd+zYYbBExeeff47vv/8eR48exe3bt/H0009j7ty5Vm8kOQdT6y4ROaLQUKB9ewY9RI7ErMAnPT0dTZo00T/+6quv8Morr6BNmzbw9fXF22+/jZSUFKs3kpyDbt2l4rjuEhGZwlpJZG1mDXU9fvwY7u7u+scpKSkYP368/nFISAhu375ttcaRc2FeBBGZg+tRkS2Y1eMTFRWF77//HgBw7do1/Pbbb2jbtq1+e2ZmJhOvyKSEBO3Ml8OHtf8ysZmIymJsPSr2/FBlmdXjM3r0aIwZMwZHjx7FiRMnEBcXhwYNGui3Hzp0CM2bN7d6I8m5cN0lIioP16MiWzEr8Bk+fDiUSiX27t2Ltm3blipoeOPGDQwdOtSqDSQiImmyZU0Z3XpUxYMfrkdF1mB2HZ+hQ4caDW4++OCDSjeIiIikz9r1dnRBVF5eHoDy16NidWKyFFcYJSIis1mz3o6xIKpFi58QFZWmX49q+PBu8PZ+xuyeJFY7puLMCnwKCwsxY8YM7Nq1C76+vhg5cqRB709OTg5CQkJQVFRk9YYSEZFzMhWUFF+Pytvb2+zFN1kJmkoya1bX/Pnz8e9//xsjR45Ely5dMHHiRIwYMcJgHy79RUREUsFK0FSSWT0+27Ztw7/+9S/06NEDADB48GB069YNQ4YMwaZNmwAACoXC+q0kIiIisgKzenz++OMPgyUroqOjceTIERw/fhxvvvkmh7iIiGTKmhWWbVmtmZWgyawen6CgIFy5cgURERH652rVqoXDhw+jQ4cOGDx4sJWbR0RElrJXUq81KyzbslozK0ETYGbg07FjR2zfvh2dOnUyeD4kJASHDh1C+/btrdk2IiKykL2Seo1VWI6KSjO70KA1j2XPY5NjMSvwmTlzJi5evFjmtlq1auG7777DgQMHrNIwIiKynK2TenV1dMqrsGxOvR1bVmtmJWjSMSvwCQ8PR3h4uNHtISEhGDRoUKUbRURE0ubn54cxY8YgI+Mxtm4VoNE8mdiiVAoYO7YbIiKqVKg3SRcclVetuTJFC1kJmnTMSm7W+eyzz9CnTx80atQIjRo1Qp8+ffD5559bu21lKigoQLNmzaBQKJCammqw7ezZs3j++edRtWpVhIWFYfHixXZpExGRHPn5+SE2NhAbNiigVGqfUyqBDz9UIDY2sMJDaLogavLkfliyJB9KpfD/xxKwZEk+Jk/uZ/GQnC5Y0lWCVig0AMBK0DJmVo+PRqNBv3798Nlnn6Fu3bqoX78+AOD8+fPo27cvXn31VXz88cc2ndI+ZcoUhISE4OeffzZ4Pj8/H126dEHnzp2xfv16/PLLLxg6dCi8vb2RmJhos/YQETmziiRIJyT4IT4eSEsDoqMtW4RYF9RMmgT07as7lgKhod4AvC1qu+64Y8aM0b+HWbNuISOjCiIiHiMk5BkA5leCJsdmVuCzcuVKHDx4EHv27NHX8tHZs2cPhgwZgpUrV2L8+PHWbKPe119/jeTkZOzcuRNff/21wbZt27bh0aNH2LRpE9zc3NCwYUOkpqZi2bJlDHyIiCxgToJ0aKifRQFPWUJDLQuejCke1AQHA7Gx1js2OR6zhrqSkpKwZMmSUkEPAPTq1QuLFy/WFzK0tpycHAwfPhxbt25FtWrVSm1PSUlB27ZtDbor4+PjcenSJdy5c8focQsKCpCfn2/wQ0TkbCypX8Oqx+SMzAp8Ll++jM6dOxvd3rlzZ1y+fLnSjSpJEAQMHjwYI0eOxNNPP13mPtnZ2QgMDDR4Tvc4Ozvb6LEXLFgAlUql/wkLC7New4mIJODMmeZYsWI8tmwZhBUrxuPMmeZiN4lINGYFPh4eHrh7967R7fn5+ahatWqFjzdt2jQoFAqTPxcvXsTq1atx7949TJ8+3ZzmVsj06dORl5en/7l+/brVX4OIyN50vd/G6tfoen6Y1EtyY1aOT1xcHNatW4d169aVuX3t2rWIi4ur8PEmTZpUbrXnOnXq4NChQ0hJSYG7u7vBtqeffhpvvPEGtmzZgqCgIOTk5Bhs1z0OCgoyenx3d/dSxyUC7Ff1lsgWdEm9hw8Dy5eXrl/Tps0gtG8PfodJdswKfGbMmIH27dtDrVbjrbfeQv369SEIAi5cuID3338f//3vf3H48OEKHy8gIAABAQHl7rdq1Sq8++67+sc3btxAfHw8duzYgZYtWwLQBmUzZsxAYWEhXF1dAQAHDhxAvXr14OPjY87bJLJb1VsiW/Lz80OrVoCLC6DRPHleqQRatvQDv7ri4Y2VeMwKfFq3bo0dO3YgMTERO3fuNNjm4+ODjz/+GG3atLFqAwGgdu3aBo9r1KgBAIiKikLo/6f+9+/fH3PnzkVCQgKmTp2Kc+fOYeXKlVi+fLnV20POj0md5CxCQ4ENG4ARI4CiIl2dHctmTeXleSI31w++vmpWO64E3liJy6zABwD+9re/IT4+Hvv379cnMtetWxddunQpc7aVvahUKiQnJ2P06NGIjY2Fv78/Zs2axansRCR7CQmodJ0dLvBpPbyxEpdZgc+hQ4cwZswYnDhxAn/7298MtuXl5aFhw4ZYv349nn/+eas2sqSIiAgIglDq+SZNmuDo0aM2fW0iIkdkSW2c8hKkdQt8MkGaHIlZs7pWrFiB4cOHw8vLq9Q2lUqFESNGYNmyZVZrHBERiUeXIN269aAyF/hs02YQh2PI4ZgV+Pz888/o2rWr0e1dunTB6dOnK90oIiKSBm2CtB9cSlwtniRIM+ipLEuKS5LlzBrqysnJ0c+YKvNgVarg1q1blW4UERFJhzUTpMkQc6fsz6wen1q1auHcuXNGt589exbBwcGVbhQREUlLQgKQkQEcPqz9NyFB7BY5vvKKS5JtmBX4vPjii5g5cyb++uuvUtv+/PNPzJ49u8x1vIgcTUWTNZnUSXISGgq0b8+eHmvJzfUrM3cqN9dXpBbJg1lDXW+//TZ27dqFunXrYsyYMahXrx4A4OLFi1i7di2KioowY8YMmzSUyJ50SZ266aQ3brggPb0KIiMfIyREWwmOBcbImbCgnv3obph8fdVQKDQGwY9CoYGvb67BfmRdCqGseeEmXL16FaNGjcL+/fv1U8oVCgXi4+Oxdu1aREZG2qSh9pKfnw+VSoW8vLwyZ6+R/GzcCCQmaivfurhocx3YzU/OhAX17E8XaG7f7oGpU1UoKlJAqRSwaFEe+vf/k4GmBSp6/TY78NG5c+cO0tLSIAgCYmJinGZZCAY+VFxmJhAeXrrcf0YGu/vJeWRlZWHDhg3l7peYmMg8ThvIzKxccUnSquj12+zKzTo+Pj545plnLP11Iodw+bJh0ANoZ7WkpfEERfJz9+5dk9vZS2EZS4pLkuUsDnyIyuJseQIxMWUv8BgdLV6biMTy6aeflrsPh8NI6hj4kNU4Y54A65cQmYfrS5HUMfAhqyl5wjO2krOjnRitscAjERFJAwMfsglnq0bKMXiSE2M3LUTOgIEPWV15KzkTkXQ5200LUUlmVW4mqghWIyVyLLpCeeYsocCFNclRsceHrK68aqREJC26SuWHDwPLl5e+aWnTZhAaNryFHTt2AGCvEDk29viQ1alU99Cz5z4oFNo54LoTI4e5iKTLz88PrVr5waXEVUGpBFq29INKpQLAhTXJ8bHHh2yiRYufEBWVhtxcX/j65jLoIXIApso3qNXa4TBTQ9kq1T2uL0WSx8DHwWRmaqsJx8RIb5ZRyROeSnWvzICHJ0Yi6TJWvkE3HJaR8RhbtwrQaBT631EqBYwd2w0REVUcpkYXyZfFa3U5Kymv1eUIi2U6W+VmIipt48bSvUJSOxeR/Nh8kVJnJdXAh4tlEpGUcGFN2+DNo+Vsvkgp2RcXyyQiKWFRT+tzxmV/pIizuhyEbrHM4rhYJhGR86jocj6OtuyP1DDwcRC62RZKpfYxF8skIiIyH4e6HAgXyyQiIqocBj4OhuPqREREluNQFxERkQRxPTTbYI8PERGRxHA9NNthjw8REZGEcD0022LgQ0REJAG65XxMrYdWfD+yjMMEPhEREVAoFAY/CxcuNNjn7NmzeP7551G1alWEhYVh8eLFIrWWiIjIPLr10MaO7QoXF8NFFXTrobF4YeU5VI7PO++8g+HDh+sfe3o+6fbLz89Hly5d0LlzZ6xfvx6//PILhg4dCm9vbyQmJorRXCIiIrP4+fnBz09bt81wPTQFYmMDxW6eU3CowMfT0xNBQUFlbtu2bRsePXqETZs2wc3NDQ0bNkRqaiqWLVvGwIeIiBwK67bZjsMMdQHAwoUL4efnh+bNm2PJkiV4/PixfltKSgratm1rMPYZHx+PS5cu4c6dO0aPWVBQgPz8fIMfIiIisYWGAu3bM+ixNofp8Rk3bhxatGgBX19fHD9+HNOnT0dWVhaWLVsGAMjOzkZkZKTB7wQGBuq3+fj4lHncBQsWYO7cubZtPBEREUmCqIHPtGnTsGjRIpP7XLhwAfXr18fEiRP1zzVp0gRubm4YMWIEFixYAHd3d4vbMH36dINj5+fnIywszOLjERER0RNqtdrkwqpubm52TdgWNfCZNGkSBg8ebHKfOnXqlPl8y5Yt8fjxY2RkZKBevXoICgpCTk6OwT66x8byggDA3d29UoETERERlU2tVmPNmjXl7mfP2WqiBj4BAQEICAiw6HdTU1Ph4uKCmjVrAgDi4uIwY8YMFBYWwtXVFQBw4MAB1KtXz+gwF5E9ZWYCly8DMTEcsycieTDV02PJftbgEMnNKSkpWLFiBX7++Wf8/vvv2LZtGyZMmIABAwbog5r+/fvDzc0NCQkJOH/+PHbs2IGVK1caDGMRiWXjRiA8HOjYUfvvxo1it4iISJ4cIrnZ3d0dn3zyCebMmYOCggJERkZiwoQJBkGNSqVCcnIyRo8ejdjYWPj7+2PWrFmcyk6iy8wEEhMBjUb7WKPR1ueIj2fPDxGRvTlE4NOiRQucOHGi3P2aNGmCo0eP2qFFRBV3+fKToEenqEhbn4OBD9mC1JJJiaTEIQIfIkcWEwO4uBgGP0qltigZkbVJMZmUSEocIseHyJGFhmrLzyuV2sfa8vPs7SHbkGIyKZGUsMeHyA5Yfp7EkpfnidxcP/j6qqFS3RO7OUSiY+BDZCehoQx4yL7OnGmOvXt7QBBcoFBo0LPnPrRo8ZPYzSIZKb6MlDX2swYGPkRETigvz1Mf9ACAILhg794eiIpKY88P2Y2fnx/GjBkjqWR7Bj5ENsTZNSSW3Fw/fdCjIwguyM31ZeBDdiW1cxwDHyIb4ewaEpOvrxoKhcYg+FEoNPD1zRWxVSR3Uqhgz1ldRDbC2TUkJpXqHnr23AeFQltHQZfjw94eEotUKtizx4eIyIkUTxJt0eInREWlITfXF76+uQZBjz2TSYmkVMGegQ8RkRORYjIpkZQq2DPwISJyMgxqSGqkVMGegQ8RETktzqyUBl0F+xEjtD09YlawZ+BDREROiTMrpUUqFewZ+BARkVPizErpkUIFe05nJ7IRKZZqJyKSO/b4ENkIZ9cQSQsXbCWAgQ+RTTGoIZIGLthKOhzqIiIip2Zswda8PE+RW0ZiYOBDREROzdSCrSQ/DHyIiMip6RZsLY4LtsoXAx8iInJKuhmT5S3YypmV8qIQBEEQuxFSkp+fD5VKhby8PHh5eYndHCIiqoTilZtv3HBBRkYVREQ8RkiINgjizErnUdHrN2d1ERGR0yoe1AQHA7GxIjaGJIFDXURERCQbDHyIiIhINhj4EBERkWww8CEiIiLZYOBDREREssHAh4iIiGSDgQ8RERHJhkMFPl9++SVatmwJDw8P+Pj4oHfv3gbbr127hu7du6NatWqoWbMmJk+ejMePH4vTWCtSq9XIysoy+qNWq8VuIhERkUNwmAKGO3fuxPDhw/Hee++hY8eOePz4Mc6dO6ffXlRUhO7duyMoKAjHjx9HVlYWBg4cCFdXV7z33nsitrxy1Go11qxZU+5+Y8aMYfVRIiKicjhE4PP48WP84x//wJIlS5CQkKB/vkGDBvr/Tk5Oxq+//oqDBw8iMDAQzZo1w7x58zB16lTMmTPHYddi0ZVat9Z+REREcuYQQ11nzpzBH3/8ARcXFzRv3hzBwcHo1q2bQY9PSkoKGjdujMDAQP1z8fHxyM/Px/nz58VoNhEREUmMQwQ+v//+OwBgzpw5ePvtt7Fv3z74+Pigffv2yM3NBQBkZ2cbBD0A9I+zs7ONHrugoAD5+fkGP0REROScRA18pk2bBoVCYfLn4sWL0Gi0q+jOmDEDL7/8MmJjY5GUlASFQoHPPvusUm1YsGABVCqV/icsLMwab42IiIgkSNQcn0mTJmHw4MEm96lTpw6ysrIAGOb0uLu7o06dOrh27RoAICgoCP/73/8MfjcnJ0e/zZjp06dj4sSJ+sf5+fkMfoiIHIxarTaZ6+jm5sYJIARA5MAnICAAAQEB5e4XGxsLd3d3XLp0Cc899xwAoLCwEBkZGQgPDwcAxMXFYf78+bh58yZq1qwJADhw4AC8vLwMAqaS3N3d4e7uboV3Q0SVlZkJXL4MxMQAoaFit4YcBWe/kjkcYlaXl5cXRo4cidmzZyMsLAzh4eFYsmQJAODVV18FAHTp0gUNGjTAm2++icWLFyM7Oxtvv/02Ro8ezcCGyAFs3AgkJgIaDeDiAmzYABSbxElkFGe/SpvUeuMcIvABgCVLlqBKlSp488038eeff6Jly5Y4dOgQfHx8AABKpRL79u3DqFGjEBcXh+rVq2PQoEF45513RG555VR0Gr6jTtcnArQ9PbqgB9D+O2IEEB/Pnh8iRybF3jiHCXxcXV2xdOlSLF261Og+4eHh+Oqrr+zYKtvz8/PDmDFjJBUtE1nb5ctPgh6doiIgLY2BD5kvL88Tubl+8PVVQ6W6J3ZzZE2KvXEOE/jIGYMacnYxMdrhreLBj1IJREeL1yZyTGfONMfevT0gCC5QKDTo2XMfWrT4SexmkYQ4RB0fInJuoaHanB6lUvtYqQQ+/JC9PWSevDxPfdADAILggr17eyAvz1PklpGUsMeHiCQhIUGb05OWpu3pYdBD5srN9dMHPTqC4ILcXF8OeZEeAx8ikozQUAY8ZDlfXzUUCo1B8KNQaODrmytiq0hqONRFREQOTTerVaW6h54990Gh0CaL6XJ8dL09nP1KAHt8iIjIwZWc/Tpr1i1kZFRBRMRjhIQ8A+AZzn4lPQY+RCQqqRU3I8dU/DsSHAzExorYGNKTYi06Bj5EJBopFjcjIuuRYi06Bj5EJBopFjcjIuuS2k0Lk5uJiIhINhj4EBERkWww8CEikoDMTODwYe2/RGQ7DHyIiES2cSMQHg507Kj9d+NGsVtE5LwY+BARiSgzE0hMfLJAq0YDjBjBnh9yTlLo2WTgQ0QkErVajRMn1Aar0gNAURFw8qQaarVanIYR2YBUejYZ+BCRaKRY3MxedDWMjh/fol9iQUeh0ODYsS1Ys2YNgx9yClLq2WQdHyISjRSLm9mL7j3r1pfau7cHBMGl1PpSrGFEzuDyZZTZs5mWZv+FiRn4EJGonDGoMVeLFj8hKioNubm+8PXN1Qc9RM4iJgZwcTEMfpRKIDra/m3hUBcRkQSoVPcQGXmVQQ85pdBQYMMGbbADaP/98EP79/YA7PEhIiIiO0hIAOLjtcNb0dHiBD0AAx8iIiKyk9BQ8QIeHQ51ERERkWww8CEiIiLZYOBDRCQCOdcwIhITc3yIiEQg5xpGRGJi4ENEJBIGNUT2x6EuIiIikg0GPkRERCQbDHyIiIhINhj4EBERkWww8CEiIiLZcIjA58iRI1AoFGX+nDp1Sr/f2bNn8fzzz6Nq1aoICwvD4sWLRWw1ERERSY1DTGdv3bo1srKyDJ6bOXMmvv32Wzz99NMAgPz8fHTp0gWdO3fG+vXr8csvv2Do0KHw9vZGYmKiGM0mIiIiiXGIwMfNzQ1BQUH6x4WFhfjvf/+LsWPHQqFQAAC2bduGR48eYdOmTXBzc0PDhg2RmpqKZcuWMfAhIiIiAA4y1FXSnj17oFarMWTIEP1zKSkpaNu2rUF59/j4eFy6dAl37twxeqyCggLk5+cb/BAREZFzcogen5I2btyI+Ph4hBZb2z47OxuRkZEG+wUGBuq3+fj4lHmsBQsWYO7cuaWeZwBERETkOHTXbUEQTO4nauAzbdo0LFq0yOQ+Fy5cQP369fWPMzMzsX//fnz66adWacP06dMxceJE/eM//vgDDRo0QFhYmFWOT0RERPZz7949qFQqo9tFDXwmTZqEwYMHm9ynTp06Bo+TkpLg5+eHXr16GTwfFBSEnJwcg+d0j4vnB5Xk7u4Od3d3/eMaNWrg+vXr8PT01OcPyUF+fj7CwsJw/fp1eHl5id0ch8bP0jr4OVoPP0vr4OdoPbb4LAVBwL179xASEmJyP1EDn4CAAAQEBFR4f0EQkJSUhIEDB8LV1dVgW1xcHGbMmIHCwkL9tgMHDqBevXpGh7nK4uLiYjCEJjdeXl78g7YSfpbWwc/RevhZWgc/R+ux9mdpqqdHx6GSmw8dOoT09HQMGzas1Lb+/fvDzc0NCQkJOH/+PHbs2IGVK1caDGMRERGRvDlUcvPGjRvRunVrg5wfHZVKheTkZIwePRqxsbHw9/fHrFmzOJWdiIiI9Bwq8Nm+fbvJ7U2aNMHRo0ft1Brn4u7ujtmzZxvkO5Fl+FlaBz9H6+FnaR38HK1HzM9SIZQ374uIiIjISThUjg8RERFRZTDwISIiItlg4ENERESywcCHiIiIZIOBj8x8//336NmzJ0JCQqBQKPDFF18YbBcEAbNmzUJwcDA8PDzQuXNnXL58WZzGSlx5n+XgwYOhUCgMfrp27SpOYyVswYIFeOaZZ+Dp6YmaNWuid+/euHTpksE+f/31F0aPHg0/Pz/UqFEDL7/8cqlK7XJXkc+xffv2pb6TI0eOFKnF0rVu3To0adJEX1wvLi4OX3/9tX47v48VU97nKNb3kYGPzDx48ABNmzbF2rVry9y+ePFirFq1CuvXr8fJkydRvXp1xMfH46+//rJzS6WvvM8SALp27YqsrCz9z8cff2zHFjqG7777DqNHj8aJEydw4MABFBYWokuXLnjw4IF+nwkTJmDv3r347LPP8N133+HGjRvo06ePiK2Wnop8jgAwfPhwg+/k4sWLRWqxdIWGhmLhwoU4ffo0fvzxR3Ts2BEvvfQSzp8/D4Dfx4oq73MERPo+CiRbAITdu3frH2s0GiEoKEhYsmSJ/rm7d+8K7u7uwscffyxCCx1Hyc9SEARh0KBBwksvvSRKexzZzZs3BQDCd999JwiC9jvo6uoqfPbZZ/p9Lly4IAAQUlJSxGqm5JX8HAVBENq1ayf84x//EK9RDszHx0f417/+xe9jJek+R0EQ7/vIHh/SS09PR3Z2Njp37qx/TqVSoWXLlkhJSRGxZY7ryJEjqFmzJurVq4dRo0ZBrVaL3STJy8vLAwD4+voCAE6fPo3CwkKD72X9+vVRu3Ztfi9NKPk56mzbtg3+/v5o1KgRpk+fjocPH4rRPIdRVFSETz75BA8ePEBcXBy/jxYq+TnqiPF9dKjKzWRb2dnZAIDAwECD5wMDA/XbqOK6du2KPn36IDIyEleuXME///lPdOvWDSkpKVAqlWI3T5I0Gg3Gjx+PNm3aoFGjRgC030s3Nzd4e3sb7MvvpXFlfY6Adk3D8PBwhISE4OzZs5g6dSouXbqEXbt2idhaafrll18QFxeHv/76CzVq1MDu3bvRoEEDpKam8vtoBmOfIyDe95GBD5GNvP766/r/bty4MZo0aYKoqCgcOXIEnTp1ErFl0jV69GicO3cOP/zwg9hNcWjGPsfiaxc2btwYwcHB6NSpE65cuYKoqCh7N1PS6tWrh9TUVOTl5eHzzz/HoEGD8N1334ndLIdj7HNs0KCBaN9HDnWRXlBQEACUmp2Qk5Oj30aWq1OnDvz9/ZGWliZ2UyRpzJgx2LdvHw4fPozQ0FD980FBQXj06BHu3r1rsD+/l2Uz9jmWpWXLlgDA72QZ3NzcEB0djdjYWCxYsABNmzbFypUr+X00k7HPsSz2+j4y8CG9yMhIBAUF4dtvv9U/l5+fj5MnTxqMyZJlMjMzoVarERwcLHZTJEUQBIwZMwa7d+/GoUOHEBkZabA9NjYWrq6uBt/LS5cu4dq1a/xeFlPe51iW1NRUAOB3sgI0Gg0KCgr4fawk3edYFnt9HznUJTP37983iKbT09ORmpoKX19f1K5dG+PHj8e7776LmJgYREZGYubMmQgJCUHv3r3Fa7REmfosfX19MXfuXLz88ssICgrClStXMGXKFERHRyM+Pl7EVkvP6NGjsX37dvz3v/+Fp6enPk9CpVLBw8MDKpUKCQkJmDhxInx9feHl5YWxY8ciLi4OrVq1Ern10lHe53jlyhVs374dL774Ivz8/HD27FlMmDABbdu2RZMmTURuvbRMnz4d3bp1Q+3atXHv3j1s374dR44cwf79+/l9NIOpz1HU76Pd55GRqA4fPiwAKPUzaNAgQRC0U9pnzpwpBAYGCu7u7kKnTp2ES5cuidtoiTL1WT58+FDo0qWLEBAQILi6ugrh4eHC8OHDhezsbLGbLTllfYYAhKSkJP0+f/75p/D3v/9d8PHxEapVqyb87W9/E7KyssRrtASV9zleu3ZNaNu2reDr6yu4u7sL0dHRwuTJk4W8vDxxGy5BQ4cOFcLDwwU3NzchICBA6NSpk5CcnKzfzu9jxZj6HMX8PioEQRBsG1oRERERSQNzfIiIiEg2GPgQERGRbDDwISIiItlg4ENERESywcCHiIiIZIOBDxEREckGAx8iIiKSDQY+REREJBsMfIjIQHZ2NsaOHYs6derA3d0dYWFh6Nmzp8HaRMePH8eLL74IHx8fVK1aFY0bN8ayZctQVFSk3ycjIwMJCQmIjIyEh4cHoqKiMHv2bDx69Mjg9T766CM0bdoUNWrUgLe3N5o3b44FCxbot8+ZMwcKhQJdu3Yt1dYlS5ZAoVCgffv2FXpvumMpFApUqVIFERERmDBhAu7fv2/mp0REjoprdRGRXkZGBtq0aQNvb28sWbIEjRs3RmFhIfbv34/Ro0fj4sWL2L17N1577TUMGTIEhw8fhre3Nw4ePIgpU6YgJSUFn376KRQKBS5evAiNRoMPP/wQ0dHROHfuHIYPH44HDx5g6dKlAIBNmzZh/PjxWLVqFdq1a4eCggKcPXsW586dM2hXcHAwDh8+jMzMTIMVxzdt2oTatWub9R4bNmyIgwcP4vHjxzh27BiGDh2Khw8f4sMPPyy176NHj+Dm5mbBJ2k7UmwTkUOx+aIYROQwunXrJtSqVUu4f/9+qW137twR7t+/L/j5+Ql9+vQptX3Pnj0CAOGTTz4xevzFixcLkZGR+scvvfSSMHjwYJNtmj17ttC0aVOhR48ewrvvvqt//tixY4K/v78watQooV27dhV4d0+OVdzw4cOFoKAgg+0fffSREBERISgUCkEQtO89ISFB8Pf3Fzw9PYUOHToIqamp+mOkpqYK7du3F2rUqCF4enoKLVq0EE6dOiUIgiBkZGQIPXr0ELy9vYVq1aoJDRo0EL788ktBEAQhKSlJUKlUBu3ZvXu3UPzUbGmbiKhsHOoiIgBAbm4uvvnmG4wePRrVq1cvtd3b2xvJyclQq9V46623Sm3v2bMn6tati48//tjoa+Tl5cHX11f/OCgoCCdOnMDVq1fLbd/QoUOxefNm/eNNmzbhjTfeqHTvh4eHh8HwW1paGnbu3Ildu3YhNTUVAPDqq6/i5s2b+Prrr3H69Gm0aNECnTp1Qm5uLgDgjTfeQGhoKE6dOoXTp09j2rRpcHV1BaBdNb2goADff/89fvnlFyxatAg1atQwq42WtImIysahLiICoL24CoKA+vXrG93nt99+AwA89dRTZW6vX7++fp+yjr969Wr9MBcAzJ49G3369EFERATq1q2LuLg4vPjii3jllVfg4mJ4X9ajRw+MHDkS33//PWJjY/Hpp5/ihx9+wKZNm8x9q3qnT5/G9u3b0bFjR/1zjx49wr///W8EBAQAAH744Qf873//w82bN+Hu7g4AWLp0Kb744gt8/vnnSExMxLVr1zB58mT9ZxcTE6M/3rVr1/Dyyy+jcePGAIA6deqY3U5L2kREZWPgQ0QAAEEQbLIvAPzxxx/o2rUrXn31VQwfPlz/fHBwMFJSUnDu3Dl8//33OH78OAYNGoR//etf+OabbwyCH1dXVwwYMABJSUn4/fffUbduXTRp0sSsdgDAL7/8gho1aqCoqAiPHj1C9+7dsWbNGv328PBwfYABAD///DPu378PPz8/g+P8+eefuHLlCgBg4sSJGDZsGLZu3YrOnTvj1VdfRVRUFABg3LhxGDVqFJKTk9G5c2e8/PLLZrfbkjYRUdkY+BARAG0vhS4p2Zi6desCAC5cuIDWrVuX2n7hwgU0aNDA4LkbN26gQ4cOaN26NTZs2FDmcRs1aoRGjRrh73//O0aOHInnn38e3333HTp06GCw39ChQ9GyZUucO3cOQ4cONfctAgDq1auHPXv2oEqVKggJCSk1VFZymO/+/fsIDg7GkSNHSh3L29sbgHa2WP/+/fHll1/i66+/xuzZs/HJJ5/gb3/7G4YNG4b4+Hh8+eWXSE5OxoIFC/D+++9j7NixcHFxKRVEFhYWlnodS9pERGVjjg8RAQB8fX0RHx+PtWvX4sGDB6W23717F126dIGvry/ef//9Utv37NmDy5cvo1+/fvrn/vjjD7Rv3x6xsbFISkoqNXxVFl3gVFYbGjZsiIYNG+LcuXPo37+/OW9Pz83NDdHR0YiIiKhQflCLFi2QnZ2NKlWqIDo62uDH399fv1/dunUxYcIEJCcno0+fPkhKStJvCwsLw8iRI7Fr1y5MmjQJH330EQAgICAA9+7dM3ivuhwea7SJiEpj4ENEemvXrkVRURGeffZZ7Ny5E5cvX8aFCxewatUqxMXFoXr16vjwww/x3//+F4mJiTh79iwyMjKwceNGDB48GK+88gpee+01AE+Cntq1a2Pp0qW4desWsrOzkZ2drX+9UaNGYd68eTh27BiuXr2KEydOYODAgQgICEBcXFyZbTx06BCysrLs1rPRuXNnxMXFoXfv3khOTkZGRgaOHz+OGTNm4Mcff8Sff/6JMWPG4MiRI7h69SqOHTuGU6dO6fOgxo8fj/379yM9PR1nzpzB4cOH9dtatmyJatWq4Z///CeuXLmC7du3GyRwW9omIjKOQ11EpFenTh2cOXMG8+fPx6RJk5CVlYWAgADExsZi3bp1AIBXXnkFhw8fxvz58/H888/jr7/+QkxMDGbMmIHx48dDoVAAAA4cOIC0tDSkpaUZ1N4BnuQIde7cGZs2bcK6deugVqvh7++PuLg4fPvtt6XyV3TKmnFmSwqFAl999RVmzJiBIUOG4NatWwgKCkLbtm0RGBgIpVIJtVqNgQMHIicnB/7+/ujTpw/mzp0LACgqKsLo0aORmZkJLy8vdO3aFcuXLweg7WX7z3/+g8mTJ+Ojjz5Cp06dMGfOnHKTk8trExEZpxDMzVIkIiIiclAc6iIiIiLZYOBDRE6jRo0aRn+OHj0qdvOISAI41EVETiMtLc3otlq1asHDw8OOrSEiKWLgQ0RERLLBoS4iIiKSDQY+REREJBsMfIiIiEg2GPgQERGRbDDwISIiItlg4ENERESywcCHiIiIZIOBDxEREcnG/wGBBQm9y8tLyAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHHCAYAAAC4BYz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0gUlEQVR4nO3dd3iTVfsH8G86aaFN96KlLWXJpkWhKFOkIENelCGgBYpFBAFBlmwRWcpwgSjrRVBQqj/AwRYRCiLTKiBgCxRaRkpThnTl/P7Im9C0zWqTZn0/19ULkufJk5PHam7Puc99S4QQAkREREQOxsnSAyAiIiKyBAZBRERE5JAYBBEREZFDYhBEREREDolBEBERETkkBkFERETkkBgEERERkUNiEEREREQOiUEQEREROSQGQUREVmjdunWQSCTIyMiw9FCI7BaDICIHdezYMYwePRqNGjVC9erVUatWLfTr1w9///13mXM7dOgAiUQCiUQCJycneHt7o379+njppZewe/duo953+/btaN++PYKCguDp6YnatWujX79++Omnn0z10cp499138d1335V5/vDhw5g9ezZyc3PN9t6lzZ49W30vJRIJPD090bBhQ0yfPh15eXkmeY9NmzZh2bJlJrkWkT1jEETkoBYuXIitW7fi6aefxvLly5GcnIxffvkFsbGxSEtLK3N+eHg4NmzYgP/+979YvHgxevXqhcOHD6NLly7o378/CgsL9b7ne++9h169ekEikWDq1KlYunQpnn/+eVy4cAFfffWVOT4mAN1B0Jw5c6o0CFJZsWIFNmzYgCVLlqBBgwaYN28eunbtClO0c2QQRGQYF0sPgIgsY/z48di0aRPc3NzUz/Xv3x9NmjTBggUL8MUXX2icL5VKMXjwYI3nFixYgDFjxuCTTz5BVFQUFi5cqPX9ioqKMHfuXDzzzDPYtWtXmeM3b96s5CeyHg8ePICnp6fOc1544QUEBAQAAF599VU8//zzSElJwZEjRxAfH18VwyRyeJwJInJQbdq00QiAAKBu3bpo1KgRzp49a9A1nJ2d8cEHH6Bhw4b46KOPIJfLtZ57+/Zt5OXl4cknnyz3eFBQkMbjhw8fYvbs2ahXrx6qVauG0NBQ9OnTB5cuXVKf895776FNmzbw9/eHh4cH4uLi8M0332hcRyKR4P79+1i/fr16CWrIkCGYPXs2Jk6cCACIjo5WHyuZg/PFF18gLi4OHh4e8PPzw4ABA3D16lWN63fo0AGNGzfG8ePH0a5dO3h6euKtt94y6P6V1KlTJwBAenq6zvM++eQTNGrUCO7u7ggLC8OoUaM0ZrI6dOiA77//HpcvX1Z/pqioKKPHQ+QIOBNERGpCCNy4cQONGjUy+DXOzs548cUXMWPGDPz666/o3r17uecFBQXBw8MD27dvx+uvvw4/Pz+t1ywuLkaPHj2wd+9eDBgwAGPHjsXdu3exe/dupKWlISYmBgCwfPly9OrVC4MGDUJBQQG++uor9O3bFzt27FCPY8OGDRg+fDieeOIJJCcnAwBiYmJQvXp1/P333/jyyy+xdOlS9axMYGAgAGDevHmYMWMG+vXrh+HDh+PWrVv48MMP0a5dO5w8eRI+Pj7q8cpkMnTr1g0DBgzA4MGDERwcbPD9U1EFd/7+/lrPmT17NubMmYPOnTtj5MiROH/+PFasWIFjx47h0KFDcHV1xbRp0yCXy5GZmYmlS5cCAGrUqGH0eIgcgiAi+p8NGzYIAGL16tUaz7dv3140atRI6+u+/fZbAUAsX75c5/VnzpwpAIjq1auLbt26iXnz5onjx4+XOW/NmjUCgFiyZEmZYwqFQv33Bw8eaBwrKCgQjRs3Fp06ddJ4vnr16iIxMbHMtRYvXiwAiPT0dI3nMzIyhLOzs5g3b57G83/88YdwcXHReL59+/YCgFi5cqXWz13SrFmzBABx/vx5cevWLZGeni4+/fRT4e7uLoKDg8X9+/eFEEKsXbtWY2w3b94Ubm5uokuXLqK4uFh9vY8++kgAEGvWrFE/1717dxEZGWnQeIgcGZfDiAgAcO7cOYwaNQrx8fFITEw06rWqmYa7d+/qPG/OnDnYtGkTWrRogZ07d2LatGmIi4tDbGysxhLc1q1bERAQgNdff73MNSQSifrvHh4e6r/fuXMHcrkcbdu2xYkTJ4waf2kpKSlQKBTo168fbt++rf4JCQlB3bp1sX//fo3z3d3dMXToUKPeo379+ggMDER0dDRGjBiBOnXq4Pvvv9eaS7Rnzx4UFBRg3LhxcHJ69J/uV155Bd7e3vj++++N/6BEDo7LYUSE7OxsdO/eHVKpFN988w2cnZ2Nev29e/cAAF5eXnrPffHFF/Hiiy8iLy8PR48exbp167Bp0yb07NkTaWlpqFatGi5duoT69evDxUX3f6J27NiBd955B6dOnUJ+fr76+ZKBUkVcuHABQgjUrVu33OOurq4aj2vWrFkmv0qfrVu3wtvbG66urggPD1cv8Wlz+fJlAMrgqSQ3NzfUrl1bfZyIDMcgiMjByeVydOvWDbm5uTh48CDCwsKMvoZqS32dOnUMfo23tzeeeeYZPPPMM3B1dcX69etx9OhRtG/f3qDXHzx4EL169UK7du3wySefIDQ0FK6urli7di02bdpk9GcoSaFQQCKR4Mcffyw3ICydY1NyRspQ7dq1U+chEZFlMAgicmAPHz5Ez5498ffff2PPnj1o2LCh0dcoLi7Gpk2b4OnpiaeeeqpC42jZsiXWr1+PrKwsAMrE5aNHj6KwsLDMrIvK1q1bUa1aNezcuRPu7u7q59euXVvmXG0zQ9qej4mJgRAC0dHRqFevnrEfxywiIyMBAOfPn0ft2rXVzxcUFCA9PR2dO3dWP1fZmTAiR8GcICIHVVxcjP79+yM1NRVff/11hWrTFBcXY8yYMTh79izGjBkDb29vrec+ePAAqamp5R778ccfATxa6nn++edx+/ZtfPTRR2XOFf8rJujs7AyJRILi4mL1sYyMjHKLIlavXr3cgojVq1cHgDLH+vTpA2dnZ8yZM6dM8UIhBGQyWfkf0ow6d+4MNzc3fPDBBxpjWr16NeRyucauvOrVq+ssV0BESpwJInJQEyZMwLZt29CzZ0/k5OSUKY5YujCiXC5Xn/PgwQNcvHgRKSkpuHTpEgYMGIC5c+fqfL8HDx6gTZs2aN26Nbp27YqIiAjk5ubiu+++w8GDB9G7d2+0aNECAPDyyy/jv//9L8aPH4/ffvsNbdu2xf3797Fnzx689tpreO6559C9e3csWbIEXbt2xcCBA3Hz5k18/PHHqFOnDs6cOaPx3nFxcdizZw+WLFmCsLAwREdHo1WrVoiLiwMATJs2DQMGDICrqyt69uyJmJgYvPPOO5g6dSoyMjLQu3dveHl5IT09Hd9++y2Sk5Px5ptvVur+GyswMBBTp07FnDlz0LVrV/Tq1Qvnz5/HJ598gscff1zjn1dcXBw2b96M8ePH4/HHH0eNGjXQs2fPKh0vkU2w5NY0IrIc1dZubT+6zq1Ro4aoW7euGDx4sNi1a5dB71dYWCg+++wz0bt3bxEZGSnc3d2Fp6enaNGihVi8eLHIz8/XOP/Bgwdi2rRpIjo6Wri6uoqQkBDxwgsviEuXLqnPWb16tahbt65wd3cXDRo0EGvXrlVvQS/p3Llzol27dsLDw0MA0NguP3fuXFGzZk3h5ORUZrv81q1bxVNPPSWqV68uqlevLho0aCBGjRolzp8/r3FvdJUPKE01vlu3buk8r/QWeZWPPvpINGjQQLi6uorg4GAxcuRIcefOHY1z7t27JwYOHCh8fHwEAG6XJ9JCIoQJGtUQERER2RjmBBEREZFDYhBEREREDolBEBERETkkBkFERETkkBgEERERkUNiEEREREQOicUSS1EoFLh+/Tq8vLxYep6IiMhGCCFw9+5dhIWFwcnJsDkeBkGlXL9+HREREZYeBhEREVXA1atXER4ebtC5DIJK8fLyAqC8ibr6IBEREZH1yMvLQ0REhPp73BAMgkpRLYF5e3szCCIiIrIxxqSyMDGaiIiIHBKDICIiInJIDIKIiIjIITEnqAKKi4tRWFho6WHYLVdXVzg7O1t6GEREZOcYBBlBCIHs7Gzk5uZaeih2z8fHByEhIazVREREZsMgyAiqACgoKAienp78gjYDIQQePHiAmzdvAgBCQ0MtPCIiIrJXDIIMVFxcrA6A/P39LT0cu+bh4QEAuHnzJoKCgrg0RkREZsHEaAOpcoA8PT0tPBLHoLrPzL0iIiJzYRBkJC6BVQ3eZyIiMjcuhxEREVWQTCZDQUGB1uNubm5MobBiDIKIiIgqQCaT4aOPPtJ73ujRoxkIWSkuhzmAIUOGQCKRQCKRwNXVFcHBwXjmmWewZs0aKBQKg6+zbt06+Pj4mG+gREQ2RNcMUEXO00cmkyErK0vrj0wmM8n7OBLOBFUhS06bdu3aFWvXrkVxcTFu3LiBn376CWPHjsU333yDbdu2wcWFvwpERNaKs07mwW++KmLpX2B3d3eEhIQAAGrWrInY2Fi0bt0aTz/9NNatW4fhw4djyZIlWLt2Lf755x/4+fmhZ8+eWLRoEWrUqIGff/4ZQ4cOBfAoaXnWrFmYPXs2NmzYgOXLl+P8+fOoXr06OnXqhGXLliEoKMjkn4OIyBFV9ayTo+ByWBWxxl/gTp06oVmzZkhJSQEAODk54YMPPsCff/6J9evXY9++fZg0aRIAoE2bNli2bBm8vb3VU69vvvkmAOU29rlz5+L06dP47rvvkJGRgSFDhlTZ5yAicjRyuRfS06Mgl3uZ9Loll9yOH7+Bb76R4fjxG3a75MaZIAfXoEEDnDlzBgAwbtw49fNRUVF455138Oqrr+KTTz6Bm5sbpFIpJBKJekZJZdiwYeq/165dGx988AEef/xx3Lt3DzVq1KiSz0FE5ChOnGiB7dt7QAgnSCQK9Oy5A7GxJyt93ZIrFrrew56W3DgT5OCEEOrlrT179uDpp59GzZo14eXlhZdeegkymQwPHjzQeY3jx4+jZ8+eqFWrFry8vNC+fXsAwJUrV8w+fiIiRyKXe6mDEwAQwgnbt/cwyYyQaiVC33vY05IbgyAHd/bsWURHRyMjIwM9evRA06ZNsXXrVhw/fhwff/wxAN2/8Pfv30dCQgK8vb2xceNGHDt2DN9++63e1xERkfFycvzVwYmKEE7IyfEDANy+fbvSS1b63sOecDnMge3btw9//PEH3njjDRw/fhwKhQLvv/8+nJyUv/xbtmzRON/NzQ3FxcUaz507dw4ymQwLFixAREQEAOD333+vmg9ARGRBbm5uJj3PEH5+MkgkCo0gRSJRwM8vBwDUOZ6VWbLS9x72hEGQg8jPz0d2drbGFvn58+ejR48eePnll5GWlobCwkJ8+OGH6NmzJw4dOoSVK1dqXCMqKgr37t3D3r170axZM3h6eqJWrVpwc3PDhx9+iFdffRVpaWmYO3euhT4lEZF5lS510r9/f40ehy4uLhr11Exd+kQqvYuePXeUWK5SID4+tcx5lZmJL/0eqpwgqfRuJUZunRgEOYiffvoJoaGhcHFxga+vL5o1a4YPPvgAiYmJcHJyQrNmzbBkyRIsXLgQU6dORbt27TB//ny8/PLL6mu0adMGr776Kvr37w+ZTKbeIr9u3Tq89dZb+OCDDxAbG4v33nsPvXr1suCnJSIyPX2lTuRyL+Tk+GPChF5o0sTXpO9dcjYpNvYkYmIu4ujRVkhNjcfhw08iNTXeZAnSJd8jJ8cPfn45GgHQ7du31WOy9QRpiRBCWHoQ1iQvLw9SqRRyuRze3t7q5x8+fIj09HRER0ejWrVqRl/X0nWCbE1l7zcRkallZWVh1apV5R4ruZvKyUlg1SoJkpJM+/4ymQzXr19HSkoK5HIvLFs2rsyS1bhxyyCV3kVycjJCQ0ONur6uz6cK8Pz8lPlGqr+/8ko3+Pj4WEVApO37WxfOBFURf39/jB49mo32iIjsTOndVAqFBCNGAAkJQHi46d7H399f/R2iK3lZ37KVtu4Fqhme0koGeIACgASABBKJApcu2fbWeQZBVcjWfjmIiEi/8gKS4mLg4kXTBkElVTR52dBVCZXSAV7JTeWqrfMxMRchld41KA8pMxO4cAGoW9d898YY3CJPRERUAaqqza6u+ZBINJtROzsDdeqY771Vycuq9zU0ebl0oKKt8nTHjh0BlB/glWTM1vnVq4HISKBTJ+Wfq1cb9DKz4kwQERGRkUpXVG7a9AzOnGkKIZzg7Czw6acSs8906EpeNoSuqtC+vsrE7vJmnEoydOt8ZiaQnAwo/hcrKhQwy5KhsTgTREREZITyKiqfOdMUSUmfIzFxHY4evWnypGiV0jWHpNK7iI6+XCYA0lebyNDK06VnnACF0bNPMpkMR47I1AGQSnExcPSozKL9yDgTREREZARtScmFhW6Ijr6MsDCFlldWnq5NNnK5HIWFhXBxcUFBQQGysrI0jpcMjIxJrC4946R8vWGzT6ocJLncCxJJ2d1shw6tR1raXYslVTMIIiIiMoAqiNCXlGzKCtHlKS9YkMlk2Lx5s97X9u/fH4DxidVS6V2NgMfQpTdVsKavAKOl2iwxCCIiIjJAyVmYmjXzMHmyFMXFEjg7CyxcmIeBA1+0WKkTQ4MIVXVrfUGJi4vpw4PK5jCZA4MgIiIiA6kCnAkTgP79ldvg69SRIDzcB4CPJYemoWRxQ23Bhq6gxMfHRx3wyeVyg2aZDJkBKz2jZGk2FQT98ssvWLx4MY4fP46srCx8++236N27t/q4EAKzZs3CZ599htzcXDz55JNYsWIF6tata7lBO4Cff/4ZHTt2xJ07dzR65ugSFRWFcePGYdy4cWYdGxGRuYSHW0etm9J07foqPcOjLSgpOaMVGhpqt8V+bSoIun//Ppo1a4Zhw4ahT58+ZY4vWrQIH3zwAdavX4/o6GjMmDEDCQkJ+Ouvvxy69cKQIUOwfv16jBgxokxT1FGjRuGTTz5BYmIi1q1bZ5kBEhGRSWjb9aUqaFhyhkeb8gIaWwxwDGFTQVC3bt3QrVu3co8JIbBs2TJMnz4dzz33HADgv//9L4KDg/Hdd99hwIABVTlUqxMREYGvvvoKS5cuhYeHBwBlf65NmzahVq1aFh4dERGZgiG7vuw1oKkIu6kTlJ6ejuzsbHTu3Fn9nFQqRatWrZCamqr1dfn5+cjLy9P4sUexsbGIiIhASkqK+rmUlBTUqlULLVq0UD+Xn5+PMWPGICgoCNWqVcNTTz2FY8eOaVzrhx9+QL169eDh4YGOHTsiIyOjzPv9+uuvaNu2LTw8PBAREYExY8bg/v37Zvt8RET0aNdXSYYWNHREdhMEZWdnAwCCg4M1ng8ODlYfK8/8+fMhlUrVPxEREWYdp0pmJrB/v/LPqjJs2DCsXbtW/XjNmjUYOnSoxjmTJk3C1q1bsX79epw4cQJ16tRBQkICcnKU/wJdvXoVffr0Qc+ePXHq1CkMHz4cU6ZM0bjGpUuX0LVrVzz//PM4c+YMNm/ejF9//RWjR482/4ckInJgFW2nYS6Glgswd1kBbWxqOcwcpk6divHjx6sf5+XlmT0QWr36UflwJydg1SqYrbpoSYMHD8bUqVNx+fJlAMChQ4fw1Vdf4eeffwagzLlasWIF1q1bp152/Oyzz7B7926sXr0aEydOxIoVKxATE4P3338fAFC/fn388ccfWLhwofp95s+fj0GDBqmTnuvWrYsPPvgA7du3x4oVKxw6P4uIyBxKBhG6dn0ZEmyU7DJ//boT0tNdEB1dpC4CaUwStK7ijiXHZKklOrsJgkJCQgAAN27cQGhoqPr5GzduoHnz5lpf5+7uDnd3d3MPT82S/VMCAwPRvXt3rFu3DkIIdO/eHQEBAerjly5dQmFhIZ588kn1c66urnjiiSdw9uxZAMDZs2fRqlUrjevGx8drPD59+jTOnDmDjRs3qp8TQkChUCA9PR2PPfaYOT4eEZHDMlWwUbLLvK5dZsZUeLbmHCS7CYKio6MREhKCvXv3qoOevLw8HD16FCNHjrTs4Eq4cAHl9k+5eLFqtloOGzZMvSz18ccfm+U97t27hxEjRmDMmDFljjEJm4jIPEwRbKiCKH27zCxV4dnUbCoIunfvHi5evKh+nJ6ejlOnTsHPzw+1atXCuHHj8M4776Bu3brqLfJhYWEatYQsrW5d5RJYyUDI2RmoU6dq3r9r164oKCiARCJBQkKCxrGYmBi4ubnh0KFDiIyMBKCsLnrs2DH10tZjjz2Gbdu2abzuyJEjGo9jY2Px119/oU5VfSgiIjIpY3qL2TKbCoJ+//13dOzYUf1YlcujqnEzadIk3L9/H8nJycjNzcVTTz2Fn376yapyUMLDlTlAI0YoZ4CcnYFPP626glvOzs7qpS1nZ2eNY9WrV8fIkSMxceJEdWC5aNEiPHjwAEn/S1p69dVX8f7772PixIkYPnw4jh8/Xqa+0OTJk9G6dWuMHj0aw4cPR/Xq1fHXX39h9+7d6mlWIiJbUDI/pjxVnc9i6vGUzv85depfyOVeRvcWs1U2FQR16NABQgitxyUSCd5++228/fbbVTgq4yUlKXOAlOXWq77iqLe3t9ZjCxYsgEKhwEsvvYS7d++iZcuW2LlzJ3x9fQEol7O2bt2KN954Ax9++CGeeOIJvPvuuxg2bJj6Gk2bNsWBAwcwbdo0tG3bFkIIxMTEqBv3ERHZgpL5MbpUVQd0U4+n/PyfYEgk49Cz5w6dvcXshUToiiocUF5eHqRSKeRyuUaw8PDhQ6SnpyM6OtqqZpbsFe83EVlaVlYWVq1apfe85ORkjQ051jqe0rNIt2/fRkpKCuRyLyxbNq7MrM+4ccsAoNxdZlX1mY2h7ftbF5uaCSIiIrIl5lxOM6RJqsqlS5fwxRdflHtMV/5PdPRlu5v9KYlBEBERkRmYczlN1/b18sZRMgCSy71w9aqyHl5ExFWHyf8pD4MgIiIiMzB0G7mx2831bV/Xdf0TJ1pg27aeACT/e0aBXr2Mz/+xVIVnU2MQREREZABjlp/MqaLb11XB06MACACcsG1bD7zxxjKMG7es3PyfPn36aBTWtWSFZ1NjEGQk5pFXDd5nIrImxiw/mVtFl6/KC56UdOf/BAQEWF0StKnYTQNVc3N1dQUAPHjwwMIjcQyq+6y670RElqJt+Uku9zL6OunpUUa/rrSKNkktr8O8kmPk/5SHM0EGcnZ2ho+PD27evAkA8PT0hEQi0fMqMpYQAg8ePMDNmzfh4+NTpqAjEVFVUeW96Ft+MiQ/xhQzSZVtkqoKnkoGdKqcIEfI/ykPgyAjqJq0qgIhMh8fHx/1/SYisgRVU9KMjCJs2CCgUDz6H19nZ4HXX++GqCgXvfkxxiYy6xtPZbbcq4Knq1eVVXojIjIdJv+nPAyCjCCRSBAaGoqgoCAUFhZaejh2y9XVlTNARGQV/P394e9fXrsjCeLigg26hin7cJkiIJFK70IqPVvusbCwMLsOekpjEFQBzs7O/JImInIgFWl3pFpG0pfIbO7lJkOvP3jwYIcKgAC2zSijImW3iYiIyqOqGL1pkwcmT5aiuFgCZ2eBhQvlGDjwX5MsNxlSlRrQXY/IHpa9KvL9zSCoFAZBRESPWFsXdVuWmWn6xtnW1uTVktg7jIiITIZfsKYVHm664EfFXFWpHQXrBBERUblKf3Fqq3PDL1iyVZwJIiIivaypYjKRqXAmiIiIdDJVxWQia8OZICIi0smUdW7sEZPHbReDICIi0klfnZvbt28DcMwve2tLHreWTve2gkEQERHpVLrnVOmGnSkpKepzHW2nmDXtzmLelvEYBBERkV66GnaWxJ1iVUtVCFFffzJ7boJaGQyCiIioXKW/OJU9p5TBjyWXXaw5B6eq74uqqer+/cDSpWXztp58MhEdOpim55g9YhBERETlKtm1/Pbt2+plL0suu1hbDk5Jlrov/v7+aN0acHICFIpHzzs7A61aKRvAUvm4RZ6IiLTy9/dHaGgoAgICAFh+u7w15eCUZOn7Eh6u7HSv6u2t7HRv+grV9oYzQURERsjMBC5cAOrWdcwvGHvcLm+K5TVruC8V6XTv6BgEEREZaPVqIDlZueTg5KT8P++kJEuPqmrp2y5fGYZ2QzclUy2vmfO+GMMc/cnsGYMgIiI9ZDIZMjKKkJwcBIVCAkAZCI0YIdC8+U1ERbk4TOKpvu3yFWVoMNK/f3+Nx5VNRK7s8poqMNN3X7g7yzoxCCIi0kH15ZyeHgWFIlHjWHGxBB9++COioy/bfX2ckl/iurbLV/TL3tBgpLCwUP13a6iLUzJ5HABmzryFjAwXREUVISzscQCPO2QRSVvBIIiISAfVl5u+5Q57r49T+su+PFX5Za+vLk5lrmvszFLJzxwaCsTFVfjtqYoxCCIiMoC5loFsiTXNZhibiKwt30jV8gOwjpklqlp2GQR9/PHHWLx4MbKzs9GsWTN8+OGHeOKJJyw9LCKycYZWTabK0zYj4+Ki/NrSNzNXclnOkHwjc80skXWzuyBo8+bNGD9+PFauXIlWrVph2bJlSEhIwPnz5xEUFGTp4RGRjStZNZnMQ9eMjI+Pj3pZrmbNPEyeLEVxsQTOzgILF+Zh4MAXyyzLGbJUaQ1b3Knq2V0QtGTJErzyyisYOnQoAGDlypX4/vvvsWbNGkyZMsXCoyMi0uSIdYfKW5pSLUsZMiOjCnAmTAD691fVxZEgPNwHgE+FxmQtW9ypatlVEFRQUIDjx49j6tSp6uecnJzQuXNnpKamWnBkRESPqIKATZs8MGmSFAqFBE5OAosWyTFw4L92vZtI39KUsTMyqro4MpkMWVnlz/iUzPsByl9q4xZ3x2RXQdDt27dRXFyM4OBgjeeDg4Nx7ty5cl+Tn5+P/Px89eO8vDyzjpGIHJsqCJDLvbBs2TgIoao7JMHEid64dm0NpNK7Nr/l3pBE5PIYk+tT8r0MqTEE6F5qe+edaG5xdzB2FQRVxPz58zFnzhxLD4OIKsGcS0qGzgAYep4qMNA342HLW+6NCUpKU83I7NjREwqF7lwfFUPvlb6ltoCAAISGBnOLuwOxqyAoICAAzs7OuHHjhsbzN27cQEhISLmvmTp1KsaPH69+nJeXh4iICLOOk4hMx9ytLMxVH8eec1CMCeDKW5qKjT2JmTNb4e7d4Ern+pTE5Gcqza6CIDc3N8TFxWHv3r3o3bs3AEChUGDv3r0YPXp0ua9xd3eHu7t7FY6SiEwlM/NRAASoWlkom0iackbIHEshrDuke2kqLEyB0NCKXVfb9np7DjypYuwqCAKA8ePHIzExES1btsQTTzyBZcuW4f79++rdYkRkPy5ceBQAqRQXK3cL2cJOK0epO1ReUGKuujy6AismP1NpdhcE9e/fH7du3cLMmTORnZ2N5s2b46effiqTLE1Etk0mk8HbuwhOTo+amgKAs7OAl9dNyGS20dTU3usOaQtKzLE0pS+w6tOnD5KTA5j8TGp2FwQBwOjRo7UufxGR7SuZeNujh+aXbPfuO7Bjh/L//G19h5Wt0xWUmGNpSl9gpUx8DmV/L1KzyyCIiOxbycRbXUtKtrzDyh7oCkqioy+bfGmKOT9kLAZBRGTzbGlJydRb7q2ZvqDEVHV5VPeKOT9kLAZBRERVyFxb7lW0FSkEgNzcXEgkEkilUpO/b+nrAPqDkrCwMPj7+1d6aar0PWXODxmKQRARURUz15dxZYoUqpgij8oSQUnJazHnhwzFIIiIyE6YIgfKVHlUDErIFjAIIiKyU9qKBuo6Vl5vLy4lkb1iEEREZId0FQ3UdSwlJaXc67HcANkjBkFEZHMcaYdVReiqzwNAZ0FBbTNEqmUyXYnXAGeNyLYwCCIim2PuHVZVyRxBha76PIBE67FLl+ponSFSjdWQxGvOGpGtYBBERFYjM1PZD6xuXf29v+zhS9ZcQYW++jzlHXN1LdDby6t0sKZv1ojI2jnpP4WIyPxWrwYiI4FOnZR/rl5t6RGZX3lBRXp6FORyL53n6aOqzyORKLvLlqzPo+1YYaG7jtmjsk6caIFly8Zh/fpELFs2DidOtDBqjETWgDNBRGRxmZlAcvKjjvAKBTBiBJCQYBvd4E1BV7KyoUrmQOlqJ1LeMbncy+CWE+bqAE9U1RgEEZHFXbjwKABSKS4GLl40PAgyZinN2pgqqNCXK1Vexejbt28jJSVFb3XnkszRAZ7IEhgEEZHF1a0LODlpBkLOzkCdOoa9fvXqRzNJTk7AqlVAUpJ5xmoOpggqDEmwfuyxx3ReQ9fsUUlsVEr2gkEQEVmUTCaDs3MBFi3ywOTJUhQXS+DsLLBwoRzOzv9CJtO+O0omkyEjowjJyUFQKCQAVEtpAs2b30RUlItNJFBXNqgonWCtLWG5vATr0mUEtDWjdXNzUwdZxswaEVkzBkFEZDGlv7zHjPFSz0Lcu3cXq1Ypny/vy1v12vT0KCgUiRrHiosl+PDDHxEdfdkmtmtXNqgoOQOkK7eovJkiY8oNZGVlqZ8zdNaIyJoxCCIiiyn9xattFqK8L2jVc/pmUWxlu7YpgoqK5hYZGiQaM2tEZAsYBBGRTTPl0kxVV0M2dVBh7oRleypSSQQwCCIiO2CKWZTK5NVUlKmDiqpIWGaAQ/aEQRAR2QVtsyiGqkxeTWWYIqiQy+UAlPegc+c92L27MwAmLBPpwyCIiKgEU9XsqaqlNZlMhs2bNwNQBm979jwKgDp33mN0wUUiR8IgiIjMwlaLF5qqZk9VLa2pAq3ygrc9ezqjceM0zgQRacEgiIhMzpaLF5oir8YSS2uGBG/ctUWkiQ1UiciktPUBy8wse66hX8rlnVeZ1+qiq/mosbQtrZVukFoZubm5AB4FbyWVDN769evHpGaiUjgTREQmZUwfsMrsjir52tzcXBQVFQEAsrNdcOWKO2rVykdEhAQFBQWQyWRGBQCmKgRo7i3rMpkMW7ZsAaC/VICPj0+l34/I3jAIIiKTkclk8PYugpPTozYWAODsLODldRMyWdk2FpWZnfD399cIBHQtPRmbf1PZ3WaA+beslw4eY2Iu4vnntwIQiIjIZC4QkR4MgojIJEomA/fooRmMdO++Azt2VCwY0UdXYnDJXV368m/MsbxWlT22dAWARFS+CgVB9+/fR/Xq1U09FiKyYSWDDF3LSeZqY1HZpSdzVUOuih5bptrWT+RoKhQEBQcHo1+/fhg2bBieeuopU4+JiOyAKZaTjGGKpSdzJQ6Xdy/kci8cOuSG1q0rX0KAO8OIKqZCu8O++OIL5OTkoFOnTqhXrx4WLFiA69evm3psREQGM+WursrSF3CcONECy5aNQ9++/oiMVJYUqAx9O8P69+/PnWFE5ajQTFDv3r3Ru3dv3Lp1Cxs2bMC6deswY8YMJCQkYNiwYejVqxdcXJhuRERVqyqWngyhbWlNLpfj6lWBt99uACGUiePKEgICzZvfRFRU2cRxQ+jLPZJKpZX/UER2qFJ1ggIDAzF+/HicOXMGS5YswZ49e/DCCy8gLCwMM2fOxIMHD0w1TsybNw9t2rSBp6en1q2eV65cQffu3eHp6YmgoCBMnDhRvW2WiByDVHoX0dGXLZ4L4+/vj9DQUPWPm5sbNm/ejI0bf9PYOQcAxcUSfPjhj/joo48gk8kq9H6xsScxbtwyJCauw7hxy5gUTWSASk3X3LhxA+vXr8e6detw+fJlvPDCC0hKSkJmZiYWLlyII0eOYNeuXSYZaEFBAfr27Yv4+HisLmfuuLi4GN27d0dISAgOHz6MrKwsvPzyy3B1dcW7775rkjEQke26ffs2ANP17DKWalZIX+6SMYnjpZfdtOVhMR+IqHwVCoJSUlKwdu1a7Ny5Ew0bNsRrr72GwYMHa8zQtGnTBo899pipxok5c+YAANatW1fu8V27duGvv/7Cnj17EBwcjObNm2Pu3LmYPHkyZs+ezf8IENkpXf9ul+zZlZKSon7e1Nv0jWHKbfPm2tFG5CgqFAQNHToUAwYMwKFDh/D444+Xe05YWBimTZtWqcEZIzU1FU2aNEFwcLD6uYSEBIwcORJ//vknWrRoUe7r8vPzkZ+fr36cl5dn9rES2SNztbHQp2QgcPv2bXWwU1U9uyrClLlLDHCIKq5CQVBWVhY8PT11nuPh4YFZs2ZVaFAVkZ2drREAAVA/zs7O1vq6+fPnq2eZiKjiLDkrUfqatlA3p6pLCBBRWRUKgjw9PVFcXIxvv/0WZ8+eBQA89thj6N27t1G7wqZMmYKFCxfqPOfs2bNo0KBBRYZpkKlTp2L8+PHqx3l5eYiIiDDb+xHZM2uZlTB3zy4isg8VCoL+/PNP9OzZEzdu3ED9+vUBAAsXLkRgYCC2b9+Oxo0bG3SdCRMmYMiQITrPqV27tkHXCgkJwW+//abx3I0bN9THtHF3d4e7u7tB70FEtsHcPbuIyD5UKAgaPnw4GjdujOPHj8PX1xcAcOfOHQwZMgTJyck4fPiwQdcJDAxEYGBgRYZQRnx8PObNm4ebN28iKCgIALB79254e3ujYcOGJnkPInuUmans/F63buUrF1uLquzZVZpMJlMvCV6/7oT0dBdERxfBze222d+biIxToSDo1KlT+P3339UBEAD4+vpi3rx5WhOlK+vKlSvIycnBlStXUFxcjFOnTgEA6tSpgxo1aqBLly5o2LAhXnrpJSxatAjZ2dmYPn06Ro0axZkeIi1WrwaSk5UF+5ycgFWrgKQkS49KqWQwUR59+UWWKJxYsols2cTso4iN1X8N7mQlqjoVCoLq1auHGzduoFGjRhrP37x5E3Xq1DHJwEqbOXMm1q9fr36s2u21f/9+dOjQAc7OztixYwdGjhyJ+Ph4VK9eHYmJiXj77bfNMh4iW5eZ+SgAAlSVi4GEBMvPCJUMJgDNre4lgxl9W92rOvnY0I72ffr0QUBAQJnXczs7UdWqUBA0f/58jBkzBrNnz0br1q0BAEeOHMHbb7+NhQsXamwz9/b2NslA161bp7VGkEpkZCR++OEHk7wfkT2TyWQ4cgRQKDS/cIuLgaNHZfDwsGySc8kZIGO2ultqm35p+hKzAwICEBoaatYxEJF+FQqCevToAQDo168fJBJl+XchBACgZ8+e6scSiQTFxcWmGCcRmYhqlkUu94JEMq5M8vChQ+uRlnbXogUFVYzd6m4txQOZmE1kGyoUBO3fv9/U4yCiKqIKEPQlD1u6oCCgf0bl+nUnnDunmdRt6cANsGxiNhEZrkJBUPv27U09DiKyAGvpuq6NrhmVEyda4O23g/6X1C2waJEcAwf+azV5NdZ+b4moEg1Uc3NzsXr1anWxxEaNGmHYsGGQSqUmGxwRmZ81Vy7WNqMC4H/PKZfjFQoJJk70xrVrayCVWsdSHmDd95aIKhgE/f7770hISICHhweeeOIJAMCSJUswb9487Nq1C7GG7AMlIjJAeTMq6elROpfJrGEpj4isX4WCoDfeeAO9evXCZ599pm6TUVRUhOHDh2PcuHH45ZdfTDpIInJspWdUrDXx2Fp2pxGRYSo8E1QyAAIAFxcXTJo0CS1btjTZ4IjIMekLEqw18dhadqcRkWEqFAR5e3vjypUrZRqbXr16FV5eXiYZGBE5Lm3BxO3bt5GSkgLAehOPGeAQ2Y4KBUH9+/dHUlIS3nvvPbRp0wYAcOjQIUycOBEvvviiSQdIRKZlK0s2hgQTTDwmosqoUBD03nvvQSKR4OWXX0ZRUREAwNXVFSNHjsSCBQtMOkAiMi0u2RARKRkdBBUXF+PIkSOYPXs25s+fj0uXLgEAYmJi4OnpafIBElkTe+m4zgCHiAhw0n+KJmdnZ3Tp0gW5ubnw9PREkyZN0KRJEwZAZPdWrwYiI4FOnZR/rl5d/nmZmcD+/co/ybRsZSmPiGxDhZbDGjdujH/++QfR0dGmHg+R1ZHJZMjIKEJychAUClVxPmDECIHmzW8iKspFPbOyevWjzuxOTsCqVUBSkiVHbz4ymazKl9S4lEdEpiQRqs6nRvjpp58wdepUzJ07F3FxcahevbrGcVN1jreEvLw8SKVSyOVym/4cZBqqZqPp6VFYvz6xzPHExHWIjr6M0aNH499//REZqQyAVJydgYwM2146K4/qvqjI5V7IyfGHn59MI1HZWio3E5H9q8j3d4Vmgp599lkAQK9evdRd5AF2jif7o5px0Fec7+bNm/jzT0Ch0PzCLy4Gjh6VwcPDvvJwbt26pf77iRMtytTriY09CUB7E1Z7ya0iItvGLvJEBtBXnG/Lli2Qy70gkYwrEygdOrQeaWnW08+qsmQyGTZv3gxAOQO0bVsPqNILhXDC9u09EBNzUevWdUdaMiQi61ahICg6OhoREREas0CAcibo6tWrJhkYkbXRV5xPX6BkL/2sSn6Oo0dbofT+ipI9vErLzHwUAAGq3CogIYEzQkRU9SocBGVlZSEoKEjj+ZycHERHR3M5jOyWvuJ81lrF2Bzkci+kpsaXc6T8Hl4ymQxHjjjOkiERWb8KBUGq3J/S7t27h2rVqlV6UES2zNJVjKtq11ZOjn+ZTu4A0KZNapnPr0qkdpQlQyKyDUYFQePHjwcASCQSzJgxQ6M2UHFxMY4ePYrmzZubdIBEZLjSu7a0qWiwIZPJcPv2bQCAq2s+AAVKLodJJAq0anW0zOtUQZmjLBkSkW0wKgg6eVK540MIgT/++EOjIJmbmxuaNWuGN99807QjJCKDlQ4itG1dr0iwUTLAUu0IUwZAAoDE4E7ujrRkSETWzaggSLUrbOjQoVi+fDnr6JDds+XKw7q2rleEKnCSy73U11VSBkBJSZ8jPDxL4zXa7p+llwyJiIAK5gStXbvW1OMgskqGVCiWy+XqLePWonSgYsjWdUOVlwskhBMKCzUDnn79+jG/h4isWoWCoPv372PBggXYu3cvbt68CUXJErkA/vnnH5MMjsga6Psit8Z+VtoCFW1b142hr3Ckimr3aGYmcOSIG+RyL87+EJFVqVAQNHz4cBw4cAAvvfQSQkNDy90pRuQorLGflaGBSkXoS27u06cPwsLC4O/vX6Iwoj8kknGVXpIjIjKlCgVBP/74I77//ns8+eSTph4PkU2ytmUffYFKZelKbg4ICIC/v3+ZwoimXJIjIjKFCgVBvr6+8PPzM/VYiMiEzL0LS19y84ULms1kAf1LcraciE5EtqdCQdDcuXMxc+ZMrF+/XqNWEBFZVukgQlugYkiwUZkmpzKZDN7eRXByCoJC8Wi53MlJYNCgVggPbwUfH58yY7K2GTUism8VCoLef/99XLp0CcHBwYiKioKrq6vG8RMnTphkcERknMrmJ6mqTW/a5IFJk6RQKCRwchJYtEiO7t3lBo3hwYMHWLVqFQCgRw/Nbfo9euzA4cPKnCBWhyYiS6tQENS7d28TD4OITKWigUXJ1hbLlo2DEMoZHIVCgokTvXHt2hpIpcqt76VncVTc3Nw0ArDY2JMICsrGlSu1UKvWFY06QqwOTUSWVqEgaNasWaYeh04ZGRmYO3cu9u3bh+zsbISFhWHw4MGYNm2axrT+mTNnMGrUKBw7dgyBgYF4/fXXMWnSpCodK5GtUgUl+rbX+/j4IDQ0VOt1srIeBTqmLthIRGRKZbsf6vDbb7/p7BCfn5+PLVu2VHpQpZ07dw4KhQKffvop/vzzTyxduhQrV67EW2+9pT4nLy8PXbp0QWRkJI4fP47Fixdj9uzZ6ml5IjKMant9SRXZXq+tYKNc7mWysRIRVYZRQVB8fDxkMpn6sbe3t0ZhxNzcXLz44oumG93/dO3aFWvXrkWXLl1Qu3Zt9OrVC2+++SZSUlLU52zcuBEFBQVYs2YNGjVqhAEDBmDMmDFYsmSJycdDZM9U2+tVgZCx2+vlcmXukK4ZpZLnERFZilHLYUIInY+1PWcOcrlcY5t+amoq2rVrp7E8lpCQgIULF+LOnTvw9fUt9zr5+fnIz89XP87LyzPfoInMRJXQrI2xO68qs72+sLAQgP6CjarziIgspUI5QbpURfXoixcv4sMPP8R7772nfi47OxvR0dEa5wUHB6uPaQuC5s+fjzlz5phvsERmVrK7O6C9c7yxu7Eq2+TU3AUbiYgqy+RBkDGmTJmChQsX6jzn7NmzaNCggfrxtWvX0LVrV/Tt2xevvPJKpccwdepUjB8/Xv04Ly8PERERlb4uUVUpOQOkKxHZEruxzF2wkYioMowOgv766y9kZ2cDUC59nTt3Dvfu3QMA3L5926hrTZgwAUOGDNF5Tu3atdV/v379Ojp27Ig2bdqUSXgOCQnBjRs3NJ5TPQ4JCdF6fXd3d7i7uxs1biJrZM7O8cZwcdH8z4q2GaXS5xERVTWj/yv09NNPa+T99OjRA4ByGUwIYdRyWGBgIAIDAw0699q1a+jYsSPi4uKwdu1aODlpJlzGx8dj2rRpKCwsVBdv3L17N+rXr691KYzInlS2c7yhLSv0naethlBFzyMiMhejgqD09HRzjUOna9euoUOHDoiMjMR7772HW7duqY+pZnkGDhyIOXPmICkpCZMnT0ZaWhqWL1+OpUuXWmTMZBqmTvi1Z5XtHF/ZatNERLbGqCAoMjLSqIu/9tprePvttxEQEGDU60rbvXs3Ll68iIsXLyK8VBMj1ayUVCrFrl27MGrUKMTFxSEgIAAzZ85EcnJypd6bLKd0wq82bL+gZIpEZN5HInIkZl2U/+KLL/Dmm29WOggaMmSI3twhAGjatCkOHjxYqfci62FoIq89t18wZCasJGtIRDbVshoRkbmZNQiqqppB5Bi0bf22V4bOhPXr10/jcWW3tlcWl9WIyFZwewbZBHvsQaVvlsfQisqGbkaoypkXBjhEZAsYBJHVs5at36Zk6CxPSdpmwqRSKWdeiIgqgEEQWb3Kbv22RsbmMembCWOAQ0RkPKMaqBJZgqm6mtsqdmMnIjIPswZBgwcPhre3tznfguyQTCZDVlaWugJ5Zbua2zp93diJiKhiKrQcplAoylRsVj2fmZmJWrVqAQBWrFhRudGRw9GWK6Nr67c9bLXWtfOtskUQiYiofEYFQXl5eRg+fDi2b98Ob29vjBgxArNmzYKzszMA4NatW4iOjkZxcbFZBkv2T1euTMmt33369EFAQIBVJvwaW9tHX74Pu7ETEZmHUUHQjBkzcPr0aWzYsAG5ubl45513cOLECaSkpKj/w87aQFQVAgICEBoaaulhlGHorq/+/fsDMHznm7aZMLncC0ePeqJlS6BUMXUiItLDqCDou+++w/r169GhQwcAQO/evdG9e3f07NkT27ZtA2B4zRIie2Torq/CwkIA+ne+9evXT2uj0U2bPPD221IsXSqBkxOwahWQlFSp4RMRORSjgqBbt25p9A8LCAjAnj17kJCQgGeffRaff/65yQdItseUTU/ttUq0i4vyXz19+T5BQUFl7pVMJkNGRhEmTZJCoVD+T4dCAYwYIdC8+U1ERbnA398fmZnAhQtA3bqcJSIiKo9RQVCtWrVw9uxZREdHq5/z8vLCrl270KVLF/znP/8x+QDJtpiy6ak9VolW8fHxURc4rFkzD5MnS1FcLIGzs8DChXkYOPDFcoNF1f1NT4+CQpGocay4WIIPP/wR0dGX4eycjFmzQqBQSODkJLBokRwDB/5rlTlURESWYtQW+S5dumDt2rVlnq9RowZ27tyJatWqmWxgZJtM1fTUXmrjyOVeSE+PKnfc/v7+CA0NxYQJPsjIkGD/fiAjQ4IJE3wQGhpabrCium+6aifJ5V6YOTO4xCyRBBMnemPx4i/x0UcfQSaTmeGTEhHZHqNmgubMmYPr16+Xe8zLywu7d+/GiRMnTDIwcmz2UCXamJms8HDjlqx07RhLT4/See+MrVZNRGSvjAqCfH194evrq/W4l5cX2rdvX+lBkeNS7TLUlytj7bWBqqLfmbYdY6wrRERkGKOLJRYVFWHp0qX48ssv8ffffwMA6tWrh4EDB2Ls2LFwdXU1+SDJcfj7+1coV8baVNVMVsnaSSWfY10hIiL9jAqC/v33XzzzzDNITU1F586d0a5dOwDA2bNnMXnyZGzbtg27du1ibhBViirAmTAB6N8fuHgRqFNHgvBwHwA+lhyaXtYyk6WrwjYRESkZFQQtWLAAV69excmTJ9G0aVONY6dPn0avXr2wYMECzJ4925RjJBtW2S3uxubKWFrJmSw/v2zMmhWq3qE1c+Z19OnzDFxdXVFQUACZTGbWGa3yZomIiOgRo4Kgr776CkuWLCkTAAFAs2bN8N5772HatGkMggiAfW9x18Xf3x8ymQzFxR9h7Fgv9WwMcBcpKZrnGlIqAIC65o+3t1l7HhMRORSj/ot6+fJlPPHEE1qPt27dGleuXKn0oMh2qZZ59G1xt/bE5spS7cCSSu8iOvoyAJS7VV7XTi2ZTIasrCy8/34uIiMFOnUCnngiCCdOtDDfwImIHIhRM0He3t64efMmIiIiyj2enZ0NLy/bquNCpqVaDtq/H1i6tGxi8JNPJqJDB1h9YrMpVWRGTFUUUS73wrJl4yDEo5o/JXeZlWyrkZubiy1btugdj70HoEREhjIqCOrYsSPeffddbN26tdzjCxYsQMeOHU0yMLJd/v7+aN0acHJStnNQcXYGWrXyhwPFPxXeKq+aIdK3y8zHx0fdSDY0NFSdj6SNLeysIyKqKkYFQbNmzUKrVq3QunVrjB8/Hg0aNIAQAmfPnsXSpUvx119/4ciRI+YaK9mQ8HBlQ88RI4DiYmUA9OmntpXkbAqV3SpvbM0fBjhERIYzKghq2LAhdu/ejaSkJAwYMEDdMV4IgQYNGmDXrl1o1KiRWQZKticpCUhIUG1xd7wACKh84ULW/CEiMh+jiyW2bt0af/75J06dOqVRLLF58+amHhvZAVvb4l4RMpmszBLU7du3AWgPYgBlovT1607432qWVqz5Q0RkHkYHQXl5eahRowaaN2+uEfgoFArcu3cP3t7ephwfkVVTJTDrUjqIuXSpzv+SnZ2wYYPAokW5eju8s+YPEZHpGbVF/ttvv0XLli3x8OHDMsf+/fdfPP7449i+fbvJBkdk7QxtRlpyq3zJRGl2eCcishyjgqAVK1Zg0qRJ8PT0LHOsevXqmDx5st7/KyayZ3K5V7n1gFS7JnUlSgOGB1VERFR5Ri2HpaWl4ZNPPtF6vF27dpg+fXqlB0Vki3TVA/L19QVgeKK0obV8WPOHiKjijAqC7ty5g6KiIq3HCwsLcefOnUoPisjWGFoPyNDdXiV7kGnDmj9ERJVjVBAUFRWF33//HQ0aNCj3+O+//47IyEiTDKy0Xr164dSpU7h58yZ8fX3RuXNnLFy4EGFhYepzzpw5g1GjRuHYsWMIDAzE66+/jkmTJpllPEQlGVMPyNDdXgxwiIjMy6icoD59+mDatGm4ceNGmWPZ2dmYPn06nn/+eZMNrqSOHTtiy5YtOH/+PLZu3YpLly7hhRdeUB/Py8tDly5dEBkZiePHj2Px4sWYPXs2Vq1aZZbxEJWkWuYqSVc9IFWiNHd8ERFZjlEzQVOmTMH//d//oW7duhg8eDDq168PADh37hw2btyIiIgITJkyxSwDfeONN9R/j4yMxJQpU9C7d28UFhbC1dUVGzduREFBAdasWQM3Nzc0atQIp06dwpIlS5CcnGyWMZH1K6+GT0mmWlJiUUMiIttjVBDk5eWFQ4cOYerUqdi8ebM6/8fHxweDBw/GvHnzqqSBak5ODjZu3Ig2bdrA1dUVAJCamop27dppJIomJCRg4cKFuHPnjjoxlRyHITV8AGD06NEVDoRK/r7pWuZycTG6JBcREZmZ0f9llkql+OSTT/Dxxx/j9u3bEEIgMDBQ3UKjpEOHDqFly5Zwd3c3yWBVW/AfPHiA1q1bY8eOHepj2dnZiI6O1jg/ODhYfUxbEJSfn4/8/Hz147y8PJOMlSzP0O3mldmWbmgCs6G424uIqOpU+H9PJRIJAgMDdZ7TrVs3nDp1CrVr1y73+JQpU7Bw4UKd1zh79qw6EXvixIlISkrC5cuXMWfOHLz88svYsWNHuQGYoebPn485c+ZU+PVEhs4icbcXEZF1MescvRBC5/EJEyZgyJAhOs8pGUAFBAQgICAA9erVw2OPPYaIiAgcOXIE8fHxCAkJKZOwrXocEhKi9fpTp07F+PHj1Y/z8vIQERGhc0zkGEydT8QAh4jIulg0USEwMFDvbJI2CoVyJ45qKSs+Ph7Tpk1TJ0oDwO7du1G/fn2d+UDu7u4mW64j+1EV+URERGRZRm2Rt5SjR4/io48+wqlTp3D58mXs27cPL774ImJiYhAfHw8AGDhwINzc3JCUlIQ///wTmzdvxvLlyzVmeYgMVXoGSFs7DLa5ICKyXTaxZcXT0xMpKSmYNWsW7t+/j9DQUHTt2hXTp09Xz+JIpVLs2rULo0aNQlxcHAICAjBz5kxuj6dK09UOg4iIbJdZg6DKJCyX1KRJE+zbt0/veU2bNsXBgwdN8p5EgOHtMIiIyPZYNDGabE9VFR+sqJLjy83N1Tgml3shJ8cffn4yjQBG17Z0Y9phEBGRbTFrEHT3Lr8k7Im1JwvrGl/JJS0nJ4FFi+QYOPBfvUGboV3fiYjI9hgVBHXq1Mmg8wxZuiLbUxXFBytD2/uWXtJSKCSYPNkH/fv7QF+spq8dxu3bty0++0VERBVjVBD0888/IzIyEt27d1dvQyeyduUtaRUXAxcvAuHh+l+vqx1GSkoKAG6VJyKyRUYFQQsXLsTatWvx9ddfY9CgQRg2bBgaN25srrERmUR5S1rOzkCdOtpfUzpPSCq9C6n0rnqrfOm8Im6VJyKyPUbVCZo4cSL++usvfPfdd7h79y6efPJJPPHEE1i5ciV7bpHVUi1pSSTKApvOzgKffqp7FkjVE6xPnz7q506caIFly8Zh/fpELFs2DidOtDD30ImIyIwqVCwxPj4en332GbKysjBq1CisWbMGYWFhDITIasXGnsS4ccuQmLgOR4/eRFKS/tf4+/sjICAAgPat8qWLJxIRke2o1O6wEydO4MCBAzh79iwaN27MPCGyaqolrbAwhdGv5VZ5IiL7Y/RM0PXr1/Huu++iXr16eOGFF+Dn54ejR4/iyJEj8PDwMMcYiSpEW6uLilDlFZXErfJERLbNqJmgZ599Fvv370eXLl2wePFidO/eHS4uNtF5g0xAV1HBipxnaiXfV1eri4qMT99WeSIisj0SYURZZycnJ4SGhiIoKEhnS4wTJ06YZHCWkJeXB6lUCrlcDm9vb0sPx+rYQsXojIwiPPFEEBSKR7+jzs4CR4/eRFSUi1Hjy8rKwqpVq9SPlVWny26VT05ORmhoqGk+BBERGa0i399GTePMmjWrQgMj+2HttXD8/f1x5gygKJX2U1wswd27wXqLI5ambau8vvOIiMj6GTUT5Ag4E2S4zEzgwgWgbl3Dig5WlT/+uIPmzX3KnQkKC1MYPVtl7bNfRERUBTNB2hw4cAD3799HfHw8fH19TXFJsnKrVwPJycoZFycnYNUqGLTt3NxkMhlSUj5Cjx6aOUHdu+/Ajh0n1ecZU+GZAQ4RkX0yumL0vXv3MHfuXADKLvHdunXDrl27AABBQUHYu3cvGjVqZPqRktXIzHwUAAHKP0eMABISLD8jpJqx0dXqouR5RETkuIzaIr9582aNNhnffPMNfvnlFxw8eBC3b99Gy5YtMWfOHJMPkqzLhQvl5dwoe3FZE6n0LqKjL3MHFxERlcuoICg9PR1NmzZVP/7hhx/wwgsv4Mknn4Sfnx+mT5+O1NRUkw+SrEvdusolsJL09eKyFFPWCiIiIvti1HJYUVER3N3d1Y9TU1Mxbtw49eOwsDDcvn3bZIMj6xQerswBGjFCOQPk7Ay9vbgsQVetICIiIqNmgmJiYvDLL78AAK5cuYK///4b7dq1Ux/PzMxkEqmDSEoCMjKA/fuVf1pDUnRJ7PVFRET6GDUTNGrUKIwePRoHDx7EkSNHEB8fj4YNG6qP79u3Dy1asLO2owgPt77ZHxX2+iIiIn2MCoJeeeUVODs7Y/v27WjXrl2Z4onXr1/HsGHDTDpAIhVD6vWoqHp9lQyE2OuLiIhKMrpO0LBhw7QGOp988kmlB0RUHplMho8++kjveb169QKgv9cXKzwTERErRpfCitHWqXQPL12effZZ1KhRAz4+Prh+3QkZGS6IiipCWJhyXz8rPBMR2Z+KfH8blRhdWFiISZMmoU6dOnjiiSewZs0ajeM3btyAs7OzMZckMrkffvgBW7ZsgZubG+LigvH88/6IiwtGaGgoQkNDGQAREREAI4OgefPm4b///S9effVVdOnSBePHj8eIESM0zuHEElkLVoUmIiJdjMoJ2rhxIz7//HP06NEDADBkyBB069YNQ4cOVc8KSSQSXZcgIiIisgpGzQRdu3ZNo21GnTp18PPPP+Pw4cN46aWXUFxcbPIBEpVHLvdCWlpDpKU1RGZmKKtCExGR0YyaCQoJCcGlS5cQFRWlfq5mzZrYv38/OnbsiCFDhph4eOQIjNn6DigrQW/b1gOPYngBQMKq0EREZBSjgqBOnTph06ZNePrppzWeDwsLw759+9ChQwdTjo0cgKFb3/v37w9AOQOkGQABgHIJVlUVOibmIgsiEhGRXkYFQTNmzMC5c+fKPVazZk0cOHAAu3fvNsnAyDEYmrysSrjPyfGHrlVcVoUmIiJDGZUTFBkZiYSEBK3Hw8LCkJiYWOlBEZXm4+ODwYMHw89PBkCh9TxWhSYiIkMZFQSpfP311+jTpw8aN26Mxo0bo0+fPvjmm29MPbZy5efno3nz5pBIJDh16pTGsTNnzqBt27aoVq0aIiIisGjRoioZE1WNmJgYTJuWiLlzs6EZCClniVgVmoiIjGHUcphCocCLL76Ir7/+GvXq1UODBg0AAH/++Sf69++Pvn374ssvvzTrNvlJkyYhLCwMp0+f1ng+Ly8PXbp0QefOnbFy5Ur88ccfGDZsGHx8fJCcnGy28VDFyWQy3L5926jX+Pv7Y/p04Lnn7iA1VblMFhFRjH//dfpfVejHATzOqtBERKSXUUHQ8uXLsWfPHmzbtk1dK0hl27ZtGDp0KJYvX45x48aZcoxqP/74I3bt2oWtW7fixx9/1Di2ceNGFBQUYM2aNXBzc0OjRo1w6tQpLFmyhEGQFTI0IVqbJk180aSJCQdEREQOx6jlsLVr12Lx4sVlAiBA2bhy0aJFZVppmMqNGzfwyiuvYMOGDfD09CxzPDU1Fe3atdNYAklISMD58+dx584drdfNz89HXl6exg+Zn7aEaLncizV/iIioShgVBF24cAGdO3fWerxz5864cOFCpQdVmhACQ4YMwauvvoqWLVuWe052djaCg4M1nlM9zs7O1nrt+fPnQyqVqn8iIiJMN3AyyokTLbBs2TisX5+IZcvG4cSJFpYeEhER2TGjgiAPDw/k5uZqPZ6Xl4dq1aoZfL0pU6ZAIpHo/Dl37hw+/PBD3L17F1OnTjVmuAaZOnUq5HK5+ufq1asmfw/STy73wvbtPSCE8ldSVfNHNSPEJGciIjI1o3KC4uPjsWLFCqxYsaLc4x9//DHi4+MNvt6ECRP0VpmuXbs29u3bh9TUVLi7u2sca9myJQYNGoT169cjJCQEN27c0DiuehwSEqL1+u7u7mWua+8MqdBc1UnFOTn+6gBIRQgnNG7cG889J2WSMxERmZxRQdC0adPQoUMHyGQyvPnmm2jQoAGEEDh79izef/99/N///R/2799v8PUCAwMRGBio97wPPvgA77zzjvrx9evXkZCQgM2bN6NVq1YAlAHatGnTUFhYCFdXVwDA7t27Ub9+ffj6+hrzMe2aoQnJo0ePrtLAw89PBolEoREISSQKRETko6CgAFlZWdzxRUREJmVUENSmTRts3rwZycnJ2Lp1q8YxX19ffPnll3jyySdNOkAAqFWrlsbjGjVqAFDWjQkPDwcADBw4EHPmzEFSUhImT56MtLQ0LF++HEuXLjX5eGyZoRWaDT3PlOLjU5GaGg8hnNQ1fw4fPonDhx+dU9XBGRER2S+jgiAA+M9//oOEhATs3LlTnQRdr149dOnSpdxdW1VFKpVi165dGDVqFOLi4hAQEICZM2dye7wNOHGiRYl8IAXatDmEVq2Oltv6whLBGRER2SejgqB9+/Zh9OjROHLkCP7zn/9oHJPL5WjUqBFWrlyJtm3bmnSQpUVFRal7SZXUtGlTHDx40KzvTaahSnQunRANOCE1NR6tWh213OCIiMghGLU7bNmyZXjllVfg7e1d5phUKsWIESOwZMkSkw2O7Je/vz9Gjx6NNm0Sy02Izsnxs9DIiIjIURgVBJ0+fRpdu3bVerxLly44fvx4pQdFjsHf3x+tW/vDqdRvoUSigKtrAYsmEhGRWRm1HHbjxg31zqtyL+biglu3blV6UOQ4wsOBVauAESMEioslkEgUaNr0DFavHq6RIB0be9LSQyUiIjtj1ExQzZo1kZaWpvX4mTNnEBoaWulBkWNJSgKOHr2JxMR1SEr6HGfONNVaNJGIiMhUjAqCnn32WcyYMQMPHz4sc+zff//FrFmzyu0rRtbD0MrLVV2hOSxMgejoyygsdGeOEBERVQmjlsOmT5+OlJQU1KtXD6NHj0b9+vUBAOfOncPHH3+M4uJiTJs2zSwDJdNQJSSrtppfv+6E9HQXREcXISxMAaBiFaMrW4VaFXRpK5ro55ejcR4REVFlSUR5e811uHz5MkaOHImdO3eqt6lLJBIkJCTg448/RnR0tFkGWlXy8vIglUohl8vL3QVnT1avBpKTAYUCcHJS5uYkJRl/HVNVoVYFUps2eWDyZCmKiyVwdhZYuFCOgQP/ZcVoIiLSqiLf30YHQSp37tzBxYsXIYRA3bp17aY1haMEQZmZQGSkMgBScXYGMjKUycrGyMrKwqpVq/Sel5ycbHDOWGYmcPEiUKeO8eMhIiLHU5Hvb6MrRqv4+vri8ccfr+jLycIuXNAMgACguFgZeFhD0BEebh3jICIi+1XhIIiqlqk7v9etq1wCKz0TVKeO8WPLzc01+DzuHiQiImvBIMgGmKPz+6P6PMoZIGdn4NNPKzb7UlRUZNLziIiIqgKDIBtQegZILvdCTo4//PxkGk1GjW0umpQEJCQw94aIiBwTgyAbU7LjuimqKZsj90ZbkEZERGRNGATZkNId11XVlGNiLlpNsGHqII2IiMhcjKoYTZaVk+NvldWUVf3ktAVpqpYXuvrOERERVTUGQTZEVU25pJLVlC1FKpUC0B+kqc4jIiKyBgyCbIhUehc9e+5QB0Kq5SZrWQpzdc0HULr2poCrq3EJ20RERFWBOUE2Jjb2JGJiLiInxw9+fjlWEQCp+nkVFroDkJQ6KkFhoZvGeURERNaAQVAVycxUVmmuW9f43Vilgwep9G65wY+lggxVU9aMjCJs2CCgUDwKhJydBV5/vRuiolzY94uIiKxKhXuH2Stz9A4zRaNSU1eMNpfVq8sWYKxIU1YiIiJjVGkDVXtl6iDIlI1KrVF5wdn1607IyHBBVFQRZ4CIiKhKVGkDVTKMtTcqrQx97TzS0pR/GtPOg4iIqKpwd5iZqRqVllTRRqXWxtA2Hca28yAiIqoKDILMTNWo1NlZ+bgyjUqJiIjIdLgcVgXYqJSIiMj6MAiqIuZoVEpEREQVx+UwMhm53Avp6VHqXmFERETWjDNBZBLsHk9ERLaGM0FUafq6xxMREVkjBkFUYao2Hfq6x7NnGBERWSObCYKioqIgkUg0fhYsWKBxzpkzZ9C2bVtUq1YNERERWLRokYVG6xhUPcNef70rnJw0C4+reoaxUCIREVkrm8oJevvtt/HKK6+oH3t5PVpuycvLQ5cuXdC5c2esXLkSf/zxB4YNGwYfHx8kJydbYrgOwd/fH/7+ylpImj3DJIiLC7b08IiIiLSyqSDIy8sLISEh5R7buHEjCgoKsGbNGri5uaFRo0Y4deoUlixZwiCoCrAWEhER2RqbWQ4DgAULFsDf3x8tWrTA4sWLUVRUpD6WmpqKdu3aaeSfJCQk4Pz587hz547Wa+bn5yMvL0/jhyomPBzo0IEBEBER2QabmQkaM2YMYmNj4efnh8OHD2Pq1KnIysrCkiVLAADZ2dmIjo7WeE1wcLD6mK+vb7nXnT9/PubMmWPewRMREZHVsWgQNGXKFCxcuFDnOWfPnkWDBg0wfvx49XNNmzaFm5sbRowYgfnz58Pd3b3CY5g6darGtfPy8hAREVHh69kjmUymswmqm5sbk5+JiMjmWDQImjBhAoYMGaLznNq1a5f7fKtWrVBUVISMjAzUr18fISEhuHHjhsY5qsfa8ogAwN3dvVJBlL2TyWT46KOP9J7HXWBERGRrLBoEBQYGIjAwsEKvPXXqFJycnBAUFAQAiI+Px7Rp01BYWAhXV1cAwO7du1G/fn2tS2G2KjMTuHABqFvX/Pk3umaAKnIeERGRtbCJxOjU1FQsW7YMp0+fxj///IONGzfijTfewODBg9UBzsCBA+Hm5oakpCT8+eef2Lx5M5YvX66x1GUPVq8GIiOBTp2Uf65ebekRERER2SabSIx2d3fHV199hdmzZyM/Px/R0dF44403NAIcqVSKXbt2YdSoUYiLi0NAQABmzpxpV9vjMzOB5GRAoVA+ViiUtXkSErgji4iIyFg2EQTFxsbiyJEjes9r2rQpDh48WAUjsowLFx4FQCrFxcraPIYEQUxwJiIiesQmgiBSqlsXcHLSDIScnZXFCfVhgjMREZEmm8gJIqXwcGV7Cmdn5WNlewrDZoGY4ExERKSJM0E2xlTtKeRyL+Tk+MPPTwap9K5pB0lERGQDGATZoPDwyiVCnzjRAtu394AQTpBIFOjZcwdiY0+We27JNiS6GHoeERGRtWAQ5GDkci91AAQAQjhh+/YeiIm5WO6MkL+/P0aPHs2EaiIisjsMgmyEqXZ25eT4qwMgFSGckJPjp3VZjAEOERHZIwZBNsCUO7v8/GSQSBQagZBEooCfX45BY6nKatVERETmxN1hNsCUO7uk0rvo2XMHJBLlPntVTpAhydGsVk1ERPaEM0EOomTicmzsScTEXEROjh/8/HI0AiBtCc6sVk1ERPaGQZCDqGyCc2WrVRMREVkbBkEOpDIJzpWpVk1ERGSNGATZOVPtKlNVqx4xQjkDZEy1aiIiImvEIMiOmbpfmKmqVRMREVkDBkF2zBz9wipbrZqIiMhacIu8DWDrCiIiItPjTJANMFXrCjZNJSIieoRBkI2obOsKY5qmEhEROQIuhzkAbU1T5XIvC4+MiIjIchgEOQBdTVOJiIgcFYMgB6BqmlqSMU1TiYiI7BGDIDum2i2mr2kqd5UREZEjkgghhKUHYU3y8vIglUohl8vh7e1t6eFUWsmK0devOyEjwwVRUUUIC1MGRIZWjCYiIrJmFfn+5u4wO1cywAkNBeLiLDgYIiIiK8LlMCIiInJIDIKIiIjIITEIIiIiIofEIIiIiIgcEoMgIiIickgMgoiIiMghMQgiIiIih2RTQdD333+PVq1awcPDA76+vujdu7fG8StXrqB79+7w9PREUFAQJk6ciKKiIssMFspChVlZWVp/ZDKZxcZGRETk6GymWOLWrVvxyiuv4N1330WnTp1QVFSEtLQ09fHi4mJ0794dISEhOHz4MLKysvDyyy/D1dUV7777bpWPVyaT4aOPPtJ73ujRo1mxmYiIyAJsIggqKirC2LFjsXjxYiQlJamfb9iwofrvu3btwl9//YU9e/YgODgYzZs3x9y5czF58mTMnj27yvtjqVpVmOo8IiIiMi2bWA47ceIErl27BicnJ7Ro0QKhoaHo1q2bxkxQamoqmjRpguDgYPVzCQkJyMvLw59//mmJYRMREZEVs4kg6J9//gEAzJ49G9OnT8eOHTvg6+uLDh06ICcnBwCQnZ2tEQABUD/Ozs7Weu38/Hzk5eVp/BAREZH9s2gQNGXKFEgkEp0/586dg0Kh7Hg+bdo0PP/884iLi8PatWshkUjw9ddfV2oM8+fPh1QqVf9ERESY4qMRERGRlbNoTtCECRMwZMgQnefUrl0bWVlZADRzgNzd3VG7dm1cuXIFABASEoLffvtN47U3btxQH9Nm6tSpGD9+vPpxXl6e1QVCMplMZ+6Qm5sbk6uJiIiMZNEgKDAwEIGBgXrPi4uLg7u7O86fP4+nnnoKAFBYWIiMjAxERkYCAOLj4zFv3jzcvHkTQUFBAIDdu3fD29tbI3gqzd3dHe7u7ib4NMaTy71w6JAbWrcGwsPLP4e7zIiIiMzDJnKCvL298eqrr2LWrFnYtWsXzp8/j5EjRwIA+vbtCwDo0qULGjZsiJdeegmnT5/Gzp07MX36dIwaNcpiQY4uJ060wLJl49C3rz8iI4HVq8s/z9DdY9evX2ftISIiIiPYxBZ5AFi8eDFcXFzw0ksv4d9//0WrVq2wb98++Pr6AgCcnZ2xY8cOjBw5EvHx8ahevToSExPx9ttvW2S8urbky+Ve2L69B4RQxqAKBTBiBJCQoH1GSJ+UlBT13zkrREREpJ9ECCEsPQhrkpeXB6lUCrlcDm9v70pdS1suz6FDbujbt2yQsn8/0KGD5nNZWVlYtWqV+rFc7oWcHH/4+ckgld4t932Tk5MRGhpaqbETERHZkop8f9vMTJAt0jYb07o14OSknAFScXYG6tTRfb0TJ1qoZ5AkEgV69tyB2NiTJhwxERGR47CJnCB7Ex4OrFqlDHwA5Z+ffqp7Kaz0EpoQTti+vQfkcq8qGDEREZH94UyQhSQlKXOALl5UzgDpywXKyfFXB0AqQjghJ8dP67IYERERaccgyILCww1PhPbzk0EiUWgEQhKJAn5+OWYaHRERkX3jcpiVU+0yk0rvomfPHZBIlIlEqpwgzgIRERFVDGeCrJy/vz9Gjx6NgoIC3L59GzExy5CT4wc/vxwGQERERJXAIKiKVaQFhuqxm5sbpNK7eoMfXTWKiIiISIlBUBWqbAuMkrNC2rCPGBERkWEYBFUhQ1tg6DqPAQ4REZFpMDGaiIiIHBKDICIiInJIDIIsRC73Qnp6FCs+ExERWQhzgiyAPcCIiIgsjzNBVcyUPcAyM5Wd5zMzTT1KIiIi+8cgqArl5ubq7AFmjNWrgchIoFMn5Z+rV5typERERPaPQVAVkclk2LJli7oHWEmle4DpK3aYmQkkJwOK/11GoQBGjOCMEBERkTEYBFURVe0ffT3A+vfvr7cW0IULjwIgleJiZUd6IiIiMgwToy0gNvYkYmIultsDTCqV6n193bqAk5NmIOTsDNSpY47REhER2SfOBFmIVHoX0dGXK9QENTwcWLVKGfgAyj8//VT5PBERERmGM0E2KikJSEhQLoHVqcMAiIiIyFgMgmxYeDiDHyIioorichgRERE5JAZBRERE5JAYBFURfbV/jD2PiIiIKoc5QVXE398fo0ePVtcLKo+bm5veGkFERERkGgyCqhADHCIiIuvB5TAiIiJySAyCiIiIyCExCCIiIiKHxCCIiIiIHBKDICIiInJINhEE/fzzz5BIJOX+HDt2TH3emTNn0LZtW1SrVg0RERFYtGiRBUdNRERE1swmtsi3adMGWVlZGs/NmDEDe/fuRcuWLQEAeXl56NKlCzp37oyVK1fijz/+wLBhw+Dj44Pk5GRLDJuIiIismE0EQW5ubggJCVE/LiwsxP/93//h9ddfh0QiAQBs3LgRBQUFWLNmDdzc3NCoUSOcOnUKS5YsYRBEREREZdjEclhp27Ztg0wmw9ChQ9XPpaamol27dhptJxISEnD+/HncuXNH67Xy8/ORl5en8UNERET2zyZmgkpbvXo1EhISEB4ern4uOzsb0dHRGucFBwerj/n6+pZ7rfnz52POnDllnmcwREREZDtU39tCCINfY9EgaMqUKVi4cKHOc86ePYsGDRqoH2dmZmLnzp3YsmWLScYwdepUjB8/Xv342rVraNiwISIiIkxyfSIiIqo6d+/ehVQqNehciwZBEyZMwJAhQ3SeU7t2bY3Ha9euhb+/P3r16qXxfEhICG7cuKHxnOpxyXyi0tzd3eHu7q5+XKNGDVy9ehVeXl7qfKOKyMvLQ0REBK5evQpvb+8KX8fW8T4o8T4o8T4o8T4o8T48wnuhVJn7IITA3bt3ERYWZvBrLBoEBQYGIjAw0ODzhRBYu3YtXn75Zbi6umoci4+Px7Rp01BYWKg+tnv3btSvX1/rUlh5nJycNJbZKsvb29uhf6FVeB+UeB+UeB+UeB+UeB8e4b1Qquh9MHQGSMWmEqP37duH9PR0DB8+vMyxgQMHws3NDUlJSfjzzz+xefNmLF++XGOpi4iIiEjFphKjV69ejTZt2mjkCKlIpVLs2rULo0aNQlxcHAICAjBz5kxujyciIqJy2VQQtGnTJp3HmzZtioMHD1bRaHRzd3fHrFmzNPKNHBHvgxLvgxLvgxLvgxLvwyO8F0pVfR8kwpi9ZERERER2wqZygoiIiIhMhUEQEREROSQGQUREROSQGAQRERGRQ2IQZIQVK1agadOm6iJO8fHx+PHHH9XHHz58iFGjRsHf3x81atTA888/X6aK9ZUrV9C9e3d4enoiKCgIEydORFFRUVV/FJNZsGABJBIJxo0bp37OUe7D7NmzIZFINH5Klm9wlPsAKNvNDB48GP7+/vDw8ECTJk3w+++/q48LITBz5kyEhobCw8MDnTt3xoULFzSukZOTg0GDBsHb2xs+Pj5ISkrCvXv3qvqjVFhUVFSZ3weJRIJRo0YBcJzfh+LiYsyYMQPR0dHw8PBATEwM5s6dq9HPyRF+HwBl+4Zx48YhMjISHh4eaNOmDY4dO6Y+bq/34ZdffkHPnj0RFhYGiUSC7777TuO4qT73mTNn0LZtW1SrVg0RERFYtGiR8YMVZLBt27aJ77//Xvz999/i/Pnz4q233hKurq4iLS1NCCHEq6++KiIiIsTevXvF77//Llq3bi3atGmjfn1RUZFo3Lix6Ny5szh58qT44YcfREBAgJg6daqlPlKl/PbbbyIqKko0bdpUjB07Vv28o9yHWbNmiUaNGomsrCz1z61bt9THHeU+5OTkiMjISDFkyBBx9OhR8c8//4idO3eKixcvqs9ZsGCBkEql4rvvvhOnT58WvXr1EtHR0eLff/9Vn9O1a1fRrFkzceTIEXHw4EFRp04d8eKLL1riI1XIzZs3NX4Xdu/eLQCI/fv3CyEc5/dh3rx5wt/fX+zYsUOkp6eLr7/+WtSoUUMsX75cfY4j/D4IIUS/fv1Ew4YNxYEDB8SFCxfErFmzhLe3t8jMzBRC2O99+OGHH8S0adNESkqKACC+/fZbjeOm+NxyuVwEBweLQYMGibS0NPHll18KDw8P8emnnxo1VgZBleTr6ys+//xzkZubK1xdXcXXX3+tPnb27FkBQKSmpgohlL8YTk5OIjs7W33OihUrhLe3t8jPz6/ysVfG3bt3Rd26dcXu3btF+/bt1UGQI92HWbNmiWbNmpV7zJHuw+TJk8VTTz2l9bhCoRAhISFi8eLF6udyc3OFu7u7+PLLL4UQQvz1118CgDh27Jj6nB9//FFIJBJx7do18w3ejMaOHStiYmKEQqFwqN+H7t27i2HDhmk816dPHzFo0CAhhOP8Pjx48EA4OzuLHTt2aDwfGxsrpk2b5jD3oXQQZKrP/cknnwhfX1+NfzcmT54s6tevb9T4uBxWQcXFxfjqq69w//59xMfH4/jx4ygsLETnzp3V5zRo0AC1atVCamoqACA1NRVNmjRBcHCw+pyEhATk5eXhzz//rPLPUBmjRo1C9+7dNT4vAIe7DxcuXEBYWBhq166NQYMG4cqVKwAc6z5s27YNLVu2RN++fREUFIQWLVrgs88+Ux9PT09Hdna2xr2QSqVo1aqVxr3w8fFBy5Yt1ed07twZTk5OOHr0aNV9GBMpKCjAF198gWHDhkEikTjU70ObNm2wd+9e/P333wCA06dP49dff0W3bt0AOM7vQ1FREYqLi1GtWjWN5z08PPDrr786zH0ozVSfOzU1Fe3atYObm5v6nISEBJw/fx537twxeDw2VTHaGvzxxx+Ij4/Hw4cPUaNGDXz77bdo2LAhTp06BTc3N/j4+GicHxwcjOzsbABAdna2xn/gVMdVx2zFV199hRMnTmisbatkZ2c7zH1o1aoV1q1bh/r16yMrKwtz5sxB27ZtkZaW5lD34Z9//sGKFSswfvx4vPXWWzh27BjGjBkDNzc3JCYmqj9LeZ+15L0ICgrSOO7i4gI/Pz+buhcq3333HXJzczFkyBAAjvXvxZQpU5CXl4cGDRrA2dkZxcXFmDdvHgYNGgQADvP74OXlhfj4eMydOxePPfYYgoOD8eWXXyI1NRV16tRxmPtQmqk+d3Z2NqKjo8tcQ3XM0MbpDIKMVL9+fZw6dQpyuRzffPMNEhMTceDAAUsPq8pcvXoVY8eOxe7du8v8H46jUf2fLaBs2dKqVStERkZiy5Yt8PDwsODIqpZCoUDLli3x7rvvAgBatGiBtLQ0rFy5EomJiRYenWWsXr0a3bp1Q1hYmKWHUuW2bNmCjRs3YtOmTWjUqBFOnTqFcePGISwszOF+HzZs2IBhw4ahZs2acHZ2RmxsLF588UUcP37c0kOj/+FymJHc3NxQp04dxMXFYf78+WjWrBmWL1+OkJAQFBQUIDc3V+P8GzduICQkBAAQEhJSZjeI6rHqHGt3/Phx3Lx5E7GxsXBxcYGLiwsOHDiADz74AC4uLggODnaI+1AeHx8f1KtXDxcvXnSY3wcACA0NRcOGDTWee+yxx9RLg6rPUt5nLXkvbt68qXG8qKgIOTk5NnUvAODy5cvYs2cPhg8frn7OkX4fJk6ciClTpmDAgAFo0qQJXnrpJbzxxhuYP38+AMf6fYiJicGBAwdw7949XL16Fb/99hsKCwtRu3Zth7oPJZnqc5vq3xcGQZWkUCiQn5+PuLg4uLq6Yu/evepj58+fx5UrVxAfHw8AiI+Pxx9//KHxD3f37t3w9vYu8yVirZ5++mn88ccfOHXqlPqnZcuWGDRokPrvjnAfynPv3j1cunQJoaGhDvP7AABPPvkkzp8/r/Hc33//jcjISABAdHQ0QkJCNO5FXl4ejh49qnEvcnNzNf4Ped++fVAoFGjVqlUVfArTWbt2LYKCgtC9e3f1c470+/DgwQM4OWl+tTg7O0OhUABwvN8HAKhevTpCQ0Nx584d7Ny5E88995xD3gfAdP/84+Pj8csvv6CwsFB9zu7du1G/fn2Dl8IAcIu8MaZMmSIOHDgg0tPTxZkzZ8SUKVOERCIRu3btEkIot8DWqlVL7Nu3T/z+++8iPj5exMfHq1+v2gLbpUsXcerUKfHTTz+JwMBAm9sCW1rJ3WFCOM59mDBhgvj5559Fenq6OHTokOjcubMICAgQN2/eFEI4zn347bffhIuLi5g3b564cOGC2Lhxo/D09BRffPGF+pwFCxYIHx8f8X//93/izJkz4rnnnit3S2yLFi3E0aNHxa+//irq1q1r9VuBSysuLha1atUSkydPLnPMUX4fEhMTRc2aNdVb5FNSUkRAQICYNGmS+hxH+X346aefxI8//ij++ecfsWvXLtGsWTPRqlUrUVBQIISw3/tw9+5dcfLkSXHy5EkBQCxZskScPHlSXL58WQhhms+dm5srgoODxUsvvSTS0tLEV199JTw9PblF3pyGDRsmIiMjhZubmwgMDBRPP/20OgASQoh///1XvPbaa8LX11d4enqK//znPyIrK0vjGhkZGaJbt27Cw8NDBAQEiAkTJojCwsKq/igmVToIcpT70L9/fxEaGirc3NxEzZo1Rf/+/TVq4zjKfRBCiO3bt4vGjRsLd3d30aBBA7Fq1SqN4wqFQsyYMUMEBwcLd3d38fTTT4vz589rnCOTycSLL74oatSoIby9vcXQoUPF3bt3q/JjVNrOnTsFgDKfTQjH+X3Iy8sTY8eOFbVq1RLVqlUTtWvXFtOmTdPYyuwovw+bN28WtWvXFm5ubiIkJESMGjVK5Obmqo/b633Yv3+/AFDmJzExUQhhus99+vRp8dRTTwl3d3dRs2ZNsWDBAqPHKhGiRBlPIiIiIgfBnCAiIiJySAyCiIiIyCExCCIiIiKHxCCIiIiIHBKDICIiInJIDIKIiIjIITEIIiIiIofEIIiIiIgcEoMgIjuVnZ2N119/HbVr14a7uzsiIiLQs2dPjZ49hw8fxrPPPgtfX19Uq1YNTZo0wZIlS1BcXKw+JyMjA0lJSYiOjoaHhwdiYmIwa9YsFBQUaLzfZ599hmbNmqFGjRrw8fFBixYt1E0zAWD27NmQSCTo2rVrmbEuXrwYEokEHTp00Pu5oqKiIJFItP4MGTLE+Jtl5Tp06IBx48ZZehhEdsfF0gMgItPLyMjAk08+CR8fHyxevBhNmjRBYWEhdu7ciVGjRuHcuXP49ttv0a9fPwwdOhT79++Hj48P9uzZg0mTJiE1NRVbtmyBRCLBuXPnoFAo8Omnn6JOnTpIS0vDK6+8gvv37+O9994DAKxZswbjxo3DBx98gPbt2yM/Px9nzpxBWlqaxrhCQ0Oxf/9+ZGZmIjw8XP38mjVrUKtWLYM+27Fjx9RB2uHDh/H888/j/Pnz8Pb2BgB4eHiY4hZWicLCQri6ulbZ+xUUFMDNza3K3o/I6lWwNQgRWbFu3bqJmjVrinv37pU5dufOHXHv3j3h7+8v+vTpU+b4tm3bBADx1Vdfab3+okWLRHR0tPrxc889J4YMGaJzTLNmzRLNmjUTPXr0EO+88476+UOHDomAgAAxcuRI0b59ewM+3SOqHkV37txRP/fdd9+JFi1aCHd3dxEdHS1mz56t0X8LgFi5cqXo3r278PDwEA0aNBCHDx8WFy5cEO3btxeenp4iPj5eow+cauwrV64U4eHhwsPDQ/Tt21ejD5QQQnz22WeiQYMGwt3dXdSvX198/PHH6mPp6enq+9quXTvh7u4u1q5dK27fvi0GDBggwsLChIeHh2jcuLHYtGmT+nWJiYllejClp6eLtWvXCqlUqvH+3377rSj5n3XVuD/77DMRFRUlJBKJEEL5O5CUlCQCAgKEl5eX6Nixozh16pRR957IHnA5jMjO5OTk4KeffsKoUaNQvXr1Msd9fHywa9cuyGQyvPnmm2WO9+zZE/Xq1cOXX36p9T3kcjn8/PzUj0NCQnDkyBFcvnxZ7/iGDRuGdevWqR+vWbMGgwYNMskMxcGDB/Hyyy9j7Nix+Ouvv/Dpp59i3bp1mDdvnsZ5c+fOxcsvv4xTp06hQYMGGDhwIEaMGIGpU6fi999/hxACo0eP1njNxYsXsWXLFmzfvh0//fQTTp48iddee019fOPGjZg5cybmzZuHs2fP4t1338WMGTOwfv16jetMmTIFY8eOxdmzZ5GQkICHDx8iLi4O33//PdLS0pCcnIyXXnoJv/32GwBg+fLliI+PxyuvvIKsrCxkZWUhIiLC4Hty8eJFbN26FSkpKTh16hQAoG/fvrh58yZ+/PFHHD9+HLGxsXj66aeRk5NjzO0msn2WjsKIyLSOHj0qAIiUlBSt5yxYsKDMDEpJvXr1Eo899li5xy5cuCC8vb01OsVfv35dtG7dWgAQ9erVE4mJiWLz5s2iuLhYfY5qVqKgoEAEBQWJAwcOiHv37gkvLy9x+vRpMXbs2ErPBD399NPi3Xff1Thnw4YNIjQ0VP0YgJg+fbr6cWpqqgAgVq9erX7uyy+/FNWqVdMYu7Ozs8jMzFQ/9+OPPwonJyd1J/iYmBiNGRwhhJg7d66Ij48XQjyaCVq2bJnez9W9e3cxYcIE9eP27duLsWPHapxj6EyQq6uruHnzpvq5gwcPCm9vb/Hw4UON18bExIhPP/1U79iI7AlzgojsjBDCLOcCwLVr19C1a1f07dsXr7zyivr50NBQpKamIi0tDb/88gsOHz6MxMREfP755/jpp5/g5PRo0tnV1RWDBw/G2rVr8c8//6BevXpo2rSpUePQ5vTp0zh06JDGzE9xcTEePnyIBw8ewNPTEwA03i84OBgA0KRJE43nHj58iLy8PHWuUa1atVCzZk31OfHx8VAoFDh//jy8vLxw6dIlJCUladyXoqIiSKVSjTG2bNlS43FxcTHeffddbNmyBdeuXUNBQQHy8/PVY62syMhIBAYGqh+fPn0a9+7dg7+/v8Z5//77Ly5dumSS9ySyFQyCiOxM3bp11QnN2tSrVw8AcPbsWbRp06bM8bNnz6Jhw4Yaz12/fh0dO3ZEmzZtsGrVqnKv27hxYzRu3BivvfYaXn31VbRt2xYHDhxAx44dNc4bNmwYWrVqhbS0NAwbNszYj6jVvXv3MGfOHPTp06fMsWrVqqn/XjIZWSKRaH1OoVAY/L6Acodcq1atNI45OztrPC69RLl48WIsX74cy5YtQ5MmTVC9enWMGzeuzO670pycnMoEsYWFhWXOK/1+9+7dQ2hoKH7++ecy5/r4+Oh8TyJ7wyCIyM74+fkhISEBH3/8McaMGVPmSzA3NxddunSBn58f3n///TJB0LZt23DhwgXMnTtX/dy1a9fQsWNHxMXFYe3atRozO9qogqj79++XOdaoUSM0atQIZ86cwcCBAyvyMcsVGxuL8+fPo06dOia7psqVK1dw/fp1hIWFAQCOHDkCJycn1K9fH8HBwQgLC8M///yDQYMGGXXdQ4cO4bnnnsPgwYMBKAOvv//+WyMIdXNz0yhbAACBgYG4e/cu7t+/r/5nrMr50SU2NhbZ2dlwcXFBVFSUUWMlsjcMgojs0Mcff4wnn3wSTzzxBN5++200bdoURUVF2L17N1asWIGzZ8/i008/xYABA5CcnIzRo0fD29sbe/fuxcSJE/HCCy+gX79+AJQBUIcOHRAZGYn33nsPt27dUr9PSEgIAGDkyJEICwtDp06dEB4ejqysLLzzzjsIDAxEfHx8uWPct28fCgsLTTr7MHPmTPTo0QO1atXCCy+8ACcnJ5w+fRppaWl45513KnXtatWqITExEe+99x7y8vIwZswY9OvXT30P5syZgzFjxkAqlaJr167Iz8/H77//jjt37mD8+PFar1u3bl188803OHz4MHx9fbFkyRLcuHFDIwiKiorC0aNHkZGRgRo1asDPzw+tWrWCp6cn3nrrLYwZMwZHjx7VSDjXpnPnzoiPj0fv3r2xaNEi1KtXD9evX8f333+P//znP2WW64jsGXeHEdmh2rVr48SJE+jYsSMmTJiAxo0b45lnnsHevXuxYsUKAMALL7yA/fv348qVK2jbti3q16+PpUuXYtq0afjqq6/US0K7d+/GxYsXsXfvXoSHhyM0NFT9o9K5c2ccOXIEffv2Rb169fD888+jWrVq2Lt3b5ncE5Xq1aubfPklISEBO3bswK5du/D444+jdevWWLp0KSIjIyt97Tp16qBPnz549tln0aVLFzRt2hSffPKJ+vjw4cPx+eefY+3atWjSpAnat2+PdevWITo6Wud1p0+fjtjYWCQkJKBDhw4ICQlB7969Nc5588034ezsjIYNGyIwMBBXrlyBn58fvvjiC/zwww9o0qQJvvzyS8yePVvv55BIJPjhhx/Qrl07DB06FPXq1cOAAQNw+fJldX4UkaOQCGMzI4mIHMzs2bPx3XffGbTcRES2gzNBRERE5JAYBBGR1alRo4bWn4MHD1p6eERkJ7gcRkRW5+LFi1qP1axZ06b6gxGR9WIQRERERA6Jy2FERETkkBgEERERkUNiEEREREQOiUEQEREROSQGQUREROSQGAQRERGRQ2IQRERERA6JQRARERE5pP8HSi3/nfWVEUYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHHCAYAAADZHa63AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlzUlEQVR4nO3de1zO5+M/8Nfd4e6oQulAkUPk8KNl6m4zbE05xcaGGZqYnDbLqcYkhpxmc97m0GxOsaFhQtiBNCwMFaOcklMqQsfr90ff3h+3+y5FdXffvZ6Px/3gvt7X/b6v9/1W98t1va/rLRNCCBARERGRVtPTdAOIiIiI6OUx1BERERHpAIY6IiIiIh3AUEdERESkAxjqiIiIiHQAQx0RERGRDmCoIyIiItIBDHVEREREOoChjoiIiEgHMNQREb0kmUyGGTNmaLoZEn9/fzRq1EjTzSCiKsZQR0Q6KSIiAjKZTHoYGxvDxcUFY8eOxa1btyr1vY8ePYoZM2YgIyOjQvfbuXNnpWOqU6cOXn31VaxduxaFhYUV8h5z5szBjh07KmRfRFS1DDTdACKiyjRz5kw4OzvjyZMn+Ouvv7By5Urs2bMHZ8+ehampaYW8x+PHj2Fg8L9fp0ePHkVYWBj8/f1hZWVVIe9RrEGDBpg7dy4A4M6dO1i/fj0CAgJw4cIFhIeHv/T+58yZg379+qFPnz4vvS8iqloMdUSk07p164b27dsDAIYPH466deviq6++ws6dOzFw4MAX3m9hYSFyc3NhbGwMY2Pjimruc1laWuLDDz+Uno8cORLNmzfHsmXLMGvWLBgaGlZZW4ioeuHwKxHVKG+++SYAIDk5GQCwcOFCeHl5oW7dujAxMYG7uzu2bdum8jqZTIaxY8diw4YNaNWqFYyMjLB3715pW/E1dTNmzMCkSZMAAM7OztJQaUpKCjp16oS2bduqbVfz5s3h4+NT7uMxNTWFp6cnsrOzcefOnRLrZWdnY8KECXB0dISRkRGaN2+OhQsXQgihdIzZ2dn44YcfpHb7+/uXu01EpBnsqSOiGuXSpUsAgLp16wIAvvnmG/j5+WHQoEHIzc3F5s2b8d5772HXrl3o0aOH0msPHjyIyMhIjB07FtbW1monI7z77ru4cOECNm3ahMWLF8Pa2hoAYGNjg8GDB2PEiBE4e/YsWrduLb3m+PHjuHDhAqZNm/ZCx3T58mXo6+uXONQrhICfnx8OHTqEgIAAtGvXDtHR0Zg0aRJu3LiBxYsXAwB+/PFHDB8+HB06dMDHH38MAGjSpMkLtYmINEAQEemgdevWCQDiwIED4s6dO+LatWti8+bNom7dusLExERcv35dCCHEo0ePlF6Xm5srWrduLd58802lcgBCT09PnDt3TuW9AIjQ0FDp+YIFCwQAkZycrFQvIyNDGBsbiylTpiiVf/LJJ8LMzEw8fPiw1GPq1KmTaNGihbhz5464c+eOSEhIEJ988okAIHr16iXVGzp0qGjYsKH0fMeOHQKA+PLLL5X2169fPyGTycR///0nlZmZmYmhQ4eW2g4iqp44/EpEOs3b2xs2NjZwdHTEgAEDYG5uju3bt6N+/foAABMTE6nu/fv3kZmZiY4dO+Kff/5R2VenTp3QsmXLF26LpaUlevfujU2bNknDngUFBdiyZQv69OkDMzOz5+4jMTERNjY2sLGxgaurK5YuXYoePXpg7dq1Jb5mz5490NfXxyeffKJUPmHCBAgh8Ntvv73wMRFR9cHhVyLSacuXL4eLiwsMDAxga2uL5s2bQ0/vf/+f3bVrF7788kucOnUKOTk5UrlMJlPZl7Oz80u3Z8iQIdiyZQv+/PNPvPHGGzhw4ABu3bqFwYMHl+n1jRo1wvfffy8t09KsWTPUq1ev1NdcuXIFDg4OqFWrllK5q6urtJ2ItB9DHRHptA4dOkizX5/1559/ws/PD2+88QZWrFgBe3t7GBoaYt26ddi4caNK/ad79V6Uj48PbG1t8dNPP+GNN97ATz/9BDs7O3h7e5fp9WZmZmWuS0Q1C4dfiajG+vnnn2FsbIzo6GgMGzYM3bp1q5DApK6Xr5i+vj4++OADbNu2Dffv38eOHTswcOBA6Ovrv/T7lqRhw4ZITU3FgwcPlMoTExOl7cVKazsRVW8MdURUY+nr60Mmk6GgoEAqS0lJeek7KhRfG1fSHSUGDx6M+/fvY+TIkXj48KHSunOVoXv37igoKMCyZcuUyhcvXgyZTIZu3bpJZWZmZhV+JwwiqhocfiWiGqtHjx746quv4Ovriw8++AC3b9/G8uXL0bRpU5w5c+aF9+vu7g4AmDp1KgYMGABDQ0P06tVLCntubm5o3bo1tm7dCldXV7zyyisVcjwl6dWrF7p06YKpU6ciJSUFbdu2xb59+7Bz506MHz9eadkSd3d3HDhwAF999RUcHBzg7OwMDw+PSm0fEVUM9tQRUY315ptvYs2aNUhLS8P48eOxadMmzJs3D++8885L7ffVV1/FrFmzcPr0afj7+2PgwIEqCwMPGTIEAMo8QeJl6OnpISoqCuPHj8euXbswfvx4nD9/HgsWLMBXX32lVPerr76Cu7s7pk2bhoEDB2LlypWV3j4iqhgyIZ5aTpyIiKrEN998g88++wwpKSlwcnLSdHOISAcw1BERVTEhBNq2bYu6devi0KFDmm4OEekIXlNHRFRFsrOzERUVhUOHDuHff//Fzp07Nd0kItIh7KkjIqoiKSkpcHZ2hpWVFUaPHo3Zs2druklEpEMY6oiIiIh0AGe/EhEREekAhjoiIiIiHcCJEtVYYWEhUlNTUatWLd66h4iISEsIIfDgwQM4ODhAT6/q+s8Y6qqx1NRUODo6aroZRERE9AKuXbuGBg0aVNn7MdRVY7Vq1QJQ9I/CwsJCw60hIiKissjKyoKjo6P0PV5VGOqqseIhVwsLC4Y6IiIiLVPVl05xogQRERGRDmCoIyIiItIBDHVEREREOoDX1Gm5goIC5OXlaboZVAUMDQ2hr6+v6WYQEVE1pTWhzs/PD6dOncLt27dRu3ZteHt7Y968eXBwcJDqCCGwaNEifPfdd7hy5Qqsra0xevRoTJ06Vapz+PBhBAUF4dy5c3B0dMS0adPg7++v9F7Lly/HggULkJaWhrZt22Lp0qXo0KGDtP3JkyeYMGECNm/ejJycHPj4+GDFihWwtbWV6ly9ehWjRo3CoUOHYG5ujqFDh2Lu3LkwMKiYj1wIgbS0NGRkZFTI/kg7WFlZwc7OjusWEhGRCq0JdV26dMHnn38Oe3t73LhxAxMnTkS/fv1w9OhRqc6nn36Kffv2YeHChWjTpg3S09ORnp4ubU9OTkaPHj0QGBiIDRs2ICYmBsOHD4e9vT18fHwAAFu2bEFQUBBWrVoFDw8PfP311/Dx8UFSUhLq1asHAPjss8+we/dubN26FZaWlhg7dizeffddHDlyBEBR71mPHj1gZ2eHo0eP4ubNmxgyZAgMDQ0xZ86cCvk8igNdvXr1YGpqyi95HSeEwKNHj3D79m0AgL29vYZbRERE1Y7QUjt37hQymUzk5uYKIYQ4f/68MDAwEImJiSW+ZvLkyaJVq1ZKZf379xc+Pj7S8w4dOogxY8ZIzwsKCoSDg4OYO3euEEKIjIwMYWhoKLZu3SrVSUhIEABEbGysEEKIPXv2CD09PZGWlibVWblypbCwsBA5OTllPsbMzEwBQGRmZiqV5+fni/Pnz4u7d++WeV+kG+7evSvOnz8v8vPzNd0UIiIqQUnf35VNKydKpKenY8OGDfDy8oKhoSEA4Ndff0Xjxo2xa9cuODs7o1GjRhg+fLhST11sbCy8vb2V9uXj44PY2FgAQG5uLk6ePKlUR09PD97e3lKdkydPIi8vT6lOixYt4OTkJNWJjY1FmzZtlIZjfXx8kJWVhXPnzpV4XDk5OcjKylJ6qFN8DZ2pqenzPyzSKcXnnNdREhHRs7Qq1E2ZMgVmZmaoW7curl69ip07d0rbLl++jCtXrmDr1q1Yv349IiIicPLkSfTr10+qk5aWphS0AMDW1hZZWVl4/Pgx7t69i4KCArV10tLSpH3I5XJYWVmVWkfdPoq3lWTu3LmwtLSUHs+7RRiHXGsennMiIiqJRkNdcHAwZDJZqY/ExESp/qRJkxAfH499+/ZBX18fQ4YMgRACAFBYWIicnBysX78eHTt2ROfOnbFmzRocOnQISUlJmjrEcgkJCUFmZqb0uHbtmqabRERERFpCoxMlJkyYoDLz9FmNGzeW/m5tbQ1ra2u4uLjA1dUVjo6OOHbsGBQKBezt7WFgYAAXFxepvqurK4CimajNmzeHnZ0dbt26pbT/W7duwcLCAiYmJtDX14e+vr7aOnZ2dgAAOzs75ObmIiMjQ6m37tk6f//9t8o+ireVxMjICEZGRqV+HkRERETqaLSnzsbGBi1atCj1IZfL1b62sLAQQNF1aADw2muvIT8/H5cuXZLqXLhwAQDQsGFDAIBCoUBMTIzSfvbv3w+FQgEAkMvlcHd3V6pTWFiImJgYqY67uzsMDQ2V6iQlJeHq1atSHYVCgX///VeaqVj8PhYWFmjZsuULfFK6w9/fX+qFNTQ0hK2tLd5++22sXbtWOqdlERERoTIETkREVJNpxTV1cXFxWLZsGU6dOoUrV67g4MGDGDhwIJo0aSIFKW9vb7zyyisYNmwY4uPjcfLkSYwcORJvv/221HsXGBiIy5cvY/LkyUhMTMSKFSsQGRmJzz77THqvoKAgfP/99/jhhx+QkJCAUaNGITs7Gx999BEAwNLSEgEBAQgKCsKhQ4dw8uRJfPTRR1AoFPD09AQAdO3aFS1btsTgwYNx+vRpREdHY9q0aRgzZgx74gD4+vri5s2bSElJwW+//YYuXbrg008/Rc+ePZGfn6/p5hEREWmnKp1r+4LOnDkjunTpIurUqSOMjIxEo0aNRGBgoLh+/bpSvRs3boh3331XmJubC1tbW+Hv7y/u3bunVOfQoUOiXbt2Qi6Xi8aNG4t169apvN/SpUuFk5OTkMvlokOHDuLYsWNK2x8/fixGjx4tateuLUxNTcU777wjbt68qVQnJSVFdOvWTZiYmAhra2sxYcIEkZeXV67jLmlK9OPHj8X58+fF48ePy7W/6mDo0KGid+/eKuUxMTECgPj++++FEEIsWrRItG7dWpiamooGDRqIUaNGiQcPHgghis4hAKVHaGioEEKI9evXC3d3d+nfwMCBA8WtW7eq6vAqnTafeyKi6mTnTiEUiqI/K5qmljSRCfF/Mw2o2snKyoKlpSUyMzNhYWEhlT958gTJyclwdnaGsbExgKLFaTW1zIWhoWGZZ2X6+/sjIyMDO3bsUNnWrl07ODg4YM+ePfj666/Rtm1bODs74/Llyxg9ejTefPNNrFixArm5uVi5ciWmT58uTYIxNzeHubk51q5dC3t7ezRv3hy3b99GUFAQrKyssGfPnoo8ZI1Rd+6JiKj8vL3v4cQJA7RsaYmn7mNQIUr6/q5sWnNHCSpdXl4e5s6dq5H3DgkJKfHax/Jo0aIFzpw5AwAYP368VN6oUSN8+eWXCAwMxIoVKyCXy2FpaQmZTKYy8WTYsGHS3xs3bowlS5bg1VdfxcOHD2Fubv7SbSQiIu1WWFiIefPmoWPHXHh4mKBDh0kAdGO5KK24po5qBiGE1ON34MABvPXWW6hfvz5q1aqFwYMH4969e3j06FGp+zh58iR69eoFJycn1KpVC506dQJQNAOaiIhqtlu3bmHWrFnIzc0FAFhYCPTurRuBDmBPnc4wNDRESEiIxt67IiQkJMDZ2RkpKSno2bMnRo0ahdmzZ6NOnTr466+/EBAQgNzc3BLvpJGdnQ0fHx/4+Phgw4YNsLGxwdWrV+Hj4yP9ABMRUc0UExODv/76S3ru5OT03GXVtA1DnY6QyWQVMgSqKQcPHsS///6Lzz77DCdPnkRhYSEWLVoEPb2izuTIyEil+nK5HAUFBUpliYmJuHfvHsLDw6W7cZw4caJqDoCIiKql/Px8zJ49W6nsvffe08klxhjqqMrl5OQgLS0NBQUFuHXrFvbu3Yu5c+eiZ8+eGDJkCM6ePYu8vDwsXboUvXr1wpEjR7Bq1SqlfTRq1AgPHz5ETEwM2rZtC1NTUzg5OUEul2Pp0qUIDAzE2bNnMWvWLA0dJRERadr169exZs0apbJJkybp7L3TeU0dVbm9e/fC3t4ejRo1gq+vLw4dOoQlS5Zg586d0NfXR9u2bfHVV19h3rx5aN26NTZs2KAyCcTLywuBgYHo378/bGxsMH/+fNjY2CAiIgJbt25Fy5YtER4ejoULF2roKImISJN2796tFOiaN2+O0NBQnQ10AMAlTaqx8ixpQjUDzz0RUelyc3NVOgIGDRqEpk2bVlkbuKQJERER0UtITk7G+vXrlcqCg4NrzN2cGOqIiIhI661bt05p+ap27dqhd+/eGmxR1WOoIyIiIq2VkZGBb775RqnM398fDRs21FCLNIehjoiIiLTSr7/+in/++UepbP/+zxEaWjHrp2obhjoiIiLSOmFhYSpl0dGhCA7WQGOqCYY6IiIi0hrnzp3Dtm3bninrichId4SGaqhR1QRDHREREWkFdb1zMTFTMHEil3gCGOqIiIiomhNCYObMmSrlbm6hNb537mkMdURERFRtRUdH49ixY0plWVl26NRpJPz8NNSoaoqhjnSSv78/MjIysGPHDgBA586d0a5dO3z99dcvvM+K2AcREZWduuHWmrSYcHnx3q9Upfz9/SGTySCTySCXy9G0aVPMnDkT+fn5lfq+v/zyC2bNmlWmuocPH4ZMJkNGRsYL74OIiF5cXl6e2kAXGhrKQFcK9tRRlfP19cW6deuQk5ODPXv2YMyYMTA0NERISIhSvdzcXMjl8gp5zzp16lSLfRARUelmzZqFwsJCpbIrV1pj7dq+GmqR9mBPHVU5IyMj2NnZoWHDhhg1ahS8vb0RFRUFf39/9OnTB7Nnz4aDgwOaN28OALh27Rref/99WFlZoU6dOujduzdSUlKk/RUUFCAoKAhWVlaoW7cuJk+eDCGE0nt27twZ48ePl57n5ORgypQpcHR0hJGREZo2bYo1a9YgJSUFXbp0AQDUrl0bMpkM/v7+avdx//59DBkyBLVr14apqSm6deuGixcvStsjIiJgZWWF6OhouLq6wtzcHL6+vrh586ZU5/Dhw+jQoQPMzMxgZWWF1157DVeuXKmgT5qISLuEhYWpBLpZs6bh6FEGurJgqCONMzExQW5uLgAgJiYGSUlJ2L9/P3bt2oW8vDz4+PigVq1a+PPPP3HkyBEpHBW/ZtGiRYiIiMDatWvx119/IT09Hdu3by/1PYcMGYJNmzZhyZIlSEhIwLfffgtzc3M4Ojri559/BgAkJSXh5s2bKrefKebv748TJ04gKioKsbGxEEKge/fuyMvLk+o8evQICxcuxI8//og//vgDV69excSJEwEA+fn56NOnDzp16oQzZ84gNjYWH3/8MWQy2Ut/pkRE2iQzM1PtcKubWyg6dNDH/PkaaJQW4vAraYwQAjExMYiOjsa4ceNw584dmJmZYfXq1dKw608//YTCwkKsXr1aCjvr1q2DlZUVDh8+jK5du+Lrr79GSEgI3n33XQDAqlWrEB0dXeL7XrhwAZGRkdi/fz+8vb0BAI0bN5a2Fw+z1qtXD1ZWVmr3cfHiRURFReHIkSPw8vICAGzYsAGOjo7YsWMH3nvvPQBF14WsWrUKTZo0AQCMHTtWmpaflZWFzMxM9OzZU9ru6upa/g+SiEiLqQtzt2+7YPnygQDAGa7lwJ46QlQU4OVV9GdV2LVrF8zNzWFsbIxu3bqhf//+mDFjBgCgTZs2StfRnT59Gv/99x9q1aoFc3NzmJubo06dOnjy5AkuXbqEzMxM3Lx5Ex4eHtJrDAwM0L59+xLf/9SpU9DX10enTp1e+BgSEhJgYGCg9L5169ZF8+bNkZCQIJWZmppKgQ0A7O3tcfv2bQBF4dHf3x8+Pj7o1asXvvnmG6WhWSIiXacu0C1cOB0+PgM10Brtx546Qng4EBtb9GdV/I+oS5cuWLlyJeRyORwcHGBg8L9/hmZmZkp1Hz58CHd3d2zYsEFlPzY2Ni/0/iYmJi/0uhdhaKh8U2mZTKZ0vd+6devwySefYO/evdiyZQumTZuG/fv3w9PTs8raSERU1W7cuIHVq1erlEdHh2LDBvbOvSj21BGCgwGFAlV2E2QzMzM0bdoUTk5OSoFOnVdeeQUXL15EvXr10LRpU6WHpaUlLC0tYW9vj7i4OOk1+fn5OHnyZIn7bNOmDQoLC/H777+r3V7cU1hQUFDiPlxdXZGfn6/0vvfu3UNSUhJatmxZ6jE9y83NDSEhITh69Chat26NjRs3luv1RETaJCwsTCXQtW3bFqGhoTh6lIHuZTDUEfz8UG1/kAYNGgRra2v07t0bf/75J5KTk3H48GF88sknuH79OgDg008/RXh4OHbs2IHExESMHj1aZY25pzVq1AhDhw7FsGHDsGPHDmmfkZGRAICGDRtCJpNh165duHPnDh4+fKiyj2bNmqF3794YMWIE/vrrL5w+fRoffvgh6tevj969e5fp2JKTkxESEoLY2FhcuXIF+/btw8WLF3ldHRHprJLWnuvTp0/VN0YHMdRRtWZqaoo//vgDTk5OePfdd+Hq6oqAgAA8efIEFhYWAIAJEyZg8ODBGDp0KBQKBWrVqoV33nmn1P2uXLkS/fr1w+jRo9GiRQuMGDEC2dnZAID69esjLCwMwcHBsLW1xdixY9XuY926dXB3d0fPnj2hUCgghMCePXtUhlxLO7bExET07dsXLi4u+PjjjzFmzBiMHDmyHJ8QEVH1t27dqRJnt1LFkYlnF/SiaiMrKwuWlpbIzMyUAgwAPHnyBMnJyXB2doaxsbEGW0hVjeeeiLSNujCXlPQ2Nm3ygkJRNFKka0r6/q5snChBRERElaKk3jk3NyAlpequ5a4pGOqIiIioQm3evBlJSUkq5TNmhEq9c9XxOm5tx1BHREREFUZd79y///ZB8+Ztq3SlhZqIoY6IiIgqREnDraGcD1ElGOq0GOe41Dw850RUHYWHhyMnJ0elvHi4lUOtVYOhTgsVL5nx6NGjKr07Amneo0ePAKjeqYKISFPU9c75+/vj9OmGHG6tYgx1WkhfXx9WVlbSPURNTU2lm92TbhJC4NGjR7h9+zasrKygr6+v6SYRUQ1XWFiIWbNmqZSH/t9Ya8OG7KGragx1WsrOzg4ApGBHNYOVlZV07omINEVd7xzwv0BHmsFQp6VkMhns7e1Rr1495OXlabo5VAUMDQ3ZQ0dEGqcu0H366aewsrKq+saQEoY6Laevr88veiIiqnRPnjzBvHnzVMrZO1d9MNQRERFRqTjcqh0Y6oiIiKhE6gJdSEgI5HK5BlpDpWGoIyIiIhX37t3DsmXLVMrZO1d9MdQRERGREg63aieGOiIiIpKoC3TTp0/neqhagKGOiIiIkJSUhM2bN6uUs3dOezDUERER1XDqeufkcjlCQkI00Bp6UXqabgARERFpjrpA5+YWil9/DUFUlAYaRC+MPXVEREQ10IEDB3DkyBGVcje3UISHA7GxQHg479+qTRjqiIiIahh1vXPOzs4YMmSI9Dw8HAgOrspW0ctiqCMiIqpB1AW6ZydD+Pmxh04bMdQRERHVAF999RUePHigUs7ZrbqDoY6IiEjHqeudS0z0xMCBPhpoDVUWhjoiIiIdpi7QzZgRCoWCQ6y6hqGOiIhIB5V0qy83t6JAx0kQuoehjoiISMeoC3R9+/ZF69atAbCHTldx8WEiIiIdUVhYqDbQRUeH4vLl1hpoEVUl9tQRERHpgJKGW6OjQ7mQcA3BUEdERKTl1AW6kSNHws7ODm5uXEi4pmCoIyIi0lKPHj3CggULVMqfXnuOCwnXHAx1REREWqik4VYuJlxzMdQRERFpGXWBbvLkyTAxMdFAa6i6YKgjIiLSEjdv3sR3332nUu7mFgrmOWKoIyIi0gIlDbfy7hBUjKGOiIiomlMX6KZPn45ff5Xx7hAkYagjIiKqpk6cOIHdu3erlBdPhuDMVnoaQx0REVE1xNmtVF4MdURERNWMukDn5hbKXjkqFUMdERFRNbFt2zacO3dOpZyTIags9DTdgLLy8/ODk5MTjI2NYW9vj8GDByM1NVXaPmPGDMhkMpWHmZmZ0n62bt2KFi1awNjYGG3atMGePXuUtgshMH36dNjb28PExATe3t64ePGiUp309HQMGjQIFhYWsLKyQkBAAB4+fKhU58yZM+jYsSOMjY3h6OiI+fPnV/AnQkREuiQsLEwl0Onr68PNLZSTIahMtCbUdenSBZGRkUhKSsLPP/+MS5cuoV+/ftL2iRMn4ubNm0qPli1b4r333pPqHD16FAMHDkRAQADi4+PRp08f9OnTB2fPnpXqzJ8/H0uWLMGqVasQFxcHMzMz+Pj44MmTJ1KdQYMG4dy5c9i/fz927dqFP/74Ax9//LG0PSsrC127dkXDhg1x8uRJLFiwADNmzFC7thAREZG64dbQ0FBMmzYNfn7A0aPspaPnkwkhhKYb8SKioqLQp08f5OTkwNDQUGX76dOn0a5dO/zxxx/o2LEjAKB///7Izs7Grl27pHqenp5o164dVq1aBSEEHBwcMGHCBEycOBEAkJmZCVtbW0RERGDAgAFISEhAy5Ytcfz4cbRv3x4AsHfvXnTv3h3Xr1+Hg4MDVq5cialTpyItLQ1yuRwAEBwcjB07diAxMbHMx5iVlQVLS0tkZmbCwsLihT8rIiKqnjgZQjdp6vtba3rqnpaeno4NGzbAy8tLbaADgNWrV8PFxUUKdAAQGxsLb29vpXo+Pj6IjY0FACQnJyMtLU2pjqWlJTw8PKQ6sbGxsLKykgIdAHh7e0NPTw9xcXFSnTfeeEMKdMXvk5SUhPv377/k0RMRkS5QF+hatWrFQEcvTKtC3ZQpU2BmZoa6devi6tWr2Llzp9p6T548wYYNGxAQEKBUnpaWBltbW6UyW1tbpKWlSduLy0qrU69ePaXtBgYGqFOnjlIddft4+j3UycnJQVZWltKDiIh0j7pAFx0dqnRZEVF5aTTUBQcHq53c8PTj6eHKSZMmIT4+Hvv27YO+vj6GDBkCdaPH27dvx4MHDzB06NCqPJyXNnfuXFhaWkoPR0dHTTeJiIgqUFhYWImBjhMh6GVpdEmTCRMmwN/fv9Q6jRs3lv5ubW0Na2truLi4wNXVFY6Ojjh27BgUCoXSa1avXo2ePXuq9JbZ2dnh1q1bSmW3bt2CnZ2dtL24zN7eXqlOu3btpDq3b99W2kd+fj7S09OV9qPufZ5+D3VCQkIQFBQkPc/KymKwIyLSEerCXIMGvlizxgPBwZwIQS9Po6HOxsYGNjY2L/TawsJCAEVDlk9LTk7GoUOHEBUVpfIahUKBmJgYjB8/Xirbv3+/FAqdnZ1hZ2eHmJgYKcRlZWUhLi4Oo0aNkvaRkZGBkydPwt3dHQBw8OBBFBYWwsPDQ6ozdepU5OXlSdf87d+/H82bN0ft2rVLPCYjIyMYGRm9wKdBRETVlRACM2fOVCkPDQ2FlxcQGwuEhzPU0cvTisWH4+LicPz4cbz++uuoXbs2Ll26hC+++AJNmjRR6aVbu3Yt7O3t0a1bN5X9fPrpp+jUqRMWLVqEHj16YPPmzThx4oS01IhMJsP48ePx5ZdfolmzZnB2dsYXX3wBBwcH9OnTBwDg6uoKX19fjBgxAqtWrUJeXh7Gjh2LAQMGwMHBAQDwwQcfICwsDAEBAZgyZQrOnj2Lb775BosXL67cD4qIiKqV581uDQ4uCnQceqWKoBVLmvz777/49NNPcfr0aWRnZ8Pe3h6+vr6YNm0a6tevL9UrLCxEw4YNMWTIEMyePVvtvrZu3Ypp06YhJSUFzZo1w/z589G9e3dpuxACoaGh+O6775CRkYHXX38dK1asgIuLi1QnPT0dY8eOxa+//go9PT307dsXS5Ysgbm5uVTnzJkzGDNmDI4fPw5ra2uMGzcOU6ZMKddxc0kTIiLtpS7QBQQEoEGDBhpoDVUlTX1/a0Woq6kY6oiItM+jR4+wYMEClXIuVVJzaOr7WyuGX4mIiLQBFxMmTWKoIyIiqgDqAt3EiRNV7kFOVFm0avFhIiKi6ubGjRtqA52bWyjeftsMahZjIKoU7KkjIiJ6QaUNt3K5EqpqDHVEREQvQF2g++KLL6CnVzQIxuVKqKox1BEREZVDXFwc9u7dq1Lu5hYKvacuavLzYw8dVS2GOiIiojIqabh1xoxQKBQMcaRZDHVERERloC7QhYaGIioKUCg4zEqax1BHRERUisjISCQkJKiUF689x2FWqi4Y6oiIiErAxYRJm3CdOiIiIjXUBbro6FC4uTHQUfXEnjoiIqKnlNQ7Fx0dynXnqFpjqCMiIvo/6gJdkyZN8OGHH8LNjevOUfXGUEdERISSh1uPHi36OydEUHXHUEdERDVaacOt7JUjbcJQR0RENZa6QHfhwlvo3/91cIIraRuGOiIiqnGEEJg5c6ZKOZcqIW3GUEdERDUK154jXcV16oiIqMZQF+h++GEIoqMZ6Ej7MdQREZHOe/TokdpA5+YWCjs7Z06IIJ3A4VciItJpzxtu5TIlpCsY6oiISGepC3RBQUGoVauWBlpDVLkY6oiISOdcu3YNa9euVSnnZAjSZQx1RESkUzi7lWoqhjoiItIZ6gLdvn1f4MgRzgsk3cdQR0REWu/PP//EwYMHVcp5qy+qSRjqiIhIq5U23MoRV6pJ2B9NRERaS12gmzEjlIsJU43EnjoiItI633//PVJTU1XK3dxCoVCAQ65UIzHUERGRVuFiwkTqMdQREZHWUBfouFQJURGGOiIiqvZK6p2LjuZkCKJiDHVERFStqQt0BgZm2L17Iq+dI3oKQx0REVVbpQ23Tp1a1a0hqt4Y6oiIqNrhcCtR+THUERFRtaIu0CUleSAlxZfDrUSlYKgjIqJqQQiBmTNnqpQX3+qLS5UQlY6hjoiINI63+iJ6eQx1RESkEVFRQHg44OOjGuj69++PFi1aaKBVRNqLoY6IiDRi0aJH8PFZoFLOxYSJXgxDHRERVbmwsDC8+aZqOQMd0YtjqCMioiql7vq5Tz75BLVr19ZAa4h0B0MdERFViStXriAiIkKlnL1zRBWj3KFOX18fN2/eRL169ZTK7927h3r16qGgoKDCGkdERLqhpNmtbm4MdEQVpdyhTgihtjwnJwdyufylG0RERLpFXaCbNm0a9PX1NdAaIt1V5lC3ZMkSAIBMJsPq1athbm4ubSsoKMAff/zB6edERCQ5fPgwfv/9d5VyDrcSVY4yh7rFixcDKOqpW7VqldL/sORyORo1aoRVq1ZVfAuJiKjaK15zrvjOD6UtJkxElaPMoS45ORkA0KVLF/zyyy+cpURERJLwcCA2FpgyBYiPVw10DHNEla/c19QdOnSoMtpBRERaLDgYOHLkG5iaZqhsY6AjqhrlDnXDhg0rdfvatWtfuDFERKSd4uPDYGqqWs5AR1R1yh3q7t+/r/Q8Ly8PZ8+eRUZGBt5Utzw4ERHpNHXXzzHMEVW9coe67du3q5QVFhZi1KhRaNKkSYU0ioiIqj+uPUdUvchESQvPlVNSUhI6d+6MmzdvVsTuCEBWVhYsLS2RmZkJCwsLTTeHiEia5erjw9mtRCXR1Pd3hd0m7NKlS8jPz6+o3RERUTVUUqBjmCPSvHKHuqCgIKXnQgjcvHkTu3fvxtChQyusYUREVL2EhYXBx0e1nIGOqHood6iLj49Xeq6npwcbGxssWrTouTNjiYhIO6m7fq5p06YYNGiQBlpDROpwnToiIiqREAIzZ85UKWfvHFH188LX1N2+fRtJSUkAgObNm6NevXoV1igiItI83uqLSLuUO9RlZWVhzJgx2LRpEwoLCwEA+vr66N+/P5YvXw5LS8sKbyQREVUtdYHOz88Pbm5uGmgNEZWFXnlfMGLECMTFxWH37t3IyMhARkYGdu3ahRMnTmDkyJGV0UYiIqoi2dnZJS4mzEBHVL2Ve506MzMzREdH4/XXX1cq//PPP+Hr64vs7OwKbWBNxnXqiKgqcbiVqGJozTp1devWVTvEamlpidq1a1dIo4iIqGqpC3SjR4+GjY2NBlpDRC+i3MOv06ZNQ1BQENLS0qSytLQ0TJo0CV988UWFNo6IiCpWVBTg5VX0JwAkJyeXONzKQEekXco9/Orm5ob//vsPOTk5cHJyAgBcvXoVRkZGaNasmVLdf/75p+JaWgNx+JWIKpqXFxAbCygUvNUXUWXRmuHX3r17QyaTVUZbiIiokgUHl3yrr6lTp8LAoMLuHklEVazcPXVUddhTR0QVISqqKMgFBwOmpgdw5MgRlTrsnSOqOJr6/i73NXWNGzfGvXv3VMozMjLQuHHjCmkUERFVnPDwoiHX+PgwBjoiHVbufvaUlBQUFBSolOfk5OD69esV0igiIqoYUVFAejowY4b6yRBEpDvK3FMXFRWFqP+bLhUdHS09j4qKwvbt2zFr1iw4OztXWkP9/Pzg5OQEY2Nj2NvbY/DgwUhNTVWqEx0dDU9PT9SqVQs2Njbo27cvUlJSlOocPnwYr7zyCoyMjNC0aVNERESovNfy5cvRqFEjGBsbw8PDA3///bfS9idPnmDMmDGoW7cuzM3N0bdvX9y6dUupztWrV9GjRw+YmpqiXr16mDRpEvLz8yvksyAiKouoKCA2dh4GDmSgI6oJynxNnZ5eUf6TyWR49iWGhoZo1KgRFi1ahJ49e1Z8KwEsXrwYCoUC9vb2uHHjBiZOnAgAOHr0KICiafmurq4ICgpCQEAAMjMz8dlnn+HBgwfSLNzk5GS0bt0agYGBGD58OGJiYjB+/Hjs3r0bPj4+AIAtW7ZgyJAhWLVqFTw8PPD1119j69atSEpKku5vO2rUKOzevRsRERGwtLTE2LFjoaenJw1rFBQUoF27drCzs8OCBQtw8+ZNDBkyBCNGjMCcOXPKfMy8po6IXgYXEybSDE19f5d7ooSzszOOHz8Oa2vrympTmURFRaFPnz7IycmBoaEhtm3bhoEDByInJ0cKoL/++it69+4t1ZkyZQp2796Ns2fPSvsZMGAAMjIysHfvXgCAh4cHXn31VSxbtgwAUFhYCEdHR4wbNw7BwcHIzMyEjY0NNm7ciH79+gEAEhMT4erqitjYWHh6euK3335Dz549kZqaCltbWwDAqlWrMGXKFNy5cwdyubxMx8hQR0QvqqS154io8mnNRInk5GSNB7r09HRs2LABXl5eMDQ0BAC4u7tDT08P69atQ0FBATIzM/Hjjz/C29tbqhMbGwtvb2+lffn4+CA2NhYAkJubi5MnTyrV0dPTg7e3t1Tn5MmTyMvLU6rTokULODk5SXViY2PRpk0bKdAVv09WVhbOnTtX4nHl5OQgKytL6UFEVB5hYWEMdEQ1VLknSsycObPU7dOnT3/hxjzPlClTsGzZMjx69Aienp7YtWuXtM3Z2Rn79u3D+++/j5EjR6KgoAAKhQJ79uyR6qSlpSkFLQCwtbVFVlYWHj9+jPv376OgoEBtncTERGkfcrkcVlZWKnWK77JR0vsUbyvJ3LlzSxwuISJ61tNLlfj5cbiVqKYrd0/d9u3blR6RkZGYN28eFi1ahB07dpRrX8HBwZDJZKU+isMUAEyaNAnx8fHYt28f9PX1MWTIEOn6vrS0NIwYMQJDhw7F8ePH8fvvv0Mul6Nfv34q1wBWVyEhIcjMzJQe165d03STiKgaK16qJDy85OFWBjqimqPcPXXx8fEqZVlZWfD398c777xTrn1NmDAB/v7+pdZ5eu07a2trWFtbw8XFBa6urnB0dMSxY8egUCiwfPlyWFpaYv78+VL9n376CY6OjoiLi4Onpyfs7OxUZqneunULFhYWMDExgb6+PvT19dXWsbOzAwDY2dkhNzcXGRkZSr11z9Z5dsZs8T6L66hjZGQEIyOjUj8PIqJiwcFFa8+pwzBHVPOUu6dOHQsLC4SFheGLL74o1+tsbGzQokWLUh8lTSooLCwEUHQdGgA8evRImiBRTF9fX6muQqFATEyMUp39+/dDoVAAAORyOdzd3ZXqFBYWIiYmRqrj7u4OQ0NDpTpJSUm4evWqVEehUODff//F7du3ld7HwsICLVu2LNdnRESkTlSU+kDn6OjIQEdUQ1XYTf6KhwwrQ1xcHI4fP47XX38dtWvXxqVLl/DFF1+gSZMmUpDq0aMHFi9ejJkzZ2LgwIF48OABPv/8czRs2BBubm4AgMDAQCxbtgyTJ0/GsGHDcPDgQURGRmL37t3SewUFBWHo0KFo3749OnTogK+//hrZ2dn46KOPAACWlpYICAhAUFAQ6tSpAwsLC4wbNw4KhQKenp4AgK5du6Jly5YYPHgw5s+fj7S0NEybNg1jxoxhTxwRvTQhBOLjVa9vZpgjqtnKHeqWLFmi9FwIgZs3b+LHH39Et27dKqxhTzM1NcUvv/yC0NBQZGdnw97eHr6+vpg2bZoUkt58801s3LgR8+fPx/z582FqagqFQoG9e/fCxMQEQNFkit27d+Ozzz7DN998gwYNGmD16tXSGnUA0L9/f9y5cwfTp09HWloa2rVrh7179ypNfFi8eDH09PTQt29f5OTkwMfHBytWrJC26+vrY9euXRg1ahQUCgXMzMwwdOjQ504yISIqTUm9cwADHRG94Dp1T9PT04ONjQ3efPNNhISEoFatWhXawJqM69QR0dPUTYbo1q0bOnTooIHWEFFJNPX9Xe6euuTk5MpoBxERleDRo0dYsGCBSjl754joaS90TV1GRgb+++8/AEDTpk1V1mwjIqKKwbXniKisyjX7NSUlBT169IC1tTU8PDzg4eEBa2tr9OzZEykpKZXURCKimiEqCvDyKvoTUB/oAgMDGeiISK0yX1N37do1vPrqqzA0NMTo0aPh6uoKADh//jxWrlyJ/Px8HD9+HA0aNKjUBtckvKaOqGbx8ipaTLh79xR06PCDynaGOSLtoKnv7zKHuoCAAPz333+Ijo6GsbGx0rbHjx/D19cXzZo1w+rVqyuloTURQx1RzcLZrUS6odpPlNi7dy+2bNmiEugAwMTEBLNmzcKAAQMqtHFERDWJukD3+eefw9DQUAOtISJtU+ZQd/fuXTRq1KjE7Y0bN0Z6enpFtImIqEaJiYnBX3/9pVLO3jkiKo8yhzp7e3ucP3++xGvmzp49W+p9TYmISBVntxJRRSlzqOvTpw8mTpyImJgY2NjYKG27ffs2pkyZgj59+lR0+4iIdJa6QMcwR0QvqswTJe7fvw8PDw+kpaXhww8/RIsWLSCEQEJCAjZu3Ag7OzscO3YMderUqew21xicKEGkm2bPXoj8/GyVcgY6It1Q7SdK1K5dG3Fxcfj888+xefNmZGRkAACsrKzwwQcfYM6cOQx0RETPweFWIqos5b73KwAIIXDnzh0AgI2NDWQyWYU3jNhTR6RrONxKVDNU+566p8lkMtSrV6+i20JEpJPYO0dEVaFctwkjIqLyYaAjoqryQj11RERUsqgoIDwc8PHhcCsRVR321BERVZCoqKL7t8bHhzHQEVGVY08dEVEFKal3zszMERMnDtNAi4ioJilTqFuyZEmZd/jJJ5+8cGOIiLRN8VDrlCkCPj4zVbazd46IqkqZljRxdnYu285kMly+fPmlG0VFuKQJUfXn5aW+dw5goCOqqar1kibJycmV3Q4iIq2kLtD5+vrCw8NDA60hoprsha+py83NRXJyMpo0aQIDA16aR0Q1y5MnTzBv3jyVcvbOEZGmlHv266NHjxAQEABTU1O0atUKV69eBQCMGzcO4eHhFd5AIqLqJiwsjIGOiKqdcoe6kJAQnD59GocPH4axsbFU7u3tjS1btlRo44iIqht1iwkHBgYy0BGRxpV73HTHjh3YsmULPD09le752qpVK1y6dKlCG0dEVF3cuHEDq1evVilnmCOi6qLcoe7OnTtq7/uanZ2tFPKIiHQFb/VFRNqg3KGuffv22L17N8aNGwcAUpBbvXo1FApFxbaOiEjD1AW6zz//HIaGhhpoDRFRycod6ubMmYNu3brh/PnzyM/PxzfffIPz58/j6NGj+P333yujjUREVS4uLg579+5VKWfvHBFVV+WeKPH666/j1KlTyM/PR5s2bbBv3z7Uq1cPsbGxcHd3r4w2EhFVqbCwMAY6ItI6ZbqjBGkG7yhBVLWiooD4eNXhVoY5IiqPan1HiaysrDLvkOGDiLTRmjVrcP36dZVyBjoi0hZlCnVWVlZlntlaUFDwUg0iIqpqnN1KRLqgTKHu0KFD0t9TUlIQHBwMf39/abZrbGwsfvjhB8ydO7dyWklEVEnUBTqGOSLSRuW+pu6tt97C8OHDMXDgQKXyjRs34rvvvsPhw4crsn01Gq+pI6o87J0josqiqe/vcs9+jY2NRfv27VXK27dvj7///rtCGkVEVJkY6IhIF5V7nTpHR0d8//33mD9/vlL56tWr4ejoWGENIyKqDBxuJSJdVe5Qt3jxYvTt2xe//fYbPDw8AAB///03Ll68iJ9//rnCG0hEVBHYO0dEuq7cw6/du3fHxYsX0atXL6SnpyM9PR29evXChQsX0L1798poIxHRS1EX6MzNnRnoiEincPHhaowTJYhejhACM2fOVClnmCOiylStFx9+VkZGBtasWYOEhAQAQKtWrTBs2DBYWlpWaOOIiF4Uh1uJqKYpd0/diRMn4OPjAxMTE3To0AEAcPz4cTx+/Bj79u3DK6+8UikNrYnYU0f0YtQFum7dukm/s4iIKpOmvr/LHeo6duyIpk2b4vvvv4eBQVFHX35+PoYPH47Lly/jjz/+qJSG1kQMdUTls317Ds6cCVcpZ+8cEVUlrQl1JiYmiI+PR4sWLZTKz58/j/bt2+PRo0cV2sCajKGOqOw43EpE1YXWXFNnYWGBq1evqoS6a9euoVatWhXWMCKislIX6D7++GPY29troDVERJpR7lDXv39/BAQEYOHChfDy8gIAHDlyBJMmTVK5dRgRUWWaNu0mDA2/Uyln7xwR1UTlDnULFy6ETCbDkCFDkJ+fDwAwNDTEqFGjEB6uei0LEVFlCAsLg6GharmbGwMdEdVML7xO3aNHj3Dp0iUAQJMmTWBqalqhDSNeU0dUEnXDrSEhIZDL5RpoDRGRMq25pq6Yqakp2rRpU5FtISIq1YkTJ7B7926Vcg63EhGVI9QNGzasTPXWrl37wo0hIioJZ7cSEZWuzKEuIiICDRs2hJubG3hnMSKqSuoCHcMcEZGyMoe6UaNGYdOmTUhOTsZHH32EDz/8EHXq1KnMthFRDRcZGSndjvBpubkMdEREzyrXRImcnBz88ssvWLt2LY4ePYoePXogICAAXbt2hUwmq8x21kicKEE1GYdbiUhbac0dJYpduXIFERERWL9+PfLz83Hu3DmYm5tXdPtqNIY6qqnUBTo3t1D4+WmgMURE5aR1s1/19PQgk8kghEBBQUFFtomIaij2zhERvTi98lTOycnBpk2b8Pbbb8PFxQX//vsvli1bhqtXr7KXjoheCgMdEdHLKXNP3ejRo7F582Y4Ojpi2LBh2LRpE6ytrSuzbURUQ3B2KxHRyyvzNXV6enpwcnKCm5tbqZMifvnllwprXE3Ha+pI15XUOxcdHYqjR6u4MUREFaTaX1M3ZMgQznAlogqjLtBZWbXEli3vIThYAw0iItJyLzz7lSofe+pIV3G4lYh0WbXvqSMielmlDbcy0xERvRyGOiKqEuoCXX5+H8TEtOVwKxFRBWCoI6JKlZeXhzlz5qiUFw+3zppV1S0iItJNDHVEVGm49hwRUdVhqCOiSqEu0AUGBsLW1lYDrSEi0n0MdURUoe7du4dly5aplLu5hYJ5joio8jDUEVGFKWm4dcaMUCgUgJ9fFTeIiKgGYagjogqhLtCFhIRg7145FApwhisRUSVjqCOil3Lu3Dls27ZNpbx4MoSfH3voiIiqgp6mG1BWfn5+cHJygrGxMezt7TF48GCkpqYq1YmMjES7du1gamqKhg0bYsGCBSr7OXz4MF555RUYGRmhadOmiIiIUKmzfPlyNGrUCMbGxvDw8MDff/+ttP3JkycYM2YM6tatC3Nzc/Tt2xe3bt1SqnP16lX06NEDpqamqFevHiZNmoT8/PyX/yCIqpGwsLBSAx0REVUdrQl1Xbp0QWRkJJKSkvDzzz/j0qVL6Nevn7T9t99+w6BBgxAYGIizZ89ixYoVWLx4sdIF28nJyejRowe6dOmCU6dOYfz48Rg+fDiio6OlOlu2bEFQUBBCQ0Pxzz//oG3btvDx8cHt27elOp999hl+/fVXbN26Fb///jtSU1Px7rvvStsLCgrQo0cP5Obm4ujRo/jhhx8QERGB6dOnV/KnRFR11A23Tp8+nYGOiEhDtPber1FRUejTpw9ycnJgaGiIDz74AHl5edi6datUZ+nSpZg/fz6uXr0KmUyGKVOmYPfu3Th79qxUZ8CAAcjIyMDevXsBAB4eHnj11VelMFhYWAhHR0eMGzcOwcHByMzMhI2NDTZu3CiFysTERLi6uiI2Nhaenp747bff0LNnT6SmpkrLN6xatQpTpkzBnTt3IJfLy3SMvPcrVUe//fabSu81wN45IqJimvr+1pqeuqelp6djw4YN8PLygqGhIQAgJycHxsbGSvVMTExw/fp1XLlyBQAQGxsLb29vpTo+Pj6IjY0FAOTm5uLkyZNKdfT09ODt7S3VOXnyJPLy8pTqtGjRAk5OTlKd2NhYtGnTRmk9Lh8fH2RlZeHcuXMlHldOTg6ysrKUHkTVSVhYGAMdEVE1pVWhbsqUKTAzM0PdunVx9epV7Ny5U9rm4+ODX375BTExMSgsLMSFCxewaNEiAMDNmzcBAGlpaSoLn9ra2iIrKwuPHz/G3bt3UVBQoLZOWlqatA+5XA4rK6tS66jbR/G2ksydOxeWlpbSw9HRsawfDVGlUzfcGhoaykBHRFRNaDTUBQcHQyaTlfpITEyU6k+aNAnx8fHYt28f9PX1MWTIEBSPHo8YMQJjx45Fz549IZfL4enpiQEDBgAo6m3TBiEhIcjMzJQe165d03STiPDtt9+WGOiiogAvLyAqSgMNIyIiJRpd0mTChAnw9/cvtU7jxo2lv1tbW8Pa2houLi5wdXWFo6Mjjh07BoVCAZlMhnnz5mHOnDlIS0uDjY0NYmJilPZhZ2enMkv11q1bsLCwgImJCfT19aGvr6+2jp2dnbSP3NxcZGRkKPXWPVvn2SGq4n0W11HHyMgIRkZGpX4eRFVJXZjLzjbFX39NQmgoEB4OxMYW/cllS4iINEujoc7GxgY2NjYv9NrCwkIARdehPU1fXx/169cHAGzatAkKhUJ6D4VCgT179ijV379/PxQKBQBALpfD3d0dMTEx6NOnj/Q+MTExGDt2LADA3d0dhoaGiImJQd++fQEASUlJuHr1qrQfhUKB2bNn4/bt26hXr570PhYWFmjZsuULHS9RVVMX6DZvDkXt2v9bSDg4uCjQcWFhIiLN04rFh+Pi4nD8+HG8/vrrqF27Ni5duoQvvvgCTZo0kYLU3bt3sW3bNnTu3BlPnjzBunXrpCVHigUGBmLZsmWYPHkyhg0bhoMHDyIyMhK7d++W6gQFBWHo0KFo3749OnTogK+//hrZ2dn46KOPAACWlpYICAhAUFAQ6tSpAwsLC4wbNw4KhQKenp4AgK5du6Jly5YYPHgw5s+fj7S0NEybNg1jxoxhTxxVeyXd6is6OhTz5in3yHFhYSKi6kMrQp2pqSl++eUXhIaGIjs7G/b29vD19cW0adOUQtIPP/yAiRMnQggBhUKBw4cPo0OHDtJ2Z2dn7N69G5999hm++eYbNGjQAKtXr4aPj49Up3///rhz5w6mT5+OtLQ0tGvXDnv37lWa+LB48WLo6emhb9++yMnJgY+PD1asWCFt19fXx65duzBq1CgoFAqYmZlh6NChmDlzZiV/UkQvR12g69ChA7p16wY3t6JeOYBBjoioOtLadepqAq5TR1VJXaCLjg5FcHBRiPPyKrp+TqEAjh7VQAOJiLSEpr6/taKnjogqT2nDrU9PguD1c0RE1RtDHVENpi7Q9e/fHy1atJCGW4tDHK+fIyKq3hjqiGqg/Px8zJ49W6X86YWEGeKIiLQLQx1RDVPScCvvDEFEpN0Y6ohqEHWBbuzYsahbt64GWkNERBVJO+6fRUQvJSsrq8TZrUeOMNAREekC9tQR6biyzm4lIiLtxlBHpMPUBbqQkBDI5XKV2a1ERKTdGOqIdNCVK1cQERGhUs7ZrUREuovX1BHpmLCwsOcGuqdFRRXdLSIqqpIbRkRElYqhjkiHqBtunTFjOqKjS16uJDwc0rV1RESkvTj8SqQDjh07hujoaJVyN7dQKBSlXzfH238REekGmRBCaLoRpJ6mbghM2oWLCRMRVS+a+v5mTx2RFlMX6BjmiIhqJoY6Ii20efNmJCUlqZQz0BER1VwMdURaRl3vnIODA0aMGKGB1hARUXXBUEekRTjcSkREJWGoI9ICERERuHLlikp5bi4DHRERFWGoI6rm1PXO7dnTC3///QqMjYHZszXQKCIiqna4+DBRNVbScOuNG68AAOrWreoWERFRdcWeOqJq6Hlrz61YwQWDiYhIGUMdUTWjLtB99NFHcHJykp77+RU9iIiIijHUEVUThYWFmDVrlko5Z7cSEVFZMNQRVQPludVXVNT/hl7ZW0dERMU4UYJIw9QFusOHP4Obm/oeuvBwIDa26E8iIqJi7Kkj0pBHjx5hwYIFKuXR0aGIjQVyctT3xAUHc5IEERGpYqgj0oDShlvd3EoPbZwkQURE6jDUEVUxdYHu888/h6GhIQCGNiIiejG8po6oiqSlpakNdNHRofjtN0MNtIiIiHQJe+qIqkBJw60LF4bi4cOi4Vb2zhER0ctgqCOqZOoC3fTp0/HaazI8fAiYm3PSAxERvTwOvxJVkrNnz5Z471aZTIbgYEChADZsYC8dERG9PPbUEVUCdWHOyMgIwU91yXFCBBERVSSGOqIKVlLvHBERUWViqCOqIPv27UNsbKxKOQMdERFVBYY6ogqgrneuZcuWeO+99zTQGiIiqokY6oheEodbiYioOmCoI3pB69evR3Jysko5Ax0REWkCQx3RC1DXO9e1a1coFAoNtIaIiIihjqjc1AU6N7dQMM8REZEmMdQRldHy5ctx9+5dlfIZM4oCHdecIyIiTWKoIyoDdb1zsbEj4O7uAIWCt/kiIiLNY6gjKkVhYSFmzZqlUr55cygSE4ErV4CEBA00jIiI6BkMdUQlUNc7BxTNbt20qejvQlRhg4iIiErBUEekhrpAFxQUhFq1agEA5s8HwsM57EpERNUHQx3RU3JychAeHq5S/uzac35+nBhBRETVC0Md0f8pbbiViIioumOoI4L6QDd16lQYGPBHhIiItIOephtApEkZGRklLib8xhsGiIrSQKOIiIheALshqMZSF+Zq1aqFoKAgeHkBsbFFkyF47RwREWkDhjqqkdQFuunTp0MmkwEomtXK2a1ERKRNGOqoRklNTcX333+vUs7ZrUREpO0Y6qjGUNc717JlS7z33nsaaA0REVHFYqijGkFdoONSJUREpEsY6kinJSQkIDIyUqU8OjoUbm4cYiUiIt3BUEc6S13vnK+vLz77zIMzW4mISOcw1JFOKm24lTNbiYhIFzHUkU75888/cfDgQZXyp6+f48xWIiLSRQx1pDPU9c4NGjQITZs21UBriIiIqhZvE0Y6oaTh1uJAFxUFeHmBt/0iIiKdxZ460mrbtm3DuXPnVMqfXa4kPJy3/SIiIt3GUEdaS13v3KhRo1CvXj2Vck6OICIiXcdQR1pHCIGZM2eqlJe2mDAnRxARka7jNXVULZT1mreIiIhyBzoiIqKagD11VC2U5Zo3dcOtrVtPRN++ZpXcOiIiouqPoY6qhdKuecvLy8OcOXNUytk7R0RE9D8MdVQtlHTN2+zZs5Gfn69UZmZmhokTJ1ZRy4iIiLQDr6mjUmlyfbewsDCVQDd16lQGOiIiIjW0LtTl5OSgXbt2kMlkOHXqlNK2M2fOoGPHjjA2NoajoyPmz5+v8vqtW7eiRYsWMDY2Rps2bbBnzx6l7UIITJ8+Hfb29jAxMYG3tzcuXryoVCc9PR2DBg2ChYUFrKysEBAQgIcPH5a7Ldrg6WvdqsqjR49KXEzYwICdy0REROpoXaibPHkyHBwcVMqzsrLQtWtXNGzYECdPnsSCBQswY8YMfPfdd1Kdo0ePYuDAgQgICEB8fDz69OmDPn364OzZs1Kd+fPnY8mSJVi1ahXi4uJgZmYGHx8fPHnyRKozaNAgnDt3Dvv378euXbvwxx9/4OOPPy5XW7RFcDCgUFTd+m5hYWFYsGCBUlnTpk15/RwREdFzyIQQQtONKKvffvsNQUFB+Pnnn9GqVSvEx8ejXbt2AICVK1di6tSpSEtLg1wuBwAEBwdjx44dSExMBAD0798f2dnZ2LVrl7RPT09PtGvXDqtWrYIQAg4ODpgwYYI0xJeZmQlbW1tERERgwIABSEhIQMuWLXH8+HG0b98eALB37150794d169fh4ODQ5naUhZZWVmwtLREZmYmLCwsXvrzq+7U9c5Nnz4dMplMA60hIiJ6MZr6/taanrpbt25hxIgR+PHHH2FqaqqyPTY2Fm+88YYUogDAx8cHSUlJuH//vlTH29tb6XU+Pj6IjY0FACQnJyMtLU2pjqWlJTw8PKQ6sbGxsLKykgIdAHh7e0NPTw9xcXFlbos6OTk5yMrKUnrUBBkZGWoDXXR0KH79lYGOiIioLLQi1Akh4O/vj8DAQKUw9bS0tDTY2toqlRU/T0tLK7XO09uffl1JdZ69DZWBgQHq1Knz3Pd5+j3UmTt3LiwtLaWHo6NjiXV1RVhYGL755hulMm9vb0RHh1b5tXxERETaTKOhLjg4GDKZrNRHYmIili5digcPHiAkJESTza10ISEhyMzMlB7Xrl3TdJMqVUmTIV577bUqv5aPiIhI22l0KuGECRPg7+9fap3GjRvj4MGDiI2NhZGRkdK29u3bY9CgQfjhhx9gZ2eHW7duKW0vfm5nZyf9qa7O09uLy+zt7ZXqFF+7Z2dnh9u3byvtIz8/H+np6c99n6ffQx0jIyOVY9RFqamp+P7771XKn54MwXu1EhERlY9GQ52NjQ1sbGyeW2/JkiX48ssvpeepqanw8fHBli1b4OHhAQBQKBSYOnUq8vLyYGhoCADYv38/mjdvjtq1a0t1YmJiMH78eGlf+/fvh0KhAAA4OzvDzs4OMTExUojLyspCXFwcRo0aJe0jIyMDJ0+ehLu7OwDg4MGDKCwsLFdbaip1vXMffvghmjRpooHWEBER6Q6tmv1aLCUlBc7OzkqzXzMzM9G8eXN07doVU6ZMwdmzZzFs2DAsXrxYWm7k6NGj6NSpE8LDw9GjRw9s3rwZc+bMwT///IPWrVsDAObNm4fw8HD88MMPcHZ2xhdffIEzZ87g/PnzMDY2BgB069YNt27dwqpVq5CXl4ePPvoI7du3x8aNG8vclrLQtdmvJQ23EhER6RJNfX/rzEqulpaW2LdvH8aMGQN3d3dYW1tj+vTpSiHKy8sLGzduxLRp0/D555+jWbNm2LFjhxTogKJ18LKzs/Hxxx8jIyMDr7/+Ovbu3SsFOgDYsGEDxo4di7feegt6enro27cvlixZUq621CQXL16UAu/TGOiIiIgqjlb21NUUutBTp653buTIkaVeW0hERKTN2FNHOofDrURERFWHoY4q3IkTJ7B7926VcgY6IiKiysNQRxVKXe/cZ599prXDx0RERNqCoY4qhBACM2fOVCln7xwREVHVYKijl3bgwAEcOXJEqaxevXrS2n5ERERU+Rjq6KWoG26dMmWK0hIwREREVPkY6uiFFBYWYtasWSrlHG4lIiLSDIY6Krfjx49jz549SmWvvfYavL29NdQiIiIiYqgjREUB4eFAcDDg51d6XXXDrdOmTYO+vn4ltY6IiIjKQk/TDSDNCw8HYmOL/ixJXl5eiYsJM9ARERFpHkMdITgYUCiK/lTn0KFDmDNnjlJZ//794eYWCi+vop4+IiIi0ize+7Uaqw73flXXOzd9+nTIZDJ4eRX18CkUwNGjGmgcERFRNaSp72/21JFaubm5JQ63ymQyAM/v4SMiIqKqw4kSpELd7NaPPvoITk5OSmV+fs+fWEFERERVg6GOlJTUO0dERETVG4dfCQDw6NEjlUD36quvlinQRUWBEyaIiIg0jD11hL/++gsxMTFKZePHj4elpWWZXv/0kigcjiUiItIM9tTVcNu3b1cJdKGhoWUOdAAnTBAREVUH7KmrgaKigIULn+Ctt+YplXfu3BmdOnUq9/44YYKIiEjzGOpqoNWrL+KttzYqlX3++ecwNDTUUIuIiIjoZTHU1UDu7v8LdB4eHvD19dVga4iIiKgiMNTVQG+88Qbi4uIwZMgQODg4aLo5REREVAF4m7BqrDrcJoyIiIjKh7cJIyIiIqIXxlBHREREpAMY6oiIiIh0AEMdERERkQ5gqCMiIiLSAQx1RERERDqAoY6IiIhIBzDUEREREekAhjoiIiIiHcBQR0RERKQDGOqIiIiIdABDHREREZEOYKgjIiIi0gEMdUREREQ6wEDTDaCSCSEAAFlZWRpuCREREZVV8fd28fd4VWGoq8YePHgAAHB0dNRwS4iIiKi8Hjx4AEtLyyp7P5mo6hhJZVZYWIjU1FTUqlULMplM082pdFlZWXB0dMS1a9dgYWGh6eZQCXieqj+eI+3A86QdXuQ8CSHw4MEDODg4QE+v6q50Y09dNaanp4cGDRpouhlVzsLCgr/gtADPU/XHc6QdeJ60Q3nPU1X20BXjRAkiIiIiHcBQR0RERKQDGOqo2jAyMkJoaCiMjIw03RQqBc9T9cdzpB14nrSDNp0nTpQgIiIi0gHsqSMiIiLSAQx1RERERDqAoY6IiIhIBzDUEREREekAhjqqEDk5OWjXrh1kMhlOnTqltO3MmTPo2LEjjI2N4ejoiPnz56u8fuvWrWjRogWMjY3Rpk0b7NmzR2m7EALTp0+Hvb09TExM4O3tjYsXLyrVSU9Px6BBg2BhYQErKysEBATg4cOH5W6LLvLz84OTkxOMjY1hb2+PwYMHIzU1ValOZGQk2rVrB1NTUzRs2BALFixQ2c/hw4fxyiuvwMjICE2bNkVERIRKneXLl6NRo0YwNjaGh4cH/v77b6XtT548wZgxY1C3bl2Ym5ujb9++uHXrllKdq1evokePHjA1NUW9evUwadIk5Ofnv/wHUc2V5TxFR0fD09MTtWrVgo2NDfr27YuUlBSlOjxPlet552nGjBmQyWQqDzMzM6X98Pde5SrLz5MQAgsXLoSLiwuMjIxQv359zJ49W6mOVv08CaIK8Mknn4hu3boJACI+Pl4qz8zMFLa2tmLQoEHi7NmzYtOmTcLExER8++23Up0jR44IfX19MX/+fHH+/Hkxbdo0YWhoKP7991+pTnh4uLC0tBQ7duwQp0+fFn5+fsLZ2Vk8fvxYquPr6yvatm0rjh07Jv7880/RtGlTMXDgwHK1RVd99dVXIjY2VqSkpIgjR44IhUIhFAqFtH3Pnj3CwMBArFy5Uly6dEns2rVL2Nvbi6VLl0p1Ll++LExNTUVQUJA4f/68WLp0qdDX1xd79+6V6mzevFnI5XKxdu1ace7cOTFixAhhZWUlbt26JdUJDAwUjo6OIiYmRpw4cUJ4enoKLy8vaXt+fr5o3bq18Pb2FvHx8WLPnj3C2tpahISEVPKnpHnPO0+XL18WRkZGIiQkRPz333/i5MmT4o033hBubm5KdXieKtfzztODBw/EzZs3lR4tW7YUQ4cOlerw917le955EkKIcePGiebNm4udO3eKy5cvixMnToh9+/ZJ27Xt54mhjl7anj17RIsWLcS5c+dUQt2KFStE7dq1RU5OjlQ2ZcoU0bx5c+n5+++/L3r06KG0Tw8PDzFy5EghhBCFhYXCzs5OLFiwQNqekZEhjIyMxKZNm4QQQpw/f14AEMePH5fq/Pbbb0Imk4kbN26UuS01xc6dO4VMJhO5ublCCCEGDhwo+vXrp1RnyZIlokGDBqKwsFAIIcTkyZNFq1atlOr0799f+Pj4SM87dOggxowZIz0vKCgQDg4OYu7cuUKIovNmaGgotm7dKtVJSEgQAERsbKwQoujfk56enkhLS5PqrFy5UlhYWCidu5rg2fO0detWYWBgIAoKCqQ6UVFRSnV4nqres+fpWadOnRIAxB9//CGV8fde1Xv2PJ0/f14YGBiIxMTEEl+jbT9PHH6ll3Lr1i2MGDECP/74I0xNTVW2x8bG4o033oBcLpfKfHx8kJSUhPv370t1vL29lV7n4+OD2NhYAEBycjLS0tKU6lhaWsLDw0OqExsbCysrK7Rv316q4+3tDT09PcTFxZW5LTVBeno6NmzYAC8vLxgaGgIoGj43NjZWqmdiYoLr16/jypUrAJ5/nnJzc3Hy5EmlOnp6evD29pbqnDx5Enl5eUp1WrRoAScnJ6Vz2aZNG9ja2iq9T1ZWFs6dO1dRH0O1p+48ubu7Q09PD+vWrUNBQQEyMzPx448/wtvbW6rD81S11J2nZ61evRouLi7o2LGjVMbfe1VL3Xn69ddf0bhxY+zatQvOzs5o1KgRhg8fjvT0dOl12vbzxFBHL0wIAX9/fwQGBir9UnlaWlqa0j9SANLztLS0Uus8vf3p15VUp169ekrbDQwMUKdOnee+z9PvocumTJkCMzMz1K1bF1evXsXOnTulbT4+Pvjll18QExODwsJCXLhwAYsWLQIA3Lx5E0DJn19WVhYeP36Mu3fvoqCg4LnnSS6Xw8rKqtQ6PE/qz5OzszP27duHzz//HEZGRrCyssL169cRGRkp1eF5qhqlnaenPXnyBBs2bEBAQIBSOX/vVY3SztPly5dx5coVbN26FevXr0dERAROnjyJfv36SXW07eeJoY5UBAcHq73I9+lHYmIili5digcPHiAkJETTTa6Rynqeik2aNAnx8fHYt28f9PX1MWTIEIj/u6HMiBEjMHbsWPTs2RNyuRyenp4YMGAAgKL/ddKLq8jzlJaWhhEjRmDo0KE4fvw4fv/9d8jlcvTr10+qQy+mIs/T07Zv344HDx5g6NChVXk4Oqsiz1NhYSFycnKwfv16dOzYEZ07d8aaNWtw6NAhJCUlaeoQX4qBphtA1c+ECRPg7+9fap3GjRvj4MGDiI2NVbkfXvv27TFo0CD88MMPsLOzU5nhU/zczs5O+lNdnae3F5fZ29sr1WnXrp1U5/bt20r7yM/PR3p6+nPf5+n30CZlPU/FrK2tYW1tDRcXF7i6usLR0RHHjh2DQqGATCbDvHnzMGfOHKSlpcHGxgYxMTFK+yjp87OwsICJiQn09fWhr6//3HOZm5uLjIwMpf+1Plvn2ZljPE9F52n58uWwtLRUmr34008/wdHREXFxcfD09OR5ekEVeZ6etnr1avTs2VOlF4a/915MRZ4ne3t7GBgYwMXFRarv6uoKoGgmavPmzbXv56nMV98RPePKlSvi33//lR7R0dECgNi2bZu4du2aEOJ/F+k+fQFxSEiIykSJnj17Ku1boVCoXDC8cOFCaXtmZqbaC4ZPnDgh1YmOjlZ7wXBpbakprly5IgCIQ4cOlVhn8ODBSjPFJk+eLFq3bq1UZ+DAgSoXDI8dO1Z6XlBQIOrXr69ywfC2bdukOomJiWovGH565ti3334rLCwsxJMnT17sgLXUs+cpKChIdOjQQalOamqqACCOHDkihOB50oSSfp4uX74sZDKZ+PXXX1Vew997Ve/Z81T8nfXff/9JdYontSQlJQkhtO/niaGOKkxycrLK7NeMjAxha2srBg8eLM6ePSs2b94sTE1NVZY0MTAwEAsXLhQJCQkiNDRU7dR+KysrsXPnTnHmzBnRu3dvtVP73dzcRFxcnPjrr79Es2bNlKb2l6UtuujYsWNi6dKlIj4+XqSkpIiYmBjh5eUlmjRpIv2yuHPnjli5cqVISEgQ8fHx4pNPPhHGxsYiLi5O2k/x1P5JkyaJhIQEsXz5crVT+42MjERERIQ4f/68+Pjjj4WVlZXSjK7AwEDh5OQkDh48KE6cOKGyzEDx1P6uXbuKU6dOib179wobGxudXyqjLOcpJiZGyGQyERYWJi5cuCBOnjwpfHx8RMOGDcWjR4+EEDxPla0s56nYtGnThIODg8jPz1fZD3/vVa6ynKeCggLxyiuviDfeeEP8888/4sSJE8LDw0O8/fbb0n607eeJoY4qjLpQJ4QQp0+fFq+//rowMjIS9evXF+Hh4SqvjYyMFC4uLkIul4tWrVqJ3bt3K20vLCwUX3zxhbC1tRVGRkbirbfekv4nVezevXti4MCBwtzcXFhYWIiPPvpIPHjwoNxt0TVnzpwRXbp0EXXq1BFGRkaiUaNGIjAwUFy/fl2qc+fOHeHp6SnMzMyEqampeOutt8SxY8dU9nXo0CHRrl07IZfLRePGjcW6detU6ixdulQ4OTkJuVwuOnTooLKfx48fi9GjR4vatWsLU1NT8c4774ibN28q1UlJSRHdunUTJiYmwtraWkyYMEHk5eVVzAdSTZXlPAkhxKZNm4Sbm5swMzMTNjY2ws/PTyQkJCjV4XmqPGU9TwUFBaJBgwbi888/L3Ff/L1Xecp6nm7cuCHeffddYW5uLmxtbYW/v7+4d++eUh1t+nmSCcGra4mIiIi0Hae1EREREekAhjoiIiIiHcBQR0RERKQDGOqIiIiIdABDHREREZEOYKgjIiIi0gEMdUREREQ6gKGOiIhUHD58GDKZDBkZGS+1n0aNGuHrr7+ukDYRUekY6oioQqWlpWHcuHFo3LgxjIyM4OjoiF69eiEmJkaqc/ToUXTv3h21a9eGsbEx2rRpg6+++goFBQVSnZSUFAQEBMDZ2RkmJiZo0qQJQkNDkZubq/R+33//Pdq2bQtzc3NYWVnBzc0Nc+fOlbbPmDEDMpkMvr6+Km1dsGABZDIZOnfuXObjy8rKwtSpU9GiRQsYGxvDzs4O3t7e+OWXX/D0Wu7nzp3D+++/DxsbGxgZGcHFxQXTp0/Ho0ePpDrp6ekYN24cmjdvDhMTEzg5OeGTTz5BZmZmmdqSkpICmUym9nHs2LEyH1Pnzp0xfvz4MtcnourJQNMNICLdkZKSgtdeew1WVlZYsGAB2rRpg7y8PERHR2PMmDFITEzE9u3b8f777+Ojjz7CoUOHYGVlhQMHDmDy5MmIjY1FZGQkZDIZEhMTUVhYiG+//RZNmzbF2bNnMWLECGRnZ2PhwoUAgLVr12L8+PFYsmQJOnXqhJycHJw5cwZnz55Vape9vT0OHTqE69evo0GDBlL52rVr4eTkVObjy8jIwOuvv47MzEx8+eWXePXVV2FgYIDff/8dkydPxptvvgkrKyscO3YM3t7e8Pb2xu7du2Fra4u///4bEyZMQExMDA4dOgS5XI7U1FSkpqZi4cKFaNmyJa5cuYLAwECkpqZi27ZtZW7XgQMH0KpVK6WyunXrlvn1RKQjynVTMSKiUnTr1k3Ur19fPHz4UGXb/fv3xcOHD0XdunXFu+++q7I9KipKABCbN28ucf/z588Xzs7O0vPevXsLf3//UtsUGhoq2rZtK3r27Cm+/PJLqfzIkSPC2tpajBo1SnTq1KkMRyfEqFGjhJmZmbhx44bKtgcPHoi8vDxRWFgoWrZsKdq3by8KCgqU6pw6dUrIZLJS770ZGRkp5HJ5me75WNL9lp9WfPzr168XDRs2FBYWFqJ///4iKytLCCHE0KFDBQClR3Jysjh06JAAIA4cOCDc3d2FiYmJUCgUIjExUdr3f//9J/z8/ES9evWEmZmZaN++vdi/f7/S+zds2FAsXrxYeg5ArFixQvj6+gpjY2Ph7Owstm7dKm3v0qWLGDNmjNI+bt++LQwNDcWBAwee+5kQ1WQcfiWiCpGeno69e/dizJgxMDMzU9luZWWFffv24d69e5g4caLK9l69esHFxQWbNm0q8T0yMzNRp04d6bmdnR2OHTuGK1euPLd9w4YNQ0REhPR87dq1GDRoEORy+XNfCwCFhYXYvHkzBg0aBAcHB5Xt5ubmMDAwwKlTp3D+/HkEBQVBT0/5V2zbtm3h7e393GO0sLCAgUHFDaRcunQJO3bswK5du7Br1y78/vvvCA8PBwB88803UCgUGDFiBG7evImbN2/C0dFReu3UqVOxaNEinDhxAgYGBhg2bJi07eHDh+jevTtiYmIQHx8PX19f9OrVC1evXi21PV988QX69u2L06dPY9CgQRgwYAASEhIAAMOHD8fGjRuRk5Mj1f/pp59Qv359vPnmmxX2mRDpIoY6IqoQ//33H4QQaNGiRYl1Lly4AABwdXVVu71FixZSHXX7X7p0KUaOHCmVhYaGwsrKCo0aNULz5s3h7++PyMhIFBYWqry+Z8+eyMrKwh9//IHs7GxERkYqBZTnuXv3Lu7fv1/q8QHPP0ZXV9cSj/Hu3buYNWsWPv744zK3CwC8vLxgbm6u9HhaYWEhIiIi0Lp1a3Ts2BGDBw+WrnG0tLSEXC6Hqakp7OzsYGdnB319fem1s2fPRqdOndCyZUsEBwfj6NGjePLkCYCikDpy5Ei0bt0azZo1w6xZs9CkSRNERUWV2t733nsPw4cPh4uLC2bNmoX27dtj6dKlAIB3330XALBz506pfkREBPz9/SGTycr1uRDVNAx1RFQhxFOTBCqyLgDcuHEDvr6+eO+99zBixAip3N7eHrGxsfj333/x6aefIj8/H0OHDoWvr69KsDM0NMSHH36IdevWYevWrXBxccH/+3//r9LaXN76WVlZ6NGjB1q2bIkZM2aU67VbtmzBqVOnlB5Pa9SoEWrVqiU9t7e3x+3bt8u076c/I3t7ewCQXvvw4UNMnDgRrq6usLKygrm5ORISEp7bU6dQKFSeF/fUGRsbY/DgwVi7di0A4J9//sHZs2fh7+9fpvYS1WScKEFEFaJZs2bSBIeSuLi4AAASEhLg5eWlsj0hIQEtW7ZUKktNTUWXLl3g5eWF7777Tu1+W7dujdatW2P06NEIDAxEx44d8fvvv6NLly5K9YYNGwYPDw+cPXu2XL10AGBjYwMrK6tSjw9QPkY3NzeV7QkJCVKdYg8ePICvry9q1aqF7du3w9DQsFxtc3R0RNOmTUvc/uz+ZDKZ2t7M5722uKes+LUTJ07E/v37sXDhQjRt2hQmJibo16+fygzl8ho+fDjatWuH69evY926dXjzzTfRsGHDl9onUU3AnjoiqhB16tSBj48Pli9fjuzsbJXtGRkZ6Nq1K+rUqYNFixapbI+KisLFixcxcOBAqezGjRvo3Lkz3N3dsW7dOpVr1NQpDoXq2tCqVSu0atUKZ8+exQcffFCew4Oenh4GDBiADRs2IDU1VWX7w4cPkZ+fj3bt2qFFixZYvHixSnA6ffo0Dhw4oHSMWVlZ6Nq1K+RyOaKiomBsbFyudlUEuVyutJxMWR05cgT+/v5455130KZNG9jZ2SElJeW5r3t2uZVjx44pDVe3adMG7du3x/fff4+NGzeWO4AT1VQMdURUYZYvX46CggJ06NABP//8My5evIiEhAQsWbIECoUCZmZm+Pbbb7Fz5058/PHHOHPmDFJSUrBmzRr4+/ujX79+eP/99wH8L9A5OTlh4cKFuHPnDtLS0pCWlia936hRozBr1iwcOXIEV65cwbFjxzBkyBDY2NioDPEVO3jwIG7evAkrK6tyH9/s2bPh6OgIDw8PrF+/HufPn8fFixexdu1auLm54eHDh5DJZFizZg3Onz+Pvn374u+//8bVq1exdetW9OrVCwqFQloTrjjQZWdnY82aNcjKypKOsTwh6969e9Lrih/F172VRaNGjRAXF4eUlBTcvXu3zL14zZo1wy+//IJTp07h9OnT+OCDD8r02q1bt2Lt2rW4cOECQkND8ffff2Ps2LFKdYYPH47w8HAIIfDOO++U+ViIajRNTr0lIt2TmpoqxowZIxo2bCjkcrmoX7++8PPzE4cOHZLq/PHHH8LHx0dYWFgIuVwuWrVqJRYuXCjy8/OlOuvWrVNZaqP4UWzbtm2ie/fuwt7eXsjlcuHg4CD69u0rzpw5I9UpXtKjJJ9++mmZlzQRQoiMjAwRHBwsmjVrJuRyubC1tRXe3t5i+/btorCwUKp35swZ0bdvX1GnTh1haGgomjRpIqZNmyays7OlOsXLhqh7JCcnP7ctxUuaqHts2rSpxONfvHixaNiwofQ8KSlJeHp6ChMTE5UlTe7fvy/Vi4+PV2pbcnKy6NKlizAxMRGOjo5i2bJlolOnTuLTTz+VXqNuSZPly5eLt99+WxgZGYlGjRqJLVu2qBzbgwcPhKmpqRg9evRzPwciKiITopxX8xIREb0gmUyG7du3o0+fPqXWS0lJQZMmTXD8+HG88sorVdM4Ii3HiRJERFRt5OXl4d69e5g2bRo8PT0Z6IjKgdfUERH9n2fXenv68eeff1Z5ewIDA0tsT2BgYJW3pyocOXIE9vb2OH78OFatWqXp5hBpFQ6/EhH9n//++6/EbfXr14eJiUkVtqZoPbisrCy12ywsLFCvXr0qbQ8RVW8MdUREREQ6gMOvRERERDqAoY6IiIhIBzDUEREREekAhjoiIiIiHcBQR0RERKQDGOqIiIiIdABDHREREZEOYKgjIiIi0gH/H1vGzWntUJnfAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbm0lEQVR4nO3deVhUZf8/8PeAzLAoA8qmhohauKakSVC5RYKp6NO+KJLmnmaaCmkgruSCppW2KFqZWyXyNRXNNCswy0BFhdTAjUVSZFyS9f79wY/JcWZwBgZme7+uay6b+5w58znxJO/nXs4tEUIIEBEREVkBG2MXQERERNRQGHyIiIjIajD4EBERkdVg8CEiIiKrweBDREREVoPBh4iIiKwGgw8RERFZDQYfIiIishoMPkRERGQ1GHyIyCxJJBLMmTPH2GUoRUREoHXr1sYug4jug8GHiAxm/fr1kEgkype9vT0eeughvPnmmygoKKjX705JScGcOXNw/fp1g163T58+KvfUtGlTPProo1i3bh0qKysN8h0LFy5EYmKiQa5FRDVrZOwCiMjyzJ07F76+vrhz5w5++eUXrF69Grt27UJGRgYcHR0N8h3//vsvGjX676+wlJQUxMbGIiIiAi4uLgb5jmoPPPAAFi1aBAAoLCzEF198gVGjRuGvv/5CXFxcna+/cOFCPP/88xg6dGidr0VENWPwISKDGzBgAHr06AEAeOONN9CsWTPEx8djx44deOWVV2p93crKSpSWlsLe3h729vaGKve+5HI5hg0bpnw/duxY+Pn54cMPP8S8efNgZ2fXYLUQUd1wqIuI6l2/fv0AANnZ2QCApUuXIigoCM2aNYODgwO6d++Ob775Ru1zEokEb775JjZu3IhOnTpBJpNhz549ymPVc3zmzJmD6dOnAwB8fX2Vw1I5OTno3bs3unbtqrEuPz8/hISE6H0/jo6OeOyxx3Dr1i0UFhZqPe/WrVuYNm0avL29IZPJ4Ofnh6VLl0IIoXKPt27dwoYNG5R1R0RE6F0TEemGPT5EVO/OnTsHAGjWrBkA4IMPPkBYWBhee+01lJaWYvPmzXjhhRewc+dODBw4UOWzP/74I7Zu3Yo333wTbm5uGicQP/vss/jrr7+wadMmLF++HG5ubgAAd3d3DB8+HKNHj0ZGRgY6d+6s/Mzvv/+Ov/76C7Nnz67VPf3999+wtbXVOqwmhEBYWBgOHDiAUaNGoVu3bkhOTsb06dNx+fJlLF++HADw5Zdf4o033kDPnj0xZswYAEDbtm1rVRMR6UAQERlIQkKCACB++OEHUVhYKC5evCg2b94smjVrJhwcHMSlS5eEEELcvn1b5XOlpaWic+fOol+/firtAISNjY04efKk2ncBEDExMcr3S5YsEQBEdna2ynnXr18X9vb2YubMmSrtkydPFk5OTuLmzZs13lPv3r1F+/btRWFhoSgsLBSnT58WkydPFgDE4MGDleeNGDFC+Pj4KN8nJiYKAGL+/Pkq13v++eeFRCIRZ8+eVbY5OTmJESNG1FgHERkGh7qIyOCCg4Ph7u4Ob29vvPzyy2jcuDG2b9+Oli1bAgAcHByU5xYVFaG4uBhPPvkk/vzzT7Vr9e7dGx07dqx1LXK5HEOGDMGmTZuUQ0wVFRXYsmULhg4dCicnp/teIzMzE+7u7nB3d0eHDh2watUqDBw4EOvWrdP6mV27dsHW1haTJ09WaZ82bRqEENi9e3et74mIao9DXURkcB999BEeeughNGrUCJ6envDz84ONzX//P2vnzp2YP38+0tPTUVJSomyXSCRq1/L19a1zPeHh4diyZQt+/vln9OrVCz/88AMKCgowfPhwnT7funVrfPbZZ8ol+g8++CA8PDxq/Mz58+fRokULNGnSRKW9Q4cOyuNE1PAYfIjI4Hr27Klc1XWvn3/+GWFhYejVqxc+/vhjNG/eHHZ2dkhISMDXX3+tdv7dvUO1FRISAk9PT3z11Vfo1asXvvrqK3h5eSE4OFinzzs5Oel8LhGZNg51EVGD+vbbb2Fvb4/k5GSMHDkSAwYMMEio0NRbVM3W1havvvoqvvnmGxQVFSExMRGvvPIKbG1t6/y92vj4+CA3Nxc3btxQac/MzFQer1ZT7URkWAw+RNSgbG1tIZFIUFFRoWzLycmp85OLq+fqaHty8/Dhw1FUVISxY8fi5s2bKs/lqQ/PPPMMKioq8OGHH6q0L1++HBKJBAMGDFC2OTk5GfyJ00SkGYe6iKhBDRw4EPHx8QgNDcWrr76KK1eu4KOPPkK7du1w/PjxWl+3e/fuAIBZs2bh5Zdfhp2dHQYPHqwMRP7+/ujcuTO2bduGDh064JFHHjHI/WgzePBg9O3bF7NmzUJOTg66du2KvXv3YseOHZgyZYrKkvXu3bvjhx9+QHx8PFq0aAFfX18EBATUa31E1oo9PkTUoPr164e1a9ciPz8fU6ZMwaZNm/D+++/jf//7X52u++ijj2LevHk4duwYIiIi8Morr6g9XDA8PBwAdJ7UXBc2NjZISkrClClTsHPnTkyZMgWnTp3CkiVLEB8fr3JufHw8unfvjtmzZ+OVV17B6tWr670+ImslEeKuR4gSEVmwDz74AG+//TZycnLQqlUrY5dDREbA4ENEVkEIga5du6JZs2Y4cOCAscshIiPhHB8ismi3bt1CUlISDhw4gBMnTmDHjh3GLomIjIg9PkRk0XJycuDr6wsXFxdMmDABCxYsMHZJRGREDD5ERERkNbiqi4iIiKwGgw8RERFZDU5uvkdlZSVyc3PRpEkTPkaeiIjITAghcOPGDbRo0UJlU+R7MfjcIzc3F97e3sYug4iIiGrh4sWLeOCBB7QeZ/C5R5MmTQBU/YtzdnY2cjVERESkC4VCAW9vb+XvcW0YfO5RPbzl7OzM4ENERGRm7jdNhZObiYiIyGow+BAREZHVYPAhIiIiq8E5PrVQUVGBsrIyY5dBDcDOzg62trbGLoOIiAyEwUcPQgjk5+fj+vXrxi6FGpCLiwu8vLz4XCciIgvA4KOH6tDj4eEBR0dH/iK0cEII3L59G1euXAEANG/e3MgVERFRXTH46KiiokIZepo1a2bscqiBODg4AACuXLkCDw8PDnsREZk5Tm7WUfWcHkdHRyNXQg2t+mfOeV1EROaPwUdPHN6yPvyZExFZDgYfIiIishoMPkRERGQ1GHysQEREBCQSCSQSCezs7ODp6Ymnn34a69atQ2Vlpc7XWb9+PVxcXOqvUCIionrG4GMlQkNDkZeXh5ycHOzevRt9+/bFW2+9hUGDBqG8vNzY5RERkRWorKxERUWFUWtg8LESMpkMXl5eaNmyJR555BG8++672LFjB3bv3o3169cDAOLj49GlSxc4OTnB29sbEyZMwM2bNwEABw8exOuvv47i4mJl79GcOXMAAF9++SV69OiBJk2awMvLC6+++qry2TdEREQAsHv3bsybNw+ff/65Uetg8KkDIQRKS0uN8hJC1Ln+fv36oWvXrvjuu+8AADY2Nli5ciVOnjyJDRs24Mcff8SMGTMAAEFBQVixYgWcnZ2Rl5eHvLw8vPPOOwCqlnnPmzcPx44dQ2JiInJychAREVHn+oiIyPyVlZUhNjYWR44cAVD1MGBD/A6rLT7AsA7KysqwaNEio3x3VFQUpFJpna/Tvn17HD9+HAAwZcoUZXvr1q0xf/58jBs3Dh9//DGkUinkcjkkEgm8vLxUrjFy5EjlP7dp0wYrV67Eo48+ips3b6Jx48Z1rpGIiMzTr7/+ih9++EGlbebMmUZ9TAiDj5UTQij/B/jDDz9g0aJFyMzMhEKhQHl5Oe7cuYPbt2/X+ODGo0ePYs6cOTh27BiKioqUE6YvXLiAjh07Nsh9EBGR6UhKAtLSYlXanJ0fxNtvv2qkiv7D4FMHdnZ2iIqKMtp3G8Lp06fh6+uLnJwcDBo0COPHj8eCBQvQtGlT/PLLLxg1ahRKS0u1Bp9bt24hJCQEISEh2LhxI9zd3XHhwgWEhISgtLTUIDUSEZH5KCoqQlraSpW2n39+ArdvP4W33zZSUXdh8KkDiURikOEmY/nxxx9x4sQJvP322zh69CgqKyuxbNky2NhUTf3aunWryvlSqVRtNn5mZiauXr2KuLg4eHt7AwD++OOPhrkBIiIyKevXr8f58+dV2jp3nobk5MaIjDRSUfdg8LESJSUlyM/PR0VFBQoKCrBnzx4sWrQIgwYNQnh4ODIyMlBWVoZVq1Zh8ODB+PXXX7FmzRqVa7Ru3Ro3b97E/v370bVrVzg6OqJVq1aQSqVYtWoVxo0bh4yMDMybN89Id0lERMYSGxur1hYTEwMAeO65hq5GO67qshJ79uxB8+bN0bp1a4SGhuLAgQNYuXIlduzYAVtbW3Tt2hXx8fF4//330blzZ2zcuFFt4nZQUBDGjRuHl156Ce7u7li8eDHc3d2xfv16bNu2DR07dkRcXByWLl1qpLskIqKGVlhYqBZ62rZtqww9pkYijLmmzAQpFArI5XIUFxfD2dlZ2X7nzh1kZ2fD19cX9vb2RqyQGhp/9kREmmnq5ZkyZQrkcnmD16Lt9/e92ONDREREetM2tFVT6ElKAoKCqv40Fs7xISIiovtKSgLi4oB+/TJhZ7dF5djt2654/PHJ971GXByQmlr1Z1hYfVVaMwYfIiIiuq+4OCAkpG5DW5GRVdcx5govDnURERGRkrbhKE2h535DW/cKCwNSUozX2wMw+BAREdFd7h6OAoCdO3dqnM+TnBxj1Lk6tcXgQ0REREqRkUBgYNWfsbGxOHr0qMrxSZMmITk5RiUcmRMGHyIiIlKqHo66d68tAPD3j0HTpk1VwpG54eRmIiIiUtq8eTOysrLU2u9+IGFYmHHn6dQFgw8REREB0PxsnsmTJ8PV1dUI1dQPsxrqOnToEAYPHowWLVpAIpEgMTFR5bgQAtHR0WjevDkcHBwQHByMM2fOGKdYKxQREYGhQ4cq3/fp0wdTpkyp0zUNcQ0iIqqZEELrAwktKfQAZhZ8bt26ha5du+Kjjz7SeHzx4sVYuXIl1qxZg99++w1OTk4ICQnBnTt3GrhS0xIREQGJRKLcTb5du3aYO3cuysvL6/V7v/vuO503LD148CAkEgmuX79e62sQEZH+li5dirlz56q1m+peW3VlVkNdAwYMwIABAzQeE0JgxYoVmD17NoYMGQIA+OKLL+Dp6YnExES8/PLLDVmqyQkNDUVCQgJKSkqwa9cuTJw4EXZ2doiKilI5r7S0FFKp1CDf2bRpU5O4BhERaaapl2fp0qno0qUJLDT3mFePT02ys7ORn5+P4OBgZZtcLkdAQABSU1O1fq6kpAQKhULlZYlkMhm8vLzg4+OD8ePHIzg4GElJScrhqQULFqBFixbw8/MDAFy8eBEvvvgiXFxc0LRpUwwZMgQ5OTnK61VUVGDq1KlwcXFBs2bNMGPGDNy73+29w1QlJSWYOXMmvL29IZPJ0K5dO6xduxY5OTno27cvAMDV1RUSiQQREREar1FUVITw8HC4urrC0dERAwYMUBnOXL9+PVxcXJCcnIwOHTqgcePGCA0NRV5envKcgwcPomfPnnBycoKLiwsef/xxnD9/3kD/pomITF9FRYXG0OPvH4MuXZqY5WotXVlM8MnPzwcAeHp6qrR7enoqj2myaNEiyOVy5cvb27te6zQVDg4OKC0tBQDs378fWVlZ2LdvH3bu3ImysjKEhISgSZMm+Pnnn/Hrr78qA0T1Z5YtW4b169dj3bp1+OWXX3Dt2jVs3769xu8MDw/Hpk2bsHLlSpw+fRqffPIJGjduDG9vb3z77bcAgKysLOTl5eGDDz7QeI2IiAj88ccfSEpKQmpqKoQQeOaZZ1BWVqY85/bt21i6dCm+/PJLHDp0CBcuXMA777wDACgvL8fQoUPRu3dvHD9+HKmpqRgzZgwkEkmd/50SEZmD2NhYzJ8/X609JibGJJ6sXN/MaqirPkRFRWHq1KnK9wqFwqLDjxAC+/fvR3JyMiZNmoTCwkI4OTnh888/Vw5xffXVV6isrMTnn3+uDAQJCQlwcXHBwYMH0b9/f6xYsQJRUVF49tlnAQBr1qxBcnKy1u/966+/sHXrVuzbt0/ZK9emTRvl8eohLQ8PD7i4uGi8xpkzZ5CUlIRff/0VQUFBAICNGzfC29sbiYmJeOGFFwAAZWVlWLNmDdq2bQsAePPNN5Xj1wqFAsXFxRg0aJDyeIcOHfT/F0lEZIY09fLMnDkT9vb2RqjGOCymx8fLywsAUFBQoNJeUFCgPKaJTCaDs7OzyqshaNsLpb7s3LkTjRs3hr29PQYMGICXXnoJc+bMAQB06dJFZV7PsWPHcPbsWTRp0gSNGzdG48aN0bRpU9y5cwfnzp1DcXEx8vLyEBAQoPxMo0aN0KNHD63fn56eDltbW/Tu3bvW93D69Gk0atRI5XubNWsGPz8/nD59Wtnm6OioDDUA0Lx5c1y5cgVAVcCKiIhASEgIBg8ejA8++EBlGIyIyBKVlpZqXbVlTaEHsKAeH19fX3h5eWH//v3o1q0bgKr/d//bb79h/Pjxxi1Og7v3QmmILsW+ffti9erVkEqlaNGiBRo1+u9H7+TkpHLuzZs30b17d2zcuFHtOu7u7rX6fgcHh1p9rjbs7OxU3kskEpX5RwkJCZg8eTL27NmDLVu2YPbs2di3bx8ee+yxBquRiKghJCVpfgIzYLmrtu7HrHp8bt68ifT0dKSnpwOomtCcnp6OCxcuQCKRYMqUKZg/fz6SkpJw4sQJhIeHo0WLFirPljEVDf24bycnJ7Rr1w6tWrVSCT2aPPLIIzhz5gw8PDzQrl07lVf1XKjmzZvjt99+U36mvLxcbT+Xu3Xp0gWVlZX46aefNB6v7nGqqKjQeo0OHTqgvLxc5XuvXr2KrKwsdOzYscZ7upe/vz+ioqKQkpKCzp074+uvv9br80RE5kBT6Hn33XetNvQAZhZ8/vjjD/j7+8Pf3x8AMHXqVPj7+yM6OhoAMGPGDEyaNAljxozBo48+ips3b2LPnj0m2Y1nyhPIXnvtNbi5uWHIkCH4+eefkZ2djYMHD2Ly5Mm4dOkSAOCtt95CXFwcEhMTkZmZiQkTJqg9g+durVu3xogRIzBy5EgkJiYqr7l161YAgI+PDyQSCXbu3InCwkLcvHlT7RoPPvgghgwZgtGjR+OXX37BsWPHMGzYMLRs2VL5CIP7yc7ORlRUFFJTU3H+/Hns3bsXZ86c4TwfIrIot27d0jq0dW+vuLUxq6GuPn36qC2ZvptEIsHcuXM1PoiJdOfo6IhDhw5h5syZePbZZ3Hjxg20bNkSTz31lHIO1LRp05CXl4cRI0bAxsYGI0eOxP/+9z8UFxdrve7q1avx7rvvYsKECbh69SpatWqFd999FwDQsmVLxMbGIjIyEq+//jrCw8Oxfv16tWskJCTgrbfewqBBg1BaWopevXph165dOv+H7OjoiMzMTGzYsAFXr15F8+bNMXHiRIwdO1b/f1FERCZIU+ABrHdo614SUVOSsEIKhQJyuRzFxcUqE53v3LmD7Oxs+Pr6mmQPEtUf/uyJyBxom8/z3nvvwcbGrAZ4akXb7+97mVWPDxEREam7du0a0tJWqbWzl0cdgw8REZEZ0zS0ZWdnp5xKQKoYfIiIiMyUptATHR3Np9HXwPIH/YiIiCzMuXPnNIae5OQYhp77YI+PnjgX3PrwZ05EpkTbqq3k5BiL3lzUUNjjo6Pq5dK3b982ciXU0Kp/5tb+7AsiMj5Noae0NAb+/pzErCv2+OjI1tYWLi4uyj2fHB0d2Z1o4YQQuH37Nq5cuQIXFxfY2toauyQislJpaWlI0rC5Y/WqraCght0GyZwx+OiherPT6vBD1sHFxaXGjW6JiOqTtqEtf/8YBAVVbX0UGVkVejjUdX98gOE9dHkAUkVFBcrKyhq4MjIGOzs79vQQkdFo23YC+K+XJzCwagska8cHGNYjW1tb/jIkIqJ6c/DgQY2bOt/9QEL28tQOgw8REZEJ0dTL07hxY0ybNk2lLSyM83lqg8GHiIjIRNQ0tEWGweBDRERkZImJiTh27JhaO0OP4TH4EBERGZGmXh4fHx9EREQ0fDFWgMGHiIjISDi01fAYfIiIiBrYxx9/jMLCQrV2hp76x+BDRETUgDT18ly8+Ag+/3ywEaqxPtyri4iIqIFo21E9LIyhp6Gwx4eIiKieadt2IiYmBhzdaljs8SEiIqpHmkJP7969lfN5kpKqtp/QsAcp1QP2+BAREdUTXVZtxcVxZ/WGxOBDRERkYDUNbd2Le241LAYfIiIiA9IUesrLwzBvnr/G87nnVsPiHB8iIiID0RR65syJwYoVmkMPNTz2+BAREdWRtqGt0tIYNG4MTJ7cwAWRVgw+REREekhK+m9OTliY5tDz4osvokOHDgCABQsaukKqCYMPERGRHv5bhSWQljZX7Ti3nTBtDD5ERER6iIwE0tI0D235+8cgKOi/3iAyPQw+REREetAUet544w20bNkSQUF8Jo+ps8hVXR999BFat24Ne3t7BAQE4MiRI8YuiYiIzFx5ebnG+Tz+/jFo2bIlgKqensBAPpPHlEmEEMLYRRjSli1bEB4ejjVr1iAgIAArVqzAtm3bkJWVBQ8Pj/t+XqFQQC6Xo7i4GM7Ozg1QMRERmTptq7bmzIlBYCCQktLABZEaXX9/W1yPT3x8PEaPHo3XX38dHTt2xJo1a+Do6Ih169YZuzQiIjJDmkJPhw5vYvPmGPj5sXfH3FhU8CktLcXRo0cRHBysbLOxsUFwcDBSU1ONWBkREZmbW7duad1ra8WKZsjMBJo25Vwec2NRk5v/+ecfVFRUwNPTU6Xd09MTmZmZGj9TUlKCkpIS5XuFQlGvNRIRkWm6+/k82lZtVS9V5/5a5suienxqY9GiRZDL5cqXt7e3sUsiIiIjqH4+j6bQ8+OP78Df/7/n84SFVc3rYW+P+bGo4OPm5gZbW1sUFBSotBcUFMDLy0vjZ6KiolBcXKx8Xbx4sSFKJSIiEzNlyj+YM0c99CQnx+DQISfExRmhKDI4iwo+UqkU3bt3x/79+5VtlZWV2L9/PwIDAzV+RiaTwdnZWeVFRESWJykJCAqq+vNesbGxOH36I7X2mJgYLlG3MBY1xwcApk6dihEjRqBHjx7o2bMnVqxYgVu3buH11183dmlERGRE/201oTpEpWkC875972LGDDsAVedySMtyWFzweemll1BYWIjo6Gjk5+ejW7du2LNnj9qEZyIisi73TkjOycnBhg0b1M5bujQGN2/y6cuWyuIeYFhXfIAhEZHl0/ZAwk2bYpCVBTRuDGzcyOBjTnT9/W1xPT5EREQ10RR6kpOjkZoqQfv2/83nYeixTAw+RERkFY4dO4bExES19piYGPj7/zcMxsBj2Rh8iIjI4mkb2qp+ICEnMFsPBh8iIrJo2radIOvE4ENERBZp//79+OWXX9TaGXqsG4MPERFZnPsNbZH1YvAhIiKLwqEtqgmDDxERWYSvvvoK586dU2tn6KG7WdReXUREZJ1iY2M1hp6lSxl6SBV7fIiIyKxpGtoqLY3BypXA5MlGKIhMGoMPERGZpYULF6KsrEytvXpoa8GChq6IzAGHuoiIyKQkJQFBQVV/ahMbG6sx9Pj7c2iLasYeHyIiMilxcUBqqvbd0blqi+qCwYeIiExKZOR/+2bdTduzedjLQ/rgUBcREZm8mkIP99gifbDHh4iITMq9Q10c2iJDYvAhIiKTUj3UFRISC00dPQw9VBcMPkREZFLCwoC0NPXE4+npiXHjxhmhIrIkDD5ERGRSOLRF9YnBh4iITAJ3VKeGwOBDRERGlZSkeWirW7duGDJkiBEqIkvG4ENEREaRlPTfJOZ7sZeH6guDDxERGUVaWixCQtTbGXqoPvEBhkREVC+07bmVlKR5Ps/TTz/N0EP1jj0+RERULzTtuSWEQFraXLVzGXiooTD4EBFRvbh3zy2u2iJTwOBDRET1orqXJy5O86qtF198ER06dGjgqsjaMfgQEVG9Wby4DCEhC9Xa2ctDxsLgQ0RE9SI2NhZPP63eztBDxsTgQ0REBqdpPs9DD43CK688YIRqiP7D5exERFQndy9bv3nzpta9thh6yBSYTfBZsGABgoKC4OjoCBcXF43nXLhwAQMHDoSjoyM8PDwwffp0lJeXN2yhRERWpnrZelpaLJYtW6Z2nENbZErMZqirtLQUL7zwAgIDA7F27Vq14xUVFRg4cCC8vLyQkpKCvLw8hIeHw87ODgsXqk+sIyIiw4iM1Lxq66233tL6f1SJjEUihBDGLkIf69evx5QpU3D9+nWV9t27d2PQoEHIzc2Fp6cnAGDNmjWYOXMmCgsLIZVKdbq+QqGAXC5HcXExnJ2dDV0+EZFFyc/PxyeffKLWzl4eami6/v42m6Gu+0lNTUWXLl2UoQcAQkJCoFAocPLkSa2fKykpgUKhUHkREdH9xcbGMvSQ2TGboa77yc/PVwk9AJTv8/PztX5u0aJFWp8mSkREmmn6ezMyMhIymcwI1RDpzqg9PpGRkZBIJDW+MjMz67WGqKgoFBcXK18XL16s1+8jIjJnmZmZWldtMfSQOTBqj8+0adMQERFR4zlt2rTR6VpeXl44cuSISltBQYHymDYymYz/sRIR6YB7bZElMGrwcXd3h7u7u0GuFRgYiAULFuDKlSvw8PAAAOzbtw/Ozs7o2LGjQb6DiMhaaQo97733HmxsLGaqKFkJs5njc+HCBVy7dg0XLlxARUUF0tPTAQDt2rVD48aN0b9/f3Ts2BHDhw/H4sWLkZ+fj9mzZ2PixIns0SEiqqWUlBTs27dPrZ29PGSuzGY5e0REBDZs2KDWfuDAAfTp0wcAcP78eYwfPx4HDx6Ek5MTRowYgbi4ODRqpHu+43J2IrJGSUlVDyKMjKzaVT0pSfOzeQCGHjJNuv7+Npvg01AYfIjIGgUFVT19OTAQSEnRPLTFwEOmzOqe40NERLUXGVkVeoKDExl6yKKZzRwfIiKqP2FhHNoi68DgQ0RE7OUhq8HgQ0RkhaonMw8Z8jHu3ClUO87QQ5aKwYeIyArFxQEhIbG4c0f9GEMPWTIGHyIiKxQSwqEtsk4MPkREVoTbTpC143J2IiIrwdBDxB4fIiKrwFVbRFUYfIiILBh7eYhUcaiLiMhCMfQQqdO7x8fW1hZ5eXnw8PBQab969So8PDxQUVFhsOKIiKh2OLRFpJnewUfbnqYlJSWQSqV1LoiIiHR3767q7OUhqpnOwWflypUAAIlEgs8//xyNGzdWHquoqMChQ4fQvn17w1dIRERqqgNPURGQmVn1z5r22pJKpYiKijJChUSmSefgs3z5cgBVPT5r1qyBra2t8phUKkXr1q2xZs0aw1dIRERq4uKA1FTAz69qV3U+kJBINzoHn+zsbABA37598d1338HV1bXeiiIioppFRv637YQmDD1Emum9quvAgQMMPUREDSwpCQgKqvoTqJrPoyn0tGnThqGHqAZ6T24eOXJkjcfXrVtX62KIiEiz6qGtuDjtk5gZeIjuT+/gU1RUpPK+rKwMGRkZuH79Ovr162ewwoiI6D93D21pWrjF0EOkG72Dz/bt29XaKisrMX78eLRt29YgRRERkaqwMM2rtjw9H8e4ccFGqIjIPEmEtgfz6CkrKwt9+vRBXl6eIS5nNAqFAnK5HMXFxXB2djZ2OUREEEJg7ty5au3s5SH6j66/vw22V9e5c+dQXl5uqMsREVm9pCTNvTwAQw9RbekdfKZOnaryXgiBvLw8fP/99xgxYoTBCiMisnaaQs/gwYPxyCOPGKEaIsugd/BJS0tTeW9jYwN3d3csW7bsviu+iIjo/srLy7FgwQK1dvbyENWd3sHnwIED9VEHERFB+15b/v4MPUSGUOs5PleuXEFWVhYAwM/PT223diIiUnfvpqJ30xR6IiIi4OPj00DVEVk+vZ/crFAoMHz4cLRo0QK9e/dG79690bJlSwwbNgzFxcX1USMRkcW4+0GE1W7duqX1gYQMPUSGpXfwGT16NH777Td8//33uH79Oq5fv46dO3fijz/+wNixY+ujRiIiixEZWbWpaGRk1fvY2FgsXbpU7TzO5yGqH3o/x8fJyQnJycl44oknVNp//vlnhIaG4tatWwYtsKHxOT5E1FA09fJMmjQJTZs2NUI1ROZN19/fevf4NGvWDHK5XK1dLpdz81IiIi3u3mT0ypUrWoe2GHqI6pfewWf27NmYOnUq8vPzlW35+fmYPn063nvvPYMWVy0nJwejRo2Cr68vHBwc0LZtW8TExKC0tFTlvOPHj+PJJ5+Evb09vL29sXjx4nqph4hIX9Vze9LSYrF69Wq14xzaImoYeq/qWr16Nc6ePYtWrVqhVatWAIALFy5AJpOhsLAQn3zyifLcP//80yBFZmZmorKyEp988gnatWuHjIwMjB49Grdu3VKOjSsUCvTv3x/BwcFYs2YNTpw4gZEjR8LFxQVjxowxSB1ERPq4ewVXZKTmBxLOmDEDDg4ORqiOyDrpHXyGDBkCiURSH7VoFRoaitDQUOX7Nm3aICsrC6tXr1YGn40bN6K0tBTr1q2DVCpFp06dkJ6ejvj4eAYfIjKK6l6ezz47hx49vlI7zl4eooand/CZM2dOPZShv+LiYpWx8NTUVPTq1QtSqVTZFhISgvfffx9FRUVa5x+VlJSgpKRE+V6hUNRf0URkVbT18gAMPUTGovccnzZt2uDq1atq7devX0ebNm0MUtT9nD17FqtWrVJZPp+fnw9PT0+V86rf3z0f6V6LFi2CXC5Xvry9veunaCKyOppCz+zZsxl6iIxI7+CTk5ODiooKtfaSkhJcunRJr2tFRkZCIpHU+MrMzFT5zOXLlxEaGooXXngBo0eP1rd8NVFRUSguLla+Ll68WOdrEpF1+/PPP7Wu2rK1tTVCRURUTeehrqSkJOU/Jycnqyxpr6iowP79++Hr66vXl0+bNg0RERE1nnN3L1Jubi769u2LoKAgfPrppyrneXl5oaCgQKWt+r2Xl5fW68tkMshkMr3qJiLSRtteW+zlITINOgefoUOHAgAkEglGjBihcszOzg6tW7fGsmXL9Ppyd3d3uLu763Tu5cuX0bdvX3Tv3h0JCQmwsVHtrAoMDMSsWbNQVlYGOzs7AMC+ffvg5+fH5wsRUYPQFHqio6MbfEEIEWmnc/CprKwEAPj6+uL333+Hm5tbvRV1r8uXL6NPnz7w8fHB0qVLUVhYqDxW3Zvz6quvIjY2FqNGjcLMmTORkZGBDz74AMuXL2+wOonIOu3duxepqalq7f7+MWDmITIteq/qys7Oro86arRv3z6cPXsWZ8+exQMPPKByrHrHDblcjr1792LixIno3r073NzcEB0dzaXsRFSvOLRFZF703qtr7ty5NR6Pjo6uU0HGxr26iEhX2iYwE1HD0/X3t949Ptu3b1d5X1ZWhuzsbDRq1Aht27Y1++BDRHQ/mzZtwl9//aXWztBDZPr0Dj5paWlqbQqFAhEREfjf//5nkKKIiEwVh7aIzJveQ13anDhxAoMHD0ZOTo4hLmc0HOoiIm00hR5//xiEhRmhGCJSUW9DXdpUPwCQiMjSxMfH48aNG2rtc+bEIDAQDD5EZkTv4LNy5UqV90II5OXl4csvv8SAAQMMVhgRkSnQNrTl718VeiIjG7ggIqoTvYe67n06s42NDdzd3dGvXz9ERUWhSZMmBi2woXGoi4iqaQo9yckxSEkxQjFEVKN6G+oyxnN8iIgakrZenuTkGPbwEJm5Ws3xuX79Os6ePQsAaNeuHVxcXAxZExGR0dS0aosLt4jMn167s+fk5GDgwIFwc3NDQEAAAgIC4ObmhkGDBpn9ai4iIm2rtpKTY3DXPs1EZMZ0nuNz8eJFPProo7Czs8OECRPQoUMHAMCpU6ewevVqlJeX4/fff1fbUsLccI4PkfWpqZcnKAhITQUCA8G5PUQmTNff3zoHn1GjRuHs2bNITk6Gvb29yrF///0XoaGhePDBB/H555/XrXIjY/AhsmxJSUBcXNVqrLAwzaHH3d0dEyZM0Hg+EZkmgwefli1bYsuWLXjiiSc0Hj906BBefvll5Obm1q5iE8HgQ2TZ7u7BCQnhXltElsLgq7r++ecftG7dWuvxNm3a4Nq1a3oVSUTUUKp7bvr21Rx4gKpVW/7+7NkhsmQ6T25u3rw5Tp06pfV4RkYGvLy8DFIUEZGhxcVV9fRIpeqhp0uXLkhOjkFqatV5RGS5dO7xGTp0KN555x3s378f7u7uKseuXLmCmTNnYujQoYauj4jIICIjgbQ0zau2qnuCqs8jIsul8xyfoqIiBAQEID8/H8OGDUP79u0hhMDp06fx9ddfw8vLC4cPH0bTpk3ru+Z6xTk+RJaHq7aILJ/B5/i4urrit99+w7vvvovNmzfj+vXrAAAXFxe8+uqrWLhwodmHHiKyPJpCT3BwMB5//HEAVT081au2iMjy6b1XF1C1MWlhYSGAqmWfEonE4IUZC3t8iCyDEAJz585Va+eqLSLLVG97dQGARCKBh4dHrYsjIqpPNQ1tEZF102vLCiIiU6cp9Lz00kuIianadiIoCNx+gsiKMfgQkVmrDjM7dlRoDD0xMTFo3749gP+WtHPJOpH1YvAhIrMWF1f1QML09Plqx+4d2oqMrFq9xYnMRNarVnN8iIhMhaanMKemjsaePS3U2sPC+FRmImunU/BZuXKlzhecPHlyrYshItLVnTt38P7776u1JyfHsEeHiLTSaTm7r6+vbheTSPD333/XuShj4nJ2ItPHVVtEdC+DLmfPzs42WGFERHWhKfRMmTIFcrncCNUQkbmp9eTm0tJSZGVloby83JD1EBGpqF619c03xVpXbTH0EJGu9A4+t2/fxqhRo+Do6IhOnTrhwoULAIBJkyYhjmtEicjAqldtnTy5Qu0Yh7aISF96B5+oqCgcO3YMBw8ehL29vbI9ODgYW7ZsMWhxRESaVm1FRkYy9BBRrei9nD0xMRFbtmzBY489prJHV6dOnXDu3DmDFkdE1is/Px+ffPKJWjsDDxHVhd49PoWFhRr36bp161a9blYaFhaGVq1awd7eHs2bN8fw4cORm5urcs7x48fx5JNPwt7eHt7e3li8eHG91UNE9Sc2NlZj6ElOZughorrRO/j06NED33//vfJ9ddj5/PPPERgYaLjK7tG3b19s3boVWVlZ+Pbbb3Hu3Dk8//zzyuMKhQL9+/eHj48Pjh49iiVLlmDOnDn49NNP660mIjI8TROYu3WbzefzEJFB6PQcn7v98ssvGDBgAIYNG4b169dj7NixOHXqFFJSUvDTTz+he/fu9VWriqSkJAwdOhQlJSWws7PD6tWrMWvWLOTn50MqlQKomgeQmJiIzMxMna/L5/gQGceZM2fw9ddfq7VzaIuIdKHr72+9e3yeeOIJpKeno7y8HF26dMHevXvh4eGB1NTUBgs9165dw8aNGxEUFAQ7OzsAQGpqKnr16qUMPQAQEhKCrKwsFBUVNUhdRFQ7sbGxDD1E1CBqtVdX27Zt8dlnnxm6lvuaOXMmPvzwQ9y+fRuPPfYYdu7cqTyWn5+v9oRpT09P5TFXV1eN1ywpKUFJSYnyvUKhqIfKiUgbTUNb0dHR9TpnkIisl049PgqFQueXPiIjIyGRSGp83T1MNX36dKSlpWHv3r2wtbVFeHg49BypU7No0SLI5XLly9vbu07XIyLdpKWlaX0gIUMPEdUXneb42NjY6PwXUUVFhc5fXlhYiKtXr9Z4Tps2bVSGr6pdunQJ3t7eSElJQWBgIMLDw6FQKJCYmKg858CBA+jXrx+uXbumV4+Pt7c35/gQ1SPutUVEhmbQvboOHDig/OecnBxERkYiIiJCuYorNTUVGzZswKJFi/Qq0t3dHe7u7np9plplZSUAKENLYGAgZs2ahbKyMuW8n3379sHPz09r6AEAmUwGmUxWqxqISH/aenmIiBqC3qu6nnrqKbzxxht45ZVXVNq//vprfPrppzh48KAh6wMA/Pbbb/j999/xxBNPwNXVFefOncN7772HgoICnDx5EjKZDMXFxfDz80P//v0xc+ZMZGRkYOTIkVi+fDnGjBmj83dxVRdR/Thw4AAOHTqk1s7QQ0SGUG+rulJTU9GjRw+19h49euDIkSP6Xk4njo6O+O677/DUU0/Bz88Po0aNwsMPP4yffvpJ2Vsjl8uxd+9eZGdno3v37pg2bRqio6P1Cj1EVD9iY2MZeojIJOjd4+Pn54chQ4aoPRV5xowZ2LFjB7KysgxaYENjjw+RYXFoi4gagkHn+Nxt+fLleO6557B7924EBAQAAI4cOYIzZ87g22+/rX3FRGRRduzYgfT0dLV2hh4iMia9h7qeeeYZnDlzBoMHD8a1a9dw7do1DB48GH/99ReeeeaZ+qiRiMxMbGysWugRAvD3Z+ghIuPSe6jL0nGoi6hu9BnaSkoC4uKAyEggLKy+KyMiS1ZvQ10AcP36daxduxanT58GAHTq1AkjR46EXC6vXbVEZPbWrl2LS5cuqbXXNLQVFwekplb9yeBDRA1B76GuP/74A23btsXy5cuVQ13x8fFo27Yt/vzzz/qokYhMXGxsrFro8fLyuu98nshIIDAQ3HWdiBqM3kNdTz75JNq1a4fPPvsMjRpVdRiVl5fjjTfewN9//61xyao54VAXkX64aouITIGuv7/1Dj4ODg5IS0tD+/btVdpPnTqFHj164Pbt27Wr2EQw+BDp5sMPP9S45QxDDxEZQ73N8XF2dsaFCxfUgs/FixfRpEkT/SslIrOjqZfn0iV/fPYZJ+oQkWnTe47PSy+9hFGjRmHLli24ePEiLl68iM2bN2vcxoKILI+m0JOcHIPBgxl6iMj06d3js3TpUkgkEoSHh6O8vBwAYGdnh/HjxyMuLs7gBRKRaahpR3WObhGRuaj1c3xu376Nc+fOAQDatm0LR0dHgxZmLJzjQ6ROU+h5+umnERQUpHzPZ/IQkTHV2+RmS8fgQ6RK11VbQUFVz+QJDARSUhqiMiKi/xh8cvPIkSN1Om/dunW6XpKITFhNQ1uaREb+1+NDRGSqdA4+69evh4+PD/z9/cFOIiLLpin0PPfcc+jcubPWz4SFcYiLiEyfzsFn/Pjx2LRpE7Kzs/H6669j2LBhaNq0aX3WRkQNTAiBuXPnqrXr8mwezvEhInOg1xyfkpISfPfdd1i3bh1SUlIwcOBAjBo1Cv3794dEIqnPOhsM5/iQtdJ3aOtenONDRMZU75Obz58/j/Xr1+OLL75AeXk5Tp48icaNG9e6YFPB4EPWSFPoiYiIgI+Pj87XYI8PERlTve7ODgA2NjaQSCQQQqCioqK2lyEiI6qsrMS8efPU2muz7QTn+BCROdAr+Nw91PXLL79g0KBB+PDDDxEaGgobG70fAk1ERqRtaMvfn08jJCLLpXPwmTBhAjZv3gxvb2+MHDkSmzZtgpubW33WRkT1RFPo+fnnidi/3w2Bgey5ISLLpXPwWbNmDVq1aoU2bdrgp59+wk8//aTxvO+++85gxRGRYZWVlWHhwoVq7TExMUhKAm7f5nN4iMiy6Rx8wsPDLWblFpE1ut+qLc7RISJroNcDDInIPGkKPdOmTbOIlZhERPqo9aouIjJ9//77LxYvXqzWXptVW0REloDBh8hC1fWBhERElojBh8gCaQo9UVFRkEqlRqiGiMh0MPgQWRCFQoHly5ertbOXh4ioCoMPkYXg0BYR0f3xcctEFkBT6Nmy5T34+1c9nycoqGovLSIia8ceHyIzVlhYiI8//litfc6cql6euLiq96mpVf/M5/QQkbVj8CEyUzXtteXnB0gk/z2FuXrXdCIia2d2waekpAQBAQE4duwY0tLS0K1bN+Wx48ePY+LEifj999/h7u6OSZMmYcaMGcYrlqieaAo90dHRyqer39uzw54eIqIqZjfHZ8aMGWjRooVau0KhQP/+/eHj44OjR49iyZIlmDNnDj799FMjVElUPy5evKgx9MTExHBLGSIiHZhVj8/u3buxd+9efPvtt9i9e7fKsY0bN6K0tBTr1q2DVCpFp06dkJ6ejvj4eIwZM8ZIFRMZjqbA06hRI8yaNcsI1RARmSezCT4FBQUYPXo0EhMT4ejoqHY8NTUVvXr1UnlAW0hICN5//30UFRXB1dVV43VLSkpQUlKifK9QKAxfPFEdaevlISIi/ZjFUJcQAhERERg3bhx69Oih8Zz8/Hx4enqqtFW/z8/P13rtRYsWQS6XK1/e3t6GK5yojrKyshh6iIgMyKjBJzIyEhKJpMZXZmYmVq1ahRs3biAqKsrgNURFRaG4uFj5unjxosG/g6g2YmNjsXnzZpU2T09PZejh83mIiPRn1KGuadOmISIiosZz2rRpgx9//BGpqamQyWQqx3r06IHXXnsNGzZsgJeXFwoKClSOV7/38vLSen2ZTKZ2XSJj06WXJy6Oz+chItKXUYOPu7s73N3d73veypUrMX/+fOX73NxchISEYMuWLQgICAAABAYGYtasWSgrK4OdnR0AYN++ffDz89M6v4fI1Bw+fBjJyclq7ZqGtiIj+XweIiJ9SYQQwthF6CsnJwe+vr4qz/EpLi6Gn58f+vfvj5kzZyIjIwMjR47E8uXL9VrVpVAoIJfLUVxcDGdn53q6AyJ1mnp5fH19ER4eboRqiIjMi66/v81mVdf9yOVy7N27FxMnTkT37t3h5uaG6OhoLmUns8AJzEREDcMse3zqE3t8qCHt27cPKSkpau13T2CuHs7iPB4iIu2srseHyNxo6uXx9/dH2F0JhxOYiYgMi8GHyAh0HdriBGYiIsNi8CFqQDt27EB6erpau7b5PGFh7OkhIjIkBh+iBqKpl6dFi6eRkBAEf38GHCKihmAWW1YQmTttQ1sJCUHKOTxERFT/2ONDVI/Wr1+P8+fPq7VXD21xDg8RUcNi8CGqJ5p6eZ599ll06dJF+Z5zeIiIGhaHuojqgbahrbtDz9244SgRUcNgjw+RAS1fvhwKhUKt/X5PYebzeoiIGgaDD5GBaOrlGT58ONq0aXPfz3KuDxFRw2DwITKAuu61xbk+REQNg8GHqA4WLVqE0tJStXZuMEpEZJoYfIhqSVMvz7hx4+Dp6WmEaoiISBcMPkR6EkJg7ty5au3s5SEiMn1czk6kh2XLltUYergsnYjItLHHh0hHmoa2OnWagueflyvfc1k6EZFpY48P0X1UVFRoXbUllcpVengiI4HAQC5LJyIyVRIhhDB2EaZEoVBALpejuLgYzs7Oxi6HjExT4AH+G9oKCqrq4QkMBFJSGrIyIiK6m66/vznURaSFptAzc+ZM2NvbK9/zwYNEROaFwYfoHqWlpVi0aJFau6ZVW3zwIBGReeEcHyvCFUf3Fxsbq3PoISIi88MeHyvCFUc10zS0NWvWLDRqxP9MiIgsBXt8rAhXHGl2+/Ztrau2GHqIiCwL/1a3IpyPok5T4JFIJIiOjjZCNUREVN8YfMhqaQo97733Hmxs2BFKRGSpGHzI6ty4cQPx8fFq7ZzATERk+Rh8yKpo6uVxdXXF5MmTjVANERE1NAYfshqaQk90dDQkEokRqiEiImPgZAayeFevXtUYevz9Y/D44xI+14iIyIqwx4csmuYd1Tvh+eefV+6zxecaERFZD7Pp8WndujUkEonKKy4uTuWc48eP48knn4S9vT28vb2xePFiI1VLpkDbs3mef/55AHyuERGRNTKrHp+5c+di9OjRyvdNmjRR/rNCoUD//v0RHByMNWvW4MSJExg5ciRcXFwwZswYY5RLRpKbm4vPPvtMrf3eVVt8rhERkfUxq+DTpEkTeHl5aTy2ceNGlJaWYt26dZBKpejUqRPS09MRHx/P4GNFNPXyBAQEIDQ01AjVEBGRqTGboS4AiIuLQ7NmzeDv748lS5agvLxceSw1NRW9evWCVCpVtoWEhCArKwtFRUVar1lSUgKFQqHyIvOkbWiLoYeIiKqZTY/P5MmT8cgjj6Bp06ZISUlBVFQU8vLylA+iy8/Ph6+vr8pnPD09lcdcXV01XnfRokUaf2GS+cjOzsYXX3yh1s4HEhIR0b2MGnwiIyPx/vvv13jO6dOn0b59e0ydOlXZ9vDDD0MqlWLs2LFYtGgRZDJZrWuIiopSubZCoYC3t3etr0cNS1Nofeqpp/DEE08YoRoiIjJ1Rg0+06ZNQ0RERI3ntGnTRmN7QEAAysvLkZOTAz8/P3h5eaGgoEDlnOr32uYFAYBMJqtTcCLj0Ta0RUREpI1Rg4+7uzvc3d1r9dn09HTY2NjAw8MDABAYGIhZs2ahrKwMdnZ2AIB9+/bBz89P6zAXmadTp05h27Ztau0MPUREdD9mMccnNTUVv/32G/r27YsmTZogNTUVb7/9NoYNG6YMNa+++ipiY2MxatQozJw5ExkZGfjggw+wfPlyI1dPhqSpl2fw4MF45JFHjFANERGZG7NY1SWTybB582b07t0bnTp1woIFC/D222/j008/VZ4jl8uxd+9eZGdno3v37pg2bRqio6O5lN0EJSUBQUHQe6sIbUNbDD1ERKQriRBCGLsIU6JQKCCXy1FcXAxnZ2djl2ORqreKCAwEUlLuf/4ff/yB77//Xq2dQ1tERFRN19/fZjHURZYlMrJqfyxdtorQ1Mvz0ksvoX379vVQGRERWToGH2pwum4VwVVbRERkaAw+ZHIOHz6M5ORktXaGHiIiqisGHzIpmnp5RowYgdatWzd8MUREZHEYfMhkaAo9/v4xYOYhIiJDYfAhoztw4AAOHTqk1j5nTgwCA3WbD0RERKQLBh8yKk29PBMmTEBqqjsCA3Vb+UVERKQrBh8ymppWbem68ouIiEgfZvHkZrIsu3btqvVS9do+9ZmIiAhgjw81ME2B56233oKLi4tOn4+Lq3rqc1wce4SIiEh/7PGhBiGE0NrLo2voAarm/HDuDxER1RZ7fKje7dy5E0ePHlVps7W1xezZs/W+Fuf+EBFRXTD4UL3S1MszY8YMODg4GKEaIiKydgw+VC8qKysxb948tXZuO0FERMbE4EMG98033+DkyZMqbS4uLnjrrbeMVBEREVEVBh8yKE1DW1FRUZBKpUaohoiISBWDDxlERUUF5s+fr9bOoS0iIjIlDD5UZ9999x1OnDih0pab2wUDBz5rpIqIiIg0Y/ChOtE0tLV372ykpNjixAkuPSciItPC4EO1UlZWhoULF6q1x8TEwN+/6snKfMggERGZGgYf0tuXX36Jv//+W6UtICAAoaGhAPiQQSIiMl0MPqQXTUNb0dHRkEgkRqiGiIhIPww+pJM7d+7g/fffV2vnqi0iIjInDD50X2vWrEFBQYFKW58+fdC7d28jVURERFQ7DD5UIw5tERGRJWHwIY1u3ryJZcuWqbVzaIuIiMwZgw+pWbp0KW7duqXSFhoaioCAACNVREREZBgMPqRC09AWe3mIiMhSMPgQAKC4uBgrVqxQa2foISIiS8LgQxp7ef73v//h4YcfNkI1RERE9cfG2AXo4/vvv0dAQAAcHBzg6uqKoUOHqhy/cOECBg4cCEdHR3h4eGD69OkoLy83TrFmQtvQFkMPERFZIrPp8fn2228xevRoLFy4EP369UN5eTkyMjKUxysqKjBw4EB4eXkhJSUFeXl5CA8Ph52dncY9pazdP//8g48++kitnUNbRERkySRCCGHsIu6nvLwcrVu3RmxsLEaNGqXxnN27d2PQoEHIzc2Fp6cngKoH782cOROFhYWQSqU6fZdCoYBcLkdxcTGcnZ0Ndg+mRFMvz8svvww/Pz8jVENERFR3uv7+Nouhrj///BOXL1+GjY0N/P390bx5cwwYMEClxyc1NRVdunRRhh4ACAkJgUKhwMmTJ41RtknSNrTF0ENERNbALIJP9U7gc+bMwezZs7Fz5064urqiT58+uHbtGgAgPz9fJfQAUL7Pz8/Xeu2SkhIoFAqVlyUqLCzkUnUiIrJ6Rg0+kZGRkEgkNb4yMzNRWVkJAJg1axaee+45dO/eHQkJCZBIJNi2bVudali0aBHkcrny5e3tbYhbMynz58/Hxx9/rNI2YsQIhh4iIrI6Rp3cPG3aNERERNR4Tps2bZCXlwcA6Nixo7JdJpOhTZs2uHDhAgDAy8sLR44cUfls9caaXl5eWq8fFRWFqVOnKt8rFAqLCj/s5SEiIvqPUYOPu7s73N3d73te9+7dIZPJkJWVhSeeeAIAUFZWhpycHPj4+AAAAgMDsWDBAly5cgUeHh4AgH379sHZ2VklMN1LJpNBJpMZ4G5MS15eHj799FOVNolEgujoaCNVREREZHxmsZzd2dkZ48aNQ0xMDLy9veHj44MlS5YAAF544QUAQP/+/dGxY0cMHz4cixcvRn5+PmbPno2JEydaZLCpiaZengkTJugUMomIiCyZWUxuBoAlS5bg5ZdfxvDhw/Hoo4/i/Pnz+PHHH+Hq6goAsLW1xc6dO2Fra4vAwEAMGzYM4eHhmDt3rpEr119SEhAUVPWnvrQNbTH0EBERmclzfBqSKTzHJygISE0FAgOBlBTdPlNQUIA1a9aotDVp0kRl/hIREZGl0vX3t1kMdVmbyEggLq7qT1188MEHuH79ukrb5MmTlb1hREREVIXBxwSFhVW9dKFpaMvfPwbMPEREROoYfMzU1atX8eGHH6q0Xbrkj88/D0NgoO7BiYiIyJow+JihxMREHDt2TKVt5syZ2LvXHidP6j5ERkREZG0YfMxMTQ8k1GeIjIiIyBox+JiJK1euYPXq1SptQ4YMQbdu3YxTEBERkRli8DEDW7ZsQWZmpkrbu+++Czs7OyNVREREZJ4YfEyYEELtAYzcdoKIiKj2GHxMlKa9tp5//nl06tTJSBURERGZPwYfE/TFF18gOztbpW3WrFlo1Ig/LiIiorrgb1ITomloy8HBATNmzDBSRURERJaFwcdEFBcXY8WKFSptr7zyCh566CHjFERERGSBGHxMwNGjR7Fz506Vtvfeew82NjZGqoiIiMgyMfg0kKSk/zYerX7IoBACH374Ia5du6Y8LyQkBI899piRqiQiIrJsDD4NJC4OSE2t+jMsDCgqKsLKlStVzuGO6kRERPWLYykNJDISCAys+vO3335TCT1NmzZFdHR0rUJPUhIQFFT1JxEREdVMIoQQxi7ClCgUCsjlchQXF8PZ2dmg1xZCYMWKFVAoFMq2gQMHokePHrW+ZlBQVU9SYCCQkmKIKomIiMyPrr+/OdTVQK5evYoPP/xQpW3KlCmQy+V1um5k5H9zh4iIiKhmDD4N5O7Q4+npibFjx0IikdT5utyRnYiISHcMPg2ka9euOHbsGHdUJyIiMiLO8blHfc7xISIiovqh6+9vruoiIiIiq8HgQ0RERFaDwYeIiIisBoMPERERWQ0GHyIiIrIaDD5ERERkNRh8iIiIyGow+BAREZHVYPAhIiIiq8HgQ0RERFbDLILPwYMHIZFINL5+//135XnHjx/Hk08+CXt7e3h7e2Px4sVGrJqIiIhMjVlsUhoUFIS8vDyVtvfeew/79+9Hjx49AFTt0dG/f38EBwdjzZo1OHHiBEaOHAkXFxeMGTPGGGUTERGRiTGL4COVSuHl5aV8X1ZWhh07dmDSpEmQSCQAgI0bN6K0tBTr1q2DVCpFp06dkJ6ejvj4eAYfIiIiAmAmQ133SkpKwtWrV/H6668r21JTU9GrVy9IpVJlW0hICLKyslBUVKT1WiUlJVAoFCovIiIiskxm0eNzr7Vr1yIkJAQPPPCAsi0/Px++vr4q53l6eiqPubq6arzWokWLEBsbq9bOAERERGQ+qn9vCyFqPM+owScyMhLvv/9+jeecPn0a7du3V76/dOkSkpOTsXXrVoPUEBUVhalTpyrfZ2dno1u3bvD29jbI9YmIiKjh3LhxA3K5XOtxowafadOmISIiosZz2rRpo/I+ISEBzZo1Q1hYmEq7l5cXCgoKVNqq3989P+heMpkMMplM+d7HxwcAcOHChRr/xZkrhUIBb29vXLx4Ec7OzsYux6As+d4Ay74/S743wLLvz5LvDbDs+7O0exNC4MaNG2jRokWN5xk1+Li7u8Pd3V3n84UQSEhIQHh4OOzs7FSOBQYGYtasWSgrK1Me27dvH/z8/LQOc2liY1M17Ukul1vE/xC0cXZ2ttj7s+R7Ayz7/iz53gDLvj9LvjfAsu/Pku5Nlw4Ls5rc/OOPPyI7OxtvvPGG2rFXX30VUqkUo0aNwsmTJ7FlyxZ88MEHKsNYREREZN3ManLz2rVrERQUpDLnp5pcLsfevXsxceJEdO/eHW5uboiOjuZSdiIiIlIyq+Dz9ddf13j84Ycfxs8//1yn75DJZIiJiVGZ92NJLPn+LPneAMu+P0u+N8Cy78+S7w2w7Puz5HuriUTcb90XERERkYUwqzk+RERERHXB4ENERERWg8GHiIiIrAaDDxEREVkNBp//7+DBg5BIJBpfv//+u/K848eP48knn4S9vT28vb2xePFiI1atv++//x4BAQFwcHCAq6srhg4dqnL8woULGDhwIBwdHeHh4YHp06ejvLzcOMXqoXXr1mo/t7i4OJVzzP1nB1RtqtutWzdIJBKkp6erHDPX+wsLC0OrVq1gb2+P5s2bY/jw4cjNzVU5x1zvLScnB6NGjYKvry8cHBzQtm1bxMTEoLS0VOU8c72/BQsWICgoCI6OjnBxcdF4jrn+nQIAH330EVq3bg17e3sEBATgyJEjxi6pVg4dOoTBgwejRYsWkEgkSExMVDkuhEB0dDSaN28OBwcHBAcH48yZM8YptiEIEkIIUVJSIvLy8lReb7zxhvD19RWVlZVCCCGKi4uFp6eneO2110RGRobYtGmTcHBwEJ988omRq9fNN998I1xdXcXq1atFVlaWOHnypNiyZYvyeHl5uejcubMIDg4WaWlpYteuXcLNzU1ERUUZsWrd+Pj4iLlz56r8/G7evKk8bu4/u2qTJ08WAwYMEABEWlqast2c7y8+Pl6kpqaKnJwc8euvv4rAwEARGBioPG7O97Z7924REREhkpOTxblz58SOHTuEh4eHmDZtmvIcc76/6OhoER8fL6ZOnSrkcrnacXP+O2Xz5s1CKpWKdevWiZMnT4rRo0cLFxcXUVBQYOzS9LZr1y4xa9Ys8d133wkAYvv27SrH4+LihFwuF4mJieLYsWMiLCxM+Pr6in///dc4BdczBh8tSktLhbu7u5g7d66y7eOPPxaurq6ipKRE2TZz5kzh5+dnjBL1UlZWJlq2bCk+//xzrefs2rVL2NjYiPz8fGXb6tWrhbOzs8o9myIfHx+xfPlyrcfN+WdXbdeuXaJ9+/bi5MmTasHHEu6v2o4dO4REIhGlpaVCCMu6NyGEWLx4sfD19VW+t4T7S0hI0Bh8zPnvlJ49e4qJEycq31dUVIgWLVqIRYsWGbGqurs3+FRWVgovLy+xZMkSZdv169eFTCYTmzZtMkKF9Y9DXVokJSXh6tWreP3115Vtqamp6NWrF6RSqbItJCQEWVlZKCoqMkaZOvvzzz9x+fJl2NjYwN/fH82bN8eAAQOQkZGhPCc1NRVdunSBp6ensi0kJAQKhQInT540Rtl6iYuLQ7NmzeDv748lS5aodKeb888OqNpwd/To0fjyyy/h6Oiodtzc76/atWvXsHHjRgQFBSn33LOUe6tWXFyMpk2bKt9b2v3dzVz/TiktLcXRo0cRHBysbLOxsUFwcDBSU1ONWJnhZWdnIz8/X+Ve5XI5AgICLO5eqzH4aLF27VqEhITggQceULbl5+er/AcMQPk+Pz+/QevT199//w0AmDNnDmbPno2dO3fC1dUVffr0wbVr1wCY9/1NnjwZmzdvxoEDBzB27FgsXLgQM2bMUB4353sTQiAiIgLjxo1Djx49NJ5jzvcHADNnzoSTkxOaNWuGCxcuYMeOHcpj5n5vdzt79ixWrVqFsWPHKtss6f7uZa739s8//6CiokJj7aZcd21U34813Gs1iw8+kZGRWictV78yMzNVPnPp0iUkJydj1KhRRqpad7reX2VlJQBg1qxZeO6559C9e3ckJCRAIpFg27ZtRr4LzfT52U2dOhV9+vTBww8/jHHjxmHZsmVYtWoVSkpKjHwX2ul6f6tWrcKNGzcQFRVl7JJ1pu9/d9OnT0daWhr27t0LW1tbhIeHQ5jwQ+Vr8/fK5cuXERoaihdeeAGjR482UuX3V5t7IzInZrVXV21MmzYNERERNZ7Tpk0blfcJCQlo1qwZwsLCVNq9vLxQUFCg0lb93svLq+7F1oKu95eXlwcA6Nixo7JdJpOhTZs2uHDhAoCqe7h31YIx7682P7tqAQEBKC8vR05ODvz8/Mz6Z/fjjz8iNTVVbT+dHj164LXXXsOGDRtM7v70/dm5ubnBzc0NDz30EDp06ABvb28cPnwYgYGBJndvgP73l5ubi759+yIoKAiffvqpynmmdn91+e/uXqb2d4qu3NzcYGtrq/HnYsp110b1/RQUFKB58+bK9oKCAnTr1s1IVdUzY08yMjWVlZXC19dXZdVFtepJiNWTLoUQIioqyiwmIRYXFwuZTKYyubm0tFR4eHgoV49UT0S8e9XCJ598IpydncWdO3cavOa6+Oqrr4SNjY24du2aEMK8f3bnz58XJ06cUL6Sk5MFAPHNN9+IixcvCiHM+/7udf78eQFAHDhwQAhh/vd26dIl8eCDD4qXX35ZlJeXqx039/sT4v6Tm83x75SePXuKN998U/m+oqJCtGzZ0mInNy9dulTZVv37wlInNzP43OOHH34QAMTp06fVjl2/fl14enqK4cOHi4yMDLF582bh6OhoFstOhRDirbfeEi1bthTJyckiMzNTjBo1Snh4eCjDQfXS0/79+4v09HSxZ88e4e7ubvJLT1NSUsTy5ctFenq6OHfunPjqq6+Eu7u7CA8PV55j7j+7u2VnZ6ut6jLX+zt8+LBYtWqVSEtLEzk5OWL//v0iKChItG3bVvmL0VzvTYiq0NOuXTvx1FNPiUuXLqk8bqGaOd/f+fPnRVpamoiNjRWNGzcWaWlpIi0tTdy4cUMIYb5/pwhRtZxdJpOJ9evXi1OnTokxY8YIFxcXlRVq5uLGjRvKnw0AER8fL9LS0sT58+eFEFXL2V1cXMSOHTvE8ePHxZAhQ7ic3Zq88sorIigoSOvxY8eOiSeeeELIZDLRsmVLERcX14DV1U1paamYNm2a8PDwEE2aNBHBwcEiIyND5ZycnBwxYMAA4eDgINzc3MS0adNEWVmZkSrWzdGjR0VAQICQy+XC3t5edOjQQSxcuFDt/1Ga88/ubpqCjxDmeX/Hjx8Xffv2FU2bNhUymUy0bt1ajBs3Tly6dEnlPHO8NyGqekIAaHzdzVzvb8SIERrvrbq3Tgjz/Dul2qpVq0SrVq2EVCoVPXv2FIcPHzZ2SbVy4MABjT+nESNGCCGqen3ee+894enpKWQymXjqqadEVlaWcYuuRxIhTHgGIREREZEBWfyqLiIiIqJqDD5ERERkNRh8iIiIyGow+BAREZHVYPAhIiIiq8HgQ0RERFaDwYeIiIisBoMPERERWQ0GHyILk5+fj0mTJqFNmzaQyWTw9vbG4MGDsX//fuU5KSkpeOaZZ+Dq6gp7e3t06dIF8fHxqKioUJ6Tk5ODUaNGwdfXFw4ODmjbti1iYmJQWlqq8n2fffYZunbtisaNG8PFxQX+/v5YtGiR8vicOXMgkUgQGhqqVuuSJUsgkUjQp08fne9PoVBg1qxZaN++Pezt7eHl5YXg4GB89913Kju6nzx5Ei+++CLc3d0hk8nw0EMPITo6Grdv31aec+3aNUyaNAl+fn5wcHBAq1atMHnyZBQXF+tUS05OjtYdzA8fPqzzPfXp0wdTpkzR+Xwiqj2L352dyJrk5OTg8ccfh4uLC5YsWYIuXbqgrKwMycnJmDhxIjIzM7F9+3a8+OKLeP3113HgwAG4uLjghx9+wIwZM5CamoqtW7dCIpEgMzMTlZWV+OSTT9CuXTtkZGRg9OjRuHXrFpYuXQoAWLduHaZMmYKVK1eid+/eKCkpwfHjx5GRkaFSV/PmzXHgwAFcunQJDzzwgLJ93bp1aNWqlc73d/36dTzxxBMoLi7G/Pnz8eijj6JRo0b46aefMGPGDPTr1w8uLi44fPgwgoODERwcjO+//x6enp44cuQIpk2bhv379+PAgQOQSqXIzc1Fbm4uli5dio4dO+L8+fMYN24ccnNz8c033+hc1w8//IBOnTqptDVr1kznz+tCCIGKigo0asS/tonqxLg7ZhCRIQ0YMEC0bNlS3Lx5U+1YUVGRuHnzpmjWrJl49tln1Y4nJSUJAGLz5s1ar7948WLh6+urfD9kyBARERFRY00xMTGia9euYtCgQWL+/PnK9l9//VW4ubmJ8ePHi969e+twd0KMHz9eODk5icuXL6sdu3HjhigrKxOVlZWiY8eOokePHqKiokLlnPT0dCGRSGrcC2vr1q1CKpXqtJ+Utn3T7lZ9/1988YXw8fERzs7O4qWXXhIKhUIIoXm/q+zsbOX+Srt27RKPPPKIsLOzEwcOHBB37twRkyZNEu7u7kImk4nHH39cHDlyRPl91Z/buXOn6NKli5DJZCIgIECcOHFCCCHEzZs3RZMmTcS2bdtU6ty+fbtwdHRU1kVkqTjURWQhrl27hj179mDixIlwcnJSO+7i4oK9e/fi6tWreOedd9SODx48GA899BA2bdqk9TuKi4vRtGlT5XsvLy8cPnwY58+fv299I0eOxPr165Xv161bh9deew1SqfS+nwWAyspKbN68Ga+99hpatGihdrxx48Zo1KgR0tPTcerUKUydOhU2Nqp/xXXt2hXBwcH3vUdnZ2eD9qycO3cOiYmJ2LlzJ3bu3ImffvoJcXFxAIAPPvgAgYGBGD16NPLy8pCXlwdvb2/lZyMjIxEXF4fTp0/j4YcfxowZM/Dtt99iw4YN+PPPP9GuXTuEhITg2rVrKt85ffp0LFu2DL///jvc3d0xePBglJWVwcnJCS+//DISEhJUzk9ISMDzzz+PJk2aGOy+iUwRgw+RhTh79iyEEGjfvr3Wc/766y8AQIcOHTQeb9++vfIcTddftWoVxo4dq2yLiYmBi4sLWrduDT8/P0RERGDr1q2orKxU+/ygQYOgUChw6NAh3Lp1C1u3bsXIkSN1vr9//vkHRUVFNd4fcP977NChg9Z7/OeffzBv3jyMGTNG57oAICgoCI0bN1Z53a2yshLr169H586d8eSTT2L48OHKOVdyuRxSqRSOjo7w8vKCl5cXbG1tlZ+dO3cunn76abRt2xYymQyrV6/GkiVLMGDAAHTs2BGfffYZHBwcsHbtWpXvjImJwdNPP40uXbpgw4YNKCgowPbt2wEAb7zxBpKTk5GXlwcAuHLlCnbt2qXXz4PIXDH4EFkIcdfEXkOeCwCXL19GaGgoXnjhBYwePVrZ3rx5c6SmpuLEiRN46623UF5ejhEjRiA0NFQt/NjZ2WHYsGFISEjAtm3b8NBDD+Hhhx+ut5r1PV+hUGDgwIHo2LEj5syZo9dnt2zZgvT0dJXX3Vq3bq3Sk9K8eXNcuXJFp2v36NFD+c/nzp1DWVkZHn/8cWWbnZ0devbsidOnT6t8LjAwUPnPTZs2hZ+fn/Kcnj17olOnTtiwYQMA4KuvvoKPjw969eql2w0TmTEGHyIL8eCDDyonJWvz0EMPAYDaL8lqp0+fVp5TLTc3F3379kVQUBA+/fRTjZ/r3LkzJkyYgK+++gr79u3Dvn378NNPP6mdN3LkSGzbtg0fffSR3r0L7u7ucHFxqfH+gNrd440bNxAaGoomTZpg+/btsLOz06s2b29vtGvXTuV1t3uvJ5FINPaKaaJp2NIQ3njjDeXQY0JCAl5//XVIJJJ6+S4iU8LgQ2QhmjZtipCQEHz00Ue4deuW2vHr16+jf//+aNq0KZYtW6Z2PCkpCWfOnMErr7yibLt8+TL69OmD7t27IyEhQW3OjCYdO3YEAI01dOrUCZ06dUJGRgZeffVVfW4PNjY2ePnll7Fx40bk5uaqHb958ybKy8vRrVs3tG/fHsuXL1cLF8eOHcMPP/ygco8KhQL9+/eHVCpFUlIS7O3t9arLEKRSqcqjBLRp27YtpFIpfv31V2VbWVkZfv/9d+W/92p3L6cvKirCX3/9pTL8N2zYMJw/fx4rV67EqVOnMGLECAPcCZHpY/AhsiAfffQRKioq0LNnT3z77bc4c+YMTp8+jZUrVyIwMBBOTk745JNPsGPHDowZMwbHjx9HTk4O1q5di4iICDz//PN48cUXAfwXelq1aoWlS5eisLAQ+fn5yM/PV37f+PHjMW/ePPz66684f/48Dh8+jPDwcLi7u6sMtdztxx9/RF5eHlxcXPS+vwULFsDb2xsBAQH44osvcOrUKZw5cwbr1q2Dv78/bt68CYlEgrVr1+LUqVN47rnncOTIEVy4cAHbtm3D4MGDERgYqHxmTnXouXXrFtauXQuFQqG8R12CSLWrV68qP1f9unPnjs6fb926NX777Tfk5OTgn3/+0dob5OTkhPHjx2P69OnYs2cPTp06hdGjR+P27dsYNWqUyrlz587F/v37kZGRgYiICLi5uWHo0KHK466urnj22Wcxffp09O/fX+UxA0QWzahryojI4HJzc8XEiROFj4+PkEqlomXLliIsLEwcOHBAec6hQ4dESEiIcHZ2FlKpVHTq1EksXbpUlJeXK89JSEhQW2Zd/ar2zTffiGeeeUY0b95cSKVS0aJFC/Hcc8+J48ePK8+pXs6tzVtvvaXzcnYhhLh+/bqIjIwUDz74oJBKpcLT01MEBweL7du3i8rKSuV5x48fF88995xo2rSpsLOzE23bthWzZ88Wt27dUp5TvfRb0ys7O/u+tVQvZ9f02rRpk9b7X758ufDx8VG+z8rKEo899phwcHBQW85eVFSk8tl///1XTJo0Sbi5udW4nP3//u//RKdOnYRUKhU9e/YUx44dU6t///79AoDYunXrfe+VyFJIhNBzBiAREZmsgwcPom/fvigqKrpvr9qXX36Jt99+G7m5uTo/VoDI3PERoEREVub27dvIy8tDXFwcxo4dy9BDVoVzfIjIZNz7LJy7Xz///HOD1zNu3Dit9YwbN67B6zGUxYsXo3379vDy8kJUVJSxyyFqUBzqIiKTcfbsWa3HWrZsCQcHhwaspurBfgqFQuMxZ2dneHh4NGg9RFR3DD5ERERkNTjURURERFaDwYeIiIisBoMPERERWQ0GHyIiIrIaDD5ERERkNRh8iIiIyGow+BAREZHVYPAhIiIiq/H/AByAXbngZb0WAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfpUlEQVR4nO3deVxUVf8H8M+AgOyI7AqICyqCmjuZisoDuJWi5Zq7PRpU6s+1MrUsLE3bTG3RniezXNIyLXfEJ8UNQ8UtJRSVRdSYkUVAOL8/fLiPIwPMwKzM5/16zevF3HPm3u+9zMz9zjnnnisTQggQERERmTELQwdAREREZGhMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIyGQsWrQIMplMrboymQyLFi3SaTxhYWEICwsz2vURkfqYEBGRxr755hvIZDLpUa9ePTRq1Ajjx4/HrVu3DB2e0WnSpInS8fLw8ECPHj2wfft2ray/oKAAixYtwqFDh7SyPiJzxISIiGrs7bffxrfffos1a9agX79+2LBhA3r16oUHDx7oZHtvvvkmCgsLdbJuXWvfvj2+/fZbfPvtt5g1axYyMjIQHR2NNWvW1HrdBQUFWLx4MRMiolqoZ+gAiMh09evXD506dQIATJ48GW5ubnj//fexY8cOvPDCC1rfXr169VCvnml+bTVq1AhjxoyRno8dOxbNmzfHypUrMXXqVANGRkQAW4iISIt69OgBAEhNTVVafunSJQwbNgyurq6oX78+OnXqhB07dijVKSkpweLFi9GiRQvUr18fDRs2xDPPPIN9+/ZJdVSNISoqKsKMGTPg7u4OR0dHPPvss7h582aF2MaPH48mTZpUWK5qnevXr0efPn3g4eEBGxsbBAUFYfXq1Rodi+p4eXmhdevWSEtLq7Le7du3MWnSJHh6eqJ+/fpo164d/vWvf0nl165dg7u7OwBg8eLFUrecrsdPEdU1pvlTi4iM0rVr1wAADRo0kJadP38e3bt3R6NGjTBv3jzY29tj8+bNGDx4MH788UcMGTIEwKPEJC4uDpMnT0aXLl2gUChw6tQpnD59Gv/4xz8q3ebkyZOxYcMGjBo1Ck8//TQOHjyIAQMG1Go/Vq9ejTZt2uDZZ59FvXr18Msvv+Dll19GWVkZYmJiarXuciUlJbhx4wYaNmxYaZ3CwkKEhYXh6tWriI2NRUBAALZs2YLx48cjNzcXr732Gtzd3bF69WpMmzYNQ4YMQXR0NACgbdu2WomTyGwIIiINrV+/XgAQ+/fvFzk5OeLGjRti69atwt3dXdjY2IgbN25Idfv27StCQkLEgwcPpGVlZWXi6aefFi1atJCWtWvXTgwYMKDK7S5cuFA8/rWVnJwsAIiXX35Zqd6oUaMEALFw4UJp2bhx44S/v3+16xRCiIKCggr1IiMjRdOmTZWW9erVS/Tq1avKmIUQwt/fX0RERIicnByRk5Mjzpw5I0aMGCEAiFdeeaXS9X300UcCgNiwYYO0rLi4WISGhgoHBwehUCiEEELk5ORU2F8i0gy7zIioxsLDw+Hu7g5fX18MGzYM9vb22LFjBxo3bgwAuHfvHg4ePIgXXngB9+/fx507d3Dnzh3cvXsXkZGRuHLlinRVmouLC86fP48rV66ovf1ff/0VAPDqq68qLZ8+fXqt9svW1lb6Wy6X486dO+jVqxf++usvyOXyGq1z7969cHd3h7u7O9q1a4ctW7bgxRdfxPvvv1/pa3799Vd4eXlh5MiR0jIrKyu8+uqryMvLQ0JCQo1iIaKK2GVGRDW2atUqBAYGQi6XY926dTh8+DBsbGyk8qtXr0IIgQULFmDBggUq13H79m00atQIb7/9Np577jkEBgYiODgYUVFRePHFF6vs+rl+/TosLCzQrFkzpeUtW7as1X4dOXIECxcuRGJiIgoKCpTK5HI5nJ2dNV5n165dsWTJEshkMtjZ2aF169ZwcXGp8jXXr19HixYtYGGh/Nu1devWUjkRaQcTIiKqsS5dukhXmQ0ePBjPPPMMRo0ahcuXL8PBwQFlZWUAgFmzZiEyMlLlOpo3bw4A6NmzJ1JTU/Hzzz9j7969+Oqrr7By5UqsWbMGkydPrnWslU3oWFpaqvQ8NTUVffv2RatWrbBixQr4+vrC2toav/76K1auXCntk6bc3NwQHh5eo9cSke4xISIirbC0tERcXBx69+6Nzz77DPPmzUPTpk0BPOrmUScZcHV1xYQJEzBhwgTk5eWhZ8+eWLRoUaUJkb+/P8rKypCamqrUKnT58uUKdRs0aIDc3NwKy59sZfnll19QVFSEHTt2wM/PT1oeHx9fbfza5u/vj7Nnz6KsrEyplejSpUtSOVB5skdE6uMYIiLSmrCwMHTp0gUfffQRHjx4AA8PD4SFhWHt2rXIzMysUD8nJ0f6++7du0plDg4OaN68OYqKiirdXr9+/QAAn3zyidLyjz76qELdZs2aQS6X4+zZs9KyzMzMCrNFW1paAgCEENIyuVyO9evXVxqHrvTv3x9ZWVnYtGmTtOzhw4f49NNP4eDggF69egEA7OzsAEBlwkdE6mELERFp1ezZs/H888/jm2++wdSpU7Fq1So888wzCAkJwZQpU9C0aVNkZ2cjMTERN2/exJkzZwAAQUFBCAsLQ8eOHeHq6opTp05h69atiI2NrXRb7du3x8iRI/H5559DLpfj6aefxoEDB3D16tUKdUeMGIG5c+diyJAhePXVV1FQUIDVq1cjMDAQp0+flupFRETA2toagwYNwj//+U/k5eXhyy+/hIeHh8qkTpdeeuklrF27FuPHj0dSUhKaNGmCrVu34siRI/joo4/g6OgI4NEg8KCgIGzatAmBgYFwdXVFcHAwgoOD9RovkUkz9GVuRGR6yi+7P3nyZIWy0tJS0axZM9GsWTPx8OFDIYQQqampYuzYscLLy0tYWVmJRo0aiYEDB4qtW7dKr1uyZIno0qWLcHFxEba2tqJVq1bi3XffFcXFxVIdVZfIFxYWildffVU0bNhQ2Nvbi0GDBokbN26ovAx97969Ijg4WFhbW4uWLVuKDRs2qFznjh07RNu2bUX9+vVFkyZNxPvvvy/WrVsnAIi0tDSpniaX3Vc3pUBl68vOzhYTJkwQbm5uwtraWoSEhIj169dXeO3Ro0dFx44dhbW1NS/BJ6oBmRCPtQsTERERmSGOISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIiIjI7DEhIiIiIrPHhIiIiIjMHidmVFNZWRkyMjLg6OjIafKJiIhMhBAC9+/fh4+PT4UbJT+OCZGaMjIy4Ovra+gwiIiIqAZu3LiBxo0bV1rOhEhN5VPk37hxA05OTgaOhoiIiNShUCjg6+srnccrw4RITeXdZE5OTkyIiIiITEx1w104qJqIiIjMHhMiIiIiMntMiIiIiMjscQwREZERKy0tRUlJiaHDIDJaVlZWsLS0rPV6mBARERkhIQSysrKQm5tr6FCIjJ6Liwu8vLxqNU8gEyIiIiNUngx5eHjAzs6OE8ISqSCEQEFBAW7fvg0A8Pb2rvG6mBARERmZ0tJSKRlq2LChocMhMmq2trYAgNu3b8PDw6PG3WccVE1EZGTKxwzZ2dkZOBIi01D+WanNeDsmRERERordZETq0cZnhQkRERERmT0mRERERFTBoUOHIJPJan2lY5MmTfDRRx9pJSZdYkJUR2TKC3E09Q4y5YWGDoWIzFxWVhZeeeUVNG3aFDY2NvD19cWgQYNw4MABqc7Ro0fRv39/NGjQAPXr10dISAhWrFiB0tJSqc61a9cwadIkBAQEwNbWFs2aNcPChQtRXFystL0vv/wS7dq1g4ODA1xcXPDUU08hLi5OKl+0aBFkMhmioqIqxLps2TLIZDKEhYWpvX8KhQJvvPEGWrVqhfr168PLywvh4eHYtm0bhBBSvfPnz+OFF16Au7s7bGxsEBgYiLfeegsFBQVSnXv37uGVV15By5YtYWtrCz8/P7z66quQy+VqxXLt2jXIZDKVj2PHjqm9T2FhYZg+fbra9esiXmVWB2w6mY75286hTAAWMiAuOgTDO/sZOiwiMkPXrl1D9+7d4eLigmXLliEkJAQlJSXYs2cPYmJicOnSJWzfvh0vvPACJkyYgPj4eLi4uGD//v2YM2cOEhMTsXnzZshkMly6dAllZWVYu3YtmjdvjpSUFEyZMgX5+flYvnw5AGDdunWYPn06PvnkE/Tq1QtFRUU4e/YsUlJSlOLy9vZGfHw8bt68icaNG0vL161bBz8/9b8vc3Nz8cwzz0Aul2PJkiXo3Lkz6tWrh4SEBMyZMwd9+vSBi4sLjh07hvDwcISHh2PXrl3w9PTEiRMn8H//9384cOAA4uPjYW1tjYyMDGRkZGD58uUICgrC9evXMXXqVGRkZGDr1q1qx7V//360adNGaRmvUNSQMKDPP/9chISECEdHR+Ho6Ci6desmfv31V6m8sLBQvPzyy8LV1VXY29uL6OhokZWVpbSO69evi/79+wtbW1vh7u4uZs2aJUpKSpTqxMfHi6eeekpYW1uLZs2aifXr12scq1wuFwCEXC6v0b7qSkZugQiYt1P4z/3fo+m8XSIjt8DQoRFRDRUWFooLFy6IwsJCQ4eisX79+olGjRqJvLy8CmV///23yMvLEw0bNhTR0dEVynfs2CEAiB9++KHS9X/wwQciICBAev7cc8+J8ePHVxnTwoULRbt27cTAgQPFkiVLpOVHjhwRbm5uYtq0aaJXr15q7J0Q06ZNE/b29uLWrVsVyu7fvy9KSkpEWVmZCAoKEp06dRKlpaVKdZKTk4VMJhNLly6tdBubN28W1tbWFc5lqqSlpQkA4o8//qi0Tvn+//vf/xb+/v7CyclJDB8+XCgUCiGEEOPGjRMAlB5paWkiPj5eABD79+8XHTt2FLa2tiI0NFRcunRJWvfVq1fFs88+Kzw8PIS9vb3o1KmT2Ldvn9L2/f39xcqVK6XnAMTnn38uoqKiRP369UVAQIDYsmWLVN67d28RExOjtI7bt28LKysrsX//fpX7WNVnRt3zt0G7zBo3boylS5ciKSkJp06dQp8+ffDcc8/h/PnzAIAZM2bgl19+wZYtW5CQkICMjAxER0dLry8tLcWAAQNQXFyMo0eP4l//+he++eYbvPXWW1KdtLQ0DBgwAL1790ZycjKmT5+OyZMnY8+ePXrfX11Iu5OPMqG8rFQIXLtToPoFRGRW9Nmdfu/ePezevRsxMTGwt7evUO7i4oK9e/fi7t27mDVrVoXyQYMGITAwEN9//32l25DL5XB1dZWee3l54dixY7h+/Xq18U2cOBHffPON9HzdunUYPXo0rK2tq30tAJSVleGHH37A6NGj4ePjU6HcwcEB9erVQ3JyMi5cuICZM2fCwkL5NNuuXTuEh4dXu49OTk6oV097nTipqan46aefsHPnTuzcuRMJCQlYunQpAODjjz9GaGgopkyZgszMTGRmZsLX11d67RtvvIEPP/wQp06dQr169TBx4kSpLC8vD/3798eBAwfwxx9/ICoqCoMGDUJ6enqV8SxYsABDhw7FmTNnMHr0aIwYMQIXL14EAEyePBkbN25EUVGRVH/Dhg1o1KgR+vTpo7VjUkGV6ZIBNGjQQHz11VciNzdXWFlZKWWNFy9eFABEYmKiEEKIX3/9VVhYWCi1Gq1evVo4OTmJoqIiIYQQc+bMEW3atFHaxvDhw0VkZKRGcbGFiIj0RVstRD+cuC59PwTM2yl+OHFdSxGqdvz4cQFAbNu2rdI6S5cuFQDE33//rbL82WefFa1bt1ZZduXKFeHk5CS++OILaVlGRobo1q2bACACAwPFuHHjxKZNm5RaZspbSIqLi4WHh4dISEgQeXl5wtHRUZw5c0a89tprarUQZWdnCwBixYoVVdb74Ycfqmy1efXVV4Wtra3KspycHOHn5ydef/31auMR4n8tRLa2tsLe3l7pUW7hwoXCzs5OahESQojZs2eLrl27Ss979eolXnvtNaV1P95CVG7Xrl0CQJXvzTZt2ohPP/1Ueq6qhWjq1KlKr+natauYNm2aEOLR+79BgwZi06ZNUnnbtm3FokWLKt2mybcQPa60tBQ//PAD8vPzERoaiqSkJJSUlCA8PFyq06pVK/j5+SExMREAkJiYiJCQEHh6ekp1IiMjoVAopFamxMREpXWU1ylfR2WKioqgUCiUHsbI29kWcdEhsPzvHAyWMhneiw6Gt7OtgSMjIkPKlBdKYwsBoEwAr29L0WlLkRCi+ko1qAsAt27dQlRUFJ5//nlMmTJFWu7t7Y3ExEScO3cOr732Gh4+fIhx48YhKioKZWVlSuuwsrLCmDFjsH79emzZsgWBgYFo27atzmLWtL5CocCAAQMQFBSERYsWafTaTZs2ITk5WenxuCZNmsDR0VF67u3tLd3uojqPH6PyW2OUvzYvLw+zZs1C69at4eLiAgcHB1y8eLHaFqLQ0NAKz8tbiOrXr48XX3wR69atAwCcPn0aKSkpGD9+vFrx1pTBB1WfO3cOoaGhePDgARwcHLB9+3YEBQUhOTkZ1tbWcHFxUarv6emJrKwsAI+uZHg8GSovLy+rqo5CoUBhYaE05feT4uLisHjxYm3sos4N7+yHnoHuuHanAE3c7JgMEVGV3em6+o5o0aKFNBi6MoGBgQCAixcv4umnn65QfvHiRQQFBSkty8jIQO/evfH000/jiy++ULne4OBgBAcH4+WXX8bUqVPRo0cPJCQkoHfv3kr1Jk6ciK5duyIlJUWp60cd7u7ucHFxqXL/AOV9fOqppyqUX7x4UapT7v79+4iKioKjoyO2b98OKysrjWLz9fVF8+bNKy1/cn0ymaxCwqjOa8snQCx/7axZs7Bv3z4sX74czZs3h62tLYYNG1bhSkBNTZ48Ge3bt8fNmzexfv169OnTB/7+/rVaZ3UM3kLUsmVLJCcn4/jx45g2bRrGjRuHCxcuGDoszJ8/H3K5XHrcuHHD0CFVydvZFqHNGjIZIiIAQICbPSyemLzXUiZDEzfd3Q7E1dUVkZGRWLVqFfLz8yuU5+bmIiIiAq6urvjwww8rlO/YsQNXrlzByJEjpWW3bt1CWFgYOnbsiPXr11cYk6NKeUKlKoY2bdqgTZs2SElJwahRozTZPVhYWGDEiBH47rvvkJGRUaE8Ly8PDx8+RPv27dGqVSusXLmyQtJx5swZ7N+/X2kfFQoFIiIiYG1tjR07dqB+/foaxaUN1tbWSlMeqOvIkSMYP348hgwZgpCQEHh5eeHatWvVvu7JKQGOHTuG1q1bS89DQkLQqVMnfPnll9i4caPGyWtNGDwhsra2RvPmzdGxY0fExcWhXbt2+Pjjj+Hl5YXi4uIKE0JlZ2fDy8sLwKPBdNnZ2RXKy8uqquPk5FRp6xAA2NjYwMnJSelBRGQqDNWdvmrVKpSWlqJLly748ccfceXKFVy8eBGffPIJQkNDYW9vj7Vr1+Lnn3/GSy+9hLNnz+LatWv4+uuvMX78eAwbNgwvvPACgP8lQ35+fli+fDlycnKQlZUl9QAAwLRp0/DOO+/gyJEjuH79Oo4dO4axY8fC3d29QrdMuYMHDyIzM7NCD4Q63n33Xfj6+qJr167497//jQsXLuDKlStYt24dnnrqKeTl5UEmk+Hrr7/GhQsXMHToUJw4cQLp6enYsmULBg0ahNDQUGnOn/JkKD8/H19//TUUCoW0j5okKHfv3pVeV/548OCB2q9v0qQJjh8/jmvXruHOnTtqtx61aNEC27ZtQ3JyMs6cOYNRo0ap9dotW7Zg3bp1+PPPP7Fw4UKcOHECsbGxSnUmT56MpUuXQgiBIUOGqL0vNVblCCMD6N27txg3bpw0qHrr1q1S2aVLl1QOqs7OzpbqrF27Vjg5OYkHDx4IIR4Nqg4ODlbaxsiRI+vMoGoiqnu0edl9Rm6BOHr1jl4vtMjIyBAxMTHC399fWFtbi0aNGolnn31WxMfHS3UOHz4sIiMjhZOTk7C2thZt2rQRy5cvFw8fPpTqrF+/vsLl4OWPclu3bhX9+/cX3t7ewtraWvj4+IihQ4eKs2fPSnXKB1VXRt1B1eVyc3PFvHnzRIsWLYS1tbXw9PQU4eHhYvv27aKsrEyqd/bsWTF06FDh6uoqrKysRLNmzcSbb74p8vPzpTrlA5dVPdLS0qqNpXxQtarH999/X+n+r1y5Uvj7+0vPL1++LLp16yZsbW0rXHb/+AD4P/74Qym2tLQ00bt3b2Frayt8fX3FZ599VmGAtqpB1atWrRL/+Mc/hI2NjWjSpInSAOpy9+/fF3Z2duLll1+u9jhoY1C1QROiefPmiYSEBJGWlibOnj0r5s2bJ2Qymdi7d68QQoipU6cKPz8/cfDgQXHq1CkRGhoqQkNDpdc/fPhQBAcHi4iICJGcnCx2794t3N3dxfz586U6f/31l7CzsxOzZ88WFy9eFKtWrRKWlpZi9+7dGsXKhIiI9MWU5yEiqg4AsX379mrrpaWlCQsLC5GUlFRtXW0kRAYdVH379m2MHTsWmZmZcHZ2Rtu2bbFnzx784x//AACsXLkSFhYWGDp0KIqKihAZGYnPP/9cer2lpSV27tyJadOmSU2x48aNw9tvvy3VCQgIwK5duzBjxgx8/PHHaNy4Mb766itERkbqfX+JiIioaiUlJbh79y7efPNNdOvWDR06dNDLdmX/zdaoGgqFAs7OztKEWUREuvLgwQOkpaUhICDAIANszZmDg0OlZb/99ht69Oihx2iAqVOnYsOGDSrLxowZgzVr1ug1Hm2QyWTYvn07Bg8erLL80KFD6N27NwIDA7F161aEhIRUu86qPjPqnr8Nftk9ERGRsXhy/p7HNWrUSH+B/Nfbb7+tclZvACb747y6dpiwsDCN53DSBiZERERE/1XVXD6G4OHhAQ8PD0OHYRYMftk9ERERkaExISIiMlLqzgVDZO608VlhlxkRkZGxtraGhYUFMjIy4O7uDmtra+mWCUT0P0IIFBcXIycnBxYWFrC2tq7xupgQEREZGQsLCwQEBCAzM1PlLSKISJmdnR38/PzUurVLZZgQEREZIWtra/j5+eHhw4c1uscUkbmwtLREvXr1at2KyoSIiMhIyWQyWFlZaXzncyLSHAdVExERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9gyaEMXFxaFz585wdHSEh4cHBg8ejMuXLyvVCQsLg0wmU3pMnTpVqU56ejoGDBgAOzs7eHh4YPbs2Xj48KFSnUOHDqFDhw6wsbFB8+bN8c033+h694iIiMhEGDQhSkhIQExMDI4dO4Z9+/ahpKQEERERyM/PV6o3ZcoUZGZmSo8PPvhAKistLcWAAQNQXFyMo0eP4l//+he++eYbvPXWW1KdtLQ0DBgwAL1790ZycjKmT5+OyZMnY8+ePXrbVyIiIjJeMiGEMHQQ5XJycuDh4YGEhAT07NkTwKMWovbt2+Ojjz5S+ZrffvsNAwcOREZGBjw9PQEAa9aswdy5c5GTkwNra2vMnTsXu3btQkpKivS6ESNGIDc3F7t371YrNoVCAWdnZ8jlcjg5OdVuR4mIiEgv1D1/G9UYIrlcDgBwdXVVWv7dd9/Bzc0NwcHBmD9/PgoKCqSyxMREhISESMkQAERGRkKhUOD8+fNSnfDwcKV1RkZGIjExUVe7QkRERCaknqEDKFdWVobp06eje/fuCA4OlpaPGjUK/v7+8PHxwdmzZzF37lxcvnwZ27ZtAwBkZWUpJUMApOdZWVlV1lEoFCgsLIStrW2FeIqKilBUVCQ9VygU2tlRIiIiMjpGkxDFxMQgJSUFv//+u9Lyl156Sfo7JCQE3t7e6Nu3L1JTU9GsWTOdxRMXF4fFixfrbP1ERERkPIyiyyw2NhY7d+5EfHw8GjduXGXdrl27AgCuXr0KAPDy8kJ2drZSnfLnXl5eVdZxcnJS2ToEAPPnz4dcLpceN27c0HzHiIiIyCQYNCESQiA2Nhbbt2/HwYMHERAQUO1rkpOTAQDe3t4AgNDQUJw7dw63b9+W6uzbtw9OTk4ICgqS6hw4cEBpPfv27UNoaGil27GxsYGTk5PSg4iIiOomgyZEMTEx2LBhAzZu3AhHR0dkZWUhKysLhYWFAIDU1FS88847SEpKwrVr17Bjxw6MHTsWPXv2RNu2bQEAERERCAoKwosvvogzZ85gz549ePPNNxETEwMbGxsAwNSpU/HXX39hzpw5uHTpEj7//HNs3rwZM2bMMNi+ExERkfEw6GX3MplM5fL169dj/PjxuHHjBsaMGYOUlBTk5+fD19cXQ4YMwZtvvqnUYnP9+nVMmzYNhw4dgr29PcaNG4elS5eiXr3/DZE6dOgQZsyYgQsXLqBx48ZYsGABxo8fr3asvOyeiIjI9Kh7/jaqeYiMGRMiIiIi02OS8xARERERGQITIiIiIjJ7TIiIiIjI7DEhIiIiIrPHhIiIiIjMHhMiIiIiMntMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIiIjI7DEhIiIiIrPHhIiIiIjMHhMiIiIiMntMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIiIjI7DEhIiIiIrNXo4QoPj5e23EQERERGUyNEqKoqCg0a9YMS5YswY0bN7QdExEREZFe1SghunXrFmJjY7F161Y0bdoUkZGR2Lx5M4qLi7UdHxEREZHO1SghcnNzw4wZM5CcnIzjx48jMDAQL7/8Mnx8fPDqq6/izJkz2o6TiIiISGdqPai6Q4cOmD9/PmJjY5GXl4d169ahY8eO6NGjB86fP6+NGImIiIh0qsYJUUlJCbZu3Yr+/fvD398fe/bswWeffYbs7GxcvXoV/v7+eP7557UZKxEREZFOyIQQQtMXvfLKK/j+++8hhMCLL76IyZMnIzg4WKlOVlYWfHx8UFZWprVgDUmhUMDZ2RlyuRxOTk6GDoeIiIjUoO75u15NVn7hwgV8+umniI6Oho2Njco6bm5uvDyfiIiITEKNWojMEVuIiIiITI9OW4gA4PLly/j0009x8eJFAEDr1q3xyiuvoGXLljVdJREREZFB1GhQ9Y8//ojg4GAkJSWhXbt2aNeuHU6fPo3g4GD8+OOP2o6RiIiISKdq1GXWrFkzjB49Gm+//bbS8oULF2LDhg1ITU3VWoDGgl1mREREpkfd83eNWogyMzMxduzYCsvHjBmDzMzMmqySiIiIyGBqlBCFhYXhP//5T4Xlv//+O3r06FHroIiIiIj0qUaDqp999lnMnTsXSUlJ6NatGwDg2LFj2LJlCxYvXowdO3Yo1SUiIiIyZjUaQ2RhoV7DkkwmQ2lpqcZBGSOOISIiIjI9Or3svq7MPk1EREQEaOHmrrURFxeHzp07w9HRER4eHhg8eDAuX76sVOfBgweIiYlBw4YN4eDggKFDhyI7O1upTnp6OgYMGAA7Ozt4eHhg9uzZePjwoVKdQ4cOoUOHDrCxsUHz5s3xzTff6Hr3iIiIyESo3UL0ySefqL3SV199Va16CQkJiImJQefOnfHw4UO8/vrriIiIwIULF2Bvbw8AmDFjBnbt2oUtW7bA2dkZsbGxiI6OxpEjRwAApaWlGDBgALy8vHD06FHpCjgrKyu89957AIC0tDQMGDAAU6dOxXfffYcDBw5g8uTJ8Pb2RmRkpNr7RURERHWT2mOIAgIC1FuhTIa//vqrRsHk5OTAw8MDCQkJ6NmzJ+RyOdzd3bFx40YMGzYMAHDp0iW0bt0aiYmJ6NatG3777TcMHDgQGRkZ8PT0BACsWbMGc+fORU5ODqytrTF37lzs2rULKSkp0rZGjBiB3Nxc7N69W63YOIaIiIjI9Gh9DFFaWppWAquKXC4HALi6ugIAkpKSUFJSgvDwcKlOq1at4OfnJyVEiYmJCAkJkZIhAIiMjMS0adNw/vx5PPXUU0hMTFRaR3md6dOnVxpLUVERioqKpOcKhUIbu0hERERGyKBjiB5XVlaG6dOno3v37ggODgYAZGVlwdraGi4uLkp1PT09kZWVJdV5PBkqLy8vq6qOQqFAYWGhynji4uLg7OwsPXx9fWu9j0RERGScanxz15s3b2LHjh1IT09HcXGxUtmKFSs0Xl9MTAxSUlLw+++/1zQkrZo/fz5mzpwpPVcoFEyKiIiI6qgaJUQHDhzAs88+i6ZNm+LSpUsIDg7GtWvXIIRAhw4dNF5fbGwsdu7cicOHD6Nx48bSci8vLxQXFyM3N1eplSg7OxteXl5SnRMnTiitr/wqtMfrPHllWnZ2NpycnGBra6syJhsbG9jY2Gi8L0RERGR6atRlNn/+fMyaNQvnzp1D/fr18eOPP+LGjRvo1asXnn/+ebXXI4RAbGwstm/fjoMHD1YYuN2xY0dYWVnhwIED0rLLly8jPT0doaGhAIDQ0FCcO3cOt2/flurs27cPTk5OCAoKkuo8vo7yOuXrICIiIjMnasDBwUFcvXpVCCGEi4uLSElJEUIIkZycLPz9/dVez7Rp04Szs7M4dOiQyMzMlB4FBQVSnalTpwo/Pz9x8OBBcerUKREaGipCQ0Ol8ocPH4rg4GAREREhkpOTxe7du4W7u7uYP3++VOevv/4SdnZ2Yvbs2eLixYti1apVwtLSUuzevVvtWOVyuQAg5HK52q8hIiIiw1L3/F2jFiJ7e3tp3JC3tzdSU1Olsjt37qi9ntWrV0MulyMsLAze3t7SY9OmTVKdlStXYuDAgRg6dCh69uwJLy8vbNu2TSq3tLTEzp07YWlpidDQUIwZMwZjx47F22+/LdUJCAjArl27sG/fPrRr1w4ffvghvvrqK85BRERERABqeC+zwYMHY8CAAZgyZQpmzZqFn3/+GePHj8e2bdvQoEED7N+/XxexGhTnISIiIjI9Or2X2YoVK5CXlwcAWLx4MfLy8rBp0ya0aNGiRleYERERERlSjVqIzBFbiIiIiEyPTluIyhUXF+P27dsoKytTWu7n51eb1RIRERHpVY0Soj///BOTJk3C0aNHlZYLISCTyVBaWqqV4IiIiIj0oUYJ0YQJE1CvXj3s3LkT3t7ekMlk2o6LiIiISG9qlBAlJycjKSkJrVq10nY8RERERHpXo3mIgoKCNJpviIiIiMiYqZ0QKRQK6fH+++9jzpw5OHToEO7evatUplAodBkvERERkdap3WXm4uKiNFZICIG+ffsq1eGgaiIiIjJFaidE8fHxuoyDiIiIyGDUToh69eol/Z2eng5fX98KV5cJIXDjxg3tRUdERESkBzUaVB0QEICcnJwKy+/du4eAgIBaB0VERESkTzVKiMrHCj0pLy8P9evXr3VQRERERPqk0TxEM2fOBADIZDIsWLAAdnZ2UllpaSmOHz+O9u3bazVAIiIiIl3TKCH6448/ADxqITp37hysra2lMmtra7Rr1w6zZs3SboREREREOqZRQlR+pdmECRPw8ccf867vREREVCfU6NYd69ev13YcRERERAZTo4QoPz8fS5cuxYEDB3D79m2UlZUplf/1119aCY6IiIhIH2qUEE2ePBkJCQl48cUXebd7IiIiMnk1Soh+++037Nq1C927d9d2PERERER6V6N5iBo0aABXV1dtx0JERERkEDVKiN555x289dZbKCgo0HY8RERERHpXoy6zDz/8EKmpqfD09ESTJk1gZWWlVH769GmtBEdERESkDzVKiAYPHqzlMIiIiIgMRyaEEIYOwhQoFAo4OztDLpdzQkoiIiIToe75W6MxRCdOnEBpaWml5UVFRdi8ebMmqyQiIiIyOI0SotDQUNy9e1d67uTkpDQJY25uLkaOHKm96IiIiIj0QKOE6MneNVW9beyBIyIiIlNTo8vuq8JZq4mIiMjUaD0hIiIiIjI1Gl92f+HCBWRlZQF41D126dIl5OXlAQDu3Lmj3eiIiIiI9ECjy+4tLCwgk8lUjhMqXy6Tyaq8Es1U8bJ7IiIi06Pu+VujFqK0tLRaB0ZERERkbDRKiPz9/TVa+csvv4y3334bbm5uGr2OiIiISJ90Oqh6w4YNUCgUutwEERERUa3pNCHinERERERkCnjZPREREZk9JkRERERk9pgQERERkdljQkRERERmT6cJ0ZgxYziJIRERERm9GiVEZWVllS5PT0+Xnq9evZpzEBEREZHR0yghUigUeOGFF2Bvbw9PT0+89dZbSrfpyMnJQUBAgNaDJCIiItIljWaqXrBgAc6cOYNvv/0Wubm5WLJkCU6fPo1t27bB2toaAOceIiIiItOjUQvRTz/9hLVr12LYsGGYPHkyTp06hZycHAwaNAhFRUUAHt3kVV2HDx/GoEGD4OPjA5lMhp9++kmpfPz48ZDJZEqPqKgopTr37t3D6NGj4eTkBBcXF0yaNAl5eXlKdc6ePYsePXqgfv368PX1xQcffKDJbhMREVEdp1FClJOTo3Q/Mzc3N+zfvx/3799H//79UVBQoNHG8/Pz0a5dO6xatarSOlFRUcjMzJQe33//vVL56NGjcf78eezbtw87d+7E4cOH8dJLL0nlCoUCERER8Pf3R1JSEpYtW4ZFixbhiy++0ChWIiIiqrs06jLz8/PDxYsXlcYJOTo6Yu/evYiIiMCQIUM02ni/fv3Qr1+/KuvY2NjAy8tLZdnFixexe/dunDx5Ep06dQIAfPrpp+jfvz+WL18OHx8ffPfddyguLsa6detgbW2NNm3aIDk5GStWrFBKnIiIiMh8adRCFBERgfXr11dY7uDggD179qB+/fpaC6zcoUOH4OHhgZYtW2LatGm4e/euVJaYmAgXFxcpGQKA8PBwWFhY4Pjx41Kdnj17SmOcACAyMhKXL1/G33//rfV4iYiIyPRo1EK0ePFiZGRkqCxzdHTEvn37cPr0aa0EBjzqLouOjkZAQABSU1Px+uuvo1+/fkhMTISlpSWysrLg4eGh9Jp69erB1dUVWVlZAICsrKwKV755enpKZQ0aNFC57aKiImlcFPCo642IiIjqJo0SogYNGlSaQACPkqJevXrVOqhyI0aMkP4OCQlB27Zt0axZMxw6dAh9+/bV2nZUiYuLw+LFi3W6DSIiIjIOGk/M+PDhQyxbtgwdOnSAg4MDHBwc0KFDByxfvhwlJSW6iFHStGlTuLm54erVqwAALy8v3L59u0J89+7dk8YdeXl5ITs7W6lO+fPKxiYBwPz58yGXy6XHjRs3tLkrREREZEQ0SogKCwsRFhaGefPmwd3dHZMnT8bkyZPh7u6OuXPnom/fvnjw4IGuYsXNmzdx9+5deHt7AwBCQ0ORm5uLpKQkqc7BgwdRVlaGrl27SnUOHz6slKzt27cPLVu2rLK1y8bGBk5OTkoPIiIiqps06jJbunQpbty4gT/++ANt27ZVKjtz5gyeffZZLF26FIsWLVJrfXl5eVJrDwCkpaUhOTkZrq6ucHV1xeLFizF06FB4eXkhNTUVc+bMQfPmzREZGQkAaN26NaKiojBlyhSsWbMGJSUliI2NxYgRI+Dj4wMAGDVqFBYvXoxJkyZh7ty5SElJwccff4yVK1dqsutERERUlwkNBAYGiq1bt1ZavnnzZtGiRQu11xcfHy8AVHiMGzdOFBQUiIiICOHu7i6srKyEv7+/mDJlisjKylJax927d8XIkSOFg4ODcHJyEhMmTBD3799XqnPmzBnxzDPPCBsbG9GoUSOxdOlSTXZbCCGEXC4XAIRcLtf4tURERGQY6p6/ZUKof6+N+vXr48qVK/D19VVZfuPGDbRo0UKn3WaGolAo4OzsDLlczu4zIiIiE6Hu+VujMUROTk4VBjE/LisrC46OjpqskoiIiMjgNEqIevfujffee6/S8qVLl6J37961DoqIiIhInzQaVL1w4UJ07doV3bp1w8yZM9GqVSsIIXDx4kWsXLkSFy5cwLFjx3QVKxEREZFOaJQQBQUFYd++fZg0aRJGjBgh3dleCIFWrVph7969aNOmjU4CJSIiItIVjRIiAOjWrRvOnz+P5ORk/PnnnwCAwMBAtG/fXtuxEREREemFxgmRQqGAg4MD2rdvr5QElZWVIS8vj1dgERERkcnRaFD19u3b0alTJ5WX1RcWFqJz58745ZdftBYcERERkT5olBCtXr0ac+bMgZ2dXYUye3t7zJ07F5999pnWgiMiIiLSB40SopSUFISFhVVa3rNnT5w7d662MRERERHplUYJ0d9//42HDx9WWl5SUoK///671kERERER6ZNGCVGTJk1w6tSpSstPnToFf3//WgdFREREpE8aJUTR0dF44403kJ2dXaEsKysLb775JoYOHaq14IiIiIj0QaObu96/fx+hoaFIT0/HmDFj0LJlSwDApUuX8N1338HX1xfHjh2rk/cz481diYiITI+652+N5iFydHTEkSNHMH/+fGzatEkaL+Ti4oIxY8bg3XffrZPJEBEREdVtGrUQPU4IgTt37kAIAXd3d+k2Ho87cuQIOnXqBBsbm1oHamhsISIiIjI96p6/NRpD9DiZTAZ3d3d4eHioTIYAoF+/frh161ZNN0FERERmIFNeiKOpd5ApLzRYDBrfukMTNWx8IiIiIjOx6WQ65m87hzIBWMiAuOgQDO/sp/c4atxCRERERFQbmfJCKRkCgDIBvL4txSAtRUyIiIiIyCDS7uRLyVC5UiFw7U6B3mNhQkREREQGEeBmD4snhiFbymRo4lbxnqm6ptOEqLLB1kRERETezraIiw6B5X/zBUuZDO9FB8Pb2VbvsXBQNRERERnM8M5+6Bnojmt3CtDEzc4gyRCg44To/v37ulw9ERER1QHezrYGS4TKaZQQ9enTR616Bw8erFEwRERERIagUUJ06NAh+Pv7Y8CAAbCystJVTERERER6pVFC9P7772P9+vXYsmULRo8ejYkTJyI4OFhXsRERERHphUZXmc2ePRsXLlzATz/9hPv376N79+7o0qUL1qxZA4VCoasYiYiIiHSqxjd3BYCCggJs2bIFq1atwoULF5CRkVFnb3zKm7sSERGZHp3f3BUATp8+jYSEBFy8eBHBwcEcV0REREQmSeOEKCMjA++99x4CAwMxbNgwuLq64vjx4zh27BhsbQ17yRwRERFRTWg0qLp///6Ij49HREQEli1bhgEDBqBePZ1OZURERESkcxqNIbKwsIC3tzc8PDyqvC3H6dOntRKcMeEYIiIiItOj7vlbo+adhQsX1jowIiIiImNTq6vMzAlbiIgMJ1NeiLQ7+Qhwszf49P5EZFp00kJUmYSEBOTn5yM0NBQNGjTQxiqJiAAAm06mY/62cygTgIUMiIsOwfDOfoYOi4jqGI2uMnv//fexYMEC6bkQAlFRUejduzcGDhyI1q1b4/z581oPkojMU6a8UEqGAKBMAK9vS0GmvNCwgRFRnaNRQrRp0yalW3Vs3boVhw8fxn/+8x/cuXMHnTp1wuLFi7UeJFFdlikvxNHUOzzJq5B2J19KhsqVCoFrdwoMExAR1VkadZmlpaWhbdu20vNff/0Vw4YNQ/fu3QEAb775Jp5//nntRkhUh7E7qGoBbvawkEEpKbKUydDEzc5wQRFRnaRRC9HDhw9hY2MjPU9MTMTTTz8tPffx8cGdO3e0Fx1RHcbuoOp5O9siLjoElv+d5sNSJsN70cEcWE1EWqdRC1GzZs1w+PBhNG3aFOnp6fjzzz/Rs2dPqfzmzZto2LCh1oMkqouq6g7iCf9/hnf2Q89Ad1y7U4AmbnY8NkSkExolRDExMYiNjcV//vMfHDt2DKGhoQgKCpLKDx48iKeeekrrQRLVRewOUp+3sy0TISLSKY26zKZMmYJPPvkE9+7dQ8+ePfHjjz8qlWdkZGDixIlaDZCormJ3EBGR8eDEjGrixIykK5nyQnYHERHpiF4nZiSimmN3EBGR4WnUZVZSUoI5c+agefPm6NKlC9atW6dUnp2dDUtLS60GSERERKRrGiVE7777Lv79739j6tSpiIiIwMyZM/HPf/5TqY4mPXCHDx/GoEGD4OPjA5lMhp9++qnCut566y14e3vD1tYW4eHhuHLlilKde/fuYfTo0XBycoKLiwsmTZqEvLw8pTpnz55Fjx49UL9+ffj6+uKDDz7QZLeJiIiojtMoIfruu+/w1VdfYdasWViyZAlOnTqFgwcPYsKECVIiJPvvAFF15Ofno127dli1apXK8g8++ACffPIJ1qxZg+PHj8Pe3h6RkZF48OCBVGf06NE4f/489u3bh507d+Lw4cN46aWXpHKFQoGIiAj4+/sjKSkJy5Ytw6JFi/DFF19osutERERUlwkN2NrairS0NKVlN2/eFIGBgWL06NHi1q1bwsLCQpNVSgCI7du3S8/LysqEl5eXWLZsmbQsNzdX2NjYiO+//14IIcSFCxcEAHHy5Empzm+//SZkMpm4deuWEEKIzz//XDRo0EAUFRVJdebOnStatmypUXxyuVwAEHK5vCa7R0RERAag7vlboxYiLy8vpKamKi1r1KgR4uPjcfLkSYwfP15beRrS0tKQlZWF8PBwaZmzszO6du2KxMREAI9mynZxcUGnTp2kOuHh4bCwsMDx48elOj179oS1tbVUJzIyEpcvX8bff/9d6faLioqgUCiUHkRERFQ3aZQQ9enTBxs3bqyw3MfHBwcPHkRaWprWAsvKygIAeHp6Ki339PSUyrKysuDh4aFUXq9ePbi6uirVUbWOx7ehSlxcHJydnaWHr69v7XaIiIiIjJZGCdGCBQvwwgsvqCxr1KgREhISKlx5Zqrmz58PuVwuPW7cuGHokIiIiEhHNJqHyN/fH/7+/pWW+/j4YNy4cbUOCnjUPQc8upTf29tbWp6dnY327dtLdW7fvq30uocPH+LevXvS6728vJCdna1Up/x5eR1VbGxslG5kS0RERHWXRi1E5bZs2YLo6GgEBwcjODgY0dHR2Lp1q1YDCwgIgJeXFw4cOCAtUygUOH78OEJDQwEAoaGhyM3NRVJSklTn4MGDKCsrQ9euXaU6hw8fRklJiVRn3759aNmyJRo0aKDVmImIiMg0aZQQlZWVYfjw4Rg+fDguXLiA5s2bo3nz5jh//jyGDx+OESNGaDQPUV5eHpKTk5GcnAzg0UDq5ORkpKenQyaTYfr06ViyZAl27NiBc+fOYezYsfDx8cHgwYMBAK1bt0ZUVBSmTJmCEydO4MiRI4iNjcWIESPg4+MDABg1ahSsra0xadIknD9/Hps2bcLHH3+MmTNnarLrepUpL8TR1DvIlBcaOhS9Mtf9JiIiI6DJpWsrVqwQrq6u4pdffqlQ9vPPPwtXV1excuVKtdcXHx8vAFR4jBs3Tgjx6NL7BQsWCE9PT2FjYyP69u0rLl++rLSOu3fvipEjRwoHBwfh5OQkJkyYIO7fv69U58yZM+KZZ54RNjY2olGjRmLp0qWa7LYQQn+X3f9w4roImLdT+M/dKQLm7RQ/nLiu0+0ZC3PdbyIi0i11z98a3dy1bdu2mD59eqV3tP/666/x8ccf4+zZs7XP1IyMPm7umikvRPelB1H22H/EUibD7/N61+l7XZnrfhMRke6pe/7WqMvsypUrSvMCPUnVrTVIfWl38pWSAgAoFQLX7hQYJiA9Mdf9JiIi46FRQmRra4vc3NxKyxUKBerXr1/bmMxWgJs9LJ6484mlTIYmbnaGCUhPzHW/iYjIeGiUEIWGhmL16tWVlq9atUq6Aow05+1si7joEFj+935wljIZ3osOrvPdRua630REZDw0mofojTfeQFhYGO7evYtZs2ahVatWEELg4sWL+PDDD/Hzzz8jPj5eV7GaheGd/dAz0B3X7hSgiZud2SQF5rrfRERkHDQaVA0A27dvx0svvYR79+4pLW/QoAHWrl2LoUOHajVAY6GPQdVERESkXeqevzVOiACgoKAAe/bskQZQBwYGIiIiAnZ2dXfMBxMiIiIi06Pu+VujLrODBw8iNjYWx44dw5AhQ5TK5HI52rRpgzVr1qBHjx41i5qIiIjIADQaVP3RRx9hypQpKjMsZ2dn/POf/8SKFSu0FhwRERGRPmiUEJ05cwZRUVGVlkdERCjdV4yIiIjIFGiUEGVnZ8PKyqrS8nr16iEnJ6fWQRERERHpk0YJUaNGjZCSklJp+dmzZ+Ht7V3roIiIiIj0SaOEqH///liwYAEePHhQoaywsBALFy7EwIEDtRYcERERkT5odNl9dnY2OnToAEtLS8TGxqJly5YAgEuXLmHVqlUoLS3F6dOn4enpqbOADYWX3RMREZkenVx27+npiaNHj2LatGmYP38+ynMpmUyGyMhIrFq1qk4mQ0RERFS3aZQQAYC/vz9+/fVX/P3337h69SqEEGjRogUaNGigi/iIiIiIdE7jhKhcgwYN0LlzZ23GQkRERGQQGg2qJiIiIqqLmBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCREREREZVKa8EEdT7yBTXmiwGOoZbMtUpUx5IdLu5CPAzR7ezraGDoeIiEgnNp1Mx/xt51AmAAsZEBcdguGd/fQeBxMiI2Qsbw4iIiJdypQXSuc7ACgTwOvbUtAz0F3vjQHsMjMylb05DNmMSEREpAtpd/Kl8125UiFw7U6B3mNhQmRkdP3mMIZ+WiIiIgAIcLOHhUx5maVMhiZudnqPhQmRkdHlm2PTyXR0X3oQo748ju5LD2LTyfRar5OIiKimvJ1tERcdAkvZoxOfpUyG96KDDTJ2ViaEENVXI4VCAWdnZ8jlcjg5Oel0W5tOpuP1bSkoFUJ6c9R2DFGmvBDdlx5Uan2ylMnw+7zeHLRNREQGlSkvxLU7BWjiZqf1c5K6528OqjZCwzv7oWegu1bfHFV1xTEhIiIiQ/J2tjX4uYgJkZHS9pujvCvuyRYiQ/TTEhERGRuOITITxtRPS0REZGzYQmRGdNEVR0REVBcwITJiupit2hj6aYmIiIwNEyIj9eRs1ZOeCcDEZwKYzBAREemA0Y8hWrRoEWQymdKjVatWUvmDBw8QExODhg0bwsHBAUOHDkV2drbSOtLT0zFgwADY2dnBw8MDs2fPxsOHD/W9K2pTNVv1l/9Jw9Nxhps7iBM6EhFRXWYSLURt2rTB/v37pef16v0v7BkzZmDXrl3YsmULnJ2dERsbi+joaBw5cgQAUFpaigEDBsDLywtHjx5FZmYmxo4dCysrK7z33nt63xd1qLpEHgAEDHOPF95bjYiI6jqjbyECHiVAXl5e0sPNzQ0AIJfL8fXXX2PFihXo06cPOnbsiPXr1+Po0aM4duwYAGDv3r24cOECNmzYgPbt26Nfv3545513sGrVKhQXFxtytyqlarbqcvq+xwvvrUZERObAJBKiK1euwMfHB02bNsXo0aORnv6o2ygpKQklJSUIDw+X6rZq1Qp+fn5ITEwEACQmJiIkJASenp5SncjISCgUCpw/f16/O6Km8kvkVSVF+p47yJhuvGeM2JVIRFQ3GH2XWdeuXfHNN9+gZcuWyMzMxOLFi9GjRw+kpKQgKysL1tbWcHFxUXqNp6cnsrKyAABZWVlKyVB5eXlZZYqKilBUVCQ9VygUWtoj9ZRfIr/+SBq+OpyGMhhm7iBO6Fg5diUSEdUdRp8Q9evXT/q7bdu26Nq1K/z9/bF582bY2uouMYiLi8PixYt1tn51eDvb4vX+QZjQPcBgcweVt1Y9eW81c7/arbKuRH2P7yIiIu0w+oToSS4uLggMDMTVq1fxj3/8A8XFxcjNzVVqJcrOzoaXlxcAwMvLCydOnFBaR/lVaOV1VJk/fz5mzpwpPVcoFPD19dXinqjP0HMHcULHinhvOCKiusUkxhA9Li8vD6mpqfD29kbHjh1hZWWFAwcOSOWXL19Geno6QkNDAQChoaE4d+4cbt++LdXZt28fnJycEBQUVOl2bGxs4OTkpPQwZ97Otght1rBWJ/u6NN5G1cB3diUSEZkuo28hmjVrFgYNGgR/f39kZGRg4cKFsLS0xMiRI+Hs7IxJkyZh5syZcHV1hZOTE1555RWEhoaiW7duAICIiAgEBQXhxRdfxAcffICsrCy8+eabiImJgY2NjYH3znzUtfE27EokIqpbjD4hunnzJkaOHIm7d+/C3d0dzzzzDI4dOwZ3d3cAwMqVK2FhYYGhQ4eiqKgIkZGR+Pzzz6XXW1paYufOnZg2bRpCQ0Nhb2+PcePG4e233zbULpmdujrehl2JRER1h0wIoWIKQHqSQqGAs7Mz5HK52Xefaepo6h2M+vJ4heXfT+mG0GYNDRAREZkjXdwfkoyfuudvo28hItPHS/eJyNDqWrc9aZ/JDaom01M+3sZS9mgUMsfbEJE+1bUZ9+vSBSrGhC1EpBccb0NEhlKXpslgS5fusIWI9EYbl+6X4y8kIlJXXZkmo661dBkbJkRkcjadTEf3pQcx6svj6L70IDadTDd0SERkxOpKtz3vLalb7DIjk1JXL+EnIt2qC932vEBFt9hCRCaFv5CIqKa02W1vCHWlpctYsYWITEL5/CH21pb8hURq4ZwzVBfVhZYuY8WEiIzek1dVDHmqEX76I4O3zKBK6ftKHCZfpE+GvuF3XcWEiIyaqjFDP/2RgW0vh6KguIy/kKgCfY8z42XQpCtMtPWLCREZtcrGDBUUl/G2H6SSPuecqQuD/HnSNU5MtPWPCRHpnSZfwLyqonrmfEJTte/6eM+Ub/duXpHK5Cvp2t9wdTD+/4m2Trrm/B7UhbqQaJsiJkSkV5p+AZdfVfH6thSOGVLBnH9FVrbvun7PPLldGYDHcyIZgFd/+MPo/yfaOulW9x40hWTJ2GKsSzNrmxImRKQ3Nf0C5lUVqpnzr8jq9l1X7xlV25XJAAsBlOHRPCYCMIn/iTZOutX9H7SdsOsicTHGHxVsGTcMzkNEelObOYRMff4QXTDnOZnU2XddvGdUbVcI4NNRT+H7Kd3wyain8ESx0f5PtHE7i6r+D9q+zYQuZqhXFeP8becMfisMY5xvyBxul8QWItIb/urRLnM+noba98q228G/AbydbZEpL9R6XNpuFXl8fbXtWqzq/6DNbh9dtYaqirFMAOuPpOH1/kE1Xq82GFPLuDG2oukCW4hIb4zxV48pM+fjaah9r2672o5L260iT64PAH6f1xvfT+mG3+f11vgkV9X+avOGqrpqDVUVIwB8dTjNKFpCjKFl3JxuKCsTQjzZwksqKBQKODs7Qy6Xw8nJydDhmLRMeaFR/OqpK8z5eBpq36vbrjbiypQXovvSgxVaX36f17vSdVbVmlST9am7/sf3F4BU5/CfORVaoGp6FduTsVsA+GTUU+j439a5mnp31wV8+Z+0Csu/n9KNU3sAOJp6B6O+PF5huSkdH3XP3+wyI73jLKvaZc7H01D7Xt12axNXdZf0V9blVF23Rm27sKpaf/n+qqrz+7zetU4On7xysPzKvtiNf9S6C2fiMwH46j9pSmO/zKXrWR3m1DXPLjMiIiPxeJfWaz8k48nenMpOROp0a6jThVXZwFl11l9ZHQBa6fYZ3tkPv8/rjc9GPgWZ7H9THdS2C8fb2RZLh5pn17M6zKlrni1ERCbG2OZMIe2o7pL+qk5E6rT+VDc/U1UtQOqsXx9z53g728LVQfvbMaYBzMZI1fGpi99DTIiITIi5XO1hjiq7pP+zUU/B1d6myhO1ut0alZ34q7uKS53166trRVfbMXTXs7EnGI8fn7r6PcQuMzI55jAfhirmdLWHOaqsS6uDf4Nqu5w06dZQdeVSdVdxqbN+fXWt1MUuHF3MsaQrdfl7iC1EZFLq6i8TdehrOn9j/6VaV9X2liO16fZRp9VFnfXrq+tJn11cuv48mNqM83X5tiJMiMhkmNoXh7bpo0vCnBNOY1DbE31Nu33UTcbUWb++up70sR1NPg81TZxMLcGoy1edMSEik2FqXxzaVtsWhOqYe8JpLAw1loUDi5Vp8nmozQ8JU0swNPkeMrXWZiZEZDJM7YtDF3R50jL3hJMMP7DYmKj7eajtDwld/9DRBXW+h0yxtZkJEZkMU/zi0AVdnbSMPeE0tV+bZNrU/Txo44eEsbTOafIZq+p7yFRbm5kQkUkxli8OU6BpAmHMCWdNfm0ygdINQx9XfW1f3c+Dtn5IPD6f0+PP9UWbLTqm2trMe5mpifcyI1NS2ZebOicTY7s3Wk3uwaXOl7uuTqyGThh0qTYnTW0cF0N0w6jzedh0Mr3W92wzZBeTNu5zp8v11RbvZUZkpiprrs4tKMH7uy9V+4VrbONIKvu1efr63xjQVvVAzuqa63V18jHFcRPqqk03iDaOi6G6YdT5PNS25drQXUzabtEx5tbmqnBiRjNgrhMZmqvKvtyW/nbJJCdTUzVhIfDoxp6qJrCrbpJBXU0sp8l6a/qZNORnubrjWhltHe+abl9fVE14qS519k2X/3t17nOnqfJ7z30/pRt+n9fbJH4YsIWojqvLv1hJNVVjGp58DphGnz7wv1+bj59UgUc391T1K7q6MR26Gt+g7npr+pk09Ge5pmNltHW8jX3Qf21Ut2+6/t/rqkXH2Fqbq8MWojqsLk+xXhVzbxFTdWuDuf1aVfoL0BSO1/DOfvh4RPsKyytrIZj8TID05fbkl7sufg2ru96afiYN9Vl+/L2h6n01p19LpN3JrzIObR3vunjLjnJV7Zu+/vePt+hsezkUvq52Rv2doAtsIarDTHWkf20Y+le0sVA1psHF1qrCL8DDf+aYzPHq1MS12haCJ///Lz3TFBOeaaLynlu6+DVc3Xpr+pk0xGe5ss9S+fvq7M1cvP+bemPStHW86/JVppXtmz7/997Otib1naBtTIjqsLrcxKyKoQcmGpsnm6uf/MIFoHQliLEfr+pOrKr+/1//noYJzzSpsC5dnVirW29NP5P6/iyr81ka/dUxtd872jzeptYNowlV+1aT/31Nr+gz9+9QdpnVYXW5iVkVXQ+6NIWupeo8PvDT2AepqlLVQE1N96c2g2CrUtV6a/qZ1PdnubpjWZNBwLo63sautt8bmv7vN51MR/elBzHqy+N4eulBrD2cqva2TPE7QZvYQlTH1eUm5ifp8ld0XeyKM5UWxCd/7VbWQmAq+1PTz2RNXlfTloLqjqWhBwGbCm0dB3X/90+28AgBxP16CRDAP3s1q3Y7pvIZ0hW2EBmYPlod1PllVldaP3TxK7quDk43hRbEx3/tdl96UOVl9uV0vT/a/IzUtLVEk9dpcuxUbaeqY2kMg4D1oTb/c3WOgybrV+d/r6qFBwDe/+2S2tsw9u8EXWILkQEZy68oY4lDG3TRIlaXB6cbcwtiTcYz6Gp/TO0zoo2xINUdS2MYBKxLtf2fV3ccdPGeCnCzh0z2qGXocWWA2sffmL8TdI0tRAZiLL+ijCUObdL2WAVdXaZtLIx1bEdNxzNoe39M8TOirbEg1R1LVeV14fOijf95VcdBV+8pb2dbzOvXqsJyTY+/sX4n6BoTIgMxlsFr2oyjLnS7qWLuzciGYiwnVmP5rGrCkMeuLnxetPE/r+o46PI99c+ezTC/X6tK5+GiyrHLzEAC3Owhw6PZdsvJAL1/2WtrEJ2pdSloypybkVXRxw1MdTVfkKZMcaCpOsdOl/9DU/+8aOt/Xtlx0PV76p+9muHZ9j4me/wNhXe7V5O273afKS/E03EHlRMiGXB0Xh+9v3lre6dmbd7ZuC7fKbyu0Hfyq87dxnVNG3czN4TKjp2hfsDo4/OtrW3o+n9uqu8pU8S73Ru5tDv5eDITFUL9gW/aVNtfc9oaRFnXW5nqAkNM3FbdRHz6OMlW9hkx9gRe1bEz1OR7+vh8a3Mbum7lMvVWtLrIrMYQrVq1Ck2aNEH9+vXRtWtXnDhxwmCxGMv4iHK1GUSnjX0xxYGr5sjYxpzV5tJyTT35Ganptg091s4QY6L08fnWZBvq/g+0ObhY1TbNdfCysTKbhGjTpk2YOXMmFi5ciNOnT6Ndu3aIjIzE7du3DRJPXRh4WE4b+2KKA1crY+gTni5pK5Ffm5CKp+Nql8gYMomu6bb1mcBVxhA/xvTx+VZ3G7WZyVldT34HGMP/napnNl1mK1aswJQpUzBhwgQAwJo1a7Br1y6sW7cO8+bNM0hMdanJtLb7YooDV1Wp691+2hjovPZwKuJ+uyQ9r2mXjSHnu6nJto3lPlGGGKyuj8+3Otuo7UzO6njyO2Buv1bSTXAB87s/mCkxi4SouLgYSUlJmD9/vrTMwsIC4eHhSExMVPmaoqIiFBUVSc8VCoVOYqtufIQpqc2+GMsVRbVhLCc8XatN8pspL8TSx5KhcjVJZAyZRNdk28Y0YaG+f4zp4/Otzjaqmsn52fY+OpnV/vFkqJwpTlRpDswiIbpz5w5KS0vh6emptNzT0xOXLlX8cgaAuLg4LF68WB/h0X+ZeouZMZ3wdK2myW/anfwKs+gCj/ruNU1kDJlE12TbxtYKqu8fY/r4fFe3DW3M5FwVVd8BZQIVplgxxdZvc2AWCVFNzJ8/HzNnzpSeKxQK+Pr6GjAi82DKLWbGdsIzRqqOEfCoW6Em/3dDJtGabrsutILWlj4+31Vto3wm57hflX8Ia+tzWtl3wJyolvhg92Wz/b+bCrNIiNzc3GBpaYns7Gyl5dnZ2fDy8lL5GhsbG9jY2OgjPKojeMKr3pPHqHyMxT971nz8hiGTaE23beqtoHXBP3s2A8q7sqDdC1oq+w4Y3tmPEyWaALOZmLFr167o0qULPv30UwBAWVkZ/Pz8EBsbq9agam1PzEh1lzFMJGjseIzI0HT5HuT727hwYsYnzJw5E+PGjUOnTp3QpUsXfPTRR8jPz5euOiPSFlPu9tMXHiMyNF2+B/n+Nk1mkxANHz4cOTk5eOutt5CVlYX27dtj9+7dFQZaExERkfkxmy6z2mKXGRERkelR9/xtNjNVExEREVWGCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmz2xu3VFb5RN6KxQKA0dCRERE6io/b1d3Yw4mRGq6f/8+AMDX19fAkRAREZGm7t+/D2dn50rLeS8zNZWVlSEjIwOOjo6QyWSGDkdvFAoFfH19cePGDd7DrZZ4LLWDx1F7eCy1g8dRe3RxLIUQuH//Pnx8fGBhUflIIbYQqcnCwgKNGzc2dBgG4+TkxA+6lvBYagePo/bwWGoHj6P2aPtYVtUyVI6DqomIiMjsMSEiIiIis8eEiKpkY2ODhQsXwsbGxtChmDweS+3gcdQeHkvt4HHUHkMeSw6qJiIiIrPHFiIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIgIAHD58GIMGDYKPjw9kMhl++uknpXIhBN566y14e3vD1tYW4eHhuHLlimGCNXLVHcvx48dDJpMpPaKiogwTrBGLi4tD586d4ejoCA8PDwwePBiXL19WqvPgwQPExMSgYcOGcHBwwNChQ5GdnW2giI2TOscxLCyswnty6tSpBorYeK1evRpt27aVJg0MDQ3Fb7/9JpXz/aie6o6jod6PTIgIAJCfn4927dph1apVKss/+OADfPLJJ1izZg2OHz8Oe3t7REZG4sGDB3qO1PhVdywBICoqCpmZmdLj+++/12OEpiEhIQExMTE4duwY9u3bh5KSEkRERCA/P1+qM2PGDPzyyy/YsmULEhISkJGRgejoaANGbXzUOY4AMGXKFKX35AcffGCgiI1X48aNsXTpUiQlJeHUqVPo06cPnnvuOZw/fx4A34/qqu44AgZ6PwqiJwAQ27dvl56XlZUJLy8vsWzZMmlZbm6usLGxEd9//70BIjQdTx5LIYQYN26ceO655wwSjym7ffu2ACASEhKEEI/eg1ZWVmLLli1SnYsXLwoAIjEx0VBhGr0nj6MQQvTq1Uu89tprhgvKhDVo0EB89dVXfD/WUvlxFMJw70e2EFG10tLSkJWVhfDwcGmZs7MzunbtisTERANGZroOHToEDw8PtGzZEtOmTcPdu3cNHZLRk8vlAABXV1cAQFJSEkpKSpTel61atYKfnx/fl1V48jiW++677+Dm5obg4GDMnz8fBQUFhgjPZJSWluKHH35Afn4+QkND+X6soSePYzlDvB95c1eqVlZWFgDA09NTabmnp6dURuqLiopCdHQ0AgICkJqaitdffx39+vVDYmIiLC0tDR2eUSorK8P06dPRvXt3BAcHA3j0vrS2toaLi4tSXb4vK6fqOALAqFGj4O/vDx8fH5w9exZz587F5cuXsW3bNgNGa5zOnTuH0NBQPHjwAA4ODti+fTuCgoKQnJzM96MGKjuOgOHej0yIiPRsxIgR0t8hISFo27YtmjVrhkOHDqFv374GjMx4xcTEICUlBb///ruhQzFplR3Hl156Sfo7JCQE3t7e6Nu3L1JTU9GsWTN9h2nUWrZsieTkZMjlcmzduhXjxo1DQkKCocMyOZUdx6CgIIO9H9llRtXy8vICgApXS2RnZ0tlVHNNmzaFm5sbrl69auhQjFJsbCx27tyJ+Ph4NG7cWFru5eWF4uJi5ObmKtXn+1K1yo6jKl27dgUAvidVsLa2RvPmzdGxY0fExcWhXbt2+Pjjj/l+1FBlx1EVfb0fmRBRtQICAuDl5YUDBw5IyxQKBY4fP67U50s1c/PmTdy9exfe3t6GDsWoCCEQGxuL7du34+DBgwgICFAq79ixI6ysrJTel5cvX0Z6ejrfl4+p7jiqkpycDAB8T6qhrKwMRUVFfD/WUvlxVEVf70d2mREAIC8vTyn7TktLQ3JyMlxdXeHn54fp06djyZIlaNGiBQICArBgwQL4+Phg8ODBhgvaSFV1LF1dXbF48WIMHToUXl5eSE1NxZw5c9C8eXNERkYaMGrjExMTg40bN+Lnn3+Go6OjNA7D2dkZtra2cHZ2xqRJkzBz5ky4urrCyckJr7zyCkJDQ9GtWzcDR288qjuOqamp2LhxI/r374+GDRvi7NmzmDFjBnr27Im2bdsaOHrjMn/+fPTr1w9+fn64f/8+Nm7ciEOHDmHPnj18P2qgquNo0Pej3q9rI6MUHx8vAFR4jBs3Tgjx6NL7BQsWCE9PT2FjYyP69u0rLl++bNigjVRVx7KgoEBEREQId3d3YWVlJfz9/cWUKVNEVlaWocM2OqqOIQCxfv16qU5hYaF4+eWXRYMGDYSdnZ0YMmSIyMzMNFzQRqi645ieni569uwpXF1dhY2NjWjevLmYPXu2kMvlhg3cCE2cOFH4+/sLa2tr4e7uLvr27Sv27t0rlfP9qJ6qjqMh348yIYTQbcpFREREZNw4hoiIiIjMHhMiIiIiMntMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiNSSlZWFV155BU2bNoWNjQ18fX0xaNAgpXs3HT16FP3790eDBg1Qv359hISEYMWKFSgtLZXqXLt2DZMmTUJAQABsbW3RrFkzLFy4EMXFxUrb+/LLL9GuXTs4ODjAxcUFTz31FOLi4qTyRYsWQSaTISoqqkKsy5Ytg0wmQ1hYmFr7Vr4umUyGevXqoUmTJpgxYwby8vI0PEpEZKp4LzMiqta1a9fQvXt3uLi4YNmyZQgJCUFJSQn27NmDmJgYXLp0Cdu3b8cLL7yACRMmID4+Hi4uLti/fz/mzJmDxMREbN68GTKZDJcuXUJZWRnWrl2L5s2bIyUlBVOmTEF+fj6WL18OAFi3bh2mT5+OTz75BL169UJRURHOnj2LlJQUpbi8vb0RHx+PmzdvKt3Bfd26dfDz89NoH9u0aYP9+/fj4cOHOHLkCCZOnIiCggKsXbu2Qt3i4mJYW1vX4EjqjjHGRGRSdH5zECIyef369RONGjUSeXl5Fcr+/vtvkZeXJxo2bCiio6MrlO/YsUMAED/88EOl6//ggw9EQECA9Py5554T48ePrzKmhQsXinbt2omBAweKJUuWSMuPHDki3NzcxLRp00SvXr3U2Lv/retxU6ZMEV5eXkrlX375pWjSpImQyWRCiEf7PmnSJOHm5iYcHR1F7969RXJysrSO5ORkERYWJhwcHISjo6Po0KGDOHnypBBCiGvXromBAwcKFxcXYWdnJ4KCgsSuXbuEEEKsX79eODs7K8Wzfft28fhXdk1jIiLV2GVGRFW6d+8edu/ejZiYGNjb21cod3Fxwd69e3H37l3MmjWrQvmgQYMQGBiI77//vtJtyOVyuLq6Ss+9vLxw7NgxXL9+vdr4Jk6ciG+++UZ6vm7dOowePbrWrSW2trZK3XhXr17Fjz/+iG3btiE5ORkA8Pzzz+P27dv47bffkJSUhA4dOqBv3764d+8eAGD06NFo3LgxTp48iaSkJMybNw9WVlYAHt2FvqioCIcPH8a5c+fw/vvvw8HBQaMYaxITEanGLjMiqtLVq1chhECrVq0qrfPnn38CAFq3bq2yvFWrVlIdVev/9NNPpe4yAFi4cCGio6PRpEkTBAYGIjQ0FP3798ewYcNgYaH8O27gwIGYOnUqDh8+jI4dO2Lz5s34/fffsW7dOk13VZKUlISNGzeiT58+0rLi4mL8+9//hru7OwDg999/x4kTJ3D79m3Y2NgAAJYvX46ffvoJW7duxUsvvYT09HTMnj1bOnYtWrSQ1peeno6hQ4ciJCQEANC0aVON46xJTESkGhMiIqqSEEIndQHg1q1biIqKwvPPP48pU6ZIy729vZGYmIiUlBQcPnwYR48exbhx4/DVV19h9+7dSkmRlZUVxowZg/Xr1+Ovv/5CYGAg2rZtq1EcAHDu3Dk4ODigtLQUxcXFGDBgAD777DOp3N/fX0o8AODMmTPIy8tDw4YNldZTWFiI1NRUAMDMmTMxefJkfPvttwgPD8fzzz+PZs2aAQBeffVVTJs2DXv37kV4eDiGDh2qcdw1iYmIVGNCRERVatGihTQYujKBgYEAgIsXL+Lpp5+uUH7x4kUEBQUpLcvIyEDv3r3x9NNP44svvlC53uDgYAQHB+Pll1/G1KlT0aNHDyQkJKB3795K9SZOnIiuXbsiJSUFEydO1HQXAQAtW7bEjh07UK9ePfj4+FTocnuyuzAvLw/e3t44dOhQhXW5uLgAeHT12qhRo7Br1y789ttvWLhwIX744QcMGTIEkydPRmRkJHbt2oW9e/ciLi4OH374IV555RVYWFhUSC5LSkoqbKcmMRGRahxDRERVcnV1RWRkJFatWoX8/PwK5bm5uYiIiICrqys+/PDDCuU7duzAlStXMHLkSGnZrVu3EBYWho4dO2L9+vUVusFUKU+oVMXQpk0btGnTBikpKRg1apQmuyextrZG8+bN0aRJE7XGH3Xo0AFZWVmoV68emjdvrvRwc3OT6gUGBmLGjBnYu3cvoqOjsX79eqnM19cXU6dOxbZt2/B///d/+PLLLwEA7u7uuH//vtK+lo8R0kZMRFQREyIiqtaqVatQWlqKLl264Mcff8SVK1dw8eJFfPLJJwgNDYW9vT3Wrl2Ln3/+GS+99BLOnj2La9eu4euvv8b48eMxbNgwvPDCCwD+lwz5+flh+fLlyMnJQVZWFrKysqTtTZs2De+88w6OHDmC69ev49ixYxg7dizc3d0RGhqqMsaDBw8iMzNTby0h4eHhCA0NxeDBg7F3715cu3YNR48exRtvvIFTp06hsLAQsbGxOHToEK5fv44jR47g5MmT0jir6dOnY8+ePUhLS8Pp06cRHx8vlXXt2hV2dnZ4/fXXkZqaio0bNyoNHK9pTERUOXaZEVG1mjZtitOnT+Pdd9/F//3f/yEzMxPu7u7o2LEjVq9eDQAYNmwY4uPj8e6776JHjx548OABWrRogTfeeAPTp0+HTCYDAOzbtw9Xr17F1atXleYOAv43Bik8PBzr1q3D6tWrcffuXbi5uSE0NBQHDhyoMD6mnKor4HRJJpPh119/xRtvvIEJEyYgJycHXl5e6NmzJzw9PWFpaYm7d+9i7NixyM7OhpubG6Kjo7F48WIAQGlpKWJiYnDz5k04OTkhKioKK1euBPCoVW7Dhg2YPXs2vvzyS/Tt2xeLFi2qdlB0dTERUeVkQtNRkERERER1DLvMiIiIyOwxISKiOs/BwaHSx3/+8x9Dh0dERoBdZkRU5129erXSskaNGsHW1laP0RCRMWJCRERERGaPXWZERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZvf8HoD+tO7SHDZIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSgElEQVR4nO3deVxU1f8/8NeggOyLgICxBSKyqJVLSLkkuVtuqWnlbhpq5ie3ytTS0DSz+vhVP5a0mHtiVpaWopZbKuGSaMoHFQUUXGZkERHO7w9/zIeRGZgZ7jBzx9fz8ZjHw7n3zr3ve7zc+77nnnOuQgghQERERCRDNuYOgIiIiMhYTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREssVEhoiIiGSLiQwRERHJFhMZIiIiki0mMkRERCRbTGSIyOTmzJkDhUKh17IKhQJz5swxaTwdO3ZEx44dLXZ9RKQ/JjJED5Evv/wSCoVC/alfvz4aN26M4cOH48qVK+YOz+IEBwdrlJePjw+efvppJCcnS7L+oqIizJkzB3v27JFkfUQPIyYyRA+h9957D9988w1WrFiB7t27Y82aNejQoQPu3Lljku298847KC4uNsm6Ta1ly5b45ptv8M033+DNN99EdnY2+vXrhxUrVtR63UVFRZg7dy4TGaJaqG/uAIio7nXv3h2tWrUCAIwePRpeXl5YuHAhtm3bhoEDB0q+vfr166N+fXmebho3boyXXnpJ/f2VV15BWFgYPv74Y4wbN86MkRERwBoZIgLw9NNPAwAyMjI0pp85cwYDBgyAp6cnGjRogFatWmHbtm0ay5SWlmLu3Llo0qQJGjRogIYNG+Kpp57Cr7/+ql5GWxuZkpISvPHGG/D29oaLiwuee+45XL58uUpsw4cPR3BwcJXp2taZlJSEZ555Bj4+PrC3t0dkZCSWL19uUFnUxNfXF82aNUNmZma1y127dg2jRo1Co0aN0KBBA7Ro0QJfffWVev6FCxfg7e0NAJg7d6768ZWp2wcRWRt53iIRkaQuXLgAAPDw8FBP+/vvvxEXF4fGjRtjxowZcHJywsaNG9GnTx9899136Nu3L4D7CUViYiJGjx6NNm3aQKVS4ejRo0hNTcWzzz6rc5ujR4/GmjVrMGTIELRr1w67d+9Gz549a7Ufy5cvR1RUFJ577jnUr18fP/zwA1577TWUl5cjISGhVuuuUFpaiqysLDRs2FDnMsXFxejYsSPOnz+PCRMmICQkBJs2bcLw4cNx69YtvP766/D29sby5csxfvx49O3bF/369QMANG/eXJI4iR4agogeGklJSQKA+O2330ReXp7IysoSmzdvFt7e3sLe3l5kZWWpl+3cubOIiYkRd+7cUU8rLy8X7dq1E02aNFFPa9GihejZs2e12509e7aofLpJS0sTAMRrr72msdyQIUMEADF79mz1tGHDhomgoKAa1ymEEEVFRVWW69q1q3j00Uc1pnXo0EF06NCh2piFECIoKEh06dJF5OXliby8PHH8+HExePBgAUBMnDhR5/qWLl0qAIg1a9aop929e1fExsYKZ2dnoVKphBBC5OXlVdlfIjIMHy0RPYTi4+Ph7e2NgIAADBgwAE5OTti2bRseeeQRAMCNGzewe/duDBw4ELdv30Z+fj7y8/Nx/fp1dO3aFefOnVP3cnJ3d8fff/+Nc+fO6b397du3AwAmTZqkMX3y5Mm12i8HBwf1v5VKJfLz89GhQwf897//hVKpNGqdO3fuhLe3N7y9vdGiRQts2rQJL7/8MhYuXKjzN9u3b4evry9efPFF9TRbW1tMmjQJBQUF2Lt3r1GxEFFVfLRE9BBatmwZwsPDoVQqsXr1auzbtw/29vbq+efPn4cQArNmzcKsWbO0ruPatWto3Lgx3nvvPTz//PMIDw9HdHQ0unXrhpdffrnaRyQXL16EjY0NQkNDNaY3bdq0Vvu1f/9+zJ49GwcPHkRRUZHGPKVSCTc3N4PX2bZtW8ybNw8KhQKOjo5o1qwZ3N3dq/3NxYsX0aRJE9jYaN4rNmvWTD2fiKTBRIboIdSmTRt1r6U+ffrgqaeewpAhQ3D27Fk4OzujvLwcAPDmm2+ia9euWtcRFhYGAGjfvj0yMjLw/fffY+fOnfj888/x8ccfY8WKFRg9enStY9U1kF5ZWZnG94yMDHTu3BkRERFYsmQJAgICYGdnh+3bt+Pjjz9W75OhvLy8EB8fb9Rvicj0mMgQPeTq1auHxMREdOrUCf/+978xY8YMPProowDuPw7R5yLu6emJESNGYMSIESgoKED79u0xZ84cnYlMUFAQysvLkZGRoVELc/bs2SrLenh44NatW1WmP1ir8cMPP6CkpATbtm1DYGCgenpKSkqN8UstKCgIJ06cQHl5uUatzJkzZ9TzAd1JGhHpj21kiAgdO3ZEmzZtsHTpUty5cwc+Pj7o2LEjVq5ciZycnCrL5+Xlqf99/fp1jXnOzs4ICwtDSUmJzu11794dAPDpp59qTF+6dGmVZUNDQ6FUKnHixAn1tJycnCqj69arVw8AIIRQT1MqlUhKStIZh6n06NEDubm52LBhg3ravXv38Nlnn8HZ2RkdOnQAADg6OgKA1kSNiPTDGhkiAgBMnToVL7zwAr788kuMGzcOy5Ytw1NPPYWYmBiMGTMGjz76KK5evYqDBw/i8uXLOH78OAAgMjISHTt2xBNPPAFPT08cPXoUmzdvxoQJE3Ruq2XLlnjxxRfxf//3f1AqlWjXrh127dqF8+fPV1l28ODBmD59Ovr27YtJkyahqKgIy5cvR3h4OFJTU9XLdenSBXZ2dujduzdeffVVFBQUYNWqVfDx8dGajJnS2LFjsXLlSgwfPhzHjh1DcHAwNm/ejP3792Pp0qVwcXEBcL9xcmRkJDZs2IDw8HB4enoiOjoa0dHRdRovkayZu9sUEdWdiu7XR44cqTKvrKxMhIaGitDQUHHv3j0hhBAZGRnilVdeEb6+vsLW1lY0btxY9OrVS2zevFn9u3nz5ok2bdoId3d34eDgICIiIsT8+fPF3bt31cto6ypdXFwsJk2aJBo2bCicnJxE7969RVZWltbuyDt37hTR0dHCzs5ONG3aVKxZs0brOrdt2yaaN28uGjRoIIKDg8XChQvF6tWrBQCRmZmpXs6Q7tc1dS3Xtb6rV6+KESNGCC8vL2FnZydiYmJEUlJSld8eOHBAPPHEE8LOzo5dsYmMoBCiUj0sERERkYywjQwRERHJFhMZIiIiki0mMkRERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZsvoB8crLy5GdnQ0XFxcOB05ERCQTQgjcvn0b/v7+VV7AWpnVJzLZ2dkICAgwdxhERERkhKysLDzyyCM651t9IlMxFHhWVhZcXV3NHA0RERHpQ6VSISAgQH0d18XqE5mKx0murq5MZIiIiGSmpmYhbOxLREREssVEhoiIiGSLiQwRERHJltW3kSEisjRlZWUoLS01dxhEZmVra4t69erVej1MZIiI6ogQArm5ubh165a5QyGyCO7u7vD19a3VOG9MZIiI6khFEuPj4wNHR0cO0kkPLSEEioqKcO3aNQCAn5+f0etiIkNEVAfKysrUSUzDhg3NHQ6R2Tk4OAAArl27Bh8fH6MfM7GxLxFRHahoE+Po6GjmSIgsR8XfQ23ajDGRISKqQ3ycRPQ/Uvw9MJEhIiIi2WIiQ0RERLLFRMbMcpTFOJCRjxxlsblDISKqVm5uLiZOnIhHH30U9vb2CAgIQO/evbFr1y71MgcOHECPHj3g4eGBBg0aICYmBkuWLEFZWZl6mQsXLmDUqFEICQmBg4MDQkNDMXv2bNy9e1dje6tWrUKLFi3g7OwMd3d3PPbYY0hMTFTPnzNnDhQKBbp161Yl1kWLFkGhUKBjx456759KpcLbb7+NiIgINGjQAL6+voiPj8eWLVsghFAv9/fff2PgwIHw9vaGvb09wsPD8e6776KoqEi9zI0bNzBx4kQ0bdoUDg4OCAwMxKRJk6BUKvWK5cKFC1AoFFo/hw4d0nufOnbsiMmTJ+u9vByx15IZbThyCTO3nES5AGwUQGK/GAxqHWjusIiIqrhw4QLi4uLg7u6ORYsWISYmBqWlpdixYwcSEhJw5swZJCcnY+DAgRgxYgRSUlLg7u6O3377DdOmTcPBgwexceNGKBQKnDlzBuXl5Vi5ciXCwsJw6tQpjBkzBoWFhVi8eDEAYPXq1Zg8eTI+/fRTdOjQASUlJThx4gROnTqlEZefnx9SUlJw+fJlPPLII+rpq1evRmCg/ufTW7du4amnnoJSqcS8efPQunVr1K9fH3v37sW0adPwzDPPwN3dHYcOHUJ8fDzi4+Px008/oVGjRvjzzz/xr3/9C7t27UJKSgrs7OyQnZ2N7OxsLF68GJGRkbh48SLGjRuH7OxsbN68We+4fvvtN0RFRWlMk7rXmxACZWVlqF9fpimBsHJKpVIAEEql0tyhaMi+VSRCZvwogqb/7/PojJ9E9q0ic4dGRCZQXFwsTp8+LYqLi80dilG6d+8uGjduLAoKCqrMu3nzpigoKBANGzYU/fr1qzJ/27ZtAoBYv369zvV/+OGHIiQkRP39+eefF8OHD682ptmzZ4sWLVqIXr16iXnz5qmn79+/X3h5eYnx48eLDh066LF3QowfP144OTmJK1euVJl3+/ZtUVpaKsrLy0VkZKRo1aqVKCsr01gmLS1NKBQKsWDBAp3b2Lhxo7CzsxOlpaU1xpOZmSkAiL/++kvnMhX7//XXX4ugoCDh6uoqBg0aJFQqlRBCiGHDhgkAGp/MzEyRkpIiAIjt27eLxx9/XNja2oqUlBRx584dMXHiROHt7S3s7e1FXFyc+PPPP9Xbq/jdjz/+KGJiYoS9vb1o27atOHnypBBCiIKCAuHi4iI2bdqkEWdycrJwdHRUx1VZdX8X+l6/+WjJTDLzC1EuNKeVCYEL+UXaf0BEVEldPpa+ceMGfvnlFyQkJMDJyanKfHd3d+zcuRPXr1/Hm2++WWV+7969ER4ejnXr1unchlKphKenp/q7r68vDh06hIsXL9YY38iRI/Hll1+qv69evRpDhw6FnZ1djb8FgPLycqxfvx5Dhw6Fv79/lfnOzs6oX78+0tLScPr0aUyZMgU2NpqXzxYtWiA+Pr7GfXR1dZW05iMjIwNbt27Fjz/+iB9//BF79+7FggULAACffPIJYmNjMWbMGOTk5CAnJwcBAQHq386YMQMLFixAeno6mjdvjmnTpuG7777DV199hdTUVISFhaFr1664ceOGxjanTp2Kjz76CEeOHIG3tzd69+6N0tJSODk5YfDgwUhKStJYPikpCQMGDICLi4tk+10ZExkzCfFygs0Dvc7qKRQI9uIYE0RUvQ1HLiFuwW4MWXUYcQt2Y8ORSybd3vnz5yGEQEREhM5l/vnnHwBAs2bNtM6PiIhQL6Nt/Z999hleffVV9bTZs2fD3d0dwcHBaNq0KYYPH46NGzeivLy8yu979eoFlUqFffv2obCwEBs3bsTIkSP13r/8/HzcvHmz2v0Dat7HZs2a6dzH/Px8vP/++xg7dqzecQFAu3bt4OzsrPGprLy8HF9++SWio6Px9NNP4+WXX1a3WXJzc4OdnR0cHR3h6+sLX19fjUHn3nvvPTz77LMIDQ2Fvb09li9fjkWLFqF79+6IjIzEqlWr4ODggC+++EJjm7Nnz8azzz6LmJgYfPXVV7h69SqSk5MBAKNHj8aOHTuQk5MD4P5gd9u3bzfo/8NQTGTMxM/NAYn9YlDv//ehr6dQ4IN+0fBzczBzZERkyXKUxeq2dQBQLoC3tpwyac2MEKLmhYxYFgCuXLmCbt264YUXXsCYMWPU0/38/HDw4EGcPHkSr7/+Ou7du4dhw4ahW7duVZIZW1tbvPTSS0hKSsKmTZsQHh6O5s2bmyxmQ5dXqVTo2bMnIiMjMWfOHIN+u2HDBqSlpWl8KgsODtao6fDz81MP+1+TVq1aqf+dkZGB0tJSxMXFqafZ2tqiTZs2SE9P1/hdbGys+t+enp5o2rSpepk2bdogKioKX331FQBgzZo1CAoKQvv27fXbYSPItGWPdRjUOhDtw71xIb8IwV6OTGKIqEbVPZY21TmkSZMm6ka6uoSHhwMA0tPT0a5duyrz09PTERkZqTEtOzsbnTp1Qrt27fCf//xH63qjo6MRHR2N1157DePGjcPTTz+NvXv3olOnThrLjRw5Em3btsWpU6cMvvv39vaGu7t7tfsHaO7jY489VmV+enq6epkKt2/fRrdu3eDi4oLk5GTY2toaFFtAQADCwsJ0zn9wfQqFQmutlTbaHhNKYfTo0Vi2bBlmzJiBpKQkjBgxwqQDQbJGxsz83BwQG9qQSQwR6cUcj6U9PT3RtWtXLFu2DIWFhVXm37p1C126dIGnpyc++uijKvO3bduGc+fO4cUXX1RPu3LlCjp27IgnnngCSUlJVdqcaFORCGmLISoqClFRUTh16hSGDBliyO7BxsYGgwcPxrfffovs7Owq8wsKCnDv3j20bNkSERER+Pjjj6skC8ePH8dvv/2msY8qlQpdunSBnZ0dtm3bhgYNGhgUlxTs7Ow0ur7rEhoaCjs7O+zfv189rbS0FEeOHKmSgFbu/n3z5k38888/Go/bXnrpJVy8eBGffvopTp8+jWHDhkmwJ7oxkSEikhFzPZZetmwZysrK0KZNG3z33Xc4d+4c0tPT8emnnyI2NhZOTk5YuXIlvv/+e4wdOxYnTpzAhQsX8MUXX2D48OEYMGAABg4cCOB/SUxgYCAWL16MvLw85ObmIjc3V7298ePH4/3338f+/ftx8eJFHDp0CK+88gq8vb01Hm1Utnv3buTk5MDd3d3g/Zs/fz4CAgLQtm1bfP311zh9+jTOnTuH1atX47HHHkNBQQEUCgW++OILnD59Gv3798eff/6JS5cuYdOmTejduzdiY2PVY7ZUJDGFhYX44osvoFKp1PuoT2JR4fr16+rfVXzu3Lmj9++Dg4Nx+PBhXLhwAfn5+Tpra5ycnDB+/HhMnToVv/zyC06fPo0xY8agqKgIo0aN0lj2vffew65du3Dq1CkMHz4cXl5e6NOnj3q+h4cH+vXrh6lTp6JLly4a3eJNoto+TVbAUrtfE9HDReru19m3isSB8/l1OmRDdna2SEhIEEFBQcLOzk40btxYPPfccyIlJUW9zL59+0TXrl2Fq6ursLOzE1FRUWLx4sXi3r176mWSkpKqdAuu+FTYvHmz6NGjh/Dz8xN2dnbC399f9O/fX5w4cUK9TEX3Y11ef/11vbtfCyHErVu3xIwZM0STJk2EnZ2daNSokYiPjxfJycmivLxcvdyJEydE//79haenp7C1tRWhoaHinXfeEYWFheplKroqa/tkZmbWGEtF92ttn3Xr1unc/48//lgEBQWpv589e1Y8+eSTwsHBoUr365s3b2r8tri4WEycOFF4eXlV2/36hx9+EFFRUcLOzk60adNGHD9+vEr8u3btEgDExo0bq91PKbpfK4QwsNWSzKhUKri5uam7vRERmcOdO3eQmZmJkJAQszxiIKqtPXv2oFOnTrh582aNtV7ffPMN3njjDWRnZ1fbDb66vwt9r99s7EtERESSKCoqQk5ODhYsWIBXX31V77F8aoNtZIiIyOo9OBZL5c/vv/9e5/GMGzdOZzzjxo2r83ik8uGHHyIiIgK+vr6YOXNmnWyTj5aIiOoAHy2Z1/nz53XOa9y4MRwc6rbn6LVr16BSqbTOc3V1hY+PT53GYy58tERERKSH6sZiMQcfH5+HJlkxNT5aIiIiItliIkNEVIf0HXWV6GEgxd8DHy0REdUBOzs72NjYIDs7G97e3rCzszPpsO1ElkwIgbt37yIvLw82Nja16t3ERIaIqA7Y2NggJCQEOTk5WofBJ3oYOTo6IjAwUK9XVOjCRIaIqI7Y2dkhMDAQ9+7dM2iYeiJrVK9ePdSvX7/WNZNMZIiI6pBCoYCtra3Bb0EmIu3Y2JeIiIhki4kMERERyRYTGSIiIpItJjJEREQkW0xkiIiISLaYyBAREZFsMZEhIiIi2WIiQ0RERLLFRIaIiIhki4kMERERyZZZE5l9+/ahd+/e8Pf3h0KhwNatW9XzSktLMX36dMTExMDJyQn+/v545ZVX+LI1IiIiUjNrIlNYWIgWLVpg2bJlVeYVFRUhNTUVs2bNQmpqKrZs2YKzZ8/iueeeM0OkREREZIkUQghh7iCA+y9SS05ORp8+fXQuc+TIEbRp0wYXL15EYGCgXutVqVRwc3ODUqmEq6urRNESERGRKel7/ZbV26+VSiUUCgXc3d11LlNSUoKSkhL1d5VKVQeRERERkTnIprHvnTt3MH36dLz44ovVZmaJiYlwc3NTfwICAuowSiIiIqpLskhkSktLMXDgQAghsHz58mqXnTlzJpRKpfqTlZVVR1ESERFRXbP4R0sVSczFixexe/fuGtu52Nvbw97evo6iIyIiInOy6ESmIok5d+4cUlJS0LBhQ3OHRERERBbErIlMQUEBzp8/r/6emZmJtLQ0eHp6ws/PDwMGDEBqaip+/PFHlJWVITc3FwDg6ekJOzs7c4VNREREFsKs3a/37NmDTp06VZk+bNgwzJkzByEhIVp/l5KSgo4dO+q1DXa/JiIikh9ZdL/u2LEjqsujLGSIGyIiIrJQsui1RERERKQNExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyZdZEZt++fejduzf8/f2hUCiwdetWjflCCLz77rvw8/ODg4MD4uPjce7cOfMES0RERBbHrIlMYWEhWrRogWXLlmmd/+GHH+LTTz/FihUrcPjwYTg5OaFr1664c+dOHUdKRERElqi+OTfevXt3dO/eXes8IQSWLl2Kd955B88//zwA4Ouvv0ajRo2wdetWDB48uC5DJSIiIgtksW1kMjMzkZubi/j4ePU0Nzc3tG3bFgcPHjRjZERERGQpzFojU53c3FwAQKNGjTSmN2rUSD1Pm5KSEpSUlKi/q1Qq0wRIREREZmexNTLGSkxMhJubm/oTEBBg7pCIiIjIRCw2kfH19QUAXL16VWP61atX1fO0mTlzJpRKpfqTlZVl0jiJiIjIfCw2kQkJCYGvry927dqlnqZSqXD48GHExsbq/J29vT1cXV01PkRERGSdzNpGpqCgAOfPn1d/z8zMRFpaGjw9PREYGIjJkydj3rx5aNKkCUJCQjBr1iz4+/ujT58+5guaiIiILIZZE5mjR4+iU6dO6u9TpkwBAAwbNgxffvklpk2bhsLCQowdOxa3bt3CU089hV9++QUNGjQwV8hERERkQRRCCGHuIExJpVLBzc0NSqWSj5mIiIhkQt/rt8W2kSEiIiKqCRMZIiIiki0mMkRERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREsmVUIlNYWCh1HEREREQGMyqRadSoEUaOHIk//vhD6niIiIiI9GZUIrNmzRrcuHEDzzzzDMLDw7FgwQJkZ2dLHRsRERFRtYxKZPr06YOtW7fiypUrGDduHNauXYugoCD06tULW7Zswb1796SOk4iIiKgKyd619Nlnn2Hq1Km4e/cuvLy8MG7cOMyYMQOOjo5SrN5ofNcSERGR/Oh7/a7V26+vXr2Kr776Cl9++SUuXryIAQMGYNSoUbh8+TIWLlyIQ4cOYefOnbXZBBEREZFORiUyW7ZsQVJSEnbs2IHIyEi89tpreOmll+Du7q5epl27dmjWrJlUcRIRERFVYVQiM2LECAwePBj79+9H69attS7j7++Pt99+u1bBEREREVXHqDYyRUVFZm/7oi+2kSEiIpIfk7aRcXR0RFlZGZKTk5Geng4AaNasGfr06YP69WvV7IaIiIhIb0ZlHX///Td69+6Nq1evomnTpgCAhQsXwtvbGz/88AOio6MlDZKIiIhIG6PGkRk9ejSio6Nx+fJlpKamIjU1FVlZWWjevDnGjh0rdYxEREREWhlVI5OWloajR4/Cw8NDPc3DwwPz58/X2fiXiIiISGpG1ciEh4fj6tWrVaZfu3YNYWFhtQ6KiIiISB9GJTKJiYmYNGkSNm/ejMuXL+Py5cvYvHkzJk+ejIULF0KlUqk/RERERKZiVPdrG5v/5T8KhQIAULGayt8VCgXKysqkiNNo7H5NREQkPybtfp2SkmJ0YERERERSMSqR6dChg9RxEBERERnM6NHrbt26hS+++EI9IF5UVBRGjhwJNzc3yYIjIiIiqo5RjX2PHj2K0NBQfPzxx7hx4wZu3LiBJUuWIDQ0FKmpqVLHSERERKSVUY19n376aYSFhWHVqlXqVxLcu3cPo0ePxn//+1/s27dP8kCNxca+RERE8qPv9duoRMbBwQF//fUXIiIiNKafPn0arVq1QlFRkeERmwgTGSIiIvnR9/pt1KMlV1dXXLp0qcr0rKwsuLi4GLNKIiIiIoMZlcgMGjQIo0aNwoYNG5CVlYWsrCysX78eo0ePxosvvih1jERERERaGdVrafHixVAoFHjllVdw7949AICtrS3Gjx+PBQsWSBogERERkS4Gt5EpKyvD/v37ERMTA3t7e2RkZAAAQkND4ejoaJIga4NtZIiIiOTHZCP71qtXD126dEF6ejpCQkIQExNTq0CJiIiIjGVUG5no6Gj897//lToWIiIiIoMYlcjMmzcPb775Jn788Ufk5ORovO2ab7wmIiKiuiLZ268By3njdWVsI0NERCQ/fPs1ERERWT2jEpmQkBAEBARo1MYA92tksrKyJAmMiIiIqCZGtZEJCQlBXl5elek3btxASEhIrYMiIiIi0odRiUxFW5gHFRQUoEGDBrUOqkJZWRlmzZqFkJAQODg4IDQ0FO+//z6MaNZDREREVsigR0tTpkwBcL+B76xZszQGwCsrK8Phw4fRsmVLyYJbuHAhli9fjq+++gpRUVE4evQoRowYATc3N0yaNEmy7RAREZE8GZTI/PXXXwDu18icPHkSdnZ26nl2dnZo0aIF3nzzTcmCO3DgAJ5//nn07NkTABAcHIx169bhzz//lGwbREREJF8GJTIVvZVGjBiBTz75xOTdmdu1a4f//Oc/+OeffxAeHo7jx4/jjz/+wJIlS3T+pqSkBCUlJervHNeGiIjIehnVaykpKUnqOLSaMWMGVCoVIiIiUK9ePZSVlWH+/PkYOnSozt8kJiZi7ty5dRIfERERmZdRiUxhYSEWLFiAXbt24dq1aygvL9eYL9XrCzZu3Ihvv/0Wa9euRVRUFNLS0jB58mT4+/tj2LBhWn8zc+ZMdVse4H6NTEBAgCTxEBERkWUxKpEZPXo09u7di5dffhl+fn5aezBJYerUqZgxYwYGDx4MAIiJicHFixeRmJioM5Gxt7eHvb29SeIhIiIiy2JUIvPzzz/jp59+QlxcnNTxaCgqKtJ4HQJw/+3bD9YAERER0cPJqETGw8MDnp6eUsdSRe/evTF//nwEBgYiKioKf/31F5YsWYKRI0eafNtERERk+Yx6aeSaNWvw/fff46uvvtIYS0Zqt2/fxqxZs5CcnIxr167B398fL774It59912Nrt/V4UsjiYiI5Eff67dRicxjjz2GjIwMCCEQHBwMW1tbjfmpqamGR2wiTGSIiIjkx6Rvv+7Tp4+xcRERERFJxqgaGTlhjQwREZH86Hv9NuilkX/++SfKysp0zi8pKcHGjRsNWSURERGR0QxKZGJjY3H9+nX1d1dXV43B727duoUXX3xRuuiIiIiIqmFQIvPgUyhtT6Ws/EkVERERWRCDEhl9mGqUXyIiIqIHSZ7IEBEREdUVg7tfnz59Grm5uQDuP0Y6c+YMCgoKAAD5+fnSRkdERERUDYO6X9vY2EChUGhtB1MxXaFQVNuzqa6x+zUREZH8mGRAvMzMzFoHRkRERCQVgxKZoKAgg1b+2muv4b333oOXl5dBvyMiIiLSh0kb+65ZswYqlcqUmyAiIqKHmEkTGY4pQ0RERKbE7tdEREQkW0xkiIiISLaYyBAREZFsMZEhIiIi2TJpIvPSSy9xEDoiIiIyGaMSmfLycp3TL126pP6+fPlyjiFDREREJmNQIqNSqTBw4EA4OTmhUaNGePfddzVeR5CXl4eQkBDJgyQiIiLSxqCRfWfNmoXjx4/jm2++wa1btzBv3jykpqZiy5YtsLOzA8CxY4iIiKjuGFQjs3XrVqxcuRIDBgzA6NGjcfToUeTl5aF3794oKSkBcP/lkURERER1waBEJi8vT+N9S15eXvjtt99w+/Zt9OjRA0VFRZIHSERERKSLQYlMYGAg0tPTNaa5uLhg586dKC4uRt++fSUNjoiIiKg6BiUyXbp0QVJSUpXpzs7O2LFjBxo0aCBZYEREREQ1Maix79y5c5Gdna11nouLC3799VekpqZKEhgRERFRTQxKZDw8PODh4aFzvouLCzp06FDroIiIiIj0YfCAePfu3cOiRYvw+OOPw9nZGc7Oznj88cexePFilJaWmiJGIiIiIq0MqpEpLi7Gs88+i4MHDyI+Ph7t27cHAKSnp2P69OnYtm0bdu7cybYyREREVCcMSmQWLFiArKws/PXXX2jevLnGvOPHj+O5557DggULMGfOHCljJCIiItLKoEdL69evx5IlS6okMQDQokULLF68GGvXrpUsOCIiIqLqGJTIXLx4EW3atNE5/8knn9R4aSQRERGRKRmUyLi6uuLatWs65+fm5sLFxaXWQRERERHpw6BEplOnTvjggw90zl+wYAE6depU66CIiIiI9GFQY9/Zs2ejbdu2ePLJJzFlyhRERERACIH09HR8/PHHOH36NA4dOmSqWImIiIg0GJTIREZG4tdff8WoUaMwePBg9ZuuhRCIiIjAzp07ERUVZZJAiYiIiB5kUCID3G/Q+/fffyMtLQ3//PMPACA8PBwtW7aUOjYiIiKiahmcyKhUKjg7O6Nly5YayUt5eTkKCgrg6uoqZXxEREREOhnU2Dc5ORmtWrXCnTt3qswrLi5G69at8cMPP0gWHBEREVF1DEpkli9fjmnTpsHR0bHKPCcnJ0yfPh3//ve/JQuOiIiIqDoGJTKnTp1Cx44ddc5v3749Tp48WduYNFy5cgUvvfQSGjZsCAcHB8TExODo0aOSboOIiIjkyaA2Mjdv3sS9e/d0zi8tLcXNmzdrHVTl7cXFxaFTp074+eef4e3tjXPnzsHDw0OybRAREZF8GZTIBAcH4+jRo4iIiNA6/+jRowgKCpIkMABYuHAhAgICkJSUpJ4WEhIi2fqJiIhI3gx6tNSvXz+8/fbbuHr1apV5ubm5eOedd9C/f3/Jgtu2bRtatWqFF154AT4+PnjsscewatWqan9TUlIClUql8SEiIiLrpBBCCH0Xvn37NmJjY3Hp0iW89NJLaNq0KQDgzJkz+PbbbxEQEIBDhw5J9r6lBg0aAACmTJmCF154AUeOHMHrr7+OFStWYNiwYVp/M2fOHMydO7fKdKVSya7hREREMqFSqeDm5lbj9dugRAa4nxDMnDkTGzZsULeHcXd3x+DBgzF//nxJ26/Y2dmhVatWOHDggHrapEmTcOTIERw8eFDrb0pKSlBSUqL+rlKpEBAQwESGiIhIRvRNZAweEM/NzQ3/93//h2XLliE/Px9CCHh7e6tfV1DZ/v370apVK9jb2xu6GQCAn58fIiMjNaY1a9YM3333nc7f2NvbG709IiIikheD2shUplAo4O3tDR8fH61JDAB0794dV65cMTq4uLg4nD17VmPaP//8I2mDYiIiIpIvoxMZfRj41KqKN954A4cOHcIHH3yA8+fPY+3atfjPf/6DhIQEiSIkIiIiOTNpIlNbrVu3RnJyMtatW4fo6Gi8//77WLp0KYYOHWru0IiIiMgCGNxGpq716tULvXr1MncYREREZIEsukaGiIiIqDomTWR0NQImIiIikoJFN/YlIiIiqo5J28jcvn3blKsnIiKih5xBicwzzzyj13K7d+82KhgiIiIiQxiUyOzZswdBQUHo2bMnbG1tTRUTERERkV4MSmQWLlyIpKQkbNq0CUOHDsXIkSMRHR1tqtiIiIiIqmVQY9+pU6fi9OnT2Lp1K27fvo24uDi0adMGK1asgEqlMlWMRERERFoZ/PbryoqKirBp0yYsW7YMp0+fRnZ2tsW9YVrft2cSERGR5dD3+l2r7tepqanYu3cv0tPTER0dzXYzREREVKcMTmSys7PxwQcfIDw8HAMGDICnpycOHz6MQ4cOwcHBwRQxEhEREWllUGPfHj16ICUlBV26dMGiRYvQs2dP1K9v8a9rIiIiIitlUBsZGxsb+Pn5wcfHp9rXD6SmpkoSnBTYRoaIiEh+9L1+G1SdMnv27FoHRkRERCSVWvVakgPWyBAREcmPSWpkdNm7dy8KCwsRGxsLDw8PKVZJREREVCODR/YtKCjA+++/D+D+2627d++OnTt3AgB8fHywa9cuREVFSR8pERER0QMM6n69YcMGjVcSbN68Gfv27cPvv/+O/Px8tGrVCnPnzpU8SCIiIiJtDEpkMjMz0bx5c/X37du3Y8CAAYiLi4OnpyfeeecdHDx4UPIgiYiIiLQxKJG5d+8e7O3t1d8PHjyIdu3aqb/7+/sjPz9fuuiIiIiIqmFQIhMaGop9+/YBAC5duoR//vkH7du3V8+/fPkyGjZsKG2ERERERDoY1Ng3ISEBEyZMwO+//45Dhw4hNjYWkZGR6vm7d+/GY489JnmQRERERNoYlMiMGTMG9erVww8//ID27dtXGSAvOzsbI0eOlDRAIiIiIl04IB4RERFZHH2v3wa//ZqIiIjIUhiUyJSWlmLatGkICwtDmzZtsHr1ao35V69eRb169SQNkIiIiEgXgxKZ+fPn4+uvv8a4cePQpUsXTJkyBa+++qrGMlb+pIqIiIgsiEGNfb/99lt8/vnn6NWrFwBg+PDh6N69O0aMGKGunVEoFNJHSURERKSFQTUyV65c0XhFQVhYGPbs2YMDBw7g5ZdfRllZmeQBEhEREeliUCLj6+uLjIwMjWmNGzdGSkoKjhw5guHDh0sZGxEREVG1DEpknnnmGaxdu7bKdH9/f+zevRuZmZmSBUZERERUE4PayMyaNQtnzpzROq9x48bYu3cvfv31V0kCIyIiIqoJB8QjIiIii2PSAfE2bdqEfv36ITo6GtHR0ejXrx82b95sdLBERERExjAokSkvL8egQYMwaNAgnD59GmFhYQgLC8Pff/+NQYMGYfDgwRxHhoiIiOqMQW1kPvnkE/z222/Ytm2beiyZCtu2bcOIESPwySefYPLkyVLGSERERKSVQTUySUlJWLRoUZUkBgCee+45fPjhh1VeW0BERERkKgYlMufOnUN8fLzO+fHx8Th37lytgyIiIiLSh0GJjIODA27duqVzvkqlQoMGDWobExEREZFeDEpkYmNjsXz5cp3zly1bhtjY2FoHRURERKQPgxKZt99+G1988QUGDhyIP//8EyqVCkqlEocOHcILL7yA1atX4+233zZVrFiwYAEUCgUbExMREREAA3sttWvXDhs2bMDYsWPx3Xffaczz8PDAunXrEBcXJ2mAFY4cOYKVK1eiefPmJlk/ERERyY9BiQwA9O3bF127dsWOHTvUDXvDw8PRpUsXODo6Sh4gABQUFGDo0KFYtWoV5s2bZ5JtEBERkfwY9Ghp9+7diIyMxL1799C3b19MmzYN06ZNQ58+fVBaWoqoqCj8/vvvkgeZkJCAnj17VttjqkJJSQlUKpXGh4iIiKyTQYnM0qVLMWbMGK3vPHBzc8Orr76KJUuWSBYcAKxfvx6pqalITEzUa/nExES4ubmpPwEBAZLGQ0RERJbDoETm+PHj6Natm875Xbp0wbFjx2odVIWsrCy8/vrr+Pbbb/Xu1j1z5kwolUr1JysrS7J4iIiIyLIY1Ebm6tWrsLW11b2y+vWRl5dX66AqHDt2DNeuXcPjjz+unlZWVoZ9+/bh3//+N0pKSlCvXj2N39jb28Pe3l6yGIiIiMhyGZTING7cGKdOnUJYWJjW+SdOnICfn58kgQFA586dcfLkSY1pI0aMQEREBKZPn14liSEiIqKHi0GJTI8ePTBr1ix069atyqOe4uJizJ49W+t7mIzl4uKC6OhojWlOTk5o2LBhlelERET08DEokXnnnXewZcsWhIeHY8KECWjatCkA4MyZM1i2bBnKyspMOiAeERERUWUKIYQw5AcXL17E+PHjsWPHDlT8VKFQoGvXrli2bBlCQkJMEqixVCoV3NzcoFQqtfa2IiIiIsuj7/Xb4AHxgoKCsH37dty8eRPnz5+HEAJNmjSBh4dHrQImIiIiMpTBiUwFDw8PtG7dWspYiIiIiAxi0DgyRERERJaEiQwRERHJFhMZIiIiMkqOshgHMvKRoyw2WwxGt5EhIiKih9eGI5cwc8tJlAvARgEk9ovBoNaBdR4Ha2SIiIjIIDnKYnUSAwDlAnhryymz1MwwkSEiIiKDZOYXqpOYCmVC4EJ+UZ3HwkSGiIiIDBLi5QQbhea0egoFgr0c6zwWJjJERERkED83ByT2i0E9xf1spp5CgQ/6RcPPzaHOY2FjXyIiIjLYoNaBaB/ujQv5RQj2cjRLEgMwkSEiIiIj+bk5mC2BqcBHS0RERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREssVEhohMxhJeKEdE1o3dr4nIJCzlhXJEZN1YI0NEkrOkF8oRkXVjIkNEkrOkF8oRkXVjIkNEkrOkF8oRkXVjIkNEkrOkF8oRkXVjY18iMglLeaEcEVk3JjJERspRFiMzvxAhXk68SOtgCS+UIyLrxkSGyAjsWkxEZBnYRobIQOxaTERkOZjIEBmIXYuJiCwHExkiA7FrMRGR5WAiQ2Qgdi0mIrIcbOxLZAR2LSYisgxMZIiMxK7FRETmx0dLVGs5ymIcyMhnrx0iIqpzrJGhWuF4KkREZE6skSGjcTwVIqKHmyXUyLNGhoxW3XgqbDtCRGTdLKVGnjUyRrKELNTcOJ4KEdHDyZJq5JnIGGHDkUuIW7AbQ1YdRtyC3dhw5JK5QzILjqdCRPRwsqQRzvloyUC6stD24d4P5QWc46kQET18KmrkKycz5qqRt+gamcTERLRu3RouLi7w8fFBnz59cPbsWbPGZElZqKXwc3NAbGhDJjFERA8JS6qRt+gamb179yIhIQGtW7fGvXv38NZbb6FLly44ffo0nJyczBKTJWWhRERE5mIpNfIKIYSoeTHLkJeXBx8fH+zduxft27fX6zcqlQpubm5QKpVwdXWVJI4NRy7hrS2nUCaEOgvl2ClERETS0ff6bdE1Mg9SKpUAAE9PT7PGYSlZKBkvR1mMzPxChHg58f+PiEjGZJPIlJeXY/LkyYiLi0N0dLTO5UpKSlBSUqL+rlKpTBIP37MjX5Yy9gEREdWeRTf2rSwhIQGnTp3C+vXrq10uMTERbm5u6k9AQEAdRUhyYEljHxARUe3JIpGZMGECfvzxR6SkpOCRRx6pdtmZM2dCqVSqP1lZWXUUJckBe50REVkXi360JITAxIkTkZycjD179iAkJKTG39jb28Pe3r4OoiM5Yq8zIiLrYtE1MgkJCVizZg3Wrl0LFxcX5ObmIjc3F8XFfAxAxrGksQ+IiKj2LLr7tUKh0Do9KSkJw4cP12sdpuh+TfKXoyxmrzMzYq8xIqqJVXS/tuAcSzZ4wdCOvc7Mh73GiEhKFp3IUO3wgkGWhu8qIyKpWXQbGTIeuxmTJWKvMSKSGhMZK8ULBlmiil5jlbHXGBHVBhMZKyXlBSNHWYwDGfmszaFaY68xIpIa28hYqYoLxoMvtzT0gsF2NiQ1S35XGRvHE8mPRXe/lsLD3v26Nt2Mc5TFiFuwu8rgcX/M6MSTPFkdJu1ElkXf6zcfLZmAJT2K8XNzQGxoQ6MSD7azoYcFG8cTyRcfLUnMmu7qOJw/PSyqS9pZ+0hk2VgjIyFru6tjw0x6WLA3FRnLkmrgpSSn/WKNjISs8a7OkhtmEklFqsbx5sJGyuZhTTXwlcltv5jISOjkZWWVadZwV8fh/OlhIMekPUdZjNV/ZOKLPzJlc9GxFtY6SrUc94uJjERylMVY+MuZKtOndW9qsf/5RKRJTkn7hiOXMOO7k6hcCSyHi461sMYaeECe+8U2MhLR9p8PAM0bu9d5LJZMTs9diWrLVMd7xV2ztrEz2LOwblhruyo57hdrZCTCHj7aVX52v++fPFk9dyWqDVO2M9B14wTwvFNX5N6uShc57hcHxJPQhiOXqvznP8wX6son8ooEv/LBxsH1yFqZejBJbesHdCdMuhoD69tImI2JdavNoKOWzBL2S9/rN2tkJCR1Y0E5nzwebDBWXRW43PaNqCambmfw4F2zDYDR7UMwIi6kyvp11QzpW2Mktx4sdU1O7aoMIaf9YiIjMan+8+V+8qiu6rsCq8DJWtXFo2Z9bpx09UCJ8HXRq2eKHHuwWDI535xaMjb2tUDWMLCetgZjCkA9TQ7PXYmMVVeDSdb0ChJdNUNHLtzUOv2nEzka5xm+pkQ6G45cQtyC3Riy6jDiFuzGhiOX6mS7D0MHC9bIWCA5dn97kK4GY3Ibp4PIWJYwLo2umqHWwR5VpgPAvJ/S8cH2dHUNsFw7MVhazYe5arbkXrOvLyYytVDbBnS6yPXk8SBdJ3JLOLEQ1QVztzPQdUPRIsBDY3pllS+yADDqqRD1gHtyqEm1xIu3OW5OH6bHgkxkjFTbBnTVkWP3N13MfSK3ZJZ21yg1a98/udB1Q1Ex/acTOZj3U7rGb8qEQNL+THz+e6a61+FYHY2JLYmlXrzNcXNqDTX7+mIiY4TaNqDThyVUS5PpWOJdo5Rqu391mQRZY8L14D7puqHwc3NAz+Z++GB7usZFz0YBrNqXqe5tKAB88fsFjIgLqZP4jSXlxVvK48IcN6fWUrOvDyYyRjC0AZ2xGTBrM6yTpd41SqW2+2fKJO/Bi5M1JpSG7pO2i+zIp4Kx6vdMjeXkcDcv1cXbFMeFqW9OtSWv1lKzXxMmMkYwpAGdlBmwNd45Poysvcq3NvtnyiTvwYvT9O4RWPjzGatKKI0tvwcvsgDU7WIq1OZcVlfnLiku3lIcg7r2V9+bU0PLS1fi9bDU7DORMYK+DeikzICt4c6Ridh91l7lW5v9M1WSp+3iVDmJkXJb1cVg6uO/NuX34EVWqnNZXZ+7anvxru0xWNv9NfT3NSVeD0PNPhMZI9XUgE7KDLimA1UOCYI1JGJSsfYq39rsn6mSPG0Xp4pGrA++NsMUCWVdHf9Slp8U5zJzPUatzcW7NmVY2/015vfWXsOrDyYytVBdAzopD6DqDlQ5vIjR2tuEGMPaq3yN3T9TJXm6Lk7TujXFh7+cNWlCWZfHv9TlV9tzmRwvstrKcFr3psjML1TP10XX/qZevAkPp5pvNo0pL2uv4dUHExkZ0HWgOtrZyCJBkOPJrC5Ye5WvPvunrTbRFEmergv8oNaBeK6lv0kTyro+/i0pSZbrRbZyGZ64fEv9GLKml3I62dWrsr8KBTBh7V8QqPlm05jysvYaXn0wkZEBXQdq4d0yWSQIcj2ZkWlV97jFFEledQM0Wls3WEtJkuviIns86yb+vHADbYI90SLAQ7L1VsQ49PND1d4sPngc932sMbb+lX3/ZZ4KQIj/Pb6s6WbT2PKypOTVHJjIyIS2AzVHWSyLBEFOdwxyaG9kDeTYdgIw7viQ0/GvS23+LnSduwxZn67l/7UxDd+lXlF/7/94Y3w0sKVB8VVeNwCN7dRUm6btON76Vza2vBaLorvlyC+4g4nr0nT+XpvaPJaV0zElJSYyMvLggSqnE6Qc7hjYIFk/UiR7cnzcWJvjQ6qGs+ZIsqUarVxXDUZN69O1/PGsmxpJDAB8l3oFr8QGoUWAh17lVXndFe+4rfwIqH24d7U3i7qO46K75YgNbWj0zebDnJQYg4mMzMkhQahgyX+cdVFDYA21PVIle3J73CjF8VHT8V/d8WGuJFvqvwtD11fd8n9euKF1G0cv3MSZ3Ns1lteD666cj1Rs548Znaq9WazpOLbEm01rOA89iImMidXFQWPJCYJcmLqGwBpqe6S8qFniCb465jw+zNnrT+r9NnR91S3fJthT6zaCvRwx5utjNZaXtnVr2051N4v6HMeWdLNpDechbZjImJC1HjTWyJQ1BJbU/bw2ibXUFzVto8keyMi3yDtFfY4PY8u2puPDnI/hpP67qG592sqvuuX93BzQ//HGVdrIONjV16u8tK27sgdrVmrTpsUSbjYt6TwkNRtzB2CtdB00Ocpi8wb2kMpRFuNARr7O8q+4s6qnuP+kXMoaguouRFKrbj83HLmEuAW7MWTVYcQt2I0NRy4ZtO6KE39l+lzUqovJz80BsaENse+fPL1jq+n/0lg1xVnd8VGbsq3p+NBW7jYAHO1Md/quKAsAkv5d6CpHXf//NZX7RwNb4vuEdpjVsxm+T2iHjwa21Ps4fXDdCtzvKm3MflYcx5acENTleaiuKYQQ1VSuyZ9KpYKbmxuUSiVcXV3rbLsHMvIxZNXhKtPXjXkSsaEN6ywOMqxmLEdZLHkVcI6yGHELdle5q/xjRidJT3w1PZ6QIoYNRy5pHYtF35hGPRWCkU+FaGxTW2w2CiD5tXZVutOaqpZTn/XmKItx9MIN2CgUeDzIQ70PtS1bfX5fudwrmKqWV1tZmGK08so1cTXtv6F/l4Ycpw/GYgmPgEyhrs5DUtL3+s0aGRMx9u6VpGVozZgp7qykqu2prsagpv2U6m5sUOtA/DGjE9aNeRJ/zOhk8DtgVv2eiXaJmjUWul4f0GfZAY3lTFXLqc96K2pcJq5Lw8R1f2HfP3nVxm9I2epzfAxqHYgtr8Wqawx0xVlbusoCgKR/F5X/zvQpP0P/Lg05TiuvWw41K8YyZa2zubGNjInIrTGjtbKUbr61bfBXU41BTfspVVsHQ9qB6GpMKaD5bF5XW4UHl5Py/7LyfhgzVkhN8RtatvqMtVJ4twwP1p9LfSyb4+/FmPLT5zi0hHYplsaSGh5LiYmMCcnloNH34iTHbnuW1M3X2BOrPo306qIbqKGPdaprTFn54lgRW+V91LacVP+XD+7H9G4RRo0V8mD8tb1pqWmslZrGNJGCuUYhNqT8Vu7NwIKfz+g15D9VZY0JHhMZE7P0g0bfi1NNy1lqkmMNNWP63CWbuhuoMT0eqktQHrw4DmodiAhfF/RZdkDn26il+L/Uth8f/nIW07tH4MOftb88Up+Lu5Q3LbrKuqYxTQzdhra/V1P/vejarr7lt3JfBhJ/PqP+bk09b8h4skhkli1bhkWLFiE3NxctWrTAZ599hjZt2pg7LNnT9+JU03JSNsA0RUIkl5oxXap7aWjl7sqm7AZq7COHipiS9mfi832ZKIfuZ/MtAjywoL9px+TQtR/NG7vjjxmdjB4rpGI5U/dyk+JYrunv1VR/LzVtt6byy1EWY0GlJKaCpY8IbYjanv8s9YbS1Cw+kdmwYQOmTJmCFStWoG3btli6dCm6du2Ks2fPwsfHx9zhyZq+F6eaGuNJNTaBKcfdsfSascoePBlpu5D2ecwfff/vQJWyMtV+1uaRg5+bA97qEYkRcSE1XhxNkYxVLs+axiWpTVxS0ecxobHbP551EzO+O1njSwylPo6kGMMkM7+wShsh4H6Plbp+VGyKhKG257+Hedwyi++1tGTJEowZMwYjRoxAZGQkVqxYAUdHR6xevdrcocmevj2rqltOqt4wHHfnPl3jkVTuhbHltVgk/3WlTstKih4P+vYIkbLnyIPlue+fPKP3o656tJiqd8mGI5fQ5/80H90BdTOWiBTnCW3nIQCY3j2iTm9Sajsekza1Pf897OdPi66RuXv3Lo4dO4aZM2eqp9nY2CA+Ph4HDx7U+puSkhKUlJSov6tUKpPHKVeGVJlXt5wUjQMtpXeROdV011rxOZCRb5ayktsjuuramuh6jGQppC7rirLQVqNRF43fpWhE/OB5yEZxP4l5tX2oCSLWzlSj49b2/Pewnz8tOpHJz89HWVkZGjVqpDG9UaNGOHOm6rNSAEhMTMTcuXPrIjyroO8JU9dyUjUOtKTeReai78nInGUlp0d01ZWnHMYKkbKsdXWFtwHqpPG7VOcJcyfTpkoYavs3/bCfPy06kTHGzJkzMWXKFPV3lUqFgIAAM0Zk+fQ9YepaToqTizX0LqotfU9GLCv9POwn98q0lYWu0ZNNRaokxJzJtKmOqdr+TT/s5wSLfkXB3bt34ejoiM2bN6NPnz7q6cOGDcOtW7fw/fff17gOc72igIxjilcEyImxQ6s/jGWlD0NfqWDNWBbSMGU51vZv2trOCfpevy06kQGAtm3bok2bNvjss88AAOXl5QgMDMSECRMwY8aMGn/PRIbkxtpORubG8vwfloU0WI51Q9/rt8U/WpoyZQqGDRuGVq1aoU2bNli6dCkKCwsxYsQIc4dGZBJyaociByzP/2FZSIPlaFksPpEZNGgQ8vLy8O677yI3NxctW7bEL7/8UqUBMBERET18LP7RUm3x0RIREZH86Hv9tvgB8YiIiIh0YSJDREREssVEhoiIiGSLiQwRERHJFhMZIiIiki0mMkRERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZsvhXFNRWxcDFKpXKzJEQERGRviqu2zW9gMDqE5nbt28DAAICAswcCRERERnq9u3bcHNz0znf6t+1VF5ejuzsbLi4uEChUJg7nDqlUqkQEBCArKwsvmeqFliO0mFZSoPlKB2WpTRMUY5CCNy+fRv+/v6wsdHdEsbqa2RsbGzwyCOPmDsMs3J1deUfqARYjtJhWUqD5SgdlqU0pC7H6mpiKrCxLxEREckWExkiIiKSLSYyVsze3h6zZ8+Gvb29uUORNZajdFiW0mA5SodlKQ1zlqPVN/YlIiIi68UaGSIiIpItJjJEREQkW0xkiIiISLaYyBAREZFsMZGRuX379qF3797w9/eHQqHA1q1bNeYLIfDuu+/Cz88PDg4OiI+Px7lz58wTrIWrqSyHDx8OhUKh8enWrZt5grVgiYmJaN26NVxcXODj44M+ffrg7NmzGsvcuXMHCQkJaNiwIZydndG/f39cvXrVTBFbJn3KsWPHjlWOyXHjxpkpYsu1fPlyNG/eXD1YW2xsLH7++Wf1fB6P+qmpHM11PDKRkbnCwkK0aNECy5Yt0zr/ww8/xKeffooVK1bg8OHDcHJyQteuXXHnzp06jtTy1VSWANCtWzfk5OSoP+vWravDCOVh7969SEhIwKFDh/Drr7+itLQUXbp0QWFhoXqZN954Az/88AM2bdqEvXv3Ijs7G/369TNj1JZHn3IEgDFjxmgckx9++KGZIrZcjzzyCBYsWIBjx47h6NGjeOaZZ/D888/j77//BsDjUV81lSNgpuNRkNUAIJKTk9Xfy8vLha+vr1i0aJF62q1bt4S9vb1Yt26dGSKUjwfLUgghhg0bJp5//nmzxCNn165dEwDE3r17hRD3j0FbW1uxadMm9TLp6ekCgDh48KC5wrR4D5ajEEJ06NBBvP766+YLSsY8PDzE559/zuOxlirKUQjzHY+skbFimZmZyM3NRXx8vHqam5sb2rZti4MHD5oxMvnas2cPfHx80LRpU4wfPx7Xr183d0gWT6lUAgA8PT0BAMeOHUNpaanGcRkREYHAwEAel9V4sBwrfPvtt/Dy8kJ0dDRmzpyJoqIic4QnG2VlZVi/fj0KCwsRGxvL49FID5ZjBXMcj1b/0siHWW5uLgCgUaNGGtMbNWqknkf669atG/r164eQkBBkZGTgrbfeQvfu3XHw4EHUq1fP3OFZpPLyckyePBlxcXGIjo4GcP+4tLOzg7u7u8ayPC5101aOADBkyBAEBQXB398fJ06cwPTp03H27Fls2bLFjNFappMnTyI2NhZ37tyBs7MzkpOTERkZibS0NB6PBtBVjoD5jkcmMkR6Gjx4sPrfMTExaN68OUJDQ7Fnzx507tzZjJFZroSEBJw6dQp//PGHuUORNV3lOHbsWPW/Y2Ji4Ofnh86dOyMjIwOhoaF1HaZFa9q0KdLS0qBUKrF582YMGzYMe/fuNXdYsqOrHCMjI812PPLRkhXz9fUFgCqt769evaqeR8Z79NFH4eXlhfPnz5s7FIs0YcIE/Pjjj0hJScEjjzyinu7r64u7d+/i1q1bGsvzuNROVzlq07ZtWwDgMamFnZ0dwsLC8MQTTyAxMREtWrTAJ598wuPRQLrKUZu6Oh6ZyFixkJAQ+Pr6YteuXeppKpUKhw8f1nimSca5fPkyrl+/Dj8/P3OHYlGEEJgwYQKSk5Oxe/duhISEaMx/4oknYGtrq3Fcnj17FpcuXeJxWUlN5ahNWloaAPCY1EN5eTlKSkp4PNZSRTlqU1fHIx8tyVxBQYFGtpuZmYm0tDR4enoiMDAQkydPxrx589CkSROEhIRg1qxZ8Pf3R58+fcwXtIWqriw9PT0xd+5c9O/fH76+vsjIyMC0adMQFhaGrl27mjFqy5OQkIC1a9fi+++/h4uLi7qdgZubGxwcHODm5oZRo0ZhypQp8PT0hKurKyZOnIjY2Fg8+eSTZo7ectRUjhkZGVi7di169OiBhg0b4sSJE3jjjTfQvn17NG/e3MzRW5aZM2eie/fuCAwMxO3bt7F27Vrs2bMHO3bs4PFogOrK0azHY533kyJJpaSkCABVPsOGDRNC3O+CPWvWLNGoUSNhb28vOnfuLM6ePWveoC1UdWVZVFQkunTpIry9vYWtra0ICgoSY8aMEbm5ueYO2+JoK0MAIikpSb1McXGxeO2114SHh4dwdHQUffv2FTk5OeYL2gLVVI6XLl0S7du3F56ensLe3l6EhYWJqVOnCqVSad7ALdDIkSNFUFCQsLOzE97e3qJz585i586d6vk8HvVTXTma83hUCCGEaVMlIiIiItNgGxkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExmih0Bubi4mTpyIRx99FPb29ggICEDv3r013i9z4MAB9OjRAx4eHmjQoAFiYmKwZMkSlJWVqZe5cOECRo0ahZCQEDg4OCA0NBSzZ8/G3bt3Nba3atUqtGjRAs7OznB3d8djjz2GxMRE9fw5c+ZAoVCgW7duVWJdtGgRFAoFOnbsqNe+VaxLoVCgfv36CA4OxhtvvIGCggIDS4mI5IjvWiKychcuXEBcXBzc3d2xaNEixMTEoLS0FDt27EBCQgLOnDmD5ORkDBw4ECNGjEBKSgrc3d3x22+/Ydq0aTh48CA2btwIhUKBM2fOoLy8HCtXrkRYWBhOnTqFMWPGoLCwEIsXLwYArF69GpMnT8ann36KDh06oKSkBCdOnMCpU6c04vLz80NKSgouX76s8Vbn1atXIzAw0KB9jIqKwm+//YZ79+5h//79GDlyJIqKirBy5coqy969exd2dnZGlKTpWGJMRLJh8pcgEJFZde/eXTRu3FgUFBRUmXfz5k1RUFAgGjZsKPr161dl/rZt2wQAsX79ep3r//DDD0VISIj6+/PPPy+GDx9ebUyzZ88WLVq0EL169RLz5s1TT9+/f7/w8vIS48ePFx06dNBj7/63rsrGjBkjfH19NeavWrVKBAcHC4VCIYS4v++jRo0SXl5ewsXFRXTq1EmkpaWp15GWliY6duwonJ2dhYuLi3j88cfFkSNHhBBCXLhwQfTq1Uu4u7sLR0dHERkZKX766SchhBBJSUnCzc1NI57k5GRR+XRrbExEVBUfLRFZsRs3buCXX35BQkICnJycqsx3d3fHzp07cf36dbz55ptV5vfu3Rvh4eFYt26dzm0olUp4enqqv/v6+uLQoUO4ePFijfGNHDkSX375pfr76tWrMXTo0FrXTjg4OGg87jp//jy+++47bNmyBWlpaQCAF154AdeuXcPPP/+MY8eO4fHHH0fnzp1x48YNAMDQoUPxyCOP4MiRIzh27BhmzJgBW1tbAPffTF1SUoJ9+/bh5MmTWLhwIZydnQ2K0ZiYiKgqPloismLnz5+HEAIRERE6l/nnn38AAM2aNdM6PyIiQr2MtvV/9tln6sdKADB79mz069cPwcHBCA8PR2xsLHr06IEBAwbAxkbz3qlXr14YN24c9u3bhyeeeAIbN27EH3/8gdWrVxu6q2rHjh3D2rVr8cwzz6in3b17F19//TW8vb0BAH/88Qf+/PNPXLt2Dfb29gCAxYsXY+vWrdi8eTPGjh2LS5cuYerUqeqya9KkiXp9ly5dQv/+/RETEwMAePTRRw2O05iYiKgqJjJEVkwY8HJ7Q5YFgCtXrqBbt2544YUXMGbMGPV0Pz8/HDx4EKdOncK+fftw4MABDBs2DJ9//jl++eUXjWTG1tYWL730EpKSkvDf//4X4eHhaN68uUFxAMDJkyfh7OyMsrIy3L17Fz179sS///1v9fygoCB1wgAAx48fR0FBARo2bKixnuLiYmRkZAAApkyZgtGjR+Obb75BfHw8XnjhBYSGhgIAJk2ahPHjx2Pnzp2Ij49H//79DY7bmJiIqComMkRWrEmTJupGurqEh4cDANLT09GuXbsq89PT0xEZGakxLTs7G506dUK7du3wn//8R+t6o6OjER0djddeew3jxo3D008/jb1796JTp04ay40cORJt27bFqVOnMHLkSEN3EQDQtGlTbNu2DfXr14e/v3+VR1MPPlYrKCiAn58f9uzZU2Vd7u7uAO73hhoyZAh++ukn/Pzzz5g9ezbWr1+Pvn37YvTo0ejatSt++ukn7Ny5E4mJifjoo48wceJE2NjYVEkKS0tLq2zHmJiIqCq2kSGyYp6enujatSuWLVuGwsLCKvNv3bqFLl26wNPTEx999FGV+du2bcO5c+fw4osvqqdduXIFHTt2xBNPPIGkpKQqj4u0qUiEtMUQFRWFqKgonDp1CkOGDDFk99Ts7OwQFhaG4OBgvdrXPP7448jNzUX9+vURFham8fHy8lIvFx4ejjfeeAM7d+5Ev379kJSUpJ4XEBCAcePGYcuWLfjXv/6FVatWAQC8vb1x+/ZtjX2taAMjRUxEpImJDJGVW7ZsGcrKytCmTRt89913OHfuHNLT0/Hpp58iNjYWTk5OWLlyJb7//nuMHTsWJ06cwIULF/DFF19g+PDhGDBgAAYOHAjgf0lMYGAgFi9ejLy8POTm5iI3N1e9vfHjx+P999/H/v37cfHiRRw6dAivvPIKvL29ERsbqzXG3bt3Iycnp85qHuLj4xEbG4s+ffpg586duHDhAg4cOIC3334bR48eRXFxMSZMmIA9e/bg4sWL2L9/P44cOaJuRzR58mTs2LEDmZmZSE1NRUpKinpe27Zt4ejoiLfeegsZGRlYu3atRoNmY2MiIu34aInIyj366KNITU3F/Pnz8a9//Qs5OTnw9vbGE088geXLlwMABgwYgJSUFMyfPx9PP/007ty5gyZNmuDtt9/G5MmToVAoAAC//vorzp8/j/Pnz2uM/QL8r41NfHw8Vq9ejeXLl+P69evw8vJCbGwsdu3aVaX9RwVtPapMSaFQYPv27Xj77bcxYsQI5OXlwdfXF+3bt0ejRo1Qr149XL9+Ha+88gquXr0KLy8v9OvXD3PnzgUAlJWVISEhAZcvX4arqyu6deuGjz/+GMD9WrA1a9Zg6tSpWLVqFTp37ow5c+bU2Fi3ppiISDuFMLSFHxEREZGF4KMlIiIiki0mMkRk0ZydnXV+fv/9d3OHR0RmxkdLRGTRzp8/r3Ne48aN4eDgUIfREJGlYSJDREREssVHS0RERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREssVEhoiIiGSLiQwRERHJFhMZIiIikq3/B80dznzoItdLAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHHCAYAAAC1G/yyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABm2klEQVR4nO3deXxMV/8H8M9k32STPZKIEEEi9hhqqzwJUm0ttVesLaWoR4u2ilZLq7W0j6ILnl+1aimt2mOLInZBbCVCkMWaGSGynt8fntzOSMLMZJKZST7v12tezD1n7v3em5m53znn3HNlQggBIiIiIgIAmBk6ACIiIiJjwuSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIhMxowZMyCTyTSqK5PJMGPGjAqNp2PHjujYsaPRro+IdMPkiIi0tmLFCshkMulhYWEBX19fDBkyBDdv3jR0eEandu3aasfLw8MD7dq1w4YNG/Sy/kePHmHGjBnYu3evXtZHVN0xOSIinX388cf46aefsGTJEnTt2hUrV65Ehw4d8Pjx4wrZ3ocffoicnJwKWXdFa9KkCX766Sf89NNPmDRpEtLS0tCzZ08sWbKk3Ot+9OgRZs6cyeSISE8sDB0AEZmurl27okWLFgCAESNGwM3NDZ9//jk2btyIPn366H17FhYWsLAwza8tX19fDBo0SHo+ePBg1K1bF/Pnz8eoUaMMGBkRPY0tR0SkN+3atQMAJCcnqy2/cOECevfuDVdXV9jY2KBFixbYuHGjWp38/HzMnDkT9erVg42NDWrWrIkXXngBcXFxUp3Sxhzl5ubinXfegbu7O2rUqIGXX34ZN27cKBHbkCFDULt27RLLS1vn8uXL8eKLL8LDwwPW1tZo2LAhFi9erNWxeB4vLy80aNAAKSkpz6x369YtDB8+HJ6enrCxsUF4eDj++9//SuVXr16Fu7s7AGDmzJlS111Fj7ciqspM8ycYERmlq1evAgBcXFykZWfPnkXbtm3h6+uLKVOmwN7eHmvWrMGrr76K3377DT169ADwJEmZPXs2RowYgVatWkGpVOLYsWM4ceIE/vWvf5W5zREjRmDlypUYMGAA2rRpg927dyMmJqZc+7F48WI0atQIL7/8MiwsLPDnn3/irbfeQlFREcaMGVOudRfLz8/H9evXUbNmzTLr5OTkoGPHjrh8+TLGjh2LwMBArF27FkOGDEFWVhbGjx8Pd3d3LF68GKNHj0aPHj3Qs2dPAEDjxo31EidRtSSIiLS0fPlyAUDs3LlT3L59W1y/fl2sW7dOuLu7C2tra3H9+nWpbufOnUVYWJh4/PixtKyoqEi0adNG1KtXT1oWHh4uYmJinrnd6dOnC9WvrcTERAFAvPXWW2r1BgwYIACI6dOnS8tiY2NFQEDAc9cphBCPHj0qUS86OlrUqVNHbVmHDh1Ehw4dnhmzEEIEBASIqKgocfv2bXH79m1x6tQp0a9fPwFAvP3222Wub8GCBQKAWLlypbQsLy9PyOVy4eDgIJRKpRBCiNu3b5fYXyLSHbvViEhnkZGRcHd3h5+fH3r37g17e3ts3LgRtWrVAgDcu3cPu3fvRp8+ffDgwQPcuXMHd+7cwd27dxEdHY1Lly5JV7c5Ozvj7NmzuHTpksbb37JlCwBg3LhxassnTJhQrv2ytbWV/q9QKHDnzh106NABV65cgUKh0GmdO3bsgLu7O9zd3REeHo61a9fi9ddfx+eff17ma7Zs2QIvLy/0799fWmZpaYlx48YhOzsb8fHxOsVCRM/GbjUi0tmiRYsQHBwMhUKBZcuWYd++fbC2tpbKL1++DCEEpk2bhmnTppW6jlu3bsHX1xcff/wxXnnlFQQHByM0NBRdunTB66+//szuoWvXrsHMzAxBQUFqy+vXr1+u/Tpw4ACmT5+OhIQEPHr0SK1MoVDAyclJ63VGRERg1qxZkMlksLOzQ4MGDeDs7PzM11y7dg316tWDmZn679gGDRpI5USkf0yOiEhnrVq1kq5We/XVV/HCCy9gwIABuHjxIhwcHFBUVAQAmDRpEqKjo0tdR926dQEA7du3R3JyMv744w/s2LEDP/zwA+bPn48lS5ZgxIgR5Y61rMkjCwsL1Z4nJyejc+fOCAkJwbx58+Dn5wcrKyts2bIF8+fPl/ZJW25uboiMjNTptURUuZgcEZFemJubY/bs2ejUqRP+85//YMqUKahTpw6AJ11BmiQGrq6uGDp0KIYOHYrs7Gy0b98eM2bMKDM5CggIQFFREZKTk9Vaiy5evFiirouLC7Kyskosf7r15c8//0Rubi42btwIf39/afmePXueG7++BQQE4PTp0ygqKlJrPbpw4YJUDpSd+BGRbjjmiIj0pmPHjmjVqhUWLFiAx48fw8PDAx07dsTSpUuRnp5eov7t27el/9+9e1etzMHBAXXr1kVubm6Z2+vatSsA4Ouvv1ZbvmDBghJ1g4KCoFAocPr0aWlZenp6iVmqzc3NAQBCCGmZQqHA8uXLy4yjonTr1g0ZGRlYvXq1tKygoADffPMNHBwc0KFDBwCAnZ0dAJSa/BGR9thyRER69e677+K1117DihUrMGrUKCxatAgvvPACwsLCMHLkSNSpUweZmZlISEjAjRs3cOrUKQBAw4YN0bFjRzRv3hyurq44duwY1q1bh7Fjx5a5rSZNmqB///749ttvoVAo0KZNG+zatQuXL18uUbdfv36YPHkyevTogXHjxuHRo0dYvHgxgoODceLECaleVFQUrKys0L17d7z55pvIzs7G999/Dw8Pj1ITvIr0xhtvYOnSpRgyZAiOHz+O2rVrY926dThw4AAWLFiAGjVqAHgygLxhw4ZYvXo1goOD4erqitDQUISGhlZqvERVhqEvlyMi01N8Kf/Ro0dLlBUWFoqgoCARFBQkCgoKhBBCJCcni8GDBwsvLy9haWkpfH19xUsvvSTWrVsnvW7WrFmiVatWwtnZWdja2oqQkBDx6aefiry8PKlOaZfd5+TkiHHjxomaNWsKe3t70b17d3H9+vVSL23fsWOHCA0NFVZWVqJ+/fpi5cqVpa5z48aNonHjxsLGxkbUrl1bfP7552LZsmUCgEhJSZHqaXMp//OmKShrfZmZmWLo0KHCzc1NWFlZibCwMLF8+fISrz148KBo3ry5sLKy4mX9ROUkE0Kl7ZiIiIiomuOYIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUcBJIDRUVFSEtLQ01atTgVP1EREQmQgiBBw8ewMfHp8RNnMvC5EhDaWlp8PPzM3QYREREpIPr16+jVq1aGtVlcqSh4mn6r1+/DkdHRwNHQ0RERJpQKpXw8/OTzuOaYHKkoeKuNEdHRyZHREREJkabITEckE1ERESkgskRERERkQomR0REREQqOOaIiMiIFRYWIj8/39BhEBktS0tLmJub63WdTI6IiIyQEAIZGRnIysoydChERs/Z2RleXl56m4eQyRERkREqTow8PDxgZ2fHyWeJSiGEwKNHj3Dr1i0AgLe3t17Wy+SIiMjIFBYWSolRzZo1DR0OkVGztbUFANy6dQseHh566WLjgGwiIiNTPMbIzs7OwJEQmYbiz4q+xucxOSIiMlLsSiPSjL4/K0yOiIiIiFQwOSIiIqIS9u7dC5lMVu4rJmvXro0FCxboJabKwuTIwNIVOTiYfAfpihxDh0JEpBcZGRl4++23UadOHVhbW8PPzw/du3fHrl27pDoHDx5Et27d4OLiAhsbG4SFhWHevHkoLCyU6ly9ehXDhw9HYGAgbG1tERQUhOnTpyMvL09te99//z3Cw8Ph4OAAZ2dnNG3aFLNnz5bKZ8yYAZlMhi5dupSIde7cuZDJZOjYsaPG+6dUKvHBBx8gJCQENjY28PLyQmRkJNavXw8hhFTv7Nmz6NOnD9zd3WFtbY3g4GB89NFHePTokVTn3r17ePvtt1G/fn3Y2trC398f48aNg0Kh0CiWq1evQiaTlfo4dOiQxvvUsWNHTJgwQeP6VR2vVjOg1UdTMXX9GRQJwEwGzO4Zhr4t/Q0dFhGRzq5evYq2bdvC2dkZc+fORVhYGPLz87F9+3aMGTMGFy5cwIYNG9CnTx8MHToUe/bsgbOzM3bu3In33nsPCQkJWLNmDWQyGS5cuICioiIsXboUdevWRVJSEkaOHImHDx/iyy+/BAAsW7YMEyZMwNdff40OHTogNzcXp0+fRlJSklpc3t7e2LNnD27cuIFatWpJy5ctWwZ/f82/d7OysvDCCy9AoVBg1qxZaNmyJSwsLBAfH4/33nsPL774IpydnXHo0CFERkYiMjISmzdvhqenJ44cOYJ///vf2LVrF/bs2QMrKyukpaUhLS0NX375JRo2bIhr165h1KhRSEtLw7p16zSOa+fOnWjUqJHaMl7pWA7CgL799lsRFhYmatSoIWrUqCFat24ttmzZIpXn5OSIt956S7i6ugp7e3vRs2dPkZGRobaOa9euiW7duglbW1vh7u4uJk2aJPLz89Xq7NmzRzRt2lRYWVmJoKAgsXz5cq1jVSgUAoBQKBQ67evT0rIeicApm0TA5H8edaZsFmlZj/SyfiIyXTk5OeLcuXMiJyfH0KForWvXrsLX11dkZ2eXKLt//77Izs4WNWvWFD179ixRvnHjRgFA/Prrr2Wu/4svvhCBgYHS81deeUUMGTLkmTFNnz5dhIeHi5deeknMmjVLWn7gwAHh5uYmRo8eLTp06KDB3gkxevRoYW9vL27evFmi7MGDByI/P18UFRWJhg0bihYtWojCwkK1OomJiUImk4k5c+aUuY01a9YIKyurEuey0qSkpAgA4uTJk2XWKd7///u//xMBAQHC0dFR9O3bVyiVSiGEELGxsQKA2iMlJUXs2bNHABA7d+4UzZs3F7a2tkIul4sLFy5I6758+bJ4+eWXhYeHh7C3txctWrQQcXFxatsPCAgQ8+fPl54DEN9++63o0qWLsLGxEYGBgWLt2rVSeadOncSYMWPU1nHr1i1haWkpdu7cWeo+Puszo8v526DdarVq1cKcOXNw/PhxHDt2DC+++CJeeeUVnD17FgDwzjvv4M8//8TatWsRHx+PtLQ09OzZU3p9YWEhYmJikJeXh4MHD+K///0vVqxYgY8++kiqk5KSgpiYGHTq1AmJiYmYMGECRowYge3bt1f6/qpKufMQRUJ9WaEQuHrnUekvICLSQWV23d+7dw/btm3DmDFjYG9vX6Lc2dkZO3bswN27dzFp0qQS5d27d0dwcDBWrVpV5jYUCgVcXV2l515eXjh06BCuXbv23PiGDRuGFStWSM+XLVuGgQMHwsrK6rmvBYCioiL8+uuvGDhwIHx8fEqUOzg4wMLCAomJiTh37hwmTpwIMzP102x4eDgiIyOfu4+Ojo6wsNBf505ycjJ+//13bNq0CZs2bUJ8fDzmzJkDAFi4cCHkcjlGjhyJ9PR0pKenw8/PT3rtBx98gK+++grHjh2DhYUFhg0bJpVlZ2ejW7du2LVrF06ePIkuXbqge/fuSE1NfWY806ZNQ69evXDq1CkMHDgQ/fr1w/nz5wEAI0aMwC+//ILc3Fyp/sqVK+Hr64sXX3xRb8fkmTROoyqJi4uL+OGHH0RWVpawtLRUyybPnz8vAIiEhAQhhBBbtmwRZmZmaq1JixcvFo6OjiI3N1cIIcR7770nGjVqpLaNvn37iujoaK3iYssREVUWfbUc/XrkmvQ9Ezhlk/j1yDU9RVi6w4cPCwBi/fr1ZdaZM2eOACDu379favnLL78sGjRoUGrZpUuXhKOjo/juu++kZWlpaaJ169YCgAgODhaxsbFi9erVai02xS0neXl5wsPDQ8THx4vs7GxRo0YNcerUKTF+/HiNWo4yMzMFADFv3rxn1vv111+f2Zozbtw4YWtrW2rZ7du3hb+/v3j//fefG48Q/7Qc2draCnt7e7VHsenTpws7OzuppUgIId59910REREhPe/QoYMYP3682rpVW46Kbd68WQB45nuzUaNG4ptvvpGel9ZyNGrUKLXXREREiNGjRwshnrz/XVxcxOrVq6Xyxo0bixkzZpS5zSrVcqSqsLAQv/76Kx4+fAi5XI7jx48jPz8fkZGRUp2QkBD4+/sjISEBAJCQkICwsDB4enpKdaKjo6FUKqXWp4SEBLV1FNcpXkdZcnNzoVQq1R765O1ki9k9w2D+v7kZzGUyfNYzFN5OtnrdDhFVT+mKHGlMIwAUCeD99UkV2oIkhHh+JR3qAsDNmzfRpUsXvPbaaxg5cqS03NvbGwkJCThz5gzGjx+PgoICxMbGokuXLigqKlJbh6WlJQYNGoTly5dj7dq1CA4ORuPGjSssZm3rK5VKxMTEoGHDhpgxY4ZWr129ejUSExPVHqpq166NGjVqSM+9vb2lW248j+oxKr49R/Frs7OzMWnSJDRo0ADOzs5wcHDA+fPnn9tyJJfLSzwvbjmysbHB66+/jmXLlgEATpw4gaSkJAwZMkSjePXB4AOyz5w5A7lcjsePH8PBwQEbNmxAw4YNkZiYCCsrKzg7O6vV9/T0REZGBoAnV0SoJkbF5cVlz6qjVCqRk5MjTTv+tNmzZ2PmzJn62MUy9W3pj/bB7rh65xFqu9kxMSIivXlW131FfdfUq1dPGkhdluDgYADA+fPn0aZNmxLl58+fR8OGDdWWpaWloVOnTmjTpg2+++67UtcbGhqK0NBQvPXWWxg1ahTatWuH+Ph4dOrUSa3esGHDEBERgaSkJLXuIU24u7vD2dn5mfsHqO9j06ZNS5SfP39eqlPswYMH6NKlC2rUqIENGzbA0tJSq9j8/PxQt27dMsufXp9MJiuRPGry2uLJFotfO2nSJMTFxeHLL79E3bp1YWtri969e5e4olBbI0aMQJMmTXDjxg0sX74cL774IgICAsq1Tm0YvOWofv36SExMxOHDhzF69GjExsbi3Llzhg4LU6dOhUKhkB7Xr1+vkO14O9lCHlSTiRER6VWgmz3Mnpo02FwmQ223irsliaurK6Kjo7Fo0SI8fPiwRHlWVhaioqLg6uqKr776qkT5xo0bcenSJfTv319advPmTXTs2BHNmzfH8uXLS4zhKU1xclVaDI0aNUKjRo2QlJSEAQMGaLN7MDMzQ79+/fDzzz8jLS2tRHl2djYKCgrQpEkThISEYP78+SUSkFOnTmHnzp1q+6hUKhEVFQUrKyts3LgRNjY2WsWlD1ZWVmrTKGjqwIEDGDJkCHr06IGwsDB4eXnh6tWrz33d09MMHDp0CA0aNJCeh4WFoUWLFvj+++/xyy+/aJ3IlpfBkyMrKyvUrVsXzZs3x+zZsxEeHo6FCxfCy8sLeXl5JSafyszMhJeXF4AnA/EyMzNLlBeXPauOo6Njma1GAGBtbQ1HR0e1BxGRqTBU1/2iRYtQWFiIVq1a4bfffsOlS5dw/vx5fP3115DL5bC3t8fSpUvxxx9/4I033sDp06dx9epV/PjjjxgyZAh69+6NPn36APgnMfL398eXX36J27dvIyMjQ+oZAIDRo0fjk08+wYEDB3Dt2jUcOnQIgwcPhru7e4mum2K7d+9Genp6iZ4JTXz66afw8/NDREQE/u///g/nzp3DpUuXsGzZMjRt2hTZ2dmQyWT48ccfce7cOfTq1QtHjhxBamoq1q5di+7du0Mul0tzChUnRg8fPsSPP/4IpVIp7aM2ycrdu3el1xU/Hj9+rPHra9eujcOHD+Pq1au4c+eOxq1K9erVw/r165GYmIhTp05hwIABGr127dq1WLZsGf7++29Mnz4dR44cwdixY9XqjBgxAnPmzIEQAj169NB4X/RC49FJlaRTp04iNjZWGpC9bt06qezChQulDsjOzMyU6ixdulQ4OjqKx48fCyGeDMgODQ1V20b//v0NPiCbiKgs+ryUPy3rkTh4+U6lXuyRlpYmxowZIwICAoSVlZXw9fUVL7/8stizZ49UZ9++fSI6Olo4OjoKKysr0ahRI/Hll1+KgoICqc7y5ctLXGJe/Ci2bt060a1bN+Ht7S2srKyEj4+P6NWrlzh9+rRUp3hAdlk0HZBdLCsrS0yZMkXUq1dPWFlZCU9PTxEZGSk2bNggioqKpHqnT58WvXr1Eq6ursLS0lIEBQWJDz/8UDx8+FCqUzzoubRHSkrKc2MpHpBd2mPVqlVl7v/8+fNFQECA9PzixYuidevWwtbWtsSl/KqD50+ePKkWW0pKiujUqZOwtbUVfn5+4j//+U+Jwd2lDchetGiR+Ne//iWsra1F7dq11QZfF3vw4IGws7MTb7311nOPg74HZBs0OZoyZYqIj48XKSkp4vTp02LKlClCJpOJHTt2CCGEGDVqlPD39xe7d+8Wx44dE3K5XMjlcun1BQUFIjQ0VERFRYnExESxbds24e7uLqZOnSrVuXLlirCzsxPvvvuuOH/+vFi0aJEwNzcX27Zt0ypWJkdEVFlMeZ4joucBIDZs2PDceikpKcLMzEwcP378uXX1nRwZdED2rVu3MHjwYKSnp8PJyQmNGzfG9u3b8a9//QsAMH/+fJiZmaFXr17Izc1FdHQ0vv32W+n15ubm2LRpE0aPHi0118bGxuLjjz+W6gQGBmLz5s145513sHDhQtSqVQs//PADoqOjK31/iYiI6Nny8/Nx9+5dfPjhh2jdujWaNWtW6THI/pfF0XMolUo4OTlJk3MREVWUx48fIyUlBYGBgQYZnFudOTg4lFm2detWtGvXrhKjAUaNGoWVK1eWWjZo0CAsWbKkUuPRB5lMhg0bNuDVV18ttXzv3r3o1KkTgoODsW7dOoSFhT13nc/6zOhy/jb4pfxERETG4un5gVT5+vpWXiD/8/HHH5c6mzgAk/2h/rw2mY4dO2o9R5S+MTkiIiL6n2fNFWQIHh4e8PDwMHQY1Y7BL+UnIiIiMiZMjoiIjJSmc80QVXf6/qywW42IyMhYWVnBzMwMaWlpcHd3h5WVlXTbBiL6hxACeXl5uH37NszMzGBlZaWX9TI5IiIyMmZmZggMDER6enqpt6kgInV2dnbw9/fX6PYymmByRERkhKysrODv74+CggKd7nlFVF2Ym5vDwsJCr62rTI6IiIyUTCaDpaWl1ndoJ6Ly4YBsIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIhUGTo9mzZ6Nly5aoUaMGPDw88Oqrr+LixYtqdTp27AiZTKb2GDVqlFqd1NRUxMTEwM7ODh4eHnj33XdRUFCgVmfv3r1o1qwZrK2tUbduXaxYsaKid4+IiIhMkEGTo/j4eIwZMwaHDh1CXFwc8vPzERUVhYcPH6rVGzlyJNLT06XHF198IZUVFhYiJiYGeXl5OHjwIP773/9ixYoV+Oijj6Q6KSkpiImJQadOnZCYmIgJEyZgxIgR2L59e6XtKxEREZkGmRBCGDqIYrdv34aHhwfi4+PRvn17AE9ajpo0aYIFCxaU+pqtW7fipZdeQlpaGjw9PQEAS5YsweTJk3H79m1YWVlh8uTJ2Lx5M5KSkqTX9evXD1lZWdi2bZtGsSmVSjg5OUGhUMDR0bF8O0pERESVQpfzt1GNOVIoFAAAV1dXteU///wz3NzcEBoaiqlTp+LRo0dSWUJCAsLCwqTECACio6OhVCpx9uxZqU5kZKTaOqOjo5GQkFBRu0JEREQmysLQARQrKirChAkT0LZtW4SGhkrLBwwYgICAAPj4+OD06dOYPHkyLl68iPXr1wMAMjIy1BIjANLzjIyMZ9ZRKpXIycmBra1tiXhyc3ORm5srPVcqlfrZUSIiIjJqRpMcjRkzBklJSdi/f7/a8jfeeEP6f1hYGLy9vdG5c2ckJycjKCiowuKZPXs2Zs6cWWHrJyIiIuNkFN1qY8eOxaZNm7Bnzx7UqlXrmXUjIiIAAJcvXwYAeHl5ITMzU61O8XMvL69n1nF0dCy11QgApk6dCoVCIT2uX7+u/Y4RERGRyTFociSEwNixY7Fhwwbs3r0bgYGBz31NYmIiAMDb2xsAIJfLcebMGdy6dUuqExcXB0dHRzRs2FCqs2vXLrX1xMXFQS6Xl7kda2trODo6qj2IiIio6jNocjRmzBisXLkSv/zyC2rUqIGMjAxkZGQgJycHAJCcnIxPPvkEx48fx9WrV7Fx40YMHjwY7du3R+PGjQEAUVFRaNiwIV5//XWcOnUK27dvx4cffogxY8bA2toaADBq1ChcuXIF7733Hi5cuIBvv/0Wa9aswTvvvGOwfSciIiLjZNBL+WUyWanLly9fjiFDhuD69esYNGgQkpKS8PDhQ/j5+aFHjx748MMP1Vpyrl27htGjR2Pv3r2wt7dHbGws5syZAwuLf4ZU7d27F++88w7OnTuHWrVqYdq0aRgyZIjGsfJSfiIiItOjy/nbqOY5MmZMjoiIiEyPyc9zRERERGRoTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIhU7J0Z49e/QdBxEREZFR0Ck56tKlC4KCgjBr1ixcv35d3zERERERGYxOydHNmzcxduxYrFu3DnXq1EF0dDTWrFmDvLw8fcdHREREVKl0So7c3NzwzjvvIDExEYcPH0ZwcDDeeust+Pj4YNy4cTh16pS+4yQiIiKqFOUekN2sWTNMnToVY8eORXZ2NpYtW4bmzZujXbt2OHv2rD5iJCIiIqo0OidH+fn5WLduHbp164aAgABs374d//nPf5CZmYnLly8jICAAr732mj5jJSIiIqpwMiGE0PZFb7/9NlatWgUhBF5//XWMGDECoaGhanUyMjLg4+ODoqIivQVrSEqlEk5OTlAoFHB0dDR0OERERKQBXc7fFrps6Ny5c/jmm2/Qs2dPWFtbl1rHzc2Nl/wTERGRydGp5ag6YssRERGR6am0liMAuHjxIr755hucP38eANCgQQO8/fbbqF+/vq6rJCIiIjI4nQZk//bbbwgNDcXx48cRHh6O8PBwnDhxAqGhofjtt9/0HSMRERFRpdGpWy0oKAgDBw7Exx9/rLZ8+vTpWLlyJZKTk/UWoLFgtxoREZHp0eX8rVPLUXp6OgYPHlxi+aBBg5Cenq7LKomIiIiMgk7JUceOHfHXX3+VWL5//360a9eu3EERERERGYpOA7JffvllTJ48GcePH0fr1q0BAIcOHcLatWsxc+ZMbNy4Ua0uERERkanQacyRmZlmDU4ymQyFhYVaB2WMOOaIiIjI9FTapfxVZdZrIiIioqeV+8az5TF79my0bNkSNWrUgIeHB1599VVcvHhRrc7jx48xZswY1KxZEw4ODujVqxcyMzPV6qSmpiImJgZ2dnbw8PDAu+++i4KCArU6e/fuRbNmzWBtbY26detixYoVFb17REREZII0bjn6+uuvNV7puHHjNKoXHx+PMWPGoGXLligoKMD777+PqKgonDt3Dvb29gCAd955B5s3b8batWvh5OSEsWPHomfPnjhw4AAAoLCwEDExMfDy8sLBgwelK+ksLS3x2WefAQBSUlIQExODUaNG4eeff8auXbswYsQIeHt7Izo6WuP9IiIioqpP4zFHgYGBmq1QJsOVK1d0Cub27dvw8PBAfHw82rdvD4VCAXd3d/zyyy/o3bs3AODChQto0KABEhIS0Lp1a2zduhUvvfQS0tLS4OnpCQBYsmQJJk+ejNu3b8PKygqTJ0/G5s2bkZSUJG2rX79+yMrKwrZt2zSKjWOOiIiITE+FjjlKSUnROTBNKRQKAICrqysA4Pjx48jPz0dkZKRUJyQkBP7+/lJylJCQgLCwMCkxAoDo6GiMHj0aZ8+eRdOmTZGQkKC2juI6EyZMKDOW3Nxc5ObmSs+VSqU+dpGIiIiMnEHHHKkqKirChAkT0LZtW4SGhgIAMjIyYGVlBWdnZ7W6np6eyMjIkOqoJkbF5cVlz6qjVCqRk5NTajyzZ8+Gk5OT9PDz8yv3PhIREZHx0/nGszdu3MDGjRuRmpqKvLw8tbJ58+Zpvb4xY8YgKSkJ+/fv1zUkvZo6dSomTpwoPVcqlUyQiIiIqgGdkqNdu3bh5ZdfRp06dXDhwgWEhobi6tWrEEKgWbNmWq9v7Nix2LRpE/bt24datWpJy728vJCXl4esrCy11qPMzEx4eXlJdY4cOaK2vuKr2VTrPH2FW2ZmJhwdHWFra1tqTNbW1rC2ttZ6X4iIiMi06dStNnXqVEyaNAlnzpyBjY0NfvvtN1y/fh0dOnTAa6+9pvF6hBAYO3YsNmzYgN27d5cY9N28eXNYWlpi165d0rKLFy8iNTUVcrkcACCXy3HmzBncunVLqhMXFwdHR0c0bNhQqqO6juI6xesgIiIikggdODg4iMuXLwshhHB2dhZJSUlCCCESExNFQECAxusZPXq0cHJyEnv37hXp6enS49GjR1KdUaNGCX9/f7F7925x7NgxIZfLhVwul8oLCgpEaGioiIqKEomJiWLbtm3C3d1dTJ06Vapz5coVYWdnJ959911x/vx5sWjRImFubi62bdumcawKhUIAEAqFQuPXEBERkWHpcv7WqeXI3t5eGmfk7e2N5ORkqezOnTsar2fx4sVQKBTo2LEjvL29pcfq1aulOvPnz8dLL72EXr16oX379vDy8sL69eulcnNzc2zatAnm5uaQy+UYNGgQBg8ejI8//liqExgYiM2bNyMuLg7h4eH46quv8MMPP3COIyIiIipBp3urvfrqq4iJicHIkSMxadIk/PHHHxgyZAjWr18PFxcX7Ny5syJiNSjOc0RERGR6Ku3eavPmzUN2djYAYObMmcjOzsbq1atRr149na5UIyIiIjIWOrUcVUdsOSIiIjI9ldZyVCwvLw+3bt1CUVGR2nJ/f//yrJaIiIjIYHRKjv7++28MHz4cBw8eVFsuhIBMJkNhYaFegiMiIiKqbDolR0OHDoWFhQU2bdoEb29vyGQyfcdFREREZBA6JUeJiYk4fvw4QkJC9B0PERERkUHpNM9Rw4YNtZrPiIiIiMhUaJwcKZVK6fH555/jvffew969e3H37l21MqVSWZHxEhEREVUojbvVnJ2d1cYWCSHQuXNntTockE1ERESmTuPkaM+ePRUZBxEREZFR0Dg56tChg/T/1NRU+Pn5lbhKTQiB69ev6y86IiIiokqm04DswMBA3L59u8Tye/fuITAwsNxBERERERmKTslR8diip2VnZ8PGxqbcQREREREZilbzHE2cOBEAIJPJMG3aNNjZ2UllhYWFOHz4MJo0aaLXAImIiIgqk1bJ0cmTJwE8aTk6c+YMrKyspDIrKyuEh4dj0qRJ+o2QiIiIqBJplRwVX7E2dOhQLFy4kHenJyIioipHp9uHLF++XN9xEBERERkFnZKjhw8fYs6cOdi1axdu3bqFoqIitfIrV67oJTgiIiKiyqZTcjRixAjEx8fj9ddfh7e3d6lXrhERERGZIp2So61bt2Lz5s1o27atvuMhIiIiMiid5jlycXGBq6urvmMhIiIiMjidkqNPPvkEH330ER49eqTveIiIiIgMSqduta+++grJycnw9PRE7dq1YWlpqVZ+4sQJvQRHREREVNl0So5effVVPYdBREREZBxkQghh6CBMgVKphJOTExQKBSe/JCIiMhG6nL+1GnN05MgRFBYWllmem5uLNWvWaLNKIiIiIqOiVXIkl8tx9+5d6bmjo6PahI9ZWVno37+//qIjIiIiqmRaJUdP98CV1iPHXjoiIiIyZTpdyv8snC2biIiITJnekyMiIiIiU6b1pfznzp1DRkYGgCddaBcuXEB2djYA4M6dO/qNjoiIiKiSaXUpv5mZGWQyWanjioqXy2SyZ17RZqp4KT8REZHp0eX8rVXLUUpKik6BEREREZkKrZKjgIAArVb+1ltv4eOPP4abm5tWryMiIiIylAodkL1y5UoolcqK3AQRERGRXlVocsQ5j4iIiMjU8FJ+IiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEhFhSZHgwYN4oSJREREZFJ0So6KiorKXJ6amio9X7x4Mec4IiIiIpOiVXKkVCrRp08f2Nvbw9PTEx999JHarUJu376NwMBAvQdJREREVFm0miF72rRpOHXqFH766SdkZWVh1qxZOHHiBNavXw8rKysAnNuIiIiITJtWLUe///47li5dit69e2PEiBE4duwYbt++je7duyM3NxfAkxvQamrfvn3o3r07fHx8IJPJ8Pvvv6uVDxkyBDKZTO3RpUsXtTr37t3DwIED4ejoCGdnZwwfPhzZ2dlqdU6fPo127drBxsYGfn5++OKLL7TZbSIiIqpGtEqObt++rXZ/NTc3N+zcuRMPHjxAt27d8OjRI602/vDhQ4SHh2PRokVl1unSpQvS09Olx6pVq9TKBw4ciLNnzyIuLg6bNm3Cvn378MYbb0jlSqUSUVFRCAgIwPHjxzF37lzMmDED3333nVaxEhERUfWgVbeav78/zp8/rzauqEaNGtixYweioqLQo0cPrTbetWtXdO3a9Zl1rK2t4eXlVWrZ+fPnsW3bNhw9ehQtWrQAAHzzzTfo1q0bvvzyS/j4+ODnn39GXl4eli1bBisrKzRq1AiJiYmYN2+eWhJFREREBGjZchQVFYXly5eXWO7g4IDt27fDxsZGb4EV27t3Lzw8PFC/fn2MHj0ad+/elcoSEhLg7OwsJUYAEBkZCTMzMxw+fFiq0759e2lMFABER0fj4sWLuH//vt7jJSIiItOmVcvRzJkzkZaWVmpZjRo1EBcXhxMnTuglMOBJl1rPnj0RGBiI5ORkvP/+++jatSsSEhJgbm6OjIwMeHh4qL3GwsICrq6uyMjIAABkZGSUuILO09NTKnNxcSl127m5udI4KuBJ9xwRERFVfVolRy4uLmUmE8CTBKlDhw7lDqpYv379pP+HhYWhcePGCAoKwt69e9G5c2e9bac0s2fPxsyZMyt0G0RERGR8tJ4EsqCgAHPnzkWzZs3g4OAABwcHNGvWDF9++SXy8/MrIkZJnTp14ObmhsuXLwMAvLy8cOvWrRLx3bt3Txqn5OXlhczMTLU6xc/LGssEAFOnToVCoZAe169f1+euEBERkZHSKjnKyclBx44dMWXKFLi7u2PEiBEYMWIE3N3dMXnyZHTu3BmPHz+uqFhx48YN3L17F97e3gAAuVyOrKwsHD9+XKqze/duFBUVISIiQqqzb98+tcQtLi4O9evXf2YrmLW1NRwdHdUeREREVPVp1a02Z84cXL9+HSdPnkTjxo3Vyk6dOoWXX34Zc+bMwYwZMzRaX3Z2ttQKBAApKSlITEyEq6srXF1dMXPmTPTq1QteXl5ITk7Ge++9h7p16yI6OhoA0KBBA3Tp0gUjR47EkiVLkJ+fj7Fjx6Jfv37w8fEBAAwYMAAzZ87E8OHDMXnyZCQlJWHhwoWYP3++NrtORERE1YXQQnBwsFi3bl2Z5WvWrBH16tXTeH179uwRAEo8YmNjxaNHj0RUVJRwd3cXlpaWIiAgQIwcOVJkZGSorePu3buif//+wsHBQTg6OoqhQ4eKBw8eqNU5deqUeOGFF4S1tbXw9fUVc+bM0Wa3hRBCKBQKAUAoFAqtX0tERESGocv5WyaE5vf7sLGxwaVLl+Dn51dq+fXr11GvXr0K7VozFKVSCScnJygUCnaxERERmQhdzt9ajTlydHQsMQBaVUZGBmrUqKHNKomIiIiMilbJUadOnfDZZ5+VWT5nzhx06tSp3EERERERGYpWA7KnT5+OiIgItG7dGhMnTkRISAiEEDh//jzmz5+Pc+fO4dChQxUVKxEREVGF0yo5atiwIeLi4jB8+HD069cPMpkMACCEQEhICHbs2IFGjRpVSKBERERElUGr5AgAWrdujbNnzyIxMRF///03ACA4OBhNmjTRd2xERERElU7r5EipVMLBwQFNmjRRS4iKioqQnZ3NK7mIiIjIpGk1IHvDhg1o0aJFqZfq5+TkoGXLlvjzzz/1FhwRERFRZdMqOVq8eDHee+892NnZlSizt7fH5MmT8Z///EdvwRERERFVNq2So6SkJHTs2LHM8vbt2+PMmTPljYmIiIjIYLRKju7fv4+CgoIyy/Pz83H//v1yB0VERERkKFolR7Vr18axY8fKLD927BgCAgLKHRQRERGRoWiVHPXs2RMffPABMjMzS5RlZGTgww8/RK9evfQWHBEREVFl0+rGsw8ePIBcLkdqaioGDRqE+vXrAwAuXLiAn3/+GX5+fjh06FCVvL8abzxLRERkenQ5f2s1z1GNGjVw4MABTJ06FatXr5bGFzk7O2PQoEH49NNPq2RiRERERNWHVi1HqoQQuHPnDoQQcHd3l24lourAgQNo0aIFrK2tyx2oobHliIiIyPTocv7WasyRKplMBnd3d3h4eJSaGAFA165dcfPmTV03QTpKV+TgYPIdpCtyDB0KERGRydH69iHa0LFRisph9dFUTF1/BkUCMJMBs3uGoW9Lf0OHRUREZDJ0bjki45OuyJESIwAoEsD765PYgkRERKQFJkdVSMqdh1JiVKxQCFy988gwAREREZkgJkdVSKCbPcyeGv5lLpOhtlvJe+ERERFR6So0OSproDZVDG8nW8zuGQbz/x13c5kMn/UMhbeTrYEjIyIiMh0ckF3F9G3pj/bB7rh65xFqu9kxMSIiItJShSZHDx48qMjVUxm8nWyZFBEREelIq+ToxRdf1Kje7t27dQqGiIiIyNC0So727t2LgIAAxMTEwNLSsqJiIiIiIjIYrZKjzz//HMuXL8fatWsxcOBADBs2DKGhoRUVGxEREVGl0+pqtXfffRfnzp3D77//jgcPHqBt27Zo1aoVlixZAqVSWVExEhEREVUanW88CwCPHj3C2rVrsWjRIpw7dw5paWlV9qasvPEsERGR6anUG88CwIkTJxAfH4/z588jNDSU45CIiIjI5GmdHKWlpeGzzz5DcHAwevfuDVdXVxw+fBiHDh2CrS0vHyciIiLTptWA7G7dumHPnj2IiorC3LlzERMTAwuLCp0qiYiIiKhSaTXmyMzMDN7e3vDw8HjmrUFOnDihl+CMCcccERERmR5dzt9aNftMnz5dp8CIiIiITEW5rlarTiq75ShdkYOUOw8R6GbPW4EQERHpqMJbjsoSHx+Phw8fQi6Xw8XFRR+rrNZWH03F1PVnUCQAMxkwu2cY+rb0N3RYRERE1YJWV6t9/vnnmDZtmvRcCIEuXbqgU6dOeOmll9CgQQOcPXtW70FWJ+mKHCkxAoAiAby/PgnpihzDBkZERFRNaJUcrV69Wu12IevWrcO+ffvw119/4c6dO2jRogVmzpyp9yCrk5Q7D6XEqFihELh659FzX5uuyMHB5DtMpIiIiMpBq261lJQUNG7cWHq+ZcsW9O7dG23btgUAfPjhh3jttdf0G2E1E+hmDzMZ1BIkc5kMtd3snvk6dsURERHph1YtRwUFBbC2tpaeJyQkoE2bNtJzHx8f3LlzR3/RVUPeTraY3TMM5v+bKsFcJsNnPUOfOSibXXFERET6o1XLUVBQEPbt24c6deogNTUVf//9N9q3by+V37hxAzVr1tR7kNVN35b+aB/sjqt3HqG2m91zr1Z7Vlccr3QjIiLSjlbJ0ZgxYzB27Fj89ddfOHToEORyORo2bCiV7969G02bNtV7kNWRt5OtxomNrl1xREREVJJW3WojR47E119/jXv37qF9+/b47bff1MrT0tIwbNgwvQZIz6dLVxwRERGVjpNAasgUbh+SrsjRuCuOiIioOjDYJJBkHLTpiiMiIqLSadWtlp+fj/feew9169ZFq1atsGzZMrXyzMxMmJub6zVAIiIiosqkVXL06aef4v/+7/8watQoREVFYeLEiXjzzTfV6mjTS7dv3z50794dPj4+kMlk+P3330us66OPPoK3tzdsbW0RGRmJS5cuqdW5d+8eBg4cCEdHRzg7O2P48OHIzs5Wq3P69Gm0a9cONjY28PPzwxdffKHNbhMREVE1olVy9PPPP+OHH37ApEmTMGvWLBw7dgy7d+/G0KFDpaRI9r9BwZp4+PAhwsPDsWjRolLLv/jiC3z99ddYsmQJDh8+DHt7e0RHR+Px48dSnYEDB+Ls2bOIi4vDpk2bsG/fPrzxxhtSuVKpRFRUFAICAnD8+HHMnTsXM2bMwHfffafNrhMREVF1IbRga2srUlJS1JbduHFDBAcHi4EDB4qbN28KMzMzbVYpASA2bNggPS8qKhJeXl5i7ty50rKsrCxhbW0tVq1aJYQQ4ty5cwKAOHr0qFRn69atQiaTiZs3bwohhPj222+Fi4uLyM3NlepMnjxZ1K9fX6v4FAqFACAUCoUuu0dEREQGoMv5W6uWIy8vLyQnJ6st8/X1xZ49e3D06FEMGTJEXzkbUlJSkJGRgcjISGmZk5MTIiIikJCQAODJDN3Ozs5o0aKFVCcyMhJmZmY4fPiwVKd9+/awsrKS6kRHR+PixYu4f/9+mdvPzc2FUqlUexAREVHVp1Vy9OKLL+KXX34psdzHxwe7d+9GSkqK3gLLyMgAAHh6eqot9/T0lMoyMjLg4eGhVm5hYQFXV1e1OqWtQ3UbpZk9ezacnJykh5+fX/l2iIiIiEyCVsnRtGnT0KdPn1LLfH19ER8fX+IKNlM1depUKBQK6XH9+nVDh0RERESVQKt5jgICAhAQEFBmuY+PD2JjY8sdFPCkCw94Mj2At7e3tDwzMxNNmjSR6ty6dUvtdQUFBbh37570ei8vL2RmZqrVKX5eXKc01tbWajfZJSIioupBq5ajYmvXrkXPnj0RGhqK0NBQ9OzZE+vWrdNrYIGBgfDy8sKuXbukZUqlEocPH4ZcLgcAyOVyZGVl4fjx41Kd3bt3o6ioCBEREVKdffv2IT8/X6oTFxeH+vXrw8XFRa8xExERkenTKjkqKipC37590bdvX5w7dw5169ZF3bp1cfbsWfTt2xf9+vXTap6j7OxsJCYmIjExEcCTQdiJiYlITU2FTCbDhAkTMGvWLGzcuBFnzpzB4MGD4ePjg1dffRUA0KBBA3Tp0gUjR47EkSNHcODAAYwdOxb9+vWDj48PAGDAgAGwsrLC8OHDcfbsWaxevRoLFy7ExIkTtdl10kK6IgcHk+8gXZFTrjpEREQGoc3lcPPmzROurq7izz//LFH2xx9/CFdXVzF//nyN17dnzx4BoMQjNjZWCPHkcv5p06YJT09PYW1tLTp37iwuXryoto67d++K/v37CwcHB+Ho6CiGDh0qHjx4oFbn1KlT4oUXXhDW1tbC19dXzJkzR5vdFkLwUn5N/XrkmgicskkETN4kAqdsEr8euaZTHSIiIn3Q5fyt1Y1nGzdujAkTJmDYsGGllv/4449YuHAhTp8+Xf6szciYwo1nDS1dkYO2c3ajSOUdZS6TYf+UTtI93zSpQ0REpC+6nL+16la7dOmS2rxDTyvt9h5UfaTceaiW9ABAoRC4eueRVnWIiIgMSavkyNbWFllZWWWWK5VK2NjYlDcmMlGBbvYwe+ruMeYyGWq72WlVh4iIyJC0So7kcjkWL15cZvmiRYukK8mo+vF2ssXsnmEw/9/99cxlMnzWM1Stu0yTOkRERIak1TxHH3zwATp27Ii7d+9i0qRJCAkJgRAC58+fx1dffYU//vgDe/bsqahYyQT0bemP9sHuuHrnEWq72ZWa9GhSh4iIyFC0GpANABs2bMAbb7yBe/fuqS13cXHB0qVL0atXL70GaCw4IJuIiMj06HL+1jo5AoBHjx5h+/bt0uDr4OBgREVFwc6u6o4bYXJERERkenQ5f2vVrbZ7926MHTsWhw4dQo8ePdTKFAoFGjVqhCVLlqBdu3barJaIiIjIaGg1IHvBggUYOXJkqZmXk5MT3nzzTcybN09vwRERERFVNq2So1OnTqFLly5llkdFRand54yIiIjI1GiVHGVmZsLS0rLMcgsLC9y+fbvcQREREREZilbJka+vL5KSksosP336NLy9vcsdFBEREZGhaJUcdevWDdOmTcPjx49LlOXk5GD69Ol46aWX9BYcERERUWXT6lL+zMxMNGvWDObm5hg7dizq168PALhw4QIWLVqEwsJCnDhxAp6enhUWsKHwUn4iIiLTU+GX8nt6euLgwYMYPXo0pk6diuK8SiaTITo6GosWLaqSiRERERFVH1olRwAQEBCALVu24P79+7h8+TKEEKhXrx5cXFwqIj4iIiKiSqV1clTMxcUFLVu21GcsRERERAan1YBsIiIioqqOyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkgskRERERkQomR0REREQqmBwRERERqWByRERERKSCyRERERGRCiZHRERERCqYHJFepCtycDD5DtIVOYYOhYiIqFwsDB0Amb7VR1Mxdf0ZFAnATAbM7hmGvi39DR0WEdIVOUi58xCBbvbwdrI1dDhEZCKYHFG5pCtypMQIAIoE8P76JLQPdufJiAyKSTsR6YrdalQuKXceSolRsUIhcPXOI8MERISyk3Z2+xKRJpgcUbkEutnDTKa+zFwmQ203uwrdLsc40bMwaSei8mByROXi7WSL2T3DYC57kiGZy2T4rGdohXaprT6airZzdmPA94fRds5urD6aWmHbItNkqKSdiKoGmRBCPL8aKZVKODk5QaFQwNHR0dDhGJ10RQ6u3nmE2m52FZoYpSty0HbObrVWAXOZDPundOIYJ1Kz+mgq3l+fhEIhpKSdY46Iqh9dzt8ckE164e1kWynJybO6S5gckaq+Lf3RPti9UpJ2IqpamByRSSnuLnm65YjdJVSaykraiahq4ZgjMimGGONERETVC1uOyOSwu4SIiCoSkyMySewuIWPD2biJqg4mR2TyeFIiQ+Ns3ERVi9GPOZoxYwZkMpnaIyQkRCp//PgxxowZg5o1a8LBwQG9evVCZmam2jpSU1MRExMDOzs7eHh44N1330VBQUFl7wpVAM55VD0Y86SfnI2bqOoxiZajRo0aYefOndJzC4t/wn7nnXewefNmrF27Fk5OThg7dix69uyJAwcOAAAKCwsRExMDLy8vHDx4EOnp6Rg8eDAsLS3x2WefVfq+kP7wvm7Vg7G3ynB6CaKqx+hbjoAnyZCXl5f0cHNzAwAoFAr8+OOPmDdvHl588UU0b94cy5cvx8GDB3Ho0CEAwI4dO3Du3DmsXLkSTZo0QdeuXfHJJ59g0aJFyMvLM+RuUTnxFhFVnym0ynA2bqKqxySSo0uXLsHHxwd16tTBwIEDkZr6pOvk+PHjyM/PR2RkpFQ3JCQE/v7+SEhIAAAkJCQgLCwMnp6eUp3o6GgolUqcPXu2cnfEhBhzN0YxnpSqPlNIgDm9BFHVY/TdahEREVixYgXq16+P9PR0zJw5E+3atUNSUhIyMjJgZWUFZ2dntdd4enoiIyMDAJCRkaGWGBWXF5eVJTc3F7m5udJzpVKppz0yfsbejVGs+KT09C0ieFKqOkxl0k9OL0FUtRh9ctS1a1fp/40bN0ZERAQCAgKwZs0a2NpW3BfQ7NmzMXPmzApbv7EytXE8PClVbaaUAHN6CaKqw+iTo6c5OzsjODgYly9fxr/+9S/k5eUhKytLrfUoMzMTXl5eAAAvLy8cOXJEbR3FV7MV1ynN1KlTMXHiROm5UqmEn5+fHvfEOJni4FKelKo2JsBEVNlMYsyRquzsbCQnJ8Pb2xvNmzeHpaUldu3aJZVfvHgRqampkMvlAAC5XI4zZ87g1q1bUp24uDg4OjqiYcOGZW7H2toajo6Oao/qgON4qKLpMp7N28kW8qCaTIyIqFIYfcvRpEmT0L17dwQEBCAtLQ3Tp0+Hubk5+vfvDycnJwwfPhwTJ06Eq6srHB0d8fbbb0Mul6N169YAgKioKDRs2BCvv/46vvjiC2RkZODDDz/EmDFjYG1tbeC9Mz6m1I1BpsdUxrMRUfVm9MnRjRs30L9/f9y9exfu7u544YUXcOjQIbi7uwMA5s+fDzMzM/Tq1Qu5ubmIjo7Gt99+K73e3NwcmzZtwujRoyGXy2Fvb4/Y2Fh8/PHHhtolo8duDKoIpjaejYiqL5kQQjy/GimVSjg5OUGhUBhlFxtvoUHG7mDyHQz4/nCJ5atGtoY8qKYBIiKi6kCX87fRtxzR87GrgkyBqVyWT0RkcgOySZ0pzCBsChNKUsXjZIlEZCrYcmTijP3Se7ZqkSqOZyMiU8CWIxNnzJfem0KrFlW+yr4sny2XRKQtJkcmzpi7KkzhvlhUta0+moq2c3ZjwPeH0XbObqw+mmrokIjIBLBbrQow1q4KDsAlQ+LUAUSkK7YcVRHGOIOwMbdqUdXHlksi0hVbjqhCGWurFj2fqc+dxZZLMhWm/lmripgcUYXjjWFNT1W4ypC3wqneTCXhqAqftaqIM2RryNhnyK4uTOULz5SlK3LQds7uEi0u+6d0Msljnq7IYctlNWMqCUdV+6wZK86QTVXa0vhkzNl6AQLG/YVn6ox97ixtseWyejGlgfhV7bNWlXBAdhVSFedzKd6nL7dfwOz/JUZA+eZMevo4VcXjVh7GPHcW0fM+r4YYiK/rdwg/a8aLLUdVRHmakY21q0p1n0pT2i+s5+3L08epR1NfbDh50+ib3ysTx+qQsdLke66yB+KX57uXnzXjxTFHGjLmMUfl6bc21r750vbpaWYADkx9UdpH1X2RAZjSNQRvdgjSap3s7/8Hx+qQMdHme2710dQSCUdFfK/pa8wQP2sVi2OOqild+62NuW++tH162uSuIVKcT++LADB76wVcu/sQb3euB28nW43Wyf7+f1T0WB1jbbEk46TN91xlTSGirzFDHBdnfJgcGRldThi6NiMb82DA0vapmJnsSWL0Zvt/WoXKSnx+OXIdq45cx5xeYWgf7F7mOouxv79yGGuLJRmPp78Ltf2eq4yEg3NpVV0ckG1EdL0PlK4zURvzYMDS9mlq1xCsGtkaB6a8qJYYAU/2RVbaivCkFen99UkAUGKdvZr5cgbvSsYbEtPzlPZdaIwz7htjTKQfHHOkoYoec6SPvmtd+q0rq28eAE5dv48jV++hVW1XhPu5aPQabfZpaXwyZm+9UGb5qpGtIQ+qiXRFDo5fvQ/IgOYBT+Jgf3/lOZh8BwO+P1xiefHfh6qP0lrKn/ddaIzjc4wxJvoHxxyZMH10cenSjFxZffP/XpOI307clJ73auaLr/o0ee7rtNmnNzsEATLg860XShxL1RaxfX/fZpeOAbErgoCyu1af911ojONzjC0mjucrP3arGQlDdnFV9E1rT12/r5YYAcBvJ27i1PX7et/Wm+2DcGDKi3ijfaD05lZt6maXjuGxK4Ke9Tk05u5+U6Dr8AxDM7b55thyZCSq8nwXR67eK3X5sav3Ne5e04a3ky3e79YQQ9sGlmgRM+ZB6NWJIW5IbEy/po0pFkN41udQHlSzyn4XVjRjvgL5WYzxAg0mR0akqt7BvlVt11KXt6it/8RIVWlN3ezSMS4ClTPk0Zi+fI0pFkN53uewqn4XVjRT/PFnrAkdu9WMTEV3cRlCuJ8LejXzVVvWq5lvhbQaPQ+7dIxDZTb9G1NXqjaxGFs3gz5p8jmsit+FFc0UuyQNcbsXTbDliCrFV32aYLA8AMeu3keL2i4GSYyK8VepYVX2L0Vj+jWtaSzVoXWpun0OK6MrVZPhGcbWpWusrflMjqjShPsZNilSZWxXl1QnlZ2sGNOXryaxGGs3Q0Uwpc9heZKKykx2n5V0GmPSbazjbZkcEVGlquxkxZi+fDWJxZhauuiJ8t7Yu7KT3dKSzlPX72PK+jMQRph0G2MrIpMjIqpUhkhWjOnL93mxGFNLF5U/uTGGZHf10VRM+e1MicsfjCnpNrZWRCZHRNWMMYw50Feyos2+GNOX77NiMaaWLip/cmPoZLc4uSvtulAm3WVjckRUDsaQaGhDtXtABmBK15AnM4tXoLKOUXmTFWMcP6EvxtTSVczU3uu6KG0fy5vcGDrZLeum3GYyMOl+BiZHRDoytZPz090DAnhyLzoZStzIV1/bW74/Bd//lQIBzY+RJidhQw5arqwkwVAtXaXtn6m913VR1j7qI7kxZLJbWnJnBmDDW22M5gIZY8TkiEgHpnhFUVm/ID/fegEvh/voNW7VE00xTY6Rpifh8nZ16JrgVPUkobT9ax/sbnLvdW097/Osj+TGUMluWckdE6NnY3JEpANdTs6G7pYIdLOHDCgx9qBIQK+DMk9dv1/q4E/g2cdIm4TzeV0dzzrWuiY4ppgQa6Os/VvQL9zgA4r1paz3hSafZ2Mas6YtY+ymNXZMjoh0oO04BGNocfB2ssWUriFPutJU6HNQ5uqjqU8uFy6j/Fnb0ibhfFZXx7OOdXkSHGO46qgilbV/ZjJZlbh67lnvC0MPmq4MppzcGQJvH0KkA21uQ5KuyMGU34zj9hVvdgjC1G4h0i0GdBk/UdZtLaSrYsrIjMzw7AGg2t76oG9Lf+yf0gmrRrbG/imd0Lel/3Nvz1GeWxWY4q0Zij39Nyvtb1jW/jULcDH5W+48731RFW8rVN7bz1Tl29dogi1HRDrStKl62f4Uo5pf5M32QXg53EenJvZn/foua0yTDMDIdnUw9IXaz9yWLgNfn/41/LzWnfK0EBj6qiNdPf0369HUFxtO3tRq4LGpd8to0upn6vuoqrwt1cbQ0m1oMiHK+p1HqpRKJZycnKBQKODo6GjocMjIlDWWIV2Rg7Zzdpf4YjYDcGDqiyb1BVzavpjLZNg/pRO8nWxLLTeTaX9VTLoiR+cT1PNiBJ588T+dAGjzxV+e+CpbWe8/VU8fH1PaP01p8r6oKsq7r1XxWOly/mbLEVE56dKaMqJ9oF6+aCpzkPfzfn3r66qY8oyN0KR1p7wtBBU9dkOff9Oy3n+q9D3w2NAXHpTGVFv9dFHesXFVfWydppgcEZXD8wb4ljrHiAyICfPGweQ7sLcyx8O8QqO/mSWg2aBVY+ia0CQGYx2cqu+/aWl/s6fpe0C+sXbHGMN7szKUd3B5dRicrgkOyCYqh+cN8C1toGePpr7o8e1BDPj+MF5Z9OTftnN2Y/XRVI23+7wBpqUNpizvAEtNB616O9lCHlTToCcfY4hBW8/7m+qi+G9W1he9PmdJLi3+qb+dMaoBvZX1vjDkYObyDi6vioPTdcGWI6JyKG3uIJkMZbam2FmZoce3B0skVPq8meW+v2+X+PUOQC+/6KvLr29DqKjujL4t/WFvbYGxv5wsUfZ1v6Z4KdxH53WrKi3+IgDL91/F+zEN9LINU2AMrWfl/Zzyc87kiEj/SunCKO7GOZh8p8wuDn3czNLOyqzkr/f/XV5fXLW8kxcaa5eUqavI7ozmAS6lrrt5bf3NklzWJKM/7L/y3CsVqwpjmii0vJ/T6v45Z7caUTmk3HlY4mQggDLnzSltLpliutzM8umm74d5haW2SpU1lQAZj4rszqiMrhJvJ1uMbBdYYnnxDOzVQVmtf8ev3q+0brbqPj+RvrDliNQY45UmxkzbX/tPXzWj+hp93MwyXZFT6gBw8VSCVB0HWJqCiuzOqIyukqEvBOKH/SnVdjBvad8HMgDjfj1ZKd1shujSq6rnDM5zpKHqMM+RMfSVmyJd5s0pnkvGzsoMj/KK9HqyKi0eAOWa24foWVRPkPv+vl2t32uqnz8zPPlR8vQPk4qYM6gi5ycqLQFKV+Rg+f4UfP/Xk0lujfmcocv5m8mRhqp6clQVJ/6qTBU1cZ4mv8rK+uJ6Op6qOLkfGV5pP6qq+2De4s/a3Ye5pQ6EXzWyNeRBNfW6zYPJdzDg+8N631Zpf18AamOrihnrOYOTQD7HokWLMHfuXGRkZCA8PBzffPMNWrVqZeiwjAIn/ioffQ1efPoX+PNa8spq7Sstnuo+wNIYmXqXRFkDkPdP6aT3k78pKf6sldbNXVHdjPoY0P/0+7Gs6RlQxtxZhUJg8+l0xDT2Nsn3s6pqkxytXr0aEydOxJIlSxAREYEFCxYgOjoaFy9ehIeHh6HDMzhO/GV4qolO8ZjtZ11hZkxXxpD2tOnG1kcSVRGJGH9UPVtlzsxd3m2pff/IgCldQxDm61Tq9AylXZFbbNbm8/hsy3mj7WLTVLVJjubNm4eRI0di6NChAIAlS5Zg8+bNWLZsGaZMmWLg6AyvOk2vb4yeTnRK++55+qTDE5Pp0iax1cdYwIoaT8gfVc9XmXMG6bqtEt8/Api95QLGdAoqdYD588biVIUfatXiUv68vDwcP34ckZGR0jIzMzNERkYiISGh1Nfk5uZCqVSqPaq6vi39sX9KJ6wa2Rr7p3Qy6azf1GhyD6ynTzqlTQvAE5NpeN7M6sX0MWt2Rcy8XYyzKWumMmds12VbZX3/LN6TjMldQqS/b1kJw4shJXtfTH26kGrRcnTnzh0UFhbC09NTbbmnpycuXLhQ6mtmz56NmTNnVkZ4RoXjUgyjrEuAZf9bVtpJh619pkvTFhd9tA5WdAsjZ1M2fYFu9pD9b8oPVUUAGtdyxv4pnZ45wLxXM1/svXirSrUgVovkSBdTp07FxIkTpedKpRJ+fn4GjIiqsrISneeddHhiMk2aJrb66LaqjK4v/qgybd5OtpjSNQSzt6g3FhS/T543wLxZgEuV+6FWLZIjNzc3mJubIzMzU215ZmYmvLy8Sn2NtbU1rK2tKyM8IgBlJzrP+4Lhick0aZLY6qN1kC2MpIk32wcBAvh86wUUQfvW6qr2Q63azHMUERGBVq1a4ZtvvgEAFBUVwd/fH2PHjtVoQHZVn+eIiIyXPuao4jxXpAlN3iem9l7iPEfPMHHiRMTGxqJFixZo1aoVFixYgIcPH0pXrxERGSt9tA6yhZE0ocn7pDq8l6pNctS3b1/cvn0bH330ETIyMtCkSRNs27atxCBtIiIiqt6qTbdaebFbjYiIyPTocv6uFvMcEREREWmKyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkotrcPqS8iicSVyqVBo6EiIiINFV83tbmhiBMjjT04MEDAICfn5+BIyEiIiJtPXjwAE5OThrV5b3VNFRUVIS0tDTUqFEDMplM5/UolUr4+fnh+vXr1foebTwOT/A4PMHj8ASPwxM8Dv/gsXiiPMdBCIEHDx7Ax8cHZmaajSZiy5GGzMzMUKtWLb2tz9HRsVq/0YvxODzB4/AEj8MTPA5P8Dj8g8fiCV2Pg6YtRsU4IJuIiIhIBZMjIiIiIhVMjiqZtbU1pk+fDmtra0OHYlA8Dk/wODzB4/AEj8MTPA7/4LF4orKPAwdkExEREalgyxERERGRCiZHRERERCqYHBERERGpYHJEREREpILJkR4sXrwYjRs3lianksvl2Lp1q1T++PFjjBkzBjVr1oSDgwN69eqFzMxMtXWkpqYiJiYGdnZ28PDwwLvvvouCgoLK3hW9mTNnDmQyGSZMmCAtqy7HYcaMGZDJZGqPkJAQqby6HAcAuHnzJgYNGoSaNWvC1tYWYWFhOHbsmFQuhMBHH30Eb29v2NraIjIyEpcuXVJbx7179zBw4EA4OjrC2dkZw4cPR3Z2dmXvis5q165d4v0gk8kwZswYANXn/VBYWIhp06YhMDAQtra2CAoKwieffKJ2v6vq8H4AntzGYsKECQgICICtrS3atGmDo0ePSuVV9Tjs27cP3bt3h4+PD2QyGX7//Xe1cn3t9+nTp9GuXTvY2NjAz88PX3zxhfbBCiq3jRs3is2bN4u///5bXLx4Ubz//vvC0tJSJCUlCSGEGDVqlPDz8xO7du0Sx44dE61btxZt2rSRXl9QUCBCQ0NFZGSkOHnypNiyZYtwc3MTU6dONdQulcuRI0dE7dq1RePGjcX48eOl5dXlOEyfPl00atRIpKenS4/bt29L5dXlONy7d08EBASIIUOGiMOHD4srV66I7du3i8uXL0t15syZI5ycnMTvv/8uTp06JV5++WURGBgocnJypDpdunQR4eHh4tChQ+Kvv/4SdevWFf379zfELunk1q1bau+FuLg4AUDs2bNHCFF93g+ffvqpqFmzpti0aZNISUkRa9euFQ4ODmLhwoVSnerwfhBCiD59+oiGDRuK+Ph4cenSJTF9+nTh6Ogobty4IYSousdhy5Yt4oMPPhDr168XAMSGDRvUyvWx3wqFQnh6eoqBAweKpKQksWrVKmFrayuWLl2qVaxMjiqIi4uL+OGHH0RWVpawtLQUa9eulcrOnz8vAIiEhAQhxJM3jJmZmcjIyJDqLF68WDg6Oorc3NxKj708Hjx4IOrVqyfi4uJEhw4dpOSoOh2H6dOni/Dw8FLLqtNxmDx5snjhhRfKLC8qKhJeXl5i7ty50rKsrCxhbW0tVq1aJYQQ4ty5cwKAOHr0qFRn69atQiaTiZs3b1Zc8BVo/PjxIigoSBQVFVWr90NMTIwYNmyY2rKePXuKgQMHCiGqz/vh0aNHwtzcXGzatEltebNmzcQHH3xQbY7D08mRvvb722+/FS4uLmqfjcmTJ4v69etrFR+71fSssLAQv/76Kx4+fAi5XI7jx48jPz8fkZGRUp2QkBD4+/sjISEBAJCQkICwsDB4enpKdaKjo6FUKnH27NlK34fyGDNmDGJiYtT2F0C1Ow6XLl2Cj48P6tSpg4EDByI1NRVA9ToOGzduRIsWLfDaa6/Bw8MDTZs2xffffy+Vp6SkICMjQ+1YODk5ISIiQu1YODs7o0WLFlKdyMhImJmZ4fDhw5W3M3qSl5eHlStXYtiwYZDJZNXq/dCmTRvs2rULf//9NwDg1KlT2L9/P7p27Qqg+rwfCgoKUFhYCBsbG7Xltra22L9/f7U5Dk/T134nJCSgffv2sLKykupER0fj4sWLuH//vsbx8MazenLmzBnI5XI8fvwYDg4O2LBhAxo2bIjExERYWVnB2dlZrb6npycyMjIAABkZGWpffMXlxWWm4tdff8WJEyfU+s6LZWRkVJvjEBERgRUrVqB+/fpIT0/HzJkz0a5dOyQlJVWr43DlyhUsXrwYEydOxPvvv4+jR49i3LhxsLKyQmxsrLQvpe2r6rHw8PBQK7ewsICrq6tJHYtiv//+O7KysjBkyBAA1etzMWXKFCiVSoSEhMDc3ByFhYX49NNPMXDgQACoNu+HGjVqQC6X45NPPkGDBg3g6emJVatWISEhAXXr1q02x+Fp+trvjIwMBAYGllhHcZmLi4tG8TA50pP69esjMTERCoUC69atQ2xsLOLj4w0dVqW5fv06xo8fj7i4uBK/iKqb4l/CANC4cWNEREQgICAAa9asga2trQEjq1xFRUVo0aIFPvvsMwBA06ZNkZSUhCVLliA2NtbA0RnGjz/+iK5du8LHx8fQoVS6NWvW4Oeff8Yvv/yCRo0aITExERMmTICPj0+1ez/89NNPGDZsGHx9fWFubo5mzZqhf//+OH78uKFDo/9ht5qeWFlZoW7dumjevDlmz56N8PBwLFy4EF5eXsjLy0NWVpZa/czMTHh5eQEAvLy8SlydUvy8uI6xO378OG7duoVmzZrBwsICFhYWiI+Px9dffw0LCwt4enpWi+NQGmdnZwQHB+Py5cvV5v0AAN7e3mjYsKHasgYNGkhdjMX7Utq+qh6LW7duqZUXFBTg3r17JnUsAODatWvYuXMnRowYIS2rTu+Hd999F1OmTEG/fv0QFhaG119/He+88w5mz54NoHq9H4KCghAfH4/s7Gxcv34dR44cQX5+PurUqVOtjoMqfe23vj4vTI4qSFFREXJzc9G8eXNYWlpi165dUtnFixeRmpoKuVwOAJDL5Thz5ozaHz0uLg6Ojo4lTi7GqnPnzjhz5gwSExOlR4sWLTBw4EDp/9XhOJQmOzsbycnJ8Pb2rjbvBwBo27YtLl68qLbs77//RkBAAAAgMDAQXl5easdCqVTi8OHDasciKytL7Rf17t27UVRUhIiIiErYC/1Zvnw5PDw8EBMTIy2rTu+HR48ewcxM/ZRjbm6OoqIiANXv/QAA9vb28Pb2xv3797F9+3a88sor1fI4APr7+8vlcuzbtw/5+flSnbi4ONSvX1/jLjUAvJRfH6ZMmSLi4+NFSkqKOH36tJgyZYqQyWRix44dQognl+r6+/uL3bt3i2PHjgm5XC7kcrn0+uJLdaOiokRiYqLYtm2bcHd3N7lLdZ+merWaENXnOPz73/8We/fuFSkpKeLAgQMiMjJSuLm5iVu3bgkhqs9xOHLkiLCwsBCffvqpuHTpkvj555+FnZ2dWLlypVRnzpw5wtnZWfzxxx/i9OnT4pVXXin10t2mTZuKw4cPi/3794t69eoZ/SXLTyssLBT+/v5i8uTJJcqqy/shNjZW+Pr6Spfyr1+/Xri5uYn33ntPqlNd3g/btm0TW7duFVeuXBE7duwQ4eHhIiIiQuTl5Qkhqu5xePDggTh58qQ4efKkACDmzZsnTp48Ka5duyaE0M9+Z2VlCU9PT/H666+LpKQk8euvvwo7Ozteym8Iw4YNEwEBAcLKykq4u7uLzp07S4mREELk5OSIt956S7i4uAg7OzvRo0cPkZ6erraOq1eviq5duwpbW1vh5uYm/v3vf4v8/PzK3hW9ejo5qi7HoW/fvsLb21tYWVkJX19f0bdvX7W5farLcRBCiD///FOEhoYKa2trERISIr777ju18qKiIjFt2jTh6ekprK2tRefOncXFixfV6ty9e1f0799fODg4CEdHRzF06FDx4MGDytyNctu+fbsAUGLfhKg+7welUinGjx8v/P39hY2NjahTp4744IMP1C65ri7vh9WrV4s6deoIKysr4eXlJcaMGSOysrKk8qp6HPbs2SMAlHjExsYKIfS336dOnRIvvPCCsLa2Fr6+vmLOnDlaxyoTQmV6UiIiIqJqjmOOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiqmYyMDLz99tuoU6cOrK2t4efnh+7du6vd0+jgwYPo1q0bXFxcYGNjg7CwMMybNw+FhYVSnatXr2L48OEIDAyEra0tgoKCMH36dOTl5alt7/vvv0d4eDgcHBzg7OyMpk2bSjcbBYAZM2ZAJpOhS5cuJWKdO3cuZDIZOnbs+Nz9ql27NmQyWZmPIUOGaH+wjFzHjh0xYcIEQ4dBVOVYGDoAIqo8V69eRdu2beHs7Iy5c+ciLCwM+fn52L59O8aMGYMLFy5gw4YN6NOnD4YOHYo9e/bA2dkZO3fuxHvvvYeEhASsWbMGMpkMFy5cQFFREZYuXYq6desiKSkJI0eOxMOHD/Hll18CAJYtW4YJEybg66+/RocOHZCbm4vTp08jKSlJLS5vb2/s2bMHN27cQK1ataTly5Ytg7+/v0b7dvToUSl5O3jwIHr16oWLFy/C0dERAGBra6uPQ1gp8vPzYWlpWWnby8vLg5WVVaVtj8jo6XiLFCIyQV27dhW+vr4iOzu7RNn9+/dFdna2qFmzpujZs2eJ8o0bNwoA4tdffy1z/V988YUIDAyUnr/yyitiyJAhz4xp+vTpIjw8XLz00kti1qxZ0vIDBw4INzc3MXr0aNGhQwcN9u4fxfdwun//vrTs999/F02bNhXW1tYiMDBQzJgxQ+3+ZADEkiVLRExMjLC1tRUhISHi4MGD4tKlS6JDhw7Czs5OyOVytfvkFce+ZMkSUatWLWFraytee+01tftkCSHE999/L0JCQoS1tbWoX7++WLRokVSWkpIiHdf27dsLa2trsXz5cnHnzh3Rr18/4ePjI2xtbUVoaKj45ZdfpNfFxsaWuEdVSkqKWL58uXByclLb/oYNG4Tq131x3N9//72oXbu2kMlkQogn74Hhw4cLNzc3UaNGDdGpUyeRmJio1bEnqgrYrUZUTdy7dw/btm3DmDFjYG9vX6Lc2dkZO3bswN27dzFp0qQS5d27d0dwcDBWrVpV5jYUCgVcXV2l515eXjh06BCuXbv23PiGDRuGFStWSM+XLVuGgQMH6qVF46+//sLgwYMxfvx4nDt3DkuXLsWKFSvw6aefqtX75JNPMHjwYCQmJiIkJAQDBgzAm2++ialTp+LYsWMQQmDs2LFqr7l8+TLWrFmDP//8E9u2bcPJkyfx1ltvSeU///wzPvroI3z66ac4f/48PvvsM0ybNg3//e9/1dYzZcoUjB8/HufPn0d0dDQeP36M5s2bY/PmzUhKSsIbb7yB119/HUeOHAEALFy4EHK5HCNHjkR6ejrS09Ph5+en8TG5fPkyfvvtN6xfvx6JiYkAgNdeew23bt3C1q1bcfz4cTRr1gydO3fGvXv3tDncRKbP0NkZEVWOw4cPCwBi/fr1ZdaZM2dOiRYXVS+//LJo0KBBqWWXLl0Sjo6O4rvvvpOWpaWlidatWwsAIjg4WMTGxorVq1eLwsJCqU5xK0ZeXp7w8PAQ8fHxIjs7W9SoUUOcOnVKjB8/vtwtR507dxafffaZWp2ffvpJeHt7S88BiA8//FB6npCQIACIH3/8UVq2atUqYWNjoxa7ubm5uHHjhrRs69atwszMTKSnpwshhAgKClJr8RFCiE8++UTI5XIhxD8tRwsWLHjufsXExIh///vf0vMOHTqI8ePHq9XRtOXI0tJS3Lp1S1r2119/CUdHR/H48WO11wYFBYmlS5c+NzaiqoRjjoiqCSFEhdQFgJs3b6JLly547bXXMHLkSGm5t7c3EhISkJSUhH379uHgwYOIjY3FDz/8gG3btsHM7J/Ga0tLSwwaNAjLly/HlStXEBwcjMaNG2sVR1lOnTqFAwcOqLUUFRYW4vHjx3j06BHs7OwAQG17np6eAICwsDC1ZY8fP4ZSqZTGMvn7+8PX11eqI5fLUVRUhIsXL6JGjRpITk7G8OHD1Y5LQUEBnJyc1GJs0aKF2vPCwkJ89tlnWLNmDW7evIm8vDzk5uZKsZZXQEAA3N3dpeenTp1CdnY2atasqVYvJycHycnJetkmkalgckRUTdSrV08aSF2W4OBgAMD58+fRpk2bEuXnz59Hw4YN1ZalpaWhU6dOaNOmDb777rtS1xsaGorQ0FC89dZbGDVqFNq1a4f4+Hh06tRJrd6wYcMQERGBpKQkDBs2TNtdLFN2djZmzpyJnj17liizsbGR/q86CFomk5W5rKioSOPtAk+u2IuIiFArMzc3V3v+dFfn3LlzsXDhQixYsABhYWGwt7fHhAkTSlwN+DQzM7MSyW1+fn6Jek9vLzs7G97e3ti7d2+Jus7Ozs/cJlFVw+SIqJpwdXVFdHQ0Fi1ahHHjxpU4OWZlZSEqKgqurq746quvSiRHGzduxKVLl/DJJ59Iy27evIlOnTqhefPmWL58uVpLUFmKk6uHDx+WKGvUqBEaNWqE06dPY8CAAbrsZqmaNWuGixcvom7dunpbZ7HU1FSkpaXBx8cHAHDo0CGYmZmhfv368PT0hI+PD65cuYKBAwdqtd4DBw7glVdewaBBgwA8Scj+/vtvteTUyspKbXoFAHB3d8eDBw/w8OFD6W9cPKboWZo1a4aMjAxYWFigdu3aWsVKVNUwOSKqRhYtWoS2bduiVatW+Pjjj9G4cWMUFBQgLi4Oixcvxvnz57F06VL069cPb7zxBsaOHQtHR0fs2rUL7777Lnr37o0+ffoAeJIYdezYEQEBAfjyyy9x+/ZtaTteXl4AgNGjR8PHxwcvvvgiatWqhfT0dMyaNQvu7u6Qy+Wlxrh7927k5+frtbXio48+wksvvQR/f3/07t0bZmZmOHXqFJKSkjBr1qxyrdvGxgaxsbH48ssvoVQqMW7cOPTp00c6BjNnzsS4cePg5OSELl26IDc3F8eOHcP9+/cxceLEMtdbr149rFu3DgcPHoSLiwvmzZuHzMxMteSodu3aOHz4MK5evQoHBwe4uroiIiICdnZ2eP/99zFu3DgcPnxYbaB7WSIjIyGXy/Hqq6/iiy++QHBwMNLS0rB582b06NGjRLcfUVXGq9WIqpE6dergxIkT6NSpE/79738jNDQU//rXv7Br1y4sXrwYANC7d2/s2bMHqampaNeuHerXr4/58+fjgw8+wK+//ip1LcXFxeHy5cvYtWsXatWqBW9vb+lRLDIyEocOHcJrr72G4OBg9OrVCzY2Nti1a1eJsS3F7O3t9d6NEx0djU2bNmHHjh1o2bIlWrdujfnz5yMgIKDc665bty569uyJbt26ISoqCo0bN8a3334rlY8YMQI//PADli9fjrCwMHTo0AErVqxAYGDgM9f74YcfolmzZoiOjkbHjh3h5eWFV199Va3OpEmTYG5ujoYNG8Ld3R2pqalwdXXFypUrsWXLFoSFhWHVqlWYMWPGc/dDJpNhy5YtaN++PYYOHYrg4GD069cP165dk8ZfEVUXMqHtyEsiIgLwZHbv33//XaNuKyIyHWw5IiIiIlLB5IiITIaDg0OZj7/++svQ4RFRFcFuNSIyGZcvXy6zzNfX16Tun0ZExovJEREREZEKdqsRERERqWByRERERKSCyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKv4f93OVvhUxit4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZh0lEQVR4nO3deVhU9f4H8PeA7DuyI5sgIoKkuYSaS5FLapm5poV7bqnXUjEzNTUxvWp1Tc0Su5l7ambmkpqau7mSu6GigEoKI4vI8v394Y+5DDAwMxyY7f16nnke5nzPnPmcM2fmfPhuRyaEECAiIiIycGa6DoCIiIhICkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoio2s2YMQMymUytdWUyGWbMmFGt8bRr1w7t2rXT2+0RkXaY1BCZkFWrVkEmkyketWrVgq+vLwYOHIi7d+/qOjy9ExgYqHS8PDw88OKLL2LLli2SbD8nJwczZszA77//Lsn2iEwdkxoiE/TJJ5/g+++/x7Jly9C5c2esXr0abdu2xZMnT6rl/T766CPk5uZWy7ar23PPPYfvv/8e33//PT744AOkpKSgR48eWLZsWZW3nZOTg5kzZzKpIZJILV0HQEQ1r3PnzmjatCkAYOjQoXBzc8O8efOwbds29O7dW/L3q1WrFmrVMsyfG19fXwwYMEDx/J133kFISAgWLVqEESNG6DAyIiqNNTVEhBdffBEAcOPGDaXlly9fRs+ePeHq6gpra2s0bdoU27ZtU1onPz8fM2fORL169WBtbY3atWujdevW2LNnj2Kd8vrU5OXl4V//+hfc3d3h4OCA1157DXfu3CkT28CBAxEYGFhmeXnbTEhIwEsvvQQPDw9YWVkhPDwcS5cu1ehYVMbLywsNGjRAUlJShevdv38fQ4YMgaenJ6ytrREVFYXvvvtOUX7z5k24u7sDAGbOnKlo4qru/kRExsww/3UiIkndvHkTAODi4qJY9tdff6FVq1bw9fVFXFwc7OzssGHDBnTv3h0//vgj3njjDQDPkou5c+di6NChaN68OeRyOU6dOoXTp0/jlVdeUfmeQ4cOxerVq/HWW2+hZcuW2LdvH7p06VKl/Vi6dCkaNmyI1157DbVq1cLPP/+MUaNGoaioCKNHj67Stovl5+cjOTkZtWvXVrlObm4u2rVrh+vXr2PMmDEICgrCxo0bMXDgQGRkZGDcuHFwd3fH0qVLMXLkSLzxxhvo0aMHAKBRo0aSxElkkgQRmYyEhAQBQPz222/iwYMHIjk5WWzatEm4u7sLKysrkZycrFj35ZdfFpGRkeLJkyeKZUVFRaJly5aiXr16imVRUVGiS5cuFb7v9OnTRcmfm7NnzwoAYtSoUUrrvfXWWwKAmD59umJZbGysCAgIqHSbQgiRk5NTZr2OHTuKunXrKi1r27ataNu2bYUxCyFEQECA6NChg3jw4IF48OCBOHfunOjbt68AIN577z2V21u8eLEAIFavXq1Y9vTpUxEdHS3s7e2FXC4XQgjx4MGDMvtLRNpj8xORCYqJiYG7uzv8/PzQs2dP2NnZYdu2bahTpw4A4OHDh9i3bx969+6Nx48fIz09Henp6fjnn3/QsWNHXLt2TTFaytnZGX/99ReuXbum9vvv2LEDADB27Fil5ePHj6/SftnY2Cj+zszMRHp6Otq2bYu///4bmZmZWm1z9+7dcHd3h7u7O6KiorBx40a8/fbbmDdvnsrX7NixA15eXujXr59imYWFBcaOHYusrCwcOHBAq1iIqGJsfiIyQUuWLEFoaCgyMzOxcuVKHDx4EFZWVory69evQwiBadOmYdq0aeVu4/79+/D19cUnn3yC119/HaGhoYiIiECnTp3w9ttvV9iMcuvWLZiZmSE4OFhpef369au0X4cPH8b06dNx9OhR5OTkKJVlZmbCyclJ4222aNECs2fPhkwmg62tLRo0aABnZ+cKX3Pr1i3Uq1cPZmbK/zc2aNBAUU5E0mNSQ2SCmjdvrhj91L17d7Ru3RpvvfUWrly5Ant7exQVFQEAPvjgA3Ts2LHcbYSEhAAA2rRpgxs3buCnn37C7t278c0332DRokVYtmwZhg4dWuVYVU3aV1hYqPT8xo0bePnllxEWFoaFCxfCz88PlpaW2LFjBxYtWqTYJ025ubkhJiZGq9cSUc1iUkNk4szNzTF37ly0b98e//nPfxAXF4e6desCeNZkos4F3dXVFYMGDcKgQYOQlZWFNm3aYMaMGSqTmoCAABQVFeHGjRtKtTNXrlwps66LiwsyMjLKLC9d2/Hzzz8jLy8P27Ztg7+/v2L5/v37K41fagEBATh//jyKioqUamsuX76sKAdUJ2xEpB32qSEitGvXDs2bN8fixYvx5MkTeHh4oF27dli+fDlSU1PLrP/gwQPF3//8849Smb29PUJCQpCXl6fy/Tp37gwA+OKLL5SWL168uMy6wcHByMzMxPnz5xXLUlNTy8zqa25uDgAQQiiWZWZmIiEhQWUc1eXVV19FWloa1q9fr1hWUFCAL7/8Evb29mjbti0AwNbWFgDKTdqISHOsqSEiAMDEiRPRq1cvrFq1CiNGjMCSJUvQunVrREZGYtiwYahbty7u3buHo0eP4s6dOzh37hwAIDw8HO3atcPzzz8PV1dXnDp1Cps2bcKYMWNUvtdzzz2Hfv364auvvkJmZiZatmyJvXv34vr162XW7du3LyZPnow33ngDY8eORU5ODpYuXYrQ0FCcPn1asV6HDh1gaWmJbt264d1330VWVhZWrFgBDw+PchOz6jR8+HAsX74cAwcOxJ9//onAwEBs2rQJhw8fxuLFi+Hg4ADgWcfm8PBwrF+/HqGhoXB1dUVERAQiIiJqNF4io6Hr4VdEVHOKh3SfPHmyTFlhYaEIDg4WwcHBoqCgQAghxI0bN8Q777wjvLy8hIWFhfD19RVdu3YVmzZtUrxu9uzZonnz5sLZ2VnY2NiIsLAwMWfOHPH06VPFOuUNv87NzRVjx44VtWvXFnZ2dqJbt24iOTm53CHOu3fvFhEREcLS0lLUr19frF69utxtbtu2TTRq1EhYW1uLwMBAMW/ePLFy5UoBQCQlJSnW02RId2XD1VVt7969e2LQoEHCzc1NWFpaisjISJGQkFDmtUeOHBHPP/+8sLS05PBuoiqSCVGirpaIiIjIQLFPDRERERkFJjVERERkFJjUEBERkVFgUkNERERGgUkNERERGQUmNURERGQUjH7yvaKiIqSkpMDBwYFTkhMRERkIIQQeP34MHx+fMjeHVcXok5qUlBT4+fnpOgwiIiLSQnJyMurUqaPWukaf1BRPR56cnAxHR0cdR0NERETqkMvl8PPzU1zH1WH0SU1xk5OjoyOTGiIiIgOjSdcRdhQmIiIio8CkhoiIiIwCkxoiIiIyCkbfp4aISN8UFhYiPz9f12EQ6ZSFhQXMzc0l3SaTGiKiGiKEQFpaGjIyMnQdCpFecHZ2hpeXl2TzyDGpISKqIcUJjYeHB2xtbTkhKJksIQRycnJw//59AIC3t7ck22VSQ0RUAwoLCxUJTe3atXUdDpHO2djYAADu378PDw8PSZqi2FGYiKgGFPehsbW11XEkRPqj+PsgVR8zJjVERDWITU5E/yP194FJDRERERkFJjVERERkFJjUaCk1MxdHbqQjNTNX16EQEdWItLQ0vPfee6hbty6srKzg5+eHbt26Ye/evYp1jhw5gldffRUuLi6wtrZGZGQkFi5ciMLCQsU6N2/exJAhQxAUFAQbGxsEBwdj+vTpePr0qdL7rVixAlFRUbC3t4ezszMaN26MuXPnKspnzJgBmUyGTp06lYl1/vz5kMlkaNeundr7J5fLMXXqVISFhcHa2hpeXl6IiYnB5s2bIYRQrPfXX3+hd+/ecHd3h5WVFUJDQ/Hxxx8jJydHsc7Dhw/x3nvvoX79+rCxsYG/vz/Gjh2LzMxMtWK5efMmZDJZuY9jx46pvU/t2rXD+PHj1V7f0HH0kxbWn7yNKZsvoEgAZjJgbo9I9Gnmr+uwiIiqzc2bN9GqVSs4Oztj/vz5iIyMRH5+Pnbt2oXRo0fj8uXL2LJlC3r37o1BgwZh//79cHZ2xm+//YZJkybh6NGj2LBhA2QyGS5fvoyioiIsX74cISEhSExMxLBhw5CdnY0FCxYAAFauXInx48fjiy++QNu2bZGXl4fz588jMTFRKS5vb2/s378fd+7cQZ06dRTLV65cCX9/9X+XMzIy0Lp1a2RmZmL27Nlo1qwZatWqhQMHDmDSpEl46aWX4OzsjGPHjiEmJgYxMTH45Zdf4OnpiRMnTuD999/H3r17sX//flhaWiIlJQUpKSlYsGABwsPDcevWLYwYMQIpKSnYtGmT2nH99ttvaNiwodIyqUfPCSFQWFiIWrWMICUQRi4zM1MAEJmZmZJsLyUjRwTFbRcBk//3qBv3i0jJyJFk+0RknHJzc8XFixdFbm6urkPRSufOnYWvr6/IysoqU/bo0SORlZUlateuLXr06FGmfNu2bQKAWLduncrtf/bZZyIoKEjx/PXXXxcDBw6sMKbp06eLqKgo0bVrVzF79mzF8sOHDws3NzcxcuRI0bZtWzX2ToiRI0cKOzs7cffu3TJljx8/Fvn5+aKoqEiEh4eLpk2bisLCQqV1zp49K2QymYiPj1f5Hhs2bBCWlpYiPz+/0niSkpIEAHHmzBmV6xTv/3//+18REBAgHB0dRZ8+fYRcLhdCCBEbGysAKD2SkpLE/v37BQCxY8cO0aRJE2FhYSH2798vnjx5It577z3h7u4urKysRKtWrcSJEycU71f8uu3bt4vIyEhhZWUlWrRoIS5cuCCEECIrK0s4ODiIjRs3KsW5ZcsWYWtrq4irpIq+F9pcv9n8pKGk9GwUCeVlhULgZnpO+S8gIqoGNdkE/vDhQ+zcuROjR4+GnZ1dmXJnZ2fs3r0b//zzDz744IMy5d26dUNoaCjWrl2r8j0yMzPh6uqqeO7l5YVjx47h1q1blcY3ePBgrFq1SvF85cqV6N+/PywtLSt9LQAUFRVh3bp16N+/P3x8fMqU29vbo1atWjh79iwuXryICRMmwMxM+fIZFRWFmJiYSvfR0dFR0hqRGzduYOvWrdi+fTu2b9+OAwcOID4+HgDw+eefIzo6GsOGDUNqaipSU1Ph5+eneG1cXBzi4+Nx6dIlNGrUCJMmTcKPP/6I7777DqdPn0ZISAg6duyIhw8fKr3nxIkT8e9//xsnT56Eu7s7unXrhvz8fNjZ2aFv375ISEhQWj8hIQE9e/aEg4ODZPutCpMaDQW52cGs1Ag0c5kMgW6ce4KIasb6k7fRKn4f3lpxHK3i92H9ydvV+n7Xr1+HEAJhYWEq17l69SoAoEGDBuWWh4WFKdYpb/tffvkl3n33XcWy6dOnw9nZGYGBgahfvz4GDhyIDRs2oKioqMzru3btCrlcjoMHDyI7OxsbNmzA4MGD1d6/9PR0PHr0qML9AyrfxwYNGqjcx/T0dMyaNQvDhw9XOy4AaNmyJezt7ZUeJRUVFWHVqlWIiIjAiy++iLffflvRx8nJyQmWlpawtbWFl5cXvLy8lCa4++STT/DKK68gODgYVlZWWLp0KebPn4/OnTsjPDwcK1asgI2NDb799lul95w+fTpeeeUVREZG4rvvvsO9e/ewZcsWAMDQoUOxa9cupKamAng2sd6OHTs0+jyqgkmNhrydbDC3RyTM/39svblMhk97RMDbyUbHkRGRKUjNzFX06QOAIgF8uDmxWmtshBCVr6TFugBw9+5ddOrUCb169cKwYcMUy729vXH06FFcuHAB48aNQ0FBAWJjY9GpU6cyiY2FhQUGDBiAhIQEbNy4EaGhoWjUqFG1xazp+nK5HF26dEF4eDhmzJih0WvXr1+Ps2fPKj1KCgwMVKoB8fb2Vtx6oDJNmzZV/H3jxg3k5+ejVatWimUWFhZo3rw5Ll26pPS66Ohoxd+urq6oX7++Yp3mzZujYcOG+O677wAAq1evRkBAANq0aaPeDleREfQKqnl9mvmjTag7bqbnINDNlgkNEdWYiprAq+u3qF69eooOvqqEhoYCAC5duoSWLVuWKb906RLCw8OVlqWkpKB9+/Zo2bIlvv7663K3GxERgYiICIwaNQojRozAiy++iAMHDqB9+/ZK6w0ePBgtWrRAYmKixrUC7u7ucHZ2rnD/AOV9bNy4cZnyS5cuKdYp9vjxY3Tq1AkODg7YsmULLCwsNIrNz88PISEhKstLb08mk5Vbm1We8poSpTB06FAsWbIEcXFxSEhIwKBBg2ps0knW1GjJ28kG0cG1mdAQUY3SRRO4q6srOnbsiCVLliA7O7tMeUZGBjp06ABXV1f8+9//LlO+bds2XLt2Df369VMsu3v3Ltq1a4fnn38eCQkJZfqolKc4KSovhoYNG6Jhw4ZITEzEW2+9pcnuwczMDH379sUPP/yAlJSUMuVZWVkoKCjAc889h7CwMCxatKhM4nDu3Dn89ttvSvsol8vRoUMHWFpaYtu2bbC2ttYoLilYWloqDadXJTg4GJaWljh8+LBiWX5+Pk6ePFkmGS05pPzRo0e4evWqUpPcgAEDcOvWLXzxxRe4ePEiYmNjJdgT9TCpISIyILpqAl+yZAkKCwvRvHlz/Pjjj7h27RouXbqEL774AtHR0bCzs8Py5cvx008/Yfjw4Th//jxu3ryJb7/9FgMHDkTPnj3Ru3dvAP9LaPz9/bFgwQI8ePAAaWlpSEtLU7zfyJEjMWvWLBw+fBi3bt3CsWPH8M4778Dd3V2p+aOkffv2ITU1Fc7Ozhrv35w5c+Dn54cWLVrgv//9Ly5evIhr165h5cqVaNy4MbKysiCTyfDtt9/i4sWLePPNN3HixAncvn0bGzduRLdu3RAdHa2YE6Y4ocnOzsa3334LuVyu2Ed1koxi//zzj+J1xY8nT56o/frAwEAcP34cN2/eRHp6uspaHDs7O4wcORITJ07Ezp07cfHiRQwbNgw5OTkYMmSI0rqffPIJ9u7di8TERAwcOBBubm7o3r27otzFxQU9evTAxIkT0aFDB6Wh9tVO7XFSBkrqId1ERNqQekh3SkaOOHI9vUank0hJSRGjR48WAQEBwtLSUvj6+orXXntN7N+/X7HOwYMHRceOHYWjo6OwtLQUDRs2FAsWLBAFBQWKdRISEsoMNS5+FNu0aZN49dVXhbe3t7C0tBQ+Pj7izTffFOfPn1esUzykWZVx48apPaRbCCEyMjJEXFycqFevnrC0tBSenp4iJiZGbNmyRRQVFSnWO3/+vHjzzTeFq6ursLCwEMHBweKjjz4S2dnZinWKhz+X90hKSqo0luIh3eU91q5dq3L/Fy1aJAICAhTPr1y5Il544QVhY2NTZkj3o0ePlF6bm5sr3nvvPeHm5lbhkO6ff/5ZNGzYUFhaWormzZuLc+fOlYl/7969AoDYsGFDhfsp9ZBumRAa9ngyMHK5HE5OToqhdEREuvDkyRMkJSUhKChIJ80QRFX1+++/o3379nj06FGltWHff/89/vWvfyElJaXCofUVfS+0uX6zozARERFJIicnB6mpqYiPj8e7776r9lxBUmGfGiIiMnql53op+Th06FCNxzNixAiV8YwYMaLG45HKZ599hrCwMHh5eWHKlCk1/v5sfiIiqgFsftKt69evqyzz9fWFjU3NjmS9f/8+5HJ5uWWOjo7w8PCo0Xh0hc1PREREGqporhdd8PDwMJnEpSax+YmIiIiMApMaIqIapO5sr0SmQOrvA5ufiIhqgKWlJczMzJCSkgJ3d3dYWlrW2NTxRPpGCIGnT5/iwYMHMDMzk2yUFJMaIqIaYGZmhqCgIKSmppY7FT+RKbK1tYW/v79at8lQB5MaIqIaYmlpCX9/fxQUFGg0VT6RMTI3N0etWrUkrbFkUkNEVINkMhksLCw0vlszEVWOHYWJiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjoNOk5uDBg+jWrRt8fHwgk8mwdetWRVl+fj4mT56MyMhI2NnZwcfHB++88w5vBEdERETl0mlSk52djaioKCxZsqRMWU5ODk6fPo1p06bh9OnT2Lx5M65cuYLXXntNB5ESERGRvpMJIYSugwCe3eRty5Yt6N69u8p1Tp48iebNm+PWrVvw9/dXa7tyuRxOTk7IzMyEo6OjRNESERFRddLm+m1Qd+nOzMyETCaDs7OzynXy8vKQl5eneC6Xy2sgMiIiItI1g+ko/OTJE0yePBn9+vWrMGObO3cunJycFA8/P78ajJKIiIh0xSCSmvz8fPTu3RtCCCxdurTCdadMmYLMzEzFIzk5uYaiJCIiIl3S++an4oTm1q1b2LdvX6XtalZWVrCysqqh6IiIiEhf6HVSU5zQXLt2Dfv370ft2rV1HRIRERHpKZ0mNVlZWbh+/brieVJSEs6ePQtXV1d4e3ujZ8+eOH36NLZv347CwkKkpaUBAFxdXWFpaamrsImIiEgP6XRI9++//4727duXWR4bG4sZM2YgKCio3Nft378f7dq1U+s9OKSbiIjI8BjckO527dqhopxKT6bQISIiIgNgEKOfiIiIiCrDpIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgo6TWoOHjyIbt26wcfHBzKZDFu3blUqF0Lg448/hre3N2xsbBATE4Nr167pJlgiIiLSazpNarKzsxEVFYUlS5aUW/7ZZ5/hiy++wLJly3D8+HHY2dmhY8eOePLkSQ1HSkRERPquli7fvHPnzujcuXO5ZUIILF68GB999BFef/11AMB///tfeHp6YuvWrejbt29NhkpERER6Tm/71CQlJSEtLQ0xMTGKZU5OTmjRogWOHj2qw8iIiIhIH+m0pqYiaWlpAABPT0+l5Z6enoqy8uTl5SEvL0/xXC6XV0+AREREpFf0tqZGW3PnzoWTk5Pi4efnp+uQiIiIqAbobVLj5eUFALh3757S8nv37inKyjNlyhRkZmYqHsnJydUaJxEREekHvU1qgoKC4OXlhb179yqWyeVyHD9+HNHR0SpfZ2VlBUdHR6UHERERGT+d9qnJysrC9evXFc+TkpJw9uxZuLq6wt/fH+PHj8fs2bNRr149BAUFYdq0afDx8UH37t11FzQRERHpJZ0mNadOnUL79u0VzydMmAAAiI2NxapVqzBp0iRkZ2dj+PDhyMjIQOvWrbFz505YW1vrKmQiIiLSUzIhhNB1ENVJLpfDyckJmZmZbIoiIiIyENpcv/W2Tw0RERGRJpjUEBERkVFgUkNERERGgUkNERERGQUmNURERGQUmNQQERGRUWBSQ0REREZBq6QmOztb6jiIiIiIqkSrpMbT0xODBw/GH3/8IXU8RERERFrRKqlZvXo1Hj58iJdeegmhoaGIj49HSkqK1LERERERqU2rpKZ79+7YunUr7t69ixEjRmDNmjUICAhA165dsXnzZhQUFEgdJxEREVGFJLv305dffomJEyfi6dOncHNzw4gRIxAXFwdbW1spNq813vuJiIjI8Ghz/a7SXbrv3buH7777DqtWrcKtW7fQs2dPDBkyBHfu3MG8efNw7Ngx7N69uypvQURERKQWrZKazZs3IyEhAbt27UJ4eDhGjRqFAQMGwNnZWbFOy5Yt0aBBA6niJCIiIqqQVknNoEGD0LdvXxw+fBjNmjUrdx0fHx9MnTq1SsERERERqUurPjU5OTk67yujLvapISIiMjw11qfG1tYWhYWF2LJlCy5dugQAaNCgAbp3745atarUTYeIiIhIK1plIH/99Re6deuGe/fuoX79+gCAefPmwd3dHT///DMiIiIkDZKIiIioMlrNUzN06FBERETgzp07OH36NE6fPo3k5GQ0atQIw4cPlzpGIiIiokppVVNz9uxZnDp1Ci4uLoplLi4umDNnjsqOw0RERETVSauamtDQUNy7d6/M8vv37yMkJKTKQRERERFpSqukZu7cuRg7diw2bdqEO3fu4M6dO9i0aRPGjx+PefPmQS6XKx5ERERENUGrId1mZv/LhWQyGQCgeDMln8tkMhQWFkoRp9Y4pJuIiMjw1NiQ7v3792vzMiIiIqJqo1VS07ZtW6njICIiIqoSrWfKy8jIwLfffquYfK9hw4YYPHgwnJycJAuOiIiISF1adRQ+deoUgoODsWjRIjx8+BAPHz7EwoULERwcjNOnT0sdIxEREVGltOoo/OKLLyIkJAQrVqxQ3BahoKAAQ4cOxd9//42DBw9KHqi22FGYiIjI8Ghz/dYqqbGxscGZM2cQFhamtPzixYto2rQpcnJyNN1ktWFSQ0REZHi0uX5r1fzk6OiI27dvl1menJwMBwcHbTZJREREVCVaJTV9+vTBkCFDsH79eiQnJyM5ORnr1q3D0KFD0a9fP6ljJCIiIqqUVqOfFixYAJlMhnfeeQcFBQUAAAsLC4wcORLx8fGSBkhERESkDo371BQWFuLw4cOIjIyElZUVbty4AQAIDg6Gra1ttQRZFexTQ0REZHhqZEZhc3NzdOjQAZcuXUJQUBAiIyM1DpSIiIhIalr1qYmIiMDff/8tdSxEREREWtMqqZk9ezY++OADbN++HampqUp35eaduYmIiEgXJLtLN6A/d+YuiX1qiIiIDA/v0k1EREQmS6ukJigoCH5+fkq1NMCzmprk5GRJAiMiIiLShFZ9aoKCgvDgwYMyyx8+fIigoKAqB0VERESkKa2SmuK+M6VlZWXB2tq6ykEVKywsxLRp0xAUFAQbGxsEBwdj1qxZ0KIbEBERERk5jZqfJkyYAOBZ5+Bp06YpTbZXWFiI48eP47nnnpMsuHnz5mHp0qX47rvv0LBhQ5w6dQqDBg2Ck5MTxo4dK9n7EBERkeHTKKk5c+YMgGc1NRcuXIClpaWizNLSElFRUfjggw8kC+7IkSN4/fXX0aVLFwBAYGAg1q5dixMnTkj2HkRERGQcNEpqikc9DRo0CJ9//nm1D5Fu2bIlvv76a1y9ehWhoaE4d+4c/vjjDyxcuFDla/Ly8pCXl6d4znlziIiITINWo58SEhKkjqNccXFxkMvlCAsLg7m5OQoLCzFnzhz0799f5Wvmzp2LmTNn1kh8REREpD+0Smqys7MRHx+PvXv34v79+ygqKlIql+oWChs2bMAPP/yANWvWoGHDhjh79izGjx8PHx8fxMbGlvuaKVOmKPr+AM9qavz8/CSJh4iIiPSXVknN0KFDceDAAbz99tvw9vYudySUFCZOnIi4uDj07dsXABAZGYlbt25h7ty5KpMaKysrWFlZVUs8REREpL+0Smp+/fVX/PLLL2jVqpXU8SjJyclRuiUD8Owu4aVrhoiIiIi0SmpcXFzg6uoqdSxldOvWDXPmzIG/vz8aNmyIM2fOYOHChRg8eHC1vzcREREZFq1uaLl69Wr89NNP+O6775TmqpHa48ePMW3aNGzZsgX379+Hj48P+vXrh48//lhpOHlFeENLIiIiw6PN9VurpKZx48a4ceMGhBAIDAyEhYWFUvnp06c13WS1YVJDRERkeGrsLt3du3fX5mVERERE1UarmhpDwpoaIiIiw6PN9VujG1qeOHEChYWFKsvz8vKwYcMGTTZJREREJAmNkpro6Gj8888/iueOjo5KE+1lZGSgX79+0kVHREREpCaNkprSLVXltVwZeWsWERER6SmNkhp1VNfswkREREQVkTypISIiItIFjYd0X7x4EWlpaQCeNTVdvnwZWVlZAID09HRpoyMiIiJSk0ZDus3MzCCTycrtN1O8XCaTVThCqqZxSDcREZHhqfbJ95KSkrQKjIiIiKi6aZTUBAQEaLTxUaNG4ZNPPoGbm5tGryMiIiLSVLV2FF69ejXkcnl1vgURERERgGpOajhnDREREdUUDukmIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyChUa1IzYMAATnhHRERENUKrpKaoqEjl8tu3byueL126lHPUEBERUY3QKKmRy+Xo3bs37Ozs4OnpiY8//ljplggPHjxAUFCQ5EESERERVUajGYWnTZuGc+fO4fvvv0dGRgZmz56N06dPY/PmzbC0tATAuWmIiIhINzSqqdm6dSuWL1+Onj17YujQoTh16hQePHiAbt26IS8vD8CzG1sSERER1TSNkpoHDx4o3f/Jzc0Nv/32Gx4/foxXX30VOTk5kgdIREREpA6Nkhp/f39cunRJaZmDgwN2796N3NxcvPHGG5IGR0RERKQujZKaDh06ICEhocxye3t77Nq1C9bW1pIFRkRERKQJjToKz5w5EykpKeWWOTg4YM+ePTh9+rQkgRERERFpQqOkxsXFBS4uLirLHRwc0LZt2yoHRURERKQpjSffKygowPz589GkSRPY29vD3t4eTZo0wYIFC5Cfn18dMRIRERFVSqOamtzcXLzyyis4evQoYmJi0KZNGwDApUuXMHnyZGzbtg27d+9m3xoiIiKqcRolNfHx8UhOTsaZM2fQqFEjpbJz587htddeQ3x8PGbMmCFljERERESV0qj5ad26dVi4cGGZhAYAoqKisGDBAqxZs0ay4IiIiIjUpVFSc+vWLTRv3lxl+QsvvKB0Q0siIiKimqJRUuPo6Ij79++rLE9LS4ODg0OVgyIiIiLSlEZJTfv27fHpp5+qLI+Pj0f79u2rHBQRERGRpjTqKDx9+nS0aNECL7zwAiZMmICwsDAIIXDp0iUsWrQIFy9exLFjx6orViIiIiKVNEpqwsPDsWfPHgwZMgR9+/ZV3JFbCIGwsDDs3r0bDRs2rJZAiYiIiCqiUVIDPOsM/Ndff+Hs2bO4evUqACA0NBTPPfec1LERERERqU3jpEYul8Pe3h7PPfecUiJTVFSErKwsODo6ShkfERERkVo06ii8ZcsWNG3aFE+ePClTlpubi2bNmuHnn3+WLDgiIiIidWmU1CxduhSTJk2Cra1tmTI7OztMnjwZ//nPfyQLjoiIiEhdGiU1iYmJaNeuncryNm3a4MKFC1WNScndu3cxYMAA1K5dGzY2NoiMjMSpU6ckfQ8iIiIyfBr1qXn06BEKCgpUlufn5+PRo0dVDqrk+7Vq1Qrt27fHr7/+Cnd3d1y7dg0uLi6SvQcREREZB42SmsDAQJw6dQphYWHllp86dQoBAQGSBAYA8+bNg5+fHxISEhTLgoKCJNs+ERERGQ+Nmp969OiBqVOn4t69e2XK0tLS8NFHH+HNN9+ULLht27ahadOm6NWrFzw8PNC4cWOsWLGiwtfk5eVBLpcrPYiIiMj4yYQQQt2VHz9+jOjoaNy+fRsDBgxA/fr1AQCXL1/GDz/8AD8/Pxw7dkyy+z9ZW1sDACZMmIBevXrh5MmTGDduHJYtW4bY2NhyXzNjxgzMnDmzzPLMzEwONyciIjIQcrkcTk5OGl2/NUpqgGfJwZQpU7B+/XpF/xlnZ2f07dsXc+bMkbS/i6WlJZo2bYojR44olo0dOxYnT57E0aNHy31NXl4e8vLyFM/lcjn8/PyY1BARERkQbZIajSffc3JywldffYUlS5YgPT0dQgi4u7srbplQ0uHDh9G0aVNYWVlp+jYAAG9vb4SHhysta9CgAX788UeVr7GystL6/YiIiMhwadSnpiSZTAZ3d3d4eHiUm9AAQOfOnXH37l2tg2vVqhWuXLmitOzq1auSdkYmIiIi46B1UqMODVu2yvjXv/6FY8eO4dNPP8X169exZs0afP311xg9erREERIREZGxqNakpqqaNWuGLVu2YO3atYiIiMCsWbOwePFi9O/fX9ehERERkZ7RuE9NTevatSu6du2q6zCIiIhIz+l1TQ0RERGRuqo1qVHVgZiIiIhIanrdUZiIiIhIXdXap+bx48fVuXkiIiIiBY2Smpdeekmt9fbt26dVMERERETa0iip+f333xEQEIAuXbrAwsKiumIiIiIi0phGSc28efOQkJCAjRs3on///hg8eDAiIiKqKzYiIiIitWnUUXjixIm4ePEitm7disePH6NVq1Zo3rw5li1bBrlcXl0xEhEREVVK47t0l5STk4ONGzdiyZIluHjxIlJSUvTuTtja3OWTiIiIdEub63eVhnSfPn0aBw4cwKVLlxAREcF+NkRERKQzGic1KSkp+PTTTxEaGoqePXvC1dUVx48fx7Fjx2BjY1MdMRIRERFVSqOOwq+++ir279+PDh06YP78+ejSpQtq1dL720cRERGRCdCoT42ZmRm8vb3h4eFR4S0QTp8+LUlwUmCfGiIiIsOjzfVbo2qW6dOnaxUYERERUXWr0ugnQ8CaGiIiIsNT7TU1qhw4cADZ2dmIjo6Gi4uLFJskIiIi0ojGMwpnZWVh1qxZAJ7dhbtz587YvXs3AMDDwwN79+5Fw4YNpY+UiIiIqAIaDelev3690m0RNm3ahIMHD+LQoUNIT09H06ZNMXPmTMmDJCIiIqqMRklNUlISGjVqpHi+Y8cO9OzZE61atYKrqys++ugjHD16VPIgiYiIiCqjUVJTUFAAKysrxfOjR4+iZcuWiuc+Pj5IT0+XLjoiIiIiNWmU1AQHB+PgwYMAgNu3b+Pq1ato06aNovzOnTuoXbu2tBESERERqUGjjsKjR4/GmDFjcOjQIRw7dgzR0dEIDw9XlO/btw+NGzeWPEgiIiKiymiU1AwbNgzm5ub4+eef0aZNmzKT8aWkpGDw4MGSBkhERESkDk6+R0RERHpHm+u3xnfpJiIiItJHGiU1+fn5mDRpEkJCQtC8eXOsXLlSqfzevXswNzeXNEAiIiIidWiU1MyZMwf//e9/MWLECHTo0AETJkzAu+++q7SOkbdmERERkZ7SqKPwDz/8gG+++QZdu3YFAAwcOBCdO3fGoEGDFLU2MplM+iiJiIiIKqFRTc3du3eVbpMQEhKC33//HUeOHMHbb7+NwsJCyQMkIiIiUodGSY2Xlxdu3LihtMzX1xf79+/HyZMnMXDgQCljIyIiIlKbRknNSy+9hDVr1pRZ7uPjg3379iEpKUmywIiIiIg0oVGfmmnTpuHy5cvllvn6+uLAgQPYs2ePJIERERERaYKT7xEREZHeqbHJ9zZu3IgePXogIiICERER6NGjBzZt2qTNpoiIiIgkoVFSU1RUhD59+qBPnz64ePEiQkJCEBISgr/++gt9+vRB3759OU8NERER6YRGfWo+//xz/Pbbb9i2bZtirppi27Ztw6BBg/D5559j/PjxUsZIREREVCmNamoSEhIwf/78MgkNALz22mv47LPPytw6gYiIiKgmaJTUXLt2DTExMSrLY2JicO3atSoHRURERKQpjZIaGxsbZGRkqCyXy+WwtrauakxEREREGtMoqYmOjsbSpUtVli9ZsgTR0dFVDoqIiIhIUxolNVOnTsW3336L3r1748SJE5DL5cjMzMSxY8fQq1cvrFy5ElOnTq2uWBEfHw+ZTMaOyERERFSGRqOfWrZsifXr12P48OH48ccflcpcXFywdu1atGrVStIAi508eRLLly9Ho0aNqmX7REREZNg0SmoA4I033kDHjh2xa9cuRafg0NBQdOjQAba2tpIHCABZWVno378/VqxYgdmzZ1fLexAREZFh06j5ad++fQgPD0dBQQHeeOMNTJo0CZMmTUL37t2Rn5+Phg0b4tChQ5IHOXr0aHTp0qXCkVfF8vLyIJfLlR5ERERk/DRKahYvXoxhw4aVew8GJycnvPvuu1i4cKFkwQHAunXrcPr0acydO1et9efOnQsnJyfFw8/PT9J4iIiISD9plNScO3cOnTp1UlneoUMH/Pnnn1UOqlhycjLGjRuHH374Qe2h4lOmTEFmZqbikZycLFk8REREpL806lNz7949WFhYqN5YrVp48OBBlYMq9ueff+L+/fto0qSJYllhYSEOHjyI//znP8jLy4O5ubnSa6ysrGBlZSVZDERERGQYNEpqfH19kZiYiJCQkHLLz58/D29vb0kCA4CXX34ZFy5cUFo2aNAghIWFYfLkyWUSGiIiIjJdGiU1r776KqZNm4ZOnTqVaQ7Kzc3F9OnTy70vlLYcHBwQERGhtMzOzg61a9cus5yIiIhMm0ZJzUcffYTNmzcjNDQUY8aMQf369QEAly9fxpIlS1BYWFitk+8RERERqSITQghNXnDr1i2MHDkSu3btQvFLZTIZOnbsiCVLliAoKKhaAtWWXC6Hk5MTMjMzyx21RURERPpHm+u3xpPvBQQEYMeOHXj06BGuX78OIQTq1asHFxcXjQMmIiIikorGSU0xFxcXNGvWTMpYiIiIiLSm0Tw1RERERPqKSQ0REREZBSY1eiQ1MxdHbqQjNTNX16EQEREZHK371JC01p+8jSmbL6BIAGYyYG6PSPRp5q/rsIiIiAwGa2r0QGpmriKhAYAiAXy4OZE1NkRERBpgUqMHktKzFQlNsUIhcDM9RzcBERERGSAmNXogyM0OZjLlZeYyGQLdbHUTEBERkQFiUqMHvJ1sMLdHJMxlzzIbc5kMn/aIgLeTjY4jIyIiMhzsKKwn+jTzR5tQd9xMz0Ggmy0TGiIiIg0xqdEj3k42TGaIiIi0xOYnIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqJMabUhIREekGh3RLiDelJCIi0h3W1EiEN6UkIiLSLSY1EuFNKYmIiHSLSY1EeFNKIiIi3WJSIxHelJKIiEi32FFYQrwpJRERke4wqZGYNjelTM3MRVJ6NoLc7JgIERERaYlJjY5xGDgREZE02KdGhzgMnIiISDpManSIw8CJiIikw6RGhzgMnIiISDpManSIw8CJiIikw47COsZh4ERERNJgUqMHtBkGTkRERMrY/EQKqZm5OHIjnaOviIjIILGmhgBwvhwiIjJ8rKkhnEt+hDjOl0NERAaOSY2JW3/yNrovOQLB+XKIiMjAMakxYcUzGotyyjhfDhGZOvYzNDzsU2PCypvRGHjWp4bz5RCRKWM/Q8PEmhoTVt6MxmYAtoxqyS8vEZks3pfPcOl1UjN37lw0a9YMDg4O8PDwQPfu3XHlyhVdh2U0ypvReO6bkYjyc9FxZEREusP78hkuvW5+OnDgAEaPHo1mzZqhoKAAH374ITp06ICLFy/Czs5O1+EZBc5oTESkrLgWu2Riw36GhkEmROlxL/rrwYMH8PDwwIEDB9CmTRu1XiOXy+Hk5ITMzEw4OjpWc4RERGQM1p+8jQ83J6JQCMV9+dgsX7O0uX7rdU1NaZmZmQAAV1dXHUeiv1Izc5GUno0gNzvWuhARaYm12IbJYJKaoqIijB8/Hq1atUJERITK9fLy8pCXl6d4LpfLayI8vcDe+kRE0uF9+QyPXncULmn06NFITEzEunXrKlxv7ty5cHJyUjz8/PxqKELdYm99IiIydQaR1IwZMwbbt2/H/v37UadOnQrXnTJlCjIzMxWP5OTkGopSt9hbn4iITJ1eNz8JIfDee+9hy5Yt+P333xEUFFTpa6ysrGBlZVUD0ekX9tYnIiJTp9c1NaNHj8bq1auxZs0aODg4IC0tDWlpacjNZZNKaeXNOcNZgYmIyJTo9ZBumUxW7vKEhAQMHDhQrW2Y2pDu1Mxck+mtz5FeRETGy+iGdOtxvqW3TKW3Pkd6GQYmnkRUk/Q6qSEqj6qRXm1C3Xnh1CNMPImopul1nxqi8nCkl/7jFANEpAtMasjglHd3cY700i9MPIlIF5jUkMHhSC/dSc3MxZEb6ZXWuDDxJCJdYJ8aMijFHU/bhLrjj7j2JjPSSx9o0kemOPEsfUNAfk5EVJ30eki3FExtSLcxY8dT3UnNzEWr+H1lJnf8I659hYmKKU0xQETS0ub6zeYnMgjseKpb2vaR8XayQXRwbY0TGnWbuYiISmLzExmEii6qrAGofjV5Gw7WyBGRtlhTQwaBHU91q3TnbDMZMLh1oOTvwxo5orJYc6k+JjWkEV19uTjiSff6NPPHH3HtMbxNEIQAVhxKQqv4fVh/8rZk78Gh4ETK1p+8jVbx+/DWiuOSf9+koG8JF5ufSG3aNgtINVV+n2b+aBPqzo6nOvbNoSQU5x1Sz+bMu80T/Y++z56uj03FrKkhtWjbLCD1fxnadjwlaVR3TQpr5Ij+R59rLvW1qZg1NRIx9hv3adNRV9//yyDN1URNSnGN3J83HwEy4PkAF8m2TWRI9LnmUl8Hb7CmRgL63uYpBW066urzfxnGrrrauWuqJuXg1QcYu+4Mxqw5Y7TfKaLK6HPNpb4O3mBNTRWZUm3E0NZB+OZQEopQ+ZcrNTMX/2Tl6e1/Gcasutu5VfVtkqq20pS+U0SV0de+hPo6aziTmirS1yo4KZW+SA5vXReDWgeq3L+S68sAyGSAEPr1X4YmDKlpsaYSAm8nG6XtSZlImcJ3ikgTpb9v+kIfEy4mNVWkz22eUjiX/Ahxmy9AlLhIfvtHEgapmKOk9EVVADATwH/eaowmAS56cdJrQh9791dEFwmB1ImUsX+niIyJviVc7FNTRfrc5llV60/eRvclR1D67mAV9Ysp76JaBMDVzsrgjom+9u6vSE20c5furyN13ylj/k4RUfViTY0E9LEKrqqKL+jl3e20ooukMf2Xrataj6o0dVV3O3d5NVdtQt0l/8yN8TtFRNWPSY1E9K0KrqrKu6AXm9S5vsp91faiqqt+KxW9b00naFI1dVVXQqCq5uqPuPbVkkjV1HfKkPpMEVHFmNRQuYLc7CADyq2paeTrXOFrNb2o6qrfSmXvqypBA4AjN9IlvQhK3S+lOhKCimquDLVmxdD6TJH0mNQaFyY1VC5vJxvEdQ7D3F8vKy1Xt6ZC3Yuqrobvqvu+pS/WB68+QKv4fZJfBGuqqasqP+CV1VwZWm2l1OceL47SqaljWdWklp+5/mFSQyq92zYYkAHzfr2Momoakq2r4buavG/xxbo6EzB1mrqq+gNa1R9wfZ2XQltSnnus8amcuudvTR3Lqn6f+ZnrJyY1VKF32wTjtSgfSZoVUjNz8eetRxBCoGmgK7ydbMq9mJsB1d6xWJv+MlInYKV/5CtKGKT4j1KKhMxQm5nKI1WfKU4WWDl1z9+aPJZV+T7zM9dfTGqoUlI0K6w/eRtxP/5vNJUMQPybz37Y5vaIVCoTeDZNfnX+16NNrYOUHYdV/cirmqm3qj+gUiZk1dnMVJPV+VLVPKk6tqdvPUKXRrzAaXL+1mTNbVW+z5wgUn8xqaFqV97wcAFgyo8X0CbUHW1C3RWzDheX1cR/PZrWOkh1EazsR746fugNYai9Lqrzpah5Ku/YAsCYNWeQlVdg8k0Smpy/NXmelvd9ntSpPpLSsxXlqhjC98lUMamhaqdqeHgRgJvpORAQOvuvR9Nah4ougurWMmiapEjxA6rv/WF0WZ1f1Zqn4mNbMn6g5pJzfafJ+VuTIw4B5e/z+bsZiv6DlSXV+v59MmVMaqjaqfpPtmTfGUP6r6e8i2DpWobJncIQWcdJkvlvpPoB1ef+MIZend+nmT9sLc3x3tqzSssNaR+qi6bnrzYjDqvSbFm8fv9vjmmUVOvz98mUMakxcIYwpLD4R63kPaRkAOa+GamIueSPnpkMGKzi3lL6qLxahuKh8JrMf1PR5yfVD6i+Drs2hur8poGuBr8P1UWbpl51RxxK0WypbVKtr98nU8akRseqkpQY0pDC4h+107ceQQjg+UDlm1sWlyccTsKKg0lYcSgJ3/6RVGaf9DGJq2j2ZXXnv1FnX6r7B1SXx9YYqvOrax/08ZzXhjbnb2XJhrrNlpUdQ2NIqtVRfBzsLM2R/bTQ4M+p8jCp0aGqJCWGOKTQ28mm0tEg3xxKUnQoLr1P+prEqWpeK1bZ/Df6QB+OrTFU50u9D/rwuWhDqkSssmRDnRoWdY5hRQmpsSSVJY9DsZLHw1j2k0mNjlQ1KTH0Pgjlqexuz/qaxJX+QSxN3//j06cEWVWipy8/uOrEIVWyqk+fS3lUHQspE7HKar8qS3o0OYblJaSGmlSWVvo4FCs+Hhk5+Zi3U71O0vqOSY2OVDUpMYbq0tI/ihXtk74ncaVHUXz26xWDaUbR92OrLxeWmo5Dnz8XVceiOhKximq/Kkt6ND2GJRNSfU8qNVFRE3mhEIj/9bLKGnJDw6RGR6qalBh6HwRVP4oV7ZO+J3HFP4jRwbUlm4W5JuhzgqwvFxZdxKFqtu1/svOQmpmrs/OqomNRXYlYRbVfFSU9hjbBntQ1kiX70KhqIi9vub4kz9pgUqMjUiQlpb/MQPXM5SC1in4UVf1AGVoSp0/9ZSpT+tjWxOiz6prTp7roIo7Sn4sMz+a+GbPmTLk1RVJcENXZRkXHQlcJsqrvW1V+N2p6XyqrCdT08y29vTca+2LrmZQyTeRFAopzq5i+/FOjDSY1OiRFp8LiL7O+VNGro7ILhKofKGPoSKqvVI0+G9I6CINbB0l6rDU5V1XVVthamkkWjzrKjUNW/XH0aeaPjJx8zC3RPABUTyd6dbdR0cVeH//50PZ3oyb3pbKaQE0/3/K2t/VMCjaPisadR7kYveZMmdcUf6b68JlVhUyIcno2GhG5XA4nJydkZmbC0dFR1+FUi9TMXMXkVMXMZTL8EddeL09MQ4vXVJT3uQDK9+mqjveo7LNff/J2mU7Y2l64qzqFglRxqEvVZ1Js7bAXEOhmW+Xvk6afS8ljUXwRLF2rYCz/fNTEvhy5kY63Vhwvs1zbz7ei7QmIcsv+068xattb6dVnps31mzU1RkBfqujVpY//zWmjqtX9+jKip5iqzoQC0vUf0eZc7dPMH2FeDuj+1RHF5I3a9Gmpam2GIo4lRzTqVFmVz7miDp5SdqLXdBuV1X4YUvNrZWpiX6QaJFFRH5qSTUrllZWeO8xQManRE1X54dPnjp6qGHpTUlUvkPrYXFjRfDtSJcnanqvZTwtRuk5Zk5ik6uib/bQQpQ9PRXFU9XNWeYsRGSTtRK/N52JMiYuuFf+jV/Jc0fTzXX7ghmIUU+k+NKX/cTSGfypVqdmGaSrX+pO30Sp+H95acRyt4vdh/cnbGr2++AthLpMBMJw20eKRQrocxXHkRjpSM3M1WkfVBbKi7ZTeZlVeX12KzyMzWdkyqZJkbc/V4ouutjFVNgeSujSJQ4rPufTxMgMwvE0QDse9pEiOqvL9Lz6/ARjkb4ixKU7cSybw6ny+yw/eUOp3VbIPzdphL+CPuPZKyXSfZv74I659uWWGziBqapYsWYL58+cjLS0NUVFR+PLLL9G8eXNdhyUJqf6DNPSaj5pW8j9oGYC4zmF4t22wynVK/pdd1ep+fW4uLNlh+JuDSSiC9Bc4bW8RUZX/LqWqzdQkDik+59TMXPi52mLzqGjkPC1Seby0Oablnd9/xLXnb4gOFF8Hik8XAWDKjxcQ5uWAKD+XCj/f1MxcxP//veZKKhQCdx7loksjn3Lf01hr2vQ+qVm/fj0mTJiAZcuWoUWLFli8eDE6duyIK1euwMPDQ9fhVZmUFzhjPUmlVjqRFPj/G1DKgHfbBJe7Tslks6oXSG1eX7J5EkC19sXxdrLBh6+GY1CroGq7wGlzrlYlcZeyH5e6cVT1PCkv6YgOrq1yfVXHtLymbVXn9+ZR0RBlGtioupV3HSgC0P2rI4j//3+mVH2+SenZZZpmi41ZcwZZeQVGVRNTGb1PahYuXIhhw4Zh0KBBAIBly5bhl19+wcqVKxEXF6fj6KrOEPvDGDpVnS/n/XoZr0X5wNvJpsJkMzq4dpUukJpeYEvXKgFQtJtXZ18cfUySqxKTlLWZ6sRRlURKqhpcTWsbiztj60s/L1Ohqu+UUONzr6gvnJSd/A2FXic1T58+xZ9//okpU6YolpmZmSEmJgZHjx4t9zV5eXnIy8tTPJfL5dUeZ1UYy0ggQxLkZldmsing2Y9CcQ1ZZclmVS+Q6r6+vFqlkvGa2g9WVdV0oqbteSJV05UmtY0AqjS6jLSn6Cj84wUUlSqr7HMvfQ0pTV+atmuKXncUTk9PR2FhITw9PZWWe3p6Ii0trdzXzJ07F05OToqHn59fTYRaJcbcaUsfeTvZIK5zWJnlJZMWdTrnVbWjszqvr2hIL6BdZ1eqWdqcJ1XtGA1UnhiV7oBcGs+tmtWnmT+2jG4JmRafe/E1ZMlbjVG6n7+p1fzrdU2NNqZMmYIJEyYonsvlcoNIbPSxqt+Yvds2GJA9a3JSNYumPnS+rqhqGTC9HyxTIUUNria1jbaWZnjjqyNsBtexKD8XxGv5uXs72aBLIxtk5RWYdM2/Xs8o/PTpU9ja2mLTpk3o3r27YnlsbCwyMjLw008/VboNU5hRmLRnCDOflpy9VQYAsmfNBOXN5ErGparnZ2Uz/2q7LlWvqn7uhvC7pg5trt96ndQAQIsWLdC8eXN8+eWXAICioiL4+/tjzJgxanUUZlJDxqDkjxQAo/jBopqhyQXOWC6GZByM8jYJEyZMQGxsLJo2bYrmzZtj8eLFyM7OVoyGIjIFpZsnecEhdWnStM1mcDJ0ep/U9OnTBw8ePMDHH3+MtLQ0PPfcc9i5c2eZzsNERERk2vS++amq2PxERERkeLS5fuv1kG4iIiIidTGpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCjo/W0Sqqp4wmS5XK7jSIiIiEhdxddtTW58YPRJzePHjwEAfn5+Oo6EiIiINPX48WM4OTmpta7R3/upqKgIKSkpcHBwgEwm03o7crkcfn5+SE5ONul7SPE4PMPj8AyPw//wWDzD4/AMj8MzVTkOQgg8fvwYPj4+MDNTr7eM0dfUmJmZoU6dOpJtz9HR0aRP0GI8Ds/wODzD4/A/PBbP8Dg8w+PwjLbHQd0ammLsKExERERGgUkNERERGQUmNWqysrLC9OnTYWVlpetQdIrH4Rkeh2d4HP6Hx+IZHodneByeqenjYPQdhYmIiMg0sKaGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqNg0knN0qVL0ahRI8WkQNHR0fj1118V5U+ePMHo0aNRu3Zt2Nvb480338S9e/eUtnH79m106dIFtra28PDwwMSJE1FQUFDTuyKp+Ph4yGQyjB8/XrHMFI7FjBkzIJPJlB5hYWGKclM4BsXu3r2LAQMGoHbt2rCxsUFkZCROnTqlKBdC4OOPP4a3tzdsbGwQExODa9euKW3j4cOH6N+/PxwdHeHs7IwhQ4YgKyurpnelSgIDA8ucEzKZDKNHjwZgOudEYWEhpk2bhqCgINjY2CA4OBizZs1SuiePqZwTjx8/xvjx4xEQEAAbGxu0bNkSJ0+eVJQb43E4ePAgunXrBh8fH8hkMmzdulWpXKp9Pn/+PF588UVYW1vDz88Pn332mebBChO2bds28csvv4irV6+KK1euiA8//FBYWFiIxMREIYQQI0aMEH5+fmLv3r3i1KlT4oUXXhAtW7ZUvL6goEBERESImJgYcebMGbFjxw7h5uYmpkyZoqtdqrITJ06IwMBA0ahRIzFu3DjFclM4FtOnTxcNGzYUqampiseDBw8U5aZwDIQQ4uHDhyIgIEAMHDhQHD9+XPz9999i165d4vr164p14uPjhZOTk9i6das4d+6ceO2110RQUJDIzc1VrNOpUycRFRUljh07Jg4dOiRCQkJEv379dLFLWrt//77S+bBnzx4BQOzfv18IYTrnxJw5c0Tt2rXF9u3bRVJSkti4caOwt7cXn3/+uWIdUzknevfuLcLDw8WBAwfEtWvXxPTp04Wjo6O4c+eOEMI4j8OOHTvE1KlTxebNmwUAsWXLFqVyKfY5MzNTeHp6iv79+4vExESxdu1aYWNjI5YvX65RrCad1JTHxcVFfPPNNyIjI0NYWFiIjRs3KsouXbokAIijR48KIZ590GZmZiItLU2xztKlS4Wjo6PIy8ur8dir6vHjx6JevXpiz549om3btoqkxlSOxfTp00VUVFS5ZaZyDIQQYvLkyaJ169Yqy4uKioSXl5eYP3++YllGRoawsrISa9euFUIIcfHiRQFAnDx5UrHOr7/+KmQymbh79271BV/Nxo0bJ4KDg0VRUZFJnRNdunQRgwcPVlrWo0cP0b9/fyGE6ZwTOTk5wtzcXGzfvl1peZMmTcTUqVNN4jiUTmqk2uevvvpKuLi4KH0vJk+eLOrXr69RfCbd/FRSYWEh1q1bh+zsbERHR+PPP/9Efn4+YmJiFOuEhYXB398fR48eBQAcPXoUkZGR8PT0VKzTsWNHyOVy/PXXXzW+D1U1evRodOnSRWmfAZjUsbh27Rp8fHxQt25d9O/fH7dv3wZgWsdg27ZtaNq0KXr16gUPDw80btwYK1asUJQnJSUhLS1N6Vg4OTmhRYsWSsfC2dkZTZs2VawTExMDMzMzHD9+vOZ2RkJPnz7F6tWrMXjwYMhkMpM6J1q2bIm9e/fi6tWrAIBz587hjz/+QOfOnQGYzjlRUFCAwsJCWFtbKy23sbHBH3/8YTLHoSSp9vno0aNo06YNLC0tFet07NgRV65cwaNHj9SOx+hvaFmZCxcuIDo6Gk+ePIG9vT22bNmC8PBwnD17FpaWlnB2dlZa39PTE2lpaQCAtLQ0pR+r4vLiMkOybt06nD59WqltuFhaWppJHIsWLVpg1apVqF+/PlJTUzFz5ky8+OKLSExMNJljAAB///03li5digkTJuDDDz/EyZMnMXbsWFhaWiI2NlaxL+Xta8lj4eHhoVReq1YtuLq6GtSxKGnr1q3IyMjAwIEDAZjO9wIA4uLiIJfLERYWBnNzcxQWFmLOnDno378/AJjMOeHg4IDo6GjMmjULDRo0gKenJ9auXYujR48iJCTEZI5DSVLtc1paGoKCgspso7jMxcVFrXhMPqmpX78+zp49i8zMTGzatAmxsbE4cOCArsOqUcnJyRg3bhz27NlT5j8QU1L8XycANGrUCC1atEBAQAA2bNgAGxsbHUZWs4qKitC0aVN8+umnAIDGjRsjMTERy5YtQ2xsrI6j051vv/0WnTt3ho+Pj65DqXEbNmzADz/8gDVr1qBhw4Y4e/Ysxo8fDx8fH5M7J77//nsMHjwYvr6+MDc3R5MmTdCvXz/8+eefug6NYOKjnwDA0tISISEheP755zF37lxERUXh888/h5eXF54+fYqMjAyl9e/duwcvLy8AgJeXV5mRDsXPi9cxBH/++Sfu37+PJk2aoFatWqhVqxYOHDiAL774ArVq1YKnp6fJHIuSnJ2dERoaiuvXr5vU+eDt7Y3w8HClZQ0aNFA0xRXvS3n7WvJY3L9/X6m8oKAADx8+NKhjUezWrVv47bffMHToUMUyUzonJk6ciLi4OPTt2xeRkZF4++238a9//Qtz584FYFrnRHBwMA4cOICsrCwkJyfjxIkTyM/PR926dU3qOBSTap+l+q6YfFJTWlFREfLy8vD888/DwsICe/fuVZRduXIFt2/fRnR0NAAgOjoaFy5cUPqw9uzZA0dHxzIXBX328ssv48KFCzh79qzi0bRpU/Tv31/xt6kci5KysrJw48YNeHt7m9T50KpVK1y5ckVp2dWrVxEQEAAACAoKgpeXl9KxkMvlOH78uNKxyMjIUPrvdd++fSgqKkKLFi1qYC+klZCQAA8PD3Tp0kWxzJTOiZycHJiZKV8uzM3NUVRUBMA0zwk7Ozt4e3vj0aNH2LVrF15//XWTPA5S7XN0dDQOHjyI/Px8xTp79uxB/fr11W56AmDaQ7rj4uLEgQMHRFJSkjh//ryIi4sTMplM7N69WwjxbLimv7+/2Ldvnzh16pSIjo4W0dHRitcXD9fs0KGDOHv2rNi5c6dwd3c3uOGa5Sk5+kkI0zgW77//vvj9999FUlKSOHz4sIiJiRFubm7i/v37QgjTOAZCPBvWX6tWLTFnzhxx7do18cMPPwhbW1uxevVqxTrx8fHC2dlZ/PTTT+L8+fPi9ddfL3cIZ+PGjcXx48fFH3/8IerVq6fXw1ZVKSwsFP7+/mLy5MllykzlnIiNjRW+vr6KId2bN28Wbm5uYtKkSYp1TOWc2Llzp/j111/F33//LXbv3i2ioqJEixYtxNOnT4UQxnkcHj9+LM6cOSPOnDkjAIiFCxeKM2fOiFu3bgkhpNnnjIwM4enpKd5++22RmJgo1q1bJ2xtbTmkWxODBw8WAQEBwtLSUri7u4uXX35ZkdAIIURubq4YNWqUcHFxEba2tuKNN94QqampStu4efOm6Ny5s7CxsRFubm7i/fffF/n5+TW9K5IrndSYwrHo06eP8Pb2FpaWlsLX11f06dNHaW4WUzgGxX7++WcREREhrKysRFhYmPj666+VyouKisS0adOEp6ensLKyEi+//LK4cuWK0jr//POP6Nevn7C3txeOjo5i0KBB4vHjxzW5G5LYtWuXAFBm/4QwnXNCLpeLcePGCX9/f2FtbS3q1q0rpk6dqjT81lTOifXr14u6desKS0tL4eXlJUaPHi0yMjIU5cZ4HPbv3y8AlHnExsYKIaTb53PnzonWrVsLKysr4evrK+Lj4zWOVSZEiSkhiYiIiAwU+9QQERGRUWBSQ0REREaBSQ0REREZBSY1REREZBSY1BAREZFRYFJDRERERoFJDRERERkFJjVERERkFJjUEBmItLQ0vPfee6hbty6srKzg5+eHbt26Kd1z5ciRI3j11Vfh4uICa2trREZGYuHChSgsLFSsc/PmTQwZMgRBQUGwsbFBcHAwpk+fjqdPnyq934oVKxAVFQV7e3s4OzujcePGihsYAsCMGTMgk8nQqVOnMrHOnz8fMpkM7dq1q3S/AgMDIZPJVD4GDhyo+cHSc+3atcP48eN1HQaR0aml6wCIqHI3b95Eq1at4OzsjPnz5yMyMhL5+fnYtWsXRo8ejcuXL2PLli3o3bs3Bg0ahP3798PZ2Rm//fYbJk2ahKNHj2LDhg2QyWS4fPkyioqKsHz5coSEhCAxMRHDhg1DdnY2FixYAABYuXIlxo8fjy+++AJt27ZFXl4ezp8/j8TERKW4vL29sX//fty5cwd16tRRLF+5ciX8/f3V2reTJ08qkq4jR47gzTffxJUrV+Do6AgAsLGxkeIQ1oj8/HxYWFjU2Ps9ffoUlpaWNfZ+RHpPy1tBEFEN6ty5s/D19RVZWVllyh49eiSysrJE7dq1RY8ePcqUb9u2TQAQ69atU7n9zz77TAQFBSmev/7662LgwIEVxjR9+nQRFRUlunbtKmbPnq1YfvjwYeHm5iZGjhwp2rZtq8be/U/xPWYePXqkWLZ161bRuHFjYWVlJYKCgsSMGTOU7p0EQCxbtkx06dJF2NjYiLCwMHHkyBFx7do10bZtW2Frayuio6OV7uNVHPuyZctEnTp1hI2NjejVq5fSPXyEEGLFihUiLCxMWFlZifr164slS5YoypKSkhTHtU2bNsLKykokJCSI9PR00bdvX+Hj4yNsbGxERESEWLNmjeJ1sbGxZe6hk5SUJBISEoSTk5PS+2/ZskWU/JkujnvFihUiMDBQyGQyIcSzc2DIkCHCzc1NODg4iPbt24uzZ89qdOyJjAGbn4j03MOHD7Fz506MHj0adnZ2ZcqdnZ2xe/du/PPPP/jggw/KlHfr1g2hoaFYu3atyvfIzMyEq6ur4rmXlxeOHTuGW7duVRrf4MGDsWrVKsXzlStXon///pLUIBw6dAjvvPMOxo0bh4sXL2L58uVYtWoV5syZo7TerFmz8M477+Ds2bMICwvDW2+9hXfffRdTpkzBqVOnIITAmDFjlF5z/fp1bNiwAT///DN27tyJM2fOYNSoUYryH374AR9//DHmzJmDS5cu4dNPP8W0adPw3XffKW0nLi4O48aNw6VLl9CxY0c8efIEzz//PH755RckJiZi+PDhePvtt3HixAkAwOeff47o6GgMGzYMqampSE1NhZ+fn9rH5Pr16/jxxx+xefNmnD17FgDQq1cv3L9/H7/++iv+/PNPNGnSBC+//DIePnyoyeEmMny6zqqIqGLHjx8XAMTmzZtVrhMfH1+mhqOk1157TTRo0KDcsmvXrglHR0elO3GnpKSIF154QQAQoaGhIjY2Vqxfv14UFhYq1imuNXj69Knw8PAQBw4cEFlZWcLBwUGcO3dOjBs3rso1NS+//LL49NNPldb5/vvvhbe3t+I5APHRRx8pnh89elQAEN9++61i2dq1a4W1tbVS7Obm5uLOnTuKZb/++qswMzNT3GU7ODhYqYZFCCFmzZoloqOjhRD/q6lZvHhxpfvVpUsX8f777yuet23bVowbN05pHXVraiwsLMT9+/cVyw4dOiQcHR3FkydPlF4bHBwsli9fXmlsRMaEfWqI9JwQolrWBYC7d++iU6dO6NWrF4YNG6ZY7u3tjaNHjyIxMREHDx7EkSNHEBsbi2+++QY7d+6Emdn/KnktLCwwYMAAJCQk4O+//0ZoaCgaNWqkURyqnDt3DocPH1aqmSksLMSTJ0+Qk5MDW1tbAFB6P09PTwBAZGSk0rInT55ALpcr+ur4+/vD19dXsU50dDSKiopw5coVODg44MaNGxgyZIjScSkoKICTk5NSjE2bNlV6XlhYiE8//RQbNmzA3bt38fTpU+Tl5SliraqAgAC4u7srnp87dw5ZWVmoXbu20nq5ubm4ceOGJO9JZCiY1BDpuXr16ik6+KoSGhoKALh06RJatmxZpvzSpUsIDw9XWpaSkoL27dujZcuW+Prrr8vdbkREBCIiIjBq1CiMGDECL774Ig4cOID27dsrrTd48GC0aNECiYmJGDx4sKa7qFJWVhZmzpyJHj16lCmztrZW/F2yc65MJlO5rKioSO33BZ6NAGvRooVSmbm5udLz0k2C8+fPx+eff47FixcjMjISdnZ2GD9+fJnRZaWZmZmVSUrz8/PLrFf6/bKysuDt7Y3ff/+9zLrOzs4VvieRsWFSQ6TnXF1d0bFjRyxZsgRjx44tc1HLyMhAhw4d4Orqin//+99lkppt27bh2rVrmDVrlmLZ3bt30b59ezz//PNISEhQqnlRpTgpys7OLlPWsGFDNGzYEOfPn8dbb72lzW6Wq0mTJrhy5QpCQkIk22ax27dvIyUlBT4+PgCAY8eOwczMDPXr14enpyd8fHzw999/o3///hpt9/Dhw3j99dcxYMAAAM8SqatXryollZaWlkrD7AHA3d0djx8/RnZ2tuIzLu4zU5EmTZogLS0NtWrVQmBgoEaxEhkbJjVEBmDJkiVo1aoVmjdvjk8++QSNGjVCQUEB9uzZg6VLl+LSpUtYvnw5+vbti+HDh2PMmDFwdHTE3r17MXHiRPTs2RO9e/cG8CyhadeuHQICArBgwQI8ePBA8T5eXl4AgJEjR8LHxwcvvfQS6tSpg9TUVMyePRvu7u6Ijo4uN8Z9+/YhPz9f0tqBjz/+GF27doW/vz969uwJMzMznDt3DomJiZg9e3aVtm1tbY3Y2FgsWLAAcrkcY8eORe/evRXHYObMmRg7diycnJzQqVMn5OXl4dSpU3j06BEmTJigcrv16tXDpk2bcOTIEbi4uGDhwoW4d++eUlITGBiI48eP4+bNm7C3t4erqytatGgBW1tbfPjhhxg7diyOHz+u1AFblZiYGERHR6N79+747LPPEBoaipSUFPzyyy944403yjSPERkzjn4iMgB169bF6dOn0b59e7z//vuIiIjAK6+8gr1792Lp0qUAgJ49e2L//v24ffs2XnzxRdSvXx+LFi3C1KlTsW7dOkUTzJ49e3D9+nXs3bsXderUgbe3t+JRLCYmBseOHUOvXr0QGhqKN998E9bW1ti7d2+ZvhvF7OzsJG/u6NixI7Zv347du3ejWbNmeOGFF7Bo0SIEBARUedshISHo0aMHXn31VXTo0AGNGjXCV199pSgfOnQovvnmGyQkJCAyMhJt27bFqlWrEBQUVOF2P/roIzRp0gQdO3ZEu3bt4OXlhe7duyut88EHH8Dc3Bzh4eFwd3fH7du34erqitWrV2PHjh2IjIzE2rVrMWPGjEr3QyaTYceOHWjTpg0GDRqE0NBQ9O3bF7du3VL0LyIyFTKhac9CIiIDN2PGDGzdulWt5h0iMhysqSEiIiKjwKSGiKqdvb29ysehQ4d0HR4RGQk2PxFRtbt+/brKMl9fX4O6vxMR6S8mNURERGQU2PxERERERoFJDRERERkFJjVERERkFJjUEBERkVFgUkNERERGgUkNERERGQUmNURERGQUmNQQERGRUfg/m8X4cdn2MvMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(alm_surr, data_validation)\n", + "surrogate_parity(alm_surr, data_validation)\n", + "surrogate_residual(alm_surr, data_validation)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSgElEQVR4nO3deVxU1f8/8NeggOyLgICxBSKyqJVLSLkkuVtuqWnlbhpq5ie3ytTS0DSz+vhVP5a0mHtiVpaWopZbKuGSaMoHFQUUXGZkERHO7w9/zIeRGZgZ7jBzx9fz8ZjHw7n3zr3ve7zc+77nnnOuQgghQERERCRDNuYOgIiIiMhYTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREssVEhoiIiGSLiQwRERHJFhMZIiIiki0mMkRERCRbTGSIyOTmzJkDhUKh17IKhQJz5swxaTwdO3ZEx44dLXZ9RKQ/JjJED5Evv/wSCoVC/alfvz4aN26M4cOH48qVK+YOz+IEBwdrlJePjw+efvppJCcnS7L+oqIizJkzB3v27JFkfUQPIyYyRA+h9957D9988w1WrFiB7t27Y82aNejQoQPu3Lljku298847KC4uNsm6Ta1ly5b45ptv8M033+DNN99EdnY2+vXrhxUrVtR63UVFRZg7dy4TGaJaqG/uAIio7nXv3h2tWrUCAIwePRpeXl5YuHAhtm3bhoEDB0q+vfr166N+fXmebho3boyXXnpJ/f2VV15BWFgYPv74Y4wbN86MkRERwBoZIgLw9NNPAwAyMjI0pp85cwYDBgyAp6cnGjRogFatWmHbtm0ay5SWlmLu3Llo0qQJGjRogIYNG+Kpp57Cr7/+ql5GWxuZkpISvPHGG/D29oaLiwuee+45XL58uUpsw4cPR3BwcJXp2taZlJSEZ555Bj4+PrC3t0dkZCSWL19uUFnUxNfXF82aNUNmZma1y127dg2jRo1Co0aN0KBBA7Ro0QJfffWVev6FCxfg7e0NAJg7d6768ZWp2wcRWRt53iIRkaQuXLgAAPDw8FBP+/vvvxEXF4fGjRtjxowZcHJywsaNG9GnTx9899136Nu3L4D7CUViYiJGjx6NNm3aQKVS4ejRo0hNTcWzzz6rc5ujR4/GmjVrMGTIELRr1w67d+9Gz549a7Ufy5cvR1RUFJ577jnUr18fP/zwA1577TWUl5cjISGhVuuuUFpaiqysLDRs2FDnMsXFxejYsSPOnz+PCRMmICQkBJs2bcLw4cNx69YtvP766/D29sby5csxfvx49O3bF/369QMANG/eXJI4iR4agogeGklJSQKA+O2330ReXp7IysoSmzdvFt7e3sLe3l5kZWWpl+3cubOIiYkRd+7cUU8rLy8X7dq1E02aNFFPa9GihejZs2e12509e7aofLpJS0sTAMRrr72msdyQIUMEADF79mz1tGHDhomgoKAa1ymEEEVFRVWW69q1q3j00Uc1pnXo0EF06NCh2piFECIoKEh06dJF5OXliby8PHH8+HExePBgAUBMnDhR5/qWLl0qAIg1a9aop929e1fExsYKZ2dnoVKphBBC5OXlVdlfIjIMHy0RPYTi4+Ph7e2NgIAADBgwAE5OTti2bRseeeQRAMCNGzewe/duDBw4ELdv30Z+fj7y8/Nx/fp1dO3aFefOnVP3cnJ3d8fff/+Nc+fO6b397du3AwAmTZqkMX3y5Mm12i8HBwf1v5VKJfLz89GhQwf897//hVKpNGqdO3fuhLe3N7y9vdGiRQts2rQJL7/8MhYuXKjzN9u3b4evry9efPFF9TRbW1tMmjQJBQUF2Lt3r1GxEFFVfLRE9BBatmwZwsPDoVQqsXr1auzbtw/29vbq+efPn4cQArNmzcKsWbO0ruPatWto3Lgx3nvvPTz//PMIDw9HdHQ0unXrhpdffrnaRyQXL16EjY0NQkNDNaY3bdq0Vvu1f/9+zJ49GwcPHkRRUZHGPKVSCTc3N4PX2bZtW8ybNw8KhQKOjo5o1qwZ3N3dq/3NxYsX0aRJE9jYaN4rNmvWTD2fiKTBRIboIdSmTRt1r6U+ffrgqaeewpAhQ3D27Fk4OzujvLwcAPDmm2+ia9euWtcRFhYGAGjfvj0yMjLw/fffY+fOnfj888/x8ccfY8WKFRg9enStY9U1kF5ZWZnG94yMDHTu3BkRERFYsmQJAgICYGdnh+3bt+Pjjz9W75OhvLy8EB8fb9Rvicj0mMgQPeTq1auHxMREdOrUCf/+978xY8YMPProowDuPw7R5yLu6emJESNGYMSIESgoKED79u0xZ84cnYlMUFAQysvLkZGRoVELc/bs2SrLenh44NatW1WmP1ir8cMPP6CkpATbtm1DYGCgenpKSkqN8UstKCgIJ06cQHl5uUatzJkzZ9TzAd1JGhHpj21kiAgdO3ZEmzZtsHTpUty5cwc+Pj7o2LEjVq5ciZycnCrL5+Xlqf99/fp1jXnOzs4ICwtDSUmJzu11794dAPDpp59qTF+6dGmVZUNDQ6FUKnHixAn1tJycnCqj69arVw8AIIRQT1MqlUhKStIZh6n06NEDubm52LBhg3ravXv38Nlnn8HZ2RkdOnQAADg6OgKA1kSNiPTDGhkiAgBMnToVL7zwAr788kuMGzcOy5Ytw1NPPYWYmBiMGTMGjz76KK5evYqDBw/i8uXLOH78OAAgMjISHTt2xBNPPAFPT08cPXoUmzdvxoQJE3Ruq2XLlnjxxRfxf//3f1AqlWjXrh127dqF8+fPV1l28ODBmD59Ovr27YtJkyahqKgIy5cvR3h4OFJTU9XLdenSBXZ2dujduzdeffVVFBQUYNWqVfDx8dGajJnS2LFjsXLlSgwfPhzHjh1DcHAwNm/ejP3792Pp0qVwcXEBcL9xcmRkJDZs2IDw8HB4enoiOjoa0dHRdRovkayZu9sUEdWdiu7XR44cqTKvrKxMhIaGitDQUHHv3j0hhBAZGRnilVdeEb6+vsLW1lY0btxY9OrVS2zevFn9u3nz5ok2bdoId3d34eDgICIiIsT8+fPF3bt31cto6ypdXFwsJk2aJBo2bCicnJxE7969RVZWltbuyDt37hTR0dHCzs5ONG3aVKxZs0brOrdt2yaaN28uGjRoIIKDg8XChQvF6tWrBQCRmZmpXs6Q7tc1dS3Xtb6rV6+KESNGCC8vL2FnZydiYmJEUlJSld8eOHBAPPHEE8LOzo5dsYmMoBCiUj0sERERkYywjQwRERHJFhMZIiIiki0mMkRERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZsvoB8crLy5GdnQ0XFxcOB05ERCQTQgjcvn0b/v7+VV7AWpnVJzLZ2dkICAgwdxhERERkhKysLDzyyCM651t9IlMxFHhWVhZcXV3NHA0RERHpQ6VSISAgQH0d18XqE5mKx0murq5MZIiIiGSmpmYhbOxLREREssVEhoiIiGSLiQwRERHJltW3kSEisjRlZWUoLS01dxhEZmVra4t69erVej1MZIiI6ogQArm5ubh165a5QyGyCO7u7vD19a3VOG9MZIiI6khFEuPj4wNHR0cO0kkPLSEEioqKcO3aNQCAn5+f0etiIkNEVAfKysrUSUzDhg3NHQ6R2Tk4OAAArl27Bh8fH6MfM7GxLxFRHahoE+Po6GjmSIgsR8XfQ23ajDGRISKqQ3ycRPQ/Uvw9MJEhIiIi2WIiQ0RERLLFRMbMcpTFOJCRjxxlsblDISKqVm5uLiZOnIhHH30U9vb2CAgIQO/evbFr1y71MgcOHECPHj3g4eGBBg0aICYmBkuWLEFZWZl6mQsXLmDUqFEICQmBg4MDQkNDMXv2bNy9e1dje6tWrUKLFi3g7OwMd3d3PPbYY0hMTFTPnzNnDhQKBbp161Yl1kWLFkGhUKBjx456759KpcLbb7+NiIgINGjQAL6+voiPj8eWLVsghFAv9/fff2PgwIHw9vaGvb09wsPD8e6776KoqEi9zI0bNzBx4kQ0bdoUDg4OCAwMxKRJk6BUKvWK5cKFC1AoFFo/hw4d0nufOnbsiMmTJ+u9vByx15IZbThyCTO3nES5AGwUQGK/GAxqHWjusIiIqrhw4QLi4uLg7u6ORYsWISYmBqWlpdixYwcSEhJw5swZJCcnY+DAgRgxYgRSUlLg7u6O3377DdOmTcPBgwexceNGKBQKnDlzBuXl5Vi5ciXCwsJw6tQpjBkzBoWFhVi8eDEAYPXq1Zg8eTI+/fRTdOjQASUlJThx4gROnTqlEZefnx9SUlJw+fJlPPLII+rpq1evRmCg/ufTW7du4amnnoJSqcS8efPQunVr1K9fH3v37sW0adPwzDPPwN3dHYcOHUJ8fDzi4+Px008/oVGjRvjzzz/xr3/9C7t27UJKSgrs7OyQnZ2N7OxsLF68GJGRkbh48SLGjRuH7OxsbN68We+4fvvtN0RFRWlMk7rXmxACZWVlqF9fpimBsHJKpVIAEEql0tyhaMi+VSRCZvwogqb/7/PojJ9E9q0ic4dGRCZQXFwsTp8+LYqLi80dilG6d+8uGjduLAoKCqrMu3nzpigoKBANGzYU/fr1qzJ/27ZtAoBYv369zvV/+OGHIiQkRP39+eefF8OHD682ptmzZ4sWLVqIXr16iXnz5qmn79+/X3h5eYnx48eLDh066LF3QowfP144OTmJK1euVJl3+/ZtUVpaKsrLy0VkZKRo1aqVKCsr01gmLS1NKBQKsWDBAp3b2Lhxo7CzsxOlpaU1xpOZmSkAiL/++kvnMhX7//XXX4ugoCDh6uoqBg0aJFQqlRBCiGHDhgkAGp/MzEyRkpIiAIjt27eLxx9/XNja2oqUlBRx584dMXHiROHt7S3s7e1FXFyc+PPPP9Xbq/jdjz/+KGJiYoS9vb1o27atOHnypBBCiIKCAuHi4iI2bdqkEWdycrJwdHRUx1VZdX8X+l6/+WjJTDLzC1EuNKeVCYEL+UXaf0BEVEldPpa+ceMGfvnlFyQkJMDJyanKfHd3d+zcuRPXr1/Hm2++WWV+7969ER4ejnXr1unchlKphKenp/q7r68vDh06hIsXL9YY38iRI/Hll1+qv69evRpDhw6FnZ1djb8FgPLycqxfvx5Dhw6Fv79/lfnOzs6oX78+0tLScPr0aUyZMgU2NpqXzxYtWiA+Pr7GfXR1dZW05iMjIwNbt27Fjz/+iB9//BF79+7FggULAACffPIJYmNjMWbMGOTk5CAnJwcBAQHq386YMQMLFixAeno6mjdvjmnTpuG7777DV199hdTUVISFhaFr1664ceOGxjanTp2Kjz76CEeOHIG3tzd69+6N0tJSODk5YfDgwUhKStJYPikpCQMGDICLi4tk+10ZExkzCfFygs0Dvc7qKRQI9uIYE0RUvQ1HLiFuwW4MWXUYcQt2Y8ORSybd3vnz5yGEQEREhM5l/vnnHwBAs2bNtM6PiIhQL6Nt/Z999hleffVV9bTZs2fD3d0dwcHBaNq0KYYPH46NGzeivLy8yu979eoFlUqFffv2obCwEBs3bsTIkSP13r/8/HzcvHmz2v0Dat7HZs2a6dzH/Px8vP/++xg7dqzecQFAu3bt4OzsrPGprLy8HF9++SWio6Px9NNP4+WXX1a3WXJzc4OdnR0cHR3h6+sLX19fjUHn3nvvPTz77LMIDQ2Fvb09li9fjkWLFqF79+6IjIzEqlWr4ODggC+++EJjm7Nnz8azzz6LmJgYfPXVV7h69SqSk5MBAKNHj8aOHTuQk5MD4P5gd9u3bzfo/8NQTGTMxM/NAYn9YlDv//ehr6dQ4IN+0fBzczBzZERkyXKUxeq2dQBQLoC3tpwyac2MEKLmhYxYFgCuXLmCbt264YUXXsCYMWPU0/38/HDw4EGcPHkSr7/+Ou7du4dhw4ahW7duVZIZW1tbvPTSS0hKSsKmTZsQHh6O5s2bmyxmQ5dXqVTo2bMnIiMjMWfOHIN+u2HDBqSlpWl8KgsODtao6fDz81MP+1+TVq1aqf+dkZGB0tJSxMXFqafZ2tqiTZs2SE9P1/hdbGys+t+enp5o2rSpepk2bdogKioKX331FQBgzZo1CAoKQvv27fXbYSPItGWPdRjUOhDtw71xIb8IwV6OTGKIqEbVPZY21TmkSZMm6ka6uoSHhwMA0tPT0a5duyrz09PTERkZqTEtOzsbnTp1Qrt27fCf//xH63qjo6MRHR2N1157DePGjcPTTz+NvXv3olOnThrLjRw5Em3btsWpU6cMvvv39vaGu7t7tfsHaO7jY489VmV+enq6epkKt2/fRrdu3eDi4oLk5GTY2toaFFtAQADCwsJ0zn9wfQqFQmutlTbaHhNKYfTo0Vi2bBlmzJiBpKQkjBgxwqQDQbJGxsz83BwQG9qQSQwR6cUcj6U9PT3RtWtXLFu2DIWFhVXm37p1C126dIGnpyc++uijKvO3bduGc+fO4cUXX1RPu3LlCjp27IgnnngCSUlJVdqcaFORCGmLISoqClFRUTh16hSGDBliyO7BxsYGgwcPxrfffovs7Owq8wsKCnDv3j20bNkSERER+Pjjj6skC8ePH8dvv/2msY8qlQpdunSBnZ0dtm3bhgYNGhgUlxTs7Ow0ur7rEhoaCjs7O+zfv189rbS0FEeOHKmSgFbu/n3z5k38888/Go/bXnrpJVy8eBGffvopTp8+jWHDhkmwJ7oxkSEikhFzPZZetmwZysrK0KZNG3z33Xc4d+4c0tPT8emnnyI2NhZOTk5YuXIlvv/+e4wdOxYnTpzAhQsX8MUXX2D48OEYMGAABg4cCOB/SUxgYCAWL16MvLw85ObmIjc3V7298ePH4/3338f+/ftx8eJFHDp0CK+88gq8vb01Hm1Utnv3buTk5MDd3d3g/Zs/fz4CAgLQtm1bfP311zh9+jTOnTuH1atX47HHHkNBQQEUCgW++OILnD59Gv3798eff/6JS5cuYdOmTejduzdiY2PVY7ZUJDGFhYX44osvoFKp1PuoT2JR4fr16+rfVXzu3Lmj9++Dg4Nx+PBhXLhwAfn5+Tpra5ycnDB+/HhMnToVv/zyC06fPo0xY8agqKgIo0aN0lj2vffew65du3Dq1CkMHz4cXl5e6NOnj3q+h4cH+vXrh6lTp6JLly4a3eJNoto+TVbAUrtfE9HDReru19m3isSB8/l1OmRDdna2SEhIEEFBQcLOzk40btxYPPfccyIlJUW9zL59+0TXrl2Fq6ursLOzE1FRUWLx4sXi3r176mWSkpKqdAuu+FTYvHmz6NGjh/Dz8xN2dnbC399f9O/fX5w4cUK9TEX3Y11ef/11vbtfCyHErVu3xIwZM0STJk2EnZ2daNSokYiPjxfJycmivLxcvdyJEydE//79haenp7C1tRWhoaHinXfeEYWFheplKroqa/tkZmbWGEtF92ttn3Xr1unc/48//lgEBQWpv589e1Y8+eSTwsHBoUr365s3b2r8tri4WEycOFF4eXlV2/36hx9+EFFRUcLOzk60adNGHD9+vEr8u3btEgDExo0bq91PKbpfK4QwsNWSzKhUKri5uam7vRERmcOdO3eQmZmJkJAQszxiIKqtPXv2oFOnTrh582aNtV7ffPMN3njjDWRnZ1fbDb66vwt9r99s7EtERESSKCoqQk5ODhYsWIBXX31V77F8aoNtZIiIyOo9OBZL5c/vv/9e5/GMGzdOZzzjxo2r83ik8uGHHyIiIgK+vr6YOXNmnWyTj5aIiOoAHy2Z1/nz53XOa9y4MRwc6rbn6LVr16BSqbTOc3V1hY+PT53GYy58tERERKSH6sZiMQcfH5+HJlkxNT5aIiIiItliIkNEVIf0HXWV6GEgxd8DHy0REdUBOzs72NjYIDs7G97e3rCzszPpsO1ElkwIgbt37yIvLw82Nja16t3ERIaIqA7Y2NggJCQEOTk5WofBJ3oYOTo6IjAwUK9XVOjCRIaIqI7Y2dkhMDAQ9+7dM2iYeiJrVK9ePdSvX7/WNZNMZIiI6pBCoYCtra3Bb0EmIu3Y2JeIiIhki4kMERERyRYTGSIiIpItJjJEREQkW0xkiIiISLaYyBAREZFsMZEhIiIi2WIiQ0RERLLFRIaIiIhki4kMERERyZZZE5l9+/ahd+/e8Pf3h0KhwNatW9XzSktLMX36dMTExMDJyQn+/v545ZVX+LI1IiIiUjNrIlNYWIgWLVpg2bJlVeYVFRUhNTUVs2bNQmpqKrZs2YKzZ8/iueeeM0OkREREZIkUQghh7iCA+y9SS05ORp8+fXQuc+TIEbRp0wYXL15EYGCgXutVqVRwc3ODUqmEq6urRNESERGRKel7/ZbV26+VSiUUCgXc3d11LlNSUoKSkhL1d5VKVQeRERERkTnIprHvnTt3MH36dLz44ovVZmaJiYlwc3NTfwICAuowSiIiIqpLskhkSktLMXDgQAghsHz58mqXnTlzJpRKpfqTlZVVR1ESERFRXbP4R0sVSczFixexe/fuGtu52Nvbw97evo6iIyIiInOy6ESmIok5d+4cUlJS0LBhQ3OHRERERBbErIlMQUEBzp8/r/6emZmJtLQ0eHp6ws/PDwMGDEBqaip+/PFHlJWVITc3FwDg6ekJOzs7c4VNREREFsKs3a/37NmDTp06VZk+bNgwzJkzByEhIVp/l5KSgo4dO+q1DXa/JiIikh9ZdL/u2LEjqsujLGSIGyIiIrJQsui1RERERKQNExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyZdZEZt++fejduzf8/f2hUCiwdetWjflCCLz77rvw8/ODg4MD4uPjce7cOfMES0RERBbHrIlMYWEhWrRogWXLlmmd/+GHH+LTTz/FihUrcPjwYTg5OaFr1664c+dOHUdKRERElqi+OTfevXt3dO/eXes8IQSWLl2Kd955B88//zwA4Ouvv0ajRo2wdetWDB48uC5DJSIiIgtksW1kMjMzkZubi/j4ePU0Nzc3tG3bFgcPHjRjZERERGQpzFojU53c3FwAQKNGjTSmN2rUSD1Pm5KSEpSUlKi/q1Qq0wRIREREZmexNTLGSkxMhJubm/oTEBBg7pCIiIjIRCw2kfH19QUAXL16VWP61atX1fO0mTlzJpRKpfqTlZVl0jiJiIjIfCw2kQkJCYGvry927dqlnqZSqXD48GHExsbq/J29vT1cXV01PkRERGSdzNpGpqCgAOfPn1d/z8zMRFpaGjw9PREYGIjJkydj3rx5aNKkCUJCQjBr1iz4+/ujT58+5guaiIiILIZZE5mjR4+iU6dO6u9TpkwBAAwbNgxffvklpk2bhsLCQowdOxa3bt3CU089hV9++QUNGjQwV8hERERkQRRCCGHuIExJpVLBzc0NSqWSj5mIiIhkQt/rt8W2kSEiIiKqCRMZIiIiki0mMkRERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREsmVUIlNYWCh1HEREREQGMyqRadSoEUaOHIk//vhD6niIiIiI9GZUIrNmzRrcuHEDzzzzDMLDw7FgwQJkZ2dLHRsRERFRtYxKZPr06YOtW7fiypUrGDduHNauXYugoCD06tULW7Zswb1796SOk4iIiKgKyd619Nlnn2Hq1Km4e/cuvLy8MG7cOMyYMQOOjo5SrN5ofNcSERGR/Oh7/a7V26+vXr2Kr776Cl9++SUuXryIAQMGYNSoUbh8+TIWLlyIQ4cOYefOnbXZBBEREZFORiUyW7ZsQVJSEnbs2IHIyEi89tpreOmll+Du7q5epl27dmjWrJlUcRIRERFVYVQiM2LECAwePBj79+9H69attS7j7++Pt99+u1bBEREREVXHqDYyRUVFZm/7oi+2kSEiIpIfk7aRcXR0RFlZGZKTk5Geng4AaNasGfr06YP69WvV7IaIiIhIb0ZlHX///Td69+6Nq1evomnTpgCAhQsXwtvbGz/88AOio6MlDZKIiIhIG6PGkRk9ejSio6Nx+fJlpKamIjU1FVlZWWjevDnGjh0rdYxEREREWhlVI5OWloajR4/Cw8NDPc3DwwPz58/X2fiXiIiISGpG1ciEh4fj6tWrVaZfu3YNYWFhtQ6KiIiISB9GJTKJiYmYNGkSNm/ejMuXL+Py5cvYvHkzJk+ejIULF0KlUqk/RERERKZiVPdrG5v/5T8KhQIAULGayt8VCgXKysqkiNNo7H5NREQkPybtfp2SkmJ0YERERERSMSqR6dChg9RxEBERERnM6NHrbt26hS+++EI9IF5UVBRGjhwJNzc3yYIjIiIiqo5RjX2PHj2K0NBQfPzxx7hx4wZu3LiBJUuWIDQ0FKmpqVLHSERERKSVUY19n376aYSFhWHVqlXqVxLcu3cPo0ePxn//+1/s27dP8kCNxca+RERE8qPv9duoRMbBwQF//fUXIiIiNKafPn0arVq1QlFRkeERmwgTGSIiIvnR9/pt1KMlV1dXXLp0qcr0rKwsuLi4GLNKIiIiIoMZlcgMGjQIo0aNwoYNG5CVlYWsrCysX78eo0ePxosvvih1jERERERaGdVrafHixVAoFHjllVdw7949AICtrS3Gjx+PBQsWSBogERERkS4Gt5EpKyvD/v37ERMTA3t7e2RkZAAAQkND4ejoaJIga4NtZIiIiOTHZCP71qtXD126dEF6ejpCQkIQExNTq0CJiIiIjGVUG5no6Gj897//lToWIiIiIoMYlcjMmzcPb775Jn788Ufk5ORovO2ab7wmIiKiuiLZ268By3njdWVsI0NERCQ/fPs1ERERWT2jEpmQkBAEBARo1MYA92tksrKyJAmMiIiIqCZGtZEJCQlBXl5elek3btxASEhIrYMiIiIi0odRiUxFW5gHFRQUoEGDBrUOqkJZWRlmzZqFkJAQODg4IDQ0FO+//z6MaNZDREREVsigR0tTpkwBcL+B76xZszQGwCsrK8Phw4fRsmVLyYJbuHAhli9fjq+++gpRUVE4evQoRowYATc3N0yaNEmy7RAREZE8GZTI/PXXXwDu18icPHkSdnZ26nl2dnZo0aIF3nzzTcmCO3DgAJ5//nn07NkTABAcHIx169bhzz//lGwbREREJF8GJTIVvZVGjBiBTz75xOTdmdu1a4f//Oc/+OeffxAeHo7jx4/jjz/+wJIlS3T+pqSkBCUlJervHNeGiIjIehnVaykpKUnqOLSaMWMGVCoVIiIiUK9ePZSVlWH+/PkYOnSozt8kJiZi7ty5dRIfERERmZdRiUxhYSEWLFiAXbt24dq1aygvL9eYL9XrCzZu3Ihvv/0Wa9euRVRUFNLS0jB58mT4+/tj2LBhWn8zc+ZMdVse4H6NTEBAgCTxEBERkWUxKpEZPXo09u7di5dffhl+fn5aezBJYerUqZgxYwYGDx4MAIiJicHFixeRmJioM5Gxt7eHvb29SeIhIiIiy2JUIvPzzz/jp59+QlxcnNTxaCgqKtJ4HQJw/+3bD9YAERER0cPJqETGw8MDnp6eUsdSRe/evTF//nwEBgYiKioKf/31F5YsWYKRI0eafNtERERk+Yx6aeSaNWvw/fff46uvvtIYS0Zqt2/fxqxZs5CcnIxr167B398fL774It59912Nrt/V4UsjiYiI5Eff67dRicxjjz2GjIwMCCEQHBwMW1tbjfmpqamGR2wiTGSIiIjkx6Rvv+7Tp4+xcRERERFJxqgaGTlhjQwREZH86Hv9NuilkX/++SfKysp0zi8pKcHGjRsNWSURERGR0QxKZGJjY3H9+nX1d1dXV43B727duoUXX3xRuuiIiIiIqmFQIvPgUyhtT6Ws/EkVERERWRCDEhl9mGqUXyIiIqIHSZ7IEBEREdUVg7tfnz59Grm5uQDuP0Y6c+YMCgoKAAD5+fnSRkdERERUDYO6X9vY2EChUGhtB1MxXaFQVNuzqa6x+zUREZH8mGRAvMzMzFoHRkRERCQVgxKZoKAgg1b+2muv4b333oOXl5dBvyMiIiLSh0kb+65ZswYqlcqUmyAiIqKHmEkTGY4pQ0RERKbE7tdEREQkW0xkiIiISLaYyBAREZFsMZEhIiIi2TJpIvPSSy9xEDoiIiIyGaMSmfLycp3TL126pP6+fPlyjiFDREREJmNQIqNSqTBw4EA4OTmhUaNGePfddzVeR5CXl4eQkBDJgyQiIiLSxqCRfWfNmoXjx4/jm2++wa1btzBv3jykpqZiy5YtsLOzA8CxY4iIiKjuGFQjs3XrVqxcuRIDBgzA6NGjcfToUeTl5aF3794oKSkBcP/lkURERER1waBEJi8vT+N9S15eXvjtt99w+/Zt9OjRA0VFRZIHSERERKSLQYlMYGAg0tPTNaa5uLhg586dKC4uRt++fSUNjoiIiKg6BiUyXbp0QVJSUpXpzs7O2LFjBxo0aCBZYEREREQ1Maix79y5c5Gdna11nouLC3799VekpqZKEhgRERFRTQxKZDw8PODh4aFzvouLCzp06FDroIiIiIj0YfCAePfu3cOiRYvw+OOPw9nZGc7Oznj88cexePFilJaWmiJGIiIiIq0MqpEpLi7Gs88+i4MHDyI+Ph7t27cHAKSnp2P69OnYtm0bdu7cybYyREREVCcMSmQWLFiArKws/PXXX2jevLnGvOPHj+O5557DggULMGfOHCljJCIiItLKoEdL69evx5IlS6okMQDQokULLF68GGvXrpUsOCIiIqLqGJTIXLx4EW3atNE5/8knn9R4aSQRERGRKRmUyLi6uuLatWs65+fm5sLFxaXWQRERERHpw6BEplOnTvjggw90zl+wYAE6depU66CIiIiI9GFQY9/Zs2ejbdu2ePLJJzFlyhRERERACIH09HR8/PHHOH36NA4dOmSqWImIiIg0GJTIREZG4tdff8WoUaMwePBg9ZuuhRCIiIjAzp07ERUVZZJAiYiIiB5kUCID3G/Q+/fffyMtLQ3//PMPACA8PBwtW7aUOjYiIiKiahmcyKhUKjg7O6Nly5YayUt5eTkKCgrg6uoqZXxEREREOhnU2Dc5ORmtWrXCnTt3qswrLi5G69at8cMPP0gWHBEREVF1DEpkli9fjmnTpsHR0bHKPCcnJ0yfPh3//ve/JQuOiIiIqDoGJTKnTp1Cx44ddc5v3749Tp48WduYNFy5cgUvvfQSGjZsCAcHB8TExODo0aOSboOIiIjkyaA2Mjdv3sS9e/d0zi8tLcXNmzdrHVTl7cXFxaFTp074+eef4e3tjXPnzsHDw0OybRAREZF8GZTIBAcH4+jRo4iIiNA6/+jRowgKCpIkMABYuHAhAgICkJSUpJ4WEhIi2fqJiIhI3gx6tNSvXz+8/fbbuHr1apV5ubm5eOedd9C/f3/Jgtu2bRtatWqFF154AT4+PnjsscewatWqan9TUlIClUql8SEiIiLrpBBCCH0Xvn37NmJjY3Hp0iW89NJLaNq0KQDgzJkz+PbbbxEQEIBDhw5J9r6lBg0aAACmTJmCF154AUeOHMHrr7+OFStWYNiwYVp/M2fOHMydO7fKdKVSya7hREREMqFSqeDm5lbj9dugRAa4nxDMnDkTGzZsULeHcXd3x+DBgzF//nxJ26/Y2dmhVatWOHDggHrapEmTcOTIERw8eFDrb0pKSlBSUqL+rlKpEBAQwESGiIhIRvRNZAweEM/NzQ3/93//h2XLliE/Px9CCHh7e6tfV1DZ/v370apVK9jb2xu6GQCAn58fIiMjNaY1a9YM3333nc7f2NvbG709IiIikheD2shUplAo4O3tDR8fH61JDAB0794dV65cMTq4uLg4nD17VmPaP//8I2mDYiIiIpIvoxMZfRj41KqKN954A4cOHcIHH3yA8+fPY+3atfjPf/6DhIQEiSIkIiIiOTNpIlNbrVu3RnJyMtatW4fo6Gi8//77WLp0KYYOHWru0IiIiMgCGNxGpq716tULvXr1MncYREREZIEsukaGiIiIqDomTWR0NQImIiIikoJFN/YlIiIiqo5J28jcvn3blKsnIiKih5xBicwzzzyj13K7d+82KhgiIiIiQxiUyOzZswdBQUHo2bMnbG1tTRUTERERkV4MSmQWLlyIpKQkbNq0CUOHDsXIkSMRHR1tqtiIiIiIqmVQY9+pU6fi9OnT2Lp1K27fvo24uDi0adMGK1asgEqlMlWMRERERFoZ/PbryoqKirBp0yYsW7YMp0+fRnZ2tsW9YVrft2cSERGR5dD3+l2r7tepqanYu3cv0tPTER0dzXYzREREVKcMTmSys7PxwQcfIDw8HAMGDICnpycOHz6MQ4cOwcHBwRQxEhEREWllUGPfHj16ICUlBV26dMGiRYvQs2dP1K9v8a9rIiIiIitlUBsZGxsb+Pn5wcfHp9rXD6SmpkoSnBTYRoaIiEh+9L1+G1SdMnv27FoHRkRERCSVWvVakgPWyBAREcmPSWpkdNm7dy8KCwsRGxsLDw8PKVZJREREVCODR/YtKCjA+++/D+D+2627d++OnTt3AgB8fHywa9cuREVFSR8pERER0QMM6n69YcMGjVcSbN68Gfv27cPvv/+O/Px8tGrVCnPnzpU8SCIiIiJtDEpkMjMz0bx5c/X37du3Y8CAAYiLi4OnpyfeeecdHDx4UPIgiYiIiLQxKJG5d+8e7O3t1d8PHjyIdu3aqb/7+/sjPz9fuuiIiIiIqmFQIhMaGop9+/YBAC5duoR//vkH7du3V8+/fPkyGjZsKG2ERERERDoY1Ng3ISEBEyZMwO+//45Dhw4hNjYWkZGR6vm7d+/GY489JnmQRERERNoYlMiMGTMG9erVww8//ID27dtXGSAvOzsbI0eOlDRAIiIiIl04IB4RERFZHH2v3wa//ZqIiIjIUhiUyJSWlmLatGkICwtDmzZtsHr1ao35V69eRb169SQNkIiIiEgXgxKZ+fPn4+uvv8a4cePQpUsXTJkyBa+++qrGMlb+pIqIiIgsiEGNfb/99lt8/vnn6NWrFwBg+PDh6N69O0aMGKGunVEoFNJHSURERKSFQTUyV65c0XhFQVhYGPbs2YMDBw7g5ZdfRllZmeQBEhEREeliUCLj6+uLjIwMjWmNGzdGSkoKjhw5guHDh0sZGxEREVG1DEpknnnmGaxdu7bKdH9/f+zevRuZmZmSBUZERERUE4PayMyaNQtnzpzROq9x48bYu3cvfv31V0kCIyIiIqoJB8QjIiIii2PSAfE2bdqEfv36ITo6GtHR0ejXrx82b95sdLBERERExjAokSkvL8egQYMwaNAgnD59GmFhYQgLC8Pff/+NQYMGYfDgwRxHhoiIiOqMQW1kPvnkE/z222/Ytm2beiyZCtu2bcOIESPwySefYPLkyVLGSERERKSVQTUySUlJWLRoUZUkBgCee+45fPjhh1VeW0BERERkKgYlMufOnUN8fLzO+fHx8Th37lytgyIiIiLSh0GJjIODA27duqVzvkqlQoMGDWobExEREZFeDEpkYmNjsXz5cp3zly1bhtjY2FoHRURERKQPgxKZt99+G1988QUGDhyIP//8EyqVCkqlEocOHcILL7yA1atX4+233zZVrFiwYAEUCgUbExMREREAA3sttWvXDhs2bMDYsWPx3Xffaczz8PDAunXrEBcXJ2mAFY4cOYKVK1eiefPmJlk/ERERyY9BiQwA9O3bF127dsWOHTvUDXvDw8PRpUsXODo6Sh4gABQUFGDo0KFYtWoV5s2bZ5JtEBERkfwY9Ghp9+7diIyMxL1799C3b19MmzYN06ZNQ58+fVBaWoqoqCj8/vvvkgeZkJCAnj17VttjqkJJSQlUKpXGh4iIiKyTQYnM0qVLMWbMGK3vPHBzc8Orr76KJUuWSBYcAKxfvx6pqalITEzUa/nExES4ubmpPwEBAZLGQ0RERJbDoETm+PHj6Natm875Xbp0wbFjx2odVIWsrCy8/vrr+Pbbb/Xu1j1z5kwolUr1JysrS7J4iIiIyLIY1Ebm6tWrsLW11b2y+vWRl5dX66AqHDt2DNeuXcPjjz+unlZWVoZ9+/bh3//+N0pKSlCvXj2N39jb28Pe3l6yGIiIiMhyGZTING7cGKdOnUJYWJjW+SdOnICfn58kgQFA586dcfLkSY1pI0aMQEREBKZPn14liSEiIqKHi0GJTI8ePTBr1ix069atyqOe4uJizJ49W+t7mIzl4uKC6OhojWlOTk5o2LBhlelERET08DEokXnnnXewZcsWhIeHY8KECWjatCkA4MyZM1i2bBnKyspMOiAeERERUWUKIYQw5AcXL17E+PHjsWPHDlT8VKFQoGvXrli2bBlCQkJMEqixVCoV3NzcoFQqtfa2IiIiIsuj7/Xb4AHxgoKCsH37dty8eRPnz5+HEAJNmjSBh4dHrQImIiIiMpTBiUwFDw8PtG7dWspYiIiIiAxi0DgyRERERJaEiQwRERHJFhMZIiIiMkqOshgHMvKRoyw2WwxGt5EhIiKih9eGI5cwc8tJlAvARgEk9ovBoNaBdR4Ha2SIiIjIIDnKYnUSAwDlAnhryymz1MwwkSEiIiKDZOYXqpOYCmVC4EJ+UZ3HwkSGiIiIDBLi5QQbhea0egoFgr0c6zwWJjJERERkED83ByT2i0E9xf1spp5CgQ/6RcPPzaHOY2FjXyIiIjLYoNaBaB/ujQv5RQj2cjRLEgMwkSEiIiIj+bk5mC2BqcBHS0RERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREssVEhohMxhJeKEdE1o3dr4nIJCzlhXJEZN1YI0NEkrOkF8oRkXVjIkNEkrOkF8oRkXVjIkNEkrOkF8oRkXVjIkNEkrOkF8oRkXVjY18iMglLeaEcEVk3JjJERspRFiMzvxAhXk68SOtgCS+UIyLrxkSGyAjsWkxEZBnYRobIQOxaTERkOZjIEBmIXYuJiCwHExkiA7FrMRGR5WAiQ2Qgdi0mIrIcbOxLZAR2LSYisgxMZIiMxK7FRETmx0dLVGs5ymIcyMhnrx0iIqpzrJGhWuF4KkREZE6skSGjcTwVIqKHmyXUyLNGhoxW3XgqbDtCRGTdLKVGnjUyRrKELNTcOJ4KEdHDyZJq5JnIGGHDkUuIW7AbQ1YdRtyC3dhw5JK5QzILjqdCRPRwsqQRzvloyUC6stD24d4P5QWc46kQET18KmrkKycz5qqRt+gamcTERLRu3RouLi7w8fFBnz59cPbsWbPGZElZqKXwc3NAbGhDJjFERA8JS6qRt+gamb179yIhIQGtW7fGvXv38NZbb6FLly44ffo0nJyczBKTJWWhRERE5mIpNfIKIYSoeTHLkJeXBx8fH+zduxft27fX6zcqlQpubm5QKpVwdXWVJI4NRy7hrS2nUCaEOgvl2ClERETS0ff6bdE1Mg9SKpUAAE9PT7PGYSlZKBkvR1mMzPxChHg58f+PiEjGZJPIlJeXY/LkyYiLi0N0dLTO5UpKSlBSUqL+rlKpTBIP37MjX5Yy9gEREdWeRTf2rSwhIQGnTp3C+vXrq10uMTERbm5u6k9AQEAdRUhyYEljHxARUe3JIpGZMGECfvzxR6SkpOCRRx6pdtmZM2dCqVSqP1lZWXUUJckBe50REVkXi360JITAxIkTkZycjD179iAkJKTG39jb28Pe3r4OoiM5Yq8zIiLrYtE1MgkJCVizZg3Wrl0LFxcX5ObmIjc3F8XFfAxAxrGksQ+IiKj2LLr7tUKh0Do9KSkJw4cP12sdpuh+TfKXoyxmrzMzYq8xIqqJVXS/tuAcSzZ4wdCOvc7Mh73GiEhKFp3IUO3wgkGWhu8qIyKpWXQbGTIeuxmTJWKvMSKSGhMZK8ULBlmiil5jlbHXGBHVBhMZKyXlBSNHWYwDGfmszaFaY68xIpIa28hYqYoLxoMvtzT0gsF2NiQ1S35XGRvHE8mPRXe/lsLD3v26Nt2Mc5TFiFuwu8rgcX/M6MSTPFkdJu1ElkXf6zcfLZmAJT2K8XNzQGxoQ6MSD7azoYcFG8cTyRcfLUnMmu7qOJw/PSyqS9pZ+0hk2VgjIyFru6tjw0x6WLA3FRnLkmrgpSSn/WKNjISs8a7OkhtmEklFqsbx5sJGyuZhTTXwlcltv5jISOjkZWWVadZwV8fh/OlhIMekPUdZjNV/ZOKLPzJlc9GxFtY6SrUc94uJjERylMVY+MuZKtOndW9qsf/5RKRJTkn7hiOXMOO7k6hcCSyHi461sMYaeECe+8U2MhLR9p8PAM0bu9d5LJZMTs9diWrLVMd7xV2ztrEz2LOwblhruyo57hdrZCTCHj7aVX52v++fPFk9dyWqDVO2M9B14wTwvFNX5N6uShc57hcHxJPQhiOXqvznP8wX6son8ooEv/LBxsH1yFqZejBJbesHdCdMuhoD69tImI2JdavNoKOWzBL2S9/rN2tkJCR1Y0E5nzwebDBWXRW43PaNqCambmfw4F2zDYDR7UMwIi6kyvp11QzpW2Mktx4sdU1O7aoMIaf9YiIjMan+8+V+8qiu6rsCq8DJWtXFo2Z9bpx09UCJ8HXRq2eKHHuwWDI535xaMjb2tUDWMLCetgZjCkA9TQ7PXYmMVVeDSdb0ChJdNUNHLtzUOv2nEzka5xm+pkQ6G45cQtyC3Riy6jDiFuzGhiOX6mS7D0MHC9bIWCA5dn97kK4GY3Ibp4PIWJYwLo2umqHWwR5VpgPAvJ/S8cH2dHUNsFw7MVhazYe5arbkXrOvLyYytVDbBnS6yPXk8SBdJ3JLOLEQ1QVztzPQdUPRIsBDY3pllS+yADDqqRD1gHtyqEm1xIu3OW5OH6bHgkxkjFTbBnTVkWP3N13MfSK3ZJZ21yg1a98/udB1Q1Ex/acTOZj3U7rGb8qEQNL+THz+e6a61+FYHY2JLYmlXrzNcXNqDTX7+mIiY4TaNqDThyVUS5PpWOJdo5Rqu391mQRZY8L14D7puqHwc3NAz+Z++GB7usZFz0YBrNqXqe5tKAB88fsFjIgLqZP4jSXlxVvK48IcN6fWUrOvDyYyRjC0AZ2xGTBrM6yTpd41SqW2+2fKJO/Bi5M1JpSG7pO2i+zIp4Kx6vdMjeXkcDcv1cXbFMeFqW9OtSWv1lKzXxMmMkYwpAGdlBmwNd45Poysvcq3NvtnyiTvwYvT9O4RWPjzGatKKI0tvwcvsgDU7WIq1OZcVlfnLiku3lIcg7r2V9+bU0PLS1fi9bDU7DORMYK+DeikzICt4c6Ridh91l7lW5v9M1WSp+3iVDmJkXJb1cVg6uO/NuX34EVWqnNZXZ+7anvxru0xWNv9NfT3NSVeD0PNPhMZI9XUgE7KDLimA1UOCYI1JGJSsfYq39rsn6mSPG0Xp4pGrA++NsMUCWVdHf9Slp8U5zJzPUatzcW7NmVY2/015vfWXsOrDyYytVBdAzopD6DqDlQ5vIjR2tuEGMPaq3yN3T9TJXm6Lk7TujXFh7+cNWlCWZfHv9TlV9tzmRwvstrKcFr3psjML1TP10XX/qZevAkPp5pvNo0pL2uv4dUHExkZ0HWgOtrZyCJBkOPJrC5Ye5WvPvunrTbRFEmergv8oNaBeK6lv0kTyro+/i0pSZbrRbZyGZ64fEv9GLKml3I62dWrsr8KBTBh7V8QqPlm05jysvYaXn0wkZEBXQdq4d0yWSQIcj2ZkWlV97jFFEledQM0Wls3WEtJkuviIns86yb+vHADbYI90SLAQ7L1VsQ49PND1d4sPngc932sMbb+lX3/ZZ4KQIj/Pb6s6WbT2PKypOTVHJjIyIS2AzVHWSyLBEFOdwxyaG9kDeTYdgIw7viQ0/GvS23+LnSduwxZn67l/7UxDd+lXlF/7/94Y3w0sKVB8VVeNwCN7dRUm6btON76Vza2vBaLorvlyC+4g4nr0nT+XpvaPJaV0zElJSYyMvLggSqnE6Qc7hjYIFk/UiR7cnzcWJvjQ6qGs+ZIsqUarVxXDUZN69O1/PGsmxpJDAB8l3oFr8QGoUWAh17lVXndFe+4rfwIqH24d7U3i7qO46K75YgNbWj0zebDnJQYg4mMzMkhQahgyX+cdVFDYA21PVIle3J73CjF8VHT8V/d8WGuJFvqvwtD11fd8n9euKF1G0cv3MSZ3Ns1lteD666cj1Rs548Znaq9WazpOLbEm01rOA89iImMidXFQWPJCYJcmLqGwBpqe6S8qFniCb465jw+zNnrT+r9NnR91S3fJthT6zaCvRwx5utjNZaXtnVr2051N4v6HMeWdLNpDechbZjImJC1HjTWyJQ1BJbU/bw2ibXUFzVto8keyMi3yDtFfY4PY8u2puPDnI/hpP67qG592sqvuuX93BzQ//HGVdrIONjV16u8tK27sgdrVmrTpsUSbjYt6TwkNRtzB2CtdB00Ocpi8wb2kMpRFuNARr7O8q+4s6qnuP+kXMoaguouRFKrbj83HLmEuAW7MWTVYcQt2I0NRy4ZtO6KE39l+lzUqovJz80BsaENse+fPL1jq+n/0lg1xVnd8VGbsq3p+NBW7jYAHO1Md/quKAsAkv5d6CpHXf//NZX7RwNb4vuEdpjVsxm+T2iHjwa21Ps4fXDdCtzvKm3MflYcx5acENTleaiuKYQQ1VSuyZ9KpYKbmxuUSiVcXV3rbLsHMvIxZNXhKtPXjXkSsaEN6ywOMqxmLEdZLHkVcI6yGHELdle5q/xjRidJT3w1PZ6QIoYNRy5pHYtF35hGPRWCkU+FaGxTW2w2CiD5tXZVutOaqpZTn/XmKItx9MIN2CgUeDzIQ70PtS1bfX5fudwrmKqWV1tZmGK08so1cTXtv6F/l4Ycpw/GYgmPgEyhrs5DUtL3+s0aGRMx9u6VpGVozZgp7qykqu2prsagpv2U6m5sUOtA/DGjE9aNeRJ/zOhk8DtgVv2eiXaJmjUWul4f0GfZAY3lTFXLqc96K2pcJq5Lw8R1f2HfP3nVxm9I2epzfAxqHYgtr8Wqawx0xVlbusoCgKR/F5X/zvQpP0P/Lg05TiuvWw41K8YyZa2zubGNjInIrTGjtbKUbr61bfBXU41BTfspVVsHQ9qB6GpMKaD5bF5XW4UHl5Py/7LyfhgzVkhN8RtatvqMtVJ4twwP1p9LfSyb4+/FmPLT5zi0hHYplsaSGh5LiYmMCcnloNH34iTHbnuW1M3X2BOrPo306qIbqKGPdaprTFn54lgRW+V91LacVP+XD+7H9G4RRo0V8mD8tb1pqWmslZrGNJGCuUYhNqT8Vu7NwIKfz+g15D9VZY0JHhMZE7P0g0bfi1NNy1lqkmMNNWP63CWbuhuoMT0eqktQHrw4DmodiAhfF/RZdkDn26il+L/Uth8f/nIW07tH4MOftb88Up+Lu5Q3LbrKuqYxTQzdhra/V1P/vejarr7lt3JfBhJ/PqP+bk09b8h4skhkli1bhkWLFiE3NxctWrTAZ599hjZt2pg7LNnT9+JU03JSNsA0RUIkl5oxXap7aWjl7sqm7AZq7COHipiS9mfi832ZKIfuZ/MtAjywoL9px+TQtR/NG7vjjxmdjB4rpGI5U/dyk+JYrunv1VR/LzVtt6byy1EWY0GlJKaCpY8IbYjanv8s9YbS1Cw+kdmwYQOmTJmCFStWoG3btli6dCm6du2Ks2fPwsfHx9zhyZq+F6eaGuNJNTaBKcfdsfSascoePBlpu5D2ecwfff/vQJWyMtV+1uaRg5+bA97qEYkRcSE1XhxNkYxVLs+axiWpTVxS0ecxobHbP551EzO+O1njSwylPo6kGMMkM7+wShsh4H6Plbp+VGyKhKG257+Hedwyi++1tGTJEowZMwYjRoxAZGQkVqxYAUdHR6xevdrcocmevj2rqltOqt4wHHfnPl3jkVTuhbHltVgk/3WlTstKih4P+vYIkbLnyIPlue+fPKP3o656tJiqd8mGI5fQ5/80H90BdTOWiBTnCW3nIQCY3j2iTm9Sajsekza1Pf897OdPi66RuXv3Lo4dO4aZM2eqp9nY2CA+Ph4HDx7U+puSkhKUlJSov6tUKpPHKVeGVJlXt5wUjQMtpXeROdV011rxOZCRb5ayktsjuuramuh6jGQppC7rirLQVqNRF43fpWhE/OB5yEZxP4l5tX2oCSLWzlSj49b2/Pewnz8tOpHJz89HWVkZGjVqpDG9UaNGOHOm6rNSAEhMTMTcuXPrIjyroO8JU9dyUjUOtKTeReai78nInGUlp0d01ZWnHMYKkbKsdXWFtwHqpPG7VOcJcyfTpkoYavs3/bCfPy06kTHGzJkzMWXKFPV3lUqFgIAAM0Zk+fQ9YepaToqTizX0LqotfU9GLCv9POwn98q0lYWu0ZNNRaokxJzJtKmOqdr+TT/s5wSLfkXB3bt34ejoiM2bN6NPnz7q6cOGDcOtW7fw/fff17gOc72igIxjilcEyImxQ6s/jGWlD0NfqWDNWBbSMGU51vZv2trOCfpevy06kQGAtm3bok2bNvjss88AAOXl5QgMDMSECRMwY8aMGn/PRIbkxtpORubG8vwfloU0WI51Q9/rt8U/WpoyZQqGDRuGVq1aoU2bNli6dCkKCwsxYsQIc4dGZBJyaociByzP/2FZSIPlaFksPpEZNGgQ8vLy8O677yI3NxctW7bEL7/8UqUBMBERET18LP7RUm3x0RIREZH86Hv9tvgB8YiIiIh0YSJDREREssVEhoiIiGSLiQwRERHJFhMZIiIiki0mMkRERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZsvhXFNRWxcDFKpXKzJEQERGRviqu2zW9gMDqE5nbt28DAAICAswcCRERERnq9u3bcHNz0znf6t+1VF5ejuzsbLi4uEChUJg7nDqlUqkQEBCArKwsvmeqFliO0mFZSoPlKB2WpTRMUY5CCNy+fRv+/v6wsdHdEsbqa2RsbGzwyCOPmDsMs3J1deUfqARYjtJhWUqD5SgdlqU0pC7H6mpiKrCxLxEREckWExkiIiKSLSYyVsze3h6zZ8+Gvb29uUORNZajdFiW0mA5SodlKQ1zlqPVN/YlIiIi68UaGSIiIpItJjJEREQkW0xkiIiISLaYyBAREZFsMZGRuX379qF3797w9/eHQqHA1q1bNeYLIfDuu+/Cz88PDg4OiI+Px7lz58wTrIWrqSyHDx8OhUKh8enWrZt5grVgiYmJaN26NVxcXODj44M+ffrg7NmzGsvcuXMHCQkJaNiwIZydndG/f39cvXrVTBFbJn3KsWPHjlWOyXHjxpkpYsu1fPlyNG/eXD1YW2xsLH7++Wf1fB6P+qmpHM11PDKRkbnCwkK0aNECy5Yt0zr/ww8/xKeffooVK1bg8OHDcHJyQteuXXHnzp06jtTy1VSWANCtWzfk5OSoP+vWravDCOVh7969SEhIwKFDh/Drr7+itLQUXbp0QWFhoXqZN954Az/88AM2bdqEvXv3Ijs7G/369TNj1JZHn3IEgDFjxmgckx9++KGZIrZcjzzyCBYsWIBjx47h6NGjeOaZZ/D888/j77//BsDjUV81lSNgpuNRkNUAIJKTk9Xfy8vLha+vr1i0aJF62q1bt4S9vb1Yt26dGSKUjwfLUgghhg0bJp5//nmzxCNn165dEwDE3r17hRD3j0FbW1uxadMm9TLp6ekCgDh48KC5wrR4D5ajEEJ06NBBvP766+YLSsY8PDzE559/zuOxlirKUQjzHY+skbFimZmZyM3NRXx8vHqam5sb2rZti4MHD5oxMvnas2cPfHx80LRpU4wfPx7Xr183d0gWT6lUAgA8PT0BAMeOHUNpaanGcRkREYHAwEAel9V4sBwrfPvtt/Dy8kJ0dDRmzpyJoqIic4QnG2VlZVi/fj0KCwsRGxvL49FID5ZjBXMcj1b/0siHWW5uLgCgUaNGGtMbNWqknkf669atG/r164eQkBBkZGTgrbfeQvfu3XHw4EHUq1fP3OFZpPLyckyePBlxcXGIjo4GcP+4tLOzg7u7u8ayPC5101aOADBkyBAEBQXB398fJ06cwPTp03H27Fls2bLFjNFappMnTyI2NhZ37tyBs7MzkpOTERkZibS0NB6PBtBVjoD5jkcmMkR6Gjx4sPrfMTExaN68OUJDQ7Fnzx507tzZjJFZroSEBJw6dQp//PGHuUORNV3lOHbsWPW/Y2Ji4Ofnh86dOyMjIwOhoaF1HaZFa9q0KdLS0qBUKrF582YMGzYMe/fuNXdYsqOrHCMjI812PPLRkhXz9fUFgCqt769evaqeR8Z79NFH4eXlhfPnz5s7FIs0YcIE/Pjjj0hJScEjjzyinu7r64u7d+/i1q1bGsvzuNROVzlq07ZtWwDgMamFnZ0dwsLC8MQTTyAxMREtWrTAJ598wuPRQLrKUZu6Oh6ZyFixkJAQ+Pr6YteuXeppKpUKhw8f1nimSca5fPkyrl+/Dj8/P3OHYlGEEJgwYQKSk5Oxe/duhISEaMx/4oknYGtrq3Fcnj17FpcuXeJxWUlN5ahNWloaAPCY1EN5eTlKSkp4PNZSRTlqU1fHIx8tyVxBQYFGtpuZmYm0tDR4enoiMDAQkydPxrx589CkSROEhIRg1qxZ8Pf3R58+fcwXtIWqriw9PT0xd+5c9O/fH76+vsjIyMC0adMQFhaGrl27mjFqy5OQkIC1a9fi+++/h4uLi7qdgZubGxwcHODm5oZRo0ZhypQp8PT0hKurKyZOnIjY2Fg8+eSTZo7ectRUjhkZGVi7di169OiBhg0b4sSJE3jjjTfQvn17NG/e3MzRW5aZM2eie/fuCAwMxO3bt7F27Vrs2bMHO3bs4PFogOrK0azHY533kyJJpaSkCABVPsOGDRNC3O+CPWvWLNGoUSNhb28vOnfuLM6ePWveoC1UdWVZVFQkunTpIry9vYWtra0ICgoSY8aMEbm5ueYO2+JoK0MAIikpSb1McXGxeO2114SHh4dwdHQUffv2FTk5OeYL2gLVVI6XLl0S7du3F56ensLe3l6EhYWJqVOnCqVSad7ALdDIkSNFUFCQsLOzE97e3qJz585i586d6vk8HvVTXTma83hUCCGEaVMlIiIiItNgGxkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExmih0Bubi4mTpyIRx99FPb29ggICEDv3r013i9z4MAB9OjRAx4eHmjQoAFiYmKwZMkSlJWVqZe5cOECRo0ahZCQEDg4OCA0NBSzZ8/G3bt3Nba3atUqtGjRAs7OznB3d8djjz2GxMRE9fw5c+ZAoVCgW7duVWJdtGgRFAoFOnbsqNe+VaxLoVCgfv36CA4OxhtvvIGCggIDS4mI5IjvWiKychcuXEBcXBzc3d2xaNEixMTEoLS0FDt27EBCQgLOnDmD5ORkDBw4ECNGjEBKSgrc3d3x22+/Ydq0aTh48CA2btwIhUKBM2fOoLy8HCtXrkRYWBhOnTqFMWPGoLCwEIsXLwYArF69GpMnT8ann36KDh06oKSkBCdOnMCpU6c04vLz80NKSgouX76s8Vbn1atXIzAw0KB9jIqKwm+//YZ79+5h//79GDlyJIqKirBy5coqy969exd2dnZGlKTpWGJMRLJh8pcgEJFZde/eXTRu3FgUFBRUmXfz5k1RUFAgGjZsKPr161dl/rZt2wQAsX79ep3r//DDD0VISIj6+/PPPy+GDx9ebUyzZ88WLVq0EL169RLz5s1TT9+/f7/w8vIS48ePFx06dNBj7/63rsrGjBkjfH19NeavWrVKBAcHC4VCIYS4v++jRo0SXl5ewsXFRXTq1EmkpaWp15GWliY6duwonJ2dhYuLi3j88cfFkSNHhBBCXLhwQfTq1Uu4u7sLR0dHERkZKX766SchhBBJSUnCzc1NI57k5GRR+XRrbExEVBUfLRFZsRs3buCXX35BQkICnJycqsx3d3fHzp07cf36dbz55ptV5vfu3Rvh4eFYt26dzm0olUp4enqqv/v6+uLQoUO4ePFijfGNHDkSX375pfr76tWrMXTo0FrXTjg4OGg87jp//jy+++47bNmyBWlpaQCAF154AdeuXcPPP/+MY8eO4fHHH0fnzp1x48YNAMDQoUPxyCOP4MiRIzh27BhmzJgBW1tbAPffTF1SUoJ9+/bh5MmTWLhwIZydnQ2K0ZiYiKgqPloismLnz5+HEAIRERE6l/nnn38AAM2aNdM6PyIiQr2MtvV/9tln6sdKADB79mz069cPwcHBCA8PR2xsLHr06IEBAwbAxkbz3qlXr14YN24c9u3bhyeeeAIbN27EH3/8gdWrVxu6q2rHjh3D2rVr8cwzz6in3b17F19//TW8vb0BAH/88Qf+/PNPXLt2Dfb29gCAxYsXY+vWrdi8eTPGjh2LS5cuYerUqeqya9KkiXp9ly5dQv/+/RETEwMAePTRRw2O05iYiKgqJjJEVkwY8HJ7Q5YFgCtXrqBbt2544YUXMGbMGPV0Pz8/HDx4EKdOncK+fftw4MABDBs2DJ9//jl++eUXjWTG1tYWL730EpKSkvDf//4X4eHhaN68uUFxAMDJkyfh7OyMsrIy3L17Fz179sS///1v9fygoCB1wgAAx48fR0FBARo2bKixnuLiYmRkZAAApkyZgtGjR+Obb75BfHw8XnjhBYSGhgIAJk2ahPHjx2Pnzp2Ij49H//79DY7bmJiIqComMkRWrEmTJupGurqEh4cDANLT09GuXbsq89PT0xEZGakxLTs7G506dUK7du3wn//8R+t6o6OjER0djddeew3jxo3D008/jb1796JTp04ay40cORJt27bFqVOnMHLkSEN3EQDQtGlTbNu2DfXr14e/v3+VR1MPPlYrKCiAn58f9uzZU2Vd7u7uAO73hhoyZAh++ukn/Pzzz5g9ezbWr1+Pvn37YvTo0ejatSt++ukn7Ny5E4mJifjoo48wceJE2NjYVEkKS0tLq2zHmJiIqCq2kSGyYp6enujatSuWLVuGwsLCKvNv3bqFLl26wNPTEx999FGV+du2bcO5c+fw4osvqqdduXIFHTt2xBNPPIGkpKQqj4u0qUiEtMUQFRWFqKgonDp1CkOGDDFk99Ts7OwQFhaG4OBgvdrXPP7448jNzUX9+vURFham8fHy8lIvFx4ejjfeeAM7d+5Ev379kJSUpJ4XEBCAcePGYcuWLfjXv/6FVatWAQC8vb1x+/ZtjX2taAMjRUxEpImJDJGVW7ZsGcrKytCmTRt89913OHfuHNLT0/Hpp58iNjYWTk5OWLlyJb7//nuMHTsWJ06cwIULF/DFF19g+PDhGDBgAAYOHAjgf0lMYGAgFi9ejLy8POTm5iI3N1e9vfHjx+P999/H/v37cfHiRRw6dAivvPIKvL29ERsbqzXG3bt3Iycnp85qHuLj4xEbG4s+ffpg586duHDhAg4cOIC3334bR48eRXFxMSZMmIA9e/bg4sWL2L9/P44cOaJuRzR58mTs2LEDmZmZSE1NRUpKinpe27Zt4ejoiLfeegsZGRlYu3atRoNmY2MiIu34aInIyj366KNITU3F/Pnz8a9//Qs5OTnw9vbGE088geXLlwMABgwYgJSUFMyfPx9PP/007ty5gyZNmuDtt9/G5MmToVAoAAC//vorzp8/j/Pnz2uM/QL8r41NfHw8Vq9ejeXLl+P69evw8vJCbGwsdu3aVaX9RwVtPapMSaFQYPv27Xj77bcxYsQI5OXlwdfXF+3bt0ejRo1Qr149XL9+Ha+88gquXr0KLy8v9OvXD3PnzgUAlJWVISEhAZcvX4arqyu6deuGjz/+GMD9WrA1a9Zg6tSpWLVqFTp37ow5c+bU2Fi3ppiISDuFMLSFHxEREZGF4KMlIiIiki0mMkRk0ZydnXV+fv/9d3OHR0RmxkdLRGTRzp8/r3Ne48aN4eDgUIfREJGlYSJDREREssVHS0RERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREssVEhoiIiGSLiQwRERHJFhMZIiIikq3/B80dznzoItdLAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding](./surrogate_embedding_test.ipynb) file." ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHHCAYAAAC1G/yyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABm2klEQVR4nO3deXxMV/8H8M9k32STPZKIEEEi9hhqqzwJUm0ttVesLaWoR4u2ilZLq7W0j6ILnl+1aimt2mOLInZBbCVCkMWaGSGynt8fntzOSMLMZJKZST7v12tezD1n7v3em5m53znn3HNlQggBIiIiIgIAmBk6ACIiIiJjwuSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIhMxowZMyCTyTSqK5PJMGPGjAqNp2PHjujYsaPRro+IdMPkiIi0tmLFCshkMulhYWEBX19fDBkyBDdv3jR0eEandu3aasfLw8MD7dq1w4YNG/Sy/kePHmHGjBnYu3evXtZHVN0xOSIinX388cf46aefsGTJEnTt2hUrV65Ehw4d8Pjx4wrZ3ocffoicnJwKWXdFa9KkCX766Sf89NNPmDRpEtLS0tCzZ08sWbKk3Ot+9OgRZs6cyeSISE8sDB0AEZmurl27okWLFgCAESNGwM3NDZ9//jk2btyIPn366H17FhYWsLAwza8tX19fDBo0SHo+ePBg1K1bF/Pnz8eoUaMMGBkRPY0tR0SkN+3atQMAJCcnqy2/cOECevfuDVdXV9jY2KBFixbYuHGjWp38/HzMnDkT9erVg42NDWrWrIkXXngBcXFxUp3Sxhzl5ubinXfegbu7O2rUqIGXX34ZN27cKBHbkCFDULt27RLLS1vn8uXL8eKLL8LDwwPW1tZo2LAhFi9erNWxeB4vLy80aNAAKSkpz6x369YtDB8+HJ6enrCxsUF4eDj++9//SuVXr16Fu7s7AGDmzJlS111Fj7ciqspM8ycYERmlq1evAgBcXFykZWfPnkXbtm3h6+uLKVOmwN7eHmvWrMGrr76K3377DT169ADwJEmZPXs2RowYgVatWkGpVOLYsWM4ceIE/vWvf5W5zREjRmDlypUYMGAA2rRpg927dyMmJqZc+7F48WI0atQIL7/8MiwsLPDnn3/irbfeQlFREcaMGVOudRfLz8/H9evXUbNmzTLr5OTkoGPHjrh8+TLGjh2LwMBArF27FkOGDEFWVhbGjx8Pd3d3LF68GKNHj0aPHj3Qs2dPAEDjxo31EidRtSSIiLS0fPlyAUDs3LlT3L59W1y/fl2sW7dOuLu7C2tra3H9+nWpbufOnUVYWJh4/PixtKyoqEi0adNG1KtXT1oWHh4uYmJinrnd6dOnC9WvrcTERAFAvPXWW2r1BgwYIACI6dOnS8tiY2NFQEDAc9cphBCPHj0qUS86OlrUqVNHbVmHDh1Ehw4dnhmzEEIEBASIqKgocfv2bXH79m1x6tQp0a9fPwFAvP3222Wub8GCBQKAWLlypbQsLy9PyOVy4eDgIJRKpRBCiNu3b5fYXyLSHbvViEhnkZGRcHd3h5+fH3r37g17e3ts3LgRtWrVAgDcu3cPu3fvRp8+ffDgwQPcuXMHd+7cwd27dxEdHY1Lly5JV7c5Ozvj7NmzuHTpksbb37JlCwBg3LhxassnTJhQrv2ytbWV/q9QKHDnzh106NABV65cgUKh0GmdO3bsgLu7O9zd3REeHo61a9fi9ddfx+eff17ma7Zs2QIvLy/0799fWmZpaYlx48YhOzsb8fHxOsVCRM/GbjUi0tmiRYsQHBwMhUKBZcuWYd++fbC2tpbKL1++DCEEpk2bhmnTppW6jlu3bsHX1xcff/wxXnnlFQQHByM0NBRdunTB66+//szuoWvXrsHMzAxBQUFqy+vXr1+u/Tpw4ACmT5+OhIQEPHr0SK1MoVDAyclJ63VGRERg1qxZkMlksLOzQ4MGDeDs7PzM11y7dg316tWDmZn679gGDRpI5USkf0yOiEhnrVq1kq5We/XVV/HCCy9gwIABuHjxIhwcHFBUVAQAmDRpEqKjo0tdR926dQEA7du3R3JyMv744w/s2LEDP/zwA+bPn48lS5ZgxIgR5Y61rMkjCwsL1Z4nJyejc+fOCAkJwbx58+Dn5wcrKyts2bIF8+fPl/ZJW25uboiMjNTptURUuZgcEZFemJubY/bs2ejUqRP+85//YMqUKahTpw6AJ11BmiQGrq6uGDp0KIYOHYrs7Gy0b98eM2bMKDM5CggIQFFREZKTk9Vaiy5evFiirouLC7Kyskosf7r15c8//0Rubi42btwIf39/afmePXueG7++BQQE4PTp0ygqKlJrPbpw4YJUDpSd+BGRbjjmiIj0pmPHjmjVqhUWLFiAx48fw8PDAx07dsTSpUuRnp5eov7t27el/9+9e1etzMHBAXXr1kVubm6Z2+vatSsA4Ouvv1ZbvmDBghJ1g4KCoFAocPr0aWlZenp6iVmqzc3NAQBCCGmZQqHA8uXLy4yjonTr1g0ZGRlYvXq1tKygoADffPMNHBwc0KFDBwCAnZ0dAJSa/BGR9thyRER69e677+K1117DihUrMGrUKCxatAgvvPACwsLCMHLkSNSpUweZmZlISEjAjRs3cOrUKQBAw4YN0bFjRzRv3hyurq44duwY1q1bh7Fjx5a5rSZNmqB///749ttvoVAo0KZNG+zatQuXL18uUbdfv36YPHkyevTogXHjxuHRo0dYvHgxgoODceLECaleVFQUrKys0L17d7z55pvIzs7G999/Dw8Pj1ITvIr0xhtvYOnSpRgyZAiOHz+O2rVrY926dThw4AAWLFiAGjVqAHgygLxhw4ZYvXo1goOD4erqitDQUISGhlZqvERVhqEvlyMi01N8Kf/Ro0dLlBUWFoqgoCARFBQkCgoKhBBCJCcni8GDBwsvLy9haWkpfH19xUsvvSTWrVsnvW7WrFmiVatWwtnZWdja2oqQkBDx6aefiry8PKlOaZfd5+TkiHHjxomaNWsKe3t70b17d3H9+vVSL23fsWOHCA0NFVZWVqJ+/fpi5cqVpa5z48aNonHjxsLGxkbUrl1bfP7552LZsmUCgEhJSZHqaXMp//OmKShrfZmZmWLo0KHCzc1NWFlZibCwMLF8+fISrz148KBo3ry5sLKy4mX9ROUkE0Kl7ZiIiIiomuOYIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUcBJIDRUVFSEtLQ01atTgVP1EREQmQgiBBw8ewMfHp8RNnMvC5EhDaWlp8PPzM3QYREREpIPr16+jVq1aGtVlcqSh4mn6r1+/DkdHRwNHQ0RERJpQKpXw8/OTzuOaYHKkoeKuNEdHRyZHREREJkabITEckE1ERESkgskRERERkQomR0REREQqOOaIiMiIFRYWIj8/39BhEBktS0tLmJub63WdTI6IiIyQEAIZGRnIysoydChERs/Z2RleXl56m4eQyRERkREqTow8PDxgZ2fHyWeJSiGEwKNHj3Dr1i0AgLe3t17Wy+SIiMjIFBYWSolRzZo1DR0OkVGztbUFANy6dQseHh566WLjgGwiIiNTPMbIzs7OwJEQmYbiz4q+xucxOSIiMlLsSiPSjL4/K0yOiIiIiFQwOSIiIqIS9u7dC5lMVu4rJmvXro0FCxboJabKwuTIwNIVOTiYfAfpihxDh0JEpBcZGRl4++23UadOHVhbW8PPzw/du3fHrl27pDoHDx5Et27d4OLiAhsbG4SFhWHevHkoLCyU6ly9ehXDhw9HYGAgbG1tERQUhOnTpyMvL09te99//z3Cw8Ph4OAAZ2dnNG3aFLNnz5bKZ8yYAZlMhi5dupSIde7cuZDJZOjYsaPG+6dUKvHBBx8gJCQENjY28PLyQmRkJNavXw8hhFTv7Nmz6NOnD9zd3WFtbY3g4GB89NFHePTokVTn3r17ePvtt1G/fn3Y2trC398f48aNg0Kh0CiWq1evQiaTlfo4dOiQxvvUsWNHTJgwQeP6VR2vVjOg1UdTMXX9GRQJwEwGzO4Zhr4t/Q0dFhGRzq5evYq2bdvC2dkZc+fORVhYGPLz87F9+3aMGTMGFy5cwIYNG9CnTx8MHToUe/bsgbOzM3bu3In33nsPCQkJWLNmDWQyGS5cuICioiIsXboUdevWRVJSEkaOHImHDx/iyy+/BAAsW7YMEyZMwNdff40OHTogNzcXp0+fRlJSklpc3t7e2LNnD27cuIFatWpJy5ctWwZ/f82/d7OysvDCCy9AoVBg1qxZaNmyJSwsLBAfH4/33nsPL774IpydnXHo0CFERkYiMjISmzdvhqenJ44cOYJ///vf2LVrF/bs2QMrKyukpaUhLS0NX375JRo2bIhr165h1KhRSEtLw7p16zSOa+fOnWjUqJHaMl7pWA7CgL799lsRFhYmatSoIWrUqCFat24ttmzZIpXn5OSIt956S7i6ugp7e3vRs2dPkZGRobaOa9euiW7duglbW1vh7u4uJk2aJPLz89Xq7NmzRzRt2lRYWVmJoKAgsXz5cq1jVSgUAoBQKBQ67evT0rIeicApm0TA5H8edaZsFmlZj/SyfiIyXTk5OeLcuXMiJyfH0KForWvXrsLX11dkZ2eXKLt//77Izs4WNWvWFD179ixRvnHjRgFA/Prrr2Wu/4svvhCBgYHS81deeUUMGTLkmTFNnz5dhIeHi5deeknMmjVLWn7gwAHh5uYmRo8eLTp06KDB3gkxevRoYW9vL27evFmi7MGDByI/P18UFRWJhg0bihYtWojCwkK1OomJiUImk4k5c+aUuY01a9YIKyurEuey0qSkpAgA4uTJk2XWKd7///u//xMBAQHC0dFR9O3bVyiVSiGEELGxsQKA2iMlJUXs2bNHABA7d+4UzZs3F7a2tkIul4sLFy5I6758+bJ4+eWXhYeHh7C3txctWrQQcXFxatsPCAgQ8+fPl54DEN9++63o0qWLsLGxEYGBgWLt2rVSeadOncSYMWPU1nHr1i1haWkpdu7cWeo+Puszo8v526DdarVq1cKcOXNw/PhxHDt2DC+++CJeeeUVnD17FgDwzjvv4M8//8TatWsRHx+PtLQ09OzZU3p9YWEhYmJikJeXh4MHD+K///0vVqxYgY8++kiqk5KSgpiYGHTq1AmJiYmYMGECRowYge3bt1f6/qpKufMQRUJ9WaEQuHrnUekvICLSQWV23d+7dw/btm3DmDFjYG9vX6Lc2dkZO3bswN27dzFp0qQS5d27d0dwcDBWrVpV5jYUCgVcXV2l515eXjh06BCuXbv23PiGDRuGFStWSM+XLVuGgQMHwsrK6rmvBYCioiL8+uuvGDhwIHx8fEqUOzg4wMLCAomJiTh37hwmTpwIMzP102x4eDgiIyOfu4+Ojo6wsNBf505ycjJ+//13bNq0CZs2bUJ8fDzmzJkDAFi4cCHkcjlGjhyJ9PR0pKenw8/PT3rtBx98gK+++grHjh2DhYUFhg0bJpVlZ2ejW7du2LVrF06ePIkuXbqge/fuSE1NfWY806ZNQ69evXDq1CkMHDgQ/fr1w/nz5wEAI0aMwC+//ILc3Fyp/sqVK+Hr64sXX3xRb8fkmTROoyqJi4uL+OGHH0RWVpawtLRUyybPnz8vAIiEhAQhhBBbtmwRZmZmaq1JixcvFo6OjiI3N1cIIcR7770nGjVqpLaNvn37iujoaK3iYssREVUWfbUc/XrkmvQ9Ezhlk/j1yDU9RVi6w4cPCwBi/fr1ZdaZM2eOACDu379favnLL78sGjRoUGrZpUuXhKOjo/juu++kZWlpaaJ169YCgAgODhaxsbFi9erVai02xS0neXl5wsPDQ8THx4vs7GxRo0YNcerUKTF+/HiNWo4yMzMFADFv3rxn1vv111+f2Zozbtw4YWtrW2rZ7du3hb+/v3j//fefG48Q/7Qc2draCnt7e7VHsenTpws7OzuppUgIId59910REREhPe/QoYMYP3682rpVW46Kbd68WQB45nuzUaNG4ptvvpGel9ZyNGrUKLXXREREiNGjRwshnrz/XVxcxOrVq6Xyxo0bixkzZpS5zSrVcqSqsLAQv/76Kx4+fAi5XI7jx48jPz8fkZGRUp2QkBD4+/sjISEBAJCQkICwsDB4enpKdaKjo6FUKqXWp4SEBLV1FNcpXkdZcnNzoVQq1R765O1ki9k9w2D+v7kZzGUyfNYzFN5OtnrdDhFVT+mKHGlMIwAUCeD99UkV2oIkhHh+JR3qAsDNmzfRpUsXvPbaaxg5cqS03NvbGwkJCThz5gzGjx+PgoICxMbGokuXLigqKlJbh6WlJQYNGoTly5dj7dq1CA4ORuPGjSssZm3rK5VKxMTEoGHDhpgxY4ZWr129ejUSExPVHqpq166NGjVqSM+9vb2lW248j+oxKr49R/Frs7OzMWnSJDRo0ADOzs5wcHDA+fPnn9tyJJfLSzwvbjmysbHB66+/jmXLlgEATpw4gaSkJAwZMkSjePXB4AOyz5w5A7lcjsePH8PBwQEbNmxAw4YNkZiYCCsrKzg7O6vV9/T0REZGBoAnV0SoJkbF5cVlz6qjVCqRk5MjTTv+tNmzZ2PmzJn62MUy9W3pj/bB7rh65xFqu9kxMSIivXlW131FfdfUq1dPGkhdluDgYADA+fPn0aZNmxLl58+fR8OGDdWWpaWloVOnTmjTpg2+++67UtcbGhqK0NBQvPXWWxg1ahTatWuH+Ph4dOrUSa3esGHDEBERgaSkJLXuIU24u7vD2dn5mfsHqO9j06ZNS5SfP39eqlPswYMH6NKlC2rUqIENGzbA0tJSq9j8/PxQt27dMsufXp9MJiuRPGry2uLJFotfO2nSJMTFxeHLL79E3bp1YWtri969e5e4olBbI0aMQJMmTXDjxg0sX74cL774IgICAsq1Tm0YvOWofv36SExMxOHDhzF69GjExsbi3Llzhg4LU6dOhUKhkB7Xr1+vkO14O9lCHlSTiRER6VWgmz3Mnpo02FwmQ223irsliaurK6Kjo7Fo0SI8fPiwRHlWVhaioqLg6uqKr776qkT5xo0bcenSJfTv319advPmTXTs2BHNmzfH8uXLS4zhKU1xclVaDI0aNUKjRo2QlJSEAQMGaLN7MDMzQ79+/fDzzz8jLS2tRHl2djYKCgrQpEkThISEYP78+SUSkFOnTmHnzp1q+6hUKhEVFQUrKyts3LgRNjY2WsWlD1ZWVmrTKGjqwIEDGDJkCHr06IGwsDB4eXnh6tWrz33d09MMHDp0CA0aNJCeh4WFoUWLFvj+++/xyy+/aJ3IlpfBkyMrKyvUrVsXzZs3x+zZsxEeHo6FCxfCy8sLeXl5JSafyszMhJeXF4AnA/EyMzNLlBeXPauOo6Njma1GAGBtbQ1HR0e1BxGRqTBU1/2iRYtQWFiIVq1a4bfffsOlS5dw/vx5fP3115DL5bC3t8fSpUvxxx9/4I033sDp06dx9epV/PjjjxgyZAh69+6NPn36APgnMfL398eXX36J27dvIyMjQ+oZAIDRo0fjk08+wYEDB3Dt2jUcOnQIgwcPhru7e4mum2K7d+9Genp6iZ4JTXz66afw8/NDREQE/u///g/nzp3DpUuXsGzZMjRt2hTZ2dmQyWT48ccfce7cOfTq1QtHjhxBamoq1q5di+7du0Mul0tzChUnRg8fPsSPP/4IpVIp7aM2ycrdu3el1xU/Hj9+rPHra9eujcOHD+Pq1au4c+eOxq1K9erVw/r165GYmIhTp05hwIABGr127dq1WLZsGf7++29Mnz4dR44cwdixY9XqjBgxAnPmzIEQAj169NB4X/RC49FJlaRTp04iNjZWGpC9bt06qezChQulDsjOzMyU6ixdulQ4OjqKx48fCyGeDMgODQ1V20b//v0NPiCbiKgs+ryUPy3rkTh4+U6lXuyRlpYmxowZIwICAoSVlZXw9fUVL7/8stizZ49UZ9++fSI6Olo4OjoKKysr0ahRI/Hll1+KgoICqc7y5ctLXGJe/Ci2bt060a1bN+Ht7S2srKyEj4+P6NWrlzh9+rRUp3hAdlk0HZBdLCsrS0yZMkXUq1dPWFlZCU9PTxEZGSk2bNggioqKpHqnT58WvXr1Eq6ursLS0lIEBQWJDz/8UDx8+FCqUzzoubRHSkrKc2MpHpBd2mPVqlVl7v/8+fNFQECA9PzixYuidevWwtbWtsSl/KqD50+ePKkWW0pKiujUqZOwtbUVfn5+4j//+U+Jwd2lDchetGiR+Ne//iWsra1F7dq11QZfF3vw4IGws7MTb7311nOPg74HZBs0OZoyZYqIj48XKSkp4vTp02LKlClCJpOJHTt2CCGEGDVqlPD39xe7d+8Wx44dE3K5XMjlcun1BQUFIjQ0VERFRYnExESxbds24e7uLqZOnSrVuXLlirCzsxPvvvuuOH/+vFi0aJEwNzcX27Zt0ypWJkdEVFlMeZ4joucBIDZs2PDceikpKcLMzEwcP378uXX1nRwZdED2rVu3MHjwYKSnp8PJyQmNGzfG9u3b8a9//QsAMH/+fJiZmaFXr17Izc1FdHQ0vv32W+n15ubm2LRpE0aPHi0118bGxuLjjz+W6gQGBmLz5s145513sHDhQtSqVQs//PADoqOjK31/iYiI6Nny8/Nx9+5dfPjhh2jdujWaNWtW6THI/pfF0XMolUo4OTlJk3MREVWUx48fIyUlBYGBgQYZnFudOTg4lFm2detWtGvXrhKjAUaNGoWVK1eWWjZo0CAsWbKkUuPRB5lMhg0bNuDVV18ttXzv3r3o1KkTgoODsW7dOoSFhT13nc/6zOhy/jb4pfxERETG4un5gVT5+vpWXiD/8/HHH5c6mzgAk/2h/rw2mY4dO2o9R5S+MTkiIiL6n2fNFWQIHh4e8PDwMHQY1Y7BL+UnIiIiMiZMjoiIjJSmc80QVXf6/qywW42IyMhYWVnBzMwMaWlpcHd3h5WVlXTbBiL6hxACeXl5uH37NszMzGBlZaWX9TI5IiIyMmZmZggMDER6enqpt6kgInV2dnbw9/fX6PYymmByRERkhKysrODv74+CggKd7nlFVF2Ym5vDwsJCr62rTI6IiIyUTCaDpaWl1ndoJ6Ly4YBsIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIhUGTo9mzZ6Nly5aoUaMGPDw88Oqrr+LixYtqdTp27AiZTKb2GDVqlFqd1NRUxMTEwM7ODh4eHnj33XdRUFCgVmfv3r1o1qwZrK2tUbduXaxYsaKid4+IiIhMkEGTo/j4eIwZMwaHDh1CXFwc8vPzERUVhYcPH6rVGzlyJNLT06XHF198IZUVFhYiJiYGeXl5OHjwIP773/9ixYoV+Oijj6Q6KSkpiImJQadOnZCYmIgJEyZgxIgR2L59e6XtKxEREZkGmRBCGDqIYrdv34aHhwfi4+PRvn17AE9ajpo0aYIFCxaU+pqtW7fipZdeQlpaGjw9PQEAS5YsweTJk3H79m1YWVlh8uTJ2Lx5M5KSkqTX9evXD1lZWdi2bZtGsSmVSjg5OUGhUMDR0bF8O0pERESVQpfzt1GNOVIoFAAAV1dXteU///wz3NzcEBoaiqlTp+LRo0dSWUJCAsLCwqTECACio6OhVCpx9uxZqU5kZKTaOqOjo5GQkFBRu0JEREQmysLQARQrKirChAkT0LZtW4SGhkrLBwwYgICAAPj4+OD06dOYPHkyLl68iPXr1wMAMjIy1BIjANLzjIyMZ9ZRKpXIycmBra1tiXhyc3ORm5srPVcqlfrZUSIiIjJqRpMcjRkzBklJSdi/f7/a8jfeeEP6f1hYGLy9vdG5c2ckJycjKCiowuKZPXs2Zs6cWWHrJyIiIuNkFN1qY8eOxaZNm7Bnzx7UqlXrmXUjIiIAAJcvXwYAeHl5ITMzU61O8XMvL69n1nF0dCy11QgApk6dCoVCIT2uX7+u/Y4RERGRyTFociSEwNixY7Fhwwbs3r0bgYGBz31NYmIiAMDb2xsAIJfLcebMGdy6dUuqExcXB0dHRzRs2FCqs2vXLrX1xMXFQS6Xl7kda2trODo6qj2IiIio6jNocjRmzBisXLkSv/zyC2rUqIGMjAxkZGQgJycHAJCcnIxPPvkEx48fx9WrV7Fx40YMHjwY7du3R+PGjQEAUVFRaNiwIV5//XWcOnUK27dvx4cffogxY8bA2toaADBq1ChcuXIF7733Hi5cuIBvv/0Wa9aswTvvvGOwfSciIiLjZNBL+WUyWanLly9fjiFDhuD69esYNGgQkpKS8PDhQ/j5+aFHjx748MMP1Vpyrl27htGjR2Pv3r2wt7dHbGws5syZAwuLf4ZU7d27F++88w7OnTuHWrVqYdq0aRgyZIjGsfJSfiIiItOjy/nbqOY5MmZMjoiIiEyPyc9zRERERGRoTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIhU7J0Z49e/QdBxEREZFR0Ck56tKlC4KCgjBr1ixcv35d3zERERERGYxOydHNmzcxduxYrFu3DnXq1EF0dDTWrFmDvLw8fcdHREREVKl0So7c3NzwzjvvIDExEYcPH0ZwcDDeeust+Pj4YNy4cTh16pS+4yQiIiKqFOUekN2sWTNMnToVY8eORXZ2NpYtW4bmzZujXbt2OHv2rD5iJCIiIqo0OidH+fn5WLduHbp164aAgABs374d//nPf5CZmYnLly8jICAAr732mj5jJSIiIqpwMiGE0PZFb7/9NlatWgUhBF5//XWMGDECoaGhanUyMjLg4+ODoqIivQVrSEqlEk5OTlAoFHB0dDR0OERERKQBXc7fFrps6Ny5c/jmm2/Qs2dPWFtbl1rHzc2Nl/wTERGRydGp5ag6YssRERGR6am0liMAuHjxIr755hucP38eANCgQQO8/fbbqF+/vq6rJCIiIjI4nQZk//bbbwgNDcXx48cRHh6O8PBwnDhxAqGhofjtt9/0HSMRERFRpdGpWy0oKAgDBw7Exx9/rLZ8+vTpWLlyJZKTk/UWoLFgtxoREZHp0eX8rVPLUXp6OgYPHlxi+aBBg5Cenq7LKomIiIiMgk7JUceOHfHXX3+VWL5//360a9eu3EERERERGYpOA7JffvllTJ48GcePH0fr1q0BAIcOHcLatWsxc+ZMbNy4Ua0uERERkanQacyRmZlmDU4ymQyFhYVaB2WMOOaIiIjI9FTapfxVZdZrIiIioqeV+8az5TF79my0bNkSNWrUgIeHB1599VVcvHhRrc7jx48xZswY1KxZEw4ODujVqxcyMzPV6qSmpiImJgZ2dnbw8PDAu+++i4KCArU6e/fuRbNmzWBtbY26detixYoVFb17REREZII0bjn6+uuvNV7puHHjNKoXHx+PMWPGoGXLligoKMD777+PqKgonDt3Dvb29gCAd955B5s3b8batWvh5OSEsWPHomfPnjhw4AAAoLCwEDExMfDy8sLBgwelK+ksLS3x2WefAQBSUlIQExODUaNG4eeff8auXbswYsQIeHt7Izo6WuP9IiIioqpP4zFHgYGBmq1QJsOVK1d0Cub27dvw8PBAfHw82rdvD4VCAXd3d/zyyy/o3bs3AODChQto0KABEhIS0Lp1a2zduhUvvfQS0tLS4OnpCQBYsmQJJk+ejNu3b8PKygqTJ0/G5s2bkZSUJG2rX79+yMrKwrZt2zSKjWOOiIiITE+FjjlKSUnROTBNKRQKAICrqysA4Pjx48jPz0dkZKRUJyQkBP7+/lJylJCQgLCwMCkxAoDo6GiMHj0aZ8+eRdOmTZGQkKC2juI6EyZMKDOW3Nxc5ObmSs+VSqU+dpGIiIiMnEHHHKkqKirChAkT0LZtW4SGhgIAMjIyYGVlBWdnZ7W6np6eyMjIkOqoJkbF5cVlz6qjVCqRk5NTajyzZ8+Gk5OT9PDz8yv3PhIREZHx0/nGszdu3MDGjRuRmpqKvLw8tbJ58+Zpvb4xY8YgKSkJ+/fv1zUkvZo6dSomTpwoPVcqlUyQiIiIqgGdkqNdu3bh5ZdfRp06dXDhwgWEhobi6tWrEEKgWbNmWq9v7Nix2LRpE/bt24datWpJy728vJCXl4esrCy11qPMzEx4eXlJdY4cOaK2vuKr2VTrPH2FW2ZmJhwdHWFra1tqTNbW1rC2ttZ6X4iIiMi06dStNnXqVEyaNAlnzpyBjY0NfvvtN1y/fh0dOnTAa6+9pvF6hBAYO3YsNmzYgN27d5cY9N28eXNYWlpi165d0rKLFy8iNTUVcrkcACCXy3HmzBncunVLqhMXFwdHR0c0bNhQqqO6juI6xesgIiIikggdODg4iMuXLwshhHB2dhZJSUlCCCESExNFQECAxusZPXq0cHJyEnv37hXp6enS49GjR1KdUaNGCX9/f7F7925x7NgxIZfLhVwul8oLCgpEaGioiIqKEomJiWLbtm3C3d1dTJ06Vapz5coVYWdnJ959911x/vx5sWjRImFubi62bdumcawKhUIAEAqFQuPXEBERkWHpcv7WqeXI3t5eGmfk7e2N5ORkqezOnTsar2fx4sVQKBTo2LEjvL29pcfq1aulOvPnz8dLL72EXr16oX379vDy8sL69eulcnNzc2zatAnm5uaQy+UYNGgQBg8ejI8//liqExgYiM2bNyMuLg7h4eH46quv8MMPP3COIyIiIipBp3urvfrqq4iJicHIkSMxadIk/PHHHxgyZAjWr18PFxcX7Ny5syJiNSjOc0RERGR6Ku3eavPmzUN2djYAYObMmcjOzsbq1atRr149na5UIyIiIjIWOrUcVUdsOSIiIjI9ldZyVCwvLw+3bt1CUVGR2nJ/f//yrJaIiIjIYHRKjv7++28MHz4cBw8eVFsuhIBMJkNhYaFegiMiIiKqbDolR0OHDoWFhQU2bdoEb29vyGQyfcdFREREZBA6JUeJiYk4fvw4QkJC9B0PERERkUHpNM9Rw4YNtZrPiIiIiMhUaJwcKZVK6fH555/jvffew969e3H37l21MqVSWZHxEhEREVUojbvVnJ2d1cYWCSHQuXNntTockE1ERESmTuPkaM+ePRUZBxEREZFR0Dg56tChg/T/1NRU+Pn5lbhKTQiB69ev6y86IiIiokqm04DswMBA3L59u8Tye/fuITAwsNxBERERERmKTslR8diip2VnZ8PGxqbcQREREREZilbzHE2cOBEAIJPJMG3aNNjZ2UllhYWFOHz4MJo0aaLXAImIiIgqk1bJ0cmTJwE8aTk6c+YMrKyspDIrKyuEh4dj0qRJ+o2QiIiIqBJplRwVX7E2dOhQLFy4kHenJyIioipHp9uHLF++XN9xEBERERkFnZKjhw8fYs6cOdi1axdu3bqFoqIitfIrV67oJTgiIiKiyqZTcjRixAjEx8fj9ddfh7e3d6lXrhERERGZIp2So61bt2Lz5s1o27atvuMhIiIiMiid5jlycXGBq6urvmMhIiIiMjidkqNPPvkEH330ER49eqTveIiIiIgMSqduta+++grJycnw9PRE7dq1YWlpqVZ+4sQJvQRHREREVNl0So5effVVPYdBREREZBxkQghh6CBMgVKphJOTExQKBSe/JCIiMhG6nL+1GnN05MgRFBYWllmem5uLNWvWaLNKIiIiIqOiVXIkl8tx9+5d6bmjo6PahI9ZWVno37+//qIjIiIiqmRaJUdP98CV1iPHXjoiIiIyZTpdyv8snC2biIiITJnekyMiIiIiU6b1pfznzp1DRkYGgCddaBcuXEB2djYA4M6dO/qNjoiIiKiSaXUpv5mZGWQyWanjioqXy2SyZ17RZqp4KT8REZHp0eX8rVXLUUpKik6BEREREZkKrZKjgIAArVb+1ltv4eOPP4abm5tWryMiIiIylAodkL1y5UoolcqK3AQRERGRXlVocsQ5j4iIiMjU8FJ+IiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEhFhSZHgwYN4oSJREREZFJ0So6KiorKXJ6amio9X7x4Mec4IiIiIpOiVXKkVCrRp08f2Nvbw9PTEx999JHarUJu376NwMBAvQdJREREVFm0miF72rRpOHXqFH766SdkZWVh1qxZOHHiBNavXw8rKysAnNuIiIiITJtWLUe///47li5dit69e2PEiBE4duwYbt++je7duyM3NxfAkxvQamrfvn3o3r07fHx8IJPJ8Pvvv6uVDxkyBDKZTO3RpUsXtTr37t3DwIED4ejoCGdnZwwfPhzZ2dlqdU6fPo127drBxsYGfn5++OKLL7TZbSIiIqpGtEqObt++rXZ/NTc3N+zcuRMPHjxAt27d8OjRI602/vDhQ4SHh2PRokVl1unSpQvS09Olx6pVq9TKBw4ciLNnzyIuLg6bNm3Cvn378MYbb0jlSqUSUVFRCAgIwPHjxzF37lzMmDED3333nVaxEhERUfWgVbeav78/zp8/rzauqEaNGtixYweioqLQo0cPrTbetWtXdO3a9Zl1rK2t4eXlVWrZ+fPnsW3bNhw9ehQtWrQAAHzzzTfo1q0bvvzyS/j4+ODnn39GXl4eli1bBisrKzRq1AiJiYmYN2+eWhJFREREBGjZchQVFYXly5eXWO7g4IDt27fDxsZGb4EV27t3Lzw8PFC/fn2MHj0ad+/elcoSEhLg7OwsJUYAEBkZCTMzMxw+fFiq0759e2lMFABER0fj4sWLuH//vt7jJSIiItOmVcvRzJkzkZaWVmpZjRo1EBcXhxMnTuglMOBJl1rPnj0RGBiI5ORkvP/+++jatSsSEhJgbm6OjIwMeHh4qL3GwsICrq6uyMjIAABkZGSUuILO09NTKnNxcSl127m5udI4KuBJ9xwRERFVfVolRy4uLmUmE8CTBKlDhw7lDqpYv379pP+HhYWhcePGCAoKwt69e9G5c2e9bac0s2fPxsyZMyt0G0RERGR8tJ4EsqCgAHPnzkWzZs3g4OAABwcHNGvWDF9++SXy8/MrIkZJnTp14ObmhsuXLwMAvLy8cOvWrRLx3bt3Txqn5OXlhczMTLU6xc/LGssEAFOnToVCoZAe169f1+euEBERkZHSKjnKyclBx44dMWXKFLi7u2PEiBEYMWIE3N3dMXnyZHTu3BmPHz+uqFhx48YN3L17F97e3gAAuVyOrKwsHD9+XKqze/duFBUVISIiQqqzb98+tcQtLi4O9evXf2YrmLW1NRwdHdUeREREVPVp1a02Z84cXL9+HSdPnkTjxo3Vyk6dOoWXX34Zc+bMwYwZMzRaX3Z2ttQKBAApKSlITEyEq6srXF1dMXPmTPTq1QteXl5ITk7Ge++9h7p16yI6OhoA0KBBA3Tp0gUjR47EkiVLkJ+fj7Fjx6Jfv37w8fEBAAwYMAAzZ87E8OHDMXnyZCQlJWHhwoWYP3++NrtORERE1YXQQnBwsFi3bl2Z5WvWrBH16tXTeH179uwRAEo8YmNjxaNHj0RUVJRwd3cXlpaWIiAgQIwcOVJkZGSorePu3buif//+wsHBQTg6OoqhQ4eKBw8eqNU5deqUeOGFF4S1tbXw9fUVc+bM0Wa3hRBCKBQKAUAoFAqtX0tERESGocv5WyaE5vf7sLGxwaVLl+Dn51dq+fXr11GvXr0K7VozFKVSCScnJygUCnaxERERmQhdzt9ajTlydHQsMQBaVUZGBmrUqKHNKomIiIiMilbJUadOnfDZZ5+VWT5nzhx06tSp3EERERERGYpWA7KnT5+OiIgItG7dGhMnTkRISAiEEDh//jzmz5+Pc+fO4dChQxUVKxEREVGF0yo5atiwIeLi4jB8+HD069cPMpkMACCEQEhICHbs2IFGjRpVSKBERERElUGr5AgAWrdujbNnzyIxMRF///03ACA4OBhNmjTRd2xERERElU7r5EipVMLBwQFNmjRRS4iKioqQnZ3NK7mIiIjIpGk1IHvDhg1o0aJFqZfq5+TkoGXLlvjzzz/1FhwRERFRZdMqOVq8eDHee+892NnZlSizt7fH5MmT8Z///EdvwRERERFVNq2So6SkJHTs2LHM8vbt2+PMmTPljYmIiIjIYLRKju7fv4+CgoIyy/Pz83H//v1yB0VERERkKFolR7Vr18axY8fKLD927BgCAgLKHRQRERGRoWiVHPXs2RMffPABMjMzS5RlZGTgww8/RK9evfQWHBEREVFl0+rGsw8ePIBcLkdqaioGDRqE+vXrAwAuXLiAn3/+GX5+fjh06FCVvL8abzxLRERkenQ5f2s1z1GNGjVw4MABTJ06FatXr5bGFzk7O2PQoEH49NNPq2RiRERERNWHVi1HqoQQuHPnDoQQcHd3l24lourAgQNo0aIFrK2tyx2oobHliIiIyPTocv7WasyRKplMBnd3d3h4eJSaGAFA165dcfPmTV03QTpKV+TgYPIdpCtyDB0KERGRydH69iHa0LFRisph9dFUTF1/BkUCMJMBs3uGoW9Lf0OHRUREZDJ0bjki45OuyJESIwAoEsD765PYgkRERKQFJkdVSMqdh1JiVKxQCFy988gwAREREZkgJkdVSKCbPcyeGv5lLpOhtlvJe+ERERFR6So0OSproDZVDG8nW8zuGQbz/x13c5kMn/UMhbeTrYEjIyIiMh0ckF3F9G3pj/bB7rh65xFqu9kxMSIiItJShSZHDx48qMjVUxm8nWyZFBEREelIq+ToxRdf1Kje7t27dQqGiIiIyNC0So727t2LgIAAxMTEwNLSsqJiIiIiIjIYrZKjzz//HMuXL8fatWsxcOBADBs2DKGhoRUVGxEREVGl0+pqtXfffRfnzp3D77//jgcPHqBt27Zo1aoVlixZAqVSWVExEhEREVUanW88CwCPHj3C2rVrsWjRIpw7dw5paWlV9qasvPEsERGR6anUG88CwIkTJxAfH4/z588jNDSU45CIiIjI5GmdHKWlpeGzzz5DcHAwevfuDVdXVxw+fBiHDh2CrS0vHyciIiLTptWA7G7dumHPnj2IiorC3LlzERMTAwuLCp0qiYiIiKhSaTXmyMzMDN7e3vDw8HjmrUFOnDihl+CMCcccERERmR5dzt9aNftMnz5dp8CIiIiITEW5rlarTiq75ShdkYOUOw8R6GbPW4EQERHpqMJbjsoSHx+Phw8fQi6Xw8XFRR+rrNZWH03F1PVnUCQAMxkwu2cY+rb0N3RYRERE1YJWV6t9/vnnmDZtmvRcCIEuXbqgU6dOeOmll9CgQQOcPXtW70FWJ+mKHCkxAoAiAby/PgnpihzDBkZERFRNaJUcrV69Wu12IevWrcO+ffvw119/4c6dO2jRogVmzpyp9yCrk5Q7D6XEqFihELh659FzX5uuyMHB5DtMpIiIiMpBq261lJQUNG7cWHq+ZcsW9O7dG23btgUAfPjhh3jttdf0G2E1E+hmDzMZ1BIkc5kMtd3snvk6dsURERHph1YtRwUFBbC2tpaeJyQkoE2bNtJzHx8f3LlzR3/RVUPeTraY3TMM5v+bKsFcJsNnPUOfOSibXXFERET6o1XLUVBQEPbt24c6deogNTUVf//9N9q3by+V37hxAzVr1tR7kNVN35b+aB/sjqt3HqG2m91zr1Z7Vlccr3QjIiLSjlbJ0ZgxYzB27Fj89ddfOHToEORyORo2bCiV7969G02bNtV7kNWRt5OtxomNrl1xREREVJJW3WojR47E119/jXv37qF9+/b47bff1MrT0tIwbNgwvQZIz6dLVxwRERGVjpNAasgUbh+SrsjRuCuOiIioOjDYJJBkHLTpiiMiIqLSadWtlp+fj/feew9169ZFq1atsGzZMrXyzMxMmJub6zVAIiIiosqkVXL06aef4v/+7/8watQoREVFYeLEiXjzzTfV6mjTS7dv3z50794dPj4+kMlk+P3330us66OPPoK3tzdsbW0RGRmJS5cuqdW5d+8eBg4cCEdHRzg7O2P48OHIzs5Wq3P69Gm0a9cONjY28PPzwxdffKHNbhMREVE1olVy9PPPP+OHH37ApEmTMGvWLBw7dgy7d+/G0KFDpaRI9r9BwZp4+PAhwsPDsWjRolLLv/jiC3z99ddYsmQJDh8+DHt7e0RHR+Px48dSnYEDB+Ls2bOIi4vDpk2bsG/fPrzxxhtSuVKpRFRUFAICAnD8+HHMnTsXM2bMwHfffafNrhMREVF1IbRga2srUlJS1JbduHFDBAcHi4EDB4qbN28KMzMzbVYpASA2bNggPS8qKhJeXl5i7ty50rKsrCxhbW0tVq1aJYQQ4ty5cwKAOHr0qFRn69atQiaTiZs3bwohhPj222+Fi4uLyM3NlepMnjxZ1K9fX6v4FAqFACAUCoUuu0dEREQGoMv5W6uWIy8vLyQnJ6st8/X1xZ49e3D06FEMGTJEXzkbUlJSkJGRgcjISGmZk5MTIiIikJCQAODJDN3Ozs5o0aKFVCcyMhJmZmY4fPiwVKd9+/awsrKS6kRHR+PixYu4f/9+mdvPzc2FUqlUexAREVHVp1Vy9OKLL+KXX34psdzHxwe7d+9GSkqK3gLLyMgAAHh6eqot9/T0lMoyMjLg4eGhVm5hYQFXV1e1OqWtQ3UbpZk9ezacnJykh5+fX/l2iIiIiEyCVsnRtGnT0KdPn1LLfH19ER8fX+IKNlM1depUKBQK6XH9+nVDh0RERESVQKt5jgICAhAQEFBmuY+PD2JjY8sdFPCkCw94Mj2At7e3tDwzMxNNmjSR6ty6dUvtdQUFBbh37570ei8vL2RmZqrVKX5eXKc01tbWajfZJSIioupBq5ajYmvXrkXPnj0RGhqK0NBQ9OzZE+vWrdNrYIGBgfDy8sKuXbukZUqlEocPH4ZcLgcAyOVyZGVl4fjx41Kd3bt3o6ioCBEREVKdffv2IT8/X6oTFxeH+vXrw8XFRa8xExERkenTKjkqKipC37590bdvX5w7dw5169ZF3bp1cfbsWfTt2xf9+vXTap6j7OxsJCYmIjExEcCTQdiJiYlITU2FTCbDhAkTMGvWLGzcuBFnzpzB4MGD4ePjg1dffRUA0KBBA3Tp0gUjR47EkSNHcODAAYwdOxb9+vWDj48PAGDAgAGwsrLC8OHDcfbsWaxevRoLFy7ExIkTtdl10kK6IgcHk+8gXZFTrjpEREQGoc3lcPPmzROurq7izz//LFH2xx9/CFdXVzF//nyN17dnzx4BoMQjNjZWCPHkcv5p06YJT09PYW1tLTp37iwuXryoto67d++K/v37CwcHB+Ho6CiGDh0qHjx4oFbn1KlT4oUXXhDW1tbC19dXzJkzR5vdFkLwUn5N/XrkmgicskkETN4kAqdsEr8euaZTHSIiIn3Q5fyt1Y1nGzdujAkTJmDYsGGllv/4449YuHAhTp8+Xf6szciYwo1nDS1dkYO2c3ajSOUdZS6TYf+UTtI93zSpQ0REpC+6nL+16la7dOmS2rxDTyvt9h5UfaTceaiW9ABAoRC4eueRVnWIiIgMSavkyNbWFllZWWWWK5VK2NjYlDcmMlGBbvYwe+ruMeYyGWq72WlVh4iIyJC0So7kcjkWL15cZvmiRYukK8mo+vF2ssXsnmEw/9/99cxlMnzWM1Stu0yTOkRERIak1TxHH3zwATp27Ii7d+9i0qRJCAkJgRAC58+fx1dffYU//vgDe/bsqahYyQT0bemP9sHuuHrnEWq72ZWa9GhSh4iIyFC0GpANABs2bMAbb7yBe/fuqS13cXHB0qVL0atXL70GaCw4IJuIiMj06HL+1jo5AoBHjx5h+/bt0uDr4OBgREVFwc6u6o4bYXJERERkenQ5f2vVrbZ7926MHTsWhw4dQo8ePdTKFAoFGjVqhCVLlqBdu3barJaIiIjIaGg1IHvBggUYOXJkqZmXk5MT3nzzTcybN09vwRERERFVNq2So1OnTqFLly5llkdFRand54yIiIjI1GiVHGVmZsLS0rLMcgsLC9y+fbvcQREREREZilbJka+vL5KSksosP336NLy9vcsdFBEREZGhaJUcdevWDdOmTcPjx49LlOXk5GD69Ol46aWX9BYcERERUWXT6lL+zMxMNGvWDObm5hg7dizq168PALhw4QIWLVqEwsJCnDhxAp6enhUWsKHwUn4iIiLTU+GX8nt6euLgwYMYPXo0pk6diuK8SiaTITo6GosWLaqSiRERERFVH1olRwAQEBCALVu24P79+7h8+TKEEKhXrx5cXFwqIj4iIiKiSqV1clTMxcUFLVu21GcsRERERAan1YBsIiIioqqOyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkgskRERERkQomR0REREQqmBwRERERqWByRERERKSCyRERERGRCiZHRERERCqYHJFepCtycDD5DtIVOYYOhYiIqFwsDB0Amb7VR1Mxdf0ZFAnATAbM7hmGvi39DR0WEdIVOUi58xCBbvbwdrI1dDhEZCKYHFG5pCtypMQIAIoE8P76JLQPdufJiAyKSTsR6YrdalQuKXceSolRsUIhcPXOI8MERISyk3Z2+xKRJpgcUbkEutnDTKa+zFwmQ203uwrdLsc40bMwaSei8mByROXi7WSL2T3DYC57kiGZy2T4rGdohXaprT6airZzdmPA94fRds5urD6aWmHbItNkqKSdiKoGmRBCPL8aKZVKODk5QaFQwNHR0dDhGJ10RQ6u3nmE2m52FZoYpSty0HbObrVWAXOZDPundOIYJ1Kz+mgq3l+fhEIhpKSdY46Iqh9dzt8ckE164e1kWynJybO6S5gckaq+Lf3RPti9UpJ2IqpamByRSSnuLnm65YjdJVSaykraiahq4ZgjMimGGONERETVC1uOyOSwu4SIiCoSkyMySewuIWPD2biJqg4mR2TyeFIiQ+Ns3ERVi9GPOZoxYwZkMpnaIyQkRCp//PgxxowZg5o1a8LBwQG9evVCZmam2jpSU1MRExMDOzs7eHh44N1330VBQUFl7wpVAM55VD0Y86SfnI2bqOoxiZajRo0aYefOndJzC4t/wn7nnXewefNmrF27Fk5OThg7dix69uyJAwcOAAAKCwsRExMDLy8vHDx4EOnp6Rg8eDAsLS3x2WefVfq+kP7wvm7Vg7G3ynB6CaKqx+hbjoAnyZCXl5f0cHNzAwAoFAr8+OOPmDdvHl588UU0b94cy5cvx8GDB3Ho0CEAwI4dO3Du3DmsXLkSTZo0QdeuXfHJJ59g0aJFyMvLM+RuUTnxFhFVnym0ynA2bqKqxySSo0uXLsHHxwd16tTBwIEDkZr6pOvk+PHjyM/PR2RkpFQ3JCQE/v7+SEhIAAAkJCQgLCwMnp6eUp3o6GgolUqcPXu2cnfEhBhzN0YxnpSqPlNIgDm9BFHVY/TdahEREVixYgXq16+P9PR0zJw5E+3atUNSUhIyMjJgZWUFZ2dntdd4enoiIyMDAJCRkaGWGBWXF5eVJTc3F7m5udJzpVKppz0yfsbejVGs+KT09C0ieFKqOkxl0k9OL0FUtRh9ctS1a1fp/40bN0ZERAQCAgKwZs0a2NpW3BfQ7NmzMXPmzApbv7EytXE8PClVbaaUAHN6CaKqw+iTo6c5OzsjODgYly9fxr/+9S/k5eUhKytLrfUoMzMTXl5eAAAvLy8cOXJEbR3FV7MV1ynN1KlTMXHiROm5UqmEn5+fHvfEOJni4FKelKo2JsBEVNlMYsyRquzsbCQnJ8Pb2xvNmzeHpaUldu3aJZVfvHgRqampkMvlAAC5XI4zZ87g1q1bUp24uDg4OjqiYcOGZW7H2toajo6Oao/qgON4qKLpMp7N28kW8qCaTIyIqFIYfcvRpEmT0L17dwQEBCAtLQ3Tp0+Hubk5+vfvDycnJwwfPhwTJ06Eq6srHB0d8fbbb0Mul6N169YAgKioKDRs2BCvv/46vvjiC2RkZODDDz/EmDFjYG1tbeC9Mz6m1I1BpsdUxrMRUfVm9MnRjRs30L9/f9y9exfu7u544YUXcOjQIbi7uwMA5s+fDzMzM/Tq1Qu5ubmIjo7Gt99+K73e3NwcmzZtwujRoyGXy2Fvb4/Y2Fh8/PHHhtolo8duDKoIpjaejYiqL5kQQjy/GimVSjg5OUGhUBhlFxtvoUHG7mDyHQz4/nCJ5atGtoY8qKYBIiKi6kCX87fRtxzR87GrgkyBqVyWT0RkcgOySZ0pzCBsChNKUsXjZIlEZCrYcmTijP3Se7ZqkSqOZyMiU8CWIxNnzJfem0KrFlW+yr4sny2XRKQtJkcmzpi7KkzhvlhUta0+moq2c3ZjwPeH0XbObqw+mmrokIjIBLBbrQow1q4KDsAlQ+LUAUSkK7YcVRHGOIOwMbdqUdXHlksi0hVbjqhCGWurFj2fqc+dxZZLMhWm/lmripgcUYXjjWFNT1W4ypC3wqneTCXhqAqftaqIM2RryNhnyK4uTOULz5SlK3LQds7uEi0u+6d0Msljnq7IYctlNWMqCUdV+6wZK86QTVXa0vhkzNl6AQLG/YVn6ox97ixtseWyejGlgfhV7bNWlXBAdhVSFedzKd6nL7dfwOz/JUZA+eZMevo4VcXjVh7GPHcW0fM+r4YYiK/rdwg/a8aLLUdVRHmakY21q0p1n0pT2i+s5+3L08epR1NfbDh50+ib3ysTx+qQsdLke66yB+KX57uXnzXjxTFHGjLmMUfl6bc21r750vbpaWYADkx9UdpH1X2RAZjSNQRvdgjSap3s7/8Hx+qQMdHme2710dQSCUdFfK/pa8wQP2sVi2OOqild+62NuW++tH162uSuIVKcT++LADB76wVcu/sQb3euB28nW43Wyf7+f1T0WB1jbbEk46TN91xlTSGirzFDHBdnfJgcGRldThi6NiMb82DA0vapmJnsSWL0Zvt/WoXKSnx+OXIdq45cx5xeYWgf7F7mOouxv79yGGuLJRmPp78Ltf2eq4yEg3NpVV0ckG1EdL0PlK4zURvzYMDS9mlq1xCsGtkaB6a8qJYYAU/2RVbaivCkFen99UkAUGKdvZr5cgbvSsYbEtPzlPZdaIwz7htjTKQfHHOkoYoec6SPvmtd+q0rq28eAE5dv48jV++hVW1XhPu5aPQabfZpaXwyZm+9UGb5qpGtIQ+qiXRFDo5fvQ/IgOYBT+Jgf3/lOZh8BwO+P1xiefHfh6qP0lrKn/ddaIzjc4wxJvoHxxyZMH10cenSjFxZffP/XpOI307clJ73auaLr/o0ee7rtNmnNzsEATLg860XShxL1RaxfX/fZpeOAbErgoCyu1af911ojONzjC0mjucrP3arGQlDdnFV9E1rT12/r5YYAcBvJ27i1PX7et/Wm+2DcGDKi3ijfaD05lZt6maXjuGxK4Ke9Tk05u5+U6Dr8AxDM7b55thyZCSq8nwXR67eK3X5sav3Ne5e04a3ky3e79YQQ9sGlmgRM+ZB6NWJIW5IbEy/po0pFkN41udQHlSzyn4XVjRjvgL5WYzxAg0mR0akqt7BvlVt11KXt6it/8RIVWlN3ezSMS4ClTPk0Zi+fI0pFkN53uewqn4XVjRT/PFnrAkdu9WMTEV3cRlCuJ8LejXzVVvWq5lvhbQaPQ+7dIxDZTb9G1NXqjaxGFs3gz5p8jmsit+FFc0UuyQNcbsXTbDliCrFV32aYLA8AMeu3keL2i4GSYyK8VepYVX2L0Vj+jWtaSzVoXWpun0OK6MrVZPhGcbWpWusrflMjqjShPsZNilSZWxXl1QnlZ2sGNOXryaxGGs3Q0Uwpc9heZKKykx2n5V0GmPSbazjbZkcEVGlquxkxZi+fDWJxZhauuiJ8t7Yu7KT3dKSzlPX72PK+jMQRph0G2MrIpMjIqpUhkhWjOnL93mxGFNLF5U/uTGGZHf10VRM+e1MicsfjCnpNrZWRCZHRNWMMYw50Feyos2+GNOX77NiMaaWLip/cmPoZLc4uSvtulAm3WVjckRUDsaQaGhDtXtABmBK15AnM4tXoLKOUXmTFWMcP6EvxtTSVczU3uu6KG0fy5vcGDrZLeum3GYyMOl+BiZHRDoytZPz090DAnhyLzoZStzIV1/bW74/Bd//lQIBzY+RJidhQw5arqwkwVAtXaXtn6m913VR1j7qI7kxZLJbWnJnBmDDW22M5gIZY8TkiEgHpnhFUVm/ID/fegEvh/voNW7VE00xTY6Rpifh8nZ16JrgVPUkobT9ax/sbnLvdW097/Osj+TGUMluWckdE6NnY3JEpANdTs6G7pYIdLOHDCgx9qBIQK+DMk9dv1/q4E/g2cdIm4TzeV0dzzrWuiY4ppgQa6Os/VvQL9zgA4r1paz3hSafZ2Mas6YtY+ymNXZMjoh0oO04BGNocfB2ssWUriFPutJU6HNQ5uqjqU8uFy6j/Fnb0ibhfFZXx7OOdXkSHGO46qgilbV/ZjJZlbh67lnvC0MPmq4MppzcGQJvH0KkA21uQ5KuyMGU34zj9hVvdgjC1G4h0i0GdBk/UdZtLaSrYsrIjMzw7AGg2t76oG9Lf+yf0gmrRrbG/imd0Lel/3Nvz1GeWxWY4q0Zij39Nyvtb1jW/jULcDH5W+48731RFW8rVN7bz1Tl29dogi1HRDrStKl62f4Uo5pf5M32QXg53EenJvZn/foua0yTDMDIdnUw9IXaz9yWLgNfn/41/LzWnfK0EBj6qiNdPf0369HUFxtO3tRq4LGpd8to0upn6vuoqrwt1cbQ0m1oMiHK+p1HqpRKJZycnKBQKODo6GjocMjIlDWWIV2Rg7Zzdpf4YjYDcGDqiyb1BVzavpjLZNg/pRO8nWxLLTeTaX9VTLoiR+cT1PNiBJ588T+dAGjzxV+e+CpbWe8/VU8fH1PaP01p8r6oKsq7r1XxWOly/mbLEVE56dKaMqJ9oF6+aCpzkPfzfn3r66qY8oyN0KR1p7wtBBU9dkOff9Oy3n+q9D3w2NAXHpTGVFv9dFHesXFVfWydppgcEZXD8wb4ljrHiAyICfPGweQ7sLcyx8O8QqO/mSWg2aBVY+ia0CQGYx2cqu+/aWl/s6fpe0C+sXbHGMN7szKUd3B5dRicrgkOyCYqh+cN8C1toGePpr7o8e1BDPj+MF5Z9OTftnN2Y/XRVI23+7wBpqUNpizvAEtNB616O9lCHlTToCcfY4hBW8/7m+qi+G9W1he9PmdJLi3+qb+dMaoBvZX1vjDkYObyDi6vioPTdcGWI6JyKG3uIJkMZbam2FmZoce3B0skVPq8meW+v2+X+PUOQC+/6KvLr29DqKjujL4t/WFvbYGxv5wsUfZ1v6Z4KdxH53WrKi3+IgDL91/F+zEN9LINU2AMrWfl/Zzyc87kiEj/SunCKO7GOZh8p8wuDn3czNLOyqzkr/f/XV5fXLW8kxcaa5eUqavI7ozmAS6lrrt5bf3NklzWJKM/7L/y3CsVqwpjmii0vJ/T6v45Z7caUTmk3HlY4mQggDLnzSltLpliutzM8umm74d5haW2SpU1lQAZj4rszqiMrhJvJ1uMbBdYYnnxDOzVQVmtf8ev3q+0brbqPj+RvrDliNQY45UmxkzbX/tPXzWj+hp93MwyXZFT6gBw8VSCVB0HWJqCiuzOqIyukqEvBOKH/SnVdjBvad8HMgDjfj1ZKd1shujSq6rnDM5zpKHqMM+RMfSVmyJd5s0pnkvGzsoMj/KK9HqyKi0eAOWa24foWVRPkPv+vl2t32uqnz8zPPlR8vQPk4qYM6gi5ycqLQFKV+Rg+f4UfP/Xk0lujfmcocv5m8mRhqp6clQVJ/6qTBU1cZ4mv8rK+uJ6Op6qOLkfGV5pP6qq+2De4s/a3Ye5pQ6EXzWyNeRBNfW6zYPJdzDg+8N631Zpf18AamOrihnrOYOTQD7HokWLMHfuXGRkZCA8PBzffPMNWrVqZeiwjAIn/ioffQ1efPoX+PNa8spq7Sstnuo+wNIYmXqXRFkDkPdP6aT3k78pKf6sldbNXVHdjPoY0P/0+7Gs6RlQxtxZhUJg8+l0xDT2Nsn3s6pqkxytXr0aEydOxJIlSxAREYEFCxYgOjoaFy9ehIeHh6HDMzhO/GV4qolO8ZjtZ11hZkxXxpD2tOnG1kcSVRGJGH9UPVtlzsxd3m2pff/IgCldQxDm61Tq9AylXZFbbNbm8/hsy3mj7WLTVLVJjubNm4eRI0di6NChAIAlS5Zg8+bNWLZsGaZMmWLg6AyvOk2vb4yeTnRK++55+qTDE5Pp0iax1cdYwIoaT8gfVc9XmXMG6bqtEt8/Api95QLGdAoqdYD588biVIUfatXiUv68vDwcP34ckZGR0jIzMzNERkYiISGh1Nfk5uZCqVSqPaq6vi39sX9KJ6wa2Rr7p3Qy6azf1GhyD6ynTzqlTQvAE5NpeN7M6sX0MWt2Rcy8XYyzKWumMmds12VbZX3/LN6TjMldQqS/b1kJw4shJXtfTH26kGrRcnTnzh0UFhbC09NTbbmnpycuXLhQ6mtmz56NmTNnVkZ4RoXjUgyjrEuAZf9bVtpJh619pkvTFhd9tA5WdAsjZ1M2fYFu9pD9b8oPVUUAGtdyxv4pnZ45wLxXM1/svXirSrUgVovkSBdTp07FxIkTpedKpRJ+fn4GjIiqsrISneeddHhiMk2aJrb66LaqjK4v/qgybd5OtpjSNQSzt6g3FhS/T543wLxZgEuV+6FWLZIjNzc3mJubIzMzU215ZmYmvLy8Sn2NtbU1rK2tKyM8IgBlJzrP+4Lhick0aZLY6qN1kC2MpIk32wcBAvh86wUUQfvW6qr2Q63azHMUERGBVq1a4ZtvvgEAFBUVwd/fH2PHjtVoQHZVn+eIiIyXPuao4jxXpAlN3iem9l7iPEfPMHHiRMTGxqJFixZo1aoVFixYgIcPH0pXrxERGSt9tA6yhZE0ocn7pDq8l6pNctS3b1/cvn0bH330ETIyMtCkSRNs27atxCBtIiIiqt6qTbdaebFbjYiIyPTocv6uFvMcEREREWmKyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkotrcPqS8iicSVyqVBo6EiIiINFV83tbmhiBMjjT04MEDAICfn5+BIyEiIiJtPXjwAE5OThrV5b3VNFRUVIS0tDTUqFEDMplM5/UolUr4+fnh+vXr1foebTwOT/A4PMHj8ASPwxM8Dv/gsXiiPMdBCIEHDx7Ax8cHZmaajSZiy5GGzMzMUKtWLb2tz9HRsVq/0YvxODzB4/AEj8MTPA5P8Dj8g8fiCV2Pg6YtRsU4IJuIiIhIBZMjIiIiIhVMjiqZtbU1pk+fDmtra0OHYlA8Dk/wODzB4/AEj8MTPA7/4LF4orKPAwdkExEREalgyxERERGRCiZHRERERCqYHBERERGpYHJEREREpILJkR4sXrwYjRs3lianksvl2Lp1q1T++PFjjBkzBjVr1oSDgwN69eqFzMxMtXWkpqYiJiYGdnZ28PDwwLvvvouCgoLK3hW9mTNnDmQyGSZMmCAtqy7HYcaMGZDJZGqPkJAQqby6HAcAuHnzJgYNGoSaNWvC1tYWYWFhOHbsmFQuhMBHH30Eb29v2NraIjIyEpcuXVJbx7179zBw4EA4OjrC2dkZw4cPR3Z2dmXvis5q165d4v0gk8kwZswYANXn/VBYWIhp06YhMDAQtra2CAoKwieffKJ2v6vq8H4AntzGYsKECQgICICtrS3atGmDo0ePSuVV9Tjs27cP3bt3h4+PD2QyGX7//Xe1cn3t9+nTp9GuXTvY2NjAz88PX3zxhfbBCiq3jRs3is2bN4u///5bXLx4Ubz//vvC0tJSJCUlCSGEGDVqlPDz8xO7du0Sx44dE61btxZt2rSRXl9QUCBCQ0NFZGSkOHnypNiyZYtwc3MTU6dONdQulcuRI0dE7dq1RePGjcX48eOl5dXlOEyfPl00atRIpKenS4/bt29L5dXlONy7d08EBASIIUOGiMOHD4srV66I7du3i8uXL0t15syZI5ycnMTvv/8uTp06JV5++WURGBgocnJypDpdunQR4eHh4tChQ+Kvv/4SdevWFf379zfELunk1q1bau+FuLg4AUDs2bNHCFF93g+ffvqpqFmzpti0aZNISUkRa9euFQ4ODmLhwoVSnerwfhBCiD59+oiGDRuK+Ph4cenSJTF9+nTh6Ogobty4IYSousdhy5Yt4oMPPhDr168XAMSGDRvUyvWx3wqFQnh6eoqBAweKpKQksWrVKmFrayuWLl2qVaxMjiqIi4uL+OGHH0RWVpawtLQUa9eulcrOnz8vAIiEhAQhxJM3jJmZmcjIyJDqLF68WDg6Oorc3NxKj708Hjx4IOrVqyfi4uJEhw4dpOSoOh2H6dOni/Dw8FLLqtNxmDx5snjhhRfKLC8qKhJeXl5i7ty50rKsrCxhbW0tVq1aJYQQ4ty5cwKAOHr0qFRn69atQiaTiZs3b1Zc8BVo/PjxIigoSBQVFVWr90NMTIwYNmyY2rKePXuKgQMHCiGqz/vh0aNHwtzcXGzatEltebNmzcQHH3xQbY7D08mRvvb722+/FS4uLmqfjcmTJ4v69etrFR+71fSssLAQv/76Kx4+fAi5XI7jx48jPz8fkZGRUp2QkBD4+/sjISEBAJCQkICwsDB4enpKdaKjo6FUKnH27NlK34fyGDNmDGJiYtT2F0C1Ow6XLl2Cj48P6tSpg4EDByI1NRVA9ToOGzduRIsWLfDaa6/Bw8MDTZs2xffffy+Vp6SkICMjQ+1YODk5ISIiQu1YODs7o0WLFlKdyMhImJmZ4fDhw5W3M3qSl5eHlStXYtiwYZDJZNXq/dCmTRvs2rULf//9NwDg1KlT2L9/P7p27Qqg+rwfCgoKUFhYCBsbG7Xltra22L9/f7U5Dk/T134nJCSgffv2sLKykupER0fj4sWLuH//vsbx8MazenLmzBnI5XI8fvwYDg4O2LBhAxo2bIjExERYWVnB2dlZrb6npycyMjIAABkZGWpffMXlxWWm4tdff8WJEyfU+s6LZWRkVJvjEBERgRUrVqB+/fpIT0/HzJkz0a5dOyQlJVWr43DlyhUsXrwYEydOxPvvv4+jR49i3LhxsLKyQmxsrLQvpe2r6rHw8PBQK7ewsICrq6tJHYtiv//+O7KysjBkyBAA1etzMWXKFCiVSoSEhMDc3ByFhYX49NNPMXDgQACoNu+HGjVqQC6X45NPPkGDBg3g6emJVatWISEhAXXr1q02x+Fp+trvjIwMBAYGllhHcZmLi4tG8TA50pP69esjMTERCoUC69atQ2xsLOLj4w0dVqW5fv06xo8fj7i4uBK/iKqb4l/CANC4cWNEREQgICAAa9asga2trQEjq1xFRUVo0aIFPvvsMwBA06ZNkZSUhCVLliA2NtbA0RnGjz/+iK5du8LHx8fQoVS6NWvW4Oeff8Yvv/yCRo0aITExERMmTICPj0+1ez/89NNPGDZsGHx9fWFubo5mzZqhf//+OH78uKFDo/9ht5qeWFlZoW7dumjevDlmz56N8PBwLFy4EF5eXsjLy0NWVpZa/czMTHh5eQEAvLy8SlydUvy8uI6xO378OG7duoVmzZrBwsICFhYWiI+Px9dffw0LCwt4enpWi+NQGmdnZwQHB+Py5cvV5v0AAN7e3mjYsKHasgYNGkhdjMX7Utq+qh6LW7duqZUXFBTg3r17JnUsAODatWvYuXMnRowYIS2rTu+Hd999F1OmTEG/fv0QFhaG119/He+88w5mz54NoHq9H4KCghAfH4/s7Gxcv34dR44cQX5+PurUqVOtjoMqfe23vj4vTI4qSFFREXJzc9G8eXNYWlpi165dUtnFixeRmpoKuVwOAJDL5Thz5ozaHz0uLg6Ojo4lTi7GqnPnzjhz5gwSExOlR4sWLTBw4EDp/9XhOJQmOzsbycnJ8Pb2rjbvBwBo27YtLl68qLbs77//RkBAAAAgMDAQXl5easdCqVTi8OHDasciKytL7Rf17t27UVRUhIiIiErYC/1Zvnw5PDw8EBMTIy2rTu+HR48ewcxM/ZRjbm6OoqIiANXv/QAA9vb28Pb2xv3797F9+3a88sor1fI4APr7+8vlcuzbtw/5+flSnbi4ONSvX1/jLjUAvJRfH6ZMmSLi4+NFSkqKOH36tJgyZYqQyWRix44dQognl+r6+/uL3bt3i2PHjgm5XC7kcrn0+uJLdaOiokRiYqLYtm2bcHd3N7lLdZ+merWaENXnOPz73/8We/fuFSkpKeLAgQMiMjJSuLm5iVu3bgkhqs9xOHLkiLCwsBCffvqpuHTpkvj555+FnZ2dWLlypVRnzpw5wtnZWfzxxx/i9OnT4pVXXin10t2mTZuKw4cPi/3794t69eoZ/SXLTyssLBT+/v5i8uTJJcqqy/shNjZW+Pr6Spfyr1+/Xri5uYn33ntPqlNd3g/btm0TW7duFVeuXBE7duwQ4eHhIiIiQuTl5Qkhqu5xePDggTh58qQ4efKkACDmzZsnTp48Ka5duyaE0M9+Z2VlCU9PT/H666+LpKQk8euvvwo7Ozteym8Iw4YNEwEBAcLKykq4u7uLzp07S4mREELk5OSIt956S7i4uAg7OzvRo0cPkZ6erraOq1eviq5duwpbW1vh5uYm/v3vf4v8/PzK3hW9ejo5qi7HoW/fvsLb21tYWVkJX19f0bdvX7W5farLcRBCiD///FOEhoYKa2trERISIr777ju18qKiIjFt2jTh6ekprK2tRefOncXFixfV6ty9e1f0799fODg4CEdHRzF06FDx4MGDytyNctu+fbsAUGLfhKg+7welUinGjx8v/P39hY2NjahTp4744IMP1C65ri7vh9WrV4s6deoIKysr4eXlJcaMGSOysrKk8qp6HPbs2SMAlHjExsYKIfS336dOnRIvvPCCsLa2Fr6+vmLOnDlaxyoTQmV6UiIiIqJqjmOOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiqmYyMDLz99tuoU6cOrK2t4efnh+7du6vd0+jgwYPo1q0bXFxcYGNjg7CwMMybNw+FhYVSnatXr2L48OEIDAyEra0tgoKCMH36dOTl5alt7/vvv0d4eDgcHBzg7OyMpk2bSjcbBYAZM2ZAJpOhS5cuJWKdO3cuZDIZOnbs+Nz9ql27NmQyWZmPIUOGaH+wjFzHjh0xYcIEQ4dBVOVYGDoAIqo8V69eRdu2beHs7Iy5c+ciLCwM+fn52L59O8aMGYMLFy5gw4YN6NOnD4YOHYo9e/bA2dkZO3fuxHvvvYeEhASsWbMGMpkMFy5cQFFREZYuXYq6desiKSkJI0eOxMOHD/Hll18CAJYtW4YJEybg66+/RocOHZCbm4vTp08jKSlJLS5vb2/s2bMHN27cQK1ataTly5Ytg7+/v0b7dvToUSl5O3jwIHr16oWLFy/C0dERAGBra6uPQ1gp8vPzYWlpWWnby8vLg5WVVaVtj8jo6XiLFCIyQV27dhW+vr4iOzu7RNn9+/dFdna2qFmzpujZs2eJ8o0bNwoA4tdffy1z/V988YUIDAyUnr/yyitiyJAhz4xp+vTpIjw8XLz00kti1qxZ0vIDBw4INzc3MXr0aNGhQwcN9u4fxfdwun//vrTs999/F02bNhXW1tYiMDBQzJgxQ+3+ZADEkiVLRExMjLC1tRUhISHi4MGD4tKlS6JDhw7Czs5OyOVytfvkFce+ZMkSUatWLWFraytee+01tftkCSHE999/L0JCQoS1tbWoX7++WLRokVSWkpIiHdf27dsLa2trsXz5cnHnzh3Rr18/4ePjI2xtbUVoaKj45ZdfpNfFxsaWuEdVSkqKWL58uXByclLb/oYNG4Tq131x3N9//72oXbu2kMlkQogn74Hhw4cLNzc3UaNGDdGpUyeRmJio1bEnqgrYrUZUTdy7dw/btm3DmDFjYG9vX6Lc2dkZO3bswN27dzFp0qQS5d27d0dwcDBWrVpV5jYUCgVcXV2l515eXjh06BCuXbv23PiGDRuGFStWSM+XLVuGgQMH6qVF46+//sLgwYMxfvx4nDt3DkuXLsWKFSvw6aefqtX75JNPMHjwYCQmJiIkJAQDBgzAm2++ialTp+LYsWMQQmDs2LFqr7l8+TLWrFmDP//8E9u2bcPJkyfx1ltvSeU///wzPvroI3z66ac4f/48PvvsM0ybNg3//e9/1dYzZcoUjB8/HufPn0d0dDQeP36M5s2bY/PmzUhKSsIbb7yB119/HUeOHAEALFy4EHK5HCNHjkR6ejrS09Ph5+en8TG5fPkyfvvtN6xfvx6JiYkAgNdeew23bt3C1q1bcfz4cTRr1gydO3fGvXv3tDncRKbP0NkZEVWOw4cPCwBi/fr1ZdaZM2dOiRYXVS+//LJo0KBBqWWXLl0Sjo6O4rvvvpOWpaWlidatWwsAIjg4WMTGxorVq1eLwsJCqU5xK0ZeXp7w8PAQ8fHxIjs7W9SoUUOcOnVKjB8/vtwtR507dxafffaZWp2ffvpJeHt7S88BiA8//FB6npCQIACIH3/8UVq2atUqYWNjoxa7ubm5uHHjhrRs69atwszMTKSnpwshhAgKClJr8RFCiE8++UTI5XIhxD8tRwsWLHjufsXExIh///vf0vMOHTqI8ePHq9XRtOXI0tJS3Lp1S1r2119/CUdHR/H48WO11wYFBYmlS5c+NzaiqoRjjoiqCSFEhdQFgJs3b6JLly547bXXMHLkSGm5t7c3EhISkJSUhH379uHgwYOIjY3FDz/8gG3btsHM7J/Ga0tLSwwaNAjLly/HlStXEBwcjMaNG2sVR1lOnTqFAwcOqLUUFRYW4vHjx3j06BHs7OwAQG17np6eAICwsDC1ZY8fP4ZSqZTGMvn7+8PX11eqI5fLUVRUhIsXL6JGjRpITk7G8OHD1Y5LQUEBnJyc1GJs0aKF2vPCwkJ89tlnWLNmDW7evIm8vDzk5uZKsZZXQEAA3N3dpeenTp1CdnY2atasqVYvJycHycnJetkmkalgckRUTdSrV08aSF2W4OBgAMD58+fRpk2bEuXnz59Hw4YN1ZalpaWhU6dOaNOmDb777rtS1xsaGorQ0FC89dZbGDVqFNq1a4f4+Hh06tRJrd6wYcMQERGBpKQkDBs2TNtdLFN2djZmzpyJnj17liizsbGR/q86CFomk5W5rKioSOPtAk+u2IuIiFArMzc3V3v+dFfn3LlzsXDhQixYsABhYWGwt7fHhAkTSlwN+DQzM7MSyW1+fn6Jek9vLzs7G97e3ti7d2+Jus7Ozs/cJlFVw+SIqJpwdXVFdHQ0Fi1ahHHjxpU4OWZlZSEqKgqurq746quvSiRHGzduxKVLl/DJJ59Iy27evIlOnTqhefPmWL58uVpLUFmKk6uHDx+WKGvUqBEaNWqE06dPY8CAAbrsZqmaNWuGixcvom7dunpbZ7HU1FSkpaXBx8cHAHDo0CGYmZmhfv368PT0hI+PD65cuYKBAwdqtd4DBw7glVdewaBBgwA8Scj+/vtvteTUyspKbXoFAHB3d8eDBw/w8OFD6W9cPKboWZo1a4aMjAxYWFigdu3aWsVKVNUwOSKqRhYtWoS2bduiVatW+Pjjj9G4cWMUFBQgLi4Oixcvxvnz57F06VL069cPb7zxBsaOHQtHR0fs2rUL7777Lnr37o0+ffoAeJIYdezYEQEBAfjyyy9x+/ZtaTteXl4AgNGjR8PHxwcvvvgiatWqhfT0dMyaNQvu7u6Qy+Wlxrh7927k5+frtbXio48+wksvvQR/f3/07t0bZmZmOHXqFJKSkjBr1qxyrdvGxgaxsbH48ssvoVQqMW7cOPTp00c6BjNnzsS4cePg5OSELl26IDc3F8eOHcP9+/cxceLEMtdbr149rFu3DgcPHoSLiwvmzZuHzMxMteSodu3aOHz4MK5evQoHBwe4uroiIiICdnZ2eP/99zFu3DgcPnxYbaB7WSIjIyGXy/Hqq6/iiy++QHBwMNLS0rB582b06NGjRLcfUVXGq9WIqpE6dergxIkT6NSpE/79738jNDQU//rXv7Br1y4sXrwYANC7d2/s2bMHqampaNeuHerXr4/58+fjgw8+wK+//ip1LcXFxeHy5cvYtWsXatWqBW9vb+lRLDIyEocOHcJrr72G4OBg9OrVCzY2Nti1a1eJsS3F7O3t9d6NEx0djU2bNmHHjh1o2bIlWrdujfnz5yMgIKDc665bty569uyJbt26ISoqCo0bN8a3334rlY8YMQI//PADli9fjrCwMHTo0AErVqxAYGDgM9f74YcfolmzZoiOjkbHjh3h5eWFV199Va3OpEmTYG5ujoYNG8Ld3R2pqalwdXXFypUrsWXLFoSFhWHVqlWYMWPGc/dDJpNhy5YtaN++PYYOHYrg4GD069cP165dk8ZfEVUXMqHtyEsiIgLwZHbv33//XaNuKyIyHWw5IiIiIlLB5IiITIaDg0OZj7/++svQ4RFRFcFuNSIyGZcvXy6zzNfX16Tun0ZExovJEREREZEKdqsRERERqWByRERERKSCyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKv4f93OVvhUxit4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZh0lEQVR4nO3deVhU9f4H8PeA7DuyI5sgIoKkuYSaS5FLapm5poV7bqnXUjEzNTUxvWp1Tc0Su5l7ambmkpqau7mSu6GigEoKI4vI8v394Y+5DDAwMxyY7f16nnke5nzPnPmcM2fmfPhuRyaEECAiIiIycGa6DoCIiIhICkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoio2s2YMQMymUytdWUyGWbMmFGt8bRr1w7t2rXT2+0RkXaY1BCZkFWrVkEmkyketWrVgq+vLwYOHIi7d+/qOjy9ExgYqHS8PDw88OKLL2LLli2SbD8nJwczZszA77//Lsn2iEwdkxoiE/TJJ5/g+++/x7Jly9C5c2esXr0abdu2xZMnT6rl/T766CPk5uZWy7ar23PPPYfvv/8e33//PT744AOkpKSgR48eWLZsWZW3nZOTg5kzZzKpIZJILV0HQEQ1r3PnzmjatCkAYOjQoXBzc8O8efOwbds29O7dW/L3q1WrFmrVMsyfG19fXwwYMEDx/J133kFISAgWLVqEESNG6DAyIiqNNTVEhBdffBEAcOPGDaXlly9fRs+ePeHq6gpra2s0bdoU27ZtU1onPz8fM2fORL169WBtbY3atWujdevW2LNnj2Kd8vrU5OXl4V//+hfc3d3h4OCA1157DXfu3CkT28CBAxEYGFhmeXnbTEhIwEsvvQQPDw9YWVkhPDwcS5cu1ehYVMbLywsNGjRAUlJShevdv38fQ4YMgaenJ6ytrREVFYXvvvtOUX7z5k24u7sDAGbOnKlo4qru/kRExsww/3UiIkndvHkTAODi4qJY9tdff6FVq1bw9fVFXFwc7OzssGHDBnTv3h0//vgj3njjDQDPkou5c+di6NChaN68OeRyOU6dOoXTp0/jlVdeUfmeQ4cOxerVq/HWW2+hZcuW2LdvH7p06VKl/Vi6dCkaNmyI1157DbVq1cLPP/+MUaNGoaioCKNHj67Stovl5+cjOTkZtWvXVrlObm4u2rVrh+vXr2PMmDEICgrCxo0bMXDgQGRkZGDcuHFwd3fH0qVLMXLkSLzxxhvo0aMHAKBRo0aSxElkkgQRmYyEhAQBQPz222/iwYMHIjk5WWzatEm4u7sLKysrkZycrFj35ZdfFpGRkeLJkyeKZUVFRaJly5aiXr16imVRUVGiS5cuFb7v9OnTRcmfm7NnzwoAYtSoUUrrvfXWWwKAmD59umJZbGysCAgIqHSbQgiRk5NTZr2OHTuKunXrKi1r27ataNu2bYUxCyFEQECA6NChg3jw4IF48OCBOHfunOjbt68AIN577z2V21u8eLEAIFavXq1Y9vTpUxEdHS3s7e2FXC4XQgjx4MGDMvtLRNpj8xORCYqJiYG7uzv8/PzQs2dP2NnZYdu2bahTpw4A4OHDh9i3bx969+6Nx48fIz09Henp6fjnn3/QsWNHXLt2TTFaytnZGX/99ReuXbum9vvv2LEDADB27Fil5ePHj6/SftnY2Cj+zszMRHp6Otq2bYu///4bmZmZWm1z9+7dcHd3h7u7O6KiorBx40a8/fbbmDdvnsrX7NixA15eXujXr59imYWFBcaOHYusrCwcOHBAq1iIqGJsfiIyQUuWLEFoaCgyMzOxcuVKHDx4EFZWVory69evQwiBadOmYdq0aeVu4/79+/D19cUnn3yC119/HaGhoYiIiECnTp3w9ttvV9iMcuvWLZiZmSE4OFhpef369au0X4cPH8b06dNx9OhR5OTkKJVlZmbCyclJ4222aNECs2fPhkwmg62tLRo0aABnZ+cKX3Pr1i3Uq1cPZmbK/zc2aNBAUU5E0mNSQ2SCmjdvrhj91L17d7Ru3RpvvfUWrly5Ant7exQVFQEAPvjgA3Ts2LHcbYSEhAAA2rRpgxs3buCnn37C7t278c0332DRokVYtmwZhg4dWuVYVU3aV1hYqPT8xo0bePnllxEWFoaFCxfCz88PlpaW2LFjBxYtWqTYJ025ubkhJiZGq9cSUc1iUkNk4szNzTF37ly0b98e//nPfxAXF4e6desCeNZkos4F3dXVFYMGDcKgQYOQlZWFNm3aYMaMGSqTmoCAABQVFeHGjRtKtTNXrlwps66LiwsyMjLKLC9d2/Hzzz8jLy8P27Ztg7+/v2L5/v37K41fagEBATh//jyKioqUamsuX76sKAdUJ2xEpB32qSEitGvXDs2bN8fixYvx5MkTeHh4oF27dli+fDlSU1PLrP/gwQPF3//8849Smb29PUJCQpCXl6fy/Tp37gwA+OKLL5SWL168uMy6wcHByMzMxPnz5xXLUlNTy8zqa25uDgAQQiiWZWZmIiEhQWUc1eXVV19FWloa1q9fr1hWUFCAL7/8Evb29mjbti0AwNbWFgDKTdqISHOsqSEiAMDEiRPRq1cvrFq1CiNGjMCSJUvQunVrREZGYtiwYahbty7u3buHo0eP4s6dOzh37hwAIDw8HO3atcPzzz8PV1dXnDp1Cps2bcKYMWNUvtdzzz2Hfv364auvvkJmZiZatmyJvXv34vr162XW7du3LyZPnow33ngDY8eORU5ODpYuXYrQ0FCcPn1asV6HDh1gaWmJbt264d1330VWVhZWrFgBDw+PchOz6jR8+HAsX74cAwcOxJ9//onAwEBs2rQJhw8fxuLFi+Hg4ADgWcfm8PBwrF+/HqGhoXB1dUVERAQiIiJqNF4io6Hr4VdEVHOKh3SfPHmyTFlhYaEIDg4WwcHBoqCgQAghxI0bN8Q777wjvLy8hIWFhfD19RVdu3YVmzZtUrxu9uzZonnz5sLZ2VnY2NiIsLAwMWfOHPH06VPFOuUNv87NzRVjx44VtWvXFnZ2dqJbt24iOTm53CHOu3fvFhEREcLS0lLUr19frF69utxtbtu2TTRq1EhYW1uLwMBAMW/ePLFy5UoBQCQlJSnW02RId2XD1VVt7969e2LQoEHCzc1NWFpaisjISJGQkFDmtUeOHBHPP/+8sLS05PBuoiqSCVGirpaIiIjIQLFPDRERERkFJjVERERkFJjUEBERkVFgUkNERERGgUkNERERGQUmNURERGQUjH7yvaKiIqSkpMDBwYFTkhMRERkIIQQeP34MHx+fMjeHVcXok5qUlBT4+fnpOgwiIiLSQnJyMurUqaPWukaf1BRPR56cnAxHR0cdR0NERETqkMvl8PPzU1zH1WH0SU1xk5OjoyOTGiIiIgOjSdcRdhQmIiIio8CkhoiIiIwCkxoiIiIyCkbfp4aISN8UFhYiPz9f12EQ6ZSFhQXMzc0l3SaTGiKiGiKEQFpaGjIyMnQdCpFecHZ2hpeXl2TzyDGpISKqIcUJjYeHB2xtbTkhKJksIQRycnJw//59AIC3t7ck22VSQ0RUAwoLCxUJTe3atXUdDpHO2djYAADu378PDw8PSZqi2FGYiKgGFPehsbW11XEkRPqj+PsgVR8zJjVERDWITU5E/yP194FJDRERERkFJjVERERkFJjUaCk1MxdHbqQjNTNX16EQEdWItLQ0vPfee6hbty6srKzg5+eHbt26Ye/evYp1jhw5gldffRUuLi6wtrZGZGQkFi5ciMLCQsU6N2/exJAhQxAUFAQbGxsEBwdj+vTpePr0qdL7rVixAlFRUbC3t4ezszMaN26MuXPnKspnzJgBmUyGTp06lYl1/vz5kMlkaNeundr7J5fLMXXqVISFhcHa2hpeXl6IiYnB5s2bIYRQrPfXX3+hd+/ecHd3h5WVFUJDQ/Hxxx8jJydHsc7Dhw/x3nvvoX79+rCxsYG/vz/Gjh2LzMxMtWK5efMmZDJZuY9jx46pvU/t2rXD+PHj1V7f0HH0kxbWn7yNKZsvoEgAZjJgbo9I9Gnmr+uwiIiqzc2bN9GqVSs4Oztj/vz5iIyMRH5+Pnbt2oXRo0fj8uXL2LJlC3r37o1BgwZh//79cHZ2xm+//YZJkybh6NGj2LBhA2QyGS5fvoyioiIsX74cISEhSExMxLBhw5CdnY0FCxYAAFauXInx48fjiy++QNu2bZGXl4fz588jMTFRKS5vb2/s378fd+7cQZ06dRTLV65cCX9/9X+XMzIy0Lp1a2RmZmL27Nlo1qwZatWqhQMHDmDSpEl46aWX4OzsjGPHjiEmJgYxMTH45Zdf4OnpiRMnTuD999/H3r17sX//flhaWiIlJQUpKSlYsGABwsPDcevWLYwYMQIpKSnYtGmT2nH99ttvaNiwodIyqUfPCSFQWFiIWrWMICUQRi4zM1MAEJmZmZJsLyUjRwTFbRcBk//3qBv3i0jJyJFk+0RknHJzc8XFixdFbm6urkPRSufOnYWvr6/IysoqU/bo0SORlZUlateuLXr06FGmfNu2bQKAWLduncrtf/bZZyIoKEjx/PXXXxcDBw6sMKbp06eLqKgo0bVrVzF79mzF8sOHDws3NzcxcuRI0bZtWzX2ToiRI0cKOzs7cffu3TJljx8/Fvn5+aKoqEiEh4eLpk2bisLCQqV1zp49K2QymYiPj1f5Hhs2bBCWlpYiPz+/0niSkpIEAHHmzBmV6xTv/3//+18REBAgHB0dRZ8+fYRcLhdCCBEbGysAKD2SkpLE/v37BQCxY8cO0aRJE2FhYSH2798vnjx5It577z3h7u4urKysRKtWrcSJEycU71f8uu3bt4vIyEhhZWUlWrRoIS5cuCCEECIrK0s4ODiIjRs3KsW5ZcsWYWtrq4irpIq+F9pcv9n8pKGk9GwUCeVlhULgZnpO+S8gIqoGNdkE/vDhQ+zcuROjR4+GnZ1dmXJnZ2fs3r0b//zzDz744IMy5d26dUNoaCjWrl2r8j0yMzPh6uqqeO7l5YVjx47h1q1blcY3ePBgrFq1SvF85cqV6N+/PywtLSt9LQAUFRVh3bp16N+/P3x8fMqU29vbo1atWjh79iwuXryICRMmwMxM+fIZFRWFmJiYSvfR0dFR0hqRGzduYOvWrdi+fTu2b9+OAwcOID4+HgDw+eefIzo6GsOGDUNqaipSU1Ph5+eneG1cXBzi4+Nx6dIlNGrUCJMmTcKPP/6I7777DqdPn0ZISAg6duyIhw8fKr3nxIkT8e9//xsnT56Eu7s7unXrhvz8fNjZ2aFv375ISEhQWj8hIQE9e/aEg4ODZPutCpMaDQW52cGs1Ag0c5kMgW6ce4KIasb6k7fRKn4f3lpxHK3i92H9ydvV+n7Xr1+HEAJhYWEq17l69SoAoEGDBuWWh4WFKdYpb/tffvkl3n33XcWy6dOnw9nZGYGBgahfvz4GDhyIDRs2oKioqMzru3btCrlcjoMHDyI7OxsbNmzA4MGD1d6/9PR0PHr0qML9AyrfxwYNGqjcx/T0dMyaNQvDhw9XOy4AaNmyJezt7ZUeJRUVFWHVqlWIiIjAiy++iLffflvRx8nJyQmWlpawtbWFl5cXvLy8lCa4++STT/DKK68gODgYVlZWWLp0KebPn4/OnTsjPDwcK1asgI2NDb799lul95w+fTpeeeUVREZG4rvvvsO9e/ewZcsWAMDQoUOxa9cupKamAng2sd6OHTs0+jyqgkmNhrydbDC3RyTM/39svblMhk97RMDbyUbHkRGRKUjNzFX06QOAIgF8uDmxWmtshBCVr6TFugBw9+5ddOrUCb169cKwYcMUy729vXH06FFcuHAB48aNQ0FBAWJjY9GpU6cyiY2FhQUGDBiAhIQEbNy4EaGhoWjUqFG1xazp+nK5HF26dEF4eDhmzJih0WvXr1+Ps2fPKj1KCgwMVKoB8fb2Vtx6oDJNmzZV/H3jxg3k5+ejVatWimUWFhZo3rw5Ll26pPS66Ohoxd+urq6oX7++Yp3mzZujYcOG+O677wAAq1evRkBAANq0aaPeDleREfQKqnl9mvmjTag7bqbnINDNlgkNEdWYiprAq+u3qF69eooOvqqEhoYCAC5duoSWLVuWKb906RLCw8OVlqWkpKB9+/Zo2bIlvv7663K3GxERgYiICIwaNQojRozAiy++iAMHDqB9+/ZK6w0ePBgtWrRAYmKixrUC7u7ucHZ2rnD/AOV9bNy4cZnyS5cuKdYp9vjxY3Tq1AkODg7YsmULLCwsNIrNz88PISEhKstLb08mk5Vbm1We8poSpTB06FAsWbIEcXFxSEhIwKBBg2ps0knW1GjJ28kG0cG1mdAQUY3SRRO4q6srOnbsiCVLliA7O7tMeUZGBjp06ABXV1f8+9//LlO+bds2XLt2Df369VMsu3v3Ltq1a4fnn38eCQkJZfqolKc4KSovhoYNG6Jhw4ZITEzEW2+9pcnuwczMDH379sUPP/yAlJSUMuVZWVkoKCjAc889h7CwMCxatKhM4nDu3Dn89ttvSvsol8vRoUMHWFpaYtu2bbC2ttYoLilYWloqDadXJTg4GJaWljh8+LBiWX5+Pk6ePFkmGS05pPzRo0e4evWqUpPcgAEDcOvWLXzxxRe4ePEiYmNjJdgT9TCpISIyILpqAl+yZAkKCwvRvHlz/Pjjj7h27RouXbqEL774AtHR0bCzs8Py5cvx008/Yfjw4Th//jxu3ryJb7/9FgMHDkTPnj3Ru3dvAP9LaPz9/bFgwQI8ePAAaWlpSEtLU7zfyJEjMWvWLBw+fBi3bt3CsWPH8M4778Dd3V2p+aOkffv2ITU1Fc7Ozhrv35w5c+Dn54cWLVrgv//9Ly5evIhr165h5cqVaNy4MbKysiCTyfDtt9/i4sWLePPNN3HixAncvn0bGzduRLdu3RAdHa2YE6Y4ocnOzsa3334LuVyu2Ed1koxi//zzj+J1xY8nT56o/frAwEAcP34cN2/eRHp6uspaHDs7O4wcORITJ07Ezp07cfHiRQwbNgw5OTkYMmSI0rqffPIJ9u7di8TERAwcOBBubm7o3r27otzFxQU9evTAxIkT0aFDB6Wh9tVO7XFSBkrqId1ERNqQekh3SkaOOHI9vUank0hJSRGjR48WAQEBwtLSUvj6+orXXntN7N+/X7HOwYMHRceOHYWjo6OwtLQUDRs2FAsWLBAFBQWKdRISEsoMNS5+FNu0aZN49dVXhbe3t7C0tBQ+Pj7izTffFOfPn1esUzykWZVx48apPaRbCCEyMjJEXFycqFevnrC0tBSenp4iJiZGbNmyRRQVFSnWO3/+vHjzzTeFq6ursLCwEMHBweKjjz4S2dnZinWKhz+X90hKSqo0luIh3eU91q5dq3L/Fy1aJAICAhTPr1y5Il544QVhY2NTZkj3o0ePlF6bm5sr3nvvPeHm5lbhkO6ff/5ZNGzYUFhaWormzZuLc+fOlYl/7969AoDYsGFDhfsp9ZBumRAa9ngyMHK5HE5OToqhdEREuvDkyRMkJSUhKChIJ80QRFX1+++/o3379nj06FGltWHff/89/vWvfyElJaXCofUVfS+0uX6zozARERFJIicnB6mpqYiPj8e7776r9lxBUmGfGiIiMnql53op+Th06FCNxzNixAiV8YwYMaLG45HKZ599hrCwMHh5eWHKlCk1/v5sfiIiqgFsftKt69evqyzz9fWFjU3NjmS9f/8+5HJ5uWWOjo7w8PCo0Xh0hc1PREREGqporhdd8PDwMJnEpSax+YmIiIiMApMaIqIapO5sr0SmQOrvA5ufiIhqgKWlJczMzJCSkgJ3d3dYWlrW2NTxRPpGCIGnT5/iwYMHMDMzk2yUFJMaIqIaYGZmhqCgIKSmppY7FT+RKbK1tYW/v79at8lQB5MaIqIaYmlpCX9/fxQUFGg0VT6RMTI3N0etWrUkrbFkUkNEVINkMhksLCw0vlszEVWOHYWJiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjoNOk5uDBg+jWrRt8fHwgk8mwdetWRVl+fj4mT56MyMhI2NnZwcfHB++88w5vBEdERETl0mlSk52djaioKCxZsqRMWU5ODk6fPo1p06bh9OnT2Lx5M65cuYLXXntNB5ESERGRvpMJIYSugwCe3eRty5Yt6N69u8p1Tp48iebNm+PWrVvw9/dXa7tyuRxOTk7IzMyEo6OjRNESERFRddLm+m1Qd+nOzMyETCaDs7OzynXy8vKQl5eneC6Xy2sgMiIiItI1g+ko/OTJE0yePBn9+vWrMGObO3cunJycFA8/P78ajJKIiIh0xSCSmvz8fPTu3RtCCCxdurTCdadMmYLMzEzFIzk5uYaiJCIiIl3S++an4oTm1q1b2LdvX6XtalZWVrCysqqh6IiIiEhf6HVSU5zQXLt2Dfv370ft2rV1HRIRERHpKZ0mNVlZWbh+/brieVJSEs6ePQtXV1d4e3ujZ8+eOH36NLZv347CwkKkpaUBAFxdXWFpaamrsImIiEgP6XRI9++//4727duXWR4bG4sZM2YgKCio3Nft378f7dq1U+s9OKSbiIjI8BjckO527dqhopxKT6bQISIiIgNgEKOfiIiIiCrDpIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgo6TWoOHjyIbt26wcfHBzKZDFu3blUqF0Lg448/hre3N2xsbBATE4Nr167pJlgiIiLSazpNarKzsxEVFYUlS5aUW/7ZZ5/hiy++wLJly3D8+HHY2dmhY8eOePLkSQ1HSkRERPquli7fvHPnzujcuXO5ZUIILF68GB999BFef/11AMB///tfeHp6YuvWrejbt29NhkpERER6Tm/71CQlJSEtLQ0xMTGKZU5OTmjRogWOHj2qw8iIiIhIH+m0pqYiaWlpAABPT0+l5Z6enoqy8uTl5SEvL0/xXC6XV0+AREREpFf0tqZGW3PnzoWTk5Pi4efnp+uQiIiIqAbobVLj5eUFALh3757S8nv37inKyjNlyhRkZmYqHsnJydUaJxEREekHvU1qgoKC4OXlhb179yqWyeVyHD9+HNHR0SpfZ2VlBUdHR6UHERERGT+d9qnJysrC9evXFc+TkpJw9uxZuLq6wt/fH+PHj8fs2bNRr149BAUFYdq0afDx8UH37t11FzQRERHpJZ0mNadOnUL79u0VzydMmAAAiI2NxapVqzBp0iRkZ2dj+PDhyMjIQOvWrbFz505YW1vrKmQiIiLSUzIhhNB1ENVJLpfDyckJmZmZbIoiIiIyENpcv/W2Tw0RERGRJpjUEBERkVFgUkNERERGgUkNERERGQUmNURERGQUmNQQERGRUWBSQ0REREZBq6QmOztb6jiIiIiIqkSrpMbT0xODBw/GH3/8IXU8RERERFrRKqlZvXo1Hj58iJdeegmhoaGIj49HSkqK1LERERERqU2rpKZ79+7YunUr7t69ixEjRmDNmjUICAhA165dsXnzZhQUFEgdJxEREVGFJLv305dffomJEyfi6dOncHNzw4gRIxAXFwdbW1spNq813vuJiIjI8Ghz/a7SXbrv3buH7777DqtWrcKtW7fQs2dPDBkyBHfu3MG8efNw7Ngx7N69uypvQURERKQWrZKazZs3IyEhAbt27UJ4eDhGjRqFAQMGwNnZWbFOy5Yt0aBBA6niJCIiIqqQVknNoEGD0LdvXxw+fBjNmjUrdx0fHx9MnTq1SsERERERqUurPjU5OTk67yujLvapISIiMjw11qfG1tYWhYWF2LJlCy5dugQAaNCgAbp3745atarUTYeIiIhIK1plIH/99Re6deuGe/fuoX79+gCAefPmwd3dHT///DMiIiIkDZKIiIioMlrNUzN06FBERETgzp07OH36NE6fPo3k5GQ0atQIw4cPlzpGIiIiokppVVNz9uxZnDp1Ci4uLoplLi4umDNnjsqOw0RERETVSauamtDQUNy7d6/M8vv37yMkJKTKQRERERFpSqukZu7cuRg7diw2bdqEO3fu4M6dO9i0aRPGjx+PefPmQS6XKx5ERERENUGrId1mZv/LhWQyGQCgeDMln8tkMhQWFkoRp9Y4pJuIiMjw1NiQ7v3792vzMiIiIqJqo1VS07ZtW6njICIiIqoSrWfKy8jIwLfffquYfK9hw4YYPHgwnJycJAuOiIiISF1adRQ+deoUgoODsWjRIjx8+BAPHz7EwoULERwcjNOnT0sdIxEREVGltOoo/OKLLyIkJAQrVqxQ3BahoKAAQ4cOxd9//42DBw9KHqi22FGYiIjI8Ghz/dYqqbGxscGZM2cQFhamtPzixYto2rQpcnJyNN1ktWFSQ0REZHi0uX5r1fzk6OiI27dvl1menJwMBwcHbTZJREREVCVaJTV9+vTBkCFDsH79eiQnJyM5ORnr1q3D0KFD0a9fP6ljJCIiIqqUVqOfFixYAJlMhnfeeQcFBQUAAAsLC4wcORLx8fGSBkhERESkDo371BQWFuLw4cOIjIyElZUVbty4AQAIDg6Gra1ttQRZFexTQ0REZHhqZEZhc3NzdOjQAZcuXUJQUBAiIyM1DpSIiIhIalr1qYmIiMDff/8tdSxEREREWtMqqZk9ezY++OADbN++HampqUp35eaduYmIiEgXJLtLN6A/d+YuiX1qiIiIDA/v0k1EREQmS6ukJigoCH5+fkq1NMCzmprk5GRJAiMiIiLShFZ9aoKCgvDgwYMyyx8+fIigoKAqB0VERESkKa2SmuK+M6VlZWXB2tq6ykEVKywsxLRp0xAUFAQbGxsEBwdj1qxZ0KIbEBERERk5jZqfJkyYAOBZ5+Bp06YpTbZXWFiI48eP47nnnpMsuHnz5mHp0qX47rvv0LBhQ5w6dQqDBg2Ck5MTxo4dK9n7EBERkeHTKKk5c+YMgGc1NRcuXIClpaWizNLSElFRUfjggw8kC+7IkSN4/fXX0aVLFwBAYGAg1q5dixMnTkj2HkRERGQcNEpqikc9DRo0CJ9//nm1D5Fu2bIlvv76a1y9ehWhoaE4d+4c/vjjDyxcuFDla/Ly8pCXl6d4znlziIiITINWo58SEhKkjqNccXFxkMvlCAsLg7m5OQoLCzFnzhz0799f5Wvmzp2LmTNn1kh8REREpD+0Smqys7MRHx+PvXv34v79+ygqKlIql+oWChs2bMAPP/yANWvWoGHDhjh79izGjx8PHx8fxMbGlvuaKVOmKPr+AM9qavz8/CSJh4iIiPSXVknN0KFDceDAAbz99tvw9vYudySUFCZOnIi4uDj07dsXABAZGYlbt25h7ty5KpMaKysrWFlZVUs8REREpL+0Smp+/fVX/PLLL2jVqpXU8SjJyclRuiUD8Owu4aVrhoiIiIi0SmpcXFzg6uoqdSxldOvWDXPmzIG/vz8aNmyIM2fOYOHChRg8eHC1vzcREREZFq1uaLl69Wr89NNP+O6775TmqpHa48ePMW3aNGzZsgX379+Hj48P+vXrh48//lhpOHlFeENLIiIiw6PN9VurpKZx48a4ceMGhBAIDAyEhYWFUvnp06c13WS1YVJDRERkeGrsLt3du3fX5mVERERE1UarmhpDwpoaIiIiw6PN9VujG1qeOHEChYWFKsvz8vKwYcMGTTZJREREJAmNkpro6Gj8888/iueOjo5KE+1lZGSgX79+0kVHREREpCaNkprSLVXltVwZeWsWERER6SmNkhp1VNfswkREREQVkTypISIiItIFjYd0X7x4EWlpaQCeNTVdvnwZWVlZAID09HRpoyMiIiJSk0ZDus3MzCCTycrtN1O8XCaTVThCqqZxSDcREZHhqfbJ95KSkrQKjIiIiKi6aZTUBAQEaLTxUaNG4ZNPPoGbm5tGryMiIiLSVLV2FF69ejXkcnl1vgURERERgGpOajhnDREREdUUDukmIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyChUa1IzYMAATnhHRERENUKrpKaoqEjl8tu3byueL126lHPUEBERUY3QKKmRy+Xo3bs37Ozs4OnpiY8//ljplggPHjxAUFCQ5EESERERVUajGYWnTZuGc+fO4fvvv0dGRgZmz56N06dPY/PmzbC0tATAuWmIiIhINzSqqdm6dSuWL1+Onj17YujQoTh16hQePHiAbt26IS8vD8CzG1sSERER1TSNkpoHDx4o3f/Jzc0Nv/32Gx4/foxXX30VOTk5kgdIREREpA6Nkhp/f39cunRJaZmDgwN2796N3NxcvPHGG5IGR0RERKQujZKaDh06ICEhocxye3t77Nq1C9bW1pIFRkRERKQJjToKz5w5EykpKeWWOTg4YM+ePTh9+rQkgRERERFpQqOkxsXFBS4uLirLHRwc0LZt2yoHRURERKQpjSffKygowPz589GkSRPY29vD3t4eTZo0wYIFC5Cfn18dMRIRERFVSqOamtzcXLzyyis4evQoYmJi0KZNGwDApUuXMHnyZGzbtg27d+9m3xoiIiKqcRolNfHx8UhOTsaZM2fQqFEjpbJz587htddeQ3x8PGbMmCFljERERESV0qj5ad26dVi4cGGZhAYAoqKisGDBAqxZs0ay4IiIiIjUpVFSc+vWLTRv3lxl+QsvvKB0Q0siIiKimqJRUuPo6Ij79++rLE9LS4ODg0OVgyIiIiLSlEZJTfv27fHpp5+qLI+Pj0f79u2rHBQRERGRpjTqKDx9+nS0aNECL7zwAiZMmICwsDAIIXDp0iUsWrQIFy9exLFjx6orViIiIiKVNEpqwsPDsWfPHgwZMgR9+/ZV3JFbCIGwsDDs3r0bDRs2rJZAiYiIiCqiUVIDPOsM/Ndff+Hs2bO4evUqACA0NBTPPfec1LERERERqU3jpEYul8Pe3h7PPfecUiJTVFSErKwsODo6ShkfERERkVo06ii8ZcsWNG3aFE+ePClTlpubi2bNmuHnn3+WLDgiIiIidWmU1CxduhSTJk2Cra1tmTI7OztMnjwZ//nPfyQLjoiIiEhdGiU1iYmJaNeuncryNm3a4MKFC1WNScndu3cxYMAA1K5dGzY2NoiMjMSpU6ckfQ8iIiIyfBr1qXn06BEKCgpUlufn5+PRo0dVDqrk+7Vq1Qrt27fHr7/+Cnd3d1y7dg0uLi6SvQcREREZB42SmsDAQJw6dQphYWHllp86dQoBAQGSBAYA8+bNg5+fHxISEhTLgoKCJNs+ERERGQ+Nmp969OiBqVOn4t69e2XK0tLS8NFHH+HNN9+ULLht27ahadOm6NWrFzw8PNC4cWOsWLGiwtfk5eVBLpcrPYiIiMj4yYQQQt2VHz9+jOjoaNy+fRsDBgxA/fr1AQCXL1/GDz/8AD8/Pxw7dkyy+z9ZW1sDACZMmIBevXrh5MmTGDduHJYtW4bY2NhyXzNjxgzMnDmzzPLMzEwONyciIjIQcrkcTk5OGl2/NUpqgGfJwZQpU7B+/XpF/xlnZ2f07dsXc+bMkbS/i6WlJZo2bYojR44olo0dOxYnT57E0aNHy31NXl4e8vLyFM/lcjn8/PyY1BARERkQbZIajSffc3JywldffYUlS5YgPT0dQgi4u7srbplQ0uHDh9G0aVNYWVlp+jYAAG9vb4SHhysta9CgAX788UeVr7GystL6/YiIiMhwadSnpiSZTAZ3d3d4eHiUm9AAQOfOnXH37l2tg2vVqhWuXLmitOzq1auSdkYmIiIi46B1UqMODVu2yvjXv/6FY8eO4dNPP8X169exZs0afP311xg9erREERIREZGxqNakpqqaNWuGLVu2YO3atYiIiMCsWbOwePFi9O/fX9ehERERkZ7RuE9NTevatSu6du2q6zCIiIhIz+l1TQ0RERGRuqo1qVHVgZiIiIhIanrdUZiIiIhIXdXap+bx48fVuXkiIiIiBY2Smpdeekmt9fbt26dVMERERETa0iip+f333xEQEIAuXbrAwsKiumIiIiIi0phGSc28efOQkJCAjRs3on///hg8eDAiIiKqKzYiIiIitWnUUXjixIm4ePEitm7disePH6NVq1Zo3rw5li1bBrlcXl0xEhEREVVK47t0l5STk4ONGzdiyZIluHjxIlJSUvTuTtja3OWTiIiIdEub63eVhnSfPn0aBw4cwKVLlxAREcF+NkRERKQzGic1KSkp+PTTTxEaGoqePXvC1dUVx48fx7Fjx2BjY1MdMRIRERFVSqOOwq+++ir279+PDh06YP78+ejSpQtq1dL720cRERGRCdCoT42ZmRm8vb3h4eFR4S0QTp8+LUlwUmCfGiIiIsOjzfVbo2qW6dOnaxUYERERUXWr0ugnQ8CaGiIiIsNT7TU1qhw4cADZ2dmIjo6Gi4uLFJskIiIi0ojGMwpnZWVh1qxZAJ7dhbtz587YvXs3AMDDwwN79+5Fw4YNpY+UiIiIqAIaDelev3690m0RNm3ahIMHD+LQoUNIT09H06ZNMXPmTMmDJCIiIqqMRklNUlISGjVqpHi+Y8cO9OzZE61atYKrqys++ugjHD16VPIgiYiIiCqjUVJTUFAAKysrxfOjR4+iZcuWiuc+Pj5IT0+XLjoiIiIiNWmU1AQHB+PgwYMAgNu3b+Pq1ato06aNovzOnTuoXbu2tBESERERqUGjjsKjR4/GmDFjcOjQIRw7dgzR0dEIDw9XlO/btw+NGzeWPEgiIiKiymiU1AwbNgzm5ub4+eef0aZNmzKT8aWkpGDw4MGSBkhERESkDk6+R0RERHpHm+u3xnfpJiIiItJHGiU1+fn5mDRpEkJCQtC8eXOsXLlSqfzevXswNzeXNEAiIiIidWiU1MyZMwf//e9/MWLECHTo0AETJkzAu+++q7SOkbdmERERkZ7SqKPwDz/8gG+++QZdu3YFAAwcOBCdO3fGoEGDFLU2MplM+iiJiIiIKqFRTc3du3eVbpMQEhKC33//HUeOHMHbb7+NwsJCyQMkIiIiUodGSY2Xlxdu3LihtMzX1xf79+/HyZMnMXDgQCljIyIiIlKbRknNSy+9hDVr1pRZ7uPjg3379iEpKUmywIiIiIg0oVGfmmnTpuHy5cvllvn6+uLAgQPYs2ePJIERERERaYKT7xEREZHeqbHJ9zZu3IgePXogIiICERER6NGjBzZt2qTNpoiIiIgkoVFSU1RUhD59+qBPnz64ePEiQkJCEBISgr/++gt9+vRB3759OU8NERER6YRGfWo+//xz/Pbbb9i2bZtirppi27Ztw6BBg/D5559j/PjxUsZIREREVCmNamoSEhIwf/78MgkNALz22mv47LPPytw6gYiIiKgmaJTUXLt2DTExMSrLY2JicO3atSoHRURERKQpjZIaGxsbZGRkqCyXy+WwtrauakxEREREGtMoqYmOjsbSpUtVli9ZsgTR0dFVDoqIiIhIUxolNVOnTsW3336L3r1748SJE5DL5cjMzMSxY8fQq1cvrFy5ElOnTq2uWBEfHw+ZTMaOyERERFSGRqOfWrZsifXr12P48OH48ccflcpcXFywdu1atGrVStIAi508eRLLly9Ho0aNqmX7REREZNg0SmoA4I033kDHjh2xa9cuRafg0NBQdOjQAba2tpIHCABZWVno378/VqxYgdmzZ1fLexAREZFh06j5ad++fQgPD0dBQQHeeOMNTJo0CZMmTUL37t2Rn5+Phg0b4tChQ5IHOXr0aHTp0qXCkVfF8vLyIJfLlR5ERERk/DRKahYvXoxhw4aVew8GJycnvPvuu1i4cKFkwQHAunXrcPr0acydO1et9efOnQsnJyfFw8/PT9J4iIiISD9plNScO3cOnTp1UlneoUMH/Pnnn1UOqlhycjLGjRuHH374Qe2h4lOmTEFmZqbikZycLFk8REREpL806lNz7949WFhYqN5YrVp48OBBlYMq9ueff+L+/fto0qSJYllhYSEOHjyI//znP8jLy4O5ubnSa6ysrGBlZSVZDERERGQYNEpqfH19kZiYiJCQkHLLz58/D29vb0kCA4CXX34ZFy5cUFo2aNAghIWFYfLkyWUSGiIiIjJdGiU1r776KqZNm4ZOnTqVaQ7Kzc3F9OnTy70vlLYcHBwQERGhtMzOzg61a9cus5yIiIhMm0ZJzUcffYTNmzcjNDQUY8aMQf369QEAly9fxpIlS1BYWFitk+8RERERqSITQghNXnDr1i2MHDkSu3btQvFLZTIZOnbsiCVLliAoKKhaAtWWXC6Hk5MTMjMzyx21RURERPpHm+u3xpPvBQQEYMeOHXj06BGuX78OIQTq1asHFxcXjQMmIiIikorGSU0xFxcXNGvWTMpYiIiIiLSm0Tw1RERERPqKSQ0REREZBSY1eiQ1MxdHbqQjNTNX16EQEREZHK371JC01p+8jSmbL6BIAGYyYG6PSPRp5q/rsIiIiAwGa2r0QGpmriKhAYAiAXy4OZE1NkRERBpgUqMHktKzFQlNsUIhcDM9RzcBERERGSAmNXogyM0OZjLlZeYyGQLdbHUTEBERkQFiUqMHvJ1sMLdHJMxlzzIbc5kMn/aIgLeTjY4jIyIiMhzsKKwn+jTzR5tQd9xMz0Ggmy0TGiIiIg0xqdEj3k42TGaIiIi0xOYnIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqJMabUhIREekGh3RLiDelJCIi0h3W1EiEN6UkIiLSLSY1EuFNKYmIiHSLSY1EeFNKIiIi3WJSIxHelJKIiEi32FFYQrwpJRERke4wqZGYNjelTM3MRVJ6NoLc7JgIERERaYlJjY5xGDgREZE02KdGhzgMnIiISDpManSIw8CJiIikw6RGhzgMnIiISDpManSIw8CJiIikw47COsZh4ERERNJgUqMHtBkGTkRERMrY/EQKqZm5OHIjnaOviIjIILGmhgBwvhwiIjJ8rKkhnEt+hDjOl0NERAaOSY2JW3/yNrovOQLB+XKIiMjAMakxYcUzGotyyjhfDhGZOvYzNDzsU2PCypvRGHjWp4bz5RCRKWM/Q8PEmhoTVt6MxmYAtoxqyS8vEZks3pfPcOl1UjN37lw0a9YMDg4O8PDwQPfu3XHlyhVdh2U0ypvReO6bkYjyc9FxZEREusP78hkuvW5+OnDgAEaPHo1mzZqhoKAAH374ITp06ICLFy/Czs5O1+EZBc5oTESkrLgWu2Riw36GhkEmROlxL/rrwYMH8PDwwIEDB9CmTRu1XiOXy+Hk5ITMzEw4OjpWc4RERGQM1p+8jQ83J6JQCMV9+dgsX7O0uX7rdU1NaZmZmQAAV1dXHUeiv1Izc5GUno0gNzvWuhARaYm12IbJYJKaoqIijB8/Hq1atUJERITK9fLy8pCXl6d4LpfLayI8vcDe+kRE0uF9+QyPXncULmn06NFITEzEunXrKlxv7ty5cHJyUjz8/PxqKELdYm99IiIydQaR1IwZMwbbt2/H/v37UadOnQrXnTJlCjIzMxWP5OTkGopSt9hbn4iITJ1eNz8JIfDee+9hy5Yt+P333xEUFFTpa6ysrGBlZVUD0ekX9tYnIiJTp9c1NaNHj8bq1auxZs0aODg4IC0tDWlpacjNZZNKaeXNOcNZgYmIyJTo9ZBumUxW7vKEhAQMHDhQrW2Y2pDu1Mxck+mtz5FeRETGy+iGdOtxvqW3TKW3Pkd6GQYmnkRUk/Q6qSEqj6qRXm1C3Xnh1CNMPImopul1nxqi8nCkl/7jFANEpAtMasjglHd3cY700i9MPIlIF5jUkMHhSC/dSc3MxZEb6ZXWuDDxJCJdYJ8aMijFHU/bhLrjj7j2JjPSSx9o0kemOPEsfUNAfk5EVJ30eki3FExtSLcxY8dT3UnNzEWr+H1lJnf8I659hYmKKU0xQETS0ub6zeYnMgjseKpb2vaR8XayQXRwbY0TGnWbuYiISmLzExmEii6qrAGofjV5Gw7WyBGRtlhTQwaBHU91q3TnbDMZMLh1oOTvwxo5orJYc6k+JjWkEV19uTjiSff6NPPHH3HtMbxNEIQAVhxKQqv4fVh/8rZk78Gh4ETK1p+8jVbx+/DWiuOSf9+koG8JF5ufSG3aNgtINVV+n2b+aBPqzo6nOvbNoSQU5x1Sz+bMu80T/Y++z56uj03FrKkhtWjbLCD1fxnadjwlaVR3TQpr5Ij+R59rLvW1qZg1NRIx9hv3adNRV9//yyDN1URNSnGN3J83HwEy4PkAF8m2TWRI9LnmUl8Hb7CmRgL63uYpBW066urzfxnGrrrauWuqJuXg1QcYu+4Mxqw5Y7TfKaLK6HPNpb4O3mBNTRWZUm3E0NZB+OZQEopQ+ZcrNTMX/2Tl6e1/Gcasutu5VfVtkqq20pS+U0SV0de+hPo6aziTmirS1yo4KZW+SA5vXReDWgeq3L+S68sAyGSAEPr1X4YmDKlpsaYSAm8nG6XtSZlImcJ3ikgTpb9v+kIfEy4mNVWkz22eUjiX/Ahxmy9AlLhIfvtHEgapmKOk9EVVADATwH/eaowmAS56cdJrQh9791dEFwmB1ImUsX+niIyJviVc7FNTRfrc5llV60/eRvclR1D67mAV9Ysp76JaBMDVzsrgjom+9u6vSE20c5furyN13ylj/k4RUfViTY0E9LEKrqqKL+jl3e20ooukMf2Xrataj6o0dVV3O3d5NVdtQt0l/8yN8TtFRNWPSY1E9K0KrqrKu6AXm9S5vsp91faiqqt+KxW9b00naFI1dVVXQqCq5uqPuPbVkkjV1HfKkPpMEVHFmNRQuYLc7CADyq2paeTrXOFrNb2o6qrfSmXvqypBA4AjN9IlvQhK3S+lOhKCimquDLVmxdD6TJH0mNQaFyY1VC5vJxvEdQ7D3F8vKy1Xt6ZC3Yuqrobvqvu+pS/WB68+QKv4fZJfBGuqqasqP+CV1VwZWm2l1OceL47SqaljWdWklp+5/mFSQyq92zYYkAHzfr2Momoakq2r4buavG/xxbo6EzB1mrqq+gNa1R9wfZ2XQltSnnus8amcuudvTR3Lqn6f+ZnrJyY1VKF32wTjtSgfSZoVUjNz8eetRxBCoGmgK7ydbMq9mJsB1d6xWJv+MlInYKV/5CtKGKT4j1KKhMxQm5nKI1WfKU4WWDl1z9+aPJZV+T7zM9dfTGqoUlI0K6w/eRtxP/5vNJUMQPybz37Y5vaIVCoTeDZNfnX+16NNrYOUHYdV/cirmqm3qj+gUiZk1dnMVJPV+VLVPKk6tqdvPUKXRrzAaXL+1mTNbVW+z5wgUn8xqaFqV97wcAFgyo8X0CbUHW1C3RWzDheX1cR/PZrWOkh1EazsR746fugNYai9Lqrzpah5Ku/YAsCYNWeQlVdg8k0Smpy/NXmelvd9ntSpPpLSsxXlqhjC98lUMamhaqdqeHgRgJvpORAQOvuvR9Nah4ougurWMmiapEjxA6rv/WF0WZ1f1Zqn4mNbMn6g5pJzfafJ+VuTIw4B5e/z+bsZiv6DlSXV+v59MmVMaqjaqfpPtmTfGUP6r6e8i2DpWobJncIQWcdJkvlvpPoB1ef+MIZend+nmT9sLc3x3tqzSssNaR+qi6bnrzYjDqvSbFm8fv9vjmmUVOvz98mUMakxcIYwpLD4R63kPaRkAOa+GamIueSPnpkMGKzi3lL6qLxahuKh8JrMf1PR5yfVD6i+Drs2hur8poGuBr8P1UWbpl51RxxK0WypbVKtr98nU8akRseqkpQY0pDC4h+107ceQQjg+UDlm1sWlyccTsKKg0lYcSgJ3/6RVGaf9DGJq2j2ZXXnv1FnX6r7B1SXx9YYqvOrax/08ZzXhjbnb2XJhrrNlpUdQ2NIqtVRfBzsLM2R/bTQ4M+p8jCp0aGqJCWGOKTQ28mm0tEg3xxKUnQoLr1P+prEqWpeK1bZ/Df6QB+OrTFU50u9D/rwuWhDqkSssmRDnRoWdY5hRQmpsSSVJY9DsZLHw1j2k0mNjlQ1KTH0Pgjlqexuz/qaxJX+QSxN3//j06cEWVWipy8/uOrEIVWyqk+fS3lUHQspE7HKar8qS3o0OYblJaSGmlSWVvo4FCs+Hhk5+Zi3U71O0vqOSY2OVDUpMYbq0tI/ihXtk74ncaVHUXz26xWDaUbR92OrLxeWmo5Dnz8XVceiOhKximq/Kkt6ND2GJRNSfU8qNVFRE3mhEIj/9bLKGnJDw6RGR6qalBh6HwRVP4oV7ZO+J3HFP4jRwbUlm4W5JuhzgqwvFxZdxKFqtu1/svOQmpmrs/OqomNRXYlYRbVfFSU9hjbBntQ1kiX70KhqIi9vub4kz9pgUqMjUiQlpb/MQPXM5SC1in4UVf1AGVoSp0/9ZSpT+tjWxOiz6prTp7roIo7Sn4sMz+a+GbPmTLk1RVJcENXZRkXHQlcJsqrvW1V+N2p6XyqrCdT08y29vTca+2LrmZQyTeRFAopzq5i+/FOjDSY1OiRFp8LiL7O+VNGro7ILhKofKGPoSKqvVI0+G9I6CINbB0l6rDU5V1XVVthamkkWjzrKjUNW/XH0aeaPjJx8zC3RPABUTyd6dbdR0cVeH//50PZ3oyb3pbKaQE0/3/K2t/VMCjaPisadR7kYveZMmdcUf6b68JlVhUyIcno2GhG5XA4nJydkZmbC0dFR1+FUi9TMXMXkVMXMZTL8EddeL09MQ4vXVJT3uQDK9+mqjveo7LNff/J2mU7Y2l64qzqFglRxqEvVZ1Js7bAXEOhmW+Xvk6afS8ljUXwRLF2rYCz/fNTEvhy5kY63Vhwvs1zbz7ei7QmIcsv+068xattb6dVnps31mzU1RkBfqujVpY//zWmjqtX9+jKip5iqzoQC0vUf0eZc7dPMH2FeDuj+1RHF5I3a9Gmpam2GIo4lRzTqVFmVz7miDp5SdqLXdBuV1X4YUvNrZWpiX6QaJFFRH5qSTUrllZWeO8xQManRE1X54dPnjp6qGHpTUlUvkPrYXFjRfDtSJcnanqvZTwtRuk5Zk5ik6uib/bQQpQ9PRXFU9XNWeYsRGSTtRK/N52JMiYuuFf+jV/Jc0fTzXX7ghmIUU+k+NKX/cTSGfypVqdmGaSrX+pO30Sp+H95acRyt4vdh/cnbGr2++AthLpMBMJw20eKRQrocxXHkRjpSM3M1WkfVBbKi7ZTeZlVeX12KzyMzWdkyqZJkbc/V4ouutjFVNgeSujSJQ4rPufTxMgMwvE0QDse9pEiOqvL9Lz6/ARjkb4ixKU7cSybw6ny+yw/eUOp3VbIPzdphL+CPuPZKyXSfZv74I659uWWGziBqapYsWYL58+cjLS0NUVFR+PLLL9G8eXNdhyUJqf6DNPSaj5pW8j9oGYC4zmF4t22wynVK/pdd1ep+fW4uLNlh+JuDSSiC9Bc4bW8RUZX/LqWqzdQkDik+59TMXPi52mLzqGjkPC1Seby0Oablnd9/xLXnb4gOFF8Hik8XAWDKjxcQ5uWAKD+XCj/f1MxcxP//veZKKhQCdx7loksjn3Lf01hr2vQ+qVm/fj0mTJiAZcuWoUWLFli8eDE6duyIK1euwMPDQ9fhVZmUFzhjPUmlVjqRFPj/G1DKgHfbBJe7Tslks6oXSG1eX7J5EkC19sXxdrLBh6+GY1CroGq7wGlzrlYlcZeyH5e6cVT1PCkv6YgOrq1yfVXHtLymbVXn9+ZR0RBlGtioupV3HSgC0P2rI4j//3+mVH2+SenZZZpmi41ZcwZZeQVGVRNTGb1PahYuXIhhw4Zh0KBBAIBly5bhl19+wcqVKxEXF6fj6KrOEPvDGDpVnS/n/XoZr0X5wNvJpsJkMzq4dpUukJpeYEvXKgFQtJtXZ18cfUySqxKTlLWZ6sRRlURKqhpcTWsbiztj60s/L1Ohqu+UUONzr6gvnJSd/A2FXic1T58+xZ9//okpU6YolpmZmSEmJgZHjx4t9zV5eXnIy8tTPJfL5dUeZ1UYy0ggQxLkZldmsing2Y9CcQ1ZZclmVS+Q6r6+vFqlkvGa2g9WVdV0oqbteSJV05UmtY0AqjS6jLSn6Cj84wUUlSqr7HMvfQ0pTV+atmuKXncUTk9PR2FhITw9PZWWe3p6Ii0trdzXzJ07F05OToqHn59fTYRaJcbcaUsfeTvZIK5zWJnlJZMWdTrnVbWjszqvr2hIL6BdZ1eqWdqcJ1XtGA1UnhiV7oBcGs+tmtWnmT+2jG4JmRafe/E1ZMlbjVG6n7+p1fzrdU2NNqZMmYIJEyYonsvlcoNIbPSxqt+Yvds2GJA9a3JSNYumPnS+rqhqGTC9HyxTIUUNria1jbaWZnjjqyNsBtexKD8XxGv5uXs72aBLIxtk5RWYdM2/Xs8o/PTpU9ja2mLTpk3o3r27YnlsbCwyMjLw008/VboNU5hRmLRnCDOflpy9VQYAsmfNBOXN5ErGparnZ2Uz/2q7LlWvqn7uhvC7pg5trt96ndQAQIsWLdC8eXN8+eWXAICioiL4+/tjzJgxanUUZlJDxqDkjxQAo/jBopqhyQXOWC6GZByM8jYJEyZMQGxsLJo2bYrmzZtj8eLFyM7OVoyGIjIFpZsnecEhdWnStM1mcDJ0ep/U9OnTBw8ePMDHH3+MtLQ0PPfcc9i5c2eZzsNERERk2vS++amq2PxERERkeLS5fuv1kG4iIiIidTGpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCjo/W0Sqqp4wmS5XK7jSIiIiEhdxddtTW58YPRJzePHjwEAfn5+Oo6EiIiINPX48WM4OTmpta7R3/upqKgIKSkpcHBwgEwm03o7crkcfn5+SE5ONul7SPE4PMPj8AyPw//wWDzD4/AMj8MzVTkOQgg8fvwYPj4+MDNTr7eM0dfUmJmZoU6dOpJtz9HR0aRP0GI8Ds/wODzD4/A/PBbP8Dg8w+PwjLbHQd0ammLsKExERERGgUkNERERGQUmNWqysrLC9OnTYWVlpetQdIrH4Rkeh2d4HP6Hx+IZHodneByeqenjYPQdhYmIiMg0sKaGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqNg0knN0qVL0ahRI8WkQNHR0fj1118V5U+ePMHo0aNRu3Zt2Nvb480338S9e/eUtnH79m106dIFtra28PDwwMSJE1FQUFDTuyKp+Ph4yGQyjB8/XrHMFI7FjBkzIJPJlB5hYWGKclM4BsXu3r2LAQMGoHbt2rCxsUFkZCROnTqlKBdC4OOPP4a3tzdsbGwQExODa9euKW3j4cOH6N+/PxwdHeHs7IwhQ4YgKyurpnelSgIDA8ucEzKZDKNHjwZgOudEYWEhpk2bhqCgINjY2CA4OBizZs1SuiePqZwTjx8/xvjx4xEQEAAbGxu0bNkSJ0+eVJQb43E4ePAgunXrBh8fH8hkMmzdulWpXKp9Pn/+PF588UVYW1vDz88Pn332mebBChO2bds28csvv4irV6+KK1euiA8//FBYWFiIxMREIYQQI0aMEH5+fmLv3r3i1KlT4oUXXhAtW7ZUvL6goEBERESImJgYcebMGbFjxw7h5uYmpkyZoqtdqrITJ06IwMBA0ahRIzFu3DjFclM4FtOnTxcNGzYUqampiseDBw8U5aZwDIQQ4uHDhyIgIEAMHDhQHD9+XPz9999i165d4vr164p14uPjhZOTk9i6das4d+6ceO2110RQUJDIzc1VrNOpUycRFRUljh07Jg4dOiRCQkJEv379dLFLWrt//77S+bBnzx4BQOzfv18IYTrnxJw5c0Tt2rXF9u3bRVJSkti4caOwt7cXn3/+uWIdUzknevfuLcLDw8WBAwfEtWvXxPTp04Wjo6O4c+eOEMI4j8OOHTvE1KlTxebNmwUAsWXLFqVyKfY5MzNTeHp6iv79+4vExESxdu1aYWNjI5YvX65RrCad1JTHxcVFfPPNNyIjI0NYWFiIjRs3KsouXbokAIijR48KIZ590GZmZiItLU2xztKlS4Wjo6PIy8ur8dir6vHjx6JevXpiz549om3btoqkxlSOxfTp00VUVFS5ZaZyDIQQYvLkyaJ169Yqy4uKioSXl5eYP3++YllGRoawsrISa9euFUIIcfHiRQFAnDx5UrHOr7/+KmQymbh79271BV/Nxo0bJ4KDg0VRUZFJnRNdunQRgwcPVlrWo0cP0b9/fyGE6ZwTOTk5wtzcXGzfvl1peZMmTcTUqVNN4jiUTmqk2uevvvpKuLi4KH0vJk+eLOrXr69RfCbd/FRSYWEh1q1bh+zsbERHR+PPP/9Efn4+YmJiFOuEhYXB398fR48eBQAcPXoUkZGR8PT0VKzTsWNHyOVy/PXXXzW+D1U1evRodOnSRWmfAZjUsbh27Rp8fHxQt25d9O/fH7dv3wZgWsdg27ZtaNq0KXr16gUPDw80btwYK1asUJQnJSUhLS1N6Vg4OTmhRYsWSsfC2dkZTZs2VawTExMDMzMzHD9+vOZ2RkJPnz7F6tWrMXjwYMhkMpM6J1q2bIm9e/fi6tWrAIBz587hjz/+QOfOnQGYzjlRUFCAwsJCWFtbKy23sbHBH3/8YTLHoSSp9vno0aNo06YNLC0tFet07NgRV65cwaNHj9SOx+hvaFmZCxcuIDo6Gk+ePIG9vT22bNmC8PBwnD17FpaWlnB2dlZa39PTE2lpaQCAtLQ0pR+r4vLiMkOybt06nD59WqltuFhaWppJHIsWLVpg1apVqF+/PlJTUzFz5ky8+OKLSExMNJljAAB///03li5digkTJuDDDz/EyZMnMXbsWFhaWiI2NlaxL+Xta8lj4eHhoVReq1YtuLq6GtSxKGnr1q3IyMjAwIEDAZjO9wIA4uLiIJfLERYWBnNzcxQWFmLOnDno378/AJjMOeHg4IDo6GjMmjULDRo0gKenJ9auXYujR48iJCTEZI5DSVLtc1paGoKCgspso7jMxcVFrXhMPqmpX78+zp49i8zMTGzatAmxsbE4cOCArsOqUcnJyRg3bhz27NlT5j8QU1L8XycANGrUCC1atEBAQAA2bNgAGxsbHUZWs4qKitC0aVN8+umnAIDGjRsjMTERy5YtQ2xsrI6j051vv/0WnTt3ho+Pj65DqXEbNmzADz/8gDVr1qBhw4Y4e/Ysxo8fDx8fH5M7J77//nsMHjwYvr6+MDc3R5MmTdCvXz/8+eefug6NYOKjnwDA0tISISEheP755zF37lxERUXh888/h5eXF54+fYqMjAyl9e/duwcvLy8AgJeXV5mRDsXPi9cxBH/++Sfu37+PJk2aoFatWqhVqxYOHDiAL774ArVq1YKnp6fJHIuSnJ2dERoaiuvXr5vU+eDt7Y3w8HClZQ0aNFA0xRXvS3n7WvJY3L9/X6m8oKAADx8+NKhjUezWrVv47bffMHToUMUyUzonJk6ciLi4OPTt2xeRkZF4++238a9//Qtz584FYFrnRHBwMA4cOICsrCwkJyfjxIkTyM/PR926dU3qOBSTap+l+q6YfFJTWlFREfLy8vD888/DwsICe/fuVZRduXIFt2/fRnR0NAAgOjoaFy5cUPqw9uzZA0dHxzIXBX328ssv48KFCzh79qzi0bRpU/Tv31/xt6kci5KysrJw48YNeHt7m9T50KpVK1y5ckVp2dWrVxEQEAAACAoKgpeXl9KxkMvlOH78uNKxyMjIUPrvdd++fSgqKkKLFi1qYC+klZCQAA8PD3Tp0kWxzJTOiZycHJiZKV8uzM3NUVRUBMA0zwk7Ozt4e3vj0aNH2LVrF15//XWTPA5S7XN0dDQOHjyI/Px8xTp79uxB/fr11W56AmDaQ7rj4uLEgQMHRFJSkjh//ryIi4sTMplM7N69WwjxbLimv7+/2Ldvnzh16pSIjo4W0dHRitcXD9fs0KGDOHv2rNi5c6dwd3c3uOGa5Sk5+kkI0zgW77//vvj9999FUlKSOHz4sIiJiRFubm7i/v37QgjTOAZCPBvWX6tWLTFnzhxx7do18cMPPwhbW1uxevVqxTrx8fHC2dlZ/PTTT+L8+fPi9ddfL3cIZ+PGjcXx48fFH3/8IerVq6fXw1ZVKSwsFP7+/mLy5MllykzlnIiNjRW+vr6KId2bN28Wbm5uYtKkSYp1TOWc2Llzp/j111/F33//LXbv3i2ioqJEixYtxNOnT4UQxnkcHj9+LM6cOSPOnDkjAIiFCxeKM2fOiFu3bgkhpNnnjIwM4enpKd5++22RmJgo1q1bJ2xtbTmkWxODBw8WAQEBwtLSUri7u4uXX35ZkdAIIURubq4YNWqUcHFxEba2tuKNN94QqampStu4efOm6Ny5s7CxsRFubm7i/fffF/n5+TW9K5IrndSYwrHo06eP8Pb2FpaWlsLX11f06dNHaW4WUzgGxX7++WcREREhrKysRFhYmPj666+VyouKisS0adOEp6ensLKyEi+//LK4cuWK0jr//POP6Nevn7C3txeOjo5i0KBB4vHjxzW5G5LYtWuXAFBm/4QwnXNCLpeLcePGCX9/f2FtbS3q1q0rpk6dqjT81lTOifXr14u6desKS0tL4eXlJUaPHi0yMjIU5cZ4HPbv3y8AlHnExsYKIaTb53PnzonWrVsLKysr4evrK+Lj4zWOVSZEiSkhiYiIiAwU+9QQERGRUWBSQ0REREaBSQ0REREZBSY1REREZBSY1BAREZFRYFJDRERERoFJDRERERkFJjVERERkFJjUEBmItLQ0vPfee6hbty6srKzg5+eHbt26Kd1z5ciRI3j11Vfh4uICa2trREZGYuHChSgsLFSsc/PmTQwZMgRBQUGwsbFBcHAwpk+fjqdPnyq934oVKxAVFQV7e3s4OzujcePGihsYAsCMGTMgk8nQqVOnMrHOnz8fMpkM7dq1q3S/AgMDIZPJVD4GDhyo+cHSc+3atcP48eN1HQaR0aml6wCIqHI3b95Eq1at4OzsjPnz5yMyMhL5+fnYtWsXRo8ejcuXL2PLli3o3bs3Bg0ahP3798PZ2Rm//fYbJk2ahKNHj2LDhg2QyWS4fPkyioqKsHz5coSEhCAxMRHDhg1DdnY2FixYAABYuXIlxo8fjy+++AJt27ZFXl4ezp8/j8TERKW4vL29sX//fty5cwd16tRRLF+5ciX8/f3V2reTJ08qkq4jR47gzTffxJUrV+Do6AgAsLGxkeIQ1oj8/HxYWFjU2Ps9ffoUlpaWNfZ+RHpPy1tBEFEN6ty5s/D19RVZWVllyh49eiSysrJE7dq1RY8ePcqUb9u2TQAQ69atU7n9zz77TAQFBSmev/7662LgwIEVxjR9+nQRFRUlunbtKmbPnq1YfvjwYeHm5iZGjhwp2rZtq8be/U/xPWYePXqkWLZ161bRuHFjYWVlJYKCgsSMGTOU7p0EQCxbtkx06dJF2NjYiLCwMHHkyBFx7do10bZtW2Frayuio6OV7uNVHPuyZctEnTp1hI2NjejVq5fSPXyEEGLFihUiLCxMWFlZifr164slS5YoypKSkhTHtU2bNsLKykokJCSI9PR00bdvX+Hj4yNsbGxERESEWLNmjeJ1sbGxZe6hk5SUJBISEoSTk5PS+2/ZskWU/JkujnvFihUiMDBQyGQyIcSzc2DIkCHCzc1NODg4iPbt24uzZ89qdOyJjAGbn4j03MOHD7Fz506MHj0adnZ2ZcqdnZ2xe/du/PPPP/jggw/KlHfr1g2hoaFYu3atyvfIzMyEq6ur4rmXlxeOHTuGW7duVRrf4MGDsWrVKsXzlStXon///pLUIBw6dAjvvPMOxo0bh4sXL2L58uVYtWoV5syZo7TerFmz8M477+Ds2bMICwvDW2+9hXfffRdTpkzBqVOnIITAmDFjlF5z/fp1bNiwAT///DN27tyJM2fOYNSoUYryH374AR9//DHmzJmDS5cu4dNPP8W0adPw3XffKW0nLi4O48aNw6VLl9CxY0c8efIEzz//PH755RckJiZi+PDhePvtt3HixAkAwOeff47o6GgMGzYMqampSE1NhZ+fn9rH5Pr16/jxxx+xefNmnD17FgDQq1cv3L9/H7/++iv+/PNPNGnSBC+//DIePnyoyeEmMny6zqqIqGLHjx8XAMTmzZtVrhMfH1+mhqOk1157TTRo0KDcsmvXrglHR0elO3GnpKSIF154QQAQoaGhIjY2Vqxfv14UFhYq1imuNXj69Knw8PAQBw4cEFlZWcLBwUGcO3dOjBs3rso1NS+//LL49NNPldb5/vvvhbe3t+I5APHRRx8pnh89elQAEN9++61i2dq1a4W1tbVS7Obm5uLOnTuKZb/++qswMzNT3GU7ODhYqYZFCCFmzZoloqOjhRD/q6lZvHhxpfvVpUsX8f777yuet23bVowbN05pHXVraiwsLMT9+/cVyw4dOiQcHR3FkydPlF4bHBwsli9fXmlsRMaEfWqI9JwQolrWBYC7d++iU6dO6NWrF4YNG6ZY7u3tjaNHjyIxMREHDx7EkSNHEBsbi2+++QY7d+6Emdn/KnktLCwwYMAAJCQk4O+//0ZoaCgaNWqkURyqnDt3DocPH1aqmSksLMSTJ0+Qk5MDW1tbAFB6P09PTwBAZGSk0rInT55ALpcr+ur4+/vD19dXsU50dDSKiopw5coVODg44MaNGxgyZIjScSkoKICTk5NSjE2bNlV6XlhYiE8//RQbNmzA3bt38fTpU+Tl5SliraqAgAC4u7srnp87dw5ZWVmoXbu20nq5ubm4ceOGJO9JZCiY1BDpuXr16ik6+KoSGhoKALh06RJatmxZpvzSpUsIDw9XWpaSkoL27dujZcuW+Prrr8vdbkREBCIiIjBq1CiMGDECL774Ig4cOID27dsrrTd48GC0aNECiYmJGDx4sKa7qFJWVhZmzpyJHj16lCmztrZW/F2yc65MJlO5rKioSO33BZ6NAGvRooVSmbm5udLz0k2C8+fPx+eff47FixcjMjISdnZ2GD9+fJnRZaWZmZmVSUrz8/PLrFf6/bKysuDt7Y3ff/+9zLrOzs4VvieRsWFSQ6TnXF1d0bFjRyxZsgRjx44tc1HLyMhAhw4d4Orqin//+99lkppt27bh2rVrmDVrlmLZ3bt30b59ezz//PNISEhQqnlRpTgpys7OLlPWsGFDNGzYEOfPn8dbb72lzW6Wq0mTJrhy5QpCQkIk22ax27dvIyUlBT4+PgCAY8eOwczMDPXr14enpyd8fHzw999/o3///hpt9/Dhw3j99dcxYMAAAM8SqatXryollZaWlkrD7AHA3d0djx8/RnZ2tuIzLu4zU5EmTZogLS0NtWrVQmBgoEaxEhkbJjVEBmDJkiVo1aoVmjdvjk8++QSNGjVCQUEB9uzZg6VLl+LSpUtYvnw5+vbti+HDh2PMmDFwdHTE3r17MXHiRPTs2RO9e/cG8CyhadeuHQICArBgwQI8ePBA8T5eXl4AgJEjR8LHxwcvvfQS6tSpg9TUVMyePRvu7u6Ijo4uN8Z9+/YhPz9f0tqBjz/+GF27doW/vz969uwJMzMznDt3DomJiZg9e3aVtm1tbY3Y2FgsWLAAcrkcY8eORe/evRXHYObMmRg7diycnJzQqVMn5OXl4dSpU3j06BEmTJigcrv16tXDpk2bcOTIEbi4uGDhwoW4d++eUlITGBiI48eP4+bNm7C3t4erqytatGgBW1tbfPjhhxg7diyOHz+u1AFblZiYGERHR6N79+747LPPEBoaipSUFPzyyy944403yjSPERkzjn4iMgB169bF6dOn0b59e7z//vuIiIjAK6+8gr1792Lp0qUAgJ49e2L//v24ffs2XnzxRdSvXx+LFi3C1KlTsW7dOkUTzJ49e3D9+nXs3bsXderUgbe3t+JRLCYmBseOHUOvXr0QGhqKN998E9bW1ti7d2+ZvhvF7OzsJG/u6NixI7Zv347du3ejWbNmeOGFF7Bo0SIEBARUedshISHo0aMHXn31VXTo0AGNGjXCV199pSgfOnQovvnmGyQkJCAyMhJt27bFqlWrEBQUVOF2P/roIzRp0gQdO3ZEu3bt4OXlhe7duyut88EHH8Dc3Bzh4eFwd3fH7du34erqitWrV2PHjh2IjIzE2rVrMWPGjEr3QyaTYceOHWjTpg0GDRqE0NBQ9O3bF7du3VL0LyIyFTKhac9CIiIDN2PGDGzdulWt5h0iMhysqSEiIiKjwKSGiKqdvb29ysehQ4d0HR4RGQk2PxFRtbt+/brKMl9fX4O6vxMR6S8mNURERGQU2PxERERERoFJDRERERkFJjVERERkFJjUEBERkVFgUkNERERGgUkNERERGQUmNURERGQUmNQQERGRUfg/m8X4cdn2MvMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" } - ], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(alm_surr, data_validation)\n", - "surrogate_parity(alm_surr, data_validation)\n", - "surrogate_residual(alm_surr, data_validation)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding](./surrogate_embedding_test.ipynb) file." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training_usr.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training_usr.ipynb index 03f3dc97..4aec9441 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training_usr.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/alamo_training_usr.ipynb @@ -1,594 +1,619 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with ALAMO Surrogate Object - Training Surrogate (Part 1)\n", - "\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "\n", - "## 1. Introduction\n", - "This notebook demonstrates leveraging of the ALAMO surrogate trainer and IDAES Python wrapper to produce an surrogate based on supercritical CO2 data from simulation using REFPROP package.\n", - "\n", - "There are several reasons to build surrogate models for complex processes, even when higher fidelity models already exist (e.g., reduce model size, improve convergence reliability, replace models with externally compiled code and make them fully-equation oriented).\n", - "\n", - "In this example, we intend to make a surrogate for the physical properties of S-CO2 to be embedded in the property package. This property package will be used to get the physical properties of S-CO2 in the flowsheet simulation. To learn more about property package, see the [IDAES-PSE](https://github.com/IDAES/idaes-pse) Github Page or IDAES [Read-the-docs](https://idaes-pse.readthedocs.io/en/latest/). \n", - "\n", - "### 1.1 Need for ML Surrogate\n", - "\n", - "The properties predicted by the surrogate are enthalpy and entropy of the S-CO2 based on the \n", - "pressure and temperature of the system. The analytical equation of getting the enthalpy and entropy from pressure and temperature are in the differential form and would make the problem a DAE system. To counter this problem and keep the problem algebraic, we will use the surrogates and relate enthalpy and entropy with the pressure and temperature as an algebraic equation.\n", - "\n", - "### 1.2 Supercritical CO2 cycle process\n", - "\n", - "The following flowsheet will be used to optimize the design for the cooling of the fusion reactor using supercritical CO2 cycle. We shall focus on training the surrogate for this notebook and move to constructing the flowsheet and the properties package in the subsequent notebooks. The take away from this flowsheet is that, 3 variables can be measured in any given unit which are flow, pressure and temperature and other properties can be calculated using them. Thus, surrogate should have pressure and temperature as the inputs.\n", - "\n", - "In this example, we will train a model using AlamoTrainer for our data and then demonstrate that we can solve an optimization problem with that surrogate model. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"CO2_flowsheet.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Training and Validating Surrogate\n", - "\n", - "First, let's import the required Python and IDAES modules:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Import statements\n", - "import os\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", - "from idaes.core.surrogate.alamopy import AlamoTrainer, AlamoSurrogate, alamo\n", - "from idaes.core.surrogate.plotting.sm_plotter import (\n", - " surrogate_scatter2D,\n", - " surrogate_parity,\n", - " surrogate_residual,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.1 Importing Training and Validation Datasets\n", - "\n", - "In this section, we read the dataset from the CSV file located in this directory. 500 data points were simulated for S-CO2 physical properties using REFPROP package. This example is trained on the entire dataset to have cover different ranges of pressure and temperature. The data is separated using an 80/20 split into training and validation data using the IDAES split_training_validation() method.\n", - "\n", - "We rename the column headers because they contained \".\", we change \".\" to \"_\" as ALAMO accepts alphanumerical characters or underscores as the labels for input/output. Further, the input variables are **pressure**, **temperature** , while the output variables are **enth_mol**, **entr_mol**, hence we create two new dataframes for the input and output variables." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Import training data\n", - "np.set_printoptions(precision=7, suppress=True)\n", - "\n", - "csv_data = pd.read_csv(datafile_path(\"500_Points_DataSet.csv\"))\n", - "\n", - "### ALAMO only accepts alphanumerical characters (A-Z, a-z, 0-9) or underscores as input/output labels\n", - "cols = csv_data.columns\n", - "cols = [item.replace(\".\", \"_\") for item in cols]\n", - "csv_data.columns = cols\n", - "\n", - "data = csv_data.sample(n=500, random_state=0)\n", - "\n", - "input_data = data.iloc[:, :2]\n", - "output_data = data.iloc[:, 2:4]\n", - "\n", - "# Define labels, and split training and validation data\n", - "input_labels = input_data.columns\n", - "output_labels = output_data.columns\n", - "\n", - "n_data = data[input_labels[0]].size\n", - "data_training, data_validation = split_training_validation(data, 0.8, seed=n_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.2 Training Surrogate with ALAMO\n", - "\n", - "IDAES provides a Python wrapper for the ALAMO machine learning tool via an imported AlamoTrainer class. Regression settings can be directly set as config attributes, as shown below. In this example, allowed basis terms include constant and linear functions, monomial power order 2 and 3, variable product power order 1 and 2, and variable ratio power order 1 and 2. ALAMO seeks to minimize the number of basis terms; here, we restrict each surrogate expression to a maximum of 10 basis terms.\n", - "\n", - "Finally, after training the model we save the results and model expressions to a JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ***************************************************************************\n", - " ALAMO version 2023.2.13. Built: WIN-64 Mon Feb 13 21:30:56 EST 2023\n", - "\n", - " If you use this software, please cite:\n", - " Cozad, A., N. V. Sahinidis and D. C. Miller,\n", - " Automatic Learning of Algebraic Models for Optimization,\n", - " AIChE Journal, 60, 2211-2227, 2014.\n", - "\n", - " ALAMO is powered by the BARON software from http://www.minlp.com/\n", - " ***************************************************************************\n", - " Licensee: Javal Vyas at Carnegie Mellon University, jvyas@andrew.cmu.edu.\n", - " ***************************************************************************\n", - " Reading input data\n", - " Checking input consistency and initializing data structures\n", - " \n", - " Step 0: Initializing data set\n", - " User provided an initial data set of 400 data points\n", - " We will sample no more data points at this stage\n", - " ***************************************************************************\n", - " Iteration 1 (Approx. elapsed time 0.62E-01 s)\n", - " \n", - " Step 1: Model building using BIC\n", - " \n", - " Model building for variable CO2SM_CO2_Enthalpy\n", - " ----\n", - " BIC = 0.750E+04 with CO2SM_CO2_Enthalpy = - 0.38E+06\n", - " ----\n", - " BIC = 0.569E+04 with CO2SM_CO2_Enthalpy = 58. * CO2SM_Temperature - 0.42E+06\n", - " ----\n", - " BIC = 0.542E+04 with CO2SM_CO2_Enthalpy = 55. * CO2SM_Temperature - 0.61E+05 * CO2SM_Pressure/CO2SM_Temperature - 0.41E+06\n", - " ----\n", - " BIC = 0.516E+04 with CO2SM_CO2_Enthalpy = 49. * CO2SM_Temperature + 4.0 * CO2SM_Pressure^2 - 0.15E+06 * CO2SM_Pressure/CO2SM_Temperature - 0.41E+06\n", - " ----\n", - " BIC = 0.502E+04 with CO2SM_CO2_Enthalpy = 0.16E+03 * CO2SM_Temperature - 0.16 * CO2SM_Temperature^2 + 0.76E-04 * CO2SM_Temperature^3 - 0.56E+05 * CO2SM_Pressure/CO2SM_Temperature - 0.44E+06\n", - " ----\n", - " BIC = 0.484E+04 with CO2SM_CO2_Enthalpy = 0.14E+03 * CO2SM_Temperature + 2.5 * CO2SM_Pressure^2 - 0.14 * CO2SM_Temperature^2 + 0.66E-04 * CO2SM_Temperature^3 - 0.11E+06 * CO2SM_Pressure/CO2SM_Temperature - 0.43E+06\n", - " \n", - " Model building for variable CO2SM_CO2_Entropy\n", - " ----\n", - " BIC = 0.219E+04 with CO2SM_CO2_Entropy = - 0.48E+03 * CO2SM_Pressure/CO2SM_Temperature\n", - " ----\n", - " BIC = 0.147E+04 with CO2SM_CO2_Entropy = 1.9 * CO2SM_Pressure - 0.15E+04 * CO2SM_Pressure/CO2SM_Temperature\n", - " ----\n", - " BIC = 0.115E+04 with CO2SM_CO2_Entropy = 0.77E-01 * CO2SM_Temperature - 0.38E+03 * CO2SM_Pressure/CO2SM_Temperature - 50.\n", - " ----\n", - " BIC = 713. with CO2SM_CO2_Entropy = 0.20 * CO2SM_Temperature - 0.94E-04 * CO2SM_Temperature^2 - 0.34E+03 * CO2SM_Pressure/CO2SM_Temperature - 89.\n", - " ----\n", - " BIC = 443. with CO2SM_CO2_Entropy = 0.52 * CO2SM_Temperature - 0.60E-03 * CO2SM_Temperature^2 + 0.26E-06 * CO2SM_Temperature^3 - 0.34E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.15E+03\n", - " ----\n", - " BIC = 317. with CO2SM_CO2_Entropy = 0.54 * CO2SM_Temperature - 0.63E-03 * CO2SM_Temperature^2 + 0.27E-06 * CO2SM_Temperature^3 - 0.26E+03 * CO2SM_Pressure/CO2SM_Temperature + 0.79E-01 * CO2SM_Temperature/CO2SM_Pressure - 0.16E+03\n", - " ----\n", - " BIC = 259. with CO2SM_CO2_Entropy = 0.47 * CO2SM_Temperature + 0.15E-01 * CO2SM_Pressure^2 - 0.53E-03 * CO2SM_Temperature^2 + 0.23E-06 * CO2SM_Temperature^3 - 0.70E-03 * CO2SM_Pressure*CO2SM_Temperature - 0.46E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.13E+03\n", - " ----\n", - " BIC = 240. with CO2SM_CO2_Entropy = - 2.1 * CO2SM_Pressure + 0.55 * CO2SM_Temperature + 0.76E-01 * CO2SM_Pressure^2 - 0.63E-03 * CO2SM_Temperature^2 - 0.94E-03 * CO2SM_Pressure^3 + 0.27E-06 * CO2SM_Temperature^3 - 0.23E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.15E+03\n", - " ----\n", - " BIC = 224. with CO2SM_CO2_Entropy = - 1.9 * CO2SM_Pressure + 0.49 * CO2SM_Temperature + 0.83E-01 * CO2SM_Pressure^2 - 0.57E-03 * CO2SM_Temperature^2 - 0.10E-02 * CO2SM_Pressure^3 + 0.25E-06 * CO2SM_Temperature^3 - 0.73E-08 * (CO2SM_Pressure*CO2SM_Temperature)^2 - 0.36E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.13E+03\n", - " ----\n", - " BIC = 193. with CO2SM_CO2_Entropy = - 3.9 * CO2SM_Pressure + 0.52 * CO2SM_Temperature + 0.17 * CO2SM_Pressure^2 - 0.56E-03 * CO2SM_Temperature^2 - 0.21E-02 * CO2SM_Pressure^3 + 0.24E-06 * CO2SM_Temperature^3 - 0.10E-02 * CO2SM_Pressure*CO2SM_Temperature - 0.36E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.20 * CO2SM_Temperature/CO2SM_Pressure - 0.12E+03\n", - " \n", - " Calculating quality metrics on observed data set.\n", - " \n", - " Quality metrics for output CO2SM_CO2_Enthalpy\n", - " ---------------------------------------------\n", - " SSE OLR: 0.515E+08\n", - " SSE: 0.659E+08\n", - " RMSE: 406.\n", - " R2: 0.999\n", - " R2 adjusted: 0.999\n", - " Model size: 6\n", - " BIC: 0.484E+04\n", - " Cp: 0.659E+08\n", - " AICc: 0.482E+04\n", - " HQC: 0.483E+04\n", - " MSE: 0.168E+06\n", - " SSEp: 0.659E+08\n", - " RIC: 0.659E+08\n", - " MADp: 0.594\n", - " \n", - " Quality metrics for output CO2SM_CO2_Entropy\n", - " --------------------------------------------\n", - " SSE OLR: 541.\n", - " SSE: 558.\n", - " RMSE: 1.18\n", - " R2: 0.997\n", - " R2 adjusted: 0.997\n", - " Model size: 10\n", - " BIC: 193.\n", - " Cp: 178.\n", - " AICc: 154.\n", - " HQC: 169.\n", - " MSE: 1.43\n", - " SSEp: 558.\n", - " RIC: 606.\n", - " MADp: 0.130E+04\n", - " \n", - " Total execution time 0.52 s\n", - " Times breakdown\n", - " OLR time: 0.30 s in 3863 ordinary linear regression problem(s)\n", - " MINLP time: 0.0 s in 0 optimization problem(s)\n", - " Simulation time: 0.0 s to simulate 0 point(s)\n", - " All other time: 0.22 s in 1 iteration(s)\n", - " \n", - " Normal termination\n", - " ***************************************************************************\n" - ] - } - ], - "source": [ - "# Create ALAMO trainer object\n", - "has_alamo = alamo.available()\n", - "if has_alamo:\n", - " trainer = AlamoTrainer(\n", - " input_labels=input_labels,\n", - " output_labels=output_labels,\n", - " training_dataframe=data_training,\n", - " )\n", - "\n", - " # Set ALAMO options\n", - " trainer.config.constant = True\n", - " trainer.config.linfcns = True\n", - " trainer.config.multi2power = [1, 2]\n", - " trainer.config.monomialpower = [2, 3]\n", - " trainer.config.ratiopower = [1]\n", - " trainer.config.maxterms = [10] * len(output_labels) # max terms for each surrogate\n", - " trainer.config.filename = os.path.join(os.getcwd(), \"alamo_run.alm\")\n", - " trainer.config.overwrite_files = True\n", - "\n", - " # Train surrogate (calls ALAMO through IDAES ALAMOPy wrapper)\n", - " success, alm_surr, msg = trainer.train_surrogate()\n", - "\n", - " # save model to JSON\n", - " model = alm_surr.save_to_file(\"alamo_surrogate.json\", overwrite=True)\n", - "\n", - " # create callable surrogate object\n", - " surrogate_expressions = trainer._results[\"Model\"]\n", - " input_labels = trainer._input_labels\n", - " output_labels = trainer._output_labels\n", - " xmin, xmax = [7, 306], [40, 1000]\n", - " input_bounds = {\n", - " input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))\n", - " }\n", - "\n", - " alm_surr = AlamoSurrogate(\n", - " surrogate_expressions, input_labels, output_labels, input_bounds\n", - " )\n", - "else:\n", - " print(\"Alamo not found.\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.3 Visualizing Surrogates\n", - "\n", - "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACoz0lEQVR4nO2deVxU1fvHP8OqIAyyKJAouK8tauFomRqJ5ZJhiZnlbppY7mbuVl/T3NP0W7llWmpSmZaJS31Lka9pZn5TS364haigDCoqCPf3B811Zpjl3pm7nDvzvF8vX8Lcy51zzz33nM95nuc8R8dxHAeCIAiCIAhCUXzULgBBEARBEIQ3QiKMIAiCIAhCBUiEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYQRAEQRCECpAIIwiCIAiCUAESYQRBEARBECpAIowgCIJwyNq1a6HT6XDmzBm1i0IQHgWJMIIgVOfQoUNIS0tDs2bNEBwcjNq1a6N37974888/K53boUMH6HQ66HQ6+Pj4IDQ0FI0aNcJLL72EjIwMUd/7zTff4PHHH0eNGjUQFBSEunXronfv3ti5c6dUt1aJf/3rX/jqq68qfX7gwAHMnDkThYWFsn23NTNnzuTrUqfTISgoCE2bNsXUqVNRVFQkyXds3LgRixcvluRaBOFpkAgjCEJ15s6di61bt+KJJ57AkiVLMGzYMPznP/9By5Ytcfz48Urn16pVC+vXr8cnn3yC9957Dz169MCBAwfQuXNnpKamorS01Ol3zp8/Hz169IBOp8PkyZOxaNEi9OrVC3/99Rc+//xzOW4TgGMRNmvWLEVFmIkVK1Zg/fr1WLhwIRo3box33nkHXbp0gRRbC5MIIwj7+KldAIIgiLFjx2Ljxo0ICAjgP0tNTUWLFi3w7rvv4tNPP7U4X6/Xo1+/fhafvfvuu3jttdfwwQcfID4+HnPnzrX7fXfv3sVbb72FJ598Ert27ap0/PLly27eETsUFxcjKCjI4TnPPfccIiMjAQDDhw9Hr169kJ6ejoMHD8JgMChRTILwSsgSRhCE6rRt29ZCgAFAgwYN0KxZM5w4cULQNXx9fbF06VI0bdoUy5Ytg9FotHtufn4+ioqK0K5dO5vHa9SoYfH77du3MXPmTDRs2BBVqlRBTEwMUlJSkJ2dzZ8zf/58tG3bFhEREahatSpatWqFL774wuI6Op0ON2/exLp163gX4IABAzBz5kxMmDABAJCQkMAfM4/B+vTTT9GqVStUrVoV4eHh6NOnD86fP29x/Q4dOqB58+Y4fPgw2rdvj6CgILz55puC6s+cTp06AQBycnIcnvfBBx+gWbNmCAwMRGxsLEaOHGlhyevQoQN27NiBs2fP8vcUHx8vujwE4amQJYwgCCbhOA6XLl1Cs2bNBP+Nr68vXnjhBUybNg0///wzunbtavO8GjVqoGrVqvjmm28watQohIeH271mWVkZunXrhj179qBPnz54/fXXcf36dWRkZOD48eOoV68eAGDJkiXo0aMHXnzxRZSUlODzzz/H888/j+3bt/PlWL9+PYYMGYJHHnkEw4YNAwDUq1cPwcHB+PPPP/HZZ59h0aJFvFUqKioKAPDOO+9g2rRp6N27N4YMGYIrV67g/fffR/v27fHrr78iLCyML29BQQGeeuop9OnTB/369UPNmjUF158Jk7iMiIiwe87MmTMxa9YsJCUlYcSIETh16hRWrFiBQ4cOYf/+/fD398eUKVNgNBpx4cIFLFq0CABQrVo10eUhCI+FIwiCYJD169dzALhVq1ZZfP74449zzZo1s/t3X375JQeAW7JkicPrT58+nQPABQcHc0899RT3zjvvcIcPH6503urVqzkA3MKFCysdKy8v538uLi62OFZSUsI1b96c69Spk8XnwcHBXP/+/Std67333uMAcDk5ORafnzlzhvP19eXeeecdi89///13zs/Pz+Lzxx9/nAPArVy50u59mzNjxgwOAHfq1CnuypUrXE5ODvfvf/+bCwwM5GrWrMndvHmT4ziOW7NmjUXZLl++zAUEBHCdO3fmysrK+OstW7aMA8CtXr2a/6xr165cnTp1BJWHILwNckcSBMEcJ0+exMiRI2EwGNC/f39Rf2uytFy/ft3hebNmzcLGjRvx0EMP4fvvv8eUKVPQqlUrtGzZ0sIFunXrVkRGRmLUqFGVrqHT6fifq1atyv987do1GI1GPPbYYzhy5Iio8luTnp6O8vJy9O7dG/n5+fy/6OhoNGjQAPv27bM4PzAwEAMHDhT1HY0aNUJUVBQSEhLwyiuvoH79+tixY4fdWLLdu3ejpKQEo0ePho/PvWFk6NChCA0NxY4dO8TfKEF4IeSOJAiCKfLy8tC1a1fo9Xp88cUX8PX1FfX3N27cAACEhIQ4PfeFF17ACy+8gKKiImRlZWHt2rXYuHEjunfvjuPHj6NKlSrIzs5Go0aN4OfnuLvcvn073n77bRw9ehR37tzhPzcXaq7w119/geM4NGjQwOZxf39/i9/vu+++SvF1zti6dStCQ0Ph7++PWrVq8S5We5w9exZAhXgzJyAgAHXr1uWPEwThGBJhBEEwg9FoxFNPPYXCwkL89NNPiI2NFX0NU0qL+vXrC/6b0NBQPPnkk3jyySfh7++PdevWISsrC48//rigv//pp5/Qo0cPtG/fHh988AFiYmLg7++PNWvWYOPGjaLvwZzy8nLodDp89913NgWpdYyVuUVOKO3bt+fj0AiCUA4SYQRBMMHt27fRvXt3/Pnnn9i9ezeaNm0q+hplZWXYuHEjgoKC8Oijj7pUjtatW2PdunW4ePEigIrA+aysLJSWllayOpnYunUrqlSpgu+//x6BgYH852vWrKl0rj3LmL3P69WrB47jkJCQgIYNG4q9HVmoU6cOAODUqVOoW7cu/3lJSQlycnKQlJTEf+auJZAgPBmKCSMIQnXKysqQmpqKzMxMbNmyxaXcVGVlZXjttddw4sQJvPbaawgNDbV7bnFxMTIzM20e++677wDcc7X16tUL+fn5WLZsWaVzuX+Smfr6+kKn06GsrIw/dubMGZtJWYODg20mZA0ODgaASsdSUlLg6+uLWbNmVUqeynEcCgoKbN+kjCQlJSEgIABLly61KNOqVatgNBotVqUGBwc7TBdCEN4MWcIIglCdcePGYdu2bejevTuuXr1aKTmrdWJWo9HIn1NcXIzTp08jPT0d2dnZ6NOnD9566y2H31dcXIy2bduiTZs26NKlC+Li4lBYWIivvvoKP/30E3r27ImHHnoIAPDyyy/jk08+wdixY/Hf//4Xjz32GG7evIndu3fj1VdfxTPPPIOuXbti4cKF6NKlC/r27YvLly9j+fLlqF+/Po4dO2bx3a1atcLu3buxcOFCxMbGIiEhAYmJiWjVqhUAYMqUKejTpw/8/f3RvXt31KtXD2+//TYmT56MM2fOoGfPnggJCUFOTg6+/PJLDBs2DOPHj3er/sUSFRWFyZMnY9asWejSpQt69OiBU6dO4YMPPsDDDz9s8bxatWqFTZs2YezYsXj44YdRrVo1dO/eXdHyEgSzqLk0kyAIguPupVaw98/RudWqVeMaNGjA9evXj9u1a5eg7ystLeU++ugjrmfPnlydOnW4wMBALigoiHvooYe49957j7tz547F+cXFxdyUKVO4hIQEzt/fn4uOjuaee+45Ljs7mz9n1apVXIMGDbjAwECucePG3Jo1a/gUEOacPHmSa9++PVe1alUOgEW6irfeeou77777OB8fn0rpKrZu3co9+uijXHBwMBccHMw1btyYGzlyJHfq1CmLunGUvsMaU/muXLni8DzrFBUmli1bxjVu3Jjz9/fnatasyY0YMYK7du2axTk3btzg+vbty4WFhXEAKF0FQZih4zgJNgcjCIIgCIIgREExYQRBEARBECpAIowgCIIgCEIFSIQRBEEQBEGoAIkwgiAIgiAIFSARRhAEQRAEoQIkwgiCIAiCIFSAkrUyTHl5OXJzcxESEkJbfxAEQRCERuA4DtevX0dsbCx8fOzbu0iEMUxubi7i4uLULgZBEARBEC5w/vx51KpVy+5xEmEMExISAqDiITraB48gCIIgCHYoKipCXFwcP47bg0QYw5hckKGhoSTCCIIgCEJjOAslosB8giAIgiAIFSARRhAEQRAEoQIkwgiCIAiCIFSARBhBEARBEIQKkAgjCIIgCIJQARJhBEEQBEEQKkAijCAIgiAIQgVIhBEEQRAEQagAiTCCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVEAzIqxHjx6oXbs2qlSpgpiYGLz00kvIzc21OIfjOMyfPx8NGzZEYGAg7rvvPrzzzjsW5/zwww9o2bIlAgMDUb9+faxdu7bSdy1fvhzx8fGoUqUKEhMT8d///tfi+O3btzFy5EhERESgWrVq6NWrFy5dumRxzrlz59C1a1cEBQWhRo0amDBhAu7evStNZRCycOECsG9fxf8EQRAEITeaEWEdO3bE5s2bcerUKWzduhXZ2dl47rnnLM55/fXX8fHHH2P+/Pk4efIktm3bhkceeYQ/npOTg65du6Jjx444evQoRo8ejSFDhuD777/nz9m0aRPGjh2LGTNm4MiRI3jggQeQnJyMy5cv8+eMGTMG33zzDbZs2YIff/wRubm5SElJ4Y+XlZWha9euKCkpwYEDB7Bu3TqsXbsW06dPl7GGlMcTREtBQQEuXryIBQsKUacOh06dgDp1OCxYUIiLFy+ioKBA7SISBOEGntBPER4Mp1G+/vprTqfTcSUlJRzHcdwff/zB+fn5cSdPnrT7NxMnTuSaNWtm8VlqaiqXnJzM//7II49wI0eO5H8vKyvjYmNjuTlz5nAcx3GFhYWcv78/t2XLFv6cEydOcAC4zMxMjuM47ttvv+V8fHy4vLw8/pwVK1ZwoaGh3J07dwTfo9Fo5ABwRqNR8N8oxccfc5yPD8cBFf9//LHaJRJPfn4+N3PmTG7MmAWcTlfGARz/T6cr48aMWcDNnDmTy8/PV7uohIzk5+dzubm5XG5uLvfLL3ncli353C+/5PGf0fPXHqZnOn/+Nc7Hp/yffqqcmz//Gj1TAZw/z3F791b8T7iG0PFbM5Ywc65evYoNGzagbdu28Pf3BwB88803qFu3LrZv346EhATEx8djyJAhuHr1Kv93mZmZSEpKsrhWcnIyMjMzAQAlJSU4fPiwxTk+Pj5ISkrizzl8+DBKS0stzmncuDFq167Nn5OZmYkWLVqgZs2aFt9TVFSE//3vf3bv686dOygqKrL4xxoFBQU4fPgShg3jUF5e8Vl5OfDKKxwOH76kKctRSUkJAODq1QhYvwoc54OrV8MtziM8j4KCAixbtgwffvghhg8/hIcfjsLzz0fg4YejMHz4IXz44YdYtmyZptq1t2N6pu+99xkmTAhFebkOAFBersOECaF4773P6Jk6YNUqoE4d/OMVqPidkA9NibBJkyYhODgYEREROHfuHL7++mv+2P/93//h7Nmz2LJlCz755BOsXbsWhw8ftnBZ5uXlWQgjAKhZsyaKiopw69Yt5Ofno6yszOY5eXl5/DUCAgIQFhbm8Bxb1zAds8ecOXOg1+v5f3FxcQJrRhlMndv77+/kOzYTZWU6vP/+d5rs3MLDC6DTlVt8ptOVIzz8qp2/YBuTi/XixYs4fPgSvviiQjibPtPa85ETk8A2GkPwzTfdeDHOcT745ptuMBpDLM4j2EdrkytW3KVamGCzUldSoqoIe+ONN6DT6Rz+O3nyJH/+hAkT8Ouvv2LXrl3w9fXFyy+/DI7jAADl5eW4c+cOPvnkEzz22GPo0KEDVq1ahX379uHUqVNq3aIoJk+eDKPRyP87f/682kWywNRpORMtrHRuQtHrr6N79+38Pel05ejefTv0+usql0w8ZNlxDWcDNqE9WJ5csRaLqoUJtqda6PzU/PJx48ZhwIABDs+pW7cu/3NkZCQiIyPRsGFDNGnSBHFxcTh48CAMBgNiYmLg5+eHhg0b8uc3adIEQMVKxUaNGiE6OrrSKsZLly4hNDQUVatWha+vL3x9fW2eEx0dDQCIjo5GSUkJCgsLLaxh1udYr6g0XdN0ji0CAwMRGBjosD5YwCRaTJYDpUTLhQvAX38BDRoAtWpJe+2WLX9FvXqncfVqOMLDr2pSgAHOLTv16p2GXn9dc0JZbkwDtrkQY2XAJlxDrX7KGSbBYzSGYPHi0eA4S3fp33+vhl5/HWlpaYiIiFCkTNYTbHvvgVr9xoULwLBhsLLQAcnJ0o8FSqOqCIuKikJUVJRLf1v+z9O4c+cOAKBdu3a4e/cusrOzUa9ePQDAn3/+CQCoU6cOAMBgMODbb7+1uE5GRgYMBgMAICAgAK1atcKePXvQs2dP/nv27NmDtLQ0AECrVq3g7++PPXv2oFevXgCAU6dO4dy5c/x1DAYD3nnnHVy+fBk1atTgvyc0NBRNmzZ16X5ZQynRUlBQgJKSEmzcWBUTJ+pRXq6Djw+HefOM6Nv3FgICAiTrqPT666p20KZ7BYDcXB/k5PghIeEuYmMr2rqYe3Vk2VF7EJIb83q0ha16ZHXA9iZceW7OYHFyJcRdqtZEicX3oKCgAAcPAuXlls++rAzIyipA1apQTKzKgaoiTChZWVk4dOgQHn30UVSvXh3Z2dmYNm0a6tWrxwufpKQktGzZEoMGDcLixYtRXl6OkSNH4sknn+StY8OHD8eyZcswceJEDBo0CHv37sXmzZuxY8cO/rvGjh2L/v37o3Xr1njkkUewePFi3Lx5EwMHDgQA6PV6DB48GGPHjkV4eDhCQ0MxatQoGAwGtGnTBgDQuXNnNG3aFC+99BLmzZuHvLw8TJ06FSNHjtSEpUsocosWoTPGfv368cJbq5juFQCOHHmoUifYsuWvACB4duytlh3zegQqLIJXr0YgPLzAoq3aqkcWB2xvwZ3n5gy1J1f2YPUdZek9MB8DdLrRlepq//51OH5cWauh1GhChAUFBSE9PR0zZszAzZs3ERMTgy5dumDq1Km8qPHx8cE333yDUaNGoX379ggODsZTTz2FBQsW8NdJSEjAjh07MGbMGCxZsgS1atXCxx9/jOTkZP6c1NRUXLlyBdOnT0deXh4efPBB7Ny50yLQftGiRfDx8UGvXr1w584dJCcn44MPPuCP+/r6Yvv27RgxYgQMBgOCg4PRv39/zJ49W4Ha8hyczRizshLRufNufPrpp5p8Cc1n/vn5+QCkcyOyOKNVAvP6cSRm7dUjqwO2p+Puc9MiLL+jrLwHpuftrK603C40IcJatGiBvXv3Oj0vNjYWW7dudXhOhw4d8Ouvvzo8Jy0tjXc/2qJKlSpYvnw5li9fbvecOnXqVHJ9Eq5ha8YIAAcOGJCYmOWy6T4gIEDS88Rge+Yfj5s3gyRzI7I0o1UaZ2KWYBNveG6FhYX8z/XqnUavXlsBcIiLu+Ax9ygHntqfaUKEEd6NXn8dBkMmDhxoZ3XEvRiniIgIpKWlSR6HIgR7M3+gHAAH4N4KJaEuioKCAt6iZoKVGa3SCImJKygogNFoFHQ9OYQ4URkpYhnVnFw5o6CgAJs3bwbg2OKndeRaROWJ/RmJMEIwanZuiYlZOHDAAPOsKlLET6jtwrSe+VfcXzl0Ok6Ui0JoTI234Czexmg0YtOmTU6v07t3b9SoUUP1duItSBEnpebkyhlCVy9rEbkXUXlqn0YijBCMmp2bXn8dPXqwGT/hDrZm/oAPevXajODgYsFmd6ExNSY83bLjLIaktLTU4nx7HXxYWJiig7UcKwS1hFRxUqzXEWurl92dYMuddsOTrYYkwghRqNm5eWJMgL2Zv734kPz8fIcDsbMZdkpKCmJjY5kfpKRAaHthpYO3tmbaQ41FKEqKQ098z60RYvFTcqLk7gRbrrQbhYWFHmk1NIdEGKEpPC0mwNnM39pCk56eDsD+QOysE4yMjPQKAWbCWXthqYO3HqDsWeeUXgkmtzj0xlhGZ+99amqq4u+pFN8nZdoNU/zc1avxTFkNpYZEGMEsrLjM5LYC2Jv5u7JUn9XcQ3JjekZCA+39/Cq6PtbcQiZYss7l5uZafCalOBQby8hKnyAFjix+er1exZK5jpRpN4Rm8Qe03S5IhBHMEhERgX79+uHTTz91eq5cL6GcSSTNsZ75u2qhYTn3kFwItdT07t0bYWFhCAgIENXBKw0r1jlb9Sq1OBQay+ipbnRPtPhJ7U5m0WooJSTCCKapV6+eqiud5Eoi6Uw0umOh8YaYGnOE1n1YWBhiYmIAABcvXgTApmhlxTpnXa8XLsTIJg6dCU9vc6NrHanFpSdaDU2QCCNkQ6q9EFnofKW2TtgLhM3Pz0d6errbFhpPnGELRexSdtZEKyvWOXPX7pEjD2Hbtm4wTxEDSCcOWRGecsNyDjPW8dQ+jUQYIQtS74WoNnIMEo7uW6yFhjr3CoS4y2wlabXXwatRXyxY5woKCvg8aqYJiLUAA6QTh6wIT7lhOYcZoQ4kwghZEJqUUCt7fqkxSIix0FDnLsxaKSZ+TM0krWpb58zbke1cdpBUHLIgPJXCE99BmgS6DokwQlY8xc2g1iAhxgTviZ27GIS0NTHxY0rXp/UAxYp1Ljc3BtZbaQHlGDz4Y9SqdVGy71FbeGoJ1pL60iTQdUiEEbLiSW4GJQYJoQNscXExH1xu7zre1uG50tZY2gqFxYHMaAzB7t1JsBRgHJ58cnclASaFOPTUuB8pUWrFtlik/i5vsa6RCCNkxdPcDHIPEkIG4uLiYkFpO7QSbycVYtsaK7m4zGHtedl2ReoQG3svd5g76SO0NNCyYn2Sa8W2O0i1CMscFiclckAijJAdLbsZlBgkxHbu1hYwVjKrq4V53Ttqa+b5wVjJxcU6QqyL7uTv0spAy+KWUqy0YTkXYan93JWARBghCdZCwlO2IZF7kHC3c2fRmqM0Yp6RScB6Sqyi3DizLvbu3dvtgVILG6SzuKUUK23Y0xZhKQ2JMMJthAoJrSLnICG0Y7J1HiszYRYQ+4w8KVZRbhxZF8PCwtQrmEiksmaxMvFhrQ2zIgq1RuV1xwQhEluzxJyceBiNIU7/loVYD5YQU3eOOj3CMSYLj05XEbOi9VhFqbG1UjMh4Wyl+tHC+1tQUICLFy/a3APT1rvmaGJkb+Ij5H2VGtbasEkUmkMTG+eQJYyQFGf7v0VGRvLnshDrwRJiZ9iszYRdRcmAZzHxY3LCSpC3PbQSq+UMe9YvV61ZrFl7WIi3LSwsBOB5i7CUgkQYIRlC9n8z7d1HWOKKa9ETOj2lA55ZEBcsBnnbgnWBJQRX3Pjm8azWbYHFiY+a8bYFBQXYvHkz/3u9eqfRq9dWABzi4i5oqi9SCxJhhGS4M0tk3TIgN2LqzjTzBNiYCdtC6PN0JybOVdRuR2rcM1GB0RiC//2vmcN3LT093eJYWloa/zMLEx+W0noITZdB2IdEGCEZrs4StWIZkBOhdWc98wTYyaxuQszzJNhKGOvJmIsE6x0AHPVT1mJY7YkPC9Zca2iRkOuQCCMkw9VZIovLv5VGaN0JrYPU1FTVBKu7Kz69SZCQ9UAZrEVChQCrEGKmegeAnJx4m22PtS2lWJuMCrHka2ERhxqQCCMkxd1ZorcNSu4GitsTLXq9Xr5Ci0SosPK2Z0/WA+Wwl/k/OXknmjb9A9nZ9bF48Wi7bY9F6xNLOLPkqzUp1EKYC4kwwm2kmiV646DkTueuBdEitIze+OxZW2nnydgTCU2b/gEAgtqe2oM1yziz5KsxKWR1j01rSIQRbiPVLNFbByVXOgAtiBYxZVTj2as9S2ZxpZ2n4kgk5OTEe2W/IzVqx8pZw+Iem7YgEUZIghSDFQ1KwtGCYBVTRqWfPQuLQVhYaScHaotb6+8yYU8kUL9jiTvPj8Xt6VifsJIII5jBUwclOdDCwCGkjKZB0tmzlzqoV800EawkjJUDFsStOY6s9Pn5+UhPT6d+xwyxz4+ldBn2YH3CSiKMYArWTNqswsLAYW/GbEp2KaSM1oPk9OlXcOaMH+Lj7yI29mEAD/MduGnzbVuwEGArFDmDvNW2Qqklbl25b08Ww64idqW6VG1ZznbL+oSVRBghGLleFNaWf7MMKwOH0BmzkDKat5mYGKBVK9e+yx3ritKpMeQQQqxZoZTC1fumFY+OcRRHZb6rAOBePcndblmYsDqCRBghCDlfFOoM7WNL+Pbu3Rt3794FAPj7+1daeeRuhyhlpnvr/UJdKaPc1hV3VpmqbXkyh8VM/EqIW3fu2xv7FCE4i6Oy3lUAcF0kKZEnkmUPC4kwQhByvyjUGVZGacuGHJnuWd8v1J2gXW+1PAlFrRQq3pbwVw5ciaOSQtzL2WZYXDQAkAgjXEAL+ak8ATksG44sN9YuBjHfp9WBz52gXRYtT+ao+UzUWpFGfZM0OIqjkqtdSd1mtLBoACARRoiE9eW+LOOu68rdzk+o5UYsSg98Ug4CrAftuooSz8RWezYJeTVWpFHfJB324qiys+vL1q6kbjNaCXMhEUaIwtmLkp+fz0TDZg13XVdSDKpiLTJCxI7SA5+QYGEh7U+O1BisWAOVeCbO2rMa4pb1VARawzqOCgC/tRPgXrsyF/Cm91aONqOFcYhEGCEKZy+KKWDTW+Ng7OHuptZKz/CFij6hA58UAexigoWdtT+hqTGEtmGW3GBKiBFn7VnpvG+A51o1lcTRSnWpdhawJ+BZX8UoFyTCCFFYvyhAOQyGzErnqb0VhBqIibcSYzWRa1C1VwYxok/IwCdVALuYehDS/pylxhAKa24wVsRIy5a/Ii2tAYqKargsbsWg1iDO0gpZd7HlwjMltZWqXTla5MXyKka5IBFGiMb0omRlJSIz04ADB9ohM9Pg1UGwYuKtxFpN5BhUHZVBiNgR485zN4Dd9F1qiAshwpoVN5hauw84onnzMMTEyCtA1Myd54krZB1tSSS1yLXXD3lTnkgSYYQgbL0AmZkGZmb/aiNUaLhiNZG683NWBiFiR4w7z1GmeyGYf5den4tZs2L5ekhK2o2rVysGDanbndABlhXLk9QuVjGoGQ+nZgA26ytkpUAukeusHzLPMagla6JYSIQRgjB1dLm5uUhPT2dm9q81xNSbXJ2fszIItaS46s5zZcA2fdewYRdhNC7G1avhyM2Nxe7dSbLFYQkdOFmyPEnlYhUDC/FwnjpAs4BcItdZP8R6jkGpIBFGCMY8Uzors38lkSLmS0y9ydX5OStDSkoKhg2LlMWSIsWAbarPTz55mQlLrJz1xTqsxcOpjRoWQSVi0uRow944htiCRBjhEs5m/2LSBWgBd2K+kpJ2Izb2It8xi3EtSll3QmOGYmNjERERIbklRcoBmyVLrGnGrpTliSVYeg6uIpWIUcMiqOWYNG9dDWkNiTDCZRy5yMSkC9AC7sR8ZWQ8CUBn0TGrsfG2EjFDSiXwVGMWzUoeMBYQuliC9WBqqUSMWhZBrcekeeNqSGtIhBGicJRHxh6sdgByYEtoADoAlTvmgQOftNjcWgmroZwxQ0ok8FRrBSALcU8sYS7o77uvCJMm6VFWpoOvL4e5c4vQt+8LmrCCSyViWLEIsjJRcGRdNBqNFr/bG0NYF/BSQSKMEIV555uTk4OMjAz+mL0OoLCw0OMCLMXEfJnjyYGnSiTwVGMFIMU92cZUx+PGAampwOnTQP36OtSqFQYgTM2iKQ4L8U1KThSciaxNmzY5vUbv3r0RFhZm85gWBLxUkAgjRGN6OcyD0R11AHfv3lWlnNYoEftROZktB5MlDPDOwFNzpEjgqfQKQFasHCxTq1bFP60j1pLESm42JScKUu1BGxYW5lGTUFchEUa4jdEYgm3busOe240FlIr9SElJQUoKUK+e/TQKrNSJWiiRwFMKPCXuSSo8KTO8LVyxJKmZm80cJScKcuxB682QCCPc5vz5OJhbe4CKDuD8+VrQ60/I/v1CBgelYj8iIyMREBDAxzkkJJxF8+bHFQ/CZwGtd7724p58fDhMn56LlJQn4efnh5KSEj4hrRpCRAlxpOVVeEJwx5KkRm42a9R0hzp6zymW0jkkwghNI3RwSE1NtfjdVYHgSjZ5W2jdauAMT+l8zeOeOne+hgULvv7nWV+H2QJgC5QUIkqJI62vwnOG1l3OaqV7cPSeUyylMEiEEW4TF3ceQDkA806sHHFxF2T/bqGdfmlpKf+zKwJBbOyHJwssZ3hq5xsZeRsJCWednqekEPF0cSQXJuuhKa6VhcB6V1Bz30xn77nWha1SkAgjXMbf3x9AhTDp0WM7tm3rhgohVo4ePe4JE9N5SuDMwuWqQJAq9sPT42oA7VsVCOdo2dVsy3qodmC9q6hpdXf2nmtV2CoNiTDCZfR6Pf+zo1mY+XlCcUWsCLFwuSMQ3I398PS4Ggpk9w607mq2169Y92EVefzY33pKrbI5e8+ldJF68uSVRBjhMkITt4oddMWIFRNCLVxqzs7kch2x0kHJkcCTlXuzBYvWILnL5KmuZhPmfZjYPH4st1U5ECKypHCRevrklUQY4TJymcKtr2dvYDE/T6iFi6X9yuzdl/Vm4CZs1SVrHZSUCTxZuzdzWLQGKVEmcjXbhqW2KrcYFBqHJlUyVk+PeyQRRriF1PsMAsKTwJrjzMLl53evqau1d6M5ju4r3d6yO1TuxFnuoNxN4MnqvbFoDVKqTJ4Y5yOF9VBoG8zNza10rpQWMiXEoNqrv1m0QLsDiTBCFYR0FmIGFmcWrrCwMGbSRrgzYGp1tudJsGgNkrtMrGSGlxqlLZr2JlhSWciUmrio5fZj0QLtLiTCCFUQ4nIUMrCIWaLNSryAnAOmp80SWYLFhQdKlYmVzPBSIqf1UOx7SJMr57BogZYCEmGE6tib3XhqYlQh9+WKmPLEWaI5agtMqRceSBG7I8diCEffZUKtzPBSInQyJOQ5mcPSe6j2OyMlLFqgpYBEGKEqzmY3zoLotbgiydl9udKJe+os0YSjOhGzkMFdpFp4IGXsjpSLIbwBMdZDoc+pd+/eAJy/h0qKIpbEoBR4YjwiQCKMUBlnsxtHLkaj0YhNmzY5/Q5Wli4LcZ26KqY8dZYIOK8TMQsZpMSdhQdyxe64uxjCGxBjPTTtCeqMu3fvAnD8HmZn11dMFKk5KZNrYszSynYpIRFGqIqQ2Y29/GMcx1n8LiSVhZo4cp3m5+cjPT3dqZgyt/qYizpPnSUC7glMVp69FGjR6ssqclkP7b2H/v4liooipSZl1m1SjomxmlszKQGJMEJVnM1uOnbsiOrVq/Pn+/v7Q6/Xo7i4GMXFxfznWjG9O+t4nIkpa6tPv379ALC9as1V8SDUbeQNsJSHytMQYz20N9Ez38LN1ntYWhqoqKVaiXdG6Ap3dyfGWoz7FQOJMEJ1HM1u9u3bV+n8fv364dNPP+V/94R4KKEpAKwJCgpyumqtuLgYJSUldl0rcnZg7ogHR26jadNyAWjj2QrBWayQ3KkHyMrmHEcTPb1eb/M9DA29jAMHfoXRGKLIRELJVCLO2pqUE2NPbnskwgjJEdKhC93yyBbmFjDAM+KhrGd7aWmnsGFDFi9KHQ3SjlatFRQU4MMPP3T6/XJZUNwVD/bcRr6+vjC/LS2vAlPbiktWNucImejZeg8LCoADB5SzVKuZSsT8HQSg+YmxUmhGhPXo0QNHjx7F5cuXUb16dSQlJWHu3LmIjY0FAMycOROzZs2q9HdBQUG4efMm//uWLVswbdo0nDlzBg0aNMDcuXPx9NNP88c5jsOMGTPw0UcfobCwEO3atcOKFSvQoEED/pyrV69i1KhR+Oabb+Dj44NevXphyZIlqFatGn/OsWPHMHLkSBw6dAhRUVEYNWoUJk6cKEfVMIWYDt3axGyKizIhdGD197/jEe4q644xIeEsAPcGaVazzruCudvI3KintohxB1etuFKKTk9qI3Lh6kRPDVGkRioR63fQYMjU/MRYKTQjwjp27Ig333wTMTEx+PvvvzF+/Hg899xzOHDgAABg/PjxGD58uMXfPPHEE3j44Yf53w8cOIAXXngBc+bMQbdu3bBx40b07NkTR44cQfPmzQEA8+bNw9KlS7Fu3TokJCRg2rRpSE5Oxh9//IEqVaoAAF588UVcvHgRGRkZKC0txcCBAzFs2DBs3LgRAFBUVITOnTsjKSkJK1euxO+//45BgwYhLCwMw4YNU6K6VEPMvo+ONscVOrCanwdwAHQOXXhac7so5WpVMs2DlGjdFe3K4K5l0alV3Imx8rT8atbYegcPHDB4xMRYCTQjwsaMGcP/XKdOHbzxxhvo2bMnSktL4e/vj2rVqllYon777Tf88ccfWLlyJf/ZkiVL0KVLF0yYMAEA8NZbbyEjIwPLli3DypUrwXEcFi9ejKlTp+KZZ54BAHzyySeoWbMmvvrqK/Tp0wcnTpzAzp07cejQIbRu3RoA8P777+Ppp5/G/PnzERsbiw0bNqCkpASrV69GQEAAmjVrhqNHj2LhwoUeL8LMEZvbyfSZ0IHV+jxAB6Acgwd/jFq1Ksc/adHtIrWr1Z4oVirNg9RuQ626ol3NdO/s3cjPz3dbOGvZtSs1nrpdk5TYegcBHxgM+5GZafCodBJyoBkRZs7Vq1exYcMGtG3bll+VYs3HH3+Mhg0b4rHHHuM/y8zMxNixYy3OS05OxldffQUAyMnJQV5eHpKSkvjjer0eiYmJyMzMRJ8+fZCZmYmwsDBegAFAUlISfHx8kJWVhWeffRaZmZlo3769xYuZnJyMuXPn4tq1axar/cy5c+cO7ty5w/9eVFQkvFIYw53cTkIHVnsvf2mpZYdoeg5adLtIucrJVQuKVPUh9PvFxBSytIWQGOwtOvDx4TB9ei5SUp6Ev78/v6DCNEFx9m6Y3itXhTNZ2SzxxO2apMbeO5iYmIXExCybC66Ie2hKhE2aNAnLli1DcXEx2rRpg+3bt9s87/bt29iwYQPeeOMNi8/z8vJQs2ZNi89q1qyJvLw8/rjpM0fn1KhRw+K4n58fwsPDLc5JSEiodA3TMXsibM6cOTbj2rSIUCFla9YtVHg4Oy8lJQWxsbF2O0gtzPilSlCotttO6Pe7ElMo93Y9cmG+6KBz52tYsODrf9ruddibowh9N1wRzmq3EVbxdHeiuzjro2y1HVYnR2qgqgh74403MHfuXIfnnDhxAo0bNwYATJgwAYMHD8bZs2cxa9YsvPzyy9i+fTt0Op3F33z55Ze4fv06+vfvL1vZ5WDy5MkWlrqioiLExcWpWCLXcZS0MCcnHuHhBXYzSAsVHs7Oi4yMtDsIsz7jlzpBoRBRLKcoFSrKxVgrTTGFnrBdT2TkbX4hhiPkzBquVdcuoQ5C+yhrUlNTmZ4cKY2qImzcuHEYMGCAw3Pq1q3L/xwZGYnIyEg0bNgQTZo0QVxcHA4ePAiDwWDxNx9//DG6detWyaIVHR2NS5cuWXx26dIlREdH88dNn5kHjV+6dAkPPvggf87ly5ctrnH37l1cvXrV4jq2vsf8O2wRGBiIwMBAu8e1hK3B4v77j2HVqiH/dPTlqIjhqhDQ1rNuRy91UFAQ/7MrAkULM36pExQ6s6DIJUqVcht6y3Y9HTt2BLCPb/P+/iUoLQ2E0RjidtulpLiEGKz7KKGr2/V6veJlZRlVRVhUVBSioqJc+tvy8nIAsIihAiriuvbt24dt27ZV+huDwYA9e/Zg9OjR/GcZGRm8iEtISEB0dDT27NnDi66ioiJkZWVhxIgR/DUKCwtx+PBhtPrHLr13716Ul5cjMTGRP2fKlCn8ogHT9zRq1MiuK9ITMRdI/v4lZgIMAKxjuSxn3SkpKYiMjKx0jkl4uCNQtDLjl2K2KCSwWE5RKmafPltowWWsJKb+Q6+/LtlehO4Gn2ttxTEhHVr1NLCEJmLCsrKycOjQITz66KOoXr06srOzMW3aNNSrV6+SFWz16tWIiYnBU089Vek6r7/+Oh5//HEsWLAAXbt2xeeff45ffvmFT2ap0+kwevRovP3222jQoAGfoiI2NhY9e/YEADRp0gRdunTB0KFDsXLlSpSWliItLQ19+vThc5b17dsXs2bNwuDBgzFp0iQcP34cS5YswaJFi+StKAawl4Q1JyfeRhC9Jeaz7sjISIcpLNzp1L1pxu8osDggIAHp6b/KLkpd3aePlY5cDZHhTHxKKZzdCT7X4opjQl604GlgCU2IsKCgIKSnp2PGjBm4efMmYmJi0KVLF0ydOtXCfVdeXo61a9diwIAB8PX1rXSdtm3bYuPGjZg6dSrefPNNNGjQAF999RWfIwwAJk6ciJs3b2LYsGEoLCzEo48+ip07d/I5wgBgw4YNSEtLwxNPPMEna126dCl/XK/XY9euXRg5ciRatWqFyMhITJ8+XRPpKcwHnNxcH+Tk+CEh4S5iYyssj84GHHsmalvCByiHTgfFlzDLGVfDIvYCiy9erHimSopSoW5DVjpyNUSGEPEptXB2NfhciyuOTZAFTx604mlgBU2IsBYtWmDv3r1Oz/Px8cH58+cdnvP888/j+eeft3tcp9Nh9uzZmD17tt1zwsPD+cSs9rj//vvx008/OS4wY5gPOI4GAmcDjq1j9oSP0GBOKZA62F3rsJwDiZWOXGmRIVR8ihHOJDYqQxY8+WDR08DyO6AJEUYog6mROhsIXB1w7AkfpZYwSx3srnVYzoHEYkeuBM7EpynGVKhwVlpsiInhU3Ng1LIFj3VY8zSwLrhJhBGVkNIKIXSj7t69eyMsLIz/G7leBm8RWEJhLQcSy9Y5ORG6ijQqKkqUcFZSbIiJ4WN9YCTEw6qnQcxWempAIoyohJRWCLI+EWJwZJ0LDm6I0tIE+Pn58ZnkzVGiHcm1WtPVVaQsCGdAfAwfa5Yoe8+1sLDQ4d9R33UPJft6V62orCz2MYdEGFEJqc3J1EkRYrBlnauwnGxy+rdyWk7k7sBdXUUqBrlEJCsxfK7g6Llu3rzZ6d8raa1jObYJUKavd9WKyspiH2tIhBE2EZMB2RNhvbPzNlyxnEj5DJXuwOVIPiuniHRmPTftfWmvztXKByfFc1XKWkcu3ApcdS+yOlEgEUbYxV78lqdDnZ32kfoZytmBKyH45RKRQmP4zDOpp6WlWVxDTReRmOeqduJg1ly4riB1WxfTdlhd7EMijJAN6xeusLAQd+/e5X/39/e32MKCFesS64GchPMBUaoBS+5tl5QS/M7EhslSZY2YvID5+fmoV2+xU+u5eZ2r7SISOjCzGEuktigUi9RtXWzbYW3VpgkSYQSP0IFEyHnWL5x1h2GvA2HNusRi5+vtKPlM3N12yRlKWTeciQ1zS5U1YvICirWeq+UiEmrBA9QXiraQ+x2Qwzor9eTWlbbDYpgNiTCCR8rVLebXsO4w7r//GI4du99mB8KSdYnFztfbcfWZuGM1UCJgXi7EiA17uPpOCqlztVxEQnLkGY1GbNq0iblYIrn7JSWss1KISKFtR2iaJLXS3pAIIyyQYw886w7jt98eAKDjf2dV2LDW+RKuPRMprQZyBMybI7WLScjeoXLgrM5ZyAcnNEee0kLRXhjHtWvXAMjfL8kdjiGViBQ6sWA9TZJLImzfvn3o2LGj1GUhGMDdvSOtsdVhmASYCbmFjaumdVYDOb0Zsc9ES9ZMuVxMzvYONSGVABRS5yzv1mCNkrFEQqxQSvZLcrRJKUWkUPciC+3IHi6JsC5duqBWrVoYOHAg+vfvj7i4OKnLRaiAVHtHmmN7424O5kLMvAMxGo2IiYmR5H4A57FpJmzdE6uBnN6Iq5YTrVgz1RaLUg62Quuctd0arFEjA7wQ65JS/ZJcbdJdEcm6e1EsLomwv//+G+vXr8e6deswa9YsdOrUCYMHD0bPnj01c+NEZeTYO9JWh2EeEwaUIylpN/8Sbdq0SdLgfEexaUJi0VgM5PRGXLWcaMWaqaZYlHqw1UqdO4MFN5a9BU316p3G6NG2V6IKHYPteQhMK2XlapPuikgWnouUuCTCIiMjMWbMGIwZMwZHjhzBmjVr8Oqrr+LVV19F3759MXjwYDzwwANSl5VQCKlfPltCpkaNy9i9Owkc54Pdu5NQteptWYPzxQw0njbT8hTEWE5YiDkSg5rCRar3XYo6Zy1JspoDuZgFTSkpKYiMjBRcP2q7Pd2d3GpFYAnB7cD8li1bIjo6GhEREXj33XexevVqfPDBBzAYDFi5ciWaNWsmRTkJBZHj5TMXMkZjCC/AAGVcL2IGGk+baXkjWok5kkMsihUyUr3v7ta50FV5vXv3RlhYmM1jLDxTKRC7oCkyMlJUGIeQ4Hup3Z40ubWNyyKstLQUX3/9NVavXo2MjAy0bt0ay5YtwwsvvIArV65g6tSpeP755/HHH39IWV5CAaR4+Ry9SGq4XsQONJ7QkXs7rMccAdKLRTHpBeQQgO7UuVALuLP9HFnLNWgPW2LZkStQrgVNjsI0pAzHoMmtbVwSYaNGjcJnn30GjuPw0ksvYd68eWjevDl/PDg4GPPnz0dsbKxkBSWURQpzsfULl5OTg4yMDFVcLxRkT7CKlGJRTPLXmJgYpq2Frq7WZCnXoD2ciWWxC5pcRUiYhpQWK28TWEJwSYT98ccfeP/995GSkoLAwECb50RGRmLfvn1uFY5QF3f3jrT3wrkjiNyJGWExyJ61GBjCs3AmZFi1FgpZram1bXvMcSYUnS1okmoS6cwrYYo1s4b6JelwSYTt2bPH+YX9/PD444+7cnnCC3BFELmTbsKEu8JSSmijcLbRukDW6pZbQqwzWr03e9jqy2z1kZ067ZU0TYYzr4TYWDNCPC7HhJ06dQrvv/8+Tpw4AQBo0qQJRo0ahUaNGklWOEJZpNw7UghiBZEr6SaUvicx0EbhbFJQUIDLly87jT0C2BXIaucdcwdn1hln92a+GTnrQhlw3JcNHPgk/Pz8cPfuXf58f39/6PV6/nd37lGMV0LrkxJWcUmEbd26FX369EHr1q1hMBgAAAcPHkTz5s3x+eefo1evXpIWklAGuQMnpRJEQjph82z/qampKC0thZ+fn81VVSx0Hp42s9cqQq2TJlgVyFpJUmsLZ9YZZ/dmvRk5q0IZcN6XibFEuSqShHgl3LXak4Czj0sibOLEiZg8eTJmz55t8fmMGTMwceJEEmEaRs4XQSqR56wTnjo1B99808xM0GS5lO1fKbRstfA07LVNrcUfaTlhqjPrjNh7Y1UoA9KJZbEiSWy6CHes9lKEkXgyLomwixcv4uWXX670eb9+/fDee++5XSjCc5HiJXPUCUuZ7V8ptGy18HSMxhBkZSXiwAEDAPtWStZm+lpcDSx0myB79wYAOTnxmhHKgHRiWaxIcmdCLNZq7+6uJZ6OSyKsQ4cO+Omnn1C/fn2Lz3/++Wc89thjkhSMIOzhaIDJyYnXnKDRstXCkzEfMEzYslKytMBCjf0OpcKZMDAajdi0aROAyveWnV0fixePZtadby3STXFrcohloSLJlbbojtWeLP62cUmE9ejRA5MmTcLhw4fRpk0bABUxYVu2bMGsWbOwbds2i3MJQmrsDTBaFDRatFp4OtYDhjnWol5Mbi650XpCTEflss5rlp+fj/T0dGYHd5PwKiwsdLjIQ0qxLHdduGO1J4u/bVwSYa+++ioA4IMPPsAHH3xg8xgA6HQ6lJWVuVE8grCPrTgGtXKQuQuLOcyEIFedqe3es52xvAJnol7t+DEt1rdQbJWBxcFd7AIPvf46Bg580iInlyt1LndduDPJ1eIEWQlcEmHl5eVSl4MgnCJ0VqhWDjKxaH0vNbnccHJe15nQMGE7YzkAOBb1WlzlypI71RVYHNwdxWgBsNm3SJGTS+66cGeSSxZ/27i9gTdBKIUjV4vJNWFCiRxk7qJ115Fcbjg5ritmc2jA9oBhMGQiMTGrkrvIVA5W3WLO0Hq+OtYHd8vYQu6ff/KIdCXqwh2rvVYt/nIiWIQtXbpU8EVfe+01lwpDEM6QW5AoPZCyKrBcQS43nBTXFSo0dLp7e/M5GjBSU1MRFRWFiIgIXLx4EQCbbjGxaMmSp4VFCJVjC3Uw7f8oV98ih9CR0mrP0q4lLCBYhC1atEjQeTqdjkQYoThSJYL1hIFUDRwN3uYZzK1xZukTel0xFkNH19Tr9S5bJ1l0i4lBSBJkliyzWrAkO4otBKTrW+QObXCnrlnetYQFBIuwnJwcOctBMMyFC8BffwENGgC1aqldGttI1SFrfSBVA2eDt3UGc2vsxRqJva6QmCUhlk4ltoBhEaGZ6FmKDWOlHPawH1tYgVR9ixKC1NW/1YJYVhOKCSNsYgpi3rixKiZO1KO8XAcfHw7z5hnRt+8tJl8aKcqj9YFUDYRaD8XGGtm77vnztXD16i2XYpbksHRqwS0mBKETEFZjw1jEVn/CcYB5TJhUfQtr/bE5LJdNbVwWYRcuXMC2bdtw7ty5Si/lwoUL3S4YoR6mIGajMeSfBIgVMQzl5TpMmBCKv/9eDb3+OlMzYimh4FFxCBm8XYk1sm1FKMfWrc+5HLPkrKyuuNw8ZaZvLRiAisUI1hQWFrq9io8FlErLYd2fANCkSFcKraRLkQqXRNiePXvQo0cP1K1bFydPnkTz5s1x5swZcByHli1bSl1GQmFML4Azq4Enz4i9PXhUTDoHZ9ZDVxc72BIFgI6fFLgS2OysrK663JydW1BQwAfw24KVgcUkGLKyEpGZacCBA+2QmWmwELubN2/W/ARM7rQczmK0TD+npqZCr9cz8/zVxhv3mXRJhE2ePBnjx4/HrFmzEBISgq1bt6JGjRp48cUX0aVLF6nLSKiEN8VHeXPwqLXgMt8epuJ32x1hv379+J8dWQ/FugDtufdu3gzGF188L/g69hBi6ZRygsF6Hi5bbToz0+BQNGt9AiZ3Wg5PsY4qjTfuM+mSCDtx4gQ+++yzigv4+eHWrVuoVq0aZs+ejWeeeQYjRoyQtJCEOrAcH+XOYgFz0ZGb64OcHD8kJNxF7969cffuXfj7+0Ov11f6O0/sNO3PPEOg11932BEGBQU5HGhMudvEinnrAcx8expXJwX2LBNGY4jsmz6ztK2RLUz1nZubi/T0dLuiOSsrEZ0771aljHIiV1oOsX2Ft7nhHKHVnHuu4JIICw4O5htLTEwMsrOz0axZMwCOl6MT2oOl+CgpFguYi47KnW8WWrb8FUZjCO6/vxdatKiC2NiK3SE8tQN0NPNMStqN3buT3F5J6IqYt3VddyYF1kLD1v0qlRNL7W2NbBEREcG3BXsr+g4cMFRKVqt1WBnsWbeWKo27C2jsTbRZ7M9dEmFt2rTBzz//jCZNmuDpp5/GuHHj8PvvvyM9PZ3f0JtgF7FWJBbio6RaLOAsu/mtW1V44WE9MHtyB2irPjIykgBIs5JQKjHvznXMhYZag68WkqHq9ddhMGTiwIF2Vkc8L18eK3kBhbpHc3NzbVrLWBIVUuBOKIzjiTZ7/blLImzhwoW4ceMGAGDWrFm4ceMGNm3ahAYNGtDKSMZZtQoYNgwoLwd8fIAPPwQGD1a7VM6RerGAves4svyYru2JbgPbSSV93IoJlCqBpByJKNUYfFmxutjDvP4SE7Nw4IAB5iLcE+NBWYx7dSQcTG55Tw9Wd8fqLXSixUpcmUsirG7duvzPwcHBWLlypWQFIuShoKAAZ87cxbBhNVBebrIiAa+8wuHBBy8jPt5PEy+wVJ2mvfQHzgZmT129Y69ezV2SYmMCpQpOliPIWYnB1yTWTSEarFhd7BEREYHU1FRs2rQJev119OjBZjyolLAW9+pMOHhLsDrgvvWc9ffNhFvJWktKSnD58mWUl5dbfF67dm23CkVIi0k45OTEo7y8v8WxsjId3n33RwQH38K4cT3QokV1plcKStVp2rqOdQwUUHlg9tTVO/bqtWXLX9G8+XGXO0KphKjUglbOwbegoACXL1/G5s2bLT5n0epijfmCFJbiQeWEpft0JBwAMG1JlQN3QmG08L4BLoqwP//8E4MHD8aBAwcsPuc4DjqdDmVlZZIUjpAGxwG395Jfrl/P/eOeZHt5tZzxRVWr3hY0MLPuWnIFe/XKQkygVMid3d5egLXJYuqOZVEJ5N6DkBVYvU9HwkEty46S4RdSGgBYs3LawyURNnDgQPj5+WH79u2IiYmBTqeTulyEDDhLfllersMrrwDJyUCtWrZfKvOgfjWRShhYX0eowNOKqVssYupVjgFK7g5f7vxNtgKss7IS+fgqk8U1NjaXyYzp3pLfitX7dCYclLbsKB1+IfVzYcnKaQ+XRNjRo0dx+PBhNG7cWOryEDLjLPllWRmQlVWAqlUru4C0GtQvFiFCRCumbmcIHfh79+6NsLAwi7+TeoBSqsNXamA1d1ebMC3+GD16MfT660hJSUFkZCRTwoaVcsgNq/fpyCKttGVHjfALOUIPWBRfJlwSYU2bNqV8YBrGPFGlLSGxf/86HD9+L92DpwT1A9JZG8R0iCyvpmTJIuBJ8XbW7mpzzC2mkZGRHrEPI+EeQt2jall2PDH8ghUEi7CioiL+57lz52LixIn417/+hRYtWsDf39/i3NDQUOlKSMiGMyFRUlLiNKj//fe/Q0LCWdlXA0oVK2BLdFhv0+Po2uZ/J6RD1MJqStYEtCd0+LZTflSgRYspIS+OJkOmHSNMqGHZ0VL4BcsLy2whWISFhYVZxH5xHIcnnnjC4hwKzNcezoSEo6B+88FEbuuElBYb63NiYmIEX9t6E2ZnHaInWXeUQksdvj3sZZ0HXHchsWxRlQpvuEd72LsvFkSFlsIvWLLuC0GwCNu3b5+c5SBUROjMymDI5Df2VWOliZwvjdBru9oheoJ1Rym01OHbw5aV2WDIdHnbH2/Y1kYLVmOhCBWTQs9TW1RoZaWhCdbbhzmCRdjjjz/O/3zu3DnExcVVWhXJcRzOnz8vXekISXB3hmQZYFyOtm33e9weckJxtUP0BOuOUmitw7eHEHe10HdT6LY2WraoeorVWKhg7tevHz799FP+d9ZFpxZWGmoRlwLzExIScPHiRdSoUcPi86tXryIhIYHckYxhLRysYwzsYTQacf48ZxVg7IPMzIqNfL0VVzpET7DuSIm1BaCwsBBXrlzhf9dqhy80wDo1NRVRUVEutSUt7D/pDlq3GgsVzMXFxfzPWhGdrK801CIuiTBT7Jc1N27cQJUqVdwuFCE9rnT2mzZtQk5OPDiuicXnallwxG48zhKeYt1xhhD3CgAHbifL3xMSzspeZimR23WkdYEiBE+yGgsRzEKfqRrxcizEo3k6okTY2LFjAQA6nQ7Tpk1DUFAQf6ysrAxZWVl48MEHJS0goS5qW3BMHc/GjVUxcaIe5eU6+PhwmDfPiL59bzEVYOkMrVp3hCI0pqd37978z9aD1P33H8OxY/c7HLRY7/DlbI+eJFDsoXafIxVCxZWQZ6pWvBwL8WiejigR9uuvFZ0hx3H4/fffLTrDgIAAPPDAAxg/fry0JSQkR8wgpqYFx9TxGI0hWLx4tEVm/wkTQvH336uh119nJmZCCNbmfFNnevx4If+ZVjs1oTE9d+/eBWB7kPrttwcA6PjfzQetlJQUxMbGarJupMJTBIojPMVqLFQwC3mmnhIvJxfmVsLcXB/k5PghIeEuYmMr9rVmuU8VJcJMKyQHDhyIJUuWUD4wjSJkdlNYWMhvQCxlgLEYTOVz1pnZug9WXJeO6sW8M/3kE8vOVEvC0hp3LAAmAWbCOrGpVutEKpwJFHtJtFkehGzhCVZjoYJZjOhU2h2thRWr5mV0JFBZ7VNdiglbs2aN1OUgFEZsY7QXkKmEdULs7J+l7ZXsLYpw1plqeUbrjgUA4GAuxDzNyiMFjgSKqW3ZcwPLvfWUlGg9CFyMuGJ1z1otWOBM363VPtUlEXbz5k28++672LNnDy5fvozy8nKL4//3f/8nSeEI9lHCOiG0M1NjeyUhFjdb3+nJsT3uWABsxYRpvT6kQOiqS3sDpdEYgrlz/6uYBcOVIHJPDAIXY9Fjec9aLSwI0Wqf6pIIGzJkCH788Ue89NJLiImJsblSkiCkxFlnpuT2So4WC3TocAfnz1dB69Z6h25QT47tcdcC0KnTXk27oeRAyLY29gbKW7eqYPfuJMUsGK4mlvWUIHChgtl8YZuz65nqRK14OS0IHK32qS6JsO+++w47duxAu3btpC4PQdjF0UxRqe2VHC0WGD8+FDpdRefkbAWnpwQf28MdC4DW3VBy4Ux82BsoTQLM9LvcFgx3EstKLbDUSOsgRky6sl2aGvFyWhA4Wu1TXRJh1atXR3h4uNRlIRhCq64BuV9ER4sFAB9wXMVPQlZwekLwsSPsiSl/f3+XrsdaW2MN2zF2lfevVNKCoWZiWTW3ehJ6PVe/V+mJilYEjhb7VJdE2FtvvYXp06dj3bp1gk2qhLbQsmtAiRfR/gbN93C2ghPwLKuPUJEUFRVVqW0VFhbyqSuACqGm1+strs1iW2MJWwNlUtJuC0sYoJwFQ+04Ik/a6omFSbHYflWttBFa61NdEmELFixAdnY2atasifj4+Eoz2yNHjkhSOEJd1B70hHQoRmMIsrKCEBd32+JzuV9E6wEPKEfFqj7vXdnnjnCPiYmRs2heg62BsmrV25JZMITuiACwFUek9a2eWJkUC+1XtZ42QklcEmE9e/aUuBgEURlnHc/GjVUxe7Yeixbp4OMTim7dHlK0Y7Ue8LKz6zsd7FiY0cqJt3eoUuFOLJP1QCmVZVhozqjU1FQA7MQRqW2Rkwo13i1X+ysl00ZovU91SYTNmDFD6nIQhE1sdTymVBSmlYlARQyWGh2r+YAnZLBjZUZLsIvYBJlCBhcpLMNCc0aVlpby38lCHBFLFjmt4W5/JXXd23Nx9u7dG3fv3q0UxiCkjGojSoT997//RatWreDr62vz+J07d/D1119b7A1HEFLiKBUFCx2rkMGO1c6AYAOxCTJtDZRGoxGbNm1y+l2uWAfEWJZYCJRmxSInN3LFYLnTX0lZ945dnFn8e5GamoqbN6tb3H9JSQkKCgqY7HvtRxXbwGAwoKCggP89NDTUIjFrYWEhXnjhBelKZ0aPHj1Qu3ZtVKlSBTExMXjppZeQm5trcc7333+PNm3aICQkBFFRUejVqxfOnDljcc4PP/yAli1bIjAwEPXr18fatWsrfdfy5csRHx+PKlWqIDExEf/9738tjt++fRsjR45EREQEqlWrhl69euHSpUsW55w7dw5du3ZFUFAQatSogQkTJlgEHhOuYZ2KwhwhLzerJmmCsMae2DEaQyqdGxERgZiYGP5f48aNkZaWhmHDhtn952o8jiPrBgD4+VnO7fX660hIOOuya95dTBY5U39ha6unixcvWoxtWsMkUD788EMMH34IDz8cheefj8DDD0dh+PBD+PDDD7Fs2TLF79FZ3YvBmYvT9F5MmvQnM/cvBFGWMM60/t7O7/Y+k4KOHTvizTffRExMDP7++2+MHz8ezz33HA4cOAAAyMnJwTPPPIOxY8diw4YNMBqNGDNmDFJSUviFAjk5OejatSuGDx+ODRs2YM+ePRgyZAhiYmKQnJwMANi0aRPGjh2LlStXIjExEYsXL0ZycjJOnTqFGjVqAADGjBmDHTt2YMuWLdDr9UhLS0NKSgr2798PACgrK0PXrl0RHR2NAwcO4OLFi3j55Zfh7++Pf/3rX7LUj7fhzNWRkpKCyMhIi7+RwiRNIk5e1MjrxCruunLkqidn1o2wsDDmXO7WFjkAyMmJR3h4AdLT0/nztBoozvLWPVJbQ51NAli7f2e4FBPmCLmy548ZM4b/uU6dOnjjjTfQs2dPlJaWwt/fH4cPH0ZZWRnefvtt+PhUPIDx48fjmWee4c9ZuXIlEhISsGDBAgBAkyZN8PPPP2PRokW8CFu4cCGGDh2KgQMHAgBWrlyJHTt2YPXq1XjjjTdgNBqxatUqbNy4EZ06dQJQsZdmkyZNcPDgQbRp0wa7du3CH3/8gd27d6NmzZp48MEH8dZbb2HSpEmYOXOmRw/kSm6c7ejljoyMlGXFnbXrR063j7ehhc2C5aagoIDfhJtVN5qQWC8Wno+9zPWu7oGoVsoFMbAa/yblanVH7wWr9+8IyUWYEly9ehUbNmxA27Zt+fQYrVq1go+PD9asWYMBAwbgxo0bWL9+PZKSkvhzMjMzkZSUZHGt5ORkjB49GkDFC3j48GFMnjyZP+7j44OkpCRkZmYCAA4fPozS0lKL6zRu3Bi1a9dGZmYm2rRpg8zMTLRo0QI1a9a0+J4RI0bgf//7Hx566CGb93Xnzh3cuXOH/72oqMiNWlIeNTbOViMnjHlHGxMTU2nWb91Bs9A5awG1NgtmxfpmK7mowZCJAwcMANhKkMlCrJczzCdMzrZ2cragRyspF1gV7lLibBKgtfsXLcL++OMP5OXlAahwPZ48eRI3btwAAH4GJxeTJk3CsmXLUFxcjDZt2mD79u38sYSEBOzatQu9e/fGK6+8grKyMhgMBnz77bf8OXl5eRbCCABq1qyJoqIi3Lp1C9euXUNZWZnNc06ePMlfIyAgAGFhYZXOMdWLve8xHbPHnDlzMGvWLIG1wQ5qbJzNEhEREQ73k+zb95ZqQaFyzN7ltggomVKAJeubIxFqMOxHYmIWU2JHC0kxrZ+Zq5YSlt195ri6IlXqd1rutBH2JgGsrMgVg2gR9sQTT1jEfXXr1g1AhRuS4zhR7sg33ngDc+fOdXjOiRMn0LhxYwDAhAkTMHjwYJw9exazZs3Cyy+/jO3bt0On0yEvLw9Dhw5F//798cILL+D69euYPn06nnvuOWRkZGhik/HJkydj7Nix/O9FRUWIi4tTsUTOUXLjbFZxtJ+ks62LlCgXIN3sXQmLgJIuBbWsb46wNdBnZhqQmJilWBlsofV8TID7liItuLtcyWwv9TutRCoee5MALVhpzRElwnJyciT98nHjxmHAgAEOz6lbty7/c2RkJCIjI9GwYUM0adIEcXFxOHjwIAwGA5YvXw69Xo958+bx53/66aeIi4tDVlYW2rRpg+jo6EqrGC9duoTQ0FBUrVoVvr6+8PX1tXlOdHQ0ACA6OholJSUoLCy0sIZZn2O9otJ0TdM5tggMDERgYKDD+mANpTbOZhlH+0kK2bpI7nJJOXtXwiKghkuFpYSeQgd6pcWOJ+S4c9dSohV3nxgrpVzvtBLtwJ7lWgtWWhOiRFidOnVEXfzVV1/F7NmzK61SMxEVFYWoqChR1zRRXl5hJjXFUBUXF/MB+SZM+cxM51q7JwEgIyMDBoMBQEUH0qpVK+zZs4ffFaC8vBx79uxBWloagIrYM39/f+zZswe9evUCAJw6dQrnzp3jr2MwGPDOO+/g8uXL/IrKjIwMhIaGomnTpi7dL+soZQZmeTbOagctx+xdTouAu23JFdcKSxYOZ+0oJSUFsbGxqogdlgWWUNyxlGjR3SUUlt4BW1j36VrfisqErIH5n376KcaPH29XhAklKysLhw4dwqOPPorq1asjOzsb06ZNQ7169Xjh07VrVyxatAizZ8/m3ZFvvvkm6tSpwwfCDx8+HMuWLcPEiRMxaNAg7N27F5s3b8aOHTv47xo7diz69++P1q1b45FHHsHixYtx8+ZNfrWkXq/H4MGDMXbsWISHhyM0NBSjRo2CwWBAmzZtAACdO3dG06ZN8dJLL2HevHnIy8vD1KlTMXLkSM1ZusSghBnY3dm4nKs3We2g5RCHcgtOV9uSI9eKwZDJx1WlpqZaTABZEtDO2lFkZKRHiCE1ccdS4qht2ouLlttCKMXklKV3wBYRERHo3bs3Nm/e7LLlmkVXuawiTKqcYUFBQUhPT8eMGTNw8+ZNxMTEoEuXLpg6dSovajp16oSNGzdi3rx5mDdvHoKCgmAwGLBz505UrVoVQEXw/o4dOzBmzBgsWbIEtWrVwscff8ynpwAqsu1euXIF06dPR15eHh588EHs3LnTItB+0aJF8PHxQa9evXDnzh0kJyfjgw8+4I/7+vpi+/btGDFiBAwGA4KDg9G/f3/Mnj1bkvpgGSXMwK52Zkqs3mQxHkEOcaiE4HSlLTlyrRw40A4HDhjQo8d2ABVpRUy7e7AmoFlsR1pGagu6vbZpWoGp9OIOKVzFrL0DtjCFADmz2smVJ1IONJGiokWLFti7d6/T8/r06YM+ffo4PKdDhw749VfHJsu0tDTe/WiLKlWqYPny5Vi+fLndc+rUqVPJ9Umog9KrN5WKRxBj1RMzqDty55nP9KUWClIOlLY66QosZ8zmu1iwJny0FNfCOkrFs6m5uEOKPoy1d8Aezqx2cuWJlANNiDCCcBVPW73pLBWGo4FEyKAudKWUmGsKRcqB0lYnbcJRnIuawkfJeEd3cqOxkldNLO6USUids7S4wx2kfAfkSmejBaudUEiEER6NJ63eVCIVhtCVUnIh1eBt3UmbY/7cTYmcnaFELIlS1hp3cqOxlFdNSRw9G1MiWNYD25VG7nQ2WrHaOYNEGOEWLK9WNEfOmZNSdSA2FYY75XJ3QFH7eQP3OumsrES7WedNe7+yYtlR4nvcyY3GYl41pXD2bFgPbLeHXP2XEulsPMFlL6sI69evH0JDQ+X8CkJltJQ7SK6Zk9g6cHeFptDO3p1nIyRNgr1Vz6w8b6Cik+7ceTcSE7PsPndWyqo07lg7PcX1JiVadZHJ3YeThdAxLomw8vLySjm5TJ9fuHABtWvXBgCsWLHCvdIRmkBLg5hcMydndVBQUICLFy+6FMtljZjO3tVnIyRNglYCXwHPmDFLjTuDIw2sttGqi0zOPlxKC6FWPC9iECXCioqKMGTIEHzzzTcIDQ3FK6+8ghkzZvBJUa9cuYKEhASUlZXJUliC0CJyxHIp0dlrcUBhsfNlNZDdncFRq643JSDBb4mUFkIteV6EIkqETZs2Db/99hvWr1+PwsJCvP322zhy5AjS09P5zk+q3GAE4SnIta2REp291gYUUyd9+fJlbN682en5cos2lgPZ3Rkctep6k4Pi4mL+Z3vPF1BngsDKBEDKCZ3Q8sqZmFtKRImwr776CuvWrUOHDh0AAD179kTXrl3RvXt3bNu2DQA0sVE2QagBWQ+UISIigpkZM+uB7O4Mjlq0lEpNQUEBPv30UwCOn2+/fv0UF9msTQCUmNC5k8JHLUSJsCtXrljsHxkZGYndu3cjOTkZTz/9ND7++GPJC0gQ7sBSDIEWrAcs1Ze7sNTZshzI7s7gqDVLqdQIXQEYFBSkWtkANicAUqNECh85ECXCateujRMnTiAhIYH/LCQkBLt27ULnzp3x7LPPSl5AgnAHViwiJtyxHsgpkMzdFu3b98X//Z8vate+g+joiozy/v7+0Ov1/PVZ6sS0AEuB7O60I08S6VLC0vO1Rq0JgNJtRa6wD7kRJcI6d+6MNWvW4Omnn7b4vFq1avj+++/x5JNPSlo4gpAC1gSDq9YDuQSl3EkVCbZc0e60I7UmNazENtmDpedrjVoC0dW2olQKH1YQJcJmzZqF3Nxcm8dCQkKQkZGBI0eOSFIwgiAqI8dAo0RSRW+HNVe0O+3I22ObbMHa8zVHTVEi9HlIGcvF8rOwhSgRVr16dVSvXt3u8ZCQEDz++ONuF4ogCOVh2aViD7n2ppMDCmR3Da3ENrH6fFkXJVpN4SMVopO13r17F4sWLcJnn32GP//8EwDQsGFD9O3bF6+//rrgvdgIwlvQShyN1sz4WnSjensguzsoEdvkrqhn9fmyLEq0nMJHCkSJsFu3buHJJ59EZmYmkpKS0L59ewDAiRMnMGnSJGzbtg27du1ClSpVZCksQWgR1hYH2KPyptflSErazXdkRqORqSz5rLlRbcUtFRYWCvpbtQW4FpDbUqtFUS8G1kWJ1iaBUiFKhL377rs4f/48fv31V9x///0Wx3777Tf06NED7777LmbOnCllGQlC82il027Z8lfculUFu3cngeN8sHt3EqpWvY2WLX/Fpk2bmBqATALH2eBcWFgou3h0HLd077zU1FR+lakJFgS4FpB7kHZF1LNs5RbynUZjCHbtKkXz5pdUd+Er4TY1GkPw7be38OCD6t+vCVEi7PPPP8fChQsrCTAAeOCBBzB//nxMmTKFRBhBaBSjMYQXYADbwfl375rSZ9wBwAEwTxTNwd+/xOI8OREat6TX65myJmoJpWKbxFjcWLZy2ypbYWEhv5MEi9Y+OVP4sHi/gEgRdvbsWTzyyCN2j7dp0wbnzp1zu1AEoSVY2R5DiiB1qV0+SgTOl5YGwlKAAYAOpaXKWx9YTsrqCSgR2yTW4sayFdNe2Vhx4dtCyhQ++fn5SE9PZ/p+RYmw0NBQXL58GXFxcTaP5+XlISQkRJKCEQTLsLY9hjvxLOYzSCldPkrF2LAUS6LFFaZSoVQuL7ljm1hfTSgFntpO7bUvlu9XlAjr2LEj/vWvf2Hr1q02j7/77rvo2LGjJAUjvBtWrEu2YHF7DHeC1CMiItC7d29s3rxZ0gFIqcB5lgZNlgShksiZy0uNuCuWVxOa46rw1VI7NbWl48cL+c/ECnqW71eUCJsxYwYSExPRpk0bjB07Fo0bNwbHcThx4gQWLVqEP/74AwcPHpSrrISHw5p1yR4sb4/h6owvLCyM/1nqAUiJWSgrgyZLglBJ5MzlpVbcFeurCd0Rviy1U0fi2bwtffKJ6xZ0lu7XGlEirGnTpsjIyMDgwYPRp08f6HQVFgCO49C4cWPs2rULzZo1k6WghGfDonXJGSzOrqQqk5QDkFz1ZJ2T0F6Zlc5dyIogVAO5YuJYeedZwl3hy0o7tRbZcsVxsXK/1ohO1tqmTRv873//w9GjRy2StT744INSl43wItS0LrkaPM7i7MqbymSd6sHd86SEdSuKXLAce+MMltNNOMKZWDl+vBD79wcgIeEuAgLyLf6WlXZqq3+Voy2xcr/miBZhRUVFqFatGh588EEL4VVeXo4bN24gNDRUyvIRXobS1iV3g8dZnF25Uia5ByA56omlQZOlsqiJs/c3P/+eCGAlvMCEWLcnK5uKOxIr2dn1MWtWI7M+LQstW7r3fUptFcaip0EORImwL7/8EpMmTcLRo0cRFBRkcezWrVt4+OGHMX/+fHTv3l3SQhLeg9KWHCmCx1mcXYktkxJxN1LXk3WZjUYjSktLLc7x8/NDSUkJLl68KOugyHK+KCWx9/4CQE5OPNasyWBm021biNlwmpVNxe2JFX//Epddw/YmC0ruKiDFWKCFyZEoEbZixQpMnDixkgADgODgYEyaNAnLli0jEUa4hRrWJTlM3+azfhMsD8SslssR5laJTZs28Z+rMShaX9faUmISgyZYbgvuYP3+ZmfX/yfOk71Nt12FpU3F7YmV0tJAh31aSkoKIiMjK13PUbuUY8Wz9Xti3m+6OxZoYXIkSoQdP34cH3zwgd3j7du3x9SpU90uFEEItZpIZRp3Zvp2FFdhjzVrMhQTAizO+JQsE0uDIlDZUmIP1ixBUmF6f+VMXsuCO5CV5Ly2xIrRGOKwT4uMjHR59wapJq32LYoh/HXctaCz/n6JEmHXrl1zuAVIaWkprl275nahCEIIUprGHZm+jxx5SHRchdJCgMUZnxplYmVQtL5ne5Y5rVqCrLEnpOUK1GdF5LK0EMFarMgZ2iFVvJbQyZMnI0qExcfH45dffkHjxo1tHv/ll19Qp04dSQpGEM6Q2jRubzbp6NrmJn2hS6ulggVLgDOU/n6WBkUT3jC42EszIFdwNSsiV83gcSEWZLlCO6QWeK70mZ6yyEWUCEtJScGUKVPw5JNPombNmhbH8vLyMHXqVPTr10/SAhLegTuuKykHXuvZpLNr2zLpKyEEhAYGp6am2k3RwIJIkxrWVlSxYplTArXSuKgpctVMCWPP0mwSwOZllKM8rgg86/CRo0dv8X2XmPg1T+q7RImwN954A19//TUaNGiAfv36oVGjRgCAkydPYsOGDYiLi8Mbb7whS0EJz8Yd15WcA68r1xayTN/dTkSoGd8UrK7m6i0lYS1PGouWOaWRc6ENCyJXyvsTa91W+90VI/Bsh4/UhE43GklJuyWNX1MqjYYUiBJhISEh2L9/PyZPnoxNmzbx8V9hYWHo168f3nnnHdrAm3AZV18KdwZeZxY4V65t/TdAOQyGTP64aZYqhQASMgixEKiuJCzlbmPNMqcWclljWBG5UtyfVGkvhHoViouLXS+sCzgKH9m9OwlJSbuxe3eS25MnJdNoSIHoZK16vR4ffPABli9fjvz8fHAch6ioKH4LI3P279+P1q1bIzAwUJLCEoQ9XB14hZj0Xbm26W+yshKRmWnAgQPtkJlpkFwAORuEWLAUqAErudvcmSBoIebPHkqtjFVL5Mpxf1Kt8I2IiEC/fv3w6aef8p/ZEnSffvqpaCEixX3b67NiY3MxevRitydPcqTRkBPRIsyETqdDVFSUw3OeeuopHD16FHXr1nX1awhCMK4OvEI6IVevnZlpkFUAORuEWLEUyA2LKTpMuBo7w8LqP1dRamWsWu5nOe9PiomTeS5PKS3hUty3oz5LysmTVvo+l0WYEDiOk/PyBMEU1gO8Ep2As0HIW9xhrKXosG4L9gYXe6KQldV/7qBUXavlfpbr/qTsN+SwhKshnF2ZPGml75NVhBGEqwhxxchp/XDl2iYhkJubK+vyfGtMg9D587UA6BAXd54/xlqgupywZBGSUhR6Q4oLsbgrcm3BivtXyn6DVWuQI+Es1UpIrfR9JMII5hAToCq19cO8I05NTbW5F2FYWJjda0dERPB/r2QnkJ1d3+5A7ajD09rWSlpCijr01pg+Z0ht+WRpL0gp+w2WrUH2hLM7mfytcdb3sbBykkQYwRxiAlSlelkB6eJwCgsL+Z/lcpWYz/CFDNT2Ojwlt1ZSG3ctHWpYSli1ZLCAlHXN2rZXUvUb7go6VqyD7mCv75s6NQfffNNM9ZWTsoowWysmCXZg/QVT2gogRRxOQUEBNm/e7PQa7hIREYHU1FRs2rTJ5YGahcFGKdwV2GoFyrNsyfBEWLI8ShWk7qqgk9o6yNLiGZZWTlJgvpfCkvndHmpaAVyNwxGzF5q7nY0pE76zgVrNrZVYwV2BrVagvFbiWjwFNfscOUWKK4JOauugUotnhNQPSxZmWUXY9evUUbAKa+Z3W6hlBZBCoDi7RmpqKiIiIiSxRjobqNXaWolV3A10VzpQnqXks56OmpZHKUWKlIJOygmbEhN6R/Uo956mriBKhHXq1EnQeXv37nWpMITysGwRcSYuzIPKpXSdSiFQnF1Dr9dL6uISO1Cz1AkpibvtXan3RerVf6yHHrCC2pZHqZ6BlIJOixM2dyeuSiJKhP3www+oU6cOunbtCn9/f7nKRCgI6y+YLXFhcgWtWZMhi+tUCoEi5BpSu7jEuBxY6oSUxN32rtT7IuUgqvXEr0rjKZZHqZ6lp07YWHnOokTY3LlzsWbNGmzZsgUvvvgiBg0ahObNm8tVNkIBtPCCmYsLJVynUggUsddwxcXlrsuBlU5ISdxt70q+L1INokLfC09bjOEOrGx7xQKePGFj4TmLEmETJkzAhAkTkJmZidWrV6Ndu3Zo1KgRBg0ahL59+yI0NFSuchIyweILZk80KOk6lUKgCL2Gq/clhbWEhU5ISdxt7yy+L2KRa8WulmFp5R6LeOOETSlcCsw3GAwwGAxYsmQJtmzZguXLl2P8+PHIzc0lIaZBWHvBrMWFKZhSbleQHFm4hYgcd+5LrLWEBhv327s7f692bBZl37cNa9tesYgnTNhY7P/cWh155MgR/Pjjjzhx4gSaN29OcWIahrUXzFZnJ7crSIqOWOjLW1xcjOLiYgDKu7i8cbBxV2BLIdDVjs1iaRGO2mLUFp7W5t2FRcHiLiz2f6JFWG5uLtauXYu1a9eiqKgI/fr1Q1ZWFpo2bSpH+QiZ0OILpoXsz0Je8uLiYnz66af870q7uLxxsHG385Wi81Z7U25WFuGoLUYJYbAmWKTqv1lrU6JE2NNPP419+/ahc+fOeO+999C1a1f4+dHOR1qEtRdMKM5cQfZe1MLCQotM9vaQouN39vcXL16s9BlrLmFPRO7nKgY13IKsLMKhhQLagZX+XwvJxV1FlILauXMnYmJicO7cOcyaNQuzZs2yed6RI0ckKRwhL1prrCbsuYKECi1HqNHxm3coCQlnKx1nyRpJuI9abkFWFxXQQgHvRah1SwvJxV1FlAibMWOGXOUgCLsIFSFi9iplpeN31KGkpKQgNjZWs2KZsI3SbkHz98eRxVUNsU8LBbwXMdYt83NYiWuUChJhBPMIdZ0KjblhpeN31qFERkaSAPNAlHYLshp64IkDKiEcodat3Nxc/jxW4hqlRJKArh9//BE3b96EwWBA9erVpbgkQVggZIAwj7Wy91Kz1PF7YodCOEcNt6D5+2PLBVRSUsK/P0oJMmr/BGBfjNeokYfS0kCLnVFYiWuUEtEZ82/cuIG33noLAMBxHJ566ins2rULAFCjRg3s2bMHzZo1k76kBCEQR0KLpY7fEzsUQhhqLcRgaWUitX8CsC/GP/54CADLSTSrcY3u4OP8lHts2rTJYpuiL774Av/5z3/w008/IT8/H61bt7YbrE8QSuFIaJk6fnPU6vhNHYqpPJ7QoRD2sZVrLCHhbKXnLWdsli2XfU5OPIzGEIfnyQG1fwKAzT4Z4GCSJ6ZJtKmNtmz5K0aPXoz+/ddi9OjFmo8hFGUJy8nJwf3338///u233+K5555Du3btAABTp07F888/L20JCY9H6vxdjmbYLMykWA6U9kRYSQzKWmyWWrGR1P4Jc2z1yc68FawlF3cHUSLs7t27CAwM5H/PzMzE6NGj+d9jY2ORn58vWeEIz0cO94gzoaV2x8/aYCwVSoodod/FkvsNYCctjJqxkZ7a/gnXMe+T/f1LsGrVEJfc1FoU7qJEWL169fCf//wHdevWxblz5/Dnn3+iffv2/PELFy7Qi0OIQsrEjUJn2KmpqdDr9Tb/Xqn262nviZJiR8x3UWJQ26gdG+lp7Z+wj70Jk7XBxty65WgSnZKSgsjIyErX06pwFyXCRo4cibS0NPz00084ePAgDAaDxXZFe/fuxUMPPSR5IQlCCDTDVg8lxQ4JK/ehoHhCCYROmKxxNImOjIxETEyMlMVUFVEibOjQofD19cU333yD9u3bV8oblpubi0GDBklaQMK7cDeJKgks27ASF6U2rCTpVRsWYiO1iNLvkdbfW6G5G1NSUgAA6enp/GdC4r60Xj+AC3nCBg0aZFdoffDBB24XiFAWlhoxK0lUPQ014qKUFDtCv4valyW0X6k4lH6PWItndBdH719kZKTgeC7TeZ6ynyTtvu3FsPSSs5RE1dNQ2n0nldgREksi9LuofVVgK02GrfvXYoCz3Cj9Hgm1ImnB7S7k/RMbTuIp+0mKEmGlpaWYMmUK0tPTER4ejuHDh1tYxS5duoTY2FiUlZVJXlBCeoQ2ztzcXLvnSmUpUztQmJAGqcSOkAmCmO+i9lUBxU1Kh5LWXikmNmp6PYS+f658v9YnWKJE2DvvvINPPvkE48ePR2FhIcaOHYusrCz8+9//5s/hOE7yQhLqYu6nt4UUljJPDRRmyd1rQs7BQyqxI2SCIOa7PLV9uQIJLPdR0rUthchQ2+sh5/un9QmWqIz5GzZswMcff4zx48fj7bffxi+//IK9e/di4MCBvPjS6XSyFLRHjx6oXbs2qlSpgpiYGLz00ksWG3sCwObNm/Hggw8iKCgIderUwXvvvVfpOj/88ANatmyJwMBA1K9fH2vXrq10zvLlyxEfH48qVaogMTER//3vfy2O3759GyNHjkRERASqVauGXr164dKlSxbnnDt3Dl27dkVQUBBq1KiBCRMm4O7du+5XBIO4Y+41uT2cZc/WonvE1PF9+OGHdv8tW7YMBQUFipXpyJGHsHjxaKxb1x+LF4/GkSPSrmZWckcCId/lye2LUAd7osh61wGpcCQyhHL58mVB58nlupNzdwSWdkFxBVGWsL///tti26L69evjhx9+QKdOnfDSSy9h3rx5khfQRMeOHfHmm28iJiYGf//9N8aPH4/nnnsOBw4cAAB89913ePHFF/H++++jc+fOOHHiBIYOHYqqVasiLS0NQEXG/65du2L48OHYsGED9uzZgyFDhiAmJgbJyckAKrZmGjt2LFauXInExEQsXrwYycnJOHXqFGrUqAEAGDNmDHbs2IEtW7ZAr9cjLS0NKSkp2L9/PwCgrKwMXbt2RXR0NA4cOICLFy/i5Zdfhr+/P/71r3/JVkfuosbKMWv3yPTpV3DmjB/i4+8iNvZhAA9r1j3CWioFOc321mLH3qo7KcWOkO/y5PZFqIPSlhd3rUgFBQXYvHmzxWdq9PVyLQTR+kpfUSIsOjoa2dnZiI+P5z+77777sG/fPnTs2BEDBgyQuHj3GDNmDP9znTp18MYbb6Bnz54oLS2Fv78/1q9fj549e2L48OEAgLp162Ly5MmYO3cuRo4cCZ1Oh5UrVyIhIQELFiwAADRp0gQ///wzFi1axIuwhQsXYujQoRg4cCAAYOXKldixYwdWr16NN954A0ajEatWrcLGjRvRqVMnAMCaNWvQpEkTHDx4EG3atMGuXbvwxx9/YPfu3ahZsyYefPBBvPXWW5g0aRJmzpzJ5KxbzZVj5gNgTAzQqpUiX+t1yDl4yC127A0ab7+d4PS7WGtfLLqovQUp6l5p17a7IsP6fvfvN2D37iRF+nqlFoJoeaWvKBHWqVMnbNy4EU888YTF57Gxsdi7dy86dOggZdnscvXqVWzYsAFt27aFv78/AODOnTsICgqyOK9q1aq4cOECzp49i/j4eGRmZiIpKcninOTkZH7rpZKSEhw+fBiTJ0/mj/v4+CApKQmZmZkAgMOHD6O0tNTiOo0bN0bt2rWRmZmJNm3aIDMzEy1atEDNmjUtvmfEiBH43//+Zzeh7Z07d3Dnzh3+96KiIhdqRzxaD2wkhOHO4CF28JJS7Dhb2h4TU1N1YSUUtWNzvBmp6l4Ny4tUImP/fgMyMp4EUBE2JHdfr+RCEK3uJylKhE2bNg0nT560eey+++7Djz/+iIyMDEkKZotJkyZh2bJlKC4uRps2bbB9+3b+WHJyMsaMGYMBAwagY8eOOH36NG/xunjxIuLj45GXl2chjACgZs2aKCoqwq1bt3Dt2jWUlZXZPMd033l5eQgICEBYWFilc/Ly8vhzbF3DdMwec+bMwaxZs0TUiDQItZDYs0bk5+fT7J1h3HUVqikcPG2CwJqL2ptwt+6FbotmNBol6Q+ltiIZjSHIyEiCSYCZkDuIXa5xQWxeMVYRJcLq1KmDOnXq2D0eGxuL/v37C77eG2+8gblz5zo858SJE2jcuDEAYMKECRg8eDDOnj2LWbNm4eWXX8b27duh0+kwdOhQZGdno1u3bigtLUVoaChef/11zJw5Ez4+otYfqMbkyZMxduxY/veioiLExcXJ9n2mxinEQuLIGmFaPUmzd8eola3dXVehmsJB6yufCM/B9B5dvnwZmzdvtiuKNm3aBMD9/lBqK9LVqxGwtRZPS0Hs5nhKuhWXkrVu2bIFn332Gf78808AQMOGDdG3b18899xzoq4zbtw4p3FkdevW5X+OjIxEZGQkGjZsiCZNmiAuLo7fw1Kn02Hu3Ln417/+hby8PERFRWHPnj0W14iOjq60ivHSpUsIDQ1F1apV4evrC19fX5vnREdH89coKSlBYWGhhTXM+hzrFZWma5rOsUVgYCACAwMd1oeUmDfi++4rwqRJepSV6eDry2Hu3CJ07vwk0tPTBVsjaPZuH7WztbMWF+UMoRME1me5LEIxaRW4MimKiIhQdFIi5XOw9S4BHJKSdmt2QuMJ7VSUCCsvL8cLL7yALVu2oGHDhryF6n//+x9SU1Px/PPP47PPPhOcpiIqKgpRUVHiS/1PWQBYxFABgK+vL+677z4AwGeffQaDwcB/h8FgwLfffmtxfkZGBgwGA4CKzqdVq1bYs2cPevbsyX/Pnj17+BWWrVq1gr+/P/bs2YNevXoBAE6dOoVz587x1zEYDHjnnXdw+fJlfkVlRkYGQkNDLTY8ZwFTIx43DkhNBU6fBurX16FWrTAUFFQk3SVrhHt4mktNCZxNEPr2fcEjxILS1lE1XMssij61J0XWWNeR0WhEaWkp/7ufn5/FpN+VOrMORwDK8eSTu9GuXabFdQllESXClixZgt27d2Pbtm3o1q2bxbFt27Zh4MCBWLJkCR/oLhVZWVk4dOgQHn30UVSvXh3Z2dmYNm0a6tWrxwuf/Px8fPHFF+jQoQNu376NNWvWYMuWLfjxxx/56wwfPhzLli3DxIkTMWjQIOzduxebN2/Gjh07+HPGjh2L/v37o3Xr1njkkUewePFi3Lx5k18tqdfrMXjwYIwdOxbh4eEIDQ3FqFGjYDAY0KZNGwBA586d0bRpUz5tR15eHqZOnYqRI0cqaukSS61aFf9MmAbCI0cu45NPKNGlWEwdmjMRq7WOTynh4GiCAITJ9r1CkEJYqCEElHYts7gQQepJkbvvg9A6ssaVOnMUy5aamqr5SY0WESXC1qxZg/fee6+SAAMqkqnOmzdPFhEWFBSE9PR0zJgxAzdv3kRMTAy6dOmCqVOnWoiadevWYfz48eA4DgaDAT/88AMeeeQR/nhCQgJ27NiBMWPGYMmSJahVqxY+/vhjPj0FUNEQr1y5gunTpyMvLw8PPvggdu7caRFov2jRIvj4+KBXr164c+cOkpOTLTYv9/X1xfbt2zFixAgYDAYEBwejf//+mD17tqT1ogQRERFo3rxEk3lY1J6Bm0TsmTN3sX49h/LyexZiX18Oo0Y9hfh4P011fGpZEKwnCGoihbDwFusoiwsRpLTsS/E+uHrvQv9OaIC/q14pwj1EibC//vqrUooHc5KSkni3nZS0aNECe/fudXhOZGQkn0bCER06dMCvvzp+SdLS0hzeR5UqVbB8+XIsX77c7jl16tSp5PrUMlrLw8LKDDwiIgIREcCHHwKvvAKUlQG+vsC//61Dq1Y1nV/ADKlFpdjreYtwcIYUwoIVF79ai0XURKo8X3K9D1I/E08JYBeL2pNwoYgSYVWrVkVhYSFq165t83hRURGqVKkiScEI9tBSHhbWZuCDBwPJySaXmnOrjnUHUlhYWCnrtS2EikoxItUEK8JBy7C04EANq6Zaoq+goACFhYUApNvVQY73wdYzqZj8uldnLIgNqXEksoxGI79K1REsrOgXJcIMBgNWrFiBFStW2Dy+fPlyPkaL8Fy8cfYsBUJdaq7GiADSi8+SkhKmhAOLiHkfWFlwoIZVUy1Xtq33yZZlPzU1FVFRUYLrXurM+baeybZt3aDTgZkFBKzgTh9pDgsr+kWJsClTpqBDhw4oKCjA+PHj0bhxY3AchxMnTmDBggX4+uuvsW/fPrnKSkiEWDOt+eDqqCP11kFYaljoGMxhRTiwiCvCgoUFB0pbNdV0Zdt7n6wt+3q9XlAblmufVFvPBPABx1X85K3uf1uI7SNZNhyIEmFt27bFpk2bMGzYMGzdutXiWPXq1fHZZ5+hXbt2khaQkBZXYqXMA8xnz64Bjru35cWOHd0xfXqi5gLMCXGwIBxYw5mwyM/Pr/Q31mJVrQUHSu9/6EmubLn2SbWdx8sSrdaZ3DgSWaylI7FGdLLWZ599FsnJyfj+++/x119/AahI1tq5c+dKezcS7OGquyoiIgLHjgH/pGfjKSvT4fr1mmBJfxUUFNgcAAlpYGmlopo4ExamnSSsUTMORS4rjjOUFn2OkMIqIkfyY1t5vCq2GLq3qppSA1XGkcjSwmIiUSJs7969SEtLw8GDB/Hss89aHDMajWjWrBlWrlyJxx57TNJCEmzQoAHg42MpxHx9KwLN3UHKVSxSxQqwjtTmdZbN9aziqrBQ090slxXHHmqJPnvIbRVxpS9ztCdldnZ91euMZZyJLC1YYEWJsMWLF2Po0KEIDQ2tdEyv1+OVV17BwoULSYR5KLVq2Uq14J5VROpUEvZXy3iOyJB6IGHdXM8aQoUFq0hlxREqOJQUfY6Q2yrial9mK4WEecb8tLRTyM0NQvPmVRSvM9ZxJrJYssDaQ5QI++233xxuuN25c2fMnz/f7UIR7OIo1YIrs0AlUklofTGBuYAEIHm2b9bN9axhT1iEhl7GgQPeIV5dFRxy71tqqw8yhSbIbRVxpy+z7hdjYmL4n1u0cK9cnowzkaWFiZIoEXbp0iX4+/vbv5ifH65cueJ2oQi2sRUTxEpyVGvsiYy0tAZo2bIG87NJawFpMGRKsgWSJ26ppGRyRlvC4uLFEhw4cO8cT7K+WsNaHj7AeR+kBauIGmglqakthIgsR4nGWejfRImw++67D8ePH0d9O0FAx44ds1DwhPcgtLPNzc21OFfuAHp7IqOoiF0BZuoYbAnIzEwDKgJ2792TK1sgedqWSqxNAsjFqzzO+iCl49K0IMJZe2+E4iiOzryue/fubbHxufU1WLgnUSLs6aefxrRp09ClS5dKmfFv3bqFGTNm2NxXkiBM2FsxJhf2Zr/x8XcVLYcYTAJp3z5g0aLKAnL48Bv46KPgf3J1ubYFkul7pNpSSW1Yssx4o4tXC4IDqBiw09IaoKiohqxxaVoR4Sy9N2LwpK2YRImwqVOnIj09HQ0bNkRaWhoaNWoEADh58iSWL1+OsrIyTJkyRZaCEtIg1l2ldezNfis6X3aJiIhAmza2V6NOmVINU6YI3wLJGWK3VCIco4UVWVLCquCwJwybNw9DTIx8g7M3inA10ILAEoIoEVazZk0cOHAAI0aMwOTJk8H9k8pXp9MhOTkZy5cvR82a2ppBexueNIMQim1zNdsiDHC+GlVKsUS5v9zHG7d3YlVwqCkMtSzCtWLR9CREJ2utU6cOvv32W1y7dg2nT58Gx3Fo0KABqlevLkf5CBkwF1gXLgB//VWRA8wTBmHrAc68U0lIOGv3PFZhwUqlxcBdNQYTb9zeiUXBobYw1OoCAFYtmp6OaBFmonr16nj4YfatCYR9Vq0Chg2rcHf5+FRYXQYPVrtUthEqmswHwo0bq2L2bD3Ky3Xw8eEwb54Rffve0txAqKaVSouBu2oOJt62vROLgkMtYchaYloxqC1cvRmXRRihbS5cuCfAgIr/X3mlwuqi1oCfkpKCkpIayMnxQ0LCXcTGVhROrGiKiIjAhQvAxInm96fDpElhSE0NY2qLJdbRWuAuS4OJJ7t4WRYcaglDlhLTioVFi6a3QCLMS/nrL1v7QFbM3F0ZOKTobHftisPEiWGSWOakvj+10aJLUA1oMFEGFgUHC8JQycS0UsKiRdNbIBHmpUi9D6SjgP/8/HynqSmMxpB/XIcVv7trmZNrn0s10KJLUGm8MShebWHOmuBgURiyjljhqnab80RIhHkpcuwDaS/gPzbW+cB39WqERcJQwD3LlRz3pxZacwmqgbcFxZMwtw1rwpB1xAhXanPyQCLMi5Fr5V3lgH/naTHy86tg/XppLVcsrCz0NFhewu5NQfEkzAmpECpcqc3JA4kwL0fq4GH7Af8R/PfYSosREyOP5cqTg6OVRktL2Om5EwShBUiEES5jKz7g4MEAlJdbmqLN3YqO0mKQ5YpdWFp1SFTGnoXSfG9WT3LHEoSnQCKMcAl78QFGYwh0utEWgdEmt6KQtBhkwWALU0Cus1WHnhTwrjUcWSitF8SkpqZCr9fbvA6JNGFQcHoFLIcmaAkSYYRL2OuErFfZ+Ppy+Pe/dahVC9i3z7PSRngDpsDdM2fuYv16zmLxhK8vh1GjnkJ8vJ9XDDosItZCuWnTJofXYyWomlWhQ8HpFWgpNIF1SIQRkmO+V+OoUU+hVauK/UQ9KW2Emig9A42IiEBEhK2YPR3/bAl1kDovGgtB1SwLHQpOp9AEqSERRsiCXn/9HzfVZVy8WKG6fH2BhQtDMG5cNc2njVASc1efoxmo3C5BitljD09MsklCh20oIbK0kAgjZMVWktZff30NBQXVaSAXiLlLcPbsGuC4Cpcgx/lgx47umD49UTGXIMXssYGzJJsAkJMTb9daSvE8hFi8MSGyEpAIIxQnMvI2WrRQuxTaIiIiAseO2Yqp0+H69Zq0H6aXYZ1kMy3tFDZsyEJ4+FVkZ9fH4sWj7cbrCInnYSkmi2XByHLZpMbbEiIrBYkwghCBmoOT1DF1LA20hHisn01Cwlmn8TpC4nlYisliOQCc5bLJhTclRFYKEmEEIRC1Bycpt2JS+14IeXAWryMknoeVmCwlA8DFTkg8ITjd3UkYhSZIA4kwwiW80e/PwuAkVXC8u/dCVjS2EBqvo6VAfqUCwMVMSJQum1zQJIwdSIQRLmEdkwJUZOe2FYhvDxrIXUPtGSh14OzhLF7n6aefwubNm+0G8puEQ0BAQKV3Uq24J6UEo5gJiacEp7MwoSQqIBFGuIw7AywN5NrDJJrNt8JxBHXgyuIsXsd80jR9+hWcOeOH+Pi7iI19GMDD/KTn4sWL/DXViHtytvLTXDAqDQWnE1JDIoxQBU+eiZlEiid1xkJFsxKQBdU5tqyl5nUSEwO0auX4GmrFPVlb2R0JRjlwZvmj4HRCSkiEEZJw4QLwyy9BMBpDnHbQtlwenoS5S1YrljxnAw8rz4ssqMqhZtyTWMEoFWItf2qHBkiFN6XaYA0SYYTbrFpl2phbDx+fMZg3z4i+fW/ZPNeWy8OTYUW8OMJdl5OSHbgnW1BZg+UgfjmsoZ6w4tEVvDHVBkuQCCPc4sIFkwCr+L28XIdJk8KQmhrmETNER3jC7NHdgYc6cM+D5ZgsQD5rqNZXPLqCtwpPliARRrjFX3/ZyuJeESfhaSJM6B6OWsB0L84GHnsDrdEYgvPn41zqwKW0YniCEGYNtWOynCGXNZRly59ceKPwZA0SYYRbOMrifuFChUhr0MAzBJmjPRy1Nns0v5f16zmUl+v4Y76+HEaNesrufpTmAtQaZx24lFYMrQthllErJssV3BXirFv+5MBTUm14AiTCCLewl8X9++/vuSl9fCrOGTxY7dK6j709HLU4e4yIiEBEhK3np0OrVjVt/o21+8IaZx24UOtEbm4uX0Yh5dCiECbcRwohzrrlTw4o1QY7kAgj3MY6izsA1KljHidWMcgnJ9+ziAmdYbE4E6uw/llaj3S6cty8GSxodShriMnCb8t9YUKnK8eMGbkYNkx4B27PimFaYWrPIkZuFO/AluvalAJGSiGuJcufVFCqDTYgEUZIgvlS7X37nMeJ2cq4bw2rM7FatYB584yYMCGUn4FzHPDFF89r1i3mbKm9I/cFUI7nnvsCcXEXkJbWX/AzE2LFsNc+vDF+x9tw5romIS4dWki14an5AUmEEZLjKE7MHPMXRmvxYwMGlOHvvxfj/Pla+OKL5wDYno2zaMlzBefui8dEB9TbsmLUqJGHWrXspy/xxvgdb8WZ65qEuPfgyfkBSYQRkmMvTsyeuLqXZ0w78WMRERGYMqU/9u0Dvvii8my8Xbv+6NDBva2dWENK94U9K8bHHw9Bjx72LYneGL9D2MaZECc8B0/OD0gijJAFoXFGlfOMVY4fY5WIiAi0aWPb6peYWBH07qm4676w7dYEAOdxPd4Yv0PYjh9s2fJX1Kt3GlevhiM8/KpFmyFrKKEFSIQRsiFkoNZ6njGxVj+iAmsrhjneFNfjqXEuUuMoflCvv46BA59EZGQkfz7VG6EVSIQRqiI0foxlxKwu9HbMrRMtW/6KGjXy8PHHQ2CKqQO8J67HOs7F3kpRLca5SImt+MFt2yytpZGRkYiJiVGzmAThErbXmhOEQpgsSb6+Fb9r1ZJUqxbQoYP2yq00ppiulJQUAECtWhfRo8d26HQVKtyb4nrMLWBHjjyExYtHY926/li8eDSOHHnI5nneiO20KD7IykpUpTyE+hiNIcjJiYfRGKJ2UdyGLGGE6pAlybuwtup4e1wPJZ51THh4AYByWNsMMjMNSEzMojryMjxtpwwSYQQTaCFPDXEP81im3Fwf5OT4ISHhLmJjKyxazmJytJwnTmoo35VtzNORtG2biQMH2lkcpzryPjxxwkIijCAIUZjHMjmalTqLZfIGgeWIwsJCAJTvyh4RERHo3bs3Nm/ejMTELGRmGqiOvBSTIHc2YdGi5ZxiwgiCcMiFCxW7IFy4UPG7yXplb1ZqitPw9lgmRxQUFGDz5s0AgOzs+uC4e8e8KS7OGWFhYQDurab1xthB4p7lfNSoLvDx4SyO+fpyGDXqKc0uYCFLGEF4KO7sQmByN27cWBUTJ+pRXq6Djw+HefOM6Ny5Yu8+cqO5jrWQNZ8PcxxQr95plUrGFtarab05dlDruJuOJSKiIvdi5ZRAOrRqVVOOIisCiTCC8EDc2YXA5G40GkOwePFocFzFRuXl5TpMmBCKv//OgF5v343m71+CnJx45Ob6gLIGOMbeyj8SshVQ7KBnIOW2Q562kItEGEF4EAUFBThz5i6GDauB8nKTeAJeeYXDgw9eRny8n9NOzjTgObN02do25v77j2HVqiHgOB+sX89pYgsqNRESD+btVh4SWNpH6m2HPGkhF4kwgvAQTLPNnJx4lJf3tzhWVqbD++9/h4SEs4JjJ4QIBHMXkb9/CS/AgArLmRjx54042/8wNTWV6o0gPBgSYQRhB3diqtTANIt0Jp6EzjaFbpBssorl5MRXspy5Iv68DUexTnq9XsWSEQQhNyTCCMIG7sRUqY1Q8SQERwLBGqnEnzdiErIEQXgXJMIIwooLF+4JMMAUU1URDKoFixggTjw5Q6hAkFL8EQRBuIK7qzCVhkQYQVjx11+WG4oDFcuhT5/WjggD5LeupKSkIDIyEvn5+UhPTwcgrfjzZIQG23t6UD6LAyaLZfI07G1W7y5SrsJUChJhBGFFgwYVLkhzIebrW7EcmrhHZGQkYmzkoCDXmnO0lHpBLlHC4oDJYpk8DTn3fpR6FaYSkAgjCDMKCgrg61uCefOqYtIkPcrKdPD15TB3rhG+vrdQUMDGwCgGsbNOstIogxbakbUosdeWXBEl1gOhvWsrOWBqcRDXAqa+wtnej97Yp5AII4h/sB5wXnsthHer3bhxHR9+WPG5q7NgNVZb2pp1OsOelcZ8o25KOeEdmLcBRxYMd0WJnNYRQn1Mfcq+fcCiRZVzD7Zr1x8dOmhjYiI1tHckQfyD9UCi119HQsLZStYjVwacVauAOnWATp0q/l+1yq2i2sR6Fmlv1pmfX8XptSIiIhATE8P/+/bbGDzySE08/3wEHnmkJr76yvs6S2/G2T6hrF7bXYzGEOTkxDNRFq0TERGBNm0i4GOlOnx9gcTECK8UYIAGRdidO3fw4IMPQqfT4ejRoxbHjh07hsceewxVqlRBXFwc5s2bV+nvt2zZgsaNG6NKlSpo0aIFvv32W4vjHMdh+vTpiImJQdWqVZGUlIS//vrL4pyrV6/ixRdfRGhoKMLCwjB48GDcuHFDdFkI78DeakvThthSYZptDhs2DMOGDUPbtv1tZrwvKKgu6rrOyk/uS2Ww3khdSRztnsDytd3hyJGHsHjxaKxb1x+LF4/GkSMPqVoeT6BWrYp0P76+Fb9X7P2orQVPUqM5d+TEiRMRGxuL3377zeLzoqIidO7cGUlJSVi5ciV+//13DBo0CGFhYRg2bBgA4MCBA3jhhRcwZ84cdOvWDRs3bkTPnj1x5MgRNG/eHAAwb948LF26FOvWrUNCQgKmTZuG5ORk/PHHH6hSpcKC8OKLL+LixYvIyMhAaWkpBg4ciGHDhmHjxo2Cy0J4D0qutjSfTbZpI80CA2fl11KQudZwtJF63763FKtXIbsnsHhtV3EWu0S4jqft/egumhJh3333HXbt2oWtW7fiu+++szi2YcMGlJSUYPXq1QgICECzZs1w9OhRLFy4kBc+S5YsQZcuXTBhwgQAwFtvvYWMjAwsW7YMK1euBMdxWLx4MaZOnYpnnnkGAPDJJ5+gZs2a+Oqrr9CnTx+cOHECO3fuxKFDh9C6dWsAwPvvv4+nn34a8+fPR2xsrKCySEV5eTkFiUpEaWkpgoODK31eXFwMjuNcvq5aqy1Ns85XXqkQTa7OOoWUnwSWOITEBzrfSH019PrriqzUkzMHHIv55Zztm0q4h1J7P8qVCkNKNCPCLl26hKFDh+Krr75CUFBQpeOZmZlo3769hcsjOTkZc+fOxbVr11C9enVkZmZi7NixFn+XnJyMr776CgCQk5ODvLw8JCUl8cf1ej0SExORmZmJPn36IDMzE2FhYbwAA4CkpCT4+PggKysLzz77rKCy2OLOnTu4c+cO/3tRUZHDOikpKUFOTg7Krc0UhEuUlZWhXbt2lT6/desWDh06hNu3b7t0XanEkCtIMeuUq/xa2xZKKoTuxiB0I3VXJmGu1L2cOeBYyy/HonWOcI75mOtosQdLoRGaEGEcx2HAgAEYPnw4WrdujTNnzlQ6Jy8vDwkJCRaf1axZkz9WvXp15OXl8Z+Zn5OXl8efZ/539s6pUaOGxXE/Pz+Eh4dbnOOsLLaYM2cOZs2aZbsSrOA4DhcvXoSvry/i4uLgYx3tSIimpKQEhYWFFp9xHIdr166hUaNGlVzgYlDTBC/FrFPq8mt5Wyh3cGU3BqkEgRSuTSlzwFkPhPaureSAafouZ9Y5lgZx4h6m0IgzZ+5i9uwavPWY43ywY0d3TJ+eyNzKblVF2BtvvIG5c+c6POfEiRPYtWsXrl+/jsmTJytUMnWYPHmyhaWuqKgIcXFxNs+9e/cuiouLERsba9MySIjHx8cHfn6VXwm9Xo+oqCgEBAS45fpVygQvF1KV3xO2hXKFgoICHDwIlJdbDgBlZUBWVgGqVrXt1pXCXeeqa1PORRcsxhJal2n69Cs4c8YP8fF3ERv7MICHKb6RcSIiInDsmK04Vh2uX68J1h6dqiJs3LhxGDBggMNz6tati7179yIzMxOBgYEWx1q3bo0XX3wR69atQ3R0NC5dumRx3PR7dHQ0/7+tc8yPmz4zzwR+6dIlPPjgg/w5ly9ftrjG3bt3cfXqVaffY/4dtggMDKx0j/YoKysDQDMyKbFnTfTx8YGPjw/8/f1RUlKiiTqXKsu5HNnSPWVbKDGYiyCdbnQlq9b+/etw/Lj9+C533XWuujblFkosihnzMsXEAK1aqVgYwiW0tOuJqiIsKioKUVFRTs9bunQp3n77bf733NxcJCcnY9OmTUhMTAQAGAwGTJkyBaWlpfD39wcAZGRkoFGjRrz7z2AwYM+ePRg9ejR/rYyMDBgMBgBAQkICoqOjsWfPHl50FRUVISsrCyNGjOCvUVhYiMOHD6PVP2/n3r17UV5eLqosUqHT6SS9njfj5+eHGjVqVIqxu337Nq5fv47evXsjODiYyYHDHKm2XpFrCxctdZBSYRIxzqxajsSOFK5AV1ybrLd3grBGzThcsWgiJqx27doWv1erVg0AUK9ePdT6p1b79u2LWbNmYfDgwZg0aRKOHz+OJUuWYNGiRfzfvf7663j88cexYMECdO3aFZ9//jl++eUXfPhPKnSdTofRo0fj7bffRoMGDfgUFbGxsejZsycAoEmTJujSpQuGDh2KlStXorS0FGlpaejTpw9iY2MFl4VgE1vuyPLycvj6+qJGjRp8mhIlcDVwXaqtV+TawkVLHaQcqBmEzuJKRIKQA62kwtCECBOCXq/Hrl27MHLkSLRq1QqRkZGYPn26RUqItm3bYuPGjZg6dSrefPNNNGjQAF999RWfIwyoyEN28+ZNDBs2DIWFhXj00Uexc+dOi8F3w4YNSEtLwxNPPAEfHx/06tULS5cuFVUWb2XAgAFYt24dgHsLGu6//3688MILGDBggOAFBmvXrsXo0aMrBdJ7Cp4euM5yB6nEqk01NzlnbSUiQciFFuJwNSnC4uPjbeZtuv/++/HTTz85/Nvnn38ezz//vN3jOp0Os2fPxuzZs+2eEx4ezidmtYeQsngrXbp0wZo1a1BWVoZLly5h586deP311/HFF19g27ZtNq1RWsWVmCpvCVxnsYNkSfzKGRSvpggkCOIenjPaEaKQI+BaKIGBgfwChfvuuw8tW7ZEmzZt8MQTT2Dt2rUYMmQIFi5ciDVr1uD//u//EB4eju7du2PevHmoVq0afvjhBwwcOBDAvZi4GTNmYObMmVi/fj2WLFmCU6dOITg4GJ06dcLixYsrpRVRAldjqpQIXDcaQ7B/fwDatGFPCKkFa+KXxdWDBEFIC4kwL0SugGt36NSpEx544AGkp6djyJAh8PHxwdKlS5GQkID/+7//w6uvvoqJEyfigw8+QNu2bbF48WJMnz4dp06dAnAvTrC0tBRvvfUWGjVqhMuXL2Ps2LEYMGBApT1ClcDVmCq5A9dNSQwXLfJR3Nqjpvh3BourNklgEYRnQyLMC5Er4NpdGjdujGPHjgGAxQrW+Ph4vP322xg+fDg++OADBAQEQK/XQ6fTVUr5MWjQIP7nunXrYunSpXj44Ydx48YNXqixjpyB69Z74ilp7WFR/Jvjyas2WdhknWUBThBqQSKMYAaO43j34u7duzFnzhycPHkSRUVFuHv3Lm7fvo3i4mKHyWkPHz6MmTNn4rfffsO1a9f4dBPnzp1D06ZNFbkPKZArcN1WniilrD2sin8TcopftUWQ2q5NawFub08/tQQ4QagFiTCCGU6cOIGEhAScOXMG3bp1w4gRI/DOO+8gPDwcP//8MwYPHoySkhK7IuzmzZtITk5GcnIyNmzYgKioKJw7dw7Jycma3OTc1cB1RwO5rTxR9qw9agsHJTFZaZ5+GsjK8jHLkl6OixfdFyhqiyBTGdTC/L4d7emnxfeUINyBRBjBBHv37sXvv/+OMWPG4PDhwygvL8eCBQv4lBWbN2+2OD8gIIDfNcDEyZMnUVBQgHfffZff7umXX35R5gYYwtmAf999RZg0SY+yMp1Daw8LwkEJ7LlJjx+3/N1dK43S9cTiBunW7nCO88E333RDvXqnabUm4ZWQCCMU586dO8jLy7NIUTFnzhx069YNL7/8Mo4fP47S0lK8//776N69O/bv34+VK1daXCM+Ph43btzAnj178MADDyAoKAi1a9dGQEAA3n//fQwfPhzHjx/HW2+9pdJdqoujAX/cOCA1VZirU+sCSwisu0ldgaVUG+Y42zaJILwNYZkxCUJCdu7ciZiYGMTHx6NLly7Yt28fli5diq+//hq+vr544IEHsHDhQsydOxfNmzfHhg0bMGfOHItrtG3bFsOHD0dqaiqioqIwb948REVFYe3atdiyZQuaNm2Kd999F/Pnz1fpLtmmVi2gQwd2LCQmTKkzLlxQuyTSceECsG8fFLmngoICHD58CcOGcVapNjgcPnwJBQUF8hfCASZ3uDnOtk0iCE+GLGGEoqxduxZr1651et6YMWMwZswYi89eeukli99XrFiBFStWWHz2wgsv4IUXXrD4zFZiXyXwppgqKVAzdYZcKGmRMrlVc3LiUV7e3+JYWZkO77//HRISzqoa/O5s26TCwkLExMSoUjaCUAMSYV4IiQNl8JaYKilQM3WGXCid/NXUzpxt0q22W9W0bdL587UA6BAXd54/tnnzZlohSXgVJMK8EBIHykF1eA9Hol7N1BlyoVbyV6U36RaS/8ua7Oz6tEKSIEAizGshcUAojSPxn5vrg/XrOZSX6/jPtJwotaCgAKGhd+HjU8PqnjiEhFxGQYGfrO+gUpt0C83/1a9fP4tzaIUkQVRAIowgCMWwJzxiYuRLlKo05sKkWzfLnFhdu27H9u0VFh+53W5KbNItNP9XUFAQUlNTsWnTJlohKRDaYcA7IBFGEAzhzR2vXLsEOEPqGEnz5+fIIuVJbjch1i29Xg/Aecwawf4WX4R0kAgjCEaQu+PVgsBzdZcAd5A7RlIJi5TaiLFuKR2zpkU8MXcdYRsSYQTBCHJ2vDSzdow33rOUiLVuKRWz5unk5+fb/JyFCRUhDBJhBOEF0Mza81Ez9Ywr1i25LYRasPy6S3p6ut1j3jqh0hokwgiCUBVvGCyVQO3UM86sW0qKRLL80oRKK5AIIzyKH374AR07dsS1a9cQFhYm6G/i4+MxevRojB49WtayEZWhwVJa1K4jR9YtJUUiWX4JrUB7RxKKMmDAAOh0OgwfPrzSsZEjR0Kn02HAgAHKF4xQBRostY1Y61ZERARiYmLs/lNbRBKE0pAljFCcuLg4fP7551i0aBGqVq0KALh9+zY2btyI2rVrq1w6gnAPb9oWTG0XKEFoHRJhhOK0bNkS2dnZSE9Px4svvgigIsC0du3aSEhI4M+7c+cOJkyYgM8//xxFRUVo3bo1Fi1ahIcffpg/59tvv8Xo0aNx/vx5tGnTBv3796/0fT///DMmT56MX375BZGRkXj22WcxZ84cBAcHy3+zhNfhbcJEC/dhL5M/q1gLdK2VnxAOiTBCFQYNGoQ1a9bwImz16tUYOHAgfvjhB/6ciRMnYuvWrVi3bh3q1KmDefPmITk5GadPn0Z4eDjOnz+PlJQUjBw5EsOGDcMvv/yCcePGWXxPdnY2unTpgrfffhurV6/GlStXkJaWhrS0NKxZs0bJW3aKN1lQPB0tCBNvwVEmf1YxF/IbN1bF7Nl6lJfr4OPDYfr0vwGsUruIhESQCCNw4ULFZsMNGiiXKLNfv36YPHkyzp49CwDYv38/Pv/8c16E3bx5EytWrMDatWvx1FNPAQA++ugjZGRkYNWqVZgwYQJWrFiBevXqYcGCBQCARo0a4ffff8fcuXP575kzZw5efPFFPui+QYMGWLp0KR5//HGsWLECVapUUeaGBSCnBYUEHuGNaHmfyoiICFy4AEyceG8j+PJyHd566z689loI8+UnhEEizMtZtQoYNqziJffxqdi/b/Bg+b83KioKXbt2xdq1a8FxHLp27YrIyEj+eHZ2NkpLS9GuXTv+M39/fzzyyCM4ceIEAODEiRNITEy0uK7BYLD4/bfffsOxY8ewYcMG/jOO41BeXo6cnBw0adJEjttzGbksKN7mIiMIQFwmfxb56697AsxEWZlOUPlpQqUNSIR5MRcu3BNgQMX/r7xSsX+fEhaxQYMGIS0tDQCwfPlyWb7jxo0beOWVV/Daa69VOuZtiwBIYBHegkmAOMvkz7pQadCgYnJsLsR8fYFx455BZORtAEBurg9ycvyQkHAXsbEVJ9KESjuQCPNibM+yKjZQVkKEdenSBSUlJdDpdEhOTrY4Vq9ePQQEBGD//v2oU6cOAKC0tBSHDh3iXYtNmjTBtm3bLP7u4MGDFr+3bNkSf/zxB+rXry/fjRAuQ25SQg7MLb/33VeESZP0KCvTwdeXw9y5Rejb9wVNCJVatSq8E6+8UtE3+/oC//430KJFdQDqeTII6SAR5sXYm2UppVd8fX1516Kvr6/FseDgYIwYMQITJkxAeHg4ateujXnz5qG4uBiD/+llhg8fjgULFmDChAkYMmQIDh8+jLVr11pcZ9KkSWjTpg3S0tIwZMgQBAcH448//kBGRoagJKGEvJCblJALU5sZNw5ITa2YXNavr0OtWmEAwtQsmigGD67wTlSU/94EWW1PBiENJMK8GHuzLCVf4NDQULvH3n33XZSXl+Oll17C9evX0bp1a3z//feoXr1iFli7dm1s3boVY8aMwfvvv49HHnkE//rXvzBo0CD+Gvfffz9+/PFHTJkyBY899hg4jkO9evWQmpoq+70RwiCBRchNrVraFia2yq+2J4OQBh3HcZzahSBsU1RUBL1eD6PRWEms3L59Gzk5OUhISHB7hd+FC5VnWcQ9pKxrgiAIKbhwAahTp7In48wZ6sdZwNH4bQ5tW0SgVi2gQwd6cQmCILSCyZNhiuRQw5NBuA+5IwmCIAhCg9iLFyO0A4kwgiAIgtAoWo9383bIHUkQBEEQBKECJMIIgiAIgiBUgESYxqHFrfJDdUwQBEHIAYkwjWJKbuooySUhDaY6tk4oSxAEQRDuQIH5GsXPzw9BQUG4cuUK/P394eNDeloOysvLceXKFQQFBcHPj14XgiAIQjpoVNEoOp0OMTExyMnJwdmzZ9Uujkfj4+OD2rVrQ6fTqV0UgiAIwoMgEaZhAgIC0KBBA3JJykxAQABZGgmCIAjJIRGmcXx8fGgrHYIgCILQIDS9JwiCIAiCUAESYQRBEARBECpAIowgCIIgCEIFKCaMYUxJQouKilQuCUEQBEEQQjGN286SfZMIY5jr168DAOLi4lQuCUEQBEEQYrl+/Tr0er3d4zqO9mRhlvLycuTm5iIkJMQrc1QVFRUhLi4O58+fR2hoqNrF0SxUj9JA9eg+VIfSQPUoDXLWI8dxuH79OmJjYx2mOCJLGMP4+PigVq1aahdDdUJDQ6mjkQCqR2mgenQfqkNpoHqUBrnq0ZEFzAQF5hMEQRAEQagAiTCCIAiCIAgVIBFGMEtgYCBmzJiBwMBAtYuiaagepYHq0X2oDqWB6lEaWKhHCswnCIIgCIJQAbKEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYoTr/+c9/0L17d8TGxkKn0+Grr76yOM5xHKZPn46YmBhUrVoVSUlJ+Ouvv9QpLKM4q8MBAwZAp9NZ/OvSpYs6hWWYOXPm4OGHH0ZISAhq1KiBnj174tSpUxbn3L59GyNHjkRERASqVauGXr164dKlSyqVmE2E1GOHDh0qtcnhw4erVGI2WbFiBe6//34+majBYMB3333HH6e2KAxn9ahmWyQRRqjOzZs38cADD2D58uU2j8+bNw9Lly7FypUrkZWVheDgYCQnJ+P27dsKl5RdnNUhAHTp0gUXL17k/3322WcKllAb/Pjjjxg5ciQOHjyIjIwMlJaWonPnzrh58yZ/zpgxY/DNN99gy5Yt+PHHH5Gbm4uUlBQVS80eQuoRAIYOHWrRJufNm6dSidmkVq1aePfdd3H48GH88ssv6NSpE5555hn873//A0BtUSjO6hFQsS1yBMEQALgvv/yS/728vJyLjo7m3nvvPf6zwsJCLjAwkPvss89UKCH7WNchx3Fc//79uWeeeUaV8miZy5cvcwC4H3/8keO4irbn7+/PbdmyhT/nxIkTHAAuMzNTrWIyj3U9chzHPf7449zrr7+uXqE0SvXq1bmPP/6Y2qKbmOqR49Rti2QJI5gmJycHeXl5SEpK4j/T6/VITExEZmamiiXTHj/88ANq1KiBRo0aYcSIESgoKFC7SMxjNBoBAOHh4QCAw4cPo7S01KI9Nm7cGLVr16b26ADrejSxYcMGREZGonnz5pg8eTKKi4vVKJ4mKCsrw+eff46bN2/CYDBQW3QR63o0oVZbpA28CabJy8sDANSsWdPi85o1a/LHCOd06dIFKSkpSEhIQHZ2Nt5880089dRTyMzMhK+vr9rFY5Ly8nKMHj0a7dq1Q/PmzQFUtMeAgACEhYVZnEvt0T626hEA+vbtizp16iA2NhbHjh3DpEmTcOrUKaSnp6tYWvb4/fffYTAYcPv2bVSrVg1ffvklmjZtiqNHj1JbFIG9egTUbYskwgjCC+jTpw//c4sWLXD//fejXr16+OGHH/DEE0+oWDJ2GTlyJI4fP46ff/5Z7aJoGnv1OGzYMP7nFi1aICYmBk888QSys7NRr149pYvJLI0aNcLRo0dhNBrxxRdfoH///vjxxx/VLpbmsFePTZs2VbUtkjuSYJro6GgAqLTi59KlS/wxQjx169ZFZGQkTp8+rXZRmCQtLQ3bt2/Hvn37UKtWLf7z6OholJSUoLCw0OJ8ao+2sVePtkhMTAQAapNWBAQEoH79+mjVqhXmzJmDBx54AEuWLKG2KBJ79WgLJdsiiTCCaRISEhAdHY09e/bwnxUVFSErK8vCn0+I48KFCygoKEBMTIzaRWEKjuOQlpaGL7/8Env37kVCQoLF8VatWsHf39+iPZ46dQrnzp2j9miGs3q0xdGjRwGA2qQTysvLcefOHWqLbmKqR1so2RbJHUmozo0bNyxmHDk5OTh69CjCw8NRu3ZtjB49Gm+//TYaNGiAhIQETJs2DbGxsejZs6d6hWYMR3UYHh6OWbNmoVevXoiOjkZ2djYmTpyI+vXrIzk5WcVSs8fIkSOxceNGfP311wgJCeFja/R6PapWrQq9Xo/Bgwdj7NixCA8PR2hoKEaNGgWDwYA2bdqoXHp2cFaP2dnZ2LhxI55++mlERETg2LFjGDNmDNq3b4/7779f5dKzw+TJk/HUU0+hdu3auH79OjZu3IgffvgB33//PbVFETiqR9XboiprMgnCjH379nEAKv3r378/x3EVaSqmTZvG1axZkwsMDOSeeOIJ7tSpU+oWmjEc1WFxcTHXuXNnLioqivP39+fq1KnDDR06lMvLy1O72Mxhqw4BcGvWrOHPuXXrFvfqq69y1atX54KCgrhnn32Wu3jxonqFZhBn9Xju3Dmuffv2XHh4OBcYGMjVr1+fmzBhAmc0GtUtOGMMGjSIq1OnDhcQEMBFRUVxTzzxBLdr1y7+OLVFYTiqR7Xboo7jOE5+qUcQBEEQBEGYQzFhBEEQBEEQKkAijCAIgiAIQgVIhBEEQRAEQagAiTCCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVIBEGEEQBEEQhAqQCCMIgiAIglABEmEEQTBLXl4eRo0ahbp16yIwMBBxcXHo3r27xX55Bw4cwNNPP43q1aujSpUqaNGiBRYuXIiysjL+nDNnzmDw4MFISEhA1apVUa9ePcyYMQMlJSUW3/fRRx/hgQceQLVq1RAWFoaHHnoIc+bM4Y/PnDkTOp0OXbp0qVTW9957DzqdDh06dBB0b6Zr6XQ6+Pn5IT4+HmPGjMGNGzdE1hJBEFqF9o4kCIJJzpw5g3bt2iEsLAzvvfceWrRogdLSUnz//fcYOXIkTp48iS+//BK9e/fGwIEDsW/fPoSFhWH37t2YOHEiMjMzsXnzZuh0Opw8eRLl5eX497//jfr16+P48eMYOnQobt68ifnz5wMAVq9ejdGjR2Pp0qV4/PHHcefOHRw7dgzHjx+3KFdMTAz27duHCxcuoFatWvznq1evRu3atUXdY7NmzbB7927cvXsX+/fvx6BBg1BcXIx///vflc4tKSlBQECACzUpHyyWiSA0hSKbIxEEQYjkqaee4u677z7uxo0blY5du3aNu3HjBhcREcGlpKRUOr5t2zYOAPf555/bvf68efO4hIQE/vdnnnmGGzBggMMyzZgxg3vggQe4bt26cW+//Tb/+f79+7nIyEhuxIgR3OOPPy7g7u5dy5yhQ4dy0dHRFsc/+ugjLj4+ntPpdBzHVdz74MGDucjISC4kJITr2LEjd/ToUf4aR48e5Tp06MBVq1aNCwkJ4Vq2bMkdOnSI4ziOO3PmDNetWzcuLCyMCwoK4po2bcrt2LGD4ziOW7NmDafX6y3K8+WXX3Lmw4SrZSIIwjbkjiQIgjmuXr2KnTt3YuTIkQgODq50PCwsDLt27UJBQQHGjx9f6Xj37t3RsGFDfPbZZ3a/w2g0Ijw8nP89OjoaBw8exNmzZ52Wb9CgQVi7di3/++rVq/Hiiy+6bRWqWrWqhYv09OnT2Lp1K9LT03H06FEAwPPPP4/Lly/ju+++w+HDh9GyZUs88cQTuHr1KgDgxRdfRK1atXDo0CEcPnwYb7zxBvz9/QEAI0eOxJ07d/Cf//wHv//+O+bOnYtq1aqJKqMrZSIIwjbkjiQIgjlOnz4NjuPQuHFju+f8+eefAIAmTZrYPN64cWP+HFvXf//993lXJADMmDEDKSkpiI+PR8OGDWEwGPD000/jueeeg4+P5Xy1W7duGD58OP7zn/+gVatW2Lx5M37++WesXr1a7K3yHD58GBs3bkSnTp34z0pKSvDJJ58gKioKAPDzzz/jv//9Ly5fvozAwEAAwPz58/HVV1/hiy++wLBhw3Du3DlMmDCBr7sGDRrw1zt37hx69eqFFi1aAADq1q0rupyulIkgCNuQCCMIgjk4jpPlXAD4+++/0aVLFzz//PMYOnQo/3lMTAwyMzNx/Phx/Oc//8GBAwfQv39/fPzxx9i5c6eFEPP390e/fv2wZs0a/N///R8aNmyI+++/X1Q5AOD3339HtWrVUFZWhpKSEnTt2hXLli3jj9epU4cXOwDw22+/4caNG4iIiLC4zq1bt5CdnQ0AGDt2LIYMGYL169cjKSkJzz//POrVqwcAeO211zBixAjs2rULSUlJ6NWrl+hyu1ImgiBsQyKMIAjmaNCgAR9Qb4+GDRsCAE6cOIG2bdtWOn7ixAk0bdrU4rPc3Fx07NgRbdu2xYcffmjzus2bN0fz5s3x6quvYvjw4Xjsscfw448/omPHjhbnDRo0CImJiTh+/DgGDRok9hYBAI0aNcK2bdvg5+eH2NjYSu5Ma1fsjRs3EBMTgx9++KHStcLCwgBUrLrs27cvduzYge+++w4zZszA559/jmeffRZDhgxBcnIyduzYgV27dmHOnDlYsGABRo0aBR8fn0qCtrS0tNL3uFImgiBsQzFhBEEwR3h4OJKTk7F8+XLcvHmz0vHCwkJ07twZ4eHhWLBgQaXj27Ztw19//YUXXniB/+zvv/9Ghw4d0KpVK6xZs6aSi9EWJhFnqwzNmjVDs2bNcPz4cfTt21fM7fEEBASgfv36iI+PFxRP1rJlS+Tl5cHPzw/169e3+BcZGcmf17BhQ4wZMwa7du1CSkoK1qxZwx+Li4vD8OHDkZ6ejnHjxuGjjz4CAERFReH69esW92qK+ZKiTARBVIZEGEEQTLJ8+XKUlZXhkUcewdatW/HXX3/hxIkTWLp0KQwGA4KDg/Hvf/8bX3/9NYYNG4Zjx47hzJkzWLVqFQYMGIDnnnsOvXv3BnBPgNWuXRvz58/HlStXkJeXh7y8PP77RowYgbfeegv79+/H2bNncfDgQbz88suIioqCwWCwWca9e/fi4sWLill8kpKSYDAY0LNnT+zatQtnzpzBgQMHMGXKFPzyyy+4desW0tLS8MMPP+Ds2bPYv38/Dh06xMfNjR49Gt9//z1ycnJw5MgR7Nu3jz+WmJiIoKAgvPnmm8jOzsbGjRstFh+4WiaCIOxD7kiCIJikbt26OHLkCN555x2MGzcOFy9eRFRUFFq1aoUVK1YAAJ577jns27cP77zzDh577DHcvn0bDRo0wJQpUzB69GjodDoAQEZGBk6fPo3Tp09b5PYC7sWUJSUlYfXq1VixYgUKCgoQGRkJg8GAPXv2VIp3MmFr5aac6HQ6fPvtt5gyZQoGDhyIK1euIDo6Gu3bt0fNmjXh6+uLgoICvPzyy7h06RIiIyORkpKCWbNmAQDKysowcuRIXLhwAaGhoejSpQsWLVoEoML6+Omnn2LChAn46KOP8MQTT2DmzJlOA+udlYkgCPvoOLFRrQRBEARBEITbkDuSIAiCIAhCBUiEEQRByEC1atXs/vvpp5/ULh5BEAxA7kiCIAgZOH36tN1j9913H6pWrapgaQiCYBESYQRBEARBECpA7kiCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVIBEGEEQBEEQhAqQCCMIgiAIglABEmEEQRAEQRAqQCKMIAiCIAhCBUiEEQRBEARBqMD/A73T4mqlkO6gAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, + "cells": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXbElEQVR4nOzdeVxU1f8/8NcdBASFYUcIVERccUMTB9OyQDSX/KqhpqWJWf2kQkvNT+XyqT6VbVa2maa2aK4VaqmgpqZEhStuKaFCiMsgA2oJMuf3xzSXubOwyc7r+XjwAO49c+fcG8abc97nfSQhhAARERER1ShVbXeAiIiIqDFiEEZERERUCxiEEREREdUCBmFEREREtYBBGBEREVEtYBBGREREVAsYhBERERHVAgZhRERERLWAQRgRERFRLWAQRkREpVqxYgUkScLZs2druytEDQqDMCKqdb/99hvi4uLQuXNnNGvWDC1btkRMTAz++OMPi7b33HMPJEmCJElQqVRwdXVF+/bt8fDDDyMxMbFC77tp0ybcfffd8PHxgbOzM9q0aYOYmBhs3bq1qm7Nwv/+9z989913Fsf379+P+fPnIy8vr9re29z8+fPlZylJEpydndGpUye8+OKLyM/Pr5L3WLVqFRYtWlQl1yJqaBiEEVGte+ONN7Bhwwbcd999eO+99zB16lTs2bMHYWFhSEtLs2gfEBCAL7/8El988QXefPNNDB8+HPv378fAgQMxZswYFBUVlfmeb731FoYPHw5JkjBnzhy8++67GDVqFE6fPo1vvvmmOm4TQOlB2IIFC2o0CDP6+OOP8eWXX+Kdd95Bhw4d8Oqrr2LQoEGoiq2FGYQR2daktjtARDRjxgysWrUKDg4O8rExY8agS5cueP311/HVV18p2qvVakyYMEFx7PXXX8fTTz+Njz76CK1bt8Ybb7xh8/1u3bqFl19+GVFRUdi+fbvF+UuXLt3mHdUdN27cgLOzc6ltRo8eDS8vLwDAE088gVGjRmHjxo345ZdfoNFoaqKbRI0SR8KIqNZFREQoAjAACAkJQefOnXHixIlyXcPOzg7vv/8+OnXqhMWLF0On09lse+XKFeTn56Nv375Wz/v4+Ci+/+effzB//ny0a9cOTZs2hZ+fH0aOHIn09HS5zVtvvYWIiAh4enrCyckJPXv2xPr16xXXkSQJ169fx8qVK+UpwEmTJmH+/PmYOXMmACAoKEg+Z5qD9dVXX6Fnz55wcnKCh4cHxo4di8zMTMX177nnHoSGhiI1NRX9+/eHs7Mz/vOf/5Tr+Zm69957AQAZGRmltvvoo4/QuXNnODo6wt/fH9OmTVOM5N1zzz3YsmULzp07J99T69atK9wfooaKI2FEVCcJIXDx4kV07ty53K+xs7PDuHHj8NJLL+Hnn3/GkCFDrLbz8fGBk5MTNm3ahKeeegoeHh42r1lcXIyhQ4dix44dGDt2LJ555hkUFBQgMTERaWlpCA4OBgC89957GD58OMaPH4/CwkJ88803ePDBB7F582a5H19++SWmTJmC3r17Y+rUqQCA4OBgNGvWDH/88QdWr16Nd999Vx6V8vb2BgC8+uqreOmllxATE4MpU6bg8uXL+OCDD9C/f38cPHgQbm5ucn+1Wi0GDx6MsWPHYsKECfD19S338zMyBpeenp4228yfPx8LFixAZGQknnzySZw6dQoff/wxfvvtN+zbtw/29vZ44YUXoNPpkJWVhXfffRcA0Lx58wr3h6jBEkREddCXX34pAIhly5Ypjt99992ic+fONl/37bffCgDivffeK/X6c+fOFQBEs2bNxODBg8Wrr74qUlNTLdp9/vnnAoB45513LM7p9Xr56xs3bijOFRYWitDQUHHvvfcqjjdr1kxMnDjR4lpvvvmmACAyMjIUx8+ePSvs7OzEq6++qjh+9OhR0aRJE8Xxu+++WwAQn3zyic37NjVv3jwBQJw6dUpcvnxZZGRkiE8//VQ4OjoKX19fcf36dSGEEMuXL1f07dKlS8LBwUEMHDhQFBcXy9dbvHixACA+//xz+diQIUNEq1atytUfosaG05FEVOecPHkS06ZNg0ajwcSJEyv0WuNIS0FBQantFixYgFWrVqFHjx7Ytm0bXnjhBfTs2RNhYWGKKdANGzbAy8sLTz31lMU1JEmSv3ZycpK/vnr1KnQ6Hfr164cDBw5UqP/mNm7cCL1ej5iYGFy5ckX+aNGiBUJCQrBr1y5Fe0dHRzz66KMVeo/27dvD29sbQUFBePzxx9G2bVts2bLFZi5ZUlISCgsLER8fD5Wq5NfIY489BldXV2zZsqXiN0rUCHE6kojqlJycHAwZMgRqtRrr16+HnZ1dhV5/7do1AICLi0uZbceNG4dx48YhPz8fKSkpWLFiBVatWoVhw4YhLS0NTZs2RXp6Otq3b48mTUr/3+XmzZvxyiuv4NChQ7h586Z83DRQq4zTp09DCIGQkBCr5+3t7RXf33HHHRb5dWXZsGEDXF1dYW9vj4CAAHmK1ZZz584BMARvphwcHNCmTRv5PBGVjkEYEdUZOp0OgwcPRl5eHvbu3Qt/f/8KX8NY0qJt27blfo2rqyuioqIQFRUFe3t7rFy5EikpKbj77rvL9fq9e/di+PDh6N+/Pz766CP4+fnB3t4ey5cvx6pVqyp8D6b0ej0kScKPP/5oNSA1z7EyHZErr/79+8t5aERUcxiEEVGd8M8//2DYsGH4448/kJSUhE6dOlX4GsXFxVi1ahWcnZ1x1113VaofvXr1wsqVK3HhwgUAhsT5lJQUFBUVWYw6GW3YsAFNmzbFtm3b4OjoKB9fvny5RVtbI2O2jgcHB0MIgaCgILRr166it1MtWrVqBQA4deoU2rRpIx8vLCxERkYGIiMj5WO3OxJI1JAxJ4yIal1xcTHGjBmD5ORkrFu3rlK1qYqLi/H000/jxIkTePrpp+Hq6mqz7Y0bN5CcnGz13I8//gigZKpt1KhRuHLlChYvXmzRVvxbzNTOzg6SJKG4uFg+d/bsWatFWZs1a2a1IGuzZs0AwOLcyJEjYWdnhwULFlgUTxVCQKvVWr/JahQZGQkHBwe8//77ij4tW7YMOp1OsSq1WbNmpZYLIWrMOBJGRLXu2WefRUJCAoYNG4bc3FyL4qzmhVl1Op3c5saNGzhz5gw2btyI9PR0jB07Fi+//HKp73fjxg1ERESgT58+GDRoEAIDA5GXl4fvvvsOe/fuxYgRI9CjRw8AwCOPPIIvvvgCM2bMwK+//op+/frh+vXrSEpKwv/7f/8PDzzwAIYMGYJ33nkHgwYNwkMPPYRLly7hww8/RNu2bXHkyBHFe/fs2RNJSUl455134O/vj6CgIISHh6Nnz54AgBdeeAFjx46Fvb09hg0bhuDgYLzyyiuYM2cOzp49ixEjRsDFxQUZGRn49ttvMXXqVDz33HO39fwrytvbG3PmzMGCBQswaNAgDB8+HKdOncJHH32EO++8U/Hfq2fPnlizZg1mzJiBO++8E82bN8ewYcNqtL9EdVZtLs0kIhKipLSCrY/S2jZv3lyEhISICRMmiO3bt5fr/YqKisRnn30mRowYIVq1aiUcHR2Fs7Oz6NGjh3jzzTfFzZs3Fe1v3LghXnjhBREUFCTs7e1FixYtxOjRo0V6errcZtmyZSIkJEQ4OjqKDh06iOXLl8slIEydPHlS9O/fXzg5OQkAinIVL7/8srjjjjuESqWyKFexYcMGcdddd4lmzZqJZs2aiQ4dOohp06aJU6dOKZ5NaeU7zBn7d/ny5VLbmZeoMFq8eLHo0KGDsLe3F76+vuLJJ58UV69eVbS5du2aeOihh4Sbm5sAwHIVRCYkIapgczAiIiIiqhDmhBERERHVAgZhRERERLWAQRgRERFRLWAQRkRERFQLGIQRERER1QIGYURERES1gMVa6zC9Xo/s7Gy4uLhw6w8iIqJ6QgiBgoIC+Pv7Q6WyPd7FIKwOy87ORmBgYG13g4iIiCohMzMTAQEBNs8zCKvDXFxcABj+I5a2Dx4RERHVHfn5+QgMDJR/j9vCIKwOM05Burq6MggjIiKqZ8pKJWJiPhEREVEtYBBGREREVAsYhBERERHVAuaE1XN6vR6FhYW13Y0GzcHBodQlxkRERJXBIKweKywsREZGBvR6fW13pUFTqVQICgqCg4NDbXeFiIgaEAZh9ZQQAhcuXICdnR0CAwM5UlNNjAVzL1y4gJYtW7JoLhERVRkGYfXUrVu3cOPGDfj7+8PZ2bm2u9OgeXt7Izs7G7du3YK9vX1td4eIiBoIDp/UU8XFxQDAKbIaYHzGxmdORERUFRiE1XOcHqt+fMZERFQdGIQRERER1QIGYURERES1oN4EYcOHD0fLli3RtGlT+Pn54eGHH0Z2draijRACb731Ftq1awdHR0fccccdePXVVxVtfvrpJ4SFhcHR0RFt27bFihUrLN7rww8/ROvWrdG0aVOEh4fj119/VZz/559/MG3aNHh6eqJ58+YYNWoULl68qGhz/vx5DBkyBM7OzvDx8cHMmTNx69atqnkY9dikSZMgSRIkSYK9vT18fX0RFRWFzz//vEKlNlasWAE3N7fq6ygRETVIWVnArl2Gz7Wt3gRhAwYMwNq1a3Hq1Cls2LAB6enpGD16tKLNM888g6VLl+Ktt97CyZMnkZCQgN69e8vnMzIyMGTIEAwYMACHDh1CfHw8pkyZgm3btslt1qxZgxkzZmDevHk4cOAAunXrhujoaFy6dEluM336dGzatAnr1q3D7t27kZ2djZEjR8rni4uLMWTIEBQWFmL//v1YuXIlVqxYgblz51bjE6oYrVaLCxcu2PzQarXV9t6DBg3ChQsXcPbsWfz4448YMGAAnnnmGQwdOpSBKhERVbmjR69i/XotXnpJh1atBO69F2jVSuDJJ68hNfVitf7OK5Wop77//nshSZIoLCwUQghx/Phx0aRJE3Hy5Embr5k1a5bo3Lmz4tiYMWNEdHS0/H3v3r3FtGnT5O+Li4uFv7+/eO2114QQQuTl5Ql7e3uxbt06uc2JEycEAJGcnCyEEOKHH34QKpVK5OTkyG0+/vhj4erqKm7evFnue9TpdAKA0Ol0Fuf+/vtvcfz4cfH333+X+3pGV65cEfPnzy/z48qVKxW+dlkmTpwoHnjgAYvjO3bsEADEZ599JoQQ4u233xahoaHC2dlZBAQEiCeffFIUFBQIIYTYtWuXAKD4mDdvnhBCiC+++EL07NlTNG/eXPj6+opx48aJixcv3lafb+dZExFR7Vq0qEBIUrEAhAD0/342/SgWw4d/L06cOFFlv/dK+/1tqt6MhJnKzc3F119/jYiICLlu06ZNm9CmTRts3rwZQUFBaN26NaZMmYLc3Fz5dcnJyYiMjFRcKzo6GsnJyQAMFehTU1MVbVQqFSIjI+U2qampKCoqUrTp0KEDWrZsKbdJTk5Gly5d4Ovrq3if/Px8HDt2zOZ93bx5E/n5+YqP6lDebY5qcjuke++9F926dcPGjRsBGJ77+++/j2PHjmHlypXYuXMnZs2aBQCIiIjAokWL4OrqKo/cPffccwCAoqIivPzyyzh8+DC+++47nD17FpMmTaqx+yAiorpBq9UiNfUiZsxohpJwx9pqdxU2bRqKJUt+wOLFi2t0VKxeBWGzZ89Gs2bN4OnpifPnz+P777+Xz/355584d+4c1q1bhy+++AIrVqxAamqqYsoyJydHERgBgK+vL/Lz8/H333/jypUrKC4uttomJydHvoaDg4NFPpJ5G2vXMJ6z5bXXXoNarZY/AgMDy/lkGoYOHTrg7NmzAID4+HgMGDAArVu3xr333otXXnkFa9euBWCo26VWqyFJElq0aIEWLVqgefPmAIDJkydj8ODBaNOmDfr06YP3338fP/74I65du1Zbt0VERDUsPT0dixcvxuuv74FeX3aZISFUyM31AFCzAxC1GoQ9//zzcpK2rY+TJ0/K7WfOnImDBw9i+/btsLOzwyOPPAIhBADD9jI3b97EF198gX79+uGee+7BsmXLsGvXLpw6daq2brFC5syZA51OJ39kZmbWdpdqlBBCrsmVlJSE++67D3fccQdcXFzw8MMPQ6vV4saNG6VeIzU1FcOGDUPLli3h4uKCu+++G4BhoQQRETV8Wq0WX331FQ4c6IH160eV6zWSpIeHR27ZDatYrW5b9Oyzz5Y5VdSmTRv5ay8vL3h5eaFdu3bo2LEjAgMD8csvv0Cj0cDPzw9NmjRBu3bt5PYdO3YEYPgF3L59e7Ro0cJiFePFixfh6uoKJycn2NnZwc7OzmqbFi1aAABatGiBwsJC5OXlKUbDzNuYr6g0XtPYxhpHR0c4OjqW+jwashMnTiAoKAhnz57F0KFD8eSTT+LVV1+Fh4cHfv75Z8TGxqKwsNDmNk3Xr19HdHQ0oqOj8fXXX8Pb2xvnz59HdHR0jf5lQ0REtSMrC/jlFyAryw8JCUNRvrEmPYYN2wy1uqC6u2ehVoMwb29veHt7V+q1xnIGN2/eBAD07dsXt27dQnp6OoKDgwEAf/zxBwCgVatWAACNRoMffvhBcZ3ExERoNBoAhmmunj17YseOHRgxYoT8Pjt27EBcXBwAoGfPnrC3t8eOHTswapQhwj516hTOnz8vX0ej0eDVV1/FpUuX4OPjI7+Pq6srOnXqVKn7beh27tyJo0ePYvr06UhNTYVer8fbb78tb0xunIo0cnBwsNhG6OTJk9BqtXj99dflqdzff/+9Zm6AiIhqhVarxaVLl/DZZ3osWtQJQngCeAzW879MCURE7Ed4eEqtBGBAPdnAOyUlBb/99hvuuusuuLu7Iz09HS+99BKCg4PlwCcyMhJhYWGYPHkyFi1aBL1ej2nTpiEqKkoeHXviiSewePFizJo1C5MnT8bOnTuxdu1abNmyRX6vGTNmYOLEiejVqxd69+6NRYsW4fr163j00UcBAGq1GrGxsZgxYwY8PDzg6uqKp556ChqNBn369AEADBw4EJ06dcLDDz+MhQsXIicnBy+++CKmTZvWqEe6jG7evImcnBwUFxfj4sWL2Lp1K1577TUMHToUjzzyCNLS0lBUVIQPPvgAw4YNw759+/DJJ58ortG6dWtcu3YNO3bsQLdu3eDs7IyWLVvCwcEBH3zwAZ544gmkpaXh5ZdfrqW7JCKi6qTVanH58mWsWbMGWVl+WLZsCoQwBl4SDIvnrQdikqRHbOxSBARcqKnuWlUvEvOdnZ2xceNG3HfffWjfvj1iY2PRtWtX7N69Ww5qVCoVNm3aBC8vL/Tv3x9DhgxBx44d8c0338jXCQoKwpYtW5CYmIhu3brh7bffxtKlSxEdHS23GTNmDN566y3MnTsX3bt3x6FDh7B161ZFov27776LoUOHYtSoUejfvz9atGghr+oDADs7O2zevBl2dnbQaDSYMGECHnnkEfz3v/+tgadV923duhV+fn5o3bo1Bg0ahF27duH999/H999/Dzs7O3Tr1g3vvPMO3njjDYSGhuLrr7/Ga6+9prhGREQEnnjiCYwZMwbe3t5YuHAhvL29sWLFCqxbtw6dOnXC66+/jrfeequW7pKIiKqLMfF+zZo1OHCgB5YunQLLgg/GQMzI8LUkGaYfazsAAwBJGDPbqc7Jz8+HWq2GTqeDq6ur4tw///yDjIwMBAUFoWnTphW6rlarxeLFi8tsFxcXB09PzwpduyG6nWdNRERVy/R3mE7ngkWL4q0EYKYE7r03CW3aZKCoyAEeHrmlTj9OnToVfn5+t9XH0n5/m6oX05FUtTw9PREXF1dqsrqDgwMDMCIiqjOMuV+XL1+Wj+3Z06+MAAwAJNjbF5d75MvBweE2elkxDMIaKQZYRERUX5jP4GRl+WHPnv7444/25Xi1QGBg6WWKBg4ciNatW9f4AASDMCIiIqqztFotsrOz5e+//fYBHD7cDWWvfgQAgW7dDpc5CtauXbtaGZxgEEZERER1jlarRXp6On788Uf5WFaWX7kCMEnSo3//3QgJOV1mADZhwoRamx1iEEZERER1ivn0o07ngtxcT5w82Q62AzBDSQrj6sewsIM2rz9y5Eh4eXnVev4zgzAiIiKqdcbE+6tXryr2WT5woAc2bRr6bwK+7YIOXbocRljYoTJXPwKAv79/nciNZhBGREREtcr6yFdr2NvfRELCMJSMftkaBdMjMnKn1eArODgY3t7ecHd3R2BgYK2PfpliEEZERES1yrRkknLkS4/y5H+Vtvfjfffdd9t1v6oLgzAiIiKqUVqtVg68Tp68hsOHb0CncwEAkwAMKH1jHz1Gj16PwMCsUqcfa7LuV0UxCKMG5aeffsKAAQNw9epVuLm5les1rVu3Rnx8POLj46u1b0REpJx6NB31kqQu0GiSy1F8FQAEoqKSEBp6wurZupJ4X5Z6sXckNRyTJk2CJEl44oknLM5NmzYNkiRh0qRJNd8xIiKqEcYRMJ3ORTHqJYQK+/drUFryvYEeUVGJ6Ns32WYLf39/+Pn51ekADOBIGNWCwMBAfPPNN3j33Xfh5OQEwLA/46pVq9CyZcta7h0REVWnvLw8AEBurqeVUa/Spx/vv38L2rc/bXP6ceTIkXVm5WN5cCSMalxYWBgCAwOxceNG+djGjRvRsmVL9OjRQz528+ZNPP300/Dx8UHTpk1x11134bffflNc64cffkC7du3g5OSEAQMG4OzZsxbv9/PPP6Nfv35wcnJCYGAgnn76aVy/fr3a7o+IiEpotVpcuHABFy5cwIkTJ7B27VoAgIeHFpKkL+dVDNOPvXsfKDX/qz4FYABHwghAVhZw+jQQEgIEBNTMe06ePBnLly/H+PHjAQCff/45Hn30Ufz0009ym1mzZmHDhg1YuXIlWrVqhYULFyI6OhpnzpyBh4cHMjMzMXLkSEybNg1Tp07F77//jmeffVbxPunp6Rg0aBBeeeUVfP7557h8+TLi4uIQFxeH5cuX18zNEhE1UualJ4x0OhekpIRDlDXzCMPqx8jIJKvTj4MHD0ZgYCAA1Pn8L2sYhDVyy5YBU6cCej2gUgFLlgCxsdX/vhMmTMCcOXNw7tw5AMC+ffvwzTffyEHY9evX8fHHH2PFihUYPHgwAOCzzz5DYmIili1bhpkzZ+Ljjz9GcHAw3n77bQBA+/btcfToUbzxxhvy+7z22msYP368nHQfEhKC999/H3fffTc+/vhjNG3atPpvloioETFd+XjlyhXFOWPwZcj9Kn0yTpL0GDXK+urHmJgY+Pj41LugyxyDsEYsK6skAAMMnx9/HIiOrv4RMW9vbwwZMgQrVqyAEAJDhgyBl5eXfD49PR1FRUXo27evfMze3h69e/fGiROG1TAnTpxAeHi44roajUbx/eHDh3HkyBF8/fXX8jEhBPR6PTIyMtCxY8fquD0iokbFGHjpdDqsWbPGahtl/a+yGGp/GVc/9urVCx4eHnB3d4e3t3e9D76MGIQ1YqdPlwRgRsXFwJkzNTMtOXnyZMTFxQEAPvzww2p5j2vXruHxxx/H008/bXGOiwCIiG6frSlHU+YrIUsjSXrExi5VbLwdFhZWZwuu3g4GYY1YSIhhCtI0ELOzA9q2rZn3HzRoEAoLCyFJEqKjoxXngoOD4eDggH379qFVq1YAgKKiIvz222/y1GLHjh2RkJCgeN0vv/yi+D4sLAzHjx9H25q6KSKiRsa02j1Qstm2h4cWgGEV5OXL1lZCmlJuvm0agAF1u+Dq7WAQ1ogFBBhywB5/3DACZmcHfPppzSXn29nZyVOLdnZ2inPNmjXDk08+iZkzZ8LDwwMtW7bEwoULcePGDcT+m7T2xBNP4O2338bMmTMxZcoUpKamYsWKFYrrzJ49G3369EFcXBymTJmCZs2a4fjx40hMTCzzLzciIiqdVqtVrEq3vuWQhNJqf3XufBQaTTKKihwsNt8eM2ZMg5p+NMcgrJGLjTXkgJ05YxgBq6kAzMjV1dXmuddffx16vR4PP/wwCgoK0KtXL2zbtg3u7u4ADNOJGzZswPTp0/HBBx+gd+/e+N///ofJkyfL1+jatSt2796NF154Af369YMQAsHBwRgzZky13xsRUUNmbdNt21sOWd//UZL0GDgw0SLxvr7V+6osSYjyLBCl2pCfnw+1Wg2dTmcRrPzzzz/IyMhAUFAQV/hVMz5rImrsTBPvr169iqKiIhQUFOD333+X22RktMbKlRPLfU3j1GNY2EGLc3FxcfU6ACvt97cpjoQRERGRTeVJvAfwbw6YHmXXgbe98XZjGQEzYhBGRERENpWWeG8aRKWlhcLWtKN54r2tjbcbUwAGMAgjIiKicjJPvO/ZMxVBQWdx8aIP9u7tD9tBmITo6K3o1Om4InAbMGAA3N3dYW9v36AT8G1hEEZERERlspZ4n5p6J1JT74RxpMsWSdJbBGAA0Llz50YXeJliEFbPcV1F9eMzJqLGxHTbIaBk66Hc3NJqfZUegA0btlkOwEaOHAkvL696uddjVWMQVk8Z62oVFhbCycmplnvTsBn/Z2Rey4yIqKEpLQm//In3RtYT8Btb3ldpGITVU02aNIGzszMuX74Me3t7qFTl/UdBFaHX63H58mU4OzujSRP+cyGihu3SpUs2z6nVBYiISMb+/X1ttDCdktRj+HDLBPwJEyYwADPB3yr1lCRJ8PPzQ0ZGBs6dO1fb3WnQVCoVWrZsCUmyPdxORFTfaLVaXL58Wa75lZ+fj7/++stqW+OKyE6djiE5WWNlWlKPqKgkqNV5AGAx+hUTEwMfHx8GYGYYhNVjDg4OCAkJsVg+TFXLwcGBI41EVO+Z5nrpdDqsWbOmzNfodC5ISQmXAy9J0qNr1yM4cqSr/H1YWCr6999rsd2QWq0GAOZ+lYJBWD2nUqlYxZ2IiEpV3oKrpvbt0yAxMQqmSfdCqHDkSFfExi61utdjVFQU2rdvz6CrnBiEERERNXDlLbhqtGPHPTbrfgmhQlGRA4KCLFNhgoKCGIBVAIMwIiKiBkyr1cplJgBlwVVj+Yjg4DPIzfWEvf1NpKT0xtGj3VDaptseHrlWzzk4OFTHLTRYDMKIiIgaqPT0dHz11Vfy9+YFV4VQISFh6L9nVShP0VVrNb8A5n5VBoMwIiKiBsI0+T4rKws//PCD4rz1gqum35e2ClyP2NilCAi4IB/x8vKCn5/f7XW6EWMQRkRE1ACUJ/new0MLSdKXUvneFkPdL9MADOD04+1iEEZERFTPabVaZGdnK46ZJ9/rdC7IzAxEWFgqUlN7onyV7wW6dDmMyMid8hRkVFQUgoKCOP1YBRiEERER1WPWRsDMk++7dj2Cw4dNk+3LsyeuoQBr377JiqMsQVF1GIQRERHVU7ZGwMyT75UBGFBW7lfPnsoCrBEREQgMDIS3tzcDsCrEIIyIiKgespUDZj35vjzbrukREZGM8PAUqNUFctV7TjtWHwZhRERE9YDpykcAitpfpuztbwLQo3w5XwCgx/33b0H79qdx333t4ePTD23atGHgVQMYhBEREdVRxsArLy8Pa9euLbWtcZ/H/fs1KE/NL6OIiGT07n0AABAWFsaSEzWIQRgREVEdVJH9Hk0T8UuUbwoyPDylUv2j21fRQiFERERUzawl3NtinohfNj0AQ/X74cM3K/aOZN2vmsWRMCIiojrE1giYad0vAPLX1hPxbdFjypSlKCpywMCBbTBgwJ0A7gTAbYdqA4MwIiKiOsJWyYmUlHAkJ2v+DbbEvx+GGmCRkUnlrIKvrHofHT2MQVctYxBGRERUB9gqumrYYNs818uQ7yWEComJkaVeV5L0GDVqPQIDszB16v1Qq+/kqFcdwSCMiIiolpiWncjIyFCcM+Z6lZ2+bfu8JOkxbNhmzJ3bEf7+9zHwqmMYhBEREdWCslY/ZmYGVmKjbSNl4VUvrzsZgNVBDMKIiIhqgWnhVXPGkhOVY0i+N+Z+AVz1WFcxCCMiIqpBxilI84r3xtWP9vY3K1hyAjAWZjVOPxoDsJiYGPj4+HAUrI5iEEZERFTNjIGXTqfDmjVrLM6bFlu1vdLRVgV8gX799qBNmwx4eOTi0Uej4OXF5Pv6gEEYERFRNUpPT8dXX31l87x5sdWSMhTmAZdkctz4WY+oqCT07Zsst/L392fwVU8wCCMiIqoGWq0Wly5dstjz0bzo6rFjna2MfNnackhCdPRWBAaeR1GRAzw8chUV7ydMmMAArB5hEEZERFRFKjLtaNg+yFjzq3ybbUuSHp06HYdaXYCRI0fCy8tLPsfpx/qHQRgREVEVKKvkhOUej+YFWMsKxAxJ98aRL0471n8MwoiIiKqAeckJ02lHtbqgHHs82g7AJEmP2FhD2YkxY8bA29ubAVgDwCCMiIioCuh0Ovlr89WOkZFJyM11R3mnHU1Jkh4zZ57BpEn9WG6igWEQRkREVAnG/K+8vDzk5eVh+/btAKyvdkxMjEJFgy9Aj/vv34L27U9j1qyJDL4aIAZhREREFVRa/pf1aceKj34NG7YZYWEHMWbMGAZgDRSDMCIiogrQarXIzs5WHDPN//Lw0JZScLUsJaNfxgR8b2/vKug11UUMwoiIiGww1vq6desWCgoKkJ+fj5SUFEUb8/yvYcM2Y9iwzUhIGArDCsjy5oHpMXy4YfQL4JZDjQGDMCIiIivKKjkBWM//2rRpKO66ay9KAi9rle5N6RERkYzw8BSo1QVc/diIMAgjIiL6lzHZHoDFBtvWZGYGWkw7CqHC3r39oQy2DFsM9eu3Fz//3E8u1tqzZyr699/L4KuRqsyEda0YPnw4WrZsiaZNm8LPzw8PP/ywYk5+/vz5kCTJ4qNZs2aK66xbtw4dOnRA06ZN0aVLF/zwww+K80IIzJ07F35+fnByckJkZCROnz6taJObm4vx48fD1dUVbm5uiI2NxbVr1xRtjhw5gn79+qFp06YIDAzEwoULq/iJEBFRVTKOfC1ZsgRLlizBxo0bFed1OhekpXVCWlon6HQuOHCgB9avH2XjatamH1Vo0yYD8fGLsGzZn/j998vYtCkAM2eOQ1xcHDp06MAArJGpNyNhAwYMwH/+8x/4+fnhr7/+wnPPPYfRo0dj//79AIDnnnsOTzzxhOI19913H+688075+/3792PcuHF47bXXMHToUKxatQojRozAgQMHEBoaCgBYuHAh3n//faxcuRJBQUF46aWXEB0djePHj6Np06YAgPHjx+PChQtITExEUVERHn30UUydOhWrVq0CAOTn52PgwIGIjIzEJ598gqNHj2Ly5Mlwc3PD1KlTa+JxERFRBV26dEnxvWmyfXp6WyQkDENJcKX/93NFxjL08l6Pgwc7wc/Ptwp6TfWZJIQQtd2JykhISMCIESNw8+ZN2NvbW5w/fPgwunfvjj179qBfv34AgDFjxuD69evYvHmz3K5Pnz7o3r07PvnkEwgh4O/vj2effRbPPfccAEPxPV9fX6xYsQJjx47FiRMn0KlTJ/z222/o1asXAGDr1q24//77kZWVBX9/f3z88cd44YUXkJOTAwcHBwDA888/j++++w4nT54s9z3m5+dDrVZDp9PB1dW10s+KiIhs02q1uHz5smKvR/Nke8NvytuZPFIm3cfFxXHUqwEr7+/vejMdaSo3Nxdff/01IiIirAZgALB06VK0a9dODsAAIDk5GZGRkYp20dHRSE5OBgBkZGQgJydH0UatViM8PFxuk5ycDDc3NzkAA4DIyEioVCp5xUxycjL69+8vB2DG9zl16hSuXr1q875u3ryJ/Px8xQcREVUPrVaLkydPYvHixYoAzFqyfeV/XQp06XII06cvUqx6ZABGQD0LwmbPno1mzZrB09MT58+fx/fff2+13T///IOvv/4asbGxiuM5OTnw9VUO//r6+iInJ0c+bzxWWhsfHx/F+SZNmsDDw0PRxto1TN/Dmtdeew1qtVr+CAwMtNmWiIgqz5j/ZRp8AYYA7NixzpWs8WVOj6ioRIwa9b1c8wuAxe8QarxqNQh7/vnnrSbTm36YTt/NnDkTBw8exPbt22FnZ4dHHnkE1mZTv/32WxQUFGDixIk1eTu3bc6cOdDpdPJHZmZmbXeJiKhBsrbZ9vbtkVi0KB7bt0fDUErClLByzDpJ0qNnz98wffoi9O2bLB+PiYnhNCQp1Gpi/rPPPotJkyaV2qZNmzby115eXvDy8kK7du3QsWNHBAYG4pdffoFGo1G8ZunSpRg6dKjFaFSLFi1w8eJFxbGLFy+iRYsW8nnjMT8/P0Wb7t27y23Mkzdv3bqF3NxcxXWsvY/pe1jj6OgIR0dHm+eJiKjqHTjQw6SwqpH56kaBoKA/kZERbOWckR6jR69HYGAWRozoBXf3KNjb20OtVsPBwYHBF1mo1SDM29u70tsx6PWGlSk3b95UHM/IyMCuXbuQkJBg8RqNRoMdO3YgPj5ePpaYmCgHcUFBQWjRogV27NghB13G6shPPvmkfI28vDykpqaiZ8+eAICdO3dCr9cjPDxcbvPCCy+gqKhIzllLTExE+/bt4e7uXqn7JSKiqqPT6f79bMj/KntiSIWMjLYoGREzBmKGr42V8kNDTwAAOnfuzKCLylQvSlSkpKTgt99+w1133QV3d3ekp6fjpZdeQnBwsMUo2Oeffw4/Pz8MHjzY4jrPPPMM7r77brz99tsYMmQIvvnmG/z+++9YsmQJAECSJMTHx+OVV15BSEiIXKLC398fI0aMAAB07NgRgwYNwmOPPYZPPvkERUVFiIuLw9ixY+Hv7w8AeOihh7BgwQLExsZi9uzZSEtLw3vvvYd33323eh8UERHZZCzEqtPp5Fww65ttl8ZQ9f7eexPh4XEVERH+UKv90aaNHu3b3wngTo56UbnViyDM2dkZGzduxLx583D9+nX4+flh0KBBePHFFxXTd3q9HitWrMCkSZNgZ2dncZ2IiAisWrUKL774Iv7zn/8gJCQE3333nVwjDABmzZqF69evY+rUqcjLy8Ndd92FrVu3yjXCAODrr79GXFwc7rvvPqhUKowaNQrvv/++fF6tVmP79u2YNm0aevbsCS8vL8ydO5c1woiIaoBp1fvsbBUyMprA0zMXe/assmhbuc22JdjbFyM09AQiIzuiS5c2Zb+EyIp6WyesMWCdMCKiijHd79HaxtrGMhGmTNuVj8CUKZ8hIOACRo4ciS5dulThHVBD0KDrhBEREVljHAGztbG2Tudi8Zrg4DMYNWoD7r9/E2yvgBTy527dDiMg4AIAQ4kiosriTw8RETU41nK9hFAhN9dDUbNr3z4NkpIi5dGyTp2O4/jxTjBdASlJeowduxq5uZ4IDDwvB2AAa37R7WEQRkREDYJWq8WVK1cAWM/1kiTD3o2AYaRsz55+SE3tBWPAJYQKJ050RL9+e7B3bz8AKqhUAs89dwYPPBAEd3d3uLl1k6/HBHy6XQzCiIio3jPNBQMAtboAw4ZttsgJU6sLsG+fBomJUbBW70sIFdq0yUCvXqno23ciwsM9ERDQDkC7mrsZajQYhBERUb1huvIRMNT7Kioqwl9//WXRNizsIIKDzyA310MeAduw4QEcPdoNpRVc9fDIhVpdgIiIQpjU7SaqcgzCiIioXjAf7SoPtbqgzNEvUz17pso5Yw4ODpXtKlG5MAgjIqI6SavV4tKlS7h16xYA4OrVq4rzOp0LcnM94eGhVSTbm5/7/fee2Lu3P8oKwACB/v33AgCioqKY70XVjkEYERHVOeajXjqdCzIzAwF0QmBgJtLT29qsAabcC9JYWsJWAKbcdsgYzHl4eFTTnRGVYBBGRER1jmnelyGoGoaSQEr/79clqxo3bRoKH58c5OW5m23GXdrol0Dv3r+gY8dTch6YUWX3NSaqCAZhRERUZ5VssG0aTFnWGRdChaVLH0PZU47yKxAVlYi+fZMBAPfffz8CAgIAsPQE1ZxKBWG7du3CgAEDqrovRETUyJiudjx58hr+/NMOLVvehKPjZQAV2WDbMK1YnnZduhxGZOROeeRrzJgx6NChQ+VugOg2VCoIGzRoEAICAvDoo49i4sSJCAwMrOp+ERFRA5eeno6vvvoKgOU+j5GRmfD3bw17+5s2NtjWQ5Lw7/GyAjDjeT2iopLk0S8jTj1SbalUEPbXX3/hyy+/xMqVK7FgwQLce++9iI2NxYgRI7ikl4iIyqTVauUATKdzUeRxCaGSy0lIkh5dux7BkSNdTQIxQzBlb1+IH34YgrICsH799qBNmwyLvK/BgwcjODiYU49UayQhhK3dSsvlwIEDWL58OVavXg0AeOihhxAbG4tu3bqV8UoqS3l3YSciqm8uXLiAJUuWAAC2b4/E/v19bbaVJD1iY5ciL88NAKDTucn7PZbOcuRr5MiR8PLyYt4XVavy/v6+7cT8sLAwtGjRAp6ennj99dfx+eef46OPPoJGo8Enn3yCzp073+5bEBFRA6XTuSA5WVNqGyFUKCpyQGBgFjIzA8sRgAlEROxHeHiKRf0wf39/Bl9UZ1Q6CCsqKsL333+Pzz//HImJiejVqxcWL16McePG4fLly3jxxRfx4IMP4vjx41XZXyIiakDKk3gvSXpkZ/vjiy8eKbNtu3YnMWTID4rgi6NfVFdVKgh76qmnsHr1aggh8PDDD2PhwoUIDQ2Vzzdr1gxvvfUW/P39q6yjRETU8Hh4aK0k3ot/PwxJ+mFhqeWafpQkvUUABnD0i+quSgVhx48fxwcffICRI0fC0dHRahsvLy/s2rXrtjpHRET1k1arxeXLl1FUVGT1fEGBIVBSqwswbNhms5WRSVCrdTh1KgRHj3ZFauqdpbyT9Yr3HP2i+uC2E/Op+jAxn4jqI2tbDtna41HZxgPZ2f4mo16llZ7QY/To9XBzy0NRkYPFyse4uDgGX1Rrqj0x/9SpU/jggw9w4sQJAEDHjh3x1FNPoX379pW9JBERNQDmWw4ZR7ls1ekCIAdQK1dOREngZT0AM456hYYafv8MGDAA7u490aRJE7i5uXH0i+qNSgVhGzZswNixY9GrVy9oNIZVLb/88gtCQ0PxzTffYNSoUVXaSSIiqttMK9+npeUhI8NQaLUkAAMAY/0vWA3EDBt0l1bzyzD6FRiYpRj1CgkJgZ+fXxXdCVHNqVQQNmvWLMyZMwf//e9/FcfnzZuHWbNmMQgjImpETKcfS0a+OtqodC8hKSkSarUOgYGZKChojvPnW6Fly3NlvItAVFSSPPplikXCqb6qVBB24cIFPPLIIxbHJ0yYgDfffPO2O0VERPWHcQTMuNm2MfCyldclhArr1z8IQP/vOQmAQKdOx/89pgzcjMn6pqNnMTExnHqkeq9SQdg999yDvXv3om3btorjP//8M/r161clHSMiovrFes0vQ4BlfZpRpWh3/Hgn9Ou3B3v39vv3nB4REckWRVcnTJiA4ODgqu4+UY2rVBA2fPhwzJ49G6mpqejTpw8AQ07YunXrsGDBAiQkJCjaEhFRw2et5pck6XHnnSn49dc+KD3fCwAkODv/jenTFyE318NixWNMTAx8fHw48kUNRqVKVKhUZe3X9e/FJQnFxcUV7hQZsEQFEdUVxsR7nU6Hq1evKup/Xb58GWlpaQAsV0NGRCTD3z/73+nHsghMmfIZAgIuYMCAAQgJCZHPcNqR6pNqLVGh1+sr3TEiIqpfKlL3KyzsIIKDzyAlJRzJyZp/N+bWo/SaXwAg0K3bYQQEXAAAuLu7c8UjNXi3vYE3ERE1bLbqfhnrdYWFHZTP63QuyMwMRHKyRlGaomQrImOOGOSv/f2zcf/9W+QAjKixKHcQ9v7775f7ok8//XSlOkNERHWXtdWPCQlDcfGiF7p0ScOlSy3M6oKZMgRc99+/Ce3bn0ZBQXNkZrZEYOB5q8FXkyYcI6CGr9w/5e+++2652kmSxCCMiKieM9378erVqwBsrX5UISUlAikpGhg33bZNQnGxPdTqAqjVBaWOfPn4+NzuLRDVeeUOwjIyMqqzH0REVAuysoDTp4GQECAgwHDMPAfMyNrqxxLGel+lEQgMPA8A6NWrF1q2bKk4y22HqLHheC8RUSNjXOm4apUTZs1SQ6+XoFIJLFyow0MP/Y28vDxFe2OeFwBERiYhMTESpY94GSmLsZom3rds2RJdunSpwrsiqn8qHYRlZWUhISEB58+fVyRtAsA777xz2x0jIqKqZxzl0ulcsGhRPIQwjF7p9RJmznTFX399rljxeOBADyQkDEVJ0CXQu3cKfv01HJYjX8bk+5KkfR+fHKu5X8z5IqpkELZjxw4MHz4cbdq0wcmTJxEaGoqzZ89CCIGwsLCq7iMREVUR4x/N1vK7hFAhN9dDDsJ0OhezAAwAJJMAzLTshGGk6957d1oUWrWW+8WcL6JKBmFz5szBc889hwULFsDFxQUbNmyAj48Pxo8fj0GDBlV1H4mIqIpZz+/S4/r1ZtDpXKBWFyA31xPWpx0lk896hIf/gi5d0uRgy7x2GFCy1yPAwqtERpUKwk6cOIHVq1cbLtCkCf7++280b94c//3vf/HAAw/gySefrNJOEhFR5Wm1Wpw9ewsZGU1QWHgNGRmt4eGhxbBhmxXV7QEJ69c/CEnSQ6NJRqdOx1B2kVUVOnT4w2K0a8yYMVCr1QAYdBHZUqkgrFmzZvKQtp+fH9LT09G5c2cAwJUrV6qud0REVGnp6em4ePEi3njjism0ogeAEDlny1qivRAq7N/fF/v3a8rxLnp4eOQCAEaOHAkvLy8GXUTlVKkgrE+fPvj555/RsWNH3H///Xj22Wdx9OhRbNy4Ud7Qm4iIaoa1MhPp6en46quv/s3rikdJkGUY1TIWWpUkwPZKx7JWQApERSXJ049eXl7caoioAioVhL3zzju4du0aAGDBggW4du0a1qxZg5CQEK6MJCKqQcuWAVOnAno9oFIB77xzDTExBfjrr78A4N/SEraDLCFsnCqDJOkRGZmEvn2T5WMODg6VuxhRI1WpIKxNmzby182aNcMnn3xSZR0iIqKyGfO8pk71gV5vLDMBTJ/ujHPnlkCtLoBO54JLl7xLuYoekgQbxVdtvyYiIhnh4SmKBPyYmBhOQRJV0G0VaiksLMSlS5eg1+sVx82rIBMRUdXIygJ+/12HPXtWIjfXE3r9RMV5Y5mJ9PS2Jkn31pLr9Rg+fDMAlNGuRHj4fkRE/GJ19aNx5SMRlV+lgrA//vgDsbGx2L9/v+K4EAKSJKG4uLhKOkdERCVKph7VkKR4REYmWZSZkCQ97O0LzTbSLqnpJUl6dOx4DBERyfKKxuDgMzh2rBO2b7ddYkiS9DYDMIBTkUSVUakg7NFHH0WTJk2wefNm+Pn5QZLK2i+MiIhux2+/AY89BjmHSwgVkpIiERmZhKSkSAhRUqW+qMjRyhSjhHbtTuKPP9rh+PEuOH68s2JasXPn40hMHGj2upLAbdiwzXIA1rFjRwQEBMDd3Z17PRLdhkoFYYcOHUJqaio6dOhQ1f0hIiIz7713DdOnN5O3GDISQgV//2zExy9SVKnPyvKzutH2H3+0R8l0o6EMRXKyBsOGbUZY2EFF3TBj4r2/f7ai+j1gCMK47yPR7atUENapUyfWAyMiqmZarRZHjuRi+vRgiwAMMEwRGgMkY5B04ECPUnK8LK8hhAqbNg1FcPAZhIUdRHDwGYtth8zZ29tXwd0RUbmDsPz8fPnrN954A7NmzcL//vc/dOnSxeIfpKura9X1kIioETJutJ2R0RpChFhpYahqb0qnc7GSC1Y20z0jTQM6W7y9S1txSUTlVe4gzM3NTZH7JYTAfffdp2jDxHwioqph3JXE+h6PhsQw8+lEa5tyW7JcAWkcUSuNcRsi5n8RVZ1yB2G7du2qzn4QETVq1qreA4bNsM1ztQzJ+YZgy3Q60cNDC8MekMpNuY21wIx5XtevN0NyskaRzG8c/TJuPWSKgRdR9Sh3EHb33XfLX58/fx6BgYEWqyKFEMjMzKy63hERNQLmVe+XLAHuv7/kvGmu1vXrzbB+/YOK1wuhwrFjnf4dBTP9/7KhFpi1PK/w8BSruV/ceoio5lQqMT8oKAgXLlyAj4+P4nhubi6CgoI4HUlEVA62qt4//rjA+vV/Kdoac7V0Oher05OGGl+WifjBwWes5nmVJ/eLiKpXRfaqkBlzv8xdu3YNTZs2ve1OERE1dMbE+9df3yMHYEbFxRK++y5N/l6nc0FaWiekpXUCAAwbthmSZNypxDTwMv//soTMzABUBIuuEtWcCo2EzZgxAwAgSRJeeuklODs7y+eKi4uRkpKC7t27V2kHiYgaGq1Wi+zsbLmchDnTRPl9+zRITIxEyd/MAsOHb0J8/CKkpvbAnj0Dyv2+EyZMUPx/2xxzv4hqVoWCsIMHDwIwjIQdPXpU8ReTg4MDunXrhueee65qe0hE1IAYR8AM5STiraxmLEmUNwRgUTCfYty0aSgiI5OwZ8/dKJ0egYFZAICoqCgEBwdX4Z0Q0e2qUBBmXCH56KOP4r333mM9MCKiCsjKAn75xTC9aKucRM+eqQgLOwidzgVJSZGwVWBVOTpmjUBUVJKc9+Xi4lI1N0FEVaZSifnLly+v6n4QETVoJSsgPW1uvg0Aqak90b//3jJqfglYD8AM5SmMpSj69k220oaI6opKBWHXr1/H66+/jh07duDSpUvQ6/WK83/++WeVdI6IqL6ztgLSuPl2WFgqUlPvNHuFCpmZAcjICIK1wqrWjxncf/8WeHtrrW45xK2GiOqeSgVhU6ZMwe7du/Hwww/Dz8/P6kpJIqLGLj09HR9++D22bx8Ivd5XcU4IFYKCMpCa2hPmxVU3bBhtZRRMICgoHRkZba2+lyTp0b79aZtlJ7jVEFHdU6kg7Mcff8SWLVvQt2/fqu4PEVG9p9VqcenSJTz//GkbyfeGoCkwMAvDh2822e9RD0Cyulk3IKFnzwM4e7ZNqcn8ANCrVy+0bNkSgGEEzNvbm6seieqgSgVh7u7u8PDwqOq+EBHVe2WvfjTQaJKhVhcoquGnpXW2Mj1pYAzazLcw0miSER6eohgBa9myJbp06VIt90dEVadSQdjLL7+MuXPnYuXKlaXWnCEiamyMG2+XnlivR3h4ivydWl2AgoLmSE3tZbO9caTLNGizlvsFAE2aVOp/7URUwyr1L/Xtt99Geno6fH190bp1a4uEzwMHDlRJ54iI6ipbG24beXhora5+NO7naBo8HTjQAwkJQ2Et4b5z56MYODBR0b6sLYfc3NwqeDdEVBsqFYSNGDGiirtBRFR/WNtwOzZW2UatLrA5dQgAGRmt4eGhBYB/AzDrJSfMA7Dy4NZDRPVDpYKwefPmVXU/iIjqvNI23O7e/RJat1b+L9V06tDevhBFRY5ISwtFUlKkHJiFhaXCVtHViIhkqwFYVFSURfFVe3t7qNVqbj1EVI9UKAj79ddf0bNnT9jZ2Vk9f/PmTXz//feIiYmpks4REdUVxoT7jIzW0OsnKs4VF0v44IMfERR0DmPGjFGcU6sLkJ7e1mQFZEmdLyFU/+aBGYqsKinzxgBgzJgxXOlI1ICUtueFBY1GA61WK3/v6uqqKMyal5eHcePGVV3vTAwfPhwtW7ZE06ZN4efnh4cffhjZ2dmKNtu2bUOfPn3g4uICb29vjBo1CmfPnlW0+emnnxAWFgZHR0e0bdsWK1assHivDz/8EK1bt0bTpk0RHh6OX3/9VXH+n3/+wbRp0+Dp6YnmzZtj1KhRuHjxoqLN+fPnMWTIEDg7O8PHxwczZ87ErVu3quRZEFHNMybcG3O9TJluuJ2bm6s4Z1glOdQkN8w878v4fck1Jckyb2zChAno0KEDAzCiBqRCQZgQotTvbR2rCgMGDMDatWtx6tQpbNiwAenp6Rg9erR8PiMjAw888ADuvfdeHDp0CNu2bcOVK1cwcuRIRZshQ4ZgwIABOHToEOLj4zFlyhRs27ZNbrNmzRrMmDED8+bNw4EDB9CtWzdER0fj0qVLcpvp06dj06ZNWLduHXbv3o3s7GzF+xQXF2PIkCEoLCzE/v37sXLlSqxYsQJz586tlmdDRDXHmOtlDMQkSVmjKzExUW6r07ng2LHOpaySNFJh9Oj1GD16LUaPXov4+EUICzsonx0zZgw33yZqgCRRgahJpVIhJycHPj4+AAwbwh4+fBht2rQBAFy8eBH+/v4oLi6unt6aSEhIwIgRI3Dz5k3Y29tj/fr1GDduHG7evAmVyvA/vE2bNuGBBx6Q28yePRtbtmxBWlqafJ2xY8ciLy8PW7duBQCEh4fjzjvvxOLFiwEAer0egYGBeOqpp/D8889Dp9PB29sbq1atkoPAkydPomPHjkhOTkafPn3w448/YujQocjOzoavr6FK9ieffILZs2fj8uXL5U6azc/Ph1qthk6n42bpRNWorJWOAHDhwgUsWbJE/l6nc0FmZgAACYGBmRa5W/v2aeTcr9K2GgIMgVx8/CKbCfhTp06Fn59fBe+KiGpLeX9/V2gkrK7Izc3F119/jYiICLk8Rs+ePaFSqbB8+XIUFxdDp9Phyy+/RGRkpNwmOTkZkZGRimtFR0cjOdmwyW1hYSFSU1MVbVQqFSIjI+U2qampKCoqUrTp0KEDWrZsKbdJTk5Gly5d5ADM+D75+fk4duyYzfu6efMm8vPzFR9EVL2WLQNatQLuvdfwedkyw/GsLGDXLsNnwJBuYSo9vS02bBiN9esfxLvvxmP79kjodIZk+X37NEhMjDKbgrT1965AZGRShVdAElH9V+HVkcePH0dOTg4Aw9TjyZMnce3aNQDAlStXqrZ3ZmbPno3Fixfjxo0b6NOnDzZv3iyfCwoKwvbt2xETE4PHH38cxcXF0Gg0+OGHH+Q2OTk5isAIAHx9fZGfn4+///4bV69eRXFxsdU2J0+elK/h4OBgUYfH19dXfi623sd4zpbXXnsNCxYsKOfTIKLbYWul49SpAgcPnsPHH7eCXi9BkgRGjsyAu/teFBUZykoUFDQ3Kyuhwv79fZGcrMFdd+3F3r39YC33q3Pnozh2LBSmeWBRUUno2ze51L6y5ARRw1ThIOy+++5T5H0NHToUACBJEoQQFdrM+/nnn8cbb7xRapsTJ06gQ4cOAICZM2ciNjYW586dw4IFC/DII49g8+bNkCQJOTk5eOyxxzBx4kSMGzcOBQUFmDt3LkaPHo3ExMR6scn4nDlzMGPGDPn7/Px8BAYG1mKPiBqm0lY66vUSPvqopbx/oxASNmxoA+AxlIxoCVibSBBChb17+8Pa1KMkGWp+DRyY+O80JhAYmGUxAjZy5Eh4eXnJ37PkBFHDVaEgLCMjo0rf/Nlnn8WkSZNKbWPMNwMALy8veHl5oV27dujYsSMCAwPxyy+/QKPR4MMPP4RarcbChQvl9l999RUCAwORkpKCPn36oEWLFharGC9evAhXV1c4OTnBzs4OdnZ2Vtu0aNECANCiRQsUFhYiLy9PMRpm3sZ8RaXxmsY21jg6OsLR0bHU50FEt898paMycd5alXugJLCSUFp+l/VzyilHtfqEzVd7eXkx/4uokahQTlirVq3K9WH0//7f/yt1itLb2xsdOnQo9cPWMLxeb1iZdPPmTQDAjRs35IR8I2M9M2NbjUaDHTt2KNokJiZCo9EAMPzF2bNnT0UbvV6PHTt2yG169uwJe3t7RZtTp07h/PnzchuNRoOjR48qVlQmJibC1dUVnTp1svk8iKhmWVvpGBWVZFGC4vboERWVWOaUoxGnHokajwqtjqwoV1dXHDp0SDGaVRkpKSn47bffcNddd8Hd3R3p6el46aWXcPHiRRw7dgyOjo7YuXMnIiMjMX/+fHk68j//+Q9OnjyJEydOwMnJCRkZGQgNDcW0adMwefJk7Ny5E08//TS2bNmC6OhoAIYSFRMnTsSnn36K3r17Y9GiRVi7di1Onjwp53U9+eST+OGHH7BixQq4urriqaeeAgDs378fgKFERffu3eHv74+FCxciJycHDz/8MKZMmYL//e9/5b5vro4kqlrGVZCurhexefMn8nGdzkWxIbYxsb70ES8jY8BmfduhKVOWIiDgQrn6N2HCBJaiIGoAyvv7u1LbFpVXVcV3zs7O2LhxI+bNm4fr16/Dz88PgwYNwosvvihP3917771YtWoVFi5ciIULF8LZ2RkajQZbt26Fk5MTAEPy/pYtWzB9+nS89957CAgIwNKlS+UADDDU47l8+TLmzp2LnJwcdO/eHVu3blUk2r/77rtQqVQYNWoUbt68iejoaHz00UfyeTs7O2zevBlPPvkkNBoNmjVrhokTJ+K///1vlTwPIqo45X6PPhg6tIdci8t0Q+wDB3ogMTESlgGYscxESU6YsUaYg8NNrF//oMV7RkQkWw3ABg4ciObNm8vf29vbsxI+USNUrSNh5nXEqGI4EkZ0+4yrIHv3LlkFaWAYpSoqcoSHhxZqdQF0OhcsWhRvs7iqYXVjZxgDsMhIw8pGa6+zVftrzJgx8mIjImqY6sRIGBFRbSptFSSgwtKlU2A6ouXufrWU6vZ6OQADDCshk5IiERqaJueWGbcnMq+ib8rb27sqb5GI6jEGYUTUYJmugrS+SXZJQLVp01CMHbvaympJw6hWmzbpSE8PURwXQoXcXA+o1QUICzuI4OAzitwyUyNHjoS/vz+nHIlIVi8r5hMRVYRaXYCIiNJXJwqhwurV40y2GQIAgeDgM4iNXYo//7SWMF+ycbfxfYKCzlkdAWMARkTmqjUImzBhAnOZiKjGGbccys4u+V9ceHhKGaUnTAuwltQE+/PPNsjLc7c6TRkRkVyu7YZiYmIYgBGRhUoFYca6W9aOnz9/Xv7+448/VlR+JiKqLlqtFhcuXMDbb+ehVSuBe+8Fevf2wYEDPQBYrwlmLC9h+Np6OQrjyJh5ACdJeoSHp5Srbz4+PpW6JyJq2CqUE5afn48pU6Zg06ZNcHV1xeOPP4558+bJRVEvX76MoKAgFBcXV0tniYisMSbgl6xSNO4FKWHTpqEIDj5jNW8LAHJzPWBvX4hly6ZYHe2SJD0CA7PKTLw3327IiNsOEZEtFQrCXnrpJRw+fBhffvkl8vLy8Morr+DAgQPYuHGjXOW5GiteEBFZZUzAz831tAikhFAhMzMAubl/y6UojMGTTucC4wiYRpOM/fs1MEwQGGqCmQZbZSXeM+eLiCqqQkHYd999h5UrV+Kee+4BAIwYMQJDhgzBsGHDkJCQAAD1YqNsImqYrO0FKUl6rF8/GqalKMLCDuLAgR7yyJZp0KXR7EOnTsdQVORgEWyZBnCmmPNFRJVRoZywy5cvK/aG9PLyQlJSEgoKCnD//ffjxo0bVd5BIqLyspb3ZRicV5aiyMryMwnAAONomBAqJCdr4OJyzeYqR2vc3Nyq9kaIqFGo0EhYy5YtceLECQQFBcnHXFxcsH37dgwcOBD/93//V+UdJCIypdVq5enH7GwVMjKaQK3Ok8+bThtev97MYjshw/RkS5tFWU1rf5UXN90mosqoUBA2cOBALF++HPfff7/iePPmzbFt2zZERUVVaeeIiEwZE/ABKKYTJckdw4ZZ7gWp07lYnZ60XbzVeN6QtD9gwAA0bdoUTk5OaNKkidURLybeE1FlVSgIW7BgAbKzs62ec3FxQWJiIg4cOFAlHSMiMmccAdPpXBTTicZpRuMqSGOb3FxPREYmISkpUs79EkKFb74Zh44dT+DEiU5QlqYQiIxMkq8REhICPz+/GrxDImpMKhSEubu7w93d3eZ5FxcX3H333bfdKSIic1qtFleuXAEAZGYGWl0FaZxGVI6S6XHXXXuxd28/mOaGnTzZEf367cHPP/f791p6REUZNuQmIqoJFd478tatW3j33XexevVq/PHHHwCAdu3a4aGHHsIzzzwDe3v7Ku8kETVu5tOQCQlDLdoYpxGzsvz+PV8ScJkGYEZCqNCmTQZ69Uq1WXaCiKg6VSgI+/vvvxEVFYXk5GRERkaif//+AIATJ05g9uzZSEhIwPbt29G0adNq6SwRNWzmSfdHj/4DN7fLsLe/CJ3OBZmZgdi0qSTAMjKWnkhPb2v1vLE8hWVuWK7NshNERNWtQkHY66+/jszMTBw8eBBdu3ZVnDt8+DCGDx+O119/HfPnz6/KPhJRI2A76T4QXbsewZEjg22uaBw1aj3c3PKwdOkU2Eq2N80Ns1bxnoioplUoCPvmm2/wzjvvWARgANCtWze89dZbeOGFFxiEEVGFlZZ0f/hwN9ja21GS9NDp3LBhg6Egq6WSAq2hoWkVmnpk6Qkiqk4VCsLOnTuH3r172zzfp08fxQbeRETmsrKA06cBL6+r8PL6B3l5ecjKAo4dK0RWlh/On29lZcTL1k4cerPVj+YExo1bjfbtzwCwXfHe2r6PLD1BRNWtQkGYq6srLl26hMDAQKvnc3Jy4OLiUiUdI6KGw5jrtWqVE2bNUkOvlyBJagwbthcATEa+usIQcAmYl46wFoiNHr0ezZr9bXOaEpDg4FBUZv+8vLxYioKIalyFgrABAwbgf//7HzZs2GD1/Ouvv44BAwZUSceIqP4yjnaFhABOToZcL53OBYsWxUOIki2CDMEXUDKNKJl8LtnPsW3b0zh9uh2UgZgegAR7+5sWSfdGpoVXiYjqmgoFYfPmzUN4eDj69OmDGTNmoEOHDhBC4MSJE3j33Xdx/Phx/PLLL9XVVyKqw6yNdqlUAnPn/g0AyM31tFrbyzYJ0dFboderkJQUCeUImSEAW7/+QUiS/t/E/a4Wm3GXN/meuV9EVBsqFIR16tQJiYmJiI2NxdixYyFJxr9oBTp06IDt27ejc+fO1dJRIqq7jCsbzUe79HoJCxb4Iz7eBR4eWqtlIpQjYVCcCww8j2XLpphttC0U7YVQ4ciRroiNXYqiIgfY2xeiqMjBIvl+wIABCAkJsXgf5n4RUW2pcLHWPn364NixYzh06JCiWGv37t2rum9EVE9cvnwZgO3RrtxcDwQFncOwYZsVleyHDdsMwDQnTDmKVVTkWK4kfSFUKCpyQFDQOZt99Pb2Zt4XEdUpFQ7C8vPz0bx5c3Tv3l0ReOn1ely7dg2urq5V2T8iquO0Wi3WrFkDAMjO9oN5Er1pXlZY2EEEB5+xKBNhPGY+irVjxz0W17OmPLlf1jbfJiKqTaUlZFj49ttv0atXL/zzzz8W5/7++2/ceeed2LRpU5V1jojqPtP6XiW5W0bKDbEBQ5mIoKBzFsc8PHJRVOQIe/tC5OZ6YseOe7B3b3+L65krb+4X876IqK6p0EjYxx9/jFmzZsHZ2dniXLNmzTB79mwsXrwYw4YNq7IOElHdY7q9kHFTbWtTkYAEf/9sAIYgLTfXEx4eWouAybRCfsnIl7URMGNSvmHD7YiIZISHp1jkfrm7uwMAmjRpAjc3N+Z9EVGdVKEgLC0tDR999JHN8/3798eLL754250iorrDNOA6deo6jh79BxkZ2wEYAi97+5soKmpttVSEcZpQuQ1RSQV7wLJCvrJMhTk9pkxZajXx3igkJIS5X0RUL1QoCLt69Spu3bpl83xRURGuXr16250iorrB1n6OQCcYgiRlPS/TUhHWE+9L6oMFB5+BWl1gYwTNGoGoqCQEBFyohjslIqp5FQrCWrdujd9//x0dOnSwev73339Hq1atqqRjRFT7bO3nqEwnLSm+aloqwjhSlZHR2uqKyczMAOTm/l1qsdUSekRFJaFv3+Qy+8zcLyKqLyoUhI0cORIvvPACoqKi4OvrqziXk5ODF198ERMmTKjSDhJR7SvvaJW1UhH29jdhbRui9euNG27r0anTCZw40dHme4wevR6hoScUx5j7RUT1XYWCsOeffx7ff/89QkJCMGHCBLRv3x4AcPLkSXz99dcIDAzE888/Xy0dJaKapdVq5aR7a4VWrbFWKqKoyBHWE+yNx1Q4frwT+vXbA1/fi9iwYbRFXllgYJbFezH3i4jquwoFYS4uLti3bx/mzJmDNWvWyPlfbm5umDBhAl599VVu4E3UAJjmghlpNMnYv18Dy8o2pW8TVL4ATsLevf0wffoiqwVdrSXgc9qRiOq7ChdrVavV+Oijj/Dhhx/iypUrEELA29tb3sLI1L59+9CrVy84OjpWSWeJqGYYc8EAa+UjzEno338XevY8qAiWQkNDkZaWBrW6QBFY2S6+asgTs1XQ1dSECRM47UhE9V6FgzAjSZLg7e1dapvBgwfj0KFDaNOmTWXfhohqke3yEUo+PpctgqW0tDT567Cwg7h6VW2l+Kp1anWB1eBr5MiR8Pf3ZwBGRA1CpYOw8hDC2l/NRFQXlb8Aqzk93NzykJHR2mohVsAQzO3d2w+lBWC2cr9MMQAjooakWoMwIqp9psGVNcbcKtMcMEN1e9sFWA1/XxlWNnbrdgTLlk2xWog1IiIC+/fvR26uJ6zvkmY9n2zAgAEICQmx6CcDMCJqSBiEETVg5gn2trYOioiIkL82r25vrQCr6YbbxgAMsCzE+uOPR20Gc4BAv3570KZNhkXul7u7O1c+ElGDxyCMqAGzlWBvPmK1f/9+AEBWlp9FdXtrBVgBlFqINSUlHF5eWpvBXEWKrxIRNVTVGoRZWzFJRFWnrKnGvLw8AJYJ9kKokJAwFA4ONxEYmAm1ugAHDvRAQsJQmE8bWivAamSr/MT+/RpIEsoVzFnTpAn/PiSiho+J+UT1VHmnGgFbCfYqrF//ICRJj8jIJCQlRcJ63pYe9vbWAz21uuDf+mF9La5t/s+/tGDOnI+PT5ltiIjqu2oNwgoKbP+lS0S3p7xTjUDpBVOFUCEpKbKUVZAqLF36GIYP3yRfc8CAAdi1axcAIDw8pdQirkbWqukbDR48GIGBgQCYgE9EjUeFgrB77723XO127txZqc4QUcVZm2o0TY4HShuxgvwaQA/rI2EAICmuaVojUK0uQESEtWtLcuBnvvpx5MiR8PLyAsCgi4garwoFYT/99BNatWqFIUOGwN7evrr6REQVYG2qUQgVcnM9FNOSnTodszFiBcWUpK0RMdNrurm5YcyYMVizZg0Aw2hYcrLGopSFrRwwLy8vrn4kokavQkHYG2+8geXLl2PdunUYP348Jk+ejNDQ0OrqGxGVg/WpRoHsbH85/8o4XWkIwIzThMoaXWFhBxEamobMzACsXz8a5sGa+XSiWq02+brA6p6PAQEXqumuiYjqvwoFYTNnzsTMmTORnJyMzz//HH379kX79u0xefJkPPTQQ3B1da2ufhKRDWp1ASIjk5CYGIWSHCwJSUmRCA01bB1kvvWQJOkxduxqODgUWZSdALL+nV4sGTWztpG2+Qba5dnzkYiISlQqMV+j0UCj0eC9997DunXr8OGHH+K5555DdnY2AzGiWuDvfwHmWwIZpw8Byep0pYNDkcVKRfME/7Cw3xAUlIHAwCyLoMrT0xMxMTFYu3atfMzWno/mzAM4IqLG6LZWRx44cAC7d+/GiRMnEBoayjwxohpgrA1m3N8RsD4laTp9WNo5I2sJ/gcO9ET//nstAitjEFXeUhIxMTFwc3OTX8tEfCKiSgRh2dnZWLFiBVasWIH8/HxMmDABKSkp6NSpU3X0j6hRMy/GmpeXpxh5MrKVk2UMnszPRUYm/bufI+Q2ZSX49+rVC+7u7vD19ZWDKE9PT8TFxZW5NyWDLiIiSxUKwu6//37s2rULAwcOxJtvvokhQ4awsjVRFTMGXrYCLltKy8kyPZed7S+vgjRNyrc1mnb9ejPodC74/fff5eNxcXGKQIyIiCpOEhUoa69SqeDn5wcfH59StyQ6cOBAlXSuscvPz4darYZOp2OuXSNhXgW/LKVVybfVftGieItAa9SoDQgMzER6elvFiJnh/w6WBWCnTp3KEhNERDaU9/d3hYax5s2bd9sdIyLbSpvWMw+4yqqSb2rgwIHYvn27zSlH4/ZFw4ZtRmzsUvzxRzvs2dMfxtWR1grAEhHR7WEQRlSHGQOv7Gw/xRSieWFV8yDJvCK9Mbgra/uihIShio23zc+bF4AlIqLKq5KErt27d+P69evQaDRwd3eviksSNXqmI12m+zDa2uvRVpBkupLSPIHfkuXG20al7f1IREQVV+GK+deuXcPLL78MABBCYPDgwdi+fTsAw3L1HTt2oHPnzlXfU6JGxLxchLUaYOZ7PZoGSRs3brR5bWOSvq3K+NZYK9ZKRES3p+z/+5pYs2aNYpui9evXY8+ePdi7dy+uXLmCXr16YcGCBVXeSaLGxlrulilJ0iMqKgmSpJe/Nw2SdDoXZGS0hk7nYvX1anUBQkNPICoqCYZRNlv0GD16LeLjF9nMNyMiosqp0EhYRkYGunbtKn//ww8/YPTo0ejbty8A4MUXX8SDDz5YtT0kqsfM63yZs1VDy9Z+kNb2ejQvSVFawv7IkSPRpEkTufSFtUr7RsbXhoaeqNS9ExFR6SoUhN26dQuOjo7y98nJyYiPj5e/9/f3V1TxJmrMyltuwlhzS6vV2szdMibj+/tnW+z1OG5cPzRt2hQbN260WvXeNGHfy8sLfn5+GDNmDNasWWMj2NNj9Oj1VrcqMuK2Q0REt69CQVhwcDD27NmDNm3a4Pz58/jjjz/Qv39/+XxWVhYLNxL9q7QRMPN21gK28m6IHRAQIH9dVtX7K1euwMHBAWq1GoDtSvvWRr+MKy5ZAZ+IqGpUKAibNm0a4uLisHfvXvzyyy/QaDSK7Yp27tyJHj16VHkniRo6WwFbeTfENiprD0ljwn5MTIx8vrzBnr+/P4MvIqIqVKEg7LHHHoOdnR02bdqE/v37W9QNy87OxuTJk6u0g0QNha3q9uWdwrf1+oyMDNy6dQuAtRIUemg0yRbXMrY3shXscfSLiKj6VGjbIqpZ3Laobqlokv2FCxewZMkSAKUny1tjGnABQEpKOJKTNRV6fUpKOPbv18CwCFqP4cNLXnP//ffjhx9+KPOeTfeIJCKi8qmWbYuIGquKJtmbKitZ3pyySKsehtWLJSsYS3u9MXizt79pEoABgKEavvE1TZs2RVxcXKVWbhIRUdWoUBBWVFSEF154ARs3boSHhweeeOIJxfTjxYsX4e/vj+Li4irvKFFtMI5+lXfK0FpQU1ayvCnLIq3Wa4WZv97ayJfla1XIzAyAWm1IumeARURUuyoUhL366qv44osv8NxzzyEvLw8zZsxASkoKPv30U7kNZzepoSjv6Jcp02DN+HVpyfLmeV5lFWk1fz1gPnJmVKE6zEREVAsq9H/qr7/+GkuXLsVzzz2HV155Bb///jt27tyJRx99VA6+JMl64cfbNXz4cLRs2RJNmzaFn58fHn74YWRnZyvarF27Ft27d4ezszNatWqFN9980+I6P/30E8LCwuDo6Ii2bdtixYoVFm0+/PBDtG7dGk2bNkV4eDh+/fVXxfl//vkH06ZNg6enJ5o3b45Ro0bh4sWLijbnz5/HkCFD4OzsDB8fH8ycOdMiGZrqtvKWmDC1ceNGLFmyBEuWLJFXIhqT5c2r26ent8WiRfFYuXIiFi2Kx4EDPeSArTSm1fEtR85Kf11gYFaF74mIiKpHhYKwv/76S7FtUdu2bfHTTz9h//79ePjhh6t1GnLAgAFYu3YtTp06hQ0bNiA9PR2jR4+Wz//4448YP348nnjiCaSlpeGjjz7Cu+++qxjJyMjIwJAhQzBgwAAcOnQI8fHxmDJlCrZt2ya3WbNmDWbMmIF58+bhwIED6NatG6Kjo3Hp0iW5zfTp07Fp0yasW7cOu3fvRnZ2NkaOHCmfLy4uxpAhQ1BYWIj9+/dj5cqVWLFiBebOnVttz4dqVlnbApkLCzuIbdtOYdmyPxEfvwjBwWes5okBUARsgF7xdUTEPsUWQpmZgaUEYHqb2xoREVHtq9DqyDZt2uCzzz7DfffdpzienZ2NAQMGoFWrVtixY0eN5IQlJCRgxIgRuHnzJuzt7fHQQw+hqKgI69atk9t88MEHWLhwIc6fPw9JkjB79mxs2bIFaWlpcpuxY8ciLy8PW7duBQCEh4fjzjvvlIM3vV6PwMBAPPXUU3j++eeh0+ng7e2NVatWyUHgyZMn0bFjRyQnJ6NPnz748ccfMXToUGRnZ8PX1xcA8Mknn2D27Nm4fPlyuauNc3Vk7TJd3WiqoisdjaZOnQqdToc1a9YgI6M1Vq6caNFm4sQVCAo6B53OBd7eGoSEGEaWT58WuHw5uZQcMHOG1ZC26n/FxMSgY8eO5XsQRERUIeX9/V2hkbB7770Xq1atsjju7++PnTt3IiMjo+I9rYTc3Fx8/fXXiIiIgL29PQDg5s2baNq0qaKdk5MTsrKycO7cOQCGbZYiIyMVbaKjo5GcbKijVFhYiNTUVEUblUqFyMhIuU1qaiqKiooUbTp06ICWLVvKbZKTk9GlSxc5ADO+T35+Po4dO2bzvm7evIn8/HzFB9UttlY6lmdEzBiAAbAx7SiQne0PwDCFWVi4HceObcOxY9tQWLhdsTfku+/GY//+vjD/JyxJhtGy6dMNo2VqdQGCgs5ZjIC5ublV/OaJiKhKVSgIe+mllxSVtk3dcccd2L17Nz7//PMq6Zg1s2fPRrNmzeDp6Ynz58/j+++/l89FR0dj48aN2LFjB/R6Pf744w+8/fbbAAwjGgCQk5OjCIwAwNfXF/n5+fj7779x5coVFBcXW22Tk5MjX8PBwcHil5h5G2vXMJ6z5bXXXoNarZY/AgMDy/toqIK0Wi0uXLhg80Or1Vq8RqdzwbFjnW2udCxLbm6u/LVaXYDIyCQYNuU2kpCUFFlqQGcMAm390x01aj0GDkwqc9qRez8SEdW+Cq2ObNWqFVq1amXzvL+/PyZOtJxiseX555/HG2+8UWqbEydOoEOHDgCAmTNnIjY2FufOncOCBQvwyCOPYPPmzZAkCY899hjS09MxdOhQFBUVwdXVFc888wzmz58Plap+rBSbM2cOZsyYIX+fn5/PQKwalHfV45gxY+SvlSsQBUzrdpmuVARsV7Y3X5jh739BcR3AdukKo9JWT5om3vfq1QseHh5o3rw5mjRpovijgfW/iIjqhkoVa123bh1Wr16NP/74AwDQrl07PPTQQ4pE+fJ49tlnMWnSpFLbtGnTRv7ay8sLXl5eaNeuHTp27IjAwEB5D0tJkvDGG2/gf//7H3JycuDt7Y0dO3YortGiRQuLVYwXL16Eq6srnJycYGdnBzs7O6ttWrRoIV+jsLAQeXl5il9s5m3MV1Qar2lsY42joyMcHR1LfR50+8q76rGoqAiAtdpdEoyBmCTp8dRTaYqpQlv5Yjdu3FBcv6x9Hq0Fc9ZeY3ydaeJ9WFgY/Pz8yv1MiIio5lUoCNPr9Rg3bhzWrVuHdu3aySNUx44dw5gxY/Dggw9i9erV5S5T4e3tDW9v74r3+t++AIY8KlN2dna44447AACrV6+GRqOR30Oj0Vhs1ZKYmAiNRgPAMELQs2dP7NixAyNGjJDfZ8eOHYiLiwMA9OzZE/b29tixYwdGjRoFADh16hTOnz8vX0ej0eDVV1/FpUuX4OPjI7+Pq6urYsNzqtuaNDH887A++iQhOnorOnU6jgcf1GD79rIr46ekpFi8h0aTLCfXmwZStoI5a3tDRkQkIzw8RTF6xulGIqK6r0JB2HvvvYekpCQkJCRg6NChinMJCQl49NFH8d577yE+Pr4q+4iUlBT89ttvuOuuu+Du7o709HS89NJLCA4OlgOfK1euYP369bjnnnvwzz//YPny5XIJCaMnnngCixcvxqxZszB58mTs3LkTa9euxZYtW+Q2M2bMwMSJE9GrVy/07t0bixYtwvXr1/Hoo48CANRqNWJjYzFjxgx4eHjA1dUVTz31FDQaDfr06QMAGDhwIDp16oSHH34YCxcuRE5ODl588UVMmzaNI131iJubG+Li4nD27C18+aWAXl/yx4WdncCrr/ZA69Z3yuVLKlIZ3zzI0mj2yYGUTueChISSvC/zYC4s7KDNVY8jR46Ev78/pxuJiOqBCiVLLV++HG+++aZFAAYYiqkuXLiwWhLznZ2dsXHjRtx3331o3749YmNj0bVrV+zevVsR1KxcuRK9evVC3759cezYMfz000/o3bu3fD4oKAhbtmxBYmIiunXrhrfffhtLly5FdHS03GbMmDF46623MHfuXHTv3h2HDh3C1q1bFYn27777LoYOHYpRo0ahf//+aNGihVyYEzCMxm3evBl2dnbQaDSYMGECHnnkEfz3v/+t8mdD1cvT0xM9e/piyRIJdnaGY3Z2wKefSujZ0xeenp7ytLRhs23zFY/KfDHA+ohZcrJGPp+SEg7zf5rmyf+2Vj0yACMiqj8qVCfMyckJp06dQsuWLa2eP3fuHDp06IC///67yjrYmLFOWPU4ceIE1q5dW2a7qKgouLu7ywn1OTlNkJnpiDZt9GjfvhkAw7RfYWEhlixZAp3OBe++Ox3mSfvx8YsUwVJpNcLs7QuxdOljME/YB/SYPt1wnZEjR8LLy8vi9Uy4JyKqG8r7+7tC05FOTk7Iy8uzGYTl5+db1OoiqmvKu31UYmKi1eOZmYDJLLdctiU31xPlWe2Yne0Hayss//wzCHv39rO4BgBERJQUauVoFxFRw1Ch6UiNRoOPP/7Y5vkPP/xQztEiqi8qugWROeNCFOsFWPWwty9ZjanTuSApKRLKQEvA2/sS9u7tD2v/JCVJj/BwQ1J/TEwMAzAiogaiQiNhL7zwAu655x5otVo899xz6NChA4QQOHHiBN5++218//332LVrV3X1lQiAoc5XaWUmypqWM+6yAFR+CyJTarUacXFxyM7ORnr6ZrN6YiosWzZFvq6tlZaXLvnC2giYeekJ42pbIiKq/yoUhEVERGDNmjWYOnUqNmzYoDjn7u6O1atXo2/fvlXaQSJT5S20GhcXZzMQU6vVAMouKVFeV65ckXO0wsIOwscnB8uWTbF63ZLkfctAzJIesbFLERBwAQMGDEDnzp05CkZE1IBUuFjr//3f/yE6Ohrbtm3D6dOnARiKtQ4cOBDOzs5V3kEiU+UttJqdnW2zrU6nA1CxkhKlMV0ZCwBFRY42r+vhkYuePVORmtoL5lOSloGYBBeXawAMf+QwACMialgqFITt3LkTcXFx+OWXX/B///d/inM6nQ6dO3fGJ598gn79+lVpJ4kqyjwwsqasivWAsmo9AKvbEZX3utnZ/vjii0fkIqv/noH1AMxwzhgQGgvHEhFRw1Gh/7MvWrQIjz32mNXllmq1Go8//jjeeecdBmFUL5hXnzfPv7LcL9KQ41VW7pi160ZGJiEpKdIkMDMEYv3778aePfdYvY5pQGi+YTwREdV/FQrCDh8+XOqG2wMHDsRbb711250iskar1eLKlStVfl1jpTzjZ53OBZmZgYqq9YaRKunfdmXnjplXtbeekK+Cj8+lcu0FSUREDU+FgrCLFy8qVpZZXKxJE1y+fPm2O0VkrrwJ+eUVExODGzc88N//+qBkKlCFhIShkCRYCZiUhFAhMzMAubl/25yeVKsLFMetTVEGBmZxL0giokaqQkHYHXfcgbS0NLRt29bq+SNHjsDPz69KOkZkqqqDezc3N+Tk+EJvXtYLKpRvDwk9NmwYXWZpC9OcMltTn6XtBRkTEwMfHx8m5RMRNUAVCsLuv/9+vPTSSxg0aJBFZfy///4b8+bNs7qvJNHt0Gq1WLNmTZVfNyQEUKlgJRCzZBjFAoy5XIAEIUqmJxMShsLB4SYCAzOt5pQZg674+EXIzfXA+PHhCAgIwa1bQbC3t5fLZpjiNkRERA1bhYKwF198ERs3bkS7du0QFxeH9u3bAwBOnjyJDz/8EMXFxXjhhReqpaPUeJW3LEVFBQQAS5YAjz8OFBcDxuDKfDuhUaPWIzAwCwCQm+uB69ebYf36B82upvr3mB5RUUkIDU2zWoMsPn4RgoLOITQ0mqPGRESNXIWCMF9fX+zfvx9PPvkk5syZA+Pe35IkITo6Gh9++CF8fX2rpaNE1SE2FoiOBlJStNi3byXS09tajF6Fhp6Q26vVBdDpXKwm0xuokJgYhZwc3yqpQUZERA1XhYsPtWrVCj/88AOuXr2KM2fOQAiBkJAQuLu7V0f/iEplmnNlLbixdd5YsNXBwQEBAZ6wsytEWlpJflZmZgAACYGBmYrrjRkzBmq1Gmp1NhYs8LcRiEk4erSr5VGzGmRERNS4VboCpLu7O+68886q7AtRhZS172Np501zzOLi4hTXtTYaZnydWq2Gn58fpk69AJ1uETIzA7B+/WiUtQ2ReckJrnYkIiKW4aZ6ydq+jwkJQ3HXXd1w772GRSP//a+PInneVm0v05yz8u4n6eDg8G8JihPQ6ZKQmBgF61XvDUaNWo/Q0BMYOXIk/P39mXBPREQWf74T1Qu2ip/OmtUKvXv7YOnSZtDrlUGRMSerote19jpPT09MmDABANC3bzKiohIhScZllsoaF8Z6YADg5eXFAIyIiABwJIzqKWv7Mxrp9RI+/dQZhtWOtveFNLpy5Yq8N2NZ+0nm5eXJx52dnRETE4Nbt25h8OC/ERpqKD+Rne0vb1HEaUgiIrKFQRjVebYCF40mGfv3a2BtQFcIFSIi9iE5WWM1GDJlutm3+b6PKpXAggUXUVxseN3atWtt9nPatAlwdnYGAGRnX8bZs03QuvUt+PvfCeBO1v0iIiIFSYjy1Qenmpefnw+1Wg2dTmd10/TGRKvVyrlbq1Y5YdYsNfR6CZKkR1hYKg4c6GkxehUfvwgA5Er0hq9tr6Q0ZVhV6YGnnhoMf389lixZUmYfp06dytpfRERU7t/fHAmjesE4gpSVBcycabrptgoHDvREZGSSzSlAtbqgzJWU5oz7Pvr7l6OcPhERUSUwCKNqYzp6ZU1lpufee68kADMSQgV//2x5SyDz/RfLs+KxrHpjREREVY1BGFULrVaLxYsXl9kuLi6u3IFYVhbwzjvWzujlwMtaAFXaiseyRsny8vLg5uameC0DNiIiqgoMwqhalHe/x4rsC3n6tPXNtiMikm0GQzExMcjKAr74wvqKx7JGydauXYuYmBj5dRWd1iQiIrKFdcKo3ggJAVRmP7GSpEd4eAp0OhdkZLSGTueiOO/m5obQUDcMG7ZZruNlmjNWnrpgt27dAmB7WtP8PYmIiMqDI2FUpYx5YFeuXKnyawcEAEuWAI8/DhQXlwRTpW0z5ODggMLCQnlPSPOcsbLqgpkqa1qTiIioIhiEUZUpbx7Y7YiNBaKjgTNnAE9PHQoLw9G7t3J7oi1bhmHu3HC0bt0Enp6euHDhAoCSFY86nQvS0joBAAIDMxV1wazVE7O3twdQdsDGQqxERFQRDMKoylQkv+t2BAQYPgB37NplmSdWXCwhK6sp/P1v4MKFC4pRuQMHeiAhYRhK9nnUIyIiGbGxS5GX5wZAQmBgpuJ6arUacXFxKCwsxB135GP2bDWKiyXY2Qm88UY+HnpoHAuxEhFRhTEIo1plbdrSOKJUnvIWxjwx00DMzk5g9+5lOHRIOUVozOlSbrStwv79fbF/fwQMez5aT7g3BljPPguMGWMYiWvbVkJAgBsAtwrdMxEREcAgjGqZ6ZZBFRUXF4eAAE9FnpidHfDGGzpcu1a+UhUlJBiDM2t1xEyVjMQRERFVHldHUr11+fJlAIY8sbNngV27DJ8feuhvq+2NOV3lYb5CkoiIqKoxCKPbptVqLXKvasKaNWug1WoBGEam7rnH+giVsXwFAEWpitIw4Z6IiKobpyPpttTEisjSlLUYwFpx1fj4RcjMDEBGRpC88bdh1SNgzAn7738vIjaWCfdERFR9GITRbampFZG25OXlwc/Pz+o5W8VVR43agMDATISGnkD//nvl2mEAkJvrgUmT7sI997StsXsgIqLGidORVCNsVbS/3deuXbtWnpI0Z6u46vr1D2LRonjs26f5dw/Ikn0ng4LOoX37ZhXuIxERUUVxJIyq3e3st2j6WkCPqKgk9O2brGhTWFgoV+oHSspeWCuuaiSEComJUQAk7gFJRES1gkEYVauyNsjW6Vz+HY3SWpSDMH8tYAycoAjE8vLysHbtWov3VqsLFNXwLZWvJAUREVF1YBBG1aq0/RZL2/MRADIzA60ETxKSkiIRGpomB0zGDbatMe4ZmZkZgPXrR8PWDDz3gCQioprGnDCqNjqdC65fdwagLAkhSXrY2xdaHSEz5n0dONADGzaMsnpdIVRISQkv9X1Nc8jU6gKEhp7A8OGm5SmERZ9YkoKIiGoSR8KoWihzuQQMgVjJiFdRkaPNETIApUwhGuzfr0F4eIrFyFVp+WevvBKE+Ph0ZGTYIS3NCe+91wJ6vQSVSmDhQu4BSURENYtBGN0Wa6NGlrlcEiRJYNSotQgMzAJgmGo0T5o3jkZZn4Y0VzJ9ePXqVavva57r5eXlhS5d/DBggOEKM2ZwD0giIqo9DMLotnh6eiIuLk5RL2zfPge8+67lKFezZjcUeWCAXg7EjKNWxvOWBEw33jadPty1axeA0vPPuAckERHVNQzC6LaZTt9lZQF6PaBSGT4bWcsDA1QQQo/Ro0tGyBYtircyCqZHt25HcORIV0XAZh5YWStJYRqsERER1SUMwqjKLFsGTJ1qCL4kqSQQs7MD3n77Bu64YxSWLjUPsAwjZGp1AbZvj7Q6DTl69HqEhp7A9Ola7NqVKRdXNWdeksJWsEZERFQXMAijKpGVVRKAAYAQhkBs7VpAowECApojK6u5xQiZnZ2Ah0cudDoX7N+vsbiuJOnlUbKzZ39GUFDJOWs1xowlKYxbEZkGYFz1SEREdQmDMKoSp08rgyvA8L23d0neVUAAsGQJ8PjjQHGxYYTsjTd0uHatABkZrWGtYopGk2x1JKu0VZDGLYhMxcTEcNUjERHVKawTRlUiJMQw/WjKzg5oa7YPdmwscPYssGuX4fNDD/0NoCSfS0mPTp2OKY7odC5IS+uEhATbNcascXNzq/hNERERVSMGYVQljKNcdnaG7+3sgE8/tb76MCAAuOce5TljPpeymKoKy5ZNwYEDPQAYRr8WLYrH+vUPwvxH17gK8nY2CiciIqpJnI6kKhMbC0RHG2tvla/8g2meVljYQfj45GDZsikWo1w+PjmlFnCVJD2ys/3xxRePVGqjcCIioprGIIyqlHntLa1WK9cQy85WISOjCYKCbsHf3zDi5eDggLi4OGRnZ2Pjxo02K+lnZrYsNQCLjExCUlKkzUKtREREdQ2DMKo2Wq0WixcvBlB6In1MTAxycpogI6M17O1vWq31FRh43urxUaPWIzAwq8xCrVwZSUREdQ2DMKo2hYWF0OlckJkZiISEoTDmcZmPUj3//Ol/A7SOkCQ9una1LMwaEHDBag2w0NATAIDBgwfjyy8F9PqSqvp2dgJPPTUYrVs34cpIIiKqcxiEUZU7evQqTp3SY/9+YaMCvu3NuoVQ4ciRroiNXYqiIgdFra/SaoCFhflgyRJJUf7i008l9OzpWwN3TEREVHEMwqhKvffeNUyfrv43qFLu92jKuJ2QrWnEoiIHBAWds3idsQZYTEyMXHbCwcEBnp6elVoYQEREVFsYhFGV0Gq1OHv2FmbM8IEQxsDLdgBmup1QZfZ7dHNzg5+fn8VxbspNRET1BYMwum3GBPyMjNbQ6yeW0lLg/vs3o33703IAxv0eiYiosWIQRuWWlWXYnigkRDnaZCxBYax6b6uUBCDB21trEWCVlutFRETUULFiPpXLsmVAq1bAvfcaPi9bZtnGetX7EqVNM6rVBQgKOscAjIiIGg2OhFGZsrKAqVNLNujW6w2bcEdHW+ZfmY5qZWf7ywVUOc1IRESkxCCMynT6dEkAZlRcbFiFaC0J3riCMSjoHEJD06xOM7Zt2xZnzpwp8711Ohfk5nrCw8NyGpOIiKg+YxBGZQoJAVQqZSBmZ2coA1EWY0BmrjwBWGlV9omIiOo75oRRqbRaLezsLmDhwjzY2RlyvFQqgTlzdLCzuwCtVlvua+l0LsjIaA2dzkXxta225kVcN20aKrfnNkRERFTfcSSMbDp69CrefnuzPBV4770aJCZGQq9X4ZVXXJCSkoK+fZMxZsyYMq9lOqplSNgXAGyPcNkq4tq370Tccw+4DREREdV7DMLIqmXLgKlT3aDXT4Qk6REZmYSkpEiUDJ6qkJgYBQCIiRE2rwNYjmoZirgaCrkKoUJCQsk+kkbWyl3Y2QHh4Z5g/EVERA1BvZuOvHnzJrp37w5JknDo0CHFuSNHjqBfv35o2rQpAgMDsXDhQovXr1u3Dh06dEDTpk3RpUsX/PDDD4rzQgjMnTsXfn5+cHJyQmRkJE6fPq1ok5ubi/Hjx8PV1RVubm6IjY3FtWvXKtyXuqpkNWRJoGRc5agkISkpEjdueCAuLg5Tp06VR8VMpxutjWopqZCSEq44Yl7uws5O4NNPWQ2fiIgajnoXhM2aNQv+/v4Wx/Pz8zFw4EC0atUKqampePPNNzF//nwsWbJEbrN//36MGzcOsbGxOHjwIEaMGIERI0YgLS1NbrNw4UK8//77+OSTT5CSkoJmzZohOjoa//zzj9xm/PjxOHbsGBITE7F582bs2bMHU6dOrVBf6jJrqyENQZTeoq0QKpw92wSenp5wcHCAWq2Gnd1UvPfedKxcORGLFsUjO9vPpHaYdcnJGov8sLCwg4iPX4SJE1cgJeUSYmNv986IiIjqEFGP/PDDD6JDhw7i2LFjAoA4ePCgfO6jjz4S7u7u4ubNm/Kx2bNni/bt28vfx8TEiCFDhiiuGR4eLh5//HEhhBB6vV60aNFCvPnmm/L5vLw84ejoKFavXi2EEOL48eMCgPjtt9/kNj/++KOQJEn89ddf5e5Leeh0OgFA6HS6Cr3udmVmCqFSCQGUfEhSsejX7ycB6C2O//57jjhyJFdMnLhCTJnyqZCkYos2UVHbTI4rr2H8mDhxuZg+/W0xceIKMX3622L+/PnyR3Z2do0+AyIiosoq7+/vejMSdvHiRTz22GP48ssv4ezsbHE+OTkZ/fv3V6yai46OxqlTp3D16lW5TWRkpOJ10dHRSE5OBgBkZGQgJydH0UatViM8PFxuk5ycDDc3N/Tq1UtuExkZCZVKhZSUlHL3xZqbN28iPz9f8VEbAgKAJUsgr4Y05oS1aXMW/frtkUe1jEn1P/3kiO7d3bBy5UQsXfqY1YR6f/9seVRrypTPLEbGJEmP7Gx/LFoUL4+gHTjQQz7P1ZBERNTQ1IvEfCEEJk2ahCeeeAK9evXC2bNnLdrk5OQgKChIcczX11c+5+7ujpycHPmYaZucnBy5nenrbLXx8fFRnG/SpAk8PDwUbcrqizWvvfYaFixYYP0h1LDYWKB790v44IMfLSrfR0Ymwd8/W96CaNasYXL+mDHh3pRxuyLTmmHmm3YbE/9NS1Js2TIMc+eGo3XrJlwNSUREDU6tjoQ9//zzkCSp1I+TJ0/igw8+QEFBAebMmVOb3a12c+bMgU6nkz8yMzNrtT/+/obgyTw4SkqKlIOq3FxPkwDMkq3tikzzvb799iDGjGlrMYJWXCyhoMCXARgRETVItToS9uyzz2LSpEmltmnTpg127tyJ5ORkODo6Ks716tUL48ePx8qVK9GiRQtcvHhRcd74fYsWLeTP1tqYnjce8/PzU7Tp3r273ObSpUuKa9y6dQu5ubllvo/pe1jj6OhocY+1ycHBwWa9rtxcD6jVBVZLSZgaNWo9QkNPyN+PHDkSXl5eivfw9PREVlblq/ITERHVR7U6Eubt7Y0OHTqU+uHg4ID3338fhw8fxqFDh3Do0CG5rMSaNWvw6quvAgA0Gg327NmDoqIi+fqJiYlo3769PP2n0WiwY8cORR8SExOh0WgAAEFBQWjRooWiTX5+PlJSUuQ2Go0GeXl5SE1Nldvs3LkTer0e4eHh5e5LfeDp6YkpU+62mr9lnIo0LyVh3i4wMEtxzMvLC35+fvKHcZSrJA/N0M7ODixJQUREDVq9SMxv2bIlQkND5Y927doBAIKDgxHw72/phx56CA4ODoiNjcWxY8ewZs0avPfee5gxY4Z8nWeeeQZbt27F22+/jZMnT2L+/Pn4/fffERcXBwCQJAnx8fF45ZVXkJCQgKNHj+KRRx6Bv78/RowYAQDo2LEjBg0ahMceewy//vor9u3bh7i4OIwdO1YunVGevtQFWVnArl2Gz7YEBzsqgixr04vGqcWIiH0wlrGwNQ1ZmthY4OxZQ5/OngVLUhARUYNWLxLzy0OtVmP79u2YNm0aevbsCS8vL8ydO1dRvysiIgKrVq3Ciy++iP/85z8ICQnBd999h9DQULnNrFmzcP36dUydOhV5eXm46667sHXrVjRt2lRu8/XXXyMuLg733XcfVCoVRo0ahffff79Cfalthor4huk/lcowCmUr6AkOPoNRozYAEAgMzLIaWKnVBRg4MAnh4SnIzfWQc8YqKiCAo19ERNQ4SEKI0vecoVqTn58PtVoNnU4HV1fXKrtuVhbQqpVl/tXZs4CTkxaFhYXy8SVLirFggb+8itHaPo8VERcXx0R7IiJq0Mr7+7vBjIRR+VmriF9cDKSm6nDo0GL5mE7ngkWL4hUrIzdtstznsTxGjhwJf39/BmBERET/qhc5YVS1QkIAyayqhCQBAQH/KI6VtjKyory8vBiAERERmWAQRgAsgzIAcvkJZbuSlZEVwYr3RERESpyObIROnzbs1mhKrwfOnlX+OBjLT5hWtjeueNTpXJCb6wkPD22pU5NjxoyBt7c3R8GIiIjMMAhrhEJCrBdGbd36FtLSlG3Dwg4iOPiMYsXjgQM9LAIzY7K+aTFWYyFWIiIissTpyEbIVmFUf3/LgqslI1658giYMQADSpL1dToXAMpirAzAiIiIbONIWCMVGwtERwNnzhi2BgoIAC5cULaxNuLl7n611G2MiIiIqHw4EtYIGSvlA8A99yiLo+p0LsjIaI2sLD+rI1729jerLFmfiIioMeNIWCNTWqX8tWtL6oJZ25RbCBWKihxsJusTERFR+TEIa0SyskoCMMDw+fHHDdOSADBjRnN51aQhABMASmpXGEe8goLOWSTrExERUcUwCGtEbFXKP3PGULLC/JwhABPy565dj8gBl1pdwOCLiIjoNjAnrBExlqYwZWcHeHpehSSdscj1Uo6ESThypKu8CtIWFmUlIiIqH46ENSLG0hSPP24YAbOzA95++xo2bnwfADBsWA+TZHzlVCRguQrStCYYwLpgREREFcEgrJEZMUKL7t1v4ezZJmjd+hYcHC5h40bDubCwg/DxycGyZVMskvIBy1WQ3JCbiIio8hiENSJarRaLFy+Wvzevjg8ARUWOVgMwQLkKMioqigEYERHRbWAQ1ohcvny5zDbGTbtNAzFJ0iM2dikCAkqqubq4lJ4bRkRERKVjYn4jUlRUVGYb46bdxiR9Yx0w0wAMAJo0YfxORER0O/ibtJHQarW4evVqudpa27TbnI+PT1V3kYiIqFFhENYImOeClYetOmAjR45kQj4REVEV4HRkI1BYWFhl12IARkREVDUYhFG5xcTEMAAjIiKqIgzCGjmdzgUZGa0VlfCtHQOYB0ZERFSVmBPWiB04UFIh37gKEoDi2Lx52Zg61Y7V8ImIiKoYg7BGSqdzMdmiyLAlUULCUEgSFMdefvkOxMZKYPxFRERUtTgd2Ujl5npaqYyvsjhWXCzhzJma6xcREVFjwSCskTJWxlfSWxyzswPatq25fhERETUWDMIaAQcHB4tj5pXxAQHDj4MESRIADAHYp58CAQE11lUiIqJGQxJCiNruBFmXn58PtVoNnU4HV1fX27qWVqu1Wi/s4MEmGDrUC0JI8jGVCvjmG0CjYQBGRERUUeX9/c3E/EbC1srGkycB8zBcrwe8vRmAERERVSdORzZyISGGkS9TzAMjIiKqfgzCGrmAAGDJEkPgBTAPjIiIqKZwOpIQGwtERwNnzhhGwBiAERERVT8GYQTAEHgx+CIiIqo5nI4kIiIiqgUMwoiIiIhqAYMwIiIiolrAIIyIiIioFjAIIyIiIqoFDMKIiIiIagGDMCIiIqJawCCMiIiIqBYwCCMiIiKqBQzCiIiIiGoBgzAiIiKiWsC9I+swIQQAID8/v5Z7QkREROVl/L1t/D1uC4OwOqygoAAAEBgYWMs9ISIioooqKCiAWq22eV4SZYVpVGv0ej2ys7Ph4uICSZIqfZ38/HwEBgYiMzMTrq6uVdjD+oPPgM8A4DMA+AwAPgOAzwCo3mcghEBBQQH8/f2hUtnO/OJIWB2mUqkQEBBQZddzdXVttP/YjPgM+AwAPgOAzwDgMwD4DIDqewaljYAZMTGfiIiIqBYwCCMiIiKqBQzCGgFHR0fMmzcPjo6Otd2VWsNnwGcA8BkAfAYAnwHAZwDUjWfAxHwiIiKiWsCRMCIiIqJawCCMiIiIqBYwCCMiIiKqBQzCiIiIiGoBg7B66uOPP0bXrl3lInMajQY//vijfP6ff/7BtGnT4OnpiebNm2PUqFG4ePGi4hrnz5/HkCFD4OzsDB8fH8ycORO3bt2q6VupMq+//jokSUJ8fLx8rKE/h/nz50OSJMVHhw4d5PMN/f6N/vrrL0yYMAGenp5wcnJCly5d8Pvvv8vnhRCYO3cu/Pz84OTkhMjISJw+fVpxjdzcXIwfPx6urq5wc3NDbGwsrl27VtO3UimtW7e2+DmQJAnTpk0D0Dh+DoqLi/HSSy8hKCgITk5OCA4Oxssvv6zYu6+h/xwAhm1y4uPj0apVKzg5OSEiIgK//fabfL6hPYM9e/Zg2LBh8Pf3hyRJ+O677xTnq+p+jxw5gn79+qFp06YIDAzEwoULq+YGBNVLCQkJYsuWLeKPP/4Qp06dEv/5z3+Evb29SEtLE0II8cQTT4jAwECxY8cO8fvvv4s+ffqIiIgI+fW3bt0SoaGhIjIyUhw8eFD88MMPwsvLS8yZM6e2bum2/Prrr6J169aia9eu4plnnpGPN/TnMG/ePNG5c2dx4cIF+ePy5cvy+YZ+/0IIkZubK1q1aiUmTZokUlJSxJ9//im2bdsmzpw5I7d5/fXXhVqtFt999504fPiwGD58uAgKChJ///233GbQoEGiW7du4pdffhF79+4Vbdu2FePGjauNW6qwS5cuKX4GEhMTBQCxa9cuIUTj+Dl49dVXhaenp9i8ebPIyMgQ69atE82bNxfvvfee3Kah/xwIIURMTIzo1KmT2L17tzh9+rSYN2+ecHV1FVlZWUKIhvcMfvjhB/HCCy+IjRs3CgDi22+/VZyvivvV6XTC19dXjB8/XqSlpYnVq1cLJycn8emnn952/xmENSDu7u5i6dKlIi8vT9jb24t169bJ506cOCEAiOTkZCGE4QdXpVKJnJwcuc3HH38sXF1dxc2bN2u877ejoKBAhISEiMTERHH33XfLQVhjeA7z5s0T3bp1s3quMdy/EELMnj1b3HXXXTbP6/V60aJFC/Hmm2/Kx/Ly8oSjo6NYvXq1EEKI48ePCwDit99+k9v8+OOPQpIk8ddff1Vf56vJM888I4KDg4Ver280PwdDhgwRkydPVhwbOXKkGD9+vBCicfwc3LhxQ9jZ2YnNmzcrjoeFhYkXXnihwT8D8yCsqu73o48+Eu7u7op/C7Nnzxbt27e/7T5zOrIBKC4uxjfffIPr169Do9EgNTUVRUVFiIyMlNt06NABLVu2RHJyMgAgOTkZXbp0ga+vr9wmOjoa+fn5OHbsWI3fw+2YNm0ahgwZorhfAI3mOZw+fRr+/v5o06YNxo8fj/PnzwNoPPefkJCAXr164cEHH4SPjw969OiBzz77TD6fkZGBnJwcxXNQq9UIDw9XPAc3Nzf06tVLbhMZGQmVSoWUlJSau5kqUFhYiK+++gqTJ0+GJEmN5ucgIiICO3bswB9//AEAOHz4MH7++WcMHjwYQOP4Obh16xaKi4vRtGlTxXEnJyf8/PPPjeIZmKqq+01OTkb//v3h4OAgt4mOjsapU6dw9erV2+ojN/Cux44ePQqNRoN//vkHzZs3x7fffotOnTrh0KFDcHBwgJubm6K9r68vcnJyAAA5OTmK/+EazxvP1RfffPMNDhw4oMh5MMrJyWnwzyE8PBwrVqxA+/btceHCBSxYsAD9+vVDWlpao7h/APjzzz/x8ccfY8aMGfjPf/6D3377DU8//TQcHBwwceJE+T6s3afpc/Dx8VGcb9KkCTw8POrNczD67rvvkJeXh0mTJgFoHP8OAOD5559Hfn4+OnToADs7OxQXF+PVV1/F+PHjAaBR/By4uLhAo9Hg5ZdfRseOHeHr64vVq1cjOTkZbdu2bRTPwFRV3W9OTg6CgoIsrmE85+7uXuk+Mgirx9q3b49Dhw5Bp9Nh/fr1mDhxInbv3l3b3aoxmZmZeOaZZ5CYmGjxl19jYfwrHwC6du2K8PBwtGrVCmvXroWTk1Mt9qzm6PV69OrVC//73/8AAD169EBaWho++eQTTJw4sZZ7V/OWLVuGwYMHw9/fv7a7UqPWrl2Lr7/+GqtWrULnzp1x6NAhxMfHw9/fv1H9HHz55ZeYPHky7rjjDtjZ2SEsLAzjxo1DampqbXeNrOB0ZD3m4OCAtm3bomfPnnjttdfQrVs3vPfee2jRogUKCwuRl5enaH/x4kW0aNECANCiRQuL1VHG741t6rrU1FRcunQJYWFhaNKkCZo0aYLdu3fj/fffR5MmTeDr69sonoMpNzc3tGvXDmfOnGk0Pwd+fn7o1KmT4ljHjh3laVnjfVi7T9PncOnSJcX5W7duITc3t948BwA4d+4ckpKSMGXKFPlYY/k5mDlzJp5//nmMHTsWXbp0wcMPP4zp06fjtddeA9B4fg6Cg4Oxe/duXLt2DZmZmfj1119RVFSENm3aNJpnYFRV91ud/z4YhDUger0eN2/eRM+ePWFvb48dO3bI506dOoXz589Do9EAADQaDY4ePar44UtMTISrq6vFL7S66r777sPRo0dx6NAh+aNXr14YP368/HVjeA6mrl27hvT0dPj5+TWan4O+ffvi1KlTimN//PEHWrVqBQAICgpCixYtFM8hPz8fKSkpiueQl5enGC3YuXMn9Ho9wsPDa+Auqsby5cvh4+ODIUOGyMcay8/BjRs3oFIpf6XZ2dlBr9cDaFw/BwDQrFkz+Pn54erVq9i2bRseeOCBRvcMqup+NRoN9uzZg6KiIrlNYmIi2rdvf1tTkQBYoqK+ev7558Xu3btFRkaGOHLkiHj++eeFJEli+/btQgjDkvSWLVuKnTt3it9//11oNBqh0Wjk1xuXpA8cOFAcOnRIbN26VXh7e9erJenWmK6OFKLhP4dnn31W/PTTTyIjI0Ps27dPREZGCi8vL3Hp0iUhRMO/fyEM5UmaNGkiXn31VXH69Gnx9ddfC2dnZ/HVV1/JbV5//XXh5uYmvv/+e3HkyBHxwAMPWF2m3qNHD5GSkiJ+/vlnERISUmeX5VtTXFwsWrZsKWbPnm1xrjH8HEycOFHccccdcomKjRs3Ci8vLzFr1iy5TWP4Odi6dav48ccfxZ9//im2b98uunXrJsLDw0VhYaEQouE9g4KCAnHw4EFx8OBBAUC888474uDBg+LcuXNCiKq537y8POHr6ysefvhhkZaWJr755hvh7OzMEhWN2eTJk0WrVq2Eg4OD8Pb2Fvfdd58cgAkhxN9//y3+3//7f8Ld3V04OzuL//u//xMXLlxQXOPs2bNi8ODBwsnJSXh5eYlnn31WFBUV1fStVCnzIKyhP4cxY8YIPz8/4eDgIO644w4xZswYRX2shn7/Rps2bRKhoaHC0dFRdOjQQSxZskRxXq/Xi5deekn4+voKR0dHcd9994lTp04p2mi1WjFu3DjRvHlz4erqKh599FFRUFBQk7dxW7Zt2yYAWNyXEI3j5yA/P18888wzomXLlqJp06aiTZs24oUXXlCUFWgMPwdr1qwRbdq0EQ4ODqJFixZi2rRpIi8vTz7f0J7Brl27BACLj4kTJwohqu5+Dx8+LO666y7h6Ogo7rjjDvH6669XSf8lIUzKCRMRERFRjWBOGBEREVEtYBBGREREVAsYhBERERHVAgZhRERERLWAQRgRERFRLWAQRkRERFQLGIQRERER1QIGYURERES1gEEYEVW7nJwcPPXUU2jTpg0cHR0RGBiIYcOGKfZ0279/P+6//364u7ujadOm6NKlC9555x0UFxfLbc6ePYvY2FgEBQXByckJwcHBmDdvHgoLCxXv99lnn6Fbt25o3rw53Nzc0KNHD3kjZwCYP38+JEnCoEGDLPr65ptvQpIk3HPPPWXeV+vWrSFJks2PSZMmVfxh1XH33HMP4uPja7sbRA1Ck9ruABE1bGfPnkXfvn3h5uaGN998E126dEFRURG2bduGadOm4eTJk/j2228RExODRx99FLt27YKbmxuSkpIwa9YsJCcnY+3atZAkCSdPnoRer8enn36Ktm3bIi0tDY899hiuX7+Ot956CwDw+eefIz4+Hu+//z7uvvtu3Lx5E0eOHEFaWpqiX35+fti1axeysrIQEBAgH//888/RsmXLct3bb7/9JgeJ+/fvx6hRo3Dq1Cm4uroCAJycnKriEdaIoqIi2Nvb19j7FRYWwsHBocbej6hOqpLNj4iIbBg8eLC44447xLVr1yzOXb16VVy7dk14enqKkSNHWpxPSEgQAMQ333xj8/oLFy4UQUFB8vcPPPCAmDRpUql9mjdvnujWrZsYOnSoeOWVV+Tj+/btE15eXuLJJ58Ud999dznuroRxD7urV6/Kx7777jvRo0cP4ejoKIKCgsT8+fMV+zECEJ988okYMmSIcHJyEh06dBD79+8Xp0+fFnfffbdwdnYWGo1GsR+ose+ffPKJCAgIEE5OTuLBBx9U7A8ohBCfffaZ6NChg3B0dBTt27cXH374oXwuIyNDfq79+/cXjo6OYvny5eLKlSti7Nixwt/fXzg5OYnQ0FCxatUq+XUTJ0602KMvIyNDLF++XKjVasX7f/vtt8L0V4yx35999plo3bq1kCRJCGH4GYiNjRVeXl7CxcVFDBgwQBw6dKhCz56ovuJ0JBFVm9zcXGzduhXTpk1Ds2bNLM67ublh+/bt0Gq1eO655yzODxs2DO3atcPq1attvodOp4OHh4f8fYsWLfDLL7/g3Llz/7+9ew2J6nnjAP51zRCvv4zNa2qpa3l7sVa6hummqVSUmYqoKVlaiexGFnQx0bwQZakvTBRLo8KSkqi8kGxl4i2sNKTFvFCSWgYVpuV9/i/C8/udzMp/yVY8H1hwZp6dmXP2hQ8zc3a/O7+oqCgUFRVx5XPnziEsLOyXrNDU1NQgIiICcrkcT58+RV5eHoqKipCWlsaLS0lJQUREBJqbm7Fs2TKEhoZi165dOHToEJqamsAYQ1xcHO89HR0dKCkpwc2bN1FZWYnHjx8jNjaWa7906RISExORlpYGpVKJ9PR0HD16FOfPn+f1c/DgQcjlciiVSvj6+mJ4eBjOzs4oKytDa2srYmJisG3bNjx48AAAkJ2dDYlEgujoaPT19aGvrw+LFy/+4XvS0dGBa9euobS0FM3NzQCAoKAg9Pf3o6KiAg8fPoRYLIaXlxfevn07m9tNyJ9J1VkgIeTv1djYyACw0tLSGWOOHz8+bQXpvzZt2sSWL1/+1bb29namp6fH8vPzubre3l7m6urKADCRSMQiIyPZlStX2MTEBBcztSozOjrKFi1axKqrq9ng4CDT1dVlLS0tTC6X//RKmJeXF0tPT+fFXLhwgRkbG3NlACwhIYEr19fXMwDs7NmzXF1xcTHT1NTkzV1dXZ29fPmSq6uoqGACgYD19fUxxhizsrLirWAxxlhKSgqTSCSMsX9XwrKysr57XRs2bGDx8fFc2cPDg8nlcl7Mj66EaWhosP7+fq6upqaG6enpseHhYd57raysWF5e3nfnRsifjs6EEULmDGNsTmIBoKenB35+fggKCkJ0dDRXb2xsjPr6erS2tuL+/fuoq6tDZGQkCgoKUFlZCYHg3w0ADQ0NhIeHo7CwEF1dXRCJRHBycprVPGbS0tKC2tpa3srXxMQEhoeH8fHjR2hpaQEAbzxDQ0MAgKOjI69ueHgYAwMD3Fkzc3NzmJqacjESiQSTk5Noa2uDrq4uOjs7sWPHDt59GR8fh76+Pm+OK1as4JUnJiaQnp6OkpIS9PT0YHR0FCMjI9xcf5aFhQWEQiFXbmlpweDgIBYuXMiL+/TpEzo7O3/JmIT8zigJI4TMGRsbG+5A/UxEIhEAQKlUws3NbVq7UqmEnZ0dr663txdSqRRubm7Iz8//ar8ODg5wcHBAbGwsdu/eDXd3d1RXV0MqlfLioqKi4OLigtbWVkRFRc32Emc0ODiI5ORkBAQETGvT1NTk/v7vYXg1NbUZ6yYnJ394XODzE6IuLi68NnV1dV75yy3ikydPIjs7G1lZWXB0dIS2tjb27t077enTLwkEgmlJ9NjY2LS4L8cbHByEsbEx7t27Ny32n3/++eaYhPwNKAkjhMwZAwMD+Pr6IicnBzKZbNo/4ffv38PHxwcGBgY4derUtCTsxo0baG9vR0pKClfX09MDqVQKZ2dnFBYW8la2ZjKVxA0NDU1rs7e3h729PZ48eYLQ0ND/5zK/SiwWo62tDdbW1r+szynd3d3o7e2FiYkJAKChoQECgQC2trYwNDSEiYkJurq6EBYWNqt+a2trsXnzZoSHhwP4nPg9e/aMlwTPnz+f97UhACAUCvHhwwcMDQ1xn/HUma9vEYvFePXqFebNmwdLS8tZzZWQvwElYYSQOZWTk4PVq1dj1apVOHbsGJycnDA+Po6qqirk5uZCqVQiLy8PISEhiImJQVxcHPT09KBQKHDgwAEEBgYiODgYwOcEzNPTExYWFsjIyMCbN2+4cYyMjAAAe/bsgYmJCdauXQszMzP09fUhNTUVQqEQEonkq3O8c+cOxsbGfunqS2JiIjZu3Ahzc3MEBgZCIBCgpaUFra2tSE1N/am+NTU1ERkZiYyMDAwMDEAmkyE4OJi7B8nJyZDJZNDX14efnx9GRkbQ1NSEd+/eYd++fTP2a2Njg6tXr6Kurg4LFizA6dOn8fr1a14SZmlpicbGRjx//hw6OjowMDCAi4sLtLS0cPjwYchkMjQ2NvIeeJiJt7c3JBIJ/P39ceLECYhEIvT29qKsrAxbtmyZtl1KyN+Gno4khMyppUuX4tGjR5BKpYiPj4eDgwPWrVsHhUKB3NxcAEBgYCDu3r2L7u5uuLu7w9bWFpmZmThy5AguX77MbclVVVWho6MDCoUCZmZmMDY25l5TvL290dDQgKCgIIhEImzduhWamppQKBTTzh5N0dbW/uXbX76+vrh16xZu376NlStXwtXVFZmZmbCwsPjpvq2trREQEID169fDx8cHTk5OOHPmDNe+c+dOFBQUoLCwEI6OjvDw8EBRURGWLFnyzX4TEhIgFovh6+sLT09PGBkZwd/fnxezf/9+qKurw87ODkKhEN3d3TAwMMDFixdRXl4OR0dHFBcXIykp6bvXoaamhvLycqxZswbbt2+HSCRCSEgIXrx4wZ2PI+RvpsZmexqWEEKIyiQlJeH69es/tN1HCPm90UoYIYQQQogKUBJGCCHfoKOjM+OrpqZG1dMjhPzBaDuSEEK+oaOjY8Y2U1PTP+r3IQkhvxdKwgghhBBCVIC2IwkhhBBCVICSMEIIIYQQFaAkjBBCCCFEBSgJI4QQQghRAUrCCCGEEEJUgJIwQgghhBAVoCSMEEIIIUQFKAkjhBBCCFGB/wH9UcF9FZ+yuQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACeW0lEQVR4nO2deXwTZf7HP2lpa4E2pRe0FGgpCAKiUhEKKyJWQAGXBaWKrCDl0AUVUUB+KIjHIoeA98klioKCLqIoVPHiWgURcQEFW6S2XMGmhSI9Mr8/4oQknckcmeOZ5Pt+vXxJkunkmcnM83zme9o4juNAEARBEAQRBkSYPQCCIAiCIAijIOFDEARBEETYQMKHIAiCIIiwgYQPQRAEQRBhAwkfgiAIgiDCBhI+BEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNpDwIQiCIAgibCDhQxAEwSDLly+HzWZDcXGx2UMhiJCChA9BhCnffvstJk6ciI4dO6JRo0Zo2bIlhg0bhp9//rnetr1794bNZoPNZkNERATi4+PRrl07/POf/8TmzZsVfe+HH36Ia665BqmpqWjYsCFat26NYcOG4ZNPPtHq0Orx73//Gx988EG997dt24ZHH30U5eXlun23P48++qjnXNpsNjRs2BAdOnTAww8/jIqKCk2+Y9WqVVi8eLEm+yKIUIOED0GEKXPnzsXatWtx3XXX4ZlnnsG4cePw1VdfoUuXLti3b1+97TMyMrBy5Uq88cYbmD9/Pm666SZs27YNffv2RX5+PmpqaiS/c8GCBbjppptgs9kwffp0LFq0CEOHDsUvv/yCd955R4/DBBBY+MyePdtQ4cPz0ksvYeXKlVi4cCHat2+PJ598Ev3794cW7RNJ+BCEOA3MHgBBEOYwefJkrFq1CtHR0Z738vPzcemll+Kpp57Cm2++6bO93W7HiBEjfN576qmncO+99+LFF19EZmYm5s6dK/p9tbW1ePzxx3H99ddj06ZN9T4/ceJEkEfEDlVVVWjYsGHAbW6++WYkJycDAO666y4MHToU69atw44dO5Cbm2vEMAkiLCGLD0GEKT169PARPQDQtm1bdOzYEfv375e1j8jISDz77LPo0KEDnn/+eTidTtFtT506hYqKCvTs2VPw89TUVJ/Xf/75Jx599FFcfPHFuOiii5CWloYhQ4bg8OHDnm0WLFiAHj16ICkpCbGxscjJycF7773nsx+bzYazZ89ixYoVHvfSqFGj8Oijj2LKlCkAgKysLM9n3jE1b775JnJychAbG4vExETceuutOHr0qM/+e/fujU6dOmHXrl3o1asXGjZsiP/7v/+Tdf686dOnDwCgqKgo4HYvvvgiOnbsiJiYGKSnp2PChAk+FqvevXvjo48+wpEjRzzHlJmZqXg8BBGqkMWHIAgPHMfh+PHj6Nixo+y/iYyMxG233YZHHnkE33zzDQYMGCC4XWpqKmJjY/Hhhx/innvuQWJioug+6+rqMHDgQHz22We49dZbcd9996GyshKbN2/Gvn37kJ2dDQB45plncNNNN+H2229HdXU13nnnHdxyyy3YsGGDZxwrV67EmDFjcNVVV2HcuHEAgOzsbDRq1Ag///wz3n77bSxatMhjfUlJSQEAPPnkk3jkkUcwbNgwjBkzBidPnsRzzz2HXr164fvvv0dCQoJnvA6HAzfccANuvfVWjBgxAk2bNpV9/nh4QZeUlCS6zaOPPorZs2cjLy8Pd999Nw4ePIiXXnoJ3377LbZu3YqoqCjMmDEDTqcTJSUlWLRoEQCgcePGisdDECELRxAE8RcrV67kAHBLlizxef+aa67hOnbsKPp377//PgeAe+aZZwLuf+bMmRwArlGjRtwNN9zAPfnkk9yuXbvqbbd06VIOALdw4cJ6n7lcLs+/q6qqfD6rrq7mOnXqxPXp08fn/UaNGnEjR46st6/58+dzALiioiKf94uLi7nIyEjuySef9Hn/xx9/5Bo0aODz/jXXXMMB4F5++WXR4/Zm1qxZHADu4MGD3MmTJ7mioiLulVde4WJiYrimTZtyZ8+e5TiO45YtW+YzthMnTnDR0dFc3759ubq6Os/+nn/+eQ4At3TpUs97AwYM4Fq1aiVrPAQRbpCriyAIAMCBAwcwYcIE5ObmYuTIkYr+lrcoVFZWBtxu9uzZWLVqFa644gp8+umnmDFjBnJyctClSxcf99ratWuRnJyMe+65p94+bDab59+xsbGef//xxx9wOp24+uqrsXv3bkXj92fdunVwuVwYNmwYTp065fmvWbNmaNu2LbZs2eKzfUxMDO68805F39GuXTukpKQgKysL48ePR5s2bfDRRx+JxgYVFhaiuroakyZNQkTEhal77NixiI+Px0cffaT8QAkiDCFXF0EQOHbsGAYMGAC73Y733nsPkZGRiv7+zJkzAIC4uDjJbW+77TbcdtttqKiowM6dO7F8+XKsWrUKgwYNwr59+3DRRRfh8OHDaNeuHRo0CDxFbdiwAU888QT27NmD8+fPe973Fkdq+OWXX8BxHNq2bSv4eVRUlM/r5s2b14uXkmLt2rWIj49HVFQUMjIyPO47MY4cOQLALZi8iY6ORuvWrT2fEwQRGBI+BBHmOJ1O3HDDDSgvL8fXX3+N9PR0xfvg09/btGkj+2/i4+Nx/fXX4/rrr0dUVBRWrFiBnTt34pprrpH1919//TVuuukm9OrVCy+++CLS0tIQFRWFZcuWYdWqVYqPwRuXywWbzYaNGzcKikD/mBlvy5NcevXq5YkrIgjCOEj4EEQY8+eff2LQoEH4+eefUVhYiA4dOijeR11dHVatWoWGDRvib3/7m6pxXHnllVixYgXKysoAuIOPd+7ciZqamnrWFZ61a9fioosuwqeffoqYmBjP+8uWLau3rZgFSOz97OxscByHrKwsXHzxxUoPRxdatWoFADh48CBat27teb+6uhpFRUXIy8vzvBesxYsgQhmK8SGIMKWurg75+fnYvn073n33XVW1Y+rq6nDvvfdi//79uPfeexEfHy+6bVVVFbZv3y742caNGwFccOMMHToUp06dwvPPP19vW+6vAn+RkZGw2Wyoq6vzfFZcXCxYqLBRo0aCRQobNWoEAPU+GzJkCCIjIzF79ux6BQU5joPD4RA+SB3Jy8tDdHQ0nn32WZ8xLVmyBE6n0yebrlGjRgFLCxBEOEMWH4IIUx544AGsX78egwYNwunTp+sVLPQvVuh0Oj3bVFVV4dChQ1i3bh0OHz6MW2+9FY8//njA76uqqkKPHj3QvXt39O/fHy1atEB5eTk++OADfP311xg8eDCuuOIKAMAdd9yBN954A5MnT8Z///tfXH311Th79iwKCwvxr3/9C3//+98xYMAALFy4EP3798fw4cNx4sQJvPDCC2jTpg327t3r8905OTkoLCzEwoULkZ6ejqysLHTr1g05OTkAgBkzZuDWW29FVFQUBg0ahOzsbDzxxBOYPn06iouLMXjwYMTFxaGoqAjvv/8+xo0bhwcffDCo86+UlJQUTJ8+HbNnz0b//v1x00034eDBg3jxxRfRtWtXn98rJycHq1evxuTJk9G1a1c0btwYgwYNMnS8BMEsZqaUEQRhHnwatth/gbZt3Lgx17ZtW27EiBHcpk2bZH1fTU0N99prr3GDBw/mWrVqxcXExHANGzbkrrjiCm7+/Pnc+fPnfbavqqriZsyYwWVlZXFRUVFcs2bNuJtvvpk7fPiwZ5slS5Zwbdu25WJiYrj27dtzy5Yt86SLe3PgwAGuV69eXGxsLAfAJ7X98ccf55o3b85FRETUS21fu3Yt97e//Y1r1KgR16hRI659+/bchAkTuIMHD/qcm0Cp/v7w4zt58mTA7fzT2Xmef/55rn379lxUVBTXtGlT7u677+b++OMPn23OnDnDDR8+nEtISOAAUGo7QXhh4zgNGsMQBEEQBEFYAIrxIQiCIAgibCDhQxAEQRBE2EDChyAIgiCIsIGED0EQBEEQYQMJH4IgCIIgwgYSPgRBEARBhA1UwNAPl8uF0tJSxMXFUdl3giAIgrAIHMehsrIS6enpiIgQt+uQ8PGjtLQULVq0MHsYBEEQBEGo4OjRo8jIyBD9nISPH3FxcQDcJy5Q3yGCIAiCINihoqICLVq08KzjYpDw8YN3b8XHx5PwIQiCIAiLIRWmQsHNBEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNlCMD0EQBEFoQF1dHWpqasweRsgSFRWFyMjIoPdDwocgCIIggoDjOBw7dgzl5eVmDyXkSUhIQLNmzYKqs0fChyAIgiCCgBc9qampaNiwIRW/1QGO41BVVYUTJ04AANLS0lTvi4QPQRAEQaikrq7OI3qSkpLMHk5IExsbCwA4ceIEUlNTVbu9KLiZIAiCIFTCx/Q0bNjQ5JGEB/x5DiaWioQPQRAEQQQJubeMQYvzTMKHIAiCIIiwgWJ8GMfhcKC6ulr08+joaPIrEwRBEIRMSPgwjMPhwPPPP+957XTG4fTpJCQmOmC3V3renzhxIokfgiAIQhGjRo3CihUrAAANGjRAYmIiOnfujNtuuw2jRo1CRIQ8p9Dy5csxadIky6Tzk/BhGG9Lz+7dV+DDDweC4yJgs7kwaNAGdOnyfb3tCIIgCOtgtlW/f//+WLZsGerq6nD8+HF88sknuO+++/Dee+9h/fr1aNAg9GRC6B1RCOJ0xnlEDwBwXAQ+/HAgsrMP+Vh+CIIgCOvgb9UXQ0+rfkxMDJo1awYAaN68Obp06YLu3bvjuuuuw/LlyzFmzBgsXLgQy5Ytw6+//orExEQMGjQI8+bNQ+PGjfHFF1/gzjvvBHAh8HjWrFl49NFHsXLlSjzzzDM4ePAgGjVqhD59+mDx4sVITU3V5VjkYpng5jlz5qBr166Ii4tDamoqBg8ejIMHD/ps8+eff2LChAlISkpC48aNMXToUBw/ftykEWvH6dNJHtHDw3EROH060aQREQRBEMEi11pvtFW/T58+uOyyy7Bu3ToAQEREBJ599ln89NNPWLFiBT7//HNMnToVANCjRw8sXrwY8fHxKCsrQ1lZGR588EEA7pTzxx9/HD/88AM++OADFBcXY9SoUYYeixCWET5ffvklJkyYgB07dmDz5s2oqalB3759cfbsWc82999/Pz788EO8++67+PLLL1FaWoohQ4aYOGptSEx0wGZz+bxns7mQmHjapBFpR0kJsGWL+/8EQRAEG7Rv3x7FxcUAgEmTJuHaa69FZmYm+vTpgyeeeAJr1qwB4HbF2e122Gw2NGvWDM2aNUPjxo0BAKNHj8YNN9yA1q1bo3v37nj22WexceNGnDlzxqzDAmAhV9cnn3zi83r58uVITU3Frl270KtXLzidTixZsgSrVq1Cnz59AADLli3DJZdcgh07dqB79+5mDFsT7PZKDBq0oV6Mj95urpIS4JdfgLZtgYwM7fe/ZAkwbhzgcgEREcCrrwIFBdp/D0EQBKEMjuM8rqvCwkLMmTMHBw4cQEVFBWpra/Hnn3+iqqoqYOHGXbt24dFHH8UPP/yAP/74Ay6X+wH+t99+Q4cOHQw5DiEsY/Hxx+l0AgASE93unl27dqGmpgZ5eXmebdq3b4+WLVti+/btovs5f/48KioqfP5jkS5dvsekSYsxcuRyTJq02BPYrBdLlgCtWgF9+rj/P2WKtlaZkpILogdw/3/8eLL8EARBsMD+/fuRlZWF4uJiDBw4EJ07d8batWuxa9cuvPDCCwACu+DOnj2Lfv36IT4+Hm+99Ra+/fZbvP/++5J/ZwSWFD4ulwuTJk1Cz5490alTJwDuJnHR0dFISEjw2bZp06Y4duyY6L7mzJkDu93u+a9FixZ6Dj0o7PZKZGUd0dXS43A4sGvXcYwbx/mIkgULgJYtOTzzjDYmyl9+uSB6eOrqgEOHNNk9QRAEoZLPP/8cP/74I4YOHYpdu3bB5XLh6aefRvfu3XHxxRejtLTUZ/vo6GjU1dX5vHfgwAE4HA489dRTuPrqq9G+fXtPg1GzsaTwmTBhAvbt24d33nkn6H1Nnz4dTqfT89/Ro0c1GKE2REdHa7qdFHyGwXPPfQKXq35ZcI6z4f77G+KLLw7B4XAE9V1t27rdW95ERgJt2gS1W4IgCEIB58+fx7Fjx/D7779j9+7d+Pe//42///3vGDhwIO644w60adMGNTU1eO655/Drr79i5cqVePnll332kZmZiTNnzuCzzz7DqVOnUFVVhZYtWyI6Otrzd+vXr8fjjz9u0lH6YpkYH56JEydiw4YN+Oqrr5DhFXjSrFkzVFdXo7y83Mfqc/z4cU+qnhAxMTGIiYnRc8iqSUpKwsSJEw2r8cB/Dx9M7Z9JBrizyZYv/wZZWUdUp1g6HA5ERlZj3rxYTJtmR12dDZGRHObOdSIy8hwcDqpGTRAEYQSffPIJ0tLS0KBBAzRp0gSXXXYZnn32WYwcORIRERG47LLLsHDhQsydOxfTp09Hr169MGfOHNxxxx2effTo0QN33XUX8vPz4XA4POnsy5cvx//93//h2WefRZcuXbBgwQLcdNNNJh6tGxvHcZzZg5ADx3G455578P777+OLL75A27ZtfT53Op1ISUnB22+/jaFDhwIADh48iPbt22P79u2yg5srKipgt9vhdDoRHx+v+XHoTTDFsMrKyvDqq68C8C2Y6I3N5sKkSYtht1di3LhxSEtLUzy++tWoE5GYeJqqURMEYTn+/PNPFBUVISsrCxdddJGiv2Whjo/VCHS+5a7flrH4TJgwAatWrcJ//vMfxMXFeeJ27HY7YmNjYbfbUVBQgMmTJyMxMRHx8fG45557kJuba+mMLiVoeRN16fI9srMPYefObti2LReANtlk/qLMbq8U3J/ZwW8EQRB6Y7RVn3BjGeHz0ksvAQB69+7t8/6yZcs8BZEWLVqEiIgIDB06FOfPn0e/fv3w4osvGjxS8/C/ecR6e8kVFXZ7Jfr2LUS3bjsFrTIEQRBEcJCoMR7LCB85HrmLLroIL7zwgifVLtTxd2udOnXK8+9Avb2UImaVIQiCIAirYRnhQ/gSyK1Fvb3UoVXBRr0LPxIEQRDqsWQ6OxHYXUW9veTh3S7Dv2DjkiXq9qnVfgiCIAh9IOETgqjt7aVVPSAr4C1QWrYExo4Nvoo0VaMmCIJgHxI+IYLTGYeiokw4nXGe3l68+JGbjcVnGAwbNkzWdxollLRsZCpUmZrj3P95U1cH7NzpUFSokapREwRBsA/F+IQAYoHM2dmHFGdjJSUl6ZpiKVcsVVVVoaysDKtWxWLqVDtcLhsiIjjMm+fE8OHnVH0/HxdVVJQJl2tkwG1tNhe2bl2BffsqZaX/OxwOxMfXIiIi1afqdWQkh7i4E3A4GlD2BkEQBAOQ8GEcsYKEfAaXVCCzkODhxUcwxQ7VIkdUVVVV4c0334TTGYfFiyeB49xCwuWyYcqUePz++1LY7fIEiTeBK1O7YLPBRzzy504q/d870HzgQF8ROmDABmzY4M6moyJkBEEQ5kPCh2HkFCQMFMhst1diyJAhSE5O9nzGixkzK4ZK7a+srAyA9LGpLXLIuwL9rWS8hSwqqho1NTEet6EU/Diczjg0afIHCgpeR01NdD1LGxVlJAginPjiiy9w7bXX4o8//qjXQFyMzMxMTJo0CZMmTdJtXCR8GEbOQilkvfAOZE5OThZsKyF3ETZzsZY6tmAQcwUePtymniA6deqUqPXL4XDg1KlTgu7GrKwjQY+TIAhCL0aNGoUVK1Zg/Pjx9RqPTpgwAS+++CJGjhyJ5cuXmzNAnaDgZosjFcgsN6bGOziaFdQGaSvZf1bWEc/+xNyGy5ZtxvPPP18v0Jm3mi1btlnw71g6lyyjZfA6QRDKaNGiBd555x2cO3fO896ff/6JVatWoWXLliaOTD/I4hMC8NaLyy+/GR07xiA9vSuArrJjdLSs8qw1aoO01aDUtca/lvo7QpwlSy6UAIiIAF59FSgoMHtUBBE+dOnSBYcPH8a6detw++23AwDWrVuHli1bIisry7Pd+fPnMWXKFLzzzjuoqKjAlVdeiUWLFqFr166ebT7++GNMmjQJR48eRffu3TFyZP0kkm+++QbTp0/Hd999h+TkZPzjH//AnDlz0KhRI/0P9i/I4hMi2O2VuP76KOTkNEVaWhrS0tJkiR4xKwdL1gp/y4xeqK1/pPbvwh2qe0QQvphl/Rw9ejSWLVvmeb106VLceeedPttMnToVa9euxYoVK7B79260adMG/fr1w+nT7nnu6NGjGDJkCAYNGoQ9e/ZgzJgxeOihh3z2cfjwYfTv3x9Dhw7F3r17sXr1anzzzTeYOHGi/gfpBQkfC6GHO4qqPF9ArWtNb5ec1ZA7eVPdI4K4gJlV30eMGIFvvvkGR44cwZEjR7B161aMGDHC8/nZs2fx0ksvYf78+bjhhhvQoUMHvPbaa4iNjcWSvwb60ksvITs7G08//TTatWuH22+/3dNAnGfOnDm4/fbbMWnSJLRt2xY9evTAs88+izfeeAN//vmnYcdLri6LoJc7Ss8AYtaQE++k1rVmpEuOZeS6rqjuEUFcQMz62a+fMf3+UlJSMGDAACxfvhwcx2HAgAE+2cCHDx9GTU0Nevbs6XkvKioKV111Ffbv3w8A2L9/P7p16+az39zcXJ/XP/zwA/bu3Yu33nrL8x7HcXC5XCgqKsIll1yix+HVg4SPBZDbdPSXX35BeXk5UlNTZS8aYqndZi7ccgOylVaO5msInTx5EqtXr/a873TG4fTpJCQmOjy1j4SOv7y83Oc1X0uJR6qLfSi3BHE4HCgursW4cReEjHvy5nD55SeQmXlByFDdI4LwJZD106hGx6NHj/a4nF544QVdvuPMmTMYP3487r333nqfGRlITcKHYfiFUswddfRoBuz2/Z73tmzZ4vm31KLhvQgHslaYsVjrWTk6KSnJZ79KLGlr1qzx/PuCWJKu9TNkyBCkp6eH7CIeqCJ2XZ0Nzz23EVlZRzzXpPf5D3TtUd0jIlxo29ZtIfUWP5GRQJs2xo2hf//+qK6uhs1mQ79+/Xw+y87ORnR0NLZu3YpWrVoBAGpqavDtt9966u1ccsklWL9+vc/f7dixw+d1ly5d8L///Q9tjDwwAUj4MAwvAHbvPoE33vCvNAysXXszqquFF2qpRUNPcaEFRnyvXEuaP0rdjsnJySEreoDAFbG93abe15qQlY0gwpWMDLdbePx4t6UnMhJ45RXjrD0AEBkZ6XFbRUZG+nzWqFEj3H333ZgyZQoSExPRsmVLzJs3D1VVVSj4y5d911134emnn8aUKVMwZswY7Nq1q179n2nTpqF79+6YOHEixowZg0aNGuF///sfNm/eLKugrlaQ8GGcpKQkdOpUjUGDNmD9+oHwjkeXu1AH2nc4oyYNXY1YCmUXlzdSblOn0wkAePXVur9akbBXPoEgzKKgwB3Tc+iQ29JjpOjhiY+PF/3sqaeegsvlwj//+U9UVlbiyiuvxKeffoomTZoAcLuq1q5di/vvvx/PPfccrrrqKvz73//G6NGjPfvo3LkzvvzyS8yYMQNXX301OI5DdnY28vPzdT82b0j4WIDo6Gh06fI9oqPP4733bvH5jOrFqEfKQuHd7uPo0aPYuHGj6hYhoYZ3nzfvWKdArqvVq1d79V9TZmUjrEVJiTtupW1bcxZwq5KRYez5kqrI/MEHH3j+fdFFF+HZZ5/Fs88+K7r9wIEDMXDgQJ/3/NPiu3btik2bNonuo7i4OOCYtICEjwXwdnmtXRseGVhGIGWh4Nt9OBwObNy4EYD6FiGhhH+fN7fbKlMyOBygYo/hABWlJFiHhI9F8HZ5XXC1uNClyy4cPdoCwFFaOFQgJw3dOzbFbq9EXl4hCgvzmMmCMxq1weFAeJVPCEfMTssmCDlQAUOL0aXL95g0aTF69NgKANi1qyvee+8WLFp0P3bvvsLk0VkTJZWhd+++wiN6ABfy8grDNj5FTdVvlos9hnvPMC2On4pSElaALD4WZdu2XPjqVhvFSgjgHYvC41+PRwx+Oz6GxX+hByJQWJiHTp32heU5V+u2klvs0YigcP76WLUqFlOn2uFy2RARwWHePCeGDz8XsjFa/mjlnmIhLZsgpCDhYyG86/oIGeu8Fx29Fw0hQeGNUQtGoHE4nU6fQoVi5Ofnw2631/sb77o9gLyF3swMLiW/iRa/n1q3lX8quzd8cLgR1w8fq3Qh4JovvGjDlCnx+P33pbDbK0O+kKJW7imHw4HIyGrMmxeLadPsqKuzITKSw9y5TkRGnoPDEdoikuM4s4cQFmhxnkn4WAg+yPnHH//AG29wnomaJyKCw8iRPdG58yDBCUZqsauqqkLDhg1FP+cXI//gVjH4KqDBLLBaCBsp7Ha7rIBkqYU+Pz/ftIld6W8id9tAxyMVHM6LmFOnTmHdunUApGOCjAwO568rKUEbyoUUHQ4HduwAXC7f37muDti504HYWHllL/yvv3vvjfNY9M6cqcSrr7rfZ0VEapl1FhUVBcA9f8bGxmowOiIQVVVVAC6cdzWQ8LEYSUlJ6N07Ca+9BowdC/Di122etuHaa9sK/p3chVEKqaKH3pw4caKe1URsn2JCzciiVlJILfS81cgM5P4mShZxOdsGclv5ixi1BSP1htWAa2/RX1oagaKiBsjKqkV6uts0E6xVzNviZbNNqnf8W7euwL598ixe/teKWGYfCyJS66yzyMhIJCQk4MSJEwCAhg0bwmazSfwVoRSO41BVVYUTJ04gISGhXpFFJZDwsSh8savt292vc3MDP7loNeEo2U9tbW1Q+9R6kgzkYpH7N2qakWplaVOCkmNVc168kVt5mVVXIWv96hwOh6efnNMZh507u2H79lxBK1kwFhT+mpQ6fhbEilbolXXWrFkzAPCIH0I/EhISPOdbLSR8LExGBnDLLdLb6U2wC6dW3xPoczXd7cX+RmyhF1q0tbS08W5GoYXIu4igkmNVc17UNpFl2VWoRtDqgff1snv3FZLV2rUQJU5nHJo0+QMFBa+jpiba1OPXE63cekLYbDakpaUhNTUVNTU1qvZx7Bhw5AjQqhUQ5LoeskRFRQVl6eEh4RMiSFkV+HYBF16rFxHeKFk4gxFIUt/j/3leXiHS08uQmOgAAMUuFim3jNwKzVpa2uSIKCXuJLWuJ7V93lh2FfLjM3vBP3nyJAD3b+Mveni0KPjocDhw6tQpwfsqK+uI6v2yipZuvUBERkaqWpip6KOxkPAJAZRaFZSKCDExo2ThVGNZkPs9Qp9v3nw9ABtsNhdyc7crTruWcsuYUaFZjohSkmIeTBVltYuDmZYV/4cDbysZCzgcDk+w/s6d3SBWZi3Y+CNvEfDhh+HRPoT/3Q8fbgPvpCCz3XoOhwPFxbUYNy4VLhefVQiMH8/h8stPIDOzARPB4KEGCR8GCDa1WMnNqkZE+E+GfH0buQtnsEGtUt8j9Dlg82y3bVuu4uBVswJeg3UbKhm31Lb+VkJ/5MYe+bu8xCwr5eXluqWxsxYoLwR/Hzudcdi+PVdwGy3ij+Rms4US5eXlnnnI13UIZGebU12RvyaLijLhco30+ayuzobnntuIrKwjzGTChRIkfExGSRqyFhe/GhHh/XlxcbGnwZzcRTbYCVbqe4Q+9yUCublb6wWICgXU8v+WcsuoDcLVMg5JaF9S4/a2ckhtK6dUgJzrkneN8QG7YvAZgHpM9ME8yRsdcC0s5IGOHX9E376bNRMlrGazaY3D4cCaNWtw+nSmwHk1T+jx16TU7xBKweWsQMLHZPRIQw60uKoREd6fe3fVlVo4+ToLwU6w0rEhvp8DHHiLD/9d3brtRLduO9Gq1XXo0CEazZplAciqVwvCP35l5syTKC5ugMzMWqSndwXQVbVVIpCwUWoVC7SvQO4kvp4OT7CuJ7nXZVJSki7XulrE7hG5sVt6Ina/aCl6AG2z2dQGvBuBXIFhFqxlFYYDJHxCDCmrgZybLDd3u6clhtRNmJ19CEOHrgXAoUWLEs92+fn5SElJkfWdYpOh9/uBFuhhw4YhP9+G7OzFOH06EaWl6aJNRMvLP8C2bfW/y9vK4L3QpaUBOTliZ1s+UsJGiVVMTuA1UF/kCOG/0POUl5fLqsHEW5Cs1Noh0D1iRuyWP0YuhHKErxyxojbg3UhYFhisZBXysFKZXy9I+IQQYgtiauox1NTEeJ5uxcSK/4KQm7sV3brthN1eiWuvvRZbtmzx+b5AC4jdbg/aeqJ0Mp0xI8Wr4Jv7u+LjT2DbNukgar2tDFLCRsnTqJzAa7nIXejFLCTe4kqpi0pNPFOwEzKrRRT9MbKfmVjM1ZAhQ5Ceni77N7XCQsiawPBGTVahHgLFP/xC7D61cuwRCR/GCCa4VWxBfP31MeCtN50778XevZ3riRWhBWH79lx067YTANCkSROf/ZaUpMlaQIK1nii5sYS+q6ysWtDC449Yhk+wTzb8wiQlbORYxeSa7LXOVpIbe6REPKrJ8tMiHs5KAb2BFsJhw4YhNTVV14UnOTlZk/2rXZz1sjqwULZAC/QSKN7nPNB9auXYIxI+DBFMyjcgFuTLgc9i4LgI/PDDZfDOeOLFipIFQaiwWqDtWTKbyrFc+BPMk4231ap58wq/5o0VGD78Np/KzYGsYg6HuyaRlEgSOha1gloPC4nafWoRI6RHnIfR1/ewYcNwySWXaLY/PeDPiVyXqf89ZpbVwcwmw0rRS6DwWbtWsY6qgYQPIwRzkQXKRBJL8+bhxYrcBUEoJTTQ9kZnrQVCrbAUmjiULHb8/x94AMjPBw4dAtq0sSEjIwFAgs/fBbKKCbkOf/jhLPbt+0CzIpP+6GEhMdPqonWch5bXt9xFNzU1VdZ2wX6PWhEQ6JyICRj/e8kMq4NU5XCWHuC80VKg8BlwgLWso0oh4cMIwRaT814QJ048iLfe2omoqGosWTJGwALkm/HE+7rlLAhiqbZi27OSyaP15KB2scvICK4nkL87Lz29DEePio8/2OMWE8RnzzaC0xmnS60hsfpBwbjw5AbKK13stby+gwkQVirE9QxE9t8vL3ZKS9PqJR3wAsb7t/X+DYy0OgSqHK6HBUorAaqlQPH+7VjNgtMCEj4mU1VVBUD6IuO3E8P/ZuPLzvuLGaEYH/7mCLQgBEpNB1woKHgdGRllnnfEblaj+nr5I2dykDs2VsScHNROioGtiMB7792i2Hokt0aSnPpBgLJryQpZR4C6AGE1Qtyo4/S21ng/dPkLGH/37LBhwwBos6hrITD0sEBpdU3qJVDs9krk5RWKZshaGRI+JsPHdkgtBoG6d3vjcDg8PlpAWMz06fO5aFp4QkJCvX16Twhi4+RFT6Cgy2BjmIJBanIINDaxp1EW8RcDUsctdjzek/KpU6eQnb0YR49m4L33boZ3zJiSp285WX5yY0LUXEtGLPZmCHtWhbi/tUbIzX70aAZOnz5X73zV1tYC0GZR11L0am2BCuaa5Od5vdL0d+++wiN6AHf/Q6Pma70h4cMQXbp8j9TUY/jtt5Zo2fI3HwuKHMSe/PyzGPxfy80QCSY13axAOTlWBqmxiT2Neh+bGVYsf8TEwKBBG7BhwyC4XL5B1VKTvfdn7lpD5yA3oF3OPtXWSGI16NJMYe+NUdejmHuNf1AQc4vz2Gwuj5AWO19aLepaiV5W4l68Y3EA7dP064vWCBQW5qFTp31k8SG0JdiJU8y3zk+AYhNiQkKCrIkhmEXLrAkjkJUhOjoL69Z9r3hs/NMowNZiJyYGunT5HjNndkNlZVPRoOpAyE3JN8oaxsri441RYkxIbHhbJI26HuW418SzTG0el6kc6yFLtXdYiXsREpxapunLucdYt34HgoQPI2g9cfpPgGL1e4zCzAlDTLCVlbmCGpvUb6ZXbSAhpCaq9HQX5BYkFlpchw0bhtraWtjtpXjsseaKrUdqERLrrAgwb4wQY1Jiw0hLmBy3mZC1Ji+vEOnppTh7thHee+8Wn+0DnS9Wau+wUv3ZO5wBCGzlU3M/SN1jUhlwrEPChxG0nDiFJkCx+j1G3bCsTBjeSLnBAKCoKFPUZSD1m+lVG0joGLQSA3Ke5O+7Lw7XXFOAnBy7YuuREsSsF3Z7JaZMOYQFC9rC5bIhIoLDvHn6CjApjBD2UmLDTEuY2MIrZq1xOuMCni//HnpimCFyzbZA+bu5Aln51AoUqfk6UAacFSDhwwhaTpzCvnXh+j1uF5hTt/5EeqURa4FYGYDExNM4fLgNFi+eFNBCFsxvplWgqZwCiUrEgNwn+auuqkJamn6Tn5T1omHDt3HffXGea2nUqJFISjK+x5bcTDUjrm+zrKpy+gP6iwM5CyvLWXhmWqC8z4nUfaJUoLA8X2sJCR9G0NIiEsi3foELE2JNTU1QYw8E62nEQmUApCYT/mk0mN8sUE0apedDSYFEqyDHeuG9+JhVOiDYfnTB4G9lMcOqKqdhrnfvuFOnTnksoVKWE5ZcKUYUfVQzR2pt5WN9vtYKEj4mo4fC9p8AARf8LT42m+Cf6oLcm4SVyqhSk4n/06hQwLQUUp3T1brC+AKJDocDZWX6nUsh4abF7yPXdWc2YtdqeroL6enVul+rYlYWo5/S5TTM9bYm+49BzHLCmkVBT0EQTEFUPe4Tq4saOZDwMRm9bijvCVBpIKEWKBUxLLW2kDOZSAVM86hNLQ7GgqHluVTa2yzY38ffdTd1qh0ul42JmDAeI69V7/uIF5tSVpY777zex8oC6PfQoHTh1WK+M+sBSa95J5g6TIcPt/krO84NC/cJKw+wgSDhwwBaXQRiT1NSgYQNGmh7GahZGKRS8Xn0dGloHa9hVqq7VgXt1Ixfi9/H23XXu/dxPPfcRo/1goWaSUYVDBS7j5RaWfREjXstmPmOpQcko+GFr78A9q6txXFAdvYhz+tAc5UeAsUqvw8JnxDC/2mK96dLTU5C1ZqDIVgRY5Zg0DJeg9Uie3JhZfzp6S5P+xVWaiYZhdj9wYIbMFgXvdpFl9Uq1Voi18oqnMRyQQAHyujSS6BY5fch4RNiiF2kwaRgek9SpaURKCpqgKysWqSnu906gcSA0sXK7AVXi8rCgPygQxYsGEKwViTQ7OuCJVjIIAu2oaoVrAJmoGS+lBLAgTK6rCJQ9IKETxihJgXTe5IKdFMKTVJqFivWFlylKAnONcqCIUdc8eKW74zOglXBG62uCz3M+2aIV+8Hmdtv74ZOnfTNIBNCq+7twWzH6oODGpTOl0oFsFC8WLhCwochgrGsCKFlV2Kpm1JoklKzWLG24CpFqq5O377XY926dYZZMOSIK6EncKlJ1agFR8sCjXpYGox0vwmlr9vtlejUqZ9hMT16oPZaMtP1qYeADjRf8p/7n6MnnsiS5ZKXe+2HCyR8GCEYy4oYWmaMSYmYU6dOecSa3V4OQJ2IYbHCs1IC1dUpKzsHwBjLllxxJXZ9iLlHjVxwtCzQqMbSEKg3lpHut1CNb1J7XGa6PvVy1YnNl6Wl6XjjjTsEz5E7kL2ppEs+VF1WaiHhwwjBWFYCoZXZW0rEPPxwET78sONfN2cTDBp0haczuFIRY3ZJeC3h6+rwGNnwUwtx5e8eNWPBMatAo9QCZ5RbNlTim3gRqYVwNNMlrnV8TKBs0ry8QhQW5un+24eSy1AOJHx0RI3ritUYl0CWGKnO4HJEjFULmylF6xYTQugprqSuT71/H38hqSdSC5dRzVJZnROUICQigzkuq7vEvRHKJv3hh7PYt+8DQ357Pa2JrAoqEj46odZ1xfINLSZipCsdS4uYcCmVDuhvwQhWXIlNVsOGDUNVVSJWruTgcl0o/R0ZyeGee25AZmYDS/0+wU7K/MPAhg2DVHWrl4oTqaqqAsBmN3qlCB2nmrmOpd5oPFos7v7ZpOnpZTh61L2vQOfIO0i5qqoKDRs2FNy/WDCz1tZE7/MeaN0z+5ol4aMTUq6r1NRjqKmJQXFxLbznR9ZjXIREjNQE5t+vBxAWMVZaNLVCLwuGWnEVaLKqrXVbK+fNc/qIqVdesSEnp6n2B6EjgY6TXyTKy8sl99Oly/eYOLEtqqrSFXWrlxsnMmLECDRs2FA366BZ8GLB25Ujt/ih9wPS/ff/il9/jUCLFufRrFkWgCw0aNAA1dXVKCsrM611SLDIFXhSrW/E4M//2bMNNbXg8r9PcXEtHnssFRxn8+zzo48GYebMbkw8IJHw0Rkxa8iSJWPAcRFYuZLDvHnl6Nv3giK3WoyL1M1pZCVZKaxQTl1r5Iorqac/70n23nsvdEYfPHgkAG3PmZ6/k5Lj9P87oSf7bdvWAAD+9reJkHse5MZ/NGzYEGlpaSHVgNZfLOTlFSI9vVR28UP+d3c4HPjyy1cBAEePin/fsGHD6hVp1eI+1zP2yl/gTZx4EG+9tVOT9cD//Lt7OV5Yo4K14CYlJWHvXsDl270HdXU2VFY2BQvTKwkfnRHrlM6/drlsmDIlHr//vhne9abU1NzRA7mKX61Y0zqFX+q7qHCaOEriCbyvT60zRvT+ndTETch5stc7c8bI+Ca9EBILhYV5mDRpMez2C93cq6qqPFYbIaKjo2Wf7zVr1gi+H+x9rnf8jf/Y+ArmwSB0/t3rk1v8aGXBbdsWiIjwFT+RkUCbNkHtVjNI+OiMvzXEX10D0jeL95Om0QSKveFbYvAoFWt6pPAHgoV+YCyiVUd0raw0elWVVXucoZJVxQJy+oxFR0fj1VdfldzXsGHDfF4rjbUJ9j6Xuo6842pYsSSLnf+bb16DRo2q8MADf8ellzYJ+nsyMoBXXwXGjwfq6tyi55VX2BHuJHwMwNsaEhVV7XFz8QSadP0FQatWVbjvPqNG7oa/YUtKgF9+cat5LS5gvVL45RCqdVHUIBYMHRHBYeBAefFlVrCmeR+n3V6K2bPTZcWWGFVzicXsF62RIzrl3u+1tbWefxt5P6uNv9Hy2ld7vdx++1WCyQkPPXTNX66t4EUPT0EB0K8f755lR/QAJHwMw9saEuhm4U29TqcTu3dHYvbsNj4BYg880Ah/+9txwwPEliwBxo1zmy4jItxqfvDg4CtDA8an69ITfH2EgqHj4k5gw4YLi0egydYqvX/44xw3rgxO52KPaxYAiooyBY9NbLGOitLmWMJJhOuRvCF1P2stKtXG32h17cu5XsSOuVOnBLz6qs3PEiPs2tLCgsuqe5aEjwkEiofhTb3Tpv2M9esHArD5/G1dnQ3PPbcRWVlHDHl6djgcKC6uxbhxqZ6nBJcLGD+ew+WX13qyTsSQc3MYncIfCnVR9ISfrMrKLjjozVyc9bKG8A8jgY4tPz8fNTU1OHzY213NeRIUxM6D1KLBZ4ypFeFWC9JX0s1drkuaJ9D9fPhwG12uWz3ib+Qg53qRulflWGKsYMENhpAUPi+88ALmz5+PY8eO4bLLLsNzzz2Hq666ytAxSFk5AsXDFBfX4sMPB8I/FgjwFQR6Pz3zF39RUSZcrpE+nwUjwHiXWXy8+/iMTuFnuVYSi5hpIdNbcEkdG9/hukuXdUhNPYbXXx8D/r4UOw9K+iKpEeFWXJSU1OnyDmiW8/sHssiZcd3q6baUul7k3qtSlhirWHDVEnLCZ/Xq1Zg8eTJefvlldOvWDYsXL0a/fv1w8OBBpKamGjYO/xvdPxBYDKfTiT17osFx9U2PRtf04ccuJRTkXPz8E+qqVbGYOtUOl8uGiIhUDBzobm1hZAo/67WSWEPN4qzF5K+n4OK70Cs5tpqaGMhJTFCyGKgpTmjVRUlN13s5v7/Y/VxTE2O4ZVfvuj5S14vZldWtQsgJn4ULF2Ls2LG48847AQAvv/wyPvroIyxduhQPPfSQoWNR87S1evVqOJ1xsNkm+V3ALhQUvI6MDOH0Tj0JVijwT6hOZxwWL57kiVlyuWyeiQwQ7j6sF1arlWQGSlpfeC+yWk3+erkkHQ4HVq9eDUCZ8NC6gnJ+fj7sdnvIFSfUCqnfPyoqyvO+0P3snkeNs+waVdcnMfEYZs1K++vhkcO0aUWIiXHvP9A1OmLEiLC+nrwJKeFTXV2NXbt2Yfr06Z73IiIikJeXh+3btwv+zfnz53H+/HnP64qKCl3GpmRSFBMaZogenmCEAr8oik1kO3d2w/btubrHj4RLPzCtUNL6gndPaDH5693I1VukBRL1w4YN8ywUerQAsdvtmhQnVGJds1JskNTvb7fbBd1nTqcTq1evNrythRF1fRwOB+rqnsd9910oIMqLHiDw9RwoFjPcCCnhc+rUKdTV1aFpU183UdOmTXHgwAHBv5kzZw5mz56t+9jk+LjLy8s9xbZYtEgEW1RRuJijyyN6AOGFUqsJKpz6gWmF0tYXWkz+RjRy9UbsXvOu9qtHCxDvOi+RkUC7du5/Oxzyj02JdY2F2CA5wktJPy6hcaalpdVr+llc3ACZmbVIT+8KoKsu97kRsYP8MQWai1lcO1gjpISPGqZPn47Jkyd7XldUVKBFixa6fJfSG42V6s1aITSR5eZux7ZtPX22814ovZ+6eYKpJ0SiRj2BAiK1ttLo3cjVG6XxSHq0APFHjviQ2j8vrPhF3uzYICXCK1jh4t/0Mycn6OGLwmLjVK3XjlCrMxVSwic5ORmRkZE4fvy4z/vHjx9Hs2bNBP8mJiYGMTExRgzPkmh9wfs/jQDwsfgAvgsl/9QtHBzNYd48J4YPPxdWlhoW3RVaWWmEjk2tNUQOemaNBWP9kiM+pPbvLawmTpxY7++NXsyUCC/v3n56C5dg8bckG2VhAoR/Q61/11CsMxVSwic6Oho5OTn47LPPMHjwYACAy+XCZ599JnjjWx29nyBWrYr9KxhZ2wve/2lEKnA6UHC0u8/ZUtjtlUyl7+oFC+4KMYKx0jgcDpw4cUK0r5I3Wh2b3mn6ers+lOzfX3SwsJiJLdDeLkB/WH3AMdLCxCP0GwLQ5Hfl1xape8Sq8ZAhJXwAYPLkyRg5ciSuvPJKXHXVVVi8eDHOnj3ryfIKBYYMGYL09HRdJ4CSEmDqVDu8q0aLLQrBXvxSPmmp4Gj+CZe19F090NNdoaUlSUnFViV1bwDtXDFaBqN6nzu+OKGcbEg1T+eBXCt5eYU4fTrJ87kQLFQuDyS8pMp+hMMDjhRCv+H69QNhs0GT35W3Ym3ZAixaVP8e6dlzJHr3tm7oQMgJn/z8fJw8eRIzZ87EsWPHcPnll+OTTz6pF/BsZZKTk3W94BwOB3bsAFwu3+/guAh06jQYPXpUewq7afUEJscnTYUH66PVU7OZliSzBKtW11Ogc+ct6keN+huSkrKwbp17gVdrdfF2rZw6dQrZ2e7WG6Wl6SgszJPcn9mVy+UKL2oiLI7QbwhEgON83wnmd01KSkL37sJd1rt1S4JFNQ+AEBQ+wIXgOKsh13Kip3nR263kX0vIZnNh374PcPSoMreSVuMNpcKDQtYVp9OJmpoaAECDBg18soqA+udRy6dmswNfhZCyhqi1UGkdjCp1TnhR365dPwCNPMcWjNXF+7j47d944w5Z+zP7AUKO8GLBFcfDYkydWIast8UHCL78A+td1tUSksLHqrCQbu2dLhloURAao1i2ldBxya1k7U8opGoqde14M2zYMADBL5xSi7UcS5LaYGVvhCZjpzMOO3d2w7ZtuQCEF75gLFR6B6PKcV9pbXVRsj+pe9vfWqj1nCMlvFhwxfGwFlMnJdrPnbuontXPbq9Efn6+6vGx3GVdLSR8GIMln6kSkSHUvb2g4MLn/selxLrlv3DKcYt5L7ilpREoKmqArKxapKe7PPs161zLacIotnjW1tYCkL/QqYkhUWJJCjThy100eDHn/93ex+W/8AVrodIrGFWupUJrq4uc/cltFCr0QDJs2LB6Fkjv/Sq5l6SEl9muOG/kNkw1yhIaqDP84cNtPKIHcMd78dceH5qgFla7rKuFhA8REDkio6TkgugB+O7t7qcEsZtFbdNCOXgvuIEWIhaCJNVmZshZ6NS4C5Q+bQf6/eQuBryY8/9ub8xa+JQg59zpVfNFjhtYjuVVbGGXyraTcy/JFV5muOLELJPe1i9W3G9CneHr3zsRKCzMQ6dO+0y7Z1h0EfKQ8AkBginoFyxigdB1dcDOnQ7ExopbsfS66PmbTWohMjtIMpjMDKmFTq27QOxp++jRDJw+fS7opqOBrE/CAZtupBY+FgqsybFUaO1mkysm+O0C7VfOwh6MxUPqYYcXYUbH8smxTBrhfgtGKBhhJVMyPtZchP6Q8LE4Ui4mPXA647B1azTatfsD69aJB0Jv3boC+/YFX19HbdA3SyZzIdRkZkg1Zgy0bznHLhY0uXbtzUE96cpZVIW/2/39/tYQPZqiBotcS4WWbjat4gLlLOxanGe584CRsXxy3Fl6zyVqhYLciul8iQUh5MbqKRkfi8kS3pDwsTBqXEzBwk9+ixZFICKCw8CBV6BLl+8VB0IrQe3kbnb2ihRqMjPEGjPy8E/Nao/d/2kbcAGwQU49JzGkFtUzZ84Ifjff0qRbt52eAM2UlBTNm6JqhRJLhZZuAC2emKUWdrntMZSO3RsWmggLibvs7EM4e7Yh3PeCPnOJWqEgVTF9wIAbsXr16qBdlawLGaWQ8LEwv/ziW18BcLuYDh3SR/j4T34ul80z+en9hOZ9U8p17bGe/i42PqB+jI9/rIbafYsdu5jL5OzZRnjvvVt8tlX6pCu1qG7atAmAO4B23LgEP/dPawCtRRdTFqx6St1NLLoBpISykvYYgLqxG5HVKiQ4edEmJu7cFtgIABx48aNmLgkkdv0z6ZS4bgNVTC8rOydrbFYRLFpBwseiOBwOxMfXIiIiFS6XzfN+ZCSHuLgTcDgaaPLU5Y3U5CcnEDpYlLr2hBYiflIpLY2AV0sgUxBbKNWKSKWLMI//osNbjtxuzOCsZmKLalSU72SbkJCAtLQ0Re4fFqx6Shds1jKFAGmhHOg3LCrK1Gzsehdm9RacvuddfH67gA02G4ehQ9egRYsSxaJHbgmLYFyKoZZ9pRckfCyI9000cKDvTTJgwAZs2KA+a0lsEnc6nTh6lMPKlZyP0DJqkXE4HCgursW4cReEntu1xyEt7RSqq6Nx5ZV2wZveW5B5TyorV3KYN6/c8Canckz6as38wTw1C72nhdWsvvuMA8dFYMmSMUH3EpIO8nYG3IdWv7na/bASnwQEFspC57lz571YsmQME2OXg1RcWHb2IZEYswtwXAQaNaqqd/1L3Zdyxa7erlutkgBYSCYIBhI+FsT7Jgo0WWn11OVwOLB69WoA9YWWEa4jXugVFWXC5Rrp81ldnQ0DB7qf1CIiOLz6qg033ii8HyFXnRlNTgOJS6nKzXLGp/QYxKpI8yixHPmP13sfqanH8PrrY8DHSQQzqUtlR5WXt8WaNWs8160YZpY0kBs3o6colxtXA/heB1FR1R7RIzR2lhE775MmLa4n7i64udx4P+gNGTIEycnJin+fQGJXT9etViJbbZkMloSSKuFz9uxZNGrUSOuxECrR28UkV2jp/f3CwcCcj5AZP57D5s1nBPfDUpNToYkyzQS/m1wT/NixNygWYrw4KS0txbp161BTEwPvRQQIvpcQj5R7jAV3kj9i1+NPP3VAx47/84mb0UugSVkInU6nj3jk55qiokzTY6vUEmge8J/fDh9uI/qgx4ue6upq0Vpj/veIlNjVy3WrlSVJzX5YsmryqBI+TZs2xbBhwzB69Gj87W9/03pMBOMYEcsj9r31M458J7C6OhtWrNiKrCx3w1q73R50plMoI9cEz8ffKMU7tdWs88/ixAuIC/lNm/pj8+a+PuM8ceKEblafQPtNS0sTjP1i9V7ytl6Wl5d7imMCwB9//AFA+jr0nt8CPej5i0Kxe8e7b6ScOEk92oloZUmSux/ekigllPTM0AuEKuHz5ptvYvny5ejTpw8yMzMxevRo3HHHHUhPT9d6fEQIoOXFHcjcDtRP/fZerFnP8jIbvQWCnuefX/D4xY5f5FhKd/dHKPYJEC4bsGbNGtPccnrFfmlNoOBlAH/9O05y7Ndffz02b97s2Y/Ygx7nVXAr0L3j/XAhRzAqbSci57oIVqjKrRfkXShz4sSJ2LIFWLSovlDq2XMkevc2r0WTKuEzePBgDB48GCdPnsTKlSuxfPlyPPLII+jXrx9Gjx6Nm266CQ0aUPhQuMH7vL3RIz7BeyJSOvmGQpNTb+TWg5EqyW+UQNDj/Ady17GQ7h4I/nz89FMHbNrU3+czjovAzp3d0LdvIQD2Uo5Zu5fEgpfdgpKDf8NbsbFnZWXJShCQWyHeGynR5T2Hym0nIjRO7wcBOd+rJGlCqF7Q8OG31Zvrk5KS0L27O/vWu+xKZCTQrVsSzOwWFJQ6SUlJweTJkzF58mQ899xzmDJlCj7++GMkJyfjrrvuwkMPPYSGDRtqNVaCcZKTkw2PU1Ez+ZrlqtOawOm5F45vxIgRePPNNwNup6dA0LswnZi7LirqPM6ebcicS0bofHTs+D9s3ty33m+wbVuup4AjC7BQZFCK+n2rbBCzpImdVzkPa3xcj9J7J9CcJTaHKrHGij0I+H/vuHE3wm6X3yIlUL0gIEHwbzIy3CVHxo9315iLjAReecX8lPughM/x48exYsUKLF++HEeOHMHNN9+MgoIClJSUYO7cudixY4enOBlB6EWoCBmlyG3bUFVVJbldVNR56FWZ1ojCdDz1n/RtcFfDdjHjkvE+H979qXJzt2Pbtp5+W7NjnQKC/y29LY+lpREoKmqArKxapKe7JP9WLoF6vgHSgl6paJPjRgpGMAbbONj/QYf/G/9QACUoqRdUUODuJuAWSuaLHkCl8Fm3bh2WLVuGTz/9FB06dMC//vUvjBgxwifro0ePHrjkkku0GifhhdreVWahdxNV1lIljUbuxCi23blzF6GwMA8XqtPaNBcIRvjyhZ/0AXf/Mxduvll54Tm9EDof3brtxLZtudCrLYJWqP0tvS0RgYR6sLFM4j3f3AilpPOoEV5y4p2CEYzBWGNZCexnrbCiKuFz55134tZbb8XWrVvRtWtXwW3S09MxY8aMoAZHCGPkEzS/L7XbadFENdD3y7mxrSYUlSJ3YhTbbvNmXvQAvOgpKHgdGRnCKbqsEvhJX13hOSOx2ytx001sBQxridyYmGBjmYSECF+PRyglXQv3vByXu9r5WG1gMsuB/WajSviUlZVJxu7ExsZi1qxZqgZFSGNkNLxaoaVVE9VA7RTk3NhGC0WjkTsxim0nJIZqanwFAUsCQYxAT/paFJ7TA//zylrAsB4YEXDufx7d36vvOdXL5a42g471wH4zUSV8GjZsiLq6Orz//vvYv38/AOCSSy7B4MGDKZsrRFFTDXjHDsDl8v27ujpg504HYmOV7dN7Wz5mRerG9o5tMXuB0xO5E6PQdnl5hSgszBMVTUOGDEF6erolzp9YengwT/ladlEXIikpCfn5+YJFAkMVo2oA+Z9HqXOq1CVvpCVZjSBmtdYSC6hSKT/99BMGDRqE48ePo127dgCAuXPnIiUlBR9++CE6deqk6SAJa8H78t0NLifVu/G2bl2BffvUt4jgrY1SN3Y4ZRTKnRiFtouN/TNgdVoriB4e/zpPNTXRqp/y5WbNBRuTkpKSIms7K1jd5KBXDSA156eqqgplZWVYtSoWU6fa4XLZEBHBYd48p2QPP70tycFm0LFYa4kVVAmfMWPGoFOnTti1axeaNGkCwF0Vc9SoURg3bhy2bdum6SAJa8FPBFI3nh6+/HC+seVaCvy3s7p7RUm/KaHtxZCbNRfsdRzqrlgh9Ljm/M+jf+VmAIiKioLdbgfgFj1vvvkmnM44LF48CRzHNz/27eHXq9dwOByJgtlnev4mWlwXVr+39UKV8NmzZw++++47j+gBgCZNmuDJJ58UDXYmwhO9b7xwvrHlLuByLF9Wdq94LxBCix1wYcFTIyCMCBJlRdTonYHpjR7XnG//tsDuTDl1eA4fboPZs7N1yT6Tg5r9q7EU6e3SZQ1Vwufiiy/G8ePH0bFjR5/3T5w4gTZt2mgyMCJ00HtRtfKiHQxKngj9tysvL8eaNWskv8Mq7hV+UtajgGaoB4nyi54ad08oIOYyj4qq1jX7TC+UWorkNio2q2WKHqgSPnPmzMG9996LRx99FN27dwcA7NixA4899hjmzp2LiooKz7bx8fHajJQgLIIRRdp45O7Hfzv/5pNChPqCJxepWDL/xpE8Vjh/3vF4gdw9Wix6rJaVEHOZ19TEWFbwKvmt5DYqZlXoqUGV8Bk4cCAAYNiwYbDZ+FLg7oZtgwYN8ry22Wyoq6vTYpwEYQmMKtKmBWZ/v1WQiiXjSysILRbDhg3zKezKmhjiFzMpq5YWix7LsUxCLnN3ckZ4ZUUFU/DQSu4yVcJny5YtWo+DIEICvYq06WVFstJkZSaBYsnEFgunMw5z5/5X8ywwPTAq9dmo45YbqyTWzgEwN3nCSKsxTzCxbFZzl6kSPtdcc43W4yAI2agxmQcTtKlmEtIyLkQvK5JR6dqhglAsmVQbED2ywPQglDIk5VaLX7Uq9i/3nrh1w4zkCbOsxsHMWXKvaVaufdXVBsvLy7FkyRJPAcOOHTti9OjRnlRBInzR25cv12QOQHWNDh61k5CWT9B6WZGMSte2KnKuT7HFwrsopBmtAtQIfatnSDocDhQX12LcuFS4XHysEjB+PIfLLz+BzMwGSEpK8mw3dWqqJ6Yp0G9kdPKEUa09/NFyzmK9f6Iq4fPdd9+hX79+iI2NxVVXXQUAWLhwIZ588kls2rQJXbp00XSQhLUwwpcvV7AEG7SpdhLS4wlar+wi6unjRsjtl5+fj5qaGgBAgwYNPPE6fNsU4TYZwm1A9A6K1SI7y6oZkvz9XlSUCZdrpM9ndXU2PPfcRmRlHcGIESPw5ptvCm4X6DcyYyE3OptQqzmLlcaogVAlfO6//37cdNNNeO211zwtKmprazFmzBhMmjQJX331laaDJIxByxoeZrtGtA7aVDMJyX2ClnKllZeXA9AvDiPU07XloNbtp6YNiJ7jNyI7i0X4+0fqHuHb2Ci5l8QWcr2zz8xoORGs1c8qD1GqLT7eogdwPw1NnToVV155pWaDI4xDiy7qLKLV5KF2P1JP0HJdafy+9IjDMHqCZTGgOhi3n9I2IEqQG19mZHaWEowsiAgE17fOe7v8/HxwHIeSEuCxx9r7uMQ2bBiE++/vwMyxBEuwrTG8scpDlCrhEx8fj99++w3t27f3ef/o0aOIi4vTZGCEcWjVRZ1FtJo89JqE5LrSePSIw9Di2OSKGdYDqtU+serRBkRJfBmPUhGrZzyeWQ9TwfSt82bNmjV/ucQu8Xnf5bJh+fJvkJV1RPfr1Ii4Ky1DE6zSGFWV8MnPz0dBQQEWLFiAHj16AAC2bt2KKVOm4LbbbtN0gIT+/PLLBdHDU1cHHDpkfeEDaDd5yNmP2oVEyZOSHnEYwZwjuWKGf4rmYSWg2uFweIoQHj3aQtbvIOd3DvZ3UhNfplTE6hGPJzfIWE/U9q3j4eO6pBZy465Tm6571+r3sEp2oCrhs2DBAthsNtxxxx2evjhRUVG4++678dRTT2k6QEJfHA4H4uNrERFxYZICgMhIDnFxJ+Bw6D9JGYFWYkFqP2oXEhaelNSeo0Buotzc7ejWbSfs9kqsXr3asx0rsQBCVhV/hH4Hod/Z6XT6HKMYSq0nSt0HSkWslve33CBjq8Qamb2QWyFQGPC9pgNdf6y0wFEsfOrq6rBjxw48+uijmDNnDg4fPgwAyM7OltUMkWAH70l/4EDfG2zAgA3YsIGdKsNWQs250mKCVTqpaO3mEBIz27b1xLZtubjpJt8Jm5VYADGrygXEfwej2oCoEcVmZWfJDTK2UokEo9P8+QBsqYcDfjsWYLkqtxCKhU9kZCT69u2L/fv3IysrC5deeqke4yIMwPsiDXRzW2mS0hoj+wsF+g3y8/MD1shSM6loPVkJiRk39a05LFi4vBEb+803v4dOnfbL3o8eE7vZVgc1WHHMgTBSSPIGBKmHA7MNDSwmKchFlaurU6dO+PXXX5GVlaX1eAgTsWoNDyG0EixGP8mI/QZ2u12XzuNaTkzCNW3c+FtzWFsYxYRYixYlpozHHysWF/QfMwAUFWUiMdGh+XfJvd/ligXvjGWzYO3hwBvWkxSkUPXrPvHEE3jwwQfx+OOPIycnB40aNfL5nDqyE3ojlSarpWDR68b1DqplvdKpHPzFjDdCEzZLi7lcIWZmjEKgBxOWO5/b7ZX1YlWaN6/AAw8o21ege17J/S5nOxas3Kw9HHhj9arvqoTPjTfeCAC46aabPN3ZAerITqhDbq0PpZVpWXzS4FFSvwdgJyhQCl7M7NzZDdu25QIIPGGzZGUMJMSGDBmC9PR0Zq8plmMshGJVpk61o3fv47IzvOSkxss9NjnblZWVydqXN3rULArm4cCIGkqsJCkohbqzE0ER7M0lt9ZHqFWmlZuqzPqCK4TdXom+fQvRrdtO1dYcs4SemBBLTk42/DdQasVh9RoRilVxueRleJmVGq/03OtZs0jJw4EWbUuUwEqSglJUCZ+srCy0aNHCx9oDuC0+R48e1WRgBPsEc7MrndBYrUwbLFLHY8aCqxSxRUJswtYjUDsUYdmKowS1GV5mpsYraYS8a9dxU2sW8ZjxcMhyHFIgVAufsrIypKam+rx/+vRpZGVlkatLJkaXc9eKYJ/CgpnQrHqjiREKx8MvEidOnMCaNWskt09JSWFmsTYrNkbuvc/KeZKL0HlSG6tidmq83EbIrNQsMuPhkOU4pECoEj58LI8/Z86cwUUXXRT0oMIBFnpjqZn0tbjZg5nQWLvR5PZSEoM/nvXrBwKIQKC6MSyTlJRkSQuFkWPWyg3B8gOT9/nkO9gDwcWqsHbP82gpzLx/09jY4MS40Q9TLCUpyEWR8Jk8eTIAwGaz4ZFHHvFJDayrq8POnTtx+eWXazrAUIOFcu48aiZ9LW92qQmttDQCBw64J4PIyAt/x8qNpqSXkv9v6nQ6fV7bbADHuf/vv50eaex6wYqoUSJIjRhzsG4Io2M3gkFsHMEEskvd82aKwWCFWf2H4ODEuNZCUehestvL632nFQQPjyLh8/337omc4zj8+OOPPoozOjoal112GR588EFtRxhCsGYaBdRP+lrdXGIT2u7dV+Cxx1L/mgw4zJzp6z5l4UZT00uJh+8FJPW3/HYswXrhsmAEqV4E44YItcB+tYjd824xaK71XO3DmHiD6KSgBJxWD4fi91ITDBp0hU/2qVBJDpaqS3ujSPjw2Vx33nknnnnmGarXoxCzfdZao9XN5T+hXRADFyb42bPTMWlSnOR3eFuJjHryCyazwWpZEf6Fy8QwcxEORpDqjRo3RKgG9muB0xmHxx6z+wkH463ngPKHMYfDgR07AJfLd4x1dcDOnQ7ExgZnjdTi4VDuvST2gPHmm28yKciF6stLsmzZMhI9QcBbS2w2993Kis9aDXZ7JbKyjmg69kATfCB2774CV12Vij59gFatODz9dDnKysrgcGhfKdYbfjHzRmox4yvDSv2tmgqyDocDZWVlov8Fcz5OnDjh89rpjENRUSaczjif91lYhNVeR3oSzL2v5joLdU6fTvJprgxcsJ4///zzut/7auEfILZtWyH4m27duoKp8Qe6l8REET8nsDAX+KMquPns2bN46qmn8Nlnn+HEiRNwuXx/uF9//VWTwYUyrMSpiGGmz1zNU7GQlcgoN4Aat19CQoKsv+W3k4ueFhmHw+GTtbV1ay4KC/OY7RzNasac2nuf1SBfMYzImLOq9Zwfl9Rvysr4A51nq1mtAZXCZ8yYMfjyyy/xz3/+E2lpaYIZXoQ0LMSpeCMngNIIpCaDIUOGIDk5GQA8mSNmuwGCEbJaimD/4xRrhaHmfHj/zdatudi8+XoA7nufxYqtLAsFtfc+6w9M3gSbMSdnvmH5N5aLVr+pnkKzfjsaF/LyCj1jZfEBIxCqhM/GjRvx0UcfoWfPnlqPhzAJuQGU+fn5QX+XnBsv0GSQnJxcL9OJhaf7YISsHiJYTisMNTidcdi8OQ+86OFh8SnPSkJBLqw9MAUiGCtrIOHknSqfnX0IQ4euBcChRYsSw86NlkJDi99U79IMXbp8j3PnLvJYeQsL8xAb+ye6dPnecuJTlfBp0qQJEhPN85MT2iM3gJLjOFn7C3Szi92g3pMZoGwykHrys1paeLDo2UPn9OkkCIUHGi00xbLL+MavPFYSCoQvUou0XuJe7thYq1vl/11ahiw4nXEe0QP4zilWe8BQJXwef/xxzJw5EytWrPCp5UNYHynLSUJCgiY3ux6TAX/zHT2aAcCGFi0utE9ZvXq15nE+wTzx6R3/oKffXegaATgf07fe+Mcysd7dntXu6XJhsWgiCw0yWctW8kbrIrlSc4qVHjBUCZ+nn34ahw8fRtOmTZGZmYmoqCifz3fv3q3J4EINK0x+cnzmLN/shw+3EX0C1CLOx9/KkJ+f71Nrp0GDBj4ByWIiUO+nRT1df0L+/uuvL0TPntuD3rdcvM+b2qd+I++zYH5vs+cNFqrM+1NeXm6JoFozBKOWRXK9rykWwgm0QpXwGTx4sMbDCA9YNI0KYZbZMtgJXu8nQK0zpvT8nfUO+pS6RowSFXK62/OB8P7jM/o+U/t9Zs0bLFWZ9x/XmjVrkJgYx/RCbIZg1LpIblJSEoYNG4Y1a9aonlNYtGKqEj6zZs3Sehxhg9miRi5CRQVPn07Cvn3lnve0mGy1sqAA+hcDlJsxVVpaKrpIGbng6i1gxUzb+fn5hh2jnO72oRDbZfS8wWKVeR65qeCAeYuueEVmt+VHLyueHkVyveffQHOK0EMGCw/yQigSPv/973+Rk5ODSO/GSV6cP38e//nPfzBs2DBNBkewgbcr4Y03tCv7LzdOI9B3mGWKDeRe8Q7QFkLPxcJ/ohQTJ2oWBLl/k5KSonjfagkl8ztLmFVlXqlrKNBCbKQA90ZuRWY9rXh6WnzF5hQrPWQoEj65ubkoKytDamoqACA+Ph579uxB69atAbj9rrfddhsJnxBCz7L/cuM0An2HFqZYpch1qWlZQ0cuek6oQvt2Op31LHTV1dUoKysL6rvkEgp1XFjGyPOr1jUkthDb7XbNxyiFd1kQm21SPcG4desK7NtnTF81q2VaGYki4eOfyiyU2iw33ZlgC7GneSMCCIONzZFritUKOefE7DRbI/btcDiwevVqyb/Re5KnCV5f9D6/rMYSqYG1isxWyrQyElUxPoGgKs7WxP9pnq+pY4QrIVhxVV5eLvBu/euwvLxcE1Os1DlhIc3WCPSsEq2UcJ3gvWPkSksjUFTUAFlZtUhPdweXaGVx0+v8shxLFCyhIsiVxCOxWPZACM2FD2FdhCYWI0zdwYorb7EdyNKilSiXOidWSLPVGqMtXGaneLOAd4xcoPPPsmgwK5bIKKwgyKXEipT7vLy8HDabDcuXR2LqVE6w1RFr159i4fO///0Px44dA+B2ax04cABnzpwBUL9iKhEaGJEdFIy44n35UpYWLX3+gYolhlvArRkWLrHJuLy8HLW1tQCAqKgon3gjgN0sEzXwx65nHJ5RhFOsltMZh61bo9G9u/lWEblxVWL3DF9aQKrVEWviW7Hwue6663zieAYOHAjA/TTNcRy5ukIUvZ9ctBBXci0tYq0OeOQWkhMrlig1iQs9IFh5QTbLwuV/vvy7x4vB2iQcLKFiYZQ7B1jZ2sdb5hYtitClto/cY66qqsKuXceDjquS2+qINfGtSPgUFRXpNY6AFBcX4/HHH8fnn3+OY8eOIT09HSNGjMCMGTN8fui9e/diwoQJ+Pbbb5GSkoJ77rkHU6dONWXMhHKCFVdyLC3BFCFMSkpCfn4+Vq9eLfmUHWgSF0t3t+qCzIqFi6WYIyMRO/9RUdUoKspEaWkElIa2mSUu5MwBVikE64//nOFf20cL5JybqqoqvPnmm5rGVbEyB8hFkfBp1aqVop3/61//wmOPPSZYOVUJBw4cgMvlwiuvvII2bdpg3759GDt2LM6ePYsFCxYAACoqKtC3b1/k5eXh5Zdfxo8//ojRo0cjISEB48aNC+r7wxEjJj6tv0OOuVzuoie2He8uk/OUrVTIWXVBZtFNYWZWndEInf/OnfdiyZIx4LgIrFzJYd68ckXxFqyLC1ZEjZJgXqE5w7+2jxZI7Yd3/WoZV8XiHBAIXYOb33zzTTz44INBC5/+/fujf//+ntetW7fGwYMH8dJLL3mEz1tvvYXq6mosXboU0dHR6NixI/bs2YOFCxeS8FGBkokvkOuID3wTi68ZMWJEwEa3SidXpS4ztc0tpSYN7yqm/l3nWW+oqQaWMljCJavOG+/zHxVV7RE9gPp4C1bEBasIxccMHiz+kCY2ZxhZ28cbrcUKS3OAFLoKHz1r+jidTiQmJnpeb9++Hb169fKxDvTr1w9z587FH3/8gSZNmug2llBFzk2oRZdsrW94uZaWYKwCUpOGWBXTULJE6FklOhhCJeZFKfz5LyrKtFS8hVrMSp0OXHeoFiNGjEB5eWNPaYHo6BNYt24dM7V9vNFarFghiw2waDr7oUOH8Nxzz3msPQBw7NgxZGVl+WzXtGlTz2diwuf8+fM4f/6853VFRYUOIw5dlHTJ1ivmQonLTG4mjJzvCjRpCI0p1CwRrLpDrBZvoDVWOn617m6zOsbLqTv0xx+J2LBh0F9p3cC8eTGebVi0iugtVpzOOHz88TlcfvlxzetLqcVU4fPQQw9h7ty5AbfZv38/2rdv73n9+++/o3///rjlllswduzYoMcwZ84czJ49O+j9KEFtVhHLSC3qelo6lCzAvH9brVUgmMU+FC0RLF6nwZjwrXRviokGo+IttLC4KL2fzK7yLFV3KCqq+q/zfmFs06bZce+9capj/8xAq5R7VutLmSp8HnjgAYwaNSrgNnwfMMDd9fraa69Fjx498Oqrr/ps16xZMxw/ftznPf51s2bNRPc/ffp0TJ482fO6oqICLVq0kHsIigkmq0jrcWg5wQda1AHobumQGqvD4UBZWZknlTyYp2K1v4uVnsS1wiwhoebJmpV7Uy5i1dYB/SwL/O+5alUspk61a1KsTu72LFV5FhOXNTUxAgHMNk0fbvR28fmm3Af+bQNZ7FiuL2Wq8ElJSZHdyfn333/Htddei5ycHCxbtgwREb4XV25uLmbMmIGamhpERUUBADZv3ox27doFjO+JiYlBTEyM6OdaE2xWkRboMcEHWtTNtnQIHa8ZWQhWy3wIFqOFRLAxR1ZMhw903rS2LHg34DSjWB1rVZ6FxKW7Oal+Dzd6u/jqp9wH/m2FLHa8ADd73g+ErsJnxIgRiI+PD3o/v//+O3r37o1WrVphwYIFOHnypOcz3pozfPhwzJ49GwUFBZg2bRr27duHZ555BosWLQr6+/XEjAwfPSZ4qUXdTEuH2HEojdFRSzBxQVZGC5GvxGKkZcxRKAWhawUrxepYeoDwF5d6jU1LF1+geUbNbyv2vSxbuFUJH5fLVc/iwr9fUlKCli1bAgBeeuml4Eb3F5s3b8ahQ4dw6NAhZPjZ9vjMMbvdjk2bNmHChAnIyclBcnIyZs6cyXQqe6DJNVD7Dy3dA1pO8GKLOksTlT/eExefgq61+4XVIGDWUWMx0uIchloQutawsKCxGCTMo/XYtHbxBbLSaPnbsjzvKxI+FRUVGDNmDD788EPEx8dj/PjxmDVrFiIjIwEAJ0+eRFZWFurq6jQd5KhRoyRjgQCgc+fO+PrrrzX9br2QmlzFqvvyaGFO1mOCFzOvszRRiVm4xFLQtYBEjXLrplluYZZN9IEwqtoyKwuaHkHCWsXPqBmblAtWSxef93xUUgIcPBgNpzMubGr7KBI+jzzyCH744QesXLkS5eXleOKJJ7B7926sW7fO86PpWbsnlAh2ctVistdiglcyibJQ54VcGOagxXk3yi3MgkVDDUZaFlld0ILBiBR578Km3sj5XfQQnBeOOQk22yTPfRnqtX0UCZ8PPvgAK1asQO/evQEAgwcPxoABAzBo0CCsX78eAKhJqUxYmFy1GIPUZCtVudlIFw+5MMxBi/NupGBlxaKhBqMr/1rhnEihJH5GyUOakFAP1qqslSgROmb/+zIUflsxFAmfkydP+vTrSk5ORmFhIfr164cbb7wRr7/+uuYDDFXkTq56PuVqNcEHmmz1ch2pwaouDKsT7Hk3Q7CGokWDqI/S+BmxBz3/tjR6CvVgRElJCfDdd0589dUKnD6dVO+YtZgPzWpwqwRFwqdly5bYv3+/T4XkuLg4bNq0CX379sU//vEPzQcYasjN8AGMecoNpwmeBStbOBLseTdKsLLagiNckIqv0WNBVRM/I2VVCyTUy8vLDX8YrF97yQ6bbRLy8gp1mQ+tkMyhSPj07dsXy5Ytw4033ujzfuPGjfHpp5/i+uuv13RwoYjURcE/Oej5lBtuEzx/HFIWrlA5XlbQ6rwbJVitMGGbiR7CQ0lBRD1/n2Ct397HHEior1mzxtACmGK1lzguAoWFecjLK0RhYZ7sY5b727J+jygSPrNnz0ZpaangZ3Fxcdi8eTN2796tycBCGTkXhZ5PueE2wfsf78yZJ1Fc3ACZmbVIT+8KoGtIHS8raHXeg12UlNYC0gortb+Qg9bzhpqCiHqer2Cs30lJScjPz8fq1auZKbDo/V1i60l6eikmTVoseMz+gdhWu14DoUj4NGnSJGAV5Li4OFxzzTVBD4qQfso9depUUBdiqFzAcvE+3rQ0ICfHxMGEEcGcdy0KP5rVhsJq7S/kouVYWSmI6E0w8TN8AofWwfFaWNoCrSdix6w0ENtb6JeWRni607PSmNQbxQUMa2trsWjRIrz99tv4+eefAQAXX3wxhg8fjvvuu8/TLoJQh1z3AB9IZ7WJkyDkooWFwaxaQFZsf2EWoRh7p2XspBb3gd6Zit5Cn9XGpN4oEj7nzp3D9ddfj+3btyMvLw+9evUC4O6gPm3aNKxfvx6bNm3CRRddpMtgwwH+Ine7FNdJ3jw0cRKhDAuTZLBQ7ajAWLl8QCC0SAm/EPCdFHRDUj0TWfh1iOXGpN4oEj5PPfUUjh49iu+//x6dO3f2+eyHH37ATTfdhKeeegqPPvqolmMMO5KSkjwXSKjXUyCIUIZqR8kjnLJL5aJHQUW91xOrlAyp33ArAO+88w4WLlxYT/QAwGWXXYYFCxZg1apVmg2OIAhCS5zOOBQVZcLpjDPk+wItBIQvdnslsrKOGLpAslhzxuFwYNeu4xg3joPLHR7jKai4a9dxOBwOQ8ah5ph5t6U3LLotFVl8jhw5gquuukr08+7du+O3334LelAEEQoYkdUTaplDemKGyykU41dCCdYyXLVuSCoXrTK4pNyWYs23jZ6nFAmf+Ph4nDhxAi1atBD8/NixY4iLM+ZJKtwwqk9RKMCCGDAiqydUM4f0wCyXE0vxKyzcFyyi1TFrYT3SuiGp3DGlp6drdh4CuS0DNd82cp5SJHyuvfZa/Pvf/8batWsFP3/qqadw7bXXajIw4gIUHCkfVsSAEdlERmcsWXnhNDP2gIX4FVbuC29YdDMFg5bWIy3bCZlh0QoUS8RChqMi4TNr1ix069YN3bt3x+TJk9G+fXtwHIf9+/dj0aJF+N///ocdO3boNdawhIIjlWFW+nKoo3ThZEUk8Yum1BO01osra9XRWUyvZ83NpAVajlUrwczS+WPlIV6R8OnQoQM2b96MgoIC3HrrrZ5O7BzHoX379ti0aRM6duyoy0CtjtKFgJ8QpZ5UrfI0RFgbJYKSJeuC9+LavHkFpk2zo67OhshIDnPnVmD48Nt0WVz9F/Xy8nLU1tb6bBMVFYXq6mqUlZUZusCzsvgAbC3KLGKVrF456xBLD/GKCxh2794dP/30E/bs2eNTwPDyyy/Xemwhg5qFgJ84i4trsXIlB5fL5tkuMpLDPffcgMzMBjRxEMzBmtWNv0ceeADIzwcOHQLatLEhIyMBQILu3+twOLBmzRrJ7Y0QgiwtPkToEMh6x/efZCnVXbHwqaioQOPGjXH55Zf7iB2Xy4UzZ84gPj5ey/GFBGoXgqSkJCQlues3jB8P1NUBkZHAK6/YkJPTVI+hEkRIk5Eh3PlbT1gSgiwtPkRoISXaWcpwVFTH5/3338eVV16JP//8s95n586dQ9euXfHhhx9qNjjCTUEBUFwMbNni/n+wRayI0ESLGjUOhwNlZWX1/hNLQyWshVXqrBChBx+wzV9/ZmY4KrL4vPTSS5g6dSoaNmxY77NGjRph2rRpeP755zFo0CDNBki4MeNJVQ2sBLWyht7lCLSI25DrkiWCw8zSFCyl1xP1CbVMN39YyHAEFAqfffv24cUXXxT9vFevXnj44YeDHhRhTVgKauUxa5HxnpgCiZJgJjD+b6XiNuR+h16uFqpBdQEWAotZWXyI+oRiphtrGY6AQuHzxx9/1MtM8KampgZ//PFH0IMirAkLsQxGCA45eAenP/ZYKjiOz4CMwEcfDcLMmd2CDk7nv2PLFmDRovpxGz17jkTv3vpkzsgVMyws9KxgZmAxi4sPIQxLokYLCz6LYk6R8MnMzMR3332H9u3bC37+3XffoVWrVpoMjCDUYITgUDKWvXvh6bfDU1dnQ2VlU0gNQe6k0727u4mh9/dERgLduiVJfocapASl3E7N4YaZgcUsLj6EOcidV/wt+GIPO3Is+KxdV4qEz5AhQzBjxgxcf/31aNrUN6vo2LFjePjhhzFixAhNB0gQSglWcGhJ27bCoqRNm8B/p8RtmJGRJJD5p09MmNMZhw0bBgUUlHwTRapB5YvZWS2sLT6E8SgRM97iKNDDjhWLwSoSPg899BD+85//oG3bthgxYgTatWsHADhw4ADeeusttGjRAg899JAuA7Uy/hO82MUWbguBnqgVHFqTkSFUjkBalCh1GxYUAP368TVq9AuEP306yaemFFBfUFINKl/4+1oqsJjuf0Jv5IqZ0tJSz3ahaLlVJHzi4uKwdetWTJ8+HatXr/bE8yQkJGDEiBF48sknqUmpAN5m5lWrYvHYY3a4XDZERHCYN8+J4cPPqTYzq/XBhnr2lVrBoQdGiRIjMv8SEx2IiPAXM/UFJdWguoC/m2nmzJMoLm6AzMxapKd3BdDV8vcbYS3ExExq6jHU1MRg2bLNHlETirWfFBcwtNvtePHFF/HCCy/g1KlT4DgOKSkpnvYV3mzduhVXXnklYmJiNBmslUlKSkJJCTB16gUrhMtlw7RpCcjPT1DlflGbRcVi9pUeGCU45GCVcgRS2O2VmDfPiWnTEmQJSpZ+AzPxvo/S0oCcHBMHQ4Q9YmLm9dfHAPC1AJntotUDxcKHx2azISUlJeA2N9xwA/bs2YPWrVur/ZqQ4pdfhOJO3IuCmgVBbRaVHtlXDoeDySJ3wQqOULeMeSPXJTtqVJ1X6wfp8xsqoo8gQgUhMQNw4Gsa+7uzQq32k2rhIweO4/TcveVgJe5Ea8QsSFaLZfIXOeXl5cz0WDICpS5Zq4iZcBKvoQj9ftojJGYCubNCrfaTrsKH8MWsuBN/S4zWlhmhSUkocO6JJ7KQnp7O5CQVTNViuZYxK0zgerhkzSRc3LqhipYp1XK/j/V7VCu8xUxUVDWWLBkT0J1llU7xciDhYzBmxDysW7dO/y/xQixwbubMk8xOGnqnZFppAdbaJWsmLBTVJNRjZEq10SJLT8QEnP9Dr7eYUevOYtWCHwgSPiYQ6jEPYoFzxcUNwjaoU+kCbGbPnlB1yRLWxYiU6lCpWyNXwPkTyJ01ZMgQJCcn1/sbq1rAdBU+QpleROgjlgWQmSne7oTwxT8FurQ0AkVFDZCVVYv0dLci0WvSYakUAEEAxqZUW71ujVwBN2TIEAC+HgExd1ZycjLS0tJ0HrlxUHAzoTliWQDumiWEXHhRs2QJMG6c2wITEeEWJQUF+n43a2no4RR7QdTHyJTqUKlbIyXgkpOTVVmWQ+Fe1FX4VFZa5yKxIlq5OfTIvhI2m5LwUUpJyQXRA7j/P368W5ToLUZYcclaKT5KjFBYLNSixbEbmVKtpcgy83eXI+CU9nALhXsRUCh8+vTpI2u7zz//XNVgCGUEcodER5+QGdRcgGeeaa5ZJWlvQikLwCxCKdBYLVYPUA6VxUINWh67USnVWomsw4cP48033/S8NjpYWq6AU/Ld/veY2DGxei/yKBI+X3zxBVq1aoUBAwYgKipKrzERChBzh8ybJ10t2+mM84geQH3acrj3ItPzuCjQWFvkBnpqidWFWzBofexGPUwFK7IcDoeP6Nm6NReFhXmGBkvrbSULFD/EOoqEz9y5c7Fs2TK8++67uP322zF69Gh06tRJr7ERMhFyh0ybZse998YFvMiFG04qtybo2YvMKOSIF6czDpdddjM6dYrRPcCYhwKNg8P7dw00UYeaKGfVtaZUeMr9XZxOp+bHFIzI8j73W7fmYvPm6wG451ojg6X1spJZPQBckfCZMmUKpkyZgu3bt2Pp0qXo2bMn2rVrh9GjR2P48OGIj4/Xa5xEAITdITbJYDy5DSflYPXCd1JZVL6CTnmAcTDp6awFGlsJ707xjz2WCo67sPh89NEgzJzZLeQ6xbPqWlNjIeB/vxMnTgSsor569WoAwR2THiUknM44bN6cB1708BgZLK2HlczqAeCqgptzc3ORm5uLZ555Bu+++y5eeOEFPPjggygtLSXxYwJi7pAHHvg7kpP/BCCeDt2xo00za4LV41HE3IZz5wLTpgUXYBxsejorgcZWJCkpCXv3Cj8cVFY2ZV6UK4VF11owFoKkpCRDjklpoK8cTp9OAt//yhs9m3waUQPM6o1Lg8rq2r17N7788kvs378fnTp1orgfkxBzh1x6aRMAgdOhtbQmhEI8irDbUBtBZ2Z6erjD0rVpRpyR2WhtIdDrHGptARNrBpqXV6jbb6+HgPPH6o1LFQuf0tJSLF++HMuXL0dFRQVGjBiBnTt3okOHDnqMj5CJmICRkw6tlTUhFOJRhKxWLhdgswHeZanULppmpqeHOmI96KKjo5GRkcTEtWnlgNBg0NJCoNU5NCIOyl8gAC5cf30hevbcHtR+pTDChWnlxqWKhM+NN96ILVu2oG/fvpg/fz4GDBiABg2o6wUrCAkYo91PVo9HEbMMzJkDTJ8e/KJpdXegGcjNGgxUvmHixIkoKEgy9do0KyCUBQuTVhYCrc6h3DioYcOGISEhAYB6IWRlgeCP/70oFj/EerKAItXyySefIC0tDb/99htmz56N2bNnC263e/duTQZHBI8ZJn4rx6OIWa0KCoDbbgt+0WTJ5WIVAmUNzpz5O4Alkvvgn+zNuDb5RUDK3aPHYmG2hcn7mAIJALnHrpXLTG4skH9Atdrg6UABxqyLBG+McKMZgSLhM2vWLL3GQchEqXk2FNxPRiNmtdJi0Qy138OotGmxrMHHH28uWbbBbLwzy1au9M+i5HDPPTfokllmdsoxf20MGzYMtbX1+/RFRUXBbrcrukb0CqqVaxWTK5jkipkRI0YwLxL8sdp4hSDhYyHUpqla3f1kBnpaBkLl9zA6bVpt2QYWSEpKQlKSkOi1ISenqS7faWbKsV7Xhh5BtUJWMbdlSr17MFQsI6GKJgE6X375Jc6ePYvc3Fw0adJEi10SAgST0mll91MoIvV7sFqAzhuj06aF3YScZVJoAWNEL29tkLKO6Oli0fra0NplxiNkFVu/fuBfyQzBuQfNvj8JcRRXbj5z5gwef/xxAO7u6zfccAM2bdoEAEhNTcVnn32Gjh07aj9SgggTWC1AZzZCbsK5c504c4Zta48/ej+EeFsbmjevwLRpdtTV2RAZyWHu3AoMH34bE8JZCXpZUISsYkCEJ4PTahWJCXkoEj6rV6/GtGnTPK/fe+89fPXVV/j6669xySWX4I477sDs2bMDVtgkCCtgpsWFxQJ0rOBvMYmMPIdXXzV7VMYh97rkr80HHgDy8/nzZUNGRgKABEPG6o0WmWVGNfL0x0oViQl5KBI+RUVF6Ny5s+f1xx9/jJtvvhk9e/YEADz88MO45ZZbtB0hQRgMWVzYxttiUlZm7liMRO11abab2+zMskAI1dlxt5e4EIBupYrEZmMFFz2gUPjU1tYiJuZC1+/t27dj0qRJntfp6emiRcQI4/D+DVi50KwEWVysg9waP1ZKGRbDitelEZllahbbQDFDhw+3sWxFYr0JdK6dTqenZ1ogWHhgVCR8srOz8dVXX6F169b47bff8PPPP6NXr16ez0tKSkw/IKJ+ITcWLjSC0INANX7mzXNi+PBzJP51Rmgx5B++9M4sU2sF848Z8l60tQyeDiXknmspWBDmioTPhAkTMHHiRHz99dfYsWMHcnNzfVpVfP7557jiiis0HyQRHCxcaAShF2I1fqZNS0B+fkLINSFlCanFUO9mlsFYwbyFUFpaGqWfSxBK64gi4TN27FhERkbiww8/RK9everV9SktLcXo0aM1HSBxgXB+2iDYw4gu0HKhViDmILUYStXdYWlOC2dRE24oruMzevRoUXHz4osvBj0gQhx/8+ypU6cC9iciCD1hqUhbOLYCYaEHlxy6dPkeEye2RUVFKjIza5Ge3hVAV12uDauck3CA5d+COoxaDO+JorQ0AkVFmUxeWIR6WLKkSOF9PZaUuC0vbdsab2UJtVYgUrCcKSVEp04JSEvTVwBb7ZxYnUDChvXfQpHwqampwYwZM7Bu3TokJibirrvu8rH+HD9+HOnp6airq9N8oIQvS5YA48alwuUayeSFRaiHJUuKXNzXo9viEhHhFiEFBcaOIVRagUhhdg8uqbGZ8ZTP8jkJRQIJGyv8FoqEz5NPPok33ngDDz74IMrLyzF58mTs3LkTr7zyimcbji95SehGSQm/yLhrTbB4YVkZFiwuLIkaKS5cj+7XLpfb8tKvnzmWn1AVPGZ2eZeDmU/5ZvYlU4pVat2IISVsrPBbKBI+b731Fl5//XUMHDgQADBq1CjccMMNuPPOO7F06VIAgM1mC7QLQgOEAjlZu7CsDGsWFzNdSHIIp8BiMxcts7q8y8Hsp3y9s8e0IhSKo0oJGzN7xMlFkfD5/fff0alTJ8/rNm3a4IsvvkCfPn3wz3/+E/PmzdN8gER9hAI5A93kLFxoVoOVSYcFF5IU4RJYzMKiZUaXdzmY9ZTPz21WyR6zYhFKHrnNb8eOvYH5HnGKhE+zZs1w+PBhZGZmet5r3rw5tmzZgmuvvRajRo3SeHiEEPUDOS9cWP6wcqFZGbMsLiy5kAIRLoHFLC1arMQzmd0J3t86O3PmSRQXN9A9eywcUdL89pJL2OgRJ4Yi4dOnTx+sWrUK1113nc/76enp+Pzzz9G7d28tx0YEwHfic19YJSUJkgu0Ff3LZo7ZTIuLlVxIrCzE4QQL8UwsdIL3LUQI5OTo9lWaw3LKtxBKmt+ycH2KoUj4PPLIIzhw4IDgZ82bN8eXX36JzZs3azIwQhrvC0vOAs2CqV4pZo7ZbIuL1VxILE90hH6w1gneKrCe8i2Fle/3COlNLtCqVSv069dP9PP09HSMHDky6EERyhBboEtKfLdjyVQvFzPHHMjiYgS8Cyky0v06VF1IROiQkQH07k3XqBRiweBOZ5zJIwsPFAkfnnfffRdDhgxBp06d0KlTJwwZMgTvvfee1mMT5Pz587j88sths9mwZ88en8/27t2Lq6++GhdddBFatGgRNsHWZi/QoQpvcfHGaItLQQFQXAxs2eL+P2uBzQRBKCdQMDihP4pcXS6XC7fddhveffddXHzxxWjfvj0A4KeffkJ+fj5uueUWvP3227qmtE+dOhXp6en44YcffN6vqKhA3759kZeXh5dffhk//vgjRo8ejYSEBIwbN0638bCA1VwiVoGVoF0rm5TDEb4zeVVVFRo2bCi6HYvxdIQxWCX9PlRRJHyeeeYZFBYWYv369Z5aPjzr16/HnXfeiWeeeQaTJk3ScoweNm7ciE2bNmHt2rXYuHGjz2dvvfUWqqursXTpUkRHR6Njx47Ys2cPFi5cGPLCh5UFOhTROmjXisHlhDKU9M9jKZ6O0B+rpd+HKoqEz7JlyzB//vx6ogcAbrrpJsybN0834XP8+HGMHTsWH3zwgeBT1Pbt29GrVy+fC6Zfv36YO3cu/vjjDzRp0kRwv+fPn8f58+c9rysqKjQfuxFQVo1+aGVxsWJwOXEB/8VIi4wcluLpCP1Rk35PD0vao0j4/PLLL8jLyxP9PC8vDxMnTgx6UP5wHIdRo0bhrrvuwpVXXoni4uJ62xw7dgxZWVk+7zVt2tTzmZjwmTNnDmbPnq35mM0gnF0ivHuB5Ukg2EBtmgDNxXvRevXVOixenG7ZjBzCPJSk39PDkj4oEj6xsbEoLy9Hy5YtBT+vqKjARRddJHt/Dz30EObOnRtwm/3792PTpk2orKzE9OnTlQxXFtOnT8fkyZM9rysqKtCiRQvNv4dFrFZDIhDe7oVQnARoAmSDpKQklJQAjz3GgeNCq1ceCWv2sGImrhVQJHxyc3Px0ksv4aWXXhL8/IUXXkBubq7s/T3wwAOS1Z5bt26Nzz//HNu3b0dMTIzPZ1deeSVuv/12rFixAs2aNcPx48d9PudfN2vWTHT/MTEx9fYbqnib6gPVkGDJv6xmLKE4CdAEyA7uLErfBA6r98ojYU2EE4qEz4wZM9C7d284HA48+OCDaN++PTiOw/79+/H000/jP//5D7Zs2SJ7fykpKUhJSZHc7tlnn8UTTzzheV1aWop+/fph9erV6NatGwC3KJsxYwZqamoQFRUFANi8eTPatWsn6uYKN7ybHD72WKrPE+tHHw3CzJndTGtyKIa3e+HUqVNYtmxzyFipCGvizqL0bRJq9YwcloU1WaIIrVEkfHr06IHVq1dj3LhxWLt2rc9nTZo0wdtvv42ePXtqOkAA9VxrjRs3BgBkZ2cj46+gluHDh2P27NkoKCjAtGnTsG/fPjzzzDNYtGiR5uOxMklJSdi7V6jujw2VlU3B4vzBT2qrVsVi8eJJYRVXwU/6fAwTYT4ZGcC8eU5MmRIvmJFDaAdZonwJpfAEM1EkfADgH//4B/r164dPP/0Uv/zyCwDg4osvRt++fQPWrNAbu92OTZs2YcKECcjJyUFycjJmzpwZ8qnsarBi3Z+SEmDqVHvIxVUEQu6kTxjP8OHn8PvvS3H6dKLH0lNUlCm6IMlZsMiyUR+WLVFGY/UWFyyhSPh8/vnnmDhxInbs2IF//OMfPp85nU507NgRL7/8Mq6++mpNB+lPZmYmOI6r937nzp3x9ddf6/rdoYAV6/6EYlyFFOEwmVuV6Oho2O2VsNsrJRckOfF0ZNkgAiHW4iKUH/z0RJHwWbx4McaOHYv4+Ph6n9ntdowfPx4LFy7UXfgQwWO1uj+hEFchN1CbpeBygCwRQsiJl0tIOIPy8say4unIskEEIlCLCxI+ylEkfH744YeA6ed9+/bFggULgh4UYQxWqvsTCnEV/sXLSksjUFTUAFlZtUhPd/sdWRMRZIkQRypeLienKbZssVY8HQ+rsSSsjksv+IcgqRYXrD0ssY4i4XP8+HFPxpTgzho0wMmTJ4MeFEEIMWpUHX7/fbFkXAXLkwAvDpYsAcaNcy+KERFu16MWDUi1PnayRARGKl7OivF0rMaSsDouPfF+WGrevALTptlRV2dDZCSHuXMrMHz4bcw9LFkBRcKnefPm2LdvH9qI3LV79+5FWlqaJgMjCH+SkpIwY8ZIVFdXY9WqWEydaofLZUNEBId585wYPvycJSaBkpILogdw/3/8eLfrUY0FbsiQIUhOTrbEsYcaUvFyVomn4wWzVCyJlsJajguVJ5xjXPh7+oEHgPx8PjzBhoyMBAAJZg7NsigSPjfeeCMeeeQR9O/fv16F5nPnzmHWrFmCfbwIQiv4yrlTp3oLBxumTUtAfn4C0+4DHnegtu97dXXuCU3uguht8k9OTqYHDhORipezQjwdb1nYsgVYtKh+LEnPniPRuzc0E9ZyXaj5+fkAKMaFx0rhCSyjSPg8/PDDWLduHS6++GJMnDgR7dq1AwAcOHAAL7zwAurq6jBjxgxdBkoQPFoIBzMJ1v3hb/Jv3rwCDzwQ+G8oQFlfpBYkpQuWGbEsSUlJ6N5d+Nrs1i1J04cKua5RPnuXYlwILVEkfJo2bYpt27bh7rvvxvTp0z0Xpc1mQ79+/fDCCy94GoMShF5YMW7CG7nuD6Fu4EePtqhn8p82zY78fPGFlQKUrYWZsSysueYSEhJCKsaFHkDYQHEBw1atWuHjjz/GH3/8gUOHDoHjOLRt25baQhCGwdrkrAY57g/vwMZVq2Lx2GP2erWMAHeWUCBrl9yn69LSUs/3EsZiRoyNGKy55kIlxoUeQNhBsfDhadKkCbp27arlWAhCNqxNzmqQ4/4QimnyRytrF9/hniZe4zE6xkYKo2NJ5Lr2rBzjQhmS7KBa+BCE2Vh5ElSCUEwTjx7WLu+JV8jdJrRAUYxF8BgZY6MUPV004ZimTpgLCR+CYByhmKaICOCdd4DcXH3Fn5i7zWolBKwCi25cPV004ZymTphHhPQmBEGYCb8YRka6X0dGul/fcosxC2JSUhLq6tIwdWqCJ8aILyFQV5dGokdjCgqA4mJgyxb3/7UobBkMerpoAqWpE4RekMWHICyA2TFNVi8hYDVC3Y1LrRjCr/0GS5DwIQiLoNViqGbCtXoJAYItwr0VA8U1mQsJH4IIcbyfmtVOuCzGnhDWJlTS1JVCcU3mQ8KHIEIc/ul69+4TmD27Xb0JNzX1GDIyyiT3Y7a7jWADPVw0oe7aAy48gEi13whl9x4rkPAhiDAgKSkJZ882EJxwX399DG666YLlJ9DEGw4LVLjjn7p+6tQpz7/JRaMe/gGkuLgWK1dyPsVIIyM53HPPDcjMbBCy7j2WIOFDEGHClVfaERHBCVR/jsBHHw3CzJndaOINcwKlrpOLJniSktz1mOq7jW3IyaF2T0ZBwocgwgR3nI4N48YJZWjZUFnZ1BLd7YOF+iWJE+i8kItGO8htbC4kfAgijCgoADp3Brp1A/7qMQwgfDK0qF+SeoRSz8lFox5yG5sHFTAkiDCja1fgtdd8CyKGS4YW9UtSj91eiUGDNsBmc5sLvV00JHoIK0EWH4IpSkrcxfLatg2PhVguWrtnyNROCOF0Ov1e+2ZwdenyPbKzD+Hyy29Gnz4t6bohLAkJH4IZliyBJ/4kIsIdAGh2uX4W0Ms9Q6Z2wp+amhrPv8UyuOz2SlxxhZOuHcKykPAhmKCkBD5Bty6XO+uhX7/wWZzFrDre6cSAeB0Vcs8QWkEZXAQQuokAJHwIJgiVXlBqXXX+Vh0xcUN1VLSF+iUJI5XBRYQ+oZwIQMKHYIJQ6AUVjKvO+6lKTNzQU3jwlJeXe/5NIrI+DRq4lwSp5qH8dkToEsqJAJTVRTAB3wvKiplGDocDu3Ydx7hxnJ+rjsOuXcfhcDhk70tM3PCWCbGncEIah8OBNWvWAAh8nsOZhIQEAO4Mrs6d9wLgax5w6Nx5r0dg89sRhBUh4UMwQ0EBUFwMbNni/r8VApt5c/Bzz31SryJyXZ0Nzz23Ec8//7xs8RNI3PBP4d54P4UTgfF+MpUSkeFejM/pjMPevZ0B8Ne0DXv3dg57YUiEBiR8CKbIyAB697aGpQe4sJhKiRK55uBA+/Gvo8K7Z+z2Sjidcdi6NRolJcEeUXgQ6Dzn5+dbLmZBa8i6SIQy5KglCA3gRYl/zIjS2Bup/fB1VNwWILcY4mNVFi2KQEQEh3nznBg+/JxlMy6MwG6vRF5eIQoL8+qdZ7vdbvbwTIO3dEnF+IS7RYywNiR8CEIjhESJHvtxL87u9/xjVVwuG6ZMicfvvy+F3V5pyYwLI9i9+wqP6AFcyMsrDPvAZuBCB/Hq6mo0b16BadPsqKuzITKSw9y5FRg+/DYS1ITlIeFDEBriLUr02M+QIUOQnJyMU6dOYd26dZJpx1bMuNAbf7EIRKCwMA+dOu2j7DjAI2oeeADIz+ere9uQkZEAIMHMoRGEJpDwIQgGkOs6SE9P93nalnJJEPWhGjXyoere4Yv/nCRW88qKbk8SPkTIYqW+X94uBjGEXAxaxRaFEyQWCUIa7zlp1apYPPaYHS6XLSTiCEn4EKajR1l0K/b9UjuBaBVbFOrwT6ZSYtGKT7AEoQdJSUkoKQGmTvVuJ2TDtGkJyM9PgAU1DwASPoTJ6FEW3ci+X3IXSb0XU61ii0IZf6vazJknUVzcAJmZtUhP7wqgq2WfYAlCL0KlnZA3JHwIU9GjLLqRN6paFxVhDt6/Q1oakJNj4mAIwgKEQjshf0j4ECGH0TeqkKjxji8izUMQhBloEUbAtxMaP979AGmldkJikPAhQg6zb1Qj4otYcbERBMEmWoYRFBS4QwXcpQ2sLXoAEj5EiGLWjWpUfBG52AiCCITWYQShVNqAhA8Rsphxo2odXxQoJZ9EDUEQhHJI+BCEhmgZX2TFlHyCffQoH0EQVoKED0FoiFbxRUam5BPsoZc40aN8BEFYDRI+hKmEYpCuFvFFoVg7g5CHnuJEj/IRWkBWKMJISPgQphKqQbrBxheFYu0MQh7+94JYjyQtxInYvo2ErFDGwMJvzQokfAjTocmsPman5BNssHv3FfVaa3Tp8j3z+1YCq1aoUELv39pqFjsSPgTBKKFWO4NQhtMZ51msAHcH+Q8/HIjs7ENBP7Hrue9gIcuENvDhAVK/dbBhBFa02JHwIQiGCaXaGVYkUDkBvTl9OsmngzzgXrROn04MWhDoue9gYMUKFQrwYQRbtgCLFtX/rXv2HInevYO3uFvRYhchvQlBEET44HA4UFZWhqefLkerVhz69AFateLw9NPlKCsrg8PhMGQciYkO2Gy+Ee42mwuJiaeZ3rdaxCwTTmecaWOyOklJSejePQkRfit9ZCTQrVsSMxYYoyHhQxBhREkJsGWL+/9EfXiz/fz5b2PKlHi4XDYAgMtlw5Qp8Zg//208//zzhogfu70SgwZt8AgU3gKihUVGz32rJZAVilAPHy8YGel+TfGC5OoiCB+CcW1oFeCnV6AgFUSUhj/vUq4go8z2Xbp8j+zsQzh9OhGJiaeDFibe8RyB9m1G+QjeCuV93s22QoUKFC/oCwkfgviLYISBVgF+egUKUkFEZaLWzEXYX3TY7ZWCgkeNOGG5fARvhfKP8aEAZ22geMELkPAhCAQvDLQK8NMrUDDcCyIqFbVmLsJ6ixPW4jpYtkIRoQkJH4JA6AuDcC2I6HA4UFxci3HjUr3idYDx4zlcfvkJZGY2EBUCWriZvN2WpaURKCpqgKysWqSnu38IMQHDmjjRE5atUERoQsKHIBD6wiAcCyLybsOioky4XCN9Pqurs+G55zYiK+tIQLehmJtJyfcDgdO0WapvYhbhfvxWxopth0j4ECGF2sDgcBAG4RbgyF8HUvE6egUq8/uVKiDHUn0TglCKFS12JHyIkCHYwOBwEAbhGOBodtAsq8UCCUIrvOdTM4t+yoWEDxEyaBEYrKcwcDrjsHVrNLp3Z3dCCFXkxuvoYbanNG0iXLBKyQwSPgRhAHyMx6JFEUxPCKGMnHgdPcz2ZlucCMIIrFQyg4QPQWhAIAuAf4xHoAnBioGCoYYesQhaFyIkCNawUmYsCR+C0IBAloKtW6PrNQkUmxD0sDjoVQlaK6wQE6AFwWSIEQTrWCkzloQPQWiEmHjo3l3ZhKClCNGrErRWWCUmgCCIwFgpM5aalBKEzpjZJFCvStBaIBYToFUDVbPdhmZ/P0EYTUEBUFzsboRcXMzuQwxZfAjCAMIhVV4pescEmF1fxOzvJwgzsELJDEsJn48++giPPfYY9u7di4suugjXXHMNPvjgA8/nv/32G+6++25s2bIFjRs3xsiRIzFnzhw0aGCpwyRUwvoTthUmBCMxIibAbFFh9vcTBFEfyyiCtWvXYuzYsfj3v/+NPn36oLa2Fvv27fN8XldXhwEDBqBZs2bYtm0bysrKcMcddyAqKgr//ve/TRw5YRT0hG0trBQTQBBE6GDjOI4zexBS1NbWIjMzE7Nnz0aBiNNw48aNGDhwIEpLS9G0aVMAwMsvv4xp06bh5MmTsp/yKyoqYLfb4XQ6ER8fr9kxEIQZlJWV4dVXX5Xcbty4cUhLSzNgRPUpKSEXoB6wns1HEFojd/22hMVn9+7d+P333xEREYErrrgCx44dw+WXX4758+ejU6dOAIDt27fj0ksv9YgeAOjXrx/uvvtu/PTTT7jiiisE933+/HmcP3/e87qiokLfgyEIwmdRjowE2rVzv19W5v4/LcrB4Z/N53TG4fTpJCQmOnxS6qlBKhGOWEL4/PrrrwCARx99FAsXLkRmZiaefvpp9O7dGz///DMSExNx7NgxH9EDwPP62LFjovueM2cOZs+erd/gCYLwgfUU+1DA29ITqDM8NUglwhFT09kfeugh2Gy2gP8dOHAArr+iH2fMmIGhQ4ciJycHy5Ytg81mw7vvvhvUGKZPnw6n0+n57+jRo1ocGkEwAYsB3yyn2IcaYp3hnc44k0dGEOZhqsXngQcewKhRowJu07p1a5T9Zf/u0KGD5/2YmBi0bt0av/32GwCgWbNm+O9//+vzt8ePH/d8JkZMTAxiYmLUDJ8gmIcCvo2FtSrU1BmeIOpjqvBJSUlBSkqK5HY5OTmIiYnBwYMH8be//Q0AUFNTg+LiYrRq1QoAkJubiyeffBInTpxAamoqAGDz5s2Ij4/3EUwEEW4EEjUlJcDevews1FaGxSrU1BmeIOpjicrN8fHxuOuuuzBr1ixs2rQJBw8exN133w0AuOWWWwAAffv2RYcOHfDPf/4TP/zwAz799FM8/PDDmDBhAll0CEKAJUuAVq2APn3c/1+yxOwRaUdJibt6rFZVoOV8n55VqNXCd4a32dwDo87wBGGR4GYAmD9/Pho0aIB//vOfOHfuHLp164bPP/8cTZo0AQBERkZiw4YNuPvuu5Gbm4tGjRph5MiReOyxx0weOUGwh9hCLdQx3moYbXlxOBzYsQNwuXwta3V1wM6dDsTGmlvIkDrDE4QvlhE+UVFRWLBgARYsWCC6TatWrfDxxx8bOCqCsCZ6t4swC6MFHZ+h5nTGwWabVM+ltHXrCuzbV2l6hhp1hieIC1jC1UUQhLbw7SK80bpdhBkEEnR6wAeNS7mUjM5QYzGbjyBYwTIWH4IgtMPMdhF6LspG9P8SgyWXknc2X3l5OWprawEAx441wG+/xaBly/No0cKG6upqOBwOyuojwgoSPkTYE66l/c3qGK9nir3Z/b9YciklJSXB4XBgzZo1AAIXMjTbFUcQRkLChwhrwr2KsFkd4/U8l2YJOjOQqhvEi0uxQobZ2Ydgt1dSsUgirCDhQ4Q1elcRDldrkhmES/8v/jhXrYrF1Kl2uFw2RERwmDfPieHDzwkeJxUyJIgLkPAhCJ0Id2uSkYTLufbOIlu8eBI4zgYAcLlsmDIlHr//vhR2e/0sMipkSBAXoKwugtAJ6kllHOFyrvnxB7LgeG/HQ4UMCeICZPEhCIJQiVlp42osOCxlnRGEmZDwIQiCUIlZTWB5C45/lpaUmGEp64wgzIKED0EQRBCYFTNEFhyCUAcJH4IgCIsiZcGhCs4EUR8SPkRYQwsDEcqY5YqzKlR+Ijwg4UOENeG4MNDkHl7QbymPcCmJQJDwIQjdJjEWrUmhOrmzeK71IFyO0wzCpSQCQcKHIHSDRWtSqE7uLJ5rPQiX4yQIPSHhQxA6QguQcYTLuWb5OMPBjXrq1CnB90Ph2MIFEj4EQRBE0ISqG9WfdevWiX5m9WMLF6hlBUEQBBE0oeZGdTrjUFSUCaczTvbfWOXYwh2y+BAEQRCa43TG4fTpJCQmOixXXHH37ivqVcXu0uV7s4dFaAQJH4IgCEJTrCwcnM44z9gBd/PXDz8ciOzsQ5YTcIQw5OoiCIIgNENMOChxGZkBXwLg9OnAne8J60PChyDCCKoDQ+iNVYUDXyrgnnv6IyKC8/ksIoJDYuJpk0ZGaA25uggijKA6MITeJCY6YLO5fMSPzeayhHBISkpCUhLw6qvA+PFAXR0QGQnMnevEmTPk5goVSPgQRJhBoobQE7u9EoMGbagX42Ol+JiCAqBfP+DQIaBNGyAy8hxeffXC51YO3CZI+BAEQRAa4O0e7dLle2RnH8Lp04lITDztIw6s4kbNyHD/BwAOx4UxBwrctsqxhTs2juM46c3Ch4qKCtjtdjidTsTHx5s9HIIgCMsQypWbHQ4HiotrcdVVqXC5bJ73IyM57Nx5ApmZDSx7bKGC3PWbLD4EQRCEJoTywp+UlIS9ewGXy/f9ujobKiubIoQPPeSgrC6CIAiCkEHbtkCE36oZGemOAyKsAwkfgiAIgpBBRoY74ysy0v06MhJ45ZULsUCENSBXF0EQBEHIxD/ji0SP9SDhQxAEQRAK8M74IqwHuboIgiAIgggbSPgQBEEQBBE2kPAhCIIgCCJsIOFDEARBEETYQMKHIAiCIIiwgYQPQRAEQRBhAwkfgiAIgiDCBhI+BEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNpDwIQiCIAgibKBeXX5wHAcAqKioMHkkBEEQBEHIhV+3+XVcDBI+flRWVgIAWrRoYfJICIIgCIJQSmVlJex2u+jnNk5KGoUZLpcLpaWliIuLg81mM3s4hlNRUYEWLVrg6NGjiI+PN3s4loXOY/DQOdQGOo/aQOdRG/Q8jxzHobKyEunp6YiIEI/kIYuPHxEREcjIyDB7GKYTHx9PN7cG0HkMHjqH2kDnURvoPGqDXucxkKWHh4KbCYIgCIIIG0j4EARBEAQRNpDwIXyIiYnBrFmzEBMTY/ZQLA2dx+Chc6gNdB61gc6jNrBwHim4mSAIgiCIsIEsPgRBEARBhA0kfAiCIAiCCBtI+BAEQRAEETaQ8CEIgiAIImwg4ROGfPXVVxg0aBDS09Nhs9nwwQcf+HzOcRxmzpyJtLQ0xMbGIi8vD7/88os5g2UYqfM4atQo2Gw2n//69+9vzmAZZs6cOejatSvi4uKQmpqKwYMH4+DBgz7b/Pnnn5gwYQKSkpLQuHFjDB06FMePHzdpxGwi5zz27t273jV51113mTRiNnnppZfQuXNnT4G93NxcbNy40fM5XYvSSJ1Ds69DEj5hyNmzZ3HZZZfhhRdeEPx83rx5ePbZZ/Hyyy9j586daNSoEfr164c///zT4JGyjdR5BID+/fujrKzM89/bb79t4AitwZdffokJEyZgx44d2Lx5M2pqatC3b1+cPXvWs83999+PDz/8EO+++y6+/PJLlJaWYsiQISaOmj3knEcAGDt2rM81OW/ePJNGzCYZGRl46qmnsGvXLnz33Xfo06cP/v73v+Onn34CQNeiHKTOIWDydcgRYQ0A7v333/e8drlcXLNmzbj58+d73isvL+diYmK4t99+24QRWgP/88hxHDdy5Eju73//uynjsTInTpzgAHBffvklx3Hu6y8qKop79913Pdvs37+fA8Bt377drGEyj/955DiOu+aaa7j77rvPvEFZlCZNmnCvv/46XYtBwJ9DjjP/OiSLD+FDUVERjh07hry8PM97drsd3bp1w/bt200cmTX54osvkJqainbt2uHuu++Gw+Ewe0jM43Q6AQCJiYkAgF27dqGmpsbnmmzfvj1atmxJ12QA/M8jz1tvvYXk5GR06tQJ06dPR1VVlRnDswR1dXV45513cPbsWeTm5tK1qAL/c8hj5nVITUoJH44dOwYAaNq0qc/7TZs29XxGyKN///4YMmQIsrKycPjwYfzf//0fbrjhBmzfvh2RkZFmD49JXC4XJk2ahJ49e6JTp04A3NdkdHQ0EhISfLala1IcofMIAMOHD0erVq2Qnp6OvXv3Ytq0aTh48CDWrVtn4mjZ48cff0Rubi7+/PNPNG7cGO+//z46dOiAPXv20LUoE7FzCJh/HZLwIQiduPXWWz3/vvTSS9G5c2dkZ2fjiy++wHXXXWfiyNhlwoQJ2LdvH7755huzh2JpxM7juHHjPP++9NJLkZaWhuuuuw6HDx9Gdna20cNklnbt2mHPnj1wOp147733MHLkSHz55ZdmD8tSiJ3DDh06mH4dkquL8KFZs2YAUC9L4fjx457PCHW0bt0aycnJOHTokNlDYZKJEydiw4YN2LJlCzIyMjzvN2vWDNXV1SgvL/fZnq5JYcTOoxDdunUDALom/YiOjkabNm2Qk5ODOXPm4LLLLsMzzzxD16ICxM6hEEZfhyR8CB+ysrLQrFkzfPbZZ573KioqsHPnTh//LKGckpISOBwOpKWlmT0UpuA4DhMnTsT777+Pzz//HFlZWT6f5+TkICoqyueaPHjwIH777Te6Jr2QOo9C7NmzBwDompTA5XLh/PnzdC0GAX8OhTD6OiRXVxhy5swZH2VdVFSEPXv2IDExES1btsSkSZPwxBNPoG3btsjKysIjjzyC9PR0DB482LxBM0ig85iYmIjZs2dj6NChaNasGQ4fPoypU6eiTZs26Nevn4mjZo8JEyZg1apV+M9//oO4uDhPrITdbkdsbCzsdjsKCgowefJkJCYmIj4+Hvfccw9yc3PRvXt3k0fPDlLn8fDhw1i1ahVuvPFGJCUlYe/evbj//vvRq1cvdO7c2eTRs8P06dNxww03oGXLlqisrMSqVavwxRdf4NNPP6VrUSaBziET16Fp+WSEaWzZsoUDUO+/kSNHchznTml/5JFHuKZNm3IxMTHcddddxx08eNDcQTNIoPNYVVXF9e3bl0tJSeGioqK4Vq1acWPHjuWOHTtm9rCZQ+gcAuCWLVvm2ebcuXPcv/71L65JkyZcw4YNuX/84x9cWVmZeYNmEKnz+Ntvv3G9evXiEhMTuZiYGK5NmzbclClTOKfTae7AGWP06NFcq1atuOjoaC4lJYW77rrruE2bNnk+p2tRmkDnkIXr0MZxHGeMxCIIgiAIgjAXivEhCIIgCCJsIOFDEARBEETYQMKHIAiCIIiwgYQPQRAEQRBhAwkfgiAIgiDCBhI+BEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNpDwIQjCh2PHjuGee+5B69atERMTgxYtWmDQoEE+/Ym2bduGG2+8EU2aNMFFF12ESy+9FAsXLkRdXZ1nm+LiYhQUFCArKwuxsbHIzs7GrFmzUF1d7fN9r732Gi677DI0btwYCQkJuOKKKzBnzhzP548++ihsNhv69+9fb6zz58+HzWZD7969ZR0bvy+bzYYGDRogMzMT999/P86cOaPwLBEEYVWoVxdBEB6Ki4vRs2dPJCQkYP78+bj00ktRU1ODTz/9FBMmTMCBAwfw/vvvY9iwYbjzzjuxZcsWJCQkoLCwEFOnTsX27duxZs0a2Gw2HDhwAC6XC6+88gratGmDffv2YezYsTh79iwWLFgAAFi6dCkmTZqEZ599Ftdccw3Onz+PvXv3Yt++fT7jSktLw5YtW1BSUuLTcXzp0qVo2bKlomPs2LEjCgsLUVtbi61bt2L06NGoqqrCK6+8Um/b6upqREdHqziT+sHimAjCUhjWHIMgCOa54YYbuObNm3Nnzpyp99kff/zBnTlzhktKSuKGDBlS7/P169dzALh33nlHdP/z5s3jsrKyPK///ve/c6NGjQo4plmzZnGXXXYZN3DgQO6JJ57wvL9161YuOTmZu/vuu7lrrrlGxtFd2Jc3Y8eO5Zo1a+bz+WuvvcZlZmZyNpuN4zj3sRcUFHDJyclcXFwcd+2113J79uzx7GPPnj1c7969ucaNG3NxcXFcly5duG+//ZbjOI4rLi7mBg4cyCUkJHANGzbkOnTowH300Uccx3HcsmXLOLvd7jOe999/n/OemtWOiSAIYcjVRRAEAOD06dP45JNPMGHCBDRq1Kje5wkJCdi0aRMcDgcefPDBep8PGjQIF198Md5++23R73A6nUhMTPS8btasGXbs2IEjR45Ijm/06NFYvny55/XSpUtx++23B239iI2N9XG/HTp0CGvXrsW6deuwZ88eAMAtt9yCEydOYOPGjdi1axe6dOmC6667DqdPnwYA3H777cjIyMC3336LXbt24aGHHkJUVBQAd9f08+fP46uvvsKPP/6IuXPnonHjxorGqGZMBEEIQ64ugiAAuBdXjuPQvn170W1+/vlnAMAll1wi+Hn79u092wjt/7nnnvO4uQBg1qxZGDJkCDIzM3HxxRcjNzcXN954I26++WZERPg+lw0cOBB33XUXvvrqK+Tk5GDNmjX45ptvsHTpUqWH6mHXrl1YtWoV+vTp43mvuroab7zxBlJSUgAA33zzDf773//ixIkTiImJAQAsWLAAH3zwAd577z2MGzcOv/32G6ZMmeI5d23btvXs77fffsPQoUNx6aWXAgBat26teJxqxkQQhDAkfAiCAABwHKfLtgDw+++/o3///rjlllswduxYz/tpaWnYvn079u3bh6+++grbtm3DyJEj8frrr+OTTz7xET9RUVEYMWIEli1bhl9//RUXX3wxOnfurGgcAPDjjz+icePGqKurQ3V1NQYMGIDnn3/e83mrVq08AgMAfvjhB5w5cwZJSUk++zl37hwOHz4MAJg8eTLGjBmDlStXIi8vD7fccguys7MBAPfeey/uvvtubNq0CXl5eRg6dKjicasZE0EQwpDwIQgCgNtKwQcli3HxxRcDAPbv348ePXrU+3z//v3o0KGDz3ulpaW49tpr0aNHD7z66quC++3UqRM6deqEf/3rX7jrrrtw9dVX48svv8S1117rs93o0aPRrVs37Nu3D6NHj1Z6iACAdu3aYf369WjQoAHS09Prucr83XxnzpxBWloavvjii3r7SkhIAODOFhs+fDg++ugjbNy4EbNmzcI777yDf/zjHxgzZgz69euHjz76CJs2bcKcOXPw9NNP45577kFEREQ9EVlTU1Pve9SMiSAIYSjGhyAIAEBiYiL69euHF154AWfPnq33eXl5Ofr27YvExEQ8/fTT9T5fv349fvnlF9x2222e937//Xf07t0bOTk5WLZsWT33lRC8cBIaQ8eOHdGxY0fs27cPw4cPV3J4HqKjo9GmTRtkZmbKig/q0qULjh07hgYNGqBNmzY+/yUnJ3u2u/jii3H//fdj06ZNGDJkCJYtW+b5rEWLFrjrrruwbt06PPDAA3jttdcAACkpKaisrPQ5Vj6GR4sxEQRRHxI+BEF4eOGFF1BXV4errroKa9euxS+//IL9+/fj2WefRW5uLho1aoRXXnkF//nPfzBu3Djs3bsXxcXFWLJkCUaNGoWbb74Zw4YNA3BB9LRs2RILFizAyZMncezYMRw7dszzfXfffTcef/xxbN26FUeOHMGOHTtwxx13ICUlBbm5uYJj/Pzzz1FWVmaYZSMvLw+5ubkYPHgwNm3ahOLiYmzbtg0zZszAd999h3PnzmHixIn44osvcOTIEWzduhXffvutJw5q0qRJ+PTTT1FUVITdu3djy5Ytns+6deuGhg0b4v/+7/9w+PBhrFq1yieAW+2YCIIQh1xdBEF4aN26NXbv3o0nn3wSDzzwAMrKypCSkoKcnBy89NJLAICbb74ZW7ZswZNPPomrr74af/75J9q2bYsZM2Zg0qRJsNlsAIDNmzfj0KFDOHTokE/tHeBCjFBeXh6WLl2Kl156CQ6HA8nJycjNzcVnn31WL36FRyjjTE9sNhs+/vhjzJgxA3feeSdOnjyJZs2aoVevXmjatCkiIyPhcDhwxx134Pjx40hOTsaQIUMwe/ZsAEBdXR0mTJiAkpISxMfHo3///li0aBEAt5XtzTffxJQpU/Daa6/huuuuw6OPPioZnCw1JoIgxLFxSqMUCYIgCIIgLAq5ugiCIAiCCBtI+BAEETI0btxY9L+vv/7a7OERBMEA5OoiCCJkOHTokOhnzZs3R2xsrIGjIQiCRUj4EARBEAQRNpCriyAIgiCIsIGED0EQBEEQYQMJH4IgCIIgwgYSPgRBEARBhA0kfAiCIAiCCBtI+BAEQRAEETaQ8CEIgiAIImwg4UMQBEEQRNjw/4yQWz4vK+05AAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChS0lEQVR4nOzde1wU9foH8M8uNwFhERAEQUFETUkTNERPpoa3vJwOGpRampjVkZKjqfmzvGSlpnnpnmValqWplVqWUGalSOU1zEwNDAS8LLKgqFz2+/tjnWFmd2Z2FpbrPu/Xy1eyOzv7ndFz5vH7fb7Po2GMMRBCCCGEOABtQw+AEEIIIaS+UOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGN0IYNG6DRaJCTk9PQQyGkWaHAhxAH9euvvyIlJQXdunWDp6cn2rVrh8TERPz1118Wxw4YMAAajQYajQZarRbe3t7o3LkzHnroIaSlpdn0vTt37sTdd9+NgIAAeHh4oEOHDkhMTMQ333xjr0uz8NJLL+GLL76weP3AgQNYuHAhiouL6+y7zS1cuJC/lxqNBh4eHujatSueffZZlJSU2OU7Nm3ahNWrV9vlXIQ0NxT4EOKgli1bhm3btuGee+7BmjVrMHXqVPz444+Ijo5GVlaWxfEhISHYuHEjPvzwQyxfvhyjR4/GgQMHMGTIECQlJaGiosLqd65YsQKjR4+GRqPB3LlzsWrVKowZMwanT5/Gp59+WheXCUA58Fm0aFG9Bj6ct956Cxs3bsTKlSvRpUsXvPjiixg2bBjs0T6RAh9C5Dk39AAIIQ1jxowZ2LRpE1xdXfnXkpKScPvtt2Pp0qX46KOPRMfrdDpMmDBB9NrSpUvx1FNP4c0330RYWBiWLVsm+32VlZVYvHgxBg8ejD179li8f/HixVpeUeNRVlYGDw8PxWPGjh0Lf39/AMDjjz+OMWPGYPv27Th48CDi4uLqY5iEOCSa8SHEQfXt21cU9ABAZGQkunXrhpMnT6o6h5OTE1599VV07doVr7/+OgwGg+yxly9fRklJCfr16yf5fkBAgOjnGzduYOHChejUqRNatGiBoKAgJCQk4OzZs/wxK1asQN++feHn5wd3d3fExMRg69atovNoNBpcu3YNH3zwAb+8NGnSJCxcuBCzZs0CAISHh/PvCXNqPvroI8TExMDd3R2+vr544IEHkJubKzr/gAEDEBUVhUOHDqF///7w8PDA//3f/6m6f0KDBg0CAGRnZyse9+abb6Jbt25wc3NDcHAwpk2bJpqxGjBgAL766iucO3eOv6awsDCbx0NIc0UzPoQQHmMMFy5cQLdu3VR/xsnJCQ8++CCee+45/PzzzxgxYoTkcQEBAXB3d8fOnTvx5JNPwtfXV/acVVVVGDlyJL777js88MADmD59OkpLS5GWloasrCxEREQAANasWYPRo0dj/PjxKC8vx6effor7778fu3bt4sexceNGTJkyBXfeeSemTp0KAIiIiICnpyf++usvfPLJJ1i1ahU/+9K6dWsAwIsvvojnnnsOiYmJmDJlCi5duoTXXnsN/fv3x5EjR+Dj48OPV6/XY/jw4XjggQcwYcIEBAYGqr5/HC6g8/Pzkz1m4cKFWLRoEeLj4/HEE0/g1KlTeOutt/Drr79i//79cHFxwbx582AwGJCXl4dVq1YBAFq2bGnzeAhpthghhNyyceNGBoCtW7dO9Prdd9/NunXrJvu5zz//nAFga9asUTz//PnzGQDm6enJhg8fzl588UV26NAhi+Pef/99BoCtXLnS4j2j0cj/vqysTPReeXk5i4qKYoMGDRK97unpySZOnGhxruXLlzMALDs7W/R6Tk4Oc3JyYi+++KLo9d9//505OzuLXr/77rsZAPb222/LXrfQggULGAB26tQpdunSJZadnc3eeecd5ubmxgIDA9m1a9cYY4ytX79eNLaLFy8yV1dXNmTIEFZVVcWf7/XXX2cA2Pvvv8+/NmLECNa+fXtV4yHE0dBSFyEEAPDnn39i2rRpiIuLw8SJE236LDejUFpaqnjcokWLsGnTJvTs2RPffvst5s2bh5iYGERHR4uW17Zt2wZ/f388+eSTFufQaDT8793d3fnfX7lyBQaDAXfddRcOHz5s0/jNbd++HUajEYmJibh8+TL/q02bNoiMjMTevXtFx7u5ueGRRx6x6Ts6d+6M1q1bIzw8HI899hg6duyIr776SjY3KD09HeXl5UhNTYVWW/1/3Y8++ii8vb3x1Vdf2X6hhDggWuoihKCwsBAjRoyATqfD1q1b4eTkZNPnr169CgDw8vKyeuyDDz6IBx98ECUlJcjMzMSGDRuwadMmjBo1CllZWWjRogXOnj2Lzp07w9lZ+f+idu3ahRdeeAFHjx7FzZs3+deFwVFNnD59GowxREZGSr7v4uIi+rlt27YW+VLWbNu2Dd7e3nBxcUFISAi/fCfn3LlzAEwBk5Crqys6dOjAv08IUUaBDyEOzmAwYPjw4SguLsZPP/2E4OBgm8/BbX/v2LGj6s94e3tj8ODBGDx4MFxcXPDBBx8gMzMTd999t6rP//TTTxg9ejT69++PN998E0FBQXBxccH69euxadMmm69ByGg0QqPRYPfu3ZJBoHnOjHDmSa3+/fvzeUWEkPpDgQ8hDuzGjRsYNWoU/vrrL6Snp6Nr1642n6OqqgqbNm2Ch4cH/vWvf9VoHL169cIHH3yAgoICAKbk48zMTFRUVFjMrnC2bduGFi1a4Ntvv4Wbmxv/+vr16y2OlZsBkns9IiICjDGEh4ejU6dOtl5OnWjfvj0A4NSpU+jQoQP/enl5ObKzsxEfH8+/VtsZL0KaM8rxIcRBVVVVISkpCRkZGfjss89qVDumqqoKTz31FE6ePImnnnoK3t7esseWlZUhIyND8r3du3cDqF7GGTNmDC5fvozXX3/d4lh2q8Cfk5MTNBoNqqqq+PdycnIkCxV6enpKFin09PQEAIv3EhIS4OTkhEWLFlkUFGSMQa/XS19kHYqPj4erqyteffVV0ZjWrVsHg8Eg2k3n6empWFqAEEdGMz6EOKiZM2dix44dGDVqFIqKiiwKFpoXKzQYDPwxZWVlOHPmDLZv346zZ8/igQcewOLFixW/r6ysDH379kWfPn0wbNgwhIaGori4GF988QV++ukn3HfffejZsycA4OGHH8aHH36IGTNm4JdffsFdd92Fa9euIT09Hf/973/x73//GyNGjMDKlSsxbNgwjBs3DhcvXsQbb7yBjh074vjx46LvjomJQXp6OlauXIng4GCEh4cjNjYWMTExAIB58+bhgQcegIuLC0aNGoWIiAi88MILmDt3LnJycnDffffBy8sL2dnZ+PzzzzF16lQ8/fTTtbr/tmrdujXmzp2LRYsWYdiwYRg9ejROnTqFN998E7179xb9ecXExGDz5s2YMWMGevfujZYtW2LUqFH1Ol5CGq2G3FJGCGk43DZsuV9Kx7Zs2ZJFRkayCRMmsD179qj6voqKCvbuu++y++67j7Vv3565ubkxDw8P1rNnT7Z8+XJ28+ZN0fFlZWVs3rx5LDw8nLm4uLA2bdqwsWPHsrNnz/LHrFu3jkVGRjI3NzfWpUsXtn79en67uNCff/7J+vfvz9zd3RkA0db2xYsXs7Zt2zKtVmuxtX3btm3sX//6F/P09GSenp6sS5cubNq0aezUqVOie6O01d8cN75Lly4pHme+nZ3z+uuvsy5dujAXFxcWGBjInnjiCXblyhXRMVevXmXjxo1jPj4+DABtbSdEQMOYHRrDEEIIIYQ0AZTjQwghhBCHQYEPIYQQQhwGBT6EEEIIcRgU+BBCCCHEYVDgQwghhBCHQYEPIYQQQhwGFTA0YzQakZ+fDy8vLyr7TgghhDQRjDGUlpYiODgYWq38vA4FPmby8/MRGhra0MMghBBCSA3k5uYiJCRE9n0KfMx4eXkBMN04pb5DhBBCCGk8SkpKEBoayj/H5VDgY4Zb3vL29qbAhxBCCGlirKWpUHIzIYQQQhwGBT6EEEIIcRgU+BBCCCHEYVCOTw1UVVWhoqKioYfRbLm4uMDJyamhh0EIIaQZosDHBowxFBYWori4uKGH0uz5+PigTZs2VEuJEEKIXVHgYwMu6AkICICHhwc9lOsAYwxlZWW4ePEiACAoKKiBR0QIIaQ5ocBHpaqqKj7o8fPza+jhNGvu7u4AgIsXLyIgIICWvQghhNgNJTerxOX0eHh4NPBIHAN3nymXihBCiD1R4GMjWt6qH3SfCSGE1AUKfAghhBDiMCjHhxBCCCF2odfrUV5eLvu+q6trg+fJUuDjACZNmoQPPvgAAODs7AxfX190794dDz74ICZNmgStVt3E34YNG5Camkrb+QkhhFjQ6/V4/fXX+Z8NBi8UFfnB11cPna6Ufz0lJaVBgx8KfOpRQ0bCw4YNw/r161FVVYULFy7gm2++wfTp07F161bs2LEDzs70V4EQQkjNCZ9vhw/3xM6dI8GYFhqNEaNG7UJ09BGL4xoCPe3qiXkkLKeuImE3Nze0adMGANC2bVtER0ejT58+uOeee7BhwwZMmTIFK1euxPr16/H333/D19cXo0aNwssvv4yWLVvihx9+wCOPPAKgOvF4wYIFWLhwITZu3Ig1a9bg1KlT8PT0xKBBg7B69WoEBATY/ToIIYQ0bgaDFx/0AABjWuzcORIREWdEMz8NpckkNy9ZsgS9e/eGl5cXAgICcN999+HUqVOiY27cuIFp06bBz88PLVu2xJgxY3DhwoUGGrGY2gi3PiPhQYMGoUePHti+fTsAQKvV4tVXX8WJEyfwwQcf4Pvvv8fs2bMBAH379sXq1avh7e2NgoICFBQU4OmnnwZg2nK+ePFiHDt2DF988QVycnIwadKkersOQgghjUdRkR8f9HAY06KoyLeBRiTWZAKfffv2Ydq0aTh48CDS0tJQUVGBIUOG4Nq1a/wx//vf/7Bz50589tln2LdvH/Lz85GQkNCAo278unTpgpycHABAamoqBg4ciLCwMAwaNAgvvPACtmzZAsC0DKfT6aDRaNCmTRu0adMGLVu2BABMnjwZw4cPR4cOHdCnTx+8+uqr2L17N65evdpQl0UIIaSB+PrqodEYRa9pNEZcu+YJg8GrgUZVrcksdX3zzTeinzds2ICAgAAcOnQI/fv3h8FgwLp167Bp0yYMGjQIALB+/XrcdtttOHjwIPr06dMQw270GGP80lV6ejqWLFmCP//8EyUlJaisrMSNGzdQVlamWLjx0KFDWLhwIY4dO4YrV67AaDT9hf/nn3/QtWvXerkOQgghDSMvDzh9GvD2Ns2l6HSlGDVqlyjHhzFg69b7odEY0bZtCWbObLjxNpkZH3MGgwEA4Otrmjo7dOgQKioqEB8fzx/TpUsXtGvXDhkZGbLnuXnzJkpKSkS/HMnJkycRHh6OnJwcjBw5Et27d8e2bdtw6NAhvPHGGwCUl9+uXbuGoUOHwtvbGx9//DF+/fVXfP7551Y/RwghpGnLywNmzQLatwcGDQLuvDMAhw/3BABERx9BaupqjB27BYwBXLjBmBZz5uiQl9dw426SgY/RaERqair69euHqKgoAKYGoq6urvDx8REdGxgYiMLCQtlzLVmyBDqdjv8VGhpal0NvVL7//nv8/vvvGDNmDA4dOgSj0YhXXnkFffr0QadOnZCfny863tXVFVVVVaLX/vzzT+j1eixduhR33XUXunTpwjcYJYQQ0jytWXMV7doxrFgB3Jrkh9Gowc6dI/nlLJ2uFJ6e12EealRVaXDmTD0PWKBJBj7Tpk1DVlYWPv3001qfa+7cuTAYDPyv3NxcO4yw8bl58yYKCwtx/vx5HD58GC+99BL+/e9/Y+TIkXj44YfRsWNHVFRU4LXXXsPff/+NjRs34u233xadIywsDFevXsV3332Hy5cvo6ysDO3atYOrqyv/uR07dmDx4sUNdJWEEELqkl6vxw8/nMH//ucBxixbC5knMUvl+zg5MXTsWOdDldXkAp+UlBTs2rULe/fuRUhICP96mzZtUF5eblFc78KFC/w2bilubm7w9vYW/WqOvvnmGwQFBSEsLAzDhg3D3r178eqrr+LLL7+Ek5MTevTogZUrV2LZsmWIiorCxx9/jCVLlojO0bdvXzz++ONISkpC69at8fLLL6N169bYsGEDPvvsM3Tt2hVLly7FihUrGugqCSGE1BWuLMuGDfstdm1xNBojfH2LAACDBw/GI48MxoIF+dBqGQBAq2VYtswAJ6cC6PX6ehu7aIyMmVbfGjvGGJ588kl8/vnn+OGHHxAZGSl632AwoHXr1vjkk08wZswYAMCpU6fQpUsXZGRkqE5uLikpgU6ng8FgEAVBN27cQHZ2NsLDw9GiRQubx9/QdXyamtreb0IIIWK1LaJbUFCAtWvXwmDwwurVqRbBj3mhQiFTFWdf+PoW1VkVZ7nnt7kms6tr2rRp2LRpE7788kt4eXnxeTs6nQ7u7u7Q6XRITk7GjBkz4OvrC29vbzz55JOIi4trFDu6/Pz8kJKS0uh7mBBCCGl+7PmPb/NdW4ARfftmIDY2U7ZAoU5XKvleQ2yCaTKBz1tvvQUAGDBggOj19evX88XyVq1aBa1WizFjxuDmzZsYOnQo3nzzzXoeqTwKagghhDQE8wBDro+W2kAkOvoIIiLOSM7iNHZNJvBRsyLXokULvPHGG/w2bEIIIaS5qunSlVIfLVvIzeI0dk0m8CGEEEKISU2Xruqqj5b5DJLcjFJjQIEPIYQQ0sTUtP+jUh8tWwIUYWBz9mxH0QxS9+7Hcfx491rPKNUVCnwIIYQQB8HV1REGP8It6GoIl8oAIwDNrV+mIOrYsR6inxtTZ3agCdbxIYQQQoiYweCF7Owwq01AuR1ZXFFBbkaGW57av99Vtp1EWVmZxVKZKYwwL2Qo/rkxdWYHaMaHEEIIadJsTVaW2pHFnWPVKi20WoaXXzZg3LjrfIK0Xq/HRx99hKKiMNnihdUYhMGP0oySq6trDa64dijwIYQQQupIbYoGKn328uXLANQnK5sHGMIdWebnMBo1mDXLG+fPvw+drlRUg05qqQwwQqOBYo4P911JSUnQ6XRWr70uUeBDau2HH37AwIEDceXKFYsmsXLCwsKQmpqK1NTUOh0bIYQ0lNoUDVT7WbXJylJFdC9fvozt27fLniM3NwRFRdeRk1OJ4ODqhOb4+HSkp8eLAhvzGaRBg76XrPGj0+kQFBRk9brqEgU+DmDSpEn44IMP8Nhjj1k0Hp02bRrefPNNTJw4ERs2bGiYARJCSDNU051XtnzWlmRludkVuVmcbdvGgjEtNm5kGDLkAr79NpUPduLj0xEcnC8KbMQBTuOt8UPJzQ4iNDQUn376Ka5fv86/duPGDWzatAnt2rVrwJERQkjTpdfrUVBQIPmLW46yB7nkZaVkZUBdDo35ObidWsKlr2++CRQtp6Wnx9tUsZkbf35+w4cdNOPjIKKjo3H27Fls374d48ePBwBs374d7dq1Q3h4OH/czZs3MWvWLHz66acoKSlBr169sGrVKvTu3Zs/5uuvv0Zqaipyc3PRp08fTJw40eL7fv75Z8ydOxe//fYb/P398Z///AdLliyBp6dn3V8sIYTUA7XLUbWllLyckJCAqVP9MX/+JeTkOCMsrBLBwb0B9LYph0aY8Hztmie2br3f7AjpnVpqAh/h+DduZFi7FkhOVjWsOtHwoZeDyssD9u6F7LbBujB58mSsX7+e//n999/HI488Ijpm9uzZ2LZtGz744AMcPnwYHTt2xNChQ1FUZJo2zc3NRUJCAkaNGoWjR49iypQpeOaZZ0TnOHv2LIYNG4YxY8bg+PHj2Lx5M37++WekpKTU/UUSQkg9qY8Gm3LJy9zMj7+/P4KCghATE4gxY/wQExOIoKAgBAUF2Zw4rNOVIjz8HEJDcwWzPxxx2yi1tX+kEqcfe6x+n33mKPBpAOvWAe3bA4MGmf67bl39fO+ECRPw888/49y5czh37hz279+PCRMm8O9fu3YNb731FpYvX47hw4eja9euePfdd+Hu7o51twb51ltvISIiAq+88go6d+6M8ePH801iOUuWLMH48eORmpqKyMhI9O3bF6+++io+/PBD3Lhxo34ulhBCGhm1tXaElJKX64rU8lmPHsdkl9MA+WuTGn9VFXDmTJ0N3ypa6qpneXnA1KmA8VYwbTQCjz0GDB0KhITU7Xe3bt0aI0aMwIYNG8AYw4gRI+Dv78+/f/bsWVRUVKBfv378ay4uLrjzzjtx8uRJAMDJkycRGxsrOm9cXJzo52PHjuH48eP4+OOP+dcYYzAajcjOzsZtt91WF5dHCCGNVk0bg6pNXq7NtnkpUrV+5HZqKV2b1PidnBi8vC5Cr3em7eyO4PTp6qCHw0W/dR34AKblLm7Jqa662F+9ehWPPfYYnnrqKYv3KJGaENJYccGDwWBARUWFxfvOzs7w8fGxOYioTWNQbvbFPLAQfs4810iuQah5DR1ric/mO7OkdmqZrm0UGJNuUSE1/hEjdmHXLlNgJLWVv65R4FPPIiMBrVYc/Dg5AR071s/3Dxs2DOXl5dBoNBg6dKjovYiICLi6umL//v1o3749AKCiogK//vorX2/ntttuw44dO0SfO3jwoOjn6Oho/PHHH+hYXxdFCCG1ZGuislTOolzAYa3WjlQAInxNavZFeJxwpkdq9sX0WT+sXfu16LMpKSmi2j5cXR9bmK5NOfFZafz1kSdljgKfehYSAqxda1reqqoyBT3vvFM/sz0A4OTkxC9bOTk5id7z9PTEE088gVmzZsHX1xft2rXDyy+/jLKyMiTfSsF//PHH8corr2DWrFmYMmUKDh06ZFH/Z86cOejTpw9SUlIwZcoUeHp64o8//kBaWlq97IAghBBb2foANj9eabln/Pg7sXEjg9FYHSA4OTE8+eRwhIVJL/dIFRw0x808FRQUAJCfWWIMACzHVV5ebnMxQfPgTu1SXGOq60OBTwNITjbl9Jw5Y5rpqa+gh+Pt7S373tKlS2E0GvHQQw+htLQUvXr1wrfffotWrVoBMC1Vbdu2Df/73//w2muv4c4778RLL72EyZMn8+fo3r079u3bh3nz5uGuu+4CYwwRERFISkqq82sjhJD6Zm0pKyrKB2vXasz+watBTEyg4nltXQKSm1kS/l5pic3a0pdccGdtKa6xocCngYSE1F/AY60i8xdffMH/vkWLFnj11Vfx6quvyh4/cuRIjBw5UvSa+bb43r17Y8+ePbLnyMnJURwTIYQ0dlygoGYpqzb/4LWWuFxcXAxArgKzmFT9HeH5k5KSRPlNhYWFOHDggGJwp7SUZU5uObA+UeBDCCGE1AC3HJWTU6lqKasm/+C1JfdIKpGYW+bimC9DqU2MthbcqVnKkpoxaggU+BBCCCFmuADAxeUmKircZGco/Pz84OcnlbtpfSlLDfOZHmszJuazL2fPdlRchrKWGK20LV1tEUNu3FIzRvPnX0J99yylwIcQQggREAYAporFGqu1d+ojd1NtLSDh7IvSMpSwl5jSUhYA2a7s5kUM5YIyuRmjnBxnxMTU8sbYiAIfQggh5BbzAIDrUaWm9g63lGVqXCqeqSkuLkZlZSUAU2FYrp4Ox1ptoNrWApI6Rrh1XS4wycyMRUZGnGJXdsB6UCY3Y9SpU/03kKDAx0aMMesHkVqj+0wIqStSycJcgrBUAMAxT1iWOo/BYMDmzZtrNC6lYn7Wcmz69euHwEDT0tr169exe/duxe9Ssy0dMPJBD/d96enxSE1dbTHTIxeUPfrocABAZWUldLp8PP98WxiNGmi1DIsWXYC/v+nPoz6LGFLgo5KLiwsAoKysDO7u7g08muavrKwMQPV9J4QQOXK7nrhZFuEMi7XARGlnlFbLcN99UQgM7IxTp04hLS3NfhcB5VpC1nJs9u/fLzp+woQJ8PDw4H8WFidUuy09Li4DBw70E51XaleYXFDWrl0SDh0CDh/ezB8/fboXv+xWVVWKtWtNx9dnBWcKfFRycnKCj48PLl68CADw8PCARqOx8iliK8YYysrKcPHiRfj4+FgUWSSEECFbKy5bY74zSpjjM3LkLhw7Zr2/Vl1Q07pCyMPDQ7I4oS3b0gGIZnwA6YRmudmiGTOCbo01lQ+u5Jbd6rOCMwU+NmjTpg0A8MEPqTs+Pj78/SaEEDl18cAUBgAuLuWoqHC1Wp9GjlTCb01r2XDjys0NAaBBaGiuzedSsy2dOy4/PwjCrAO5YMsyWDQC0Mj272poFPjYQKPRICgoCAEBAZIN7Ih9uLi40EwPIaReyAUOcg055YIMqffk6tbIJQFnZ2dbJDmbV1MWbk83zUYxSLWjkGNtyUxqRxuHMfC7vABg4MCB2Lt3LwBxsHjtmie2br1f9L1SS2QNhQKfGnBycqIHMyGE2Im1ysS2dEOXC07UBCamHUsFkoGNUvPP/Pwgi23eERFnFPtmCV/jZkLS0tKQlpYmynfx8/NDYmIitmzZIrPjzLZZFakls/j4dBQV+aG0tKXkjrZq4uClVatWFvdVpyuFweAlsfTFkJ8fjPDwc2r+GOsUBT6EEEIajNocHTXJr3JJu3JBi3lgkpY2GFI1e6TyYnbsGAmNBhYzI1wAMmbMNsW+WcLXzGdCzINAHx8fAMo7zszPZTAYZBuQCmdn8vODRUGb0vnN83u2b2+F1atTLe63TleK+Ph0/n7e+jTS0+MRFZXV4LM+FPgQQgiptZrO2qjN0cnPz8fFixctdmlxRfjkknYDAgolX5cKTORmT6QDDq0g/0U8M8IFQ1JLStZaSACWvQy5a7TWi0t4rs2bN4uCRfMlMy74+PDDh0X3xnx5SyguLkOUp7RmTVvZPJ7g4ALJ+9IYlrso8CGEEFIrtszaAMClS5f4PMkrV66o+g5hsT0pckm7ubntZGZeLAMT82O4h7Sa5p9CGo0RoaF5kktKFy8G4NixHjAFBQwdOpy1+Lxcg2elXlzW2lFwfcXKy8v5re3SAZ0GpuRk89eNiI3N5H8qKvIT9SYDrN8zW1pc1CUKfAghhNSK2lmbixcvYsuWLYrH1HTHk9yDNjT0H5nX8yS3rQuP4R7ScruWxDMa4tYWOl0poqOP4Pr1FkhLi7+1lBZv9jkNzp6NxKpVqRg92npiMmDZggKAaJeXEvMZN7l7lpz8Hv74o5uoYrN5UGUtsLF1+735jFRdosCHEEJIveBaNshRSiC2lqws96ANCSmQfQAr5bqYP6StNf+UauVgMHghPT0e1bMncjNG6hKTExIS4O/vj+zsbL54otr+XVKU7llISAFiYzMle3wpfVbpngnf464FsC153R4o8CGEENIgDAYv5OaGAgB8fK4o7oKylqwcHX0E0dFHkJISiZKSAISFVcLDIxKVleEYPLgUERGrJR/AXNAUHn4Os2aF8p8NDu4NoDfKyspEFZANBgO/TJeScgr5+R4IDi7DgQMZFtdnLRlZSJyYLD3r5e/vL0pYrk3/Lo5ScCJXbNDaZ6WCUnPm11KfKPAhhBBiV2qWqw4f7okdO0aiehbEMqlWGDRYS1bmHvahoRrodNzSmw//eWsPcQCIivJBUJBp5oFL1hYGPabzmJKqXV1dcfvtpmMLCgpw4IDl+eQqGlfvBhNdLfLzg3Hliq/qGRxrxQizs7NFHdgBwNnZ2WLmTc29EVIKbGozA1VfKPAhhBBiN2oefAaDl1nQA3DJvnI7igDTQ928hQL3OvewV9Mg1FpgVtst9sLzSy0HRUScwY8/3oVDh3rBfLu3Up0fc9bybIS9xGqaO2VO6c/XHjNQ9YECH0IIIXah9sFXVOQH6XwXDf8gl9r6DQAnTnSr1W4hNYGZ2mRtqeOkzp+aarnMFhX1Bw4d6i36rNo6PxxreTZcsCNVYLEmszDW/nytzUA1FhT4EEKIg7FnpWQhtQ8+X189pLZMczuKuN5YmZmxFt3BAS3i4vYr7jiSY+8ZCYPBAMB6LaHk5PcsKhbLzdaoqfNTVlbG/96yr5gbDAYvidYW4no7rq43ERqaK7rupKQkMMZQWVmJ0tJSi+7z1v58bdnCXp+7uMxR4EMIIQ7EnpWSOdxDzNqDz8XFBYBppmL06F2i5S5uZ1RFhRu/HBMbm4kDB+JgHgjExmYq7jjimC/v2HtGwnxZTe787703RXK7elxchkUAB1j28uLGVlZWBr1ej48++kh0Hp2u1GKXmTiAssyd2rr1fovZH51OxyccFxQUiD5jMHjh2jWPWm1h53Zy1fcuLnMU+BBCiANRu4xz4sQJtGrVyuJ1FxcXtG7dWvTgEhbHa9u2BHPm6FBVpYGTE8OyZSUYN+5Bi3/hizuNAwaDj+RyzOjR8g/SsWP7wMvLC87OzvDx8UFxcTFfJ0hua3xNlsnU5sfIFzoUzyyJG4Ea0bfvfnTteoIP+qSWxgDAw8PD4s+P2xlnPtOkhtoZL/PxCpcjbdnC3pA7uYQo8CGEEAcm91Dnum7LMZ8R4n4/cyaQlAScOQN07KhBSIgPhLurUlJS+MrNV65cwd69e2EweGHbtrGSS1BKD1LhUkxKSgrf00ppyUlpRkJq+cWWXUqWhQ6rcTNLAMzeNyVsczNbwmap1ogDEmukE8etzXhZNkbVgjEjxo7dgtDQPNnco8aU02OOAh9CCHFQ1h7qwjo75vkgSjNHISGmX1L8/Pz4IKmgoAB79+61ugSl5kEqHI+1JSduRmX8+FhERZnq9Ugtv9QkJyg6+ggCAgrx3ntTIJWrIzc24e/lmqUqjc2ceTuL+Ph06HTF2Lp1rOS45Mj1KfP0LLM5uGnIvB4hCnwIIcQBWXuom+rsjEL1LIFRdVsFW9m7r5O1JafU1NUIDz+H0NA+iksvtuQECWfOQkIKFJforPf9km78aW1s/KdFVa+rZ8oMBi/07Zshml2ylhhuy59NYmIiP+tmrqHzeoQo8CGEEAfC7URSeqgDpuUY8dKIFjt21E1NFlv6Oinl23AzCmqWnLiaP0lJSXxRQk5xcTEA9Q99uZkzqSU6pUajUuQCLbniiGPHbhUtQXH/NR9jXNx+xMZmWv2zbCoJy7agwIcQQhyEXq/ndyJJbSlXWo4xsW9NFuHSh1IuD8fa0hyXZJ2fnw9gu+KSE0ep4KFOV4rnn7+AhQvbWCRrc4nU1mbOpK5Dqu+XZUFH6fEKxyYVkERFnbQ4VmqMGRlxom7r5tT+2QQHBzeZgIdDgQ8hhDgIYR7M2bMdIZ7RUbMcU/PlJynC3WDFxcV8KwUu6VlIbb6N8CFsbclJjeRkYNIkjWyyttrlMKk2D9z7pt1muDXzIyQe7+XLl/mSAIC6YNGWMQqDHeGfjZymNMsjRIEPIYQ4GC6IEAY+Go3pAQzILRWZcnyED2FObR6Afn5+0Ov1/DZ0OdYe3uY9qYYPH47du3erDg7kXL58GcHBrhgwQHx9amsXAdZnquRm2MaO3Sqawdm+fbvFMcIASm4Z0NoYExISJGdummJQowYFPoQQ4mDUzACY19kx37ps/hC2peChOWu1hbjieXJLc1LjEeLGbWqVAZuCH+68SUlJovpFcrWLtFqG+fPzMXBgL36rvrWZKrnAJDQ0T3JMgwcPhpeXl2hmTCm4span4+/v32yDHCkU+BBCiINRm7Rrmk0Q54zIzSqoLYxoK3GtGgYu+LFl2Upt41SlIoVcLpAwwBPWLhoy5ApeeeXLW/ewFNxKnZog05bkbgAWrSTUBFdKM1+NZZt5faHAhxBCHIzUgzY+Pl1yRqRXr1747bffANhWzM8eLGvVaKDRMIwZI188z9o5pIICW67r0qVLMkHeZYt+XID6IFMqMFFbMdpacMXtvJLSVPN0aoMCH0IIaSaEzUfz87XIznZGeHglgoONAKq3aQPiB21+frBs9+527drht99+s3uDTyXcA//aNQ/JB7otxfOsBQW2XpfSLjAptszmCPN1bAnGrAVXjaVVRGNBgQ8hhDQDwuajah+a3EP2ww8ftvrgt3eDT27M5eXlosRk875Q5q0WNBojXFzUL6tZCwrkris3N8Rimc8WwtkaYZA5cmQXBAT4QKkjiK3BmLXgytGWsqyhwIcQQuqBtdmY2i45cOe29aGpNqCxd3VlqS7xUn2hTE0xGZ/jw5gW69ZNEQVzSktCplo8hVi4MEhUi+fee4djy5YtslWet20bi/z8DMUif3LfKxd46nSlOHHiHE6cUD6PrUFmQkICpk71x/z5l5CT44ywsEoEB8u34nB0FPgQQkgdUzsbY+vOKGEwlZVVjOzsMNnlIe6hyVUqvnz5MrZv325TorMtCbjWSOXJyPWFGj58J77+egS4HV3CYO7s2Y5WZ7eSkzWStXi4Yodnz+6yKCDImBYHDvTDgQNxkq065P4cbQ087dFFnlvKCgoCYmKk7zepRoEPIYTUMbWzMbbsjJIOpm6DRmOE0rZvnU4nyvewJaCpbU0ca+SCMA+PGzCvaswtR6kNMswbpwqDxujoI3B1vYmtW++XGJXlOZX+HG3t71WTLvKkdijwIYQQlWq7XGXPPBmlYMoUPKjf9q0U0AgrBQPiBFwhe+SRyAVhoaG5kgERoKnR/ZRaZpP6DrlzKv052rIkqLaLvK27vIgyCnwIIUQFeyxX2TtPBpB/eI4duwWenmWyMzPmgYpcQNO6det6aV3APdQjIs6IHviPPjocPj694et7AQsWtIHRqFEMiADryc9S16LU2NT8z0iuQSh3r9XO1qjtIg8o/52j5GXbUOBDCCFW5OUBBw+aHs4AarxcZe88GUC56q/See3Vi4mbBSsoKKjxOZQe6leuXIFGo0FV1WZMn+5lMSslDlYYAMvkZ+E4AVi0tzAPujIzY3HgQBzkZsy4P0dxXpAGZ892RHT0EURHH8FDDwVg164/FWdr1HaR799/HJ5/viMY0/DvffXVKMyfH4uwMGdKXrYRBT6EECKBe1Bu2uSO2bN1MBr9oNGkIi4uo1bLVfbOk7E1mDIYDHyOT20fmFJLRlK4hGohLviwlvckrFIsNSsVEXEGw4d/fSv5WSN5juzsbItqxxypoGvIkHTExmYiKuo+ZGV9IXkvLRuLakTf2bmzJ06csD5bM2eOP5KSzmLChOrABgC0WoYnnxyOsDBnHD/uB6NR/P1VVRqUlgaCYh7bUeBDCCFmuAe6weCF1atTRf/SzsiIg1LysBpyy0pS45DLKRLOWtgSTG3evLlWfbWE1CZjKxX9q03ek7jmj5jwHHJBj7Wgq3fva8jNrV3Hc2vfER4ejr59g3D9OvDYY0BVFeDkBLzzjgYxMYEAgMhIQKuFKPhxcgI6dlS8PUQGBT6EEGKGe6Dn5oZKPtz69t2PjIy4Ot1xY2tBQqlgqq76akkVHqypmuY9Wdb8EVM6h7XK0GqCLmvj5pLCrQVIXH5OcjIwdChubbkX70ALCQHWrjUPjMTHEPUo8CGEEAlcsGFOozEiNjYTsbGZVmdY8vKA06cBf/8Wqr5TmKRa04KE5uNX0/LAFmqXt9SqSd6TweCFEye6KQY9cudQUxnaWsDEBZJK4+aSwnNyKrFxI4PRWP0dTk7Vy1jCmTfzLfdCSoERsQ0FPoQQh8UFJpGR1Q8SvV6PrKximdkE8cNN6eG8bh0wdappeUKrbYWVK2ciMVH+eLkk4JosBdVlXy2l2aKabrfmlupyc0MAaBAamquqKrJ50AIYMXbsVsnEboPBC7m5oWYJyeLK0LYETIMHp6Nfvwx+iXH8+FhERVlWS/bzk5qtqV7GsoVSYETUo8CHEOKQxIGJ6eF0332m2Yzs7DAwdpvFZ8aO3YqoKOX+TQaDAfn5WkydGsD/K99oBGbO9MS//nXN5l041pZUhJ23uWrMddFXyxo1M0xKgZGwArNpJkYDUzd2+arIpmOY6LioqJMwGLyQnR3Gf49SLhCgxZgx0lv/nZ2d+XGbt9JISxsMAOjXLwM6XSmioobKNgKl2ZrGpVkGPm+88QaWL1+OwsJC9OjRA6+99hruvPPOhh4WIaSRyMurDnoA038fewy4445KAMpbxK3ZvHkzsrPDYDROFL1eVaXB0qX7EBV10qbkYmtLKlKdt+uiXpASNTNMSoGRdI8uWJxLuqWFBkOHfoOuXf+wCHI0GiPi49P5zvNS5Lb+C3eiyX1veno8oqKyVAWTNFvTeDS7wGfz5s2YMWMG3n77bcTGxmL16tUYOnQoTp06hYCAgIYeHiGkgen1ehw8CBiN4sCjqgo4duwaAPV5J8LZFgAoLi5WbHy5detYlJfvQn5+PgD128lt3QJfF/WCOMXFxaKf5fJthDNM1gIj6cDC8lxyAR0X9Eh9T1paPMzbXVSTvy86nY7PufL11cN8J5/5NVIRwaaj2QU+K1euxKOPPopHHnkEAPD222/jq6++wvvvv49nnnmmgUdHCGlIwm3qGk2qxQPUVLPF9LOaYENqtgWQK3AHVPd9Wg2drtTmmZ+a5M3Ys6+WXq/Hli1b+J+V8m2EM0zWlt7kKxiLz2XeaV2rZZgzJxtubvKtJLgihFLn1mhM9XjkcEUeL126BOACVq1qI7pGrZZh4sR+6N59FBURbEKaVeBTXl6OQ4cOYe7cufxrWq0W8fHxyMjIkPzMzZs3cfPmTf7nkpKSOh8nIaRhcIm5amdErAUb1v+Vr7F4RfjAr+22cmvjsXdfLeF4reXbTJ/+B//dci0erl3zhMHgJfHnYaoKyJgpuHn55RKMG/cgnzQ8aRJw6JAB+/at44Meue9RWu5Sk/fk5+cHPz8/rFwJBAcDc+aYlka5JOWBAyNrcitJA2pWgc/ly5dRVVWFwEBxtnxgYCD+/PNPyc8sWbIEixYtqo/hEUIakdrMiCQkJCA4ONjiX/kGg+HWf71ubYW3DHzU5tqoDU6Ex9mrDYUc7voA+bwXYb4N5+zZjoIKxwCXvLx16/2ifJ+IiDPo128iYmNN4zMlA2sQEuIDwIf/dEgI4ORUhqNHLQNVqYA2OvoI2rfPwXvvTUFtCk8+/TTwwAOUpNzUNavApybmzp2LGTNm8D+XlJQgNDS0AUdECKkvti4fcfz9/SWDh4qKCis1ZtTn2tQ0iKmrJRe9Xi+qwGwt34ZTHQQK74cGcu0l+vYtB7d6WJPAQi6gDQkpwOjRlkERANEOMGsoSbnpa1aBj7+/P5ycnHDhwgXR6xcuXECbNm0kP+Pm5gY3N7f6GB4hpJGoab0ZOVwl448+crvV4kI65yU5+T2EhEg385TCBTHC1hVCXHNQuVkcuc9xbJn9MT+P+SyO3HKh3MyQkHDJyTx5Wu2YuT9TF5ebqKhws/izTUhIwNSp/khJOYWPP86Er28Rzp7tyP952bPII2ncmlXg4+rqipiYGHz33Xe47777AABGoxHfffcdUlJSGnZwhJBGwR4VjYXLS5Z9veRrzNgS9Jif3xphorRer8fFixdFichqPqeW1CwOY9KJwvn5QbAsNCifCK12zEJSSdbmf7ZcIrqrqysOHDhndacZ7dJqvppV4AMAM2bMwMSJE9GrVy/ceeedWL16Na5du8bv8iKEOK78fK2qisbm29SFzGccuJkQW3JebKE2AfrSpUvw8/OzuaVEfn6+5HcozQbJ7Z7644+uoms1GLyQnh4Py6BHyPat9taTrOX/bLklxL17gVWrLJOd+/WbiAED6m7JkDS8Zhf4JCUl4dKlS5g/fz4KCwtxxx134JtvvrFIeCaEOBa9Xo+jR6+BMfH/F0jt7JHbpq5Ebc6LtTGaByHmjUDllum4ruu27hTbvn277Htys0FyszjffjsMe/YMwahRuxARcUYm10m8zCXcUj548GDZTupylGoAye3a8vPzQ58+0h3PY2P9QDFP89bsAh/A9D9WWtoihHCs1e8x39lTk2WOmhQNzM7O5gObq1evYs+ePYrfYW2ZjiuMKKUmeU1SQZT8LE71TMuOHSOh0UCmn5aYMDjx8vJSNS4hpRpAwj9b8z9T6njuuJpl4EMIIUB1E1Jvb1MrCmvBidw2dbVs3SJvy+yGVE7Kjh3ipRyp2RuDwQuZmbE4cCAOXDE/84BJLigSzjZxScdqkpUBrSDxWZzrZHpd3ZZypWCNC2TM/0zNc3wefXQ4AgICJP9MqYeWY6LAhxDSLImbkAZg5MieiI4+ohicmG9TFy495edrkZ3tjPDwSgQHm9ZHpGaG1G6Rt7YLyfyhL5dXk5kZiyFD0iW/Q6o5p3nui9IsklQgJT3DojyrI8x1EjYjVdsNXSpYM9/uP3/+JeTkOMPd3Yjr17UIC6tEWFg/q0EsbU93PBT4EEKaHcsmpBrRw15NcCJMElZ6CCclJaka08CBA7F3716L80ntQpL6PlMejGW/qIyMOMTGZlpcj2XSbzVueQmAZLJ3QEChZDAGSM+ade9+HMePd7forM4R5jopBZ4uLi6SY1dKVOYEBQExMdb+FAihwIcQ0kC4ZajISPv+i1uuCama9gRC3EyCtYdwRUWFqvO1atVK8nzmu5ACAgolvy81dTX69s3AgQP9FK+Lmym6ds3Dau8ruR5aXIVjue3+UsHLoEHfo6jIFy4u5bc+rxGcU/z9coEnu3Wgtd5ehNQGBT6EkHonXoYyJZkmJ1v/nLVgydYkZjWsPYSdndX93yh3nLVdSP/80072+2JjM/lcnWrV1yWeSTJCeglKvLwknRgsP9MiXIILDz/Hf4ILZrKzw2DZDV1d0KLRmMYqt0NOLlGZEFtQ4EMIqVeWy1CmnTVDhyrP/KgJlmxtQqqGtYewj4+PqtYS3PvWdiH5+ekhtVXcxYU7v+V2cEBqJskU/Gg0jL8HcXEZomUx+S7ygm8WBHn798fxzT7lZoOs3S8lOp2Ov5dt25Zgzhwdqqo0cHJiWLZM3KiUkJqiwIcQUq9OnxbXTgFM24nPnJEPfGoSLEVHH0FAQCFyc9shNPSfGlVNBtQFUWoexAUFBZLnM8/xcXWthOUsjQYVFa4oKvKzeK86X0cjOXMzZswWeHqWye4yi44+AlfXm9i69X7JcXNBy/79cUhLGwyppTlhPlBtg07uXs6cCSQlyTcqJaSmKPAhhNQbvV4Pb+9KaLUBMBqrH+BOTgxeXheh1ztLBhE1CZas7QqS2iott4RSm07u1s7n4lKOigrXW/91g4vLTcUZE6n3XFzKUVzcSvK90NA8yWUq4TWEhubKzEJVN/JMSzOv3SOfD2Sv+0U7rkhdoMCHEFIvhLukRo4UByUjRuzCrl2moMS8WnBNgqW8vCDR8o15rkpZ2YNYsyYSRqMGWi3D/PnnkZR0VXH8Ne3kzjEPqoTnMw/ShLukzGdMpHZUrVs3hc/r4QIY888pBYLmDUcBhr59DyA2NhMAcOJEN0gvhTEI7/GOHSPh6noToaG5/PUZDF42dT8npK5R4EMIqRfCHBilGQHhcbYGS8XFxfwD3vxBLdzCvXp1RzBmCqKMRg0WLQqGwbAaOl2pzU07zVtKCAnzUYR1ZwwGA86dO4eDBw9K7ho7frw7kpPfQ0WFq8X9MZ8tqg56AFPhQCPGjt2C0NA83HdfL+zdq7wzDYDE/WKIjc0U1dyx1miU+/6tW+/nAyvu3ObBVk2qSBNiLzUKfK5duwZPT097j4UQ4kDUzKDYEizp9XqcOGGQrV1jbQs3l8DLfafanUNKva4A8QwW99+goCB+G7zceCoqXPldU+aBgnAHlVRej6dnGXS6Un4LvdI1y+UG5eaGSGy754IdI+666yf8/PNdsnWCTJ81nUv42vXrLawmSBNSl2oU+AQGBiIxMRGTJ0/Gv/71L3uPiRBCJMkFS8XFxdiyZcutQKCPxCeVt3BL7Toyrwxs7vLly6KgR24Ww1rTUF9fPSwLE0pvUTcPFKztoPrrr79UHSf1nnRAJO4236qVfKAp95opV0h6CZK2qZP6UKPA56OPPsKGDRswaNAghIWFYfLkyXj44YcRHBxs7/ERQohVlZWmXlxyD/jk5Pf4XV227DpSu+SlFJycPn2aXw5zcXGBTqeTeMBb7uLKzQ1FaekVxeKJctdSWtoSJ050Q17eOYSEmK65e/fjOHasB7iZm+7dj8vmDY0atUsy4dm82zw3C5ebG4Jt28ZaHCvVl0tq5qlfv4kYMED9/SakNmoU+Nx333247777cOnSJWzcuBEbNmzAc889h6FDh2Ly5MkYPXq06qJehBBiL3KBgPlWdqVls5ycHIu8HWdnZ/j4+ACARR0Za5WduTYV5gYPHgwAklvUAc2t7eWWLSrMKxibX8v33w/Cjh2jwAU4PXocw6BB3+P48e6C79Hg2LHu6N37F4SEFMjeD6UAceDAgXBxccGePXug051EebnlsUB1jo+TE8PcuaV46SVvsyR1IDbWDxTzkPpSq+ikdevWmDFjBmbMmIHXXnsNs2bNwtdffw1/f388/vjjeOaZZ+Dh4WGvsRJCiFVqt1LLLZt99lkGv2QFQHL5KiUlhf+9XP5Mbm4IioquyzYh5SgVNDQFPeIkYqllOe5a8vKCBLM6gCnA6YG2bfMk83jWrZvCz05J3Q+lexkZGYmgoCB06tTJolFoWFglgoN7AwBeeMEAvb7VrVo8OoSFmWowVVWZgp533qEt66R+1SrwuXDhAj744ANs2LAB586dw9ixY5GcnIy8vDwsW7YMBw8exJ49e+w1VkIIUaWmW88tWz6Ymm2aL18J83akAxejYOnHsgkpAHh5efFjFRc0NKeR3aKekJAAf39/nD59Gnv37sU//7SH1OzR1auesstMUs0/heTuJbdcZ61RaFCQ+OfkZFPhSVNhQgp6SP2rUeCzfft2rF+/Ht9++y26du2K//73v5gwYQI/FQwAffv2xW233WavcRJCmiiuv5a/fwurxxoMXsjM9ECvXvX/QJRu+WCiFCBYBi5cYnD1rIu1cwhzZbZuHQvL5S2gb9/9Fl3Y/f39ERQUxC/NtWt3DlLbzjt1Og0fn1LJ1hTCpbOBAwciMjISBoMBFRUVoiU+odq2jaDChKQh1SjweeSRR/DAAw9g//796N27t+QxwcHBmDdvXq0GRwhp2sT9tVph5cqZSEyUnlnYtMkdzz+vw6pVGr4X1333qdvl4+LiUuuxKjUPBZS7gwuXhK5d85Rt/yA8h/mYTTMr4lyZalpkZMTxBQXlhIQUoEePY6Ik5h49jiEkpAAhIQXw9CzFJ5+Mg1wfsFatWiEoKAhB5tM0hDQjNQp8CgoKrObuuLu7Y8GCBTUaFCGk6ZPqrzVzZkuMGdNS9K99vV6PnJxKzJ6t45NeTb24GO64oxITJkxQ/P8bYQNQa4YMGQIfHx/RLAa3LV0518Yyt0auErOpM7x8E1LuHMKGnMKt8XK9s6QCL6nt3//5z5fo3fsXyR5lSn3ACHEUNQp8PDw8UFVVhc8//xwnT54EANx222247777aDcXIQR6vR4HDwJGo3g5pKoKyMzUw93dlBvCVWbOzg6D0TjR7FgNXnttN8LDz1mtpqzX61WNq1OnTrLnUc61YYiPT+eDjsuXL8Pf3x+JiYn8VvorV65g7969VpuQWmtuajB43fqdeEeXMGhKSEhAcHCw7LVwMzzmatM5nZDmokZRyokTJzBq1ChcuHABnTt3BgAsW7YMrVu3xs6dOxEVFWXXQRJCmg4umDHNfKRaPGT37/8AWVmlouKA1h7I1mZ0rBUbBNTlpXBLVpmZsThwIA6mwMOIwYPT0a9fBn/c9u3bFdsuSDUhVdphVlZWBsA8uZqBC37MgyZ/f3/RtajdPWuthhH9w5U4ghr9LZ8yZQqioqJw6NAhviT6lStXMGnSJEydOhUHDhyw6yAJIU0HF3xYe8gKgxRbigrKsVfxO52uFEOGpCM2NlN2S7y1zu/ceZTGX1ZWhoKCAhQXF+Pdd3cjN7erWfKxBhoNw5gxW0Qd1qVERERgwoQJfABljpuNApS3qEslMhPS3NQo8Dl69Ch+++03PugBTElxL774omyyMyHE8aitqWPrsfYk1yZBLnCRKli4Y8dIBAQUIiSkAAkJCXB2duaXwIS4ys1lZWX46KOPAHBBVKpkThBj1X23hC5fvmwxgxURESF7jXq9XlRI0doWdUKasxoFPp06dcKFCxfQrVs30esXL15Ex44d7TIwQkjzYEtNnZrW36kNbpns4sWL2LJli9XjpXd/VRcDTEgAAgICFGegCgpM+TeWW+jF5PJvuERotZ3k7bUUSEhzUKPAZ8mSJXjqqaewcOFC9Oljagh48OBBPP/881i2bBlKSkr4Y729ve0zUkKIQ5DKnSkuLq7zLdY+Pj6iZGUhFxcXVFRUKO7+qq7Tsxo6XamqoERpC71wua+mDVCFKKghxKRGgc/IkSMBAImJidBouOJcDAAwatQo/meNRoOqqip7jJMQ4gDkcme2bNmienbDFnq93mKmRy7ISEpKAlCdj2StGKCaoEQuqXvMmK18Xo+afCJCiHo1Cnzkmu4RQkhNyeXOuLreRGhoLk6cOIFWrVrxeTJCNVmm4XafCb9fuJvLPMioqKjgj42OPoKAgEK8996jsNZHS6/X80FQfr4W2dnO0OmKAcgndUdFnZS9J9ZaTBBClNUo8Ln77rvtPQ5CSBPHtabw9rZcupGaRTEYDGjdujV/jFzuzNat90OjMeLs2V2Ijt4rOyNj64yQcEZGvI3cxFqQcfFiG5i3h2AMOHu2Ix8sCYMr8cxNK4wa1RPR0UcUk7rlGqDKVZAmhFhX46INxcXFWLduHV/AsFu3bpg8ebLFv8QIIc0XN5uxaZM7X3lZqw3AyJE9+Ye/3FLN5s2bkZKSgqSkJGzevFmxcjIXhFy/3gLp6fGSyz625LsIKSUYC4MMYY0b7jPmS11AdbBUXFzMbw+3NnMjTOoWBnZUcJAQ+5NvTKPgt99+Q0REBFatWoWioiIUFRVh5cqViIiIwOHDh+09RkJII8TNZixf/glmzfIWtJvQYOfOkTAYvGQf+Fx14vLycv4fS9yyj0ZjlPw+xrRIS4uXPRc3poKCAtlfwgrPxcXFAIDMzFhVu6p8fHwwYcIEGAxeOHGim+xnuGBpy5Yt/HcozdwIHT7cE6tXp+KDDyZi9epUnD3bUXRPalLfiBAiVqMZn//9738YPXo03n33Xf5fQZWVlZgyZQpSU1Px448/2nWQhBDruKWmyMj66XzNzbAoP9Q1ku/l5oZApzuJy5cvi2ZShF3Kt20bazHTobTsYzAYsHnzZv49pSUxANiyZQsMBq9bOT1SLIOML77ww+rVXM0d8y7o1ePkgiVuh5iamRu5IDE1dTVSU1fXe30jQpqrGgU+v/32myjoAUylzmfPno1evXrZbXCEEHXEXdBNnc2Tk+vnu6091KUClq1bx6K8fBeA7Rbnk+pSrtEYER+fzi9zSX2PMPlYannNlEfjh8OHL6JNG1NAkpsbCqmJ727dfseQIWmiICMrqxizZ7cBY1ywY+p+Lvyv3IyMmsrUSgFkePg5KjhIiJ3UKPDx9vbGP//8gy5duohez83NhZeXl8ynCCF1QaoL+mOPAUOH1s/Mj7WHunTjT+u7k8yTfgHg2jVPi11X5p+X2x2m0Zh+/+GHps8BPW9tSTdntAh6AODjj3+B0Xib2bEaDB36DUJD/7Haj8taZWprAWRCQgL8/f3596jgICE1U6PAJykpCcnJyVixYgX69u0LANi/fz9mzZqFBx980K4DJIQoO326OujhVFUBZ87UT+ADKD/Uo6OPwNX1JrZuvV/0GbndSeZLVFK1bOLi9qNr1xOoqHCDweAFna4UV65cASC/O+xWqTF+Ccn0s/g4pRwaF5ebkOqY3rXrH3apTG0tgPT396/zIo6EOIIaBT4rVqyARqPBww8/zK9hu7i44IknnsDSpUvtOkBCiDy9Xg9v70potQF8cjEAODkxeHldhF7vXG+zAkoP9dDQXFU5LpmZscjIiLNYojKfwTlwIM7iOMBUX0xpdxhH7r0xY7byNXQ4ffr0wZtv3hTs4lJe1qoNpQCSlrUIsQ+bA5+qqiocPHgQCxcuxJIlS3D27FkApgZ5Hh4edh8gIUSasEbMyJHiGZERI3Zh1y7TNu+6qHhsK2uzGYcP97SohMzNzIwZs03VDI5wa7h4ec0IUx6OuNCg+YyPRmNEaGiexdi//faEWRNRU9CTnPweQkIKFK/bxcVFze3BhAkTFP//k5a1CLEfmwMfJycnDBkyBCdPnkR4eDhuv/32uhgXIcQKYd0apZmCmta3sTe5McrXxOFmZpiqGRzhspn5d50929Ei6AKgmGzMkUs6rqiwPgOj0+moOSghjUyNlrqioqLw999/Izw83N7jIYTUUH13Nq/J0ovUGK016gwNzVM1g8MtmwlzhMLDzwGQD7qUko05cknHLi7WA0oKaghpfGoU+Lzwwgt4+umnsXjxYsTExMDT01P0PnVkJ6RxqW2NH6l+U+HhlUhKSkJFRQWcnZ35KsVC5rV1pMjl5AhnYdTM4Oh0pdi/P062srNU0KUmWLRcOmNgTIt166aIzt+rVy+0a9eO7yVGQQ8hjVONAp97770XADB69Gi+OztAHdkJaQhyhfo4a9dW4fnn2a12Egwvv2zAuHHXVT+Y5ftNGTFqVCb/4JfKJVIzKySVk9O3bwZiYzNF1yMMUqRmcPbvj0Na2mBwM0HC3B8AsvdI6v4lJCTA2dmZ79pe3ZR0CrglOfPconbt2tHSPyFNAHVnJ6SRU5qtkeuDxTEYvLB6dTBfdM9o1GDWLG+cP/8+dLpSVYnP3EyPtX5TUnksfn5+sjkuly9fxvbtpgKG1mrcSDHvb5WWFg/zSsqMaSV3ilnrIybVAb6iwg3meUhyvbwIIY1Xjf6XGh4ejtDQUNFsD2Ca8cnNzbXLwAgh8hWZ9Xo9srKKFQMRwHp3b1sSn2vaKVztco+1ZafBgwcjLS1NdmxSydEajZEveMiNVzgLJHf/Nm/ejMTERNG5rBUYlFrqI4Q0PjVqUhoeHo5Lly5ZvF5UVEQJz8Sh5OUBe/ea/mtPer0ehw5dwNSpzKwiM8MPP5zB66+/jo8//sVq40vuYS1U0+7e9jwXUL0MZjB4ITs7TNRsVCgxMREpKSno3LmzTWMDGKKjD0FulsZa41CuRhnHvIkqNQwlpGmq0YwPl8tj7urVq2jRokWtB0VIU1BX/bG4nJrs7DAYjRNF71VVabBhw88ID1fX+FKpfo7B4IWvv76OiIgz8PO7DgC4fLkF9HpfhIdXIjjY9IA3GAxWz1WTaywvL4eT01SsWdMGRqMGGg1DamohHnnkMp8sbZ6HZL5sJlwui4vLEMzuGDF4cDqiorJw+HCM6j5iwvekavDUZEmOENK42BT4zJgxAwCg0Wjw3HPPiQpuVVVVITMzE3fccYddB0hIY6PX65GTU4mpU6urJXOzMXfccRFhYbWrlsw92KV3Oxlx7Zon36ZBTSAi9bCWym0BLOvaCPOF5M5lfm+kdn9xQRQ3y/P666/fyj9K5fOPGNNg1ao2yMr6Hf36ZWDChAkICgoyy3GyvK9S7SyEidHmidNxcRkArAdyXA2e/Px8PrjiPkcBDyFNl02Bz5Ejpv8TZIzh999/F+3YcHV1RY8ePfD000/bd4SENCLWZmNee203wsPP2aVaslwF4q1b7xcFJmpmIMwTgZWaeHKvyTURlXvwC7euKyVdJyUlAZCr36NBeno8oqKy8NFHH8HHZyZmzGgpO6uWn6+1uJaMjDjExmbyx3D36Mcf78KhQ71w4EA/ZGTEqbp/tvwZUksJQpoGmwIfbjfXI488gjVr1lC9HuJwlGZjhMsk9qqWzD2Yc3NDsG3bWMHsiOmBHxBQiJCQAptmIKw18eSoSVwWqqioAGB99xd3nK+vHuZNP4XfCwDPP+9pkePEzaoBwNGj18BYoNVxZ2VF4dChXpDa6m5tBkdpZxqHavYQ0nTUKMdn/fr19h4HIU2KPfNd1HxXUdF1yUTc996bgtGjLZeklMgtoQlnfADpJqJK9YK47dxqd3/pdKUYPDhdVHtH+L1FRX6ixquAeFaNG5NGk2p13HJb3dUGdhTUENJ81CjwuXbtGpYuXYrvvvsOFy9ehNEo3k3x999/22VwhDRmapeZals1GVDqOC6/JCVHLmgDLHN8ACA7Owz5+UGyFZETEhIQHBysejZMqF8/U76N+bm5a6lN8jZHaat7TXekEUKarhoFPlOmTMG+ffvw0EMPISgoSHKHFyGOQCnfBQA2bXLH7Nm6GldNFn6PON+nmtzMRWJioqi2jFzBQBeXclRUuMHXV4/U1NWithCm5GNTmwa5ZSJ/f3/4+fmhoKBAcqzWZsP69ctAVFSWRQCp9jwREWcwZsw2AAyhoXkW70sHjQzx8emKwSLl7BDSPNUo8Nm9eze++uor9OvXz97jIaRZ2Lx5s8WupZpUTRaSapsAyM9cBAQEKJ5fpyuV7HkVHX3EIk/H1mUipdmwwkJnZGeHiZbM5AJIa7Nq1ipXc+c2TxIfPDidn20CTLNW/v7+/M+Us0NI81WjwKdVq1bw9fW1fiAhDqwmVZP1ej2Ki4tlzxkSUoDRo+VnQbgHuJoHt1ISslLHdEDdMpFUMHP4cE88/3wXGI23yQYq5mNU6rFlrXI1x1oA5e/vj6CgIMXrIYQ0DzUKfBYvXoz58+fjgw8+ENXyIYRUsyXXBRA3AwXkH/pKD3GlB7j50o1SYCa3PARoFJeu1AUq0ktm5qzN5tjaQoPq7xBCgBoGPq+88grOnj2LwMBAhIWFWVQ4PXz4sF0GR0hjY0veh625LsIZIGsP/Zo8xLlt2VxBPqXAjBv7jh0jIVxW69t3v0XXdM6WLV58TlBtAxU1szm2BpZKKJ+HEMdRo8Dnvvvus/MwCGka1NR0KS4uxpYtWwDUrMWBLUs4NRk/N3ZrgVlExJlbW9y5T2ssigMCQFlZGQ4duoAZMwJEszm7do1CSkokdLpS7N69W6ZuT3WgwhU23Lx5s6ogyV4lBSZMmED5PIQ4kBoFPgsWLLD3OAhpMvz8/BRbM0g1t5R6GBcXF0suS8k99HNzQ1BUdF22jk5NKAVm1oKPhIQEeHh44KOPPpKsZG00avDxx5l8zR0TcZK0cEOoTqfjf692NsdaYDlhwgTF5XhKYibE8dgU+Pzyyy+IiYmBk5OT5Ps3b97El19+icTERLsMjpDGSJiLo2ZXESCd+7JlyxbJnV1yD/2tW8cCUP4eNUs25sfIBWbWgg9uF5TB4IVr1zxgPptjHqiY6umo2x1my2yO3PgTExMREREhfRMIIQ7LpsAnLi4OBQUFCAgIAAB4e3vj6NGj6NChAwDTv2AffPBBCnxIs8bN9KhdklIKjqSWzKQe+qblJunvGThwICIjI/mAhqunI4Wb4VBarsvOzkZaWpqq4GPTJnezWj+m4EfqWGuBlMFgEM361LYTurCGESGEcGwKfJhZMx/zn+VeI6Q5UpOHYi04ysvL4z97+fJl/vfCh/61a57YuvV+2e9p1aoVgoKCLHaFybGlfpBS8JGVVYzZs9vweT2mHV8MY8ZskSwkaC2Q4np4mX+GdmIRQuypRjk+SqiKM3EUavJQrAVHX3/9tez5uYd+Xl4QhJWTb50FLi7iGRvzGRy5reVKidl6vZ4PwISfF+fpmHz88S8wGm+zuDZPzzJVhQ25itEGg1edBDe0U4sQIsXugQ8hjkLNUpBcPZz8/GDJYEJKRYUbzHNjAA0qKuQf7Gpzj4RszV1Sm4BsHoDJVYweOPCKRWkMOUlJSaJlMXOUtEwIkWNz4PPHH3+gsLAQgGlZ688//8TVq1cBiKfqCXEE1vJQdLpSxMebdyDXID09HlFRWaLj5WZobK1XY215TW43mdrcpYEDB2Lv3r2Ca4uHXF6PVAAVEXFG5vyrbWi0qqNKy4SQGrE58LnnnntEeTwjR44EYFriYozRUhdxONbyUIKDC2BtN5PSDIu1mSXzWRJry2tyu8nUfr5Vq1b8mNPTq4Oe+Ph00ayQXAA1Zsw2myouS6FlLEJITdkU+GRnZ9fVOBTl5ORg8eLF+P7771FYWIjg4GBMmDAB8+bNE/0f4PHjxzFt2jT8+uuvaN26NZ588knMnj27QcZMCMf6bibru8OUZpbMl3zUzBBxszt5ecDp00BkJMBVqVDzeakxm89iyQVQAFM8v3lXeXO0jEUIqQ2bAp/27dvbdPL//ve/eP7550Vdj2vizz//hNFoxDvvvIOOHTsiKysLjz76KK5du4YVK1YAAEpKSjBkyBDEx8fj7bffxu+//47JkyfDx8cHU6dOrdX3EyJk62yDtRkbta0c5GaWpOryiLuRm6ovnz3bkZ+RuXz5MjZtcsfs2ToYjRpotQzz51fJjjc+Pv1WHR6gtLRU1ZjlAqjQ0DzF++Hj40PLWISQOlOnyc0fffQRnn766VoHPsOGDcOwYcP4nzt06IBTp07hrbfe4gOfjz/+GOXl5Xj//ffh6uqKbt264ejRo1i5ciUFPsQqrhJzcXGxReVlwLScpNPpFOvgXL58Gdu3b+d/FubsKM3YuLjcVJwB4TquS5Gb/YiIOANxZQnxLNL69Wm36u+YluCMRg0WLQpGaqpph5VwvPn5wUhPj+eDlLNndyEiwvqskFLAV9saPYQQUlN1GvjUZU0fg8EAX19f/ueMjAz0799f9K/foUOHYtmyZbhy5Qqfl0CIObVd0Tlq6uDI5eyYn094nFz3c6WO60LCv/um2Rn5GRmlthg63Un+Hri43OSDHu6YnTtHIjV1tarKyspLdFSjhxBS/5rkdvYzZ87gtdde42d7AKCwsBDh4eGi4wIDA/n35AKfmzdv4ubNm/zPJSUldTBi0pgpdUWPi8uw6EauVAcHUF/R2fw4UwK0EcnJ7yEkpLr6stqlNT8/PyQlJWHz5s1W83Skt9kDW7eOxenTx3H8eHdB1WjpAEptTR4KcAghjUmDBj7PPPMMli1bpnjMyZMn0aVLF/7n8+fPY9iwYbj//vvx6KOP1noMS5YswaJFi2p9HlI3hM1Apdgz0VUqYDlwoB8OHIjD6NHW6+BwrOW/cNvBpY4DtHx9noSEBAQHB4uuz9r94FjL05HKA+K+/9ixHuB2oQlnoqoZ+eKJcjV51N4rQgipbw0a+MycOROTJk1SPIbrAwYA+fn5GDhwIPr27Yu1a9eKjmvTpg0uXLggeo37uU2bNrLnnzt3LmbMmMH/XFJSgtDQULWXQOpQTVsw1DRYkg5EAPP8GKl6VcJZGWuzLdzso9rdV3q9nu8Ir+Z+cJTydLjgxNX1pkU7DKliidUNSBkALdatm2KlJs+ZGs/y0FZ1QkhdatDAp3Xr1mjdurWqY8+fP4+BAwciJiYG69evh1YrfkDFxcVh3rx5qKio4OuapKWloXPnzor5PW5ubnBzc6v5RZA6o2Zmw/y42vSrklv+AcQzNsIEZiGuOa/azuLWjhN+j1QytbVcJO47AODDDx+WDE5CQ3MlK0sLgx+NxogHHvgEn376oF1r8kglbdNWdUJIXavTwGfChAnw9vau9XnOnz+PAQMGoH379lixYgUuXbrEv8fN5owbNw6LFi1CcnIy5syZg6ysLKxZswarVq2q9feTxkHNg742/arkl3+UKyVXH1MdLCgl9Xp4eKg6TujSpUuiej1KBQ+5OjjcLjOlpbfw8HNm12zZEyw+Ph2urpU1qsmjxHwZjxBC6kONAh+j0Wgx48K9npeXh3bt2gEA3nrrrdqN7pa0tDScOXMGZ86cQUhIiOg9bueYTqfDnj17MG3aNMTExMDf3x/z58+nrexNELdUJVxSqknvqZp8hgtEMjNjceBAHORaMUjR6XSSMzNC5tvhueDE2rk3b96MpKQkANaTp83r4FhbUuOu+cSJrtizZxjENAgOzoevb1GNavLIbcWnmR1CSEOxKfApKSnBlClTsHPnTnh7e+Oxxx7DggUL4HSr5OulS5cQHh6Oqqoquw5y0qRJVnOBAKB79+746aef7PrdpH5JLVWp3SVV289wdLpSDBmSjtjYTMmZGKWZJ7UPc7njlM5dUVEBQH3BQ+H1WOupBQDe3qWozuUx4QKkmtbkUbsVnxBC6otNgc9zzz2HY8eOYePGjSguLsYLL7yAw4cPY/v27XxCYl3W7iHNn9Rsia0Pels/I5dMK7UNuyazSGqJa/oYMXhwOvr1y7A4ztampdZ6alnWEjJCKkCimjyEkObApsDniy++wAcffIABAwYAAO677z6MGDECo0aNwo4dOwCI8xwIsQdbH/S2fka49CRVufnKlSvYu3dvrWaRrLGs6aO91dEdFsGP2uRpg8FgtaeWVC0hjYZhzJgtCA3No5o8hJBmx6bA59KlS6J+Xf7+/khPT8fQoUNx77334r333rP7AIlj45Z+4uPTLbZjKz2A1QYHHG7pSWpZpqCgQLbujq1dxeVIb6XXWDT+5FhLitbr9di8eTMyM+Mlx3ziRFd06/aH7DV5epbZJcChremEkMbGpsCnXbt2OHnypKhCspeXF/bs2YMhQ4bgP//5j90HSByX+bJSfHw6n2grfCjLPVzt3Q+qJjNPtpzbPL8GEAdWzs7i/7kKm5wKf3Z1dcXFixdhMHjdStA2x7BnzzCkpQ1BfHy6Xa6JtqYTQpoKmwKfIUOGYP369bj33ntFr7ds2RLffvstBg8ebNfBEcclt0STmroaOl0p/6A1f7hKdSpX09FcCXestVmkmsxuCM89eHD6reUtcQ0dLgjx8fFBSkoKLl68iMrKSmzf3gpr1rQVdFc/j6SkqyguLsaWLVtQVBQG80Dq1lkBVN9TW2fTpNDWdEJIU2FT4LNo0SLk5+dLvufl5YW0tDQcPnzYLgMjjs3aspLcbiG5zulCts5EmJ9z/vxLyMlxRlhYJYKDewPoLXtOpSrSBoMBjDEMHjwYaWlpfC6PtSBky5YtMBi8JLurGwyr+eOVCjJyGNMiODgfqamrrc6MDR482KIfHkAzO4SQpsWmwKdVq1aKVZC9vLxw991313pQpHlS00qCU5tlpbp4CAvPGRQExMRY/4ytLSYAUyJzVFSWZBDi6urK3z81+UaWBRmNMM32WM4oqUla7ty5MwU4hJAmz+YChpWVlVi1ahU++eQT/PXXXwCATp06Ydy4cZg+fTrfLoIQIbVBwIQJEwDUzbJSfVPbcgOwrN9jXgCQm1UpKDB1bVcbGJr36+J2iplYX9aSW1IkhJCmyqbA5/r16xg8eDAyMjIQHx+P/v37AzB1UJ8zZw527NiBPXv2oEWLFnUyWNJ0qQ0CPDw8arys1FQp1QaSW9KTms2Jj0+XLWAImPp1iWd7gIiIM4pjowKEhJDmxqbAZ+nSpcjNzcWRI0fQvXt30XvHjh3D6NGjsXTpUixcuNCeYyQOpibLSk1VbWoDRUcfwfXrLficoPT0eLi735AsqFiXW/EJIaQpkc96lPDpp59i5cqVFkEPAPTo0QMrVqzApk2b7DY4QpoTg8EL2dlhMBi8+NeUAhI15+OCHu5zO3eOFJ2fwy2NCanJmWoKS4qEEGILm2Z8zp07hzvvvFP2/T59+uCff/6p9aAIsTe5xGqDwYCKigo4OzvDx8fH4n17LavJLWfVJonbllkcNQUdzWvxNLclRUIIAWwMfLy9vXHx4kWEhoZKvl9YWAgvL8t/bRJiTqkZp1pqdon5+fnVaHeVUEpKSq0CAGvLWbZUmBayNWiyVtCRavEQQhyBTYHPwIED8dJLL2Hbtm2S7y9duhQDBw60y8BI82WPRp9qgxlrNX3UyM/PR3l5eY1nQKzNzNhSYVq49CQXNAFAdnaYZFApt209MTGRgh5CiEOwKfBZsGABYmNj0adPH8yYMQNdunQBYwwnT57EqlWr8Mcff+DgwYN1NVbSDNir0afaYKa2QQ8AbN++nf99YmIiAgICVAUJXJAiNzPj4lI9NrUVpv38/JCYmIgtW7YAsJzFOXu2463ChrYFlVLLfIQQ0hzZFPh07doVaWlpSE5OxgMPPMB3YmeMoUuXLtizZw+6detWJwMlDUvtspLS+4D12Y/GnkzLBRzc8pe1+zJhwgSUlZXh7Fnh1nMGxrRYt26KKDBRm2NjHqRwQVNtgsrGft8JIcRebC5g2KdPH5w4cQJHjx4VFTC844477D020kjYsqwkF/xwbR9yciqxcSOD0VhdT8bJieHJJ4cjLMy5ySy3lJeXq74viYmJiI4+goCAQrz33hRwmynNA5Pa1syxFlRKNRIFKImZEOJYbA58SkpK0LJlS9xxxx2iYMdoNOLq1avw9va25/hII2CvZSU/Pz/4+QFr1wKPPQZUVQFOTsA772gQExNoj6HWK7X3pbKyEgBQUeEGpe7rtWUt2ZmKERJCiI11fD7//HP06tULN27csHjv+vXr6N27N3bu3Gm3wZHmKTkZyMkB9u41/Tc5uaFHZCJVZ8eealpLRy0u2Zn7jpp2WieEkObMphmft956C7Nnz4aHh4fFe56enpgzZw5ef/11jBo1ym4DJM2HMB/GyQno3Nn0+q32U/W25CK1ld4eO82sbdGvzdZ1IaV8HFt2iBFCiCOyKfDJysrCm2++Kft+//798eyzz9Z6UKT5sUeekBKloEMYKEgFOBERZ2STggGoqjekNnCyR2DC5UtxQaTBYMDmzZv599XuECOEEEdkU+Bz5coVPl9BSkVFBa5cuVLrQZHmx97bz60FM1zQwc0iJSUlYe3aryUDnDFjtkkmBX/77WCcPNnNajBjbTeVi4uL6Hi5wKS4uFjxeoUBobifWZDVekWUwEwIISY2BT5hYWH47bff0KVLF8n3f/vtN7Rv394uAyNEiZ+fHyZMmIC//y7H8893AWNcaQUtdu0ahZSUSHToUP2w1+l0srueAGaRFAww/PHH7aLj5LaGW9tNpdPpLAITrlUGAFy9ehV79uzht8rLzV5Z2zVHCCHEOpsCn4SEBMybNw+DBw9GYKB4F05hYSGeffZZTJgwwa4DJESKXq/HRx99hOzsMBiNt4neMxo1+PjjTISHnxMFC3K7nkJD80S5NwADoIE583pDXCCjpnWEMDDR6/WipSlToGOqtHz2bEfZ2St7FGMkhBBHZ1Pg88wzz+DLL79EZGQkJkyYgM63slP//PNPfPzxxwgNDcUzzzxTJwMlDcc8N0RuRqI+c0jUBh3CYEEpuZjLvdHpkrFwoU7yO83rDen1eqvnBcT3Ra/XIz8/n/9ZuEwHGGEKuKpnr2pS1ZoQQog8mwIfLy8v7N+/H3PnzsXmzZv5fB4fHx9MmDABL774IjUpbWa4nViJiYmorKzE9u2tsGZNWxiNGmi1DLNnn8W4cdfh7OyM8vJyFBQU1Gs+ia07pZSSi3W6UowceQPPP6+DUbzrXLLekHmS8fz5l5CT44ywsEoEB/cG0Ft0L8wTvPPygkS5QVLVJexZ54cQQkgNChjqdDq8+eabeOONN3D58mUwxtC6dWu+fYXQ/v370atXL7i5udllsKR+mT+oDQavW32gTH/WRqMGy5Z1wM2bqy0ezLXtaG4LW3dKySUXA0BwsFFUYFGrBWbMAKZPB0JCLI8XJxkDMTHy3yucfTp8uCd27BgJa6W07FnnhxBCSA0CH45Go0Hr1q0Vjxk+fDiOHj2KDh061PRrSAMyzymxlsQrxHU05xgMBlXfefnyZcnXrc0iKQUz3OeFlJbrkpOBoUOBM2eAjh2lA57a4HaBSQc9Rmg0qFWdH0IIIfJqHPiowRiry9OTeqYmiZcj7GguRS7wUPpcTWeRrC3XLVpUiORkcXAVEmIZ8NS2UStHKoAEIKorRAUICSGkbtRp4EOaNvNZmtpWHk5MTISPjw82bXK/lUejsalKMjeLZEsStXlxP6nluvnzA/Hvfxtw++2tZM8jtewnFbglJSVBp9MpBkFSASRgRHLyewgJMZWxpoCHEELqBgU+RJL5lmtObSoP+/j4oKoqCLNng08etmXnknA2KDExUdV3crVyOHLLdX/9ZcTtt0OWeX6OMPiLj09HcHABfH3F94wL9ADxUptcAMkFPXKo8jIhhNQeBT5EktKSjrV8GiWnT8Nix1RNdi5JJdNLcXYW/xWXW64LC5OvSC4kVaU5LW0wAI3ZUpUf3n13t+iahMGamgDSPHCiIoWEEFJ7dRr4qH04EccRGWnaKSUMfmqyc8m8GnJ+vhbZ2c4ID69EcLDp5MIig9Wfk55tMW0/t046P6e67s6OHSMtkpO5ZTzzdi9yAWRCQgKCg4Mp0CGEkDpAyc2kXoWE4NZ2cYaqKk2tdi5xgcGaNVcxY4Ynn6z88ssGjBt3HeXl5ZK7xKRnW9QFPtL5OUJacH/trfXskkNBDyGE1J06DXxKSylBs7lT6oouJzkZuOOOi3jttd213rn0++9X8L//6UTJyrNmeeP8+fcVz2s+2yK3jR4wzRxxDUTNZ4zk2ltwzJfxqJkoIYQ0LJsCn0GDBqk67vvvv6/RYEjjZh7kHD7cE7t2jbJ5dxZgKhQYHn6u1mM6dcpy9qUmOUPWtt8LRUScwZgx2wAwGAw+SE+Pl2w5AYiX8SoqKiioIYSQBmZT4PPDDz+gffv2GDFihOppe9I8SO1kMj3wLftKAai3Xl7h4ZWqawsBNZuhEn42MzMWGRlxohye1NTV/LLZ998PwrFjPWAKfhi6dz9OW9MJIaQRsSnwWbZsGdavX4/PPvsM48ePx+TJkxEVFVVXYyONhPROpniYVx5mTIvr16di7VrLfBvzJRylIMiW4CQ42Ki6tpB58CY1QyX33VItJrhgLzV1NcLDz8Fg8MLx491RPeOjwfHj3TFo0PcU/BBCSCNhU+Aza9YszJo1CxkZGXj//ffRr18/dO7cGZMnT8a4cePg7e1dV+Mk9UwYmEjvZNJazLSYGnm25JN7jUYN5szxQVKSD8xXeMwbfHK7sjIzK7B6dYBicGI+PjVbw6WCN/P6QXKBkVKLCeGymi0tPQghhDSMGiU3x8XFIS4uDmvWrMFnn32GN954A08//TTy8/Mp+GkmhIFJfr4WH37I+GUtAHByYnjuuetYvNgTVVWmoOd//wNWrBCfp6rK1PNKqcHnunXA1KnS9X127RqFe++9C716lYu2qZvnylirLWQtKFEKjORaTADiZTVrLT3MawoRQgipf8qtoa04fPgw9u3bh5MnTyIqKoryfpoZPz8/BAUF4ejRQIgTdoF33tFgwQJP5OQAe/cCOTmmDuZas79RTk6mRp9y8vKkgx6O0ajB44+3wp13BuLrr4MQFBRUowRhLigREgYlSoGR1Ge5zwuX1bgdX9yx5u9zxQgJIYQ0HJv/CZqfn48NGzZgw4YNKCkpwYQJE5CZmYmuXbvWxfhIA+MCE2FJJq3W1L0csGzmaarRA34W6J13lLubS1VylmI0mmr/3HHHRX7mB1Dehi509mxH0TWYByX5+UEw35rOBUaWW9iN6Ns3A7GxmRazTLVp6UEIIaTu2RT43Hvvvdi7dy+GDBmC5cuXY8SIETR938xJBSZKy1fJyaag6MwZ00yPUtADSFdyllNVpcFrr+1W3AYvlZwslaPDGPgdaAaDF9LT4yGux8MQH5/On8OWgEZu2Y16bRFCSMOzKWr55ptvEBQUhH/++QeLFi3CokWLJI87fPiwXQZHGp5UYGJt+cp8FkhJdSXn6lmipUuB9u2BpCRYzNLIbVNPSEjAnj2hfNd3rZZh0aICVFW9K5ucnZkZiyFD0mXbUAQH54tesZZHxHVml0KFCQkhpHGwKfBZsGBBXY2D2Iler7drZWCpwMTa8pUt9Ho97r23HJmZWuTkOCMsrLrX1vLl7pg9WycqkCgXeJSXB2D2bB8+QDMaNVi4MAhbt46AwfAjTMUFxcFNRkYcunY9gWvXPGyqBWQuMTERAQEBFNgQQkgToGHUUEukpKQEOp0OBoOhye1Q0+v1eP31160el5KSYvNDOi9P/fKVWmrGa1q6sr681K1bCu6/3/KaJk7cgPDwc9izJx4HDvST+CQXEBllm4smJCTA399f8ntpJocQQhoHtc9vuyTo7Nu3D9euXUNcXBxatWplj1OSGlCa6anJcUK2LF+pnXVSMw5ry0uc8PBKxa7vsbGZfMXlagzVs0BaMGbE2LFbEBqaJ/pOahpKCCHNh82Vm69evYrFixcDMHVfHz58OPbs2QMACAgIwHfffYdu3brZf6SkSbBl1smegoONoiU5ua3mwgKFUnk/3LEDBw5EZGQkzegQQkgzY1Pgs3nzZsyZM4f/eevWrfjxxx/x008/4bbbbsPDDz+MRYsWYcuWLXYfKGkcrM3mGAwGVeepyayTksuXL+O++1wxdKgfMjP12L//A9GurqIiP0REnOH7al265I+vvx4pe75WrVohKCjIrmMkhBDS8GwKfLKzs9G9e3f+56+//hpjx45Fv36m3Ilnn30W999/v31HSBoNtbM5DYHrrp6SkoK+fcuRlaXchsLXtwhff21Ztyc0NA8AcPXq1Xq/BkIIIXXPpsrNlZWVcHNz43/OyMhA3759+Z+Dg4NVF5Qj9qPX61FQUFDn997eszQ1YTB4ITs7DAaDl+T7+fn5/H2Qa0NhMHhBpyvF6NE7Zass79mzB3q9vh6uiBBCSH2yacYnIiICP/74Izp06IB//vkHf/31F/r378+/n5eXR/kQ9awxz8LYS1JSEioqKvDss9lWu6tzMz+A9f5c1ooSNoZAjxBCiH3ZFPhMmzYNKSkp+Omnn3Dw4EHExcWJWlV8//336Nmzp90HSeQ5wsNZp9MhP1+LnTu7KXZXN2etaajp3Op2jRFCCGkebFrqevTRR/Hqq6+iqKgI/fv3x7Zt20Tv5+fnY/LkyXYdILG/xtI6Qe04XF1dkZ3tLDt7I8da01BCCCGOx+Y6PpMnT5YNbt58881aD4jUDa4IX2Panu3n54eUlBRVNX/Cwy9IbEE3wsXF8rPCfl3C5ayRI7vgxIkjisdTUEQIIc0bdRhtxoQPdH9//0a1PZub7REGYXl5pqaokZGWxRKDg41mHdJNxQfXrZsiyvWR28Wl05Wic+cYnDhRfU6DwQuZmbF8YUO5vCFCCCHNh02BT0VFBebNm4ft27fD19cXjz/+uGj258KFCwgODkZVVZXdB0psYx4AtG1bgpkz6+e7ExMT4ePjI/u+1KzTunXA1Kmmystarak/WHKy+HPR0UcQEFCIdeumiHJ9duwYiYCAQnh5XZXcxSWVB3T4cE/s2GHesd163hAhhJCmzabA58UXX8SHH36Ip59+GsXFxZgxYwYyMzPxzjvv8MdQ66+GJ7WNe84cHZKSatdnS21Ojq0NO/PyqoMewPTfxx4Dhg6tHi/33RUVbpIVl9etm4K4uAzFXVwc7v5IpbhJHU8IIaT5sCnw+fjjj/Hee+9h5EhTxdtJkyZh+PDheOSRR/D+++8DADQajdIpSD2Q2sZdVaXBmTO1C3xsycnhmC9fSVV+PnjQFUajOFCqqoJovNx3Hz58ER9+aNlugjEtDhyIU9VlXer+SB3fWJLACSGE2I9Ngc/58+cRFRXF/9yxY0f88MMPGDRoEB566CG8/PLLdh8gUSb1cJbaxu3kxNCxY+2DUltmcsyXr1auvIriYsuaQwaDFzSaVLPxmjrBm393VFQ5Ro3aZbFMZaJFXNx+i5wdbvbGw8MDgPT9Aap3fT366HCbZ60IIYQ0DTYFPm3atMHZs2cRFhbGv9a2bVvs3bsXAwcOxKRJk+w8PGKN3CxM27YlmDNHh6oqDZycGN55R1Or2R4pSsnIUstXM2d64qmnvCyWkcwbiCqN19XVVTLXBzAFLrGxmYiNzRQVJUxISOA7rHP3Snh/tFqGqVOvYcqUawgL60cBDyGENGMaZkNSzpQpU8AYw7p16yzeO3/+PAYMGIC///67SSc3l5SUQKfTwWAwwNvbu6GHI0uuWWh+vhbZ2c7o3FmLVq1a4cwZ08yJu7tyc1Fbt7lbS0beuxcYNMjycxMnbkB4+DnJc5p2ofniySeHIyYmUPa7uWtfu7YKixYF87M78fHpCA4usNiWPnXqVMkdbXl54O+PvYNCQggh9Uvt89umGZ/nnnsOf/75p+R7bdu2xb59+5CWlmbbSInN5NpUmO/kWrXqKqZPb6m6rUVKSoqq4EdNMnJkpCkg4o4BTMtt5vk2QlwV5eBgo+wxQPVy29SpBTAYTN3W8/ODkZ4eb9O29JAQCngIIcTR2FS5uX379hg6dKjs+8HBwZg4cWKtB0WUSc3cSO3kmjnTE3l56ttaqD3u9GlxQANUJyNzQkJMs0BOTqafnZyAZcsMdt8tpdOVwte3iA96AHEzUkIIIUTIpsCH89lnnyEhIQFRUVGIiopCQkICtm7dau+xSbp58ybuuOMOaDQaHD16VPTe8ePHcdddd6FFixYIDQ11qGRrpZ1c9sbN5ghJJSMnJwM5OaZlr5wcYNy46/YfDJSbkRJCCCFCNgU+RqMRSUlJSEpKwh9//IGOHTuiY8eOOHHiBJKSkvDAAw/UeR2f2bNnIzg42OL1kpISDBkyBO3bt8ehQ4ewfPlyLFy4EGvXrq3T8TQW3E4lIdNOLvt/l9RszjvvWC4b6fV6lJaehJ/f77hy5XecPn3a/oOB9LVLbWMnhBBCbMrxWbNmDdLT07Fjxw6+lg9nx44deOSRR7BmzRqkpqbac4y83bt3Y8+ePdi2bRt2794teu/jjz9GeXk53n//fbi6uqJbt244evQoVq5cialTp9bJeBoT851RGo0Ry5aVICTEBwUF6s5RXFys+L4wATo52ZTTI5ccrDavqDa4rfxS1y7cxk71eAghhHBsCnzWr1+P5cuXWwQ9ADB69Gi8/PLLdRb4XLhwAY8++ii++OILvh6LUEZGBvr37y96yA0dOhTLli3DlStX0KpVK8nz3rx5Ezdv3uR/LikpsfvY64uwIaevbxHGjXsQgI/qz2/ZssXqMcIEaKXkYDX5QnLNQbk/Q7mda8LjhFv558+/hJwcZ4SFVSI4uDeA3o2qKSshhJCGZ1Pgc/r0acTHx8u+Hx8fj5SUlFoPyhxjDJMmTcLjjz+OXr16IScnx+KYwsJChIeHi14LDAzk35MLfJYsWYJFixbZfcwNhdsZBQAGgwEAcPnyZbud/9KlS3YJJIQ70LRahpdfNmDcuOt8oGLLTjRuq3pQEBATU+uhEUIIacZsyvFxd3dXXA4pKSlBixYtVJ/vmWeegUajUfz1559/4rXXXkNpaSnmzp1ry3BVmTt3LgwGA/8rNzfX7t9R1wwGL2Rnh1nsYtq8eTPWrl2L7du32+27Nm/eDL1eX6tzmO9AMxo1t4oJBvFBlb13ohFCCCGAjTM+cXFxeOutt/DWW29Jvv/GG28gLi5O9flmzpxptdpzhw4d8P333yMjIwNubm6i93r16oXx48fjgw8+QJs2bXDhwgXR+9zPbdq0kT2/m5ubxXkbO+FynnntHjX1a2qrtsGG3A60Q4cMCAnR1erchBBCiBKbAp958+ZhwIAB0Ov1ePrpp9GlSxcwxnDy5Em88sor+PLLL7F3717V52vdujVat25t9bhXX30VL7zwAv9zfn4+hg4dis2bNyM2NhaAKSibN28eKioq4OLiAgBIS0tD586dZZe5miqu9UJOTiWefz4AjJl6cDGmxVdfjcL8+bHw8CiSzdkR5tY88shg+Pv7w2AwYPPmzfUyfqleWRqNER4e+SgoKKNkZEIIIXXGpsCnb9++2Lx5M6ZOnYpt27aJ3mvVqhU++eQT9OvXz64DBIB27dqJfm7ZsiUAICIiAiG3smvHjRuHRYsWITk5GXPmzEFWVhbWrFmDVatW2X08jYGfnx+OH5cqJKhBaWmgbPVj8xmitm1LMGlSFSoqKuph1CZyu7AOHDiCAwdMxyQmJoo+I5cITQghhNjCpsAHAP7zn/9g6NCh+Pbbb/m6LJ06dcKQIUMkd1vVF51Ohz179mDatGmIiYmBv78/5s+f36y3sku3hbAsJMiRqu48e7YO58+vskswIdyFZZ5QbTB4ITc3FAAQGpprsQPN/PsrKyv53zfEch4hhJDmyabA5/vvv0dKSgoOHjyI//znP6L3DAYDunXrhrfffht33XWXXQdpLiwsTLJQYvfu3fHTTz/V6Xc3JlwhwcceM7WMEBYSlKrdI5VbYzRqUFTkW+vAR2kX1uHDPbFjxygAGu5bMXq0KXix9r1SwdrOnSMREXGGZn4IIYTYzKZdXatXr8ajjz4q2fVUp9Phsccew8qVK+02OGKdeVsIYYd0c1IVjrVa5cahUqR29sklPHOBS3XQAwBa7NihrpcWtaMghBBiTzYFPseOHcOwYcNk3x8yZAgOHTpU60ER24SEAAMGWO80zuXWcMGPRmPE/PnnJWdO5LbIA6ZCh2q3tEsFLiZa5OaGyH4Pl6BurR0FJUITQgixhU1LXRcuXOAfSJInc3bGpUuXaj0oUnvmAQGXHBwRcQapqav53JrExOEw3/ylJqdG7ZZ2qR1cnK1b7wfAAFh+j06n46syt21bcqvOjwZOTgzLlpVg3LgHqSozIYQQm9kU+LRt2xZZWVnoKJM9e/z4cb6KLmlY3Jb38vJybNrkjuef18Fo1PBVkmfNMlVJNg9g7J1TY76DS0wDbglM6nu4oGbmTCApiesLpkFIiA9sacVBCCGEcGxa6rr33nvx3HPP4caNGxbvXb9+HQsWLJDs40Uahp+fH6qqgjB7tg+MRlOAYaqS7COqkixUFzk10dFHkJq6Gv37K9d4Uvoetct5hBBCiBKbAp9nn30WRUVF6NSpE15++WV8+eWX+PLLL7Fs2TJ07twZRUVFmDdvXl2NldTA6dNStX5Msyd6vd5i27lUTg3AkJ8fbNP3mufu6HSliIk5InHuapS7QwghpK7ZtNQVGBiIAwcO4IknnsDcuXP5LeUajQZDhw7FG2+8wTcGJY2DXK0fP78rstvPo6MP4dChXqjeiaVBeno8oqKyVC13yeUIWRYuNP39YYxydwghhNQPmwsYtm/fHl9//TWuXLmCM2fOgDGGyMjIZtcWormQq/Xj7FxocawwYDHHLUPJBT7cDI21HCHzwoUAcPfdyYiJ0VHuDiGEkDpnc+DDadWqFXr37m3PsZA6kpwMDB3KJQcD7u56vP66eCuXecBiTrgMJYVLpt67F1i1yjJH6I8/uqJr1z+g05Xyvzh33lmGoCBqTkoIIaTu1TjwIU1LSEh1YnBBgeVWdPl6O6agJz4+XRSsuLq6ilpUcMLDtdBqGZ9MbcLw7bfDsGfPEGo3QQghpEFR4EMAyNXbMQLQgDEtvvtuMIYOvRPjxl3nl7XkcoRGjhQumTEobVknhBBC6pNNu7pI8yVV1dlEehu8UgFDbvv60KHfQNyqgtpNEEIIaVg040N4wsTja9c8b1VWrsZtg1dTS0enK0XXrn9gz54holkkjcYIFxd1VZ8JIYQQe6MZHwKguu4OAISHn0NoaK5FzR0nJ1NytFrms0gAA2NarFs3BYcP97TPwAkhhBAb0IwPka27M2rULnz11ahbPbJM2+BtrZwcHX0EAQGFeO+9KeDibMr1IYQQ0lBoxsfBydXdMRi8sGxZJ+TkaLB3L5CTY9oWr3QeuW7uFRVuMP+rJsz1oSrNhBBC6gvN+DggYaCRmRkr25urdevW8PMz1f0pLy9HQUH1McJWF0rd3JOSknDtWits3Cje4u7kxPDkk8MRFuZMVZoJIYTUGwp8HBBXbDAnpxKLFgVYvK/VMsyc+W/4+bWCXq+X3bYOWK/UrNPp0KVLoET1aA1iYqi9CSGEkPpFgY+D8vPzw/HjwK12ayKPPXYN/v43UFBQAIPBoHgepW7uOl0pP7tkXj2auqwTQghpCBT4ODB//yvQaHQWRQtbtFiLtWvVJR1LFT6UW8YSVo8mhBBCGgIlNzswf/8bFkULR4/eZdNOK27LupOTaepIuIxFuTuEEEIaG5rxaeTy8oDTp4HISPWzJVI9tIRcXV35oMS8W7q1oMdg8EJRkR98ffX8sdHRRzB/fixKSwNpGYsQQkijRoFPI7ZuHTB1KmA0AlotsHat8pZyAFaTkTkpKSn87827pctR2r0VHGxEUJDVUxBCCCENigKfRiovrzroAUz/fewxU4Kw1IwKN8sj3GYOSM/QAFCcEZJibfeW+fcKZ5UIIYSQxoICn0bq9OnqoIcj1ytLr9fjxRc/4AMcwBTs5OcHIT09XnKGRopckARY3721fft2i/OlpKRQ8EMIIaRRocCnkYqMNC1vCYMfuV5ZGzY4YfXq1FuBiRGmjugaAAxcd3RrMzRKy1gGgxeuXfO4dW5xw1Ff3yLZa7B1VokQQgipaxT4NFIhIZAo+iee7dHr9cjJqcTs2QFgjKuKLJyV0QhPKTtDo7SMdfZsR8F7DFzwwwVH1GuLEEJIU0KBTyOmVPSPS2LOzg6D0ThR1fnkZmjklrFyc0NEARGggUbDMGbMFoSG5lHQQwghpMmhwKeRkyv6xy0jSRUQFDMtdynN0Eidw1TbRyMZEHl6llHQQwghpEmiwKeJ4woIipejTEtcGo0R8fHpCA7Ol6zRI0xmFp5Dq2UYOXIXQkNzJQMipbweQgghpDGjwKcZiI4+goCAQqxbN0UUpDAGREVlSc7OSCUzp6auRlGR7612E/1QXt4bbduWYM4cHaqqNHByYli2rARDhgyW3MVFCCGENHbUsqKZqKhwk1juMiUzcwYOHAhAPpkZAMLDzyE42Ag/Pz8EBQVh5kwf5ORosHcvkJOjwcyZPvD396+XayKEEELsjWZ8mgm5PB3hslRAQAAA6zV5zJnnGXEd1zly9X/MjyOEEEIaGgU+jUxNenMBlrk+5snMSUlJ0Ol0ANQFSUr8/PyQkpKC8vJybNrkjuef18Fo1ECrZXj5ZQPGjbtOlZsJIYQ0ShT4NCLi3lzVQYQ5uZkUpYajOp2O/5y1IEnNTI2fnx/y8oDZs4VtNTSYM8cHSUk+oJiHEEJIY0SBTyNh2ZtLg1mzvHH+/PuSy08TJkyQPI9Sw1HhTA0AzJ9/CTk5zggLq0RwcG8AvW2aqbGlrQYhhBDSGFDg00hIBRFKeTceHh5ISUlBfn6+TTushEFNUBAQE1PjIdvUVoMQQghpDCjwaSSkgggu70YuedjPz89u/bC47u5ypGaC1LTVIIQQQhoTCnwaieoggqGqqrrSsrBXllSHdbU7p5SO49pfWCPVbV2prQYhhBDS2FDg04gkJwN33HERr722m99hVd11Xdw8lGOetyPFWt6O2lkjuePk2moQQgghjQ0FPo1McLAR4eHnAADZ2WGy9XaEaNs4IYQQog4FPo2YdANShvz8YNXnUJO7QwghhDgKCnwaMZ2uFPHx6UhLGwyu8SigQXp6PPLzLyEoSPpzXLBTXFyMLVu2WP2exMREu42ZEEIIacwo8GlkzGdggoMLUB30mDCmRV5eC8mt6GoTlYWKi4ttHCUhhBDSNFHg08iYJyvn52uxcSOD0Vgd/Dg5McTE6CQ/b76sJdwKD0ByW/yePXtkPyNXDJEQQghpiijwaYTMiwxa1srRqNpFdfhwT0EXdnbrl/S2eKnPKB1HCCGENEVa64eQhpacDOTkAHv3mv6bnGz9MwaDlyDoAUzLZdXb4nfsGAmDwUvxM9z2ee44SoQmhBDS1NGMTxOhplZOXh5w8KArv1RlvhVeTIvMzFgMGZLOvyL1Gca06NdvIgYMoG3zhBBCmj4KfJo4bgfXpk3umD1bB6PRDxpNKuLj0yW2wotlZMQhNjaTz+OR2j7v5ATExvpRt3VCCCHNAi11NWJ5eablrbw86fe5HVzLl3+CWbO8+QRoxrRIT4/ngx8TZvF582KIOl0pRo3axX/GyYlR7y1CCCHNCs341LO8PFMn9shI5YBizZqrmDHDE0ajBlotw/z555GQcIV/39nZGRqNKdCRW6IKDs5HaupqFBX5wsWlHOvWTREdxzVBFYqOPoKIiDMoKvLFk08OR0xMoB2umhBCCGkcKPCpR+vWAVOnmjqwa7Wm3VpSicq//34F//ufDoyZAhujUYNFi4JhMGwRbS835fKEwcXlpsUSFRfU6HSl/GdGjdplsWNLars695ngYKPFe4QQQkhTRoFPPcnLqw56ANN/H3vM1NncfObn1CnL3BxuWYoLVMy3nXfvfhzHj3dXDGqEszlcUEQIIYQ4Egp86snp09VBD6eqCjhzxjLwCQ+vlJ3BAaS3nR8/3h0PPPAJXF0rLIKapKQk6HTVBQ8vX76M7du32/kKCSGEkMaPkpvrSWSkaXlLyMkJ6NjR8tjgYKMoydh8Bkcup+eTTx7ElSu+FjM5Op0OQUFB/K/gYHVNTqluDyGEkOaGZnzqSUiIVAVm0+vmHdQvX76suCwl3bUdAEwFByMiziguY5m3xZDi6upKdXsIIYQ0OxT41KPkZFNOz5kzppkeLuiRayoqTEw2f12YqCxkngskRxjUqN1pRgghhDR1tNTVAJigpI7SrIuS6OgjSE5+D4A4cUhqi7rSktW6dUD79sCgQab/rltXo+EQQgghTQIFPvXI3kFGSEgBRo+WzwVKSEhASkqK7JKV3E4zuYKJhBBCSFNHS131RC7IyMysXeyplAvk7++vmKdjy04zQgghpDmgwKeeyAUZOTnSfwRco1FfXz10ulL06tULAPDbb79ZHCuXC2QNt9NMOC65nWaEEEJIc0CBTz2RCzLCwiqRlSU+1rw44ahRuwBYBjy1pbTTjBBCCGmOKMennnBBhpOT6WcuyDBvCyFVnHDnzpEwGLxs/k41dXiSk4GcHFMz1Jwc6RYahBBCSHNBMz71SGo7e0GB+Bi54oTCLeoJCQlwdnZGZWWlxXe4uLhAp9PZVIcnJIRmeQghhDiGJhX4fPXVV3j++edx/PhxtGjRAnfffTe++OIL/v1//vkHTzzxBPbu3YuWLVti4sSJWLJkCZydG89lmgcZ5rMyUsUJzbeo+/v7IygoqM7HSgghhDQ3jScisGLbtm149NFH8dJLL2HQoEGorKxEliA5pqqqCiNGjECbNm1w4MABFBQU4OGHH4aLiwteeumlBhy5MmEVZa6Hltou6oQQQgixjYYxYTm9xqmyshJhYWFYtGgRkmWSUHbv3o2RI0ciPz8fgYGBAIC3334bc+bMwaVLl1T3nSopKYFOp4PBYIC3t7fdrkGNgoICrF27FgC3q0u6i3pCQgL8/f0BUGsJQgghBFD//G4SMz6HDx/G+fPnodVq0bNnTxQWFuKOO+7A8uXLERUVBQDIyMjA7bffzgc9ADB06FA88cQTOHHiBHr27Cl57ps3b+LmzZv8zyUlJXV7MQqKi4v530ttUee2uK9fnyZ6T6lIISGEEEKqNYnA5++//wYALFy4ECtXrkRYWBheeeUVDBgwAH/99Rd8fX1RWFgoCnoA8D8XFhbKnnvJkiVYtGhR3Q1eJb1ejy1btsi+L7XFPTr6CICat70ghBBCHE2Dbmd/5plnoNFoFH/9+eefMN4qfjNv3jyMGTMGMTExWL9+PTQaDT777LNajWHu3LkwGAz8r9zcXHtcms2Ughd7bnEnhBBCHFmDzvjMnDkTkyZNUjymQ4cOKLi157tr1678625ubujQoQP++ecfAECbNm3wyy+/iD574cIF/j05bm5ucHNzq8nw64x51WY1W9wJIYQQYl2DBj6tW7dG69atrR4XExMDNzc3nDp1Cv/6178AABUVFcjJyUH79u0BAHFxcXjxxRdx8eJFBAQEAADS0tLg7e0tCpgaSl6eqW1FZKRyzRypJa2IiDNWt7gTQgghxLomUbnZ29sbjz/+OBYsWIA9e/bg1KlTeOKJJwAA999/PwBgyJAh6Nq1Kx566CEcO3YM3377LZ599llMmzatwWd0rHVlz8sD9u93RV5ekOSSFgCMGiXfhZ0QQggh6jSJ5GYAWL58OZydnfHQQw/h+vXriI2Nxffff49WrVoBAJycnLBr1y488cQTiIuLg6enJyZOnIjnn3++Qcct15V96FDTzM+6ddz7ftBopsguaSl1YSeEEEKIOk0m8HFxccGKFSuwYsUK2WPat2+Pr7/+uh5HZZ1cV/YzZ0y/FwZFpqCHAdDwxwqXtGrahZ0QQgghJk1iqasp47qyCzk5mXp1SQVFpqDHtiUttcUZCSGEEEfXZGZ8miquK/tjj5lmeriu7FyCs1YrDn40GiMeeOAT6PV+aNfuH4SEiLuYJiYmwsfHh/+ZKjcTQggh6jWJlhX1qS5aVuj1euTkVCInxxlhYZUIDq6OdDZtcsfs2ToYjRpoNEZ0734cx493lyxUeO+996J37952GRMhhBDSnDSrlhVNmV6vx+uvv87/LOiryps+3Qu5uSEoK3PH11+PALcCye3qiog4A52uFC1atKinURNCCCHNEwU+dUxNO4mzZzuKtrELUaFCQgghxH4oubmOGQwGK+97yQY9ABUqJIQQQuyJAp86VlFRofi+VDsKDhUqJIQQQuyLlroamK+vXrIdxZgxWxEamicKepyd6Y+LEEIIqQ2a8WlgOl2pZDuKqKiTFjM9wm3shBBCCLEdTSE0AtSOghBCCKkfFPg0EmraUVCFZkIIIaR2KPCpY7XNy0lISIC/vz9VaCaEEELsgAKfOqTX61FZWVmrc7i4uCAoKMhOIyKEEEIcGwU+dcS8YnNNUUcRQgghxH5oV1cdUVOxWQ3ayUUIIYTYDwU+hBBCCHEYFPgQQgghxGFQ4NNIGAxeyM4Og8Hg1dBDIYQQQpotSm5uAAaDF4qK/ODrq4dOV4rDh3vyjUq5ys3R0UcaepiEEEJIs0OBTz0zD3Li49ORnh7P9+piTIudO0ciIuIMVXAmhBBC7IyWuuqRweDFBz2AKchJS4u36M7OmBZFRb4AqFozIYQQYk8041NHpAKWoiI/iyAH0Fp0Z9dqGZ58cjjCwpypWjMhhBBiRxT41BE/Pz+kpKSgvLwcly9fxvbt2+Hrq7cIcsyXuzQaI15+uQQxMYENOHpCCCGkeaLApw6Zz9bodKUYNWqXKMcnLi4DUVFZiIrK4ruzjxv3IACfBhkzIYQQ0pxR4FMPhMte0dFHEBFxBpmZsThwIA4HDvRDRkacaCcX5fUQQgghdUPDqBmUSElJCXQ6HQwGA7y9ve12Xr1ej/LychQXFyMvDxg2rAuMRg3/vlbL8MsvFymvhxBCCKkBtc9vmvGpJ1wwExQUhMJCwGgUv280alBaGgiKeQghhJC6Q9vZG0BkJKA1u/NOTkDHjg0zHkIIIcRRUODTAEJCgLVrTcEOYPrvO++YXieEEEJI3aGlrgaSnAwMHQqcOWOa6aGghxBCCKl7FPg0oJAQCngIIYSQ+kRLXYQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBvbrMMMYAACUlJQ08EkIIIYSoxT23uee4HAp8zJSWlgIAQkNDG3gkhBBCCLFVaWkpdDqd7PsaZi00cjBGoxH5+fnw8vKCRqOp8XlKSkoQGhqK3NxceHt723GETQfdA7oHAN0DgO4BQPcAoHsA1O09YIyhtLQUwcHB0GrlM3loxseMVqtFSEiI3c7n7e3tsH/BOXQP6B4AdA8AugcA3QOA7gFQd/dAaaaHQ8nNhBBCCHEYFPgQQgghxGFQ4FNH3NzcsGDBAri5uTX0UBoM3QO6BwDdA4DuAUD3AKB7ADSOe0DJzYQQQghxGDTjQwghhBCHQYEPIYQQQhwGBT6EEEIIcRgU+BBCCCHEYVDgY4O33noL3bt35wsvxcXFYffu3fz7N27cwLRp0+Dn54eWLVtizJgxuHDhgugc//zzD0aMGAEPDw8EBARg1qxZqKysrO9LsZulS5dCo9EgNTWVf62534eFCxdCo9GIfnXp0oV/v7lfP+f8+fOYMGEC/Pz84O7ujttvvx2//fYb/z5jDPPnz0dQUBDc3d0RHx+P06dPi85RVFSE8ePHw9vbGz4+PkhOTsbVq1fr+1JqJCwszOLvgUajwbRp0wA4xt+DqqoqPPfccwgPD4e7uzsiIiKwePFiUa+k5v73ADC1SEhNTUX79u3h7u6Ovn374tdff+Xfb2734Mcff8SoUaMQHBwMjUaDL774QvS+va73+PHjuOuuu9CiRQuEhobi5Zdfts8FMKLajh072FdffcX++usvdurUKfZ///d/zMXFhWVlZTHGGHv88cdZaGgo++6779hvv/3G+vTpw/r27ct/vrKykkVFRbH4+Hh25MgR9vXXXzN/f382d+7chrqkWvnll19YWFgY6969O5s+fTr/enO/DwsWLGDdunVjBQUF/K9Lly7x7zf362eMsaKiIta+fXs2adIklpmZyf7++2/27bffsjNnzvDHLF26lOl0OvbFF1+wY8eOsdGjR7Pw8HB2/fp1/phhw4axHj16sIMHD7KffvqJdezYkT344IMNcUk2u3jxoujvQFpaGgPA9u7dyxhzjL8HL774IvPz82O7du1i2dnZ7LPPPmMtW7Zka9as4Y9p7n8PGGMsMTGRde3ale3bt4+dPn2aLViwgHl7e7O8vDzGWPO7B19//TWbN28e2759OwPAPv/8c9H79rheg8HAAgMD2fjx41lWVhb75JNPmLu7O3vnnXdqPX4KfGqpVatW7L333mPFxcXMxcWFffbZZ/x7J0+eZABYRkYGY8z0l0Wr1bLCwkL+mLfeeot5e3uzmzdv1vvYa6O0tJRFRkaytLQ0dvfdd/OBjyPchwULFrAePXpIvucI188YY3PmzGH/+te/ZN83Go2sTZs2bPny5fxrxcXFzM3NjX3yySeMMcb++OMPBoD9+uuv/DG7d+9mGo2GnT9/vu4GX0emT5/OIiIimNFodJi/ByNGjGCTJ08WvZaQkMDGjx/PGHOMvwdlZWXMycmJ7dq1S/R6dHQ0mzdvXrO/B+aBj72u980332StWrUS/W9hzpw5rHPnzrUeMy111VBVVRU+/fRTXLt2DXFxcTh06BAqKioQHx/PH9OlSxe0a9cOGRkZAICMjAzcfvvtCAwM5I8ZOnQoSkpKcOLEiXq/htqYNm0aRowYIbpeAA5zH06fPo3g4GB06NAB48ePxz///APAca5/x44d6NWrF+6//34EBASgZ8+eePfdd/n3s7OzUVhYKLoPOp0OsbGxovvg4+ODXr168cfEx8dDq9UiMzOz/i7GDsrLy/HRRx9h8uTJ0Gg0DvP3oG/fvvjuu+/w119/AQCOHTuGn3/+GcOHDwfgGH8PKisrUVVVhRYtWohed3d3x88//+wQ90DIXtebkZGB/v37w9XVlT9m6NChOHXqFK5cuVKrMVKTUhv9/vvviIuLw40bN9CyZUt8/vnn6Nq1K44ePQpXV1f4+PiIjg8MDERhYSEAoLCwUPR/ctz73HtNxaefforDhw+L1rA5hYWFzf4+xMbGYsOGDejcuTMKCgqwaNEi3HXXXcjKynKI6weAv//+G2+99RZmzJiB//u//8Ovv/6Kp556Cq6urpg4cSJ/HVLXKbwPAQEBovednZ3h6+vbZO4D54svvkBxcTEmTZoEwDH+dwAAzzzzDEpKStClSxc4OTmhqqoKL774IsaPHw8ADvH3wMvLC3FxcVi8eDFuu+02BAYG4pNPPkFGRgY6duzoEPdAyF7XW1hYiPDwcItzcO+1atWqxmOkwMdGnTt3xtGjR2EwGLB161ZMnDgR+/bta+hh1Zvc3FxMnz4daWlpFv/CcRTcv2YBoHv37oiNjUX79u2xZcsWuLu7N+DI6o/RaESvXr3w0ksvAQB69uyJrKwsvP3225g4cWIDj67+rVu3DsOHD0dwcHBDD6VebdmyBR9//DE2bdqEbt264ejRo0hNTUVwcLBD/T3YuHEjJk+ejLZt28LJyQnR0dF48MEHcejQoYYeGpFAS102cnV1RceOHRETE4MlS5agR48eWLNmDdq0aYPy8nIUFxeLjr9w4QLatGkDAGjTpo3Frg7uZ+6Yxu7QoUO4ePEioqOj4ezsDGdnZ+zbtw+vvvoqnJ2dERgY6BD3QcjHxwedOnXCmTNnHObvQVBQELp27Sp67bbbbuOX/LjrkLpO4X24ePGi6P3KykoUFRU1mfsAAOfOnUN6ejqmTJnCv+Yofw9mzZqFZ555Bg888ABuv/12PPTQQ/jf//6HJUuWAHCcvwcRERHYt28frl69itzcXPzyyy+oqKhAhw4dHOYecOx1vXX5vw8KfGrJaDTi5s2biImJgYuLC7777jv+vVOnTuGff/5BXFwcACAuLg6///676A88LS0N3t7eFg+Rxuqee+7B77//jqNHj/K/evXqhfHjx/O/d4T7IHT16lWcPXsWQUFBDvP3oF+/fjh16pTotb/++gvt27cHAISHh6NNmzai+1BSUoLMzEzRfSguLhb9q/j777+H0WhEbGxsPVyFfaxfvx4BAQEYMWIE/5qj/D0oKyuDVit+jDg5OcFoNAJwrL8HAODp6YmgoCBcuXIF3377Lf7973873D2w1/XGxcXhxx9/REVFBX9MWloaOnfuXKtlLgC0nd0WzzzzDNu3bx/Lzs5mx48fZ8888wzTaDRsz549jDHT9tV27dqx77//nv32228sLi6OxcXF8Z/ntq8OGTKEHT16lH3zzTesdevWTWr7qhThri7Gmv99mDlzJvvhhx9YdnY2279/P4uPj2f+/v7s4sWLjLHmf/2MmUoZODs7sxdffJGdPn2affzxx8zDw4N99NFH/DFLly5lPj4+7Msvv2THjx9n//73vyW3tPbs2ZNlZmayn3/+mUVGRjbaLbxSqqqqWLt27dicOXMs3nOEvwcTJ05kbdu25bezb9++nfn7+7PZs2fzxzjC34NvvvmG7d69m/39999sz549rEePHiw2NpaVl5czxprfPSgtLWVHjhxhR44cYQDYypUr2ZEjR9i5c+cYY/a53uLiYhYYGMgeeughlpWVxT799FPm4eFB29nr2+TJk1n79u2Zq6sra926Nbvnnnv4oIcxxq5fv87++9//slatWjEPDw/2n//8hxUUFIjOkZOTw4YPH87c3d2Zv78/mzlzJquoqKjvS7Er88Cnud+HpKQkFhQUxFxdXVnbtm1ZUlKSqH5Nc79+zs6dO1lUVBRzc3NjXbp0YWvXrhW9bzQa2XPPPccCAwOZm5sbu+eee9ipU6dEx+j1evbggw+yli1bMm9vb/bII4+w0tLS+ryMWvn2228ZAIvrYswx/h6UlJSw6dOns3bt2rEWLVqwDh06sHnz5om2IDvC34PNmzezDh06MFdXV9amTRs2bdo0VlxczL/f3O7B3r17GQCLXxMnTmSM2e96jx07xv71r38xNzc31rZtW7Z06VK7jF/DmKDEJiGEEEJIM0Y5PoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQ0U4WFhXjyySfRoUMHuLm5ITQ0FKNGjRL10Dlw4ADuvfdetGrVCi1atMDtt9+OlStXoqqqij8mJycHycnJCA8Ph7u7OyIiIrBgwQKUl5eLvu/dd99Fjx490LJlS/j4+KBnz558s0oAWLhwITQaDYYNG2Yx1uXLl0Oj0WDAgAFWryssLAwajUb216RJk2y/WY3cgAEDkJqa2tDDIKRZcG7oARBC7C8nJwf9+vWDj48Pli9fjttvvx0VFRX49ttvMW3aNPz555/4/PPPkZiYiEceeQR79+6Fj48P0tPTMXv2bGRkZGDLli3QaDT4888/YTQa8c4776Bjx47IysrCo48+imvXrmHFihUAgPfffx+pqal49dVXcffdd+PmzZs4fvw4srKyROMKCgrC3r17kZeXh5CQEP71999/H+3atVN1bb/++isfmB04cABjxozBqVOn4O3tDQBwd3e3xy2sFxUVFXBxcam37ysvL4erq2u9fR8hjZJdGl8QQhqV4cOHs7Zt27KrV69avHflyhV29epV5ufnxxISEize37FjBwPAPv30U9nzv/zyyyw8PJz/+d///jebNGmS4pgWLFjAevTowUaOHMleeOEF/vX9+/czf39/9sQTT7C7775bxdVV43oGXblyhX/tiy++YD179mRubm4sPDycLVy4UNT/CgB7++232YgRI5i7uzvr0qULO3DgADt9+jS7++67mYeHB4uLixP1X+PG/vbbb7OQkBDm7u7O7r//flE/JsYYe/fdd1mXLl2Ym5sb69y5M3vjjTf497Kzs/n72r9/f+bm5sbWr1/PLl++zB544AEWHBzM3N3dWVRUFNu0aRP/uYkTJ1r0RMrOzmbr169nOp1O9P2ff/45E/7fOjfud999l4WFhTGNRsMYM/0dSE5OZv7+/szLy4sNHDiQHT161KZ7T0hTRUtdhDQzRUVF+OabbzBt2jR4enpavO/j44M9e/ZAr9fj6aeftnh/1KhR6NSpEz755BPZ7zAYDPD19eV/btOmDQ4ePIhz585ZHd/kyZOxYcMG/uf3338f48ePt8tMxE8//YSHH34Y06dPxx9//IF33nkHGzZswIsvvig6bvHixXj44Ydx9OhRdOnSBePGjcNjjz2GuXPn4rfffgNjDCkpKaLPnDlzBlu2bMHOnTvxzTff4MiRI/jvf//Lv//xxx9j/vz5ePHFF3Hy5Em89NJLeO655/DBBx+IzvPMM89g+vTpOHnyJIYOHYobN24gJiYGX331FbKysjB16lQ89NBD+OWXXwAAa9asQVxcHB599FEUFBSgoKAAoaGhqu/JmTNnsG3bNmzfvh1Hjx4FANx///24ePEidu/ejUOHDiE6Ohr33HMPioqKbLndhDRNDR15EULsKzMzkwFg27dvlz1m6dKlFjMlQqNHj2a33Xab5HunT59m3t7eom7s+fn5rE+fPgwA69SpE5s4cSLbvHkzq6qq4o/hZh/Ky8tZQEAA27dvH7t69Srz8vJix44dY9OnT6/1jM8999zDXnrpJdExGzduZEFBQfzPANizzz7L/5yRkcEAsHXr1vGvffLJJ6xFixaisTs5ObG8vDz+td27dzOtVst3XI+IiBDN1DDG2OLFi1lcXBxjrHrGZ/Xq1Vava8SIEWzmzJn8z3fffTebPn266Bi1Mz4uLi7s4sWL/Gs//fQT8/b2Zjdu3BB9NiIigr3zzjtWx0ZIU0c5PoQ0M4yxOjkWAM6fP49hw4bh/vvvx6OPPsq/HhQUhIyMDGRlZeHHH3/EgQMHMHHiRLz33nv45ptvoNVWTy67uLhgwoQJWL9+Pf7++2906tQJ3bt3t2kcco4dO4b9+/eLZniqqqpw48YNlJWVwcPDAwBE3xcYGAgAuP3220Wv3bhxAyUlJXzuULt27dC2bVv+mLi4OBiNRpw6dQpeXl44e/YskpOTRfelsrISOp1ONMZevXqJfq6qqsJLL72ELVu24Pz58ygvL8fNmzf5sdZW+/bt0bp1a/7nY8eO4erVq/Dz8xMdd/36dZw9e9Yu30lIY0aBDyHNTGRkJJ+ULKdTp04AgJMnT6Jv374W7588eRJdu3YVvZafn4+BAweib9++WLt2reR5o6KiEBUVhf/+9794/PHHcdddd2Hfvn0YOHCg6LjJkycjNjYWWVlZmDx5sq2XKOvq1atYtGgREhISLN5r0aIF/3thQrFGo5F9zWg0qv5ewLSzLTY2VvSek5OT6Gfz5cfly5djzZo1WL16NW6//XZ4enoiNTXVYtecOa1WaxG4VlRUWBxn/n1Xr15FUFAQfvjhB4tjfXx8FL+TkOaAAh9CmhlfX18MHToUb7zxBp566imLB19xcTGGDBkCX19fvPLKKxaBz44dO3D69GksXryYf+38+fMYOHAgYmJisH79etEMjhwucLp27ZrFe926dUO3bt1w/PhxjBs3riaXKSk6OhqnTp1Cx44d7XZOzj///IP8/HwEBwcDAA4ePAitVovOnTsjMDAQwcHB+PvvvzF+/Hibzrt//378+9//xoQJEwCYgq2//vpLFHi6urqKSgwAQOvWrVFaWopr167xf8ZcDo+S6OhoFBYWwtnZGWFhYTaNlZDmgAIfQpqhN954A/369cOdd96J559/Ht27d0dlZSXS0tLw1ltv4eTJk3jnnXfwwAMPYOrUqUhJSYG3tze+++47zJo1C2PHjkViYiIAU9AzYMAAtG/fHitWrMClS5f472nTpg0A4IknnkBwcDAGDRqEkJAQFBQU4IUXXkDr1q0RFxcnOcbvv/8eFRUVdp1lmD9/PkaOHIl27dph7Nix0Gq1OHbsGLKysvDCCy/U6twtWrTAxIkTsWLFCpSUlOCpp55CYmIifw8WLVqEp556CjqdDsOGDcPNmzfx22+/4cqVK5gxY4bseSMjI7F161YcOHAArVq1wsqVK3HhwgVR4BMWFobMzEzk5OSgZcuW8PX1RWxsLDw8PPB///d/eOqpp5CZmSlKGpcTHx+PuLg43Pf/7d29aiJRGMbxR9IIWgkBg0JQwgTEsRACNn6BH2BlooG0Ae9AOy2mTjOdNoIWAS0t1EIZLGxSeQXTxCK3sVtFWEL2g11Y4/x/cKozHGa6h3neYep1PT09yTAMvb29abFY6Pb29kMVB5wavuoCTlA8Htdut1OxWFS73VYymVS5XJbjOBoMBpKkZrOpzWaj/X6vbDar6+tr2batbrer6XR6qHvW67Vc15XjOIpGo7q4uDisd6VSSS8vL7q/v5dhGGo0GvL7/XIc58MsybtAIPDPq5Vqtar5fK7VaqWbmxtlMhnZtq3Ly8u/Pvvq6kp3d3eq1WqqVCpKpVLq9/uH/VarpeFwqNFoJNM0lc/nNR6PFYvFfnpur9dTOp1WtVpVoVBQOBxWvV7/4ZpOp6OzszMlEgmdn59rv98rFArp+flZy+VSpmlqMpnIsqxfPofP59NyuVQul9Pj46MMw9DDw4NeX18P807AKfN9+9PpRgDwGMuyNJvNfqtKAnDceOMDAAA8g+AD4OgEg8FP13a7/d+3B+ALo+oCcHRc1/10LxKJfKn/cQE4LgQfAADgGVRdAADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAM74DHWoJY2tegQAAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with ALAMO Surrogate Object - Training Surrogate (Part 1)\n", + "\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "\n", + "## 1. Introduction\n", + "This notebook demonstrates leveraging of the ALAMO surrogate trainer and IDAES Python wrapper to produce an surrogate based on supercritical CO2 data from simulation using REFPROP package.\n", + "\n", + "There are several reasons to build surrogate models for complex processes, even when higher fidelity models already exist (e.g., reduce model size, improve convergence reliability, replace models with externally compiled code and make them fully-equation oriented).\n", + "\n", + "In this example, we intend to make a surrogate for the physical properties of S-CO2 to be embedded in the property package. This property package will be used to get the physical properties of S-CO2 in the flowsheet simulation. To learn more about property package, see the [IDAES-PSE](https://github.com/IDAES/idaes-pse) Github Page or IDAES [Read-the-docs](https://idaes-pse.readthedocs.io/en/latest/). \n", + "\n", + "### 1.1 Need for ML Surrogate\n", + "\n", + "The properties predicted by the surrogate are enthalpy and entropy of the S-CO2 based on the \n", + "pressure and temperature of the system. The analytical equation of getting the enthalpy and entropy from pressure and temperature are in the differential form and would make the problem a DAE system. To counter this problem and keep the problem algebraic, we will use the surrogates and relate enthalpy and entropy with the pressure and temperature as an algebraic equation.\n", + "\n", + "### 1.2 Supercritical CO2 cycle process\n", + "\n", + "The following flowsheet will be used to optimize the design for the cooling of the fusion reactor using supercritical CO2 cycle. We shall focus on training the surrogate for this notebook and move to constructing the flowsheet and the properties package in the subsequent notebooks. The take away from this flowsheet is that, 3 variables can be measured in any given unit which are flow, pressure and temperature and other properties can be calculated using them. Thus, surrogate should have pressure and temperature as the inputs.\n", + "\n", + "In this example, we will train a model using AlamoTrainer for our data and then demonstrate that we can solve an optimization problem with that surrogate model. " ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1MklEQVR4nO3dd1gUV9sG8HspSxVQQUEDggXB8lqjLK+JkvCKxl6SWKISW2wxdrCiMSoqxl6S2BN7YsESUVFjoogNCwrYQFREjUgRlXq+P/gYGQEFBXYX7t917UXmnDMzz+4E9vHMnHMUQggBIiIiItJoOuoOgIiIiIjejkkbERERkRZg0kZERESkBZi0EREREWkBJm1EREREWoBJGxEREZEWYNJGREREpAWYtBERERFpASZtRERERFqASRsR0XtSKBSYPn26usOQeHp6wt7eXt1hEFERY9JGRKXS+vXroVAopJehoSEcHR0xYsQIPHz4sFjPferUKUyfPh3x8fFFetxWrVrJ3lOFChXw4YcfYu3atcjMzCySc8yePRu7d+8ukmMRUdHSU3cARETF6fvvv4eDgwNevnyJf/75BytXrsSBAwcQGhoKY2PjIjnHixcvoKf36s/pqVOnMGPGDHh6esLCwqJIzpHtgw8+wJw5cwAAjx8/xsaNGzFgwABcv34dvr6+73382bNno3v37ujcufN7H4uIihaTNiIq1dq2bYumTZsCAAYOHIiKFSvixx9/xJ49e9CzZ893Pm5mZiZSU1NhaGgIQ0PDogr3rczNzfHVV19J29988w1q166NZcuWYebMmdDX1y+xWIioZPH2KBGVKZ988gkAIDIyEgDg5+cHV1dXVKxYEUZGRmjSpAl+//33XPspFAqMGDECmzZtQt26dWFgYICDBw9KddnPtE2fPh3jx48HADg4OEi3MqOiotCyZUs0aNAgz7hq164NDw+PQr8fY2NjuLi4IDk5GY8fP863XXJyMsaOHQtbW1sYGBigdu3a8PPzgxBC9h6Tk5OxYcMGKW5PT89Cx0RExYM9bURUpty6dQsAULFiRQDA4sWL0bFjR/Tu3RupqanYunUrPv/8c+zbtw/t2rWT7Xv06FFs374dI0aMgKWlZZ4P+3ft2hXXr1/Hli1bsHDhQlhaWgIArKys0KdPHwwaNAihoaGoV6+etM/Zs2dx/fp1TJky5Z3e0+3bt6Grq5vvrVghBDp27Ihjx45hwIABaNiwIQICAjB+/Hjcv38fCxcuBAD8+uuvGDhwIJo1a4bBgwcDAGrUqPFOMRFRMRBERKXQunXrBABx5MgR8fjxY3H37l2xdetWUbFiRWFkZCTu3bsnhBDi+fPnsv1SU1NFvXr1xCeffCIrByB0dHTE1atXc50LgPDx8ZG258+fLwCIyMhIWbv4+HhhaGgovLy8ZOUjR44UJiYm4tmzZ298Ty1bthROTk7i8ePH4vHjxyIsLEyMHDlSABAdOnSQ2vXr109Uq1ZN2t69e7cAIH744QfZ8bp37y4UCoW4efOmVGZiYiL69ev3xjiISD14e5SISjV3d3dYWVnB1tYWPXr0gKmpKXbt2oWqVasCAIyMjKS2T58+RUJCAj766CNcuHAh17FatmyJOnXqvHMs5ubm6NSpE7Zs2SLdlszIyMC2bdvQuXNnmJiYvPUY4eHhsLKygpWVFZydnbF06VK0a9cOa9euzXefAwcOQFdXFyNHjpSVjx07FkII/Pnnn+/8noio5PD2KBGVasuXL4ejoyP09PRQuXJl1K5dGzo6r/69um/fPvzwww+4ePEiUlJSpHKFQpHrWA4ODu8dT9++fbFt2zb8/fff+Pjjj3HkyBE8fPgQffr0KdD+9vb2+OWXX6RpTGrVqoVKlSq9cZ87d+6gSpUqKFeunKzc2dlZqicizcekjYhKtWbNmkmjR1/3999/o2PHjvj444+xYsUK2NjYQF9fH+vWrcPmzZtztc/ZK/euPDw8ULlyZfz222/4+OOP8dtvv8Ha2hru7u4F2t/ExKTAbYmodOHtUSIqs/744w8YGhoiICAA/fv3R9u2bYskIcqrly6brq4uevXqhd9//x1Pnz7F7t270bNnT+jq6r73efNTrVo1xMTEICkpSVYeHh4u1Wd7U+xEpF5M2oiozNLV1YVCoUBGRoZUFhUV9d4rAmQ/m5bfigh9+vTB06dP8c033+DZs2eyedeKw2effYaMjAwsW7ZMVr5w4UIoFAq0bdtWKjMxMSnylRyIqGjw9igRlVnt2rXDjz/+iDZt2qBXr1549OgRli9fjpo1a+Ly5cvvfNwmTZoAACZPnowePXpAX18fHTp0kJK5Ro0aoV69etixYwecnZ3RuHHjInk/+enQoQPc3NwwefJkREVFoUGDBjh06BD27NmDUaNGyab1aNKkCY4cOYIff/wRVapUgYODA5o3b16s8RFRwbCnjYjKrE8++QRr1qxBbGwsRo0ahS1btmDu3Lno0qXLex33ww8/xMyZM3Hp0iV4enqiZ8+euSa+7du3LwAUeADC+9DR0YG/vz9GjRqFffv2YdSoUbh27Rrmz5+PH3/8Udb2xx9/RJMmTTBlyhT07NkTK1euLPb4iKhgFELkmA6biIhKxOLFizF69GhERUXBzs5O3eEQkRZg0kZEVMKEEGjQoAEqVqyIY8eOqTscItISfKaNiKiEJCcnw9/fH8eOHcOVK1ewZ88edYdERFqEPW1ERCUkKioKDg4OsLCwwLBhwzBr1ix1h0REWoRJGxEREZEW4OhRIiIiIi3ApI2IiIhIC3AgggbLzMxETEwMypUrx6VliIiItIQQAklJSahSpQp0dIquf4xJmwaLiYmBra2tusMgIiKid3D37l188MEHRXY8Jm0arFy5cgCyLrqZmZmaoyEiIqKCSExMhK2trfQ9XlSYtGmw7FuiZmZmTNqIiIi0TFE/2sSBCERERERagEkbERERkRZg0kZERESkBfhMm5bLyMhAWlqausOgEqCvrw9dXV11h0FERGrCpE1LCSEQGxuL+Ph4dYdCJcjCwgLW1tact4+IqAxi0qalshO2SpUqwdjYmF/ipZwQAs+fP8ejR48AADY2NmqOiIiIShqTNi2UkZEhJWwVK1ZUdzhUQoyMjAAAjx49QqVKlXirlIiojOFABC2U/QybsbGxmiOhkpZ9zfkcIxFR2cOkTYvxlmjZw2tORFR2MWkjIiIi0gJM2oiIiIi0gNYkbR07doSdnR0MDQ1hY2ODPn36ICYmRtZGCAE/Pz84OjrCwMAAVatWxaxZs2Rtjh8/jsaNG8PAwAA1a9bE+vXrc51r+fLlsLe3h6GhIZo3b44zZ87I6l++fInhw4ejYsWKMDU1Rbdu3fDw4UNZm+joaLRr1w7GxsaoVKkSxo8fj/T09KL5MLSYp6cnFAoFFAoF9PX1UblyZfzvf//D2rVrkZmZWeDjrF+/HhYWFsUXKBERkYbRmqTNzc0N27dvR0REBP744w/cunUL3bt3l7X57rvvsHr1avj5+SE8PBz+/v5o1qyZVB8ZGYl27drBzc0NFy9exKhRozBw4EAEBARIbbZt24YxY8bAx8cHFy5cQIMGDeDh4SFNtQAAo0ePxt69e7Fjxw789ddfiImJQdeuXaX6jIwMtGvXDqmpqTh16hQ2bNiA9evXY9q0acX4CWmPNm3a4MGDB4iKisKff/4JNzc3fPfdd2jfvj0TWyIiovwILbVnzx6hUChEamqqEEKIa9euCT09PREeHp7vPhMmTBB169aVlX355ZfCw8ND2m7WrJkYPny4tJ2RkSGqVKki5syZI4QQIj4+Xujr64sdO3ZIbcLCwgQAERQUJIQQ4sCBA0JHR0fExsZKbVauXCnMzMxESkpKgd9jQkKCACASEhJk5S9evBDXrl0TL168KPCxNEW/fv1Ep06dcpUHBgYKAOKXX34RQgixYMECUa9ePWFsbCw++OADMXToUJGUlCSEEOLYsWMCgOzl4+MjhBBi48aNokmTJsLU1FRUrlxZ9OzZUzx8+LCk3l6x0+ZrT0SkCfbsEcLJSYiqVbN+7tlT9OfI7/v7fWlNT1tOcXFx2LRpE1xdXaGvrw8A2Lt3L6pXr459+/bBwcEB9vb2GDhwIOLi4qT9goKC4O7uLjuWh4cHgoKCAACpqak4f/68rI2Ojg7c3d2lNufPn0daWpqsjZOTE+zs7KQ2QUFBqF+/PipXriw7T2JiIq5evZrv+0pJSUFiYqLsVVBCCKSmpqrlJYQocJz5+eSTT9CgQQPs3LkTQNbnvmTJEly9ehUbNmzA0aNHMWHCBACAq6srFi1aBDMzMzx48AAPHjzAuHHjAGRNhTFz5kxcunQJu3fvRlRUFDw9Pd87PiIiKh18fYHwcOD+/ayfvr7qjqjgtGpyXS8vLyxbtgzPnz+Hi4sL9u3bJ9Xdvn0bd+7cwY4dO7Bx40ZkZGRg9OjR6N69O44ePQogaxWBnIkUAFSuXBmJiYl48eIFnj59ioyMjDzbhIeHS8dQKpW5nqeqXLkyYmNj33ie7Lr8zJkzBzNmzCjEJ/JKWloa5syZ8077vq+JEydCqVS+93GcnJxw+fJlAMCoUaOkcnt7e/zwww8YMmQIVqxYAaVSCXNzcygUClhbW8uO0b9/f+m/q1evjiVLluDDDz/Es2fPYGpq+t4xEhGRdvL3z0rQqlYFjIyyXpUqAd7e6o6s4NTa0+bt7S09lJ7fKztZAoDx48cjJCQEhw4dgq6uLvr27Sv18mRmZiIlJQUbN27ERx99hFatWmHNmjU4duwYIiIi1PUWC2XixIlISEiQXnfv3lV3SCVKCCHNQ3bkyBF8+umnqFq1KsqVK4c+ffrgyZMneP78+RuPcf78eXTo0AF2dnYoV64cWrZsCSBrYAgREZVN/v5A795AUBBw8CBQt+5ZjBw5A5Mn/4aOHdUdXcGptadt7Nixb711Vb16dem/LS0tYWlpCUdHRzg7O8PW1hanT5+GSqWCjY0N9PT04OjoKLV3dnYGkPWFXbt2bVhbW+ca5fnw4UOYmZnByMgIurq60NXVzbNNdo+OtbU1UlNTER8fL+tte73N6yNOs4/5es9QTgYGBjAwMHjj55EffX19TJw48Z32fV/Zt6jfV1hYGBwcHBAVFYX27dtj6NChmDVrFipUqIB//vkHAwYMQGpqar4rQSQnJ8PDwwMeHh7YtGkTrKysEB0dDQ8PD6SmphZJjEREpB2ye9a8vbN+PnsG6OpmYtSoBdDTy+oAuHXrlqzDQNOpNWmzsrKClZXVO+2bPT1ESkoKAOC///0v0tPTcevWLdSoUQMAcP36dQBAtWrVAAAqlQoHDhyQHefw4cNQqVQAAKVSiSZNmiAwMBCdO3eWzhMYGIgRI0YAAJo0aQJ9fX0EBgaiW7duAICIiAhER0dLx1GpVJg1a5a0RmT2eczMzFCnTp13er9vo1AoiuQWpbocPXoUV65cwejRo3H+/HlkZmZiwYIF0NHJ6gzevn27rL1SqURGRoasLDw8HE+ePIGvry9sbW0BAOfOnSuZN0BERBrF1zerZy07cRs1Khb9+v0kazNy5EitSdgALXmmLTg4GGfPnkWLFi1Qvnx53Lp1C1OnTkWNGjWkRMnd3R2NGzdG//79sWjRImRmZmL48OH43//+J/W+DRkyBMuWLcOECRPQv39/HD16FNu3b8f+/fulc40ZMwb9+vVD06ZN0axZMyxatAjJycn4+uuvAQDm5uYYMGAAxowZgwoVKsDMzAzffvstVCoVXFxcAACtW7dGnTp10KdPH8ybNw+xsbGYMmUKhg8f/s49aaVJSkoKYmNjkZGRgYcPH+LgwYOYM2cO2rdvj759+yI0NBRpaWlYunQpOnTogJMnT2LVqlWyY9jb2+PZs2cIDAxEgwYNYGxsDDs7OyiVSixduhRDhgxBaGgoZs6cqaZ3SURE6uTmBly5kvVTX/9P9Ov36g5Y1apVMWDAAK1K2ABox5Qfly9fFm5ubqJChQrCwMBA2NvbiyFDhoh79+7J2t2/f1907dpVmu7B09NTPHnyRNbm2LFjomHDhkKpVIrq1auLdevW5Trf0qVLhZ2dnVAqlaJZs2bi9OnTsvoXL16IYcOGifLlywtjY2PRpUsX8eDBA1mbqKgo0bZtW2FkZCQsLS3F2LFjRVpaWqHed2md8gP/P02Hnp6esLKyEu7u7mLt2rUiIyNDavfjjz8KGxsbYWRkJDw8PMTGjRsFAPH06VOpzZAhQ0TFihVlU35s3rxZ2NvbCwMDA6FSqYS/v78AIEJCQkr2jRYTbb72REQlZc8eIfT1hVAqX4rp06fLXteuXSv28xfXlB8KIYpgvgYqFomJiTA3N0dCQgLMzMyk8pcvXyIyMhIODg4wNDRUY4RU0njtiYjeztUVePLkOnr12iIr9/LyKpG/nfl9f78vrbg9SkRERPQm2QMPvLwEunXbgGfP7kh1jRs3RocOHdQYXdFg0kZERERaz9cXuHYtARcvLpKVOzoORIcOVdUTVBFj0kZERERaKee0Hv37n8b9+6/WElcqlZgwYQJ0dXXVGGHRYtJGREREWiU7WXv6FLh+PQOnT8+DgcGr+TirVvXAwIEuaoyweDBpIyIiIq2SPQebShWDadN+kdWNGjUK5ubmaoqseDFpIyIiIq3i7Q34+++Dre15qezhw2pYvryf9s29VghM2oiIiEhr7Nr1Epcvz8X/L3wDALhwoQcGDKiNUpyvAWDSRkRERFpi48YwREbKlzX09vYuM6sNMWkjIiIijSaEgJ/fGjx/fl8qO3/+Qwwc+BnKSL4GANBRdwBExcHT0xOdO3eWtlu1aoVRo0a91zGL4hhERFQ48fHx+P7772UJ28GDgzFw4Gfo2FGNgakBe9qoRHl6emLDhg0AAH19fdjZ2aFv376YNGkS9PSK73/HnTt3Ql9fv0Btjx8/Djc3Nzx9+hQWFhbvdAwiIno//v7A1q0nUbv2EaksOdkY//3vWPj4lM0+JyZtVOLatGmDdevWISUlBQcOHMDw4cOhr6+PiRMnytqlpqZCqVQWyTkrVKigEccgIqK3y8jIwPnzs1G7dqZUduTIZ/j44w/RqZMaA1OzspmqkloZGBjA2toa1apVw9ChQ+Hu7g5/f3/pluasWbNQpUoV1K5dGwBw9+5dfPHFF7CwsECFChXQqVMnREVFScfLyMjAmDFjYGFhgYoVK2LChAkQQsjO+fqtzZSUFHh5ecHW1hYGBgaoWbMm1qxZg6ioKLi5uQEAypcvD4VCAU9PzzyP8fTpU/Tt2xfly5eHsbEx2rZtixs3bkj169evh4WFBQICAuDs7AxTU1O0adMGDx48kNocP34czZo1g4mJCSwsLPDf//4Xd+68Wi+PiKisuXfvHn744Qfo6LxK2EaPHo2///4Qs2apMTANwKSN1M7IyAipqVkzWQcGBiIiIgKHDx/Gvn37kJaWBg8PD5QrVw5///03Tp48KSU/2fssWLAA69evx9q1a/HPP/8gLi4Ou3bteuM5+/btiy1btmDJkiUICwvDTz/9BFNTU9ja2uKPP/4AAERERODBgwdYvHhxnsfw9PTEuXPn4O/vj6CgIAgh8NlnnyEtLU1q8/z5c/j5+eHXX3/FiRMnEB0djXHjxgEA0tPT0blzZ7Rs2RKXL19GUFAQBg8eXKrnGCIiepPdu3djzZo10va//9aAj48PzMzM1BiV5uDtUVIbIQQCAwMREBCAb7/9Fo8fP4aJiQlWr14t3Rb97bffkJmZidWrV0vJzLp162BhYYHjx4+jdevWWLRoESZOnIiuXbsCAFatWoWAgIB8z3v9+nVs374dhw8fhru7OwCgevXqUn32bdBKlSrJnmnL6caNG/D398fJkyfh6uoKANi0aRNsbW2xe/dufP755wCAtLQ0rFq1CjVq1AAAjBgxAt9//z0AIDExEQkJCWjfvr1U7+zsXPgPkohIy+3c+QJXrsyTlf3+e2/MmlVTTRFpJva0Efz9AVfXrJ8lYd++fTA1NYWhoSHatm2LL7/8EtOnTwcA1K9fX/Yc26VLl3Dz5k2UK1cOpqamMDU1RYUKFfDy5UvcunULCQkJePDgAZo3by7to6enh6ZNm+Z7/osXL0JXVxctW7Z85/cQFhYGPT092XkrVqyI2rVrIywsTCozNjaWEjIAsLGxwaNHjwBkJYeenp7w8PBAhw4dsHjxYtmtUyKi0s7fH+jaNTRXwnbkyETMmlWzzI0OfRv2tJG0hpuvL0rkF8TNzQ0rV66EUqlElSpVZKNGTUxMZG2fPXuGJk2aYNOmTbmOY2Vl9U7nNzIyeqf93sXro00VCoXsebt169Zh5MiROHjwILZt24YpU6bg8OHDcHEpfQsdExHlJITAX3/9hAYNHkpllSqpMHRoa/j4qDEwDcaeNoK3N6BSZf0sCSYmJqhZsybs7OzeOs1H48aNcePGDVSqVAk1a9aUvczNzWFubg4bGxsEBwdL+6Snp+P8+fP5HrN+/frIzMzEX3/9lWd9dk9fRkZGvsdwdnZGenq67LxPnjxBREQE6tSp88b39LpGjRph4sSJOHXqFOrVq4fNmzcXan8iIm0TFxeH77//HmZmrxK2kyeHYujQ1mqMSvMxaSN07AicOlUyvWyF1bt3b1haWqJTp074+++/ERkZiePHj2PkyJG4d+8eAOC7776Dr68vdu/ejfDwcAwbNgzx8fH5HtPe3h79+vVD//79sXv3bumY27dnLY1SrVo1KBQK7Nu3D48fP8azZ89yHaNWrVro1KkTBg0ahH/++QeXLl3CV199hapVq6JTAcejR0ZGYuLEiQgKCsKdO3dw6NAh3Lhxg8+1EVGpduLECSxdulTaTkgww4IFUzFiRCU1RqUdmLSRRjM2NsaJEydgZ2eHrl27wtnZGQMGDMDLly+l0URjx45Fnz590K9fP6hUKpQrVw5dunR543FXrlyJ7t27Y9iwYXBycsKgQYOQnJwMAKhatSpmzJgBb29vVK5cGSNGjMjzGOvWrUOTJk3Qvn17qFQqCCFw4MCBAk/Aa2xsjPDwcHTr1g2Ojo4YPHgwhg8fjm+++aYQnxARkXZIT0/HjBkzcOzYsRxlHXD69Gj89puORnYcaBqFeH1CK9IYiYmJMDc3R0JCgmy488uXLxEZGQkHBwcYGhqqMUIqabz2RKSN7ty5g/Xr18vK/PzGon59U5w6pZ6YilN+39/viwMRiIiIqNgsXvwH4uNDpe379x1x4EBPfPBByT1LXVowaSMiIqIi9/z5c8yfP19WVrNmH/j4VM9nD3obJm1ERERUpC5fvpxrZZpZsyahaVN99O6tpqBKASZtREREVCSEEJg7dzlSUp5IZUFBLRAQ8ClMTXk79H0xadNiHENS9vCaE5Gm+vfff7F8+XJZ2bJlw/Dvv1YwNQU2bdLMqaW0CZM2LZQ9pcTz589LdHZ/Ur/nz58DyL3SAhGRuvj7Azt2HEPNmieksidPKmDZshEAFHByAubOZcJWFJi0aSFdXV1YWFhIa1gaGxtLi6lT6SSEwPPnz/Ho0SNYWFhAV1dX3SERESEtLQ0hIbNRM8e67p06dcKOHQ1hYgKMHAnMmqW++EobztOmwd40z4sQArGxsW+c+Z9KHwsLC1hbWzNJJyK1i4yMxMaNG2Vl48aNy7WGdFnEedpIRqFQwMbGBpUqVUJaWpq6w6ESoK+vzx42ItII27ZtQ3h4uLRdp04dfP7552qMqGxg0qbldHV1+UVOREQlIjk5GX5+frKyfv36wd7eXj0BlTFM2oiIiOit1q0LQXS0v6xs+/bJ8PFhKlFS+EkTERFRvoQQWLx4MRISEqSy8+dbYu/eVqhaVY2BlUFM2oiIiChPjx49wsqVK2Vl+/ePQExMRQCAqak6oiq7mLQRERFRLocPH8apU6ek7YcPK2HduiF4+TJr7jWViisclDQmbURERCRJS0vD7NmzZWW//94VoaH1AWT1rnGyXPVg0kZEREQAgFu3buG3336Tlc2fPx7JycYAAENDLkelTkzaiIiICJs2bcLNmzel7fr168PPryuSkwGFAqhSBVixggmbOumoOwAiIiJSn6SkJMyYMUOWsG3e/DXOn+8Kb++sZ9d27wbu3WPCpm5cxkqDFdcyGERERABw7tw57N+/X9rOzFRg1qxJyMjQg6kpkJSkxuC0GJexIiIioiKRmZmJH3/8EcnJyVLZmTOf4s8/W0AIQEcna7F30ixM2oiIiMqQ2NhY/PTTT7KyOnVGws+vPITIGh3KwQaaiUkbERFRGXHw4EEEBwdL23FxNggIGASFQoFnz5iwaTombURERKVcSkoKfH19ZWX+/p/jwoU6AIDatV9NlsuETXMxaSMiIirFrl+/ji1btsjK/vhjAq5cMYK+PlC9OjBvHpM1bcCkjYiIqBQSQmDjxo2IioqSyipUaIhvv+2E7ByuenUgPFw98VHhMWkjIiIqZRITE7Fw4UJZ2S+/DES5clXx7bdZPWu+vlw7VNswaSMiIipFgoODcfDgQWk7LU0Pc+Z4IzNTF7VrZ5V17MjbodqISRsREVEpkJmZifnz5+Ply5dSWUBAa4SEqGBjkzUydN48NQZI741JGxERkZaLiYnBL7/8IitbuPA7JCVZwNsbmDVLTYFRkWLSRkREpMX279+Pc+fOSdv37tli9eqvoaOjQGYmcOyYGoOjIsWkjYiISAvlNffahQtfwt/fCaamWctQHTvGwQalCZM2IiIiLRMeHo5t27bJyn7/3RtpaQZwcgLmzuVAg9KISRsREZGWEEJg7dq1uHfvnlRmadkUmza1Q1oaEBGRtbIBE7bSiUkbERGRFoiPj8fixYtlZbVrD8b06TZQKIBu3Xg7tLRj0kZERKThTp06hcOHD0vbL14YQld3PJYs0UFERFbZsWPAqVNqCpBKBJM2IiIiDZWRkQFfX1+kp6dLZQcOtMGZM81hagps2gRMmAAoFOxhKwuYtBEREWmge/fuYc2aNbKyPXtG484dMxgZZY0O5coGZQuTNiIiIg2zZ88eXLx4Udq+f98Bv/7aB2PGKDhRbhmmEEIIdQdBeUtMTIS5uTkSEhJgZmam7nCIiKiYvXjxAvNeW2tq06aeuHHDEUDWUlRJSeqIjAqjuL6/2dNGRESkAa5du4YdO3bIymbPnojUVCUAwNAw65YolV1M2oiIiNRICIGff/4ZsbGxUpmLiwtmzPBAaiqgowOuH0oAmLQRERGpTVxcHJYuXSorGzJkCCpXroyUFMDXNyth42ADApi0ERERqcXff/+No0ePSttJSab4+efRaNRIRxoVymSNctJRdwAF1bFjR9jZ2cHQ0BA2Njbo06cPYmJipPrp06dDoVDkepmYmMiOs2PHDjg5OcHQ0BD169fHgQMHZPVCCEybNg02NjYwMjKCu7s7bty4IWsTFxeH3r17w8zMDBYWFhgwYACePXsma3P58mV89NFHMDQ0hK2tba4HS4mIqGxKT0/HjBkzZAnb3r3tsGDBWCQl6eC1NeCJJFqTtLm5uWH79u2IiIjAH3/8gVu3bqF79+5S/bhx4/DgwQPZq06dOvj888+lNqdOnULPnj0xYMAAhISEoHPnzujcuTNCQ0OlNvPmzcOSJUuwatUqBAcHw8TEBB4eHnj58qXUpnfv3rh69SoOHz6Mffv24cSJExg8eLBUn5iYiNatW6NatWo4f/485s+fj+nTp+Pnn38u5k+JiIg0WXR0NGa99nDa8eNjEBLSFEDW6FBOkkv50dopP/z9/dG5c2ekpKRAX18/V/2lS5fQsGFDnDhxAh999BEA4Msvv0RycjL27dsntXNxcUHDhg2xatUqCCFQpUoVjB07FuPGjQMAJCQkoHLlyli/fj169OiBsLAw1KlTB2fPnkXTplm/ZAcPHsRnn32Ge/fuoUqVKli5ciUmT56M2NhYKJVZo368vb2xe/duhIeHF/g9csoPIqLSY+fOnbhy5Yq0ff16LWze3AsKBSAEpBUOeEtU+xXX97fW9LTlFBcXh02bNsHV1TXPhA0AVq9eDUdHRylhA4CgoCC4u7vL2nl4eCAoKAgAEBkZidjYWFkbc3NzNG/eXGoTFBQECwsLKWEDAHd3d+jo6CA4OFhq8/HHH0sJW/Z5IiIi8PTp03zfV0pKChITE2UvIiLSbs+fP8eMGTNkCdtvv32FXbt6AQAqVABUKiZs9HZalbR5eXnBxMQEFStWRHR0NPbs2ZNnu5cvX2LTpk0YMGCArDw2NhaVK1eWlVWuXFkaZp39821tKlWqJKvX09NDhQoVZG3yOkbOc+Rlzpw5MDc3l162trb5tiUiIs135coVzJ8/X1a2YMFE3LxZQ0rW1q7NWuidCRu9jVqTNm9v7zwHD+R85bydOH78eISEhODQoUPQ1dVF3759kdfd3V27diEpKQn9+vUrybfz3iZOnIiEhATpdffuXXWHRERE70AIgRUrVmDnzp1S2e3b/8WWLT5ISsq6C1OuHJM1Khy1TvkxduxYeHp6vrFN9erVpf+2tLSEpaUlHB0d4ezsDFtbW5w+fRoqlUq2z+rVq9G+fftcvV3W1tZ4+PChrOzhw4ewtraW6rPLbGxsZG0aNmwotXn06JHsGOnp6YiLi5MdJ6/z5DxHXgwMDGBgYJBvPRERab7t258gLGyZrMzJaRh8fKzg7w94eWU9wzZ3rpoCJK2l1qTNysoKVlZW77RvZmYmgKznwHKKjIzEsWPH4O/vn2sflUqFwMBAjBo1Sio7fPiwlPQ5ODjA2toagYGBUpKWmJiI4OBgDB06VDpGfHw8zp8/jyZNmgAAjh49iszMTDRv3lxqM3nyZKSlpUnP3B0+fBi1a9dG+fLl3+n9EhGR5jt+/DjCwv6Stp8+tcCSJSNRu7YCX37Judfo/WjF5LrBwcE4e/YsWrRogfLly+PWrVuYOnUqatSokauXbe3atbCxsUHbtm1zHee7775Dy5YtsWDBArRr1w5bt27FuXPnpKk4FAoFRo0ahR9++AG1atWCg4MDpk6diipVqqBz584AAGdnZ7Rp0waDBg3CqlWrkJaWhhEjRqBHjx6oUqUKAKBXr16YMWMGBgwYAC8vL4SGhmLx4sVYuHBh8X5QRESkFunp6bmm8ggN7Yg//mgEIbJ61ojel1YkbcbGxti5cyd8fHyQnJwMGxsbtGnTBlOmTJHdTszMzMT69evh6ekJXV3dXMdxdXXF5s2bMWXKFEyaNAm1atXC7t27Ua9ePanNhAkTkJycjMGDByM+Ph4tWrTAwYMHYWhoKLXZtGkTRowYgU8//RQ6Ojro1q0blixZItWbm5vj0KFDGD58OJo0aQJLS0tMmzZNNpcbERGVDlFRUdiwYYOsbP78ccjIMJGm8uD86lQUtHaetrKA87QREWm27du3IywsTNp2cnLC2LFf4v79rKk8atfm2qFlUXF9f2tFTxsREZEm+eOPZISG+snK+vbtCwcHB/j4ZG1bWWWNDiUqKlo1TxsREZG6Xbx4MVfCNmnSJDg4OADIuhWqUvGWKBU99rQREREVwJ49AqdOLYWx8auVbUJDP0afPm7IuTgPR4hScWHSRkRE9BaPHz/GxYsrYGz8quznn4cjJsYS9+8zSaOSwaSNiIjoDQIDA/HPP/9I2wkJlli0aBiEUMDUNGugAVFJYNJGRESUh7S0NMyePVtWVq1aF/j6/gdVqryayoO9bFRSmLQRERG95vbt2/j1119lZUePjsfDh8aIiMgaaMCRoVTSmLQRERHlsHnzZty4cUPaDg2th6Cgbrh/H3ByykrYeEuU1IFJGxEREYBnz55hwYIFsrK1a79GdLQdDA1fJWu8HUrqwqSNiIjKNH9/4KefzqNZs32y8pkzJ8PaWg+mpsDIkcBrS4sSlTgmbUREVGZlZmYiKGgRmjVLksqOHnXD1asfo2ZNDjQgzcKkjYiIyqSHDx9i1apVMDR8VbZkybeIi6sAAHB0ZMJGmoVJGxERlRn+/oCvL9CnzyE8ehQklT94YI0NGwbj5UsFDA0Be3sONiDNw6SNiIjKjPnzU+HhMQePHr0qO3myOw4frouqVQE7Ow42IM3FpI2IiMqEX3+9AXf3zbKyo0cnYOxYIzx7xmSNNB+TNiIiKvV+/fVX3L59W9oOCWmIQ4c6YetWLvBO2oNJGxERlVqJiYlYuHChrCwtbQAePfpAStiItAWTNiIiKpXOnDmDP//8U9pOT9fF0aMTcfKkrhqjInp3TNqIiKhUyczMhJ+fH168eCGVhYS4IyLiv5g7V42BEb0nJm1ERFQq+PsDy5c/gKvrz7LyLVu+Q0SEBVQq3g4l7cakjYiISoU9ew7A1fWstH3//gf45Zf+MDJScJF3KhWYtBERkVZLSUmBr68v7OxelW3d+gWSkpy5biiVKkzaiIhIK/n7A2vWRKBx462y8v/8xwsBAYaYO5e3Q6l0YdJGRERaRwiBgID1aNw4Wiq7dKkxnJ07oEsXoEsXNQZHVEyYtBERkVZJSEjAokWLUKnSq7K1awchOroKYmPVFxdRcWPSRkREWiMoKAiHDh2Stl++NMC8eeOhq6vLwQZU6jFpIyIijZeRkYG5c+ciLS1NKqta1QPTp7tAqQTGjOFgAyr9mLQREZHG8vcHVqy4D5Vqtay8bt1R6N7dHAMHqikwIjVg0kZERBrL338vVKoL0vbDh/ZYubIvVCoFundXY2BEasCkjYiINM7Lly8xd+5c2Nq+Ktu8uScUCkc+u0ZlFpM2IiLSKNeuXcOOHTtkZT/+6A0bGwPMm8e516jsYtJGREQaQQiB1atXIyYmRioLDm6Gy5fb4tdfmawR6ag7ACIiKpv8/QFX16yfT58+xffffy9L2E6d+gZDhrTFvXtM2IgA9rQREZGa+PoCQUHA1q0nERJyRCo3MTHBmDFjoKPDfgWinJi0ERGRWkyYkIGQkFnQ0RFSWUDAZzh16kM1RkWkuZi0ERFRiduw4Sqion5Hzs60BQvGwMysnPqCItJwTNqIiKhEzZw5B5mZqdJ2jRo1YGb2FerV41QeRG/CpI2IiIqVvz/g5QVkZCSid++FsrpDh9ri5MlmADjYgOht+JQnEREVG39/oEcPwMbmaK6EzdfXC61aNVNTZETap9BJm66uLh49epSr/MmTJ9DV1S2SoIiISDvlnMYDAHx9Bby8ZqBly7+lNk+eVMaWLT7Yts2Qi7wTFUKhb48KIfIsT0lJgVKpfO+AiIhIe2VP49G7N/Ddd/fh4SFf6L1mzb7w8XFQU3RE2q3ASduSJUsAAAqFAqtXr4apqalUl5GRgRMnTsDJyanoIyQiIq3h7Z2VsHXp8iv09W/L6qZOncq514jeQ4GTtoULs55FEEJg1apVsluhSqUS9vb2WLVqVdFHSEREGsnfP6tnzdv71SCCNm1SMW7cHFk7S8umGD68nRoiJCpdFCK/+535cHNzw86dO1G+fPniion+X2JiIszNzZGQkAAzMzN1h0NEJOPqmnUrVKUCTp0CLl++jF27dsnafPvtt6hQoYKaIiRSj+L6/i70M23Hjh0rspMTEZH2ye5hc3PL2vb2BqZP/x4KhbwPwMfHRw3REZVehU7a+vfv/8b6tWvXvnMwRESk+bIHGwDAmDHxCAlZDIXiVX1oaAf06dNYPcERlWKFTtqePn0q205LS0NoaCji4+PxySefFFlgRESkmdzcgCtXAHf3Q7h6NUhWl5rqjR07DNQUGVHpVuik7fXnFQAgMzMTQ4cORY0aNYokKCIi0lzHjgmMG/e9rMzE5AOMGzdATRERlQ2FHoiQn4iICLRq1QoPHjwoisMROBCBiDRPdHQ01q1bJyv7+uuvYWdnp6aIiDRPcX1/F9mEObdu3UJ6enpRHY6IiNTs9dUN/PzW5krYpk6dyoSNqIQU+vbomDFjZNtCCDx48AD79+9Hv379iiwwIiJSr+wBB/PnpyAkxFdWp1Kp0Lp1azVFRlQ2FTppCwkJkW3r6OjAysoKCxYseOvIUiIi0h7e3sCvv15AvXp7ZeV79nwHHx8L9QRFVIZxnjYiIpJkz8FWtSpQr94M1Kv3qk4IYNs2H8ydq774iMqyQidt2R49eoSIiAgAQO3atVGpUqUiC4qIiEqev3/WuqH6+k/h4bFEVnf5cmf069cA06erJzYieoekLTExEcOHD8eWLVuQmZkJANDV1cWXX36J5cuXw9zcvMiDJCKi4pWdsH388QE0a3ZWVvef/0yEj49STZERUbZCjx4dNGgQgoODsX//fsTHxyM+Ph779u3DuXPn8M033xRHjEREVAxyjg718srEuHEzZAmbqakDfHx80KULEzYiTVDoedpMTEwQEBCAFi1ayMr//vtvtGnTBsnJyUUaYFnGedqIqDhlL/jerl0kPvxwo6xuwIAB+OCDD9QUGZF205gF4ytWrJjnLVBzc3OUL1++SIIiIqLik3PB92bNfkL58rGy+mnTpkGRczFRItIIhb49OmXKFIwZMwaxsa9+yWNjYzF+/HhMnTq1SIMjIqKilf3sWkjISyiVM2QJ261bLdCokQ8TNiINVejbo40aNcLNmzeRkpIizYIdHR0NAwMD1KpVS9b2woULRRdpGcTbo0RU1FxdgbS0s2jf/oCsvG7d0ejenX9niIqCxtwe7dSpE/8VRkSkhfz9AQ+PGbIyHR0lpk6dqKaIiKgwimzBeCp67GkjoqLg7w8sWfIvPvpouay8e/fuqFu3rpqiIiq9NGbB+OrVq+PJkye5yuPj41G9evUiCYqIiN7d6wu9793rnythmzRpEhM2Ii1T6NujUVFRyMjIyFWekpKCe/fuFUlQRET07rIXep87NwMhIT8g58wdjo6O6Nmzp/qCI6J3VuCeNn9/f/j//z/bAgICpG1/f3/s2rULM2fOhIODQ7EF2rFjR9jZ2cHQ0BA2Njbo06cPYmJiZG0CAgLg4uKCcuXKwcrKCt26dUNUVJSszfHjx9G4cWMYGBigZs2aWL9+fa5zLV++HPb29jA0NETz5s1x5swZWf3Lly8xfPhwVKxYEaampujWrRsePnwoaxMdHY127drB2NgYlSpVwvjx45Genl4knwURUV78/QEnJyA6GmjV6iZat/5BVj948GAmbERarMDPtOnoZOV3CoUCr++ir68Pe3t7LFiwAO3bty/6KAEsXLgQKpUKNjY2uH//PsaNGwcAOHXqFAAgMjISzs7OGDNmDAYMGICEhASMHj0aSUlJ0ijWyMhI1KtXD0OGDMHAgQMRGBiIUaNGYf/+/fDw8AAAbNu2DX379sWqVavQvHlzLFq0CDt27EBERIS0vurQoUOxf/9+rF+/Hubm5hgxYgR0dHRw8uRJAEBGRgYaNmwIa2trzJ8/Hw8ePEDfvn0xaNAgzJ49u8Dvmc+0EVFhZE+WO2LEMlhayh9jadhwGjp14iAyopJQXN/fhR6I4ODggLNnz8LS0rLIgngX/v7+6Ny5M1JSUqCvr4/ff/8dPXv2REpKipRg7t27F506dZLaeHl5Yf/+/QgNDZWO06NHD8THx+PgwYMAgObNm+PDDz/EsmXLAACZmZmwtbXFt99+C29vbyQkJMDKygqbN29G9+7dAQDh4eFwdnZGUFAQXFxc8Oeff6J9+/aIiYlB5cqVAQCrVq2Cl5cXHj9+DKWyYEvCMGkjosLYufM5rlyZLyu7caMVvviiJTp2VFNQRGWQxgxEiIyMVHvCFhcXh02bNsHV1RX6+voAgCZNmkBHRwfr1q1DRkYGEhIS8Ouvv8Ld3V1qExQUBHd3d9mxPDw8EBQUBABITU3F+fPnZW10dHTg7u4utTl//jzS0tJkbZycnGBnZye1CQoKQv369aWELfs8iYmJuHr1ar7vKyUlBYmJibIXEdHb+PsDPXsG5UrYxo4di99+Y8JGVFoUeiDC999//8b6adOmvXMwb+Pl5YVly5bh+fPncHFxwb59+6Q6BwcHHDp0CF988QW++eYbZGRkQKVS4cCBVxNIxsbGyhIpAKhcuTISExPx4sULPH36FBkZGXm2CQ8Pl46hVCphYWGRq032KhH5nSe7Lj9z5szBjBkz8q0nIspegsrbG+jYEZg8WUCp/B5OTq/amJiYSI+QEFHpUeietl27dsle27dvx9y5c7FgwQLs3r27UMfy9vaGQqF44ys7WQKA8ePHIyQkBIcOHYKuri769u0rPV8XGxuLQYMGoV+/fjh79iz++usvKJVKdO/ePdczeJpq4sSJSEhIkF53795Vd0hEpGGyR4b27g1MmfIISqX8H9JffvklEzaiUqrQPW0hISG5yhITE+Hp6YkuXboU6lhjx46Fp6fnG9vknPvN0tISlpaWcHR0hLOzM2xtbXH69GmoVCosX74c5ubmmDdvntT+t99+g62tLYKDg+Hi4gJra+tcozwfPnwIMzMzGBkZQVdXF7q6unm2sba2BgBYW1sjNTUV8fHxst6219u8PuI0+5jZbfJiYGAAAwODN34eRFS2ubllJW2tW++Evv4VWd3kyZOhp1foP+tEpCWK5LfbzMwMM2bMQIcOHdCnT58C72dlZQUrK6t3OmdmZiaArOfAAOD58+fSAIRsurq6srav3y4FgMOHD0OlUgEAlEolmjRpgsDAQHTu3FnaNzAwECNGjACQ9eycvr4+AgMD0a1bNwBAREQEoqOjpeOoVCrMmjULjx49kkacHj58GGZmZqhTp847vV8iKtuyb4vGx2dg+nT5VB4WFnXw3XefqykyIiopRfZPsuxbesUhODgYZ8+eRYsWLVC+fHncunULU6dORY0aNaREqV27dli4cCG+//579OzZE0lJSZg0aRKqVauGRo0aAQCGDBmCZcuWYcKECejfvz+OHj2K7du3Y//+/dK5xowZg379+qFp06Zo1qwZFi1ahOTkZHz99dcAAHNzcwwYMABjxoxBhQoVYGZmhm+//RYqlQouLi4AgNatW6NOnTro06cP5s2bh9jYWEyZMgXDhw9nTxoRvRNfX+DJkwj06rVVVj5kyJBcz9ASUelU6KRtyZIlsm0hBB48eIBff/0Vbdu2LbLAcjI2NsbOnTvh4+OD5ORk2NjYoE2bNpgyZYqUBH3yySfYvHkz5s2bh3nz5sHY2BgqlQoHDx6EkZERgKzBCvv378fo0aOxePFifPDBB1i9erU0RxuQ9TzI48ePMW3aNMTGxqJhw4Y4ePCg7I/iwoULoaOjg27duiElJQUeHh5YsWKFVK+rq4t9+/Zh6NChUKlUMDExQb9+/d46iIOIKC/+/kCLFgthYiIfUT5t2jQoFJx7jaiseKd52nLS0dGBlZUVPvnkE0ycOBHlypUr0gDLMs7TRlQ2Zd8KdXMDTp5Mhpubn6ze3d0d//3vf9UUHRG9TXF9fxe6py0yMrLITk5ERLlljxDV0/sbn356VFY3btw4mJiYqCkyIlKnd3qmLT4+Hjdv3gQA1KxZM9ecZUREVHj+/oCXF5CUJDB9uvxxCgsLC3z33XdqioyINEGhkraoqCgMHz4cAQEB0txnCoUCbdq0wbJly2Bvb18cMRIRlQkTJgAJCbEYMuQnWXmvXr1Qq1YtNUVFRJqiwEnb3bt34eLiAn19fcycORPOzs4AgGvXrmHlypVQqVQ4e/YsPvjgg2ILloiotPL3Bxo12gYnp3BZ+ZQpU6Tpi4iobCvwQIQBAwbg5s2bCAgIgKGhoazuxYsXaNOmDWrVqoXVq1cXS6BlEQciEJUN6enpmDVrlqysQYMG0nyRRKRd1D4Q4eDBg9i2bVuuhA0AjIyMMHPmTPTo0aPIAiMiKs2yR4gOGXINkZE7ZHXOzsPQufO7TTxORKVXgZO2f//9943PrFWvXh1xcXFFERMRUann6wt8/PFcREa+lJX7+PioKSIi0nQFTtpsbGxw7dq1fJ9ZCw0NfeO6mkRElCUpKQkeHj/Kytq0aYPmzZurKSIi0gY6b2+SpXPnzhg3bhweP36cq+7Ro0fw8vLi8xdERPmYPBlQKoFPPz2OH3+UJ2wTJkxgwkZEb1XggQhPnz5F8+bNERsbi6+++gpOTk4QQiAsLAybN2+GtbU1Tp8+jQoVKhR3zGUGByIQlR7lygmMGyefe61SpUoYOnSomiIiouKi9oEI5cuXR3BwMCZNmoStW7ciPj4eQNaEj7169cLs2bOZsBER5ZA92GDkyBiMG/eLrK5Pnz6oXr26miIjIm1U6LVHgaxF4rNvk1pZWXHB4mLCnjYi7ebqCtSo8Rtq1rwlK586dSp0dAr8dAoRaRm197TlpFAoUKlSpSILgoiotMjuXZswIQ0eHrNldU2aNEH79u3VFBkRabt3StqIiChvvr5AUtIVXLq0U1b+7bff8hESInovTNqIiIqIvz/g7v4DdHUzZOWce42IigKTNiKi9+TvDyxalICWLRch5zKhtrbt0b9/E/UFRkSlCpM2IqJ35O8PeHkB1aodQcuWJ2V1Xl5eeS77R0T0rgqUtC1ZsqTABxw5cuQ7B0NEpC0mTwbmzBHw8ZHPvValShUMGjRITVERUWlWoCk/HBwcCnYwhQK3b99+76AoC6f8INJctWvfRa9ea2Vlnp6eqFatmpoiIiJNodYpPyIjI4vshERE2ih7Ko+qVQFz8/Xo1euOrJ5zrxFRcXvnZ9pSU1MRGRmJGjVqQE+Pj8YRUenm6wucP58CDw9fWXnz5s3Rpk0bNUVFRGVJof9Z+Pz5cwwYMADGxsaoW7cuoqOjAWTNQeTr6/uWvYmItIe/f9aqBpMnAwYGFzFpkvxv3MiRI5mwEVGJKXTSNnHiRFy6dAnHjx+XjYxyd3fHtm3bijQ4IiJ18vUFgoIApXIGWrXaI6vz8fFB+fLl1RQZEZVFhb6vuXv3bmzbtg0uLi6yNUfr1q2LW7duvWFPIiLtMnr0U3h4yEfP29l1wtdfN1RPQERUphU6aXv8+HGe644mJydz4Xgi0nrZc681avQnatc+I6ubOHEilEqlmiIjorKu0LdHmzZtiv3790vb2Yna6tWroVKpii4yIqIS5u8PfPVVJnr0mCFL2KpVqwYfHx8mbESkVoXuaZs9ezbatm2La9euIT09HYsXL8a1a9dw6tQp/PXXX8URIxFRifDzi8LYsRtkZf3794etra2aIiIieqXQPW0tWrTAxYsXkZ6ejvr16+PQoUOoVKkSgoKC0KQJ19gjIu2SPULUx+dnfPqpPGGbNm0aEzYi0hjvNMFajRo18MsvvxR1LEREJWryZGDBgpeYOHGurPzatf+id2938DFdItIkBUraEhMTC3xALrdERNri+PFzmDhxv6ysbt1R8PExV1NERET5K1DSZmFhUeCRoRkZGe8VEBFRSZgxYwZat361LYQepk+frL6AiIjeokBJ27Fjx6T/joqKgre3Nzw9PaXRokFBQdiwYQPmzJlTPFESERUBf3/g+++foEOHZbLyrl27on79+mqKioioYBRCCFGYHT799FMMHDgQPXv2lJVv3rwZP//8M44fP16U8ZVpiYmJMDc3R0JCAm87E70Hf3/g668BV9e9aNr0gqyuQYNJ6NxZX02REVFpVFzf34VO2oyNjXHp0iXUqlVLVn79+nU0bNgQz58/L7LgyjombUTvL3vutbFjZ8rKzcxqYvTo3mqKiohKs+L6/i70lB+2trZ5jhxdvXo1h8YTkcb5+efbuRK2QYMGMWEjIq1T6Ck/Fi5ciG7duuHPP/9E8+bNAQBnzpzBjRs38McffxR5gERE72ru3BX48MPHsrJp06ZxyT0i0kqFvj0KAPfu3cOKFSsQHh4OAHB2dsaQIUPY01bEeHuU6N28ePEC8+bNk5W1bNkSrVq1Uk9ARFSmaMwzbVRymLQRFd7q1cG4f/+grKxevTHo1q2cmiIiorKmuL6/32lFhPj4eKxZswZhYWEAgLp166J///4wN+eElESkHpMnCyiV38vKjIyMMGHCBDVFRERUtAo9EOHcuXOoUaMGFi5ciLi4OMTFxeHHH39EjRo1cOHChbcfgIioiE2e/DhXwubg8AUTNiIqVQp9e/Sjjz5CzZo18csvv0BPL6ujLj09HQMHDsTt27dx4sSJYgm0LOLtUaK3mzZtF3R1L8vKGjSYjM6d3+lGAhHRe9OYZ9qMjIwQEhICJycnWfm1a9fQtGlTztNWhJi0EeVv9+4MXLr0g6wsM9MZM2Z8oaaIiIiyaMwzbWZmZoiOjs6VtN29exflyvFBXyIqftevX8elS1tkZb/88g3u3bNWU0RERMWv0Enbl19+iQEDBsDPzw+urq4AgJMnT2L8+PG5lrYiIipqixcvRnx8vKzMz28aRo7k3GtEVLoVOmnz8/ODQqFA3759kZ6eDgDQ19fH0KFD4evrW+QBEhEBQHJyMvz8/GRln376KVq0aAEfHzUFRURUgt55nrbnz5/j1q1bAIAaNWrA2Ni4SAMjPtNGlO3kyZM4cuSIrOzYsXE4ftxETREREeVPY55py2ZsbIz69esXWSBERK8TQuD77+VTeTx7Zoa9e0fjtQUPiIhKvQInbf379y9Qu7Vr175zMERE2R4+fIhVq1bJyjZv7oGKFWvj/1fQIyIqUwqctK1fvx7VqlVDo0aNwJWviKg4bd++XVpxJVuDBlMQEKALb281BUVEpGYFTtqGDh2KLVu2IDIyEl9//TW++uorVKhQoThjI6IyJj09HbNmzZKV1a9fH127dgUAdO6shqCIiDREgZexWr58OR48eIAJEyZg7969sLW1xRdffIGAgAD2vBHRewsLC8uVsP3zz1ApYSMiKuveefTonTt3sH79emzcuBHp6em4evUqTE1Nizq+Mo2jR6msmD9/fq7VVAICpsHbW4GOHdUUFBHRO9K40aM6OjpQKBQQQiAjI6PIAiKisuPZs2dYsGCBrOzgwda4e1eFe/fUFBQRkYYq8O1RAEhJScGWLVvwv//9D46Ojrhy5QqWLVuG6Oho9rIRUaH89ddfuRK2uXPHIzRUhRUr1BQUEZEGK3BP27Bhw7B161bY2tqif//+2LJlCywtLYszNiIqhfKae+3JE0ssXTocpqbApk3gLVEiojwU+Jk2HR0d2NnZoVGjRlAo8l/jb+fOnUUWXFnHZ9qotHnw4AF+/vlnWVnv3r1x7VpN+PoC3t5M2IhI+6n9mba+ffu+MVkjInqTLVu24Pr167Kyhg2noGZNXdSsyWSNiOht3nn0KBU/9rRRaZCWlobZs2fLys6fb4R//+2IU6fUFBQRUTFSe08bEVFhhYaG4o8//pCVOTuPQEBARa5sQERUSEzaiKhYzJ49G2lpabIyHx8fAMAXX6gjIiIi7cakjYiKVGJiIhYuXCgr++yzz/Dhhx+qKSIiotKBSRsRFZmjR4/i77//lpUtXeqF1FRDMGcjIno/HIigwTgQgbRFXnOvxcTYYN26wUhLA0xNgaQkNQVHRFTCOBCBiDTSvXv3sGbNGlnZxo19cfu2A/T1sxK2kSPVFBwRUSlSqGWs1Kljx46ws7ODoaEhbGxs0KdPH8TExMjabN++HQ0bNoSxsTGqVauG+fPn5zrO8ePH0bhxYxgYGKBmzZpYv359rjbLly+Hvb09DA0N0bx5c5w5c0ZW//LlSwwfPhwVK1aEqakpunXrhocPH8raREdHo127djA2NkalSpUwfvx4pKenv/8HQaRBNm7cmCth27p1Knr0cICpKTB+fFYP26xZagqQiKgU0Zqkzc3NDdu3b0dERAT++OMP3Lp1C927d5fq//zzT/Tu3RtDhgxBaGgoVqxYgYULF2LZsmVSm8jISLRr1w5ubm64ePEiRo0ahYEDByIgIEBqs23bNowZMwY+Pj64cOECGjRoAA8PDzx69EhqM3r0aOzduxc7duzAX3/9hZiYGHTt2lWqz8jIQLt27ZCamopTp05hw4YNWL9+PaZNm1bMnxJRyUhNTcWMGTMQGRkplQUHf4jvv/dB1646mDWLyRoRUVHT2mfa/P390blzZ6SkpEBfXx+9evVCWloaduzYIbVZunQp5s2bh+joaCgUCnh5eWH//v0IDQ2V2vTo0QPx8fE4ePAgAKB58+b48MMPpWQvMzMTtra2+Pbbb+Ht7Y2EhARYWVlh8+bNUtIYHh4OZ2dnBAUFwcXFBX/++Sfat2+PmJgYVK5cGQCwatUqeHl54fHjx1AqlQV6j3ymjTTRpUuXsHv3bllZnToj0b9/eTx7BqhU4KS5RFSmFdf3t9b0tOUUFxeHTZs2wdXVFfr6+gCAlJQUGBoaytoZGRnh3r17uHPnDgAgKCgI7u7usjYeHh4ICgoCkNV7cP78eVkbHR0duLu7S23Onz+PtLQ0WRsnJyfY2dlJbYKCglC/fn0pYcs+T2JiIq5evZrv+0pJSUFiYqLsRaRJZsyYkStha9TIBwYG5VG1KuDkBE6aS0RUTLQqafPy8oKJiQkqVqyI6Oho7NmzR6rz8PDAzp07ERgYiMzMTFy/fh0LFiwAkLVINQDExsbKEikAqFy5MhITE/HixQv8+++/yMjIyLNNbGysdAylUgkLC4s3tsnrGNl1+ZkzZw7Mzc2ll62tbUE/GqJiFR8fjxkzZsjK9uzpiOnTfeDrC/j6AhERQPnyXEOUiKi4qDVp8/b2hkKheOMrPDxcaj9+/HiEhITg0KFD0NXVRd++fZF9d3fQoEEYMWIE2rdvD6VSCRcXF/To0QNAVm+ZNpg4cSISEhKk1927d9UdEhECAgKwePFiWdmOHd548aIRatfO6lnz9s66LcpeNiKi4qPWKT/Gjh0LT0/PN7apXr269N+WlpawtLSEo6MjnJ2dYWtri9OnT0OlUkGhUGDu3LmYPXs2YmNjYWVlhcDAQNkxrK2tc43yfPjwIczMzGBkZARdXV3o6urm2cba2lo6RmpqKuLj42W9ba+3eX3EafYxs9vkxcDAAAYGBm/8PIhKSmZmJmbOnCkrMzGxw5o1XyMpCShXDpg371XPGnvYiIiKl1q7oKysrODk5PTGV34P7WdmZgLIeg4sJ11dXVStWhVKpRJbtmyBSqWClZUVAEClUkmJXLbDhw9DpVIBAJRKJZo0aSJrk5mZicDAQKlNkyZNoK+vL2sTERGB6OhoqY1KpcKVK1dkI04PHz4MMzMz1KlT550+K6KSdOfOnVwJW61aX2PcuK9Rvjxw/z4QHp51W5SIiEqGVkyuGxwcjLNnz6JFixYoX748bt26halTp6JGjRpSovTvv//i999/R6tWrfDy5UusW7dOmpIj25AhQ7Bs2TJMmDAB/fv3x9GjR7F9+3bs379fajNmzBj069cPTZs2RbNmzbBo0SIkJyfj66+/BgCYm5tjwIABGDNmDCpUqAAzMzN8++23UKlUcHFxAQC0bt0aderUQZ8+fTBv3jzExsZiypQpGD58OHvSSOOtWbMG9+7dk5XNmDENLi4K9OqVdQt0wgRAoeDtUCKiEiW0wOXLl4Wbm5uoUKGCMDAwEPb29mLIkCHi3r17UpvHjx8LFxcXYWJiIoyNjcWnn34qTp8+netYx44dEw0bNhRKpVJUr15drFu3LlebpUuXCjs7O6FUKkWzZs1yHefFixdi2LBhonz58sLY2Fh06dJFPHjwQNYmKipKtG3bVhgZGQlLS0sxduxYkZaWVqj3nZCQIACIhISEQu1H9C5evnwppk+fLnt9+WWAAIQwNRVizx51R0hEpB2K6/tba+dpKws4TxuVlAsXLmDv3r2ysoULRyElxRz29sDcuXxmjYiooLj2KBEVi9en8sjM1EF6+lRkZAAvX3IaDyIiTcGkjaiMiouLw9KlS2VlQUFdEBDwH6hUwKZNWQMN+NwaEZFmYNJGVAbt378f586dk5XNmjUR5coppfnWOnZkDxsRkSZh0kZUhuQ191q5ctUxblwfCAG8eJGVsGVP5cGkjYhIc2jHUgFE9N5u376dK2FzdByI33/PSth0dIDRo7MStqAgzsFGRKRp2NNGVAasWrUq10of2XOvZfesZd8S9ffns2xERJqIU35oME75Qe/rxYsXmDdvnqzsr78+QlDQJ5zKg4iomBTX9zdvjxKVUmfOnMmVsNWtOxpnz36Cly+B69eB4GA1BUdERIXG26NEpdDrc68ZGBjA+//vdyqVQJcuQGZm1m3Q5s3Z20ZEpA3Y00ZUiiQmJuZK2Lp37y4lbNnPq3XtmjXwIDtxIyIizcekjaiUOHv2LBYuXCgrS02dhEGD6sLfP2s7e2To/fvArl2Q5mQjIiLNx4EIGowDEaggMjMzsWDBAjx//lwqi4n5D37+uQtMTYFnz7KSs1On5CNDeUuUiKh4cO1RIsrlwYMH+Pnnn2VldeqMxJYt5eHklHUb9NixV71pXOWAiEh7MWkj0lJ//vknzpw5I20bG1fFrl0DsGWLAhERWb1rs2apMUAiIipSTNqItExKSgp8Xxs9EBLyBSIinBEeDjg58Vk1IqLSiAMRiLRIREREroQtMNALe/Y4IyoqK2GbOzfr+TUAcHUFJk/O+pk9GIGIiLQTe9qItIAQAhs2bMCdO3ekssaNG6NDhw5o1AgICckacFC+/Ktn1rJHil65klXn68vn2YiItBmTNiINl5CQgEWLFsnKBg4ciKpVqwLISsQ2bXo1KjR7hKibW1ZbNzf5YAQiItJOTNqINNjp06cREBAgbSuVSkyYMAG6urqydjlHhbq6ZvWwAa9ukxIRkfZj0kakgTIyMjBv3jykpqZKZR4eHnBxcXnrvt7er3rdiIio9GDSRqRhYmJi8Msvv8jKRo0aBXNz8zful3PiXPawERGVPhw9SqRB9u7dK0vYqlWrhmnTpsHc3Bz+/m8eBZo98IBriRIRlU5M2og0wMuXLzFjxgxcuHBBKuvRowc8PT2hUCgA5J2U5UzkvL05PxsRUWnGtUc1GNceLRvCwsKwfft2Wdnvv3sjLc0A8+a9GmCQ17qh2YMOstcWJSIi9Suu728mbRqMSVvpJoTAmjVrcP/+fansww8/xA8/fCaN/nxbMsYF4ImINA8XjCcqRZ4+fYolS5bIygYPHgwbGxukpwPDhgFPnryaay0/XACeiKjsYNJGVMJOnjyJI0eOSNvGxsYYO3YsdHSyHjHt2DGr9+z+/axJcYmIiAAmbUQlJiMjA7Nnz0ZmZqZU9tlnn+HDDz/M1ZZzrRER0euYtBGVgHv37mHNmjWystTU0fjkEzOMHAnMmiVvz9ueRET0Og5E0GAciFA67N69G5cuXZK2y5WrgV9++QoREYAQgKkpkJSkxgCJiKhIcSACkZZ58eIF5s2bJyvr3bs3+vatifDwrG0dHWDkSDUER0REWodJG1ExCA0NxR9//CErmzhxIpRKJby9AS+vrF62nPOwERERvQmTNqIiJITATz/9hIcPH0plKpUKrVu3lrb5vBoREb0LJm1ERSQuLg5Lly6VlZ08ORSNGlVSU0RERFSaMGkjKgInTpzAsRyTqpmZmWHHju8QFKSDZ8/Ys0ZERO+PSRvRe0hPT8es1+brsLXtgNWrG0urGXCuNSIiKgpM2oje0Z07d7B+/XpZWWrqWAwcaAohgKdPgbCw/PfnuqFERFQYTNqI3sEff/yB0NBQadvR0RE9e/ZEuXJZo0KBVz/z4+sLBAVl/WTSRkREb6Oj7gCItMnz588xY8YMWcJWs2Yf9OzZE0DWnGv6+lmvbt3efCxvb0Cl4u1TIiIqGPa0ERXQ5cuXsWvXLlnZrFmTYGCgj3LlsnrLZs3KWuQ9KOjti71z6g8iIioM9rQRvYUQAsuWLZMlbLdvt0Bqqg8MDPTx7FnWLc5sefWg+fsDrq5ZP4mIiN4F1x7VYFx7VP3+/fdfLF++XFb2zz/DcOSIlZSYFWQwgatrVu+bSgWcOlXMQRMRkVpx7VGiEnbs2DGcOHFC2jYwqAAvrxHYu1eB5GTAza3goz9zJndERETvgj1tGow9beqRlpaG2bNny8p27eoEY+OGsl4y9p4REVFeiuv7m8+0EeUQGRmZK2FLTR0HY+OGuXrJsp9dc3Pj82pERFT82NOmwdjTVrK2bduG8PBwaTs6ug7Wrv38rT1p7HEjIqKc+EwbUTFJTk6Gn5+frGzdun4wMrIv0DxqfF6NiIhKApM2KtNCQkLg/9p9zQYNJqNKFb0CLy/F+daIiKgkMGmjMkkIAV/fxUhNTZDKrK1b4ptvWgEAOndWT1xERET5YdJGZc6jR4+wcuVKWdnSpSNgaVkRGzZwAXciItJMHD1KZcrhw4dlCVtSUiWkpk6Do2NFKBSvFnAnIiLSNOxpo1LN3z8rCRs/PhWXL8+R1XXt2hX169fP1ZYDCoiISBMxaaNSJ2fyNWECkJ5+C5cv/yZrM378eBgbG8vKOKCAiIg0GZM2KnV8fV/d5mzZchOqVLkp1dWvXx9du3ZVY3RERETvhs+0Uang7/9qVQJvb6BVqyR4eMyQJWxff/01EzYiItJa7GkjrefvD/TuDTx7ltW7tmTJObRqtV+qVygUmDRpEvT0+L87ERFpL36Lkdbz9c1K2MqVy0S7dj9i//5kqe7TTz9FixYt1BgdERFR0eDtUdJoOW975sfbG2jdOhZjx85EevqrhG3kyJFM2IiIqNRgTxtptJyDCvIb2alUHoSra7C0bWNjg0GDBkGhUJRQlERERMWPSRtptDctxp6SkgLf12bC/fzzz1GnTp0Sio6IiKjk8PYoabSOHYFTp3L3sl2/fj1Xwubl5YWbN+u89XYqERGRNmJPG2kVIQQ2btyIqKgoqaxhw4bo1KkTgILdTiUiItJGTNpIayQmJmLhwoWysoEDB6Jq1arS9ptupxIREWkzJm1UonIuMVXQnjB/f2Dz5mA4Ox+UyvT19eHl5QVdXV1ZWy5FRUREpZXWPdOWkpKChg0bQqFQ4OLFi7K6y5cv46OPPoKhoSFsbW0xb968XPvv2LEDTk5OMDQ0RP369XHgwAFZvRAC06ZNg42NDYyMjODu7o4bN27I2sTFxaF3794wMzODhYUFBgwYgGfPnhU6ltIsv6k6sm9f9u5dsOfOMjMzceaMryxhu3ChNSZNmpQrYSMiIirNtC5pmzBhAqpUqZKrPDExEa1bt0a1atVw/vx5zJ8/H9OnT8fPP/8stTl16hR69uyJAQMGICQkBJ07d0bnzp0RGhoqtZk3bx6WLFmCVatWITg4GCYmJvDw8MDLly+lNr1798bVq1dx+PBh7Nu3DydOnMDgwYMLFUtpl/PZspy8vQFT01erF+T0eqIXExODmTNnQl8/RWqzcOF3uH5dVczRExERaSChRQ4cOCCcnJzE1atXBQAREhIi1a1YsUKUL19epKSkSGVeXl6idu3a0vYXX3wh2rVrJztm8+bNxTfffCOEECIzM1NYW1uL+fPnS/Xx8fHCwMBAbNmyRQghxLVr1wQAcfbsWanNn3/+KRQKhbh//36BYymIhIQEAUAkJCQUaj9NsGePECpV1s+C1qlUQgBZP/ft2yemT58uvdasWSN2787M95hERESaori+v7Wmp+3hw4cYNGgQfv31VxgbG+eqDwoKwscffwylUimVeXh4ICIiAk+fPpXauLu7y/bz8PBAUFAQACAyMhKxsbGyNubm5mjevLnUJigoCBYWFmjatKnUxt3dHTo6OggODi5wLHlJSUlBYmKi7KWt8puq40113t5AixYp8PCYgXPnzknlX375Jfr3749OnRQ4dSqrjNN6EBFRWaMVSZsQAp6enhgyZIgsWcopNjYWlStXlpVlb8fGxr6xTc76nPvl16ZSpUqyej09PVSoUOGt58l5jrzMmTMH5ubm0svW1jbfttosv+fdHB3D4e4uv2fq7e0NJycnWVl+t16JiIhKM7Umbd7e3lAoFG98hYeHY+nSpUhKSsLEiRPVGW6xmzhxIhISEqTX3bt31R1SoRVkrdDXByMIIbBmzRps27ZNatO0aVP4+PjAwMAg1/7e3oBKxWk9iIiobFHrlB9jx46Fp6fnG9tUr14dR48eRVBQUK4v8KZNm6J3797YsGEDrK2t8fDhQ1l99ra1tbX0M682Oeuzy2xsbGRtGjZsKLV59OiR7Bjp6emIi4t763lyniMvBgYGeSYp2qQgk9t6e2clbM+eAYsWxSMkZLGsfvDgwbLP/3Wc1oOIiMoitfa0WVlZwcnJ6Y0vpVKJJUuW4NKlS7h48SIuXrwoTdOxbds2zJo1CwCgUqlw4sQJpKWlScc/fPgwateujfLly0ttAgMDZTEcPnwYKlXWaEQHBwdYW1vL2iQmJiI4OFhqo1KpEB8fj/Pnz0ttjh49iszMTDRv3rzAsZRWBekF69gR2LQJ6NHjFFq2fJWwGRkZYerUqW9M2IiIiMqsIh3WUEIiIyNzjR6Nj48XlStXFn369BGhoaFi69atwtjYWPz0009Sm5MnTwo9PT3h5+cnwsLChI+Pj9DX1xdXrlyR2vj6+goLCwuxZ88ecfnyZdGpUyfh4OAgXrx4IbVp06aNaNSokQgODhb//POPqFWrlujZs2ehYikIbR49+ibp6enihx9+kI0ODQ4OVndYRERERaK4vr9LzYoI5ubmOHToEIYPH44mTZrA0tIS06ZNk82f5urqis2bN2PKlCmYNGkSatWqhd27d6NevXpSmwkTJiA5ORmDBw9GfHw8WrRogYMHD8LQ0FBqs2nTJowYMQKffvopdHR00K1bNyxZsqRQsZRV9+7dw5o1a2Rlo0ePhpmZmZoiIiIi0g4KIYRQdxCUt8TERJibmyMhIaFEkpp3WWKqMPbs2SNbxcLBwQF9+vSBQqEo+pMRERGpSXF9f2vFlB9UMgo7lUZBRooCwIsXLzBjxgxZwtarVy/07duXCRsREVEBMWkjSWGn0ihIknft2rVc665OnDgRtWrVeo9IiYiIyp5S80wbvZ93uTXq7f1qn9cJIfDzzz/LJhN2cXGBh4dHEUVMRERUtvCZNg1Wks+0ubpm9ZqpVJCWinpXcXFxWLp0qaxsyJAhuVaJICIiKo2K6/ubPW0E4M29ZgXl7w9s2/Y3HB2PSmWmpqYYPXo0dHR4J56IiOh9MGkjAO+/ykB6ejpCQmbB0fFVWfv27dGkSZP3D46IiIiYtNH7i46Oxrp162RlY8aMQbly5dQUERERUenDe1ZUKK9P87Fz505ZwlarVi34+PgwYSMiIipi7GmjPOU3mjR7mo8FC54jJGS+bJ+vvvoKNWrUKOFIiYiIygb2tJVBBZkUN7852Ly9ga5dr+CTT+QJ26RJk5iwERERFSMmbWVQQSbFzWuiXSEE7t1bgf/8Z6dU9t///hc+Pj7Q19cvxoiJiIiIt0fLoIJM7/H6aNLt258gLGyZrM2wYcNgZWVVTFESERFRTkzayqDCTu9x/PhxhIX9JW1bWFhg5MiRXDeUiIioBDFpo3zt3p2OS5dmycrs7Dri668bqSkiIiKisotJG+UpKioKly5tkJWNGzcOJiYmaoqIiIiobGPSRrls374dYWFh0ra5uTNGjfpCjRERERERkzaSJCcnw8/PT1bWt29fODg4qCkiIiIiysakjQAAFy9exJ49e2RlkyZN4lQeREREGoJJWxknhMDSpUvx9OlTqezjjz+Gm5ubGqMiIiKi1zFpK8MeP36MFStWyMqGDx8OS0tLNUVERERE+WHSVkYFBgbin3/+kbYtLS0xbNgwzr1GRESkoZi0lUEbN25EZGSktN2lSxf85z//UWNERERE9DZM2sqgf//9V/rv8ePHw9jYWI3REBERUUFwwfgyqF+/fujXrx8aNfKBu7sx/P1f1fn7A66ukJURERGR+imEEELdQVDeEhMTYW5ujoSEBJiZmRX58V1dgaAgQKUCTp3Kv4yIiIgKrri+v9nTVoZ5e2clZ97eby4jIiIi9WNPmwYr7p42IiIiKnrsaaNiwWfYiIiItAOTtjLO1zfrGTZfX3VHQkRERG/CpK2M4zNsRERE2oHztJVxHTtmvYiIiEizsaeNiIiISAswaSMiIiLSAkzaiIiIiLQAkzYiIiIiLcCkjYiIiEgLMGkjIiIi0gJM2oiIiIi0AJM2IiIiIi3ApI2IiIhICzBpIyIiItICTNqIiIiItACTNiIiIiItwKSNiIiISAvoqTsAyp8QAgCQmJio5kiIiIiooLK/t7O/x4sKkzYNlpSUBACwtbVVcyRERERUWElJSTA3Ny+y4ylEUaeBVGQyMzMRExODcuXKQaFQqDucEpWYmAhbW1vcvXsXZmZm6g6HcuC10Vy8NpqL10azFfX1EUIgKSkJVapUgY5O0T2Jxp42Daajo4MPPvhA3WGolZmZGf/AaSheG83Fa6O5eG00W1Fen6LsYcvGgQhEREREWoBJGxEREZEWYNJGGsnAwAA+Pj4wMDBQdyj0Gl4bzcVro7l4bTSbtlwfDkQgIiIi0gLsaSMiIiLSAkzaiIiIiLQAkzYiIiIiLcCkjYiIiEgLMGmjIpeSkoKGDRtCoVDg4sWLsrrLly/jo48+gqGhIWxtbTFv3rxc++/YsQNOTk4wNDRE/fr1ceDAAVm9EALTpk2DjY0NjIyM4O7ujhs3bsjaxMXFoXfv3jAzM4OFhQUGDBiAZ8+eFTqW0qJjx46ws7ODoaEhbGxs0KdPH8TExMjabN++HQ0bNoSxsTGqVauG+fPn5zrO8ePH0bhxYxgYGKBmzZpYv359rjbLly+Hvb09DA0N0bx5c5w5c0ZW//LlSwwfPhwVK1aEqakpunXrhocPH8raREdHo127djA2NkalSpUwfvx4pKenv/8HoYEKcm0CAgLg4uKCcuXKwcrKCt26dUNUVJSsDa9N8Xjb9Zk+fToUCkWul4mJiew4/LtW9AryuyOEgJ+fHxwdHWFgYICqVati1qxZsjZa9bsjiIrYyJEjRdu2bQUAERISIpUnJCSIypUri969e4vQ0FCxZcsWYWRkJH766SepzcmTJ4Wurq6YN2+euHbtmpgyZYrQ19cXV65ckdr4+voKc3NzsXv3bnHp0iXRsWNH4eDgIF68eCG1adOmjWjQoIE4ffq0+Pvvv0XNmjVFz549CxVLafLjjz+KoKAgERUVJU6ePClUKpVQqVRS/YEDB4Senp5YuXKluHXrlti3b5+wsbERS5culdrcvn1bGBsbizFjxohr166JpUuXCl1dXXHw4EGpzdatW4VSqRRr164VV69eFYMGDRIWFhbi4cOHUpshQ4YIW1tbERgYKM6dOydcXFyEq6urVJ+eni7q1asn3N3dRUhIiDhw4ICwtLQUEydOLOZPST3edm1u374tDAwMxMSJE8XNmzfF+fPnxccffywaNWoka8NrUzzedn2SkpLEgwcPZK86deqIfv36SW34d614vO3aCCHEt99+K2rXri327Nkjbt++Lc6dOycOHTok1Wvb7w6TNipSBw4cEE5OTuLq1au5krYVK1aI8uXLi5SUFKnMy8tL1K5dW9r+4osvRLt27WTHbN68ufjmm2+EEEJkZmYKa2trMX/+fKk+Pj5eGBgYiC1btgghhLh27ZoAIM6ePSu1+fPPP4VCoRD3798vcCyl2Z49e4RCoRCpqalCCCF69uwpunfvLmuzZMkS8cEHH4jMzEwhhBATJkwQdevWlbX58ssvhYeHh7TdrFkzMXz4cGk7IyNDVKlSRcyZM0cIkXWt9PX1xY4dO6Q2YWFhAoAICgoSQmT9P6SjoyNiY2OlNitXrhRmZmay61VavX5tduzYIfT09ERGRobUxt/fX9aG16bkvH59Xnfx4kUBQJw4cUIq49+1kvH6tbl27ZrQ09MT4eHh+e6jbb87vD1KRebhw4cYNGgQfv31VxgbG+eqDwoKwscffwylUimVeXh4ICIiAk+fPpXauLu7y/bz8PBAUFAQACAyMhKxsbGyNubm5mjevLnUJigoCBYWFmjatKnUxt3dHTo6OggODi5wLKVVXFwcNm3aBFdXV+jr6wPIuqVtaGgoa2dkZIR79+7hzp07AN5+bVJTU3H+/HlZGx0dHbi7u0ttzp8/j7S0NFkbJycn2NnZya5f/fr1UblyZdl5EhMTcfXq1aL6GDRSXtemSZMm0NHRwbp165CRkYGEhAT8+uuvcHd3l9rw2pSMvK7P61avXg1HR0d89NFHUhn/rhW/vK7N3r17Ub16dezbtw8ODg6wt7fHwIEDERcXJ+2nbb87TNqoSAgh4OnpiSFDhsj+qOQUGxsr+x8WgLQdGxv7xjY563Pul1+bSpUqyer19PRQoUKFt54n5zlKGy8vL5iYmKBixYqIjo7Gnj17pDoPDw/s3LkTgYGByMzMxPXr17FgwQIAwIMHDwDk/5klJibixYsX+Pfff5GRkfHWa6NUKmFhYfHGNrw2r66Ng4MDDh06hEmTJsHAwAAWFha4d+8etm/fLrXhtSleb7o+Ob18+RKbNm3CgAEDZOX8u1Z83nRtbt++jTt37mDHjh3YuHEj1q9fj/Pnz6N79+5SG2373WHSRm/k7e2d50O2OV/h4eFYunQpkpKSMHHiRHWHXGYU9NpkGz9+PEJCQnDo0CHo6uqib9++EP+/IMqgQYMwYsQItG/fHkqlEi4uLujRoweArH9VUuEU5bWJjY3FoEGD0K9fP5w9exZ//fUXlEolunfvLrWhwinK65PTrl27kJSUhH79+pXk2ylVivLaZGZmIiUlBRs3bsRHH32EVq1aYc2aNTh27BgiIiLU9Rbfi566AyDNNnbsWHh6er6xTfXq1XH06FEEBQXlWretadOm6N27NzZs2ABra+tco2myt62traWfebXJWZ9dZmNjI2vTsGFDqc2jR49kx0hPT0dcXNxbz5PzHJquoNcmm6WlJSwtLeHo6AhnZ2fY2tri9OnTUKlUUCgUmDt3LmbPno3Y2FhYWVkhMDBQdoz8PjMzMzMYGRlBV1cXurq6b71+qampiI+Pl/2r9PU2r4/MKsvXZvny5TA3N5eNAvztt99ga2uL4OBguLi48NoUUlFen5xWr16N9u3b5+pR4d+1givKa2NjYwM9PT04OjpK7Z2dnQFkjeSsXbu29v3uFPjpN6I3uHPnjrhy5Yr0CggIEADE77//Lu7evSuEePWQbM4HeCdOnJhrIEL79u1lx1apVLke2PXz85PqExIS8nxg99y5c1KbgICAPB/YfVMspdmdO3cEAHHs2LF82/Tp00c2EmvChAmiXr16sjY9e/bM9cDuiBEjpO2MjAxRtWrVXA/s/v7771Kb8PDwPB/YzTky66effhJmZmbi5cuX7/aGtcjr12bMmDGiWbNmsjYxMTECgDh58qQQgtemJOX3u3P79m2hUCjE3r17c+3Dv2sl4/Vrk/09dPPmTalN9kCRiIgIIYT2/e4waaNiERkZmWv0aHx8vKhcubLo06ePCA0NFVu3bhXGxsa5pvzQ09MTfn5+IiwsTPj4+OQ5NN7CwkLs2bNHXL58WXTq1CnPofGNGjUSwcHB4p9//hG1atWSDY0vSCylxenTp8XSpUtFSEiIiIqKEoGBgcLV1VXUqFFD+mPx+PFjsXLlShEWFiZCQkLEyJEjhaGhoQgODpaOkz00fvz48SIsLEwsX748z6HxBgYGYv369eLatWti8ODBwsLCQjZiasiQIcLOzk4cPXpUnDt3Ltcw/eyh8a1btxYXL14UBw8eFFZWVqVyWomCXJvAwEChUCjEjBkzxPXr18X58+eFh4eHqFatmnj+/LkQgtemuBTk+mSbMmWKqFKlikhPT891HP5dK3oFuTYZGRmicePG4uOPPxYXLlwQ586dE82bNxf/+9//pONo2+8OkzYqFnklbUIIcenSJdGiRQthYGAgqlatKnx9fXPtu337duHo6CiUSqWoW7eu2L9/v6w+MzNTTJ06VVSuXFkYGBiITz/9VPpXU7YnT56Inj17ClNTU2FmZia+/vprkZSUVOhYSoPLly8LNzc3UaFCBWFgYCDs7e3FkCFDxL1796Q2jx8/Fi4uLsLExEQYGxuLTz/9VJw+fTrXsY4dOyYaNmwolEqlqF69uli3bl2uNkuXLhV2dnZCqVSKZs2a5TrOixcvxLBhw0T58uWFsbGx6NKli3jw4IGsTVRUlGjbtq0wMjISlpaWYuzYsSItLa1oPhANUpBrI4QQW7ZsEY0aNRImJibCyspKdOzYUYSFhcna8NoUvYJen4yMDPHBBx+ISZMm5Xss/l0rWgW9Nvfv3xddu3YVpqamonLlysLT01M8efJE1kabfncUQvBJViIiIiJNx2FhRERERFqASRsRERGRFmDSRkRERKQFmLQRERERaQEmbURERERagEkbERERkRZg0kZERESkBZi0ERFRLsePH4dCoUB8fPx7Hcfe3h6LFi0qkpiIyjombURUpGJjY/Htt9+ievXqMDAwgK2tLTp06CAtQA8Ap06dwmeffYby5cvD0NAQ9evXx48//oiMjAypTVRUFAYMGAAHBwcYGRmhRo0a8PHxQWpqqux8v/zyCxo0aABTU1NYWFigUaNGmDNnjlQ/ffp0KBQKtGnTJles8+fPh0KhQKtWrQr8/hITEzF58mQ4OTnB0NAQ1tbWcHd3x86dO5FzrvKrV6/iiy++gJWVFQwMDODo6Ihp06bh+fPnUpu4uDh8++23qF27NoyMjGBnZ4eRI0ciISGhQLFERUVBoVDk+Tp9+nSB31OrVq0watSoArcnIvXQU3cARFR6REVF4b///S8sLCwwf/581K9fH2lpaQgICMDw4cMRHh6OXbt24YsvvsDXX3+NY8eOwcLCAkeOHMGECRMQFBSE7du3Q6FQIDw8HJmZmfjpp59Qs2ZNhIaGYtCgQUhOToafnx8AYO3atRg1ahSWLFmCli1bIiUlBZcvX0ZoaKgsLhsbGxw7dgz37t3DBx98IJWvXbsWdnZ2BX5/8fHxaNGiBRISEvDDDz/gww8/hJ6eHv766y9MmDABn3zyCSwsLHD69Gm4u7vD3d0d+/fvR+XKlXHmzBmMHTsWgYGBOHbsGJRKJWJiYhATEwM/Pz/UqVMHd+7cwZAhQxATE4Pff/+9wHEdOXIEdevWlZVVrFixwPsTkZYo1KJXRERv0LZtW1G1alXx7NmzXHVPnz4Vz549ExUrVhRdu3bNVe/v7y8AiK1bt+Z7/Hnz5gkHBwdpu1OnTsLT0/ONMfn4+IgGDRqI9u3bix9++EEqP3nypLC0tBRDhw4VLVu2LMC7E2Lo0KHCxMRE3L9/P1ddUlKSSEtLE5mZmaJOnTqiadOmIiMjQ9bm4sWLQqFQvHE9yO3btwulUlmgNQnzW+M3p+z3v3HjRlGtWjVhZmYmvvzyS5GYmCiEEKJfv34CgOwVGRkpjh07JgCII0eOiCZNmggjIyOhUqlEeHi4dOybN2+Kjh07ikqVKgkTExPRtGlTcfjwYdn5q1WrJhYuXChtAxArVqwQbdq0EYaGhsLBwUHs2LFDqndzcxPDhw+XHePRo0dCX19fHDly5K2fCVFpxtujRFQk4uLicPDgQQwfPhwmJia56i0sLHDo0CE8efIE48aNy1XfoUMHODo6YsuWLfmeIyEhARUqVJC2ra2tcfr0ady5c+et8fXv3x/r16+XtteuXYvevXtDqVS+dV8AyMzMxNatW9G7d29UqVIlV72pqSn09PRw8eJFXLt2DWPGjIGOjvxPbIMGDeDu7v7W92hmZgY9vaK7EXLr1i3s3r0b+/btw759+/DXX3/B19cXALB48WKoVCoMGjQIDx48wIMHD2BrayvtO3nyZCxYsADnzp2Dnp4e+vfvL9U9e/YMn332GQIDAxESEoI2bdqgQ4cOiI6OfmM8U6dORbdu3XDp0iX07t0bPXr0QFhYGABg4MCB2Lx5M1JSUqT2v/32G6pWrYpPPvmkyD4TIm3EpI2IisTNmzchhICTk1O+ba5fvw4AcHZ2zrPeyclJapPX8ZcuXYpvvvlGKvPx8YGFhQXs7e1Ru3ZteHp6Yvv27cjMzMy1f/v27ZGYmIgTJ04gOTkZ27dvlyUgb/Pvv//i6dOnb3x/wNvfo7Ozc77v8d9//8XMmTMxePDgAscFAK6urjA1NZW9csrMzMT69etRr149fPTRR+jTp4/0jKG5uTmUSiWMjY1hbW0Na2tr6OrqSvvOmjULLVu2RJ06deDt7Y1Tp07h5cuXALKS0G+++Qb16tVDrVq1MHPmTNSoUQP+/v5vjPfzzz/HwIED4ejoiJkzZ6Jp06ZYunQpAKBr164AgD179kjt169fD09PTygUikJ9LkSlDZM2IioSIsdD+EXZFgDu37+PNm3a4PPPP8egQYOkchsbGwQFBeHKlSv47rvvkJ6ejn79+qFNmza5Ejd9fX189dVXWLduHXbs2AFHR0f85z//KbaYC9s+MTER7dq1Q506dTB9+vRC7btt2zZcvHhR9srJ3t4e5cqVk7ZtbGzw6NGjAh0752dkY2MDANK+z549w7hx4+Ds7AwLCwuYmpoiLCzsrT1tKpUq13Z2T5uhoSH69OmDtWvXAgAuXLiA0NBQeHp6FiheotKMAxGIqEjUqlVLGkCQH0dHRwBAWFgYXF1dc9WHhYWhTp06srKYmBi4ubnB1dUVP//8c57HrVevHurVq4dhw4ZhyJAh+Oijj/DXX3/Bzc1N1q5///5o3rw5QkNDC9XLBgBWVlawsLB44/sD5O+xUaNGuerDwsKkNtmSkpLQpk0blCtXDrt27YK+vn6hYrO1tUXNmjXzrX/9eAqFIs/eyLftm93Tlb3vuHHjcPjwYfj5+aFmzZowMjJC9+7dc43wLayBAweiYcOGuHfvHtatW4dPPvkE1apVe69jEpUG7GkjoiJRoUIFeHh4YPny5UhOTs5VHx8fj9atW6NChQpYsGBBrnp/f3/cuHEDPXv2lMru37+PVq1aoUmTJli3bl2uZ8Tykp305RVD3bp1UbduXYSGhqJXr16FeXvQ0dFBjx49sGnTJsTExOSqf/bsGdLT09GwYUM4OTlh4cKFuRKjS5cu4ciRI7L3mJiYiNatW0OpVMLf3x+GhoaFiqsoKJVK2XQrBXXy5El4enqiS5cuqF+/PqytrREVFfXW/V6fjuT06dOy28n169dH06ZN8csvv2Dz5s2FTrCJSismbURUZJYvX46MjAw0a9YMf/zxB27cuIGwsDAsWbIEKpUKJiYm+Omnn7Bnzx4MHjwYly9fRlRUFNasWQNPT090794dX3zxBYBXCZudnR38/Pzw+PFjxMbGIjY2Vjrf0KFDMXPmTJw8eRJ37tzB6dOn0bdvX1hZWeW6BZft6NGjePDgASwsLAr9/mbNmgVbW1s0b94cGzduxLVr13Djxg2sXbsWjRo1wrNnz6BQKLBmzRpcu3YN3bp1w5kzZxAdHY0dO3agQ4cOUKlU0pxo2QlbcnIy1qxZg8TEROk9FiaJevLkibRf9iv7ubOCsLe3R3BwMKKiovDvv/8WuBeuVq1a2LlzJy5evIhLly6hV69eBdp3x44dWLt2La5fvw4fHx+cOXMGI0aMkLUZOHAgfH19IYRAly5dCvxeiEo1dQ5dJaLSJyYmRgwfPlxUq1ZNKJVKUbVqVdGxY0dx7Ngxqc2JEyeEh4eHMDMzE0qlUtStW1f4+fmJ9PR0qc26detyTUWR/cr2+++/i88++0zY2NgIpVIpqlSpIrp16yYuX74stcme8iI/3333XYGn/BBCiPj4eOHt7S1q1aollEqlqFy5snB3dxe7du0SmZmZUrvLly+Lbt26iQoVKgh9fX1Ro0YNMWXKFJGcnCy1yZ5WI69XZGTkW2PJnvIjr9eWLVvyff8LFy4U1apVk7YjIiKEi4uLMDIyyjXlx9OnT6V2ISEhstgiIyOFm5ubMDIyEra2tmLZsmWiZcuW4rvvvpP2yWvKj+XLl4v//e9/wsDAQNjb24tt27blem9JSUnC2NhYDBs27K2fA1FZoRCikE/LEhERvSOFQoFdu3ahc+fOb2wXFRWFGjVq4OzZs2jcuHHJBEek4TgQgYiINEZaWhqePHmCKVOmwMXFhQkbUQ58po2I6P+9PtdZztfff/9d4vEMGTIk33iGDBlS4vGUhJMnT8LGxgZnz57FqlWr1B0OkUbh7VEiov938+bNfOuqVq0KIyOjEowmaz60xMTEPOvMzMxQqVKlEo2HiNSLSRsRERGRFuDtUSIiIiItwKSNiIiISAswaSMiIiLSAkzaiIiIiLQAkzYiIiIiLcCkjYiIiEgLMGkjIiIi0gJM2oiIiIi0wP8BJcx+rwECsLgAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"CO2_flowsheet.png\"))" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjNElEQVR4nO3dd1QU198G8GdBekdBFBGsYIsxtoCJij8jGms00dixYMPeADUiVuxRY9QkisQYeyNoxIYliokNFQWs2AAbTVD6vH/sy8hQFHRhWfb5nLNH587s8l03cR/vvXOvTBAEAURERERqQEPZBRARERGVFgYfIiIiUhsMPkRERKQ2GHyIiIhIbTD4EBERkdpg8CEiIiK1weBDREREaoPBh4iIiNQGgw8RERGpDQYfIlJJMpkMc+bMUXYZIldXV9jZ2Sm7DCJ6DwYfIlKYzZs3QyaTiQ9dXV3UrVsXY8eOxdOnT0v0Z587dw5z5sxBQkKCQl+3bdu2kvdkbm6O5s2bY9OmTcjOzlbIz1i4cCH279+vkNcioneroOwCiKj8mTt3LmrUqIHU1FT8888/WLduHQ4dOoSwsDDo6+sr5Ge8efMGFSq8/Svs3Llz8PHxgaurK0xNTRXyM3JUq1YNixYtAgA8f/4cv//+O4YNG4Zbt27B19f3o19/4cKF+Pbbb9GjR4+Pfi0iejcGHyJSuE6dOqFZs2YAgOHDh6NixYpYsWIFDhw4gL59+37w62ZnZyM9PR26urrQ1dVVVLnvZWJiggEDBojHI0eOhL29PX766SfMmzcPWlpapVYLEX0cDnURUYlr164dAOD+/fsAgGXLlsHJyQkVK1aEnp4emjZtit27d+d7nkwmw9ixY7F161Y0aNAAOjo6OHz4sHguZ47PnDlzMG3aNABAjRo1xGGpqKgotGnTBo0bNy6wLnt7e7i4uBT7/ejr6+Pzzz9HSkoKnj9/Xuh1KSkpmDJlCmxsbKCjowN7e3ssW7YMgiBI3mNKSgr8/f3Ful1dXYtdExEVDXt8iKjE3b17FwBQsWJFAMCqVavQrVs39O/fH+np6di+fTu+++47BAYGonPnzpLnnjhxAjt37sTYsWNRqVKlAicQ9+zZE7du3cK2bduwcuVKVKpUCQBgYWGBgQMHws3NDWFhYWjYsKH4nAsXLuDWrVuYNWvWB72ne/fuQVNTs9BhNUEQ0K1bNwQHB2PYsGH49NNPERQUhGnTpuHJkydYuXIlAGDLli0YPnw4WrRogREjRgAAatWq9UE1EVERCERECuLn5ycAEI4dOyY8f/5cePTokbB9+3ahYsWKgp6envD48WNBEATh9evXkuelp6cLDRs2FNq1aydpByBoaGgIN27cyPezAAje3t7i8dKlSwUAwv379yXXJSQkCLq6uoKHh4ekffz48YKBgYGQnJz8zvfUpk0bwcHBQXj+/Lnw/PlzITw8XBg/frwAQOjatat43eDBgwVbW1vxeP/+/QIAYf78+ZLX+/bbbwWZTCbcuXNHbDMwMBAGDx78zjqISDE41EVECte+fXtYWFjAxsYG33//PQwNDbFv3z5YW1sDAPT09MRr4+PjkZiYiC+//BKXL1/O91pt2rRB/fr1P7gWExMTdO/eHdu2bROHmLKysrBjxw706NEDBgYG732NiIgIWFhYwMLCAvXq1cOaNWvQuXNnbNq0qdDnHDp0CJqamhg/frykfcqUKRAEAX///fcHvyci+nAc6iIihVu7di3q1q2LChUqoHLlyrC3t4eGxtt/ZwUGBmL+/PkIDQ1FWlqa2C6TyfK9Vo0aNT66nkGDBmHHjh04c+YMWrdujWPHjuHp06cYOHBgkZ5vZ2eHX3/9VbxFv06dOrC0tHzncx48eICqVavCyMhI0l6vXj3xPBGVPgYfIlK4Fi1aiHd15XXmzBl069YNrVu3xs8//4wqVapAS0sLfn5++PPPP/Ndn7t36EO5uLigcuXK+OOPP9C6dWv88ccfsLKyQvv27Yv0fAMDgyJfS0RlG4e6iKhU7dmzB7q6uggKCsLQoUPRqVMnhYSKgnqLcmhqaqJfv37YvXs34uPjsX//fvTt2xeampof/XMLY2tri+joaLx69UrSHhERIZ7P8a7aiUixGHyIqFRpampCJpMhKytLbIuKivrolYtz5uoUtnLzwIEDER8fj5EjRyI5OVmyLk9J+Prrr5GVlYWffvpJ0r5y5UrIZDJ06tRJbDMwMFD4itNEVDAOdRFRqercuTNWrFiBjh07ol+/fnj27BnWrl2L2rVr49q1ax/8uk2bNgUAzJw5E99//z20tLTQtWtXMRA1adIEDRs2xK5du1CvXj189tlnCnk/henatSucnZ0xc+ZMREVFoXHjxjhy5AgOHDiAiRMnSm5Zb9q0KY4dO4YVK1agatWqqFGjBlq2bFmi9RGpK/b4EFGpateuHTZu3IjY2FhMnDgR27Ztw+LFi/HNN9981Os2b94c8+bNw9WrV+Hq6oq+ffvmW1xw0KBBAFDkSc0fQ0NDAwEBAZg4cSICAwMxceJE3Lx5E0uXLsWKFSsk165YsQJNmzbFrFmz0LdvX6xbt67E6yNSVzJByLWEKBFRObZq1SpMmjQJUVFRqF69urLLISIlYPAhIrUgCAIaN26MihUrIjg4WNnlEJGScI4PEZVrKSkpCAgIQHBwMK5fv44DBw4ouyQiUiL2+BBRuRYVFYUaNWrA1NQUY8aMwYIFC5RdEhEpEYMPERERqQ3e1UVERERqg8GHiIiI1AYnN+eRnZ2N6OhoGBkZcRl5IiIiFSEIAl69eoWqVatKNkXOi8Enj+joaNjY2Ci7DCIiIvoAjx49QrVq1Qo9z+CTh5GREQD5H5yxsbGSqyEiIqKiSEpKgo2Njfg9XhgGnzxyhreMjY0ZfIiIiFTM+6apcHIzERERqQ0GHyIiIlIbDD5ERESkNjjH5wNkZWUhIyND2WVQKdDS0oKmpqayyyAiIgVh8CkGQRAQGxuLhIQEZZdCpcjU1BRWVlZc14mIqBxg8CmGnNBjaWkJfX19fhGWc4Ig4PXr13j27BkAoEqVKkquiIiIPhaDTxFlZWWJoadixYrKLodKiZ6eHgDg2bNnsLS05LAXEZGK4+TmIsqZ06Ovr6/kSqi05XzmnNdFRKT6GHyKicNb6oefORFR+cHgQ0RERGqDwYeIiIjUBoOPGnB1dYVMJoNMJoOWlhYqV66Mr776Cps2bUJ2dnaRX2fz5s0wNTUtuUKJiIhKGIOPmujYsSNiYmIQFRWFv//+G87OzpgwYQK6dOmCzMxMZZdHRERUKhh81ISOjg6srKxgbW2Nzz77DDNmzMCBAwfw999/Y/PmzQCAFStWoFGjRjAwMICNjQ3GjBmD5ORkAMDJkycxZMgQJCYmir1Hc+bMAQBs2bIFzZo1g5GREaysrNCvXz9x7RsiIqIcAQGAk5P8V2VRmeCzaNEiNG/eHEZGRrC0tESPHj0QGRkpuSY1NRXu7u6oWLEiDA0N0atXLzx9+rTEahIEAenp6Up5CILw0fW3a9cOjRs3xt69ewEAGhoaWL16NW7cuAF/f3+cOHEC06dPBwA4OTnhxx9/hLGxMWJiYhATE4OpU6cCkN/mPW/ePFy9ehX79+9HVFQUXF1dP7o+IiIqPx4/fowrV3zg4uIDX1/l1aEyCxieOnUK7u7uaN68OTIzMzFjxgx06NABN2/ehIGBAQBg0qRJOHjwIHbt2gUTExOMHTsWPXv2xNmzZ0ukpoyMDCxatKhEXvt9vLy8oK2t/dGv4+DggGvXrgEAJk6cKLbb2dlh/vz5GDVqFH7++Wdoa2vDxMQEMpkMVlZWktcYOnSo+PuaNWti9erVaN68OZKTk2FoaPjRNRIRkWo7cOAAQkNDxWMPDwGAcpYKUZngc/jwYcnx5s2bYWlpiUuXLqF169ZITEzExo0b8eeff6Jdu3YAAD8/P9SrVw/nz5/H559/royyyzxBEMR1ao4dO4ZFixYhIiICSUlJyMzMRGpqKl6/fv3OhRsvXbqEOXPm4OrVq4iPjxcnTD98+BD169cvlfdBRERlT2pqKhYvXixp69evH+rUUd76aCoTfPJKTEwEAJibmwOQf/lmZGSgffv24jUODg6oXr06QkJCCg0+aWlpSEtLE4+TkpKKXIOWlha8vLw+pPyPpqWlpZDXCQ8PR40aNRAVFYUuXbpg9OjRWLBgAczNzfHPP/9g2LBhSE9PLzT4pKSkwMXFBS4uLti6dSssLCzw8OFDuLi4ID09XSE1EhFR2RMQAPj6Ap6eQLdu+c+Hh4dj586dkjZFjVZ8DJUMPtnZ2Zg4cSJatWqFhg0bApBvIKqtrZ3vduvKlSsjNja20NdatGgRfHx8PqgOmUym9A/wY5w4cQLXr1/HpEmTcOnSJWRnZ2P58uXQ0JBP/cr7H6y2tjaysrIkbREREXj58iV8fX1hY2MDALh48WLpvAEiIlIaX18gJASYPl0agARBgJ+fHx49eiRe26JFC3Tq1EmJ1b6lMpObc3N3d0dYWBi2b9/+0a/l5eWFxMRE8ZH7gypP0tLSEBsbiydPnuDy5ctYuHAhunfvji5dumDQoEGoXbs2MjIysGbNGty7dw9btmzB+vXrJa9hZ2eH5ORkHD9+HC9evMDr169RvXp1aGtri88LCAjAvHnzlPQuiYiotHh6Avb2wMOH8gDk6ysfjZk7d67ku3TEiBFlJvQAKhh8xo4di8DAQAQHB6NatWpiu5WVFdLT05GQkCC5/unTp/km4+amo6MDY2NjyaM8Onz4MKpUqQI7Ozt07NgRwcHBWL16NQ4cOABNTU00btwYK1aswOLFi9GwYUNs3bo138RtJycnjBo1Cn369IGFhQWWLFkCCwsLbN68Gbt27UL9+vXh6+uLZcuWKeldEhFRaenWDTA3B968AQwNgaFD/8WPP/4ontfV1cUPP/yAKlWqKK/IAsgERdwXXQoEQcC4ceOwb98+nDx5EnXq1JGcT0xMhIWFBbZt24ZevXoBACIjI+Hg4PDOOT55JSUlwcTEBImJiZIQlJqaivv376NGjRrQ1dVV3BujMo+fPRFRwQICgMWLs9Gp01JkZaWK7S4uLqV+U1Fh3995qcwcH3d3d/z55584cOAAjIyMxHk7JiYm0NPTg4mJCYYNG4bJkyfD3NwcxsbGGDduHBwdHXlHFxERUQlo0SIWHTpsQO7pnxMmTCjT2xupTPBZt24dAKBt27aSdj8/P3GxvJUrV0JDQwO9evVCWloaXFxc8PPPP5dypUREROXf4cOH8e+//4rHNjY2GDJkiLhESlmlMsGnKCNyurq6WLt2LdauXVsKFREREamf9PT0fHNAe/fujXr16impouJRmeBDREREynXnzh1s3bpV0ubh4aFS8x8ZfIiIiOi9tm7dijt37ojHT558il9+6a7Eij6Myt3OTkRERIqVs2v6zJn5d09PTk6Gj4+PJPScPz8UXbqoXugB2ONDRESk9nJWYf73XyA7W37crRtw+fJl/PXXX+J1MpkMM2fOhKamphKr/TgMPkRERGrO0xPo3x9ITpYvRujhIeDHH1eJ+2ICgLOzM1q3bq3EKhWDQ11ERERqrls3YPx4eegZP/45QkPnSkLPmTNjkZCg+qEHYPAhBXJ1dUWPHj3E47Zt22LixIkf9ZqKeA0iInq/4GCgRYsT0NZ+u/6dhYUFgoJm4/jxivD1VWJxCsShLjXg6uoKf39/AICWlhaqV6+OQYMGYcaMGahQoeT+E9i7dy+0tLSKdO3Jkyfh7OyM+Ph4yYqfxXkNIiL6MBkZGXBxWShp++abb/DJJ5+gWrW3u6+XBww+aqJjx47w8/NDWloaDh06BHd3d2hpacHLy0tyXXp6OrS1tRXyM83NzcvEaxARkVRAAODhAQgC8MMPUbhzx19yfurUqTAwMAAgHwbr1k0ZVZYMDnWpCR0dHVhZWcHW1hajR49G+/btERAQIA5PLViwAFWrVoW9vT0A4NGjR+jduzdMTU1hbm6O7t27IyoqSny9rKwsTJ48GaampqhYsSKmT5+eb3XtvMNUaWlp8PDwgI2NDXR0dFC7dm1s3LgRUVFRcHZ2BgCYmZlBJpOJ25DkfY34+HgMGjQIZmZm0NfXR6dOnXD79m3x/ObNm2FqaoqgoCDUq1cPhoaG6NixI2JiYsRrTp48iRYtWsDAwACmpqZo1aoVHjx4oKA/aSKiss/XF4iIABo12i0JPfXq1YO3t7cYesojBh81paenh/T0dADA8ePHERkZiaNHjyIwMPD/uzxdYGRkhDNnzuDs2bNigMh5zvLly7F582Zs2rQJ//zzD+Li4rBv3753/sxBgwZh27ZtWL16NcLDw7FhwwYYGhrCxsYGe/bsAQBERkYiJiYGq1atKvA1XF1dcfHiRQQEBCAkJASCIODrr79GRkaGeM3r16+xbNkybNmyBadPn8bDhw8xdepUAEBmZiZ69OiBNm3a4Nq1awgJCcGIESPK/N4yREQfImd9ntzr8gDA1KmvMWeODxo2vCG21a49CL179y7lCksfh7rUjCAIOH78OIKCgjBu3Dg8f/4cBgYG+O2338Qhrj/++APZ2dn47bffxEDg5+cHU1NTnDx5Eh06dMCPP/4ILy8v9OzZEwCwfv16BAUFFfpzb926hZ07d+Lo0aNo3749AKBmzZri+ZwhLUtLy0J39b19+zYCAgJw9uxZODk5AZCvJGpjY4P9+/fju+++AyAfq16/fj1q1aoFABg7dizmzp0LAEhKSkJiYiK6dOkinleV/WWIiIorZ32enHV5AOD69eu4fn2v5Lr582egeXMt9O+vhCJLGXt8lKSwFF5SAgMDYWhoCF1dXXTq1Al9+vTBnDlzAACNGjWSzOu5evUq7ty5AyMjIxgaGsLQ0BDm5uZITU3F3bt3kZiYiJiYGLRs2VJ8ToUKFdCsWbNCf35oaCg0NTXRpk2bD34P4eHhqFChguTnVqxYEfb29ggPDxfb9PX1xVADAFWqVMGzZ88AyAOWq6srXFxc0LVrV6xatUoyDEZEVJ54egKOjvJfBUHA+vXrsXfv29DTqlUrNGnijebNtcrN5OX3YfBRktwpvDQ4OzsjNDQUt2/fxps3b+Dv7y+O4eYdy01OTkbTpk0RGhoqedy6dQv9+vX7oJ+vp6f30e+hqPLeBSaTySTzj/z8/BASEgInJyfs2LEDdevWxfnz50utPiKikpbzj2sAOHcO+OKLOMydOxdPnz4Vr8mZ76luGHyUJHcKLw0GBgaoXbs2qlev/t5b2D/77DPcvn0blpaWqF27tuRhYmICExMTVKlSBf/++6/4nMzMTFy6dKnQ12zUqBGys7Nx6tSpAs/n9DhlZWUV+hr16tVDZmam5Oe+fPkSkZGRqF+//jvfU15NmjSBl5cXzp07h4YNG+LPP/8s1vOJiMqy3P+4/ueff7BmzRrxnLGxMX744QdYWlrmu1YdMPgoSbdu8hReFm8R7N+/PypVqoTu3bvjzJkzuH//Pk6ePInx48fj8ePHAIAJEybA19cX+/fvR0REBMaMGYOEhIRCX9POzg6DBw/G0KFDsX//fvE1d+7cCQCwtbWFTCZDYGAgnj9/juTk5HyvUadOHXTv3h1ubm74559/cPXqVQwYMADW1tbo3r1om+Xdv38fXl5eCAkJwYMHD3DkyBHcvn2b83yIqFzx9ATq1cvCV1/Nw/Hjx8X2Ll26YNKkSdDQ0JBcW5r/EFc2Bh/KR19fH6dPn0b16tXRs2dP1KtXD8OGDUNqaiqMjY0BAFOmTMHAgQMxePBgODo6wsjICN988807X3fdunX49ttvMWbMGDg4OMDNzQ0pKSkAAGtra/j4+MDT0xOVK1fG2LFjC3wNPz8/NG3aFF26dIGjoyMEQcChQ4eKvMihvr4+IiIi0KtXL9StWxcjRoyAu7s7Ro4cWYw/ISKisi0l5TH69JkPDY1ssW3y5Mlo2rRpvjmmZfkf4iVBJuRdfEXNJSUlwcTEBImJieKXPACkpqbi/v37qFGjBnR1dZVYIZU2fvZEVNYFBOReXTkAV65cEc8ZGdXE5MkDxWMnJ/nQlqOjPPCUF4V9f+fF29mJiIhUnK8vcPlyKq5cWSxpr1mzHwYOrCNp8/QsX1tQFBeDDxERURmXu0enoCGpUaMicP/+Dkmbp6cndHR08l1b3ragKC4GHyIiojKuoIUIAeDAAQHBwZthZvZQbGvevDm+/vprJVSpGji5mYiIqIwr6M6rxMREhIbOlYQeNzc3ZGZ+DQcHoF690lskV5Uw+BQT54KrH37mRKQseRciBOTHGzf+hx9//FG8LjVVB0eOzELVqlXh6wtERso3IVWXtXmKg8GniHJul379+rWSK6HSlvOZF/WWeSIiRcm7uODixdn48sslePz4b/Eaa+sOOHXKEx4emgDkvUL29oCDg/pOYH4XzvEpIk1NTZiamop7Punr63NH73JOEAS8fv0az549g6mpKTQ1NZVdEhGpmdx3YMXGxqJDhw2S8xMmTICpqSmGD3/bpu6Tl9+H6/jk8a51AARBQGxs7DtXKKbyx9TUFFZWVgy6RFTiCrt7KygoSLKnYEKCNVasGMa/l3Ip6jo+DD55FOUPLisrCxkZGaVcGSmDlpYWe3qIqNTkLC7o4ACYmQHTpqXj2rVFkmtCQ7/DkCH12auTBxcwLEGampr8MiQiIoXz9AQ8PICoKCAj4y6uXftDct7ffzp+/FGPoecjMPgQEREpUc7wlrMzEBwMCALwzTfbYG9/S7wmNLQx9u/vASD/Wj5UPAw+RERESjR9uvz284sXAW3tZEybtlxyfuPGIXj0qDoAwNqad2p9LAYfIiIiJcqZn9y48RV06SJdcXDevJnIypJ/Vc+YASxYUNrVlT8MPkRERErk6yvg3Lk10NePF9tu326L3r3boGVL+cKFTk4MPYrC4ENERKQkL168QGjoWujrv23bsGEsYmIq4tIlIDxcebWVVww+REREShAcHIzTp0+Lx4JQCcuXj0Fysuz/j5VVWfnG4ENERFSKMjMzsSDPuNW+fT1w925jJCcDurqAnR2weLFy6ivvGHyIiIhKyZ9/PsDt25slbUuWTMXr1waYMUN+O3veVZtJsRh8iIiISlhAAHDw4F5UrXpdbAsPd8COHX0AABUqcPJyaWHwISIiKiEBAcDy5W/Qrt0SVK36tn3LloG4e7emeFy5shKKU1MMPkRERCVk8+YwtGu3R9J29OgM3L2rBUC+IGH16lyUsDQx+BARESnYgQMCgoN/QePGsWLb/ftO6NnzK2zfLg88RkbyCcycz1O6GHyIiIgUKD4+HqGhq2Fm9rZt48ZRyM6ujH//BSIiAEdH+cKEVPoYfIiIiBTk7NmzOHbsmHiclGSElSsnQhA0AAD29vLQw6Et5WHwISIi+khZWVnw9fVFZmam2BYY2BkXLzaDhoZ8MUJdXWDJEg5tKRuDDxER0Ud48uQJfvvtN0nb8uWT8OqVMQCgSpW3E5gZepSPwYeIiOgDBQYG4tKlS+LxvXs1EBg4ECkpMjg5yXt6GHjKFgYfIiKiYkpLS4Ovr6+k7c8/++L27bqoWhWIi5OHHk5gLnsYfIiIiIphy5ZI3Lu3XdK2e7cnoqN1IAiAoSEnMJdlDD5ERERFIAgC/P398eDBA7EtK6sZVq7sjPHjgZYtAV9fDm2VdQw+RERE75GUlISVK1dK2oKC3BAXVxXJyfLNRRcsYOBRBQw+RERE73DhwgUcOnRIPNbS0sK6dR54/FgT5uYc1lI1DD5EREQFyM7OxooVK5CSkiK2ffXVV3jxwglPnsiP37zhBGZVw+BDRESUx9OnT7F+/XpJ2y+/TECTJqbw9ZXfsaWhAUyapKQC6YMx+BAREf2/gABg794jqFEjRGx7+bIqfvttON68kcHDQ76xKCcxqy4GHyIiIgDp6em4cmURatR42/bXX99CR6cBUlPlx4IgDzsMPKqLwYeIiNRaQADwyy/30Lz5Fkn7hg3TEROjJx5raMj32iLVxuBDRERqKSBAPmTVoMF2NG8eKbZHR3+CX375BjLZ22s1NDi0VV5oKLsAIiIiZVixIgUuLj6oVu1t6BkyZAgqVfpGXH1ZVxewtgb27ZOv00Oqjz0+RESkVgICgN9/D4Wz8wFJ+8yZM1GhQgUEBwPJycDLl0CTJuzpKW/Y40NERGpDEAT8888aNGr0NvRYWbXBr796w8ioAmbOlAcdR0dAJgNCQuTDYVR+MPgQEVG5FRAAODnJf33x4gXmzp0LA4M48Xy9eu5YubItnjwBUlOB1avlvTvnzslvW+eqzOUPh7qIiKjc8vWV99rs2nUSV66cEttTUsyxbNlYGBjIYGIib5PJgPHj3z6Xt62XTww+RERULgUEAAkJmZgzRzoruXv37nj48FOsWyefy2Nt/bZnh0Gn/ONQFxERlQu5h7UAYP36h+jTRxp6Gjacik8//RTdugFbt8oDz5Il8qEthh71wB4fIiJSeQEBQP/+8h4cX18gK2sfWra8Jp6/c6cu/vijr7gez4IFHMpSV+Wyx2ft2rWws7ODrq4uWrZsif/++0/ZJRERkYLl7uHx9ZWHnkqV3sDFxQfXrr0NPTt2DMCePX0BANnZwIoVyqqYyoJyF3x27NiByZMnw9vbG5cvX0bjxo3h4uKCZ8+eKbs0IiJSoJyJyzkbhvbocQNjx0r3lFi1ygvh4bXw5s3btooVS7lQKlPKXfBZsWIF3NzcMGTIENSvXx/r16+Hvr4+Nm3apOzSiIhIQQICgLg4wMEB8PAQEBv7Cz79dLd43tLSEcuWeSM+Xluy9YS1NfDzz0oomMqMcjXHJz09HZcuXYKXl5fYpqGhgfbt2yMkJKTA56SlpSEtLU08TkpKKvE6iYjo4/j6ApGRgLNzAkJDV0nOjRo1Cm3aVEZysnzLicmTgeBg3rVFcuUq+Lx48QJZWVmoXLmypL1y5cqIiIgo8DmLFi2Cj49PaZRHREQfKWc+j7MzYGt7Dg4OR8VzBgYGmDx5MjQ0NMReHjs77rFFUuVuqKu4vLy8kJiYKD4ePXqk7JKIiKgQvr7Av/9mQUNjoST0XLz4NX77bSoCA+VfazmrLi9erKxKqawqVz0+lSpVgqamJp4+fSppf/r0KaysrAp8jo6ODnR0dEqjPCIi+kjjx0cjMvJXSdvJk5Nw8qQxAHkwyrlNncNaVJBy1eOjra2Npk2b4vjx42JbdnY2jh8/DkdHRyVWRkREHyL3LesHDx6UhB5DQzsEBc2Gk5MxHBzkE5fj498uYEhUkHIVfABg8uTJ+PXXX+Hv74/w8HCMHj0aKSkpGDJkiLJLIyKid8i78jIg78G5dCkNV6744OLFi2J7Rsb3mDVrMEJCZNizBwgPB6pXByIiuJs6vVu5GuoCgD59+uD58+eYPXs2YmNj8emnn+Lw4cP5JjwTEVHZkntdnpxhqtGjb+HevW2S6xYt8oSWlg5SU+XHOROZPT3frulDVBiZIAiCsosoS5KSkmBiYoLExEQYGxsruxwiIrWRc8eWpyfQtauALVu24P79++L5ixebIjCwCwwN5buo79kjDz2LF3M+DxX9+5vBJw8GHyIi5Xr16hVW5NlXYvPm4YiKsoaGBrBvH4MO5VfU7+9yN9RFRESq6+LFizh48KB4nJFRAYsWeaJKFU2xp4ehhz4Ggw8REZWq3ENaOSEmOzsbK1euRHJysnjd8ePtceZMK8hkwODBXIiQFINDXXlwqIuIqGQ5OcknMTs4AGZmwIQJzxARsU5yzY8/jkdCghk0NOQ7qjs6AufOKalgUgkc6iIiojIp5+6ruDjAwOAYIiLOiudiYqywadMIaGrKYG0t7+nJ2WeLSBEYfIiIqEQUNKQFyH/fqVMGFi5cKLl+165eiIhoCA8PDmtRyeFQVx4c6iIiUgwHB/kO6vb28oUFc9y/fx+///675NrFi6fhzRt9DmnRB+NQFxERKVXOwoI5vwLAjh07EJErBd282RBnz/aCuTlgaMghLSp5DD5ERKRwAQGAIMh7fRYvBlJSUrBs2TLJNVu3umLZMlvs2KGkIkktMfgQEZHC+frKh7kMDYELF67iypX9kvPz589E7doVuCYPlToGHyIiUpicCc3OzsD16wIGD/4ZFSq8EM+fPNkaZ886o0IFoGdPJRZKaovBh4iIFCZno1F9/ZeYOvUnybmffnJHYmIlZGQAGRnA3r1vb1Vnzw+VFgYfIiJSGE9PwN//ND75JFhs09Y2w19/jcPGjfJZzh4e8vk/gpB/N3aiksbgQ0RECrF/fyauXl2ATz5523b9ejfs3t0EXl5v23JCTu51fohKC4MPERF9tFmzHkFLa5OkbfXqKfDzMyz0Od26saeHSh+DDxERfZQ1a/ZDS+uqePzwYR2Eh/eDnx+DDZU9DD5ERPRB9u59g+vXl0jaDh0agJkza2HjRiUVRfQeDD5ERFRkOfNy2rW7CS2tXZJzO3d64cYNbSVVRlQ0DD5ERFSggABg+nT5lhOLF8uHrXx9Bbi4zJVcFxLyOU6ccMHu3UoqlKgYGHyIiKhAOasv5/y+RYtYuLhskFyTkTESSUlW2L2b83lINTD4EBFRgTw93/b49OmzGxs23JCc/+GHH6ChoaGk6og+DIMPERHlkzOXx9c3C1evzkdCwttzn3zyCb755hul1Ub0MRh8iIgoH19f4MWLW7h6dZukffTo0bC0tFRSVUQfj8GHiIhEOT09HTqshkwWLzk3e/ZsyGQyJVVGpBgMPkREJAaelJTX6NlzqeRc1ar/g5vbF0qqjEixGHyIiAi+vkB29r/o2fOwpH3q1KkwMDBQUlVEisfgQ0SkxnJ6elxcfCTtBgYGmDp1qpKqIio5DD5ERGps3ryX6NLlJ0nblSu9sX9/PSVVRFSyuAADEZGamDkTMDICvvsOqFYN+Oabv/KFnqNHZ2DoUIYeKr9kgiAIyi6iLElKSoKJiQkSExNhbGys7HKIiBQiIADo0QMQBEBDIxuzZ8+TnDc2rotJk/oqpzgiBSjq9zeHuoiIyrmAAKB/f3nosbOLgqurv+S8m5sbqlatqqTqiEoXgw8RUTmVM3E5Ph5ITgZGjPgNVas+kVwTFDQb3t5cm4fUB+f4EBGVAwEBgJOT/Nccvr5ASAjw6FEa5szxkYSeypW/QFCQNzw9GXpIvXCOTx6c40NEqsjJSR5yHBwAMzPA2RnYuxcwMrqCzp0DJNdOnDgRJiYmSqqUqGRwjg8RkRrx9JT38MTFyQPQ9evA1Kk+ea6Swdt7tlLqIyorGHyIiMqRRo2A+PhEjBnzo6S9R48eaNy4sXKKIipDij3HR1NTE8+ePcvX/vLlS2hqaiqkKCIiKp6c+TyJicfyhZ5PPvFk6CH6f8Xu8SlsSlBaWhq0tbU/uiAiIio+Dw8BoaFzJW0GBjaYOnWokioiKpuKHHxWr14NAJDJZPjtt99gaGgonsvKysLp06fh4OCg+AqJiOidnjx5gtDQ3yRtrq6usLW1VVJFRGVXkYPPypUrAch7fNavXy8Z1tLW1oadnR3Wr1+v+AqJiEiUszaPp6f8+MiRrbCwuCO55ocffoCGBlcrISpIkYPP/fv3AQDOzs7Yu3cvzMzMSqwoIiJ6K3fYmT4diIwE+vfPwNSpC2Fh8fa6Zs2aoXPnzsorlEgFcB2fPLiODxGVJQEBQJ8+QGoqoKsLVKwImJjcQO/euyXXjR07FhUrVlRSlUTKV2Lr+Awd+u6Jcps2bSruSxIRUQFy9thKTZUfp6YCgwYtgY7OG8l13t7eSqiOSDUVO/jEx8dLjjMyMhAWFoaEhAS0a9dOYYUREak7X1/5Hlu6ukC1askYMGC55HynTp3QokULJVVHpJqKHXz27duXry07OxujR49GrVq1FFIUEZG6yj2fx9lZvgLzxIlnUKHCCcl106dPh56enpKqJFJdCpvjExkZibZt2yImJkYRL6c0nONDRMqQE3ji4uSTl3V1gawsATNnStfmqVixIsaOHaukKonKrlLfq+vu3bvIzMxU1MsREamNnLk8ycmAnh6gqQkYGz/FmDHSJUL69euHOnXqKKlKovKh2MFn8uTJkmNBEBATE4ODBw9i8ODBCiuMiEhd5MzlkcmAN2+Anj334pNPrkuumTVrFrcFIlKAYgefK1euSI41NDRgYWGB5cuXv/eOLyIiyi9nLo+ubhbGjp0vOdewYUP06tVLSZURlT/FDj7BwcElUQcRkdoKDgasrG5jwIA/Je2jRo1C5cqVlVQVUfn0wXN8nj17hsjISACAvb09LC0tFVYUEVF5lvvOrW7dgA4dfoJM9lJyzezZsyGTyZRUIVH5Vezgk5SUBHd3d2zbtg3Z2dkAAE1NTfTp0wdr166FiYmJwoskIiovck9kXr78Da5cWYLc+ebWrXbo0+dLMPMQlYxi72Ln5uaGf//9FwcPHkRCQgISEhIQGBiIixcvYuTIkSVRIxGRygoIAJyc5L8Cbycyf/nlf2jXbonk2oYNp2Dr1i/RrZsSCiVSE8Vex8fAwABBQUH44osvJO1nzpxBx44dkZKSotACSxvX8SEiRXJyAkJCAENDYOtWeduVKz6Sa9LT9dCy5XQGHqKPUGLr+FSsWLHA4SwTExPu2E5ElEtAgHxBQj09eS+Pp+dL9Onzk+Sa7777DvXr11dShUTqp9hDXbNmzcLkyZMRGxsrtsXGxmLatGn44YcfFFocEZGqyT205esrX4W5enVg6NCD+ULPjBkzGHqISlmxh7qaNGmCO3fuIC0tDdWrVwcAPHz4EDo6OvlWFL18+bLiKi0lHOoioo+RM7Tl6Ci/a8vXNxsuLvMk12Rn14aPT38lVUhUPpXYUFf37t15iyURUSE8PYHp04H4eCA5+QFcXDZLzg8fPhzW1tbKKY6IFLdJaXnBHh8iKq686/LUqwe0arURNjaPJddxbR6iklPU7+9iz/GpWbMmXr58ma89ISEBNWvWLO7LERGpPF9f+fCWry+QlpaG77/3kYSee/daoUkTb4YeojKg2ENdUVFRyMrKyteelpaGx48fF/AMIqLyTT6XB3Bzuwpf3/2Sc6dOTcCJE6ZKqYuI8ity8AnIWX0LQFBQkOSW9qysLBw/fhw1atRQbHVERGVYQADg4QEIAvD99z54+FB6PijIG56eyqmNiApW5Dk+GhryUTGZTIa8T9HS0oKdnR2WL1+OLl26KL7KUsQ5PkT0Lrnn8/j6AjduJGLy5B8l11y/3g27dzdRToFEakrhc3yys7ORnZ2N6tWr49mzZ+JxdnY20tLSEBkZWWKhJyoqCsOGDUONGjWgp6eHWrVqwdvbG+np6ZLrrl27hi+//BK6urqwsbHBkiVLCnlFIqLiyVmfx8Pj7XyeQYOO5ws9u3Z5YtAghh6isqrYc3zu379fEnW8U0REBLKzs7FhwwbUrl0bYWFhcHNzQ0pKCpYtWwZAnvQ6dOiA9u3bY/369bh+/TqGDh0KU1NTjBgxotRrJqLyJWcCs7094OgowMVlLp4+fXv+8WNr3LgxHGFhyquRiN6v2MFn7ty57zw/e/bsDy6mMB07dkTHjh3F45o1ayIyMhLr1q0Tg8/WrVuRnp6OTZs2QVtbGw0aNEBoaChWrFjB4ENEH83ZGbh+Hfj222hoaf0qOVe79mAEBdlxPg+RCih28Nm3b5/kOCMjA/fv30eFChVQq1atEgk+BUlMTIS5ubl4HBISgtatW0NbW1tsc3FxweLFixEfH899xIioWPKuzRMcDHTr9ie0tG5Lrjty5Ad4e2ugPxdiJlIJxQ4+V65cydeWlJQEV1dXfPPNNwop6n3u3LmDNWvWiL09gHy/sLx3lVWuXFk8V1jwSUtLQ1pamniclJRUAhUTkarJvTZPp04ZcHFZKDmfldUUx451YS8PkYop9gKGBTE2NoaPj0+xNyn19PSETCZ75yMiIkLynCdPnqBjx4747rvv4Obm9tG1L1q0CCYmJuLDxsbmo1+TiFRPzuTlmTPlvzo7y/fbGjUqHAsXSkPPmjVjcexYF5w7J+8NIiLVUewen8IkJiYiMTGxWM+ZMmUKXF1d33lN7tWgo6Oj4ezsDCcnJ/zyyy+S66ysrPA090xDQDy2srIq9PW9vLwwefJk8TgpKYnhh0gN5fTwXL8OJCfLf/X0XIb791Mk123b5g0LC7Cnh0hFFTv4rF69WnIsCAJiYmKwZcsWdOrUqVivZWFhAQsLiyJd++TJEzg7O6Np06bw8/MT1xXK4ejoiJkzZyIjIwNaWloAgKNHj8Le3v6d83t0dHSgo6NTrLqJqPxxdgZCQwFtbaBixRSMG7cMmZlvzx8/3hFTp7aEt7fSSiQiBSj2JqV559FoaGjAwsIC7dq1g5eXF4yMjBRaICAPPW3btoWtrS38/f2hqakpnsvpzUlMTIS9vT06dOgADw8PhIWFYejQoVi5cmWx7uriAoZE6iPvYoQhIUCrVv/gq6+OS647cWIapkzR57AWURlW1O9vldidffPmzRgyZEiB53KXf+3aNbi7u+PChQuoVKkSxo0bBw8Pj2L9LAYfIvXh5CQPO46OgIeHgNBQ6XIdZmZmGD9+vJKqI6LiKNHgk5CQgDt37gAAateuDVNT0w8utKxh8CFSHzk9PhMmPENExDrJuZo1+2LgwLpKqoyIiquo39/FmuMTFRUFd3d3BAUFiT0tMpkMHTt2xE8//QQ7O7uPKpqIqDR16wZkZe3DtWvXJO3z5s1CixaaGDhQSYURUYkpcvB59OgRPv/8c2hpaWHevHmoV68eAODmzZtYt24dHB0dceHCBVSrVq3EiiUi+lABAcD06YBMBixeDHTunIX58+dLrrl7twG2b/8WVla8a4uovCryUNewYcNw584dBAUFQVdXV3LuzZs36NixI+rUqYPffvutRAotLRzqIiqfcubzAECXLnfQrNlWyfm//x6Ff/+VL3rq6AicO1faFRLRx1D47uyHDx/GggUL8oUeANDT08O8efNw6NChD6uWiKgE5CxKGBAg78GxtwcmTfo5X+iZM2c2EhMrw8FBfg17e4jKryIPdb148eKdc3hq1qyJuLg4RdRERKQQ06cDkZHyX69ceYO+fZdIzt++7Qxb29ZwdHy7JxcRlW9FDj5VqlTBzZs3C53DExYW9s4VkomISltysvxXG5sLWLJE2iMdHDwFp04ZcliLSM0UOfj06NEDU6dOxfHjx/Ottvzs2TN4eHigR48eiq6PiOiDGRoCc+b4SNp0dXXh4eGBJk2A9HQOaxGpmyJPbo6Pj0fLli0RGxuLAQMGwMHBAYIgIDw8HH/++SesrKxw/vx5mJubl3TNJYqTm4nKh7i4OKxZs0bS9u2336JBgwZKqoiISpLC1/ExMzPDv//+ixkzZmD79u1ISEgAAJiamqJfv35YuHChyoceIlJtOQsSDhjwN54//09ybsaMGeI+fkSkvj5o5WZBEPD8+XMA8o1GZTKZwgtTFvb4EKkuJ6dsuLjMk7TVrFkTA7kSIVG5p/Db2XOTyWSwtLSEpaVluQo9RKQ6ct+qDgAPHz7MF3rOnx/G0ENEEsXasoKIqKzI2U3d1xd4+dIPDx8+lJwPCpoNT0/+w4yIpD6ox4eISNk8PYEvvkiHi4uPJPRYWjoiKMgbnp4yrstDRPkw+BCRSrKzu4b27RdJ2iZMmIAtWzqIPUFERHlxqIuIVM78+fORlZUlafP29kZAABAfz20niKhwRQo+q1evLvILjh8//oOLISJ6l6SkJKxcuVLS1rVrV3z22WcA5L08ERHyTUY5zEVEBSnS7ew1atQo2ovJZLh3795HF6VMvJ2dqGw6ceIEzpw5I2nz9PSEjo6OeJyzjg/33SJSPwpdwPD+/fsKK4yIqDgEQcDcuXMlbbGxVdCp0wjkyjwA5GGHgYeI3uWDJzenp6cjMjISmZmZiqyHiEgUExOTL/RcuDAInTqNYMAhog9S7MnNr1+/xrhx4+Dv7w8AuHXrFmrWrIlx48bB2toanpxRSEQKsH37dkRGRkrafvjhB2ho8GZUIvpwxf4bxMvLC1evXsXJkyehq6srtrdv3x47duxQaHFEpH4yMzPh4+MjCT1NmjSBt7e3GHryrtpMRFRUxe7x2b9/P3bs2IHPP/9csl1FgwYNcPfuXYUWR0TqJSIiIt8/oP75xx1NmlQSjwMCgP79geRk+URmDnkRUXEUO/g8f/4clpaW+dpTUlK4bxcRfbAVK1bg1atXkragIG+EhACPHslDjrMzsHq1PPQYGnKtHiIqvmIHn2bNmuHgwYMYN24cAIhh57fffoOjo6NiqyOici8lJQXLli2TtHXo0AGOjo5o0kQeeB4+BCIjgStXgNRUeejZupW9PURUfMUOPgsXLkSnTp1w8+ZNZGZmYtWqVbh58ybOnTuHU6dOlUSNRFRO/frrOURHH5W0TZs2Dfr6+gDe3p7u4CA/V7EiUL061+khog9X7MnNX3zxBUJDQ5GZmYlGjRrhyJEjsLS0REhICJo2bVoSNRJROXPggAAfHx9J6DExMYG3t7cYenJbskS+GvPPPwPnzjH0ENGH+6C9umrVqoVff/1V0bUQkRp4/vw5QkN/lrTVrPk9Bg60z3dt7pWYz50rrQqJqDwrUvBJSkoq8gtymwciKkhAABAYuB/W1lcl7TNnzkSFCgX/VeTrC3GndfbyEJEiFCn4mJqaFvmOrbw7JhMRZWVl4cqV+bC2fttWv359fPfdd+98nqfn2x4fIiJFKFLwCQ4OFn8fFRUFT09PuLq6indxhYSEwN/fH4sWLSqZKolIZT19+hTr16+XtI0cORJWVlaStoI2GOXeW0SkaEXanT23//3vfxg+fDj69u0raf/zzz/xyy+/4OTJk4qsr9Rxd3YixTly5AhCQkIkbbNnz87Xg5x7UUJHR87nIaLiU+ju7LmFhITk+9cbIF/fZ/jw4cV9OSIqh/btS8e1a9Ie4Jy1eQri68tFCYmodBT7dnYbG5sC7+j67bffYGNjo5CiiEh1/fHHvXyhZ/r06e9c4NTTU97Tw0UJiaikFbvHZ+XKlejVqxf+/vtvtGzZEgDw33//4fbt29izZ4/CCyQi1RAQAAQFbYOl5S2xzczsE4wf/817n8u5PERUWord4/P111/j9u3b6Nq1K+Li4hAXF4euXbvi1q1b+Prrr0uiRiIq45KTk3Hlio8k9NSpM6TQ0MPd1YlIWYo9ubm84+RmouIJDQ3FgQMHJG3vWpsHkIeekBBOZCYixSmxyc0AkJCQgI0bNyI8PBwA0KBBAwwdOhQmJiYfVi0RqRxBEPDTTz8hLi5ObGvbti3atGmT79q8t6pzfR4iUpZi9/hcvHgRLi4u0NPTQ4sWLQAAFy5cwJs3b3DkyBF89tlnJVJoaWGPD9H77dz5AuHhayVt7u7uqFSpUoHX16sHRETINxv9/38vEREpVFG/v4sdfL788kvUrl0bv/76q9iVnZmZieHDh+PevXs4ffr0x1WuZAw+RO+2YcNJxMaeEo9fvKiIS5fcce7c27V5cnp4nJ2B4GDg4UPgyRPA3l4egIiIFK3EhrouXrwoCT0AUKFCBUyfPh3NmjX7sGqJqMzLzMzEggULJG2PH3fHjRuf5huyytljKzQUePMGsLaWz+fh0BYRKVuxg4+xsTEePnwIBwcHSfujR49gZGSksMKIqOx4+PAh/Pz8JG1Ll07FJ58YFDg52dkZuH4d0NaWBx9DQ05iJqKyodjBp0+fPhg2bBiWLVsGJycnAMDZs2cxbdq0fNtYEJHq27t3L65fvy4e29vbQ1//e3zyScE9ODNnynt8srPlc3rs7dnTQ0RlR7GDz7JlyyCTyTBo0CBkZmYCALS0tDB69Gj4+voqvEAiUo43b95gyZIlkraBAweiZs2a71x/Z/VqeejR0AAWL+bChERUtnzwOj6vX7/G3bt3AQC1atWCvr6+QgtTFk5uJgJu3LiB3bt3S9qOHp2Bf/7RAvDudXhmzpSHn/HjgTxTgoiISkyJ3dVV3jH4kDoTBAG//vorYmJixDZLS0esWtUBMtnbHpy8d23lrM9DRKQsCg8+Q4cOLdIP3rRpU9EqLKMYfEhdxcfHY/Xq1ZK2UaNGoXLlyoX28HAFZiIqKxR+O/vmzZtha2uLJk2agJ1EROXLuXPncPToUfG4QgVDeHlNgoaGfDu/wlZa5grMRKRqitzj4+7ujm3btsHW1hZDhgzBgAEDYG5uXtL1lTr2+JA6ycrKgq+vr3ijAgAEBn4NLa3m7MEhIpVS1O/vIu/OvnbtWsTExGD69On466+/YGNjg969eyMoKIg9QEQqKDo6GvPnz5eEnuXLJyEiojl7cIio3Prgyc0PHjzA5s2b8fvvvyMzMxM3btyAoaGhousrdezxIXUQGBiIS5cuicd2dnYwNR2ExYtlnKhMRCqpRHdnBwANDQ3IZDIIgoCsrKwPfRkiKkVpaWn51tuqWfN7rFtnD09PTlAmovKvyENdgPwvzW3btuGrr75C3bp1cf36dfz00094+PBhuejtISrPbt26lS/0eHp6Yt06e4SEyCcpExGVd0Xu8RkzZgy2b98OGxsbDB06FNu2bUOlSpVKsjYiUgBBELBlyxbcv39fbGvatCm6dOkCQHpnVs76PBzuIqLyqshzfDQ0NFC9enU0adIEMpms0Ov27t2rsOKUgXN8qDxJSkrCypUrJW3Dhw+HtbV1gddzXR4iUlUKn+MzaNCgdwYeIipbLly4gEOHDonHWlpa8PDwgKamZqHP4bo8RFTeccuKPNjjQ6ouOzsbK1euRHJystj21VdfwcnJSYlVERGVLIWv40NEZd/Tp08xb948SegJCBiPYcOcMHOmfCjrXTurExGVdww+ROXE0aNHsX79evG4SpUq2L59Ni5fNkNEhHzH9Lx3bwUEAA4OQL16DEREpB4+eB0fIiobMjIysHDhQknbt99+i7t3GyAqSn6sqwuMH/92J/Ucvr5AZOTb3/NOLiIq7xh8iFTYvXv3sGXLFknb9OnToaenBzc3IDUVMDQEtm4tONR4egLTpwMyGSc0E5F6YPAhUlE7duxARESEeNyoUSP07NlTPM59h1bu0JN3rR728hCROuFdXXnwri4q61JSUrBs2TJJm6urK2xtbYv0fK7VQ0TlUYnv1UVEpS80NBQHDhyQtM2cORMVKrz/f+Wcnh5nZ/kxh7aISB0x+BCpAEEQsHbtWrx8+VJss7JqA3//tmjSpPDhqtzDWr6+8p4egD09RKS+VO529rS0NHz66aeQyWQIDQ2VnLt27Rq+/PJL6OrqwsbGBkuWLFFOkUQK9PLlS8ydO1cSetzd3eHv3/a9m4vmhJ2c8OPoyJ4eIlJvKhd8pk+fjqpVq+ZrT0pKQocOHWBra4tLly5h6dKlmDNnDn755RclVEmkGKdOncJPP/0kHpubm2P27NmoVKlSkYJM7mu6dZP39HAyMxGpM5Ua6vr7779x5MgR7NmzB3///bfk3NatW5Geno5NmzZBW1sbDRo0QGhoKFasWIERI0YoqWKiD5OZmYkFCxZI2rp164YmTZrkOn5/iOFdW0REUioTfJ4+fQo3Nzfs378f+vr6+c6HhISgdevW0NbWFttcXFywePFixMfHw8zMrMDXTUtLQ1pamniclJSk+OKJiuHRo0fYtGmTpG3KlCkwNDRUUkVEROWHSgx1CYIAV1dXjBo1Cs2aNSvwmtjYWFSuXFnSlnMcGxtb6GsvWrQIJiYm4sPGxkZxhRMV0/79+yWhp27duvD29mboISJSEKUGH09PT8hksnc+IiIisGbNGrx69QpeXl4Kr8HLywuJiYni49GjRwr/GUTv8+bNG/j4+ODq1ati24ABA9C3b1/JdQEB3GiUiOhjKHWoa8qUKXB1dX3nNTVr1sSJEycQEhICHR0dyblmzZqhf//+8Pf3h5WVFZ4+fSo5n3NsZWVV6Ovr6Ojke12i0nTz5k3s2rVL0ubl5SUZts2R+y4tzt0hIio+pQYfCwsLWFhYvPe61atXY/78+eJxdHQ0XFxcsGPHDrRs2RIA4OjoiJkzZyIjIwNaWloA5LtV29vbFzq/h0iZBEHAxo0b8eTJE7Ht888/h4uLS75rufggEZFiqMTk5urVq0uOc+Y71KpVC9WqVQMA9OvXDz4+Phg2bBg8PDwQFhaGVatWYeXKlaVeL9H7JCQkYNWqVZK2kSNHFto7ycUHiYgUQyWCT1GYmJjgyJEjcHd3R9OmTVGpUiXMnj2bt7JTmRMSEoIjR46Ix/r6+pgyZQo0NPJPuWNPDxGRYqlk8LGzs0NBe6t+8sknOHPmjBIqInq/rKwsLFmyBOnp6WJbtWqdsHFjC9jbFzxnhz09RESKpRK3sxOpuujoaMyfP18SeiZNmoSNG1uIk5UDAgAHB6Bevbd3bXGbCSIixZIJBXWdqLGibmtPVFSHDh3ChQsXxGNbW1sMHjwYMpms0E1EHR3Zw0NEVBxF/f5WyaEuIlWQlpYG3zw7iPbp0wcODg7icd4tJaZPB2Qy9vAQEZUUDnURlYBbt27lCz0eHh64dcsh33AW8HYS85IlQHg41+ghIiopHOrKg0Nd9LG2bNmCe/fuicefffYZunbtCkC+6nLOcJaDA2BmJh3m4hAXEdGH4VAXUSl79eoVVqxYIWkbPnw4rK2txWNPz7fDWYLwdhXmnPDDIS4iopLF4EOkAJcuXUJgYKB4rKmpCS8vL2hqakquyz2nZ+ZMYPVq+Ro9eef6EBFRyWDwIfoI2dnZ+PHHH/Hq1SuxrX379mjVqpV4nPvOrdzhJjgYSE6W/0pERKWDk5uJPtCzZ88wb948SegZP368JPQAb+fv9O8vndDMNXqIiEofJzfnwcnNVBTHjh3D2bNnxWMrKyuMGDECMpks37UBAfLQk5zMyctERCWlqN/f7PEhKoaMjAz4+PhIQk+vXr1QpcpItGolk/To5OjWDdi6lb07RERlAXt88mCPDxXm/v37+P333yVt06ZNg76+vnibek6PTmHzeoiIqGTwdnYiBdq5cyfCw8PF44YNG6JXr17icd7b0XPm9fj6MvgQEZUlDD5E75CSkoJly5ZJ2lxdXWFraytpy3s7OtflISIqmzjHh6gQ165dyxd6Zs6ciatXbeHkhALn8+To1k0+5MXeHiKisoVzfPLgHB8SBAE///wzXrx4IbZ9+eWXaNeuHYC3207Y2wPm5pzHQ0RUFvCuLqIPEBcXh7lz50pCz5gxY8TQA7xdf0cmezuPh4iIVAPn+BD9v9OnTyM41zLKpqamGD9+PP76S5Zv4nJBvyciorKPQ115cKhL/WRmZmLBggWStq5du+Kzzz4DAMmt6gB3USciKot4OztRETx69AibNm2StE2ZMgWGhobicUG3qrOXh4hINbHHJw/2+KiPAwcOIDQ0VDyuU6cO+vXrp7yCiIjog7HHh6gQqampWLx4saStf//+qF27tpIqIiKi0sLgQ2olPDwcO3fulLR5eXlBW1tbSRUREVFp4u3sVGYFBOC9CwUWlSAI2LhxoyT0tGzZEk2aeKNtW22F/AwiIir7OMcnD87xKTvybvz5oRITE/Hjjz9K2kaOHAkrKyuF/QwiIlIuLmBIKi9nocCPuYPq/PnzktCjp6eHH374AVZWVgr7GUREpDrY45MHe3xUV0DA21vNBSEbFy4sgZZWmng+PLwj+vVrKV7DbSaIiMqPon5/M/jkweCjunKGrTp0iIGT0y+ScwcOTMSbNyYAgIgIDm0REZU3HOoitePpCQwZ8rck9BgYVMfs2bOhq2uCiAhAEDi0RUSkzng7O5UL6enpuHJlEWxt37b16dMHDg4OAKSrL3OIi4hIfTH4kErKPZ+nXr3b+PPPPyXnPTw8oKurKx5368bAQ0REDD6konx95fN5jh79A1eu3BXbHz9ugq5duyFX5iEiIhIx+JBKmjLlFcLCVkjazp8fhsOHq+HGDfbuEBFRwRh8SOVcunQJYWGB4rGGhgZmzJiBgwc1kZjIictERFQ4Bh9SGYIgYNWqVUhMTBTb2rVrhy+//BKAdB5P7jlA7P0hIqIcvJ2dikyRe2cV1/PnzzF37lxJ6Bk3bpwYevLKmQPk61taFRIRkSpg8KEiU1aYOHHiBH7++WfxuHLlypg9ezbMzc0LfQ63oiAiooJwqIuKLPdaOKUhIyMDCxculLT17NkTjRo1eu9zefs6EREVhMGHiqw0w0RUVBT8/f0lbdOmTYO+vn7pFEBEROUSh7pIIRQ5/2f37t2S0NOgQQN4e3sz9BAR0Udjjw8pRO75Px/aK/T69WssXbpU0jZ48GDY2dl9fIFERERg8CEF+dj5P9evX8fevXslbTNmzICWlpYCqiMiIpJj8KGP9jFr5giCgPXr1+PZs2di2xdffIH//e9/Cq6SiIiIwYcU4EOHueLi4rBmzRpJ25gxY2BhYaHgComIiOQYfOijfcgw15kzZ3DixAnx2MTEBBMmTIBMJiuBComIiOQYfOijFec296ysLCxYsACCIIhtXbt2xWeffVZC1REREb3F29mp1Dx+/Bjz58+XhJ7JkyeLoUeZW2IQEZF6YPChUhEQEICNGzeKx3fu1EJQkDeMjIzENu6vRUREJY1DXVSiUlNTsXjxYknb33/3R0JCbSxZIr22tLfEICIi9cPgQwqV+9b2unUjsGPHDsn5hQu90LSpNiIi8j+X+2sREVFJY/AhhZIPVwk4ccIPV648EttbtGiBjIxOaNqUPTpERKQ8DD4k8TGLEQLA5MmJuHHjR0nbiBEjUKVKFQDs0SEiIuXi5GYVU9J3Pn3MBON///1XEnp0dXXxww8/iKGHiIhI2Rh8VExJ3/nk6Qk4Or5/OCp3AMvOzsaSJUtw+PBh8byLiws8PDygocH/xIiIqOyQCbkXVSEkJSXBxMQEiYmJMDY2VnY5+XzsUJSiODnJA1iHDrFwctogOTdhwgSYmpoqpzAiIlJLRf3+5hwfFVMW7nwKCADi4oC+fQ/D3v5fsd3GxgZDhgzhthNERFRmMfhQsS1dmo6+fRdJ2nr37o169eopqSIiIqKiYfChYrlz5w7at98qafPw8ICurq6SKiIiIio6zjylItu6dSu2bn0bej799FN4e3u/M/Rw/y0iIipLGHxUgLLDQ3JyMnx8fHDnzh2xbejQoejevft7n8v9t4iIqCxh8FEBygwPV65cwfLly8VjmUyGWbNmwcbGpkjPL+rt8URERKWBc3xUgDI27xQEAatXr0ZCQoLY5uzsjNatWxfrdcrCXWhEREQ52OOjArp1A86d+7gAUZzhsufPn2Pu3LmS0DN27Nhihx4iIqKyhj0+aiL3cNm7AlRwcDBOnz4tHltYWGD06NFcm4eIiMoFlerxOXjwIFq2bAk9PT2YmZmhR48ekvMPHz5E586doa+vD0tLS0ybNg2ZmZnKKbaMed9cm8zMTPj4+EhCzzfffIMxY8Yw9BARUbmhMj0+e/bsgZubGxYuXIh27dohMzMTYWFh4vmsrCx07twZVlZWOHfuHGJiYjBo0CBoaWlh4cKFSqy8bHjXXJuoqCj4+/tL2qZOnQoDA4NSqIyIiKj0qMReXZmZmbCzs4OPjw+GDRtW4DV///03unTpgujoaFSuXBkAsH79enh4eOD58+fQ1tYu0s8q63t1Kdru3btx48YN8bhevXro3bu3EisiIiIqvqJ+f6vEUNfly5fx5MkTaGhooEmTJqhSpQo6deok6fEJCQlBo0aNxNADyHcIT0pKknyx55WWloakpCTJQx28fv0aPj4+kj+bQYMGMfQQEVG5phLB5969ewCAOXPmYNasWQgMDISZmRnatm2LuLg4AEBsbKwk9AAQj2NjYwt97UWLFsHExER8FHV9GlUWFhaGpUuXStpmzJiBGjVqKKkiIiKi0qHU4OPp6QmZTPbOR0REBLKzswEAM2fORK9evdC0aVP4+flBJpNh165dH1WDl5cXEhMTxcejR48U8dbKpAMHBEyZsh579uwR21q1agVvb29oaWkpsTIiIqLSodTJzVOmTIGrq+s7r6lZsyZiYmIAAPXr1xfbdXR0ULNmTTx8+BAAYGVlhf/++0/y3KdPn4rnCqOjowMdHZ0PKV+lxMXFITR0DXIPe44ePRqWlpbKK4qIiKiUKTX4WFhYwMLC4r3XNW3aFDo6OoiMjMQXX3wBAMjIyEBUVBRsbW0BAI6OjliwYAGePXsmfpkfPXoUxsbGksCkjv755x8cP35cPNbSMoan5wRoaKjESCcREZHCqMTt7MbGxhg1ahS8vb1hY2MDW1tbcY7Kd999BwDo0KED6tevj4EDB2LJkiWIjY3FrFmz4O7urhY9OgEBb7e1yLltPSsrC4sWLUJWVpZ4XZcuXdC0aVMlVUlERKRcKvNP/qVLl+L777/HwIED0bx5czx48AAnTpyAmZkZAEBTUxOBgYHQ1NSEo6MjBgwYgEGDBmHu3LlKrrxwitx1Pe9Gpk+ePMH8+fMloWfy5MkMPUREpNZUYh2f0lSa6/g4OcnDiqOjfC+udymoR6ew80AArly5Ip6rWbMmBg4cqNDaiYiIypKifn8z+ORRmsHnfWEmt6KEpNTUVCxevFjS1q9fP9SpU0dBFRMREZVNRf3+Vok5PuXVu7aRyMvTM3ePTn6RkZHYvn17nud4qsX8JiIioqJi8FERhYUkQRDg7++PBw8eiG3NmzfH119/XYrVERERqQYGHxUVEACsXJmEtm1XStrd3NxQtWpVJVVFRERUtjH4qKitW/9D27Z/i8c6OjqYNm0aNDU1lVgVERFR2aYyt7Ors9y3vWdnZ2Pp0qWoX/9t6OnQoQM8PT0ZeoiIiN6DPT4qIGeNnrVrY3HlygbJuQkTJsDU1FQ5hREREakYBh8V4OkJ7N17BDVqhIht1tbWGDZsGGQymRIrIyIiUi0MPmVceno6rlxZhBo13rZ99913ar//GBER0Ydg8CnD7t69iz/++EPSNn36dOjp6SmpIiIiItXG4FNGbdu2Dbdu3RKPGzdujB49eiivICIionKAwaeMSU5OxvLlyyVtQ4YMQfXq1ZVUERERUfnB4FOGhIaG4sCBA5K2mTNnokIFfkxERESKwG/UMkAQBKxZswbx8fFiW9u2bdGmTRslVkVERFT+MPgo2YsXL7B27VpJ29ixY1GxYkUlVURERFR+Mfgo0cmTJ3Hq1CnxuFKlShgzZgzX5iEiIiohDD5KkJmZiQULFkjaevTogcaNGyupIiIiIvXA4FPKHjx4gM2bN0vapk6dCgMDA+UUREREpEYYfErR3r17cf36dfHYwcEBffr0UWJFRERE6oW7s5eSX375RRJ6Bg4cKIae3LuvExERUclh8CklL1++EX8/Y8YM1KxZUzzO2X3d11cZlREREakPDnWVkiNHhuDmzVTUqmUJb2/pOU9Peejx9FRObUREROqCPT6lZNIkY9SqZVlguOnWDTh3Tv4rERERlRz2+JSSbt0YbIiIiJSNPT5ERESkNhh8Sgnv3CIiIlI+Bp9Swju3iIiIlI/Bp5R4egKOjrxzi4iISJk4ubmUcHIzERGR8rHHh4iIiNQGgw8RERGpDQYfIiIiUhsMPkRERKQ2GHyIiIhIbTD4EBERkdpg8CEiIiK1weBDREREaoPBh4iIiNQGgw8RERGpDQYfIiIiUhsMPkRERKQ2GHyIiIhIbXB39jwEQQAAJCUlKbkSIiIiKqqc7+2c7/HCMPjk8erVKwCAjY2NkishIiKi4nr16hVMTEwKPS8T3heN1Ex2djaio6NhZGQEmUym7HJKVFJSEmxsbPDo0SMYGxsruxzKhZ9N2cTPpWzi51J2leZnIwgCXr16hapVq0JDo/CZPOzxyUNDQwPVqlVTdhmlytjYmH9ZlFH8bMomfi5lEz+Xsqu0Ppt39fTk4ORmIiIiUhsMPkRERKQ2GHzUmI6ODry9vaGjo6PsUigPfjZlEz+XsomfS9lVFj8bTm4mIiIitcEeHyIiIlIbDD5ERESkNhh8iIiISG0w+BAREZHaYPBRYwcPHkTLli2hp6cHMzMz9OjRQ3L+4cOH6Ny5M/T19WFpaYlp06YhMzNTOcWqobS0NHz66aeQyWQIDQ2VnLt27Rq+/PJL6OrqwsbGBkuWLFFOkWoiKioKw4YNQ40aNaCnp4datWrB29sb6enpkuv4uSjH2rVrYWdnB11dXbRs2RL//fefsktSK4sWLULz5s1hZGQES0tL9OjRA5GRkZJrUlNT4e7ujooVK8LQ0BC9evXC06dPlVIvg4+a2rNnDwYOHIghQ4bg6tWrOHv2LPr16yeez8rKQufOnZGeno5z587B398fmzdvxuzZs5VYtXqZPn06qlatmq89KSkJHTp0gK2tLS5duoSlS5dizpw5+OWXX5RQpXqIiIhAdnY2NmzYgBs3bmDlypVYv349ZsyYIV7Dz0U5duzYgcmTJ8Pb2xuXL19G48aN4eLigmfPnim7NLVx6tQpuLu74/z58zh69CgyMjLQoUMHpKSkiNdMmjQJf/31F3bt2oVTp04hOjoaPXv2VE7BAqmdjIwMwdraWvjtt98KvebQoUOChoaGEBsbK7atW7dOMDY2FtLS0kqjTLV26NAhwcHBQbhx44YAQLhy5Yp47ueffxbMzMwkn4OHh4dgb2+vhErV15IlS4QaNWqIx/xclKNFixaCu7u7eJyVlSVUrVpVWLRokRKrUm/Pnj0TAAinTp0SBEEQEhISBC0tLWHXrl3iNeHh4QIAISQkpNTrY4+PGrp8+TKePHkCDQ0NNGnSBFWqVEGnTp0QFhYmXhMSEoJGjRqhcuXKYpuLiwuSkpJw48YNZZStNp4+fQo3Nzds2bIF+vr6+c6HhISgdevW0NbWFttcXFwQGRmJ+Pj40ixVrSUmJsLc3Fw85udS+tLT03Hp0iW0b99ebNPQ0ED79u0REhKixMrUW2JiIgCI/39cunQJGRkZks/JwcEB1atXV8rnxOCjhu7duwcAmDNnDmbNmoXAwECYmZmhbdu2iIuLAwDExsZKQg8A8Tg2NrZ0C1YjgiDA1dUVo0aNQrNmzQq8hp+N8t25cwdr1qzByJEjxTZ+LqXvxYsXyMrKKvDPnX/mypGdnY2JEyeiVatWaNiwIQD5f//a2towNTWVXKusz4nBpxzx9PSETCZ75yNnrgIAzJw5E7169ULTpk3h5+cHmUyGXbt2KfldlE9F/WzWrFmDV69ewcvLS9klq4Wifi65PXnyBB07dsR3330HNzc3JVVOVDa5u7sjLCwM27dvV3Yphaqg7AJIcaZMmQJXV9d3XlOzZk3ExMQAAOrXry+26+jooGbNmnj48CEAwMrKKt+dETkz8K2srBRYtXoo6mdz4sQJhISE5NvXplmzZujfvz/8/f1hZWWV724IfjYfpqifS47o6Gg4OzvDyckp36Rlfi6lr1KlStDU1Czwz51/5qVv7NixCAwMxOnTp1GtWjWx3crKCunp6UhISJD0+ijtcyr1WUWkdImJiYKOjo5kcnN6erpgaWkpbNiwQRCEt5Obnz59Kl6zYcMGwdjYWEhNTS31mtXFgwcPhOvXr4uPoKAgAYCwe/du4dGjR4IgvJ1Em56eLj7Py8uLk2hL2OPHj4U6deoI33//vZCZmZnvPD8X5WjRooUwduxY8TgrK0uwtrbm5OZSlJ2dLbi7uwtVq1YVbt26le98zuTm3bt3i20RERFKm9zM4KOmJkyYIFhbWwtBQUFCRESEMGzYMMHS0lKIi4sTBEEQMjMzhYYNGwodOnQQQkNDhcOHDwsWFhaCl5eXkitXL/fv3893V1dCQoJQuXJlYeDAgUJYWJiwfft2QV9fXwytpHiPHz8WateuLfzvf/8THj9+LMTExIiPHPxclGP79u2Cjo6OsHnzZuHmzZvCiBEjBFNTU8kdqVSyRo8eLZiYmAgnT56U/L/x+vVr8ZpRo0YJ1atXF06cOCFcvHhRcHR0FBwdHZVSL4OPmkpPTxemTJkiWFpaCkZGRkL79u2FsLAwyTVRUVFCp06dBD09PaFSpUrClClThIyMDCVVrJ4KCj6CIAhXr14VvvjiC0FHR0ewtrYWfH19lVOgmvDz8xMAFPjIjZ+LcqxZs0aoXr26oK2tLbRo0UI4f/68sktSK4X9v+Hn5yde8+bNG2HMmDGCmZmZoK+vL3zzzTeSfziUJtn/F01ERERU7vGuLiIiIlIbDD5ERESkNhh8iIiISG0w+BAREZHaYPAhIiIitcHgQ0RERGqDwYeIiIjUBoMPERERqQ0GH6JyJjY2FuPGjUPNmjWho6MDGxsbdO3aFcePHxevOXfuHL7++muYmZlBV1cXjRo1wooVK5CVlSVeExUVhWHDhqFGjRrQ09NDrVq14O3tjfT0dMnP+/XXX9G4cWMYGhrC1NQUTZo0waJFi8Tzc+bMgUwmQ8eOHfPVunTpUshkMrRt27bI7y8pKQkzZ86Eg4MDdHV1YWVlhfbt22Pv3r3IvR7rjRs30Lt3b1hYWEBHRwd169bF7Nmz8fr1a/GauLg4jBs3Dvb29tDT00P16tUxfvx4JCYmFqmWqKioQnd1P3/+fJHfU9u2bTFx4sQiX09EH467sxOVI1FRUWjVqhVMTU2xdOlSNGrUCBkZGQgKCoK7uzsiIiKwb98+9O7dG0OGDEFwcDBMTU1x7NgxTJ8+HSEhIdi5cydkMhkiIiKQnZ2NDRs2oHbt2ggLC4ObmxtSUlKwbNkyAMCmTZswceJErF69Gm3atEFaWhquXbuGsLAwSV1VqlRBcHAwHj9+LNm1edOmTahevXqR319CQgK++OILJCYmYv78+WjevDkqVKiAU6dOYfr06WjXrh1MTU1x/vx5tG/fHu3bt8fBgwdRuXJl/Pfff5gyZQqOHz+O4OBgaGtrIzo6GtHR0Vi2bBnq16+PBw8eYNSoUYiOjsbu3buLXNexY8fQoEEDSVvFihWL/PyiEAQBWVlZqFCBf20TfRSlbJRBRCWiU6dOgrW1tZCcnJzvXHx8vJCcnCxUrFhR6NmzZ77zAQEBAgBh+/bthb7+kiVLhBo1aojH3bt3F1xdXd9Zk7e3t9C4cWOhS5cuwvz588X2s2fPCpUqVRJGjx4ttGnTpgjvTr4ZooGBgfDkyZN85169eiVkZGQI2dnZQv369YVmzZoJWVlZkmtCQ0MFmUz2zj20du7cKWhraxdpX7rC9lLLLef9//7774Ktra1gbGws9OnTR0hKShIEQRAGDx6cb4+j+/fvC8HBwQIA4dChQ8Jnn30maGlpCcHBwUJqaqowbtw4wcLCQtDR0RFatWol/Pfff+LPy3leYGCg0KhRI0FHR0do2bKlcP36dUEQBCE5OVkwMjISdu3aJalz3759gr6+vlgXUXnFoS6iciIuLg6HDx+Gu7s7DAwM8p03NTXFkSNH8PLlS0ydOjXf+a5du6Ju3brYtm1boT8jMTER5ubm4rGVlRXOnz+PBw8evLe+oUOHYvPmzeLxpk2b0L9/f2hra7/3uQCQnZ2N7du3o3///qhatWq+84aGhqhQoQJCQ0Nx8+ZNTJ48GRoa0r/iGjdujPbt27/3PRobGyu0Z+Xu3bvYv38/AgMDERgYiFOnTsHX1xcAsGrVKjg6OsLNzQ0xMTGIiYmBjY2N+FxPT0/4+voiPDwcn3zyCaZPn449e/bA398fly9fRu3ateHi4oK4uDjJz5w2bRqWL1+OCxcuwMLCAl27dkVGRgYMDAzw/fffw8/PT3K9n58fvv32WxgZGSnsfROVRQw+ROXEnTt3IAgCHBwcCr3m1q1bAIB69eoVeN7BwUG8pqDXX7NmDUaOHCm2eXt7w9TUFHZ2drC3t4erqyt27tyJ7OzsfM/v0qULkpKScPr0aaSkpGDnzp0YOnRokd/fixcvEB8f/873B7z/PdarV6/Q9/jixQvMmzcPI0aMKHJdAODk5ARDQ0PJI7fs7Gxs3rwZDRs2xJdffomBAweKc65MTEygra0NfX19WFlZwcrKCpqamuJz586di6+++gq1atWCjo4O1q1bh6VLl6JTp06oX78+fv31V+jp6WHjxo2Sn+nt7Y2vvvoKjRo1gr+/P54+fYp9+/YBAIYPH46goCDExMQAAJ49e4ZDhw4V6/MgUlUMPkTlhJBrYq8irwWAJ0+eoGPHjvjuu+/g5uYmtlepUgUhISG4fv06JkyYgMzMTAwePBgdO3bMF360tLQwYMAA+Pn5YdeuXahbty4++eSTEqu5uNcnJSWhc+fOqF+/PubMmVOs5+7YsQOhoaGSR252dnaSnpQqVarg2bNnRXrtZs2aib+/e/cuMjIy0KpVK7FNS0sLLVq0QHh4uOR5jo6O4u/Nzc1hb28vXtOiRQs0aNAA/v7+AIA//vgDtra2aN26ddHeMJEKY/AhKifq1KkjTkouTN26dQEg35dkjvDwcPGaHNHR0XB2doaTkxN++eWXAp/XsGFDjBkzBn/88QeOHj2Ko0eP4tSpU/muGzp0KHbt2oW1a9cWu3fBwsICpqam73x/wIe9x1evXqFjx44wMjLCvn37oKWlVazabGxsULt2bckjt7yvJ5PJCuwVK0hBw5aKMHz4cHHo0c/PD0OGDIFMJiuRn0VUljD4EJUT5ubmcHFxwdq1a5GSkpLvfEJCAjp06ABzc3MsX7483/mAgADcvn0bffv2FduePHmCtm3bomnTpvDz88s3Z6Yg9evXB4ACa2jQoAEaNGiAsLAw9OvXrzhvDxoaGvj++++xdetWREdH5zufnJyMzMxMfPrpp3BwcMDKlSvzhYurV6/i2LFjkveYlJSEDh06QFtbGwEBAdDV1S1WXYqgra0tWUqgMLVq1YK2tjbOnj0rtmVkZODChQvin3uO3LfTx8fH49atW5LhvwEDBuDBgwdYvXo1bt68icGDByvgnRCVfQw+ROXI2rVrkZWVhRYtWmDPnj24ffs2wsPDsXr1ajg6OsLAwAAbNmzAgQMHMGLECFy7dg1RUVHYuHEjXF1d8e2336J3794A3oae6tWrY9myZXj+/DliY2MRGxsr/rzRo0dj3rx5OHv2LB48eIDz589j0KBBsLCwkAy15HbixAnExMTA1NS02O9vwYIFsLGxQcuWLfH777/j5s2buH37NjZt2oQmTZogOTkZMpkMGzduxM2bN9GrVy/8999/ePjwIXbt2oWuXbvC0dFRXDMnJ/SkpKRg48aNSEpKEt9jUYJIjpcvX4rPy3mkpqYW+fl2dnb4999/ERUVhRcvXhTaG2RgYIDRo0dj2rRpOHz4MG7evAk3Nze8fv0aw4YNk1w7d+5cHD9+HGFhYXB1dUWlSpXQo0cP8byZmRl69uyJadOmoUOHDpJlBojKNaXeU0ZEChcdHS24u7sLtra2gra2tmBtbS1069ZNCA4OFq85ffq04OLiIhgbGwva2tpCgwYNhGXLlgmZmZniNX5+fvlus8555Ni9e7fw9ddfC1WqVBG0tbWFqlWrCr169RKuXbsmXpNzO3dhJkyYUOTb2QVBEBISEgRPT0+hTp06gra2tlC5cmWhffv2wr59+4Ts7GzxumvXrgm9evUSzM3NBS0tLaFWrVrCrFmzhJSUFPGanFu/C3rcv3//vbXk3M5e0GPbtm2Fvv+VK1cKtra24nFkZKTw+eefC3p6evluZ4+Pj5c8982bN8K4ceOESpUqvfN29r/++kto0KCBoK2tLbRo0UK4evVqvvqPHz8uABB27tz53vdKVF7IBKGYMwCJiKjMOnnyJJydnREfH//eXrUtW7Zg0qRJiI6OLvKyAkSqjkuAEhGpmdevXyMmJga+vr4YOXIkQw+pFc7xIaIyI+9aOLkfZ86cKfV6Ro0aVWg9o0aNKvV6FGXJkiVwcHCAlZUVvLy8lF0OUaniUBcRlRl37twp9Jy1tTX09PRKsRr5wn5JSUkFnjM2NoalpWWp1kNEH4/Bh4iIiNQGh7qIiIhIbTD4EBERkdpg8CEiIiK1weBDREREaoPBh4iIiNQGgw8RERGpDQYfIiIiUhsMPkRERKQ2/g/cF/AoD44LLwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Training and Validating Surrogate\n", + "\n", + "First, let's import the required Python and IDAES modules:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+y0lEQVR4nO3deVxU9f4/8NeAgiwCIiigbKK4opYr7iZfccmuoqVp5ZKaipZZuVSmtmHWbb2mXUv93VuaaVqWLe6agmbue8oFcQEVlUEQEeH8/qCZZjln5pxZmBnm9Xw8eJRzzsx8zpmzvM9neX9UgiAIICIiInJjHo4uABEREZGjMSAiIiIit8eAiIiIiNweAyIiIiJyewyIiIiIyO0xICIiIiK3x4CIiIiI3B4DIiIiInJ7DIiIiIjI7TEgIiKXMX/+fKhUKlnrqlQqzJ8/367l6dWrF3r16uW0n0dE8jEgIiLFVq5cCZVKpf2rUaMGGjRogDFjxuDy5cuOLp7TiYmJ0dtf9erVQ/fu3bFhwwabfP6dO3cwf/587Ny50yafR+SOGBARkcVef/11/Pe//8XSpUvRv39/fPnll+jZsyfu3r1rl+979dVXUVJSYpfPtre2bdviv//9L/773//ixRdfxJUrV5CSkoKlS5da/dl37tzBggULGBARWaGGowtARK6rf//+aN++PQBg/PjxCAkJwTvvvIONGzfiscces/n31ahRAzVquOZlq0GDBnjiiSe0/37qqafQuHFjfPDBB5g0aZIDS0ZEAGuIiMiGunfvDgDIzMzUe/3MmTMYNmwYgoODUatWLbRv3x4bN27UW6esrAwLFixAkyZNUKtWLdStWxfdunXDli1btOuI9SEqLS3F888/j9DQUNSuXRuPPPIILl26ZFS2MWPGICYmxuh1sc9csWIFHnroIdSrVw/e3t5o0aIFlixZomhfmBMWFobmzZsjKyvL5HrXrl3D008/jfr166NWrVpo06YN/t//+3/a5dnZ2QgNDQUALFiwQNssZ+/+U0TVjWs+ahGRU8rOzgYA1KlTR/vayZMn0bVrVzRo0ACzZ8+Gn58fvvnmGwwePBjffvsthgwZAqAyMElLS8P48ePRsWNHFBYW4o8//sChQ4fwf//3f5LfOX78eHz55ZcYOXIkunTpgu3bt2PgwIFWbceSJUvQsmVLPPLII6hRowZ++OEHTJkyBRUVFUhNTbXqszXKyspw8eJF1K1bV3KdkpIS9OrVC+fPn8fUqVMRGxuLtWvXYsyYMSgoKMBzzz2H0NBQLFmyBJMnT8aQIUOQkpICAGjdurVNyknkNgQiIoVWrFghABC2bt0qXL9+Xbh48aKwbt06ITQ0VPD29hYuXryoXbdPnz5CQkKCcPfuXe1rFRUVQpcuXYQmTZpoX2vTpo0wcOBAk987b948QfeydeTIEQGAMGXKFL31Ro4cKQAQ5s2bp31t9OjRQnR0tNnPFARBuHPnjtF6ycnJQqNGjfRe69mzp9CzZ0+TZRYEQYiOjhb69u0rXL9+Xbh+/bpw9OhRYcSIEQIAYdq0aZKf9+GHHwoAhC+//FL72r1794TExETB399fKCwsFARBEK5fv260vUSkDJvMiMhiSUlJCA0NRWRkJIYNGwY/Pz9s3LgRDRs2BADcvHkT27dvx2OPPYbbt28jPz8f+fn5uHHjBpKTk3Hu3DntqLSgoCCcPHkS586dk/39P/30EwDg2Wef1Xt9+vTpVm2Xj4+P9v/VajXy8/PRs2dP/O9//4NarbboMzdv3ozQ0FCEhoaiTZs2WLt2LZ588km88847ku/56aefEBYWhscff1z7Ws2aNfHss8+iqKgIu3btsqgsRGSMTWZEZLHFixcjPj4earUay5cvx+7du+Ht7a1dfv78eQiCgLlz52Lu3Lmin3Ht2jU0aNAAr7/+Ov7xj38gPj4erVq1Qr9+/fDkk0+abPq5cOECPDw8EBcXp/d606ZNrdquvXv3Yt68ecjIyMCdO3f0lqnVagQGBir+zE6dOuHNN9+ESqWCr68vmjdvjqCgIJPvuXDhApo0aQIPD/1n1+bNm2uXE5FtMCAiIot17NhRO8ps8ODB6NatG0aOHImzZ8/C398fFRUVAIAXX3wRycnJop/RuHFjAECPHj2QmZmJ77//Hps3b8bnn3+ODz74AEuXLsX48eOtLqtUQsfy8nK9f2dmZqJPnz5o1qwZ3n//fURGRsLLyws//fQTPvjgA+02KRUSEoKkpCSL3ktE9seAiIhswtPTE2lpaejduzf+9a9/Yfbs2WjUqBGAymYeOcFAcHAwxo4di7Fjx6KoqAg9evTA/PnzJQOi6OhoVFRUIDMzU69W6OzZs0br1qlTBwUFBUavG9ay/PDDDygtLcXGjRsRFRWlfX3Hjh1my29r0dHROHbsGCoqKvRqic6cOaNdDkgHe0QkH/sQEZHN9OrVCx07dsSHH36Iu3fvol69eujVqxc+++wz5ObmGq1//fp17f/fuHFDb5m/vz8aN26M0tJSye/r378/AODjjz/We/3DDz80WjcuLg5qtRrHjh3Tvpabm2uULdrT0xMAIAiC9jW1Wo0VK1ZIlsNeBgwYgLy8PKxZs0b72v379/HJJ5/A398fPXv2BAD4+voCgGjAR0TysIaIiGzqpZdewqOPPoqVK1di0qRJWLx4Mbp164aEhARMmDABjRo1wtWrV5GRkYFLly7h6NGjAIAWLVqgV69eaNeuHYKDg/HHH39g3bp1mDp1quR3tW3bFo8//jg+/fRTqNVqdOnSBdu2bcP58+eN1h0xYgRmzZqFIUOG4Nlnn8WdO3ewZMkSxMfH49ChQ9r1+vbtCy8vLwwaNAjPPPMMioqKsGzZMtSrV080qLOniRMn4rPPPsOYMWNw8OBBxMTEYN26ddi7dy8+/PBD1K5dG0BlJ/AWLVpgzZo1iI+PR3BwMFq1aoVWrVpVaXmJXJqjh7kRkevRDLs/cOCA0bLy8nIhLi5OiIuLE+7fvy8IgiBkZmYKTz31lBAWFibUrFlTaNCggfDwww8L69at077vzTffFDp27CgEBQUJPj4+QrNmzYS33npLuHfvnnYdsSHyJSUlwrPPPivUrVtX8PPzEwYNGiRcvHhRdBj65s2bhVatWgleXl5C06ZNhS+//FL0Mzdu3Ci0bt1aqFWrlhATEyO88847wvLlywUAQlZWlnY9JcPuzaUUkPq8q1evCmPHjhVCQkIELy8vISEhQVixYoXRe9PT04V27doJXl5eHIJPZAGVIOjUCxMRERG5IfYhIiIiIrfHgIiIiIjcHgMiIiIicnsMiIiIiMjtMSAiIiIit+fQgCgtLQ0dOnRA7dq1Ua9ePQwePNgow2yvXr2gUqn0/iZNmqS3Tk5ODgYOHAhfX1/Uq1cPL730Eu7fv6+3zs6dO/Hggw/C29sbjRs3xsqVK+29eUREROQiHJqYcdeuXUhNTUWHDh1w//59vPzyy+jbty9OnToFPz8/7XoTJkzA66+/rv23JisrUDkP0cCBAxEWFob09HTk5ubiqaeeQs2aNfH2228DALKysjBw4EBMmjQJX331FbZt24bx48cjPDxccn4lQxUVFbhy5Qpq167NNPlEREQuQhAE3L59GxEREUYTJRuu6DSuXbsmABB27dqlfa1nz57Cc889J/men376SfDw8BDy8vK0ry1ZskQICAgQSktLBUEQhJkzZwotW7bUe9/w4cOF5ORk2WXTJHrjH//4xz/+8Y9/rvd38eJFk/d5p5q6Q61WA6ic4FHXV199hS+//BJhYWEYNGgQ5s6dq60lysjIQEJCAurXr69dPzk5GZMnT8bJkyfxwAMPICMjw2hiyeTkZEyfPl2yLKWlpXpzKAl/5a+8ePEiAgICrNpOIiIiqhqFhYWIjIzUTnUjxWkCooqKCkyfPh1du3bVm39n5MiRiI6ORkREBI4dO4ZZs2bh7NmzWL9+PQAgLy9PLxgCoP13Xl6eyXUKCwtRUlICHx8fo/KkpaVhwYIFRq8HBAQwICIiInIx5rq7OE1AlJqaihMnTmDPnj16r0+cOFH7/wkJCQgPD0efPn2QmZmJuLg4u5Vnzpw5mDFjhvbfmgiTiIiIqh+nGHY/depU/Pjjj9ixYwcaNmxoct1OnToBgHY267CwMFy9elVvHc2/w8LCTK4TEBAgWjsEAN7e3traINYKERERVW8ODYgEQcDUqVOxYcMGbN++HbGxsWbfc+TIEQBAeHg4ACAxMRHHjx/HtWvXtOts2bIFAQEBaNGihXadbdu26X3Oli1bkJiYaKMtISIiIlfm0Nnup0yZglWrVuH7779H06ZNta8HBgbCx8cHmZmZWLVqFQYMGIC6devi2LFjeP7559GwYUPs2rULQOWw+7Zt2yIiIgKLFi1CXl4ennzySYwfP15v2H2rVq2QmpqKcePGYfv27Xj22WexadMm2cPuCwsLERgYCLVazdoiIqoy5eXlKCsrc3QxiJxWzZo14enpKblc7v3boQGRVAenFStWYMyYMbh48SKeeOIJnDhxAsXFxYiMjMSQIUPw6quv6m3UhQsXMHnyZOzcuRN+fn4YPXo0Fi5ciBo1/u4itXPnTjz//PM4deoUGjZsiLlz52LMmDGyy8qAiIiqkiAIyMvLQ0FBgaOLQuT0goKCEBYWJhpXuERA5EoYEBFRVcrNzUVBQQHq1asHX19fJoQlEiEIAu7cuYNr164hKChI251Gl9z7t9OMMiMiokrl5eXaYKhu3bqOLg6RU9MMjrp27Rrq1atnsvnMFKcYZUZERH/T9BnSnaaIiKRpzhVr+tsxICIiclJsJiOSxxbnCgMiIiIicnsMiIiIiMjIzp07oVKprB7pGBMTgw8//NAmZbInBkREMuSqS5CemY9cdYmji0Lk9PLy8jBt2jQ0atQI3t7eiIyMxKBBg/QS5Kanp2PAgAGoU6cOatWqhYSEBLz//vsoLy/XrpOdnY2nn34asbGx8PHxQVxcHObNm4d79+7pfd+yZcvQpk0b+Pv7IygoCA888ADS0tK0y+fPnw+VSoV+/foZlfXdd9+FSqVCr169ZG9fYWEhXnnlFTRr1gy1atVCWFgYkpKSsH79eugO3D558iQee+wxhIaGwtvbG/Hx8Xjttddw584d7To3b97EtGnT0LRpU/j4+CAqKgrPPvusdrJzc7Kzs6FSqUT/9u3bJ3ubevXqZXLCc3fAUWZEZqw5kIM564+jQgA8VEBaSgKGd4hydLGInFJ2dja6du2KoKAgvPvuu0hISEBZWRl+/fVXpKam4syZM9iwYQMee+wxjB07Fjt27EBQUBC2bt2KmTNnIiMjA9988w1UKhXOnDmDiooKfPbZZ2jcuDFOnDiBCRMmoLi4GO+99x4AYPny5Zg+fTo+/vhj9OzZE6WlpTh27BhOnDihV67w8HDs2LEDly5d0psiavny5YiKkn8+FxQUoFu3blCr1XjzzTfRoUMH1KhRA7t27cLMmTPx0EMPISgoCPv27UNSUhKSkpKwadMm1K9fH7///jteeOEFbNu2DTt27ICXlxeuXLmCK1eu4L333kOLFi1w4cIFTJo0CVeuXMG6detkl2vr1q1o2bKl3mscoaiQQLKo1WoBgKBWqx1dFKpCVwruCLGzfxSiZ/3912j2JuFKwR1HF42qsZKSEuHUqVNCSUmJo4uiWP/+/YUGDRoIRUVFRstu3bolFBUVCXXr1hVSUlKMlm/cuFEAIHz99deSn79o0SIhNjZW++9//OMfwpgxY0yWad68eUKbNm2Ehx9+WHjzzTe1r+/du1cICQkRJk+eLPTs2VPG1gnC5MmTBT8/P+Hy5ctGy27fvi2UlZUJFRUVQosWLYT27dsL5eXleuscOXJEUKlUwsKFCyW/45tvvhG8vLyEsrIys+XJysoSAAiHDx+WXEez/f/5z3+E6OhoISAgQBg+fLhQWFgoCIIgjB49WgCg95eVlSXs2LFDACBs3bpVaNeuneDj4yMkJiYKZ86c0X72+fPnhUceeUSoV6+e4OfnJ7Rv317YsmWL3vdHR0cLH3zwgfbfAIRPP/1U6Nevn1CrVi0hNjZWWLt2rXZ57969hdTUVL3PuHbtmlCzZk1h69atotto6pyRe/9mkxmRCVn5xagwSF1aLgjIzr8j/gYiJ1OVzb03b97EL7/8gtTUVPj5+RktDwoKwubNm3Hjxg28+OKLRssHDRqE+Ph4rF69WvI71Go1goODtf8OCwvDvn37cOHCBbPlGzduHFauXKn99/LlyzFq1Ch4eXmZfS8AVFRU4Ouvv8aoUaMQERFhtNzf3x81atTAkSNHcOrUKcyYMQMeHvq32TZt2iApKcnsNgYEBOjNtmCtzMxMfPfdd/jxxx/x448/YteuXVi4cCEA4KOPPkJiYiImTJiA3Nxc5ObmIjIyUvveV155Bf/85z/xxx9/oEaNGhg3bpx2WVFREQYMGIBt27bh8OHD6NevHwYNGoScnByT5Zk7dy6GDh2Ko0ePYtSoURgxYgROnz4NABg/fjxWrVqF0tJS7fpffvklGjRogIceeshm+8QQAyIiE2JD/OBhMJrTU6VCTAjzw5DzW3MgB10XbsfIZfvRdeF2rDlg+iZlrfPnz0MQBDRr1kxynT///BMA0Lx5c9HlzZo1064j9vmffPIJnnnmGe1r8+bNQ1BQEGJiYtC0aVOMGTMG33zzDSoqKoze//DDD6OwsBC7d+9GcXExvvnmG72buzn5+fm4deuWye0DzG9j8+bNJbcxPz8fb7zxBiZOnCi7XADQpUsX+Pv76/3pqqiowMqVK9GqVSt0794dTz75pLZPV2BgILy8vODr64uwsDCEhYXpJTd866230LNnT7Ro0QKzZ89Geno67t69C6AywHvmmWfQqlUrNGnSBG+88Qbi4uKwceNGk+V99NFHMX78eMTHx+ONN95A+/bt8cknnwAAUlJSAADff/+9dv2VK1dizJgxdk1FwYCIyITwQB+kpSTA86+T0FOlwtsprRAe6OPgkhGZlqsu0fZ9A4AKAXh5/Qm71hQJCmaCUrIuAFy+fBn9+vXDo48+igkTJmhfDw8PR0ZGBo4fP47nnnsO9+/fx+jRo9GvXz+joKhmzZp44oknsGLFCqxduxbx8fFo3bq13cqsdP3CwkIMHDgQLVq0wPz58xW9d82aNThy5Ijen66YmBjUrl1b++/w8HBcu3ZN1mfr7iPN1Bia9xYVFeHFF19E8+bNERQUBH9/f5w+fdpsDVFiYqLRvzU1RLVq1cKTTz6J5cuXAwAOHTqEEydOKJp/1BLsVE1kxvAOUegRH4rs/DuICfFlMEQuwVRzr72O4SZNmmg7Q0uJj48HAJw+fRpdunQxWn769Gm0aNFC77UrV66gd+/e6NKlC/7973+Lfm6rVq3QqlUrTJkyBZMmTUL37t2xa9cu9O7dW2+9cePGoVOnTjhx4oSi2iEACA0NRVBQkMntA/S38YEHHjBafvr0ae06Grdv30a/fv1Qu3ZtbNiwATVr1lRUtsjISDRu3FhyueHnqVQq0Vo0c+/V1NBo3vviiy9iy5YteO+999C4cWP4+Phg2LBhRiMBlRo/fjzatm2LS5cuYcWKFXjooYcQHR1t1WeawxoiIhnCA32QGFeXwRC5DEc09wYHByM5ORmLFy9GcXGx0fKCggL07dsXwcHB+Oc//2m0fOPGjTh37hwef/xx7WuXL19Gr1690K5dO6xYscKoT44YTUAlVoaWLVuiZcuWOHHiBEaOHKlk8+Dh4YERI0bgq6++wpUrV4yWFxUV4f79+2jbti2aNWuGDz74wCjoOHr0KLZu3aq3jYWFhejbty+8vLywceNG1KpVS1G5bMHLy0sv5YFce/fuxZgxYzBkyBAkJCQgLCwM2dnZZt9nmBJg3759ek2MCQkJaN++PZYtW4ZVq1YpDl4twYCIiKgaclRz7+LFi1FeXo6OHTvi22+/xblz53D69Gl8/PHHSExMhJ+fHz777DN8//33mDhxIo4dO4bs7Gx88cUXGDNmDIYNG4bHHnsMwN/BUFRUFN577z1cv34deXl5yMvL037f5MmT8cYbb2Dv3r24cOEC9u3bh6eeegqhoaFGzTIa27dvR25uLoKCghRv31tvvYXIyEh06tQJ//nPf3Dq1CmcO3cOy5cvxwMPPICioiKoVCp88cUXOHXqFIYOHYrff/8dOTk5WLt2LQYNGoTExERtzh9NMFRcXIwvvvgChYWF2m1UEqDcuHFD+z7Nn6afjxwxMTHYv38/srOzkZ+fL7v2qEmTJli/fj2OHDmCo0ePYuTIkbLeu3btWixfvhx//vkn5s2bh99//x1Tp07VW2f8+PFYuHAhBEHAkCFDZG+LxUyOQSMtDrsnoqpiy2H3VwruCOnn86s0VcSVK1eE1NRUITo6WvDy8hIaNGggPPLII8KOHTu06+zevVtITk4WAgICBC8vL6Fly5bCe++9J9y/f1+7zooVK4yGg2v+NNatWycMGDBACA8PF7y8vISIiAhh6NChwrFjx7TraIadS3nuuedkD7sXBEEoKCgQZs+eLTRp0kTw8vIS6tevLyQlJQkbNmwQKioqtOsdO3ZMGDp0qBAcHCzUrFlTiIuLE1599VWhuLhYu45maLvYX1ZWltmyaIbdi/2tXr1acvs/+OADITo6Wvvvs2fPCp07dxZ8fHyMht3funVLu97hw4f1ypaVlSX07t1b8PHxESIjI4V//etfQs+ePYXnnntO+x6xYfeLFy8W/u///k/w9vYWYmJihDVr1hht2+3btwVfX19hypQpZveDLYbdq/4qHJlRWFiIwMBA7XBIIiJ7uXv3LrKyshAbG+uQ5hMie1KpVNiwYQMGDx5scr3s7GzExcXhwIEDePDBB02ua+qckXv/ZqdqIiIichplZWW4ceMGXn31VXTu3NlsMGQr7ENERET0F8NcPrp/v/32W5WXZ9KkSZLlmTRpUpWXpyrs3bsX4eHhOHDgAJYuXVpl38saIiIior8Y5u/R1aBBg6oryF9ef/110azeAFy2+4a5njq9evVSnMPJFhgQERER/cVULh9HqFevHurVq+foYrgFNpkRERGR22NARETkpOTmgiFyd7Y4V9hkRkTkZLy8vODh4YErV64gNDQUXl5edp3UkshVCYKAe/fu4fr16/Dw8ICXl5fFn8WAiIjIyXh4eCA2Nha5ubmiU0QQkT5fX19ERUXJmtpFCgMiIiIn5OXlhaioKNy/f9+iOaaI3IWnpydq1KhhdS0qAyIiIielUqlQs2ZNxTOfE5Fy7FRNREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2GBARERGR22NARERERG6PARERERG5PQZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2GBARERGR22NARORgueoSpGfmI1dd4uiiEBG5rRqOLgCRO1tzIAdz1h9HhQB4qIC0lAQM7xDl6GIREbkd1hAROUiuukQbDAFAhQC8vP4Ea4qIiByAARGRg2TlF2uDIY1yQUB2/h3HFIiIyI0xICJykNgQP3io9F/zVKkQE+LrmAIREbkxBkREDhIe6IO0lAR4qiqjIk+VCm+ntEJ4oI+DS0ZE5H7YqZrIgYZ3iEKP+FBk599BTIgvgyEiIgdhQETkYOGBPgyEiIgcjE1mRERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hwaEKWlpaFDhw6oXbs26tWrh8GDB+Ps2bN669y9exepqamoW7cu/P39MXToUFy9elVvnZycHAwcOBC+vr6oV68eXnrpJdy/f19vnZ07d+LBBx+Et7c3GjdujJUrV9p784iIiMhFODQg2rVrF1JTU7Fv3z5s2bIFZWVl6Nu3L4qLi7XrPP/88/jhhx+wdu1a7Nq1C1euXEFKSop2eXl5OQYOHIh79+4hPT0d/+///T+sXLkSr732mnadrKwsDBw4EL1798aRI0cwffp0jB8/Hr/++muVbi8RERE5J5UgCIL51arG9evXUa9ePezatQs9evSAWq1GaGgoVq1ahWHDhgEAzpw5g+bNmyMjIwOdO3fGzz//jIcffhhXrlxB/fr1AQBLly7FrFmzcP36dXh5eWHWrFnYtGkTTpw4of2uESNGoKCgAL/88ousshUWFiIwMBBqtRoBAQG233giIiKyObn3b6fqQ6RWqwEAwcHBAICDBw+irKwMSUlJ2nWaNWuGqKgoZGRkAAAyMjKQkJCgDYYAIDk5GYWFhTh58qR2Hd3P0Kyj+QwxpaWlKCws1PsjIiKi6slpAqKKigpMnz4dXbt2RatWrQAAeXl58PLyQlBQkN669evXR15ennYd3WBIs1yzzNQ6hYWFKCkpES1PWloaAgMDtX+RkZFWbyMRERE5J6cJiFJTU3HixAl8/fXXji4KAGDOnDlQq9Xav4sXLzq6SERERGQnTjGX2dSpU/Hjjz9i9+7daNiwofb1sLAw3Lt3DwUFBXq1RFevXkVYWJh2nd9//13v8zSj0HTXMRyZdvXqVQQEBMDHR3wOKW9vb3h7e1u9bUREROT8HFpDJAgCpk6dig0bNmD79u2IjY3VW96uXTvUrFkT27Zt07529uxZ5OTkIDExEQCQmJiI48eP49q1a9p1tmzZgoCAALRo0UK7ju5naNbRfAYRERG5N4eOMpsyZQpWrVqF77//Hk2bNtW+HhgYqK25mTx5Mn766SesXLkSAQEBmDZtGgAgPT0dQOWw+7Zt2yIiIgKLFi1CXl4ennzySYwfPx5vv/02gMph961atUJqairGjRuH7du349lnn8WmTZuQnJwsq6wcZUZEROR65N6/HRoQqVQq0ddXrFiBMWPGAKhMzPjCCy9g9erVKC0tRXJyMj799FNtcxgAXLhwAZMnT8bOnTvh5+eH0aNHY+HChahR4+8WwZ07d+L555/HqVOn0LBhQ8ydO1f7HXIwICIiInI9LhEQuRIGRERERK7HJfMQERERETkCAyIiIiJyewyIiIiIyO0xICK3k6suQXpmPnLV4lnKiYjI/ThFYkaiqrLmQA7mrD+OCgHwUAFpKQkY3iHK0cUiIiIHYw0RuY1cdYk2GAKACgF4ef0J1hQREREDInIfWfnF2mBIo1wQkJ1/xzEFIiIip8GAiNxGbIgfPAxygXqqVIgJ8XVMgYiIyGkwICK3ER7og7SUBHj+lSHdU6XC2ymtEB4oPsEvERG5D3aqJrcyvEMUesSHIjv/DmJCfBkMERERAAZE5IbCA30YCBERkR42mREREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2GBARERGR22NARERERG6PARERERG5PQZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2LAqIduzYYetyEBERETmMRQFRv379EBcXhzfffBMXL160dZmIiIiIqpRFAdHly5cxdepUrFu3Do0aNUJycjK++eYb3Lt3z9blIyIiIrI7iwKikJAQPP/88zhy5Aj279+P+Ph4TJkyBREREXj22Wdx9OhRW5eTiIiIyG6s7lT94IMPYs6cOZg6dSqKioqwfPlytGvXDt27d8fJkydtUUYiIiIiu7I4ICorK8O6deswYMAAREdH49dff8W//vUvXL16FefPn0d0dDQeffRRW5aViIiIyC5UgiAISt80bdo0rF69GoIg4Mknn8T48ePRqlUrvXXy8vIQERGBiooKmxXWkQoLCxEYGAi1Wo2AgABHF4eIiIhkkHv/rmHJh586dQqffPIJUlJS4O3tLbpOSEgIh+cTERGRS7CohsgdsYaIiIjI9di1hggAzp49i08++QSnT58GADRv3hzTpk1D06ZNLf1IIiIiIoewqFP1t99+i1atWuHgwYNo06YN2rRpg0OHDqFVq1b49ttvbV1GIiIiIruyqMksLi4Oo0aNwuuvv673+rx58/Dll18iMzPTZgV0FmwyIyIicj1y798W1RDl5ubiqaeeMnr9iSeeQG5uriUfSUREROQwFgVEvXr1wm+//Wb0+p49e9C9e3erC0VEjpWrLkF6Zj5y1SWOLgoRUZWwqFP1I488glmzZuHgwYPo3LkzAGDfvn1Yu3YtFixYgI0bN+qtS0SuY82BHMxZfxwVAuChAtJSEjC8Q5Sji0VEZFcW9SHy8JBXsaRSqVBeXq64UM6IfYjIHeSqS9B14XZU6FwVPFUq7JndG+GBPo4rGBGRhew67L66ZJ8mIn1Z+cV6wRAAlAsCsvPvMCAiomrN6sldiaj6iA3xg4dK/zVPlQoxIb6OKRARURWRXUP08ccfy/7QZ5991qLCEJFjhQf6IC0lAS+vP4FyQYCnSoW3U1qxdoiIqj3ZfYhiY2PlfaBKhf/9739WFcoZsQ8RuZNcdQmy8+8gJsSXwRARuTSb9yHKysqyScGIyPmFB/owECIit8I+REREROT2LJ7c9dKlS9i4cSNycnJw7949vWXvv/++1QUjIiIiqioWBUTbtm3DI488gkaNGuHMmTNo1aoVsrOzIQgCHnzwQVuXkYiIiMiuLGoymzNnDl588UUcP34ctWrVwrfffouLFy+iZ8+eePTRR21dRiIiIiK7siggOn36tHZy1xo1aqCkpAT+/v54/fXX8c4779i0gERERET2ZlFA5Ofnp+03FB4ejszMTO2y/Px825SMiIiIqIpY1Ieoc+fO2LNnD5o3b44BAwbghRdewPHjx7F+/XrtZK9ERERErsKiGqL3338fnTp1AgAsWLAAffr0wZo1axATE4MvvvhC9ufs3r0bgwYNQkREBFQqFb777ju95WPGjIFKpdL769evn946N2/exKhRoxAQEICgoCA8/fTTKCoq0lvn2LFj6N69O2rVqoXIyEgsWrTIks12GbnqEqRn5iNXXeLoohAREbkEi2qIGjVqpP1/Pz8/LF261KIvLy4uRps2bTBu3DikpKSIrtOvXz+sWLFC+29vb2+95aNGjUJubi62bNmCsrIyjB07FhMnTsSqVasAVGao7Nu3L5KSkrB06VIcP34c48aNQ1BQECZOnGhRuZ3ZmgM5mLP+OCoEwEMFpKUkYHiHKEcXi4iIyKlZnIcIAO7du4dr166hoqJC7/WoKHk34P79+6N///4m1/H29kZYWJjostOnT+OXX37BgQMH0L59ewDAJ598ggEDBuC9995DREQEvvrqK9y7dw/Lly+Hl5cXWrZsiSNHjuD999+vdgFRrrpEGwwBQIUAvLz+BHrEhzLrMBERkQkWNZn9+eef6N69O3x8fBAdHY3Y2FjExsYiJiZG9pxncu3cuRP16tVD06ZNMXnyZNy4cUO7LCMjA0FBQdpgCACSkpLg4eGB/fv3a9fp0aMHvLy8tOskJyfj7NmzuHXrlk3L6mhZ+cXaYEijXBCQnX/HMQUiIiJyERbVEI0dOxY1atTAjz/+iPDwcKhUKluXC0Blc1lKSgpiY2ORmZmJl19+Gf3790dGRgY8PT2Rl5eHevXq6b2nRo0aCA4ORl5eHgAgLy/PKEirX7++dlmdOnVEv7u0tBSlpaXafxcWFtpy0+wiNsQPHiroBUWeKhViQnwdVygiIiIXYFFAdOTIERw8eBDNmjWzdXn0jBgxQvv/CQkJaN26NeLi4rBz50706dPHrt+dlpaGBQsW2PU7bC080AdpKQl4ef0JlAsCPFUqvJ3Sis1lREREZlgUELVo0cIh+YYaNWqEkJAQnD9/Hn369EFYWBiuXbumt879+/dx8+ZNbb+jsLAwXL16VW8dzb+l+iYBldm4Z8yYof13YWEhIiMjbbUpdjO8QxR6xIciO/8OYkJ8GQwRERHJILsPUWFhofbvnXfewcyZM7Fz507cuHFDb5k9m5YuXbqEGzduIDw8HACQmJiIgoICHDx4ULvO9u3bUVFRoU0LkJiYiN27d6OsrEy7zpYtW9C0aVPJ5jKgsjN3QECA3p+rCA/0QWJcXQZDREREMqkEQRDMrwZ4eHjo9RUSBMGo75DmtfLycllfXlRUhPPnzwMAHnjgAbz//vvo3bs3goODERwcjAULFmDo0KEICwtDZmYmZs6cidu3b+P48ePa4ff9+/fH1atXsXTpUu2w+/bt22uH3avVajRt2hR9+/bFrFmzcOLECYwbNw4ffPCBolFmhYWFCAwMhFqtdqngCKgcfZaVX4zYED8GSQ7G34KIqGrJvX/LDoh27dol+8t79uwpa72dO3eid+/eRq+PHj0aS5YsweDBg3H48GEUFBQgIiICffv2xRtvvKHtFA1UJmacOnUqfvjhB3h4eGDo0KH4+OOP4e/vr13n2LFjSE1NxYEDBxASEoJp06Zh1qxZsrcHcN2AiHmJnAd/CyKiqmfzgEhXTk4OIiMjRWuILl68KDsPkStxxYAoV12Crgu3G4062zO7N2snqhh/CyIix5B7/7YoD1FsbCyuX79u9PrNmzdtnoeILMe8RM6DvwURkXOzKCAS6z8EVPYJqlWrltWFItvQ5CXSxbxEjsHfgojIuSkadq8Zhq5SqTB37lz4+v59MS8vL8f+/fvRtm1bmxaQLMe8RM6DvwURkXNTFBAdPnwYQGUN0fHjx/Wmw/Dy8kKbNm3w4osv2raEZBXmJXIe/C2IiJyXRZ2qx44di48++shlOhfbgit2qiYiInJ3cu/fFmWqXrFihcUFIyIiInI2FgVExcXFWLhwIbZt24Zr166hoqJCb/n//vc/mxSOiIiIqCpYFBCNHz8eu3btwpNPPmnX2e6JiIiIqoJFAdHPP/+MTZs2oWvXrrYuDxE5AKcUISJ3Z1FAVKdOHQQHB9u6LETkAJxShIjIwsSMb7zxBl577TXcucMsu0SuLFddog2GAKBCAF5efwK56hLHFoyIqIpZVEP0z3/+E5mZmahfvz5iYmJQs2ZNveWHDh2ySeGIyL5MTSnCpjMicicWBUSDBw+2cTGIyBE0U4oYTjrLKUWIyN1YlJjRHTExI1VXaw7kGE0pwj5ERFRd2CUx4++//4527drB09NTdHlpaSm+//57PPbYY8pKS0QOwylFiIgUdqpOTEzEjRs3tP8OCAjQS8JYUFCAxx9/3HalI6IqER7og8S4ugyGiMhtKQqIDFvXxFrb2AJHRERErsaiYfemMGs1kf3lqkuQnpnP4fFERDZi0SgzInIcJlIkIrI9xQHRqVOnkJeXB6CyeezMmTMoKioCAOTn59u2dESkRyqRYo/4UPb/ISKyguKAqE+fPnr9hB5++GEAlU1lgiCwyYzIjphIkYjIPhQFRFlZWfYqBxHJwESKRET2oSggio6OVvThU6ZMweuvv46QkBBF7yMiceGBPkhLSTBKpMjaISIi69g1U3VAQACOHDmCRo0a2esrqgwzVZMzyVWXMJEiEZEMdslUrRRzEhHZR3igDwMhIiIbsnkeIiIiIiJXw4CIiIiI3B4DIiIiInJ7DIiIiIjI7dk1IHriiSc4IouIiIicnkUBUUVFheTrOTk52n8vWbKEOYiIiIjI6SkKiAoLC/HYY4/Bz88P9evXx2uvvYby8nLt8uvXryM2NtbmhaSqxZnUiYjI3SjKQzR37lwcPXoU//3vf1FQUIA333wThw4dwvr16+Hl5QWAuYdcHWdSJyIid6Sohui7777DZ599hmHDhmH8+PH4448/cP36dQwaNAilpaUAwMldXZjUTOqsKSIioupOUUB0/fp1vfnMQkJCsHXrVty+fRsDBgzAnTt3bF5Ad+LopipTM6kTERFVZ4oCoqioKJw+fVrvtdq1a2Pz5s0oKSnBkCFDbFo4d7LmQA66LtyOkcv2o+vC7VhzIMf8m2xMM5O6Ls6kTkRE7kBRQNS3b1+sWLHC6HV/f3/8+uuvqFWrls0K5k7s3VQlt+ZJM5O651/NnpxJnYiI3IWiTtULFizAlStXRJfVrl0bW7ZswaFDh2xSMHdiqqnK2mDEXCfpXHUJsvKLERvih/BAHwzvEIUe8aGcSZ2IiNyKooCoTp06qFOnjuTy2rVro2fPnlYXyt1omqp0gyJbNFVJ1Tz1iA9FeKCPZLDEmdSJiMjdKE7MeP/+fbz77rt48MEH4e/vD39/fzz44IN47733UFZWZo8yVnv2aqoyVfPEEWVERER/U1RDVFJSgv/7v/9DRkYGkpKS0KNHDwDA6dOnMWvWLGzcuBGbN29mXyIL2KOpylTNkz2b6YiIiFyNooBo4cKFuHjxIg4fPozWrVvrLTt69CgeeeQRLFy4EPPnz7dlGd2GrZuqNDVPL68/gXJBMKp5skczHRERkStSCQpSSzdt2hRvv/02hg4dKrp87dq1eOWVV/Dnn3/arIDOorCwEIGBgVCr1S43YW2uukS05mnNgRyjYIlZqYmIqDqRe/9WFBDVqlUL586dQ2RkpOjyixcvokmTJrh7967yEjs5Vw6ITJEKloiIiKoDufdvRU1mAQEBuHbtmmRAlJeXh9q1aysrKTkUR5QREREpHGXWu3dvvP3225LLFy5ciN69e1tdKCIiIqKqpKiGaN68eejUqRM6d+6MGTNmoFmzZhAEAadPn8YHH3yAU6dOYd++ffYqKxEREZFdKAqIWrRogS1btuDpp5/GiBEjtDPbC4KAZs2aYfPmzWjZsqVdCkpERERkL4oCIgDo3LkzTp48iSNHjmhHk8XHx6Nt27a2LhsRERFRlVAcEBUWFsLf3x9t27bVC4IqKipQVFRUrUZgERERkXtQ1Kl6w4YNaN++veiw+pKSEnTo0AE//PCDzQpHREREVBUUBURLlizBzJkz4etrnM3Yz88Ps2bNwr/+9S+bFY6I3FeuugTpmfmcX4+IqoSigOjEiRPo1auX5PIePXrg+PHj1paJiNzcmgM56LpwO0Yu24+uC7djzYEcRxeJiKo5RQHRrVu3cP/+fcnlZWVluHXrltWFIiL3lasuwZz1x7Xz7FUIwMvrT7CmiIjsSlFAFBMTgz/++ENy+R9//IHo6GirC0VE7isrv1hv0mEAKBcEZOffcUyBiMgtKAqIUlJS8Morr+Dq1atGy/Ly8vDqq69KTvxKZA32J3EfsSF+8FDpv+apUiEmxLjvIpEz4XXKtSma3PX27dtITExETk4OnnjiCTRt2hQAcObMGXz11VeIjIzEvn37quV8ZtV1cldXsOZAjrYJxUMFpKUkYHiHKEcXi+xozYEcvLz+BMoFAZ4qFd5OacXfnJwar1POyy6z3QOAWq3GnDlzsGbNGm1/oaCgIIwYMQJvvfUW6tSpY13JnZQ7BkS56hJk5RcjNsTPYRPA5qpL0HXhdr0mFE+VCntm9+aktNVcrroE2fl3EBPiy9+anBqvU87NLrPdA0BgYCA+/fRTLF68GPn5+RAEAaGhodppPHTt3bsX7du3h7e3t9KvIQdzlqcdU/1JeKGp3sIDffgbk0vgdap6UNSHSJdKpUJoaCjq1asnGgwBQP/+/XH58mXJz9i9ezcGDRqEiIgIqFQqfPfdd3rLBUHAa6+9hvDwcPj4+CApKQnnzp3TW+fmzZsYNWoUAgICEBQUhKeffhpFRUV66xw7dgzdu3dHrVq1EBkZiUWLFlm20W7CmUb5sD8JETk7XqeqB4sDIjnMtcYVFxejTZs2WLx4sejyRYsW4eOPP8bSpUuxf/9++Pn5ITk5WS9T9qhRo3Dy5Els2bIFP/74I3bv3o2JEydqlxcWFqJv376Ijo7GwYMH8e6772L+/Pn497//bZuNrIacaZRPeKAP0lIS4PlX0K3pT8KnLiJyFrxOVQ+K+xApUbt2bRw9ehSNGjUyXxCVChs2bMDgwYMBVAZTEREReOGFF/Diiy8CqOy/VL9+faxcuRIjRozA6dOn0aJFCxw4cADt27cHAPzyyy8YMGAALl26hIiICCxZsgSvvPIK8vLy4OXlBQCYPXs2vvvuO5w5c0b2trhTHyJnbA9nfxIicna8Tjknufdvu9YQWSMrKwt5eXlISkrSvhYYGIhOnTohIyMDAJCRkYGgoCBtMAQASUlJ8PDwwP79+7Xr9OjRQxsMAUBycjLOnj3LJJISnPFpJzzQB4lxdXmRISKnxeuUa1Pcqbqq5OXlAQDq16+v93r9+vW1y/Ly8lCvXj295TVq1EBwcLDeOrGxsUafoVkmNSqutLQUpaWl2n8XFhZasTWuZ3iHKPSID+XTDhERuQW71hBJdbZ2BWlpaQgMDNT+RUZGOrpIVY5PO0RE5C4c2qnalLCwMAAwyop99epV7bKwsDBcu3ZNb/n9+/dx8+ZNvXXEPkP3O8TMmTMHarVa+3fx4kWLt4WIiIicm10Dotu3b8vqUC0mNjYWYWFh2LZtm/a1wsJC7N+/H4mJiQCAxMREFBQU4ODBg9p1tm/fjoqKCnTq1Em7zu7du1FWVqZdZ8uWLWjatKnJJJLe3t4ICAjQ+yMiIqLqSVEfooceekjWetu3b5e1XlFREc6fP6/9d1ZWFo4cOYLg4GBERUVh+vTpePPNN9GkSRPExsZi7ty5iIiI0I5Ea968Ofr164cJEyZg6dKlKCsrw9SpUzFixAhEREQAAEaOHIkFCxbg6aefxqxZs3DixAl89NFH+OCDD5RsOhEREVVjigKinTt3Ijo6GgMHDkTNmjWt/vI//vgDvXv31v57xowZAIDRo0dj5cqVmDlzJoqLizFx4kQUFBSgW7du+OWXX1CrVi3te7766itMnToVffr0gYeHB4YOHYqPP/5YuzwwMBCbN29Gamoq2rVrh5CQELz22mt6uYqIiIjIvSnKQ/Tuu+9ixYoVuHHjBkaNGoVx48ahVatW9iyf03CnPERERETVhV3yEL300ks4deoUvvvuO9y+fRtdu3ZFx44dsXTpUrcblk5ERETVh1WZqu/cuYO1a9di8eLFOHXqFK5cuVJta09YQ0REROR6qiRT9aFDh7Br1y6cPn0arVq1skm/IiIiIqKqpjggunLlCt5++23Ex8dj2LBhCA4Oxv79+7Fv3z74+DCBHxEREbkeRaPMBgwYgB07dqBv37549913MXDgQNSo4bSzfxARERHJoqgPkYeHB8LDw1GvXj2T03IcOnTIJoVzJuxDRERE5Hrk3r8VVe/MmzfP6oIRETlKrroEWfnFiA3x4xx9RKTHqlFm7oQ1RNbjzYgcac2BHMxZfxwVAuChAtJSEjC8Q5Sji0VEdmaXGiIpu3btQnFxMRITE03OD0buizcjcqRcdYn2+AOACgF4ef0J9IgPZXBORAAUjjJ75513MHfuXO2/BUFAv3790Lt3bzz88MNo3rw5Tp48afNCkmuTuhnlqkscWzByG1n5xdrjT6NcEJCdf8cxBSKXlasuQXpmPq9f1ZCigGjNmjV6U3WsW7cOu3fvxm+//Yb8/Hy0b98eCxYssHkhybXxZkSOFhviBw+DcSCeKhViQnwdUyBySWsO5KDrwu0YuWw/ui7cjjUHchxdJLIhRQFRVlYWWrdurf33Tz/9hGHDhqFr164IDg7Gq6++ioyMDJsXklwbb0bkaOGBPkhLSYDnX6NjPVUqvJ3Sis1lJBtruqs/RX2I7t+/D29vb+2/MzIyMH36dO2/IyIikJ+fb7PCUfWguRm9vP4EygWBNyNyiOEdotAjPhTZ+XcQE+LL448UMVXTzWOpelAUEMXFxWH37t1o1KgRcnJy8Oeff6JHjx7a5ZcuXULdunVtXkhyfbwZkTMID/ThsUcW0dR06wZFrOmuXhQFRKmpqZg6dSp+++037Nu3D4mJiWjRooV2+fbt2/HAAw/YvJBUPfBmRESuijXd1Z+igGjChAnw9PTEDz/8gB49ehglarxy5QrGjRtn0wISERE5A9Z0V29MzCgTEzMSERG5Hrn3b8Wz3RMRERFVN4oCorKyMsycORONGzdGx44dsXz5cr3lV69ehaenp00LSERERGRvigKit956C//5z38wadIk9O3bFzNmzMAzzzyjtw5b4IiIiMjVKOpU/dVXX+Hzzz/Hww8/DAAYM2YM+vfvj7Fjx2pri1QqlamPILILThxLRETWUFRDdPnyZb2pOxo3boydO3ciPT0dTz75JMrLy21eQDKN8+ownT4REVlPUUAUFhaGzMxMvdcaNGiAHTt24MCBAxgzZowty0ZmMBBgOn0iIlfgCg/vigKihx56CKtWrTJ6PSIiAtu3b0dWVpbNCkamMRCoxIljiYicm6s8vCvqQzR37lycOXNGdFmDBg2wa9cubNmyxSYFI9M4r04lptMnInJeUg/vPeJDne5epaiGKDo6GsnJyZLLIyIiMHr0aKsLReZxBvlKnMWciMh5uVItvqIaIo21a9di9erV+PPPPwEA8fHxGDlyJIYNG2bTwpE0zqvzN6bTJyJyTq5Ui69o6o6Kigo8/vjjWLt2LeLj49GsWTMAwOnTp3H+/Hk8+uijWL16dbUceu+sU3fkqksYCBARkdNacyDH6OF9eIeoKvt+ufdvRTVEH330EbZu3YqNGzdqcxFpbNy4EWPHjsVHH32E6dOnW1RoUs4VZ5BnziAiIvfhKrX4imqIWrdujenTp0vOaP/FF1/go48+wrFjx2xWQGfhrDVErmbNgRxtBzsPFZCWklClTwpERORe7DK567lz55CUlCS5PCkpCefOnVPykeRGqluqAFfIq0FERPIoajLz8fFBQUEBoqLEn+gLCwtRq1YtmxSMqp/qlCqANV1ERNWLohqixMRELFmyRHL54sWLkZiYaHWhqHqqLqkCqltNFxERKQyIXnnlFXzxxRd47LHH8Pvvv6OwsBBqtRr79u3Do48+iuXLl+OVV16xV1nJxVWXnEGulFeDiIjkUdRk1qVLF6xZswYTJ07Et99+q7esTp06WL16Nbp27WrTAlL14iqjDUxxpbwaREQkj6JRZhp37tzBr7/+qu1AHR8fj759+8LXt/reEDjKjHQ5Oq8GERHJI/f+rSgg2r59O6ZOnYp9+/YZfaharUaXLl2wdOlSdO/e3fKSOykGRGSISTGJiJyfXYbdf/jhh5gwYYLoBwYGBuKZZ57B+++/r7y0RC4oPNAHiXF1GQwREVUDigKio0ePol+/fpLL+/bti4MHD1pdKCIiIqKqpCggunr1KmrWrCm5vEaNGrh+/brVhSIiqipMsElEgMJRZg0aNMCJEyfQuHFj0eXHjh1DeHi4TQpGRGRvTLBJRBqKaogGDBiAuXPn4u7du0bLSkpKMG/ePKNJX4mqGp/4SQ4m2CQiXYpqiF599VWsX78e8fHxmDp1Kpo2bQoAOHPmDBYvXozy8nImZiSH4hM/yVWdppIhqmq56hJk5RcjNsSv2pwvigKi+vXrIz09HZMnT8acOXOgGbGvUqmQnJyMxYsXo379+nYpKJE5Uk/8PeJDq80JS7bDBJtElqmuD56KAiIAiI6Oxk8//YRbt27h/PnzEAQBTZo0QZ06dexRPiLZ+MRPSmimkjFMsMljhUhadX7wVBwQadSpUwcdOnSwZVmIrMInflKqOkwlQ1SVqvODp6JO1UTOrComj2WH7eqHCTaJ5NM8eOqqLg+eFtcQETkjez7xV9d2cyIiuapzU7NFk7u6I85l5t5y1SXounC7UXPcntm9q8WFgIhICVeay1Hu/Zs1REQyOGO7eXUc9kpEriE80KfaXXcYEFVjvGHajrN12GbzHRGRbbFTdTW15kAOui7cjpHL9qPrwu1YcyDH0UVyaaY6bFd1R2slGZbZCZyITOE14m+sIXJRpmp/qnOeCEcS67DtiJoauc13rEUiIlN4jdDHGiIX9NnuTHQxUftj6oZJ1tEdou2oubDkDHvlPF1E1YO9anB4jTDGgMjJmDv4P9uVibSfzkAwcRBX5zwRzsRRgaecfEsMiolcnz27PvAaYYxNZg6m2/S1+8/rJqsvc9UlWPjzGaPPMGwuqc55IpyJko7Wtu7gbi7fkrN1AiciZezd9YHXCGMMiBxIt/1WU6GjOTbFDv6s/GIIIp/joQLyi+4iV12iXZdTEtif3MDTXu30poa9Migmcm32TvXBa4QxBkQOYhj9iwU6hge/WEQPVP572uojRjfb6pgnwtmYCzwd2cGdQbHzYAoMUqoqanB4jdDHPkQOIhb9GzI8+A37jhh0E2KnOAcxNReWo9vpOU+X4zEFBlmiKuZm1HyPNdeI6jRsnzVEDiIW/asAqP56Terg143oz10rxGvfn9Jb7ujsyaRP6VMeaxKqF6bAIGs4ew1OdRu27/Q1RPPnz4dKpdL7a9asmXb53bt3kZqairp168Lf3x9Dhw7F1atX9T4jJycHAwcOhK+vL+rVq4eXXnoJ9+/fr+pN0SMW/S8cmoC9sx/C6gmdsWd2b8kDKzzQBzk3izF/4ymjZe7eKc7ZKHnKY01C9ePoGkJyfc5ay1sdh+27RA1Ry5YtsXXrVu2/a9T4u9jPP/88Nm3ahLVr1yIwMBBTp05FSkoK9u7dCwAoLy/HwIEDERYWhvT0dOTm5uKpp55CzZo18fbbb1f5tuiSiv51sx/LSbyo4QG4fac4ZyTnKY81CdUTR/JQdeWM8ztayyUCoho1aiAsLMzodbVajS+++AKrVq3CQw89BABYsWIFmjdvjn379qFz587YvHkzTp06ha1bt6J+/fpo27Yt3njjDcyaNQvz58+Hl5dXVW+OHrGOz+aqIaX6H30y8gEMbB1h7yKTBcx1cK+OFxfiSB6qvqpjsO/0TWYAcO7cOURERKBRo0YYNWoUcnIqmxIOHjyIsrIyJCUladdt1qwZoqKikJGRAQDIyMhAQkIC6tevr10nOTkZhYWFOHnypOR3lpaWorCwUO+vKsiphpRKvPhgdJ0qKSPZHpNpuhYlHUmHd4jCntm9zTaFE7mSqur0XZWcvoaoU6dOWLlyJZo2bYrc3FwsWLAA3bt3x4kTJ5CXlwcvLy8EBQXpvad+/frIy8sDAOTl5ekFQ5rlmmVS0tLSsGDBAttujAxyagqc9amTHYItZ/ibegCY2a8p96MTsqQjKVNgUHXk7J2+lXL6gKh///7a/2/dujU6deqE6OhofPPNN/Dxsd/OnzNnDmbMmKH9d2FhISIjI+32fRpyqyGd7UCsbqMNHGF4hygUlJRh4c9nUCEA7/xyBkG+NbkfnQj7ehEZP/xWl2PfJZrMdAUFBSE+Ph7nz59HWFgY7t27h4KCAr11rl69qu1zFBYWZjTqTPNvsX5JGt7e3ggICND7qwpKqiGdZfRBdRxt4Ai56hK887PpeepcUXXKU8JRY+TuqvNoWJcLiIqKipCZmYnw8HC0a9cONWvWxLZt27TLz549i5ycHCQmJgIAEhMTcfz4cVy7dk27zpYtWxAQEIAWLVpUefnlcLU+B7xJ2EZ13I/V7eLJvl7kzqr7w6/TB0Qvvvgidu3ahezsbKSnp2PIkCHw9PTE448/jsDAQDz99NOYMWMGduzYgYMHD2Ls2LFITExE586dAQB9+/ZFixYt8OSTT+Lo0aP49ddf8eqrryI1NRXe3t4O3jppzlL7I4elN4nqVHNgC9XtZlsdL57VsSMpkVzV8aFNl9P3Ibp06RIef/xx3LhxA6GhoejWrRv27duH0NBQAMAHH3wADw8PDB06FKWlpUhOTsann36qfb+npyd+/PFHTJ48GYmJifDz88Po0aPx+uuvO2qTqgXDNmSlnbzZ58iYs3aWt1R1TSXgbP33iKpKdRxqr0slCIJIRhsyVFhYiMDAQKjV6irrT+SspIKZXHWJrJtErroEXRduNzqp9szurX2fO49Yk7sfnZ2c35mIXMuaAzlGD23O/jAr9/7t9DVEpM/RgYK5UTZSWZh1y2yu5sDda49Mjdpw9O+vRHWr8aLqz5XOL7lsvU3VuYaUAZELcYZAQWkziFiZe8SHSla7VtWwZle88DnD769Udb54UvXiiueXOfbapuo01F6X03eqpkrO0kFVScdfqTIDkOyYWhWd9lxx5JOz/P6WcKUBAmRfueoS/HjsCn44etmpjl1XPr+kVMdtsjfWELkIZ+mgqqQZxFSZpWoO7N1pz1UT60nty4PZtxDs71o1XeSe1hzIwexvj0NzGKsALBzqHLUwznJ9taXquE32xoDIRThT7365zSDmyixW7WrvfieuepEQ25cqAM9+fbhaVfFT9aR5ENE99QQAc7497hQPI850fbWV6rhN9sYmMxfhyPwnYvmC5DSDWFpmeyamdNVcP4b7UnPiGtZ0Hb14i7mdXIw75OMSexABgArAKXLYVMf8UtVxm+yNw+5lcpZh91U9JNsWnfKcbRi5Kw4b1dDsyxvFpZi66rDRcpUKEFhjZMRZO9FXx468YsRSMACVgf3eOQ85zW/ibNcqW6iO26SU3Ps3AyKZnCUgqkqunkfG1E3Q1S8SUjcYXa70W9mTswYdrn5+KbXmQA5mrz+unavPmfoQUfXGPERkNVftbwOYvwm6+rBRw75WHqhsftDlKr+VLUgFv47sRG+uVsqVzy9LaPoeHrpwC4IAtIupUy23k1wXAyKS5Kqd8lx1JJlSup3bfb08MOTTdJf7rWzBVPBrSdBhi+Y1ObVSrnp+WSM80AcDW1efc9AenLV51x2wUzVJcrVOeZrOqQcv3JKdy8jVO7RqOre3iazjUr+VrZjLtaK0E70lOaoMj6GjF29htoz8L652fpH9uWKOtOqENURkktgQe2d8gtF9Ileh8k83JhK7CTpr3xJLVWVWaEcfA5rvv1l8z2QNkJI0DpbULBoeQ0MeaID1hy7DsGuXVK2ULX4zR/8WZBvuUrPtzBgQkVm6/W2cMYgwvJCI9TMe/ECE0/Qtsaeq6Bvl6GPAXPALAMcuFyAxri4A+UGH0uY1sWPo20OXRT/bVK2UNXPXOfq3INtxtz5lzohNZiSbs6aCl8pxouu7w1f0ylkVU4RUlaps9jN3DNi7LGLBr9hPv+jns4rzZiltXpNz3AGVgYolTWHmmk+c9Xwky7hqjjQ5XKVrAmuISDapIGLb6atoFOrvsCp7sc6phgyftKpLh1a5NQS2alYxFUhuPHIFC38+AwH2q62QG4RY8mQt1rw2s39TZOUXa5frknPcqQDMf6QFesSHyi4HIK8Gk9O5VC/2ztLvKFLXKGds6mVARLJJ3QBe/e4kAMdV2YsNQTesOTAMdmx98XHEyS232c+WzSpSgeSe89exeEem9jV7NUGKfb8HABi+pgJ8vZRXgOs2rx27VIB3fj5jMnVDWkqC3m+gS/Ow/9r3pzB/4ynR/S513MhpPuF0Ln9zxpurJaqyH6Ctif0GUteogjtleOcX6XPLUZiYUSZ3TMwoRvfmKsaRieVy1SU4mH0LUAGXb5Vg0S9nzWajtkWCRkf140jPzMfIZfuNXl888gEMbB0BwHzyP0tuJIaZvmf2b1pZMyRyTKye0Fnbl8dWxDKNA9C+pmHNb6EkaeIPRy9j2uojZj/T8P2mjhu536+7L6QeBKprokcN9qNyfEAo9Ru8vekU/v1bltH6YoNe7HmcMjEj2cXwDlHw9fKUvAE4shPg7j+v652Us/o3Q+sGQSaDHWs7ITuyc7ZUjd3UVYdRVHofwztEmW7iOnpFG8gouZEYPsVm5ReLBkMegF2aIKWeopuF1cbgxenaC601v4WSDq7tY4JFa61MJco0d9zIrcHU3Rdi07nY+nx09I1XrDy2Ov+cbdvkcnRAKPUbNAurjWUiwZDYNctZOo+zUzUpprkBiLFlPxwlHfHETspFP5+1e7WzIztna26ahr+FgL8710p11Nxz7jrSfvq7Vkdph1xNJ2UAuFl8D2KHw6z+zey278U6SRffK5cc7q6Ukg6uYvmEZvVvZvL9co4buZMca/ZFu+g6Rr+DCpY1HYqxJkeOpZ1qzb3PVuefq+b/cYaO9VK/wYHsW6IDHkZ0iHLazuOsISJJUk9Mhk+vGrbsBKj0qccWQ1YteUK0tnO2tU+lUjV2mm1PjKsr2lF44U9njD5LaQZnqeHvmtq5Z3rEKd4eJQzLY8uO8kr7mInVWgX51vy7OUsFjOsWo10/NsRPVq4sa2swBQBDPk23utbAmpoYJeey7m9qWONrr2zfrpyCw55D9eVem45fUhu95qlSoUNMHdGa02l9GqNNZKBTdh5nQESizF3EDKeNuHOvQq82xpobvSUXKGsvjJZWO1vaOTtXXYLle7LwxZ4sq6u6xZpsdLddtIlL5HM8VNJNXIbBz+MdI/H1gYt6w989VMAnIx6weo4qOceO1O9laUd5se9U2sHVMHjRvH/F3iws252FZb9V/t5pKQlG71XBsqH5uqR+V1vc4C298So5lw2PMQBmmz9tMTjClfP/2Gu0rJLRq+/8YvxwNbN/U7SJrINZ/ZpVDkyA/gOzs3YeZ0BERuRexKSeXq1t07bkAmXNhdHaJ0SlJ/eaAzmY/e1xvZuXNTctOdtu+FuJteNLNXGJ5f5Z9ftFo/UqBKCuv7dVFzfDm+KE7rEY2y1WdlJNSy60po5XWyS6/Py3LL0b+5xvjwMq/dohlaqyD1R6Zr7JQNBUsGgqDYC1N3hLb7xyz2U5yVXtle3blVNwWPNAJnUcmTq/AOi9TyoNRusGQVhzIKdyJBkqj++Z/Zs6/QTbDIjIiDVPTLaofrb0AmXphdEWT4hiJ7fhRSdXXYKDF24ZBUO633kw+xYebiMelJiqNTGssSu+V45cdYnoumJpCkw1ccnN/WPtTUTspvjv37Lw+V+1KnInbFVyobV3c4lYWSsAozt+hQAM/jTdZAd3cw8a2jQA3x436tBtbTOupTdeueeynGPM8H2G5TRXUyV1/tiilsmRLHkgM3UcSZ1fK/Zk4/M9/9N7X4/4UNHf19fLQ/9c/qtP5yNtIpx6vzIgIiPWPDFZG0xpLlqWXqAseeqwxxOi2BxXGw5fNnvRf/brwyi+d19v+PWKPVnaoasqAAuHite4hQf6yOp3ASi7iMpJQGiLm4jUTdEwSLHl72Xv5hK5eZMAGHVw1w3K5AZu2mY6nZuX1G8jFiSYulla8sBhLtjQlMHPy9PkMWbYpKikFlrOus7WhKO0y4Hc656c40jqmNUcT7rv2zO7t+jvW3yv3CWbIRkQkRFrnpgsvVmJXbT2zO6NQxduoUIQ0D4m2NrNkmTrJ0Qlc1wZ0r1A6QY3GgKA2d8eF63BUFrbIfciaqrmwQPAJyMfwIPR1vUbAuQ3+djy9zJ1vNpiGLZUWQHo1dCZGqIPKAvcwgN98PLA5hjbLUbyBi92vvWIDzV7/FjywCEVbIg9NHx3+IreQA0NlQraJhslx7mSdZ2lCceew+jlHEdix+zT3WKM8glp3ic1AbhUzZG5ZmFHYkDkIqo6R4alT0yW3KykLloz+zcVzRRsq32h+zm2fEKU28QkRTMdytzvT4rm9xEA0aY1e9Z2mKp50CSBtJaSJh9b/V5Sx6vcmjY5pMqq28Q55NN0oyfyG8Wl2mZPSx40dG/wmuZaQRAQFewrer59OKKN3Y4fw2BD7Jz/7vAVrJ+SiAPZt/DmptN6768QoC2HkuN8xV+DFuyxTfZg7yZcuceR4TELAJ8b7Evd9xn+vmLn1eAHIrTHubMm0GRA5AIclXjL0icmpTcrqQucbvZjzYXBVMp3JYGS1D6V6lSsJACT08Skofpr7LVhB1vNdCgm32fAz8tT1lBuS0nVPOSqS/BH9k2oVCq0s7KmSEmTj62e6MUu/rpZom1xUxIrq+5rujcPzW84ddVhm4ygE+vEb6gyNYCqylJISJ3zd+5VoENMHZPHsdybeq66RDIxoK1qAG3N3k244YE+mNW/mfZB09xxJPz1K1jyoGvYr1E36Ld1oGcrDIicnKvmyFBys5Jqs5YMkv76t1TzkljQqHvxA2C0T+d8exx+3jWMbuiWBKOmajoMCUJlcOMhVDabeKggWiukS6UCHoyuo/eappyGNxF7dA7V/W0Nb7am+jgB8m6acpp8bE13m9Iz86u8VkFz8ziYfUs7Fxlg/Qg6zfXDXGzuqVLhweg6ks175po5lJ4nUkHNscuV88eZOo7l3pyl0hCM79bIpjWAtmTvEW9rDuRogyEVgJn9moput9TvaUkfsvBAH1nnlDMEqAyInJwr58iQS+wCN7NfU21NkIZUyvdDF26ZDBoNT+7x3WJFR/4YPpHnqkv0bvYVAjB7/XE0C6uN4nvlJk/c4R2i4Oddw2gqBTGCAPxr5AMI9vNGftFdk/NiqQAsTEkw2fyg2VfrpySiTWQdu11oDPcPUPlUP2e9eB8npTdNR/XpcNQw7PBAHwT7224EHWC6+Vazjabyw+z+87q2tkzqN7PkoU3ynP/Z+JzXHMe65NycpR60BrYOc3hthdyktx4AntZJ6GntdxqO4lz0y1k80jbC5PXEcP/Yuq8e4PjpRzQYEDk5V86RoYS5TL+aDMuGF0xPlQoVgiB5EwGMa4OW/ZZlVCWvoXvyH7xgnHpeEIB/LE4HUBmczO7fDM/0FB+u3i5aJFPrXzVAhk/Amk7JYp0Rdf1LZ+JWDdGh3QJw516F3TtoSu1Dc3lmnLmm05adtpWy9fku1XzrAWDDlC5GCVWBvwNRub+ZuekzpIJxsYShUsexGFM3Z03AMat/Myz6WX+SZ0ePgJI6JzVl7hEfij2ze2ubjcVST1hC7sO1PR7CTZ1TznRtYEDk5Bx5ca5qhhc40SDJp6bRvjCVqVns5BagP9WEIc3JL5hpuxIApP18BlBBNIeP1G8HQPL3NNex2LCpDJC+iRrmArFHB02xfaiC8fxZrlbT6ahh2LY+3zWfN3v9cW1TrApA2tAEo1oXQ3J/M1PNX6M+32cyGDc85+X2DTJV42kYcMzq1wytGwbp9Xlz1EOm1M3fsG/krH7NRIe5mzp3ze0XuSMq7fUQPrxDFJqF1caB7FvoEFNHe/w507VBJZi76hMAoLCwEIGBgVCr1QgICKjy789VlzhNjgxHE9sXaw7kGN1ENE9dXdK2S05V8UibCHx35Ire654qFfbM7g0Aku81/Jy9sx8yeaEyLK+537My/5Bxx2JTuVYMtz8y2Bcjl+03WvfVgc0xsHW4TY4jqQ67Yh3edTsqA3/vZ2c6np2hH4OmHLY833PVJTh04RYEAbKnVlHymxkef2JN3nJ+b6nzWHe5ub6Ccsps7nvsJT0zX/ScNHywEEvFAACrJ3TWTqqsS25NsNh2AzB6L2D80Gbt/jFVM2bva4Pc+zcDIpkcHRCRNN3kboZNAOZG2KhEOjHP0WkGW3MgR1tbI1WjBEhfqKyl5MZouK7YhUbDQwU83S0W4wymxTD8PM1+NdVnKlddgq2nruK1708aNQXqXtQcdROSy979GGwdbFVF8KbkN9M9/rLyi0Vv/FLnieGgB7FjXs6N84ejl0X74Il9r5xzSyzbvDX7XGwbpJrIDa9NUkGCqf0CGDdZ6m43AJPvtVVQLrrdADakdkGbyDp2vzbIvX+zyYxcmthNTHPhMzfCRmwkGwC0bhik/X/DppONR65UNpPpsGd1u5JOjIbrGja/6NL0pfr8tyzRUWG6+1XDVLNHXD1/o/1sWO3dIz4UH45oA3VJGQJ9aiIq2NdpkrTZux+DrYOtquqEqqTp0JLmL0D+tphrWtF8jiGp7zV3bpnKNq9knxsGUUadySX6Rs7s39So/5NhgJiVX4wbRaWi+2XF3srz27C8ckdUJsbVtdl5KTWFzeBP07HQwhFs9sCAyA05S7OAtczdxEyNsDFVrW+YTVX3AvJMzzhABdl5PBxNc6HZdCzXKNkdUFnjZW6aCA1TQYLoiB7V332JxAIs3fUcPezZnv0YbB1sVXUnVM1nZuUX6/3b3Hvk9IVSsi3m+sCIHV8egEXnp7ls8+b2ueYae/yyWi+57Kx+zZDQMBDrpyTq1WaL9Y0c3iEKj7SJEA0SDIM1oyY3FbBsd5ZoihI5/b9s/YAn1blfEKwfwWZLDIjcjLMMb7QFczcxsZNQBeCNwS3Rp3l90ZFscrKpPtMjTvJC5YzCA30wsHU43v7ptGhAImeaCKl1db/DsPNuhQAMXpyO2f2bGQWeupxhxJlUQGeLG4Otgy0lM8jb4sFHapoPc01Jcp76lU5JIhVkidV0AMDUPo21U34oISfbvFQ5pYL/CgHa2mXD2mypfSUWJIgFa7q5zDxVKozrFmOUlFKsvFU1aMfUYBFnGlzBgMiNONPwRlsw93Qj1mQkAHjt+5Oo6emB4R2iLM6m6gxPM0poL0giF2rDJ0JTmbZNPT32iA816o8lAHrJNKU4OkmbWEAnCMDuP69b/cBQFUPpDT/PVg8+YteM2d8eh+qv7zfXlGTuPFGyb3LVJYgM9jWqXZH6HAD4eNt5fLLtvMn0GHLLZUhqBJxUTagusWuL3GuK6MhZ4e9cZpoyfWFiqg1dVdVcpRllNvjTdKO+Uc6SRsbD/CpUXUg9jR3MvoX0zHzkqkvs8r256hK7fL7mJub51zwWYk83wztEYf2URL2pLjQXI015wgN9kBhX12R+kupgeIco7J39ECb2iNWe+GL7zHC/wsS6ujRNKoYEiE81YvjZuknaui7cjpHL9qPrwu1YcyBH1vYpZXhc9ogP1Wt30DQnWnvcyjlObfl5Ug8+lmyHVNoKw6YkS79L7r7RPSaGfJqOnJvFso5ZTXnTfj6Dz3ZnyiqTVLmGPtjAbDmVzGNo6bVFE6zp0qTk0PT7UXrMaa6BtursL3W9bxNZBwtteC7YGmuI3IhUE5JmqgA5T5JST+5Sr8t5UjVXG2BquZynm+J75UY1F0ryqSidy8ncqKyqZrj/Xh7QAmO7xprcZ4Y1Z2IJ/AxJ5SXyUEFv/iRDjkjSJnZcRgb7mu0YbilbP4Wb+jxbNtEpmZfP0u8yt2/kHhPm+su98/MZPNImwqpyvZjcVHF2bCmWNsnKbeay9TEnp9ZWzvXeWTpQi2FA5ITs1VxgeCJ5wPhpz9TNR+pgN5VfwtyFzNwJJOcEs1W1vDXt6UpGZVUlU5PYmtsupc2C4YE+WDg0QX9uM528JrpB6cQesRiYEG4UaMm5mSs9P8SGTosdl+unJNq1g6mtm1mlPs+WTXRS1wxT93tLvsvUvjE3Y73h7zuwdTje2nTaqIwVgnEGdaXlMvcbhgf6YFa/ZkYjUcXM6t/M4uNBblBhq2NO7oOt3IcZZ+1ywIDIyZhL625tkKSbLdS7hgfmfq8/q7rU053Uwd4srLbkSWDu5mbuBLJVbYGSQMeaCTTljsqqqv4xSvefLcqlO0mp7iS0XRfqJ7j84rdsjO1qnAPJ1nMeSdUEiR2Xd+5VODwrvDW/ge57lWyHue80PCfe+/Ws3ogrXbbeZ+ZmrJc6Hmb3Nw5K7NlXRXcfJjQMFF1Hk2xRBWBEx0g80iZCdD25qiqosMUULo64/lmCAZETkUzrXlKmN3TTmloH3QuI2PQVUhcNqYP9QPYtyZPA3M3N3Alky6p/a/KpmKNkVFZVjvJTsv9sWa7wQB883Obvz1cye7yp4PXoxVtGk+2aC/CU1gQlxtUVPU6qKgmipb+B2Hv3zO5t9niX+52acyJXXYINh8WDIQ9YNqGwqXVNzVgPGM9TqHlIS2gYiKm94/DpzkxUCPbtqyI2VYjY8bV+SiI2Hc/Fst1ZWP37Raw5cNGq86yqAgtrp3CxR2d/e2FA5ESkDryFP5/RG8psaZ8KsdmOVfg7gZqHSjpnh9TB3iHGeAJT3ZNgfLfYyuRgML4omTuBbD06x15PVHJHZVX1KD+5+89w1voKAZj914z1gPTknHL5eXnKDrwB8eB1zYGcyhFgBuuaCpClzidzNUGGx0lVXMStOTak3rtndm8kxtXVdnIV6/en9DtNBf8VUD6hsLl1pWasH9stRvL3Hbw4HQLE5zGzVK66BH9k34RKpUK76L+nPhEL0hf9clZ0Utl6AbXw+W/mcwPJ8dmuTO3oTXsHFrbqcuAKo5wZEDkRqZPfVrUkUiNGdIcZS5E62NtE1hF9ffef1/UudBO7NcLYbjFG7fHmbkyObsKQw7CcGrpzBaVn5ktmlLVXDg65++/ghVtGgYYgAJ9sO4evD1y0KhDQ3PAMgyFzv6NuUKLNOG4m4DR0/JJacn2pmiBDVXURl7q5bzqWa3beOVNP8Ibnoe5vaEkNrLngX8mEwnL2rbljWDTZH/7+vEW/nLV6TizD6X9UABYOrewXJxWkt24QZFRDp6Sm1JTPdmfqNQfau2neVl0OnGkSVykMiJyI2IEnlU3ZkloScyMgBJi+2Esd7IavA/rz41QIwOd7/oeEhgFoHxOs99nmmrKceUSCLqlRWbv/vK7dF2IZZe2dg0PO/pOaznDV7xe1/29JICDWt8pD9XezilxStRKmshDnqkvwzi/GHVtn9m8qWRMk97vLBQGHLtzCwNa2Oxalzs03N53G2z+dNhmMSj3BmwtOLKmBNRf8m0pdIdYcJmddU0kL01ISTM5VaO0N17D2FKg8f03lGvJAZYZ2w+NL6oH3RnEpctUlsvsrLhTpsG3vpnlbdDmoqqzY1mBA5GTEDjzDbMqW1pIYXszELsDmLiBSB7vu62JPQhUCMG31EdGTU86NSTCb2s/xDLdDTkbZqqjxMrd/28cEGwVqYsPnld5cROcvEiqbVZSQyiK9YUoXycBKKohq3SDI6u8GgKmrDqOo9L7Nmil2/3ldsobWXDAq9QQvFZwczL6FYH/lna81TKVkyFWXyG6mvVFUanIqDt3aDaljuEd8qOgEzaa+WwmpPkxSwRBQeW4P+TRd9Dqnu78159jUVYdlBy1Z+cWi2+oB2L1pXuo3kFsT5Qo1/gyInJDhgWdNLYnhwWoqMzNgm4jdVE2U0pPT1JOOM49WyFWX4MdjV4yr8wX9jLLOUO7wwMrh8pq0+h4AZg0wzhuk9Niw1ROhqeZaS75byXGj+W7DGgFztalKmJuEGDAdjEplcBYLTsTyjsnpfG3I1IORbs4psZue0cCOvwIaqeZ2U4GCufkKLZ3HTHN8SOXWMkfqOqc7ClPzO2jWn/PtcbPHk9S1VTOEP1ddgrd+PFVlTVNKa6KcvcafAZGLkFOLYkhODhqlEbucm4mpp11APK+MWIdFU086Si6aVc3URKaajLLOdiEQrZkUmXBSSblt+USo9EIq9d2WHDfDO0TB18sT01Yf0XvdVjcZOdmNlcwUr5kfy6hGGOJ5xzSdr21hzYEcbTCkAjCzX1O9/Ss6sEMAFo98QC9Fg9zaDanaw49HPIB2McrPM71gTQXM7t/MOLcW5AVIpkZSBvuLz/6+Yk82Xh7YXPIzxWr5Z/Vvhmd6xJmdQNlw0mprWVoTZcm9rKowIKqmlGZ3lXOjUZKcy9QFwzCvjFiHxeEdokxONWLJiWhNRmw5y3W3XyoYcrYqYl2aC5VmVFKP+FCLag90KTm+zO1fpRdSOX3b5NbytI8Jtlv/B6kM8pr5wjR9CQ1nm5dzjuvugxvFpZi66rDed9uy5kAs2Fn0y1k80vbv7NBSAzuOXlRjYOsIxR2PpQLfhyVy/Jg6xozKLwBpP53BnP7NkD7nIe0UR7p96zQ8/qrlkts/UKrm6fM9/zMafGJI7JwyN4dat8YhZietVsoVOkkrxYComlI6i7S5A1hugHXwgnFeIuDvpGSG0zRIdVjsER8q2ewBC/o+WZIRW3dGb7k1C1JP+3MHNscAM6OFDDmiSdBUYlBLny7lHF/2Gtpurm+b3Au4LWu7xPrHiH225qZ37HKBaB4yuee45js+22U8l5ctO7XKKY+5QMCSZla5Qbe5Y0zq3H3n5zN4pG0E2sXUwbNfHzZarvksALKPj/BAH0zoHot/GySdrBDkZdM2PKdM1TKqAPx2Pt8mqVt0uUInaaUYEFVTtj5Y5VzsNLU9hjRJycSmaZDqsJidfweJcXVFbxTtok3nPjJkSUZs3Rm9VX99jubrTF1QpPa70mDIEQnMJBOD3inTjnS0R1mUJly0lLXnhKVZzHWDH6nf1dRnj/p8n+ixq3SmeFOj7sSCb6UBuZzymAsEpM55pQGC2Pabe6CLDfET7aBdgcqyCRBEg46PRzygrZFScnyM7RaLz2XOSG+OVN8iDwBdm4Tgt3P5eq+bexCQMy+jK3SSVooBUTVl64PV3MVOqqlMk+xRrAOsqclANZ8rdaNQsm2WZMQWoJOfSeQzTV1Qnu4Wiy/+utBZst8dlcDMZGJQ2KcsliRctJQtzgklzXZiGYx1U2gY7kuxzzZ17CoJHkyNuhML0gAoDsjl7l9zgYBYU6e1fV/kPNCFB/pUTvnxk/SUH2LXwHYxf1/blBwflhyPUkGqWN+i8d0aYWDrMAxenC76WccuF4j2HRPri6QCMKF7LMZ2059ux9k7SSvFgKgas8UTrYa5k1fqgqv79CRmQvdYLNPJ3qqZDFSsyt/SbbMkI7Y5Yk9yhqNnJvaIFZ2vS4pm35tK4AhYnzlailQHVal+XLrTc1jCVMJFQPqCbQ2p48bWzZNiQe07P5+BYcIBSxMhHrtUoE0u+eGINvAw01lfSa4izW9iSRAs57wUu5bM7K/fR0rzZ6uaUqkcQIYdjZ/pEQfo/FaG1zmxPHGGfbuUkOoPJHYsmtsXYp+Vnpkv2Z9z0c9n8UibCL3vkOqLJAD4929Z+HxPlkVpU6Q420hhlSCVlY30FBYWIjAwEGq1GgEBAY4ujl3I7TQtdvL6eXmKDuGXyhJr+F0jOkSha+O6dhuBteZAjlEwZ9iHyNSM3oadXA3fn6su0euwa277xcqnuz/EOmjO7N/UZnPamSqH4Y3KcPg9YJvvT8/Mx8hl+yWXK9l/1jDXf0ys8625i7jUthk2ycjZxs92Z4rWWig9HsTOgchgX5O/ga7VEzrbNEDVXEuOXSoQbZK19pwyZDiAA/h7xJhYSg+poE5bbom+XdYw1YfPkn0h9j5drw5srpcJ3dw5Kfd75ajKbgFy79+sISIA8vrZaG4Cmoui4QE95IEG+O7wFbPVv2LftebARUzr09huNz+lGbF3/3ldspOr2PutGXEhJ4HjzH76gYm9mtGkht9rchRp2OL7zdXMVcWIlaMXb1U22Un0HzO8UMu9iEvVyMzs39Rojitz25fQINDotXJBwMKflDVlStVGyKkdtUdnWU05pfpI2XoUk1gSR6n9Z6rWw1y5raktkboGW7ovNLVxhuevhmEmdDm15bY4L511XjMGRARA+XxIPeJDjQ7o7w5fEe08reS77HkymKva1V1uaroAMdZ02BXtwyToJ3Csyn1muJ+Gd4iCn3cNmw/ZNmw6MWTvEStiNQaAfv8xTROSr5cnooJ9JWdXN+x4KtXEPLxDFB5pE6GoGVvqJmVJvyvD31Z7wzQxZFuTT8iapiEppuZwMzdxtC2+y/B75R7PSs5Huc1Cpj7TmuuL5lq2Yk82Pt/zP6PvMAxGTJ2TSr7XFGcdss+AqBqSSnRoitL5kD56vK3oAX3nXoXZanVrTu6qanNW+j3WdNiV2h+GzYeOHOIqNbLPVLI3OftQN/Dcc/46luzMtLgzuhJy8mVpVAiV086IDQAwnF1dt8bIVFCttCO3uaAFsPx4kEo8qcteowxNzeGmpNbZmu/SMDVCz/A4lnsNU9IsZOozrbm+AJXH0MsDm2NstxhsOpaLNzed1luuG4wYzmaw6VieNpAy971yr5vOOmSfAVE1YyrRoSHDg1fJfEgQLL9BW3pyV1Wbs6XfY+mICzn7w9oLorXEvn/wAxGSyd6U7MPwQB/s/vPvYEgsw7GtSdUWGKZY0CUVi5hqtjIX/Mi9gZgLWqw9HsQST2oY1pjZsmnDVI2EklpnS75L9VeEK0B6/5nK9m/ufFTaLGTuM5V0wDa1Dwa2DsfbP502ee3WPW7bRNbB2G4xotc13e9XkgXe0dczKexULZMzd6rW7diseVrV5aEC9s5+CADMHrxinaalOvOJ9bNRchMz1XFRbF1bdrA09T1d0rYbdWiuis69cvaH3H1mr5o0zfdLzYO3Z3ZvAFD0Wx29eAuDP01X3NlYt0xytlV3PbEyegDYkNoFZ/Jum2wy0AQOUgGE3M7HSgNvsXPAA8Anf017YZNOrhJ9TQzZo4O1WM2Fvb5Ld0i/qc7T5o5jU+ejVAdlc9sj9xw3HNU6u38zPNMzztzmG71XM/1HQoNARdcLw+8HjAeCyOn0XRVD9tmpWsTixYvx7rvvIi8vD23atMEnn3yCjh07OrpYVjE1f41GhQC99mPDUUym+kIA0nl1rM1BoaTpoKranJfvyaqSnDhi5OwPOevYsyZN8/2msj6LJbCT2odS/Xjk7nO52yq2ntSEsW0i66BHfCgOXbiFqasOG13kNTUW1kyObEmnUsOnas2NbGBr6bQWSoj1NREbcWmvDtZyai5s9V2Gta9i5OYusnW/QqnPNAzoDadJSfv5DKBCZeoAGXRr/TQd9KXyDYmVxfD7DZULAg5duIWBreX3aXM0twmI1qxZgxkzZmDp0qXo1KkTPvzwQyQnJ+Ps2bOoV6+eo4tnEXPz12ioAL3OdGLrlwuC9ildLDmbVF6dqjqgq6LNOVddgi/2ZBm97gE4vG1bLrk3WmtrkMz9HnJ+K1P9eOT8tkq2VSzXzoYpXSTnaqu8QfugqPS+aNCkYWm1v6UB/vAOUSi4U4aFf404fOfnMwjyqWnTgFfT18TUiEt7nPOWNKPYs0+htdccWzYLGQb0T3eLFb2Ov/PzGaPcQobEzjtB579S+YZ0yZmQGACmrjqMotL7TjPxtjluExC9//77mDBhAsaOHQsAWLp0KTZt2oTly5dj9uzZDi6dZeQclCoVMKGbcap8MYYja3RrkQQAX/yWjbFdY60qs6Wqos1Zan+O7yE/uaKjyZ1ixdoaJHO/h5zfSmp/a7Kbm9vncoMKsfUqBGDw4nTJ/nUaStM1yD1OLL3ZaqbgMNVvyRZ0H3SqMhuxrSebtoYtrjm22HdiAb3Yg5tmmbmgWs59w9xxZW5CYg0BzjGcXi63CIju3buHgwcPYs6cOdrXPDw8kJSUhIyMDNH3lJaWorS0VPvvwsJCu5dTKXOjJp59qDEe71R5gTBMla9SASqhMs+NZuJVXVK1SI4cFmnvC7NUpmZHBYGWkDvFipKmGimmfg85v5VU9uANU7qITvWidFtNrQfIv1ibqwW1pJbU0puts6asqOrvqqo8Nra45li776QC+pEdI7Hq94t6r8sJquVm5jd1XEkdv2Id/x1931DCw9EFqAr5+fkoLy9H/fr19V6vX78+8vLyRN+TlpaGwMBA7V9kZGRVFFURzUEp9iN6qlR4vFOU9mRMS0monCn+r2ULUxKwd85DWD2hMzakdoGHSv/9Hqq/O8rpfqajm47CA32QGFfXrlX2uvvJcBoRZye2DeamWNGdFsSS75P6Pcz9VqL7e2iCrGBI6v1iQYX2PDE8oGHdtltreIco7JndG6sndMae2b1l1W5obma6nOG8rGq2Po5Nsec1Rw6p33xanyaYM6CZdpmSiXB1zxuR00L7eaaOK7HjVzNaUcnnOBO3GGV25coVNGjQAOnp6UhMTNS+PnPmTOzatQv79xuPBBCrIYqMjHTaUWa6HSGlRnyZ6tEvltYfgFWjyFxVVY18sCepbaiq0XpKWLu/5b7/6MVbRqMwHb3tljA3DY07cMbj2J5M/eaWnj+Go+3k3EOsLaujyB1l5hYB0b179+Dr64t169Zh8ODB2tdHjx6NgoICfP/992Y/w5mH3WvY48ZSHYID0ueMF6yqUl22nedl9fkt5aqK39xW3+FsxycDIgOdOnVCx44d8cknnwAAKioqEBUVhalTp8rqVO0KARGRXM52wapK7rzt1Q1/S5KDeYgMzJgxA6NHj0b79u3RsWNHfPjhhyguLtaOOiNyJ86W/6MqufO2Vzf8LcmW3CYgGj58OK5fv47XXnsNeXl5aNu2LX755RejjtZERETkftymycxabDIjIiJyPXLv324x7J6IiIjIFAZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT23mbrDWpqE3oWFhQ4uCREREcmluW+bm5iDAZFMt2/fBgBERkY6uCRERESk1O3btxEYGCi5nHOZyVRRUYErV66gdu3aUKlUji5OlSssLERkZCQuXrzIudyswP1oPe5D2+B+tA3uR9uw534UBAG3b99GREQEPDykewqxhkgmDw8PNGzY0NHFcLiAgACe9DbA/Wg97kPb4H60De5H27DXfjRVM6TBTtVERETk9hgQERERkdtjQESyeHt7Y968efD29nZ0UVwa96P1uA9tg/vRNrgfbcMZ9iM7VRMREZHbYw0RERERuT0GREREROT2GBARERGR22NARERERG6PARFp7d69G4MGDUJERARUKhW+++47veWCIOC1115DeHg4fHx8kJSUhHPnzjmmsE7M3H4cM2YMVCqV3l+/fv0cU1gnlpaWhg4dOqB27dqoV68eBg8ejLNnz+qtc/fuXaSmpqJu3brw9/fH0KFDcfXqVQeV2DnJ2Y+9evUyOiYnTZrkoBI7pyVLlqB169baxIGJiYn4+eeftct5LJpnbh86+jhkQERaxcXFaNOmDRYvXiy6fNGiRfj444+xdOlS7N+/H35+fkhOTsbdu3eruKTOzdx+BIB+/fohNzdX+7d69eoqLKFr2LVrF1JTU7Fv3z5s2bIFZWVl6Nu3L4qLi7XrPP/88/jhhx+wdu1a7Nq1C1euXEFKSooDS+185OxHAJgwYYLeMblo0SIHldg5NWzYEAsXLsTBgwfxxx9/4KGHHsI//vEPnDx5EgCPRTnM7UPAwcehQCQCgLBhwwbtvysqKoSwsDDh3Xff1b5WUFAgeHt7C6tXr3ZACV2D4X4UBEEYPXq08I9//MMh5XFl165dEwAIu3btEgSh8virWbOmsHbtWu06p0+fFgAIGRkZjiqm0zPcj4IgCD179hSee+45xxXKRdWpU0f4/PPPeSxaQbMPBcHxxyFriEiWrKws5OXlISkpSftaYGAgOnXqhIyMDAeWzDXt3LkT9erVQ9OmTTF58mTcuHHD0UVyemq1GgAQHBwMADh48CDKysr0jslmzZohKiqKx6QJhvtR46uvvkJISAhatWqFOXPm4M6dO44onksoLy/H119/jeLiYiQmJvJYtIDhPtRw5HHIyV1Jlry8PABA/fr19V6vX7++dhnJ069fP6SkpCA2NhaZmZl4+eWX0b9/f2RkZMDT09PRxXNKFRUVmD59Orp27YpWrVoBqDwmvby8EBQUpLcuj0lpYvsRAEaOHIno6GhERETg2LFjmDVrFs6ePYv169c7sLTO5/jx40hMTMTdu3fh7++PDRs2oEWLFjhy5AiPRZmk9iHg+OOQARFRFRsxYoT2/xMSEtC6dWvExcVh586d6NOnjwNL5rxSU1Nx4sQJ7Nmzx9FFcWlS+3HixIna/09ISEB4eDj69OmDzMxMxMXFVXUxnVbTpk1x5MgRqNVqrFu3DqNHj8auXbscXSyXIrUPW7Ro4fDjkE1mJEtYWBgAGI2auHr1qnYZWaZRo0YICQnB+fPnHV0UpzR16lT8+OOP2LFjBxo2bKh9PSwsDPfu3UNBQYHe+jwmxUntRzGdOnUCAB6TBry8vNC4cWO0a9cOaWlpaNOmDT766CMeiwpI7UMxVX0cMiAiWWJjYxEWFoZt27ZpXyssLMT+/fv12n9JuUuXLuHGjRsIDw93dFGciiAImDp1KjZs2IDt27cjNjZWb3m7du1Qs2ZNvWPy7NmzyMnJ4TGpw9x+FHPkyBEA4DFpRkVFBUpLS3ksWkGzD8VU9XHIJjPSKioq0ovEs7KycOTIEQQHByMqKgrTp0/Hm2++iSZNmiA2NhZz585FREQEBg8e7LhCOyFT+zE4OBgLFizA0KFDERYWhszMTMycORONGzdGcnKyA0vtfFJTU7Fq1Sp8//33qF27trYvRmBgIHx8fBAYGIinn34aM2bMQHBwMAICAjBt2jQkJiaic+fODi698zC3HzMzM7Fq1SoMGDAAdevWxbFjx/D888+jR48eaN26tYNL7zzmzJmD/v37IyoqCrdv38aqVauwc+dO/PrrrzwWZTK1D53iOHTY+DZyOjt27BAAGP2NHj1aEITKofdz584V6tevL3h7ewt9+vQRzp4969hCOyFT+/HOnTtC3759hdDQUKFmzZpCdHS0MGHCBCEvL8/RxXY6YvsQgLBixQrtOiUlJcKUKVOEOnXqCL6+vsKQIUOE3NxcxxXaCZnbjzk5OUKPHj2E4OBgwdvbW2jcuLHw0ksvCWq12rEFdzLjxo0ToqOjBS8vLyE0NFTo06ePsHnzZu1yHovmmdqHznAcqgRBEKom9CIiIiJyTuxDRERERG6PARERERG5PQZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQEREsuTl5WHatGlo1KgRvL29ERkZiUGDBunN35Seno4BAwagTp06qFWrFhISEvD++++jvLxcu052djaefvppxMbGwsfHB3FxcZg3bx7u3bun933Lli1DmzZt4O/vj6CgIDzwwANIS0vTLp8/fz5UKhX69etnVNZ3330XKpUKvXr1krVtms9SqVSoUaMGYmJi8Pzzz6OoqEjhXiIiV8W5zIjIrOzsbHTt2hVBQUF49913kZCQgLKyMvz6669ITU3FmTNnsGHDBjz22GMYO3YsduzYgaCgIGzduhUzZ85ERkYGvvnmG6hUKpw5cwYVFRX47LPP0LhxY5w4cQITJkxAcXEx3nvvPQDA8uXLMX36dHz88cfo2bMnSktLcezYMZw4cUKvXOHh4dixYwcuXbqkN4P78uXLERUVpWgbW7Zsia1bt+L+/fvYu3cvxo0bhzt37uCzzz4zWvfevXvw8vKyYE/ajzOWicilVNkkIUTksvr37y80aNBAKCoqMlp269YtoaioSKhbt66QkpJitHzjxo0CAOHrr7+W/PxFixYJsbGx2n//4x//EMaMGWOyTPPmzRPatGkjPPzww8Kbb76pfX3v3r1CSEiIMHnyZKFnz54ytu7vz9I1YcIEISwsTG/5smXLhJiYGEGlUgmCULntTz/9tBASEiLUrl1b6N27t3DkyBHtZxw5ckTo1auX4O/vL9SuXVt48MEHhQMHDgiCIAjZ2dnCww8/LAQFBQm+vr5CixYthE2bNgmCIAgrVqwQAgMD9cqzYcMGQfeSbWmZiEgcm8yIyKSbN2/il19+QWpqKvz8/IyWBwUFYfPmzbhx4wZefPFFo+WDBg1CfHw8Vq9eLfkdarUawcHB2n+HhYVh3759uHDhgtnyjRs3DitXrtT+e/ny5Rg1apTVtSU+Pj56zXjnz5/Ht99+i/Xr1+PIkSMAgEcffRTXrl3Dzz//jIMHD+LBBx9Enz59cPPmTQDAqFGj0LBhQxw4cAAHDx7E7NmzUbNmTQCVs9CXlpZi9+7dOH78ON555x34+/srKqMlZSIicWwyIyKTzp8/D0EQ0KxZM8l1/vzzTwBA8+bNRZc3a9ZMu47Y53/yySfa5jIAmDdvHlJSUhATE4P4+HgkJiZiwIABGDZsGDw89J/jHn74YUyaNAm7d+9Gu3bt8M0332DPnj1Yvny50k3VOnjwIFatWoWHHnpI+9q9e/fwn//8B6GhoQCAPXv24Pfff8e1a9fg7e0NAHjvvffw3XffYd26dZg4cSJycnLw0ksvafddkyZNtJ+Xk5ODoUOHIiEhAQDQqFEjxeW0pExEJI4BERGZJAiCXdYFgMuXL6Nfv3549NFHMWHCBO3r4eHhyMjIwIkTJ7B7926kp6dj9OjR+Pzzz/HLL7/oBUU1a9bEE088gRUrVuB///sf4uPj0bp1a0XlAIDjx4/D398f5eXluHfvHgYOHIh//etf2uXR0dHawAMAjh49iqKiItStW1fvc0pKSpCZmQkAmDFjBsaPH4///ve/SEpKwqOPPoq4uDgAwLPPPovJkydj8+bNSEpKwtChQxWX25IyEZE4BkREZFKTJk20naGlxMfHAwBOnz6NLl26GC0/ffo0WrRooffalStX0Lt3b3Tp0gX//ve/RT+3VatWaNWqFaZMmYJJkyahe/fu2LVrF3r37q233rhx49CpUyecOHEC48aNU7qJAICmTZti48aNqFGjBiIiIoya3AybC4uKihAeHo6dO3cafVZQUBCAytFrI0eOxKZNm/Dzzz9j3rx5+PrrrzFkyBCMHz8eycnJ2LRpEzZv3oy0tDT885//xLRp0+Dh4WEUXJaVlRl9jyVlIiJx7ENERCYFBwcjOTkZixcvRnFxsdHygoIC9O3bF8HBwfjnP/9ptHzjxo04d+4cHn/8ce1rly9fRq9evdCuXTusWLHCqBlMjCagEitDy5Yt0bJlS5w4cQIjR45UsnlaXl5eaNy4MWJiYmT1P3rwwQeRl5eHGjVqoHHjxnp/ISEh2vXi4+Px/PPPY/PmzUhJScGKFSu0yyIjIzFp0iSsX78eL7zwApYtWwYACA0Nxe3bt/W2VdNHyBZlIiJjDIiIyKzFixejvLwcHTt2xLfffotz587h9OnT+Pjjj5GYmAg/Pz989tln+P777zFx4kQcO3YM2dnZ+OKLLzBmzBgMGzYMjz32GIC/g6GoqCi89957uH79OvLy8pCXl6f9vsmTJ+ONN97A3r17ceHCBezbtw9PPfUUQkNDkZiYKFrG7du3Izc3t8pqQpKSkpCYmIjBgwdj8+bNyM7ORnp6Ol555RX88ccfKCkpwdSpU7Fz505cuHABe/fuxYEDB7T9rKZPn45ff/0VWVlZOHToEHbs2KFd1qlTJ/j6+uLll19GZmYmVq1apddx3NIyEZE0NpkRkVmNGjXCoUOH8NZbb+GFF15Abm4uQkND0a5dOyxZsgQAMGzYMOzYsQNvvfUWunfvjrt376JJkyZ45ZVXMH36dKhUKgDAli1bcP78eZw/f14vdxDwdx+kpKQkLF++HEuWLMGNGzcQEhKCxMREbNu2zah/jIbYCDh7UqlU+Omnn/DKK69g7NixuH79OsLCwtCjRw/Ur18fnp6euHHjBp566ilcvXoVISEhSElJwYIFCwAA5eXlSE1NxaVLlxAQEIB+/frhgw8+AFBZK/fll1/ipZdewrJly9CnTx/Mnz/fbKdoc2UiImkqQWkvSCIiIqJqhk1mRERE5PYYEBFRtefv7y/599tvvzm6eETkBNhkRkTV3vnz5yWXNWjQAD4+PlVYGiJyRgyIiIiIyO2xyYyIiIjcHgMiIiIicnsMiIiIiMjtMSAiIiIit8eAiIiIiNweAyIiIiJyewyIiIiIyO0xICIiIiK39/8BsD/kfBQ/TBAAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Import statements\n", + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", + "from idaes.core.surrogate.alamopy import AlamoTrainer, AlamoSurrogate, alamo\n", + "from idaes.core.surrogate.plotting.sm_plotter import (\n", + " surrogate_scatter2D,\n", + " surrogate_parity,\n", + " surrogate_residual,\n", + ")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0CklEQVR4nO3dd3gU1d4H8O8mkJCEkEICBAxJCIQACRFpN6AURSAgiqCCWOhKE9GrCHoVvJYEsXt5kYsSvSpFERBFBZEmTelFihATCBBKKBtSCJDM+wfuumVmd2Z3dmc2+X6eJ88Du7M7Z2bPnPnNqQZBEAQQERER6ZCf1gkgIiIiksJAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREusVAhYjcNn36dBgMBlnbGgwGTJ8+3aPp6datG7p166bb7yMi+RioEFUhn3zyCQwGg/mvRo0aaNSoEYYNG4aTJ09qnTzdiY+Ptzpf9erVw2233YalS5eq8v2lpaWYPn061q1bp8r3EVVHDFSIqqB///vf+Oyzz/Dhhx8iIyMDn3/+Obp27YorV654ZH//+te/UFZW5pHv9rSbb74Zn332GT777DM888wzOHXqFAYMGIAPP/zQ7e8uLS3Fyy+/zECFyA01tE4AEakvIyMD7dq1AwCMGjUKUVFRmDFjBpYvX44HHnhA9f3VqFEDNWr4ZnHSqFEjPPzww+b/P/roo2jatCneeecdjBkzRsOUERHAGhWiauG2224DAOTk5Fi9fujQIdx3332IjIxErVq10K5dOyxfvtxqm2vXruHll19Gs2bNUKtWLdStWxe33norfvrpJ/M2Yn1UysvL8dRTTyE6OhqhoaG4++67ceLECbu0DRs2DPHx8Xavi31ndnY2br/9dtSrVw+BgYFo2bIlZs+erehcONOgQQO0aNECubm5Drc7e/YsRo4cifr166NWrVpIS0vDp59+an4/Ly8P0dHRAICXX37Z3Lzk6f45RFWNbz4CEZEieXl5AICIiAjza7///js6d+6MRo0aYcqUKQgJCcGXX36J/v374+uvv8a9994L4EbAkJmZiVGjRqFDhw4oKirC9u3bsXPnTtx5552S+xw1ahQ+//xzDBkyBJ06dcKaNWvQt29ft45j9uzZaNWqFe6++27UqFED3377LcaNG4fKykqMHz/ere82uXbtGvLz81G3bl3JbcrKytCtWzccPXoUEyZMQEJCAr766isMGzYMly5dwpNPPono6GjMnj0bY8eOxb333osBAwYAAFq3bq1KOomqDYGIqozs7GwBgLB69Wrh3LlzQn5+vrB48WIhOjpaCAwMFPLz883b3nHHHUJqaqpw5coV82uVlZVCp06dhGbNmplfS0tLE/r27etwv9OmTRMsi5Pdu3cLAIRx48ZZbTdkyBABgDBt2jTza0OHDhXi4uKcfqcgCEJpaanddr169RKaNGli9VrXrl2Frl27OkyzIAhCXFyc0LNnT+HcuXPCuXPnhD179giDBw8WAAhPPPGE5Pe9++67AgDh888/N7929epVIT09Xahdu7ZQVFQkCIIgnDt3zu54iUgZNv0QVUE9evRAdHQ0YmNjcd999yEkJATLly/HTTfdBAC4cOEC1qxZgwceeACXL19GYWEhCgsLcf78efTq1QtHjhwxjxIKDw/H77//jiNHjsje//fffw8AmDhxotXrkyZNcuu4goKCzP82Go0oLCxE165d8eeff8JoNLr0natWrUJ0dDSio6ORlpaGr776Co888ghmzJgh+Znvv/8eDRo0wIMPPmh+rWbNmpg4cSKKi4uxfv16l9JCRPbY9ENUBc2aNQtJSUkwGo2YN28eNmzYgMDAQPP7R48ehSAIePHFF/Hiiy+KfsfZs2fRqFEj/Pvf/8Y999yDpKQkpKSkoHfv3njkkUccNmEcO3YMfn5+SExMtHq9efPmbh3Xpk2bMG3aNGzZsgWlpaVW7xmNRoSFhSn+zo4dO+LVV1+FwWBAcHAwWrRogfDwcIefOXbsGJo1awY/P+tnvRYtWpjfJyJ1MFAhqoI6dOhgHvXTv39/3HrrrRgyZAgOHz6M2rVro7KyEgDwzDPPoFevXqLf0bRpUwBAly5dkJOTg2+++QarVq3CRx99hHfeeQcffvghRo0a5XZapSaKq6iosPp/Tk4O7rjjDiQnJ+Ptt99GbGwsAgIC8P333+Odd94xH5NSUVFR6NGjh0ufJSLPY6BCVMX5+/sjMzMT3bt3x3/+8x9MmTIFTZo0AXCjuULOTToyMhLDhw/H8OHDUVxcjC5dumD69OmSgUpcXBwqKyuRk5NjVYty+PBhu20jIiJw6dIlu9dtayW+/fZblJeXY/ny5WjcuLH59bVr1zpNv9ri4uKwd+9eVFZWWtWqHDp0yPw+IB2EEZF87KNCVA1069YNHTp0wLvvvosrV66gXr166NatG+bMmYOCggK77c+dO2f+9/nz563eq127Npo2bYry8nLJ/WVkZAAA3n//favX3333XbttExMTYTQasXfvXvNrBQUFdrPD+vv7AwAEQTC/ZjQakZ2dLZkOT+nTpw9Onz6NRYsWmV+7fv06PvjgA9SuXRtdu3YFAAQHBwOAaCBGRPKwRoWomnj22Wdx//3345NPPsGYMWMwa9Ys3HrrrUhNTcXo0aPRpEkTnDlzBlu2bMGJEyewZ88eAEDLli3RrVs3tG3bFpGRkdi+fTsWL16MCRMmSO7r5ptvxoMPPoj/+7//g9FoRKdOnfDzzz/j6NGjdtsOHjwYzz33HO69915MnDgRpaWlmD17NpKSkrBz507zdj179kRAQAD69euHxx9/HMXFxZg7dy7q1asnGmx50mOPPYY5c+Zg2LBh2LFjB+Lj47F48WJs2rQJ7777LkJDQwHc6PzbsmVLLFq0CElJSYiMjERKSgpSUlK8ml4in6b1sCMiUo9pePK2bdvs3quoqBASExOFxMRE4fr164IgCEJOTo7w6KOPCg0aNBBq1qwpNGrUSLjrrruExYsXmz/36quvCh06dBDCw8OFoKAgITk5WXjttdeEq1evmrcRG0pcVlYmTJw4Uahbt64QEhIi9OvXT8jPzxcdrrtq1SohJSVFCAgIEJo3by58/vnnot+5fPlyoXXr1kKtWrWE+Ph4YcaMGcK8efMEAEJubq55OyXDk50NvZb6vjNnzgjDhw8XoqKihICAACE1NVXIzs62++zmzZuFtm3bCgEBARyqTOQCgyBY1KMSERER6Qj7qBAREZFuMVAhIiIi3WKgQkRERLrFQIWIiIh0i4EKERER6RYDFSIiItItn57wrbKyEqdOnUJoaCinqiYiIvIRgiDg8uXLaNiwod3inrZ8OlA5deoUYmNjtU4GERERuSA/Px833XSTw218OlAxTVOdn5+POnXqaJwaIiIikqOoqAixsbHm+7gjPh2omJp76tSpw0CFiIjIx8jptsHOtERERKRbDFSIiIhItxioEBERkW75dB8VIiK9qaysxNWrV7VOBpGmatasCX9/f1W+i4EKEZFKrl69itzcXFRWVmqdFCLNhYeHo0GDBm7Pc6ZpoFJRUYHp06fj888/x+nTp9GwYUMMGzYM//rXvziBGxH5FEEQUFBQAH9/f8TGxjqdxIqoqhIEAaWlpTh79iwAICYmxq3v0zRQmTFjBmbPno1PP/0UrVq1wvbt2zF8+HCEhYVh4sSJWiaNiEiR69evo7S0FA0bNkRwcLDWySHSVFBQEADg7NmzqFevnlvNQJoGKps3b8Y999yDvn37AgDi4+OxYMEC/Pbbb1omi4hIsYqKCgBAQECAxikh0gdTwH7t2jW3AhVN6yY7deqEn3/+GX/88QcAYM+ePdi4cSMyMjJEty8vL0dRUZHVHxGRnrDZmugGta4FTWtUpkyZgqKiIiQnJ8Pf3x8VFRV47bXX8NBDD4lun5mZiZdfftnLqSQiIiKtaFqj8uWXX+KLL77A/PnzsXPnTnz66ad488038emnn4puP3XqVBiNRvNffn6+l1NMRERE3qRpoPLss89iypQpGDx4MFJTU/HII4/gqaeeQmZmpuj2gYGB5nV9uL4PFRjLsDmnEAXGMq2TQuTzTp8+jSeeeAJNmjRBYGAgYmNj0a9fP/z888/mbTZv3ow+ffogIiICtWrVQmpqKt5++21z/xwAyMvLw8iRI5GQkICgoCAkJiZi2rRpdnPLzJ07F2lpaahduzbCw8PRpk0bq7J/+vTpMBgM6N27t11aZ86cCYPBgG7dusk+vqKiIrzwwgtITk5GrVq10KBBA/To0QNLliyBIAjm7X7//Xc88MADiI6ORmBgIJKSkvDSSy+htLTUvM2FCxfwxBNPoHnz5ggKCkLjxo0xceJEGI1GWWnJy8uDwWAQ/du6davsY+rWrRsmTZoke3tfpWnTT2lpqd0QPn9/f85BQE4t2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIvJJeXl56Ny5M8LDwzFz5kykpqbi2rVrWLlyJcaPH49Dhw5h6dKleOCBBzB8+HCsXbsW4eHhWL16NSZPnowtW7bgyy+/hMFgwKFDh1BZWYk5c+agadOm2L9/P0aPHo2SkhK8+eabAIB58+Zh0qRJeP/999G1a1eUl5dj79692L9/v1W6YmJisHbtWpw4cQI33XST+fV58+ahcWP51/ulS5dw6623wmg04tVXX0X79u1Ro0YNrF+/HpMnT8btt9+O8PBwbN26FT169ECPHj2wYsUK1K9fH7/99hv++c9/4ueff8batWsREBCAU6dO4dSpU3jzzTfRsmVLHDt2DGPGjMGpU6ewePFi2elavXo1WrVqZfVa3bp1ZX9eDkEQUFFRgRo1fHjaNEFDQ4cOFRo1aiR89913Qm5urrBkyRIhKipKmDx5sqzPG41GAYBgNBo9nFLSk1OXSoWEKd8Jcc/9/ddkygrh1KVSrZNG1VhZWZlw4MABoaysTOukKJaRkSE0atRIKC4utnvv4sWLQnFxsVC3bl1hwIABdu8vX75cACAsXLhQ8vvfeOMNISEhwfz/e+65Rxg2bJjDNE2bNk1IS0sT7rrrLuHVV181v75p0yYhKipKGDt2rNC1a1cZRycIY8eOFUJCQoSTJ0/avXf58mXh2rVrQmVlpdCyZUuhXbt2QkVFhdU2u3fvFgwGg5CVlSW5jy+//FIICAgQrl275jQ9ubm5AgBh165dktuYjv9///ufEBcXJ9SpU0cYNGiQUFRUJAjCjfsnAKu/3NxcYe3atQIA4fvvvxduueUWoWbNmsLatWuFK1euCE888YQQHR0tBAYGCp07dxZ+++038/5Mn/vuu++E1NRUITAwUOjYsaOwb98+QRAEobi4WAgNDRW++uorq3QuXbpUCA4ONqfLkqNrQsn9W9Omnw8++AD33Xcfxo0bhxYtWuCZZ57B448/jldeeUXLZJHO5RaWoFKwfq1CEJBXWCr+ASIf481mzQsXLuDHH3/E+PHjERISYvd+eHg4Vq1ahfPnz+OZZ56xe79fv35ISkrCggULJPdhNBoRGRlp/n+DBg2wdetWHDt2zGn6RowYgU8++cT8/3nz5uGhhx6SPQy8srISCxcuxEMPPYSGDRvavV+7dm3UqFEDu3fvxoEDB/D000/b1fSnpaWhR48eTo+xTp06qtZc5OTkYNmyZfjuu+/w3XffYf369cjKygIAvPfee0hPT8fo0aNRUFCAgoICxMbGmj87ZcoUZGVl4eDBg2jdujUmT56Mr7/+Gp9++il27tyJpk2bolevXrhw4YLVPp999lm89dZb2LZtG6Kjo9GvXz9cu3YNISEhGDx4MLKzs622z87Oxn333YfQ0FDVjtuWpoFKaGgo3n33XRw7dgxlZWXIycnBq6++ynkIyKGEqBD42Yx68zcYEB/FSbbI9y3adhyds9ZgyNxf0TlrDRZtO+7R/R09ehSCICA5OVlyG9MUEi1atBB9Pzk52byN2Pd/8MEHePzxx82vTZs2DeHh4YiPj0fz5s0xbNgwfPnll6LN/nfddReKioqwYcMGlJSU4Msvv8SIESNkH19hYSEuXrzo8PgA58fYokULyWMsLCzEK6+8gscee0x2uoAbU3TUrl3b6s9SZWUlPvnkE6SkpOC2227DI488Yu4zFBYWhoCAAAQHB6NBgwZo0KCB1Vwl//73v3HnnXciMTERgYGBmD17NmbOnImMjAy0bNkSc+fORVBQED7++GOrfU6bNg133nknUlNT8emnn+LMmTNYunQpAGDUqFFYuXIlCgoKANyYzO37779X9Hu4gnM8k8+JCQtC5oBU+P81Rt/fYMDrA1IQExakccqI3FNgLDP3vQKASgF4fsl+j9asCILgfCMXtgWAkydPonfv3rj//vsxevRo8+sxMTHYsmUL9u3bhyeffBLXr1/H0KFD0bt3b7tgpWbNmnj44YeRnZ2Nr776CklJSWjdurXH0qx0+6KiIvTt2xctW7bE9OnTFX120aJF2L17t9Wfpfj4eKuaipiYGPO09M60a9fO/O+cnBxcu3YNnTt3Nr9Ws2ZNdOjQAQcPHrT6XHp6uvnfkZGRaN68uXmbDh06oFWrVuaRuZ9//jni4uLQpUsXeQfsIh/uXUPV2aD2jdElKRp5haWIjwpmkEJVgqNmTU/l8WbNmpk7wUpJSkoCABw8eBCdOnWye//gwYNo2bKl1WunTp1C9+7d0alTJ/z3v/8V/d6UlBSkpKRg3LhxGDNmDG677TasX78e3bt3t9puxIgR6NixI/bv36/46T06Ohrh4eEOjw+wPsY2bdrYvX/w4EHzNiaXL19G7969ERoaiqVLl6JmzZqK0hYbG4umTZtKvm/7fQaDQfZgE7FmPDWMGjUKs2bNwpQpU5CdnY3hw4d7fJJD1qiQz4oJC0J6Yl0GKVRlaNGsGRkZiV69emHWrFkoKSmxe//SpUvo2bMnIiMj8dZbb9m9v3z5chw5cgQPPvig+bWTJ0+iW7duaNu2LbKzs2Ut0GgKdMTS0KpVK7Rq1Qr79+/HkCFDlBwe/Pz8MHjwYHzxxRc4deqU3fvFxcW4fv06br75ZiQnJ+Odd96xCwb27NmD1atXWx1jUVERevbsiYCAACxfvhy1atVSlC41BAQEWA0Nl5KYmIiAgABs2rTJ/Nq1a9ewbds2uwDTcnj0xYsX8ccff1g1hz388MM4duwY3n//fRw4cABDhw5V4UgcY6BCRKQTWjVrzpo1CxUVFejQoQO+/vprHDlyBAcPHsT777+P9PR0hISEYM6cOfjmm2/w2GOPYe/evcjLy8PHH3+MYcOG4b777sMDDzwA4O8gpXHjxnjzzTdx7tw5nD59GqdPnzbvb+zYsXjllVewadMmHDt2DFu3bsWjjz6K6Ohoq6YHS2vWrEFBQQHCw8MVH99rr72G2NhYdOzYEf/73/9w4MABHDlyBPPmzUObNm1QXFwMg8GAjz/+GAcOHMDAgQPx22+/4fjx4/jqq6/Qr18/pKenm+csMQUpJSUl+Pjjj1FUVGQ+RjmBg8n58+fNnzP9XblyRfbn4+Pj8euvvyIvLw+FhYWStS0hISEYO3Ysnn32Wfz44484cOAARo8ejdLSUowcOdJq23//+9/4+eefsX//fgwbNgxRUVHo37+/+f2IiAgMGDAAzz77LHr27Gk1bNxjnI4L0jEOTyYivVBzePKpS6XC5qOFXh1yf+rUKWH8+PFCXFycEBAQIDRq1Ei4++67hbVr15q32bBhg9CrVy+hTp06QkBAgNCqVSvhzTffFK5fv27eJjs7227YrOnPZPHixUKfPn2EmJgYISAgQGjYsKEwcOBAYe/eveZtTMNzpTz55JOyhycLgiBcunRJmDJlitCsWTMhICBAqF+/vtCjRw9h6dKlQmVlpXm7vXv3CgMHDhQiIyOFmjVrComJicK//vUvoaSkxLyNaSiv2F9ubq7TtJiGJ4v9LViwQPL433nnHSEuLs78/8OHDwv/+Mc/hKCgILvhyRcvXrT6bFlZmfDEE08IUVFRDocnf/vtt0KrVq2EgIAAoUOHDsKePXvs0v/zzz8LAIQvv/zS4XGqNTzZIAgKew7pSFFREcLCwszDwoiItHLlyhXk5uYiISFBk2YAInesW7cO3bt3x8WLF53WWn322Wd46qmncOrUKYejdB1dE0ru3+xMS0RERE6VlpaioKAAWVlZePzxx702lQj7qBARkU+znYvE8u+XX37xenrGjBkjmZ4xY8Z4PT1qeeONN5CcnIwGDRpg6tSpXtsvm36IiFTAph/tHD16VPK9Ro0aISjIuyMDz549i6KiItH36tSpg3r16nk1PVph0w8RERHgcC4SLdSrV6/aBCPewKYfIiIi0i0GKkREKvLh1nQiVcmdRdcZNv0QEamgZs2aMBgMOHfuHKKjoz0+rTiRXgmCgKtXr+LcuXPw8/Nze3QQAxUiIhX4+/vjpptuwokTJ5CXl6d1cog0FxwcjMaNG8taQsERBipERCqpXbs2mjVrhmvXrmmdFCJN+fv7o0aNGqrULDJQISJSkb+/P/z9/bVOBlGVwc60REREpFsMVIiIiEi3GKgQERGRbjFQISIiIt1ioEJERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt1ioEJERES6xUCFiIiIdIuBChEREemWpoFKfHw8DAaD3d/48eO1TBYRERHpRA0td75t2zZUVFSY/79//37ceeeduP/++zVMFREREemFpoFKdHS01f+zsrKQmJiIrl27apQiIiIi0hPd9FG5evUqPv/8c4wYMQIGg0Hr5BAREZEOaFqjYmnZsmW4dOkShg0bJrlNeXk5ysvLzf8vKiryQsqIiIhIK7qpUfn444+RkZGBhg0bSm6TmZmJsLAw819sbKwXU0hERETeZhAEQdA6EceOHUOTJk2wZMkS3HPPPZLbidWoxMbGwmg0ok6dOt5IKhEREbmpqKgIYWFhsu7fumj6yc7ORr169dC3b1+H2wUGBiIwMNBLqSIiIiKtad70U1lZiezsbAwdOhQ1augibiIiIiKd0DxQWb16NY4fP44RI0ZonRQiIiLSGc2rMHr27AkddJMhIiIiHdK8RoWIiIhICgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREusVAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIRBQYy7A5pxAFxjKtk0JEVK1pvighkd4s2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIiKqllijQmShwFhmDlIAoFIAnl+ynzUrREQaYaBCZCG3sMQcpJhUCALyCku1SRARUTXHQIXIQkJUCPwM1q/5GwyIjwrWJkFERNUcAxUiCzFhQcgckAp/w41oxd9gwOsDUhATFqRxyoiIqid2piWyMah9Y3RJikZeYSnio4IZpBARaYiBCpGImLAgBihERDrAph8iIiLSLQYqREREpFsMVIiIiEi3GKiQbnDaeiIissXOtKQLnLaeiIjEsEaFNMdp64mISAoDFdIcp60nIiIpDFRIc5y2noiIpDBQIc1x2noiIpLCzrSkC5y2noiIxDBQId3gtPVERGSLTT9ERESkWwxUiIiISLc0D1ROnjyJhx9+GHXr1kVQUBBSU1Oxfft2rZNFREREOqBpH5WLFy+ic+fO6N69O3744QdER0fjyJEjiIiI0DJZREREpBOaBiozZsxAbGwssrOzza8lJCRomCIiIiLSE02bfpYvX4527drh/vvvR7169dCmTRvMnTtXcvvy8nIUFRVZ/REREVHVpWmg8ueff2L27Nlo1qwZVq5cibFjx2LixIn49NNPRbfPzMxEWFiY+S82NtbLKSYiIiJvMgiCIDjfzDMCAgLQrl07bN682fzaxIkTsW3bNmzZssVu+/LycpSXl5v/X1RUhNjYWBiNRtSpU8craSYiIiL3FBUVISwsTNb9W9MalZiYGLRs2dLqtRYtWuD48eOi2wcGBqJOnTpWf0RERFR1aRqodO7cGYcPH7Z67Y8//kBcXJxGKSIiIiI90TRQeeqpp7B161a8/vrrOHr0KObPn4///ve/GD9+vJbJIiIiIp3QNFBp3749li5digULFiAlJQWvvPIK3n33XTz00ENaJouIiIh0QtPOtO5S0hmHiIiI9MFnOtMSEREROcJAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREuuVSoFJSUqJ2OoiIiIjsuBSo1K9fHyNGjMDGjRvVTg8RERGRmUuByueff44LFy7g9ttvR1JSErKysnDq1Cm100ZERETVnEuBSv/+/bFs2TKcPHkSY8aMwfz58xEXF4e77roLS5YswfXr19VOJxEREVVDqq2e/MEHH+DZZ5/F1atXERUVhTFjxmDKlCkIDg5W4+tFcfVkIiIi36Pk/l3DnR2dOXMGn376KT755BMcO3YM9913H0aOHIkTJ05gxowZ2Lp1K1atWuXOLoiIiKgacylQWbJkCbKzs7Fy5Uq0bNkS48aNw8MPP4zw8HDzNp06dUKLFi3USicRERFVQy4FKsOHD8fgwYOxadMmtG/fXnSbhg0b4oUXXnArcURERFS9udRHpbS01KN9T+RiHxUiIiLf4/E+KsHBwaioqMDSpUtx8OBBAECLFi3Qv39/1KjhVrcXIiIiIjOXoorff/8d/fr1w5kzZ9C8eXMAwIwZMxAdHY1vv/0WKSkpqiaSiIiIqieX5lEZNWoUUlJScOLECezcuRM7d+5Efn4+Wrdujccee0ztNBIREVE15VKNyu7du7F9+3ZERESYX4uIiMBrr70m2bmWiIiISCmXalSSkpJw5swZu9fPnj2Lpk2bup0oIiIiIsDFQCUzMxMTJ07E4sWLceLECZw4cQKLFy/GpEmTMGPGDBQVFZn/iIiIiFzl0vBkP7+/4xuDwQAAMH2N5f8NBgMqKirUSKcoDk8mIiLyPR4fnrx27VqXEkZERESkhEuBSteuXdVOBxEREZEdl2dnu3TpEj7++GPzhG+tWrXCiBEjEBYWplriiIiIqHpzqTPt9u3bkZiYiHfeeQcXLlzAhQsX8PbbbyMxMRE7d+5UO41ERERUTbnUmfa2225D06ZNMXfuXPOU+devX8eoUaPw559/YsOGDaonVAw70xIREfkeJfdvlwKVoKAg7Nq1C8nJyVavHzhwAO3atUNpaanSr3QJAxUiIiLfo+T+7VLTT506dXD8+HG71/Pz8xEaGurKVxIRERHZcSlQGTRoEEaOHIlFixYhPz8f+fn5WLhwIUaNGoUHH3xQ9vdMnz4dBoPB6s+2loaIiIiqL5dG/bz55pswGAx49NFHcf36dQBAzZo1MXbsWGRlZSn6rlatWmH16tV/J6iGywORiIiIqIpRHBVUVFRg69atmD59OjIzM5GTkwMASExMRHBwsPIE1KiBBg0aKP4cERERVX2Km378/f3Rs2dPXLp0CcHBwUhNTUVqaqpLQQoAHDlyBA0bNkSTJk3w0EMPifZ9MSkvL7daR4hrCREREVVtLvVRSUlJwZ9//un2zjt27IhPPvkEP/74I2bPno3c3FzcdtttuHz5suj2mZmZCAsLM//Fxsa6nQYiIiLSL5eGJ//444+YOnUqXnnlFbRt2xYhISFW77s6VPjSpUuIi4vD22+/jZEjR9q9X15ejvLycvP/i4qKEBsby+HJREREPsTjixL26dMHAHD33XebV0sG3F8xOTw8HElJSTh69Kjo+4GBgQgMDHTpu4mIiMj36Gr15OLiYuTk5OCRRx7xyPcTERGRb3EpUElISEBsbKxVbQpwo0YlPz9f9vc888wz6NevH+Li4nDq1ClMmzYN/v7+iuZiISIioqrL5UCloKAA9erVs3r9woULSEhIkN30c+LECTz44IM4f/48oqOjceutt2Lr1q2Ijo52JVlERERUxbgUqJj6otgqLi5GrVq1ZH/PwoULXdk9ERERVROKApWnn34aAGAwGPDiiy9azZ1SUVGBX3/9FTfffLOqCSSivxUYy5BbWIKEqBDEhAVpnRwiIo9TFKjs2rULwI0alX379iEgIMD8XkBAANLS0vDMM8+om0IiAgAs2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIiLyKEWBimm0z/Dhw/Hee+9x7hIiLykwlpmDFACoFIDnl+xHl6Ro1qwQUZXm0sy02dnZDFKIvCi3sMQcpJhUCALyCku1SRARkZe41Jm2pKQEWVlZ+Pnnn3H27FlUVlZava/G9PpE9LeEqBD4GWAVrPgbDIiPcm2NLSIiX+FSoDJq1CisX78ejzzyCGJiYkRHABGRemLCgpA5IBXPL9mPCkGAv8GA1weksNmHiKo8l9b6CQ8Px4oVK9C5c2dPpEk2JWsFEFUFBcYy5BWWIj4qmEEKEfksj6/1ExERgcjISJcSR0SuiwkLYoBCRNWKS51pX3nlFbz00ksoLWVHPiIiIvIcl2pU3nrrLeTk5KB+/fqIj49HzZo1rd7fuXOnKokjIiKi6s2lQKV///4qJ4OIiIjInkudafWCnWmJiIh8j5L7t6I+Kr/99pvDlZHLy8vx5ZdfKvlKIiIiIkmKApX09HScP3/e/P86depYTe526dIlPPjgg+qljoiIiKo1RYGKbSuRWKuRD7ckERERkc64NDzZEc5SS0RERGpRPVAhIiIiUovi4ckHDhzA6dOnAdxo5jl06BCKi4sBAIWFheqmjoiIiKo1RcOT/fz8YDAYRPuhmF43GAwORwapicOTiYiIfI/H1vrJzc11K2FERERESigKVOLi4hR9+bhx4/Dvf/8bUVFRij5HREREBHi4M+3nn3+OoqIiT+6CiIiIqjCPBiqcU4WIiIjcweHJREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt3yaKDy8MMPcyI2IiIicplLgUplZaXk68ePHzf/f/bs2ZxDhYiIiFymKFApKirCAw88gJCQENSvXx8vvfSS1XT5586dQ0JCguqJJCIioupJ0cy0L774Ivbs2YPPPvsMly5dwquvvoqdO3diyZIlCAgIAMC5U4iIiEg9impUli1bhjlz5uC+++7DqFGjsH37dpw7dw79+vVDeXk5gBuLE7oiKysLBoMBkyZNcunzpI0CYxk25xSiwFimdVKIiKgKUhSonDt3zmq9n6ioKKxevRqXL19Gnz59UFpa6lIitm3bhjlz5qB169YufZ60sWjbcXTOWoMhc39F56w1WLTtuPMPERERKaAoUGncuDEOHjxo9VpoaChWrVqFsrIy3HvvvYoTUFxcjIceeghz585FRESE4s+TNgqMZZi6ZB8q/2rpqxSA55fs99maFdYMERHpk6JApWfPnsjOzrZ7vXbt2li5ciVq1aqlOAHjx49H37590aNHD8WfJe3kFpaYgxSTCkFAXqFrtWpaYs0QEZF+KepM+/LLL+PUqVOi74WGhuKnn37Czp07ZX/fwoULsXPnTmzbtk3W9uXl5ea+MAC4MrOGEqJC4GeAVbDibzAgPipYu0S5QKpmqEtSNGLCgrRNHBERKatRiYiIQKtWrSTfDw0NRdeuXWV9V35+Pp588kl88cUXsmtiMjMzERYWZv6LjY2V9TlSX0xYEDIHpML/r87T/gYDXh+Q4nM396pUM0REVBUZBIXjia9fv4533nkHCxYswB9//AEASEpKwpAhQ/Dkk0+iZs2asr5n2bJluPfee+Hv729+raKiAgaDAX5+figvL7d6DxCvUYmNjYXRaOQMuBopMJYhr7AU8VHBPhekADfS3zlrjV3N0MYp3X3yeIiIfEFRURHCwsJk3b8VBSplZWW48847sWXLFvTo0QMtWrQAABw8eBCrV69G586dsWrVKlk1JJcvX8axY8esXhs+fDiSk5Px3HPPISUlxel3KDlQIimLth3H80v2o0IQzDVDg9o31jpZRERVlpL7t6I+KllZWcjPz8euXbvshhLv2bMHd999N7KysjB9+nSn3xUaGmoXjISEhKBu3bqyghQitQxq3xhdkqJ9umaIiKiqUtRHZeHChXj77bdF5ztJS0vDm2++ifnz56uWOCJviQkLQnpiXQYpREQ6o6hG5dixY+jQoYPk+//4xz+sFiVUat26dS5/loiIiKoeRTUqderUwdmzZyXfP336NEJDQ91OFBERERGgMFDp3r07Xn/9dcn3s7Ky0L17d7cTRURERAQobPqZNm0aOnbsiH/84x94+umnkZycDEEQcPDgQbzzzjs4cOAAtm7d6qm0EhERUTWjKFBp2bIlfvrpJ4wcORKDBw82r5QsCAKSk5OxatUqhxPCERERESmhKFABbnSY/f3337F7926rCd9uvvlmtdNGRERE1ZziQKWoqAi1a9fGzTffbBWcVFZWori4mBOvERERkWoUdaZdunQp2rVrhytXrti9V1ZWhvbt2+Pbb79VLXFERERUvSkKVGbPno3JkycjONh+hdyQkBA899xz+M9//qNa4oiIiKh6UxSo7N+/H926dZN8v0uXLti3b5+7aSIiIiICoDBQuXjxIq5fvy75/rVr13Dx4kW3E0VEREQEKAxU4uPjsX37dsn3t2/fjri4OLcTRURERAQoDFQGDBiAF154AWfOnLF77/Tp0/jXv/6FgQMHqpY4IiIiqt4MgiAIcje+fPky0tPTcfz4cTz88MNo3rw5AODQoUP44osvEBsbi61bt3ptvZ+ioiKEhYXBaDRyWDQREZGPUHL/VjSPSmhoKDZt2oSpU6di0aJF5v4o4eHhePjhh/Haa69xUUIiIiJSjaIaFUuCIKCwsBCCICA6Oto8nb6lTZs2oV27dggMDHQ7oWJYo0JEROR7lNy/FfVRsWQwGBAdHY169eqJBikAkJGRgZMnT7q6CyIiIqrmXA5U5HCxsoaIABQYy7A5pxAFxjKtk0JEpBnFa/0Qkect2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIiLyOo/WqBCRcgXGMnOQAgCVAvD8kv2sWSGiaomBCpHO5BaWmIMUkwpBQF5hqTYJIiLSkEcDFalOtkQkLSEqBH42l46/wYD4KPvFQImIqjp2piXSmZiwIGQOSIX/X4G+v8GA1wekICYsSOOUERF5n0c7016+fNmTX0+kKwXGMuQWliAhKsTtoGJQ+8bokhSNvMJSxEcFM0ghompLUaBy++23y9puzZo1LiWGyFd5YpROTFgQAxQiqvYUBSrr1q1DXFwc+vbti5o1a3oqTUQ+RWqUTpekaAYaRERuUhSozJgxA9nZ2fjqq6/w0EMPYcSIEUhJSfFU2oh8gqNROgxUiIjco6gz7bPPPosDBw5g2bJluHz5Mjp37owOHTrgww8/RFFRkafSSKRrHKVDROQ5Lo36SU9Px9y5c1FQUIDx48dj3rx5aNiwIYMVqpY4SoeIyHPcGvWzc+dOrF+/HgcPHkRKSgr7rVC1xVE6RESeoThQOXXqFD755BN88sknKCoqwsMPP4xff/0VLVu29ET6iHwGR+kQEalPUaDSp08frF27Fj179sTMmTPRt29f1KjBdQ2JiIjIMwyCgulj/fz8EBMTg3r16jmcHn/nzp2qJM6ZoqIihIWFwWg0ok6dOl7ZJxEREblHyf1bUXXItGnT3EqYrdmzZ2P27NnIy8sDALRq1QovvfQSMjIyVN0PERER+SZFNSpq+/bbb+Hv749mzZpBEAR8+umnmDlzJnbt2oVWrVo5/TxrVIiIiHyPkvu3KoHK+vXrUVJSgvT0dERERLj1XZGRkZg5cyZGjhzpdFsGKkRERL7HY00/M2bMQHFxMV555RUAN1ZHzsjIwKpVqwAA9erVw88//yyrNsRWRUUFvvrqK3PAI6a8vBzl5eXm/3PeFiIioqpN0YRvixYtspoyf/HixdiwYQN++eUXFBYWol27dnj55ZcVJWDfvn2oXbs2AgMDMWbMGCxdulRyqHNmZibCwsLMf7GxsYr2RURERL5FUdNPREQENm/ejBYtWgAAhg8fjoqKCvzvf/8DAGzduhX3338/8vPzZSfg6tWrOH78OIxGIxYvXoyPPvoI69evFw1WxGpUYmNj2fRDRETkQzzW9HP9+nUEBgaa/79lyxZMmjTJ/P+GDRuisLBQUWIDAgLQtGlTAEDbtm2xbds2vPfee5gzZ47dtoGBgVb7JyIioqpNUdNPYmIiNmzYAAA4fvw4/vjjD3Tp0sX8/okTJ1C3bl23ElRZWWlVa0JERETVl6IalfHjx2PChAn45ZdfsHXrVqSnp1s10axZswZt2rSR/X1Tp05FRkYGGjdujMuXL2P+/PlYt24dVq5cqSRZREREVEUpClRGjx4Nf39/fPvtt+jSpYvdBHCnTp3CiBEjZH/f2bNn8eijj6KgoABhYWFo3bo1Vq5ciTvvvFNJsoiIiKiK0nTCN3dxHhUiIiLfo+T+raiPChEREZE3KQpUrl27hsmTJ6Np06bo0KED5s2bZ/X+mTNn4O/vr2oCiYiIqPpSFKi89tpr+N///ocxY8agZ8+eePrpp/H4449bbePDLUlERESkM4o6037xxRf46KOPcNdddwEAhg0bhoyMDAwfPtxcu2IwGNRPJREREVVLimpUTp48aTWFftOmTbFu3Tps3rwZjzzyCCoqKlRPIBEREVVfigKVBg0aICcnx+q1Ro0aYe3atdi2bRuGDRumZtqIiIiomlMUqNx+++2YP3++3esNGzbEmjVrkJubq1rCiFxVYCzD5pxCFBjLquX+iYiqEkV9VF588UUcOnRI9L1GjRph/fr1+Omnn1RJGJErFm07jqlL9qFSAPwMQOaAVAxq37ja7J+IqKrhhG9UZRQYy9A5aw0qLXK0v8GAjVO6IyYsqMrvn4jIV3h8wrevvvoKAwYMQEpKClJSUjBgwAAsXrzYpcQSqSW3sMQqSACACkFAXmFptdg/EVFVpChQqaysxKBBgzBo0CAcOHAATZs2RdOmTfH7779j0KBBGDx4MOdRIc0kRIXAz2Z0vL/BgPio4GqxfyKiqkhRoPLee+9h9erVWL58OQ4dOoRly5Zh2bJlOHz4MJYuXYqffvoJ7733nqfSSuRQTFgQMgekwv+vuXz8DQa8PiDFa80uWu/fW9hZmIi8SVEfldatW2PSpEmSKyR//PHHeO+997B3717VEugI+6iQmAJjGfIKSxEfFaxJkKD1/j2JnYWJSA1K7t+KApWgoCAcPnwYjRuLF0zHjh1DcnIyysq886TlS4FKgbEMuYUlSIgKqXI3L6oe2FmYiNSi5P6taHhyUFAQLl26JBmoFBUVoVatWkq+slrgUyhVBY46CzNQISJPUdRHJT09HbNnz5Z8f9asWUhPT3c7UVVJgbHMHKQAQKUAPL9kP9v3yeewszARaUFRoPLCCy/g448/xgMPPIDffvsNRUVFMBqN2Lp1K+6//37MmzcPL7zwgqfS6pM4ZJWqiurSWZiI9EVR00+nTp2waNEiPPbYY/j666+t3ouIiMCCBQvQuXNnVRPo60xPobbt+nwKJS252mdqUPvG6JIUXWU7CxNVN77Qf9KlmWlLS0uxcuVKHDlyBACQlJSEnj17IjjYuzdfX+lMu2jbcTy/ZD8qBMH8FMo+KqQV9pkiIkDbssBjo37WrFmDCRMmYOvWrXZfbDQa0alTJ3z44Ye47bbbXEu5Qr4SqADiQ1Z9IZKlqkWPI3d4HRB5n9ZlgcdG/bz77rsYPXq06JeGhYXh8ccfx9tvv+21QMWXxIQFWf34fKolLeht5A6vAyJt6K0scERRZ9o9e/agd+/eku/37NkTO3bscDtRVR1HApFW9DRyh9cBkXb0VBY4oyhQOXPmDGrWrCn5fo0aNXDu3Dm3E1XVcSSQ79mTfxFzf8nBnvyLWifFLXoaucPrgEg7eioLnFHU9NOoUSPs378fTZs2FX1/7969iImJUSVhVRlHAqnL030c/vnlbny986T5/wNvaYS3HrhZ9f14i15G7vA6INKWXsoCZxTVqPTp0wcvvvgirly5YvdeWVkZpk2bhrvuuku1xFVVvhTJ6t2ibcfROWsNhsz9FZ2z1mDRtuOqfv+e/ItWQQoAfL3zZJWoWUlPrKtpnuN1QKQ9PZQFziga9XPmzBnccsst8Pf3x4QJE9C8eXMAwKFDhzBr1ixUVFRg586dqF+/vscSbMmXRv2IqcqL13mDs17ratS0zP0lB6+tOGT3+ot9W2DkbU0UpZUjW8TxOiCqfjw26qd+/frYvHkzxo4di6lTp8IU4xgMBvTq1QuzZs3yWpBSFdiOBCJlHPVx2PDHOVVGk3SIjxR9vV18hOzv4MgWx3gdEJEjigIVAIiLi8P333+Pixcv4ujRoxAEAc2aNUNEhPyCm6oHT9ciSPVxCA7wEx1N0iUpWnE60mIjMPCWRnZ9VNJi5eV3qZEtrqSFiKg6UhyomERERKB9+/ZqpoWqEG/UIpj6ONjO+ltytULV+QHeeuBmPJoeh+15F9EuPkJ2kAL41lwFRER65HKgQp7ly30avFmLINZrvcBYpvpokrRYZQGKCUe2EBG5R9GoH/IOT49k8TRvz49h22tdT6NJ9JQWIiJfxBoVnakKfRr0UIugp/kB9JQWIiJfo2mNSmZmJtq3b4/Q0FDUq1cP/fv3x+HDh7VMkua0mK2zwFiGzTmFqk1drpdaBD3ND6CntBAR+RJNa1TWr1+P8ePHo3379rh+/Tqef/559OzZEwcOHEBISIiWSdOMt2sjPNXptbrXIvhyHyMiIj1RNOGbp507dw716tXD+vXr0aVLF6fbV4UJ38RuZou2HbcbyeKJeTe0Xua7qpqzIQdZPxyCwHlTiIhEeWzCN08zGo0AgMhI8Um2ysvLUV5ebv5/UVGRV9LlCY5qMrxVG8Ghs+qbsz4HmT/8PZOtL/Yx8ibWPBGRM7oZ9VNZWYlJkyahc+fOSElJEd0mMzMTYWFh5r/Y2Fgvp1Idcpa3l+rToGZ/El9a5tsXFBjLkPWD/XT7XBFYnK+PbiMi79BNoDJ+/Hjs378fCxculNxm6tSpMBqN5r/8/HwvplA9rnaYVbtg10un16oit7AEYu2ofgZoFvyp3VFaLXKCdSIiQCdNPxMmTMB3332HDRs24KabbpLcLjAwEIGBgV5MmWe40mHWU8OWq3unVzWJ/a4A8FxGsibnVc9rDLHZkYjk0rRGRRAETJgwAUuXLsWaNWuQkJCgZXK8xpWaDE8OW+bQWXXY/q5+AKZmJOPxLoleT4veayzY7EhEcmlaozJ+/HjMnz8f33zzDUJDQ3H69GkAQFhYGIKCqvZNU2lNxr4TRrvXWLDrj15qqPReYyG1TpMe0kZE+qJpoDJ79mwAQLdu3axez87OxrBhw7yfIC+Tu7x9gbEMM36076Q5OaO51wt2jtJwTu7v6kl6mB3YRCrPeDuoY94l8k2aBio6msLFIa0LOLGnYwBo3Sjcq+nQc58HsqaXGgtnecZbQR3zLpHv0kVnWj1Tu4BzJejRw9NxVViDqLrRuhlKL3lGL+kgItfoZniyHqndIdHV4cV6GEasxRpE5D4tO0rrJc9IpWPF3gLddC4mImmsUXFAzQ6J7j7Vaf107G6tjtbNZ+R9eqgJlEoHALy64iBe//4gm4GIdI41Kg6oOYRSjadLTz4dO5sYzJ1aHc5AWj3poSZQLB2W9DZsWyt6nRiQCGCNikNqdkjUy9OlGLn9cFyp1WH/gOpN65pA23Ss2FuAV1cctHpPT8O2tcCOxlVTVarFZqDihFoFrV5GYdhSGkgoHaWh9/k8qhK9Fkx6GK5tSkff1jF4/fuDTh8Y9Hou1cYHiaqpqgWfDFRkUKug1cvTpSVPBxJ6rkmqSqpaweQpch4YqtO55INE1VMVg08GKl6ml6dLE08HEnqtSapKqmLB5EmOHhiq27nkg0TVUxWDTwYq1Zw3Agk91iT5CjlNEFWxYPI0qQeG6nYu+SBR9VTF4JOBCnklkNBbTZIvkNsEURULJq1Ux3PJB4mqxZ3gU699swyCr8xjL6KoqAhhYWEwGo2oU6eO1snxKrkZSq8ZjxwrMJahc9YauxvmxindRX/HRduO2xVMVbVfhafxXFJVUGAsUxR8ertvlpL7N2tUfJDcDFWdOgVWNUqbIPhUrB6ey6qluj6sKanF1nvfLAYqPkZuhtJ7xtMLvRZirjRBVMXmNa1+n6p4LqsjX31Y83a+13vfLAYqPkZuhnI142l94/bm/h0VYlqfB3Zy9N2bDOmDrz6saZHv9d43i4GKj5GboVzJeFrfGLy5f0eF2IY/zuniBqnHJghvBXC+dJPROqglcXqvJRCjVb7X+4MRAxUfIzdDKc14Wt8YvL1/qUJs57GLXkmH3JubZROE1jdEbwaSvnKT0Tq4J2l6ryUQo2W+1+ODkQkDFR/kbMIq081MScbT+sbg7f1LFWKVguDxdLhyc3P3huhukOPtQNIXbjJaB/fkmN5rCcRone/12jeLgYqPEstQUjczsYxne+PS+gLx9v6lCrF28ZEeTYcrNzd3b4hqPPV7O5D01k3GnQBO6+CenNNzLYEYvQRXWtfe2mKgUkUouZlJ3bi0vEBcaapy90KSKsQ8eR5cubm5c0NU66lfi0DW0zcZdwM4rYP76sSd612vtQRStA6u9NicyUClipB7M3N049L6ApG7fzUvJLFCzJPnwZWbmzs3RLWe+rV60vPUTUaNAE4vT79VnbdunHqqRXAn37tzHHptzmSgUkXIvZk5u3Fp/fThbP/eupA8dR5cubm5c0NUGuQ4KuS0DmTVpFYAV5XOiR5563rXYy2CK9w9Dr02ZzJQqSLk3sx8vbparxeSEq7c3Fy9ISoJcuQUcloHsmpR8zqoKufEW5Q88at9vYvt21kwpKeaFkfUCOr0en9goFKFyLmZ+Xp1tV4vJKVcubm5ekOUky/0WuXrKVpcB75yw/OkRduOY8rX+yAAMADIGuj4iV/N610qEHcUDOllTiU51Ajq9Hp/YKDiIXqe+tuXq6v1eiHpnbN8URVqqpTy5nWgdtOCLwY9BcYyc5ACAAKAKV/vcxgMq3W9OwrE95002m3vbzAgOMDPp4J3tYI6Pd4fGKioxLLg8IUo3Jerq/V4Ifm6qlJTpZQ3rgO1a6t8tT/F9rwLsImFIQDYkXcRd6VJnwe517uj4E0qEF/w63H8Z+1Ru++a3Ls5Sq5WSAbvpu/UU6Co5kOc3u4PDFRUYFtwCALMF6Teo3BfpbcLydexpkqau7UXatZW+UoTndg5MxgMottKvGzF2fXuLHgTC8QB4P019kEKALS+KRzxUcGiwfvek5fw0EdbdRkoVtWHOAYqbhIrOGxVCILTpwZv8MXqYhNfTruvqKqFnDvUqL1Qs7ZKT010Utek1DlrGxcBA2BVq2IwALfERbidDmfBm20g7ojptxEL3if3bo4ZPxzSdaBYFR/iGKi4SazgEDNx4S6UXL2uWeTtq9XFgG+n3ddUxULOVWrVXqhZWyUV9AQH+GFzTqHXAnmpa9LZOcsamGr3OXfTKzd4MwXiK/YW4NUVB0W/y/a3sQ3elQaKfMBSBwMVN4kVHIa/Hhss87OWkbevVBeL8eW0k3u0LuTVrL1Qq7ZKLOjp36Yh7v2/zV4L5B1dk47OGQDERgZj6bhOKL1a6XatnSl/hAT4y66xigkLQt/WMXj9+4NW2/sB+Hf/VggLqol28ZF2n7FMp9x98QFLPQxU3CT1tBQSWAMT5u+y2larKlo9VRcD2s6jQL5BD4W82h2M1aqtsgx6ggP8zEEK4J1A3tE1KXXO9p6w79eRnljX5TTY5o972zTCsl2nZNVYSQV7L33zu9P8Jrd2zNU1vVj7Io6BigpsC46SqxWKony1SGV0LUd02KZJ6Q3I02ln4aA/eqlF03MHY1PQszmn0GOBvCvliWi/jgx1+3WI5Y9lu05hybh02TU17gR7cmrHlD5gOSsXbX+L6lZuaRqobNiwATNnzsSOHTtQUFCApUuXon///lomSZKzjBETFmQ3LNk2yh/TtQm+23sKHeIjkRbrXgcyW44yulYFrm2anuudjBk/KiuwPJl2PTy1a02PBZ6eatH03sHYU4G8O+WJu/06nJH6vtKrlYpqadwJ9pzVjin5XZwF5mK1R0t3naxW5ZamgUpJSQnS0tIwYsQIDBgwQMukOCTnhuYsyv9sax5mrcsxbz/wlkZ464GbVUmf2L6nLtmH5Aah5oDI2wWuWJpm/HAIlTbbySmwPJF2vTy1a0mvgZre5nTRcwdjTwTycq4NZ9ekq/065FA7f7j6fY6CfCW/i7N+Pba/xdc7T5q3qy7llqaBSkZGBjIyMrRMglNyb2hSmS3/QhliI4Pw/b7TVu99vfMkHk2PU6VmRWzflQJwz6zNmNonGY93SQSgXoEr5ylcNE0i28ktYNS+WejpqV0Leg7U9NzkokdiQYM7NWVyrw2516S7v6ftscj5PiXH70r65AT5ch+wHAVKckaVVodyy6f6qJSXl6O8vNz8/6KiIo/vU+5FKzWh0MSFu5CR0kD0u7fnXVQlUJHaNwBkfn8IEIDHuya6vR9A/lO4ozRZmpzRXJMLTG9P7WqRW0DrPVDTe5OL3lgGDe7UlBUYy3C+uFz1a8PV31PqWBx9nyvHryR9SoJ8ucHcqFsT8NEvuaiE/RBpZ+Wou7U/vsBP6wQokZmZibCwMPNfbGysx/dpuqFZEssYpqjc9oRWCsAP+09DTLt49fqpjLw1wS6dJjN+OIQCY5nb+5C6QMW+23Q+/P+adlIqo7VuFO52ulwRExaE53onm9NVFZ7aF207js5ZazBk7q/onLUGi7YdN79XYCzD5pxC828lN1+7y3a/SsSEBSE9sa5P/ybeJtoM/PU+fLf3lNPfwJR/nliwG4Lw94yxal0bjn5PsXwi1aS9J/+i5PcpKaOUpM+Ss6YaJUzn/L+/5AIG4LHbmmDjlO52/YFM5aiYyb0dP+w5Khd8hU8FKlOnToXRaDT/5efne3yfthnF0UU7qH1jvD+kjd3rlQLQpVmU1WsDb2mkSm2KKRPO/SVXMuquBFy6iGwpvUAHtW+MjVO6Y8Hof2Dp+E6Kbozu3ODkWLTt+I2OvbhRIE/OaK6L/hmuclRAixVUSvK1qzxRQHo6X/g6qSbXCfN3OfwNbPOPAMAgALOGtLG6cXqCVD6RatLuP2uz5HGoGURIkQryTZPuyc2bYtfsxxtz7bYzlaP/6ttC9Hta3xSuaB9yAzc98ammn8DAQAQGBnp9v0qqBdvGRYhWm864rzXOFl3B9ryLaBcfoUqQYpsJAdhNUW3avxpPyq40l5iqPguMZQ6rNy15upOnXaEsAG/8cBh3pzXU/Ond1SpaqQJ657GLktXUnmxe8UQfGL12/tUTR02ujn4DqQAnMiTQo9eEo3widSwCpI/DG026UvOwmIY4GwBMyUh22tzurPnVtizo2zoGr604aFW+Ozs2vTfxyuVTgYqW1Og4FhMWpOqwZLFMKAAY0jEWC3/NdxoQKOVqpzjbG8xjtzbB8FvjJauAPd3JU68Xrys3Ymezc1YKgsNj9dSIFrXP8Z78i5jy9T4u9umE7TVqS+o3UDqcVq3+Do7ySXpiXWQOSLV7GHN0HN7qiO1oHhYBQOYPhwADzAMZxEgFYntPXMLxCyV2ZYEtA2A+Nj3OoaUmTQOV4uJiHD369+qVubm52L17NyIjI9G4sW88KYllEG91BJTKhE/c3gxP3N7MI/tXemxS1ZvDb40X3d4bQYSeLl7LQENpgCZnds528ZGaHKua53jRtuOYsmSfXU2hHoJLtakRBJiu0R15FzFx4S5Zv4HcG7zatVrO8smg9o2R3CAU/Wdtll2T4K3y1xTki83DAtzoG+ioljYmLAjPZSTfGPBg8zlYnBNTPyMY7Bd07JIUrcs5tNSmaaCyfft2dO/e3fz/p59+GgAwdOhQfPLJJxqlSj5nGcTTmcFZJlRr/2LDA+V+t9LAQ+kNzpWCXS8Xr2X+MRhuNEFZcrbYmdzZOb15rJa/hxr7NR2n2IK3aucLb3CULneDANvvvistCCVXr0v+BrbbO7vBe6K2U861mBYbgayByvKSJ8pfR7UWYk3ulcLffQOlfvPCy+WwVQn7LxN9TYDDpl1vPzh7kqaBSrdu3SA4WXJbr/QyD4WnM6GjVVLl3AiUBh5Kggh3CnatL16xfjK2HJ0nJbNzeutYxX6PjVO6u7VfqXkkDABGSNTKOcoXWgYwztLlTnnibBjvzmMXUSkI5gX3pLZ3dIN31A+qb2vxz8g533Lyp9bXq7OH0ikZyTeaeyxIrXFk+ZuLdZ414MaDi+W59vvrDaVNuybeeHD2JPZRcZGe+jl4KhNKFZ6Xyq6Z1+5wFry4UnshtnZSgbFM1jBEJYGilhev1A3YD5DVt0irPgVSCoxldn1IpizZh81Tbndr8TnR1clx4+Fy7i+5+Hhjruwbvu0SF97sjOssv7pTnjj7btvjdmUpC0C6T8WE+btQXH7d7lwqeZCQcy1qdb3KKWse75oIGGAuF+WscSRVBozukoDE6Np2ZSYAu9fUatrVaw2kCQMVF+mpn4OnSBWeWT8cMtcAmIOX0mvmws8AYPRtCRh+a4KsKmUxYgWsZUGnp0DRFVL5x9R0IxWgmcgJAAuMZZi38cbN3NM35x3HLtpVfQt/VU1LPW3LYXucfjZNZHJv+At+PY7/rD2qSQ1ogbEM3+095TC/ulOeKJ2C3dWlLEy/hW3nVgH251IvNc5qkFvWPN4lEXenNXS6xtGKvQXo2zpG9Df3MwDDO98oN8XKTLHX3G1i9YXRdAxUXKSXfg6eJHohwf6Jyhy8/PV/AcB/f8nFRxZPu0qfhpwVdFoEimo+dUjln7TYCNkFh7PZOS1rOADHNwt3j02qCVeNll3L4ywsvoInFuy2et/ZDR8A3l9zFLa8Edha/pa2LPOrO+WJ1HUqdbM0zR0kuHDtDGrfGMEB/g5/A8D3HyQsKSlrbMs5sbz46oqDeP37g8gckOq0j6HtuRJ7zZ1mMV8JKBmoyCBViGvdbuppYoXn5N7NraqNAekpnk2ZPrlBKEquVii6CTor6OTWKIj9bo5uylLveeKpQ2qNFiUFh1jBZe6AKrJPsZuF3EU3HQUy7eIj7ToUGgC0VWn2ZdNxFhjLHN40bPOFI94IbB0FKbb5VU554qh51TIwFQBs+OMcuiRFi56vyRnN8cYPh116yJLT3KBljbPazRjuBJGWc0dZMl3XS8al493BafAzGHBLXIRbnZLV6gOmx4CSgYoTzgpxX++k5IxY4RkeXNM6eLFpi7VUIQjmoYVK5gaRs96IK+t9OPo9HXUcVvOpQ2wUlYkaBYejhcxsz6GcY5MTyMSEBSFrYCqmfr0PlbjxRJ85MFX1a0POTcOUL1bsLcCrKw5Kngd3akCd3QylmnsA4MW+LdCndQwAYHNOIRKiQgD8PTJEqk+Po9+hS1K0VS2JqTlm45TuoudrUPvGVs0USs6DnN9AqxpnTzVjKH0otU1H35QYrNhXYLVNhSCg//9thuDhJhfLKRBsHxh9pQuDQfDVYTe4sShhWFgYjEYj6tSpo/r3FxjL0Dlrjd2PuHFK9yodnMhRYCyzumgXbTtuvkk54uz8WQ3ZBW7MHSDAqoCVkzax323JuHSriZks0wNA8rfOLSzBkLm/2u1nweh/KO4o6qwgVSPPiX0HIL6/zTmFDo9NaXps84Xte2o96Traj+U2tmn3A/DBkDZuPb06+w2dNfdsnNLdqv+VaTZ2R8G8s99Bzu+ods2v3N/AUzXOtvlJL+X1zwdPY9SnO6xqF019qxzdbD2RVrG8KPaAJhbIepqS+zdrVBzwlWoxLdjWBJieOLI35uGjjX+aC3El509svRE/AfiPwhuL1O+2Le+iZHoESA/zU+upQ07thRpPojFhNxZcNHWa9AMwqkuCuZOeJWfHpvQakKphVPtJ17IvhOX/bW9eYueyb+uGivcnd2I+29FPlixHb9jmc5NK4cbkXra1da50zLRtEvNE7Zaz7/RUjbNYfoqNDNa8vP7nl7vx9c6Tdq9XCsBjXRLw8S95NzqFAy51aFZCqunRtkm+S1K029MIeBoDFQc8VS3mreGi3h5uFhMWhOf7tsDwW+NFp5YGlM8N4sp6I1K/W/t48XWYTOmRek+tamy5N313+z7ZLrj4XEay5FTezo5NjWvAE01nYqOZAIgGQ+50NMwtLMG+k0Zz06bYxF6Wv6HY6CfgxueWjEtHWmyE5EymJpUAsjfm4XmLReikOgnL7ZhZlUjlpyXj0jVtxtiTf1E0SDGlY3jnGw8LrpSNrnDUBOytZie1MFBxwBPtrN4YCqb1cDPLpyhH5882mHJ3bhBns6KmxUY4TM9zGclW8yBYvqdGx2l3Rg/I5cqCi46OTY1rwN05Qix/Z6nRTKbZawWL1yyDIaUBSvbGXMz9Jdd+yLXI9pa/oeToJwClV288QztaONDko41/Wq2H5aiTsOlYN07prsqTsd7n1HA02aGWwdpveRdEXzcYYDeaB/D8jNH7Thgdvm87xYTeRvpYYqDihJoje6SeBFwZFaN0H1plQqnzJxVMubreCGD/NC1WaDtKj+VT8+TezUUnsXP3HMpdQdpVrgYFjo7Ncu0YGG6sEK6Eq7Uytr+zKZAUu79LdeRWWpXuqH+JJdPx2P6GpplfxbZXMjKpUoBkTZtYJ2HLhfz0/iDlLkf5KT2xrmYjMTtI/PYfPdoWd7RoYPe6p1cvn/HjIdH3vNHspDYGKjKo1c4qdRORUwUn9ylHj/1qbM+fo2DK9uIF/h4ZYeoDYPtZqafpjVO6i3Z2dZYeAcAbPx62mmnS1WG7JkpWkHaHp5or3ZnV1ZVaGbHfWWpkGSDeWdHdJioplhPzWd5gTHlhap9kZH3/d0Bl+Ot8STXvOWoGEAuU+7aOwevfH/RIk7SeHnKkOMtPrtSgqVGDlBYbgYG3NLJq/hl4SyPRIMXyWDxxbqWafV7s2wLt4iM83uykNgYqKpGT2aWqfJ1VwSl5yvGF4WZy5kgxVfPL6TDn7tO0khl4lQ7bBZSvIO0OTzRXqnEDU/r0KNpfyUGQYqpVU7uJypZlM6Il27wwJSMZjcKDYDBAsiO4syZSqeDQE7+x1PFbXkd6ahJytTZCrClRzYUg33rgZjyaHofteRfRLj7CLp8o4c75lroP9Gkd4zD/6Ok3tsRARQVyM7ttBpFTBefKBGByCzF3M6Wrn5cTTEnVnCwd10l02ml3nqaVzMBrWWjL/V28XculRpWy5W+rVvqVPD3K6cchNppJyXHL6SNl6TGJkVNieeGNHw9bDTW13Bdgv5qu7W92tuiKef4h03da5i9PNBs4ui712CSktDZCqinR1QBc6pykxToOUOSUm+6eb2f3AbH8o8ff2ISBiptEb6giwwtN5Fb5msi9SVhmfjmFmLuZ0p3PywmmpJ6oV+wrEP0s4PrTtFh6xGbgdXXYrha1XO5UKdsV6L2TZQWWnpwN1JafAVg6rpPdDUHuccvpI2Xr41/yMLxzgt3rzvKC3dxAEJ8zxbImcYrIzMK2+UvtZgOp6/Js0RW7BSf12CTkiNymRLUWgpQidxZoNZrg5NwHhL9+Vb03+zFQcZPUkFrb4YWWnFX5WmYMOTc5R0u2i3E3U3qjKUDq6fajDbnYNPV20Y6y7jxhypmB19Vhu56qqvcEqdqB5zKSJadcn7M+x7zWkydmAxXrPFop/D2KRik5faQcdVhVEoiK9X+yPAapxfzE+th6ownX9jrY8Me5G33obLZTq0bQW00NUg8+tsPNnZ1jU3ovlFxVHOTILTfVrIGVCmZt7xmD28fqrm+jJQYqEuReQAlRIaJzK9gOL5Ti7Ibt7CbnLPOLHcf2vAtuZUpPNAWIdRoceWsC5v6Sa/WZSkBydIO7T5i2n3c2bPfeNtYd5/q3cW0IsJ5I/batG4WLBodzNuQg84e/RxeY8p9aI9liwhx3HnXlRuds8jSpffoBOF9SbreitaNr1NmcKXIW8zPt21vBrek6cBQ0+QEIDvBzeR+OVvb2RPAiFUxO7t0cb/wob80j25oxpUGO3HLT0zWwYveM+b/l222np76NDFREKOkkmVtYggc7xNr90JWC/fBCKbY3SNsL1dFNzlHmF+uMB9zo62FLLFNKFRhy+5g4K2xM22w6Woj/W5tj90Q+4q+hvK72PXFEbmEoFvwUGMuw49hFLLGZ3GnZrlN4pldzh7+lXgMUE0e/rVg+zfrBfgik2pNJSQUCtvl75K0JGHGrfR8SOccIWE+eZtsMZLopTZi/S/SYpK5RZ/1e5CzmJ9XM5WmOOhdXArj3/za7NBJOci6cr/dhz4lLWPBrvuq1c1J5aFD7xrj7ZudrHonVjBkgPUxdjNwAxFHgq0YQJ6fTuDcDYzkYqNiQWz1nG8woja6lOGrGEcs0IQH+ovsODvAT7TsDkUJTLFM6Ctac1SbICfSk5quwPN8AMPo2ZfOOeLqjmqN5NioEATvyLuKuNGWjgrzN0TlS0kyVW1gi+rQNqD+ZlNiwdct1XSoFYO4vufjol1xkDXR8nmPCrJcYsCTWDLQj7yImLtwlq6lTsKlbtT2fBsBu/So5tTPeDlIA50GW2Hlwluf35F8U7X8D3Ah+5v/69wNfpXDjoUqtfhJSwaScBwixm7sA4IPBbVC3dqCsWlIl15YnO7vK6aj+wZA2Li014SkMVGzIqZ4TC2YMhhvr0rgzkZfSCeFMGdc2SHl9QApKrlaI9p0RKyFsM6Wc5qSlu8RrEwA4DfSczVdRIQh2awbJmXfE0x3V5MyzMXHhLpRcvY4uSdG67Jwm5xzJbaaSU+AB4tePK0+FljcUqSYVAc7Ps+USA87SGxMWhMjazssER+dVLMhydG7Fzr9WS2LIGaW489hFRIQ4XwdJrCbFmUoByN6Ui+f7tFTtmFw5f1K1IW3jlS1uqaQJ2LZpXK3yxPZ3teVvMOAWhZM6ehoDFRtyqudEo2vhxuJ5kSGBLhcuSiaEE7tp+hn+Xk+kwFgm6yYilimdBWuO3ne0uJ+zdngTA2AOUgB58454o6OanCpT037fe/Bm3XVOU1LYySnQ7W5kBmBct0T837ocyetHzurRcvuGSeVvJQtfipHTHGO5jdzFJm1rThwdr+X2WtbMORulaDDcaA4T/vq37X3P9FsAsHuokuujDbmiw8K9SUltiJzvUvo5tac4sPxd9568JNlRXi8YqNiQ0z4YEuAvWnBZTuzkSuGiZEI4qV7sppEQolXOsK9QmZzR3C5TOiuYnb3vLNBz9iQu1ufH2UXpqY5qljcSsc+KdaSu+GtSF3fWLVJKzncoLezkfKfYE2JsZLDk9ePsiVvuNWPK32JBh9KFL23ZXhPOblKu3kS8OVTVHZY3VtvA1HL+IkcjlaTOuwHAgx1jsfC3fIf9YVxZF0ptanWIdyWdSvsFAvZz9dgy/a7piXVxd5rzfjpaYqAiQk774L1tGmHZrlMujcSRIreqNa+wVFbGNR1H9sY8zP3lT9GnmdaNwp2mQ2yKakfvO3vykKp6NE3CdHdaQyzcli87mADU6ahmS+xGkjkg1a76WqyPUNt4xwsgOtqH3KdlsdV9HX2HkiBNKl1ihaztE6JUge7ohg44bzK0Zc7fm3Lx0QZ5/ZjkNFeJXROOblKujNIoMJbZzU0yRaQ/ht6WxLA8D4XFV/DEgt1225jKLdvfQmxSxaXjb3QSTrsp3GFThNJ1oTxV6+Rq05GJq+mUKreAG82gtit8A+Jz9QDigZK7x+VpBkFquU8fUFRUhLCwMBiNRtSpU8dj+ykwlll13AOk1/sAbmScIXN/tfueBaP/Ibr2jNj+HE0It2RcOkquVmDfSaNdlZ3YE5lt2i2/y3L2TKl0SEXZjt539lnb47Q9j4u2HRftoe+Iks/IOTap31ys+tsgWBfOpv06O0di+3D0m5g+J7W6r7PvsD1Hk3s3R+pNYVZPYSEB/qL5znISPFenG5c63tzCElWuGTlPhJbnwJac8+/sO+Xk1+/2nsKE+bvsXp8l0l/MlTziiJInekfbOrpG8i+UmRewlHtNm37DvScu2Q0ZdnQuXTlHWvT5UeO3tMznlqPeHLHch546+Cu5f7NGRQZHy4qLFaLujoOXqmr1NxjQv01D803ENGto65vCJQtoyXkZDM6Hn1k+CVv+Xyydjo5BznHacqWaVeozrjxBSP3m2/IuyuqfJOcYXXlalrO6r+2cIJZs26bFnsKkmrOyLFYudqUJwlltllrXjInUzcjqHIjcFN1t85eTX6WeD21fVrNvBKDsid523pDRtyVguMXwb6m0HTp9WXQfcuaMMjdFyBgybKL0OtLqZi2VTsuRgs6YzpHcBTRN+3C11lIvGKjIoDTwULNwcdSZrVKwX1NETtr9IG9eBq2jb1eqI20/4+oxSP3m7eMjnPZPkmJ745QaWu6ov4zcwsl2ThBLpnQ+9NFW83dZfqXY14s1l7jSBGE55Nf0xG1Kk7OJDZU8ATv73V29KTqiJL+2i4+0++0NANrG21+TavaNkHujEps35L+/5OKjjblORzTZDhu33Ifcc6TkXCopn5WeAzl5zt0O4KaRgkomu5PT18rEUT8hy1FbeluI0BIDFRlcCTzUXhguPbGu6JBMZzcLqbQ7WzRre94FXUbfprQZDAaramWpbV09BkfnzZUgVKyP09JdJ0WHliupgXHE0fHKmvTpr0LVNMW20n5DUqRWBZa6ZpQGm64s5OntPB0TFoSsgamY+vU+VOLGw0PmwFS3aiidUVLzIJU/nI1ocqWMksPduX+UTn0vN8+51AH8r9/cxHROL5Vek9206qivlaO5euwGA1iM2nLUoVvrFZUZqMjkSuDhTuEidgF0SYp2qXpcSdqdTWim5fBa23kYDIDDyb3c7Ygodd6U5gWxG+fXNrPa+hmA/z56C4ICathN0W4iVTj54UYnZH8/g9P1aRyNXLNk6muwaFs+5v9248+Av4egqj1XkNQTtyvBphodUL1ROHt7WQUlNQ9SS4MAjs+l1D6CA/ywOafQpfPp7tw/Sqe+N09K5yTPuZI3B7VvjJDAGnb9k5Q2rYoFZ5N7Nzd3AwDs5+qx/YztqC2xfWpdq27CQEUBbz15SV0AG6d0t4rIlUxzLCftzpoWtFz7wXaUBHDjAnM0c6Uaa2ZInTcleUHu/CujPt0h+mRjedO0LWgGt2+MJ+5oam63lloTBxCv1TGNXDP8VXoL+DsI2Zp7wWqYuIAbkxr+Z0gbWU1dcs+FoxufK0GHu7+7ksLZ3YBGST5SY1/PZSSb+yW5Gmw6G2Zvu4Clbb86pSPb3Jn7R+nU91KT0onlOVcD4rZx9s3HrjStyunzY6tLUjTeHZwGP4MBlYJgN2rLcp96GBpvwkBFh5wN4zQ/EhhsP6n+fk08NRGQkjZZsaRVCtJzLJirWi2epkY6mDTOU+TO4Cr2ZCPWTDK5d3Nk/XWzWbjtONJiw8zLLDiaA8i20Fm265TVyDUAVn0NOmWtsUtjJYDIkECX84HSIMKVoMOVploTJYWzN5821djXom3HrTpPT+7dXDQYjgkLkrzepB6ObNP3XO9kNAoPwsXSq3jpm99d7oTtqANqZG3nc4bsOCbS+R3iU9+bF2EUSYdYnnM1IBatDclobv5tTPwAWd8l91q0+40ykh2mX09D4xmo6IizCeXE1u9RM8KV6nj7gRtP0I4oKXylqqL9DM4vZlMVrgDxDoGeJlYw9W/T0FybIfU0tSPvov16TX9VSUsV/FJPWdl/rVJru49teRetRgdZ9jUQG5gip/BUei7EbnxStUhygw5Xm1XkFs7efNpUY19iNQtv/HgYd9/c0C4Yfq53MhpFBNldb1KLI4qlL+uHQzBIBOdKbnZSkyya1l5yNGeIqXbEltTU90pHSLoTEIvlz/Cgmla1OQJu9OdSo5wS+43e+OEwnuudLDnqzdOrOCvBQEUn5EwoJ7Z+j5oRrtSF54nFqVzp8Jg10HqyNcNfBZPUsUs9IVUK4pNrKUm70ip4sYLpmV7NkVdYitKr1zDy0x12n7lYat/xT07BL9bPY+4vuaLpkhodJFUL9FxGstt5zVkQIRbAbpzSXXHQ4UpTrdzC2ZtPm85qWF0dJSIVDGf+tSK2ZX8OR53wpRbsk5qhS+mwc9tJMAXAKuAysSxDAPEp+x1Ny+DKCEl3+hnZ5s8uSdFWyxAIcC0gFcsPUr9/65vCJa8tdwIxtTFQ0QE51fKm6ns1I1yxTO2tDn6uFPSWQ1sNBjit5XHUlCUIwM5jF9G3tfod+2zZjt4yMRVUm3MKRT8XERwg2pZtWaMCOM8DUtX4JmJBoljHu+cykvF4l0SHxyqXVBDhqH+Ws4nf1OgAK6dwLjCW4bu9BXafNf0OanfE3XfCKLqvvScumYeYuzJKxN9gEF1N3cRUS/HB4DYOF9+T27Rp2qfSm51lmXS+pFx0ojwTR2uOAcD7g9vgrjTxBy+p397ZNA6O8rIaa705C37lzFDtKAB3FNB7u8O3FF0EKrNmzcLMmTNx+vRppKWl4YMPPkCHDh20TpbXOJpczLZaXq0I19EN1/R9UhO9iVF6Ubo67XhuYYnsFUudFaBK52R2pQpeTmDjaGVWqWmzLQMIsfWanH2/LbEC0RuFlFjfCFcKazX7izgbQSK1AvDk3s0lh167qsBYhhk/HrJ7fWy3JuahrIBro0ReH5Ai2rHTUqUA1K39d58kqckTxWo9bJuN3ncS8Dhiupk6W2zVzwAUFl9B48hgyWvKESWTRjqi1lpvzspEqVGatvnBnXuHKzWTatM8UFm0aBGefvppfPjhh+jYsSPeffdd9OrVC4cPH0a9evW0Tp5X7Dtp/8QEiFfLqzU/i1qLwwGuXZRKLxx39mE7bwEgPrmWs8JITsc+V/oxODoXUr/3pdJr5g61M344hPCgmk7nb3B0I5EqED1ZSNn+pmO7JcLP4Hz4qC1P9BcRO25HnS0BoFF4kLnvhFrpkKoVDA8OkN2XxpSnpfKS2LpbJo5GjTkqlzb8cc4uP0vVZChhm5dtCQLwxILdTtdjc7YP2+DUk/P4SB2bszQ7G6Vpmx/0UjviCs0DlbfffhujR4/G8OHDAQAffvghVqxYgXnz5mHKlCkap87zCoxlmPGD/ROTiVS1vDuZTM3F4dy5Sci9cNTYh+XCjGKTa7la82HZsc/2c0pqBxydC7E+JzN+VDadvZwbiTcLLrHfdNbaHLvt5KTNW/1FnI2KE2tGcTcdSmdItgzopPK0o7y39+Qlu/XDTDUZzq5By3zqyZvioPaNkdwgFP3/b7NdrajlNSHWfK6Ut+fxUXLenE17ILUoqy8FKCaaBipXr17Fjh07MHXqVPNrfn5+6NGjB7Zs2WK3fXl5OcrLy83/Lyoq8ko6PUnOHBtqF7qOqhi9Mc+FJTkXjhr7eL5vCwy/NV60AHC15sO2Y5/t51xZesGTbdneupHIISffv9q/Fe5oUd9p2rw1OkFywr2/OmiKNaO4mw5H/SacLTngyuy86Yl1cXea/ZICruQ5T94US65WOG26dbQem1xazOMj97w5atLVsuOrJ2gaqBQWFqKiogL169e3er1+/fo4dMi+liEzMxMvv/yyt5LnFXL6D6hd6DqrYvT0PBdKqbUPqQLA1ZoPsY59lp9Ts0+RJU+fD2+Qk+/Lr1XKDkS9MTpBLFAd1SUBwzv/vVCfJ9LhygzJ7gT3YvlCT0NVpdJjS430eXseHyXE9mM5O21VCVIAHTT9KDF16lQ8/fTT5v8XFRUhNjZWwxS5TyyzWc6x4alMLlXIKb3IvHFRenofrtZ8yBmF5YmaC28VhJ7krK8BALRz0vHRkrdqiJztx1PpkAoqpV5XO7DQW57zVrnp6nHrJT9WFQZBar1xL7h69SqCg4OxePFi9O/f3/z60KFDcenSJXzzzTcOP19UVISwsDAYjUbUqVPHw6n1rAJjmVVms/2/1ulRe3tvpEmJRduO2xVGckZruPo5NWidR9RgOobPtuTh+/2nza8PvKUR3nrgZu0SVgV4Im/qLc95q9zU23FXBUru35oGKgDQsWNHdOjQAR988AEAoLKyEo0bN8aECROcdqatSoEKac/VwoiFmDr25F/E9ryLaBcf4XTuCpKHeZP0Ssn9W/Omn6effhpDhw5Fu3bt0KFDB7z77rsoKSkxjwIi8hZX+2z4ak96vUmLZYCiNuZNqgo0D1QGDRqEc+fO4aWXXsLp06dx880348cff7TrYEtERETVj+ZNP+5g0w8REZHvUXL/9vNSmoiIiIgUY6BCREREusVAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLd0nwKfXeYJtUtKirSOCVEREQkl+m+LWdyfJ8OVC5fvgwAiI2N1TglREREpNTly5cRFhbmcBufXuunsrISp06dQmhoKAwGg9bJ8bqioiLExsYiPz+fax25gedRHTyP6uB5VAfPozo8dR4FQcDly5fRsGFD+Pk57oXi0zUqfn5+uOmmm7ROhubq1KnDC1EFPI/q4HlUB8+jOnge1eGJ8+isJsWEnWmJiIhItxioEBERkW4xUPFhgYGBmDZtGgIDA7VOik/jeVQHz6M6eB7VwfOoDj2cR5/uTEtERERVG2tUiIiISLcYqBAREZFuMVAhIiIi3WKgQkRERLrFQMUHbNiwAf369UPDhg1hMBiwbNkyq/cFQcBLL72EmJgYBAUFoUePHjhy5Ig2idUxZ+dx2LBhMBgMVn+9e/fWJrE6lZmZifbt2yM0NBT16tVD//79cfjwYattrly5gvHjx6Nu3bqoXbs2Bg4ciDNnzmiUYn2Scx67detmlx/HjBmjUYr1afbs2WjdurV5MrL09HT88MMP5veZF+Vxdh61zosMVHxASUkJ0tLSMGvWLNH333jjDbz//vv48MMP8euvvyIkJAS9evXClStXvJxSfXN2HgGgd+/eKCgoMP8tWLDAiynUv/Xr12P8+PHYunUrfvrpJ1y7dg09e/ZESUmJeZunnnoK3377Lb766iusX78ep06dwoABAzRMtf7IOY8AMHr0aKv8+MYbb2iUYn266aabkJWVhR07dmD79u24/fbbcc899+D3338HwLwol7PzCGicFwXyKQCEpUuXmv9fWVkpNGjQQJg5c6b5tUuXLgmBgYHCggULNEihb7A9j4IgCEOHDhXuueceTdLjq86ePSsAENavXy8Iwo28V7NmTeGrr74yb3Pw4EEBgLBlyxatkql7tudREASha9euwpNPPqldonxURESE8NFHHzEvusl0HgVB+7zIGhUfl5ubi9OnT6NHjx7m18LCwtCxY0ds2bJFw5T5pnXr1qFevXpo3rw5xo4di/Pnz2udJF0zGo0AgMjISADAjh07cO3aNav8mJycjMaNGzM/OmB7Hk2++OILREVFISUlBVOnTkVpaakWyfMJFRUVWLhwIUpKSpCens686CLb82iiZV706UUJCTh9+jQAoH79+lav169f3/weydO7d28MGDAACQkJyMnJwfPPP4+MjAxs2bIF/v7+WidPdyorKzFp0iR07twZKSkpAG7kx4CAAISHh1tty/woTew8AsCQIUMQFxeHhg0bYu/evXjuuedw+PBhLFmyRMPU6s++ffuQnp6OK1euoHbt2li6dClatmyJ3bt3My8qIHUeAe3zIgMVor8MHjzY/O/U1FS0bt0aiYmJWLduHe644w4NU6ZP48ePx/79+7Fx40atk+LTpM7jY489Zv53amoqYmJicMcddyAnJweJiYneTqZuNW/eHLt374bRaMTixYsxdOhQrF+/Xutk+Ryp89iyZUvN8yKbfnxcgwYNAMCuJ/uZM2fM75FrmjRpgqioKBw9elTrpOjOhAkT8N1332Ht2rW46aabzK83aNAAV69exaVLl6y2Z34UJ3UexXTs2BEAmB9tBAQEoGnTpmjbti0yMzORlpaG9957j3lRIanzKMbbeZGBio9LSEhAgwYN8PPPP5tfKyoqwq+//mrVvkjKnThxAufPn0dMTIzWSdENQRAwYcIELF26FGvWrEFCQoLV+23btkXNmjWt8uPhw4dx/Phx5kcLzs6jmN27dwMA86MTlZWVKC8vZ150k+k8ivF2XmTTjw8oLi62ilxzc3Oxe/duREZGonHjxpg0aRJeffVVNGvWDAkJCXjxxRfRsGFD9O/fX7tE65Cj8xgZGYmXX34ZAwcORIMGDZCTk4PJkyejadOm6NWrl4ap1pfx48dj/vz5+OabbxAaGmpu6w8LC0NQUBDCwsIwcuRIPP3004iMjESdOnXwxBNPID09Hf/4xz80Tr1+ODuPOTk5mD9/Pvr06YO6deti7969eOqpp9ClSxe0bt1a49Trx9SpU5GRkYHGjRvj8uXLmD9/PtatW4eVK1cyLyrg6DzqIi9qNt6IZFu7dq0AwO5v6NChgiDcGKL84osvCvXr1xcCAwOFO+64Qzh8+LC2idYhR+extLRU6NmzpxAdHS3UrFlTiIuLE0aPHi2cPn1a62Tritj5AyBkZ2ebtykrKxPGjRsnRERECMHBwcK9994rFBQUaJdoHXJ2Ho8fPy506dJFiIyMFAIDA4WmTZsKzz77rGA0GrVNuM6MGDFCiIuLEwICAoTo6GjhjjvuEFatWmV+n3lRHkfnUQ950SAIguCdkIiIiIhIGfZRISIiIt1ioEJERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQIfJxp0+fxhNPPIEmTZogMDAQsbGx6Nevn9UaJ5s3b0afPn0QERGBWrVqITU1FW+//TYqKirM2+Tl5WHkyJFISEhAUFAQEhMTMW3aNFy9etVqf3PnzkVaWhpq166N8PBwtGnTBpmZmeb3p0+fDoPBgN69e9uldebMmTAYDOjWrZusYzN9l8FgQI0aNRAfH4+nnnoKxcXFCs8SEfkqrvVD5MPy8vLQuXNnhIeHY+bMmUhNTcW1a9ewcuVKjB8/HocOHcLSpUvxwAMPYPjw4Vi7di3Cw8OxevVqTJ48GVu2bMGXX34Jg8GAQ4cOobKyEnPmzEHTpk2xf/9+jB49GiUlJXjzzTcBAPPmzcOkSZPw/vvvo2vXrigvL8fevXuxf/9+q3TFxMRg7dq1OHHihNWqwPPmzUPjxo0VHWOrVq2wevVqXL9+HZs2bcKIESNQWlqKOXPm2G179epVBAQEuHAmPUePaSLyKV6brJ+IVJeRkSE0atRIKC4utnvv4sWLQnFxsVC3bl1hwIABdu8vX75cACAsXLhQ8vvfeOMNISEhwfz/e+65Rxg2bJjDNE2bNk1IS0sT7rrrLuHVV181v75p0yYhKipKGDt2rNC1a1cZR/f3d1kaPXq00KBBA6v3586dK8THxwsGg0EQhBvHPnLkSCEqKkoIDQ0VunfvLuzevdv8Hbt37xa6desm1K5dWwgNDRVuueUWYdu2bYIgCEJeXp5w1113CeHh4UJwcLDQsmVLYcWKFYIgCEJ2drYQFhZmlZ6lS5cKlkWpq2kiInFs+iHyURcuXMCPP/6I8ePHIyQkxO798PBwrFq1CufPn8czzzxj936/fv2QlJSEBQsWSO7DaDQiMjLS/P8GDRpg69atOHbsmNP0jRgxAp988on5//PmzcNDDz3kdu1CUFCQVXPU0aNH8fXXX2PJkiXm5efvv/9+nD17Fj/88AN27NiBW265BXfccQcuXLgAAHjooYdw0003Ydu2bdixYwemTJmCmjVrArixsnF5eTk2bNiAffv2YcaMGahdu7aiNLqSJiISx6YfIh919OhRCIKA5ORkyW3++OMPAECLFi1E309OTjZvI/b9H3zwgbnZBwCmTZuGAQMGID4+HklJSUhPT0efPn1w3333wc/P+rnnrrvuwpgxY7Bhwwa0bdsWX375JTZu3Ih58+YpPVSzHTt2YP78+bj99tvNr129ehX/+9//EB0dDQDYuHEjfvvtN5w9exaBgYEAgDfffBPLli3D4sWL8dhjj+H48eN49tlnzeeuWbNm5u87fvw4Bg4ciNTUVABAkyZNFKfTlTQRkTgGKkQ+SlCw8LmSbQHg5MmT6N27N+6//36MHj3a/HpMTAy2bNmC/fv3Y8OGDdi8eTOGDh2Kjz76CD/++KNVsFKzZk08/PDDyM7Oxp9//omkpCS0bt1aUToAYN++fahduzYqKipw9epV9O3bF//5z3/M78fFxZkDAgDYs2cPiouLUbduXavvKSsrQ05ODgDg6aefxqhRo/DZZ5+hR48euP/++5GYmAgAmDhxIsaOHYtVq1ahR48eGDhwoOJ0u5ImIhLHQIXIRzVr1szcCVZKUlISAODgwYPo1KmT3fsHDx5Ey5YtrV47deoUunfvjk6dOuG///2v6PempKQgJSUF48aNw5gxY3Dbbbdh/fr16N69u9V2I0aMQMeOHbF//36MGDFC6SECAJo3b47ly5ejRo0aaNiwoV3TkW2zV3FxMWJiYrBu3Tq77woPDwdwYzTRkCFDsGLFCvzwww+YNm0aFi5ciHvvvRejRo1Cr169sGLFCqxatQqZmZl466238MQTT8DPz88u6Lt27ZrdflxJExGJYx8VIh8VGRmJXr16YdasWSgpKbF7/9KlS+jZsyciIyPx1ltv2b2/fPlyHDlyBA8++KD5tZMnT6Jbt25o27YtsrOz7ZpzxJgCHbE0tGrVCq1atcL+/fsxZMgQJYdnFhAQgKZNmyI+Pl5W/5ZbbrkFp0+fRo0aNdC0aVOrv6ioKPN2SUlJeOqpp7Bq1SoMGDAA2dnZ5vdiY2MxZswYLFmyBP/85z8xd+5cAEB0dDQuX75sdaymPihqpImI7DFQIfJhs2bNQkVFBTp06ICvv/4aR44cwcGDB/H+++8jPT0dISEhmDNnDr755hs89thj2Lt3L/Ly8vDxxx9j2LBhuO+++/DAAw8A+DtIady4Md58802cO3cOp0+fxunTp837Gzt2LF555RVs2rQJx44dw9atW/Hoo48iOjoa6enpomlcs2YNCgoKvFZz0KNHD6Snp6N///5YtWoV8vLysHnzZrzwwgvYvn07ysrKMGHCBKxbtw7Hjh3Dpk2bsG3bNnM/nkmTJmHlypXIzc3Fzp07sXbtWvN7HTt2RHBwMJ5//nnk5ORg/vz5Vh2GXU0TEUlj0w+RD2vSpAl27tyJ1157Df/85z9RUFCA6OhotG3bFrNnzwYA3HfffVi7di1ee+013Hbbbbhy5QqaNWuGF154AZMmTYLBYAAA/PTTTzh69CiOHj1qNfcJ8Hcflx49emDevHmYPXs2zp8/j6ioKKSnp+Pnn3+2639hIjYiyZMMBgO+//57vPDCCxg+fDjOnTuHBg0aoEuXLqhfvz78/f1x/vx5PProozhz5gyioqIwYMAAvPzyywCAiooKjB8/HidOnECdOnXQu3dvvPPOOwBu1GJ9/vnnePbZZzF37lzccccdmD59utPOsM7SRETSDILSXnZEREREXsKmHyIiItItBipEpJnatWtL/v3yyy9aJ4+IdIBNP0SkmaNHj0q+16hRIwQFBXkxNUSkRwxUiIiISLfY9ENERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt36f4Yf/NhtfB6xAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.1 Importing Training and Validation Datasets\n", + "\n", + "In this section, we read the dataset from the CSV file located in this directory. 500 data points were simulated for S-CO2 physical properties using REFPROP package. This example is trained on the entire dataset to have cover different ranges of pressure and temperature. The data is separated using an 80/20 split into training and validation data using the IDAES split_training_validation() method.\n", + "\n", + "We rename the column headers because they contained \".\", we change \".\" to \"_\" as ALAMO accepts alphanumerical characters or underscores as the labels for input/output. Further, the input variables are **pressure**, **temperature** , while the output variables are **enth_mol**, **entr_mol**, hence we create two new dataframes for the input and output variables." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACE10lEQVR4nO3deVxU5f4H8M+AgoACIruyiSIqSG4p7qZXXFpMK00z98ols82lMrVFabmt17RN/d1bmllallqaawqau5JLSiAuoKIyyKIgPL8/cKZZzpmNGWaG+bxfL0rmHM4858yZc77nWb6PQgghQEREROTC3OxdACIiIiJ7Y0BERERELo8BEREREbk8BkRERETk8hgQERERkctjQEREREQujwERERERuTwGREREROTyGBARERGRy2NAREROY968eVAoFCatq1AoMG/ePJuWp1evXujVq5fDbo+ITMeAiIjMtnz5cigUCvVPnTp10LhxY4wZMwYXLlywd/EcTnR0tNbxCg4ORvfu3bF27VqrbL+kpATz5s3D9u3brbI9IlfEgIiILPbaa6/hf//7H5YsWYIBAwbgq6++Qs+ePXHz5k2bvN8rr7yC0tJSm2zb1u666y7873//w//+9z+88MILuHjxIoYMGYIlS5ZUe9slJSWYP38+AyKiaqhj7wIQkfMaMGAAOnToAACYMGECAgMD8dZbb2HdunV45JFHrP5+derUQZ06znnZaty4MR577DH1748//jiaNWuG999/H0899ZQdS0ZEAGuIiMiKunfvDgDIzMzUev3kyZN46KGHEBAQgHr16qFDhw5Yt26d1jrl5eWYP38+mjdvjnr16qFRo0bo1q0bNm/erF5Hqg/RrVu38OyzzyIoKAgNGjTA/fffj/Pnz+uVbcyYMYiOjtZ7XWqby5Ytwz333IPg4GB4enqiVatWWLx4sVnHwpjQ0FC0bNkSWVlZBte7fPkyxo8fj5CQENSrVw9JSUn4v//7P/Xy7OxsBAUFAQDmz5+vbpazdf8potrGOR+1iMghZWdnAwAaNmyofu3PP/9E165d0bhxY8yaNQs+Pj749ttvMXjwYHz//fd48MEHAVQFJgsXLsSECRNw9913o7CwEPv378fBgwfxr3/9S/Y9J0yYgK+++gojRoxAly5dsHXrVgwaNKha+7F48WK0bt0a999/P+rUqYOffvoJkydPRmVlJaZMmVKtbauUl5fj3LlzaNSokew6paWl6NWrF86cOYOpU6ciJiYGq1evxpgxY1BQUIBnnnkGQUFBWLx4MSZNmoQHH3wQQ4YMAQC0adPGKuUkchmCiMhMy5YtEwDEb7/9Jq5cuSLOnTsnvvvuOxEUFCQ8PT3FuXPn1Ov26dNHJCYmips3b6pfq6ysFF26dBHNmzdXv5aUlCQGDRpk8H3nzp0rNC9bhw8fFgDE5MmTtdYbMWKEACDmzp2rfm306NEiKirK6DaFEKKkpERvvZSUFNG0aVOt13r27Cl69uxpsMxCCBEVFSX69esnrly5Iq5cuSKOHDkihg8fLgCIp59+WnZ7H3zwgQAgvvrqK/VrZWVlIjk5WdSvX18UFhYKIYS4cuWK3v4SkXnYZEZEFuvbty+CgoIQERGBhx56CD4+Pli3bh2aNGkCALh27Rq2bt2KRx55BDdu3EB+fj7y8/Nx9epVpKSk4PTp0+pRaf7+/vjzzz9x+vRpk99/w4YNAIBp06ZpvT59+vRq7ZeXl5f630qlEvn5+ejZsyf+/vtvKJVKi7a5adMmBAUFISgoCElJSVi9ejVGjRqFt956S/ZvNmzYgNDQUDz66KPq1+rWrYtp06ahqKgIO3bssKgsRKSPTWZEZLFFixYhLi4OSqUSS5cuxc6dO+Hp6alefubMGQghMGfOHMyZM0dyG5cvX0bjxo3x2muv4YEHHkBcXBwSEhLQv39/jBo1ymDTz9mzZ+Hm5obY2Fit11u0aFGt/dq9ezfmzp2L9PR0lJSUaC1TKpXw8/Mze5udOnXCG2+8AYVCAW9vb7Rs2RL+/v4G/+bs2bNo3rw53Ny0n11btmypXk5E1sGAiIgsdvfdd6tHmQ0ePBjdunXDiBEjcOrUKdSvXx+VlZUAgBdeeAEpKSmS22jWrBkAoEePHsjMzMSPP/6ITZs24YsvvsD777+PJUuWYMKECdUuq1xCx4qKCq3fMzMz0adPH8THx+O9995DREQEPDw8sGHDBrz//vvqfTJXYGAg+vbta9HfEpHtMSAiIqtwd3fHwoUL0bt3b/znP//BrFmz0LRpUwBVzTymBAMBAQEYO3Ysxo4di6KiIvTo0QPz5s2TDYiioqJQWVmJzMxMrVqhU6dO6a3bsGFDFBQU6L2uW8vy008/4datW1i3bh0iIyPVr2/bts1o+a0tKioKR48eRWVlpVYt0cmTJ9XLAflgj4hMxz5ERGQ1vXr1wt13340PPvgAN2/eRHBwMHr16oVPP/0Uubm5eutfuXJF/e+rV69qLatfvz6aNWuGW7duyb7fgAEDAAAfffSR1usffPCB3rqxsbFQKpU4evSo+rXc3Fy9bNHu7u4AACGE+jWlUolly5bJlsNWBg4ciLy8PKxatUr92u3bt/Hxxx+jfv366NmzJwDA29sbACQDPiIyDWuIiMiqXnzxRTz88MNYvnw5nnrqKSxatAjdunVDYmIiJk6ciKZNm+LSpUtIT0/H+fPnceTIEQBAq1at0KtXL7Rv3x4BAQHYv38/vvvuO0ydOlX2ve666y48+uij+OSTT6BUKtGlSxds2bIFZ86c0Vt3+PDhmDlzJh588EFMmzYNJSUlWLx4MeLi4nDw4EH1ev369YOHhwfuu+8+PPnkkygqKsLnn3+O4OBgyaDOlp544gl8+umnGDNmDA4cOIDo6Gh899132L17Nz744AM0aNAAQFUn8FatWmHVqlWIi4tDQEAAEhISkJCQUKPlJXJq9h7mRkTORzXsft++fXrLKioqRGxsrIiNjRW3b98WQgiRmZkpHn/8cREaGirq1q0rGjduLO69917x3Xffqf/ujTfeEHfffbfw9/cXXl5eIj4+Xrz55puirKxMvY7UEPnS0lIxbdo00ahRI+Hj4yPuu+8+ce7cOclh6Js2bRIJCQnCw8NDtGjRQnz11VeS21y3bp1o06aNqFevnoiOjhZvvfWWWLp0qQAgsrKy1OuZM+zeWEoBue1dunRJjB07VgQGBgoPDw+RmJgoli1bpve3aWlpon379sLDw4ND8IksoBBCo16YiIiIyAWxDxERERG5PAZERERE5PIYEBEREZHLY0BERERELo8BEREREbk8uwZECxcuRMeOHdGgQQMEBwdj8ODBehlme/XqBYVCofXz1FNPaa2Tk5ODQYMGwdvbG8HBwXjxxRdx+/ZtrXW2b9+Odu3awdPTE82aNcPy5cttvXtERETkJOyamHHHjh2YMmUKOnbsiNu3b+Oll15Cv379cPz4cfj4+KjXmzhxIl577TX176qsrEDVPESDBg1CaGgo0tLSkJubi8cffxx169bFggULAABZWVkYNGgQnnrqKXz99dfYsmULJkyYgLCwMNn5lXRVVlbi4sWLaNCgAdPkExEROQkhBG7cuIHw8HC9iZJ1V3QYly9fFgDEjh071K/17NlTPPPMM7J/s2HDBuHm5iby8vLUry1evFj4+vqKW7duCSGEmDFjhmjdurXW3w0bNkykpKSYXDZVojf+8Ic//OEPf/jjfD/nzp0zeJ93qKk7lEolgKoJHjV9/fXX+OqrrxAaGor77rsPc+bMUdcSpaenIzExESEhIer1U1JSMGnSJPz5559o27Yt0tPT9SaWTElJwfTp02XLcuvWLa05lMSd/JXnzp2Dr69vtfaTiIiIakZhYSEiIiLUU93IcZiAqLKyEtOnT0fXrl215t8ZMWIEoqKiEB4ejqNHj2LmzJk4deoU1qxZAwDIy8vTCoYAqH/Py8szuE5hYSFKS0vh5eWlV56FCxdi/vz5eq/7+voyICIiInIyxrq7OExANGXKFGRkZGDXrl1arz/xxBPqfycmJiIsLAx9+vRBZmYmYmNjbVae2bNn47nnnlP/roowiYiIqPZxiGH3U6dOxc8//4xt27ahSZMmBtft1KkTAKhnsw4NDcWlS5e01lH9HhoaanAdX19fydohAPD09FTXBrFWiIiIqHaza0AkhMDUqVOxdu1abN26FTExMUb/5vDhwwCAsLAwAEBycjKOHTuGy5cvq9fZvHkzfH190apVK/U6W7Zs0drO5s2bkZycbKU9ISIiImdm19nuJ0+ejBUrVuDHH39EixYt1K/7+fnBy8sLmZmZWLFiBQYOHIhGjRrh6NGjePbZZ9GkSRPs2LEDQNWw+7vuugvh4eF4++23kZeXh1GjRmHChAlaw+4TEhIwZcoUjBs3Dlu3bsW0adOwfv16k4fdFxYWws/PD0qlkrVFRFRjKioqUF5ebu9iEDmsunXrwt3dXXa5qfdvuwZEch2cli1bhjFjxuDcuXN47LHHkJGRgeLiYkRERODBBx/EK6+8orVTZ8+exaRJk7B9+3b4+Phg9OjRSE1NRZ06/3SR2r59O5599lkcP34cTZo0wZw5czBmzBiTy8qAiIhqkhACeXl5KCgosHdRiByev78/QkNDJeMKpwiInAkDIiKqSbm5uSgoKEBwcDC8vb2ZEJZIghACJSUluHz5Mvz9/dXdaTSZev92mFFmRERUpaKiQh0MNWrUyN7FIXJoqsFRly9fRnBwsMHmM0McYpQZERH9Q9VnSHOaIiKSp/quVKe/HQMiIiIHxWYyItNY47vCgIiIiIhcHgMiIiIi0rN9+3YoFIpqj3SMjo7GBx98YJUy2RIDIgeRqyxFWmY+cpWl9i4KEVG15OXl4emnn0bTpk3h6emJiIgI3HfffVoJctPS0jBw4EA0bNgQ9erVQ2JiIt577z1UVFSo18nOzsb48eMRExMDLy8vxMbGYu7cuSgrK9N6v88//xxJSUmoX78+/P390bZtWyxcuFC9fN68eVAoFOjfv79eWd955x0oFAr06tXL5P0rLCzEyy+/jPj4eNSrVw+hoaHo27cv1qxZA82B23/++SceeeQRBAUFwdPTE3FxcXj11VdRUlKiXufatWt4+umn0aJFC3h5eSEyMhLTpk1TT3ZuTHZ2NhQKheTPnj17TN6nXr16GZzw3BVwlJkDWLUvB7PXHEOlANwUwMIhiRjWMdLexSIiMlt2dja6du0Kf39/vPPOO0hMTER5eTl+/fVXTJkyBSdPnsTatWvxyCOPYOzYsdi2bRv8/f3x22+/YcaMGUhPT8e3334LhUKBkydPorKyEp9++imaNWuGjIwMTJw4EcXFxXj33XcBAEuXLsX06dPx0UcfoWfPnrh16xaOHj2KjIwMrXKFhYVh27ZtOH/+vNYUUUuXLkVkpOnX24KCAnTr1g1KpRJvvPEGOnbsiDp16mDHjh2YMWMG7rnnHvj7+2PPnj3o27cv+vbti/Xr1yMkJAR//PEHnn/+eWzZsgXbtm2Dh4cHLl68iIsXL+Ldd99Fq1atcPbsWTz11FO4ePEivvvuO5PL9dtvv6F169Zar3GEopkEmUSpVAoAQqlUWnW7FwtKRMysn0XUzH9+ms5aLy4WlFj1fYjIeZSWlorjx4+L0tJSexfFbAMGDBCNGzcWRUVFesuuX78uioqKRKNGjcSQIUP0lq9bt04AEN98843s9t9++20RExOj/v2BBx4QY8aMMVimuXPniqSkJHHvvfeKN954Q/367t27RWBgoJg0aZLo2bOnCXsnxKRJk4SPj4+4cOGC3rIbN26I8vJyUVlZKVq1aiU6dOggKioqtNY5fPiwUCgUIjU1VfY9vv32W+Hh4SHKy8uNlicrK0sAEIcOHZJdR7X///3vf0VUVJTw9fUVw4YNE4WFhUIIIUaPHi0AaP1kZWWJbdu2CQDit99+E+3btxdeXl4iOTlZnDx5Ur3tM2fOiPvvv18EBwcLHx8f0aFDB7F582at94+KihLvv/+++ncA4pNPPhH9+/cX9erVEzExMWL16tXq5b179xZTpkzR2sbly5dF3bp1xW+//Sa5j4a+M6bev9lkZmdZ+cWo1EmNWSEEsvNLpP+AiMgMNdkcf+3aNfzyyy+YMmUKfHx89Jb7+/tj06ZNuHr1Kl544QW95ffddx/i4uKwcuVK2fdQKpUICAhQ/x4aGoo9e/bg7NmzRss3btw4LF++XP370qVLMXLkSHh4eBj9WwCorKzEN998g5EjRyI8PFxvef369VGnTh0cPnwYx48fx3PPPQc3N+3bbFJSEvr27Wt0H319fbVmW6iuzMxM/PDDD/j555/x888/Y8eOHUhNTQUAfPjhh0hOTsbEiRORm5uL3NxcREREqP/25Zdfxr///W/s378fderUwbhx49TLioqKMHDgQGzZsgWHDh1C//79cd999yEnJ8dgeebMmYOhQ4fiyJEjGDlyJIYPH44TJ04AACZMmIAVK1bg1q1b6vW/+uorNG7cGPfcc4/VjokuBkR2FhPoAzed0YLuCgWiA5l/hIiqZ9W+HHRN3YoRn+9F19StWLXP8E2qus6cOQMhBOLj42XX+euvvwAALVu2lFweHx+vXkdq+x9//DGefPJJ9Wtz586Fv78/oqOj0aJFC4wZMwbffvstKisr9f7+3nvvRWFhIXbu3Ini4mJ8++23Wjd3Y/Lz83H9+nWD+wcY38eWLVvK7mN+fj5ef/11PPHEEyaXCwC6dOmC+vXra/1oqqysxPLly5GQkIDu3btj1KhR6j5dfn5+8PDwgLe3N0JDQxEaGqqV3PDNN99Ez5490apVK8yaNQtpaWm4efMmgKoA78knn0RCQgKaN2+O119/HbGxsVi3bp3B8j788MOYMGEC4uLi8Prrr6NDhw74+OOPAQBDhgwBAPz444/q9ZcvX44xY8bYNBUFAyI7C/PzwsIhiXC/8yG7KxRYMCQBYX5edi4ZETmzXGWpum8iAFQK4KU1GTatKRJmzARlzroAcOHCBfTv3x8PP/wwJk6cqH49LCwM6enpOHbsGJ555hncvn0bo0ePRv/+/fWCorp16+Kxxx7DsmXLsHr1asTFxaFNmzY2K7O56xcWFmLQoEFo1aoV5s2bZ9bfrlq1CocPH9b60RQdHY0GDRqofw8LC8Ply5dN2rbmMVJNjaH626KiIrzwwgto2bIl/P39Ub9+fZw4ccJoDVFycrLe76oaonr16mHUqFFYunQpAODgwYPIyMgwa/5RS7BTtQMY1jESPeKCkJ1fguhAbwZDRFRthprjbXWNad68uboztJy4uDgAwIkTJ9ClSxe95SdOnECrVq20Xrt48SJ69+6NLl264LPPPpPcbkJCAhISEjB58mQ89dRT6N69O3bs2IHevXtrrTdu3Dh06tQJGRkZZtUOAUBQUBD8/f0N7h+gvY9t27bVW37ixAn1Oio3btxA//790aBBA6xduxZ169Y1q2wRERFo1qyZ7HLd7SkUCslaNGN/q6qhUf3tCy+8gM2bN+Pdd99Fs2bN4OXlhYceekhvJKC5JkyYgLvuugvnz5/HsmXLcM899yAqKqpa2zSGNUQOIszPC8mxjRgMEZFV2KM5PiAgACkpKVi0aBGKi4v1lhcUFKBfv34ICAjAv//9b73l69atw+nTp/Hoo4+qX7tw4QJ69eqF9u3bY9myZXp9cqSoAiqpMrRu3RqtW7dGRkYGRowYYc7uwc3NDcOHD8fXX3+Nixcv6i0vKirC7du3cddddyE+Ph7vv/++XtBx5MgR/Pbbb1r7WFhYiH79+sHDwwPr1q1DvXr1zCqXNXh4eGilPDDV7t27MWbMGDz44INITExEaGgosrOzjf6dbkqAPXv2aDUxJiYmokOHDvj888+xYsUKs4NXSzAgIiKqhezVHL9o0SJUVFTg7rvvxvfff4/Tp0/jxIkT+Oijj5CcnAwfHx98+umn+PHHH/HEE0/g6NGjyM7OxpdffokxY8bgoYcewiOPPALgn2AoMjIS7777Lq5cuYK8vDzk5eWp32/SpEl4/fXXsXv3bpw9exZ79uzB448/jqCgIL1mGZWtW7ciNzcX/v7+Zu/fm2++iYiICHTq1An//e9/cfz4cZw+fRpLly5F27ZtUVRUBIVCgS+//BLHjx/H0KFD8ccffyAnJwerV6/Gfffdh+TkZHXOH1UwVFxcjC+//BKFhYXqfTQnQLl69ar671Q/qn4+poiOjsbevXuRnZ2N/Px8k2uPmjdvjjVr1uDw4cM4cuQIRowYYdLfrl69GkuXLsVff/2FuXPn4o8//sDUqVO11pkwYQJSU1MhhMCDDz5o8r5YzOAYNFKz1bB7IiJd1hx2f7GgRKSdya/RVB4XL14UU6ZMEVFRUcLDw0M0btxY3H///WLbtm3qdXbu3ClSUlKEr6+v8PDwEK1btxbvvvuuuH37tnqdZcuW6Q0HV/2ofPfdd2LgwIEiLCxMeHh4iPDwcDF06FBx9OhR9TqqYedynnnmGZOH3QshREFBgZg1a5Zo3ry58PDwECEhIaJv375i7dq1orKyUr3e0aNHxdChQ0VAQICoW7euiI2NFa+88oooLi5Wr6Ma2i71k5WVZbQsqmH3Uj8rV66U3f/3339fREVFqX8/deqU6Ny5s/Dy8tIbdn/9+nX1eocOHdIqW1ZWlujdu7fw8vISERER4j//+Y/o2bOneOaZZ9R/IzXsftGiReJf//qX8PT0FNHR0WLVqlV6+3bjxg3h7e0tJk+ebPQ4WGPYveJO4ciIwsJC+Pn5qYdDEhHZys2bN5GVlYWYmBi7NJ8Q2ZJCocDatWsxePBgg+tlZ2cjNjYW+/btQ7t27Qyua+g7Y+r9m52qiYiIyGGUl5fj6tWreOWVV9C5c2ejwZC1sA8RERHRHbq5fDR/fv/99xovz1NPPSVbnqeeeqrGy1MTdu/ejbCwMOzbtw9LliypsfdlDREREdEduvl7NDVu3LjmCnLHa6+9JpnVG4DTdt8w1lOnV69eZudwsgYGRERERHcYyuVjD8HBwQgODrZ3MVwCm8yIiIjI5TEgIiJyUKbmgiFyddb4rrDJjIjIwXh4eMDNzQ0XL15EUFAQPDw8bDqpJZGzEkKgrKwMV65cgZubGzw8PCzeFgMiIiIH4+bmhpiYGOTm5kpOEUFE2ry9vREZGWnS1C5yGBARETkgDw8PREZG4vbt2xbNMUXkKtzd3VGnTp1q16IyICIiclAKhQJ169Y1e+ZzIjIfO1UTERGRy2NARERERC6PARERERG5PAZERERE5PIYEBEREZHLY0BERERELo8BEREREbk8BkRERETk8hgQERERkctjQEREREQujwERERERuTwGREREROTyGBARERGRy2NARERERC6PARERERG5PAZERERE5PIYEBEREZHLY0BERERELo8BEREREbk8BkRERETk8hgQOYhcZSnSMvORqyy1d1GIiIhcTh17F4CAVftyMHvNMVQKwE0BLBySiGEdI+1dLCIiIpfBGiI7y1WWqoMhAKgUwEtrMlhTREREVIMYENlZVn6xOhhSqRAC2fkl9ikQERGRC2JAZGcxgT5wU2i/5q5QIDrQ2z4FIiIickEMiOwszM8LC4ckwl1RFRW5KxRYMCQBYX5edi4ZERGR62CnagcwrGMkesQFITu/BNGB3gyGiIiIahgDIgcR5ufFQIiIiMhO2GRGRERELo8BEREREbk8BkRERETk8hgQERERkctjQEREREQuz64B0cKFC9GxY0c0aNAAwcHBGDx4ME6dOqW1zs2bNzFlyhQ0atQI9evXx9ChQ3Hp0iWtdXJycjBo0CB4e3sjODgYL774Im7fvq21zvbt29GuXTt4enqiWbNmWL58ua13j4iIiJyEXQOiHTt2YMqUKdizZw82b96M8vJy9OvXD8XFxep1nn32Wfz0009YvXo1duzYgYsXL2LIkCHq5RUVFRg0aBDKysqQlpaG//u//8Py5cvx6quvqtfJysrCoEGD0Lt3bxw+fBjTp0/HhAkT8Ouvv9bo/hIREZFjUgghhPHVasaVK1cQHByMHTt2oEePHlAqlQgKCsKKFSvw0EMPAQBOnjyJli1bIj09HZ07d8bGjRtx77334uLFiwgJCQEALFmyBDNnzsSVK1fg4eGBmTNnYv369cjIyFC/1/Dhw1FQUIBffvnFpLIVFhbCz88PSqUSvr6+1t95IiIisjpT798O1YdIqVQCAAICAgAABw4cQHl5Ofr27ateJz4+HpGRkUhPTwcApKenIzExUR0MAUBKSgoKCwvx559/qtfR3IZqHdU2pNy6dQuFhYVaP0RERFQ7OUxAVFlZienTp6Nr165ISEgAAOTl5cHDwwP+/v5a64aEhCAvL0+9jmYwpFquWmZoncLCQpSWlkqWZ+HChfDz81P/REREVHsfiYiIyDE5TEA0ZcoUZGRk4JtvvrF3UQAAs2fPhlKpVP+cO3fO3kUiIiIiG3GIucymTp2Kn3/+GTt37kSTJk3Ur4eGhqKsrAwFBQVatUSXLl1CaGioep0//vhDa3uqUWia6+iOTLt06RJ8fX3h5SU9f5inpyc8PT2rvW9ERETk+OxaQySEwNSpU7F27Vps3boVMTExWsvbt2+PunXrYsuWLerXTp06hZycHCQnJwMAkpOTcezYMVy+fFm9zubNm+Hr64tWrVqp19Hchmod1TaIiIjItdl1lNnkyZOxYsUK/Pjjj2jRooX6dT8/P3XNzaRJk7BhwwYsX74cvr6+ePrppwEAaWlpAKqG3d91110IDw/H22+/jby8PIwaNQoTJkzAggULAFQNu09ISMCUKVMwbtw4bN26FdOmTcP69euRkpJiUlk5yoyIiMj5mHr/tmtApFAoJF9ftmwZxowZA6AqMePzzz+PlStX4tatW0hJScEnn3yibg4DgLNnz2LSpEnYvn07fHx8MHr0aKSmpqJOnX9aBLdv345nn30Wx48fR5MmTTBnzhz1e5iCAREREZHzcYqAyJkwICIiInI+TpmHiIiIiMgeGBARERGRy2NARERERC6PAZGTyFWWIi0zH7lK6czaREREZDmHSMxIhq3al4PZa46hUgBuCmDhkEQM6xhp72IRERHVGqwhcnC5ylJ1MAQAlQJ4aU0Ga4qIiIisiAGRg8vKL1YHQyoVQiA7v8Q+BSIiIqqFGBA5uJhAH7jp5K90VygQHehtnwIRERHVQgyIHFyYnxcWDkmE+52s3u4KBRYMSUCYn/SktERERGQ+dqp2AsM6RqJHXBCy80sQHejNYIiIiMjKGBA5iTA/LwZCRERENsImMyIiInJ5DIiIiIjI5TEgIiIiIpfHgIiIiIhcHgMiIiIicnkMiIiIiMjlMSAiIiIil8eAiIiIiFweAyIiIiJyeQyIiIiIyOUxICIiIiKXx4CIiIiIXB4DIiIiInJ5DIiIiIjI5TEgIiIiIpfHgIiIiIhcHgMiIiIicnkMiIiIiMjlMSAiIiIil8eAiIiIiFyeRQHRtm3brF0OIiIiIruxKCDq378/YmNj8cYbb+DcuXPWLhMRERFRjbIoILpw4QKmTp2K7777Dk2bNkVKSgq+/fZblJWVWbt8RERERDZnUUAUGBiIZ599FocPH8bevXsRFxeHyZMnIzw8HNOmTcORI0esXU4iIiIim6l2p+p27dph9uzZmDp1KoqKirB06VK0b98e3bt3x59//mmNMhIRERHZlMUBUXl5Ob777jsMHDgQUVFR+PXXX/Gf//wHly5dwpkzZxAVFYWHH37YmmUlIiIisgmFEEKY+0dPP/00Vq5cCSEERo0ahQkTJiAhIUFrnby8PISHh6OystJqhbWnwsJC+Pn5QalUwtfX197FISIiIhOYev+uY8nGjx8/jo8//hhDhgyBp6en5DqBgYEcnk9EREROwaIaIlfEGiIiIiLnY9MaIgA4deoUPv74Y5w4cQIA0LJlSzz99NNo0aKFpZskIiIisguLOlV///33SEhIwIEDB5CUlISkpCQcPHgQCQkJ+P77761dRiIiIiKbsqjJLDY2FiNHjsRrr72m9frcuXPx1VdfITMz02oFdBRsMiMiInI+pt6/Laohys3NxeOPP673+mOPPYbc3FxLNklERERkNxYFRL169cLvv/+u9/quXbvQvXv3ahfKleQqS5GWmY9cZam9i0JEROSyLOpUff/992PmzJk4cOAAOnfuDADYs2cPVq9ejfnz52PdunVa65K0VftyMHvNMVQKwE0BLBySiGEdI+1dLCIiIpdjUR8iNzfTKpYUCgUqKirMLpQjsnYfolxlKbqmbkWlxtF3Vyiwa1ZvhPl5VXv7REREZONh97Ul+7Q9ZeUXawVDAFAhBLLzSxgQERER1bBqT+5KlokJ9IGbQvs1d4UC0YHe9ikQERGRCzO5huijjz4yeaPTpk2zqDCuJMzPCwuHJOKlNRmoEALuCgUWDElg7RAREZEdmNyHKCYmxrQNKhT4+++/q1UoR2SrPES5ylJk55cgOtCbwRAREZGVWb0PUVZWllUKRtrC/LwYCBEREdkZ+xARERGRy7N4ctfz589j3bp1yMnJQVlZmday9957r9oFIyIiIqopFgVEW7Zswf3334+mTZvi5MmTSEhIQHZ2NoQQaNeunbXLSERERGRTFjWZzZ49Gy+88AKOHTuGevXq4fvvv8e5c+fQs2dPPPzww9YuIxEREZFNWRQQnThxQj25a506dVBaWor69evjtddew1tvvWXVAhIRERHZmkUBkY+Pj7rfUFhYGDIzM9XL8vPzrVMyIiIiohpiUR+izp07Y9euXWjZsiUGDhyI559/HseOHcOaNWvUk70SEREROQuLaojee+89dOrUCQAwf/589OnTB6tWrUJ0dDS+/PJLk7ezc+dO3HfffQgPD4dCocAPP/ygtXzMmDFQKBRaP/3799da59q1axg5ciR8fX3h7++P8ePHo6ioSGudo0ePonv37qhXrx4iIiLw9ttvW7LbtUaushRpmfnIVZbauyhEREQOwaIaoqZNm6r/7ePjgyVLllj05sXFxUhKSsK4ceMwZMgQyXX69++PZcuWqX/39PTUWj5y5Ejk5uZi8+bNKC8vx9ixY/HEE09gxYoVAKoyVPbr1w99+/bFkiVLcOzYMYwbNw7+/v544oknLCq3M1u1Lwez1xxDpQDcFMDCIYkY1jHS3sUiIiKyK4vzEAFAWVkZLl++jMrKSq3XIyNNu8EOGDAAAwYMMLiOp6cnQkNDJZedOHECv/zyC/bt24cOHToAAD7++GMMHDgQ7777LsLDw/H111+jrKwMS5cuhYeHB1q3bo3Dhw/jvffec7mAKFdZqg6GAKBSAC+tyUCPuCBmyyYiIpdmUZPZX3/9he7du8PLywtRUVGIiYlBTEwMoqOjTZ7zzFTbt29HcHAwWrRogUmTJuHq1avqZenp6fD391cHQwDQt29fuLm5Ye/evep1evToAQ8PD/U6KSkpOHXqFK5fv27Vsjq6rPxidTCkUiEEsvNL7FMgIiIiB2FRDdHYsWNRp04d/PzzzwgLC4NCobB2uQBUNZcNGTIEMTExyMzMxEsvvYQBAwYgPT0d7u7uyMvLQ3BwsNbf1KlTBwEBAcjLywMA5OXl6QVpISEh6mUNGzaUfO9bt27h1q1b6t8LCwutuWt2ERPoAzcFtIIid4UC0YHe9isUERGRA7AoIDp8+DAOHDiA+Ph4a5dHy/Dhw9X/TkxMRJs2bRAbG4vt27ejT58+Nn3vhQsXYv78+TZ9j5oW5ueFhUMS8dKaDFQIAXeFAguGJLC5jIiIXJ5FAVGrVq3skm+oadOmCAwMxJkzZ9CnTx+Ehobi8uXLWuvcvn0b165dU/c7Cg0NxaVLl7TWUf0u1zcJqMrG/dxzz6l/LywsREREhLV2xW6GdYxEj7ggZOeXIDrQm8EQERERzOhDVFhYqP556623MGPGDGzfvh1Xr17VWmbLpqXz58/j6tWrCAsLAwAkJyejoKAABw4cUK+zdetWVFZWqtMCJCcnY+fOnSgvL1evs3nzZrRo0UK2uQyo6szt6+ur9VNbhPl5ITm2EYMhIiKiOxRCCGF8NcDNzU2rr5AQQq/vkOq1iooKk968qKgIZ86cAQC0bdsW7733Hnr37o2AgAAEBARg/vz5GDp0KEJDQ5GZmYkZM2bgxo0bOHbsmHr4/YABA3Dp0iUsWbJEPey+Q4cO6mH3SqUSLVq0QL9+/TBz5kxkZGRg3LhxeP/9980aZVZYWAg/Pz8olUqHCY5ylaXIyi9GTKCP0eDGnHWJiIhqC1Pv3yYHRDt27DD5zXv27GnSetu3b0fv3r31Xh89ejQWL16MwYMH49ChQygoKEB4eDj69euH119/Xd0pGqhKzDh16lT89NNPcHNzw9ChQ/HRRx+hfv366nWOHj2KKVOmYN++fQgMDMTTTz+NmTNnmrw/gOMFRObkE2LuISIiclVWD4g05eTkICIiQrKG6Ny5cybnIXImjhQQ5SpL0TV1q95osV2zeuvV/pizLhERUW1j6v3bojxEMTExuHLlit7r165ds3oeItJnTj4h5h4iIiIyzqKASKr/EFDVJ6hevXrVLhQZpsonpEkun5A56xIREbkqs4bdq4ahKxQKzJkzB97e/9xUKyoqsHfvXtx1111WLSDpMyefEHMPERERGWdWQHTo0CEAVTVEx44d05oOw8PDA0lJSXjhhResW0KSZE4+IeYeIiIiMsyiTtVjx47Fhx9+aPfOxTXJkTpVExERkWlMvX9blKl62bJlFheMiIiIyNFYFBAVFxcjNTUVW7ZsweXLl1FZWam1/O+//7ZK4YiIiIhqgkUB0YQJE7Bjxw6MGjXKprPdExEREdUEiwKijRs3Yv369ejatau1y0Mm4DQcRERE1mVRQNSwYUMEBARYuyxkAk7DQUREZH0WJWZ8/fXX8eqrr6KkhNmOa1KuslQdDAFApQBeWpOBXGWpfQtGRETk5CyqIfr3v/+NzMxMhISEIDo6GnXr1tVafvDgQasUjrQZmoaDTWdERESWsyggGjx4sJWLQaZQTcOhO1Erp+EgIiKqHosSM7oiR0nMuGpfjt40HOxDREREJM0miRn/+OMPtG/fHu7u7pLLb926hR9//BGPPPKIeaUlk3EaDiIiIuszq1N1cnIyrl69qv7d19dXKwljQUEBHn30UeuVjiSF+XkhObYRgyEiIiIrMSsg0m1dk2ptYwscERERORuLht0bwqzVNStXWYq0zHwOvSciIqoGi0aZkWNgkkYiIiLrMDsgOn78OPLy8gBUNY+dPHkSRUVFAID8/Hzrlo5kySVp7BEXxL5FREREZjI7IOrTp49WP6F7770XQFVTmRCCTWY1hEkaiYiIrMesgCgrK8tW5SAzMUkjERGR9ZgVEEVFRZm18cmTJ+O1115DYGCgWX9HxoX5eWHhkES9JI2sHSIiIjKfTTNV+/r64vDhw2jatKmt3qLGOEqmal25ylImaSQiIpJhk0zV5mJOItsL8/NiIERERFRNVs9DRERERORsGBARERGRy2NARERERC6PARERERG5PJsGRI899phDjcgiIiIikmJRQFRZWSn7ek5Ojvr3xYsXMwcREREROTyzAqLCwkI88sgj8PHxQUhICF599VVUVFSol1+5cgUxMTFWLyRZJldZirTMfOQqS+1dFCIiIodmVh6iOXPm4MiRI/jf//6HgoICvPHGGzh48CDWrFkDDw8PAMw95ChW7ctRT/7qpgAWDknEsI6R9i4WERGRQzKrhuiHH37Ap59+ioceeggTJkzA/v37ceXKFdx33324desWAHByVweQqyxVB0NA1XxnL63JYE0RERGRDLMCoitXrmjNZxYYGIjffvsNN27cwMCBA1FSUmL1ApL5svKLtSZ9BYAKIZCdb9vPh010RETkrMwKiCIjI3HixAmt1xo0aIBNmzahtLQUDz74oFULR5aJCfSBm05FnbtCgehAb5u956p9OeiauhUjPt+LrqlbsWpfjvE/IiIichBmBUT9+vXDsmXL9F6vX78+fv31V9SrV89qBSPLhfl5YeGQRLjfab50VyiwYEiCzeY8O3LuOmZ9zyY6IiJyXmZ1qp4/fz4uXrwouaxBgwbYvHkzDh48aJWCUfUM6xiJHnFByM4vQXSgt82CoU93ZGLhxpN6r6ua6DjxLBEROQOzAqKGDRuiYcOGsssbNGiAnj17VrtQZB1hfl42DUg+3SkdDAG2b6IjIiKyJrMTM96+fRvvvPMO2rVrh/r166N+/fpo164d3n33XZSXl9uijOSAcpWlSJUJhtwAmzbRERERWZtZNUSlpaX417/+hfT0dPTt2xc9evQAAJw4cQIzZ87EunXrsGnTJvYlcgFZ+cWQSjmlALB2ShckRcjXJBIRETkaswKi1NRUnDt3DocOHUKbNm20lh05cgT3338/UlNTMW/ePGuWkRyQaiSb7vD+WQPiGQwREZHTMavJ7JtvvsF7772nFwwBQFJSEt59912sWLHCaoUjx6U7ks1NAcweGI8ne8bauWRERETmM6uG6OzZs7j77rtll3fu3Flrcleq3WpqJBsREZGtmRUQ+fr64vLly4iIiJBcnpeXhwYNGlilYOQcbD2SjYiIqCaY1WTWu3dvLFiwQHZ5amoqevfuXe1CEREREdUks2qI5s6di06dOqFz58547rnnEB8fDyEETpw4gffffx/Hjx/Hnj17bFVWIiIiIpswKyBq1aoVNm/ejPHjx2P48OHqme2FEIiPj8emTZvQunVrmxSUiIiIyFbMCoiAqo7Tf/75Jw4fPoy//voLABAXF4e77rrL2mUjIiIiqhFmB0SFhYWoX78+7rrrLq0gqLKyEkVFRfD19bVm+YiIiIhszqxO1WvXrkWHDh1w8+ZNvWWlpaXo2LEjfvrpJ6sVjoiIiKgmmBUQLV68GDNmzIC3t/6knT4+Ppg5cyb+85//WK1wpC9XWYq0zHzkKkvtXRQiIqJaw6yAKCMjA7169ZJd3qNHDxw7dqy6ZSIZq/bloGvqVoz4fC+6pm7Fqn1MgklERGQNZgVE169fx+3bt2WXl5eX4/r169UuFOnLVZZi9ppj6rnDKgXw0poM1hQRERFZgVkBUXR0NPbv3y+7fP/+/YiKiqp2oUhfVn6x3kSqFUIgO7/EPgUiIiKqRcwKiIYMGYKXX34Zly5d0luWl5eHV155BUOHDrVa4VyVVD8h1ezymtwAeHuY9RESERGRBIUQQhhfrcqNGzeQnJyMnJwcPPbYY2jRogUA4OTJk/j6668RERGBPXv21Mr5zAoLC+Hn5welUmnT1AKr9uWom8bcFMDCIYkY1jFSveylNRmo0PjIdNchIiKif5h6/zYrIAIApVKJ2bNnY9WqVer+Qv7+/hg+fDjefPNNNGzYsHold1A1ERDlKkvRNXWrVtOYu0KBXbN6qydQPXLuOgZ/kgZhYB1HkKssRVZ+MWICfRyqXERE5FpMvX+bnZjRz88Pn3zyCRYtWoT8/HwIIRAUFKSexkPT7t270aFDB3h6epr7Ni7JUD8hVVBRXFYB3RBWdx17M1TLRURE5Igs7oCiUCgQFBSE4OBgyWAIAAYMGIALFy7IbmPnzp247777EB4eDoVCgR9++EFruRACr776KsLCwuDl5YW+ffvi9OnTWutcu3YNI0eOhK+vL/z9/TF+/HgUFRVprXP06FF0794d9erVQ0REBN5++23LdtrGpPoJuSsUiA70Nmsde+JoOCIickY27ZFrrDWuuLgYSUlJWLRokeTyt99+Gx999BGWLFmCvXv3wsfHBykpKVqZskeOHIk///wTmzdvxs8//4ydO3fiiSeeUC8vLCxEv379EBUVhQMHDuCdd97BvHnz8Nlnn1lnJ60ozM8LC4ckwv1OgOmuUGDBkAStmh9T1rEnjoYjIiJnZHYfInM0aNAAR44cQdOmTY0XRKHA2rVrMXjwYABVwVR4eDief/55vPDCCwCq+i+FhIRg+fLlGD58OE6cOIFWrVph37596NChAwDgl19+wcCBA3H+/HmEh4dj8eLFePnll5GXlwcPDw8AwKxZs/DDDz/g5MmTJu9LTXWqBqpqWbLzSxAd6C0b6Jiyjj2Y0g+KiIiopph6/3bYMdtZWVnIy8tD37591a/5+fmhU6dOSE9PBwCkp6fD399fHQwBQN++feHm5oa9e/eq1+nRo4c6GAKAlJQUnDp1ymGTSIb5eSE5tpHBAMKUdezB0WuwiIiIpJjdqbqm5OXlAQBCQkK0Xg8JCVEvy8vLQ3BwsNbyOnXqICAgQGudmJgYvW2olsmNirt16xZu3bql/r2wsLAae+NahnWMRI+4IIeswSIiIpJi0xoiuc7WzmDhwoXw8/NT/0RERNi7SE7FUWuwiIiIpNi1U7UhoaGhAKCXFfvSpUvqZaGhobh8+bLW8tu3b+PatWta60htQ/M9pMyePRtKpVL9c+7cOYv3hYiIiBybTQOiGzdumNShWkpMTAxCQ0OxZcsW9WuFhYXYu3cvkpOTAQDJyckoKCjAgQMH1Ots3boVlZWV6NSpk3qdnTt3ory8XL3O5s2b0aJFC4NJJD09PeHr66v1Q0RERLWTWX2I7rnnHpPW27p1q0nrFRUV4cyZM+rfs7KycPjwYQQEBCAyMhLTp0/HG2+8gebNmyMmJgZz5sxBeHi4eiRay5Yt0b9/f0ycOBFLlixBeXk5pk6diuHDhyM8PBwAMGLECMyfPx/jx4/HzJkzkZGRgQ8//BDvv/++ObtOREREtZhZAdH27dsRFRWFQYMGoW7dutV+8/3796N3797q35977jkAwOjRo7F8+XLMmDEDxcXFeOKJJ1BQUIBu3brhl19+Qb169dR/8/XXX2Pq1Kno06cP3NzcMHToUHz00Ufq5X5+fti0aROmTJmC9u3bIzAwEK+++qpWriIiIiJybWblIXrnnXewbNkyXL16FSNHjsS4ceOQkJBgy/I5jJrMQ0RERETWYZM8RC+++CKOHz+OH374ATdu3EDXrl1x9913Y8mSJRyWTkRERE6rWpmqS0pKsHr1aixatAjHjx/HxYsXa23tCWuIiIiInE+NZKo+ePAgduzYgRMnTiAhIcEq/YqIiIiIaprZAdHFixexYMECxMXF4aGHHkJAQAD27t2LPXv2wMuLSfiIiIjI+Zg1ymzgwIHYtm0b+vXrh3feeQeDBg1CnToOO/sHERERkUnM6kPk5uaGsLAwBAcHG5yW4+DBg1YpnCNhHyIiIiLnY+r926zqnblz51a7YGS6XGUpsvKLERPowznBiIiIbKhao8xcSU3XEK3al4PZa46hUgBuCmDhkEQM6xhp8/e1JQZ4RERU02xSQyRnx44dKC4uRnJyssH5wcg0ucpSdTAEAJUCeGlNBnrEBTltIFEbAzwiIqo9zBpl9tZbb2HOnDnq34UQ6N+/P3r37o17770XLVu2xJ9//mn1QrqarPxidTCkUiEEsvNL7FOgapIL8HKVpfYtGBER0R1mBUSrVq3Smqrju+++w86dO/H7778jPz8fHTp0wPz5861eSFcTE+gDN4k+60cvFNR4WayhtgV4RERU+5gVEGVlZaFNmzbq3zds2ICHHnoIXbt2RUBAAF555RWkp6dbvZCuJszPCzP7x+u9/vbGU05ZqyIV4LkrFIgO9LZPgYiIiHSYFRDdvn0bnp6e6t/T09PRpUsX9e/h4eHIz8+3XulcWGITP73XnLVWJczPCwuHJML9TqoGd4UCC4YkOG1/KCIiqn3M6lQdGxuLnTt3omnTpsjJycFff/2FHj16qJefP38ejRo1snohXZGqVkWzqcmZa1WGdYxEj7ggZOeXIDrQm8EQERE5FLMCoilTpmDq1Kn4/fffsWfPHiQnJ6NVq1bq5Vu3bkXbtm2tXkhXpKpVeWlNBiqEqBW1KmF+Xk5dfiIiqr3MCogmTpwId3d3/PTTT+jRo4deosaLFy9i3LhxVi2gK2OtChERUc1gYkYTceoOIiIi52Pq/dvs2e6JiIiIahuzAqLy8nLMmDEDzZo1w913342lS5dqLb906RLc3d2tWkAiIiIiWzMrIHrzzTfx3//+F0899RT69euH5557Dk8++aTWOmyBIyIiImdjVqfqr7/+Gl988QXuvfdeAMCYMWMwYMAAjB07Vl1bpFBIpFgmp8DJV4mIyFWZVUN04cIFrak7mjVrhu3btyMtLQ2jRo1CRUWF1QtINWPVvhx0Td2KEZ/vRdfUrVi1L8cu5chVliItM98pM3ITEZHzMquGKDQ0FJmZmYiOjla/1rhxY2zbtg29e/fGmDFjrFw8qglyk6/GhzZAcVlFjdUYrdqXoy6HmwJYOCQRwzpG2vx9iYiIzKohuueee7BixQq918PDw7F161ZkZWVZrWBUc+QmXx28KK3GaozkgjLWFBERUU0wq4Zozpw5OHnypOSyxo0bY8eOHdi8ebNVCkY1R2qaEABQ/aoKTnrEBdmspkguKMvOL2F/JiIisjmzaoiioqKQkpIiuzw8PByjR4+udqGoZulOvqo7Mz1g+4llVUGZJmeeu42IiJyLWTVEKqtXr8bKlSvx119/AQDi4uIwYsQIPPTQQ1YtHNUczWlCvD3c8OAnaTU6sWxtnLuNiIich1lTd1RWVuLRRx/F6tWrERcXh/j4eADAiRMncObMGTz88MNYuXJlrRx672pTd6zal6MXnNREB+dcZSnnbiMiIqsx9f5tVg3Rhx9+iN9++w3r1q1T5yJSWbduHcaOHYsPP/wQ06dPt6jQ5DjsObGsAJN7EhFRzTKrhqhNmzaYPn267Iz2X375JT788EMcPXrUagV0FK5WQ2QPHHZPRETWZpPJXU+fPo2+ffvKLu/bty9Onz5tziapFrIkuSKH3RMRkT2Z1WTm5eWFgoICREZKP7UXFhaiXr16VikYOSdLa3k47J6IiOzJrBqi5ORkLF68WHb5okWLkJycXO1CkXOqTi0Ph90TEZE9mRUQvfzyy/jyyy/xyCOP4I8//kBhYSGUSiX27NmDhx9+GEuXLsXLL79sq7KSgzNUy2OMbi4kDrsnIqKaZFaTWZcuXbBq1So88cQT+P7777WWNWzYECtXrkTXrl2tWkByHlIZr82p5bHnyDYiInJtZo0yUykpKcGvv/6q7kAdFxeHfv36wdu79jZvcJSZaeyVv4iIiEiKqfdvswKirVu3YurUqdizZ4/eRpVKJbp06YIlS5age/fulpfcQTEgMh2TKxIRkaOwybD7Dz74ABMnTpTcoJ+fH5588km899575peWapUwPy8kxzZiMERERE7DrIDoyJEj6N+/v+zyfv364cCBA9UuFBEREVFNMisgunTpEurWrSu7vE6dOrhy5Uq1C0XVY0liRCIiIldm1iizxo0bIyMjA82aNZNcfvToUYSFhVmlYGQZTn9BRERkPrNqiAYOHIg5c+bg5s2bestKS0sxd+5cvUlfqeZYkhiRtUlERERm1hC98sorWLNmDeLi4jB16lS0aNECAHDy5EksWrQIFRUVTMxoR+ZOf8HaJCIiqim5ylJk5RcjJtDHIQfdmBUQhYSEIC0tDZMmTcLs2bOhGrGvUCiQkpKCRYsWISQkxCYFJePMSYwoV5vUIy7IIU9UIiJyXs7wAG5WQAQAUVFR2LBhA65fv44zZ85ACIHmzZujYcOGtigfmUE1/YVuYkSpAIeTqRIRUU1wlgdwswMilYYNG6Jjx47WLAtZganTX1R3mg0iIiJTOMsDuFmdqsk5mJIY0VkmU2WnbyIi56Z6ANfkiA/gFtcQkfNz9MlUnaHNmYiIDDOnO4c9WTS5qyviXGY1K1dZiq6pW/Wa9HbN6u1wXyIiIjLOXvNcmnr/Zg0R2YWx4ZfO0uZMRESmCfPzcujrNwMiqnGmNIWx07frcvRcJURUO7FTtYuwRudka23DlGzaUp2+Zwxogaz8YnawrsVW7ctB19StGPH5XnRN3YpV+3LsXSQichGsIXIB1uicbK0OzuY0hWl2+j56vgBvbTypfv+Z/eOR2MSPtQi1iLPkKiGi2ok1RLWcJfOb2WIbKuYOvwzz80J0oDfe+uWk1vsv3HiStQi1jKFguaYx3QOR7Tna94wBUS1njZuMNW9UluQ/knp/leoEZ+RYHCVXiTnNdo52QSdyFo7YPM4ms1rOx8MdCgUgqtE52dodnM3NfyT1/po4+qx2cIRcJeY028k1I7NTOJFhjto8zoCoFlNdsHWDIXNvMra4UZkz/FL3/XVx9FntYe9koab2cZO7oBeUlKubd5lMlEjagbPXHTKtCgMiJ2LOk6fuBRuoah9dMzkZSRHmT8Rr7xuVVgfrCwV4e+Mph854SpazZ64SU2tD5QKn1I0noXrZUZ56iRzJqn05mPX9Mb3XHeHBlgGRkzB3lJfUBbsSQElZpcVlMPdGZe2mA9X7J8c2wv1J4Q475Qg5L1NrQ6UCJ6lmXUd46iVyFKoHdd16fjcFHOLBlgGRE7CkvdXeiQ1rYh4yofe1Iqo+U2tDJ3SLwRe/Z6ES/+TJUqWGUHGEp14iRyE3QOaj4W1xb1J4zRdIh8OPMps3bx4UCoXWT3x8vHr5zZs3MWXKFDRq1Aj169fH0KFDcenSJa1t5OTkYNCgQfD29kZwcDBefPFF3L59u6Z3xWKWjPKy52z21hymL8URRydQ7aKqiZT6vqjOv89+zwIUwBPdm2LXrN54skes3b5zRM5AbiRp+2jzu3HYglPUELVu3Rq//fab+vc6df4p9rPPPov169dj9erV8PPzw9SpUzFkyBDs3r0bAFBRUYFBgwYhNDQUaWlpyM3NxeOPP466detiwYIFNb4vlrC0tsde/X5sOQ+ZVLA1+/tj8PGsg/ZRDXnzIZuSOv++3JWFsd2iAdi/rx2RI3OEkaSGOEVAVKdOHYSGhuq9rlQq8eWXX2LFihW45557AADLli1Dy5YtsWfPHnTu3BmbNm3C8ePH8dtvvyEkJAR33XUXXn/9dcycORPz5s2Dh4dHTe+O2apzEtmjg6otm+vk+kZNXXGIo3rI5kwJ9h19Aksie3LkhwaHbzIDgNOnTyM8PBxNmzbFyJEjkZNT1URy4MABlJeXo2/fvup14+PjERkZifT0dABAeno6EhMTERISol4nJSUFhYWF+PPPP2Xf89atWygsLNT6sadhHSOxa1ZvrJzYGbtm9Tbrpl/TyeNs2VwnVeWqwiSNZGuOkjySyJkZapK2J4evIerUqROWL1+OFi1aIDc3F/Pnz0f37t2RkZGBvLw8eHh4wN/fX+tvQkJCkJeXBwDIy8vTCoZUy1XL5CxcuBDz58+37s5UkyVPntbu3GzqyDFbPQUYy0nEUT2uqaaSITp6lT8RWc7hA6IBAwao/92mTRt06tQJUVFR+Pbbb+HlZbuL0OzZs/Hcc8+pfy8sLERERITN3s8WrJ0N1NzgylZNB6pg60D2dUz75hBH9bi4mhjRqMmRq/yJalptyszuFE1mmvz9/REXF4czZ84gNDQUZWVlKCgo0Frn0qVL6j5HoaGheqPOVL9L9UtS8fT0hK+vr9aPs7HmHGS2Hjlm7L11m/zC/Lxwb1I4R/W4OHudl45a5U9Uk2rbiF+nC4iKioqQmZmJsLAwtG/fHnXr1sWWLVvUy0+dOoWcnBwkJycDAJKTk3Hs2DFcvnxZvc7mzZvh6+uLVq1a1Xj5a5I1+zvYayZyY1+46vStIudnr/OSyNXZ8yHZVhw+IHrhhRewY8cOZGdnIy0tDQ8++CDc3d3x6KOPws/PD+PHj8dzzz2Hbdu24cCBAxg7diySk5PRuXNnAEC/fv3QqlUrjBo1CkeOHMGvv/6KV155BVOmTIGnp6ed9862rNm52R6dSU39wvFp3TlZo7M/OzkT2UdtfBhx+D5E58+fx6OPPoqrV68iKCgI3bp1w549exAUFAQAeP/99+Hm5oahQ4fi1q1bSElJwSeffKL+e3d3d/z888+YNGkSkpOT4ePjg9GjR+O1116z1y7VKGv1d7BHZ1Jb5jMi+7JWvx9rn5e1qT8EkS3ZezYEW1AIITFUh/QUFhbCz88PSqXSKfsTWUuusrTGOpPmKkvRNXWr3hdu16zevFk5MVt8rtY4L2u6czaRs1u1L0fvYcTc70xNPISYev92+Boish5rnHg1mXSOQ5xrJ1vU/FV34mFrj8i0FGuoyJnotkAAQFpmvknnb66yFMt2ZeHz37Mg4BgPIQyIXISzPv1Wt8mPNxjHY++qdqnvQkSAt92bZ531O0quTfUwYs75q7muir0eQjQ5fKdqV2KrjNLOPhrA0k7TtW1IaG3hiBMP+3i427VztrN/R8m1mXP+6q6rqUIIHDx73callccaIgdhy6dDV+yc7ChNICTN0SYeLimrtGvzrCt+R6n2MOf8lVpX09QVh1B067ZdakcZEDkAW9+87d1EYQ+8wTg+R5t4ODm2kd0yULvid5RqD3POX6l1NQnY7+GVTWYOwFb5HFRNcACs2kRR05PFWsLHw13ydW8P1zvlneHzqinGmuvsldPKns2IRNVlzvmru65CYrJue+UzYg2RA7DF06FUE9yuWb1r7dBk3c7TxWUVkuuVlFXWcMnsy1E/L3ty1LnIHLVcRKYw5/zVXNfbww0PfpLmELWjrve47ICs/XQo1wQHoFpPv47a8VOq8zQzGDvu52UJa9dyOWp2c0ctF5EpzDl/VesmRTR0mNpR1hA5CGs+Hdqq/4wj9suRu+nvmtXb5XMYOeLnZQnWcpE9qWqffTzcUVxWwRQeNuAotaMMiByItTqZ2qqDpi07flqaL8jQTd9RvmT2Uhs66nK0IFmDpdcXqXw5DMptwx6DLHSxyawWslUHTVttV7fJ69MdmSY3jxhrGnPlJghH6ahbneYuWw84cMbmQzKN6jP+dGemRfnI5PLlOHPTMxnGGqJayla1I9berlQNwMKNJwGY9iRm6vQerpqx2t61ZNVt7rJ2LZcjThdA1idVswNI1zDKXRsM5ctRJRAc1Mb498lVrz2A8+07A6JazFZVkNbcrqGLjqnNI8Zu+q7eB8VeVdHWaO6y5nx2jjpdAFlPrrIU+7OvyWZCBrT70Rm6NhjLl2NKAkFXvvY4476zyYxMYqsmBqkmL02mNo/INY3VppFWzsbS5i7dc21Yx0jsmtUbKyd2xq5ZvS26qBqbLsAeOU/IMnLXIlXT+9MrDxvMhKyqYTR2bdBtctalSiAody1x5WuPs+47a4jIKFtH+uO7xeDLXVmSFzFzm0d0q2hry0grZ2RJc5fcuVbdWi5DNZH26GjubE0J9qY6XscuKPHWxpN654ehgFeTZg1jWma+0WuDZu3z6cuFePXH43rrrz+ai0FtwkyaokIz+K7Nn/+Bs9ed8rrLgIgMsuUoH90mjBGdIhDVyAdvbzyFCiHgpgBmDGhh8vtI3Ux7xAU5/UgrZ7XzrysQGsddoYBec5dmYADAquea5rblmj/cUHWOZeUXA0CNXKydsSnBnkzpD2Rsfiyg6rNeMzkZSRENAZgesKuC8ehAb8xbd1zvfd5YfwILNpzQ+xzltn/0fAFGfrFH9vN39mB51b4czPr+mN7rznDdZZOZizK1CcyWo3x0L3Ir9p4DBDCjfwsoUHUheWvjSYOjQlT7ceTcddlklI4w0spR2aopVPX5ap46CgH0iAtS/647unCZRC2hpeea7rZ3/nVF6zxwUwBPdG+KmQPi8dbGk2aPQLKUszYl2Iuxmh/V+WGs6R0AKqGdqd7cUZiGmtCkPkep7T/VqylS79RwSf2dVJJZZyL1vQeqvm/OcN1lDZELMucJ1Va5bOSe6BZuPAkFoP5CGaol0NwPhQJatREA8xEZY8uaCqnPtxJQV5lLBQZf/J5llXPNULJOzelrAKBr6tYazXHEJlzzGKv50Tw/NJve3e5cD4TMuirmXhtU668/mos31p/QWib1OWpu/+iFAqRuPKkXLKia3TpGN3T6nFtyn9dHw9vi3qTwmi+QmVhD5GLMfUK1VS4bVROJFKkLhm4tge5+6AZDQNXJrZrM1RXzERmq/bF1TYWx/FByAdOEbk2rfa4ZCzpU54Gtaj8N4ZQyxmmet4ZqflTnx86/rqBr6taqVAoCeKJHDHbPugepQ02fbNSca0OYnxcGtQkz+XNUNbe9tfGk5HUKqGp2G7woTfJ8PJB93aRyOQK5z+uCk9SAsobIxVjyhGqLGpadf13RqgkyROpCI/ck4oaqGyvu/P/BT9Ikaz6k2umdve1ek7HaH1vXVBgbLi9X8zi2WzTGdouu1rlmaq2mXL+iXWeuQEDY5DywZhqB2kI1VF6hUOBCQalep+mZ/auaNStR9TnO6N8CbZr4S9byCQBf/p6NsV1jrHLdkrsmmPs5mtLHSW7x098cwpHzBRjXLcbhz5MwPy/M7B+vziWn8vbGU7g/Kdzhy8+AyMVY2gRmzVw2cu3MUuQuNHL78dnj7TDhvwfUT2JS1c5SwUJBSbm6OluhAGYNiMeTPWKtsr+2InexNqUjfE1M62HohmSsw7XUuWZqwGrqzUru4r1oWyYWbcs0uxnR1PKxCfcfqg64UteCSgHMWnMMuNP0pbgzyELze2lspFh1rlvGHirM+Rylvm9SzfwA9B4UhQA+/z0LX/yehVkD4pHYxM+hH9oSm/jpveYszcIMiFyMvZ9Qc5Wl+PnoReMjQhRV7c7toxvKVnNL7YeXRx3ZvkRyfVd0L8hCAAs3nAQE8GRPxwyKDF2sTan9sfZ5YOhJWi43lKEO18b2d2Z/wzcGU29WUhdvFXP6cJjbH8teyTIdSa6yVDYYUtH8LguhX9Ngq8De1NG1pn6OUt+3GQNaqGvDNMs+7/5WmPPjn3rbEDAvi7+9mPuZOFLNPAMiF2SvJ1S54bNA1VOR4s6XSHVzNtYJT2o/cpWlsl9GuWBM7oL81saTuP8ux6vmNXaxNvWCZK3zwNxgQK7/kFw+F0undzHlZmUsG7EpT7acgNYyWfnFJtUSa6puYK978zVn2g5zajmktiv5fbszklbVHLhgSAJ6xAVh7ro/DT40OvI5Zuwz0Tw2O/+64lApKBgQuaiafkI1NHxW80Jg7s1Zdz/knsSW7sqSTf4oR3NUlCMxdrE25yZR3fNAKhiYveaYwQu1XBAil8/FGtO7yNE9VrpMqW2ozs3TkZ6Oa9qxC0qDy609Ukw3cH+wbWOsPXRB8mZcnZonQw8Imt+3Vfty8NYvVcGQqjmwR1yQZPoJKY7cDCX3megeG83P1xGCPAZEVCPkbmpzBrXEQI1aAWt8EbSGup4vQOoG/aGupnDU0T+mXKzNrf2x9MYsWdsjgGW7s/DSwFaSf2MoCDG1v5Om6t4YdIdGqxKDmtqMaMnNs7ZPMmvsfMpVVnWeljJ7QLy60/TOv65YJbCXCty/P3hBvVx13sWHNkBxWQViAn0salI2tbZQapRs6oaTVf0YTbxYOer1SUX3M5E6NrrsHeQxIKIaIXfTGCjRRGINqm2O/GKPRcGQGxw3kZhkLVh//WzLptb+6PXPGRCPxMamddyUC1a+2JmFsV3lR8WYk8/FGrU4xqiOVXJsI9yfFG52TaVmDhxjN09nmWTW0iD50x2Z6gEKcueT3APSohFtMajNP03luoE9UNWR2liTly5TRnlVCIHBi9K0AlTNvFWmHANTawul1hPq/+ibM6glbguhNQLPUa9Pckz5DOwd5DEgIouYeiHSXK+mO3Ob8gWU87HOhdnR6NZqSM3vZArJ/jkb/umfo7qZ+Xi4q5+cdZsox3eLwee/Z2lt15TmxjC/qnwuCzacMKu/09ELBXhrQ1VTgy0CV1VwpMqHY+gc10oOiqocOHKBoLGZ2O39dKzJ0qSdn+7M1Bq1p3k+KXBn9GbPWNkHpCYNvfSOuerzMKfJS5exWkYV3eabXbN6Izm2kdH9NvQ+5qR8kKJ6cNQcmWlqLZIjkRtppxDQ6kNlz/OfARGZzdSLpdR65j5xVYfs/FUSfRM0uSsUaBfV0KZlswbNWjDdPjzxoQ3UczapSAWxxvrnqG5mKlKf97huMfjiTtOPiqlPepb0d8q5VvzP2GQj0zVYypRzXK/ZA//kwDG0PTn2fjpWsbSTeK6yFKkyzWCAxigpBfBkj1i9z31w23A8+Ema5DE3tclLrozGahmlWBKgmno+667nduf46JZMFfAD0BqZKeB4NYpycpWlOHD2OoQQmDkgXq9J2pFSUDAgIrNY2kZu6RNXdUhddCbceYLX7JugAIA7QZLUBcyRO77K9eEZvCgNqUP/uaHI3eDNeVJVbVv38w7z80LqUMtr/1S1PwfPXkelEOgQHSC7rrk3a0s+O1Pfw9TmEVNmYnekJlpLO4ln5RebVHPx1saTuD8pXKvWz9vDTR0MAfrH3NQmr4Nnr6Ohj/TnPaxjJOJDG2DwJ2kmlVMBWBSgmtp/T3c9zWuSm6Iqa/vYbtEI8/Mymm/JUenmmVLVEqr6iFmz76g1MCAis1SnjdweX2C5i5NU3wSpC5ijz0wuF9BoPkEChmeRt8aTs7G+HsaYOvzWnPPK0s/O1PcwtXnE0M1c98bnCCwdYWVqcF0p/mlOVf0Yu+Gbsm2FApi64pDBTurFZRWmNzdVs/ZRyNRB6wbpmtek+NAG2Jd9HR2jG2rV8Pp4uOslbHSUGkU5UvnGBKoC4t2z73GY810TAyIyS3XayO31BZbrXKz7uu46kkPKvz8GH886aB8lnTCypqkCGqkaCNUNRUAYvNlo1tDsOpOPVfvOGa7NUEg/Ocv19TAWiJhT62PqeVWd3ECmvoepzSNS23NDVT+1dmacRzVVU2lOM6bU383+/ph6+hwpbgogv+gmcpWlBkcSah5zqTINbhuOHw5dVNeomDKE25waUSEsS7th6PzX7XM2sXsMxt6ZkkPu71Sv6wZDjlKjKEfuQcBR05kADIjITJa2kTvDF1iXXALBqSsOOVRtkbop4M4IGRXNG4qxG7xmDY2qc3AjH0+8/cspvZojIarWl9p3SwIRc2p9TD2vqlNDac65a0rziNz2zOm0X9M1lZYm7TTWLKWaruLplYe19sOUYy5VphdSWiA7vwT5RTfx9MrDWu8l9Xnrvo/iTrWLVHxkyQOcXF4ubw93RAZ46/U5++z3LHyxKwszB8RrZa3WTAOg+7DjpgDWTE7W6yOoen9TEk/WBNk+nLCsKbImMCByUdX5oljaRu5MwVCushSZV4pkJ6B1tGHSSRENDfbjMZY5Vqpz8JrJyfhgeBKUpeV45Yd/phIw1KHTkkDE3NpEufNK85yubg2lOeeuXA2kpdvTZa9M2Jod7zV/NyYpoiFSJZKjNvH3UjdpAfr7YWpwqRvgqG78pn7ecs3lR88XqB8AzH2AU51714rLJPv0Pb3ysOzcZZUCelN4AFXfm33Z1yW3V1KmXQcnldeqf0IoNmbkQZgQRNsicFIFn7PWHFPvtwLAwqGJDnHNlMKAyAVZ42nTlJuAOes5EkMTTmqqEAIHsq/j3iTH2D9DNxRDy+SCGFWNk1RXCrkgx5JAxFjtgOpirTv031hfL1NqeQzdCEw9d82ZdNaS74K9+uNV5zohdb6lZebrfaekck5Zsk/m1khLBVbJsY1w/13m56DSbQaTe4gy1HdJ9be6Nbwdoxsa/T7J5bXacCxP63e5INqWtY+azfFCQHZuSkfBgMjFcN4lw6Q6Ahoy7ZtDKC677RBNZ4DhG4rcMkMdszX/r0nVD+TIuevIuVYChUKh7ldlSVOpKan+Nd/b2JBs1YhGQ2kerHEjqImmLHv0x5M7ppqZnE1perSkE7qlrFEjbW5AJlW7qoB+E7UmqYBJlVxVt4YqKaKhWbW7hpgyAtIa/SSlOo0PauMc9xYGRA7O2lWZpjxtWjpU2VGHppvD3GSO9ggorX2sdYMYuYu55oVc1Qygu1w11N/SG5PmyBy5i70pQ7JV53RybCPJ97fGg0FNPVzYoz+e3DF9YFEaAMuCv5rYj+rUSFvyvZLLOP3x8LZao95U3BUKrJmcjPVH8/DFrr9RKf7pID2sY6RkDZW5tbtypAZDWLufpKOPyjWGAZEDs8XJJfeU5u3hhrTMfBw7r6yacNCM93T2L4Emc/PyADWbTsBWx9pQThgA6sRxhghoT+xqzvGQ2q+IAG/Zz0HVXBlQvxilZbfNHpJsjWaommzKqun+eMa+B5YGf47ar9DS75Xc9VTVNFR067ZeAJgUUTWkfmy3aL3jIPe9Mbd2V8rMAfEmNXGrmPsZ14bWBzd7F4CkyZ1cucrSam1X9ZTmrqjqGaKZIXbE53uxUGKkg6H3tFU57SXMzwszB8QbTEGiu6ym0gnY+lir+lGoquk1z5EJ3WNMakasFFUdVA1RTYmhKrfcfvl4uMNN5oNQoKq5csTnezH+/w6YPSRZdSPQZO7naI1tmEP1+Zh7c9E93qaa0C3G4PdAFfyZy9L9sJXqfK+krqeqcy9XWYqIAG+smZyMlRM7Y9es3lpBljWOg+77uymAJ7o3xewB8f+8hqoJc5/sEWv073WZ8xkbekBwFqwhclC2fPo0Vhtgzns6SgJGa1m1Lwdv3ZmYEgBGdIrAsA4ROH+9VN0p0NQZuI0xt4pe7lgbys5rKamROF/cmbzUEM1qean9M7UmqEIIlJRVSiaNVNVWSZXF0JBkTZY030j1jbB3agnNaRE6RAeY1E+qR1yQwfNOt5OwHEdPDGiq6nYjkKr1kjrutsrQL5XpPczPy+QO4qq/P5B9HdO+OWRxHy9jrQ/O0J2CAZGDsnUHRNUFXSpDrCZD75mrLMW14jKny6AqR6rPyqo/zuPpe5pr3WBNqfY3FuxYUkUvNzmisey8ltKtpjeW0Vpx5/2lbggzB8Qj3K+e5JP4msnJsud6cmwjreC9pKwSV4tvYeqKQ5JlkBqSDEh/HuY038h9XvZsApKaFkFzuhapmo9Za46p8+5IBUgA9DoJS3GkqUaqy9i11pTvquZ3xR5NR3KZ3k19vzA/L9yb5IXiMv0mPnO2Yc78dI6IAZGDMufpszqdbA21IatGPkjlIZEbauqMCRhV5J4UpYbWG+ojY+wCaukFU6rzsynZeeWYe95o3vx3n7mCRdszIe58/iM6RWLqPc3UTQW6+6c7SayKVE2Q6hwCgJ+OXNAawaYqt6FzVjcYN/R5mNLXydjnVZ2OvJaSmxZh9vfHDHY214xlKwUw6/tjUNw5llXTiMRI17yhqrOtaqqRQW1CUVxWoZVt2tRyG6rRsgdD11pbJxq1BmsGYNUN8M2Zn84RMSByYKacnNXtZCt1MZgxoAXaNPbH0QsF6oRhmtuWGmrqpqgaWeHoeSYMkQsOzRlab8rFqToXTM1zwtTsvFJMPW/k5l0a+UWm+uYqAHzzxzlMvaeZ7P7JkaoJUk102WXhVsnaD91zVnNbqkBKVUUP6M/jphk0mELu81p/NBeD2oRZ5Xy3RvMpoD0tgikdbgX+CZIqBfD571mStSVrJiejpKxS/dlY8tRvrEbLnuSutTWRaLS6rB2AVTfAN9T64OjdKRgQOThDJ6e1ngykLga5ylKM/GKP5LblZlhvVN/TYU90U6hutLpzMZlzXE25OFX3gqk6J46cuy653NujaqyE3E32yLnrWjcmuSBBLmg6cFY/e665E3Gq9lmzNlG1X7nKUr3EmALaI9h0n0Q1b9ZdU7eqyzxeosajEsCyXdl4aVBLwwW8Q25/3lh/Ags2nNB6ULCkptZazaeA9rQIuoGjXMJATQJA92aB2H3mqt7IKEB+agrVJMJy+29KjZa96V5rLe0SUNN9yxxp3khNjlouQxgQOTFrPhnoXgwMbdsZT3RTDesYCR/POnp9VEw9rqbMSm2tC2ZxWYXk6yVllQYnipwlkXhSN0iQC7YLSsuRKtH8ZWgiTl3GJjbNyi+WnS7FUFZjqTJ/uStL8hh9setvk2eYN7Q/6uNSUm52ugq5MpvTfGpsWoQecUH4YHgS9vx9DSv/yDFppvddp/OxdkoXdZBp7LpQKYCZ3x3FrjP5svvvbBN9VrdLQE32LTPlemLrPHFS23eEQQfmYkDkxGwZmBjatjOe6OZoHyWdLl9utITqYnDsglJrhJrq76T6YVnjgmloVIdcluHZGjdQXZpBglxAnKqzf0DVDdDQRJxSc0QZmtg0JtBHsjZDKrGcJrmb9b2JofhZYxoD1esHz143OYOuatJSVWJCTbrHxdo1iobKZGhaBKks36aoRFVQLTUqSq5maufp/H/+XmL/nWmiT2t1CajJvmWGrifm1EBaEjgZ2r6j5p2Sw4DIidkyMDG2bWc70c1hzmgJQzcdNwXwVK+msjUHmv0UNH+XY+qw7+KyCsmbrNREkZo0a2CkarrcIN0M9tHwtrg3ST/AUZXR3Dmiwvy8kDo0Ubu/icYINjlyAeLEHk2xISNPr+xTVxxC0S3pvmFSNwa5GjmpSTtNDWqs0XwqFdSZM6WDLkPvH+bnhfHdYvD579I1bypSc5TZa6JPa/TPcoYuAVI1pvuzr5lcA2lJ060pNZw1GRhWFwMiJ2fLwMTYtp3pRDeXKaMlVDUucjedSgF8si1TtubAnI7NS3dl4cs7eYCMDfuWm/lbaqJITaoaGFW5pGq6VMGd5uvtow3n/AHMP1c0c6MoFJBtXtN9D6kAUZVoUvezEpCen0vuc5Gr5ZjSKxafbM+0KKix1UONsY7tCkA9ukxxJ/KVaxLSDSjGdYvBF3dmVZcjVZtXUxN9apZXbji6IZYEqY42dZGhBzVT5zTTvFbJ7V9ty0PHgKgWsGVgUpuDHmOMjZZYvf+8wZuO1M1TM3OrKU9uuiNzpNbV/YyMBQazZJrNhADWHb6oF/RoJjv0965bY02lYX5eeukOjJEL4od1jIS3h7vkqLzBn6RBiH/yJb0lka1dday10h6gav0ne8YiIsBbdti2sRulLR5qjKXTWDAkQS/xpjnNLalDDeekmtCtqeR+yNVoGWNqwKFbXt20FLO/P4b40AZaecWqm3DT0aYuMlY7KBXcGQpsDAWVta0/KQMikuVoTz32Indz+WpvjsG/k7sZRQd6m5wdV7emRm5dXXI32R5xQbJDjQRQFQxI7Icq2aEzNJXKBfEdogMkP0fNYeeawZCKZi4qQwGXboCxYP1xfH6nJsXYjdLSBw+576jUTX1G/xZo08Rfb+4szb/R3bZc0G4ou7EbgLHdos3eFznm1KTqlldXJYDBn6QhVaLJ25KEm444f5ex2sGUhBC9skld49wUMNgfUVWrWpv6kzIgIkmO9tRjT4ZGGZlDt/Ox1M356IUCdWdWQxc2U57CpG6yciO4VCqh3ydGapScM17wpGp4pII/qQ7dT688hAsFpXiyZ6zs/qtel2qu0Byebm5fMTnGvqPVDV6NBe2qGrzqZDc2Ri7gUN2QfTzc1TdmU/NfCZkmb2M1r1IcscnIWNqLjRl5OHLuulYtmVQfLyGA9UdzJfdPs1Z14ZBE7JrV26EfkkzFgMiJ1FSNjSM+9dib6uay/mgu3lh/wqJtaHY+DvPzwsz+8Vi4UXsI+9sbT+H+pPB/OjZLdNiVGtVlKmMXS1Vizrc3nqoVT3y6jM3jp+4rpVNTJgAs3HgSZ6+V4Ok7GbmlGGquqBTAst1ZeGlgK9nyVac2RKo/VHWCV1ObQ2xZaygXcAxelKbd4V8BzOwfLzm1jap/lO42pAYZmBvMSNaswPoj58y59quCG918aipCAIMXpeklxdStPRYAvpBI1KnaBvDPebdrVm+bzdVWkzjbvZNYtS8HXVO3YsTne9E1dStW7TPcXFMdtWHWYluo6v8QpjfDudyM7JqkOh8nNvHTW081Weub64/jwTtPYer3AfBEjxjsnnWPSaM/pGY4V10sVbNbKxT/TOCpCn6e7BGLXbN6S87QXRuoRr6p+lTpzlT+ZM9YfDSireTfrtibgy4L5b9/xmopvtiZJTuLuimzrqs+V7nkmIM/SbPaNUL3XDEUHKuOqW5HXalz0ByqgEOX7iGuFMDbv5zCTI1Z3t0VCqQOScQPU7pAdzJ3zUEGuq+bE8yojpHmZgSq5hazFkuu/cM6RmL37Hsw4m7p765qQMGRc9fVn5FU7XElqvqDqY6pVMCgujdY4/O2N9YQOYGarrGpbR3lrEmyb8aAFnp9TxQKQCGqLihyNxK5yVqnSExc6gZg7ZQuRmdxB8xvSgH0O9Q6a7OYueRqN9pHNZTN7Ky6mUh9/4zVwBlKRCj3ILJybw4e7RSp1blVM1mgVtmMXCOOnLuOP7Kv4e7oAJPOJVX+pX3Z19ExuqHBzsiaLG1yN9bB2dCxrRACbRr7SzbfpGqMMlTVsKoC4uo29/WIC9KqyTV0fpirOtf+MD8vLBiSiKhA76o8WQZq2lQDCqSu+2O7RWNst2hk55egpKwc4//vgN577TpzBSO/yHT6LhYMiJxATbdTS/W1GG/FTpLOTuom6u+lP/pK7kaiEubnhQfbNsb3By+oX5ProqRKlmeM7rQXchdQqZFprkoq+Avz88KsAfpNmipy3z9j/c0MPVjIBVMfbT2Dj7eeAfBPACRQFRCp1pfqD6Vbxue/Pax1rg1t1xj/fuQurb/RDUgMZTyXC3gsvYmb0sFZqplT99jKBfOafWNUrNHcZ8vrszW2/WSPWHSOCdBrZgS0R+C9vfEUZvaP10uiqvmQlJaZDymG0os4EwZETsDWNTZST3qqC8WyXdn4Ytff+Oz3LHyxK8tpI39r073o6l5YTZkAM1dZirWHLuhuWpZqjjJDlu7Szw9j706ezurJnrGAQnrkmaHvn7Es3XKfg6G+H3I1VR8Pb4tG9T1ln9xV58yRc9e1giEA+P7gBTyeHKUO1nUDErkUBMY6I1tyEzcWRGl+3wxN7Cu1fd3Rmro1ONWtDbXXjAHmSIpoiNSh+rm4NFUIgTZNtGvYAGhl55fLIl9brjnsQ+QEzGnLN5ex9ukvdv1tsE8D/UPVjwKQzjGke9zMmRUeMF5DlKsslZy7yxGnR3AWT/aIxe5Z9+CJHjHqi6Wx75/qAcPbww2JTfywZnKyyf2xhnWMlO2/pMtNAUQEVJ1zXh7Sz7aqc+aP7GuSy/dnXwdwZ8JfnXNWLgWBoc7IgHS/H2M3cXP6LQ7rGIkZA1qo+wUpFMCMAS1kj62t+0Ta8vpszW0P6xiJD4ffJbtcs4YtObaReqJkzXtDmJ8XJnaPMfpeztrFgjVETsIWIzmMPZU54pBSZ2DsuKlumD4e7ibNCg+YdoGRC7Am9Ijh51UNYX5eeGlgK4ztGmP0+yc15F5VQ2jqKBxD/Zc0VQrgwU/SsHBIInrEBRmsSbg7OkByGx2iG0om/1RtX7ccchnPdef6M6VvjmbNtDk1IbnK0qo5AzWawDRHZ+qydg2O5vdXNaLPnjMGmEMuF5fuyFWpe8PsNcfg7eGOQW3C8MWdrPmaVOeKM49MZUDkRKzd0dXYjZudqy1j6LjpNks82LYx1h66IHlxUU2t4AZgRv8WRj97ueRqY7saf6Ij44x9/+SG3JvbpyLMT38uNzmaw54NBSFJEQ0xtF1jvT5Ewb71qkYzSmxblYJAt8lPqjOy1Fx/hnLTSPUXMrXforkPalIDIUy5YUt1JTAU8A7rGGn1IECzDNYY1i7VP3RCjxiM7ar90CQ3n9vTKw/DTQGktA7FxgztCZMVAP4zoq1J0+w4KoUQ1cg050IKCwvh5+cHpVIJX19fexfHKnKVpeiaulXvxr1rVm+tC4DuhYR9iIyTOm7xoQ3UCc1U3BUKrJmcjPXHcvHFziytUWkFpeXq0SFuCmB4xwh0aRaI9gYuOPy87CctMx8jPt8ru3zlxM5Ijm1kck6ZLSfyJPsFyW07OtAb+7OvwU2hkL0pHTl3HfuzryM60BteHnVwteiW3nQmgPZNPldZKhnYqF6Xy+ekeR3R3GcAstcdAOp+i7r97zRrZoy9nxS5/ZAiFbD1iAvSK7c572+IseDL2iO3jB0LqXuDJqlO/MA/57ijMfX+7VI1RIsWLcI777yDvLw8JCUl4eOPP8bdd99t72LZjSlPTs4wVYMjkupk/cCiNL31KoRASVmlXpMMUHXT0BxGveKPc1jxxzkoAL2kanLvy8+r5hibP0yqhtDQTU6uX5AuN1RlOB/5xR6j202KaIiTeTcw8b8H1OsaGr4PyNeMqV6Xm+tPVWOju8/ju8XIrh8d6K3Xb3H298dQUFqu7tOkqln94dBFs2p8TK1hl+tK8OGjdxnskGys07hcEPzpjsyqBx9oB1+mTrYKwOyEvcaOhbHRkqZktHdGLhMQrVq1Cs899xyWLFmCTp064YMPPkBKSgpOnTqF4OBgexfPbky5gbpKThprUx031VB4KZoXEc3jLHWTUREwPA0EPy/7kLuJqG7YgH5n+9lr9CcbVTGW00hlUq9YgxPSapK62atyZmm+je5ILEMMNRFLvd+Xu7Ik+ybJzfFXCSB1w0mtYd0/HLqINZOTUVJWWWPZsSGkp9vRLL8UQ0HwpzsztVI7GAq+pCZbVfVd1wymzK1FkgvWVPeGg2evY+qKQ3pB84DWofj1z0u1KqO9y4wye++99zBx4kSMHTsWrVq1wpIlS+Dt7Y2lS5fau2h2pxpV4Owns6Pan31Nso+GoSk45DL0qlQKuHzmcEc0rGOkOsv3j1O6aI0uk+uXMXhRmmT2Yd0RRlIGJoaia/NAk0dRSZVBCODpPs301jV1JJahkVBy+zyxR4zk+qph3bqkhnWXlFXa5LolN0qufXRDyc/DlCH/UiNOc5WlSJXIc6UZfOm+j+5kqwLQy/9jzihgY6OMw/y8MKhNOGYNjNf721//vGTWCEpn4BI1RGVlZThw4ABmz56tfs3NzQ19+/ZFenq65N/cunULt27dUv9eWFho83JS7aSQuaG99kBrg7OfLxwinzfETcGh9I5KroZOrsbHUG2MZg1uSVk5Jvz3gFYzxa8Zl/Bkj6YmD36Qq83pEx+M/2w9Y/EACrmaZrn3G9s1RnLUnmpY92e/Zxl8P1s2zxjqSqCbJNJYDZWhDuACQjIRqxugDr50y1BcVmGwxtCcUcDmJNBMbOwn+V6qoLS2cImAKD8/HxUVFQgJCdF6PSQkBCdPSmeiXbhwIebPn18TxaNaTmoYtUIB9GkZIvcnADSSY+7Owmc7/7lBKO5UjbNGz7kYCnKNjZJS9dWRmn6hpKzS5FFUcjd7a0xjIRUIGuunKLX9sd1i9IZ1a466rInmGUNdCcxpkjY2UlcqQJ45IF4v+FKVIVdZanRyZlMDRXNG67nKiGOXCIgsMXv2bDz33HPq3wsLCxEREWHHEpGzUg2j1u1HYOoQbFWH6wPZ16FQwKmHtbo61dxgutMomHJzMXRTSo5tZHJnermbva065Ju7XbkgqqYHC1ijL56xgFB3nraZA+LxZI9Y2TLobk9x50lLwPxA0Zwgx9LUBc7GJYbdl5WVwdvbG9999x0GDx6sfn306NEoKCjAjz/+aHQbtXHYPdUsc4b9Uu1maXoEV0qrUJu+L4b2xZL91PwbQH9yZlOZez4562di6v3bJQIiAOjUqRPuvvtufPzxxwCAyspKREZGYurUqZg1a5bRv2dARETWZOnNxVlvSuSYXOF8Yh4iHc899xxGjx6NDh064O6778YHH3yA4uJijB071t5FIyIXZGmTDNMqkDXxfPqHywREw4YNw5UrV/Dqq68iLy8Pd911F3755Re9jtZERETkelymyay62GRGRETkfEy9f7tMYkYiIiIiOQyIiIiIyOUxICIiIiKXx4CIiIiIXB4DIiIiInJ5DIiIiIjI5TEgIiIiIpfHgIiIiIhcHgMiIiIicnkuM3VHdakSehcWFtq5JERERGQq1X3b2MQcDIhMdOPGDQBARESEnUtCRERE5rpx4wb8/Pxkl3MuMxNVVlbi4sWLaNCgARQKhcXbKSwsREREBM6dO+eyc6LxGPAYADwGAI8BwGMA8BgAtj0GQgjcuHED4eHhcHOT7ynEGiITubm5oUmTJlbbnq+vr8ue+Co8BjwGAI8BwGMA8BgAPAaA7Y6BoZohFXaqJiIiIpfHgIiIiIhcHgOiGubp6Ym5c+fC09PT3kWxGx4DHgOAxwDgMQB4DAAeA8AxjgE7VRMREZHLYw0RERERuTwGREREROTyGBARERGRy2NARERERC6PAZEVLF68GG3atFEnlEpOTsbGjRvVy2/evIkpU6agUaNGqF+/PoYOHYpLly5pbSMnJweDBg2Ct7c3goOD8eKLL+L27ds1vStWk5qaCoVCgenTp6tfq+3HYd68eVAoFFo/8fHx6uW1ff9VLly4gMceewyNGjWCl5cXEhMTsX//fvVyIQReffVVhIWFwcvLC3379sXp06e1tnHt2jWMHDkSvr6+8Pf3x/jx41FUVFTTu2KR6OhovfNAoVBgypQpAFzjPKioqMCcOXMQExMDLy8vxMbG4vXXX9eaS6q2nwdA1VQR06dPR1RUFLy8vNClSxfs27dPvby2HYOdO3fivvvuQ3h4OBQKBX744Qet5dba36NHj6J79+6oV68eIiIi8Pbbb1tnBwRV27p168T69evFX3/9JU6dOiVeeuklUbduXZGRkSGEEOKpp54SERERYsuWLWL//v2ic+fOokuXLuq/v337tkhISBB9+/YVhw4dEhs2bBCBgYFi9uzZ9tqlavnjjz9EdHS0aNOmjXjmmWfUr9f24zB37lzRunVrkZubq/65cuWKenlt338hhLh27ZqIiooSY8aMEXv37hV///23+PXXX8WZM2fU66Smpgo/Pz/xww8/iCNHjoj7779fxMTEiNLSUvU6/fv3F0lJSWLPnj3i999/F82aNROPPvqoPXbJbJcvX9Y6BzZv3iwAiG3btgkhXOM8ePPNN0WjRo3Ezz//LLKyssTq1atF/fr1xYcffqhep7afB0II8cgjj4hWrVqJHTt2iNOnT4u5c+cKX19fcf78eSFE7TsGGzZsEC+//LJYs2aNACDWrl2rtdwa+6tUKkVISIgYOXKkyMjIECtXrhReXl7i008/rXb5GRDZSMOGDcUXX3whCgoKRN26dcXq1avVy06cOCEAiPT0dCFE1Unk5uYm8vLy1OssXrxY+Pr6ilu3btV42avjxo0bonnz5mLz5s2iZ8+e6oDIFY7D3LlzRVJSkuQyV9h/IYSYOXOm6Natm+zyyspKERoaKt555x31awUFBcLT01OsXLlSCCHE8ePHBQCxb98+9TobN24UCoVCXLhwwXaFt5FnnnlGxMbGisrKSpc5DwYNGiTGjRun9dqQIUPEyJEjhRCucR6UlJQId3d38fPPP2u93q5dO/Hyyy/X+mOgGxBZa38/+eQT0bBhQ63vwsyZM0WLFi2qXWY2mVlZRUUFvvnmGxQXFyM5ORkHDhxAeXk5+vbtq14nPj4ekZGRSE9PBwCkp6cjMTERISEh6nVSUlJQWFiIP//8s8b3oTqmTJmCQYMGae0vAJc5DqdPn0Z4eDiaNm2KkSNHIicnB4Dr7P+6devQoUMHPPzwwwgODkbbtm3x+eefq5dnZWUhLy9P6zj4+fmhU6dOWsfB398fHTp0UK/Tt29fuLm5Ye/evTW3M1ZQVlaGr776CuPGjYNCoXCZ86BLly7YsmUL/vrrLwDAkSNHsGvXLgwYMACAa5wHt2/fRkVFBerVq6f1upeXF3bt2uUSx0CTtfY3PT0dPXr0gIeHh3qdlJQUnDp1CtevX69WGTm5q5UcO3YMycnJuHnzJurXr4+1a9eiVatWOHz4MDw8PODv76+1fkhICPLy8gAAeXl5Whc/1XLVMmfxzTff4ODBg1pt5Cp5eXm1/jh06tQJy5cvR4sWLZCbm4v58+eje/fuyMjIcIn9B4C///4bixcvxnPPPYeXXnoJ+/btw7Rp0+Dh4YHRo0er90NqPzWPQ3BwsNbyOnXqICAgwGmOg8oPP/yAgoICjBkzBoBrfA8AYNasWSgsLER8fDzc3d1RUVGBN998EyNHjgQAlzgPGjRogOTkZLz++uto2bIlQkJCsHLlSqSnp6NZs2YucQw0WWt/8/LyEBMTo7cN1bKGDRtaXEYGRFbSokULHD58GEqlEt999x1Gjx6NHTt22LtYNebcuXN45plnsHnzZr0nIlehevoFgDZt2qBTp06IiorCt99+Cy8vLzuWrOZUVlaiQ4cOWLBgAQCgbdu2yMjIwJIlSzB69Gg7l67mffnllxgwYADCw8PtXZQa9e233+Lrr7/GihUr0Lp1axw+fBjTp09HeHi4S50H//vf/zBu3Dg0btwY7u7uaNeuHR599FEcOHDA3kUjCWwysxIPDw80a9YM7du3x8KFC5GUlIQPP/wQoaGhKCsrQ0FBgdb6ly5dQmhoKAAgNDRUb5SJ6nfVOo7uwIEDuHz5Mtq1a4c6deqgTp062LFjBz766CPUqVMHISEhLnEcNPn7+yMuLg5nzpxxmfMgLCwMrVq10nqtZcuW6qZD1X5I7afmcbh8+bLW8tu3b+PatWtOcxwA4OzZs/jtt98wYcIE9Wuuch68+OKLmDVrFoYPH47ExESMGjUKzz77LBYuXAjAdc6D2NhY7NixA0VFRTh37hz++OMPlJeXo2nTpi5zDFSstb+2/H4wILKRyspK3Lp1C+3bt0fdunWxZcsW9bJTp04hJycHycnJAIDk5GQcO3ZM60TYvHkzfH199W4ujqpPnz44duwYDh8+rP7p0KEDRo4cqf63KxwHTUVFRcjMzERYWJjLnAddu3bFqVOntF7766+/EBUVBQCIiYlBaGio1nEoLCzE3r17tY5DQUGB1lP01q1bUVlZiU6dOtXAXljHsmXLEBwcjEGDBqlfc5XzoKSkBG5u2rcXd3d3VFZWAnCt8wAAfHx8EBYWhuvXr+PXX3/FAw884HLHwFr7m5ycjJ07d6K8vFy9zubNm9GiRYtqNZcB4LB7a5g1a5bYsWOHyMrKEkePHhWzZs0SCoVCbNq0SQhRNcw2MjJSbN26Vezfv18kJyeL5ORk9d+rhtn269dPHD58WPzyyy8iKCjIqYbZStEcZSZE7T8Ozz//vNi+fbvIysoSu3fvFn379hWBgYHi8uXLQojav/9CVKVcqFOnjnjzzTfF6dOnxddffy28vb3FV199pV4nNTVV+Pv7ix9//FEcPXpUPPDAA5JDb9u2bSv27t0rdu3aJZo3b+6wQ42lVFRUiMjISDFz5ky9Za5wHowePVo0btxYPex+zZo1IjAwUMyYMUO9jiucB7/88ovYuHGj+Pvvv8WmTZtEUlKS6NSpkygrKxNC1L5jcOPGDXHo0CFx6NAhAUC899574tChQ+Ls2bNCCOvsb0FBgQgJCRGjRo0SGRkZ4ptvvhHe3t4cdu8oxo0bJ6KiooSHh4cICgoSffr0UQdDQghRWloqJk+eLBo2bCi8vb3Fgw8+KHJzc7W2kZ2dLQYMGCC8vLxEYGCgeP7550V5eXlN74pV6QZEtf04DBs2TISFhQkPDw/RuHFjMWzYMK38O7V9/1V++uknkZCQIDw9PUV8fLz47LPPtJZXVlaKOXPmiJCQEOHp6Sn69OkjTp06pbXO1atXxaOPPirq168vfH19xdixY8WNGzdqcjeq5ddffxUA9PZLCNc4DwoLC8UzzzwjIiMjRb169UTTpk3Fyy+/rDVU2hXOg1WrVommTZsKDw8PERoaKqZMmSIKCgrUy2vbMdi2bZsAoPczevRoIYT19vfIkSOiW7duwtPTUzRu3FikpqZapfwKITRShxIRERG5IPYhIiIiIpfHgIiIiIhcHgMiIiIicnkMiIiIiMjlMSAiIiIil8eAiIiIiFweAyIiIiJyeQyIiIiIyOUxICJyMXl5eXj66afRtGlTeHp6IiIiAvfdd5/WHENpaWkYOHAgGjZsiHr16iExMRHvvfceKioq1OtkZ2dj/PjxiImJgZeXF2JjYzF37lyUlZVpvd/nn3+OpKQk1K9fH/7+/mjbtq16kk8AmDdvHhQKBfr3769X1nfeeQcKhQK9evUyul/R0dFQKBSyP2PGjDH/YDm4Xr16Yfr06fYuBlGtUMfeBSCimpOdnY2uXbvC398f77zzDhITE1FeXo5ff/0VU6ZMwcmTJ7F27Vo88sgjGDt2LLZt2wZ/f3/89ttvmDFjBtLT0/Htt99CoVDg5MmTqKysxKeffopmzZohIyMDEydORHFxMd59910AwNKlSzF9+nR89NFH6NmzJ27duoWjR48iIyNDq1xhYWHYtm0bzp8/jyZNmqhfX7p0KSIjI03at3379qkDtrS0NAwdOhSnTp2Cr68vAMDLy8sah7BGlJeXo27dujX2fmVlZfDw8Kix9yNySFaZAISInMKAAQNE48aNRVFRkd6y69evi6KiItGoUSMxZMgQveXr1q0TAMQ333wju/23335bxMTEqH9/4IEHxJgxYwyWae7cuSIpKUnce++94o033lC/vnv3bhEYGCgmTZokevbsacLe/UM1p9L169fVr/3www+ibdu2wtPTU8TExIh58+ZpzQ8GQCxZskQMGjRIeHl5ifj4eJGWliZOnz4tevbsKby9vUVycrLW/HSqsi9ZskQ0adJEeHl5iYcfflhrviohhPj8889FfHy88PT0FC1atBCLFi1SL8vKylIf1x49eghPT0+xbNkykZ+fL4YPHy7Cw8OFl5eXSEhIECtWrFD/3ejRo/XmjMrKyhLLli0Tfn5+Wu+/du1aoXm5V5X7888/F9HR0UKhUAghqs6B8ePHi8DAQNGgQQPRu3dvcfjwYbOOPZGzYpMZkYu4du0afvnlF0yZMgU+Pj56y/39/bFp0yZcvXoVL7zwgt7y++67D3FxcVi5cqXseyiVSgQEBKh/Dw0NxZ49e3D27Fmj5Rs3bhyWL1+u/n3p0qUYOXKkVWoufv/9dzz++ON45plncPz4cXz66adYvnw53nzzTa31Xn/9dTz++OM4fPgw4uPjMWLECDz55JOYPXs29u/fDyEEpk6dqvU3Z86cwbfffouffvoJv/zyCw4dOoTJkyerl3/99dd49dVX8eabb+LEiRNYsGAB5syZg//7v//T2s6sWbPwzDPP4MSJE0hJScHNmzfRvn17rF+/HhkZGXjiiScwatQo/PHHHwCADz/8EMnJyZg4cSJyc3ORm5uLiIgIk4/JmTNn8P3332PNmjU4fPgwAODhhx/G5cuXsXHjRhw4cADt2rVDnz59cO3aNXMON5FzsndERkQ1Y+/evQKAWLNmjew6qampejUrmu6//37RsmVLyWWnT58Wvr6+WrPbX7x4UXTu3FkAEHFxcWL06NFi1apVoqKiQr2OqrairKxMBAcHix07doiioiLRoEEDceTIEfHMM89Uu4aoT58+YsGCBVrr/O9//xNhYWHq3wGIV155Rf17enq6ACC+/PJL9WsrV64U9erV0yq7u7u7OH/+vPq1jRs3Cjc3N/UM9rGxsVo1O0II8frrr4vk5GQhxD81RB988IHR/Ro0aJB4/vnn1b/37NlTPPPMM1rrmFpDVLduXXH58mX1a7///rvw9fUVN2/e1Prb2NhY8emnnxotG5GzYx8iIhchhLDJugBw4cIF9O/fHw8//DAmTpyofj0sLAzp6enIyMjAzp07kZaWhtGjR+OLL77AL7/8Aje3fyqp69ati8ceewzLli3D33//jbi4OLRp08ascsg5cuQIdu/erVUjVFFRgZs3b6KkpATe3t4AoPV+ISEhAIDExESt127evInCwkJ136TIyEg0btxYvU5ycjIqKytx6tQpNGjQAJmZmRg/frzWcbl9+zb8/Py0ytihQwet3ysqKrBgwQJ8++23uHDhAsrKynDr1i11WasrKioKQUFB6t+PHDmCoqIiNGrUSGu90tJSZGZmWuU9iRwZAyIiF9G8eXN1Z2g5cXFxAIATJ06gS5cuestPnDiBVq1aab128eJF9O7dG126dMFnn30mud2EhAQkJCRg8uTJeOqpp9C9e3fs2LEDvXv31lpv3Lhx6NSpEzIyMjBu3Dhzd1FWUVER5s+fjyFDhugtq1evnvrfmh2ZFQqF7GuVlZUmvy9QNdKuU6dOWsvc3d21ftdtxnznnXfw4Ycf4oMPPkBiYiJ8fHwwffp0vVF8utzc3PQC2vLycr31dN+vqKgIYWFh2L59u966/v7+Bt+TqDZgQETkIgICApCSkoJFixZh2rRpejfEgoIC9OvXDwEBAfj3v/+tFxCtW7cOp0+fxuuvv65+7cKFC+jduzfat2+PZcuWadX4yFEFVMXFxXrLWrdujdatW+Po0aMYMWKEJbspqV27djh16hSaNWtmtW2q5OTk4OLFiwgPDwcA7NmzB25ubmjRogVCQkIQHh6Ov//+GyNHjjRru7t378YDDzyAxx57DEBVEPbXX39pBaQeHh5aqRAAICgoCDdu3EBxcbH6M1b1ETKkXbt2yMvLQ506dRAdHW1WWYlqAwZERC5k0aJF6Nq1K+6++2689tpraNOmDW7fvo3Nmzdj8eLFOHHiBD799FMMHz4cTzzxBKZOnQpfX19s2bIFL774Ih566CE88sgjAKqCoV69eiEqKgrvvvsurly5on6f0NBQAMCkSZMQHh6Oe+65B02aNEFubi7eeOMNBAUFITk5WbKMW7duRXl5uVVrJV599VXce++9iIyMxEMPPQQ3NzccOXIEGRkZeOONN6q17Xr16mH06NF49913UVhYiGnTpuGRRx5RH4P58+dj2rRp8PPzQ//+/XHr1i3s378f169fx3PPPSe73ebNm+O7775DWloaGjZsiPfeew+XLl3SCoiio6Oxd+9eZGdno379+ggICECnTp3g7e2Nl156CdOmTcPevXu1OqvL6du3L5KTkzF48GC8/fbbiIuLw8WLF7F+/Xo8+OCDek16RLUNR5kRuZCmTZvi4MGD6N27N55//nkkJCTgX//6F7Zs2YLFixcDAB566CFs27YNOTk56N69O1q0aIH3338fL7/8Mr755ht1s9HmzZtx5swZbNmyBU2aNEFYWJj6R6Vv377Ys2cPHn74YcTFxWHo0KGoV68etmzZotdXRcXHx8fqTTQpKSn4+eefsWnTJnTs2BGdO3fG+++/j6ioqGpvu1mzZhgyZAgGDhyIfv36oU2bNvjkk0/UyydMmIAvvvgCy5YtQ2JiInr27Inly5cjJibG4HZfeeUVtGvXDikpKejVqxdCQ0MxePBgrXVeeOEFuLu7o1WrVggKCkJOTg4CAgLw1VdfYcOGDUhMTMTKlSsxb948o/uhUCiwYcMG9OjRA2PHjkVcXByGDx+Os2fPqvtTEdVmCmFu70kiIgJQlWX7hx9+MKlJiogcG2uIiIiIyOUxICIip1G/fn3Zn99//93exSMiJ8YmMyJyGmfOnJFd1rhxY6ear4yIHAsDIiIiInJ5bDIjIiIil8eAiIiIiFweAyIiIiJyeQyIiIiIyOUxICIiIiKXx4CIiIiIXB4DIiIiInJ5DIiIiIjI5f0/0xTfboYSSUIAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB75klEQVR4nO3dd3gU1foH8O8mkJAE0kiABNMIhAAJSDd0FIGIBUEFRaVbAJHrVQw2UNQE8VovIhcl+FNpIiAqVUB670jHQCihRFJIIYHk/P6Iu26Z2d3Zkp1Nvp/n4dHszM6emZ2deeec95yjEUIIEBEREamQh6sLQERERCSHgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoR2W3KlCnQaDRWravRaDBlyhSnlqdHjx7o0aOHardHRNZjoEJUhcydOxcajUb3r0aNGmjYsCGGDRuGixcvurp4qhMdHW1wvOrVq4euXbti6dKlDtl+UVERpkyZgt9//90h2yOqjhioEFVB77zzDr799lt8+eWXSE5OxnfffYfu3bvj5s2bTvm8N954A8XFxU7ZtrPdeeed+Pbbb/Htt9/i5ZdfxqVLlzBgwAB8+eWXdm+7qKgIb7/9NgMVIjvUcHUBiMjxkpOT0a5dOwDAqFGjEBISgmnTpmH58uV47LHHHP55NWrUQI0a7nk5adiwIZ588knd308//TQaN26Mjz/+GM8995wLS0ZEAGtUiKqFrl27AgDOnDlj8Prx48fxyCOPIDg4GLVq1UK7du2wfPlyg3Vu3bqFt99+G02aNEGtWrVQt25ddOnSBWvXrtWtI5WjUlJSgn/9618IDQ1FnTp18OCDD+LChQsmZRs2bBiio6NNXpfaZnp6Ou6++27Uq1cP3t7eaN68OWbOnKnoWFjSoEEDNGvWDBkZGWbXu3r1KkaOHIn69eujVq1aaNWqFb755hvd8rNnzyI0NBQA8Pbbb+ual5ydn0NU1bjnIxARKXL27FkAQFBQkO61P/74A507d0bDhg2RkpICPz8/LFq0CP3798ePP/6Ihx9+GEBFwJCamopRo0ahQ4cOyM/Px549e7Bv3z7ce++9sp85atQofPfdd3jiiSfQqVMnrF+/Hv369bNrP2bOnIkWLVrgwQcfRI0aNfDzzz9jzJgxKC8vx9ixY+3attatW7dw/vx51K1bV3ad4uJi9OjRA6dPn8a4ceMQExODH374AcOGDUNubi5efPFFhIaGYubMmXj++efx8MMPY8CAAQCAli1bOqScRNWGIKIqIz09XQAQv/32m7h27Zo4f/68WLx4sQgNDRXe3t7i/PnzunXvuecekZiYKG7evKl7rby8XHTq1Ek0adJE91qrVq1Ev379zH7u5MmThf7l5MCBAwKAGDNmjMF6TzzxhAAgJk+erHtt6NChIioqyuI2hRCiqKjIZL0+ffqIRo0aGbzWvXt30b17d7NlFkKIqKgo0bt3b3Ht2jVx7do1cfDgQTF48GABQLzwwguy2/vkk08EAPHdd9/pXistLRVJSUmidu3aIj8/XwghxLVr10z2l4iUYdMPURXUq1cvhIaGIiIiAo888gj8/PywfPly3HHHHQCA69evY/369Xjsscdw48YNZGdnIzs7G3/99Rf69OmDU6dO6XoJBQYG4o8//sCpU6es/vwVK1YAAMaPH2/w+oQJE+zaLx8fH93/5+XlITs7G927d8eff/6JvLw8m7a5Zs0ahIaGIjQ0FK1atcIPP/yAp556CtOmTZN9z4oVK9CgQQM8/vjjutdq1qyJ8ePHo6CgABs3brSpLERkik0/RFXQjBkzEBcXh7y8PMyZMwebNm2Ct7e3bvnp06chhMCbb76JN998U3IbV69eRcOGDfHOO+/goYceQlxcHBISEtC3b1889dRTZpswzp07Bw8PD8TGxhq83rRpU7v2a+vWrZg8eTK2b9+OoqIig2V5eXkICAhQvM2OHTvi3XffhUajga+vL5o1a4bAwECz7zl37hyaNGkCDw/DZ71mzZrplhORYzBQIaqCOnTooOv1079/f3Tp0gVPPPEETpw4gdq1a6O8vBwA8PLLL6NPnz6S22jcuDEAoFu3bjhz5gx++uknrFmzBl999RU+/vhjfPnllxg1apTdZZUbKK6srMzg7zNnzuCee+5BfHw8PvroI0RERMDLywsrVqzAxx9/rNsnpUJCQtCrVy+b3ktEzsdAhaiK8/T0RGpqKnr27In//ve/SElJQaNGjQBUNFdYc5MODg7G8OHDMXz4cBQUFKBbt26YMmWKbKASFRWF8vJynDlzxqAW5cSJEybrBgUFITc31+R141qJn3/+GSUlJVi+fDkiIyN1r2/YsMFi+R0tKioKhw4dQnl5uUGtyvHjx3XLAfkgjIisxxwVomqgR48e6NChAz755BPcvHkT9erVQ48ePTBr1ixkZWWZrH/t2jXd///1118Gy2rXro3GjRujpKRE9vOSk5MBAJ999pnB65988onJurGxscjLy8OhQ4d0r2VlZZmMDuvp6QkAEELoXsvLy0N6erpsOZzlvvvuw+XLl7Fw4ULda7dv38bnn3+O2rVro3v37gAAX19fAJAMxIjIOqxRIaomXnnlFTz66KOYO3cunnvuOcyYMQNdunRBYmIiRo8ejUaNGuHKlSvYvn07Lly4gIMHDwIAmjdvjh49eqBt27YIDg7Gnj17sHjxYowbN072s+688048/vjj+OKLL5CXl4dOnTph3bp1OH36tMm6gwcPxquvvoqHH34Y48ePR1FREWbOnIm4uDjs27dPt17v3r3h5eWFBx54AM8++ywKCgowe/Zs1KtXTzLYcqZnnnkGs2bNwrBhw7B3715ER0dj8eLF2Lp1Kz755BPUqVMHQEXyb/PmzbFw4ULExcUhODgYCQkJSEhIqNTyErk1V3c7IiLH0XZP3r17t8mysrIyERsbK2JjY8Xt27eFEEKcOXNGPP3006JBgwaiZs2aomHDhuL+++8Xixcv1r3v3XffFR06dBCBgYHCx8dHxMfHi/fee0+Ulpbq1pHqSlxcXCzGjx8v6tatK/z8/MQDDzwgzp8/L9ldd82aNSIhIUF4eXmJpk2biu+++05ym8uXLxctW7YUtWrVEtHR0WLatGlizpw5AoDIyMjQraeke7Klrtdy27ty5YoYPny4CAkJEV5eXiIxMVGkp6ebvHfbtm2ibdu2wsvLi12ViWygEUKvHpWIiIhIRZijQkRERKrFQIWIiIhUi4EKERERqRYDFSIiIlItBipERESkWgxUiIiISLXcesC38vJyXLp0CXXq1OFQ1URERG5CCIEbN24gPDzcZHJPY24dqFy6dAkRERGuLgYRERHZ4Pz587jjjjvMruPWgYp2mOrz58/D39/fxaUhIiIia+Tn5yMiIkJ3HzfHrQMVbXOPv78/AxUiIiI3Y03aBpNpiYiISLUYqBAREZFqMVAhIiIi1XLrHBUiIrUpLy9HaWmpq4tB5FI1a9aEp6enQ7bFQIWIyEFKS0uRkZGB8vJyVxeFyOUCAwPRoEEDu8c5c2mgUlZWhilTpuC7777D5cuXER4ejmHDhuGNN97gAG5E5FaEEMjKyoKnpyciIiIsDmJFVFUJIVBUVISrV68CAMLCwuzanksDlWnTpmHmzJn45ptv0KJFC+zZswfDhw9HQEAAxo8f78qiEREpcvv2bRQVFSE8PBy+vr6uLg6RS/n4+AAArl69inr16tnVDOTSQGXbtm146KGH0K9fPwBAdHQ05s+fj127drmyWEREipWVlQEAvLy8XFwSInXQBuy3bt2yK1Bxad1kp06dsG7dOpw8eRIAcPDgQWzZsgXJycmS65eUlCA/P9/gHxGRmrDZmqiCo34LLq1RSUlJQX5+PuLj4+Hp6YmysjK89957GDJkiOT6qampePvttyu5lEREROQqLq1RWbRoEb7//nvMmzcP+/btwzfffIMPP/wQ33zzjeT6kyZNQl5enu7f+fPnK7nEREREVJlcGqi88sorSElJweDBg5GYmIinnnoK//rXv5Camiq5vre3t25en8qY3ycrrxjbzmQjK6/YqZ9DRORqly9fxgsvvIBGjRrB29sbEREReOCBB7Bu3TrdOtu2bcN9992HoKAg1KpVC4mJifjoo490+TkAcPbsWYwcORIxMTHw8fFBbGwsJk+ebDK2zOzZs9GqVSvUrl0bgYGBaN26tcG1f8qUKdBoNOjbt69JWadPnw6NRoMePXpYvX/5+fl4/fXXER8fj1q1aqFBgwbo1asXlixZAiGEbr0//vgDjz32GEJDQ+Ht7Y24uDi89dZbKCoq0q1z/fp1vPDCC2jatCl8fHwQGRmJ8ePHIy8vz6qynD17FhqNRvLfjh07rN6nHj16YMKECVav765c2vRTVFRk0oXP09NTFWMQLNydiUlLDqNcAB4aIHVAIga1j3R1sYiIHO7s2bPo3LkzAgMDMX36dCQmJuLWrVtYvXo1xo4di+PHj2Pp0qV47LHHMHz4cGzYsAGBgYH47bffMHHiRGzfvh2LFi2CRqPB8ePHUV5ejlmzZqFx48Y4cuQIRo8ejcLCQnz44YcAgDlz5mDChAn47LPP0L17d5SUlODQoUM4cuSIQbnCwsKwYcMGXLhwAXfccYfu9Tlz5iAy0vrrcW5uLrp06YK8vDy8++67aN++PWrUqIGNGzdi4sSJuPvuuxEYGIgdO3agV69e6NWrF3799VfUr18fu3btwr///W+sW7cOGzZsgJeXFy5duoRLly7hww8/RPPmzXHu3Dk899xzuHTpEhYvXmx1uX777Te0aNHC4LW6deta/X5rCCFQVlaGGjXceNg04UJDhw4VDRs2FL/88ovIyMgQS5YsESEhIWLixIlWvT8vL08AEHl5eQ4t16XcIhGT8ouIevWff41SfhWXcosc+jlEVHUUFxeLo0ePiuLiYlcXRbHk5GTRsGFDUVBQYLIsJydHFBQUiLp164oBAwaYLF++fLkAIBYsWCC7/Q8++EDExMTo/n7ooYfEsGHDzJZp8uTJolWrVuL+++8X7777ru71rVu3ipCQEPH888+L7t27W7F3Qjz//PPCz89PXLx40WTZjRs3xK1bt0R5eblo3ry5aNeunSgrKzNY58CBA0Kj0Yi0tDTZz1i0aJHw8vISt27dsliejIwMAUDs379fdh3t/v/f//2fiIqKEv7+/mLQoEEiPz9fCFFx/wRg8C8jI0Ns2LBBABArVqwQbdq0ETVr1hQbNmwQN2/eFC+88IIIDQ0V3t7eonPnzmLXrl26z9O+75dffhGJiYnC29tbdOzYURw+fFgIIURBQYGoU6eO+OGHHwzKuXTpUuHr66srlz5zvwkl92+XNv18/vnneOSRRzBmzBg0a9YML7/8Mp599llMnTrVlcVCRnYhyoXha2VC4Gx2kfQbiIgcqDKbna9fv45Vq1Zh7Nix8PPzM1keGBiINWvW4K+//sLLL79ssvyBBx5AXFwc5s+fL/sZeXl5CA4O1v3doEED7NixA+fOnbNYvhEjRmDu3Lm6v+fMmYMhQ4ZY3Q28vLwcCxYswJAhQxAeHm6yvHbt2qhRowYOHDiAo0eP4qWXXjKp6W/VqhV69eplcR/9/f0dWnNx5swZLFu2DL/88gt++eUXbNy4EWlpaQCATz/9FElJSRg9ejSysrKQlZWFiIgI3XtTUlKQlpaGY8eOoWXLlpg4cSJ+/PFHfPPNN9i3bx8aN26MPn364Pr16waf+corr+A///kPdu/ejdDQUDzwwAO4desW/Pz8MHjwYKSnpxusn56ejkceeQR16tRx2H4bc2mgUqdOHXzyySc4d+4ciouLcebMGbz77rsuH4cgJsQPHka9qjw1GkSHcBAnInKuhbsz0TltPZ6YvROd09Zj4e5Mp37e6dOnIYRAfHy87DraISSaNWsmuTw+Pl63jtT2P//8czz77LO61yZPnozAwEBER0ejadOmGDZsGBYtWiTZ7H///fcjPz8fmzZtQmFhIRYtWoQRI0ZYvX/Z2dnIyckxu3+A5X1s1qyZ7D5mZ2dj6tSpeOaZZ6wuF1AxREft2rUN/ukrLy/H3LlzkZCQgK5du+Kpp57S5QwFBATAy8sLvr6+aNCgARo0aGAwVsk777yDe++9F7GxsfD29sbMmTMxffp0JCcno3nz5pg9ezZ8fHzw9ddfG3zm5MmTce+99yIxMRHffPMNrly5gqVLlwIARo0ahdWrVyMrKwtAxWBuK1asUPR92IJjPEsIC/BB6oBEeP7dB9xTo8H7AxIQFuDj4pIRUVWWlVesy40DgHIBvLbkiFNrVoQQlleyYV0AuHjxIvr27YtHH30Uo0eP1r0eFhaG7du34/Dhw3jxxRdx+/ZtDB06FH379jUJVmrWrIknn3wS6enp+OGHHxAXF4eWLVs6rcxK18/Pz0e/fv3QvHlzTJkyRdF7Fy5ciAMHDhj80xcdHW1QUxEWFqYblt6Sdu3a6f7/zJkzuHXrFjp37qx7rWbNmujQoQOOHTtm8L6kpCTd/wcHB6Np06a6dTp06IAWLVroeuZ+9913iIqKQrdu3azbYRu5cXaNcw1qH4lucaE4m12E6BBfBilE5HTmmp2ddQ1q0qSJLglWTlxcHADg2LFj6NSpk8nyY8eOoXnz5gavXbp0CT179kSnTp3wv//9T3K7CQkJSEhIwJgxY/Dcc8+ha9eu2LhxI3r27Gmw3ogRI9CxY0ccOXJE8dN7aGgoAgMDze4fYLiPrVu3Nll+7Ngx3TpaN27cQN++fVGnTh0sXboUNWvWVFS2iIgING7cWHa58fY0Go3VnU2kmvEcYdSoUZgxYwZSUlKQnp6O4cOHO32QQ9aomBEW4IOk2LoMUoioUrii2Tk4OBh9+vTBjBkzUFhYaLI8NzcXvXv3RnBwMP7zn/+YLF++fDlOnTqFxx9/XPfaxYsX0aNHD7Rt2xbp6elWTdCoDXSkytCiRQu0aNECR44cwRNPPKFk9+Dh4YHBgwfj+++/x6VLl0yWFxQU4Pbt27jzzjsRHx+Pjz/+2CQYOHjwIH777TeDfczPz0fv3r3h5eWF5cuXo1atWorK5QheXl4GXcPlxMbGwsvLC1u3btW9duvWLezevdskwNTvHp2Tk4OTJ08aNIc9+eSTOHfuHD777DMcPXoUQ4cOdcCemMdAhYhIJVzV7DxjxgyUlZWhQ4cO+PHHH3Hq1CkcO3YMn332GZKSkuDn54dZs2bhp59+wjPPPINDhw7h7Nmz+PrrrzFs2DA88sgjeOyxxwD8E6RERkbiww8/xLVr13D58mVcvnxZ93nPP/88pk6diq1bt+LcuXPYsWMHnn76aYSGhho0Pehbv349srKyEBgYqHj/3nvvPURERKBjx474v//7Pxw9ehSnTp3CnDlz0Lp1axQUFECj0eDrr7/G0aNHMXDgQOzatQuZmZn44Ycf8MADDyApKUk3Zok2SCksLMTXX3+N/Px83T5aEzho/fXXX7r3af/dvHnT6vdHR0dj586dOHv2LLKzs2VrW/z8/PD888/jlVdewapVq3D06FGMHj0aRUVFGDlypMG677zzDtatW4cjR45g2LBhCAkJQf/+/XXLg4KCMGDAALzyyivo3bu3Qbdxp7HYL0jFnNU9mYhIKUd2T76UWyS2nc6u1CERLl26JMaOHSuioqKEl5eXaNiwoXjwwQfFhg0bdOts2rRJ9OnTR/j7+wsvLy/RokUL8eGHH4rbt2/r1klPTzfpNqv9p7V48WJx3333ibCwMOHl5SXCw8PFwIEDxaFDh3TraLvnynnxxRet7p4shBC5ubkiJSVFNGnSRHh5eYn69euLXr16iaVLl4ry8nLdeocOHRIDBw4UwcHBombNmiI2Nla88cYborCwULeOtiuv1L+MjAyLZdF2T5b6N3/+fNn9//jjj0VUVJTu7xMnToi77rpL+Pj4mHRPzsnJMXhvcXGxeOGFF0RISIjZ7sk///yzaNGihfDy8hIdOnQQBw8eNCn/unXrBACxaNEis/vpqO7JGiEUZg6pSH5+PgICAnTdwoiIXOXmzZvIyMhATEyMS5oBiOzx+++/o2fPnsjJybFYa/Xtt9/iX//6Fy5dumS2l66534SS+zeTaYmIiMiioqIiZGVlIS0tDc8++2ylDSXCHBUiInJrxmOR6P/bvHlzpZfnueeeky3Pc889V+nlcZQPPvgA8fHxaNCgASZNmlRpn8umHyIiB2DTj+ucPn1adlnDhg3h41O5PTevXr2K/Px8yWX+/v6oV69epZbHVdj0Q0REBJgdi8QV6tWrV22CkcrAph8iIiJSLQYqREQO5Mat6UQOZe0oupaw6YeIyAFq1qwJjUaDa9euITQ01OnDihOplRACpaWluHbtGjw8POzuHcRAhYjIATw9PXHHHXfgwoULOHv2rKuLQ+Ryvr6+iIyMtGoKBXMYqBAROUjt2rXRpEkT3Lp1y9VFIXIpT09P1KhRwyE1iwxUiIgcyNPTE56enq4uBlGVwWRaIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFTLpYFKdHQ0NBqNyb+xY8e6slhERESkEjVc+eG7d+9GWVmZ7u8jR47g3nvvxaOPPurCUhEREZFauDRQCQ0NNfg7LS0NsbGx6N69u4tKRERERGqimhyV0tJSfPfddxgxYgQ0Go2ri0NEREQq4NIaFX3Lli1Dbm4uhg0bJrtOSUkJSkpKdH/n5+dXQsmIiIjIVVRTo/L1118jOTkZ4eHhsuukpqYiICBA9y8iIqISS0hERESVTSOEEK4uxLlz59CoUSMsWbIEDz30kOx6UjUqERERyMvLg7+/f2UUlYiIiOyUn5+PgIAAq+7fqmj6SU9PR7169dCvXz+z63l7e8Pb27uSSkVERESu5vKmn/LycqSnp2Po0KGoUUMVcRMRERGphMsDld9++w2ZmZkYMWKEq4tCREREKuPyKozevXtDBWkyREREpEIur1EhIiIiksNAhYiIiFSLgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoRERGpFgMVC7LyirHtTDay8opdXRQiIqJqx+WTEqrZwt2ZmLTkMMoF4KEBUgckYlD7SFcXi4iIqNpgjYqMrLxiXZACAOUCeG3JEdasEBERVSIGKjIysgt1QYpWmRA4m13kmgIRERFVQwxUZMSE+MFDY/iap0aD6BBf1xSIiIioGmKgIiMswAepAxLhqamIVjw1Grw/IAFhAT4uLhkREVH1wWRaMwa1j0S3uFCczS5CdIgvgxQiIqJKxkDFgrAAHwYoRERELsKmHyIiIlItBipERESkWgxUiIiISLUYqNiJQ+wTERE5D5Np7cAh9omIiJyLNSo24hD7REREzsdAxUYcYp+IiMj5GKjYiEPsExEROR8DFRtxiH0iIiLnYzKtHTjEPhERkXMxULETh9gnIiJyHjb9EBERkWoxUCEiIiLVcnmgcvHiRTz55JOoW7cufHx8kJiYiD179ri6WERERKQCLs1RycnJQefOndGzZ0+sXLkSoaGhOHXqFIKCglxZLCIiIlIJlwYq06ZNQ0REBNLT03WvxcTEuLBEREREpCYubfpZvnw52rVrh0cffRT16tVD69atMXv2bNn1S0pKkJ+fb/CPiIiIqi6XBip//vknZs6ciSZNmmD16tV4/vnnMX78eHzzzTeS66empiIgIED3LyIiopJLTERERJVJI4QQlldzDi8vL7Rr1w7btm3TvTZ+/Hjs3r0b27dvN1m/pKQEJSUlur/z8/MRERGBvLw8+Pv7V0qZiYiIyD75+fkICAiw6v7t0hqVsLAwNG/e3OC1Zs2aITMzU3J9b29v+Pv7G/wjIiKiqsulgUrnzp1x4sQJg9dOnjyJqKgoF5WIiIiI1MSlgcq//vUv7NixA++//z5Onz6NefPm4X//+x/Gjh3rymIRERGRSrg0UGnfvj2WLl2K+fPnIyEhAVOnTsUnn3yCIUOGuLJYREREpBIuTaa1l5JkHCIiIlIHt0mmJSIiIjKHgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFTLpkClsLDQ0eUgIiIiMmFToFK/fn2MGDECW7ZscXR5iIiIiHRsClS+++47XL9+HXfffTfi4uKQlpaGS5cuObpsREREVM3ZFKj0798fy5Ytw8WLF/Hcc89h3rx5iIqKwv33348lS5bg9u3bji4nERERVUMOmz35888/xyuvvILS0lKEhITgueeeQ0pKCnx9fR2xeUmcPZmIiMj9KLl/17Dng65cuYJvvvkGc+fOxblz5/DII49g5MiRuHDhAqZNm4YdO3ZgzZo19nwEERERVWM2BSpLlixBeno6Vq9ejebNm2PMmDF48sknERgYqFunU6dOaNasmaPKSURERNWQTYHK8OHDMXjwYGzduhXt27eXXCc8PByvv/66XYUjIiKi6s2mHJWioiKn5p5YizkqRERE7sfpOSq+vr4oKyvD0qVLcezYMQBAs2bN0L9/f9SoYVfaCxEREZGOTVHFH3/8gQceeABXrlxB06ZNAQDTpk1DaGgofv75ZyQkJDi0kERERFQ92TSOyqhRo5CQkIALFy5g37592LdvH86fP4+WLVvimWeecXQZiYiIqJqyqUblwIED2LNnD4KCgnSvBQUF4b333pNNriUiIiJSyqYalbi4OFy5csXk9atXr6Jx48Z2F4qIiIgIsDFQSU1Nxfjx47F48WJcuHABFy5cwOLFizFhwgRMmzYN+fn5un9EREREtrKpe7KHxz/xjUajAQBoN6P/t0ajQVlZmSPKKYndk4mIiNyP07snb9iwwaaCERERESlhU6DSvXt3R5eDiIiIyITNo7Pl5ubi66+/1g341qJFC4wYMQIBAQEOKxwRERFVbzYl0+7ZswexsbH4+OOPcf36dVy/fh0fffQRYmNjsW/fPkeXkYiIiKopm5Jpu3btisaNG2P27Nm6IfNv376NUaNG4c8//8SmTZscXlApTKYlIiJyP0ru3zYFKj4+Pti/fz/i4+MNXj969CjatWuHoqIipZu0CQMVIiIi96Pk/m1T04+/vz8yMzNNXj9//jzq1KljyyaJiIiITNgUqAwaNAgjR47EwoULcf78eZw/fx4LFizAqFGj8Pjjj1u9nSlTpkCj0Rj8M66lISIiourLpl4/H374ITQaDZ5++mncvn0bAFCzZk08//zzSEtLU7StFi1a4LfffvunQDVs7ohEREREVYziqKCsrAw7duzAlClTkJqaijNnzgAAYmNj4evrq7wANWqgQYMGit9HREREVZ/iph9PT0/07t0bubm58PX1RWJiIhITE20KUgDg1KlTCA8PR6NGjTBkyBDJ3BetkpISg3mEOJcQERFR1WZTjkpCQgL+/PNPuz+8Y8eOmDt3LlatWoWZM2ciIyMDXbt2xY0bNyTXT01NRUBAgO5fRESE3WUgIiIi9bKpe/KqVaswadIkTJ06FW3btoWfn5/Bclu7Cufm5iIqKgofffQRRo4cabK8pKQEJSUlur/z8/MRERHB7slERERuxOmTEt53330AgAcffFA3WzJg/4zJgYGBiIuLw+nTpyWXe3t7w9vb26ZtExERkftR1ezJBQUFOHPmDJ566imnbJ+IiIjci02BSkxMDCIiIgxqU4CKGpXz589bvZ2XX34ZDzzwAKKionDp0iVMnjwZnp6eisZiISIioqrL5kAlKysL9erVM3j9+vXriImJsbrp58KFC3j88cfx119/ITQ0FF26dMGOHTsQGhpqS7GIiIioirEpUNHmohgrKChArVq1rN7OggULbPl4IiIiqiYUBSovvfQSAECj0eDNN980GDulrKwMO3fuxJ133unQArpKVl4xMrILERPih7AAH1cXh4iIqFpSFKjs378fQEWNyuHDh+Hl5aVb5uXlhVatWuHll192bAldYOHuTExachjlAvDQAKkDEjGofaSri0VERFTtKApUtL19hg8fjk8//bRKjl2SlVesC1IAoFwAry05gm5xoaxZISIiqmQ2jUybnp5eJYMUAMjILtQFKVplQuBsdpFrCkRERFSN2ZRMW1hYiLS0NKxbtw5Xr15FeXm5wXJHDK/vKjEhfvDQwCBY8dRoEB1i21xGREREZDubApVRo0Zh48aNeOqppxAWFibZA8hdhQX4IHVAIl5bcgRlQsBTo8H7AxLY7ENEROQCNs31ExgYiF9//RWdO3d2RpmspmSuAKWy8opxNrsI0SG+DFKIiIgcyOlz/QQFBSE4ONimwrmLsAAfBihEREQuZlMy7dSpU/HWW2+hqIgJpkREROQ8NtWo/Oc//8GZM2dQv359REdHo2bNmgbL9+3b55DCERERUfVmU6DSv39/BxeDiIiIyJRNybRq4cxkWiIiInIOJfdvRTkqu3btMjszcklJCRYtWqRkk0RERESyFAUqSUlJ+Ouvv3R/+/v7Gwzulpubi8cff9xxpSMiIqJqTVGgYtxKJNVq5MYtSURERKQyNnVPNqcqjVJLREREruXwQIWIiIjIURR3Tz569CguX74MoKKZ5/jx4ygoKAAAZGdnO7Z0REREVK0p6p7s4eEBjUYjmYeifV2j0ZjtGeRI7J5MRETkfpw2109GRoZdBSMiIiJSQlGgEhUVpWjjY8aMwTvvvIOQkBBF7yMiIiICnJxM+9133yE/P9+ZH0FERERVmFMDFY6pQkRERPZg92QiIiJSLQYqREREpFoMVIiIiEi1GKgQERGRajk1UHnyySc5EBsRERHZzKZApby8XPb1zMxM3d8zZ87kGCpERERkM0WBSn5+Ph577DH4+fmhfv36eOuttwyGy7927RpiYmIcXkgiIiKqnhSNTPvmm2/i4MGD+Pbbb5Gbm4t3330X+/btw5IlS+Dl5QWAY6cQERGR4yiqUVm2bBlmzZqFRx55BKNGjcKePXtw7do1PPDAAygpKQFQMTmhLdLS0qDRaDBhwgSb3q8WWXnF2HYmG1l5xa4uChERkdtTFKhcu3bNYL6fkJAQ/Pbbb7hx4wbuu+8+FBUV2VSI3bt3Y9asWWjZsqVN71eLhbsz0TltPZ6YvROd09Zj4e5My28iIiIiWYoClcjISBw7dszgtTp16mDNmjUoLi7Gww8/rLgABQUFGDJkCGbPno2goCDF71eLrLxiTFpyGOV/t3yVC+C1JUdYs0JERGQHRYFK7969kZ6ebvJ67dq1sXr1atSqVUtxAcaOHYt+/fqhV69eit+rJhnZhbogRatMCJzNtq2WiYiIiBQm07799tu4dOmS5LI6depg7dq12Ldvn9XbW7BgAfbt24fdu3dbtX5JSYkuFwaAqmZm9vPylHzd14tj6hEREdlK0V00KCgILVq0kF1ep04ddO/e3aptnT9/Hi+++CK+//57q2tiUlNTERAQoPsXERFh1fsqQ2FpmeTrRaXSY84QERGRZYof92/fvo3p06ejTZs2qF27NmrXro02bdrgww8/xK1bt6zezt69e3H16lW0adMGNWrUQI0aNbBx40Z89tlnqFGjhsH4LFqTJk1CXl6e7t/58+eVFt9pYkL84GHU4clTo0F0iK9rCkRERFQFaISCgU+Ki4tx7733Yvv27ejVqxeaNWsGADh27Bh+++03dO7cGWvWrLGqhuTGjRs4d+6cwWvDhw9HfHw8Xn31VSQkJFjcRn5+PgICApCXl6eKofoX7s7Ea0uOoEwIeGo0eH9AAga1j3R1sYiIiFRFyf1bUY5KWloazp8/j/3795t0JT548CAefPBBpKWlYcqUKRa3VadOHZNgxM/PD3Xr1rUqSFGjQe0j0S0uFGezixAd4ouwAB9XF4mIiMitKWr6WbBgAT766CPJ8U5atWqFDz/8EPPmzXNY4dxRWIAPkmLrMkghIiJyAEU1KufOnUOHDh1kl991110GkxIq9fvvv9v8XiIiIqp6FNWo+Pv74+rVq7LLL1++jDp16thdKCIiIiJAYaDSs2dPvP/++7LL09LS0LNnT7sLRURERAQobPqZPHkyOnbsiLvuugsvvfQS4uPjIYTAsWPH8PHHH+Po0aPYsWOHs8pKRERE1YyiQKV58+ZYu3YtRo4cicGDB+tmShZCID4+HmvWrDE7IBwRERGREooCFaAiYfaPP/7AgQMHcPLkSQBAXFwc7rzzTkeXjYiIiKo5xYFKfn4+ateujTvvvNMgOCkvL0dBQYEqBl4jIiKiqkFRMu3SpUvRrl073Lx502RZcXEx2rdvj59//tlhhSMiIqLqTVGgMnPmTEycOBG+vqbz1/j5+eHVV1/Ff//7X4cVjoiIiKo3RYHKkSNH0KNHD9nl3bp1w+HDh+0tExEREREAhYFKTk4Obt++Lbv81q1byMnJsbtQRERERIDCQCU6Ohp79uyRXb5nzx5ERUXZXSgiIiIiQGGgMmDAALz++uu4cuWKybLLly/jjTfewMCBAx1WOCIiIqreNEIIYe3KN27cQFJSEjIzM/Hkk0+iadOmAIDjx4/j+++/R0REBHbs2FFp8/3k5+cjICAAeXl57BZNRETkJpTcvxWNo1KnTh1s3boVkyZNwsKFC3X5KIGBgXjyySfx3nvvcVJCIiIichhFNSr6hBDIzs6GEAKhoaG64fT1bd26Fe3atYO3t7fdBZXCGhUiIiL3o+T+rShHRZ9Go0FoaCjq1asnGaQAQHJyMi5evGjrRxAREVE1Z3OgYg0bK2vcVlZeMbadyUZWXrGri0JERFQlKJ7rh6Qt3J2JSUsOo1wAHhogdUAiBrWPdHWxiIiI3JpTa1Sqi6y8Yl2QAgDlAnhtyRHWrBAREdmJgYoDZGQX6oIUrTIhcDa7yDUFIiIiqiKcGqjIJdlWNTEhfvAw2lVPjQbRIaaTNxIREZH1mEzrAGEBPkgdkAjPvwMzT40G7w9IQFiAj4tLRkRE5N6cmkx748YNZ25eVQa1j0S3uFCczS7S1aRsO5ONmBA/BixEREQ2UhSo3H333Vatt379epsK4+7CAnwQFuDDHkBEREQOoihQ+f333xEVFYV+/fqhZs2aziqTW5PrAdQtLpQ1K0RERAopClSmTZuG9PR0/PDDDxgyZAhGjBiBhIQEZ5XNLZnrAcRAhYiISBlFybSvvPIKjh49imXLluHGjRvo3LkzOnTogC+//BL5+fnOKqNbYQ8gIiIix7Gp109SUhJmz56NrKwsjB07FnPmzEF4eDiDFbAHEBERkSPZ1etn37592LhxI44dO4aEhATmrfzNuAcQgxQiIiLbKA5ULl26hLlz52Lu3LnIz8/Hk08+iZ07d6J58+bOKJ/b0vYAIiIiItspClTuu+8+bNiwAb1798b06dPRr18/1KjBeQ2JiIjIOTRCwfCxHh4eCAsLQ7169cwOj79v3z6HFM6S/Px8BAQEIC8vD/7+/pXymURERGQfJfdvRdUhkydPtqtgxmbOnImZM2fi7NmzAIAWLVrgrbfeQnJyskM/h4iIiNyTohoVR/v555/h6emJJk2aQAiBb775BtOnT8f+/fvRokULi+9njQoREZH7UXL/dkigsnHjRhQWFiIpKQlBQUF2bSs4OBjTp0/HyJEjLa7LQIWIiMj9OK3pZ9q0aSgoKMDUqVMBVMyOnJycjDVr1gAA6tWrh3Xr1llVG2KsrKwMP/zwgy7gkVJSUoKSkhLd3xy3hYiIqGpTNODbwoULDYbMX7x4MTZt2oTNmzcjOzsb7dq1w9tvv62oAIcPH0bt2rXh7e2N5557DkuXLpXt6pyamoqAgADdv4iICEWfRURERO5FUdNPUFAQtm3bhmbNmgEAhg8fjrKyMvzf//0fAGDHjh149NFHcf78easLUFpaiszMTOTl5WHx4sX46quvsHHjRslgRapGJSIigk0/REREbsRpTT+3b9+Gt7e37u/t27djwoQJur/Dw8ORnZ2tqLBeXl5o3LgxAKBt27bYvXs3Pv30U8yaNctkXW9vb4PPJyIioqpNUdNPbGwsNm3aBADIzMzEyZMn0a1bN93yCxcuoG7dunYVqLy83KDWhIiIiKovRTUqY8eOxbhx47B582bs2LEDSUlJBk0069evR+vWra3e3qRJk5CcnIzIyEjcuHED8+bNw++//47Vq1crKRYRERFVUYoCldGjR8PT0xM///wzunXrZjIA3KVLlzBixAirt3f16lU8/fTTyMrKQkBAAFq2bInVq1fj3nvvVVIsIiIiqqJcOuCbvTiOChERkftRcv9WlKNCREREVJkUBSq3bt3CxIkT0bhxY3To0AFz5swxWH7lyhV4eno6tIBERERUfSkKVN577z383//9H5577jn07t0bL730Ep599lmDddy4JYmIiIhURlEy7ffff4+vvvoK999/PwBg2LBhSE5OxvDhw3W1KxqNxvGlJCIiompJUY3KxYsXDYbQb9y4MX7//Xds27YNTz31FMrKyhxeQCIiIqq+FAUqDRo0wJkzZwxea9iwITZs2IDdu3dj2LBhjiwbERERVXOKApW7774b8+bNM3k9PDwc69evR0ZGhsMKRo6XlVeMbWeykZVXbNc6RERElUVRjsqbb76J48ePSy5r2LAhNm7ciLVr1zqkYORYC3dnYtKSwygXgIcGSB2QiEHtIxWvQ0REVJk44Fs1kJVXjM5p61Gu9017ajTYktITYQE+Vq9DRETkCE4f8O2HH37AgAEDkJCQgISEBAwYMACLFy+2qbDkfBnZhQYBCACUCYGz2UWK1iEiIqpsigKV8vJyDBo0CIMGDcLRo0fRuHFjNG7cGH/88QcGDRqEwYMHcxwVFYoJ8YOHUa9xT40G0SG+itYhIiKqbIoClU8//RS//fYbli9fjuPHj2PZsmVYtmwZTpw4gaVLl2Lt2rX49NNPnVVWVVNzEmpYgA9SByTC8+8xbjw1Grw/IMGgSceadYiIiCqbohyVli1bYsKECbIzJH/99df49NNPcejQIYcV0By15Ki4SxJqVl4xzmYXITrEVzYAsWYdIiIieyi5fysKVHx8fHDixAlERkrfhM+dO4f4+HgUF1dOrYIaAhVHJqFm5RUjI7sQMSF+DBKIiKjKUnL/VtQ92cfHB7m5ubKBSn5+PmrVqqVkk27PXBKqkmDDXWpliIiIKpOiHJWkpCTMnDlTdvmMGTOQlJRkd6HciSOSULPyinVBCgCUC+C1JUdUme9CRERUmRQFKq+//jq+/vprPPbYY9i1axfy8/ORl5eHHTt24NFHH8WcOXPw+uuvO6usquSIJFR2DSYiIpKmqOmnU6dOWLhwIZ555hn8+OOPBsuCgoIwf/58dO7c2aEFdAeD2keiW1yozUmo2loZ4zwXqVoZteSxqKUcRERUtdk0Mm1RURFWr16NU6dOAQDi4uLQu3dv+PpW7pgbakimdZSFuzPx2pIjKBNCVyuj1iHu1VIOIiJyT07r9bN+/XqMGzcOO3bsMNlwXl4eOnXqhC+//BJdu3a1reQKuSJQcXRNgv72AMjWyqhliHu1lIOIiNyX03r9fPLJJxg9erTkRgMCAvDss8/io48+qrRApbI5uiZByfYc1bvIXmopBxERVQ+KkmkPHjyIvn37yi7v3bs39u7da3eh1MjRPXOUbk8tQ9yrpRxERFQ9KApUrly5gpo1a8our1GjBq5du2Z3odTI0T1zlG7PXO+iyhy+Xy3lICKi6kFR00/Dhg1x5MgRNG7cWHL5oUOHEBYW5pCCqY2SnjnO2p5U7yJXJLYOah+J+AZ1sPtsDtpHB6FVRBATbImIyCkU1ajcd999ePPNN3Hz5k2TZcXFxZg8eTLuv/9+hxVOTRw9aZ+t2wsL8EFSbF1dDYYrBopbuDsTD3+xDe/+egwPf7ENszad4YB1RETkFIp6/Vy5cgVt2rSBp6cnxo0bh6ZNmwIAjh8/jhkzZqCsrAz79u1D/fr1nVZgfa7q9ePISfvs2d62M9l4YvZOk9f/+3hr3N8q3O6ySZHq9aPRAFJn0fzRdyEptq5TykFERO7Lab1+6tevj23btuH555/HpEmToI1xNBoN+vTpgxkzZlRakOIqYQE+Du3dYs/2pJqPAGD8gv0oLL3tlKYXqdwaqSCFCbZEROQIigIVAIiKisKKFSuQk5OD06dPQwiBJk2aICgoyBnlI8iP3aJtPpr042GU662vbXrpFhfq8C7DcsGRPnubxYiIiLQUBypaQUFBaN++vSPLQhIsJakOah8JP+8aGDdvv8H7nDW2iS440stJ0fdmv2a4r2UYgxQiInIIRcm0VLmsTZZtGxVkMraJhwbw9XLO1zuofSSWjukEo4+Ep0bDIIWIiByKgYqKWTvWinEPIqAiqHn4i21YuDvTKWVrFRGEtIGO6wVFREQkxeamH3I+JWOtaMc26T9jG7SrOzNXRfuZ9swaTUREZIlLa1RSU1PRvn171KlTB/Xq1UP//v1x4sQJVxZJVZSOtVJYWgbjtBFrRs+1Z0RZ/XFdiIiIHM2lNSobN27E2LFj0b59e9y+fRuvvfYaevfujaNHj8LPz8+VRVMNS7UW+j2CbBntliPKEhGRmika8M3Zrl27hnr16mHjxo3o1q2bxfVdMeCbmkgFGUBFc0+ZEPDQAK8mx+PZbrGS75cavM1To8GWlJ5OryGR63JNRERVn5L7t6qSafPy8gAAwcHBkstLSkqQn59v8K+6kusR1C0uFBP7NoXm79emrTwum1Dr6IkW5cpp3Ky0cHcmOqetxxOzd6Jz2nqnJfwSEZH7U02gUl5ejgkTJqBz585ISEiQXCc1NRUBAQG6fxEREZVcSvWQCzL2ncvBtFXHTRJqtYGCfuCgbSrS58gRZaUCElfNT0RERO5JNYHK2LFjceTIESxYsEB2nUmTJiEvL0/37/z585VYQnWRCzKuF5XK1pIYBw6bTl5z6ESL+uQCkr3ncpxei0NERFWHKronjxs3Dr/88gs2bdqEO+64Q3Y9b29veHt7V2LJ1EvbI0ibj+Kp0aB/63C8tewPk3U9NRr4enlIBg5bUnpiS0pPh3cxlqvxwd/5NEoSfomIqPpyaaAihMALL7yApUuX4vfff0dMTIwri1MpHJlEqt8jyNfLAw9/sc2ke7KHBnh/QAIKS8tkazKc0b1YrgdS2+ggkwCLA8UREZEclwYqY8eOxbx58/DTTz+hTp06uHz5MgAgICAAPj5V78bljK7A2tmXt53Jlpx757PBrXF/q3Bk5RVXak2GVI2PNiDhQHFERGQtl3ZP1miMZ4upkJ6ejmHDhll8vzt1T3Z2V2Brtr9wd6ZJ4KAkULKlNigrr9hsQMJuykRE6uPsa7OS+7fLm36qC3NdgR1xEpirwdCecN3iQm3OR7G1Nkhb4+PIbRIRkfOo7dqsimTa6sCWUWOVkmpSccQJZ27MFluDLGdsk5yLtV9EVZ8ar82q6Z5c1Smdt8eez9Emx9ozZon+eCvOGBiuMgabI8fhIH1E1YMar82sUalE1iaROurJ1dbmJuNamFf7xju8NqgyapjIMdT4hEVEzqHGazNrVCqZpdmGHfnkasvIs1I3pQ9WncCYHrG6bTmiNqiyapjIfmp8wiIi5zC+NntogBFdol1aJlVNSqiUO/X6sYYzegZJ9fTpFhcqW2Oz7Uw2npi902Q7GgDi7/+mJMfj2e7SEx0qZalXELmeKyevJCLXyMorRvrWDMzelAEBxyfVuk2vHzLkjJ5Bxs1Nm05e0910pE48qWo/ALqB5AQqalgevDPcYb2VLG2HSZyuZa5HGRFVXV9tzjCZN84VTb4MVFTEWW2D2mDAmlyDsAAfPNy6IX7cd1F2e47sVm2J2rrJVVccpI+oenH2kBpKMEdFRZydt2FNrkFWXjGW7pcPUrTlqozEKs60rC6W8quIqOqwJcfRWVijojLO7BlkTY2NVDAD/DORYGVW+6spoiciqk7U1OTLQEWFLOVt2DNKrKUTTy6YWTImCUWl5ZVa7a/GbnJERNZy9/w6tTT5stePm3FEDwxLPW3snRPIkdRUFkdy9wuYNarDPhLJYX6deez14yRquPA6ojnEUo2NWqJotZXFUarDBaw67CORHA6S6FhMprWSWoYQl0pw8tAA2QU3HZpkqpbESW1wWFWClOqQIFwd9pHIHHccJFF/2hS1YaBiBTVdeI17Bmk0gBDAC/MPuM0cLNb+INQSHDqS2i9gjrhYqX0fiZxNTT1mrKH2ay0DFSuo7cI7qH0ktqT0xIwnWgMCJgPy2HKTqaxo2tofRFZeMVJ+NAwOU5YcVmW0r4SaL2COulipeR+JKoM7TREi9yB+8HyOampYmKNiBbX1PtE2hwj8E6Ro2dJ9t7LyCZS02+49l2Oyb0IA+87loF9LH932XJ0zpJSauvzpc2Sbulr3kagyuUt+ndyDeP8Z25wydL4tGKhYQU0XXv2gQoN/5uDRUhpAVWbSl5JEYLnOaNqXpWZ4TrwjwC2CFjVewBw9Zo0j99EdA1IiwLopQlzN0rQpakgEZqBiJXMX3sq6kBoHFdpJAu0ZjK0yB1VTUjPVLjrYJAjTAGgbHSQZXKWuPA5AHdG/NdR2AXNGraEt+2j8W2LvIXVgsFh1GT+ISwUtrh5ok4GKAlIX3sq8kEoFFQLA54Nbo25tb5ueXCuzWUtJzVRYgA/SBiZi0o+HUY6KZKrUgYkIC/DBtjPZkqPnAuqI/t2RGmoNpWrJpq06zi6eLsZgseoxDjy1D+L7zuXgelEp3lr2h1019Y7GQMUOld1XXi6oaBsdZPPnVfYNSkmTgNy6clWVWq6O/t2V3PGujKdpqd/StJXHUW60Hr/byqW28UBYs2M/ucBz08lrkmkFasgxY6Bih8qei8ZZQUVl50woaRKQWtf4OBjzAODrxQ5ttjA+3pX1NC31WyrHP93vtVz9ZFfdqGm+Ldbs2E8u8IxvUMckrcBDU1Fbb8+DsKMwULGDK3oDOSuoUFvOhCX6x+HQxVx8sPKELmgpB/DwF9uq7YXM3FOnkifSynyalvstTUxuqvtu1fBkV92opcej2mp23JVc4Ln7bI7pg4IA6tb2VsXxZaBiB1e167tbUAE4p8pWexySYuvirphg9P9im+7pu7pdyLTH9/CFPF1eh/FTp9InUlufpm35ruV+S4PaR+LBVuGq6iFVnaghdwlQV82OO5MLPNtHB6kiIJXDQMVOauxqqjaVUWVbWFoG41ag6nIh0z+++vSDNQCKn0j9vDwlXzfXrGbPdy33W3LHwLwqUcM1zlU1O1UtJ0aqh8+ILtGo519LFQGpHAYqNjA+eXkhlVdZVbZqqaKubMbH15g2WBMQip9IC0vLJF8vKjVOcZUui7nvWu4GoP3/jOxCg7/NvYecz9XXOFfU7FTVnBht4Jm+NQOzN2Vg9uYMfL0lA6kDErElpacqH7oZqChUVU9eZ6ms5gO1VFFXNqnjq08/WFMayCkN/qz9rg0GLdQAKcnxeLZbrMky/d8Xf3dUmTU71SEn5qvNGSaDum1J6Ymk2LouLZcUBioKVIeT19Fsqemw9aakhipqoHKf/M111TYO1oyrfCcmNzVbPqXBnzXftcmghQJIXXEcEMCDd4Zb1SOBv7vqy9E1O3K/1aqWE2O8n+62fwxUFHC3L9cR7L3pKr3Z2RsMurqKurKf/MMCfCoGRvt7zBFtT5mWDQNNgrVB7SORW3QLaSuP68YpCfSpabZ8SoI/a75ruRqgaSuPo2GQj9U9Eqr6746cz9xvtSo1JUvtZ7e4ULfaPwYqCth78rpbG7ujbrpKbnbuHAw6osYtK68Ye85eh0ajQdso+fELdL18Lv7dywcVzSgTk5vqmlGk3jNt1XHFc3goCf4sfdcxIX4mY6MAFV3KIaSbp9TeI4Hcj6XfalVpSpbbzy0pPd1q/xioKGDPyetubeyObuay9mbnzk8y9gZZC3dnIuXHw7pAQgMgbaDpeSLXy0cI4IOVJ/Bgq3DJz3NGEGgcfFsKxsMCfJCSHF/R3KNHO8Ky1O+rVYT062q9qJL6WfNbUEtTsj3M7ac77R8DFYVs+XKlbvqTlhyGr5cn2kUHq/IEcVXNhjs/ydgTZGXlFRsEKUDF6JCTlhw2CA6t7eUjdbwcHQQaB98Pt26IpfsvWgzGn+0WC+gNke8BYGLfpgCAiGBfLBmThKLScoPfl7W/O3ertSTXsDafytK5pPbzTWo/PQD8VViCrLxilzeVW8ulgcqmTZswffp07N27F1lZWVi6dCn69+/vyiJZRemXKzk8uABemH9AtbUrrqzZcFak7+yLij1BVkZ2IaRij3IBg8BDSS8fR5bPmFTw/eO+iwblNlcD92z3WEADXb5M2srjSFt5XDd0d+qARJPeB5Z+d+5Wa0mOo/1t+3l5orC0zOJv3NJvwZpzyR3ON+P91M7fM27efnhogJFdYjCiS4zqgxWXBiqFhYVo1aoVRowYgQEDBriyKE5lrmeGWnswuLpmw9GRfmVdVGwNsmJC/HQXEX0eGhgEHkp6+TiyfMYsBUyA+dqdrLxiTFt5XJeror8pW3N72DOoepJqCrXmN25uEk5L55I7nW/a/dx7NgcvLNhvMHr37M0Z+GpzhkETsxpriVwaqCQnJyM5OdmVRagUxjd9Y2pNFtU/waEB2kYFubpINqnsi4qlIEvqQhAW4IO0gYmGOSp/X2yNB0QzDiAn9m2KlneY9vKxpnxKc0y0LM1gDSgfc0Wf0t+EuaZK7XJL+6TGCzSZJ9cUak+iuDXN3u6W9B8W4INDFzJMktiBiocE7bHSn0FZTbVEbpWjUlJSgpKSEt3f+fn5LiyNMtqb/r5zORg3b7/BE6Sak0XVeuIqoaaLirmaHf3AUKMB2sj0+nFUrYitOSaAdMDUv3U4lu2/ZPOYK/o8AMnfhFwwIddUeehCLoZ8tcPiPrlDNX5lUFOwZk1ZzAW8SgNVLWuavd0t6T8rrxj/25whu7xMCOw9m6PaWiK3ClRSU1Px9ttvu7oYNgsL8EG/lj4oKLnt0mRRay9G7lS9aY6Si4ozL9TWHM+wAB/c38r548XYm2MCSAdML/dpqmjMFbnE4FHdTNvNzQUTkjVNyU0rEnYlktgjg311uQyA8nmQqqLKCtas+Y1ZU5asvGJcLyyVbDIFlAWq+qxp9nZ107i1tMf69NUbZtfz1GgAiQcHtdQSuVWgMmnSJLz00ku6v/Pz8xEREeHCEtnGUU/EttxUlVyM1FQTYQ9rLyrOvlCr6XjuOXvdrhwTLeOASUkANah9JOIb1EH/GdsMbjQeGmB45xiDda0J8ox/V+aS2PU/a1SXGNV8L65SWQ8l1gYglspiMA0DYBKsyAWq1u6TNddotXfvNT5GcrTXw7ZR6h2vyK0CFW9vb3h7e7u6GA5h7xOxLTdVpRcjd6veNMfSRaUyLtSHL+SZvGZNzQ5gWnVtT82P9tyxpDK+61YRQUgbaDmItDbI0/6uLD1ta5WLijlPqsp5bitnBdHG57E1vzFLZTGZhgEV18DPB7dGRLCPrmu7vftkzTVard17pY6RMQ2Azx9vjbbR/zQxq7WWyK0CFapg603V2h+u/sVFrSeuLcxdVJxd26EdFdaY1Hw7Uk9C+t12AVgdpEoly0o1t3gAeLhNQ6tzTBzJmidTuZyWQxdzTboxW3raNlYO4JkujfD1lowqcZ7bQulDiS3NN3I1V3vP5hg0d1oqi1xNWd3a3mgVYZjwX10DULncHe1vQXvduL9VuMFytdYSuTRQKSgowOnTp3V/Z2Rk4MCBAwgODkZkZPVLZLOWrTdVay5GUjU1rpr629WT+znyoiZ34WjZMNDgb3NPQuUCmPTjYYO2ZHNBqtR3GRHsK1mOz59ojX4tw63OMXE0S0+mYQEVcxqlrjQM9oxH4pV72p76UAu8uewP2VyG4V2iMbxLtOou0JVB+zt7NTkeH6w8YTFYs7X5RqrmCgBeWLAfBy/k6sbzsNRUq2SwNmv3qaqRO0ZSgykaU2MtkUsDlT179qBnz566v7X5J0OHDsXcuXNdVCrruDI73p7kUHMXALkRdJeO6eSwqb+tPW6umNzPmbVH1n5nlrrtaufE0SdXKyZV67ZkTJJkOdr83fVcjRcprcQ7Akxes6bbaLkAYkPrGDQxaRl/z45oWnMnxr+zV/vGm+3qbm1truT3AOCJ9pGYvyvTcARmYTqeh7kne0u/VYMaNQ0wpkcsujQONdlOVfuOrbnWG9c4uQuXBio9evSAkOrYrXKu7spob3Ko3AVA7iLff8Y23QXEEbkRlo6bq3obObPa07iXi4cGkt+ZNd12jbPzrQ14yoRAUWm52zbn2dttNCm2ru779fXykHyyzMorRvqWDMzenGFQRV4VuypL/c4+WHUCW1J66poJjX/rcufVvnM56NfSfPONBsCC3ZmyzXACphMDWupxZjzGk0mNmgBmbDgD/1o1DR62XH0NdzSl13p3wxwVhdTSZdfe5FAleQDaC0hu0a2KmXpt+HErOW7WJNM560nI0TUKxsmEQu8CKvf5qQMSkbLksMk62qACgMVAw9obtrtcwHRV+X3j8cEq+ap8S0G8ue9XaoTTqtxV2dzvTG78JLlrxLh5+1FQclu2u7gHKq4jjuhppiVVRrmmzWkrj+PBO8Ml87T0v2PtcXGnWhZbrvXuhoGKQmrqYuro5FDjp37j92rnYgGUX8CVlMfcTdadnoSMyyrEP602xk+P+rrFhZo073gAWDImSVd1aynQsOeGbY3KrDY3aZ5IjkfLhvLNE46YOFRfVe2q7OflKdmt19fLw+yNT+oaIVCRP+XnXQNt/x6oUP97+KuwBOPm7bdYJiWTeMo1bWo0pg8C5fhnziy5a9F7vx7Fr4cuu1VNWlZeMX45dEk19yRnYaCikDt02ZXrmmlNOc2NbWHPj0HJcZO7yQLuMzCX1IXUmNzxk5qgsBxAUWm57m9rAg1nVf1WZrAo2Tyx8p/mCTlKAzFzuUFq+33bQxtgHr6Qh2mrjptcH94fkIDC0jKzv/VB7SPh6+VpMB4NUHGOaie7054T2u8hK6/YqikXlEziKde0mZIcj9QVhknX+t+hXK3QL4cu/7MvKr62aEnVAGpVpXMWYKCimLOTLu0l1zVTSTmlxrYwHjwJUDa6q9LjJnWT3XYm222eHKyZtE/u+DkyGLa15kSuxqSymz5trcFUUuOTlVeMvwpKJG9eHjDNJXLXJExzNzYPzT81dlJBhfH51y462OxEq8a1K+Zqaz1Q0etMO2WENcfXUtMmREVzTzmkE6bNzb2mpdZrC2C+BtBDYzjsgbuer/oYqNjAkU+qjjyJzA2EpD+ojzWk9jHQp6Zdo7sqPW7GN1k/L0+Tal21PjlIJhNqAI2A5MVTn63BsKPOJXPfob1Nn0rLKHdD8vXywLYz2ZLbMe71kZIcj2e7xVrcVw2gO78qxv1ohOFdog22705Nj/rM3diAiuOrrbGz5vwLC5DuLq7bHgxrV7rFhSIi2BdTHmyOt346arJusJ83wgJ8rD6+lsr4bPdYPHhnuOy1Rnst+vVQFt799ZjkPqj12gKYfxAqF0DaiuOAAAJ9a7rl+WpMI9yx283f8vPzERAQgLy8PPj7+7u6OIo5+qK37Uw2npi90+T1+aPvcmj3YnMJvJ3T1pvcVCxV01tD6mlQe3FS6w9v4e5MkwupkkDN3LGW+ixHnEuWvkN7vmMlZdQPaDadvGYy+aHc5IlS5QOAScnxeLZ7rMlnGK9r7ukegOn6GuDTwXeiXXSwqp9W5a4NWlLfoaXzz9I2tTR/V+tqH5z0c7X0PxswPb6Wzi39MgLKE2HlzhcPAKkDDc8rW2YZdxa5chuTav53xPXYEZTcv1mj4iIHz+cY9OxwRBV6ZeTPODqB1xpST4PGyaVqJFeDZO2xkDrWUhdIRzbHmPsOtcuf7xGLmb+fQbmwvklRSRnNDTro6+WBh7/YJrsduSdN414fGdmF+KugxGRdc0/3UiOrlouKuYPU/rRqrtu73HdoqdnQUld6Lf1HYW0tl4dEzaItTbvaMtoaqJv0TpKoSTOudevSJARbTmW7NOlWqtxS34PxS2puzjKHgYoLzNp0xiTZC7D/JHJ1/oyzAiW5waP0k0utVdlPQvb2rtEndzF2ZIAo9x0euvjPLLRaGgAT+za16iKtZPoGc4MOWrqZxYT4me31YdylVS7hXMnIqtrlak6+DAvwwavJ8bo8M23embneU9ZsM3VAIib9eBhKfolCAP99ojWC/bwNPtvW64e9gbq5Jmmp5vTNp7J1y2393h1xHdIvt6+Xh0kHCClqbs4yx8PVBahuZm2UDlIAx5xEg9pHYktKT8wffRe2pPR0yUB0npqKGWpsCZSy8oqx7Uw2svKKda9pL2D6bDlWC3dnonPaejwxeyc6p63Hwt2ZistiK3u3JXcxzsordtjxAaS/w4l9TROpgYqL9gerTuDg+RyL+2ZtGc0NOrhwd6bF7YQF+CAlOd7k8+W63ULzz0VQ/3yVC45HdWmkOzbG9Gue1Gbh7kzdd6gNMJ/tFouk2LqSv09rz9dB7SOxddLdeKZrI933os31Af4JBvVpR0KW+uxRXWIkvw9zLNUCWiMswEeyPNYkxSv9LKXXIXO05W4VESR53utTW8cPJVijUomy8oqRJpN8JjdSqS0c+RSvlD2JxnI1Bo6oKVL61OXI/CFHbMvcxTgptq5Da9KMv0NzF+syIdD/i226BFRbkx+1LA06uCWlp8XtPNstVrLXh1S3W6VP99o5gfady8G4efsVd/93BalagQ9WndA1hRmz5XztER+Kfi0b6Eb7BSpqsA5dyDW45mlkrnPGn/mMRCKzHEfX5OrXdljTvOWhAbILbiIrr9ihTaBKPds9FueuF2LezvMmy97s1wz3tQxzyyAFYKDiENZW40mNjwFUPHEsHdNJ1fkWStgSKFn6Advb00pJ84gjLyaO2pali7Gjx0wx/g7NXaytzbOypoy65gSZQQfPZhdZtR2pXh9y3W61ibNS5ZALiPq19EFByW3VDlOgz5nnvlRQo5+4P+SrHQbXPI2AbgRY7eftOXvd5DO/3pKB4V2iAVTk8+06ex0dooMlr5GObPKW2p/UAYlI+fGw/ND/CvKUnJHHp3//eeHuJliw67zJOe7OQQrAQMVuSp4+5KLzlPviLQYprs4ydzZrfsD21BRJHXu5JyFHXkwctS1rLsZKjo+S88n4s7U8AJPcBGuTH82RG3TQuInHmnIbHx9bx/Lx9fJAYWmZwbkiFTCp8XeqpIu3I4MaueYz7bbMjeui/cwPV5/Aj/su6l4f2KYh/vPYnSbrKwnUlY4RNDG5qWkyE/55SftyuagYPya+QR3Z67mja3/kAit3CKCVYKBiB6VzRphkaqNiOHC5MR603HXsBiWclYirf1HSP/bahEupJyFry2LvwFRKOarWxJbzyfimXVRabtIDB3Bc84fUoIOOuODaMpaP3Lw32uVSvUO0MxEn3hEgeX5UZkAjFaD1bx2u++4szeWjn2CsX2ZLQY2lbZkb18VTo0FR6S2DIAUAftx3EU8nRcnWrFg6lraMEZS28rjk3FxSRS8H0P+LbUizsgnUAxX5QracA3L3ny0pPXW95NxlLi9LOI6KHeTGEXimayN8teVP2RuBkvExnDk2iTPYO7uy8Y3JnoBM6qLULS5UNr9A/5haKouSm72j98sejj6fnLlv2mYBD5nmmcpg7fEyN66F8fmhZBZxRwYz2uuOXICp3Sep7xSA5G/J0rGROz/MjcGi7ZGU+VchvjeTb+GIMVMsjRFkK0u/qVmbzugCIFsfPitj3Cxn4jgqlUSyOQHQBSmAdBuvkip6NU2CaInSJ3XthdjPyxOFpWXoFhfqsCcBc08bQX5eFscXUNJl0RG5Geb2w5E3K6Xnk6XPrwrzCZlj7fGyNFKofk2ruXPHeC4eR+6/9rpjqYu38XcKGA7Epv9bstTMIHd+yF07P3+iNS7kFEv2MtO6XliqK4+SY2PpuwwLqOjCLdcrUwlLv6lperU0zspbq0oYqNhBqkp1ZJdo/G9zhsF69gQW7nIy2pOEp+XIG5K5i5K1x1QuoJTb9t6zObi/le25GcaccbNWcj4pGc7cmppBJXPvWHMuKQ3ibAn6rD1elnqHaM89ASF7Xi4/eEmymcERPUMs9WQx3if979RcYGNtgrS1ycptooLwwvz9ssfx7qah+OL3MzbN4h4T4mdxotbEhgGS79UeLw8NkJwQhl8PZ5n9LHPX6MrMW6sqGKjYSerp46stGQ4LLNzlZLQnCU/LkV31zF2MrTmm5m5qfl6eUrl1eGH+flzMLTYZqt0WcgOfmUvUM7ct/X2x5nyypbeS3DFT2tQhNWKs8bmkNIhz1Mil5kZxNTfRnf41QKomYcGuTPx08JJsOYxHB1YSbNmbcCmXiK4ksVmKVLLynrPXzTa9rD9xzeQ1cw8J+ufkh6tPmPxm9SfvA+SvG0vGJBl0vV55JMtgHe3YMeXC8nglasxbUzsGKg5g/ENVGli4qnrdkZT8+CyNy+GIZi1LNxhzx9TcTU27TKr4AqiYpE0DiwnSlpgb+CxtoPU1K3L7Yul8UvrUJ/c51gY8xu839+QrF8TJBVHOHLlUbr1DF3PxwcoTkueeQVL33/tpLkjR7r/+6MDWBluOSLjU/pb0p/wQAth08prduTXGycrSQ+lZNn7BfhSW3pbNI5OTuuI4An1q6s7VPWevY3D7iIouvvhnwMPC0jKD/ZG6tlh7jbb34VPq+AqLY9K6NwYqTqAksDB3UzQ+IdUYoGgp+fFZmnfEUc1alr4HqWNqqSeXpQsf8Pe8Mq2kB9OylqWBz6y5yVq6QZt7v5LA09znWBPwSL1fbj4YQD6IS9+agdfua25SPkdUtVv7+9OulxRbFw+2kp69V3te7j2bgxcW7JfsUaJPanRga2vYLA0UaG1eUre4UIPIUaCiK66lgNPc9Uz7mvFgdLaQyvWx5rcKVLwvt+hWRbPb369pUNEpom4dL91x198fe+fxsvXh0/j4Pty6oewEnVUJAxUnsbbdXu4Cb65LpFpZ++OTqyZ3RrOW0gDP3IVdKr9ASrmA3bVC2mNkbuAzS9u3N3HW2sDT3nwgqffLjRgLyAdxX23KwPDOMSZldFWel7lzLyzAB4cuZJgNUsb1jEXnxqGyowNbU8OmZAwVwPx8UsZFLQeQvuUsXuvXDIBt1zNrhqi3lv65rWS7ZUJU1ITqEajoFKE/07NUoG/vb1zJ+6WOr373bUfnMqnpwZiBigvJXeD3nctx2jDLzqb98WnnCrGmOUs7LkdlNGtZ+iFauqlJ5aYYc9RN0NLAZ/buiz5bm4gsfY41AY/c++W6JIcF+GBklxjMNkpa1x9MzHh9V+Z5ZeUVY++5HAgh0C46WPf7MC6/vic6RuDlPoZzt9hSwya173JjqJgLNKQSUYGKm7l2qHtbrmdS371xvkf/1uFYtv+SrqkMGtNJJwHDc9vamZ3ljqu2nMbM5d3J/RZtvflbM26NufIp/Vy19LSTwkDFheQu0OVCvmeA2gMVwLG9RSq7XHI3NQCYs8X0xiKVS+HIm6DcwGfW1Lg5KnHWmjwD48+ZmNwUGdmFuJp/ExHBvgbJiI4IJEZ0icFXmzMszrWjvVg7suu7Egt3ZxoMv64BkDYwERHBvrIBr4cGeOHuJgav2VPDZvxQoD+GirXNdEmxdTG6a4xJj0b92kOpYKYi4JC/nsnNU2UcIL/cp6lBhwXtPEIfrJLOA5I7p+Ib1MHszX/i10OXIfDPmC1pK46bfB8efwdEls4xa3LalN785caAshR8actny1ARan44ZqDiQnI/pnbRwW7RJVlKZZ/w1j41KCmXcU3CppPX0Cl1vWwCrZYHgCVjkhw+Z5O141pYsy+OSJzV0h8HRz8YOXQh12QcDKl5YJSWU19YgI/FkWtd/YSoPef0D602t2Pp2E6SNx0PVJRTP4dDe35bM7WAHG3Aaa6rsaUauOFdYpT3aBRAZLCvTfNU6X+XxgGzLg/oTuk8IHPb/e8TbfF6P8NBNwN9ahoGlH+fLwDMnmMHz+cYvE//t3g1/6ZBArI2r8jXy1NXsyYlK69YcptS49bo1zZJDc5nXCa5z1T7eF0MVFxM7sfkDl2SpVTmCa/kRqS0XPpNWHK9fIyVAygqNZ79xjH0L9SWBuwy914ptuRwyI2D82pyvG6gMn3WXCyV1rApHZTP1u7d1rK2ql57nhgMpa4BRhnNGCx3ftsztYAtzXQAdM24xsO/j/x74kBAetJVIbGv9s5Tpc/S++SWG7+un+Cs0cCg2dFc78AUiWtDmRBI35qB2ZsyTPN6hOUJDD9fd0p2QEqpc16/tslcMPrroSz0k5mcUO3jdTFQUQGpH5M7dEmWUlknvJIakqy8YlwvLJXt8mquVkZJUl5l/bCVzMdiDaVNL+bGwTE3oqgzAlbttjKyC03+tiX51BZZecWYsyUDX/9d26BfVa+dU0qfByrGIEmKrWvT6Mf2XBvCAnzwat/4iu8Jpk2VUrWJxqPAbknpifQtZ/HVlj/xv80Z+GpLhmzThPa8NLevahEW4CM5FovU9Vn3ACNxrntoIBmk6CsX0hMYztp4BvN2mU4boD1npMpj/Ldcfs67vx7D+yuO2dVM7CoMVFSssnM4HKGyTnhra0j0n0o1+CenRCrXQwNgdNcYDO/yT88RuR+9tmugcbWr0v10ZGBhT08xJTc/S8PFyyUcOyOQk6t1cET3bkuy8oqRviVDMm/jtSVHMLFvU8kZd1MH/tO0I/cbNzf6cXDtivPF18sDvxy6hA7RwVbXEi3cnVlR44WK5o2JyU0lb1r6tYnGwdKSMUmS04RYGlLfHa9ncuR+AxW1TKaJ3lK0EximJMcjsWEA/Lw8kbZSevj+wR0jTIJxOcbXB4PPtLOZ2FU4KSE5hZKJF21x8HyOZFu9/kRgB8/noP8X2wyeejw0wGeDW6NtdMWFXWoSMqmEOP3q7sEdI9ApNgRtoyq2Yet+2ptDoX+MpfbFQwN8OvhOs+3htjA3eZt2zA9tkqP+646ejNHSJHPmBvyyd+I2awYTM0ksBbBsbCerggqpfdPvDWNsYJuG+M9jdyreprnJ8+QmvXujXzO8++sxk9e1x9TZv301kDqWHhpg6ZhOqOdfS/K7A8z3GJQL8PXfq9EAKcnxVg0omZVXjF8PZZn9rlxJyf3bo5LKRAppu/dm5RW7uig20Sa7KblQWbvPC3dn4uEvTIMU/ae3hbszKwIZier/urW9zecQ/P3UoS3HoPaR2JLSE/NH34VX74vHgl3nMW7efnROW49NJ68p3k/tvko9rSr5vvWPsVxTxwvzD6Bz2nos3J2pqHyWPjd1QCI8NYbjiGq/g2e7x+qO109jO2H+6LuwJaWnwxNZzdU6ABXf29IxnUxGO7W3ZseawcQ8NKY3HW2+hjXCAiomyPP4u/DaC7XcZ/647yIOns8xu01ztZCA6e9PWyulz1OjQfvoIMnX9ZsmbPlNuBPj34CnRoPUAYloFREkuSxtYCLSBiaaveHKnU5Cb5kQFaPpztp4xqoy9msZZva7chds+rFCZQ+C4+reCq5g7T6vO3bZICMeqFhfv7eNuQRY/bbewxfzZMtjXM2u/d61Q5gDlhNElea+WJvDIbVdc+NGOKPnlaVxcCqjml9un1+Y/89w6nLdu+0pmzV5S2N6xOKL38/YnKu1cHemQb5Pz/hQrDtuOs+Nvj1nc8zW1pjLbZL7/Uk15bSKCFJ1PkNlMddUIjWPUUyIH5aO7WRSy2vO3fH1sP74VZPXp608jgfvtDz6tdpzT6zFQMWCyg4a1N6f3Rms3ed/LzpgMBKjVrkwfFI1dyMRqJijpFtcKKbJtAcDFdWt4xfsN/jeI4J9rQ4uLJ03chO9ZRfcRFZesex3LbfdTSevmb34OSuR1ZXnpLbWIXWF6aii+nP/OLrtXW7wM33NwvxtvkFI1dhYClIAoF20+SYlc716jLvDpvx9/OSOnZrzGSqTud9AWICPZN5YmpnJK/V5AHjxnsbYcOKqac0wrB/9uip8V2z6McMR1fNKWaqerYqs2eeD53MkgxTA9ElVqspaS5tMaW6WVuNqdm3X1uLS25LbPXQh1+Bva84b4+phbe8Qc001cts9eD7HYhdqd6zutUZiwwDJ18sFDM4fe5sj9JtFNp20HDRcLyzVjS2jtOnLmhob49Owa5MQ1POvZXHb+s2Y2jLtPZdj2kwlgH3nKpqS5I5ddWjisYe5B7AtKT3xTNdGJt+j9m9PjQapAyuaklKS42FMAyj6PVv6rtSeasAaFTMqexCcrLxinL56w+zMsVWRNV2ad529Lvlebc8F/Yx4c1nvAP4et0JjWqMB4PMnWkMAGDdvv8F7ygUw6pu9SE5ogBVHLhss+2DVCYNqWLnzxngcA+2Tzr5zORg3b7/snCJactvdfTZHugeC3jDk7ljdaw252g0PjbILuTnGPccg8XnG3vrpj4rkR1SMRGucuGiuWdDS8O9v9muG+1qG4Wr+Tcze/Cd+OXQZm09lo3PaeqtqfI1rAeT6U7hvNwt1MHf/iA7xrZhLSG+ZNhnXuBn1wVbhpiPnyjyI2cIdUg1UUaMyY8YMREdHo1atWujYsSN27drl6iIBkE8mc0bQsHB3JjqlrsdbPx116pDsaiSVfGa8zx2igyXf+3THKExbeRxPzN6Jzmnr8d6vR5GVV6x7cvzv460lv8M2UUGmyXADE9GvZTjaRpkmCwIVN6dVRkEKYFr7I1ej8+6vx0xqS8ICfBDk5yU7wJM+pcmNS8c4L5FVLcICKkao1d997aii5n4zUk+Qcq8Zz+5rrmeGcSAjUNGsor/Nhbsz0Tltve6c1T8ftAHMq33jZS/Ot8sFwgJ8UM+/FlYc/ud8LBcVn/XfDafwy6FLyMorRlZeMf5vewY+WntCNtm2XXSw5JN9WwtNSWSe3O9V261cKvm9qLTcpOZDciA9oxpDW7mi1cAWLq9RWbhwIV566SV8+eWX6NixIz755BP06dMHJ06cQL169VxatspKRDIeMlnLOEm0KrPUjtoqIggD2zQ0aP65L7EBvt15zuBHNntzBr7anKEb1Ov+Vj4oLL0t+R2aG7pbbl4V7fgT+k+bxsGrNndCavAzqdoSuXwV44BY7nyUS26sDucNYH5UUSlST5AADF4b2SUGI7rEWNUM46nR6KYPOH3tBt5c9ofBcgFg79kc3N9KfmwSqRmGX70vHueyizBvl2EzoLYGT3LWaQAfrj4pWc7P1p2W7MasDfYm/XgY5fh7GP+B5gM9skzq96o/IaQxuYdgZw6iqfah87VcPo5Kx44d0b59e/z3v/8FAJSXlyMiIgIvvPACUlJSzL63ssZRcfa4AHLjFQDq6O+uJgfP52DP2Ry0iw5CYWmZ7HEzHh/Clu9QbqyWiclN8cFKw8nQ9GssrBljw/h71Q3H/fd7tE0GUjUhcvtSHcavsJfk+BcAINHUogGQcp90wKll/P3/cuiSSbMhAMx4ojX6tQyX/a3/9/HWuuRt/W1/MrgVXph/wGT9+aPvwqGLuSaJxNb4SWYsF54/zqE9rsYTQuqzNM6Q/lhOjhyTSOnYOo6k5P7t0hqV0tJS7N27F5MmTdK95uHhgV69emH79u0m65eUlKCkpET3d35+fqWU09m9Gyqjnb2qaBURZNANWa4t3/ipwJbvUK5r66D2kXiwlfRkaNaMsSH1NNQtLtTgBNAm/Ur19pLbF1f3wnEHkuPNAJLtOQLABytPGAw5r0+qxrNtVJDkDMJt/h4cUO7pWCpQksul0jYfmOu1Zo5cN2aeP86hPa5Sc/AA/+QcmTv2zuq54y7dl12ao5KdnY2ysjLUr1/f4PX69evj8mXTXIDU1FQEBATo/kVERFRWUZ3K1nb26k77I5PKB3FU1ahULwntZ0tl0csOra35p1xSFwKpduiq3tvLFaTyBjwAyXMIqPgOWt4RiM+eaG2yzLhbPPDPb1k3UJsGSBtgOGS+VD6WVF6UXC7V+wMSUFhaZrFJSo6lbszkHHI5K5aCFC1n9bKSu8apictzVJSYNGkSXnrpJd3f+fn5VSZYUdrOThW0xy19awa+2pQhOdGavZQ8aco9MWtzGOSehtQ+e2lVYW4sEamaMO13EB3ia/X3Y+npV+mM6VLrm6tNNGdgm4bVJndJbdRce6H22jSX5qiUlpbC19cXixcvRv/+/XWvDx06FLm5ufjpp5/Mvp9z/ZA+tbSx29qe7Kx2aDIlda5k5RVLBrxScz456/tRcg4bl2diclPcEeiD64WlCPbz0jU3/Xb0CrILSnB3fD0GKSqgluuUqym5f6simbZDhw74/PPPAVQk00ZGRmLcuHGqSaYlUsrWixEvYq5n7jtQ2/ejtvIQWcttkmkB4KWXXsLQoUPRrl07dOjQAZ988gkKCwsxfPhwVxeNyGa2VqWqvQq2OrA0LLqavh+1lYfIGVweqAwaNAjXrl3DW2+9hcuXL+POO+/EqlWrTBJsiYiIqPpxedOPPdj0Q0RE5H6U3L9VMYQ+ERERkRQGKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoRERGpFgMVIiIiUi2XD6FvD+2guvn5+S4uCREREVlLe9+2ZnB8tw5Ubty4AQCIiIhwcUmIiIhIqRs3biAgIMDsOm491095eTkuXbqEOnXqQKPR2LWt/Px8RERE4Pz589V23iAeAx4DgMcA4DEAeAwAHgPAecdACIEbN24gPDwcHh7ms1DcukbFw8MDd9xxh0O36e/vX21PSC0eAx4DgMcA4DEAeAwAHgPAOcfAUk2KFpNpiYiISLUYqBAREZFqMVD5m7e3NyZPngxvb29XF8VleAx4DAAeA4DHAOAxAHgMAHUcA7dOpiUiIqKqjTUqREREpFoMVIiIiEi1GKgQERGRajFQISIiItWq0oHKzJkz0bJlS91ANUlJSVi5cqVu+c2bNzF27FjUrVsXtWvXxsCBA3HlyhWDbWRmZqJfv37w9fVFvXr18Morr+D27duVvSsOkZaWBo1GgwkTJuheqw7HYMqUKdBoNAb/4uPjdcurwzG4ePEinnzySdStWxc+Pj5ITEzEnj17dMuFEHjrrbcQFhYGHx8f9OrVC6dOnTLYxvXr1zFkyBD4+/sjMDAQI0eOREFBQWXvis2io6NNzgONRoOxY8cCqPrnQVlZGd58803ExMTAx8cHsbGxmDp1qsFcK9XhPLhx4wYmTJiAqKgo+Pj4oFOnTti9e7dueVU8Bps2bcIDDzyA8PBwaDQaLFu2zGC5o/b50KFD6Nq1K2rVqoWIiAh88MEHjtkBUYUtX75c/Prrr+LkyZPixIkT4rXXXhM1a9YUR44cEUII8dxzz4mIiAixbt06sWfPHnHXXXeJTp066d5/+/ZtkZCQIHr16iX2798vVqxYIUJCQsSkSZNctUs227Vrl4iOjhYtW7YUL774ou716nAMJk+eLFq0aCGysrJ0/65du6ZbXtWPwfXr10VUVJQYNmyY2Llzp/jzzz/F6tWrxenTp3XrpKWliYCAALFs2TJx8OBB8eCDD4qYmBhRXFysW6dv376iVatWYseOHWLz5s2icePG4vHHH3fFLtnk6tWrBufA2rVrBQCxYcMGIUTVPw/ee+89UbduXfHLL7+IjIwM8cMPP4jatWuLTz/9VLdOdTgPHnvsMdG8eXOxceNGcerUKTF58mTh7+8vLly4IISomsdgxYoV4vXXXxdLliwRAMTSpUsNljtin/Py8kT9+vXFkCFDxJEjR8T8+fOFj4+PmDVrlt3lr9KBipSgoCDx1VdfidzcXFGzZk3xww8/6JYdO3ZMABDbt28XQlR8uR4eHuLy5cu6dWbOnCn8/f1FSUlJpZfdVjdu3BBNmjQRa9euFd27d9cFKtXlGEyePFm0atVKcll1OAavvvqq6NKli+zy8vJy0aBBAzF9+nTda7m5ucLb21vMnz9fCCHE0aNHBQCxe/du3TorV64UGo1GXLx40XmFd6IXX3xRxMbGivLy8mpxHvTr10+MGDHC4LUBAwaIIUOGCCGqx3lQVFQkPD09xS+//GLweps2bcTrr79eLY6BcaDiqH3+4osvRFBQkMFv4dVXXxVNmza1u8xVuulHX1lZGRYsWIDCwkIkJSVh7969uHXrFnr16qVbJz4+HpGRkdi+fTsAYPv27UhMTET9+vV16/Tp0wf5+fn4448/Kn0fbDV27Fj069fPYF8BVKtjcOrUKYSHh6NRo0YYMmQIMjMzAVSPY7B8+XK0a9cOjz76KOrVq4fWrVtj9uzZuuUZGRm4fPmywTEICAhAx44dDY5BYGAg2rVrp1unV69e8PDwwM6dOytvZxyktLQU3333HUaMGAGNRlMtzoNOnTph3bp1OHnyJADg4MGD2LJlC5KTkwFUj/Pg9u3bKCsrQ61atQxe9/HxwZYtW6rFMTDmqH3evn07unXrBi8vL906ffr0wYkTJ5CTk2NXGd16UkJrHD58GElJSbh58yZq166NpUuXonnz5jhw4AC8vLwQGBhosH79+vVx+fJlAMDly5cNLkra5dpl7mDBggXYt2+fQRus1uXLl6vFMejYsSPmzp2Lpk2bIisrC2+//Ta6du2KI0eOVItj8Oeff2LmzJl46aWX8Nprr2H37t0YP348vLy8MHToUN0+SO2j/jGoV6+ewfIaNWogODjYLY6BsWXLliE3NxfDhg0DUD1+CykpKcjPz0d8fDw8PT1RVlaG9957D0OGDAGAanEe1KlTB0lJSZg6dSqaNWuG+vXrY/78+di+fTsaN25cLY6BMUft8+XLlxETE2OyDe2yoKAgm8tY5QOVpk2b4sCBA8jLy8PixYsxdOhQbNy40dXFqhTnz5/Hiy++iLVr15o8QVQn2idGAGjZsiU6duyIqKgoLFq0CD4+Pi4sWeUoLy9Hu3bt8P777wMAWrdujSNHjuDLL7/E0KFDXVw61/j666+RnJyM8PBwVxel0ixatAjff/895s2bhxYtWuDAgQOYMGECwsPDq9V58O2332LEiBFo2LAhPD090aZNGzz++OPYu3evq4tGMqp804+XlxcaN26Mtm3bIjU1Fa1atcKnn36KBg0aoLS0FLm5uQbrX7lyBQ0aNAAANGjQwCTrX/u3dh0127t3L65evYo2bdqgRo0aqFGjBjZu3IjPPvsMNWrUQP369av8MZASGBiIuLg4nD59ulqcB2FhYWjevLnBa82aNdM1f2n3QWof9Y/B1atXDZbfvn0b169fd4tjoO/cuXP47bffMGrUKN1r1eE8eOWVV5CSkoLBgwcjMTERTz31FP71r38hNTUVQPU5D2JjY7Fx40YUFBTg/Pnz2LVrF27duoVGjRpVm2Ogz1H77MzfR5UPVIyVl5ejpKQEbdu2Rc2aNbFu3TrdshMnTiAzMxNJSUkAgKSkJBw+fNjgC1q7di38/f1NLvxqdM899+Dw4cM4cOCA7l+7du0wZMgQ3f9X9WMgpaCgAGfOnEFYWFi1OA86d+6MEydOGLx28uRJREVFAQBiYmLQoEEDg2OQn5+PnTt3GhyD3Nxcg6fO9evXo7y8HB07dqyEvXCc9PR01KtXD/369dO9Vh3Og6KiInh4GF7yPT09UV5eDqD6nQd+fn4ICwtDTk4OVq9ejYceeqjaHQPAcd97UlISNm3ahFu3bunWWbt2LZo2bWpXsw+Aqt09OSUlRWzcuFFkZGSIQ4cOiZSUFKHRaMSaNWuEEBXdESMjI8X69evFnj17RFJSkkhKStK9X9sdsXfv3uLAgQNi1apVIjQ01G26I0rR7/UjRPU4Bv/+97/F77//LjIyMsTWrVtFr169REhIiLh69aoQouofg127dokaNWqI9957T5w6dUp8//33wtfXV3z33Xe6ddLS0kRgYKD46aefxKFDh8RDDz0k2T2xdevWYufOnWLLli2iSZMmqu6SKaWsrExERkaKV1991WRZVT8Phg4dKho2bKjrnrxkyRIREhIiJk6cqFunOpwHq1atEitXrhR//vmnWLNmjWjVqpXo2LGjKC0tFUJUzWNw48YNsX//frF//34BQHz00Udi//794ty5c0IIx+xzbm6uqF+/vnjqqafEkSNHxIIFC4Svry+7J1syYsQIERUVJby8vERoaKi45557dEGKEEIUFxeLMWPGiKCgIOHr6ysefvhhkZWVZbCNs2fPiuTkZOHj4yNCQkLEv//9b3Hr1q3K3hWHMQ5UqsMxGDRokAgLCxNeXl6iYcOGYtCgQQZjiFSHY/Dzzz+LhIQE4e3tLeLj48X//vc/g+Xl5eXizTffFPXr1xfe3t7innvuESdOnDBY56+//hKPP/64qF27tvD39xfDhw8XN27cqMzdsNvq1asFAJN9E6Lqnwf5+fnixRdfFJGRkaJWrVqiUaNG4vXXXzfoTlodzoOFCxeKRo0aCS8vL9GgQQMxduxYkZubq1teFY/Bhg0bBACTf0OHDhVCOG6fDx48KLp06SK8vb1Fw4YNRVpamkPKrxFCb1hCIiIiIhWpdjkqRERE5D4YqBAREZFqMVAhIiIi1WKgQkRERKrFQIWIiIhUi4EKERERqRYDFSIiIlItBipERESkWgxUiFTg8uXLeOGFF9CoUSN4e3sjIiICDzzwgMH8G9u2bcN9992HoKAg1KpVC4mJifjoo49QVlamW+fs2bMYOXIkYmJi4OPjg9jYWEyePBmlpaUGnzd79my0atUKtWvXRmBgIFq3bq2bnA4ApkyZAo1Gg759+5qUdfr06dBoNOjRo4fF/YqOjoZGo5H9N2zYMOUHS+V69OiBCRMmuLoYRFVGDVcXgKi6O3v2LDp37ozAwEBMnz4diYmJuHXrFlavXo2xY8fi+PHjWLp0KR577DEMHz4cGzZsQGBgIH777TdMnDgR27dvx6JFi6DRaHD8+HGUl5dj1qxZaNy4MY4cOYLRo0ejsLAQH374IQBgzpw5mDBhAj777DN0794dJSUlOHToEI4cOWJQrrCwMGzYsAEXLlzAHXfcoXt9zpw5iIyMtGrfdu/erQuktm3bhoEDB+LEiRPw9/cHAPj4+DjiEFaKW7duoWbNmpX2eaWlpfDy8qq0zyNSLYcMxE9ENktOThYNGzYUBQUFJstycnJEQUGBqFu3rhgwYIDJ8uXLlwsAYsGCBbLb/+CDD0RMTIzu74ceekgMGzbMbJkmT54sWrVqJe6//37x7rvv6l7funWrCAkJEc8//7zo3r27FXv3D+18Izk5ObrXli1bJlq3bi28vb1FTEyMmDJlisHcOQDEl19+Kfr16yd8fHxEfHy82LZtmzh16pTo3r278PX1FUlJSQZzN2nL/uWXX4o77rhD+Pj4iEcffdRgPhchhJg9e7aIj48X3t7eomnTpmLGjBm6ZRkZGbrj2q1bN+Ht7S3S09NFdna2GDx4sAgPDxc+Pj4iISFBzJs3T/e+oUOHmsynkpGRIdLT00VAQIDB5y9dulToX4K15Z49e7aIjo4WGo1GCFFxDowcOVKEhISIOnXqiJ49e4oDBw4oOvZE7oxNP0QudP36daxatQpjx46Fn5+fyfLAwECsWbMGf/31F15++WWT5Q888ADi4uIwf/582c/Iy8tDcHCw7u8GDRpgx44dOHfunMXyjRgxAnPnztX9PWfOHAwZMsQhT/qbN2/G008/jRdffBFHjx7FrFmzMHfuXLz33nsG602dOhVPP/00Dhw4gPj4eDzxxBN49tlnMWnSJOzZswdCCIwbN87gPadPn8aiRYvw888/Y9WqVdi/fz/GjBmjW/7999/jrbfewnvvvYdjx47h/fffx5tvvolvvvnGYDspKSl48cUXcezYMfTp0wc3b95E27Zt8euvv+LIkSN45pln8NRTT2HXrl0AgE8//RRJSUkYPXo0srKykJWVhYiICKuPyenTp/Hjjz9iyZIlOHDgAADg0UcfxdWrV7Fy5Urs3bsXbdq0wT333IPr168rOdxE7svVkRJRdbZz504BQCxZskR2nbS0NJOaCH0PPvigaNasmeSyU6dOCX9/f4PZki9duiTuuusuAUDExcWJoUOHioULF4qysjLdOtqn+9LSUlGvXj2xceNGUVBQIOrUqSMOHjwoXnzxRbtrVO655x7x/vvvG6zz7bffirCwMN3fAMQbb7yh+3v79u0CgPj66691r82fP1/UqlXLoOyenp7iwoULutdWrlwpPDw8dLMhx8bGGtSECCHE1KlTRVJSkhDinxqVTz75xOJ+9evXT/z73//W/W08Q7kQwuoalZo1a4qrV6/qXtu8ebPw9/cXN2/eNHhvbGysmDVrlsWyEVUFzFEhciGhYPJyJesCwMWLF9G3b188+uijGD16tO71sLAwbN++HUeOHMGmTZuwbds2DB06FF999RVWrVoFD49/Klpr1qyJJ598Eunp6fjzzz8RFxeHli1bKiqHnIMHD2Lr1q0GNShlZWW4efMmioqK4OvrCwAGn1e/fn0AQGJiosFrN2/eRH5+vi73JTIyEg0bNtStk5SUhPLycpw4cQJ16tTBmTNnMHLkSIPjcvv2bQQEBBiUsV27dgZ/l5WV4f3338eiRYtw8eJFlJaWoqSkRFdWe0VFRSE0NFT398GDB1FQUIC6desarFdcXIwzZ8445DOJ1I6BCpELNWnSRJcEKycuLg4AcOzYMXTq1Mlk+bFjx9C8eXOD1y5duoSePXuiU6dO+N///ie53YSEBCQkJGDMmDF47rnn0LVrV2zcuBE9e/Y0WG/EiBHo2LEjjhw5ghEjRijdRVkFBQV4++23MWDAAJNltWrV0v2/fgKrRqORfa28vNzqzwUqej517NjRYJmnp6fB38bNcdOnT8enn36KTz75BImJifDz88OECRNMelUZ8/DwMAk0b926ZbKe8ecVFBQgLCwMv//+u8m6gYGBZj+TqKpgoELkQsHBwejTpw9mzJiB8ePHm9yocnNz0bt3bwQHB+M///mPSaCyfPlynDp1ClOnTtW9dvHiRfTs2RNt27ZFenq6QQ2JHG2gU1hYaLKsRYsWaNGiBQ4dOoQnnnjClt2U1KZNG5w4cQKNGzd22Da1MjMzcenSJYSHhwMAduzYAQ8PDzRt2hT169dHeHg4/vzzTwwZMkTRdrdu3YqHHnoITz75JICK4OjkyZMGgaKXl5dBl3EACA0NxY0bN1BYWKj7jrU5KOa0adMGly9fRo0aNRAdHa2orERVBQMVIhebMWMGOnfujA4dOuCdd95By5Ytcfv2baxduxYzZ87EsWPHMGvWLAwePBjPPPMMxo0bB39/f6xbtw6vvPIKHnnkETz22GMAKoKUHj16ICoqCh9++CGuXbum+5wGDRoAAJ5//nmEh4fj7rvvxh133IGsrCy8++67CA0NRVJSkmQZ169fj1u3bjn0Kf6tt97C/fffj8jISDzyyCPw8PDAwYMHceTIEbz77rt2bbtWrVoYOnQoPvzwQ+Tn52P8+PF47LHHdMfg7bffxvjx4xEQEIC+ffuipKQEe/bsQU5ODl566SXZ7TZp0gSLFy/Gtm3bEBQUhI8++ghXrlwxCFSio6Oxc+dOnD17FrVr10ZwcDA6duwIX19fvPbaaxg/fjx27txpkKQsp1evXkhKSkL//v3xwQcfIC4uDpcuXcKvv/6Khx9+2KRpiqgqYq8fIhdr1KgR9u3bh549e+Lf//43EhIScO+992LdunWYOXMmAOCRRx7Bhg0bkJmZia5du6Jp06b4+OOP8frrr2PBggW65o+1a9fi9OnTWLduHe644w6EhYXp/mn16tULO3bswKOPPoq4uDgMHDgQtWrVwrp160xyIbT8/Pwc3tTQp08f/PLLL1izZg3at2+Pu+66Cx9//DGioqLs3nbjxo0xYMAA3HfffejduzdatmyJL774Qrd81KhR+Oqrr5Ceno7ExER0794dc+fORUxMjNntvvHGG2jTpg369OmDHj16oEGDBujfv7/BOi+//DI8PT3RvHlzhIaGIjMzE8HBwfjuu++wYsUKJCYmYv78+ZgyZYrF/dBoNFixYgW6deuG4cOHIy4uDoMHD8a5c+d0+TpEVZ1GKM3QIyJSsSlTpmDZsmVWNa0QkfqxRoWIiIhUi4EKEdmldu3asv82b97s6uIRkZtj0w8R2eX06dOyyxo2bOhW8/kQkfowUCEiIiLVYtMPERERqRYDFSIiIlItBipERESkWgxUiIiISLUYqBAREZFqMVAhIiIi1WKgQkRERKrFQIWIiIhU6/8Bjp8cpm7PK3YAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(alm_surr, data_training)\n", - "surrogate_parity(alm_surr, data_training)\n", - "surrogate_residual(alm_surr, data_training)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.4 Model Validation" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwWUlEQVR4nO3deVxU1fsH8M+wyCYMssgiCIi4myaZYrmTYC6ZWu4rShpYiHvulbnva5ZbfsUtyUxLRVwqRTPM1EJTQs0EFwhwZZv7+4PfjAz7wAz3zszn/XrxUuYeLmeu49xnznnOc2SCIAggIiIioiplInYHiIiIiIwRgzAiIiIiETAIIyIiIhIBgzAiIiIiETAIIyIiIhIBgzAiIiIiETAIIyIiIhIBgzAiIiIiETAIIyIiIhIBgzAiIirV1q1bIZPJcPPmTbG7QmRQGIQRkejOnz+P8PBwNG7cGDY2Nqhduzbeffdd/PXXX0XadujQATKZDDKZDCYmJrCzs0P9+vUxZMgQxMTEaPR7v/vuO7Rv3x41a9aEtbU16tSpg3fffReHDx/W1lMr4rPPPsP+/fuLPH7mzBnMmTMH6enpOvvdhc2ZM0d1LWUyGaytrdGoUSPMmDEDmZmZWvkdUVFRWLFihVbORWRoGIQRkegWLlyIffv2oXPnzli5ciVCQ0Px448/okWLFrhy5UqR9h4eHti+fTu++uorLF68GD179sSZM2fQpUsX9OvXDzk5OWX+ziVLlqBnz56QyWSYNm0ali9fjj59+uD69evYtWuXLp4mgNKDsLlz51ZpEKa0fv16bN++HcuWLUODBg0wb948BAcHQxtbCzMIIyqZmdgdICKKjIxEVFQUqlWrpnqsX79+aNq0KRYsWID//e9/au3lcjkGDx6s9tiCBQvwwQcfYN26dfD29sbChQtL/H25ubn45JNP8MYbb+Do0aNFjt+/f7+Sz0g6nj59Cmtr61Lb9O3bF05OTgCAMWPGoE+fPoiOjsbZs2cREBBQFd0kMkocCSMi0bVp00YtAAMAPz8/NG7cGAkJCeU6h6mpKVatWoVGjRphzZo1yMjIKLHtw4cPkZmZiddee63Y4zVr1lT7/vnz55gzZw7q1asHS0tLuLm5oXfv3khMTFS1WbJkCdq0aQNHR0dYWVnB398fX3/9tdp5ZDIZnjx5gm3btqmmAIcPH445c+Zg0qRJAAAfHx/VsYI5WP/73//g7+8PKysrODg4oH///vjnn3/Uzt+hQwc0adIE8fHxaNeuHaytrfHRRx+V6/oV1KlTJwBAUlJSqe3WrVuHxo0bw8LCAu7u7ggLC1MbyevQoQMOHTqEW7duqZ6Tt7e3xv0hMlQcCSMiSRIEAffu3UPjxo3L/TOmpqYYMGAAZs6ciZ9//hndunUrtl3NmjVhZWWF7777DuPGjYODg0OJ58zLy0P37t0RGxuL/v3748MPP8SjR48QExODK1euwNfXFwCwcuVK9OzZE4MGDUJ2djZ27dqFd955BwcPHlT1Y/v27Rg1ahReffVVhIaGAgB8fX1hY2ODv/76Czt37sTy5ctVo1LOzs4AgHnz5mHmzJl49913MWrUKDx48ACrV69Gu3bt8Ntvv8He3l7V39TUVHTt2hX9+/fH4MGD4eLiUu7rp6QMLh0dHUtsM2fOHMydOxeBgYEYO3Ysrl27hvXr1+P8+fM4ffo0zM3NMX36dGRkZODOnTtYvnw5AKB69eoa94fIYAlERBK0fft2AYCwadMmtcfbt28vNG7cuMSf++abbwQAwsqVK0s9/6xZswQAgo2NjdC1a1dh3rx5Qnx8fJF2mzdvFgAIy5YtK3JMoVCo/v706VO1Y9nZ2UKTJk2ETp06qT1uY2MjDBs2rMi5Fi9eLAAQkpKS1B6/efOmYGpqKsybN0/t8cuXLwtmZmZqj7dv314AIGzYsKHE513Q7NmzBQDCtWvXhAcPHghJSUnC559/LlhYWAguLi7CkydPBEEQhC1btqj17f79+0K1atWELl26CHl5earzrVmzRgAgbN68WfVYt27dBC8vr3L1h8jYcDqSiCTn6tWrCAsLQ0BAAIYNG6bRzypHWh49elRqu7lz5yIqKgovv/wyjhw5gunTp8Pf3x8tWrRQmwLdt28fnJycMG7cuCLnkMlkqr9bWVmp/v7ff/8hIyMDbdu2xYULFzTqf2HR0dFQKBR499138fDhQ9WXq6sr/Pz8cOLECbX2FhYWGDFihEa/o379+nB2doaPjw/ee+891K1bF4cOHSoxl+zYsWPIzs5GREQETExe3EZGjx4NOzs7HDp0SPMnSmSEOB1JRJKSkpKCbt26QS6X4+uvv4apqalGP//48WMAgK2tbZltBwwYgAEDBiAzMxPnzp3D1q1bERUVhR49euDKlSuwtLREYmIi6tevDzOz0t8uDx48iE8//RQXL15EVlaW6vGCgVpFXL9+HYIgwM/Pr9jj5ubmat/XqlWrSH5dWfbt2wc7OzuYm5vDw8NDNcVaklu3bgHID94KqlatGurUqaM6TkSlYxBGRJKRkZGBrl27Ij09HT/99BPc3d01PoeypEXdunXL/TN2dnZ444038MYbb8Dc3Bzbtm3DuXPn0L59+3L9/E8//YSePXuiXbt2WLduHdzc3GBubo4tW7YgKipK4+dQkEKhgEwmww8//FBsQFo4x6rgiFx5tWvXTpWHRkRVh0EYEUnC8+fP0aNHD/z11184duwYGjVqpPE58vLyEBUVBWtra7z++usV6scrr7yCbdu2ITk5GUB+4vy5c+eQk5NTZNRJad++fbC0tMSRI0dgYWGhenzLli1F2pY0MlbS476+vhAEAT4+PqhXr56mT0cnvLy8AADXrl1DnTp1VI9nZ2cjKSkJgYGBqscqOxJIZMiYE0ZEosvLy0O/fv0QFxeHvXv3Vqg2VV5eHj744AMkJCTggw8+gJ2dXYltnz59iri4uGKP/fDDDwBeTLX16dMHDx8+xJo1a4q0Ff6/mKmpqSlkMhny8vJUx27evFlsUVYbG5tiC7La2NgAQJFjvXv3hqmpKebOnVukeKogCEhNTS3+SepQYGAgqlWrhlWrVqn1adOmTcjIyFBblWpjY1NquRAiY8aRMCIS3YQJE3DgwAH06NEDaWlpRYqzFi7MmpGRoWrz9OlT3LhxA9HR0UhMTET//v3xySeflPr7nj59ijZt2qB169YIDg6Gp6cn0tPTsX//fvz000/o1asXXn75ZQDA0KFD8dVXXyEyMhK//PIL2rZtiydPnuDYsWN4//338dZbb6Fbt25YtmwZgoODMXDgQNy/fx9r165F3bp1cenSJbXf7e/vj2PHjmHZsmVwd3eHj48PWrVqBX9/fwDA9OnT0b9/f5ibm6NHjx7w9fXFp59+imnTpuHmzZvo1asXbG1tkZSUhG+++QahoaGYOHFipa6/ppydnTFt2jTMnTsXwcHB6NmzJ65du4Z169ahZcuWav9e/v7+2L17NyIjI9GyZUtUr14dPXr0qNL+EkmWmEsziYgE4UVphZK+SmtbvXp1wc/PTxg8eLBw9OjRcv2+nJwc4YsvvhB69eoleHl5CRYWFoK1tbXw8ssvC4sXLxaysrLU2j99+lSYPn264OPjI5ibmwuurq5C3759hcTERFWbTZs2CX5+foKFhYXQoEEDYcuWLaoSEAVdvXpVaNeunWBlZSUAUCtX8cknnwi1atUSTExMipSr2Ldvn/D6668LNjY2go2NjdCgQQMhLCxMuHbtmtq1Ka18R2HK/j148KDUdoVLVCitWbNGaNCggWBubi64uLgIY8eOFf777z+1No8fPxYGDhwo2NvbCwBYroKoAJkgaGFzMCIiIiLSCHPCiIiIiETAIIyIiIhIBAzCiIiIiETAIIyIiIhIBAzCiIiIiETAIIyIiIhIBCzWKmEKhQJ3796Fra0tt/4gIiLSE4Ig4NGjR3B3d4eJScnjXQzCJOzu3bvw9PQUuxtERERUAf/88w88PDxKPM4gTMJsbW0B5P8jlrYPHhEREUlHZmYmPD09VffxkjAIkzDlFKSdnR2DMCIiIj1TVioRE/OJiIiIRMAgjIiIiEgEDMKIiIiIRMCcMCIiIgOTl5eHnJwcsbthsMzNzWFqalrp8+hNENazZ09cvHgR9+/fR40aNRAYGIiFCxfC3d1d1UYQBCxduhQbN27ErVu34OTkhPfffx/Tp09XtTl58iQiIyPxxx9/wNPTEzNmzMDw4cPVftfatWuxePFipKSkoFmzZli9ejVeffVV1fHnz59jwoQJ2LVrF7KyshAUFIR169bBxcVF1eb27dsYO3YsTpw4gerVq2PYsGGYP38+zMz05pITEZGeEQQBKSkpSE9PF7srBs/e3h6urq6VquOpNxFBx44d8dFHH8HNzQ3//vsvJk6ciL59++LMmTOqNh9++CGOHj2KJUuWoGnTpkhLS0NaWprqeFJSErp164YxY8Zgx44diI2NxahRo+Dm5oagoCAAwO7duxEZGYkNGzagVatWWLFiBYKCgnDt2jXUrFkTADB+/HgcOnQIe/fuhVwuR3h4OHr37o3Tp08DyP8E0q1bN7i6uuLMmTNITk7G0KFDYW5ujs8++6wKrxoRERkTZQBWs2ZNWFtbs9C3DgiCgKdPn+L+/fsAADc3t0qdTC99++23gkwmE7KzswVBEIQ///xTMDMzE65evVriz0yePFlo3Lix2mP9+vUTgoKCVN+/+uqrQlhYmOr7vLw8wd3dXZg/f74gCIKQnp4umJubC3v37lW1SUhIEAAIcXFxgiAIwvfffy+YmJgIKSkpqjbr168X7OzshKysrHI/x4yMDAGAkJGRUe6fISIi45Sbmyv8+eefwsOHD8XuilF4+PCh8Oeffwq5ublFjpX3/q2XiflpaWnYsWMH2rRpA3NzcwDAd999hzp16uDgwYPw8fGBt7c3Ro0apTYSFhcXh8DAQLVzBQUFIS4uDgCQnZ2N+Ph4tTYmJiYIDAxUtYmPj0dOTo5amwYNGqB27dqqNnFxcWjatKna9GRQUBAyMzPxxx9/lPi8srKykJmZqfZFRERUHsocMGtra5F7YhyU17kyuXd6FYRNmTIFNjY2cHR0xO3bt/Htt9+qjv3999+4desW9u7di6+++gpbt25FfHw8+vbtq2qTkpKiFhgBgIuLCzIzM/Hs2TM8fPgQeXl5xbZJSUlRnaNatWqwt7cvtU1x51AeK8n8+fMhl8tVX9yyiIiINMUpyKqhjessahA2depUyGSyUr+uXr2qaj9p0iT89ttvOHr0KExNTTF06FAIggAgf7PrrKwsfPXVV2jbti06dOiATZs24cSJE7h27ZpYT1Ej06ZNQ0ZGhurrn3/+EbtLREREpCOiJuZPmDChyMrEwurUqaP6u5OTE5ycnFCvXj00bNgQnp6eOHv2LAICAuDm5gYzMzPUq1dP1b5hw4YA8lcq1q9fH66urrh3757a+e/duwc7OztYWVnB1NQUpqamxbZxdXUFALi6uiI7Oxvp6elqo2GF2/zyyy9FzqE8VhILCwtYWFiUej2IiIjIMIg6Eubs7IwGDRqU+lWtWrVif1ahUADIz6MCgNdeew25ublITExUtfnrr78AAF5eXgCAgIAAxMbGqp0nJiYGAQEBAIBq1arB399frY1CoUBsbKyqjb+/P8zNzdXaXLt2Dbdv31a1CQgIwOXLl1UrJ5S/x87ODo0aNarAlSIiMhypqalITk5GcnIy4uPv4euvUxEff0/1WGpqqthdpCo2fPhw1QyYubk5XFxc8MYbb2Dz5s2q+315bN26tUi6kJTpRYmKc+fO4fz583j99ddRo0YNJCYmYubMmfD19VUFPoGBgWjRogVGjhyJFStWQKFQICwsDG+88YZqdGzMmDFYs2YNJk+ejJEjR+L48ePYs2cPDh06pPpdkZGRGDZsGF555RW8+uqrWLFiBZ48eYIRI0YAAORyOUJCQhAZGQkHBwfY2dlh3LhxCAgIQOvWrQEAXbp0QaNGjTBkyBAsWrQIKSkpmDFjBsLCwjjSRURGLTU1FWvWrAEAXLjwMr77rjsEwQQymQI9ehxEixa/AQDCw8Ph6OgoZleNTmpqKrKzs0s8Xq1aNZ3+mwQHB2PLli3Iy8vDvXv3cPjwYXz44Yf4+uuvceDAAYOss6kXz8ja2hrR0dGYPXs2njx5Ajc3NwQHB2PGjBmqoMbExATfffcdxo0bh3bt2sHGxgZdu3bF0qVLVefx8fHBoUOHMH78eKxcuRIeHh748ssvVTXCAKBfv3548OABZs2ahZSUFDRv3hyHDx9WS7Rfvnw5TExM0KdPH7VirUqmpqY4ePAgxo4di4CAANjY2GDYsGH4+OOPq+BqERFJl/Imn5FhqwrAAEAQTPDdd93h63sDcvmjUoMB0r6CwXFpdBkcW1hYqFJ2atWqhRYtWqB169bo3Lkztm7dilGjRmHZsmXYsmUL/v77bzg4OKBHjx5YtGgRqlevjpMnT6oGTJRJ87Nnz8acOXOwfft2rFy5EteuXYONjQ06deqEFStWqOp/ikUvgrCmTZvi+PHjZbZzd3fHvn37Sm3ToUMH/Pbbb6W2CQ8PR3h4eInHLS0tsXbtWqxdu7bENl5eXvj+++9L7zARkZFKS3NE4SpJgmCCtDQHyOWPROqV8Spv0FvVwXGnTp3QrFkzREdHY9SoUTAxMcGqVavg4+ODv//+G++//z4mT56MdevWoU2bNlixYgVmzZqlWpBXvXp1APllJD755BPUr18f9+/fR2RkJIYPHy76fVovgjAiIjIsDg6pkMkUaoGYTKaAg0NaKT9FxqhBgwa4dOkSACAiIkL1uLe3Nz799FOMGTMG69atQ7Vq1SCXyyGTyYosghs5cqTq73Xq1MGqVavQsmVLPH78WBWoiUGv6oQREZFhkMsfoUePg5DJ8pOulTlhHAWjwgRBUE0vHjt2DJ07d0atWrVga2uLIUOGIDU1FU+fPi31HPHx8ejRowdq164NW1tbtG/fHkB+9QQxcSSMiIhE0aLFb/D1vYG0NAc4OKQxAKNiJSQkwMfHBzdv3kT37t0xduxYzJs3Dw4ODvj5558REhKC7OzsEncKePLkCYKCghAUFIQdO3bA2dkZt2/fRlBQkOi5hwzCiIhINHL5IwZfVKLjx4/j8uXLGD9+POLj46FQKLB06VKYmORP5O3Zs0etfbVq1ZCXl6f22NWrV5GamooFCxaodqL59ddfq+YJlIHTkURERCS6rKwspKSk4N9//8WFCxfw2Wef4a233kL37t0xdOhQ1K1bFzk5OVi9ejX+/vtvbN++HRs2bFA7h7e3Nx4/fozY2Fg8fPgQT58+Re3atVGtWjXVzx04cACffPKJSM9SHYMwIjJoBQuDFvfFwqBVq6QC3BVtR4bj8OHDcHNzg7e3N4KDg3HixAmsWrUK3377LUxNTdGsWTMsW7YMCxcuRJMmTbBjxw7Mnz9f7Rxt2rTBmDFj0K9fPzg7O2PRokVwdnbG1q1bsXfvXjRq1AgLFizAkiVLRHqW6mSCcvNFkpzMzEzI5XJkZGTAzs5O7O4Q6R0p1D6iosQuCmqonj9/jqSkJPj4+MDS0lKjn+X/Fc2Vdr3Le/9mThgRSVZlb9aFfzYjwxZpaY5wcEhVy0MSOznX2PAmLj2Ojo4IDw9ncFzFGIQR6TFDHlHQ9ifz0rbIISIGx2JgEEakpwx9+kCbo1hlbZFDhsWQP5yQYWEQRqSnjGmqrbKjWNwix3gY+ocTMiwMwogMgCFPtWljFItb5BgPY/pwQvqPQRiRnjP0qTZtjGIpt8gpHKgawvWhkhnyhxMyDAzCiPScvky1VTRPR1ujWNwix7jo+sMJ885IGxiEEek5fZhqq0yeTmVGsQoX/CxpixwWBjU8uvxwwrwz0hYGYUR6Th+m2sqbf1NSu4qOYrH2kfHS5YcT5p2RtjAIIzIA+jbVVtJNqyBtjWIxwDJOVfXhpKy8M05bSsPJkyfRsWNH/Pfff7C3ty/Xz3h7eyMiIgIRERE66xeDMCI9pa9TbeVNluYoFlWWrj+clJV3dufOHXz//fdlnofTlsDw4cOxbds2vPfee0U25Q4LC8O6deswbNgwbN26VZwO6giDMCI9pY9BiqbJ0lLqO+mHqvxwUlbeWeEAjNOWpfP09MSuXbuwfPlyWFlZAcjfnzEqKgq1a9cWuXe6wSCMSI/pW5CiLys5SX9V5YcTTfLOTp8OQExMIACWyyhJixYtkJiYiOjoaAwaNAgAEB0djdq1a8PHx0fVLisrC5MmTcKuXbuQmZmJV155BcuXL0fLli1Vbb7//ntERETgn3/+QevWrTFs2LAiv+/nn3/GtGnT8Ouvv8LJyQlvv/025s+fDxsbG90/2f9nUnYTIiLtUN60Cip403r48CGSk5ORnJyM1NRUMbpIBsDR0RFubm4lfmnrw4sy70z5mi4p7yw/AHsDyluucgQ4I8NWK/3QhTt3gBMn8v+sSiNHjsSWLVtU32/evBkjRoxQazN58mTs27cP27Ztw4ULF1C3bl0EBQUhLS3/feSff/5B79690aNHD1y8eBGjRo3C1KlT1c6RmJiI4OBg9OnTB5cuXcLu3bvx888/Izw8XPdPsgCOhBFRlSkrWTo6OlqtPXNlSOrKyjvLyLDFsWOBAGRqj0t5BHjTJiA0FFAoABMTYONGICSkan734MGDMW3aNNy6dQsAcPr0aezatQsnT54EADx58gTr16/H1q1b0bVrVwDAF198gZiYGGzatAmTJk3C+vXr4evri6VLlwIA6tevj8uXL2PhwoWq3zN//nwMGjRIlXTv5+eHVatWoX379li/fj0sLS2r5PkyCCMinSuYf6NJsjRzZUiKypt3BhQ/BZ9PWrX8lO7ceRGAAfl/vvceEBQEeHjo/vc7OzujW7du2Lp1KwRBQLdu3eDk5KQ6npiYiJycHLz22muqx8zNzfHqq68iISEBAJCQkIBWrVqpnTcgIEDt+99//x2XLl3Cjh07VI8JggCFQoGkpCQ0bNhQF0+vCAZhRJXA5eflUzhP5+HDh0VGvYj0RXnyztLT07Fnz55i88YAAW+8cUySo2DXr78IwJTy8oAbN6omCAPypySV04Jr164ts31ubi4UCgUUCgWys7PV/g4AJiZFg+DHjx/jvffewwcffFDkWFUuAmAQRnpHKoEPq2ZrprRrUJ66YURSUt7/08VNwQcGHsNrr8XpuIcV4+eXPwVZMBAzNQXq1q26PgQHByM7OxsymQxBQUFqx3x9fVGtWjWcPn0aXl5eyM3Nxb///otffvkFo0ePxr17aahVywexsYfx8OFD1c+dOXNG7TwtWrTAn3/+ibpV+cSKwSCM9IqUAp/KVoGnfNxkmQxdWVPwUqrl5+GRnwP23nv5I2CmpsDnn1fdKBgAmJqaqqYWTU1N1Y7Z2Nhg7NixmDRpEhwcHODm5oZ58+bh+fPneOutkbh3zwVvvhmJL79cj1mz5mPo0Hdw+fJlfPXVV2rnmTJlClq3bo3w8HCMGjUKNjY2+PPPPxETE1Oue4y2MAgjvSLl7UI4mqM5XW+yTCWTyoiyoSpv3tjgwYMld51DQvJzwG7cyB8Bq8oATMnOzq7EYwsWLIBCocCQIUPw6NEjvPTSS9i+fScEwQuADK6utbFw4T4sXz4e//vfF2jevDk+/vhjhIaGqs7x0ksv4dSpU5g+fTratm0LQRDg6+uLfv36VcGze4FBGOktKY2gSKkv+oR1w8QhpRFlQ6WPxZQL8vCo2uCrrEr4+/fvV/3d0tISq1atwqpVq5CdnY2HDx8iK6saUlNfrEBt27Y72rbtDkfHh7CwyIaTkxNGjx6tds6WLVvi6NGjJf7OmzdvVuSpaIRBGOklKY2gSKkv+kaXmyxTyTiVXjWkGmAZIjOzXAAC1EuBCP//uHSxWCvppdJGUIy5L/pCOVVTVrFLKeXKGLKMDFskJXlLungoUWlMTRWwt89AfiAGAALs7TNgaqoo7cdEx5Ew0ktSGkGRUl/0ReGpmlmzHuDmTTN4e+fC3b0lgJaSnqoxJJxKJ0Nhbf0UFhbPkZtrBjOzXMkHYACDMNJTZVVeN9a+6JOCAZabG+DvL2JnjBSn0snQmJoqYGqqP9PoDMJIb2lSeV0XylsFnlNqJFVcGGGYBEEou5GBKK4Qa2XaaUIb15lBGOmV8i77rorAR99XPxFxKt2wmJubAwCePn0KKysrkXtTNczMzFCzZk0oCpf5L8DExARmZtoPd54+fQrgxXWvCAZhpFekFvgwwCJ9xql0w2Jqagp7e3vcv38fAGBtbQ2ZTFbGTxk+hUKB3FztrZIUBAFPnz7F/fv3YW9vX6SgrCYYhJHeYeBDVDmcSjdcrq6uAKAKxEh37O3tVde7omSCMU0e65nMzEzI5XJkZGSUWj2YiEhTrJhv2PLy8pCTkyN2NwyWubl5qSNg5b1/cySMiMgIMcAybKamppWaJqOqwSCMiKgSOKJERBXFIIyIqIK4ByMRVQaDMCPBT+tE2sc9GImoMhiEGQF+WiciIpIebuBtBAp/Ci9ps15+WiciIqo6HAkzMtysl0h3MjJskZbmCAeHVBY8JaIyMQgzIlLYrJe5aWSo+AGHKoPvjcaJQZgREXuzXuamkaGSwgcc0l98bzRezAkzIsrNeguqys16mZtGhqq0DzhEZeEqW+PFkTAjIqXNejl1Q4ZAubei8gNOwUCs4Acc7sFIRMVhEGZkStust6pw6kY/MWelKEdHR4SHhyM7Oxu1amViyhQ58vJkMDUVsHBhJgYOHGCU14Uqhws8jAeDMCNQ+FO4XP6o2P/YVfVpXezcNNIcc1ZKpny+EyYA/foBN24AdevK4OFhD8BezK6RHuIsgXFhEGYECn5aL0lVflova+qGpIc5K+Xj4ZH/RVQRnCUwPgzCjISURieklJtGRCQVnCUwPgzCSBRSyE2jimPOCpH2cZbA+DAIoyojtdw0qhjmrBBpl/I9r6xZAr43Gh4GYVRlpJabRppjzgqR9hV+b5w16wFu3jSDt3cu3N1bAmjJ90YDxSCMqhTfRPQbc1aIdKPge6ObG+DvX3w7looxLAzCiKjcmLNCJB6WijE83LaIiMpUOGdFuf0Vc1aIqg5LxRgejoQRUZmYs0IkPVylrP8YhBFRuZQ3Z4WIdI+rlA0DgzAiIiI9UtlVykzulw4GYURERHqkMquUmdwvLUzMJyIi0iPKVcoFlXeVMpP7pYVBGBERkR4pa5WyJjIybJGU5I2MDFttd5PKgdORREREeqBgCZjS9t8tb6kYJveLj0EYERGRHtDm1m9lJfc/fPiwUuen8mEQRkSkJ7iqjbT171tWcn90dHSJP8ukfe3Rm5ywnj17onbt2rC0tISbmxuGDBmCu3fvqo7PmTMHMpmsyJeNjY3aefbu3YsGDRrA0tISTZs2xffff692XBAEzJo1C25ubrCyskJgYCCuX7+u1iYtLQ2DBg2CnZ0d7O3tERISgsePH6u1uXTpEtq2bQtLS0t4enpi0aJFWr4iRGRMlKvaNm7cWOLXmjVrkJqaKnZXSQ9URXI/lU1vgrCOHTtiz549uHbtGvbt24fExET07dtXdXzixIlITk5W+2rUqBHeeecdVZszZ85gwIABCAkJwW+//YZevXqhV69euHLliqrNokWLsGrVKmzYsAHnzp2DjY0NgoKC8Pz5c1WbQYMG4Y8//kBMTAwOHjyIH3/8EaGhoarjmZmZ6NKlC7y8vBAfH4/Fixdjzpw52Lhxo46vEhEZKq5qI20qT3I/k/Z1TyYIgiB2JyriwIED6NWrF7KysmBubl7k+O+//47mzZvjxx9/RNu2bQEA/fr1w5MnT3Dw4EFVu9atW6N58+bYsGEDBEGAu7s7JkyYgIkTJwIAMjIy4OLigq1bt6J///5ISEhAo0aNcP78ebzyyisAgMOHD+PNN9/EnTt34O7ujvXr12P69OlISUlRJUhOnToV+/fvx9WrV8v9HDMzMyGXy5GRkQE7O7sKXysi0n/Jycnl+iAXGhoKNze3KugR6aPCdcLytz4qmtxfWtI+X2NlK+/9Wy9zwtLS0rBjxw60adOm2AAMAL788kvUq1dPFYABQFxcHCIjI9XaBQUFYf/+/QCApKQkpKSkIDAwUHVcLpejVatWiIuLQ//+/REXFwd7e3tVAAYAgYGBMDExwblz5/D2228jLi4O7dq1U1uhEhQUhIULF+K///5DjRo1tHEZiIiINFJacv/Dhw8RHR1d6Yr8VH56FYRNmTIFa9aswdOnT9G6dWu1Ea2Cnj9/jh07dmDq1Klqj6ekpMDFxUXtMRcXF6SkpKiOKx8rrU3NmjXVjpuZmcHBwUGtjY+PT5FzKI+VFIRlZWUhKytL9X1mZmax7YiIuHkzVVRZSfWVqchPmhE1J2zq1KnFJtMX/Co4fTdp0iT89ttvOHr0KExNTTF06FAUN5v6zTff4NGjRxg2bFhVPp1Kmz9/PuRyuerL09NT7C4RkQRduPAyVqyIwLZtw7BiRQQuXHhZ7C6RAalM0j5pRtSRsAkTJmD48OGltqlTp47q705OTnByckK9evXQsGFDeHp64uzZswgICFD7mS+//BLdu3cvMqLl6uqKe/fuqT127949uLq6qo4rHys4333v3j00b95c1eb+/ftq58jNzUVaWpraeYr7PQV/R3GmTZumNl2amZnJQIzIiBUsSaGs28SpItI1ZdJ+4Zwwvr60T9QgzNnZGc7OzhX6WYUiP0ovOH0H5Od1nThxAgcOHCjyMwEBAYiNjUVERITqsZiYGFUQ5+PjA1dXV8TGxqqCrszMTJw7dw5jx45VnSM9PR3x8fHw9/cHABw/fhwKhQKtWrVStZk+fTpycnJUOWsxMTGoX79+qflgFhYWsLCwqMDVICJDU9JGy5wqIl3RdkV+Kpte5ISdO3cO58+fx+uvv44aNWogMTERM2fOhK+vb5FRsM2bN8PNzQ1du3Ytcp4PP/wQ7du3x9KlS9GtWzfs2rULv/76q2rFkUwmQ0REBD799FP4+fnBx8cHM2fOhLu7O3r16gUAaNiwIYKDgzF69Ghs2LABOTk5CA8PR//+/eHu7g4AGDhwIObOnYuQkBBMmTIFV65cwcqVK7F8+XLdXigiMhgllZpQThUVDMQKThXxBkkVpc2K/FQ+ehGEWVtbIzo6GrNnz8aTJ0/g5uaG4OBgzJgxQ23kSKFQYOvWrRg+fDhMTU2LnKdNmzaIiorCjBkz8NFHH8HPzw/79+9HkyZNVG0mT56MJ0+eIDQ0FOnp6Xj99ddx+PBhWFpaqtrs2LED4eHh6Ny5M0xMTNCnTx+sWrVKdVwul+Po0aMICwuDv78/nJycMGvWLLVaYkREFVF4qsjERMCiRZkYOHAAb5BUaXz9VC29rRNmDFgnjMh4lVUXTFnfady4rvD3dymxnVi4xRIZM4OuE0ZEZGwKl6RQfrm7K8r+4SpWUj5bYdyDkIwdgzAiIokrrXq5FHGLJaLy0Zu9I4mIjFFJJSm4nx+R/mMQRkQkYaWVpCAi/cbpSCIiCVKWmpBiSYqyku4zMjIKfc8tloiKwyCMiEiCCtZsqlUrE1OmyJGXJ4OpqYCFC8UrSVHepHslfctnI6pKDMKIiCRKGWBNmAD06wfcuAHUrSuDh4c9AHtR+qRJMj23WCIqHYMwIiI94OGR/6VPuMUSUekYhBFJEAtdkr4oLd9LivlsRFLCIIyMkpSDHBa6JH1RWr7Xu+++C3t7e0nlsxFJDYMwMjpSD3JY6JL0QVn5Xvb29nBzc5NUPhuR1DAII6NTOHgpaTpFKkEOl/eTFGmS76WP+WxEVYFBGBk1qS+fl3r/yHiVle9F0iHl9AtjxyCMjJbUl89LvX9knJTJ9HL5I/TocbDIhwTla5NJ99Ig9fQLY1ehIOzEiRPo2LGjtvtCVKWkvnxe6v0j41SwiCwAzJr1ADdvmsHbOxfu7i0BtOTIioQwx1TaKhSEBQcHw8PDAyNGjMCwYcPg6emp7X4R6ZzUp1Ok3j8yXgUDLDc3wN9fxM6QRphjKi0V2sD733//RXh4OL7++mvUqVMHQUFB2LNnDyNp0ivK6RSZTAEARaZTxCb1/hGRfrlw4WWsWBGBbduGYcWKCFy48LLYXTJ6FRoJc3Jywvjx4zF+/HhcuHABW7Zswfvvv4/3338fAwcOREhICJo1a6btvhJpXYsWv8HX9wbS0hzg4JAmiQCnYC5Naf1jzg0RlRdzTKWp0on5LVq0gKurKxwdHbFgwQJs3rwZ69atQ0BAADZs2IDGjRtro59EWlM4eJHLHxX7JiRWkFM456Y4zLkhQ8cVfdrFHFNpqnAQlpOTg2+//RabN29GTEwMXnnlFaxZswYDBgzAgwcPMGPGDLzzzjv4888/tdlfokrThyCHNxcyZlzRp33MMZWmCgVh48aNw86dOyEIAoYMGYJFixahSZMmquM2NjZYsmQJ3N3dtdZRIm3iGzeRdHFFn/aVVVKExFGhIOzPP//E6tWr0bt3b1hYWBTbxsnJCSdOnKhU54iIqHicrqPyYI6ptFUoCIuNjS37xGZmaN++fUVOT0REpTC26TqWVag4fUi/MGYVzgm7du0aVq9ejYSEBABAw4YNMW7cONSvX19rnSMioqKMabqOW3dVHgMs6apQnbB9+/ahSZMmiI+PR7NmzdCsWTNcuHABTZo0wb59+7TdRyIiKkVGhi2SkryRkWErdle0qqSyCob2PMl4VWgkbPLkyZg2bRo+/vhjtcdnz56NyZMno0+fPlrpHBGRVEklJ8uQR4pYVoEMXYWCsOTkZAwdOrTI44MHD8bixYsr3SkiIimTSk6WoRfgZFkFMnQVmo7s0KEDfvrppyKP//zzz2jbtm2lO0VEJGVSyckqbaRInylX6pW1dRdX9JG+q9BIWM+ePTFlyhTEx8ejdevWAICzZ89i7969mDt3Lg4cOKDWlojIkIm1es9QR4oKr+ibNesBbt40g7d3LtzdWwJoqTbdK5WpYSJNVSgIe//99wEA69atw7p164o9BgAymQx5eXmV6B4RkbSJmZNlyAU4CwZNbm6Av3/x7aQyNUxUERUKwhQKhbb7QUSkd8TKyWIBzhekMjUsBo4A6r9Kb+BNRGSsxFq9xwKcJTOWwq6GMALIIFKDIGzVqlXlPukHH3xQoc4QEekTMXOyDP3mVBGGXK6jsMLBS0nBp1RHAAsHkSX1X8pBpDaUOwhbvnx5udrJZDIGYURkFAw5J0vfGHq5jtLoY/BZMDgsrf9SDSK1pdxBWFJSki77QUSkN5iTJT3GWthV34NPfe9/ZTEnjIhIQ8zJkh5DLddRFn0PPvW9/5VV4SDszp07OHDgAG7fvl3kjWjZsmWV7hiR2Aomjd69a4KkJDP4+OTC3T1/dTBvssaN//bSYqxTw/oefOp7/yurQkFYbGwsevbsiTp16uDq1ato0qQJbt68CUEQ0KJFC233kajKFUwaLS1fwdCTRvUdV18ZPmOfGtb34FPf+19ZFQrCpk2bhokTJ2Lu3LmwtbXFvn37ULNmTQwaNAjBwcHa7iNRlVPeuMvKVzD0pFF9ZghL+KlsnBouPfjUB/re/8qoUBCWkJCAnTt35p/AzAzPnj1D9erV8fHHH+Ott97C2LFjtdpJIrEYe76CPtP3JfxUfoYcYJWk8MieXP6o2PckfRkBLKn/hq5CQZiNjY3qjcvNzQ2JiYlo3LgxAODhw4fa6x2RyIw9X8FQ6OMSfqLS6PsIYHmDQ30JIiuqQkFY69at8fPPP6Nhw4Z48803MWHCBFy+fBnR0dGqDb2JDIGx5ysYAmNfAk+GS6oBVnnoexCpLRUKwpYtW4bHjx8DAObOnYvHjx9j9+7d8PPz48pIMjjGnK9gCDilTCRNhh5glUeFgrA6deqo/m5jY4MNGzZorUNEUmSs+QqGgFPKRCRVlSrWmp2djfv370OhUKg9Xrt27Up1isRz5w5w/Trg5wd4eIjdG6LK45QyGQOWY9FPFQrC/vrrL4SEhODMmTNqjwuCAJlMhry8PK10jqrWpk1AaCigUAAmJsDGjUBIiNi9EgeTRg2LMU4p86ZsPFiORX9VKAgbMWIEzMzMcPDgQbi5uUEmk2m7X1SFUlNTcfNmLkJDa0KhyP+3VCiA994T0Lz5fXh7mxndf1wmjeo/Q1vCrwnelI0Ly7HorwoFYRcvXkR8fDwaNGig7f5QFVO+WScleUOhGKZ2LC9PhtWrf4CPzy2jfLM2tudraIw5kOZN2XixHIt+qVAQ1qhRI9YDMxDKN+Gykpf5Zk36yBADLE3xpmw8WI5F/5iU3SRfZmam6mvhwoWYPHkyTp48idTUVLVjmZmZuuwv6YgyeVkmy19kweRlIv1X0k05I8NW5J6RLpRWjoWkqdwjYfb29mq5X4IgoHPnzmptmJiv34wxeZnIkLFGmnExxHIsBReY3L1rgqQkM/j45MLdPX/AQN9TCsodhJ04cUKX/SCJYD0sIsNhiDdlKpmhlWMpuMCktGl1fc5ZLncQ1r59e9Xfb9++DU9PzyKrIgVBwD///KO93hERUYUZ2k2ZymZIMxrKEbCyct30OWe5Qon5Pj4+SE5ORs2aNdUeT0tLg4+PD6cjiYgkwpBuylQ8Qy/HYsjT6hUKwpS5X4U9fvwYlpaWle4UEek3FgoVl6HflEmdoZdjMeRpdY2CsMjISACATCbDzJkzYW1trTqWl5eHc+fOoXnz5lrtIOkWK8OTthUuFFpSjSp9zuOQOkO/KVNRhvxvacjT6hoFYb/9lp8EJwgCLl++rHZjrlatGpo1a4aJEydqt4ekU3yzJm0r+FoqLZlWn/M49AH/z5IhMdRpdY2CMOUKyREjRmDlypWws7PTSaeoavHNmnSBhSOJSJsMcfV+uYu1FrRlyxYGYERUKhaOJCIqXYUS8588eYIFCxYgNjYW9+/fh0KhUDv+999/a6VzRKS/DDmZloh0zxhylisUhI0aNQqnTp3CkCFD4ObmVuxKSdI/d+4A168Dfn6Ah4fYvSF9Z8jJtESke8aQs1yhIOyHH37AoUOH8Nprr2m7PySSTZuA0FBAoQBMTICNG4GQELF7RfrOUJNpiahq6HOAVR4VygmrUaMGHByY12Eo7tx5EYAB+X++917+40SVJZc/go/PLQZgRESFVCgI++STTzBr1iw8ffpU2/2hKpaamoqzZ1NRKK0PeXnAuXOpSE1NFadjpLeMIY+DiEgbKjQduXTpUiQmJsLFxQXe3t4wNzdXO37hwgWtdI50S1lUMyPDFjJZRJEE6tOnt+HKlUcsqvn/mDNXPsaQx0FEpA0VCsJ69eql5W6QGJQ3ybISqI25qKZy+52oKCtMniyHQiGDiYmARYsyMHDgM4MOJgpuPXT3rgmSkszg45MLd/f8YdPSnruhXhMiIm2qUBA2e/ZsbfeDRMYE6qIKjhSuWBEBQchfBaxQyDBpkh3+/Xcz5HLDHCksuPVQaVXvDfG5K3H/SyLSNY2CsF9++QX+/v4wNTUt9nhWVha+/fZbvPvuu1rpHFUtQ6xGXBnKG3BpRUfl8kcGOVKofE5lVb03xOcOcP9LIqoaGiXmBwQEqCVq29nZqRVmTU9Px4ABA7TXuwJ69uyJ2rVrw9LSEm5ubhgyZAju3r2r1ubIkSNo3bo1bG1t4ezsjD59+uDmzZtqbU6ePIkWLVrAwsICdevWxdatW4v8rrVr18Lb2xuWlpZo1aoVfvnlF7Xjz58/R1hYGBwdHVG9enX06dMH9+7dU2tz+/ZtdOvWDdbW1qhZsyYmTZqE3NxcrVwLqlrKoqMFGUvRUWOtel94/8sVKyKwbdswrFgRgQsXXi62HRGRpjQKwgRBKPX7kh7Tho4dO2LPnj24du0a9u3bh8TERPTt21d1PCkpCW+99RY6deqEixcv4siRI3j48CF69+6t1qZbt27o2LEjLl68iIiICIwaNQpHjhxRtdm9ezciIyMxe/ZsXLhwAc2aNUNQUBDu37+vajN+/Hh899132Lt3L06dOoW7d++q/Z68vDx069YN2dnZOHPmDLZt24atW7di1qxZOrk2pFvKnDllIGZMRUeNOQAFSh4JzMiwFblnRGQIKpQTVhpdVc8fP3686u9eXl6YOnUqevXqhZycHJibmyM+Ph55eXn49NNPYWKS/4Y5ceJEvPXWW6o2GzZsgI+PD5YuXQoAaNiwIX7++WcsX74cQUFBAIBly5Zh9OjRGDFiBABgw4YNOHToEDZv3oypU6ciIyMDmzZtQlRUFDp16gQgfy/Nhg0b4uzZs2jdujWOHj2KP//8E8eOHYOLiwuaN2+OTz75BFOmTMGcOXO4NL+cpLQa0Vhz5oy96n1ZU9FERJVRoTphYktLS8OOHTvQpk0bVXkMf39/mJiYYMuWLcjLy0NGRga2b9+OwMBAVZu4uDgEBgaqnSsoKAhxcXEA8qcW4uPj1dqYmJggMDBQ1SY+Ph45OTlqbRo0aIDatWur2sTFxaFp06ZwcXFR+z2ZmZn4448/SnxeWVlZyMzMVPsyVps2AV5eQKdO+X9u2iR2j4y36GiLFr8hImIFhg3bioiIFaqkfGNg7COBRKRbGgdhf/75Jy5duoRLly5BEARcvXpV9X1pAYY2TJkyBTY2NnB0dMTt27fx7bffqo75+Pjg6NGj+Oijj2BhYQF7e3vcuXMHe/bsUbVJSUlRC4wAwMXFBZmZmXj27BkePnyIvLy8YtukpKSozlGtWjXY29uX2qa4cyiPlWT+/PmQy+WqL09Pz3JemYqRYlHN1NRUxMffQ2ioUKiCv4D4+HssHisSYw1AjXkqmoh0T+PpyM6dO6vlfXXv3h1A/jSkIAgaTUdOnToVCxcuLLVNQkICGjRoAACYNGkSQkJCcOvWLcydOxdDhw7FwYMHIZPJkJKSgtGjR2PYsGEYMGAAHj16hFmzZqFv376IiYnRi03Gp02bhsjISNX3mZmZOg3EpFZUU7kiLSnJGwrFMLVjeXkyrF79A3x8bnFFGlUpY52KZokOIt3TKAhLSkrS6i+fMGEChg8fXmqbOnXqqP7u5OQEJycn1KtXDw0bNoSnpyfOnj2LgIAArF27FnK5HIsWLVK1/9///gdPT0+cO3cOrVu3hqura5FVjPfu3YOdnR2srKxgamoKU1PTYtu4uroCAFxdXZGdnY309HS10bDCbQqvqFSeU9mmOBYWFrCwsCj1emiblN5ElW/4yimgwhX8lVNAVbUiTYojhVXFmJ97cYytfAtLdBBVDY2CMC8vL41O/v777+Pjjz+Gk5NTscednZ3h7Oys0TmVFP8/V5WVlQUAePr0qSohX0lZz0zZNiAgAN9//71am5iYGAQEBADIv6H4+/sjNjZWtSuAQqFAbGwswsPDAeTnnpmbmyM2NhZ9+vQBAFy7dg23b99WnScgIADz5s3D/fv3UbNmTdXvsbOzQ6NGjSr0fI2JVJLBpTZSWJWM+bmnpqYiPT0dQMnBh5KhBqGFS3SUVKyXJTqIKkfrqyML+t///oeJEyeWGISV17lz53D+/Hm8/vrrqFGjBhITEzFz5kz4+vqqAp9u3bph+fLl+Pjjj1XTkR999BG8vLzw8sv5dX3GjBmDNWvWYPLkyRg5ciSOHz+OPXv24NChQ6rfFRkZiWHDhuGVV17Bq6++ihUrVuDJkyeq1ZJyuRwhISGIjIyEg4MD7OzsMG7cOAQEBKB169YAgC5duqBRo0YYMmQIFi1ahJSUFMyYMQNhYWFVPtKlr6QyBWSIQUZ5GeNzL+9OAf369YOzs7PBX6OyivUSUeXodHWktmqGWVtbIzo6Gp07d0b9+vUREhKCl156CadOnVIFNZ06dUJUVBT279+Pl19+GcHBwbCwsMDhw4dhZWUFID95/9ChQ4iJiUGzZs2wdOlSfPnll6ryFED+m+uSJUswa9YsNG/eHBcvXsThw4fVEu2XL1+O7t27o0+fPmjXrh1cXV0RHR2tOm5qaoqDBw/C1NQUAQEBGDx4MIYOHYqPP/5YK9fDWBhrMjiJp6ydApT1weRyucEHYIDxFuslqio6HQnTlqZNm+L48eNltuvfvz/69+9fapsOHTrgt99KX2IfHh6umn4sjqWlJdauXYu1a9eW2MbLy6vI1CcR6QfWB8tXVn4mEVWOXtYJIyqvO3eAEyfy/yQqL9YHy8cSHUS6pRcjYUQVsWkTEBqaX2fMxATYuBEICRG7V6QPpLI4RAqkkp9JZIgYhJFkaKssQmpqKm7ezEVoaE0oFPn14ZQFX5s3vw9vbzOjyOehymHw8YKxleggqio6DcIGDx4MOzs7Xf4KMiDaKIvAgq+kTcYafLBOHFHVqFAQplAoitTkUj5+584d1K5dGwCwfv36yvWOjE5lAyOpFXwl0kfGXCeOqCpplJifmZmJd999FzY2NnBxccGsWbOQl5enOv7gwQP4+PhovZNEmmJCMVUER4BecHR0hJubW4lfDMCIKk+jkbCZM2fi999/x/bt25Geno5PP/0UFy5cQHR0tOpNSVu1wYgqizk9pCmOABFRVdIoCNu/fz+2bduGDh06AAB69eqFbt26oUePHjhw4AAA6MVG2WQ8jDWnhyqOAZZ+K7jx+N27JkhKMoOPTy7c3fNHxRlEk5RoFIQ9ePBAbf9IJycnHDt2DEFBQXjzzTfx5Zdfar2DRERE5VHebae4MIekQqOcsNq1ayMhIUHtMVtbWxw9ehTPnj3D22+/rdXOERERlVd5t53iwhySCo2CsC5dumDLli1FHq9evTqOHDkCS0tLrXWMiIioIrjnJekLjaYj586di7t37xZ7zNbWFjExMbhw4YJWOkZUEVzdRlWtYA5ScZiDVPW45yXpC42CsBo1aqBGjRolHre1tUX79u0r3SmiiuLqNqpKBXOQgPxpsLQ0Rzg4pKotCHn33Xdhb29f7Dn4etQ+bjtVMi5ckBaNi7Xm5uZi+fLl2LlzJ/766y8AQL169TBw4EB8+OGHMDc313oniTTBNxCqKgWD/dISwffs2QOg5CCNieLaxxI1RenbwoU7d4Dr1wE/P8DDQ+ze6IZGQdizZ8/wxhtvIC4uDoGBgWjXrh0AICEhAVOmTMGBAwdw9OhR5oYRkVEpKRHc1/eG6uZf2k2PieK6wRI16spauKB8vYr5elSO1EVFWWHyZDkUChlMTAQsWpSBgQOfGdxInUZB2IIFC/DPP//gt99+w0svvaR27Pfff0fPnj2xYMECzJkzR5t9JBKFMXwKI+0oLRFcLn9UriBNF5ivRsUp6/UqFuVIXUaGLVasiIAg5NcdVShkmDTJDv/+uxly+SPJjNRpg0ZB2K5du7Bs2bIiARgANGvWDEuWLMH06dMZhJHeMrZPYaQdZSWCi3HTK2++miHd0Lgwp3ykunBB+YGhrP8vhjRyrFEQduvWLbz66qslHm/dujVu375d6U4RicEYP4WRdpSVCC7GTa+8+WqGdEPjwpzykfrCBakGibqgURBmZ2eH+/fvw9PTs9jjKSkpsLW11UrHiKqaMX4KI+0pLRFczJueWFOhYjH2AKu8pLxwQepBojZpFIR17NgRn332Gfbt21fs8QULFqBjx45a6RiRWIzpUxhpV2mJ4GLd9KSa/0Pik/LCBSkHidqkURA2e/ZstGrVCq1bt0ZkZCQaNGgAQRCQkJCA5cuX488//8TZs2d11VeiKmFMn8KocjTNLRLjpscPFaSvpBwkaotGQVijRo0QExODkJAQ9O/fHzJZfs6MIAho0KABjh49isaNG+uko0RVyVg+hVHllJWDlJGRgd27d5d5Hl0miuvDhwqu4qwaXLggPRoXa23dujX++OMPXLx4Ua1Ya/PmzbXdNyJRGcOnMKq80oIDNzc3SSSKS/lDhTGu4hQLFy5Ij8ZBWGZmJqpXr47mzZurBV4KhQKPHz+GnZ2dNvtHRKTXpHJDk+qHCmNcxSkmqbwei2OMI3UaBWHffPMNpkyZgosXL8La2lrt2LNnz9CyZUssWbIEPXr00GoniYhIM/p2QzO2VZxUlDGO1GkUhK1fvx6TJ08uEoABgI2NDaZMmYI1a9YwCCO9pG83LalgPo806dsNjas4CZD2SJ0uaBSEXblyBevWrSvxeLt27TBjxoxKd4pIDPp205IC5vNImz5dc67iJGOkURD233//ITc3t8TjOTk5+O+//yrdKSKx6NNNSwqYz0Paog+rOIm0TaMgzNvbG7/++isaNGhQ7PFff/0VXl5eWukYEekP5vOQNkh5FSeRLpiU3eSF3r17Y/r06bh3716RYykpKZgxYwb69Omjtc4RkX4oLZ+HSBNy+SP4+NxiAEZGQaORsKlTp+Lbb7+Fn58fBg8ejPr16wMArl69ih07dsDT0xNTp07VSUeJSLqYz0MVxQUxZMw0CsJsbW1x+vRpTJs2Dbt371blf9nb22Pw4MGYN28eN/AmMkLM59EeY1ttygUxZMw0LtYql8uxbt06rF27Fg8fPoQgCHB2dlZtYVTQ6dOn8corr8DCwkIrnSUi6WI+T+UZ62pTQ3ouRJrQOAhTkslkcHZ2LrVN165dcfHiRdSpU6eiv4aI9IhUq7LrC642JTIuGiXma0oQBF2enohExnwe3ShptWlGBtM9iAxJhUfCiIiYz6MbrB5PZBwYhBFRpTDA0j6uNiUyDgzCiIgkhqtNydAZ2yrgkug0CCtuxSQREZWttNWmDx8+VGtrLDcsMgzGugq4ODoNwpiYT0RUcSWtNo2Oji7ymDHcsMgwcBXwCzoNwh494tC5MeHwMlHllGcVaUmjBsZwwzJUxvreyT1nNQzCOnXqVK52x48fr1BnSH9xeJmo8opbbfrw4UPVyFdpowaknwq/d5bEEN87uQpYwyDs5MmT8PLyQrdu3WBubq6rPpEe4vAykXaUdKPlqIFhKvyeaEwjnVwFrGEQtnDhQmzZsgV79+7FoEGDMHLkSDRp0kRXfSM9xBsFGSqxp4w4amD4jG2kk6uANQzCJk2ahEmTJiEuLg6bN2/Ga6+9hvr162PkyJEYOHAg7OzsdNVPqqSquoHwRkGGSApTRhw1MGzG+gHW2PecrVBifkBAAAICArBy5Urs3bsXa9euxcSJE3H37l0GYhJUlflavFGQIZLClBFHDQybMX+ANeY9Zyu1OvLChQs4deoUEhIS0KRJE+aJSVRV5mvxRkGGTswpI2MfNTBk+vwBVtOZFu45+4LGQdjdu3exdetWbN26FZmZmRg8eDDOnTuHRo0a6aJ/pEVVNdzNGwUZKjGmjArfiEoaNTCGG5Yh09cPsBWZaeGesy9oFIS9+eabOHHiBLp06YLFixejW7duMDPjzkf6oiqHu415eJkMlxhTRrxhGQ99/ABb0ZkWvl7zaRRBHT58GG5ubrh9+zbmzp2LuXPnFtvuwoULWukcaZcuh7s5vEz6rrQpFeU2QWJNGfGGZbgMZaTTWBcWVJZGQdjs2bN11Q+qAroc7uanddJn5V39qK9TRiRdhvLeacwLCyqDQZiR0eVwt9TfJIhKosmiFH2cMiJpM4T3Tn1eWCAmrSR0nTp1Ck+ePEFAQABq1KihjVOSDjFfi6h0JSUXK+nrlJGuiF3IlsTHUeKK0bhi/uPHj/HJJ58AAARBQNeuXXH06FEAQM2aNREbG4vGjRtrv6dUYczXIiq/0pKLe/fuDScnp2J/zlgDDSkUsqUXxAyIOUqsOY2CsN27d2PKlCmq77/++mv8+OOP+Omnn9CwYUMMHToUc+fOxZ49e7TeUao4Q8k5INK1spKLnZyc4ObmJnIvpaW8U7mGuPeh1EghIOZMi2Y0CsKSkpLw0ksvqb7//vvv0bdvX7z22msAgBkzZuCdd97Rbg9JKxhgEZWNycWVV9ZULumOGAExZ1oqR6MgLDc3FxYWFqrv4+LiEBERofre3d1dtZSbiEjfMLm4coxtA2qpq4qAmDMtlaNREObr64sff/wRderUwe3bt/HXX3+hXbt2quN37tzhhSYivcXk4opjnShpqcqAmPf9itMoCAsLC0N4eDh++uknnD17FgEBAWrbFR0/fhwvv/yy1jtJRKRLBadKSksu5pRKyXQ5lcvVl5phQKw/NArCRo8eDVNTU3z33Xdo165dkbphd+/exciRI7XaQSIiXeOUSuXpaipXCsnm+oa5jfpD4zphI0eOLDHQWrduXaU7REQkBt7AK0dXU7lcfak55jbqD+6+TUREFVbVU7lcfVk25jbqD42CsJycHEyfPh3R0dFwcHDAmDFj1EbF7t27B3d3d+Tl5Wm9o0REJD1VOZXL1ZelY26j/tEoCJs3bx6++uorTJw4Eenp6YiMjMS5c+fw+eefq9oIgqD1ThIRkXRVxVQuk83LxtxG/aNRELZjxw58+eWX6N69OwBg+PDh6Nq1K0aMGIHNmzcDAGQymfZ7SVWGq5CISIqYbF4+fH/WLxoFYf/++y+aNGmi+r5u3bo4efIkOnXqhCFDhmDRokVa7yBVHa5CIiKpYrI5GSKTspu84OrqisTERLXHatWqhRMnTuD8+fMYPny4NvtGVYyrkIhIqpTJ5jKZAgCYbE4GQaMgrFOnToiKiiryuLu7O44fP46kpCStdaywnj17onbt2rC0tISbmxuGDBmCu3fvqrXZs2cPmjdvDmtra3h5eWHx4sVFznPy5Em0aNECFhYWqFu3LrZu3Vqkzdq1a+Ht7Q1LS0u0atUKv/zyi9rx58+fIywsDI6OjqhevTr69OmDe/fuqbW5ffs2unXrBmtra9SsWROTJk1Cbm5u5S8EEZERKZxsHhGxAsOGbUVExAq1pHxtJ5unpqYiOTm5xK/U1FSt/j4yThpNR86cORNXr14t9litWrVw6tQpxMTEaKVjhXXs2BEfffQR3Nzc8O+//2LixIno27cvzpw5AwD44YcfMGjQIKxevRpdunRBQkICRo8eDSsrK4SHhwPI34C8W7duGDNmDHbs2IHY2FiMGjUKbm5uCAoKAgDs3r0bkZGR2LBhA1q1aoUVK1YgKCgI165dQ82aNQEA48ePx6FDh7B3717I5XKEh4ejd+/eOH36NAAgLy8P3bp1g6urK86cOYPk5GQMHToU5ubm+Oyzz3RyfaSGuWVEpA1iJJszNYOqikzQ0+WMBw4cQK9evZCVlQVzc3MMHDgQOTk52Lt3r6rN6tWrsWjRIty+fRsymQxTpkzBoUOHcOXKFVWb/v37Iz09HYcPHwYAtGrVCi1btlT9B1QoFPD09MS4ceMwdepUZGRkwNnZGVFRUejbty8A4OrVq2jYsCHi4uLQunVr/PDDD+jevTvu3r0LFxcXAMCGDRswZcoUPHjwoNyf2DIzMyGXy5GRkQE7OzutXLfSJCcnY+PGjWW2Cw0NhZubW4nH+QZGRPpMW++Fho4ftktW3vt3hYq17t27Fzt37sRff/0FAKhXrx4GDhyoCkp0LS0tDTt27ECbNm1gbm4OAMjKyoK1tbVaOysrK9y5cwe3bt2Ct7c34uLiEBgYqNYmKCgIERERAPJzneLj4zFt2jTVcRMTEwQGBiIuLg4AEB8fj5ycHLXzNGjQALVr11YFYXFxcWjatKkqAFP+nrFjx+KPP/7Qm/01K1oUkbllRGRIWCC2KH7Y1g6NgjCFQoEBAwZg7969qFevHho0aAAA+OOPP9CvXz+888472Llzp87KVEyZMgVr1qzB06dP0bp1axw8eFB1LCgoCOPHj8fw4cPRsWNH3LhxA0uXLgWQ/6nG29sbKSkpaoERALi4uCAzMxPPnj3Df//9h7y8vGLbKKdhU1JSUK1aNdjb2xdpk5KSompT3DmUx0qSlZWFrKws1feZmZnluSw6waKIRC/wE7/x4nth8fhhWzs0CsJWrlyJY8eO4cCBA6paYUoHDhzAiBEjsHLlStXIUlmmTp2KhQsXltomISFBFexNmjQJISEhuHXrFubOnYuhQ4fi4MGDkMlkGD16NBITE9G9e3fk5OTAzs4OH374IebMmQMTE43WH4hm/vz5mDt3rtjdYFFEogL4id948b2w/DhaWDEaBWFbtmzB4sWLiwRgQP7qxUWLFmkUhE2YMKHMshZ16tRR/d3JyQlOTk6oV68eGjZsCE9PT5w9exYBAQGQyWRYuHAhPvvsM6SkpMDZ2RmxsbFq53B1dS2yivHevXuws7ODlZUVTE1NYWpqWmwbV1dX1Tmys7ORnp6uNhpWuE3hFZXKcyrbFGfatGmIjIxUfZ+ZmQlPT89Sr482KXPVyiqKyC0vyJjwE7/xYoHY8uFoYcVpFIRdv369SE5VQYGBgaqViOXh7OwMZ2dnTbqgolDk14opOH0HAKampqhVqxYAYOfOnQgICFD9joCAAHz//fdq7WNiYhAQEAAgPwjx9/dHbGwsevXqpfo9sbGxqufl7+8Pc3NzxMbGok+fPgCAa9eu4fbt26rzBAQEYN68ebh//75qRWVMTAzs7OzQqFGjEp+ThYUFLCwsKnQ9tEG5CunmzVxs3y5AoXgxrWxqKmDcuK7w9jbT+NM+PyERkT5igdiycbSwcjQKwqysrJCeno7atWsXezwzMxOWlpZa6VhB586dw/nz5/H666+jRo0aSExMxMyZM+Hr66sKfB4+fIivv/4aHTp0wPPnz7Flyxbs3bsXp06dUp1nzJgxWLNmDSZPnoyRI0fi+PHj2LNnDw4dOqRqExkZiWHDhuGVV17Bq6++ihUrVuDJkycYMWIEAEAulyMkJASRkZFwcHCAnZ0dxo0bh4CAALRu3RoA0KVLFzRq1Ei1i0BKSgpmzJiBsLAwUYOs4hSX6+LuDixalIEpU+TIy5PB1BT4/HMZ/P1dSjhLyfgJiQwNP1QYD2WB2MLvYfx3f4GjhZWjURAWEBCA9evXY/369cUeX7t2rSoo0iZra2tER0dj9uzZePLkCdzc3BAcHIwZM2aoBTXbtm3DxIkTIQgCAgICcPLkSbz66quq4z4+Pjh06BDGjx+PlStXwsPDA19++aWqRhgA9OvXDw8ePMCsWbOQkpKC5s2b4/Dhw2qJ9suXL4eJiQn69OmDrKwsBAUFYd26darjpqamOHjwIMaOHYuAgADY2Nhg2LBh+Pjjj7V+bSqjrFyXDz6wRVqaAyZMeAtNm9bQ+Pz8hESGRmofKrhgQDcKF4j19b2BtDQHODikqb13MTWDo4WVpVEQNn36dHTo0AGpqamYOHEiGjRoAEEQkJCQgKVLl+Lbb7/FiRMntN7Jpk2b4vjx46W2cXJyUpWRKE2HDh3w22+lv2mGh4eXOq1qaWmJtWvXYu3atSW28fLyKjL1KTVl5bDI5Y8glz+Ck9Nzjc7L3DIyRFL7UMEFA7ojRoFYfcXRwsrRKAhr06YNdu/ejdDQUOzbt0/tWI0aNbBz50689tprWu0g6R9d5ZYRiUlq0y5cMKBbfH8qHUcLtUPjYq1vv/02goKCcOTIEVy/fh1AfrHWLl26FCmWSsbL0dERjo7Axo3Ae+8BeXmoVG4Zkdg47UL0AkcLtUOjIOz48eMIDw/H2bNn8fbbb6sdy8jIQOPGjbFhwwa0bdtWq50k/RUSAgQFATduAHXrAh4eYveISDPKT/JlTbvwEz8ZGwZYladRELZixQqMHj262H2Q5HI53nvvPSxbtoxBGKnx8GDwRfqr8Cf+WbMe4OZNM3h758LdvSWAlpL4xM9Vm0T6R6Mg7Pfffy+1wn2XLl2wZMmSSneKiEhKCgZYbm6Av7+InSmG1FZtGhquQiVd0SgIu3fvnmrD7GJPZmaGBw8eVLpTRERUPlJbtWlouAqVdEmjTRVr1aqFK1eulHj80qVLcHNzq3SnqGqUN4eFuS5E0lXaqk2qPK5CJV3SaCTszTffxMyZMxEcHFykMv6zZ88we/bsYveVJGkqnOty964JkpLM4OOTC3f3/G2hOMxOJE3KD0dlrdrkhygi6dIoCJsxYwaio6NRr149hIeHo379+gCAq1evYu3atcjLy8P06dN10lHSDWWAtWkTEBoKKBSAiUl+aYmQEJE7R0QlKvghqlatzALbjAlYuDATAwcO4IcoHeACCNImmSAIgiY/cOvWLYwdOxZHjhyB8kdlMhmCgoKwdu1a+Pj46KSjxigzMxNyuRwZGRnFrkjVljt3AC+v/ABMydQUuHmTqxqJ9MWdOywFowvJycnYuHEjgNIXQISGhjIdh1TKe//WuFircjue//77Dzdu3IAgCPDz80ONGprvLUjScP26egAG5BdXvXGDb+ZE+oKlYHSLCyBIFzQOwpRq1KiBli1barMvJBI/v/wpyMIjYXXritcnIiJNaLOMRMFzPXz4EID2tq1iuQsqqMJBGBkOD4/ithcy3E/VfBMkMizaLCNR0rm0sW0Vy11QYQzCCIDxbC/EN0Eiw6PNMhIltdHGtlUsd0GFMQgjFWPIKeGbIBFVVIsWv8HX9wbS0hwwaFArNGkinW2rSD8xCCMiIionufwR5PJHaNIkqNKrIVnughiEERGRQdFmcKOrQIn7fRLAIIyIiAyINoMbXQVKLHdBSgzCiIioSuh6ZbI2gxtdBkraKndB+o9BGBER6VxVrEzWZnCjy0BJG+UuyDCYlN2EiIiocnS5MrnwZuYFabqZuTbPVdK5leUulOevSLkLMgwcCSOjUt43N74JEukPbW5mrsuN0QueGwBmzXqAmzfN4O2dC3d3lrswRhpv4E1Vp6o28DY2BfNS7t41QVKSGXx8cuHunv+plG+CRNpXcCNsoORVh6VthF3enDJtbmZuDBujcxcR7dPZBt5E+k75ZrJpExAamr9npolJ/tZNISEid47ICFRk1aEmOWUeHo5aC5gMvYg1dxERF3PCyCjdufMiAAPy/3zvvfzHiUh3Slp1mJFhW+rPcbcL3eB1FReDMDJK16+/CMCU8vLypx2ISHdKW3VIZGwYhJFR8vPLn4IsyNQ0P++DiHSnrFWH5ZWRYYukJO8yR9CIpIw5YWSUPDzyc8Deey9/BMzUFPj8c8PO/SASU+HyDIVzwjQpz8Atf3SH+1lWLQZhZLRCQoCgIMNf+UQkBdoqz8Atf3SHwW3VYxBGRs3QVz4RSUnBAMvNDfD31/wc3PJHNxjcioM5YUREpDe0lVNG6rhgQhwMwoiISPK45Y9u6HKbJiobK+ZLGCvmExG9UHi3ixc5ZdztojKU1zUqyqrQNk0ZGDjwGa9rBZT3/s0gTMIYhBGRMeI2OuIxhm2aqgK3LSIiIr3DbXTExcVKVYtBGJEe4MgAGYvybo9z//59/p8gvccgjEjiODJAVNSePXvKbMP/EyR1XB1JJHHcYJeMWWW2J+L/CZI6joQREZEksYI7GTqOhBERkeSUVMG9uBExbuZN+oojYUR6hhvskjEo7/ZEHC0jfcYgjEiP8IZDxkJZwb1gIFZ4eyLud6hbXJWtewzCiPQEbzhkDApvT1T4Q0fB1zo389YdrsquGgzCiPQEbzhkDBwdHREeHq4agZk160GB7YlaAmiJjIwM7N69u1yjZVQxXJVdNRiEEUlc4Q12S7rhcINdMhQFR1bc3AB/f/Xj5R0t4/8JkjoGYUQSV3BkoFatzEIb7GZi4MABzM0go1Ke0TL+nyB9wCCMSA8obyYTJgD9+ik32JXBw8MegL2YXSMSRVmjZaRdXJWtGwzCiPQMN9gloqrEVdm6wyCMDBaXVxMRVQ5XZesWgzAySFxeTURUeVyVrVsMwsggcXk1EVHFGeqqbKnNkDAIIyIiIjWGuCpbijMkDMLIKHBlDxGRZgxtVbYUZ0gYhJHB48oeIqLK4aps3TApuwmR/ippZU9Ghq3IPSMiImPHIIwMWmkre4iIiMTEIIwMmnJlT0Hc4JeIiKSAQRgZpMIb/CoDMW7wS0REQH66SlKSt6jpKUzMJ4PEDX6JpEFqdZmIAOks2GIQRgaLG/wSiUuKdZnIeClnPsraiqkqZ0gYhBERkU4UHgErqV4fd66gqqCcITlxAli+vOiCrddeG4YOHcCK+USkW3fuANevA35+rP1DVUMq0z9k3BwdHdG6NWBiAigKrNkyNQVatXJEVQ/IMjGfyMhs2gR4eQGdOuX/uWmT2D0iQ8d6fSQlHh7Axo35gReQ/+fnn4vzgZRBGJERuXMHCA198QlQoQDeey//cSJdYb0+kpqQEODmTeDEifw/Q0LE6QenI4mMyPXr6kPwAJCXl78nHKclSVeU9foKBmKs10dik8JWTAzCqMKYV6R//PyKz4WoW1e8PpHhU9brK5wTVjA531iwZAcVxCCMKmTTphfTWiYm+fPrYg3nUvkpcyHeey9/BEzMXAgyLi1a/AZf3xtIS3OAg0Oa0QZgLNlBBTEII42VlFcUFMSbuT4ICcn/t7pxI38EjP9mpCuF6y3J5Y+KDb6MZeeK8pbiYMkO46F3iflZWVlo3rw5ZDIZLl68qHbs0qVLaNu2LSwtLeHp6YlFixYV+fm9e/eiQYMGsLS0RNOmTfH999+rHRcEAbNmzYKbmxusrKwQGBiI69evq7VJS0vDoEGDYGdnB3t7e4SEhODx48ca90VflZZXRNKVmpqK5ORkJCcnw9Q0GfXr5/+pfCw1NVXsLpKBUdZlCg0NLfGLoz5kzPRuJGzy5Mlwd3fH77//rvZ4ZmYmunTpgsDAQGzYsAGXL1/GyJEjYW9vj9DQUADAmTNnMGDAAMyfPx/du3dHVFQUevXqhQsXLqBJkyYAgEWLFmHVqlXYtm0bfHx8MHPmTAQFBeHPP/+EpaUlAGDQoEFITk5GTEwMcnJyMGLECISGhiIqKqrcfdFnzCvSP5wGIbHw9VSykorXkvHQqyDshx9+wNGjR7Fv3z788MMPasd27NiB7OxsbN68GdWqVUPjxo1x8eJFLFu2TBX4rFy5EsHBwZg0aRIA4JNPPkFMTAzWrFmDDRs2QBAErFixAjNmzMBbb70FAPjqq6/g4uKC/fv3o3///khISMDhw4dx/vx5vPLKKwCA1atX480338SSJUvg7u5err7oM+YV6R9OgxBJC4vXEqBH05H37t3D6NGjsX37dlhbWxc5HhcXh3bt2qnlFgQFBeHatWv477//VG0CAwPVfi4oKAhxcXEAgKSkJKSkpKi1kcvlaNWqlapNXFwc7O3tVQEYAAQGBsLExATnzp0rd1+Kk5WVhczMTLUvqZJKjRUiIn3D4rWkpBdBmCAIGD58OMaMGaMW/BSUkpICFxcXtceU36ekpJTapuDxgj9XUpuaNWuqHTczM4ODg0OZv6fg7yjO/PnzIZfLVV+enp4ltpUCDw+gQweOgBERaYLFa0lJ1CBs6tSpkMlkpX5dvXoVq1evxqNHjzBt2jQxu6tz06ZNQ0ZGhurrn3/+EbtLRESkZcritQWxeK1xEjUnbMKECRg+fHipberUqYPjx48jLi4OFhYWasdeeeUVDBo0CNu2bYOrqyvu3bundlz5vaurq+rP4toUPK58zM3NTa1N8+bNVW3u37+vdo7c3FykpaWV+XsK/o7iWFhYFHmORERkGJQpKmUVrzWWkh0kchDm7OwMZ2fnMtutWrUKn376qer7u3fvIigoCLt370arVq0AAAEBAZg+fTpycnJgbm4OAIiJiUH9+vVRo0YNVZvY2FhERESozhUTE4OAgAAAgI+PD1xdXREbG6sKujIzM3Hu3DmMHTtWdY709HTEx8fD398fAHD8+HEoFAqN+kJERMZFWbJDuQBm1qwHuHnTDN7euXB3bwmgJSvmGxm9WB1Zu3Ztte+rV68OAPD19YXH/yckDRw4EHPnzkVISAimTJmCK1euYOXKlVi+fLnq5z788EO0b98eS5cuRbdu3bBr1y78+uuv2LhxIwBAJpMhIiICn376Kfz8/FQlKtzd3dGrVy8AQMOGDREcHIzRo0djw4YNyMnJQXh4OPr37w93d/dy94WIiIxPwQDLzQ34/8/yZKT0IggrD7lcjqNHjyIsLAz+/v5wcnLCrFmz1EpCtGnTBlFRUZgxYwY++ugj+Pn5Yf/+/aoaYUB+HbInT54gNDQU6enpeP3113H48GFVjTAgvxxGeHg4OnfuDBMTE/Tp0werVq3SqC9EVam80xucBiEiqjoyQRAEsTtBxcvMzIRcLkdGRgbs7OzE7g7pOW4cTERUNcp7/zaYkTAiKh0DLCIiaWEQRkREREZBajMCDMKIiIi0SGo3esonxT10GYQRERFpiRRv9JRPinvo6sW2RURERPpAijd6ki4GYUREREQiYBBGRFSMO3eAEyfy/yQi0gUGYUREhWzaBHh5AZ065f+5aZPYPSIiQ8TEfNIIV/2QobtzBwgNBRSK/O8VCuC994CgIOD/d0kjKreMDFukpTnCwSFVtUE3kRKDMCo3rvohY3D9+osATCkvD7hxg0EYaebChZfx3XfdIQgmkMkU6NHjIFq0+E3sbpGEcDqSyo2rfsgY+PkBJoXeGU1Ngbp1xekP6aeMDFtVAAYAgmCC777rjowMW5F7ZrykuIcuR8KIiArw8AA2bsyfgszLyw/APv+co2BUPsobeFqaoyoAUxIEE6SlOUAuf1SlN3rK5+joiPDwcEml1DAIIyIqJCQkPwfsxo38ETAGYFReyhv9zZu52L5dgEIhUx0zNRUwblxXeHubMWVDJFK77gzCiIj+X8GFJ6amQP36+Y8nJ+f/yYUnVB6Ojo5wdCxuRFUGf38XsbtH/+/OnfwcUD8/8T5oMQgjIgIXnpD2cURVujZterEK2sQkP2AOCan6fjAxn4gIXHhCuuHhAXTowABMSkoqQyNGYWaOhBERkdpU7N27JkhKMoOPTy7c3fPvVJyKJUMhpTI0DMKo3KS4vJeIKq/gVGxpta04FUuGQFmGpmAgJlYZGgZhVG5SXN5LRJWn/D9dUm0rX98bkMsfcSqWDIKUytAwCCONMMAiMlxl1bYiMhRSWTTBIIyIiAAADg6pkMkUaoGYTKaAg0OaiL0i0g0PD/EXTHB1JBERAQDk8kfo0eMgZLL8ZBllThhHwYh0gyNhRETgwhOlFi1+g6/vDaSlOcDBIY0BGJEOMQgjIgIXnhQklz9i8EVUBRiEERH9P2MIsIhIOpgTRkRk5DgVSyQOjoQRERk5TsUSiYNBGBERMcAiEgGnI4mIiIhEwCCMiIiISAQMwoiIiIhEwCCMiIiISAQMwoiIiIhEwCCMiIiISAQMwoiIiIhEwCCMiIiISAQMwoiIiIhEwIr5EiYIAgAgMzNT5J4QERFReSnv28r7eEkYhEnYo0ePAACenp4i94SIiIg09ejRI8jl8hKPy4SywjQSjUKhwN27d2FrawuZTCZ2d6pMZmYmPD098c8//8DOzk7s7ug1Xkvt4HXUHl5L7eB11B5dXEtBEPDo0SO4u7vDxKTkzC+OhEmYiYkJPDw8xO6GaOzs7PjmoiW8ltrB66g9vJbaweuoPdq+lqWNgCkxMZ+IiIhIBAzCiIiIiETAIIwkx8LCArNnz4aFhYXYXdF7vJbaweuoPbyW2sHrqD1iXksm5hMRERGJgCNhRERERCJgEEZEREQkAgZhRERERCJgEEZEREQkAgZhJJoff/wRPXr0gLu7O2QyGfbv3692XBAEzJo1C25ubrCyskJgYCCuX78uTmclrqxrOXz4cMhkMrWv4OBgcTorYfPnz0fLli1ha2uLmjVrolevXrh27Zpam+fPnyMsLAyOjo6oXr06+vTpg3v37onUY2kqz3Xs0KFDkdfkmDFjROqxdK1fvx4vvfSSqpBoQEAAfvjhB9Vxvh7Lp6zrKNbrkUEYiebJkydo1qwZ1q5dW+zxRYsWYdWqVdiwYQPOnTsHGxsbBAUF4fnz51XcU+kr61oCQHBwMJKTk1VfO3furMIe6odTp04hLCwMZ8+eRUxMDHJyctClSxc8efJE1Wb8+PH47rvvsHfvXpw6dQp3795F7969Rey19JTnOgLA6NGj1V6TixYtEqnH0uXh4YEFCxYgPj4ev/76Kzp16oS33noLf/zxBwC+HsurrOsIiPR6FIgkAIDwzTffqL5XKBSCq6ursHjxYtVj6enpgoWFhbBz504Reqg/Cl9LQRCEYcOGCW+99ZYo/dFn9+/fFwAIp06dEgQh/zVobm4u7N27V9UmISFBACDExcWJ1U3JK3wdBUEQ2rdvL3z44YfidUqP1ahRQ/jyyy/5eqwk5XUUBPFejxwJI0lKSkpCSkoKAgMDVY/J5XK0atUKcXFxIvZMf508eRI1a9ZE/fr1MXbsWKSmpordJcnLyMgAADg4OAAA4uPjkZOTo/a6bNCgAWrXrs3XZSkKX0elHTt2wMnJCU2aNMG0adPw9OlTMbqnN/Ly8rBr1y48efIEAQEBfD1WUOHrqCTG65EbeJMkpaSkAABcXFzUHndxcVEdo/ILDg5G79694ePjg8TERHz00Ufo2rUr4uLiYGpqKnb3JEmhUCAiIgKvvfYamjRpAiD/dVmtWjXY29urteXrsmTFXUcAGDhwILy8vODu7o5Lly5hypQpuHbtGqKjo0XsrTRdvnwZAQEBeP78OapXr45vvvkGjRo1wsWLF/l61EBJ1xEQ7/XIIIzICPTv31/196ZNm+Kll16Cr68vTp48ic6dO4vYM+kKCwvDlStX8PPPP4vdFb1W0nUMDQ1V/b1p06Zwc3ND586dkZiYCF9f36rupqTVr18fFy9eREZGBr7++msMGzYMp06dErtbeqek69ioUSPRXo+cjiRJcnV1BYAiq3zu3bunOkYVV6dOHTg5OeHGjRtid0WSwsPDcfDgQZw4cQIeHh6qx11dXZGdnY309HS19nxdFq+k61icVq1aAQBfk8WoVq0a6tatC39/f8yfPx/NmjXDypUr+XrUUEnXsThV9XpkEEaS5OPjA1dXV8TGxqoey8zMxLlz59Tm8Kli7ty5g9TUVLi5uYndFUkRBAHh4eH45ptvcPz4cfj4+Kgd9/f3h7m5udrr8tq1a7h9+zZflwWUdR2Lc/HiRQDga7IcFAoFsrKy+HqsJOV1LE5VvR45HUmiefz4sdqnjKSkJFy8eBEODg6oXbs2IiIi8Omnn8LPzw8+Pj6YOXMm3N3d0atXL/E6LVGlXUsHBwfMnTsXffr0gaurKxITEzF58mTUrVsXQUFBIvZaesLCwhAVFYVvv/0Wtra2qrwauVwOKysryOVyhISEIDIyEg4ODrCzs8O4ceMQEBCA1q1bi9x76SjrOiYmJiIqKgpvvvkmHB0dcenSJYwfPx7t2rXDSy+9JHLvpWXatGno2rUrateujUePHiEqKgonT57EkSNH+HrUQGnXUdTXY5WvxyT6fydOnBAAFPkaNmyYIAj5ZSpmzpwpuLi4CBYWFkLnzp2Fa9euidtpiSrtWj59+lTo0qWL4OzsLJibmwteXl7C6NGjhZSUFLG7LTnFXUMAwpYtW1Rtnj17Jrz//vtCjRo1BGtra+Htt98WkpOTxeu0BJV1HW/fvi20a9dOcHBwECwsLIS6desKkyZNEjIyMsTtuASNHDlS8PLyEqpVqyY4OzsLnTt3Fo4ePao6ztdj+ZR2HcV8PcoEQRB0G+YRERERUWHMCSMiIiISAYMwIiIiIhEwCCMiIiISAYMwIiIiIhEwCCMiIiISAYMwIiIiIhEwCCMiIiISAYMwIiIiIhEwCCMiyUpJScG4ceNQp04dWFhYwNPTEz169FDbK+/MmTN48803UaNGDVhaWqJp06ZYtmwZ8vLyVG1u3ryJkJAQ+Pj4wMrKCr6+vpg9ezays7PVft8XX3yBZs2aoXr16rC3t8fLL7+M+fPnq47PmTMHMpkMwcHBRfq6ePFiyGQydOjQoVzPTXkumUwGMzMzeHt7Y/z48Xj8+LGGV4mI9BX3jiQiSbp58yZee+012NvbY/HixWjatClycnJw5MgRhIWF4erVq/jmm2/w7rvvYsSIEThx4gTs7e1x7NgxTJ48GXFxcdizZw9kMhmuXr0KhUKBzz//HHXr1sWVK1cwevRoPHnyBEuWLAEAbN68GREREVi1ahXat2+PrKwsXLp0CVeuXFHrl5ubG06cOIE7d+7Aw8ND9fjmzZtRu3ZtjZ5j48aNcezYMeTm5uL06dMYOXIknj59is8//7xI2+zsbFSrVq0CV1J3pNgnIr2i842RiIgqoGvXrkKtWrWEx48fFzn233//CY8fPxYcHR2F3r17Fzl+4MABAYCwa9euEs+/aNEiwcfHR/X9W2+9JQwfPrzUPs2ePVto1qyZ0L17d+HTTz9VPX769GnByclJGDt2rNC+fftyPLsX5ypo9OjRgqurq9rxL774QvD29hZkMpkgCPnPPSQkRHBychJsbW2Fjh07ChcvXlSd4+LFi0KHDh2E6tWrC7a2tkKLFi2E8+fPC4IgCDdv3hS6d+8u2NvbC9bW1kKjRo2EQ4cOCYIgCFu2bBHkcrlaf7755huh4G2ion0iouJxOpKIJCctLQ2HDx9GWFgYbGxsihy3t7fH0aNHkZqaiokTJxY53qNHD9SrVw87d+4s8XdkZGTAwcFB9b2rqyvOnj2LW7duldm/kSNHYuvWrarvN2/ejEGDBlV6VMjKykptivTGjRvYt28foqOjcfHiRQDAO++8g/v37+OHH35AfHw8WrRogc6dOyMtLQ0AMGjQIHh4eOD8+fOIj4/H1KlTYW5uDgAICwtDVlYWfvzxR1y+fBkLFy5E9erVNepjRfpERMXjdCQRSc6NGzcgCAIaNGhQYpu//voLANCwYcNijzdo0EDVprjzr169WjUVCQCzZ89G79694e3tjXr16iEgIABvvvkm+vbtCxMT9c+r3bt3x5gxY/Djjz/C398fe/bswc8//4zNmzdr+lRV4uPjERUVhU6dOqkey87OxldffQVnZ2cAwM8//4xffvkF9+/fh4WFBQBgyZIl2L9/P77++muEhobi9u3bmDRpkura+fn5qc53+/Zt9OnTB02bNgUA1KlTR+N+VqRPRFQ8BmFEJDmCIOikLQD8+++/CA4OxjvvvIPRo0erHndzc0NcXByuXLmCH3/8EWfOnMGwYcPw5Zdf4vDhw2qBmLm5OQYPHowtW7bg77//Rr169fDSSy9p1A8AuHz5MqpXr468vDxkZ2ejW7duWLNmjeq4l5eXKtgBgN9//x2PHz+Go6Oj2nmePXuGxMREAEBkZCRGjRqF7du3IzAwEO+88w58fX0BAB988AHGjh2Lo0ePIjAwEH369NG43xXpExEVj0EYEUmOn5+fKqG+JPXq1QMAJCQkoE2bNkWOJyQkoFGjRmqP3b17Fx07dkSbNm2wcePGYs/bpEkTNGnSBO+//z7GjBmDtm3b4tSpU+jYsaNau5EjR6JVq1a4cuUKRo4cqelTBADUr18fBw4cgJmZGdzd3YtMZxaein38+DHc3Nxw8uTJIueyt7cHkL/qcuDAgTh06BB++OEHzJ49G7t27cLbb7+NUaNGISgoCIcOHcLRo0cxf/58LF26FOPGjYOJiUmRgDYnJ6fI76lIn4ioeMwJIyLJcXBwQFBQENauXYsnT54UOZ6eno4uXbrAwcEBS5cuLXL8wIEDuH79OgYMGKB67N9//0WHDh3g7++PLVu2FJliLI4yiCuuD40bN0bjxo1x5coVDBw4UJOnp1KtWjXUrVsX3t7e5cona9GiBVJSUmBmZoa6deuqfTk5Oana1atXD+PHj8fRo0fRu3dvbNmyRXXM09MTY8aMQXR0NCZMmIAvvvgCAODs7IxHjx6pPVdlzpc2+kRERTEIIyJJWrt2LfLy8vDqq69i3759uH79OhISErBq1SoEBATAxsYGn3/+Ob799luEhobi0qVLuHnzJjZt2oThw4ejb9++ePfddwG8CMBq166NJUuW4MGDB0hJSUFKSorq940dOxaffPIJTp8+jVu3buHs2bMYOnQonJ2dERAQUGwfjx8/juTk5Cob8QkMDERAQAB69eqFo0eP4ubNmzhz5gymT5+OX3/9Fc+ePUN4eDhOnjyJW7du4fTp0zh//rwqby4iIgJHjhxBUlISLly4gBMnTqiOtWrVCtbW1vjoo4+QmJiIqKgotcUHFe0TEZWM05FEJEl16tTBhQsXMG/ePEyYMAHJyclwdnaGv78/1q9fDwDo27cvTpw4gXnz5qFt27Z4/vw5/Pz8MH36dEREREAmkwEAYmJicOPGDdy4cUOtthfwIqcsMDAQmzdvxvr165GamgonJycEBAQgNja2SL6TUnErN3VJJpPh+++/x/Tp0zFixAg8ePAArq6uaNeuHVxcXGBqaorU1FQMHToU9+7dg5OTE3r37o25c+cCAPLy8hAWFoY7d+7Azs4OwcHBWL58OYD80cf//e9/mDRpEr744gt07twZc+bMKTOxvqw+EVHJZIKmWa1EREREVGmcjiQiIiISAYMwIiIdqF69eolfP/30k9jdIyIJ4HQkEZEO3Lhxo8RjtWrVgpWVVRX2hoikiEEYERERkQg4HUlEREQkAgZhRERERCJgEEZEREQkAgZhRERERCJgEEZEREQkAgZhRERERCJgEEZEREQkAgZhRERERCL4PwM6cqQOq5s2AAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Import training data\n", + "np.set_printoptions(precision=7, suppress=True)\n", + "\n", + "csv_data = pd.read_csv(datafile_path(\"500_Points_DataSet.csv\"))\n", + "\n", + "### ALAMO only accepts alphanumerical characters (A-Z, a-z, 0-9) or underscores as input/output labels\n", + "cols = csv_data.columns\n", + "cols = [item.replace(\".\", \"_\") for item in cols]\n", + "csv_data.columns = cols\n", + "\n", + "data = csv_data.sample(n=500, random_state=0)\n", + "\n", + "input_data = data.iloc[:, :2]\n", + "output_data = data.iloc[:, 2:4]\n", + "\n", + "# Define labels, and split training and validation data\n", + "input_labels = input_data.columns\n", + "output_labels = output_data.columns\n", + "\n", + "n_data = data[input_labels[0]].size\n", + "data_training, data_validation = split_training_validation(data, 0.8, seed=n_data)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAHHCAYAAAARcURhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB74ElEQVR4nO3deViUVfsH8O+wL8IgOwgK4i6moqajuRWK5pIvmktqqBhlkppmau6ZpVZuueWb21uaK5V7IpqVIplrFpoabgkuIANugMz5/cFvHhmYgRkYGGC+n+uaC+d5zjxz5mmM23Pucx+ZEEKAiIiIiEzGwtQdICIiIjJ3DMiIiIiITIwBGREREZGJMSAjIiIiMjEGZEREREQmxoCMiIiIyMQYkBERERGZGAMyIiIiIhNjQEZERERkYgzIiIioSOvXr4dMJsPVq1dN3RWiKosBGRGZ3IkTJxAdHY3GjRvD0dERNWvWRP/+/fH3338XatupUyfIZDLIZDJYWFjA2dkZ9evXx9ChQxEbG2vQ++7atQsdO3aEp6cnHBwcULt2bfTv3x/79+831kcr5OOPP8b3339f6PixY8cwa9YspKenl9l7FzRr1izpXspkMjg4OKBRo0aYNm0aMjIyjPIemzZtwuLFi41yLaKqjAEZEZnc/PnzsWPHDrz00ktYsmQJoqKi8PPPPyMkJATnz58v1N7Pzw9ff/01/ve//+HTTz9F7969cezYMXTt2hUDBgxATk5Ose/52WefoXfv3pDJZJgyZQoWLVqEvn374tKlS9i8eXNZfEwARQdks2fPLteATG3lypX4+uuvsXDhQjRo0ABz585Ft27dYIytjhmQEenHytQdICIaP348Nm3aBBsbG+nYgAED0KRJE8ybNw/ffPONRnu5XI4hQ4ZoHJs3bx7GjBmDFStWICAgAPPnz9f5fk+fPsWcOXPQpUsXHDhwoND5O3fulPITVRyPHj2Cg4NDkW369esHd3d3AMBbb72Fvn37IiYmBsePH4dCoSiPbhKZPY6QEZHJtW3bViMYA4C6deuicePGSExM1OsalpaWWLp0KRo1aoRly5ZBqVTqbHvv3j1kZGSgXbt2Ws97enpqPH/y5AlmzZqFevXqwc7ODj4+PggPD8eVK1ekNp999hnatm0LNzc32Nvbo0WLFti+fbvGdWQyGR4+fIgNGzZI04TDhg3DrFmzMHHiRABAYGCgdC5/ztY333yDFi1awN7eHq6urhg4cCBu3Lihcf1OnTohODgYJ0+eRIcOHeDg4IAPPvhAr/uX34svvggASEpKKrLdihUr0LhxY9ja2sLX1xejR4/WGOHr1KkT9uzZg2vXrkmfKSAgwOD+EJkDjpARUYUkhMDt27fRuHFjvV9jaWmJQYMGYfr06fj111/Ro0cPre08PT1hb2+PXbt24Z133oGrq6vOa+bm5qJnz56Ii4vDwIEDMXbsWGRmZiI2Nhbnz59HUFAQAGDJkiXo3bs3Bg8ejOzsbGzevBmvvvoqdu/eLfXj66+/xsiRI/H8888jKioKABAUFARHR0f8/fff+Pbbb7Fo0SJptMrDwwMAMHfuXEyfPh39+/fHyJEjcffuXXzxxRfo0KEDTp8+DRcXF6m/qamp6N69OwYOHIghQ4bAy8tL7/unpg403dzcdLaZNWsWZs+ejdDQUIwaNQoXL17EypUrceLECRw9ehTW1taYOnUqlEolbt68iUWLFgEAqlWrZnB/iMyCICKqgL7++msBQKxZs0bjeMeOHUXjxo11vu67774TAMSSJUuKvP6MGTMEAOHo6Ci6d+8u5s6dK06ePFmo3dq1awUAsXDhwkLnVCqV9OdHjx5pnMvOzhbBwcHixRdf1Dju6OgoIiIiCl3r008/FQBEUlKSxvGrV68KS0tLMXfuXI3jf/zxh7CystI43rFjRwFArFq1Sufnzm/mzJkCgLh48aK4e/euSEpKEl9++aWwtbUVXl5e4uHDh0IIIdatW6fRtzt37ggbGxvRtWtXkZubK11v2bJlAoBYu3atdKxHjx6iVq1aevWHyJxxypKIKpwLFy5g9OjRUCgUiIiIMOi16hGYzMzMItvNnj0bmzZtQvPmzfHjjz9i6tSpaNGiBUJCQjSmSXfs2AF3d3e88847ha4hk8mkP9vb20t/vn//PpRKJdq3b49Tp04Z1P+CYmJioFKp0L9/f9y7d096eHt7o27dujh8+LBGe1tbWwwfPtyg96hfvz48PDwQGBiIN998E3Xq1MGePXt05p4dPHgQ2dnZGDduHCwsnv0aeeONN+Ds7Iw9e/YY/kGJzBynLImoQklJSUGPHj0gl8uxfft2WFpaGvT6Bw8eAACcnJyKbTto0CAMGjQIGRkZSEhIwPr167Fp0yb06tUL58+fh52dHa5cuYL69evDyqro/13u3r0bH330Ec6cOYOsrCzpeP6grSQuXboEIQTq1q2r9by1tbXG8xo1ahTKxyvOjh074OzsDGtra/j5+UnTsLpcu3YNQF4gl5+NjQ1q164tnSci/TEgI6IKQ6lUonv37khPT8cvv/wCX19fg6+hLpNRp04dvV/j7OyMLl26oEuXLrC2tsaGDRuQkJCAjh076vX6X375Bb1790aHDh2wYsUK+Pj4wNraGuvWrcOmTZsM/gz5qVQqyGQy7Nu3T2twWjAnK/9Inb46dOgg5a0RkWkwICOiCuHJkyfo1asX/v77bxw8eBCNGjUy+Bq5ubnYtGkTHBwc8MILL5SoHy1btsSGDRuQnJwMIC/pPiEhATk5OYVGo9R27NgBOzs7/Pjjj7C1tZWOr1u3rlBbXSNmuo4HBQVBCIHAwEDUq1fP0I9TJmrVqgUAuHjxImrXri0dz87ORlJSEkJDQ6VjpR0hJDIXzCEjIpPLzc3FgAEDEB8fj23btpWo9lVubi7GjBmDxMREjBkzBs7OzjrbPnr0CPHx8VrP7du3D8Cz6bi+ffvi3r17WLZsWaG24v8Lp1paWkImkyE3N1c6d/XqVa0FYB0dHbUWf3V0dASAQufCw8NhaWmJ2bNnFyrUKoRAamqq9g9ZhkJDQ2FjY4OlS5dq9GnNmjVQKpUaq1sdHR2LLEFCRHk4QkZEJjdhwgTs3LkTvXr1QlpaWqFCsAWLwCqVSqnNo0ePcPnyZcTExODKlSsYOHAg5syZU+T7PXr0CG3btkWbNm3QrVs3+Pv7Iz09Hd9//z1++eUX9OnTB82bNwcAvP766/jf//6H8ePH47fffkP79u3x8OFDHDx4EG+//TZeeeUV9OjRAwsXLkS3bt3w2muv4c6dO1i+fDnq1KmDc+fOabx3ixYtcPDgQSxcuBC+vr4IDAxE69at0aJFCwDA1KlTMXDgQFhbW6NXr14ICgrCRx99hClTpuDq1avo06cPnJyckJSUhO+++w5RUVF47733SnX/DeXh4YEpU6Zg9uzZ6NatG3r37o2LFy9ixYoVaNWqlcZ/rxYtWmDLli0YP348WrVqhWrVqqFXr17l2l+iSsGUSzyJiIR4Vq5B16OottWqVRN169YVQ4YMEQcOHNDr/XJycsR///tf0adPH1GrVi1ha2srHBwcRPPmzcWnn34qsrKyNNo/evRITJ06VQQGBgpra2vh7e0t+vXrJ65cuSK1WbNmjahbt66wtbUVDRo0EOvWrZPKSuR34cIF0aFDB2Fvby8AaJTAmDNnjqhRo4awsLAoVAJjx44d4oUXXhCOjo7C0dFRNGjQQIwePVpcvHhR494UVRKkIHX/7t69W2S7gmUv1JYtWyYaNGggrK2thZeXlxg1apS4f/++RpsHDx6I1157Tbi4uAgALIFBpINMCCNsVkZEREREJcYcMiIiIiITY0BGREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRERERCbGwrAVmEqlwq1bt+Dk5MTtR4iIiCoJIQQyMzPh6+sLCwv9xr4YkFVgt27dgr+/v6m7QURERCVw48YN+Pn56dWWAVkF5uTkBCDvP2hR+/IRERFRxZGRkQF/f3/p97g+GJBVYOppSmdnZwZkRERElYwh6UZM6iciIiIyMQZkRERERCbGgIyIiIjIxJhDVsmpVCpkZ2ebuhtVmo2Njd7LlomIiEqi0gRkvXv3xpkzZ3Dnzh1Ur14doaGhmD9/Pnx9faU2Qgh8/vnnWL16Na5duwZ3d3e8/fbbmDp1qtTmp59+wvjx4/Hnn3/C398f06ZNw7BhwzTea/ny5fj000+RkpKCpk2b4osvvsDzzz8vnX/y5AkmTJiAzZs3IysrC2FhYVixYgW8vLykNtevX8eoUaNw+PBhVKtWDREREfjkk09gZWW8W56dnY2kpCSoVCqjXZMKs7CwQGBgIGxsbEzdFSIiqqIqTUDWuXNnfPDBB/Dx8cG///6L9957D/369cOxY8ekNmPHjsWBAwfw2WefoUmTJkhLS0NaWpp0PikpCT169MBbb72FjRs3Ii4uDiNHjoSPjw/CwsIAAFu2bMH48eOxatUqtG7dGosXL0ZYWBguXrwIT09PAMC7776LPXv2YNu2bZDL5YiOjkZ4eDiOHj0KAMjNzUWPHj3g7e2NY8eOITk5Ga+//jqsra3x8ccfG+V+CCGQnJwMS0tL+Pv7cwSnjKiL8yYnJ6NmzZos0EtERGVDVFI//PCDkMlkIjs7WwghxF9//SWsrKzEhQsXdL7m/fffF40bN9Y4NmDAABEWFiY9f/7558Xo0aOl57m5ucLX11d88sknQggh0tPThbW1tdi2bZvUJjExUQAQ8fHxQggh9u7dKywsLERKSorUZuXKlcLZ2VlkZWXp/RmVSqUAIJRKZaFz2dnZ4q+//hLp6el6X49KJj09Xfz111/Sd42IiKgoRf3+1qVSDqukpaVh48aNaNu2LaytrQEAu3btQu3atbF7924EBgYiICAAI0eO1Bghi4+PR2hoqMa1wsLCEB8fDyBvCvDkyZMabSwsLBAaGiq1OXnyJHJycjTaNGjQADVr1pTaxMfHo0mTJhpTmGFhYcjIyMCff/6p83NlZWUhIyND46FLbm4uAHAarRyo77H6nhMRERlbpQrIJk2aBEdHR7i5ueH69ev44YcfpHP//PMPrl27hm3btuF///sf1q9fj5MnT6Jfv35Sm5SUFI0gCQC8vLyQkZGBx48f4969e8jNzdXaJiUlRbqGjY0NXFxcimyj7Rrqc7p88sknkMvl0kOfbZM4hVb2eI+JiKismTQgmzx5MmQyWZGPCxcuSO0nTpyI06dP48CBA7C0tMTrr78OIQSAvFyfrKws/O9//0P79u3RqVMnrFmzBocPH8bFixdN9RENMmXKFCiVSulx48YNU3eJiIiIyoFJk/onTJhQaIVjQbVr15b+7O7uDnd3d9SrVw8NGzaEv78/jh8/DoVCAR8fH1hZWaFevXpS+4YNGwLIW/FYv359eHt74/bt2xrXv337NpydnWFvbw9LS0tYWlpqbePt7Q0A8Pb2RnZ2NtLT0zVGyQq2+e233wpdQ31OF1tbW9ja2hZ5P4iIiKjqMekImYeHBxo0aFDkQ1eOlLrUQ1ZWFgCgXbt2ePr0Ka5cuSK1+fvvvwEAtWrVAgAoFArExcVpXCc2NhYKhQJAXq5QixYtNNqoVCrExcVJbVq0aAFra2uNNhcvXsT169elNgqFAn/88Qfu3Lmj8T7Ozs5o1KhRCe5U1TFs2DBp9NPa2hpeXl7o0qUL1q5da1D5jvXr1xeaNiYiIipKamoqkpOTkZycjJMnb2P79lScPHlbOpaammqyvlWKshcJCQk4ceIEXnjhBVSvXh1XrlzB9OnTERQUJAVBoaGhCAkJwYgRI7B48WKoVCqMHj0aXbp0kUbN3nrrLSxbtgzvv/8+RowYgUOHDmHr1q3Ys2eP9F7jx49HREQEWrZsieeffx6LFy/Gw4cPMXz4cACAXC5HZGQkxo8fD1dXVzg7O+Odd96BQqFAmzZtAABdu3ZFo0aNMHToUCxYsAApKSmYNm0aRo8eXWFGwFJTU4ssKGtjYwM3N7cyee9u3bph3bp1yM3Nxe3bt7F//36MHTsW27dvx86dO41aq42IiAjI+723bNkyAMCpU82xa1dPCGEBmUyFXr12IyTkNAAgOjq6zH7/FaVS/OZzcHBATEwMZs6ciYcPH8LHxwfdunXDtGnTpADHwsICu3btwjvvvIMOHTrA0dER3bt3x+effy5dJzAwEHv27MG7776LJUuWwM/PD1999ZVUgwwABgwYgLt372LGjBlISUlBs2bNsH//fo0k/UWLFsHCwgJ9+/bVKAyrZmlpid27d2PUqFFQKBRwdHREREQEPvzww3K4W8XL/6UsSll9KW1tbaWp2xo1aiAkJARt2rTBSy+9hPXr12PkyJFYuHAh1q1bh3/++Qeurq7o1asXFixYgGrVquGnn36SAmR1wv3MmTMxa9YsfP3111iyZAkuXrwIR0dHvPjii1i8eLFUQ46IiMyTehBCqXSSgjEAEMICu3b1RFDQZcjlmSbb/aZSBGRNmjTBoUOHim3n6+uLHTt2FNmmU6dOOH36dJFtoqOjER0drfO8nZ0dli9fjuXLl+tsU6tWLezdu7foDpuIvl+28vxSvvjii2jatCliYmIwcuRIWFhYYOnSpQgMDMQ///yDt99+G++//z5WrFiBtm3bYvHixZgxY4a0YKNatWoAgJycHMyZMwf169fHnTt3MH78eAwbNqzC/rcgIqLylZbmhoJVv4SwQFqaK+TyTBP1qpIEZGQeGjRogHPnzgEAxo0bJx0PCAjARx99hLfeegsrVqyAjY0N5HI5ZDJZoUUSI0aMkP5cu3ZtLF26FK1atcKDBw+koI2IiMyXq2sqZDKVRlAmk6ng6ppWxKvKXqWqQ0ZVmxBCmoI8ePAgXnrpJdSoUQNOTk4YOnQoUlNT8ejRoyKvcfLkSfTq1Qs1a9aEk5MTOnbsCCBvpS0REZFcnolevXZDJstbSKbOITPl6BjAETKqQBITExEYGIirV6+iZ8+eGDVqFObOnQtXV1f8+uuviIyMRHZ2NhwcHLS+/uHDhwgLC0NYWBg2btwIDw8PXL9+HWFhYSbLCSAiooonJOQ0goIuIy3NFa6uaSYPxgAGZFRBHDp0CH/88QfeffddnDx5EiqVCp9//rm0afrWrVs12tvY2BTayujChQtITU3FvHnzpF0Ofv/99/L5AEREVKnI5ZkVIhBT45QllbusrCykpKTg33//xalTp/Dxxx/jlVdeQc+ePfH666+jTp06yMnJwRdffIF//vkHX3/9NVatWqVxjYCAADx48ABxcXG4d+8eHj16hJo1a8LGxkZ63c6dOzFnzhwTfUoiIiL9MSCjcrd//374+PggICAA3bp1w+HDh7F06VL88MMPsLS0RNOmTbFw4ULMnz8fwcHB2LhxIz755BONa7Rt2xZvvfUWBgwYAA8PDyxYsAAeHh5Yv349tm3bhkaNGmHevHn47LPPTPQpiYioLOQv7qrtoau4q65C8yVtZ2wyod4MkiqcjIwMyOVyKJVKODs7a5x78uQJkpKSEBgYCDs7O4Oua+o6ZJVNae41EREZT2l/f5VXUfSifn/rwhwyM+Tm5obo6GiTVeonIiIyhDqQunfvnsZxpdIJaWlucHVN1cgH0/X7rSL/XmNAZqYq8peSiIhIHYSlp6cXWtgFFL39UWXEgIyIiIgqlKKmJpVKJ9y44V/k9keVEQMyIiIiqlAKTjmqpyZv3fLBwYOhhbY+AirG9kelwYCMiIiIKqz8U5OAACDT2q4ibH9UGix7QURERBWSUumkMTVZVDBWEbY/Kg2OkBEREZFJ5C9DoVQqkZOTAwC4f/8+ACAtzU3r9OQzKvTrtx3+/jcrdTAGMCAjIiIiE9CnppiraypkMpWOoEyF3r13Izg4sdAZUxV3LQ0GZERERFTuiqqFmb++WGjoQcTGdkH+6UqZTIXIyK/g55csHQsPD4e7u3ulraPJHDKqUn766SfIZDKkp6fr/ZqAgAAsXry4zPpERESaUlNTtRZ5TUoKwNGjCixePA4bNkRg8eJxsLd/gi5dYgGoADzLF8sfjAGAr68vfHx8KmUwBnCEjMrZsGHDsGHDBrz55puFNgwfPXo0VqxYgYiICKxfv940HSQiojJ15coVfPPNNxrHdK2kVNcXGzduMYKDzyMtzRWurmka+WLh4eHw9fWttIGYGkfIqNz5+/tj8+bNePz4sXTsyZMn2LRpE2rWrGnCnhERUVlKTU0tFIzdvOmDnTt1r6TMX18sMPBaoeT9qhCMAQzIyARCQkLg7++PmJgY6VhMTAxq1qyJ5s2bS8eysrIwZswYeHp6ws7ODi+88AJOnDihca29e/eiXr16sLe3R+fOnXH16tVC7/frr7+iffv2sLe3h7+/P8aMGYOHDx+W2ecjIiLtCuaNHT2qwFdfjURR4Uj++mLh4eGIioqSHro2Ea+MGJARbt4EDh/O+1leRowYgXXr1knP165di+HDh2u0ef/997Fjxw5s2LABp06dQp06dRAWFoa0tLy/mDdu3EB4eDh69eqFM2fOYOTIkZg8ebLGNa5cuYJu3bqhb9++OHfuHLZs2YJff/0V0dHRZf8hiYjMVGpqKpKTkws98ueNHT2q+P9kfW2hiABQuL6Yu7s7fHx8pEdVCcYA5pCZvTVrgKgoQKUCLCyA1auByMiyf98hQ4ZgypQpuHbtGgDg6NGj2Lx5M3766ScAwMOHD7Fy5UqsX78e3bt3BwD897//RWxsLNasWYOJEydi5cqVCAoKwueffw4AqF+/Pv744w/Mnz9fep9PPvkEgwcPxrhx4wAAdevWxdKlS9GxY0esXLkSdnZ2Zf9hiYjMiD7lLJRKJxw8GArthV5V6NLlIHx9bxXKF6vKGJCZsZs3nwVjQN7PN98EwsIAP7+yfW8PDw/06NED69evhxACPXr0gLu7u3T+ypUryMnJQbt27aRj1tbWeP7555GYmFdzJjExEa1bt9a4rkKh0Hh+9uxZnDt3Dhs3bpSOCSGgUqmQlJSEhg0blsXHIyIyW0WVs1DTXfBVhZEjvyq0glKtMtYX0xcDMjN26dKzYEwtNxe4fLnsAzIgb9pSPXW4fPnyMnmPBw8e4M0338SYMWMKneMCAiKi0slfaV8tKSmp2NdpL/gq0KXLQSkY69y5Mzw8PODi4gIAlba+mL4YkJmxunXzpinzB2WWlkCdOuXz/t26dUN2djZkMhnCwsI0zgUFBcHGxgZHjx5FrVq1AAA5OTk4ceKENP3YsGFD7Ny5U+N1x48f13geEhKCv/76C3XK60MREZmB1NRU3L17F1u2bCmynVLphBs3/AEA/v43pOlHuTwTvXrtlkpdyGQqhIYeRLt28dJr69atCx8fn7L7EBUMAzIz5ueXlzP25pt5I2OWlsCXX5bP6BgAWFpaStOPlpaWGuccHR0xatQoTJw4Ea6urqhZsyYWLFiAR48eIfL/k9zeeustfP7555g4cSJGjhyJkydPFqpfNmnSJLRp0wbR0dEYOXIkHB0d8ddffyE2NrbYHAciIipMnxwxIK+22M6dPfEsaV+gd+9dCAk5DQAICTmNoKDLWmuLAVV7elIbBmRmLjIyL2fs8uW8kbHyCsbUnJ2ddZ6bN28eVCoVhg4diszMTLRs2RI//vgjqlevDiBvynHHjh1499138cUXX+D555/Hxx9/jBEjRkjXeO6553DkyBFMnToV7du3hxACQUFBGDBgQJl/NiKiqqjgFKV6myNr6yzk5NjC1TUVAAoEYwAgw65dPREUdFljpExb0v6QIUOq9PSkNjIhhDB1J0i7jIwMyOVyKJXKQoHLkydPkJSUhMDAQK4ULGO810REzyQnJ2P16tUAtFfYl8lUUCjicexYO62vj4hYj8DAa9LekwVVhVyxon5/68IRMiIiIjKYUumULxgD8m93FB+vQN7ek5orKfMXeVXXFKM8LAxLREREBtNduiIvKGvbNh7qDcGBwkVezS1HrDgcISMiIiKDaS9dkUcmU6F16wS0bp2AGzfykpP9/W9KwdiAAQMq/bSksTEgIyIiIoPJ5ZkIDT34/9sf5a+4LxAaejBf4n6iltfKy6eTlQinLCs5rskoe7zHRETa+fomo/D2RzL4+t4q8nWcriyMI2SVlLpuV3Z2Nuzt7U3cm6pNvcS7YK00IiJzlD+Y0jZtmT9xv0uXLggMDCz0ek5XFsaArJKysrKCg4MD7t69C2tra1hYcLCzLKhUKty9excODg6wsuJfFyIiNzc39O/fH1u3btVacT9/4n5gYCBXUuqJv2EqKZlMBh8fHyQlJeHatWum7k6VZmFhgZo1a0ImKzgsT0Rknjw9PaU/F1Vxn1OT+mNh2ApMn8JyKpWqUNVkMi4bGxuOQBIRFaBtY/H8zHlqkoVhzZCFhQWrxxMRUbkz12CrrDAgIyIiMgMc0arYGJARERFVcampqVi2bFmx7aKjoxmUmQgDMiIioiqgqBGwe/fu6XUN5iSbDgMyIiKiSk7fETCquLh0jIiIqJIrOLKlVDohKSkASqWTiXpEhuIIGRERURVy6lTzQoVaQ0JOa7RRKp2QluYGV9dUjbphZDoMyIiIiCqh/Dlj6hwxpdJJCsYAQAgL7NrVE0FBl6XAS5+AjcofAzIiIqJKRlfOWFqam8a+kkBeUJaW5gq5PFOvgI1MgzlkRERElYyunDFr6yzIZCqNc/k3+y4qYCPT4ggZERFRJVZwCvK5587h3LnntG727eqaCplMpRGU5Q/YuPek6TAgIyIiqgT0zRk7d+45REZ+hfR0FwAy+PvfkK4hl2di5sxbmDOnBnJzZbC0FJg/PwOvvTaIlfpNjAEZERFRBWdozthffzVGfLxCa+J+VJQlIiNluHwZqFNHBj8/FwAuZf8hqEgMyIiIiCo4XRX0dU1BHjumgDpNXFvivp9f3oMqDib1ExERVVJyeSZ69dotJfLLZCooFPEo+OudifsVH0fIiIiIKpn8hV1DQk4jKOgy0tJcpeR89XSlWv7EfaqYGJARERFVIroKu+avI9ar1+5CbdTnuZKyYmJARkREVEkUV9i1S5cucHJyQng48O67/yA1tToCAp7C17cVgFZcSVmBMSAjIiKqIPKXtshPXeaiuEr8gYGB8PHxKZe+knExICMiIqoAdJW2yK+4wq5UeXGVJRERUQWgq7RFftpWVTI/rGrgCBkREVEFlH8lZf6E/Y8+CsSMGXdx9aoV88OqEAZkREREFYyulZQA4O7uDh8fL7RoYeJOklExICMiIipHxSXuF7eSkqomBmRERETlRJ/E/eJWUlLVxKR+IiKicqJP4r56JWV+XElZ9TEgIyIiMhGl0glJSQFQKp2kY8WtpKSqiVOWREREJlBU4n7B/SnzB2MsbVE1MSAjIiIyIl1J+4D+ifvh4eFwd3cv9HqWtqi6GJARERGVUMHgKz09HVu3bi32dcUl7ueVtuAWSOak0uSQ9e7dGzVr1oSdnR18fHwwdOhQ3Lp1Szo/a9YsyGSyQg9HR0eN62zbtg0NGjSAnZ0dmjRpgr1792qcF0JgxowZ8PHxgb29PUJDQ3Hp0iWNNmlpaRg8eDCcnZ3h4uKCyMhIPHjwQKPNuXPn0L59e9jZ2cHf3x8LFiww8h0hIiJTUq+YXL16tfTQJxgDmLhPhVWagKxz587YunUrLl68iB07duDKlSvo16+fdP69995DcnKyxqNRo0Z49dVXpTbHjh3DoEGDEBkZidOnT6NPnz7o06cPzp8/L7VZsGABli5dilWrViEhIQGOjo4ICwvDkydPpDaDBw/Gn3/+idjYWOzevRs///wzoqKipPMZGRno2rUratWqhZMnT+LTTz/FrFmzsHr16jK+S0REVF70WTGpLWkfYOI+FSYTQghTd6Ikdu7ciT59+iArKwvW1taFzp89exbNmjXDzz//jPbt2wMABgwYgIcPH2L37t1SuzZt2qBZs2ZYtWoVhBDw9fXFhAkT8N577wEAlEolvLy8sH79egwcOBCJiYlo1KgRTpw4gZYtWwIA9u/fj5dffhk3b96Er68vVq5cialTpyIlJUVKvpw8eTK+//57XLhwQe/PmJGRAblcDqVSCWdn5xLfKyIiMr7k5OQi/6FdVNK+Wt72SIUT96Ojo5krVomV5Pd3pcwhS0tLw8aNG9G2bVutwRgAfPXVV6hXr54UjAFAfHw8xo8fr9EuLCwM33//PQAgKSkJKSkpCA0Nlc7L5XK0bt0a8fHxGDhwIOLj4+Hi4iIFYwAQGhoKCwsLJCQk4D//+Q/i4+PRoUMHjZUwYWFhmD9/Pu7fv4/q1asb4zYQEVEFVdKkfYCJ++aqUgVkkyZNwrJly/Do0SO0adNGY6QrvydPnmDjxo2YPHmyxvGUlBR4eXlpHPPy8kJKSop0Xn2sqDaenp4a562srODq6qrRJjAwsNA11Od0BWRZWVnIysqSnmdkZGhtR0REFU/+zcCZtE+GMmkO2eTJk7Um4ud/5J/imzhxIk6fPo0DBw7A0tISr7/+OrTNuH733XfIzMxEREREeX6cUvvkk08gl8ulh7+/v6m7REREejh1qjkWLx6HDRsisHjxONy65cOkfTKISUfIJkyYgGHDhhXZpnbt2tKf3d3d4e7ujnr16qFhw4bw9/fH8ePHoVAoNF7z1VdfoWfPnoVGury9vXH79m2NY7dv34a3t7d0Xn0s/79cbt++jWbNmklt7ty5o3GNp0+fIi0tTeM62t4n/3toM2XKFI0p1YyMDAZlREQmUFQtMUCzOKu26cmDB0MRGnoQBw+GauSQMWmfdDFpQObh4QEPD48SvValyvuXR/4pPiAvD+zw4cPYuXNnodcoFArExcVh3Lhx0rHY2FgpoAsMDIS3tzfi4uKkACwjIwMJCQkYNWqUdI309HScPHkSLVq0AAAcOnQIKpUKrVu3ltpMnToVOTk5Uo5bbGws6tevX2T+mK2tLWxtbUtwN4iIyFj02QAcyFsoBuiuKebrewvjxi1mtX3SS6XIIUtISMCJEyfwwgsvoHr16rhy5QqmT5+OoKCgQqNja9euhY+PD7p3717oOmPHjkXHjh3x+eefo0ePHti8eTN+//13aZWMTCbDuHHj8NFHH6Fu3boIDAzE9OnT4evriz59+gAAGjZsiG7duuGNN97AqlWrkJOTg+joaAwcOBC+vr4AgNdeew2zZ89GZGQkJk2ahPPnz2PJkiVYtGhR2d4oIiIqNX3KWQCQUmbUNcXyB2Xq6Um5PBNRUS9DLpdL55i0T9pUioDMwcEBMTExmDlzJh4+fAgfHx9069YN06ZN0xhRUqlUWL9+PYYNGwZLS8tC12nbti02bdqEadOm4YMPPkDdunXx/fffIzg4WGrz/vvv4+HDh4iKikJ6ejpeeOEF7N+/H3Z2dlKbjRs3Ijo6Gi+99BIsLCzQt29fLF26VDovl8tx4MABjB49Gi1atIC7uztmzJihUauMiIgqNxcXF0RHRyM7Oxs1amRg0iQ5cnNlsLQUmD8/A6+9NojBF+mt0tYhMwesQ0ZEVLa05Yrdu3cPMTExxb42KipKI9/45k3g8mWgTh3Az8/oXaVKxGzqkBEREZWWvrli+ctZFJWU7+fHQIxKjgEZERGZJX1yxfSptk9kDJVmL0siIqLypKvafsF9KYmMgQEZERGRFkVV2ycyNk5ZEhFRlacreT+/grliRZWzAFhLjIyLARkREVVp+iTv68oV69VrN3bv7gWViuUsqGwxICMioiqtuOR9XbliQUGXERJyGjNmtEZmphfq1JHBz88FgEuZ95nMDwMyIiIya0XlisnlmfD1VSFfuTGiMsGAjIiIKiV9NgDXNq3IXDGqiBiQERFRpZA/AFMqldiyZUuxr4mOjtZ4zlwxqqgYkBERUYWnb1X9gvKPoDFXjCoyBmRERFThFZyaLDjtqM/2RswVo4qMARkREVUqBacdn3vuHM6de67Y7Y2KyxUjMiVW6iciokpD27Tj2bNNdW5vpFQqpaR8uTwTvXrthkymAgApeFOPqDF5n0ypRCNkhw8fRufOnY3dFyIioiJpm3YEZBrP8k9D5uTkwM3NDdHR0dK054wZd3H1qhUCAp7C17cVgFZM3ieTK1FA1q1bN/j5+WH48OGIiIiAv7+/sftFRERUiLZpR0Agf1CmbRoyf7Dl4wO0aFHGHSUyUImmLP/9919ER0dj+/btqF27NsLCwrB169ZiqyETERGVhrZpRz+/G8gLygBA4LnnzulM7CeqqEoUkLm7u+Pdd9/FmTNnkJCQgHr16uHtt9+Gr68vxowZg7Nnzxq7n0RERACAkJDTGDduMSIi1iMy8iv8+68fno2QyXDu3HNSDpmVFdeuUeVQ6m9qSEgIvL294ebmhnnz5mHt2rVYsWIFFAoFVq1ahcaNGxujn0REZAZ0Vd9XKpUaz+XyTMjlmUhKCiiylIWLi0tZdpfIaEockOXk5OCHH37A2rVrERsbi5YtW2LZsmUYNGgQ7t69i2nTpuHVV1/FX3/9Zcz+EhFRFaVv8df+/fvj6dOniImJYSkLqjJKFJC98847+PbbbyGEwNChQ7FgwQIEBwdL5x0dHfHZZ5/B19fXaB0lIqKqTd885PyjXuqcsoLbITGHjCqbEgVkf/31F7744guEh4fD1tZWaxt3d3ccPny4VJ0jIqKqSdvU5L179/R+ff6aYSEhpxEUdBlpaa5wdU3TCMZYW4wqixIFZHFxccVf2MoKHTt2LMnliYioCtN3arKo7ZAK1hbThrXFqDIpcQ7ZxYsX8cUXXyAxMREA0LBhQ7zzzjuoX7++0TpHRERVjz5TkwW3R9K2HRKDLapKSlT2YseOHQgODsbJkyfRtGlTNG3aFKdOnUJwcDB27Nhh7D4SEVEVplQ6ISkpIN92R4W3R8q/HRJRVVSiEbL3338fU6ZMwYcffqhxfObMmXj//ffRt29fo3SOiIgqL10lLPLnimkbCate/X6RpSyIqqISBWTJycl4/fXXCx0fMmQIPv3001J3ioiIKjd98sR0jYRFRn7FUhZkdko0ZdmpUyf88ssvhY7/+uuvaN++fak7RURElZs+eWLaNgoXwgI5OTaFtkfKX8qCKyepKirRCFnv3r0xadIknDx5Em3atAEAHD9+HNu2bcPs2bOxc+dOjbZERGQ+UlNTC5Ww0LZisqiiroGB1xAdXRcZGZ4ICHgKX99WAFpx5SRVWTIhhCi+mSYLC/0G1mQyGXJzcw3uFOXJyMiAXC6HUqmEs7OzqbtDRFQsbVOVRa2YLOpcVFQUfHx8yv0zEJVWSX5/l2iETKVSleRlRERUxd29e1fjua48saCgy5DLM1nUlej/lXpzcSIiIgC4cuUKtmzZonHsxg3/IldMhoeHw93dvdC1ODVJ5kbvgGzp0qV6X3TMmDEl6gwREVVOqamp+Oabb6TnSqUTfv65PU6ebFGobf4Vk+7u7pyWJIIBAdmiRYv0aieTyRiQERGZmfyrKk+dao6dO3tC20J+bv5NpJ3eAVlSUlJZ9oOIiKoApdJJZzAGAH37bkdwcKL0nHliRHmYQ0ZEREaTluYG3SUuVfD3vwkACA8Ph6+vL/PEiP5fiQOymzdvYufOnbh+/XqhAoALFy4sdceIiKjs5d/e6NYtCyQlWSEw8Cl8ffNW0xuaXO/qmgpAhcJBmUCXLgelqUp3d3cGY0T5lCggi4uLQ+/evVG7dm1cuHABwcHBuHr1KoQQCAkJMXYfiYioDOSvGVZUPbD+/fvDxcVFr+BMLs9E7967C0xbCnTpEot27eKldpyqJNJUooBsypQpeO+99zB79mw4OTlhx44d8PT0xODBg9GtWzdj95GIiMqAemSsuFphW7dulV4THR1dbFCmri1244YfAMDf/6ZGEn///v05OkZUQIn2skxMTJQ2F7eyssLjx49RrVo1fPjhh5g/f75RO0hERGVL156Sf/7ZCEqlk8ZxffaoBPJGyoKDExEcnFhoRaWnp2fpOkxUBZUoIHN0dJT+Uvr4+ODKlSvSuYL7lxERUcWm3lNSk8CBA92wePE4nDrVvNhr6DsFOWTIEI6OEWlRoinLNm3a4Ndff0XDhg3x8ssvY8KECfjjjz8QExMjbTZORESVg1yeiV69duebthQAZAAKT1/q4ubmhujo6CJH0Fh9n0i3EgVkCxcuxIMHDwAAs2fPxoMHD7BlyxbUrVuXKyyJiCohdd7Xn382woEDmrnA+bc6KgqDLaKSK1FAVrt2benPjo6OWLVqldE6REREpiGXZ6Jx478QG9tVI6cs/1ZHRFQ2SlUYNjs7G3fu3IFKpZl7ULNmzVJ1ioiIinfzJnDpElC3LuDnZ9hrU1NTteb8Fpy+5FZHROWjRAHZ33//jcjISBw7dkzjuBACMpkMubm5RukcERFpt2YNEBUFqFSAhQWwejUQGam9bf7irwCgVCqxZcsWnddWT1+mpbnC1TWNwRhROShRQDZ8+HBYWVlh9+7d8PHxgUwmM3a/iIhIi9TUVFy9+hRRUZ5QqfL+36tSAW++KdCs2R0EBFhp5HLlL/6qi1LphLQ0N7i6pkrBl1yeqTUQY0FXorJRooDszJkzOHnyJBo0aGDs/hARkQ7q4CopKQAqVYTGudxcGb74Yh8CA69pFG8tuOqxYPBVVIX+8PBwuLu7S6/lKkmislOigKxRo0asN0ZEVM7UwZW6bpiuxHtdpScKBl+hoQdx8GCozgr97u7u8PHxKeNPRUSAAYVhMzIypMf8+fPx/vvv46effkJqaqrGuYyMjLLsLxGR2VMn3quLueqTeK9te6TY2FCtFfrT0lzLrvNEpJXeI2QuLi4auWJCCLz00ksabZjUT0RUPvRJvM+/kvLGDf9CwRdgUeRIGxGVH70DssOHD5dlP4iIyEC6Eu8BzWR+9VRlQQWnLVnigsh09A7IOnbsKP35+vXr8Pf3L7S6UgiBGzduGK93RERUIuo8soJTlc88S+APDj7PEhdEJlaipP7AwEAkJyfD09NT43haWhoCAwM5ZUlEVEGkpblpCcaAfv22Izg4EQBLXBBVBCUKyNS5YgU9ePAAdnZ2pe4UEREVLuhaktXtulZk+vvf1GjXv39/uLi4SM9Z4oKofBkUkI0fPx4AIJPJMH36dDg4OEjncnNzkZCQgGbNmhm1g0RE5qhgQddn9cOcip1WtLGxkQK54rZCCg8Ph6+vL4MvIhMzKCA7fTqvWKAQAn/88YfGcLaNjQ2aNm2K9957z7g9JCIyQ/lHxkpSvDU5OVk6VtSKTHd3dwZjRBWAQQGZeqXl8OHDsWTJEjg7O5dJp4iIKI+2+mElKd5a1IpMIjI9vQvD5rdu3ToGY0RE5UBbUj6LtxJVPSVK6n/48CHmzZuHuLg43LlzByqVSuP8P//8Y5TOERGZu+K2SdJF3xWSXElJVDGUKCAbOXIkjhw5gqFDh8LHx0friksiInN08yZw6RJQty7g51f66xWXlK+Lm5sboqOjde5rCXAlJVFFUqKAbN++fdizZw/atWtn7P4QEVVaa9YAUVGASgVYWACrVwORkaW/rj7bJGnDYIuo8ihRDln16tXh6sr8BSIitZs3nwVjQN7PN9/MO24McnkmAgOvMTGfqIoqUUA2Z84czJgxA48ePTJ2f4iIKp3U1FQcP56KAum0yM0FEhJSkZqaavA1mQNGZF5KNGX5+eef48qVK/Dy8kJAQACsra01zp86dcoonSMiqujUBVyVSifIZOMKrIhU4ejRDTh/PhPR0dEGTSEyB4zIvJQoIOvTp4+Ru0FEVDkVrIi/c2dPPJt8kOH8+WD4+ibj11+v4vnn89rqG0gx2CIyHyUKyGbOnGnsfhARVXpBQZchkwFCqI/IEBvbBYAM//ufZoX9/v37w9PTk0EXEQEwMIfst99+Q25urs7zWVlZ2Lp1a6k7RURUGWkr4grklQUSwgI7d/bEzZt5VfW3bt2KZcuWlSi/jIiqHoMCMoVCofE/D2dnZ40isOnp6Rg0aJDxepdP7969UbNmTdjZ2cHHxwdDhw7FrVu3NNr8+OOPaNOmDZycnODh4YG+ffvi6tWrGm1++uknhISEwNbWFnXq1MH69esLvdfy5csREBAAOzs7tG7dGr/99pvG+SdPnmD06NFwc3NDtWrV0LdvX9y+fVujzfXr19GjRw84ODjA09MTEydOxNOnT41yL4ioYlIXcdXNAmvWjMSpU82lI0XliBGR+TAoIBPPxuG1Ptd1zBg6d+6MrVu34uLFi9ixYweuXLmCfv36SeeTkpLwyiuv4MUXX8SZM2fw448/4t69ewgPD9do06NHD3Tu3BlnzpzBuHHjMHLkSPz4449Smy1btmD8+PGYOXMmTp06haZNmyIsLAx37tyR2rz77rvYtWsXtm3bhiNHjuDWrVsa75Obm4sePXogOzsbx44dw4YNG7B+/XrMmDGjTO4NEVUM6jyyZ0GZtv9H5u1FqVQ6lW/niKhCkwkDIigLCwukpKTA09MTAODk5ISzZ8+idu3aAIDbt2/D19e3yGlNY9m5cyf69OmDrKwsWFtbY/v27Rg0aBCysrJgYZEXZ+7atQuvvPKK1GbSpEnYs2cPzp8/L11n4MCBSE9Px/79+wEArVu3RqtWrbBs2TIAgEqlgr+/P9555x1MnjwZSqUSHh4e2LRpkxQQXrhwAQ0bNkR8fDzatGmDffv2oWfPnrh16xa8vLwAAKtWrcKkSZNw9+5dvZepZ2RkQC6XQ6lUcu9QonKmb8X95ORkrF69WuOYUumEtDRX3Lrli9jYUGj7t29ExHoEBl5DVFSUXpuDE1HlUZLf3yWqQ2ZqaWlp2LhxI9q2bSuV3GjRogUsLCywbt065ObmQqlU4uuvv0ZoaKjUJj4+HqGhoRrXCgsLQ3x8PIC8qYOTJ09qtLGwsEBoaKjU5uTJk8jJydFo06BBA9SsWVNqEx8fjyZNmkjBmPp9MjIy8Oeff+r8XFlZWcjIyNB4EFH5W7MGqFULePHFvJ9r1hj2enUR13bt4jFy5FeFpjH12YuSiMyLwQHZX3/9hXPnzuHcuXMQQuDChQvS86KCDWOYNGkSHB0d4ebmhuvXr+OHH36QzgUGBuLAgQP44IMPYGtrCxcXF9y8eVNjkUFKSopGkAQAXl5eyMjIwOPHj3Hv3j3k5uZqbZOSkiJdw8bGBi4uLkW20XYN9TldPvnkE8jlcunh7++v550hImNITU3FyZO3ERUlClTcFzh58rbWBPziRrz9/JI1pjH13YuSiMyLwQHZSy+9hGbNmqFZs2Z49OgRevbsiWbNmqF58+aFRp+KM3nyZMhksiIfFy5ckNpPnDgRp0+fxoEDB2BpaYnXX39dyllLSUnBG2+8gYiICJw4cQJHjhyBjY0N+vXrV2Z5bcY2ZcoUKJVK6XHjxg1Td4nIbKgLvH7xxX6oVDKNc7m5Mnzxxb5CqyJTU1ORnZ2NLl26FHntkJDTGDduMSIi1mPcuMVS6QsiIjWD6pAlJSUZ9c0nTJiAYcOGFdlGnZ8GAO7u7nB3d0e9evXQsGFD+Pv74/jx41AoFFi+fDnkcjkWLFggtf/mm2/g7++PhIQEtGnTBt7e3oVWQ96+fRvOzs6wt7eHpaUlLC0ttbbx9vYGAHh7eyM7Oxvp6ekao2QF2xRcmam+prqNNra2trC1tS3yfhBR2VCvdlSvlMxfviL/FKO6nTqAU8vLG3ODq2uq1tEvuTyTo2JEpJNBAVmtWrUMuvjbb7+NDz/8EO7u7lrPe3h4wMPDw6Brqqn+fz4hKysLAPDo0SMpmV/N0tJSo61CocDevXs12sTGxkKhUADIm3po0aIF4uLipN0IVCoV4uLiEB0dDSAvV83a2hpxcXHo27cvAODixYu4fv26dB2FQoG5c+fizp070gKI2NhYODs7o1GjRiX6vERUPtQrJXft6gkhLApNMZ4/n46jR20glz9beX3qVPNC7fUdBeNelEQEGLjK0lDOzs44c+aMxihXSSQkJODEiRN44YUXUL16dVy5cgXTp0/H7du38eeff8LW1haHDh1CaGgoZs2ahUGDBiEzMxMffPABLly4gMTERNjb2yMpKQnBwcEYPXo0RowYgUOHDmHMmDHYs2cPwsLCAOSVvYiIiMCXX36J559/HosXL8bWrVtx4cIFKQ9s1KhR2Lt3L9avXw9nZ2e88847AIBjx44ByCt70axZM/j6+mLBggVISUnB0KFDMXLkSHz88cd6f26usiQqPwVXS6pXSrq6pknBmLbAKyjoMhYvHldoRG3cuMWQyzMRHh6u8x+l3IuSqGoqye/vEm2dpC9jxXoODg6IiYnBzJkz8fDhQ/j4+KBbt26YNm2aNMX34osvYtOmTViwYAEWLFgABwcHKBQK7N+/H/b29gDyEv/37NmDd999F0uWLIGfnx+++uorKRgDgAEDBuDu3buYMWMGUlJS0KxZM+zfv18jSX/RokWwsLBA3759kZWVhbCwMKxYsUI6b2lpid27d2PUqFFQKBRwdHREREQEPvzwQ6PcDyIqewWnGJVKJykYA57VE+vbd0eh6vxCWCAtzRVyeSbc3d1Z1oKIilWmI2QF65SRYThCRlR+tNUTyy8pKQAbNkQUOt6v31bs2NFP5wgZ64wRmR+zqUNGRGSomzeBw4fzfpaEtm2RZDIV/P1vsqwFEZVamU5ZEhFVBGvWAFFReTXFLCyA1auByEjDrlFUsn9IyGkEBV0ulHNGRKQvBmREVGWlpqbi6tWniIrylGqLqQu9Nmt2BwEBVlJSvT6rHYsKvFjWgohKo0wDsiFDhjD3iYhMQl0nLCkpACqVZu6XutBrYOA1REdHw83NDW5uboiOjpbqjKndu3cPMTEx0nNDAy+WtSAifZQoIFOpVIVqfqmP37x5EzVr1gQArFy5snS9IyIqIUMLvQIoVQkKbeUtWNaCiPRlUFJ/RkYG+vfvD0dHR3h5eWHGjBnIzc2Vzt+9exeBgYFG7yQRUUmpc79KmnSv7wiXr68vfHx8NB4MxohIXwaNkE2fPh1nz57F119/jfT0dHz00Uc4deoUYmJipP9pVZZ9I4nIfJQm6V7XVGZ+HAkjotIyKCD7/vvvsWHDBnTq1AkA0KdPH/To0QO9evXCzp07AQAymayIKxARmYau3K979+7h1i0LJCVZITDwKXx980bS8gdZDLaIqKwZNGV59+5djf0s3d3dcfDgQWRmZuLll1/Go0ePjN5BIqKyNG1aElq18sCrr7qhVSsPvPXWCaxevRrLli1DamqqqbtHRGbCoICsZs2aSExM1Djm5OSEAwcO4PHjx/jPf/5j1M4REZUlXdshKZVOAFDkNCURkTEZFJB17doV69atK3S8WrVq+PHHH2FnZ2e0jhERlbW0NDed+1ASEZUng3LIZs+ejVu3bmk95+TkhNjYWJw6dcooHSMiMkRqaqrGiJZSqSz2NcWVxCAiKi8GBWTVq1dH9erVdZ53cnJCx44dS90pIiJ9paam4s6dO9i6dat0TKl0QlqaG1xdnTQS+Zs27YHUVFfI5Xfw558/FrkdEhFReTK4MOzTp0+xaNEifPvtt/j7778BAPXq1cNrr72GsWPHwtra2uidJCLSRl2NX02pdEJCQmscO6YA8CzACgk5jVOnmmPWrBDkZWoEoHfvOwgJOc19KImoQjAoIHv8+DG6dOmC+Ph4hIaGokOHDgCAxMRETJo0CTt37sSBAweYS0ZE5SL/FOWpU801EvSBZ0n6np4p2LmzJ56lzVpg586eCAq6LJXDYCBGRKZkUEA2b9483LhxA6dPn8Zzzz2nce7s2bPo3bs35s2bh1mzZhmzj0RkJm7eBC5dAurWBfz8im6bmpqKe/fuASi8WjI/ISzw9991UXgNkwVu3PCDXJ5Y6DVEROXNoFWWmzdvxsKFCwsFYwDQtGlTfPbZZ9i0aZPROkdEVV9qaiqSk5Px+efpqFVL4MUXgVq1BD7/PB3Jyclaa4GppyrVm37fuOGvNRgD8pL0q1V7UKK+cWNwIiovBo2QXbt2Dc8//7zO823atMH169dL3SkiMg/qwEqpdMLixeMgRN5OHyqVDBMnOuPff9dCLs9EdHS0RrV8bVOV2uXlkAUFXcbevQLAs51EZDIV/P1vAgA6d+6MunXraryS2yERUXkyKCBzdnbGnTt34O/vr/V8SkoKnJycjNIxIqr61IFVUfXA5PJMnQVadU9VqtC2bTxat06QcsN6996lczVl9erV4ePjY9wPR0RkAIMCss6dO+Pjjz/Gjh07tJ6fN28eOnfubJSOEZH5KGk9MG2BHAD067cdwcGauWFcTUlEFZlBAdnMmTPRunVrtGnTBuPHj0eDBg0ghEBiYiIWLVqEv/76C8ePHy+rvhJRFVXSemC6Ajn1VKS292EgRkQVkUEBWaNGjRAbG4vIyEgMHDgQMllePoYQAg0aNMCBAwfQuHHjMukoEVVtRY1gqVdTFnxurMKuVlYGl2QkIjIqg/8v1KZNG/z55584c+aMRmHYZs2aGbtvRGRmdI1grVsX+/+V91MLnS8qkOvcuTMOHz5c7Pu6uLiUuu9ERKVhcECWkZGBatWqoVmzZhpBmEqlwoMHD+Ds7GzM/hGRmctf8DV/5f38dAVyHh4eer0Hy1sQkakZFJB99913mDRpEs6cOQMHBweNc48fP0arVq3w2WefoVevXkbtJBGZp4KrKNWV99UV9ovj6emJ6Ohonas0AZa3IKKKwaCAbOXKlXj//fcLBWMA4OjoiEmTJmHZsmUMyIgIQF6dsaKCoUePHhX5+uLKYYSHh8Pd3V3raxloEVFlYlBAdv78eaxYsULn+Q4dOmDatGml7hQRVX7aNv7Wlgc2ZMiQQv/Iu3fvHmJiYooth+Hu7s76YURUJRgUkN2/fx9Pnz7VeT4nJwf3798vdaeIqPLTtfF3wTwwBwcHnUGVsVZREhFVdAYFZAEBAfj999/RoEEDred///131KpVyygdI6KqobR5YCzoSkTmwKDNxcPDwzF16lTcvn270LmUlBRMmzYNffv2NVrniKjyKyoPTF9yeSYCA68xGCOiKsugEbLJkyfjhx9+QN26dTFkyBDUr18fAHDhwgVs3LgR/v7+mDx5cpl0lIgqp5Jsi6RvGQqWqyCiqsKggMzJyQlHjx7FlClTsGXLFilfzMXFBUOGDMHcuXO5uTiRmVOvrCxNNX03NzeWqyAisyITQoiSvFAIgXv37kEIAQ8PD2kbpfyOHj2Kli1bwtbWttQdNUcZGRmQy+VQKpUsuEuVQlErKwFozQOLioriSkkiqlJK8vu7xBu4yWSyYqtgd+/eHWfOnEHt2rVL+jZEVInou7KSiIg0GZTUb6gSDr4RUSWna2WlUlk4pYF5YEREpRghIyLSRd8K+8wDIyLKw4CMiIyOFfaJiAxTplOWRGSe1CsrZTIVABRaWXnv3j2kpqaasotERBVKmY6QaVt5SUSVU3EbhRfMBctfYd/aOhs5ObZQKp0gl2ciJiYGABAdHc0pSyIilHFAxqR+oqqhYDkLXfr376/xXC7PxJUrdXSutiwqwCMiMidlGpBlZnKbE6Lyps9IlqGjUgWvl7++WP6aYupi0fnblWYfSyIic2FQQPbiiy/q1e7QoUMl6gwRlU5RhVnzB0ClmSosqr5YbGysRtviVlsSEVEegwKyn376CbVq1UKPHj1gbW1dVn0iohLStzBrSacKixrxAlAo+CvJPpZERObIoIBs/vz5WLduHbZt24bBgwdjxIgRCA4OLqu+EVEJGTpVWNw0p1KpBKB7xCshoTXi4xWFgr+S7GNJRGSODArIJk6ciIkTJyI+Ph5r165Fu3btUL9+fYwYMQKvvfYa91skKmOlDZy0TRXqm7APaB/xAlRSMKZ+n/zBX/7VlgX3sSQiojwlSupXKBRQKBRYsmQJtm3bhuXLl+O9997DrVu3GJQRlRF988MAw6YK9U3YB6B1xEuhiMexY+002hUM/uTyTAZiRERFKNUqy1OnTuHIkSNITExEcHAw88qIypAhG3eXdKpQnw3BC454AdAYIQP0zxPjPpZERHkMDshu3bqF9evXY/369cjIyMCQIUOQkJCARo0alUX/iKgAffPDDJ0q1Pe62kbQigr+1PtWFsR9LImInjEoIHv55Zdx+PBhdO3aFZ9++il69OgBKytuh0lUngzJDzNkqlCf6+oaQSsq+OO+lURExTMomtq/fz98fHxw/fp1zJ49G7Nnz9ba7tSpU0bpHBEVZoxSEunp6QA0pwyLu25xI2i6gj9OSxIRFc+ggGzmzJll1Q8i0lNx+WH9+/eHi4sLlEoltmzZovUaW7dulf48YMAAva5b3AiatqlJTksSEemHARlRJVTUFKGLi4tBU4Q5OTl6Xbe4ETROTRIRlZxF8U2Kd+TIEezdu7fQPnZEVHbk8kwEBl7TO0dMqXRCUlIAlEonjeMF95zVdV31CJpMpgIAFnklIjIigyv1P3jwAHPmzAEACCHQvXt3HDhwAADg6emJuLg4NG7c2Pg9JTJz+uZiaWunz/6TXbt2RbVq1aTXWFlZwcXFBffu3UNMTAwAw1duEhGRfgwKyLZs2YJJkyZJz7dv346ff/4Zv/zyCxo2bIjXX38ds2fP1shPISLjcHNzQ3R0dJGV+rXlbOlbzkL9D6v8oqOjC+WFscgrEZHxGRSQJSUl4bnnnpOe7927F/369UO7dnlVuqdNm4ZXX33VuD0kIklJEuR1JePfuOEHuTyxyNdmZ2eXamSOiIj0Y1BA9vTpU9ja2krP4+PjMW7cOOm5r68v7t27Z7TOEVHpad9/Eti+vR+ys/OmLovaLqmkI3NERKQ/gwKyoKAg/Pzzz6hduzauX7+Ov//+Gx06dJDO37x5k/9TJqpgCpazeCZv6vLxYzscPBha5HZJ/HtNRFS2DArIRo8ejejoaPzyyy84fvw4FAqFxpZJhw4dQvPmzY3eSSLST2pqqjSSpVQqpeMhIadhY5OF7ds1UwqEsEBsbCjUC6515ZcREVHZMigge+ONN2BpaYldu3ahQ4cOheqS3bp1CyNGjDBqB4lIP6mpqVi2bJnO8/7+N7TWEdN3GyYiIio7Bm9EOWLECJ1B14oVK0rdISIqmaJyvADtlfhDQw9K05Vqhm7DREREpcedwYmqKG2J+trqiNnbP9G5XRIREZUPgwKynJwcTJ06FTExMXB1dcVbb72lMVp2+/Zt+Pr6Ijc31+gdJSL9FVUIdvjwLrCyspLqBRZV7JWlLIiIyodBAdncuXPxv//9D++99x7S09Mxfvx4JCQk4Msvv5TaCCGM3kki0l9xhWDVe06ylAURUcVhUEC2ceNGfPXVV+jZsycAYNiwYejevTuGDx+OtWvXAgBkMpnxe0lUAeRfwahNRQlgdBWCLZioXxH6SkREeQwKyP79918EBwdLz+vUqYOffvoJL774IoYOHYoFCxYYvYNEFUFxKxjVoqOjTR7oaCsEy0R9IqKKzaL4Js94e3vjypUrGsdq1KiBw4cP48SJExg2bJgx+0ZUYRS3gtHQdmVJvZpSJlMBABP1iYgqAYMCshdffBGbNm0qdNzX1xeHDh1CUlKS0TpWUO/evVGzZk3Y2dnBx8cHQ4cOxa1btzTabN26Fc2aNYODgwNq1aqFTz/9tNB1fvrpJ4SEhMDW1hZ16tTB+vXrC7VZvnw5AgICYGdnh9atW+O3337TOP/kyROMHj0abm5uqFatGvr27Yvbt29rtLl+/Tp69OgBBwcHeHp6YuLEiXj69GnpbwSZpdTUVCQnJ+t8pKamaiTgh4ScxrhxixERsR7jxi3WqLzPRH0ioorHoCnL6dOn48KFC1rP1ahRA0eOHEFsbKxROlZQ586d8cEHH8DHxwf//vsv3nvvPfTr1w/Hjh0DAOzbtw+DBw/GF198ga5duyIxMRFvvPEG7O3tER0dDSBvc/QePXrgrbfewsaNGxEXF4eRI0fCx8cHYWFhAIAtW7Zg/PjxWLVqFVq3bo3FixcjLCwMFy9ehKenJwDg3XffxZ49e7Bt2zbI5XJER0cjPDwcR48eBQDk5uaiR48e8Pb2xrFjx5CcnIzXX38d1tbW+Pjjj8vk/lDZUOeNmXKPVkOmS5moT0RUOclEJV0WuXPnTvTp0wdZWVmwtrbGa6+9hpycHGzbtk1q88UXX2DBggW4fv06ZDIZJk2ahD179uD8+fNSm4EDByI9PR379+8HALRu3RqtWrWSfgGqVCr4+/vjnXfeweTJk6FUKuHh4YFNmzahX79+AIALFy6gYcOGiI+PR5s2bbBv3z707NkTt27dgpeXFwBg1apVmDRpEu7evav3CEVGRgbkcjmUSiWcnZ2Nct9If/oGQvlFRUXBx8fHqP1ITk7G6tWri20XHh4OX19fBlxERCZWkt/fBk1Zqm3btg3h4eEIDg5GcHAwwsPDsX379pJcqkTS0tKwceNGtG3bFtbW1gCArKws2NnZabSzt7fHzZs3ce3aNQBAfHw8QkNDNdqEhYUhPj4eQF7+z8mTJzXaWFhYIDQ0VGpz8uRJ5OTkaLRp0KABatasKbWJj49HkyZNpGBM/T4ZGRn4888/jXUbqIwVNdKkVDohKSkASqVTOfao6PeOiYnBsmXLkJqaWu59IiKi0jFoylKlUmHQoEHYtm0b6tWrhwYNGgAA/vzzTwwYMACvvvoqvv322zIrfTFp0iQsW7YMjx49Qps2bbB7927pXFhYGN59910MGzYMnTt3xuXLl/H5558DyBthCAgIQEpKikaQBABeXl7IyMjA48ePcf/+feTm5mpto56qTUlJgY2NDVxcXAq1SUlJkdpou4b6nC5ZWVnIysqSnmdkZOhzW6icFVV0tSjGKJuhz3tXhIUFRERkGIMCsiVLluDgwYPYuXOnVItMbefOnRg+fDiWLFmCcePG6XW9yZMnY/78+UW2SUxMlAK/iRMnIjIyEteuXcPs2bPx+uuvY/fu3ZDJZHjjjTdw5coV9OzZEzk5OXB2dsbYsWMxa9YsWFiUaCCw3H3yySeYPXu2qbtBRSiu6Kouxiiboe29d+7sCU/PFPj5JZfg0xARUUVhUKSybt06fPrpp4WCMSBvFeSCBQukArH6mDBhAhITE4t81K5dW2rv7u6OevXqoUuXLti8eTP27t2L48ePA8grSDt//nw8ePAA165dQ0pKCp5//nkAkK7h7e1daDXk7du34ezsDHt7e7i7u8PS0lJrG29vb+ka2dnZSE9PL7KNtmuoz+kyZcoUKJVK6XHjxg297iOVn6KKrgK6VzAao2yGtvcGLLBmzUicOtVcr+sTEVHFZNAI2aVLlwrlYOUXGhoqrWjUh4eHBzw8PAzpgkSlyquxlH+KDwAsLS1Ro0YNAMC3334LhUIhvYdCocDevXs12sfGxkKhUADI+2XaokULxMXFoU+fPtL7xMXFSZ+rRYsWsLa2RlxcHPr27QsAuHjxIq5fvy5dR6FQYO7cubhz5460MjM2NhbOzs5o1KiRzs9ka2sLW1vbEt0PKntKpRMePnQoVHTVwkLgnXe6IyDAqkwT6rUVfAX0H6UjIqKKy6CAzN7eHunp6ahZs6bW8xkZGYUS640hISEBJ06cwAsvvIDq1avjypUrmD59OoKCgqQg6N69e9i+fTs6deqEJ0+eYN26ddi2bRuOHDkiXeett97CsmXL8P7772PEiBE4dOgQtm7dij179khtxo8fj4iICLRs2RLPP/88Fi9ejIcPH2L48OEAALlcjsjISIwfPx6urq5wdnbGO++8A4VCgTZt2gAAunbtikaNGkm7F6SkpGDatGkYPXo0A65yZqztjvLnbgEqKTCSyVRYsCADLVp4FXuN/JRKJ6SlucHVNVXvIEpd8HXnzp4oOLitbWskIiKqPAwKyBQKBVauXImVK1dqPb98+XIpQDImBwcHxMTEYObMmXj48CF8fHzQrVs3TJs2TSPA2bBhA9577z0IIaBQKPDTTz9J05YAEBgYiD179uDdd9/FkiVL4Ofnh6+++kqqQQYAAwYMwN27dzFjxgykpKSgWbNm2L9/v0aS/qJFi2BhYYG+ffsiKysLYWFhWLFihXTe0tISu3fvxqhRo6BQKODo6IiIiAh8+OGHRr83pJuxtjsqmLsFWEAIFfr12wp//5t47bVBAFy0vr86GMxfx8zQRQEFC756eqZgzZqR3BqJiKgKMSggmzp1Kjp16oTU1FS89957aNCgAYQQSExMxOeff44ffvgBhw8fNnonmzRpgkOHDhXZxt3dXSo7UZROnTrh9OmiV8SpC2zqYmdnh+XLl2P58uU629SqVavQ9CiVr9LmbakDIV25W46OjyCXZ2rNG9MVDJZkUYCbmxuio6Nx69YtxMTEwM8vGb167S4U1HF0jIio8jIoIGvbti22bNmCqKgo7NixQ+Nc9erV8e2336Jdu3ZG7SCRqagDoatXn+LrrwVUqmflXCwti84b0xXkFbUooKiAquB7hIScRlDQZaSlucLVNU3jtdwaiYio8jEoIAOA//znPwgLC8OPP/6IS5cuAQDq1auHrl27wsHBwegdJDIlNzc3uLkBq1cDb74J5OYClpbAl1/KDM4bA7Qn5us73agOELk1EhFR1WNQQHbo0CFER0fj+PHj+M9//qNxTqlUonHjxli1ahXat29v1E4SmVpkJBAWBly+DNSpA/j5lew66sR8XdONxY1uMdgiIqqaDArIFi9ejDfeeEPrvkxyuRxvvvkmFi5cyICMqiQ/v5IHYvlXVeafbhw8uDWCg1sBaMXRLSIiM2ZQQHb27NkiK+t37doVn332Wak7RVSV6FpVKZdnwt+/jdE3IyciosrHoEr9t2/fljbz1sbKygp3794tdaeIqgpdqyrVG4Nv2bKFm4ETEZFhAVmNGjVw/vx5nefPnTvHf+1ThaHvasOyXJVY3FZLADcDJyIiA6csX375ZUyfPh3dunUrVJH/8ePHmDlzptZ9LolMoeCqxFu3LJCUZIXAwKfw9c3bequs8rbUQV5pVlUSEZH5kAkhhL6Nb9++jZCQEFhaWiI6Ohr169cHAFy4cAHLly9Hbm4uTp06pVHVnkouIyMDcrkcSqVS60IK0t+aNUBUFKBSARYWeWUsIiPL9j0TExOxdevWQtsudelyEO3aPStiHBUVxZFlIqIqpCS/vw0aIfPy8sKxY8cwatQoTJkyBepYTiaTISwsDMuXL2cwRhXOzZvPgjEg7+ebb+aVsSjpqkl9uLi4AMgr4vr4sR0OHgyFEBY4eDAU9vZPitwuiYiIzIvBhWHVWwLdv38fly9fhhACdevWRfXq1cuif0SldunSs2BMLTc3r6ZYWQZkakqlkxSMAfptl0RERObF4IBMrXr16mjVqpUx+0JUJurWzZumzB+UWVrmFXgtqdTUVNy9exc5OTnIzMzE06dPNc5bWT37q1XS7ZKIiMh8lDggIzK11NRUvbYR8vPTtvVRyUfHdG0crgsT+4mIqDgMyKhS0jcoio6Ohpubm9G2PgIML1NR2u2SiIio6mNARpWSvkFR/nal2fqotD76KBAzZtzF1atWCAh4Cl9fbpdERETPMCAjMqL8e1bmzw9zd3eHj48XWrQwYeeIiKjCYkBGVEpKpRNu3PBHUlIATp5sAUBzz0oiIqLiMCAjKoVTp5pj586eKLgLGUtbEBGRIRiQERVQ3OpNpVL5/z+dtAZjaixtQURE+mJARpSPISUt0tLcoCsYA1jagoiI9Kf7twmRGTKkpIWrayoAlY6zLG1BRET64wgZVUr6BjhlFQj1798fMpkMcvktzJ5dA0LIAAAymcCAATcxYMBtNGhQD3I5S1sQEVHxGJBRpeTm5obo6GhpROvWLQskJVkhMPApfH3zRq0MCYTUeWP37t3TOK6rjMXTp0/h6+uLmTPzis7Gx+cdVyhk8PPzB+Bf+g9JRERmQyaEEKbuBGmXkZEBuVwOpVIJZ2dnU3enwlqzBoiKytur0sIib5ukyEj9X68rb+zUqeaFqusXLGOh3gmAiIhIrSS/v5lDRpXazZvPgjEg7+ebb+Yd15e2vDGl0kkKxoBnZSyUSqdiX0tERGQoBmRUqV269CwYU8vNzduzsjTS0tw0NgMHnpWxICIiMjYGZFSp1a2bN02Zn6Vl3gbiJaVUOuHhQwfIZJqRHstYEBFRWWFSP1Vqfn55OWNvvpk3MmZpCXz5Zck3Ec+fNwaoIJOppBwyhSLeqH0nIiJS4wgZVXqRkcDVq8Dhw3k/DUnoz69g3hhgASGAFi1OQAjg2LF2WLx4HE6dam6knhMREeXhCBlVCX5+JR8VU9OWNwZY4NSpvA3DAe5RSUREZYMjZET/z9U1tVDeGKBicj8REZU5BmRk9tTV/OXyTPTqtVsKymQyFbp0OVhkcj+3RCIiImNgYdgKjIVhy4+6Uj+QV/X/6lUruLndh5vbY8TEVMeHH9aASiWDpaXA/PlKvPbaY26JREREWpXk9zcDsgqMAVnJ5Q+wtDE0mLp5M6+2WZ06pc9VIyKiqq0kv7+Z1E9Vjq6tkAoyZNsjYywaICIi0oUBGZmUsUeyAODOnTt6teO2R0REVFEwICOTKYuRrNTUVGzdurW0XSMiIipXXGVJJqPvCJUhI1m6NgpPSgootDE4ERFRRcERMqrS8m+FJJOp0KvXboSEnDZ1t4iIiDRwhIyqrIJbIamr7HOkjIiIKhoGZFRhGHtqMSGhNavsExFRpcApS6oQjDW1mJ6eDiAvuDt2TFHofP4q+0RERBUFR8jI5Iw1tZh/hWVamhu0fb0VinhpU3Bue0RERBUFAzIyubQ0N6NMLeZfYalro/DWrRMAAAMGDOC2R0REVGEwICOTUY9QaQueSruBt7aNwnv33i2Njnl4eJSm60REREbFHDIyGTc3N0RHRyM7Oxs1amRg0iQ5cnPVG3hn4LXXBpVqA++QkNMICrqMtDRXuLqmScEYR8eIiKiiYUBGJqUOjCZMAAYMUG/gLYOfnwsAl1JdW6l0QlqaG1xdU6VgDADkcnmprktERGRsDMiowjDmBt4sCEtERJUJAzIyWFlsCG5MulZtBgVd1hgpIyIiqigYkJFBymJDcGMratUmAzIiIqqIGJCRQcpiQ3BDFDU6py4Kq161mT8oK+2qTSIiorLEgIwqDX1H56KiXi6TVZtERERlhQEZlYqulYxlQd9RN7lcjgkTXIy+apOIiKisMCCjEqvoKxmNuWqTiIioLLFSP5WIsfafJCIiIgZkVELG2n+SiIiIGJBRCRW3/yQRERHpjwEZGURdMkLb5t29ej3bvLs8SksolU5ISgrgNCkREVV6TOong+TfEBwAZsy4i6tXrRAQ8BS+vq0AtNKrtERpq/1X9AUFREREhmBARgbLHyj5+AAtWhj2+pJW+1ePuhW3NRILvxIRUWXDgIzKXcGRMV21zAq2U4/OHT4MLFpUeEFBu3YR6NQJLPxKRESVDgMyKpWbN4FLl4C6dUtW88vQqUc3Nze0aQNYWACqfGsKLC2B1q3dwFiMiIgqIyb1U4mtWQPUqgW8+GLezzVrDHt9SWuZ+fkBq1fnBWFA3s8vv2QRWCIiqrwYkFGJ3LwJREU9G6VSqYA338w7rq/S1DKLjASuXgUOH877GRmp//sSERFVNJyypBK5dElzyhAAcnPz9o7Ud6RKXcssf1BmSC0zbo1ERERVBUfIzNDNm3kjS4aMZhVUt25eHld+lpZAnTpFvy41NRX37t0DUHwtMyIiInPBETIzs2bNs6lGC4u8XKySTPep87jefDNvZEyfPC5t5S5CQk4jKOgy0tJc4eqaxmCMiIjMEgMyM6Ir7yssrGRTf5GRea+9fDlvZKy4a+gqBCuXZ2oNxFhPjIiIzEWlm7LMyspCs2bNIJPJcObMGY1z586dQ/v27WFnZwd/f38sWLCg0Ou3bduGBg0awM7ODk2aNMHevXs1zgshMGPGDPj4+MDe3h6hoaG4dOmSRpu0tDQMHjwYzs7OcHFxQWRkJB48eGBwX8pbUXlfhkhNTUVycjKSk5NhaZmM+vXzfqqPpaamlqqf4eHhhYrCEhERVWWVboTs/fffh6+vL86ePatxPCMjA127dkVoaChWrVqFP/74AyNGjICLiwuioqIAAMeOHcOgQYPwySefoGfPnti0aRP69OmDU6dOITg4GACwYMECLF26FBs2bEBgYCCmT5+OsLAw/PXXX7CzswMADB48GMnJyYiNjUVOTg6GDx+OqKgobNq0Se++mII676tg/a7i8r7yK2mVfW10FYR1d3dnMEZERGalUgVk+/btw4EDB7Bjxw7s27dP49zGjRuRnZ2NtWvXwsbGBo0bN8aZM2ewcOFCKQhasmQJunXrhokTJwIA5syZg9jYWCxbtgyrVq2CEAKLFy/GtGnT8MorrwAA/ve//8HLywvff/89Bg4ciMTEROzfvx8nTpxAy5YtAQBffPEFXn75ZXz22Wfw9fXVqy+mUJK8r4KK2n/SkHbci5KIiOiZSjNlefv2bbzxxhv4+uuv4eDgUOh8fHw8OnTooJF3FBYWhosXL+L+/ftSm9DQUI3XhYWFIT4+HgCQlJSElJQUjTZyuRytW7eW2sTHx8PFxUUKxgAgNDQUFhYWSEhI0Lsv2mRlZSEjI0PjYWwVoX5XSQvCEhERVVWVIiATQmDYsGF46623NAKh/FJSUuDl5aVxTP08JSWlyDb5z+d/na42np6eGuetrKzg6upa7Pvkfw9tPvnkE8jlcunh7++vs21p+PkBnTqZroZXaQrCEhERVUUmDcgmT54MmUxW5OPChQv44osvkJmZiSlTppiyu2VuypQpUCqV0uPGjRum7lKZUBeEzc+QgrBERERVjUlzyCZMmIBhw4YV2aZ27do4dOgQ4uPjYWtrq3GuZcuWGDx4MDZs2ABvb2/cvn1b47z6ube3t/RTW5v859XHfHx8NNo0a9ZManPnzh2Nazx9+hRpaWnFvk/+99DG1ta20GesStRTuOqCsAVzyNSJ/Sx3QURE5sakAZmHhwc8PDyKbbd06VJ89NFH0vNbt24hLCwMW7ZsQevWrQEACoUCU6dORU5ODqytrQEAsbGxqF+/PqpXry61iYuLw7hx46RrxcbGQqFQAAACAwPh7e2NuLg4KQDLyMhAQkICRo0aJV0jPT0dJ0+eRIsWLQAAhw4dgkqlMqgv5sjNzQ3R0dFSwv+MGXdx9aoVAgKewte3FYBWsLGx4QpLIiIyO5VilWXNmjU1nlerVg0AEBQUBL//T4R67bXXMHv2bERGRmLSpEk4f/48lixZgkWLFkmvGzt2LDp27IjPP/8cPXr0wObNm/H7779j9erVAACZTIZx48bho48+Qt26daWyF76+vujTpw8AoGHDhujWrRveeOMNrFq1Cjk5OYiOjsbAgQPh6+urd1/MVf5gy8cH+P+YloiIyKxVioBMH3K5HAcOHMDo0aPRokULuLu7Y8aMGRplJtq2bYtNmzZh2rRp+OCDD1C3bl18//33Ug0yIK/O2cOHDxEVFYX09HS88MIL2L9/v1SDDMgrsREdHY2XXnoJFhYW6Nu3L5YuXWpQXyorfacTOe1IRESkP5kQQpi6E6RdRkYG5HI5lEolnJ2dTd0dSWpqapF1xjjtSERE5qwkv7+rzAgZlR8GW0RERMbFgIxKjCNlRERExsGAjAyiDsKUSiW2bNlSbHtuEk5ERFQ8BmSkN303Fs9P370viYiIzFml2DqJKgYGV0RERGWDARkRERGRiTEgI8nNm8Dhw3k/iYiIqPwwICMAwJo1QK1awIsv5v1cs8bUPSIiIjIfTOo3E0WVqLh1ywJRUZ5QqWQAAJUKePNNICwM+P+dqbRSKp2QluYGV9dUaWNwIiIiMhwDMjNQ3OrIpKQAqFQRGsdyc4HLl3UHZKdONceuXT0hhAVkMhV69dqNkJDTxuw2ERGR2eCUpRkobnWkq2sqZDKVxjFLS6BOHe3tlUonKRgDACEssGtXTyiVToXack9LIiKi4nGEjCCXZ6JXr93Ys6cXcnNlsLQEvvyy8OiYOrhKS3OTgjE1ISyQluYKuTwT/fv3h4uLCyv1ExER6Ymbi1dgxtpcPDk5GatXry62Xc+ebyEz0wt16uieqkxNTcXVq0/x/PPPcs4AwNJSICHhDgICrBiEERGRWePm4lQqNjZ3UL9+3tRlcrL6mOYol5ubG9zcgNWr8xL/c3Pzpjc/+USGjAwvPH5sip4TERFVbgzISBITE6P1uLb9KCMj81ZhXr4M/P47MGlS3upMC4u8YC0ysjx6TEREVDUwIKNi6VoUoJ7WfOmlvGAM0L9kBhERET3DVZYEpdIJSUkBWldJFufSpWfBmJq6ZAYRERHphyNkZqCo0hOlrSdWt27eNGX+oKyokhlERERUGAMyM+Dm5obo6Ghp6vHevXuIiYnRWU8sKOiy3pX3/fwKJ/hrK5lBREREujEgMxPaSlEUV09MX/kT/IsqmUFERETaMSAzY+oK/fmDMplMBVfXNIOv5efHQIyIiKikmNRvxtQV+tXbJqlzyLhROBERUfniCJmZCwk5jaCgy0hLc4Wra5rWYIz7URIREZUtBmQEuTxTayAWHh4OX19fboVERERUxjhlSTq5u7szGCMiIioHDMjMkL5TkJyqJCIiKh+csjRDBeuSaVNwU3EiIiIqOwzIzBSDLSIiooqDU5ZEREREJsaAjIiIiMjEGJARERERmRgDMiIiIiITY0BGREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRERERCbGSv0VmBACAJCRkWHinhAREZG+1L+31b/H9cGArALLzMwEAPj7+5u4J0RERGSozMxMyOVyvdrKhCHhG5UrlUqFW7duwcnJCTKZrMTXycjIgL+/P27cuAFnZ2cj9rBy4X3Iw/uQh/chD+/DM7wXeXgf8pTmPgghkJmZCV9fX1hY6JcdxhGyCszCwgJ+fn5Gu56zs7NZ/+VS433Iw/uQh/chD+/DM7wXeXgf8pT0Pug7MqbGpH4iIiIiE2NARkRERGRiDMjMgK2tLWbOnAlbW1tTd8WkeB/y8D7k4X3Iw/vwDO9FHt6HPOV9H5jUT0RERGRiHCEjIiIiMjEGZEREREQmxoCMiIiIyMQYkBERERGZGAOySmrlypV47rnnpIJ1CoUC+/btk84/efIEo0ePhpubG6pVq4a+ffvi9u3bGte4fv06evToAQcHB3h6emLixIl4+vRpeX8Uo5o3bx5kMhnGjRsnHTOHezFr1izIZDKNR4MGDaTz5nAP1P79918MGTIEbm5usLe3R5MmTfD7779L54UQmDFjBnx8fGBvb4/Q0FBcunRJ4xppaWkYPHgwnJ2d4eLigsjISDx48KC8P0qJBQQEFPo+yGQyjB49GoD5fB9yc3Mxffp0BAYGwt7eHkFBQZgzZ47G/oLm8H0A8rbwGTduHGrVqgV7e3u0bdsWJ06ckM5X1fvw888/o1evXvD19YVMJsP333+vcd5Yn/vcuXNo37497Ozs4O/vjwULFhjeWUGV0s6dO8WePXvE33//LS5evCg++OADYW1tLc6fPy+EEOKtt94S/v7+Ii4uTvz++++iTZs2om3bttLrnz59KoKDg0VoaKg4ffq02Lt3r3B3dxdTpkwx1Ucqtd9++00EBASI5557TowdO1Y6bg73YubMmaJx48YiOTlZety9e1c6bw73QAgh0tLSRK1atcSwYcNEQkKC+Oeff8SPP/4oLl++LLWZN2+ekMvl4vvvvxdnz54VvXv3FoGBgeLx48dSm27duommTZuK48ePi19++UXUqVNHDBo0yBQfqUTu3Lmj8V2IjY0VAMThw4eFEObzfZg7d65wc3MTu3fvFklJSWLbtm2iWrVqYsmSJVIbc/g+CCFE//79RaNGjcSRI0fEpUuXxMyZM4Wzs7O4efOmEKLq3oe9e/eKqVOnipiYGAFAfPfddxrnjfG5lUql8PLyEoMHDxbnz58X3377rbC3txdffvmlQX1lQFaFVK9eXXz11VciPT1dWFtbi23btknnEhMTBQARHx8vhMj7klpYWIiUlBSpzcqVK4Wzs7PIysoq976XVmZmpqhbt66IjY0VHTt2lAIyc7kXM2fOFE2bNtV6zlzugRBCTJo0Sbzwwgs6z6tUKuHt7S0+/fRT6Vh6erqwtbUV3377rRBCiL/++ksAECdOnJDa7Nu3T8hkMvHvv/+WXefL0NixY0VQUJBQqVRm9X3o0aOHGDFihMax8PBwMXjwYCGE+XwfHj16JCwtLcXu3bs1joeEhIipU6eazX0oGJAZ63OvWLFCVK9eXePvxqRJk0T9+vUN6h+nLKuA3NxcbN68GQ8fPoRCocDJkyeRk5OD0NBQqU2DBg1Qs2ZNxMfHAwDi4+PRpEkTeHl5SW3CwsKQkZGBP//8s9w/Q2mNHj0aPXr00PjMAMzqXly6dAm+vr6oXbs2Bg8ejOvXrwMwr3uwc+dOtGzZEq+++io8PT3RvHlz/Pe//5XOJyUlISUlReNeyOVytG7dWuNeuLi4oGXLllKb0NBQWFhYICEhofw+jJFkZ2fjm2++wYgRIyCTyczq+9C2bVvExcXh77//BgCcPXsWv/76K7p37w7AfL4PT58+RW5uLuzs7DSO29vb49dffzWb+1CQsT53fHw8OnToABsbG6lNWFgYLl68iPv37+vdH24uXon98ccfUCgUePLkCapVq4bvvvsOjRo1wpkzZ2BjYwMXFxeN9l5eXkhJSQEApKSkaPzPVn1efa4y2bx5M06dOqWRD6GWkpJiFveidevWWL9+PerXr4/k5GTMnj0b7du3x/nz583mHgDAP//8g5UrV2L8+PH44IMPcOLECYwZMwY2NjaIiIiQPou2z5r/Xnh6emqct7Kygqura6W6F2rff/890tPTMWzYMADm83cCACZPnoyMjAw0aNAAlpaWyM3Nxdy5czF48GAAMJvvg5OTExQKBebMmYOGDRvCy8sL3377LeLj41GnTh2zuQ8FGetzp6SkIDAwsNA11OeqV6+uV38YkFVi9evXx5kzZ6BUKrF9+3ZERETgyJEjpu5Wubpx4wbGjh2L2NjYQv/6Myfqf/EDwHPPPYfWrVujVq1a2Lp1K+zt7U3Ys/KlUqnQsmVLfPzxxwCA5s2b4/z581i1ahUiIiJM3DvTWLNmDbp37w5fX19Td6Xcbd26FRs3bsSmTZvQuHFjnDlzBuPGjYOvr6/ZfR++/vprjBgxAjVq1IClpSVCQkIwaNAgnDx50tRdo//HKctKzMbGBnXq1EGLFi3wySefoGnTpliyZAm8vb2RnZ2N9PR0jfa3b9+Gt7c3AMDb27vQqir1c3WbyuDkyZO4c+cOQkJCYGVlBSsrKxw5cgRLly6FlZUVvLy8zOZe5Ofi4oJ69erh8uXLZvV98PHxQaNGjTSONWzYUJq+VX8WbZ81/724c+eOxvmnT58iLS2tUt0LALh27RoOHjyIkSNHSsfM6fswceJETJ48GQMHDkSTJk0wdOhQvPvuu/jkk08AmNf3ISgoCEeOHMGDBw9w48YN/Pbbb8jJyUHt2rXN6j7kZ6zPbay/LwzIqhCVSoWsrCy0aNEC1tbWiIuLk85dvHgR169fh0KhAAAoFAr88ccfGl+02NhYODs7F/qFVpG99NJL+OOPP3DmzBnp0bJlSwwePFj6s7nci/wePHiAK1euwMfHx6y+D+3atcPFixc1jv3999+oVasWACAwMBDe3t4a9yIjIwMJCQka9yI9PV1j5ODQoUNQqVRo3bp1OXwK41m3bh08PT3Ro0cP6Zg5fR8ePXoECwvNX3OWlpZQqVQAzO/7AACOjo7w8fHB/fv38eOPP+KVV14xy/sAGO+/v0KhwM8//4ycnBypTWxsLOrXr6/3dCUAlr2orCZPniyOHDkikpKSxLlz58TkyZOFTCYTBw4cEELkLWuvWbOmOHTokPj999+FQqEQCoVCer16WXvXrl3FmTNnxP79+4WHh0elW9auTf5VlkKYx72YMGGC+Omnn0RSUpI4evSoCA0NFe7u7uLOnTtCCPO4B0LklT6xsrISc+fOFZcuXRIbN24UDg4O4ptvvpHazJs3T7i4uIgffvhBnDt3Trzyyital7k3b95cJCQkiF9//VXUrVu3wi/vLyg3N1fUrFlTTJo0qdA5c/k+REREiBo1akhlL2JiYoS7u7t4//33pTbm8n3Yv3+/2Ldvn/jnn3/EgQMHRNOmTUXr1q1Fdna2EKLq3ofMzExx+vRpcfr0aQFALFy4UJw+fVpcu3ZNCGGcz52eni68vLzE0KFDxfnz58XmzZuFg4MDy16YixEjRohatWoJGxsb4eHhIV566SUpGBNCiMePH4u3335bVK9eXTg4OIj//Oc/Ijk5WeMaV69eFd27dxf29vbC3d1dTJgwQeTk5JT3RzG6ggGZOdyLAQMGCB8fH2FjYyNq1KghBgwYoFF7yxzugdquXbtEcHCwsLW1FQ0aNBCrV6/WOK9SqcT06dOFl5eXsLW1FS+99JK4ePGiRpvU1FQxaNAgUa1aNeHs7CyGDx8uMjMzy/NjlNqPP/4oABT6bEKYz/chIyNDjB07VtSsWVPY2dmJ2rVri6lTp2qUJzCX78OWLVtE7dq1hY2NjfD29hajR48W6enp0vmqeh8OHz4sABR6RERECCGM97nPnj0rXnjhBWFraytq1Kgh5s2bZ3BfZULkK1lMREREROWOOWREREREJsaAjIiIiMjEGJARERERmRgDMiIiIiITY0BGREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRFTmUlJS8M4776B27dqwtbWFv78/evXqpbGH3LFjx/Dyyy+jevXqsLOzQ5MmTbBw4ULk5uZKba5evYrIyEgEBgbC3t4eQUFBmDlzJrKzszXe77///S+aNm2KatWqwcXFBc2bN5c2lAaAWbNmQSaToVu3boX6+umnn0Imk6FTp07Ffq6AgADIZDKdj2HDhhl+syq4Tp06Ydy4cabuBlGVY2XqDhBR1Xb16lW0a9cOLi4u+PTTT9GkSRPk5OTgxx9/xOjRo3HhwgV899136N+/P4YPH47Dhw/DxcUFBw8exPvvv4/4+Hhs3boVMpkMFy5cgEqlwpdffok6derg/PnzeOONN/Dw4UN89tlnAIC1a9di3LhxWLp0KTp27IisrCycO3cO58+f1+iXj48PDh8+jJs3b8LPz086vnbtWtSsWVOvz3bixAkpYDx27Bj69u2LixcvwtnZGQBgb29vjFtYLnJycmBtbV1u75ednQ0bG5tyez+iCq+E20MREemle/fuokaNGuLBgweFzt2/f188ePBAuLm5ifDw8ELnd+7cKQCIzZs367z+ggULRGBgoPT8lVdeEcOGDSuyTzNnzhRNmzYVPXv2FB999JF0/OjRo8Ld3V2MGjVKdOzYUY9P94x6z7z79+9Lx77//nvRvHlzYWtrKwIDA8WsWbM09oMEIFatWiV69Ogh7O3tRYMGDcSxY8fEpUuXRMeOHYWDg4NQKBQa+5Kq+75q1Srh5+cn7O3txauvvqqxL6EQQvz3v/8VDRo0ELa2tqJ+/fpi+fLl0rmkpCTpvnbo0EHY2tqKdevWiXv37omBAwcKX19fYW9vL4KDg8WmTZuk10VERBTaEzApKUmsW7dOyOVyjff/7rvvRP5fMep+//e//xUBAQFCJpMJIfK+A5GRkcLd3V04OTmJzp07izNnzhh074mqAk5ZElGZSUtLw/79+zF69Gg4OjoWOu/i4oIDBw4gNTUV7733XqHzvXr1Qr169fDtt9/qfA+lUglXV1fpube3N44fP45r164V278RI0Zg/fr10vO1a9di8ODBRhm5+eWXX/D6669j7Nix+Ouvv/Dll19i/fr1mDt3rka7OXPm4PXXX8eZM2fQoEEDvPbaa3jzzTcxZcoU/P777xBCIDo6WuM1ly9fxtatW7Fr1y7s378fp0+fxttvvy2d37hxI2bMmIG5c+ciMTERH3/8MaZPn44NGzZoXGfy5MkYO3YsEhMTERYWhidPnqBFixbYs2cPzp8/j6ioKAwdOhS//fYbAGDJkiVQKBR44403kJycjOTkZPj7++t9Ty5fvowdO3YgJiYGZ86cAQC8+uqruHPnDvbt24eTJ08iJCQEL730EtLS0gy53USVn6kjQiKquhISEgQAERMTo7PNvHnzCo0s5de7d2/RsGFDrecuXboknJ2dxerVq6Vjt27dEm3atBEARL169URERITYsmWLyM3NldqoR2uys7OFp6enOHLkiHjw4IFwcnISZ8+eFWPHji31CNlLL70kPv74Y402X3/9tfDx8ZGeAxDTpk2TnsfHxwsAYs2aNdKxb7/9VtjZ2Wn03dLSUty8eVM6tm/fPmFhYSGSk5OFEEIEBQVpjGwJIcScOXOEQqEQQjwbIVu8eHGxn6tHjx5iwoQJ0vOOHTuKsWPHarTRd4TM2tpa3LlzRzr2yy+/CGdnZ/HkyRON1wYFBYkvv/yy2L4RVSXMISOiMiOEKJO2APDvv/+iW7duePXVV/HGG29Ix318fBAfH4/z58/j559/xrFjxxAREYGvvvoK+/fvh4XFs4kBa2trDBkyBOvWrcM///yDevXq4bnnnjOoH7qcPXsWR48e1RgRy83NxZMnT/Do0SM4ODgAgMb7eXl5AQCaNGmicezJkyfIyMiQctNq1qyJGjVqSG0UCgVUKhUuXrwIJycnXLlyBZGRkRr35enTp5DL5Rp9bNmypcbz3NxcfPzxx9i6dSv+/fdfZGdnIysrS+pradWqVQseHh7S87Nnz+LBgwdwc3PTaPf48WNcuXLFKO9JVFkwICOiMlO3bl0pGV+XevXqAQASExPRtm3bQucTExPRqFEjjWO3bt1C586d0bZtW6xevVrrdYODgxEcHIy3334bb731Ftq3b48jR46gc+fOGu1GjBiB1q1b4/z58xgxYoShH1GnBw8eYPbs2QgPDy90zs7OTvpz/kR6mUym85hKpdL7fYG8laatW7fWOGdpaanxvOA08qeffoolS5Zg8eLFaNKkCRwdHTFu3LhCq1gLsrCwKBRQ5+TkFGpX8P0ePHgAHx8f/PTTT4Xauri4FPmeRFUNAzIiKjOurq4ICwvD8uXLMWbMmEK/kNPT09G1a1e4urri888/LxSQ7dy5E5cuXcKcOXOkY//++y86d+6MFi1aYN26dRojXrqoA7qHDx8WOte4cWM0btwY586dw2uvvVaSj6lVSEgILl68iDp16hjtmmrXr1/HrVu34OvrCwA4fvw4LCwsUL9+fXh5ecHX1xf//PMPBg8ebNB1jx49ildeeQVDhgwBkBcE/v333xoBsY2NjUYpEgDw8PBAZmYmHj58KP03VueIFSUkJAQpKSmwsrJCQECAQX0lqmoYkBFRmVq+fDnatWuH559/Hh9++CGee+45PH36FLGxsVi5ciUSExPx5ZdfYuDAgYiKikJ0dDScnZ0RFxeHiRMnol+/fujfvz+AvGCsU6dOqFWrFj777DPcvXtXeh9vb28AwKhRo+Dr64sXX3wRfn5+SE5OxkcffQQPDw8oFAqtfTx06BBycnKMOiozY8YM9OzZEzVr1kS/fv1gYWGBs2fP4vz58/joo49KdW07OztERETgs88+Q0ZGBsaMGYP+/ftL92D27NkYM2YM5HI5unXrhqysLPz++++4f/8+xo8fr/O6devWxfbt23Hs2DFUr14dCxcuxO3btzUCsoCAACQkJODq1auoVq0aXF1d0bp1azg4OOCDDz7AmDFjkJCQoLFYQpfQ0FAoFAr06dMHCxYsQL169XDr1i3s2bMH//nPfwpNqRJVZVxlSURlqnbt2jh16hQ6d+6MCRMmIDg4GF26dEFcXBxWrlwJAOjXrx8OHz6M69evo3379qhfvz4WLVqEqVOnYvPmzdK0XWxsLC5fvoy4uDj4+fnBx8dHeqiFhobi+PHjePXVV1GvXj307dsXdnZ2iIuLK5SrpObo6Gj0KbKwsDDs3r0bBw4cQKtWrdCmTRssWrQItWrVKvW169Spg/DwcLz88svo2rUrnnvuOaxYsUI6P3LkSHz11VdYt24dmjRpgo4dO2L9+vUIDAws8rrTpk1DSEgIwsLC0KlTJ3h7e6NPnz4abd577z1YWlqiUaNG8PDwwPXr1+Hq6opvvvkGe/fuRZMmTfDtt99i1qxZxX4OmUyGvXv3okOHDhg+fDjq1auHgQMH4tq1a1I+HZG5kAlDM2mJiMhkZs2ahe+//16vKUEiqjw4QkZERERkYgzIiIiKUK1aNZ2PX375xdTdI6IqglOWRERFuHz5ss5zNWrUqFT7VRJRxcWAjIiIiMjEOGVJREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRERERCbGgIyIiIjIxBiQEREREZkYAzIiIiIiE/s/cQ2omzjrMrQAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2 Training Surrogate with ALAMO\n", + "\n", + "IDAES provides a Python wrapper for the ALAMO machine learning tool via an imported AlamoTrainer class. Regression settings can be directly set as config attributes, as shown below. In this example, allowed basis terms include constant and linear functions, monomial power order 2 and 3, variable product power order 1 and 2, and variable ratio power order 1 and 2. ALAMO seeks to minimize the number of basis terms; here, we restrict each surrogate expression to a maximum of 10 basis terms.\n", + "\n", + "Finally, after training the model we save the results and model expressions to a JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrJklEQVR4nO3deXxM5/4H8M9kJBEkk1UWiSSSoHbSltDaK9RSVxelagvBtVxLbVdtVbXWrlQv4bq02qIXXYSiVcJVmipFRROkkmBCYmkjMuf3x/xmZJLMJDOZmXNmzuf9euWlM+fkzDPTyTnf8zzf5/soBEEQQERERCQDLmI3gIiIiMheGPgQERGRbDDwISIiItlg4ENERESywcCHiIiIZIOBDxEREckGAx8iIiKSDQY+REREJBsMfIiIiEg2GPgQEUnQ5s2boVAokJGRIXZTiJwKAx8imTp16hTGjBmDhg0bonr16qhduzZee+01/Pbbb6X2bd++PRQKBRQKBVxcXODl5YV69erhzTffxIEDB8x63b1796Jdu3aoWbMmqlWrhjp16uC1117DN998Y623Vsp7772HL774otTzx48fx5w5c3D37l2bvXZJc+bM0X+WCoUC1apVQ4MGDfD2228jPz/fKq+xfft2rFixwirHInI2DHyIZGrRokXYuXMnOnXqhJUrVyIxMRHff/89WrRogXPnzpXaPzQ0FFu3bsW///1vLFmyBL169cLx48fRpUsX9O3bF4WFheW+5tKlS9GrVy8oFApMnz4dy5cvx8svv4zLly/jk08+scXbBGA68Jk7d65dAx+ddevWYevWrVi2bBnq16+P+fPno2vXrrDG8okMfIiMqyJ2A4hIHBMnTsT27dvh5uamf65v375o3LgxFi5ciP/85z8G+6tUKgwYMMDguYULF2LcuHH44IMPEBERgUWLFhl9vcePH2PevHl44YUXkJycXGr7zZs3K/mOpOPhw4eoVq2ayX1eeeUV+Pv7AwBGjhyJl19+Gbt27cKJEycQFxdnj2YSyRJ7fIhkqnXr1gZBDwDExMSgYcOGuHDhQoWOoVQqsWrVKjRo0ABr1qxBXl6e0X1v376N/Px8tGnTpsztNWvWNHj8119/Yc6cOahbty6qVq2K4OBg9OnTB1euXNHvs3TpUrRu3Rp+fn7w8PBAbGwsPv/8c4PjKBQKPHjwAFu2bNEPLw0ePBhz5szB5MmTAQCRkZH6bcVzav7zn/8gNjYWHh4e8PX1xeuvv47r168bHL99+/Zo1KgRTp8+jbZt26JatWr45z//WaHPr7iOHTsCANLT003u98EHH6Bhw4Zwd3dHSEgIRo8ebdBj1b59e3z55Ze4evWq/j1FRESY3R4iZ8UeHyLSEwQBOTk5aNiwYYV/R6lUol+/fpg5cyZ++OEHdO/evcz9atasCQ8PD+zduxdjx46Fr6+v0WMWFRWhR48e+Pbbb/H666/jH//4B+7du4cDBw7g3LlziIqKAgCsXLkSvXr1whtvvIFHjx7hk08+wauvvop9+/bp27F161YMGzYMzz77LBITEwEAUVFRqF69On777Td8/PHHWL58ub73JSAgAAAwf/58zJw5E6+99hqGDRuGW7duYfXq1Wjbti1++ukneHt769urVqvRrVs3vP766xgwYAACAwMr/Pnp6AI6Pz8/o/vMmTMHc+fORefOnTFq1ChcunQJ69atw6lTp3Ds2DG4urpixowZyMvLQ2ZmJpYvXw4AqFGjhtntIXJaAhHR/9u6dasAQNi4caPB8+3atRMaNmxo9Pd2794tABBWrlxp8vizZs0SAAjVq1cXunXrJsyfP184ffp0qf02bdokABCWLVtWaptGo9H/98OHDw22PXr0SGjUqJHQsWNHg+erV68uDBo0qNSxlixZIgAQ0tPTDZ7PyMgQlEqlMH/+fIPnf/nlF6FKlSoGz7dr104AIKxfv97o+y5u9uzZAgDh0qVLwq1bt4T09HThww8/FNzd3YXAwEDhwYMHgiAIQlJSkkHbbt68Kbi5uQldunQRioqK9Mdbs2aNAEDYtGmT/rnu3bsL4eHhFWoPkdxwqIuIAAAXL17E6NGjERcXh0GDBpn1u7oehXv37pncb+7cudi+fTuaN2+O/fv3Y8aMGYiNjUWLFi0Mhtd27twJf39/jB07ttQxFAqF/r89PDz0/33nzh3k5eXh+eefx5kzZ8xqf0m7du2CRqPBa6+9htu3b+t/goKCEBMTg8OHDxvs7+7ujiFDhpj1GvXq1UNAQAAiIyMxYsQIREdH48svvzSaG3Tw4EE8evQI48ePh4vLk1P38OHD4eXlhS+//NL8N0okQxzqIiJkZ2eje/fuUKlU+Pzzz6FUKs36/fv37wMAPD09y923X79+6NevH/Lz83Hy5Els3rwZ27dvR8+ePXHu3DlUrVoVV65cQb169VCliulT1L59+/Duu+8iNTUVBQUF+ueLB0eWuHz5MgRBQExMTJnbXV1dDR7XqlWrVL5UeXbu3AkvLy+4uroiNDRUP3xnzNWrVwFoA6bi3NzcUKdOHf12IjKNgQ+RzOXl5aFbt264e/cujh49ipCQELOPoZv+Hh0dXeHf8fLywgsvvIAXXngBrq6u2LJlC06ePIl27dpV6PePHj2KXr16oW3btvjggw8QHBwMV1dXJCUlYfv27Wa/h+I0Gg0UCgW+/vrrMoPAkjkzxXueKqpt27b6vCIish8GPkQy9tdff6Fnz5747bffcPDgQTRo0MDsYxQVFWH79u2oVq0annvuOYva8fTTT2PLli3IysoCoE0+PnnyJAoLC0v1rujs3LkTVatWxf79++Hu7q5/PikpqdS+xnqAjD0fFRUFQRAQGRmJunXrmvt2bCI8PBwAcOnSJdSpU0f//KNHj5Ceno7OnTvrn6tsjxeRM2OOD5FMFRUVoW/fvkhJScFnn31mUe2YoqIijBs3DhcuXMC4cePg5eVldN+HDx8iJSWlzG1ff/01gCfDOC+//DJu376NNWvWlNpX+P8Cf0qlEgqFAkVFRfptGRkZZRYqrF69eplFCqtXrw4Apbb16dMHSqUSc+fOLVVQUBAEqNXqst+kDXXu3Blubm5YtWqVQZs2btyIvLw8g9l01atXN1lagEjO2ONDJFOTJk3Cnj170LNnT+Tm5pYqWFiyWGFeXp5+n4cPHyItLQ27du3ClStX8Prrr2PevHkmX+/hw4do3bo1WrVqha5duyIsLAx3797FF198gaNHj6J3795o3rw5AGDgwIH497//jYkTJ+J///sfnn/+eTx48AAHDx7E3//+d7z00kvo3r07li1bhq5du6J///64efMm1q5di+joaJw9e9bgtWNjY3Hw4EEsW7YMISEhiIyMRMuWLREbGwsAmDFjBl5//XW4urqiZ8+eiIqKwrvvvovp06cjIyMDvXv3hqenJ9LT07F7924kJibirbfeqtTnb66AgABMnz4dc+fORdeuXdGrVy9cunQJH3zwAZ555hmD/1+xsbHYsWMHJk6ciGeeeQY1atRAz5497dpeIskSc0oZEYlHNw3b2I+pfWvUqCHExMQIAwYMEJKTkyv0eoWFhcJHH30k9O7dWwgPDxfc3d2FatWqCc2bNxeWLFkiFBQUGOz/8OFDYcaMGUJkZKTg6uoqBAUFCa+88opw5coV/T4bN24UYmJiBHd3d6F+/fpCUlKSfrp4cRcvXhTatm0reHh4CAAMprbPmzdPqFWrluDi4lJqavvOnTuF5557TqhevbpQvXp1oX79+sLo0aOFS5cuGXw2pqb6l6Rr361bt0zuV3I6u86aNWuE+vXrC66urkJgYKAwatQo4c6dOwb73L9/X+jfv7/g7e0tAODUdqJiFIJghYVhiIiIiBwAc3yIiIhINhj4EBERkWww8CEiIiLZYOBDREREssHAh4iIiGSDgQ8RERHJBgsYlqDRaHDjxg14enqy7DsREZGDEAQB9+7dQ0hICFxcjPfrMPAp4caNGwgLCxO7GURERGSB69evIzQ01Oh2Bj4leHp6AtB+cKbWHSIiIiLpyM/PR1hYmP46bgwDnxJ0w1teXl4MfIiIiBxMeWkqTG4mIiIi2WDgQ0RERLLBwIeIiIhkgzk+REREVlBUVITCwkKxm+G0XF1doVQqK30cBj5ERESVIAgCsrOzcffuXbGb4vS8vb0RFBRUqTp7DHyIiIgqQRf01KxZE9WqVWPxWxsQBAEPHz7EzZs3AQDBwcEWH4uBDxERkYWKior0QY+fn5/YzXFqHh4eAICbN2+iZs2aFg97MbmZiIjIQrqcnmrVqoncEnnQfc6VyaVi4ENERFRJHN6yD2t8zhzqsiG1Wo1Hjx4Z3e7m5sauUSIiIjti4GMjarUaa9asKXe/MWPGMPghIiKyEw512Yipnh5L9hObWq1GVlaW0R+1Wi12E4mIyAyDBw+GQqGAQqGAq6srAgMD8cILL2DTpk3QaDQVPs7mzZvh7e1tu4ZaGXt8qFzsvSIisg2xUyK6du2KpKQkFBUVIScnB9988w3+8Y9/4PPPP8eePXtQpYrzhQnO947I6pyt94qISAqkcFPp7u6OoKAgAECtWrXQokULtGrVCp06dcLmzZsxbNgwLFu2DElJSfj999/h6+uLnj17YvHixahRowaOHDmCIUOGAHiSeDx79mzMmTMHW7duxcqVK3Hp0iVUr14dHTt2xIoVK1CzZk2bvJeK4lAXmS0vzxPp6RHIy/MUuyl2V3zI7/TpHHz+uRqnT+dwyI+IzCbVm8qOHTuiadOm2LVrFwDAxcUFq1atwvnz57FlyxYcOnQIU6ZMAQC0bt0aK1asgJeXl/48+NZbbwHQTjmfN28efv75Z3zxxRfIyMjA4MGD7fpeysIeHzLLmTPNsXdvDwiCCxQKDXr23IcWLX4Su1l2UfzuzNTnwCE/InJ09evXx9mzZwEA48eP1z8fERGBd999FyNHjsQHH3wANzc3qFQqKBQKfc+RztChQ/X/XadOHaxatQrPPPMM7t+/jxo1atjlfZSFPT5UYXl5nvqLPQAIggv27u0hm54f3V1XeZ8Dh/yIyNEJgqAfujp48CA6deqEWrVqwdPTE2+++SbUajUePnxo8hinT59Gz549Ubt2bXh6eqJdu3YAgGvXrtm8/aYw8KEKy83101/sdQTBBbm5vnZrgxRml0nhcyAisqULFy4gMjISGRkZ6NGjB5o0aYKdO3fi9OnTWLt2LQDTN3kPHjxAfHw8vLy8sG3bNpw6dQq7d+8u9/fsgUNdNuLm5mbV/aTA11cNhUJjcNFXKDTw9c21y+tLIREQEP9zICKypUOHDuGXX37BhAkTcPr0aWg0Grz//vtwcdGe8z799FOD/d3c3FBUVGTw3MWLF6FWq7Fw4UKEhYUBAH788Uf7vIFyMPCxET8/P4wZM0YSlZutNV1SpbqHnj33lcptUanuWbO5RpV8D3l5nsjN9YOvr9qgDba+mxD7cyAispaCggJkZ2cbTGdfsGABevTogYEDB+LcuXMoLCzE6tWr0bNnTxw7dgzr1683OEZERATu37+Pb7/9Fk2bNkW1atVQu3ZtuLm5YfXq1Rg5ciTOnTuHefPmifQuDTHwsaHiwURmJnD5MhATA4SG2q8N1uglKd4r1aLFT4iKSkNuri98fXMNLvb27L0SO8na1Ofg6MSuK0JE9vPNN98gODgYVapUgY+PD5o2bYpVq1Zh0KBBcHFxQdOmTbFs2TIsWrQI06dPR9u2bbFgwQIMHDhQf4zWrVtj5MiR6Nu3L9RqtX46++bNm/HPf/4Tq1atQosWLbB06VL06tVLxHerxcDHDjZuBBITAY0GcHEBNmwAEhLs89rWmC4ppd4rwHhycVRUml0DEJXqnlMFPEDpQNlYr1p5w4nFg6cbN1yQnl4FkZGPERKirQbL4IlI/JSIzZs3Y/PmzeXuN2HCBEyYMMHguTfffNPg8bp167Bu3TqD5/r164d+/foZPCcIgmWNtSIGPjaWmfkk6AG0/44YAcTH27fnp7KkdJEylVzsbIFIZZnbe1N8X1O9aqaOyWn/RBUjtZtKuWDgY2OXLz8JenSKioC0NMcKfKRErORise/OzFWZYc7K9KqVN+1fdwyxZ3bImVhD71Qagxr7Y+BjYzEx2uGt4sGPUglER4vTHmNDF45ErORiR7s7q0wyuDV61dgzJ01iDr0TSQEDHxsLDdWeWEaM0Pb0KJXAhx+Kc5cldkKwNYmVXCyVoMZc5v6/t0avGqf9S4+zDL0TVQYLGNpBQgKQkQEcPqz9V4y7K2eoulxyCEmluofIyKulgh6pDDVJhSX/73W9agqF9gppSa+aNY5B1qNWq3HihLrMofeTJ9VcZ45kgz0+dhIaKu4dlTMMOzjaUJNUlPf//vbt2/rn8/Ly9P9tjV41Z57270h0+V55eZ5QKMaX6oU7dmwLzp27x4RzkgUGPk5O1/tR3rCDo/SS8KRsvvL+3+tWYC6LNabsO+O0f0eju1koLz+OCeckBwx8nFzxXpJatfIxdaoKRUUKKJUCFi3KR//+/dhL4uRskQzuKIEylcZeOJI7Bj4yoAtqJk0C+vbVTqWPjlYgNNQbgLeYTSM7KetiZ2yW12uvvQZvb2+jxyovUHa0af9yxF44kjOHCny+//57LFmyBKdPn0ZWVhZ2796N3r1767cLgoDZs2fjo48+wt27d9GmTRusW7cOMTEx4jVaYsTONSL7KSsZXHexMzXLy9vbG8HBwRa/LnOxiAgAjhw5gg4dOuDOnTsmb6aKi4iIwPjx4zF+/HibtcuhZnU9ePAATZs2xdq1a8vcvnjxYqxatQrr16/HyZMnUb16dcTHx+Ovv/6yc0uJxKcLQBITE5GYmIg+ffoAsM8MPz8/PwQHBxv9YdBDJL7BgwdDoVBg5MiRpbaNHj0aCoUCgwcPtn/DbMyheny6deuGbt26lblNEASsWLECb7/9Nl566SUAwL///W8EBgbiiy++wOuvv27PphJJQlkBhjPM8CMi6wgLC8Mnn3yC5cuXw8PDAwDw119/Yfv27ahdu7bIrbMNh+rxMSU9PR3Z2dno3Lmz/jmVSoWWLVsiJSXF6O8VFBQgPz/f4IfImelmeRXHwoJE8tSiRQuEhYUZzO7ctWsXateujebNm+ufKygowLhx41CzZk1UrVoVzz33HE6dOmVwrK+++gp169aFh4cHOnTogIyMjFKv98MPP+D555+Hh4cHwsLCMG7cODx48MBm768sThP4ZGdnAwACAwMNng8MDNRvK8uCBQugUqn0P2FhYTZtJ5HYWFhQfphw7hgyM7WFbjMz7fu6Q4cORVJSkv7xpk2bMGTIEIN9pkyZgp07d2LLli04c+YMoqOjER8fj9xc7Q3T9evX0adPH/Ts2ROpqakYNmwYpk2bZnCMK1euoGvXrnj55Zdx9uxZ7NixAz/88APGjBlj+zdZjEMNddnC9OnTMXHiRP3j/Px8Bj/klIpf1ExNaebFz/nYI+FcrVbrj3/jhgvS06sgMvIxQkI0Vjm+sxNzDbUBAwZg+vTpuHr1KgDg2LFj+OSTT3DkyBEA2vzadevWYfPmzfp0k48++ggHDhzAxo0bMXnyZKxbtw5RUVF4//33AQD16tXDL7/8gkWLFulfZ8GCBXjjjTf0icsxMTFYtWoV2rVrh3Xr1qFq1ap2eb9OE/gEBQUBAHJycgxmpOTk5KBZs2ZGf8/d3R3u7u62bh6R6DjbSt5s+f9VVxkaMD1jkJWhyyb2GmoBAQHo3r07Nm/eDEEQ0L17d/j7++u3X7lyBYWFhWjTpo3+OVdXVzz77LO4cOECAODChQto2bKlwXHj4uIMHv/88884e/Ystm3bpn9OEARoNBqkp6fjqaeessXbK8VpAp/IyEgEBQXh22+/1Qc6+fn5OHnyJEaNGiVu44gkghcdsgVdMG1sxmBUVBpUqnusDG3E5csocw21tDT7lR8ZOnSofsjJ2Mzpyrp//z5GjBiBcePGldpmz0Rqhwp87t+/j7S0NP3j9PR0pKamwtfXF7Vr18b48ePx7rvvIiYmBpGRkZg5cyZCQkIMav0QEZFtcMagZWJitMNbxYMfpRKIjrZfG7p27YpHjx5BoVAgPj7eYFtUVBTc3Nxw7NgxhIeHAwAKCwtx6tQp/bDVU089hT179hj83okTJwwet2jRAr/++iui7fnGyuBQgc+PP/6IDh066B/rcnMGDRqEzZs3Y8qUKXjw4AESExNx9+5dPPfcc/jmm2/sNm5IZG3F8ybKwqEpx+Ls/z/LWxeuspw1jyg0VJvTM2KEtqdHqQQ+/NC+xWaVSqV+2EqpVBpsq169OkaNGoXJkyfrOxoWL16Mhw8fIuH/E5FGjhyJ999/H5MnT8awYcNw+vRpbN682eA4U6dORatWrTBmzBgMGzYM1atXx6+//ooDBw7oh0rtwaECn/bt20MQBKPbFQoF3nnnHbzzzjt2bBWRbRTPmzCFeROOQQ7/P22xLpyOs+cRJSRoc3q0SwqJU2Hfy8vL6LaFCxdCo9HgzTffxL179/D0009j//798PHxAaAdqtq5cycmTJiA1atX49lnn8V7772HoUOH6o/RpEkTfPfdd5gxYwaef/55CIKAqKgo9O3b1+bvrTiHCnyI5KSi+RDMm3AMcvn/aatFUM3JI3LUnjV7LylUskempC+++EL/31WrVsWqVauwatUqo/v36NEDPXr0MHiu5LT4Z555BsnJyUaPUVbtH2tj4ENEDsdRL2zFGVsk1hnYchHU8vKIMjMz8dVXX5V7HEftGaLKY+BDRA7FGYaMTA3VkGnl5REVD3ry8jxx/bq2LltY2HWDYMzRe9bIcgx8iMihOPqQUXlDNY7InpWhK5pHdOZMc+zZ0xOA4v+f0aBXLwaYxMCHyGE489CInDjjlG97F8csL49IF1w+CXoAwAV79jh2gEnWwcCHyAFwaMR52HrKt1jsPaxoKo+orOBSy3YBpqkZx2Q91vicnWaRUiJnZWxoJC/PU+SWSUNenifS0yMc5vPgIrG2pwsuS7N+gOnq6goAePjwoVWPS2XTfc66z90S7PEhkihdPkR5QyNyXlTUkXrCuEhs5ZjzuZTMA9LS5vhYO8BUKpXw9vbGzZs3AQDVqlWDQqEo57fIXIIg4OHDh7h58ya8vb1LFVk0BwMfIonS5U1kZDzG1q0CNJonJ1OlUsDYsd0QEVFFsjOXbM3RkoS5SGzlVOTzu3v3Lj799FMAT4LL69e1hXHCwjJt9r3QLZKtC37Idry9vfWft6UY+BBJmJ+fH/z8yipnr0BsbKDYzROVIyYJM6ipHHM/P20e0IUyt1mzZ02hUCA4OBg1a9ZEYWGh1Y5LhlxdXSvV06PDwIfIAUihnL1U6C5Y5SUJc8hIfir6/3zAgAE2CUKVSqVVLsxkWwqBqegG8vPzoVKpkJeXZ3LdEiISj65y8/btHpg6VYWiIgWUSgGLFuWhf/8/OWQkY85Q1dsRSPFzruj1m4FPCQx8bEeKfyjk+DIz2RNGZE9SrZ5e0es3h7rILqT6h0KOz94LOxLJnaNXT2cdH7KLkn8AxmqvSPUPhYiInAN7fMjuHKn2ChERORf2+JBdsQoxERGJiT0+ZFeOWHuFiJwTJ1zIEwMfsiupLtDIEyCRvHDChfXk5XkiN9cPvr5qh7iBZeBDdlVyDR0pLNDIEyCR/Dj6zCSpcMScTQY+ZHemFmgUA0+AREQVp6uQXd56eVKtns7Ah+yi5B+Adg2d0gGPFP5QHK3blmyLw6DywL/7itMtGHv4MLB8eemczTZtBqF9e+muTcfAh+zCUVamdsRuW7IdDoPKA//uzefn54dWrQAXF0CjefK8Ugm0bKldXFmqGPiQ3Uj9wlBety3JD4dBnR//7i0XGgps2ACMGAEUFWmDng8/lH4ldQY+EpCZCVy+DMTESP8L48w41Z5Ifiryd8/hTuMSEoD4eMdaL4+Bj8g2bgQSE7VdhS4u2ug5IUHsVsmTVKfak30Vv8jdvn1b5NaQrZX3d5+Xl4cdO3aUexw5D3c62np5DHxEolarkZHxGImJNaHRKABog58RIwQ0a3YTERFVZPtHJBYpTrUn+yovp4cJsM5DN5GivL97QRAqdDwOdzoOBj4i0J1c09MjoNEMMthWVKTA6tVfIzLyqqzvIOyp+EwyU1PtpTDjjGzL1MWLCbDOpeSEi1mzbiEjowoiIh4jJOQZAM/Azc2NAY0TYuAjAt0fUnldrPyDsw9HmXFG4mECrHMq/jcdHAzExpbeJysry+Axe/0cHwMfEXFoRToY1JApTHwnoHK9fkyQlg6nDHzWrl2LJUuWIDs7G02bNsXq1avx7LPPit2sMkmtijERPaG7u3d1LTDZO8thUOdXmV4/1oOSFqcLfHbs2IGJEydi/fr1aNmyJVasWIH4+HhcunQJNWvWFLt5ZTJWxZiIxFPy7r5Jk7M4e7YJBMEFLi4CFi/OR//+/XinLhOV6fVjPShpcbrAZ9myZRg+fDiGDBkCAFi/fj2+/PJLbNq0CdOmTRO5dWQO1jcisZR1d3/2bBMkJPwLhYVuGDu2G2JjAwF4i9rOkjicYjssd+E8nCrwefToEU6fPo3p06frn3NxcUHnzp2RkpIiYsuoonQn7u3bPTBligoajeL/767z0L//nzxxk10Yu7svLHRDZORVhIRojPymeDicYhsVnfZuznCnsQRpY3WjeN6zLqcKfG7fvo2ioiIEBgYaPB8YGIiLFy+W+TsFBQUoKCjQP87Pz7dpG8k43Yk7L88TK1aMhyDo6hspMHmyF/74YxNUqns8cZPN6C5e5d3di5HTU15vTl5eXoWOw+EU81R02ntFz0mmEqR37dpl9Pd43rMepwp8LLFgwQLMnTvXrq9Z/KRpamqk3BImdSeW8sbSeeImWyl+katVKx9Tp6pQVKSAUilg0SLxcnoq2ptDtlGRae8VUZkEaZ73rMepAh9/f38olUrk5OQYPJ+Tk4OgoKAyf2f69OmYOHGi/nF+fj7CwsJs2k7dyXXzZiXeeaf0cA4g765NjqWTmHR/d5MmAX376tYgUiA01Bti5fRYctFjvRnpYVkEaXCqwMfNzQ2xsbH49ttv0bt3bwCARqPBt99+izFjxpT5O+7u7nB3d7djK7X+/NMPU6Zol6kAtMM5U6d6o29fb9kn8rK+EUmFo61BpMMq09JUkZs6Bqy251SBDwBMnDgRgwYNwtNPP41nn30WK1aswIMHD/SzvKTi8uUnQY9OUZH27tIRT7TWxvpGRMaZujiyyrT0VDRBmgGrfThd4NO3b1/cunULs2bNQnZ2Npo1a4ZvvvmmVMKzmNRqNby8HsPF5ckCpQCgVArw9LwJtZoLlAKsb0RUlvIujhxOkR5TCdJubpHYtesnBqx25HSBD6DNfjc2tCW24kmKPXoYnsC6d9+Hffu0JzBm8BNRSRW5ODJHTpqMJUhnZWm7/hmw2o9TBj5SVjxJ0dRwDjP4iaikilwcrVlvhuyHAav9MPARGYdznqjoCZknbpKr8i6Or732Gry9vQFUvt4M2YctCiSSaQx8SDJKjoOXhSdueRN7SQaxXr+iF8eaNWvqX78y9WbIfqxdIJHKx8CHJIV/3GSM2EsyiPn6vDg6N2sVSKSKYeBDRA5B7BWuxX59XhyJrIOBDxE5JLELvYn9+rYg9lAikT0w8CEihyN2oTexX98WxB5KJLIXBj52xplLRJUjdqE3sV/fVkr29Bjr0WKpjYph75l0MfCxM85cImdn6xO+2IXexH59e3DGHi17Yu+ZtDHwEYFUv+iZmdo1xGJiuF4YWcYeJ3yxC72J/fq25qw9WvbE3jNpcyl/F5KDjRuB8HCgY0ftvxs3it0ickRlnfDT0yOQl+dpcj9z6GrZKBTaUv8la9nYmtivb2umerTIfGfONMeKFeOxZcsgrFgxHmfONBe7SbLHHh9CZiaQmPhktXiNBhgxAoiPZ88PWc7awyXF895MLfdiq/w4sV/fXpy9R8ue2HsmTQx8CJcvPwl6dIqKgLQ08QMfDr85Jluc8MXOjxP79e2lvOrQVHFyyAdzRAx8CDExgIuLYfCjVALR0eK1CdAOt+l6olxcgA0bgIQEcdtEFWOrE77YQYXYr28vpnq0AM5Yqij2nkkTAx+ZU6vVUCofYfFiD0ydqkJRkQJKpYBFi/KgVP4Jtdr+JzC1Wo2MjMdITKwJjUYBQDf8JqBZs5uIiKjCk6rE8YTveEoO0RlbQPnhw4fYsGGD/rGxxF3OWGLvmVQx8JGxkjNwxo3z1N/h3b9/D7pzmz1PYLo2padHQKMZZLCtqEiB1au/RmTkVZ5UJY4nfMdT0aG84ttN5XFxxpJWeb1nZH8MfGSs5InJ2B2ePU9gutcqr8eAJ1Xp4wnf8VTkZiIrKwsAE3dNqWjvmaMnwjsqBj4kSewxMJ8U8i54wpcPJu4aJ5dEeEfFwIckiz0GFVdy2FKsvAue8OWDeVym8TsuXQx8SNKM9RiQISnlXfCELw9y7ZUt3rN644YL0tOrIDLyMUJCtNNiGdhLHwMfIifCvAvxSGGo0d7k1itbvGfV1A0GJ19IGwMfsjoWHRQP8y7EIZWhRjHIqVdWF9iWd4PByRfSxsCHrIpFB8XFvAtxSGmo0dYqmpjuzAnsvMFwbAx8ZMzaJzBrrPnFk2rlyDXvQirkMNTIBHbHvsGQ45BsSQx8ZMzaJzBrrPkl95OqNRIn5ZZ3ISVy6Qlw1r+/inLUG4ySQ7LGOOOQbHEMfGTOWl9utVoNL6/HcHF5sswEACiVAjw9b0KtrvgyE878B2eKNRMn5ZR3ISWO3BNA5nHEG4ySN5TGctGcYUjWFAY+VGnFL9g9ehhesLt334d9+zjToSIqkzjJIUJpcNSeALKMI99gmLq5cnYWBT4PHjxA9erVrd0WclDFL8Sm7oKc/S7CWiwZLpH7EKGUOGJPAMmLHHLRTLEo8AkMDMRrr72GoUOH4rnnnrN2m8jBOfJdkBRYOlzCoEY6+DfgnEz1mBYfNpJ6z6pcctGMsSjw+c9//oPNmzejY8eOiIiIwNChQzFw4ECEhIRYu31EssPhEsfDoUZ5MNazun27B955RwWNRgEXFwENGyokXcZD7rloFgU+vXv3Ru/evXHr1i1s3boVmzdvxsyZMxEfH4+hQ4eiV69eqFKF6UNEluJwiWPhUKN8FP9/qFarkZHxGFOmqPSTOjQaBUaMENCs2U1ERFR8Uoc9yf3mqlLRSUBAACZOnIiJEydi9erVmDx5Mr766iv4+/tj5MiRmDZtGqpVq2aVhs6fPx9ffvklUlNT4ebmhrt375ba59q1axg1ahQOHz6MGjVqYNCgQViwYAGDMHJIHC5xLFK8wJHt6CZ1pKdHQKMZZLCtqEiB1au/RmTkVclO6pDzzVWlIoKcnBxs2bIFmzdvxtWrV/HKK68gISEBmZmZWLRoEU6cOIHk5GSrNPTRo0d49dVXERcXh40bN5baXlRUhO7duyMoKAjHjx9HVlYWBg4cCFdXV7z33ntWaQMR2RaLq5Gj0H1Pyxs2ktKkjpJDrcZurpx9SNaiwGfXrl1ISkrC/v370aBBA/z973/HgAED4O3trd+ndevWeOqpp6zVTsydOxcAsHnz5jK3Jycn49dff8XBgwcRGBiIZs2aYd68eZg6dSrmzJnj9P8jyfHJPU9EzutdkeNypGEjDslqWRT4DBkyBK+//jqOHTuGZ555psx9QkJCMGPGjEo1zhwpKSlo3LgxAgMD9c/Fx8dj1KhROH/+PJo3b17m7xUUFKCgoED/OD8/3+ZtdTZyv2Bbi9xPSnJa74qciyMNGznr+cMcFgU+WVlZ5ebueHh4YPbs2RY1yhLZ2dkGQQ8A/ePs7Gyjv7dgwQJ9bxJZRu4XbGviZ8QaI+SYmJPnOCwKfKpVq4aioiLs3r0bFy5cAAA89dRT6N27t1mJxNOmTcOiRYtM7nPhwgXUr1/fkmZWyPTp0zFx4kT94/z8fISFhdns9ZwVL9hkLXKvMUJEtmVR4HP+/Hn07NkTOTk5qFevHgBg0aJFCAgIwN69e9GoUaMKHWfSpEkYPHiwyX3q1KlToWMFBQXhf//7n8FzOTk5+m3GuLu7w93dvUKvQUS2J/caI0RkWxYFPsOGDUOjRo1w+vRp+Pj4AADu3LmDwYMHIzExEcePH6/QcQICAhAQEGBJE0qJi4vD/PnzcfPmTdSsWRMAcODAAXh5eaFBgwZWeQ2yvcxM7SrvMTEVX9GdnIsjJYsSOaPisytv3HBBenoVREY+RkiIBoDjpy5YFPikpqbixx9/1Ac9AODj44P58+cbTXaurGvXriE3NxfXrl1DUVERUlNTAQDR0dGoUaMGunTpggYNGuDNN9/E4sWLkZ2djbfffhujR49mj46D2LgRSEwENBrAxQXYsAGSrn5K1qNWq3H79m39Y0dKFiV5ctZJHcVnV5qaZODIsystCnzq1q2LnJwcNGzY0OD5mzdvIjo62ioNK2nWrFnYsmWL/rFultbhw4fRvn17KJVK7Nu3D6NGjUJcXByqV6+OQYMG4Z133rFJe8i6MjOfBD2A9t8RI4D4ePb8ODtT09gjI6+K2DIi45x1Uofu/ZQ3ycCRZ1daFPgsWLAA48aNw5w5c9CqVSsAwIkTJ/DOO+9g0aJFBlPCvby8rNLQzZs3G63hoxMeHo6vvvrKKq9H9qNWq3HiBKDRGJ4gioqAkyfV8PBg8rQzq+g0dh1Hu4Mm5+XM5yVnnmRgUeDTo0cPAMBrr70GhUK7PokgCACAnj176h8rFAoUFRVZo53kpHR3+3l5nlAoxpdKaD12bAvOnbvn0N2qVDHl3WH26dMHISEh/B4Q2YEzTzKwKPA5fPiwtdtBMqW72y8vodWRu1WpYsq7w/T395dN0MMkfxKbM08ysCjwadeunbXbQcSEVplz5jvMitDNpNm+3UO/2reLi4DFi/PQv/+fDpkvQo7NWc/JFi9SevfuXWzcuFFfwLBhw4YYOnQoVCqV1RpH8sPqp/LlzHeY5Sk+5LtixXgIgjaFQKNRYPJkL/zxxyaoVBzyJftzxnOyRYHPjz/+iPj4eHh4eODZZ58FACxbtgzz589HcnIyWrRoYdVGEpE8OOsdZnl0Q7nlDfdxyJeo8iwKfCZMmIBevXrho48+0i9R8fjxYwwbNgzjx4/H999/b9VGEpF8OOMdZkXJfbiPxOes9YmKs7jHp3jQAwBVqlTBlClT8PTTT1utcUTk/ORwoq0oOQ/3kTQ4a32i4iwKfLy8vHDt2rVSi4dev34dnp6eVmkYEcmDHE605pDrcB9Jh7P/rVkU+PTt2xcJCQlYunQpWrduDQA4duwYJk+ejH79+lm1geTceLdPgPOfaM0l5+E+IluzKPBZunQpFAoFBg4ciMePHwMAXF1dMWrUKCxcuNCqDSTnxrt9IiKyJ7MDn6KiIpw4cQJz5szBggULcOXKFQBAVFQUqlWrZvUGOgsWJDOOQQ0REdmLS/m7GFIqlejSpQvu3r2LatWqoXHjxmjcuDGDHhM2bgTCw4GOHbX/btxom9fJzAQOH9b+S0SOg0O+RPZj0VBXo0aN8PvvvyMyMtLa7XEqarUaGRmPkZhYExqNriAZMGKEgGbNbiIioorVejs2bnyyurmLC7BhA5CQYJVDE0mOrsqxMY42PMohXyL7UQi61UXN8M0332D69OmYN28eYmNjUb16dYPt1lqRXQz5+flQqVTIy8ur1PvQVWJNT4/Ali2DSm0fNGgzIiOvWqUSa2amtidJo3nynFIJZGRwWI2cj+5vSycvzxO5uX7w9VUbJASzyjGRvFT0+m1Rj8+LL74IAOjVq5d+dXaAK7IXp7tzK68gWWUrsarVapw4AWg0hif4oiLg5Ek1PDyYQ0POpfjfzJkzzUvVvGnR4icAwI0bN4z+fbH3xHaYz0hSx9XZbcyWBcmKr++jUIwvFVwdO7YF585xfR9yTnl5nvq/K0C7tMPevT0QFZUGleoedu3apd+PPUL2wSF3cgQWBT6RkZEICwsz6O0BtD0+169ft0rDnImtCpLp7mbLC664vg85o/LWtQJM9wjx78K6MjOfBD2ALp8RiI9nzw9Ji8WBT1ZWFmrWrGnwfG5uLiIjIznUVQZbFyRjtVeSm/KGkcvrESLr4ZA7ORKLAh9dLk9J9+/fR9WqVSvdKLIMq73Kh7PNarJEeT2dFekRosrjkDs5GrMCn4kTJwIAFAoFZs6caVC7p6ioCCdPnkSzZs2s2kAiMlRyVpMxcrjQmOrpFGul8+JB6Y0bLkhPr4LIyMcICdGOATlbUMohd3I0ZgU+P/2kHRsXBAG//PKLQTEtNzc3NG3aFG+99ZZ1W0hEBkpeQIwl78rlQmOsp1OMlc6LB6Wm8oucNSjlkDs5ArMCH91sriFDhmDlypUOXa/H1liJlezB1MXVWZnzN2PvC7Eu2Cwvv8iZg1IOuZPUWZTjk5SUZO12OB1WYiVbk2vybnl/W7dv39ZPZQfEuRAzv4hIuiwKfB48eICFCxfi22+/xc2bN6EpXjIYwO+//26Vxjk6Wwc17FWSNzlfXE39bUnh70Ks/CKSPhZ4FJ9Fgc+wYcPw3Xff4c0330RwcHCZM7zI9tirJG+8uJZNCn8XYuQXkfSxwKM0WBT4fP311/jyyy/Rpk0ba7eHzMSgRr54cTVOCn8XTPSl4ljgUTosCnx8fHzg6+tr7bYQkZl4cZU2OST6SmFo0RFcvmy4kDSgLfCYlsbAx94sCnzmzZuHWbNmYcuWLQa1fIjI9kpeQIxdXOV+oaGKq0zeiRSGFqVOrVbDy+sxXFxqQqN5khqiVArw9LwJtbqKrD8fe7Mo8Hn//fdx5coVBAYGIiIiAq6urgbbz5w5Y5XGEVFpvNBIlyP1fugKLW7f7oEpU1TQaBRwcRGweHEe+vf/06zvEL9rxhWv7dSjh2H5ie7d92HfPueu7SRFFgU+vXv3tnIziMgcPEFKk6MEpcWXmVixYjwEQdsLodEoMHmyF/74YxNUKi4zYQ3FvwumhqalUttJDrPOLAp8Zs+ebe12mJSRkYF58+bh0KFDyM7ORkhICAYMGIAZM2YY3DmdPXsWo0ePxqlTpxAQEICxY8diypQpdm0rEcmbIwQKuotseSURpHIxdiZSzvuSy6wzl/J3eeJ///ufyZXXCwoK8Omnn1a6USVdvHgRGo0GH374Ic6fP4/ly5dj/fr1+Oc//6nfJz8/H126dEF4eDhOnz6NJUuWYM6cOdiwYYPV20NE5Ax0JRGKY0kE+VGr1Th9OgeJiUKJWWcCTp/OgVqtFreBVmZW4BMXF2fwAXh5eRkUK7x79y769etnvdb9v65duyIpKQldunRBnTp10KtXL7z11lsG1Vm3bduGR48eYdOmTWjYsCFef/11jBs3DsuWLbN6e4iInIGuJIIu+GFJBPnRDXuuXv2NQeI1ABQVKbB69ddYs2aNUwU/Zg11CYJg8rGx52whLy/PYEp9SkoK2rZtazD0FR8fj0WLFuHOnTvw8fEp8zgFBQUoKCjQP87Pz7ddo4lIkoqvqF4WKeTl2ApLIsib7ntfXkFUZxr2tCjHxxR7VHFOS0vD6tWrsXTpUv1z2dnZiIyMNNgvMDBQv81Y4LNgwQLMnTvXdo0lIkkrPusGML7avTMn+ko574TsQ04FUa0e+Jhj2rRpWLRokcl9Lly4gPr16+sf//HHH+jatSteffVVDB8+vNJtmD59OiZOnKh/nJ+fj7CwsEofl4gcQ/E7WVOr3TvTHS9RWeTS+2d24PPrr78iOzsbgHZY6+LFi7h//z4A7arI5pg0aRIGDx5scp86dero//vGjRvo0KEDWrduXSppOSgoCDk5OQbP6R4HBQUZPb67uzvc3d3NajcROR+5rnZPtuVItZ0AefT+mR34dOrUySCPp0ePHgC0Q1yCIJg11BUQEICAgIAK7fvHH3+gQ4cOiI2NRVJSElxcDPOy4+LiMGPGDBQWFuoLKh44cAD16tUzOsxFRKQjp9XuHe1i7MgcpbaTnJgV+KSnp9uqHSb98ccfaN++PcLDw7F06VLcunVLv03Xm9O/f3/MnTsXCQkJmDp1Ks6dO4eVK1di+fLlorS5ouScVEkkJXJa7Z4XY/vi5ygtZgU+4eHhZh3873//O9555x34+/ub9XslHThwAGlpaUhLS0NoiVKSut4nlUqF5ORkjB49GrGxsfD398esWbOQmJhYqde2pZJJlcY4c1IlkVTIKbkT4MWY5Mumyc3/+c9/8NZbb1U68Bk8eHC5uUAA0KRJExw9erRSr2VPFU2WZFIlkX2YSu4smcPIHhFyBnIc9rRp4GOvmj7Owtg0WiKyH2PJncULpuqwN5YcnRyHPUWdzk5PmJpGSyRX9siBq8ydLHtjyRk4U1BTEQx8JIDTaIlKs1cOXFl3vLdv3zbo4WFvLJHzYOAjAXKaRktUUfbMgTMVOLE3lsi5mLVIKdkGV0gmkiZjvbF5eZ4it4yILGXTHp8BAwbAy8vLli/hFKw1jZY1gYisi72xRM7HosBHo9GUqpysez4zMxO1a9cGAKxbt65yrXNyxZMqTU2jrUjyJWsCkbMTI89GTkUNieTCrMAnPz8fw4YNw969e+Hl5YURI0Zg9uzZUCqVAIBbt24hMjISRUVFNmmss7HmNELWBCJHZKqXsnjdHLHybORW1JBIDswKfGbOnImff/4ZW7duxd27d/Huu+/izJkz2LVrl75XgrV7zMPeF5KrivZSijHr0Zq9sSR9mZnA5ctATAxQYnEAckJmBT5ffPEFtmzZgvbt2wMAevfuje7du6Nnz57Ys2cPAJi1SCkRyVdFex/FyLORY1E3udq4EUhMBDQawMUF2LABSEgQu1VkS2YFPrdu3TJYr8vf3x8HDx5EfHw8XnzxRfzrX/+yegOdjb0SkFl3hJxFeXk2tup1YVDj3NRqNTIyHiMxsSY0Gu0Nu0YDjBghoFmzm4iIqOK03wG593CZFfjUrl0bFy5cQGRkpP45T09PJCcno0uXLvjb3/5m9QY6E3slILPuCDmTIUNeQK1a+Zg6VYWiIgWUSgGLFuWjf/9+7HUhi+jOxenpEdBoBhlsKypSYPXqrxEZedWpJoPobrq3b/fAlCkqaDQKuLgIWLw4D/37/ymrvyWzAp8uXbogKSkJL774osHzNWrUwP79+/HCCy9YtXHOxh4JyKwCTY7KWC+lv78/Jk3yRt++QFoaEB2tQGioNwBvsZpKDk53ji2vN9FZJoPoAr28PE+sWDEegqDr4VJg8mQv/PHHJqhU95wq0DPFrMBn7ty5uHHjRpnbPD09ceDAAZw5c8YqDSPLsO4IOaKK9FKGhsqzW55sRy6z9nQBXHnXB2cJ9MpjVuDj4+MDHx8fo9s9PT3Rrl27SjeKzKfLcxArH4LIUuylJDGZmrXnbFiXSsvsAoaPHz/G8uXL8fHHH+O3334DANStWxf9+/fHP/7xD7i6ulq9kVS+4rNQmA9BjoS9lCQ2leqeLL5rcunhKo9Zgc+ff/6JF154ASkpKejcuTPatm0LALhw4QKmTp2KPXv2IDk5GVWrVrVJY8k0XVAzaRKYD0GSx15KIvuTUw+XMWYFPgsXLsT169fx008/oUmTJgbbfv75Z/Tq1QsLFy7EnDlzrNlGp2XLKefMhyCpYy9l5XBtPrKUXHq4jDEr8Pnkk0+wbNmyUkEPADRt2hRLly7FjBkzGPhUAKecE7GX0lJcm4905F6TxxKlVxo14erVq3j22WeNbm/VqhWuXbtW6UY5K12XvbFkzrw8T4P9iOQkNBRo354n74oo2dOTl+eJ9PQI/TnE2H6kVdFzrFTPxWq1GllZWXj//bsIDxfQsSMQHi7g/ffvIisrC2q1WuwmSppZPT5eXl64efMmwsLCytyenZ0NT0/PMrfRk679w4eB5ctLJ3O2aTMI7duzYiwRVRx7j83nyEuSWFKTx9EDPWszK/Dp0KED3nvvPezcubPM7QsXLkSHDh2s0jBn5efnh1attGvCaDRPnlcqgZYt/SDBvzMikiiWArCcFIOairCkJo8jB3q2YFbgM3v2bLRs2RKtWrXCxIkTUb9+fQiCgAsXLmD58uX49ddfceLECVu11WmEhmoXwhsxAigq0gY9H37ILn4iMg9LAciXuTV55BLUVIRZgU+DBg1w4MABJCQk4PXXX9evxC4IAurXr4/k5GQ0bNjQJg11NgkJQHy8LpmTQQ8RmY8F6eSLNXksZ3YBw1atWuH8+fNITU01KGDYrFkza7fN6XHKORFVhi0vfpwubxl7zrJiTR7LmB345Ofno0aNGmjWrJlBsKPRaHD//n14eXlZs31ERGSCLS5+nC5vHjFXPpd7TR5LmDWdfffu3Xj66afx119/ldr2559/4plnnsHevXut1jgiIiqt5OwbleoeIiOvlroAWjpLp6LT4Dld/kmQuGTJx5g82QsajeEsqyVLPsaaNWs4xVxCzOrxWbduHaZMmYJq1aqV2la9enVMnToVa9asQc+ePa3WQCIiMmTvWTq2rDLv6LjyueMxK/A5d+4cPvjgA6Pb27Zti7fffrvSjSIiItPsNcTEOkEVY69Ec9bkqTyzAp87d+7g8ePHRrcXFhbizp07lW4UERGJj3WCKs5es6xYk6fyzAp8IiIi8OOPP6J+/fplbv/xxx8RHh5ulYaV1KtXL6SmpuLmzZvw8fFB586dsWjRIoSEhOj3OXv2LEaPHo1Tp04hICAAY8eOxZQpU2zSHiIiZ8c6Qeax1ywrBjWVY1Zyc58+fTBjxgzk5OSU2padnY23334bL7/8stUaV1yHDh3w6aef4tKlS9i5cyeuXLmCV155Rb89Pz8fXbp0QXh4OE6fPo0lS5Zgzpw52LBhg03aQ0Tk7HTDN8WxTpBpxhLNSTrM6vGZNm0a/vvf/yImJgYDBgxAvXr1AAAXL17Etm3bEBYWhmnTptmkoRMmTND/d3h4OKZNm4bevXujsLAQrq6u2LZtGx49eoRNmzbBzc0NDRs2RGpqKpYtW4bExESbtImIbId1ZMTHInnkjMwKfDw9PXHs2DFMnz4dO3bs0OfzeHt7Y8CAAZg/f75dFinNzc3Ftm3b0Lp1a7i6ugIAUlJS0LZtW4OErvj4eCxatAh37tyBj4+PzdtFRNbBOjLiKn4eNTV8wwRackRmFzBUqVT44IMPsHbtWty+fRuCICAgIEC/fEVxx44dw9NPPw13d3erNFY3Xf7hw4do1aoV9u3bp9+WnZ2NyMhIg/0DAwP124wFPgUFBSgoKNA/zs/Pt0pbichyrCMjLibQVhxnWTkeswMfHYVCgYCAAJP7dOvWDampqahTp06Z26dNm4ZFixaZPMaFCxf0ydSTJ09GQkICrl69irlz52LgwIHYt29fmUFXRS1YsABz5861+PeJiJwRg5qKYZDoeCwOfCpCEAST2ydNmoTBgweb3Kd40OTv7w9/f3/UrVsXTz31FMLCwnDixAnExcUhKCioVNK17nFQUJDR40+fPh0TJ07UP87Pz0dYWJjJNhERkfU5al6XFNtExtk08ClPQEBAub1Gxmg02pkGumGquLg4zJgxQ5/sDAAHDhxAvXr1TOb3uLu7W20ojoiILMO8LrIXs6azi+XkyZNYs2YNUlNTcfXqVRw6dAj9+vVDVFQU4uLiAAD9+/eHm5sbEhIScP78eezYsQMrV6406M0hIiJpKtnTk5fnifT0COTleZrcj8hcovb4VFS1atWwa9cuzJ49Gw8ePEBwcDC6du2Kt99+W99bo1KpkJycjNGjRyM2Nhb+/v6YNWsWp7ITETkYLpNBtmTTwKcyScfFNW7cGIcOHSp3vyZNmuDo0aNWeU0iIrI/LpNBtiZqcjPJh6MmLZI4Sk79NbY6uBhThPldti0uk0G2ZtPA5949fkmJSYtkvuJThLdv98A776ig0Sjg4iJg8eI89O//pygBBr/LtmevVc5JvswKfDp27Fih/SoyLEXywWJ0ZAk/Pz9kZgJTpgD/P4kTGo0CU6d6o29fb4gRV/C7bHtcJsM09jhWnlmBz5EjRxAeHo7u3bvrp4wTEdnK5ctPgh6doiIgLQ0IDRWnTWR79lrl3NGwx9E6zAp8Fi1ahKSkJHz22Wd44403MHToUDRq1MhWbSMimYuJAVxcDIMfpRKIjhavTWQbJfO1VKp7ZQY8cl76oawp/2XlvrHH0TSzAp/Jkydj8uTJSElJwaZNm9CmTRvUq1cPQ4cORf/+/eHl5WWrdhKRDIWGAhs2ACNGaHt6lErgww/Z2+OMuPSDeTjl33IWJTfHxcUhLi4OK1euxGeffYa1a9firbfewo0bNxj8EJFVJSQA8fHa4a3oaAY9zoxBTcVwyn/lVGpW15kzZ/Ddd9/hwoULaNSoEfN+iMgmQkMZ8BDpcMp/5Zi9ZMWNGzfw3nvvoW7dunjllVfg6+uLkydP4sSJE/Dw8LBFG4mIJMnYsgpEtqSb8l8cp/xXnFk9Pi+++CIOHz6MLl26YMmSJejevTuqVHGIVS9IRBVNRpRz0iI5huLfUVM5Fvwuky1xyn/lKAQzyiu7uLggODgYNWvWNLkcxZkzZ6zSODHk5+dDpVIhLy+P+UpWxNoT5CzUajUyMh7j2WdrQqN5ch5UKgWcPHkTERFV+F0mm8jKysKGDRv0j7WzukpP+U9MTERwcLAYTRRVRa/fZnXXzJ49u9INI3nihYCchZ+fH86eLau+kAL37gWKUliR5IFT/q3DrB4fOWCPj+1lZmoL08XEMGGVHFNmJhAeXrq+UEYGv9PWwB5i4/jZGGeTHh9jvvvuOzx48ABxcXHw8fGxxiHJSW3cCCQmai8YLi7aGi0JCWK3isg8rC9kO6xObJoc37O1mV25+f79+5g3bx4A7err3bp1Q3JyMgCgZs2a+Pbbb9GwYUPrt5QcXmbmk6AH0P47YoS2RgsvGORoWF/INrgeGtmaWdPZd+zYYbBExeeff47vv/8eR48exe3bt/H0009j7ty5Vm8kOQdT6y4ROaLQUKB9ewY9RI7ErMAnPT0dTZo00T/+6quv8Morr6BNmzbw9fXF22+/jZSUFKs3kpyDbt2l4rjuEhGZwlpJZG1mDXU9fvwY7u7u+scpKSkYP368/nFISAhu375ttcaRc2FeBBGZg+tRkS2Y1eMTFRWF77//HgBw7do1/Pbbb2jbtq1+e2ZmJhOvyKSEBO3Ml8OHtf8ysZmIymJsPSr2/FBlmdXjM3r0aIwZMwZHjx7FiRMnEBcXhwYNGui3Hzp0CM2bN7d6I8m5cN0lIioP16MiWzEr8Bk+fDiUSiX27t2Ltm3blipoeOPGDQwdOtSqDSQiImmyZU0Z3XpUxYMfrkdF1mB2HZ+hQ4caDW4++OCDSjeIiIikz9r1dnRBVF5eHoDy16NidWKyFFcYJSIis1mz3o6xIKpFi58QFZWmX49q+PBu8PZ+xuyeJFY7puLMCnwKCwsxY8YM7Nq1C76+vhg5cqRB709OTg5CQkJQVFRk9YYSEZFzMhWUFF+Pytvb2+zFN1kJmkoya1bX/Pnz8e9//xsjR45Ely5dMHHiRIwYMcJgHy79RUREUsFK0FSSWT0+27Ztw7/+9S/06NEDADB48GB069YNQ4YMwaZNmwAACoXC+q0kIiIisgKzenz++OMPgyUroqOjceTIERw/fhxvvvkmh7iIiGTKmhWWbVmtmZWgyawen6CgIFy5cgURERH652rVqoXDhw+jQ4cOGDx4sJWbR0RElrJXUq81KyzbslozK0ETYGbg07FjR2zfvh2dOnUyeD4kJASHDh1C+/btrdk2IiKykL2Seo1VWI6KSjO70KA1j2XPY5NjMSvwmTlzJi5evFjmtlq1auG7777DgQMHrNIwIiKynK2TenV1dMqrsGxOvR1bVmtmJWjSMSvwCQ8PR3h4uNHtISEhGDRoUKUbRURE0ubn54cxY8YgI+Mxtm4VoNE8mdiiVAoYO7YbIiKqVKg3SRcclVetuTJFC1kJmnTMSm7W+eyzz9CnTx80atQIjRo1Qp8+ffD5559bu21lKigoQLNmzaBQKJCammqw7ezZs3j++edRtWpVhIWFYfHixXZpExGRHPn5+SE2NhAbNiigVGqfUyqBDz9UIDY2sMJDaLogavLkfliyJB9KpfD/xxKwZEk+Jk/uZ/GQnC5Y0lWCVig0AMBK0DJmVo+PRqNBv3798Nlnn6Fu3bqoX78+AOD8+fPo27cvXn31VXz88cc2ndI+ZcoUhISE4OeffzZ4Pj8/H126dEHnzp2xfv16/PLLLxg6dCi8vb2RmJhos/YQETmziiRIJyT4IT4eSEsDoqMtW4RYF9RMmgT07as7lgKhod4AvC1qu+64Y8aM0b+HWbNuISOjCiIiHiMk5BkA5leCJsdmVuCzcuVKHDx4EHv27NHX8tHZs2cPhgwZgpUrV2L8+PHWbKPe119/jeTkZOzcuRNff/21wbZt27bh0aNH2LRpE9zc3NCwYUOkpqZi2bJlDHyIiCxgToJ0aKifRQFPWUJDLQuejCke1AQHA7Gx1js2OR6zhrqSkpKwZMmSUkEPAPTq1QuLFy/WFzK0tpycHAwfPhxbt25FtWrVSm1PSUlB27ZtDbor4+PjcenSJdy5c8focQsKCpCfn2/wQ0TkbCypX8Oqx+SMzAp8Ll++jM6dOxvd3rlzZ1y+fLnSjSpJEAQMHjwYI0eOxNNPP13mPtnZ2QgMDDR4Tvc4Ozvb6LEXLFgAlUql/wkLC7New4mIJODMmeZYsWI8tmwZhBUrxuPMmeZiN4lINGYFPh4eHrh7967R7fn5+ahatWqFjzdt2jQoFAqTPxcvXsTq1atx7949TJ8+3ZzmVsj06dORl5en/7l+/brVX4OIyN50vd/G6tfoen6Y1EtyY1aOT1xcHNatW4d169aVuX3t2rWIi4ur8PEmTZpUbrXnOnXq4NChQ0hJSYG7u7vBtqeffhpvvPEGtmzZgqCgIOTk5Bhs1z0OCgoyenx3d/dSxyUC7Ff1lsgWdEm9hw8Dy5eXrl/Tps0gtG8PfodJdswKfGbMmIH27dtDrVbjrbfeQv369SEIAi5cuID3338f//3vf3H48OEKHy8gIAABAQHl7rdq1Sq8++67+sc3btxAfHw8duzYgZYtWwLQBmUzZsxAYWEhXF1dAQAHDhxAvXr14OPjY87bJLJb1VsiW/Lz80OrVoCLC6DRPHleqQRatvQDv7ri4Y2VeMwKfFq3bo0dO3YgMTERO3fuNNjm4+ODjz/+GG3atLFqAwGgdu3aBo9r1KgBAIiKikLo/6f+9+/fH3PnzkVCQgKmTp2Kc+fOYeXKlVi+fLnV20POj0md5CxCQ4ENG4ARI4CiIl2dHctmTeXleSI31w++vmpWO64E3liJy6zABwD+9re/IT4+Hvv379cnMtetWxddunQpc7aVvahUKiQnJ2P06NGIjY2Fv78/Zs2axansRCR7CQmodJ0dLvBpPbyxEpdZgc+hQ4cwZswYnDhxAn/7298MtuXl5aFhw4ZYv349nn/+eas2sqSIiAgIglDq+SZNmuDo0aM2fW0iIkdkSW2c8hKkdQt8MkGaHIlZs7pWrFiB4cOHw8vLq9Q2lUqFESNGYNmyZVZrHBERiUeXIN269aAyF/hs02YQh2PI4ZgV+Pz888/o2rWr0e1dunTB6dOnK90oIiKSBm2CtB9cSlwtniRIM+ipLEuKS5LlzBrqysnJ0c+YKvNgVarg1q1blW4UERFJhzUTpMkQc6fsz6wen1q1auHcuXNGt589exbBwcGVbhQREUlLQgKQkQEcPqz9NyFB7BY5vvKKS5JtmBX4vPjii5g5cyb++uuvUtv+/PNPzJ49u8x1vIgcTUWTNZnUSXISGgq0b8+eHmvJzfUrM3cqN9dXpBbJg1lDXW+//TZ27dqFunXrYsyYMahXrx4A4OLFi1i7di2KioowY8YMmzSUyJ50SZ266aQ3brggPb0KIiMfIyREWwmOBcbImbCgnv3obph8fdVQKDQGwY9CoYGvb67BfmRdCqGseeEmXL16FaNGjcL+/fv1U8oVCgXi4+Oxdu1aREZG2qSh9pKfnw+VSoW8vLwyZ6+R/GzcCCQmaivfurhocx3YzU/OhAX17E8XaG7f7oGpU1UoKlJAqRSwaFEe+vf/k4GmBSp6/TY78NG5c+cO0tLSIAgCYmJinGZZCAY+VFxmJhAeXrrcf0YGu/vJeWRlZWHDhg3l7peYmMg8ThvIzKxccUnSquj12+zKzTo+Pj545plnLP11Iodw+bJh0ANoZ7WkpfEERfJz9+5dk9vZS2EZS4pLkuUsDnyIyuJseQIxMWUv8BgdLV6biMTy6aeflrsPh8NI6hj4kNU4Y54A65cQmYfrS5HUMfAhqyl5wjO2krOjnRitscAjERFJAwMfsglnq0bKMXiSE2M3LUTOgIEPWV15KzkTkXQ5200LUUlmVW4mqghWIyVyLLpCeeYsocCFNclRsceHrK68aqREJC26SuWHDwPLl5e+aWnTZhAaNryFHTt2AGCvEDk29viQ1alU99Cz5z4oFNo54LoTI4e5iKTLz88PrVr5waXEVUGpBFq29INKpQLAhTXJ8bHHh2yiRYufEBWVhtxcX/j65jLoIXIApso3qNXa4TBTQ9kq1T2uL0WSx8DHwWRmaqsJx8RIb5ZRyROeSnWvzICHJ0Yi6TJWvkE3HJaR8RhbtwrQaBT631EqBYwd2w0REVUcpkYXyZfFa3U5Kymv1eUIi2U6W+VmIipt48bSvUJSOxeR/Nh8kVJnJdXAh4tlEpGUcGFN2+DNo+Vsvkgp2RcXyyQiKWFRT+tzxmV/pIizuhyEbrHM4rhYJhGR86jocj6OtuyP1DDwcRC62RZKpfYxF8skIiIyH4e6HAgXyyQiIqocBj4OhuPqREREluNQFxERkQRxPTTbYI8PERGRxHA9NNthjw8REZGEcD0022LgQ0REJAG65XxMrYdWfD+yjMMEPhEREVAoFAY/CxcuNNjn7NmzeP7551G1alWEhYVh8eLFIrWWiIjIPLr10MaO7QoXF8NFFXTrobF4YeU5VI7PO++8g+HDh+sfe3o+6fbLz89Hly5d0LlzZ6xfvx6//PILhg4dCm9vbyQmJorRXCIiIrP4+fnBz09bt81wPTQFYmMDxW6eU3CowMfT0xNBQUFlbtu2bRsePXqETZs2wc3NDQ0bNkRqaiqWLVvGwIeIiBwK67bZjsMMdQHAwoUL4efnh+bNm2PJkiV4/PixfltKSgratm1rMPYZHx+PS5cu4c6dO0aPWVBQgPz8fIMfIiIisYWGAu3bM+ixNofp8Rk3bhxatGgBX19fHD9+HNOnT0dWVhaWLVsGAMjOzkZkZKTB7wQGBuq3+fj4lHncBQsWYO7cubZtPBEREUmCqIHPtGnTsGjRIpP7XLhwAfXr18fEiRP1zzVp0gRubm4YMWIEFixYAHd3d4vbMH36dINj5+fnIywszOLjERER0RNqtdrkwqpubm52TdgWNfCZNGkSBg8ebHKfOnXqlPl8y5Yt8fjxY2RkZKBevXoICgpCTk6OwT66x8byggDA3d29UoETERERlU2tVmPNmjXl7mfP2WqiBj4BAQEICAiw6HdTU1Ph4uKCmjVrAgDi4uIwY8YMFBYWwtXVFQBw4MAB1KtXz+gwF5E9ZWYCly8DMTEcsycieTDV02PJftbgEMnNKSkpWLFiBX7++Wf8/vvv2LZtGyZMmIABAwbog5r+/fvDzc0NCQkJOH/+PHbs2IGVK1caDGMRiWXjRiA8HOjYUfvvxo1it4iISJ4cIrnZ3d0dn3zyCebMmYOCggJERkZiwoQJBkGNSqVCcnIyRo8ejdjYWPj7+2PWrFmcyk6iy8wEEhMBjUb7WKPR1ueIj2fPDxGRvTlE4NOiRQucOHGi3P2aNGmCo0eP2qFFRBV3+fKToEenqEhbn4OBD9mC1JJJiaTEIQIfIkcWEwO4uBgGP0qltigZkbVJMZmUSEocIseHyJGFhmrLzyuV2sfa8vPs7SHbkGIyKZGUsMeHyA5Yfp7EkpfnidxcP/j6qqFS3RO7OUSiY+BDZCehoQx4yL7OnGmOvXt7QBBcoFBo0LPnPrRo8ZPYzSIZKb6MlDX2swYGPkRETigvz1Mf9ACAILhg794eiIpKY88P2Y2fnx/GjBkjqWR7Bj5ENsTZNSSW3Fw/fdCjIwguyM31ZeBDdiW1cxwDHyIb4ewaEpOvrxoKhcYg+FEoNPD1zRWxVSR3Uqhgz1ldRDbC2TUkJpXqHnr23AeFQltHQZfjw94eEotUKtizx4eIyIkUTxJt0eInREWlITfXF76+uQZBjz2TSYmkVMGegQ8RkRORYjIpkZQq2DPwISJyMgxqSGqkVMGegQ8RETktzqyUBl0F+xEjtD09YlawZ+BDREROiTMrpUUqFewZ+BARkVPizErpkUIFe05nJ7IRKZZqJyKSO/b4ENkIZ9cQSQsXbCWAgQ+RTTGoIZIGLthKOhzqIiIip2Zswda8PE+RW0ZiYOBDREROzdSCrSQ/DHyIiMip6RZsLY4LtsoXAx8iInJKuhmT5S3YypmV8qIQBEEQuxFSkp+fD5VKhby8PHh5eYndHCIiqoTilZtv3HBBRkYVREQ8RkiINgjizErnUdHrN2d1ERGR0yoe1AQHA7GxIjaGJIFDXURERCQbDHyIiIhINhj4EBERkWww8CEiIiLZYOBDREREssHAh4iIiGSDgQ8RERHJhkMFPl9++SVatmwJDw8P+Pj4oHfv3gbbr127hu7du6NatWqoWbMmJk+ejMePH4vTWCtSq9XIysoy+qNWq8VuIhERkUNwmAKGO3fuxPDhw/Hee++hY8eOePz4Mc6dO6ffXlRUhO7duyMoKAjHjx9HVlYWBg4cCFdXV7z33nsitrxy1Go11qxZU+5+Y8aMYfVRIiKicjhE4PP48WP84x//wJIlS5CQkKB/vkGDBvr/Tk5Oxq+//oqDBw8iMDAQzZo1w7x58zB16lTMmTPHYddi0ZVat9Z+REREcuYQQ11nzpzBH3/8ARcXFzRv3hzBwcHo1q2bQY9PSkoKGjdujMDAQP1z8fHxyM/Px/nz58VoNhEREUmMQwQ+v//+OwBgzpw5ePvtt7Fv3z74+Pigffv2yM3NBQBkZ2cbBD0A9I+zs7ONHrugoAD5+fkGP0REROScRA18pk2bBoVCYfLn4sWL0Gi0q+jOmDEDL7/8MmJjY5GUlASFQoHPPvusUm1YsGABVCqV/icsLMwab42IiIgkSNQcn0mTJmHw4MEm96lTpw6ysrIAGOb0uLu7o06dOrh27RoAICgoCP/73/8MfjcnJ0e/zZjp06dj4sSJ+sf5+fkMfoiIHIxarTaZ6+jm5sYJIARA5MAnICAAAQEB5e4XGxsLd3d3XLp0Cc899xwAoLCwEBkZGQgPDwcAxMXFYf78+bh58yZq1qwJADhw4AC8vLwMAqaS3N3d4e7uboV3Q0SVlZkJXL4MxMQAoaFit4YcBWe/kjkcYlaXl5cXRo4cidmzZyMsLAzh4eFYsmQJAODVV18FAHTp0gUNGjTAm2++icWLFyM7Oxtvv/02Ro8ezcCGyAFs3AgkJgIaDeDiAmzYABSbxElkFGe/SpvUeuMcIvABgCVLlqBKlSp488038eeff6Jly5Y4dOgQfHx8AABKpRL79u3DqFGjEBcXh+rVq2PQoEF45513RG555VR0Gr6jTtcnArQ9PbqgB9D+O2IEEB/Pnh8iRybF3jiHCXxcXV2xdOlSLF261Og+4eHh+Oqrr+zYKtvz8/PDmDFjJBUtE1nb5ctPgh6doiIgLY2BD5kvL88Tubl+8PVVQ6W6J3ZzZE2KvXEOE/jIGYMacnYxMdrhreLBj1IJREeL1yZyTGfONMfevT0gCC5QKDTo2XMfWrT4SexmkYQ4RB0fInJuoaHanB6lUvtYqQQ+/JC9PWSevDxPfdADAILggr17eyAvz1PklpGUsMeHiCQhIUGb05OWpu3pYdBD5srN9dMHPTqC4ILcXF8OeZEeAx8ikozQUAY8ZDlfXzUUCo1B8KNQaODrmytiq0hqONRFREQOTTerVaW6h54990Gh0CaL6XJ8dL09nP1KAHt8iIjIwZWc/Tpr1i1kZFRBRMRjhIQ8A+AZzn4lPQY+RCQqqRU3I8dU/DsSHAzExorYGNKTYi06Bj5EJBopFjcjIuuRYi06Bj5EJBopFjcjIuuS2k0Lk5uJiIhINhj4EBERkWww8CEikoDMTODwYe2/RGQ7DHyIiES2cSMQHg507Kj9d+NGsVtE5LwY+BARiSgzE0hMfLJAq0YDjBjBnh9yTlLo2WTgQ0QkErVajRMn1Aar0gNAURFw8qQaarVanIYR2YBUejYZ+BCRaKRY3MxedDWMjh/fol9iQUeh0ODYsS1Ys2YNgx9yClLq2WQdHyISjRSLm9mL7j3r1pfau7cHBMGl1PpSrGFEzuDyZZTZs5mWZv+FiRn4EJGonDGoMVeLFj8hKioNubm+8PXN1Qc9RM4iJgZwcTEMfpRKIDra/m3hUBcRkQSoVPcQGXmVQQ85pdBQYMMGbbADaP/98EP79/YA7PEhIiIiO0hIAOLjtcNb0dHiBD0AAx8iIiKyk9BQ8QIeHQ51ERERkWww8CEiIiLZYOBDRCQCOdcwIhITc3yIiEQg5xpGRGJi4ENEJBIGNUT2x6EuIiIikg0GPkRERCQbDHyIiIhINhj4EBERkWww8CEiIiLZcIjA58iRI1AoFGX+nDp1Sr/f2bNn8fzzz6Nq1aoICwvD4sWLRWw1ERERSY1DTGdv3bo1srKyDJ6bOXMmvv32Wzz99NMAgPz8fHTp0gWdO3fG+vXr8csvv2Do0KHw9vZGYmKiGM0mIiIiiXGIwMfNzQ1BQUH6x4WFhfjvf/+LsWPHQqFQAAC2bduGR48eYdOmTXBzc0PDhg2RmpqKZcuWMfAhIiIiAA4y1FXSnj17oFarMWTIEP1zKSkpaNu2rUF59/j4eFy6dAl37twxeqyCggLk5+cb/BAREZFzcogen5I2btyI+Ph4hBZb2z47OxuRkZEG+wUGBuq3+fj4lHmsBQsWYO7cuaWeZwBERETkOHTXbUEQTO4nauAzbdo0LFq0yOQ+Fy5cQP369fWPMzMzsX//fnz66adWacP06dMxceJE/eM//vgDDRo0QFhYmFWOT0RERPZz7949qFQqo9tFDXwmTZqEwYMHm9ynTp06Bo+TkpLg5+eHXr16GTwfFBSEnJwcg+d0j4vnB5Xk7u4Od3d3/eMaNWrg+vXr8PT01OcPyUF+fj7CwsJw/fp1eHl5id0ch8bP0jr4OVoPP0vr4OdoPbb4LAVBwL179xASEmJyP1EDn4CAAAQEBFR4f0EQkJSUhIEDB8LV1dVgW1xcHGbMmIHCwkL9tgMHDqBevXpGh7nK4uLiYjCEJjdeXl78g7YSfpbWwc/RevhZWgc/R+ux9mdpqqdHx6GSmw8dOoT09HQMGzas1Lb+/fvDzc0NCQkJOH/+PHbs2IGVK1caDGMRERGRvDlUcvPGjRvRunVrg5wfHZVKheTkZIwePRqxsbHw9/fHrFmzOJWdiIiI9Bwq8Nm+fbvJ7U2aNMHRo0ft1Brn4u7ujtmzZxvkO5Fl+FlaBz9H6+FnaR38HK1HzM9SIZQ374uIiIjISThUjg8RERFRZTDwISIiItlg4ENERESywcCHiIiIZIOBj8x8//336NmzJ0JCQqBQKPDFF18YbBcEAbNmzUJwcDA8PDzQuXNnXL58WZzGSlx5n+XgwYOhUCgMfrp27SpOYyVswYIFeOaZZ+Dp6YmaNWuid+/euHTpksE+f/31F0aPHg0/Pz/UqFEDL7/8cqlK7XJXkc+xffv2pb6TI0eOFKnF0rVu3To0adJEX1wvLi4OX3/9tX47v48VU97nKNb3kYGPzDx48ABNmzbF2rVry9y+ePFirFq1CuvXr8fJkydRvXp1xMfH46+//rJzS6WvvM8SALp27YqsrCz9z8cff2zHFjqG7777DqNHj8aJEydw4MABFBYWokuXLnjw4IF+nwkTJmDv3r347LPP8N133+HGjRvo06ePiK2Wnop8jgAwfPhwg+/k4sWLRWqxdIWGhmLhwoU4ffo0fvzxR3Ts2BEvvfQSzp8/D4Dfx4oq73MERPo+CiRbAITdu3frH2s0GiEoKEhYsmSJ/rm7d+8K7u7uwscffyxCCx1Hyc9SEARh0KBBwksvvSRKexzZzZs3BQDCd999JwiC9jvo6uoqfPbZZ/p9Lly4IAAQUlJSxGqm5JX8HAVBENq1ayf84x//EK9RDszHx0f417/+xe9jJek+R0EQ7/vIHh/SS09PR3Z2Njp37qx/TqVSoWXLlkhJSRGxZY7ryJEjqFmzJurVq4dRo0ZBrVaL3STJy8vLAwD4+voCAE6fPo3CwkKD72X9+vVRu3Ztfi9NKPk56mzbtg3+/v5o1KgRpk+fjocPH4rRPIdRVFSETz75BA8ePEBcXBy/jxYq+TnqiPF9dKjKzWRb2dnZAIDAwECD5wMDA/XbqOK6du2KPn36IDIyEleuXME///lPdOvWDSkpKVAqlWI3T5I0Gg3Gjx+PNm3aoFGjRgC030s3Nzd4e3sb7MvvpXFlfY6Adk3D8PBwhISE4OzZs5g6dSouXbqEXbt2idhaafrll18QFxeHv/76CzVq1MDu3bvRoEEDpKam8vtoBmOfIyDe95GBD5GNvP766/r/bty4MZo0aYKoqCgcOXIEnTp1ErFl0jV69GicO3cOP/zwg9hNcWjGPsfiaxc2btwYwcHB6NSpE65cuYKoqCh7N1PS6tWrh9TUVOTl5eHzzz/HoEGD8N1334ndLIdj7HNs0KCBaN9HDnWRXlBQEACUmp2Qk5Oj30aWq1OnDvz9/ZGWliZ2UyRpzJgx2LdvHw4fPozQ0FD980FBQXj06BHu3r1rsD+/l2Uz9jmWpWXLlgDA72QZ3NzcEB0djdjYWCxYsABNmzbFypUr+X00k7HPsSz2+j4y8CG9yMhIBAUF4dtvv9U/l5+fj5MnTxqMyZJlMjMzoVarERwcLHZTJEUQBIwZMwa7d+/GoUOHEBkZabA9NjYWrq6uBt/LS5cu4dq1a/xeFlPe51iW1NRUAOB3sgI0Gg0KCgr4fawk3edYFnt9HznUJTP37983iKbT09ORmpoKX19f1K5dG+PHj8e7776LmJgYREZGYubMmQgJCUHv3r3Fa7REmfosfX19MXfuXLz88ssICgrClStXMGXKFERHRyM+Pl7EVkvP6NGjsX37dvz3v/+Fp6enPk9CpVLBw8MDKpUKCQkJmDhxInx9feHl5YWxY8ciLi4OrVq1Ern10lHe53jlyhVs374dL774Ivz8/HD27FlMmDABbdu2RZMmTURuvbRMnz4d3bp1Q+3atXHv3j1s374dR44cwf79+/l9NIOpz1HU76Pd55GRqA4fPiwAKPUzaNAgQRC0U9pnzpwpBAYGCu7u7kKnTp2ES5cuidtoiTL1WT58+FDo0qWLEBAQILi6ugrh4eHC8OHDhezsbLGbLTllfYYAhKSkJP0+f/75p/D3v/9d8PHxEapVqyb87W9/E7KyssRrtASV9zleu3ZNaNu2reDr6yu4u7sL0dHRwuTJk4W8vDxxGy5BQ4cOFcLDwwU3NzchICBA6NSpk5CcnKzfzu9jxZj6HMX8PioEQRBsG1oRERERSQNzfIiIiEg2GPgQERGRbDDwISIiItlg4ENERESywcCHiIiIZIOBDxEREckGAx8iIiKSDQY+REREJBsMfIjIQHZ2NsaOHYs6derA3d0dYWFh6Nmzp8HaRMePH8eLL74IHx8fVK1aFY0bN8ayZctQVFSk3ycjIwMJCQmIjIyEh4cHoqKiMHv2bDx69Mjg9T766CM0bdoUNWrUgLe3N5o3b44FCxbot8+ZMwcKhQJdu3Yt1dYlS5ZAoVCgffv2FXpvumMpFApUqVIFERERmDBhAu7fv2/mp0REjoprdRGRXkZGBtq0aQNvb28sWbIEjRs3RmFhIfbv34/Ro0fj4sWL2L17N1577TUMGTIEhw8fhre3Nw4ePIgpU6YgJSUFn376KRQKBS5evAiNRoMPP/wQ0dHROHfuHIYPH44HDx5g6dKlAIBNmzZh/PjxWLVqFdq1a4eCggKcPXsW586dM2hXcHAwDh8+jMzMTIMVxzdt2oTatWub9R4bNmyIgwcP4vHjxzh27BiGDh2Khw8f4sMPPyy176NHj+Dm5mbBJ2k7UmwTkUOx+aIYROQwunXrJtSqVUu4f/9+qW137twR7t+/L/j5+Ql9+vQptX3Pnj0CAOGTTz4xevzFixcLkZGR+scvvfSSMHjwYJNtmj17ttC0aVOhR48ewrvvvqt//tixY4K/v78watQooV27dhV4d0+OVdzw4cOFoKAgg+0fffSREBERISgUCkEQtO89ISFB8Pf3Fzw9PYUOHToIqamp+mOkpqYK7du3F2rUqCF4enoKLVq0EE6dOiUIgiBkZGQIPXr0ELy9vYVq1aoJDRo0EL788ktBEAQhKSlJUKlUBu3ZvXu3UPzUbGmbiKhsHOoiIgBAbm4uvvnmG4wePRrVq1cvtd3b2xvJyclQq9V46623Sm3v2bMn6tati48//tjoa+Tl5cHX11f/OCgoCCdOnMDVq1fLbd/QoUOxefNm/eNNmzbhjTfeqHTvh4eHh8HwW1paGnbu3Ildu3YhNTUVAPDqq6/i5s2b+Prrr3H69Gm0aNECnTp1Qm5uLgDgjTfeQGhoKE6dOoXTp09j2rRpcHV1BaBdNb2goADff/89fvnlFyxatAg1atQwq42WtImIysahLiICoL24CoKA+vXrG93nt99+AwA89dRTZW6vX7++fp+yjr969Wr9MBcAzJ49G3369EFERATq1q2LuLg4vPjii3jllVfg4mJ4X9ajRw+MHDkS33//PWJjY/Hpp5/ihx9+wKZNm8x9q3qnT5/G9u3b0bFjR/1zjx49wr///W8EBAQAAH744Qf873//w82bN+Hu7g4AWLp0Kb744gt8/vnnSExMxLVr1zB58mT9ZxcTE6M/3rVr1/Dyyy+jcePGAIA6deqY3U5L2kREZWPgQ0QAAEEQbLIvAPzxxx/o2rUrXn31VQwfPlz/fHBwMFJSUnDu3Dl8//33OH78OAYNGoR//etf+OabbwyCH1dXVwwYMABJSUn4/fffUbduXTRp0sSsdgDAL7/8gho1aqCoqAiPHj1C9+7dsWbNGv328PBwfYABAD///DPu378PPz8/g+P8+eefuHLlCgBg4sSJGDZsGLZu3YrOnTvj1VdfRVRUFABg3LhxGDVqFJKTk9G5c2e8/PLLZrfbkjYRUdkY+BARAG0vhS4p2Zi6desCAC5cuIDWrVuX2n7hwgU0aNDA4LkbN26gQ4cOaN26NTZs2FDmcRs1aoRGjRrh73//O0aOHInnn38e3333HTp06GCw39ChQ9GyZUucO3cOQ4cONfctAgDq1auHPXv2oEqVKggJCSk1VFZymO/+/fsIDg7GkSNHSh3L29sbgHa2WP/+/fHll1/i66+/xuzZs/HJJ5/gb3/7G4YNG4b4+Hh8+eWXSE5OxoIFC/D+++9j7NixcHFxKRVEFhYWlnodS9pERGVjjg8RAQB8fX0RHx+PtWvX4sGDB6W23717F126dIGvry/ef//9Utv37NmDy5cvo1+/fvrn/vjjD7Rv3x6xsbFISkoqNXxVFl3gVFYbGjZsiIYNG+LcuXPo37+/OW9Pz83NDdHR0YiIiKhQflCLFi2QnZ2NKlWqIDo62uDH399fv1/dunUxYcIEJCcno0+fPkhKStJvCwsLw8iRI7Fr1y5MmjQJH330EQAgICAA9+7dM3ivuhwea7SJiEpj4ENEemvXrkVRURGeffZZ7Ny5E5cvX8aFCxewatUqxMXFoXr16vjwww/x3//+F4mJiTh79iwyMjKwceNGDB48GK+88gpee+01AE+Cntq1a2Pp0qW4desWsrOzkZ2drX+9UaNGYd68eTh27BiuXr2KEydOYODAgQgICEBcXFyZbTx06BCysrLs1rPRuXNnxMXFoXfv3khOTkZGRgaOHz+OGTNm4Mcff8Sff/6JMWPG4MiRI7h69SqOHTuGU6dO6fOgxo8fj/379yM9PR1nzpzB4cOH9dtatmyJatWq4Z///CeuXLmC7du3GyRwW9omIjKOQ11EpFenTh2cOXMG8+fPx6RJk5CVlYWAgADExsZi3bp1AIBXXnkFhw8fxvz58/H888/jr7/+QkxMDGbMmIHx48dDoVAAAA4cOIC0tDSkpaUZ1N4BnuQIde7cGZs2bcK6deugVqvh7++PuLg4fPvtt6XyV3TKmnFmSwqFAl999RVmzJiBIUOG4NatWwgKCkLbtm0RGBgIpVIJtVqNgQMHIicnB/7+/ujTpw/mzp0LACgqKsLo0aORmZkJLy8vdO3aFcuXLweg7WX7z3/+g8mTJ+Ojjz5Cp06dMGfOnHKTk8trExEZpxDMzVIkIiIiclAc6iIiIiLZYOBDRE6jRo0aRn+OHj0qdvOISAI41EVETiMtLc3otlq1asHDw8OOrSEiKWLgQ0RERLLBoS4iIiKSDQY+REREJBsMfIiIiEg2GPgQERGRbDDwISIiItlg4ENERESywcCHiIiIZIOBDxEREcnG/wGBBQm9y8tLyAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ***************************************************************************\n", + " ALAMO version 2023.2.13. Built: WIN-64 Mon Feb 13 21:30:56 EST 2023\n", + "\n", + " If you use this software, please cite:\n", + " Cozad, A., N. V. Sahinidis and D. C. Miller,\n", + " Automatic Learning of Algebraic Models for Optimization,\n", + " AIChE Journal, 60, 2211-2227, 2014.\n", + "\n", + " ALAMO is powered by the BARON software from http://www.minlp.com/\n", + " ***************************************************************************\n", + " Licensee: Javal Vyas at Carnegie Mellon University, jvyas@andrew.cmu.edu.\n", + " ***************************************************************************\n", + " Reading input data\n", + " Checking input consistency and initializing data structures\n", + " \n", + " Step 0: Initializing data set\n", + " User provided an initial data set of 400 data points\n", + " We will sample no more data points at this stage\n", + " ***************************************************************************\n", + " Iteration 1 (Approx. elapsed time 0.62E-01 s)\n", + " \n", + " Step 1: Model building using BIC\n", + " \n", + " Model building for variable CO2SM_CO2_Enthalpy\n", + " ----\n", + " BIC = 0.750E+04 with CO2SM_CO2_Enthalpy = - 0.38E+06\n", + " ----\n", + " BIC = 0.569E+04 with CO2SM_CO2_Enthalpy = 58. * CO2SM_Temperature - 0.42E+06\n", + " ----\n", + " BIC = 0.542E+04 with CO2SM_CO2_Enthalpy = 55. * CO2SM_Temperature - 0.61E+05 * CO2SM_Pressure/CO2SM_Temperature - 0.41E+06\n", + " ----\n", + " BIC = 0.516E+04 with CO2SM_CO2_Enthalpy = 49. * CO2SM_Temperature + 4.0 * CO2SM_Pressure^2 - 0.15E+06 * CO2SM_Pressure/CO2SM_Temperature - 0.41E+06\n", + " ----\n", + " BIC = 0.502E+04 with CO2SM_CO2_Enthalpy = 0.16E+03 * CO2SM_Temperature - 0.16 * CO2SM_Temperature^2 + 0.76E-04 * CO2SM_Temperature^3 - 0.56E+05 * CO2SM_Pressure/CO2SM_Temperature - 0.44E+06\n", + " ----\n", + " BIC = 0.484E+04 with CO2SM_CO2_Enthalpy = 0.14E+03 * CO2SM_Temperature + 2.5 * CO2SM_Pressure^2 - 0.14 * CO2SM_Temperature^2 + 0.66E-04 * CO2SM_Temperature^3 - 0.11E+06 * CO2SM_Pressure/CO2SM_Temperature - 0.43E+06\n", + " \n", + " Model building for variable CO2SM_CO2_Entropy\n", + " ----\n", + " BIC = 0.219E+04 with CO2SM_CO2_Entropy = - 0.48E+03 * CO2SM_Pressure/CO2SM_Temperature\n", + " ----\n", + " BIC = 0.147E+04 with CO2SM_CO2_Entropy = 1.9 * CO2SM_Pressure - 0.15E+04 * CO2SM_Pressure/CO2SM_Temperature\n", + " ----\n", + " BIC = 0.115E+04 with CO2SM_CO2_Entropy = 0.77E-01 * CO2SM_Temperature - 0.38E+03 * CO2SM_Pressure/CO2SM_Temperature - 50.\n", + " ----\n", + " BIC = 713. with CO2SM_CO2_Entropy = 0.20 * CO2SM_Temperature - 0.94E-04 * CO2SM_Temperature^2 - 0.34E+03 * CO2SM_Pressure/CO2SM_Temperature - 89.\n", + " ----\n", + " BIC = 443. with CO2SM_CO2_Entropy = 0.52 * CO2SM_Temperature - 0.60E-03 * CO2SM_Temperature^2 + 0.26E-06 * CO2SM_Temperature^3 - 0.34E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.15E+03\n", + " ----\n", + " BIC = 317. with CO2SM_CO2_Entropy = 0.54 * CO2SM_Temperature - 0.63E-03 * CO2SM_Temperature^2 + 0.27E-06 * CO2SM_Temperature^3 - 0.26E+03 * CO2SM_Pressure/CO2SM_Temperature + 0.79E-01 * CO2SM_Temperature/CO2SM_Pressure - 0.16E+03\n", + " ----\n", + " BIC = 259. with CO2SM_CO2_Entropy = 0.47 * CO2SM_Temperature + 0.15E-01 * CO2SM_Pressure^2 - 0.53E-03 * CO2SM_Temperature^2 + 0.23E-06 * CO2SM_Temperature^3 - 0.70E-03 * CO2SM_Pressure*CO2SM_Temperature - 0.46E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.13E+03\n", + " ----\n", + " BIC = 240. with CO2SM_CO2_Entropy = - 2.1 * CO2SM_Pressure + 0.55 * CO2SM_Temperature + 0.76E-01 * CO2SM_Pressure^2 - 0.63E-03 * CO2SM_Temperature^2 - 0.94E-03 * CO2SM_Pressure^3 + 0.27E-06 * CO2SM_Temperature^3 - 0.23E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.15E+03\n", + " ----\n", + " BIC = 224. with CO2SM_CO2_Entropy = - 1.9 * CO2SM_Pressure + 0.49 * CO2SM_Temperature + 0.83E-01 * CO2SM_Pressure^2 - 0.57E-03 * CO2SM_Temperature^2 - 0.10E-02 * CO2SM_Pressure^3 + 0.25E-06 * CO2SM_Temperature^3 - 0.73E-08 * (CO2SM_Pressure*CO2SM_Temperature)^2 - 0.36E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.13E+03\n", + " ----\n", + " BIC = 193. with CO2SM_CO2_Entropy = - 3.9 * CO2SM_Pressure + 0.52 * CO2SM_Temperature + 0.17 * CO2SM_Pressure^2 - 0.56E-03 * CO2SM_Temperature^2 - 0.21E-02 * CO2SM_Pressure^3 + 0.24E-06 * CO2SM_Temperature^3 - 0.10E-02 * CO2SM_Pressure*CO2SM_Temperature - 0.36E+03 * CO2SM_Pressure/CO2SM_Temperature - 0.20 * CO2SM_Temperature/CO2SM_Pressure - 0.12E+03\n", + " \n", + " Calculating quality metrics on observed data set.\n", + " \n", + " Quality metrics for output CO2SM_CO2_Enthalpy\n", + " ---------------------------------------------\n", + " SSE OLR: 0.515E+08\n", + " SSE: 0.659E+08\n", + " RMSE: 406.\n", + " R2: 0.999\n", + " R2 adjusted: 0.999\n", + " Model size: 6\n", + " BIC: 0.484E+04\n", + " Cp: 0.659E+08\n", + " AICc: 0.482E+04\n", + " HQC: 0.483E+04\n", + " MSE: 0.168E+06\n", + " SSEp: 0.659E+08\n", + " RIC: 0.659E+08\n", + " MADp: 0.594\n", + " \n", + " Quality metrics for output CO2SM_CO2_Entropy\n", + " --------------------------------------------\n", + " SSE OLR: 541.\n", + " SSE: 558.\n", + " RMSE: 1.18\n", + " R2: 0.997\n", + " R2 adjusted: 0.997\n", + " Model size: 10\n", + " BIC: 193.\n", + " Cp: 178.\n", + " AICc: 154.\n", + " HQC: 169.\n", + " MSE: 1.43\n", + " SSEp: 558.\n", + " RIC: 606.\n", + " MADp: 0.130E+04\n", + " \n", + " Total execution time 0.52 s\n", + " Times breakdown\n", + " OLR time: 0.30 s in 3863 ordinary linear regression problem(s)\n", + " MINLP time: 0.0 s in 0 optimization problem(s)\n", + " Simulation time: 0.0 s to simulate 0 point(s)\n", + " All other time: 0.22 s in 1 iteration(s)\n", + " \n", + " Normal termination\n", + " ***************************************************************************\n" + ] + } + ], + "source": [ + "# Create ALAMO trainer object\n", + "has_alamo = alamo.available()\n", + "if has_alamo:\n", + " trainer = AlamoTrainer(\n", + " input_labels=input_labels,\n", + " output_labels=output_labels,\n", + " training_dataframe=data_training,\n", + " )\n", + "\n", + " # Set ALAMO options\n", + " trainer.config.constant = True\n", + " trainer.config.linfcns = True\n", + " trainer.config.multi2power = [1, 2]\n", + " trainer.config.monomialpower = [2, 3]\n", + " trainer.config.ratiopower = [1]\n", + " trainer.config.maxterms = [10] * len(output_labels) # max terms for each surrogate\n", + " trainer.config.filename = os.path.join(os.getcwd(), \"alamo_run.alm\")\n", + " trainer.config.overwrite_files = True\n", + "\n", + " # Train surrogate (calls ALAMO through IDAES ALAMOPy wrapper)\n", + " success, alm_surr, msg = trainer.train_surrogate()\n", + "\n", + " # save model to JSON\n", + " model = alm_surr.save_to_file(\"alamo_surrogate.json\", overwrite=True)\n", + "\n", + " # create callable surrogate object\n", + " surrogate_expressions = trainer._results[\"Model\"]\n", + " input_labels = trainer._input_labels\n", + " output_labels = trainer._output_labels\n", + " xmin, xmax = [7, 306], [40, 1000]\n", + " input_bounds = {\n", + " input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))\n", + " }\n", + "\n", + " alm_surr = AlamoSurrogate(\n", + " surrogate_expressions, input_labels, output_labels, input_bounds\n", + " )\n", + "else:\n", + " print(\"Alamo not found.\")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHHCAYAAAC4BYz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0gUlEQVR4nO3dd3iTVfsH8G86aaFN96KlLWXJpkWhKFOkIENelCGgBYpFBAFBlmwRWcpwgSjrRVBQqj/AwRYRCiLTKiBgCxRaRkpThnTl/P7Im9C0zWqTZn0/19ULkufJk5PHam7Puc99S4QQAkREREQOxsnSAyAiIiKyBAZBRERE5JAYBBEREZFDYhBEREREDolBEBERETkkBkFERETkkBgEERERkUNiEEREREQOiUEQEREROSQGQUREVmjdunWQSCTIyMiw9FCI7BaDICIHdezYMYwePRqNGjVC9erVUatWLfTr1w9///13mXM7dOgAiUQCiUQCJycneHt7o379+njppZewe/duo953+/btaN++PYKCguDp6YnatWujX79++Omnn0z10cp499138d1335V5/vDhw5g9ezZyc3PN9t6lzZ49W30vJRIJPD090bBhQ0yfPh15eXkmeY9NmzZh2bJlJrkWkT1jEETkoBYuXIitW7fi6aefxvLly5GcnIxffvkFsbGxSEtLK3N+eHg4NmzYgP/+979YvHgxevXqhcOHD6NLly7o378/CgsL9b7ne++9h169ekEikWDq1KlYunQpnn/+eVy4cAFfffWVOT4mAN1B0Jw5c6o0CFJZsWIFNmzYgCVLlqBBgwaYN28eunbtClO0c2QQRGQYF0sPgIgsY/z48di0aRPc3NzUz/Xv3x9NmjTBggUL8MUXX2icL5VKMXjwYI3nFixYgDFjxuCTTz5BVFQUFi5cqPX9ioqKMHfuXDzzzDPYtWtXmeM3b96s5CeyHg8ePICnp6fOc1544QUEBAQAAF599VU8//zzSElJwZEjRxAfH18VwyRyeJwJInJQbdq00QiAAKBu3bpo1KgRzp49a9A1nJ2d8cEHH6Bhw4b46KOPIJfLtZ57+/Zt5OXl4cknnyz3eFBQkMbjhw8fYvbs2ahXrx6qVauG0NBQ9OnTB5cuXVKf895776FNmzbw9/eHh4cH4uLi8M0332hcRyKR4P79+1i/fr16CWrIkCGYPXs2Jk6cCACIjo5WHyuZg/PFF18gLi4OHh4e8PPzw4ABA3D16lWN63fo0AGNGzfG8ePH0a5dO3h6euKtt94y6P6V1KlTJwBAenq6zvM++eQTNGrUCO7u7ggLC8OoUaM0ZrI6dOiA77//HpcvX1Z/pqioKKPHQ+QIOBNERGpCCNy4cQONGjUy+DXOzs548cUXMWPGDPz666/o3r17uecFBQXBw8MD27dvx+uvvw4/Pz+t1ywuLkaPHj2wd+9eDBgwAGPHjsXdu3exe/dupKWlISYmBgCwfPly9OrVC4MGDUJBQQG++uor9O3bFzt27FCPY8OGDRg+fDieeOIJJCcnAwBiYmJQvXp1/P333/jyyy+xdOlS9axMYGAgAGDevHmYMWMG+vXrh+HDh+PWrVv48MMP0a5dO5w8eRI+Pj7q8cpkMnTr1g0DBgzA4MGDERwcbPD9U1EFd/7+/lrPmT17NubMmYPOnTtj5MiROH/+PFasWIFjx47h0KFDcHV1xbRp0yCXy5GZmYmlS5cCAGrUqGH0eIgcgiAi+p8NGzYIAGL16tUaz7dv3140atRI6+u+/fZbAUAsX75c5/VnzpwpAIjq1auLbt26iXnz5onjx4+XOW/NmjUCgFiyZEmZYwqFQv33Bw8eaBwrKCgQjRs3Fp06ddJ4vnr16iIxMbHMtRYvXiwAiPT0dI3nMzIyhLOzs5g3b57G83/88YdwcXHReL59+/YCgFi5cqXWz13SrFmzBABx/vx5cevWLZGeni4+/fRT4e7uLoKDg8X9+/eFEEKsXbtWY2w3b94Ubm5uokuXLqK4uFh9vY8++kgAEGvWrFE/1717dxEZGWnQeIgcGZfDiAgAcO7cOYwaNQrx8fFITEw06rWqmYa7d+/qPG/OnDnYtGkTWrRogZ07d2LatGmIi4tDbGysxhLc1q1bERAQgNdff73MNSQSifrvHh4e6r/fuXMHcrkcbdu2xYkTJ4waf2kpKSlQKBTo168fbt++rf4JCQlB3bp1sX//fo3z3d3dMXToUKPeo379+ggMDER0dDRGjBiBOnXq4Pvvv9eaS7Rnzx4UFBRg3LhxcHJ69J/uV155Bd7e3vj++++N/6BEDo7LYUSE7OxsdO/eHVKpFN988w2cnZ2Nev29e/cAAF5eXnrPffHFF/Hiiy8iLy8PR48exbp167Bp0yb07NkTaWlpqFatGi5duoT69evDxUX3f6J27NiBd955B6dOnUJ+fr76+ZKBUkVcuHABQgjUrVu33OOurq4aj2vWrFkmv0qfrVu3wtvbG66urggPD1cv8Wlz+fJlAMrgqSQ3NzfUrl1bfZyIDMcgiMjByeVydOvWDbm5uTh48CDCwsKMvoZqS32dOnUMfo23tzeeeeYZPPPMM3B1dcX69etx9OhRtG/f3qDXHzx4EL169UK7du3wySefIDQ0FK6urli7di02bdpk9GcoSaFQQCKR4Mcffyw3ICydY1NyRspQ7dq1U+chEZFlMAgicmAPHz5Ez5498ffff2PPnj1o2LCh0dcoLi7Gpk2b4OnpiaeeeqpC42jZsiXWr1+PrKwsAMrE5aNHj6KwsLDMrIvK1q1bUa1aNezcuRPu7u7q59euXVvmXG0zQ9qej4mJgRAC0dHRqFevnrEfxywiIyMBAOfPn0ft2rXVzxcUFCA9PR2dO3dWP1fZmTAiR8GcICIHVVxcjP79+yM1NRVff/11hWrTFBcXY8yYMTh79izGjBkDb29vrec+ePAAqamp5R778ccfATxa6nn++edx+/ZtfPTRR2XOFf8rJujs7AyJRILi4mL1sYyMjHKLIlavXr3cgojVq1cHgDLH+vTpA2dnZ8yZM6dM8UIhBGQyWfkf0ow6d+4MNzc3fPDBBxpjWr16NeRyucauvOrVq+ssV0BESpwJInJQEyZMwLZt29CzZ0/k5OSUKY5YujCiXC5Xn/PgwQNcvHgRKSkpuHTpEgYMGIC5c+fqfL8HDx6gTZs2aN26Nbp27YqIiAjk5ubiu+++w8GDB9G7d2+0aNECAPDyyy/jv//9L8aPH4/ffvsNbdu2xf3797Fnzx689tpreO6559C9e3csWbIEXbt2xcCBA3Hz5k18/PHHqFOnDs6cOaPx3nFxcdizZw+WLFmCsLAwREdHo1WrVoiLiwMATJs2DQMGDICrqyt69uyJmJgYvPPOO5g6dSoyMjLQu3dveHl5IT09Hd9++y2Sk5Px5ptvVur+GyswMBBTp07FnDlz0LVrV/Tq1Qvnz5/HJ598gscff1zjn1dcXBw2b96M8ePH4/HHH0eNGjXQs2fPKh0vkU2w5NY0IrIc1dZubT+6zq1Ro4aoW7euGDx4sNi1a5dB71dYWCg+++wz0bt3bxEZGSnc3d2Fp6enaNGihVi8eLHIz8/XOP/Bgwdi2rRpIjo6Wri6uoqQkBDxwgsviEuXLqnPWb16tahbt65wd3cXDRo0EGvXrlVvQS/p3Llzol27dsLDw0MA0NguP3fuXFGzZk3h5ORUZrv81q1bxVNPPSWqV68uqlevLho0aCBGjRolzp8/r3FvdJUPKE01vlu3buk8r/QWeZWPPvpINGjQQLi6uorg4GAxcuRIcefOHY1z7t27JwYOHCh8fHwEAG6XJ9JCIoQJGtUQERER2RjmBBEREZFDYhBEREREDolBEBERETkkBkFERETkkBgEERERkUNiEEREREQOicUSS1EoFLh+/Tq8vLxYep6IiMhGCCFw9+5dhIWFwcnJsDkeBkGlXL9+HREREZYeBhEREVXA1atXER4ebtC5DIJK8fLyAqC8ibr6IBEREZH1yMvLQ0REhPp73BAMgkpRLYF5e3szCCIiIrIxxqSyMDGaiIiIHBKDICIiInJIDIKIiIjIITEnqAKKi4tRWFho6WHYLVdXVzg7O1t6GEREZOcYBBlBCIHs7Gzk5uZaeih2z8fHByEhIazVREREZsMgyAiqACgoKAienp78gjYDIQQePHiAmzdvAgBCQ0MtPCIiIrJXDIIMVFxcrA6A/P39LT0cu+bh4QEAuHnzJoKCgrg0RkREZsHEaAOpcoA8PT0tPBLHoLrPzL0iIiJzYRBkJC6BVQ3eZyIiMjcuhxEREVWQTCZDQUGB1uNubm5MobBiDIKIiIgqQCaT4aOPPtJ73ujRoxkIWSkuhzmAIUOGQCKRQCKRwNXVFcHBwXjmmWewZs0aKBQKg6+zbt06+Pj4mG+gREQ2RNcMUEXO00cmkyErK0vrj0wmM8n7OBLOBFUhS06bdu3aFWvXrkVxcTFu3LiBn376CWPHjsU333yDbdu2wcWFvwpERNaKs07mwW++KmLpX2B3d3eEhIQAAGrWrInY2Fi0bt0aTz/9NNatW4fhw4djyZIlWLt2Lf755x/4+fmhZ8+eWLRoEWrUqIGff/4ZQ4cOBfAoaXnWrFmYPXs2NmzYgOXLl+P8+fOoXr06OnXqhGXLliEoKMjkn4OIyBFV9ayTo+ByWBWxxl/gTp06oVmzZkhJSQEAODk54YMPPsCff/6J9evXY9++fZg0aRIAoE2bNli2bBm8vb3VU69vvvkmAOU29rlz5+L06dP47rvvkJGRgSFDhlTZ5yAicjRyuRfS06Mgl3uZ9Loll9yOH7+Bb76R4fjxG3a75MaZIAfXoEEDnDlzBgAwbtw49fNRUVF455138Oqrr+KTTz6Bm5sbpFIpJBKJekZJZdiwYeq/165dGx988AEef/xx3Lt3DzVq1KiSz0FE5ChOnGiB7dt7QAgnSCQK9Oy5A7GxJyt93ZIrFrrew56W3DgT5OCEEOrlrT179uDpp59GzZo14eXlhZdeegkymQwPHjzQeY3jx4+jZ8+eqFWrFry8vNC+fXsAwJUrV8w+fiIiRyKXe6mDEwAQwgnbt/cwyYyQaiVC33vY05IbgyAHd/bsWURHRyMjIwM9evRA06ZNsXXrVhw/fhwff/wxAN2/8Pfv30dCQgK8vb2xceNGHDt2DN9++63e1xERkfFycvzVwYmKEE7IyfEDANy+fbvSS1b63sOecDnMge3btw9//PEH3njjDRw/fhwKhQLvv/8+nJyUv/xbtmzRON/NzQ3FxcUaz507dw4ymQwLFixAREQEAOD333+vmg9ARGRBbm5uJj3PEH5+MkgkCo0gRSJRwM8vBwDUOZ6VWbLS9x72hEGQg8jPz0d2drbGFvn58+ejR48eePnll5GWlobCwkJ8+OGH6NmzJw4dOoSVK1dqXCMqKgr37t3D3r170axZM3h6eqJWrVpwc3PDhx9+iFdffRVpaWmYO3euhT4lEZF5lS510r9/f40ehy4uLhr11Exd+kQqvYuePXeUWK5SID4+tcx5lZmJL/0eqpwgqfRuJUZunRgEOYiffvoJoaGhcHFxga+vL5o1a4YPPvgAiYmJcHJyQrNmzbBkyRIsXLgQU6dORbt27TB//ny8/PLL6mu0adMGr776Kvr37w+ZTKbeIr9u3Tq89dZb+OCDDxAbG4v33nsPvXr1suCnJSIyPX2lTuRyL+Tk+GPChF5o0sTXpO9dcjYpNvYkYmIu4ujRVkhNjcfhw08iNTXeZAnSJd8jJ8cPfn45GgHQ7du31WOy9QRpiRBCWHoQ1iQvLw9SqRRyuRze3t7q5x8+fIj09HRER0ejWrVqRl/X0nWCbE1l7zcRkallZWVh1apV5R4ruZvKyUlg1SoJkpJM+/4ymQzXr19HSkoK5HIvLFs2rsyS1bhxyyCV3kVycjJCQ0ONur6uz6cK8Pz8lPlGqr+/8ko3+Pj4WEVApO37WxfOBFURf39/jB49mo32iIjsTOndVAqFBCNGAAkJQHi46d7H399f/R2iK3lZ37KVtu4Fqhme0koGeIACgASABBKJApcu2fbWeQZBVcjWfjmIiEi/8gKS4mLg4kXTBkElVTR52dBVCZXSAV7JTeWqrfMxMRchld41KA8pMxO4cAGoW9d898YY3CJPRERUAaqqza6u+ZBINJtROzsDdeqY771Vycuq9zU0ebl0oKKt8nTHjh0BlB/glWTM1vnVq4HISKBTJ+Wfq1cb9DKz4kwQERGRkUpXVG7a9AzOnGkKIZzg7Czw6acSs8906EpeNoSuqtC+vsrE7vJmnEoydOt8ZiaQnAwo/hcrKhQwy5KhsTgTREREZITyKiqfOdMUSUmfIzFxHY4evWnypGiV0jWHpNK7iI6+XCYA0lebyNDK06VnnACF0bNPMpkMR47I1AGQSnExcPSozKL9yDgTREREZARtScmFhW6Ijr6MsDCFlldWnq5NNnK5HIWFhXBxcUFBQQGysrI0jpcMjIxJrC4946R8vWGzT6ocJLncCxJJ2d1shw6tR1raXYslVTMIIiIiMoAqiNCXlGzKCtHlKS9YkMlk2Lx5s97X9u/fH4DxidVS6V2NgMfQpTdVsKavAKOl2iwxCCIiIjJAyVmYmjXzMHmyFMXFEjg7CyxcmIeBA1+0WKkTQ4MIVXVrfUGJi4vpw4PK5jCZA4MgIiIiA6kCnAkTgP79ldvg69SRIDzcB4CPJYemoWRxQ23Bhq6gxMfHRx3wyeVyg2aZDJkBKz2jZGk2FQT98ssvWLx4MY4fP46srCx8++236N27t/q4EAKzZs3CZ599htzcXDz55JNYsWIF6tata7lBO4Cff/4ZHTt2xJ07dzR65ugSFRWFcePGYdy4cWYdGxGRuYSHW0etm9J07foqPcOjLSgpOaMVGhpqt8V+bSoIun//Ppo1a4Zhw4ahT58+ZY4vWrQIH3zwAdavX4/o6GjMmDEDCQkJ+Ouvvxy69cKQIUOwfv16jBgxokxT1FGjRuGTTz5BYmIi1q1bZ5kBEhGRSWjb9aUqaFhyhkeb8gIaWwxwDGFTQVC3bt3QrVu3co8JIbBs2TJMnz4dzz33HADgv//9L4KDg/Hdd99hwIABVTlUqxMREYGvvvoKS5cuhYeHBwBlf65NmzahVq1aFh4dERGZgiG7vuw1oKkIu6kTlJ6ejuzsbHTu3Fn9nFQqRatWrZCamqr1dfn5+cjLy9P4sUexsbGIiIhASkqK+rmUlBTUqlULLVq0UD+Xn5+PMWPGICgoCNWqVcNTTz2FY8eOaVzrhx9+QL169eDh4YGOHTsiIyOjzPv9+uuvaNu2LTw8PBAREYExY8bg/v37Zvt8RET0aNdXSYYWNHREdhMEZWdnAwCCg4M1ng8ODlYfK8/8+fMhlUrVPxEREWYdp0pmJrB/v/LPqjJs2DCsXbtW/XjNmjUYOnSoxjmTJk3C1q1bsX79epw4cQJ16tRBQkICcnKU/wJdvXoVffr0Qc+ePXHq1CkMHz4cU6ZM0bjGpUuX0LVrVzz//PM4c+YMNm/ejF9//RWjR482/4ckInJgFW2nYS6Glgswd1kBbWxqOcwcpk6divHjx6sf5+XlmT0QWr36UflwJydg1SqYrbpoSYMHD8bUqVNx+fJlAMChQ4fw1Vdf4eeffwagzLlasWIF1q1bp152/Oyzz7B7926sXr0aEydOxIoVKxATE4P3338fAFC/fn388ccfWLhwofp95s+fj0GDBqmTnuvWrYsPPvgA7du3x4oVKxw6P4uIyBxKBhG6dn0ZEmyU7DJ//boT0tNdEB1dpC4CaUwStK7ijiXHZKklOrsJgkJCQgAAN27cQGhoqPr5GzduoHnz5lpf5+7uDnd3d3MPT82S/VMCAwPRvXt3rFu3DkIIdO/eHQEBAerjly5dQmFhIZ588kn1c66urnjiiSdw9uxZAMDZs2fRqlUrjevGx8drPD59+jTOnDmDjRs3qp8TQkChUCA9PR2PPfaYOT4eEZHDMlWwUbLLvK5dZsZUeLbmHCS7CYKio6MREhKCvXv3qoOevLw8HD16FCNHjrTs4Eq4cAHl9k+5eLFqtloOGzZMvSz18ccfm+U97t27hxEjRmDMmDFljjEJm4jIPEwRbKiCKH27zCxV4dnUbCoIunfvHi5evKh+nJ6ejlOnTsHPzw+1atXCuHHj8M4776Bu3brqLfJhYWEatYQsrW5d5RJYyUDI2RmoU6dq3r9r164oKCiARCJBQkKCxrGYmBi4ubnh0KFDiIyMBKCsLnrs2DH10tZjjz2Gbdu2abzuyJEjGo9jY2Px119/oU5VfSgiIjIpY3qL2TKbCoJ+//13dOzYUf1YlcujqnEzadIk3L9/H8nJycjNzcVTTz2Fn376yapyUMLDlTlAI0YoZ4CcnYFPP626glvOzs7qpS1nZ2eNY9WrV8fIkSMxceJEdWC5aNEiPHjwAEn/S1p69dVX8f7772PixIkYPnw4jh8/Xqa+0OTJk9G6dWuMHj0aw4cPR/Xq1fHXX39h9+7d6mlWIiJbUDI/pjxVnc9i6vGUzv85depfyOVeRvcWs1U2FQR16NABQgitxyUSCd5++228/fbbVTgq4yUlKXOAlOXWq77iqLe3t9ZjCxYsgEKhwEsvvYS7d++iZcuW2LlzJ3x9fQEol7O2bt2KN954Ax9++CGeeOIJvPvuuxg2bJj6Gk2bNsWBAwcwbdo0tG3bFkIIxMTEqBv3ERHZgpL5MbpUVQd0U4+n/PyfYEgk49Cz5w6dvcXshUToiiocUF5eHqRSKeRyuUaw8PDhQ6SnpyM6OtqqZpbsFe83EVlaVlYWVq1apfe85ORkjQ051jqe0rNIt2/fRkpKCuRyLyxbNq7MrM+4ccsAoNxdZlX1mY2h7ftbF5uaCSIiIrIl5lxOM6RJqsqlS5fwxRdflHtMV/5PdPRlu5v9KYlBEBERkRmYczlN1/b18sZRMgCSy71w9aqyHl5ExFWHyf8pD4MgIiIiMzB0G7mx2831bV/Xdf0TJ1pg27aeACT/e0aBXr2Mz/+xVIVnU2MQREREZABjlp/MqaLb11XB06MACACcsG1bD7zxxjKMG7es3PyfPn36aBTWtWSFZ1NjEGQk5pFXDd5nIrImxiw/mVtFl6/KC56UdOf/BAQEWF0StKnYTQNVc3N1dQUAPHjwwMIjcQyq+6y670RElqJt+Uku9zL6OunpUUa/rrSKNkktr8O8kmPk/5SHM0EGcnZ2ho+PD27evAkA8PT0hEQi0fMqMpYQAg8ePMDNmzfh4+NTpqAjEVFVUeW96Ft+MiQ/xhQzSZVtkqoKnkoGdKqcIEfI/ykPgyAjqJq0qgIhMh8fHx/1/SYisgRVU9KMjCJs2CCgUDz6H19nZ4HXX++GqCgXvfkxxiYy6xtPZbbcq4Knq1eVVXojIjIdJv+nPAyCjCCRSBAaGoqgoCAUFhZaejh2y9XVlTNARGQV/P394e9fXrsjCeLigg26hin7cJkiIJFK70IqPVvusbCwMLsOekpjEFQBzs7O/JImInIgFWl3pFpG0pfIbO7lJkOvP3jwYIcKgAC2zSijImW3iYiIyqOqGL1pkwcmT5aiuFgCZ2eBhQvlGDjwX5MsNxlSlRrQXY/IHpa9KvL9zSCoFAZBRESPWFsXdVuWmWn6xtnW1uTVktg7jIiITIZfsKYVHm664EfFXFWpHQXrBBERUblKf3Fqq3PDL1iyVZwJIiIivaypYjKRqXAmiIiIdDJVxWQia8OZICIi0smUdW7sEZPHbReDICIi0klfnZvbt28DcMwve2tLHreWTve2gkEQERHpVLrnVOmGnSkpKepzHW2nmDXtzmLelvEYBBERkV66GnaWxJ1iVUtVCFFffzJ7boJaGQyCiIioXKW/OJU9p5TBjyWXXaw5B6eq74uqqer+/cDSpWXztp58MhEdOpim55g9YhBERETlKtm1/Pbt2+plL0suu1hbDk5Jlrov/v7+aN0acHICFIpHzzs7A61aKRvAUvm4RZ6IiLTy9/dHaGgoAgICAFh+u7w15eCUZOn7Eh6u7HSv6u2t7HRv+grV9oYzQURERsjMBC5cAOrWdcwvGHvcLm+K5TVruC8V6XTv6BgEEREZaPVqIDlZueTg5KT8P++kJEuPqmrp2y5fGYZ2QzclUy2vmfO+GMMc/cnsGYMgIiI9ZDIZMjKKkJwcBIVCAkAZCI0YIdC8+U1ERbk4TOKpvu3yFWVoMNK/f3+Nx5VNRK7s8poqMNN3X7g7yzoxCCIi0kH15ZyeHgWFIlHjWHGxBB9++COioy/bfX2ckl/iurbLV/TL3tBgpLCwUP13a6iLUzJ5HABmzryFjAwXREUVISzscQCPO2QRSVvBIIiISAfVl5u+5Q57r49T+su+PFX5Za+vLk5lrmvszFLJzxwaCsTFVfjtqYoxCCIiMoC5loFsiTXNZhibiKwt30jV8gOwjpklqlp2GQR9/PHHWLx4MbKzs9GsWTN8+OGHeOKJJyw9LCKycYZWTabK0zYj4+Ki/NrSNzNXclnOkHwjc80skXWzuyBo8+bNGD9+PFauXIlWrVph2bJlSEhIwPnz5xEUFGTp4RGRjStZNZnMQ9eMjI+Pj3pZrmbNPEyeLEVxsQTOzgILF+Zh4MAXyyzLGbJUaQ1b3Knq2V0QtGTJErzyyisYOnQoAGDlypX4/vvvsWbNGkyZMsXCoyMi0uSIdYfKW5pSLUsZMiOjCnAmTAD691fVxZEgPNwHgE+FxmQtW9ypatlVEFRQUIDjx49j6tSp6uecnJzQuXNnpKamWnBkRESPqIKATZs8MGmSFAqFBE5OAosWyTFw4L92vZtI39KUsTMyqro4MpkMWVnlz/iUzPsByl9q4xZ3x2RXQdDt27dRXFyM4OBgjeeDg4Nx7ty5cl+Tn5+P/Px89eO8vDyzjpGIHJsqCJDLvbBs2TgIoao7JMHEid64dm0NpNK7Nr/l3pBE5PIYk+tT8r0MqTEE6F5qe+edaG5xdzB2FQRVxPz58zFnzhxLD4OIKsGcS0qGzgAYep4qMNA342HLW+6NCUpKU83I7NjREwqF7lwfFUPvlb6ltoCAAISGBnOLuwOxqyAoICAAzs7OuHHjhsbzN27cQEhISLmvmTp1KsaPH69+nJeXh4iICLOOk4hMx9ytLMxVH8eec1CMCeDKW5qKjT2JmTNb4e7d4Ern+pTE5Gcqza6CIDc3N8TFxWHv3r3o3bs3AEChUGDv3r0YPXp0ua9xd3eHu7t7FY6SiEwlM/NRAASoWlkom0iackbIHEshrDuke2kqLEyB0NCKXVfb9np7DjypYuwqCAKA8ePHIzExES1btsQTTzyBZcuW4f79++rdYkRkPy5ceBQAqRQXK3cL2cJOK0epO1ReUGKuujy6AismP1NpdhcE9e/fH7du3cLMmTORnZ2N5s2b46effiqTLE1Etk0mk8HbuwhOTo+amgKAs7OAl9dNyGS20dTU3usOaQtKzLE0pS+w6tOnD5KTA5j8TGp2FwQBwOjRo7UufxGR7SuZeNujh+aXbPfuO7Bjh/L//G19h5Wt0xWUmGNpSl9gpUx8DmV/L1KzyyCIiOxbycRbXUtKtrzDyh7oCkqioy+bfGmKOT9kLAZBRGTzbGlJydRb7q2ZvqDEVHV5VPeKOT9kLAZBRERVyFxb7lW0FSkEgNzcXEgkEkilUpO/b+nrAPqDkrCwMPj7+1d6aar0PWXODxmKQRARURUz15dxZYoUqpgij8oSQUnJazHnhwzFIIiIyE6YIgfKVHlUDErIFjAIIiKyU9qKBuo6Vl5vLy4lkb1iEEREZId0FQ3UdSwlJaXc67HcANkjBkFEZHMcaYdVReiqzwNAZ0FBbTNEqmUyXYnXAGeNyLYwCCIim2PuHVZVyRxBha76PIBE67FLl+ponSFSjdWQxGvOGpGtYBBERFYjM1PZD6xuXf29v+zhS9ZcQYW++jzlHXN1LdDby6t0sKZv1ojI2jnpP4WIyPxWrwYiI4FOnZR/rl5t6RGZX3lBRXp6FORyL53n6aOqzyORKLvLlqzPo+1YYaG7jtmjsk6caIFly8Zh/fpELFs2DidOtDBqjETWgDNBRGRxmZlAcvKjjvAKBTBiBJCQYBvd4E1BV7KyoUrmQOlqJ1LeMbncy+CWE+bqAE9U1RgEEZHFXbjwKABSKS4GLl40PAgyZinN2pgqqNCXK1Vexejbt28jJSVFb3XnkszRAZ7IEhgEEZHF1a0LODlpBkLOzkCdOoa9fvXqRzNJTk7AqlVAUpJ5xmoOpggqDEmwfuyxx3ReQ9fsUUlsVEr2gkEQEVmUTCaDs3MBFi3ywOTJUhQXS+DsLLBwoRzOzv9CJtO+O0omkyEjowjJyUFQKCQAVEtpAs2b30RUlItNJFBXNqgonWCtLWG5vATr0mUEtDWjdXNzUwdZxswaEVkzBkFEZDGlv7zHjPFSz0Lcu3cXq1Ypny/vy1v12vT0KCgUiRrHiosl+PDDHxEdfdkmtmtXNqgoOQOkK7eovJkiY8oNZGVlqZ8zdNaIyJoxCCIiiyn9xattFqK8L2jVc/pmUWxlu7YpgoqK5hYZGiQaM2tEZAsYBBGRTTPl0kxVV0M2dVBh7oRleypSSQQwCCIiO2CKWZTK5NVUlKmDiqpIWGaAQ/aEQRAR2QVtsyiGqkxeTWWYIqiQy+UAlPegc+c92L27MwAmLBPpwyCIiKgEU9XsqaqlNZlMhs2bNwNQBm979jwKgDp33mN0wUUiR8IgiIjMwlaLF5qqZk9VLa2pAq3ygrc9ezqjceM0zgQRacEgiIhMzpaLF5oir8YSS2uGBG/ctUWkiQ1UiciktPUBy8wse66hX8rlnVeZ1+qiq/mosbQtrZVukFoZubm5AB4FbyWVDN769evHpGaiUjgTREQmZUwfsMrsjir52tzcXBQVFQEAsrNdcOWKO2rVykdEhAQFBQWQyWRGBQCmKgRo7i3rMpkMW7ZsAaC/VICPj0+l34/I3jAIIiKTkclk8PYugpPTozYWAODsLODldRMyWdk2FpWZnfD399cIBHQtPRmbf1PZ3WaA+beslw4eY2Iu4vnntwIQiIjIZC4QkR4MgojIJEomA/fooRmMdO++Azt2VCwY0UdXYnDJXV368m/MsbxWlT22dAWARFS+CgVB9+/fR/Xq1U09FiKyYSWDDF3LSeZqY1HZpSdzVUOuih5bptrWT+RoKhQEBQcHo1+/fhg2bBieeuopU4+JiOyAKZaTjGGKpSdzJQ6Xdy/kci8cOuSG1q0rX0KAO8OIKqZCu8O++OIL5OTkoFOnTqhXrx4WLFiA69evm3psREQGM+WursrSF3CcONECy5aNQ9++/oiMVJYUqAx9O8P69+/PnWFE5ajQTFDv3r3Ru3dv3Lp1Cxs2bMC6deswY8YMJCQkYNiwYejVqxdcXJhuRERVqyqWngyhbWlNLpfj6lWBt99uACGUiePKEgICzZvfRFRU2cRxQ+jLPZJKpZX/UER2qFJ1ggIDAzF+/HicOXMGS5YswZ49e/DCCy8gLCwMM2fOxIMHD0w1TsybNw9t2rSBp6en1q2eV65cQffu3eHp6YmgoCBMnDhRvW2WiByDVHoX0dGXLZ4L4+/vj9DQUPWPm5sbNm/ejI0bf9PYOQcAxcUSfPjhj/joo48gk8kq9H6xsScxbtwyJCauw7hxy5gUTWSASk3X3LhxA+vXr8e6detw+fJlvPDCC0hKSkJmZiYWLlyII0eOYNeuXSYZaEFBAfr27Yv4+HisLmfuuLi4GN27d0dISAgOHz6MrKwsvPzyy3B1dcW7775rkjEQke26ffs2ANP17DKWalZIX+6SMYnjpZfdtOVhMR+IqHwVCoJSUlKwdu1a7Ny5Ew0bNsRrr72GwYMHa8zQtGnTBo899pipxok5c+YAANatW1fu8V27duGvv/7Cnj17EBwcjObNm2Pu3LmYPHkyZs+ezf8IENkpXf9ul+zZlZKSon7e1Nv0jWHKbfPm2tFG5CgqFAQNHToUAwYMwKFDh/D444+Xe05YWBimTZtWqcEZIzU1FU2aNEFwcLD6uYSEBIwcORJ//vknWrRoUe7r8vPzkZ+fr36cl5dn9rES2SNztbHQp2QgcPv2bXWwU1U9uyrClLlLDHCIKq5CQVBWVhY8PT11nuPh4YFZs2ZVaFAVkZ2drREAAVA/zs7O1vq6+fPnq2eZiKjiLDkrUfqatlA3p6pLCBBRWRUKgjw9PVFcXIxvv/0WZ8+eBQA89thj6N27t1G7wqZMmYKFCxfqPOfs2bNo0KBBRYZpkKlTp2L8+PHqx3l5eYiIiDDb+xHZM2uZlTB3zy4isg8VCoL+/PNP9OzZEzdu3ED9+vUBAAsXLkRgYCC2b9+Oxo0bG3SdCRMmYMiQITrPqV27tkHXCgkJwW+//abx3I0bN9THtHF3d4e7u7tB70FEtsHcPbuIyD5UKAgaPnw4GjdujOPHj8PX1xcAcOfOHQwZMgTJyck4fPiwQdcJDAxEYGBgRYZQRnx8PObNm4ebN28iKCgIALB79254e3ujYcOGJnkPInuUmans/F63buUrF1uLquzZVZpMJlMvCV6/7oT0dBdERxfBze222d+biIxToSDo1KlT+P3339UBEAD4+vpi3rx5WhOlK+vKlSvIycnBlStXUFxcjFOnTgEA6tSpgxo1aqBLly5o2LAhXnrpJSxatAjZ2dmYPn06Ro0axZkeIi1WrwaSk5UF+5ycgFWrgKQkS49KqWQwUR59+UWWKJxYsols2cTso4iN1X8N7mQlqjoVCoLq1auHGzduoFGjRhrP37x5E3Xq1DHJwEqbOXMm1q9fr36s2u21f/9+dOjQAc7OztixYwdGjhyJ+Ph4VK9eHYmJiXj77bfNMh4iW5eZ+SgAAlSVi4GEBMvPCJUMJgDNre4lgxl9W92rOvnY0I72ffr0QUBAQJnXczs7UdWqUBA0f/58jBkzBrNnz0br1q0BAEeOHMHbb7+NhQsXamwz9/b2NslA161bp7VGkEpkZCR++OEHk7wfkT2TyWQ4cgRQKDS/cIuLgaNHZfDwsGySc8kZIGO2ultqm35p+hKzAwICEBoaatYxEJF+FQqCevToAQDo168fJBJl+XchBACgZ8+e6scSiQTFxcWmGCcRmYhqlkUu94JEMq5M8vChQ+uRlnbXogUFVYzd6m4txQOZmE1kGyoUBO3fv9/U4yCiKqIKEPQlD1u6oCCgf0bl+nUnnDunmdRt6cANsGxiNhEZrkJBUPv27U09DiKyAGvpuq6NrhmVEyda4O23g/6X1C2waJEcAwf+azV5NdZ+b4moEg1Uc3NzsXr1anWxxEaNGmHYsGGQSqUmGxwRmZ81Vy7WNqMC4H/PKZfjFQoJJk70xrVrayCVWsdSHmDd95aIKhgE/f7770hISICHhweeeOIJAMCSJUswb9487Nq1C7GG7AMlIjJAeTMq6elROpfJrGEpj4isX4WCoDfeeAO9evXCZ599pm6TUVRUhOHDh2PcuHH45ZdfTDpIInJspWdUrDXx2Fp2pxGRYSo8E1QyAAIAFxcXTJo0CS1btjTZ4IjIMekLEqw18dhadqcRkWEqFAR5e3vjypUrZRqbXr16FV5eXiYZGBE5Lm3BxO3bt5GSkgLAehOPGeAQ2Y4KBUH9+/dHUlIS3nvvPbRp0wYAcOjQIUycOBEvvviiSQdIRKZlK0s2hgQTTDwmosqoUBD03nvvQSKR4OWXX0ZRUREAwNXVFSNHjsSCBQtMOkAiMi0u2RARKRkdBBUXF+PIkSOYPXs25s+fj0uXLgEAYmJi4OnpafIBElkTe+m4zgCHiAhw0n+KJmdnZ3Tp0gW5ubnw9PREkyZN0KRJEwZAZPdWrwYiI4FOnZR/rl5d/nmZmcD+/co/ybRsZSmPiGxDhZbDGjdujH/++QfR0dGmHg+R1ZHJZMjIKEJychAUClVxPmDECIHmzW8iKspFPbOyevWjzuxOTsCqVUBSkiVHbz4ymazKl9S4lEdEpiQRqs6nRvjpp58wdepUzJ07F3FxcahevbrGcVN1jreEvLw8SKVSyOVym/4cZBqqZqPp6VFYvz6xzPHExHWIjr6M0aNH499//REZqQyAVJydgYwM2146K4/qvqjI5V7IyfGHn59MI1HZWio3E5H9q8j3d4Vmgp599lkAQK9evdRd5AF2jif7o5px0Fec7+bNm/jzT0Ch0PzCLy4Gjh6VwcPDvvJwbt26pf77iRMtytTriY09CUB7E1Z7ya0iItvGLvJEBtBXnG/Lli2Qy70gkYwrEygdOrQeaWnW08+qsmQyGTZv3gxAOQO0bVsPqNILhXDC9u09EBNzUevWdUdaMiQi61ahICg6OhoREREas0CAcibo6tWrJhkYkbXRV5xPX6BkL/2sSn6Oo0dbofT+ipI9vErLzHwUAAGq3CogIYEzQkRU9SocBGVlZSEoKEjj+ZycHERHR3M5jOyWvuJ81lrF2Bzkci+kpsaXc6T8Hl4ymQxHjjjOkiERWb8KBUGq3J/S7t27h2rVqlV6UES2zNJVjKtq11ZOjn+ZTu4A0KZNapnPr0qkdpQlQyKyDUYFQePHjwcASCQSzJgxQ6M2UHFxMY4ePYrmzZubdIBEZLjSu7a0qWiwIZPJcPv2bQCAq2s+AAVKLodJJAq0anW0zOtUQZmjLBkSkW0wKgg6eVK540MIgT/++EOjIJmbmxuaNWuGN99807QjJCKDlQ4itG1dr0iwUTLAUu0IUwZAAoDE4E7ujrRkSETWzaggSLUrbOjQoVi+fDnr6JDds+XKw7q2rleEKnCSy73U11VSBkBJSZ8jPDxL4zXa7p+llwyJiIAK5gStXbvW1OMgskqGVCiWy+XqLePWonSgYsjWdUOVlwskhBMKCzUDnn79+jG/h4isWoWCoPv372PBggXYu3cvbt68CUXJErkA/vnnH5MMjsga6Psit8Z+VtoCFW1b142hr3Ckimr3aGYmcOSIG+RyL87+EJFVqVAQNHz4cBw4cAAvvfQSQkNDy90pRuQorLGflaGBSkXoS27u06cPwsLC4O/vX6Iwoj8kknGVXpIjIjKlCgVBP/74I77//ns8+eSTph4PkU2ytmUffYFKZelKbg4ICIC/v3+ZwoimXJIjIjKFCgVBvr6+8PPzM/VYiMiEzL0LS19y84ULms1kAf1LcraciE5EtqdCQdDcuXMxc+ZMrF+/XqNWEBFZVukgQlugYkiwUZkmpzKZDN7eRXByCoJC8Wi53MlJYNCgVggPbwUfH58yY7K2GTUism8VCoLef/99XLp0CcHBwYiKioKrq6vG8RMnTphkcERknMrmJ6mqTW/a5IFJk6RQKCRwchJYtEiO7t3lBo3hwYMHWLVqFQCgRw/Nbfo9euzA4cPKnCBWhyYiS6tQENS7d28TD4OITKWigUXJ1hbLlo2DEMoZHIVCgokTvXHt2hpIpcqt76VncVTc3Nw0ArDY2JMICsrGlSu1UKvWFY06QqwOTUSWVqEgaNasWaYeh04ZGRmYO3cu9u3bh+zsbISFhWHw4MGYNm2axrT+mTNnMGrUKBw7dgyBgYF4/fXXMWnSpCodK5GtUgUl+rbX+/j4IDQ0VOt1srIeBTqmLthIRGRKZbsf6vDbb7/p7BCfn5+PLVu2VHpQpZ07dw4KhQKffvop/vzzTyxduhQrV67EW2+9pT4nLy8PXbp0QWRkJI4fP47Fixdj9uzZ6ml5IjKMant9SRXZXq+tYKNc7mWysRIRVYZRQVB8fDxkMpn6sbe3t0ZhxNzcXLz44oumG93/dO3aFWvXrkWXLl1Qu3Zt9OrVC2+++SZSUlLU52zcuBEFBQVYs2YNGjVqhAEDBmDMmDFYsmSJycdDZM9U2+tVgZCx2+vlcmXukK4ZpZLnERFZilHLYUIInY+1PWcOcrlcY5t+amoq2rVrp7E8lpCQgIULF+LOnTvw9fUt9zr5+fnIz89XP87LyzPfoInMRJXQrI2xO68qs72+sLAQgP6CjarziIgspUI5QbpURfXoixcv4sMPP8R7772nfi47OxvR0dEa5wUHB6uPaQuC5s+fjzlz5phvsERmVrK7O6C9c7yxu7Eq2+TU3AUbiYgqy+RBkDGmTJmChQsX6jzn7NmzaNCggfrxtWvX0LVrV/Tt2xevvPJKpccwdepUjB8/Xv04Ly8PERERlb4uUVUpOQOkKxHZEruxzF2wkYioMowOgv766y9kZ2cDUC59nTt3Dvfu3QMA3L5926hrTZgwAUOGDNF5Tu3atdV/v379Ojp27Ig2bdqUSXgOCQnBjRs3NJ5TPQ4JCdF6fXd3d7i7uxs1biJrZM7O8cZwcdH8z4q2GaXS5xERVTWj/yv09NNPa+T99OjRA4ByGUwIYdRyWGBgIAIDAw0699q1a+jYsSPi4uKwdu1aODlpJlzGx8dj2rRpKCwsVBdv3L17N+rXr691KYzInlS2c7yhLSv0naethlBFzyMiMhejgqD09HRzjUOna9euoUOHDoiMjMR7772HW7duqY+pZnkGDhyIOXPmICkpCZMnT0ZaWhqWL1+OpUuXWmTMZBqmTvi1Z5XtHF/ZatNERLbGqCAoMjLSqIu/9tprePvttxEQEGDU60rbvXs3Ll68iIsXLyK8VBMj1ayUVCrFrl27MGrUKMTFxSEgIAAzZ85EcnJypd6bLKd0wq82bL+gZIpEZN5HInIkZl2U/+KLL/Dmm29WOggaMmSI3twhAGjatCkOHjxYqfci62FoIq89t18wZCasJGtIRDbVshoRkbmZNQiqqppB5Bi0bf22V4bOhPXr10/jcWW3tlcWl9WIyFZwewbZBHvsQaVvlsfQisqGbkaoypkXBjhEZAsYBJHVs5at36Zk6CxPSdpmwqRSKWdeiIgqgEEQWb3Kbv22RsbmMembCWOAQ0RkPKMaqBJZgqm6mtsqdmMnIjIPswZBgwcPhre3tznfguyQTCZDVlaWugJ5Zbua2zp93diJiKhiKrQcplAoylRsVj2fmZmJWrVqAQBWrFhRudGRw9GWK6Nr67c9bLXWtfOtskUQiYiofEYFQXl5eRg+fDi2b98Ob29vjBgxArNmzYKzszMA4NatW4iOjkZxcbFZBkv2T1euTMmt33369EFAQIBVJvwaW9tHX74Pu7ETEZmHUUHQjBkzcPr0aWzYsAG5ubl45513cOLECaSkpKj/w87aQFQVAgICEBoaaulhlGHorq/+/fsDMHznm7aZMLncC0ePeqJlS6BUMXUiItLDqCDou+++w/r169GhQwcAQO/evdG9e3f07NkT27ZtA2B4zRIie2Torq/CwkIA+ne+9evXT2uj0U2bPPD221IsXSqBkxOwahWQlFSp4RMRORSjgqBbt25p9A8LCAjAnj17kJCQgGeffRaff/65yQdItseUTU/ttUq0i4vyXz19+T5BQUFl7pVMJkNGRhEmTZJCoVD+T4dCAYwYIdC8+U1ERbnA398fmZnAhQtA3bqcJSIiKo9RQVCtWrVw9uxZREdHq5/z8vLCrl270KVLF/znP/8x+QDJtpiy6ak9VolW8fHxURc4rFkzD5MnS1FcLIGzs8DChXkYOPDFcoNF1f1NT4+CQpGocay4WIIPP/wR0dGX4eycjFmzQqBQSODkJLBokRwDB/5rlTlURESWYtQW+S5dumDt2rVlnq9RowZ27tyJatWqmWxgZJtM1fTUXmrjyOVeSE+PKnfc/v7+CA0NxYQJPsjIkGD/fiAjQ4IJE3wQGhpabrCium+6aifJ5V6YOTO4xCyRBBMnemPx4i/x0UcfQSaTmeGTEhHZHqNmgubMmYPr16+Xe8zLywu7d+/GiRMnTDIwcmz2UCXamJms8HDjlqx07RhLT4/See+MrVZNRGSvjAqCfH194evrq/W4l5cX2rdvX+lBkeNS7TLUlytj7bWBqqLfmbYdY6wrRERkGKOLJRYVFWHp0qX48ssv8ffffwMA6tWrh4EDB2Ls2LFwdXU1+SDJcfj7+1coV8baVNVMVsnaSSWfY10hIiL9jAqC/v33XzzzzDNITU1F586d0a5dOwDA2bNnMXnyZGzbtg27du1ibhBViirAmTAB6N8fuHgRqFNHgvBwHwA+lhyaXtYyk6WrwjYRESkZFQQtWLAAV69excmTJ9G0aVONY6dPn0avXr2wYMECzJ4925RjJBtW2S3uxubKWFrJmSw/v2zMmhWq3qE1c+Z19OnzDFxdXVFQUACZTGbWGa3yZomIiOgRo4Kgr776CkuWLCkTAAFAs2bN8N5772HatGkMggiAfW9x18Xf3x8ymQzFxR9h7Fgv9WwMcBcpKZrnGlIqAIC65o+3t1l7HhMRORSj/ot6+fJlPPHEE1qPt27dGleuXKn0oMh2qZZ59G1xt/bE5spS7cCSSu8iOvoyAJS7VV7XTi2ZTIasrCy8/34uIiMFOnUCnngiCCdOtDDfwImIHIhRM0He3t64efMmIiIiyj2enZ0NLy/bquNCpqVaDtq/H1i6tGxi8JNPJqJDB1h9YrMpVWRGTFUUUS73wrJl4yDEo5o/JXeZlWyrkZubiy1btugdj70HoEREhjIqCOrYsSPeffddbN26tdzjCxYsQMeOHU0yMLJd/v7+aN0acHJStnNQcXYGWrXyhwPFPxXeKq+aIdK3y8zHx0fdSDY0NFSdj6SNLeysIyKqKkYFQbNmzUKrVq3QunVrjB8/Hg0aNIAQAmfPnsXSpUvx119/4ciRI+YaK9mQ8HBlQ88RI4DiYmUA9OmntpXkbAqV3SpvbM0fBjhERIYzKghq2LAhdu/ejaSkJAwYMEDdMV4IgQYNGmDXrl1o1KiRWQZKticpCUhIUG1xd7wACKh84ULW/CEiMh+jiyW2bt0af/75J06dOqVRLLF58+amHhvZAVvb4l4RMpmszBLU7du3AWgPYgBlovT1607432qWVqz5Q0RkHkYHQXl5eahRowaaN2+uEfgoFArcu3cP3t7ephwfkVVTJTDrUjqIuXSpzv+SnZ2wYYPAokW5eju8s+YPEZHpGbVF/ttvv0XLli3x8OHDMsf+/fdfPP7449i+fbvJBkdk7QxtRlpyq3zJRGl2eCcishyjgqAVK1Zg0qRJ8PT0LHOsevXqmDx5st7/KyayZ3K5V7n1gFS7JnUlSgOGB1VERFR5Ri2HpaWl4ZNPPtF6vF27dpg+fXqlB0Vki3TVA/L19QVgeKK0obV8WPOHiKjijAqC7ty5g6KiIq3HCwsLcefOnUoPisjWGFoPyNDdXiV7kGnDmj9ERJVjVBAUFRWF33//HQ0aNCj3+O+//47IyEiTDKy0Xr164dSpU7h58yZ8fX3RuXNnLFy4EGFhYepzzpw5g1GjRuHYsWMIDAzE66+/jkmTJpllPEQlGVMPyNDdXgxwiIjMy6icoD59+mDatGm4ceNGmWPZ2dmYPn06nn/+eZMNrqSOHTtiy5YtOH/+PLZu3YpLly7hhRdeUB/Py8tDly5dEBkZiePHj2Px4sWYPXs2Vq1aZZbxEJWkWuYqSVc9IFWiNHd8ERFZjlEzQVOmTMH//d//oW7duhg8eDDq168PADh37hw2btyIiIgITJkyxSwDfeONN9R/j4yMxJQpU9C7d28UFhbC1dUVGzduREFBAdasWQM3Nzc0atQIp06dwpIlS5CcnGyWMZH1K6+GT0mmWlJiUUMiIttjVBDk5eWFQ4cOYerUqdi8ebM6/8fHxweDBw/GvHnzqqSBak5ODjZu3Ig2bdrA1dUVAJCamop27dppJIomJCRg4cKFuHPnjjoxlRyHITV8AGD06NEVDoRK/r7pWuZycTG6JBcREZmZ0f9llkql+OSTT/Dxxx/j9u3bEEIgMDBQ3UKjpEOHDqFly5Zwd3c3yWBVW/AfPHiA1q1bY8eOHepj2dnZiI6O1jg/ODhYfUxbEJSfn4/8/Hz147y8PJOMlSzP0O3mldmWbmgCs6G424uIqOpU+H9PJRIJAgMDdZ7TrVs3nDp1CrVr1y73+JQpU7Bw4UKd1zh79qw6EXvixIlISkrC5cuXMWfOHLz88svYsWNHuQGYoebPn485c+ZU+PVEhs4icbcXEZF1MescvRBC5/EJEyZgyJAhOs8pGUAFBAQgICAA9erVw2OPPYaIiAgcOXIE8fHxCAkJKZOwrXocEhKi9fpTp07F+PHj1Y/z8vIQERGhc0zkGEydT8QAh4jIulg0USEwMFDvbJI2CoVyJ45qKSs+Ph7Tpk1TJ0oDwO7du1G/fn2d+UDu7u4mW64j+1EV+URERGRZRm2Rt5SjR4/io48+wqlTp3D58mXs27cPL774ImJiYhAfHw8AGDhwINzc3JCUlIQ///wTmzdvxvLlyzVmeYgMVXoGSFs7DLa5ICKyXTaxZcXT0xMpKSmYNWsW7t+/j9DQUHTt2hXTp09Xz+JIpVLs2rULo0aNQlxcHAICAjBz5kxuj6dK09UOg4iIbJdZg6DKJCyX1KRJE+zbt0/veU2bNsXBgwdN8p5EgOHtMIiIyPZYNDGabE9VFR+sqJLjy83N1Tgml3shJ8cffn4yjQBG17Z0Y9phEBGRbTFrEHT3Lr8k7Im1JwvrGl/JJS0nJ4FFi+QYOPBfvUGboV3fiYjI9hgVBHXq1Mmg8wxZuiLbUxXFBytD2/uWXtJSKCSYPNkH/fv7QF+spq8dxu3bty0++0VERBVjVBD0888/IzIyEt27d1dvQyeyduUtaRUXAxcvAuHh+l+vqx1GSkoKAG6VJyKyRUYFQQsXLsTatWvx9ddfY9CgQRg2bBgaN25srrERmUR5S1rOzkCdOtpfUzpPSCq9C6n0rnqrfOm8Im6VJyKyPUbVCZo4cSL++usvfPfdd7h79y6efPJJPPHEE1i5ciV7bpHVUi1pSSTKApvOzgKffqp7FkjVE6xPnz7q506caIFly8Zh/fpELFs2DidOtDD30ImIyIwqVCwxPj4en332GbKysjBq1CisWbMGYWFhDITIasXGnsS4ccuQmLgOR4/eRFKS/tf4+/sjICAAgPat8qWLJxIRke2o1O6wEydO4MCBAzh79iwaN27MPCGyaqolrbAwhdGv5VZ5IiL7Y/RM0PXr1/Huu++iXr16eOGFF+Dn54ejR4/iyJEj8PDwMMcYiSpEW6uLilDlFZXErfJERLbNqJmgZ599Fvv370eXLl2wePFidO/eHS4uNtF5g0xAV1HBipxnaiXfV1eri4qMT99WeSIisj0SYURZZycnJ4SGhiIoKEhnS4wTJ06YZHCWkJeXB6lUCrlcDm9vb0sPx+rYQsXojIwiPPFEEBSKR7+jzs4CR4/eRFSUi1Hjy8rKwqpVq9SPlVWny26VT05ORmhoqGk+BBERGa0i399GTePMmjWrQgMj+2HttXD8/f1x5gygKJX2U1wswd27wXqLI5ambau8vvOIiMj6GTUT5Ag4E2S4zEzgwgWgbl3Dig5WlT/+uIPmzX3KnQkKC1MYPVtl7bNfRERUBTNB2hw4cAD3799HfHw8fH19TXFJsnKrVwPJycoZFycnYNUqGLTt3NxkMhlSUj5Cjx6aOUHdu+/Ajh0n1ecZU+GZAQ4RkX0yumL0vXv3MHfuXADKLvHdunXDrl27AABBQUHYu3cvGjVqZPqRktXIzHwUAAHKP0eMABISLD8jpJqx0dXqouR5RETkuIzaIr9582aNNhnffPMNfvnlFxw8eBC3b99Gy5YtMWfOHJMPkqzLhQvl5dwoe3FZE6n0LqKjL3MHFxERlcuoICg9PR1NmzZVP/7hhx/wwgsv4Mknn4Sfnx+mT5+O1NRUkw+SrEvdusolsJL09eKyFFPWCiIiIvti1HJYUVER3N3d1Y9TU1Mxbtw49eOwsDDcvn3bZIMj6xQerswBGjFCOQPk7Ay9vbgsQVetICIiIqNmgmJiYvDLL78AAK5cuYK///4b7dq1Ux/PzMxkEqmDSEoCMjKA/fuVf1pDUnRJ7PVFRET6GDUTNGrUKIwePRoHDx7EkSNHEB8fj4YNG6qP79u3Dy1asLO2owgPt77ZHxX2+iIiIn2MCoJeeeUVODs7Y/v27WjXrl2Z4onXr1/HsGHDTDpAIhVD6vWoqHp9lQyE2OuLiIhKMrpO0LBhw7QGOp988kmlB0RUHplMho8++kjveb169QKgv9cXKzwTERErRpfCitHWqXQPL12effZZ1KhRAz4+Prh+3QkZGS6IiipCWJhyXz8rPBMR2Z+KfH8blRhdWFiISZMmoU6dOnjiiSewZs0ajeM3btyAs7OzMZckMrkffvgBW7ZsgZubG+LigvH88/6IiwtGaGgoQkNDGQAREREAI4OgefPm4b///S9effVVdOnSBePHj8eIESM0zuHEElkLVoUmIiJdjMoJ2rhxIz7//HP06NEDADBkyBB069YNQ4cOVc8KSSQSXZcgIiIisgpGzQRdu3ZNo21GnTp18PPPP+Pw4cN46aWXUFxcbPIBEpVHLvdCWlpDpKU1RGZmKKtCExGR0YyaCQoJCcGlS5cQFRWlfq5mzZrYv38/OnbsiCFDhph4eOQIjNn6DigrQW/b1gOPYngBQMKq0EREZBSjgqBOnTph06ZNePrppzWeDwsLw759+9ChQwdTjo0cgKFb3/v37w9AOQOkGQABgHIJVlUVOibmIgsiEhGRXkYFQTNmzMC5c+fKPVazZk0cOHAAu3fvNsnAyDEYmrysSrjPyfGHrlVcVoUmIiJDGZUTFBkZiYSEBK3Hw8LCkJiYWOlBEZXm4+ODwYMHw89PBkCh9TxWhSYiIkMZFQSpfP311+jTpw8aN26Mxo0bo0+fPvjmm29MPbZy5efno3nz5pBIJDh16pTGsTNnzqBt27aoVq0aIiIisGjRoioZE1WNmJgYTJuWiLlzs6EZCClniVgVmoiIjGHUcphCocCLL76Ir7/+GvXq1UODBg0AAH/++Sf69++Pvn374ssvvzTrNvlJkyYhLCwMp0+f1ng+Ly8PXbp0QefOnbFy5Ur88ccfGDZsGHx8fJCcnGy28VDFyWQy3L5926jX+Pv7Y/p04Lnn7iA1VblMFhFRjH//dfpfVejHATzOqtBERKSXUUHQ8uXLsWfPHmzbtk1dK0hl27ZtGDp0KJYvX45x48aZcoxqP/74I3bt2oWtW7fixx9/1Di2ceNGFBQUYM2aNXBzc0OjRo1w6tQpLFmyhEGQFTI0IVqbJk180aSJCQdEREQOx6jlsLVr12Lx4sVlAiBA2bhy0aJFZVppmMqNGzfwyiuvYMOGDfD09CxzPDU1Fe3atdNYAklISMD58+dx584drdfNz89HXl6exg+Zn7aEaLncizV/iIioShgVBF24cAGdO3fWerxz5864cOFCpQdVmhACQ4YMwauvvoqWLVuWe052djaCg4M1nlM9zs7O1nrt+fPnQyqVqn8iIiJMN3AyyokTLbBs2TisX5+IZcvG4cSJFpYeEhER2TGjgiAPDw/k5uZqPZ6Xl4dq1aoZfL0pU6ZAIpHo/Dl37hw+/PBD3L17F1OnTjVmuAaZOnUq5HK5+ufq1asmfw/STy73wvbtPSCE8ldSVfNHNSPEJGciIjI1o3KC4uPjsWLFCqxYsaLc4x9//DHi4+MNvt6ECRP0VpmuXbs29u3bh9TUVLi7u2sca9myJQYNGoT169cjJCQEN27c0DiuehwSEqL1+u7u7mWua+8MqdBc1UnFOTn+6gBIRQgnNG7cG889J2WSMxERmZxRQdC0adPQoUMHyGQyvPnmm2jQoAGEEDh79izef/99/N///R/2799v8PUCAwMRGBio97wPPvgA77zzjvrx9evXkZCQgM2bN6NVq1YAlAHatGnTUFhYCFdXVwDA7t27Ub9+ffj6+hrzMe2aoQnJo0ePrtLAw89PBolEoREISSQKRETko6CgAFlZWdzxRUREJmVUENSmTRts3rwZycnJ2Lp1q8YxX19ffPnll3jyySdNOkAAqFWrlsbjGjVqAFDWjQkPDwcADBw4EHPmzEFSUhImT56MtLQ0LF++HEuXLjX5eGyZoRWaDT3PlOLjU5GaGg8hnNQ1fw4fPonDhx+dU9XBGRER2S+jgiAA+M9//oOEhATs3LlTnQRdr149dOnSpdxdW1VFKpVi165dGDVqFOLi4hAQEICZM2dye7wNOHGiRYl8IAXatDmEVq2Oltv6whLBGRER2SejgqB9+/Zh9OjROHLkCP7zn/9oHJPL5WjUqBFWrlyJtm3bmnSQpUVFRal7SZXUtGlTHDx40KzvTaahSnQunRANOCE1NR6tWh213OCIiMghGLU7bNmyZXjllVfg7e1d5phUKsWIESOwZMkSkw2O7Je/vz9Gjx6NNm0Sy02Izsnxs9DIiIjIURgVBJ0+fRpdu3bVerxLly44fvx4pQdFjsHf3x+tW/vDqdRvoUSigKtrAYsmEhGRWRm1HHbjxg31zqtyL+biglu3blV6UOQ4wsOBVauAESMEioslkEgUaNr0DFavHq6RIB0be9LSQyUiIjtj1ExQzZo1kZaWpvX4mTNnEBoaWulBkWNJSgKOHr2JxMR1SEr6HGfONNVaNJGIiMhUjAqCnn32WcyYMQMPHz4sc+zff//FrFmzyu0rRtbD0MrLVV2hOSxMgejoyygsdGeOEBERVQmjlsOmT5+OlJQU1KtXD6NHj0b9+vUBAOfOncPHH3+M4uJiTJs2zSwDJdNQJSSrtppfv+6E9HQXREcXISxMAaBiFaMrW4VaFXRpK5ro55ejcR4REVFlSUR5e811uHz5MkaOHImdO3eqt6lLJBIkJCTg448/RnR0tFkGWlXy8vIglUohl8vL3QVnT1avBpKTAYUCcHJS5uYkJRl/HVNVoVYFUps2eWDyZCmKiyVwdhZYuFCOgQP/ZcVoIiLSqiLf30YHQSp37tzBxYsXIYRA3bp17aY1haMEQZmZQGSkMgBScXYGMjKUycrGyMrKwqpVq/Sel5ycbHDOWGYmcPEiUKeO8eMhIiLHU5Hvb6MrRqv4+vri8ccfr+jLycIuXNAMgACguFgZeFhD0BEebh3jICIi+1XhIIiqlqk7v9etq1wCKz0TVKeO8WPLzc01+DzuHiQiImvBIMgGmKPz+6P6PMoZIGdn4NNPKzb7UlRUZNLziIiIqgKDIBtQegZILvdCTo4//PxkGk1GjW0umpQEJCQw94aIiBwTgyAbU7LjuimqKZsj90ZbkEZERGRNGATZkNId11XVlGNiLlpNsGHqII2IiMhcjKoYTZaVk+NvldWUVf3ktAVpqpYXuvrOERERVTUGQTZEVU25pJLVlC1FKpUC0B+kqc4jIiKyBgyCbIhUehc9e+5QB0Kq5SZrWQpzdc0HULr2poCrq3EJ20RERFWBOUE2Jjb2JGJiLiInxw9+fjlWEQCp+nkVFroDkJQ6KkFhoZvGeURERNaAQVAVycxUVmmuW9f43Vilgwep9G65wY+lggxVU9aMjCJs2CCgUDwKhJydBV5/vRuiolzY94uIiKxKhXuH2Stz9A4zRaNSU1eMNpfVq8sWYKxIU1YiIiJjVGkDVXtl6iDIlI1KrVF5wdn1607IyHBBVFQRZ4CIiKhKVGkDVTKMtTcqrQx97TzS0pR/GtPOg4iIqKpwd5iZqRqVllTRRqXWxtA2Hca28yAiIqoKDILMTNWo1NlZ+bgyjUqJiIjIdLgcVgXYqJSIiMj6MAiqIuZoVEpEREQVx+UwMhm53Avp6VHqXmFERETWjDNBZBLsHk9ERLaGM0FUafq6xxMREVkjBkFUYao2Hfq6x7NnGBERWSObCYKioqIgkUg0fhYsWKBxzpkzZ9C2bVtUq1YNERERWLRokYVG6xhUPcNef70rnJw0C4+reoaxUCIREVkrm8oJevvtt/HKK6+oH3t5PVpuycvLQ5cuXdC5c2esXLkSf/zxB4YNGwYfHx8kJydbYrgOwd/fH/7+ylpImj3DJIiLC7b08IiIiLSyqSDIy8sLISEh5R7buHEjCgoKsGbNGri5uaFRo0Y4deoUlixZwiCoCrAWEhER2RqbWQ4DgAULFsDf3x8tWrTA4sWLUVRUpD6WmpqKdu3aaeSfJCQk4Pz587hz547Wa+bn5yMvL0/jhyomPBzo0IEBEBER2QabmQkaM2YMYmNj4efnh8OHD2Pq1KnIysrCkiVLAADZ2dmIjo7WeE1wcLD6mK+vb7nXnT9/PubMmWPewRMREZHVsWgQNGXKFCxcuFDnOWfPnkWDBg0wfvx49XNNmzaFm5sbRowYgfnz58Pd3b3CY5g6darGtfPy8hAREVHh69kjmUymswmqm5sbk5+JiMjmWDQImjBhAoYMGaLznNq1a5f7fKtWrVBUVISMjAzUr18fISEhuHHjhsY5qsfa8ogAwN3dvVJBlL2TyWT46KOP9J7HXWBERGRrLBoEBQYGIjAwsEKvPXXqFJycnBAUFAQAiI+Px7Rp01BYWAhXV1cAwO7du1G/fn2tS2G2KjMTuHABqFvX/Pk3umaAKnIeERGRtbCJxOjU1FQsW7YMp0+fxj///IONGzfijTfewODBg9UBzsCBA+Hm5oakpCT8+eef2Lx5M5YvX66x1GUPVq8GIiOBTp2Uf65ebekRERER2SabSIx2d3fHV199hdmzZyM/Px/R0dF44403NAIcqVSKXbt2YdSoUYiLi0NAQABmzpxpV9vjMzOB5GRAoVA+ViiUtXkSErgji4iIyFg2EQTFxsbiyJEjes9r2rQpDh48WAUjsowLFx4FQCrFxcraPIYEQUxwJiIiesQmgiBSqlsXcHLSDIScnZXFCfVhgjMREZEmm8gJIqXwcGV7Cmdn5WNlewrDZoGY4ExERKSJM0E2xlTtKeRyL+Tk+MPPTwap9K5pB0lERGQDGATZoPDwyiVCnzjRAtu394AQTpBIFOjZcwdiY0+We27JNiS6GHoeERGRtWAQ5GDkci91AAQAQjhh+/YeiIm5WO6MkL+/P0aPHs2EaiIisjsMgmyEqXZ25eT4qwMgFSGckJPjp3VZjAEOERHZIwZBNsCUO7v8/GSQSBQagZBEooCfX45BY6nKatVERETmxN1hNsCUO7uk0rvo2XMHJBLlPntVTpAhydGsVk1ERPaEM0EOomTicmzsScTEXEROjh/8/HI0AiBtCc6sVk1ERPaGQZCDqGyCc2WrVRMREVkbBkEOpDIJzpWpVk1ERGSNGATZOVPtKlNVqx4xQjkDZEy1aiIiImvEIMiOmbpfmKmqVRMREVkDBkF2zBz9wipbrZqIiMhacIu8DWDrCiIiItPjTJANMFXrCjZNJSIieoRBkI2obOsKY5qmEhEROQIuhzkAbU1T5XIvC4+MiIjIchgEOQBdTVOJiIgcFYMgB6BqmlqSMU1TiYiI7BGDIDum2i2mr2kqd5UREZEjkgghhKUHYU3y8vIglUohl8vh7e1t6eFUWsmK0devOyEjwwVRUUUIC1MGRIZWjCYiIrJmFfn+5u4wO1cywAkNBeLiLDgYIiIiK8LlMCIiInJIDIKIiIjIITEIIiIiIofEIIiIiIgcEoMgIiIickgMgoiIiMghMQgiIiIih2RTQdD333+PVq1awcPDA76+vujdu7fG8StXrqB79+7w9PREUFAQJk6ciKKiIssMFspChVlZWVp/ZDKZxcZGRETk6GymWOLWrVvxyiuv4N1330WnTp1QVFSEtLQ09fHi4mJ0794dISEhOHz4MLKysvDyyy/D1dUV7777bpWPVyaT4aOPPtJ73ujRo1mxmYiIyAJsIggqKirC2LFjsXjxYiQlJamfb9iwofrvu3btwl9//YU9e/YgODgYzZs3x9y5czF58mTMnj27yvtjqVpVmOo8IiIiMi2bWA47ceIErl27BicnJ7Ro0QKhoaHo1q2bxkxQamoqmjRpguDgYPVzCQkJyMvLw59//mmJYRMREZEVs4kg6J9//gEAzJ49G9OnT8eOHTvg6+uLDh06ICcnBwCQnZ2tEQABUD/Ozs7Weu38/Hzk5eVp/BAREZH9s2gQNGXKFEgkEp0/586dg0Kh7Hg+bdo0PP/884iLi8PatWshkUjw9ddfV2oM8+fPh1QqVf9ERESY4qMRERGRlbNoTtCECRMwZMgQnefUrl0bWVlZADRzgNzd3VG7dm1cuXIFABASEoLffvtN47U3btxQH9Nm6tSpGD9+vPpxXl6e1QVCMplMZ+6Qm5sbk6uJiIiMZNEgKDAwEIGBgXrPi4uLg7u7O86fP4+nnnoKAFBYWIiMjAxERkYCAOLj4zFv3jzcvHkTQUFBAIDdu3fD29tbI3gqzd3dHe7u7ib4NMaTy71w6JAbWrcGwsPLP4e7zIiIiMzDJnKCvL298eqrr2LWrFnYtWsXzp8/j5EjRwIA+vbtCwDo0qULGjZsiJdeegmnT5/Gzp07MX36dIwaNcpiQY4uJ060wLJl49C3rz8iI4HVq8s/z9DdY9evX2ftISIiIiPYxBZ5AFi8eDFcXFzw0ksv4d9//0WrVq2wb98++Pr6AgCcnZ2xY8cOjBw5EvHx8ahevToSExPx9ttvW2S8urbky+Ve2L69B4RQxqAKBTBiBJCQoH1GSJ+UlBT13zkrREREpJ9ECCEsPQhrkpeXB6lUCrlcDm9v70pdS1suz6FDbujbt2yQsn8/0KGD5nNZWVlYtWqV+rFc7oWcHH/4+ckgld4t932Tk5MRGhpaqbETERHZkop8f9vMTJAt0jYb07o14OSknAFScXYG6tTRfb0TJ1qoZ5AkEgV69tyB2NiTJhwxERGR47CJnCB7Ex4OrFqlDHwA5Z+ffqp7Kaz0EpoQTti+vQfkcq8qGDEREZH94UyQhSQlKXOALl5UzgDpywXKyfFXB0AqQjghJ8dP67IYERERaccgyILCww1PhPbzk0EiUWgEQhKJAn5+OWYaHRERkX3jcpiVU+0yk0rvomfPHZBIlIlEqpwgzgIRERFVDGeCrJy/vz9Gjx6NgoIC3L59GzExy5CT4wc/vxwGQERERJXAIKiKVaQFhuqxm5sbpNK7eoMfXTWKiIiISIlBUBWqbAuMkrNC2rCPGBERkWEYBFUhQ1tg6DqPAQ4REZFpMDGaiIiIHBKDICIiInJIDIIsRC73Qnp6FCs+ExERWQhzgiyAPcCIiIgsjzNBVcyUPcAyM5Wd5zMzTT1KIiIi+8cgqArl5ubq7AFmjNWrgchIoFMn5Z+rV5typERERPaPQVAVkclk2LJli7oHWEmle4DpK3aYmQkkJwOK/11GoQBGjOCMEBERkTEYBFURVe0ffT3A+vfvr7cW0IULjwIgleJiZUd6IiIiMgwToy0gNvYkYmIultsDTCqV6n193bqAk5NmIOTsDNSpY47REhER2SfOBFmIVHoX0dGXK9QENTwcWLVKGfgAyj8//VT5PBERERmGM0E2KikJSEhQLoHVqcMAiIiIyFgMgmxYeDiDHyIioorichgRERE5JAZBRERE5JAYBFURfbV/jD2PiIiIKoc5QVXE398fo0ePVtcLKo+bm5veGkFERERkGgyCqhADHCIiIuvB5TAiIiJySAyCiIiIyCExCCIiIiKHxCCIiIiIHBKDICIiInJINhEE/fzzz5BIJOX+HDt2TH3emTNn0LZtW1SrVg0RERFYtGiRBUdNRERE1swmtsi3adMGWVlZGs/NmDEDe/fuRcuWLQEAeXl56NKlCzp37oyVK1fijz/+wLBhw+Dj44Pk5GRLDJuIiIismE0EQW5ubggJCVE/LiwsxP/93//h9ddfh0QiAQBs3LgRBQUFWLNmDdzc3NCoUSOcOnUKS5YsYRBEREREZdjEclhp27Ztg0wmw9ChQ9XPpaamol27dhptJxISEnD+/HncuXNH67Xy8/ORl5en8UNERET2zyZmgkpbvXo1EhISEB4ern4uOzsb0dHRGucFBwerj/n6+pZ7rfnz52POnDllnmcwREREZDtU39tCCINfY9EgaMqUKVi4cKHOc86ePYsGDRqoH2dmZmLnzp3YsmWLScYwdepUjB8/Xv342rVraNiwISIiIkxyfSIiIqo6d+/ehVQqNehciwZBEyZMwJAhQ3SeU7t2bY3Ha9euhb+/P3r16qXxfEhICG7cuKHxnOpxyXyi0tzd3eHu7q5+XKNGDVy9ehVeXl7qfKOKyMvLQ0REBK5evQpvb+8KX8fW8T4o8T4o8T4o8T4o8T48wnuhVJn7IITA3bt3ERYWZvBrLBoEBQYGIjAw0ODzhRBYu3YtXn75Zbi6umoci4+Px7Rp01BYWKg+tnv3btSvX1/rUlh5nJycNJbZKsvb29uhf6FVeB+UeB+UeB+UeB+UeB8e4b1Qquh9MHQGSMWmEqP37duH9PR0DB8+vMyxgQMHws3NDUlJSfjzzz+xefNmLF++XGOpi4iIiEjFphKjV69ejTZt2mjkCKlIpVLs2rULo0aNQlxcHAICAjBz5kxujyciIqJy2VQQtGnTJp3HmzZtioMHD1bRaHRzd3fHrFmzNPKNHBHvgxLvgxLvgxLvgxLvwyO8F0pVfR8kwpi9ZERERER2wqZygoiIiIhMhUEQEREROSQGQUREROSQGAQRERGRQ2IQZIQVK1agadOm6iJO8fHx+PHHH9XHHz58iFGjRsHf3x81atTA888/X6aK9ZUrV9C9e3d4enoiKCgIEydORFFRUVV/FJNZsGABJBIJxo0bp37OUe7D7NmzIZFINH5Klm9wlPsAKNvNDB48GP7+/vDw8ECTJk3w+++/q48LITBz5kyEhobCw8MDnTt3xoULFzSukZOTg0GDBsHb2xs+Pj5ISkrCvXv3qvqjVFhUVFSZ3weJRIJRo0YBcJzfh+LiYsyYMQPR0dHw8PBATEwM5s6dq9HPyRF+HwBl+4Zx48YhMjISHh4eaNOmDY4dO6Y+bq/34ZdffkHPnj0RFhYGiUSC7777TuO4qT73mTNn0LZtW1SrVg0RERFYtGiR8YMVZLBt27aJ77//Xvz999/i/Pnz4q233hKurq4iLS1NCCHEq6++KiIiIsTevXvF77//Llq3bi3atGmjfn1RUZFo3Lix6Ny5szh58qT44YcfREBAgJg6daqlPlKl/PbbbyIqKko0bdpUjB07Vv28o9yHWbNmiUaNGomsrCz1z61bt9THHeU+5OTkiMjISDFkyBBx9OhR8c8//4idO3eKixcvqs9ZsGCBkEql4rvvvhOnT58WvXr1EtHR0eLff/9Vn9O1a1fRrFkzceTIEXHw4EFRp04d8eKLL1riI1XIzZs3NX4Xdu/eLQCI/fv3CyEc5/dh3rx5wt/fX+zYsUOkp6eLr7/+WtSoUUMsX75cfY4j/D4IIUS/fv1Ew4YNxYEDB8SFCxfErFmzhLe3t8jMzBRC2O99+OGHH8S0adNESkqKACC+/fZbjeOm+NxyuVwEBweLQYMGibS0NPHll18KDw8P8emnnxo1VgZBleTr6ys+//xzkZubK1xdXcXXX3+tPnb27FkBQKSmpgohlL8YTk5OIjs7W33OihUrhLe3t8jPz6/ysVfG3bt3Rd26dcXu3btF+/bt1UGQI92HWbNmiWbNmpV7zJHuw+TJk8VTTz2l9bhCoRAhISFi8eLF6udyc3OFu7u7+PLLL4UQQvz1118CgDh27Jj6nB9//FFIJBJx7do18w3ejMaOHStiYmKEQqFwqN+H7t27i2HDhmk816dPHzFo0CAhhOP8Pjx48EA4OzuLHTt2aDwfGxsrpk2b5jD3oXQQZKrP/cknnwhfX1+NfzcmT54s6tevb9T4uBxWQcXFxfjqq69w//59xMfH4/jx4ygsLETnzp3V5zRo0AC1atVCamoqACA1NRVNmjRBcHCw+pyEhATk5eXhzz//rPLPUBmjRo1C9+7dNT4vAIe7DxcuXEBYWBhq166NQYMG4cqVKwAc6z5s27YNLVu2RN++fREUFIQWLVrgs88+Ux9PT09Hdna2xr2QSqVo1aqVxr3w8fFBy5Yt1ed07twZTk5OOHr0aNV9GBMpKCjAF198gWHDhkEikTjU70ObNm2wd+9e/P333wCA06dP49dff0W3bt0AOM7vQ1FREYqLi1GtWjWN5z08PPDrr786zH0ozVSfOzU1Fe3atYObm5v6nISEBJw/fx537twxeDw2VTHaGvzxxx+Ij4/Hw4cPUaNGDXz77bdo2LAhTp06BTc3N/j4+GicHxwcjOzsbABAdna2xn/gVMdVx2zFV199hRMnTmisbatkZ2c7zH1o1aoV1q1bh/r16yMrKwtz5sxB27ZtkZaW5lD34Z9//sGKFSswfvx4vPXWWzh27BjGjBkDNzc3JCYmqj9LeZ+15L0ICgrSOO7i4gI/Pz+buhcq3333HXJzczFkyBAAjvXvxZQpU5CXl4cGDRrA2dkZxcXFmDdvHgYNGgQADvP74OXlhfj4eMydOxePPfYYgoOD8eWXXyI1NRV16tRxmPtQmqk+d3Z2NqKjo8tcQ3XM0MbpDIKMVL9+fZw6dQpyuRzffPMNEhMTceDAAUsPq8pcvXoVY8eOxe7du8v8H46jUf2fLaBs2dKqVStERkZiy5Yt8PDwsODIqpZCoUDLli3x7rvvAgBatGiBtLQ0rFy5EomJiRYenWWsXr0a3bp1Q1hYmKWHUuW2bNmCjRs3YtOmTWjUqBFOnTqFcePGISwszOF+HzZs2IBhw4ahZs2acHZ2RmxsLF588UUcP37c0kOj/+FymJHc3NxQp04dxMXFYf78+WjWrBmWL1+OkJAQFBQUIDc3V+P8GzduICQkBAAQEhJSZjeI6rHqHGt3/Phx3Lx5E7GxsXBxcYGLiwsOHDiADz74AC4uLggODnaI+1AeHx8f1KtXDxcvXnSY3wcACA0NRcOGDTWee+yxx9RLg6rPUt5nLXkvbt68qXG8qKgIOTk5NnUvAODy5cvYs2cPhg8frn7OkX4fJk6ciClTpmDAgAFo0qQJXnrpJbzxxhuYP38+AMf6fYiJicGBAwdw7949XL16Fb/99hsKCwtRu3Zth7oPJZnqc5vq3xcGQZWkUCiQn5+PuLg4uLq6Yu/evepj58+fx5UrVxAfHw8AiI+Pxx9//KHxD3f37t3w9vYu8yVirZ5++mn88ccfOHXqlPqnZcuWGDRokPrvjnAfynPv3j1cunQJoaGhDvP7AABPPvkkzp8/r/Hc33//jcjISABAdHQ0QkJCNO5FXl4ejh49qnEvcnNzNf4Ped++fVAoFGjVqlUVfArTWbt2LYKCgtC9e3f1c470+/DgwQM4OWl+tTg7O0OhUABwvN8HAKhevTpCQ0Nx584d7Ny5E88995xD3gfAdP/84+Pj8csvv6CwsFB9zu7du1G/fn2Dl8IAcIu8MaZMmSIOHDgg0tPTxZkzZ8SUKVOERCIRu3btEkIot8DWqlVL7Nu3T/z+++8iPj5exMfHq1+v2gLbpUsXcerUKfHTTz+JwMBAm9sCW1rJ3WFCOM59mDBhgvj5559Fenq6OHTokOjcubMICAgQN2/eFEI4zn347bffhIuLi5g3b564cOGC2Lhxo/D09BRffPGF+pwFCxYIHx8f8X//93/izJkz4rnnnit3S2yLFi3E0aNHxa+//irq1q1r9VuBSysuLha1atUSkydPLnPMUX4fEhMTRc2aNdVb5FNSUkRAQICYNGmS+hxH+X346aefxI8//ij++ecfsWvXLtGsWTPRqlUrUVBQIISw3/tw9+5dcfLkSXHy5EkBQCxZskScPHlSXL58WQhhms+dm5srgoODxUsvvSTS0tLEV199JTw9PblF3pyGDRsmIiMjhZubmwgMDBRPP/20OgASQoh///1XvPbaa8LX11d4enqK//znPyIrK0vjGhkZGaJbt27Cw8NDBAQEiAkTJojCwsKq/igmVToIcpT70L9/fxEaGirc3NxEzZo1Rf/+/TVq4zjKfRBCiO3bt4vGjRsLd3d30aBBA7Fq1SqN4wqFQsyYMUMEBwcLd3d38fTTT4vz589rnCOTycSLL74oatSoIby9vcXQoUPF3bt3q/JjVNrOnTsFgDKfTQjH+X3Iy8sTY8eOFbVq1RLVqlUTtWvXFtOmTdPYyuwovw+bN28WtWvXFm5ubiIkJESMGjVK5Obmqo/b633Yv3+/AFDmJzExUQhhus99+vRp8dRTTwl3d3dRs2ZNsWDBAqPHKhGiRBlPIiIiIgfBnCAiIiJySAyCiIiIyCExCCIiIiKHxCCIiIiIHBKDICIiInJIDIKIiIjIITEIIiIiIofEIIiIiIgcEoMgIjuVnZ2N119/HbVr14a7uzsiIiLQs2dPjZ49hw8fxrPPPgtfX19Uq1YNTZo0wZIlS1BcXKw+JyMjA0lJSYiOjoaHhwdiYmIwa9YsFBQUaLzfZ599hmbNmqFGjRrw8fFBixYt1E0zAWD27NmQSCTo2rVrmbEuXrwYEokEHTp00Pu5oqKiIJFItP4MGTLE+Jtl5Tp06IBx48ZZehhEdsfF0gMgItPLyMjAk08+CR8fHyxevBhNmjRBYWEhdu7ciVGjRuHcuXP49ttv0a9fPwwdOhT79++Hj48P9uzZg0mTJiE1NRVbtmyBRCLBuXPnoFAo8Omnn6JOnTpIS0vDK6+8gvv37+O9994DAKxZswbjxo3DBx98gPbt2yM/Px9nzpxBWlqaxrhCQ0Oxf/9+ZGZmIjw8XP38mjVrUKtWLYM+27Fjx9RB2uHDh/H888/j/Pnz8Pb2BgB4eHiY4hZWicLCQri6ulbZ+xUUFMDNza3K3o/I6lWwNQgRWbFu3bqJmjVrinv37pU5dufOHXHv3j3h7+8v+vTpU+b4tm3bBADx1Vdfab3+okWLRHR0tPrxc889J4YMGaJzTLNmzRLNmjUTPXr0EO+88476+UOHDomAgAAxcuRI0b59ewM+3SOqHkV37txRP/fdd9+JFi1aCHd3dxEdHS1mz56t0X8LgFi5cqXo3r278PDwEA0aNBCHDx8WFy5cEO3btxeenp4iPj5eow+cauwrV64U4eHhwsPDQ/Tt21ejD5QQQnz22WeiQYMGwt3dXdSvX198/PHH6mPp6enq+9quXTvh7u4u1q5dK27fvi0GDBggwsLChIeHh2jcuLHYtGmT+nWJiYllejClp6eLtWvXCqlUqvH+3377rSj5n3XVuD/77DMRFRUlJBKJEEL5O5CUlCQCAgKEl5eX6Nixozh16pRR957IHnA5jMjO5OTk4KeffsKoUaNQvXr1Msd9fHywa9cuyGQyvPnmm2WO9+zZE/Xq1cOXX36p9T3kcjn8/PzUj0NCQnDkyBFcvnxZ7/iGDRuGdevWqR+vWbMGgwYNMskMxcGDB/Hyyy9j7Nix+Ouvv/Dpp59i3bp1mDdvnsZ5c+fOxcsvv4xTp06hQYMGGDhwIEaMGIGpU6fi999/hxACo0eP1njNxYsXsWXLFmzfvh0//fQTTp48iddee019fOPGjZg5cybmzZuHs2fP4t1338WMGTOwfv16jetMmTIFY8eOxdmzZ5GQkICHDx8iLi4O33//PdLS0pCcnIyXXnoJv/32GwBg+fLliI+PxyuvvIKsrCxkZWUhIiLC4Hty8eJFbN26FSkpKTh16hQAoG/fvrh58yZ+/PFHHD9+HLGxsXj66aeRk5NjzO0msn2WjsKIyLSOHj0qAIiUlBSt5yxYsKDMDEpJvXr1Eo899li5xy5cuCC8vb01OsVfv35dtG7dWgAQ9erVE4mJiWLz5s2iuLhYfY5qVqKgoEAEBQWJAwcOiHv37gkvLy9x+vRpMXbs2ErPBD399NPi3Xff1Thnw4YNIjQ0VP0YgJg+fbr6cWpqqgAgVq9erX7uyy+/FNWqVdMYu7Ozs8jMzFQ/9+OPPwonJyd1J/iYmBiNGRwhhJg7d66Ij48XQjyaCVq2bJnez9W9e3cxYcIE9eP27duLsWPHapxj6EyQq6uruHnzpvq5gwcPCm9vb/Hw4UON18bExIhPP/1U79iI7AlzgojsjBDCLOcCwLVr19C1a1f07dsXr7zyivr50NBQpKamIi0tDb/88gsOHz6MxMREfP755/jpp5/g5PRo0tnV1RWDBw/G2rVr8c8//6BevXpo2rSpUePQ5vTp0zh06JDGzE9xcTEePnyIBw8ewNPTEwA03i84OBgA0KRJE43nHj58iLy8PHWuUa1atVCzZk31OfHx8VAoFDh//jy8vLxw6dIlJCUladyXoqIiSKVSjTG2bNlS43FxcTHeffddbNmyBdeuXUNBQQHy8/PVY62syMhIBAYGqh+fPn0a9+7dg7+/v8Z5//77Ly5dumSS9ySyFQyCiOxM3bp11QnN2tSrVw8AcPbsWbRp06bM8bNnz6Jhw4Yaz12/fh0dO3ZEmzZtsGrVqnKv27hxYzRu3BivvfYaXn31VbRt2xYHDhxAx44dNc4bNmwYWrVqhbS0NAwbNszYj6jVvXv3MGfOHPTp06fMsWrVqqn/XjIZWSKRaH1OoVAY/L6Acodcq1atNI45OztrPC69RLl48WIsX74cy5YtQ5MmTVC9enWMGzeuzO670pycnMoEsYWFhWXOK/1+9+7dQ2hoKH7++ecy5/r4+Oh8TyJ7wyCIyM74+fkhISEBH3/8McaMGVPmSzA3NxddunSBn58f3n///TJB0LZt23DhwgXMnTtX/dy1a9fQsWNHxMXFYe3atRozO9qogqj79++XOdaoUSM0atQIZ86cwcCBAyvyMcsVGxuL8+fPo06dOia7psqVK1dw/fp1hIWFAQCOHDkCJycn1K9fH8HBwQgLC8M///yDQYMGGXXdQ4cO4bnnnsPgwYMBKAOvv//+WyMIdXNz0yhbAACBgYG4e/cu7t+/r/5nrMr50SU2NhbZ2dlwcXFBVFSUUWMlsjcMgojs0Mcff4wnn3wSTzzxBN5++200bdoURUVF2L17N1asWIGzZ8/i008/xYABA5CcnIzRo0fD29sbe/fuxcSJE/HCCy+gX79+AJQBUIcOHRAZGYn33nsPt27dUr9PSEgIAGDkyJEICwtDp06dEB4ejqysLLzzzjsIDAxEfHx8uWPct28fCgsLTTr7MHPmTPTo0QO1atXCCy+8ACcnJ5w+fRppaWl45513KnXtatWqITExEe+99x7y8vIwZswY9OvXT30P5syZgzFjxkAqlaJr167Iz8/H77//jjt37mD8+PFar1u3bl188803OHz4MHx9fbFkyRLcuHFDIwiKiorC0aNHkZGRgRo1asDPzw+tWrWCp6cn3nrrLYwZMwZHjx7VSDjXpnPnzoiPj0fv3r2xaNEi1KtXD9evX8f333+P//znP2WW64jsGXeHEdmh2rVr48SJE+jYsSMmTJiAxo0b45lnnsHevXuxYsUKAMALL7yA/fv348qVK2jbti3q16+PpUuXYtq0afjqq6/US0K7d+/GxYsXsXfvXoSHhyM0NFT9o9K5c2ccOXIEffv2Rb169fD888+jWrVq2Lt3b5ncE5Xq1aubfPklISEBO3bswK5du/D444+jdevWWLp0KSIjIyt97Tp16qBPnz549tln0aVLFzRt2hSffPKJ+vjw4cPx+eefY+3atWjSpAnat2+PdevWITo6Wud1p0+fjtjYWCQkJKBDhw4ICQlB7969Nc5588034ezsjIYNGyIwMBBXrlyBn58fvvjiC/zwww9o0qQJvvzyS8yePVvv55BIJPjhhx/Qrl07DB06FPXq1cOAAQNw+fJldX4UkaOQCGMzI4mIHMzs2bPx3XffGbTcRES2gzNBRERE5JAYBBGR1alRo4bWn4MHD1p6eERkJ7gcRkRW5+LFi1qP1axZ06b6gxGR9WIQRERERA6Jy2FERETkkBgEERERkUNiEEREREQOiUEQEREROSQGQUREROSQGAQRERGRQ2IQRERERA6JQRARERE5pP8HSi3/nfWVEUYAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.3 Visualizing Surrogates\n", + "\n", + "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHHCAYAAADZHa63AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlzUlEQVR4nO3de1zO5+M/8Nfd4e6oQulAkUPk8KNl6m4zbE05xcaGGZqYnDbLqcYkhpxmc97m0GxOsaFhQtiBNCwMFaOcklMqQsfr90ff3h+3+y5FdXffvZ6Px/3gvt7X/b6v9/1W98t1va/rLRNCCBARERGRVtPTdAOIiIiI6OUx1BERERHpAIY6IiIiIh3AUEdERESkAxjqiIiIiHQAQx0RERGRDmCoIyIiItIBDHVEREREOoChjoiIiEgHMNQREb0kmUyGGTNmaLoZEn9/fzRq1EjTzSCiKsZQR0Q6KSIiAjKZTHoYGxvDxcUFY8eOxa1btyr1vY8ePYoZM2YgIyOjQvfbuXNnpWOqU6cOXn31VaxduxaFhYUV8h5z5szBjh07KmRfRFS1DDTdACKiyjRz5kw4OzvjyZMn+Ouvv7By5Urs2bMHZ8+ehampaYW8x+PHj2Fg8L9fp0ePHkVYWBj8/f1hZWVVIe9RrEGDBpg7dy4A4M6dO1i/fj0CAgJw4cIFhIeHv/T+58yZg379+qFPnz4vvS8iqloMdUSk07p164b27dsDAIYPH466deviq6++ws6dOzFw4MAX3m9hYSFyc3NhbGwMY2Pjimruc1laWuLDDz+Uno8cORLNmzfHsmXLMGvWLBgaGlZZW4ioeuHwKxHVKG+++SYAIDk5GQCwcOFCeHl5oW7dujAxMYG7uzu2bdum8jqZTIaxY8diw4YNaNWqFYyMjLB3715pW/E1dTNmzMCkSZMAAM7OztJQaUpKCjp16oS2bduqbVfz5s3h4+NT7uMxNTWFp6cnsrOzcefOnRLrZWdnY8KECXB0dISRkRGaN2+OhQsXQgihdIzZ2dn44YcfpHb7+/uXu01EpBnsqSOiGuXSpUsAgLp16wIAvvnmG/j5+WHQoEHIzc3F5s2b8d5772HXrl3o0aOH0msPHjyIyMhIjB07FtbW1monI7z77ru4cOECNm3ahMWLF8Pa2hoAYGNjg8GDB2PEiBE4e/YsWrduLb3m+PHjuHDhAqZNm/ZCx3T58mXo6+uXONQrhICfnx8OHTqEgIAAtGvXDtHR0Zg0aRJu3LiBxYsXAwB+/PFHDB8+HB06dMDHH38MAGjSpMkLtYmINEAQEemgdevWCQDiwIED4s6dO+LatWti8+bNom7dusLExERcv35dCCHEo0ePlF6Xm5srWrduLd58802lcgBCT09PnDt3TuW9AIjQ0FDp+YIFCwQAkZycrFQvIyNDGBsbiylTpiiVf/LJJ8LMzEw8fPiw1GPq1KmTaNGihbhz5464c+eOSEhIEJ988okAIHr16iXVGzp0qGjYsKH0fMeOHQKA+PLLL5X2169fPyGTycR///0nlZmZmYmhQ4eW2g4iqp44/EpEOs3b2xs2NjZwdHTEgAEDYG5uju3bt6N+/foAABMTE6nu/fv3kZmZiY4dO+Kff/5R2VenTp3QsmXLF26LpaUlevfujU2bNknDngUFBdiyZQv69OkDMzOz5+4jMTERNjY2sLGxgaurK5YuXYoePXpg7dq1Jb5mz5490NfXxyeffKJUPmHCBAgh8Ntvv73wMRFR9cHhVyLSacuXL4eLiwsMDAxga2uL5s2bQ0/vf/+f3bVrF7788kucOnUKOTk5UrlMJlPZl7Oz80u3Z8iQIdiyZQv+/PNPvPHGGzhw4ABu3bqFwYMHl+n1jRo1wvfffy8t09KsWTPUq1ev1NdcuXIFDg4OqFWrllK5q6urtJ2ItB9DHRHptA4dOkizX5/1559/ws/PD2+88QZWrFgBe3t7GBoaYt26ddi4caNK/ad79V6Uj48PbG1t8dNPP+GNN97ATz/9BDs7O3h7e5fp9WZmZmWuS0Q1C4dfiajG+vnnn2FsbIzo6GgMGzYM3bp1q5DApK6Xr5i+vj4++OADbNu2Dffv38eOHTswcOBA6Ovrv/T7lqRhw4ZITU3FgwcPlMoTExOl7cVKazsRVW8MdURUY+nr60Mmk6GgoEAqS0lJeek7KhRfG1fSHSUGDx6M+/fvY+TIkXj48KHSunOVoXv37igoKMCyZcuUyhcvXgyZTIZu3bpJZWZmZhV+JwwiqhocfiWiGqtHjx746quv4Ovriw8++AC3b9/G8uXL0bRpU5w5c+aF9+vu7g4AmDp1KgYMGABDQ0P06tVLCntubm5o3bo1tm7dCldXV7zyyisVcjwl6dWrF7p06YKpU6ciJSUFbdu2xb59+7Bz506MHz9eadkSd3d3HDhwAF999RUcHBzg7OwMDw+PSm0fEVUM9tQRUY315ptvYs2aNUhLS8P48eOxadMmzJs3D++8885L7ffVV1/FrFmzcPr0afj7+2PgwIEqCwMPGTIEAMo8QeJl6OnpISoqCuPHj8euXbswfvx4nD9/HgsWLMBXX32lVPerr76Cu7s7pk2bhoEDB2LlypWV3j4iqhgyIZ5aTpyIiKrEN998g88++wwpKSlwcnLSdHOISAcw1BERVTEhBNq2bYu6devi0KFDmm4OEekIXlNHRFRFsrOzERUVhUOHDuHff//Fzp07Nd0kItIh7KkjIqoiKSkpcHZ2hpWVFUaPHo3Zs2druklEpEMY6oiIiIh0AGe/EhEREekAhjoiIiIiHcCJEtVYYWEhUlNTUatWLd66h4iISEsIIfDgwQM4ODhAT6/q+s8Y6qqx1NRUODo6aroZRERE9AKuXbuGBg0aVNn7MdRVY7Vq1QJQ9I/CwsJCw60hIiKissjKyoKjo6P0PV5VGOqqseIhVwsLC4Y6IiIiLVPVl05xogQRERGRDmCoIyIiItIBDHVEREREOoDX1Gm5goIC5OXlaboZVAUMDQ2hr6+v6WYQEVE1pTWhzs/PD6dOncLt27dRu3ZteHt7Y968eXBwcJDqCCGwaNEifPfdd7hy5Qqsra0xevRoTJ06Vapz+PBhBAUF4dy5c3B0dMS0adPg7++v9F7Lly/HggULkJaWhrZt22Lp0qXo0KGDtP3JkyeYMGECNm/ejJycHPj4+GDFihWwtbWV6ly9ehWjRo3CoUOHYG5ujqFDh2Lu3LkwMKiYj1wIgbS0NGRkZFTI/kg7WFlZwc7OjusWEhGRCq0JdV26dMHnn38Oe3t73LhxAxMnTkS/fv1w9OhRqc6nn36Kffv2YeHChWjTpg3S09ORnp4ubU9OTkaPHj0QGBiIDRs2ICYmBsOHD4e9vT18fHwAAFu2bEFQUBBWrVoFDw8PfP311/Dx8UFSUhLq1asHAPjss8+we/dubN26FZaWlhg7dizeffddHDlyBEBR71mPHj1gZ2eHo0eP4ubNmxgyZAgMDQ0xZ86cCvk8igNdvXr1YGpqyi95HSeEwKNHj3D79m0AgL29vYZbRERE1Y7QUjt37hQymUzk5uYKIYQ4f/68MDAwEImJiSW+ZvLkyaJVq1ZKZf379xc+Pj7S8w4dOogxY8ZIzwsKCoSDg4OYO3euEEKIjIwMYWhoKLZu3SrVSUhIEABEbGysEEKIPXv2CD09PZGWlibVWblypbCwsBA5OTllPsbMzEwBQGRmZiqV5+fni/Pnz4u7d++WeV+kG+7evSvOnz8v8vPzNd0UIiIqQUnf35VNKydKpKenY8OGDfDy8oKhoSEA4Ndff0Xjxo2xa9cuODs7o1GjRhg+fLhST11sbCy8vb2V9uXj44PY2FgAQG5uLk6ePKlUR09PD97e3lKdkydPIi8vT6lOixYt4OTkJNWJjY1FmzZtlIZjfXx8kJWVhXPnzpV4XDk5OcjKylJ6qFN8DZ2pqenzPyzSKcXnnNdREhHRs7Qq1E2ZMgVmZmaoW7curl69ip07d0rbLl++jCtXrmDr1q1Yv349IiIicPLkSfTr10+qk5aWphS0AMDW1hZZWVl4/Pgx7t69i4KCArV10tLSpH3I5XJYWVmVWkfdPoq3lWTu3LmwtLSUHs+7RRiHXGsennMiIiqJRkNdcHAwZDJZqY/ExESp/qRJkxAfH499+/ZBX18fQ4YMgRACAFBYWIicnBysX78eHTt2ROfOnbFmzRocOnQISUlJmjrEcgkJCUFmZqb0uHbtmqabRERERFpCoxMlJkyYoDLz9FmNGzeW/m5tbQ1ra2u4uLjA1dUVjo6OOHbsGBQKBezt7WFgYAAXFxepvqurK4CimajNmzeHnZ0dbt26pbT/W7duwcLCAiYmJtDX14e+vr7aOnZ2dgAAOzs75ObmIiMjQ6m37tk6f//9t8o+ireVxMjICEZGRqV+HkRERETqaLSnzsbGBi1atCj1IZfL1b62sLAQQNF1aADw2muvIT8/H5cuXZLqXLhwAQDQsGFDAIBCoUBMTIzSfvbv3w+FQgEAkMvlcHd3V6pTWFiImJgYqY67uzsMDQ2V6iQlJeHq1atSHYVCgX///VeaqVj8PhYWFmjZsuULfFK6w9/fX+qFNTQ0hK2tLd5++22sXbtWOqdlERERoTIETkREVJNpxTV1cXFxWLZsGU6dOoUrV67g4MGDGDhwIJo0aSIFKW9vb7zyyisYNmwY4uPjcfLkSYwcORJvv/221HsXGBiIy5cvY/LkyUhMTMSKFSsQGRmJzz77THqvoKAgfP/99/jhhx+QkJCAUaNGITs7Gx999BEAwNLSEgEBAQgKCsKhQ4dw8uRJfPTRR1AoFPD09AQAdO3aFS1btsTgwYNx+vRpREdHY9q0aRgzZgx74gD4+vri5s2bSElJwW+//YYuXbrg008/Rc+ePZGfn6/p5hEREWmnKp1r+4LOnDkjunTpIurUqSOMjIxEo0aNRGBgoLh+/bpSvRs3boh3331XmJubC1tbW+Hv7y/u3bunVOfQoUOiXbt2Qi6Xi8aNG4t169apvN/SpUuFk5OTkMvlokOHDuLYsWNK2x8/fixGjx4tateuLUxNTcU777wjbt68qVQnJSVFdOvWTZiYmAhra2sxYcIEkZeXV67jLmlK9OPHj8X58+fF48ePy7W/6mDo0KGid+/eKuUxMTECgPj++++FEEIsWrRItG7dWpiamooGDRqIUaNGiQcPHgghis4hAKVHaGioEEKI9evXC3d3d+nfwMCBA8WtW7eq6vAqnTafeyKi6mTnTiEUiqI/K5qmljSRCfF/Mw2o2snKyoKlpSUyMzNhYWEhlT958gTJyclwdnaGsbExgKLFaTW1zIWhoWGZZ2X6+/sjIyMDO3bsUNnWrl07ODg4YM+ePfj666/Rtm1bODs74/Llyxg9ejTefPNNrFixArm5uVi5ciWmT58uTYIxNzeHubk51q5dC3t7ezRv3hy3b99GUFAQrKyssGfPnoo8ZI1Rd+6JiKj8vL3v4cQJA7RsaYmn7mNQIUr6/q5sWnNHCSpdXl4e5s6dq5H3DgkJKfHax/Jo0aIFzpw5AwAYP368VN6oUSN8+eWXCAwMxIoVKyCXy2FpaQmZTKYy8WTYsGHS3xs3bowlS5bg1VdfxcOHD2Fubv7SbSQiIu1WWFiIefPmoWPHXHh4mKBDh0kAdGO5KK24po5qBiGE1ON34MABvPXWW6hfvz5q1aqFwYMH4969e3j06FGp+zh58iR69eoFJycn1KpVC506dQJQNAOaiIhqtlu3bmHWrFnIzc0FAFhYCPTurRuBDmBPnc4wNDRESEiIxt67IiQkJMDZ2RkpKSno2bMnRo0ahdmzZ6NOnTr466+/EBAQgNzc3BLvpJGdnQ0fHx/4+Phgw4YNsLGxwdWrV+Hj4yP9ABMRUc0UExODv/76S3ru5OT03GXVtA1DnY6QyWQVMgSqKQcPHsS///6Lzz77DCdPnkRhYSEWLVoEPb2izuTIyEil+nK5HAUFBUpliYmJuHfvHsLDw6W7cZw4caJqDoCIiKql/Px8zJ49W6nsvffe08klxhjqqMrl5OQgLS0NBQUFuHXrFvbu3Yu5c+eiZ8+eGDJkCM6ePYu8vDwsXboUvXr1wpEjR7Bq1SqlfTRq1AgPHz5ETEwM2rZtC1NTUzg5OUEul2Pp0qUIDAzE2bNnMWvWLA0dJRERadr169exZs0apbJJkybp7L3TeU0dVbm9e/fC3t4ejRo1gq+vLw4dOoQlS5Zg586d0NfXR9u2bfHVV19h3rx5aN26NTZs2KAyCcTLywuBgYHo378/bGxsMH/+fNjY2CAiIgJbt25Fy5YtER4ejoULF2roKImISJN2796tFOiaN2+O0NBQnQ10AMAlTaqx8ixpQjUDzz0RUelyc3NVOgIGDRqEpk2bVlkbuKQJERER0UtITk7G+vXrlcqCg4NrzN2cGOqIiIhI661bt05p+ap27dqhd+/eGmxR1WOoIyIiIq2VkZGBb775RqnM398fDRs21FCLNIehjoiIiLTSr7/+in/++UepbP/+zxEaWjHrp2obhjoiIiLSOmFhYSpl0dGhCA7WQGOqCYY6IiIi0hrnzp3Dtm3bninrichId4SGaqhR1QRDHREREWkFdb1zMTFTMHEil3gCGOqIiIiomhNCYObMmSrlbm6hNb537mkMdURERFRtRUdH49ixY0plWVl26NRpJPz8NNSoaoqhjnSSv78/MjIysGPHDgBA586d0a5dO3z99dcvvM+K2AcREZWduuHWmrSYcHnx3q9Upfz9/SGTySCTySCXy9G0aVPMnDkT+fn5lfq+v/zyC2bNmlWmuocPH4ZMJkNGRsYL74OIiF5cXl6e2kAXGhrKQFcK9tRRlfP19cW6deuQk5ODPXv2YMyYMTA0NERISIhSvdzcXMjl8gp5zzp16lSLfRARUelmzZqFwsJCpbIrV1pj7dq+GmqR9mBPHVU5IyMj2NnZoWHDhhg1ahS8vb0RFRUFf39/9OnTB7Nnz4aDgwOaN28OALh27Rref/99WFlZoU6dOujduzdSUlKk/RUUFCAoKAhWVlaoW7cuJk+eDCGE0nt27twZ48ePl57n5ORgypQpcHR0hJGREZo2bYo1a9YgJSUFXbp0AQDUrl0bMpkM/v7+avdx//59DBkyBLVr14apqSm6deuGixcvStsjIiJgZWWF6OhouLq6wtzcHL6+vrh586ZU5/Dhw+jQoQPMzMxgZWWF1157DVeuXKmgT5qISLuEhYWpBLpZs6bh6FEGurJgqCONMzExQW5uLgAgJiYGSUlJ2L9/P3bt2oW8vDz4+PigVq1a+PPPP3HkyBEpHBW/ZtGiRYiIiMDatWvx119/IT09Hdu3by/1PYcMGYJNmzZhyZIlSEhIwLfffgtzc3M4Ojri559/BgAkJSXh5s2bKrefKebv748TJ04gKioKsbGxEEKge/fuyMvLk+o8evQICxcuxI8//og//vgDV69excSJEwEA+fn56NOnDzp16oQzZ84gNjYWH3/8MWQy2Ut/pkRE2iQzM1PtcKubWyg6dNDH/PkaaJQW4vAraYwQAjExMYiOjsa4ceNw584dmJmZYfXq1dKw608//YTCwkKsXr1aCjvr1q2DlZUVDh8+jK5du+Lrr79GSEgI3n33XQDAqlWrEB0dXeL7XrhwAZGRkdi/fz+8vb0BAI0bN5a2Fw+z1qtXD1ZWVmr3cfHiRURFReHIkSPw8vICAGzYsAGOjo7YsWMH3nvvPQBF14WsWrUKTZo0AQCMHTtWmpaflZWFzMxM9OzZU9ru6upa/g+SiEiLqQtzt2+7YPnygQDAGa7lwJ46QlQU4OVV9GdV2LVrF8zNzWFsbIxu3bqhf//+mDFjBgCgTZs2StfRnT59Gv/99x9q1aoFc3NzmJubo06dOnjy5AkuXbqEzMxM3Lx5Ex4eHtJrDAwM0L59+xLf/9SpU9DX10enTp1e+BgSEhJgYGCg9L5169ZF8+bNkZCQIJWZmppKgQ0A7O3tcfv2bQBF4dHf3x8+Pj7o1asXvvnmG6WhWSIiXacu0C1cOB0+PgM10Brtx546Qng4EBtb9GdV/I+oS5cuWLlyJeRyORwcHGBg8L9/hmZmZkp1Hz58CHd3d2zYsEFlPzY2Ni/0/iYmJi/0uhdhaKh8U2mZTKZ0vd+6devwySefYO/evdiyZQumTZuG/fv3w9PTs8raSERU1W7cuIHVq1erlEdHh2LDBvbOvSj21BGCgwGFAlV2E2QzMzM0bdoUTk5OSoFOnVdeeQUXL15EvXr10LRpU6WHpaUlLC0tYW9vj7i4OOk1+fn5OHnyZIn7bNOmDQoLC/H777+r3V7cU1hQUFDiPlxdXZGfn6/0vvfu3UNSUhJatmxZ6jE9y83NDSEhITh69Chat26NjRs3luv1RETaJCwsTCXQtW3bFqGhoTh6lIHuZTDUEfz8UG1/kAYNGgRra2v07t0bf/75J5KTk3H48GF88sknuH79OgDg008/RXh4OHbs2IHExESMHj1aZY25pzVq1AhDhw7FsGHDsGPHDmmfkZGRAICGDRtCJpNh165duHPnDh4+fKiyj2bNmqF3794YMWIE/vrrL5w+fRoffvgh6tevj969e5fp2JKTkxESEoLY2FhcuXIF+/btw8WLF3ldHRHprJLWnuvTp0/VN0YHMdRRtWZqaoo//vgDTk5OePfdd+Hq6oqAgAA8efIEFhYWAIAJEyZg8ODBGDp0KBQKBWrVqoV33nmn1P2uXLkS/fr1w+jRo9GiRQuMGDEC2dnZAID69esjLCwMwcHBsLW1xdixY9XuY926dXB3d0fPnj2hUCgghMCePXtUhlxLO7bExET07dsXLi4u+PjjjzFmzBiMHDmyHJ8QEVH1t27dqRJnt1LFkYlnF/SiaiMrKwuWlpbIzMyUAgwAPHnyBMnJyXB2doaxsbEGW0hVjeeeiLSNujCXlPQ2Nm3ygkJRNFKka0r6/q5snChBRERElaKk3jk3NyAlpequ5a4pGOqIiIioQm3evBlJSUkq5TNmhEq9c9XxOm5tx1BHREREFUZd79y///ZB8+Ztq3SlhZqIoY6IiIgqREnDraGcD1ElGOq0GOe41Dw850RUHYWHhyMnJ0elvHi4lUOtVYOhTgsVL5nx6NGjKr07Amneo0ePAKjeqYKISFPU9c75+/vj9OmGHG6tYgx1WkhfXx9WVlbSPURNTU2lm92TbhJC4NGjR7h9+zasrKygr6+v6SYRUQ1XWFiIWbNmqZSH/t9Ya8OG7KGragx1WsrOzg4ApGBHNYOVlZV07omINEVd7xzwv0BHmsFQp6VkMhns7e1Rr1495OXlabo5VAUMDQ3ZQ0dEGqcu0H366aewsrKq+saQEoY6Laevr88veiIiqnRPnjzBvHnzVMrZO1d9MNQRERFRqTjcqh0Y6oiIiKhE6gJdSEgI5HK5BlpDpWGoIyIiIhX37t3DsmXLVMrZO1d9MdQRERGREg63aieGOiIiIpKoC3TTp0/neqhagKGOiIiIkJSUhM2bN6uUs3dOezDUERER1XDqeufkcjlCQkI00Bp6UXqabgARERFpjrpA5+YWil9/DUFUlAYaRC+MPXVEREQ10IEDB3DkyBGVcje3UISHA7GxQHg479+qTRjqiIiIahh1vXPOzs4YMmSI9Dw8HAgOrspW0ctiqCMiIqpB1AW6ZydD+Pmxh04bMdQRERHVAF999RUePHigUs7ZrbqDoY6IiEjHqeudS0z0xMCBPhpoDVUWhjoiIiIdpi7QzZgRCoWCQ6y6hqGOiIhIB5V0qy83t6JAx0kQuoehjoiISMeoC3R9+/ZF69atAbCHTldx8WEiIiIdUVhYqDbQRUeH4vLl1hpoEVUl9tQRERHpgJKGW6OjQ7mQcA3BUEdERKTl1AW6kSNHws7ODm5uXEi4pmCoIyIi0lKPHj3CggULVMqfXnuOCwnXHAx1REREWqik4VYuJlxzMdQRERFpGXWBbvLkyTAxMdFAa6i6YKgjIiLSEjdv3sR3332nUu7mFgrmOWKoIyIi0gIlDbfy7hBUjKGOiIiomlMX6KZPn45ff5Xx7hAkYagjIiKqpk6cOIHdu3erlBdPhuDMVnoaQx0REVE1xNmtVF4MdURERNWMukDn5hbKXjkqFUMdERFRNbFt2zacO3dOpZyTIags9DTdgLLy8/ODk5MTjI2NYW9vj8GDByM1NVXaPmPGDMhkMpWHmZmZ0n62bt2KFi1awNjYGG3atMGePXuUtgshMH36dNjb28PExATe3t64ePGiUp309HQMGjQIFhYWsLKyQkBAAB4+fKhU58yZM+jYsSOMjY3h6OiI+fPnV/AnQkREuiQsLEwl0Onr68PNLZSTIahMtCbUdenSBZGRkUhKSsLPP/+MS5cuoV+/ftL2iRMn4ubNm0qPli1b4r333pPqHD16FAMHDkRAQADi4+PRp08f9OnTB2fPnpXqzJ8/H0uWLMGqVasQFxcHMzMz+Pj44MmTJ1KdQYMG4dy5c9i/fz927dqFP/74Ax9//LG0PSsrC127dkXDhg1x8uRJLFiwADNmzFC7thAREZG64dbQ0FBMmzYNfn7A0aPspaPnkwkhhKYb8SKioqLQp08f5OTkwNDQUGX76dOn0a5dO/zxxx/o2LEjAKB///7Izs7Grl27pHqenp5o164dVq1aBSEEHBwcMGHCBEycOBEAkJmZCVtbW0RERGDAgAFISEhAy5Ytcfz4cbRv3x4AsHfvXnTv3h3Xr1+Hg4MDVq5cialTpyItLQ1yuRwAEBwcjB07diAxMbHMx5iVlQVLS0tkZmbCwsLihT8rIiKqnjgZQjdp6vtba3rqnpaeno4NGzbAy8tLbaADgNWrV8PFxUUKdAAQGxsLb29vpXo+Pj6IjY0FACQnJyMtLU2pjqWlJTw8PKQ6sbGxsLKykgIdAHh7e0NPTw9xcXFSnTfeeEMKdMXvk5SUhPv377/k0RMRkS5QF+hatWrFQEcvTKtC3ZQpU2BmZoa6devi6tWr2Llzp9p6T548wYYNGxAQEKBUnpaWBltbW6UyW1tbpKWlSduLy0qrU69ePaXtBgYGqFOnjlIddft4+j3UycnJQVZWltKDiIh0j7pAFx0dqnRZEVF5aTTUBQcHq53c8PTj6eHKSZMmIT4+Hvv27YO+vj6GDBkCdaPH27dvx4MHDzB06NCqPJyXNnfuXFhaWkoPR0dHTTeJiIgqUFhYWImBjhMh6GVpdEmTCRMmwN/fv9Q6jRs3lv5ubW0Na2truLi4wNXVFY6Ojjh27BgUCoXSa1avXo2ePXuq9JbZ2dnh1q1bSmW3bt2CnZ2dtL24zN7eXqlOu3btpDq3b99W2kd+fj7S09OV9qPufZ5+D3VCQkIQFBQkPc/KymKwIyLSEerCXIMGvlizxgPBwZwIQS9Po6HOxsYGNjY2L/TawsJCAEVDlk9LTk7GoUOHEBUVpfIahUKBmJgYjB8/Xirbv3+/FAqdnZ1hZ2eHmJgYKcRlZWUhLi4Oo0aNkvaRkZGBkydPwt3dHQBw8OBBFBYWwsPDQ6ozdepU5OXlSdf87d+/H82bN0ft2rVLPCYjIyMYGRm9wKdBRETVlRACM2fOVCkPDQ2FlxcQGwuEhzPU0cvTisWH4+LicPz4cbz++uuoXbs2Ll26hC+++AJNmjRR6aVbu3Yt7O3t0a1bN5X9fPrpp+jUqRMWLVqEHj16YPPmzThx4oS01IhMJsP48ePx5ZdfolmzZnB2dsYXX3wBBwcH9OnTBwDg6uoKX19fjBgxAqtWrUJeXh7Gjh2LAQMGwMHBAQDwwQcfICwsDAEBAZgyZQrOnj2Lb775BosXL67cD4qIiKqV581uDQ4uCnQceqWKoBVLmvz777/49NNPcfr0aWRnZ8Pe3h6+vr6YNm0a6tevL9UrLCxEw4YNMWTIEMyePVvtvrZu3Ypp06YhJSUFzZo1w/z589G9e3dpuxACoaGh+O6775CRkYHXX38dK1asgIuLi1QnPT0dY8eOxa+//go9PT307dsXS5Ysgbm5uVTnzJkzGDNmDI4fPw5ra2uMGzcOU6ZMKddxc0kTIiLtpS7QBQQEoEGDBhpoDVUlTX1/a0Woq6kY6oiItM+jR4+wYMEClXIuVVJzaOr7WyuGX4mIiLQBFxMmTWKoIyIiqgDqAt3EiRNV7kFOVFm0avFhIiKi6ubGjRtqA52bWyjeftsMahZjIKoU7KkjIiJ6QaUNt3K5EqpqDHVEREQvQF2g++KLL6CnVzQIxuVKqKox1BEREZVDXFwc9u7dq1Lu5hYKvacuavLzYw8dVS2GOiIiojIqabh1xoxQKBQMcaRZDHVERERloC7QhYaGIioKUCg4zEqax1BHRERUisjISCQkJKiUF689x2FWqi4Y6oiIiErAxYRJm3CdOiIiIjXUBbro6FC4uTHQUfXEnjoiIqKnlNQ7Fx0dynXnqFpjqCMiIvo/6gJdkyZN8OGHH8LNjevOUfXGUEdERISSh1uPHi36OydEUHXHUEdERDVaacOt7JUjbcJQR0RENZa6QHfhwlvo3/91cIIraRuGOiIiqnGEEJg5c6ZKOZcqIW3GUEdERDUK154jXcV16oiIqMZQF+h++GEIoqMZ6Ej7MdQREZHOe/TokdpA5+YWCjs7Z06IIJ3A4VciItJpzxtu5TIlpCsY6oiISGepC3RBQUGoVauWBlpDVLkY6oiISOdcu3YNa9euVSnnZAjSZQx1RESkUzi7lWoqhjoiItIZ6gLdvn1f4MgRzgsk3cdQR0REWu/PP//EwYMHVcp5qy+qSRjqiIhIq5U23MoRV6pJ2B9NRERaS12gmzEjlIsJU43EnjoiItI633//PVJTU1XK3dxCoVCAQ65UIzHUERGRVuFiwkTqMdQREZHWUBfouFQJURGGOiIiqvZK6p2LjuZkCKJiDHVERFStqQt0BgZm2L17Iq+dI3oKQx0REVVbpQ23Tp1a1a0hqt4Y6oiIqNrhcCtR+THUERFRtaIu0CUleSAlxZfDrUSlYKgjIqJqQQiBmTNnqpQX3+qLS5UQlY6hjoiINI63+iJ6eQx1RESkEVFRQHg44OOjGuj69++PFi1aaKBVRNqLoY6IiDRi0aJH8PFZoFLOxYSJXgxDHRERVbmwsDC8+aZqOQMd0YtjqCMioiql7vq5Tz75BLVr19ZAa4h0B0MdERFViStXriAiIkKlnL1zRBWj3KFOX18fN2/eRL169ZTK7927h3r16qGgoKDCGkdERLqhpNmtbm4MdEQVpdyhTgihtjwnJwdyufylG0RERLpFXaCbNm0a9PX1NdAaIt1V5lC3ZMkSAIBMJsPq1athbm4ubSsoKMAff/zB6edERCQ5fPgwfv/9d5VyDrcSVY4yh7rFixcDKOqpW7VqldL/sORyORo1aoRVq1ZVfAuJiKjaK15zrvjOD6UtJkxElaPMoS45ORkA0KVLF/zyyy+cpURERJLwcCA2FpgyBYiPVw10DHNEla/c19QdOnSoMtpBRERaLDgYOHLkG5iaZqhsY6AjqhrlDnXDhg0rdfvatWtfuDFERKSd4uPDYGqqWs5AR1R1yh3q7t+/r/Q8Ly8PZ8+eRUZGBt5Utzw4ERHpNHXXzzHMEVW9coe67du3q5QVFhZi1KhRaNKkSYU0ioiIqj+uPUdUvchESQvPlVNSUhI6d+6MmzdvVsTuCEBWVhYsLS2RmZkJCwsLTTeHiEia5erjw9mtRCXR1Pd3hd0m7NKlS8jPz6+o3RERUTVUUqBjmCPSvHKHuqCgIKXnQgjcvHkTu3fvxtChQyusYUREVL2EhYXBx0e1nIGOqHood6iLj49Xeq6npwcbGxssWrTouTNjiYhIO6m7fq5p06YYNGiQBlpDROpwnToiIiqREAIzZ85UKWfvHFH188LX1N2+fRtJSUkAgObNm6NevXoV1igiItI83uqLSLuUO9RlZWVhzJgx2LRpEwoLCwEA+vr66N+/P5YvXw5LS8sKbyQREVUtdYHOz88Pbm5uGmgNEZWFXnlfMGLECMTFxWH37t3IyMhARkYGdu3ahRMnTmDkyJGV0UYiIqoi2dnZJS4mzEBHVL2Ve506MzMzREdH4/XXX1cq//PPP+Hr64vs7OwKbWBNxnXqiKgqcbiVqGJozTp1devWVTvEamlpidq1a1dIo4iIqGqpC3SjR4+GjY2NBlpDRC+i3MOv06ZNQ1BQENLS0qSytLQ0TJo0CV988UWFNo6IiCpWVBTg5VX0JwAkJyeXONzKQEekXco9/Orm5ob//vsPOTk5cHJyAgBcvXoVRkZGaNasmVLdf/75p+JaWgNx+JWIKpqXFxAbCygUvNUXUWXRmuHX3r17QyaTVUZbiIiokgUHl3yrr6lTp8LAoMLuHklEVazcPXVUddhTR0QVISqqKMgFBwOmpgdw5MgRlTrsnSOqOJr6/i73NXWNGzfGvXv3VMozMjLQuHHjCmkUERFVnPDwoiHX+PgwBjoiHVbufvaUlBQUFBSolOfk5OD69esV0igiIqoYUVFAejowY4b6yRBEpDvK3FMXFRWFqP+bLhUdHS09j4qKwvbt2zFr1iw4OztXWkP9/Pzg5OQEY2Nj2NvbY/DgwUhNTVWqEx0dDU9PT9SqVQs2Njbo27cvUlJSlOocPnwYr7zyCoyMjNC0aVNERESovNfy5cvRqFEjGBsbw8PDA3///bfS9idPnmDMmDGoW7cuzM3N0bdvX9y6dUupztWrV9GjRw+YmpqiXr16mDRpEvLz8yvksyAiKouoKCA2dh4GDmSgI6oJynxNnZ5eUf6TyWR49iWGhoZo1KgRFi1ahJ49e1Z8KwEsXrwYCoUC9vb2uHHjBiZOnAgAOHr0KICiafmurq4ICgpCQEAAMjMz8dlnn+HBgwfSLNzk5GS0bt0agYGBGD58OGJiYjB+/Hjs3r0bPj4+AIAtW7ZgyJAhWLVqFTw8PPD1119j69atSEpKku5vO2rUKOzevRsRERGwtLTE2LFjoaenJw1rFBQUoF27drCzs8OCBQtw8+ZNDBkyBCNGjMCcOXPKfMy8po6IXgYXEybSDE19f5d7ooSzszOOHz8Oa2vrympTmURFRaFPnz7IycmBoaEhtm3bhoEDByInJ0cKoL/++it69+4t1ZkyZQp2796Ns2fPSvsZMGAAMjIysHfvXgCAh4cHXn31VSxbtgwAUFhYCEdHR4wbNw7BwcHIzMyEjY0NNm7ciH79+gEAEhMT4erqitjYWHh6euK3335Dz549kZqaCltbWwDAqlWrMGXKFNy5cwdyubxMx8hQR0QvqqS154io8mnNRInk5GSNB7r09HRs2LABXl5eMDQ0BAC4u7tDT08P69atQ0FBATIzM/Hjjz/C29tbqhMbGwtvb2+lffn4+CA2NhYAkJubi5MnTyrV0dPTg7e3t1Tn5MmTyMvLU6rTokULODk5SXViY2PRpk0bKdAVv09WVhbOnTtX4nHl5OQgKytL6UFEVB5hYWEMdEQ1VLknSsycObPU7dOnT3/hxjzPlClTsGzZMjx69Aienp7YtWuXtM3Z2Rn79u3D+++/j5EjR6KgoAAKhQJ79uyR6qSlpSkFLQCwtbVFVlYWHj9+jPv376OgoEBtncTERGkfcrkcVlZWKnWK77JR0vsUbyvJ3LlzSxwuISJ61tNLlfj5cbiVqKYrd0/d9u3blR6RkZGYN28eFi1ahB07dpRrX8HBwZDJZKU+isMUAEyaNAnx8fHYt28f9PX1MWTIEOn6vrS0NIwYMQJDhw7F8ePH8fvvv0Mul6Nfv34q1wBWVyEhIcjMzJQe165d03STiKgaK16qJDy85OFWBjqimqPcPXXx8fEqZVlZWfD398c777xTrn1NmDAB/v7+pdZ5eu07a2trWFtbw8XFBa6urnB0dMSxY8egUCiwfPlyWFpaYv78+VL9n376CY6OjoiLi4Onpyfs7OxUZqneunULFhYWMDExgb6+PvT19dXWsbOzAwDY2dkhNzcXGRkZSr11z9Z5dsZs8T6L66hjZGQEIyOjUj8PIqJiwcFFa8+pwzBHVPOUu6dOHQsLC4SFheGLL74o1+tsbGzQokWLUh8lTSooLCwEUHQdGgA8evRImiBRTF9fX6muQqFATEyMUp39+/dDoVAAAORyOdzd3ZXqFBYWIiYmRqrj7u4OQ0NDpTpJSUm4evWqVEehUODff//F7du3ld7HwsICLVu2LNdnRESkTlSU+kDn6OjIQEdUQ1XYTf6KhwwrQ1xcHI4fP47XX38dtWvXxqVLl/DFF1+gSZMmUpDq0aMHFi9ejJkzZ2LgwIF48OABPv/8czRs2BBubm4AgMDAQCxbtgyTJ0/GsGHDcPDgQURGRmL37t3SewUFBWHo0KFo3749OnTogK+//hrZ2dn46KOPAACWlpYICAhAUFAQ6tSpAwsLC4wbNw4KhQKenp4AgK5du6Jly5YYPHgw5s+fj7S0NEybNg1jxoxhTxwRvTQhBOLjVa9vZpgjqtnKHeqWLFmi9FwIgZs3b+LHH39Et27dKqxhTzM1NcUvv/yC0NBQZGdnw97eHr6+vpg2bZoUkt58801s3LgR8+fPx/z582FqagqFQoG9e/fCxMQEQNFkit27d+Ozzz7DN998gwYNGmD16tXSGnUA0L9/f9y5cwfTp09HWloa2rVrh7179ypNfFi8eDH09PTQt29f5OTkwMfHBytWrJC26+vrY9euXRg1ahQUCgXMzMwwdOjQ504yISIqTUm9cwADHRG94Dp1T9PT04ONjQ3efPNNhISEoFatWhXawJqM69QR0dPUTYbo1q0bOnTooIHWEFFJNPX9Xe6euuTk5MpoBxERleDRo0dYsGCBSjl754joaS90TV1GRgb+++8/AEDTpk1V1mwjIqKKwbXniKisyjX7NSUlBT169IC1tTU8PDzg4eEBa2tr9OzZEykpKZXURCKimiEqCvDyKvoTUB/oAgMDGeiISK0yX1N37do1vPrqqzA0NMTo0aPh6uoKADh//jxWrlyJ/Px8HD9+HA0aNKjUBtckvKaOqGbx8ipaTLh79xR06PCDynaGOSLtoKnv7zKHuoCAAPz333+Ijo6GsbGx0rbHjx/D19cXzZo1w+rVqyuloTURQx1RzcLZrUS6odpPlNi7dy+2bNmiEugAwMTEBLNmzcKAAQMqtHFERDWJukD3+eefw9DQUAOtISJtU+ZQd/fuXTRq1KjE7Y0bN0Z6enpFtImIqEaJiYnBX3/9pVLO3jkiKo8yhzp7e3ucP3++xGvmzp49W+p9TYmISBVntxJRRSlzqOvTpw8mTpyImJgY2NjYKG27ffs2pkyZgj59+lR0+4iIdJa6QMcwR0QvqswTJe7fvw8PDw+kpaXhww8/RIsWLSCEQEJCAjZu3Ag7OzscO3YMderUqew21xicKEGkm2bPXoj8/GyVcgY6It1Q7SdK1K5dG3Fxcfj888+xefNmZGRkAACsrKzwwQcfYM6cOQx0RETPweFWIqos5b73KwAIIXDnzh0AgI2NDWQyWYU3jNhTR6RrONxKVDNU+566p8lkMtSrV6+i20JEpJPYO0dEVaFctwkjIqLyYaAjoqryQj11RERUsqgoIDwc8PHhcCsRVR321BERVZCoqKL7t8bHhzHQEVGVY08dEVEFKal3zszMERMnDtNAi4ioJilTqFuyZEmZd/jJJ5+8cGOIiLRN8VDrlCkCPj4zVbazd46IqkqZljRxdnYu285kMly+fPmlG0VFuKQJUfXn5aW+dw5goCOqqar1kibJycmV3Q4iIq2kLtD5+vrCw8NDA60hoprsha+py83NRXJyMpo0aQIDA16aR0Q1y5MnTzBv3jyVcvbOEZGmlHv266NHjxAQEABTU1O0atUKV69eBQCMGzcO4eHhFd5AIqLqJiwsjIGOiKqdcoe6kJAQnD59GocPH4axsbFU7u3tjS1btlRo44iIqht1iwkHBgYy0BGRxpV73HTHjh3YsmULPD09le752qpVK1y6dKlCG0dEVF3cuHEDq1evVilnmCOi6qLcoe7OnTtq7/uanZ2tFPKIiHQFb/VFRNqg3KGuffv22L17N8aNGwcAUpBbvXo1FApFxbaOiEjD1AW6zz//HIaGhhpoDRFRycod6ubMmYNu3brh/PnzyM/PxzfffIPz58/j6NGj+P333yujjUREVS4uLg579+5VKWfvHBFVV+WeKPH666/j1KlTyM/PR5s2bbBv3z7Uq1cPsbGxcHd3r4w2EhFVqbCwMAY6ItI6ZbqjBGkG7yhBVLWiooD4eNXhVoY5IiqPan1HiaysrDLvkOGDiLTRmjVrcP36dZVyBjoi0hZlCnVWVlZlntlaUFDwUg0iIqpqnN1KRLqgTKHu0KFD0t9TUlIQHBwMf39/abZrbGwsfvjhB8ydO7dyWklEVEnUBTqGOSLSRuW+pu6tt97C8OHDMXDgQKXyjRs34rvvvsPhw4crsn01Gq+pI6o87J0josqiqe/vcs9+jY2NRfv27VXK27dvj7///rtCGkVEVJkY6IhIF5V7nTpHR0d8//33mD9/vlL56tWr4ejoWGENIyKqDBxuJSJdVe5Qt3jxYvTt2xe//fYbPDw8AAB///03Ll68iJ9//rnCG0hEVBHYO0dEuq7cw6/du3fHxYsX0atXL6SnpyM9PR29evXChQsX0L1798poIxHRS1EX6MzNnRnoiEincPHhaowTJYhejhACM2fOVClnmCOiylStFx9+VkZGBtasWYOEhAQAQKtWrTBs2DBYWlpWaOOIiF4Uh1uJqKYpd0/diRMn4OPjAxMTE3To0AEAcPz4cTx+/Bj79u3DK6+8UikNrYnYU0f0YtQFum7dukm/s4iIKpOmvr/LHeo6duyIpk2b4vvvv4eBQVFHX35+PoYPH47Lly/jjz/+qJSG1kQMdUTls317Ds6cCVcpZ+8cEVUlrQl1JiYmiI+PR4sWLZTKz58/j/bt2+PRo0cV2sCajKGOqOw43EpE1YXWXFNnYWGBq1evqoS6a9euoVatWhXWMCKislIX6D7++GPY29troDVERJpR7lDXv39/BAQEYOHChfDy8gIAHDlyBJMmTVK5dRgRUWWaNu0mDA2/Uyln7xwR1UTlDnULFy6ETCbDkCFDkJ+fDwAwNDTEqFGjEB6uei0LEVFlCAsLg6GharmbGwMdEdVML7xO3aNHj3Dp0iUAQJMmTWBqalqhDSNeU0dUEnXDrSEhIZDL5RpoDRGRMq25pq6Yqakp2rRpU5FtISIq1YkTJ7B7926Vcg63EhGVI9QNGzasTPXWrl37wo0hIioJZ7cSEZWuzKEuIiICDRs2hJubG3hnMSKqSuoCHcMcEZGyMoe6UaNGYdOmTUhOTsZHH32EDz/8EHXq1KnMthFRDRcZGSndjvBpubkMdEREzyrXRImcnBz88ssvWLt2LY4ePYoePXogICAAXbt2hUwmq8x21kicKEE1GYdbiUhbac0dJYpduXIFERERWL9+PfLz83Hu3DmYm5tXdPtqNIY6qqnUBTo3t1D4+WmgMURE5aR1s1/19PQgk8kghEBBQUFFtomIaij2zhERvTi98lTOycnBpk2b8Pbbb8PFxQX//vsvli1bhqtXr7KXjoheCgMdEdHLKXNP3ejRo7F582Y4Ojpi2LBh2LRpE6ytrSuzbURUQ3B2KxHRyyvzNXV6enpwcnKCm5tbqZMifvnllwprXE3Ha+pI15XUOxcdHYqjR6u4MUREFaTaX1M3ZMgQznAlogqjLtBZWbXEli3vIThYAw0iItJyLzz7lSofe+pIV3G4lYh0WbXvqSMielmlDbcy0xERvRyGOiKqEuoCXX5+H8TEtOVwKxFRBWCoI6JKlZeXhzlz5qiUFw+3zppV1S0iItJNDHVEVGm49hwRUdVhqCOiSqEu0AUGBsLW1lYDrSEi0n0MdURUoe7du4dly5aplLu5hYJ5joio8jDUEVGFKWm4dcaMUCgUgJ9fFTeIiKgGYagjogqhLtCFhIRg7145FApwhisRUSVjqCOil3Lu3Dls27ZNpbx4MoSfH3voiIiqgp6mG1BWfn5+cHJygrGxMezt7TF48GCkpqYq1YmMjES7du1gamqKhg0bYsGCBSr7OXz4MF555RUYGRmhadOmiIiIUKmzfPlyNGrUCMbGxvDw8MDff/+ttP3JkycYM2YM6tatC3Nzc/Tt2xe3bt1SqnP16lX06NEDpqamqFevHiZNmoT8/PyX/yCIqpGwsLBSAx0REVUdrQl1Xbp0QWRkJJKSkvDzzz/j0qVL6Nevn7T9t99+w6BBgxAYGIizZ89ixYoVWLx4sdIF28nJyejRowe6dOmCU6dOYfz48Rg+fDiio6OlOlu2bEFQUBBCQ0Pxzz//oG3btvDx8cHt27elOp999hl+/fVXbN26Fb///jtSU1Px7rvvStsLCgrQo0cP5Obm4ujRo/jhhx8QERGB6dOnV/KnRFR11A23Tp8+nYGOiEhDtPber1FRUejTpw9ycnJgaGiIDz74AHl5edi6datUZ+nSpZg/fz6uXr0KmUyGKVOmYPfu3Th79qxUZ8CAAcjIyMDevXsBAB4eHnj11VelMFhYWAhHR0eMGzcOwcHByMzMhI2NDTZu3CiFysTERLi6uiI2Nhaenp747bff0LNnT6SmpkrLN6xatQpTpkzBnTt3IJfLy3SMvPcrVUe//fabSu81wN45IqJimvr+1pqeuqelp6djw4YN8PLygqGhIQAgJycHxsbGSvVMTExw/fp1XLlyBQAQGxsLb29vpTo+Pj6IjY0FAOTm5uLkyZNKdfT09ODt7S3VOXnyJPLy8pTqtGjRAk5OTlKd2NhYtGnTRmk9Lh8fH2RlZeHcuXMlHldOTg6ysrKUHkTVSVhYGAMdEVE1pVWhbsqUKTAzM0PdunVx9epV7Ny5U9rm4+ODX375BTExMSgsLMSFCxewaNEiAMDNmzcBAGlpaSoLn9ra2iIrKwuPHz/G3bt3UVBQoLZOWlqatA+5XA4rK6tS66jbR/G2ksydOxeWlpbSw9HRsawfDVGlUzfcGhoaykBHRFRNaDTUBQcHQyaTlfpITEyU6k+aNAnx8fHYt28f9PX1MWTIEBSPHo8YMQJjx45Fz549IZfL4enpiQEDBgAo6m3TBiEhIcjMzJQe165d03STiPDtt9+WGOiiogAvLyAqSgMNIyIiJRpd0mTChAnw9/cvtU7jxo2lv1tbW8Pa2houLi5wdXWFo6Mjjh07BoVCAZlMhnnz5mHOnDlIS0uDjY0NYmJilPZhZ2enMkv11q1bsLCwgImJCfT19aGvr6+2jp2dnbSP3NxcZGRkKPXWPVvn2SGq4n0W11HHyMgIRkZGpX4eRFVJXZjLzjbFX39NQmgoEB4OxMYW/cllS4iINEujoc7GxgY2NjYv9NrCwkIARdehPU1fXx/169cHAGzatAkKhUJ6D4VCgT179ijV379/PxQKBQBALpfD3d0dMTEx6NOnj/Q+MTExGDt2LADA3d0dhoaGiImJQd++fQEASUlJuHr1qrQfhUKB2bNn4/bt26hXr570PhYWFmjZsuULHS9RVVMX6DZvDkXt2v9bSDg4uCjQcWFhIiLN04rFh+Pi4nD8+HG8/vrrqF27Ni5duoQvvvgCTZo0kYLU3bt3sW3bNnTu3BlPnjzBunXrpCVHigUGBmLZsmWYPHkyhg0bhoMHDyIyMhK7d++W6gQFBWHo0KFo3749OnTogK+//hrZ2dn46KOPAACWlpYICAhAUFAQ6tSpAwsLC4wbNw4KhQKenp4AgK5du6Jly5YYPHgw5s+fj7S0NEybNg1jxoxhTxxVeyXd6is6OhTz5in3yHFhYSKi6kMrQp2pqSl++eUXhIaGIjs7G/b29vD19cW0adOUQtIPP/yAiRMnQggBhUKBw4cPo0OHDtJ2Z2dn7N69G5999hm++eYbNGjQAKtXr4aPj49Up3///rhz5w6mT5+OtLQ0tGvXDnv37lWa+LB48WLo6emhb9++yMnJgY+PD1asWCFt19fXx65duzBq1CgoFAqYmZlh6NChmDlzZiV/UkQvR12g69ChA7p16wY3t6JeOYBBjoioOtLadepqAq5TR1VJXaCLjg5FcHBRiPPyKrp+TqEAjh7VQAOJiLSEpr6/taKnjogqT2nDrU9PguD1c0RE1RtDHVENpi7Q9e/fHy1atJCGW4tDHK+fIyKq3hjqiGqg/Px8zJ49W6X86YWEGeKIiLQLQx1RDVPScCvvDEFEpN0Y6ohqEHWBbuzYsahbt64GWkNERBVJO+6fRUQvJSsrq8TZrUeOMNAREekC9tQR6biyzm4lIiLtxlBHpMPUBbqQkBDI5XKV2a1ERKTdGOqIdNCVK1cQERGhUs7ZrUREuovX1BHpmLCwsOcGuqdFRRXdLSIqqpIbRkRElYqhjkiHqBtunTFjOqKjS16uJDwc0rV1RESkvTj8SqQDjh07hujoaJVyN7dQKBSlXzfH238REekGmRBCaLoRpJ6mbghM2oWLCRMRVS+a+v5mTx2RFlMX6BjmiIhqJoY6Ii20efNmJCUlqZQz0BER1VwMdURaRl3vnIODA0aMGKGB1hARUXXBUEekRTjcSkREJWGoI9ICERERuHLlikp5bi4DHRERFWGoI6rm1PXO7dnTC3///QqMjYHZszXQKCIiqna4+DBRNVbScOuNG68AAOrWreoWERFRdcWeOqJq6Hlrz61YwQWDiYhIGUMdUTWjLtB99NFHcHJykp77+RU9iIiIijHUEVUThYWFmDVrlko5Z7cSEVFZMNQRVQPludVXVNT/hl7ZW0dERMU4UYJIw9QFusOHP4Obm/oeuvBwIDa26E8iIqJi7Kkj0pBHjx5hwYIFKuXR0aGIjQVyctT3xAUHc5IEERGpYqgj0oDShlvd3EoPbZwkQURE6jDUEVUxdYHu888/h6GhIQCGNiIiejG8po6oiqSlpakNdNHRofjtN0MNtIiIiHQJe+qIqkBJw60LF4bi4cOi4Vb2zhER0ctgqCOqZOoC3fTp0/HaazI8fAiYm3PSAxERvTwOvxJVkrNnz5Z471aZTIbgYEChADZsYC8dERG9PPbUEVUCdWHOyMgIwU91yXFCBBERVSSGOqIKVlLvHBERUWViqCOqIPv27UNsbKxKOQMdERFVBYY6ogqgrneuZcuWeO+99zTQGiIiqokY6oheEodbiYioOmCoI3pB69evR3Jysko5Ax0REWkCQx3RC1DXO9e1a1coFAoNtIaIiIihjqjc1AU6N7dQMM8REZEmMdQRldHy5ctx9+5dlfIZM4oCHdecIyIiTWKoIyoDdb1zsbEj4O7uAIWCt/kiIiLNY6gjKkVhYSFmzZqlUr55cygSE4ErV4CEBA00jIiI6BkMdUQlUNc7BxTNbt20qejvQlRhg4iIiErBUEekhrpAFxQUhFq1agEA5s8HwsM57EpERNUHQx3RU3JychAeHq5S/uzac35+nBhBRETVC0Md0f8pbbiViIioumOoI4L6QDd16lQYGPBHhIiItIOephtApEkZGRklLib8xhsGiIrSQKOIiIheALshqMZSF+Zq1aqFoKAgeHkBsbFFkyF47RwREWkDhjqqkdQFuunTp0MmkwEomtXK2a1ERKRNGOqoRklNTcX333+vUs7ZrUREpO0Y6qjGUNc717JlS7z33nsaaA0REVHFYqijGkFdoONSJUREpEsY6kinJSQkIDIyUqU8OjoUbm4cYiUiIt3BUEc6S13vnK+vLz77zIMzW4mISOcw1JFOKm24lTNbiYhIFzHUkU75888/cfDgQZXyp6+f48xWIiLSRQx1pDPU9c4NGjQITZs21UBriIiIqhZvE0Y6oaTh1uJAFxUFeHmBt/0iIiKdxZ460mrbtm3DuXPnVMqfXa4kPJy3/SIiIt3GUEdaS13v3KhRo1CvXj2Vck6OICIiXcdQR1pHCIGZM2eqlJe2mDAnRxARka7jNXVULZT1mreIiIhyBzoiIqKagD11VC2U5Zo3dcOtrVtPRN++ZpXcOiIiouqPoY6qhdKuecvLy8OcOXNUytk7R0RE9D8MdVQtlHTN2+zZs5Gfn69UZmZmhokTJ1ZRy4iIiLQDr6mjUmlyfbewsDCVQDd16lQGOiIiIjW0LtTl5OSgXbt2kMlkOHXqlNK2M2fOoGPHjjA2NoajoyPmz5+v8vqtW7eiRYsWMDY2Rps2bbBnzx6l7UIITJ8+Hfb29jAxMYG3tzcuXryoVCc9PR2DBg2ChYUFrKysEBAQgIcPH5a7Ldrg6WvdqsqjR49KXEzYwICdy0REROpoXaibPHkyHBwcVMqzsrLQtWtXNGzYECdPnsSCBQswY8YMfPfdd1Kdo0ePYuDAgQgICEB8fDz69OmDPn364OzZs1Kd+fPnY8mSJVi1ahXi4uJgZmYGHx8fPHnyRKozaNAgnDt3Dvv378euXbvwxx9/4OOPPy5XW7RFcDCgUFTd+m5hYWFYsGCBUlnTpk15/RwREdFzyIQQQtONKKvffvsNQUFB+Pnnn9GqVSvEx8ejXbt2AICVK1di6tSpSEtLg1wuBwAEBwdjx44dSExMBAD0798f2dnZ2LVrl7RPT09PtGvXDqtWrYIQAg4ODpgwYYI0xJeZmQlbW1tERERgwIABSEhIQMuWLXH8+HG0b98eALB37150794d169fh4ODQ5naUhZZWVmwtLREZmYmLCwsXvrzq+7U9c5Nnz4dMplMA60hIiJ6MZr6/taanrpbt25hxIgR+PHHH2FqaqqyPTY2Fm+88YYUogDAx8cHSUlJuH//vlTH29tb6XU+Pj6IjY0FACQnJyMtLU2pjqWlJTw8PKQ6sbGxsLKykgIdAHh7e0NPTw9xcXFlbos6OTk5yMrKUnrUBBkZGWoDXXR0KH79lYGOiIioLLQi1Akh4O/vj8DAQKUw9bS0tDTY2toqlRU/T0tLK7XO09uffl1JdZ69DZWBgQHq1Knz3Pd5+j3UmTt3LiwtLaWHo6NjiXV1RVhYGL755hulMm9vb0RHh1b5tXxERETaTKOhLjg4GDKZrNRHYmIili5digcPHiAkJESTza10ISEhyMzMlB7Xrl3TdJMqVUmTIV577bUqv5aPiIhI22l0KuGECRPg7+9fap3GjRvj4MGDiI2NhZGRkdK29u3bY9CgQfjhhx9gZ2eHW7duKW0vfm5nZyf9qa7O09uLy+zt7ZXqFF+7Z2dnh9u3byvtIz8/H+np6c99n6ffQx0jIyOVY9RFqamp+P7771XKn54MwXu1EhERlY9GQ52NjQ1sbGyeW2/JkiX48ssvpeepqanw8fHBli1b4OHhAQBQKBSYOnUq8vLyYGhoCADYv38/mjdvjtq1a0t1YmJiMH78eGlf+/fvh0KhAAA4OzvDzs4OMTExUojLyspCXFwcRo0aJe0jIyMDJ0+ehLu7OwDg4MGDKCwsLFdbaip1vXMffvghmjRpooHWEBER6Q6tmv1aLCUlBc7OzkqzXzMzM9G8eXN07doVU6ZMwdmzZzFs2DAsXrxYWm7k6NGj6NSpE8LDw9GjRw9s3rwZc+bMwT///IPWrVsDAObNm4fw8HD88MMPcHZ2xhdffIEzZ87g/PnzMDY2BgB069YNt27dwqpVq5CXl4ePPvoI7du3x8aNG8vclrLQtdmvJQ23EhER6RJNfX/rzEqulpaW2LdvH8aMGQN3d3dYW1tj+vTpSiHKy8sLGzduxLRp0/D555+jWbNm2LFjhxTogKJ18LKzs/Hxxx8jIyMDr7/+Ovbu3SsFOgDYsGEDxo4di7feegt6enro27cvlixZUq621CQXL16UAu/TGOiIiIgqjlb21NUUutBTp653buTIkaVeW0hERKTN2FNHOofDrURERFWHoY4q3IkTJ7B7926VcgY6IiKiysNQRxVKXe/cZ599prXDx0RERNqCoY4qhBACM2fOVCln7xwREVHVYKijl3bgwAEcOXJEqaxevXrS2n5ERERU+Rjq6KWoG26dMmWK0hIwREREVPkY6uiFFBYWYtasWSrlHG4lIiLSDIY6Krfjx49jz549SmWvvfYavL29NdQiIiIiYqgjREUB4eFAcDDg51d6XXXDrdOmTYO+vn4ltY6IiIjKQk/TDSDNCw8HYmOL/ixJXl5eiYsJM9ARERFpHkMdITgYUCiK/lTn0KFDmDNnjlJZ//794eYWCi+vop4+IiIi0ize+7Uaqw73flXXOzd9+nTIZDJ4eRX18CkUwNGjGmgcERFRNaSp72/21JFaubm5JQ63ymQyAM/v4SMiIqKqw4kSpELd7NaPPvoITk5OSmV+fs+fWEFERERVg6GOlJTUO0dERETVG4dfCQDw6NEjlUD36quvlinQRUWBEyaIiIg0jD11hL/++gsxMTFKZePHj4elpWWZXv/0kigcjiUiItIM9tTVcNu3b1cJdKGhoWUOdAAnTBAREVUH7KmrgaKigIULn+Ctt+YplXfu3BmdOnUq9/44YYKIiEjzGOpqoNWrL+KttzYqlX3++ecwNDTUUIuIiIjoZTHU1UDu7v8LdB4eHvD19dVga4iIiKgiMNTVQG+88Qbi4uIwZMgQODg4aLo5REREVAF4m7BqrDrcJoyIiIjKh7cJIyIiIqIXxlBHREREpAMY6oiIiIh0AEMdERERkQ5gqCMiIiLSAQx1RERERDqAoY6IiIhIBzDUEREREekAhjoiIiIiHcBQR0RERKQDGOqIiIiIdABDHREREZEOYKgjIiIi0gEMdUREREQ6wEDTDaCSCSEAAFlZWRpuCREREZVV8fd28fd4VWGoq8YePHgAAHB0dNRwS4iIiKi8Hjx4AEtLyyp7P5mo6hhJZVZYWIjU1FTUqlULMplM082pdFlZWXB0dMS1a9dgYWGh6eZQCXieqj+eI+3A86QdXuQ8CSHw4MEDODg4QE+v6q50Y09dNaanp4cGDRpouhlVzsLCgr/gtADPU/XHc6QdeJ60Q3nPU1X20BXjRAkiIiIiHcBQR0RERKQDGOqo2jAyMkJoaCiMjIw03RQqBc9T9cdzpB14nrSDNp0nTpQgIiIi0gHsqSMiIiLSAQx1RERERDqAoY6IiIhIBzDUEREREekAhjqqEDk5OWjXrh1kMhlOnTqltO3MmTPo2LEjjI2N4ejoiPnz56u8fuvWrWjRogWMjY3Rpk0b7NmzR2m7EALTp0+Hvb09TExM4O3tjYsXLyrVSU9Px6BBg2BhYQErKysEBATg4cOH5W6LLvLz84OTkxOMjY1hb2+PwYMHIzU1ValOZGQk2rVrB1NTUzRs2BALFixQ2c/hw4fxyiuvwMjICE2bNkVERIRKneXLl6NRo0YwNjaGh4cH/v77b6XtT548wZgxY1C3bl2Ym5ujb9++uHXrllKdq1evokePHjA1NUW9evUwadIk5Ofnv/wHUc2V5TxFR0fD09MTtWrVgo2NDfr27YuUlBSlOjxPlet552nGjBmQyWQqDzMzM6X98Pde5SrLz5MQAgsXLoSLiwuMjIxQv359zJ49W6mOVv08CaIK8Mknn4hu3boJACI+Pl4qz8zMFLa2tmLQoEHi7NmzYtOmTcLExER8++23Up0jR44IfX19MX/+fHH+/Hkxbdo0YWhoKP7991+pTnh4uLC0tBQ7duwQp0+fFn5+fsLZ2Vk8fvxYquPr6yvatm0rjh07Jv7880/RtGlTMXDgwHK1RVd99dVXIjY2VqSkpIgjR44IhUIhFAqFtH3Pnj3CwMBArFy5Uly6dEns2rVL2Nvbi6VLl0p1Ll++LExNTUVQUJA4f/68WLp0qdDX1xd79+6V6mzevFnI5XKxdu1ace7cOTFixAhhZWUlbt26JdUJDAwUjo6OIiYmRpw4cUJ4enoKLy8vaXt+fr5o3bq18Pb2FvHx8WLPnj3C2tpahISEVPKnpHnPO0+XL18WRkZGIiQkRPz333/i5MmT4o033hBubm5KdXieKtfzztODBw/EzZs3lR4tW7YUQ4cOlerw917le955EkKIcePGiebNm4udO3eKy5cvixMnToh9+/ZJ27Xt54mhjl7anj17RIsWLcS5c+dUQt2KFStE7dq1RU5OjlQ2ZcoU0bx5c+n5+++/L3r06KG0Tw8PDzFy5EghhBCFhYXCzs5OLFiwQNqekZEhjIyMxKZNm4QQQpw/f14AEMePH5fq/Pbbb0Imk4kbN26UuS01xc6dO4VMJhO5ublCCCEGDhwo+vXrp1RnyZIlokGDBqKwsFAIIcTkyZNFq1atlOr0799f+Pj4SM87dOggxowZIz0vKCgQDg4OYu7cuUKIovNmaGgotm7dKtVJSEgQAERsbKwQoujfk56enkhLS5PqrFy5UlhYWCidu5rg2fO0detWYWBgIAoKCqQ6UVFRSnV4nqres+fpWadOnRIAxB9//CGV8fde1Xv2PJ0/f14YGBiIxMTEEl+jbT9PHH6ll3Lr1i2MGDECP/74I0xNTVW2x8bG4o033oBcLpfKfHx8kJSUhPv370t1vL29lV7n4+OD2NhYAEBycjLS0tKU6lhaWsLDw0OqExsbCysrK7Rv316q4+3tDT09PcTFxZW5LTVBeno6NmzYAC8vLxgaGgIoGj43NjZWqmdiYoLr16/jypUrAJ5/nnJzc3Hy5EmlOnp6evD29pbqnDx5Enl5eUp1WrRoAScnJ6Vz2aZNG9ja2iq9T1ZWFs6dO1dRH0O1p+48ubu7Q09PD+vWrUNBQQEyMzPx448/wtvbW6rD81S11J2nZ61evRouLi7o2LGjVMbfe1VL3Xn69ddf0bhxY+zatQvOzs5o1KgRhg8fjvT0dOl12vbzxFBHL0wIAX9/fwQGBir9UnlaWlqa0j9SANLztLS0Uus8vf3p15VUp169ekrbDQwMUKdOnee+z9PvocumTJkCMzMz1K1bF1evXsXOnTulbT4+Pvjll18QExODwsJCXLhwAYsWLQIA3Lx5E0DJn19WVhYeP36Mu3fvoqCg4LnnSS6Xw8rKqtQ6PE/qz5OzszP27duHzz//HEZGRrCyssL169cRGRkp1eF5qhqlnaenPXnyBBs2bEBAQIBSOX/vVY3SztPly5dx5coVbN26FevXr0dERAROnjyJfv36SXW07eeJoY5UBAcHq73I9+lHYmIili5digcPHiAkJETTTa6Rynqeik2aNAnx8fHYt28f9PX1MWTIEIj/u6HMiBEjMHbsWPTs2RNyuRyenp4YMGAAgKL/ddKLq8jzlJaWhhEjRmDo0KE4fvw4fv/9d8jlcvTr10+qQy+mIs/T07Zv344HDx5g6NChVXk4Oqsiz1NhYSFycnKwfv16dOzYEZ07d8aaNWtw6NAhJCUlaeoQX4qBphtA1c+ECRPg7+9fap3GjRvj4MGDiI2NVbkfXvv27TFo0CD88MMPsLOzU5nhU/zczs5O+lNdnae3F5fZ29sr1WnXrp1U5/bt20r7yM/PR3p6+nPf5+n30CZlPU/FrK2tYW1tDRcXF7i6usLR0RHHjh2DQqGATCbDvHnzMGfOHKSlpcHGxgYxMTFK+yjp87OwsICJiQn09fWhr6//3HOZm5uLjIwMpf+1Plvn2ZljPE9F52n58uWwtLRUmr34008/wdHREXFxcfD09OR5ekEVeZ6etnr1avTs2VOlF4a/915MRZ4ne3t7GBgYwMXFRarv6uoKoGgmavPmzbXv56nMV98RPePKlSvi33//lR7R0dECgNi2bZu4du2aEOJ/F+k+fQFxSEiIykSJnj17Ku1boVCoXDC8cOFCaXtmZqbaC4ZPnDgh1YmOjlZ7wXBpbakprly5IgCIQ4cOlVhn8ODBSjPFJk+eLFq3bq1UZ+DAgSoXDI8dO1Z6XlBQIOrXr69ywfC2bdukOomJiWovGH565ti3334rLCwsxJMnT17sgLXUs+cpKChIdOjQQalOamqqACCOHDkihOB50oSSfp4uX74sZDKZ+PXXX1Vew997Ve/Z81T8nfXff/9JdYontSQlJQkhtO/niaGOKkxycrLK7NeMjAxha2srBg8eLM6ePSs2b94sTE1NVZY0MTAwEAsXLhQJCQkiNDRU7dR+KysrsXPnTnHmzBnRu3dvtVP73dzcRFxcnPjrr79Es2bNlKb2l6UtuujYsWNi6dKlIj4+XqSkpIiYmBjh5eUlmjRpIv2yuHPnjli5cqVISEgQ8fHx4pNPPhHGxsYiLi5O2k/x1P5JkyaJhIQEsXz5crVT+42MjERERIQ4f/68+Pjjj4WVlZXSjK7AwEDh5OQkDh48KE6cOKGyzEDx1P6uXbuKU6dOib179wobGxudXyqjLOcpJiZGyGQyERYWJi5cuCBOnjwpfHx8RMOGDcWjR4+EEDxPla0s56nYtGnThIODg8jPz1fZD3/vVa6ynKeCggLxyiuviDfeeEP8888/4sSJE8LDw0O8/fbb0n607eeJoY4qjLpQJ4QQp0+fFq+//rowMjIS9evXF+Hh4SqvjYyMFC4uLkIul4tWrVqJ3bt3K20vLCwUX3zxhbC1tRVGRkbirbfekv4nVezevXti4MCBwtzcXFhYWIiPPvpIPHjwoNxt0TVnzpwRXbp0EXXq1BFGRkaiUaNGIjAwUFy/fl2qc+fOHeHp6SnMzMyEqampeOutt8SxY8dU9nXo0CHRrl07IZfLRePGjcW6detU6ixdulQ4OTkJuVwuOnTooLKfx48fi9GjR4vatWsLU1NT8c4774ibN28q1UlJSRHdunUTJiYmwtraWkyYMEHk5eVVzAdSTZXlPAkhxKZNm4Sbm5swMzMTNjY2ws/PTyQkJCjV4XmqPGU9TwUFBaJBgwbi888/L3Ff/L1Xecp6nm7cuCHeffddYW5uLmxtbYW/v7+4d++eUh1t+nmSCcGra4mIiIi0Hae1EREREekAhjoiIiIiHcBQR0RERKQDGOqIiIiIdABDHREREZEOYKgjIiIi0gEMdUREREQ6gKGOiIhUHD58GDKZDBkZGS+1n0aNGuHrr7+ukDYRUekY6oioQqWlpWHcuHFo3LgxjIyM4OjoiF69eiEmJkaqc/ToUXTv3h21a9eGsbEx2rRpg6+++goFBQVSnZSUFAQEBMDZ2RkmJiZo0qQJQkNDkZubq/R+33//Pdq2bQtzc3NYWVnBzc0Nc+fOlbbPmDEDMpkMvr6+Km1dsGABZDIZOnfuXObjy8rKwtSpU9GiRQsYGxvDzs4O3t7e+OWXX/D0Wu7nzp3D+++/DxsbGxgZGcHFxQXTp0/Ho0ePpDrp6ekYN24cmjdvDhMTEzg5OeGTTz5BZmZmmdqSkpICmUym9nHs2LEyH1Pnzp0xfvz4MtcnourJQNMNICLdkZKSgtdeew1WVlZYsGAB2rRpg7y8PERHR2PMmDFITEzE9u3b8f777+Ojjz7CoUOHYGVlhQMHDmDy5MmIjY1FZGQkZDIZEhMTUVhYiG+//RZNmzbF2bNnMWLECGRnZ2PhwoUAgLVr12L8+PFYsmQJOnXqhJycHJw5cwZnz55Vape9vT0OHTqE69evo0GDBlL52rVr4eTkVObjy8jIwOuvv47MzEx8+eWXePXVV2FgYIDff/8dkydPxptvvgkrKyscO3YM3t7e8Pb2xu7du2Fra4u///4bEyZMQExMDA4dOgS5XI7U1FSkpqZi4cKFaNmyJa5cuYLAwECkpqZi27ZtZW7XgQMH0KpVK6WyunXrlvn1RKQjynVTMSKiUnTr1k3Ur19fPHz4UGXb/fv3xcOHD0XdunXFu+++q7I9KipKABCbN28ucf/z588Xzs7O0vPevXsLf3//UtsUGhoq2rZtK3r27Cm+/PJLqfzIkSPC2tpajBo1SnTq1KkMRyfEqFGjhJmZmbhx44bKtgcPHoi8vDxRWFgoWrZsKdq3by8KCgqU6pw6dUrIZLJS770ZGRkp5HJ5me75WNL9lp9WfPzr168XDRs2FBYWFqJ///4iKytLCCHE0KFDBQClR3Jysjh06JAAIA4cOCDc3d2FiYmJUCgUIjExUdr3f//9J/z8/ES9evWEmZmZaN++vdi/f7/S+zds2FAsXrxYeg5ArFixQvj6+gpjY2Ph7Owstm7dKm3v0qWLGDNmjNI+bt++LQwNDcWBAwee+5kQ1WQcfiWiCpGeno69e/dizJgxMDMzU9luZWWFffv24d69e5g4caLK9l69esHFxQWbNm0q8T0yMzNRp04d6bmdnR2OHTuGK1euPLd9w4YNQ0REhPR87dq1GDRoEORy+XNfCwCFhYXYvHkzBg0aBAcHB5Xt5ubmMDAwwKlTp3D+/HkEBQVBT0/5V2zbtm3h7e393GO0sLCAgUHFDaRcunQJO3bswK5du7Br1y78/vvvCA8PBwB88803UCgUGDFiBG7evImbN2/C0dFReu3UqVOxaNEinDhxAgYGBhg2bJi07eHDh+jevTtiYmIQHx8PX19f9OrVC1evXi21PV988QX69u2L06dPY9CgQRgwYAASEhIAAMOHD8fGjRuRk5Mj1f/pp59Qv359vPnmmxX2mRDpIoY6IqoQ//33H4QQaNGiRYl1Lly4AABwdXVVu71FixZSHXX7X7p0KUaOHCmVhYaGwsrKCo0aNULz5s3h7++PyMhIFBYWqry+Z8+eyMrKwh9//IHs7GxERkYqBZTnuXv3Lu7fv1/q8QHPP0ZXV9cSj/Hu3buYNWsWPv744zK3CwC8vLxgbm6u9HhaYWEhIiIi0Lp1a3Ts2BGDBw+WrnG0tLSEXC6Hqakp7OzsYGdnB319fem1s2fPRqdOndCyZUsEBwfj6NGjePLkCYCikDpy5Ei0bt0azZo1w6xZs9CkSRNERUWV2t733nsPw4cPh4uLC2bNmoX27dtj6dKlAIB3330XALBz506pfkREBPz9/SGTycr1uRDVNAx1RFQhxFOTBCqyLgDcuHEDvr6+eO+99zBixAip3N7eHrGxsfj333/x6aefIj8/H0OHDoWvr69KsDM0NMSHH36IdevWYevWrXBxccH/+3//r9LaXN76WVlZ6NGjB1q2bIkZM2aU67VbtmzBqVOnlB5Pa9SoEWrVqiU9t7e3x+3bt8u076c/I3t7ewCQXvvw4UNMnDgRrq6usLKygrm5ORISEp7bU6dQKFSeF/fUGRsbY/DgwVi7di0A4J9//sHZs2fh7+9fpvYS1WScKEFEFaJZs2bSBIeSuLi4AAASEhLg5eWlsj0hIQEtW7ZUKktNTUWXLl3g5eWF7777Tu1+W7dujdatW2P06NEIDAxEx44d8fvvv6NLly5K9YYNGwYPDw+cPXu2XL10AGBjYwMrK6tSjw9QPkY3NzeV7QkJCVKdYg8ePICvry9q1aqF7du3w9DQsFxtc3R0RNOmTUvc/uz+ZDKZ2t7M5722uKes+LUTJ07E/v37sXDhQjRt2hQmJibo16+fygzl8ho+fDjatWuH69evY926dXjzzTfRsGHDl9onUU3AnjoiqhB16tSBj48Pli9fjuzsbJXtGRkZ6Nq1K+rUqYNFixapbI+KisLFixcxcOBAqezGjRvo3Lkz3N3dsW7dOpVr1NQpDoXq2tCqVSu0atUKZ8+exQcffFCew4Oenh4GDBiADRs2IDU1VWX7w4cPkZ+fj3bt2qFFixZYvHixSnA6ffo0Dhw4oHSMWVlZ6Nq1K+RyOaKiomBsbFyudlUEuVyutJxMWR05cgT+/v5455130KZNG9jZ2SElJeW5r3t2uZVjx44pDVe3adMG7du3x/fff4+NGzeWO4AT1VQMdURUYZYvX46CggJ06NABP//8My5evIiEhAQsWbIECoUCZmZm+Pbbb7Fz5058/PHHOHPmDFJSUrBmzRr4+/ujX79+eP/99wH8L9A5OTlh4cKFuHPnDtLS0pCWlia936hRozBr1iwcOXIEV65cwbFjxzBkyBDY2NioDPEVO3jwIG7evAkrK6tyH9/s2bPh6OgIDw8PrF+/HufPn8fFixexdu1auLm54eHDh5DJZFizZg3Onz+Pvn374u+//8bVq1exdetW9OrVCwqFQloTrjjQZWdnY82aNcjKypKOsTwh6969e9Lrih/F172VRaNGjRAXF4eUlBTcvXu3zL14zZo1wy+//IJTp07h9OnT+OCDD8r02q1bt2Lt2rW4cOECQkND8ffff2Ps2LFKdYYPH47w8HAIIfDOO++U+ViIajRNTr0lIt2TmpoqxowZIxo2bCjkcrmoX7++8PPzE4cOHZLq/PHHH8LHx0dYWFgIuVwuWrVqJRYuXCjy8/OlOuvWrVNZaqP4UWzbtm2ie/fuwt7eXsjlcuHg4CD69u0rzpw5I9UpXtKjJJ9++mmZlzQRQoiMjAwRHBwsmjVrJuRyubC1tRXe3t5i+/btorCwUKp35swZ0bdvX1GnTh1haGgomjRpIqZNmyays7OlOsXLhqh7JCcnP7ctxUuaqHts2rSpxONfvHixaNiwofQ8KSlJeHp6ChMTE5UlTe7fvy/Vi4+PV2pbcnKy6NKlizAxMRGOjo5i2bJlolOnTuLTTz+VXqNuSZPly5eLt99+WxgZGYlGjRqJLVu2qBzbgwcPhKmpqRg9evRzPwciKiITopxX8xIREb0gmUyG7du3o0+fPqXWS0lJQZMmTXD8+HG88sorVdM4Ii3HiRJERFRt5OXl4d69e5g2bRo8PT0Z6IjKgdfUERH9n2fXenv68eeff1Z5ewIDA0tsT2BgYJW3pyocOXIE9vb2OH78OFatWqXp5hBpFQ6/EhH9n//++6/EbfXr14eJiUkVtqZoPbisrCy12ywsLFCvXr0qbQ8RVW8MdUREREQ6gMOvRERERDqAoY6IiIhIBzDUEREREekAhjoiIiIiHcBQR0RERKQDGOqIiIiIdABDHREREZEOYKgjIiIi0gH/H1vGzWntUJnfAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACoz0lEQVR4nO2deVxU1fvHP8OqIAyyKJAouK8tauFomRqJ5ZJhiZnlbppY7mbuVl/T3NP0W7llWmpSmZaJS31Lka9pZn5TS364haigDCoqCPf3B811Zpjl3pm7nDvzvF8vX8Lcy51zzz33nM95nuc8R8dxHAeCIAiCIAhCUXzULgBBEARBEIQ3QiKMIAiCIAhCBUiEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYQRAEQRCECpAIIwiCIAiCUAESYQRBEARBECpAIowgCIJwyNq1a6HT6XDmzBm1i0IQHgWJMIIgVOfQoUNIS0tDs2bNEBwcjNq1a6N37974888/K53boUMH6HQ66HQ6+Pj4IDQ0FI0aNcJLL72EjIwMUd/7zTff4PHHH0eNGjUQFBSEunXronfv3ti5c6dUt1aJf/3rX/jqq68qfX7gwAHMnDkThYWFsn23NTNnzuTrUqfTISgoCE2bNsXUqVNRVFQkyXds3LgRixcvluRaBOFpkAgjCEJ15s6di61bt+KJJ57AkiVLMGzYMPznP/9By5Ytcfz48Urn16pVC+vXr8cnn3yC9957Dz169MCBAwfQuXNnpKamorS01Ol3zp8/Hz169IBOp8PkyZOxaNEi9OrVC3/99Rc+//xzOW4TgGMRNmvWLEVFmIkVK1Zg/fr1WLhwIRo3box33nkHXbp0gRRbC5MIIwj7+KldAIIgiLFjx2Ljxo0ICAjgP0tNTUWLFi3w7rvv4tNPP7U4X6/Xo1+/fhafvfvuu3jttdfwwQcfID4+HnPnzrX7fXfv3sVbb72FJ598Ert27ap0/PLly27eETsUFxcjKCjI4TnPPfccIiMjAQDDhw9Hr169kJ6ejoMHD8JgMChRTILwSsgSRhCE6rRt29ZCgAFAgwYN0KxZM5w4cULQNXx9fbF06VI0bdoUy5Ytg9FotHtufn4+ioqK0K5dO5vHa9SoYfH77du3MXPmTDRs2BBVqlRBTEwMUlJSkJ2dzZ8zf/58tG3bFhEREahatSpatWqFL774wuI6Op0ON2/exLp163gX4IABAzBz5kxMmDABAJCQkMAfM4/B+vTTT9GqVStUrVoV4eHh6NOnD86fP29x/Q4dOqB58+Y4fPgw2rdvj6CgILz55puC6s+cTp06AQBycnIcnvfBBx+gWbNmCAwMRGxsLEaOHGlhyevQoQN27NiBs2fP8vcUHx8vujwE4amQJYwgCCbhOA6XLl1Cs2bNBP+Nr68vXnjhBUybNg0///wzunbtavO8GjVqoGrVqvjmm28watQohIeH271mWVkZunXrhj179qBPnz54/fXXcf36dWRkZOD48eOoV68eAGDJkiXo0aMHXnzxRZSUlODzzz/H888/j+3bt/PlWL9+PYYMGYJHHnkEw4YNAwDUq1cPwcHB+PPPP/HZZ59h0aJFvFUqKioKAPDOO+9g2rRp6N27N4YMGYIrV67g/fffR/v27fHrr78iLCyML29BQQGeeuop9OnTB/369UPNmjUF158Jk7iMiIiwe87MmTMxa9YsJCUlYcSIETh16hRWrFiBQ4cOYf/+/fD398eUKVNgNBpx4cIFLFq0CABQrVo10eUhCI+FIwiCYJD169dzALhVq1ZZfP74449zzZo1s/t3X375JQeAW7JkicPrT58+nQPABQcHc0899RT3zjvvcIcPH6503urVqzkA3MKFCysdKy8v538uLi62OFZSUsI1b96c69Spk8XnwcHBXP/+/Std67333uMAcDk5ORafnzlzhvP19eXeeecdi89///13zs/Pz+Lzxx9/nAPArVy50u59mzNjxgwOAHfq1CnuypUrXE5ODvfvf/+bCwwM5GrWrMndvHmT4ziOW7NmjUXZLl++zAUEBHCdO3fmysrK+OstW7aMA8CtXr2a/6xr165cnTp1BJWHILwNckcSBMEcJ0+exMiRI2EwGNC/f39Rf2uytFy/ft3hebNmzcLGjRvx0EMP4fvvv8eUKVPQqlUrtGzZ0sIFunXrVkRGRmLUqFGVrqHT6fifq1atyv987do1GI1GPPbYYzhy5Iio8luTnp6O8vJy9O7dG/n5+fy/6OhoNGjQAPv27bM4PzAwEAMHDhT1HY0aNUJUVBQSEhLwyiuvoH79+tixY4fdWLLdu3ejpKQEo0ePho/PvWFk6NChCA0NxY4dO8TfKEF4IeSOJAiCKfLy8tC1a1fo9Xp88cUX8PX1FfX3N27cAACEhIQ4PfeFF17ACy+8gKKiImRlZWHt2rXYuHEjunfvjuPHj6NKlSrIzs5Go0aN4OfnuLvcvn073n77bRw9ehR37tzhPzcXaq7w119/geM4NGjQwOZxf39/i9/vu+++SvF1zti6dStCQ0Ph7++PWrVq8S5We5w9exZAhXgzJyAgAHXr1uWPEwThGBJhBEEwg9FoxFNPPYXCwkL89NNPiI2NFX0NU0qL+vXrC/6b0NBQPPnkk3jyySfh7++PdevWISsrC48//rigv//pp5/Qo0cPtG/fHh988AFiYmLg7++PNWvWYOPGjaLvwZzy8nLodDp89913NgWpdYyVuUVOKO3bt+fj0AiCUA4SYQRBMMHt27fRvXt3/Pnnn9i9ezeaNm0q+hplZWXYuHEjgoKC8Oijj7pUjtatW2PdunW4ePEigIrA+aysLJSWllayOpnYunUrqlSpgu+//x6BgYH852vWrKl0rj3LmL3P69WrB47jkJCQgIYNG4q9HVmoU6cOAODUqVOoW7cu/3lJSQlycnKQlJTEf+auJZAgPBmKCSMIQnXKysqQmpqKzMxMbNmyxaXcVGVlZXjttddw4sQJvPbaawgNDbV7bnFxMTIzM20e++677wDcc7X16tUL+fn5WLZsWaVzuX+Smfr6+kKn06GsrIw/dubMGZtJWYODg20mZA0ODgaASsdSUlLg6+uLWbNmVUqeynEcCgoKbN+kjCQlJSEgIABLly61KNOqVatgNBotVqUGBwc7TBdCEN4MWcIIglCdcePGYdu2bejevTuuXr1aKTmrdWJWo9HIn1NcXIzTp08jPT0d2dnZ6NOnD9566y2H31dcXIy2bduiTZs26NKlC+Li4lBYWIivvvoKP/30E3r27ImHHnoIAPDyyy/jk08+wdixY/Hf//4Xjz32GG7evIndu3fj1VdfxTPPPIOuXbti4cKF6NKlC/r27YvLly9j+fLlqF+/Po4dO2bx3a1atcLu3buxcOFCxMbGIiEhAYmJiWjVqhUAYMqUKejTpw/8/f3RvXt31KtXD2+//TYmT56MM2fOoGfPnggJCUFOTg6+/PJLDBs2DOPHj3er/sUSFRWFyZMnY9asWejSpQt69OiBU6dO4YMPPsDDDz9s8bxatWqFTZs2YezYsXj44YdRrVo1dO/eXdHyEgSzqLk0kyAIguPupVaw98/RudWqVeMaNGjA9evXj9u1a5eg7ystLeU++ugjrmfPnlydOnW4wMBALigoiHvooYe49957j7tz547F+cXFxdyUKVO4hIQEzt/fn4uOjuaee+45Ljs7mz9n1apVXIMGDbjAwECucePG3Jo1a/gUEOacPHmSa9++PVe1alUOgEW6irfeeou77777OB8fn0rpKrZu3co9+uijXHBwMBccHMw1btyYGzlyJHfq1CmLunGUvsMaU/muXLni8DzrFBUmli1bxjVu3Jjz9/fnatasyY0YMYK7du2axTk3btzg+vbty4WFhXEAKF0FQZih4zgJNgcjCIIgCIIgREExYQRBEARBECpAIowgCIIgCEIFSIQRBEEQBEGoAIkwgiAIgiAIFSARRhAEQRAEoQIkwgiCIAiCIFSAkrUyTHl5OXJzcxESEkJbfxAEQRCERuA4DtevX0dsbCx8fOzbu0iEMUxubi7i4uLULgZBEARBEC5w/vx51KpVy+5xEmEMExISAqDiITraB48gCIIgCHYoKipCXFwcP47bg0QYw5hckKGhoSTCCIIgCEJjOAslosB8giAIgiAIFSARRhAEQRAEoQIkwgiCIAiCIFSARBhBEARBEIQKkAgjCIIgCIJQARJhBEEQBEEQKkAijCAIgiAIQgVIhBEEQRAEQagAiTCCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVEAzIqxHjx6oXbs2qlSpgpiYGLz00kvIzc21OIfjOMyfPx8NGzZEYGAg7rvvPrzzzjsW5/zwww9o2bIlAgMDUb9+faxdu7bSdy1fvhzx8fGoUqUKEhMT8d///tfi+O3btzFy5EhERESgWrVq6NWrFy5dumRxzrlz59C1a1cEBQWhRo0amDBhAu7evStNZRCycOECsG9fxf8EQRAEITeaEWEdO3bE5s2bcerUKWzduhXZ2dl47rnnLM55/fXX8fHHH2P+/Pk4efIktm3bhkceeYQ/npOTg65du6Jjx444evQoRo8ejSFDhuD777/nz9m0aRPGjh2LGTNm4MiRI3jggQeQnJyMy5cv8+eMGTMG33zzDbZs2YIff/wRubm5SElJ4Y+XlZWha9euKCkpwYEDB7Bu3TqsXbsW06dPl7GGlMcTREtBQQEuXryIBQsKUacOh06dgDp1OCxYUIiLFy+ioKBA7SISBOEGntBPER4Mp1G+/vprTqfTcSUlJRzHcdwff/zB+fn5cSdPnrT7NxMnTuSaNWtm8VlqaiqXnJzM//7II49wI0eO5H8vKyvjYmNjuTlz5nAcx3GFhYWcv78/t2XLFv6cEydOcAC4zMxMjuM47ttvv+V8fHy4vLw8/pwVK1ZwoaGh3J07dwTfo9Fo5ABwRqNR8N8oxccfc5yPD8cBFf9//LHaJRJPfn4+N3PmTG7MmAWcTlfGARz/T6cr48aMWcDNnDmTy8/PV7uohIzk5+dzubm5XG5uLvfLL3ncli353C+/5PGf0fPXHqZnOn/+Nc7Hp/yffqqcmz//Gj1TAZw/z3F791b8T7iG0PFbM5Ywc65evYoNGzagbdu28Pf3BwB88803qFu3LrZv346EhATEx8djyJAhuHr1Kv93mZmZSEpKsrhWcnIyMjMzAQAlJSU4fPiwxTk+Pj5ISkrizzl8+DBKS0stzmncuDFq167Nn5OZmYkWLVqgZs2aFt9TVFSE//3vf3bv686dOygqKrL4xxoFBQU4fPgShg3jUF5e8Vl5OfDKKxwOH76kKctRSUkJAODq1QhYvwoc54OrV8MtziM8j4KCAixbtgwffvghhg8/hIcfjsLzz0fg4YejMHz4IXz44YdYtmyZptq1t2N6pu+99xkmTAhFebkOAFBersOECaF4773P6Jk6YNUqoE4d/OMVqPidkA9NibBJkyYhODgYEREROHfuHL7++mv+2P/93//h7Nmz2LJlCz755BOsXbsWhw8ftnBZ5uXlWQgjAKhZsyaKiopw69Yt5Ofno6yszOY5eXl5/DUCAgIQFhbm8Bxb1zAds8ecOXOg1+v5f3FxcQJrRhlMndv77+/kOzYTZWU6vP/+d5rs3MLDC6DTlVt8ptOVIzz8qp2/YBuTi/XixYs4fPgSvviiQjibPtPa85ETk8A2GkPwzTfdeDHOcT745ptuMBpDLM4j2EdrkytW3KVamGCzUldSoqoIe+ONN6DT6Rz+O3nyJH/+hAkT8Ouvv2LXrl3w9fXFyy+/DI7jAADl5eW4c+cOPvnkEzz22GPo0KEDVq1ahX379uHUqVNq3aIoJk+eDKPRyP87f/682kWywNRpORMtrHRuQtHrr6N79+38Pel05ejefTv0+usql0w8ZNlxDWcDNqE9WJ5csRaLqoUJtqda6PzU/PJx48ZhwIABDs+pW7cu/3NkZCQiIyPRsGFDNGnSBHFxcTh48CAMBgNiYmLg5+eHhg0b8uc3adIEQMVKxUaNGiE6OrrSKsZLly4hNDQUVatWha+vL3x9fW2eEx0dDQCIjo5GSUkJCgsLLaxh1udYr6g0XdN0ji0CAwMRGBjosD5YwCRaTJYDpUTLhQvAX38BDRoAtWpJe+2WLX9FvXqncfVqOMLDr2pSgAHOLTv16p2GXn9dc0JZbkwDtrkQY2XAJlxDrX7KGSbBYzSGYPHi0eA4S3fp33+vhl5/HWlpaYiIiFCkTNYTbHvvgVr9xoULwLBhsLLQAcnJ0o8FSqOqCIuKikJUVJRLf1v+z9O4c+cOAKBdu3a4e/cusrOzUa9ePQDAn3/+CQCoU6cOAMBgMODbb7+1uE5GRgYMBgMAICAgAK1atcKePXvQs2dP/nv27NmDtLQ0AECrVq3g7++PPXv2oFevXgCAU6dO4dy5c/x1DAYD3nnnHVy+fBk1atTgvyc0NBRNmzZ16X5ZQynRUlBQgJKSEmzcWBUTJ+pRXq6Djw+HefOM6Nv3FgICAiTrqPT666p20KZ7BYDcXB/k5PghIeEuYmMr2rqYe3Vk2VF7EJIb83q0ha16ZHXA9iZceW7OYHFyJcRdqtZEicX3oKCgAAcPAuXlls++rAzIyipA1apQTKzKgaoiTChZWVk4dOgQHn30UVSvXh3Z2dmYNm0a6tWrxwufpKQktGzZEoMGDcLixYtRXl6OkSNH4sknn+StY8OHD8eyZcswceJEDBo0CHv37sXmzZuxY8cO/rvGjh2L/v37o3Xr1njkkUewePFi3Lx5EwMHDgQA6PV6DB48GGPHjkV4eDhCQ0MxatQoGAwGtGnTBgDQuXNnNG3aFC+99BLmzZuHvLw8TJ06FSNHjtSEpUsocosWoTPGfv368cJbq5juFQCOHHmoUifYsuWvACB4duytlh3zegQqLIJXr0YgPLzAoq3aqkcWB2xvwZ3n5gy1J1f2YPUdZek9MB8DdLrRlepq//51OH5cWauh1GhChAUFBSE9PR0zZszAzZs3ERMTgy5dumDq1Km8qPHx8cE333yDUaNGoX379ggODsZTTz2FBQsW8NdJSEjAjh07MGbMGCxZsgS1atXCxx9/jOTkZP6c1NRUXLlyBdOnT0deXh4efPBB7Ny50yLQftGiRfDx8UGvXr1w584dJCcn44MPPuCP+/r6Yvv27RgxYgQMBgOCg4PRv39/zJ49W4Ha8hyczRizshLRufNufPrpp5p8Cc1n/vn5+QCkcyOyOKNVAvP6cSRm7dUjqwO2p+Puc9MiLL+jrLwHpuftrK603C40IcJatGiBvXv3Oj0vNjYWW7dudXhOhw4d8Ouvvzo8Jy0tjXc/2qJKlSpYvnw5li9fbvecOnXqVHJ9Eq5ha8YIAAcOGJCYmOWy6T4gIEDS88Rge+Yfj5s3gyRzI7I0o1UaZ2KWYBNveG6FhYX8z/XqnUavXlsBcIiLu+Ax9ygHntqfaUKEEd6NXn8dBkMmDhxoZ3XEvRiniIgIpKWlSR6HIgR7M3+gHAAH4N4KJaEuioKCAt6iZoKVGa3SCImJKygogNFoFHQ9OYQ4URkpYhnVnFw5o6CgAJs3bwbg2OKndeRaROWJ/RmJMEIwanZuiYlZOHDAAPOsKlLET6jtwrSe+VfcXzl0Ok6Ui0JoTI234Czexmg0YtOmTU6v07t3b9SoUUP1duItSBEnpebkyhlCVy9rEbkXUXlqn0YijBCMmp2bXn8dPXqwGT/hDrZm/oAPevXajODgYsFmd6ExNSY83bLjLIaktLTU4nx7HXxYWJiig7UcKwS1hFRxUqzXEWurl92dYMuddsOTrYYkwghRqNm5eWJMgL2Zv734kPz8fIcDsbMZdkpKCmJjY5kfpKRAaHthpYO3tmbaQ41FKEqKQ098z60RYvFTcqLk7gRbrrQbhYWFHmk1NIdEGKEpPC0mwNnM39pCk56eDsD+QOysE4yMjPQKAWbCWXthqYO3HqDsWeeUXgkmtzj0xlhGZ+99amqq4u+pFN8nZdoNU/zc1avxTFkNpYZEGMEsrLjM5LYC2Jv5u7JUn9XcQ3JjekZCA+39/Cq6PtbcQiZYss7l5uZafCalOBQby8hKnyAFjix+er1exZK5jpRpN4Rm8Qe03S5IhBHMEhERgX79+uHTTz91eq5cL6GcSSTNsZ75u2qhYTn3kFwItdT07t0bYWFhCAgIENXBKw0r1jlb9Sq1OBQay+ipbnRPtPhJ7U5m0WooJSTCCKapV6+eqiud5Eoi6Uw0umOh8YaYGnOE1n1YWBhiYmIAABcvXgTApmhlxTpnXa8XLsTIJg6dCU9vc6NrHanFpSdaDU2QCCNkQ6q9EFnofKW2TtgLhM3Pz0d6errbFhpPnGELRexSdtZEKyvWOXPX7pEjD2Hbtm4wTxEDSCcOWRGecsNyDjPW8dQ+jUQYIQtS74WoNnIMEo7uW6yFhjr3CoS4y2wlabXXwatRXyxY5woKCvg8aqYJiLUAA6QTh6wIT7lhOYcZoQ4kwghZEJqUUCt7fqkxSIix0FDnLsxaKSZ+TM0krWpb58zbke1cdpBUHLIgPJXCE99BmgS6DokwQlY8xc2g1iAhxgTviZ27GIS0NTHxY0rXp/UAxYp1Ljc3BtZbaQHlGDz4Y9SqdVGy71FbeGoJ1pL60iTQdUiEEbLiSW4GJQYJoQNscXExH1xu7zre1uG50tZY2gqFxYHMaAzB7t1JsBRgHJ58cnclASaFOPTUuB8pUWrFtlik/i5vsa6RCCNkxdPcDHIPEkIG4uLiYkFpO7QSbycVYtsaK7m4zGHtedl2ReoQG3svd5g76SO0NNCyYn2Sa8W2O0i1CMscFiclckAijJAdLbsZlBgkxHbu1hYwVjKrq4V53Ttqa+b5wVjJxcU6QqyL7uTv0spAy+KWUqy0YTkXYan93JWARBghCdZCwlO2IZF7kHC3c2fRmqM0Yp6RScB6Sqyi3DizLvbu3dvtgVILG6SzuKUUK23Y0xZhKQ2JMMJthAoJrSLnICG0Y7J1HiszYRYQ+4w8KVZRbhxZF8PCwtQrmEiksmaxMvFhrQ2zIgq1RuV1xwQhEluzxJyceBiNIU7/loVYD5YQU3eOOj3CMSYLj05XEbOi9VhFqbG1UjMh4Wyl+tHC+1tQUICLFy/a3APT1rvmaGJkb+Ij5H2VGtbasEkUmkMTG+eQJYyQFGf7v0VGRvLnshDrwRJiZ9iszYRdRcmAZzHxY3LCSpC3PbQSq+UMe9YvV61ZrFl7WIi3LSwsBOB5i7CUgkQYIRlC9n8z7d1HWOKKa9ETOj2lA55ZEBcsBnnbgnWBJQRX3Pjm8azWbYHFiY+a8bYFBQXYvHkz/3u9eqfRq9dWABzi4i5oqi9SCxJhhGS4M0tk3TIgN2LqzjTzBNiYCdtC6PN0JybOVdRuR2rcM1GB0RiC//2vmcN3LT093eJYWloa/zMLEx+W0noITZdB2IdEGCEZrs4StWIZkBOhdWc98wTYyaxuQszzJNhKGOvJmIsE6x0AHPVT1mJY7YkPC9Zca2iRkOuQCCMkw9VZIovLv5VGaN0JrYPU1FTVBKu7Kz69SZCQ9UAZrEVChQCrEGKmegeAnJx4m22PtS2lWJuMCrHka2ERhxqQCCMkxd1ZorcNSu4GitsTLXq9Xr5Ci0SosPK2Z0/WA+Wwl/k/OXknmjb9A9nZ9bF48Wi7bY9F6xNLOLPkqzUp1EKYC4kwwm2kmiV646DkTueuBdEitIze+OxZW2nnydgTCU2b/gEAgtqe2oM1yziz5KsxKWR1j01rSIQRbiPVLNFbByVXOgAtiBYxZVTj2as9S2ZxpZ2n4kgk5OTEe2W/IzVqx8pZw+Iem7YgEUZIghSDFQ1KwtGCYBVTRqWfPQuLQVhYaScHaotb6+8yYU8kUL9jiTvPj8Xt6VifsJIII5jBUwclOdDCwCGkjKZB0tmzlzqoV800EawkjJUDFsStOY6s9Pn5+UhPT6d+xwyxz4+ldBn2YH3CSiKMYArWTNqswsLAYW/GbEp2KaSM1oPk9OlXcOaMH+Lj7yI29mEAD/MduGnzbVuwEGArFDmDvNW2Qqklbl25b08Ww64idqW6VG1ZznbL+oSVRBghGLleFNaWf7MMKwOH0BmzkDKat5mYGKBVK9e+yx3ritKpMeQQQqxZoZTC1fumFY+OcRRHZb6rAOBePcndblmYsDqCRBghCDlfFOoM7WNL+Pbu3Rt3794FAPj7+1daeeRuhyhlpnvr/UJdKaPc1hV3VpmqbXkyh8VM/EqIW3fu2xv7FCE4i6Oy3lUAcF0kKZEnkmUPC4kwQhByvyjUGVZGacuGHJnuWd8v1J2gXW+1PAlFrRQq3pbwVw5ciaOSQtzL2WZYXDQAkAgjXEAL+ak8ATksG44sN9YuBjHfp9WBz52gXRYtT+ao+UzUWpFGfZM0OIqjkqtdSd1mtLBoACARRoiE9eW+LOOu68rdzk+o5UYsSg98Ug4CrAftuooSz8RWezYJeTVWpFHfJB324qiys+vL1q6kbjNaCXMhEUaIwtmLkp+fz0TDZg13XVdSDKpiLTJCxI7SA5+QYGEh7U+O1BisWAOVeCbO2rMa4pb1VARawzqOCgC/tRPgXrsyF/Cm91aONqOFcYhEGCEKZy+KKWDTW+Ng7OHuptZKz/CFij6hA58UAexigoWdtT+hqTGEtmGW3GBKiBFn7VnpvG+A51o1lcTRSnWpdhawJ+BZX8UoFyTCCFFYvyhAOQyGzErnqb0VhBqIibcSYzWRa1C1VwYxok/IwCdVALuYehDS/pylxhAKa24wVsRIy5a/Ii2tAYqKargsbsWg1iDO0gpZd7HlwjMltZWqXTla5MXyKka5IBFGiMb0omRlJSIz04ADB9ohM9Pg1UGwYuKtxFpN5BhUHZVBiNgR485zN4Dd9F1qiAshwpoVN5hauw84onnzMMTEyCtA1Myd54krZB1tSSS1yLXXD3lTnkgSYYQgbL0AmZkGZmb/aiNUaLhiNZG683NWBiFiR4w7z1GmeyGYf5den4tZs2L5ekhK2o2rVysGDanbndABlhXLk9QuVjGoGQ+nZgA26ytkpUAukeusHzLPMagla6JYSIQRgjB1dLm5uUhPT2dm9q81xNSbXJ2fszIItaS46s5zZcA2fdewYRdhNC7G1avhyM2Nxe7dSbLFYQkdOFmyPEnlYhUDC/FwnjpAs4BcItdZP8R6jkGpIBFGCMY8Uzors38lkSLmS0y9ydX5OStDSkoKhg2LlMWSIsWAbarPTz55mQlLrJz1xTqsxcOpjRoWQSVi0uRow944htiCRBjhEs5m/2LSBWgBd2K+kpJ2Izb2It8xi3EtSll3QmOGYmNjERERIbklRcoBmyVLrGnGrpTliSVYeg6uIpWIUcMiqOWYNG9dDWkNiTDCZRy5yMSkC9AC7sR8ZWQ8CUBn0TGrsfG2EjFDSiXwVGMWzUoeMBYQuliC9WBqqUSMWhZBrcekeeNqSGtIhBGicJRHxh6sdgByYEtoADoAlTvmgQOftNjcWgmroZwxQ0ok8FRrBSALcU8sYS7o77uvCJMm6VFWpoOvL4e5c4vQt+8LmrCCSyViWLEIsjJRcGRdNBqNFr/bG0NYF/BSQSKMEIV555uTk4OMjAz+mL0OoLCw0OMCLMXEfJnjyYGnSiTwVGMFIMU92cZUx+PGAampwOnTQP36OtSqFQYgTM2iKQ4L8U1KThSciaxNmzY5vUbv3r0RFhZm85gWBLxUkAgjRGN6OcyD0R11AHfv3lWlnNYoEftROZktB5MlDPDOwFNzpEjgqfQKQFasHCxTq1bFP60j1pLESm42JScKUu1BGxYW5lGTUFchEUa4jdEYgm3busOe240FlIr9SElJQUoKUK+e/TQKrNSJWiiRwFMKPCXuSSo8KTO8LVyxJKmZm80cJScKcuxB682QCCPc5vz5OJhbe4CKDuD8+VrQ60/I/v1CBgelYj8iIyMREBDAxzkkJJxF8+bHFQ/CZwGtd7724p58fDhMn56LlJQn4efnh5KSEj4hrRpCRAlxpOVVeEJwx5KkRm42a9R0hzp6zymW0jkkwghNI3RwSE1NtfjdVYHgSjZ5W2jdauAMT+l8zeOeOne+hgULvv7nWV+H2QJgC5QUIkqJI62vwnOG1l3OaqV7cPSeUyylMEiEEW4TF3ceQDkA806sHHFxF2T/bqGdfmlpKf+zKwJBbOyHJwssZ3hq5xsZeRsJCWednqekEPF0cSQXJuuhKa6VhcB6V1Bz30xn77nWha1SkAgjXMbf3x9AhTDp0WM7tm3rhgohVo4ePe4JE9N5SuDMwuWqQJAq9sPT42oA7VsVCOdo2dVsy3qodmC9q6hpdXf2nmtV2CoNiTDCZfR6Pf+zo1mY+XlCcUWsCLFwuSMQ3I398PS4Ggpk9w607mq2169Y92EVefzY33pKrbI5e8+ldJF68uSVRBjhMkITt4oddMWIFRNCLVxqzs7kch2x0kHJkcCTlXuzBYvWILnL5KmuZhPmfZjYPH4st1U5ECKypHCRevrklUQY4TJymcKtr2dvYDE/T6iFi6X9yuzdl/Vm4CZs1SVrHZSUCTxZuzdzWLQGKVEmcjXbhqW2KrcYFBqHJlUyVk+PeyQRRriF1PsMAsKTwJrjzMLl53evqau1d6M5ju4r3d6yO1TuxFnuoNxN4MnqvbFoDVKqTJ4Y5yOF9VBoG8zNza10rpQWMiXEoNqrv1m0QLsDiTBCFYR0FmIGFmcWrrCwMGbSRrgzYGp1tudJsGgNkrtMrGSGlxqlLZr2JlhSWciUmrio5fZj0QLtLiTCCFUQ4nIUMrCIWaLNSryAnAOmp80SWYLFhQdKlYmVzPBSIqf1UOx7SJMr57BogZYCEmGE6tib3XhqYlQh9+WKmPLEWaI5agtMqRceSBG7I8diCEffZUKtzPBSInQyJOQ5mcPSe6j2OyMlLFqgpYBEGKEqzmY3zoLotbgiydl9udKJe+os0YSjOhGzkMFdpFp4IGXsjpSLIbwBMdZDoc+pd+/eAJy/h0qKIpbEoBR4YjwiQCKMUBlnsxtHLkaj0YhNmzY5/Q5Wli4LcZ26KqY8dZYIOK8TMQsZpMSdhQdyxe64uxjCGxBjPTTtCeqMu3fvAnD8HmZn11dMFKk5KZNrYszSynYpIRFGqIqQ2Y29/GMcx1n8LiSVhZo4cp3m5+cjPT3dqZgyt/qYizpPnSUC7glMVp69FGjR6ssqclkP7b2H/v4liooipSZl1m1SjomxmlszKQGJMEJVnM1uOnbsiOrVq/Pn+/v7Q6/Xo7i4GMXFxfznWjG9O+t4nIkpa6tPv379ALC9as1V8SDUbeQNsJSHytMQYz20N9Ez38LN1ntYWhqoqKVaiXdG6Ap3dyfGWoz7FQOJMEJ1HM1u9u3bV+n8fv364dNPP+V/94R4KKEpAKwJCgpyumqtuLgYJSUldl0rcnZg7ogHR26jadNyAWjj2QrBWayQ3KkHyMrmHEcTPb1eb/M9DA29jAMHfoXRGKLIRELJVCLO2pqUE2NPbnskwgjJEdKhC93yyBbmFjDAM+KhrGd7aWmnsGFDFi9KHQ3SjlatFRQU4MMPP3T6/XJZUNwVD/bcRr6+vjC/LS2vAlPbiktWNucImejZeg8LCoADB5SzVKuZSsT8HQSg+YmxUmhGhPXo0QNHjx7F5cuXUb16dSQlJWHu3LmIjY0FAMycOROzZs2q9HdBQUG4efMm//uWLVswbdo0nDlzBg0aNMDcuXPx9NNP88c5jsOMGTPw0UcfobCwEO3atcOKFSvQoEED/pyrV69i1KhR+Oabb+Dj44NevXphyZIlqFatGn/OsWPHMHLkSBw6dAhRUVEYNWoUJk6cKEfVMIWYDt3axGyKizIhdGD197/jEe4q644xIeEsAPcGaVazzruCudvI3KintohxB1etuFKKTk9qI3Lh6kRPDVGkRioR63fQYMjU/MRYKTQjwjp27Ig333wTMTEx+PvvvzF+/Hg899xzOHDgAABg/PjxGD58uMXfPPHEE3j44Yf53w8cOIAXXngBc+bMQbdu3bBx40b07NkTR44cQfPmzQEA8+bNw9KlS7Fu3TokJCRg2rRpSE5Oxh9//IEqVaoAAF588UVcvHgRGRkZKC0txcCBAzFs2DBs3LgRAFBUVITOnTsjKSkJK1euxO+//45BgwYhLCwMw4YNU6K6VEPMvo+ONscVOrCanwdwAHQOXXhac7so5WpVMs2DlGjdFe3K4K5l0alV3Imx8rT8atbYegcPHDB4xMRYCTQjwsaMGcP/XKdOHbzxxhvo2bMnSktL4e/vj2rVqllYon777Tf88ccfWLlyJf/ZkiVL0KVLF0yYMAEA8NZbbyEjIwPLli3DypUrwXEcFi9ejKlTp+KZZ54BAHzyySeoWbMmvvrqK/Tp0wcnTpzAzp07cejQIbRu3RoA8P777+Ppp5/G/PnzERsbiw0bNqCkpASrV69GQEAAmjVrhqNHj2LhwoUeL8LMEZvbyfSZ0IHV+jxAB6Acgwd/jFq1Ksc/adHtIrWr1Z4oVirNg9RuQ626ol3NdO/s3cjPz3dbOGvZtSs1nrpdk5TYegcBHxgM+5GZafCodBJyoBkRZs7Vq1exYcMGtG3bll+VYs3HH3+Mhg0b4rHHHuM/y8zMxNixYy3OS05OxldffQUAyMnJQV5eHpKSkvjjer0eiYmJyMzMRJ8+fZCZmYmwsDBegAFAUlISfHx8kJWVhWeffRaZmZlo3769xYuZnJyMuXPn4tq1axar/cy5c+cO7ty5w/9eVFQkvFIYw53cTkIHVnsvf2mpZYdoeg5adLtIucrJVQuKVPUh9PvFxBSytIWQGOwtOvDx4TB9ei5SUp6Ev78/v6DCNEFx9m6Y3itXhTNZ2SzxxO2apMbeO5iYmIXExCybC66Ie2hKhE2aNAnLli1DcXEx2rRpg+3bt9s87/bt29iwYQPeeOMNi8/z8vJQs2ZNi89q1qyJvLw8/rjpM0fn1KhRw+K4n58fwsPDLc5JSEiodA3TMXsibM6cOTbj2rSIUCFla9YtVHg4Oy8lJQWxsbF2O0gtzPilSlCotttO6Pe7ElMo93Y9cmG+6KBz52tYsODrf9ruddibowh9N1wRzmq3EVbxdHeiuzjro2y1HVYnR2qgqgh74403MHfuXIfnnDhxAo0bNwYATJgwAYMHD8bZs2cxa9YsvPzyy9i+fTt0Op3F33z55Ze4fv06+vfvL1vZ5WDy5MkWlrqioiLExcWpWCLXcZS0MCcnHuHhBXYzSAsVHs7Oi4yMtDsIsz7jlzpBoRBRLKcoFSrKxVgrTTGFnrBdT2TkbX4hhiPkzBquVdcuoQ5C+yhrUlNTmZ4cKY2qImzcuHEYMGCAw3Pq1q3L/xwZGYnIyEg0bNgQTZo0QVxcHA4ePAiDwWDxNx9//DG6detWyaIVHR2NS5cuWXx26dIlREdH88dNn5kHjV+6dAkPPvggf87ly5ctrnH37l1cvXrV4jq2vsf8O2wRGBiIwMBAu8e1hK3B4v77j2HVqiH/dPTlqIjhqhDQ1rNuRy91UFAQ/7MrAkULM36pExQ6s6DIJUqVcht6y3Y9HTt2BLCPb/P+/iUoLQ2E0RjidtulpLiEGKz7KKGr2/V6veJlZRlVRVhUVBSioqJc+tvy8nIAsIihAiriuvbt24dt27ZV+huDwYA9e/Zg9OjR/GcZGRm8iEtISEB0dDT27NnDi66ioiJkZWVhxIgR/DUKCwtx+PBhtPrHLr13716Ul5cjMTGRP2fKlCn8ogHT9zRq1MiuK9ITMRdI/v4lZgIMAKxjuSxn3SkpKYiMjKx0jkl4uCNQtDLjl2K2KCSwWE5RKmafPltowWWsJKb+Q6+/LtlehO4Gn2ttxTEhHVr1NLCEJmLCsrKycOjQITz66KOoXr06srOzMW3aNNSrV6+SFWz16tWIiYnBU089Vek6r7/+Oh5//HEsWLAAXbt2xeeff45ffvmFT2ap0+kwevRovP3222jQoAGfoiI2NhY9e/YEADRp0gRdunTB0KFDsXLlSpSWliItLQ19+vThc5b17dsXs2bNwuDBgzFp0iQcP34cS5YswaJFi+StKAawl4Q1JyfeRhC9Jeaz7sjISIcpLNzp1L1pxu8osDggIAHp6b/KLkpd3aePlY5cDZHhTHxKKZzdCT7X4opjQl604GlgCU2IsKCgIKSnp2PGjBm4efMmYmJi0KVLF0ydOtXCfVdeXo61a9diwIAB8PX1rXSdtm3bYuPGjZg6dSrefPNNNGjQAF999RWfIwwAJk6ciJs3b2LYsGEoLCzEo48+ip07d/I5wgBgw4YNSEtLwxNPPMEna126dCl/XK/XY9euXRg5ciRatWqFyMhITJ8+XRPpKcwHnNxcH+Tk+CEh4S5iYyssj84GHHsmalvCByiHTgfFlzDLGVfDIvYCiy9erHimSopSoW5DVjpyNUSGEPEptXB2NfhciyuOTZAFTx604mlgBU2IsBYtWmDv3r1Oz/Px8cH58+cdnvP888/j+eeft3tcp9Nh9uzZmD17tt1zwsPD+cSs9rj//vvx008/OS4wY5gPOI4GAmcDjq1j9oSP0GBOKZA62F3rsJwDiZWOXGmRIVR8ihHOJDYqQxY8+WDR08DyO6AJEUYog6mROhsIXB1w7AkfpZYwSx3srnVYzoHEYkeuBM7EpynGVKhwVlpsiInhU3Ng1LIFj3VY8zSwLrhJhBGVkNIKIXSj7t69eyMsLIz/G7leBm8RWEJhLQcSy9Y5ORG6ijQqKkqUcFZSbIiJ4WN9YCTEw6qnQcxWempAIoyohJRWCLI+EWJwZJ0LDm6I0tIE+Pn58ZnkzVGiHcm1WtPVVaQsCGdAfAwfa5Yoe8+1sLDQ4d9R33UPJft6V62orCz2MYdEGFEJqc3J1EkRYrBlnauwnGxy+rdyWk7k7sBdXUUqBrlEJCsxfK7g6Llu3rzZ6d8raa1jObYJUKavd9WKyspiH2tIhBE2EZMB2RNhvbPzNlyxnEj5DJXuwOVIPiuniHRmPTftfWmvztXKByfFc1XKWkcu3ApcdS+yOlEgEUbYxV78lqdDnZ32kfoZytmBKyH45RKRQmP4zDOpp6WlWVxDTReRmOeqduJg1ly4riB1WxfTdlhd7EMijJAN6xeusLAQd+/e5X/39/e32MKCFesS64GchPMBUaoBS+5tl5QS/M7EhslSZY2YvID5+fmoV2+xU+u5eZ2r7SISOjCzGEuktigUi9RtXWzbYW3VpgkSYQSP0IFEyHnWL5x1h2GvA2HNusRi5+vtKPlM3N12yRlKWTeciQ1zS5U1YvICirWeq+UiEmrBA9QXiraQ+x2Qwzor9eTWlbbDYpgNiTCCR8rVLebXsO4w7r//GI4du99mB8KSdYnFztfbcfWZuGM1UCJgXi7EiA17uPpOCqlztVxEQnLkGY1GbNq0iblYIrn7JSWss1KISKFtR2iaJLXS3pAIIyyQYw886w7jt98eAKDjf2dV2LDW+RKuPRMprQZyBMybI7WLScjeoXLgrM5ZyAcnNEee0kLRXhjHtWvXAMjfL8kdjiGViBQ6sWA9TZJLImzfvn3o2LGj1GUhGMDdvSOtsdVhmASYCbmFjaumdVYDOb0Zsc9ES9ZMuVxMzvYONSGVABRS5yzv1mCNkrFEQqxQSvZLcrRJKUWkUPciC+3IHi6JsC5duqBWrVoYOHAg+vfvj7i4OKnLRaiAVHtHmmN7424O5kLMvAMxGo2IiYmR5H4A57FpJmzdE6uBnN6Iq5YTrVgz1RaLUg62Quuctd0arFEjA7wQ65JS/ZJcbdJdEcm6e1EsLomwv//+G+vXr8e6deswa9YsdOrUCYMHD0bPnj01c+NEZeTYO9JWh2EeEwaUIylpN/8Sbdq0SdLgfEexaUJi0VgM5PRGXLWcaMWaqaZYlHqw1UqdO4MFN5a9BU316p3G6NG2V6IKHYPteQhMK2XlapPuikgWnouUuCTCIiMjMWbMGIwZMwZHjhzBmjVr8Oqrr+LVV19F3759MXjwYDzwwANSl5VQCKlfPltCpkaNy9i9Owkc54Pdu5NQteptWYPzxQw0njbT8hTEWE5YiDkSg5rCRar3XYo6Zy1JspoDuZgFTSkpKYiMjBRcP2q7Pd2d3GpFYAnB7cD8li1bIjo6GhEREXj33XexevVqfPDBBzAYDFi5ciWaNWsmRTkJBZHj5TMXMkZjCC/AAGVcL2IGGk+baXkjWok5kkMsihUyUr3v7ta50FV5vXv3RlhYmM1jLDxTKRC7oCkyMlJUGIeQ4Hup3Z40ubWNyyKstLQUX3/9NVavXo2MjAy0bt0ay5YtwwsvvIArV65g6tSpeP755/HHH39IWV5CAaR4+Ry9SGq4XsQONJ7QkXs7rMccAdKLRTHpBeQQgO7UuVALuLP9HFnLNWgPW2LZkStQrgVNjsI0pAzHoMmtbVwSYaNGjcJnn30GjuPw0ksvYd68eWjevDl/PDg4GPPnz0dsbKxkBSWURQpzsfULl5OTg4yMDFVcLxRkT7CKlGJRTPLXmJgYpq2Frq7WZCnXoD2ciWWxC5pcRUiYhpQWK28TWEJwSYT98ccfeP/995GSkoLAwECb50RGRmLfvn1uFY5QF3f3jrT3wrkjiNyJGWExyJ61GBjCs3AmZFi1FgpZram1bXvMcSYUnS1okmoS6cwrYYo1s4b6JelwSYTt2bPH+YX9/PD444+7cnnCC3BFELmTbsKEu8JSSmijcLbRukDW6pZbQqwzWr03e9jqy2z1kZ067ZU0TYYzr4TYWDNCPC7HhJ06dQrvv/8+Tpw4AQBo0qQJRo0ahUaNGklWOEJZpNw7UghiBZEr6SaUvicx0EbhbFJQUIDLly87jT0C2BXIaucdcwdn1hln92a+GTnrQhlw3JcNHPgk/Pz8cPfuXf58f39/6PV6/nd37lGMV0LrkxJWcUmEbd26FX369EHr1q1hMBgAAAcPHkTz5s3x+eefo1evXpIWklAGuQMnpRJEQjph82z/qampKC0thZ+fn81VVSx0Hp42s9cqQq2TJlgVyFpJUmsLZ9YZZ/dmvRk5q0IZcN6XibFEuSqShHgl3LXak4Czj0sibOLEiZg8eTJmz55t8fmMGTMwceJEEmEaRs4XQSqR56wTnjo1B99808xM0GS5lO1fKbRstfA07LVNrcUfaTlhqjPrjNh7Y1UoA9KJZbEiSWy6CHes9lKEkXgyLomwixcv4uWXX670eb9+/fDee++5XSjCc5HiJXPUCUuZ7V8ptGy18HSMxhBkZSXiwAEDAPtWStZm+lpcDSx0myB79wYAOTnxmhHKgHRiWaxIcmdCLNZq7+6uJZ6OSyKsQ4cO+Omnn1C/fn2Lz3/++Wc89thjkhSMIOzhaIDJyYnXnKDRstXCkzEfMEzYslKytMBCjf0OpcKZMDAajdi0aROAyveWnV0fixePZtadby3STXFrcohloSLJlbbojtWeLP62cUmE9ejRA5MmTcLhw4fRpk0bABUxYVu2bMGsWbOwbds2i3MJQmrsDTBaFDRatFp4OtYDhjnWol5Mbi650XpCTEflss5rlp+fj/T0dGYHd5PwKiwsdLjIQ0qxLHdduGO1J4u/bVwSYa+++ioA4IMPPsAHH3xg8xgA6HQ6lJWVuVE8grCPrTgGtXKQuQuLOcyEIFedqe3es52xvAJnol7t+DEt1rdQbJWBxcFd7AIPvf46Bg580iInlyt1LndduDPJ1eIEWQlcEmHl5eVSl4MgnCJ0VqhWDjKxaH0vNbnccHJe15nQMGE7YzkAOBb1WlzlypI71RVYHNwdxWgBsNm3SJGTS+66cGeSSxZ/27i9gTdBKIUjV4vJNWFCiRxk7qJ115Fcbjg5ritmc2jA9oBhMGQiMTGrkrvIVA5W3WLO0Hq+OtYHd8vYQu6ff/KIdCXqwh2rvVYt/nIiWIQtXbpU8EVfe+01lwpDEM6QW5AoPZCyKrBcQS43nBTXFSo0dLp7e/M5GjBSU1MRFRWFiIgIXLx4EQCbbjGxaMmSp4VFCJVjC3Uw7f8oV98ih9CR0mrP0q4lLCBYhC1atEjQeTqdjkQYoThSJYL1hIFUDRwN3uYZzK1xZukTel0xFkNH19Tr9S5bJ1l0i4lBSBJkliyzWrAkO4otBKTrW+QObXCnrlnetYQFBIuwnJwcOctBMMyFC8BffwENGgC1aqldGttI1SFrfSBVA2eDt3UGc2vsxRqJva6QmCUhlk4ltoBhEaGZ6FmKDWOlHPawH1tYgVR9ixKC1NW/1YJYVhOKCSNsYgpi3rixKiZO1KO8XAcfHw7z5hnRt+8tJl8aKcqj9YFUDYRaD8XGGtm77vnztXD16i2XYpbksHRqwS0mBKETEFZjw1jEVn/CcYB5TJhUfQtr/bE5LJdNbVwWYRcuXMC2bdtw7ty5Si/lwoUL3S4YoR6mIGajMeSfBIgVMQzl5TpMmBCKv/9eDb3+OlMzYimh4FFxCBm8XYk1sm1FKMfWrc+5HLPkrKyuuNw8ZaZvLRiAisUI1hQWFrq9io8FlErLYd2fANCkSFcKraRLkQqXRNiePXvQo0cP1K1bFydPnkTz5s1x5swZcByHli1bSl1GQmFML4Azq4Enz4i9PXhUTDoHZ9ZDVxc72BIFgI6fFLgS2OysrK663JydW1BQwAfw24KVgcUkGLKyEpGZacCBA+2QmWmwELubN2/W/ARM7rQczmK0TD+npqZCr9cz8/zVxhv3mXRJhE2ePBnjx4/HrFmzEBISgq1bt6JGjRp48cUX0aVLF6nLSKiEN8VHeXPwqLXgMt8epuJ32x1hv379+J8dWQ/FugDtufdu3gzGF188L/g69hBi6ZRygsF6Hi5bbToz0+BQNGt9AiZ3Wg5PsY4qjTfuM+mSCDtx4gQ+++yzigv4+eHWrVuoVq0aZs+ejWeeeQYjRoyQtJCEOrAcH+XOYgFz0ZGb64OcHD8kJNxF7969cffuXfj7+0Ov11f6O0/sNO3PPEOg11932BEGBQU5HGhMudvEinnrAcx8expXJwX2LBNGY4jsmz6ztK2RLUz1nZubi/T0dLuiOSsrEZ0771aljHIiV1oOsX2Ft7nhHKHVnHuu4JIICw4O5htLTEwMsrOz0axZMwCOl6MT2oOl+CgpFguYi47KnW8WWrb8FUZjCO6/vxdatKiC2NiK3SE8tQN0NPNMStqN3buT3F5J6IqYt3VddyYF1kLD1v0qlRNL7W2NbBEREcG3BXsr+g4cMFRKVqt1WBnsWbeWKo27C2jsTbRZ7M9dEmFt2rTBzz//jCZNmuDpp5/GuHHj8PvvvyM9PZ3f0JtgF7FWJBbio6RaLOAsu/mtW1V44WE9MHtyB2irPjIykgBIs5JQKjHvznXMhYZag68WkqHq9ddhMGTiwIF2Vkc8L18eK3kBhbpHc3NzbVrLWBIVUuBOKIzjiTZ7/blLImzhwoW4ceMGAGDWrFm4ceMGNm3ahAYNGtDKSMZZtQoYNgwoLwd8fIAPPwQGD1a7VM6RerGAves4svyYru2JbgPbSSV93IoJlCqBpByJKNUYfFmxutjDvP4SE7Nw4IAB5iLcE+NBWYx7dSQcTG55Tw9Wd8fqLXSixUpcmUsirG7duvzPwcHBWLlypWQFIuShoKAAZ87cxbBhNVBebrIiAa+8wuHBBy8jPt5PEy+wVJ2mvfQHzgZmT129Y69ezV2SYmMCpQpOliPIWYnB1yTWTSEarFhd7BEREYHU1FRs2rQJev119OjBZjyolLAW9+pMOHhLsDrgvvWc9ffNhFvJWktKSnD58mWUl5dbfF67dm23CkVIi0k45OTEo7y8v8WxsjId3n33RwQH38K4cT3QokV1plcKStVp2rqOdQwUUHlg9tTVO/bqtWXLX9G8+XGXO0KphKjUglbOwbegoACXL1/G5s2bLT5n0epijfmCFJbiQeWEpft0JBwAMG1JlQN3QmG08L4BLoqwP//8E4MHD8aBAwcsPuc4DjqdDmVlZZIUjpAGxwG395Jfrl/P/eOeZHt5tZzxRVWr3hY0MLPuWnIFe/XKQkygVMid3d5egLXJYuqOZVEJ5N6DkBVYvU9HwkEty46S4RdSGgBYs3LawyURNnDgQPj5+WH79u2IiYmBTqeTulyEDDhLfllersMrrwDJyUCtWrZfKvOgfjWRShhYX0eowNOKqVssYupVjgFK7g5f7vxNtgKss7IS+fgqk8U1NjaXyYzp3pLfitX7dCYclLbsKB1+IfVzYcnKaQ+XRNjRo0dx+PBhNG7cWOryEDLjLPllWRmQlVWAqlUru4C0GtQvFiFCRCumbmcIHfh79+6NsLAwi7+TeoBSqsNXamA1d1ebMC3+GD16MfT660hJSUFkZCRTwoaVcsgNq/fpyCKttGVHjfALOUIPWBRfJlwSYU2bNqV8YBrGPFGlLSGxf/86HD9+L92DpwT1A9JZG8R0iCyvpmTJIuBJ8XbW7mpzzC2mkZGRHrEPI+EeQt2jall2PDH8ghUEi7CioiL+57lz52LixIn417/+hRYtWsDf39/i3NDQUOlKSMiGMyFRUlLiNKj//fe/Q0LCWdlXA0oVK2BLdFhv0+Po2uZ/J6RD1MJqStYEtCd0+LZTflSgRYspIS+OJkOmHSNMqGHZ0VL4BcsLy2whWISFhYVZxH5xHIcnnnjC4hwKzNcezoSEo6B+88FEbuuElBYb63NiYmIEX9t6E2ZnHaInWXeUQksdvj3sZZ0HXHchsWxRlQpvuEd72LsvFkSFlsIvWLLuC0GwCNu3b5+c5SBUROjMymDI5Df2VWOliZwvjdBru9oheoJ1Rym01OHbw5aV2WDIdHnbH2/Y1kYLVmOhCBWTQs9TW1RoZaWhCdbbhzmCRdjjjz/O/3zu3DnExcVVWhXJcRzOnz8vXekISXB3hmQZYFyOtm33e9weckJxtUP0BOuOUmitw7eHEHe10HdT6LY2WraoeorVWKhg7tevHz799FP+d9ZFpxZWGmoRlwLzExIScPHiRdSoUcPi86tXryIhIYHckYxhLRysYwzsYTQacf48ZxVg7IPMzIqNfL0VVzpET7DuSIm1BaCwsBBXrlzhf9dqhy80wDo1NRVRUVEutSUt7D/pDlq3GgsVzMXFxfzPWhGdrK801CIuiTBT7Jc1N27cQJUqVdwuFCE9rnT2mzZtQk5OPDiuicXnallwxG48zhKeYt1xhhD3CgAHbifL3xMSzspeZimR23WkdYEiBE+yGgsRzEKfqRrxcizEo3k6okTY2LFjAQA6nQ7Tpk1DUFAQf6ysrAxZWVl48MEHJS0goS5qW3BMHc/GjVUxcaIe5eU6+PhwmDfPiL59bzEVYOkMrVp3hCI0pqd37978z9aD1P33H8OxY/c7HLRY7/DlbI+eJFDsoXafIxVCxZWQZ6pWvBwL8WiejigR9uuvFZ0hx3H4/fffLTrDgIAAPPDAAxg/fry0JSQkR8wgpqYFx9TxGI0hWLx4tEVm/wkTQvH336uh119nJmZCCNbmfFNnevx4If+ZVjs1oTE9d+/eBWB7kPrttwcA6PjfzQetlJQUxMbGarJupMJTBIojPMVqLFQwC3mmnhIvJxfmVsLcXB/k5PghIeEuYmMr9rVmuU8VJcJMKyQHDhyIJUuWUD4wjSJkdlNYWMhvQCxlgLEYTOVz1pnZug9WXJeO6sW8M/3kE8vOVEvC0hp3LAAmAWbCOrGpVutEKpwJFHtJtFkehGzhCVZjoYJZjOhU2h2thRWr5mV0JFBZ7VNdiglbs2aN1OUgFEZsY7QXkKmEdULs7J+l7ZXsLYpw1plqeUbrjgUA4GAuxDzNyiMFjgSKqW3ZcwPLvfWUlGg9CFyMuGJ1z1otWOBM363VPtUlEXbz5k28++672LNnDy5fvozy8nKL4//3f/8nSeEI9lHCOiG0M1NjeyUhFjdb3+nJsT3uWABsxYRpvT6kQOiqS3sDpdEYgrlz/6uYBcOVIHJPDAIXY9Fjec9aLSwI0Wqf6pIIGzJkCH788Ue89NJLiImJsblSkiCkxFlnpuT2So4WC3TocAfnz1dB69Z6h25QT47tcdcC0KnTXk27oeRAyLY29gbKW7eqYPfuJMUsGK4mlvWUIHChgtl8YZuz65nqRK14OS0IHK32qS6JsO+++w47duxAu3btpC4PQdjF0UxRqe2VHC0WGD8+FDpdRefkbAWnpwQf28MdC4DW3VBy4Ux82BsoTQLM9LvcFgx3EstKLbDUSOsgRky6sl2aGvFyWhA4Wu1TXRJh1atXR3h4uNRlIRhCq64BuV9ER4sFAB9wXMVPQlZwekLwsSPsiSl/f3+XrsdaW2MN2zF2lfevVNKCoWZiWTW3ehJ6PVe/V+mJilYEjhb7VJdE2FtvvYXp06dj3bp1gk2qhLbQsmtAiRfR/gbN93C2ghPwLKuPUJEUFRVVqW0VFhbyqSuACqGm1+strs1iW2MJWwNlUtJuC0sYoJwFQ+04Ik/a6omFSbHYflWttBFa61NdEmELFixAdnY2atasifj4+Eoz2yNHjkhSOEJd1B70hHQoRmMIsrKCEBd32+JzuV9E6wEPKEfFqj7vXdnnjnCPiYmRs2heg62BsmrV25JZMITuiACwFUek9a2eWJkUC+1XtZ42QklcEmE9e/aUuBgEURlnHc/GjVUxe7Yeixbp4OMTim7dHlK0Y7Ue8LKz6zsd7FiY0cqJt3eoUuFOLJP1QCmVZVhozqjU1FQA7MQRqW2Rkwo13i1X+ysl00ZovU91SYTNmDFD6nIQhE1sdTymVBSmlYlARQyWGh2r+YAnZLBjZUZLsIvYBJlCBhcpLMNCc0aVlpby38lCHBFLFjmt4W5/JXXd23Nx9u7dG3fv3q0UxiCkjGojSoT997//RatWreDr62vz+J07d/D1119b7A1HEFLiKBUFCx2rkMGO1c6AYAOxCTJtDZRGoxGbNm1y+l2uWAfEWJZYCJRmxSInN3LFYLnTX0lZ945dnFn8e5GamoqbN6tb3H9JSQkKCgqY7HvtRxXbwGAwoKCggP89NDTUIjFrYWEhXnjhBelKZ0aPHj1Qu3ZtVKlSBTExMXjppZeQm5trcc7333+PNm3aICQkBFFRUejVqxfOnDljcc4PP/yAli1bIjAwEPXr18fatWsrfdfy5csRHx+PKlWqIDExEf/9738tjt++fRsjR45EREQEqlWrhl69euHSpUsW55w7dw5du3ZFUFAQatSogQkTJlgEHhOuYZ2KwhwhLzerJmmCsMae2DEaQyqdGxERgZiYGP5f48aNkZaWhmHDhtn952o8jiPrBgD4+VnO7fX660hIOOuya95dTBY5U39ha6unixcvWoxtWsMkUD788EMMH34IDz8cheefj8DDD0dh+PBD+PDDD7Fs2TLF79FZ3YvBmYvT9F5MmvQnM/cvBFGWMM60/t7O7/Y+k4KOHTvizTffRExMDP7++2+MHz8ezz33HA4cOAAAyMnJwTPPPIOxY8diw4YNMBqNGDNmDFJSUviFAjk5OejatSuGDx+ODRs2YM+ePRgyZAhiYmKQnJwMANi0aRPGjh2LlStXIjExEYsXL0ZycjJOnTqFGjVqAADGjBmDHTt2YMuWLdDr9UhLS0NKSgr2798PACgrK0PXrl0RHR2NAwcO4OLFi3j55Zfh7++Pf/3rX7LUj7fhzNWRkpKCyMhIi7+RwiRNIk5e1MjrxCruunLkqidn1o2wsDDmXO7WFjkAyMmJR3h4AdLT0/nztBoozvLWPVJbQ51NAli7f2e4FBPmCLmy548ZM4b/uU6dOnjjjTfQs2dPlJaWwt/fH4cPH0ZZWRnefvtt+PhUPIDx48fjmWee4c9ZuXIlEhISsGDBAgBAkyZN8PPPP2PRokW8CFu4cCGGDh2KgQMHAgBWrlyJHTt2YPXq1XjjjTdgNBqxatUqbNy4EZ06dQJQsZdmkyZNcPDgQbRp0wa7du3CH3/8gd27d6NmzZp48MEH8dZbb2HSpEmYOXOmRw/kSm6c7ejljoyMlGXFnbXrR063j7ehhc2C5aagoIDfhJtVN5qQWC8Wno+9zPWu7oGoVsoFMbAa/yblanVH7wWr9+8IyUWYEly9ehUbNmxA27Zt+fQYrVq1go+PD9asWYMBAwbgxo0bWL9+PZKSkvhzMjMzkZSUZHGt5ORkjB49GkDFC3j48GFMnjyZP+7j44OkpCRkZmYCAA4fPozS0lKL6zRu3Bi1a9dGZmYm2rRpg8zMTLRo0QI1a9a0+J4RI0bgf//7Hx566CGb93Xnzh3cuXOH/72oqMiNWlIeNTbOViMnjHlHGxMTU2nWb91Bs9A5awG1NgtmxfpmK7mowZCJAwcMANhKkMlCrJczzCdMzrZ2cragRyspF1gV7lLibBKgtfsXLcL++OMP5OXlAahwPZ48eRI3btwAAH4GJxeTJk3CsmXLUFxcjDZt2mD79u38sYSEBOzatQu9e/fGK6+8grKyMhgMBnz77bf8OXl5eRbCCABq1qyJoqIi3Lp1C9euXUNZWZnNc06ePMlfIyAgAGFhYZXOMdWLve8xHbPHnDlzMGvWLIG1wQ5qbJzNEhEREQ73k+zb95ZqQaFyzN7ltggomVKAJeubIxFqMOxHYmIWU2JHC0kxrZ+Zq5YSlt195ri6IlXqd1rutBH2JgGsrMgVg2gR9sQTT1jEfXXr1g1AhRuS4zhR7sg33ngDc+fOdXjOiRMn0LhxYwDAhAkTMHjwYJw9exazZs3Cyy+/jO3bt0On0yEvLw9Dhw5F//798cILL+D69euYPn06nnvuOWRkZGhik/HJkydj7Nix/O9FRUWIi4tTsUTOUXLjbFZxtJ+ks62LlCgXIN3sXQmLgJIuBbWsb46wNdBnZhqQmJilWBlsofV8TID7liItuLtcyWwv9TutRCoee5MALVhpzRElwnJyciT98nHjxmHAgAEOz6lbty7/c2RkJCIjI9GwYUM0adIEcXFxOHjwIAwGA5YvXw69Xo958+bx53/66aeIi4tDVlYW2rRpg+jo6EqrGC9duoTQ0FBUrVoVvr6+8PX1tXlOdHQ0ACA6OholJSUoLCy0sIZZn2O9otJ0TdM5tggMDERgYKDD+mANpTbOZhlH+0kK2bpI7nJJOXtXwiKghkuFpYSeQgd6pcWOJ+S4c9dSohV3nxgrpVzvtBLtwJ7lWgtWWhOiRFidOnVEXfzVV1/F7NmzK61SMxEVFYWoqChR1zRRXl5hJjXFUBUXF/MB+SZM+cxM51q7JwEgIyMDBoMBQEUH0qpVK+zZs4ffFaC8vBx79uxBWloagIrYM39/f+zZswe9evUCAJw6dQrnzp3jr2MwGPDOO+/g8uXL/IrKjIwMhIaGomnTpi7dL+soZQZmeTbOagctx+xdTouAu23JFdcKSxYOZ+0oJSUFsbGxqogdlgWWUNyxlGjR3SUUlt4BW1j36VrfisqErIH5n376KcaPH29XhAklKysLhw4dwqOPPorq1asjOzsb06ZNQ7169Xjh07VrVyxatAizZ8/m3ZFvvvkm6tSpwwfCDx8+HMuWLcPEiRMxaNAg7N27F5s3b8aOHTv47xo7diz69++P1q1b45FHHsHixYtx8+ZNfrWkXq/H4MGDMXbsWISHhyM0NBSjRo2CwWBAmzZtAACdO3dG06ZN8dJLL2HevHnIy8vD1KlTMXLkSM1ZusSghBnY3dm4nKs3We2g5RCHcgtOV9uSI9eKwZDJx1WlpqZaTABZEtDO2lFkZKRHiCE1ccdS4qht2ouLlttCKMXklKV3wBYRERHo3bs3Nm/e7LLlmkVXuawiTKqcYUFBQUhPT8eMGTNw8+ZNxMTEoEuXLpg6dSovajp16oSNGzdi3rx5mDdvHoKCgmAwGLBz505UrVoVQEXw/o4dOzBmzBgsWbIEtWrVwscff8ynpwAqsu1euXIF06dPR15eHh588EHs3LnTItB+0aJF8PHxQa9evXDnzh0kJyfjgw8+4I/7+vpi+/btGDFiBAwGA4KDg9G/f3/Mnj1bkvpgGSXMwK52Zkqs3mQxHkEOcaiE4HSlLTlyrRw40A4HDhjQo8d2ABVpRUy7e7AmoFlsR1pGagu6vbZpWoGp9OIOKVzFrL0DtjCFADmz2smVJ1IONJGiokWLFti7d6/T8/r06YM+ffo4PKdDhw749VfHJsu0tDTe/WiLKlWqYPny5Vi+fLndc+rUqVPJ9Umog9KrN5WKRxBj1RMzqDty55nP9KUWClIOlLY66QosZ8zmu1iwJny0FNfCOkrFs6m5uEOKPoy1d8Aezqx2cuWJlANNiDCCcBVPW73pLBWGo4FEyKAudKWUmGsKRcqB0lYnbcJRnIuawkfJeEd3cqOxkldNLO6USUids7S4wx2kfAfkSmejBaudUEiEER6NJ63eVCIVhtCVUnIh1eBt3UmbY/7cTYmcnaFELIlS1hp3cqOxlFdNSRw9G1MiWNYD25VG7nQ2WrHaOYNEGOEWLK9WNEfOmZNSdSA2FYY75XJ3QFH7eQP3OumsrES7WedNe7+yYtlR4nvcyY3GYl41pXD2bFgPbLeHXP2XEulsPMFlL6sI69evH0JDQ+X8CkJltJQ7SK6Zk9g6cHeFptDO3p1nIyRNgr1Vz6w8b6Cik+7ceTcSE7PsPndWyqo07lg7PcX1JiVadZHJ3YeThdAxLomw8vLySjm5TJ9fuHABtWvXBgCsWLHCvdIRmkBLg5hcMydndVBQUICLFy+6FMtljZjO3tVnIyRNglYCXwHPmDFLjTuDIw2sttGqi0zOPlxKC6FWPC9iECXCioqKMGTIEHzzzTcIDQ3FK6+8ghkzZvBJUa9cuYKEhASUlZXJUliC0CJyxHIp0dlrcUBhsfNlNZDdncFRq643JSDBb4mUFkIteV6EIkqETZs2Db/99hvWr1+PwsJCvP322zhy5AjS09P5zk+q3GAE4SnIta2REp291gYUUyd9+fJlbN682en5cos2lgPZ3Rkctep6k4Pi4mL+Z3vPF1BngsDKBEDKCZ3Q8sqZmFtKRImwr776CuvWrUOHDh0AAD179kTXrl3RvXt3bNu2DQA0sVE2QagBWQ+UISIigpkZM+uB7O4Mjlq0lEpNQUEBPv30UwCOn2+/fv0UF9msTQCUmNC5k8JHLUSJsCtXrljsHxkZGYndu3cjOTkZTz/9ND7++GPJC0gQ7sBSDIEWrAcs1Ze7sNTZshzI7s7gqDVLqdQIXQEYFBSkWtkANicAUqNECh85ECXCateujRMnTiAhIYH/LCQkBLt27ULnzp3x7LPPSl5AgnAHViwiJtyxHsgpkMzdFu3b98X//Z8vate+g+joiozy/v7+0Ov1/PVZ6sS0AEuB7O60I08S6VLC0vO1Rq0JgNJtRa6wD7kRJcI6d+6MNWvW4Omnn7b4vFq1avj+++/x5JNPSlo4gpAC1gSDq9YDuQSl3EkVCbZc0e60I7UmNazENtmDpedrjVoC0dW2olQKH1YQJcJmzZqF3Nxcm8dCQkKQkZGBI0eOSFIwgiAqI8dAo0RSRW+HNVe0O+3I22ObbMHa8zVHTVEi9HlIGcvF8rOwhSgRVr16dVSvXt3u8ZCQEDz++ONuF4ogCOVh2aViD7n2ppMDCmR3Da3ENrH6fFkXJVpN4SMVopO13r17F4sWLcJnn32GP//8EwDQsGFD9O3bF6+//rrgvdgIwlvQShyN1sz4WnSjensguzsoEdvkrqhn9fmyLEq0nMJHCkSJsFu3buHJJ59EZmYmkpKS0L59ewDAiRMnMGnSJGzbtg27du1ClSpVZCksQWgR1hYH2KPyptflSErazXdkRqORqSz5rLlRbcUtFRYWCvpbtQW4FpDbUqtFUS8G1kWJ1iaBUiFKhL377rs4f/48fv31V9x///0Wx3777Tf06NED7777LmbOnCllGQlC82il027Z8lfculUFu3cngeN8sHt3EqpWvY2WLX/Fpk2bmBqATALH2eBcWFgou3h0HLd077zU1FR+lakJFgS4FpB7kHZF1LNs5RbynUZjCHbtKkXz5pdUd+Er4TY1GkPw7be38OCD6t+vCVEi7PPPP8fChQsrCTAAeOCBBzB//nxMmTKFRBhBaBSjMYQXYADbwfl375rSZ9wBwAEwTxTNwd+/xOI8OREat6TX65myJmoJpWKbxFjcWLZy2ypbYWEhv5MEi9Y+OVP4sHi/gEgRdvbsWTzyyCN2j7dp0wbnzp1zu1AEoSVY2R5DiiB1qV0+SgTOl5YGwlKAAYAOpaXKWx9YTsrqCSgR2yTW4sayFdNe2Vhx4dtCyhQ++fn5SE9PZ/p+RYmw0NBQXL58GXFxcTaP5+XlISQkRJKCEQTLsLY9hjvxLOYzSCldPkrF2LAUS6LFFaZSoVQuL7ljm1hfTSgFntpO7bUvlu9XlAjr2LEj/vWvf2Hr1q02j7/77rvo2LGjJAUjvBtWrEu2YHF7DHeC1CMiItC7d29s3rxZ0gFIqcB5lgZNlgShksiZy0uNuCuWVxOa46rw1VI7NbWl48cL+c/ECnqW71eUCJsxYwYSExPRpk0bjB07Fo0bNwbHcThx4gQWLVqEP/74AwcPHpSrrISHw5p1yR4sb4/h6owvLCyM/1nqAUiJWSgrgyZLglBJ5MzlpVbcFeurCd0Rviy1U0fi2bwtffKJ6xZ0lu7XGlEirGnTpsjIyMDgwYPRp08f6HQVFgCO49C4cWPs2rULzZo1k6WghGfDonXJGSzOrqQqk5QDkFz1ZJ2T0F6Zlc5dyIogVAO5YuJYeedZwl3hy0o7tRbZcsVxsXK/1ohO1tqmTRv873//w9GjRy2StT744INSl43wItS0LrkaPM7i7MqbymSd6sHd86SEdSuKXLAce+MMltNNOMKZWDl+vBD79wcgIeEuAgLyLf6WlXZqq3+Voy2xcr/miBZhRUVFqFatGh588EEL4VVeXo4bN24gNDRUyvIRXobS1iV3g8dZnF25Uia5ByA56omlQZOlsqiJs/c3P/+eCGAlvMCEWLcnK5uKOxIr2dn1MWtWI7M+LQstW7r3fUptFcaip0EORImwL7/8EpMmTcLRo0cRFBRkcezWrVt4+OGHMX/+fHTv3l3SQhLeg9KWHCmCx1mcXYktkxJxN1LXk3WZjUYjSktLLc7x8/NDSUkJLl68KOugyHK+KCWx9/4CQE5OPNasyWBm021biNlwmpVNxe2JFX//Epddw/YmC0ruKiDFWKCFyZEoEbZixQpMnDixkgADgODgYEyaNAnLli0jEUa4hRrWJTlM3+azfhMsD8SslssR5laJTZs28Z+rMShaX9faUmISgyZYbgvuYP3+ZmfX/yfOk71Nt12FpU3F7YmV0tJAh31aSkoKIiMjK13PUbuUY8Wz9Xti3m+6OxZoYXIkSoQdP34cH3zwgd3j7du3x9SpU90uFEEItZpIZRp3Zvp2FFdhjzVrMhQTAizO+JQsE0uDIlDZUmIP1ixBUmF6f+VMXsuCO5CV5Ly2xIrRGOKwT4uMjHR59wapJq32LYoh/HXctaCz/n6JEmHXrl1zuAVIaWkprl275nahCEIIUprGHZm+jxx5SHRchdJCgMUZnxplYmVQtL5ne5Y5rVqCrLEnpOUK1GdF5LK0EMFarMgZ2iFVvJbQyZMnI0qExcfH45dffkHjxo1tHv/ll19Qp04dSQpGEM6Q2jRubzbp6NrmJn2hS6ulggVLgDOU/n6WBkUT3jC42EszIFdwNSsiV83gcSEWZLlCO6QWeK70mZ6yyEWUCEtJScGUKVPw5JNPombNmhbH8vLyMHXqVPTr10/SAhLegTuuKykHXuvZpLNr2zLpKyEEhAYGp6am2k3RwIJIkxrWVlSxYplTArXSuKgpctVMCWPP0mwSwOZllKM8rgg86/CRo0dv8X2XmPg1T+q7RImwN954A19//TUaNGiAfv36oVGjRgCAkydPYsOGDYiLi8Mbb7whS0EJz8Yd15WcA68r1xayTN/dTkSoGd8UrK7m6i0lYS1PGouWOaWRc6ENCyJXyvsTa91W+90VI/Bsh4/UhE43GklJuyWNX1MqjYYUiBJhISEh2L9/PyZPnoxNmzbx8V9hYWHo168f3nnnHdrAm3AZV18KdwZeZxY4V65t/TdAOQyGTP64aZYqhQASMgixEKiuJCzlbmPNMqcWclljWBG5UtyfVGkvhHoViouLXS+sCzgKH9m9OwlJSbuxe3eS25MnJdNoSIHoZK16vR4ffPABli9fjvz8fHAch6ioKH4LI3P279+P1q1bIzAwUJLCEoQ9XB14hZj0Xbm26W+yshKRmWnAgQPtkJlpkFwAORuEWLAUqAErudvcmSBoIebPHkqtjFVL5Mpxf1Kt8I2IiEC/fv3w6aef8p/ZEnSffvqpaCEixX3b67NiY3MxevRitydPcqTRkBPRIsyETqdDVFSUw3OeeuopHD16FHXr1nX1awhCMK4OvEI6IVevnZlpkFUAORuEWLEUyA2LKTpMuBo7w8LqP1dRamWsWu5nOe9PiomTeS5PKS3hUty3oz5LysmTVvo+l0WYEDiOk/PyBMEU1gO8Ep2As0HIW9xhrKXosG4L9gYXe6KQldV/7qBUXavlfpbr/qTsN+SwhKshnF2ZPGml75NVhBGEqwhxxchp/XDl2iYhkJubK+vyfGtMg9D587UA6BAXd54/xlqgupywZBGSUhR6Q4oLsbgrcm3BivtXyn6DVWuQI+Es1UpIrfR9JMII5hAToCq19cO8I05NTbW5F2FYWJjda0dERPB/r2QnkJ1d3+5A7ajD09rWSlpCijr01pg+Z0ht+WRpL0gp+w2WrUH2hLM7mfytcdb3sbBykkQYwRxiAlSlelkB6eJwCgsL+Z/lcpWYz/CFDNT2Ojwlt1ZSG3ctHWpYSli1ZLCAlHXN2rZXUvUb7go6VqyD7mCv75s6NQfffNNM9ZWTsoowWysmCXZg/QVT2gogRRxOQUEBNm/e7PQa7hIREYHU1FRs2rTJ5YGahcFGKdwV2GoFyrNsyfBEWLI8ShWk7qqgk9o6yNLiGZZWTlJgvpfCkvndHmpaAVyNwxGzF5q7nY0pE76zgVrNrZVYwV2BrVagvFbiWjwFNfscOUWKK4JOauugUotnhNQPSxZmWUXY9evUUbAKa+Z3W6hlBZBCoDi7RmpqKiIiIiSxRjobqNXaWolV3A10VzpQnqXks56OmpZHKUWKlIJOygmbEhN6R/Uo956mriBKhHXq1EnQeXv37nWpMITysGwRcSYuzIPKpXSdSiFQnF1Dr9dL6uISO1Cz1AkpibvtXan3RerVf6yHHrCC2pZHqZ6BlIJOixM2dyeuSiJKhP3www+oU6cOunbtCn9/f7nKRCgI6y+YLXFhcgWtWZMhi+tUCoEi5BpSu7jEuBxY6oSUxN32rtT7IuUgqvXEr0rjKZZHqZ6lp07YWHnOokTY3LlzsWbNGmzZsgUvvvgiBg0ahObNm8tVNkIBtPCCmYsLJVynUggUsddwxcXlrsuBlU5ISdxt70q+L1INokLfC09bjOEOrGx7xQKePGFj4TmLEmETJkzAhAkTkJmZidWrV6Ndu3Zo1KgRBg0ahL59+yI0NFSuchIyweILZk80KOk6lUKgCL2Gq/clhbWEhU5ISdxt7yy+L2KRa8WulmFp5R6LeOOETSlcCsw3GAwwGAxYsmQJtmzZguXLl2P8+PHIzc0lIaZBWHvBrMWFKZhSbleQHFm4hYgcd+5LrLWEBhv327s7f692bBZl37cNa9tesYgnTNhY7P/cWh155MgR/Pjjjzhx4gSaN29OcWIahrUXzFZnJ7crSIqOWOjLW1xcjOLiYgDKu7i8cbBxV2BLIdDVjs1iaRGO2mLUFp7W5t2FRcHiLiz2f6JFWG5uLtauXYu1a9eiqKgI/fr1Q1ZWFpo2bSpH+QiZ0OILpoXsz0Je8uLiYnz66af870q7uLxxsHG385Wi81Z7U25WFuGoLUYJYbAmWKTqv1lrU6JE2NNPP419+/ahc+fOeO+999C1a1f4+dHOR1qEtRdMKM5cQfZe1MLCQotM9vaQouN39vcXL16s9BlrLmFPRO7nKgY13IKsLMKhhQLagZX+XwvJxV1FlILauXMnYmJicO7cOcyaNQuzZs2yed6RI0ckKRwhL1prrCbsuYKECi1HqNHxm3coCQlnKx1nyRpJuI9abkFWFxXQQgHvRah1SwvJxV1FlAibMWOGXOUgCLsIFSFi9iplpeN31KGkpKQgNjZWs2KZsI3SbkHz98eRxVUNsU8LBbwXMdYt83NYiWuUChJhBPMIdZ0KjblhpeN31qFERkaSAPNAlHYLshp64IkDKiEcodat3Nxc/jxW4hqlRJKArh9//BE3b96EwWBA9erVpbgkQVggZIAwj7Wy91Kz1PF7YodCOEcNt6D5+2PLBVRSUsK/P0oJMmr/BGBfjNeokYfS0kCLnVFYiWuUEtEZ82/cuIG33noLAMBxHJ566ins2rULAFCjRg3s2bMHzZo1k76kBCEQR0KLpY7fEzsUQhhqLcRgaWUitX8CsC/GP/54CADLSTSrcY3u4OP8lHts2rTJYpuiL774Av/5z3/w008/IT8/H61bt7YbrE8QSuFIaJk6fnPU6vhNHYqpPJ7QoRD2sZVrLCHhbKXnLWdsli2XfU5OPIzGEIfnyQG1fwKAzT4Z4GCSJ6ZJtKmNtmz5K0aPXoz+/ddi9OjFmo8hFGUJy8nJwf3338///u233+K5555Du3btAABTp07F888/L20JCY9H6vxdjmbYLMykWA6U9kRYSQzKWmyWWrGR1P4Jc2z1yc68FawlF3cHUSLs7t27CAwM5H/PzMzE6NGj+d9jY2ORn58vWeEIz0cO94gzoaV2x8/aYCwVSoodod/FkvsNYCctjJqxkZ7a/gnXMe+T/f1LsGrVEJfc1FoU7qJEWL169fCf//wHdevWxblz5/Dnn3+iffv2/PELFy7Qi0OIQsrEjUJn2KmpqdDr9Tb/Xqn262nviZJiR8x3UWJQ26gdG+lp7Z+wj70Jk7XBxty65WgSnZKSgsjIyErX06pwFyXCRo4cibS0NPz00084ePAgDAaDxXZFe/fuxUMPPSR5IQlCCDTDVg8lxQ4JK/ehoHhCCYROmKxxNImOjIxETEyMlMVUFVEibOjQofD19cU333yD9u3bV8oblpubi0GDBklaQMK7cDeJKgks27ASF6U2rCTpVRsWYiO1iNLvkdbfW6G5G1NSUgAA6enp/GdC4r60Xj+AC3nCBg0aZFdoffDBB24XiFAWlhoxK0lUPQ014qKUFDtCv4valyW0X6k4lH6PWItndBdH719kZKTgeC7TeZ6ynyTtvu3FsPSSs5RE1dNQ2n0nldgREksi9LuofVVgK02GrfvXYoCz3Cj9Hgm1ImnB7S7k/RMbTuIp+0mKEmGlpaWYMmUK0tPTER4ejuHDh1tYxS5duoTY2FiUlZVJXlBCeoQ2ztzcXLvnSmUpUztQmJAGqcSOkAmCmO+i9lUBxU1Kh5LWXikmNmp6PYS+f658v9YnWKJE2DvvvINPPvkE48ePR2FhIcaOHYusrCz8+9//5s/hOE7yQhLqYu6nt4UUljJPDRRmyd1rQs7BQyqxI2SCIOa7PLV9uQIJLPdR0rUthchQ2+sh5/un9QmWqIz5GzZswMcff4zx48fj7bffxi+//IK9e/di4MCBvPjS6XSyFLRHjx6oXbs2qlSpgpiYGLz00ksWG3sCwObNm/Hggw8iKCgIderUwXvvvVfpOj/88ANatmyJwMBA1K9fH2vXrq10zvLlyxEfH48qVaogMTER//3vfy2O3759GyNHjkRERASqVauGXr164dKlSxbnnDt3Dl27dkVQUBBq1KiBCRMm4O7du+5XBIO4Y+41uT2cZc/WonvE1PF9+OGHdv8tW7YMBQUFipXpyJGHsHjxaKxb1x+LF4/GkSPSrmZWckcCId/lye2LUAd7osh61wGpcCQyhHL58mVB58nlupNzdwSWdkFxBVGWsL///tti26L69evjhx9+QKdOnfDSSy9h3rx5khfQRMeOHfHmm28iJiYGf//9N8aPH4/nnnsOBw4cAAB89913ePHFF/H++++jc+fOOHHiBIYOHYqqVasiLS0NQEXG/65du2L48OHYsGED9uzZgyFDhiAmJgbJyckAKrZmGjt2LFauXInExEQsXrwYycnJOHXqFGrUqAEAGDNmDHbs2IEtW7ZAr9cjLS0NKSkp2L9/PwCgrKwMXbt2RXR0NA4cOICLFy/i5Zdfhr+/P/71r3/JVkfuosbKMWv3yPTpV3DmjB/i4+8iNvZhAA9r1j3CWioFOc321mLH3qo7KcWOkO/y5PZFqIPSlhd3rUgFBQXYvHmzxWdq9PVyLQTR+kpfUSIsOjoa2dnZiI+P5z+77777sG/fPnTs2BEDBgyQuHj3GDNmDP9znTp18MYbb6Bnz54oLS2Fv78/1q9fj549e2L48OEAgLp162Ly5MmYO3cuRo4cCZ1Oh5UrVyIhIQELFiwAADRp0gQ///wzFi1axIuwhQsXYujQoRg4cCAAYOXKldixYwdWr16NN954A0ajEatWrcLGjRvRqVMnAMCaNWvQpEkTHDx4EG3atMGuXbvwxx9/YPfu3ahZsyYefPBBvPXWW5g0aRJmzpzJ5KxbzZVj5gNgTAzQqpUiX+t1yDl4yC127A0ab7+d4PS7WGtfLLqovQUp6l5p17a7IsP6fvfvN2D37iRF+nqlFoJoeaWvKBHWqVMnbNy4EU888YTF57Gxsdi7dy86dOggZdnscvXqVWzYsAFt27aFv78/AODOnTsICgqyOK9q1aq4cOECzp49i/j4eGRmZiIpKcninOTkZH7rpZKSEhw+fBiTJ0/mj/v4+CApKQmZmZkAgMOHD6O0tNTiOo0bN0bt2rWRmZmJNm3aIDMzEy1atEDNmjUtvmfEiBH43//+Zzeh7Z07d3Dnzh3+96KiIhdqRzxaD2wkhOHO4CF28JJS7Dhb2h4TU1N1YSUUtWNzvBmp6l4Ny4tUImP/fgMyMp4EUBE2JHdfr+RCEK3uJylKhE2bNg0nT560eey+++7Djz/+iIyMDEkKZotJkyZh2bJlKC4uRps2bbB9+3b+WHJyMsaMGYMBAwagY8eOOH36NG/xunjxIuLj45GXl2chjACgZs2aKCoqwq1bt3Dt2jWUlZXZPMd033l5eQgICEBYWFilc/Ly8vhzbF3DdMwec+bMwaxZs0TUiDQItZDYs0bk5+fT7J1h3HUVqikcPG2CwJqL2ptwt+6FbotmNBol6Q+ltiIZjSHIyEiCSYCZkDuIXa5xQWxeMVYRJcLq1KmDOnXq2D0eGxuL/v37C77eG2+8gblz5zo858SJE2jcuDEAYMKECRg8eDDOnj2LWbNm4eWXX8b27duh0+kwdOhQZGdno1u3bigtLUVoaChef/11zJw5Ez4+otYfqMbkyZMxduxY/veioiLExcXJ9n2mxinEQuLIGmFaPUmzd8eola3dXVehmsJB6yufCM/B9B5dvnwZmzdvtiuKNm3aBMD9/lBqK9LVqxGwtRZPS0Hs5nhKuhWXkrVu2bIFn332Gf78808AQMOGDdG3b18899xzoq4zbtw4p3FkdevW5X+OjIxEZGQkGjZsiCZNmiAuLo7fw1Kn02Hu3Ln417/+hby8PERFRWHPnj0W14iOjq60ivHSpUsIDQ1F1apV4evrC19fX5vnREdH89coKSlBYWGhhTXM+hzrFZWma5rOsUVgYCACAwMd1oeUmDfi++4rwqRJepSV6eDry2Hu3CJ07vwk0tPTBVsjaPZuH7WztbMWF+UMoRME1me5LEIxaRW4MimKiIhQdFIi5XOw9S4BHJKSdmt2QuMJ7VSUCCsvL8cLL7yALVu2oGHDhryF6n//+x9SU1Px/PPP47PPPhOcpiIqKgpRUVHiS/1PWQBYxFABgK+vL+677z4AwGeffQaDwcB/h8FgwLfffmtxfkZGBgwGA4CKzqdVq1bYs2cPevbsyX/Pnj17+BWWrVq1gr+/P/bs2YNevXoBAE6dOoVz587x1zEYDHjnnXdw+fJlfkVlRkYGQkNDLTY8ZwFTIx43DkhNBU6fBurX16FWrTAUFFQk3SVrhHt4mktNCZxNEPr2fcEjxILS1lE1XMssij61J0XWWNeR0WhEaWkp/7ufn5/FpN+VOrMORwDK8eSTu9GuXabFdQllESXClixZgt27d2Pbtm3o1q2bxbFt27Zh4MCBWLJkCR/oLhVZWVk4dOgQHn30UVSvXh3Z2dmYNm0a6tWrxwuf/Px8fPHFF+jQoQNu376NNWvWYMuWLfjxxx/56wwfPhzLli3DxIkTMWjQIOzduxebN2/Gjh07+HPGjh2L/v37o3Xr1njkkUewePFi3Lx5k18tqdfrMXjwYIwdOxbh4eEIDQ3FqFGjYDAY0KZNGwBA586d0bRpUz5tR15eHqZOnYqRI0cqaukSS61aFf9MmAbCI0cu45NPKNGlWEwdmjMRq7WOTynh4GiCAITJ9r1CkEJYqCEElHYts7gQQepJkbvvg9A6ssaVOnMUy5aamqr5SY0WESXC1qxZg/fee6+SAAMqkqnOmzdPFhEWFBSE9PR0zJgxAzdv3kRMTAy6dOmCqVOnWoiadevWYfz48eA4DgaDAT/88AMeeeQR/nhCQgJ27NiBMWPGYMmSJahVqxY+/vhjPj0FUNEQr1y5gunTpyMvLw8PPvggdu7caRFov2jRIvj4+KBXr164c+cOkpOTLTYv9/X1xfbt2zFixAgYDAYEBwejf//+mD17tqT1ogQRERFo3rxEk3lY1J6Bm0TsmTN3sX49h/LyexZiX18Oo0Y9hfh4P011fGpZEKwnCGoihbDwFusoiwsRpLTsS/E+uHrvQv9OaIC/q14pwj1EibC//vqrUooHc5KSkni3nZS0aNECe/fudXhOZGQkn0bCER06dMCvvzp+SdLS0hzeR5UqVbB8+XIsX77c7jl16tSp5PrUMlrLw8LKDDwiIgIREcCHHwKvvAKUlQG+vsC//61Dq1Y1nV/ADKlFpdjreYtwcIYUwoIVF79ai0XURKo8X3K9D1I/E08JYBeL2pNwoYgSYVWrVkVhYSFq165t83hRURGqVKkiScEI9tBSHhbWZuCDBwPJySaXmnOrjnUHUlhYWCnrtS2EikoxItUEK8JBy7C04EANq6Zaoq+goACFhYUApNvVQY73wdYzqZj8uldnLIgNqXEksoxGI79K1REsrOgXJcIMBgNWrFiBFStW2Dy+fPlyPkaL8Fy8cfYsBUJdaq7GiADSi8+SkhKmhAOLiHkfWFlwoIZVUy1Xtq33yZZlPzU1FVFRUYLrXurM+baeybZt3aDTgZkFBKzgTh9pDgsr+kWJsClTpqBDhw4oKCjA+PHj0bhxY3AchxMnTmDBggX4+uuvsW/fPrnKSkiEWDOt+eDqqCP11kFYaljoGMxhRTiwiCvCgoUFB0pbNdV0Zdt7n6wt+3q9XlAblmufVFvPBPABx1X85K3uf1uI7SNZNhyIEmFt27bFpk2bMGzYMGzdutXiWPXq1fHZZ5+hXbt2khaQkBZXYqXMA8xnz64Bjru35cWOHd0xfXqi5gLMCXGwIBxYw5mwyM/Pr/Q31mJVrQUHSu9/6EmubLn2SbWdx8sSrdaZ3DgSWaylI7FGdLLWZ599FsnJyfj+++/x119/AahI1tq5c+dKezcS7OGquyoiIgLHjgH/pGfjKSvT4fr1mmBJfxUUFNgcAAlpYGmlopo4ExamnSSsUTMORS4rjjOUFn2OkMIqIkfyY1t5vCq2GLq3qppSA1XGkcjSwmIiUSJs7969SEtLw8GDB/Hss89aHDMajWjWrBlWrlyJxx57TNJCEmzQoAHg42MpxHx9KwLN3UHKVSxSxQqwjtTmdZbN9aziqrBQ090slxXHHmqJPnvIbRVxpS9ztCdldnZ91euMZZyJLC1YYEWJsMWLF2Po0KEIDQ2tdEyv1+OVV17BwoULSYR5KLVq2Uq14J5VROpUEvZXy3iOyJB6IGHdXM8aQoUFq0hlxREqOJQUfY6Q2yrial9mK4WEecb8tLRTyM0NQvPmVRSvM9ZxJrJYssDaQ5QI++233xxuuN25c2fMnz/f7UIR7OIo1YIrs0AlUklofTGBuYAEIHm2b9bN9axhT1iEhl7GgQPeIV5dFRxy71tqqw8yhSbIbRVxpy+z7hdjYmL4n1u0cK9cnowzkaWFiZIoEXbp0iX4+/vbv5ifH65cueJ2oQi2sRUTxEpyVGvsiYy0tAZo2bIG87NJawFpMGRKsgWSJ26ppGRyRlvC4uLFEhw4cO8cT7K+WsNaHj7AeR+kBauIGmglqakthIgsR4nGWejfRImw++67D8ePH0d9O0FAx44ds1DwhPcgtLPNzc21OFfuAHp7IqOoiF0BZuoYbAnIzEwDKgJ2792TK1sgedqWSqxNAsjFqzzO+iCl49K0IMJZe2+E4iiOzryue/fubbHxufU1WLgnUSLs6aefxrRp09ClS5dKmfFv3bqFGTNm2NxXkiBM2FsxJhf2Zr/x8XcVLYcYTAJp3z5g0aLKAnL48Bv46KPgf3J1ubYFkul7pNpSSW1Yssx4o4tXC4IDqBiw09IaoKiohqxxaVoR4Sy9N2LwpK2YRImwqVOnIj09HQ0bNkRaWhoaNWoEADh58iSWL1+OsrIyTJkyRZaCEtIg1l2ldezNfis6X3aJiIhAmza2V6NOmVINU6YI3wLJGWK3VCIco4UVWVLCquCwJwybNw9DTIx8g7M3inA10ILAEoIoEVazZk0cOHAAI0aMwOTJk8H9k8pXp9MhOTkZy5cvR82a2ppBexueNIMQim1zNdsiDHC+GlVKsUS5v9zHG7d3YlVwqCkMtSzCtWLR9CREJ2utU6cOvv32W1y7dg2nT58Gx3Fo0KABqlevLkf5CBkwF1gXLgB//VWRA8wTBmHrAc68U0lIOGv3PFZhwUqlxcBdNQYTb9zeiUXBobYw1OoCAFYtmp6OaBFmonr16nj4YfatCYR9Vq0Chg2rcHf5+FRYXQYPVrtUthEqmswHwo0bq2L2bD3Ky3Xw8eEwb54Rffve0txAqKaVSouBu2oOJt62vROLgkMtYchaYloxqC1cvRmXRRihbS5cuCfAgIr/X3mlwuqi1oCfkpKCkpIayMnxQ0LCXcTGVhROrGiKiIjAhQvAxInm96fDpElhSE0NY2qLJdbRWuAuS4OJJ7t4WRYcaglDlhLTioVFi6a3QCLMS/nrL1v7QFbM3F0ZOKTobHftisPEiWGSWOakvj+10aJLUA1oMFEGFgUHC8JQycS0UsKiRdNbIBHmpUi9D6SjgP/8/HynqSmMxpB/XIcVv7trmZNrn0s10KJLUGm8MShebWHOmuBgURiyjljhqnab80RIhHkpcuwDaS/gPzbW+cB39WqERcJQwD3LlRz3pxZacwmqgbcFxZMwtw1rwpB1xAhXanPyQCLMi5Fr5V3lgH/naTHy86tg/XppLVcsrCz0NFhewu5NQfEkzAmpECpcqc3JA4kwL0fq4GH7Af8R/PfYSosREyOP5cqTg6OVRktL2Om5EwShBUiEES5jKz7g4MEAlJdbmqLN3YqO0mKQ5YpdWFp1SFTGnoXSfG9WT3LHEoSnQCKMcAl78QFGYwh0utEWgdEmt6KQtBhkwWALU0Cus1WHnhTwrjUcWSitF8SkpqZCr9fbvA6JNGFQcHoFLIcmaAkSYYRL2OuErFfZ+Ppy+Pe/dahVC9i3z7PSRngDpsDdM2fuYv16zmLxhK8vh1GjnkJ8vJ9XDDosItZCuWnTJofXYyWomlWhQ8HpFWgpNIF1SIQRkmO+V+OoUU+hVauK/UQ9KW2Emig9A42IiEBEhK2YPR3/bAl1kDovGgtB1SwLHQpOp9AEqSERRsiCXn/9HzfVZVy8WKG6fH2BhQtDMG5cNc2njVASc1efoxmo3C5BitljD09MsklCh20oIbK0kAgjZMVWktZff30NBQXVaSAXiLlLcPbsGuC4Cpcgx/lgx47umD49UTGXIMXssYGzJJsAkJMTb9daSvE8hFi8MSGyEpAIIxQnMvI2WrRQuxTaIiIiAseO2Yqp0+H69Zq0H6aXYZ1kMy3tFDZsyEJ4+FVkZ9fH4sWj7cbrCInnYSkmi2XByHLZpMbbEiIrBYkwghCBmoOT1DF1LA20hHisn01Cwlmn8TpC4nlYisliOQCc5bLJhTclRFYKEmEEIRC1Bycpt2JS+14IeXAWryMknoeVmCwlA8DFTkg8ITjd3UkYhSZIA4kwwiW80e/PwuAkVXC8u/dCVjS2EBqvo6VAfqUCwMVMSJQum1zQJIwdSIQRLmEdkwJUZOe2FYhvDxrIXUPtGSh14OzhLF7n6aefwubNm+0G8puEQ0BAQKV3Uq24J6UEo5gJiacEp7MwoSQqIBFGuIw7AywN5NrDJJrNt8JxBHXgyuIsXsd80jR9+hWcOeOH+Pi7iI19GMDD/KTn4sWL/DXViHtytvLTXDAqDQWnE1JDIoxQBU+eiZlEiid1xkJFsxKQBdU5tqyl5nUSEwO0auX4GmrFPVlb2R0JRjlwZvmj4HRCSkiEEZJw4QLwyy9BMBpDnHbQtlwenoS5S1YrljxnAw8rz4ssqMqhZtyTWMEoFWItf2qHBkiFN6XaYA0SYYTbrFpl2phbDx+fMZg3z4i+fW/ZPNeWy8OTYUW8OMJdl5OSHbgnW1BZg+UgfjmsoZ6w4tEVvDHVBkuQCCPc4sIFkwCr+L28XIdJk8KQmhrmETNER3jC7NHdgYc6cM+D5ZgsQD5rqNZXPLqCtwpPliARRrjFX3/ZyuJeESfhaSJM6B6OWsB0L84GHnsDrdEYgvPn41zqwKW0YniCEGYNtWOynCGXNZRly59ceKPwZA0SYYRbOMrifuFChUhr0MAzBJmjPRy1Nns0v5f16zmUl+v4Y76+HEaNesrufpTmAtQaZx24lFYMrQthllErJssV3BXirFv+5MBTUm14AiTCCLewl8X9++/vuSl9fCrOGTxY7dK6j709HLU4e4yIiEBEhK3np0OrVjVt/o21+8IaZx24UOtEbm4uX0Yh5dCiECbcRwohzrrlTw4o1QY7kAgj3MY6izsA1KljHidWMcgnJ9+ziAmdYbE4E6uw/llaj3S6cty8GSxodShriMnCb8t9YUKnK8eMGbkYNkx4B27PimFaYWrPIkZuFO/AluvalAJGSiGuJcufVFCqDTYgEUZIgvlS7X37nMeJ2cq4bw2rM7FatYB584yYMCGUn4FzHPDFF89r1i3mbKm9I/cFUI7nnvsCcXEXkJbWX/AzE2LFsNc+vDF+x9tw5romIS4dWki14an5AUmEEZLjKE7MHPMXRmvxYwMGlOHvvxfj/Pla+OKL5wDYno2zaMlzBefui8dEB9TbsmLUqJGHWrXspy/xxvgdb8WZ65qEuPfgyfkBSYQRkmMvTsyeuLqXZ0w78WMRERGYMqU/9u0Dvvii8my8Xbv+6NDBva2dWENK94U9K8bHHw9Bjx72LYneGL9D2MaZECc8B0/OD0gijJAFoXFGlfOMVY4fY5WIiAi0aWPb6peYWBH07qm4676w7dYEAOdxPd4Yv0PYjh9s2fJX1Kt3GlevhiM8/KpFmyFrKKEFSIQRsiFkoNZ6njGxVj+iAmsrhjneFNfjqXEuUuMoflCvv46BA59EZGQkfz7VG6EVSIQRqiI0foxlxKwu9HbMrRMtW/6KGjXy8PHHQ2CKqQO8J67HOs7F3kpRLca5SImt+MFt2yytpZGRkYiJiVGzmAThErbXmhOEQpgsSb6+Fb9r1ZJUqxbQoYP2yq00ppiulJQUAECtWhfRo8d26HQVKtyb4nrMLWBHjjyExYtHY926/li8eDSOHHnI5nneiO20KD7IykpUpTyE+hiNIcjJiYfRGKJ2UdyGLGGE6pAlybuwtup4e1wPJZ51THh4AYByWNsMMjMNSEzMojryMjxtpwwSYQQTaCFPDXEP81im3Fwf5OT4ISHhLmJjKyxazmJytJwnTmoo35VtzNORtG2biQMH2lkcpzryPjxxwkIijCAIUZjHMjmalTqLZfIGgeWIwsJCAJTvyh4RERHo3bs3Nm/ejMTELGRmGqiOvBSTIHc2YdGi5ZxiwgiCcMiFCxW7IFy4UPG7yXplb1ZqitPw9lgmRxQUFGDz5s0AgOzs+uC4e8e8KS7OGWFhYQDurab1xthB4p7lfNSoLvDx4SyO+fpyGDXqKc0uYCFLGEF4KO7sQmByN27cWBUTJ+pRXq6Djw+HefOM6Ny5Yu8+cqO5jrWQNZ8PcxxQr95plUrGFtarab05dlDruJuOJSKiIvdi5ZRAOrRqVVOOIisCiTCC8EDc2YXA5G40GkOwePFocFzFRuXl5TpMmBCKv//OgF5v343m71+CnJx45Ob6gLIGOMbeyj8SshVQ7KBnIOW2Q562kItEGEF4EAUFBThz5i6GDauB8nKTeAJeeYXDgw9eRny8n9NOzjTgObN02do25v77j2HVqiHgOB+sX89pYgsqNRESD+btVh4SWNpH6m2HPGkhF4kwgvAQTLPNnJx4lJf3tzhWVqbD++9/h4SEs4JjJ4QIBHMXkb9/CS/AgArLmRjx54042/8wNTWV6o0gPBgSYQRhB3diqtTANIt0Jp6EzjaFbpBssorl5MRXspy5Iv68DUexTnq9XsWSEQQhNyTCCMIG7sRUqY1Q8SQERwLBGqnEnzdiErIEQXgXJMIIwooLF+4JMMAUU1URDKoFixggTjw5Q6hAkFL8EQRBuIK7qzCVhkQYQVjx11+WG4oDFcuhT5/WjggD5LeupKSkIDIyEvn5+UhPTwcgrfjzZIQG23t6UD6LAyaLZfI07G1W7y5SrsJUChJhBGFFgwYVLkhzIebrW7EcmrhHZGQkYmzkoCDXmnO0lHpBLlHC4oDJYpk8DTn3fpR6FaYSkAgjCDMKCgrg61uCefOqYtIkPcrKdPD15TB3rhG+vrdQUMDGwCgGsbNOstIogxbakbUosdeWXBEl1gOhvWsrOWBqcRDXAqa+wtnej97Yp5AII4h/sB5wXnsthHer3bhxHR9+WPG5q7NgNVZb2pp1OsOelcZ8o25KOeEdmLcBRxYMd0WJnNYRQn1Mfcq+fcCiRZVzD7Zr1x8dOmhjYiI1tHckQfyD9UCi119HQsLZStYjVwacVauAOnWATp0q/l+1yq2i2sR6Fmlv1pmfX8XptSIiIhATE8P/+/bbGDzySE08/3wEHnmkJr76yvs6S2/G2T6hrF7bXYzGEOTkxDNRFq0TERGBNm0i4GOlOnx9gcTECK8UYIAGRdidO3fw4IMPQqfT4ejRoxbHjh07hsceewxVqlRBXFwc5s2bV+nvt2zZgsaNG6NKlSpo0aIFvv32W4vjHMdh+vTpiImJQdWqVZGUlIS//vrL4pyrV6/ixRdfRGhoKMLCwjB48GDcuHFDdFkI78DeakvThthSYZptDhs2DMOGDUPbtv1tZrwvKKgu6rrOyk/uS2Ww3khdSRztnsDytd3hyJGHsHjxaKxb1x+LF4/GkSMPqVoeT6BWrYp0P76+Fb9X7P2orQVPUqM5d+TEiRMRGxuL3377zeLzoqIidO7cGUlJSVi5ciV+//13DBo0CGFhYRg2bBgA4MCBA3jhhRcwZ84cdOvWDRs3bkTPnj1x5MgRNG/eHAAwb948LF26FOvWrUNCQgKmTZuG5ORk/PHHH6hSpcKC8OKLL+LixYvIyMhAaWkpBg4ciGHDhmHjxo2Cy0J4D0qutjSfTbZpI80CA2fl11KQudZwtJF63763FKtXIbsnsHhtV3EWu0S4jqft/egumhJh3333HXbt2oWtW7fiu+++szi2YcMGlJSUYPXq1QgICECzZs1w9OhRLFy4kBc+S5YsQZcuXTBhwgQAwFtvvYWMjAwsW7YMK1euBMdxWLx4MaZOnYpnnnkGAPDJJ5+gZs2a+Oqrr9CnTx+cOHECO3fuxKFDh9C6dWsAwPvvv4+nn34a8+fPR2xsrKCySEV5eTkFiUpEaWkpgoODK31eXFwMjuNcvq5aqy1Ns85XXqkQTa7OOoWUnwSWOITEBzrfSH019PrriqzUkzMHHIv55Zztm0q4h1J7P8qVCkNKNCPCLl26hKFDh+Krr75CUFBQpeOZmZlo3769hcsjOTkZc+fOxbVr11C9enVkZmZi7NixFn+XnJyMr776CgCQk5ODvLw8JCUl8cf1ej0SExORmZmJPn36IDMzE2FhYbwAA4CkpCT4+PggKysLzz77rKCy2OLOnTu4c+cO/3tRUZHDOikpKUFOTg7Krc0UhEuUlZWhXbt2lT6/desWDh06hNu3b7t0XanEkCtIMeuUq/xa2xZKKoTuxiB0I3VXJmGu1L2cOeBYyy/HonWOcI75mOtosQdLoRGaEGEcx2HAgAEYPnw4WrdujTNnzlQ6Jy8vDwkJCRaf1axZkz9WvXp15OXl8Z+Zn5OXl8efZ/539s6pUaOGxXE/Pz+Eh4dbnOOsLLaYM2cOZs2aZbsSrOA4DhcvXoSvry/i4uLgYx3tSIimpKQEhYWFFp9xHIdr166hUaNGlVzgYlDTBC/FrFPq8mt5Wyh3cGU3BqkEgRSuTSlzwFkPhPaureSAafouZ9Y5lgZx4h6m0IgzZ+5i9uwavPWY43ywY0d3TJ+eyNzKblVF2BtvvIG5c+c6POfEiRPYtWsXrl+/jsmTJytUMnWYPHmyhaWuqKgIcXFxNs+9e/cuiouLERsba9MySIjHx8cHfn6VXwm9Xo+oqCgEBAS45fpVygQvF1KV3xO2hXKFgoICHDwIlJdbDgBlZUBWVgGqVrXt1pXCXeeqa1PORRcsxhJal2n69Cs4c8YP8fF3ERv7MICHKb6RcSIiInDsmK04Vh2uX68J1h6dqiJs3LhxGDBggMNz6tati7179yIzMxOBgYEWx1q3bo0XX3wR69atQ3R0NC5dumRx3PR7dHQ0/7+tc8yPmz4zzwR+6dIlPPjgg/w5ly9ftrjG3bt3cfXqVaffY/4dtggMDKx0j/YoKysDQDMyKbFnTfTx8YGPjw/8/f1RUlKiiTqXKsu5HNnSPWVbKDGYiyCdbnQlq9b+/etw/Lj9+C533XWuujblFkosihnzMsXEAK1aqVgYwiW0tOuJqiIsKioKUVFRTs9bunQp3n77bf733NxcJCcnY9OmTUhMTAQAGAwGTJkyBaWlpfD39wcAZGRkoFGjRrz7z2AwYM+ePRg9ejR/rYyMDBgMBgBAQkICoqOjsWfPHl50FRUVISsrCyNGjOCvUVhYiMOHD6PVP2/n3r17UV5eLqosUqHT6SS9njfj5+eHGjVqVIqxu337Nq5fv47evXsjODiYyYHDHKm2XpFrCxctdZBSYRIxzqxajsSOFK5AV1ybrLd3grBGzThcsWgiJqx27doWv1erVg0AUK9ePdT6p1b79u2LWbNmYfDgwZg0aRKOHz+OJUuWYNGiRfzfvf7663j88cexYMECdO3aFZ9//jl++eUXfPhPKnSdTofRo0fj7bffRoMGDfgUFbGxsejZsycAoEmTJujSpQuGDh2KlStXorS0FGlpaejTpw9iY2MFl4VgE1vuyPLycvj6+qJGjRp8mhIlcDVwXaqtV+TawkVLHaQcqBmEzuJKRIKQA62kwtCECBOCXq/Hrl27MHLkSLRq1QqRkZGYPn26RUqItm3bYuPGjZg6dSrefPNNNGjQAF999RWfIwyoyEN28+ZNDBs2DIWFhXj00Uexc+dOi8F3w4YNSEtLwxNPPAEfHx/06tULS5cuFVUWb2XAgAFYt24dgHsLGu6//3688MILGDBggOAFBmvXrsXo0aMrBdJ7Cp4euM5yB6nEqk01NzlnbSUiQciFFuJwNSnC4uPjbeZtuv/++/HTTz85/Nvnn38ezz//vN3jOp0Os2fPxuzZs+2eEx4ezidmtYeQsngrXbp0wZo1a1BWVoZLly5h586deP311/HFF19g27ZtNq1RWsWVmCpvCVxnsYNkSfzKGRSvpggkCOIenjPaEaKQI+BaKIGBgfwChfvuuw8tW7ZEmzZt8MQTT2Dt2rUYMmQIFi5ciDVr1uD//u//EB4eju7du2PevHmoVq0afvjhBwwcOBDAvZi4GTNmYObMmVi/fj2WLFmCU6dOITg4GJ06dcLixYsrpRVRAldjqpQIXDcaQ7B/fwDatGFPCKkFa+KXxdWDBEFIC4kwL0SugGt36NSpEx544AGkp6djyJAh8PHxwdKlS5GQkID/+7//w6uvvoqJEyfigw8+QNu2bbF48WJMnz4dp06dAnAvTrC0tBRvvfUWGjVqhMuXL2Ps2LEYMGBApT1ClcDVmCq5A9dNSQwXLfJR3Nqjpvh3BourNklgEYRnQyLMC5Er4NpdGjdujGPHjgGAxQrW+Ph4vP322xg+fDg++OADBAQEQK/XQ6fTVUr5MWjQIP7nunXrYunSpXj44Ydx48YNXqixjpyB69Z74ilp7WFR/Jvjyas2WdhknWUBThBqQSKMYAaO43j34u7duzFnzhycPHkSRUVFuHv3Lm7fvo3i4mKHyWkPHz6MmTNn4rfffsO1a9f4dBPnzp1D06ZNFbkPKZArcN1WniilrD2sin8TcopftUWQ2q5NawFub08/tQQ4QagFiTCCGU6cOIGEhAScOXMG3bp1w4gRI/DOO+8gPDwcP//8MwYPHoySkhK7IuzmzZtITk5GcnIyNmzYgKioKJw7dw7Jycma3OTc1cB1RwO5rTxR9qw9agsHJTFZaZ5+GsjK8jHLkl6OixfdFyhqiyBTGdTC/L4d7emnxfeUINyBRBjBBHv37sXvv/+OMWPG4PDhwygvL8eCBQv4lBWbN2+2OD8gIIDfNcDEyZMnUVBQgHfffZff7umXX35R5gYYwtmAf999RZg0SY+yMp1Daw8LwkEJ7LlJjx+3/N1dK43S9cTiBunW7nCO88E333RDvXqnabUm4ZWQCCMU586dO8jLy7NIUTFnzhx069YNL7/8Mo4fP47S0lK8//776N69O/bv34+VK1daXCM+Ph43btzAnj178MADDyAoKAi1a9dGQEAA3n//fQwfPhzHjx/HW2+9pdJdqoujAX/cOCA1VZirU+sCSwisu0ldgaVUG+Y42zaJILwNYZkxCUJCdu7ciZiYGMTHx6NLly7Yt28fli5diq+//hq+vr544IEHsHDhQsydOxfNmzfHhg0bMGfOHItrtG3bFsOHD0dqaiqioqIwb948REVFYe3atdiyZQuaNm2Kd999F/Pnz1fpLtmmVi2gQwd2LCQmTKkzLlxQuyTSceECsG8fFLmngoICHD58CcOGcVapNjgcPnwJBQUF8hfCASZ3uDnOtk0iCE+GLGGEoqxduxZr1651et6YMWMwZswYi89eeukli99XrFiBFStWWHz2wgsv4IUXXrD4zFZiXyXwppgqKVAzdYZcKGmRMrlVc3LiUV7e3+JYWZkO77//HRISzqoa/O5s26TCwkLExMSoUjaCUAMSYV4IiQNl8JaYKilQM3WGXCid/NXUzpxt0q22W9W0bdL587UA6BAXd54/tnnzZlohSXgVJMK8EBIHykF1eA9Hol7N1BlyoVbyV6U36RaS/8ua7Oz6tEKSIEAizGshcUAojSPxn5vrg/XrOZSX6/jPtJwotaCgAKGhd+HjU8PqnjiEhFxGQYGfrO+gUpt0C83/1a9fP4tzaIUkQVRAIowgCMWwJzxiYuRLlKo05sKkWzfLnFhdu27H9u0VFh+53W5KbNItNP9XUFAQUlNTsWnTJlohKRDaYcA7IBFGEAzhzR2vXLsEOEPqGEnz5+fIIuVJbjch1i29Xg/Aecwawf4WX4R0kAgjCEaQu+PVgsBzdZcAd5A7RlIJi5TaiLFuKR2zpkU8MXcdYRsSYQTBCHJ2vDSzdow33rOUiLVuKRWz5unk5+fb/JyFCRUhDBJhBOEF0Mza81Ez9Ywr1i25LYRasPy6S3p6ut1j3jqh0hokwgiCUBVvGCyVQO3UM86sW0qKRLL80oRKK5AIIzyKH374AR07dsS1a9cQFhYm6G/i4+MxevRojB49WtayEZWhwVJa1K4jR9YtJUUiWX4JrUB7RxKKMmDAAOh0OgwfPrzSsZEjR0Kn02HAgAHKF4xQBRostY1Y61ZERARiYmLs/lNbRBKE0pAljFCcuLg4fP7551i0aBGqVq0KALh9+zY2btyI2rVrq1w6gnAPb9oWTG0XKEFoHRJhhOK0bNkS2dnZSE9Px4svvgigIsC0du3aSEhI4M+7c+cOJkyYgM8//xxFRUVo3bo1Fi1ahIcffpg/59tvv8Xo0aNx/vx5tGnTBv3796/0fT///DMmT56MX375BZGRkXj22WcxZ84cBAcHy3+zhNfhbcJEC/dhL5M/q1gLdK2VnxAOiTBCFQYNGoQ1a9bwImz16tUYOHAgfvjhB/6ciRMnYuvWrVi3bh3q1KmDefPmITk5GadPn0Z4eDjOnz+PlJQUjBw5EsOGDcMvv/yCcePGWXxPdnY2unTpgrfffhurV6/GlStXkJaWhrS0NKxZs0bJW3aKN1lQPB0tCBNvwVEmf1YxF/IbN1bF7Nl6lJfr4OPDYfr0vwGsUruIhESQCCNw4ULFZsMNGiiXKLNfv36YPHkyzp49CwDYv38/Pv/8c16E3bx5EytWrMDatWvx1FNPAQA++ugjZGRkYNWqVZgwYQJWrFiBevXqYcGCBQCARo0a4ffff8fcuXP575kzZw5efPFFPui+QYMGWLp0KR5//HGsWLECVapUUeaGBSCnBYUEHuGNaHmfyoiICFy4AEyceG8j+PJyHd566z689loI8+UnhEEizMtZtQoYNqziJffxqdi/b/Bg+b83KioKXbt2xdq1a8FxHLp27YrIyEj+eHZ2NkpLS9GuXTv+M39/fzzyyCM4ceIEAODEiRNITEy0uK7BYLD4/bfffsOxY8ewYcMG/jOO41BeXo6cnBw0adJEjttzGbksKN7mIiMIQFwmfxb56697AsxEWZlOUPlpQqUNSIR5MRcu3BNgQMX/r7xSsX+fEhaxQYMGIS0tDQCwfPlyWb7jxo0beOWVV/Daa69VOuZtiwBIYBHegkmAOMvkz7pQadCgYnJsLsR8fYFx455BZORtAEBurg9ycvyQkHAXsbEVJ9KESjuQCPNibM+yKjZQVkKEdenSBSUlJdDpdEhOTrY4Vq9ePQQEBGD//v2oU6cOAKC0tBSHDh3iXYtNmjTBtm3bLP7u4MGDFr+3bNkSf/zxB+rXry/fjRAuQ25SQg7MLb/33VeESZP0KCvTwdeXw9y5Rejb9wVNCJVatSq8E6+8UtE3+/oC//430KJFdQDqeTII6SAR5sXYm2UppVd8fX1516Kvr6/FseDgYIwYMQITJkxAeHg4ateujXnz5qG4uBiD/+llhg8fjgULFmDChAkYMmQIDh8+jLVr11pcZ9KkSWjTpg3S0tIwZMgQBAcH448//kBGRoagJKGEvJCblJALU5sZNw5ITa2YXNavr0OtWmEAwtQsmigGD67wTlSU/94EWW1PBiENJMK8GHuzLCVf4NDQULvH3n33XZSXl+Oll17C9evX0bp1a3z//feoXr1iFli7dm1s3boVY8aMwfvvv49HHnkE//rXvzBo0CD+Gvfffz9+/PFHTJkyBY899hg4jkO9evWQmpoq+70RwiCBRchNrVraFia2yq+2J4OQBh3HcZzahSBsU1RUBL1eD6PRWEms3L59Gzk5OUhISHB7hd+FC5VnWcQ9pKxrgiAIKbhwAahTp7In48wZ6sdZwNH4bQ5tW0SgVi2gQwd6cQmCILSCyZNhiuRQw5NBuA+5IwmCIAhCg9iLFyO0A4kwgiAIgtAoWo9383bIHUkQBEEQBKECJMIIgiAIgiBUgESYxqHFrfJDdUwQBEHIAYkwjWJKbuooySUhDaY6tk4oSxAEQRDuQIH5GsXPzw9BQUG4cuUK/P394eNDeloOysvLceXKFQQFBcHPj14XgiAIQjpoVNEoOp0OMTExyMnJwdmzZ9Uujkfj4+OD2rVrQ6fTqV0UgiAIwoMgEaZhAgIC0KBBA3JJykxAQABZGgmCIAjJIRGmcXx8fGgrHYIgCILQIDS9JwiCIAiCUAESYQRBEARBECpAIowgCIIgCEIFKCaMYUxJQouKilQuCUEQBEEQQjGN286SfZMIY5jr168DAOLi4lQuCUEQBEEQYrl+/Tr0er3d4zqO9mRhlvLycuTm5iIkJMQrc1QVFRUhLi4O58+fR2hoqNrF0SxUj9JA9eg+VIfSQPUoDXLWI8dxuH79OmJjYx2mOCJLGMP4+PigVq1aahdDdUJDQ6mjkQCqR2mgenQfqkNpoHqUBrnq0ZEFzAQF5hMEQRAEQagAiTCCIAiCIAgVIBFGMEtgYCBmzJiBwMBAtYuiaagepYHq0X2oDqWB6lEaWKhHCswnCIIgCIJQAbKEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYoTr/+c9/0L17d8TGxkKn0+Grr76yOM5xHKZPn46YmBhUrVoVSUlJ+Ouvv9QpLKM4q8MBAwZAp9NZ/OvSpYs6hWWYOXPm4OGHH0ZISAhq1KiBnj174tSpUxbn3L59GyNHjkRERASqVauGXr164dKlSyqVmE2E1GOHDh0qtcnhw4erVGI2WbFiBe6//34+majBYMB3333HH6e2KAxn9ahmWyQRRqjOzZs38cADD2D58uU2j8+bNw9Lly7FypUrkZWVheDgYCQnJ+P27dsKl5RdnNUhAHTp0gUXL17k/3322WcKllAb/Pjjjxg5ciQOHjyIjIwMlJaWonPnzrh58yZ/zpgxY/DNN99gy5Yt+PHHH5Gbm4uUlBQVS80eQuoRAIYOHWrRJufNm6dSidmkVq1aePfdd3H48GH88ssv6NSpE5555hn873//A0BtUSjO6hFQsS1yBMEQALgvv/yS/728vJyLjo7m3nvvPf6zwsJCLjAwkPvss89UKCH7WNchx3Fc//79uWeeeUaV8miZy5cvcwC4H3/8keO4irbn7+/PbdmyhT/nxIkTHAAuMzNTrWIyj3U9chzHPf7449zrr7+uXqE0SvXq1bmPP/6Y2qKbmOqR49Rti2QJI5gmJycHeXl5SEpK4j/T6/VITExEZmamiiXTHj/88ANq1KiBRo0aYcSIESgoKFC7SMxjNBoBAOHh4QCAw4cPo7S01KI9Nm7cGLVr16b26ADrejSxYcMGREZGonnz5pg8eTKKi4vVKJ4mKCsrw+eff46bN2/CYDBQW3QR63o0oVZbpA28CabJy8sDANSsWdPi85o1a/LHCOd06dIFKSkpSEhIQHZ2Nt5880089dRTyMzMhK+vr9rFY5Ly8nKMHj0a7dq1Q/PmzQFUtMeAgACEhYVZnEvt0T626hEA+vbtizp16iA2NhbHjh3DpEmTcOrUKaSnp6tYWvb4/fffYTAYcPv2bVSrVg1ffvklmjZtiqNHj1JbFIG9egTUbYskwgjCC+jTpw//c4sWLXD//fejXr16+OGHH/DEE0+oWDJ2GTlyJI4fP46ff/5Z7aJoGnv1OGzYMP7nFi1aICYmBk888QSys7NRr149pYvJLI0aNcLRo0dhNBrxxRdfoH///vjxxx/VLpbmsFePTZs2VbUtkjuSYJro6GgAqLTi59KlS/wxQjx169ZFZGQkTp8+rXZRmCQtLQ3bt2/Hvn37UKtWLf7z6OholJSUoLCw0OJ8ao+2sVePtkhMTAQAapNWBAQEoH79+mjVqhXmzJmDBx54AEuWLKG2KBJ79WgLJdsiiTCCaRISEhAdHY09e/bwnxUVFSErK8vCn0+I48KFCygoKEBMTIzaRWEKjuOQlpaGL7/8Env37kVCQoLF8VatWsHf39+iPZ46dQrnzp2j9miGs3q0xdGjRwGA2qQTysvLcefOHWqLbmKqR1so2RbJHUmozo0bNyxmHDk5OTh69CjCw8NRu3ZtjB49Gm+//TYaNGiAhIQETJs2DbGxsejZs6d6hWYMR3UYHh6OWbNmoVevXoiOjkZ2djYmTpyI+vXrIzk5WcVSs8fIkSOxceNGfP311wgJCeFja/R6PapWrQq9Xo/Bgwdj7NixCA8PR2hoKEaNGgWDwYA2bdqoXHp2cFaP2dnZ2LhxI55++mlERETg2LFjGDNmDNq3b4/7779f5dKzw+TJk/HUU0+hdu3auH79OjZu3IgffvgB33//PbVFETiqR9XboiprMgnCjH379nEAKv3r378/x3EVaSqmTZvG1axZkwsMDOSeeOIJ7tSpU+oWmjEc1WFxcTHXuXNnLioqivP39+fq1KnDDR06lMvLy1O72Mxhqw4BcGvWrOHPuXXrFvfqq69y1atX54KCgrhnn32Wu3jxonqFZhBn9Xju3Dmuffv2XHh4OBcYGMjVr1+fmzBhAmc0GtUtOGMMGjSIq1OnDhcQEMBFRUVxTzzxBLdr1y7+OLVFYTiqR7Xboo7jOE5+qUcQBEEQBEGYQzFhBEEQBEEQKkAijCAIgiAIQgVIhBEEQRAEQagAiTCCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVIBEGEEQBEEQhAqQCCMIgiAIglABEmEEQTBLXl4eRo0ahbp16yIwMBBxcXHo3r27xX55Bw4cwNNPP43q1aujSpUqaNGiBRYuXIiysjL+nDNnzmDw4MFISEhA1apVUa9ePcyYMQMlJSUW3/fRRx/hgQceQLVq1RAWFoaHHnoIc+bM4Y/PnDkTOp0OXbp0qVTW9957DzqdDh06dBB0b6Zr6XQ6+Pn5IT4+HmPGjMGNGzdE1hJBEFqF9o4kCIJJzpw5g3bt2iEsLAzvvfceWrRogdLSUnz//fcYOXIkTp48iS+//BK9e/fGwIEDsW/fPoSFhWH37t2YOHEiMjMzsXnzZuh0Opw8eRLl5eX497//jfr16+P48eMYOnQobt68ifnz5wMAVq9ejdGjR2Pp0qV4/PHHcefOHRw7dgzHjx+3KFdMTAz27duHCxcuoFatWvznq1evRu3atUXdY7NmzbB7927cvXsX+/fvx6BBg1BcXIx///vflc4tKSlBQECACzUpHyyWiSA0hSKbIxEEQYjkqaee4u677z7uxo0blY5du3aNu3HjBhcREcGlpKRUOr5t2zYOAPf555/bvf68efO4hIQE/vdnnnmGGzBggMMyzZgxg3vggQe4bt26cW+//Tb/+f79+7nIyEhuxIgR3OOPPy7g7u5dy5yhQ4dy0dHRFsc/+ugjLj4+ntPpdBzHVdz74MGDucjISC4kJITr2LEjd/ToUf4aR48e5Tp06MBVq1aNCwkJ4Vq2bMkdOnSI4ziOO3PmDNetWzcuLCyMCwoK4po2bcrt2LGD4ziOW7NmDafX6y3K8+WXX3Lmw4SrZSIIwjbkjiQIgjmuXr2KnTt3YuTIkQgODq50PCwsDLt27UJBQQHGjx9f6Xj37t3RsGFDfPbZZ3a/w2g0Ijw8nP89OjoaBw8exNmzZ52Wb9CgQVi7di3/++rVq/Hiiy+6bRWqWrWqhYv09OnT2Lp1K9LT03H06FEAwPPPP4/Lly/ju+++w+HDh9GyZUs88cQTuHr1KgDgxRdfRK1atXDo0CEcPnwYb7zxBvz9/QEAI0eOxJ07d/Cf//wHv//+O+bOnYtq1aqJKqMrZSIIwjbkjiQIgjlOnz4NjuPQuHFju+f8+eefAIAmTZrYPN64cWP+HFvXf//993lXJADMmDEDKSkpiI+PR8OGDWEwGPD000/jueeeg4+P5Xy1W7duGD58OP7zn/+gVatW2Lx5M37++WesXr1a7K3yHD58GBs3bkSnTp34z0pKSvDJJ58gKioKAPDzzz/jv//9Ly5fvozAwEAAwPz58/HVV1/hiy++wLBhw3Du3DlMmDCBr7sGDRrw1zt37hx69eqFFi1aAADq1q0rupyulIkgCNuQCCMIgjk4jpPlXAD4+++/0aVLFzz//PMYOnQo/3lMTAwyMzNx/Phx/Oc//8GBAwfQv39/fPzxx9i5c6eFEPP390e/fv2wZs0a/N///R8aNmyI+++/X1Q5AOD3339HtWrVUFZWhpKSEnTt2hXLli3jj9epU4cXOwDw22+/4caNG4iIiLC4zq1bt5CdnQ0AGDt2LIYMGYL169cjKSkJzz//POrVqwcAeO211zBixAjs2rULSUlJ6NWrl+hyu1ImgiBsQyKMIAjmaNCgAR9Qb4+GDRsCAE6cOIG2bdtWOn7ixAk0bdrU4rPc3Fx07NgRbdu2xYcffmjzus2bN0fz5s3x6quvYvjw4Xjsscfw448/omPHjhbnDRo0CImJiTh+/DgGDRok9hYBAI0aNcK2bdvg5+eH2NjYSu5Ma1fsjRs3EBMTgx9++KHStcLCwgBUrLrs27cvduzYge+++w4zZszA559/jmeffRZDhgxBcnIyduzYgV27dmHOnDlYsGABRo0aBR8fn0qCtrS0tNL3uFImgiBsQzFhBEEwR3h4OJKTk7F8+XLcvHmz0vHCwkJ07twZ4eHhWLBgQaXj27Ztw19//YUXXniB/+zvv/9Ghw4d0KpVK6xZs6aSi9EWJhFnqwzNmjVDs2bNcPz4cfTt21fM7fEEBASgfv36iI+PFxRP1rJlS+Tl5cHPzw/169e3+BcZGcmf17BhQ4wZMwa7du1CSkoK1qxZwx+Li4vD8OHDkZ6ejnHjxuGjjz4CAERFReH69esW92qK+ZKiTARBVIZEGEEQTLJ8+XKUlZXhkUcewdatW/HXX3/hxIkTWLp0KQwGA4KDg/Hvf/8bX3/9NYYNG4Zjx47hzJkzWLVqFQYMGIDnnnsOvXv3BnBPgNWuXRvz58/HlStXkJeXh7y8PP77RowYgbfeegv79+/H2bNncfDgQbz88suIioqCwWCwWca9e/fi4sWLill8kpKSYDAY0LNnT+zatQtnzpzBgQMHMGXKFPzyyy+4desW0tLS8MMPP+Ds2bPYv38/Dh06xMfNjR49Gt9//z1ycnJw5MgR7Nu3jz+WmJiIoKAgvPnmm8jOzsbGjRstFh+4WiaCIOxD7kiCIJikbt26OHLkCN555x2MGzcOFy9eRFRUFFq1aoUVK1YAAJ577jns27cP77zzDh577DHcvn0bDRo0wJQpUzB69GjodDoAQEZGBk6fPo3Tp09b5PYC7sWUJSUlYfXq1VixYgUKCgoQGRkJg8GAPXv2VIp3MmFr5aac6HQ6fPvtt5gyZQoGDhyIK1euIDo6Gu3bt0fNmjXh6+uLgoICvPzyy7h06RIiIyORkpKCWbNmAQDKysowcuRIXLhwAaGhoejSpQsWLVoEoML6+Omnn2LChAn46KOP8MQTT2DmzJlOA+udlYkgCPvoOLFRrQRBEARBEITbkDuSIAiCIAhCBUiEEQRByEC1atXs/vvpp5/ULh5BEAxA7kiCIAgZOH36tN1j9913H6pWrapgaQiCYBESYQRBEARBECpA7kiCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVIBEGEEQBEEQhAqQCCMIgiAIglABEmEEQRAEQRAqQCKMIAiCIAhCBUiEEQRBEARBqMD/A73T4mqlkO6gAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXbElEQVR4nOzdeVxU1f8/8NcdBASFYUcIVERccUMTB9OyQDSX/KqhpqWJWf2kQkvNT+XyqT6VbVa2maa2aK4VaqmgpqZEhStuKaFCiMsgA2oJMuf3xzSXubOwyc7r+XjwAO49c+fcG8abc97nfSQhhAARERER1ShVbXeAiIiIqDFiEEZERERUCxiEEREREdUCBmFEREREtYBBGBEREVEtYBBGREREVAsYhBERERHVAgZhRERERLWAQRgRERFRLWAQRkREpVqxYgUkScLZs2druytEDQqDMCKqdb/99hvi4uLQuXNnNGvWDC1btkRMTAz++OMPi7b33HMPJEmCJElQqVRwdXVF+/bt8fDDDyMxMbFC77tp0ybcfffd8PHxgbOzM9q0aYOYmBhs3bq1qm7Nwv/+9z989913Fsf379+P+fPnIy8vr9re29z8+fPlZylJEpydndGpUye8+OKLyM/Pr5L3WLVqFRYtWlQl1yJqaBiEEVGte+ONN7Bhwwbcd999eO+99zB16lTs2bMHYWFhSEtLs2gfEBCAL7/8El988QXefPNNDB8+HPv378fAgQMxZswYFBUVlfmeb731FoYPHw5JkjBnzhy8++67GDVqFE6fPo1vvvmmOm4TQOlB2IIFC2o0CDP6+OOP8eWXX+Kdd95Bhw4d8Oqrr2LQoEGoiq2FGYQR2daktjtARDRjxgysWrUKDg4O8rExY8agS5cueP311/HVV18p2qvVakyYMEFx7PXXX8fTTz+Njz76CK1bt8Ybb7xh8/1u3bqFl19+GVFRUdi+fbvF+UuXLt3mHdUdN27cgLOzc6ltRo8eDS8vLwDAE088gVGjRmHjxo345ZdfoNFoaqKbRI0SR8KIqNZFREQoAjAACAkJQefOnXHixIlyXcPOzg7vv/8+OnXqhMWLF0On09lse+XKFeTn56Nv375Wz/v4+Ci+/+effzB//ny0a9cOTZs2hZ+fH0aOHIn09HS5zVtvvYWIiAh4enrCyckJPXv2xPr16xXXkSQJ169fx8qVK+UpwEmTJmH+/PmYOXMmACAoKEg+Z5qD9dVXX6Fnz55wcnKCh4cHxo4di8zMTMX177nnHoSGhiI1NRX9+/eHs7Mz/vOf/5Tr+Zm69957AQAZGRmltvvoo4/QuXNnODo6wt/fH9OmTVOM5N1zzz3YsmULzp07J99T69atK9wfooaKI2FEVCcJIXDx4kV07ty53K+xs7PDuHHj8NJLL+Hnn3/GkCFDrLbz8fGBk5MTNm3ahKeeegoeHh42r1lcXIyhQ4dix44dGDt2LJ555hkUFBQgMTERaWlpCA4OBgC89957GD58OMaPH4/CwkJ88803ePDBB7F582a5H19++SWmTJmC3r17Y+rUqQCA4OBgNGvWDH/88QdWr16Nd999Vx6V8vb2BgC8+uqreOmllxATE4MpU6bg8uXL+OCDD9C/f38cPHgQbm5ucn+1Wi0GDx6MsWPHYsKECfD19S338zMyBpeenp4228yfPx8LFixAZGQknnzySZw6dQoff/wxfvvtN+zbtw/29vZ44YUXoNPpkJWVhXfffRcA0Lx58wr3h6jBEkREddCXX34pAIhly5Ypjt99992ic+fONl/37bffCgDivffeK/X6c+fOFQBEs2bNxODBg8Wrr74qUlNTLdp9/vnnAoB45513LM7p9Xr56xs3bijOFRYWitDQUHHvvfcqjjdr1kxMnDjR4lpvvvmmACAyMjIUx8+ePSvs7OzEq6++qjh+9OhR0aRJE8Xxu+++WwAQn3zyic37NjVv3jwBQJw6dUpcvnxZZGRkiE8//VQ4OjoKX19fcf36dSGEEMuXL1f07dKlS8LBwUEMHDhQFBcXy9dbvHixACA+//xz+diQIUNEq1atytUfosaG05FEVOecPHkS06ZNg0ajwcSJEyv0WuNIS0FBQantFixYgFWrVqFHjx7Ytm0bXnjhBfTs2RNhYWGKKdANGzbAy8sLTz31lMU1JEmSv3ZycpK/vnr1KnQ6Hfr164cDBw5UqP/mNm7cCL1ej5iYGFy5ckX+aNGiBUJCQrBr1y5Fe0dHRzz66KMVeo/27dvD29sbQUFBePzxx9G2bVts2bLFZi5ZUlISCgsLER8fD5Wq5NfIY489BldXV2zZsqXiN0rUCHE6kojqlJycHAwZMgRqtRrr16+HnZ1dhV5/7do1AICLi0uZbceNG4dx48YhPz8fKSkpWLFiBVatWoVhw4YhLS0NTZs2RXp6Otq3b48mTUr/3+XmzZvxyiuv4NChQ7h586Z83DRQq4zTp09DCIGQkBCr5+3t7RXf33HHHRb5dWXZsGEDXF1dYW9vj4CAAHmK1ZZz584BMARvphwcHNCmTRv5PBGVjkEYEdUZOp0OgwcPRl5eHvbu3Qt/f/8KX8NY0qJt27blfo2rqyuioqIQFRUFe3t7rFy5EikpKbj77rvL9fq9e/di+PDh6N+/Pz766CP4+fnB3t4ey5cvx6pVqyp8D6b0ej0kScKPP/5oNSA1z7EyHZErr/79+8t5aERUcxiEEVGd8M8//2DYsGH4448/kJSUhE6dOlX4GsXFxVi1ahWcnZ1x1113VaofvXr1wsqVK3HhwgUAhsT5lJQUFBUVWYw6GW3YsAFNmzbFtm3b4OjoKB9fvny5RVtbI2O2jgcHB0MIgaCgILRr166it1MtWrVqBQA4deoU2rRpIx8vLCxERkYGIiMj5WO3OxJI1JAxJ4yIal1xcTHGjBmD5ORkrFu3rlK1qYqLi/H000/jxIkTePrpp+Hq6mqz7Y0bN5CcnGz13I8//gigZKpt1KhRuHLlChYvXmzRVvxbzNTOzg6SJKG4uFg+d/bsWatFWZs1a2a1IGuzZs0AwOLcyJEjYWdnhwULFlgUTxVCQKvVWr/JahQZGQkHBwe8//77ij4tW7YMOp1OsSq1WbNmpZYLIWrMOBJGRLXu2WefRUJCAoYNG4bc3FyL4qzmhVl1Op3c5saNGzhz5gw2btyI9PR0jB07Fi+//HKp73fjxg1ERESgT58+GDRoEAIDA5GXl4fvvvsOe/fuxYgRI9CjRw8AwCOPPIIvvvgCM2bMwK+//op+/frh+vXrSEpKwv/7f/8PDzzwAIYMGYJ33nkHgwYNwkMPPYRLly7hww8/RNu2bXHkyBHFe/fs2RNJSUl455134O/vj6CgIISHh6Nnz54AgBdeeAFjx46Fvb09hg0bhuDgYLzyyiuYM2cOzp49ixEjRsDFxQUZGRn49ttvMXXqVDz33HO39fwrytvbG3PmzMGCBQswaNAgDB8+HKdOncJHH32EO++8U/Hfq2fPnlizZg1mzJiBO++8E82bN8ewYcNqtL9EdVZtLs0kIhKipLSCrY/S2jZv3lyEhISICRMmiO3bt5fr/YqKisRnn30mRowYIVq1aiUcHR2Fs7Oz6NGjh3jzzTfFzZs3Fe1v3LghXnjhBREUFCTs7e1FixYtxOjRo0V6errcZtmyZSIkJEQ4OjqKDh06iOXLl8slIEydPHlS9O/fXzg5OQkAinIVL7/8srjjjjuESqWyKFexYcMGcdddd4lmzZqJZs2aiQ4dOohp06aJU6dOKZ5NaeU7zBn7d/ny5VLbmZeoMFq8eLHo0KGDsLe3F76+vuLJJ58UV69eVbS5du2aeOihh4Sbm5sAwHIVRCYkIapgczAiIiIiqhDmhBERERHVAgZhRERERLWAQRgRERFRLWAQRkRERFQLGIQRERER1QIGYURERES1gMVa6zC9Xo/s7Gy4uLhw6w8iIqJ6QgiBgoIC+Pv7Q6WyPd7FIKwOy87ORmBgYG13g4iIiCohMzMTAQEBNs8zCKvDXFxcABj+I5a2Dx4RERHVHfn5+QgMDJR/j9vCIKwOM05Burq6MggjIiKqZ8pKJWJiPhEREVEtYBBGREREVAsYhBERERHVAuaE1XN6vR6FhYW13Y0GzcHBodQlxkRERJXBIKweKywsREZGBvR6fW13pUFTqVQICgqCg4NDbXeFiIgaEAZh9ZQQAhcuXICdnR0CAwM5UlNNjAVzL1y4gJYtW7JoLhERVRkGYfXUrVu3cOPGDfj7+8PZ2bm2u9OgeXt7Izs7G7du3YK9vX1td4eIiBoIDp/UU8XFxQDAKbIaYHzGxmdORERUFRiE1XOcHqt+fMZERFQdGIQRERER1QIGYURERES1oN4EYcOHD0fLli3RtGlT+Pn54eGHH0Z2draijRACb731Ftq1awdHR0fccccdePXVVxVtfvrpJ4SFhcHR0RFt27bFihUrLN7rww8/ROvWrdG0aVOEh4fj119/VZz/559/MG3aNHh6eqJ58+YYNWoULl68qGhz/vx5DBkyBM7OzvDx8cHMmTNx69atqnkY9dikSZMgSRIkSYK9vT18fX0RFRWFzz//vEKlNlasWAE3N7fq6ygRETVIWVnArl2Gz7Wt3gRhAwYMwNq1a3Hq1Cls2LAB6enpGD16tKLNM888g6VLl+Ktt97CyZMnkZCQgN69e8vnMzIyMGTIEAwYMACHDh1CfHw8pkyZgm3btslt1qxZgxkzZmDevHk4cOAAunXrhujoaFy6dEluM336dGzatAnr1q3D7t27kZ2djZEjR8rni4uLMWTIEBQWFmL//v1YuXIlVqxYgblz51bjE6oYrVaLCxcu2PzQarXV9t6DBg3ChQsXcPbsWfz4448YMGAAnnnmGQwdOpSBKhERVbmjR69i/XotXnpJh1atBO69F2jVSuDJJ68hNfVitf7OK5Wop77//nshSZIoLCwUQghx/Phx0aRJE3Hy5Embr5k1a5bo3Lmz4tiYMWNEdHS0/H3v3r3FtGnT5O+Li4uFv7+/eO2114QQQuTl5Ql7e3uxbt06uc2JEycEAJGcnCyEEOKHH34QKpVK5OTkyG0+/vhj4erqKm7evFnue9TpdAKA0Ol0Fuf+/vtvcfz4cfH333+X+3pGV65cEfPnzy/z48qVKxW+dlkmTpwoHnjgAYvjO3bsEADEZ599JoQQ4u233xahoaHC2dlZBAQEiCeffFIUFBQIIYTYtWuXAKD4mDdvnhBCiC+++EL07NlTNG/eXPj6+opx48aJixcv3lafb+dZExFR7Vq0qEBIUrEAhAD0/342/SgWw4d/L06cOFFlv/dK+/1tqt6MhJnKzc3F119/jYiICLlu06ZNm9CmTRts3rwZQUFBaN26NaZMmYLc3Fz5dcnJyYiMjFRcKzo6GsnJyQAMFehTU1MVbVQqFSIjI+U2qampKCoqUrTp0KEDWrZsKbdJTk5Gly5d4Ovrq3if/Px8HDt2zOZ93bx5E/n5+YqP6lDebY5qcjuke++9F926dcPGjRsBGJ77+++/j2PHjmHlypXYuXMnZs2aBQCIiIjAokWL4OrqKo/cPffccwCAoqIivPzyyzh8+DC+++47nD17FpMmTaqx+yAiorpBq9UiNfUiZsxohpJwx9pqdxU2bRqKJUt+wOLFi2t0VKxeBWGzZ89Gs2bN4OnpifPnz+P777+Xz/355584d+4c1q1bhy+++AIrVqxAamqqYsoyJydHERgBgK+vL/Lz8/H333/jypUrKC4uttomJydHvoaDg4NFPpJ5G2vXMJ6z5bXXXoNarZY/AgMDy/lkGoYOHTrg7NmzAID4+HgMGDAArVu3xr333otXXnkFa9euBWCo26VWqyFJElq0aIEWLVqgefPmAIDJkydj8ODBaNOmDfr06YP3338fP/74I65du1Zbt0VERDUsPT0dixcvxuuv74FeX3aZISFUyM31AFCzAxC1GoQ9//zzcpK2rY+TJ0/K7WfOnImDBw9i+/btsLOzwyOPPAIhBADD9jI3b97EF198gX79+uGee+7BsmXLsGvXLpw6daq2brFC5syZA51OJ39kZmbWdpdqlBBCrsmVlJSE++67D3fccQdcXFzw8MMPQ6vV4saNG6VeIzU1FcOGDUPLli3h4uKCu+++G4BhoQQRETV8Wq0WX331FQ4c6IH160eV6zWSpIeHR27ZDatYrW5b9Oyzz5Y5VdSmTRv5ay8vL3h5eaFdu3bo2LEjAgMD8csvv0Cj0cDPzw9NmjRBu3bt5PYdO3YEYPgF3L59e7Ro0cJiFePFixfh6uoKJycn2NnZwc7OzmqbFi1aAABatGiBwsJC5OXlKUbDzNuYr6g0XtPYxhpHR0c4OjqW+jwashMnTiAoKAhnz57F0KFD8eSTT+LVV1+Fh4cHfv75Z8TGxqKwsNDmNk3Xr19HdHQ0oqOj8fXXX8Pb2xvnz59HdHR0jf5lQ0REtSMrC/jlFyAryw8JCUNRvrEmPYYN2wy1uqC6u2ehVoMwb29veHt7V+q1xnIGN2/eBAD07dsXt27dQnp6OoKDgwEAf/zxBwCgVatWAACNRoMffvhBcZ3ExERoNBoAhmmunj17YseOHRgxYoT8Pjt27EBcXBwAoGfPnrC3t8eOHTswapQhwj516hTOnz8vX0ej0eDVV1/FpUuX4OPjI7+Pq6srOnXqVKn7beh27tyJo0ePYvr06UhNTYVer8fbb78tb0xunIo0cnBwsNhG6OTJk9BqtXj99dflqdzff/+9Zm6AiIhqhVarxaVLl/DZZ3osWtQJQngCeAzW879MCURE7Ed4eEqtBGBAPdnAOyUlBb/99hvuuusuuLu7Iz09HS+99BKCg4PlwCcyMhJhYWGYPHkyFi1aBL1ej2nTpiEqKkoeHXviiSewePFizJo1C5MnT8bOnTuxdu1abNmyRX6vGTNmYOLEiejVqxd69+6NRYsW4fr163j00UcBAGq1GrGxsZgxYwY8PDzg6uqKp556ChqNBn369AEADBw4EJ06dcLDDz+MhQsXIicnBy+++CKmTZvWqEe6jG7evImcnBwUFxfj4sWL2Lp1K1577TUMHToUjzzyCNLS0lBUVIQPPvgAw4YNw759+/DJJ58ortG6dWtcu3YNO3bsQLdu3eDs7IyWLVvCwcEBH3zwAZ544gmkpaXh5ZdfrqW7JCKi6qTVanH58mWsWbMGWVl+WLZsCoQwBl4SDIvnrQdikqRHbOxSBARcqKnuWlUvEvOdnZ2xceNG3HfffWjfvj1iY2PRtWtX7N69Ww5qVCoVNm3aBC8vL/Tv3x9DhgxBx44d8c0338jXCQoKwpYtW5CYmIhu3brh7bffxtKlSxEdHS23GTNmDN566y3MnTsX3bt3x6FDh7B161ZFov27776LoUOHYtSoUejfvz9atGghr+oDADs7O2zevBl2dnbQaDSYMGECHnnkEfz3v/+tgadV923duhV+fn5o3bo1Bg0ahF27duH999/H999/Dzs7O3Tr1g3vvPMO3njjDYSGhuLrr7/Ga6+9prhGREQEnnjiCYwZMwbe3t5YuHAhvL29sWLFCqxbtw6dOnXC66+/jrfeequW7pKIiKqLMfF+zZo1OHCgB5YunQLLgg/GQMzI8LUkGaYfazsAAwBJGDPbqc7Jz8+HWq2GTqeDq6ur4tw///yDjIwMBAUFoWnTphW6rlarxeLFi8tsFxcXB09PzwpduyG6nWdNRERVy/R3mE7ngkWL4q0EYKYE7r03CW3aZKCoyAEeHrmlTj9OnToVfn5+t9XH0n5/m6oX05FUtTw9PREXF1dqsrqDgwMDMCIiqjOMuV+XL1+Wj+3Z06+MAAwAJNjbF5d75MvBweE2elkxDMIaKQZYRERUX5jP4GRl+WHPnv7444/25Xi1QGBg6WWKBg4ciNatW9f4AASDMCIiIqqztFotsrOz5e+//fYBHD7cDWWvfgQAgW7dDpc5CtauXbtaGZxgEEZERER1jlarRXp6On788Uf5WFaWX7kCMEnSo3//3QgJOV1mADZhwoRamx1iEEZERER1ivn0o07ngtxcT5w82Q62AzBDSQrj6sewsIM2rz9y5Eh4eXnVev4zgzAiIiKqdcbE+6tXryr2WT5woAc2bRr6bwK+7YIOXbocRljYoTJXPwKAv79/nciNZhBGREREtcr6yFdr2NvfRELCMJSMftkaBdMjMnKn1eArODgY3t7ecHd3R2BgYK2PfpliEEZERES1yrRkknLkS4/y5H+Vtvfjfffdd9t1v6oLgzAiIiKqUVqtVg68Tp68hsOHb0CncwEAkwAMKH1jHz1Gj16PwMCsUqcfa7LuV0UxCKMG5aeffsKAAQNw9epVuLm5les1rVu3Rnx8POLj46u1b0REpJx6NB31kqQu0GiSy1F8FQAEoqKSEBp6wurZupJ4X5Z6sXckNRyTJk2CJEl44oknLM5NmzYNkiRh0qRJNd8xIiKqEcYRMJ3ORTHqJYQK+/drUFryvYEeUVGJ6Ns32WYLf39/+Pn51ekADOBIGNWCwMBAfPPNN3j33Xfh5OQEwLA/46pVq9CyZcta7h0REVWnvLw8AEBurqeVUa/Spx/vv38L2rc/bXP6ceTIkXVm5WN5cCSMalxYWBgCAwOxceNG+djGjRvRsmVL9OjRQz528+ZNPP300/Dx8UHTpk1x11134bffflNc64cffkC7du3g5OSEAQMG4OzZsxbv9/PPP6Nfv35wcnJCYGAgnn76aVy/fr3a7o+IiEpotVpcuHABFy5cwIkTJ7B27VoAgIeHFpKkL+dVDNOPvXsfKDX/qz4FYABHwghAVhZw+jQQEgIEBNTMe06ePBnLly/H+PHjAQCff/45Hn30Ufz0009ym1mzZmHDhg1YuXIlWrVqhYULFyI6OhpnzpyBh4cHMjMzMXLkSEybNg1Tp07F77//jmeffVbxPunp6Rg0aBBeeeUVfP7557h8+TLi4uIQFxeH5cuX18zNEhE1UualJ4x0OhekpIRDlDXzCMPqx8jIJKvTj4MHD0ZgYCAA1Pn8L2sYhDVyy5YBU6cCej2gUgFLlgCxsdX/vhMmTMCcOXNw7tw5AMC+ffvwzTffyEHY9evX8fHHH2PFihUYPHgwAOCzzz5DYmIili1bhpkzZ+Ljjz9GcHAw3n77bQBA+/btcfToUbzxxhvy+7z22msYP368nHQfEhKC999/H3fffTc+/vhjNG3atPpvloioETFd+XjlyhXFOWPwZcj9Kn0yTpL0GDXK+urHmJgY+Pj41LugyxyDsEYsK6skAAMMnx9/HIiOrv4RMW9vbwwZMgQrVqyAEAJDhgyBl5eXfD49PR1FRUXo27evfMze3h69e/fGiROG1TAnTpxAeHi44roajUbx/eHDh3HkyBF8/fXX8jEhBPR6PTIyMtCxY8fquD0iokbFGHjpdDqsWbPGahtl/a+yGGp/GVc/9urVCx4eHnB3d4e3t3e9D76MGIQ1YqdPlwRgRsXFwJkzNTMtOXnyZMTFxQEAPvzww2p5j2vXruHxxx/H008/bXGOiwCIiG6frSlHU+YrIUsjSXrExi5VbLwdFhZWZwuu3g4GYY1YSIhhCtI0ELOzA9q2rZn3HzRoEAoLCyFJEqKjoxXngoOD4eDggH379qFVq1YAgKKiIvz222/y1GLHjh2RkJCgeN0vv/yi+D4sLAzHjx9H25q6KSKiRsa02j1Qstm2h4cWgGEV5OXL1lZCmlJuvm0agAF1u+Dq7WAQ1ogFBBhywB5/3DACZmcHfPppzSXn29nZyVOLdnZ2inPNmjXDk08+iZkzZ8LDwwMtW7bEwoULcePGDcT+m7T2xBNP4O2338bMmTMxZcoUpKamYsWKFYrrzJ49G3369EFcXBymTJmCZs2a4fjx40hMTCzzLzciIiqdVqtVrEq3vuWQhNJqf3XufBQaTTKKihwsNt8eM2ZMg5p+NMcgrJGLjTXkgJ05YxgBq6kAzMjV1dXmuddffx16vR4PP/wwCgoK0KtXL2zbtg3u7u4ADNOJGzZswPTp0/HBBx+gd+/e+N///ofJkyfL1+jatSt2796NF154Af369YMQAsHBwRgzZky13xsRUUNmbdNt21sOWd//UZL0GDgw0SLxvr7V+6osSYjyLBCl2pCfnw+1Wg2dTmcRrPzzzz/IyMhAUFAQV/hVMz5rImrsTBPvr169iqKiIhQUFOD333+X22RktMbKlRPLfU3j1GNY2EGLc3FxcfU6ACvt97cpjoQRERGRTeVJvAfwbw6YHmXXgbe98XZjGQEzYhBGRERENpWWeG8aRKWlhcLWtKN54r2tjbcbUwAGMAgjIiKicjJPvO/ZMxVBQWdx8aIP9u7tD9tBmITo6K3o1Om4InAbMGAA3N3dYW9v36AT8G1hEEZERERlspZ4n5p6J1JT74RxpMsWSdJbBGAA0Llz50YXeJliEFbPcV1F9eMzJqLGxHTbIaBk66Hc3NJqfZUegA0btlkOwEaOHAkvL696uddjVWMQVk8Z62oVFhbCycmplnvTsBn/Z2Rey4yIqKEpLQm//In3RtYT8Btb3ldpGITVU02aNIGzszMuX74Me3t7qFTl/UdBFaHX63H58mU4OzujSRP+cyGihu3SpUs2z6nVBYiISMb+/X1ttDCdktRj+HDLBPwJEyYwADPB3yr1lCRJ8PPzQ0ZGBs6dO1fb3WnQVCoVWrZsCUmyPdxORFTfaLVaXL58Wa75lZ+fj7/++stqW+OKyE6djiE5WWNlWlKPqKgkqNV5AGAx+hUTEwMfHx8GYGYYhNVjDg4OCAkJsVg+TFXLwcGBI41EVO+Z5nrpdDqsWbOmzNfodC5ISQmXAy9J0qNr1yM4cqSr/H1YWCr6999rsd2QWq0GAOZ+lYJBWD2nUqlYxZ2IiEpV3oKrpvbt0yAxMQqmSfdCqHDkSFfExi61utdjVFQU2rdvz6CrnBiEERERNXDlLbhqtGPHPTbrfgmhQlGRA4KCLFNhgoKCGIBVAIMwIiKiBkyr1cplJgBlwVVj+Yjg4DPIzfWEvf1NpKT0xtGj3VDaptseHrlWzzk4OFTHLTRYDMKIiIgaqPT0dHz11Vfy9+YFV4VQISFh6L9nVShP0VVrNb8A5n5VBoMwIiKiBsI0+T4rKws//PCD4rz1gqum35e2ClyP2NilCAi4IB/x8vKCn5/f7XW6EWMQRkRE1ACUJ/new0MLSdKXUvneFkPdL9MADOD04+1iEEZERFTPabVaZGdnK46ZJ9/rdC7IzAxEWFgqUlN7onyV7wW6dDmMyMid8hRkVFQUgoKCOP1YBRiEERER1WPWRsDMk++7dj2Cw4dNk+3LsyeuoQBr377JiqMsQVF1GIQRERHVU7ZGwMyT75UBGFBW7lfPnsoCrBEREQgMDIS3tzcDsCrEIIyIiKgespUDZj35vjzbrukREZGM8PAUqNUFctV7TjtWHwZhRERE9YDpykcAitpfpuztbwLQo3w5XwCgx/33b0H79qdx333t4ePTD23atGHgVQMYhBEREdVRxsArLy8Pa9euLbWtcZ/H/fs1KE/NL6OIiGT07n0AABAWFsaSEzWIQRgREVEdVJH9Hk0T8UuUbwoyPDylUv2j21fRQiFERERUzawl3NtinohfNj0AQ/X74cM3K/aOZN2vmsWRMCIiojrE1giYad0vAPLX1hPxbdFjypSlKCpywMCBbTBgwJ0A7gTAbYdqA4MwIiKiOsJWyYmUlHAkJ2v+DbbEvx+GGmCRkUnlrIKvrHofHT2MQVctYxBGRERUB9gqumrYYNs818uQ7yWEComJkaVeV5L0GDVqPQIDszB16v1Qq+/kqFcdwSCMiIiolpiWncjIyFCcM+Z6lZ2+bfu8JOkxbNhmzJ3bEf7+9zHwqmMYhBEREdWCslY/ZmYGVmKjbSNl4VUvrzsZgNVBDMKIiIhqgWnhVXPGkhOVY0i+N+Z+AVz1WFcxCCMiIqpBxilI84r3xtWP9vY3K1hyAjAWZjVOPxoDsJiYGPj4+HAUrI5iEEZERFTNjIGXTqfDmjVrLM6bFlu1vdLRVgV8gX799qBNmwx4eOTi0Uej4OXF5Pv6gEEYERFRNUpPT8dXX31l87x5sdWSMhTmAZdkctz4WY+oqCT07Zsst/L392fwVU8wCCMiIqoGWq0Wly5dstjz0bzo6rFjna2MfNnackhCdPRWBAaeR1GRAzw8chUV7ydMmMAArB5hEEZERFRFKjLtaNg+yFjzq3ybbUuSHp06HYdaXYCRI0fCy8tLPsfpx/qHQRgREVEVKKvkhOUej+YFWMsKxAxJ98aRL0471n8MwoiIiKqAeckJ02lHtbqgHHs82g7AJEmP2FhD2YkxY8bA29ubAVgDwCCMiIioCuh0Ovlr89WOkZFJyM11R3mnHU1Jkh4zZ57BpEn9WG6igWEQRkREVAnG/K+8vDzk5eVh+/btAKyvdkxMjEJFgy9Aj/vv34L27U9j1qyJDL4aIAZhREREFVRa/pf1aceKj34NG7YZYWEHMWbMGAZgDRSDMCIiogrQarXIzs5WHDPN//Lw0JZScLUsJaNfxgR8b2/vKug11UUMwoiIiGww1vq6desWCgoKkJ+fj5SUFEUb8/yvYcM2Y9iwzUhIGArDCsjy5oHpMXy4YfQL4JZDjQGDMCIiIivKKjkBWM//2rRpKO66ay9KAi9rle5N6RERkYzw8BSo1QVc/diIMAgjIiL6lzHZHoDFBtvWZGYGWkw7CqHC3r39oQy2DFsM9eu3Fz//3E8u1tqzZyr699/L4KuRqsyEda0YPnw4WrZsiaZNm8LPzw8PP/ywYk5+/vz5kCTJ4qNZs2aK66xbtw4dOnRA06ZN0aVLF/zwww+K80IIzJ07F35+fnByckJkZCROnz6taJObm4vx48fD1dUVbm5uiI2NxbVr1xRtjhw5gn79+qFp06YIDAzEwoULq/iJEBFRVTKOfC1ZsgRLlizBxo0bFed1OhekpXVCWlon6HQuOHCgB9avH2XjatamH1Vo0yYD8fGLsGzZn/j998vYtCkAM2eOQ1xcHDp06MAArJGpNyNhAwYMwH/+8x/4+fnhr7/+wnPPPYfRo0dj//79AIDnnnsOTzzxhOI19913H+688075+/3792PcuHF47bXXMHToUKxatQojRozAgQMHEBoaCgBYuHAh3n//faxcuRJBQUF46aWXEB0djePHj6Np06YAgPHjx+PChQtITExEUVERHn30UUydOhWrVq0CAOTn52PgwIGIjIzEJ598gqNHj2Ly5Mlwc3PD1KlTa+JxERFRBV26dEnxvWmyfXp6WyQkDENJcKX/93NFxjL08l6Pgwc7wc/Ptwp6TfWZJIQQtd2JykhISMCIESNw8+ZN2NvbW5w/fPgwunfvjj179qBfv34AgDFjxuD69evYvHmz3K5Pnz7o3r07PvnkEwgh4O/vj2effRbPPfccAEPxPV9fX6xYsQJjx47FiRMn0KlTJ/z222/o1asXAGDr1q24//77kZWVBX9/f3z88cd44YUXkJOTAwcHBwDA888/j++++w4nT54s9z3m5+dDrVZDp9PB1dW10s+KiIhs02q1uHz5smKvR/Nke8NvytuZPFIm3cfFxXHUqwEr7+/vejMdaSo3Nxdff/01IiIirAZgALB06VK0a9dODsAAIDk5GZGRkYp20dHRSE5OBgBkZGQgJydH0UatViM8PFxuk5ycDDc3NzkAA4DIyEioVCp5xUxycjL69+8vB2DG9zl16hSuXr1q875u3ryJ/Px8xQcREVUPrVaLkydPYvHixYoAzFqyfeV/XQp06XII06cvUqx6ZABGQD0LwmbPno1mzZrB09MT58+fx/fff2+13T///IOvv/4asbGxiuM5OTnw9VUO//r6+iInJ0c+bzxWWhsfHx/F+SZNmsDDw0PRxto1TN/Dmtdeew1qtVr+CAwMtNmWiIgqz5j/ZRp8AYYA7NixzpWs8WVOj6ioRIwa9b1c8wuAxe8QarxqNQh7/vnnrSbTm36YTt/NnDkTBw8exPbt22FnZ4dHHnkE1mZTv/32WxQUFGDixIk1eTu3bc6cOdDpdPJHZmZmbXeJiKhBsrbZ9vbtkVi0KB7bt0fDUErClLByzDpJ0qNnz98wffoi9O2bLB+PiYnhNCQp1Gpi/rPPPotJkyaV2qZNmzby115eXvDy8kK7du3QsWNHBAYG4pdffoFGo1G8ZunSpRg6dKjFaFSLFi1w8eJFxbGLFy+iRYsW8nnjMT8/P0Wb7t27y23Mkzdv3bqF3NxcxXWsvY/pe1jj6OgIR0dHm+eJiKjqHTjQw6SwqpH56kaBoKA/kZERbOWckR6jR69HYGAWRozoBXf3KNjb20OtVsPBwYHBF1mo1SDM29u70tsx6PWGlSk3b95UHM/IyMCuXbuQkJBg8RqNRoMdO3YgPj5ePpaYmCgHcUFBQWjRogV27NghB13G6shPPvmkfI28vDykpqaiZ8+eAICdO3dCr9cjPDxcbvPCCy+gqKhIzllLTExE+/bt4e7uXqn7JSKiqqPT6f79bMj/KntiSIWMjLYoGREzBmKGr42V8kNDTwAAOnfuzKCLylQvSlSkpKTgt99+w1133QV3d3ekp6fjpZdeQnBwsMUo2Oeffw4/Pz8MHjzY4jrPPPMM7r77brz99tsYMmQIvvnmG/z+++9YsmQJAECSJMTHx+OVV15BSEiIXKLC398fI0aMAAB07NgRgwYNwmOPPYZPPvkERUVFiIuLw9ixY+Hv7w8AeOihh7BgwQLExsZi9uzZSEtLw3vvvYd33323eh8UERHZZCzEqtPp5Fww65ttl8ZQ9f7eexPh4XEVERH+UKv90aaNHu3b3wngTo56UbnViyDM2dkZGzduxLx583D9+nX4+flh0KBBePHFFxXTd3q9HitWrMCkSZNgZ2dncZ2IiAisWrUKL774Iv7zn/8gJCQE3333nVwjDABmzZqF69evY+rUqcjLy8Ndd92FrVu3yjXCAODrr79GXFwc7rvvPqhUKowaNQrvv/++fF6tVmP79u2YNm0aevbsCS8vL8ydO5c1woiIaoBp1fvsbBUyMprA0zMXe/assmhbuc22JdjbFyM09AQiIzuiS5c2Zb+EyIp6WyesMWCdMCKiijHd79HaxtrGMhGmTNuVj8CUKZ8hIOACRo4ciS5dulThHVBD0KDrhBEREVljHAGztbG2Tudi8Zrg4DMYNWoD7r9/E2yvgBTy527dDiMg4AIAQ4kiosriTw8RETU41nK9hFAhN9dDUbNr3z4NkpIi5dGyTp2O4/jxTjBdASlJeowduxq5uZ4IDDwvB2AAa37R7WEQRkREDYJWq8WVK1cAWM/1kiTD3o2AYaRsz55+SE3tBWPAJYQKJ050RL9+e7B3bz8AKqhUAs89dwYPPBAEd3d3uLl1k6/HBHy6XQzCiIio3jPNBQMAtboAw4ZttsgJU6sLsG+fBomJUbBW70sIFdq0yUCvXqno23ciwsM9ERDQDkC7mrsZajQYhBERUb1huvIRMNT7Kioqwl9//WXRNizsIIKDzyA310MeAduw4QEcPdoNpRVc9fDIhVpdgIiIQpjU7SaqcgzCiIioXjAf7SoPtbqgzNEvUz17pso5Yw4ODpXtKlG5MAgjIqI6SavV4tKlS7h16xYA4OrVq4rzOp0LcnM94eGhVSTbm5/7/fee2Lu3P8oKwACB/v33AgCioqKY70XVjkEYERHVOeajXjqdCzIzAwF0QmBgJtLT29qsAabcC9JYWsJWAKbcdsgYzHl4eFTTnRGVYBBGRER1jmnelyGoGoaSQEr/79clqxo3bRoKH58c5OW5m23GXdrol0Dv3r+gY8dTch6YUWX3NSaqCAZhRERUZ5VssG0aTFnWGRdChaVLH0PZU47yKxAVlYi+fZMBAPfffz8CAgIAsPQE1ZxKBWG7du3CgAEDqrovRETUyJiudjx58hr+/NMOLVvehKPjZQAV2WDbMK1YnnZduhxGZOROeeRrzJgx6NChQ+VugOg2VCoIGzRoEAICAvDoo49i4sSJCAwMrOp+ERFRA5eeno6vvvoKgOU+j5GRmfD3bw17+5s2NtjWQ5Lw7/GyAjDjeT2iopLk0S8jTj1SbalUEPbXX3/hyy+/xMqVK7FgwQLce++9iI2NxYgRI7ikl4iIyqTVauUATKdzUeRxCaGSy0lIkh5dux7BkSNdTQIxQzBlb1+IH34YgrICsH799qBNmwyLvK/BgwcjODiYU49UayQhhK3dSsvlwIEDWL58OVavXg0AeOihhxAbG4tu3bqV8UoqS3l3YSciqm8uXLiAJUuWAAC2b4/E/v19bbaVJD1iY5ciL88NAKDTucn7PZbOcuRr5MiR8PLyYt4XVavy/v6+7cT8sLAwtGjRAp6ennj99dfx+eef46OPPoJGo8Enn3yCzp073+5bEBFRA6XTuSA5WVNqGyFUKCpyQGBgFjIzA8sRgAlEROxHeHiKRf0wf39/Bl9UZ1Q6CCsqKsL333+Pzz//HImJiejVqxcWL16McePG4fLly3jxxRfx4IMP4vjx41XZXyIiakDKk3gvSXpkZ/vjiy8eKbNtu3YnMWTID4rgi6NfVFdVKgh76qmnsHr1aggh8PDDD2PhwoUIDQ2Vzzdr1gxvvfUW/P39q6yjRETU8Hh4aK0k3ot/PwxJ+mFhqeWafpQkvUUABnD0i+quSgVhx48fxwcffICRI0fC0dHRahsvLy/s2rXrtjpHRET1k1arxeXLl1FUVGT1fEGBIVBSqwswbNhms5WRSVCrdTh1KgRHj3ZFauqdpbyT9Yr3HP2i+uC2E/Op+jAxn4jqI2tbDtna41HZxgPZ2f4mo16llZ7QY/To9XBzy0NRkYPFyse4uDgGX1Rrqj0x/9SpU/jggw9w4sQJAEDHjh3x1FNPoX379pW9JBERNQDmWw4ZR7ls1ekCIAdQK1dOREngZT0AM456hYYafv8MGDAA7u490aRJE7i5uXH0i+qNSgVhGzZswNixY9GrVy9oNIZVLb/88gtCQ0PxzTffYNSoUVXaSSIiqttMK9+npeUhI8NQaLUkAAMAY/0vWA3EDBt0l1bzyzD6FRiYpRj1CgkJgZ+fXxXdCVHNqVQQNmvWLMyZMwf//e9/FcfnzZuHWbNmMQgjImpETKcfS0a+OtqodC8hKSkSarUOgYGZKChojvPnW6Fly3NlvItAVFSSPPplikXCqb6qVBB24cIFPPLIIxbHJ0yYgDfffPO2O0VERPWHcQTMuNm2MfCyldclhArr1z8IQP/vOQmAQKdOx/89pgzcjMn6pqNnMTExnHqkeq9SQdg999yDvXv3om3btorjP//8M/r161clHSMiovrFes0vQ4BlfZpRpWh3/Hgn9Ou3B3v39vv3nB4REckWRVcnTJiA4ODgqu4+UY2rVBA2fPhwzJ49G6mpqejTpw8AQ07YunXrsGDBAiQkJCjaEhFRw2et5pck6XHnnSn49dc+KD3fCwAkODv/jenTFyE318NixWNMTAx8fHw48kUNRqVKVKhUZe3X9e/FJQnFxcUV7hQZsEQFEdUVxsR7nU6Hq1evKup/Xb58GWlpaQAsV0NGRCTD3z/73+nHsghMmfIZAgIuYMCAAQgJCZHPcNqR6pNqLVGh1+sr3TEiIqpfKlL3KyzsIIKDzyAlJRzJyZp/N+bWo/SaXwAg0K3bYQQEXAAAuLu7c8UjNXi3vYE3ERE1bLbqfhnrdYWFHZTP63QuyMwMRHKyRlGaomQrImOOGOSv/f2zcf/9W+QAjKixKHcQ9v7775f7ok8//XSlOkNERHWXtdWPCQlDcfGiF7p0ScOlSy3M6oKZMgRc99+/Ce3bn0ZBQXNkZrZEYOB5q8FXkyYcI6CGr9w/5e+++2652kmSxCCMiKieM9378erVqwBsrX5UISUlAikpGhg33bZNQnGxPdTqAqjVBaWOfPn4+NzuLRDVeeUOwjIyMqqzH0REVAuysoDTp4GQECAgwHDMPAfMyNrqxxLGel+lEQgMPA8A6NWrF1q2bKk4y22HqLHheC8RUSNjXOm4apUTZs1SQ6+XoFIJLFyow0MP/Y28vDxFe2OeFwBERiYhMTESpY94GSmLsZom3rds2RJdunSpwrsiqn8qHYRlZWUhISEB58+fVyRtAsA777xz2x0jIqKqZxzl0ulcsGhRPIQwjF7p9RJmznTFX399rljxeOBADyQkDEVJ0CXQu3cKfv01HJYjX8bk+5KkfR+fHKu5X8z5IqpkELZjxw4MHz4cbdq0wcmTJxEaGoqzZ89CCIGwsLCq7iMREVUR4x/N1vK7hFAhN9dDDsJ0OhezAAwAJJMAzLTshGGk6957d1oUWrWW+8WcL6JKBmFz5szBc889hwULFsDFxQUbNmyAj48Pxo8fj0GDBlV1H4mIqIpZz+/S4/r1ZtDpXKBWFyA31xPWpx0lk896hIf/gi5d0uRgy7x2GFCy1yPAwqtERpUKwk6cOIHVq1cbLtCkCf7++280b94c//3vf/HAAw/gySefrNJOEhFR5Wm1Wpw9ewsZGU1QWHgNGRmt4eGhxbBhmxXV7QEJ69c/CEnSQ6NJRqdOx1B2kVUVOnT4w2K0a8yYMVCr1QAYdBHZUqkgrFmzZvKQtp+fH9LT09G5c2cAwJUrV6qud0REVGnp6em4ePEi3njjism0ogeAEDlny1qivRAq7N/fF/v3a8rxLnp4eOQCAEaOHAkvLy8GXUTlVKkgrE+fPvj555/RsWNH3H///Xj22Wdx9OhRbNy4Ud7Qm4iIaoa1MhPp6en46quv/s3rikdJkGUY1TIWWpUkwPZKx7JWQApERSXJ049eXl7caoioAioVhL3zzju4du0aAGDBggW4du0a1qxZg5CQEK6MJCKqQcuWAVOnAno9oFIB77xzDTExBfjrr78A4N/SEraDLCFsnCqDJOkRGZmEvn2T5WMODg6VuxhRI1WpIKxNmzby182aNcMnn3xSZR0iIqKyGfO8pk71gV5vLDMBTJ/ujHPnlkCtLoBO54JLl7xLuYoekgQbxVdtvyYiIhnh4SmKBPyYmBhOQRJV0G0VaiksLMSlS5eg1+sVx82rIBMRUdXIygJ+/12HPXtWIjfXE3r9RMV5Y5mJ9PS2Jkn31pLr9Rg+fDMAlNGuRHj4fkRE/GJ19aNx5SMRlV+lgrA//vgDsbGx2L9/v+K4EAKSJKG4uLhKOkdERCVKph7VkKR4REYmWZSZkCQ97O0LzTbSLqnpJUl6dOx4DBERyfKKxuDgMzh2rBO2b7ddYkiS9DYDMIBTkUSVUakg7NFHH0WTJk2wefNm+Pn5QZLK2i+MiIhux2+/AY89BjmHSwgVkpIiERmZhKSkSAhRUqW+qMjRyhSjhHbtTuKPP9rh+PEuOH68s2JasXPn40hMHGj2upLAbdiwzXIA1rFjRwQEBMDd3Z17PRLdhkoFYYcOHUJqaio6dOhQ1f0hIiIz7713DdOnN5O3GDISQgV//2zExy9SVKnPyvKzutH2H3+0R8l0o6EMRXKyBsOGbUZY2EFF3TBj4r2/f7ai+j1gCMK47yPR7atUENapUyfWAyMiqmZarRZHjuRi+vRgiwAMMEwRGgMkY5B04ECPUnK8LK8hhAqbNg1FcPAZhIUdRHDwGYtth8zZ29tXwd0RUbmDsPz8fPnrN954A7NmzcL//vc/dOnSxeIfpKura9X1kIioETJutJ2R0RpChFhpYahqb0qnc7GSC1Y20z0jTQM6W7y9S1txSUTlVe4gzM3NTZH7JYTAfffdp2jDxHwioqph3JXE+h6PhsQw8+lEa5tyW7JcAWkcUSuNcRsi5n8RVZ1yB2G7du2qzn4QETVq1qreA4bNsM1ztQzJ+YZgy3Q60cNDC8MekMpNuY21wIx5XtevN0NyskaRzG8c/TJuPWSKgRdR9Sh3EHb33XfLX58/fx6BgYEWqyKFEMjMzKy63hERNQLmVe+XLAHuv7/kvGmu1vXrzbB+/YOK1wuhwrFjnf4dBTP9/7KhFpi1PK/w8BSruV/ceoio5lQqMT8oKAgXLlyAj4+P4nhubi6CgoI4HUlEVA62qt4//rjA+vV/Kdoac7V0Oher05OGGl+WifjBwWes5nmVJ/eLiKpXRfaqkBlzv8xdu3YNTZs2ve1OERE1dMbE+9df3yMHYEbFxRK++y5N/l6nc0FaWiekpXUCAAwbthmSZNypxDTwMv//soTMzABUBIuuEtWcCo2EzZgxAwAgSRJeeuklODs7y+eKi4uRkpKC7t27V2kHiYgaGq1Wi+zsbLmchDnTRPl9+zRITIxEyd/MAsOHb0J8/CKkpvbAnj0Dyv2+EyZMUPx/2xxzv4hqVoWCsIMHDwIwjIQdPXpU8ReTg4MDunXrhueee65qe0hE1IAYR8AM5STiraxmLEmUNwRgUTCfYty0aSgiI5OwZ8/dKJ0egYFZAICoqCgEBwdX4Z0Q0e2qUBBmXCH56KOP4r333mM9MCKiCsjKAn75xTC9aKucRM+eqQgLOwidzgVJSZGwVWBVOTpmjUBUVJKc9+Xi4lI1N0FEVaZSifnLly+v6n4QETVoJSsgPW1uvg0Aqak90b//3jJqfglYD8AM5SmMpSj69k220oaI6opKBWHXr1/H66+/jh07duDSpUvQ6/WK83/++WeVdI6IqL6ztgLSuPl2WFgqUlPvNHuFCpmZAcjICIK1wqrWjxncf/8WeHtrrW45xK2GiOqeSgVhU6ZMwe7du/Hwww/Dz8/P6kpJIqLGLj09HR9++D22bx8Ivd5XcU4IFYKCMpCa2hPmxVU3bBhtZRRMICgoHRkZba2+lyTp0b79aZtlJ7jVEFHdU6kg7Mcff8SWLVvQt2/fqu4PEVG9p9VqcenSJTz//GkbyfeGoCkwMAvDh2822e9RD0Cyulk3IKFnzwM4e7ZNqcn8ANCrVy+0bNkSgGEEzNvbm6seieqgSgVh7u7u8PDwqOq+EBHVe2WvfjTQaJKhVhcoquGnpXW2Mj1pYAzazLcw0miSER6eohgBa9myJbp06VIt90dEVadSQdjLL7+MuXPnYuXKlaXWnCEiamyMG2+XnlivR3h4ivydWl2AgoLmSE3tZbO9caTLNGizlvsFAE2aVOp/7URUwyr1L/Xtt99Geno6fH190bp1a4uEzwMHDlRJ54iI6ipbG24beXhora5+NO7naBo8HTjQAwkJQ2Et4b5z56MYODBR0b6sLYfc3NwqeDdEVBsqFYSNGDGiirtBRFR/WNtwOzZW2UatLrA5dQgAGRmt4eGhBYB/AzDrJSfMA7Dy4NZDRPVDpYKwefPmVXU/iIjqvNI23O7e/RJat1b+L9V06tDevhBFRY5ISwtFUlKkHJiFhaXCVtHViIhkqwFYVFSURfFVe3t7qNVqbj1EVI9UKAj79ddf0bNnT9jZ2Vk9f/PmTXz//feIiYmpks4REdUVxoT7jIzW0OsnKs4VF0v44IMfERR0DmPGjFGcU6sLkJ7e1mQFZEmdLyFU/+aBGYqsKinzxgBgzJgxXOlI1ICUtueFBY1GA61WK3/v6uqqKMyal5eHcePGVV3vTAwfPhwtW7ZE06ZN4efnh4cffhjZ2dmKNtu2bUOfPn3g4uICb29vjBo1CmfPnlW0+emnnxAWFgZHR0e0bdsWK1assHivDz/8EK1bt0bTpk0RHh6OX3/9VXH+n3/+wbRp0+Dp6YnmzZtj1KhRuHjxoqLN+fPnMWTIEDg7O8PHxwczZ87ErVu3quRZEFHNMybcG3O9TJluuJ2bm6s4Z1glOdQkN8w878v4fck1Jckyb2zChAno0KEDAzCiBqRCQZgQotTvbR2rCgMGDMDatWtx6tQpbNiwAenp6Rg9erR8PiMjAw888ADuvfdeHDp0CNu2bcOVK1cwcuRIRZshQ4ZgwIABOHToEOLj4zFlyhRs27ZNbrNmzRrMmDED8+bNw4EDB9CtWzdER0fj0qVLcpvp06dj06ZNWLduHXbv3o3s7GzF+xQXF2PIkCEoLCzE/v37sXLlSqxYsQJz586tlmdDRDXHmOtlDMQkSVmjKzExUW6r07ng2LHOpaySNFJh9Oj1GD16LUaPXov4+EUICzsonx0zZgw33yZqgCRRgahJpVIhJycHPj4+AAwbwh4+fBht2rQBAFy8eBH+/v4oLi6unt6aSEhIwIgRI3Dz5k3Y29tj/fr1GDduHG7evAmVyvA/vE2bNuGBBx6Q28yePRtbtmxBWlqafJ2xY8ciLy8PW7duBQCEh4fjzjvvxOLFiwEAer0egYGBeOqpp/D8889Dp9PB29sbq1atkoPAkydPomPHjkhOTkafPn3w448/YujQocjOzoavr6FK9ieffILZs2fj8uXL5U6azc/Ph1qthk6n42bpRNWorJWOAHDhwgUsWbJE/l6nc0FmZgAACYGBmRa5W/v2aeTcr9K2GgIMgVx8/CKbCfhTp06Fn59fBe+KiGpLeX9/V2gkrK7Izc3F119/jYiICLk8Rs+ePaFSqbB8+XIUFxdDp9Phyy+/RGRkpNwmOTkZkZGRimtFR0cjOdmwyW1hYSFSU1MVbVQqFSIjI+U2qampKCoqUrTp0KEDWrZsKbdJTk5Gly5d5ADM+D75+fk4duyYzfu6efMm8vPzFR9EVL2WLQNatQLuvdfwedkyw/GsLGDXLsNnwJBuYSo9vS02bBiN9esfxLvvxmP79kjodIZk+X37NEhMjDKbgrT1965AZGRShVdAElH9V+HVkcePH0dOTg4Aw9TjyZMnce3aNQDAlStXqrZ3ZmbPno3Fixfjxo0b6NOnDzZv3iyfCwoKwvbt2xETE4PHH38cxcXF0Gg0+OGHH+Q2OTk5isAIAHx9fZGfn4+///4bV69eRXFxsdU2J0+elK/h4OBgUYfH19dXfi623sd4zpbXXnsNCxYsKOfTIKLbYWul49SpAgcPnsPHH7eCXi9BkgRGjsyAu/teFBUZykoUFDQ3Kyuhwv79fZGcrMFdd+3F3r39YC33q3Pnozh2LBSmeWBRUUno2ze51L6y5ARRw1ThIOy+++5T5H0NHToUACBJEoQQFdrM+/nnn8cbb7xRapsTJ06gQ4cOAICZM2ciNjYW586dw4IFC/DII49g8+bNkCQJOTk5eOyxxzBx4kSMGzcOBQUFmDt3LkaPHo3ExMR6scn4nDlzMGPGDPn7/Px8BAYG1mKPiBqm0lY66vUSPvqopbx/oxASNmxoA+AxlIxoCVibSBBChb17+8Pa1KMkGWp+DRyY+O80JhAYmGUxAjZy5Eh4eXnJ37PkBFHDVaEgLCMjo0rf/Nlnn8WkSZNKbWPMNwMALy8veHl5oV27dujYsSMCAwPxyy+/QKPR4MMPP4RarcbChQvl9l999RUCAwORkpKCPn36oEWLFharGC9evAhXV1c4OTnBzs4OdnZ2Vtu0aNECANCiRQsUFhYiLy9PMRpm3sZ8RaXxmsY21jg6OsLR0bHU50FEt898paMycd5alXugJLCSUFp+l/VzyilHtfqEzVd7eXkx/4uokahQTlirVq3K9WH0//7f/yt1itLb2xsdOnQo9cPWMLxeb1iZdPPmTQDAjRs35IR8I2M9M2NbjUaDHTt2KNokJiZCo9EAMPzF2bNnT0UbvV6PHTt2yG169uwJe3t7RZtTp07h/PnzchuNRoOjR48qVlQmJibC1dUVnTp1svk8iKhmWVvpGBWVZFGC4vboERWVWOaUoxGnHokajwqtjqwoV1dXHDp0SDGaVRkpKSn47bffcNddd8Hd3R3p6el46aWXcPHiRRw7dgyOjo7YuXMnIiMjMX/+fHk68j//+Q9OnjyJEydOwMnJCRkZGQgNDcW0adMwefJk7Ny5E08//TS2bNmC6OhoAIYSFRMnTsSnn36K3r17Y9GiRVi7di1Onjwp53U9+eST+OGHH7BixQq4urriqaeeAgDs378fgKFERffu3eHv74+FCxciJycHDz/8MKZMmYL//e9/5b5vro4kqlrGVZCurhexefMn8nGdzkWxIbYxsb70ES8jY8BmfduhKVOWIiDgQrn6N2HCBJaiIGoAyvv7u1LbFpVXVcV3zs7O2LhxI+bNm4fr16/Dz88PgwYNwosvvihP3917771YtWoVFi5ciIULF8LZ2RkajQZbt26Fk5MTAEPy/pYtWzB9+nS89957CAgIwNKlS+UADDDU47l8+TLmzp2LnJwcdO/eHVu3blUk2r/77rtQqVQYNWoUbt68iejoaHz00UfyeTs7O2zevBlPPvkkNBoNmjVrhokTJ+K///1vlTwPIqo45X6PPhg6tIdci8t0Q+wDB3ogMTESlgGYscxESU6YsUaYg8NNrF//oMV7RkQkWw3ABg4ciObNm8vf29vbsxI+USNUrSNh5nXEqGI4EkZ0+4yrIHv3LlkFaWAYpSoqcoSHhxZqdQF0OhcsWhRvs7iqYXVjZxgDsMhIw8pGa6+zVftrzJgx8mIjImqY6sRIGBFRbSptFSSgwtKlU2A6ouXufrWU6vZ6OQADDCshk5IiERqaJueWGbcnMq+ib8rb27sqb5GI6jEGYUTUYJmugrS+SXZJQLVp01CMHbvaympJw6hWmzbpSE8PURwXQoXcXA+o1QUICzuI4OAzitwyUyNHjoS/vz+nHIlIVi8r5hMRVYRaXYCIiNJXJwqhwurV40y2GQIAgeDgM4iNXYo//7SWMF+ycbfxfYKCzlkdAWMARkTmqjUImzBhAnOZiKjGGbccys4u+V9ceHhKGaUnTAuwltQE+/PPNsjLc7c6TRkRkVyu7YZiYmIYgBGRhUoFYca6W9aOnz9/Xv7+448/VlR+JiKqLlqtFhcuXMDbb+ehVSuBe+8Fevf2wYEDPQBYrwlmLC9h+Np6OQrjyJh5ACdJeoSHp5Srbz4+PpW6JyJq2CqUE5afn48pU6Zg06ZNcHV1xeOPP4558+bJRVEvX76MoKAgFBcXV0tniYisMSbgl6xSNO4FKWHTpqEIDj5jNW8LAHJzPWBvX4hly6ZYHe2SJD0CA7PKTLw3327IiNsOEZEtFQrCXnrpJRw+fBhffvkl8vLy8Morr+DAgQPYuHGjXOW5GiteEBFZZUzAz831tAikhFAhMzMAubl/y6UojMGTTucC4wiYRpOM/fs1MEwQGGqCmQZbZSXeM+eLiCqqQkHYd999h5UrV+Kee+4BAIwYMQJDhgzBsGHDkJCQAAD1YqNsImqYrO0FKUl6rF8/GqalKMLCDuLAgR7yyJZp0KXR7EOnTsdQVORgEWyZBnCmmPNFRJVRoZywy5cvK/aG9PLyQlJSEgoKCnD//ffjxo0bVd5BIqLyspb3ZRicV5aiyMryMwnAAONomBAqJCdr4OJyzeYqR2vc3Nyq9kaIqFGo0EhYy5YtceLECQQFBcnHXFxcsH37dgwcOBD/93//V+UdJCIypdVq5enH7GwVMjKaQK3Ok8+bThtev97MYjshw/RkS5tFWU1rf5UXN90mosqoUBA2cOBALF++HPfff7/iePPmzbFt2zZERUVVaeeIiEwZE/ABKKYTJckdw4ZZ7gWp07lYnZ60XbzVeN6QtD9gwAA0bdoUTk5OaNKkidURLybeE1FlVSgIW7BgAbKzs62ec3FxQWJiIg4cOFAlHSMiMmccAdPpXBTTicZpRuMqSGOb3FxPREYmISkpUs79EkKFb74Zh44dT+DEiU5QlqYQiIxMkq8REhICPz+/GrxDImpMKhSEubu7w93d3eZ5FxcX3H333bfdKSIic1qtFleuXAEAZGYGWl0FaZxGVI6S6XHXXXuxd28/mOaGnTzZEf367cHPP/f791p6REUZNuQmIqoJFd478tatW3j33XexevVq/PHHHwCAdu3a4aGHHsIzzzwDe3v7Ku8kETVu5tOQCQlDLdoYpxGzsvz+PV8ScJkGYEZCqNCmTQZ69Uq1WXaCiKg6VSgI+/vvvxEVFYXk5GRERkaif//+AIATJ05g9uzZSEhIwPbt29G0adNq6SwRNWzmSfdHj/4DN7fLsLe/CJ3OBZmZgdi0qSTAMjKWnkhPb2v1vLE8hWVuWK7NshNERNWtQkHY66+/jszMTBw8eBBdu3ZVnDt8+DCGDx+O119/HfPnz6/KPhJRI2A76T4QXbsewZEjg22uaBw1aj3c3PKwdOkU2Eq2N80Ns1bxnoioplUoCPvmm2/wzjvvWARgANCtWze89dZbeOGFFxiEEVGFlZZ0f/hwN9ja21GS9NDp3LBhg6Egq6WSAq2hoWkVmnpk6Qkiqk4VCsLOnTuH3r172zzfp08fxQbeRETmsrKA06cBL6+r8PL6B3l5ecjKAo4dK0RWlh/On29lZcTL1k4cerPVj+YExo1bjfbtzwCwXfHe2r6PLD1BRNWtQkGYq6srLl26hMDAQKvnc3Jy4OLiUiUdI6KGw5jrtWqVE2bNUkOvlyBJagwbthcATEa+usIQcAmYl46wFoiNHr0ezZr9bXOaEpDg4FBUZv+8vLxYioKIalyFgrABAwbgf//7HzZs2GD1/Ouvv44BAwZUSceIqP4yjnaFhABOToZcL53OBYsWxUOIki2CDMEXUDKNKJl8LtnPsW3b0zh9uh2UgZgegAR7+5sWSfdGpoVXiYjqmgoFYfPmzUN4eDj69OmDGTNmoEOHDhBC4MSJE3j33Xdx/Phx/PLLL9XVVyKqw6yNdqlUAnPn/g0AyM31tFrbyzYJ0dFboderkJQUCeUImSEAW7/+QUiS/t/E/a4Wm3GXN/meuV9EVBsqFIR16tQJiYmJiI2NxdixYyFJxr9oBTp06IDt27ejc+fO1dJRIqq7jCsbzUe79HoJCxb4Iz7eBR4eWqtlIpQjYVCcCww8j2XLpphttC0U7YVQ4ciRroiNXYqiIgfY2xeiqMjBIvl+wIABCAkJsXgf5n4RUW2pcLHWPn364NixYzh06JCiWGv37t2rum9EVE9cvnwZgO3RrtxcDwQFncOwYZsVleyHDdsMwDQnTDmKVVTkWK4kfSFUKCpyQFDQOZt99Pb2Zt4XEdUpFQ7C8vPz0bx5c3Tv3l0ReOn1ely7dg2urq5V2T8iquO0Wi3WrFkDAMjO9oN5Er1pXlZY2EEEB5+xKBNhPGY+irVjxz0W17OmPLlf1jbfJiKqTaUlZFj49ttv0atXL/zzzz8W5/7++2/ceeed2LRpU5V1jojqPtP6XiW5W0bKDbEBQ5mIoKBzFsc8PHJRVOQIe/tC5OZ6YseOe7B3b3+L65krb+4X876IqK6p0EjYxx9/jFmzZsHZ2dniXLNmzTB79mwsXrwYw4YNq7IOElHdY7q9kHFTbWtTkYAEf/9sAIYgLTfXEx4eWouAybRCfsnIl7URMGNSvmHD7YiIZISHp1jkfrm7uwMAmjRpAjc3N+Z9EVGdVKEgLC0tDR999JHN8/3798eLL754250iorrDNOA6deo6jh79BxkZ2wEYAi97+5soKmpttVSEcZpQuQ1RSQV7wLJCvrJMhTk9pkxZajXx3igkJIS5X0RUL1QoCLt69Spu3bpl83xRURGuXr16250iorrB1n6OQCcYgiRlPS/TUhHWE+9L6oMFB5+BWl1gYwTNGoGoqCQEBFyohjslIqp5FQrCWrdujd9//x0dOnSwev73339Hq1atqqRjRFT7bO3nqEwnLSm+aloqwjhSlZHR2uqKyczMAOTm/l1qsdUSekRFJaFv3+Qy+8zcLyKqLyoUhI0cORIvvPACoqKi4OvrqziXk5ODF198ERMmTKjSDhJR7SvvaJW1UhH29jdhbRui9euNG27r0anTCZw40dHme4wevR6hoScUx5j7RUT1XYWCsOeffx7ff/89QkJCMGHCBLRv3x4AcPLkSXz99dcIDAzE888/Xy0dJaKapdVq5aR7a4VWrbFWKqKoyBHWE+yNx1Q4frwT+vXbA1/fi9iwYbRFXllgYJbFezH3i4jquwoFYS4uLti3bx/mzJmDNWvWyPlfbm5umDBhAl599VVu4E3UAJjmghlpNMnYv18Dy8o2pW8TVL4ATsLevf0wffoiqwVdrSXgc9qRiOq7ChdrVavV+Oijj/Dhhx/iypUrEELA29tb3sLI1L59+9CrVy84OjpWSWeJqGYYc8EAa+UjzEno338XevY8qAiWQkNDkZaWBrW6QBFY2S6+asgTs1XQ1dSECRM47UhE9V6FgzAjSZLg7e1dapvBgwfj0KFDaNOmTWXfhohqke3yEUo+PpctgqW0tDT567Cwg7h6VW2l+Kp1anWB1eBr5MiR8Pf3ZwBGRA1CpYOw8hDC2l/NRFQXlb8Aqzk93NzykJHR2mohVsAQzO3d2w+lBWC2cr9MMQAjooakWoMwIqp9psGVNcbcKtMcMEN1e9sFWA1/XxlWNnbrdgTLlk2xWog1IiIC+/fvR26uJ6zvkmY9n2zAgAEICQmx6CcDMCJqSBiEETVg5gn2trYOioiIkL82r25vrQCr6YbbxgAMsCzE+uOPR20Gc4BAv3570KZNhkXul7u7O1c+ElGDxyCMqAGzlWBvPmK1f/9+AEBWlp9FdXtrBVgBlFqINSUlHF5eWpvBXEWKrxIRNVTVGoRZWzFJRFWnrKnGvLw8AJYJ9kKokJAwFA4ONxEYmAm1ugAHDvRAQsJQmE8bWivAamSr/MT+/RpIEsoVzFnTpAn/PiSiho+J+UT1VHmnGgFbCfYqrF//ICRJj8jIJCQlRcJ63pYe9vbWAz21uuDf+mF9La5t/s+/tGDOnI+PT5ltiIjqu2oNwgoKbP+lS0S3p7xTjUDpBVOFUCEpKbKUVZAqLF36GIYP3yRfc8CAAdi1axcAIDw8pdQirkbWqukbDR48GIGBgQCYgE9EjUeFgrB77723XO127txZqc4QUcVZm2o0TY4HShuxgvwaQA/rI2EAICmuaVojUK0uQESEtWtLcuBnvvpx5MiR8PLyAsCgi4garwoFYT/99BNatWqFIUOGwN7evrr6REQVYG2qUQgVcnM9FNOSnTodszFiBcWUpK0RMdNrurm5YcyYMVizZg0Aw2hYcrLGopSFrRwwLy8vrn4kokavQkHYG2+8geXLl2PdunUYP348Jk+ejNDQ0OrqGxGVg/WpRoHsbH85/8o4XWkIwIzThMoaXWFhBxEamobMzACsXz8a5sGa+XSiWq02+brA6p6PAQEXqumuiYjqvwoFYTNnzsTMmTORnJyMzz//HH379kX79u0xefJkPPTQQ3B1da2ufhKRDWp1ASIjk5CYGIWSHCwJSUmRCA01bB1kvvWQJOkxduxqODgUWZSdALL+nV4sGTWztpG2+Qba5dnzkYiISlQqMV+j0UCj0eC9997DunXr8OGHH+K5555DdnY2AzGiWuDvfwHmWwIZpw8Byep0pYNDkcVKRfME/7Cw3xAUlIHAwCyLoMrT0xMxMTFYu3atfMzWno/mzAM4IqLG6LZWRx44cAC7d+/GiRMnEBoayjwxohpgrA1m3N8RsD4laTp9WNo5I2sJ/gcO9ET//nstAitjEFXeUhIxMTFwc3OTX8tEfCKiSgRh2dnZWLFiBVasWIH8/HxMmDABKSkp6NSpU3X0j6hRMy/GmpeXpxh5MrKVk2UMnszPRUYm/bufI+Q2ZSX49+rVC+7u7vD19ZWDKE9PT8TFxZW5NyWDLiIiSxUKwu6//37s2rULAwcOxJtvvokhQ4awsjVRFTMGXrYCLltKy8kyPZed7S+vgjRNyrc1mnb9ejPodC74/fff5eNxcXGKQIyIiCpOEhUoa69SqeDn5wcfH59StyQ6cOBAlXSuscvPz4darYZOp2OuXSNhXgW/LKVVybfVftGieItAa9SoDQgMzER6elvFiJnh/w6WBWCnTp3KEhNERDaU9/d3hYax5s2bd9sdIyLbSpvWMw+4yqqSb2rgwIHYvn27zSlH4/ZFw4ZtRmzsUvzxRzvs2dMfxtWR1grAEhHR7WEQRlSHGQOv7Gw/xRSieWFV8yDJvCK9Mbgra/uihIShio23zc+bF4AlIqLKq5KErt27d+P69evQaDRwd3eviksSNXqmI12m+zDa2uvRVpBkupLSPIHfkuXG20al7f1IREQVV+GK+deuXcPLL78MABBCYPDgwdi+fTsAw3L1HTt2oHPnzlXfU6JGxLxchLUaYOZ7PZoGSRs3brR5bWOSvq3K+NZYK9ZKRES3p+z/+5pYs2aNYpui9evXY8+ePdi7dy+uXLmCXr16YcGCBVXeSaLGxlrulilJ0iMqKgmSpJe/Nw2SdDoXZGS0hk7nYvX1anUBQkNPICoqCYZRNlv0GD16LeLjF9nMNyMiosqp0EhYRkYGunbtKn//ww8/YPTo0ejbty8A4MUXX8SDDz5YtT0kqsfM63yZs1VDy9Z+kNb2ejQvSVFawv7IkSPRpEkTufSFtUr7RsbXhoaeqNS9ExFR6SoUhN26dQuOjo7y98nJyYiPj5e/9/f3V1TxJmrMyltuwlhzS6vV2szdMibj+/tnW+z1OG5cPzRt2hQbN260WvXeNGHfy8sLfn5+GDNmDNasWWMj2NNj9Oj1VrcqMuK2Q0REt69CQVhwcDD27NmDNm3a4Pz58/jjjz/Qv39/+XxWVhYLNxL9q7QRMPN21gK28m6IHRAQIH9dVtX7K1euwMHBAWq1GoDtSvvWRr+MKy5ZAZ+IqGpUKAibNm0a4uLisHfvXvzyyy/QaDSK7Yp27tyJHj16VHkniRo6WwFbeTfENiprD0ljwn5MTIx8vrzBnr+/P4MvIqIqVKEg7LHHHoOdnR02bdqE/v37W9QNy87OxuTJk6u0g0QNha3q9uWdwrf1+oyMDNy6dQuAtRIUemg0yRbXMrY3shXscfSLiKj6VGjbIqpZ3Laobqlokv2FCxewZMkSAKUny1tjGnABQEpKOJKTNRV6fUpKOPbv18CwCFqP4cNLXnP//ffjhx9+KPOeTfeIJCKi8qmWbYuIGquKJtmbKitZ3pyySKsehtWLJSsYS3u9MXizt79pEoABgKEavvE1TZs2RVxcXKVWbhIRUdWoUBBWVFSEF154ARs3boSHhweeeOIJxfTjxYsX4e/vj+Li4irvKFFtMI5+lXfK0FpQU1ayvCnLIq3Wa4WZv97ayJfla1XIzAyAWm1IumeARURUuyoUhL366qv44osv8NxzzyEvLw8zZsxASkoKPv30U7kNZzepoSjv6Jcp02DN+HVpyfLmeV5lFWk1fz1gPnJmVKE6zEREVAsq9H/qr7/+GkuXLsVzzz2HV155Bb///jt27tyJRx99VA6+JMl64cfbNXz4cLRs2RJNmzaFn58fHn74YWRnZyvarF27Ft27d4ezszNatWqFN9980+I6P/30E8LCwuDo6Ii2bdtixYoVFm0+/PBDtG7dGk2bNkV4eDh+/fVXxfl//vkH06ZNg6enJ5o3b45Ro0bh4sWLijbnz5/HkCFD4OzsDB8fH8ycOdMiGZrqtvKWmDC1ceNGLFmyBEuWLJFXIhqT5c2r26ent8WiRfFYuXIiFi2Kx4EDPeSArTSm1fEtR85Kf11gYFaF74mIiKpHhYKwv/76S7FtUdu2bfHTTz9h//79ePjhh6t1GnLAgAFYu3YtTp06hQ0bNiA9PR2jR4+Wz//4448YP348nnjiCaSlpeGjjz7Cu+++qxjJyMjIwJAhQzBgwAAcOnQI8fHxmDJlCrZt2ya3WbNmDWbMmIF58+bhwIED6NatG6Kjo3Hp0iW5zfTp07Fp0yasW7cOu3fvRnZ2NkaOHCmfLy4uxpAhQ1BYWIj9+/dj5cqVWLFiBebOnVttz4dqVlnbApkLCzuIbdtOYdmyPxEfvwjBwWes5okBUARsgF7xdUTEPsUWQpmZgaUEYHqb2xoREVHtq9DqyDZt2uCzzz7DfffdpzienZ2NAQMGoFWrVtixY0eN5IQlJCRgxIgRuHnzJuzt7fHQQw+hqKgI69atk9t88MEHWLhwIc6fPw9JkjB79mxs2bIFaWlpcpuxY8ciLy8PW7duBQCEh4fjzjvvlIM3vV6PwMBAPPXUU3j++eeh0+ng7e2NVatWyUHgyZMn0bFjRyQnJ6NPnz748ccfMXToUGRnZ8PX1xcA8Mknn2D27Nm4fPlyuauNc3Vk7TJd3WiqoisdjaZOnQqdToc1a9YgI6M1Vq6caNFm4sQVCAo6B53OBd7eGoSEGEaWT58WuHw5uZQcMHOG1ZC26n/FxMSgY8eO5XsQRERUIeX9/V2hkbB7770Xq1atsjju7++PnTt3IiMjo+I9rYTc3Fx8/fXXiIiIgL29PQDg5s2baNq0qaKdk5MTsrKycO7cOQCGbZYiIyMVbaKjo5GcbKijVFhYiNTUVEUblUqFyMhIuU1qaiqKiooUbTp06ICWLVvKbZKTk9GlSxc5ADO+T35+Po4dO2bzvm7evIn8/HzFB9UttlY6lmdEzBiAAbAx7SiQne0PwDCFWVi4HceObcOxY9tQWLhdsTfku+/GY//+vjD/JyxJhtGy6dMNo2VqdQGCgs5ZjIC5ublV/OaJiKhKVSgIe+mllxSVtk3dcccd2L17Nz7//PMq6Zg1s2fPRrNmzeDp6Ynz58/j+++/l89FR0dj48aN2LFjB/R6Pf744w+8/fbbAAwjGgCQk5OjCIwAwNfXF/n5+fj7779x5coVFBcXW22Tk5MjX8PBwcHil5h5G2vXMJ6z5bXXXoNarZY/AgMDy/toqIK0Wi0uXLhg80Or1Vq8RqdzwbFjnW2udCxLbm6u/LVaXYDIyCQYNuU2kpCUFFlqQGcMAm390x01aj0GDkwqc9qRez8SEdW+Cq2ObNWqFVq1amXzvL+/PyZOtJxiseX555/HG2+8UWqbEydOoEOHDgCAmTNnIjY2FufOncOCBQvwyCOPYPPmzZAkCY899hjS09MxdOhQFBUVwdXVFc888wzmz58Plap+rBSbM2cOZsyYIX+fn5/PQKwalHfV45gxY+SvlSsQBUzrdpmuVARsV7Y3X5jh739BcR3AdukKo9JWT5om3vfq1QseHh5o3rw5mjRpovijgfW/iIjqhkoVa123bh1Wr16NP/74AwDQrl07PPTQQ4pE+fJ49tlnMWnSpFLbtGnTRv7ay8sLXl5eaNeuHTp27IjAwEB5D0tJkvDGG2/gf//7H3JycuDt7Y0dO3YortGiRQuLVYwXL16Eq6srnJycYGdnBzs7O6ttWrRoIV+jsLAQeXl5il9s5m3MV1Qar2lsY42joyMcHR1LfR50+8q76rGoqAiAtdpdEoyBmCTp8dRTaYqpQlv5Yjdu3FBcv6x9Hq0Fc9ZeY3ydaeJ9WFgY/Pz8yv1MiIio5lUoCNPr9Rg3bhzWrVuHdu3aySNUx44dw5gxY/Dggw9i9erV5S5T4e3tDW9v74r3+t++AIY8KlN2dna44447AACrV6+GRqOR30Oj0Vhs1ZKYmAiNRgPAMELQs2dP7NixAyNGjJDfZ8eOHYiLiwMA9OzZE/b29tixYwdGjRoFADh16hTOnz8vX0ej0eDVV1/FpUuX4OPjI7+Pq6urYsNzqtuaNDH887A++iQhOnorOnU6jgcf1GD79rIr46ekpFi8h0aTLCfXmwZStoI5a3tDRkQkIzw8RTF6xulGIqK6r0JB2HvvvYekpCQkJCRg6NChinMJCQl49NFH8d577yE+Pr4q+4iUlBT89ttvuOuuu+Du7o709HS89NJLCA4OlgOfK1euYP369bjnnnvwzz//YPny5XIJCaMnnngCixcvxqxZszB58mTs3LkTa9euxZYtW+Q2M2bMwMSJE9GrVy/07t0bixYtwvXr1/Hoo48CANRqNWJjYzFjxgx4eHjA1dUVTz31FDQaDfr06QMAGDhwIDp16oSHH34YCxcuRE5ODl588UVMmzaNI131iJubG+Li4nD27C18+aWAXl/yx4WdncCrr/ZA69Z3yuVLKlIZ3zzI0mj2yYGUTueChISSvC/zYC4s7KDNVY8jR46Ev78/pxuJiOqBCiVLLV++HG+++aZFAAYYiqkuXLiwWhLznZ2dsXHjRtx3331o3749YmNj0bVrV+zevVsR1KxcuRK9evVC3759cezYMfz000/o3bu3fD4oKAhbtmxBYmIiunXrhrfffhtLly5FdHS03GbMmDF46623MHfuXHTv3h2HDh3C1q1bFYn27777LoYOHYpRo0ahf//+aNGihVyYEzCMxm3evBl2dnbQaDSYMGECHnnkEfz3v/+t8mdD1cvT0xM9e/piyRIJdnaGY3Z2wKefSujZ0xeenp7ytLRhs23zFY/KfDHA+ohZcrJGPp+SEg7zf5rmyf+2Vj0yACMiqj8qVCfMyckJp06dQsuWLa2eP3fuHDp06IC///67yjrYmLFOWPU4ceIE1q5dW2a7qKgouLu7ywn1OTlNkJnpiDZt9GjfvhkAw7RfYWEhlixZAp3OBe++Ox3mSfvx8YsUwVJpNcLs7QuxdOljME/YB/SYPt1wnZEjR8LLy8vi9Uy4JyKqG8r7+7tC05FOTk7Iy8uzGYTl5+db1OoiqmvKu31UYmKi1eOZmYDJLLdctiU31xPlWe2Yne0Hayss//wzCHv39rO4BgBERJQUauVoFxFRw1Ch6UiNRoOPP/7Y5vkPP/xQztEiqi8qugWROeNCFOsFWPWwty9ZjanTuSApKRLKQEvA2/sS9u7tD2v/JCVJj/BwQ1J/TEwMAzAiogaiQiNhL7zwAu655x5otVo899xz6NChA4QQOHHiBN5++218//332LVrV3X1lQiAoc5XaWUmypqWM+6yAFR+CyJTarUacXFxyM7ORnr6ZrN6YiosWzZFvq6tlZaXLvnC2giYeekJ42pbIiKq/yoUhEVERGDNmjWYOnUqNmzYoDjn7u6O1atXo2/fvlXaQSJT5S20GhcXZzMQU6vVAMouKVFeV65ckXO0wsIOwscnB8uWTbF63ZLkfctAzJIesbFLERBwAQMGDEDnzp05CkZE1IBUuFjr//3f/yE6Ohrbtm3D6dOnARiKtQ4cOBDOzs5V3kEiU+UttJqdnW2zrU6nA1CxkhKlMV0ZCwBFRY42r+vhkYuePVORmtoL5lOSloGYBBeXawAMf+QwACMialgqFITt3LkTcXFx+OWXX/B///d/inM6nQ6dO3fGJ598gn79+lVpJ4kqyjwwsqasivWAsmo9AKvbEZX3utnZ/vjii0fkIqv/noH1AMxwzhgQGgvHEhFRw1Gh/7MvWrQIjz32mNXllmq1Go8//jjeeecdBmFUL5hXnzfPv7LcL9KQ41VW7pi160ZGJiEpKdIkMDMEYv3778aePfdYvY5pQGi+YTwREdV/FQrCDh8+XOqG2wMHDsRbb711250iskar1eLKlStVfl1jpTzjZ53OBZmZgYqq9YaRKunfdmXnjplXtbeekK+Cj8+lcu0FSUREDU+FgrCLFy8qVpZZXKxJE1y+fPm2O0VkrrwJ+eUVExODGzc88N//+qBkKlCFhIShkCRYCZiUhFAhMzMAubl/25yeVKsLFMetTVEGBmZxL0giokaqQkHYHXfcgbS0NLRt29bq+SNHjsDPz69KOkZkqqqDezc3N+Tk+EJvXtYLKpRvDwk9NmwYXWZpC9OcMltTn6XtBRkTEwMfHx8m5RMRNUAVCsLuv/9+vPTSSxg0aJBFZfy///4b8+bNs7qvJNHt0Gq1WLNmTZVfNyQEUKlgJRCzZBjFAoy5XIAEIUqmJxMShsLB4SYCAzOt5pQZg674+EXIzfXA+PHhCAgIwa1bQbC3t5fLZpjiNkRERA1bhYKwF198ERs3bkS7du0QFxeH9u3bAwBOnjyJDz/8EMXFxXjhhReqpaPUeJW3LEVFBQQAS5YAjz8OFBcDxuDKfDuhUaPWIzAwCwCQm+uB69ebYf36B82upvr3mB5RUUkIDU2zWoMsPn4RgoLOITQ0mqPGRESNXIWCMF9fX+zfvx9PPvkk5syZA+Pe35IkITo6Gh9++CF8fX2rpaNE1SE2FoiOBlJStNi3byXS09tajF6Fhp6Q26vVBdDpXKwm0xuokJgYhZwc3yqpQUZERA1XhYsPtWrVCj/88AOuXr2KM2fOQAiBkJAQuLu7V0f/iEplmnNlLbixdd5YsNXBwQEBAZ6wsytEWlpJflZmZgAACYGBmYrrjRkzBmq1Gmp1NhYs8LcRiEk4erSr5VGzGmRERNS4VboCpLu7O+68886q7AtRhZS172Np501zzOLi4hTXtTYaZnydWq2Gn58fpk69AJ1uETIzA7B+/WiUtQ2ReckJrnYkIiKW4aZ6ydq+jwkJQ3HXXd1w772GRSP//a+PInneVm0v05yz8u4n6eDg8G8JihPQ6ZKQmBgF61XvDUaNWo/Q0BMYOXIk/P39mXBPREQWf74T1Qu2ip/OmtUKvXv7YOnSZtDrlUGRMSerote19jpPT09MmDABANC3bzKiohIhScZllsoaF8Z6YADg5eXFAIyIiABwJIzqKWv7Mxrp9RI+/dQZhtWOtveFNLpy5Yq8N2NZ+0nm5eXJx52dnRETE4Nbt25h8OC/ERpqKD+Rne0vb1HEaUgiIrKFQRjVebYCF40mGfv3a2BtQFcIFSIi9iE5WWM1GDJlutm3+b6PKpXAggUXUVxseN3atWtt9nPatAlwdnYGAGRnX8bZs03QuvUt+PvfCeBO1v0iIiIFSYjy1Qenmpefnw+1Wg2dTmd10/TGRKvVyrlbq1Y5YdYsNfR6CZKkR1hYKg4c6GkxehUfvwgA5Er0hq9tr6Q0ZVhV6YGnnhoMf389lixZUmYfp06dytpfRERU7t/fHAmjesE4gpSVBcycabrptgoHDvREZGSSzSlAtbqgzJWU5oz7Pvr7l6OcPhERUSUwCKNqYzp6ZU1lpufee68kADMSQgV//2x5SyDz/RfLs+KxrHpjREREVY1BGFULrVaLxYsXl9kuLi6u3IFYVhbwzjvWzujlwMtaAFXaiseyRsny8vLg5uameC0DNiIiqgoMwqhalHe/x4rsC3n6tPXNtiMikm0GQzExMcjKAr74wvqKx7JGydauXYuYmBj5dRWd1iQiIrKFdcKo3ggJAVRmP7GSpEd4eAp0OhdkZLSGTueiOO/m5obQUDcMG7ZZruNlmjNWnrpgt27dAmB7WtP8PYmIiMqDI2FUpYx5YFeuXKnyawcEAEuWAI8/DhQXlwRTpW0z5ODggMLCQnlPSPOcsbLqgpkqa1qTiIioIhiEUZUpbx7Y7YiNBaKjgTNnAE9PHQoLw9G7t3J7oi1bhmHu3HC0bt0Enp6euHDhAoCSFY86nQvS0joBAAIDMxV1wazVE7O3twdQdsDGQqxERFQRDMKoylQkv+t2BAQYPgB37NplmSdWXCwhK6sp/P1v4MKFC4pRuQMHeiAhYRhK9nnUIyIiGbGxS5GX5wZAQmBgpuJ6arUacXFxKCwsxB135GP2bDWKiyXY2Qm88UY+HnpoHAuxEhFRhTEIo1plbdrSOKJUnvIWxjwx00DMzk5g9+5lOHRIOUVozOlSbrStwv79fbF/fwQMez5aT7g3BljPPguMGWMYiWvbVkJAgBsAtwrdMxEREcAgjGqZ6ZZBFRUXF4eAAE9FnpidHfDGGzpcu1a+UhUlJBiDM2t1xEyVjMQRERFVHldHUr11+fJlAIY8sbNngV27DJ8feuhvq+2NOV3lYb5CkoiIqKoxCKPbptVqLXKvasKaNWug1WoBGEam7rnH+giVsXwFAEWpitIw4Z6IiKobpyPpttTEisjSlLUYwFpx1fj4RcjMDEBGRpC88bdh1SNgzAn7738vIjaWCfdERFR9GITRbampFZG25OXlwc/Pz+o5W8VVR43agMDATISGnkD//nvl2mEAkJvrgUmT7sI997StsXsgIqLGidORVCNsVbS/3deuXbtWnpI0Z6u46vr1D2LRonjs26f5dw/Ikn0ng4LOoX37ZhXuIxERUUVxJIyq3e3st2j6WkCPqKgk9O2brGhTWFgoV+oHSspeWCuuaiSEComJUQAk7gFJRES1gkEYVauyNsjW6Vz+HY3SWpSDMH8tYAycoAjE8vLysHbtWov3VqsLFNXwLZWvJAUREVF1YBBG1aq0/RZL2/MRADIzA60ETxKSkiIRGpomB0zGDbatMe4ZmZkZgPXrR8PWDDz3gCQioprGnDCqNjqdC65fdwagLAkhSXrY2xdaHSEz5n0dONADGzaMsnpdIVRISQkv9X1Nc8jU6gKEhp7A8OGm5SmERZ9YkoKIiGoSR8KoWihzuQQMgVjJiFdRkaPNETIApUwhGuzfr0F4eIrFyFVp+WevvBKE+Ph0ZGTYIS3NCe+91wJ6vQSVSmDhQu4BSURENYtBGN0Wa6NGlrlcEiRJYNSotQgMzAJgmGo0T5o3jkZZn4Y0VzJ9ePXqVavva57r5eXlhS5d/DBggOEKM2ZwD0giIqo9DMLotnh6eiIuLk5RL2zfPge8+67lKFezZjcUeWCAXg7EjKNWxvOWBEw33jadPty1axeA0vPPuAckERHVNQzC6LaZTt9lZQF6PaBSGT4bWcsDA1QQQo/Ro0tGyBYtircyCqZHt25HcORIV0XAZh5YWStJYRqsERER1SUMwqjKLFsGTJ1qCL4kqSQQs7MD3n77Bu64YxSWLjUPsAwjZGp1AbZvj7Q6DTl69HqEhp7A9Ola7NqVKRdXNWdeksJWsEZERFQXMAijKpGVVRKAAYAQhkBs7VpAowECApojK6u5xQiZnZ2Ah0cudDoX7N+vsbiuJOnlUbKzZ39GUFDJOWs1xowlKYxbEZkGYFz1SEREdQmDMKoSp08rgyvA8L23d0neVUAAsGQJ8PjjQHGxYYTsjTd0uHatABkZrWGtYopGk2x1JKu0VZDGLYhMxcTEcNUjERHVKawTRlUiJMQw/WjKzg5oa7YPdmwscPYssGuX4fNDD/0NoCSfS0mPTp2OKY7odC5IS+uEhATbNcascXNzq/hNERERVSMGYVQljKNcdnaG7+3sgE8/tb76MCAAuOce5TljPpeymKoKy5ZNwYEDPQAYRr8WLYrH+vUPwvxH17gK8nY2CiciIqpJnI6kKhMbC0RHG2tvla/8g2meVljYQfj45GDZsikWo1w+PjmlFnCVJD2ys/3xxRePVGqjcCIioprGIIyqlHntLa1WK9cQy85WISOjCYKCbsHf3zDi5eDggLi4OGRnZ2Pjxo02K+lnZrYsNQCLjExCUlKkzUKtREREdQ2DMKo2Wq0WixcvBlB6In1MTAxycpogI6M17O1vWq31FRh43urxUaPWIzAwq8xCrVwZSUREdQ2DMKo2hYWF0OlckJkZiISEoTDmcZmPUj3//Ol/A7SOkCQ9una1LMwaEHDBag2w0NATAIDBgwfjyy8F9PqSqvp2dgJPPTUYrVs34cpIIiKqcxiEUZU7evQqTp3SY/9+YaMCvu3NuoVQ4ciRroiNXYqiIgdFra/SaoCFhflgyRJJUf7i008l9OzpWwN3TEREVHEMwqhKvffeNUyfrv43qFLu92jKuJ2QrWnEoiIHBAWds3idsQZYTEyMXHbCwcEBnp6elVoYQEREVFsYhFGV0Gq1OHv2FmbM8IEQxsDLdgBmup1QZfZ7dHNzg5+fn8VxbspNRET1BYMwum3GBPyMjNbQ6yeW0lLg/vs3o33703IAxv0eiYiosWIQRuWWlWXYnigkRDnaZCxBYax6b6uUBCDB21trEWCVlutFRETUULFiPpXLsmVAq1bAvfcaPi9bZtnGetX7EqVNM6rVBQgKOscAjIiIGg2OhFGZsrKAqVNLNujW6w2bcEdHW+ZfmY5qZWf7ywVUOc1IRESkxCCMynT6dEkAZlRcbFiFaC0J3riCMSjoHEJD06xOM7Zt2xZnzpwp8711Ohfk5nrCw8NyGpOIiKg+YxBGZQoJAVQqZSBmZ2coA1EWY0BmrjwBWGlV9omIiOo75oRRqbRaLezsLmDhwjzY2RlyvFQqgTlzdLCzuwCtVlvua+l0LsjIaA2dzkXxta225kVcN20aKrfnNkRERFTfcSSMbDp69CrefnuzPBV4770aJCZGQq9X4ZVXXJCSkoK+fZMxZsyYMq9lOqplSNgXAGyPcNkq4tq370Tccw+4DREREdV7DMLIqmXLgKlT3aDXT4Qk6REZmYSkpEiUDJ6qkJgYBQCIiRE2rwNYjmoZirgaCrkKoUJCQsk+kkbWyl3Y2QHh4Z5g/EVERA1BvZuOvHnzJrp37w5JknDo0CHFuSNHjqBfv35o2rQpAgMDsXDhQovXr1u3Dh06dEDTpk3RpUsX/PDDD4rzQgjMnTsXfn5+cHJyQmRkJE6fPq1ok5ubi/Hjx8PV1RVubm6IjY3FtWvXKtyXuqpkNWRJoGRc5agkISkpEjdueCAuLg5Tp06VR8VMpxutjWopqZCSEq44Yl7uws5O4NNPWQ2fiIgajnoXhM2aNQv+/v4Wx/Pz8zFw4EC0atUKqampePPNNzF//nwsWbJEbrN//36MGzcOsbGxOHjwIEaMGIERI0YgLS1NbrNw4UK8//77+OSTT5CSkoJmzZohOjoa//zzj9xm/PjxOHbsGBITE7F582bs2bMHU6dOrVBf6jJrqyENQZTeoq0QKpw92wSenp5wcHCAWq2Gnd1UvPfedKxcORGLFsUjO9vPpHaYdcnJGov8sLCwg4iPX4SJE1cgJeUSYmNv986IiIjqEFGP/PDDD6JDhw7i2LFjAoA4ePCgfO6jjz4S7u7u4ubNm/Kx2bNni/bt28vfx8TEiCFDhiiuGR4eLh5//HEhhBB6vV60aNFCvPnmm/L5vLw84ejoKFavXi2EEOL48eMCgPjtt9/kNj/++KOQJEn89ddf5e5Leeh0OgFA6HS6Cr3udmVmCqFSCQGUfEhSsejX7ycB6C2O//57jjhyJFdMnLhCTJnyqZCkYos2UVHbTI4rr2H8mDhxuZg+/W0xceIKMX3622L+/PnyR3Z2do0+AyIiosoq7+/vejMSdvHiRTz22GP48ssv4ezsbHE+OTkZ/fv3V6yai46OxqlTp3D16lW5TWRkpOJ10dHRSE5OBgBkZGQgJydH0UatViM8PFxuk5ycDDc3N/Tq1UtuExkZCZVKhZSUlHL3xZqbN28iPz9f8VEbAgKAJUsgr4Y05oS1aXMW/frtkUe1jEn1P/3kiO7d3bBy5UQsXfqY1YR6f/9seVRrypTPLEbGJEmP7Gx/LFoUL4+gHTjQQz7P1ZBERNTQ1IvEfCEEJk2ahCeeeAK9evXC2bNnLdrk5OQgKChIcczX11c+5+7ujpycHPmYaZucnBy5nenrbLXx8fFRnG/SpAk8PDwUbcrqizWvvfYaFixYYP0h1LDYWKB790v44IMfLSrfR0Ymwd8/W96CaNasYXL+mDHh3pRxuyLTmmHmm3YbE/9NS1Js2TIMc+eGo3XrJlwNSUREDU6tjoQ9//zzkCSp1I+TJ0/igw8+QEFBAebMmVOb3a12c+bMgU6nkz8yMzNrtT/+/obgyTw4SkqKlIOq3FxPkwDMkq3tikzzvb799iDGjGlrMYJWXCyhoMCXARgRETVItToS9uyzz2LSpEmltmnTpg127tyJ5ORkODo6Ks716tUL48ePx8qVK9GiRQtcvHhRcd74fYsWLeTP1tqYnjce8/PzU7Tp3r273ObSpUuKa9y6dQu5ubllvo/pe1jj6OhocY+1ycHBwWa9rtxcD6jVBVZLSZgaNWo9QkNPyN+PHDkSXl5eivfw9PREVlblq/ITERHVR7U6Eubt7Y0OHTqU+uHg4ID3338fhw8fxqFDh3Do0CG5rMSaNWvw6quvAgA0Gg327NmDoqIi+fqJiYlo3769PP2n0WiwY8cORR8SExOh0WgAAEFBQWjRooWiTX5+PlJSUuQ2Go0GeXl5SE1Nldvs3LkTer0e4eHh5e5LfeDp6YkpU+62mr9lnIo0LyVh3i4wMEtxzMvLC35+fvKHcZSrJA/N0M7ODixJQUREDVq9SMxv2bIlQkND5Y927doBAIKDgxHw72/phx56CA4ODoiNjcWxY8ewZs0avPfee5gxY4Z8nWeeeQZbt27F22+/jZMnT2L+/Pn4/fffERcXBwCQJAnx8fF45ZVXkJCQgKNHj+KRRx6Bv78/RowYAQDo2LEjBg0ahMceewy//vor9u3bh7i4OIwdO1YunVGevtQFWVnArl2Gz7YEBzsqgixr04vGqcWIiH0wlrGwNQ1ZmthY4OxZQ5/OngVLUhARUYNWLxLzy0OtVmP79u2YNm0aevbsCS8vL8ydO1dRvysiIgKrVq3Ciy++iP/85z8ICQnBd999h9DQULnNrFmzcP36dUydOhV5eXm46667sHXrVjRt2lRu8/XXXyMuLg733XcfVCoVRo0ahffff79Cfalthor4huk/lcowCmUr6AkOPoNRozYAEAgMzLIaWKnVBRg4MAnh4SnIzfWQc8YqKiCAo19ERNQ4SEKI0vecoVqTn58PtVoNnU4HV1fXKrtuVhbQqpVl/tXZs4CTkxaFhYXy8SVLirFggb+8itHaPo8VERcXx0R7IiJq0Mr7+7vBjIRR+VmriF9cDKSm6nDo0GL5mE7ngkWL4hUrIzdtstznsTxGjhwJf39/BmBERET/qhc5YVS1QkIAyayqhCQBAQH/KI6VtjKyory8vBiAERERmWAQRgAsgzIAcvkJZbuSlZEVwYr3RERESpyObIROnzbs1mhKrwfOnlX+OBjLT5hWtjeueNTpXJCb6wkPD22pU5NjxoyBt7c3R8GIiIjMMAhrhEJCrBdGbd36FtLSlG3Dwg4iOPiMYsXjgQM9LAIzY7K+aTFWYyFWIiIissTpyEbIVmFUf3/LgqslI1658giYMQADSpL1dToXAMpirAzAiIiIbONIWCMVGwtERwNnzhi2BgoIAC5cULaxNuLl7n611G2MiIiIqHw4EtYIGSvlA8A99yiLo+p0LsjIaI2sLD+rI1729jerLFmfiIioMeNIWCNTWqX8tWtL6oJZ25RbCBWKihxsJusTERFR+TEIa0SyskoCMMDw+fHHDdOSADBjRnN51aQhABMASmpXGEe8goLOWSTrExERUcUwCGtEbFXKP3PGULLC/JwhABPy565dj8gBl1pdwOCLiIjoNjAnrBExlqYwZWcHeHpehSSdscj1Uo6ESThypKu8CtIWFmUlIiIqH46ENSLG0hSPP24YAbOzA95++xo2bnwfADBsWA+TZHzlVCRguQrStCYYwLpgREREFcEgrJEZMUKL7t1v4ezZJmjd+hYcHC5h40bDubCwg/DxycGyZVMskvIBy1WQ3JCbiIio8hiENSJarRaLFy+Wvzevjg8ARUWOVgMwQLkKMioqigEYERHRbWAQ1ohcvny5zDbGTbtNAzFJ0iM2dikCAkqqubq4lJ4bRkRERKVjYn4jUlRUVGYb46bdxiR9Yx0w0wAMAJo0YfxORER0O/ibtJHQarW4evVqudpa27TbnI+PT1V3kYiIqFFhENYImOeClYetOmAjR45kQj4REVEV4HRkI1BYWFhl12IARkREVDUYhFG5xcTEMAAjIiKqIgzCGjmdzgUZGa0VlfCtHQOYB0ZERFSVmBPWiB04UFIh37gKEoDi2Lx52Zg61Y7V8ImIiKoYg7BGSqdzMdmiyLAlUULCUEgSFMdefvkOxMZKYPxFRERUtTgd2Ujl5npaqYyvsjhWXCzhzJma6xcREVFjwSCskTJWxlfSWxyzswPatq25fhERETUWDMIaAQcHB4tj5pXxAQHDj4MESRIADAHYp58CAQE11lUiIqJGQxJCiNruBFmXn58PtVoNnU4HV1fX27qWVqu1Wi/s4MEmGDrUC0JI8jGVCvjmG0CjYQBGRERUUeX9/c3E/EbC1srGkycB8zBcrwe8vRmAERERVSdORzZyISGGkS9TzAMjIiKqfgzCGrmAAGDJEkPgBTAPjIiIqKZwOpIQGwtERwNnzhhGwBiAERERVT8GYQTAEHgx+CIiIqo5nI4kIiIiqgUMwoiIiIhqAYMwIiIiolrAIIyIiIioFjAIIyIiIqoFDMKIiIiIagGDMCIiIqJawCCMiIiIqBYwCCMiIiKqBQzCiIiIiGoBgzAiIiKiWsC9I+swIQQAID8/v5Z7QkREROVl/L1t/D1uC4OwOqygoAAAEBgYWMs9ISIioooqKCiAWq22eV4SZYVpVGv0ej2ys7Ph4uICSZIqfZ38/HwEBgYiMzMTrq6uVdjD+oPPgM8A4DMA+AwAPgOAzwCo3mcghEBBQQH8/f2hUtnO/OJIWB2mUqkQEBBQZddzdXVttP/YjPgM+AwAPgOAzwDgMwD4DIDqewaljYAZMTGfiIiIqBYwCCMiIiKqBQzCGgFHR0fMmzcPjo6Otd2VWsNnwGcA8BkAfAYAnwHAZwDUjWfAxHwiIiKiWsCRMCIiIqJawCCMiIiIqBYwCCMiIiKqBQzCiIiIiGoBg7B66uOPP0bXrl3lInMajQY//vijfP6ff/7BtGnT4OnpiebNm2PUqFG4ePGi4hrnz5/HkCFD4OzsDB8fH8ycORO3bt2q6VupMq+//jokSUJ8fLx8rKE/h/nz50OSJMVHhw4d5PMN/f6N/vrrL0yYMAGenp5wcnJCly5d8Pvvv8vnhRCYO3cu/Pz84OTkhMjISJw+fVpxjdzcXIwfPx6urq5wc3NDbGwsrl27VtO3UimtW7e2+DmQJAnTpk0D0Dh+DoqLi/HSSy8hKCgITk5OCA4Oxssvv6zYu6+h/xwAhm1y4uPj0apVKzg5OSEiIgK//fabfL6hPYM9e/Zg2LBh8Pf3hyRJ+O677xTnq+p+jxw5gn79+qFp06YIDAzEwoULq+YGBNVLCQkJYsuWLeKPP/4Qp06dEv/5z3+Evb29SEtLE0II8cQTT4jAwECxY8cO8fvvv4s+ffqIiIgI+fW3bt0SoaGhIjIyUhw8eFD88MMPwsvLS8yZM6e2bum2/Prrr6J169aia9eu4plnnpGPN/TnMG/ePNG5c2dx4cIF+ePy5cvy+YZ+/0IIkZubK1q1aiUmTZokUlJSxJ9//im2bdsmzpw5I7d5/fXXhVqtFt999504fPiwGD58uAgKChJ///233GbQoEGiW7du4pdffhF79+4Vbdu2FePGjauNW6qwS5cuKX4GEhMTBQCxa9cuIUTj+Dl49dVXhaenp9i8ebPIyMgQ69atE82bNxfvvfee3Kah/xwIIURMTIzo1KmT2L17tzh9+rSYN2+ecHV1FVlZWUKIhvcMfvjhB/HCCy+IjRs3CgDi22+/VZyvivvV6XTC19dXjB8/XqSlpYnVq1cLJycn8emnn952/xmENSDu7u5i6dKlIi8vT9jb24t169bJ506cOCEAiOTkZCGE4QdXpVKJnJwcuc3HH38sXF1dxc2bN2u877ejoKBAhISEiMTERHH33XfLQVhjeA7z5s0T3bp1s3quMdy/EELMnj1b3HXXXTbP6/V60aJFC/Hmm2/Kx/Ly8oSjo6NYvXq1EEKI48ePCwDit99+k9v8+OOPQpIk8ddff1Vf56vJM888I4KDg4Ver280PwdDhgwRkydPVhwbOXKkGD9+vBCicfwc3LhxQ9jZ2YnNmzcrjoeFhYkXXnihwT8D8yCsqu73o48+Eu7u7op/C7Nnzxbt27e/7T5zOrIBKC4uxjfffIPr169Do9EgNTUVRUVFiIyMlNt06NABLVu2RHJyMgAgOTkZXbp0ga+vr9wmOjoa+fn5OHbsWI3fw+2YNm0ahgwZorhfAI3mOZw+fRr+/v5o06YNxo8fj/PnzwNoPPefkJCAXr164cEHH4SPjw969OiBzz77TD6fkZGBnJwcxXNQq9UIDw9XPAc3Nzf06tVLbhMZGQmVSoWUlJSau5kqUFhYiK+++gqTJ0+GJEmN5ucgIiICO3bswB9//AEAOHz4MH7++WcMHjwYQOP4Obh16xaKi4vRtGlTxXEnJyf8/PPPjeIZmKqq+01OTkb//v3h4OAgt4mOjsapU6dw9erV2+ojN/Cux44ePQqNRoN//vkHzZs3x7fffotOnTrh0KFDcHBwgJubm6K9r68vcnJyAAA5OTmK/+EazxvP1RfffPMNDhw4oMh5MMrJyWnwzyE8PBwrVqxA+/btceHCBSxYsAD9+vVDWlpao7h/APjzzz/x8ccfY8aMGfjPf/6D3377DU8//TQcHBwwceJE+T6s3afpc/Dx8VGcb9KkCTw8POrNczD67rvvkJeXh0mTJgFoHP8OAOD5559Hfn4+OnToADs7OxQXF+PVV1/F+PHjAaBR/By4uLhAo9Hg5ZdfRseOHeHr64vVq1cjOTkZbdu2bRTPwFRV3W9OTg6CgoIsrmE85+7uXuk+Mgirx9q3b49Dhw5Bp9Nh/fr1mDhxInbv3l3b3aoxmZmZeOaZZ5CYmGjxl19jYfwrHwC6du2K8PBwtGrVCmvXroWTk1Mt9qzm6PV69OrVC//73/8AAD169EBaWho++eQTTJw4sZZ7V/OWLVuGwYMHw9/fv7a7UqPWrl2Lr7/+GqtWrULnzp1x6NAhxMfHw9/fv1H9HHz55ZeYPHky7rjjDtjZ2SEsLAzjxo1DampqbXeNrOB0ZD3m4OCAtm3bomfPnnjttdfQrVs3vPfee2jRogUKCwuRl5enaH/x4kW0aNECANCiRQuL1VHG741t6rrU1FRcunQJYWFhaNKkCZo0aYLdu3fj/fffR5MmTeDr69sonoMpNzc3tGvXDmfOnGk0Pwd+fn7o1KmT4ljHjh3laVnjfVi7T9PncOnSJcX5W7duITc3t948BwA4d+4ckpKSMGXKFPlYY/k5mDlzJp5//nmMHTsWXbp0wcMPP4zp06fjtddeA9B4fg6Cg4Oxe/duXLt2DZmZmfj1119RVFSENm3aNJpnYFRV91ud/z4YhDUger0eN2/eRM+ePWFvb48dO3bI506dOoXz589Do9EAADQaDY4ePar44UtMTISrq6vFL7S66r777sPRo0dx6NAh+aNXr14YP368/HVjeA6mrl27hvT0dPj5+TWan4O+ffvi1KlTimN//PEHWrVqBQAICgpCixYtFM8hPz8fKSkpiueQl5enGC3YuXMn9Ho9wsPDa+Auqsby5cvh4+ODIUOGyMcay8/BjRs3oFIpf6XZ2dlBr9cDaFw/BwDQrFkz+Pn54erVq9i2bRseeOCBRvcMqup+NRoN9uzZg6KiIrlNYmIi2rdvf1tTkQBYoqK+ev7558Xu3btFRkaGOHLkiHj++eeFJEli+/btQgjDkvSWLVuKnTt3it9//11oNBqh0Wjk1xuXpA8cOFAcOnRIbN26VXh7e9erJenWmK6OFKLhP4dnn31W/PTTTyIjI0Ps27dPREZGCi8vL3Hp0iUhRMO/fyEM5UmaNGkiXn31VXH69Gnx9ddfC2dnZ/HVV1/JbV5//XXh5uYmvv/+e3HkyBHxwAMPWF2m3qNHD5GSkiJ+/vlnERISUmeX5VtTXFwsWrZsKWbPnm1xrjH8HEycOFHccccdcomKjRs3Ci8vLzFr1iy5TWP4Odi6dav48ccfxZ9//im2b98uunXrJsLDw0VhYaEQouE9g4KCAnHw4EFx8OBBAUC888474uDBg+LcuXNCiKq537y8POHr6ysefvhhkZaWJr755hvh7OzMEhWN2eTJk0WrVq2Eg4OD8Pb2Fvfdd58cgAkhxN9//y3+3//7f8Ld3V04OzuL//u//xMXLlxQXOPs2bNi8ODBwsnJSXh5eYlnn31WFBUV1fStVCnzIKyhP4cxY8YIPz8/4eDgIO644w4xZswYRX2shn7/Rps2bRKhoaHC0dFRdOjQQSxZskRxXq/Xi5deekn4+voKR0dHcd9994lTp04p2mi1WjFu3DjRvHlz4erqKh599FFRUFBQk7dxW7Zt2yYAWNyXEI3j5yA/P18888wzomXLlqJp06aiTZs24oUXXlCUFWgMPwdr1qwRbdq0EQ4ODqJFixZi2rRpIi8vTz7f0J7Brl27BACLj4kTJwohqu5+Dx8+LO666y7h6Ogo7rjjDvH6669XSf8lIUzKCRMRERFRjWBOGBEREVEtYBBGREREVAsYhBERERHVAgZhRERERLWAQRgRERFRLWAQRkRERFQLGIQRERER1QIGYURERES1gEEYEVW7nJwcPPXUU2jTpg0cHR0RGBiIYcOGKfZ0279/P+6//364u7ujadOm6NKlC9555x0UFxfLbc6ePYvY2FgEBQXByckJwcHBmDdvHgoLCxXv99lnn6Fbt25o3rw53Nzc0KNHD3kjZwCYP38+JEnCoEGDLPr65ptvQpIk3HPPPWXeV+vWrSFJks2PSZMmVfxh1XH33HMP4uPja7sbRA1Ck9ruABE1bGfPnkXfvn3h5uaGN998E126dEFRURG2bduGadOm4eTJk/j2228RExODRx99FLt27YKbmxuSkpIwa9YsJCcnY+3atZAkCSdPnoRer8enn36Ktm3bIi0tDY899hiuX7+Ot956CwDw+eefIz4+Hu+//z7uvvtu3Lx5E0eOHEFaWpqiX35+fti1axeysrIQEBAgH//888/RsmXLct3bb7/9JgeJ+/fvx6hRo3Dq1Cm4uroCAJycnKriEdaIoqIi2Nvb19j7FRYWwsHBocbej6hOqpLNj4iIbBg8eLC44447xLVr1yzOXb16VVy7dk14enqKkSNHWpxPSEgQAMQ333xj8/oLFy4UQUFB8vcPPPCAmDRpUql9mjdvnujWrZsYOnSoeOWVV+Tj+/btE15eXuLJJ58Ud999dznuroRxD7urV6/Kx7777jvRo0cP4ejoKIKCgsT8+fMV+zECEJ988okYMmSIcHJyEh06dBD79+8Xp0+fFnfffbdwdnYWGo1GsR+ose+ffPKJCAgIEE5OTuLBBx9U7A8ohBCfffaZ6NChg3B0dBTt27cXH374oXwuIyNDfq79+/cXjo6OYvny5eLKlSti7Nixwt/fXzg5OYnQ0FCxatUq+XUTJ0602KMvIyNDLF++XKjVasX7f/vtt8L0V4yx35999plo3bq1kCRJCGH4GYiNjRVeXl7CxcVFDBgwQBw6dKhCz56ovuJ0JBFVm9zcXGzduhXTpk1Ds2bNLM67ublh+/bt0Gq1eO655yzODxs2DO3atcPq1attvodOp4OHh4f8fYsWLfDLL7/g3Llz/7+9ew2J6nnjAP51zRCvv4zNa2qpa3l7sVa6hummqVSUmYqoKVlaiexGFnQx0bwQZakvTBRLo8KSkqi8kGxl4i2sNKTFvFCSWgYVpuV9/i/C8/udzMp/yVY8H1hwZp6dmXP2hQ8zc3a/O7+oqCgUFRVx5XPnziEsLOyXrNDU1NQgIiICcrkcT58+RV5eHoqKipCWlsaLS0lJQUREBJqbm7Fs2TKEhoZi165dOHToEJqamsAYQ1xcHO89HR0dKCkpwc2bN1FZWYnHjx8jNjaWa7906RISExORlpYGpVKJ9PR0HD16FOfPn+f1c/DgQcjlciiVSvj6+mJ4eBjOzs4oKytDa2srYmJisG3bNjx48AAAkJ2dDYlEgujoaPT19aGvrw+LFy/+4XvS0dGBa9euobS0FM3NzQCAoKAg9Pf3o6KiAg8fPoRYLIaXlxfevn07m9tNyJ9J1VkgIeTv1djYyACw0tLSGWOOHz8+bQXpvzZt2sSWL1/+1bb29namp6fH8vPzubre3l7m6urKADCRSMQiIyPZlStX2MTEBBcztSozOjrKFi1axKqrq9ng4CDT1dVlLS0tTC6X//RKmJeXF0tPT+fFXLhwgRkbG3NlACwhIYEr19fXMwDs7NmzXF1xcTHT1NTkzV1dXZ29fPmSq6uoqGACgYD19fUxxhizsrLirWAxxlhKSgqTSCSMsX9XwrKysr57XRs2bGDx8fFc2cPDg8nlcl7Mj66EaWhosP7+fq6upqaG6enpseHhYd57raysWF5e3nfnRsifjs6EEULmDGNsTmIBoKenB35+fggKCkJ0dDRXb2xsjPr6erS2tuL+/fuoq6tDZGQkCgoKUFlZCYHg3w0ADQ0NhIeHo7CwEF1dXRCJRHBycprVPGbS0tKC2tpa3srXxMQEhoeH8fHjR2hpaQEAbzxDQ0MAgKOjI69ueHgYAwMD3Fkzc3NzmJqacjESiQSTk5Noa2uDrq4uOjs7sWPHDt59GR8fh76+Pm+OK1as4JUnJiaQnp6OkpIS9PT0YHR0FCMjI9xcf5aFhQWEQiFXbmlpweDgIBYuXMiL+/TpEzo7O3/JmIT8zigJI4TMGRsbG+5A/UxEIhEAQKlUws3NbVq7UqmEnZ0dr663txdSqRRubm7Iz8//ar8ODg5wcHBAbGwsdu/eDXd3d1RXV0MqlfLioqKi4OLigtbWVkRFRc32Emc0ODiI5ORkBAQETGvT1NTk/v7vYXg1NbUZ6yYnJ394XODzE6IuLi68NnV1dV75yy3ikydPIjs7G1lZWXB0dIS2tjb27t077enTLwkEgmlJ9NjY2LS4L8cbHByEsbEx7t27Ny32n3/++eaYhPwNKAkjhMwZAwMD+Pr6IicnBzKZbNo/4ffv38PHxwcGBgY4derUtCTsxo0baG9vR0pKClfX09MDqVQKZ2dnFBYW8la2ZjKVxA0NDU1rs7e3h729PZ48eYLQ0ND/5zK/SiwWo62tDdbW1r+szynd3d3o7e2FiYkJAKChoQECgQC2trYwNDSEiYkJurq6EBYWNqt+a2trsXnzZoSHhwP4nPg9e/aMlwTPnz+f97UhACAUCvHhwwcMDQ1xn/HUma9vEYvFePXqFebNmwdLS8tZzZWQvwElYYSQOZWTk4PVq1dj1apVOHbsGJycnDA+Po6qqirk5uZCqVQiLy8PISEhiImJQVxcHPT09KBQKHDgwAEEBgYiODgYwOcEzNPTExYWFsjIyMCbN2+4cYyMjAAAe/bsgYmJCdauXQszMzP09fUhNTUVQqEQEonkq3O8c+cOxsbGfunqS2JiIjZu3Ahzc3MEBgZCIBCgpaUFra2tSE1N/am+NTU1ERkZiYyMDAwMDEAmkyE4OJi7B8nJyZDJZNDX14efnx9GRkbQ1NSEd+/eYd++fTP2a2Njg6tXr6Kurg4LFizA6dOn8fr1a14SZmlpicbGRjx//hw6OjowMDCAi4sLtLS0cPjwYchkMjQ2NvIeeJiJt7c3JBIJ/P39ceLECYhEIvT29qKsrAxbtmyZtl1KyN+Gno4khMyppUuX4tGjR5BKpYiPj4eDgwPWrVsHhUKB3NxcAEBgYCDu3r2L7u5uuLu7w9bWFpmZmThy5AguX77MbclVVVWho6MDCoUCZmZmMDY25l5TvL290dDQgKCgIIhEImzduhWamppQKBTTzh5N0dbW/uXbX76+vrh16xZu376NlStXwtXVFZmZmbCwsPjpvq2trREQEID169fDx8cHTk5OOHPmDNe+c+dOFBQUoLCwEI6OjvDw8EBRURGWLFnyzX4TEhIgFovh6+sLT09PGBkZwd/fnxezf/9+qKurw87ODkKhEN3d3TAwMMDFixdRXl4OR0dHFBcXIykp6bvXoaamhvLycqxZswbbt2+HSCRCSEgIXrx4wZ2PI+RvpsZmexqWEEKIyiQlJeH69es/tN1HCPm90UoYIYQQQogKUBJGCCHfoKOjM+OrpqZG1dMjhPzBaDuSEEK+oaOjY8Y2U1PTP+r3IQkhvxdKwgghhBBCVIC2IwkhhBBCVICSMEIIIYQQFaAkjBBCCCFEBSgJI4QQQghRAUrCCCGEEEJUgJIwQgghhBAVoCSMEEIIIUQFKAkjhBBCCFGB/wH9UcF9FZ+yuQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACeW0lEQVR4nO2deXwTZf7HP2lpa4E2pRe0FGgpCAKiUhEKKyJWQAGXBaWKrCDl0AUVUUB+KIjHIoeA98klioKCLqIoVPHiWgURcQEFW6S2XMGmhSI9Mr8/4oQknckcmeOZ5Pt+vXxJkunkmcnM83zme9o4juNAEARBEAQRBkSYPQCCIAiCIAijIOFDEARBEETYQMKHIAiCIIiwgYQPQRAEQRBhAwkfgiAIgiDCBhI+BEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNpDwIQiCIAgibCDhQxAEwSDLly+HzWZDcXGx2UMhiJCChA9BhCnffvstJk6ciI4dO6JRo0Zo2bIlhg0bhp9//rnetr1794bNZoPNZkNERATi4+PRrl07/POf/8TmzZsVfe+HH36Ia665BqmpqWjYsCFat26NYcOG4ZNPPtHq0Orx73//Gx988EG997dt24ZHH30U5eXlun23P48++qjnXNpsNjRs2BAdOnTAww8/jIqKCk2+Y9WqVVi8eLEm+yKIUIOED0GEKXPnzsXatWtx3XXX4ZlnnsG4cePw1VdfoUuXLti3b1+97TMyMrBy5Uq88cYbmD9/Pm666SZs27YNffv2RX5+PmpqaiS/c8GCBbjppptgs9kwffp0LFq0CEOHDsUvv/yCd955R4/DBBBY+MyePdtQ4cPz0ksvYeXKlVi4cCHat2+PJ598Ev3794cW7RNJ+BCEOA3MHgBBEOYwefJkrFq1CtHR0Z738vPzcemll+Kpp57Cm2++6bO93W7HiBEjfN576qmncO+99+LFF19EZmYm5s6dK/p9tbW1ePzxx3H99ddj06ZN9T4/ceJEkEfEDlVVVWjYsGHAbW6++WYkJycDAO666y4MHToU69atw44dO5Cbm2vEMAkiLCGLD0GEKT169PARPQDQtm1bdOzYEfv375e1j8jISDz77LPo0KEDnn/+eTidTtFtT506hYqKCvTs2VPw89TUVJ/Xf/75Jx599FFcfPHFuOiii5CWloYhQ4bg8OHDnm0WLFiAHj16ICkpCbGxscjJycF7773nsx+bzYazZ89ixYoVHvfSqFGj8Oijj2LKlCkAgKysLM9n3jE1b775JnJychAbG4vExETceuutOHr0qM/+e/fujU6dOmHXrl3o1asXGjZsiP/7v/+Tdf686dOnDwCgqKgo4HYvvvgiOnbsiJiYGKSnp2PChAk+FqvevXvjo48+wpEjRzzHlJmZqXg8BBGqkMWHIAgPHMfh+PHj6Nixo+y/iYyMxG233YZHHnkE33zzDQYMGCC4XWpqKmJjY/Hhhx/innvuQWJioug+6+rqMHDgQHz22We49dZbcd9996GyshKbN2/Gvn37kJ2dDQB45plncNNNN+H2229HdXU13nnnHdxyyy3YsGGDZxwrV67EmDFjcNVVV2HcuHEAgOzsbDRq1Ag///wz3n77bSxatMhjfUlJSQEAPPnkk3jkkUcwbNgwjBkzBidPnsRzzz2HXr164fvvv0dCQoJnvA6HAzfccANuvfVWjBgxAk2bNpV9/nh4QZeUlCS6zaOPPorZs2cjLy8Pd999Nw4ePIiXXnoJ3377LbZu3YqoqCjMmDEDTqcTJSUlWLRoEQCgcePGisdDECELRxAE8RcrV67kAHBLlizxef+aa67hOnbsKPp377//PgeAe+aZZwLuf+bMmRwArlGjRtwNN9zAPfnkk9yuXbvqbbd06VIOALdw4cJ6n7lcLs+/q6qqfD6rrq7mOnXqxPXp08fn/UaNGnEjR46st6/58+dzALiioiKf94uLi7nIyEjuySef9Hn/xx9/5Bo0aODz/jXXXMMB4F5++WXR4/Zm1qxZHADu4MGD3MmTJ7mioiLulVde4WJiYrimTZtyZ8+e5TiO45YtW+YzthMnTnDR0dFc3759ubq6Os/+nn/+eQ4At3TpUs97AwYM4Fq1aiVrPAQRbpCriyAIAMCBAwcwYcIE5ObmYuTIkYr+lrcoVFZWBtxu9uzZWLVqFa644gp8+umnmDFjBnJyctClSxcf99ratWuRnJyMe+65p94+bDab59+xsbGef//xxx9wOp24+uqrsXv3bkXj92fdunVwuVwYNmwYTp065fmvWbNmaNu2LbZs2eKzfUxMDO68805F39GuXTukpKQgKysL48ePR5s2bfDRRx+JxgYVFhaiuroakyZNQkTEhal77NixiI+Px0cffaT8QAkiDCFXF0EQOHbsGAYMGAC73Y733nsPkZGRiv7+zJkzAIC4uDjJbW+77TbcdtttqKiowM6dO7F8+XKsWrUKgwYNwr59+3DRRRfh8OHDaNeuHRo0CDxFbdiwAU888QT27NmD8+fPe973Fkdq+OWXX8BxHNq2bSv4eVRUlM/r5s2b14uXkmLt2rWIj49HVFQUMjIyPO47MY4cOQLALZi8iY6ORuvWrT2fEwQRGBI+BBHmOJ1O3HDDDSgvL8fXX3+N9PR0xfvg09/btGkj+2/i4+Nx/fXX4/rrr0dUVBRWrFiBnTt34pprrpH1919//TVuuukm9OrVCy+++CLS0tIQFRWFZcuWYdWqVYqPwRuXywWbzYaNGzcKikD/mBlvy5NcevXq5YkrIgjCOEj4EEQY8+eff2LQoEH4+eefUVhYiA4dOijeR11dHVatWoWGDRvib3/7m6pxXHnllVixYgXKysoAuIOPd+7ciZqamnrWFZ61a9fioosuwqeffoqYmBjP+8uWLau3rZgFSOz97OxscByHrKwsXHzxxUoPRxdatWoFADh48CBat27teb+6uhpFRUXIy8vzvBesxYsgQhmK8SGIMKWurg75+fnYvn073n33XVW1Y+rq6nDvvfdi//79uPfeexEfHy+6bVVVFbZv3y742caNGwFccOMMHToUp06dwvPPP19vW+6vAn+RkZGw2Wyoq6vzfFZcXCxYqLBRo0aCRQobNWoEAPU+GzJkCCIjIzF79ux6BQU5joPD4RA+SB3Jy8tDdHQ0nn32WZ8xLVmyBE6n0yebrlGjRgFLCxBEOEMWH4IIUx544AGsX78egwYNwunTp+sVLPQvVuh0Oj3bVFVV4dChQ1i3bh0OHz6MW2+9FY8//njA76uqqkKPHj3QvXt39O/fHy1atEB5eTk++OADfP311xg8eDCuuOIKAMAdd9yBN954A5MnT8Z///tfXH311Th79iwKCwvxr3/9C3//+98xYMAALFy4EP3798fw4cNx4sQJvPDCC2jTpg327t3r8905OTkoLCzEwoULkZ6ejqysLHTr1g05OTkAgBkzZuDWW29FVFQUBg0ahOzsbDzxxBOYPn06iouLMXjwYMTFxaGoqAjvv/8+xo0bhwcffDCo86+UlJQUTJ8+HbNnz0b//v1x00034eDBg3jxxRfRtWtXn98rJycHq1evxuTJk9G1a1c0btwYgwYNMnS8BMEsZqaUEQRhHnwatth/gbZt3Lgx17ZtW27EiBHcpk2bZH1fTU0N99prr3GDBw/mWrVqxcXExHANGzbkrrjiCm7+/Pnc+fPnfbavqqriZsyYwWVlZXFRUVFcs2bNuJtvvpk7fPiwZ5slS5Zwbdu25WJiYrj27dtzy5Yt86SLe3PgwAGuV69eXGxsLAfAJ7X98ccf55o3b85FRETUS21fu3Yt97e//Y1r1KgR16hRI659+/bchAkTuIMHD/qcm0Cp/v7w4zt58mTA7fzT2Xmef/55rn379lxUVBTXtGlT7u677+b++OMPn23OnDnDDR8+nEtISOAAUGo7QXhh4zgNGsMQBEEQBEFYAIrxIQiCIAgibCDhQxAEQRBE2EDChyAIgiCIsIGED0EQBEEQYQMJH4IgCIIgwgYSPgRBEARBhA1UwNAPl8uF0tJSxMXFUdl3giAIgrAIHMehsrIS6enpiIgQt+uQ8PGjtLQULVq0MHsYBEEQBEGo4OjRo8jIyBD9nISPH3FxcQDcJy5Q3yGCIAiCINihoqICLVq08KzjYpDw8YN3b8XHx5PwIQiCIAiLIRWmQsHNBEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNlCMD0EQBEFoQF1dHWpqasweRsgSFRWFyMjIoPdDwocgCIIggoDjOBw7dgzl5eVmDyXkSUhIQLNmzYKqs0fChyAIgiCCgBc9qampaNiwIRW/1QGO41BVVYUTJ04AANLS0lTvi4QPQRAEQaikrq7OI3qSkpLMHk5IExsbCwA4ceIEUlNTVbu9KLiZIAiCIFTCx/Q0bNjQ5JGEB/x5DiaWioQPQRAEQQQJubeMQYvzTMKHIAiCIIiwgWJ8GMfhcKC6ulr08+joaPIrEwRBEIRMSPgwjMPhwPPPP+957XTG4fTpJCQmOmC3V3renzhxIokfgiAIQhGjRo3CihUrAAANGjRAYmIiOnfujNtuuw2jRo1CRIQ8p9Dy5csxadIky6Tzk/BhGG9Lz+7dV+DDDweC4yJgs7kwaNAGdOnyfb3tCIIgCOtgtlW/f//+WLZsGerq6nD8+HF88sknuO+++/Dee+9h/fr1aNAg9GRC6B1RCOJ0xnlEDwBwXAQ+/HAgsrMP+Vh+CIIgCOvgb9UXQ0+rfkxMDJo1awYAaN68Obp06YLu3bvjuuuuw/LlyzFmzBgsXLgQy5Ytw6+//orExEQMGjQI8+bNQ+PGjfHFF1/gzjvvBHAh8HjWrFl49NFHsXLlSjzzzDM4ePAgGjVqhD59+mDx4sVITU3V5VjkYpng5jlz5qBr166Ii4tDamoqBg8ejIMHD/ps8+eff2LChAlISkpC48aNMXToUBw/ftykEWvH6dNJHtHDw3EROH060aQREQRBEMEi11pvtFW/T58+uOyyy7Bu3ToAQEREBJ599ln89NNPWLFiBT7//HNMnToVANCjRw8sXrwY8fHxKCsrQ1lZGR588EEA7pTzxx9/HD/88AM++OADFBcXY9SoUYYeixCWET5ffvklJkyYgB07dmDz5s2oqalB3759cfbsWc82999/Pz788EO8++67+PLLL1FaWoohQ4aYOGptSEx0wGZz+bxns7mQmHjapBFpR0kJsGWL+/8EQRAEG7Rv3x7FxcUAgEmTJuHaa69FZmYm+vTpgyeeeAJr1qwB4HbF2e122Gw2NGvWDM2aNUPjxo0BAKNHj8YNN9yA1q1bo3v37nj22WexceNGnDlzxqzDAmAhV9cnn3zi83r58uVITU3Frl270KtXLzidTixZsgSrVq1Cnz59AADLli3DJZdcgh07dqB79+5mDFsT7PZKDBq0oV6Mj95urpIS4JdfgLZtgYwM7fe/ZAkwbhzgcgEREcCrrwIFBdp/D0EQBKEMjuM8rqvCwkLMmTMHBw4cQEVFBWpra/Hnn3+iqqoqYOHGXbt24dFHH8UPP/yAP/74Ay6X+wH+t99+Q4cOHQw5DiEsY/Hxx+l0AgASE93unl27dqGmpgZ5eXmebdq3b4+WLVti+/btovs5f/48KioqfP5jkS5dvsekSYsxcuRyTJq02BPYrBdLlgCtWgF9+rj/P2WKtlaZkpILogdw/3/8eLL8EARBsMD+/fuRlZWF4uJiDBw4EJ07d8batWuxa9cuvPDCCwACu+DOnj2Lfv36IT4+Hm+99Ra+/fZbvP/++5J/ZwSWFD4ulwuTJk1Cz5490alTJwDuJnHR0dFISEjw2bZp06Y4duyY6L7mzJkDu93u+a9FixZ6Dj0o7PZKZGUd0dXS43A4sGvXcYwbx/mIkgULgJYtOTzzjDYmyl9+uSB6eOrqgEOHNNk9QRAEoZLPP/8cP/74I4YOHYpdu3bB5XLh6aefRvfu3XHxxRejtLTUZ/vo6GjU1dX5vHfgwAE4HA489dRTuPrqq9G+fXtPg1GzsaTwmTBhAvbt24d33nkn6H1Nnz4dTqfT89/Ro0c1GKE2REdHa7qdFHyGwXPPfQKXq35ZcI6z4f77G+KLLw7B4XAE9V1t27rdW95ERgJt2gS1W4IgCEIB58+fx7Fjx/D7779j9+7d+Pe//42///3vGDhwIO644w60adMGNTU1eO655/Drr79i5cqVePnll332kZmZiTNnzuCzzz7DqVOnUFVVhZYtWyI6Otrzd+vXr8fjjz9u0lH6YpkYH56JEydiw4YN+Oqrr5DhFXjSrFkzVFdXo7y83Mfqc/z4cU+qnhAxMTGIiYnRc8iqSUpKwsSJEw2r8cB/Dx9M7Z9JBrizyZYv/wZZWUdUp1g6HA5ERlZj3rxYTJtmR12dDZGRHObOdSIy8hwcDqpGTRAEYQSffPIJ0tLS0KBBAzRp0gSXXXYZnn32WYwcORIRERG47LLLsHDhQsydOxfTp09Hr169MGfOHNxxxx2effTo0QN33XUX8vPz4XA4POnsy5cvx//93//h2WefRZcuXbBgwQLcdNNNJh6tGxvHcZzZg5ADx3G455578P777+OLL75A27ZtfT53Op1ISUnB22+/jaFDhwIADh48iPbt22P79u2yg5srKipgt9vhdDoRHx+v+XHoTTDFsMrKyvDqq68C8C2Y6I3N5sKkSYtht1di3LhxSEtLUzy++tWoE5GYeJqqURMEYTn+/PNPFBUVISsrCxdddJGiv2Whjo/VCHS+5a7flrH4TJgwAatWrcJ//vMfxMXFeeJ27HY7YmNjYbfbUVBQgMmTJyMxMRHx8fG45557kJuba+mMLiVoeRN16fI9srMPYefObti2LReANtlk/qLMbq8U3J/ZwW8EQRB6Y7RVn3BjGeHz0ksvAQB69+7t8/6yZcs8BZEWLVqEiIgIDB06FOfPn0e/fv3w4osvGjxS8/C/ecR6e8kVFXZ7Jfr2LUS3bjsFrTIEQRBEcJCoMR7LCB85HrmLLroIL7zwgifVLtTxd2udOnXK8+9Avb2UImaVIQiCIAirYRnhQ/gSyK1Fvb3UoVXBRr0LPxIEQRDqsWQ6OxHYXUW9veTh3S7Dv2DjkiXq9qnVfgiCIAh9IOETgqjt7aVVPSAr4C1QWrYExo4Nvoo0VaMmCIJgHxI+IYLTGYeiokw4nXGe3l68+JGbjcVnGAwbNkzWdxollLRsZCpUmZrj3P95U1cH7NzpUFSokapREwRBsA/F+IQAYoHM2dmHFGdjJSUl6ZpiKVcsVVVVoaysDKtWxWLqVDtcLhsiIjjMm+fE8OHnVH0/HxdVVJQJl2tkwG1tNhe2bl2BffsqZaX/OxwOxMfXIiIi1afqdWQkh7i4E3A4GlD2BkEQBAOQ8GEcsYKEfAaXVCCzkODhxUcwxQ7VIkdUVVVV4c0334TTGYfFiyeB49xCwuWyYcqUePz++1LY7fIEiTeBK1O7YLPBRzzy504q/d870HzgQF8ROmDABmzY4M6moyJkBEEQ5kPCh2HkFCQMFMhst1diyJAhSE5O9nzGixkzK4ZK7a+srAyA9LGpLXLIuwL9rWS8hSwqqho1NTEet6EU/Diczjg0afIHCgpeR01NdD1LGxVlJAginPjiiy9w7bXX4o8//qjXQFyMzMxMTJo0CZMmTdJtXCR8GEbOQilkvfAOZE5OThZsKyF3ETZzsZY6tmAQcwUePtymniA6deqUqPXL4XDg1KlTgu7GrKwjQY+TIAhCL0aNGoUVK1Zg/Pjx9RqPTpgwAS+++CJGjhyJ5cuXmzNAnaDgZosjFcgsN6bGOziaFdQGaSvZf1bWEc/+xNyGy5ZtxvPPP18v0Jm3mi1btlnw71g6lyyjZfA6QRDKaNGiBd555x2cO3fO896ff/6JVatWoWXLliaOTD/I4hMC8NaLyy+/GR07xiA9vSuArrJjdLSs8qw1aoO01aDUtca/lvo7QpwlSy6UAIiIAF59FSgoMHtUBBE+dOnSBYcPH8a6detw++23AwDWrVuHli1bIisry7Pd+fPnMWXKFLzzzjuoqKjAlVdeiUWLFqFr166ebT7++GNMmjQJR48eRffu3TFyZP0kkm+++QbTp0/Hd999h+TkZPzjH//AnDlz0KhRI/0P9i/I4hMi2O2VuP76KOTkNEVaWhrS0tJkiR4xKwdL1gp/y4xeqK1/pPbvwh2qe0QQvphl/Rw9ejSWLVvmeb106VLceeedPttMnToVa9euxYoVK7B79260adMG/fr1w+nT7nnu6NGjGDJkCAYNGoQ9e/ZgzJgxeOihh3z2cfjwYfTv3x9Dhw7F3r17sXr1anzzzTeYOHGi/gfpBQkfC6GHO4qqPF9ArWtNb5ec1ZA7eVPdI4K4gJlV30eMGIFvvvkGR44cwZEjR7B161aMGDHC8/nZs2fx0ksvYf78+bjhhhvQoUMHvPbaa4iNjcWSvwb60ksvITs7G08//TTatWuH22+/3dNAnGfOnDm4/fbbMWnSJLRt2xY9evTAs88+izfeeAN//vmnYcdLri6LoJc7Ss8AYtaQE++k1rVmpEuOZeS6rqjuEUFcQMz62a+fMf3+UlJSMGDAACxfvhwcx2HAgAE+2cCHDx9GTU0Nevbs6XkvKioKV111Ffbv3w8A2L9/P7p16+az39zcXJ/XP/zwA/bu3Yu33nrL8x7HcXC5XCgqKsIll1yix+HVg4SPBZDbdPSXX35BeXk5UlNTZS8aYqndZi7ccgOylVaO5msInTx5EqtXr/a873TG4fTpJCQmOjy1j4SOv7y83Oc1X0uJR6qLfSi3BHE4HCgursW4cReEjHvy5nD55SeQmXlByFDdI4LwJZD106hGx6NHj/a4nF544QVdvuPMmTMYP3487r333nqfGRlITcKHYfiFUswddfRoBuz2/Z73tmzZ4vm31KLhvQgHslaYsVjrWTk6KSnJZ79KLGlr1qzx/PuCWJKu9TNkyBCkp6eH7CIeqCJ2XZ0Nzz23EVlZRzzXpPf5D3TtUd0jIlxo29ZtIfUWP5GRQJs2xo2hf//+qK6uhs1mQ79+/Xw+y87ORnR0NLZu3YpWrVoBAGpqavDtt9966u1ccsklWL9+vc/f7dixw+d1ly5d8L///Q9tjDwwAUj4MAwvAHbvPoE33vCvNAysXXszqquFF2qpRUNPcaEFRnyvXEuaP0rdjsnJySEreoDAFbG93abe15qQlY0gwpWMDLdbePx4t6UnMhJ45RXjrD0AEBkZ6XFbRUZG+nzWqFEj3H333ZgyZQoSExPRsmVLzJs3D1VVVSj4y5d911134emnn8aUKVMwZswY7Nq1q179n2nTpqF79+6YOHEixowZg0aNGuF///sfNm/eLKugrlaQ8GGcpKQkdOpUjUGDNmD9+oHwjkeXu1AH2nc4oyYNXY1YCmUXlzdSblOn0wkAePXVur9akbBXPoEgzKKgwB3Tc+iQ29JjpOjhiY+PF/3sqaeegsvlwj//+U9UVlbiyiuvxKeffoomTZoAcLuq1q5di/vvvx/PPfccrrrqKvz73//G6NGjPfvo3LkzvvzyS8yYMQNXX301OI5DdnY28vPzdT82b0j4WIDo6Gh06fI9oqPP4733bvH5jOrFqEfKQuHd7uPo0aPYuHGj6hYhoYZ3nzfvWKdArqvVq1d79V9TZmUjrEVJiTtupW1bcxZwq5KRYez5kqrI/MEHH3j+fdFFF+HZZ5/Fs88+K7r9wIEDMXDgQJ/3/NPiu3btik2bNonuo7i4OOCYtICEjwXwdnmtXRseGVhGIGWh4Nt9OBwObNy4EYD6FiGhhH+fN7fbKlMyOBygYo/hABWlJFiHhI9F8HZ5XXC1uNClyy4cPdoCwFFaOFQgJw3dOzbFbq9EXl4hCgvzmMmCMxq1weFAeJVPCEfMTssmCDlQAUOL0aXL95g0aTF69NgKANi1qyvee+8WLFp0P3bvvsLk0VkTJZWhd+++wiN6ABfy8grDNj5FTdVvlos9hnvPMC2On4pSElaALD4WZdu2XPjqVhvFSgjgHYvC41+PRwx+Oz6GxX+hByJQWJiHTp32heU5V+u2klvs0YigcP76WLUqFlOn2uFy2RARwWHePCeGDz8XsjFa/mjlnmIhLZsgpCDhYyG86/oIGeu8Fx29Fw0hQeGNUQtGoHE4nU6fQoVi5Ofnw2631/sb77o9gLyF3swMLiW/iRa/n1q3lX8quzd8cLgR1w8fq3Qh4JovvGjDlCnx+P33pbDbK0O+kKJW7imHw4HIyGrMmxeLadPsqKuzITKSw9y5TkRGnoPDEdoikuM4s4cQFmhxnkn4WAg+yPnHH//AG29wnomaJyKCw8iRPdG58yDBCUZqsauqqkLDhg1FP+cXI//gVjH4KqDBLLBaCBsp7Ha7rIBkqYU+Pz/ftIld6W8id9tAxyMVHM6LmFOnTmHdunUApGOCjAwO568rKUEbyoUUHQ4HduwAXC7f37muDti504HYWHllL/yvv3vvjfNY9M6cqcSrr7rfZ0VEapl1FhUVBcA9f8bGxmowOiIQVVVVAC6cdzWQ8LEYSUlJ6N07Ca+9BowdC/Di122etuHaa9sK/p3chVEKqaKH3pw4caKe1URsn2JCzciiVlJILfS81cgM5P4mShZxOdsGclv5ixi1BSP1htWAa2/RX1oagaKiBsjKqkV6uts0E6xVzNviZbNNqnf8W7euwL598ixe/teKWGYfCyJS66yzyMhIJCQk4MSJEwCAhg0bwmazSfwVoRSO41BVVYUTJ04gISGhXpFFJZDwsSh8savt292vc3MDP7loNeEo2U9tbW1Q+9R6kgzkYpH7N2qakWplaVOCkmNVc168kVt5mVVXIWv96hwOh6efnNMZh507u2H79lxBK1kwFhT+mpQ6fhbEilbolXXWrFkzAPCIH0I/EhISPOdbLSR8LExGBnDLLdLb6U2wC6dW3xPoczXd7cX+RmyhF1q0tbS08W5GoYXIu4igkmNVc17UNpFl2VWoRtDqgff1snv3FZLV2rUQJU5nHJo0+QMFBa+jpiba1OPXE63cekLYbDakpaUhNTUVNTU1qvZx7Bhw5AjQqhUQ5LoeskRFRQVl6eEh4RMiSFkV+HYBF16rFxHeKFk4gxFIUt/j/3leXiHS08uQmOgAAMUuFim3jNwKzVpa2uSIKCXuJLWuJ7V93lh2FfLjM3vBP3nyJAD3b+Mveni0KPjocDhw6tQpwfsqK+uI6v2yipZuvUBERkaqWpip6KOxkPAJAZRaFZSKCDExo2ThVGNZkPs9Qp9v3nw9ABtsNhdyc7crTruWcsuYUaFZjohSkmIeTBVltYuDmZYV/4cDbysZCzgcDk+w/s6d3SBWZi3Y+CNvEfDhh+HRPoT/3Q8fbgPvpCCz3XoOhwPFxbUYNy4VLhefVQiMH8/h8stPIDOzARPB4KEGCR8GCDa1WMnNqkZE+E+GfH0buQtnsEGtUt8j9Dlg82y3bVuu4uBVswJeg3UbKhm31Lb+VkJ/5MYe+bu8xCwr5eXluqWxsxYoLwR/Hzudcdi+PVdwGy3ij+Rms4US5eXlnnnI13UIZGebU12RvyaLijLhco30+ayuzobnntuIrKwjzGTChRIkfExGSRqyFhe/GhHh/XlxcbGnwZzcRTbYCVbqe4Q+9yUCublb6wWICgXU8v+WcsuoDcLVMg5JaF9S4/a2ckhtK6dUgJzrkneN8QG7YvAZgHpM9ME8yRsdcC0s5IGOHX9E376bNRMlrGazaY3D4cCaNWtw+nSmwHk1T+jx16TU7xBKweWsQMLHZPRIQw60uKoREd6fe3fVlVo4+ToLwU6w0rEhvp8DHHiLD/9d3brtRLduO9Gq1XXo0CEazZplAciqVwvCP35l5syTKC5ugMzMWqSndwXQVbVVIpCwUWoVC7SvQO4kvp4OT7CuJ7nXZVJSki7XulrE7hG5sVt6Ina/aCl6AG2z2dQGvBuBXIFhFqxlFYYDJHxCDCmrgZybLDd3u6clhtRNmJ19CEOHrgXAoUWLEs92+fn5SElJkfWdYpOh9/uBFuhhw4YhP9+G7OzFOH06EaWl6aJNRMvLP8C2bfW/y9vK4L3QpaUBOTliZ1s+UsJGiVVMTuA1UF/kCOG/0POUl5fLqsHEW5Cs1Noh0D1iRuyWP0YuhHKErxyxojbg3UhYFhisZBXysFKZXy9I+IQQYgtiauox1NTEeJ5uxcSK/4KQm7sV3brthN1eiWuvvRZbtmzx+b5AC4jdbg/aeqJ0Mp0xI8Wr4Jv7u+LjT2DbNukgar2tDFLCRsnTqJzAa7nIXejFLCTe4kqpi0pNPFOwEzKrRRT9MbKfmVjM1ZAhQ5Ceni77N7XCQsiawPBGTVahHgLFP/xC7D61cuwRCR/GCCa4VWxBfP31MeCtN50778XevZ3riRWhBWH79lx067YTANCkSROf/ZaUpMlaQIK1nii5sYS+q6ysWtDC449Yhk+wTzb8wiQlbORYxeSa7LXOVpIbe6REPKrJ8tMiHs5KAb2BFsJhw4YhNTVV14UnOTlZk/2rXZz1sjqwULZAC/QSKN7nPNB9auXYIxI+DBFMyjcgFuTLgc9i4LgI/PDDZfDOeOLFipIFQaiwWqDtWTKbyrFc+BPMk4231ap58wq/5o0VGD78Np/KzYGsYg6HuyaRlEgSOha1gloPC4nafWoRI6RHnIfR1/ewYcNwySWXaLY/PeDPiVyXqf89ZpbVwcwmw0rRS6DwWbtWsY6qgYQPIwRzkQXKRBJL8+bhxYrcBUEoJTTQ9kZnrQVCrbAUmjiULHb8/x94AMjPBw4dAtq0sSEjIwFAgs/fBbKKCbkOf/jhLPbt+0CzIpP+6GEhMdPqonWch5bXt9xFNzU1VdZ2wX6PWhEQ6JyICRj/e8kMq4NU5XCWHuC80VKg8BlwgLWso0oh4cMIwRaT814QJ048iLfe2omoqGosWTJGwALkm/HE+7rlLAhiqbZi27OSyaP15KB2scvICK4nkL87Lz29DEePio8/2OMWE8RnzzaC0xmnS60hsfpBwbjw5AbKK13stby+gwkQVirE9QxE9t8vL3ZKS9PqJR3wAsb7t/X+DYy0OgSqHK6HBUorAaqlQPH+7VjNgtMCEj4mU1VVBUD6IuO3E8P/ZuPLzvuLGaEYH/7mCLQgBEpNB1woKHgdGRllnnfEblaj+nr5I2dykDs2VsScHNROioGtiMB7792i2Hokt0aSnPpBgLJryQpZR4C6AGE1Qtyo4/S21ng/dPkLGH/37LBhwwBos6hrITD0sEBpdU3qJVDs9krk5RWKZshaGRI+JsPHdkgtBoG6d3vjcDg8PlpAWMz06fO5aFp4QkJCvX16Twhi4+RFT6Cgy2BjmIJBanIINDaxp1EW8RcDUsctdjzek/KpU6eQnb0YR49m4L33boZ3zJiSp285WX5yY0LUXEtGLPZmCHtWhbi/tUbIzX70aAZOnz5X73zV1tYC0GZR11L0am2BCuaa5Od5vdL0d+++wiN6AHf/Q6Pma70h4cMQXbp8j9TUY/jtt5Zo2fI3HwuKHMSe/PyzGPxfy80QCSY13axAOTlWBqmxiT2Neh+bGVYsf8TEwKBBG7BhwyC4XL5B1VKTvfdn7lpD5yA3oF3OPtXWSGI16NJMYe+NUdejmHuNf1AQc4vz2Gwuj5AWO19aLepaiV5W4l68Y3EA7dP064vWCBQW5qFTp31k8SG0JdiJU8y3zk+AYhNiQkKCrIkhmEXLrAkjkJUhOjoL69Z9r3hs/NMowNZiJyYGunT5HjNndkNlZVPRoOpAyE3JN8oaxsri441RYkxIbHhbJI26HuW418SzTG0el6kc6yFLtXdYiXsREpxapunLucdYt34HgoQPI2g9cfpPgGL1e4zCzAlDTLCVlbmCGpvUb6ZXbSAhpCaq9HQX5BYkFlpchw0bhtraWtjtpXjsseaKrUdqERLrrAgwb4wQY1Jiw0hLmBy3mZC1Ji+vEOnppTh7thHee+8Wn+0DnS9Wau+wUv3ZO5wBCGzlU3M/SN1jUhlwrEPChxG0nDiFJkCx+j1G3bCsTBjeSLnBAKCoKFPUZSD1m+lVG0joGLQSA3Ke5O+7Lw7XXFOAnBy7YuuREsSsF3Z7JaZMOYQFC9rC5bIhIoLDvHn6CjApjBD2UmLDTEuY2MIrZq1xOuMCni//HnpimCFyzbZA+bu5Aln51AoUqfk6UAacFSDhwwhaTpzCvnXh+j1uF5hTt/5EeqURa4FYGYDExNM4fLgNFi+eFNBCFsxvplWgqZwCiUrEgNwn+auuqkJamn6Tn5T1omHDt3HffXGea2nUqJFISjK+x5bcTDUjrm+zrKpy+gP6iwM5CyvLWXhmWqC8z4nUfaJUoLA8X2sJCR9G0NIiEsi3foELE2JNTU1QYw8E62nEQmUApCYT/mk0mN8sUE0apedDSYFEqyDHeuG9+JhVOiDYfnTB4G9lMcOqKqdhrnfvuFOnTnksoVKWE5ZcKUYUfVQzR2pt5WN9vtYKEj4mo4fC9p8AARf8LT42m+Cf6oLcm4SVyqhSk4n/06hQwLQUUp3T1brC+AKJDocDZWX6nUsh4abF7yPXdWc2YtdqeroL6enVul+rYlYWo5/S5TTM9bYm+49BzHLCmkVBT0EQTEFUPe4Tq4saOZDwMRm9bijvCVBpIKEWKBUxLLW2kDOZSAVM86hNLQ7GgqHluVTa2yzY38ffdTd1qh0ul42JmDAeI69V7/uIF5tSVpY777zex8oC6PfQoHTh1WK+M+sBSa95J5g6TIcPt/krO84NC/cJKw+wgSDhwwBaXQRiT1NSgYQNGmh7GahZGKRS8Xn0dGloHa9hVqq7VgXt1Ixfi9/H23XXu/dxPPfcRo/1goWaSUYVDBS7j5RaWfREjXstmPmOpQcko+GFr78A9q6txXFAdvYhz+tAc5UeAsUqvw8JnxDC/2mK96dLTU5C1ZqDIVgRY5Zg0DJeg9Uie3JhZfzp6S5P+xVWaiYZhdj9wYIbMFgXvdpFl9Uq1Voi18oqnMRyQQAHyujSS6BY5fch4RNiiF2kwaRgek9SpaURKCpqgKysWqSnu906gcSA0sXK7AVXi8rCgPygQxYsGEKwViTQ7OuCJVjIIAu2oaoVrAJmoGS+lBLAgTK6rCJQ9IKETxihJgXTe5IKdFMKTVJqFivWFlylKAnONcqCIUdc8eKW74zOglXBG62uCz3M+2aIV+8Hmdtv74ZOnfTNIBNCq+7twWzH6oODGpTOl0oFsFC8WLhCwochgrGsCKFlV2Kpm1JoklKzWLG24CpFqq5O377XY926dYZZMOSIK6EncKlJ1agFR8sCjXpYGox0vwmlr9vtlejUqZ9hMT16oPZaMtP1qYeADjRf8p/7n6MnnsiS5ZKXe+2HCyR8GCEYy4oYWmaMSYmYU6dOecSa3V4OQJ2IYbHCs1IC1dUpKzsHwBjLllxxJXZ9iLlHjVxwtCzQqMbSEKg3lpHut1CNb1J7XGa6PvVy1YnNl6Wl6XjjjTsEz5E7kL2ppEs+VF1WaiHhwwjBWFYCoZXZW0rEPPxwET78sONfN2cTDBp0haczuFIRY3ZJeC3h6+rwGNnwUwtx5e8eNWPBMatAo9QCZ5RbNlTim3gRqYVwNNMlrnV8TKBs0ry8QhQW5un+24eSy1AOJHx0RI3ritUYl0CWGKnO4HJEjFULmylF6xYTQugprqSuT71/H38hqSdSC5dRzVJZnROUICQigzkuq7vEvRHKJv3hh7PYt+8DQ357Pa2JrAoqEj46odZ1xfINLSZipCsdS4uYcCmVDuhvwQhWXIlNVsOGDUNVVSJWruTgcl0o/R0ZyeGee25AZmYDS/0+wU7K/MPAhg2DVHWrl4oTqaqqAsBmN3qlCB2nmrmOpd5oPFos7v7ZpOnpZTh61L2vQOfIO0i5qqoKDRs2FNy/WDCz1tZE7/MeaN0z+5ol4aMTUq6r1NRjqKmJQXFxLbznR9ZjXIREjNQE5t+vBxAWMVZaNLVCLwuGWnEVaLKqrXVbK+fNc/qIqVdesSEnp6n2B6EjgY6TXyTKy8sl99Oly/eYOLEtqqrSFXWrlxsnMmLECDRs2FA366BZ8GLB25Ujt/ih9wPS/ff/il9/jUCLFufRrFkWgCw0aNAA1dXVKCsrM611SLDIFXhSrW/E4M//2bMNNbXg8r9PcXEtHnssFRxn8+zzo48GYebMbkw8IJHw0Rkxa8iSJWPAcRFYuZLDvHnl6Nv3giK3WoyL1M1pZCVZKaxQTl1r5Iorqac/70n23nsvdEYfPHgkAG3PmZ6/k5Lj9P87oSf7bdvWAAD+9reJkHse5MZ/NGzYEGlpaSHVgNZfLOTlFSI9vVR28UP+d3c4HPjyy1cBAEePin/fsGHD6hVp1eI+1zP2yl/gTZx4EG+9tVOT9cD//Lt7OV5Yo4K14CYlJWHvXsDl270HdXU2VFY2BQvTKwkfnRHrlM6/drlsmDIlHr//vhne9abU1NzRA7mKX61Y0zqFX+q7qHCaOEriCbyvT60zRvT+ndTETch5stc7c8bI+Ca9EBILhYV5mDRpMez2C93cq6qqPFYbIaKjo2Wf7zVr1gi+H+x9rnf8jf/Y+ArmwSB0/t3rk1v8aGXBbdsWiIjwFT+RkUCbNkHtVjNI+OiMvzXEX10D0jeL95Om0QSKveFbYvAoFWt6pPAHgoV+YCyiVUd0raw0elWVVXucoZJVxQJy+oxFR0fj1VdfldzXsGHDfF4rjbUJ9j6Xuo6842pYsSSLnf+bb16DRo2q8MADf8ellzYJ+nsyMoBXXwXGjwfq6tyi55VX2BHuJHwMwNsaEhVV7XFz8QSadP0FQatWVbjvPqNG7oa/YUtKgF9+cat5LS5gvVL45RCqdVHUIBYMHRHBYeBAefFlVrCmeR+n3V6K2bPTZcWWGFVzicXsF62RIzrl3u+1tbWefxt5P6uNv9Hy2ld7vdx++1WCyQkPPXTNX66t4EUPT0EB0K8f755lR/QAJHwMw9saEuhm4U29TqcTu3dHYvbsNj4BYg880Ah/+9txwwPEliwBxo1zmy4jItxqfvDg4CtDA8an69ITfH2EgqHj4k5gw4YLi0egydYqvX/44xw3rgxO52KPaxYAiooyBY9NbLGOitLmWMJJhOuRvCF1P2stKtXG32h17cu5XsSOuVOnBLz6qs3PEiPs2tLCgsuqe5aEjwkEiofhTb3Tpv2M9esHArD5/G1dnQ3PPbcRWVlHDHl6djgcKC6uxbhxqZ6nBJcLGD+ew+WX13qyTsSQc3MYncIfCnVR9ISfrMrKLjjozVyc9bKG8A8jgY4tPz8fNTU1OHzY213NeRIUxM6D1KLBZ4ypFeFWC9JX0s1drkuaJ9D9fPhwG12uWz3ib+Qg53qRulflWGKsYMENhpAUPi+88ALmz5+PY8eO4bLLLsNzzz2Hq666ytAxSFk5AsXDFBfX4sMPB8I/FgjwFQR6Pz3zF39RUSZcrpE+nwUjwHiXWXy8+/iMTuFnuVYSi5hpIdNbcEkdG9/hukuXdUhNPYbXXx8D/r4UOw9K+iKpEeFWXJSU1OnyDmiW8/sHssiZcd3q6baUul7k3qtSlhirWHDVEnLCZ/Xq1Zg8eTJefvlldOvWDYsXL0a/fv1w8OBBpKamGjYO/xvdPxBYDKfTiT17osFx9U2PRtf04ccuJRTkXPz8E+qqVbGYOtUOl8uGiIhUDBzobm1hZAo/67WSWEPN4qzF5K+n4OK70Cs5tpqaGMhJTFCyGKgpTmjVRUlN13s5v7/Y/VxTE2O4ZVfvuj5S14vZldWtQsgJn4ULF2Ls2LG48847AQAvv/wyPvroIyxduhQPPfSQoWNR87S1evVqOJ1xsNkm+V3ALhQUvI6MDOH0Tj0JVijwT6hOZxwWL57kiVlyuWyeiQwQ7j6sF1arlWQGSlpfeC+yWk3+erkkHQ4HVq9eDUCZ8NC6gnJ+fj7sdnvIFSfUCqnfPyoqyvO+0P3snkeNs+waVdcnMfEYZs1K++vhkcO0aUWIiXHvP9A1OmLEiLC+nrwJKeFTXV2NXbt2Yfr06Z73IiIikJeXh+3btwv+zfnz53H+/HnP64qKCl3GpmRSFBMaZogenmCEAr8oik1kO3d2w/btubrHj4RLPzCtUNL6gndPaDH5693I1VukBRL1w4YN8ywUerQAsdvtmhQnVGJds1JskNTvb7fbBd1nTqcTq1evNrythRF1fRwOB+rqnsd9910oIMqLHiDw9RwoFjPcCCnhc+rUKdTV1aFpU183UdOmTXHgwAHBv5kzZw5mz56t+9jk+LjLy8s9xbZYtEgEW1RRuJijyyN6AOGFUqsJKpz6gWmF0tYXWkz+RjRy9UbsXvOu9qtHCxDvOi+RkUC7du5/Oxzyj02JdY2F2CA5wktJPy6hcaalpdVr+llc3ACZmbVIT+8KoKsu97kRsYP8MQWai1lcO1gjpISPGqZPn47Jkyd7XldUVKBFixa6fJfSG42V6s1aITSR5eZux7ZtPX22814ovZ+6eYKpJ0SiRj2BAiK1ttLo3cjVG6XxSHq0APFHjviQ2j8vrPhF3uzYICXCK1jh4t/0Mycn6OGLwmLjVK3XjlCrMxVSwic5ORmRkZE4fvy4z/vHjx9Hs2bNBP8mJiYGMTExRgzPkmh9wfs/jQDwsfgAvgsl/9QtHBzNYd48J4YPPxdWlhoW3RVaWWmEjk2tNUQOemaNBWP9kiM+pPbvLawmTpxY7++NXsyUCC/v3n56C5dg8bckG2VhAoR/Q61/11CsMxVSwic6Oho5OTn47LPPMHjwYACAy+XCZ599JnjjWx29nyBWrYr9KxhZ2wve/2lEKnA6UHC0u8/ZUtjtlUyl7+oFC+4KMYKx0jgcDpw4cUK0r5I3Wh2b3mn6ers+lOzfX3SwsJiJLdDeLkB/WH3AMdLCxCP0GwLQ5Hfl1xape8Sq8ZAhJXwAYPLkyRg5ciSuvPJKXHXVVVi8eDHOnj3ryfIKBYYMGYL09HRdJ4CSEmDqVDu8q0aLLQrBXvxSPmmp4Gj+CZe19F090NNdoaUlSUnFViV1bwDtXDFaBqN6nzu+OKGcbEg1T+eBXCt5eYU4fTrJ87kQLFQuDyS8pMp+hMMDjhRCv+H69QNhs0GT35W3Ym3ZAixaVP8e6dlzJHr3tm7oQMgJn/z8fJw8eRIzZ87EsWPHcPnll+OTTz6pF/BsZZKTk3W94BwOB3bsAFwu3+/guAh06jQYPXpUewq7afUEJscnTYUH66PVU7OZliSzBKtW11Ogc+ct6keN+huSkrKwbp17gVdrdfF2rZw6dQrZ2e7WG6Wl6SgszJPcn9mVy+UKL2oiLI7QbwhEgON83wnmd01KSkL37sJd1rt1S4JFNQ+AEBQ+wIXgOKsh13Kip3nR263kX0vIZnNh374PcPSoMreSVuMNpcKDQtYVp9OJmpoaAECDBg18soqA+udRy6dmswNfhZCyhqi1UGkdjCp1TnhR365dPwCNPMcWjNXF+7j47d944w5Z+zP7AUKO8GLBFcfDYkydWIast8UHCL78A+td1tUSksLHqrCQbu2dLhloURAao1i2ldBxya1k7U8opGoqde14M2zYMADBL5xSi7UcS5LaYGVvhCZjpzMOO3d2w7ZtuQCEF75gLFR6B6PKcV9pbXVRsj+pe9vfWqj1nCMlvFhwxfGwFlMnJdrPnbuontXPbq9Efn6+6vGx3GVdLSR8GIMln6kSkSHUvb2g4MLn/selxLrlv3DKcYt5L7ilpREoKmqArKxapKe7PPs161zLacIotnjW1tYCkL/QqYkhUWJJCjThy100eDHn/93ex+W/8AVrodIrGFWupUJrq4uc/cltFCr0QDJs2LB6Fkjv/Sq5l6SEl9muOG/kNkw1yhIaqDP84cNtPKIHcMd78dceH5qgFla7rKuFhA8REDkio6TkgugB+O7t7qcEsZtFbdNCOXgvuIEWIhaCJNVmZshZ6NS4C5Q+bQf6/eQuBryY8/9ub8xa+JQg59zpVfNFjhtYjuVVbGGXyraTcy/JFV5muOLELJPe1i9W3G9CneHr3zsRKCzMQ6dO+0y7Z1h0EfKQ8AkBginoFyxigdB1dcDOnQ7ExopbsfS66PmbTWohMjtIMpjMDKmFTq27QOxp++jRDJw+fS7opqOBrE/CAZtupBY+FgqsybFUaO1mkysm+O0C7VfOwh6MxUPqYYcXYUbH8smxTBrhfgtGKBhhJVMyPtZchP6Q8LE4Ui4mPXA647B1azTatfsD69aJB0Jv3boC+/YFX19HbdA3SyZzIdRkZkg1Zgy0bznHLhY0uXbtzUE96cpZVIW/2/39/tYQPZqiBotcS4WWbjat4gLlLOxanGe584CRsXxy3Fl6zyVqhYLciul8iQUh5MbqKRkfi8kS3pDwsTBqXEzBwk9+ixZFICKCw8CBV6BLl+8VB0IrQe3kbnb2ihRqMjPEGjPy8E/Nao/d/2kbcAGwQU49JzGkFtUzZ84Ifjff0qRbt52eAM2UlBTNm6JqhRJLhZZuAC2emKUWdrntMZSO3RsWmggLibvs7EM4e7Yh3PeCPnOJWqEgVTF9wIAbsXr16qBdlawLGaWQ8LEwv/ziW18BcLuYDh3SR/j4T34ul80z+en9hOZ9U8p17bGe/i42PqB+jI9/rIbafYsdu5jL5OzZRnjvvVt8tlX6pCu1qG7atAmAO4B23LgEP/dPawCtRRdTFqx6St1NLLoBpISykvYYgLqxG5HVKiQ4edEmJu7cFtgIABx48aNmLgkkdv0z6ZS4bgNVTC8rOydrbFYRLFpBwseiOBwOxMfXIiIiFS6XzfN+ZCSHuLgTcDgaaPLU5Y3U5CcnEDpYlLr2hBYiflIpLY2AV0sgUxBbKNWKSKWLMI//osNbjtxuzOCsZmKLalSU72SbkJCAtLQ0Re4fFqx6Shds1jKFAGmhHOg3LCrK1Gzsehdm9RacvuddfH67gA02G4ehQ9egRYsSxaJHbgmLYFyKoZZ9pRckfCyI9000cKDvTTJgwAZs2KA+a0lsEnc6nTh6lMPKlZyP0DJqkXE4HCgursW4cReEntu1xyEt7RSqq6Nx5ZV2wZveW5B5TyorV3KYN6/c8Canckz6as38wTw1C72nhdWsvvuMA8dFYMmSMUH3EpIO8nYG3IdWv7na/bASnwQEFspC57lz571YsmQME2OXg1RcWHb2IZEYswtwXAQaNaqqd/1L3Zdyxa7erlutkgBYSCYIBhI+FsT7Jgo0WWn11OVwOLB69WoA9YWWEa4jXugVFWXC5Rrp81ldnQ0DB7qf1CIiOLz6qg033ii8HyFXnRlNTgOJS6nKzXLGp/QYxKpI8yixHPmP13sfqanH8PrrY8DHSQQzqUtlR5WXt8WaNWs8160YZpY0kBs3o6colxtXA/heB1FR1R7RIzR2lhE775MmLa4n7i64udx4P+gNGTIEycnJin+fQGJXT9etViJbbZkMloSSKuFz9uxZNGrUSOuxECrR28UkV2jp/f3CwcCcj5AZP57D5s1nBPfDUpNToYkyzQS/m1wT/NixNygWYrw4KS0txbp161BTEwPvRQQIvpcQj5R7jAV3kj9i1+NPP3VAx47/84mb0UugSVkInU6nj3jk55qiokzTY6vUEmge8J/fDh9uI/qgx4ue6upq0Vpj/veIlNjVy3WrlSVJzX5YsmryqBI+TZs2xbBhwzB69Gj87W9/03pMBOMYEcsj9r31M458J7C6OhtWrNiKrCx3w1q73R50plMoI9cEz8ffKMU7tdWs88/ixAuIC/lNm/pj8+a+PuM8ceKEblafQPtNS0sTjP1i9V7ytl6Wl5d7imMCwB9//AFA+jr0nt8CPej5i0Kxe8e7b6ScOEk92oloZUmSux/ekigllPTM0AuEKuHz5ptvYvny5ejTpw8yMzMxevRo3HHHHUhPT9d6fEQIoOXFHcjcDtRP/fZerFnP8jIbvQWCnuefX/D4xY5f5FhKd/dHKPYJEC4bsGbNGtPccnrFfmlNoOBlAH/9O05y7Ndffz02b97s2Y/Ygx7nVXAr0L3j/XAhRzAqbSci57oIVqjKrRfkXShz4sSJ2LIFWLSovlDq2XMkevc2r0WTKuEzePBgDB48GCdPnsTKlSuxfPlyPPLII+jXrx9Gjx6Nm266CQ0aUPhQuMH7vL3RIz7BeyJSOvmGQpNTb+TWg5EqyW+UQNDj/Ady17GQ7h4I/nz89FMHbNrU3+czjovAzp3d0LdvIQD2Uo5Zu5fEgpfdgpKDf8NbsbFnZWXJShCQWyHeGynR5T2Hym0nIjRO7wcBOd+rJGlCqF7Q8OG31Zvrk5KS0L27O/vWu+xKZCTQrVsSzOwWFJQ6SUlJweTJkzF58mQ899xzmDJlCj7++GMkJyfjrrvuwkMPPYSGDRtqNVaCcZKTkw2PU1Ez+ZrlqtOawOm5F45vxIgRePPNNwNup6dA0LswnZi7LirqPM6ebcicS0bofHTs+D9s3ty33m+wbVuup4AjC7BQZFCK+n2rbBCzpImdVzkPa3xcj9J7J9CcJTaHKrHGij0I+H/vuHE3wm6X3yIlUL0gIEHwbzIy3CVHxo9315iLjAReecX8lPughM/x48exYsUKLF++HEeOHMHNN9+MgoIClJSUYO7cudixY4enOBlB6EWoCBmlyG3bUFVVJbldVNR56FWZ1ojCdDz1n/RtcFfDdjHjkvE+H979qXJzt2Pbtp5+W7NjnQKC/y29LY+lpREoKmqArKxapKe7JP9WLoF6vgHSgl6paJPjRgpGMAbbONj/QYf/G/9QACUoqRdUUODuJuAWSuaLHkCl8Fm3bh2WLVuGTz/9FB06dMC//vUvjBgxwifro0ePHrjkkku0GifhhdreVWahdxNV1lIljUbuxCi23blzF6GwMA8XqtPaNBcIRvjyhZ/0AXf/Mxduvll54Tm9EDof3brtxLZtudCrLYJWqP0tvS0RgYR6sLFM4j3f3AilpPOoEV5y4p2CEYzBWGNZCexnrbCiKuFz55134tZbb8XWrVvRtWtXwW3S09MxY8aMoAZHCGPkEzS/L7XbadFENdD3y7mxrSYUlSJ3YhTbbvNmXvQAvOgpKHgdGRnCKbqsEvhJX13hOSOx2ytx001sBQxridyYmGBjmYSECF+PRyglXQv3vByXu9r5WG1gMsuB/WajSviUlZVJxu7ExsZi1qxZqgZFSGNkNLxaoaVVE9VA7RTk3NhGC0WjkTsxim0nJIZqanwFAUsCQYxAT/paFJ7TA//zylrAsB4YEXDufx7d36vvOdXL5a42g471wH4zUSV8GjZsiLq6Orz//vvYv38/AOCSSy7B4MGDKZsrRFFTDXjHDsDl8v27ujpg504HYmOV7dN7Wz5mRerG9o5tMXuB0xO5E6PQdnl5hSgszBMVTUOGDEF6erolzp9YengwT/ladlEXIikpCfn5+YJFAkMVo2oA+Z9HqXOq1CVvpCVZjSBmtdYSC6hSKT/99BMGDRqE48ePo127dgCAuXPnIiUlBR9++CE6deqk6SAJa8H78t0NLifVu/G2bl2BffvUt4jgrY1SN3Y4ZRTKnRiFtouN/TNgdVoriB4e/zpPNTXRqp/y5WbNBRuTkpKSIms7K1jd5KBXDSA156eqqgplZWVYtSoWU6fa4XLZEBHBYd48p2QPP70tycFm0LFYa4kVVAmfMWPGoFOnTti1axeaNGkCwF0Vc9SoURg3bhy2bdum6SAJa8FPBFI3nh6+/HC+seVaCvy3s7p7RUm/KaHtxZCbNRfsdRzqrlgh9Ljm/M+jf+VmAIiKioLdbgfgFj1vvvkmnM44LF48CRzHNz/27eHXq9dwOByJgtlnev4mWlwXVr+39UKV8NmzZw++++47j+gBgCZNmuDJJ58UDXYmwhO9b7xwvrHlLuByLF9Wdq94LxBCix1wYcFTIyCMCBJlRdTonYHpjR7XnG//tsDuTDl1eA4fboPZs7N1yT6Tg5r9q7EU6e3SZQ1Vwufiiy/G8ePH0bFjR5/3T5w4gTZt2mgyMCJ00HtRtfKiHQxKngj9tysvL8eaNWskv8Mq7hV+UtajgGaoB4nyi54ad08oIOYyj4qq1jX7TC+UWorkNio2q2WKHqgSPnPmzMG9996LRx99FN27dwcA7NixA4899hjmzp2LiooKz7bx8fHajJQgLIIRRdp45O7Hfzv/5pNChPqCJxepWDL/xpE8Vjh/3vF4gdw9Wix6rJaVEHOZ19TEWFbwKvmt5DYqZlXoqUGV8Bk4cCAAYNiwYbDZ+FLg7oZtgwYN8ry22Wyoq6vTYpwEYQmMKtKmBWZ/v1WQiiXjSysILRbDhg3zKezKmhjiFzMpq5YWix7LsUxCLnN3ckZ4ZUUFU/DQSu4yVcJny5YtWo+DIEICvYq06WVFstJkZSaBYsnEFgunMw5z5/5X8ywwPTAq9dmo45YbqyTWzgEwN3nCSKsxTzCxbFZzl6kSPtdcc43W4yAI2agxmQcTtKlmEtIyLkQvK5JR6dqhglAsmVQbED2ywPQglDIk5VaLX7Uq9i/3nrh1w4zkCbOsxsHMWXKvaVaufdXVBsvLy7FkyRJPAcOOHTti9OjRnlRBInzR25cv12QOQHWNDh61k5CWT9B6WZGMSte2KnKuT7HFwrsopBmtAtQIfatnSDocDhQX12LcuFS4XHysEjB+PIfLLz+BzMwGSEpK8mw3dWqqJ6Yp0G9kdPKEUa09/NFyzmK9f6Iq4fPdd9+hX79+iI2NxVVXXQUAWLhwIZ588kls2rQJXbp00XSQhLUwwpcvV7AEG7SpdhLS4wlar+wi6unjRsjtl5+fj5qaGgBAgwYNPPE6fNsU4TYZwm1A9A6K1SI7y6oZkvz9XlSUCZdrpM9ndXU2PPfcRmRlHcGIESPw5ptvCm4X6DcyYyE3OptQqzmLlcaogVAlfO6//37cdNNNeO211zwtKmprazFmzBhMmjQJX331laaDJIxByxoeZrtGtA7aVDMJyX2ClnKllZeXA9AvDiPU07XloNbtp6YNiJ7jNyI7i0X4+0fqHuHb2Ci5l8QWcr2zz8xoORGs1c8qD1GqLT7eogdwPw1NnToVV155pWaDI4xDiy7qLKLV5KF2P1JP0HJdafy+9IjDMHqCZTGgOhi3n9I2IEqQG19mZHaWEowsiAgE17fOe7v8/HxwHIeSEuCxx9r7uMQ2bBiE++/vwMyxBEuwrTG8scpDlCrhEx8fj99++w3t27f3ef/o0aOIi4vTZGCEcWjVRZ1FtJo89JqE5LrSePSIw9Di2OSKGdYDqtU+serRBkRJfBmPUhGrZzyeWQ9TwfSt82bNmjV/ucQu8Xnf5bJh+fJvkJV1RPfr1Ii4Ky1DE6zSGFWV8MnPz0dBQQEWLFiAHj16AAC2bt2KKVOm4LbbbtN0gIT+/PLLBdHDU1cHHDpkfeEDaDd5yNmP2oVEyZOSHnEYwZwjuWKGf4rmYSWg2uFweIoQHj3aQtbvIOd3DvZ3UhNfplTE6hGPJzfIWE/U9q3j4eO6pBZy465Tm6571+r3sEp2oCrhs2DBAthsNtxxxx2evjhRUVG4++678dRTT2k6QEJfHA4H4uNrERFxYZICgMhIDnFxJ+Bw6D9JGYFWYkFqP2oXEhaelNSeo0Buotzc7ejWbSfs9kqsXr3asx0rsQBCVhV/hH4Hod/Z6XT6HKMYSq0nSt0HSkWslve33CBjq8Qamb2QWyFQGPC9pgNdf6y0wFEsfOrq6rBjxw48+uijmDNnDg4fPgwAyM7OltUMkWAH70l/4EDfG2zAgA3YsIGdKsNWQs250mKCVTqpaO3mEBIz27b1xLZtubjpJt8Jm5VYADGrygXEfwej2oCoEcVmZWfJDTK2UokEo9P8+QBsqYcDfjsWYLkqtxCKhU9kZCT69u2L/fv3IysrC5deeqke4yIMwPsiDXRzW2mS0hoj+wsF+g3y8/MD1shSM6loPVkJiRk39a05LFi4vBEb+803v4dOnfbL3o8eE7vZVgc1WHHMgTBSSPIGBKmHA7MNDSwmKchFlaurU6dO+PXXX5GVlaX1eAgTsWoNDyG0EixGP8mI/QZ2u12XzuNaTkzCNW3c+FtzWFsYxYRYixYlpozHHysWF/QfMwAUFWUiMdGh+XfJvd/ligXvjGWzYO3hwBvWkxSkUPXrPvHEE3jwwQfx+OOPIycnB40aNfL5nDqyE3ojlSarpWDR68b1DqplvdKpHPzFjDdCEzZLi7lcIWZmjEKgBxOWO5/b7ZX1YlWaN6/AAw8o21ege17J/S5nOxas3Kw9HHhj9arvqoTPjTfeCAC46aabPN3ZAerITqhDbq0PpZVpWXzS4FFSvwdgJyhQCl7M7NzZDdu25QIIPGGzZGUMJMSGDBmC9PR0Zq8plmMshGJVpk61o3fv47IzvOSkxss9NjnblZWVydqXN3rULArm4cCIGkqsJCkohbqzE0ER7M0lt9ZHqFWmlZuqzPqCK4TdXom+fQvRrdtO1dYcs4SemBBLTk42/DdQasVh9RoRilVxueRleJmVGq/03OtZs0jJw4EWbUuUwEqSglJUCZ+srCy0aNHCx9oDuC0+R48e1WRgBPsEc7MrndBYrUwbLFLHY8aCqxSxRUJswtYjUDsUYdmKowS1GV5mpsYraYS8a9dxU2sW8ZjxcMhyHFIgVAufsrIypKam+rx/+vRpZGVlkatLJkaXc9eKYJ/CgpnQrHqjiREKx8MvEidOnMCaNWskt09JSWFmsTYrNkbuvc/KeZKL0HlSG6tidmq83EbIrNQsMuPhkOU4pECoEj58LI8/Z86cwUUXXRT0oMIBFnpjqZn0tbjZg5nQWLvR5PZSEoM/nvXrBwKIQKC6MSyTlJRkSQuFkWPWyg3B8gOT9/nkO9gDwcWqsHbP82gpzLx/09jY4MS40Q9TLCUpyEWR8Jk8eTIAwGaz4ZFHHvFJDayrq8POnTtx+eWXazrAUIOFcu48aiZ9LW92qQmttDQCBw64J4PIyAt/x8qNpqSXkv9v6nQ6fV7bbADHuf/vv50eaex6wYqoUSJIjRhzsG4Io2M3gkFsHMEEskvd82aKwWCFWf2H4ODEuNZCUehestvL632nFQQPjyLh8/337omc4zj8+OOPPoozOjoal112GR588EFtRxhCsGYaBdRP+lrdXGIT2u7dV+Cxx1L/mgw4zJzp6z5l4UZT00uJh+8FJPW3/HYswXrhsmAEqV4E44YItcB+tYjd824xaK71XO3DmHiD6KSgBJxWD4fi91ITDBp0hU/2qVBJDpaqS3ujSPjw2Vx33nknnnnmGarXoxCzfdZao9XN5T+hXRADFyb42bPTMWlSnOR3eFuJjHryCyazwWpZEf6Fy8QwcxEORpDqjRo3RKgG9muB0xmHxx6z+wkH463ngPKHMYfDgR07AJfLd4x1dcDOnQ7ExgZnjdTi4VDuvST2gPHmm28yKciF6stLsmzZMhI9QcBbS2w2993Kis9aDXZ7JbKyjmg69kATfCB2774CV12Vij59gFatODz9dDnKysrgcGhfKdYbfjHzRmox4yvDSv2tmgqyDocDZWVlov8Fcz5OnDjh89rpjENRUSaczjif91lYhNVeR3oSzL2v5joLdU6fTvJprgxcsJ4///zzut/7auEfILZtWyH4m27duoKp8Qe6l8REET8nsDAX+KMquPns2bN46qmn8Nlnn+HEiRNwuXx/uF9//VWTwYUyrMSpiGGmz1zNU7GQlcgoN4Aat19CQoKsv+W3k4ueFhmHw+GTtbV1ay4KC/OY7RzNasac2nuf1SBfMYzImLOq9Zwfl9Rvysr4A51nq1mtAZXCZ8yYMfjyyy/xz3/+E2lpaYIZXoQ0LMSpeCMngNIIpCaDIUOGIDk5GQA8mSNmuwGCEbJaimD/4xRrhaHmfHj/zdatudi8+XoA7nufxYqtLAsFtfc+6w9M3gSbMSdnvmH5N5aLVr+pnkKzfjsaF/LyCj1jZfEBIxCqhM/GjRvx0UcfoWfPnlqPhzAJuQGU+fn5QX+XnBsv0GSQnJxcL9OJhaf7YISsHiJYTisMNTidcdi8OQ+86OFh8SnPSkJBLqw9MAUiGCtrIOHknSqfnX0IQ4euBcChRYsSw86NlkJDi99U79IMXbp8j3PnLvJYeQsL8xAb+ye6dPnecuJTlfBp0qQJEhPN85MT2iM3gJLjOFn7C3Szi92g3pMZoGwykHrys1paeLDo2UPn9OkkCIUHGi00xbLL+MavPFYSCoQvUou0XuJe7thYq1vl/11ahiw4nXEe0QP4zilWe8BQJXwef/xxzJw5EytWrPCp5UNYHynLSUJCgiY3ux6TAX/zHT2aAcCGFi0utE9ZvXq15nE+wTzx6R3/oKffXegaATgf07fe+Mcysd7dntXu6XJhsWgiCw0yWctW8kbrIrlSc4qVHjBUCZ+nn34ahw8fRtOmTZGZmYmoqCifz3fv3q3J4EINK0x+cnzmLN/shw+3EX0C1CLOx9/KkJ+f71Nrp0GDBj4ByWIiUO+nRT1df0L+/uuvL0TPntuD3rdcvM+b2qd+I++zYH5vs+cNFqrM+1NeXm6JoFozBKOWRXK9rykWwgm0QpXwGTx4sMbDCA9YNI0KYZbZMtgJXu8nQK0zpvT8nfUO+pS6RowSFXK62/OB8P7jM/o+U/t9Zs0bLFWZ9x/XmjVrkJgYx/RCbIZg1LpIblJSEoYNG4Y1a9aonlNYtGKqEj6zZs3Sehxhg9miRi5CRQVPn07Cvn3lnve0mGy1sqAA+hcDlJsxVVpaKrpIGbng6i1gxUzb+fn5hh2jnO72oRDbZfS8wWKVeR65qeCAeYuueEVmt+VHLyueHkVyveffQHOK0EMGCw/yQigSPv/973+Rk5ODSO/GSV6cP38e//nPfzBs2DBNBkewgbcr4Y03tCv7LzdOI9B3mGWKDeRe8Q7QFkLPxcJ/ohQTJ2oWBLl/k5KSonjfagkl8ztLmFVlXqlrKNBCbKQA90ZuRWY9rXh6WnzF5hQrPWQoEj65ubkoKytDamoqACA+Ph579uxB69atAbj9rrfddhsJnxBCz7L/cuM0An2HFqZYpch1qWlZQ0cuek6oQvt2Op31LHTV1dUoKysL6rvkEgp1XFjGyPOr1jUkthDb7XbNxyiFd1kQm21SPcG4desK7NtnTF81q2VaGYki4eOfyiyU2iw33ZlgC7GneSMCCIONzZFritUKOefE7DRbI/btcDiwevVqyb/Re5KnCV5f9D6/rMYSqYG1isxWyrQyElUxPoGgKs7WxP9pnq+pY4QrIVhxVV5eLvBu/euwvLxcE1Os1DlhIc3WCPSsEq2UcJ3gvWPkSksjUFTUAFlZtUhPdweXaGVx0+v8shxLFCyhIsiVxCOxWPZACM2FD2FdhCYWI0zdwYorb7EdyNKilSiXOidWSLPVGqMtXGaneLOAd4xcoPPPsmgwK5bIKKwgyKXEipT7vLy8HDabDcuXR2LqVE6w1RFr159i4fO///0Px44dA+B2ax04cABnzpwBUL9iKhEaGJEdFIy44n35UpYWLX3+gYolhlvArRkWLrHJuLy8HLW1tQCAqKgon3gjgN0sEzXwx65nHJ5RhFOsltMZh61bo9G9u/lWEblxVWL3DF9aQKrVEWviW7Hwue6663zieAYOHAjA/TTNcRy5ukIUvZ9ctBBXci0tYq0OeOQWkhMrlig1iQs9IFh5QTbLwuV/vvy7x4vB2iQcLKFiYZQ7B1jZ2sdb5hYtitClto/cY66qqsKuXceDjquS2+qINfGtSPgUFRXpNY6AFBcX4/HHH8fnn3+OY8eOIT09HSNGjMCMGTN8fui9e/diwoQJ+Pbbb5GSkoJ77rkHU6dONWXMhHKCFVdyLC3BFCFMSkpCfn4+Vq9eLfmUHWgSF0t3t+qCzIqFi6WYIyMRO/9RUdUoKspEaWkElIa2mSUu5MwBVikE64//nOFf20cL5JybqqoqvPnmm5rGVbEyB8hFkfBp1aqVop3/61//wmOPPSZYOVUJBw4cgMvlwiuvvII2bdpg3759GDt2LM6ePYsFCxYAACoqKtC3b1/k5eXh5Zdfxo8//ojRo0cjISEB48aNC+r7wxEjJj6tv0OOuVzuoie2He8uk/OUrVTIWXVBZtFNYWZWndEInf/OnfdiyZIx4LgIrFzJYd68ckXxFqyLC1ZEjZJgXqE5w7+2jxZI7Yd3/WoZV8XiHBAIXYOb33zzTTz44INBC5/+/fujf//+ntetW7fGwYMH8dJLL3mEz1tvvYXq6mosXboU0dHR6NixI/bs2YOFCxeS8FGBkokvkOuID3wTi68ZMWJEwEa3SidXpS4ztc0tpSYN7yqm/l3nWW+oqQaWMljCJavOG+/zHxVV7RE9gPp4C1bEBasIxccMHiz+kCY2ZxhZ28cbrcUKS3OAFLoKHz1r+jidTiQmJnpeb9++Hb169fKxDvTr1w9z587FH3/8gSZNmug2llBFzk2oRZdsrW94uZaWYKwCUpOGWBXTULJE6FklOhhCJeZFKfz5LyrKtFS8hVrMSp0OXHeoFiNGjEB5eWNPaYHo6BNYt24dM7V9vNFarFghiw2waDr7oUOH8Nxzz3msPQBw7NgxZGVl+WzXtGlTz2diwuf8+fM4f/6853VFRYUOIw5dlHTJ1ivmQonLTG4mjJzvCjRpCI0p1CwRrLpDrBZvoDVWOn617m6zOsbLqTv0xx+J2LBh0F9p3cC8eTGebVi0iugtVpzOOHz88TlcfvlxzetLqcVU4fPQQw9h7ty5AbfZv38/2rdv73n9+++/o3///rjlllswduzYoMcwZ84czJ49O+j9KEFtVhHLSC3qelo6lCzAvH9brVUgmMU+FC0RLF6nwZjwrXRviokGo+IttLC4KL2fzK7yLFV3KCqq+q/zfmFs06bZce+9capj/8xAq5R7VutLmSp8HnjgAYwaNSrgNnwfMMDd9fraa69Fjx498Oqrr/ps16xZMxw/ftznPf51s2bNRPc/ffp0TJ482fO6oqICLVq0kHsIigkmq0jrcWg5wQda1AHobumQGqvD4UBZWZknlTyYp2K1v4uVnsS1wiwhoebJmpV7Uy5i1dYB/SwL/O+5alUspk61a1KsTu72LFV5FhOXNTUxAgHMNk0fbvR28fmm3Af+bQNZ7FiuL2Wq8ElJSZHdyfn333/Htddei5ycHCxbtgwREb4XV25uLmbMmIGamhpERUUBADZv3ox27doFjO+JiYlBTEyM6OdaE2xWkRboMcEHWtTNtnQIHa8ZWQhWy3wIFqOFRLAxR1ZMhw903rS2LHg34DSjWB1rVZ6FxKW7Oal+Dzd6u/jqp9wH/m2FLHa8ADd73g+ErsJnxIgRiI+PD3o/v//+O3r37o1WrVphwYIFOHnypOcz3pozfPhwzJ49GwUFBZg2bRr27duHZ555BosWLQr6+/XEjAwfPSZ4qUXdTEuH2HEojdFRSzBxQVZGC5GvxGKkZcxRKAWhawUrxepYeoDwF5d6jU1LF1+geUbNbyv2vSxbuFUJH5fLVc/iwr9fUlKCli1bAgBeeuml4Eb3F5s3b8ahQ4dw6NAhZPjZ9vjMMbvdjk2bNmHChAnIyclBcnIyZs6cyXQqe6DJNVD7Dy3dA1pO8GKLOksTlT/eExefgq61+4XVIGDWUWMx0uIchloQutawsKCxGCTMo/XYtHbxBbLSaPnbsjzvKxI+FRUVGDNmDD788EPEx8dj/PjxmDVrFiIjIwEAJ0+eRFZWFurq6jQd5KhRoyRjgQCgc+fO+PrrrzX9br2QmlzFqvvyaGFO1mOCFzOvszRRiVm4xFLQtYBEjXLrplluYZZN9IEwqtoyKwuaHkHCWsXPqBmblAtWSxef93xUUgIcPBgNpzMubGr7KBI+jzzyCH744QesXLkS5eXleOKJJ7B7926sW7fO86PpWbsnlAh2ctVistdiglcyibJQ54VcGOagxXk3yi3MgkVDDUZaFlld0ILBiBR578Km3sj5XfQQnBeOOQk22yTPfRnqtX0UCZ8PPvgAK1asQO/evQEAgwcPxoABAzBo0CCsX78eAKhJqUxYmFy1GIPUZCtVudlIFw+5MMxBi/NupGBlxaKhBqMr/1rhnEihJH5GyUOakFAP1qqslSgROmb/+zIUflsxFAmfkydP+vTrSk5ORmFhIfr164cbb7wRr7/+uuYDDFXkTq56PuVqNcEHmmz1ch2pwaouDKsT7Hk3Q7CGokWDqI/S+BmxBz3/tjR6CvVgRElJCfDdd0589dUKnD6dVO+YtZgPzWpwqwRFwqdly5bYv3+/T4XkuLg4bNq0CX379sU//vEPzQcYasjN8AGMecoNpwmeBStbOBLseTdKsLLagiNckIqv0WNBVRM/I2VVCyTUy8vLDX8YrF97yQ6bbRLy8gp1mQ+tkMyhSPj07dsXy5Ytw4033ujzfuPGjfHpp5/i+uuv13RwoYjURcE/Oej5lBtuEzx/HFIWrlA5XlbQ6rwbJVitMGGbiR7CQ0lBRD1/n2Ct397HHEior1mzxtACmGK1lzguAoWFecjLK0RhYZ7sY5b727J+jygSPrNnz0ZpaangZ3Fxcdi8eTN2796tycBCGTkXhZ5PueE2wfsf78yZJ1Fc3ACZmbVIT+8KoGtIHS8raHXeg12UlNYC0gortb+Qg9bzhpqCiHqer2Cs30lJScjPz8fq1auZKbDo/V1i60l6eikmTVoseMz+gdhWu14DoUj4NGnSJGAV5Li4OFxzzTVBD4qQfso9depUUBdiqFzAcvE+3rQ0ICfHxMGEEcGcdy0KP5rVhsJq7S/kouVYWSmI6E0w8TN8AofWwfFaWNoCrSdix6w0ENtb6JeWRni607PSmNQbxQUMa2trsWjRIrz99tv4+eefAQAXX3wxhg8fjvvuu8/TLoJQh1z3AB9IZ7WJkyDkooWFwaxaQFZsf2EWoRh7p2XspBb3gd6Zit5Cn9XGpN4oEj7nzp3D9ddfj+3btyMvLw+9evUC4O6gPm3aNKxfvx6bNm3CRRddpMtgwwH+Ine7FNdJ3jw0cRKhDAuTZLBQ7ajAWLl8QCC0SAm/EPCdFHRDUj0TWfh1iOXGpN4oEj5PPfUUjh49iu+//x6dO3f2+eyHH37ATTfdhKeeegqPPvqolmMMO5KSkjwXSKjXUyCIUIZqR8kjnLJL5aJHQUW91xOrlAyp33ArAO+88w4WLlxYT/QAwGWXXYYFCxZg1apVmg2OIAhCS5zOOBQVZcLpjDPk+wItBIQvdnslsrKOGLpAslhzxuFwYNeu4xg3joPLHR7jKai4a9dxOBwOQ8ah5ph5t6U3LLotFVl8jhw5gquuukr08+7du+O3334LelAEEQoYkdUTaplDemKGyykU41dCCdYyXLVuSCoXrTK4pNyWYs23jZ6nFAmf+Ph4nDhxAi1atBD8/NixY4iLM+ZJKtwwqk9RKMCCGDAiqydUM4f0wCyXE0vxKyzcFyyi1TFrYT3SuiGp3DGlp6drdh4CuS0DNd82cp5SJHyuvfZa/Pvf/8batWsFP3/qqadw7bXXajIw4gIUHCkfVsSAEdlERmcsWXnhNDP2gIX4FVbuC29YdDMFg5bWIy3bCZlh0QoUS8RChqMi4TNr1ix069YN3bt3x+TJk9G+fXtwHIf9+/dj0aJF+N///ocdO3boNdawhIIjlWFW+nKoo3ThZEUk8Yum1BO01osra9XRWUyvZ83NpAVajlUrwczS+WPlIV6R8OnQoQM2b96MgoIC3HrrrZ5O7BzHoX379ti0aRM6duyoy0CtjtKFgJ8QpZ5UrfI0RFgbJYKSJeuC9+LavHkFpk2zo67OhshIDnPnVmD48Nt0WVz9F/Xy8nLU1tb6bBMVFYXq6mqUlZUZusCzsvgAbC3KLGKVrF456xBLD/GKCxh2794dP/30E/bs2eNTwPDyyy/Xemwhg5qFgJ84i4trsXIlB5fL5tkuMpLDPffcgMzMBjRxEMzBmtWNv0ceeADIzwcOHQLatLEhIyMBQILu3+twOLBmzRrJ7Y0QgiwtPkToEMh6x/efZCnVXbHwqaioQOPGjXH55Zf7iB2Xy4UzZ84gPj5ey/GFBGoXgqSkJCQlues3jB8P1NUBkZHAK6/YkJPTVI+hEkRIk5Eh3PlbT1gSgiwtPkRoISXaWcpwVFTH5/3338eVV16JP//8s95n586dQ9euXfHhhx9qNjjCTUEBUFwMbNni/n+wRayI0ESLGjUOhwNlZWX1/hNLQyWshVXqrBChBx+wzV9/ZmY4KrL4vPTSS5g6dSoaNmxY77NGjRph2rRpeP755zFo0CDNBki4MeNJVQ2sBLWyht7lCLSI25DrkiWCw8zSFCyl1xP1CbVMN39YyHAEFAqfffv24cUXXxT9vFevXnj44YeDHhRhTVgKauUxa5HxnpgCiZJgJjD+b6XiNuR+h16uFqpBdQEWAotZWXyI+oRiphtrGY6AQuHzxx9/1MtM8KampgZ//PFH0IMirAkLsQxGCA45eAenP/ZYKjiOz4CMwEcfDcLMmd2CDk7nv2PLFmDRovpxGz17jkTv3vpkzsgVMyws9KxgZmAxi4sPIQxLokYLCz6LYk6R8MnMzMR3332H9u3bC37+3XffoVWrVpoMjCDUYITgUDKWvXvh6bfDU1dnQ2VlU0gNQe6k0727u4mh9/dERgLduiVJfocapASl3E7N4YaZgcUsLj6EOcidV/wt+GIPO3Is+KxdV4qEz5AhQzBjxgxcf/31aNrUN6vo2LFjePjhhzFixAhNB0gQSglWcGhJ27bCoqRNm8B/p8RtmJGRJJD5p09MmNMZhw0bBgUUlHwTRapB5YvZWS2sLT6E8SgRM97iKNDDjhWLwSoSPg899BD+85//oG3bthgxYgTatWsHADhw4ADeeusttGjRAg899JAuA7Uy/hO82MUWbguBnqgVHFqTkSFUjkBalCh1GxYUAP368TVq9AuEP306yaemFFBfUFINKl/4+1oqsJjuf0Jv5IqZ0tJSz3ahaLlVJHzi4uKwdetWTJ8+HatXr/bE8yQkJGDEiBF48sknqUmpAN5m5lWrYvHYY3a4XDZERHCYN8+J4cPPqTYzq/XBhnr2lVrBoQdGiRIjMv8SEx2IiPAXM/UFJdWguoC/m2nmzJMoLm6AzMxapKd3BdDV8vcbYS3ExExq6jHU1MRg2bLNHlETirWfFBcwtNvtePHFF/HCCy/g1KlT4DgOKSkpnvYV3mzduhVXXnklYmJiNBmslUlKSkJJCTB16gUrhMtlw7RpCcjPT1DlflGbRcVi9pUeGCU45GCVcgRS2O2VmDfPiWnTEmQJSpZ+AzPxvo/S0oCcHBMHQ4Q9YmLm9dfHAPC1AJntotUDxcKHx2azISUlJeA2N9xwA/bs2YPWrVur/ZqQ4pdfhOJO3IuCmgVBbRaVHtlXDoeDySJ3wQqOULeMeSPXJTtqVJ1X6wfp8xsqoo8gQgUhMQNw4Gsa+7uzQq32k2rhIweO4/TcveVgJe5Ea8QsSFaLZfIXOeXl5cz0WDICpS5Zq4iZcBKvoQj9ftojJGYCubNCrfaTrsKH8MWsuBN/S4zWlhmhSUkocO6JJ7KQnp7O5CQVTNViuZYxK0zgerhkzSRc3LqhipYp1XK/j/V7VCu8xUxUVDWWLBkT0J1llU7xciDhYzBmxDysW7dO/y/xQixwbubMk8xOGnqnZFppAdbaJWsmLBTVJNRjZEq10SJLT8QEnP9Dr7eYUevOYtWCHwgSPiYQ6jEPYoFzxcUNwjaoU+kCbGbPnlB1yRLWxYiU6lCpWyNXwPkTyJ01ZMgQJCcn1/sbq1rAdBU+QpleROgjlgWQmSne7oTwxT8FurQ0AkVFDZCVVYv0dLci0WvSYakUAEEAxqZUW71ujVwBN2TIEAC+HgExd1ZycjLS0tJ0HrlxUHAzoTliWQDumiWEXHhRs2QJMG6c2wITEeEWJQUF+n43a2no4RR7QdTHyJTqUKlbIyXgkpOTVVmWQ+Fe1FX4VFZa5yKxIlq5OfTIvhI2m5LwUUpJyQXRA7j/P368W5ToLUZYcclaKT5KjFBYLNSixbEbmVKtpcgy83eXI+CU9nALhXsRUCh8+vTpI2u7zz//XNVgCGUEcodER5+QGdRcgGeeaa5ZJWlvQikLwCxCKdBYLVYPUA6VxUINWh67USnVWomsw4cP48033/S8NjpYWq6AU/Ld/veY2DGxei/yKBI+X3zxBVq1aoUBAwYgKipKrzERChBzh8ybJ10t2+mM84geQH3acrj3ItPzuCjQWFvkBnpqidWFWzBofexGPUwFK7IcDoeP6Nm6NReFhXmGBkvrbSULFD/EOoqEz9y5c7Fs2TK8++67uP322zF69Gh06tRJr7ERMhFyh0ybZse998YFvMiFG04qtybo2YvMKOSIF6czDpdddjM6dYrRPcCYhwKNg8P7dw00UYeaKGfVtaZUeMr9XZxOp+bHFIzI8j73W7fmYvPm6wG451ojg6X1spJZPQBckfCZMmUKpkyZgu3bt2Pp0qXo2bMn2rVrh9GjR2P48OGIj4/Xa5xEAITdITbJYDy5DSflYPXCd1JZVL6CTnmAcTDp6awFGlsJ707xjz2WCo67sPh89NEgzJzZLeQ6xbPqWlNjIeB/vxMnTgSsor569WoAwR2THiUknM44bN6cB1708BgZLK2HlczqAeCqgptzc3ORm5uLZ555Bu+++y5eeOEFPPjggygtLSXxYwJi7pAHHvg7kpP/BCCeDt2xo00za4LV41HE3IZz5wLTpgUXYBxsejorgcZWJCkpCXv3Cj8cVFY2ZV6UK4VF11owFoKkpCRDjklpoK8cTp9OAt//yhs9m3waUQPM6o1Lg8rq2r17N7788kvs378fnTp1orgfkxBzh1x6aRMAgdOhtbQmhEI8irDbUBtBZ2Z6erjD0rVpRpyR2WhtIdDrHGptARNrBpqXV6jbb6+HgPPH6o1LFQuf0tJSLF++HMuXL0dFRQVGjBiBnTt3okOHDnqMj5CJmICRkw6tlTUhFOJRhKxWLhdgswHeZanULppmpqeHOmI96KKjo5GRkcTEtWnlgNBg0NJCoNU5NCIOyl8gAC5cf30hevbcHtR+pTDChWnlxqWKhM+NN96ILVu2oG/fvpg/fz4GDBiABg2o6wUrCAkYo91PVo9HEbMMzJkDTJ8e/KJpdXegGcjNGgxUvmHixIkoKEgy9do0KyCUBQuTVhYCrc6h3DioYcOGISEhAYB6IWRlgeCP/70oFj/EerKAItXyySefIC0tDb/99htmz56N2bNnC263e/duTQZHBI8ZJn4rx6OIWa0KCoDbbgt+0WTJ5WIVAmUNzpz5O4Alkvvgn+zNuDb5RUDK3aPHYmG2hcn7mAIJALnHrpXLTG4skH9Atdrg6UABxqyLBG+McKMZgSLhM2vWLL3GQchEqXk2FNxPRiNmtdJi0Qy138OotGmxrMHHH28uWbbBbLwzy1au9M+i5HDPPTfokllmdsoxf20MGzYMtbX1+/RFRUXBbrcrukb0CqqVaxWTK5jkipkRI0YwLxL8sdp4hSDhYyHUpqla3f1kBnpaBkLl9zA6bVpt2QYWSEpKQlKSkOi1ISenqS7faWbKsV7Xhh5BtUJWMbdlSr17MFQsI6GKJgE6X375Jc6ePYvc3Fw0adJEi10SAgST0mll91MoIvV7sFqAzhuj06aF3YScZVJoAWNEL29tkLKO6Oli0fra0NplxiNkFVu/fuBfyQzBuQfNvj8JcRRXbj5z5gwef/xxAO7u6zfccAM2bdoEAEhNTcVnn32Gjh07aj9SgggTWC1AZzZCbsK5c504c4Zta48/ej+EeFsbmjevwLRpdtTV2RAZyWHu3AoMH34bE8JZCXpZUISsYkCEJ4PTahWJCXkoEj6rV6/GtGnTPK/fe+89fPXVV/j6669xySWX4I477sDs2bMDVtgkCCtgpsWFxQJ0rOBvMYmMPIdXXzV7VMYh97rkr80HHgDy8/nzZUNGRgKABEPG6o0WmWVGNfL0x0oViQl5KBI+RUVF6Ny5s+f1xx9/jJtvvhk9e/YEADz88MO45ZZbtB0hQRgMWVzYxttiUlZm7liMRO11abab2+zMskAI1dlxt5e4EIBupYrEZmMFFz2gUPjU1tYiJuZC1+/t27dj0qRJntfp6emiRcQI4/D+DVi50KwEWVysg9waP1ZKGRbDitelEZllahbbQDFDhw+3sWxFYr0JdK6dTqenZ1ogWHhgVCR8srOz8dVXX6F169b47bff8PPPP6NXr16ez0tKSkw/IKJ+ITcWLjSC0INANX7mzXNi+PBzJP51Rmgx5B++9M4sU2sF848Z8l60tQyeDiXknmspWBDmioTPhAkTMHHiRHz99dfYsWMHcnNzfVpVfP7557jiiis0HyQRHCxcaAShF2I1fqZNS0B+fkLINSFlCanFUO9mlsFYwbyFUFpaGqWfSxBK64gi4TN27FhERkbiww8/RK9everV9SktLcXo0aM1HSBxgXB+2iDYw4gu0HKhViDmILUYStXdYWlOC2dRE24oruMzevRoUXHz4osvBj0gQhx/8+ypU6cC9iciCD1hqUhbOLYCYaEHlxy6dPkeEye2RUVFKjIza5Ge3hVAV12uDauck3CA5d+COoxaDO+JorQ0AkVFmUxeWIR6WLKkSOF9PZaUuC0vbdsab2UJtVYgUrCcKSVEp04JSEvTVwBb7ZxYnUDChvXfQpHwqampwYwZM7Bu3TokJibirrvu8rH+HD9+HOnp6airq9N8oIQvS5YA48alwuUayeSFRaiHJUuKXNzXo9viEhHhFiEFBcaOIVRagUhhdg8uqbGZ8ZTP8jkJRQIJGyv8FoqEz5NPPok33ngDDz74IMrLyzF58mTs3LkTr7zyimcbji95SehGSQm/yLhrTbB4YVkZFiwuLIkaKS5cj+7XLpfb8tKvnzmWn1AVPGZ2eZeDmU/5ZvYlU4pVat2IISVsrPBbKBI+b731Fl5//XUMHDgQADBq1CjccMMNuPPOO7F06VIAgM1mC7QLQgOEAjlZu7CsDGsWFzNdSHIIp8BiMxcts7q8y8Hsp3y9s8e0IhSKo0oJGzN7xMlFkfD5/fff0alTJ8/rNm3a4IsvvkCfPn3wz3/+E/PmzdN8gER9hAI5A93kLFxoVoOVSYcFF5IU4RJYzMKiZUaXdzmY9ZTPz21WyR6zYhFKHrnNb8eOvYH5HnGKhE+zZs1w+PBhZGZmet5r3rw5tmzZgmuvvRajRo3SeHiEEPUDOS9cWP6wcqFZGbMsLiy5kAIRLoHFLC1arMQzmd0J3t86O3PmSRQXN9A9eywcUdL89pJL2OgRJ4Yi4dOnTx+sWrUK1113nc/76enp+Pzzz9G7d28tx0YEwHfic19YJSUJkgu0Ff3LZo7ZTIuLlVxIrCzE4QQL8UwsdIL3LUQI5OTo9lWaw3LKtxBKmt+ycH2KoUj4PPLIIzhw4IDgZ82bN8eXX36JzZs3azIwQhrvC0vOAs2CqV4pZo7ZbIuL1VxILE90hH6w1gneKrCe8i2Fle/3COlNLtCqVSv069dP9PP09HSMHDky6EERyhBboEtKfLdjyVQvFzPHHMjiYgS8Cyky0v06VF1IROiQkQH07k3XqBRiweBOZ5zJIwsPFAkfnnfffRdDhgxBp06d0KlTJwwZMgTvvfee1mMT5Pz587j88sths9mwZ88en8/27t2Lq6++GhdddBFatGgRNsHWZi/QoQpvcfHGaItLQQFQXAxs2eL+P2uBzQRBKCdQMDihP4pcXS6XC7fddhveffddXHzxxWjfvj0A4KeffkJ+fj5uueUWvP3227qmtE+dOhXp6en44YcffN6vqKhA3759kZeXh5dffhk//vgjRo8ejYSEBIwbN0638bCA1VwiVoGVoF0rm5TDEb4zeVVVFRo2bCi6HYvxdIQxWCX9PlRRJHyeeeYZFBYWYv369Z5aPjzr16/HnXfeiWeeeQaTJk3ScoweNm7ciE2bNmHt2rXYuHGjz2dvvfUWqqursXTpUkRHR6Njx47Ys2cPFi5cGPLCh5UFOhTROmjXisHlhDKU9M9jKZ6O0B+rpd+HKoqEz7JlyzB//vx6ogcAbrrpJsybN0834XP8+HGMHTsWH3zwgeBT1Pbt29GrVy+fC6Zfv36YO3cu/vjjDzRp0kRwv+fPn8f58+c9rysqKjQfuxFQVo1+aGVxsWJwOXEB/8VIi4wcluLpCP1Rk35PD0vao0j4/PLLL8jLyxP9PC8vDxMnTgx6UP5wHIdRo0bhrrvuwpVXXoni4uJ62xw7dgxZWVk+7zVt2tTzmZjwmTNnDmbPnq35mM0gnF0ivHuB5Ukg2EBtmgDNxXvRevXVOixenG7ZjBzCPJSk39PDkj4oEj6xsbEoLy9Hy5YtBT+vqKjARRddJHt/Dz30EObOnRtwm/3792PTpk2orKzE9OnTlQxXFtOnT8fkyZM9rysqKtCiRQvNv4dFrFZDIhDe7oVQnARoAmSDpKQklJQAjz3GgeNCq1ceCWv2sGImrhVQJHxyc3Px0ksv4aWXXhL8/IUXXkBubq7s/T3wwAOS1Z5bt26Nzz//HNu3b0dMTIzPZ1deeSVuv/12rFixAs2aNcPx48d9PudfN2vWTHT/MTEx9fYbqnib6gPVkGDJv6xmLKE4CdAEyA7uLErfBA6r98ojYU2EE4qEz4wZM9C7d284HA48+OCDaN++PTiOw/79+/H000/jP//5D7Zs2SJ7fykpKUhJSZHc7tlnn8UTTzzheV1aWop+/fph9erV6NatGwC3KJsxYwZqamoQFRUFANi8eTPatWsn6uYKN7ybHD72WKrPE+tHHw3CzJndTGtyKIa3e+HUqVNYtmxzyFipCGvizqL0bRJq9YwcloU1WaIIrVEkfHr06IHVq1dj3LhxWLt2rc9nTZo0wdtvv42ePXtqOkAA9VxrjRs3BgBkZ2cj46+gluHDh2P27NkoKCjAtGnTsG/fPjzzzDNYtGiR5uOxMklJSdi7V6jujw2VlU3B4vzBT2qrVsVi8eJJYRVXwU/6fAwTYT4ZGcC8eU5MmRIvmJFDaAdZonwJpfAEM1EkfADgH//4B/r164dPP/0Uv/zyCwDg4osvRt++fQPWrNAbu92OTZs2YcKECcjJyUFycjJmzpwZ8qnsarBi3Z+SEmDqVHvIxVUEQu6kTxjP8OHn8PvvS3H6dKLH0lNUlCm6IMlZsMiyUR+WLVFGY/UWFyyhSPh8/vnnmDhxInbs2IF//OMfPp85nU507NgRL7/8Mq6++mpNB+lPZmYmOI6r937nzp3x9ddf6/rdoYAV6/6EYlyFFOEwmVuV6Oho2O2VsNsrJRckOfF0ZNkgAiHW4iKUH/z0RJHwWbx4McaOHYv4+Ph6n9ntdowfPx4LFy7UXfgQwWO1uj+hEFchN1CbpeBygCwRQsiJl0tIOIPy8say4unIskEEIlCLCxI+ylEkfH744YeA6ed9+/bFggULgh4UYQxWqvsTCnEV/sXLSksjUFTUAFlZtUhPd/sdWRMRZIkQRypeLienKbZssVY8HQ+rsSSsjksv+IcgqRYXrD0ssY4i4XP8+HFPxpTgzho0wMmTJ4MeFEEIMWpUHX7/fbFkXAXLkwAvDpYsAcaNcy+KERFu16MWDUi1PnayRARGKl7OivF0rMaSsDouPfF+WGrevALTptlRV2dDZCSHuXMrMHz4bcw9LFkBRcKnefPm2LdvH9qI3LV79+5FWlqaJgMjCH+SkpIwY8ZIVFdXY9WqWEydaofLZUNEBId585wYPvycJSaBkpILogdw/3/8eLfrUY0FbsiQIUhOTrbEsYcaUvFyVomn4wWzVCyJlsJajguVJ5xjXPh7+oEHgPx8PjzBhoyMBAAJZg7NsigSPjfeeCMeeeQR9O/fv16F5nPnzmHWrFmCfbwIQiv4yrlTp3oLBxumTUtAfn4C0+4DHnegtu97dXXuCU3uguht8k9OTqYHDhORipezQjwdb1nYsgVYtKh+LEnPniPRuzc0E9ZyXaj5+fkAKMaFx0rhCSyjSPg8/PDDWLduHS6++GJMnDgR7dq1AwAcOHAAL7zwAurq6jBjxgxdBkoQPFoIBzMJ1v3hb/Jv3rwCDzwQ+G8oQFlfpBYkpQuWGbEsSUlJ6N5d+Nrs1i1J04cKua5RPnuXYlwILVEkfJo2bYpt27bh7rvvxvTp0z0Xpc1mQ79+/fDCCy94GoMShF5YMW7CG7nuD6Fu4EePtqhn8p82zY78fPGFlQKUrYWZsSysueYSEhJCKsaFHkDYQHEBw1atWuHjjz/GH3/8gUOHDoHjOLRt25baQhCGwdrkrAY57g/vwMZVq2Lx2GP2erWMAHeWUCBrl9yn69LSUs/3EsZiRoyNGKy55kIlxoUeQNhBsfDhadKkCbp27arlWAhCNqxNzmqQ4/4QimnyRytrF9/hniZe4zE6xkYKo2NJ5Lr2rBzjQhmS7KBa+BCE2Vh5ElSCUEwTjx7WLu+JV8jdJrRAUYxF8BgZY6MUPV004ZimTpgLCR+CYByhmKaICOCdd4DcXH3Fn5i7zWolBKwCi25cPV004ZymTphHhPQmBEGYCb8YRka6X0dGul/fcosxC2JSUhLq6tIwdWqCJ8aILyFQV5dGokdjCgqA4mJgyxb3/7UobBkMerpoAqWpE4RekMWHICyA2TFNVi8hYDVC3Y1LrRjCr/0GS5DwIQiLoNViqGbCtXoJAYItwr0VA8U1mQsJH4IIcbyfmtVOuCzGnhDWJlTS1JVCcU3mQ8KHIEIc/ul69+4TmD27Xb0JNzX1GDIyyiT3Y7a7jWADPVw0oe7aAy48gEi13whl9x4rkPAhiDAgKSkJZ882EJxwX399DG666YLlJ9DEGw4LVLjjn7p+6tQpz7/JRaMe/gGkuLgWK1dyPsVIIyM53HPPDcjMbBCy7j2WIOFDEGHClVfaERHBCVR/jsBHHw3CzJndaOINcwKlrpOLJniSktz1mOq7jW3IyaF2T0ZBwocgwgR3nI4N48YJZWjZUFnZ1BLd7YOF+iWJE+i8kItGO8htbC4kfAgijCgoADp3Brp1A/7qMQwgfDK0qF+SeoRSz8lFox5yG5sHFTAkiDCja1fgtdd8CyKGS4YW9UtSj91eiUGDNsBmc5sLvV00JHoIK0EWH4IpSkrcxfLatg2PhVguWrtnyNROCOF0Ov1e+2ZwdenyPbKzD+Hyy29Gnz4t6bohLAkJH4IZliyBJ/4kIsIdAGh2uX4W0Ms9Q6Z2wp+amhrPv8UyuOz2SlxxhZOuHcKykPAhmKCkBD5Bty6XO+uhX7/wWZzFrDre6cSAeB0Vcs8QWkEZXAQQuokAJHwIJgiVXlBqXXX+Vh0xcUN1VLSF+iUJI5XBRYQ+oZwIQMKHYIJQ6AUVjKvO+6lKTNzQU3jwlJeXe/5NIrI+DRq4lwSp5qH8dkToEsqJAJTVRTAB3wvKiplGDocDu3Ydx7hxnJ+rjsOuXcfhcDhk70tM3PCWCbGncEIah8OBNWvWAAh8nsOZhIQEAO4Mrs6d9wLgax5w6Nx5r0dg89sRhBUh4UMwQ0EBUFwMbNni/r8VApt5c/Bzz31SryJyXZ0Nzz23Ec8//7xs8RNI3PBP4d54P4UTgfF+MpUSkeFejM/pjMPevZ0B8Ne0DXv3dg57YUiEBiR8CKbIyAB697aGpQe4sJhKiRK55uBA+/Gvo8K7Z+z2Sjidcdi6NRolJcEeUXgQ6Dzn5+dbLmZBa8i6SIQy5KglCA3gRYl/zIjS2Bup/fB1VNwWILcY4mNVFi2KQEQEh3nznBg+/JxlMy6MwG6vRF5eIQoL8+qdZ7vdbvbwTIO3dEnF+IS7RYywNiR8CEIjhESJHvtxL87u9/xjVVwuG6ZMicfvvy+F3V5pyYwLI9i9+wqP6AFcyMsrDPvAZuBCB/Hq6mo0b16BadPsqKuzITKSw9y5FRg+/DYS1ITlIeFDEBriLUr02M+QIUOQnJyMU6dOYd26dZJpx1bMuNAbf7EIRKCwMA+dOu2j7DjAI2oeeADIz+ere9uQkZEAIMHMoRGEJpDwIQgGkOs6SE9P93nalnJJEPWhGjXyoere4Yv/nCRW88qKbk8SPkTIYqW+X94uBjGEXAxaxRaFEyQWCUIa7zlp1apYPPaYHS6XLSTiCEn4EKajR1l0K/b9UjuBaBVbFOrwT6ZSYtGKT7AEoQdJSUkoKQGmTvVuJ2TDtGkJyM9PgAU1DwASPoTJ6FEW3ci+X3IXSb0XU61ii0IZf6vazJknUVzcAJmZtUhP7wqgq2WfYAlCL0KlnZA3JHwIU9GjLLqRN6paFxVhDt6/Q1oakJNj4mAIwgKEQjshf0j4ECGH0TeqkKjxji8izUMQhBloEUbAtxMaP979AGmldkJikPAhQg6zb1Qj4otYcbERBMEmWoYRFBS4QwXcpQ2sLXoAEj5EiGLWjWpUfBG52AiCCITWYQShVNqAhA8Rsphxo2odXxQoJZ9EDUEQhHJI+BCEhmgZX2TFlHyCffQoH0EQVoKED0FoiFbxRUam5BPsoZc40aN8BEFYDRI+hKmEYpCuFvFFoVg7g5CHnuJEj/IRWkBWKMJISPgQphKqQbrBxheFYu0MQh7+94JYjyQtxInYvo2ErFDGwMJvzQokfAjTocmsPman5BNssHv3FfVaa3Tp8j3z+1YCq1aoUELv39pqFjsSPgTBKKFWO4NQhtMZ51msAHcH+Q8/HIjs7ENBP7Hrue9gIcuENvDhAVK/dbBhBFa02JHwIQiGCaXaGVYkUDkBvTl9OsmngzzgXrROn04MWhDoue9gYMUKFQrwYQRbtgCLFtX/rXv2HInevYO3uFvRYhchvQlBEET44HA4UFZWhqefLkerVhz69AFateLw9NPlKCsrg8PhMGQciYkO2Gy+Ee42mwuJiaeZ3rdaxCwTTmecaWOyOklJSejePQkRfit9ZCTQrVsSMxYYoyHhQxBhREkJsGWL+/9EfXiz/fz5b2PKlHi4XDYAgMtlw5Qp8Zg//208//zzhogfu70SgwZt8AgU3gKihUVGz32rJZAVilAPHy8YGel+TfGC5OoiCB+CcW1oFeCnV6AgFUSUhj/vUq4go8z2Xbp8j+zsQzh9OhGJiaeDFibe8RyB9m1G+QjeCuV93s22QoUKFC/oCwkfgviLYISBVgF+egUKUkFEZaLWzEXYX3TY7ZWCgkeNOGG5fARvhfKP8aEAZ22geMELkPAhCAQvDLQK8NMrUDDcCyIqFbVmLsJ6ixPW4jpYtkIRoQkJH4JA6AuDcC2I6HA4UFxci3HjUr3idYDx4zlcfvkJZGY2EBUCWriZvN2WpaURKCpqgKysWqSnu38IMQHDmjjRE5atUERoQsKHIBD6wiAcCyLybsOioky4XCN9Pqurs+G55zYiK+tIQLehmJtJyfcDgdO0WapvYhbhfvxWxopth0j4ECGF2sDgcBAG4RbgyF8HUvE6egUq8/uVKiDHUn0TglCKFS12JHyIkCHYwOBwEAbhGOBodtAsq8UCCUIrvOdTM4t+yoWEDxEyaBEYrKcwcDrjsHVrNLp3Z3dCCFXkxuvoYbanNG0iXLBKyQwSPgRhAHyMx6JFEUxPCKGMnHgdPcz2ZlucCMIIrFQyg4QPQWhAIAuAf4xHoAnBioGCoYYesQhaFyIkCNawUmYsCR+C0IBAloKtW6PrNQkUmxD0sDjoVQlaK6wQE6AFwWSIEQTrWCkzloQPQWiEmHjo3l3ZhKClCNGrErRWWCUmgCCIwFgpM5aalBKEzpjZJFCvStBaIBYToFUDVbPdhmZ/P0EYTUEBUFzsboRcXMzuQwxZfAjCAMIhVV4pescEmF1fxOzvJwgzsELJDEsJn48++giPPfYY9u7di4suugjXXHMNPvjgA8/nv/32G+6++25s2bIFjRs3xsiRIzFnzhw0aGCpwyRUwvoTthUmBCMxIibAbFFh9vcTBFEfyyiCtWvXYuzYsfj3v/+NPn36oLa2Fvv27fN8XldXhwEDBqBZs2bYtm0bysrKcMcddyAqKgr//ve/TRw5YRT0hG0trBQTQBBE6GDjOI4zexBS1NbWIjMzE7Nnz0aBiNNw48aNGDhwIEpLS9G0aVMAwMsvv4xp06bh5MmTsp/yKyoqYLfb4XQ6ER8fr9kxEIQZlJWV4dVXX5Xcbty4cUhLSzNgRPUpKSEXoB6wns1HEFojd/22hMVn9+7d+P333xEREYErrrgCx44dw+WXX4758+ejU6dOAIDt27fj0ksv9YgeAOjXrx/uvvtu/PTTT7jiiisE933+/HmcP3/e87qiokLfgyEIwmdRjowE2rVzv19W5v4/LcrB4Z/N53TG4fTpJCQmOnxS6qlBKhGOWEL4/PrrrwCARx99FAsXLkRmZiaefvpp9O7dGz///DMSExNx7NgxH9EDwPP62LFjovueM2cOZs+erd/gCYLwgfUU+1DA29ITqDM8NUglwhFT09kfeugh2Gy2gP8dOHAArr+iH2fMmIGhQ4ciJycHy5Ytg81mw7vvvhvUGKZPnw6n0+n57+jRo1ocGkEwAYsB3yyn2IcaYp3hnc44k0dGEOZhqsXngQcewKhRowJu07p1a5T9Zf/u0KGD5/2YmBi0bt0av/32GwCgWbNm+O9//+vzt8ePH/d8JkZMTAxiYmLUDJ8gmIcCvo2FtSrU1BmeIOpjqvBJSUlBSkqK5HY5OTmIiYnBwYMH8be//Q0AUFNTg+LiYrRq1QoAkJubiyeffBInTpxAamoqAGDz5s2Ij4/3EUwEEW4EEjUlJcDevews1FaGxSrU1BmeIOpjicrN8fHxuOuuuzBr1ixs2rQJBw8exN133w0AuOWWWwAAffv2RYcOHfDPf/4TP/zwAz799FM8/PDDmDBhAll0CEKAJUuAVq2APn3c/1+yxOwRaUdJibt6rFZVoOV8n55VqNXCd4a32dwDo87wBGGR4GYAmD9/Pho0aIB//vOfOHfuHLp164bPP/8cTZo0AQBERkZiw4YNuPvuu5Gbm4tGjRph5MiReOyxx0weOUGwh9hCLdQx3moYbXlxOBzYsQNwuXwta3V1wM6dDsTGmlvIkDrDE4QvlhE+UVFRWLBgARYsWCC6TatWrfDxxx8bOCqCsCZ6t4swC6MFHZ+h5nTGwWabVM+ltHXrCuzbV2l6hhp1hieIC1jC1UUQhLbw7SK80bpdhBkEEnR6wAeNS7mUjM5QYzGbjyBYwTIWH4IgtMPMdhF6LspG9P8SgyWXknc2X3l5OWprawEAx441wG+/xaBly/No0cKG6upqOBwOyuojwgoSPkTYE66l/c3qGK9nir3Z/b9YciklJSXB4XBgzZo1AAIXMjTbFUcQRkLChwhrwr2KsFkd4/U8l2YJOjOQqhvEi0uxQobZ2Ydgt1dSsUgirCDhQ4Q1elcRDldrkhmES/8v/jhXrYrF1Kl2uFw2RERwmDfPieHDzwkeJxUyJIgLkPAhCJ0Id2uSkYTLufbOIlu8eBI4zgYAcLlsmDIlHr//vhR2e/0sMipkSBAXoKwugtAJ6kllHOFyrvnxB7LgeG/HQ4UMCeICZPEhCIJQiVlp42osOCxlnRGEmZDwIQiCUIlZTWB5C45/lpaUmGEp64wgzIKED0EQRBCYFTNEFhyCUAcJH4IgCIsiZcGhCs4EUR8SPkRYQwsDEcqY5YqzKlR+Ijwg4UOENeG4MNDkHl7QbymPcCmJQJDwIQjdJjEWrUmhOrmzeK71IFyO0wzCpSQCQcKHIHSDRWtSqE7uLJ5rPQiX4yQIPSHhQxA6QguQcYTLuWb5OMPBjXrq1CnB90Ph2MIFEj4EQRBE0ISqG9WfdevWiX5m9WMLF6hlBUEQBBE0oeZGdTrjUFSUCaczTvbfWOXYwh2y+BAEQRCa43TG4fTpJCQmOixXXHH37ivqVcXu0uV7s4dFaAQJH4IgCEJTrCwcnM44z9gBd/PXDz8ciOzsQ5YTcIQw5OoiCIIgNENMOChxGZkBXwLg9OnAne8J60PChyDCCKoDQ+iNVYUDXyrgnnv6IyKC8/ksIoJDYuJpk0ZGaA25uggijKA6MITeJCY6YLO5fMSPzeayhHBISkpCUhLw6qvA+PFAXR0QGQnMnevEmTPk5goVSPgQRJhBoobQE7u9EoMGbagX42Ol+JiCAqBfP+DQIaBNGyAy8hxeffXC51YO3CZI+BAEQRAa4O0e7dLle2RnH8Lp04lITDztIw6s4kbNyHD/BwAOx4UxBwrctsqxhTs2juM46c3Ch4qKCtjtdjidTsTHx5s9HIIgCMsQypWbHQ4HiotrcdVVqXC5bJ73IyM57Nx5ApmZDSx7bKGC3PWbLD4EQRCEJoTywp+UlIS9ewGXy/f9ujobKiubIoQPPeSgrC6CIAiCkEHbtkCE36oZGemOAyKsAwkfgiAIgpBBRoY74ysy0v06MhJ45ZULsUCENSBXF0EQBEHIxD/ji0SP9SDhQxAEQRAK8M74IqwHuboIgiAIgggbSPgQBEEQBBE2kPAhCIIgCCJsIOFDEARBEETYQMKHIAiCIIiwgYQPQRAEQRBhAwkfgiAIgiDCBhI+BEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNpDwIQiCIAgibKBeXX5wHAcAqKioMHkkBEEQBEHIhV+3+XVcDBI+flRWVgIAWrRoYfJICIIgCIJQSmVlJex2u+jnNk5KGoUZLpcLpaWliIuLg81mM3s4hlNRUYEWLVrg6NGjiI+PN3s4loXOY/DQOdQGOo/aQOdRG/Q8jxzHobKyEunp6YiIEI/kIYuPHxEREcjIyDB7GKYTHx9PN7cG0HkMHjqH2kDnURvoPGqDXucxkKWHh4KbCYIgCIIIG0j4EARBEAQRNpDwIXyIiYnBrFmzEBMTY/ZQLA2dx+Chc6gNdB61gc6jNrBwHim4mSAIgiCIsIEsPgRBEARBhA0kfAiCIAiCCBtI+BAEQRAEETaQ8CEIgiAIImwg4ROGfPXVVxg0aBDS09Nhs9nwwQcf+HzOcRxmzpyJtLQ0xMbGIi8vD7/88os5g2UYqfM4atQo2Gw2n//69+9vzmAZZs6cOejatSvi4uKQmpqKwYMH4+DBgz7b/Pnnn5gwYQKSkpLQuHFjDB06FMePHzdpxGwi5zz27t273jV51113mTRiNnnppZfQuXNnT4G93NxcbNy40fM5XYvSSJ1Ds69DEj5hyNmzZ3HZZZfhhRdeEPx83rx5ePbZZ/Hyyy9j586daNSoEfr164c///zT4JGyjdR5BID+/fujrKzM89/bb79t4AitwZdffokJEyZgx44d2Lx5M2pqatC3b1+cPXvWs83999+PDz/8EO+++y6+/PJLlJaWYsiQISaOmj3knEcAGDt2rM81OW/ePJNGzCYZGRl46qmnsGvXLnz33Xfo06cP/v73v+Onn34CQNeiHKTOIWDydcgRYQ0A7v333/e8drlcXLNmzbj58+d73isvL+diYmK4t99+24QRWgP/88hxHDdy5Eju73//uynjsTInTpzgAHBffvklx3Hu6y8qKop79913Pdvs37+fA8Bt377drGEyj/955DiOu+aaa7j77rvPvEFZlCZNmnCvv/46XYtBwJ9DjjP/OiSLD+FDUVERjh07hry8PM97drsd3bp1w/bt200cmTX54osvkJqainbt2uHuu++Gw+Ewe0jM43Q6AQCJiYkAgF27dqGmpsbnmmzfvj1atmxJ12QA/M8jz1tvvYXk5GR06tQJ06dPR1VVlRnDswR1dXV45513cPbsWeTm5tK1qAL/c8hj5nVITUoJH44dOwYAaNq0qc/7TZs29XxGyKN///4YMmQIsrKycPjwYfzf//0fbrjhBmzfvh2RkZFmD49JXC4XJk2ahJ49e6JTp04A3NdkdHQ0EhISfLala1IcofMIAMOHD0erVq2Qnp6OvXv3Ytq0aTh48CDWrVtn4mjZ48cff0Rubi7+/PNPNG7cGO+//z46dOiAPXv20LUoE7FzCJh/HZLwIQiduPXWWz3/vvTSS9G5c2dkZ2fjiy++wHXXXWfiyNhlwoQJ2LdvH7755huzh2JpxM7juHHjPP++9NJLkZaWhuuuuw6HDx9Gdna20cNklnbt2mHPnj1wOp147733MHLkSHz55ZdmD8tSiJ3DDh06mH4dkquL8KFZs2YAUC9L4fjx457PCHW0bt0aycnJOHTokNlDYZKJEydiw4YN2LJlCzIyMjzvN2vWDNXV1SgvL/fZnq5JYcTOoxDdunUDALom/YiOjkabNm2Qk5ODOXPm4LLLLsMzzzxD16ICxM6hEEZfhyR8CB+ysrLQrFkzfPbZZ573KioqsHPnTh//LKGckpISOBwOpKWlmT0UpuA4DhMnTsT777+Pzz//HFlZWT6f5+TkICoqyueaPHjwIH777Te6Jr2QOo9C7NmzBwDompTA5XLh/PnzdC0GAX8OhTD6OiRXVxhy5swZH2VdVFSEPXv2IDExES1btsSkSZPwxBNPoG3btsjKysIjjzyC9PR0DB482LxBM0ig85iYmIjZs2dj6NChaNasGQ4fPoypU6eiTZs26Nevn4mjZo8JEyZg1apV+M9//oO4uDhPrITdbkdsbCzsdjsKCgowefJkJCYmIj4+Hvfccw9yc3PRvXt3k0fPDlLn8fDhw1i1ahVuvPFGJCUlYe/evbj//vvRq1cvdO7c2eTRs8P06dNxww03oGXLlqisrMSqVavwxRdf4NNPP6VrUSaBziET16Fp+WSEaWzZsoUDUO+/kSNHchznTml/5JFHuKZNm3IxMTHcddddxx08eNDcQTNIoPNYVVXF9e3bl0tJSeGioqK4Vq1acWPHjuWOHTtm9rCZQ+gcAuCWLVvm2ebcuXPcv/71L65JkyZcw4YNuX/84x9cWVmZeYNmEKnz+Ntvv3G9evXiEhMTuZiYGK5NmzbclClTOKfTae7AGWP06NFcq1atuOjoaC4lJYW77rrruE2bNnk+p2tRmkDnkIXr0MZxHGeMxCIIgiAIgjAXivEhCIIgCCJsIOFDEARBEETYQMKHIAiCIIiwgYQPQRAEQRBhAwkfgiAIgiDCBhI+BEEQBEGEDSR8CIIgCIIIG0j4EARBEAQRNpDwIQjCh2PHjuGee+5B69atERMTgxYtWmDQoEE+/Ym2bduGG2+8EU2aNMFFF12ESy+9FAsXLkRdXZ1nm+LiYhQUFCArKwuxsbHIzs7GrFmzUF1d7fN9r732Gi677DI0btwYCQkJuOKKKzBnzhzP548++ihsNhv69+9fb6zz58+HzWZD7969ZR0bvy+bzYYGDRogMzMT999/P86cOaPwLBEEYVWoVxdBEB6Ki4vRs2dPJCQkYP78+bj00ktRU1ODTz/9FBMmTMCBAwfw/vvvY9iwYbjzzjuxZcsWJCQkoLCwEFOnTsX27duxZs0a2Gw2HDhwAC6XC6+88gratGmDffv2YezYsTh79iwWLFgAAFi6dCkmTZqEZ599Ftdccw3Onz+PvXv3Yt++fT7jSktLw5YtW1BSUuLTcXzp0qVo2bKlomPs2LEjCgsLUVtbi61bt2L06NGoqqrCK6+8Um/b6upqREdHqziT+sHimAjCUhjWHIMgCOa54YYbuObNm3Nnzpyp99kff/zBnTlzhktKSuKGDBlS7/P169dzALh33nlHdP/z5s3jsrKyPK///ve/c6NGjQo4plmzZnGXXXYZN3DgQO6JJ57wvL9161YuOTmZu/vuu7lrrrlGxtFd2Jc3Y8eO5Zo1a+bz+WuvvcZlZmZyNpuN4zj3sRcUFHDJyclcXFwcd+2113J79uzx7GPPnj1c7969ucaNG3NxcXFcly5duG+//ZbjOI4rLi7mBg4cyCUkJHANGzbkOnTowH300Uccx3HcsmXLOLvd7jOe999/n/OemtWOiSAIYcjVRRAEAOD06dP45JNPMGHCBDRq1Kje5wkJCdi0aRMcDgcefPDBep8PGjQIF198Md5++23R73A6nUhMTPS8btasGXbs2IEjR45Ijm/06NFYvny55/XSpUtx++23B239iI2N9XG/HTp0CGvXrsW6deuwZ88eAMAtt9yCEydOYOPGjdi1axe6dOmC6667DqdPnwYA3H777cjIyMC3336LXbt24aGHHkJUVBQAd9f08+fP46uvvsKPP/6IuXPnonHjxorGqGZMBEEIQ64ugiAAuBdXjuPQvn170W1+/vlnAMAll1wi+Hn79u092wjt/7nnnvO4uQBg1qxZGDJkCDIzM3HxxRcjNzcXN954I26++WZERPg+lw0cOBB33XUXvvrqK+Tk5GDNmjX45ptvsHTpUqWH6mHXrl1YtWoV+vTp43mvuroab7zxBlJSUgAA33zzDf773//ixIkTiImJAQAsWLAAH3zwAd577z2MGzcOv/32G6ZMmeI5d23btvXs77fffsPQoUNx6aWXAgBat26teJxqxkQQhDAkfAiCAABwHKfLtgDw+++/o3///rjlllswduxYz/tpaWnYvn079u3bh6+++grbtm3DyJEj8frrr+OTTz7xET9RUVEYMWIEli1bhl9//RUXX3wxOnfurGgcAPDjjz+icePGqKurQ3V1NQYMGIDnn3/e83mrVq08AgMAfvjhB5w5cwZJSUk++zl37hwOHz4MAJg8eTLGjBmDlStXIi8vD7fccguys7MBAPfeey/uvvtubNq0CXl5eRg6dKjicasZE0EQwpDwIQgCgNtKwQcli3HxxRcDAPbv348ePXrU+3z//v3o0KGDz3ulpaW49tpr0aNHD7z66quC++3UqRM6deqEf/3rX7jrrrtw9dVX48svv8S1117rs93o0aPRrVs37Nu3D6NHj1Z6iACAdu3aYf369WjQoAHS09Prucr83XxnzpxBWloavvjii3r7SkhIAODOFhs+fDg++ugjbNy4EbNmzcI777yDf/zjHxgzZgz69euHjz76CJs2bcKcOXPw9NNP45577kFEREQ9EVlTU1Pve9SMiSAIYSjGhyAIAEBiYiL69euHF154AWfPnq33eXl5Ofr27YvExEQ8/fTT9T5fv349fvnlF9x2222e937//Xf07t0bOTk5WLZsWT33lRC8cBIaQ8eOHdGxY0fs27cPw4cPV3J4HqKjo9GmTRtkZmbKig/q0qULjh07hgYNGqBNmzY+/yUnJ3u2u/jii3H//fdj06ZNGDJkCJYtW+b5rEWLFrjrrruwbt06PPDAA3jttdcAACkpKaisrPQ5Vj6GR4sxEQRRHxI+BEF4eOGFF1BXV4errroKa9euxS+//IL9+/fj2WefRW5uLho1aoRXXnkF//nPfzBu3Djs3bsXxcXFWLJkCUaNGoWbb74Zw4YNA3BB9LRs2RILFizAyZMncezYMRw7dszzfXfffTcef/xxbN26FUeOHMGOHTtwxx13ICUlBbm5uYJj/Pzzz1FWVmaYZSMvLw+5ubkYPHgwNm3ahOLiYmzbtg0zZszAd999h3PnzmHixIn44osvcOTIEWzduhXffvutJw5q0qRJ+PTTT1FUVITdu3djy5Ytns+6deuGhg0b4v/+7/9w+PBhrFq1yieAW+2YCIIQh1xdBEF4aN26NXbv3o0nn3wSDzzwAMrKypCSkoKcnBy89NJLAICbb74ZW7ZswZNPPomrr74af/75J9q2bYsZM2Zg0qRJsNlsAIDNmzfj0KFDOHTokE/tHeBCjFBeXh6WLl2Kl156CQ6HA8nJycjNzcVnn31WL36FRyjjTE9sNhs+/vhjzJgxA3feeSdOnjyJZs2aoVevXmjatCkiIyPhcDhwxx134Pjx40hOTsaQIUMwe/ZsAEBdXR0mTJiAkpISxMfHo3///li0aBEAt5XtzTffxJQpU/Daa6/huuuuw6OPPioZnCw1JoIgxLFxSqMUCYIgCIIgLAq5ugiCIAiCCBtI+BAEETI0btxY9L+vv/7a7OERBMEA5OoiCCJkOHTokOhnzZs3R2xsrIGjIQiCRUj4EARBEAQRNpCriyAIgiCIsIGED0EQBEEQYQMJH4IgCIIgwgYSPgRBEARBhA0kfAiCIAiCCBtI+BAEQRAEETaQ8CEIgiAIImwg4UMQBEEQRNjw/4yQWz4vK+05AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChS0lEQVR4nOzde1wU9foH8M8uNwFhERAEQUFETUkTNERPpoa3vJwOGpRampjVkZKjqfmzvGSlpnnpnmValqWplVqWUGalSOU1zEwNDAS8LLKgqFz2+/tjnWFmd2Z2FpbrPu/Xy1eyOzv7ndFz5vH7fb7Po2GMMRBCCCGEOABtQw+AEEIIIaS+UOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGN0IYNG6DRaJCTk9PQQyGkWaHAhxAH9euvvyIlJQXdunWDp6cn2rVrh8TERPz1118Wxw4YMAAajQYajQZarRbe3t7o3LkzHnroIaSlpdn0vTt37sTdd9+NgIAAeHh4oEOHDkhMTMQ333xjr0uz8NJLL+GLL76weP3AgQNYuHAhiouL6+y7zS1cuJC/lxqNBh4eHujatSueffZZlJSU2OU7Nm3ahNWrV9vlXIQ0NxT4EOKgli1bhm3btuGee+7BmjVrMHXqVPz444+Ijo5GVlaWxfEhISHYuHEjPvzwQyxfvhyjR4/GgQMHMGTIECQlJaGiosLqd65YsQKjR4+GRqPB3LlzsWrVKowZMwanT5/Gp59+WheXCUA58Fm0aFG9Bj6ct956Cxs3bsTKlSvRpUsXvPjiixg2bBjs0T6RAh9C5Dk39AAIIQ1jxowZ2LRpE1xdXfnXkpKScPvtt2Pp0qX46KOPRMfrdDpMmDBB9NrSpUvx1FNP4c0330RYWBiWLVsm+32VlZVYvHgxBg8ejD179li8f/HixVpeUeNRVlYGDw8PxWPGjh0Lf39/AMDjjz+OMWPGYPv27Th48CDi4uLqY5iEOCSa8SHEQfXt21cU9ABAZGQkunXrhpMnT6o6h5OTE1599VV07doVr7/+OgwGg+yxly9fRklJCfr16yf5fkBAgOjnGzduYOHChejUqRNatGiBoKAgJCQk4OzZs/wxK1asQN++feHn5wd3d3fExMRg69atovNoNBpcu3YNH3zwAb+8NGnSJCxcuBCzZs0CAISHh/PvCXNqPvroI8TExMDd3R2+vr544IEHkJubKzr/gAEDEBUVhUOHDqF///7w8PDA//3f/6m6f0KDBg0CAGRnZyse9+abb6Jbt25wc3NDcHAwpk2bJpqxGjBgAL766iucO3eOv6awsDCbx0NIc0UzPoQQHmMMFy5cQLdu3VR/xsnJCQ8++CCee+45/PzzzxgxYoTkcQEBAXB3d8fOnTvx5JNPwtfXV/acVVVVGDlyJL777js88MADmD59OkpLS5GWloasrCxEREQAANasWYPRo0dj/PjxKC8vx6effor7778fu3bt4sexceNGTJkyBXfeeSemTp0KAIiIiICnpyf++usvfPLJJ1i1ahU/+9K6dWsAwIsvvojnnnsOiYmJmDJlCi5duoTXXnsN/fv3x5EjR+Dj48OPV6/XY/jw4XjggQcwYcIEBAYGqr5/HC6g8/Pzkz1m4cKFWLRoEeLj4/HEE0/g1KlTeOutt/Drr79i//79cHFxwbx582AwGJCXl4dVq1YBAFq2bGnzeAhpthghhNyyceNGBoCtW7dO9Prdd9/NunXrJvu5zz//nAFga9asUTz//PnzGQDm6enJhg8fzl588UV26NAhi+Pef/99BoCtXLnS4j2j0cj/vqysTPReeXk5i4qKYoMGDRK97unpySZOnGhxruXLlzMALDs7W/R6Tk4Oc3JyYi+++KLo9d9//505OzuLXr/77rsZAPb222/LXrfQggULGAB26tQpdunSJZadnc3eeecd5ubmxgIDA9m1a9cYY4ytX79eNLaLFy8yV1dXNmTIEFZVVcWf7/XXX2cA2Pvvv8+/NmLECNa+fXtV4yHE0dBSFyEEAPDnn39i2rRpiIuLw8SJE236LDejUFpaqnjcokWLsGnTJvTs2RPffvst5s2bh5iYGERHR4uW17Zt2wZ/f388+eSTFufQaDT8793d3fnfX7lyBQaDAXfddRcOHz5s0/jNbd++HUajEYmJibh8+TL/q02bNoiMjMTevXtFx7u5ueGRRx6x6Ts6d+6M1q1bIzw8HI899hg6duyIr776SjY3KD09HeXl5UhNTYVWW/1/3Y8++ii8vb3x1Vdf2X6hhDggWuoihKCwsBAjRoyATqfD1q1b4eTkZNPnr169CgDw8vKyeuyDDz6IBx98ECUlJcjMzMSGDRuwadMmjBo1CllZWWjRogXOnj2Lzp07w9lZ+f+idu3ahRdeeAFHjx7FzZs3+deFwVFNnD59GowxREZGSr7v4uIi+rlt27YW+VLWbNu2Dd7e3nBxcUFISAi/fCfn3LlzAEwBk5Crqys6dOjAv08IUUaBDyEOzmAwYPjw4SguLsZPP/2E4OBgm8/BbX/v2LGj6s94e3tj8ODBGDx4MFxcXPDBBx8gMzMTd999t6rP//TTTxg9ejT69++PN998E0FBQXBxccH69euxadMmm69ByGg0QqPRYPfu3ZJBoHnOjHDmSa3+/fvzeUWEkPpDgQ8hDuzGjRsYNWoU/vrrL6Snp6Nr1642n6OqqgqbNm2Ch4cH/vWvf9VoHL169cIHH3yAgoICAKbk48zMTFRUVFjMrnC2bduGFi1a4Ntvv4Wbmxv/+vr16y2OlZsBkns9IiICjDGEh4ejU6dOtl5OnWjfvj0A4NSpU+jQoQP/enl5ObKzsxEfH8+/VtsZL0KaM8rxIcRBVVVVISkpCRkZGfjss89qVDumqqoKTz31FE6ePImnnnoK3t7esseWlZUhIyND8r3du3cDqF7GGTNmDC5fvozXX3/d4lh2q8Cfk5MTNBoNqqqq+PdycnIkCxV6enpKFin09PQEAIv3EhIS4OTkhEWLFlkUFGSMQa/XS19kHYqPj4erqyteffVV0ZjWrVsHg8Eg2k3n6empWFqAEEdGMz6EOKiZM2dix44dGDVqFIqKiiwKFpoXKzQYDPwxZWVlOHPmDLZv346zZ8/igQcewOLFixW/r6ysDH379kWfPn0wbNgwhIaGori4GF988QV++ukn3HfffejZsycA4OGHH8aHH36IGTNm4JdffsFdd92Fa9euIT09Hf/973/x73//GyNGjMDKlSsxbNgwjBs3DhcvXsQbb7yBjh074vjx46LvjomJQXp6OlauXIng4GCEh4cjNjYWMTExAIB58+bhgQcegIuLC0aNGoWIiAi88MILmDt3LnJycnDffffBy8sL2dnZ+PzzzzF16lQ8/fTTtbr/tmrdujXmzp2LRYsWYdiwYRg9ejROnTqFN998E7179xb9ecXExGDz5s2YMWMGevfujZYtW2LUqFH1Ol5CGq2G3FJGCGk43DZsuV9Kx7Zs2ZJFRkayCRMmsD179qj6voqKCvbuu++y++67j7Vv3565ubkxDw8P1rNnT7Z8+XJ28+ZN0fFlZWVs3rx5LDw8nLm4uLA2bdqwsWPHsrNnz/LHrFu3jkVGRjI3NzfWpUsXtn79en67uNCff/7J+vfvz9zd3RkA0db2xYsXs7Zt2zKtVmuxtX3btm3sX//6F/P09GSenp6sS5cubNq0aezUqVOie6O01d8cN75Lly4pHme+nZ3z+uuvsy5dujAXFxcWGBjInnjiCXblyhXRMVevXmXjxo1jPj4+DABtbSdEQMOYHRrDEEIIIYQ0AZTjQwghhBCHQYEPIYQQQhwGBT6EEEIIcRgU+BBCCCHEYVDgQwghhBCHQYEPIYQQQhwGFTA0YzQakZ+fDy8vLyr7TgghhDQRjDGUlpYiODgYWq38vA4FPmby8/MRGhra0MMghBBCSA3k5uYiJCRE9n0KfMx4eXkBMN04pb5DhBBCCGk8SkpKEBoayj/H5VDgY4Zb3vL29qbAhxBCCGlirKWpUHIzIYQQQhwGBT6EEEIIcRgU+BBCCCHEYVCOTw1UVVWhoqKioYfRbLm4uMDJyamhh0EIIaQZosDHBowxFBYWori4uKGH0uz5+PigTZs2VEuJEEKIXVHgYwMu6AkICICHhwc9lOsAYwxlZWW4ePEiACAoKKiBR0QIIaQ5ocBHpaqqKj7o8fPza+jhNGvu7u4AgIsXLyIgIICWvQghhNgNJTerxOX0eHh4NPBIHAN3nymXihBCiD1R4GMjWt6qH3SfCSGE1AUKfAghhBDiMCjHhxBCCCF2odfrUV5eLvu+q6trg+fJUuDjACZNmoQPPvgAAODs7AxfX190794dDz74ICZNmgStVt3E34YNG5Camkrb+QkhhFjQ6/V4/fXX+Z8NBi8UFfnB11cPna6Ufz0lJaVBgx8KfOpRQ0bCw4YNw/r161FVVYULFy7gm2++wfTp07F161bs2LEDzs70V4EQQkjNCZ9vhw/3xM6dI8GYFhqNEaNG7UJ09BGL4xoCPe3qiXkkLKeuImE3Nze0adMGANC2bVtER0ejT58+uOeee7BhwwZMmTIFK1euxPr16/H333/D19cXo0aNwssvv4yWLVvihx9+wCOPPAKgOvF4wYIFWLhwITZu3Ig1a9bg1KlT8PT0xKBBg7B69WoEBATY/ToIIYQ0bgaDFx/0AABjWuzcORIREWdEMz8NpckkNy9ZsgS9e/eGl5cXAgICcN999+HUqVOiY27cuIFp06bBz88PLVu2xJgxY3DhwoUGGrGY2gi3PiPhQYMGoUePHti+fTsAQKvV4tVXX8WJEyfwwQcf4Pvvv8fs2bMBAH379sXq1avh7e2NgoICFBQU4OmnnwZg2nK+ePFiHDt2DF988QVycnIwadKkersOQgghjUdRkR8f9HAY06KoyLeBRiTWZAKfffv2Ydq0aTh48CDS0tJQUVGBIUOG4Nq1a/wx//vf/7Bz50589tln2LdvH/Lz85GQkNCAo278unTpgpycHABAamoqBg4ciLCwMAwaNAgvvPACtmzZAsC0DKfT6aDRaNCmTRu0adMGLVu2BABMnjwZw4cPR4cOHdCnTx+8+uqr2L17N65evdpQl0UIIaSB+PrqodEYRa9pNEZcu+YJg8GrgUZVrcksdX3zzTeinzds2ICAgAAcOnQI/fv3h8FgwLp167Bp0yYMGjQIALB+/XrcdtttOHjwIPr06dMQw270GGP80lV6ejqWLFmCP//8EyUlJaisrMSNGzdQVlamWLjx0KFDWLhwIY4dO4YrV67AaDT9hf/nn3/QtWvXerkOQgghDSMvDzh9GvD2Ns2l6HSlGDVqlyjHhzFg69b7odEY0bZtCWbObLjxNpkZH3MGgwEA4Otrmjo7dOgQKioqEB8fzx/TpUsXtGvXDhkZGbLnuXnzJkpKSkS/HMnJkycRHh6OnJwcjBw5Et27d8e2bdtw6NAhvPHGGwCUl9+uXbuGoUOHwtvbGx9//DF+/fVXfP7551Y/RwghpGnLywNmzQLatwcGDQLuvDMAhw/3BABERx9BaupqjB27BYwBXLjBmBZz5uiQl9dw426SgY/RaERqair69euHqKgoAKYGoq6urvDx8REdGxgYiMLCQtlzLVmyBDqdjv8VGhpal0NvVL7//nv8/vvvGDNmDA4dOgSj0YhXXnkFffr0QadOnZCfny863tXVFVVVVaLX/vzzT+j1eixduhR33XUXunTpwjcYJYQQ0jytWXMV7doxrFgB3Jrkh9Gowc6dI/nlLJ2uFJ6e12EealRVaXDmTD0PWKBJBj7Tpk1DVlYWPv3001qfa+7cuTAYDPyv3NxcO4yw8bl58yYKCwtx/vx5HD58GC+99BL+/e9/Y+TIkXj44YfRsWNHVFRU4LXXXsPff/+NjRs34u233xadIywsDFevXsV3332Hy5cvo6ysDO3atYOrqyv/uR07dmDx4sUNdJWEEELqkl6vxw8/nMH//ucBxixbC5knMUvl+zg5MXTsWOdDldXkAp+UlBTs2rULe/fuRUhICP96mzZtUF5eblFc78KFC/w2bilubm7w9vYW/WqOvvnmGwQFBSEsLAzDhg3D3r178eqrr+LLL7+Ek5MTevTogZUrV2LZsmWIiorCxx9/jCVLlojO0bdvXzz++ONISkpC69at8fLLL6N169bYsGEDPvvsM3Tt2hVLly7FihUrGugqCSGE1BWuLMuGDfstdm1xNBojfH2LAACDBw/GI48MxoIF+dBqGQBAq2VYtswAJ6cC6PX6ehu7aIyMmVbfGjvGGJ588kl8/vnn+OGHHxAZGSl632AwoHXr1vjkk08wZswYAMCpU6fQpUsXZGRkqE5uLikpgU6ng8FgEAVBN27cQHZ2NsLDw9GiRQubx9/QdXyamtreb0IIIWK1LaJbUFCAtWvXwmDwwurVqRbBj3mhQiFTFWdf+PoW1VkVZ7nnt7kms6tr2rRp2LRpE7788kt4eXnxeTs6nQ7u7u7Q6XRITk7GjBkz4OvrC29vbzz55JOIi4trFDu6/Pz8kJKS0uh7mBBCCGl+7PmPb/NdW4ARfftmIDY2U7ZAoU5XKvleQ2yCaTKBz1tvvQUAGDBggOj19evX88XyVq1aBa1WizFjxuDmzZsYOnQo3nzzzXoeqTwKagghhDQE8wBDro+W2kAkOvoIIiLOSM7iNHZNJvBRsyLXokULvPHGG/w2bEIIIaS5qunSlVIfLVvIzeI0dk0m8CGEEEKISU2Xruqqj5b5DJLcjFJjQIEPIYQQ0sTUtP+jUh8tWwIUYWBz9mxH0QxS9+7Hcfx491rPKNUVCnwIIYQQB8HV1REGP8It6GoIl8oAIwDNrV+mIOrYsR6inxtTZ3agCdbxIYQQQoiYweCF7Owwq01AuR1ZXFFBbkaGW57av99Vtp1EWVmZxVKZKYwwL2Qo/rkxdWYHaMaHEEIIadJsTVaW2pHFnWPVKi20WoaXXzZg3LjrfIK0Xq/HRx99hKKiMNnihdUYhMGP0oySq6trDa64dijwIYQQQupIbYoGKn328uXLANQnK5sHGMIdWebnMBo1mDXLG+fPvw+drlRUg05qqQwwQqOBYo4P911JSUnQ6XRWr70uUeBDau2HH37AwIEDceXKFYsmsXLCwsKQmpqK1NTUOh0bIYQ0lNoUDVT7WbXJylJFdC9fvozt27fLniM3NwRFRdeRk1OJ4ODqhOb4+HSkp8eLAhvzGaRBg76XrPGj0+kQFBRk9brqEgU+DmDSpEn44IMP8Nhjj1k0Hp02bRrefPNNTJw4ERs2bGiYARJCSDNU051XtnzWlmRludkVuVmcbdvGgjEtNm5kGDLkAr79NpUPduLj0xEcnC8KbMQBTuOt8UPJzQ4iNDQUn376Ka5fv86/duPGDWzatAnt2rVrwJERQkjTpdfrUVBQIPmLW46yB7nkZaVkZUBdDo35ObidWsKlr2++CRQtp6Wnx9tUsZkbf35+w4cdNOPjIKKjo3H27Fls374d48ePBwBs374d7dq1Q3h4OH/czZs3MWvWLHz66acoKSlBr169sGrVKvTu3Zs/5uuvv0Zqaipyc3PRp08fTJw40eL7fv75Z8ydOxe//fYb/P398Z///AdLliyBp6dn3V8sIYTUA7XLUbWllLyckJCAqVP9MX/+JeTkOCMsrBLBwb0B9LYph0aY8Hztmie2br3f7AjpnVpqAh/h+DduZFi7FkhOVjWsOtHwoZeDyssD9u6F7LbBujB58mSsX7+e//n999/HI488Ijpm9uzZ2LZtGz744AMcPnwYHTt2xNChQ1FUZJo2zc3NRUJCAkaNGoWjR49iypQpeOaZZ0TnOHv2LIYNG4YxY8bg+PHj2Lx5M37++WekpKTU/UUSQkg9qY8Gm3LJy9zMj7+/P4KCghATE4gxY/wQExOIoKAgBAUF2Zw4rNOVIjz8HEJDcwWzPxxx2yi1tX+kEqcfe6x+n33mKPBpAOvWAe3bA4MGmf67bl39fO+ECRPw888/49y5czh37hz279+PCRMm8O9fu3YNb731FpYvX47hw4eja9euePfdd+Hu7o51twb51ltvISIiAq+88go6d+6M8ePH801iOUuWLMH48eORmpqKyMhI9O3bF6+++io+/PBD3Lhxo34ulhBCGhm1tXaElJKX64rU8lmPHsdkl9MA+WuTGn9VFXDmTJ0N3ypa6qpneXnA1KmA8VYwbTQCjz0GDB0KhITU7Xe3bt0aI0aMwIYNG8AYw4gRI+Dv78+/f/bsWVRUVKBfv378ay4uLrjzzjtx8uRJAMDJkycRGxsrOm9cXJzo52PHjuH48eP4+OOP+dcYYzAajcjOzsZtt91WF5dHCCGNVk0bg6pNXq7NtnkpUrV+5HZqKV2b1PidnBi8vC5Cr3em7eyO4PTp6qCHw0W/dR34AKblLm7Jqa662F+9ehWPPfYYnnrqKYv3KJGaENJYccGDwWBARUWFxfvOzs7w8fGxOYioTWNQbvbFPLAQfs4810iuQah5DR1ric/mO7OkdmqZrm0UGJNuUSE1/hEjdmHXLlNgJLWVv65R4FPPIiMBrVYc/Dg5AR071s/3Dxs2DOXl5dBoNBg6dKjovYiICLi6umL//v1o3749AKCiogK//vorX2/ntttuw44dO0SfO3jwoOjn6Oho/PHHH+hYXxdFCCG1ZGuislTOolzAYa3WjlQAInxNavZFeJxwpkdq9sX0WT+sXfu16LMpKSmi2j5cXR9bmK5NOfFZafz1kSdljgKfehYSAqxda1reqqoyBT3vvFM/sz0A4OTkxC9bOTk5id7z9PTEE088gVmzZsHX1xft2rXDyy+/jLKyMiTfSsF//PHH8corr2DWrFmYMmUKDh06ZFH/Z86cOejTpw9SUlIwZcoUeHp64o8//kBaWlq97IAghBBb2foANj9eabln/Pg7sXEjg9FYHSA4OTE8+eRwhIVJL/dIFRw0x808FRQUAJCfWWIMACzHVV5ebnMxQfPgTu1SXGOq60OBTwNITjbl9Jw5Y5rpqa+gh+Pt7S373tKlS2E0GvHQQw+htLQUvXr1wrfffotWrVoBMC1Vbdu2Df/73//w2muv4c4778RLL72EyZMn8+fo3r079u3bh3nz5uGuu+4CYwwRERFISkqq82sjhJD6Zm0pKyrKB2vXasz+watBTEyg4nltXQKSm1kS/l5pic3a0pdccGdtKa6xocCngYSE1F/AY60i8xdffMH/vkWLFnj11Vfx6quvyh4/cuRIjBw5UvSa+bb43r17Y8+ePbLnyMnJURwTIYQ0dlygoGYpqzb/4LWWuFxcXAxArgKzmFT9HeH5k5KSRPlNhYWFOHDggGJwp7SUZU5uObA+UeBDCCGE1AC3HJWTU6lqKasm/+C1JfdIKpGYW+bimC9DqU2MthbcqVnKkpoxaggU+BBCCCFmuADAxeUmKircZGco/Pz84OcnlbtpfSlLDfOZHmszJuazL2fPdlRchrKWGK20LV1tEUNu3FIzRvPnX0J99yylwIcQQggREAYAporFGqu1d+ojd1NtLSDh7IvSMpSwl5jSUhYA2a7s5kUM5YIyuRmjnBxnxMTU8sbYiAIfQggh5BbzAIDrUaWm9g63lGVqXCqeqSkuLkZlZSUAU2FYrp4Ox1ptoNrWApI6Rrh1XS4wycyMRUZGnGJXdsB6UCY3Y9SpU/03kKDAx0aMMesHkVqj+0wIqStSycJcgrBUAMAxT1iWOo/BYMDmzZtrNC6lYn7Wcmz69euHwEDT0tr169exe/duxe9Ssy0dMPJBD/d96enxSE1dbTHTIxeUPfrocABAZWUldLp8PP98WxiNGmi1DIsWXYC/v+nPoz6LGFLgo5KLiwsAoKysDO7u7g08muavrKwMQPV9J4QQOXK7nrhZFuEMi7XARGlnlFbLcN99UQgM7IxTp04hLS3NfhcB5VpC1nJs9u/fLzp+woQJ8PDw4H8WFidUuy09Li4DBw70E51XaleYXFDWrl0SDh0CDh/ezB8/fboXv+xWVVWKtWtNx9dnBWcKfFRycnKCj48PLl68CADw8PCARqOx8iliK8YYysrKcPHiRfj4+FgUWSSEECFbKy5bY74zSpjjM3LkLhw7Zr2/Vl1Q07pCyMPDQ7I4oS3b0gGIZnwA6YRmudmiGTOCbo01lQ+u5Jbd6rOCMwU+NmjTpg0A8MEPqTs+Pj78/SaEEDl18cAUBgAuLuWoqHC1Wp9GjlTCb01r2XDjys0NAaBBaGiuzedSsy2dOy4/PwjCrAO5YMsyWDQC0Mj272poFPjYQKPRICgoCAEBAZIN7Ih9uLi40EwPIaReyAUOcg055YIMqffk6tbIJQFnZ2dbJDmbV1MWbk83zUYxSLWjkGNtyUxqRxuHMfC7vABg4MCB2Lt3LwBxsHjtmie2br1f9L1SS2QNhQKfGnBycqIHMyGE2Im1ysS2dEOXC07UBCamHUsFkoGNUvPP/Pwgi23eERFnFPtmCV/jZkLS0tKQlpYmynfx8/NDYmIitmzZIrPjzLZZFakls/j4dBQV+aG0tKXkjrZq4uClVatWFvdVpyuFweAlsfTFkJ8fjPDwc2r+GOsUBT6EEEIajNocHTXJr3JJu3JBi3lgkpY2GFI1e6TyYnbsGAmNBhYzI1wAMmbMNsW+WcLXzGdCzINAHx8fAMo7zszPZTAYZBuQCmdn8vODRUGb0vnN83u2b2+F1atTLe63TleK+Ph0/n7e+jTS0+MRFZXV4LM+FPgQQgiptZrO2qjN0cnPz8fFixctdmlxRfjkknYDAgolX5cKTORmT6QDDq0g/0U8M8IFQ1JLStZaSACWvQy5a7TWi0t4rs2bN4uCRfMlMy74+PDDh0X3xnx5SyguLkOUp7RmTVvZPJ7g4ALJ+9IYlrso8CGEEFIrtszaAMClS5f4PMkrV66o+g5hsT0pckm7ubntZGZeLAMT82O4h7Sa5p9CGo0RoaF5kktKFy8G4NixHjAFBQwdOpy1+Lxcg2elXlzW2lFwfcXKy8v5re3SAZ0GpuRk89eNiI3N5H8qKvIT9SYDrN8zW1pc1CUKfAghhNSK2lmbixcvYsuWLYrH1HTHk9yDNjT0H5nX8yS3rQuP4R7ScruWxDMa4tYWOl0poqOP4Pr1FkhLi7+1lBZv9jkNzp6NxKpVqRg92npiMmDZggKAaJeXEvMZN7l7lpz8Hv74o5uoYrN5UGUtsLF1+735jFRdosCHEEJIveBaNshRSiC2lqws96ANCSmQfQAr5bqYP6StNf+UauVgMHghPT0e1bMncjNG6hKTExIS4O/vj+zsbL54otr+XVKU7llISAFiYzMle3wpfVbpngnf464FsC153R4o8CGEENIgDAYv5OaGAgB8fK4o7oKylqwcHX0E0dFHkJISiZKSAISFVcLDIxKVleEYPLgUERGrJR/AXNAUHn4Os2aF8p8NDu4NoDfKyspEFZANBgO/TJeScgr5+R4IDi7DgQMZFtdnLRlZSJyYLD3r5e/vL0pYrk3/Lo5ScCJXbNDaZ6WCUnPm11KfKPAhhBBiV2qWqw4f7okdO0aiehbEMqlWGDRYS1bmHvahoRrodNzSmw//eWsPcQCIivJBUJBp5oFL1hYGPabzmJKqXV1dcfvtpmMLCgpw4IDl+eQqGlfvBhNdLfLzg3Hliq/qGRxrxQizs7NFHdgBwNnZ2WLmTc29EVIKbGozA1VfKPAhhBBiN2oefAaDl1nQA3DJvnI7igDTQ928hQL3OvewV9Mg1FpgVtst9sLzSy0HRUScwY8/3oVDh3rBfLu3Up0fc9bybIS9xGqaO2VO6c/XHjNQ9YECH0IIIXah9sFXVOQH6XwXDf8gl9r6DQAnTnSr1W4hNYGZ2mRtqeOkzp+aarnMFhX1Bw4d6i36rNo6PxxreTZcsCNVYLEmszDW/nytzUA1FhT4EEKIg7FnpWQhtQ8+X189pLZMczuKuN5YmZmxFt3BAS3i4vYr7jiSY+8ZCYPBAMB6LaHk5PcsKhbLzdaoqfNTVlbG/96yr5gbDAYvidYW4no7rq43ERqaK7rupKQkMMZQWVmJ0tJSi+7z1v58bdnCXp+7uMxR4EMIIQ7EnpWSOdxDzNqDz8XFBYBppmL06F2i5S5uZ1RFhRu/HBMbm4kDB+JgHgjExmYq7jjimC/v2HtGwnxZTe787703RXK7elxchkUAB1j28uLGVlZWBr1ej48++kh0Hp2u1GKXmTiAssyd2rr1fovZH51OxyccFxQUiD5jMHjh2jWPWm1h53Zy1fcuLnMU+BBCiANRu4xz4sQJtGrVyuJ1FxcXtG7dWvTgEhbHa9u2BHPm6FBVpYGTE8OyZSUYN+5Bi3/hizuNAwaDj+RyzOjR8g/SsWP7wMvLC87OzvDx8UFxcTFfJ0hua3xNlsnU5sfIFzoUzyyJG4Ea0bfvfnTteoIP+qSWxgDAw8PD4s+P2xlnPtOkhtoZL/PxCpcjbdnC3pA7uYQo8CGEEAcm91Dnum7LMZ8R4n4/cyaQlAScOQN07KhBSIgPhLurUlJS+MrNV65cwd69e2EweGHbtrGSS1BKD1LhUkxKSgrf00ppyUlpRkJq+cWWXUqWhQ6rcTNLAMzeNyVsczNbwmap1ogDEmukE8etzXhZNkbVgjEjxo7dgtDQPNnco8aU02OOAh9CCHFQ1h7qwjo75vkgSjNHISGmX1L8/Pz4IKmgoAB79+61ugSl5kEqHI+1JSduRmX8+FhERZnq9Ugtv9QkJyg6+ggCAgrx3ntTIJWrIzc24e/lmqUqjc2ceTuL+Ph06HTF2Lp1rOS45Mj1KfP0LLM5uGnIvB4hCnwIIcQBWXuom+rsjEL1LIFRdVsFW9m7r5O1JafU1NUIDz+H0NA+iksvtuQECWfOQkIKFJforPf9km78aW1s/KdFVa+rZ8oMBi/07Zshml2ylhhuy59NYmIiP+tmrqHzeoQo8CGEEAfC7URSeqgDpuUY8dKIFjt21E1NFlv6Oinl23AzCmqWnLiaP0lJSXxRQk5xcTEA9Q99uZkzqSU6pUajUuQCLbniiGPHbhUtQXH/NR9jXNx+xMZmWv2zbCoJy7agwIcQQhyEXq/ndyJJbSlXWo4xsW9NFuHSh1IuD8fa0hyXZJ2fnw9gu+KSE0ep4KFOV4rnn7+AhQvbWCRrc4nU1mbOpK5Dqu+XZUFH6fEKxyYVkERFnbQ4VmqMGRlxom7r5tT+2QQHBzeZgIdDgQ8hhDgIYR7M2bMdIZ7RUbMcU/PlJynC3WDFxcV8KwUu6VlIbb6N8CFsbclJjeRkYNIkjWyyttrlMKk2D9z7pt1muDXzIyQe7+XLl/mSAIC6YNGWMQqDHeGfjZymNMsjRIEPIYQ4GC6IEAY+Go3pAQzILRWZcnyED2FObR6Afn5+0Ov1/DZ0OdYe3uY9qYYPH47du3erDg7kXL58GcHBrhgwQHx9amsXAdZnquRm2MaO3Sqawdm+fbvFMcIASm4Z0NoYExISJGdummJQowYFPoQQ4mDUzACY19kx37ps/hC2peChOWu1hbjieXJLc1LjEeLGbWqVAZuCH+68SUlJovpFcrWLtFqG+fPzMXBgL36rvrWZKrnAJDQ0T3JMgwcPhpeXl2hmTCm4span4+/v32yDHCkU+BBCiINRm7Rrmk0Q54zIzSqoLYxoK3GtGgYu+LFl2Upt41SlIoVcLpAwwBPWLhoy5ApeeeXLW/ewFNxKnZog05bkbgAWrSTUBFdKM1+NZZt5faHAhxBCHIzUgzY+Pl1yRqRXr1747bffANhWzM8eLGvVaKDRMIwZI188z9o5pIICW67r0qVLMkHeZYt+XID6IFMqMFFbMdpacMXtvJLSVPN0aoMCH0IIaSaEzUfz87XIznZGeHglgoONAKq3aQPiB21+frBs9+527drht99+s3uDTyXcA//aNQ/JB7otxfOsBQW2XpfSLjAptszmCPN1bAnGrAVXjaVVRGNBgQ8hhDQDwuajah+a3EP2ww8ftvrgt3eDT27M5eXlosRk875Q5q0WNBojXFzUL6tZCwrkris3N8Rimc8WwtkaYZA5cmQXBAT4QKkjiK3BmLXgytGWsqyhwIcQQuqBtdmY2i45cOe29aGpNqCxd3VlqS7xUn2hTE0xGZ/jw5gW69ZNEQVzSktCplo8hVi4MEhUi+fee4djy5YtslWet20bi/z8DMUif3LfKxd46nSlOHHiHE6cUD6PrUFmQkICpk71x/z5l5CT44ywsEoEB8u34nB0FPgQQkgdUzsbY+vOKGEwlZVVjOzsMNnlIe6hyVUqvnz5MrZv325TorMtCbjWSOXJyPWFGj58J77+egS4HV3CYO7s2Y5WZ7eSkzWStXi4Yodnz+6yKCDImBYHDvTDgQNxkq065P4cbQ087dFFnlvKCgoCYmKk7zepRoEPIYTUMbWzMbbsjJIOpm6DRmOE0rZvnU4nyvewJaCpbU0ca+SCMA+PGzCvaswtR6kNMswbpwqDxujoI3B1vYmtW++XGJXlOZX+HG3t71WTLvKkdijwIYQQlWq7XGXPPBmlYMoUPKjf9q0U0AgrBQPiBFwhe+SRyAVhoaG5kgERoKnR/ZRaZpP6DrlzKv052rIkqLaLvK27vIgyCnwIIUQFeyxX2TtPBpB/eI4duwWenmWyMzPmgYpcQNO6det6aV3APdQjIs6IHviPPjocPj694et7AQsWtIHRqFEMiADryc9S16LU2NT8z0iuQSh3r9XO1qjtIg8o/52j5GXbUOBDCCFW5OUBBw+aHs4AarxcZe88GUC56q/See3Vi4mbBSsoKKjxOZQe6leuXIFGo0FV1WZMn+5lMSslDlYYAMvkZ+E4AVi0tzAPujIzY3HgQBzkZsy4P0dxXpAGZ892RHT0EURHH8FDDwVg164/FWdr1HaR799/HJ5/viMY0/DvffXVKMyfH4uwMGdKXrYRBT6EECKBe1Bu2uSO2bN1MBr9oNGkIi4uo1bLVfbOk7E1mDIYDHyOT20fmFJLRlK4hGohLviwlvckrFIsNSsVEXEGw4d/fSv5WSN5juzsbItqxxypoGvIkHTExmYiKuo+ZGV9IXkvLRuLakTf2bmzJ06csD5bM2eOP5KSzmLChOrABgC0WoYnnxyOsDBnHD/uB6NR/P1VVRqUlgaCYh7bUeBDCCFmuAe6weCF1atTRf/SzsiIg1LysBpyy0pS45DLKRLOWtgSTG3evLlWfbWE1CZjKxX9q03ek7jmj5jwHHJBj7Wgq3fva8jNrV3Hc2vfER4ejr59g3D9OvDYY0BVFeDkBLzzjgYxMYEAgMhIQKuFKPhxcgI6dlS8PUQGBT6EEGKGe6Dn5oZKPtz69t2PjIy4Ot1xY2tBQqlgqq76akkVHqypmuY9Wdb8EVM6h7XK0GqCLmvj5pLCrQVIXH5OcjIwdChubbkX70ALCQHWrjUPjMTHEPUo8CGEEAlcsGFOozEiNjYTsbGZVmdY8vKA06cBf/8Wqr5TmKRa04KE5uNX0/LAFmqXt9SqSd6TweCFEye6KQY9cudQUxnaWsDEBZJK4+aSwnNyKrFxI4PRWP0dTk7Vy1jCmTfzLfdCSoERsQ0FPoQQh8UFJpGR1Q8SvV6PrKximdkE8cNN6eG8bh0wdappeUKrbYWVK2ciMVH+eLkk4JosBdVlXy2l2aKabrfmlupyc0MAaBAamquqKrJ50AIYMXbsVsnEboPBC7m5oWYJyeLK0LYETIMHp6Nfvwx+iXH8+FhERVlWS/bzk5qtqV7GsoVSYETUo8CHEOKQxIGJ6eF0332m2Yzs7DAwdpvFZ8aO3YqoKOX+TQaDAfn5WkydGsD/K99oBGbO9MS//nXN5l041pZUhJ23uWrMddFXyxo1M0xKgZGwArNpJkYDUzd2+arIpmOY6LioqJMwGLyQnR3Gf49SLhCgxZgx0lv/nZ2d+XGbt9JISxsMAOjXLwM6XSmioobKNgKl2ZrGpVkGPm+88QaWL1+OwsJC9OjRA6+99hruvPPOhh4WIaSRyMurDnoA038fewy4445KAMpbxK3ZvHkzsrPDYDROFL1eVaXB0qX7EBV10qbkYmtLKlKdt+uiXpASNTNMSoGRdI8uWJxLuqWFBkOHfoOuXf+wCHI0GiPi49P5zvNS5Lb+C3eiyX1veno8oqKyVAWTNFvTeDS7wGfz5s2YMWMG3n77bcTGxmL16tUYOnQoTp06hYCAgIYeHiGkgen1ehw8CBiN4sCjqgo4duwaAPV5J8LZFgAoLi5WbHy5detYlJfvQn5+PgD128lt3QJfF/WCOMXFxaKf5fJthDNM1gIj6cDC8lxyAR0X9Eh9T1paPMzbXVSTvy86nY7PufL11cN8J5/5NVIRwaaj2QU+K1euxKOPPopHHnkEAPD222/jq6++wvvvv49nnnmmgUdHCGlIwm3qGk2qxQPUVLPF9LOaYENqtgWQK3AHVPd9Wg2drtTmmZ+a5M3Ys6+WXq/Hli1b+J+V8m2EM0zWlt7kKxiLz2XeaV2rZZgzJxtubvKtJLgihFLn1mhM9XjkcEUeL126BOACVq1qI7pGrZZh4sR+6N59FBURbEKaVeBTXl6OQ4cOYe7cufxrWq0W8fHxyMjIkPzMzZs3cfPmTf7nkpKSOh8nIaRhcIm5amdErAUb1v+Vr7F4RfjAr+22cmvjsXdfLeF4reXbTJ/+B//dci0erl3zhMHgJfHnYaoKyJgpuHn55RKMG/cgnzQ8aRJw6JAB+/at44Meue9RWu5Sk/fk5+cHPz8/rFwJBAcDc+aYlka5JOWBAyNrcitJA2pWgc/ly5dRVVWFwEBxtnxgYCD+/PNPyc8sWbIEixYtqo/hEUIakdrMiCQkJCA4ONjiX/kGg+HWf71ubYW3DHzU5tqoDU6Ex9mrDYUc7voA+bwXYb4N5+zZjoIKxwCXvLx16/2ifJ+IiDPo128iYmNN4zMlA2sQEuIDwIf/dEgI4ORUhqNHLQNVqYA2OvoI2rfPwXvvTUFtCk8+/TTwwAOUpNzUNavApybmzp2LGTNm8D+XlJQgNDS0AUdECKkvti4fcfz9/SWDh4qKCis1ZtTn2tQ0iKmrJRe9Xi+qwGwt34ZTHQQK74cGcu0l+vYtB7d6WJPAQi6gDQkpwOjRlkERANEOMGsoSbnpa1aBj7+/P5ycnHDhwgXR6xcuXECbNm0kP+Pm5gY3N7f6GB4hpJGoab0ZOVwl448+crvV4kI65yU5+T2EhEg385TCBTHC1hVCXHNQuVkcuc9xbJn9MT+P+SyO3HKh3MyQkHDJyTx5Wu2YuT9TF5ebqKhws/izTUhIwNSp/khJOYWPP86Er28Rzp7tyP952bPII2ncmlXg4+rqipiYGHz33Xe47777AABGoxHfffcdUlJSGnZwhJBGwR4VjYXLS5Z9veRrzNgS9Jif3xphorRer8fFixdFichqPqeW1CwOY9KJwvn5QbAsNCifCK12zEJSSdbmf7ZcIrqrqysOHDhndacZ7dJqvppV4AMAM2bMwMSJE9GrVy/ceeedWL16Na5du8bv8iKEOK78fK2qisbm29SFzGccuJkQW3JebKE2AfrSpUvw8/OzuaVEfn6+5HcozQbJ7Z7644+uoms1GLyQnh4Py6BHyPat9taTrOX/bLklxL17gVWrLJOd+/WbiAED6m7JkDS8Zhf4JCUl4dKlS5g/fz4KCwtxxx134JtvvrFIeCaEOBa9Xo+jR6+BMfH/F0jt7JHbpq5Ebc6LtTGaByHmjUDllum4ruu27hTbvn277Htys0FyszjffjsMe/YMwahRuxARcUYm10m8zCXcUj548GDZTupylGoAye3a8vPzQ58+0h3PY2P9QDFP89bsAh/A9D9WWtoihHCs1e8x39lTk2WOmhQNzM7O5gObq1evYs+ePYrfYW2ZjiuMKKUmeU1SQZT8LE71TMuOHSOh0UCmn5aYMDjx8vJSNS4hpRpAwj9b8z9T6njuuJpl4EMIIUB1E1Jvb1MrCmvBidw2dbVs3SJvy+yGVE7Kjh3ipRyp2RuDwQuZmbE4cCAOXDE/84BJLigSzjZxScdqkpUBrSDxWZzrZHpd3ZZypWCNC2TM/0zNc3wefXQ4AgICJP9MqYeWY6LAhxDSLImbkAZg5MieiI4+ohicmG9TFy495edrkZ3tjPDwSgQHm9ZHpGaG1G6Rt7YLyfyhL5dXk5kZiyFD0iW/Q6o5p3nui9IsklQgJT3DojyrI8x1EjYjVdsNXSpYM9/uP3/+JeTkOMPd3Yjr17UIC6tEWFg/q0EsbU93PBT4EEKaHcsmpBrRw15NcCJMElZ6CCclJaka08CBA7F3716L80ntQpL6PlMejGW/qIyMOMTGZlpcj2XSbzVueQmAZLJ3QEChZDAGSM+ade9+HMePd7forM4R5jopBZ4uLi6SY1dKVOYEBQExMdb+FAihwIcQ0kC4ZajISPv+i1uuCama9gRC3EyCtYdwRUWFqvO1atVK8nzmu5ACAgolvy81dTX69s3AgQP9FK+Lmym6ds3Dau8ruR5aXIVjue3+UsHLoEHfo6jIFy4u5bc+rxGcU/z9coEnu3Wgtd5ehNQGBT6EkHonXoYyJZkmJ1v/nLVgydYkZjWsPYSdndX93yh3nLVdSP/80072+2JjM/lcnWrV1yWeSTJCeglKvLwknRgsP9MiXIILDz/Hf4ILZrKzw2DZDV1d0KLRmMYqt0NOLlGZEFtQ4EMIqVeWy1CmnTVDhyrP/KgJlmxtQqqGtYewj4+PqtYS3PvWdiH5+ekhtVXcxYU7v+V2cEBqJskU/Gg0jL8HcXEZomUx+S7ygm8WBHn798fxzT7lZoOs3S8lOp2Ov5dt25Zgzhwdqqo0cHJiWLZM3KiUkJqiwIcQUq9OnxbXTgFM24nPnJEPfGoSLEVHH0FAQCFyc9shNPSfGlVNBtQFUWoexAUFBZLnM8/xcXWthOUsjQYVFa4oKvKzeK86X0cjOXMzZswWeHqWye4yi44+AlfXm9i69X7JcXNBy/79cUhLGwyppTlhPlBtg07uXs6cCSQlyTcqJaSmKPAhhNQbvV4Pb+9KaLUBMBqrH+BOTgxeXheh1ztLBhE1CZas7QqS2iott4RSm07u1s7n4lKOigrXW/91g4vLTcUZE6n3XFzKUVzcSvK90NA8yWUq4TWEhubKzEJVN/JMSzOv3SOfD2Sv+0U7rkhdoMCHEFIvhLukRo4UByUjRuzCrl2moMS8WnBNgqW8vCDR8o15rkpZ2YNYsyYSRqMGWi3D/PnnkZR0VXH8Ne3kzjEPqoTnMw/ShLukzGdMpHZUrVs3hc/r4QIY888pBYLmDUcBhr59DyA2NhMAcOJEN0gvhTEI7/GOHSPh6noToaG5/PUZDF42dT8npK5R4EMIqRfCHBilGQHhcbYGS8XFxfwD3vxBLdzCvXp1RzBmCqKMRg0WLQqGwbAaOl2pzU07zVtKCAnzUYR1ZwwGA86dO4eDBw9K7ho7frw7kpPfQ0WFq8X9MZ8tqg56AFPhQCPGjt2C0NA83HdfL+zdq7wzDYDE/WKIjc0U1dyx1miU+/6tW+/nAyvu3ObBVk2qSBNiLzUKfK5duwZPT097j4UQ4kDUzKDYEizp9XqcOGGQrV1jbQs3l8DLfafanUNKva4A8QwW99+goCB+G7zceCoqXPldU+aBgnAHlVRej6dnGXS6Un4LvdI1y+UG5eaGSGy754IdI+666yf8/PNdsnWCTJ81nUv42vXrLawmSBNSl2oU+AQGBiIxMRGTJ0/Gv/71L3uPiRBCJMkFS8XFxdiyZcutQKCPxCeVt3BL7Toyrwxs7vLly6KgR24Ww1rTUF9fPSwLE0pvUTcPFKztoPrrr79UHSf1nnRAJO4236qVfKAp95opV0h6CZK2qZP6UKPA56OPPsKGDRswaNAghIWFYfLkyXj44YcRHBxs7/ERQohVlZWmXlxyD/jk5Pf4XV227DpSu+SlFJycPn2aXw5zcXGBTqeTeMBb7uLKzQ1FaekVxeKJctdSWtoSJ050Q17eOYSEmK65e/fjOHasB7iZm+7dj8vmDY0atUsy4dm82zw3C5ebG4Jt28ZaHCvVl0tq5qlfv4kYMED9/SakNmoU+Nx333247777cOnSJWzcuBEbNmzAc889h6FDh2Ly5MkYPXq06qJehBBiL3KBgPlWdqVls5ycHIu8HWdnZ/j4+ACARR0Za5WduTYV5gYPHgwAklvUAc2t7eWWLSrMKxibX8v33w/Cjh2jwAU4PXocw6BB3+P48e6C79Hg2LHu6N37F4SEFMjeD6UAceDAgXBxccGePXug051EebnlsUB1jo+TE8PcuaV46SVvsyR1IDbWDxTzkPpSq+ikdevWmDFjBmbMmIHXXnsNs2bNwtdffw1/f388/vjjeOaZZ+Dh4WGvsRJCiFVqt1LLLZt99lkGv2QFQHL5KiUlhf+9XP5Mbm4IioquyzYh5SgVNDQFPeIkYqllOe5a8vKCBLM6gCnA6YG2bfMk83jWrZvCz05J3Q+lexkZGYmgoCB06tTJolFoWFglgoN7AwBeeMEAvb7VrVo8OoSFmWowVVWZgp533qEt66R+1SrwuXDhAj744ANs2LAB586dw9ixY5GcnIy8vDwsW7YMBw8exJ49e+w1VkIIUaWmW88tWz6Ymm2aL18J83akAxejYOnHsgkpAHh5efFjFRc0NKeR3aKekJAAf39/nD59Gnv37sU//7SH1OzR1auesstMUs0/heTuJbdcZ61RaFCQ+OfkZFPhSVNhQgp6SP2rUeCzfft2rF+/Ht9++y26du2K//73v5gwYQI/FQwAffv2xW233WavcRJCmiiuv5a/fwurxxoMXsjM9ECvXvX/QJRu+WCiFCBYBi5cYnD1rIu1cwhzZbZuHQvL5S2gb9/9Fl3Y/f39ERQUxC/NtWt3DlLbzjt1Og0fn1LJ1hTCpbOBAwciMjISBoMBFRUVoiU+odq2jaDChKQh1SjweeSRR/DAAw9g//796N27t+QxwcHBmDdvXq0GRwhp2sT9tVph5cqZSEyUnlnYtMkdzz+vw6pVGr4X1333qdvl4+LiUuuxKjUPBZS7gwuXhK5d85Rt/yA8h/mYTTMr4lyZalpkZMTxBQXlhIQUoEePY6Ik5h49jiEkpAAhIQXw9CzFJ5+Mg1wfsFatWiEoKAhB5tM0hDQjNQp8CgoKrObuuLu7Y8GCBTUaFCGk6ZPqrzVzZkuMGdNS9K99vV6PnJxKzJ6t45NeTb24GO64oxITJkxQ/P8bYQNQa4YMGQIfHx/RLAa3LV0518Yyt0auErOpM7x8E1LuHMKGnMKt8XK9s6QCL6nt3//5z5fo3fsXyR5lSn3ACHEUNQp8PDw8UFVVhc8//xwnT54EANx222247777aDcXIQR6vR4HDwJGo3g5pKoKyMzUw93dlBvCVWbOzg6D0TjR7FgNXnttN8LDz1mtpqzX61WNq1OnTrLnUc61YYiPT+eDjsuXL8Pf3x+JiYn8VvorV65g7969VpuQWmtuajB43fqdeEeXMGhKSEhAcHCw7LVwMzzmatM5nZDmokZRyokTJzBq1ChcuHABnTt3BgAsW7YMrVu3xs6dOxEVFWXXQRJCmg4umDHNfKRaPGT37/8AWVmlouKA1h7I1mZ0rBUbBNTlpXBLVpmZsThwIA6mwMOIwYPT0a9fBn/c9u3bFdsuSDUhVdphVlZWBsA8uZqBC37MgyZ/f3/RtajdPWuthhH9w5U4ghr9LZ8yZQqioqJw6NAhviT6lStXMGnSJEydOhUHDhyw6yAJIU0HF3xYe8gKgxRbigrKsVfxO52uFEOGpCM2NlN2S7y1zu/ceZTGX1ZWhoKCAhQXF+Pdd3cjN7erWfKxBhoNw5gxW0Qd1qVERERgwoQJfABljpuNApS3qEslMhPS3NQo8Dl69Ch+++03PugBTElxL774omyyMyHE8aitqWPrsfYk1yZBLnCRKli4Y8dIBAQUIiSkAAkJCXB2duaXwIS4ys1lZWX46KOPAHBBVKpkThBj1X23hC5fvmwxgxURESF7jXq9XlRI0doWdUKasxoFPp06dcKFCxfQrVs30esXL15Ex44d7TIwQkjzYEtNnZrW36kNbpns4sWL2LJli9XjpXd/VRcDTEgAAgICFGegCgpM+TeWW+jF5PJvuERotZ3k7bUUSEhzUKPAZ8mSJXjqqaewcOFC9Oljagh48OBBPP/881i2bBlKSkr4Y729ve0zUkKIQ5DKnSkuLq7zLdY+Pj6iZGUhFxcXVFRUKO7+qq7Tsxo6XamqoERpC71wua+mDVCFKKghxKRGgc/IkSMBAImJidBouOJcDAAwatQo/meNRoOqqip7jJMQ4gDkcme2bNmienbDFnq93mKmRy7ISEpKAlCdj2StGKCaoEQuqXvMmK18Xo+afCJCiHo1Cnzkmu4RQkhNyeXOuLreRGhoLk6cOIFWrVrxeTJCNVmm4XafCb9fuJvLPMioqKjgj42OPoKAgEK8996jsNZHS6/X80FQfr4W2dnO0OmKAcgndUdFnZS9J9ZaTBBClNUo8Ln77rvtPQ5CSBPHtabw9rZcupGaRTEYDGjdujV/jFzuzNat90OjMeLs2V2Ijt4rOyNj64yQcEZGvI3cxFqQcfFiG5i3h2AMOHu2Ix8sCYMr8cxNK4wa1RPR0UcUk7rlGqDKVZAmhFhX46INxcXFWLduHV/AsFu3bpg8ebLFv8QIIc0XN5uxaZM7X3lZqw3AyJE9+Ye/3FLN5s2bkZKSgqSkJGzevFmxcjIXhFy/3gLp6fGSyz625LsIKSUYC4MMYY0b7jPmS11AdbBUXFzMbw+3NnMjTOoWBnZUcJAQ+5NvTKPgt99+Q0REBFatWoWioiIUFRVh5cqViIiIwOHDh+09RkJII8TNZixf/glmzfIWtJvQYOfOkTAYvGQf+Fx14vLycv4fS9yyj0ZjlPw+xrRIS4uXPRc3poKCAtlfwgrPxcXFAIDMzFhVu6p8fHwwYcIEGAxeOHGim+xnuGBpy5Yt/HcozdwIHT7cE6tXp+KDDyZi9epUnD3bUXRPalLfiBAiVqMZn//9738YPXo03n33Xf5fQZWVlZgyZQpSU1Px448/2nWQhBDruKWmyMj66XzNzbAoP9Q1ku/l5oZApzuJy5cvi2ZShF3Kt20bazHTobTsYzAYsHnzZv49pSUxANiyZQsMBq9bOT1SLIOML77ww+rVXM0d8y7o1ePkgiVuh5iamRu5IDE1dTVSU1fXe30jQpqrGgU+v/32myjoAUylzmfPno1evXrZbXCEEHXEXdBNnc2Tk+vnu6091KUClq1bx6K8fBeA7Rbnk+pSrtEYER+fzi9zSX2PMPlYannNlEfjh8OHL6JNG1NAkpsbCqmJ727dfseQIWmiICMrqxizZ7cBY1ywY+p+Lvyv3IyMmsrUSgFkePg5KjhIiJ3UKPDx9vbGP//8gy5duohez83NhZeXl8ynCCF1QaoL+mOPAUOH1s/Mj7WHunTjT+u7k8yTfgHg2jVPi11X5p+X2x2m0Zh+/+GHps8BPW9tSTdntAh6AODjj3+B0Xib2bEaDB36DUJD/7Haj8taZWprAWRCQgL8/f3596jgICE1U6PAJykpCcnJyVixYgX69u0LANi/fz9mzZqFBx980K4DJIQoO326OujhVFUBZ87UT+ADKD/Uo6OPwNX1JrZuvV/0GbndSeZLVFK1bOLi9qNr1xOoqHCDweAFna4UV65cASC/O+xWqTF+Ccn0s/g4pRwaF5ebkOqY3rXrH3apTG0tgPT396/zIo6EOIIaBT4rVqyARqPBww8/zK9hu7i44IknnsDSpUvtOkBCiDy9Xg9v70potQF8cjEAODkxeHldhF7vXG+zAkoP9dDQXFU5LpmZscjIiLNYojKfwTlwIM7iOMBUX0xpdxhH7r0xY7byNXQ4ffr0wZtv3hTs4lJe1qoNpQCSlrUIsQ+bA5+qqiocPHgQCxcuxJIlS3D27FkApgZ5Hh4edh8gIUSasEbMyJHiGZERI3Zh1y7TNu+6qHhsK2uzGYcP97SohMzNzIwZs03VDI5wa7h4ec0IUx6OuNCg+YyPRmNEaGiexdi//faEWRNRU9CTnPweQkIKFK/bxcVFze3BhAkTFP//k5a1CLEfmwMfJycnDBkyBCdPnkR4eDhuv/32uhgXIcQKYd0apZmCmta3sTe5McrXxOFmZpiqGRzhspn5d50929Ei6AKgmGzMkUs6rqiwPgOj0+moOSghjUyNlrqioqLw999/Izw83N7jIYTUUH13Nq/J0ovUGK016gwNzVM1g8MtmwlzhMLDzwGQD7qUko05cknHLi7WA0oKaghpfGoU+Lzwwgt4+umnsXjxYsTExMDT01P0PnVkJ6RxqW2NH6l+U+HhlUhKSkJFRQWcnZ35KsVC5rV1pMjl5AhnYdTM4Oh0pdi/P062srNU0KUmWLRcOmNgTIt166aIzt+rVy+0a9eO7yVGQQ8hjVONAp97770XADB69Gi+OztAHdkJaQhyhfo4a9dW4fnn2a12Egwvv2zAuHHXVT+Y5ftNGTFqVCb/4JfKJVIzKySVk9O3bwZiYzNF1yMMUqRmcPbvj0Na2mBwM0HC3B8AsvdI6v4lJCTA2dmZ79pe3ZR0CrglOfPconbt2tHSPyFNAHVnJ6SRU5qtkeuDxTEYvLB6dTBfdM9o1GDWLG+cP/8+dLpSVYnP3EyPtX5TUnksfn5+sjkuly9fxvbtpgKG1mrcSDHvb5WWFg/zSsqMaSV3ilnrIybVAb6iwg3meUhyvbwIIY1Xjf6XGh4ejtDQUNFsD2Ca8cnNzbXLwAgh8hWZ9Xo9srKKFQMRwHp3b1sSn2vaKVztco+1ZafBgwcjLS1NdmxSydEajZEveMiNVzgLJHf/Nm/ejMTERNG5rBUYlFrqI4Q0PjVqUhoeHo5Lly5ZvF5UVEQJz8Sh5OUBe/ea/mtPer0ehw5dwNSpzKwiM8MPP5zB66+/jo8//sVq40vuYS1U0+7e9jwXUL0MZjB4ITs7TNRsVCgxMREpKSno3LmzTWMDGKKjD0FulsZa41CuRhnHvIkqNQwlpGmq0YwPl8tj7urVq2jRokWtB0VIU1BX/bG4nJrs7DAYjRNF71VVabBhw88ID1fX+FKpfo7B4IWvv76OiIgz8PO7DgC4fLkF9HpfhIdXIjjY9IA3GAxWz1WTaywvL4eT01SsWdMGRqMGGg1DamohHnnkMp8sbZ6HZL5sJlwui4vLEMzuGDF4cDqiorJw+HCM6j5iwvekavDUZEmOENK42BT4zJgxAwCg0Wjw3HPPiQpuVVVVITMzE3fccYddB0hIY6PX65GTU4mpU6urJXOzMXfccRFhYbWrlsw92KV3Oxlx7Zon36ZBTSAi9bCWym0BLOvaCPOF5M5lfm+kdn9xQRQ3y/P666/fyj9K5fOPGNNg1ao2yMr6Hf36ZWDChAkICgoyy3GyvK9S7SyEidHmidNxcRkArAdyXA2e/Px8PrjiPkcBDyFNl02Bz5Ejpv8TZIzh999/F+3YcHV1RY8ePfD000/bd4SENCLWZmNee203wsPP2aVaslwF4q1b7xcFJmpmIMwTgZWaeHKvyTURlXvwC7euKyVdJyUlAZCr36NBeno8oqKy8NFHH8HHZyZmzGgpO6uWn6+1uJaMjDjExmbyx3D36Mcf78KhQ71w4EA/ZGTEqbp/tvwZUksJQpoGmwIfbjfXI488gjVr1lC9HuJwlGZjhMsk9qqWzD2Yc3NDsG3bWMHsiOmBHxBQiJCQAptmIKw18eSoSVwWqqioAGB99xd3nK+vHuZNP4XfCwDPP+9pkePEzaoBwNGj18BYoNVxZ2VF4dChXpDa6m5tBkdpZxqHavYQ0nTUKMdn/fr19h4HIU2KPfNd1HxXUdF1yUTc996bgtGjLZeklMgtoQlnfADpJqJK9YK47dxqd3/pdKUYPDhdVHtH+L1FRX6ixquAeFaNG5NGk2p13HJb3dUGdhTUENJ81CjwuXbtGpYuXYrvvvsOFy9ehNEo3k3x999/22VwhDRmapeZals1GVDqOC6/JCVHLmgDLHN8ACA7Owz5+UGyFZETEhIQHBysejZMqF8/U76N+bm5a6lN8jZHaat7TXekEUKarhoFPlOmTMG+ffvw0EMPISgoSHKHFyGOQCnfBQA2bXLH7Nm6GldNFn6PON+nmtzMRWJioqi2jFzBQBeXclRUuMHXV4/U1NWithCm5GNTmwa5ZSJ/f3/4+fmhoKBAcqzWZsP69ctAVFSWRQCp9jwREWcwZsw2AAyhoXkW70sHjQzx8emKwSLl7BDSPNUo8Nm9eze++uor9OvXz97jIaRZ2Lx5s8WupZpUTRaSapsAyM9cBAQEKJ5fpyuV7HkVHX3EIk/H1mUipdmwwkJnZGeHiZbM5AJIa7Nq1ipXc+c2TxIfPDidn20CTLNW/v7+/M+Us0NI81WjwKdVq1bw9fW1fiAhDqwmVZP1ej2Ki4tlzxkSUoDRo+VnQbgHuJoHt1ISslLHdEDdMpFUMHP4cE88/3wXGI23yQYq5mNU6rFlrXI1x1oA5e/vj6CgIMXrIYQ0DzUKfBYvXoz58+fjgw8+ENXyIYRUsyXXBRA3AwXkH/pKD3GlB7j50o1SYCa3PARoFJeu1AUq0ktm5qzN5tjaQoPq7xBCgBoGPq+88grOnj2LwMBAhIWFWVQ4PXz4sF0GR0hjY0veh625LsIZIGsP/Zo8xLlt2VxBPqXAjBv7jh0jIVxW69t3v0XXdM6WLV58TlBtAxU1szm2BpZKKJ+HEMdRo8Dnvvvus/MwCGka1NR0KS4uxpYtWwDUrMWBLUs4NRk/N3ZrgVlExJlbW9y5T2ssigMCQFlZGQ4duoAZMwJEszm7do1CSkokdLpS7N69W6ZuT3WgwhU23Lx5s6ogyV4lBSZMmED5PIQ4kBoFPgsWLLD3OAhpMvz8/BRbM0g1t5R6GBcXF0suS8k99HNzQ1BUdF22jk5NKAVm1oKPhIQEeHh44KOPPpKsZG00avDxx5l8zR0TcZK0cEOoTqfjf692NsdaYDlhwgTF5XhKYibE8dgU+Pzyyy+IiYmBk5OT5Ps3b97El19+icTERLsMjpDGSJiLo2ZXESCd+7JlyxbJnV1yD/2tW8cCUP4eNUs25sfIBWbWgg9uF5TB4IVr1zxgPptjHqiY6umo2x1my2yO3PgTExMREREhfRMIIQ7LpsAnLi4OBQUFCAgIAAB4e3vj6NGj6NChAwDTv2AffPBBCnxIs8bN9KhdklIKjqSWzKQe+qblJunvGThwICIjI/mAhqunI4Wb4VBarsvOzkZaWpqq4GPTJnezWj+m4EfqWGuBlMFgEM361LYTurCGESGEcGwKfJhZMx/zn+VeI6Q5UpOHYi04ysvL4z97+fJl/vfCh/61a57YuvV+2e9p1aoVgoKCLHaFybGlfpBS8JGVVYzZs9vweT2mHV8MY8ZskSwkaC2Q4np4mX+GdmIRQuypRjk+SqiKM3EUavJQrAVHX3/9tez5uYd+Xl4QhJWTb50FLi7iGRvzGRy5reVKidl6vZ4PwISfF+fpmHz88S8wGm+zuDZPzzJVhQ25itEGg1edBDe0U4sQIsXugQ8hjkLNUpBcPZz8/GDJYEJKRYUbzHNjAA0qKuQf7Gpzj4RszV1Sm4BsHoDJVYweOPCKRWkMOUlJSaJlMXOUtEwIkWNz4PPHH3+gsLAQgGlZ688//8TVq1cBiKfqCXEE1vJQdLpSxMebdyDXID09HlFRWaLj5WZobK1XY215TW43mdrcpYEDB2Lv3r2Ca4uHXF6PVAAVEXFG5vyrbWi0qqNKy4SQGrE58LnnnntEeTwjR44EYFriYozRUhdxONbyUIKDC2BtN5PSDIu1mSXzWRJry2tyu8nUfr5Vq1b8mNPTq4Oe+Ph00ayQXAA1Zsw2myouS6FlLEJITdkU+GRnZ9fVOBTl5ORg8eLF+P7771FYWIjg4GBMmDAB8+bNE/0f4PHjxzFt2jT8+uuvaN26NZ588knMnj27QcZMCMf6bibru8OUZpbMl3zUzBBxszt5ecDp00BkJMBVqVDzeakxm89iyQVQAFM8v3lXeXO0jEUIqQ2bAp/27dvbdPL//ve/eP7550Vdj2vizz//hNFoxDvvvIOOHTsiKysLjz76KK5du4YVK1YAAEpKSjBkyBDEx8fj7bffxu+//47JkyfDx8cHU6dOrdX3EyJk62yDtRkbta0c5GaWpOryiLuRm6ovnz3bkZ+RuXz5MjZtcsfs2ToYjRpotQzz51fJjjc+Pv1WHR6gtLRU1ZjlAqjQ0DzF++Hj40PLWISQOlOnyc0fffQRnn766VoHPsOGDcOwYcP4nzt06IBTp07hrbfe4gOfjz/+GOXl5Xj//ffh6uqKbt264ejRo1i5ciUFPsQqrhJzcXGxReVlwLScpNPpFOvgXL58Gdu3b+d/FubsKM3YuLjcVJwB4TquS5Gb/YiIOANxZQnxLNL69Wm36u+YluCMRg0WLQpGaqpph5VwvPn5wUhPj+eDlLNndyEiwvqskFLAV9saPYQQUlN1GvjUZU0fg8EAX19f/ueMjAz0799f9K/foUOHYtmyZbhy5Qqfl0CIObVd0Tlq6uDI5eyYn094nFz3c6WO60LCv/um2Rn5GRmlthg63Un+Hri43OSDHu6YnTtHIjV1tarKyspLdFSjhxBS/5rkdvYzZ87gtdde42d7AKCwsBDh4eGi4wIDA/n35AKfmzdv4ubNm/zPJSUldTBi0pgpdUWPi8uw6EauVAcHUF/R2fw4UwK0EcnJ7yEkpLr6stqlNT8/PyQlJWHz5s1W83Skt9kDW7eOxenTx3H8eHdB1WjpAEptTR4KcAghjUmDBj7PPPMMli1bpnjMyZMn0aVLF/7n8+fPY9iwYbj//vvx6KOP1noMS5YswaJFi2p9HlI3hM1Apdgz0VUqYDlwoB8OHIjD6NHW6+BwrOW/cNvBpY4DtHx9noSEBAQHB4uuz9r94FjL05HKA+K+/9ixHuB2oQlnoqoZ+eKJcjV51N4rQgipbw0a+MycOROTJk1SPIbrAwYA+fn5GDhwIPr27Yu1a9eKjmvTpg0uXLggeo37uU2bNrLnnzt3LmbMmMH/XFJSgtDQULWXQOpQTVsw1DRYkg5EAPP8GKl6VcJZGWuzLdzso9rdV3q9nu8Ir+Z+cJTydLjgxNX1pkU7DKliidUNSBkALdatm2KlJs+ZGs/y0FZ1QkhdatDAp3Xr1mjdurWqY8+fP4+BAwciJiYG69evh1YrfkDFxcVh3rx5qKio4OuapKWloXPnzor5PW5ubnBzc6v5RZA6o2Zmw/y42vSrklv+AcQzNsIEZiGuOa/azuLWjhN+j1QytbVcJO47AODDDx+WDE5CQ3MlK0sLgx+NxogHHvgEn376oF1r8kglbdNWdUJIXavTwGfChAnw9vau9XnOnz+PAQMGoH379lixYgUuXbrEv8fN5owbNw6LFi1CcnIy5syZg6ysLKxZswarVq2q9feTxkHNg742/arkl3+UKyVXH1MdLCgl9Xp4eKg6TujSpUuiej1KBQ+5OjjcLjOlpbfw8HNm12zZEyw+Ph2urpU1qsmjxHwZjxBC6kONAh+j0Wgx48K9npeXh3bt2gEA3nrrrdqN7pa0tDScOXMGZ86cQUhIiOg9bueYTqfDnj17MG3aNMTExMDf3x/z58+nrexNELdUJVxSqknvqZp8hgtEMjNjceBAHORaMUjR6XSSMzNC5tvhueDE2rk3b96MpKQkANaTp83r4FhbUuOu+cSJrtizZxjENAgOzoevb1GNavLIbcWnmR1CSEOxKfApKSnBlClTsHPnTnh7e+Oxxx7DggUL4HSr5OulS5cQHh6Oqqoquw5y0qRJVnOBAKB79+746aef7PrdpH5JLVWp3SVV289wdLpSDBmSjtjYTMmZGKWZJ7UPc7njlM5dUVEBQH3BQ+H1WOupBQDe3qWozuUx4QKkmtbkUbsVnxBC6otNgc9zzz2HY8eOYePGjSguLsYLL7yAw4cPY/v27XxCYl3W7iHNn9Rsia0Pels/I5dMK7UNuyazSGqJa/oYMXhwOvr1y7A4ztampdZ6alnWEjJCKkCimjyEkObApsDniy++wAcffIABAwYAAO677z6MGDECo0aNwo4dOwCI8xwIsQdbH/S2fka49CRVufnKlSvYu3dvrWaRrLGs6aO91dEdFsGP2uRpg8FgtaeWVC0hjYZhzJgtCA3No5o8hJBmx6bA59KlS6J+Xf7+/khPT8fQoUNx77334r333rP7AIlj45Z+4uPTLbZjKz2A1QYHHG7pSWpZpqCgQLbujq1dxeVIb6XXWDT+5FhLitbr9di8eTMyM+Mlx3ziRFd06/aH7DV5epbZJcChremEkMbGpsCnXbt2OHnypKhCspeXF/bs2YMhQ4bgP//5j90HSByX+bJSfHw6n2grfCjLPVzt3Q+qJjNPtpzbPL8GEAdWzs7i/7kKm5wKf3Z1dcXFixdhMHjdStA2x7BnzzCkpQ1BfHy6Xa6JtqYTQpoKmwKfIUOGYP369bj33ntFr7ds2RLffvstBg8ebNfBEcclt0STmroaOl0p/6A1f7hKdSpX09FcCXestVmkmsxuCM89eHD6reUtcQ0dLgjx8fFBSkoKLl68iMrKSmzf3gpr1rQVdFc/j6SkqyguLsaWLVtQVBQG80Dq1lkBVN9TW2fTpNDWdEJIU2FT4LNo0SLk5+dLvufl5YW0tDQcPnzYLgMjjs3aspLcbiG5zulCts5EmJ9z/vxLyMlxRlhYJYKDewPoLXtOpSrSBoMBjDEMHjwYaWlpfC6PtSBky5YtMBi8JLurGwyr+eOVCjJyGNMiODgfqamrrc6MDR482KIfHkAzO4SQpsWmwKdVq1aKVZC9vLxw991313pQpHlS00qCU5tlpbp4CAvPGRQExMRY/4ytLSYAUyJzVFSWZBDi6urK3z81+UaWBRmNMM32WM4oqUla7ty5MwU4hJAmz+YChpWVlVi1ahU++eQT/PXXXwCATp06Ydy4cZg+fTrfLoIQIbVBwIQJEwDUzbJSfVPbcgOwrN9jXgCQm1UpKDB1bVcbGJr36+J2iplYX9aSW1IkhJCmyqbA5/r16xg8eDAyMjIQHx+P/v37AzB1UJ8zZw527NiBPXv2oEWLFnUyWNJ0qQ0CPDw8arys1FQp1QaSW9KTms2Jj0+XLWAImPp1iWd7gIiIM4pjowKEhJDmxqbAZ+nSpcjNzcWRI0fQvXt30XvHjh3D6NGjsXTpUixcuNCeYyQOpibLSk1VbWoDRUcfwfXrLficoPT0eLi735AsqFiXW/EJIaQpkc96lPDpp59i5cqVFkEPAPTo0QMrVqzApk2b7DY4QpoTg8EL2dlhMBi8+NeUAhI15+OCHu5zO3eOFJ2fwy2NCanJmWoKS4qEEGILm2Z8zp07hzvvvFP2/T59+uCff/6p9aAIsTe5xGqDwYCKigo4OzvDx8fH4n17LavJLWfVJonbllkcNQUdzWvxNLclRUIIAWwMfLy9vXHx4kWEhoZKvl9YWAgvL8t/bRJiTqkZp1pqdon5+fnVaHeVUEpKSq0CAGvLWbZUmBayNWiyVtCRavEQQhyBTYHPwIED8dJLL2Hbtm2S7y9duhQDBw60y8BI82WPRp9qgxlrNX3UyM/PR3l5eY1nQKzNzNhSYVq49CQXNAFAdnaYZFApt209MTGRgh5CiEOwKfBZsGABYmNj0adPH8yYMQNdunQBYwwnT57EqlWr8Mcff+DgwYN1NVbSDNir0afaYKa2QQ8AbN++nf99YmIiAgICVAUJXJAiNzPj4lI9NrUVpv38/JCYmIgtW7YAsJzFOXu2463ChrYFlVLLfIQQ0hzZFPh07doVaWlpSE5OxgMPPMB3YmeMoUuXLtizZw+6detWJwMlDUvtspLS+4D12Y/GnkzLBRzc8pe1+zJhwgSUlZXh7Fnh1nMGxrRYt26KKDBRm2NjHqRwQVNtgsrGft8JIcRebC5g2KdPH5w4cQJHjx4VFTC844477D020kjYsqwkF/xwbR9yciqxcSOD0VhdT8bJieHJJ4cjLMy5ySy3lJeXq74viYmJiI4+goCAQrz33hRwmynNA5Pa1syxFlRKNRIFKImZEOJYbA58SkpK0LJlS9xxxx2iYMdoNOLq1avw9va25/hII2CvZSU/Pz/4+QFr1wKPPQZUVQFOTsA772gQExNoj6HWK7X3pbKyEgBQUeEGpe7rtWUt2ZmKERJCiI11fD7//HP06tULN27csHjv+vXr6N27N3bu3Gm3wZHmKTkZyMkB9u41/Tc5uaFHZCJVZ8eealpLRy0u2Zn7jpp2WieEkObMphmft956C7Nnz4aHh4fFe56enpgzZw5ef/11jBo1ym4DJM2HMB/GyQno3Nn0+q32U/W25CK1ld4eO82sbdGvzdZ1IaV8HFt2iBFCiCOyKfDJysrCm2++Kft+//798eyzz9Z6UKT5sUeekBKloEMYKEgFOBERZ2STggGoqjekNnCyR2DC5UtxQaTBYMDmzZv599XuECOEEEdkU+Bz5coVPl9BSkVFBa5cuVLrQZHmx97bz60FM1zQwc0iJSUlYe3aryUDnDFjtkkmBX/77WCcPNnNajBjbTeVi4uL6Hi5wKS4uFjxeoUBobifWZDVekWUwEwIISY2BT5hYWH47bff0KVLF8n3f/vtN7Rv394uAyNEiZ+fHyZMmIC//y7H8893AWNcaQUtdu0ahZSUSHToUP2w1+l0srueAGaRFAww/PHH7aLj5LaGW9tNpdPpLAITrlUGAFy9ehV79uzht8rLzV5Z2zVHCCHEOpsCn4SEBMybNw+DBw9GYKB4F05hYSGeffZZTJgwwa4DJESKXq/HRx99hOzsMBiNt4neMxo1+PjjTISHnxMFC3K7nkJD80S5NwADoIE583pDXCCjpnWEMDDR6/WipSlToGOqtHz2bEfZ2St7FGMkhBBHZ1Pg88wzz+DLL79EZGQkJkyYgM63slP//PNPfPzxxwgNDcUzzzxTJwMlDcc8N0RuRqI+c0jUBh3CYEEpuZjLvdHpkrFwoU7yO83rDen1eqvnBcT3Ra/XIz8/n/9ZuEwHGGEKuKpnr2pS1ZoQQog8mwIfLy8v7N+/H3PnzsXmzZv5fB4fHx9MmDABL774IjUpbWa4nViJiYmorKzE9u2tsGZNWxiNGmi1DLNnn8W4cdfh7OyM8vJyFBQU1Gs+ia07pZSSi3W6UowceQPPP6+DUbzrXLLekHmS8fz5l5CT44ywsEoEB/cG0Ft0L8wTvPPygkS5QVLVJexZ54cQQkgNChjqdDq8+eabeOONN3D58mUwxtC6dWu+fYXQ/v370atXL7i5udllsKR+mT+oDQavW32gTH/WRqMGy5Z1wM2bqy0ezLXtaG4LW3dKySUXA0BwsFFUYFGrBWbMAKZPB0JCLI8XJxkDMTHy3yucfTp8uCd27BgJa6W07FnnhxBCSA0CH45Go0Hr1q0Vjxk+fDiOHj2KDh061PRrSAMyzymxlsQrxHU05xgMBlXfefnyZcnXrc0iKQUz3OeFlJbrkpOBoUOBM2eAjh2lA57a4HaBSQc9Rmg0qFWdH0IIIfJqHPiowRiry9OTeqYmiZcj7GguRS7wUPpcTWeRrC3XLVpUiORkcXAVEmIZ8NS2UStHKoAEIKorRAUICSGkbtRp4EOaNvNZmtpWHk5MTISPjw82bXK/lUejsalKMjeLZEsStXlxP6nluvnzA/Hvfxtw++2tZM8jtewnFbglJSVBp9MpBkFSASRgRHLyewgJMZWxpoCHEELqBgU+RJL5lmtObSoP+/j4oKoqCLNng08etmXnknA2KDExUdV3crVyOHLLdX/9ZcTtt0OWeX6OMPiLj09HcHABfH3F94wL9ADxUptcAMkFPXKo8jIhhNQeBT5EktKSjrV8GiWnT8Nix1RNdi5JJdNLcXYW/xWXW64LC5OvSC4kVaU5LW0wAI3ZUpUf3n13t+iahMGamgDSPHCiIoWEEFJ7dRr4qH04EccRGWnaKSUMfmqyc8m8GnJ+vhbZ2c4ID69EcLDp5MIig9Wfk55tMW0/t046P6e67s6OHSMtkpO5ZTzzdi9yAWRCQgKCg4Mp0CGEkDpAyc2kXoWE4NZ2cYaqKk2tdi5xgcGaNVcxY4Ynn6z88ssGjBt3HeXl5ZK7xKRnW9QFPtL5OUJacH/trfXskkNBDyGE1J06DXxKSylBs7lT6oouJzkZuOOOi3jttd213rn0++9X8L//6UTJyrNmeeP8+fcVz2s+2yK3jR4wzRxxDUTNZ4zk2ltwzJfxqJkoIYQ0LJsCn0GDBqk67vvvv6/RYEjjZh7kHD7cE7t2jbJ5dxZgKhQYHn6u1mM6dcpy9qUmOUPWtt8LRUScwZgx2wAwGAw+SE+Pl2w5AYiX8SoqKiioIYSQBmZT4PPDDz+gffv2GDFihOppe9I8SO1kMj3wLftKAai3Xl7h4ZWqawsBNZuhEn42MzMWGRlxohye1NTV/LLZ998PwrFjPWAKfhi6dz9OW9MJIaQRsSnwWbZsGdavX4/PPvsM48ePx+TJkxEVFVVXYyONhPROpniYVx5mTIvr16di7VrLfBvzJRylIMiW4CQ42Ki6tpB58CY1QyX33VItJrhgLzV1NcLDz8Fg8MLx491RPeOjwfHj3TFo0PcU/BBCSCNhU+Aza9YszJo1CxkZGXj//ffRr18/dO7cGZMnT8a4cePg7e1dV+Mk9UwYmEjvZNJazLSYGnm25JN7jUYN5szxQVKSD8xXeMwbfHK7sjIzK7B6dYBicGI+PjVbw6WCN/P6QXKBkVKLCeGymi0tPQghhDSMGiU3x8XFIS4uDmvWrMFnn32GN954A08//TTy8/Mp+GkmhIFJfr4WH37I+GUtAHByYnjuuetYvNgTVVWmoOd//wNWrBCfp6rK1PNKqcHnunXA1KnS9X127RqFe++9C716lYu2qZvnylirLWQtKFEKjORaTADiZTVrLT3MawoRQgipf8qtoa04fPgw9u3bh5MnTyIqKoryfpoZPz8/BAUF4ejRQIgTdoF33tFgwQJP5OQAe/cCOTmmDuZas79RTk6mRp9y8vKkgx6O0ajB44+3wp13BuLrr4MQFBRUowRhLigREgYlSoGR1Ge5zwuX1bgdX9yx5u9zxQgJIYQ0HJv/CZqfn48NGzZgw4YNKCkpwYQJE5CZmYmuXbvWxfhIA+MCE2FJJq3W1L0csGzmaarRA34W6J13lLubS1VylmI0mmr/3HHHRX7mB1Dehi509mxH0TWYByX5+UEw35rOBUaWW9iN6Ns3A7GxmRazTLVp6UEIIaTu2RT43Hvvvdi7dy+GDBmC5cuXY8SIETR938xJBSZKy1fJyaag6MwZ00yPUtADSFdyllNVpcFrr+1W3AYvlZwslaPDGPgdaAaDF9LT4yGux8MQH5/On8OWgEZu2Y16bRFCSMOzKWr55ptvEBQUhH/++QeLFi3CokWLJI87fPiwXQZHGp5UYGJt+cp8FkhJdSXn6lmipUuB9u2BpCRYzNLIbVNPSEjAnj2hfNd3rZZh0aICVFW9K5ucnZkZiyFD0mXbUAQH54tesZZHxHVml0KFCQkhpHGwKfBZsGBBXY2D2Iler7drZWCpwMTa8pUt9Ho97r23HJmZWuTkOCMsrLrX1vLl7pg9WycqkCgXeJSXB2D2bB8+QDMaNVi4MAhbt46AwfAjTMUFxcFNRkYcunY9gWvXPGyqBWQuMTERAQEBFNgQQkgToGHUUEukpKQEOp0OBoOhye1Q0+v1eP31160el5KSYvNDOi9P/fKVWmrGa1q6sr681K1bCu6/3/KaJk7cgPDwc9izJx4HDvST+CQXEBllm4smJCTA399f8ntpJocQQhoHtc9vuyTo7Nu3D9euXUNcXBxatWplj1OSGlCa6anJcUK2LF+pnXVSMw5ry0uc8PBKxa7vsbGZfMXlagzVs0BaMGbE2LFbEBqaJ/pOahpKCCHNh82Vm69evYrFixcDMHVfHz58OPbs2QMACAgIwHfffYdu3brZf6SkSbBl1smegoONoiU5ua3mwgKFUnk/3LEDBw5EZGQkzegQQkgzY1Pgs3nzZsyZM4f/eevWrfjxxx/x008/4bbbbsPDDz+MRYsWYcuWLXYfKGkcrM3mGAwGVeepyayTksuXL+O++1wxdKgfMjP12L//A9GurqIiP0REnOH7al265I+vvx4pe75WrVohKCjIrmMkhBDS8GwKfLKzs9G9e3f+56+//hpjx45Fv36m3Ilnn30W999/v31HSBoNtbM5DYHrrp6SkoK+fcuRlaXchsLXtwhff21Ztyc0NA8AcPXq1Xq/BkIIIXXPpsrNlZWVcHNz43/OyMhA3759+Z+Dg4NVF5Qj9qPX61FQUFDn997eszQ1YTB4ITs7DAaDl+T7+fn5/H2Qa0NhMHhBpyvF6NE7Zass79mzB3q9vh6uiBBCSH2yacYnIiICP/74Izp06IB//vkHf/31F/r378+/n5eXR/kQ9awxz8LYS1JSEioqKvDss9lWu6tzMz+A9f5c1ooSNoZAjxBCiH3ZFPhMmzYNKSkp+Omnn3Dw4EHExcWJWlV8//336Nmzp90HSeQ5wsNZp9MhP1+LnTu7KXZXN2etaajp3Op2jRFCCGkebFrqevTRR/Hqq6+iqKgI/fv3x7Zt20Tv5+fnY/LkyXYdILG/xtI6Qe04XF1dkZ3tLDt7I8da01BCCCGOx+Y6PpMnT5YNbt58881aD4jUDa4IX2Panu3n54eUlBRVNX/Cwy9IbEE3wsXF8rPCfl3C5ayRI7vgxIkjisdTUEQIIc0bdRhtxoQPdH9//0a1PZub7REGYXl5pqaokZGWxRKDg41mHdJNxQfXrZsiyvWR28Wl05Wic+cYnDhRfU6DwQuZmbF8YUO5vCFCCCHNh02BT0VFBebNm4ft27fD19cXjz/+uGj258KFCwgODkZVVZXdB0psYx4AtG1bgpkz6+e7ExMT4ePjI/u+1KzTunXA1Kmmystarak/WHKy+HPR0UcQEFCIdeumiHJ9duwYiYCAQnh5XZXcxSWVB3T4cE/s2GHesd163hAhhJCmzabA58UXX8SHH36Ip59+GsXFxZgxYwYyMzPxzjvv8MdQ66+GJ7WNe84cHZKSatdnS21Ojq0NO/PyqoMewPTfxx4Dhg6tHi/33RUVbpIVl9etm4K4uAzFXVwc7v5IpbhJHU8IIaT5sCnw+fjjj/Hee+9h5EhTxdtJkyZh+PDheOSRR/D+++8DADQajdIpSD2Q2sZdVaXBmTO1C3xsycnhmC9fSVV+PnjQFUajOFCqqoJovNx3Hz58ER9+aNlugjEtDhyIU9VlXer+SB3fWJLACSGE2I9Ngc/58+cRFRXF/9yxY0f88MMPGDRoEB566CG8/PLLdh8gUSb1cJbaxu3kxNCxY+2DUltmcsyXr1auvIriYsuaQwaDFzSaVLPxmjrBm393VFQ5Ro3aZbFMZaJFXNx+i5wdbvbGw8MDgPT9Aap3fT366HCbZ60IIYQ0DTYFPm3atMHZs2cRFhbGv9a2bVvs3bsXAwcOxKRJk+w8PGKN3CxM27YlmDNHh6oqDZycGN55R1Or2R4pSsnIUstXM2d64qmnvCyWkcwbiCqN19XVVTLXBzAFLrGxmYiNzRQVJUxISOA7rHP3Snh/tFqGqVOvYcqUawgL60cBDyGENGMaZkNSzpQpU8AYw7p16yzeO3/+PAYMGIC///67SSc3l5SUQKfTwWAwwNvbu6GHI0uuWWh+vhbZ2c7o3FmLVq1a4cwZ08yJu7tyc1Fbt7lbS0beuxcYNMjycxMnbkB4+DnJc5p2ofniySeHIyYmUPa7uWtfu7YKixYF87M78fHpCA4usNiWPnXqVMkdbXl54O+PvYNCQggh9Uvt89umGZ/nnnsOf/75p+R7bdu2xb59+5CWlmbbSInN5NpUmO/kWrXqKqZPb6m6rUVKSoqq4EdNMnJkpCkg4o4BTMtt5vk2QlwV5eBgo+wxQPVy29SpBTAYTN3W8/ODkZ4eb9O29JAQCngIIcTR2FS5uX379hg6dKjs+8HBwZg4cWKtB0WUSc3cSO3kmjnTE3l56ttaqD3u9GlxQANUJyNzQkJMs0BOTqafnZyAZcsMdt8tpdOVwte3iA96AHEzUkIIIUTIpsCH89lnnyEhIQFRUVGIiopCQkICtm7dau+xSbp58ybuuOMOaDQaHD16VPTe8ePHcdddd6FFixYIDQ11qGRrpZ1c9sbN5ghJJSMnJwM5OaZlr5wcYNy46/YfDJSbkRJCCCFCNgU+RqMRSUlJSEpKwh9//IGOHTuiY8eOOHHiBJKSkvDAAw/UeR2f2bNnIzg42OL1kpISDBkyBO3bt8ehQ4ewfPlyLFy4EGvXrq3T8TQW3E4lIdNOLvt/l9RszjvvWC4b6fV6lJaehJ/f77hy5XecPn3a/oOB9LVLbWMnhBBCbMrxWbNmDdLT07Fjxw6+lg9nx44deOSRR7BmzRqkpqbac4y83bt3Y8+ePdi2bRt2794teu/jjz9GeXk53n//fbi6uqJbt244evQoVq5cialTp9bJeBoT851RGo0Ry5aVICTEBwUF6s5RXFys+L4wATo52ZTTI5ccrDavqDa4rfxS1y7cxk71eAghhHBsCnzWr1+P5cuXWwQ9ADB69Gi8/PLLdRb4XLhwAY8++ii++OILvh6LUEZGBvr37y96yA0dOhTLli3DlStX0KpVK8nz3rx5Ezdv3uR/LikpsfvY64uwIaevbxHGjXsQgI/qz2/ZssXqMcIEaKXkYDX5QnLNQbk/Q7mda8LjhFv558+/hJwcZ4SFVSI4uDeA3o2qKSshhJCGZ1Pgc/r0acTHx8u+Hx8fj5SUlFoPyhxjDJMmTcLjjz+OXr16IScnx+KYwsJChIeHi14LDAzk35MLfJYsWYJFixbZfcwNhdsZBQAGgwEAcPnyZbud/9KlS3YJJIQ70LRahpdfNmDcuOt8oGLLTjRuq3pQEBATU+uhEUIIacZsyvFxd3dXXA4pKSlBixYtVJ/vmWeegUajUfz1559/4rXXXkNpaSnmzp1ry3BVmTt3LgwGA/8rNzfX7t9R1wwGL2Rnh1nsYtq8eTPWrl2L7du32+27Nm/eDL1eX6tzmO9AMxo1t4oJBvFBlb13ohFCCCGAjTM+cXFxeOutt/DWW29Jvv/GG28gLi5O9flmzpxptdpzhw4d8P333yMjIwNubm6i93r16oXx48fjgw8+QJs2bXDhwgXR+9zPbdq0kT2/m5ubxXkbO+FynnntHjX1a2qrtsGG3A60Q4cMCAnR1erchBBCiBKbAp958+ZhwIAB0Ov1ePrpp9GlSxcwxnDy5Em88sor+PLLL7F3717V52vdujVat25t9bhXX30VL7zwAv9zfn4+hg4dis2bNyM2NhaAKSibN28eKioq4OLiAgBIS0tD586dZZe5miqu9UJOTiWefz4AjJl6cDGmxVdfjcL8+bHw8CiSzdkR5tY88shg+Pv7w2AwYPPmzfUyfqleWRqNER4e+SgoKKNkZEIIIXXGpsCnb9++2Lx5M6ZOnYpt27aJ3mvVqhU++eQT9OvXz64DBIB27dqJfm7ZsiUAICIiAiG3smvHjRuHRYsWITk5GXPmzEFWVhbWrFmDVatW2X08jYGfnx+OH5cqJKhBaWmgbPVj8xmitm1LMGlSFSoqKuph1CZyu7AOHDiCAwdMxyQmJoo+I5cITQghhNjCpsAHAP7zn/9g6NCh+Pbbb/m6LJ06dcKQIUMkd1vVF51Ohz179mDatGmIiYmBv78/5s+f36y3sku3hbAsJMiRqu48e7YO58+vskswIdyFZZ5QbTB4ITc3FAAQGpprsQPN/PsrKyv53zfEch4hhJDmyabA5/vvv0dKSgoOHjyI//znP6L3DAYDunXrhrfffht33XWXXQdpLiwsTLJQYvfu3fHTTz/V6Xc3JlwhwcceM7WMEBYSlKrdI5VbYzRqUFTkW+vAR2kX1uHDPbFjxygAGu5bMXq0KXix9r1SwdrOnSMREXGGZn4IIYTYzKZdXatXr8ajjz4q2fVUp9Phsccew8qVK+02OGKdeVsIYYd0c1IVjrVa5cahUqR29sklPHOBS3XQAwBa7NihrpcWtaMghBBiTzYFPseOHcOwYcNk3x8yZAgOHTpU60ER24SEAAMGWO80zuXWcMGPRmPE/PnnJWdO5LbIA6ZCh2q3tEsFLiZa5OaGyH4Pl6BurR0FJUITQgixhU1LXRcuXOAfSJInc3bGpUuXaj0oUnvmAQGXHBwRcQapqav53JrExOEw3/ylJqdG7ZZ2qR1cnK1b7wfAAFh+j06n46syt21bcqvOjwZOTgzLlpVg3LgHqSozIYQQm9kU+LRt2xZZWVnoKJM9e/z4cb6KLmlY3Jb38vJybNrkjuef18Fo1PBVkmfNMlVJNg9g7J1TY76DS0wDbglM6nu4oGbmTCApiesLpkFIiA9sacVBCCGEcGxa6rr33nvx3HPP4caNGxbvXb9+HQsWLJDs40Uahp+fH6qqgjB7tg+MRlOAYaqS7COqkixUFzk10dFHkJq6Gv37K9d4Uvoetct5hBBCiBKbAp9nn30WRUVF6NSpE15++WV8+eWX+PLLL7Fs2TJ07twZRUVFmDdvXl2NldTA6dNStX5Msyd6vd5i27lUTg3AkJ8fbNP3mufu6HSliIk5InHuapS7QwghpK7ZtNQVGBiIAwcO4IknnsDcuXP5LeUajQZDhw7FG2+8wTcGJY2DXK0fP78rstvPo6MP4dChXqjeiaVBeno8oqKyVC13yeUIWRYuNP39YYxydwghhNQPmwsYtm/fHl9//TWuXLmCM2fOgDGGyMjIZtcWormQq/Xj7FxocawwYDHHLUPJBT7cDI21HCHzwoUAcPfdyYiJ0VHuDiGEkDpnc+DDadWqFXr37m3PsZA6kpwMDB3KJQcD7u56vP66eCuXecBiTrgMJYVLpt67F1i1yjJH6I8/uqJr1z+g05Xyvzh33lmGoCBqTkoIIaTu1TjwIU1LSEh1YnBBgeVWdPl6O6agJz4+XRSsuLq6ilpUcMLDtdBqGZ9MbcLw7bfDsGfPEGo3QQghpEFR4EMAyNXbMQLQgDEtvvtuMIYOvRPjxl3nl7XkcoRGjhQumTEobVknhBBC6pNNu7pI8yVV1dlEehu8UgFDbvv60KHfQNyqgtpNEEIIaVg040N4wsTja9c8b1VWrsZtg1dTS0enK0XXrn9gz54holkkjcYIFxd1VZ8JIYQQe6MZHwKguu4OAISHn0NoaK5FzR0nJ1NytFrms0gAA2NarFs3BYcP97TPwAkhhBAb0IwPka27M2rULnz11ahbPbJM2+BtrZwcHX0EAQGFeO+9KeDibMr1IYQQ0lBoxsfBydXdMRi8sGxZJ+TkaLB3L5CTY9oWr3QeuW7uFRVuMP+rJsz1oSrNhBBC6gvN+DggYaCRmRkr25urdevW8PMz1f0pLy9HQUH1McJWF0rd3JOSknDtWits3Cje4u7kxPDkk8MRFuZMVZoJIYTUGwp8HBBXbDAnpxKLFgVYvK/VMsyc+W/4+bWCXq+X3bYOWK/UrNPp0KVLoET1aA1iYqi9CSGEkPpFgY+D8vPzw/HjwK12ayKPPXYN/v43UFBQAIPBoHgepW7uOl0pP7tkXj2auqwTQghpCBT4ODB//yvQaHQWRQtbtFiLtWvVJR1LFT6UW8YSVo8mhBBCGgIlNzswf/8bFkULR4/eZdNOK27LupOTaepIuIxFuTuEEEIaG5rxaeTy8oDTp4HISPWzJVI9tIRcXV35oMS8W7q1oMdg8EJRkR98ffX8sdHRRzB/fixKSwNpGYsQQkijRoFPI7ZuHTB1KmA0AlotsHat8pZyAFaTkTkpKSn87827pctR2r0VHGxEUJDVUxBCCCENigKfRiovrzroAUz/fewxU4Kw1IwKN8sj3GYOSM/QAFCcEZJibfeW+fcKZ5UIIYSQxoICn0bq9OnqoIcj1ytLr9fjxRc/4AMcwBTs5OcHIT09XnKGRopckARY3721fft2i/OlpKRQ8EMIIaRRocCnkYqMNC1vCYMfuV5ZGzY4YfXq1FuBiRGmjugaAAxcd3RrMzRKy1gGgxeuXfO4dW5xw1Ff3yLZa7B1VokQQgipaxT4NFIhIZAo+iee7dHr9cjJqcTs2QFgjKuKLJyV0QhPKTtDo7SMdfZsR8F7DFzwwwVH1GuLEEJIU0KBTyOmVPSPS2LOzg6D0ThR1fnkZmjklrFyc0NEARGggUbDMGbMFoSG5lHQQwghpMmhwKeRkyv6xy0jSRUQFDMtdynN0Eidw1TbRyMZEHl6llHQQwghpEmiwKeJ4woIipejTEtcGo0R8fHpCA7Ol6zRI0xmFp5Dq2UYOXIXQkNzJQMipbweQgghpDGjwKcZiI4+goCAQqxbN0UUpDAGREVlSc7OSCUzp6auRlGR7612E/1QXt4bbduWYM4cHaqqNHByYli2rARDhgyW3MVFCCGENHbUsqKZqKhwk1juMiUzcwYOHAhAPpkZAMLDzyE42Ag/Pz8EBQVh5kwf5ORosHcvkJOjwcyZPvD396+XayKEEELsjWZ8mgm5PB3hslRAQAAA6zV5zJnnGXEd1zly9X/MjyOEEEIaGgU+jUxNenMBlrk+5snMSUlJ0Ol0ANQFSUr8/PyQkpKC8vJybNrkjuef18Fo1ECrZXj5ZQPGjbtOlZsJIYQ0ShT4NCLi3lzVQYQ5uZkUpYajOp2O/5y1IEnNTI2fnx/y8oDZs4VtNTSYM8cHSUk+oJiHEEJIY0SBTyNh2ZtLg1mzvHH+/PuSy08TJkyQPI9Sw1HhTA0AzJ9/CTk5zggLq0RwcG8AvW2aqbGlrQYhhBDSGFDg00hIBRFKeTceHh5ISUlBfn6+TTushEFNUBAQE1PjIdvUVoMQQghpDCjwaSSkgggu70YuedjPz89u/bC47u5ypGaC1LTVIIQQQhoTCnwaieoggqGqqrrSsrBXllSHdbU7p5SO49pfWCPVbV2prQYhhBDS2FDg04gkJwN33HERr722m99hVd11Xdw8lGOetyPFWt6O2lkjuePk2moQQgghjQ0FPo1McLAR4eHnAADZ2WGy9XaEaNs4IYQQog4FPo2YdANShvz8YNXnUJO7QwghhDgKCnwaMZ2uFPHx6UhLGwyu8SigQXp6PPLzLyEoSPpzXLBTXFyMLVu2WP2exMREu42ZEEIIacwo8GlkzGdggoMLUB30mDCmRV5eC8mt6GoTlYWKi4ttHCUhhBDSNFHg08iYJyvn52uxcSOD0Vgd/Dg5McTE6CQ/b76sJdwKD0ByW/yePXtkPyNXDJEQQghpiijwaYTMiwxa1srRqNpFdfhwT0EXdnbrl/S2eKnPKB1HCCGENEVa64eQhpacDOTkAHv3mv6bnGz9MwaDlyDoAUzLZdXb4nfsGAmDwUvxM9z2ee44SoQmhBDS1NGMTxOhplZOXh5w8KArv1RlvhVeTIvMzFgMGZLOvyL1Gca06NdvIgYMoG3zhBBCmj4KfJo4bgfXpk3umD1bB6PRDxpNKuLj0yW2wotlZMQhNjaTz+OR2j7v5ATExvpRt3VCCCHNAi11NWJ5eablrbw86fe5HVzLl3+CWbO8+QRoxrRIT4/ngx8TZvF582KIOl0pRo3axX/GyYlR7y1CCCHNCs341LO8PFMn9shI5YBizZqrmDHDE0ajBlotw/z555GQcIV/39nZGRqNKdCRW6IKDs5HaupqFBX5wsWlHOvWTREdxzVBFYqOPoKIiDMoKvLFk08OR0xMoB2umhBCCGkcKPCpR+vWAVOnmjqwa7Wm3VpSicq//34F//ufDoyZAhujUYNFi4JhMGwRbS835fKEwcXlpsUSFRfU6HSl/GdGjdplsWNLars695ngYKPFe4QQQkhTRoFPPcnLqw56ANN/H3vM1NncfObn1CnL3BxuWYoLVMy3nXfvfhzHj3dXDGqEszlcUEQIIYQ4Egp86snp09VBD6eqCjhzxjLwCQ+vlJ3BAaS3nR8/3h0PPPAJXF0rLIKapKQk6HTVBQ8vX76M7du32/kKCSGEkMaPkpvrSWSkaXlLyMkJ6NjR8tjgYKMoydh8Bkcup+eTTx7ElSu+FjM5Op0OQUFB/K/gYHVNTqluDyGEkOaGZnzqSUiIVAVm0+vmHdQvX76suCwl3bUdAEwFByMiziguY5m3xZDi6upKdXsIIYQ0OxT41KPkZFNOz5kzppkeLuiRayoqTEw2f12YqCxkngskRxjUqN1pRgghhDR1tNTVAJigpI7SrIuS6OgjSE5+D4A4cUhqi7rSktW6dUD79sCgQab/rltXo+EQQgghTQIFPvXI3kFGSEgBRo+WzwVKSEhASkqK7JKV3E4zuYKJhBBCSFNHS131RC7IyMysXeyplAvk7++vmKdjy04zQgghpDmgwKeeyAUZOTnSfwRco1FfXz10ulL06tULAPDbb79ZHCuXC2QNt9NMOC65nWaEEEJIc0CBTz2RCzLCwiqRlSU+1rw44ahRuwBYBjy1pbTTjBBCCGmOKMennnBBhpOT6WcuyDBvCyFVnHDnzpEwGLxs/k41dXiSk4GcHFMz1Jwc6RYahBBCSHNBMz71SGo7e0GB+Bi54oTCLeoJCQlwdnZGZWWlxXe4uLhAp9PZVIcnJIRmeQghhDiGJhX4fPXVV3j++edx/PhxtGjRAnfffTe++OIL/v1//vkHTzzxBPbu3YuWLVti4sSJWLJkCZydG89lmgcZ5rMyUsUJzbeo+/v7IygoqM7HSgghhDQ3jScisGLbtm149NFH8dJLL2HQoEGorKxEliA5pqqqCiNGjECbNm1w4MABFBQU4OGHH4aLiwteeumlBhy5MmEVZa6Hltou6oQQQgixjYYxYTm9xqmyshJhYWFYtGgRkmWSUHbv3o2RI0ciPz8fgYGBAIC3334bc+bMwaVLl1T3nSopKYFOp4PBYIC3t7fdrkGNgoICrF27FgC3q0u6i3pCQgL8/f0BUGsJQgghBFD//G4SMz6HDx/G+fPnodVq0bNnTxQWFuKOO+7A8uXLERUVBQDIyMjA7bffzgc9ADB06FA88cQTOHHiBHr27Cl57ps3b+LmzZv8zyUlJXV7MQqKi4v530ttUee2uK9fnyZ6T6lIISGEEEKqNYnA5++//wYALFy4ECtXrkRYWBheeeUVDBgwAH/99Rd8fX1RWFgoCnoA8D8XFhbKnnvJkiVYtGhR3Q1eJb1ejy1btsi+L7XFPTr6CICat70ghBBCHE2Dbmd/5plnoNFoFH/9+eefMN4qfjNv3jyMGTMGMTExWL9+PTQaDT777LNajWHu3LkwGAz8r9zcXHtcms2Ughd7bnEnhBBCHFmDzvjMnDkTkyZNUjymQ4cOKLi157tr1678625ubujQoQP++ecfAECbNm3wyy+/iD574cIF/j05bm5ucHNzq8nw64x51WY1W9wJIYQQYl2DBj6tW7dG69atrR4XExMDNzc3nDp1Cv/6178AABUVFcjJyUH79u0BAHFxcXjxxRdx8eJFBAQEAADS0tLg7e0tCpgaSl6eqW1FZKRyzRypJa2IiDNWt7gTQgghxLomUbnZ29sbjz/+OBYsWIA9e/bg1KlTeOKJJwAA999/PwBgyJAh6Nq1Kx566CEcO3YM3377LZ599llMmzatwWd0rHVlz8sD9u93RV5ekOSSFgCMGiXfhZ0QQggh6jSJ5GYAWL58OZydnfHQQw/h+vXriI2Nxffff49WrVoBAJycnLBr1y488cQTiIuLg6enJyZOnIjnn3++Qcct15V96FDTzM+6ddz7ftBopsguaSl1YSeEEEKIOk0m8HFxccGKFSuwYsUK2WPat2+Pr7/+uh5HZZ1cV/YzZ0y/FwZFpqCHAdDwxwqXtGrahZ0QQgghJk1iqasp47qyCzk5mXp1SQVFpqDHtiUttcUZCSGEEEfXZGZ8miquK/tjj5lmeriu7FyCs1YrDn40GiMeeOAT6PV+aNfuH4SEiLuYJiYmwsfHh/+ZKjcTQggh6jWJlhX1qS5aVuj1euTkVCInxxlhYZUIDq6OdDZtcsfs2ToYjRpoNEZ0734cx493lyxUeO+996J37952GRMhhBDSnDSrlhVNmV6vx+uvv87/LOiryps+3Qu5uSEoK3PH11+PALcCye3qiog4A52uFC1atKinURNCCCHNEwU+dUxNO4mzZzuKtrELUaFCQgghxH4oubmOGQwGK+97yQY9ABUqJIQQQuyJAp86VlFRofi+VDsKDhUqJIQQQuyLlroamK+vXrIdxZgxWxEamicKepyd6Y+LEEIIqQ2a8WlgOl2pZDuKqKiTFjM9wm3shBBCCLEdTSE0AtSOghBCCKkfFPg0EmraUVCFZkIIIaR2KPCpY7XNy0lISIC/vz9VaCaEEELsgAKfOqTX61FZWVmrc7i4uCAoKMhOIyKEEEIcGwU+dcS8YnNNUUcRQgghxH5oV1cdUVOxWQ3ayUUIIYTYDwU+hBBCCHEYFPgQQgghxGFQ4NNIGAxeyM4Og8Hg1dBDIYQQQpotSm5uAAaDF4qK/ODrq4dOV4rDh3vyjUq5ys3R0UcaepiEEEJIs0OBTz0zD3Li49ORnh7P9+piTIudO0ciIuIMVXAmhBBC7IyWuuqRweDFBz2AKchJS4u36M7OmBZFRb4AqFozIYQQYk8041NHpAKWoiI/iyAH0Fp0Z9dqGZ58cjjCwpypWjMhhBBiRxT41BE/Pz+kpKSgvLwcly9fxvbt2+Hrq7cIcsyXuzQaI15+uQQxMYENOHpCCCGkeaLApw6Zz9bodKUYNWqXKMcnLi4DUVFZiIrK4ruzjxv3IACfBhkzIYQQ0pxR4FMPhMte0dFHEBFxBpmZsThwIA4HDvRDRkacaCcX5fUQQgghdUPDqBmUSElJCXQ6HQwGA7y9ve12Xr1ej/LychQXFyMvDxg2rAuMRg3/vlbL8MsvFymvhxBCCKkBtc9vmvGpJ1wwExQUhMJCwGgUv280alBaGgiKeQghhJC6Q9vZG0BkJKA1u/NOTkDHjg0zHkIIIcRRUODTAEJCgLVrTcEOYPrvO++YXieEEEJI3aGlrgaSnAwMHQqcOWOa6aGghxBCCKl7FPg0oJAQCngIIYSQ+kRLXYQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBvbrMMMYAACUlJQ08EkIIIYSoxT23uee4HAp8zJSWlgIAQkNDG3gkhBBCCLFVaWkpdDqd7PsaZi00cjBGoxH5+fnw8vKCRqOp8XlKSkoQGhqK3NxceHt723GETQfdA7oHAN0DgO4BQPcAoHsA1O09YIyhtLQUwcHB0GrlM3loxseMVqtFSEiI3c7n7e3tsH/BOXQP6B4AdA8AugcA3QOA7gFQd/dAaaaHQ8nNhBBCCHEYFPgQQgghxGFQ4FNH3NzcsGDBAri5uTX0UBoM3QO6BwDdA4DuAUD3AKB7ADSOe0DJzYQQQghxGDTjQwghhBCHQYEPIYQQQhwGBT6EEEIIcRgU+BBCCCHEYVDgY4O33noL3bt35wsvxcXFYffu3fz7N27cwLRp0+Dn54eWLVtizJgxuHDhgugc//zzD0aMGAEPDw8EBARg1qxZqKysrO9LsZulS5dCo9EgNTWVf62534eFCxdCo9GIfnXp0oV/v7lfP+f8+fOYMGEC/Pz84O7ujttvvx2//fYb/z5jDPPnz0dQUBDc3d0RHx+P06dPi85RVFSE8ePHw9vbGz4+PkhOTsbVq1fr+1JqJCwszOLvgUajwbRp0wA4xt+DqqoqPPfccwgPD4e7uzsiIiKwePFiUa+k5v73ADC1SEhNTUX79u3h7u6Ovn374tdff+Xfb2734Mcff8SoUaMQHBwMjUaDL774QvS+va73+PHjuOuuu9CiRQuEhobi5Zdfts8FMKLajh072FdffcX++usvdurUKfZ///d/zMXFhWVlZTHGGHv88cdZaGgo++6779hvv/3G+vTpw/r27ct/vrKykkVFRbH4+Hh25MgR9vXXXzN/f382d+7chrqkWvnll19YWFgY6969O5s+fTr/enO/DwsWLGDdunVjBQUF/K9Lly7x7zf362eMsaKiIta+fXs2adIklpmZyf7++2/27bffsjNnzvDHLF26lOl0OvbFF1+wY8eOsdGjR7Pw8HB2/fp1/phhw4axHj16sIMHD7KffvqJdezYkT344IMNcUk2u3jxoujvQFpaGgPA9u7dyxhzjL8HL774IvPz82O7du1i2dnZ7LPPPmMtW7Zka9as4Y9p7n8PGGMsMTGRde3ale3bt4+dPn2aLViwgHl7e7O8vDzGWPO7B19//TWbN28e2759OwPAPv/8c9H79rheg8HAAgMD2fjx41lWVhb75JNPmLu7O3vnnXdqPX4KfGqpVatW7L333mPFxcXMxcWFffbZZ/x7J0+eZABYRkYGY8z0l0Wr1bLCwkL+mLfeeot5e3uzmzdv1vvYa6O0tJRFRkaytLQ0dvfdd/OBjyPchwULFrAePXpIvucI188YY3PmzGH/+te/ZN83Go2sTZs2bPny5fxrxcXFzM3NjX3yySeMMcb++OMPBoD9+uuv/DG7d+9mGo2GnT9/vu4GX0emT5/OIiIimNFodJi/ByNGjGCTJ08WvZaQkMDGjx/PGHOMvwdlZWXMycmJ7dq1S/R6dHQ0mzdvXrO/B+aBj72u980332StWrUS/W9hzpw5rHPnzrUeMy111VBVVRU+/fRTXLt2DXFxcTh06BAqKioQHx/PH9OlSxe0a9cOGRkZAICMjAzcfvvtCAwM5I8ZOnQoSkpKcOLEiXq/htqYNm0aRowYIbpeAA5zH06fPo3g4GB06NAB48ePxz///APAca5/x44d6NWrF+6//34EBASgZ8+eePfdd/n3s7OzUVhYKLoPOp0OsbGxovvg4+ODXr168cfEx8dDq9UiMzOz/i7GDsrLy/HRRx9h8uTJ0Gg0DvP3oG/fvvjuu+/w119/AQCOHTuGn3/+GcOHDwfgGH8PKisrUVVVhRYtWohed3d3x88//+wQ90DIXtebkZGB/v37w9XVlT9m6NChOHXqFK5cuVKrMVKTUhv9/vvviIuLw40bN9CyZUt8/vnn6Nq1K44ePQpXV1f4+PiIjg8MDERhYSEAoLCwUPR/ctz73HtNxaefforDhw+L1rA5hYWFzf4+xMbGYsOGDejcuTMKCgqwaNEi3HXXXcjKynKI6weAv//+G2+99RZmzJiB//u//8Ovv/6Kp556Cq6urpg4cSJ/HVLXKbwPAQEBovednZ3h6+vbZO4D54svvkBxcTEmTZoEwDH+dwAAzzzzDEpKStClSxc4OTmhqqoKL774IsaPHw8ADvH3wMvLC3FxcVi8eDFuu+02BAYG4pNPPkFGRgY6duzoEPdAyF7XW1hYiPDwcItzcO+1atWqxmOkwMdGnTt3xtGjR2EwGLB161ZMnDgR+/bta+hh1Zvc3FxMnz4daWlpFv/CcRTcv2YBoHv37oiNjUX79u2xZcsWuLu7N+DI6o/RaESvXr3w0ksvAQB69uyJrKwsvP3225g4cWIDj67+rVu3DsOHD0dwcHBDD6VebdmyBR9//DE2bdqEbt264ejRo0hNTUVwcLBD/T3YuHEjJk+ejLZt28LJyQnR0dF48MEHcejQoYYeGpFAS102cnV1RceOHRETE4MlS5agR48eWLNmDdq0aYPy8nIUFxeLjr9w4QLatGkDAGjTpo3Frg7uZ+6Yxu7QoUO4ePEioqOj4ezsDGdnZ+zbtw+vvvoqnJ2dERgY6BD3QcjHxwedOnXCmTNnHObvQVBQELp27Sp67bbbbuOX/LjrkLpO4X24ePGi6P3KykoUFRU1mfsAAOfOnUN6ejqmTJnCv+Yofw9mzZqFZ555Bg888ABuv/12PPTQQ/jf//6HJUuWAHCcvwcRERHYt28frl69itzcXPzyyy+oqKhAhw4dHOYecOx1vXX5vw8KfGrJaDTi5s2biImJgYuLC7777jv+vVOnTuGff/5BXFwcACAuLg6///676A88LS0N3t7eFg+Rxuqee+7B77//jqNHj/K/evXqhfHjx/O/d4T7IHT16lWcPXsWQUFBDvP3oF+/fjh16pTotb/++gvt27cHAISHh6NNmzai+1BSUoLMzEzRfSguLhb9q/j777+H0WhEbGxsPVyFfaxfvx4BAQEYMWIE/5qj/D0oKyuDVit+jDg5OcFoNAJwrL8HAODp6YmgoCBcuXIF3377Lf7973873D2w1/XGxcXhxx9/REVFBX9MWloaOnfuXKtlLgC0nd0WzzzzDNu3bx/Lzs5mx48fZ8888wzTaDRsz549jDHT9tV27dqx77//nv32228sLi6OxcXF8Z/ntq8OGTKEHT16lH3zzTesdevWTWr7qhThri7Gmv99mDlzJvvhhx9YdnY2279/P4uPj2f+/v7s4sWLjLHmf/2MmUoZODs7sxdffJGdPn2affzxx8zDw4N99NFH/DFLly5lPj4+7Msvv2THjx9n//73vyW3tPbs2ZNlZmayn3/+mUVGRjbaLbxSqqqqWLt27dicOXMs3nOEvwcTJ05kbdu25bezb9++nfn7+7PZs2fzxzjC34NvvvmG7d69m/39999sz549rEePHiw2NpaVl5czxprfPSgtLWVHjhxhR44cYQDYypUr2ZEjR9i5c+cYY/a53uLiYhYYGMgeeughlpWVxT799FPm4eFB29nr2+TJk1n79u2Zq6sra926Nbvnnnv4oIcxxq5fv87++9//slatWjEPDw/2n//8hxUUFIjOkZOTw4YPH87c3d2Zv78/mzlzJquoqKjvS7Er88Cnud+HpKQkFhQUxFxdXVnbtm1ZUlKSqH5Nc79+zs6dO1lUVBRzc3NjXbp0YWvXrhW9bzQa2XPPPccCAwOZm5sbu+eee9ipU6dEx+j1evbggw+yli1bMm9vb/bII4+w0tLS+ryMWvn2228ZAIvrYswx/h6UlJSw6dOns3bt2rEWLVqwDh06sHnz5om2IDvC34PNmzezDh06MFdXV9amTRs2bdo0VlxczL/f3O7B3r17GQCLXxMnTmSM2e96jx07xv71r38xNzc31rZtW7Z06VK7jF/DmKDEJiGEEEJIM0Y5PoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQQQghxGBT4EEIIIcRhUOBDCCGEEIdBgQ8hhBBCHAYFPoQ0U4WFhXjyySfRoUMHuLm5ITQ0FKNGjRL10Dlw4ADuvfdetGrVCi1atMDtt9+OlStXoqqqij8mJycHycnJCA8Ph7u7OyIiIrBgwQKUl5eLvu/dd99Fjx490LJlS/j4+KBnz558s0oAWLhwITQaDYYNG2Yx1uXLl0Oj0WDAgAFWryssLAwajUb216RJk2y/WY3cgAEDkJqa2tDDIKRZcG7oARBC7C8nJwf9+vWDj48Pli9fjttvvx0VFRX49ttvMW3aNPz555/4/PPPkZiYiEceeQR79+6Fj48P0tPTMXv2bGRkZGDLli3QaDT4888/YTQa8c4776Bjx47IysrCo48+imvXrmHFihUAgPfffx+pqal49dVXcffdd+PmzZs4fvw4srKyROMKCgrC3r17kZeXh5CQEP71999/H+3atVN1bb/++isfmB04cABjxozBqVOn4O3tDQBwd3e3xy2sFxUVFXBxcam37ysvL4erq2u9fR8hjZJdGl8QQhqV4cOHs7Zt27KrV69avHflyhV29epV5ufnxxISEize37FjBwPAPv30U9nzv/zyyyw8PJz/+d///jebNGmS4pgWLFjAevTowUaOHMleeOEF/vX9+/czf39/9sQTT7C7775bxdVV43oGXblyhX/tiy++YD179mRubm4sPDycLVy4UNT/CgB7++232YgRI5i7uzvr0qULO3DgADt9+jS7++67mYeHB4uLixP1X+PG/vbbb7OQkBDm7u7O7r//flE/JsYYe/fdd1mXLl2Ym5sb69y5M3vjjTf497Kzs/n72r9/f+bm5sbWr1/PLl++zB544AEWHBzM3N3dWVRUFNu0aRP/uYkTJ1r0RMrOzmbr169nOp1O9P2ff/45E/7fOjfud999l4WFhTGNRsMYM/0dSE5OZv7+/szLy4sNHDiQHT161KZ7T0hTRUtdhDQzRUVF+OabbzBt2jR4enpavO/j44M9e/ZAr9fj6aeftnh/1KhR6NSpEz755BPZ7zAYDPD19eV/btOmDQ4ePIhz585ZHd/kyZOxYcMG/uf3338f48ePt8tMxE8//YSHH34Y06dPxx9//IF33nkHGzZswIsvvig6bvHixXj44Ydx9OhRdOnSBePGjcNjjz2GuXPn4rfffgNjDCkpKaLPnDlzBlu2bMHOnTvxzTff4MiRI/jvf//Lv//xxx9j/vz5ePHFF3Hy5Em89NJLeO655/DBBx+IzvPMM89g+vTpOHnyJIYOHYobN24gJiYGX331FbKysjB16lQ89NBD+OWXXwAAa9asQVxcHB599FEUFBSgoKAAoaGhqu/JmTNnsG3bNmzfvh1Hjx4FANx///24ePEidu/ejUOHDiE6Ohr33HMPioqKbLndhDRNDR15EULsKzMzkwFg27dvlz1m6dKlFjMlQqNHj2a33Xab5HunT59m3t7eom7s+fn5rE+fPgwA69SpE5s4cSLbvHkzq6qq4o/hZh/Ky8tZQEAA27dvH7t69Srz8vJix44dY9OnT6/1jM8999zDXnrpJdExGzduZEFBQfzPANizzz7L/5yRkcEAsHXr1vGvffLJJ6xFixaisTs5ObG8vDz+td27dzOtVst3XI+IiBDN1DDG2OLFi1lcXBxjrHrGZ/Xq1Vava8SIEWzmzJn8z3fffTebPn266Bi1Mz4uLi7s4sWL/Gs//fQT8/b2Zjdu3BB9NiIigr3zzjtWx0ZIU0c5PoQ0M4yxOjkWAM6fP49hw4bh/vvvx6OPPsq/HhQUhIyMDGRlZeHHH3/EgQMHMHHiRLz33nv45ptvoNVWTy67uLhgwoQJWL9+Pf7++2906tQJ3bt3t2kcco4dO4b9+/eLZniqqqpw48YNlJWVwcPDAwBE3xcYGAgAuP3220Wv3bhxAyUlJXzuULt27dC2bVv+mLi4OBiNRpw6dQpeXl44e/YskpOTRfelsrISOp1ONMZevXqJfq6qqsJLL72ELVu24Pz58ygvL8fNmzf5sdZW+/bt0bp1a/7nY8eO4erVq/Dz8xMdd/36dZw9e9Yu30lIY0aBDyHNTGRkJJ+ULKdTp04AgJMnT6Jv374W7588eRJdu3YVvZafn4+BAweib9++WLt2reR5o6KiEBUVhf/+9794/PHHcdddd2Hfvn0YOHCg6LjJkycjNjYWWVlZmDx5sq2XKOvq1atYtGgREhISLN5r0aIF/3thQrFGo5F9zWg0qv5ewLSzLTY2VvSek5OT6Gfz5cfly5djzZo1WL16NW6//XZ4enoiNTXVYtecOa1WaxG4VlRUWBxn/n1Xr15FUFAQfvjhB4tjfXx8FL+TkOaAAh9CmhlfX18MHToUb7zxBp566imLB19xcTGGDBkCX19fvPLKKxaBz44dO3D69GksXryYf+38+fMYOHAgYmJisH79etEMjhwucLp27ZrFe926dUO3bt1w/PhxjBs3riaXKSk6OhqnTp1Cx44d7XZOzj///IP8/HwEBwcDAA4ePAitVovOnTsjMDAQwcHB+PvvvzF+/Hibzrt//378+9//xoQJEwCYgq2//vpLFHi6urqKSgwAQOvWrVFaWopr167xf8ZcDo+S6OhoFBYWwtnZGWFhYTaNlZDmgAIfQpqhN954A/369cOdd96J559/Ht27d0dlZSXS0tLw1ltv4eTJk3jnnXfwwAMPYOrUqUhJSYG3tze+++47zJo1C2PHjkViYiIAU9AzYMAAtG/fHitWrMClS5f472nTpg0A4IknnkBwcDAGDRqEkJAQFBQU4IUXXkDr1q0RFxcnOcbvv/8eFRUVdp1lmD9/PkaOHIl27dph7Nix0Gq1OHbsGLKysvDCCy/U6twtWrTAxIkTsWLFCpSUlOCpp55CYmIifw8WLVqEp556CjqdDsOGDcPNmzfx22+/4cqVK5gxY4bseSMjI7F161YcOHAArVq1wsqVK3HhwgVR4BMWFobMzEzk5OSgZcuW8PX1RWxsLDw8PPB///d/eOqpp5CZmSlKGpcTHx+PuLg43Pf/7d29aiJRGMbxR9IIWgkBg0JQwgTEsRACNn6BH2BlooG0Ae9AOy2mTjOdNoIWAS0t1EIZLGxSeQXTxCK3sVtFWEL2g11Y4/x/cKozHGa6h3neYep1PT09yTAMvb29abFY6Pb29kMVB5wavuoCTlA8Htdut1OxWFS73VYymVS5XJbjOBoMBpKkZrOpzWaj/X6vbDar6+tr2batbrer6XR6qHvW67Vc15XjOIpGo7q4uDisd6VSSS8vL7q/v5dhGGo0GvL7/XIc58MsybtAIPDPq5Vqtar5fK7VaqWbmxtlMhnZtq3Ly8u/Pvvq6kp3d3eq1WqqVCpKpVLq9/uH/VarpeFwqNFoJNM0lc/nNR6PFYvFfnpur9dTOp1WtVpVoVBQOBxWvV7/4ZpOp6OzszMlEgmdn59rv98rFArp+flZy+VSpmlqMpnIsqxfPofP59NyuVQul9Pj46MMw9DDw4NeX18P807AKfN9+9PpRgDwGMuyNJvNfqtKAnDceOMDAAA8g+AD4OgEg8FP13a7/d+3B+ALo+oCcHRc1/10LxKJfKn/cQE4LgQfAADgGVRdAADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAMwg+AADAM74DHWoJY2tegQAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1MklEQVR4nO3dd1gUV9sG8HspSxVQQUEDggXB8lqjLK+JkvCKxl6SWKISW2wxdrCiMSoqxl6S2BN7YsESUVFjoogNCwrYQFREjUgRlXq+P/gYGQEFBXYX7t917UXmnDMzz+4E9vHMnHMUQggBIiIiItJoOuoOgIiIiIjejkkbERERkRZg0kZERESkBZi0EREREWkBJm1EREREWoBJGxEREZEWYNJGREREpAWYtBERERFpASZtRERERFqASRsR0XtSKBSYPn26usOQeHp6wt7eXt1hEFERY9JGRKXS+vXroVAopJehoSEcHR0xYsQIPHz4sFjPferUKUyfPh3x8fFFetxWrVrJ3lOFChXw4YcfYu3atcjMzCySc8yePRu7d+8ukmMRUdHSU3cARETF6fvvv4eDgwNevnyJf/75BytXrsSBAwcQGhoKY2PjIjnHixcvoKf36s/pqVOnMGPGDHh6esLCwqJIzpHtgw8+wJw5cwAAjx8/xsaNGzFgwABcv34dvr6+73382bNno3v37ujcufN7H4uIihaTNiIq1dq2bYumTZsCAAYOHIiKFSvixx9/xJ49e9CzZ893Pm5mZiZSU1NhaGgIQ0PDogr3rczNzfHVV19J29988w1q166NZcuWYebMmdDX1y+xWIioZPH2KBGVKZ988gkAIDIyEgDg5+cHV1dXVKxYEUZGRmjSpAl+//33XPspFAqMGDECmzZtQt26dWFgYICDBw9KddnPtE2fPh3jx48HADg4OEi3MqOiotCyZUs0aNAgz7hq164NDw+PQr8fY2NjuLi4IDk5GY8fP863XXJyMsaOHQtbW1sYGBigdu3a8PPzgxBC9h6Tk5OxYcMGKW5PT89Cx0RExYM9bURUpty6dQsAULFiRQDA4sWL0bFjR/Tu3RupqanYunUrPv/8c+zbtw/t2rWT7Xv06FFs374dI0aMgKWlZZ4P+3ft2hXXr1/Hli1bsHDhQlhaWgIArKys0KdPHwwaNAihoaGoV6+etM/Zs2dx/fp1TJky5Z3e0+3bt6Grq5vvrVghBDp27Ihjx45hwIABaNiwIQICAjB+/Hjcv38fCxcuBAD8+uuvGDhwIJo1a4bBgwcDAGrUqPFOMRFRMRBERKXQunXrBABx5MgR8fjxY3H37l2xdetWUbFiRWFkZCTu3bsnhBDi+fPnsv1SU1NFvXr1xCeffCIrByB0dHTE1atXc50LgPDx8ZG258+fLwCIyMhIWbv4+HhhaGgovLy8ZOUjR44UJiYm4tmzZ298Ty1bthROTk7i8ePH4vHjxyIsLEyMHDlSABAdOnSQ2vXr109Uq1ZN2t69e7cAIH744QfZ8bp37y4UCoW4efOmVGZiYiL69ev3xjiISD14e5SISjV3d3dYWVnB1tYWPXr0gKmpKXbt2oWqVasCAIyMjKS2T58+RUJCAj766CNcuHAh17FatmyJOnXqvHMs5ubm6NSpE7Zs2SLdlszIyMC2bdvQuXNnmJiYvPUY4eHhsLKygpWVFZydnbF06VK0a9cOa9euzXefAwcOQFdXFyNHjpSVjx07FkII/Pnnn+/8noio5PD2KBGVasuXL4ejoyP09PRQuXJl1K5dGzo6r/69um/fPvzwww+4ePEiUlJSpHKFQpHrWA4ODu8dT9++fbFt2zb8/fff+Pjjj3HkyBE8fPgQffr0KdD+9vb2+OWXX6RpTGrVqoVKlSq9cZ87d+6gSpUqKFeunKzc2dlZqicizcekjYhKtWbNmkmjR1/3999/o2PHjvj444+xYsUK2NjYQF9fH+vWrcPmzZtztc/ZK/euPDw8ULlyZfz222/4+OOP8dtvv8Ha2hru7u4F2t/ExKTAbYmodOHtUSIqs/744w8YGhoiICAA/fv3R9u2bYskIcqrly6brq4uevXqhd9//x1Pnz7F7t270bNnT+jq6r73efNTrVo1xMTEICkpSVYeHh4u1Wd7U+xEpF5M2oiozNLV1YVCoUBGRoZUFhUV9d4rAmQ/m5bfigh9+vTB06dP8c033+DZs2eyedeKw2effYaMjAwsW7ZMVr5w4UIoFAq0bdtWKjMxMSnylRyIqGjw9igRlVnt2rXDjz/+iDZt2qBXr1549OgRli9fjpo1a+Ly5cvvfNwmTZoAACZPnowePXpAX18fHTp0kJK5Ro0aoV69etixYwecnZ3RuHHjInk/+enQoQPc3NwwefJkREVFoUGDBjh06BD27NmDUaNGyab1aNKkCY4cOYIff/wRVapUgYODA5o3b16s8RFRwbCnjYjKrE8++QRr1qxBbGwsRo0ahS1btmDu3Lno0qXLex33ww8/xMyZM3Hp0iV4enqiZ8+euSa+7du3LwAUeADC+9DR0YG/vz9GjRqFffv2YdSoUbh27Rrmz5+PH3/8Udb2xx9/RJMmTTBlyhT07NkTK1euLPb4iKhgFELkmA6biIhKxOLFizF69GhERUXBzs5O3eEQkRZg0kZEVMKEEGjQoAEqVqyIY8eOqTscItISfKaNiKiEJCcnw9/fH8eOHcOVK1ewZ88edYdERFqEPW1ERCUkKioKDg4OsLCwwLBhwzBr1ix1h0REWoRJGxEREZEW4OhRIiIiIi3ApI2IiIhIC3AgggbLzMxETEwMypUrx6VliIiItIQQAklJSahSpQp0dIquf4xJmwaLiYmBra2tusMgIiKid3D37l188MEHRXY8Jm0arFy5cgCyLrqZmZmaoyEiIqKCSExMhK2trfQ9XlSYtGmw7FuiZmZmTNqIiIi0TFE/2sSBCERERERagEkbERERkRZg0kZERESkBfhMm5bLyMhAWlqausOgEqCvrw9dXV11h0FERGrCpE1LCSEQGxuL+Ph4dYdCJcjCwgLW1tact4+IqAxi0qalshO2SpUqwdjYmF/ipZwQAs+fP8ejR48AADY2NmqOiIiIShqTNi2UkZEhJWwVK1ZUdzhUQoyMjAAAjx49QqVKlXirlIiojOFABC2U/QybsbGxmiOhkpZ9zfkcIxFR2cOkTYvxlmjZw2tORFR2MWkjIiIi0gJM2oiIiIi0gNYkbR07doSdnR0MDQ1hY2ODPn36ICYmRtZGCAE/Pz84OjrCwMAAVatWxaxZs2Rtjh8/jsaNG8PAwAA1a9bE+vXrc51r+fLlsLe3h6GhIZo3b44zZ87I6l++fInhw4ejYsWKMDU1Rbdu3fDw4UNZm+joaLRr1w7GxsaoVKkSxo8fj/T09KL5MLSYp6cnFAoFFAoF9PX1UblyZfzvf//D2rVrkZmZWeDjrF+/HhYWFsUXKBERkYbRmqTNzc0N27dvR0REBP744w/cunUL3bt3l7X57rvvsHr1avj5+SE8PBz+/v5o1qyZVB8ZGYl27drBzc0NFy9exKhRozBw4EAEBARIbbZt24YxY8bAx8cHFy5cQIMGDeDh4SFNtQAAo0ePxt69e7Fjxw789ddfiImJQdeuXaX6jIwMtGvXDqmpqTh16hQ2bNiA9evXY9q0acX4CWmPNm3a4MGDB4iKisKff/4JNzc3fPfdd2jfvj0TWyIiovwILbVnzx6hUChEamqqEEKIa9euCT09PREeHp7vPhMmTBB169aVlX355ZfCw8ND2m7WrJkYPny4tJ2RkSGqVKki5syZI4QQIj4+Xujr64sdO3ZIbcLCwgQAERQUJIQQ4sCBA0JHR0fExsZKbVauXCnMzMxESkpKgd9jQkKCACASEhJk5S9evBDXrl0TL168KPCxNEW/fv1Ep06dcpUHBgYKAOKXX34RQgixYMECUa9ePWFsbCw++OADMXToUJGUlCSEEOLYsWMCgOzl4+MjhBBi48aNokmTJsLU1FRUrlxZ9OzZUzx8+LCk3l6x0+ZrT0SkCfbsEcLJSYiqVbN+7tlT9OfI7/v7fWlNT1tOcXFx2LRpE1xdXaGvrw8A2Lt3L6pXr459+/bBwcEB9vb2GDhwIOLi4qT9goKC4O7uLjuWh4cHgoKCAACpqak4f/68rI2Ojg7c3d2lNufPn0daWpqsjZOTE+zs7KQ2QUFBqF+/PipXriw7T2JiIq5evZrv+0pJSUFiYqLsVVBCCKSmpqrlJYQocJz5+eSTT9CgQQPs3LkTQNbnvmTJEly9ehUbNmzA0aNHMWHCBACAq6srFi1aBDMzMzx48AAPHjzAuHHjAGRNhTFz5kxcunQJu3fvRlRUFDw9Pd87PiIiKh18fYHwcOD+/ayfvr7qjqjgtGpyXS8vLyxbtgzPnz+Hi4sL9u3bJ9Xdvn0bd+7cwY4dO7Bx40ZkZGRg9OjR6N69O44ePQogaxWBnIkUAFSuXBmJiYl48eIFnj59ioyMjDzbhIeHS8dQKpW5nqeqXLkyYmNj33ie7Lr8zJkzBzNmzCjEJ/JKWloa5syZ8077vq+JEydCqVS+93GcnJxw+fJlAMCoUaOkcnt7e/zwww8YMmQIVqxYAaVSCXNzcygUClhbW8uO0b9/f+m/q1evjiVLluDDDz/Es2fPYGpq+t4xEhGRdvL3z0rQqlYFjIyyXpUqAd7e6o6s4NTa0+bt7S09lJ7fKztZAoDx48cjJCQEhw4dgq6uLvr27Sv18mRmZiIlJQUbN27ERx99hFatWmHNmjU4duwYIiIi1PUWC2XixIlISEiQXnfv3lV3SCVKCCHNQ3bkyBF8+umnqFq1KsqVK4c+ffrgyZMneP78+RuPcf78eXTo0AF2dnYoV64cWrZsCSBrYAgREZVN/v5A795AUBBw8CBQt+5ZjBw5A5Mn/4aOHdUdXcGptadt7Nixb711Vb16dem/LS0tYWlpCUdHRzg7O8PW1hanT5+GSqWCjY0N9PT04OjoKLV3dnYGkPWFXbt2bVhbW+ca5fnw4UOYmZnByMgIurq60NXVzbNNdo+OtbU1UlNTER8fL+tte73N6yNOs4/5es9QTgYGBjAwMHjj55EffX19TJw48Z32fV/Zt6jfV1hYGBwcHBAVFYX27dtj6NChmDVrFipUqIB//vkHAwYMQGpqar4rQSQnJ8PDwwMeHh7YtGkTrKysEB0dDQ8PD6SmphZJjEREpB2ye9a8vbN+PnsG6OpmYtSoBdDTy+oAuHXrlqzDQNOpNWmzsrKClZXVO+2bPT1ESkoKAOC///0v0tPTcevWLdSoUQMAcP36dQBAtWrVAAAqlQoHDhyQHefw4cNQqVQAAKVSiSZNmiAwMBCdO3eWzhMYGIgRI0YAAJo0aQJ9fX0EBgaiW7duAICIiAhER0dLx1GpVJg1a5a0RmT2eczMzFCnTp13er9vo1AoiuQWpbocPXoUV65cwejRo3H+/HlkZmZiwYIF0NHJ6gzevn27rL1SqURGRoasLDw8HE+ePIGvry9sbW0BAOfOnSuZN0BERBrF1zerZy07cRs1Khb9+v0kazNy5EitSdgALXmmLTg4GGfPnkWLFi1Qvnx53Lp1C1OnTkWNGjWkRMnd3R2NGzdG//79sWjRImRmZmL48OH43//+J/W+DRkyBMuWLcOECRPQv39/HD16FNu3b8f+/fulc40ZMwb9+vVD06ZN0axZMyxatAjJycn4+uuvAQDm5uYYMGAAxowZgwoVKsDMzAzffvstVCoVXFxcAACtW7dGnTp10KdPH8ybNw+xsbGYMmUKhg8f/s49aaVJSkoKYmNjkZGRgYcPH+LgwYOYM2cO2rdvj759+yI0NBRpaWlYunQpOnTogJMnT2LVqlWyY9jb2+PZs2cIDAxEgwYNYGxsDDs7OyiVSixduhRDhgxBaGgoZs6cqaZ3SURE6uTmBly5kvVTX/9P9Ov36g5Y1apVMWDAAK1K2ABox5Qfly9fFm5ubqJChQrCwMBA2NvbiyFDhoh79+7J2t2/f1907dpVmu7B09NTPHnyRNbm2LFjomHDhkKpVIrq1auLdevW5Trf0qVLhZ2dnVAqlaJZs2bi9OnTsvoXL16IYcOGifLlywtjY2PRpUsX8eDBA1mbqKgo0bZtW2FkZCQsLS3F2LFjRVpaWqHed2md8gP/P02Hnp6esLKyEu7u7mLt2rUiIyNDavfjjz8KGxsbYWRkJDw8PMTGjRsFAPH06VOpzZAhQ0TFihVlU35s3rxZ2NvbCwMDA6FSqYS/v78AIEJCQkr2jRYTbb72REQlZc8eIfT1hVAqX4rp06fLXteuXSv28xfXlB8KIYpgvgYqFomJiTA3N0dCQgLMzMyk8pcvXyIyMhIODg4wNDRUY4RU0njtiYjeztUVePLkOnr12iIr9/LyKpG/nfl9f78vrbg9SkRERPQm2QMPvLwEunXbgGfP7kh1jRs3RocOHdQYXdFg0kZERERaz9cXuHYtARcvLpKVOzoORIcOVdUTVBFj0kZERERaKee0Hv37n8b9+6/WElcqlZgwYQJ0dXXVGGHRYtJGREREWiU7WXv6FLh+PQOnT8+DgcGr+TirVvXAwIEuaoyweDBpIyIiIq2SPQebShWDadN+kdWNGjUK5ubmaoqseDFpIyIiIq3i7Q34+++Dre15qezhw2pYvryf9s29VghM2oiIiEhr7Nr1Epcvz8X/L3wDALhwoQcGDKiNUpyvAWDSRkRERFpi48YwREbKlzX09vYuM6sNMWkjIiIijSaEgJ/fGjx/fl8qO3/+Qwwc+BnKSL4GANBRdwBExcHT0xOdO3eWtlu1aoVRo0a91zGL4hhERFQ48fHx+P7772UJ28GDgzFw4Gfo2FGNgakBe9qoRHl6emLDhg0AAH19fdjZ2aFv376YNGkS9PSK73/HnTt3Ql9fv0Btjx8/Djc3Nzx9+hQWFhbvdAwiIno//v7A1q0nUbv2EaksOdkY//3vWPj4lM0+JyZtVOLatGmDdevWISUlBQcOHMDw4cOhr6+PiRMnytqlpqZCqVQWyTkrVKigEccgIqK3y8jIwPnzs1G7dqZUduTIZ/j44w/RqZMaA1OzspmqkloZGBjA2toa1apVw9ChQ+Hu7g5/f3/pluasWbNQpUoV1K5dGwBw9+5dfPHFF7CwsECFChXQqVMnREVFScfLyMjAmDFjYGFhgYoVK2LChAkQQsjO+fqtzZSUFHh5ecHW1hYGBgaoWbMm1qxZg6ioKLi5uQEAypcvD4VCAU9PzzyP8fTpU/Tt2xfly5eHsbEx2rZtixs3bkj169evh4WFBQICAuDs7AxTU1O0adMGDx48kNocP34czZo1g4mJCSwsLPDf//4Xd+68Wi+PiKisuXfvHn744Qfo6LxK2EaPHo2///4Qs2apMTANwKSN1M7IyAipqVkzWQcGBiIiIgKHDx/Gvn37kJaWBg8PD5QrVw5///03Tp48KSU/2fssWLAA69evx9q1a/HPP/8gLi4Ou3bteuM5+/btiy1btmDJkiUICwvDTz/9BFNTU9ja2uKPP/4AAERERODBgwdYvHhxnsfw9PTEuXPn4O/vj6CgIAgh8NlnnyEtLU1q8/z5c/j5+eHXX3/FiRMnEB0djXHjxgEA0tPT0blzZ7Rs2RKXL19GUFAQBg8eXKrnGCIiepPdu3djzZo10va//9aAj48PzMzM1BiV5uDtUVIbIQQCAwMREBCAb7/9Fo8fP4aJiQlWr14t3Rb97bffkJmZidWrV0vJzLp162BhYYHjx4+jdevWWLRoESZOnIiuXbsCAFatWoWAgIB8z3v9+nVs374dhw8fhru7OwCgevXqUn32bdBKlSrJnmnL6caNG/D398fJkyfh6uoKANi0aRNsbW2xe/dufP755wCAtLQ0rFq1CjVq1AAAjBgxAt9//z0AIDExEQkJCWjfvr1U7+zsXPgPkohIy+3c+QJXrsyTlf3+e2/MmlVTTRFpJva0Efz9AVfXrJ8lYd++fTA1NYWhoSHatm2LL7/8EtOnTwcA1K9fX/Yc26VLl3Dz5k2UK1cOpqamMDU1RYUKFfDy5UvcunULCQkJePDgAZo3by7to6enh6ZNm+Z7/osXL0JXVxctW7Z85/cQFhYGPT092XkrVqyI2rVrIywsTCozNjaWEjIAsLGxwaNHjwBkJYeenp7w8PBAhw4dsHjxYtmtUyKi0s7fH+jaNTRXwnbkyETMmlWzzI0OfRv2tJG0hpuvL0rkF8TNzQ0rV66EUqlElSpVZKNGTUxMZG2fPXuGJk2aYNOmTbmOY2Vl9U7nNzIyeqf93sXro00VCoXsebt169Zh5MiROHjwILZt24YpU6bg8OHDcHEpfQsdExHlJITAX3/9hAYNHkpllSqpMHRoa/j4qDEwDcaeNoK3N6BSZf0sCSYmJqhZsybs7OzeOs1H48aNcePGDVSqVAk1a9aUvczNzWFubg4bGxsEBwdL+6Snp+P8+fP5HrN+/frIzMzEX3/9lWd9dk9fRkZGvsdwdnZGenq67LxPnjxBREQE6tSp88b39LpGjRph4sSJOHXqFOrVq4fNmzcXan8iIm0TFxeH77//HmZmrxK2kyeHYujQ1mqMSvMxaSN07AicOlUyvWyF1bt3b1haWqJTp074+++/ERkZiePHj2PkyJG4d+8eAOC7776Dr68vdu/ejfDwcAwbNgzx8fH5HtPe3h79+vVD//79sXv3bumY27dnLY1SrVo1KBQK7Nu3D48fP8azZ89yHaNWrVro1KkTBg0ahH/++QeXLl3CV199hapVq6JTAcejR0ZGYuLEiQgKCsKdO3dw6NAh3Lhxg8+1EVGpduLECSxdulTaTkgww4IFUzFiRCU1RqUdmLSRRjM2NsaJEydgZ2eHrl27wtnZGQMGDMDLly+l0URjx45Fnz590K9fP6hUKpQrVw5dunR543FXrlyJ7t27Y9iwYXBycsKgQYOQnJwMAKhatSpmzJgBb29vVK5cGSNGjMjzGOvWrUOTJk3Qvn17qFQqCCFw4MCBAk/Aa2xsjPDwcHTr1g2Ojo4YPHgwhg8fjm+++aYQnxARkXZIT0/HjBkzcOzYsRxlHXD69Gj89puORnYcaBqFeH1CK9IYiYmJMDc3R0JCgmy488uXLxEZGQkHBwcYGhqqMUIqabz2RKSN7ty5g/Xr18vK/PzGon59U5w6pZ6YilN+39/viwMRiIiIqNgsXvwH4uNDpe379x1x4EBPfPBByT1LXVowaSMiIqIi9/z5c8yfP19WVrNmH/j4VM9nD3obJm1ERERUpC5fvpxrZZpZsyahaVN99O6tpqBKASZtREREVCSEEJg7dzlSUp5IZUFBLRAQ8ClMTXk79H0xadNiHENS9vCaE5Gm+vfff7F8+XJZ2bJlw/Dvv1YwNQU2bdLMqaW0CZM2LZQ9pcTz589LdHZ/Ur/nz58DyL3SAhGRuvj7Azt2HEPNmieksidPKmDZshEAFHByAubOZcJWFJi0aSFdXV1YWFhIa1gaGxtLi6lT6SSEwPPnz/Ho0SNYWFhAV1dX3SERESEtLQ0hIbNRM8e67p06dcKOHQ1hYgKMHAnMmqW++EobztOmwd40z4sQArGxsW+c+Z9KHwsLC1hbWzNJJyK1i4yMxMaNG2Vl48aNy7WGdFnEedpIRqFQwMbGBpUqVUJaWpq6w6ESoK+vzx42ItII27ZtQ3h4uLRdp04dfP7552qMqGxg0qbldHV1+UVOREQlIjk5GX5+frKyfv36wd7eXj0BlTFM2oiIiOit1q0LQXS0v6xs+/bJ8PFhKlFS+EkTERFRvoQQWLx4MRISEqSy8+dbYu/eVqhaVY2BlUFM2oiIiChPjx49wsqVK2Vl+/ePQExMRQCAqak6oiq7mLQRERFRLocPH8apU6ek7YcPK2HduiF4+TJr7jWViisclDQmbURERCRJS0vD7NmzZWW//94VoaH1AWT1rnGyXPVg0kZEREQAgFu3buG3336Tlc2fPx7JycYAAENDLkelTkzaiIiICJs2bcLNmzel7fr168PPryuSkwGFAqhSBVixggmbOumoOwAiIiJSn6SkJMyYMUOWsG3e/DXOn+8Kb++sZ9d27wbu3WPCpm5cxkqDFdcyGERERABw7tw57N+/X9rOzFRg1qxJyMjQg6kpkJSkxuC0GJexIiIioiKRmZmJH3/8EcnJyVLZmTOf4s8/W0AIQEcna7F30ixM2oiIiMqQ2NhY/PTTT7KyOnVGws+vPITIGh3KwQaaiUkbERFRGXHw4EEEBwdL23FxNggIGASFQoFnz5iwaTombURERKVcSkoKfH19ZWX+/p/jwoU6AIDatV9NlsuETXMxaSMiIirFrl+/ji1btsjK/vhjAq5cMYK+PlC9OjBvHpM1bcCkjYiIqBQSQmDjxo2IioqSyipUaIhvv+2E7ByuenUgPFw98VHhMWkjIiIqZRITE7Fw4UJZ2S+/DES5clXx7bdZPWu+vlw7VNswaSMiIipFgoODcfDgQWk7LU0Pc+Z4IzNTF7VrZ5V17MjbodqISRsREVEpkJmZifnz5+Ply5dSWUBAa4SEqGBjkzUydN48NQZI741JGxERkZaLiYnBL7/8IitbuPA7JCVZwNsbmDVLTYFRkWLSRkREpMX279+Pc+fOSdv37tli9eqvoaOjQGYmcOyYGoOjIsWkjYiISAvlNffahQtfwt/fCaamWctQHTvGwQalCZM2IiIiLRMeHo5t27bJyn7/3RtpaQZwcgLmzuVAg9KISRsREZGWEEJg7dq1uHfvnlRmadkUmza1Q1oaEBGRtbIBE7bSiUkbERGRFoiPj8fixYtlZbVrD8b06TZQKIBu3Xg7tLRj0kZERKThTp06hcOHD0vbL14YQld3PJYs0UFERFbZsWPAqVNqCpBKBJM2IiIiDZWRkQFfX1+kp6dLZQcOtMGZM81hagps2gRMmAAoFOxhKwuYtBEREWmge/fuYc2aNbKyPXtG484dMxgZZY0O5coGZQuTNiIiIg2zZ88eXLx4Udq+f98Bv/7aB2PGKDhRbhmmEEIIdQdBeUtMTIS5uTkSEhJgZmam7nCIiKiYvXjxAvNeW2tq06aeuHHDEUDWUlRJSeqIjAqjuL6/2dNGRESkAa5du4YdO3bIymbPnojUVCUAwNAw65YolV1M2oiIiNRICIGff/4ZsbGxUpmLiwtmzPBAaiqgowOuH0oAmLQRERGpTVxcHJYuXSorGzJkCCpXroyUFMDXNyth42ADApi0ERERqcXff/+No0ePSttJSab4+efRaNRIRxoVymSNctJRdwAF1bFjR9jZ2cHQ0BA2Njbo06cPYmJipPrp06dDoVDkepmYmMiOs2PHDjg5OcHQ0BD169fHgQMHZPVCCEybNg02NjYwMjKCu7s7bty4IWsTFxeH3r17w8zMDBYWFhgwYACePXsma3P58mV89NFHMDQ0hK2tba4HS4mIqGxKT0/HjBkzZAnb3r3tsGDBWCQl6eC1NeCJJFqTtLm5uWH79u2IiIjAH3/8gVu3bqF79+5S/bhx4/DgwQPZq06dOvj888+lNqdOnULPnj0xYMAAhISEoHPnzujcuTNCQ0OlNvPmzcOSJUuwatUqBAcHw8TEBB4eHnj58qXUpnfv3rh69SoOHz6Mffv24cSJExg8eLBUn5iYiNatW6NatWo4f/485s+fj+nTp+Pnn38u5k+JiIg0WXR0NGa99nDa8eNjEBLSFEDW6FBOkkv50dopP/z9/dG5c2ekpKRAX18/V/2lS5fQsGFDnDhxAh999BEA4Msvv0RycjL27dsntXNxcUHDhg2xatUqCCFQpUoVjB07FuPGjQMAJCQkoHLlyli/fj169OiBsLAw1KlTB2fPnkXTplm/ZAcPHsRnn32Ge/fuoUqVKli5ciUmT56M2NhYKJVZo368vb2xe/duhIeHF/g9csoPIqLSY+fOnbhy5Yq0ff16LWze3AsKBSAEpBUOeEtU+xXX97fW9LTlFBcXh02bNsHV1TXPhA0AVq9eDUdHRylhA4CgoCC4u7vL2nl4eCAoKAgAEBkZidjYWFkbc3NzNG/eXGoTFBQECwsLKWEDAHd3d+jo6CA4OFhq8/HHH0sJW/Z5IiIi8PTp03zfV0pKChITE2UvIiLSbs+fP8eMGTNkCdtvv32FXbt6AQAqVABUKiZs9HZalbR5eXnBxMQEFStWRHR0NPbs2ZNnu5cvX2LTpk0YMGCArDw2NhaVK1eWlVWuXFkaZp39821tKlWqJKvX09NDhQoVZG3yOkbOc+Rlzpw5MDc3l162trb5tiUiIs135coVzJ8/X1a2YMFE3LxZQ0rW1q7NWuidCRu9jVqTNm9v7zwHD+R85bydOH78eISEhODQoUPQ1dVF3759kdfd3V27diEpKQn9+vUrybfz3iZOnIiEhATpdffuXXWHRERE70AIgRUrVmDnzp1S2e3b/8WWLT5ISsq6C1OuHJM1Khy1TvkxduxYeHp6vrFN9erVpf+2tLSEpaUlHB0d4ezsDFtbW5w+fRoqlUq2z+rVq9G+fftcvV3W1tZ4+PChrOzhw4ewtraW6rPLbGxsZG0aNmwotXn06JHsGOnp6YiLi5MdJ6/z5DxHXgwMDGBgYJBvPRERab7t258gLGyZrMzJaRh8fKzg7w94eWU9wzZ3rpoCJK2l1qTNysoKVlZW77RvZmYmgKznwHKKjIzEsWPH4O/vn2sflUqFwMBAjBo1Sio7fPiwlPQ5ODjA2toagYGBUpKWmJiI4OBgDB06VDpGfHw8zp8/jyZNmgAAjh49iszMTDRv3lxqM3nyZKSlpUnP3B0+fBi1a9dG+fLl3+n9EhGR5jt+/DjCwv6Stp8+tcCSJSNRu7YCX37Judfo/WjF5LrBwcE4e/YsWrRogfLly+PWrVuYOnUqatSokauXbe3atbCxsUHbtm1zHee7775Dy5YtsWDBArRr1w5bt27FuXPnpKk4FAoFRo0ahR9++AG1atWCg4MDpk6diipVqqBz584AAGdnZ7Rp0waDBg3CqlWrkJaWhhEjRqBHjx6oUqUKAKBXr16YMWMGBgwYAC8vL4SGhmLx4sVYuHBh8X5QRESkFunp6bmm8ggN7Yg//mgEIbJ61ojel1YkbcbGxti5cyd8fHyQnJwMGxsbtGnTBlOmTJHdTszMzMT69evh6ekJXV3dXMdxdXXF5s2bMWXKFEyaNAm1atXC7t27Ua9ePanNhAkTkJycjMGDByM+Ph4tWrTAwYMHYWhoKLXZtGkTRowYgU8//RQ6Ojro1q0blixZItWbm5vj0KFDGD58OJo0aQJLS0tMmzZNNpcbERGVDlFRUdiwYYOsbP78ccjIMJGm8uD86lQUtHaetrKA87QREWm27du3IywsTNp2cnLC2LFf4v79rKk8atfm2qFlUXF9f2tFTxsREZEm+eOPZISG+snK+vbtCwcHB/j4ZG1bWWWNDiUqKlo1TxsREZG6Xbx4MVfCNmnSJDg4OADIuhWqUvGWKBU99rQREREVwJ49AqdOLYWx8auVbUJDP0afPm7IuTgPR4hScWHSRkRE9BaPHz/GxYsrYGz8quznn4cjJsYS9+8zSaOSwaSNiIjoDQIDA/HPP/9I2wkJlli0aBiEUMDUNGugAVFJYNJGRESUh7S0NMyePVtWVq1aF/j6/gdVqryayoO9bFRSmLQRERG95vbt2/j1119lZUePjsfDh8aIiMgaaMCRoVTSmLQRERHlsHnzZty4cUPaDg2th6Cgbrh/H3ByykrYeEuU1IFJGxEREYBnz55hwYIFsrK1a79GdLQdDA1fJWu8HUrqwqSNiIjKNH9/4KefzqNZs32y8pkzJ8PaWg+mpsDIkcBrS4sSlTgmbUREVGZlZmYiKGgRmjVLksqOHnXD1asfo2ZNDjQgzcKkjYiIyqSHDx9i1apVMDR8VbZkybeIi6sAAHB0ZMJGmoVJGxERlRn+/oCvL9CnzyE8ehQklT94YI0NGwbj5UsFDA0Be3sONiDNw6SNiIjKjPnzU+HhMQePHr0qO3myOw4frouqVQE7Ow42IM3FpI2IiMqEX3+9AXf3zbKyo0cnYOxYIzx7xmSNNB+TNiIiKvV+/fVX3L59W9oOCWmIQ4c6YetWLvBO2oNJGxERlVqJiYlYuHChrCwtbQAePfpAStiItAWTNiIiKpXOnDmDP//8U9pOT9fF0aMTcfKkrhqjInp3TNqIiKhUyczMhJ+fH168eCGVhYS4IyLiv5g7V42BEb0nJm1ERFQq+PsDy5c/gKvrz7LyLVu+Q0SEBVQq3g4l7cakjYiISoU9ew7A1fWstH3//gf45Zf+MDJScJF3KhWYtBERkVZLSUmBr68v7OxelW3d+gWSkpy5biiVKkzaiIhIK/n7A2vWRKBx462y8v/8xwsBAYaYO5e3Q6l0YdJGRERaRwiBgID1aNw4Wiq7dKkxnJ07oEsXoEsXNQZHVEyYtBERkVZJSEjAokWLUKnSq7K1awchOroKYmPVFxdRcWPSRkREWiMoKAiHDh2Stl++NMC8eeOhq6vLwQZU6jFpIyIijZeRkYG5c+ciLS1NKqta1QPTp7tAqQTGjOFgAyr9mLQREZHG8vcHVqy4D5Vqtay8bt1R6N7dHAMHqikwIjVg0kZERBrL338vVKoL0vbDh/ZYubIvVCoFundXY2BEasCkjYiINM7Lly8xd+5c2Nq+Ktu8uScUCkc+u0ZlFpM2IiLSKNeuXcOOHTtkZT/+6A0bGwPMm8e516jsYtJGREQaQQiB1atXIyYmRioLDm6Gy5fb4tdfmawR6ag7ACIiKpv8/QFX16yfT58+xffffy9L2E6d+gZDhrTFvXtM2IgA9rQREZGa+PoCQUHA1q0nERJyRCo3MTHBmDFjoKPDfgWinJi0ERGRWkyYkIGQkFnQ0RFSWUDAZzh16kM1RkWkuZi0ERFRiduw4Sqion5Hzs60BQvGwMysnPqCItJwTNqIiKhEzZw5B5mZqdJ2jRo1YGb2FerV41QeRG/CpI2IiIqVvz/g5QVkZCSid++FsrpDh9ri5MlmADjYgOht+JQnEREVG39/oEcPwMbmaK6EzdfXC61aNVNTZETap9BJm66uLh49epSr/MmTJ9DV1S2SoIiISDvlnMYDAHx9Bby8ZqBly7+lNk+eVMaWLT7Yts2Qi7wTFUKhb48KIfIsT0lJgVKpfO+AiIhIe2VP49G7N/Ddd/fh4SFf6L1mzb7w8XFQU3RE2q3ASduSJUsAAAqFAqtXr4apqalUl5GRgRMnTsDJyanoIyQiIq3h7Z2VsHXp8iv09W/L6qZOncq514jeQ4GTtoULs55FEEJg1apVsluhSqUS9vb2WLVqVdFHSEREGsnfP6tnzdv71SCCNm1SMW7cHFk7S8umGD68nRoiJCpdFCK/+535cHNzw86dO1G+fPniion+X2JiIszNzZGQkAAzMzN1h0NEJOPqmnUrVKUCTp0CLl++jF27dsnafPvtt6hQoYKaIiRSj+L6/i70M23Hjh0rspMTEZH2ye5hc3PL2vb2BqZP/x4KhbwPwMfHRw3REZVehU7a+vfv/8b6tWvXvnMwRESk+bIHGwDAmDHxCAlZDIXiVX1oaAf06dNYPcERlWKFTtqePn0q205LS0NoaCji4+PxySefFFlgRESkmdzcgCtXAHf3Q7h6NUhWl5rqjR07DNQUGVHpVuik7fXnFQAgMzMTQ4cORY0aNYokKCIi0lzHjgmMG/e9rMzE5AOMGzdATRERlQ2FHoiQn4iICLRq1QoPHjwoisMROBCBiDRPdHQ01q1bJyv7+uuvYWdnp6aIiDRPcX1/F9mEObdu3UJ6enpRHY6IiNTs9dUN/PzW5krYpk6dyoSNqIQU+vbomDFjZNtCCDx48AD79+9Hv379iiwwIiJSr+wBB/PnpyAkxFdWp1Kp0Lp1azVFRlQ2FTppCwkJkW3r6OjAysoKCxYseOvIUiIi0h7e3sCvv15AvXp7ZeV79nwHHx8L9QRFVIZxnjYiIpJkz8FWtSpQr94M1Kv3qk4IYNs2H8ydq774iMqyQidt2R49eoSIiAgAQO3atVGpUqUiC4qIiEqev3/WuqH6+k/h4bFEVnf5cmf069cA06erJzYieoekLTExEcOHD8eWLVuQmZkJANDV1cWXX36J5cuXw9zcvMiDJCKi4pWdsH388QE0a3ZWVvef/0yEj49STZERUbZCjx4dNGgQgoODsX//fsTHxyM+Ph779u3DuXPn8M033xRHjEREVAxyjg718srEuHEzZAmbqakDfHx80KULEzYiTVDoedpMTEwQEBCAFi1ayMr//vtvtGnTBsnJyUUaYFnGedqIqDhlL/jerl0kPvxwo6xuwIAB+OCDD9QUGZF205gF4ytWrJjnLVBzc3OUL1++SIIiIqLik3PB92bNfkL58rGy+mnTpkGRczFRItIIhb49OmXKFIwZMwaxsa9+yWNjYzF+/HhMnTq1SIMjIqKilf3sWkjISyiVM2QJ261bLdCokQ8TNiINVejbo40aNcLNmzeRkpIizYIdHR0NAwMD1KpVS9b2woULRRdpGcTbo0RU1FxdgbS0s2jf/oCsvG7d0ejenX9niIqCxtwe7dSpE/8VRkSkhfz9AQ+PGbIyHR0lpk6dqKaIiKgwimzBeCp67GkjoqLg7w8sWfIvPvpouay8e/fuqFu3rpqiIiq9NGbB+OrVq+PJkye5yuPj41G9evUiCYqIiN7d6wu9793rnythmzRpEhM2Ii1T6NujUVFRyMjIyFWekpKCe/fuFUlQRET07rIXep87NwMhIT8g58wdjo6O6Nmzp/qCI6J3VuCeNn9/f/j//z/bAgICpG1/f3/s2rULM2fOhIODQ7EF2rFjR9jZ2cHQ0BA2Njbo06cPYmJiZG0CAgLg4uKCcuXKwcrKCt26dUNUVJSszfHjx9G4cWMYGBigZs2aWL9+fa5zLV++HPb29jA0NETz5s1x5swZWf3Lly8xfPhwVKxYEaampujWrRsePnwoaxMdHY127drB2NgYlSpVwvjx45Genl4knwURUV78/QEnJyA6GmjV6iZat/5BVj948GAmbERarMDPtOnoZOV3CoUCr++ir68Pe3t7LFiwAO3bty/6KAEsXLgQKpUKNjY2uH//PsaNGwcAOHXqFAAgMjISzs7OGDNmDAYMGICEhASMHj0aSUlJ0ijWyMhI1KtXD0OGDMHAgQMRGBiIUaNGYf/+/fDw8AAAbNu2DX379sWqVavQvHlzLFq0CDt27EBERIS0vurQoUOxf/9+rF+/Hubm5hgxYgR0dHRw8uRJAEBGRgYaNmwIa2trzJ8/Hw8ePEDfvn0xaNAgzJ49u8Dvmc+0EVFhZE+WO2LEMlhayh9jadhwGjp14iAyopJQXN/fhR6I4ODggLNnz8LS0rLIgngX/v7+6Ny5M1JSUqCvr4/ff/8dPXv2REpKipRg7t27F506dZLaeHl5Yf/+/QgNDZWO06NHD8THx+PgwYMAgObNm+PDDz/EsmXLAACZmZmwtbXFt99+C29vbyQkJMDKygqbN29G9+7dAQDh4eFwdnZGUFAQXFxc8Oeff6J9+/aIiYlB5cqVAQCrVq2Cl5cXHj9+DKWyYEvCMGkjosLYufM5rlyZLyu7caMVvviiJTp2VFNQRGWQxgxEiIyMVHvCFhcXh02bNsHV1RX6+voAgCZNmkBHRwfr1q1DRkYGEhIS8Ouvv8Ld3V1qExQUBHd3d9mxPDw8EBQUBABITU3F+fPnZW10dHTg7u4utTl//jzS0tJkbZycnGBnZye1CQoKQv369aWELfs8iYmJuHr1ar7vKyUlBYmJibIXEdHb+PsDPXsG5UrYxo4di99+Y8JGVFoUeiDC999//8b6adOmvXMwb+Pl5YVly5bh+fPncHFxwb59+6Q6BwcHHDp0CF988QW++eYbZGRkQKVS4cCBVxNIxsbGyhIpAKhcuTISExPx4sULPH36FBkZGXm2CQ8Pl46hVCphYWGRq032KhH5nSe7Lj9z5szBjBkz8q0nIspegsrbG+jYEZg8WUCp/B5OTq/amJiYSI+QEFHpUeietl27dsle27dvx9y5c7FgwQLs3r27UMfy9vaGQqF44ys7WQKA8ePHIyQkBIcOHYKuri769u0rPV8XGxuLQYMGoV+/fjh79iz++usvKJVKdO/ePdczeJpq4sSJSEhIkF53795Vd0hEpGGyR4b27g1MmfIISqX8H9JffvklEzaiUqrQPW0hISG5yhITE+Hp6YkuXboU6lhjx46Fp6fnG9vknPvN0tISlpaWcHR0hLOzM2xtbXH69GmoVCosX74c5ubmmDdvntT+t99+g62tLYKDg+Hi4gJra+tcozwfPnwIMzMzGBkZQVdXF7q6unm2sba2BgBYW1sjNTUV8fHxst6219u8PuI0+5jZbfJiYGAAAwODN34eRFS2ubllJW2tW++Evv4VWd3kyZOhp1foP+tEpCWK5LfbzMwMM2bMQIcOHdCnT58C72dlZQUrK6t3OmdmZiaArOfAAOD58+fSAIRsurq6srav3y4FgMOHD0OlUgEAlEolmjRpgsDAQHTu3FnaNzAwECNGjACQ9eycvr4+AgMD0a1bNwBAREQEoqOjpeOoVCrMmjULjx49kkacHj58GGZmZqhTp847vV8iKtuyb4vGx2dg+nT5VB4WFnXw3XefqykyIiopRfZPsuxbesUhODgYZ8+eRYsWLVC+fHncunULU6dORY0aNaREqV27dli4cCG+//579OzZE0lJSZg0aRKqVauGRo0aAQCGDBmCZcuWYcKECejfvz+OHj2K7du3Y//+/dK5xowZg379+qFp06Zo1qwZFi1ahOTkZHz99dcAAHNzcwwYMABjxoxBhQoVYGZmhm+//RYqlQouLi4AgNatW6NOnTro06cP5s2bh9jYWEyZMgXDhw9nTxoRvRNfX+DJkwj06rVVVj5kyJBcz9ASUelU6KRtyZIlsm0hBB48eIBff/0Vbdu2LbLAcjI2NsbOnTvh4+OD5ORk2NjYoE2bNpgyZYqUBH3yySfYvHkz5s2bh3nz5sHY2BgqlQoHDx6EkZERgKzBCvv378fo0aOxePFifPDBB1i9erU0RxuQ9TzI48ePMW3aNMTGxqJhw4Y4ePCg7I/iwoULoaOjg27duiElJQUeHh5YsWKFVK+rq4t9+/Zh6NChUKlUMDExQb9+/d46iIOIKC/+/kCLFgthYiIfUT5t2jQoFJx7jaiseKd52nLS0dGBlZUVPvnkE0ycOBHlypUr0gDLMs7TRlQ2Zd8KdXMDTp5Mhpubn6ze3d0d//3vf9UUHRG9TXF9fxe6py0yMrLITk5ERLlljxDV0/sbn356VFY3btw4mJiYqCkyIlKnd3qmLT4+Hjdv3gQA1KxZM9ecZUREVHj+/oCXF5CUJDB9uvxxCgsLC3z33XdqioyINEGhkraoqCgMHz4cAQEB0txnCoUCbdq0wbJly2Bvb18cMRIRlQkTJgAJCbEYMuQnWXmvXr1Qq1YtNUVFRJqiwEnb3bt34eLiAn19fcycORPOzs4AgGvXrmHlypVQqVQ4e/YsPvjgg2ILloiotPL3Bxo12gYnp3BZ+ZQpU6Tpi4iobCvwQIQBAwbg5s2bCAgIgKGhoazuxYsXaNOmDWrVqoXVq1cXS6BlEQciEJUN6enpmDVrlqysQYMG0nyRRKRd1D4Q4eDBg9i2bVuuhA0AjIyMMHPmTPTo0aPIAiMiKs2yR4gOGXINkZE7ZHXOzsPQufO7TTxORKVXgZO2f//9943PrFWvXh1xcXFFERMRUann6wt8/PFcREa+lJX7+PioKSIi0nQFTtpsbGxw7dq1fJ9ZCw0NfeO6mkRElCUpKQkeHj/Kytq0aYPmzZurKSIi0gY6b2+SpXPnzhg3bhweP36cq+7Ro0fw8vLi8xdERPmYPBlQKoFPPz2OH3+UJ2wTJkxgwkZEb1XggQhPnz5F8+bNERsbi6+++gpOTk4QQiAsLAybN2+GtbU1Tp8+jQoVKhR3zGUGByIQlR7lygmMGyefe61SpUoYOnSomiIiouKi9oEI5cuXR3BwMCZNmoStW7ciPj4eQNaEj7169cLs2bOZsBER5ZA92GDkyBiMG/eLrK5Pnz6oXr26miIjIm1U6LVHgaxF4rNvk1pZWXHB4mLCnjYi7ebqCtSo8Rtq1rwlK586dSp0dAr8dAoRaRm197TlpFAoUKlSpSILgoiotMjuXZswIQ0eHrNldU2aNEH79u3VFBkRabt3StqIiChvvr5AUtIVXLq0U1b+7bff8hESInovTNqIiIqIvz/g7v4DdHUzZOWce42IigKTNiKi9+TvDyxalICWLRch5zKhtrbt0b9/E/UFRkSlCpM2IqJ35O8PeHkB1aodQcuWJ2V1Xl5eeS77R0T0rgqUtC1ZsqTABxw5cuQ7B0NEpC0mTwbmzBHw8ZHPvValShUMGjRITVERUWlWoCk/HBwcCnYwhQK3b99+76AoC6f8INJctWvfRa9ea2Vlnp6eqFatmpoiIiJNodYpPyIjI4vshERE2ih7Ko+qVQFz8/Xo1euOrJ5zrxFRcXvnZ9pSU1MRGRmJGjVqQE+Pj8YRUenm6wucP58CDw9fWXnz5s3Rpk0bNUVFRGVJof9Z+Pz5cwwYMADGxsaoW7cuoqOjAWTNQeTr6/uWvYmItIe/f9aqBpMnAwYGFzFpkvxv3MiRI5mwEVGJKXTSNnHiRFy6dAnHjx+XjYxyd3fHtm3bijQ4IiJ18vUFgoIApXIGWrXaI6vz8fFB+fLl1RQZEZVFhb6vuXv3bmzbtg0uLi6yNUfr1q2LW7duvWFPIiLtMnr0U3h4yEfP29l1wtdfN1RPQERUphU6aXv8+HGe644mJydz4Xgi0nrZc681avQnatc+I6ubOHEilEqlmiIjorKu0LdHmzZtiv3790vb2Yna6tWroVKpii4yIqIS5u8PfPVVJnr0mCFL2KpVqwYfHx8mbESkVoXuaZs9ezbatm2La9euIT09HYsXL8a1a9dw6tQp/PXXX8URIxFRifDzi8LYsRtkZf3794etra2aIiIieqXQPW0tWrTAxYsXkZ6ejvr16+PQoUOoVKkSgoKC0KQJ19gjIu2SPULUx+dnfPqpPGGbNm0aEzYi0hjvNMFajRo18MsvvxR1LEREJWryZGDBgpeYOHGurPzatf+id2938DFdItIkBUraEhMTC3xALrdERNri+PFzmDhxv6ysbt1R8PExV1NERET5K1DSZmFhUeCRoRkZGe8VEBFRSZgxYwZat361LYQepk+frL6AiIjeokBJ27Fjx6T/joqKgre3Nzw9PaXRokFBQdiwYQPmzJlTPFESERUBf3/g+++foEOHZbLyrl27on79+mqKioioYBRCCFGYHT799FMMHDgQPXv2lJVv3rwZP//8M44fP16U8ZVpiYmJMDc3R0JCAm87E70Hf3/g668BV9e9aNr0gqyuQYNJ6NxZX02REVFpVFzf34VO2oyNjXHp0iXUqlVLVn79+nU0bNgQz58/L7LgyjombUTvL3vutbFjZ8rKzcxqYvTo3mqKiohKs+L6/i70lB+2trZ5jhxdvXo1h8YTkcb5+efbuRK2QYMGMWEjIq1T6Ck/Fi5ciG7duuHPP/9E8+bNAQBnzpzBjRs38McffxR5gERE72ru3BX48MPHsrJp06ZxyT0i0kqFvj0KAPfu3cOKFSsQHh4OAHB2dsaQIUPY01bEeHuU6N28ePEC8+bNk5W1bNkSrVq1Uk9ARFSmaMwzbVRymLQRFd7q1cG4f/+grKxevTHo1q2cmiIiorKmuL6/32lFhPj4eKxZswZhYWEAgLp166J///4wN+eElESkHpMnCyiV38vKjIyMMGHCBDVFRERUtAo9EOHcuXOoUaMGFi5ciLi4OMTFxeHHH39EjRo1cOHChbcfgIioiE2e/DhXwubg8AUTNiIqVQp9e/Sjjz5CzZo18csvv0BPL6ujLj09HQMHDsTt27dx4sSJYgm0LOLtUaK3mzZtF3R1L8vKGjSYjM6d3+lGAhHRe9OYZ9qMjIwQEhICJycnWfm1a9fQtGlTztNWhJi0EeVv9+4MXLr0g6wsM9MZM2Z8oaaIiIiyaMwzbWZmZoiOjs6VtN29exflyvFBXyIqftevX8elS1tkZb/88g3u3bNWU0RERMWv0Enbl19+iQEDBsDPzw+urq4AgJMnT2L8+PG5lrYiIipqixcvRnx8vKzMz28aRo7k3GtEVLoVOmnz8/ODQqFA3759kZ6eDgDQ19fH0KFD4evrW+QBEhEBQHJyMvz8/GRln376KVq0aAEfHzUFRURUgt55nrbnz5/j1q1bAIAaNWrA2Ni4SAMjPtNGlO3kyZM4cuSIrOzYsXE4ftxETREREeVPY55py2ZsbIz69esXWSBERK8TQuD77+VTeTx7Zoa9e0fjtQUPiIhKvQInbf379y9Qu7Vr175zMERE2R4+fIhVq1bJyjZv7oGKFWvj/1fQIyIqUwqctK1fvx7VqlVDo0aNwJWviKg4bd++XVpxJVuDBlMQEKALb281BUVEpGYFTtqGDh2KLVu2IDIyEl9//TW++uorVKhQoThjI6IyJj09HbNmzZKV1a9fH127dgUAdO6shqCIiDREgZexWr58OR48eIAJEyZg7969sLW1xRdffIGAgAD2vBHRewsLC8uVsP3zz1ApYSMiKuveefTonTt3sH79emzcuBHp6em4evUqTE1Nizq+Mo2jR6msmD9/fq7VVAICpsHbW4GOHdUUFBHRO9K40aM6OjpQKBQQQiAjI6PIAiKisuPZs2dYsGCBrOzgwda4e1eFe/fUFBQRkYYq8O1RAEhJScGWLVvwv//9D46Ojrhy5QqWLVuG6Oho9rIRUaH89ddfuRK2uXPHIzRUhRUr1BQUEZEGK3BP27Bhw7B161bY2tqif//+2LJlCywtLYszNiIqhfKae+3JE0ssXTocpqbApk3gLVEiojwU+Jk2HR0d2NnZoVGjRlAo8l/jb+fOnUUWXFnHZ9qotHnw4AF+/vlnWVnv3r1x7VpN+PoC3t5M2IhI+6n9mba+ffu+MVkjInqTLVu24Pr167Kyhg2noGZNXdSsyWSNiOht3nn0KBU/9rRRaZCWlobZs2fLys6fb4R//+2IU6fUFBQRUTFSe08bEVFhhYaG4o8//pCVOTuPQEBARa5sQERUSEzaiKhYzJ49G2lpabIyHx8fAMAXX6gjIiIi7cakjYiKVGJiIhYuXCgr++yzz/Dhhx+qKSIiotKBSRsRFZmjR4/i77//lpUtXeqF1FRDMGcjIno/HIigwTgQgbRFXnOvxcTYYN26wUhLA0xNgaQkNQVHRFTCOBCBiDTSvXv3sGbNGlnZxo19cfu2A/T1sxK2kSPVFBwRUSlSqGWs1Kljx46ws7ODoaEhbGxs0KdPH8TExMjabN++HQ0bNoSxsTGqVauG+fPn5zrO8ePH0bhxYxgYGKBmzZpYv359rjbLly+Hvb09DA0N0bx5c5w5c0ZW//LlSwwfPhwVK1aEqakpunXrhocPH8raREdHo127djA2NkalSpUwfvx4pKenv/8HQaRBNm7cmCth27p1Knr0cICpKTB+fFYP26xZagqQiKgU0Zqkzc3NDdu3b0dERAT++OMP3Lp1C927d5fq//zzT/Tu3RtDhgxBaGgoVqxYgYULF2LZsmVSm8jISLRr1w5ubm64ePEiRo0ahYEDByIgIEBqs23bNowZMwY+Pj64cOECGjRoAA8PDzx69EhqM3r0aOzduxc7duzAX3/9hZiYGHTt2lWqz8jIQLt27ZCamopTp05hw4YNWL9+PaZNm1bMnxJRyUhNTcWMGTMQGRkplQUHf4jvv/dB1646mDWLyRoRUVHT2mfa/P390blzZ6SkpEBfXx+9evVCWloaduzYIbVZunQp5s2bh+joaCgUCnh5eWH//v0IDQ2V2vTo0QPx8fE4ePAgAKB58+b48MMPpWQvMzMTtra2+Pbbb+Ht7Y2EhARYWVlh8+bNUtIYHh4OZ2dnBAUFwcXFBX/++Sfat2+PmJgYVK5cGQCwatUqeHl54fHjx1AqlQV6j3ymjTTRpUuXsHv3bllZnToj0b9/eTx7BqhU4KS5RFSmFdf3t9b0tOUUFxeHTZs2wdXVFfr6+gCAlJQUGBoaytoZGRnh3r17uHPnDgAgKCgI7u7usjYeHh4ICgoCkNV7cP78eVkbHR0duLu7S23Onz+PtLQ0WRsnJyfY2dlJbYKCglC/fn0pYcs+T2JiIq5evZrv+0pJSUFiYqLsRaRJZsyYkStha9TIBwYG5VG1KuDkBE6aS0RUTLQqafPy8oKJiQkqVqyI6Oho7NmzR6rz8PDAzp07ERgYiMzMTFy/fh0LFiwAkLVINQDExsbKEikAqFy5MhITE/HixQv8+++/yMjIyLNNbGysdAylUgkLC4s3tsnrGNl1+ZkzZw7Mzc2ll62tbUE/GqJiFR8fjxkzZsjK9uzpiOnTfeDrC/j6AhERQPnyXEOUiKi4qDVp8/b2hkKheOMrPDxcaj9+/HiEhITg0KFD0NXVRd++fZF9d3fQoEEYMWIE2rdvD6VSCRcXF/To0QNAVm+ZNpg4cSISEhKk1927d9UdEhECAgKwePFiWdmOHd548aIRatfO6lnz9s66LcpeNiKi4qPWKT/Gjh0LT0/PN7apXr269N+WlpawtLSEo6MjnJ2dYWtri9OnT0OlUkGhUGDu3LmYPXs2YmNjYWVlhcDAQNkxrK2tc43yfPjwIczMzGBkZARdXV3o6urm2cba2lo6RmpqKuLj42W9ba+3eX3EafYxs9vkxcDAAAYGBm/8PIhKSmZmJmbOnCkrMzGxw5o1XyMpCShXDpg371XPGnvYiIiKl1q7oKysrODk5PTGV34P7WdmZgLIeg4sJ11dXVStWhVKpRJbtmyBSqWClZUVAEClUkmJXLbDhw9DpVIBAJRKJZo0aSJrk5mZicDAQKlNkyZNoK+vL2sTERGB6OhoqY1KpcKVK1dkI04PHz4MMzMz1KlT550+K6KSdOfOnVwJW61aX2PcuK9Rvjxw/z4QHp51W5SIiEqGVkyuGxwcjLNnz6JFixYoX748bt26halTp6JGjRpSovTvv//i999/R6tWrfDy5UusW7dOmpIj25AhQ7Bs2TJMmDAB/fv3x9GjR7F9+3bs379fajNmzBj069cPTZs2RbNmzbBo0SIkJyfj66+/BgCYm5tjwIABGDNmDCpUqAAzMzN8++23UKlUcHFxAQC0bt0aderUQZ8+fTBv3jzExsZiypQpGD58OHvSSOOtWbMG9+7dk5XNmDENLi4K9OqVdQt0wgRAoeDtUCKiEiW0wOXLl4Wbm5uoUKGCMDAwEPb29mLIkCHi3r17UpvHjx8LFxcXYWJiIoyNjcWnn34qTp8+netYx44dEw0bNhRKpVJUr15drFu3LlebpUuXCjs7O6FUKkWzZs1yHefFixdi2LBhonz58sLY2Fh06dJFPHjwQNYmKipKtG3bVhgZGQlLS0sxduxYkZaWVqj3nZCQIACIhISEQu1H9C5evnwppk+fLnt9+WWAAIQwNRVizx51R0hEpB2K6/tba+dpKws4TxuVlAsXLmDv3r2ysoULRyElxRz29sDcuXxmjYiooLj2KBEVi9en8sjM1EF6+lRkZAAvX3IaDyIiTcGkjaiMiouLw9KlS2VlQUFdEBDwH6hUwKZNWQMN+NwaEZFmYNJGVAbt378f586dk5XNmjUR5coppfnWOnZkDxsRkSZh0kZUhuQ191q5ctUxblwfCAG8eJGVsGVP5cGkjYhIc2jHUgFE9N5u376dK2FzdByI33/PSth0dIDRo7MStqAgzsFGRKRp2NNGVAasWrUq10of2XOvZfesZd8S9ffns2xERJqIU35oME75Qe/rxYsXmDdvnqzsr78+QlDQJ5zKg4iomBTX9zdvjxKVUmfOnMmVsNWtOxpnz36Cly+B69eB4GA1BUdERIXG26NEpdDrc68ZGBjA+//vdyqVQJcuQGZm1m3Q5s3Z20ZEpA3Y00ZUiiQmJuZK2Lp37y4lbNnPq3XtmjXwIDtxIyIizcekjaiUOHv2LBYuXCgrS02dhEGD6sLfP2s7e2To/fvArl2Q5mQjIiLNx4EIGowDEaggMjMzsWDBAjx//lwqi4n5D37+uQtMTYFnz7KSs1On5CNDeUuUiKh4cO1RIsrlwYMH+Pnnn2VldeqMxJYt5eHklHUb9NixV71pXOWAiEh7MWkj0lJ//vknzpw5I20bG1fFrl0DsGWLAhERWb1rs2apMUAiIipSTNqItExKSgp8Xxs9EBLyBSIinBEeDjg58Vk1IqLSiAMRiLRIREREroQtMNALe/Y4IyoqK2GbOzfr+TUAcHUFJk/O+pk9GIGIiLQTe9qItIAQAhs2bMCdO3ekssaNG6NDhw5o1AgICckacFC+/Ktn1rJHil65klXn68vn2YiItBmTNiINl5CQgEWLFsnKBg4ciKpVqwLISsQ2bXo1KjR7hKibW1ZbNzf5YAQiItJOTNqINNjp06cREBAgbSuVSkyYMAG6urqydjlHhbq6ZvWwAa9ukxIRkfZj0kakgTIyMjBv3jykpqZKZR4eHnBxcXnrvt7er3rdiIio9GDSRqRhYmJi8Msvv8jKRo0aBXNz8zful3PiXPawERGVPhw9SqRB9u7dK0vYqlWrhmnTpsHc3Bz+/m8eBZo98IBriRIRlU5M2og0wMuXLzFjxgxcuHBBKuvRowc8PT2hUCgA5J2U5UzkvL05PxsRUWnGtUc1GNceLRvCwsKwfft2Wdnvv3sjLc0A8+a9GmCQ17qh2YMOstcWJSIi9Suu728mbRqMSVvpJoTAmjVrcP/+fansww8/xA8/fCaN/nxbMsYF4ImINA8XjCcqRZ4+fYolS5bIygYPHgwbGxukpwPDhgFPnryaay0/XACeiKjsYNJGVMJOnjyJI0eOSNvGxsYYO3YsdHSyHjHt2DGr9+z+/axJcYmIiAAmbUQlJiMjA7Nnz0ZmZqZU9tlnn+HDDz/M1ZZzrRER0euYtBGVgHv37mHNmjWystTU0fjkEzOMHAnMmiVvz9ueRET0Og5E0GAciFA67N69G5cuXZK2y5WrgV9++QoREYAQgKkpkJSkxgCJiKhIcSACkZZ58eIF5s2bJyvr3bs3+vatifDwrG0dHWDkSDUER0REWodJG1ExCA0NxR9//CErmzhxIpRKJby9AS+vrF62nPOwERERvQmTNqIiJITATz/9hIcPH0plKpUKrVu3lrb5vBoREb0LJm1ERSQuLg5Lly6VlZ08ORSNGlVSU0RERFSaMGkjKgInTpzAsRyTqpmZmWHHju8QFKSDZ8/Ys0ZERO+PSRvRe0hPT8es1+brsLXtgNWrG0urGXCuNSIiKgpM2oje0Z07d7B+/XpZWWrqWAwcaAohgKdPgbCw/PfnuqFERFQYTNqI3sEff/yB0NBQadvR0RE9e/ZEuXJZo0KBVz/z4+sLBAVl/WTSRkREb6Oj7gCItMnz588xY8YMWcJWs2Yf9OzZE0DWnGv6+lmvbt3efCxvb0Cl4u1TIiIqGPa0ERXQ5cuXsWvXLlnZrFmTYGCgj3LlsnrLZs3KWuQ9KOjti71z6g8iIioM9rQRvYUQAsuWLZMlbLdvt0Bqqg8MDPTx7FnWLc5sefWg+fsDrq5ZP4mIiN4F1x7VYFx7VP3+/fdfLF++XFb2zz/DcOSIlZSYFWQwgatrVu+bSgWcOlXMQRMRkVpx7VGiEnbs2DGcOHFC2jYwqAAvrxHYu1eB5GTAza3goz9zJndERETvgj1tGow9beqRlpaG2bNny8p27eoEY+OGsl4y9p4REVFeiuv7m8+0EeUQGRmZK2FLTR0HY+OGuXrJsp9dc3Pj82pERFT82NOmwdjTVrK2bduG8PBwaTs6ug7Wrv38rT1p7HEjIqKc+EwbUTFJTk6Gn5+frGzdun4wMrIv0DxqfF6NiIhKApM2KtNCQkLg/9p9zQYNJqNKFb0CLy/F+daIiKgkMGmjMkkIAV/fxUhNTZDKrK1b4ptvWgEAOndWT1xERET5YdJGZc6jR4+wcuVKWdnSpSNgaVkRGzZwAXciItJMHD1KZcrhw4dlCVtSUiWkpk6Do2NFKBSvFnAnIiLSNOxpo1LN3z8rCRs/PhWXL8+R1XXt2hX169fP1ZYDCoiISBMxaaNSJ2fyNWECkJ5+C5cv/yZrM378eBgbG8vKOKCAiIg0GZM2KnV8fV/d5mzZchOqVLkp1dWvXx9du3ZVY3RERETvhs+0Uang7/9qVQJvb6BVqyR4eMyQJWxff/01EzYiItJa7GkjrefvD/TuDTx7ltW7tmTJObRqtV+qVygUmDRpEvT0+L87ERFpL36Lkdbz9c1K2MqVy0S7dj9i//5kqe7TTz9FixYt1BgdERFR0eDtUdJoOW975sfbG2jdOhZjx85EevqrhG3kyJFM2IiIqNRgTxtptJyDCvIb2alUHoSra7C0bWNjg0GDBkGhUJRQlERERMWPSRtptDctxp6SkgLf12bC/fzzz1GnTp0Sio6IiKjk8PYoabSOHYFTp3L3sl2/fj1Xwubl5YWbN+u89XYqERGRNmJPG2kVIQQ2btyIqKgoqaxhw4bo1KkTgILdTiUiItJGTNpIayQmJmLhwoWysoEDB6Jq1arS9ptupxIREWkzJm1UonIuMVXQnjB/f2Dz5mA4Ox+UyvT19eHl5QVdXV1ZWy5FRUREpZXWPdOWkpKChg0bQqFQ4OLFi7K6y5cv46OPPoKhoSFsbW0xb968XPvv2LEDTk5OMDQ0RP369XHgwAFZvRAC06ZNg42NDYyMjODu7o4bN27I2sTFxaF3794wMzODhYUFBgwYgGfPnhU6ltIsv6k6sm9f9u5dsOfOMjMzceaMryxhu3ChNSZNmpQrYSMiIirNtC5pmzBhAqpUqZKrPDExEa1bt0a1atVw/vx5zJ8/H9OnT8fPP/8stTl16hR69uyJAQMGICQkBJ07d0bnzp0RGhoqtZk3bx6WLFmCVatWITg4GCYmJvDw8MDLly+lNr1798bVq1dx+PBh7Nu3DydOnMDgwYMLFUtpl/PZspy8vQFT01erF+T0eqIXExODmTNnQl8/RWqzcOF3uH5dVczRExERaSChRQ4cOCCcnJzE1atXBQAREhIi1a1YsUKUL19epKSkSGVeXl6idu3a0vYXX3wh2rVrJztm8+bNxTfffCOEECIzM1NYW1uL+fPnS/Xx8fHCwMBAbNmyRQghxLVr1wQAcfbsWanNn3/+KRQKhbh//36BYymIhIQEAUAkJCQUaj9NsGePECpV1s+C1qlUQgBZP/ft2yemT58uvdasWSN2787M95hERESaori+v7Wmp+3hw4cYNGgQfv31VxgbG+eqDwoKwscffwylUimVeXh4ICIiAk+fPpXauLu7y/bz8PBAUFAQACAyMhKxsbGyNubm5mjevLnUJigoCBYWFmjatKnUxt3dHTo6OggODi5wLHlJSUlBYmKi7KWt8puq40113t5AixYp8PCYgXPnzknlX375Jfr3749OnRQ4dSqrjNN6EBFRWaMVSZsQAp6enhgyZIgsWcopNjYWlStXlpVlb8fGxr6xTc76nPvl16ZSpUqyej09PVSoUOGt58l5jrzMmTMH5ubm0svW1jbfttosv+fdHB3D4e4uv2fq7e0NJycnWVl+t16JiIhKM7Umbd7e3lAoFG98hYeHY+nSpUhKSsLEiRPVGW6xmzhxIhISEqTX3bt31R1SoRVkrdDXByMIIbBmzRps27ZNatO0aVP4+PjAwMAg1/7e3oBKxWk9iIiobFHrlB9jx46Fp6fnG9tUr14dR48eRVBQUK4v8KZNm6J3797YsGEDrK2t8fDhQ1l99ra1tbX0M682Oeuzy2xsbGRtGjZsKLV59OiR7Bjp6emIi4t763lyniMvBgYGeSYp2qQgk9t6e2clbM+eAYsWxSMkZLGsfvDgwbLP/3Wc1oOIiMoitfa0WVlZwcnJ6Y0vpVKJJUuW4NKlS7h48SIuXrwoTdOxbds2zJo1CwCgUqlw4sQJpKWlScc/fPgwateujfLly0ttAgMDZTEcPnwYKlXWaEQHBwdYW1vL2iQmJiI4OFhqo1KpEB8fj/Pnz0ttjh49iszMTDRv3rzAsZRWBekF69gR2LQJ6NHjFFq2fJWwGRkZYerUqW9M2IiIiMqsIh3WUEIiIyNzjR6Nj48XlStXFn369BGhoaFi69atwtjYWPz0009Sm5MnTwo9PT3h5+cnwsLChI+Pj9DX1xdXrlyR2vj6+goLCwuxZ88ecfnyZdGpUyfh4OAgXrx4IbVp06aNaNSokQgODhb//POPqFWrlujZs2ehYikIbR49+ibp6enihx9+kI0ODQ4OVndYRERERaK4vr9LzYoI5ubmOHToEIYPH44mTZrA0tIS06ZNk82f5urqis2bN2PKlCmYNGkSatWqhd27d6NevXpSmwkTJiA5ORmDBw9GfHw8WrRogYMHD8LQ0FBqs2nTJowYMQKffvopdHR00K1bNyxZsqRQsZRV9+7dw5o1a2Rlo0ePhpmZmZoiIiIi0g4KIYRQdxCUt8TERJibmyMhIaFEkpp3WWKqMPbs2SNbxcLBwQF9+vSBQqEo+pMRERGpSXF9f2vFlB9UMgo7lUZBRooCwIsXLzBjxgxZwtarVy/07duXCRsREVEBMWkjSWGn0ihIknft2rVc665OnDgRtWrVeo9IiYiIyp5S80wbvZ93uTXq7f1qn9cJIfDzzz/LJhN2cXGBh4dHEUVMRERUtvCZNg1Wks+0ubpm9ZqpVJCWinpXcXFxWLp0qaxsyJAhuVaJICIiKo2K6/ubPW0E4M29ZgXl7w9s2/Y3HB2PSmWmpqYYPXo0dHR4J56IiOh9MGkjAO+/ykB6ejpCQmbB0fFVWfv27dGkSZP3D46IiIiYtNH7i46Oxrp162RlY8aMQbly5dQUERERUenDe1ZUKK9P87Fz505ZwlarVi34+PgwYSMiIipi7GmjPOU3mjR7mo8FC54jJGS+bJ+vvvoKNWrUKOFIiYiIygb2tJVBBZkUN7852Ly9ga5dr+CTT+QJ26RJk5iwERERFSMmbWVQQSbFzWuiXSEE7t1bgf/8Z6dU9t///hc+Pj7Q19cvxoiJiIiIt0fLoIJM7/H6aNLt258gLGyZrM2wYcNgZWVVTFESERFRTkzayqDCTu9x/PhxhIX9JW1bWFhg5MiRXDeUiIioBDFpo3zt3p2OS5dmycrs7Dri668bqSkiIiKisotJG+UpKioKly5tkJWNGzcOJiYmaoqIiIiobGPSRrls374dYWFh0ra5uTNGjfpCjRERERERkzaSJCcnw8/PT1bWt29fODg4qCkiIiIiysakjQAAFy9exJ49e2RlkyZN4lQeREREGoJJWxknhMDSpUvx9OlTqezjjz+Gm5ubGqMiIiKi1zFpK8MeP36MFStWyMqGDx8OS0tLNUVERERE+WHSVkYFBgbin3/+kbYtLS0xbNgwzr1GRESkoZi0lUEbN25EZGSktN2lSxf85z//UWNERERE9DZM2sqgf//9V/rv8ePHw9jYWI3REBERUUFwwfgyqF+/fujXrx8aNfKBu7sx/P1f1fn7A66ukJURERGR+imEEELdQVDeEhMTYW5ujoSEBJiZmRX58V1dgaAgQKUCTp3Kv4yIiIgKrri+v9nTVoZ5e2clZ97eby4jIiIi9WNPmwYr7p42IiIiKnrsaaNiwWfYiIiItAOTtjLO1zfrGTZfX3VHQkRERG/CpK2M4zNsRERE2oHztJVxHTtmvYiIiEizsaeNiIiISAswaSMiIiLSAkzaiIiIiLQAkzYiIiIiLcCkjYiIiEgLMGkjIiIi0gJM2oiIiIi0AJM2IiIiIi3ApI2IiIhICzBpIyIiItICTNqIiIiItACTNiIiIiItwKSNiIiISAvoqTsAyp8QAgCQmJio5kiIiIiooLK/t7O/x4sKkzYNlpSUBACwtbVVcyRERERUWElJSTA3Ny+y4ylEUaeBVGQyMzMRExODcuXKQaFQqDucEpWYmAhbW1vcvXsXZmZm6g6HcuC10Vy8NpqL10azFfX1EUIgKSkJVapUgY5O0T2Jxp42Daajo4MPPvhA3WGolZmZGf/AaSheG83Fa6O5eG00W1Fen6LsYcvGgQhEREREWoBJGxEREZEWYNJGGsnAwAA+Pj4wMDBQdyj0Gl4bzcVro7l4bTSbtlwfDkQgIiIi0gLsaSMiIiLSAkzaiIiIiLQAkzYiIiIiLcCkjYiIiEgLMGmjIpeSkoKGDRtCoVDg4sWLsrrLly/jo48+gqGhIWxtbTFv3rxc++/YsQNOTk4wNDRE/fr1ceDAAVm9EALTpk2DjY0NjIyM4O7ujhs3bsjaxMXFoXfv3jAzM4OFhQUGDBiAZ8+eFTqW0qJjx46ws7ODoaEhbGxs0KdPH8TExMjabN++HQ0bNoSxsTGqVauG+fPn5zrO8ePH0bhxYxgYGKBmzZpYv359rjbLly+Hvb09DA0N0bx5c5w5c0ZW//LlSwwfPhwVK1aEqakpunXrhocPH8raREdHo127djA2NkalSpUwfvx4pKenv/8HoYEKcm0CAgLg4uKCcuXKwcrKCt26dUNUVJSsDa9N8Xjb9Zk+fToUCkWul4mJiew4/LtW9AryuyOEgJ+fHxwdHWFgYICqVati1qxZsjZa9bsjiIrYyJEjRdu2bQUAERISIpUnJCSIypUri969e4vQ0FCxZcsWYWRkJH766SepzcmTJ4Wurq6YN2+euHbtmpgyZYrQ19cXV65ckdr4+voKc3NzsXv3bnHp0iXRsWNH4eDgIF68eCG1adOmjWjQoIE4ffq0+Pvvv0XNmjVFz549CxVLafLjjz+KoKAgERUVJU6ePClUKpVQqVRS/YEDB4Senp5YuXKluHXrlti3b5+wsbERS5culdrcvn1bGBsbizFjxohr166JpUuXCl1dXXHw4EGpzdatW4VSqRRr164VV69eFYMGDRIWFhbi4cOHUpshQ4YIW1tbERgYKM6dOydcXFyEq6urVJ+eni7q1asn3N3dRUhIiDhw4ICwtLQUEydOLOZPST3edm1u374tDAwMxMSJE8XNmzfF+fPnxccffywaNWoka8NrUzzedn2SkpLEgwcPZK86deqIfv36SW34d614vO3aCCHEt99+K2rXri327Nkjbt++Lc6dOycOHTok1Wvb7w6TNipSBw4cEE5OTuLq1au5krYVK1aI8uXLi5SUFKnMy8tL1K5dW9r+4osvRLt27WTHbN68ufjmm2+EEEJkZmYKa2trMX/+fKk+Pj5eGBgYiC1btgghhLh27ZoAIM6ePSu1+fPPP4VCoRD3798vcCyl2Z49e4RCoRCpqalCCCF69uwpunfvLmuzZMkS8cEHH4jMzEwhhBATJkwQdevWlbX58ssvhYeHh7TdrFkzMXz4cGk7IyNDVKlSRcyZM0cIkXWt9PX1xY4dO6Q2YWFhAoAICgoSQmT9P6SjoyNiY2OlNitXrhRmZmay61VavX5tduzYIfT09ERGRobUxt/fX9aG16bkvH59Xnfx4kUBQJw4cUIq49+1kvH6tbl27ZrQ09MT4eHh+e6jbb87vD1KRebhw4cYNGgQfv31VxgbG+eqDwoKwscffwylUimVeXh4ICIiAk+fPpXauLu7y/bz8PBAUFAQACAyMhKxsbGyNubm5mjevLnUJigoCBYWFmjatKnUxt3dHTo6OggODi5wLKVVXFwcNm3aBFdXV+jr6wPIuqVtaGgoa2dkZIR79+7hzp07AN5+bVJTU3H+/HlZGx0dHbi7u0ttzp8/j7S0NFkbJycn2NnZya5f/fr1UblyZdl5EhMTcfXq1aL6GDRSXtemSZMm0NHRwbp165CRkYGEhAT8+uuvcHd3l9rw2pSMvK7P61avXg1HR0d89NFHUhn/rhW/vK7N3r17Ub16dezbtw8ODg6wt7fHwIEDERcXJ+2nbb87TNqoSAgh4OnpiSFDhsj+qOQUGxsr+x8WgLQdGxv7xjY563Pul1+bSpUqyer19PRQoUKFt54n5zlKGy8vL5iYmKBixYqIjo7Gnj17pDoPDw/s3LkTgYGByMzMxPXr17FgwQIAwIMHDwDk/5klJibixYsX+Pfff5GRkfHWa6NUKmFhYfHGNrw2r66Ng4MDDh06hEmTJsHAwAAWFha4d+8etm/fLrXhtSleb7o+Ob18+RKbNm3CgAEDZOX8u1Z83nRtbt++jTt37mDHjh3YuHEj1q9fj/Pnz6N79+5SG2373WHSRm/k7e2d50O2OV/h4eFYunQpkpKSMHHiRHWHXGYU9NpkGz9+PEJCQnDo0CHo6uqib9++EP+/IMqgQYMwYsQItG/fHkqlEi4uLujRoweArH9VUuEU5bWJjY3FoEGD0K9fP5w9exZ//fUXlEolunfvLrWhwinK65PTrl27kJSUhH79+pXk2ylVivLaZGZmIiUlBRs3bsRHH32EVq1aYc2aNTh27BgiIiLU9Rbfi566AyDNNnbsWHh6er6xTfXq1XH06FEEBQXlWretadOm6N27NzZs2ABra+tco2myt62traWfebXJWZ9dZmNjI2vTsGFDqc2jR49kx0hPT0dcXNxbz5PzHJquoNcmm6WlJSwtLeHo6AhnZ2fY2tri9OnTUKlUUCgUmDt3LmbPno3Y2FhYWVkhMDBQdoz8PjMzMzMYGRlBV1cXurq6b71+qampiI+Pl/2r9PU2r4/MKsvXZvny5TA3N5eNAvztt99ga2uL4OBguLi48NoUUlFen5xWr16N9u3b5+pR4d+1givKa2NjYwM9PT04OjpK7Z2dnQFkjeSsXbu29v3uFPjpN6I3uHPnjrhy5Yr0CggIEADE77//Lu7evSuEePWQbM4HeCdOnJhrIEL79u1lx1apVLke2PXz85PqExIS8nxg99y5c1KbgICAPB/YfVMspdmdO3cEAHHs2LF82/Tp00c2EmvChAmiXr16sjY9e/bM9cDuiBEjpO2MjAxRtWrVXA/s/v7771Kb8PDwPB/YzTky66effhJmZmbi5cuX7/aGtcjr12bMmDGiWbNmsjYxMTECgDh58qQQgtemJOX3u3P79m2hUCjE3r17c+3Dv2sl4/Vrk/09dPPmTalN9kCRiIgIIYT2/e4waaNiERkZmWv0aHx8vKhcubLo06ePCA0NFVu3bhXGxsa5pvzQ09MTfn5+IiwsTPj4+OQ5NN7CwkLs2bNHXL58WXTq1CnPofGNGjUSwcHB4p9//hG1atWSDY0vSCylxenTp8XSpUtFSEiIiIqKEoGBgcLV1VXUqFFD+mPx+PFjsXLlShEWFiZCQkLEyJEjhaGhoQgODpaOkz00fvz48SIsLEwsX748z6HxBgYGYv369eLatWti8ODBwsLCQjZiasiQIcLOzk4cPXpUnDt3Ltcw/eyh8a1btxYXL14UBw8eFFZWVqVyWomCXJvAwEChUCjEjBkzxPXr18X58+eFh4eHqFatmnj+/LkQgtemuBTk+mSbMmWKqFKlikhPT891HP5dK3oFuTYZGRmicePG4uOPPxYXLlwQ586dE82bNxf/+9//pONo2+8OkzYqFnklbUIIcenSJdGiRQthYGAgqlatKnx9fXPtu337duHo6CiUSqWoW7eu2L9/v6w+MzNTTJ06VVSuXFkYGBiITz/9VPpXU7YnT56Inj17ClNTU2FmZia+/vprkZSUVOhYSoPLly8LNzc3UaFCBWFgYCDs7e3FkCFDxL1796Q2jx8/Fi4uLsLExEQYGxuLTz/9VJw+fTrXsY4dOyYaNmwolEqlqF69uli3bl2uNkuXLhV2dnZCqVSKZs2a5TrOixcvxLBhw0T58uWFsbGx6NKli3jw4IGsTVRUlGjbtq0wMjISlpaWYuzYsSItLa1oPhANUpBrI4QQW7ZsEY0aNRImJibCyspKdOzYUYSFhcna8NoUvYJen4yMDPHBBx+ISZMm5Xss/l0rWgW9Nvfv3xddu3YVpqamonLlysLT01M8efJE1kabfncUQvBJViIiIiJNx2FhRERERFqASRsRERGRFmDSRkRERKQFmLQRERERaQEmbURERERagEkbERERkRZg0kZERESkBZi0ERFRLsePH4dCoUB8fPx7Hcfe3h6LFi0qkpiIyjombURUpGJjY/Htt9+ievXqMDAwgK2tLTp06CAtQA8Ap06dwmeffYby5cvD0NAQ9evXx48//oiMjAypTVRUFAYMGAAHBwcYGRmhRo0a8PHxQWpqqux8v/zyCxo0aABTU1NYWFigUaNGmDNnjlQ/ffp0KBQKtGnTJles8+fPh0KhQKtWrQr8/hITEzF58mQ4OTnB0NAQ1tbWcHd3x86dO5FzrvKrV6/iiy++gJWVFQwMDODo6Ihp06bh+fPnUpu4uDh8++23qF27NoyMjGBnZ4eRI0ciISGhQLFERUVBoVDk+Tp9+nSB31OrVq0watSoArcnIvXQU3cARFR6REVF4b///S8sLCwwf/581K9fH2lpaQgICMDw4cMRHh6OXbt24YsvvsDXX3+NY8eOwcLCAkeOHMGECRMQFBSE7du3Q6FQIDw8HJmZmfjpp59Qs2ZNhIaGYtCgQUhOToafnx8AYO3atRg1ahSWLFmCli1bIiUlBZcvX0ZoaKgsLhsbGxw7dgz37t3DBx98IJWvXbsWdnZ2BX5/8fHxaNGiBRISEvDDDz/gww8/hJ6eHv766y9MmDABn3zyCSwsLHD69Gm4u7vD3d0d+/fvR+XKlXHmzBmMHTsWgYGBOHbsGJRKJWJiYhATEwM/Pz/UqVMHd+7cwZAhQxATE4Pff/+9wHEdOXIEdevWlZVVrFixwPsTkZYo1KJXRERv0LZtW1G1alXx7NmzXHVPnz4Vz549ExUrVhRdu3bNVe/v7y8AiK1bt+Z7/Hnz5gkHBwdpu1OnTsLT0/ONMfn4+IgGDRqI9u3bix9++EEqP3nypLC0tBRDhw4VLVu2LMC7E2Lo0KHCxMRE3L9/P1ddUlKSSEtLE5mZmaJOnTqiadOmIiMjQ9bm4sWLQqFQvHE9yO3btwulUlmgNQnzW+M3p+z3v3HjRlGtWjVhZmYmvvzyS5GYmCiEEKJfv34CgOwVGRkpjh07JgCII0eOiCZNmggjIyOhUqlEeHi4dOybN2+Kjh07ikqVKgkTExPRtGlTcfjwYdn5q1WrJhYuXChtAxArVqwQbdq0EYaGhsLBwUHs2LFDqndzcxPDhw+XHePRo0dCX19fHDly5K2fCVFpxtujRFQk4uLicPDgQQwfPhwmJia56i0sLHDo0CE8efIE48aNy1XfoUMHODo6YsuWLfmeIyEhARUqVJC2ra2tcfr0ady5c+et8fXv3x/r16+XtteuXYvevXtDqVS+dV8AyMzMxNatW9G7d29UqVIlV72pqSn09PRw8eJFXLt2DWPGjIGOjvxPbIMGDeDu7v7W92hmZgY9vaK7EXLr1i3s3r0b+/btw759+/DXX3/B19cXALB48WKoVCoMGjQIDx48wIMHD2BrayvtO3nyZCxYsADnzp2Dnp4e+vfvL9U9e/YMn332GQIDAxESEoI2bdqgQ4cOiI6OfmM8U6dORbdu3XDp0iX07t0bPXr0QFhYGABg4MCB2Lx5M1JSUqT2v/32G6pWrYpPPvmkyD4TIm3EpI2IisTNmzchhICTk1O+ba5fvw4AcHZ2zrPeyclJapPX8ZcuXYpvvvlGKvPx8YGFhQXs7e1Ru3ZteHp6Yvv27cjMzMy1f/v27ZGYmIgTJ04gOTkZ27dvlyUgb/Pvv//i6dOnb3x/wNvfo7Ozc77v8d9//8XMmTMxePDgAscFAK6urjA1NZW9csrMzMT69etRr149fPTRR+jTp4/0jKG5uTmUSiWMjY1hbW0Na2tr6OrqSvvOmjULLVu2RJ06deDt7Y1Tp07h5cuXALKS0G+++Qb16tVDrVq1MHPmTNSoUQP+/v5vjPfzzz/HwIED4ejoiJkzZ6Jp06ZYunQpAKBr164AgD179kjt169fD09PTygUikJ9LkSlDZM2IioSIsdD+EXZFgDu37+PNm3a4PPPP8egQYOkchsbGwQFBeHKlSv47rvvkJ6ejn79+qFNmza5Ejd9fX189dVXWLduHXbs2AFHR0f85z//KbaYC9s+MTER7dq1Q506dTB9+vRC7btt2zZcvHhR9srJ3t4e5cqVk7ZtbGzw6NGjAh0752dkY2MDANK+z549w7hx4+Ds7AwLCwuYmpoiLCzsrT1tKpUq13Z2T5uhoSH69OmDtWvXAgAuXLiA0NBQeHp6FiheotKMAxGIqEjUqlVLGkCQH0dHRwBAWFgYXF1dc9WHhYWhTp06srKYmBi4ubnB1dUVP//8c57HrVevHurVq4dhw4ZhyJAh+Oijj/DXX3/Bzc1N1q5///5o3rw5QkNDC9XLBgBWVlawsLB44/sD5O+xUaNGuerDwsKkNtmSkpLQpk0blCtXDrt27YK+vn6hYrO1tUXNmjXzrX/9eAqFIs/eyLftm93Tlb3vuHHjcPjwYfj5+aFmzZowMjJC9+7dc43wLayBAweiYcOGuHfvHtatW4dPPvkE1apVe69jEpUG7GkjoiJRoUIFeHh4YPny5UhOTs5VHx8fj9atW6NChQpYsGBBrnp/f3/cuHEDPXv2lMru37+PVq1aoUmTJli3bl2uZ8Tykp305RVD3bp1UbduXYSGhqJXr16FeXvQ0dFBjx49sGnTJsTExOSqf/bsGdLT09GwYUM4OTlh4cKFuRKjS5cu4ciRI7L3mJiYiNatW0OpVMLf3x+GhoaFiqsoKJVK2XQrBXXy5El4enqiS5cuqF+/PqytrREVFfXW/V6fjuT06dOy28n169dH06ZN8csvv2Dz5s2FTrCJSismbURUZJYvX46MjAw0a9YMf/zxB27cuIGwsDAsWbIEKpUKJiYm+Omnn7Bnzx4MHjwYly9fRlRUFNasWQNPT090794dX3zxBYBXCZudnR38/Pzw+PFjxMbGIjY2Vjrf0KFDMXPmTJw8eRJ37tzB6dOn0bdvX1hZWeW6BZft6NGjePDgASwsLAr9/mbNmgVbW1s0b94cGzduxLVr13Djxg2sXbsWjRo1wrNnz6BQKLBmzRpcu3YN3bp1w5kzZxAdHY0dO3agQ4cOUKlU0pxo2QlbcnIy1qxZg8TEROk9FiaJevLkibRf9iv7ubOCsLe3R3BwMKKiovDvv/8WuBeuVq1a2LlzJy5evIhLly6hV69eBdp3x44dWLt2La5fvw4fHx+cOXMGI0aMkLUZOHAgfH19IYRAly5dCvxeiEo1dQ5dJaLSJyYmRgwfPlxUq1ZNKJVKUbVqVdGxY0dx7Ngxqc2JEyeEh4eHMDMzE0qlUtStW1f4+fmJ9PR0qc26detyTUWR/cr2+++/i88++0zY2NgIpVIpqlSpIrp16yYuX74stcme8iI/3333XYGn/BBCiPj4eOHt7S1q1aollEqlqFy5snB3dxe7du0SmZmZUrvLly+Lbt26iQoVKgh9fX1Ro0YNMWXKFJGcnCy1yZ5WI69XZGTkW2PJnvIjr9eWLVvyff8LFy4U1apVk7YjIiKEi4uLMDIyyjXlx9OnT6V2ISEhstgiIyOFm5ubMDIyEra2tmLZsmWiZcuW4rvvvpP2yWvKj+XLl4v//e9/wsDAQNjb24tt27blem9JSUnC2NhYDBs27K2fA1FZoRCikE/LEhERvSOFQoFdu3ahc+fOb2wXFRWFGjVq4OzZs2jcuHHJBEek4TgQgYiINEZaWhqePHmCKVOmwMXFhQkbUQ58po2I6P+9PtdZztfff/9d4vEMGTIk33iGDBlS4vGUhJMnT8LGxgZnz57FqlWr1B0OkUbh7VEiov938+bNfOuqVq0KIyOjEowmaz60xMTEPOvMzMxQqVKlEo2HiNSLSRsRERGRFuDtUSIiIiItwKSNiIiISAswaSMiIiLSAkzaiIiIiLQAkzYiIiIiLcCkjYiIiEgLMGkjIiIi0gJM2oiIiIi0wP8BJcx+rwECsLgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjNElEQVR4nO3dd1QU198G8GdBekdBFBGsYIsxtoCJij8jGms00dixYMPeADUiVuxRY9QkisQYeyNoxIYliokNFQWs2AAbTVD6vH/sy8hQFHRhWfb5nLNH587s8l03cR/vvXOvTBAEAURERERqQEPZBRARERGVFgYfIiIiUhsMPkRERKQ2GHyIiIhIbTD4EBERkdpg8CEiIiK1weBDREREaoPBh4iIiNQGgw8RERGpDQYfIlJJMpkMc+bMUXYZIldXV9jZ2Sm7DCJ6DwYfIlKYzZs3QyaTiQ9dXV3UrVsXY8eOxdOnT0v0Z587dw5z5sxBQkKCQl+3bdu2kvdkbm6O5s2bY9OmTcjOzlbIz1i4cCH279+vkNcioneroOwCiKj8mTt3LmrUqIHU1FT8888/WLduHQ4dOoSwsDDo6+sr5Ge8efMGFSq8/Svs3Llz8PHxgaurK0xNTRXyM3JUq1YNixYtAgA8f/4cv//+O4YNG4Zbt27B19f3o19/4cKF+Pbbb9GjR4+Pfi0iejcGHyJSuE6dOqFZs2YAgOHDh6NixYpYsWIFDhw4gL59+37w62ZnZyM9PR26urrQ1dVVVLnvZWJiggEDBojHI0eOhL29PX766SfMmzcPWlpapVYLEX0cDnURUYlr164dAOD+/fsAgGXLlsHJyQkVK1aEnp4emjZtit27d+d7nkwmw9ixY7F161Y0aNAAOjo6OHz4sHguZ47PnDlzMG3aNABAjRo1xGGpqKgotGnTBo0bNy6wLnt7e7i4uBT7/ejr6+Pzzz9HSkoKnj9/Xuh1KSkpmDJlCmxsbKCjowN7e3ssW7YMgiBI3mNKSgr8/f3Ful1dXYtdExEVDXt8iKjE3b17FwBQsWJFAMCqVavQrVs39O/fH+np6di+fTu+++47BAYGonPnzpLnnjhxAjt37sTYsWNRqVKlAicQ9+zZE7du3cK2bduwcuVKVKpUCQBgYWGBgQMHws3NDWFhYWjYsKH4nAsXLuDWrVuYNWvWB72ne/fuQVNTs9BhNUEQ0K1bNwQHB2PYsGH49NNPERQUhGnTpuHJkydYuXIlAGDLli0YPnw4WrRogREjRgAAatWq9UE1EVERCERECuLn5ycAEI4dOyY8f/5cePTokbB9+3ahYsWKgp6envD48WNBEATh9evXkuelp6cLDRs2FNq1aydpByBoaGgIN27cyPezAAje3t7i8dKlSwUAwv379yXXJSQkCLq6uoKHh4ekffz48YKBgYGQnJz8zvfUpk0bwcHBQXj+/Lnw/PlzITw8XBg/frwAQOjatat43eDBgwVbW1vxeP/+/QIAYf78+ZLX+/bbbwWZTCbcuXNHbDMwMBAGDx78zjqISDE41EVECte+fXtYWFjAxsYG33//PQwNDbFv3z5YW1sDAPT09MRr4+PjkZiYiC+//BKXL1/O91pt2rRB/fr1P7gWExMTdO/eHdu2bROHmLKysrBjxw706NEDBgYG732NiIgIWFhYwMLCAvXq1cOaNWvQuXNnbNq0qdDnHDp0CJqamhg/frykfcqUKRAEAX///fcHvyci+nAc6iIihVu7di3q1q2LChUqoHLlyrC3t4eGxtt/ZwUGBmL+/PkIDQ1FWlqa2C6TyfK9Vo0aNT66nkGDBmHHjh04c+YMWrdujWPHjuHp06cYOHBgkZ5vZ2eHX3/9VbxFv06dOrC0tHzncx48eICqVavCyMhI0l6vXj3xPBGVPgYfIlK4Fi1aiHd15XXmzBl069YNrVu3xs8//4wqVapAS0sLfn5++PPPP/Ndn7t36EO5uLigcuXK+OOPP9C6dWv88ccfsLKyQvv27Yv0fAMDgyJfS0RlG4e6iKhU7dmzB7q6uggKCsLQoUPRqVMnhYSKgnqLcmhqaqJfv37YvXs34uPjsX//fvTt2xeampof/XMLY2tri+joaLx69UrSHhERIZ7P8a7aiUixGHyIqFRpampCJpMhKytLbIuKivrolYtz5uoUtnLzwIEDER8fj5EjRyI5OVmyLk9J+Prrr5GVlYWffvpJ0r5y5UrIZDJ06tRJbDMwMFD4itNEVDAOdRFRqercuTNWrFiBjh07ol+/fnj27BnWrl2L2rVr49q1ax/8uk2bNgUAzJw5E99//z20tLTQtWtXMRA1adIEDRs2xK5du1CvXj189tlnCnk/henatSucnZ0xc+ZMREVFoXHjxjhy5AgOHDiAiRMnSm5Zb9q0KY4dO4YVK1agatWqqFGjBlq2bFmi9RGpK/b4EFGpateuHTZu3IjY2FhMnDgR27Ztw+LFi/HNN9981Os2b94c8+bNw9WrV+Hq6oq+ffvmW1xw0KBBAFDkSc0fQ0NDAwEBAZg4cSICAwMxceJE3Lx5E0uXLsWKFSsk165YsQJNmzbFrFmz0LdvX6xbt67E6yNSVzJByLWEKBFRObZq1SpMmjQJUVFRqF69urLLISIlYPAhIrUgCAIaN26MihUrIjg4WNnlEJGScI4PEZVrKSkpCAgIQHBwMK5fv44DBw4ouyQiUiL2+BBRuRYVFYUaNWrA1NQUY8aMwYIFC5RdEhEpEYMPERERqQ3e1UVERERqg8GHiIiI1AYnN+eRnZ2N6OhoGBkZcRl5IiIiFSEIAl69eoWqVatKNkXOi8Enj+joaNjY2Ci7DCIiIvoAjx49QrVq1Qo9z+CTh5GREQD5H5yxsbGSqyEiIqKiSEpKgo2Njfg9XhgGnzxyhreMjY0ZfIiIiFTM+6apcHIzERERqQ0GHyIiIlIbDD5ERESkNjjH5wNkZWUhIyND2WVQKdDS0oKmpqayyyAiIgVh8CkGQRAQGxuLhIQEZZdCpcjU1BRWVlZc14mIqBxg8CmGnNBjaWkJfX19fhGWc4Ig4PXr13j27BkAoEqVKkquiIiIPhaDTxFlZWWJoadixYrKLodKiZ6eHgDg2bNnsLS05LAXEZGK4+TmIsqZ06Ovr6/kSqi05XzmnNdFRKT6GHyKicNb6oefORFR+cHgQ0RERGqDwYeIiIjUBoOPGnB1dYVMJoNMJoOWlhYqV66Mr776Cps2bUJ2dnaRX2fz5s0wNTUtuUKJiIhKGIOPmujYsSNiYmIQFRWFv//+G87OzpgwYQK6dOmCzMxMZZdHRERUKhh81ISOjg6srKxgbW2Nzz77DDNmzMCBAwfw999/Y/PmzQCAFStWoFGjRjAwMICNjQ3GjBmD5ORkAMDJkycxZMgQJCYmir1Hc+bMAQBs2bIFzZo1g5GREaysrNCvXz9x7RsiIqIcAQGAk5P8V2VRmeCzaNEiNG/eHEZGRrC0tESPHj0QGRkpuSY1NRXu7u6oWLEiDA0N0atXLzx9+rTEahIEAenp6Up5CILw0fW3a9cOjRs3xt69ewEAGhoaWL16NW7cuAF/f3+cOHEC06dPBwA4OTnhxx9/hLGxMWJiYhATE4OpU6cCkN/mPW/ePFy9ehX79+9HVFQUXF1dP7o+IiIqPx4/fowrV3zg4uIDX1/l1aEyCxieOnUK7u7uaN68OTIzMzFjxgx06NABN2/ehIGBAQBg0qRJOHjwIHbt2gUTExOMHTsWPXv2xNmzZ0ukpoyMDCxatKhEXvt9vLy8oK2t/dGv4+DggGvXrgEAJk6cKLbb2dlh/vz5GDVqFH7++Wdoa2vDxMQEMpkMVlZWktcYOnSo+PuaNWti9erVaN68OZKTk2FoaPjRNRIRkWo7cOAAQkNDxWMPDwGAcpYKUZngc/jwYcnx5s2bYWlpiUuXLqF169ZITEzExo0b8eeff6Jdu3YAAD8/P9SrVw/nz5/H559/royyyzxBEMR1ao4dO4ZFixYhIiICSUlJyMzMRGpqKl6/fv3OhRsvXbqEOXPm4OrVq4iPjxcnTD98+BD169cvlfdBRERlT2pqKhYvXixp69evH+rUUd76aCoTfPJKTEwEAJibmwOQf/lmZGSgffv24jUODg6oXr06QkJCCg0+aWlpSEtLE4+TkpKKXIOWlha8vLw+pPyPpqWlpZDXCQ8PR40aNRAVFYUuXbpg9OjRWLBgAczNzfHPP/9g2LBhSE9PLzT4pKSkwMXFBS4uLti6dSssLCzw8OFDuLi4ID09XSE1EhFR2RMQAPj6Ap6eQLdu+c+Hh4dj586dkjZFjVZ8DJUMPtnZ2Zg4cSJatWqFhg0bApBvIKqtrZ3vduvKlSsjNja20NdatGgRfHx8PqgOmUym9A/wY5w4cQLXr1/HpEmTcOnSJWRnZ2P58uXQ0JBP/cr7H6y2tjaysrIkbREREXj58iV8fX1hY2MDALh48WLpvAEiIlIaX18gJASYPl0agARBgJ+fHx49eiRe26JFC3Tq1EmJ1b6lMpObc3N3d0dYWBi2b9/+0a/l5eWFxMRE8ZH7gypP0tLSEBsbiydPnuDy5ctYuHAhunfvji5dumDQoEGoXbs2MjIysGbNGty7dw9btmzB+vXrJa9hZ2eH5ORkHD9+HC9evMDr169RvXp1aGtri88LCAjAvHnzlPQuiYiotHh6Avb2wMOH8gDk6ysfjZk7d67ku3TEiBFlJvQAKhh8xo4di8DAQAQHB6NatWpiu5WVFdLT05GQkCC5/unTp/km4+amo6MDY2NjyaM8Onz4MKpUqQI7Ozt07NgRwcHBWL16NQ4cOABNTU00btwYK1aswOLFi9GwYUNs3bo138RtJycnjBo1Cn369IGFhQWWLFkCCwsLbN68Gbt27UL9+vXh6+uLZcuWKeldEhFRaenWDTA3B968AQwNgaFD/8WPP/4ontfV1cUPP/yAKlWqKK/IAsgERdwXXQoEQcC4ceOwb98+nDx5EnXq1JGcT0xMhIWFBbZt24ZevXoBACIjI+Hg4PDOOT55JSUlwcTEBImJiZIQlJqaivv376NGjRrQ1dVV3BujMo+fPRFRwQICgMWLs9Gp01JkZaWK7S4uLqV+U1Fh3995qcwcH3d3d/z55584cOAAjIyMxHk7JiYm0NPTg4mJCYYNG4bJkyfD3NwcxsbGGDduHBwdHXlHFxERUQlo0SIWHTpsQO7pnxMmTCjT2xupTPBZt24dAKBt27aSdj8/P3GxvJUrV0JDQwO9evVCWloaXFxc8PPPP5dypUREROXf4cOH8e+//4rHNjY2GDJkiLhESlmlMsGnKCNyurq6WLt2LdauXVsKFREREamf9PT0fHNAe/fujXr16impouJRmeBDREREynXnzh1s3bpV0ubh4aFS8x8ZfIiIiOi9tm7dijt37ojHT558il9+6a7Eij6Myt3OTkRERIqVs2v6zJn5d09PTk6Gj4+PJPScPz8UXbqoXugB2ONDRESk9nJWYf73XyA7W37crRtw+fJl/PXXX+J1MpkMM2fOhKamphKr/TgMPkRERGrO0xPo3x9ITpYvRujhIeDHH1eJ+2ICgLOzM1q3bq3EKhWDQ11ERERqrls3YPx4eegZP/45QkPnSkLPmTNjkZCg+qEHYPAhBXJ1dUWPHj3E47Zt22LixIkf9ZqKeA0iInq/4GCgRYsT0NZ+u/6dhYUFgoJm4/jxivD1VWJxCsShLjXg6uoKf39/AICWlhaqV6+OQYMGYcaMGahQoeT+E9i7dy+0tLSKdO3Jkyfh7OyM+Ph4yYqfxXkNIiL6MBkZGXBxWShp++abb/DJJ5+gWrW3u6+XBww+aqJjx47w8/NDWloaDh06BHd3d2hpacHLy0tyXXp6OrS1tRXyM83NzcvEaxARkVRAAODhAQgC8MMPUbhzx19yfurUqTAwMAAgHwbr1k0ZVZYMDnWpCR0dHVhZWcHW1hajR49G+/btERAQIA5PLViwAFWrVoW9vT0A4NGjR+jduzdMTU1hbm6O7t27IyoqSny9rKwsTJ48GaampqhYsSKmT5+eb3XtvMNUaWlp8PDwgI2NDXR0dFC7dm1s3LgRUVFRcHZ2BgCYmZlBJpOJ25DkfY34+HgMGjQIZmZm0NfXR6dOnXD79m3x/ObNm2FqaoqgoCDUq1cPhoaG6NixI2JiYsRrTp48iRYtWsDAwACmpqZo1aoVHjx4oKA/aSKiss/XF4iIABo12i0JPfXq1YO3t7cYesojBh81paenh/T0dADA8ePHERkZiaNHjyIwMPD/uzxdYGRkhDNnzuDs2bNigMh5zvLly7F582Zs2rQJ//zzD+Li4rBv3753/sxBgwZh27ZtWL16NcLDw7FhwwYYGhrCxsYGe/bsAQBERkYiJiYGq1atKvA1XF1dcfHiRQQEBCAkJASCIODrr79GRkaGeM3r16+xbNkybNmyBadPn8bDhw8xdepUAEBmZiZ69OiBNm3a4Nq1awgJCcGIESPK/N4yREQfImd9ntzr8gDA1KmvMWeODxo2vCG21a49CL179y7lCksfh7rUjCAIOH78OIKCgjBu3Dg8f/4cBgYG+O2338Qhrj/++APZ2dn47bffxEDg5+cHU1NTnDx5Eh06dMCPP/4ILy8v9OzZEwCwfv16BAUFFfpzb926hZ07d+Lo0aNo3749AKBmzZri+ZwhLUtLy0J39b19+zYCAgJw9uxZODk5AZCvJGpjY4P9+/fju+++AyAfq16/fj1q1aoFABg7dizmzp0LAEhKSkJiYiK6dOkinleV/WWIiIorZ32enHV5AOD69eu4fn2v5Lr582egeXMt9O+vhCJLGXt8lKSwFF5SAgMDYWhoCF1dXXTq1Al9+vTBnDlzAACNGjWSzOu5evUq7ty5AyMjIxgaGsLQ0BDm5uZITU3F3bt3kZiYiJiYGLRs2VJ8ToUKFdCsWbNCf35oaCg0NTXRpk2bD34P4eHhqFChguTnVqxYEfb29ggPDxfb9PX1xVADAFWqVMGzZ88AyAOWq6srXFxc0LVrV6xatUoyDEZEVJ54egKOjvJfBUHA+vXrsXfv29DTqlUrNGnijebNtcrN5OX3YfBRktwpvDQ4OzsjNDQUt2/fxps3b+Dv7y+O4eYdy01OTkbTpk0RGhoqedy6dQv9+vX7oJ+vp6f30e+hqPLeBSaTySTzj/z8/BASEgInJyfs2LEDdevWxfnz50utPiKikpbzj2sAOHcO+OKLOMydOxdPnz4Vr8mZ76luGHyUJHcKLw0GBgaoXbs2qlev/t5b2D/77DPcvn0blpaWqF27tuRhYmICExMTVKlSBf/++6/4nMzMTFy6dKnQ12zUqBGys7Nx6tSpAs/n9DhlZWUV+hr16tVDZmam5Oe+fPkSkZGRqF+//jvfU15NmjSBl5cXzp07h4YNG+LPP/8s1vOJiMqy3P+4/ueff7BmzRrxnLGxMX744QdYWlrmu1YdMPgoSbdu8hReFm8R7N+/PypVqoTu3bvjzJkzuH//Pk6ePInx48fj8ePHAIAJEybA19cX+/fvR0REBMaMGYOEhIRCX9POzg6DBw/G0KFDsX//fvE1d+7cCQCwtbWFTCZDYGAgnj9/juTk5HyvUadOHXTv3h1ubm74559/cPXqVQwYMADW1tbo3r1om+Xdv38fXl5eCAkJwYMHD3DkyBHcvn2b83yIqFzx9ATq1cvCV1/Nw/Hjx8X2Ll26YNKkSdDQ0JBcW5r/EFc2Bh/KR19fH6dPn0b16tXRs2dP1KtXD8OGDUNqaiqMjY0BAFOmTMHAgQMxePBgODo6wsjICN988807X3fdunX49ttvMWbMGDg4OMDNzQ0pKSkAAGtra/j4+MDT0xOVK1fG2LFjC3wNPz8/NG3aFF26dIGjoyMEQcChQ4eKvMihvr4+IiIi0KtXL9StWxcjRoyAu7s7Ro4cWYw/ISKisi0l5TH69JkPDY1ssW3y5Mlo2rRpvjmmZfkf4iVBJuRdfEXNJSUlwcTEBImJieKXPACkpqbi/v37qFGjBnR1dZVYIZU2fvZEVNYFBOReXTkAV65cEc8ZGdXE5MkDxWMnJ/nQlqOjPPCUF4V9f+fF29mJiIhUnK8vcPlyKq5cWSxpr1mzHwYOrCNp8/QsX1tQFBeDDxERURmXu0enoCGpUaMicP/+Dkmbp6cndHR08l1b3ragKC4GHyIiojKuoIUIAeDAAQHBwZthZvZQbGvevDm+/vprJVSpGji5mYiIqIwr6M6rxMREhIbOlYQeNzc3ZGZ+DQcHoF690lskV5Uw+BQT54KrH37mRKQseRciBOTHGzf+hx9//FG8LjVVB0eOzELVqlXh6wtERso3IVWXtXmKg8GniHJul379+rWSK6HSlvOZF/WWeSIiRcm7uODixdn48sslePz4b/Eaa+sOOHXKEx4emgDkvUL29oCDg/pOYH4XzvEpIk1NTZiamop7Punr63NH73JOEAS8fv0az549g6mpKTQ1NZVdEhGpmdx3YMXGxqJDhw2S8xMmTICpqSmGD3/bpu6Tl9+H6/jk8a51AARBQGxs7DtXKKbyx9TUFFZWVgy6RFTiCrt7KygoSLKnYEKCNVasGMa/l3Ip6jo+DD55FOUPLisrCxkZGaVcGSmDlpYWe3qIqNTkLC7o4ACYmQHTpqXj2rVFkmtCQ7/DkCH12auTBxcwLEGampr8MiQiIoXz9AQ8PICoKCAj4y6uXftDct7ffzp+/FGPoecjMPgQEREpUc7wlrMzEBwMCALwzTfbYG9/S7wmNLQx9u/vASD/Wj5UPAw+RERESjR9uvz284sXAW3tZEybtlxyfuPGIXj0qDoAwNqad2p9LAYfIiIiJcqZn9y48RV06SJdcXDevJnIypJ/Vc+YASxYUNrVlT8MPkRERErk6yvg3Lk10NePF9tu326L3r3boGVL+cKFTk4MPYrC4ENERKQkL168QGjoWujrv23bsGEsYmIq4tIlIDxcebWVVww+REREShAcHIzTp0+Lx4JQCcuXj0Fysuz/j5VVWfnG4ENERFSKMjMzsSDPuNW+fT1w925jJCcDurqAnR2weLFy6ivvGHyIiIhKyZ9/PsDt25slbUuWTMXr1waYMUN+O3veVZtJsRh8iIiISlhAAHDw4F5UrXpdbAsPd8COHX0AABUqcPJyaWHwISIiKiEBAcDy5W/Qrt0SVK36tn3LloG4e7emeFy5shKKU1MMPkRERCVk8+YwtGu3R9J29OgM3L2rBUC+IGH16lyUsDQx+BARESnYgQMCgoN/QePGsWLb/ftO6NnzK2zfLg88RkbyCcycz1O6GHyIiIgUKD4+HqGhq2Fm9rZt48ZRyM6ujH//BSIiAEdH+cKEVPoYfIiIiBTk7NmzOHbsmHiclGSElSsnQhA0AAD29vLQw6Et5WHwISIi+khZWVnw9fVFZmam2BYY2BkXLzaDhoZ8MUJdXWDJEg5tKRuDDxER0Ud48uQJfvvtN0nb8uWT8OqVMQCgSpW3E5gZepSPwYeIiOgDBQYG4tKlS+LxvXs1EBg4ECkpMjg5yXt6GHjKFgYfIiKiYkpLS4Ovr6+k7c8/++L27bqoWhWIi5OHHk5gLnsYfIiIiIphy5ZI3Lu3XdK2e7cnoqN1IAiAoSEnMJdlDD5ERERFIAgC/P398eDBA7EtK6sZVq7sjPHjgZYtAV9fDm2VdQw+RERE75GUlISVK1dK2oKC3BAXVxXJyfLNRRcsYOBRBQw+RERE73DhwgUcOnRIPNbS0sK6dR54/FgT5uYc1lI1DD5EREQFyM7OxooVK5CSkiK2ffXVV3jxwglPnsiP37zhBGZVw+BDRESUx9OnT7F+/XpJ2y+/TECTJqbw9ZXfsaWhAUyapKQC6YMx+BAREf2/gABg794jqFEjRGx7+bIqfvttON68kcHDQ76xKCcxqy4GHyIiIgDp6em4cmURatR42/bXX99CR6cBUlPlx4IgDzsMPKqLwYeIiNRaQADwyy/30Lz5Fkn7hg3TEROjJx5raMj32iLVxuBDRERqKSBAPmTVoMF2NG8eKbZHR3+CX375BjLZ22s1NDi0VV5oKLsAIiIiZVixIgUuLj6oVu1t6BkyZAgqVfpGXH1ZVxewtgb27ZOv00Oqjz0+RESkVgICgN9/D4Wz8wFJ+8yZM1GhQgUEBwPJycDLl0CTJuzpKW/Y40NERGpDEAT8888aNGr0NvRYWbXBr796w8ioAmbOlAcdR0dAJgNCQuTDYVR+MPgQEVG5FRAAODnJf33x4gXmzp0LA4M48Xy9eu5YubItnjwBUlOB1avlvTvnzslvW+eqzOUPh7qIiKjc8vWV99rs2nUSV66cEttTUsyxbNlYGBjIYGIib5PJgPHj3z6Xt62XTww+RERULgUEAAkJmZgzRzoruXv37nj48FOsWyefy2Nt/bZnh0Gn/ONQFxERlQu5h7UAYP36h+jTRxp6Gjacik8//RTdugFbt8oDz5Il8qEthh71wB4fIiJSeQEBQP/+8h4cX18gK2sfWra8Jp6/c6cu/vijr7gez4IFHMpSV+Wyx2ft2rWws7ODrq4uWrZsif/++0/ZJRERkYLl7uHx9ZWHnkqV3sDFxQfXrr0NPTt2DMCePX0BANnZwIoVyqqYyoJyF3x27NiByZMnw9vbG5cvX0bjxo3h4uKCZ8+eKbs0IiJSoJyJyzkbhvbocQNjx0r3lFi1ygvh4bXw5s3btooVS7lQKlPKXfBZsWIF3NzcMGTIENSvXx/r16+Hvr4+Nm3apOzSiIhIQQICgLg4wMEB8PAQEBv7Cz79dLd43tLSEcuWeSM+Xluy9YS1NfDzz0oomMqMcjXHJz09HZcuXYKXl5fYpqGhgfbt2yMkJKTA56SlpSEtLU08TkpKKvE6iYjo4/j6ApGRgLNzAkJDV0nOjRo1Cm3aVEZysnzLicmTgeBg3rVFcuUq+Lx48QJZWVmoXLmypL1y5cqIiIgo8DmLFi2Cj49PaZRHREQfKWc+j7MzYGt7Dg4OR8VzBgYGmDx5MjQ0NMReHjs77rFFUuVuqKu4vLy8kJiYKD4ePXqk7JKIiKgQvr7Av/9mQUNjoST0XLz4NX77bSoCA+VfazmrLi9erKxKqawqVz0+lSpVgqamJp4+fSppf/r0KaysrAp8jo6ODnR0dEqjPCIi+kjjx0cjMvJXSdvJk5Nw8qQxAHkwyrlNncNaVJBy1eOjra2Npk2b4vjx42JbdnY2jh8/DkdHRyVWRkREHyL3LesHDx6UhB5DQzsEBc2Gk5MxHBzkE5fj498uYEhUkHIVfABg8uTJ+PXXX+Hv74/w8HCMHj0aKSkpGDJkiLJLIyKid8i78jIg78G5dCkNV6744OLFi2J7Rsb3mDVrMEJCZNizBwgPB6pXByIiuJs6vVu5GuoCgD59+uD58+eYPXs2YmNj8emnn+Lw4cP5JjwTEVHZkntdnpxhqtGjb+HevW2S6xYt8oSWlg5SU+XHOROZPT3frulDVBiZIAiCsosoS5KSkmBiYoLExEQYGxsruxwiIrWRc8eWpyfQtauALVu24P79++L5ixebIjCwCwwN5buo79kjDz2LF3M+DxX9+5vBJw8GHyIi5Xr16hVW5NlXYvPm4YiKsoaGBrBvH4MO5VfU7+9yN9RFRESq6+LFizh48KB4nJFRAYsWeaJKFU2xp4ehhz4Ggw8REZWq3ENaOSEmOzsbK1euRHJysnjd8ePtceZMK8hkwODBXIiQFINDXXlwqIuIqGQ5OcknMTs4AGZmwIQJzxARsU5yzY8/jkdCghk0NOQ7qjs6AufOKalgUgkc6iIiojIp5+6ruDjAwOAYIiLOiudiYqywadMIaGrKYG0t7+nJ2WeLSBEYfIiIqEQUNKQFyH/fqVMGFi5cKLl+165eiIhoCA8PDmtRyeFQVx4c6iIiUgwHB/kO6vb28oUFc9y/fx+///675NrFi6fhzRt9DmnRB+NQFxERKVXOwoI5vwLAjh07EJErBd282RBnz/aCuTlgaMghLSp5DD5ERKRwAQGAIMh7fRYvBlJSUrBs2TLJNVu3umLZMlvs2KGkIkktMfgQEZHC+frKh7kMDYELF67iypX9kvPz589E7doVuCYPlToGHyIiUpicCc3OzsD16wIGD/4ZFSq8EM+fPNkaZ886o0IFoGdPJRZKaovBh4iIFCZno1F9/ZeYOvUnybmffnJHYmIlZGQAGRnA3r1vb1Vnzw+VFgYfIiJSGE9PwN//ND75JFhs09Y2w19/jcPGjfJZzh4e8vk/gpB/N3aiksbgQ0RECrF/fyauXl2ATz5523b9ejfs3t0EXl5v23JCTu51fohKC4MPERF9tFmzHkFLa5OkbfXqKfDzMyz0Od26saeHSh+DDxERfZQ1a/ZDS+uqePzwYR2Eh/eDnx+DDZU9DD5ERPRB9u59g+vXl0jaDh0agJkza2HjRiUVRfQeDD5ERFRkOfNy2rW7CS2tXZJzO3d64cYNbSVVRlQ0DD5ERFSggABg+nT5lhOLF8uHrXx9Bbi4zJVcFxLyOU6ccMHu3UoqlKgYGHyIiKhAOasv5/y+RYtYuLhskFyTkTESSUlW2L2b83lINTD4EBFRgTw93/b49OmzGxs23JCc/+GHH6ChoaGk6og+DIMPERHlkzOXx9c3C1evzkdCwttzn3zyCb755hul1Ub0MRh8iIgoH19f4MWLW7h6dZukffTo0bC0tFRSVUQfj8GHiIhEOT09HTqshkwWLzk3e/ZsyGQyJVVGpBgMPkREJAaelJTX6NlzqeRc1ar/g5vbF0qqjEixGHyIiAi+vkB29r/o2fOwpH3q1KkwMDBQUlVEisfgQ0SkxnJ6elxcfCTtBgYGmDp1qpKqIio5DD5ERGps3ryX6NLlJ0nblSu9sX9/PSVVRFSyuAADEZGamDkTMDICvvsOqFYN+Oabv/KFnqNHZ2DoUIYeKr9kgiAIyi6iLElKSoKJiQkSExNhbGys7HKIiBQiIADo0QMQBEBDIxuzZ8+TnDc2rotJk/oqpzgiBSjq9zeHuoiIyrmAAKB/f3nosbOLgqurv+S8m5sbqlatqqTqiEoXgw8RUTmVM3E5Ph5ITgZGjPgNVas+kVwTFDQb3t5cm4fUB+f4EBGVAwEBgJOT/Nccvr5ASAjw6FEa5szxkYSeypW/QFCQNzw9GXpIvXCOTx6c40NEqsjJSR5yHBwAMzPA2RnYuxcwMrqCzp0DJNdOnDgRJiYmSqqUqGRwjg8RkRrx9JT38MTFyQPQ9evA1Kk+ea6Swdt7tlLqIyorGHyIiMqRRo2A+PhEjBnzo6S9R48eaNy4sXKKIipDij3HR1NTE8+ePcvX/vLlS2hqaiqkKCIiKp6c+TyJicfyhZ5PPvFk6CH6f8Xu8SlsSlBaWhq0tbU/uiAiIio+Dw8BoaFzJW0GBjaYOnWokioiKpuKHHxWr14NAJDJZPjtt99gaGgonsvKysLp06fh4OCg+AqJiOidnjx5gtDQ3yRtrq6usLW1VVJFRGVXkYPPypUrAch7fNavXy8Z1tLW1oadnR3Wr1+v+AqJiEiUszaPp6f8+MiRrbCwuCO55ocffoCGBlcrISpIkYPP/fv3AQDOzs7Yu3cvzMzMSqwoIiJ6K3fYmT4diIwE+vfPwNSpC2Fh8fa6Zs2aoXPnzsorlEgFcB2fPLiODxGVJQEBQJ8+QGoqoKsLVKwImJjcQO/euyXXjR07FhUrVlRSlUTKV2Lr+Awd+u6Jcps2bSruSxIRUQFy9thKTZUfp6YCgwYtgY7OG8l13t7eSqiOSDUVO/jEx8dLjjMyMhAWFoaEhAS0a9dOYYUREak7X1/5Hlu6ukC1askYMGC55HynTp3QokULJVVHpJqKHXz27duXry07OxujR49GrVq1FFIUEZG6yj2fx9lZvgLzxIlnUKHCCcl106dPh56enpKqJFJdCpvjExkZibZt2yImJkYRL6c0nONDRMqQE3ji4uSTl3V1gawsATNnStfmqVixIsaOHaukKonKrlLfq+vu3bvIzMxU1MsREamNnLk8ycmAnh6gqQkYGz/FmDHSJUL69euHOnXqKKlKovKh2MFn8uTJkmNBEBATE4ODBw9i8ODBCiuMiEhd5MzlkcmAN2+Anj334pNPrkuumTVrFrcFIlKAYgefK1euSI41NDRgYWGB5cuXv/eOLyIiyi9nLo+ubhbGjp0vOdewYUP06tVLSZURlT/FDj7BwcElUQcRkdoKDgasrG5jwIA/Je2jRo1C5cqVlVQVUfn0wXN8nj17hsjISACAvb09LC0tFVYUEVF5lvvOrW7dgA4dfoJM9lJyzezZsyGTyZRUIVH5Vezgk5SUBHd3d2zbtg3Z2dkAAE1NTfTp0wdr166FiYmJwoskIiovck9kXr78Da5cWYLc+ebWrXbo0+dLMPMQlYxi72Ln5uaGf//9FwcPHkRCQgISEhIQGBiIixcvYuTIkSVRIxGRygoIAJyc5L8Cbycyf/nlf2jXbonk2oYNp2Dr1i/RrZsSCiVSE8Vex8fAwABBQUH44osvJO1nzpxBx44dkZKSotACSxvX8SEiRXJyAkJCAENDYOtWeduVKz6Sa9LT9dCy5XQGHqKPUGLr+FSsWLHA4SwTExPu2E5ElEtAgHxBQj09eS+Pp+dL9Onzk+Sa7777DvXr11dShUTqp9hDXbNmzcLkyZMRGxsrtsXGxmLatGn44YcfFFocEZGqyT205esrX4W5enVg6NCD+ULPjBkzGHqISlmxh7qaNGmCO3fuIC0tDdWrVwcAPHz4EDo6OvlWFL18+bLiKi0lHOoioo+RM7Tl6Ci/a8vXNxsuLvMk12Rn14aPT38lVUhUPpXYUFf37t15iyURUSE8PYHp04H4eCA5+QFcXDZLzg8fPhzW1tbKKY6IFLdJaXnBHh8iKq686/LUqwe0arURNjaPJddxbR6iklPU7+9iz/GpWbMmXr58ma89ISEBNWvWLO7LERGpPF9f+fCWry+QlpaG77/3kYSee/daoUkTb4YeojKg2ENdUVFRyMrKyteelpaGx48fF/AMIqLyTT6XB3Bzuwpf3/2Sc6dOTcCJE6ZKqYuI8ity8AnIWX0LQFBQkOSW9qysLBw/fhw1atRQbHVERGVYQADg4QEIAvD99z54+FB6PijIG56eyqmNiApW5Dk+GhryUTGZTIa8T9HS0oKdnR2WL1+OLl26KL7KUsQ5PkT0Lrnn8/j6AjduJGLy5B8l11y/3g27dzdRToFEakrhc3yys7ORnZ2N6tWr49mzZ+JxdnY20tLSEBkZWWKhJyoqCsOGDUONGjWgp6eHWrVqwdvbG+np6ZLrrl27hi+//BK6urqwsbHBkiVLCnlFIqLiyVmfx8Pj7XyeQYOO5ws9u3Z5YtAghh6isqrYc3zu379fEnW8U0REBLKzs7FhwwbUrl0bYWFhcHNzQ0pKCpYtWwZAnvQ6dOiA9u3bY/369bh+/TqGDh0KU1NTjBgxotRrJqLyJWcCs7094OgowMVlLp4+fXv+8WNr3LgxHGFhyquRiN6v2MFn7ty57zw/e/bsDy6mMB07dkTHjh3F45o1ayIyMhLr1q0Tg8/WrVuRnp6OTZs2QVtbGw0aNEBoaChWrFjB4ENEH83ZGbh+Hfj222hoaf0qOVe79mAEBdlxPg+RCih28Nm3b5/kOCMjA/fv30eFChVQq1atEgk+BUlMTIS5ubl4HBISgtatW0NbW1tsc3FxweLFixEfH899xIioWPKuzRMcDHTr9ie0tG5Lrjty5Ad4e2ugPxdiJlIJxQ4+V65cydeWlJQEV1dXfPPNNwop6n3u3LmDNWvWiL09gHy/sLx3lVWuXFk8V1jwSUtLQ1pamniclJRUAhUTkarJvTZPp04ZcHFZKDmfldUUx451YS8PkYop9gKGBTE2NoaPj0+xNyn19PSETCZ75yMiIkLynCdPnqBjx4747rvv4Obm9tG1L1q0CCYmJuLDxsbmo1+TiFRPzuTlmTPlvzo7y/fbGjUqHAsXSkPPmjVjcexYF5w7J+8NIiLVUewen8IkJiYiMTGxWM+ZMmUKXF1d33lN7tWgo6Oj4ezsDCcnJ/zyyy+S66ysrPA090xDQDy2srIq9PW9vLwwefJk8TgpKYnhh0gN5fTwXL8OJCfLf/X0XIb791Mk123b5g0LC7Cnh0hFFTv4rF69WnIsCAJiYmKwZcsWdOrUqVivZWFhAQsLiyJd++TJEzg7O6Np06bw8/MT1xXK4ejoiJkzZyIjIwNaWloAgKNHj8Le3v6d83t0dHSgo6NTrLqJqPxxdgZCQwFtbaBixRSMG7cMmZlvzx8/3hFTp7aEt7fSSiQiBSj2JqV559FoaGjAwsIC7dq1g5eXF4yMjBRaICAPPW3btoWtrS38/f2hqakpnsvpzUlMTIS9vT06dOgADw8PhIWFYejQoVi5cmWx7uriAoZE6iPvYoQhIUCrVv/gq6+OS647cWIapkzR57AWURlW1O9vldidffPmzRgyZEiB53KXf+3aNbi7u+PChQuoVKkSxo0bBw8Pj2L9LAYfIvXh5CQPO46OgIeHgNBQ6XIdZmZmGD9+vJKqI6LiKNHgk5CQgDt37gAAateuDVNT0w8utKxh8CFSHzk9PhMmPENExDrJuZo1+2LgwLpKqoyIiquo39/FmuMTFRUFd3d3BAUFiT0tMpkMHTt2xE8//QQ7O7uPKpqIqDR16wZkZe3DtWvXJO3z5s1CixaaGDhQSYURUYkpcvB59OgRPv/8c2hpaWHevHmoV68eAODmzZtYt24dHB0dceHCBVSrVq3EiiUi+lABAcD06YBMBixeDHTunIX58+dLrrl7twG2b/8WVla8a4uovCryUNewYcNw584dBAUFQVdXV3LuzZs36NixI+rUqYPffvutRAotLRzqIiqfcubzAECXLnfQrNlWyfm//x6Ff/+VL3rq6AicO1faFRLRx1D47uyHDx/GggUL8oUeANDT08O8efNw6NChD6uWiKgE5CxKGBAg78GxtwcmTfo5X+iZM2c2EhMrw8FBfg17e4jKryIPdb148eKdc3hq1qyJuLg4RdRERKQQ06cDkZHyX69ceYO+fZdIzt++7Qxb29ZwdHy7JxcRlW9FDj5VqlTBzZs3C53DExYW9s4VkomISltysvxXG5sLWLJE2iMdHDwFp04ZcliLSM0UOfj06NEDU6dOxfHjx/Ottvzs2TN4eHigR48eiq6PiOiDGRoCc+b4SNp0dXXh4eGBJk2A9HQOaxGpmyJPbo6Pj0fLli0RGxuLAQMGwMHBAYIgIDw8HH/++SesrKxw/vx5mJubl3TNJYqTm4nKh7i4OKxZs0bS9u2336JBgwZKqoiISpLC1/ExMzPDv//+ixkzZmD79u1ISEgAAJiamqJfv35YuHChyoceIlJtOQsSDhjwN54//09ybsaMGeI+fkSkvj5o5WZBEPD8+XMA8o1GZTKZwgtTFvb4EKkuJ6dsuLjMk7TVrFkTA7kSIVG5p/Db2XOTyWSwtLSEpaVluQo9RKQ6ct+qDgAPHz7MF3rOnx/G0ENEEsXasoKIqKzI2U3d1xd4+dIPDx8+lJwPCpoNT0/+w4yIpD6ox4eISNk8PYEvvkiHi4uPJPRYWjoiKMgbnp4yrstDRPkw+BCRSrKzu4b27RdJ2iZMmIAtWzqIPUFERHlxqIuIVM78+fORlZUlafP29kZAABAfz20niKhwRQo+q1evLvILjh8//oOLISJ6l6SkJKxcuVLS1rVrV3z22WcA5L08ERHyTUY5zEVEBSnS7ew1atQo2ovJZLh3795HF6VMvJ2dqGw6ceIEzpw5I2nz9PSEjo6OeJyzjg/33SJSPwpdwPD+/fsKK4yIqDgEQcDcuXMlbbGxVdCp0wjkyjwA5GGHgYeI3uWDJzenp6cjMjISmZmZiqyHiEgUExOTL/RcuDAInTqNYMAhog9S7MnNr1+/xrhx4+Dv7w8AuHXrFmrWrIlx48bB2toanpxRSEQKsH37dkRGRkrafvjhB2ho8GZUIvpwxf4bxMvLC1evXsXJkyehq6srtrdv3x47duxQaHFEpH4yMzPh4+MjCT1NmjSBt7e3GHryrtpMRFRUxe7x2b9/P3bs2IHPP/9csl1FgwYNcPfuXYUWR0TqJSIiIt8/oP75xx1NmlQSjwMCgP79geRk+URmDnkRUXEUO/g8f/4clpaW+dpTUlK4bxcRfbAVK1bg1atXkragIG+EhACPHslDjrMzsHq1PPQYGnKtHiIqvmIHn2bNmuHgwYMYN24cAIhh57fffoOjo6NiqyOici8lJQXLli2TtHXo0AGOjo5o0kQeeB4+BCIjgStXgNRUeejZupW9PURUfMUOPgsXLkSnTp1w8+ZNZGZmYtWqVbh58ybOnTuHU6dOlUSNRFRO/frrOURHH5W0TZs2Dfr6+gDe3p7u4CA/V7EiUL061+khog9X7MnNX3zxBUJDQ5GZmYlGjRrhyJEjsLS0REhICJo2bVoSNRJROXPggAAfHx9J6DExMYG3t7cYenJbskS+GvPPPwPnzjH0ENGH+6C9umrVqoVff/1V0bUQkRp4/vw5QkN/lrTVrPk9Bg60z3dt7pWYz50rrQqJqDwrUvBJSkoq8gtymwciKkhAABAYuB/W1lcl7TNnzkSFCgX/VeTrC3GndfbyEJEiFCn4mJqaFvmOrbw7JhMRZWVl4cqV+bC2fttWv359fPfdd+98nqfn2x4fIiJFKFLwCQ4OFn8fFRUFT09PuLq6indxhYSEwN/fH4sWLSqZKolIZT19+hTr16+XtI0cORJWVlaStoI2GOXeW0SkaEXanT23//3vfxg+fDj69u0raf/zzz/xyy+/4OTJk4qsr9Rxd3YixTly5AhCQkIkbbNnz87Xg5x7UUJHR87nIaLiU+ju7LmFhITk+9cbIF/fZ/jw4cV9OSIqh/btS8e1a9Ie4Jy1eQri68tFCYmodBT7dnYbG5sC7+j67bffYGNjo5CiiEh1/fHHvXyhZ/r06e9c4NTTU97Tw0UJiaikFbvHZ+XKlejVqxf+/vtvtGzZEgDw33//4fbt29izZ4/CCyQi1RAQAAQFbYOl5S2xzczsE4wf/817n8u5PERUWord4/P111/j9u3b6Nq1K+Li4hAXF4euXbvi1q1b+Prrr0uiRiIq45KTk3Hlio8k9NSpM6TQ0MPd1YlIWYo9ubm84+RmouIJDQ3FgQMHJG3vWpsHkIeekBBOZCYixSmxyc0AkJCQgI0bNyI8PBwA0KBBAwwdOhQmJiYfVi0RqRxBEPDTTz8hLi5ObGvbti3atGmT79q8t6pzfR4iUpZi9/hcvHgRLi4u0NPTQ4sWLQAAFy5cwJs3b3DkyBF89tlnJVJoaWGPD9H77dz5AuHhayVt7u7uqFSpUoHX16sHRETINxv9/38vEREpVFG/v4sdfL788kvUrl0bv/76q9iVnZmZieHDh+PevXs4ffr0x1WuZAw+RO+2YcNJxMaeEo9fvKiIS5fcce7c27V5cnp4nJ2B4GDg4UPgyRPA3l4egIiIFK3EhrouXrwoCT0AUKFCBUyfPh3NmjX7sGqJqMzLzMzEggULJG2PH3fHjRuf5huyytljKzQUePMGsLaWz+fh0BYRKVuxg4+xsTEePnwIBwcHSfujR49gZGSksMKIqOx4+PAh/Pz8JG1Ll07FJ58YFDg52dkZuH4d0NaWBx9DQ05iJqKyodjBp0+fPhg2bBiWLVsGJycnAMDZs2cxbdq0fNtYEJHq27t3L65fvy4e29vbQ1//e3zyScE9ODNnynt8srPlc3rs7dnTQ0RlR7GDz7JlyyCTyTBo0CBkZmYCALS0tDB69Gj4+voqvEAiUo43b95gyZIlkraBAweiZs2a71x/Z/VqeejR0AAWL+bChERUtnzwOj6vX7/G3bt3AQC1atWCvr6+QgtTFk5uJgJu3LiB3bt3S9qOHp2Bf/7RAvDudXhmzpSHn/HjgTxTgoiISkyJ3dVV3jH4kDoTBAG//vorYmJixDZLS0esWtUBMtnbHpy8d23lrM9DRKQsCg8+Q4cOLdIP3rRpU9EqLKMYfEhdxcfHY/Xq1ZK2UaNGoXLlyoX28HAFZiIqKxR+O/vmzZtha2uLJk2agJ1EROXLuXPncPToUfG4QgVDeHlNgoaGfDu/wlZa5grMRKRqitzj4+7ujm3btsHW1hZDhgzBgAEDYG5uXtL1lTr2+JA6ycrKgq+vr3ijAgAEBn4NLa3m7MEhIpVS1O/vIu/OvnbtWsTExGD69On466+/YGNjg969eyMoKIg9QEQqKDo6GvPnz5eEnuXLJyEiojl7cIio3Prgyc0PHjzA5s2b8fvvvyMzMxM3btyAoaGhousrdezxIXUQGBiIS5cuicd2dnYwNR2ExYtlnKhMRCqpRHdnBwANDQ3IZDIIgoCsrKwPfRkiKkVpaWn51tuqWfN7rFtnD09PTlAmovKvyENdgPwvzW3btuGrr75C3bp1cf36dfz00094+PBhuejtISrPbt26lS/0eHp6Yt06e4SEyCcpExGVd0Xu8RkzZgy2b98OGxsbDB06FNu2bUOlSpVKsjYiUgBBELBlyxbcv39fbGvatCm6dOkCQHpnVs76PBzuIqLyqshzfDQ0NFC9enU0adIEMpms0Ov27t2rsOKUgXN8qDxJSkrCypUrJW3Dhw+HtbV1gddzXR4iUlUKn+MzaNCgdwYeIipbLly4gEOHDonHWlpa8PDwgKamZqHP4bo8RFTeccuKPNjjQ6ouOzsbK1euRHJystj21VdfwcnJSYlVERGVLIWv40NEZd/Tp08xb948SegJCBiPYcOcMHOmfCjrXTurExGVdww+ROXE0aNHsX79evG4SpUq2L59Ni5fNkNEhHzH9Lx3bwUEAA4OQL16DEREpB4+eB0fIiobMjIysHDhQknbt99+i7t3GyAqSn6sqwuMH/92J/Ucvr5AZOTb3/NOLiIq7xh8iFTYvXv3sGXLFknb9OnToaenBzc3IDUVMDQEtm4tONR4egLTpwMyGSc0E5F6YPAhUlE7duxARESEeNyoUSP07NlTPM59h1bu0JN3rR728hCROuFdXXnwri4q61JSUrBs2TJJm6urK2xtbYv0fK7VQ0TlUYnv1UVEpS80NBQHDhyQtM2cORMVKrz/f+Wcnh5nZ/kxh7aISB0x+BCpAEEQsHbtWrx8+VJss7JqA3//tmjSpPDhqtzDWr6+8p4egD09RKS+VO529rS0NHz66aeQyWQIDQ2VnLt27Rq+/PJL6OrqwsbGBkuWLFFOkUQK9PLlS8ydO1cSetzd3eHv3/a9m4vmhJ2c8OPoyJ4eIlJvKhd8pk+fjqpVq+ZrT0pKQocOHWBra4tLly5h6dKlmDNnDn755RclVEmkGKdOncJPP/0kHpubm2P27NmoVKlSkYJM7mu6dZP39HAyMxGpM5Ua6vr7779x5MgR7NmzB3///bfk3NatW5Geno5NmzZBW1sbDRo0QGhoKFasWIERI0YoqWKiD5OZmYkFCxZI2rp164YmTZrkOn5/iOFdW0REUioTfJ4+fQo3Nzfs378f+vr6+c6HhISgdevW0NbWFttcXFywePFixMfHw8zMrMDXTUtLQ1pamniclJSk+OKJiuHRo0fYtGmTpG3KlCkwNDRUUkVEROWHSgx1CYIAV1dXjBo1Cs2aNSvwmtjYWFSuXFnSlnMcGxtb6GsvWrQIJiYm4sPGxkZxhRMV0/79+yWhp27duvD29mboISJSEKUGH09PT8hksnc+IiIisGbNGrx69QpeXl4Kr8HLywuJiYni49GjRwr/GUTv8+bNG/j4+ODq1ati24ABA9C3b1/JdQEB3GiUiOhjKHWoa8qUKXB1dX3nNTVr1sSJEycQEhICHR0dyblmzZqhf//+8Pf3h5WVFZ4+fSo5n3NsZWVV6Ovr6Ojke12i0nTz5k3s2rVL0ubl5SUZts2R+y4tzt0hIio+pQYfCwsLWFhYvPe61atXY/78+eJxdHQ0XFxcsGPHDrRs2RIA4OjoiJkzZyIjIwNaWloA5LtV29vbFzq/h0iZBEHAxo0b8eTJE7Ht888/h4uLS75rufggEZFiqMTk5urVq0uOc+Y71KpVC9WqVQMA9OvXDz4+Phg2bBg8PDwQFhaGVatWYeXKlaVeL9H7JCQkYNWqVZK2kSNHFto7ycUHiYgUQyWCT1GYmJjgyJEjcHd3R9OmTVGpUiXMnj2bt7JTmRMSEoIjR46Ix/r6+pgyZQo0NPJPuWNPDxGRYqlk8LGzs0NBe6t+8sknOHPmjBIqInq/rKwsLFmyBOnp6WJbtWqdsHFjC9jbFzxnhz09RESKpRK3sxOpuujoaMyfP18SeiZNmoSNG1uIk5UDAgAHB6Bevbd3bXGbCSIixZIJBXWdqLGibmtPVFSHDh3ChQsXxGNbW1sMHjwYMpms0E1EHR3Zw0NEVBxF/f5WyaEuIlWQlpYG3zw7iPbp0wcODg7icd4tJaZPB2Qy9vAQEZUUDnURlYBbt27lCz0eHh64dcsh33AW8HYS85IlQHg41+ghIiopHOrKg0Nd9LG2bNmCe/fuicefffYZunbtCkC+6nLOcJaDA2BmJh3m4hAXEdGH4VAXUSl79eoVVqxYIWkbPnw4rK2txWNPz7fDWYLwdhXmnPDDIS4iopLF4EOkAJcuXUJgYKB4rKmpCS8vL2hqakquyz2nZ+ZMYPVq+Ro9eef6EBFRyWDwIfoI2dnZ+PHHH/Hq1SuxrX379mjVqpV4nPvOrdzhJjgYSE6W/0pERKWDk5uJPtCzZ88wb948SegZP368JPQAb+fv9O8vndDMNXqIiEofJzfnwcnNVBTHjh3D2bNnxWMrKyuMGDECMpks37UBAfLQk5zMyctERCWlqN/f7PEhKoaMjAz4+PhIQk+vXr1QpcpItGolk/To5OjWDdi6lb07RERlAXt88mCPDxXm/v37+P333yVt06ZNg76+vnibek6PTmHzeoiIqGTwdnYiBdq5cyfCw8PF44YNG6JXr17icd7b0XPm9fj6MvgQEZUlDD5E75CSkoJly5ZJ2lxdXWFraytpy3s7OtflISIqmzjHh6gQ165dyxd6Zs6ciatXbeHkhALn8+To1k0+5MXeHiKisoVzfPLgHB8SBAE///wzXrx4IbZ9+eWXaNeuHYC3207Y2wPm5pzHQ0RUFvCuLqIPEBcXh7lz50pCz5gxY8TQA7xdf0cmezuPh4iIVAPn+BD9v9OnTyM41zLKpqamGD9+PP76S5Zv4nJBvyciorKPQ115cKhL/WRmZmLBggWStq5du+Kzzz4DAMmt6gB3USciKot4OztRETx69AibNm2StE2ZMgWGhobicUG3qrOXh4hINbHHJw/2+KiPAwcOIDQ0VDyuU6cO+vXrp7yCiIjog7HHh6gQqampWLx4saStf//+qF27tpIqIiKi0sLgQ2olPDwcO3fulLR5eXlBW1tbSRUREVFp4u3sVGYFBOC9CwUWlSAI2LhxoyT0tGzZEk2aeKNtW22F/AwiIir7OMcnD87xKTvybvz5oRITE/Hjjz9K2kaOHAkrKyuF/QwiIlIuLmBIKi9nocCPuYPq/PnzktCjp6eHH374AVZWVgr7GUREpDrY45MHe3xUV0DA21vNBSEbFy4sgZZWmng+PLwj+vVrKV7DbSaIiMqPon5/M/jkweCjunKGrTp0iIGT0y+ScwcOTMSbNyYAgIgIDm0REZU3HOoitePpCQwZ8rck9BgYVMfs2bOhq2uCiAhAEDi0RUSkzng7O5UL6enpuHJlEWxt37b16dMHDg4OAKSrL3OIi4hIfTH4kErKPZ+nXr3b+PPPPyXnPTw8oKurKx5368bAQ0REDD6konx95fN5jh79A1eu3BXbHz9ugq5duyFX5iEiIhIx+JBKmjLlFcLCVkjazp8fhsOHq+HGDfbuEBFRwRh8SOVcunQJYWGB4rGGhgZmzJiBgwc1kZjIictERFQ4Bh9SGYIgYNWqVUhMTBTb2rVrhy+//BKAdB5P7jlA7P0hIqIcvJ2dikyRe2cV1/PnzzF37lxJ6Bk3bpwYevLKmQPk61taFRIRkSpg8KEiU1aYOHHiBH7++WfxuHLlypg9ezbMzc0LfQ63oiAiooJwqIuKLPdaOKUhIyMDCxculLT17NkTjRo1eu9zefs6EREVhMGHiqw0w0RUVBT8/f0lbdOmTYO+vn7pFEBEROUSh7pIIRQ5/2f37t2S0NOgQQN4e3sz9BAR0Udjjw8pRO75Px/aK/T69WssXbpU0jZ48GDY2dl9fIFERERg8CEF+dj5P9evX8fevXslbTNmzICWlpYCqiMiIpJj8KGP9jFr5giCgPXr1+PZs2di2xdffIH//e9/Cq6SiIiIwYcU4EOHueLi4rBmzRpJ25gxY2BhYaHgComIiOQYfOijfcgw15kzZ3DixAnx2MTEBBMmTIBMJiuBComIiOQYfOijFec296ysLCxYsACCIIhtXbt2xWeffVZC1REREb3F29mp1Dx+/Bjz58+XhJ7JkyeLoUeZW2IQEZF6YPChUhEQEICNGzeKx3fu1EJQkDeMjIzENu6vRUREJY1DXVSiUlNTsXjxYknb33/3R0JCbSxZIr22tLfEICIi9cPgQwqV+9b2unUjsGPHDsn5hQu90LSpNiIi8j+X+2sREVFJY/AhhZIPVwk4ccIPV648EttbtGiBjIxOaNqUPTpERKQ8DD4k8TGLEQLA5MmJuHHjR0nbiBEjUKVKFQDs0SEiIuXi5GYVU9J3Pn3MBON///1XEnp0dXXxww8/iKGHiIhI2Rh8VExJ3/nk6Qk4Or5/OCp3AMvOzsaSJUtw+PBh8byLiws8PDygocH/xIiIqOyQCbkXVSEkJSXBxMQEiYmJMDY2VnY5+XzsUJSiODnJA1iHDrFwctogOTdhwgSYmpoqpzAiIlJLRf3+5hwfFVMW7nwKCADi4oC+fQ/D3v5fsd3GxgZDhgzhthNERFRmMfhQsS1dmo6+fRdJ2nr37o169eopqSIiIqKiYfChYrlz5w7at98qafPw8ICurq6SKiIiIio6zjylItu6dSu2bn0bej799FN4e3u/M/Rw/y0iIipLGHxUgLLDQ3JyMnx8fHDnzh2xbejQoejevft7n8v9t4iIqCxh8FEBygwPV65cwfLly8VjmUyGWbNmwcbGpkjPL+rt8URERKWBc3xUgDI27xQEAatXr0ZCQoLY5uzsjNatWxfrdcrCXWhEREQ52OOjArp1A86d+7gAUZzhsufPn2Pu3LmS0DN27Nhihx4iIqKyhj0+aiL3cNm7AlRwcDBOnz4tHltYWGD06NFcm4eIiMoFlerxOXjwIFq2bAk9PT2YmZmhR48ekvMPHz5E586doa+vD0tLS0ybNg2ZmZnKKbaMed9cm8zMTPj4+EhCzzfffIMxY8Yw9BARUbmhMj0+e/bsgZubGxYuXIh27dohMzMTYWFh4vmsrCx07twZVlZWOHfuHGJiYjBo0CBoaWlh4cKFSqy8bHjXXJuoqCj4+/tL2qZOnQoDA4NSqIyIiKj0qMReXZmZmbCzs4OPjw+GDRtW4DV///03unTpgujoaFSuXBkAsH79enh4eOD58+fQ1tYu0s8q63t1Kdru3btx48YN8bhevXro3bu3EisiIiIqvqJ+f6vEUNfly5fx5MkTaGhooEmTJqhSpQo6deok6fEJCQlBo0aNxNADyHcIT0pKknyx55WWloakpCTJQx28fv0aPj4+kj+bQYMGMfQQEVG5phLB5969ewCAOXPmYNasWQgMDISZmRnatm2LuLg4AEBsbKwk9AAQj2NjYwt97UWLFsHExER8FHV9GlUWFhaGpUuXStpmzJiBGjVqKKkiIiKi0qHU4OPp6QmZTPbOR0REBLKzswEAM2fORK9evdC0aVP4+flBJpNh165dH1WDl5cXEhMTxcejR48U8dbKpAMHBEyZsh579uwR21q1agVvb29oaWkpsTIiIqLSodTJzVOmTIGrq+s7r6lZsyZiYmIAAPXr1xfbdXR0ULNmTTx8+BAAYGVlhf/++0/y3KdPn4rnCqOjowMdHZ0PKV+lxMXFITR0DXIPe44ePRqWlpbKK4qIiKiUKTX4WFhYwMLC4r3XNW3aFDo6OoiMjMQXX3wBAMjIyEBUVBRsbW0BAI6OjliwYAGePXsmfpkfPXoUxsbGksCkjv755x8cP35cPNbSMoan5wRoaKjESCcREZHCqMTt7MbGxhg1ahS8vb1hY2MDW1tbcY7Kd999BwDo0KED6tevj4EDB2LJkiWIjY3FrFmz4O7urhY9OgEBb7e1yLltPSsrC4sWLUJWVpZ4XZcuXdC0aVMlVUlERKRcKvNP/qVLl+L777/HwIED0bx5czx48AAnTpyAmZkZAEBTUxOBgYHQ1NSEo6MjBgwYgEGDBmHu3LlKrrxwitx1Pe9Gpk+ePMH8+fMloWfy5MkMPUREpNZUYh2f0lSa6/g4OcnDiqOjfC+udymoR6ew80AArly5Ip6rWbMmBg4cqNDaiYiIypKifn8z+ORRmsHnfWEmt6KEpNTUVCxevFjS1q9fP9SpU0dBFRMREZVNRf3+Vok5PuXVu7aRyMvTM3ePTn6RkZHYvn17nud4qsX8JiIioqJi8FERhYUkQRDg7++PBw8eiG3NmzfH119/XYrVERERqQYGHxUVEACsXJmEtm1XStrd3NxQtWpVJVVFRERUtjH4qKitW/9D27Z/i8c6OjqYNm0aNDU1lVgVERFR2aYyt7Ors9y3vWdnZ2Pp0qWoX/9t6OnQoQM8PT0ZeoiIiN6DPT4qIGeNnrVrY3HlygbJuQkTJsDU1FQ5hREREakYBh8V4OkJ7N17BDVqhIht1tbWGDZsGGQymRIrIyIiUi0MPmVceno6rlxZhBo13rZ99913ar//GBER0Ydg8CnD7t69iz/++EPSNn36dOjp6SmpIiIiItXG4FNGbdu2Dbdu3RKPGzdujB49eiivICIionKAwaeMSU5OxvLlyyVtQ4YMQfXq1ZVUERERUfnB4FOGhIaG4sCBA5K2mTNnokIFfkxERESKwG/UMkAQBKxZswbx8fFiW9u2bdGmTRslVkVERFT+MPgo2YsXL7B27VpJ29ixY1GxYkUlVURERFR+Mfgo0cmTJ3Hq1CnxuFKlShgzZgzX5iEiIiohDD5KkJmZiQULFkjaevTogcaNGyupIiIiIvXA4FPKHjx4gM2bN0vapk6dCgMDA+UUREREpEYYfErR3r17cf36dfHYwcEBffr0UWJFRERE6oW7s5eSX375RRJ6Bg4cKIae3LuvExERUclh8CklL1++EX8/Y8YM1KxZUzzO2X3d11cZlREREakPDnWVkiNHhuDmzVTUqmUJb2/pOU9Peejx9FRObUREROqCPT6lZNIkY9SqZVlguOnWDTh3Tv4rERERlRz2+JSSbt0YbIiIiJSNPT5ERESkNhh8Sgnv3CIiIlI+Bp9Swju3iIiIlI/Bp5R4egKOjrxzi4iISJk4ubmUcHIzERGR8rHHh4iIiNQGgw8RERGpDQYfIiIiUhsMPkRERKQ2GHyIiIhIbTD4EBERkdpg8CEiIiK1weBDREREaoPBh4iIiNQGgw8RERGpDQYfIiIiUhsMPkRERKQ2GHyIiIhIbXB39jwEQQAAJCUlKbkSIiIiKqqc7+2c7/HCMPjk8erVKwCAjY2NkishIiKi4nr16hVMTEwKPS8T3heN1Ex2djaio6NhZGQEmUym7HJKVFJSEmxsbPDo0SMYGxsruxzKhZ9N2cTPpWzi51J2leZnIwgCXr16hapVq0JDo/CZPOzxyUNDQwPVqlVTdhmlytjYmH9ZlFH8bMomfi5lEz+Xsqu0Ppt39fTk4ORmIiIiUhsMPkRERKQ2GHzUmI6ODry9vaGjo6PsUigPfjZlEz+XsomfS9lVFj8bTm4mIiIitcEeHyIiIlIbDD5ERESkNhh8iIiISG0w+BAREZHaYPBRYwcPHkTLli2hp6cHMzMz9OjRQ3L+4cOH6Ny5M/T19WFpaYlp06YhMzNTOcWqobS0NHz66aeQyWQIDQ2VnLt27Rq+/PJL6OrqwsbGBkuWLFFOkWoiKioKw4YNQ40aNaCnp4datWrB29sb6enpkuv4uSjH2rVrYWdnB11dXbRs2RL//fefsktSK4sWLULz5s1hZGQES0tL9OjRA5GRkZJrUlNT4e7ujooVK8LQ0BC9evXC06dPlVIvg4+a2rNnDwYOHIghQ4bg6tWrOHv2LPr16yeez8rKQufOnZGeno5z587B398fmzdvxuzZs5VYtXqZPn06qlatmq89KSkJHTp0gK2tLS5duoSlS5dizpw5+OWXX5RQpXqIiIhAdnY2NmzYgBs3bmDlypVYv349ZsyYIV7Dz0U5duzYgcmTJ8Pb2xuXL19G48aN4eLigmfPnim7NLVx6tQpuLu74/z58zh69CgyMjLQoUMHpKSkiNdMmjQJf/31F3bt2oVTp04hOjoaPXv2VE7BAqmdjIwMwdraWvjtt98KvebQoUOChoaGEBsbK7atW7dOMDY2FtLS0kqjTLV26NAhwcHBQbhx44YAQLhy5Yp47ueffxbMzMwkn4OHh4dgb2+vhErV15IlS4QaNWqIx/xclKNFixaCu7u7eJyVlSVUrVpVWLRokRKrUm/Pnj0TAAinTp0SBEEQEhISBC0tLWHXrl3iNeHh4QIAISQkpNTrY4+PGrp8+TKePHkCDQ0NNGnSBFWqVEGnTp0QFhYmXhMSEoJGjRqhcuXKYpuLiwuSkpJw48YNZZStNp4+fQo3Nzds2bIF+vr6+c6HhISgdevW0NbWFttcXFwQGRmJ+Pj40ixVrSUmJsLc3Fw85udS+tLT03Hp0iW0b99ebNPQ0ED79u0REhKixMrUW2JiIgCI/39cunQJGRkZks/JwcEB1atXV8rnxOCjhu7duwcAmDNnDmbNmoXAwECYmZmhbdu2iIuLAwDExsZKQg8A8Tg2NrZ0C1YjgiDA1dUVo0aNQrNmzQq8hp+N8t25cwdr1qzByJEjxTZ+LqXvxYsXyMrKKvDPnX/mypGdnY2JEyeiVatWaNiwIQD5f//a2towNTWVXKusz4nBpxzx9PSETCZ75yNnrgIAzJw5E7169ULTpk3h5+cHmUyGXbt2KfldlE9F/WzWrFmDV69ewcvLS9klq4Wifi65PXnyBB07dsR3330HNzc3JVVOVDa5u7sjLCwM27dvV3Yphaqg7AJIcaZMmQJXV9d3XlOzZk3ExMQAAOrXry+26+jooGbNmnj48CEAwMrKKt+dETkz8K2srBRYtXoo6mdz4sQJhISE5NvXplmzZujfvz/8/f1hZWWV724IfjYfpqifS47o6Gg4OzvDyckp36Rlfi6lr1KlStDU1Czwz51/5qVv7NixCAwMxOnTp1GtWjWx3crKCunp6UhISJD0+ijtcyr1WUWkdImJiYKOjo5kcnN6erpgaWkpbNiwQRCEt5Obnz59Kl6zYcMGwdjYWEhNTS31mtXFgwcPhOvXr4uPoKAgAYCwe/du4dGjR4IgvJ1Em56eLj7Py8uLk2hL2OPHj4U6deoI33//vZCZmZnvPD8X5WjRooUwduxY8TgrK0uwtrbm5OZSlJ2dLbi7uwtVq1YVbt26le98zuTm3bt3i20RERFKm9zM4KOmJkyYIFhbWwtBQUFCRESEMGzYMMHS0lKIi4sTBEEQMjMzhYYNGwodOnQQQkNDhcOHDwsWFhaCl5eXkitXL/fv3893V1dCQoJQuXJlYeDAgUJYWJiwfft2QV9fXwytpHiPHz8WateuLfzvf/8THj9+LMTExIiPHPxclGP79u2Cjo6OsHnzZuHmzZvCiBEjBFNTU8kdqVSyRo8eLZiYmAgnT56U/L/x+vVr8ZpRo0YJ1atXF06cOCFcvHhRcHR0FBwdHZVSL4OPmkpPTxemTJkiWFpaCkZGRkL79u2FsLAwyTVRUVFCp06dBD09PaFSpUrClClThIyMDCVVrJ4KCj6CIAhXr14VvvjiC0FHR0ewtrYWfH19lVOgmvDz8xMAFPjIjZ+LcqxZs0aoXr26oK2tLbRo0UI4f/68sktSK4X9v+Hn5yde8+bNG2HMmDGCmZmZoK+vL3zzzTeSfziUJtn/F01ERERU7vGuLiIiIlIbDD5ERESkNhh8iIiISG0w+BAREZHaYPAhIiIitcHgQ0RERGqDwYeIiIjUBoMPERERqQ0GH6JyJjY2FuPGjUPNmjWho6MDGxsbdO3aFcePHxevOXfuHL7++muYmZlBV1cXjRo1wooVK5CVlSVeExUVhWHDhqFGjRrQ09NDrVq14O3tjfT0dMnP+/XXX9G4cWMYGhrC1NQUTZo0waJFi8Tzc+bMgUwmQ8eOHfPVunTpUshkMrRt27bI7y8pKQkzZ86Eg4MDdHV1YWVlhfbt22Pv3r3IvR7rjRs30Lt3b1hYWEBHRwd169bF7Nmz8fr1a/GauLg4jBs3Dvb29tDT00P16tUxfvx4JCYmFqmWqKioQnd1P3/+fJHfU9u2bTFx4sQiX09EH467sxOVI1FRUWjVqhVMTU2xdOlSNGrUCBkZGQgKCoK7uzsiIiKwb98+9O7dG0OGDEFwcDBMTU1x7NgxTJ8+HSEhIdi5cydkMhkiIiKQnZ2NDRs2oHbt2ggLC4ObmxtSUlKwbNkyAMCmTZswceJErF69Gm3atEFaWhquXbuGsLAwSV1VqlRBcHAwHj9+LNm1edOmTahevXqR319CQgK++OILJCYmYv78+WjevDkqVKiAU6dOYfr06WjXrh1MTU1x/vx5tG/fHu3bt8fBgwdRuXJl/Pfff5gyZQqOHz+O4OBgaGtrIzo6GtHR0Vi2bBnq16+PBw8eYNSoUYiOjsbu3buLXNexY8fQoEEDSVvFihWL/PyiEAQBWVlZqFCBf20TfRSlbJRBRCWiU6dOgrW1tZCcnJzvXHx8vJCcnCxUrFhR6NmzZ77zAQEBAgBh+/bthb7+kiVLhBo1aojH3bt3F1xdXd9Zk7e3t9C4cWOhS5cuwvz588X2s2fPCpUqVRJGjx4ttGnTpgjvTr4ZooGBgfDkyZN85169eiVkZGQI2dnZQv369YVmzZoJWVlZkmtCQ0MFmUz2zj20du7cKWhraxdpX7rC9lLLLef9//7774Ktra1gbGws9OnTR0hKShIEQRAGDx6cb4+j+/fvC8HBwQIA4dChQ8Jnn30maGlpCcHBwUJqaqowbtw4wcLCQtDR0RFatWol/Pfff+LPy3leYGCg0KhRI0FHR0do2bKlcP36dUEQBCE5OVkwMjISdu3aJalz3759gr6+vlgXUXnFoS6iciIuLg6HDx+Gu7s7DAwM8p03NTXFkSNH8PLlS0ydOjXf+a5du6Ju3brYtm1boT8jMTER5ubm4rGVlRXOnz+PBw8evLe+oUOHYvPmzeLxpk2b0L9/f2hra7/3uQCQnZ2N7du3o3///qhatWq+84aGhqhQoQJCQ0Nx8+ZNTJ48GRoa0r/iGjdujPbt27/3PRobGyu0Z+Xu3bvYv38/AgMDERgYiFOnTsHX1xcAsGrVKjg6OsLNzQ0xMTGIiYmBjY2N+FxPT0/4+voiPDwcn3zyCaZPn449e/bA398fly9fRu3ateHi4oK4uDjJz5w2bRqWL1+OCxcuwMLCAl27dkVGRgYMDAzw/fffw8/PT3K9n58fvv32WxgZGSnsfROVRQw+ROXEnTt3IAgCHBwcCr3m1q1bAIB69eoVeN7BwUG8pqDXX7NmDUaOHCm2eXt7w9TUFHZ2drC3t4erqyt27tyJ7OzsfM/v0qULkpKScPr0aaSkpGDnzp0YOnRokd/fixcvEB8f/873B7z/PdarV6/Q9/jixQvMmzcPI0aMKHJdAODk5ARDQ0PJI7fs7Gxs3rwZDRs2xJdffomBAweKc65MTEygra0NfX19WFlZwcrKCpqamuJz586di6+++gq1atWCjo4O1q1bh6VLl6JTp06oX78+fv31V+jp6WHjxo2Sn+nt7Y2vvvoKjRo1gr+/P54+fYp9+/YBAIYPH46goCDExMQAAJ49e4ZDhw4V6/MgUlUMPkTlhJBrYq8irwWAJ0+eoGPHjvjuu+/g5uYmtlepUgUhISG4fv06JkyYgMzMTAwePBgdO3bMF360tLQwYMAA+Pn5YdeuXahbty4++eSTEqu5uNcnJSWhc+fOqF+/PubMmVOs5+7YsQOhoaGSR252dnaSnpQqVarg2bNnRXrtZs2aib+/e/cuMjIy0KpVK7FNS0sLLVq0QHh4uOR5jo6O4u/Nzc1hb28vXtOiRQs0aNAA/v7+AIA//vgDtra2aN26ddHeMJEKY/AhKifq1KkjTkouTN26dQEg35dkjvDwcPGaHNHR0XB2doaTkxN++eWXAp/XsGFDjBkzBn/88QeOHj2Ko0eP4tSpU/muGzp0KHbt2oW1a9cWu3fBwsICpqam73x/wIe9x1evXqFjx44wMjLCvn37oKWlVazabGxsULt2bckjt7yvJ5PJCuwVK0hBw5aKMHz4cHHo0c/PD0OGDIFMJiuRn0VUljD4EJUT5ubmcHFxwdq1a5GSkpLvfEJCAjp06ABzc3MsX7483/mAgADcvn0bffv2FduePHmCtm3bomnTpvDz88s3Z6Yg9evXB4ACa2jQoAEaNGiAsLAw9OvXrzhvDxoaGvj++++xdetWREdH5zufnJyMzMxMfPrpp3BwcMDKlSvzhYurV6/i2LFjkveYlJSEDh06QFtbGwEBAdDV1S1WXYqgra0tWUqgMLVq1YK2tjbOnj0rtmVkZODChQvin3uO3LfTx8fH49atW5LhvwEDBuDBgwdYvXo1bt68icGDByvgnRCVfQw+ROXI2rVrkZWVhRYtWmDPnj24ffs2wsPDsXr1ajg6OsLAwAAbNmzAgQMHMGLECFy7dg1RUVHYuHEjXF1d8e2336J3794A3oae6tWrY9myZXj+/DliY2MRGxsr/rzRo0dj3rx5OHv2LB48eIDz589j0KBBsLCwkAy15HbixAnExMTA1NS02O9vwYIFsLGxQcuWLfH777/j5s2buH37NjZt2oQmTZogOTkZMpkMGzduxM2bN9GrVy/8999/ePjwIXbt2oWuXbvC0dFRXDMnJ/SkpKRg48aNSEpKEt9jUYJIjpcvX4rPy3mkpqYW+fl2dnb4999/ERUVhRcvXhTaG2RgYIDRo0dj2rRpOHz4MG7evAk3Nze8fv0aw4YNk1w7d+5cHD9+HGFhYXB1dUWlSpXQo0cP8byZmRl69uyJadOmoUOHDpJlBojKNaXeU0ZEChcdHS24u7sLtra2gra2tmBtbS1069ZNCA4OFq85ffq04OLiIhgbGwva2tpCgwYNhGXLlgmZmZniNX5+fvlus8555Ni9e7fw9ddfC1WqVBG0tbWFqlWrCr169RKuXbsmXpNzO3dhJkyYUOTb2QVBEBISEgRPT0+hTp06gra2tlC5cmWhffv2wr59+4Ts7GzxumvXrgm9evUSzM3NBS0tLaFWrVrCrFmzhJSUFPGanFu/C3rcv3//vbXk3M5e0GPbtm2Fvv+VK1cKtra24nFkZKTw+eefC3p6evluZ4+Pj5c8982bN8K4ceOESpUqvfN29r/++kto0KCBoK2tLbRo0UK4evVqvvqPHz8uABB27tz53vdKVF7IBKGYMwCJiKjMOnnyJJydnREfH//eXrUtW7Zg0qRJiI6OLvKyAkSqjkuAEhGpmdevXyMmJga+vr4YOXIkQw+pFc7xIaIyI+9aOLkfZ86cKfV6Ro0aVWg9o0aNKvV6FGXJkiVwcHCAlZUVvLy8lF0OUaniUBcRlRl37twp9Jy1tTX09PRKsRr5wn5JSUkFnjM2NoalpWWp1kNEH4/Bh4iIiNQGh7qIiIhIbTD4EBERkdpg8CEiIiK1weBDREREaoPBh4iIiNQGgw8RERGpDQYfIiIiUhsMPkRERKQ2/g/cF/AoD44LLwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+y0lEQVR4nO3deVxU9f4/8NeAgiwCIiigbKK4opYr7iZfccmuoqVp5ZKaipZZuVSmtmHWbb2mXUv93VuaaVqWLe6agmbue8oFcQEVlUEQEeH8/qCZZjln5pxZmBnm9Xw8eJRzzsx8zpmzvM9neX9UgiAIICIiInJjHo4uABEREZGjMSAiIiIit8eAiIiIiNweAyIiIiJyewyIiIiIyO0xICIiIiK3x4CIiIiI3B4DIiIiInJ7DIiIiIjI7TEgIiKXMX/+fKhUKlnrqlQqzJ8/367l6dWrF3r16uW0n0dE8jEgIiLFVq5cCZVKpf2rUaMGGjRogDFjxuDy5cuOLp7TiYmJ0dtf9erVQ/fu3bFhwwabfP6dO3cwf/587Ny50yafR+SOGBARkcVef/11/Pe//8XSpUvRv39/fPnll+jZsyfu3r1rl+979dVXUVJSYpfPtre2bdviv//9L/773//ixRdfxJUrV5CSkoKlS5da/dl37tzBggULGBARWaGGowtARK6rf//+aN++PQBg/PjxCAkJwTvvvIONGzfiscces/n31ahRAzVquOZlq0GDBnjiiSe0/37qqafQuHFjfPDBB5g0aZIDS0ZEAGuIiMiGunfvDgDIzMzUe/3MmTMYNmwYgoODUatWLbRv3x4bN27UW6esrAwLFixAkyZNUKtWLdStWxfdunXDli1btOuI9SEqLS3F888/j9DQUNSuXRuPPPIILl26ZFS2MWPGICYmxuh1sc9csWIFHnroIdSrVw/e3t5o0aIFlixZomhfmBMWFobmzZsjKyvL5HrXrl3D008/jfr166NWrVpo06YN/t//+3/a5dnZ2QgNDQUALFiwQNssZ+/+U0TVjWs+ahGRU8rOzgYA1KlTR/vayZMn0bVrVzRo0ACzZ8+Gn58fvvnmGwwePBjffvsthgwZAqAyMElLS8P48ePRsWNHFBYW4o8//sChQ4fwf//3f5LfOX78eHz55ZcYOXIkunTpgu3bt2PgwIFWbceSJUvQsmVLPPLII6hRowZ++OEHTJkyBRUVFUhNTbXqszXKyspw8eJF1K1bV3KdkpIS9OrVC+fPn8fUqVMRGxuLtWvXYsyYMSgoKMBzzz2H0NBQLFmyBJMnT8aQIUOQkpICAGjdurVNyknkNgQiIoVWrFghABC2bt0qXL9+Xbh48aKwbt06ITQ0VPD29hYuXryoXbdPnz5CQkKCcPfuXe1rFRUVQpcuXYQmTZpoX2vTpo0wcOBAk987b948QfeydeTIEQGAMGXKFL31Ro4cKQAQ5s2bp31t9OjRQnR0tNnPFARBuHPnjtF6ycnJQqNGjfRe69mzp9CzZ0+TZRYEQYiOjhb69u0rXL9+Xbh+/bpw9OhRYcSIEQIAYdq0aZKf9+GHHwoAhC+//FL72r1794TExETB399fKCwsFARBEK5fv260vUSkDJvMiMhiSUlJCA0NRWRkJIYNGwY/Pz9s3LgRDRs2BADcvHkT27dvx2OPPYbbt28jPz8f+fn5uHHjBpKTk3Hu3DntqLSgoCCcPHkS586dk/39P/30EwDg2Wef1Xt9+vTpVm2Xj4+P9v/VajXy8/PRs2dP/O9//4NarbboMzdv3ozQ0FCEhoaiTZs2WLt2LZ588km88847ku/56aefEBYWhscff1z7Ws2aNfHss8+iqKgIu3btsqgsRGSMTWZEZLHFixcjPj4earUay5cvx+7du+Ht7a1dfv78eQiCgLlz52Lu3Lmin3Ht2jU0aNAAr7/+Ov7xj38gPj4erVq1Qr9+/fDkk0+abPq5cOECPDw8EBcXp/d606ZNrdquvXv3Yt68ecjIyMCdO3f0lqnVagQGBir+zE6dOuHNN9+ESqWCr68vmjdvjqCgIJPvuXDhApo0aQIPD/1n1+bNm2uXE5FtMCAiIot17NhRO8ps8ODB6NatG0aOHImzZ8/C398fFRUVAIAXX3wRycnJop/RuHFjAECPHj2QmZmJ77//Hps3b8bnn3+ODz74AEuXLsX48eOtLqtUQsfy8nK9f2dmZqJPnz5o1qwZ3n//fURGRsLLyws//fQTPvjgA+02KRUSEoKkpCSL3ktE9seAiIhswtPTE2lpaejduzf+9a9/Yfbs2WjUqBGAymYeOcFAcHAwxo4di7Fjx6KoqAg9evTA/PnzJQOi6OhoVFRUIDMzU69W6OzZs0br1qlTBwUFBUavG9ay/PDDDygtLcXGjRsRFRWlfX3Hjh1my29r0dHROHbsGCoqKvRqic6cOaNdDkgHe0QkH/sQEZHN9OrVCx07dsSHH36Iu3fvol69eujVqxc+++wz5ObmGq1//fp17f/fuHFDb5m/vz8aN26M0tJSye/r378/AODjjz/We/3DDz80WjcuLg5qtRrHjh3Tvpabm2uULdrT0xMAIAiC9jW1Wo0VK1ZIlsNeBgwYgLy8PKxZs0b72v379/HJJ5/A398fPXv2BAD4+voCgGjAR0TysIaIiGzqpZdewqOPPoqVK1di0qRJWLx4Mbp164aEhARMmDABjRo1wtWrV5GRkYFLly7h6NGjAIAWLVqgV69eaNeuHYKDg/HHH39g3bp1mDp1quR3tW3bFo8//jg+/fRTqNVqdOnSBdu2bcP58+eN1h0xYgRmzZqFIUOG4Nlnn8WdO3ewZMkSxMfH49ChQ9r1+vbtCy8vLwwaNAjPPPMMioqKsGzZMtSrV080qLOniRMn4rPPPsOYMWNw8OBBxMTEYN26ddi7dy8+/PBD1K5dG0BlJ/AWLVpgzZo1iI+PR3BwMFq1aoVWrVpVaXmJXJqjh7kRkevRDLs/cOCA0bLy8nIhLi5OiIuLE+7fvy8IgiBkZmYKTz31lBAWFibUrFlTaNCggfDwww8L69at077vzTffFDp27CgEBQUJPj4+QrNmzYS33npLuHfvnnYdsSHyJSUlwrPPPivUrVtX8PPzEwYNGiRcvHhRdBj65s2bhVatWgleXl5C06ZNhS+//FL0Mzdu3Ci0bt1aqFWrlhATEyO88847wvLlywUAQlZWlnY9JcPuzaUUkPq8q1evCmPHjhVCQkIELy8vISEhQVixYoXRe9PT04V27doJXl5eHIJPZAGVIOjUCxMRERG5IfYhIiIiIrfHgIiIiIjcHgMiIiIicnsMiIiIiMjtMSAiIiIit+fQgCgtLQ0dOnRA7dq1Ua9ePQwePNgow2yvXr2gUqn0/iZNmqS3Tk5ODgYOHAhfX1/Uq1cPL730Eu7fv6+3zs6dO/Hggw/C29sbjRs3xsqVK+29eUREROQiHJqYcdeuXUhNTUWHDh1w//59vPzyy+jbty9OnToFPz8/7XoTJkzA66+/rv23JisrUDkP0cCBAxEWFob09HTk5ubiqaeeQs2aNfH2228DALKysjBw4EBMmjQJX331FbZt24bx48cjPDxccn4lQxUVFbhy5Qpq167NNPlEREQuQhAE3L59GxEREUYTJRuu6DSuXbsmABB27dqlfa1nz57Cc889J/men376SfDw8BDy8vK0ry1ZskQICAgQSktLBUEQhJkzZwotW7bUe9/w4cOF5ORk2WXTJHrjH//4xz/+8Y9/rvd38eJFk/d5p5q6Q61WA6ic4FHXV199hS+//BJhYWEYNGgQ5s6dq60lysjIQEJCAurXr69dPzk5GZMnT8bJkyfxwAMPICMjw2hiyeTkZEyfPl2yLKWlpXpzKAl/5a+8ePEiAgICrNpOIiIiqhqFhYWIjIzUTnUjxWkCooqKCkyfPh1du3bVm39n5MiRiI6ORkREBI4dO4ZZs2bh7NmzWL9+PQAgLy9PLxgCoP13Xl6eyXUKCwtRUlICHx8fo/KkpaVhwYIFRq8HBAQwICIiInIx5rq7OE1AlJqaihMnTmDPnj16r0+cOFH7/wkJCQgPD0efPn2QmZmJuLg4u5Vnzpw5mDFjhvbfmgiTiIiIqh+nGHY/depU/Pjjj9ixYwcaNmxoct1OnToBgHY267CwMFy9elVvHc2/w8LCTK4TEBAgWjsEAN7e3traINYKERERVW8ODYgEQcDUqVOxYcMGbN++HbGxsWbfc+TIEQBAeHg4ACAxMRHHjx/HtWvXtOts2bIFAQEBaNGihXadbdu26X3Oli1bkJiYaKMtISIiIlfm0Nnup0yZglWrVuH7779H06ZNta8HBgbCx8cHmZmZWLVqFQYMGIC6devi2LFjeP7559GwYUPs2rULQOWw+7Zt2yIiIgKLFi1CXl4ennzySYwfP15v2H2rVq2QmpqKcePGYfv27Xj22WexadMm2cPuCwsLERgYCLVazdoiIqoy5eXlKCsrc3QxiJxWzZo14enpKblc7v3boQGRVAenFStWYMyYMbh48SKeeOIJnDhxAsXFxYiMjMSQIUPw6quv6m3UhQsXMHnyZOzcuRN+fn4YPXo0Fi5ciBo1/u4itXPnTjz//PM4deoUGjZsiLlz52LMmDGyy8qAiIiqkiAIyMvLQ0FBgaOLQuT0goKCEBYWJhpXuERA5EoYEBFRVcrNzUVBQQHq1asHX19fJoQlEiEIAu7cuYNr164hKChI251Gl9z7t9OMMiMiokrl5eXaYKhu3bqOLg6RU9MMjrp27Rrq1atnsvnMFKcYZUZERH/T9BnSnaaIiKRpzhVr+tsxICIiclJsJiOSxxbnCgMiIiIicnsMiIiIiMjIzp07oVKprB7pGBMTgw8//NAmZbInBkREMuSqS5CemY9cdYmji0Lk9PLy8jBt2jQ0atQI3t7eiIyMxKBBg/QS5Kanp2PAgAGoU6cOatWqhYSEBLz//vsoLy/XrpOdnY2nn34asbGx8PHxQVxcHObNm4d79+7pfd+yZcvQpk0b+Pv7IygoCA888ADS0tK0y+fPnw+VSoV+/foZlfXdd9+FSqVCr169ZG9fYWEhXnnlFTRr1gy1atVCWFgYkpKSsH79eugO3D558iQee+wxhIaGwtvbG/Hx8Xjttddw584d7To3b97EtGnT0LRpU/j4+CAqKgrPPvusdrJzc7Kzs6FSqUT/9u3bJ3ubevXqZXLCc3fAUWZEZqw5kIM564+jQgA8VEBaSgKGd4hydLGInFJ2dja6du2KoKAgvPvuu0hISEBZWRl+/fVXpKam4syZM9iwYQMee+wxjB07Fjt27EBQUBC2bt2KmTNnIiMjA9988w1UKhXOnDmDiooKfPbZZ2jcuDFOnDiBCRMmoLi4GO+99x4AYPny5Zg+fTo+/vhj9OzZE6WlpTh27BhOnDihV67w8HDs2LEDly5d0psiavny5YiKkn8+FxQUoFu3blCr1XjzzTfRoUMH1KhRA7t27cLMmTPx0EMPISgoCPv27UNSUhKSkpKwadMm1K9fH7///jteeOEFbNu2DTt27ICXlxeuXLmCK1eu4L333kOLFi1w4cIFTJo0CVeuXMG6detkl2vr1q1o2bKl3mscoaiQQLKo1WoBgKBWqx1dFKpCVwruCLGzfxSiZ/3912j2JuFKwR1HF42qsZKSEuHUqVNCSUmJo4uiWP/+/YUGDRoIRUVFRstu3bolFBUVCXXr1hVSUlKMlm/cuFEAIHz99deSn79o0SIhNjZW++9//OMfwpgxY0yWad68eUKbNm2Ehx9+WHjzzTe1r+/du1cICQkRJk+eLPTs2VPG1gnC5MmTBT8/P+Hy5ctGy27fvi2UlZUJFRUVQosWLYT27dsL5eXleuscOXJEUKlUwsKFCyW/45tvvhG8vLyEsrIys+XJysoSAAiHDx+WXEez/f/5z3+E6OhoISAgQBg+fLhQWFgoCIIgjB49WgCg95eVlSXs2LFDACBs3bpVaNeuneDj4yMkJiYKZ86c0X72+fPnhUceeUSoV6+e4OfnJ7Rv317YsmWL3vdHR0cLH3zwgfbfAIRPP/1U6Nevn1CrVi0hNjZWWLt2rXZ57969hdTUVL3PuHbtmlCzZk1h69atotto6pyRe/9mkxmRCVn5xagwSF1aLgjIzr8j/gYiJ1OVzb03b97EL7/8gtTUVPj5+RktDwoKwubNm3Hjxg28+OKLRssHDRqE+Ph4rF69WvI71Go1goODtf8OCwvDvn37cOHCBbPlGzduHFauXKn99/LlyzFq1Ch4eXmZfS8AVFRU4Ouvv8aoUaMQERFhtNzf3x81atTAkSNHcOrUKcyYMQMeHvq32TZt2iApKcnsNgYEBOjNtmCtzMxMfPfdd/jxxx/x448/YteuXVi4cCEA4KOPPkJiYiImTJiA3Nxc5ObmIjIyUvveV155Bf/85z/xxx9/oEaNGhg3bpx2WVFREQYMGIBt27bh8OHD6NevHwYNGoScnByT5Zk7dy6GDh2Ko0ePYtSoURgxYgROnz4NABg/fjxWrVqF0tJS7fpffvklGjRogIceeshm+8QQAyIiE2JD/OBhMJrTU6VCTAjzw5DzW3MgB10XbsfIZfvRdeF2rDlg+iZlrfPnz0MQBDRr1kxynT///BMA0Lx5c9HlzZo1064j9vmffPIJnnnmGe1r8+bNQ1BQEGJiYtC0aVOMGTMG33zzDSoqKoze//DDD6OwsBC7d+9GcXExvvnmG72buzn5+fm4deuWye0DzG9j8+bNJbcxPz8fb7zxBiZOnCi7XADQpUsX+Pv76/3pqqiowMqVK9GqVSt0794dTz75pLZPV2BgILy8vODr64uwsDCEhYXpJTd866230LNnT7Ro0QKzZ89Geno67t69C6AywHvmmWfQqlUrNGnSBG+88Qbi4uKwceNGk+V99NFHMX78eMTHx+ONN95A+/bt8cknnwAAUlJSAADff/+9dv2VK1dizJgxdk1FwYCIyITwQB+kpSTA86+T0FOlwtsprRAe6OPgkhGZlqsu0fZ9A4AKAXh5/Qm71hQJCmaCUrIuAFy+fBn9+vXDo48+igkTJmhfDw8PR0ZGBo4fP47nnnsO9+/fx+jRo9GvXz+joKhmzZp44oknsGLFCqxduxbx8fFo3bq13cqsdP3CwkIMHDgQLVq0wPz58xW9d82aNThy5Ijen66YmBjUrl1b++/w8HBcu3ZN1mfr7iPN1Bia9xYVFeHFF19E8+bNERQUBH9/f5w+fdpsDVFiYqLRvzU1RLVq1cKTTz6J5cuXAwAOHTqEEydOKJp/1BLsVE1kxvAOUegRH4rs/DuICfFlMEQuwVRzr72O4SZNmmg7Q0uJj48HAJw+fRpdunQxWn769Gm0aNFC77UrV66gd+/e6NKlC/7973+Lfm6rVq3QqlUrTJkyBZMmTUL37t2xa9cu9O7dW2+9cePGoVOnTjhx4oSi2iEACA0NRVBQkMntA/S38YEHHjBafvr0ae06Grdv30a/fv1Qu3ZtbNiwATVr1lRUtsjISDRu3FhyueHnqVQq0Vo0c+/V1NBo3vviiy9iy5YteO+999C4cWP4+Phg2LBhRiMBlRo/fjzatm2LS5cuYcWKFXjooYcQHR1t1WeawxoiIhnCA32QGFeXwRC5DEc09wYHByM5ORmLFy9GcXGx0fKCggL07dsXwcHB+Oc//2m0fOPGjTh37hwef/xx7WuXL19Gr1690K5dO6xYscKoT44YTUAlVoaWLVuiZcuWOHHiBEaOHKlk8+Dh4YERI0bgq6++wpUrV4yWFxUV4f79+2jbti2aNWuGDz74wCjoOHr0KLZu3aq3jYWFhejbty+8vLywceNG1KpVS1G5bMHLy0sv5YFce/fuxZgxYzBkyBAkJCQgLCwM2dnZZt9nmBJg3759ek2MCQkJaN++PZYtW4ZVq1YpDl4twYCIiKgaclRz7+LFi1FeXo6OHTvi22+/xblz53D69Gl8/PHHSExMhJ+fHz777DN8//33mDhxIo4dO4bs7Gx88cUXGDNmDIYNG4bHHnsMwN/BUFRUFN577z1cv34deXl5yMvL037f5MmT8cYbb2Dv3r24cOEC9u3bh6eeegqhoaFGzTIa27dvR25uLoKCghRv31tvvYXIyEh06tQJ//nPf3Dq1CmcO3cOy5cvxwMPPICioiKoVCp88cUXOHXqFIYOHYrff/8dOTk5WLt2LQYNGoTExERtzh9NMFRcXIwvvvgChYWF2m1UEqDcuHFD+z7Nn6afjxwxMTHYv38/srOzkZ+fL7v2qEmTJli/fj2OHDmCo0ePYuTIkbLeu3btWixfvhx//vkn5s2bh99//x1Tp07VW2f8+PFYuHAhBEHAkCFDZG+LxUyOQSMtDrsnoqpiy2H3VwruCOnn86s0VcSVK1eE1NRUITo6WvDy8hIaNGggPPLII8KOHTu06+zevVtITk4WAgICBC8vL6Fly5bCe++9J9y/f1+7zooVK4yGg2v+NNatWycMGDBACA8PF7y8vISIiAhh6NChwrFjx7TraIadS3nuuedkD7sXBEEoKCgQZs+eLTRp0kTw8vIS6tevLyQlJQkbNmwQKioqtOsdO3ZMGDp0qBAcHCzUrFlTiIuLE1599VWhuLhYu45maLvYX1ZWltmyaIbdi/2tXr1acvs/+OADITo6Wvvvs2fPCp07dxZ8fHyMht3funVLu97hw4f1ypaVlSX07t1b8PHxESIjI4V//etfQs+ePYXnnntO+x6xYfeLFy8W/u///k/w9vYWYmJihDVr1hht2+3btwVfX19hypQpZveDLYbdq/4qHJlRWFiIwMBA7XBIIiJ7uXv3LrKyshAbG+uQ5hMie1KpVNiwYQMGDx5scr3s7GzExcXhwIEDePDBB02ua+qckXv/ZqdqIiIichplZWW4ceMGXn31VXTu3NlsMGQr7ENERET0F8NcPrp/v/32W5WXZ9KkSZLlmTRpUpWXpyrs3bsX4eHhOHDgAJYuXVpl38saIiIior8Y5u/R1aBBg6oryF9ef/110azeAFy2+4a5njq9evVSnMPJFhgQERER/cVULh9HqFevHurVq+foYrgFNpkRERGR22NARETkpOTmgiFyd7Y4V9hkRkTkZLy8vODh4YErV64gNDQUXl5edp3UkshVCYKAe/fu4fr16/Dw8ICXl5fFn8WAiIjIyXh4eCA2Nha5ubmiU0QQkT5fX19ERUXJmtpFCgMiIiIn5OXlhaioKNy/f9+iOaaI3IWnpydq1KhhdS0qAyIiIielUqlQs2ZNxTOfE5Fy7FRNREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2GBARERGR22NARERERG6PARERERG5PQZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2GBARERGR22NARORgueoSpGfmI1dd4uiiEBG5rRqOLgCRO1tzIAdz1h9HhQB4qIC0lAQM7xDl6GIREbkd1hAROUiuukQbDAFAhQC8vP4Ea4qIiByAARGRg2TlF2uDIY1yQUB2/h3HFIiIyI0xICJykNgQP3io9F/zVKkQE+LrmAIREbkxBkREDhIe6IO0lAR4qiqjIk+VCm+ntEJ4oI+DS0ZE5H7YqZrIgYZ3iEKP+FBk599BTIgvgyEiIgdhQETkYOGBPgyEiIgcjE1mRERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hwaEKWlpaFDhw6oXbs26tWrh8GDB+Ps2bN669y9exepqamoW7cu/P39MXToUFy9elVvnZycHAwcOBC+vr6oV68eXnrpJdy/f19vnZ07d+LBBx+Et7c3GjdujJUrV9p784iIiMhFODQg2rVrF1JTU7Fv3z5s2bIFZWVl6Nu3L4qLi7XrPP/88/jhhx+wdu1a7Nq1C1euXEFKSop2eXl5OQYOHIh79+4hPT0d/+///T+sXLkSr732mnadrKwsDBw4EL1798aRI0cwffp0jB8/Hr/++muVbi8RERE5J5UgCIL51arG9evXUa9ePezatQs9evSAWq1GaGgoVq1ahWHDhgEAzpw5g+bNmyMjIwOdO3fGzz//jIcffhhXrlxB/fr1AQBLly7FrFmzcP36dXh5eWHWrFnYtGkTTpw4of2uESNGoKCgAL/88ousshUWFiIwMBBqtRoBAQG233giIiKyObn3b6fqQ6RWqwEAwcHBAICDBw+irKwMSUlJ2nWaNWuGqKgoZGRkAAAyMjKQkJCgDYYAIDk5GYWFhTh58qR2Hd3P0Kyj+QwxpaWlKCws1PsjIiKi6slpAqKKigpMnz4dXbt2RatWrQAAeXl58PLyQlBQkN669evXR15ennYd3WBIs1yzzNQ6hYWFKCkpES1PWloaAgMDtX+RkZFWbyMRERE5J6cJiFJTU3HixAl8/fXXji4KAGDOnDlQq9Xav4sXLzq6SERERGQnTjGX2dSpU/Hjjz9i9+7daNiwofb1sLAw3Lt3DwUFBXq1RFevXkVYWJh2nd9//13v8zSj0HTXMRyZdvXqVQQEBMDHR3wOKW9vb3h7e1u9bUREROT8HFpDJAgCpk6dig0bNmD79u2IjY3VW96uXTvUrFkT27Zt07529uxZ5OTkIDExEQCQmJiI48eP49q1a9p1tmzZgoCAALRo0UK7ju5naNbRfAYRERG5N4eOMpsyZQpWrVqF77//Hk2bNtW+HhgYqK25mTx5Mn766SesXLkSAQEBmDZtGgAgPT0dQOWw+7Zt2yIiIgKLFi1CXl4ennzySYwfPx5vv/02gMph961atUJqairGjRuH7du349lnn8WmTZuQnJwsq6wcZUZEROR65N6/HRoQqVQq0ddXrFiBMWPGAKhMzPjCCy9g9erVKC0tRXJyMj799FNtcxgAXLhwAZMnT8bOnTvh5+eH0aNHY+HChahR4+8WwZ07d+L555/HqVOn0LBhQ8ydO1f7HXIwICIiInI9LhEQuRIGRERERK7HJfMQERERETkCAyIiIiJyewyIiIiIyO0xICK3k6suQXpmPnLV4lnKiYjI/ThFYkaiqrLmQA7mrD+OCgHwUAFpKQkY3iHK0cUiIiIHYw0RuY1cdYk2GAKACgF4ef0J1hQREREDInIfWfnF2mBIo1wQkJ1/xzEFIiIip8GAiNxGbIgfPAxygXqqVIgJ8XVMgYiIyGkwICK3ER7og7SUBHj+lSHdU6XC2ymtEB4oPsEvERG5D3aqJrcyvEMUesSHIjv/DmJCfBkMERERAAZE5IbCA30YCBERkR42mREREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2GBARERGR22NARERERG6PARERERG5PQZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT0GREREROT2LAqIduzYYetyEBERETmMRQFRv379EBcXhzfffBMXL160dZmIiIiIqpRFAdHly5cxdepUrFu3Do0aNUJycjK++eYb3Lt3z9blIyIiIrI7iwKikJAQPP/88zhy5Aj279+P+Ph4TJkyBREREXj22Wdx9OhRW5eTiIiIyG6s7lT94IMPYs6cOZg6dSqKioqwfPlytGvXDt27d8fJkydtUUYiIiIiu7I4ICorK8O6deswYMAAREdH49dff8W//vUvXL16FefPn0d0dDQeffRRW5aViIiIyC5UgiAISt80bdo0rF69GoIg4Mknn8T48ePRqlUrvXXy8vIQERGBiooKmxXWkQoLCxEYGAi1Wo2AgABHF4eIiIhkkHv/rmHJh586dQqffPIJUlJS4O3tLbpOSEgIh+cTERGRS7CohsgdsYaIiIjI9di1hggAzp49i08++QSnT58GADRv3hzTpk1D06ZNLf1IIiIiIoewqFP1t99+i1atWuHgwYNo06YN2rRpg0OHDqFVq1b49ttvbV1GIiIiIruyqMksLi4Oo0aNwuuvv673+rx58/Dll18iMzPTZgV0FmwyIyIicj1y798W1RDl5ubiqaeeMnr9iSeeQG5uriUfSUREROQwFgVEvXr1wm+//Wb0+p49e9C9e3erC0VEjpWrLkF6Zj5y1SWOLgoRUZWwqFP1I488glmzZuHgwYPo3LkzAGDfvn1Yu3YtFixYgI0bN+qtS0SuY82BHMxZfxwVAuChAtJSEjC8Q5Sji0VEZFcW9SHy8JBXsaRSqVBeXq64UM6IfYjIHeSqS9B14XZU6FwVPFUq7JndG+GBPo4rGBGRhew67L66ZJ8mIn1Z+cV6wRAAlAsCsvPvMCAiomrN6sldiaj6iA3xg4dK/zVPlQoxIb6OKRARURWRXUP08ccfy/7QZ5991qLCEJFjhQf6IC0lAS+vP4FyQYCnSoW3U1qxdoiIqj3ZfYhiY2PlfaBKhf/9739WFcoZsQ8RuZNcdQmy8+8gJsSXwRARuTSb9yHKysqyScGIyPmFB/owECIit8I+REREROT2LJ7c9dKlS9i4cSNycnJw7949vWXvv/++1QUjIiIiqioWBUTbtm3DI488gkaNGuHMmTNo1aoVsrOzIQgCHnzwQVuXkYiIiMiuLGoymzNnDl588UUcP34ctWrVwrfffouLFy+iZ8+eePTRR21dRiIiIiK7siggOn36tHZy1xo1aqCkpAT+/v54/fXX8c4779i0gERERET2ZlFA5Ofnp+03FB4ejszMTO2y/Px825SMiIiIqIpY1Ieoc+fO2LNnD5o3b44BAwbghRdewPHjx7F+/XrtZK9ERERErsKiGqL3338fnTp1AgAsWLAAffr0wZo1axATE4MvvvhC9ufs3r0bgwYNQkREBFQqFb777ju95WPGjIFKpdL769evn946N2/exKhRoxAQEICgoCA8/fTTKCoq0lvn2LFj6N69O2rVqoXIyEgsWrTIks12GbnqEqRn5iNXXeLoohAREbkEi2qIGjVqpP1/Pz8/LF261KIvLy4uRps2bTBu3DikpKSIrtOvXz+sWLFC+29vb2+95aNGjUJubi62bNmCsrIyjB07FhMnTsSqVasAVGao7Nu3L5KSkrB06VIcP34c48aNQ1BQECZOnGhRuZ3ZmgM5mLP+OCoEwEMFpKUkYHiHKEcXi4iIyKlZnIcIAO7du4dr166hoqJC7/WoKHk34P79+6N///4m1/H29kZYWJjostOnT+OXX37BgQMH0L59ewDAJ598ggEDBuC9995DREQEvvrqK9y7dw/Lly+Hl5cXWrZsiSNHjuD999+vdgFRrrpEGwwBQIUAvLz+BHrEhzLrMBERkQkWNZn9+eef6N69O3x8fBAdHY3Y2FjExsYiJiZG9pxncu3cuRP16tVD06ZNMXnyZNy4cUO7LCMjA0FBQdpgCACSkpLg4eGB/fv3a9fp0aMHvLy8tOskJyfj7NmzuHXrlk3L6mhZ+cXaYEijXBCQnX/HMQUiIiJyERbVEI0dOxY1atTAjz/+iPDwcKhUKluXC0Blc1lKSgpiY2ORmZmJl19+Gf3790dGRgY8PT2Rl5eHevXq6b2nRo0aCA4ORl5eHgAgLy/PKEirX7++dlmdOnVEv7u0tBSlpaXafxcWFtpy0+wiNsQPHiroBUWeKhViQnwdVygiIiIXYFFAdOTIERw8eBDNmjWzdXn0jBgxQvv/CQkJaN26NeLi4rBz50706dPHrt+dlpaGBQsW2PU7bC080AdpKQl4ef0JlAsCPFUqvJ3Sis1lREREZlgUELVo0cIh+YYaNWqEkJAQnD9/Hn369EFYWBiuXbumt879+/dx8+ZNbb+jsLAwXL16VW8dzb+l+iYBldm4Z8yYof13YWEhIiMjbbUpdjO8QxR6xIciO/8OYkJ8GQwRERHJILsPUWFhofbvnXfewcyZM7Fz507cuHFDb5k9m5YuXbqEGzduIDw8HACQmJiIgoICHDx4ULvO9u3bUVFRoU0LkJiYiN27d6OsrEy7zpYtW9C0aVPJ5jKgsjN3QECA3p+rCA/0QWJcXQZDREREMqkEQRDMrwZ4eHjo9RUSBMGo75DmtfLycllfXlRUhPPnzwMAHnjgAbz//vvo3bs3goODERwcjAULFmDo0KEICwtDZmYmZs6cidu3b+P48ePa4ff9+/fH1atXsXTpUu2w+/bt22uH3avVajRt2hR9+/bFrFmzcOLECYwbNw4ffPCBolFmhYWFCAwMhFqtdqngCKgcfZaVX4zYED8GSQ7G34KIqGrJvX/LDoh27dol+8t79uwpa72dO3eid+/eRq+PHj0aS5YsweDBg3H48GEUFBQgIiICffv2xRtvvKHtFA1UJmacOnUqfvjhB3h4eGDo0KH4+OOP4e/vr13n2LFjSE1NxYEDBxASEoJp06Zh1qxZsrcHcN2AiHmJnAd/CyKiqmfzgEhXTk4OIiMjRWuILl68KDsPkStxxYAoV12Crgu3G4062zO7N2snqhh/CyIix5B7/7YoD1FsbCyuX79u9PrNmzdtnoeILMe8RM6DvwURkXOzKCAS6z8EVPYJqlWrltWFItvQ5CXSxbxEjsHfgojIuSkadq8Zhq5SqTB37lz4+v59MS8vL8f+/fvRtm1bmxaQLMe8RM6DvwURkXNTFBAdPnwYQGUN0fHjx/Wmw/Dy8kKbNm3w4osv2raEZBXmJXIe/C2IiJyXRZ2qx44di48++shlOhfbgit2qiYiInJ3cu/fFmWqXrFihcUFIyIiInI2FgVExcXFWLhwIbZt24Zr166hoqJCb/n//vc/mxSOiIiIqCpYFBCNHz8eu3btwpNPPmnX2e6JiIiIqoJFAdHPP/+MTZs2oWvXrrYuDxE5AKcUISJ3Z1FAVKdOHQQHB9u6LETkAJxShIjIwsSMb7zxBl577TXcucMsu0SuLFddog2GAKBCAF5efwK56hLHFoyIqIpZVEP0z3/+E5mZmahfvz5iYmJQs2ZNveWHDh2ySeGIyL5MTSnCpjMicicWBUSDBw+2cTGIyBE0U4oYTjrLKUWIyN1YlJjRHTExI1VXaw7kGE0pwj5ERFRd2CUx4++//4527drB09NTdHlpaSm+//57PPbYY8pKS0QOwylFiIgUdqpOTEzEjRs3tP8OCAjQS8JYUFCAxx9/3HalI6IqER7og8S4ugyGiMhtKQqIDFvXxFrb2AJHRERErsaiYfemMGs1kf3lqkuQnpnP4fFERDZi0SgzInIcJlIkIrI9xQHRqVOnkJeXB6CyeezMmTMoKioCAOTn59u2dESkRyqRYo/4UPb/ISKyguKAqE+fPnr9hB5++GEAlU1lgiCwyYzIjphIkYjIPhQFRFlZWfYqBxHJwESKRET2oSggio6OVvThU6ZMweuvv46QkBBF7yMiceGBPkhLSTBKpMjaISIi69g1U3VAQACOHDmCRo0a2esrqgwzVZMzyVWXMJEiEZEMdslUrRRzEhHZR3igDwMhIiIbsnkeIiIiIiJXw4CIiIiI3B4DIiIiInJ7DIiIiIjI7dk1IHriiSc4IouIiIicnkUBUUVFheTrOTk52n8vWbKEOYiIiIjI6SkKiAoLC/HYY4/Bz88P9evXx2uvvYby8nLt8uvXryM2NtbmhaSqxZnUiYjI3SjKQzR37lwcPXoU//3vf1FQUIA333wThw4dwvr16+Hl5QWAuYdcHWdSJyIid6Sohui7777DZ599hmHDhmH8+PH4448/cP36dQwaNAilpaUAwMldXZjUTOqsKSIioupOUUB0/fp1vfnMQkJCsHXrVty+fRsDBgzAnTt3bF5Ad+LopipTM6kTERFVZ4oCoqioKJw+fVrvtdq1a2Pz5s0oKSnBkCFDbFo4d7LmQA66LtyOkcv2o+vC7VhzIMf8m2xMM5O6Ls6kTkRE7kBRQNS3b1+sWLHC6HV/f3/8+uuvqFWrls0K5k7s3VQlt+ZJM5O651/NnpxJnYiI3IWiTtULFizAlStXRJfVrl0bW7ZswaFDh2xSMHdiqqnK2mDEXCfpXHUJsvKLERvih/BAHwzvEIUe8aGcSZ2IiNyKooCoTp06qFOnjuTy2rVro2fPnlYXyt1omqp0gyJbNFVJ1Tz1iA9FeKCPZLDEmdSJiMjdKE7MeP/+fbz77rt48MEH4e/vD39/fzz44IN47733UFZWZo8yVnv2aqoyVfPEEWVERER/U1RDVFJSgv/7v/9DRkYGkpKS0KNHDwDA6dOnMWvWLGzcuBGbN29mXyIL2KOpylTNkz2b6YiIiFyNooBo4cKFuHjxIg4fPozWrVvrLTt69CgeeeQRLFy4EPPnz7dlGd2GrZuqNDVPL68/gXJBMKp5skczHRERkStSCQpSSzdt2hRvv/02hg4dKrp87dq1eOWVV/Dnn3/arIDOorCwEIGBgVCr1S43YW2uukS05mnNgRyjYIlZqYmIqDqRe/9WFBDVqlUL586dQ2RkpOjyixcvokmTJrh7967yEjs5Vw6ITJEKloiIiKoDufdvRU1mAQEBuHbtmmRAlJeXh9q1aysrKTkUR5QREREpHGXWu3dvvP3225LLFy5ciN69e1tdKCIiIqKqpKiGaN68eejUqRM6d+6MGTNmoFmzZhAEAadPn8YHH3yAU6dOYd++ffYqKxEREZFdKAqIWrRogS1btuDpp5/GiBEjtDPbC4KAZs2aYfPmzWjZsqVdCkpERERkL4oCIgDo3LkzTp48iSNHjmhHk8XHx6Nt27a2LhsRERFRlVAcEBUWFsLf3x9t27bVC4IqKipQVFRUrUZgERERkXtQ1Kl6w4YNaN++veiw+pKSEnTo0AE//PCDzQpHREREVBUUBURLlizBzJkz4etrnM3Yz88Ps2bNwr/+9S+bFY6I3FeuugTpmfmcX4+IqoSigOjEiRPo1auX5PIePXrg+PHj1paJiNzcmgM56LpwO0Yu24+uC7djzYEcRxeJiKo5RQHRrVu3cP/+fcnlZWVluHXrltWFIiL3lasuwZz1x7Xz7FUIwMvrT7CmiIjsSlFAFBMTgz/++ENy+R9//IHo6GirC0VE7isrv1hv0mEAKBcEZOffcUyBiMgtKAqIUlJS8Morr+Dq1atGy/Ly8vDqq69KTvxKZA32J3EfsSF+8FDpv+apUiEmxLjvIpEz4XXKtSma3PX27dtITExETk4OnnjiCTRt2hQAcObMGXz11VeIjIzEvn37quV8ZtV1cldXsOZAjrYJxUMFpKUkYHiHKEcXi+xozYEcvLz+BMoFAZ4qFd5OacXfnJwar1POyy6z3QOAWq3GnDlzsGbNGm1/oaCgIIwYMQJvvfUW6tSpY13JnZQ7BkS56hJk5RcjNsTPYRPA5qpL0HXhdr0mFE+VCntm9+aktNVcrroE2fl3EBPiy9+anBqvU87NLrPdA0BgYCA+/fRTLF68GPn5+RAEAaGhodppPHTt3bsX7du3h7e3t9KvIQdzlqcdU/1JeKGp3sIDffgbk0vgdap6UNSHSJdKpUJoaCjq1asnGgwBQP/+/XH58mXJz9i9ezcGDRqEiIgIqFQqfPfdd3rLBUHAa6+9hvDwcPj4+CApKQnnzp3TW+fmzZsYNWoUAgICEBQUhKeffhpFRUV66xw7dgzdu3dHrVq1EBkZiUWLFlm20W7CmUb5sD8JETk7XqeqB4sDIjnMtcYVFxejTZs2WLx4sejyRYsW4eOPP8bSpUuxf/9++Pn5ITk5WS9T9qhRo3Dy5Els2bIFP/74I3bv3o2JEydqlxcWFqJv376Ijo7GwYMH8e6772L+/Pn497//bZuNrIacaZRPeKAP0lIS4PlX0K3pT8KnLiJyFrxOVQ+K+xApUbt2bRw9ehSNGjUyXxCVChs2bMDgwYMBVAZTEREReOGFF/Diiy8CqOy/VL9+faxcuRIjRozA6dOn0aJFCxw4cADt27cHAPzyyy8YMGAALl26hIiICCxZsgSvvPIK8vLy4OXlBQCYPXs2vvvuO5w5c0b2trhTHyJnbA9nfxIicna8Tjknufdvu9YQWSMrKwt5eXlISkrSvhYYGIhOnTohIyMDAJCRkYGgoCBtMAQASUlJ8PDwwP79+7Xr9OjRQxsMAUBycjLOnj3LJJISnPFpJzzQB4lxdXmRISKnxeuUa1Pcqbqq5OXlAQDq16+v93r9+vW1y/Ly8lCvXj295TVq1EBwcLDeOrGxsUafoVkmNSqutLQUpaWl2n8XFhZasTWuZ3iHKPSID+XTDhERuQW71hBJdbZ2BWlpaQgMDNT+RUZGOrpIVY5PO0RE5C4c2qnalLCwMAAwyop99epV7bKwsDBcu3ZNb/n9+/dx8+ZNvXXEPkP3O8TMmTMHarVa+3fx4kWLt4WIiIicm10Dotu3b8vqUC0mNjYWYWFh2LZtm/a1wsJC7N+/H4mJiQCAxMREFBQU4ODBg9p1tm/fjoqKCnTq1Em7zu7du1FWVqZdZ8uWLWjatKnJJJLe3t4ICAjQ+yMiIqLqSVEfooceekjWetu3b5e1XlFREc6fP6/9d1ZWFo4cOYLg4GBERUVh+vTpePPNN9GkSRPExsZi7ty5iIiI0I5Ea968Ofr164cJEyZg6dKlKCsrw9SpUzFixAhEREQAAEaOHIkFCxbg6aefxqxZs3DixAl89NFH+OCDD5RsOhEREVVjigKinTt3Ijo6GgMHDkTNmjWt/vI//vgDvXv31v57xowZAIDRo0dj5cqVmDlzJoqLizFx4kQUFBSgW7du+OWXX1CrVi3te7766itMnToVffr0gYeHB4YOHYqPP/5YuzwwMBCbN29Gamoq2rVrh5CQELz22mt6uYqIiIjIvSnKQ/Tuu+9ixYoVuHHjBkaNGoVx48ahVatW9iyf03CnPERERETVhV3yEL300ks4deoUvvvuO9y+fRtdu3ZFx44dsXTpUrcblk5ERETVh1WZqu/cuYO1a9di8eLFOHXqFK5cuVJta09YQ0REROR6qiRT9aFDh7Br1y6cPn0arVq1skm/IiIiIqKqpjggunLlCt5++23Ex8dj2LBhCA4Oxv79+7Fv3z74+DCBHxEREbkeRaPMBgwYgB07dqBv37549913MXDgQNSo4bSzfxARERHJoqgPkYeHB8LDw1GvXj2T03IcOnTIJoVzJuxDRERE5Hrk3r8VVe/MmzfP6oIRETlKrroEWfnFiA3x4xx9RKTHqlFm7oQ1RNbjzYgcac2BHMxZfxwVAuChAtJSEjC8Q5Sji0VEdmaXGiIpu3btQnFxMRITE03OD0buizcjcqRcdYn2+AOACgF4ef0J9IgPZXBORAAUjjJ75513MHfuXO2/BUFAv3790Lt3bzz88MNo3rw5Tp48afNCkmuTuhnlqkscWzByG1n5xdrjT6NcEJCdf8cxBSKXlasuQXpmPq9f1ZCigGjNmjV6U3WsW7cOu3fvxm+//Yb8/Hy0b98eCxYssHkhybXxZkSOFhviBw+DcSCeKhViQnwdUyBySWsO5KDrwu0YuWw/ui7cjjUHchxdJLIhRQFRVlYWWrdurf33Tz/9hGHDhqFr164IDg7Gq6++ioyMDJsXklwbb0bkaOGBPkhLSYDnX6NjPVUqvJ3Sis1lJBtruqs/RX2I7t+/D29vb+2/MzIyMH36dO2/IyIikJ+fb7PCUfWguRm9vP4EygWBNyNyiOEdotAjPhTZ+XcQE+LL448UMVXTzWOpelAUEMXFxWH37t1o1KgRcnJy8Oeff6JHjx7a5ZcuXULdunVtXkhyfbwZkTMID/ThsUcW0dR06wZFrOmuXhQFRKmpqZg6dSp+++037Nu3D4mJiWjRooV2+fbt2/HAAw/YvJBUPfBmRESuijXd1Z+igGjChAnw9PTEDz/8gB49ehglarxy5QrGjRtn0wISERE5A9Z0V29MzCgTEzMSERG5Hrn3b8Wz3RMRERFVN4oCorKyMsycORONGzdGx44dsXz5cr3lV69ehaenp00LSERERGRvigKit956C//5z38wadIk9O3bFzNmzMAzzzyjtw5b4IiIiMjVKOpU/dVXX+Hzzz/Hww8/DAAYM2YM+vfvj7Fjx2pri1QqlamPILILThxLRETWUFRDdPnyZb2pOxo3boydO3ciPT0dTz75JMrLy21eQDKN8+ownT4REVlPUUAUFhaGzMxMvdcaNGiAHTt24MCBAxgzZowty0ZmMBBgOn0iIlfgCg/vigKihx56CKtWrTJ6PSIiAtu3b0dWVpbNCkamMRCoxIljiYicm6s8vCvqQzR37lycOXNGdFmDBg2wa9cubNmyxSYFI9M4r04lptMnInJeUg/vPeJDne5epaiGKDo6GsnJyZLLIyIiMHr0aKsLReZxBvlKnMWciMh5uVItvqIaIo21a9di9erV+PPPPwEA8fHxGDlyJIYNG2bTwpE0zqvzN6bTJyJyTq5Ui69o6o6Kigo8/vjjWLt2LeLj49GsWTMAwOnTp3H+/Hk8+uijWL16dbUceu+sU3fkqksYCBARkdNacyDH6OF9eIeoKvt+ufdvRTVEH330EbZu3YqNGzdqcxFpbNy4EWPHjsVHH32E6dOnW1RoUs4VZ5BnziAiIvfhKrX4imqIWrdujenTp0vOaP/FF1/go48+wrFjx2xWQGfhrDVErmbNgRxtBzsPFZCWklClTwpERORe7DK567lz55CUlCS5PCkpCefOnVPykeRGqluqAFfIq0FERPIoajLz8fFBQUEBoqLEn+gLCwtRq1YtmxSMqp/qlCqANV1ERNWLohqixMRELFmyRHL54sWLkZiYaHWhqHqqLqkCqltNFxERKQyIXnnlFXzxxRd47LHH8Pvvv6OwsBBqtRr79u3Do48+iuXLl+OVV16xV1nJxVWXnEGulFeDiIjkUdRk1qVLF6xZswYTJ07Et99+q7esTp06WL16Nbp27WrTAlL14iqjDUxxpbwaREQkj6JRZhp37tzBr7/+qu1AHR8fj759+8LXt/reEDjKjHQ5Oq8GERHJI/f+rSgg2r59O6ZOnYp9+/YZfaharUaXLl2wdOlSdO/e3fKSOykGRGSISTGJiJyfXYbdf/jhh5gwYYLoBwYGBuKZZ57B+++/r7y0RC4oPNAHiXF1GQwREVUDigKio0ePol+/fpLL+/bti4MHD1pdKCIiIqKqpCggunr1KmrWrCm5vEaNGrh+/brVhSIiqipMsElEgMJRZg0aNMCJEyfQuHFj0eXHjh1DeHi4TQpGRGRvTLBJRBqKaogGDBiAuXPn4u7du0bLSkpKMG/ePKNJX4mqGp/4SQ4m2CQiXYpqiF599VWsX78e8fHxmDp1Kpo2bQoAOHPmDBYvXozy8nImZiSH4hM/yVWdppIhqmq56hJk5RcjNsSv2pwvigKi+vXrIz09HZMnT8acOXOgGbGvUqmQnJyMxYsXo379+nYpKJE5Uk/8PeJDq80JS7bDBJtElqmuD56KAiIAiI6Oxk8//YRbt27h/PnzEAQBTZo0QZ06dexRPiLZ+MRPSmimkjFMsMljhUhadX7wVBwQadSpUwcdOnSwZVmIrMInflKqOkwlQ1SVqvODp6JO1UTOrComj2WH7eqHCTaJ5NM8eOqqLg+eFtcQETkjez7xV9d2cyIiuapzU7NFk7u6I85l5t5y1SXounC7UXPcntm9q8WFgIhICVeay1Hu/Zs1REQyOGO7eXUc9kpEriE80KfaXXcYEFVjvGHajrN12GbzHRGRbbFTdTW15kAOui7cjpHL9qPrwu1YcyDH0UVyaaY6bFd1R2slGZbZCZyITOE14m+sIXJRpmp/qnOeCEcS67DtiJoauc13rEUiIlN4jdDHGiIX9NnuTHQxUftj6oZJ1tEdou2oubDkDHvlPF1E1YO9anB4jTDGgMjJmDv4P9uVibSfzkAwcRBX5zwRzsRRgaecfEsMiolcnz27PvAaYYxNZg6m2/S1+8/rJqsvc9UlWPjzGaPPMGwuqc55IpyJko7Wtu7gbi7fkrN1AiciZezd9YHXCGMMiBxIt/1WU6GjOTbFDv6s/GIIIp/joQLyi+4iV12iXZdTEtif3MDTXu30poa9Migmcm32TvXBa4QxBkQOYhj9iwU6hge/WEQPVP572uojRjfb6pgnwtmYCzwd2cGdQbHzYAoMUqoqanB4jdDHPkQOIhb9GzI8+A37jhh0E2KnOAcxNReWo9vpOU+X4zEFBlmiKuZm1HyPNdeI6jRsnzVEDiIW/asAqP56Terg143oz10rxGvfn9Jb7ujsyaRP6VMeaxKqF6bAIGs4ew1OdRu27/Q1RPPnz4dKpdL7a9asmXb53bt3kZqairp168Lf3x9Dhw7F1atX9T4jJycHAwcOhK+vL+rVq4eXXnoJ9+/fr+pN0SMW/S8cmoC9sx/C6gmdsWd2b8kDKzzQBzk3izF/4ymjZe7eKc7ZKHnKY01C9ePoGkJyfc5ay1sdh+27RA1Ry5YtsXXrVu2/a9T4u9jPP/88Nm3ahLVr1yIwMBBTp05FSkoK9u7dCwAoLy/HwIEDERYWhvT0dOTm5uKpp55CzZo18fbbb1f5tuiSiv51sx/LSbyo4QG4fac4ZyTnKY81CdUTR/JQdeWM8ztayyUCoho1aiAsLMzodbVajS+++AKrVq3CQw89BABYsWIFmjdvjn379qFz587YvHkzTp06ha1bt6J+/fpo27Yt3njjDcyaNQvz58+Hl5dXVW+OHrGOz+aqIaX6H30y8gEMbB1h7yKTBcx1cK+OFxfiSB6qvqpjsO/0TWYAcO7cOURERKBRo0YYNWoUcnIqmxIOHjyIsrIyJCUladdt1qwZoqKikJGRAQDIyMhAQkIC6tevr10nOTkZhYWFOHnypOR3lpaWorCwUO+vKsiphpRKvPhgdJ0qKSPZHpNpuhYlHUmHd4jCntm9zTaFE7mSqur0XZWcvoaoU6dOWLlyJZo2bYrc3FwsWLAA3bt3x4kTJ5CXlwcvLy8EBQXpvad+/frIy8sDAOTl5ekFQ5rlmmVS0tLSsGDBAttujAxyagqc9amTHYItZ/ibegCY2a8p96MTsqQjKVNgUHXk7J2+lXL6gKh///7a/2/dujU6deqE6OhofPPNN/Dxsd/OnzNnDmbMmKH9d2FhISIjI+32fRpyqyGd7UCsbqMNHGF4hygUlJRh4c9nUCEA7/xyBkG+NbkfnQj7ehEZP/xWl2PfJZrMdAUFBSE+Ph7nz59HWFgY7t27h4KCAr11rl69qu1zFBYWZjTqTPNvsX5JGt7e3ggICND7qwpKqiGdZfRBdRxt4Ai56hK887PpeepcUXXKU8JRY+TuqvNoWJcLiIqKipCZmYnw8HC0a9cONWvWxLZt27TLz549i5ycHCQmJgIAEhMTcfz4cVy7dk27zpYtWxAQEIAWLVpUefnlcLU+B7xJ2EZ13I/V7eLJvl7kzqr7w6/TB0Qvvvgidu3ahezsbKSnp2PIkCHw9PTE448/jsDAQDz99NOYMWMGduzYgYMHD2Ls2LFITExE586dAQB9+/ZFixYt8OSTT+Lo0aP49ddf8eqrryI1NRXe3t4O3jppzlL7I4elN4nqVHNgC9XtZlsdL57VsSMpkVzV8aFNl9P3Ibp06RIef/xx3LhxA6GhoejWrRv27duH0NBQAMAHH3wADw8PDB06FKWlpUhOTsann36qfb+npyd+/PFHTJ48GYmJifDz88Po0aPx+uuvO2qTqgXDNmSlnbzZ58iYs3aWt1R1TSXgbP33iKpKdRxqr0slCIJIRhsyVFhYiMDAQKjV6irrT+SspIKZXHWJrJtErroEXRduNzqp9szurX2fO49Yk7sfnZ2c35mIXMuaAzlGD23O/jAr9/7t9DVEpM/RgYK5UTZSWZh1y2yu5sDda49Mjdpw9O+vRHWr8aLqz5XOL7lsvU3VuYaUAZELcYZAQWkziFiZe8SHSla7VtWwZle88DnD769Udb54UvXiiueXOfbapuo01F6X03eqpkrO0kFVScdfqTIDkOyYWhWd9lxx5JOz/P6WcKUBAmRfueoS/HjsCn44etmpjl1XPr+kVMdtsjfWELkIZ+mgqqQZxFSZpWoO7N1pz1UT60nty4PZtxDs71o1XeSe1hzIwexvj0NzGKsALBzqHLUwznJ9taXquE32xoDIRThT7365zSDmyixW7WrvfieuepEQ25cqAM9+fbhaVfFT9aR5ENE99QQAc7497hQPI850fbWV6rhN9sYmMxfhyPwnYvmC5DSDWFpmeyamdNVcP4b7UnPiGtZ0Hb14i7mdXIw75OMSexABgArAKXLYVMf8UtVxm+yNw+5lcpZh91U9JNsWnfKcbRi5Kw4b1dDsyxvFpZi66rDRcpUKEFhjZMRZO9FXx468YsRSMACVgf3eOQ85zW/ibNcqW6iO26SU3Ps3AyKZnCUgqkqunkfG1E3Q1S8SUjcYXa70W9mTswYdrn5+KbXmQA5mrz+unavPmfoQUfXGPERkNVftbwOYvwm6+rBRw75WHqhsftDlKr+VLUgFv47sRG+uVsqVzy9LaPoeHrpwC4IAtIupUy23k1wXAyKS5Kqd8lx1JJlSup3bfb08MOTTdJf7rWzBVPBrSdBhi+Y1ObVSrnp+WSM80AcDW1efc9AenLV51x2wUzVJcrVOeZrOqQcv3JKdy8jVO7RqOre3iazjUr+VrZjLtaK0E70lOaoMj6GjF29htoz8L652fpH9uWKOtOqENURkktgQe2d8gtF9Ileh8k83JhK7CTpr3xJLVWVWaEcfA5rvv1l8z2QNkJI0DpbULBoeQ0MeaID1hy7DsGuXVK2ULX4zR/8WZBvuUrPtzBgQkVm6/W2cMYgwvJCI9TMe/ECE0/Qtsaeq6Bvl6GPAXPALAMcuFyAxri4A+UGH0uY1sWPo20OXRT/bVK2UNXPXOfq3INtxtz5lzohNZiSbs6aCl8pxouu7w1f0ylkVU4RUlaps9jN3DNi7LGLBr9hPv+jns4rzZiltXpNz3AGVgYolTWHmmk+c9Xwky7hqjjQ5XKVrAmuISDapIGLb6atoFOrvsCp7sc6phgyftKpLh1a5NQS2alYxFUhuPHIFC38+AwH2q62QG4RY8mQt1rw2s39TZOUXa5frknPcqQDMf6QFesSHyi4HIK8Gk9O5VC/2ztLvKFLXKGds6mVARLJJ3QBe/e4kAMdV2YsNQTesOTAMdmx98XHEyS232c+WzSpSgeSe89exeEem9jV7NUGKfb8HABi+pgJ8vZRXgOs2rx27VIB3fj5jMnVDWkqC3m+gS/Ow/9r3pzB/4ynR/S513MhpPuF0Ln9zxpurJaqyH6Ctif0GUteogjtleOcX6XPLUZiYUSZ3TMwoRvfmKsaRieVy1SU4mH0LUAGXb5Vg0S9nzWajtkWCRkf140jPzMfIZfuNXl888gEMbB0BwHzyP0tuJIaZvmf2b1pZMyRyTKye0Fnbl8dWxDKNA9C+pmHNb6EkaeIPRy9j2uojZj/T8P2mjhu536+7L6QeBKprokcN9qNyfEAo9Ru8vekU/v1bltH6YoNe7HmcMjEj2cXwDlHw9fKUvAE4shPg7j+v652Us/o3Q+sGQSaDHWs7ITuyc7ZUjd3UVYdRVHofwztEmW7iOnpFG8gouZEYPsVm5ReLBkMegF2aIKWeopuF1cbgxenaC601v4WSDq7tY4JFa61MJco0d9zIrcHU3Rdi07nY+nx09I1XrDy2Ov+cbdvkcnRAKPUbNAurjWUiwZDYNctZOo+zUzUpprkBiLFlPxwlHfHETspFP5+1e7WzIztna26ahr+FgL8710p11Nxz7jrSfvq7Vkdph1xNJ2UAuFl8D2KHw6z+zey278U6SRffK5cc7q6Ukg6uYvmEZvVvZvL9co4buZMca/ZFu+g6Rr+DCpY1HYqxJkeOpZ1qzb3PVuefq+b/cYaO9VK/wYHsW6IDHkZ0iHLazuOsISJJUk9Mhk+vGrbsBKj0qccWQ1YteUK0tnO2tU+lUjV2mm1PjKsr2lF44U9njD5LaQZnqeHvmtq5Z3rEKd4eJQzLY8uO8kr7mInVWgX51vy7OUsFjOsWo10/NsRPVq4sa2swBQBDPk23utbAmpoYJeey7m9qWONrr2zfrpyCw55D9eVem45fUhu95qlSoUNMHdGa02l9GqNNZKBTdh5nQESizF3EDKeNuHOvQq82xpobvSUXKGsvjJZWO1vaOTtXXYLle7LwxZ4sq6u6xZpsdLddtIlL5HM8VNJNXIbBz+MdI/H1gYt6w989VMAnIx6weo4qOceO1O9laUd5se9U2sHVMHjRvH/F3iws252FZb9V/t5pKQlG71XBsqH5uqR+V1vc4C298So5lw2PMQBmmz9tMTjClfP/2Gu0rJLRq+/8YvxwNbN/U7SJrINZ/ZpVDkyA/gOzs3YeZ0BERuRexKSeXq1t07bkAmXNhdHaJ0SlJ/eaAzmY/e1xvZuXNTctOdtu+FuJteNLNXGJ5f5Z9ftFo/UqBKCuv7dVFzfDm+KE7rEY2y1WdlJNSy60po5XWyS6/Py3LL0b+5xvjwMq/dohlaqyD1R6Zr7JQNBUsGgqDYC1N3hLb7xyz2U5yVXtle3blVNwWPNAJnUcmTq/AOi9TyoNRusGQVhzIKdyJBkqj++Z/Zs6/QTbDIjIiDVPTLaofrb0AmXphdEWT4hiJ7fhRSdXXYKDF24ZBUO633kw+xYebiMelJiqNTGssSu+V45cdYnoumJpCkw1ccnN/WPtTUTspvjv37Lw+V+1KnInbFVyobV3c4lYWSsAozt+hQAM/jTdZAd3cw8a2jQA3x436tBtbTOupTdeueeynGPM8H2G5TRXUyV1/tiilsmRLHkgM3UcSZ1fK/Zk4/M9/9N7X4/4UNHf19fLQ/9c/qtP5yNtIpx6vzIgIiPWPDFZG0xpLlqWXqAseeqwxxOi2BxXGw5fNnvRf/brwyi+d19v+PWKPVnaoasqAAuHite4hQf6yOp3ASi7iMpJQGiLm4jUTdEwSLHl72Xv5hK5eZMAGHVw1w3K5AZu2mY6nZuX1G8jFiSYulla8sBhLtjQlMHPy9PkMWbYpKikFlrOus7WhKO0y4Hc656c40jqmNUcT7rv2zO7t+jvW3yv3CWbIRkQkRFrnpgsvVmJXbT2zO6NQxduoUIQ0D4m2NrNkmTrJ0Qlc1wZ0r1A6QY3GgKA2d8eF63BUFrbIfciaqrmwQPAJyMfwIPR1vUbAuQ3+djy9zJ1vNpiGLZUWQHo1dCZGqIPKAvcwgN98PLA5hjbLUbyBi92vvWIDzV7/FjywCEVbIg9NHx3+IreQA0NlQraJhslx7mSdZ2lCceew+jlHEdix+zT3WKM8glp3ic1AbhUzZG5ZmFHYkDkIqo6R4alT0yW3KykLloz+zcVzRRsq32h+zm2fEKU28QkRTMdytzvT4rm9xEA0aY1e9Z2mKp50CSBtJaSJh9b/V5Sx6vcmjY5pMqq28Q55NN0oyfyG8Wl2mZPSx40dG/wmuZaQRAQFewrer59OKKN3Y4fw2BD7Jz/7vAVrJ+SiAPZt/DmptN6768QoC2HkuN8xV+DFuyxTfZg7yZcuceR4TELAJ8b7Evd9xn+vmLn1eAHIrTHubMm0GRA5AIclXjL0icmpTcrqQucbvZjzYXBVMp3JYGS1D6V6lSsJACT08Skofpr7LVhB1vNdCgm32fAz8tT1lBuS0nVPOSqS/BH9k2oVCq0s7KmSEmTj62e6MUu/rpZom1xUxIrq+5rujcPzW84ddVhm4ygE+vEb6gyNYCqylJISJ3zd+5VoENMHZPHsdybeq66RDIxoK1qAG3N3k244YE+mNW/mfZB09xxJPz1K1jyoGvYr1E36Ld1oGcrDIicnKvmyFBys5Jqs5YMkv76t1TzkljQqHvxA2C0T+d8exx+3jWMbuiWBKOmajoMCUJlcOMhVDabeKggWiukS6UCHoyuo/eappyGNxF7dA7V/W0Nb7am+jgB8m6acpp8bE13m9Iz86u8VkFz8ziYfUs7Fxlg/Qg6zfXDXGzuqVLhweg6ks175po5lJ4nUkHNscuV88eZOo7l3pyl0hCM79bIpjWAtmTvEW9rDuRogyEVgJn9moput9TvaUkfsvBAH1nnlDMEqAyInJwr58iQS+wCN7NfU21NkIZUyvdDF26ZDBoNT+7x3WJFR/4YPpHnqkv0bvYVAjB7/XE0C6uN4nvlJk/c4R2i4Oddw2gqBTGCAPxr5AMI9vNGftFdk/NiqQAsTEkw2fyg2VfrpySiTWQdu11oDPcPUPlUP2e9eB8npTdNR/XpcNQw7PBAHwT7224EHWC6+Vazjabyw+z+87q2tkzqN7PkoU3ynP/Z+JzXHMe65NycpR60BrYOc3hthdyktx4AntZJ6GntdxqO4lz0y1k80jbC5PXEcP/Yuq8e4PjpRzQYEDk5V86RoYS5TL+aDMuGF0xPlQoVgiB5EwGMa4OW/ZZlVCWvoXvyH7xgnHpeEIB/LE4HUBmczO7fDM/0FB+u3i5aJFPrXzVAhk/Amk7JYp0Rdf1LZ+JWDdGh3QJw516F3TtoSu1Dc3lmnLmm05adtpWy9fku1XzrAWDDlC5GCVWBvwNRub+ZuekzpIJxsYShUsexGFM3Z03AMat/Myz6WX+SZ0ePgJI6JzVl7hEfij2ze2ubjcVST1hC7sO1PR7CTZ1TznRtYEDk5Bx5ca5qhhc40SDJp6bRvjCVqVns5BagP9WEIc3JL5hpuxIApP18BlBBNIeP1G8HQPL3NNex2LCpDJC+iRrmArFHB02xfaiC8fxZrlbT6ahh2LY+3zWfN3v9cW1TrApA2tAEo1oXQ3J/M1PNX6M+32cyGDc85+X2DTJV42kYcMzq1wytGwbp9Xlz1EOm1M3fsG/krH7NRIe5mzp3ze0XuSMq7fUQPrxDFJqF1caB7FvoEFNHe/w507VBJZi76hMAoLCwEIGBgVCr1QgICKjy789VlzhNjgxHE9sXaw7kGN1ENE9dXdK2S05V8UibCHx35Ire654qFfbM7g0Aku81/Jy9sx8yeaEyLK+537My/5Bxx2JTuVYMtz8y2Bcjl+03WvfVgc0xsHW4TY4jqQ67Yh3edTsqA3/vZ2c6np2hH4OmHLY833PVJTh04RYEAbKnVlHymxkef2JN3nJ+b6nzWHe5ub6Ccsps7nvsJT0zX/ScNHywEEvFAACrJ3TWTqqsS25NsNh2AzB6L2D80Gbt/jFVM2bva4Pc+zcDIpkcHRCRNN3kboZNAOZG2KhEOjHP0WkGW3MgR1tbI1WjBEhfqKyl5MZouK7YhUbDQwU83S0W4wymxTD8PM1+NdVnKlddgq2nruK1708aNQXqXtQcdROSy979GGwdbFVF8KbkN9M9/rLyi0Vv/FLnieGgB7FjXs6N84ejl0X74Il9r5xzSyzbvDX7XGwbpJrIDa9NUkGCqf0CGDdZ6m43AJPvtVVQLrrdADakdkGbyDp2vzbIvX+zyYxcmthNTHPhMzfCRmwkGwC0bhik/X/DppONR65UNpPpsGd1u5JOjIbrGja/6NL0pfr8tyzRUWG6+1XDVLNHXD1/o/1sWO3dIz4UH45oA3VJGQJ9aiIq2NdpkrTZux+DrYOtquqEqqTp0JLmL0D+tphrWtF8jiGp7zV3bpnKNq9knxsGUUadySX6Rs7s39So/5NhgJiVX4wbRaWi+2XF3srz27C8ckdUJsbVtdl5KTWFzeBP07HQwhFs9sCAyA05S7OAtczdxEyNsDFVrW+YTVX3AvJMzzhABdl5PBxNc6HZdCzXKNkdUFnjZW6aCA1TQYLoiB7V332JxAIs3fUcPezZnv0YbB1sVXUnVM1nZuUX6/3b3Hvk9IVSsi3m+sCIHV8egEXnp7ls8+b2ueYae/yyWi+57Kx+zZDQMBDrpyTq1WaL9Y0c3iEKj7SJEA0SDIM1oyY3FbBsd5ZoihI5/b9s/YAn1blfEKwfwWZLDIjcjLMMb7QFczcxsZNQBeCNwS3Rp3l90ZFscrKpPtMjTvJC5YzCA30wsHU43v7ptGhAImeaCKl1db/DsPNuhQAMXpyO2f2bGQWeupxhxJlUQGeLG4Otgy0lM8jb4sFHapoPc01Jcp76lU5JIhVkidV0AMDUPo21U34oISfbvFQ5pYL/CgHa2mXD2mypfSUWJIgFa7q5zDxVKozrFmOUlFKsvFU1aMfUYBFnGlzBgMiNONPwRlsw93Qj1mQkAHjt+5Oo6emB4R2iLM6m6gxPM0poL0giF2rDJ0JTmbZNPT32iA816o8lAHrJNKU4OkmbWEAnCMDuP69b/cBQFUPpDT/PVg8+YteM2d8eh+qv7zfXlGTuPFGyb3LVJYgM9jWqXZH6HAD4eNt5fLLtvMn0GHLLZUhqBJxUTagusWuL3GuK6MhZ4e9cZpoyfWFiqg1dVdVcpRllNvjTdKO+Uc6SRsbD/CpUXUg9jR3MvoX0zHzkqkvs8r256hK7fL7mJub51zwWYk83wztEYf2URL2pLjQXI015wgN9kBhX12R+kupgeIco7J39ECb2iNWe+GL7zHC/wsS6ujRNKoYEiE81YvjZuknaui7cjpHL9qPrwu1YcyBH1vYpZXhc9ogP1Wt30DQnWnvcyjlObfl5Ug8+lmyHVNoKw6YkS79L7r7RPSaGfJqOnJvFso5ZTXnTfj6Dz3ZnyiqTVLmGPtjAbDmVzGNo6bVFE6zp0qTk0PT7UXrMaa6BtursL3W9bxNZBwtteC7YGmuI3IhUE5JmqgA5T5JST+5Sr8t5UjVXG2BquZynm+J75UY1F0ryqSidy8ncqKyqZrj/Xh7QAmO7xprcZ4Y1Z2IJ/AxJ5SXyUEFv/iRDjkjSJnZcRgb7mu0YbilbP4Wb+jxbNtEpmZfP0u8yt2/kHhPm+su98/MZPNImwqpyvZjcVHF2bCmWNsnKbeay9TEnp9ZWzvXeWTpQi2FA5ITs1VxgeCJ5wPhpz9TNR+pgN5VfwtyFzNwJJOcEs1W1vDXt6UpGZVUlU5PYmtsupc2C4YE+WDg0QX9uM528JrpB6cQesRiYEG4UaMm5mSs9P8SGTosdl+unJNq1g6mtm1mlPs+WTXRS1wxT93tLvsvUvjE3Y73h7zuwdTje2nTaqIwVgnEGdaXlMvcbhgf6YFa/ZkYjUcXM6t/M4uNBblBhq2NO7oOt3IcZZ+1ywIDIyZhL625tkKSbLdS7hgfmfq8/q7rU053Uwd4srLbkSWDu5mbuBLJVbYGSQMeaCTTljsqqqv4xSvefLcqlO0mp7iS0XRfqJ7j84rdsjO1qnAPJ1nMeSdUEiR2Xd+5VODwrvDW/ge57lWyHue80PCfe+/Ws3ogrXbbeZ+ZmrJc6Hmb3Nw5K7NlXRXcfJjQMFF1Hk2xRBWBEx0g80iZCdD25qiqosMUULo64/lmCAZETkUzrXlKmN3TTmloH3QuI2PQVUhcNqYP9QPYtyZPA3M3N3Alky6p/a/KpmKNkVFZVjvJTsv9sWa7wQB883Obvz1cye7yp4PXoxVtGk+2aC/CU1gQlxtUVPU6qKgmipb+B2Hv3zO5t9niX+52acyJXXYINh8WDIQ9YNqGwqXVNzVgPGM9TqHlIS2gYiKm94/DpzkxUCPbtqyI2VYjY8bV+SiI2Hc/Fst1ZWP37Raw5cNGq86yqAgtrp3CxR2d/e2FA5ESkDryFP5/RG8psaZ8KsdmOVfg7gZqHSjpnh9TB3iHGeAJT3ZNgfLfYyuRgML4omTuBbD06x15PVHJHZVX1KD+5+89w1voKAZj914z1gPTknHL5eXnKDrwB8eB1zYGcyhFgBuuaCpClzidzNUGGx0lVXMStOTak3rtndm8kxtXVdnIV6/en9DtNBf8VUD6hsLl1pWasH9stRvL3Hbw4HQLE5zGzVK66BH9k34RKpUK76L+nPhEL0hf9clZ0Utl6AbXw+W/mcwPJ8dmuTO3oTXsHFrbqcuAKo5wZEDkRqZPfVrUkUiNGdIcZS5E62NtE1hF9ffef1/UudBO7NcLYbjFG7fHmbkyObsKQw7CcGrpzBaVn5ktmlLVXDg65++/ghVtGgYYgAJ9sO4evD1y0KhDQ3PAMgyFzv6NuUKLNOG4m4DR0/JJacn2pmiBDVXURl7q5bzqWa3beOVNP8Ibnoe5vaEkNrLngX8mEwnL2rbljWDTZH/7+vEW/nLV6TizD6X9UABYOrewXJxWkt24QZFRDp6Sm1JTPdmfqNQfau2neVl0OnGkSVykMiJyI2IEnlU3ZkloScyMgBJi+2Esd7IavA/rz41QIwOd7/oeEhgFoHxOs99nmmrKceUSCLqlRWbv/vK7dF2IZZe2dg0PO/pOaznDV7xe1/29JICDWt8pD9XezilxStRKmshDnqkvwzi/GHVtn9m8qWRMk97vLBQGHLtzCwNa2Oxalzs03N53G2z+dNhmMSj3BmwtOLKmBNRf8m0pdIdYcJmddU0kL01ISTM5VaO0N17D2FKg8f03lGvJAZYZ2w+NL6oH3RnEpctUlsvsrLhTpsG3vpnlbdDmoqqzY1mBA5GTEDjzDbMqW1pIYXszELsDmLiBSB7vu62JPQhUCMG31EdGTU86NSTCb2s/xDLdDTkbZqqjxMrd/28cEGwVqYsPnld5cROcvEiqbVZSQyiK9YUoXycBKKohq3SDI6u8GgKmrDqOo9L7Nmil2/3ldsobWXDAq9QQvFZwczL6FYH/lna81TKVkyFWXyG6mvVFUanIqDt3aDaljuEd8qOgEzaa+WwmpPkxSwRBQeW4P+TRd9Dqnu78159jUVYdlBy1Z+cWi2+oB2L1pXuo3kFsT5Qo1/gyInJDhgWdNLYnhwWoqMzNgm4jdVE2U0pPT1JOOM49WyFWX4MdjV4yr8wX9jLLOUO7wwMrh8pq0+h4AZg0wzhuk9Niw1ROhqeZaS75byXGj+W7DGgFztalKmJuEGDAdjEplcBYLTsTyjsnpfG3I1IORbs4psZue0cCOvwIaqeZ2U4GCufkKLZ3HTHN8SOXWMkfqOqc7ClPzO2jWn/PtcbPHk9S1VTOEP1ddgrd+PFVlTVNKa6KcvcafAZGLkFOLYkhODhqlEbucm4mpp11APK+MWIdFU086Si6aVc3URKaajLLOdiEQrZkUmXBSSblt+USo9EIq9d2WHDfDO0TB18sT01Yf0XvdVjcZOdmNlcwUr5kfy6hGGOJ5xzSdr21hzYEcbTCkAjCzX1O9/Ss6sEMAFo98QC9Fg9zaDanaw49HPIB2McrPM71gTQXM7t/MOLcW5AVIpkZSBvuLz/6+Yk82Xh7YXPIzxWr5Z/Vvhmd6xJmdQNlw0mprWVoTZcm9rKowIKqmlGZ3lXOjUZKcy9QFwzCvjFiHxeEdokxONWLJiWhNRmw5y3W3XyoYcrYqYl2aC5VmVFKP+FCLag90KTm+zO1fpRdSOX3b5NbytI8Jtlv/B6kM8pr5wjR9CQ1nm5dzjuvugxvFpZi66rDed9uy5kAs2Fn0y1k80vbv7NBSAzuOXlRjYOsIxR2PpQLfhyVy/Jg6xozKLwBpP53BnP7NkD7nIe0UR7p96zQ8/qrlkts/UKrm6fM9/zMafGJI7JwyN4dat8YhZietVsoVOkkrxYComlI6i7S5A1hugHXwgnFeIuDvpGSG0zRIdVjsER8q2ewBC/o+WZIRW3dGb7k1C1JP+3MHNscAM6OFDDmiSdBUYlBLny7lHF/2Gtpurm+b3Au4LWu7xPrHiH225qZ37HKBaB4yuee45js+22U8l5ctO7XKKY+5QMCSZla5Qbe5Y0zq3H3n5zN4pG0E2sXUwbNfHzZarvksALKPj/BAH0zoHot/GySdrBDkZdM2PKdM1TKqAPx2Pt8mqVt0uUInaaUYEFVTtj5Y5VzsNLU9hjRJycSmaZDqsJidfweJcXVFbxTtok3nPjJkSUZs3Rm9VX99jubrTF1QpPa70mDIEQnMJBOD3inTjnS0R1mUJly0lLXnhKVZzHWDH6nf1dRnj/p8n+ixq3SmeFOj7sSCb6UBuZzymAsEpM55pQGC2Pabe6CLDfET7aBdgcqyCRBEg46PRzygrZFScnyM7RaLz2XOSG+OVN8iDwBdm4Tgt3P5eq+bexCQMy+jK3SSVooBUTVl64PV3MVOqqlMk+xRrAOsqclANZ8rdaNQsm2WZMQWoJOfSeQzTV1Qnu4Wiy/+utBZst8dlcDMZGJQ2KcsliRctJQtzgklzXZiGYx1U2gY7kuxzzZ17CoJHkyNuhML0gAoDsjl7l9zgYBYU6e1fV/kPNCFB/pUTvnxk/SUH2LXwHYxf1/blBwflhyPUkGqWN+i8d0aYWDrMAxenC76WccuF4j2HRPri6QCMKF7LMZ2059ux9k7SSvFgKgas8UTrYa5k1fqgqv79CRmQvdYLNPJ3qqZDFSsyt/SbbMkI7Y5Yk9yhqNnJvaIFZ2vS4pm35tK4AhYnzlailQHVal+XLrTc1jCVMJFQPqCbQ2p48bWzZNiQe07P5+BYcIBSxMhHrtUoE0u+eGINvAw01lfSa4izW9iSRAs57wUu5bM7K/fR0rzZ6uaUqkcQIYdjZ/pEQfo/FaG1zmxPHGGfbuUkOoPJHYsmtsXYp+Vnpkv2Z9z0c9n8UibCL3vkOqLJAD4929Z+HxPlkVpU6Q420hhlSCVlY30FBYWIjAwEGq1GgEBAY4ujl3I7TQtdvL6eXmKDuGXyhJr+F0jOkSha+O6dhuBteZAjlEwZ9iHyNSM3oadXA3fn6su0euwa277xcqnuz/EOmjO7N/UZnPamSqH4Y3KcPg9YJvvT8/Mx8hl+yWXK9l/1jDXf0ys8625i7jUthk2ycjZxs92Z4rWWig9HsTOgchgX5O/ga7VEzrbNEDVXEuOXSoQbZK19pwyZDiAA/h7xJhYSg+poE5bbom+XdYw1YfPkn0h9j5drw5srpcJ3dw5Kfd75ajKbgFy79+sISIA8vrZaG4Cmoui4QE95IEG+O7wFbPVv2LftebARUzr09huNz+lGbF3/3ldspOr2PutGXEhJ4HjzH76gYm9mtGkht9rchRp2OL7zdXMVcWIlaMXb1U22Un0HzO8UMu9iEvVyMzs39Rojitz25fQINDotXJBwMKflDVlStVGyKkdtUdnWU05pfpI2XoUk1gSR6n9Z6rWw1y5raktkboGW7ovNLVxhuevhmEmdDm15bY4L511XjMGRARA+XxIPeJDjQ7o7w5fEe08reS77HkymKva1V1uaroAMdZ02BXtwyToJ3Csyn1muJ+Gd4iCn3cNmw/ZNmw6MWTvEStiNQaAfv8xTROSr5cnooJ9JWdXN+x4KtXEPLxDFB5pE6GoGVvqJmVJvyvD31Z7wzQxZFuTT8iapiEppuZwMzdxtC2+y/B75R7PSs5Huc1Cpj7TmuuL5lq2Yk82Pt/zP6PvMAxGTJ2TSr7XFGcdss+AqBqSSnRoitL5kD56vK3oAX3nXoXZanVrTu6qanNW+j3WdNiV2h+GzYeOHOIqNbLPVLI3OftQN/Dcc/46luzMtLgzuhJy8mVpVAiV086IDQAwnF1dt8bIVFCttCO3uaAFsPx4kEo8qcteowxNzeGmpNbZmu/SMDVCz/A4lnsNU9IsZOozrbm+AJXH0MsDm2NstxhsOpaLNzed1luuG4wYzmaw6VieNpAy971yr5vOOmSfAVE1YyrRoSHDg1fJfEgQLL9BW3pyV1Wbs6XfY+mICzn7w9oLorXEvn/wAxGSyd6U7MPwQB/s/vPvYEgsw7GtSdUWGKZY0CUVi5hqtjIX/Mi9gZgLWqw9HsQST2oY1pjZsmnDVI2EklpnS75L9VeEK0B6/5nK9m/ufFTaLGTuM5V0wDa1Dwa2DsfbP502ee3WPW7bRNbB2G4xotc13e9XkgXe0dczKexULZMzd6rW7diseVrV5aEC9s5+CADMHrxinaalOvOJ9bNRchMz1XFRbF1bdrA09T1d0rYbdWiuis69cvaH3H1mr5o0zfdLzYO3Z3ZvAFD0Wx29eAuDP01X3NlYt0xytlV3PbEyegDYkNoFZ/Jum2wy0AQOUgGE3M7HSgNvsXPAA8Anf017YZNOrhJ9TQzZo4O1WM2Fvb5Ld0i/qc7T5o5jU+ejVAdlc9sj9xw3HNU6u38zPNMzztzmG71XM/1HQoNARdcLw+8HjAeCyOn0XRVD9tmpWsTixYvx7rvvIi8vD23atMEnn3yCjh07OrpYVjE1f41GhQC99mPDUUym+kIA0nl1rM1BoaTpoKranJfvyaqSnDhi5OwPOevYsyZN8/2msj6LJbCT2odS/Xjk7nO52yq2ntSEsW0i66BHfCgOXbiFqasOG13kNTUW1kyObEmnUsOnas2NbGBr6bQWSoj1NREbcWmvDtZyai5s9V2Gta9i5OYusnW/QqnPNAzoDadJSfv5DKBCZeoAGXRr/TQd9KXyDYmVxfD7DZULAg5duIWBreX3aXM0twmI1qxZgxkzZmDp0qXo1KkTPvzwQyQnJ+Ps2bOoV6+eo4tnEXPz12ioAL3OdGLrlwuC9ildLDmbVF6dqjqgq6LNOVddgi/2ZBm97gE4vG1bLrk3WmtrkMz9HnJ+K1P9eOT8tkq2VSzXzoYpXSTnaqu8QfugqPS+aNCkYWm1v6UB/vAOUSi4U4aFf404fOfnMwjyqWnTgFfT18TUiEt7nPOWNKPYs0+htdccWzYLGQb0T3eLFb2Ov/PzGaPcQobEzjtB579S+YZ0yZmQGACmrjqMotL7TjPxtjluExC9//77mDBhAsaOHQsAWLp0KTZt2oTly5dj9uzZDi6dZeQclCoVMKGbcap8MYYja3RrkQQAX/yWjbFdY60qs6Wqos1Zan+O7yE/uaKjyZ1ixdoaJHO/h5zfSmp/a7Kbm9vncoMKsfUqBGDw4nTJ/nUaStM1yD1OLL3ZaqbgMNVvyRZ0H3SqMhuxrSebtoYtrjm22HdiAb3Yg5tmmbmgWs59w9xxZW5CYg0BzjGcXi63CIju3buHgwcPYs6cOdrXPDw8kJSUhIyMDNH3lJaWorS0VPvvwsJCu5dTKXOjJp59qDEe71R5gTBMla9SASqhMs+NZuJVXVK1SI4cFmnvC7NUpmZHBYGWkDvFipKmGimmfg85v5VU9uANU7qITvWidFtNrQfIv1ibqwW1pJbU0puts6asqOrvqqo8Nra45li776QC+pEdI7Hq94t6r8sJquVm5jd1XEkdv2Id/x1931DCw9EFqAr5+fkoLy9H/fr19V6vX78+8vLyRN+TlpaGwMBA7V9kZGRVFFURzUEp9iN6qlR4vFOU9mRMS0monCn+r2ULUxKwd85DWD2hMzakdoGHSv/9Hqq/O8rpfqajm47CA32QGFfXrlX2uvvJcBoRZye2DeamWNGdFsSS75P6Pcz9VqL7e2iCrGBI6v1iQYX2PDE8oGHdtltreIco7JndG6sndMae2b1l1W5obma6nOG8rGq2Po5Nsec1Rw6p33xanyaYM6CZdpmSiXB1zxuR00L7eaaOK7HjVzNaUcnnOBO3GGV25coVNGjQAOnp6UhMTNS+PnPmTOzatQv79xuPBBCrIYqMjHTaUWa6HSGlRnyZ6tEvltYfgFWjyFxVVY18sCepbaiq0XpKWLu/5b7/6MVbRqMwHb3tljA3DY07cMbj2J5M/eaWnj+Go+3k3EOsLaujyB1l5hYB0b179+Dr64t169Zh8ODB2tdHjx6NgoICfP/992Y/w5mH3WvY48ZSHYID0ueMF6yqUl22nedl9fkt5aqK39xW3+FsxycDIgOdOnVCx44d8cknnwAAKioqEBUVhalTp8rqVO0KARGRXM52wapK7rzt1Q1/S5KDeYgMzJgxA6NHj0b79u3RsWNHfPjhhyguLtaOOiNyJ86W/6MqufO2Vzf8LcmW3CYgGj58OK5fv47XXnsNeXl5aNu2LX755RejjtZERETkftymycxabDIjIiJyPXLv324x7J6IiIjIFAZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQERERERujwERERERuT23mbrDWpqE3oWFhQ4uCREREcmluW+bm5iDAZFMt2/fBgBERkY6uCRERESk1O3btxEYGCi5nHOZyVRRUYErV66gdu3aUKlUji5OlSssLERkZCQuXrzIudyswP1oPe5D2+B+tA3uR9uw534UBAG3b99GREQEPDykewqxhkgmDw8PNGzY0NHFcLiAgACe9DbA/Wg97kPb4H60De5H27DXfjRVM6TBTtVERETk9hgQERERkdtjQESyeHt7Y968efD29nZ0UVwa96P1uA9tg/vRNrgfbcMZ9iM7VRMREZHbYw0RERERuT0GREREROT2GBARERGR22NARERERG6PARFp7d69G4MGDUJERARUKhW+++47veWCIOC1115DeHg4fHx8kJSUhHPnzjmmsE7M3H4cM2YMVCqV3l+/fv0cU1gnlpaWhg4dOqB27dqoV68eBg8ejLNnz+qtc/fuXaSmpqJu3brw9/fH0KFDcfXqVQeV2DnJ2Y+9evUyOiYnTZrkoBI7pyVLlqB169baxIGJiYn4+eeftct5LJpnbh86+jhkQERaxcXFaNOmDRYvXiy6fNGiRfj444+xdOlS7N+/H35+fkhOTsbdu3eruKTOzdx+BIB+/fohNzdX+7d69eoqLKFr2LVrF1JTU7Fv3z5s2bIFZWVl6Nu3L4qLi7XrPP/88/jhhx+wdu1a7Nq1C1euXEFKSooDS+185OxHAJgwYYLeMblo0SIHldg5NWzYEAsXLsTBgwfxxx9/4KGHHsI//vEPnDx5EgCPRTnM7UPAwcehQCQCgLBhwwbtvysqKoSwsDDh3Xff1b5WUFAgeHt7C6tXr3ZACV2D4X4UBEEYPXq08I9//MMh5XFl165dEwAIu3btEgSh8virWbOmsHbtWu06p0+fFgAIGRkZjiqm0zPcj4IgCD179hSee+45xxXKRdWpU0f4/PPPeSxaQbMPBcHxxyFriEiWrKws5OXlISkpSftaYGAgOnXqhIyMDAeWzDXt3LkT9erVQ9OmTTF58mTcuHHD0UVyemq1GgAQHBwMADh48CDKysr0jslmzZohKiqKx6QJhvtR46uvvkJISAhatWqFOXPm4M6dO44onksoLy/H119/jeLiYiQmJvJYtIDhPtRw5HHIyV1Jlry8PABA/fr19V6vX7++dhnJ069fP6SkpCA2NhaZmZl4+eWX0b9/f2RkZMDT09PRxXNKFRUVmD59Orp27YpWrVoBqDwmvby8EBQUpLcuj0lpYvsRAEaOHIno6GhERETg2LFjmDVrFs6ePYv169c7sLTO5/jx40hMTMTdu3fh7++PDRs2oEWLFjhy5AiPRZmk9iHg+OOQARFRFRsxYoT2/xMSEtC6dWvExcVh586d6NOnjwNL5rxSU1Nx4sQJ7Nmzx9FFcWlS+3HixIna/09ISEB4eDj69OmDzMxMxMXFVXUxnVbTpk1x5MgRqNVqrFu3DqNHj8auXbscXSyXIrUPW7Ro4fDjkE1mJEtYWBgAGI2auHr1qnYZWaZRo0YICQnB+fPnHV0UpzR16lT8+OOP2LFjBxo2bKh9PSwsDPfu3UNBQYHe+jwmxUntRzGdOnUCAB6TBry8vNC4cWO0a9cOaWlpaNOmDT766CMeiwpI7UMxVX0cMiAiWWJjYxEWFoZt27ZpXyssLMT+/fv12n9JuUuXLuHGjRsIDw93dFGciiAImDp1KjZs2IDt27cjNjZWb3m7du1Qs2ZNvWPy7NmzyMnJ4TGpw9x+FHPkyBEA4DFpRkVFBUpLS3ksWkGzD8VU9XHIJjPSKioq0ovEs7KycOTIEQQHByMqKgrTp0/Hm2++iSZNmiA2NhZz585FREQEBg8e7LhCOyFT+zE4OBgLFizA0KFDERYWhszMTMycORONGzdGcnKyA0vtfFJTU7Fq1Sp8//33qF27trYvRmBgIHx8fBAYGIinn34aM2bMQHBwMAICAjBt2jQkJiaic+fODi698zC3HzMzM7Fq1SoMGDAAdevWxbFjx/D888+jR48eaN26tYNL7zzmzJmD/v37IyoqCrdv38aqVauwc+dO/PrrrzwWZTK1D53iOHTY+DZyOjt27BAAGP2NHj1aEITKofdz584V6tevL3h7ewt9+vQRzp4969hCOyFT+/HOnTtC3759hdDQUKFmzZpCdHS0MGHCBCEvL8/RxXY6YvsQgLBixQrtOiUlJcKUKVOEOnXqCL6+vsKQIUOE3NxcxxXaCZnbjzk5OUKPHj2E4OBgwdvbW2jcuLHw0ksvCWq12rEFdzLjxo0ToqOjBS8vLyE0NFTo06ePsHnzZu1yHovmmdqHznAcqgRBEKom9CIiIiJyTuxDRERERG6PARERERG5PQZERERE5PYYEBEREZHbY0BEREREbo8BEREREbk9BkRERETk9hgQERERkdtjQEREsuTl5WHatGlo1KgRvL29ERkZiUGDBunN35Seno4BAwagTp06qFWrFhISEvD++++jvLxcu052djaefvppxMbGwsfHB3FxcZg3bx7u3bun933Lli1DmzZt4O/vj6CgIDzwwANIS0vTLp8/fz5UKhX69etnVNZ3330XKpUKvXr1krVtms9SqVSoUaMGYmJi8Pzzz6OoqEjhXiIiV8W5zIjIrOzsbHTt2hVBQUF49913kZCQgLKyMvz6669ITU3FmTNnsGHDBjz22GMYO3YsduzYgaCgIGzduhUzZ85ERkYGvvnmG6hUKpw5cwYVFRX47LPP0LhxY5w4cQITJkxAcXEx3nvvPQDA8uXLMX36dHz88cfo2bMnSktLcezYMZw4cUKvXOHh4dixYwcuXbqkN4P78uXLERUVpWgbW7Zsia1bt+L+/fvYu3cvxo0bhzt37uCzzz4zWvfevXvw8vKyYE/ajzOWicilVNkkIUTksvr37y80aNBAKCoqMlp269YtoaioSKhbt66QkpJitHzjxo0CAOHrr7+W/PxFixYJsbGx2n//4x//EMaMGWOyTPPmzRPatGkjPPzww8Kbb76pfX3v3r1CSEiIMHnyZKFnz54ytu7vz9I1YcIEISwsTG/5smXLhJiYGEGlUgmCULntTz/9tBASEiLUrl1b6N27t3DkyBHtZxw5ckTo1auX4O/vL9SuXVt48MEHhQMHDgiCIAjZ2dnCww8/LAQFBQm+vr5CixYthE2bNgmCIAgrVqwQAgMD9cqzYcMGQfeSbWmZiEgcm8yIyKSbN2/il19+QWpqKvz8/IyWBwUFYfPmzbhx4wZefPFFo+WDBg1CfHw8Vq9eLfkdarUawcHB2n+HhYVh3759uHDhgtnyjRs3DitXrtT+e/ny5Rg1apTVtSU+Pj56zXjnz5/Ht99+i/Xr1+PIkSMAgEcffRTXrl3Dzz//jIMHD+LBBx9Enz59cPPmTQDAqFGj0LBhQxw4cAAHDx7E7NmzUbNmTQCVs9CXlpZi9+7dOH78ON555x34+/srKqMlZSIicWwyIyKTzp8/D0EQ0KxZM8l1/vzzTwBA8+bNRZc3a9ZMu47Y53/yySfa5jIAmDdvHlJSUhATE4P4+HgkJiZiwIABGDZsGDw89J/jHn74YUyaNAm7d+9Gu3bt8M0332DPnj1Yvny50k3VOnjwIFatWoWHHnpI+9q9e/fwn//8B6GhoQCAPXv24Pfff8e1a9fg7e0NAHjvvffw3XffYd26dZg4cSJycnLw0ksvafddkyZNtJ+Xk5ODoUOHIiEhAQDQqFEjxeW0pExEJI4BERGZJAiCXdYFgMuXL6Nfv3549NFHMWHCBO3r4eHhyMjIwIkTJ7B7926kp6dj9OjR+Pzzz/HLL7/oBUU1a9bEE088gRUrVuB///sf4uPj0bp1a0XlAIDjx4/D398f5eXluHfvHgYOHIh//etf2uXR0dHawAMAjh49iqKiItStW1fvc0pKSpCZmQkAmDFjBsaPH4///ve/SEpKwqOPPoq4uDgAwLPPPovJkydj8+bNSEpKwtChQxWX25IyEZE4BkREZFKTJk20naGlxMfHAwBOnz6NLl26GC0/ffo0WrRooffalStX0Lt3b3Tp0gX//ve/RT+3VatWaNWqFaZMmYJJkyahe/fu2LVrF3r37q233rhx49CpUyecOHEC48aNU7qJAICmTZti48aNqFGjBiIiIoya3AybC4uKihAeHo6dO3cafVZQUBCAytFrI0eOxKZNm/Dzzz9j3rx5+PrrrzFkyBCMHz8eycnJ2LRpEzZv3oy0tDT885//xLRp0+Dh4WEUXJaVlRl9jyVlIiJx7ENERCYFBwcjOTkZixcvRnFxsdHygoIC9O3bF8HBwfjnP/9ptHzjxo04d+4cHn/8ce1rly9fRq9evdCuXTusWLHCqBlMjCagEitDy5Yt0bJlS5w4cQIjR45UsnlaXl5eaNy4MWJiYmT1P3rwwQeRl5eHGjVqoHHjxnp/ISEh2vXi4+Px/PPPY/PmzUhJScGKFSu0yyIjIzFp0iSsX78eL7zwApYtWwYACA0Nxe3bt/W2VdNHyBZlIiJjDIiIyKzFixejvLwcHTt2xLfffotz587h9OnT+Pjjj5GYmAg/Pz989tln+P777zFx4kQcO3YM2dnZ+OKLLzBmzBgMGzYMjz32GIC/g6GoqCi89957uH79OvLy8pCXl6f9vsmTJ+ONN97A3r17ceHCBezbtw9PPfUUQkNDkZiYKFrG7du3Izc3t8pqQpKSkpCYmIjBgwdj8+bNyM7ORnp6Ol555RX88ccfKCkpwdSpU7Fz505cuHABe/fuxYEDB7T9rKZPn45ff/0VWVlZOHToEHbs2KFd1qlTJ/j6+uLll19GZmYmVq1apddx3NIyEZE0NpkRkVmNGjXCoUOH8NZbb+GFF15Abm4uQkND0a5dOyxZsgQAMGzYMOzYsQNvvfUWunfvjrt376JJkyZ45ZVXMH36dKhUKgDAli1bcP78eZw/f14vdxDwdx+kpKQkLF++HEuWLMGNGzcQEhKCxMREbNu2zah/jIbYCDh7UqlU+Omnn/DKK69g7NixuH79OsLCwtCjRw/Ur18fnp6euHHjBp566ilcvXoVISEhSElJwYIFCwAA5eXlSE1NxaVLlxAQEIB+/frhgw8+AFBZK/fll1/ipZdewrJly9CnTx/Mnz/fbKdoc2UiImkqQWkvSCIiIqJqhk1mRERE5PYYEBFRtefv7y/599tvvzm6eETkBNhkRkTV3vnz5yWXNWjQAD4+PlVYGiJyRgyIiIiIyO2xyYyIiIjcHgMiIiIicnsMiIiIiMjtMSAiIiIit8eAiIiIiNweAyIiIiJyewyIiIiIyO0xICIiIiK39/8BsD/kfBQ/TBAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0CklEQVR4nO3dd3gU1d4H8O8mkJCEkEICBAxJCIQACRFpN6AURSAgiqCCWOhKE9GrCHoVvJYEsXt5kYsSvSpFERBFBZEmTelFihATCBBKKBtSCJDM+wfuumVmd2Z3dmc2+X6eJ88Du7M7Z2bPnPnNqQZBEAQQERER6ZCf1gkgIiIiksJAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREusVAhYjcNn36dBgMBlnbGgwGTJ8+3aPp6datG7p166bb7yMi+RioEFUhn3zyCQwGg/mvRo0aaNSoEYYNG4aTJ09qnTzdiY+Ptzpf9erVw2233YalS5eq8v2lpaWYPn061q1bp8r3EVVHDFSIqqB///vf+Oyzz/Dhhx8iIyMDn3/+Obp27YorV654ZH//+te/UFZW5pHv9rSbb74Zn332GT777DM888wzOHXqFAYMGIAPP/zQ7e8uLS3Fyy+/zECFyA01tE4AEakvIyMD7dq1AwCMGjUKUVFRmDFjBpYvX44HHnhA9f3VqFEDNWr4ZnHSqFEjPPzww+b/P/roo2jatCneeecdjBkzRsOUERHAGhWiauG2224DAOTk5Fi9fujQIdx3332IjIxErVq10K5dOyxfvtxqm2vXruHll19Gs2bNUKtWLdStWxe33norfvrpJ/M2Yn1UysvL8dRTTyE6OhqhoaG4++67ceLECbu0DRs2DPHx8Xavi31ndnY2br/9dtSrVw+BgYFo2bIlZs+erehcONOgQQO0aNECubm5Drc7e/YsRo4cifr166NWrVpIS0vDp59+an4/Ly8P0dHRAICXX37Z3Lzk6f45RFWNbz4CEZEieXl5AICIiAjza7///js6d+6MRo0aYcqUKQgJCcGXX36J/v374+uvv8a9994L4EbAkJmZiVGjRqFDhw4oKirC9u3bsXPnTtx5552S+xw1ahQ+//xzDBkyBJ06dcKaNWvQt29ft45j9uzZaNWqFe6++27UqFED3377LcaNG4fKykqMHz/ere82uXbtGvLz81G3bl3JbcrKytCtWzccPXoUEyZMQEJCAr766isMGzYMly5dwpNPPono6GjMnj0bY8eOxb333osBAwYAAFq3bq1KOomqDYGIqozs7GwBgLB69Wrh3LlzQn5+vrB48WIhOjpaCAwMFPLz883b3nHHHUJqaqpw5coV82uVlZVCp06dhGbNmplfS0tLE/r27etwv9OmTRMsi5Pdu3cLAIRx48ZZbTdkyBABgDBt2jTza0OHDhXi4uKcfqcgCEJpaanddr169RKaNGli9VrXrl2Frl27OkyzIAhCXFyc0LNnT+HcuXPCuXPnhD179giDBw8WAAhPPPGE5Pe9++67AgDh888/N7929epVIT09Xahdu7ZQVFQkCIIgnDt3zu54iUgZNv0QVUE9evRAdHQ0YmNjcd999yEkJATLly/HTTfdBAC4cOEC1qxZgwceeACXL19GYWEhCgsLcf78efTq1QtHjhwxjxIKDw/H77//jiNHjsje//fffw8AmDhxotXrkyZNcuu4goKCzP82Go0oLCxE165d8eeff8JoNLr0natWrUJ0dDSio6ORlpaGr776Co888ghmzJgh+Znvv/8eDRo0wIMPPmh+rWbNmpg4cSKKi4uxfv16l9JCRPbY9ENUBc2aNQtJSUkwGo2YN28eNmzYgMDAQPP7R48ehSAIePHFF/Hiiy+KfsfZs2fRqFEj/Pvf/8Y999yDpKQkpKSkoHfv3njkkUccNmEcO3YMfn5+SExMtHq9efPmbh3Xpk2bMG3aNGzZsgWlpaVW7xmNRoSFhSn+zo4dO+LVV1+FwWBAcHAwWrRogfDwcIefOXbsGJo1awY/P+tnvRYtWpjfJyJ1MFAhqoI6dOhgHvXTv39/3HrrrRgyZAgOHz6M2rVro7KyEgDwzDPPoFevXqLf0bRpUwBAly5dkJOTg2+++QarVq3CRx99hHfeeQcffvghRo0a5XZapSaKq6iosPp/Tk4O7rjjDiQnJ+Ptt99GbGwsAgIC8P333+Odd94xH5NSUVFR6NGjh0ufJSLPY6BCVMX5+/sjMzMT3bt3x3/+8x9MmTIFTZo0AXCjuULOTToyMhLDhw/H8OHDUVxcjC5dumD69OmSgUpcXBwqKyuRk5NjVYty+PBhu20jIiJw6dIlu9dtayW+/fZblJeXY/ny5WjcuLH59bVr1zpNv9ri4uKwd+9eVFZWWtWqHDp0yPw+IB2EEZF87KNCVA1069YNHTp0wLvvvosrV66gXr166NatG+bMmYOCggK77c+dO2f+9/nz563eq127Npo2bYry8nLJ/WVkZAAA3n//favX3333XbttExMTYTQasXfvXvNrBQUFdrPD+vv7AwAEQTC/ZjQakZ2dLZkOT+nTpw9Onz6NRYsWmV+7fv06PvjgA9SuXRtdu3YFAAQHBwOAaCBGRPKwRoWomnj22Wdx//3345NPPsGYMWMwa9Ys3HrrrUhNTcXo0aPRpEkTnDlzBlu2bMGJEyewZ88eAEDLli3RrVs3tG3bFpGRkdi+fTsWL16MCRMmSO7r5ptvxoMPPoj/+7//g9FoRKdOnfDzzz/j6NGjdtsOHjwYzz33HO69915MnDgRpaWlmD17NpKSkrBz507zdj179kRAQAD69euHxx9/HMXFxZg7dy7q1asnGmx50mOPPYY5c+Zg2LBh2LFjB+Lj47F48WJs2rQJ7777LkJDQwHc6PzbsmVLLFq0CElJSYiMjERKSgpSUlK8ml4in6b1sCMiUo9pePK2bdvs3quoqBASExOFxMRE4fr164IgCEJOTo7w6KOPCg0aNBBq1qwpNGrUSLjrrruExYsXmz/36quvCh06dBDCw8OFoKAgITk5WXjttdeEq1evmrcRG0pcVlYmTJw4Uahbt64QEhIi9OvXT8jPzxcdrrtq1SohJSVFCAgIEJo3by58/vnnot+5fPlyoXXr1kKtWrWE+Ph4YcaMGcK8efMEAEJubq55OyXDk50NvZb6vjNnzgjDhw8XoqKihICAACE1NVXIzs62++zmzZuFtm3bCgEBARyqTOQCgyBY1KMSERER6Qj7qBAREZFuMVAhIiIi3WKgQkRERLrFQIWIiIh0i4EKERER6RYDFSIiItItn57wrbKyEqdOnUJoaCinqiYiIvIRgiDg8uXLaNiwod3inrZ8OlA5deoUYmNjtU4GERERuSA/Px833XSTw218OlAxTVOdn5+POnXqaJwaIiIikqOoqAixsbHm+7gjPh2omJp76tSpw0CFiIjIx8jptsHOtERERKRbDFSIiIhItxioEBERkW75dB8VIiK9qaysxNWrV7VOBpGmatasCX9/f1W+i4EKEZFKrl69itzcXFRWVmqdFCLNhYeHo0GDBm7Pc6ZpoFJRUYHp06fj888/x+nTp9GwYUMMGzYM//rXvziBGxH5FEEQUFBQAH9/f8TGxjqdxIqoqhIEAaWlpTh79iwAICYmxq3v0zRQmTFjBmbPno1PP/0UrVq1wvbt2zF8+HCEhYVh4sSJWiaNiEiR69evo7S0FA0bNkRwcLDWySHSVFBQEADg7NmzqFevnlvNQJoGKps3b8Y999yDvn37AgDi4+OxYMEC/Pbbb1omi4hIsYqKCgBAQECAxikh0gdTwH7t2jW3AhVN6yY7deqEn3/+GX/88QcAYM+ePdi4cSMyMjJEty8vL0dRUZHVHxGRnrDZmugGta4FTWtUpkyZgqKiIiQnJ8Pf3x8VFRV47bXX8NBDD4lun5mZiZdfftnLqSQiIiKtaFqj8uWXX+KLL77A/PnzsXPnTnz66ad488038emnn4puP3XqVBiNRvNffn6+l1NMRERE3qRpoPLss89iypQpGDx4MFJTU/HII4/gqaeeQmZmpuj2gYGB5nV9uL4PFRjLsDmnEAXGMq2TQuTzTp8+jSeeeAJNmjRBYGAgYmNj0a9fP/z888/mbTZv3ow+ffogIiICtWrVQmpqKt5++21z/xwAyMvLw8iRI5GQkICgoCAkJiZi2rRpdnPLzJ07F2lpaahduzbCw8PRpk0bq7J/+vTpMBgM6N27t11aZ86cCYPBgG7dusk+vqKiIrzwwgtITk5GrVq10KBBA/To0QNLliyBIAjm7X7//Xc88MADiI6ORmBgIJKSkvDSSy+htLTUvM2FCxfwxBNPoHnz5ggKCkLjxo0xceJEGI1GWWnJy8uDwWAQ/du6davsY+rWrRsmTZoke3tfpWnTT2lpqd0QPn9/f85BQE4t2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIvJJeXl56Ny5M8LDwzFz5kykpqbi2rVrWLlyJcaPH49Dhw5h6dKleOCBBzB8+HCsXbsW4eHhWL16NSZPnowtW7bgyy+/hMFgwKFDh1BZWYk5c+agadOm2L9/P0aPHo2SkhK8+eabAIB58+Zh0qRJeP/999G1a1eUl5dj79692L9/v1W6YmJisHbtWpw4cQI33XST+fV58+ahcWP51/ulS5dw6623wmg04tVXX0X79u1Ro0YNrF+/HpMnT8btt9+O8PBwbN26FT169ECPHj2wYsUK1K9fH7/99hv++c9/4ueff8batWsREBCAU6dO4dSpU3jzzTfRsmVLHDt2DGPGjMGpU6ewePFi2elavXo1WrVqZfVa3bp1ZX9eDkEQUFFRgRo1fHjaNEFDQ4cOFRo1aiR89913Qm5urrBkyRIhKipKmDx5sqzPG41GAYBgNBo9nFLSk1OXSoWEKd8Jcc/9/ddkygrh1KVSrZNG1VhZWZlw4MABoaysTOukKJaRkSE0atRIKC4utnvv4sWLQnFxsVC3bl1hwIABdu8vX75cACAsXLhQ8vvfeOMNISEhwfz/e+65Rxg2bJjDNE2bNk1IS0sT7rrrLuHVV181v75p0yYhKipKGDt2rNC1a1cZRycIY8eOFUJCQoSTJ0/avXf58mXh2rVrQmVlpdCyZUuhXbt2QkVFhdU2u3fvFgwGg5CVlSW5jy+//FIICAgQrl275jQ9ubm5AgBh165dktuYjv9///ufEBcXJ9SpU0cYNGiQUFRUJAjCjfsnAKu/3NxcYe3atQIA4fvvvxduueUWoWbNmsLatWuFK1euCE888YQQHR0tBAYGCp07dxZ+++038/5Mn/vuu++E1NRUITAwUOjYsaOwb98+QRAEobi4WAgNDRW++uorq3QuXbpUCA4ONqfLkqNrQsn9W9Omnw8++AD33Xcfxo0bhxYtWuCZZ57B448/jldeeUXLZJHO5RaWoFKwfq1CEJBXWCr+ASIf481mzQsXLuDHH3/E+PHjERISYvd+eHg4Vq1ahfPnz+OZZ56xe79fv35ISkrCggULJPdhNBoRGRlp/n+DBg2wdetWHDt2zGn6RowYgU8++cT8/3nz5uGhhx6SPQy8srISCxcuxEMPPYSGDRvavV+7dm3UqFEDu3fvxoEDB/D000/b1fSnpaWhR48eTo+xTp06qtZc5OTkYNmyZfjuu+/w3XffYf369cjKygIAvPfee0hPT8fo0aNRUFCAgoICxMbGmj87ZcoUZGVl4eDBg2jdujUmT56Mr7/+Gp9++il27tyJpk2bolevXrhw4YLVPp999lm89dZb2LZtG6Kjo9GvXz9cu3YNISEhGDx4MLKzs622z87Oxn333YfQ0FDVjtuWpoFKaGgo3n33XRw7dgxlZWXIycnBq6++ynkIyKGEqBD42Yx68zcYEB/FSbbI9y3adhyds9ZgyNxf0TlrDRZtO+7R/R09ehSCICA5OVlyG9MUEi1atBB9Pzk52byN2Pd/8MEHePzxx82vTZs2DeHh4YiPj0fz5s0xbNgwfPnll6LN/nfddReKioqwYcMGlJSU4Msvv8SIESNkH19hYSEuXrzo8PgA58fYokULyWMsLCzEK6+8gscee0x2uoAbU3TUrl3b6s9SZWUlPvnkE6SkpOC2227DI488Yu4zFBYWhoCAAAQHB6NBgwZo0KCB1Vwl//73v3HnnXciMTERgYGBmD17NmbOnImMjAy0bNkSc+fORVBQED7++GOrfU6bNg133nknUlNT8emnn+LMmTNYunQpAGDUqFFYuXIlCgoKANyYzO37779X9Hu4gnM8k8+JCQtC5oBU+P81Rt/fYMDrA1IQExakccqI3FNgLDP3vQKASgF4fsl+j9asCILgfCMXtgWAkydPonfv3rj//vsxevRo8+sxMTHYsmUL9u3bhyeffBLXr1/H0KFD0bt3b7tgpWbNmnj44YeRnZ2Nr776CklJSWjdurXH0qx0+6KiIvTt2xctW7bE9OnTFX120aJF2L17t9Wfpfj4eKuaipiYGPO09M60a9fO/O+cnBxcu3YNnTt3Nr9Ws2ZNdOjQAQcPHrT6XHp6uvnfkZGRaN68uXmbDh06oFWrVuaRuZ9//jni4uLQpUsXeQfsIh/uXUPV2aD2jdElKRp5haWIjwpmkEJVgqNmTU/l8WbNmpk7wUpJSkoCABw8eBCdOnWye//gwYNo2bKl1WunTp1C9+7d0alTJ/z3v/8V/d6UlBSkpKRg3LhxGDNmDG677TasX78e3bt3t9puxIgR6NixI/bv36/46T06Ohrh4eEOjw+wPsY2bdrYvX/w4EHzNiaXL19G7969ERoaiqVLl6JmzZqK0hYbG4umTZtKvm/7fQaDQfZgE7FmPDWMGjUKs2bNwpQpU5CdnY3hw4d7fJJD1qiQz4oJC0J6Yl0GKVRlaNGsGRkZiV69emHWrFkoKSmxe//SpUvo2bMnIiMj8dZbb9m9v3z5chw5cgQPPvig+bWTJ0+iW7duaNu2LbKzs2Ut0GgKdMTS0KpVK7Rq1Qr79+/HkCFDlBwe/Pz8MHjwYHzxxRc4deqU3fvFxcW4fv06br75ZiQnJ+Odd96xCwb27NmD1atXWx1jUVERevbsiYCAACxfvhy1atVSlC41BAQEWA0Nl5KYmIiAgABs2rTJ/Nq1a9ewbds2uwDTcnj0xYsX8ccff1g1hz388MM4duwY3n//fRw4cABDhw5V4UgcY6BCRKQTWjVrzpo1CxUVFejQoQO+/vprHDlyBAcPHsT777+P9PR0hISEYM6cOfjmm2/w2GOPYe/evcjLy8PHH3+MYcOG4b777sMDDzwA4O8gpXHjxnjzzTdx7tw5nD59GqdPnzbvb+zYsXjllVewadMmHDt2DFu3bsWjjz6K6Ohoq6YHS2vWrEFBQQHCw8MVH99rr72G2NhYdOzYEf/73/9w4MABHDlyBPPmzUObNm1QXFwMg8GAjz/+GAcOHMDAgQPx22+/4fjx4/jqq6/Qr18/pKenm+csMQUpJSUl+Pjjj1FUVGQ+RjmBg8n58+fNnzP9XblyRfbn4+Pj8euvvyIvLw+FhYWStS0hISEYO3Ysnn32Wfz44484cOAARo8ejdLSUowcOdJq23//+9/4+eefsX//fgwbNgxRUVHo37+/+f2IiAgMGDAAzz77LHr27Gk1bNxjnI4L0jEOTyYivVBzePKpS6XC5qOFXh1yf+rUKWH8+PFCXFycEBAQIDRq1Ei4++67hbVr15q32bBhg9CrVy+hTp06QkBAgNCqVSvhzTffFK5fv27eJjs7227YrOnPZPHixUKfPn2EmJgYISAgQGjYsKEwcOBAYe/eveZtTMNzpTz55JOyhycLgiBcunRJmDJlitCsWTMhICBAqF+/vtCjRw9h6dKlQmVlpXm7vXv3CgMHDhQiIyOFmjVrComJicK//vUvoaSkxLyNaSiv2F9ubq7TtJiGJ4v9LViwQPL433nnHSEuLs78/8OHDwv/+Mc/hKCgILvhyRcvXrT6bFlZmfDEE08IUVFRDocnf/vtt0KrVq2EgIAAoUOHDsKePXvs0v/zzz8LAIQvv/zS4XGqNTzZIAgKew7pSFFREcLCwszDwoiItHLlyhXk5uYiISFBk2YAInesW7cO3bt3x8WLF53WWn322Wd46qmncOrUKYejdB1dE0ru3+xMS0RERE6VlpaioKAAWVlZePzxx702lQj7qBARkU+znYvE8u+XX37xenrGjBkjmZ4xY8Z4PT1qeeONN5CcnIwGDRpg6tSpXtsvm36IiFTAph/tHD16VPK9Ro0aISjIuyMDz549i6KiItH36tSpg3r16nk1PVph0w8RERHgcC4SLdSrV6/aBCPewKYfIiIi0i0GKkREKvLh1nQiVcmdRdcZNv0QEamgZs2aMBgMOHfuHKKjoz0+rTiRXgmCgKtXr+LcuXPw8/Nze3QQAxUiIhX4+/vjpptuwokTJ5CXl6d1cog0FxwcjMaNG8taQsERBipERCqpXbs2mjVrhmvXrmmdFCJN+fv7o0aNGqrULDJQISJSkb+/P/z9/bVOBlGVwc60REREpFsMVIiIiEi3GKgQERGRbjFQISIiIt1ioEJERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt1ioEJERES6xUCFiIiIdIuBChEREemWpoFKfHw8DAaD3d/48eO1TBYRERHpRA0td75t2zZUVFSY/79//37ceeeduP/++zVMFREREemFpoFKdHS01f+zsrKQmJiIrl27apQiIiIi0hPd9FG5evUqPv/8c4wYMQIGg0Hr5BAREZEOaFqjYmnZsmW4dOkShg0bJrlNeXk5ysvLzf8vKiryQsqIiIhIK7qpUfn444+RkZGBhg0bSm6TmZmJsLAw819sbKwXU0hERETeZhAEQdA6EceOHUOTJk2wZMkS3HPPPZLbidWoxMbGwmg0ok6dOt5IKhEREbmpqKgIYWFhsu7fumj6yc7ORr169dC3b1+H2wUGBiIwMNBLqSIiIiKtad70U1lZiezsbAwdOhQ1augibiIiIiKd0DxQWb16NY4fP44RI0ZonRQiIiLSGc2rMHr27AkddJMhIiIiHdK8RoWIiIhICgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREusVAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIRBQYy7A5pxAFxjKtk0JEVK1pvighkd4s2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIiKqllijQmShwFhmDlIAoFIAnl+ynzUrREQaYaBCZCG3sMQcpJhUCALyCku1SRARUTXHQIXIQkJUCPwM1q/5GwyIjwrWJkFERNUcAxUiCzFhQcgckAp/w41oxd9gwOsDUhATFqRxyoiIqid2piWyMah9Y3RJikZeYSnio4IZpBARaYiBCpGImLAgBihERDrAph8iIiLSLQYqREREpFsMVIiIiEi3GKiQbnDaeiIissXOtKQLnLaeiIjEsEaFNMdp64mISAoDFdIcp60nIiIpDFRIc5y2noiIpDBQIc1x2noiIpLCzrSkC5y2noiIxDBQId3gtPVERGSLTT9ERESkWwxUiIiISLc0D1ROnjyJhx9+GHXr1kVQUBBSU1Oxfft2rZNFREREOqBpH5WLFy+ic+fO6N69O3744QdER0fjyJEjiIiI0DJZREREpBOaBiozZsxAbGwssrOzza8lJCRomCIiIiLSE02bfpYvX4527drh/vvvR7169dCmTRvMnTtXcvvy8nIUFRVZ/REREVHVpWmg8ueff2L27Nlo1qwZVq5cibFjx2LixIn49NNPRbfPzMxEWFiY+S82NtbLKSYiIiJvMgiCIDjfzDMCAgLQrl07bN682fzaxIkTsW3bNmzZssVu+/LycpSXl5v/X1RUhNjYWBiNRtSpU8craSYiIiL3FBUVISwsTNb9W9MalZiYGLRs2dLqtRYtWuD48eOi2wcGBqJOnTpWf0RERFR1aRqodO7cGYcPH7Z67Y8//kBcXJxGKSIiIiI90TRQeeqpp7B161a8/vrrOHr0KObPn4///ve/GD9+vJbJIiIiIp3QNFBp3749li5digULFiAlJQWvvPIK3n33XTz00ENaJouIiIh0QtPOtO5S0hmHiIiI9MFnOtMSEREROcJAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREuuVSoFJSUqJ2OoiIiIjsuBSo1K9fHyNGjMDGjRvVTg8RERGRmUuByueff44LFy7g9ttvR1JSErKysnDq1Cm100ZERETVnEuBSv/+/bFs2TKcPHkSY8aMwfz58xEXF4e77roLS5YswfXr19VOJxEREVVDqq2e/MEHH+DZZ5/F1atXERUVhTFjxmDKlCkIDg5W4+tFcfVkIiIi36Pk/l3DnR2dOXMGn376KT755BMcO3YM9913H0aOHIkTJ05gxowZ2Lp1K1atWuXOLoiIiKgacylQWbJkCbKzs7Fy5Uq0bNkS48aNw8MPP4zw8HDzNp06dUKLFi3USicRERFVQy4FKsOHD8fgwYOxadMmtG/fXnSbhg0b4oUXXnArcURERFS9udRHpbS01KN9T+RiHxUiIiLf4/E+KsHBwaioqMDSpUtx8OBBAECLFi3Qv39/1KjhVrcXIiIiIjOXoorff/8d/fr1w5kzZ9C8eXMAwIwZMxAdHY1vv/0WKSkpqiaSiIiIqieX5lEZNWoUUlJScOLECezcuRM7d+5Efn4+Wrdujccee0ztNBIREVE15VKNyu7du7F9+3ZERESYX4uIiMBrr70m2bmWiIiISCmXalSSkpJw5swZu9fPnj2Lpk2bup0oIiIiIsDFQCUzMxMTJ07E4sWLceLECZw4cQKLFy/GpEmTMGPGDBQVFZn/iIiIiFzl0vBkP7+/4xuDwQAAMH2N5f8NBgMqKirUSKcoDk8mIiLyPR4fnrx27VqXEkZERESkhEuBSteuXdVOBxEREZEdl2dnu3TpEj7++GPzhG+tWrXCiBEjEBYWplriiIiIqHpzqTPt9u3bkZiYiHfeeQcXLlzAhQsX8PbbbyMxMRE7d+5UO41ERERUTbnUmfa2225D06ZNMXfuXPOU+devX8eoUaPw559/YsOGDaonVAw70xIREfkeJfdvlwKVoKAg7Nq1C8nJyVavHzhwAO3atUNpaanSr3QJAxUiIiLfo+T+7VLTT506dXD8+HG71/Pz8xEaGurKVxIRERHZcSlQGTRoEEaOHIlFixYhPz8f+fn5WLhwIUaNGoUHH3xQ9vdMnz4dBoPB6s+2loaIiIiqL5dG/bz55pswGAx49NFHcf36dQBAzZo1MXbsWGRlZSn6rlatWmH16tV/J6iGywORiIiIqIpRHBVUVFRg69atmD59OjIzM5GTkwMASExMRHBwsPIE1KiBBg0aKP4cERERVX2Km378/f3Rs2dPXLp0CcHBwUhNTUVqaqpLQQoAHDlyBA0bNkSTJk3w0EMPifZ9MSkvL7daR4hrCREREVVtLvVRSUlJwZ9//un2zjt27IhPPvkEP/74I2bPno3c3FzcdtttuHz5suj2mZmZCAsLM//Fxsa6nQYiIiLSL5eGJ//444+YOnUqXnnlFbRt2xYhISFW77s6VPjSpUuIi4vD22+/jZEjR9q9X15ejvLycvP/i4qKEBsby+HJREREPsTjixL26dMHAHD33XebV0sG3F8xOTw8HElJSTh69Kjo+4GBgQgMDHTpu4mIiMj36Gr15OLiYuTk5OCRRx7xyPcTERGRb3EpUElISEBsbKxVbQpwo0YlPz9f9vc888wz6NevH+Li4nDq1ClMmzYN/v7+iuZiISIioqrL5UCloKAA9erVs3r9woULSEhIkN30c+LECTz44IM4f/48oqOjceutt2Lr1q2Ijo52JVlERERUxbgUqJj6otgqLi5GrVq1ZH/PwoULXdk9ERERVROKApWnn34aAGAwGPDiiy9azZ1SUVGBX3/9FTfffLOqCSSivxUYy5BbWIKEqBDEhAVpnRwiIo9TFKjs2rULwI0alX379iEgIMD8XkBAANLS0vDMM8+om0IiAgAs2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIiLyKEWBimm0z/Dhw/Hee+9x7hIiLykwlpmDFACoFIDnl+xHl6Ro1qwQUZXm0sy02dnZDFKIvCi3sMQcpJhUCALyCku1SRARkZe41Jm2pKQEWVlZ+Pnnn3H27FlUVlZava/G9PpE9LeEqBD4GWAVrPgbDIiPcm2NLSIiX+FSoDJq1CisX78ejzzyCGJiYkRHABGRemLCgpA5IBXPL9mPCkGAv8GA1weksNmHiKo8l9b6CQ8Px4oVK9C5c2dPpEk2JWsFEFUFBcYy5BWWIj4qmEEKEfksj6/1ExERgcjISJcSR0SuiwkLYoBCRNWKS51pX3nlFbz00ksoLWVHPiIiIvIcl2pU3nrrLeTk5KB+/fqIj49HzZo1rd7fuXOnKokjIiKi6s2lQKV///4qJ4OIiIjInkudafWCnWmJiIh8j5L7t6I+Kr/99pvDlZHLy8vx5ZdfKvlKIiIiIkmKApX09HScP3/e/P86depYTe526dIlPPjgg+qljoiIiKo1RYGKbSuRWKuRD7ckERERkc64NDzZEc5SS0RERGpRPVAhIiIiUovi4ckHDhzA6dOnAdxo5jl06BCKi4sBAIWFheqmjoiIiKo1RcOT/fz8YDAYRPuhmF43GAwORwapicOTiYiIfI/H1vrJzc11K2FERERESigKVOLi4hR9+bhx4/Dvf/8bUVFRij5HREREBHi4M+3nn3+OoqIiT+6CiIiIqjCPBiqcU4WIiIjcweHJREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt3yaKDy8MMPcyI2IiIicplLgUplZaXk68ePHzf/f/bs2ZxDhYiIiFymKFApKirCAw88gJCQENSvXx8vvfSS1XT5586dQ0JCguqJJCIioupJ0cy0L774Ivbs2YPPPvsMly5dwquvvoqdO3diyZIlCAgIAMC5U4iIiEg9impUli1bhjlz5uC+++7DqFGjsH37dpw7dw79+vVDeXk5gBuLE7oiKysLBoMBkyZNcunzpI0CYxk25xSiwFimdVKIiKgKUhSonDt3zmq9n6ioKKxevRqXL19Gnz59UFpa6lIitm3bhjlz5qB169YufZ60sWjbcXTOWoMhc39F56w1WLTtuPMPERERKaAoUGncuDEOHjxo9VpoaChWrVqFsrIy3HvvvYoTUFxcjIceeghz585FRESE4s+TNgqMZZi6ZB8q/2rpqxSA55fs99maFdYMERHpk6JApWfPnsjOzrZ7vXbt2li5ciVq1aqlOAHjx49H37590aNHD8WfJe3kFpaYgxSTCkFAXqFrtWpaYs0QEZF+KepM+/LLL+PUqVOi74WGhuKnn37Czp07ZX/fwoULsXPnTmzbtk3W9uXl5ea+MAC4MrOGEqJC4GeAVbDibzAgPipYu0S5QKpmqEtSNGLCgrRNHBERKatRiYiIQKtWrSTfDw0NRdeuXWV9V35+Pp588kl88cUXsmtiMjMzERYWZv6LjY2V9TlSX0xYEDIHpML/r87T/gYDXh+Q4nM396pUM0REVBUZBIXjia9fv4533nkHCxYswB9//AEASEpKwpAhQ/Dkk0+iZs2asr5n2bJluPfee+Hv729+raKiAgaDAX5+figvL7d6DxCvUYmNjYXRaOQMuBopMJYhr7AU8VHBPhekADfS3zlrjV3N0MYp3X3yeIiIfEFRURHCwsJk3b8VBSplZWW48847sWXLFvTo0QMtWrQAABw8eBCrV69G586dsWrVKlk1JJcvX8axY8esXhs+fDiSk5Px3HPPISUlxel3KDlQIimLth3H80v2o0IQzDVDg9o31jpZRERVlpL7t6I+KllZWcjPz8euXbvshhLv2bMHd999N7KysjB9+nSn3xUaGmoXjISEhKBu3bqyghQitQxq3xhdkqJ9umaIiKiqUtRHZeHChXj77bdF5ztJS0vDm2++ifnz56uWOCJviQkLQnpiXQYpREQ6o6hG5dixY+jQoYPk+//4xz+sFiVUat26dS5/loiIiKoeRTUqderUwdmzZyXfP336NEJDQ91OFBERERGgMFDp3r07Xn/9dcn3s7Ky0L17d7cTRURERAQobPqZNm0aOnbsiH/84x94+umnkZycDEEQcPDgQbzzzjs4cOAAtm7d6qm0EhERUTWjKFBp2bIlfvrpJ4wcORKDBw82r5QsCAKSk5OxatUqhxPCERERESmhKFABbnSY/f3337F7926rCd9uvvlmtdNGRERE1ZziQKWoqAi1a9fGzTffbBWcVFZWori4mBOvERERkWoUdaZdunQp2rVrhytXrti9V1ZWhvbt2+Pbb79VLXFERERUvSkKVGbPno3JkycjONh+hdyQkBA899xz+M9//qNa4oiIiKh6UxSo7N+/H926dZN8v0uXLti3b5+7aSIiIiICoDBQuXjxIq5fvy75/rVr13Dx4kW3E0VEREQEKAxU4uPjsX37dsn3t2/fjri4OLcTRURERAQoDFQGDBiAF154AWfOnLF77/Tp0/jXv/6FgQMHqpY4IiIiqt4MgiAIcje+fPky0tPTcfz4cTz88MNo3rw5AODQoUP44osvEBsbi61bt3ptvZ+ioiKEhYXBaDRyWDQREZGPUHL/VjSPSmhoKDZt2oSpU6di0aJF5v4o4eHhePjhh/Haa69xUUIiIiJSjaIaFUuCIKCwsBCCICA6Oto8nb6lTZs2oV27dggMDHQ7oWJYo0JEROR7lNy/FfVRsWQwGBAdHY169eqJBikAkJGRgZMnT7q6CyIiIqrmXA5U5HCxsoaIABQYy7A5pxAFxjKtk0JEpBnFa/0Qkect2nYcU5fsQ6UA+BmAzAGpGNS+sdbJIiLyOo/WqBCRcgXGMnOQAgCVAvD8kv2sWSGiaomBCpHO5BaWmIMUkwpBQF5hqTYJIiLSkEcDFalOtkQkLSEqBH42l46/wYD4KPvFQImIqjp2piXSmZiwIGQOSIX/X4G+v8GA1wekICYsSOOUERF5n0c7016+fNmTX0+kKwXGMuQWliAhKsTtoGJQ+8bokhSNvMJSxEcFM0ghompLUaBy++23y9puzZo1LiWGyFd5YpROTFgQAxQiqvYUBSrr1q1DXFwc+vbti5o1a3oqTUQ+RWqUTpekaAYaRERuUhSozJgxA9nZ2fjqq6/w0EMPYcSIEUhJSfFU2oh8gqNROgxUiIjco6gz7bPPPosDBw5g2bJluHz5Mjp37owOHTrgww8/RFFRkafSSKRrHKVDROQ5Lo36SU9Px9y5c1FQUIDx48dj3rx5aNiwIYMVqpY4SoeIyHPcGvWzc+dOrF+/HgcPHkRKSgr7rVC1xVE6RESeoThQOXXqFD755BN88sknKCoqwsMPP4xff/0VLVu29ET6iHwGR+kQEalPUaDSp08frF27Fj179sTMmTPRt29f1KjBdQ2JiIjIMwyCgulj/fz8EBMTg3r16jmcHn/nzp2qJM6ZoqIihIWFwWg0ok6dOl7ZJxEREblHyf1bUXXItGnT3EqYrdmzZ2P27NnIy8sDALRq1QovvfQSMjIyVN0PERER+SZFNSpq+/bbb+Hv749mzZpBEAR8+umnmDlzJnbt2oVWrVo5/TxrVIiIiHyPkvu3KoHK+vXrUVJSgvT0dERERLj1XZGRkZg5cyZGjhzpdFsGKkRERL7HY00/M2bMQHFxMV555RUAN1ZHzsjIwKpVqwAA9erVw88//yyrNsRWRUUFvvrqK3PAI6a8vBzl5eXm/3PeFiIioqpN0YRvixYtspoyf/HixdiwYQN++eUXFBYWol27dnj55ZcVJWDfvn2oXbs2AgMDMWbMGCxdulRyqHNmZibCwsLMf7GxsYr2RURERL5FUdNPREQENm/ejBYtWgAAhg8fjoqKCvzvf/8DAGzduhX3338/8vPzZSfg6tWrOH78OIxGIxYvXoyPPvoI69evFw1WxGpUYmNj2fRDRETkQzzW9HP9+nUEBgaa/79lyxZMmjTJ/P+GDRuisLBQUWIDAgLQtGlTAEDbtm2xbds2vPfee5gzZ47dtoGBgVb7JyIioqpNUdNPYmIiNmzYAAA4fvw4/vjjD3Tp0sX8/okTJ1C3bl23ElRZWWlVa0JERETVl6IalfHjx2PChAn45ZdfsHXrVqSnp1s10axZswZt2rSR/X1Tp05FRkYGGjdujMuXL2P+/PlYt24dVq5cqSRZREREVEUpClRGjx4Nf39/fPvtt+jSpYvdBHCnTp3CiBEjZH/f2bNn8eijj6KgoABhYWFo3bo1Vq5ciTvvvFNJsoiIiKiK0nTCN3dxHhUiIiLfo+T+raiPChEREZE3KQpUrl27hsmTJ6Np06bo0KED5s2bZ/X+mTNn4O/vr2oCiYiIqPpSFKi89tpr+N///ocxY8agZ8+eePrpp/H4449bbePDLUlERESkM4o6037xxRf46KOPcNdddwEAhg0bhoyMDAwfPtxcu2IwGNRPJREREVVLimpUTp48aTWFftOmTbFu3Tps3rwZjzzyCCoqKlRPIBEREVVfigKVBg0aICcnx+q1Ro0aYe3atdi2bRuGDRumZtqIiIiomlMUqNx+++2YP3++3esNGzbEmjVrkJubq1rCiFxVYCzD5pxCFBjLquX+iYiqEkV9VF588UUcOnRI9L1GjRph/fr1+Omnn1RJGJErFm07jqlL9qFSAPwMQOaAVAxq37ja7J+IqKrhhG9UZRQYy9A5aw0qLXK0v8GAjVO6IyYsqMrvn4jIV3h8wrevvvoKAwYMQEpKClJSUjBgwAAsXrzYpcQSqSW3sMQqSACACkFAXmFptdg/EVFVpChQqaysxKBBgzBo0CAcOHAATZs2RdOmTfH7779j0KBBGDx4MOdRIc0kRIXAz2Z0vL/BgPio4GqxfyKiqkhRoPLee+9h9erVWL58OQ4dOoRly5Zh2bJlOHz4MJYuXYqffvoJ7733nqfSSuRQTFgQMgekwv+vuXz8DQa8PiDFa80uWu/fW9hZmIi8SVEfldatW2PSpEmSKyR//PHHeO+997B3717VEugI+6iQmAJjGfIKSxEfFaxJkKD1/j2JnYWJSA1K7t+KApWgoCAcPnwYjRuLF0zHjh1DcnIyysq886TlS4FKgbEMuYUlSIgKqXI3L6oe2FmYiNSi5P6taHhyUFAQLl26JBmoFBUVoVatWkq+slrgUyhVBY46CzNQISJPUdRHJT09HbNnz5Z8f9asWUhPT3c7UVVJgbHMHKQAQKUAPL9kP9v3yeewszARaUFRoPLCCy/g448/xgMPPIDffvsNRUVFMBqN2Lp1K+6//37MmzcPL7zwgqfS6pM4ZJWqiurSWZiI9EVR00+nTp2waNEiPPbYY/j666+t3ouIiMCCBQvQuXNnVRPo60xPobbt+nwKJS252mdqUPvG6JIUXWU7CxNVN77Qf9KlmWlLS0uxcuVKHDlyBACQlJSEnj17IjjYuzdfX+lMu2jbcTy/ZD8qBMH8FMo+KqQV9pkiIkDbssBjo37WrFmDCRMmYOvWrXZfbDQa0alTJ3z44Ye47bbbXEu5Qr4SqADiQ1Z9IZKlqkWPI3d4HRB5n9ZlgcdG/bz77rsYPXq06JeGhYXh8ccfx9tvv+21QMWXxIQFWf34fKolLeht5A6vAyJt6K0scERRZ9o9e/agd+/eku/37NkTO3bscDtRVR1HApFW9DRyh9cBkXb0VBY4oyhQOXPmDGrWrCn5fo0aNXDu3Dm3E1XVcSSQ79mTfxFzf8nBnvyLWifFLXoaucPrgEg7eioLnFHU9NOoUSPs378fTZs2FX1/7969iImJUSVhVRlHAqnL030c/vnlbny986T5/wNvaYS3HrhZ9f14i15G7vA6INKWXsoCZxTVqPTp0wcvvvgirly5YvdeWVkZpk2bhrvuuku1xFVVvhTJ6t2ibcfROWsNhsz9FZ2z1mDRtuOqfv+e/ItWQQoAfL3zZJWoWUlPrKtpnuN1QKQ9PZQFziga9XPmzBnccsst8Pf3x4QJE9C8eXMAwKFDhzBr1ixUVFRg586dqF+/vscSbMmXRv2IqcqL13mDs17ratS0zP0lB6+tOGT3+ot9W2DkbU0UpZUjW8TxOiCqfjw26qd+/frYvHkzxo4di6lTp8IU4xgMBvTq1QuzZs3yWpBSFdiOBCJlHPVx2PDHOVVGk3SIjxR9vV18hOzv4MgWx3gdEJEjigIVAIiLi8P333+Pixcv4ujRoxAEAc2aNUNEhPyCm6oHT9ciSPVxCA7wEx1N0iUpWnE60mIjMPCWRnZ9VNJi5eV3qZEtrqSFiKg6UhyomERERKB9+/ZqpoWqEG/UIpj6ONjO+ltytULV+QHeeuBmPJoeh+15F9EuPkJ2kAL41lwFRER65HKgQp7ly30avFmLINZrvcBYpvpokrRYZQGKCUe2EBG5R9GoH/IOT49k8TRvz49h22tdT6NJ9JQWIiJfxBoVnakKfRr0UIugp/kB9JQWIiJfo2mNSmZmJtq3b4/Q0FDUq1cP/fv3x+HDh7VMkua0mK2zwFiGzTmFqk1drpdaBD3ND6CntBAR+RJNa1TWr1+P8ePHo3379rh+/Tqef/559OzZEwcOHEBISIiWSdOMt2sjPNXptbrXIvhyHyMiIj1RNOGbp507dw716tXD+vXr0aVLF6fbV4UJ38RuZou2HbcbyeKJeTe0Xua7qpqzIQdZPxyCwHlTiIhEeWzCN08zGo0AgMhI8Um2ysvLUV5ebv5/UVGRV9LlCY5qMrxVG8Ghs+qbsz4HmT/8PZOtL/Yx8ibWPBGRM7oZ9VNZWYlJkyahc+fOSElJEd0mMzMTYWFh5r/Y2Fgvp1Idcpa3l+rToGZ/El9a5tsXFBjLkPWD/XT7XBFYnK+PbiMi79BNoDJ+/Hjs378fCxculNxm6tSpMBqN5r/8/HwvplA9rnaYVbtg10un16oit7AEYu2ofgZoFvyp3VFaLXKCdSIiQCdNPxMmTMB3332HDRs24KabbpLcLjAwEIGBgV5MmWe40mHWU8OWq3unVzWJ/a4A8FxGsibnVc9rDLHZkYjk0rRGRRAETJgwAUuXLsWaNWuQkJCgZXK8xpWaDE8OW+bQWXXY/q5+AKZmJOPxLoleT4veayzY7EhEcmlaozJ+/HjMnz8f33zzDUJDQ3H69GkAQFhYGIKCqvZNU2lNxr4TRrvXWLDrj15qqPReYyG1TpMe0kZE+qJpoDJ79mwAQLdu3axez87OxrBhw7yfIC+Tu7x9gbEMM36076Q5OaO51wt2jtJwTu7v6kl6mB3YRCrPeDuoY94l8k2aBio6msLFIa0LOLGnYwBo3Sjcq+nQc58HsqaXGgtnecZbQR3zLpHv0kVnWj1Tu4BzJejRw9NxVViDqLrRuhlKL3lGL+kgItfoZniyHqndIdHV4cV6GEasxRpE5D4tO0rrJc9IpWPF3gLddC4mImmsUXFAzQ6J7j7Vaf107G6tjtbNZ+R9eqgJlEoHALy64iBe//4gm4GIdI41Kg6oOYRSjadLTz4dO5sYzJ1aHc5AWj3poSZQLB2W9DZsWyt6nRiQCGCNikNqdkjUy9OlGLn9cFyp1WH/gOpN65pA23Ss2FuAV1cctHpPT8O2tcCOxlVTVarFZqDihFoFrV5GYdhSGkgoHaWh9/k8qhK9Fkx6GK5tSkff1jF4/fuDTh8Y9Hou1cYHiaqpqgWfDFRkUKug1cvTpSVPBxJ6rkmqSqpaweQpch4YqtO55INE1VMVg08GKl6ml6dLE08HEnqtSapKqmLB5EmOHhiq27nkg0TVUxWDTwYq1Zw3Agk91iT5CjlNEFWxYPI0qQeG6nYu+SBR9VTF4JOBCnklkNBbTZIvkNsEURULJq1Ux3PJB4mqxZ3gU699swyCr8xjL6KoqAhhYWEwGo2oU6eO1snxKrkZSq8ZjxwrMJahc9YauxvmxindRX/HRduO2xVMVbVfhafxXFJVUGAsUxR8ertvlpL7N2tUfJDcDFWdOgVWNUqbIPhUrB6ey6qluj6sKanF1nvfLAYqPkZuhtJ7xtMLvRZirjRBVMXmNa1+n6p4LqsjX31Y83a+13vfLAYqPkZuhnI142l94/bm/h0VYlqfB3Zy9N2bDOmDrz6saZHv9d43i4GKj5GboVzJeFrfGLy5f0eF2IY/zuniBqnHJghvBXC+dJPROqglcXqvJRCjVb7X+4MRAxUfIzdDKc14Wt8YvL1/qUJs57GLXkmH3JubZROE1jdEbwaSvnKT0Tq4J2l6ryUQo2W+1+ODkQkDFR/kbMIq081MScbT+sbg7f1LFWKVguDxdLhyc3P3huhukOPtQNIXbjJaB/fkmN5rCcRone/12jeLgYqPEstQUjczsYxne+PS+gLx9v6lCrF28ZEeTYcrNzd3b4hqPPV7O5D01k3GnQBO6+CenNNzLYEYvQRXWtfe2mKgUkUouZlJ3bi0vEBcaapy90KSKsQ8eR5cubm5c0NU66lfi0DW0zcZdwM4rYP76sSd612vtQRStA6u9NicyUClipB7M3N049L6ApG7fzUvJLFCzJPnwZWbmzs3RLWe+rV60vPUTUaNAE4vT79VnbdunHqqRXAn37tzHHptzmSgUkXIvZk5u3Fp/fThbP/eupA8dR5cubm5c0NUGuQ4KuS0DmTVpFYAV5XOiR5563rXYy2CK9w9Dr02ZzJQqSLk3sx8vbparxeSEq7c3Fy9ISoJcuQUcloHsmpR8zqoKufEW5Q88at9vYvt21kwpKeaFkfUCOr0en9goFKFyLmZ+Xp1tV4vJKVcubm5ekOUky/0WuXrKVpcB75yw/OkRduOY8rX+yAAMADIGuj4iV/N610qEHcUDOllTiU51Ajq9Hp/YKDiIXqe+tuXq6v1eiHpnbN8URVqqpTy5nWgdtOCLwY9BcYyc5ACAAKAKV/vcxgMq3W9OwrE95002m3vbzAgOMDPp4J3tYI6Pd4fGKioxLLg8IUo3Jerq/V4Ifm6qlJTpZQ3rgO1a6t8tT/F9rwLsImFIQDYkXcRd6VJnwe517uj4E0qEF/w63H8Z+1Ru++a3Ls5Sq5WSAbvpu/UU6Co5kOc3u4PDFRUYFtwCALMF6Teo3BfpbcLydexpkqau7UXatZW+UoTndg5MxgMottKvGzF2fXuLHgTC8QB4P019kEKALS+KRzxUcGiwfvek5fw0EdbdRkoVtWHOAYqbhIrOGxVCILTpwZv8MXqYhNfTruvqKqFnDvUqL1Qs7ZKT010Utek1DlrGxcBA2BVq2IwALfERbidDmfBm20g7ojptxEL3if3bo4ZPxzSdaBYFR/iGKi4SazgEDNx4S6UXL2uWeTtq9XFgG+n3ddUxULOVWrVXqhZWyUV9AQH+GFzTqHXAnmpa9LZOcsamGr3OXfTKzd4MwXiK/YW4NUVB0W/y/a3sQ3elQaKfMBSBwMVN4kVHIa/Hhss87OWkbevVBeL8eW0k3u0LuTVrL1Qq7ZKLOjp36Yh7v2/zV4L5B1dk47OGQDERgZj6bhOKL1a6XatnSl/hAT4y66xigkLQt/WMXj9+4NW2/sB+Hf/VggLqol28ZF2n7FMp9x98QFLPQxU3CT1tBQSWAMT5u+y2larKlo9VRcD2s6jQL5BD4W82h2M1aqtsgx6ggP8zEEK4J1A3tE1KXXO9p6w79eRnljX5TTY5o972zTCsl2nZNVYSQV7L33zu9P8Jrd2zNU1vVj7Io6BigpsC46SqxWKony1SGV0LUd02KZJ6Q3I02ln4aA/eqlF03MHY1PQszmn0GOBvCvliWi/jgx1+3WI5Y9lu05hybh02TU17gR7cmrHlD5gOSsXbX+L6lZuaRqobNiwATNnzsSOHTtQUFCApUuXon///lomSZKzjBETFmQ3LNk2yh/TtQm+23sKHeIjkRbrXgcyW44yulYFrm2anuudjBk/KiuwPJl2PTy1a02PBZ6eatH03sHYU4G8O+WJu/06nJH6vtKrlYpqadwJ9pzVjin5XZwF5mK1R0t3naxW5ZamgUpJSQnS0tIwYsQIDBgwQMukOCTnhuYsyv9sax5mrcsxbz/wlkZ464GbVUmf2L6nLtmH5Aah5oDI2wWuWJpm/HAIlTbbySmwPJF2vTy1a0mvgZre5nTRcwdjTwTycq4NZ9ekq/065FA7f7j6fY6CfCW/i7N+Pba/xdc7T5q3qy7llqaBSkZGBjIyMrRMglNyb2hSmS3/QhliI4Pw/b7TVu99vfMkHk2PU6VmRWzflQJwz6zNmNonGY93SQSgXoEr5ylcNE0i28ktYNS+WejpqV0Leg7U9NzkokdiQYM7NWVyrw2516S7v6ftscj5PiXH70r65AT5ch+wHAVKckaVVodyy6f6qJSXl6O8vNz8/6KiIo/vU+5FKzWh0MSFu5CR0kD0u7fnXVQlUJHaNwBkfn8IEIDHuya6vR9A/lO4ozRZmpzRXJMLTG9P7WqRW0DrPVDTe5OL3lgGDe7UlBUYy3C+uFz1a8PV31PqWBx9nyvHryR9SoJ8ucHcqFsT8NEvuaiE/RBpZ+Wou7U/vsBP6wQokZmZibCwMPNfbGysx/dpuqFZEssYpqjc9oRWCsAP+09DTLt49fqpjLw1wS6dJjN+OIQCY5nb+5C6QMW+23Q+/P+adlIqo7VuFO52ulwRExaE53onm9NVFZ7aF207js5ZazBk7q/onLUGi7YdN79XYCzD5pxC828lN1+7y3a/SsSEBSE9sa5P/ybeJtoM/PU+fLf3lNPfwJR/nliwG4Lw94yxal0bjn5PsXwi1aS9J/+i5PcpKaOUpM+Ss6YaJUzn/L+/5AIG4LHbmmDjlO52/YFM5aiYyb0dP+w5Khd8hU8FKlOnToXRaDT/5efne3yfthnF0UU7qH1jvD+kjd3rlQLQpVmU1WsDb2mkSm2KKRPO/SVXMuquBFy6iGwpvUAHtW+MjVO6Y8Hof2Dp+E6Kbozu3ODkWLTt+I2OvbhRIE/OaK6L/hmuclRAixVUSvK1qzxRQHo6X/g6qSbXCfN3OfwNbPOPAMAgALOGtLG6cXqCVD6RatLuP2uz5HGoGURIkQryTZPuyc2bYtfsxxtz7bYzlaP/6ttC9Hta3xSuaB9yAzc98ammn8DAQAQGBnp9v0qqBdvGRYhWm864rzXOFl3B9ryLaBcfoUqQYpsJAdhNUW3avxpPyq40l5iqPguMZQ6rNy15upOnXaEsAG/8cBh3pzXU/Ond1SpaqQJ657GLktXUnmxe8UQfGL12/tUTR02ujn4DqQAnMiTQo9eEo3widSwCpI/DG026UvOwmIY4GwBMyUh22tzurPnVtizo2zoGr604aFW+Ozs2vTfxyuVTgYqW1Og4FhMWpOqwZLFMKAAY0jEWC3/NdxoQKOVqpzjbG8xjtzbB8FvjJauAPd3JU68Xrys3Ymezc1YKgsNj9dSIFrXP8Z78i5jy9T4u9umE7TVqS+o3UDqcVq3+Do7ySXpiXWQOSLV7GHN0HN7qiO1oHhYBQOYPhwADzAMZxEgFYntPXMLxCyV2ZYEtA2A+Nj3OoaUmTQOV4uJiHD369+qVubm52L17NyIjI9G4sW88KYllEG91BJTKhE/c3gxP3N7MI/tXemxS1ZvDb40X3d4bQYSeLl7LQENpgCZnds528ZGaHKua53jRtuOYsmSfXU2hHoJLtakRBJiu0R15FzFx4S5Zv4HcG7zatVrO8smg9o2R3CAU/Wdtll2T4K3y1xTki83DAtzoG+ioljYmLAjPZSTfGPBg8zlYnBNTPyMY7Bd07JIUrcs5tNSmaaCyfft2dO/e3fz/p59+GgAwdOhQfPLJJxqlSj5nGcTTmcFZJlRr/2LDA+V+t9LAQ+kNzpWCXS8Xr2X+MRhuNEFZcrbYmdzZOb15rJa/hxr7NR2n2IK3aucLb3CULneDANvvvistCCVXr0v+BrbbO7vBe6K2U861mBYbgayByvKSJ8pfR7UWYk3ulcLffQOlfvPCy+WwVQn7LxN9TYDDpl1vPzh7kqaBSrdu3SA4WXJbr/QyD4WnM6GjVVLl3AiUBh5Kggh3CnatL16xfjK2HJ0nJbNzeutYxX6PjVO6u7VfqXkkDABGSNTKOcoXWgYwztLlTnnibBjvzmMXUSkI5gX3pLZ3dIN31A+qb2vxz8g533Lyp9bXq7OH0ikZyTeaeyxIrXFk+ZuLdZ414MaDi+W59vvrDaVNuybeeHD2JPZRcZGe+jl4KhNKFZ6Xyq6Z1+5wFry4UnshtnZSgbFM1jBEJYGilhev1A3YD5DVt0irPgVSCoxldn1IpizZh81Tbndr8TnR1clx4+Fy7i+5+Hhjruwbvu0SF97sjOssv7pTnjj7btvjdmUpC0C6T8WE+btQXH7d7lwqeZCQcy1qdb3KKWse75oIGGAuF+WscSRVBozukoDE6Np2ZSYAu9fUatrVaw2kCQMVF+mpn4OnSBWeWT8cMtcAmIOX0mvmws8AYPRtCRh+a4KsKmUxYgWsZUGnp0DRFVL5x9R0IxWgmcgJAAuMZZi38cbN3NM35x3HLtpVfQt/VU1LPW3LYXucfjZNZHJv+At+PY7/rD2qSQ1ogbEM3+095TC/ulOeKJ2C3dWlLEy/hW3nVgH251IvNc5qkFvWPN4lEXenNXS6xtGKvQXo2zpG9Df3MwDDO98oN8XKTLHX3G1i9YXRdAxUXKSXfg6eJHohwf6Jyhy8/PV/AcB/f8nFRxZPu0qfhpwVdFoEimo+dUjln7TYCNkFh7PZOS1rOADHNwt3j02qCVeNll3L4ywsvoInFuy2et/ZDR8A3l9zFLa8Edha/pa2LPOrO+WJ1HUqdbM0zR0kuHDtDGrfGMEB/g5/A8D3HyQsKSlrbMs5sbz46oqDeP37g8gckOq0j6HtuRJ7zZ1mMV8JKBmoyCBViGvdbuppYoXn5N7NraqNAekpnk2ZPrlBKEquVii6CTor6OTWKIj9bo5uylLveeKpQ2qNFiUFh1jBZe6AKrJPsZuF3EU3HQUy7eIj7ToUGgC0VWn2ZdNxFhjLHN40bPOFI94IbB0FKbb5VU554qh51TIwFQBs+OMcuiRFi56vyRnN8cYPh116yJLT3KBljbPazRjuBJGWc0dZMl3XS8al493BafAzGHBLXIRbnZLV6gOmx4CSgYoTzgpxX++k5IxY4RkeXNM6eLFpi7VUIQjmoYVK5gaRs96IK+t9OPo9HXUcVvOpQ2wUlYkaBYejhcxsz6GcY5MTyMSEBSFrYCqmfr0PlbjxRJ85MFX1a0POTcOUL1bsLcCrKw5Kngd3akCd3QylmnsA4MW+LdCndQwAYHNOIRKiQgD8PTJEqk+Po9+hS1K0VS2JqTlm45TuoudrUPvGVs0USs6DnN9AqxpnTzVjKH0otU1H35QYrNhXYLVNhSCg//9thuDhJhfLKRBsHxh9pQuDQfDVYTe4sShhWFgYjEYj6tSpo/r3FxjL0Dlrjd2PuHFK9yodnMhRYCyzumgXbTtuvkk54uz8WQ3ZBW7MHSDAqoCVkzax323JuHSriZks0wNA8rfOLSzBkLm/2u1nweh/KO4o6qwgVSPPiX0HIL6/zTmFDo9NaXps84Xte2o96Traj+U2tmn3A/DBkDZuPb06+w2dNfdsnNLdqv+VaTZ2R8G8s99Bzu+ods2v3N/AUzXOtvlJL+X1zwdPY9SnO6xqF019qxzdbD2RVrG8KPaAJhbIepqS+zdrVBzwlWoxLdjWBJieOLI35uGjjX+aC3El509svRE/AfiPwhuL1O+2Le+iZHoESA/zU+upQ07thRpPojFhNxZcNHWa9AMwqkuCuZOeJWfHpvQakKphVPtJ17IvhOX/bW9eYueyb+uGivcnd2I+29FPlixHb9jmc5NK4cbkXra1da50zLRtEvNE7Zaz7/RUjbNYfoqNDNa8vP7nl7vx9c6Tdq9XCsBjXRLw8S95NzqFAy51aFZCqunRtkm+S1K029MIeBoDFQc8VS3mreGi3h5uFhMWhOf7tsDwW+NFp5YGlM8N4sp6I1K/W/t48XWYTOmRek+tamy5N313+z7ZLrj4XEay5FTezo5NjWvAE01nYqOZAIgGQ+50NMwtLMG+k0Zz06bYxF6Wv6HY6CfgxueWjEtHWmyE5EymJpUAsjfm4XmLReikOgnL7ZhZlUjlpyXj0jVtxtiTf1E0SDGlY3jnGw8LrpSNrnDUBOytZie1MFBxwBPtrN4YCqb1cDPLpyhH5882mHJ3bhBns6KmxUY4TM9zGclW8yBYvqdGx2l3Rg/I5cqCi46OTY1rwN05Qix/Z6nRTKbZawWL1yyDIaUBSvbGXMz9Jdd+yLXI9pa/oeToJwClV288QztaONDko41/Wq2H5aiTsOlYN07prsqTsd7n1HA02aGWwdpveRdEXzcYYDeaB/D8jNH7Thgdvm87xYTeRvpYYqDihJoje6SeBFwZFaN0H1plQqnzJxVMubreCGD/NC1WaDtKj+VT8+TezUUnsXP3HMpdQdpVrgYFjo7Ncu0YGG6sEK6Eq7Uytr+zKZAUu79LdeRWWpXuqH+JJdPx2P6GpplfxbZXMjKpUoBkTZtYJ2HLhfz0/iDlLkf5KT2xrmYjMTtI/PYfPdoWd7RoYPe6p1cvn/HjIdH3vNHspDYGKjKo1c4qdRORUwUn9ylHj/1qbM+fo2DK9uIF/h4ZYeoDYPtZqafpjVO6i3Z2dZYeAcAbPx62mmnS1WG7JkpWkHaHp5or3ZnV1ZVaGbHfWWpkGSDeWdHdJioplhPzWd5gTHlhap9kZH3/d0Bl+Ot8STXvOWoGEAuU+7aOwevfH/RIk7SeHnKkOMtPrtSgqVGDlBYbgYG3NLJq/hl4SyPRIMXyWDxxbqWafV7s2wLt4iM83uykNgYqKpGT2aWqfJ1VwSl5yvGF4WZy5kgxVfPL6TDn7tO0khl4lQ7bBZSvIO0OTzRXqnEDU/r0KNpfyUGQYqpVU7uJypZlM6Il27wwJSMZjcKDYDBAsiO4syZSqeDQE7+x1PFbXkd6ahJytTZCrClRzYUg33rgZjyaHofteRfRLj7CLp8o4c75lroP9Gkd4zD/6Ok3tsRARQVyM7ttBpFTBefKBGByCzF3M6Wrn5cTTEnVnCwd10l02ml3nqaVzMBrWWjL/V28XculRpWy5W+rVvqVPD3K6cchNppJyXHL6SNl6TGJkVNieeGNHw9bDTW13Bdgv5qu7W92tuiKef4h03da5i9PNBs4ui712CSktDZCqinR1QBc6pykxToOUOSUm+6eb2f3AbH8o8ff2ISBiptEb6giwwtN5Fb5msi9SVhmfjmFmLuZ0p3PywmmpJ6oV+wrEP0s4PrTtFh6xGbgdXXYrha1XO5UKdsV6L2TZQWWnpwN1JafAVg6rpPdDUHuccvpI2Xr41/yMLxzgt3rzvKC3dxAEJ8zxbImcYrIzMK2+UvtZgOp6/Js0RW7BSf12CTkiNymRLUWgpQidxZoNZrg5NwHhL9+Vb03+zFQcZPUkFrb4YWWnFX5WmYMOTc5R0u2i3E3U3qjKUDq6fajDbnYNPV20Y6y7jxhypmB19Vhu56qqvcEqdqB5zKSJadcn7M+x7zWkydmAxXrPFop/D2KRik5faQcdVhVEoiK9X+yPAapxfzE+th6ownX9jrY8Me5G33obLZTq0bQW00NUg8+tsPNnZ1jU3ovlFxVHOTILTfVrIGVCmZt7xmD28fqrm+jJQYqEuReQAlRIaJzK9gOL5Ti7Ibt7CbnLPOLHcf2vAtuZUpPNAWIdRoceWsC5v6Sa/WZSkBydIO7T5i2n3c2bPfeNtYd5/q3cW0IsJ5I/batG4WLBodzNuQg84e/RxeY8p9aI9liwhx3HnXlRuds8jSpffoBOF9SbreitaNr1NmcKXIW8zPt21vBrek6cBQ0+QEIDvBzeR+OVvb2RPAiFUxO7t0cb/wob80j25oxpUGO3HLT0zWwYveM+b/l222np76NDFREKOkkmVtYggc7xNr90JWC/fBCKbY3SNsL1dFNzlHmF+uMB9zo62FLLFNKFRhy+5g4K2xM22w6Woj/W5tj90Q+4q+hvK72PXFEbmEoFvwUGMuw49hFLLGZ3GnZrlN4pldzh7+lXgMUE0e/rVg+zfrBfgik2pNJSQUCtvl75K0JGHGrfR8SOccIWE+eZtsMZLopTZi/S/SYpK5RZ/1e5CzmJ9XM5WmOOhdXArj3/za7NBJOci6cr/dhz4lLWPBrvuq1c1J5aFD7xrj7ZudrHonVjBkgPUxdjNwAxFHgq0YQJ6fTuDcDYzkYqNiQWz1nG8woja6lOGrGEcs0IQH+ovsODvAT7TsDkUJTLFM6Ctac1SbICfSk5quwPN8AMPo2ZfOOeLqjmqN5NioEATvyLuKuNGWjgrzN0TlS0kyVW1gi+rQNqD+ZlNiwdct1XSoFYO4vufjol1xkDXR8nmPCrJcYsCTWDLQj7yImLtwlq6lTsKlbtT2fBsBu/So5tTPeDlIA50GW2Hlwluf35F8U7X8D3Ah+5v/69wNfpXDjoUqtfhJSwaScBwixm7sA4IPBbVC3dqCsWlIl15YnO7vK6aj+wZA2Li014SkMVGzIqZ4TC2YMhhvr0rgzkZfSCeFMGdc2SHl9QApKrlaI9p0RKyFsM6Wc5qSlu8RrEwA4DfSczVdRIQh2awbJmXfE0x3V5MyzMXHhLpRcvY4uSdG67Jwm5xzJbaaSU+AB4tePK0+FljcUqSYVAc7Ps+USA87SGxMWhMjazssER+dVLMhydG7Fzr9WS2LIGaW489hFRIQ4XwdJrCbFmUoByN6Ui+f7tFTtmFw5f1K1IW3jlS1uqaQJ2LZpXK3yxPZ3teVvMOAWhZM6ehoDFRtyqudEo2vhxuJ5kSGBLhcuSiaEE7tp+hn+Xk+kwFgm6yYilimdBWuO3ne0uJ+zdngTA2AOUgB58454o6OanCpT037fe/Bm3XVOU1LYySnQ7W5kBmBct0T837ocyetHzurRcvuGSeVvJQtfipHTHGO5jdzFJm1rThwdr+X2WtbMORulaDDcaA4T/vq37X3P9FsAsHuokuujDbmiw8K9SUltiJzvUvo5tac4sPxd9568JNlRXi8YqNiQ0z4YEuAvWnBZTuzkSuGiZEI4qV7sppEQolXOsK9QmZzR3C5TOiuYnb3vLNBz9iQu1ufH2UXpqY5qljcSsc+KdaSu+GtSF3fWLVJKzncoLezkfKfYE2JsZLDk9ePsiVvuNWPK32JBh9KFL23ZXhPOblKu3kS8OVTVHZY3VtvA1HL+IkcjlaTOuwHAgx1jsfC3fIf9YVxZF0ptanWIdyWdSvsFAvZz9dgy/a7piXVxd5rzfjpaYqAiQk774L1tGmHZrlMujcSRIreqNa+wVFbGNR1H9sY8zP3lT9GnmdaNwp2mQ2yKakfvO3vykKp6NE3CdHdaQyzcli87mADU6ahmS+xGkjkg1a76WqyPUNt4xwsgOtqH3KdlsdV9HX2HkiBNKl1ihaztE6JUge7ohg44bzK0Zc7fm3Lx0QZ5/ZjkNFeJXROOblKujNIoMJbZzU0yRaQ/ht6WxLA8D4XFV/DEgt1225jKLdvfQmxSxaXjb3QSTrsp3GFThNJ1oTxV6+Rq05GJq+mUKreAG82gtit8A+Jz9QDigZK7x+VpBkFquU8fUFRUhLCwMBiNRtSpU8dj+ykwlll13AOk1/sAbmScIXN/tfueBaP/Ibr2jNj+HE0It2RcOkquVmDfSaNdlZ3YE5lt2i2/y3L2TKl0SEXZjt539lnb47Q9j4u2HRftoe+Iks/IOTap31ys+tsgWBfOpv06O0di+3D0m5g+J7W6r7PvsD1Hk3s3R+pNYVZPYSEB/qL5znISPFenG5c63tzCElWuGTlPhJbnwJac8+/sO+Xk1+/2nsKE+bvsXp8l0l/MlTziiJInekfbOrpG8i+UmRewlHtNm37DvScu2Q0ZdnQuXTlHWvT5UeO3tMznlqPeHLHch546+Cu5f7NGRQZHy4qLFaLujoOXqmr1NxjQv01D803ENGto65vCJQtoyXkZDM6Hn1k+CVv+Xyydjo5BznHacqWaVeozrjxBSP3m2/IuyuqfJOcYXXlalrO6r+2cIJZs26bFnsKkmrOyLFYudqUJwlltllrXjInUzcjqHIjcFN1t85eTX6WeD21fVrNvBKDsid523pDRtyVguMXwb6m0HTp9WXQfcuaMMjdFyBgybKL0OtLqZi2VTsuRgs6YzpHcBTRN+3C11lIvGKjIoDTwULNwcdSZrVKwX1NETtr9IG9eBq2jb1eqI20/4+oxSP3m7eMjnPZPkmJ745QaWu6ov4zcwsl2ThBLpnQ+9NFW83dZfqXY14s1l7jSBGE55Nf0xG1Kk7OJDZU8ATv73V29KTqiJL+2i4+0++0NANrG21+TavaNkHujEps35L+/5OKjjblORzTZDhu33Ifcc6TkXCopn5WeAzl5zt0O4KaRgkomu5PT18rEUT8hy1FbeluI0BIDFRlcCTzUXhguPbGu6JBMZzcLqbQ7WzRre94FXUbfprQZDAaramWpbV09BkfnzZUgVKyP09JdJ0WHliupgXHE0fHKmvTpr0LVNMW20n5DUqRWBZa6ZpQGm64s5OntPB0TFoSsgamY+vU+VOLGw0PmwFS3aiidUVLzIJU/nI1ocqWMksPduX+UTn0vN8+51AH8r9/cxHROL5Vek9206qivlaO5euwGA1iM2nLUoVvrFZUZqMjkSuDhTuEidgF0SYp2qXpcSdqdTWim5fBa23kYDIDDyb3c7Ygodd6U5gWxG+fXNrPa+hmA/z56C4ICathN0W4iVTj54UYnZH8/g9P1aRyNXLNk6muwaFs+5v9248+Av4egqj1XkNQTtyvBphodUL1ROHt7WQUlNQ9SS4MAjs+l1D6CA/ywOafQpfPp7tw/Sqe+N09K5yTPuZI3B7VvjJDAGnb9k5Q2rYoFZ5N7Nzd3AwDs5+qx/YztqC2xfWpdq27CQEUBbz15SV0AG6d0t4rIlUxzLCftzpoWtFz7wXaUBHDjAnM0c6Uaa2ZInTcleUHu/CujPt0h+mRjedO0LWgGt2+MJ+5oam63lloTBxCv1TGNXDP8VXoL+DsI2Zp7wWqYuIAbkxr+Z0gbWU1dcs+FoxufK0GHu7+7ksLZ3YBGST5SY1/PZSSb+yW5Gmw6G2Zvu4Clbb86pSPb3Jn7R+nU91KT0onlOVcD4rZx9s3HrjStyunzY6tLUjTeHZwGP4MBlYJgN2rLcp96GBpvwkBFh5wN4zQ/EhhsP6n+fk08NRGQkjZZsaRVCtJzLJirWi2epkY6mDTOU+TO4Cr2ZCPWTDK5d3Nk/XWzWbjtONJiw8zLLDiaA8i20Fm265TVyDUAVn0NOmWtsUtjJYDIkECX84HSIMKVoMOVploTJYWzN5821djXom3HrTpPT+7dXDQYjgkLkrzepB6ObNP3XO9kNAoPwsXSq3jpm99d7oTtqANqZG3nc4bsOCbS+R3iU9+bF2EUSYdYnnM1IBatDclobv5tTPwAWd8l91q0+40ykh2mX09D4xmo6IizCeXE1u9RM8KV6nj7gRtP0I4oKXylqqL9DM4vZlMVrgDxDoGeJlYw9W/T0FybIfU0tSPvov16TX9VSUsV/FJPWdl/rVJru49teRetRgdZ9jUQG5gip/BUei7EbnxStUhygw5Xm1XkFs7efNpUY19iNQtv/HgYd9/c0C4Yfq53MhpFBNldb1KLI4qlL+uHQzBIBOdKbnZSkyya1l5yNGeIqXbEltTU90pHSLoTEIvlz/Cgmla1OQJu9OdSo5wS+43e+OEwnuudLDnqzdOrOCvBQEUn5EwoJ7Z+j5oRrtSF54nFqVzp8Jg10HqyNcNfBZPUsUs9IVUK4pNrKUm70ip4sYLpmV7NkVdYitKr1zDy0x12n7lYat/xT07BL9bPY+4vuaLpkhodJFUL9FxGstt5zVkQIRbAbpzSXXHQ4UpTrdzC2ZtPm85qWF0dJSIVDGf+tSK2ZX8OR53wpRbsk5qhS+mwc9tJMAXAKuAysSxDAPEp+x1Ny+DKCEl3+hnZ5s8uSdFWyxAIcC0gFcsPUr9/65vCJa8tdwIxtTFQ0QE51fKm6ns1I1yxTO2tDn6uFPSWQ1sNBjit5XHUlCUIwM5jF9G3tfod+2zZjt4yMRVUm3MKRT8XERwg2pZtWaMCOM8DUtX4JmJBoljHu+cykvF4l0SHxyqXVBDhqH+Ws4nf1OgAK6dwLjCW4bu9BXafNf0OanfE3XfCKLqvvScumYeYuzJKxN9gEF1N3cRUS/HB4DYOF9+T27Rp2qfSm51lmXS+pFx0ojwTR2uOAcD7g9vgrjTxBy+p397ZNA6O8rIaa705C37lzFDtKAB3FNB7u8O3FF0EKrNmzcLMmTNx+vRppKWl4YMPPkCHDh20TpbXOJpczLZaXq0I19EN1/R9UhO9iVF6Ubo67XhuYYnsFUudFaBK52R2pQpeTmDjaGVWqWmzLQMIsfWanH2/LbEC0RuFlFjfCFcKazX7izgbQSK1AvDk3s0lh167qsBYhhk/HrJ7fWy3JuahrIBro0ReH5Ai2rHTUqUA1K39d58kqckTxWo9bJuN3ncS8Dhiupk6W2zVzwAUFl9B48hgyWvKESWTRjqi1lpvzspEqVGatvnBnXuHKzWTatM8UFm0aBGefvppfPjhh+jYsSPeffdd9OrVC4cPH0a9evW0Tp5X7Dtp/8QEiFfLqzU/i1qLwwGuXZRKLxx39mE7bwEgPrmWs8JITsc+V/oxODoXUr/3pdJr5g61M344hPCgmk7nb3B0I5EqED1ZSNn+pmO7JcLP4Hz4qC1P9BcRO25HnS0BoFF4kLnvhFrpkKoVDA8OkN2XxpSnpfKS2LpbJo5GjTkqlzb8cc4uP0vVZChhm5dtCQLwxILdTtdjc7YP2+DUk/P4SB2bszQ7G6Vpmx/0UjviCs0DlbfffhujR4/G8OHDAQAffvghVqxYgXnz5mHKlCkap87zCoxlmPGD/ROTiVS1vDuZTM3F4dy5Sci9cNTYh+XCjGKTa7la82HZsc/2c0pqBxydC7E+JzN+VDadvZwbiTcLLrHfdNbaHLvt5KTNW/1FnI2KE2tGcTcdSmdItgzopPK0o7y39+Qlu/XDTDUZzq5By3zqyZvioPaNkdwgFP3/b7NdrajlNSHWfK6Ut+fxUXLenE17ILUoqy8FKCaaBipXr17Fjh07MHXqVPNrfn5+6NGjB7Zs2WK3fXl5OcrLy83/Lyoq8ko6PUnOHBtqF7qOqhi9Mc+FJTkXjhr7eL5vCwy/NV60AHC15sO2Y5/t51xZesGTbdneupHIISffv9q/Fe5oUd9p2rw1OkFywr2/OmiKNaO4mw5H/SacLTngyuy86Yl1cXea/ZICruQ5T94US65WOG26dbQem1xazOMj97w5atLVsuOrJ2gaqBQWFqKiogL169e3er1+/fo4dMi+liEzMxMvv/yyt5LnFXL6D6hd6DqrYvT0PBdKqbUPqQLA1ZoPsY59lp9Ts0+RJU+fD2+Qk+/Lr1XKDkS9MTpBLFAd1SUBwzv/vVCfJ9LhygzJ7gT3YvlCT0NVpdJjS430eXseHyXE9mM5O21VCVIAHTT9KDF16lQ8/fTT5v8XFRUhNjZWwxS5TyyzWc6x4alMLlXIKb3IvHFRenofrtZ8yBmF5YmaC28VhJ7krK8BALRz0vHRkrdqiJztx1PpkAoqpV5XO7DQW57zVrnp6nHrJT9WFQZBar1xL7h69SqCg4OxePFi9O/f3/z60KFDcenSJXzzzTcOP19UVISwsDAYjUbUqVPHw6n1rAJjmVVms/2/1ulRe3tvpEmJRduO2xVGckZruPo5NWidR9RgOobPtuTh+/2nza8PvKUR3nrgZu0SVgV4Im/qLc95q9zU23FXBUru35oGKgDQsWNHdOjQAR988AEAoLKyEo0bN8aECROcdqatSoEKac/VwoiFmDr25F/E9ryLaBcf4XTuCpKHeZP0Ssn9W/Omn6effhpDhw5Fu3bt0KFDB7z77rsoKSkxjwIi8hZX+2z4ak96vUmLZYCiNuZNqgo0D1QGDRqEc+fO4aWXXsLp06dx880348cff7TrYEtERETVj+ZNP+5g0w8REZHvUXL/9vNSmoiIiIgUY6BCREREusVAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLd0nwKfXeYJtUtKirSOCVEREQkl+m+LWdyfJ8OVC5fvgwAiI2N1TglREREpNTly5cRFhbmcBufXuunsrISp06dQmhoKAwGg9bJ8bqioiLExsYiPz+fax25gedRHTyP6uB5VAfPozo8dR4FQcDly5fRsGFD+Pk57oXi0zUqfn5+uOmmm7ROhubq1KnDC1EFPI/q4HlUB8+jOnge1eGJ8+isJsWEnWmJiIhItxioEBERkW4xUPFhgYGBmDZtGgIDA7VOik/jeVQHz6M6eB7VwfOoDj2cR5/uTEtERERVG2tUiIiISLcYqBAREZFuMVAhIiIi3WKgQkRERLrFQMUHbNiwAf369UPDhg1hMBiwbNkyq/cFQcBLL72EmJgYBAUFoUePHjhy5Ig2idUxZ+dx2LBhMBgMVn+9e/fWJrE6lZmZifbt2yM0NBT16tVD//79cfjwYattrly5gvHjx6Nu3bqoXbs2Bg4ciDNnzmiUYn2Scx67detmlx/HjBmjUYr1afbs2WjdurV5MrL09HT88MMP5veZF+Vxdh61zosMVHxASUkJ0tLSMGvWLNH333jjDbz//vv48MMP8euvvyIkJAS9evXClStXvJxSfXN2HgGgd+/eKCgoMP8tWLDAiynUv/Xr12P8+PHYunUrfvrpJ1y7dg09e/ZESUmJeZunnnoK3377Lb766iusX78ep06dwoABAzRMtf7IOY8AMHr0aKv8+MYbb2iUYn266aabkJWVhR07dmD79u24/fbbcc899+D3338HwLwol7PzCGicFwXyKQCEpUuXmv9fWVkpNGjQQJg5c6b5tUuXLgmBgYHCggULNEihb7A9j4IgCEOHDhXuueceTdLjq86ePSsAENavXy8Iwo28V7NmTeGrr74yb3Pw4EEBgLBlyxatkql7tudREASha9euwpNPPqldonxURESE8NFHHzEvusl0HgVB+7zIGhUfl5ubi9OnT6NHjx7m18LCwtCxY0ds2bJFw5T5pnXr1qFevXpo3rw5xo4di/Pnz2udJF0zGo0AgMjISADAjh07cO3aNav8mJycjMaNGzM/OmB7Hk2++OILREVFISUlBVOnTkVpaakWyfMJFRUVWLhwIUpKSpCens686CLb82iiZV706UUJCTh9+jQAoH79+lav169f3/weydO7d28MGDAACQkJyMnJwfPPP4+MjAxs2bIF/v7+WidPdyorKzFp0iR07twZKSkpAG7kx4CAAISHh1tty/woTew8AsCQIUMQFxeHhg0bYu/evXjuuedw+PBhLFmyRMPU6s++ffuQnp6OK1euoHbt2li6dClatmyJ3bt3My8qIHUeAe3zIgMVor8MHjzY/O/U1FS0bt0aiYmJWLduHe644w4NU6ZP48ePx/79+7Fx40atk+LTpM7jY489Zv53amoqYmJicMcddyAnJweJiYneTqZuNW/eHLt374bRaMTixYsxdOhQrF+/Xutk+Ryp89iyZUvN8yKbfnxcgwYNAMCuJ/uZM2fM75FrmjRpgqioKBw9elTrpOjOhAkT8N1332Ht2rW46aabzK83aNAAV69exaVLl6y2Z34UJ3UexXTs2BEAmB9tBAQEoGnTpmjbti0yMzORlpaG9957j3lRIanzKMbbeZGBio9LSEhAgwYN8PPPP5tfKyoqwq+//mrVvkjKnThxAufPn0dMTIzWSdENQRAwYcIELF26FGvWrEFCQoLV+23btkXNmjWt8uPhw4dx/Phx5kcLzs6jmN27dwMA86MTlZWVKC8vZ150k+k8ivF2XmTTjw8oLi62ilxzc3Oxe/duREZGonHjxpg0aRJeffVVNGvWDAkJCXjxxRfRsGFD9O/fX7tE65Cj8xgZGYmXX34ZAwcORIMGDZCTk4PJkyejadOm6NWrl4ap1pfx48dj/vz5+OabbxAaGmpu6w8LC0NQUBDCwsIwcuRIPP3004iMjESdOnXwxBNPID09Hf/4xz80Tr1+ODuPOTk5mD9/Pvr06YO6deti7969eOqpp9ClSxe0bt1a49Trx9SpU5GRkYHGjRvj8uXLmD9/PtatW4eVK1cyLyrg6DzqIi9qNt6IZFu7dq0AwO5v6NChgiDcGKL84osvCvXr1xcCAwOFO+64Qzh8+LC2idYhR+extLRU6NmzpxAdHS3UrFlTiIuLE0aPHi2cPn1a62Tritj5AyBkZ2ebtykrKxPGjRsnRERECMHBwcK9994rFBQUaJdoHXJ2Ho8fPy506dJFiIyMFAIDA4WmTZsKzz77rGA0GrVNuM6MGDFCiIuLEwICAoTo6GjhjjvuEFatWmV+n3lRHkfnUQ950SAIguCdkIiIiIhIGfZRISIiIt1ioEJERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQIfJxp0+fxhNPPIEmTZogMDAQsbGx6Nevn9UaJ5s3b0afPn0QERGBWrVqITU1FW+//TYqKirM2+Tl5WHkyJFISEhAUFAQEhMTMW3aNFy9etVqf3PnzkVaWhpq166N8PBwtGnTBpmZmeb3p0+fDoPBgN69e9uldebMmTAYDOjWrZusYzN9l8FgQI0aNRAfH4+nnnoKxcXFCs8SEfkqrvVD5MPy8vLQuXNnhIeHY+bMmUhNTcW1a9ewcuVKjB8/HocOHcLSpUvxwAMPYPjw4Vi7di3Cw8OxevVqTJ48GVu2bMGXX34Jg8GAQ4cOobKyEnPmzEHTpk2xf/9+jB49GiUlJXjzzTcBAPPmzcOkSZPw/vvvo2vXrigvL8fevXuxf/9+q3TFxMRg7dq1OHHihNWqwPPmzUPjxo0VHWOrVq2wevVqXL9+HZs2bcKIESNQWlqKOXPm2G179epVBAQEuHAmPUePaSLyKV6brJ+IVJeRkSE0atRIKC4utnvv4sWLQnFxsVC3bl1hwIABdu8vX75cACAsXLhQ8vvfeOMNISEhwfz/e+65Rxg2bJjDNE2bNk1IS0sT7rrrLuHVV181v75p0yYhKipKGDt2rNC1a1cZR/f3d1kaPXq00KBBA6v3586dK8THxwsGg0EQhBvHPnLkSCEqKkoIDQ0VunfvLuzevdv8Hbt37xa6desm1K5dWwgNDRVuueUWYdu2bYIgCEJeXp5w1113CeHh4UJwcLDQsmVLYcWKFYIgCEJ2drYQFhZmlZ6lS5cKlkWpq2kiInFs+iHyURcuXMCPP/6I8ePHIyQkxO798PBwrFq1CufPn8czzzxj936/fv2QlJSEBQsWSO7DaDQiMjLS/P8GDRpg69atOHbsmNP0jRgxAp988on5//PmzcNDDz3kdu1CUFCQVXPU0aNH8fXXX2PJkiXm5efvv/9+nD17Fj/88AN27NiBW265BXfccQcuXLgAAHjooYdw0003Ydu2bdixYwemTJmCmjVrArixsnF5eTk2bNiAffv2YcaMGahdu7aiNLqSJiISx6YfIh919OhRCIKA5ORkyW3++OMPAECLFi1E309OTjZvI/b9H3zwgbnZBwCmTZuGAQMGID4+HklJSUhPT0efPn1w3333wc/P+rnnrrvuwpgxY7Bhwwa0bdsWX375JTZu3Ih58+YpPVSzHTt2YP78+bj99tvNr129ehX/+9//EB0dDQDYuHEjfvvtN5w9exaBgYEAgDfffBPLli3D4sWL8dhjj+H48eN49tlnzeeuWbNm5u87fvw4Bg4ciNTUVABAkyZNFKfTlTQRkTgGKkQ+SlCw8LmSbQHg5MmT6N27N+6//36MHj3a/HpMTAy2bNmC/fv3Y8OGDdi8eTOGDh2Kjz76CD/++KNVsFKzZk08/PDDyM7Oxp9//omkpCS0bt1aUToAYN++fahduzYqKipw9epV9O3bF//5z3/M78fFxZkDAgDYs2cPiouLUbduXavvKSsrQ05ODgDg6aefxqhRo/DZZ5+hR48euP/++5GYmAgAmDhxIsaOHYtVq1ahR48eGDhwoOJ0u5ImIhLHQIXIRzVr1szcCVZKUlISAODgwYPo1KmT3fsHDx5Ey5YtrV47deoUunfvjk6dOuG///2v6PempKQgJSUF48aNw5gxY3Dbbbdh/fr16N69u9V2I0aMQMeOHbF//36MGDFC6SECAJo3b47ly5ejRo0aaNiwoV3TkW2zV3FxMWJiYrBu3Tq77woPDwdwYzTRkCFDsGLFCvzwww+YNm0aFi5ciHvvvRejRo1Cr169sGLFCqxatQqZmZl466238MQTT8DPz88u6Lt27ZrdflxJExGJYx8VIh8VGRmJXr16YdasWSgpKbF7/9KlS+jZsyciIyPx1ltv2b2/fPlyHDlyBA8++KD5tZMnT6Jbt25o27YtsrOz7ZpzxJgCHbE0tGrVCq1atcL+/fsxZMgQJYdnFhAQgKZNmyI+Pl5W/5ZbbrkFp0+fRo0aNdC0aVOrv6ioKPN2SUlJeOqpp7Bq1SoMGDAA2dnZ5vdiY2MxZswYLFmyBP/85z8xd+5cAEB0dDQuX75sdaymPihqpImI7DFQIfJhs2bNQkVFBTp06ICvv/4aR44cwcGDB/H+++8jPT0dISEhmDNnDr755hs89thj2Lt3L/Ly8vDxxx9j2LBhuO+++/DAAw8A+DtIady4Md58802cO3cOp0+fxunTp837Gzt2LF555RVs2rQJx44dw9atW/Hoo48iOjoa6enpomlcs2YNCgoKvFZz0KNHD6Snp6N///5YtWoV8vLysHnzZrzwwgvYvn07ysrKMGHCBKxbtw7Hjh3Dpk2bsG3bNnM/nkmTJmHlypXIzc3Fzp07sXbtWvN7HTt2RHBwMJ5//nnk5ORg/vz5Vh2GXU0TEUlj0w+RD2vSpAl27tyJ1157Df/85z9RUFCA6OhotG3bFrNnzwYA3HfffVi7di1ee+013Hbbbbhy5QqaNWuGF154AZMmTYLBYAAA/PTTTzh69CiOHj1qNfcJ8Hcflx49emDevHmYPXs2zp8/j6ioKKSnp+Pnn3+2639hIjYiyZMMBgO+//57vPDCCxg+fDjOnTuHBg0aoEuXLqhfvz78/f1x/vx5PProozhz5gyioqIwYMAAvPzyywCAiooKjB8/HidOnECdOnXQu3dvvPPOOwBu1GJ9/vnnePbZZzF37lzccccdmD59utPOsM7SRETSDILSXnZEREREXsKmHyIiItItBipEpJnatWtL/v3yyy9aJ4+IdIBNP0SkmaNHj0q+16hRIwQFBXkxNUSkRwxUiIiISLfY9ENERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt36f4Yf/NhtfB6xAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACE10lEQVR4nO3deVxU5f4H8M+AgoACIruyiSIqSG4p7qZXXFpMK00z98ols82lMrVFabmt17RN/d1bmllallqaawqau5JLSiAuoKIyyKIgPL8/cKZZzpmNGWaG+bxfL0rmHM4858yZc77nWb6PQgghQEREROTC3OxdACIiIiJ7Y0BERERELo8BEREREbk8BkRERETk8hgQERERkctjQEREREQujwERERERuTwGREREROTyGBARERGRy2NAREROY968eVAoFCatq1AoMG/ePJuWp1evXujVq5fDbo+ITMeAiIjMtnz5cigUCvVPnTp10LhxY4wZMwYXLlywd/EcTnR0tNbxCg4ORvfu3bF27VqrbL+kpATz5s3D9u3brbI9IlfEgIiILPbaa6/hf//7H5YsWYIBAwbgq6++Qs+ePXHz5k2bvN8rr7yC0tJSm2zb1u666y7873//w//+9z+88MILuHjxIoYMGYIlS5ZUe9slJSWYP38+AyKiaqhj7wIQkfMaMGAAOnToAACYMGECAgMD8dZbb2HdunV45JFHrP5+derUQZ06znnZaty4MR577DH1748//jiaNWuG999/H0899ZQdS0ZEAGuIiMiKunfvDgDIzMzUev3kyZN46KGHEBAQgHr16qFDhw5Yt26d1jrl5eWYP38+mjdvjnr16qFRo0bo1q0bNm/erF5Hqg/RrVu38OyzzyIoKAgNGjTA/fffj/Pnz+uVbcyYMYiOjtZ7XWqby5Ytwz333IPg4GB4enqiVatWWLx4sVnHwpjQ0FC0bNkSWVlZBte7fPkyxo8fj5CQENSrVw9JSUn4v//7P/Xy7OxsBAUFAQDmz5+vbpazdf8potrGOR+1iMghZWdnAwAaNmyofu3PP/9E165d0bhxY8yaNQs+Pj749ttvMXjwYHz//fd48MEHAVQFJgsXLsSECRNw9913o7CwEPv378fBgwfxr3/9S/Y9J0yYgK+++gojRoxAly5dsHXrVgwaNKha+7F48WK0bt0a999/P+rUqYOffvoJkydPRmVlJaZMmVKtbauUl5fj3LlzaNSokew6paWl6NWrF86cOYOpU6ciJiYGq1evxpgxY1BQUIBnnnkGQUFBWLx4MSZNmoQHH3wQQ4YMAQC0adPGKuUkchmCiMhMy5YtEwDEb7/9Jq5cuSLOnTsnvvvuOxEUFCQ8PT3FuXPn1Ov26dNHJCYmips3b6pfq6ysFF26dBHNmzdXv5aUlCQGDRpk8H3nzp0rNC9bhw8fFgDE5MmTtdYbMWKEACDmzp2rfm306NEiKirK6DaFEKKkpERvvZSUFNG0aVOt13r27Cl69uxpsMxCCBEVFSX69esnrly5Iq5cuSKOHDkihg8fLgCIp59+WnZ7H3zwgQAgvvrqK/VrZWVlIjk5WdSvX18UFhYKIYS4cuWK3v4SkXnYZEZEFuvbty+CgoIQERGBhx56CD4+Pli3bh2aNGkCALh27Rq2bt2KRx55BDdu3EB+fj7y8/Nx9epVpKSk4PTp0+pRaf7+/vjzzz9x+vRpk99/w4YNAIBp06ZpvT59+vRq7ZeXl5f630qlEvn5+ejZsyf+/vtvKJVKi7a5adMmBAUFISgoCElJSVi9ejVGjRqFt956S/ZvNmzYgNDQUDz66KPq1+rWrYtp06ahqKgIO3bssKgsRKSPTWZEZLFFixYhLi4OSqUSS5cuxc6dO+Hp6alefubMGQghMGfOHMyZM0dyG5cvX0bjxo3x2muv4YEHHkBcXBwSEhLQv39/jBo1ymDTz9mzZ+Hm5obY2Fit11u0aFGt/dq9ezfmzp2L9PR0lJSUaC1TKpXw8/Mze5udOnXCG2+8AYVCAW9vb7Rs2RL+/v4G/+bs2bNo3rw53Ny0n11btmypXk5E1sGAiIgsdvfdd6tHmQ0ePBjdunXDiBEjcOrUKdSvXx+VlZUAgBdeeAEpKSmS22jWrBkAoEePHsjMzMSPP/6ITZs24YsvvsD777+PJUuWYMKECdUuq1xCx4qKCq3fMzMz0adPH8THx+O9995DREQEPDw8sGHDBrz//vvqfTJXYGAg+vbta9HfEpHtMSAiIqtwd3fHwoUL0bt3b/znP//BrFmz0LRpUwBVzTymBAMBAQEYO3Ysxo4di6KiIvTo0QPz5s2TDYiioqJQWVmJzMxMrVqhU6dO6a3bsGFDFBQU6L2uW8vy008/4datW1i3bh0iIyPVr2/bts1o+a0tKioKR48eRWVlpVYt0cmTJ9XLAflgj4hMxz5ERGQ1vXr1wt13340PPvgAN2/eRHBwMHr16oVPP/0Uubm5eutfuXJF/e+rV69qLatfvz6aNWuGW7duyb7fgAEDAAAfffSR1usffPCB3rqxsbFQKpU4evSo+rXc3Fy9bNHu7u4AACGE+jWlUolly5bJlsNWBg4ciLy8PKxatUr92u3bt/Hxxx+jfv366NmzJwDA29sbACQDPiIyDWuIiMiqXnzxRTz88MNYvnw5nnrqKSxatAjdunVDYmIiJk6ciKZNm+LSpUtIT0/H+fPnceTIEQBAq1at0KtXL7Rv3x4BAQHYv38/vvvuO0ydOlX2ve666y48+uij+OSTT6BUKtGlSxds2bIFZ86c0Vt3+PDhmDlzJh588EFMmzYNJSUlWLx4MeLi4nDw4EH1ev369YOHhwfuu+8+PPnkkygqKsLnn3+O4OBgyaDOlp544gl8+umnGDNmDA4cOIDo6Gh899132L17Nz744AM0aNAAQFUn8FatWmHVqlWIi4tDQEAAEhISkJCQUKPlJXJq9h7mRkTORzXsft++fXrLKioqRGxsrIiNjRW3b98WQgiRmZkpHn/8cREaGirq1q0rGjduLO69917x3Xffqf/ujTfeEHfffbfw9/cXXl5eIj4+Xrz55puirKxMvY7UEPnS0lIxbdo00ahRI+Hj4yPuu+8+ce7cOclh6Js2bRIJCQnCw8NDtGjRQnz11VeS21y3bp1o06aNqFevnoiOjhZvvfWWWLp0qQAgsrKy1OuZM+zeWEoBue1dunRJjB07VgQGBgoPDw+RmJgoli1bpve3aWlpon379sLDw4ND8IksoBBCo16YiIiIyAWxDxERERG5PAZERERE5PIYEBEREZHLY0BERERELo8BEREREbk8uwZECxcuRMeOHdGgQQMEBwdj8ODBehlme/XqBYVCofXz1FNPaa2Tk5ODQYMGwdvbG8HBwXjxxRdx+/ZtrXW2b9+Odu3awdPTE82aNcPy5cttvXtERETkJOyamHHHjh2YMmUKOnbsiNu3b+Oll15Cv379cPz4cfj4+KjXmzhxIl577TX176qsrEDVPESDBg1CaGgo0tLSkJubi8cffxx169bFggULAABZWVkYNGgQnnrqKXz99dfYsmULJkyYgLCwMNn5lXRVVlbi4sWLaNCgAdPkExEROQkhBG7cuIHw8HC9iZJ1V3QYly9fFgDEjh071K/17NlTPPPMM7J/s2HDBuHm5iby8vLUry1evFj4+vqKW7duCSGEmDFjhmjdurXW3w0bNkykpKSYXDZVojf+8Ic//OEPf/jjfD/nzp0zeJ93qKk7lEolgKoJHjV9/fXX+OqrrxAaGor77rsPc+bMUdcSpaenIzExESEhIer1U1JSMGnSJPz5559o27Yt0tPT9SaWTElJwfTp02XLcuvWLa05lMSd/JXnzp2Dr69vtfaTiIiIakZhYSEiIiLUU93IcZiAqLKyEtOnT0fXrl215t8ZMWIEoqKiEB4ejqNHj2LmzJk4deoU1qxZAwDIy8vTCoYAqH/Py8szuE5hYSFKS0vh5eWlV56FCxdi/vz5eq/7+voyICIiInIyxrq7OExANGXKFGRkZGDXrl1arz/xxBPqfycmJiIsLAx9+vRBZmYmYmNjbVae2bNn47nnnlP/roowiYiIqPZxiGH3U6dOxc8//4xt27ahSZMmBtft1KkTAKhnsw4NDcWlS5e01lH9HhoaanAdX19fydohAPD09FTXBrFWiIiIqHaza0AkhMDUqVOxdu1abN26FTExMUb/5vDhwwCAsLAwAEBycjKOHTuGy5cvq9fZvHkzfH190apVK/U6W7Zs0drO5s2bkZycbKU9ISIiImdm19nuJ0+ejBUrVuDHH39EixYt1K/7+fnBy8sLmZmZWLFiBQYOHIhGjRrh6NGjePbZZ9GkSRPs2LEDQNWw+7vuugvh4eF4++23kZeXh1GjRmHChAlaw+4TEhIwZcoUjBs3Dlu3bsW0adOwfv16k4fdFxYWws/PD0qlkrVFRFRjKioqUF5ebu9iEDmsunXrwt3dXXa5qfdvuwZEch2cli1bhjFjxuDcuXN47LHHkJGRgeLiYkRERODBBx/EK6+8orVTZ8+exaRJk7B9+3b4+Phg9OjRSE1NRZ06/3SR2r59O5599lkcP34cTZo0wZw5czBmzBiTy8qAiIhqkhACeXl5KCgosHdRiByev78/QkNDJeMKpwiInAkDIiKqSbm5uSgoKEBwcDC8vb2ZEJZIghACJSUluHz5Mvz9/dXdaTSZev92mFFmRERUpaKiQh0MNWrUyN7FIXJoqsFRly9fRnBwsMHmM0McYpQZERH9Q9VnSHOaIiKSp/quVKe/HQMiIiIHxWYyItNY47vCgIiIiIhcHgMiIiIi0rN9+3YoFIpqj3SMjo7GBx98YJUy2RIDIgeRqyxFWmY+cpWl9i4KEVG15OXl4emnn0bTpk3h6emJiIgI3HfffVoJctPS0jBw4EA0bNgQ9erVQ2JiIt577z1UVFSo18nOzsb48eMRExMDLy8vxMbGYu7cuSgrK9N6v88//xxJSUmoX78+/P390bZtWyxcuFC9fN68eVAoFOjfv79eWd955x0oFAr06tXL5P0rLCzEyy+/jPj4eNSrVw+hoaHo27cv1qxZA82B23/++SceeeQRBAUFwdPTE3FxcXj11VdRUlKiXufatWt4+umn0aJFC3h5eSEyMhLTpk1TT3ZuTHZ2NhQKheTPnj17TN6nXr16GZzw3BVwlJkDWLUvB7PXHEOlANwUwMIhiRjWMdLexSIiMlt2dja6du0Kf39/vPPOO0hMTER5eTl+/fVXTJkyBSdPnsTatWvxyCOPYOzYsdi2bRv8/f3x22+/YcaMGUhPT8e3334LhUKBkydPorKyEp9++imaNWuGjIwMTJw4EcXFxXj33XcBAEuXLsX06dPx0UcfoWfPnrh16xaOHj2KjIwMrXKFhYVh27ZtOH/+vNYUUUuXLkVkpOnX24KCAnTr1g1KpRJvvPEGOnbsiDp16mDHjh2YMWMG7rnnHvj7+2PPnj3o27cv+vbti/Xr1yMkJAR//PEHnn/+eWzZsgXbtm2Dh4cHLl68iIsXL+Ldd99Fq1atcPbsWTz11FO4ePEivvvuO5PL9dtvv6F169Zar3GEopkEmUSpVAoAQqlUWnW7FwtKRMysn0XUzH9+ms5aLy4WlFj1fYjIeZSWlorjx4+L0tJSexfFbAMGDBCNGzcWRUVFesuuX78uioqKRKNGjcSQIUP0lq9bt04AEN98843s9t9++20RExOj/v2BBx4QY8aMMVimuXPniqSkJHHvvfeKN954Q/367t27RWBgoJg0aZLo2bOnCXsnxKRJk4SPj4+4cOGC3rIbN26I8vJyUVlZKVq1aiU6dOggKioqtNY5fPiwUCgUIjU1VfY9vv32W+Hh4SHKy8uNlicrK0sAEIcOHZJdR7X///3vf0VUVJTw9fUVw4YNE4WFhUIIIUaPHi0AaP1kZWWJbdu2CQDit99+E+3btxdeXl4iOTlZnDx5Ur3tM2fOiPvvv18EBwcLHx8f0aFDB7F582at94+KihLvv/+++ncA4pNPPhH9+/cX9erVEzExMWL16tXq5b179xZTpkzR2sbly5dF3bp1xW+//Sa5j4a+M6bev9lkZmdZ+cWo1EmNWSEEsvNLpP+AiMgMNdkcf+3aNfzyyy+YMmUKfHx89Jb7+/tj06ZNuHr1Kl544QW95ffddx/i4uKwcuVK2fdQKpUICAhQ/x4aGoo9e/bg7NmzRss3btw4LF++XP370qVLMXLkSHh4eBj9WwCorKzEN998g5EjRyI8PFxvef369VGnTh0cPnwYx48fx3PPPQc3N+3bbFJSEvr27Wt0H319fbVmW6iuzMxM/PDDD/j555/x888/Y8eOHUhNTQUAfPjhh0hOTsbEiRORm5uL3NxcREREqP/25Zdfxr///W/s378fderUwbhx49TLioqKMHDgQGzZsgWHDh1C//79cd999yEnJ8dgeebMmYOhQ4fiyJEjGDlyJIYPH44TJ04AACZMmIAVK1bg1q1b6vW/+uorNG7cGPfcc4/VjokuBkR2FhPoAzed0YLuCgWiA5l/hIiqZ9W+HHRN3YoRn+9F19StWLXP8E2qus6cOQMhBOLj42XX+euvvwAALVu2lFweHx+vXkdq+x9//DGefPJJ9Wtz586Fv78/oqOj0aJFC4wZMwbffvstKisr9f7+3nvvRWFhIXbu3Ini4mJ8++23Wjd3Y/Lz83H9+nWD+wcY38eWLVvK7mN+fj5ef/11PPHEEyaXCwC6dOmC+vXra/1oqqysxPLly5GQkIDu3btj1KhR6j5dfn5+8PDwgLe3N0JDQxEaGqqV3PDNN99Ez5490apVK8yaNQtpaWm4efMmgKoA78knn0RCQgKaN2+O119/HbGxsVi3bp3B8j788MOYMGEC4uLi8Prrr6NDhw74+OOPAQBDhgwBAPz444/q9ZcvX44xY8bYNBUFAyI7C/PzwsIhiXC/8yG7KxRYMCQBYX5edi4ZETmzXGWpum8iAFQK4KU1GTatKRJmzARlzroAcOHCBfTv3x8PP/wwJk6cqH49LCwM6enpOHbsGJ555hncvn0bo0ePRv/+/fWCorp16+Kxxx7DsmXLsHr1asTFxaFNmzY2K7O56xcWFmLQoEFo1aoV5s2bZ9bfrlq1CocPH9b60RQdHY0GDRqofw8LC8Ply5dN2rbmMVJNjaH626KiIrzwwgto2bIl/P39Ub9+fZw4ccJoDVFycrLe76oaonr16mHUqFFYunQpAODgwYPIyMgwa/5RS7BTtQMY1jESPeKCkJ1fguhAbwZDRFRthprjbXWNad68uboztJy4uDgAwIkTJ9ClSxe95SdOnECrVq20Xrt48SJ69+6NLl264LPPPpPcbkJCAhISEjB58mQ89dRT6N69O3bs2IHevXtrrTdu3Dh06tQJGRkZZtUOAUBQUBD8/f0N7h+gvY9t27bVW37ixAn1Oio3btxA//790aBBA6xduxZ169Y1q2wRERFo1qyZ7HLd7SkUCslaNGN/q6qhUf3tCy+8gM2bN+Pdd99Fs2bN4OXlhYceekhvJKC5JkyYgLvuugvnz5/HsmXLcM899yAqKqpa2zSGNUQOIszPC8mxjRgMEZFV2KM5PiAgACkpKVi0aBGKi4v1lhcUFKBfv34ICAjAv//9b73l69atw+nTp/Hoo4+qX7tw4QJ69eqF9u3bY9myZXp9cqSoAiqpMrRu3RqtW7dGRkYGRowYYc7uwc3NDcOHD8fXX3+Nixcv6i0vKirC7du3cddddyE+Ph7vv/++XtBx5MgR/Pbbb1r7WFhYiH79+sHDwwPr1q1DvXr1zCqXNXh4eGilPDDV7t27MWbMGDz44INITExEaGgosrOzjf6dbkqAPXv2aDUxJiYmokOHDvj888+xYsUKs4NXSzAgIiKqhezVHL9o0SJUVFTg7rvvxvfff4/Tp0/jxIkT+Oijj5CcnAwfHx98+umn+PHHH/HEE0/g6NGjyM7OxpdffokxY8bgoYcewiOPPALgn2AoMjIS7777Lq5cuYK8vDzk5eWp32/SpEl4/fXXsXv3bpw9exZ79uzB448/jqCgIL1mGZWtW7ciNzcX/v7+Zu/fm2++iYiICHTq1An//e9/cfz4cZw+fRpLly5F27ZtUVRUBIVCgS+//BLHjx/H0KFD8ccffyAnJwerV6/Gfffdh+TkZHXOH1UwVFxcjC+//BKFhYXqfTQnQLl69ar671Q/qn4+poiOjsbevXuRnZ2N/Px8k2uPmjdvjjVr1uDw4cM4cuQIRowYYdLfrl69GkuXLsVff/2FuXPn4o8//sDUqVO11pkwYQJSU1MhhMCDDz5o8r5YzOAYNFKz1bB7IiJd1hx2f7GgRKSdya/RVB4XL14UU6ZMEVFRUcLDw0M0btxY3H///WLbtm3qdXbu3ClSUlKEr6+v8PDwEK1btxbvvvuuuH37tnqdZcuW6Q0HV/2ofPfdd2LgwIEiLCxMeHh4iPDwcDF06FBx9OhR9TqqYedynnnmGZOH3QshREFBgZg1a5Zo3ry58PDwECEhIaJv375i7dq1orKyUr3e0aNHxdChQ0VAQICoW7euiI2NFa+88oooLi5Wr6Ma2i71k5WVZbQsqmH3Uj8rV66U3f/3339fREVFqX8/deqU6Ny5s/Dy8tIbdn/9+nX1eocOHdIqW1ZWlujdu7fw8vISERER4j//+Y/o2bOneOaZZ9R/IzXsftGiReJf//qX8PT0FNHR0WLVqlV6+3bjxg3h7e0tJk+ebPQ4WGPYveJO4ciIwsJC+Pn5qYdDEhHZys2bN5GVlYWYmBi7NJ8Q2ZJCocDatWsxePBgg+tlZ2cjNjYW+/btQ7t27Qyua+g7Y+r9m52qiYiIyGGUl5fj6tWreOWVV9C5c2ejwZC1sA8RERHRHbq5fDR/fv/99xovz1NPPSVbnqeeeqrGy1MTdu/ejbCwMOzbtw9LliypsfdlDREREdEduvl7NDVu3LjmCnLHa6+9JpnVG4DTdt8w1lOnV69eZudwsgYGRERERHcYyuVjD8HBwQgODrZ3MVwCm8yIiIjI5TEgIiJyUKbmgiFyddb4rrDJjIjIwXh4eMDNzQ0XL15EUFAQPDw8bDqpJZGzEkKgrKwMV65cgZubGzw8PCzeFgMiIiIH4+bmhpiYGOTm5kpOEUFE2ry9vREZGWnS1C5yGBARETkgDw8PREZG4vbt2xbNMUXkKtzd3VGnTp1q16IyICIiclAKhQJ169Y1e+ZzIjIfO1UTERGRy2NARERERC6PARERERG5PAZERERE5PIYEBEREZHLY0BERERELo8BEREREbk8BkRERETk8hgQERERkctjQEREREQujwERERERuTwGREREROTyGBARERGRy2NARERERC6PARERERG5PAZERERE5PIYEBEREZHLY0BERERELo8BEREREbk8BkRERETk8hgQOYhcZSnSMvORqyy1d1GIiIhcTh17F4CAVftyMHvNMVQKwE0BLBySiGEdI+1dLCIiIpfBGiI7y1WWqoMhAKgUwEtrMlhTREREVIMYENlZVn6xOhhSqRAC2fkl9ikQERGRC2JAZGcxgT5wU2i/5q5QIDrQ2z4FIiIickEMiOwszM8LC4ckwl1RFRW5KxRYMCQBYX5edi4ZERGR62CnagcwrGMkesQFITu/BNGB3gyGiIiIahgDIgcR5ufFQIiIiMhO2GRGRERELo8BEREREbk8BkRERETk8hgQERERkctjQEREREQuz64B0cKFC9GxY0c0aNAAwcHBGDx4ME6dOqW1zs2bNzFlyhQ0atQI9evXx9ChQ3Hp0iWtdXJycjBo0CB4e3sjODgYL774Im7fvq21zvbt29GuXTt4enqiWbNmWL58ua13j4iIiJyEXQOiHTt2YMqUKdizZw82b96M8vJy9OvXD8XFxep1nn32Wfz0009YvXo1duzYgYsXL2LIkCHq5RUVFRg0aBDKysqQlpaG//u//8Py5cvx6quvqtfJysrCoEGD0Lt3bxw+fBjTp0/HhAkT8Ouvv9bo/hIREZFjUgghhPHVasaVK1cQHByMHTt2oEePHlAqlQgKCsKKFSvw0EMPAQBOnjyJli1bIj09HZ07d8bGjRtx77334uLFiwgJCQEALFmyBDNnzsSVK1fg4eGBmTNnYv369cjIyFC/1/Dhw1FQUIBffvnFpLIVFhbCz88PSqUSvr6+1t95IiIisjpT798O1YdIqVQCAAICAgAABw4cQHl5Ofr27ateJz4+HpGRkUhPTwcApKenIzExUR0MAUBKSgoKCwvx559/qtfR3IZqHdU2pNy6dQuFhYVaP0RERFQ7OUxAVFlZienTp6Nr165ISEgAAOTl5cHDwwP+/v5a64aEhCAvL0+9jmYwpFquWmZoncLCQpSWlkqWZ+HChfDz81P/REREVHsfiYiIyDE5TEA0ZcoUZGRk4JtvvrF3UQAAs2fPhlKpVP+cO3fO3kUiIiIiG3GIucymTp2Kn3/+GTt37kSTJk3Ur4eGhqKsrAwFBQVatUSXLl1CaGioep0//vhDa3uqUWia6+iOTLt06RJ8fX3h5SU9f5inpyc8PT2rvW9ERETk+OxaQySEwNSpU7F27Vps3boVMTExWsvbt2+PunXrYsuWLerXTp06hZycHCQnJwMAkpOTcezYMVy+fFm9zubNm+Hr64tWrVqp19Hchmod1TaIiIjItdl1lNnkyZOxYsUK/Pjjj2jRooX6dT8/P3XNzaRJk7BhwwYsX74cvr6+ePrppwEAaWlpAKqG3d91110IDw/H22+/jby8PIwaNQoTJkzAggULAFQNu09ISMCUKVMwbtw4bN26FdOmTcP69euRkpJiUlk5yoyIiMj5mHr/tmtApFAoJF9ftmwZxowZA6AqMePzzz+PlStX4tatW0hJScEnn3yibg4DgLNnz2LSpEnYvn07fHx8MHr0aKSmpqJOnX9aBLdv345nn30Wx48fR5MmTTBnzhz1e5iCAREREZHzcYqAyJkwICIiInI+TpmHiIiIiMgeGBARERGRy2NARERERC6PAZGTyFWWIi0zH7lK6czaREREZDmHSMxIhq3al4PZa46hUgBuCmDhkEQM6xhp72IRERHVGqwhcnC5ylJ1MAQAlQJ4aU0Ga4qIiIisiAGRg8vKL1YHQyoVQiA7v8Q+BSIiIqqFGBA5uJhAH7jp5K90VygQHehtnwIRERHVQgyIHFyYnxcWDkmE+52s3u4KBRYMSUCYn/SktERERGQ+dqp2AsM6RqJHXBCy80sQHejNYIiIiMjKGBA5iTA/LwZCRERENsImMyIiInJ5DIiIiIjI5TEgIiIiIpfHgIiIiIhcHgMiIiIicnkMiIiIiMjlMSAiIiIil8eAiIiIiFweAyIiIiJyeQyIiIiIyOUxICIiIiKXx4CIiIiIXB4DIiIiInJ5DIiIiIjI5TEgIiIiIpfHgIiIiIhcHgMiIiIicnkMiIiIiMjlMSAiIiIil8eAiIiIiFyeRQHRtm3brF0OIiIiIruxKCDq378/YmNj8cYbb+DcuXPWLhMRERFRjbIoILpw4QKmTp2K7777Dk2bNkVKSgq+/fZblJWVWbt8RERERDZnUUAUGBiIZ599FocPH8bevXsRFxeHyZMnIzw8HNOmTcORI0esXU4iIiIim6l2p+p27dph9uzZmDp1KoqKirB06VK0b98e3bt3x59//mmNMhIRERHZlMUBUXl5Ob777jsMHDgQUVFR+PXXX/Gf//wHly5dwpkzZxAVFYWHH37YmmUlIiIisgmFEEKY+0dPP/00Vq5cCSEERo0ahQkTJiAhIUFrnby8PISHh6OystJqhbWnwsJC+Pn5QalUwtfX197FISIiIhOYev+uY8nGjx8/jo8//hhDhgyBp6en5DqBgYEcnk9EREROwaIaIlfEGiIiIiLnY9MaIgA4deoUPv74Y5w4cQIA0LJlSzz99NNo0aKFpZskIiIisguLOlV///33SEhIwIEDB5CUlISkpCQcPHgQCQkJ+P77761dRiIiIiKbsqjJLDY2FiNHjsRrr72m9frcuXPx1VdfITMz02oFdBRsMiMiInI+pt6/Laohys3NxeOPP673+mOPPYbc3FxLNklERERkNxYFRL169cLvv/+u9/quXbvQvXv3ahfKleQqS5GWmY9cZam9i0JEROSyLOpUff/992PmzJk4cOAAOnfuDADYs2cPVq9ejfnz52PdunVa65K0VftyMHvNMVQKwE0BLBySiGEdI+1dLCIiIpdjUR8iNzfTKpYUCgUqKirMLpQjsnYfolxlKbqmbkWlxtF3Vyiwa1ZvhPl5VXv7REREZONh97Ul+7Q9ZeUXawVDAFAhBLLzSxgQERER1bBqT+5KlokJ9IGbQvs1d4UC0YHe9ikQERGRCzO5huijjz4yeaPTpk2zqDCuJMzPCwuHJOKlNRmoEALuCgUWDElg7RAREZEdmNyHKCYmxrQNKhT4+++/q1UoR2SrPES5ylJk55cgOtCbwRAREZGVWb0PUVZWllUKRtrC/LwYCBEREdkZ+xARERGRy7N4ctfz589j3bp1yMnJQVlZmday9957r9oFIyIiIqopFgVEW7Zswf3334+mTZvi5MmTSEhIQHZ2NoQQaNeunbXLSERERGRTFjWZzZ49Gy+88AKOHTuGevXq4fvvv8e5c+fQs2dPPPzww9YuIxEREZFNWRQQnThxQj25a506dVBaWor69evjtddew1tvvWXVAhIRERHZmkUBkY+Pj7rfUFhYGDIzM9XL8vPzrVMyIiIiohpiUR+izp07Y9euXWjZsiUGDhyI559/HseOHcOaNWvUk70SEREROQuLaojee+89dOrUCQAwf/589OnTB6tWrUJ0dDS+/PJLk7ezc+dO3HfffQgPD4dCocAPP/ygtXzMmDFQKBRaP/3799da59q1axg5ciR8fX3h7++P8ePHo6ioSGudo0ePonv37qhXrx4iIiLw9ttvW7LbtUaushRpmfnIVZbauyhEREQOwaIaoqZNm6r/7ePjgyVLllj05sXFxUhKSsK4ceMwZMgQyXX69++PZcuWqX/39PTUWj5y5Ejk5uZi8+bNKC8vx9ixY/HEE09gxYoVAKoyVPbr1w99+/bFkiVLcOzYMYwbNw7+/v544oknLCq3M1u1Lwez1xxDpQDcFMDCIYkY1jHS3sUiIiKyK4vzEAFAWVkZLl++jMrKSq3XIyNNu8EOGDAAAwYMMLiOp6cnQkNDJZedOHECv/zyC/bt24cOHToAAD7++GMMHDgQ7777LsLDw/H111+jrKwMS5cuhYeHB1q3bo3Dhw/jvffec7mAKFdZqg6GAKBSAC+tyUCPuCBmyyYiIpdmUZPZX3/9he7du8PLywtRUVGIiYlBTEwMoqOjTZ7zzFTbt29HcHAwWrRogUmTJuHq1avqZenp6fD391cHQwDQt29fuLm5Ye/evep1evToAQ8PD/U6KSkpOHXqFK5fv27Vsjq6rPxidTCkUiEEsvNL7FMgIiIiB2FRDdHYsWNRp04d/PzzzwgLC4NCobB2uQBUNZcNGTIEMTExyMzMxEsvvYQBAwYgPT0d7u7uyMvLQ3BwsNbf1KlTBwEBAcjLywMA5OXl6QVpISEh6mUNGzaUfO9bt27h1q1b6t8LCwutuWt2ERPoAzcFtIIid4UC0YHe9isUERGRA7AoIDp8+DAOHDiA+Ph4a5dHy/Dhw9X/TkxMRJs2bRAbG4vt27ejT58+Nn3vhQsXYv78+TZ9j5oW5ueFhUMS8dKaDFQIAXeFAguGJLC5jIiIXJ5FAVGrVq3skm+oadOmCAwMxJkzZ9CnTx+Ehobi8uXLWuvcvn0b165dU/c7Cg0NxaVLl7TWUf0u1zcJqMrG/dxzz6l/LywsREREhLV2xW6GdYxEj7ggZOeXIDrQm8EQERERzOhDVFhYqP556623MGPGDGzfvh1Xr17VWmbLpqXz58/j6tWrCAsLAwAkJyejoKAABw4cUK+zdetWVFZWqtMCJCcnY+fOnSgvL1evs3nzZrRo0UK2uQyo6szt6+ur9VNbhPl5ITm2EYMhIiKiOxRCCGF8NcDNzU2rr5AQQq/vkOq1iooKk968qKgIZ86cAQC0bdsW7733Hnr37o2AgAAEBARg/vz5GDp0KEJDQ5GZmYkZM2bgxo0bOHbsmHr4/YABA3Dp0iUsWbJEPey+Q4cO6mH3SqUSLVq0QL9+/TBz5kxkZGRg3LhxeP/9980aZVZYWAg/Pz8olUqHCY5ylaXIyi9GTKCP0eDGnHWJiIhqC1Pv3yYHRDt27DD5zXv27GnSetu3b0fv3r31Xh89ejQWL16MwYMH49ChQygoKEB4eDj69euH119/Xd0pGqhKzDh16lT89NNPcHNzw9ChQ/HRRx+hfv366nWOHj2KKVOmYN++fQgMDMTTTz+NmTNnmrw/gOMFRObkE2LuISIiclVWD4g05eTkICIiQrKG6Ny5cybnIXImjhQQ5SpL0TV1q95osV2zeuvV/pizLhERUW1j6v3bojxEMTExuHLlit7r165ds3oeItJnTj4h5h4iIiIyzqKASKr/EFDVJ6hevXrVLhQZpsonpEkun5A56xIREbkqs4bdq4ahKxQKzJkzB97e/9xUKyoqsHfvXtx1111WLSDpMyefEHMPERERGWdWQHTo0CEAVTVEx44d05oOw8PDA0lJSXjhhResW0KSZE4+IeYeIiIiMsyiTtVjx47Fhx9+aPfOxTXJkTpVExERkWlMvX9blKl62bJlFheMiIiIyNFYFBAVFxcjNTUVW7ZsweXLl1FZWam1/O+//7ZK4YiIiIhqgkUB0YQJE7Bjxw6MGjXKprPdExEREdUEiwKijRs3Yv369ejatau1y0Mm4DQcRERE1mVRQNSwYUMEBARYuyxkAk7DQUREZH0WJWZ8/fXX8eqrr6KkhNmOa1KuslQdDAFApQBeWpOBXGWpfQtGRETk5CyqIfr3v/+NzMxMhISEIDo6GnXr1tVafvDgQasUjrQZmoaDTWdERESWsyggGjx4sJWLQaZQTcOhO1Erp+EgIiKqHosSM7oiR0nMuGpfjt40HOxDREREJM0miRn/+OMPtG/fHu7u7pLLb926hR9//BGPPPKIeaUlk3EaDiIiIuszq1N1cnIyrl69qv7d19dXKwljQUEBHn30UeuVjiSF+XkhObYRgyEiIiIrMSsg0m1dk2ptYwscERERORuLht0bwqzVNStXWYq0zHwOvSciIqoGi0aZkWNgkkYiIiLrMDsgOn78OPLy8gBUNY+dPHkSRUVFAID8/Hzrlo5kySVp7BEXxL5FREREZjI7IOrTp49WP6F7770XQFVTmRCCTWY1hEkaiYiIrMesgCgrK8tW5SAzMUkjERGR9ZgVEEVFRZm18cmTJ+O1115DYGCgWX9HxoX5eWHhkES9JI2sHSIiIjKfTTNV+/r64vDhw2jatKmt3qLGOEqmal25ylImaSQiIpJhk0zV5mJOItsL8/NiIERERFRNVs9DRERERORsGBARERGRy2NARERERC6PARERERG5PJsGRI899phDjcgiIiIikmJRQFRZWSn7ek5Ojvr3xYsXMwcREREROTyzAqLCwkI88sgj8PHxQUhICF599VVUVFSol1+5cgUxMTFWLyRZJldZirTMfOQqS+1dFCIiIodmVh6iOXPm4MiRI/jf//6HgoICvPHGGzh48CDWrFkDDw8PAMw95ChW7ctRT/7qpgAWDknEsI6R9i4WERGRQzKrhuiHH37Ap59+ioceeggTJkzA/v37ceXKFdx33324desWAHByVweQqyxVB0NA1XxnL63JYE0RERGRDLMCoitXrmjNZxYYGIjffvsNN27cwMCBA1FSUmL1ApL5svKLtSZ9BYAKIZCdb9vPh010RETkrMwKiCIjI3HixAmt1xo0aIBNmzahtLQUDz74oFULR5aJCfSBm05FnbtCgehAb5u956p9OeiauhUjPt+LrqlbsWpfjvE/IiIichBmBUT9+vXDsmXL9F6vX78+fv31V9SrV89qBSPLhfl5YeGQRLjfab50VyiwYEiCzeY8O3LuOmZ9zyY6IiJyXmZ1qp4/fz4uXrwouaxBgwbYvHkzDh48aJWCUfUM6xiJHnFByM4vQXSgt82CoU93ZGLhxpN6r6ua6DjxLBEROQOzAqKGDRuiYcOGsssbNGiAnj17VrtQZB1hfl42DUg+3SkdDAG2b6IjIiKyJrMTM96+fRvvvPMO2rVrh/r166N+/fpo164d3n33XZSXl9uijOSAcpWlSJUJhtwAmzbRERERWZtZNUSlpaX417/+hfT0dPTt2xc9evQAAJw4cQIzZ87EunXrsGnTJvYlcgFZ+cWQSjmlALB2ShckRcjXJBIRETkaswKi1NRUnDt3DocOHUKbNm20lh05cgT3338/UlNTMW/ePGuWkRyQaiSb7vD+WQPiGQwREZHTMavJ7JtvvsF7772nFwwBQFJSEt59912sWLHCaoUjx6U7ks1NAcweGI8ne8bauWRERETmM6uG6OzZs7j77rtll3fu3Flrcleq3WpqJBsREZGtmRUQ+fr64vLly4iIiJBcnpeXhwYNGlilYOQcbD2SjYiIqCaY1WTWu3dvLFiwQHZ5amoqevfuXe1CEREREdUks2qI5s6di06dOqFz58547rnnEB8fDyEETpw4gffffx/Hjx/Hnj17bFVWIiIiIpswKyBq1aoVNm/ejPHjx2P48OHqme2FEIiPj8emTZvQunVrmxSUiIiIyFbMCoiAqo7Tf/75Jw4fPoy//voLABAXF4e77rrL2mUjIiIiqhFmB0SFhYWoX78+7rrrLq0gqLKyEkVFRfD19bVm+YiIiIhszqxO1WvXrkWHDh1w8+ZNvWWlpaXo2LEjfvrpJ6sVjoiIiKgmmBUQLV68GDNmzIC3t/6knT4+Ppg5cyb+85//WK1wpC9XWYq0zHzkKkvtXRQiIqJaw6yAKCMjA7169ZJd3qNHDxw7dqy6ZSIZq/bloGvqVoz4fC+6pm7Fqn1MgklERGQNZgVE169fx+3bt2WXl5eX4/r169UuFOnLVZZi9ppj6rnDKgXw0poM1hQRERFZgVkBUXR0NPbv3y+7fP/+/YiKiqp2oUhfVn6x3kSqFUIgO7/EPgUiIiKqRcwKiIYMGYKXX34Zly5d0luWl5eHV155BUOHDrVa4VyVVD8h1ezymtwAeHuY9RESERGRBIUQQhhfrcqNGzeQnJyMnJwcPPbYY2jRogUA4OTJk/j6668RERGBPXv21Mr5zAoLC+Hn5welUmnT1AKr9uWom8bcFMDCIYkY1jFSveylNRmo0PjIdNchIiKif5h6/zYrIAIApVKJ2bNnY9WqVer+Qv7+/hg+fDjefPNNNGzYsHold1A1ERDlKkvRNXWrVtOYu0KBXbN6qydQPXLuOgZ/kgZhYB1HkKssRVZ+MWICfRyqXERE5FpMvX+bnZjRz88Pn3zyCRYtWoT8/HwIIRAUFKSexkPT7t270aFDB3h6epr7Ni7JUD8hVVBRXFYB3RBWdx17M1TLRURE5Igs7oCiUCgQFBSE4OBgyWAIAAYMGIALFy7IbmPnzp247777EB4eDoVCgR9++EFruRACr776KsLCwuDl5YW+ffvi9OnTWutcu3YNI0eOhK+vL/z9/TF+/HgUFRVprXP06FF0794d9erVQ0REBN5++23LdtrGpPoJuSsUiA70Nmsde+JoOCIickY27ZFrrDWuuLgYSUlJWLRokeTyt99+Gx999BGWLFmCvXv3wsfHBykpKVqZskeOHIk///wTmzdvxs8//4ydO3fiiSeeUC8vLCxEv379EBUVhQMHDuCdd97BvHnz8Nlnn1lnJ60ozM8LC4ckwv1OgOmuUGDBkAStmh9T1rEnjoYjIiJnZHYfInM0aNAAR44cQdOmTY0XRKHA2rVrMXjwYABVwVR4eDief/55vPDCCwCq+i+FhIRg+fLlGD58OE6cOIFWrVph37596NChAwDgl19+wcCBA3H+/HmEh4dj8eLFePnll5GXlwcPDw8AwKxZs/DDDz/g5MmTJu9LTXWqBqpqWbLzSxAd6C0b6Jiyjj2Y0g+KiIiopph6/3bYMdtZWVnIy8tD37591a/5+fmhU6dOSE9PBwCkp6fD399fHQwBQN++feHm5oa9e/eq1+nRo4c6GAKAlJQUnDp1ymGTSIb5eSE5tpHBAMKUdezB0WuwiIiIpJjdqbqm5OXlAQBCQkK0Xg8JCVEvy8vLQ3BwsNbyOnXqICAgQGudmJgYvW2olsmNirt16xZu3bql/r2wsLAae+NahnWMRI+4IIeswSIiIpJi0xoiuc7WzmDhwoXw8/NT/0RERNi7SE7FUWuwiIiIpNi1U7UhoaGhAKCXFfvSpUvqZaGhobh8+bLW8tu3b+PatWta60htQ/M9pMyePRtKpVL9c+7cOYv3hYiIiBybTQOiGzdumNShWkpMTAxCQ0OxZcsW9WuFhYXYu3cvkpOTAQDJyckoKCjAgQMH1Ots3boVlZWV6NSpk3qdnTt3ory8XL3O5s2b0aJFC4NJJD09PeHr66v1Q0RERLWTWX2I7rnnHpPW27p1q0nrFRUV4cyZM+rfs7KycPjwYQQEBCAyMhLTp0/HG2+8gebNmyMmJgZz5sxBeHi4eiRay5Yt0b9/f0ycOBFLlixBeXk5pk6diuHDhyM8PBwAMGLECMyfPx/jx4/HzJkzkZGRgQ8//BDvv/++ObtOREREtZhZAdH27dsRFRWFQYMGoW7dutV+8/3796N3797q35977jkAwOjRo7F8+XLMmDEDxcXFeOKJJ1BQUIBu3brhl19+Qb169dR/8/XXX2Pq1Kno06cP3NzcMHToUHz00Ufq5X5+fti0aROmTJmC9u3bIzAwEK+++qpWriIiIiJybWblIXrnnXewbNkyXL16FSNHjsS4ceOQkJBgy/I5jJrMQ0RERETWYZM8RC+++CKOHz+OH374ATdu3EDXrl1x9913Y8mSJRyWTkRERE6rWpmqS0pKsHr1aixatAjHjx/HxYsXa23tCWuIiIiInE+NZKo+ePAgduzYgRMnTiAhIcEq/YqIiIiIaprZAdHFixexYMECxMXF4aGHHkJAQAD27t2LPXv2wMuLSfiIiIjI+Zg1ymzgwIHYtm0b+vXrh3feeQeDBg1CnToOO/sHERERkUnM6kPk5uaGsLAwBAcHG5yW4+DBg1YpnCNhHyIiIiLnY+r926zqnblz51a7YGS6XGUpsvKLERPowznBiIiIbKhao8xcSU3XEK3al4PZa46hUgBuCmDhkEQM6xhp8/e1JQZ4RERU02xSQyRnx44dKC4uRnJyssH5wcg0ucpSdTAEAJUCeGlNBnrEBTltIFEbAzwiIqo9zBpl9tZbb2HOnDnq34UQ6N+/P3r37o17770XLVu2xJ9//mn1QrqarPxidTCkUiEEsvNL7FOgapIL8HKVpfYtGBER0R1mBUSrVq3Smqrju+++w86dO/H7778jPz8fHTp0wPz5861eSFcTE+gDN4k+60cvFNR4WayhtgV4RERU+5gVEGVlZaFNmzbq3zds2ICHHnoIXbt2RUBAAF555RWkp6dbvZCuJszPCzP7x+u9/vbGU05ZqyIV4LkrFIgO9LZPgYiIiHSYFRDdvn0bnp6e6t/T09PRpUsX9e/h4eHIz8+3XulcWGITP73XnLVWJczPCwuHJML9TqoGd4UCC4YkOG1/KCIiqn3M6lQdGxuLnTt3omnTpsjJycFff/2FHj16qJefP38ejRo1snohXZGqVkWzqcmZa1WGdYxEj7ggZOeXIDrQm8EQERE5FLMCoilTpmDq1Kn4/fffsWfPHiQnJ6NVq1bq5Vu3bkXbtm2tXkhXpKpVeWlNBiqEqBW1KmF+Xk5dfiIiqr3MCogmTpwId3d3/PTTT+jRo4deosaLFy9i3LhxVi2gK2OtChERUc1gYkYTceoOIiIi52Pq/dvs2e6JiIiIahuzAqLy8nLMmDEDzZo1w913342lS5dqLb906RLc3d2tWkAiIiIiWzMrIHrzzTfx3//+F0899RT69euH5557Dk8++aTWOmyBIyIiImdjVqfqr7/+Gl988QXuvfdeAMCYMWMwYMAAjB07Vl1bpFBIpFgmp8DJV4mIyFWZVUN04cIFrak7mjVrhu3btyMtLQ2jRo1CRUWF1QtINWPVvhx0Td2KEZ/vRdfUrVi1L8cu5chVliItM98pM3ITEZHzMquGKDQ0FJmZmYiOjla/1rhxY2zbtg29e/fGmDFjrFw8qglyk6/GhzZAcVlFjdUYrdqXoy6HmwJYOCQRwzpG2vx9iYiIzKohuueee7BixQq918PDw7F161ZkZWVZrWBUc+QmXx28KK3GaozkgjLWFBERUU0wq4Zozpw5OHnypOSyxo0bY8eOHdi8ebNVCkY1R2qaEABQ/aoKTnrEBdmspkguKMvOL2F/JiIisjmzaoiioqKQkpIiuzw8PByjR4+udqGoZulOvqo7Mz1g+4llVUGZJmeeu42IiJyLWTVEKqtXr8bKlSvx119/AQDi4uIwYsQIPPTQQ1YtHNUczWlCvD3c8OAnaTU6sWxtnLuNiIich1lTd1RWVuLRRx/F6tWrERcXh/j4eADAiRMncObMGTz88MNYuXJlrRx672pTd6zal6MXnNREB+dcZSnnbiMiIqsx9f5tVg3Rhx9+iN9++w3r1q1T5yJSWbduHcaOHYsPP/wQ06dPt6jQ5DjsObGsAJN7EhFRzTKrhqhNmzaYPn267Iz2X375JT788EMcPXrUagV0FK5WQ2QPHHZPRETWZpPJXU+fPo2+ffvKLu/bty9Onz5tziapFrIkuSKH3RMRkT2Z1WTm5eWFgoICREZKP7UXFhaiXr16VikYOSdLa3k47J6IiOzJrBqi5ORkLF68WHb5okWLkJycXO1CkXOqTi0Ph90TEZE9mRUQvfzyy/jyyy/xyCOP4I8//kBhYSGUSiX27NmDhx9+GEuXLsXLL79sq7KSgzNUy2OMbi4kDrsnIqKaZFaTWZcuXbBq1So88cQT+P7777WWNWzYECtXrkTXrl2tWkByHlIZr82p5bHnyDYiInJtZo0yUykpKcGvv/6q7kAdFxeHfv36wdu79jZvcJSZaeyVv4iIiEiKqfdvswKirVu3YurUqdizZ4/eRpVKJbp06YIlS5age/fulpfcQTEgMh2TKxIRkaOwybD7Dz74ABMnTpTcoJ+fH5588km899575peWapUwPy8kxzZiMERERE7DrIDoyJEj6N+/v+zyfv364cCBA9UuFBEREVFNMisgunTpEurWrSu7vE6dOrhy5Uq1C0XVY0liRCIiIldm1iizxo0bIyMjA82aNZNcfvToUYSFhVmlYGQZTn9BRERkPrNqiAYOHIg5c+bg5s2bestKS0sxd+5cvUlfqeZYkhiRtUlERERm1hC98sorWLNmDeLi4jB16lS0aNECAHDy5EksWrQIFRUVTMxoR+ZOf8HaJCIiqim5ylJk5RcjJtDHIQfdmBUQhYSEIC0tDZMmTcLs2bOhGrGvUCiQkpKCRYsWISQkxCYFJePMSYwoV5vUIy7IIU9UIiJyXs7wAG5WQAQAUVFR2LBhA65fv44zZ85ACIHmzZujYcOGtigfmUE1/YVuYkSpAIeTqRIRUU1wlgdwswMilYYNG6Jjx47WLAtZganTX1R3mg0iIiJTOMsDuFmdqsk5mJIY0VkmU2WnbyIi56Z6ANfkiA/gFtcQkfNz9MlUnaHNmYiIDDOnO4c9WTS5qyviXGY1K1dZiq6pW/Wa9HbN6u1wXyIiIjLOXvNcmnr/Zg0R2YWx4ZfO0uZMRESmCfPzcujrNwMiqnGmNIWx07frcvRcJURUO7FTtYuwRudka23DlGzaUp2+Zwxogaz8YnawrsVW7ctB19StGPH5XnRN3YpV+3LsXSQichGsIXIB1uicbK0OzuY0hWl2+j56vgBvbTypfv+Z/eOR2MSPtQi1iLPkKiGi2ok1RLWcJfOb2WIbKuYOvwzz80J0oDfe+uWk1vsv3HiStQi1jKFguaYx3QOR7Tna94wBUS1njZuMNW9UluQ/knp/leoEZ+RYHCVXiTnNdo52QSdyFo7YPM4ms1rOx8MdCgUgqtE52dodnM3NfyT1/po4+qx2cIRcJeY028k1I7NTOJFhjto8zoCoFlNdsHWDIXNvMra4UZkz/FL3/XVx9FntYe9koab2cZO7oBeUlKubd5lMlEjagbPXHTKtCgMiJ2LOk6fuBRuoah9dMzkZSRHmT8Rr7xuVVgfrCwV4e+Mph854SpazZ64SU2tD5QKn1I0noXrZUZ56iRzJqn05mPX9Mb3XHeHBlgGRkzB3lJfUBbsSQElZpcVlMPdGZe2mA9X7J8c2wv1J4Q475Qg5L1NrQ6UCJ6lmXUd46iVyFKoHdd16fjcFHOLBlgGRE7CkvdXeiQ1rYh4yofe1Iqo+U2tDJ3SLwRe/Z6ES/+TJUqWGUHGEp14iRyE3QOaj4W1xb1J4zRdIh8OPMps3bx4UCoXWT3x8vHr5zZs3MWXKFDRq1Aj169fH0KFDcenSJa1t5OTkYNCgQfD29kZwcDBefPFF3L59u6Z3xWKWjPKy52z21hymL8URRydQ7aKqiZT6vqjOv89+zwIUwBPdm2LXrN54skes3b5zRM5AbiRp+2jzu3HYglPUELVu3Rq//fab+vc6df4p9rPPPov169dj9erV8PPzw9SpUzFkyBDs3r0bAFBRUYFBgwYhNDQUaWlpyM3NxeOPP466detiwYIFNb4vlrC0tsde/X5sOQ+ZVLA1+/tj8PGsg/ZRDXnzIZuSOv++3JWFsd2iAdi/rx2RI3OEkaSGOEVAVKdOHYSGhuq9rlQq8eWXX2LFihW45557AADLli1Dy5YtsWfPHnTu3BmbNm3C8ePH8dtvvyEkJAR33XUXXn/9dcycORPz5s2Dh4dHTe+O2apzEtmjg6otm+vk+kZNXXGIo3rI5kwJ9h19Aksie3LkhwaHbzIDgNOnTyM8PBxNmzbFyJEjkZNT1URy4MABlJeXo2/fvup14+PjERkZifT0dABAeno6EhMTERISol4nJSUFhYWF+PPPP2Xf89atWygsLNT6sadhHSOxa1ZvrJzYGbtm9Tbrpl/TyeNs2VwnVeWqwiSNZGuOkjySyJkZapK2J4evIerUqROWL1+OFi1aIDc3F/Pnz0f37t2RkZGBvLw8eHh4wN/fX+tvQkJCkJeXBwDIy8vTCoZUy1XL5CxcuBDz58+37s5UkyVPntbu3GzqyDFbPQUYy0nEUT2uqaaSITp6lT8RWc7hA6IBAwao/92mTRt06tQJUVFR+Pbbb+HlZbuL0OzZs/Hcc8+pfy8sLERERITN3s8WrJ0N1NzgylZNB6pg60D2dUz75hBH9bi4mhjRqMmRq/yJalptyszuFE1mmvz9/REXF4czZ84gNDQUZWVlKCgo0Frn0qVL6j5HoaGheqPOVL9L9UtS8fT0hK+vr9aPs7HmHGS2Hjlm7L11m/zC/Lxwb1I4R/W4OHudl45a5U9Uk2rbiF+nC4iKioqQmZmJsLAwtG/fHnXr1sWWLVvUy0+dOoWcnBwkJycDAJKTk3Hs2DFcvnxZvc7mzZvh6+uLVq1a1Xj5a5I1+zvYayZyY1+46vStIudnr/OSyNXZ8yHZVhw+IHrhhRewY8cOZGdnIy0tDQ8++CDc3d3x6KOPws/PD+PHj8dzzz2Hbdu24cCBAxg7diySk5PRuXNnAEC/fv3QqlUrjBo1CkeOHMGvv/6KV155BVOmTIGnp6ed9862rNm52R6dSU39wvFp3TlZo7M/OzkT2UdtfBhx+D5E58+fx6OPPoqrV68iKCgI3bp1w549exAUFAQAeP/99+Hm5oahQ4fi1q1bSElJwSeffKL+e3d3d/z888+YNGkSkpOT4ePjg9GjR+O1116z1y7VKGv1d7BHZ1Jb5jMi+7JWvx9rn5e1qT8EkS3ZezYEW1AIITFUh/QUFhbCz88PSqXSKfsTWUuusrTGOpPmKkvRNXWr3hdu16zevFk5MVt8rtY4L2u6czaRs1u1L0fvYcTc70xNPISYev92+Boish5rnHg1mXSOQ5xrJ1vU/FV34mFrj8i0FGuoyJnotkAAQFpmvknnb66yFMt2ZeHz37Mg4BgPIQyIXISzPv1Wt8mPNxjHY++qdqnvQkSAt92bZ531O0quTfUwYs75q7muir0eQjQ5fKdqV2KrjNLOPhrA0k7TtW1IaG3hiBMP+3i427VztrN/R8m1mXP+6q6rqUIIHDx73callccaIgdhy6dDV+yc7ChNICTN0SYeLimrtGvzrCt+R6n2MOf8lVpX09QVh1B067ZdakcZEDkAW9+87d1EYQ+8wTg+R5t4ODm2kd0yULvid5RqD3POX6l1NQnY7+GVTWYOwFb5HFRNcACs2kRR05PFWsLHw13ydW8P1zvlneHzqinGmuvsldPKns2IRNVlzvmru65CYrJue+UzYg2RA7DF06FUE9yuWb1r7dBk3c7TxWUVkuuVlFXWcMnsy1E/L3ty1LnIHLVcRKYw5/zVXNfbww0PfpLmELWjrve47ICs/XQo1wQHoFpPv47a8VOq8zQzGDvu52UJa9dyOWp2c0ctF5EpzDl/VesmRTR0mNpR1hA5CGs+Hdqq/4wj9suRu+nvmtXb5XMYOeLnZQnWcpE9qWqffTzcUVxWwRQeNuAotaMMiByItTqZ2qqDpi07flqaL8jQTd9RvmT2Uhs66nK0IFmDpdcXqXw5DMptwx6DLHSxyawWslUHTVttV7fJ69MdmSY3jxhrGnPlJghH6ahbneYuWw84cMbmQzKN6jP+dGemRfnI5PLlOHPTMxnGGqJayla1I9berlQNwMKNJwGY9iRm6vQerpqx2t61ZNVt7rJ2LZcjThdA1idVswNI1zDKXRsM5ctRJRAc1Mb498lVrz2A8+07A6JazFZVkNbcrqGLjqnNI8Zu+q7eB8VeVdHWaO6y5nx2jjpdAFlPrrIU+7OvyWZCBrT70Rm6NhjLl2NKAkFXvvY4476zyYxMYqsmBqkmL02mNo/INY3VppFWzsbS5i7dc21Yx0jsmtUbKyd2xq5ZvS26qBqbLsAeOU/IMnLXIlXT+9MrDxvMhKyqYTR2bdBtctalSiAody1x5WuPs+47a4jIKFtH+uO7xeDLXVmSFzFzm0d0q2hry0grZ2RJc5fcuVbdWi5DNZH26GjubE0J9qY6XscuKPHWxpN654ehgFeTZg1jWma+0WuDZu3z6cuFePXH43rrrz+ai0FtwkyaokIz+K7Nn/+Bs9ed8rrLgIgMsuUoH90mjBGdIhDVyAdvbzyFCiHgpgBmDGhh8vtI3Ux7xAU5/UgrZ7XzrysQGsddoYBec5dmYADAquea5rblmj/cUHWOZeUXA0CNXKydsSnBnkzpD2Rsfiyg6rNeMzkZSRENAZgesKuC8ehAb8xbd1zvfd5YfwILNpzQ+xzltn/0fAFGfrFH9vN39mB51b4czPr+mN7rznDdZZOZizK1CcyWo3x0L3Ir9p4DBDCjfwsoUHUheWvjSYOjQlT7ceTcddlklI4w0spR2aopVPX5ap46CgH0iAtS/647unCZRC2hpeea7rZ3/nVF6zxwUwBPdG+KmQPi8dbGk2aPQLKUszYl2Iuxmh/V+WGs6R0AKqGdqd7cUZiGmtCkPkep7T/VqylS79RwSf2dVJJZZyL1vQeqvm/OcN1lDZELMucJ1Va5bOSe6BZuPAkFoP5CGaol0NwPhQJatREA8xEZY8uaCqnPtxJQV5lLBQZf/J5llXPNULJOzelrAKBr6tYazXHEJlzzGKv50Tw/NJve3e5cD4TMuirmXhtU668/mos31p/QWib1OWpu/+iFAqRuPKkXLKia3TpGN3T6nFtyn9dHw9vi3qTwmi+QmVhD5GLMfUK1VS4bVROJFKkLhm4tge5+6AZDQNXJrZrM1RXzERmq/bF1TYWx/FByAdOEbk2rfa4ZCzpU54Gtaj8N4ZQyxmmet4ZqflTnx86/rqBr6taqVAoCeKJHDHbPugepQ02fbNSca0OYnxcGtQkz+XNUNbe9tfGk5HUKqGp2G7woTfJ8PJB93aRyOQK5z+uCk9SAsobIxVjyhGqLGpadf13RqgkyROpCI/ck4oaqGyvu/P/BT9Ikaz6k2umdve1ek7HaH1vXVBgbLi9X8zi2WzTGdouu1rlmaq2mXL+iXWeuQEDY5DywZhqB2kI1VF6hUOBCQalep+mZ/auaNStR9TnO6N8CbZr4S9byCQBf/p6NsV1jrHLdkrsmmPs5mtLHSW7x098cwpHzBRjXLcbhz5MwPy/M7B+vziWn8vbGU7g/Kdzhy8+AyMVY2gRmzVw2cu3MUuQuNHL78dnj7TDhvwfUT2JS1c5SwUJBSbm6OluhAGYNiMeTPWKtsr+2InexNqUjfE1M62HohmSsw7XUuWZqwGrqzUru4r1oWyYWbcs0uxnR1PKxCfcfqg64UteCSgHMWnMMuNP0pbgzyELze2lspFh1rlvGHirM+Rylvm9SzfwA9B4UhQA+/z0LX/yehVkD4pHYxM+hH9oSm/jpveYszcIMiFyMvZ9Qc5Wl+PnoReMjQhRV7c7toxvKVnNL7YeXRx3ZvkRyfVd0L8hCAAs3nAQE8GRPxwyKDF2sTan9sfZ5YOhJWi43lKEO18b2d2Z/wzcGU29WUhdvFXP6cJjbH8teyTIdSa6yVDYYUtH8LguhX9Ngq8De1NG1pn6OUt+3GQNaqGvDNMs+7/5WmPPjn3rbEDAvi7+9mPuZOFLNPAMiF2SvJ1S54bNA1VOR4s6XSHVzNtYJT2o/cpWlsl9GuWBM7oL81saTuP8ux6vmNXaxNvWCZK3zwNxgQK7/kFw+F0undzHlZmUsG7EpT7acgNYyWfnFJtUSa6puYK978zVn2g5zajmktiv5fbszklbVHLhgSAJ6xAVh7ro/DT40OvI5Zuwz0Tw2O/+64lApKBgQuaiafkI1NHxW80Jg7s1Zdz/knsSW7sqSTf4oR3NUlCMxdrE25yZR3fNAKhiYveaYwQu1XBAil8/FGtO7yNE9VrpMqW2ozs3TkZ6Oa9qxC0qDy609Ukw3cH+wbWOsPXRB8mZcnZonQw8Imt+3Vfty8NYvVcGQqjmwR1yQZPoJKY7cDCX3megeG83P1xGCPAZEVCPkbmpzBrXEQI1aAWt8EbSGup4vQOoG/aGupnDU0T+mXKzNrf2x9MYsWdsjgGW7s/DSwFaSf2MoCDG1v5Om6t4YdIdGqxKDmtqMaMnNs7ZPMmvsfMpVVnWeljJ7QLy60/TOv65YJbCXCty/P3hBvVx13sWHNkBxWQViAn0salI2tbZQapRs6oaTVf0YTbxYOer1SUX3M5E6NrrsHeQxIKIaIXfTGCjRRGINqm2O/GKPRcGQGxw3kZhkLVh//WzLptb+6PXPGRCPxMamddyUC1a+2JmFsV3lR8WYk8/FGrU4xqiOVXJsI9yfFG52TaVmDhxjN09nmWTW0iD50x2Z6gEKcueT3APSohFtMajNP03luoE9UNWR2liTly5TRnlVCIHBi9K0AlTNvFWmHANTawul1hPq/+ibM6glbguhNQLPUa9Pckz5DOwd5DEgIouYeiHSXK+mO3Ob8gWU87HOhdnR6NZqSM3vZArJ/jkb/umfo7qZ+Xi4q5+cdZsox3eLwee/Z2lt15TmxjC/qnwuCzacMKu/09ELBXhrQ1VTgy0CV1VwpMqHY+gc10oOiqocOHKBoLGZ2O39dKzJ0qSdn+7M1Bq1p3k+KXBn9GbPWNkHpCYNvfSOuerzMKfJS5exWkYV3eabXbN6Izm2kdH9NvQ+5qR8kKJ6cNQcmWlqLZIjkRtppxDQ6kNlz/OfARGZzdSLpdR65j5xVYfs/FUSfRM0uSsUaBfV0KZlswbNWjDdPjzxoQ3UczapSAWxxvrnqG5mKlKf97huMfjiTtOPiqlPepb0d8q5VvzP2GQj0zVYypRzXK/ZA//kwDG0PTn2fjpWsbSTeK6yFKkyzWCAxigpBfBkj1i9z31w23A8+Ema5DE3tclLrozGahmlWBKgmno+667nduf46JZMFfAD0BqZKeB4NYpycpWlOHD2OoQQmDkgXq9J2pFSUDAgIrNY2kZu6RNXdUhddCbceYLX7JugAIA7QZLUBcyRO77K9eEZvCgNqUP/uaHI3eDNeVJVbVv38w7z80LqUMtr/1S1PwfPXkelEOgQHSC7rrk3a0s+O1Pfw9TmEVNmYnekJlpLO4ln5RebVHPx1saTuD8pXKvWz9vDTR0MAfrH3NQmr4Nnr6Ohj/TnPaxjJOJDG2DwJ2kmlVMBWBSgmtp/T3c9zWuSm6Iqa/vYbtEI8/Mymm/JUenmmVLVEqr6iFmz76g1MCAis1SnjdweX2C5i5NU3wSpC5ijz0wuF9BoPkEChmeRt8aTs7G+HsaYOvzWnPPK0s/O1PcwtXnE0M1c98bnCCwdYWVqcF0p/mlOVf0Yu+Gbsm2FApi64pDBTurFZRWmNzdVs/ZRyNRB6wbpmtek+NAG2Jd9HR2jG2rV8Pp4uOslbHSUGkU5UvnGBKoC4t2z73GY810TAyIyS3XayO31BZbrXKz7uu46kkPKvz8GH886aB8lnTCypqkCGqkaCNUNRUAYvNlo1tDsOpOPVfvOGa7NUEg/Ocv19TAWiJhT62PqeVWd3ECmvoepzSNS23NDVT+1dmacRzVVU2lOM6bU383+/ph6+hwpbgogv+gmcpWlBkcSah5zqTINbhuOHw5dVNeomDKE25waUSEsS7th6PzX7XM2sXsMxt6ZkkPu71Sv6wZDjlKjKEfuQcBR05kADIjITJa2kTvDF1iXXALBqSsOOVRtkbop4M4IGRXNG4qxG7xmDY2qc3AjH0+8/cspvZojIarWl9p3SwIRc2p9TD2vqlNDac65a0rziNz2zOm0X9M1lZYm7TTWLKWaruLplYe19sOUYy5VphdSWiA7vwT5RTfx9MrDWu8l9Xnrvo/iTrWLVHxkyQOcXF4ubw93RAZ46/U5++z3LHyxKwszB8RrZa3WTAOg+7DjpgDWTE7W6yOoen9TEk/WBNk+nLCsKbImMCByUdX5oljaRu5MwVCushSZV4pkJ6B1tGHSSRENDfbjMZY5Vqpz8JrJyfhgeBKUpeV45Yd/phIw1KHTkkDE3NpEufNK85yubg2lOeeuXA2kpdvTZa9M2Jod7zV/NyYpoiFSJZKjNvH3UjdpAfr7YWpwqRvgqG78pn7ecs3lR88XqB8AzH2AU51714rLJPv0Pb3ysOzcZZUCelN4AFXfm33Z1yW3V1KmXQcnldeqf0IoNmbkQZgQRNsicFIFn7PWHFPvtwLAwqGJDnHNlMKAyAVZ42nTlJuAOes5EkMTTmqqEAIHsq/j3iTH2D9DNxRDy+SCGFWNk1RXCrkgx5JAxFjtgOpirTv031hfL1NqeQzdCEw9d82ZdNaS74K9+uNV5zohdb6lZebrfaekck5Zsk/m1khLBVbJsY1w/13m56DSbQaTe4gy1HdJ9be6Nbwdoxsa/T7J5bXacCxP63e5INqWtY+azfFCQHZuSkfBgMjFcN4lw6Q6Ahoy7ZtDKC677RBNZ4DhG4rcMkMdszX/r0nVD+TIuevIuVYChUKh7ldlSVOpKan+Nd/b2JBs1YhGQ2kerHEjqImmLHv0x5M7ppqZnE1perSkE7qlrFEjbW5AJlW7qoB+E7UmqYBJlVxVt4YqKaKhWbW7hpgyAtIa/SSlOo0PauMc9xYGRA7O2lWZpjxtWjpU2VGHppvD3GSO9ggorX2sdYMYuYu55oVc1Qygu1w11N/SG5PmyBy5i70pQ7JV53RybCPJ97fGg0FNPVzYoz+e3DF9YFEaAMuCv5rYj+rUSFvyvZLLOP3x8LZao95U3BUKrJmcjPVH8/DFrr9RKf7pID2sY6RkDZW5tbtypAZDWLufpKOPyjWGAZEDs8XJJfeU5u3hhrTMfBw7r6yacNCM93T2L4Emc/PyADWbTsBWx9pQThgA6sRxhghoT+xqzvGQ2q+IAG/Zz0HVXBlQvxilZbfNHpJsjWaommzKqun+eMa+B5YGf47ar9DS75Xc9VTVNFR067ZeAJgUUTWkfmy3aL3jIPe9Mbd2V8rMAfEmNXGrmPsZ14bWBzd7F4CkyZ1cucrSam1X9ZTmrqjqGaKZIXbE53uxUGKkg6H3tFU57SXMzwszB8QbTEGiu6ym0gnY+lir+lGoquk1z5EJ3WNMakasFFUdVA1RTYmhKrfcfvl4uMNN5oNQoKq5csTnezH+/w6YPSRZdSPQZO7naI1tmEP1+Zh7c9E93qaa0C3G4PdAFfyZy9L9sJXqfK+krqeqcy9XWYqIAG+smZyMlRM7Y9es3lpBljWOg+77uymAJ7o3xewB8f+8hqoJc5/sEWv073WZ8xkbekBwFqwhclC2fPo0Vhtgzns6SgJGa1m1Lwdv3ZmYEgBGdIrAsA4ROH+9VN0p0NQZuI0xt4pe7lgbys5rKamROF/cmbzUEM1qean9M7UmqEIIlJRVSiaNVNVWSZXF0JBkTZY030j1jbB3agnNaRE6RAeY1E+qR1yQwfNOt5OwHEdPDGiq6nYjkKr1kjrutsrQL5XpPczPy+QO4qq/P5B9HdO+OWRxHy9jrQ/O0J2CAZGDsnUHRNUFXSpDrCZD75mrLMW14jKny6AqR6rPyqo/zuPpe5pr3WBNqfY3FuxYUkUvNzmisey8ltKtpjeW0Vpx5/2lbggzB8Qj3K+e5JP4msnJsud6cmwjreC9pKwSV4tvYeqKQ5JlkBqSDEh/HuY038h9XvZsApKaFkFzuhapmo9Za46p8+5IBUgA9DoJS3GkqUaqy9i11pTvquZ3xR5NR3KZ3k19vzA/L9yb5IXiMv0mPnO2Yc78dI6IAZGDMufpszqdbA21IatGPkjlIZEbauqMCRhV5J4UpYbWG+ojY+wCaukFU6rzsynZeeWYe95o3vx3n7mCRdszIe58/iM6RWLqPc3UTQW6+6c7SayKVE2Q6hwCgJ+OXNAawaYqt6FzVjcYN/R5mNLXydjnVZ2OvJaSmxZh9vfHDHY214xlKwUw6/tjUNw5llXTiMRI17yhqrOtaqqRQW1CUVxWoZVt2tRyG6rRsgdD11pbJxq1BmsGYNUN8M2Zn84RMSByYKacnNXtZCt1MZgxoAXaNPbH0QsF6oRhmtuWGmrqpqgaWeHoeSYMkQsOzRlab8rFqToXTM1zwtTsvFJMPW/k5l0a+UWm+uYqAHzzxzlMvaeZ7P7JkaoJUk102WXhVsnaD91zVnNbqkBKVUUP6M/jphk0mELu81p/NBeD2oRZ5Xy3RvMpoD0tgikdbgX+CZIqBfD571mStSVrJiejpKxS/dlY8tRvrEbLnuSutTWRaLS6rB2AVTfAN9T64OjdKRgQOThDJ6e1ngykLga5ylKM/GKP5LblZlhvVN/TYU90U6hutLpzMZlzXE25OFX3gqk6J46cuy653NujaqyE3E32yLnrWjcmuSBBLmg6cFY/e665E3Gq9lmzNlG1X7nKUr3EmALaI9h0n0Q1b9ZdU7eqyzxeosajEsCyXdl4aVBLwwW8Q25/3lh/Ags2nNB6ULCkptZazaeA9rQIuoGjXMJATQJA92aB2H3mqt7IKEB+agrVJMJy+29KjZa96V5rLe0SUNN9yxxp3khNjlouQxgQOTFrPhnoXgwMbdsZT3RTDesYCR/POnp9VEw9rqbMSm2tC2ZxWYXk6yVllQYnipwlkXhSN0iQC7YLSsuRKtH8ZWgiTl3GJjbNyi+WnS7FUFZjqTJ/uStL8hh9setvk2eYN7Q/6uNSUm52ugq5MpvTfGpsWoQecUH4YHgS9vx9DSv/yDFppvddp/OxdkoXdZBp7LpQKYCZ3x3FrjP5svvvbBN9VrdLQE32LTPlemLrPHFS23eEQQfmYkDkxGwZmBjatjOe6OZoHyWdLl9utITqYnDsglJrhJrq76T6YVnjgmloVIdcluHZGjdQXZpBglxAnKqzf0DVDdDQRJxSc0QZmtg0JtBHsjZDKrGcJrmb9b2JofhZYxoD1esHz143OYOuatJSVWJCTbrHxdo1iobKZGhaBKks36aoRFVQLTUqSq5maufp/H/+XmL/nWmiT2t1CajJvmWGrifm1EBaEjgZ2r6j5p2Sw4DIidkyMDG2bWc70c1hzmgJQzcdNwXwVK+msjUHmv0UNH+XY+qw7+KyCsmbrNREkZo0a2CkarrcIN0M9tHwtrg3ST/AUZXR3Dmiwvy8kDo0Ubu/icYINjlyAeLEHk2xISNPr+xTVxxC0S3pvmFSNwa5GjmpSTtNDWqs0XwqFdSZM6WDLkPvH+bnhfHdYvD579I1bypSc5TZa6JPa/TPcoYuAVI1pvuzr5lcA2lJ060pNZw1GRhWFwMiJ2fLwMTYtp3pRDeXKaMlVDUucjedSgF8si1TtubAnI7NS3dl4cs7eYCMDfuWm/lbaqJITaoaGFW5pGq6VMGd5uvtow3n/AHMP1c0c6MoFJBtXtN9D6kAUZVoUvezEpCen0vuc5Gr5ZjSKxafbM+0KKix1UONsY7tCkA9ukxxJ/KVaxLSDSjGdYvBF3dmVZcjVZtXUxN9apZXbji6IZYEqY42dZGhBzVT5zTTvFbJ7V9ty0PHgKgWsGVgUpuDHmOMjZZYvf+8wZuO1M1TM3OrKU9uuiNzpNbV/YyMBQazZJrNhADWHb6oF/RoJjv0965bY02lYX5eeukOjJEL4od1jIS3h7vkqLzBn6RBiH/yJb0lka1dday10h6gav0ne8YiIsBbdti2sRulLR5qjKXTWDAkQS/xpjnNLalDDeekmtCtqeR+yNVoGWNqwKFbXt20FLO/P4b40AZaecWqm3DT0aYuMlY7KBXcGQpsDAWVta0/KQMikuVoTz32Indz+WpvjsG/k7sZRQd6m5wdV7emRm5dXXI32R5xQbJDjQRQFQxI7Icq2aEzNJXKBfEdogMkP0fNYeeawZCKZi4qQwGXboCxYP1xfH6nJsXYjdLSBw+576jUTX1G/xZo08Rfb+4szb/R3bZc0G4ou7EbgLHdos3eFznm1KTqlldXJYDBn6QhVaLJ25KEm444f5ex2sGUhBC9skld49wUMNgfUVWrWpv6kzIgIkmO9tRjT4ZGGZlDt/Ox1M356IUCdWdWQxc2U57CpG6yciO4VCqh3ydGapScM17wpGp4pII/qQ7dT688hAsFpXiyZ6zs/qtel2qu0Byebm5fMTnGvqPVDV6NBe2qGrzqZDc2Ri7gUN2QfTzc1TdmU/NfCZkmb2M1r1IcscnIWNqLjRl5OHLuulYtmVQfLyGA9UdzJfdPs1Z14ZBE7JrV26EfkkzFgMiJ1FSNjSM+9dib6uay/mgu3lh/wqJtaHY+DvPzwsz+8Vi4UXsI+9sbT+H+pPB/OjZLdNiVGtVlKmMXS1Vizrc3nqoVT3y6jM3jp+4rpVNTJgAs3HgSZ6+V4Ok7GbmlGGquqBTAst1ZeGlgK9nyVac2RKo/VHWCV1ObQ2xZaygXcAxelKbd4V8BzOwfLzm1jap/lO42pAYZmBvMSNaswPoj58y59quCG918aipCAIMXpeklxdStPRYAvpBI1KnaBvDPebdrVm+bzdVWkzjbvZNYtS8HXVO3YsTne9E1dStW7TPcXFMdtWHWYluo6v8QpjfDudyM7JqkOh8nNvHTW081Weub64/jwTtPYer3AfBEjxjsnnWPSaM/pGY4V10sVbNbKxT/TOCpCn6e7BGLXbN6S87QXRuoRr6p+lTpzlT+ZM9YfDSireTfrtibgy4L5b9/xmopvtiZJTuLuimzrqs+V7nkmIM/SbPaNUL3XDEUHKuOqW5HXalz0ByqgEOX7iGuFMDbv5zCTI1Z3t0VCqQOScQPU7pAdzJ3zUEGuq+bE8yojpHmZgSq5hazFkuu/cM6RmL37Hsw4m7p765qQMGRc9fVn5FU7XElqvqDqY6pVMCgujdY4/O2N9YQOYGarrGpbR3lrEmyb8aAFnp9TxQKQCGqLihyNxK5yVqnSExc6gZg7ZQuRmdxB8xvSgH0O9Q6a7OYueRqN9pHNZTN7Ky6mUh9/4zVwBlKRCj3ILJybw4e7RSp1blVM1mgVtmMXCOOnLuOP7Kv4e7oAJPOJVX+pX3Z19ExuqHBzsiaLG1yN9bB2dCxrRACbRr7SzbfpGqMMlTVsKoC4uo29/WIC9KqyTV0fpirOtf+MD8vLBiSiKhA76o8WQZq2lQDCqSu+2O7RWNst2hk55egpKwc4//vgN577TpzBSO/yHT6LhYMiJxATbdTS/W1GG/FTpLOTuom6u+lP/pK7kaiEubnhQfbNsb3By+oX5ProqRKlmeM7rQXchdQqZFprkoq+Avz88KsAfpNmipy3z9j/c0MPVjIBVMfbT2Dj7eeAfBPACRQFRCp1pfqD6Vbxue/Pax1rg1t1xj/fuQurb/RDUgMZTyXC3gsvYmb0sFZqplT99jKBfOafWNUrNHcZ8vrszW2/WSPWHSOCdBrZgS0R+C9vfEUZvaP10uiqvmQlJaZDymG0os4EwZETsDWNTZST3qqC8WyXdn4Ytff+Oz3LHyxK8tpI39r073o6l5YTZkAM1dZirWHLuhuWpZqjjJDlu7Szw9j706ezurJnrGAQnrkmaHvn7Es3XKfg6G+H3I1VR8Pb4tG9T1ln9xV58yRc9e1giEA+P7gBTyeHKUO1nUDErkUBMY6I1tyEzcWRGl+3wxN7Cu1fd3Rmro1ONWtDbXXjAHmSIpoiNSh+rm4NFUIgTZNtGvYAGhl55fLIl9brjnsQ+QEzGnLN5ex9ukvdv1tsE8D/UPVjwKQzjGke9zMmRUeMF5DlKsslZy7yxGnR3AWT/aIxe5Z9+CJHjHqi6Wx75/qAcPbww2JTfywZnKyyf2xhnWMlO2/pMtNAUQEVJ1zXh7Sz7aqc+aP7GuSy/dnXwdwZ8JfnXNWLgWBoc7IgHS/H2M3cXP6LQ7rGIkZA1qo+wUpFMCMAS1kj62t+0Ta8vpszW0P6xiJD4ffJbtcs4YtObaReqJkzXtDmJ8XJnaPMfpeztrFgjVETsIWIzmMPZU54pBSZ2DsuKlumD4e7ibNCg+YdoGRC7Am9Ijh51UNYX5eeGlgK4ztGmP0+yc15F5VQ2jqKBxD/Zc0VQrgwU/SsHBIInrEBRmsSbg7OkByGx2iG0om/1RtX7ccchnPdef6M6VvjmbNtDk1IbnK0qo5AzWawDRHZ+qydg2O5vdXNaLPnjMGmEMuF5fuyFWpe8PsNcfg7eGOQW3C8MWdrPmaVOeKM49MZUDkRKzd0dXYjZudqy1j6LjpNks82LYx1h66IHlxUU2t4AZgRv8WRj97ueRqY7saf6Ij44x9/+SG3JvbpyLMT38uNzmaw54NBSFJEQ0xtF1jvT5Ewb71qkYzSmxblYJAt8lPqjOy1Fx/hnLTSPUXMrXforkPalIDIUy5YUt1JTAU8A7rGGn1IECzDNYY1i7VP3RCjxiM7ar90CQ3n9vTKw/DTQGktA7FxgztCZMVAP4zoq1J0+w4KoUQ1cg050IKCwvh5+cHpVIJX19fexfHKnKVpeiaulXvxr1rVm+tC4DuhYR9iIyTOm7xoQ3UCc1U3BUKrJmcjPXHcvHFziytUWkFpeXq0SFuCmB4xwh0aRaI9gYuOPy87CctMx8jPt8ru3zlxM5Ijm1kck6ZLSfyJPsFyW07OtAb+7OvwU2hkL0pHTl3HfuzryM60BteHnVwteiW3nQmgPZNPldZKhnYqF6Xy+ekeR3R3GcAstcdAOp+i7r97zRrZoy9nxS5/ZAiFbD1iAvSK7c572+IseDL2iO3jB0LqXuDJqlO/MA/57ijMfX+7VI1RIsWLcI777yDvLw8JCUl4eOPP8bdd99t72LZjSlPTs4wVYMjkupk/cCiNL31KoRASVmlXpMMUHXT0BxGveKPc1jxxzkoAL2kanLvy8+r5hibP0yqhtDQTU6uX5AuN1RlOB/5xR6j202KaIiTeTcw8b8H1OsaGr4PyNeMqV6Xm+tPVWOju8/ju8XIrh8d6K3Xb3H298dQUFqu7tOkqln94dBFs2p8TK1hl+tK8OGjdxnskGys07hcEPzpjsyqBx9oB1+mTrYKwOyEvcaOhbHRkqZktHdGLhMQrVq1Cs899xyWLFmCTp064YMPPkBKSgpOnTqF4OBgexfPbky5gbpKThprUx031VB4KZoXEc3jLHWTUREwPA0EPy/7kLuJqG7YgH5n+9lr9CcbVTGW00hlUq9YgxPSapK62atyZmm+je5ILEMMNRFLvd+Xu7Ik+ybJzfFXCSB1w0mtYd0/HLqINZOTUVJWWWPZsSGkp9vRLL8UQ0HwpzsztVI7GAq+pCZbVfVd1wymzK1FkgvWVPeGg2evY+qKQ3pB84DWofj1z0u1KqO9y4wye++99zBx4kSMHTsWrVq1wpIlS+Dt7Y2lS5fau2h2pxpV4Owns6Pan31Nso+GoSk45DL0qlQKuHzmcEc0rGOkOsv3j1O6aI0uk+uXMXhRmmT2Yd0RRlIGJoaia/NAk0dRSZVBCODpPs301jV1JJahkVBy+zyxR4zk+qph3bqkhnWXlFXa5LolN0qufXRDyc/DlCH/UiNOc5WlSJXIc6UZfOm+j+5kqwLQy/9jzihgY6OMw/y8MKhNOGYNjNf721//vGTWCEpn4BI1RGVlZThw4ABmz56tfs3NzQ19+/ZFenq65N/cunULt27dUv9eWFho83JS7aSQuaG99kBrg7OfLxwinzfETcGh9I5KroZOrsbHUG2MZg1uSVk5Jvz3gFYzxa8Zl/Bkj6YmD36Qq83pEx+M/2w9Y/EACrmaZrn3G9s1RnLUnmpY92e/Zxl8P1s2zxjqSqCbJNJYDZWhDuACQjIRqxugDr50y1BcVmGwxtCcUcDmJNBMbOwn+V6qoLS2cImAKD8/HxUVFQgJCdF6PSQkBCdPSmeiXbhwIebPn18TxaNaTmoYtUIB9GkZIvcnADSSY+7Owmc7/7lBKO5UjbNGz7kYCnKNjZJS9dWRmn6hpKzS5FFUcjd7a0xjIRUIGuunKLX9sd1i9IZ1a466rInmGUNdCcxpkjY2UlcqQJ45IF4v+FKVIVdZanRyZlMDRXNG67nKiGOXCIgsMXv2bDz33HPq3wsLCxEREWHHEpGzUg2j1u1HYOoQbFWH6wPZ16FQwKmHtbo61dxgutMomHJzMXRTSo5tZHJnermbva065Ju7XbkgqqYHC1ijL56xgFB3nraZA+LxZI9Y2TLobk9x50lLwPxA0Zwgx9LUBc7GJYbdl5WVwdvbG9999x0GDx6sfn306NEoKCjAjz/+aHQbtXHYPdUsc4b9Uu1maXoEV0qrUJu+L4b2xZL91PwbQH9yZlOZez4562di6v3bJQIiAOjUqRPuvvtufPzxxwCAyspKREZGYurUqZg1a5bRv2dARETWZOnNxVlvSuSYXOF8Yh4iHc899xxGjx6NDh064O6778YHH3yA4uJijB071t5FIyIXZGmTDNMqkDXxfPqHywREw4YNw5UrV/Dqq68iLy8Pd911F3755Re9jtZERETkelymyay62GRGRETkfEy9f7tMYkYiIiIiOQyIiIiIyOUxICIiIiKXx4CIiIiIXB4DIiIiInJ5DIiIiIjI5TEgIiIiIpfHgIiIiIhcHgMiIiIicnkuM3VHdakSehcWFtq5JERERGQq1X3b2MQcDIhMdOPGDQBARESEnUtCRERE5rpx4wb8/Pxkl3MuMxNVVlbi4sWLaNCgARQKhcXbKSwsREREBM6dO+eyc6LxGPAYADwGAI8BwGMA8BgAtj0GQgjcuHED4eHhcHOT7ynEGiITubm5oUmTJlbbnq+vr8ue+Co8BjwGAI8BwGMA8BgAPAaA7Y6BoZohFXaqJiIiIpfHgIiIiIhcHgOiGubp6Ym5c+fC09PT3kWxGx4DHgOAxwDgMQB4DAAeA8AxjgE7VRMREZHLYw0RERERuTwGREREROTyGBARERGRy2NARERERC6PAZEVLF68GG3atFEnlEpOTsbGjRvVy2/evIkpU6agUaNGqF+/PoYOHYpLly5pbSMnJweDBg2Ct7c3goOD8eKLL+L27ds1vStWk5qaCoVCgenTp6tfq+3HYd68eVAoFFo/8fHx6uW1ff9VLly4gMceewyNGjWCl5cXEhMTsX//fvVyIQReffVVhIWFwcvLC3379sXp06e1tnHt2jWMHDkSvr6+8Pf3x/jx41FUVFTTu2KR6OhovfNAoVBgypQpAFzjPKioqMCcOXMQExMDLy8vxMbG4vXXX9eaS6q2nwdA1VQR06dPR1RUFLy8vNClSxfs27dPvby2HYOdO3fivvvuQ3h4OBQKBX744Qet5dba36NHj6J79+6oV68eIiIi8Pbbb1tnBwRV27p168T69evFX3/9JU6dOiVeeuklUbduXZGRkSGEEOKpp54SERERYsuWLWL//v2ic+fOokuXLuq/v337tkhISBB9+/YVhw4dEhs2bBCBgYFi9uzZ9tqlavnjjz9EdHS0aNOmjXjmmWfUr9f24zB37lzRunVrkZubq/65cuWKenlt338hhLh27ZqIiooSY8aMEXv37hV///23+PXXX8WZM2fU66Smpgo/Pz/xww8/iCNHjoj7779fxMTEiNLSUvU6/fv3F0lJSWLPnj3i999/F82aNROPPvqoPXbJbJcvX9Y6BzZv3iwAiG3btgkhXOM8ePPNN0WjRo3Ezz//LLKyssTq1atF/fr1xYcffqhep7afB0II8cgjj4hWrVqJHTt2iNOnT4u5c+cKX19fcf78eSFE7TsGGzZsEC+//LJYs2aNACDWrl2rtdwa+6tUKkVISIgYOXKkyMjIECtXrhReXl7i008/rXb5GRDZSMOGDcUXX3whCgoKRN26dcXq1avVy06cOCEAiPT0dCFE1Unk5uYm8vLy1OssXrxY+Pr6ilu3btV42avjxo0bonnz5mLz5s2iZ8+e6oDIFY7D3LlzRVJSkuQyV9h/IYSYOXOm6Natm+zyyspKERoaKt555x31awUFBcLT01OsXLlSCCHE8ePHBQCxb98+9TobN24UCoVCXLhwwXaFt5FnnnlGxMbGisrKSpc5DwYNGiTGjRun9dqQIUPEyJEjhRCucR6UlJQId3d38fPPP2u93q5dO/Hyyy/X+mOgGxBZa38/+eQT0bBhQ63vwsyZM0WLFi2qXWY2mVlZRUUFvvnmGxQXFyM5ORkHDhxAeXk5+vbtq14nPj4ekZGRSE9PBwCkp6cjMTERISEh6nVSUlJQWFiIP//8s8b3oTqmTJmCQYMGae0vAJc5DqdPn0Z4eDiaNm2KkSNHIicnB4Dr7P+6devQoUMHPPzwwwgODkbbtm3x+eefq5dnZWUhLy9P6zj4+fmhU6dOWsfB398fHTp0UK/Tt29fuLm5Ye/evTW3M1ZQVlaGr776CuPGjYNCoXCZ86BLly7YsmUL/vrrLwDAkSNHsGvXLgwYMACAa5wHt2/fRkVFBerVq6f1upeXF3bt2uUSx0CTtfY3PT0dPXr0gIeHh3qdlJQUnDp1CtevX69WGTm5q5UcO3YMycnJuHnzJurXr4+1a9eiVatWOHz4MDw8PODv76+1fkhICPLy8gAAeXl5Whc/1XLVMmfxzTff4ODBg1pt5Cp5eXm1/jh06tQJy5cvR4sWLZCbm4v58+eje/fuyMjIcIn9B4C///4bixcvxnPPPYeXXnoJ+/btw7Rp0+Dh4YHRo0er90NqPzWPQ3BwsNbyOnXqICAgwGmOg8oPP/yAgoICjBkzBoBrfA8AYNasWSgsLER8fDzc3d1RUVGBN998EyNHjgQAlzgPGjRogOTkZLz++uto2bIlQkJCsHLlSqSnp6NZs2YucQw0WWt/8/LyEBMTo7cN1bKGDRtaXEYGRFbSokULHD58GEqlEt999x1Gjx6NHTt22LtYNebcuXN45plnsHnzZr0nIlehevoFgDZt2qBTp06IiorCt99+Cy8vLzuWrOZUVlaiQ4cOWLBgAQCgbdu2yMjIwJIlSzB69Gg7l67mffnllxgwYADCw8PtXZQa9e233+Lrr7/GihUr0Lp1axw+fBjTp09HeHi4S50H//vf/zBu3Dg0btwY7u7uaNeuHR599FEcOHDA3kUjCWwysxIPDw80a9YM7du3x8KFC5GUlIQPP/wQoaGhKCsrQ0FBgdb6ly5dQmhoKAAgNDRUb5SJ6nfVOo7uwIEDuHz5Mtq1a4c6deqgTp062LFjBz766CPUqVMHISEhLnEcNPn7+yMuLg5nzpxxmfMgLCwMrVq10nqtZcuW6qZD1X5I7afmcbh8+bLW8tu3b+PatWtOcxwA4OzZs/jtt98wYcIE9Wuuch68+OKLmDVrFoYPH47ExESMGjUKzz77LBYuXAjAdc6D2NhY7NixA0VFRTh37hz++OMPlJeXo2nTpi5zDFSstb+2/H4wILKRyspK3Lp1C+3bt0fdunWxZcsW9bJTp04hJycHycnJAIDk5GQcO3ZM60TYvHkzfH199W4ujqpPnz44duwYDh8+rP7p0KEDRo4cqf63KxwHTUVFRcjMzERYWJjLnAddu3bFqVOntF7766+/EBUVBQCIiYlBaGio1nEoLCzE3r17tY5DQUGB1lP01q1bUVlZiU6dOtXAXljHsmXLEBwcjEGDBqlfc5XzoKSkBG5u2rcXd3d3VFZWAnCt8wAAfHx8EBYWhuvXr+PXX3/FAw884HLHwFr7m5ycjJ07d6K8vFy9zubNm9GiRYtqNZcB4LB7a5g1a5bYsWOHyMrKEkePHhWzZs0SCoVCbNq0SQhRNcw2MjJSbN26Vezfv18kJyeL5ORk9d+rhtn269dPHD58WPzyyy8iKCjIqYbZStEcZSZE7T8Ozz//vNi+fbvIysoSu3fvFn379hWBgYHi8uXLQojav/9CVKVcqFOnjnjzzTfF6dOnxddffy28vb3FV199pV4nNTVV+Pv7ix9//FEcPXpUPPDAA5JDb9u2bSv27t0rdu3aJZo3b+6wQ42lVFRUiMjISDFz5ky9Za5wHowePVo0btxYPex+zZo1IjAwUMyYMUO9jiucB7/88ovYuHGj+Pvvv8WmTZtEUlKS6NSpkygrKxNC1L5jcOPGDXHo0CFx6NAhAUC899574tChQ+Ls2bNCCOvsb0FBgQgJCRGjRo0SGRkZ4ptvvhHe3t4cdu8oxo0bJ6KiooSHh4cICgoSffr0UQdDQghRWloqJk+eLBo2bCi8vb3Fgw8+KHJzc7W2kZ2dLQYMGCC8vLxEYGCgeP7550V5eXlN74pV6QZEtf04DBs2TISFhQkPDw/RuHFjMWzYMK38O7V9/1V++uknkZCQIDw9PUV8fLz47LPPtJZXVlaKOXPmiJCQEOHp6Sn69OkjTp06pbXO1atXxaOPPirq168vfH19xdixY8WNGzdqcjeq5ddffxUA9PZLCNc4DwoLC8UzzzwjIiMjRb169UTTpk3Fyy+/rDVU2hXOg1WrVommTZsKDw8PERoaKqZMmSIKCgrUy2vbMdi2bZsAoPczevRoIYT19vfIkSOiW7duwtPTUzRu3FikpqZapfwKITRShxIRERG5IPYhIiIiIpfHgIiIiIhcHgMiIiIicnkMiIiIiMjlMSAiIiIil8eAiIiIiFweAyIiIiJyeQyIiIiIyOUxICJyMXl5eXj66afRtGlTeHp6IiIiAvfdd5/WHENpaWkYOHAgGjZsiHr16iExMRHvvfceKioq1OtkZ2dj/PjxiImJgZeXF2JjYzF37lyUlZVpvd/nn3+OpKQk1K9fH/7+/mjbtq16kk8AmDdvHhQKBfr3769X1nfeeQcKhQK9evUyul/R0dFQKBSyP2PGjDH/YDm4Xr16Yfr06fYuBlGtUMfeBSCimpOdnY2uXbvC398f77zzDhITE1FeXo5ff/0VU6ZMwcmTJ7F27Vo88sgjGDt2LLZt2wZ/f3/89ttvmDFjBtLT0/Htt99CoVDg5MmTqKysxKeffopmzZohIyMDEydORHFxMd59910AwNKlSzF9+nR89NFH6NmzJ27duoWjR48iIyNDq1xhYWHYtm0bzp8/jyZNmqhfX7p0KSIjI03at3379qkDtrS0NAwdOhSnTp2Cr68vAMDLy8sah7BGlJeXo27dujX2fmVlZfDw8Kix9yNySFaZAISInMKAAQNE48aNRVFRkd6y69evi6KiItGoUSMxZMgQveXr1q0TAMQ333wju/23335bxMTEqH9/4IEHxJgxYwyWae7cuSIpKUnce++94o033lC/vnv3bhEYGCgmTZokevbsacLe/UM1p9L169fVr/3www+ibdu2wtPTU8TExIh58+ZpzQ8GQCxZskQMGjRIeHl5ifj4eJGWliZOnz4tevbsKby9vUVycrLW/HSqsi9ZskQ0adJEeHl5iYcfflhrviohhPj8889FfHy88PT0FC1atBCLFi1SL8vKylIf1x49eghPT0+xbNkykZ+fL4YPHy7Cw8OFl5eXSEhIECtWrFD/3ejRo/XmjMrKyhLLli0Tfn5+Wu+/du1aoXm5V5X7888/F9HR0UKhUAghqs6B8ePHi8DAQNGgQQPRu3dvcfjwYbOOPZGzYpMZkYu4du0afvnlF0yZMgU+Pj56y/39/bFp0yZcvXoVL7zwgt7y++67D3FxcVi5cqXseyiVSgQEBKh/Dw0NxZ49e3D27Fmj5Rs3bhyWL1+u/n3p0qUYOXKkVWoufv/9dzz++ON45plncPz4cXz66adYvnw53nzzTa31Xn/9dTz++OM4fPgw4uPjMWLECDz55JOYPXs29u/fDyEEpk6dqvU3Z86cwbfffouffvoJv/zyCw4dOoTJkyerl3/99dd49dVX8eabb+LEiRNYsGAB5syZg//7v//T2s6sWbPwzDPP4MSJE0hJScHNmzfRvn17rF+/HhkZGXjiiScwatQo/PHHHwCADz/8EMnJyZg4cSJyc3ORm5uLiIgIk4/JmTNn8P3332PNmjU4fPgwAODhhx/G5cuXsXHjRhw4cADt2rVDnz59cO3aNXMON5FzsndERkQ1Y+/evQKAWLNmjew6qampejUrmu6//37RsmVLyWWnT58Wvr6+WrPbX7x4UXTu3FkAEHFxcWL06NFi1apVoqKiQr2OqrairKxMBAcHix07doiioiLRoEEDceTIEfHMM89Uu4aoT58+YsGCBVrr/O9//xNhYWHq3wGIV155Rf17enq6ACC+/PJL9WsrV64U9erV0yq7u7u7OH/+vPq1jRs3Cjc3N/UM9rGxsVo1O0II8frrr4vk5GQhxD81RB988IHR/Ro0aJB4/vnn1b/37NlTPPPMM1rrmFpDVLduXXH58mX1a7///rvw9fUVN2/e1Prb2NhY8emnnxotG5GzYx8iIhchhLDJugBw4cIF9O/fHw8//DAmTpyofj0sLAzp6enIyMjAzp07kZaWhtGjR+OLL77AL7/8Aje3fyqp69ati8ceewzLli3D33//jbi4OLRp08ascsg5cuQIdu/erVUjVFFRgZs3b6KkpATe3t4AoPV+ISEhAIDExESt127evInCwkJ136TIyEg0btxYvU5ycjIqKytx6tQpNGjQAJmZmRg/frzWcbl9+zb8/Py0ytihQwet3ysqKrBgwQJ8++23uHDhAsrKynDr1i11WasrKioKQUFB6t+PHDmCoqIiNGrUSGu90tJSZGZmWuU9iRwZAyIiF9G8eXN1Z2g5cXFxAIATJ06gS5cuestPnDiBVq1aab128eJF9O7dG126dMFnn30mud2EhAQkJCRg8uTJeOqpp9C9e3fs2LEDvXv31lpv3Lhx6NSpEzIyMjBu3Dhzd1FWUVER5s+fjyFDhugtq1evnvrfmh2ZFQqF7GuVlZUmvy9QNdKuU6dOWsvc3d21ftdtxnznnXfw4Ycf4oMPPkBiYiJ8fHwwffp0vVF8utzc3PQC2vLycr31dN+vqKgIYWFh2L59u966/v7+Bt+TqDZgQETkIgICApCSkoJFixZh2rRpejfEgoIC9OvXDwEBAfj3v/+tFxCtW7cOp0+fxuuvv65+7cKFC+jduzfat2+PZcuWadX4yFEFVMXFxXrLWrdujdatW+Po0aMYMWKEJbspqV27djh16hSaNWtmtW2q5OTk4OLFiwgPDwcA7NmzB25ubmjRogVCQkIQHh6Ov//+GyNHjjRru7t378YDDzyAxx57DEBVEPbXX39pBaQeHh5aqRAAICgoCDdu3EBxcbH6M1b1ETKkXbt2yMvLQ506dRAdHW1WWYlqAwZERC5k0aJF6Nq1K+6++2689tpraNOmDW7fvo3Nmzdj8eLFOHHiBD799FMMHz4cTzzxBKZOnQpfX19s2bIFL774Ih566CE88sgjAKqCoV69eiEqKgrvvvsurly5on6f0NBQAMCkSZMQHh6Oe+65B02aNEFubi7eeOMNBAUFITk5WbKMW7duRXl5uVVrJV599VXce++9iIyMxEMPPQQ3NzccOXIEGRkZeOONN6q17Xr16mH06NF49913UVhYiGnTpuGRRx5RH4P58+dj2rRp8PPzQ//+/XHr1i3s378f169fx3PPPSe73ebNm+O7775DWloaGjZsiPfeew+XLl3SCoiio6Oxd+9eZGdno379+ggICECnTp3g7e2Nl156CdOmTcPevXu1OqvL6du3L5KTkzF48GC8/fbbiIuLw8WLF7F+/Xo8+OCDek16RLUNR5kRuZCmTZvi4MGD6N27N55//nkkJCTgX//6F7Zs2YLFixcDAB566CFs27YNOTk56N69O1q0aIH3338fL7/8Mr755ht1s9HmzZtx5swZbNmyBU2aNEFYWJj6R6Vv377Ys2cPHn74YcTFxWHo0KGoV68etmzZotdXRcXHx8fqTTQpKSn4+eefsWnTJnTs2BGdO3fG+++/j6ioqGpvu1mzZhgyZAgGDhyIfv36oU2bNvjkk0/UyydMmIAvvvgCy5YtQ2JiInr27Inly5cjJibG4HZfeeUVtGvXDikpKejVqxdCQ0MxePBgrXVeeOEFuLu7o1WrVggKCkJOTg4CAgLw1VdfYcOGDUhMTMTKlSsxb948o/uhUCiwYcMG9OjRA2PHjkVcXByGDx+Os2fPqvtTEdVmCmFu70kiIgJQlWX7hx9+MKlJiogcG2uIiIiIyOUxICIip1G/fn3Zn99//93exSMiJ8YmMyJyGmfOnJFd1rhxY6ear4yIHAsDIiIiInJ5bDIjIiIil8eAiIiIiFweAyIiIiJyeQyIiIiIyOUxICIiIiKXx4CIiIiIXB4DIiIiInJ5DIiIiIjI5f0/0xTfboYSSUIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB75klEQVR4nO3dd3gU1foH8O8mkJAE0kiABNMIhAAJSDd0FIGIBUEFRaVbAJHrVQw2UNQE8VovIhcl+FNpIiAqVUB670jHQCihRFJIIYHk/P6Iu26Z2d3Zkp1Nvp/n4dHszM6emZ2deeec95yjEUIIEBEREamQh6sLQERERCSHgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoR2W3KlCnQaDRWravRaDBlyhSnlqdHjx7o0aOHardHRNZjoEJUhcydOxcajUb3r0aNGmjYsCGGDRuGixcvurp4qhMdHW1wvOrVq4euXbti6dKlDtl+UVERpkyZgt9//90h2yOqjhioEFVB77zzDr799lt8+eWXSE5OxnfffYfu3bvj5s2bTvm8N954A8XFxU7ZtrPdeeed+Pbbb/Htt9/i5ZdfxqVLlzBgwAB8+eWXdm+7qKgIb7/9NgMVIjvUcHUBiMjxkpOT0a5dOwDAqFGjEBISgmnTpmH58uV47LHHHP55NWrUQI0a7nk5adiwIZ588knd308//TQaN26Mjz/+GM8995wLS0ZEAGtUiKqFrl27AgDOnDlj8Prx48fxyCOPIDg4GLVq1UK7du2wfPlyg3Vu3bqFt99+G02aNEGtWrVQt25ddOnSBWvXrtWtI5WjUlJSgn/9618IDQ1FnTp18OCDD+LChQsmZRs2bBiio6NNXpfaZnp6Ou6++27Uq1cP3t7eaN68OWbOnKnoWFjSoEEDNGvWDBkZGWbXu3r1KkaOHIn69eujVq1aaNWqFb755hvd8rNnzyI0NBQA8Pbbb+ual5ydn0NU1bjnIxARKXL27FkAQFBQkO61P/74A507d0bDhg2RkpICPz8/LFq0CP3798ePP/6Ihx9+GEBFwJCamopRo0ahQ4cOyM/Px549e7Bv3z7ce++9sp85atQofPfdd3jiiSfQqVMnrF+/Hv369bNrP2bOnIkWLVrgwQcfRI0aNfDzzz9jzJgxKC8vx9ixY+3attatW7dw/vx51K1bV3ad4uJi9OjRA6dPn8a4ceMQExODH374AcOGDUNubi5efPFFhIaGYubMmXj++efx8MMPY8CAAQCAli1bOqScRNWGIKIqIz09XQAQv/32m7h27Zo4f/68WLx4sQgNDRXe3t7i/PnzunXvuecekZiYKG7evKl7rby8XHTq1Ek0adJE91qrVq1Ev379zH7u5MmThf7l5MCBAwKAGDNmjMF6TzzxhAAgJk+erHtt6NChIioqyuI2hRCiqKjIZL0+ffqIRo0aGbzWvXt30b17d7NlFkKIqKgo0bt3b3Ht2jVx7do1cfDgQTF48GABQLzwwguy2/vkk08EAPHdd9/pXistLRVJSUmidu3aIj8/XwghxLVr10z2l4iUYdMPURXUq1cvhIaGIiIiAo888gj8/PywfPly3HHHHQCA69evY/369Xjsscdw48YNZGdnIzs7G3/99Rf69OmDU6dO6XoJBQYG4o8//sCpU6es/vwVK1YAAMaPH2/w+oQJE+zaLx8fH93/5+XlITs7G927d8eff/6JvLw8m7a5Zs0ahIaGIjQ0FK1atcIPP/yAp556CtOmTZN9z4oVK9CgQQM8/vjjutdq1qyJ8ePHo6CgABs3brSpLERkik0/RFXQjBkzEBcXh7y8PMyZMwebNm2Ct7e3bvnp06chhMCbb76JN998U3IbV69eRcOGDfHOO+/goYceQlxcHBISEtC3b1889dRTZpswzp07Bw8PD8TGxhq83rRpU7v2a+vWrZg8eTK2b9+OoqIig2V5eXkICAhQvM2OHTvi3XffhUajga+vL5o1a4bAwECz7zl37hyaNGkCDw/DZ71mzZrplhORYzBQIaqCOnTooOv1079/f3Tp0gVPPPEETpw4gdq1a6O8vBwA8PLLL6NPnz6S22jcuDEAoFu3bjhz5gx++uknrFmzBl999RU+/vhjfPnllxg1apTdZZUbKK6srMzg7zNnzuCee+5BfHw8PvroI0RERMDLywsrVqzAxx9/rNsnpUJCQtCrVy+b3ktEzsdAhaiK8/T0RGpqKnr27In//ve/SElJQaNGjQBUNFdYc5MODg7G8OHDMXz4cBQUFKBbt26YMmWKbKASFRWF8vJynDlzxqAW5cSJEybrBgUFITc31+R141qJn3/+GSUlJVi+fDkiIyN1r2/YsMFi+R0tKioKhw4dQnl5uUGtyvHjx3XLAfkgjIisxxwVomqgR48e6NChAz755BPcvHkT9erVQ48ePTBr1ixkZWWZrH/t2jXd///1118Gy2rXro3GjRujpKRE9vOSk5MBAJ999pnB65988onJurGxscjLy8OhQ4d0r2VlZZmMDuvp6QkAEELoXsvLy0N6erpsOZzlvvvuw+XLl7Fw4ULda7dv38bnn3+O2rVro3v37gAAX19fAJAMxIjIOqxRIaomXnnlFTz66KOYO3cunnvuOcyYMQNdunRBYmIiRo8ejUaNGuHKlSvYvn07Lly4gIMHDwIAmjdvjh49eqBt27YIDg7Gnj17sHjxYowbN072s+688048/vjj+OKLL5CXl4dOnTph3bp1OH36tMm6gwcPxquvvoqHH34Y48ePR1FREWbOnIm4uDjs27dPt17v3r3h5eWFBx54AM8++ywKCgowe/Zs1KtXTzLYcqZnnnkGs2bNwrBhw7B3715ER0dj8eLF2Lp1Kz755BPUqVMHQEXyb/PmzbFw4ULExcUhODgYCQkJSEhIqNTyErk1V3c7IiLH0XZP3r17t8mysrIyERsbK2JjY8Xt27eFEEKcOXNGPP3006JBgwaiZs2aomHDhuL+++8Xixcv1r3v3XffFR06dBCBgYHCx8dHxMfHi/fee0+Ulpbq1pHqSlxcXCzGjx8v6tatK/z8/MQDDzwgzp8/L9ldd82aNSIhIUF4eXmJpk2biu+++05ym8uXLxctW7YUtWrVEtHR0WLatGlizpw5AoDIyMjQraeke7Klrtdy27ty5YoYPny4CAkJEV5eXiIxMVGkp6ebvHfbtm2ibdu2wsvLi12ViWygEUKvHpWIiIhIRZijQkRERKrFQIWIiIhUi4EKERERqRYDFSIiIlItBipERESkWgxUiIiISLXcesC38vJyXLp0CXXq1OFQ1URERG5CCIEbN24gPDzcZHJPY24dqFy6dAkRERGuLgYRERHZ4Pz587jjjjvMruPWgYp2mOrz58/D39/fxaUhIiIia+Tn5yMiIkJ3HzfHrQMVbXOPv78/AxUiIiI3Y03aBpNpiYiISLUYqBAREZFqMVAhIiIi1XLrHBUiIrUpLy9HaWmpq4tB5FI1a9aEp6enQ7bFQIWIyEFKS0uRkZGB8vJyVxeFyOUCAwPRoEEDu8c5c2mgUlZWhilTpuC7777D5cuXER4ejmHDhuGNN97gAG5E5FaEEMjKyoKnpyciIiIsDmJFVFUJIVBUVISrV68CAMLCwuzanksDlWnTpmHmzJn45ptv0KJFC+zZswfDhw9HQEAAxo8f78qiEREpcvv2bRQVFSE8PBy+vr6uLg6RS/n4+AAArl69inr16tnVDOTSQGXbtm146KGH0K9fPwBAdHQ05s+fj127drmyWEREipWVlQEAvLy8XFwSInXQBuy3bt2yK1Bxad1kp06dsG7dOpw8eRIAcPDgQWzZsgXJycmS65eUlCA/P9/gHxGRmrDZmqiCo34LLq1RSUlJQX5+PuLj4+Hp6YmysjK89957GDJkiOT6qampePvttyu5lEREROQqLq1RWbRoEb7//nvMmzcP+/btwzfffIMPP/wQ33zzjeT6kyZNQl5enu7f+fPnK7nEREREVJlcGqi88sorSElJweDBg5GYmIinnnoK//rXv5Camiq5vre3t25en8qY3ycrrxjbzmQjK6/YqZ9DRORqly9fxgsvvIBGjRrB29sbEREReOCBB7Bu3TrdOtu2bcN9992HoKAg1KpVC4mJifjoo490+TkAcPbsWYwcORIxMTHw8fFBbGwsJk+ebDK2zOzZs9GqVSvUrl0bgYGBaN26tcG1f8qUKdBoNOjbt69JWadPnw6NRoMePXpYvX/5+fl4/fXXER8fj1q1aqFBgwbo1asXlixZAiGEbr0//vgDjz32GEJDQ+Ht7Y24uDi89dZbKCoq0q1z/fp1vPDCC2jatCl8fHwQGRmJ8ePHIy8vz6qynD17FhqNRvLfjh07rN6nHj16YMKECVav765c2vRTVFRk0oXP09NTFWMQLNydiUlLDqNcAB4aIHVAIga1j3R1sYiIHO7s2bPo3LkzAgMDMX36dCQmJuLWrVtYvXo1xo4di+PHj2Pp0qV47LHHMHz4cGzYsAGBgYH47bffMHHiRGzfvh2LFi2CRqPB8ePHUV5ejlmzZqFx48Y4cuQIRo8ejcLCQnz44YcAgDlz5mDChAn47LPP0L17d5SUlODQoUM4cuSIQbnCwsKwYcMGXLhwAXfccYfu9Tlz5iAy0vrrcW5uLrp06YK8vDy8++67aN++PWrUqIGNGzdi4sSJuPvuuxEYGIgdO3agV69e6NWrF3799VfUr18fu3btwr///W+sW7cOGzZsgJeXFy5duoRLly7hww8/RPPmzXHu3Dk899xzuHTpEhYvXmx1uX777Te0aNHC4LW6deta/X5rCCFQVlaGGjXceNg04UJDhw4VDRs2FL/88ovIyMgQS5YsESEhIWLixIlWvT8vL08AEHl5eQ4t16XcIhGT8ouIevWff41SfhWXcosc+jlEVHUUFxeLo0ePiuLiYlcXRbHk5GTRsGFDUVBQYLIsJydHFBQUiLp164oBAwaYLF++fLkAIBYsWCC7/Q8++EDExMTo/n7ooYfEsGHDzJZp8uTJolWrVuL+++8X7777ru71rVu3ipCQEPH888+L7t27W7F3Qjz//PPCz89PXLx40WTZjRs3xK1bt0R5eblo3ry5aNeunSgrKzNY58CBA0Kj0Yi0tDTZz1i0aJHw8vISt27dsliejIwMAUDs379fdh3t/v/f//2fiIqKEv7+/mLQoEEiPz9fCFFx/wRg8C8jI0Ns2LBBABArVqwQbdq0ETVr1hQbNmwQN2/eFC+88IIIDQ0V3t7eonPnzmLXrl26z9O+75dffhGJiYnC29tbdOzYURw+fFgIIURBQYGoU6eO+OGHHwzKuXTpUuHr66srlz5zvwkl92+XNv18/vnneOSRRzBmzBg0a9YML7/8Mp599llMnTrVlcVCRnYhyoXha2VC4Gx2kfQbiIgcqDKbna9fv45Vq1Zh7Nix8PPzM1keGBiINWvW4K+//sLLL79ssvyBBx5AXFwc5s+fL/sZeXl5CA4O1v3doEED7NixA+fOnbNYvhEjRmDu3Lm6v+fMmYMhQ4ZY3Q28vLwcCxYswJAhQxAeHm6yvHbt2qhRowYOHDiAo0eP4qWXXjKp6W/VqhV69eplcR/9/f0dWnNx5swZLFu2DL/88gt++eUXbNy4EWlpaQCATz/9FElJSRg9ejSysrKQlZWFiIgI3XtTUlKQlpaGY8eOoWXLlpg4cSJ+/PFHfPPNN9i3bx8aN26MPn364Pr16waf+corr+A///kPdu/ejdDQUDzwwAO4desW/Pz8MHjwYKSnpxusn56ejkceeQR16tRx2H4bc2mgUqdOHXzyySc4d+4ciouLcebMGbz77rsuH4cgJsQPHka9qjw1GkSHcBAnInKuhbsz0TltPZ6YvROd09Zj4e5Mp37e6dOnIYRAfHy87DraISSaNWsmuTw+Pl63jtT2P//8czz77LO61yZPnozAwEBER0ejadOmGDZsGBYtWiTZ7H///fcjPz8fmzZtQmFhIRYtWoQRI0ZYvX/Z2dnIyckxu3+A5X1s1qyZ7D5mZ2dj6tSpeOaZZ6wuF1AxREft2rUN/ukrLy/H3LlzkZCQgK5du+Kpp57S5QwFBATAy8sLvr6+aNCgARo0aGAwVsk777yDe++9F7GxsfD29sbMmTMxffp0JCcno3nz5pg9ezZ8fHzw9ddfG3zm5MmTce+99yIxMRHffPMNrly5gqVLlwIARo0ahdWrVyMrKwtAxWBuK1asUPR92IJjPEsIC/BB6oBEeP7dB9xTo8H7AxIQFuDj4pIRUVWWlVesy40DgHIBvLbkiFNrVoQQlleyYV0AuHjxIvr27YtHH30Uo0eP1r0eFhaG7du34/Dhw3jxxRdx+/ZtDB06FH379jUJVmrWrIknn3wS6enp+OGHHxAXF4eWLVs6rcxK18/Pz0e/fv3QvHlzTJkyRdF7Fy5ciAMHDhj80xcdHW1QUxEWFqYblt6Sdu3a6f7/zJkzuHXrFjp37qx7rWbNmujQoQOOHTtm8L6kpCTd/wcHB6Np06a6dTp06IAWLVroeuZ+9913iIqKQrdu3azbYRu5cXaNcw1qH4lucaE4m12E6BBfBilE5HTmmp2ddQ1q0qSJLglWTlxcHADg2LFj6NSpk8nyY8eOoXnz5gavXbp0CT179kSnTp3wv//9T3K7CQkJSEhIwJgxY/Dcc8+ha9eu2LhxI3r27Gmw3ogRI9CxY0ccOXJE8dN7aGgoAgMDze4fYLiPrVu3Nll+7Ngx3TpaN27cQN++fVGnTh0sXboUNWvWVFS2iIgING7cWHa58fY0Go3VnU2kmvEcYdSoUZgxYwZSUlKQnp6O4cOHO32QQ9aomBEW4IOk2LoMUoioUrii2Tk4OBh9+vTBjBkzUFhYaLI8NzcXvXv3RnBwMP7zn/+YLF++fDlOnTqFxx9/XPfaxYsX0aNHD7Rt2xbp6elWTdCoDXSkytCiRQu0aNECR44cwRNPPKFk9+Dh4YHBgwfj+++/x6VLl0yWFxQU4Pbt27jzzjsRHx+Pjz/+2CQYOHjwIH777TeDfczPz0fv3r3h5eWF5cuXo1atWorK5QheXl4GXcPlxMbGwsvLC1u3btW9duvWLezevdskwNTvHp2Tk4OTJ08aNIc9+eSTOHfuHD777DMcPXoUQ4cOdcCemMdAhYhIJVzV7DxjxgyUlZWhQ4cO+PHHH3Hq1CkcO3YMn332GZKSkuDn54dZs2bhp59+wjPPPINDhw7h7Nmz+PrrrzFs2DA88sgjeOyxxwD8E6RERkbiww8/xLVr13D58mVcvnxZ93nPP/88pk6diq1bt+LcuXPYsWMHnn76aYSGhho0Pehbv349srKyEBgYqHj/3nvvPURERKBjx474v//7Pxw9ehSnTp3CnDlz0Lp1axQUFECj0eDrr7/G0aNHMXDgQOzatQuZmZn44Ycf8MADDyApKUk3Zok2SCksLMTXX3+N/Px83T5aEzho/fXXX7r3af/dvHnT6vdHR0dj586dOHv2LLKzs2VrW/z8/PD888/jlVdewapVq3D06FGMHj0aRUVFGDlypMG677zzDtatW4cjR45g2LBhCAkJQf/+/XXLg4KCMGDAALzyyivo3bu3Qbdxp7HYL0jFnNU9mYhIKUd2T76UWyS2nc6u1CERLl26JMaOHSuioqKEl5eXaNiwoXjwwQfFhg0bdOts2rRJ9OnTR/j7+wsvLy/RokUL8eGHH4rbt2/r1klPTzfpNqv9p7V48WJx3333ibCwMOHl5SXCw8PFwIEDxaFDh3TraLvnynnxxRet7p4shBC5ubkiJSVFNGnSRHh5eYn69euLXr16iaVLl4ry8nLdeocOHRIDBw4UwcHBombNmiI2Nla88cYborCwULeOtiuv1L+MjAyLZdF2T5b6N3/+fNn9//jjj0VUVJTu7xMnToi77rpL+Pj4mHRPzsnJMXhvcXGxeOGFF0RISIjZ7sk///yzaNGihfDy8hIdOnQQBw8eNCn/unXrBACxaNEis/vpqO7JGiEUZg6pSH5+PgICAnTdwoiIXOXmzZvIyMhATEyMS5oBiOzx+++/o2fPnsjJybFYa/Xtt9/iX//6Fy5dumS2l66534SS+zeTaYmIiMiioqIiZGVlIS0tDc8++2ylDSXCHBUiInJrxmOR6P/bvHlzpZfnueeeky3Pc889V+nlcZQPPvgA8fHxaNCgASZNmlRpn8umHyIiB2DTj+ucPn1adlnDhg3h41O5PTevXr2K/Px8yWX+/v6oV69epZbHVdj0Q0REBJgdi8QV6tWrV22CkcrAph8iIiJSLQYqREQO5Mat6UQOZe0oupaw6YeIyAFq1qwJjUaDa9euITQ01OnDihOplRACpaWluHbtGjw8POzuHcRAhYjIATw9PXHHHXfgwoULOHv2rKuLQ+Ryvr6+iIyMtGoKBXMYqBAROUjt2rXRpEkT3Lp1y9VFIXIpT09P1KhRwyE1iwxUiIgcyNPTE56enq4uBlGVwWRaIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFTLpYFKdHQ0NBqNyb+xY8e6slhERESkEjVc+eG7d+9GWVmZ7u8jR47g3nvvxaOPPurCUhEREZFauDRQCQ0NNfg7LS0NsbGx6N69u4tKRERERGqimhyV0tJSfPfddxgxYgQ0Go2ri0NEREQq4NIaFX3Lli1Dbm4uhg0bJrtOSUkJSkpKdH/n5+dXQsmIiIjIVVRTo/L1118jOTkZ4eHhsuukpqYiICBA9y8iIqISS0hERESVTSOEEK4uxLlz59CoUSMsWbIEDz30kOx6UjUqERERyMvLg7+/f2UUlYiIiOyUn5+PgIAAq+7fqmj6SU9PR7169dCvXz+z63l7e8Pb27uSSkVERESu5vKmn/LycqSnp2Po0KGoUUMVcRMRERGphMsDld9++w2ZmZkYMWKEq4tCREREKuPyKozevXtDBWkyREREpEIur1EhIiIiksNAhYiIiFSLgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoRERGpFgMVC7LyirHtTDay8opdXRQiIqJqx+WTEqrZwt2ZmLTkMMoF4KEBUgckYlD7SFcXi4iIqNpgjYqMrLxiXZACAOUCeG3JEdasEBERVSIGKjIysgt1QYpWmRA4m13kmgIRERFVQwxUZMSE+MFDY/iap0aD6BBf1xSIiIioGmKgIiMswAepAxLhqamIVjw1Grw/IAFhAT4uLhkREVH1wWRaMwa1j0S3uFCczS5CdIgvgxQiIqJKxkDFgrAAHwYoRERELsKmHyIiIlItBipERESkWgxUiIiISLUYqNiJQ+wTERE5D5Np7cAh9omIiJyLNSo24hD7REREzsdAxUYcYp+IiMj5GKjYiEPsExEROR8DFRtxiH0iIiLnYzKtHTjEPhERkXMxULETh9gnIiJyHjb9EBERkWoxUCEiIiLVcnmgcvHiRTz55JOoW7cufHx8kJiYiD179ri6WERERKQCLs1RycnJQefOndGzZ0+sXLkSoaGhOHXqFIKCglxZLCIiIlIJlwYq06ZNQ0REBNLT03WvxcTEuLBEREREpCYubfpZvnw52rVrh0cffRT16tVD69atMXv2bNn1S0pKkJ+fb/CPiIiIqi6XBip//vknZs6ciSZNmmD16tV4/vnnMX78eHzzzTeS66empiIgIED3LyIiopJLTERERJVJI4QQlldzDi8vL7Rr1w7btm3TvTZ+/Hjs3r0b27dvN1m/pKQEJSUlur/z8/MRERGBvLw8+Pv7V0qZiYiIyD75+fkICAiw6v7t0hqVsLAwNG/e3OC1Zs2aITMzU3J9b29v+Pv7G/wjIiKiqsulgUrnzp1x4sQJg9dOnjyJqKgoF5WIiIiI1MSlgcq//vUv7NixA++//z5Onz6NefPm4X//+x/Gjh3rymIRERGRSrg0UGnfvj2WLl2K+fPnIyEhAVOnTsUnn3yCIUOGuLJYREREpBIuTaa1l5JkHCIiIlIHt0mmJSIiIjKHgQoRERGpFgMVIiIiUi0GKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFTLpkClsLDQ0eUgIiIiMmFToFK/fn2MGDECW7ZscXR5iIiIiHRsClS+++47XL9+HXfffTfi4uKQlpaGS5cuObpsREREVM3ZFKj0798fy5Ytw8WLF/Hcc89h3rx5iIqKwv33348lS5bg9u3bji4nERERVUMOmz35888/xyuvvILS0lKEhITgueeeQ0pKCnx9fR2xeUmcPZmIiMj9KLl/17Dng65cuYJvvvkGc+fOxblz5/DII49g5MiRuHDhAqZNm4YdO3ZgzZo19nwEERERVWM2BSpLlixBeno6Vq9ejebNm2PMmDF48sknERgYqFunU6dOaNasmaPKSURERNWQTYHK8OHDMXjwYGzduhXt27eXXCc8PByvv/66XYUjIiKi6s2mHJWioiKn5p5YizkqRERE7sfpOSq+vr4oKyvD0qVLcezYMQBAs2bN0L9/f9SoYVfaCxEREZGOTVHFH3/8gQceeABXrlxB06ZNAQDTpk1DaGgofv75ZyQkJDi0kERERFQ92TSOyqhRo5CQkIALFy5g37592LdvH86fP4+WLVvimWeecXQZiYiIqJqyqUblwIED2LNnD4KCgnSvBQUF4b333pNNriUiIiJSyqYalbi4OFy5csXk9atXr6Jx48Z2F4qIiIgIsDFQSU1Nxfjx47F48WJcuHABFy5cwOLFizFhwgRMmzYN+fn5un9EREREtrKpe7KHxz/xjUajAQBoN6P/t0ajQVlZmSPKKYndk4mIiNyP07snb9iwwaaCERERESlhU6DSvXt3R5eDiIiIyITNo7Pl5ubi66+/1g341qJFC4wYMQIBAQEOKxwRERFVbzYl0+7ZswexsbH4+OOPcf36dVy/fh0fffQRYmNjsW/fPkeXkYiIiKopm5Jpu3btisaNG2P27Nm6IfNv376NUaNG4c8//8SmTZscXlApTKYlIiJyP0ru3zYFKj4+Pti/fz/i4+MNXj969CjatWuHoqIipZu0CQMVIiIi96Pk/m1T04+/vz8yMzNNXj9//jzq1KljyyaJiIiITNgUqAwaNAgjR47EwoULcf78eZw/fx4LFizAqFGj8Pjjj1u9nSlTpkCj0Rj8M66lISIiourLpl4/H374ITQaDZ5++mncvn0bAFCzZk08//zzSEtLU7StFi1a4LfffvunQDVs7ohEREREVYziqKCsrAw7duzAlClTkJqaijNnzgAAYmNj4evrq7wANWqgQYMGit9HREREVZ/iph9PT0/07t0bubm58PX1RWJiIhITE20KUgDg1KlTCA8PR6NGjTBkyBDJ3BetkpISg3mEOJcQERFR1WZTjkpCQgL+/PNPuz+8Y8eOmDt3LlatWoWZM2ciIyMDXbt2xY0bNyTXT01NRUBAgO5fRESE3WUgIiIi9bKpe/KqVaswadIkTJ06FW3btoWfn5/Bclu7Cufm5iIqKgofffQRRo4cabK8pKQEJSUlur/z8/MRERHB7slERERuxOmTEt53330AgAcffFA3WzJg/4zJgYGBiIuLw+nTpyWXe3t7w9vb26ZtExERkftR1ezJBQUFOHPmDJ566imnbJ+IiIjci02BSkxMDCIiIgxqU4CKGpXz589bvZ2XX34ZDzzwAKKionDp0iVMnjwZnp6eisZiISIioqrL5kAlKysL9erVM3j9+vXriImJsbrp58KFC3j88cfx119/ITQ0FF26dMGOHTsQGhpqS7GIiIioirEpUNHmohgrKChArVq1rN7OggULbPl4IiIiqiYUBSovvfQSAECj0eDNN980GDulrKwMO3fuxJ133unQArpKVl4xMrILERPih7AAH1cXh4iIqFpSFKjs378fQEWNyuHDh+Hl5aVb5uXlhVatWuHll192bAldYOHuTExachjlAvDQAKkDEjGofaSri0VERFTtKApUtL19hg8fjk8//bRKjl2SlVesC1IAoFwAry05gm5xoaxZISIiqmQ2jUybnp5eJYMUAMjILtQFKVplQuBsdpFrCkRERFSN2ZRMW1hYiLS0NKxbtw5Xr15FeXm5wXJHDK/vKjEhfvDQwCBY8dRoEB1i21xGREREZDubApVRo0Zh48aNeOqppxAWFibZA8hdhQX4IHVAIl5bcgRlQsBTo8H7AxLY7ENEROQCNs31ExgYiF9//RWdO3d2RpmspmSuAKWy8opxNrsI0SG+DFKIiIgcyOlz/QQFBSE4ONimwrmLsAAfBihEREQuZlMy7dSpU/HWW2+hqIgJpkREROQ8NtWo/Oc//8GZM2dQv359REdHo2bNmgbL9+3b55DCERERUfVmU6DSv39/BxeDiIiIyJRNybRq4cxkWiIiInIOJfdvRTkqu3btMjszcklJCRYtWqRkk0RERESyFAUqSUlJ+Ouvv3R/+/v7Gwzulpubi8cff9xxpSMiIqJqTVGgYtxKJNVq5MYtSURERKQyNnVPNqcqjVJLREREruXwQIWIiIjIURR3Tz569CguX74MoKKZ5/jx4ygoKAAAZGdnO7Z0REREVK0p6p7s4eEBjUYjmYeifV2j0ZjtGeRI7J5MRETkfpw2109GRoZdBSMiIiJSQlGgEhUVpWjjY8aMwTvvvIOQkBBF7yMiIiICnJxM+9133yE/P9+ZH0FERERVmFMDFY6pQkRERPZg92QiIiJSLQYqREREpFoMVIiIiEi1GKgQERGRajk1UHnyySc5EBsRERHZzKZApby8XPb1zMxM3d8zZ87kGCpERERkM0WBSn5+Ph577DH4+fmhfv36eOuttwyGy7927RpiYmIcXkgiIiKqnhSNTPvmm2/i4MGD+Pbbb5Gbm4t3330X+/btw5IlS+Dl5QWAY6cQERGR4yiqUVm2bBlmzZqFRx55BKNGjcKePXtw7do1PPDAAygpKQFQMTmhLdLS0qDRaDBhwgSb3q8WWXnF2HYmG1l5xa4uChERkdtTFKhcu3bNYL6fkJAQ/Pbbb7hx4wbuu+8+FBUV2VSI3bt3Y9asWWjZsqVN71eLhbsz0TltPZ6YvROd09Zj4e5My28iIiIiWYoClcjISBw7dszgtTp16mDNmjUoLi7Gww8/rLgABQUFGDJkCGbPno2goCDF71eLrLxiTFpyGOV/t3yVC+C1JUdYs0JERGQHRYFK7969kZ6ebvJ67dq1sXr1atSqVUtxAcaOHYt+/fqhV69eit+rJhnZhbogRatMCJzNtq2WiYiIiBQm07799tu4dOmS5LI6depg7dq12Ldvn9XbW7BgAfbt24fdu3dbtX5JSYkuFwaAqmZm9vPylHzd14tj6hEREdlK0V00KCgILVq0kF1ep04ddO/e3aptnT9/Hi+++CK+//57q2tiUlNTERAQoPsXERFh1fsqQ2FpmeTrRaXSY84QERGRZYof92/fvo3p06ejTZs2qF27NmrXro02bdrgww8/xK1bt6zezt69e3H16lW0adMGNWrUQI0aNbBx40Z89tlnqFGjhsH4LFqTJk1CXl6e7t/58+eVFt9pYkL84GHU4clTo0F0iK9rCkRERFQFaISCgU+Ki4tx7733Yvv27ejVqxeaNWsGADh27Bh+++03dO7cGWvWrLGqhuTGjRs4d+6cwWvDhw9HfHw8Xn31VSQkJFjcRn5+PgICApCXl6eKofoX7s7Ea0uOoEwIeGo0eH9AAga1j3R1sYiIiFRFyf1bUY5KWloazp8/j/3795t0JT548CAefPBBpKWlYcqUKRa3VadOHZNgxM/PD3Xr1rUqSFGjQe0j0S0uFGezixAd4ouwAB9XF4mIiMitKWr6WbBgAT766CPJ8U5atWqFDz/8EPPmzXNY4dxRWIAPkmLrMkghIiJyAEU1KufOnUOHDh1kl991110GkxIq9fvvv9v8XiIiIqp6FNWo+Pv74+rVq7LLL1++jDp16thdKCIiIiJAYaDSs2dPvP/++7LL09LS0LNnT7sLRURERAQobPqZPHkyOnbsiLvuugsvvfQS4uPjIYTAsWPH8PHHH+Po0aPYsWOHs8pKRERE1YyiQKV58+ZYu3YtRo4cicGDB+tmShZCID4+HmvWrDE7IBwRERGREooCFaAiYfaPP/7AgQMHcPLkSQBAXFwc7rzzTkeXjYiIiKo5xYFKfn4+ateujTvvvNMgOCkvL0dBQYEqBl4jIiKiqkFRMu3SpUvRrl073Lx502RZcXEx2rdvj59//tlhhSMiIqLqTVGgMnPmTEycOBG+vqbz1/j5+eHVV1/Ff//7X4cVjoiIiKo3RYHKkSNH0KNHD9nl3bp1w+HDh+0tExEREREAhYFKTk4Obt++Lbv81q1byMnJsbtQRERERIDCQCU6Ohp79uyRXb5nzx5ERUXZXSgiIiIiQGGgMmDAALz++uu4cuWKybLLly/jjTfewMCBAx1WOCIiIqreNEIIYe3KN27cQFJSEjIzM/Hkk0+iadOmAIDjx4/j+++/R0REBHbs2FFp8/3k5+cjICAAeXl57BZNRETkJpTcvxWNo1KnTh1s3boVkyZNwsKFC3X5KIGBgXjyySfx3nvvcVJCIiIichhFNSr6hBDIzs6GEAKhoaG64fT1bd26Fe3atYO3t7fdBZXCGhUiIiL3o+T+rShHRZ9Go0FoaCjq1asnGaQAQHJyMi5evGjrRxAREVE1Z3OgYg0bK2vcVlZeMbadyUZWXrGri0JERFQlKJ7rh6Qt3J2JSUsOo1wAHhogdUAiBrWPdHWxiIiI3JpTa1Sqi6y8Yl2QAgDlAnhtyRHWrBAREdmJgYoDZGQX6oIUrTIhcDa7yDUFIiIiqiKcGqjIJdlWNTEhfvAw2lVPjQbRIaaTNxIREZH1mEzrAGEBPkgdkAjPvwMzT40G7w9IQFiAj4tLRkRE5N6cmkx748YNZ25eVQa1j0S3uFCczS7S1aRsO5ONmBA/BixEREQ2UhSo3H333Vatt379epsK4+7CAnwQFuDDHkBEREQOoihQ+f333xEVFYV+/fqhZs2aziqTW5PrAdQtLpQ1K0RERAopClSmTZuG9PR0/PDDDxgyZAhGjBiBhIQEZ5XNLZnrAcRAhYiISBlFybSvvPIKjh49imXLluHGjRvo3LkzOnTogC+//BL5+fnOKqNbYQ8gIiIix7Gp109SUhJmz56NrKwsjB07FnPmzEF4eDiDFbAHEBERkSPZ1etn37592LhxI44dO4aEhATmrfzNuAcQgxQiIiLbKA5ULl26hLlz52Lu3LnIz8/Hk08+iZ07d6J58+bOKJ/b0vYAIiIiItspClTuu+8+bNiwAb1798b06dPRr18/1KjBeQ2JiIjIOTRCwfCxHh4eCAsLQ7169cwOj79v3z6HFM6S/Px8BAQEIC8vD/7+/pXymURERGQfJfdvRdUhkydPtqtgxmbOnImZM2fi7NmzAIAWLVrgrbfeQnJyskM/h4iIiNyTohoVR/v555/h6emJJk2aQAiBb775BtOnT8f+/fvRokULi+9njQoREZH7UXL/dkigsnHjRhQWFiIpKQlBQUF2bSs4OBjTp0/HyJEjLa7LQIWIiMj9OK3pZ9q0aSgoKMDUqVMBVMyOnJycjDVr1gAA6tWrh3Xr1llVG2KsrKwMP/zwgy7gkVJSUoKSkhLd3xy3hYiIqGpTNODbwoULDYbMX7x4MTZt2oTNmzcjOzsb7dq1w9tvv62oAIcPH0bt2rXh7e2N5557DkuXLpXt6pyamoqAgADdv4iICEWfRURERO5FUdNPUFAQtm3bhmbNmgEAhg8fjrKyMvzf//0fAGDHjh149NFHcf78easLUFpaiszMTOTl5WHx4sX46quvsHHjRslgRapGJSIigk0/REREbsRpTT+3b9+Gt7e37u/t27djwoQJur/Dw8ORnZ2tqLBeXl5o3LgxAKBt27bYvXs3Pv30U8yaNctkXW9vb4PPJyIioqpNUdNPbGwsNm3aBADIzMzEyZMn0a1bN93yCxcuoG7dunYVqLy83KDWhIiIiKovRTUqY8eOxbhx47B582bs2LEDSUlJBk0069evR+vWra3e3qRJk5CcnIzIyEjcuHED8+bNw++//47Vq1crKRYRERFVUYoCldGjR8PT0xM///wzunXrZjIA3KVLlzBixAirt3f16lU8/fTTyMrKQkBAAFq2bInVq1fj3nvvVVIsIiIiqqJcOuCbvTiOChERkftRcv9WlKNCREREVJkUBSq3bt3CxIkT0bhxY3To0AFz5swxWH7lyhV4eno6tIBERERUfSkKVN577z383//9H5577jn07t0bL730Ep599lmDddy4JYmIiIhURlEy7ffff4+vvvoK999/PwBg2LBhSE5OxvDhw3W1KxqNxvGlJCIiompJUY3KxYsXDYbQb9y4MX7//Xds27YNTz31FMrKyhxeQCIiIqq+FAUqDRo0wJkzZwxea9iwITZs2IDdu3dj2LBhjiwbERERVXOKApW7774b8+bNM3k9PDwc69evR0ZGhsMKRo6XlVeMbWeykZVXbNc6RERElUVRjsqbb76J48ePSy5r2LAhNm7ciLVr1zqkYORYC3dnYtKSwygXgIcGSB2QiEHtIxWvQ0REVJk44Fs1kJVXjM5p61Gu9017ajTYktITYQE+Vq9DRETkCE4f8O2HH37AgAEDkJCQgISEBAwYMACLFy+2qbDkfBnZhQYBCACUCYGz2UWK1iEiIqpsigKV8vJyDBo0CIMGDcLRo0fRuHFjNG7cGH/88QcGDRqEwYMHcxwVFYoJ8YOHUa9xT40G0SG+itYhIiKqbIoClU8//RS//fYbli9fjuPHj2PZsmVYtmwZTpw4gaVLl2Lt2rX49NNPnVVWVVNzEmpYgA9SByTC8+8xbjw1Grw/IMGgSceadYiIiCqbohyVli1bYsKECbIzJH/99df49NNPcejQIYcV0By15Ki4SxJqVl4xzmYXITrEVzYAsWYdIiIieyi5fysKVHx8fHDixAlERkrfhM+dO4f4+HgUF1dOrYIaAhVHJqFm5RUjI7sQMSF+DBKIiKjKUnL/VtQ92cfHB7m5ubKBSn5+PmrVqqVkk27PXBKqkmDDXWpliIiIKpOiHJWkpCTMnDlTdvmMGTOQlJRkd6HciSOSULPyinVBCgCUC+C1JUdUme9CRERUmRQFKq+//jq+/vprPPbYY9i1axfy8/ORl5eHHTt24NFHH8WcOXPw+uuvO6usquSIJFR2DSYiIpKmqOmnU6dOWLhwIZ555hn8+OOPBsuCgoIwf/58dO7c2aEFdAeD2keiW1yozUmo2loZ4zwXqVoZteSxqKUcRERUtdk0Mm1RURFWr16NU6dOAQDi4uLQu3dv+PpW7pgbakimdZSFuzPx2pIjKBNCVyuj1iHu1VIOIiJyT07r9bN+/XqMGzcOO3bsMNlwXl4eOnXqhC+//BJdu3a1reQKuSJQcXRNgv72AMjWyqhliHu1lIOIiNyX03r9fPLJJxg9erTkRgMCAvDss8/io48+qrRApbI5uiZByfYc1bvIXmopBxERVQ+KkmkPHjyIvn37yi7v3bs39u7da3eh1MjRPXOUbk8tQ9yrpRxERFQ9KApUrly5gpo1a8our1GjBq5du2Z3odTI0T1zlG7PXO+iyhy+Xy3lICKi6kFR00/Dhg1x5MgRNG7cWHL5oUOHEBYW5pCCqY2SnjnO2p5U7yJXJLYOah+J+AZ1sPtsDtpHB6FVRBATbImIyCkU1ajcd999ePPNN3Hz5k2TZcXFxZg8eTLuv/9+hxVOTRw9aZ+t2wsL8EFSbF1dDYYrBopbuDsTD3+xDe/+egwPf7ENszad4YB1RETkFIp6/Vy5cgVt2rSBp6cnxo0bh6ZNmwIAjh8/jhkzZqCsrAz79u1D/fr1nVZgfa7q9ePISfvs2d62M9l4YvZOk9f/+3hr3N8q3O6ySZHq9aPRAFJn0fzRdyEptq5TykFERO7Lab1+6tevj23btuH555/HpEmToI1xNBoN+vTpgxkzZlRakOIqYQE+Du3dYs/2pJqPAGD8gv0oLL3tlKYXqdwaqSCFCbZEROQIigIVAIiKisKKFSuQk5OD06dPQwiBJk2aICgoyBnlI8iP3aJtPpr042GU662vbXrpFhfq8C7DcsGRPnubxYiIiLQUBypaQUFBaN++vSPLQhIsJakOah8JP+8aGDdvv8H7nDW2iS440stJ0fdmv2a4r2UYgxQiInIIRcm0VLmsTZZtGxVkMraJhwbw9XLO1zuofSSWjukEo4+Ep0bDIIWIiByKgYqKWTvWinEPIqAiqHn4i21YuDvTKWVrFRGEtIGO6wVFREQkxeamH3I+JWOtaMc26T9jG7SrOzNXRfuZ9swaTUREZIlLa1RSU1PRvn171KlTB/Xq1UP//v1x4sQJVxZJVZSOtVJYWgbjtBFrRs+1Z0RZ/XFdiIiIHM2lNSobN27E2LFj0b59e9y+fRuvvfYaevfujaNHj8LPz8+VRVMNS7UW+j2CbBntliPKEhGRmika8M3Zrl27hnr16mHjxo3o1q2bxfVdMeCbmkgFGUBFc0+ZEPDQAK8mx+PZbrGS75cavM1To8GWlJ5OryGR63JNRERVn5L7t6qSafPy8gAAwcHBkstLSkqQn59v8K+6kusR1C0uFBP7NoXm79emrTwum1Dr6IkW5cpp3Ky0cHcmOqetxxOzd6Jz2nqnJfwSEZH7U02gUl5ejgkTJqBz585ISEiQXCc1NRUBAQG6fxEREZVcSvWQCzL2ncvBtFXHTRJqtYGCfuCgbSrS58gRZaUCElfNT0RERO5JNYHK2LFjceTIESxYsEB2nUmTJiEvL0/37/z585VYQnWRCzKuF5XK1pIYBw6bTl5z6ESL+uQCkr3ncpxei0NERFWHKronjxs3Dr/88gs2bdqEO+64Q3Y9b29veHt7V2LJ1EvbI0ibj+Kp0aB/63C8tewPk3U9NRr4enlIBg5bUnpiS0pPh3cxlqvxwd/5NEoSfomIqPpyaaAihMALL7yApUuX4vfff0dMTIwri1MpHJlEqt8jyNfLAw9/sc2ke7KHBnh/QAIKS8tkazKc0b1YrgdS2+ggkwCLA8UREZEclwYqY8eOxbx58/DTTz+hTp06uHz5MgAgICAAPj5V78bljK7A2tmXt53Jlpx757PBrXF/q3Bk5RVXak2GVI2PNiDhQHFERGQtl3ZP1miMZ4upkJ6ejmHDhll8vzt1T3Z2V2Brtr9wd6ZJ4KAkULKlNigrr9hsQMJuykRE6uPsa7OS+7fLm36qC3NdgR1xEpirwdCecN3iQm3OR7G1Nkhb4+PIbRIRkfOo7dqsimTa6sCWUWOVkmpSccQJZ27MFluDLGdsk5yLtV9EVZ8ar82q6Z5c1Smdt8eez9Emx9ozZon+eCvOGBiuMgabI8fhIH1E1YMar82sUalE1iaROurJ1dbmJuNamFf7xju8NqgyapjIMdT4hEVEzqHGazNrVCqZpdmGHfnkasvIs1I3pQ9WncCYHrG6bTmiNqiyapjIfmp8wiIi5zC+NntogBFdol1aJlVNSqiUO/X6sYYzegZJ9fTpFhcqW2Oz7Uw2npi902Q7GgDi7/+mJMfj2e7SEx0qZalXELmeKyevJCLXyMorRvrWDMzelAEBxyfVuk2vHzLkjJ5Bxs1Nm05e0910pE48qWo/ALqB5AQqalgevDPcYb2VLG2HSZyuZa5HGRFVXV9tzjCZN84VTb4MVFTEWW2D2mDAmlyDsAAfPNy6IX7cd1F2e47sVm2J2rrJVVccpI+oenH2kBpKMEdFRZydt2FNrkFWXjGW7pcPUrTlqozEKs60rC6W8quIqOqwJcfRWVijojLO7BlkTY2NVDAD/DORYGVW+6spoiciqk7U1OTLQEWFLOVt2DNKrKUTTy6YWTImCUWl5ZVa7a/GbnJERNZy9/w6tTT5stePm3FEDwxLPW3snRPIkdRUFkdy9wuYNarDPhLJYX6deez14yRquPA6ojnEUo2NWqJotZXFUarDBaw67CORHA6S6FhMprWSWoYQl0pw8tAA2QU3HZpkqpbESW1wWFWClOqQIFwd9pHIHHccJFF/2hS1YaBiBTVdeI17Bmk0gBDAC/MPuM0cLNb+INQSHDqS2i9gjrhYqX0fiZxNTT1mrKH2ay0DFSuo7cI7qH0ktqT0xIwnWgMCJgPy2HKTqaxo2tofRFZeMVJ+NAwOU5YcVmW0r4SaL2COulipeR+JKoM7TREi9yB+8HyOampYmKNiBbX1PtE2hwj8E6Ro2dJ9t7LyCZS02+49l2Oyb0IA+87loF9LH932XJ0zpJSauvzpc2Sbulr3kagyuUt+ndyDeP8Z25wydL4tGKhYQU0XXv2gQoN/5uDRUhpAVWbSl5JEYLnOaNqXpWZ4TrwjwC2CFjVewBw9Zo0j99EdA1IiwLopQlzN0rQpakgEZqBiJXMX3sq6kBoHFdpJAu0ZjK0yB1VTUjPVLjrYJAjTAGgbHSQZXKWuPA5AHdG/NdR2AXNGraEt+2j8W2LvIXVgsFh1GT+ISwUtrh5ok4GKAlIX3sq8kEoFFQLA54Nbo25tb5ueXCuzWUtJzVRYgA/SBiZi0o+HUY6KZKrUgYkIC/DBtjPZkqPnAuqI/t2RGmoNpWrJpq06zi6eLsZgseoxDjy1D+L7zuXgelEp3lr2h1019Y7GQMUOld1XXi6oaBsdZPPnVfYNSkmTgNy6clWVWq6O/t2V3PGujKdpqd/StJXHUW60Hr/byqW28UBYs2M/ucBz08lrkmkFasgxY6Bih8qei8ZZQUVl50woaRKQWtf4OBjzAODrxQ5ttjA+3pX1NC31WyrHP93vtVz9ZFfdqGm+Ldbs2E8u8IxvUMckrcBDU1Fbb8+DsKMwULGDK3oDOSuoUFvOhCX6x+HQxVx8sPKELmgpB/DwF9uq7YXM3FOnkifSynyalvstTUxuqvtu1fBkV92opcej2mp23JVc4Ln7bI7pg4IA6tb2VsXxZaBiB1e167tbUAE4p8pWexySYuvirphg9P9im+7pu7pdyLTH9/CFPF1eh/FTp9InUlufpm35ruV+S4PaR+LBVuGq6iFVnaghdwlQV82OO5MLPNtHB6kiIJXDQMVOauxqqjaVUWVbWFoG41ag6nIh0z+++vSDNQCKn0j9vDwlXzfXrGbPdy33W3LHwLwqUcM1zlU1O1UtJ0aqh8+ILtGo519LFQGpHAYqNjA+eXkhlVdZVbZqqaKubMbH15g2WBMQip9IC0vLJF8vKjVOcZUui7nvWu4GoP3/jOxCg7/NvYecz9XXOFfU7FTVnBht4Jm+NQOzN2Vg9uYMfL0lA6kDErElpacqH7oZqChUVU9eZ6ms5gO1VFFXNqnjq08/WFMayCkN/qz9rg0GLdQAKcnxeLZbrMky/d8Xf3dUmTU71SEn5qvNGSaDum1J6Ymk2LouLZcUBioKVIeT19Fsqemw9aakhipqoHKf/M111TYO1oyrfCcmNzVbPqXBnzXftcmghQJIXXEcEMCDd4Zb1SOBv7vqy9E1O3K/1aqWE2O8n+62fwxUFHC3L9cR7L3pKr3Z2RsMurqKurKf/MMCfCoGRvt7zBFtT5mWDQNNgrVB7SORW3QLaSuP68YpCfSpabZ8SoI/a75ruRqgaSuPo2GQj9U9Eqr6746cz9xvtSo1JUvtZ7e4ULfaPwYqCth78rpbG7ujbrpKbnbuHAw6osYtK68Ye85eh0ajQdso+fELdL18Lv7dywcVzSgTk5vqmlGk3jNt1XHFc3goCf4sfdcxIX4mY6MAFV3KIaSbp9TeI4Hcj6XfalVpSpbbzy0pPd1q/xioKGDPyetubeyObuay9mbnzk8y9gZZC3dnIuXHw7pAQgMgbaDpeSLXy0cI4IOVJ/Bgq3DJz3NGEGgcfFsKxsMCfJCSHF/R3KNHO8Ky1O+rVYT062q9qJL6WfNbUEtTsj3M7ac77R8DFYVs+XKlbvqTlhyGr5cn2kUHq/IEcVXNhjs/ydgTZGXlFRsEKUDF6JCTlhw2CA6t7eUjdbwcHQQaB98Pt26IpfsvWgzGn+0WC+gNke8BYGLfpgCAiGBfLBmThKLScoPfl7W/O3ertSTXsDafytK5pPbzTWo/PQD8VViCrLxilzeVW8ulgcqmTZswffp07N27F1lZWVi6dCn69+/vyiJZRemXKzk8uABemH9AtbUrrqzZcFak7+yLij1BVkZ2IaRij3IBg8BDSS8fR5bPmFTw/eO+iwblNlcD92z3WEADXb5M2srjSFt5XDd0d+qARJPeB5Z+d+5Wa0mOo/1t+3l5orC0zOJv3NJvwZpzyR3ON+P91M7fM27efnhogJFdYjCiS4zqgxWXBiqFhYVo1aoVRowYgQEDBriyKE5lrmeGWnswuLpmw9GRfmVdVGwNsmJC/HQXEX0eGhgEHkp6+TiyfMYsBUyA+dqdrLxiTFt5XJeror8pW3N72DOoepJqCrXmN25uEk5L55I7nW/a/dx7NgcvLNhvMHr37M0Z+GpzhkETsxpriVwaqCQnJyM5OdmVRagUxjd9Y2pNFtU/waEB2kYFubpINqnsi4qlIEvqQhAW4IO0gYmGOSp/X2yNB0QzDiAn9m2KlneY9vKxpnxKc0y0LM1gDSgfc0Wf0t+EuaZK7XJL+6TGCzSZJ9cUak+iuDXN3u6W9B8W4INDFzJMktiBiocE7bHSn0FZTbVEbpWjUlJSgpKSEt3f+fn5LiyNMtqb/r5zORg3b7/BE6Sak0XVeuIqoaaLirmaHf3AUKMB2sj0+nFUrYitOSaAdMDUv3U4lu2/ZPOYK/o8AMnfhFwwIddUeehCLoZ8tcPiPrlDNX5lUFOwZk1ZzAW8SgNVLWuavd0t6T8rrxj/25whu7xMCOw9m6PaWiK3ClRSU1Px9ttvu7oYNgsL8EG/lj4oKLnt0mRRay9G7lS9aY6Si4ozL9TWHM+wAB/c38r548XYm2MCSAdML/dpqmjMFbnE4FHdTNvNzQUTkjVNyU0rEnYlktgjg311uQyA8nmQqqLKCtas+Y1ZU5asvGJcLyyVbDIFlAWq+qxp9nZ107i1tMf69NUbZtfz1GgAiQcHtdQSuVWgMmnSJLz00ku6v/Pz8xEREeHCEtnGUU/EttxUlVyM1FQTYQ9rLyrOvlCr6XjuOXvdrhwTLeOASUkANah9JOIb1EH/GdsMbjQeGmB45xiDda0J8ox/V+aS2PU/a1SXGNV8L65SWQ8l1gYglspiMA0DYBKsyAWq1u6TNddotXfvNT5GcrTXw7ZR6h2vyK0CFW9vb3h7e7u6GA5h7xOxLTdVpRcjd6veNMfSRaUyLtSHL+SZvGZNzQ5gWnVtT82P9tyxpDK+61YRQUgbaDmItDbI0/6uLD1ta5WLijlPqsp5bitnBdHG57E1vzFLZTGZhgEV18DPB7dGRLCPrmu7vftkzTVard17pY6RMQ2Azx9vjbbR/zQxq7WWyK0CFapg603V2h+u/sVFrSeuLcxdVJxd26EdFdaY1Hw7Uk9C+t12AVgdpEoly0o1t3gAeLhNQ6tzTBzJmidTuZyWQxdzTboxW3raNlYO4JkujfD1lowqcZ7bQulDiS3NN3I1V3vP5hg0d1oqi1xNWd3a3mgVYZjwX10DULncHe1vQXvduL9VuMFytdYSuTRQKSgowOnTp3V/Z2Rk4MCBAwgODkZkZPVLZLOWrTdVay5GUjU1rpr629WT+znyoiZ34WjZMNDgb3NPQuUCmPTjYYO2ZHNBqtR3GRHsK1mOz59ojX4tw63OMXE0S0+mYQEVcxqlrjQM9oxH4pV72p76UAu8uewP2VyG4V2iMbxLtOou0JVB+zt7NTkeH6w8YTFYs7X5RqrmCgBeWLAfBy/k6sbzsNRUq2SwNmv3qaqRO0ZSgykaU2MtkUsDlT179qBnz566v7X5J0OHDsXcuXNdVCrruDI73p7kUHMXALkRdJeO6eSwqb+tPW6umNzPmbVH1n5nlrrtaufE0SdXKyZV67ZkTJJkOdr83fVcjRcprcQ7Akxes6bbaLkAYkPrGDQxaRl/z45oWnMnxr+zV/vGm+3qbm1truT3AOCJ9pGYvyvTcARmYTqeh7kne0u/VYMaNQ0wpkcsujQONdlOVfuOrbnWG9c4uQuXBio9evSAkOrYrXKu7spob3Ko3AVA7iLff8Y23QXEEbkRlo6bq3obObPa07iXi4cGkt+ZNd12jbPzrQ14yoRAUWm52zbn2dttNCm2ru779fXykHyyzMorRvqWDMzenGFQRV4VuypL/c4+WHUCW1J66poJjX/rcufVvnM56NfSfPONBsCC3ZmyzXACphMDWupxZjzGk0mNmgBmbDgD/1o1DR62XH0NdzSl13p3wxwVhdTSZdfe5FAleQDaC0hu0a2KmXpt+HErOW7WJNM560nI0TUKxsmEQu8CKvf5qQMSkbLksMk62qACgMVAw9obtrtcwHRV+X3j8cEq+ap8S0G8ue9XaoTTqtxV2dzvTG78JLlrxLh5+1FQclu2u7gHKq4jjuhppiVVRrmmzWkrj+PBO8Ml87T0v2PtcXGnWhZbrvXuhoGKQmrqYuro5FDjp37j92rnYgGUX8CVlMfcTdadnoSMyyrEP602xk+P+rrFhZo073gAWDImSVd1aynQsOeGbY3KrDY3aZ5IjkfLhvLNE46YOFRfVe2q7OflKdmt19fLw+yNT+oaIVCRP+XnXQNt/x6oUP97+KuwBOPm7bdYJiWTeMo1bWo0pg8C5fhnziy5a9F7vx7Fr4cuu1VNWlZeMX45dEk19yRnYaCikDt02ZXrmmlNOc2NbWHPj0HJcZO7yQLuMzCX1IXUmNzxk5qgsBxAUWm57m9rAg1nVf1WZrAo2Tyx8p/mCTlKAzFzuUFq+33bQxtgHr6Qh2mrjptcH94fkIDC0jKzv/VB7SPh6+VpMB4NUHGOaie7054T2u8hK6/YqikXlEziKde0mZIcj9QVhknX+t+hXK3QL4cu/7MvKr62aEnVAGpVpXMWYKCimLOTLu0l1zVTSTmlxrYwHjwJUDa6q9LjJnWT3XYm222eHKyZtE/u+DkyGLa15kSuxqSymz5trcFUUuOTlVeMvwpKJG9eHjDNJXLXJExzNzYPzT81dlJBhfH51y462OxEq8a1K+Zqaz1Q0etMO2WENcfXUtMmREVzTzmkE6bNzb2mpdZrC2C+BtBDYzjsgbuer/oYqNjAkU+qjjyJzA2EpD+ojzWk9jHQp6Zdo7sqPW7GN1k/L0+Tal21PjlIJhNqAI2A5MVTn63BsKPOJXPfob1Nn0rLKHdD8vXywLYz2ZLbMe71kZIcj2e7xVrcVw2gO78qxv1ohOFdog22705Nj/rM3diAiuOrrbGz5vwLC5DuLq7bHgxrV7rFhSIi2BdTHmyOt346arJusJ83wgJ8rD6+lsr4bPdYPHhnuOy1Rnst+vVQFt799ZjkPqj12gKYfxAqF0DaiuOAAAJ9a7rl+WpMI9yx283f8vPzERAQgLy8PPj7+7u6OIo5+qK37Uw2npi90+T1+aPvcmj3YnMJvJ3T1pvcVCxV01tD6mlQe3FS6w9v4e5MkwupkkDN3LGW+ixHnEuWvkN7vmMlZdQPaDadvGYy+aHc5IlS5QOAScnxeLZ7rMlnGK9r7ukegOn6GuDTwXeiXXSwqp9W5a4NWlLfoaXzz9I2tTR/V+tqH5z0c7X0PxswPb6Wzi39MgLKE2HlzhcPAKkDDc8rW2YZdxa5chuTav53xPXYEZTcv1mj4iIHz+cY9OxwRBV6ZeTPODqB1xpST4PGyaVqJFeDZO2xkDrWUhdIRzbHmPsOtcuf7xGLmb+fQbmwvklRSRnNDTro6+WBh7/YJrsduSdN414fGdmF+KugxGRdc0/3UiOrlouKuYPU/rRqrtu73HdoqdnQUld6Lf1HYW0tl4dEzaItTbvaMtoaqJv0TpKoSTOudevSJARbTmW7NOlWqtxS34PxS2puzjKHgYoLzNp0xiTZC7D/JHJ1/oyzAiW5waP0k0utVdlPQvb2rtEndzF2ZIAo9x0euvjPLLRaGgAT+za16iKtZPoGc4MOWrqZxYT4me31YdylVS7hXMnIqtrlak6+DAvwwavJ8bo8M23embneU9ZsM3VAIib9eBhKfolCAP99ojWC/bwNPtvW64e9gbq5Jmmp5vTNp7J1y2393h1xHdIvt6+Xh0kHCClqbs4yx8PVBahuZm2UDlIAx5xEg9pHYktKT8wffRe2pPR0yUB0npqKGWpsCZSy8oqx7Uw2svKKda9pL2D6bDlWC3dnonPaejwxeyc6p63Hwt2ZistiK3u3JXcxzsordtjxAaS/w4l9TROpgYqL9gerTuDg+RyL+2ZtGc0NOrhwd6bF7YQF+CAlOd7k8+W63ULzz0VQ/3yVC45HdWmkOzbG9Gue1Gbh7kzdd6gNMJ/tFouk2LqSv09rz9dB7SOxddLdeKZrI933os31Af4JBvVpR0KW+uxRXWIkvw9zLNUCWiMswEeyPNYkxSv9LKXXIXO05W4VESR53utTW8cPJVijUomy8oqRJpN8JjdSqS0c+RSvlD2JxnI1Bo6oKVL61OXI/CFHbMvcxTgptq5Da9KMv0NzF+syIdD/i226BFRbkx+1LA06uCWlp8XtPNstVrLXh1S3W6VP99o5gfady8G4efsVd/93BalagQ9WndA1hRmz5XztER+Kfi0b6Eb7BSpqsA5dyDW45mlkrnPGn/mMRCKzHEfX5OrXdljTvOWhAbILbiIrr9ihTaBKPds9FueuF2LezvMmy97s1wz3tQxzyyAFYKDiENZW40mNjwFUPHEsHdNJ1fkWStgSKFn6Advb00pJ84gjLyaO2pali7Gjx0wx/g7NXaytzbOypoy65gSZQQfPZhdZtR2pXh9y3W61ibNS5ZALiPq19EFByW3VDlOgz5nnvlRQo5+4P+SrHQbXPI2AbgRY7eftOXvd5DO/3pKB4V2iAVTk8+06ex0dooMlr5GObPKW2p/UAYlI+fGw/ND/CvKUnJHHp3//eeHuJliw67zJOe7OQQrAQMVuSp4+5KLzlPviLQYprs4ydzZrfsD21BRJHXu5JyFHXkwctS1rLsZKjo+S88n4s7U8AJPcBGuTH82RG3TQuInHmnIbHx9bx/Lx9fJAYWmZwbkiFTCp8XeqpIu3I4MaueYz7bbMjeui/cwPV5/Aj/su6l4f2KYh/vPYnSbrKwnUlY4RNDG5qWkyE/55SftyuagYPya+QR3Z67mja3/kAit3CKCVYKBiB6VzRphkaqNiOHC5MR603HXsBiWclYirf1HSP/bahEupJyFry2LvwFRKOarWxJbzyfimXVRabtIDB3Bc84fUoIOOuODaMpaP3Lw32uVSvUO0MxEn3hEgeX5UZkAjFaD1bx2u++4szeWjn2CsX2ZLQY2lbZkb18VTo0FR6S2DIAUAftx3EU8nRcnWrFg6lraMEZS28rjk3FxSRS8H0P+LbUizsgnUAxX5QracA3L3ny0pPXW95NxlLi9LOI6KHeTGEXimayN8teVP2RuBkvExnDk2iTPYO7uy8Y3JnoBM6qLULS5UNr9A/5haKouSm72j98sejj6fnLlv2mYBD5nmmcpg7fEyN66F8fmhZBZxRwYz2uuOXICp3Sep7xSA5G/J0rGROz/MjcGi7ZGU+VchvjeTb+GIMVMsjRFkK0u/qVmbzugCIFsfPitj3Cxn4jgqlUSyOQHQBSmAdBuvkip6NU2CaInSJ3XthdjPyxOFpWXoFhfqsCcBc08bQX5eFscXUNJl0RG5Geb2w5E3K6Xnk6XPrwrzCZlj7fGyNFKofk2ruXPHeC4eR+6/9rpjqYu38XcKGA7Epv9bstTMIHd+yF07P3+iNS7kFEv2MtO6XliqK4+SY2PpuwwLqOjCLdcrUwlLv6lperU0zspbq0oYqNhBqkp1ZJdo/G9zhsF69gQW7nIy2pOEp+XIG5K5i5K1x1QuoJTb9t6zObi/le25GcaccbNWcj4pGc7cmppBJXPvWHMuKQ3ibAn6rD1elnqHaM89ASF7Xi4/eEmymcERPUMs9WQx3if979RcYGNtgrS1ycptooLwwvz9ssfx7qah+OL3MzbN4h4T4mdxotbEhgGS79UeLw8NkJwQhl8PZ5n9LHPX6MrMW6sqGKjYSerp46stGQ4LLNzlZLQnCU/LkV31zF2MrTmm5m5qfl6eUrl1eGH+flzMLTYZqt0WcgOfmUvUM7ct/X2x5nyypbeS3DFT2tQhNWKs8bmkNIhz1Mil5kZxNTfRnf41QKomYcGuTPx08JJsOYxHB1YSbNmbcCmXiK4ksVmKVLLynrPXzTa9rD9xzeQ1cw8J+ufkh6tPmPxm9SfvA+SvG0vGJBl0vV55JMtgHe3YMeXC8nglasxbUzsGKg5g/ENVGli4qnrdkZT8+CyNy+GIZi1LNxhzx9TcTU27TKr4AqiYpE0DiwnSlpgb+CxtoPU1K3L7Yul8UvrUJ/c51gY8xu839+QrF8TJBVHOHLlUbr1DF3PxwcoTkueeQVL33/tpLkjR7r/+6MDWBluOSLjU/pb0p/wQAth08prduTXGycrSQ+lZNn7BfhSW3pbNI5OTuuI4An1q6s7VPWevY3D7iIouvvhnwMPC0jKD/ZG6tlh7jbb34VPq+AqLY9K6NwYqTqAksDB3UzQ+IdUYoGgp+fFZmnfEUc1alr4HqWNqqSeXpQsf8Pe8Mq2kB9OylqWBz6y5yVq6QZt7v5LA09znWBPwSL1fbj4YQD6IS9+agdfua25SPkdUtVv7+9OulxRbFw+2kp69V3te7j2bgxcW7JfsUaJPanRga2vYLA0UaG1eUre4UIPIUaCiK66lgNPc9Uz7mvFgdLaQyvWx5rcKVLwvt+hWRbPb369pUNEpom4dL91x198fe+fxsvXh0/j4Pty6oewEnVUJAxUnsbbdXu4Cb65LpFpZ++OTqyZ3RrOW0gDP3IVdKr9ASrmA3bVC2mNkbuAzS9u3N3HW2sDT3nwgqffLjRgLyAdxX23KwPDOMSZldFWel7lzLyzAB4cuZJgNUsb1jEXnxqGyowNbU8OmZAwVwPx8UsZFLQeQvuUsXuvXDIBt1zNrhqi3lv65rWS7ZUJU1ITqEajoFKE/07NUoG/vb1zJ+6WOr373bUfnMqnpwZiBigvJXeD3nctx2jDLzqb98WnnCrGmOUs7LkdlNGtZ+iFauqlJ5aYYc9RN0NLAZ/buiz5bm4gsfY41AY/c++W6JIcF+GBklxjMNkpa1x9MzHh9V+Z5ZeUVY++5HAgh0C46WPf7MC6/vic6RuDlPoZzt9hSwya173JjqJgLNKQSUYGKm7l2qHtbrmdS371xvkf/1uFYtv+SrqkMGtNJJwHDc9vamZ3ljqu2nMbM5d3J/RZtvflbM26NufIp/Vy19LSTwkDFheQu0OVCvmeA2gMVwLG9RSq7XHI3NQCYs8X0xiKVS+HIm6DcwGfW1Lg5KnHWmjwD48+ZmNwUGdmFuJp/ExHBvgbJiI4IJEZ0icFXmzMszrWjvVg7suu7Egt3ZxoMv64BkDYwERHBvrIBr4cGeOHuJgav2VPDZvxQoD+GirXNdEmxdTG6a4xJj0b92kOpYKYi4JC/nsnNU2UcIL/cp6lBhwXtPEIfrJLOA5I7p+Ib1MHszX/i10OXIfDPmC1pK46bfB8efwdEls4xa3LalN785caAshR8actny1ARan44ZqDiQnI/pnbRwW7RJVlKZZ/w1j41KCmXcU3CppPX0Cl1vWwCrZYHgCVjkhw+Z5O141pYsy+OSJzV0h8HRz8YOXQh12QcDKl5YJSWU19YgI/FkWtd/YSoPef0D602t2Pp2E6SNx0PVJRTP4dDe35bM7WAHG3Aaa6rsaUauOFdYpT3aBRAZLCvTfNU6X+XxgGzLg/oTuk8IHPb/e8TbfF6P8NBNwN9ahoGlH+fLwDMnmMHz+cYvE//t3g1/6ZBArI2r8jXy1NXsyYlK69YcptS49bo1zZJDc5nXCa5z1T7eF0MVFxM7sfkDl2SpVTmCa/kRqS0XPpNWHK9fIyVAygqNZ79xjH0L9SWBuwy914ptuRwyI2D82pyvG6gMn3WXCyV1rApHZTP1u7d1rK2ql57nhgMpa4BRhnNGCx3ftsztYAtzXQAdM24xsO/j/x74kBAetJVIbGv9s5Tpc/S++SWG7+un+Cs0cCg2dFc78AUiWtDmRBI35qB2ZsyTPN6hOUJDD9fd0p2QEqpc16/tslcMPrroSz0k5mcUO3jdTFQUQGpH5M7dEmWUlknvJIakqy8YlwvLJXt8mquVkZJUl5l/bCVzMdiDaVNL+bGwTE3oqgzAlbttjKyC03+tiX51BZZecWYsyUDX/9d26BfVa+dU0qfByrGIEmKrWvT6Mf2XBvCAnzwat/4iu8Jpk2VUrWJxqPAbknpifQtZ/HVlj/xv80Z+GpLhmzThPa8NLevahEW4CM5FovU9Vn3ACNxrntoIBmk6CsX0hMYztp4BvN2mU4boD1npMpj/Ldcfs67vx7D+yuO2dVM7CoMVFSssnM4HKGyTnhra0j0n0o1+CenRCrXQwNgdNcYDO/yT88RuR+9tmugcbWr0v10ZGBhT08xJTc/S8PFyyUcOyOQk6t1cET3bkuy8oqRviVDMm/jtSVHMLFvU8kZd1MH/tO0I/cbNzf6cXDtivPF18sDvxy6hA7RwVbXEi3cnVlR44WK5o2JyU0lb1r6tYnGwdKSMUmS04RYGlLfHa9ncuR+AxW1TKaJ3lK0EximJMcjsWEA/Lw8kbZSevj+wR0jTIJxOcbXB4PPtLOZ2FU4KSE5hZKJF21x8HyOZFu9/kRgB8/noP8X2wyeejw0wGeDW6NtdMWFXWoSMqmEOP3q7sEdI9ApNgRtoyq2Yet+2ptDoX+MpfbFQwN8OvhOs+3htjA3eZt2zA9tkqP+646ejNHSJHPmBvyyd+I2awYTM0ksBbBsbCerggqpfdPvDWNsYJuG+M9jdyreprnJ8+QmvXujXzO8++sxk9e1x9TZv301kDqWHhpg6ZhOqOdfS/K7A8z3GJQL8PXfq9EAKcnxVg0omZVXjF8PZZn9rlxJyf3bo5LKRAppu/dm5RW7uig20Sa7KblQWbvPC3dn4uEvTIMU/ae3hbszKwIZier/urW9zecQ/P3UoS3HoPaR2JLSE/NH34VX74vHgl3nMW7efnROW49NJ68p3k/tvko9rSr5vvWPsVxTxwvzD6Bz2nos3J2pqHyWPjd1QCI8NYbjiGq/g2e7x+qO109jO2H+6LuwJaWnwxNZzdU6ABXf29IxnUxGO7W3ZseawcQ8NKY3HW2+hjXCAiomyPP4u/DaC7XcZ/647yIOns8xu01ztZCA6e9PWyulz1OjQfvoIMnX9ZsmbPlNuBPj34CnRoPUAYloFREkuSxtYCLSBiaaveHKnU5Cb5kQFaPpztp4xqoy9msZZva7chds+rFCZQ+C4+reCq5g7T6vO3bZICMeqFhfv7eNuQRY/bbewxfzZMtjXM2u/d61Q5gDlhNElea+WJvDIbVdc+NGOKPnlaVxcCqjml9un1+Y/89w6nLdu+0pmzV5S2N6xOKL38/YnKu1cHemQb5Pz/hQrDtuOs+Nvj1nc8zW1pjLbZL7/Uk15bSKCFJ1PkNlMddUIjWPUUyIH5aO7WRSy2vO3fH1sP74VZPXp608jgfvtDz6tdpzT6zFQMWCyg4a1N6f3Rms3ed/LzpgMBKjVrkwfFI1dyMRqJijpFtcKKbJtAcDFdWt4xfsN/jeI4J9rQ4uLJ03chO9ZRfcRFZesex3LbfdTSevmb34OSuR1ZXnpLbWIXWF6aii+nP/OLrtXW7wM33NwvxtvkFI1dhYClIAoF20+SYlc716jLvDpvx9/OSOnZrzGSqTud9AWICPZN5YmpnJK/V5AHjxnsbYcOKqac0wrB/9uip8V2z6McMR1fNKWaqerYqs2eeD53MkgxTA9ElVqspaS5tMaW6WVuNqdm3X1uLS25LbPXQh1+Bva84b4+phbe8Qc001cts9eD7HYhdqd6zutUZiwwDJ18sFDM4fe5sj9JtFNp20HDRcLyzVjS2jtOnLmhob49Owa5MQ1POvZXHb+s2Y2jLtPZdj2kwlgH3nKpqS5I5ddWjisYe5B7AtKT3xTNdGJt+j9m9PjQapAyuaklKS42FMAyj6PVv6rtSeasAaFTMqexCcrLxinL56w+zMsVWRNV2ad529Lvlebc8F/Yx4c1nvAP4et0JjWqMB4PMnWkMAGDdvv8F7ygUw6pu9SE5ogBVHLhss+2DVCYNqWLnzxngcA+2Tzr5zORg3b7/snCJactvdfTZHugeC3jDk7ljdaw252g0PjbILuTnGPccg8XnG3vrpj4rkR1SMRGucuGiuWdDS8O9v9muG+1qG4Wr+Tcze/Cd+OXQZm09lo3PaeqtqfI1rAeT6U7hvNwt1MHf/iA7xrZhLSG+ZNhnXuBn1wVbhpiPnyjyI2cIdUg1UUaMyY8YMREdHo1atWujYsSN27drl6iIBkE8mc0bQsHB3JjqlrsdbPx116pDsaiSVfGa8zx2igyXf+3THKExbeRxPzN6Jzmnr8d6vR5GVV6x7cvzv460lv8M2UUGmyXADE9GvZTjaRpkmCwIVN6dVRkEKYFr7I1ej8+6vx0xqS8ICfBDk5yU7wJM+pcmNS8c4L5FVLcICKkao1d997aii5n4zUk+Qcq8Zz+5rrmeGcSAjUNGsor/Nhbsz0Tltve6c1T8ftAHMq33jZS/Ot8sFwgJ8UM+/FlYc/ud8LBcVn/XfDafwy6FLyMorRlZeMf5vewY+WntCNtm2XXSw5JN9WwtNSWSe3O9V261cKvm9qLTcpOZDciA9oxpDW7mi1cAWLq9RWbhwIV566SV8+eWX6NixIz755BP06dMHJ06cQL169VxatspKRDIeMlnLOEm0KrPUjtoqIggD2zQ0aP65L7EBvt15zuBHNntzBr7anKEb1Ov+Vj4oLL0t+R2aG7pbbl4V7fgT+k+bxsGrNndCavAzqdoSuXwV44BY7nyUS26sDucNYH5UUSlST5AADF4b2SUGI7rEWNUM46nR6KYPOH3tBt5c9ofBcgFg79kc3N9KfmwSqRmGX70vHueyizBvl2EzoLYGT3LWaQAfrj4pWc7P1p2W7MasDfYm/XgY5fh7GP+B5gM9skzq96o/IaQxuYdgZw6iqfah87VcPo5Kx44d0b59e/z3v/8FAJSXlyMiIgIvvPACUlJSzL63ssZRcfa4AHLjFQDq6O+uJgfP52DP2Ry0iw5CYWmZ7HEzHh/Clu9QbqyWiclN8cFKw8nQ9GssrBljw/h71Q3H/fd7tE0GUjUhcvtSHcavsJfk+BcAINHUogGQcp90wKll/P3/cuiSSbMhAMx4ojX6tQyX/a3/9/HWuuRt/W1/MrgVXph/wGT9+aPvwqGLuSaJxNb4SWYsF54/zqE9rsYTQuqzNM6Q/lhOjhyTSOnYOo6k5P7t0hqV0tJS7N27F5MmTdK95uHhgV69emH79u0m65eUlKCkpET3d35+fqWU09m9Gyqjnb2qaBURZNANWa4t3/ipwJbvUK5r66D2kXiwlfRkaNaMsSH1NNQtLtTgBNAm/Ur19pLbF1f3wnEHkuPNAJLtOQLABytPGAw5r0+qxrNtVJDkDMJt/h4cUO7pWCpQksul0jYfmOu1Zo5cN2aeP86hPa5Sc/AA/+QcmTv2zuq54y7dl12ao5KdnY2ysjLUr1/f4PX69evj8mXTXIDU1FQEBATo/kVERFRWUZ3K1nb26k77I5PKB3FU1ahULwntZ0tl0csOra35p1xSFwKpduiq3tvLFaTyBjwAyXMIqPgOWt4RiM+eaG2yzLhbPPDPb1k3UJsGSBtgOGS+VD6WVF6UXC7V+wMSUFhaZrFJSo6lbszkHHI5K5aCFC1n9bKSu8apictzVJSYNGkSXnrpJd3f+fn5VSZYUdrOThW0xy19awa+2pQhOdGavZQ8aco9MWtzGOSehtQ+e2lVYW4sEamaMO13EB3ia/X3Y+npV+mM6VLrm6tNNGdgm4bVJndJbdRce6H22jSX5qiUlpbC19cXixcvRv/+/XWvDx06FLm5ufjpp5/Mvp9z/ZA+tbSx29qe7Kx2aDIlda5k5RVLBrxScz456/tRcg4bl2diclPcEeiD64WlCPbz0jU3/Xb0CrILSnB3fD0GKSqgluuUqym5f6simbZDhw74/PPPAVQk00ZGRmLcuHGqSaYlUsrWixEvYq5n7jtQ2/ejtvIQWcttkmkB4KWXXsLQoUPRrl07dOjQAZ988gkKCwsxfPhwVxeNyGa2VqWqvQq2OrA0LLqavh+1lYfIGVweqAwaNAjXrl3DW2+9hcuXL+POO+/EqlWrTBJsiYiIqPpxedOPPdj0Q0RE5H6U3L9VMYQ+ERERkRQGKkRERKRaDFSIiIhItRioEBERkWoxUCEiIiLVYqBCREREqsVAhYiIiFSLgQoRERGpFgMVIiIiUi2XD6FvD+2guvn5+S4uCREREVlLe9+2ZnB8tw5Ubty4AQCIiIhwcUmIiIhIqRs3biAgIMDsOm491095eTkuXbqEOnXqQKPR2LWt/Px8RERE4Pz589V23iAeAx4DgMcA4DEAeAwAHgPAecdACIEbN24gPDwcHh7ms1DcukbFw8MDd9xxh0O36e/vX21PSC0eAx4DgMcA4DEAeAwAHgPAOcfAUk2KFpNpiYiISLUYqBAREZFqMVD5m7e3NyZPngxvb29XF8VleAx4DAAeA4DHAOAxAHgMAHUcA7dOpiUiIqKqjTUqREREpFoMVIiIiEi1GKgQERGRajFQISIiItWq0oHKzJkz0bJlS91ANUlJSVi5cqVu+c2bNzF27FjUrVsXtWvXxsCBA3HlyhWDbWRmZqJfv37w9fVFvXr18Morr+D27duVvSsOkZaWBo1GgwkTJuheqw7HYMqUKdBoNAb/4uPjdcurwzG4ePEinnzySdStWxc+Pj5ITEzEnj17dMuFEHjrrbcQFhYGHx8f9OrVC6dOnTLYxvXr1zFkyBD4+/sjMDAQI0eOREFBQWXvis2io6NNzgONRoOxY8cCqPrnQVlZGd58803ExMTAx8cHsbGxmDp1qsFcK9XhPLhx4wYmTJiAqKgo+Pj4oFOnTti9e7dueVU8Bps2bcIDDzyA8PBwaDQaLFu2zGC5o/b50KFD6Nq1K2rVqoWIiAh88MEHjtkBUYUtX75c/Prrr+LkyZPixIkT4rXXXhM1a9YUR44cEUII8dxzz4mIiAixbt06sWfPHnHXXXeJTp066d5/+/ZtkZCQIHr16iX2798vVqxYIUJCQsSkSZNctUs227Vrl4iOjhYtW7YUL774ou716nAMJk+eLFq0aCGysrJ0/65du6ZbXtWPwfXr10VUVJQYNmyY2Llzp/jzzz/F6tWrxenTp3XrpKWliYCAALFs2TJx8OBB8eCDD4qYmBhRXFysW6dv376iVatWYseOHWLz5s2icePG4vHHH3fFLtnk6tWrBufA2rVrBQCxYcMGIUTVPw/ee+89UbduXfHLL7+IjIwM8cMPP4jatWuLTz/9VLdOdTgPHnvsMdG8eXOxceNGcerUKTF58mTh7+8vLly4IISomsdgxYoV4vXXXxdLliwRAMTSpUsNljtin/Py8kT9+vXFkCFDxJEjR8T8+fOFj4+PmDVrlt3lr9KBipSgoCDx1VdfidzcXFGzZk3xww8/6JYdO3ZMABDbt28XQlR8uR4eHuLy5cu6dWbOnCn8/f1FSUlJpZfdVjdu3BBNmjQRa9euFd27d9cFKtXlGEyePFm0atVKcll1OAavvvqq6NKli+zy8vJy0aBBAzF9+nTda7m5ucLb21vMnz9fCCHE0aNHBQCxe/du3TorV64UGo1GXLx40XmFd6IXX3xRxMbGivLy8mpxHvTr10+MGDHC4LUBAwaIIUOGCCGqx3lQVFQkPD09xS+//GLweps2bcTrr79eLY6BcaDiqH3+4osvRFBQkMFv4dVXXxVNmza1u8xVuulHX1lZGRYsWIDCwkIkJSVh7969uHXrFnr16qVbJz4+HpGRkdi+fTsAYPv27UhMTET9+vV16/Tp0wf5+fn4448/Kn0fbDV27Fj069fPYF8BVKtjcOrUKYSHh6NRo0YYMmQIMjMzAVSPY7B8+XK0a9cOjz76KOrVq4fWrVtj9uzZuuUZGRm4fPmywTEICAhAx44dDY5BYGAg2rVrp1unV69e8PDwwM6dOytvZxyktLQU3333HUaMGAGNRlMtzoNOnTph3bp1OHnyJADg4MGD2LJlC5KTkwFUj/Pg9u3bKCsrQ61atQxe9/HxwZYtW6rFMTDmqH3evn07unXrBi8vL906ffr0wYkTJ5CTk2NXGd16UkJrHD58GElJSbh58yZq166NpUuXonnz5jhw4AC8vLwQGBhosH79+vVx+fJlAMDly5cNLkra5dpl7mDBggXYt2+fQRus1uXLl6vFMejYsSPmzp2Lpk2bIisrC2+//Ta6du2KI0eOVItj8Oeff2LmzJl46aWX8Nprr2H37t0YP348vLy8MHToUN0+SO2j/jGoV6+ewfIaNWogODjYLY6BsWXLliE3NxfDhg0DUD1+CykpKcjPz0d8fDw8PT1RVlaG9957D0OGDAGAanEe1KlTB0lJSZg6dSqaNWuG+vXrY/78+di+fTsaN25cLY6BMUft8+XLlxETE2OyDe2yoKAgm8tY5QOVpk2b4sCBA8jLy8PixYsxdOhQbNy40dXFqhTnz5/Hiy++iLVr15o8QVQn2idGAGjZsiU6duyIqKgoLFq0CD4+Pi4sWeUoLy9Hu3bt8P777wMAWrdujSNHjuDLL7/E0KFDXVw61/j666+RnJyM8PBwVxel0ixatAjff/895s2bhxYtWuDAgQOYMGECwsPDq9V58O2332LEiBFo2LAhPD090aZNGzz++OPYu3evq4tGMqp804+XlxcaN26Mtm3bIjU1Fa1atcKnn36KBg0aoLS0FLm5uQbrX7lyBQ0aNAAANGjQwCTrX/u3dh0127t3L65evYo2bdqgRo0aqFGjBjZu3IjPPvsMNWrUQP369av8MZASGBiIuLg4nD59ulqcB2FhYWjevLnBa82aNdM1f2n3QWof9Y/B1atXDZbfvn0b169fd4tjoO/cuXP47bffMGrUKN1r1eE8eOWVV5CSkoLBgwcjMTERTz31FP71r38hNTUVQPU5D2JjY7Fx40YUFBTg/Pnz2LVrF27duoVGjRpVm2Ogz1H77MzfR5UPVIyVl5ejpKQEbdu2Rc2aNbFu3TrdshMnTiAzMxNJSUkAgKSkJBw+fNjgC1q7di38/f1NLvxqdM899+Dw4cM4cOCA7l+7du0wZMgQ3f9X9WMgpaCgAGfOnEFYWFi1OA86d+6MEydOGLx28uRJREVFAQBiYmLQoEEDg2OQn5+PnTt3GhyD3Nxcg6fO9evXo7y8HB07dqyEvXCc9PR01KtXD/369dO9Vh3Og6KiInh4GF7yPT09UV5eDqD6nQd+fn4ICwtDTk4OVq9ejYceeqjaHQPAcd97UlISNm3ahFu3bunWWbt2LZo2bWpXsw+Aqt09OSUlRWzcuFFkZGSIQ4cOiZSUFKHRaMSaNWuEEBXdESMjI8X69evFnj17RFJSkkhKStK9X9sdsXfv3uLAgQNi1apVIjQ01G26I0rR7/UjRPU4Bv/+97/F77//LjIyMsTWrVtFr169REhIiLh69aoQouofg127dokaNWqI9957T5w6dUp8//33wtfXV3z33Xe6ddLS0kRgYKD46aefxKFDh8RDDz0k2T2xdevWYufOnWLLli2iSZMmqu6SKaWsrExERkaKV1991WRZVT8Phg4dKho2bKjrnrxkyRIREhIiJk6cqFunOpwHq1atEitXrhR//vmnWLNmjWjVqpXo2LGjKC0tFUJUzWNw48YNsX//frF//34BQHz00Udi//794ty5c0IIx+xzbm6uqF+/vnjqqafEkSNHxIIFC4Svry+7J1syYsQIERUVJby8vERoaKi45557dEGKEEIUFxeLMWPGiKCgIOHr6ysefvhhkZWVZbCNs2fPiuTkZOHj4yNCQkLEv//9b3Hr1q3K3hWHMQ5UqsMxGDRokAgLCxNeXl6iYcOGYtCgQQZjiFSHY/Dzzz+LhIQE4e3tLeLj48X//vc/g+Xl5eXizTffFPXr1xfe3t7innvuESdOnDBY56+//hKPP/64qF27tvD39xfDhw8XN27cqMzdsNvq1asFAJN9E6Lqnwf5+fnixRdfFJGRkaJWrVqiUaNG4vXXXzfoTlodzoOFCxeKRo0aCS8vL9GgQQMxduxYkZubq1teFY/Bhg0bBACTf0OHDhVCOG6fDx48KLp06SK8vb1Fw4YNRVpamkPKrxFCb1hCIiIiIhWpdjkqRERE5D4YqBAREZFqMVAhIiIi1WKgQkRERKrFQIWIiIhUi4EKERERqRYDFSIiIlItBipERESkWgxUiFTg8uXLeOGFF9CoUSN4e3sjIiICDzzwgMH8G9u2bcN9992HoKAg1KpVC4mJifjoo49QVlamW+fs2bMYOXIkYmJi4OPjg9jYWEyePBmlpaUGnzd79my0atUKtWvXRmBgIFq3bq2bnA4ApkyZAo1Gg759+5qUdfr06dBoNOjRo4fF/YqOjoZGo5H9N2zYMOUHS+V69OiBCRMmuLoYRFVGDVcXgKi6O3v2LDp37ozAwEBMnz4diYmJuHXrFlavXo2xY8fi+PHjWLp0KR577DEMHz4cGzZsQGBgIH777TdMnDgR27dvx6JFi6DRaHD8+HGUl5dj1qxZaNy4MY4cOYLRo0ejsLAQH374IQBgzpw5mDBhAj777DN0794dJSUlOHToEI4cOWJQrrCwMGzYsAEXLlzAHXfcoXt9zpw5iIyMtGrfdu/erQuktm3bhoEDB+LEiRPw9/cHAPj4+DjiEFaKW7duoWbNmpX2eaWlpfDy8qq0zyNSLYcMxE9ENktOThYNGzYUBQUFJstycnJEQUGBqFu3rhgwYIDJ8uXLlwsAYsGCBbLb/+CDD0RMTIzu74ceekgMGzbMbJkmT54sWrVqJe6//37x7rvv6l7funWrCAkJEc8//7zo3r27FXv3D+18Izk5ObrXli1bJlq3bi28vb1FTEyMmDJlisHcOQDEl19+Kfr16yd8fHxEfHy82LZtmzh16pTo3r278PX1FUlJSQZzN2nL/uWXX4o77rhD+Pj4iEcffdRgPhchhJg9e7aIj48X3t7eomnTpmLGjBm6ZRkZGbrj2q1bN+Ht7S3S09NFdna2GDx4sAgPDxc+Pj4iISFBzJs3T/e+oUOHmsynkpGRIdLT00VAQIDB5y9dulToX4K15Z49e7aIjo4WGo1GCFFxDowcOVKEhISIOnXqiJ49e4oDBw4oOvZE7oxNP0QudP36daxatQpjx46Fn5+fyfLAwECsWbMGf/31F15++WWT5Q888ADi4uIwf/582c/Iy8tDcHCw7u8GDRpgx44dOHfunMXyjRgxAnPnztX9PWfOHAwZMsQhT/qbN2/G008/jRdffBFHjx7FrFmzMHfuXLz33nsG602dOhVPP/00Dhw4gPj4eDzxxBN49tlnMWnSJOzZswdCCIwbN87gPadPn8aiRYvw888/Y9WqVdi/fz/GjBmjW/7999/jrbfewnvvvYdjx47h/fffx5tvvolvvvnGYDspKSl48cUXcezYMfTp0wc3b95E27Zt8euvv+LIkSN45pln8NRTT2HXrl0AgE8//RRJSUkYPXo0srKykJWVhYiICKuPyenTp/Hjjz9iyZIlOHDgAADg0UcfxdWrV7Fy5Urs3bsXbdq0wT333IPr168rOdxE7svVkRJRdbZz504BQCxZskR2nbS0NJOaCH0PPvigaNasmeSyU6dOCX9/f4PZki9duiTuuusuAUDExcWJoUOHioULF4qysjLdOtqn+9LSUlGvXj2xceNGUVBQIOrUqSMOHjwoXnzxRbtrVO655x7x/vvvG6zz7bffirCwMN3fAMQbb7yh+3v79u0CgPj66691r82fP1/UqlXLoOyenp7iwoULutdWrlwpPDw8dLMhx8bGGtSECCHE1KlTRVJSkhDinxqVTz75xOJ+9evXT/z73//W/W08Q7kQwuoalZo1a4qrV6/qXtu8ebPw9/cXN2/eNHhvbGysmDVrlsWyEVUFzFEhciGhYPJyJesCwMWLF9G3b188+uijGD16tO71sLAwbN++HUeOHMGmTZuwbds2DB06FF999RVWrVoFD49/Klpr1qyJJ598Eunp6fjzzz8RFxeHli1bKiqHnIMHD2Lr1q0GNShlZWW4efMmioqK4OvrCwAGn1e/fn0AQGJiosFrN2/eRH5+vi73JTIyEg0bNtStk5SUhPLycpw4cQJ16tTBmTNnMHLkSIPjcvv2bQQEBBiUsV27dgZ/l5WV4f3338eiRYtw8eJFlJaWoqSkRFdWe0VFRSE0NFT398GDB1FQUIC6desarFdcXIwzZ8445DOJ1I6BCpELNWnSRJcEKycuLg4AcOzYMXTq1Mlk+bFjx9C8eXOD1y5duoSePXuiU6dO+N///ie53YSEBCQkJGDMmDF47rnn0LVrV2zcuBE9e/Y0WG/EiBHo2LEjjhw5ghEjRijdRVkFBQV4++23MWDAAJNltWrV0v2/fgKrRqORfa28vNzqzwUqej517NjRYJmnp6fB38bNcdOnT8enn36KTz75BImJifDz88OECRNMelUZ8/DwMAk0b926ZbKe8ecVFBQgLCwMv//+u8m6gYGBZj+TqKpgoELkQsHBwejTpw9mzJiB8ePHm9yocnNz0bt3bwQHB+M///mPSaCyfPlynDp1ClOnTtW9dvHiRfTs2RNt27ZFenq6QQ2JHG2gU1hYaLKsRYsWaNGiBQ4dOoQnnnjClt2U1KZNG5w4cQKNGzd22Da1MjMzcenSJYSHhwMAduzYAQ8PDzRt2hT169dHeHg4/vzzTwwZMkTRdrdu3YqHHnoITz75JICK4OjkyZMGgaKXl5dBl3EACA0NxY0bN1BYWKj7jrU5KOa0adMGly9fRo0aNRAdHa2orERVBQMVIhebMWMGOnfujA4dOuCdd95By5Ytcfv2baxduxYzZ87EsWPHMGvWLAwePBjPPPMMxo0bB39/f6xbtw6vvPIKHnnkETz22GMAKoKUHj16ICoqCh9++CGuXbum+5wGDRoAAJ5//nmEh4fj7rvvxh133IGsrCy8++67CA0NRVJSkmQZ169fj1u3bjn0Kf6tt97C/fffj8jISDzyyCPw8PDAwYMHceTIEbz77rt2bbtWrVoYOnQoPvzwQ+Tn52P8+PF47LHHdMfg7bffxvjx4xEQEIC+ffuipKQEe/bsQU5ODl566SXZ7TZp0gSLFy/Gtm3bEBQUhI8++ghXrlwxCFSio6Oxc+dOnD17FrVr10ZwcDA6duwIX19fvPbaaxg/fjx27txpkKQsp1evXkhKSkL//v3xwQcfIC4uDpcuXcKvv/6Khx9+2KRpiqgqYq8fIhdr1KgR9u3bh549e+Lf//43EhIScO+992LdunWYOXMmAOCRRx7Bhg0bkJmZia5du6Jp06b4+OOP8frrr2PBggW65o+1a9fi9OnTWLduHe644w6EhYXp/mn16tULO3bswKOPPoq4uDgMHDgQtWrVwrp160xyIbT8/Pwc3tTQp08f/PLLL1izZg3at2+Pu+66Cx9//DGioqLs3nbjxo0xYMAA3HfffejduzdatmyJL774Qrd81KhR+Oqrr5Ceno7ExER0794dc+fORUxMjNntvvHGG2jTpg369OmDHj16oEGDBujfv7/BOi+//DI8PT3RvHlzhIaGIjMzE8HBwfjuu++wYsUKJCYmYv78+ZgyZYrF/dBoNFixYgW6deuG4cOHIy4uDoMHD8a5c+d0+TpEVZ1GKM3QIyJSsSlTpmDZsmVWNa0QkfqxRoWIiIhUi4EKEdmldu3asv82b97s6uIRkZtj0w8R2eX06dOyyxo2bOhW8/kQkfowUCEiIiLVYtMPERERqRYDFSIiIlItBipERESkWgxUiIiISLUYqBAREZFqMVAhIiIi1WKgQkRERKrFQIWIiIhU6/8Bjp8cpm7PK3YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(alm_surr, data_training)\n", + "surrogate_parity(alm_surr, data_training)\n", + "surrogate_residual(alm_surr, data_training)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbm0lEQVR4nO3deVhUZf8/8PeAzLAoA8qmhohauKakSVC5RYKp6NO+KJLmnmaaCmkgruSCppW2KFqZWyXyNRXNNCswy0BFhdTAjUVSZFyS9f79wY/JcWZwBgZme7+uay6b+5w58znxJO/nXs4tEUIIEBEREVkBG2MXQERERNRQGHyIiIjIajD4EBERkdVg8CEiIiKrweBDREREVoPBh4iIiKwGgw8RERFZDQYfIiIishoMPkRERGQ1GHyIyCxJJBLMmTPH2GUoRUREoHXr1sYug4jug8GHiAxm/fr1kEgkype9vT0eeughvPnmmygoKKjX705JScGcOXNw/fp1g163T58+KvfUtGlTPProo1i3bh0qKysN8h0LFy5EYmKiQa5FRDVrZOwCiMjyzJ07F76+vrhz5w5++eUXrF69Grt27UJGRgYcHR0N8h3//vsvGjX676+wlJQUxMbGIiIiAi4uLgb5jmoPPPAAFi1aBAAoLCzEF198gVGjRuGvv/5CXFxcna+/cOFCPP/88xg6dGidr0VENWPwISKDGzBgAHr06AEAeOONN9CsWTPEx8djx44deOWVV2p93crKSpSWlsLe3h729vaGKve+5HI5hg0bpnw/duxY+Pn54cMPP8S8efNgZ2fXYLUQUd1wqIuI6l2/fv0AANnZ2QCApUuXIigoCM2aNYODgwO6d++Ob775Ru1zEokEb775JjZu3IhOnTpBJpNhz549ymPVc3zmzJmD6dOnAwB8fX2Vw1I5OTno3bs3unbtqrEuPz8/hISE6H0/jo6OeOyxx3Dr1i0UFhZqPe/WrVuYNm0avL29IZPJ4Ofnh6VLl0IIoXKPt27dwoYNG5R1R0RE6F0TEemGPT5EVO/OnTsHAGjWrBkA4IMPPkBYWBhee+01lJaWYvPmzXjhhRewc+dODBw4UOWzP/74I7Zu3Yo333wTbm5uGicQP/vss/jrr7+wadMmLF++HG5ubgAAd3d3DB8+HKNHj0ZGRgY6d+6s/Mzvv/+Ov/76C7Nnz67VPf3999+wtbXVOqwmhEBYWBgOHDiAUaNGoVu3bkhOTsb06dNx+fJlLF++HADw5Zdf4o033kDPnj0xZswYAEDbtm1rVRMR6UAQERlIQkKCACB++OEHUVhYKC5evCg2b94smjVrJhwcHMSlS5eEEELcvn1b5XOlpaWic+fOol+/firtAISNjY04efKk2ncBEDExMcr3S5YsEQBEdna2ynnXr18X9vb2YubMmSrtkydPFk5OTuLmzZs13lPv3r1F+/btRWFhoSgsLBSnT58WkydPFgDE4MGDleeNGDFC+Pj4KN8nJiYKAGL+/Pkq13v++eeFRCIRZ8+eVbY5OTmJESNG1FgHERkGh7qIyOCCg4Ph7u4Ob29vvPzyy2jcuDG2b9+Oli1bAgAcHByU5xYVFaG4uBhPPvkk/vzzT7Vr9e7dGx07dqx1LXK5HEOGDMGmTZuUQ0wVFRXYsmULhg4dCicnp/teIzMzE+7u7nB3d0eHDh2watUqDBw4EOvWrdP6mV27dsHW1haTJ09WaZ82bRqEENi9e3et74mIao9DXURkcB999BEeeughNGrUCJ6envDz84ONzX//P2vnzp2YP38+0tPTUVJSomyXSCRq1/L19a1zPeHh4diyZQt+/vln9OrVCz/88AMKCgowfPhwnT7funVrfPbZZ8ol+g8++CA8PDxq/Mz58+fRokULNGnSRKW9Q4cOyuNE1PAYfIjI4Hr27Klc1XWvn3/+GWFhYejVqxc+/vhjNG/eHHZ2dkhISMDXX3+tdv7dvUO1FRISAk9PT3z11Vfo1asXvvrqK3h5eSE4OFinzzs5Oel8LhGZNg51EVGD+vbbb2Fvb4/k5GSMHDkSAwYMMEio0NRbVM3W1havvvoqvvnmGxQVFSExMRGvvPIKbG1t6/y92vj4+CA3Nxc3btxQac/MzFQer1ZT7URkWAw+RNSgbG1tIZFIUFFRoWzLycmp85OLq+fqaHty8/Dhw1FUVISxY8fi5s2bKs/lqQ/PPPMMKioq8OGHH6q0L1++HBKJBAMGDFC2OTk5GfyJ00SkGYe6iKhBDRw4EPHx8QgNDcWrr76KK1eu4KOPPkK7du1w/PjxWl+3e/fuAIBZs2bh5Zdfhp2dHQYPHqwMRP7+/ujcuTO2bduGDh064JFHHjHI/WgzePBg9O3bF7NmzUJOTg66du2KvXv3YseOHZgyZYrKkvXu3bvjhx9+QHx8PFq0aAFfX18EBATUa31E1oo9PkTUoPr164e1a9ciPz8fU6ZMwaZNm/D+++/jf//7X52u++ijj2LevHk4duwYIiIi8Morr6g9XDA8PBwAdJ7UXBc2NjZISkrClClTsHPnTkyZMgWnTp3CkiVLEB8fr3JufHw8unfvjtmzZ+OVV17B6tWr670+ImslEeKuR4gSEVmwDz74AG+//TZycnLQqlUrY5dDREbA4ENEVkEIga5du6JZs2Y4cOCAscshIiPhHB8ismi3bt1CUlISDhw4gBMnTmDHjh3GLomIjIg9PkRk0XJycuDr6wsXFxdMmDABCxYsMHZJRGREDD5ERERkNbiqi4iIiKwGgw8RERFZDU5uvkdlZSVyc3PRpEkTPkaeiIjITAghcOPGDbRo0UJlU+R7MfjcIzc3F97e3sYug4iIiGrh4sWLeOCBB7QeZ/C5R5MmTQBU/YtzdnY2cjVERESkC4VCAW9vb+XvcW0YfO5RPbzl7OzM4ENERGRm7jdNhZObiYiIyGow+BAREZHVYPAhIiIiq8E5PrVQUVGBsrIyY5dBDcDOzg62trbGLoOIiAyEwUcPQgjk5+fj+vXrxi6FGpCLiwu8vLz4XCciIgvA4KOH6tDj4eEBR0dH/iK0cEII3L59G1euXAEANG/e3MgVERFRXTH46KiiokIZepo1a2bscqiBODg4AACuXLkCDw8PDnsREZk5Tm7WUfWcHkdHRyNXQg2t+mfOeV1EROaPwUdPHN6yPvyZExFZDgYfIiIishoMPkRERGQ1GHysQEREBCQSCSQSCezs7ODp6Ymnn34a69atQ2Vlpc7XWb9+PVxcXOqvUCIionrG4GMlQkNDkZeXh5ycHOzevRt9+/bFW2+9hUGDBqG8vNzY5RERkRWorKxERUWFUWtg8LESMpkMXl5eaNmyJR555BG8++672LFjB3bv3o3169cDAOLj49GlSxc4OTnB29sbEyZMwM2bNwEABw8exOuvv47i4mJl79GcOXMAAF9++SV69OiBJk2awMvLC6+++qry2TdEREQAsHv3bsybNw+ff/65Uetg8KkDIQRKS0uN8hJC1Ln+fv36oWvXrvjuu+8AADY2Nli5ciVOnjyJDRs24Mcff8SMGTMAAEFBQVixYgWcnZ2Rl5eHvLw8vPPOOwCqlnnPmzcPx44dQ2JiInJychAREVHn+oiIyPyVlZUhNjYWR44cAVD1MGBD/A6rLT7AsA7KysqwaNEio3x3VFQUpFJpna/Tvn17HD9+HAAwZcoUZXvr1q0xf/58jBs3Dh9//DGkUinkcjkkEgm8vLxUrjFy5EjlP7dp0wYrV67Eo48+ips3b6Jx48Z1rpGIiMzTr7/+ih9++EGlbebMmUZ9TAiDj5UTQij/B/jDDz9g0aJFyMzMhEKhQHl5Oe7cuYPbt2/X+ODGo0ePYs6cOTh27BiKioqUE6YvXLiAjh07Nsh9EBGR6UhKAtLSYlXanJ0fxNtvv2qkiv7D4FMHdnZ2iIqKMtp3G8Lp06fh6+uLnJwcDBo0COPHj8eCBQvQtGlT/PLLLxg1ahRKS0u1Bp9bt24hJCQEISEh2LhxI9zd3XHhwgWEhISgtLTUIDUSEZH5KCoqQlraSpW2n39+ArdvP4W33zZSUXdh8KkDiURikOEmY/nxxx9x4sQJvP322zh69CgqKyuxbNky2NhUTf3aunWryvlSqVRtNn5mZiauXr2KuLg4eHt7AwD++OOPhrkBIiIyKevXr8f58+dV2jp3nobk5MaIjDRSUfdg8LESJSUlyM/PR0VFBQoKCrBnzx4sWrQIgwYNQnh4ODIyMlBWVoZVq1Zh8ODB+PXXX7FmzRqVa7Ru3Ro3b97E/v370bVrVzg6OqJVq1aQSqVYtWoVxo0bh4yMDMybN89Id0lERMYSGxur1hYTEwMAeO65hq5GO67qshJ79uxB8+bN0bp1a4SGhuLAgQNYuXIlduzYAVtbW3Tt2hXx8fF4//330blzZ2zcuFFt4nZQUBDGjRuHl156Ce7u7li8eDHc3d2xfv16bNu2DR07dkRcXByWLl1qpLskIqKGVlhYqBZ62rZtqww9pkYijLmmzAQpFArI5XIUFxfD2dlZ2X7nzh1kZ2fD19cX9vb2RqyQGhp/9kREmmnq5ZkyZQrkcnmD16Lt9/e92ONDREREetM2tFVT6ElKAoKCqv40Fs7xISIiovtKSgLi4oB+/TJhZ7dF5djt2654/PHJ971GXByQmlr1Z1hYfVVaMwYfIiIiuq+4OCAkpG5DW5GRVdcx5govDnURERGRkrbhKE2h535DW/cKCwNSUozX2wMw+BAREdFd7h6OAoCdO3dqnM+TnBxj1Lk6tcXgQ0REREqRkUBgYNWfsbGxOHr0qMrxSZMmITk5RiUcmRMGHyIiIlKqHo66d68tAPD3j0HTpk1VwpG54eRmIiIiUtq8eTOysrLU2u9+IGFYmHHn6dQFgw8REREB0PxsnsmTJ8PV1dUI1dQPsxrqOnToEAYPHowWLVpAIpEgMTFR5bgQAtHR0WjevDkcHBwQHByMM2fOGKdYKxQREYGhQ4cq3/fp0wdTpkyp0zUNcQ0iIqqZEELrAwktKfQAZhZ8bt26ha5du+Kjjz7SeHzx4sVYuXIl1qxZg99++w1OTk4ICQnBnTt3GrhS0xIREQGJRKLcTb5du3aYO3cuysvL6/V7v/vuO503LD148CAkEgmuX79e62sQEZH+li5dirlz56q1m+peW3VlVkNdAwYMwIABAzQeE0JgxYoVmD17NoYMGQIA+OKLL+Dp6YnExES8/PLLDVmqyQkNDUVCQgJKSkqwa9cuTJw4EXZ2doiKilI5r7S0FFKp1CDf2bRpU5O4BhERaaapl2fp0qno0qUJLDT3mFePT02ys7ORn5+P4OBgZZtcLkdAQABSU1O1fq6kpAQKhULlZYlkMhm8vLzg4+OD8ePHIzg4GElJScrhqQULFqBFixbw8/MDAFy8eBEvvvgiXFxc0LRpUwwZMgQ5OTnK61VUVGDq1KlwcXFBs2bNMGPGDNy73+29w1QlJSWYOXMmvL29IZPJ0K5dO6xduxY5OTno27cvAMDV1RUSiQQREREar1FUVITw8HC4urrC0dERAwYMUBnOXL9+PVxcXJCcnIwOHTqgcePGCA0NRV5envKcgwcPomfPnnBycoKLiwsef/xxnD9/3kD/pomITF9FRYXG0OPvH4MuXZqY5WotXVlM8MnPzwcAeHp6qrR7enoqj2myaNEiyOVy5cvb27te6zQVDg4OKC0tBQDs378fWVlZ2LdvH3bu3ImysjKEhISgSZMm+Pnnn/Hrr78qA0T1Z5YtW4b169dj3bp1+OWXX3Dt2jVs3769xu8MDw/Hpk2bsHLlSpw+fRqffPIJGjduDG9vb3z77bcAgKysLOTl5eGDDz7QeI2IiAj88ccfSEpKQmpqKoQQeOaZZ1BWVqY85/bt21i6dCm+/PJLHDp0CBcuXMA777wDACgvL8fQoUPRu3dvHD9+HKmpqRgzZgwkEkmd/50SEZmD2NhYzJ8/X609JibGJJ6sXN/MaqirPkRFRWHq1KnK9wqFwqLDjxAC+/fvR3JyMiZNmoTCwkI4OTnh888/Vw5xffXVV6isrMTnn3+uDAQJCQlwcXHBwYMH0b9/f6xYsQJRUVF49tlnAQBr1qxBcnKy1u/966+/sHXrVuzbt0/ZK9emTRvl8eohLQ8PD7i4uGi8xpkzZ5CUlIRff/0VQUFBAICNGzfC29sbiYmJeOGFFwAAZWVlWLNmDdq2bQsAePPNN5Xj1wqFAsXFxRg0aJDyeIcOHfT/F0lEZIY09fLMnDkT9vb2RqjGOCymx8fLywsAUFBQoNJeUFCgPKaJTCaDs7OzyqshaNsLpb7s3LkTjRs3hr29PQYMGICXXnoJc+bMAQB06dJFZV7PsWPHcPbsWTRp0gSNGzdG48aN0bRpU9y5cwfnzp1DcXEx8vLyEBAQoPxMo0aN0KNHD63fn56eDltbW/Tu3bvW93D69Gk0atRI5XubNWsGPz8/nD59Wtnm6OioDDUA0Lx5c1y5cgVAVcCKiIhASEgIBg8ejA8++EBlGIyIyBKVlpZqXbVlTaEHsKAeH19fX3h5eWH//v3o1q0bgKr/d//bb79h/Pjxxi1Og7v3QmmILsW+ffti9erVkEqlaNGiBRo1+u9H7+TkpHLuzZs30b17d2zcuFHtOu7u7rX6fgcHh1p9rjbs7OxU3kskEpX5RwkJCZg8eTL27NmDLVu2YPbs2di3bx8ee+yxBquRiKghJCVpfgIzYLmrtu7HrHp8bt68ifT0dKSnpwOomtCcnp6OCxcuQCKRYMqUKZg/fz6SkpJw4sQJhIeHo0WLFirPljEVDf24bycnJ7Rr1w6tWrVSCT2aPPLIIzhz5gw8PDzQrl07lVf1XKjmzZvjt99+U36mvLxcbT+Xu3Xp0gWVlZX46aefNB6v7nGqqKjQeo0OHTqgvLxc5XuvXr2KrKwsdOzYscZ7upe/vz+ioqKQkpKCzp074+uvv9br80RE5kBT6Hn33XetNvQAZhZ8/vjjD/j7+8Pf3x8AMHXqVPj7+yM6OhoAMGPGDEyaNAljxozBo48+ips3b2LPnj0m2Y1nyhPIXnvtNbi5uWHIkCH4+eefkZ2djYMHD2Ly5Mm4dOkSAOCtt95CXFwcEhMTkZmZiQkTJqg9g+durVu3xogRIzBy5EgkJiYqr7l161YAgI+PDyQSCXbu3InCwkLcvHlT7RoPPvgghgwZgtGjR+OXX37BsWPHMGzYMLRs2VL5CIP7yc7ORlRUFFJTU3H+/Hns3bsXZ86c4TwfIrIot27d0jq0dW+vuLUxq6GuPn36qC2ZvptEIsHcuXM1PoiJdOfo6IhDhw5h5syZePbZZ3Hjxg20bNkSTz31lHIO1LRp05CXl4cRI0bAxsYGI0eOxP/+9z8UFxdrve7q1avx7rvvYsKECbh69SpatWqFd999FwDQsmVLxMbGIjIyEq+//jrCw8Oxfv16tWskJCTgrbfewqBBg1BaWopevXph165dOv+H7OjoiMzMTGzYsAFXr15F8+bNMXHiRIwdO1b/f1FERCZIU+ABrHdo614SUVOSsEIKhQJyuRzFxcUqE53v3LmD7Oxs+Pr6mmQPEtUf/uyJyBxom8/z3nvvwcbGrAZ4akXb7+97mVWPDxEREam7du0a0tJWqbWzl0cdgw8REZEZ0zS0ZWdnp5xKQKoYfIiIiMyUptATHR3Np9HXwPIH/YiIiCzMuXPnNIae5OQYhp77YI+PnjgX3PrwZ05EpkTbqq3k5BiL3lzUUNjjo6Pq5dK3b982ciXU0Kp/5tb+7AsiMj5Noae0NAb+/pzErCv2+OjI1tYWLi4uyj2fHB0d2Z1o4YQQuH37Nq5cuQIXFxfY2toauyQislJpaWlI0rC5Y/WqraCght0GyZwx+OiherPT6vBD1sHFxaXGjW6JiOqTtqEtf/8YBAVVbX0UGVkVejjUdX98gOE9dHkAUkVFBcrKyhq4MjIGOzs79vQQkdFo23YC+K+XJzCwagska8cHGNYjW1tb/jIkIqJ6c/DgQY2bOt/9QEL28tQOgw8REZEJ0dTL07hxY0ybNk2lLSyM83lqg8GHiIjIRNQ0tEWGweBDRERkZImJiTh27JhaO0OP4TH4EBERGZGmXh4fHx9EREQ0fDFWgMGHiIjISDi01fAYfIiIiBrYxx9/jMLCQrV2hp76x+BDRETUgDT18ly8+Ag+/3ywEaqxPtyri4iIqIFo21E9LIyhp6Gwx4eIiKieadt2IiYmBhzdaljs8SEiIqpHmkJP7969lfN5kpKqtp/QsAcp1QP2+BAREdUTXVZtxcVxZ/WGxOBDRERkYDUNbd2Le241LAYfIiIiA9IUesrLwzBvnr/G87nnVsPiHB8iIiID0RR65syJwYoVmkMPNTz2+BAREdWRtqGt0tIYNG4MTJ7cwAWRVgw+REREekhK+m9OTliY5tDz4osvokOHDgCABQsaukKqCYMPERGRHv5bhSWQljZX7Ti3nTBtDD5ERER6iIwE0tI0D235+8cgKOi/3iAyPQw+REREetAUet544w20bNkSQUF8Jo+ps8hVXR999BFat24Ne3t7BAQE4MiRI8YuiYiIzFx5ebnG+Tz+/jFo2bIlgKqensBAPpPHlEmEEMLYRRjSli1bEB4ejjVr1iAgIAArVqzAtm3bkJWVBQ8Pj/t+XqFQQC6Xo7i4GM7Ozg1QMRERmTptq7bmzIlBYCCQktLABZEaXX9/W1yPT3x8PEaPHo3XX38dHTt2xJo1a+Do6Ih169YZuzQiIjJDmkJPhw5vYvPmGPj5sXfH3FhU8CktLcXRo0cRHBysbLOxsUFwcDBSU1ONWBkREZmbW7duad1ra8WKZsjMBJo25Vwec2NRk5v/+ecfVFRUwNPTU6Xd09MTmZmZGj9TUlKCkpIS5XuFQlGvNRIRkWm6+/k82lZtVS9V5/5a5suienxqY9GiRZDL5cqXt7e3sUsiIiIjqH4+j6bQ8+OP78Df/7/n84SFVc3rYW+P+bGo4OPm5gZbW1sUFBSotBcUFMDLy0vjZ6KiolBcXKx8Xbx4sSFKJSIiEzNlyj+YM0c99CQnx+DQISfExRmhKDI4iwo+UqkU3bt3x/79+5VtlZWV2L9/PwIDAzV+RiaTwdnZWeVFRESWJykJCAqq+vNesbGxOH36I7X2mJgYLlG3MBY1xwcApk6dihEjRqBHjx7o2bMnVqxYgVu3buH11183dmlERGRE/201oTpEpWkC875972LGDDsAVedySMtyWFzweemll1BYWIjo6Gjk5+ejW7du2LNnj9qEZyIisi73TkjOycnBhg0b1M5bujQGN2/y6cuWyuIeYFhXfIAhEZHl0/ZAwk2bYpCVBTRuDGzcyOBjTnT9/W1xPT5EREQ10RR6kpOjkZoqQfv2/83nYeixTAw+RERkFY4dO4bExES19piYGPj7/zcMxsBj2Rh8iIjI4mkb2qp+ICEnMFsPBh8iIrJo2radIOvE4ENERBZp//79+OWXX9TaGXqsG4MPERFZnPsNbZH1YvAhIiKLwqEtqgmDDxERWYSvvvoK586dU2tn6KG7WdReXUREZJ1iY2M1hp6lSxl6SBV7fIiIyKxpGtoqLY3BypXA5MlGKIhMGoMPERGZpYULF6KsrEytvXpoa8GChq6IzAGHuoiIyKQkJQFBQVV/ahMbG6sx9Pj7c2iLasYeHyIiMilxcUBqqvbd0blqi+qCwYeIiExKZOR/+2bdTduzedjLQ/rgUBcREZm8mkIP99gifbDHh4iITMq9Q10c2iJDYvAhIiKTUj3UFRISC00dPQw9VBcMPkREZFLCwoC0NPXE4+npiXHjxhmhIrIkDD5ERGRSOLRF9YnBh4iITAJ3VKeGwOBDRERGlZSkeWirW7duGDJkiBEqIkvG4ENEREaRlPTfJOZ7sZeH6guDDxERGUVaWixCQtTbGXqoPvEBhkREVC+07bmVlKR5Ps/TTz/N0EP1jj0+RERULzTtuSWEQFraXLVzGXiooTD4EBFRvbh3zy2u2iJTwOBDRET1orqXJy5O86qtF198ER06dGjgqsjaMfgQEVG9Wby4DCEhC9Xa2ctDxsLgQ0RE9SI2NhZPP63eztBDxsTgQ0REBqdpPs9DD43CK688YIRqiP7D5exERFQndy9bv3nzpta9thh6yBSYTfBZsGABgoKC4OjoCBcXF43nXLhwAQMHDoSjoyM8PDwwffp0lJeXN2yhRERWpnrZelpaLJYtW6Z2nENbZErMZqirtLQUL7zwAgIDA7F27Vq14xUVFRg4cCC8vLyQkpKCvLw8hIeHw87ODgsXqk+sIyIiw4iM1Lxq66233tL6f1SJjEUihBDGLkIf69evx5QpU3D9+nWV9t27d2PQoEHIzc2Fp6cnAGDNmjWYOXMmCgsLIZVKdbq+QqGAXC5HcXExnJ2dDV0+EZFFyc/PxyeffKLWzl4eami6/v42m6Gu+0lNTUWXLl2UoQcAQkJCoFAocPLkSa2fKykpgUKhUHkREdH9xcbGMvSQ2TGboa77yc/PVwk9AJTv8/PztX5u0aJFWp8mSkREmmn6ezMyMhIymcwI1RDpzqg9PpGRkZBIJDW+MjMz67WGqKgoFBcXK18XL16s1+8jIjJnmZmZWldtMfSQOTBqj8+0adMQERFR4zlt2rTR6VpeXl44cuSISltBQYHymDYymYz/sRIR6YB7bZElMGrwcXd3h7u7u0GuFRgYiAULFuDKlSvw8PAAAOzbtw/Ozs7o2LGjQb6DiMhaaQo97733HmxsLGaqKFkJs5njc+HCBVy7dg0XLlxARUUF0tPTAQDt2rVD48aN0b9/f3Ts2BHDhw/H4sWLkZ+fj9mzZ2PixIns0SEiqqWUlBTs27dPrZ29PGSuzGY5e0REBDZs2KDWfuDAAfTp0wcAcP78eYwfPx4HDx6Ek5MTRowYgbi4ODRqpHu+43J2IrJGSUlVDyKMjKzaVT0pSfOzeQCGHjJNuv7+Npvg01AYfIjIGgUFVT19OTAQSEnRPLTFwEOmzOqe40NERLUXGVkVeoKDExl6yKKZzRwfIiKqP2FhHNoi68DgQ0RE7OUhq8HgQ0RkhaonMw8Z8jHu3ClUO87QQ5aKwYeIyArFxQEhIbG4c0f9GEMPWTIGHyIiKxQSwqEtsk4MPkREVoTbTpC143J2IiIrwdBDxB4fIiKrwFVbRFUYfIiILBh7eYhUcaiLiMhCMfQQqdO7x8fW1hZ5eXnw8PBQab969So8PDxQUVFhsOKIiKh2OLRFpJnewUfbnqYlJSWQSqV1LoiIiHR3767q7OUhqpnOwWflypUAAIlEgs8//xyNGzdWHquoqMChQ4fQvn17w1dIRERqqgNPURGQmVn1z5r22pJKpYiKijJChUSmSefgs3z5cgBVPT5r1qyBra2t8phUKkXr1q2xZs0aw1dIRERq4uKA1FTAz69qV3U+kJBINzoHn+zsbABA37598d1338HV1bXeiiIioppFRv637YQmDD1Emum9quvAgQMMPUREDSwpCQgKqvoTqJrPoyn0tGnThqGHqAZ6T24eOXJkjcfXrVtX62KIiEiz6qGtuDjtk5gZeIjuT+/gU1RUpPK+rKwMGRkZuH79Ovr162ewwoiI6D93D21pWrjF0EOkG72Dz/bt29XaKisrMX78eLRt29YgRRERkaqwMM2rtjw9H8e4ccFGqIjIPEmEtgfz6CkrKwt9+vRBXl6eIS5nNAqFAnK5HMXFxXB2djZ2OUREEEJg7ty5au3s5SH6j66/vw22V9e5c+dQXl5uqMsREVm9pCTNvTwAQw9RbekdfKZOnaryXgiBvLw8fP/99xgxYoTBCiMisnaaQs/gwYPxyCOPGKEaIsugd/BJS0tTeW9jYwN3d3csW7bsviu+iIjo/srLy7FgwQK1dvbyENWd3sHnwIED9VEHERFB+15b/v4MPUSGUOs5PleuXEFWVhYAwM/PT223diIiUnfvpqJ30xR6IiIi4OPj00DVEVk+vZ/crFAoMHz4cLRo0QK9e/dG79690bJlSwwbNgzFxcX1USMRkcW4+0GE1W7duqX1gYQMPUSGpXfwGT16NH777Td8//33uH79Oq5fv46dO3fijz/+wNixY+ujRiIiixEZWbWpaGRk1fvY2FgsXbpU7TzO5yGqH3o/x8fJyQnJycl44oknVNp//vlnhIaG4tatWwYtsKHxOT5E1FA09fJMmjQJTZs2NUI1ROZN19/fevf4NGvWDHK5XK1dLpdz81IiIi3u3mT0ypUrWoe2GHqI6pfewWf27NmYOnUq8vPzlW35+fmYPn063nvvPYMWVy0nJwejRo2Cr68vHBwc0LZtW8TExKC0tFTlvOPHj+PJJ5+Evb09vL29sXjx4nqph4hIX9Vze9LSYrF69Wq14xzaImoYeq/qWr16Nc6ePYtWrVqhVatWAIALFy5AJpOhsLAQn3zyifLcP//80yBFZmZmorKyEp988gnatWuHjIwMjB49Grdu3VKOjSsUCvTv3x/BwcFYs2YNTpw4gZEjR8LFxQVjxowxSB1ERPq4ewVXZKTmBxLOmDEDDg4ORqiOyDrpHXyGDBkCiURSH7VoFRoaitDQUOX7Nm3aICsrC6tXr1YGn40bN6K0tBTr1q2DVCpFp06dkJ6ejvj4eAYfIjKK6l6ezz47hx49vlI7zl4eooand/CZM2dOPZShv+LiYpWx8NTUVPTq1QtSqVTZFhISgvfffx9FRUVa5x+VlJSgpKRE+V6hUNRf0URkVbT18gAMPUTGovccnzZt2uDq1atq7devX0ebNm0MUtT9nD17FqtWrVJZPp+fnw9PT0+V86rf3z0f6V6LFi2CXC5Xvry9veunaCKyOppCz+zZsxl6iIxI7+CTk5ODiooKtfaSkhJcunRJr2tFRkZCIpHU+MrMzFT5zOXLlxEaGooXXngBo0eP1rd8NVFRUSguLla+Ll68WOdrEpF1+/PPP7Wu2rK1tTVCRURUTeehrqSkJOU/Jycnqyxpr6iowP79++Hr66vXl0+bNg0RERE1nnN3L1Jubi769u2LoKAgfPrppyrneXl5oaCgQKWt+r2Xl5fW68tkMshkMr3qJiLSRtteW+zlITINOgefoUOHAgAkEglGjBihcszOzg6tW7fGsmXL9Ppyd3d3uLu763Tu5cuX0bdvX3Tv3h0JCQmwsVHtrAoMDMSsWbNQVlYGOzs7AMC+ffvg5+fH5wsRUYPQFHqio6MbfEEIEWmnc/CprKwEAPj6+uL333+Hm5tbvRV1r8uXL6NPnz7w8fHB0qVLUVhYqDxW3Zvz6quvIjY2FqNGjcLMmTORkZGBDz74AMuXL2+wOonIOu3duxepqalq7f7+MWDmITIteq/qys7Oro86arRv3z6cPXsWZ8+exQMPPKByrHrHDblcjr1792LixIno3r073NzcEB0dzaXsRFSvOLRFZF703qtr7ty5NR6Pjo6uU0HGxr26iEhX2iYwE1HD0/X3t949Ptu3b1d5X1ZWhuzsbDRq1Aht27Y1++BDRHQ/mzZtwl9//aXWztBDZPr0Dj5paWlqbQqFAhEREfjf//5nkKKIiEwVh7aIzJveQ13anDhxAoMHD0ZOTo4hLmc0HOoiIm00hR5//xiEhRmhGCJSUW9DXdpUPwCQiMjSxMfH48aNG2rtc+bEIDAQDD5EZkTv4LNy5UqV90II5OXl4csvv8SAAQMMVhgRkSnQNrTl718VeiIjG7ggIqoTvYe67n06s42NDdzd3dGvXz9ERUWhSZMmBi2woXGoi4iqaQo9yckxSEkxQjFEVKN6G+oyxnN8iIgakrZenuTkGPbwEJm5Ws3xuX79Os6ePQsAaNeuHVxcXAxZExGR0dS0aosLt4jMn167s+fk5GDgwIFwc3NDQEAAAgIC4ObmhkGDBpn9ai4iIm2rtpKTY3DXPs1EZMZ0nuNz8eJFPProo7Czs8OECRPQoUMHAMCpU6ewevVqlJeX4/fff1fbUsLccI4PkfWpqZcnKAhITQUCA8G5PUQmTNff3zoHn1GjRuHs2bNITk6Gvb29yrF///0XoaGhePDBB/H555/XrXIjY/AhsmxJSUBcXNVqrLAwzaHH3d0dEyZM0Hg+EZkmgwefli1bYsuWLXjiiSc0Hj906BBefvll5Obm1q5iE8HgQ2TZ7u7BCQnhXltElsLgq7r++ecftG7dWuvxNm3a4Nq1a3oVSUTUUKp7bvr21Rx4gKpVW/7+7NkhsmQ6T25u3rw5Tp06pfV4RkYGvLy8DFIUEZGhxcVV9fRIpeqhp0uXLkhOjkFqatV5RGS5dO7xGTp0KN555x3s378f7u7uKseuXLmCmTNnYujQoYauj4jIICIjgbQ0zau2qnuCqs8jIsul8xyfoqIiBAQEID8/H8OGDUP79u0hhMDp06fx9ddfw8vLC4cPH0bTpk3ru+Z6xTk+RJaHq7aILJ/B5/i4urrit99+w7vvvovNmzfj+vXrAAAXFxe8+uqrWLhwodmHHiKyPJpCT3BwMB5//HEAVT081au2iMjy6b1XF1C1MWlhYSGAqmWfEonE4IUZC3t8iCyDEAJz585Va+eqLSLLVG97dQGARCKBh4dHrYsjIqpPNQ1tEZF102vLCiIiU6cp9Lz00kuIianadiIoCNx+gsiKMfgQkVmrDjM7dlRoDD0xMTFo3749gP+WtHPJOpH1YvAhIrMWF1f1QML09Plqx+4d2oqMrFq9xYnMRNarVnN8iIhMhaanMKemjsaePS3U2sPC+FRmImunU/BZuXKlzhecPHlyrYshItLVnTt38P7776u1JyfHsEeHiLTSaTm7r6+vbheTSPD333/XuShj4nJ2ItPHVVtEdC+DLmfPzs42WGFERHWhKfRMmTIFcrncCNUQkbmp9eTm0tJSZGVloby83JD1EBGpqF619c03xVpXbTH0EJGu9A4+t2/fxqhRo+Do6IhOnTrhwoULAIBJkyYhjmtEicjAqldtnTy5Qu0Yh7aISF96B5+oqCgcO3YMBw8ehL29vbI9ODgYW7ZsMWhxRESaVm1FRkYy9BBRrei9nD0xMRFbtmzBY489prJHV6dOnXDu3DmDFkdE1is/Px+ffPKJWjsDDxHVhd49PoWFhRr36bp161a9blYaFhaGVq1awd7eHs2bN8fw4cORm5urcs7x48fx5JNPwt7eHt7e3li8eHG91UNE9Sc2NlZj6ElOZughorrRO/j06NED33//vfJ9ddj5/PPPERgYaLjK7tG3b19s3boVWVlZ+Pbbb3Hu3Dk8//zzyuMKhQL9+/eHj48Pjh49iiVLlmDOnDn49NNP660mIjI8TROYu3WbzefzEJFB6PQcn7v98ssvGDBgAIYNG4b169dj7NixOHXqFFJSUvDTTz+he/fu9VWriqSkJAwdOhQlJSWws7PD6tWrMWvWLOTn50MqlQKomgeQmJiIzMxMna/L5/gQGceZM2fw9ddfq7VzaIuIdKHr72+9e3yeeOIJpKeno7y8HF26dMHevXvh4eGB1NTUBgs9165dw8aNGxEUFAQ7OzsAQGpqKnr16qUMPQAQEhKCrKwsFBUVNUhdRFQ7sbGxDD1E1CBqtVdX27Zt8dlnnxm6lvuaOXMmPvzwQ9y+fRuPPfYYdu7cqTyWn5+v9oRpT09P5TFXV1eN1ywpKUFJSYnyvUKhqIfKiUgbTUNb0dHR9TpnkIisl049PgqFQueXPiIjIyGRSGp83T1MNX36dKSlpWHv3r2wtbVFeHg49BypU7No0SLI5XLly9vbu07XIyLdpKWlaX0gIUMPEdUXneb42NjY6PwXUUVFhc5fXlhYiKtXr9Z4Tps2bVSGr6pdunQJ3t7eSElJQWBgIMLDw6FQKJCYmKg858CBA+jXrx+uXbumV4+Pt7c35/gQ1SPutUVEhmbQvboOHDig/OecnBxERkYiIiJCuYorNTUVGzZswKJFi/Qq0t3dHe7u7np9plplZSUAKENLYGAgZs2ahbKyMuW8n3379sHPz09r6AEAmUwGmUxWqxqISH/aenmIiBqC3qu6nnrqKbzxxht45ZVXVNq//vprfPrppzh48KAh6wMA/Pbbb/j999/xxBNPwNXVFefOncN7772HgoICnDx5EjKZDMXFxfDz80P//v0xc+ZMZGRkYOTIkVi+fDnGjBmj83dxVRdR/Thw4AAOHTqk1s7QQ0SGUG+rulJTU9GjRw+19h49euDIkSP6Xk4njo6O+O677/DUU0/Bz88Po0aNwsMPP4yffvpJ2Vsjl8uxd+9eZGdno3v37pg2bRqio6P1Cj1EVD9iY2MZeojIJOjd4+Pn54chQ4aoPRV5xowZ2LFjB7KysgxaYENjjw+RYXFoi4gagkHn+Nxt+fLleO6557B7924EBAQAAI4cOYIzZ87g22+/rX3FRGRRduzYgfT0dLV2hh4iMia9h7qeeeYZnDlzBoMHD8a1a9dw7do1DB48GH/99ReeeeaZ+qiRiMxMbGysWugRAvD3Z+ghIuPSe6jL0nGoi6hu9BnaSkoC4uKAyEggLKy+KyMiS1ZvQ10AcP36daxduxanT58GAHTq1AkjR46EXC6vXbVEZPbWrl2LS5cuqbXXNLQVFwekplb9yeBDRA1B76GuP/74A23btsXy5cuVQ13x8fFo27Yt/vzzz/qokYhMXGxsrFro8fLyuu98nshIIDAQ3HWdiBqM3kNdTz75JNq1a4fPPvsMjRpVdRiVl5fjjTfewN9//61xyao54VAXkX64aouITIGuv7/1Dj4ODg5IS0tD+/btVdpPnTqFHj164Pbt27Wr2EQw+BDp5sMPP9S45QxDDxEZQ73N8XF2dsaFCxfUgs/FixfRpEkT/SslIrOjqZfn0iV/fPYZJ+oQkWnTe47PSy+9hFGjRmHLli24ePEiLl68iM2bN2vcxoKILI+m0JOcHIPBgxl6iMj06d3js3TpUkgkEoSHh6O8vBwAYGdnh/HjxyMuLs7gBRKRaahpR3WObhGRuaj1c3xu376Nc+fOAQDatm0LR0dHgxZmLJzjQ6ROU+h5+umnERQUpHzPZ/IQkTHV2+RmS8fgQ6RK11VbQUFVz+QJDARSUhqiMiKi/xh8cvPIkSN1Om/dunW6XpKITFhNQ1uaREb+1+NDRGSqdA4+69evh4+PD/z9/cFOIiLLpin0PPfcc+jcubPWz4SFcYiLiEyfzsFn/Pjx2LRpE7Kzs/H6669j2LBhaNq0aX3WRkQNTAiBuXPnqrXr8mwezvEhInOg1xyfkpISfPfdd1i3bh1SUlIwcOBAjBo1Cv3794dEIqnPOhsM5/iQtdJ3aOtenONDRMZU75Obz58/j/Xr1+OLL75AeXk5Tp48icaNG9e6YFPB4EPWSFPoiYiIgI+Pj87XYI8PERlTve7ODgA2NjaQSCQQQqCioqK2lyEiI6qsrMS8efPU2muz7QTn+BCROdAr+Nw91PXLL79g0KBB+PDDDxEaGgobG70fAk1ERqRtaMvfn08jJCLLpXPwmTBhAjZv3gxvb2+MHDkSmzZtgpubW33WRkT1RFPo+fnnidi/3w2Bgey5ISLLpXPwWbNmDVq1aoU2bdrgp59+wk8//aTxvO+++85gxRGRYZWVlWHhwoVq7TExMUhKAm7f5nN4iMiy6Rx8wsPDLWblFpE1ut+qLc7RISJroNcDDInIPGkKPdOmTbOIlZhERPqo9aouIjJ9//77LxYvXqzWXptVW0REloDBh8hC1fWBhERElojBh8gCaQo9UVFRkEqlRqiGiMh0MPgQWRCFQoHly5ertbOXh4ioCoMPkYXg0BYR0f3xcctEFkBT6Nmy5T34+1c9nycoqGovLSIia8ceHyIzVlhYiI8//litfc6cql6euLiq96mpVf/M5/QQkbVj8CEyUzXtteXnB0gk/z2FuXrXdCIia2d2waekpAQBAQE4duwY0tLS0K1bN+Wx48ePY+LEifj999/h7u6OSZMmYcaMGcYrlqieaAo90dHRyqer39uzw54eIqIqZjfHZ8aMGWjRooVau0KhQP/+/eHj44OjR49iyZIlmDNnDj799FMjVElUPy5evKgx9MTExHBLGSIiHZhVj8/u3buxd+9efPvtt9i9e7fKsY0bN6K0tBTr1q2DVCpFp06dkJ6ejvj4eIwZM8ZIFRMZjqbA06hRI8yaNcsI1RARmSezCT4FBQUYPXo0EhMT4ejoqHY8NTUVvXr1UnlAW0hICN5//30UFRXB1dVV43VLSkpQUlKifK9QKAxfPFEdaevlISIi/ZjFUJcQAhERERg3bhx69Oih8Zz8/Hx4enqqtFW/z8/P13rtRYsWQS6XK1/e3t6GK5yojrKyshh6iIgMyKjBJzIyEhKJpMZXZmYmVq1ahRs3biAqKsrgNURFRaG4uFj5unjxosG/g6g2YmNjsXnzZpU2T09PZejh83mIiPRn1KGuadOmISIiosZz2rRpgx9//BGpqamQyWQqx3r06IHXXnsNGzZsgJeXFwoKClSOV7/38vLSen2ZTKZ2XSJj06WXJy6Oz+chItKXUYOPu7s73N3d73veypUrMX/+fOX73NxchISEYMuWLQgICAAABAYGYtasWSgrK4OdnR0AYN++ffDz89M6v4fI1Bw+fBjJyclq7ZqGtiIj+XweIiJ9SYQQwthF6CsnJwe+vr4qz/EpLi6Gn58f+vfvj5kzZyIjIwMjR47E8uXL9VrVpVAoIJfLUVxcDGdn53q6AyJ1mnp5fH19ER4eboRqiIjMi66/v81mVdf9yOVy7N27FxMnTkT37t3h5uaG6OhoLmUns8AJzEREDcMse3zqE3t8qCHt27cPKSkpau13T2CuHs7iPB4iIu2srseHyNxo6uXx9/dH2F0JhxOYiYgMi8GHyAh0HdriBGYiIsNi8CFqQDt27EB6erpau7b5PGFh7OkhIjIkBh+iBqKpl6dFi6eRkBAEf38GHCKihmAWW1YQmTttQ1sJCUHKOTxERFT/2ONDVI/Wr1+P8+fPq7VXD21xDg8RUcNi8CGqJ5p6eZ599ll06dJF+Z5zeIiIGhaHuojqgbahrbtDz9244SgRUcNgjw+RAS1fvhwKhUKt/X5PYebzeoiIGgaDD5GBaOrlGT58ONq0aXPfz3KuDxFRw2DwITKAuu61xbk+REQNg8GHqA4WLVqE0tJStXZuMEpEZJoYfIhqSVMvz7hx4+Dp6WmEaoiISBcMPkR6EkJg7ty5au3s5SEiMn1czk6kh2XLltUYergsnYjItLHHh0hHmoa2OnWagueflyvfc1k6EZFpY48P0X1UVFRoXbUllcpVengiI4HAQC5LJyIyVRIhhDB2EaZEoVBALpejuLgYzs7Oxi6HjExT4AH+G9oKCqrq4QkMBFJSGrIyIiK6m66/vznURaSFptAzc+ZM2NvbK9/zwYNEROaFwYfoHqWlpVi0aJFau6ZVW3zwIBGReeEcHyvCFUf3Fxsbq3PoISIi88MeHyvCFUc10zS0NWvWLDRqxP9MiIgsBXt8rAhXHGl2+/Ztrau2GHqIiCwL/1a3IpyPok5T4JFIJIiOjjZCNUREVN8YfMhqaQo97733Hmxs2BFKRGSpGHzI6ty4cQPx8fFq7ZzATERk+Rh8yKpo6uVxdXXF5MmTjVANERE1NAYfshqaQk90dDQkEokRqiEiImPgZAayeFevXtUYevz9Y/D44xI+14iIyIqwx4csmuYd1Tvh+eefV+6zxecaERFZD7Pp8WndujUkEonKKy4uTuWc48eP48knn4S9vT28vb2xePFiI1VLpkDbs3mef/55AHyuERGRNTKrHp+5c+di9OjRyvdNmjRR/rNCoUD//v0RHByMNWvW4MSJExg5ciRcXFwwZswYY5RLRpKbm4vPPvtMrf3eVVt8rhERkfUxq+DTpEkTeHl5aTy2ceNGlJaWYt26dZBKpejUqRPS09MRHx/P4GNFNPXyBAQEIDQ01AjVEBGRqTGboS4AiIuLQ7NmzeDv748lS5agvLxceSw1NRW9evWCVCpVtoWEhCArKwtFRUVar1lSUgKFQqHyIvOkbWiLoYeIiKqZTY/P5MmT8cgjj6Bp06ZISUlBVFQU8vLylA+iy8/Ph6+vr8pnPD09lcdcXV01XnfRokUaf2GS+cjOzsYXX3yh1s4HEhIR0b2MGnwiIyPx/vvv13jO6dOn0b59e0ydOlXZ9vDDD0MqlWLs2LFYtGgRZDJZrWuIiopSubZCoYC3t3etr0cNS1Nofeqpp/DEE08YoRoiIjJ1Rg0+06ZNQ0RERI3ntGnTRmN7QEAAysvLkZOTAz8/P3h5eaGgoEDlnOr32uYFAYBMJqtTcCLj0Ta0RUREpI1Rg4+7uzvc3d1r9dn09HTY2NjAw8MDABAYGIhZs2ahrKwMdnZ2AIB9+/bBz89P6zAXmadTp05h27Ztau0MPUREdD9mMccnNTUVv/32G/r27YsmTZogNTUVb7/9NoYNG6YMNa+++ipiY2MxatQozJw5ExkZGfjggw+wfPlyI1dPhqSpl2fw4MF45JFHjFANERGZG7NY1SWTybB582b07t0bnTp1woIFC/D222/j008/VZ4jl8uxd+9eZGdno3v37pg2bRqio6O5lN0EJSUBQUHQe6sIbUNbDD1ERKQriRBCGLsIU6JQKCCXy1FcXAxnZ2djl2ORqreKCAwEUlLuf/4ff/yB77//Xq2dQ1tERFRN19/fZjHURZYlMrJqfyxdtorQ1Mvz0ksvoX379vVQGRERWToGH2pwum4VwVVbRERkaAw+ZHIOHz6M5ORktXaGHiIiqisGHzIpmnp5RowYgdatWzd8MUREZHEYfMhkaAo9/v4xYOYhIiJDYfAhoztw4AAOHTqk1j5nTgwCA3WbD0RERKQLBh8yKk29PBMmTEBqqjsCA3Vb+UVERKQrBh8ymppWbem68ouIiEgfZvHkZrIsu3btqvVS9do+9ZmIiAhgjw81ME2B56233oKLi4tOn4+Lq3rqc1wce4SIiEh/7PGhBiGE0NrLo2voAarm/HDuDxER1RZ7fKje7dy5E0ePHlVps7W1xezZs/W+Fuf+EBFRXTD4UL3S1MszY8YMODg4GKEaIiKydgw+VC8qKysxb948tXZuO0FERMbE4EMG98033+DkyZMqbS4uLnjrrbeMVBEREVEVBh8yKE1DW1FRUZBKpUaohoiISBWDDxlERUUF5s+fr9bOoS0iIjIlDD5UZ9999x1OnDih0pab2wUDBz5rpIqIiIg0Y/ChOtE0tLV372ykpNjixAkuPSciItPC4EO1UlZWhoULF6q1x8TEwN+/6snKfMggERGZGgYf0tuXX36Jv//+W6UtICAAoaGhAPiQQSIiMl0MPqQXTUNb0dHRkEgkRqiGiIhIPww+pJM7d+7g/fffV2vnqi0iIjInDD50X2vWrEFBQYFKW58+fdC7d28jVURERFQ7DD5UIw5tERGRJWHwIY1u3ryJZcuWqbVzaIuIiMwZgw+pWbp0KW7duqXSFhoaioCAACNVREREZBgMPqRC09AWe3mIiMhSMPgQAKC4uBgrVqxQa2foISIiS8LgQxp7ef73v//h4YcfNkI1RERE9cfG2AXo4/vvv0dAQAAcHBzg6uqKoUOHqhy/cOECBg4cCEdHR3h4eGD69OkoLy83TrFmQtvQFkMPERFZIrPp8fn2228xevRoLFy4EP369UN5eTkyMjKUxysqKjBw4EB4eXkhJSUFeXl5CA8Ph52dncY9pazdP//8g48++kitnUNbRERkySRCCGHsIu6nvLwcrVu3RmxsLEaNGqXxnN27d2PQoEHIzc2Fp6cngKoH782cOROFhYWQSqU6fZdCoYBcLkdxcTGcnZ0Ndg+mRFMvz8svvww/Pz8jVENERFR3uv7+Nouhrj///BOXL1+GjY0N/P390bx5cwwYMEClxyc1NRVdunRRhh4ACAkJgUKhwMmTJ41RtknSNrTF0ENERNbALIJP9U7gc+bMwezZs7Fz5064urqiT58+uHbtGgAgPz9fJfQAUL7Pz8/Xeu2SkhIoFAqVlyUqLCzkUnUiIrJ6Rg0+kZGRkEgkNb4yMzNRWVkJAJg1axaee+45dO/eHQkJCZBIJNi2bVudali0aBHkcrny5e3tbYhbMynz58/Hxx9/rNI2YsQIhh4iIrI6Rp3cPG3aNERERNR4Tps2bZCXlwcA6Nixo7JdJpOhTZs2uHDhAgDAy8sLR44cUfls9caaXl5eWq8fFRWFqVOnKt8rFAqLCj/s5SEiIvqPUYOPu7s73N3d73te9+7dIZPJkJWVhSeeeAIAUFZWhpycHPj4+AAAAgMDsWDBAly5cgUeHh4AgH379sHZ2VklMN1LJpNBJpMZ4G5MS15eHj799FOVNolEgujoaCNVREREZHxmsZzd2dkZ48aNQ0xMDLy9veHj44MlS5YAAF544QUAQP/+/dGxY0cMHz4cixcvRn5+PmbPno2JEydaZLCpiaZengkTJugUMomIiCyZWUxuBoAlS5bg5ZdfxvDhw/Hoo4/i/Pnz+PHHH+Hq6goAsLW1xc6dO2Fra4vAwEAMGzYM4eHhmDt3rpEr119SEhAUVPWnvrQNbTH0EBERmclzfBqSKTzHJygISE0FAgOBlBTdPlNQUIA1a9aotDVp0kRl/hIREZGl0vX3t1kMdVmbyEggLq7qT1188MEHuH79ukrb5MmTlb1hREREVIXBxwSFhVW9dKFpaMvfPwbMPEREROoYfMzU1atX8eGHH6q0Xbrkj88/D0NgoO7BiYiIyJow+JihxMREHDt2TKVt5syZ2LvXHidP6j5ERkREZG0YfMxMTQ8k1GeIjIiIyBox+JiJK1euYPXq1SptQ4YMQbdu3YxTEBERkRli8DEDW7ZsQWZmpkrbu+++Czs7OyNVREREZJ4YfEyYEELtAYzcdoKIiKj2GHxMlKa9tp5//nl06tTJSBURERGZPwYfE/TFF18gOztbpW3WrFlo1Ig/LiIiorrgb1ITomloy8HBATNmzDBSRURERJaFwcdEFBcXY8WKFSptr7zyCh566CHjFERERGSBGHxMwNGjR7Fz506Vtvfeew82NjZGqoiIiMgyMfg0kKSk/zYerX7IoBACH374Ia5du6Y8LyQkBI899piRqiQiIrJsDD4NJC4OSE2t+jMsDCgqKsLKlStVzuGO6kRERPWLYykNJDISCAys+vO3335TCT1NmzZFdHR0rUJPUhIQFFT1JxEREdVMIoQQxi7ClCgUCsjlchQXF8PZ2dmg1xZCYMWKFVAoFMq2gQMHokePHrW+ZlBQVU9SYCCQkmKIKomIiMyPrr+/OdTVQK5evYoPP/xQpW3KlCmQy+V1um5k5H9zh4iIiKhmDD4N5O7Q4+npibFjx0IikdT5utyRnYiISHcMPg2ka9euOHbsGHdUJyIiMiLO8blHfc7xISIiovqh6+9vruoiIiIiq8HgQ0RERFaDwYeIiIisBoMPERERWQ0GHyIiIrIaDD5ERERkNRh8iIiIyGow+BAREZHVYPAhIiIiq8HgQ0RERFbDLILPwYMHIZFINL5+//135XnHjx/Hk08+CXt7e3h7e2Px4sVGrJqIiIhMjVlsUhoUFIS8vDyVtvfeew/79+9Hjx49AFTt0dG/f38EBwdjzZo1OHHiBEaOHAkXFxeMGTPGGGUTERGRiTGL4COVSuHl5aV8X1ZWhh07dmDSpEmQSCQAgI0bN6K0tBTr1q2DVCpFp06dkJ6ejvj4eAYfIiIiAmAmQ133SkpKwtWrV/H6668r21JTU9GrVy9IpVJlW0hICLKyslBUVKT1WiUlJVAoFCovIiIiskxm0eNzr7Vr1yIkJAQPPPCAsi0/Px++vr4q53l6eiqPubq6arzWokWLEBsbq9bOAERERGQ+qn9vCyFqPM+owScyMhLvv/9+jeecPn0a7du3V76/dOkSkpOTsXXrVoPUEBUVhalTpyrfZ2dno1u3bvD29jbI9YmIiKjh3LhxA3K5XOtxowafadOmISIiosZz2rRpo/I+ISEBzZo1Q1hYmEq7l5cXCgoKVNqq3989P+heMpkMMplM+d7HxwcAcOHChRr/xZkrhUIBb29vXLx4Ec7OzsYux6As+d4Ay74/S743wLLvz5LvDbDs+7O0exNC4MaNG2jRokWN5xk1+Li7u8Pd3V3n84UQSEhIQHh4OOzs7FSOBQYGYtasWSgrK1Me27dvH/z8/LQOc2liY1M17Ukul1vE/xC0cXZ2ttj7s+R7Ayz7/iz53gDLvj9LvjfAsu/Pku5Nlw4Ls5rc/OOPPyI7OxtvvPGG2rFXX30VUqkUo0aNwsmTJ7FlyxZ88MEHKsNYREREZN3ManLz2rVrERQUpDLnp5pcLsfevXsxceJEdO/eHW5uboiOjuZSdiIiIlIyq+Dz9ddf13j84Ycfxs8//1yn75DJZIiJiVGZ92NJLPn+LPneAMu+P0u+N8Cy78+S7w2w7Puz5HuriUTcb90XERERkYUwqzk+RERERHXB4ENERERWg8GHiIiIrAaDDxEREVkNBp//7+DBg5BIJBpfv//+u/K848eP48knn4S9vT28vb2xePFiI1atv++//x4BAQFwcHCAq6srhg4dqnL8woULGDhwIBwdHeHh4YHp06ejvLzcOMXqoXXr1mo/t7i4OJVzzP1nB1RtqtutWzdIJBKkp6erHDPX+wsLC0OrVq1gb2+P5s2bY/jw4cjNzVU5x1zvLScnB6NGjYKvry8cHBzQtm1bxMTEoLS0VOU8c72/BQsWICgoCI6OjnBxcdF4jrn+nQIAH330EVq3bg17e3sEBATgyJEjxi6pVg4dOoTBgwejRYsWkEgkSExMVDkuhEB0dDSaN28OBwcHBAcH48yZM8YptiEIEkIIUVJSIvLy8lReb7zxhvD19RWVlZVCCCGKi4uFp6eneO2110RGRobYtGmTcHBwEJ988omRq9fNN998I1xdXcXq1atFVlaWOHnypNiyZYvyeHl5uejcubMIDg4WaWlpYteuXcLNzU1ERUUZsWrd+Pj4iLlz56r8/G7evKk8bu4/u2qTJ08WAwYMEABEWlqast2c7y8+Pl6kpqaKnJwc8euvv4rAwEARGBioPG7O97Z7924REREhkpOTxblz58SOHTuEh4eHmDZtmvIcc76/6OhoER8fL6ZOnSrkcrnacXP+O2Xz5s1CKpWKdevWiZMnT4rRo0cLFxcXUVBQYOzS9LZr1y4xa9Ys8d133wkAYvv27SrH4+LihFwuF4mJieLYsWMiLCxM+Pr6in///dc4BdczBh8tSktLhbu7u5g7d66y7eOPPxaurq6ipKRE2TZz5kzh5+dnjBL1UlZWJlq2bCk+//xzrefs2rVL2NjYiPz8fGXb6tWrhbOzs8o9myIfHx+xfPlyrcfN+WdXbdeuXaJ9+/bi5MmTasHHEu6v2o4dO4REIhGlpaVCCMu6NyGEWLx4sfD19VW+t4T7S0hI0Bh8zPnvlJ49e4qJEycq31dUVIgWLVqIRYsWGbGqurs3+FRWVgovLy+xZMkSZdv169eFTCYTmzZtMkKF9Y9DXVokJSXh6tWreP3115Vtqamp6NWrF6RSqbItJCQEWVlZKCoqMkaZOvvzzz9x+fJl2NjYwN/fH82bN8eAAQOQkZGhPCc1NRVdunSBp6ensi0kJAQKhQInT540Rtl6iYuLQ7NmzeDv748lS5aodKeb888OqNpwd/To0fjyyy/h6Oiodtzc76/atWvXsHHjRgQFBSn33LOUe6tWXFyMpk2bKt9b2v3dzVz/TiktLcXRo0cRHBysbLOxsUFwcDBSU1ONWJnhZWdnIz8/X+Ve5XI5AgICLO5eqzH4aLF27VqEhITggQceULbl5+er/AcMQPk+Pz+/QevT199//w0AmDNnDmbPno2dO3fC1dUVffr0wbVr1wCY9/1NnjwZmzdvxoEDBzB27FgsXLgQM2bMUB4353sTQiAiIgLjxo1Djx49NJ5jzvcHADNnzoSTkxOaNWuGCxcuYMeOHcpj5n5vdzt79ixWrVqFsWPHKtss6f7uZa739s8//6CiokJj7aZcd21U34813Gs1iw8+kZGRWictV78yMzNVPnPp0iUkJydj1KhRRqpad7reX2VlJQBg1qxZeO6559C9e3ckJCRAIpFg27ZtRr4LzfT52U2dOhV9+vTBww8/jHHjxmHZsmVYtWoVSkpKjHwX2ul6f6tWrcKNGzcQFRVl7JJ1pu9/d9OnT0daWhr27t0LW1tbhIeHQ5jwQ+Vr8/fK5cuXERoaihdeeAGjR482UuX3V5t7IzInZrVXV21MmzYNERERNZ7Tpk0blfcJCQlo1qwZwsLCVNq9vLxQUFCg0lb93svLq+7F1oKu95eXlwcA6Nixo7JdJpOhTZs2uHDhAoCqe7h31YIx7682P7tqAQEBKC8vR05ODvz8/Mz6Z/fjjz8iNTVVbT+dHj164LXXXsOGDRtM7v70/dm5ubnBzc0NDz30EDp06ABvb28cPnwYgYGBJndvgP73l5ubi759+yIoKAiffvqpynmmdn91+e/uXqb2d4qu3NzcYGtrq/HnYsp110b1/RQUFKB58+bK9oKCAnTr1s1IVdUzY08yMjWVlZXC19dXZdVFtepJiNWTLoUQIioqyiwmIRYXFwuZTKYyubm0tFR4eHgoV49UT0S8e9XCJ598IpydncWdO3cavOa6+Oqrr4SNjY24du2aEMK8f3bnz58XJ06cUL6Sk5MFAPHNN9+IixcvCiHM+/7udf78eQFAHDhwQAhh/vd26dIl8eCDD4qXX35ZlJeXqx039/sT4v6Tm83x75SePXuKN998U/m+oqJCtGzZ0mInNy9dulTZVv37wlInNzP43OOHH34QAMTp06fVjl2/fl14enqK4cOHi4yMDLF582bh6OhoFstOhRDirbfeEi1bthTJyckiMzNTjBo1Snh4eCjDQfXS0/79+4v09HSxZ88e4e7ubvJLT1NSUsTy5ctFenq6OHfunPjqq6+Eu7u7CA8PV55j7j+7u2VnZ6ut6jLX+zt8+LBYtWqVSEtLEzk5OWL//v0iKChItG3bVvmL0VzvTYiq0NOuXTvx1FNPiUuXLqk8bqGaOd/f+fPnRVpamoiNjRWNGzcWaWlpIi0tTdy4cUMIYb5/pwhRtZxdJpOJ9evXi1OnTokxY8YIFxcXlRVq5uLGjRvKnw0AER8fL9LS0sT58+eFEFXL2V1cXMSOHTvE8ePHxZAhQ7ic3Zq88sorIigoSOvxY8eOiSeeeELIZDLRsmVLERcX14DV1U1paamYNm2a8PDwEE2aNBHBwcEiIyND5ZycnBwxYMAA4eDgINzc3MS0adNEWVmZkSrWzdGjR0VAQICQy+XC3t5edOjQQSxcuFDt/1Ga88/ubpqCjxDmeX/Hjx8Xffv2FU2bNhUymUy0bt1ajBs3Tly6dEnlPHO8NyGqekIAaHzdzVzvb8SIERrvrbq3Tgjz/Dul2qpVq0SrVq2EVCoVPXv2FIcPHzZ2SbVy4MABjT+nESNGCCGqen3ee+894enpKWQymXjqqadEVlaWcYuuRxIhTHgGIREREZEBWfyqLiIiIqJqDD5ERERkNRh8iIiIyGow+BAREZHVYPAhIiIiq8HgQ0RERFaDwYeIiIisBoMPERERWQ0GHyILk5+fj0mTJqFNmzaQyWTw9vbG4MGDsX//fuU5KSkpeOaZZ+Dq6gp7e3t06dIF8fHxqKioUJ6Tk5ODUaNGwdfXFw4ODmjbti1iYmJQWlqq8n2fffYZunbtisaNG8PFxQX+/v5YtGiR8vicOXMgkUgQGhqqVuuSJUsgkUjQp08fne9PoVBg1qxZaN++Pezt7eHl5YXg4GB89913Kju6nzx5Ei+++CLc3d0hk8nw0EMPITo6Grdv31aec+3aNUyaNAl+fn5wcHBAq1atMHnyZBQXF+tUS05OjtYdzA8fPqzzPfXp0wdTpkzR+Xwiqj2L352dyJrk5OTg8ccfh4uLC5YsWYIuXbqgrKwMycnJmDhxIjIzM7F9+3a8+OKLeP3113HgwAG4uLjghx9+wIwZM5CamoqtW7dCIpEgMzMTlZWV+OSTT9CuXTtkZGRg9OjRuHXrFpYuXQoAWLduHaZMmYKVK1eid+/eKCkpwfHjx5GRkaFSV/PmzXHgwAFcunQJDzzwgLJ93bp1aNWqlc73d/36dTzxxBMoLi7G/Pnz8eijj6JRo0b46aefMGPGDPTr1w8uLi44fPgwgoODERwcjO+//x6enp44cuQIpk2bhv379+PAgQOQSqXIzc1Fbm4uli5dio4dO+L8+fMYN24ccnNz8c033+hc1w8//IBOnTqptDVr1kznz+tCCIGKigo0asS/tonqxLg7ZhCRIQ0YMEC0bNlS3Lx5U+1YUVGRuHnzpmjWrJl49tln1Y4nJSUJAGLz5s1ar7948WLh6+urfD9kyBARERFRY00xMTGia9euYtCgQWL+/PnK9l9//VW4ubmJ8ePHi969e+twd0KMHz9eODk5icuXL6sdu3HjhigrKxOVlZWiY8eOokePHqKiokLlnPT0dCGRSGrcC2vr1q1CKpXqtJ+Utn3T7lZ9/1988YXw8fERzs7O4qWXXhIKhUIIoXm/q+zsbOX+Srt27RKPPPKIsLOzEwcOHBB37twRkyZNEu7u7kImk4nHH39cHDlyRPl91Z/buXOn6NKli5DJZCIgIECcOHFCCCHEzZs3RZMmTcS2bdtU6ty+fbtwdHRU1kVkqTjURWQhrl27hj179mDixIlwcnJSO+7i4oK9e/fi6tWreOedd9SODx48GA899BA2bdqk9TuKi4vRtGlT5XsvLy8cPnwY58+fv299I0eOxPr165Xv161bh9deew1SqfS+nwWAyspKbN68Ga+99hpatGihdrxx48Zo1KgR0tPTcerUKUydOhU2Nqp/xXXt2hXBwcH3vUdnZ2eD9qycO3cOiYmJ2LlzJ3bu3ImffvoJcXFxAIAPPvgAgYGBGD16NPLy8pCXlwdvb2/lZyMjIxEXF4fTp0/j4YcfxowZM/Dtt99iw4YN+PPPP9GuXTuEhITg2rVrKt85ffp0LFu2DL///jvc3d0xePBglJWVwcnJCS+//DISEhJUzk9ISMDzzz+PJk2aGOy+iUwRgw+RhTh79iyEEGjfvr3Wc/766y8AQIcOHTQeb9++vfIcTddftWoVxo4dq2yLiYmBi4sLWrduDT8/P0RERGDr1q2orKxU+/ygQYOgUChw6NAh3Lp1C1u3bsXIkSN1vr9//vkHRUVFNd4fcP977NChg9Z7/OeffzBv3jyMGTNG57oAICgoCI0bN1Z53a2yshLr169H586d8eSTT2L48OHKOVdyuRxSqRSOjo7w8vKCl5cXbG1tlZ+dO3cunn76abRt2xYymQyrV6/GkiVLMGDAAHTs2BGfffYZHBwcsHbtWpXvjImJwdNPP40uXbpgw4YNKCgowPbt2wEAb7zxBpKTk5GXlwcAuHLlCnbt2qXXz4PIXDH4EFkIcdfEXkOeCwCXL19GaGgoXnjhBYwePVrZ3rx5c6SmpuLEiRN46623UF5ejhEjRiA0NFQt/NjZ2WHYsGFISEjAtm3b8NBDD+Hhhx+ut5r1PV+hUGDgwIHo2LEj5syZo9dnt2zZgvT0dJXX3Vq3bq3Sk9K8eXNcuXJFp2v36NFD+c/nzp1DWVkZHn/8cWWbnZ0devbsidOnT6t8LjAwUPnPTZs2hZ+fn/Kcnj17olOnTtiwYQMA4KuvvoKPjw969eql2w0TmTEGHyIL8eCDDyonJWvz0EMPAYDaL8lqp0+fVp5TLTc3F3379kVQUBA+/fRTjZ/r3LkzJkyYgK+++gr79u3Dvn378NNPP6mdN3LkSGzbtg0fffSR3r0L7u7ucHFxqfH+gNrd440bNxAaGoomTZpg+/btsLOz06s2b29vtGvXTuV1t3uvJ5FINPaKaaJp2NIQ3njjDeXQY0JCAl5//XVIJJJ6+S4iU8LgQ2QhmjZtipCQEHz00Ue4deuW2vHr16+jf//+aNq0KZYtW6Z2PCkpCWfOnMErr7yibLt8+TL69OmD7t27IyEhQW3OjCYdO3YEAI01dOrUCZ06dUJGRgZeffVVfW4PNjY2ePnll7Fx40bk5uaqHb958ybKy8vRrVs3tG/fHsuXL1cLF8eOHcMPP/ygco8KhQL9+/eHVCpFUlIS7O3t9arLEKRSqcqjBLRp27YtpFIpfv31V2VbWVkZfv/9d+W/92p3L6cvKirCX3/9pTL8N2zYMJw/fx4rV67EqVOnMGLECAPcCZHpY/AhsiAfffQRKioq0LNnT3z77bc4c+YMTp8+jZUrVyIwMBBOTk745JNPsGPHDowZMwbHjx9HTk4O1q5di4iICDz//PN48cUXAfwXelq1aoWlS5eisLAQ+fn5yM/PV37f+PHjMW/ePPz66684f/48Dh8+jPDwcLi7u6sMtdztxx9/RF5eHlxcXPS+vwULFsDb2xsBAQH44osvcOrUKZw5cwbr1q2Dv78/bt68CYlEgrVr1+LUqVN47rnncOTIEVy4cAHbtm3D4MGDERgYqHxmTnXouXXrFtauXQuFQqG8R12CSLWrV68qP1f9unPnjs6fb926NX777Tfk5OTgn3/+0dob5OTkhPHjx2P69OnYs2cPTp06hdGjR+P27dsYNWqUyrlz587F/v37kZGRgYiICLi5uWHo0KHK466urnj22Wcxffp09O/fX+UxA0QWzahryojI4HJzc8XEiROFj4+PkEqlomXLliIsLEwcOHBAec6hQ4dESEiIcHZ2FlKpVHTq1EksXbpUlJeXK89JSEhQW2Zd/ar2zTffiGeeeUY0b95cSKVS0aJFC/Hcc8+J48ePK8+pXs6tzVtvvaXzcnYhhLh+/bqIjIwUDz74oJBKpcLT01MEBweL7du3i8rKSuV5x48fF88995xo2rSpsLOzE23bthWzZ88Wt27dUp5TvfRb0ys7O/u+tVQvZ9f02rRpk9b7X758ufDx8VG+z8rKEo899phwcHBQW85eVFSk8tl///1XTJo0Sbi5udW4nP3//u//RKdOnYRUKhU9e/YUx44dU6t///79AoDYunXrfe+VyFJIhNBzBiAREZmsgwcPom/fvigqKrpvr9qXX36Jt99+G7m5uTo/VoDI3PERoEREVub27dvIy8tDXFwcxo4dy9BDVoVzfIjIZNz7LJy7Xz///HOD1zNu3Dit9YwbN67B6zGUxYsXo3379vDy8kJUVJSxyyFqUBzqIiKTcfbsWa3HWrZsCQcHhwaspurBfgqFQuMxZ2dneHh4NGg9RFR3DD5ERERkNTjURURERFaDwYeIiIisBoMPERERWQ0GHyIiIrIaDD5ERERkNRh8iIiIyGow+BAREZHVYPAhIiIiq/H/AByAXbngZb0WAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.4 Model Validation" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfpUlEQVR4nO3deVxUVf8H8M+AgOyI7AqICyqCmjuZisoDuJWi5Zq7PRpU6s+1MrUsLE3bTG3RniezXNIyLXfEJ8UNQ8UtJRSVRdSYkUVAOL8/fLiPIwPMwKzM5/16zevF3HPm3u+9zMz9zjnnnisTQggQERERmTELQwdAREREZGhMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIyGQsWrQIMplMrboymQyLFi3SaTxhYWEICwsz2vURkfqYEBGRxr755hvIZDLpUa9ePTRq1Ajjx4/HrVu3DB2e0WnSpInS8fLw8ECPHj2wfft2ray/oKAAixYtwqFDh7SyPiJzxISIiGrs7bffxrfffos1a9agX79+2LBhA3r16oUHDx7oZHtvvvkmCgsLdbJuXWvfvj2+/fZbfPvtt5g1axYyMjIQHR2NNWvW1HrdBQUFWLx4MRMiolqoZ+gAiMh09evXD506dQIATJ48GW5ubnj//fexY8cOvPDCC1rfXr169VCvnml+bTVq1AhjxoyRno8dOxbNmzfHypUrMXXqVANGRkQAW4iISIt69OgBAEhNTVVafunSJQwbNgyurq6oX78+OnXqhB07dijVKSkpweLFi9GiRQvUr18fDRs2xDPPPIN9+/ZJdVSNISoqKsKMGTPg7u4OR0dHPPvss7h582aF2MaPH48mTZpUWK5qnevXr0efPn3g4eEBGxsbBAUFYfXq1Rodi+p4eXmhdevWSEtLq7Le7du3MWnSJHh6eqJ+/fpo164d/vWvf0nl165dg7u7OwBg8eLFUrecrsdPEdU1pvlTi4iM0rVr1wAADRo0kJadP38e3bt3R6NGjTBv3jzY29tj8+bNGDx4MH788UcMGTIEwKPEJC4uDpMnT0aXLl2gUChw6tQpnD59Gv/4xz8q3ebkyZOxYcMGjBo1Ck8//TQOHjyIAQMG1Go/Vq9ejTZt2uDZZ59FvXr18Msvv+Dll19GWVkZYmJiarXuciUlJbhx4wYaNmxYaZ3CwkKEhYXh6tWriI2NRUBAALZs2YLx48cjNzcXr732Gtzd3bF69WpMmzYNQ4YMQXR0NACgbdu2WomTyGwIIiINrV+/XgAQ+/fvFzk5OeLGjRti69atwt3dXdjY2IgbN25Idfv27StCQkLEgwcPpGVlZWXi6aefFi1atJCWtWvXTgwYMKDK7S5cuFA8/rWVnJwsAIiXX35Zqd6oUaMEALFw4UJp2bhx44S/v3+16xRCiIKCggr1IiMjRdOmTZWW9erVS/Tq1avKmIUQwt/fX0RERIicnByRk5Mjzpw5I0aMGCEAiFdeeaXS9X300UcCgNiwYYO0rLi4WISGhgoHBwehUCiEEELk5ORU2F8i0gy7zIioxsLDw+Hu7g5fX18MGzYM9vb22LFjBxo3bgwAuHfvHg4ePIgXXngB9+/fx507d3Dnzh3cvXsXkZGRuHLlinRVmouLC86fP48rV66ovf1ff/0VAPDqq68qLZ8+fXqt9svW1lb6Wy6X486dO+jVqxf++usvyOXyGq1z7969cHd3h7u7O9q1a4ctW7bgxRdfxPvvv1/pa3799Vd4eXlh5MiR0jIrKyu8+uqryMvLQ0JCQo1iIaKK2GVGRDW2atUqBAYGQi6XY926dTh8+DBsbGyk8qtXr0IIgQULFmDBggUq13H79m00atQIb7/9Np577jkEBgYiODgYUVFRePHFF6vs+rl+/TosLCzQrFkzpeUtW7as1X4dOXIECxcuRGJiIgoKCpTK5HI5nJ2dNV5n165dsWTJEshkMtjZ2aF169ZwcXGp8jXXr19HixYtYGGh/Nu1devWUjkRaQcTIiKqsS5dukhXmQ0ePBjPPPMMRo0ahcuXL8PBwQFlZWUAgFmzZiEyMlLlOpo3bw4A6NmzJ1JTU/Hzzz9j7969+Oqrr7By5UqsWbMGkydPrnWslU3oWFpaqvQ8NTUVffv2RatWrbBixQr4+vrC2toav/76K1auXCntk6bc3NwQHh5eo9cSke4xISIirbC0tERcXBx69+6Nzz77DPPmzUPTpk0BPOrmUScZcHV1xYQJEzBhwgTk5eWhZ8+eWLRoUaUJkb+/P8rKypCamqrUKnT58uUKdRs0aIDc3NwKy59sZfnll19QVFSEHTt2wM/PT1oeHx9fbfza5u/vj7Nnz6KsrEyplejSpUtSOVB5skdE6uMYIiLSmrCwMHTp0gUfffQRHjx4AA8PD4SFhWHt2rXIzMysUD8nJ0f6++7du0plDg4OaN68OYqKiirdXr9+/QAAn3zyidLyjz76qELdZs2aQS6X4+zZs9KyzMzMCrNFW1paAgCEENIyuVyO9evXVxqHrvTv3x9ZWVnYtGmTtOzhw4f49NNP4eDggF69egEA7OzsAEBlwkdE6mELERFp1ezZs/H888/jm2++wdSpU7Fq1So888wzCAkJwZQpU9C0aVNkZ2cjMTERN2/exJkzZwAAQUFBCAsLQ8eOHeHq6opTp05h69atiI2NrXRb7du3x8iRI/H5559DLpfj6aefxoEDB3D16tUKdUeMGIG5c+diyJAhePXVV1FQUIDVq1cjMDAQp0+flupFRETA2toagwYNwj//+U/k5eXhyy+/hIeHh8qkTpdeeuklrF27FuPHj0dSUhKaNGmCrVu34siRI/joo4/g6OgI4NEg8KCgIGzatAmBgYFwdXVFcHAwgoOD9RovkUkz9GVuRGR6yi+7P3nyZIWy0tJS0axZM9GsWTPx8OFDIYQQqampYuzYscLLy0tYWVmJRo0aiYEDB4qtW7dKr1uyZIno0qWLcHFxEba2tqJVq1bi3XffFcXFxVIdVZfIFxYWildffVU0bNhQ2Nvbi0GDBokbN26ovAx97969Ijg4WFhbW4uWLVuKDRs2qFznjh07RNu2bUX9+vVFkyZNxPvvvy/WrVsnAIi0tDSpniaX3Vc3pUBl68vOzhYTJkwQbm5uwtraWoSEhIj169dXeO3Ro0dFx44dhbW1NS/BJ6oBmRCPtQsTERERmSGOISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIiIjI7DEhIiIiIrPHhIiIiIjMHidmVFNZWRkyMjLg6OjIafKJiIhMhBAC9+/fh4+PT4UbJT+OCZGaMjIy4Ovra+gwiIiIqAZu3LiBxo0bV1rOhEhN5VPk37hxA05OTgaOhoiIiNShUCjg6+srnccrw4RITeXdZE5OTkyIiIiITEx1w104qJqIiIjMHhMiIiIiMntMiIiIiMjscQwREZERKy0tRUlJiaHDIDJaVlZWsLS0rPV6mBARERkhIQSysrKQm5tr6FCIjJ6Liwu8vLxqNU8gEyIiIiNUngx5eHjAzs6OE8ISqSCEQEFBAW7fvg0A8Pb2rvG6mBARERmZ0tJSKRlq2LChocMhMmq2trYAgNu3b8PDw6PG3WccVE1EZGTKxwzZ2dkZOBIi01D+WanNeDsmRERERordZETq0cZnhQkRERERmT0mRERERFTBoUOHIJPJan2lY5MmTfDRRx9pJSZdYkJUR2TKC3E09Q4y5YWGDoWIzFxWVhZeeeUVNG3aFDY2NvD19cWgQYNw4MABqc7Ro0fRv39/NGjQAPXr10dISAhWrFiB0tJSqc61a9cwadIkBAQEwNbWFs2aNcPChQtRXFystL0vv/wS7dq1g4ODA1xcXPDUU08hLi5OKl+0aBFkMhmioqIqxLps2TLIZDKEhYWpvX8KhQJvvPEGWrVqhfr168PLywvh4eHYtm0bhBBSvfPnz+OFF16Au7s7bGxsEBgYiLfeegsFBQVSnXv37uGVV15By5YtYWtrCz8/P7z66quQy+VqxXLt2jXIZDKVj2PHjqm9T2FhYZg+fbra9esiXmVWB2w6mY75286hTAAWMiAuOgTDO/sZOiwiMkPXrl1D9+7d4eLigmXLliEkJAQlJSXYs2cPYmJicOnSJWzfvh0vvPACJkyYgPj4eLi4uGD//v2YM2cOEhMTsXnzZshkMly6dAllZWVYu3YtmjdvjpSUFEyZMgX5+flYvnw5AGDdunWYPn06PvnkE/Tq1QtFRUU4e/YsUlJSlOLy9vZGfHw8bt68icaNG0vL161bBz8/9b8vc3Nz8cwzz0Aul2PJkiXo3Lkz6tWrh4SEBMyZMwd9+vSBi4sLjh07hvDwcISHh2PXrl3w9PTEiRMn8H//9384cOAA4uPjYW1tjYyMDGRkZGD58uUICgrC9evXMXXqVGRkZGDr1q1qx7V//360adNGaRmvUNSQMKDPP/9chISECEdHR+Ho6Ci6desmfv31V6m8sLBQvPzyy8LV1VXY29uL6OhokZWVpbSO69evi/79+wtbW1vh7u4uZs2aJUpKSpTqxMfHi6eeekpYW1uLZs2aifXr12scq1wuFwCEXC6v0b7qSkZugQiYt1P4z/3fo+m8XSIjt8DQoRFRDRUWFooLFy6IwsJCQ4eisX79+olGjRqJvLy8CmV///23yMvLEw0bNhTR0dEVynfs2CEAiB9++KHS9X/wwQciICBAev7cc8+J8ePHVxnTwoULRbt27cTAgQPFkiVLpOVHjhwRbm5uYtq0aaJXr15q7J0Q06ZNE/b29uLWrVsVyu7fvy9KSkpEWVmZCAoKEp06dRKlpaVKdZKTk4VMJhNLly6tdBubN28W1tbWFc5lqqSlpQkA4o8//qi0Tvn+//vf/xb+/v7CyclJDB8+XCgUCiGEEOPGjRMAlB5paWkiPj5eABD79+8XHTt2FLa2tiI0NFRcunRJWvfVq1fFs88+Kzw8PIS9vb3o1KmT2Ldvn9L2/f39xcqVK6XnAMTnn38uoqKiRP369UVAQIDYsmWLVN67d28RExOjtI7bt28LKysrsX//fpX7WNVnRt3zt0G7zBo3boylS5ciKSkJp06dQp8+ffDcc8/h/PnzAIAZM2bgl19+wZYtW5CQkICMjAxER0dLry8tLcWAAQNQXFyMo0eP4l//+he++eYbvPXWW1KdtLQ0DBgwAL1790ZycjKmT5+OyZMnY8+ePXrfX11Iu5OPMqG8rFQIXLtToPoFRGRW9Nmdfu/ePezevRsxMTGwt7evUO7i4oK9e/fi7t27mDVrVoXyQYMGITAwEN9//32l25DL5XB1dZWee3l54dixY7h+/Xq18U2cOBHffPON9HzdunUYPXo0rK2tq30tAJSVleGHH37A6NGj4ePjU6HcwcEB9erVQ3JyMi5cuICZM2fCwkL5NNuuXTuEh4dXu49OTk6oV097nTipqan46aefsHPnTuzcuRMJCQlYunQpAODjjz9GaGgopkyZgszMTGRmZsLX11d67RtvvIEPP/wQp06dQr169TBx4kSpLC8vD/3798eBAwfwxx9/ICoqCoMGDUJ6enqV8SxYsABDhw7FmTNnMHr0aIwYMQIXL14EAEyePBkbN25EUVGRVH/Dhg1o1KgR+vTpo7VjUkGV6ZIBNGjQQHz11VciNzdXWFlZKWWNFy9eFABEYmKiEEKIX3/9VVhYWCi1Gq1evVo4OTmJoqIiIYQQc+bMEW3atFHaxvDhw0VkZKRGcbGFiIj0RVstRD+cuC59PwTM2yl+OHFdSxGqdvz4cQFAbNu2rdI6S5cuFQDE33//rbL82WefFa1bt1ZZduXKFeHk5CS++OILaVlGRobo1q2bACACAwPFuHHjxKZNm5RaZspbSIqLi4WHh4dISEgQeXl5wtHRUZw5c0a89tprarUQZWdnCwBixYoVVdb74Ycfqmy1efXVV4Wtra3KspycHOHn5ydef/31auMR4n8tRLa2tsLe3l7pUW7hwoXCzs5OahESQojZs2eLrl27Ss979eolXnvtNaV1P95CVG7Xrl0CQJXvzTZt2ohPP/1Ueq6qhWjq1KlKr+natauYNm2aEOLR+79BgwZi06ZNUnnbtm3FokWLKt2mybcQPa60tBQ//PAD8vPzERoaiqSkJJSUlCA8PFyq06pVK/j5+SExMREAkJiYiJCQEHh6ekp1IiMjoVAopFamxMREpXWU1ylfR2WKioqgUCiUHsbI29kWcdEhsPzvHAyWMhneiw6Gt7OtgSMjIkPKlBdKYwsBoEwAr29L0WlLkRCi+ko1qAsAt27dQlRUFJ5//nlMmTJFWu7t7Y3ExEScO3cOr732Gh4+fIhx48YhKioKZWVlSuuwsrLCmDFjsH79emzZsgWBgYFo27atzmLWtL5CocCAAQMQFBSERYsWafTaTZs2ITk5WenxuCZNmsDR0VF67u3tLd3uojqPH6PyW2OUvzYvLw+zZs1C69at4eLiAgcHB1y8eLHaFqLQ0NAKz8tbiOrXr48XX3wR69atAwCcPn0aKSkpGD9+vFrx1pTBB1WfO3cOoaGhePDgARwcHLB9+3YEBQUhOTkZ1tbWcHFxUarv6emJrKwsAI+uZHg8GSovLy+rqo5CoUBhYaE05feT4uLisHjxYm3sos4N7+yHnoHuuHanAE3c7JgMEVGV3em6+o5o0aKFNBi6MoGBgQCAixcv4umnn65QfvHiRQQFBSkty8jIQO/evfH000/jiy++ULne4OBgBAcH4+WXX8bUqVPRo0cPJCQkoHfv3kr1Jk6ciK5duyIlJUWp60cd7u7ucHFxqXL/AOV9fOqppyqUX7x4UapT7v79+4iKioKjoyO2b98OKysrjWLz9fVF8+bNKy1/cn0ymaxCwqjOa8snQCx/7axZs7Bv3z4sX74czZs3h62tLYYNG1bhSkBNTZ48Ge3bt8fNmzexfv169OnTB/7+/rVaZ3UM3kLUsmVLJCcn4/jx45g2bRrGjRuHCxcuGDoszJ8/H3K5XHrcuHHD0CFVydvZFqHNGjIZIiIAQICbPSyemLzXUiZDEzfd3Q7E1dUVkZGRWLVqFfLz8yuU5+bmIiIiAq6urvjwww8rlO/YsQNXrlzByJEjpWW3bt1CWFgYOnbsiPXr11cYk6NKeUKlKoY2bdqgTZs2SElJwahRozTZPVhYWGDEiBH47rvvkJGRUaE8Ly8PDx8+RPv27dGqVSusXLmyQtJx5swZ7N+/X2kfFQoFIiIiYG1tjR07dqB+/foaxaUN1tbWSlMeqOvIkSMYP348hgwZgpCQEHh5eeHatWvVvu7JKQGOHTuG1q1bS89DQkLQqVMnfPnll9i4caPGyWtNGDwhsra2RvPmzdGxY0fExcWhXbt2+Pjjj+Hl5YXi4uIKE0JlZ2fDy8sLwKPBdNnZ2RXKy8uqquPk5FRp6xAA2NjYwMnJSelBRGQqDNWdvmrVKpSWlqJLly748ccfceXKFVy8eBGffPIJQkNDYW9vj7Vr1+Lnn3/GSy+9hLNnz+LatWv4+uuvMX78eAwbNgwvvPACgP8lQ35+fli+fDlycnKQlZUl9QAAwLRp0/DOO+/gyJEjuH79Oo4dO4axY8fC3d29QrdMuYMHDyIzM7NCD4Q63n33Xfj6+qJr167497//jQsXLuDKlStYt24dnnrqKeTl5UEmk+Hrr7/GhQsXMHToUJw4cQLp6enYsmULBg0ahNDQUGnOn/JkKD8/H19//TUUCoW0j5okKHfv3pVeV/548OCB2q9v0qQJjh8/jmvXruHOnTtqtx61aNEC27ZtQ3JyMs6cOYNRo0ap9dotW7Zg3bp1+PPPP7Fw4UKcOHECsbGxSnUmT56MpUuXQgiBIUOGqL0vNVblCCMD6N27txg3bpw0qHrr1q1S2aVLl1QOqs7OzpbqrF27Vjg5OYkHDx4IIR4Nqg4ODlbaxsiRI+vMoGoiqnu0edl9Rm6BOHr1jl4vtMjIyBAxMTHC399fWFtbi0aNGolnn31WxMfHS3UOHz4sIiMjhZOTk7C2thZt2rQRy5cvFw8fPpTqrF+/vsLl4OWPclu3bhX9+/cX3t7ewtraWvj4+IihQ4eKs2fPSnXKB1VXRt1B1eVyc3PFvHnzRIsWLYS1tbXw9PQU4eHhYvv27aKsrEyqd/bsWTF06FDh6uoqrKysRLNmzcSbb74p8vPzpTrlA5dVPdLS0qqNpXxQtarH999/X+n+r1y5Uvj7+0vPL1++LLp16yZsbW0rXHb/+AD4P/74Qym2tLQ00bt3b2Frayt8fX3FZ599VmGAtqpB1atWrRL/+Mc/hI2NjWjSpInSAOpy9+/fF3Z2duLll1+u9jhoY1C1QROiefPmiYSEBJGWlibOnj0r5s2bJ2Qymdi7d68QQoipU6cKPz8/cfDgQXHq1CkRGhoqQkNDpdc/fPhQBAcHi4iICJGcnCx2794t3N3dxfz586U6f/31l7CzsxOzZ88WFy9eFKtWrRKWlpZi9+7dGsXKhIiI9MWU5yEiqg4AsX379mrrpaWlCQsLC5GUlFRtXW0kRAYdVH379m2MHTsWmZmZcHZ2Rtu2bbFnzx784x//AACsXLkSFhYWGDp0KIqKihAZGYnPP/9cer2lpSV27tyJadOmSU2x48aNw9tvvy3VCQgIwK5duzBjxgx8/PHHaNy4Mb766itERkbqfX+JiIioaiUlJbh79y7efPNNdOvWDR06dNDLdmX/zdaoGgqFAs7OztKEWUREuvLgwQOkpaUhICDAIANszZmDg0OlZb/99ht69Oihx2iAqVOnYsOGDSrLxowZgzVr1ug1Hm2QyWTYvn07Bg8erLL80KFD6N27NwIDA7F161aEhIRUu86qPjPqnr8Nftk9ERGRsXhy/p7HNWrUSH+B/Nfbb7+tclZvACb747y6dpiwsDCN53DSBiZERERE/1XVXD6G4OHhAQ8PD0OHYRYMftk9ERERkaExISIiMlLqzgVDZO608VlhlxkRkZGxtraGhYUFMjIy4O7uDmtra+mWCUT0P0IIFBcXIycnBxYWFrC2tq7xupgQEREZGQsLCwQEBCAzM1PlLSKISJmdnR38/PzUurVLZZgQEREZIWtra/j5+eHhw4c1uscUkbmwtLREvXr1at2KyoSIiMhIyWQyWFlZaXzncyLSHAdVExERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9gyaEMXFxaFz585wdHSEh4cHBg8ejMuXLyvVCQsLg0wmU3pMnTpVqU56ejoGDBgAOzs7eHh4YPbs2Xj48KFSnUOHDqFDhw6wsbFB8+bN8c033+h694iIiMhEGDQhSkhIQExMDI4dO4Z9+/ahpKQEERERyM/PV6o3ZcoUZGZmSo8PPvhAKistLcWAAQNQXFyMo0eP4l//+he++eYbvPXWW1KdtLQ0DBgwAL1790ZycjKmT5+OyZMnY8+ePXrbVyIiIjJeMiGEMHQQ5XJycuDh4YGEhAT07NkTwKMWovbt2+Ojjz5S+ZrffvsNAwcOREZGBjw9PQEAa9aswdy5c5GTkwNra2vMnTsXu3btQkpKivS6ESNGIDc3F7t371YrNoVCAWdnZ8jlcjg5OdVuR4mIiEgv1D1/G9UYIrlcDgBwdXVVWv7dd9/Bzc0NwcHBmD9/PgoKCqSyxMREhISESMkQAERGRkKhUOD8+fNSnfDwcKV1RkZGIjExUVe7QkRERCaknqEDKFdWVobp06eje/fuCA4OlpaPGjUK/v7+8PHxwdmzZzF37lxcvnwZ27ZtAwBkZWUpJUMApOdZWVlV1lEoFCgsLIStrW2FeIqKilBUVCQ9VygU2tlRIiIiMjpGkxDFxMQgJSUFv//+u9Lyl156Sfo7JCQE3t7e6Nu3L1JTU9GsWTOdxRMXF4fFixfrbP1ERERkPIyiyyw2NhY7d+5EfHw8GjduXGXdrl27AgCuXr0KAPDy8kJ2drZSnfLnXl5eVdZxcnJS2ToEAPPnz4dcLpceN27c0HzHiIiIyCQYNCESQiA2Nhbbt2/HwYMHERAQUO1rkpOTAQDe3t4AgNDQUJw7dw63b9+W6uzbtw9OTk4ICgqS6hw4cEBpPfv27UNoaGil27GxsYGTk5PSg4iIiOomgyZEMTEx2LBhAzZu3AhHR0dkZWUhKysLhYWFAIDU1FS88847SEpKwrVr17Bjxw6MHTsWPXv2RNu2bQEAERERCAoKwosvvogzZ85gz549ePPNNxETEwMbGxsAwNSpU/HXX39hzpw5uHTpEj7//HNs3rwZM2bMMNi+ExERkfEw6GX3MplM5fL169dj/PjxuHHjBsaMGYOUlBTk5+fD19cXQ4YMwZtvvqnUYnP9+nVMmzYNhw4dgr29PcaNG4elS5eiXr3/DZE6dOgQZsyYgQsXLqBx48ZYsGABxo8fr3asvOyeiIjI9Kh7/jaqeYiMGRMiIiIi02OS8xARERERGQITIiIiIjJ7TIiIiIjI7DEhIiIiIrPHhIiIiIjMHhMiIiIiMntMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIiIjI7DEhIiIiIrPHhIiIiIjMHhMiIiIiMntMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIiIjI7DEhIiIiIrNXo4QoPj5e23EQERERGUyNEqKoqCg0a9YMS5YswY0bN7QdExEREZFe1SghunXrFmJjY7F161Y0bdoUkZGR2Lx5M4qLi7UdHxEREZHO1SghcnNzw4wZM5CcnIzjx48jMDAQL7/8Mnx8fPDqq6/izJkz2o6TiIiISGdqPai6Q4cOmD9/PmJjY5GXl4d169ahY8eO6NGjB86fP6+NGImIiIh0qsYJUUlJCbZu3Yr+/fvD398fe/bswWeffYbs7GxcvXoV/v7+eP7557UZKxEREZFOyIQQQtMXvfLKK/j+++8hhMCLL76IyZMnIzg4WKlOVlYWfHx8UFZWprVgDUmhUMDZ2RlyuRxOTk6GDoeIiIjUoO75u15NVn7hwgV8+umniI6Oho2Njco6bm5uvDyfiIiITEKNWojMEVuIiIiITI9OW4gA4PLly/j0009x8eJFAEDr1q3xyiuvoGXLljVdJREREZFB1GhQ9Y8//ojg4GAkJSWhXbt2aNeuHU6fPo3g4GD8+OOP2o6RiIiISKdq1GXWrFkzjB49Gm+//bbS8oULF2LDhg1ITU3VWoDGgl1mREREpkfd83eNWogyMzMxduzYCsvHjBmDzMzMmqySiIiIyGBqlBCFhYXhP//5T4Xlv//+O3r06FHroIiIiIj0qUaDqp999lnMnTsXSUlJ6NatGwDg2LFj2LJlCxYvXowdO3Yo1SUiIiIyZjUaQ2RhoV7DkkwmQ2lpqcZBGSOOISIiIjI9Or3svq7MPk1EREQEaOHmrrURFxeHzp07w9HRER4eHhg8eDAuX76sVOfBgweIiYlBw4YN4eDggKFDhyI7O1upTnp6OgYMGAA7Ozt4eHhg9uzZePjwoVKdQ4cOoUOHDrCxsUHz5s3xzTff6Hr3iIiIyESo3UL0ySefqL3SV199Va16CQkJiImJQefOnfHw4UO8/vrriIiIwIULF2Bvbw8AmDFjBnbt2oUtW7bA2dkZsbGxiI6OxpEjRwAApaWlGDBgALy8vHD06FHpCjgrKyu89957AIC0tDQMGDAAU6dOxXfffYcDBw5g8uTJ8Pb2RmRkpNr7RURERHWT2mOIAgIC1FuhTIa//vqrRsHk5OTAw8MDCQkJ6NmzJ+RyOdzd3bFx40YMGzYMAHDp0iW0bt0aiYmJ6NatG3777TcMHDgQGRkZ8PT0BACsWbMGc+fORU5ODqytrTF37lzs2rULKSkp0rZGjBiB3Nxc7N69W63YOIaIiIjI9Gh9DFFaWppWAquKXC4HALi6ugIAkpKSUFJSgvDwcKlOq1at4OfnJyVEiYmJCAkJkZIhAIiMjMS0adNw/vx5PPXUU0hMTFRaR3md6dOnVxpLUVERioqKpOcKhUIbu0hERERGyKBjiB5XVlaG6dOno3v37ggODgYAZGVlwdraGi4uLkp1PT09kZWVJdV5PBkqLy8vq6qOQqFAYWGhynji4uLg7OwsPXx9fWu9j0RERGScanxz15s3b2LHjh1IT09HcXGxUtmKFSs0Xl9MTAxSUlLw+++/1zQkrZo/fz5mzpwpPVcoFEyKiIiI6qgaJUQHDhzAs88+i6ZNm+LSpUsIDg7GtWvXIIRAhw4dNF5fbGwsdu7cicOHD6Nx48bSci8vLxQXFyM3N1eplSg7OxteXl5SnRMnTiitr/wqtMfrPHllWnZ2NpycnGBra6syJhsbG9jY2Gi8L0RERGR6atRlNn/+fMyaNQvnzp1D/fr18eOPP+LGjRvo1asXnn/+ebXXI4RAbGwstm/fjoMHD1YYuN2xY0dYWVnhwIED0rLLly8jPT0doaGhAIDQ0FCcO3cOt2/flurs27cPTk5OCAoKkuo8vo7yOuXrICIiIjMnasDBwUFcvXpVCCGEi4uLSElJEUIIkZycLPz9/dVez7Rp04Szs7M4dOiQyMzMlB4FBQVSnalTpwo/Pz9x8OBBcerUKREaGipCQ0Ol8ocPH4rg4GAREREhkpOTxe7du4W7u7uYP3++VOevv/4SdnZ2Yvbs2eLixYti1apVwtLSUuzevVvtWOVyuQAg5HK52q8hIiIiw1L3/F2jFiJ7e3tp3JC3tzdSU1Olsjt37qi9ntWrV0MulyMsLAze3t7SY9OmTVKdlStXYuDAgRg6dCh69uwJLy8vbNu2TSq3tLTEzp07YWlpidDQUIwZMwZjx47F22+/LdUJCAjArl27sG/fPrRr1w4ffvghvvrqK85BRERERABqeC+zwYMHY8CAAZgyZQpmzZqFn3/+GePHj8e2bdvQoEED7N+/XxexGhTnISIiIjI9Or2X2YoVK5CXlwcAWLx4MfLy8rBp0ya0aNGiRleYERERERlSjVqIzBFbiIiIiEyPTluIyhUXF+P27dsoKytTWu7n51eb1RIRERHpVY0Soj///BOTJk3C0aNHlZYLISCTyVBaWqqV4IiIiIj0oUYJ0YQJE1CvXj3s3LkT3t7ekMlk2o6LiIiISG9qlBAlJycjKSkJrVq10nY8RERERHpXo3mIgoKCNJpviIiIiMiYqZ0QKRQK6fH+++9jzpw5OHToEO7evatUplAodBkvERERkdap3WXm4uKiNFZICIG+ffsq1eGgaiIiIjJFaidE8fHxuoyDiIiIyGDUToh69eol/Z2eng5fX98KV5cJIXDjxg3tRUdERESkBzUaVB0QEICcnJwKy+/du4eAgIBaB0VERESkTzVKiMrHCj0pLy8P9evXr3VQRERERPqk0TxEM2fOBADIZDIsWLAAdnZ2UllpaSmOHz+O9u3bazVAIiIiIl3TKCH6448/ADxqITp37hysra2lMmtra7Rr1w6zZs3SboREREREOqZRQlR+pdmECRPw8ccf867vREREVCfU6NYd69ev13YcRERERAZTo4QoPz8fS5cuxYEDB3D79m2UlZUplf/1119aCY6IiIhIH2qUEE2ePBkJCQl48cUXebd7IiIiMnk1Soh+++037Nq1C927d9d2PERERER6V6N5iBo0aABXV1dtx0JERERkEDVKiN555x289dZbKCgo0HY8RERERHpXoy6zDz/8EKmpqfD09ESTJk1gZWWlVH769GmtBEdERESkDzVKiAYPHqzlMIiIiIgMRyaEEIYOwhQoFAo4OztDLpdzQkoiIiIToe75W6MxRCdOnEBpaWml5UVFRdi8ebMmqyQiIiIyOI0SotDQUNy9e1d67uTkpDQJY25uLkaOHKm96IiIiIj0QKOE6MneNVW9beyBIyIiIlNTo8vuq8JZq4mIiMjUaD0hIiIiIjI1Gl92f+HCBWRlZQF41D126dIl5OXlAQDu3Lmj3eiIiIiI9ECjy+4tLCwgk8lUjhMqXy6Tyaq8Es1U8bJ7IiIi06Pu+VujFqK0tLRaB0ZERERkbDRKiPz9/TVa+csvv4y3334bbm5uGr2OiIiISJ90Oqh6w4YNUCgUutwEERERUa3pNCHinERERERkCnjZPREREZk9JkRERERk9pgQERERkdljQkRERERmT6cJ0ZgxYziJIRERERm9GiVEZWVllS5PT0+Xnq9evZpzEBEREZHR0yghUigUeOGFF2Bvbw9PT0+89dZbSrfpyMnJQUBAgNaDJCIiItIljWaqXrBgAc6cOYNvv/0Wubm5WLJkCU6fPo1t27bB2toaAOceIiIiItOjUQvRTz/9hLVr12LYsGGYPHkyTp06hZycHAwaNAhFRUUAHt3kVV2HDx/GoEGD4OPjA5lMhp9++kmpfPz48ZDJZEqPqKgopTr37t3D6NGj4eTkBBcXF0yaNAl5eXlKdc6ePYsePXqgfv368PX1xQcffKDJbhMREVEdp1FClJOTo3Q/Mzc3N+zfvx/3799H//79UVBQoNHG8/Pz0a5dO6xatarSOlFRUcjMzJQe33//vVL56NGjcf78eezbtw87d+7E4cOH8dJLL0nlCoUCERER8Pf3R1JSEpYtW4ZFixbhiy++0ChWIiIiqrs06jLz8/PDxYsXlcYJOTo6Yu/evYiIiMCQIUM02ni/fv3Qr1+/KuvY2NjAy8tLZdnFixexe/dunDx5Ep06dQIAfPrpp+jfvz+WL18OHx8ffPfddyguLsa6detgbW2NNm3aIDk5GStWrFBKnIiIiMh8adRCFBERgfXr11dY7uDggD179qB+/fpaC6zcoUOH4OHhgZYtW2LatGm4e/euVJaYmAgXFxcpGQKA8PBwWFhY4Pjx41Kdnj17SmOcACAyMhKXL1/G33//rfV4iYiIyPRo1EK0ePFiZGRkqCxzdHTEvn37cPr0aa0EBjzqLouOjkZAQABSU1Px+uuvo1+/fkhMTISlpSWysrLg4eGh9Jp69erB1dUVWVlZAICsrKwKV755enpKZQ0aNFC57aKiImlcFPCo642IiIjqJo0SogYNGlSaQACPkqJevXrVOqhyI0aMkP4OCQlB27Zt0axZMxw6dAh9+/bV2nZUiYuLw+LFi3W6DSIiIjIOGk/M+PDhQyxbtgwdOnSAg4MDHBwc0KFDByxfvhwlJSW6iFHStGlTuLm54erVqwAALy8v3L59u0J89+7dk8YdeXl5ITs7W6lO+fPKxiYBwPz58yGXy6XHjRs3tLkrREREZEQ0SogKCwsRFhaGefPmwd3dHZMnT8bkyZPh7u6OuXPnom/fvnjw4IGuYsXNmzdx9+5deHt7AwBCQ0ORm5uLpKQkqc7BgwdRVlaGrl27SnUOHz6slKzt27cPLVu2rLK1y8bGBk5OTkoPIiIiqps06jJbunQpbty4gT/++ANt27ZVKjtz5gyeffZZLF26FIsWLVJrfXl5eVJrDwCkpaUhOTkZrq6ucHV1xeLFizF06FB4eXkhNTUVc+bMQfPmzREZGQkAaN26NaKiojBlyhSsWbMGJSUliI2NxYgRI+Dj4wMAGDVqFBYvXoxJkyZh7ty5SElJwccff4yVK1dqsutERERUlwkNBAYGiq1bt1ZavnnzZtGiRQu11xcfHy8AVHiMGzdOFBQUiIiICOHu7i6srKyEv7+/mDJlisjKylJax927d8XIkSOFg4ODcHJyEhMmTBD3799XqnPmzBnxzDPPCBsbG9GoUSOxdOlSTXZbCCGEXC4XAIRcLtf4tURERGQY6p6/ZUKof6+N+vXr48qVK/D19VVZfuPGDbRo0UKn3WaGolAo4OzsDLlczu4zIiIiE6Hu+VujMUROTk4VBjE/LisrC46OjpqskoiIiMjgNEqIevfujffee6/S8qVLl6J37961DoqIiIhInzQaVL1w4UJ07doV3bp1w8yZM9GqVSsIIXDx4kWsXLkSFy5cwLFjx3QVKxEREZFOaJQQBQUFYd++fZg0aRJGjBgh3dleCIFWrVph7969aNOmjU4CJSIiItIVjRIiAOjWrRvOnz+P5ORk/PnnnwCAwMBAtG/fXtuxEREREemFxgmRQqGAg4MD2rdvr5QElZWVIS8vj1dgERERkcnRaFD19u3b0alTJ5WX1RcWFqJz58745ZdftBYcERERkT5olBCtXr0ac+bMgZ2dXYUye3t7zJ07F5999pnWgiMiIiLSB40SopSUFISFhVVa3rNnT5w7d662MRERERHplUYJ0d9//42HDx9WWl5SUoK///671kERERER6ZNGCVGTJk1w6tSpSstPnToFf3//WgdFREREpE8aJUTR0dF44403kJ2dXaEsKysLb775JoYOHaq14IiIiIj0QaObu96/fx+hoaFIT0/HmDFj0LJlSwDApUuX8N1338HX1xfHjh2rk/cz481diYiITI+652+N5iFydHTEkSNHMH/+fGzatEkaL+Ti4oIxY8bg3XffrZPJEBEREdVtGrUQPU4IgTt37kAIAXd3d+k2Ho87cuQIOnXqBBsbm1oHamhsISIiIjI96p6/NRpD9DiZTAZ3d3d4eHioTIYAoF+/frh161ZNN0FERERmIFNeiKOpd5ApLzRYDBrfukMTNWx8IiIiIjOx6WQ65m87hzIBWMiAuOgQDO/sp/c4atxCRERERFQbmfJCKRkCgDIBvL4txSAtRUyIiIiIyCDS7uRLyVC5UiFw7U6B3mNhQkREREQGEeBmD4snhiFbymRo4lbxnqm6ptOEqLLB1kRERETezraIiw6B5X/zBUuZDO9FB8Pb2VbvsXBQNRERERnM8M5+6Bnojmt3CtDEzc4gyRCg44To/v37ulw9ERER1QHezrYGS4TKaZQQ9enTR616Bw8erFEwRERERIagUUJ06NAh+Pv7Y8CAAbCystJVTERERER6pVFC9P7772P9+vXYsmULRo8ejYkTJyI4OFhXsRERERHphUZXmc2ePRsXLlzATz/9hPv376N79+7o0qUL1qxZA4VCoasYiYiIiHSqxjd3BYCCggJs2bIFq1atwoULF5CRkVFnb3zKm7sSERGZHp3f3BUATp8+jYSEBFy8eBHBwcEcV0REREQmSeOEKCMjA++99x4CAwMxbNgwuLq64vjx4zh27BhsbQ17yRwRERFRTWg0qLp///6Ij49HREQEli1bhgEDBqBePZ1OZURERESkcxqNIbKwsIC3tzc8PDyqvC3H6dOntRKcMeEYIiIiItOj7vlbo+adhQsX1jowIiIiImNTq6vMzAlbiIgMJ1NeiLQ7+Qhwszf49P5EZFp00kJUmYSEBOTn5yM0NBQNGjTQxiqJiAAAm06mY/62cygTgIUMiIsOwfDOfoYOi4jqGI2uMnv//fexYMEC6bkQAlFRUejduzcGDhyI1q1b4/z581oPkojMU6a8UEqGAKBMAK9vS0GmvNCwgRFRnaNRQrRp0yalW3Vs3boVhw8fxn/+8x/cuXMHnTp1wuLFi7UeJFFdlikvxNHUOzzJq5B2J19KhsqVCoFrdwoMExAR1VkadZmlpaWhbdu20vNff/0Vw4YNQ/fu3QEAb775Jp5//nntRkhUh7E7qGoBbvawkEEpKbKUydDEzc5wQRFRnaRRC9HDhw9hY2MjPU9MTMTTTz8tPffx8cGdO3e0Fx1RHcbuoOp5O9siLjoElv+d5sNSJsN70cEcWE1EWqdRC1GzZs1w+PBhNG3aFOnp6fjzzz/Rs2dPqfzmzZto2LCh1oMkqouq6g7iCf9/hnf2Q89Ad1y7U4AmbnY8NkSkExolRDExMYiNjcV//vMfHDt2DKGhoQgKCpLKDx48iKeeekrrQRLVRewOUp+3sy0TISLSKY26zKZMmYJPPvkE9+7dQ8+ePfHjjz8qlWdkZGDixIlaDZCormJ3EBGR8eDEjGrixIykK5nyQnYHERHpiF4nZiSimmN3EBGR4WnUZVZSUoI5c+agefPm6NKlC9atW6dUnp2dDUtLS60GSERERKRrGiVE7777Lv79739j6tSpiIiIwMyZM/HPf/5TqY4mPXCHDx/GoEGD4OPjA5lMhp9++qnCut566y14e3vD1tYW4eHhuHLlilKde/fuYfTo0XBycoKLiwsmTZqEvLw8pTpnz55Fjx49UL9+ffj6+uKDDz7QZLeJiIiojtMoIfruu+/w1VdfYdasWViyZAlOnTqFgwcPYsKECVIiJPvvAFF15Ofno127dli1apXK8g8++ACffPIJ1qxZg+PHj8Pe3h6RkZF48OCBVGf06NE4f/489u3bh507d+Lw4cN46aWXpHKFQoGIiAj4+/sjKSkJy5Ytw6JFi/DFF19osutERERUlwkN2NrairS0NKVlN2/eFIGBgWL06NHi1q1bwsLCQpNVSgCI7du3S8/LysqEl5eXWLZsmbQsNzdX2NjYiO+//14IIcSFCxcEAHHy5Empzm+//SZkMpm4deuWEEKIzz//XDRo0EAUFRVJdebOnStatmypUXxyuVwAEHK5vCa7R0RERAag7vlboxYiLy8vpKamKi1r1KgR4uPjcfLkSYwfP15beRrS0tKQlZWF8PBwaZmzszO6du2KxMREAI9mynZxcUGnTp2kOuHh4bCwsMDx48elOj179oS1tbVUJzIyEpcvX8bff/9d6faLioqgUCiUHkRERFQ3aZQQ9enTBxs3bqyw3MfHBwcPHkRaWprWAsvKygIAeHp6Ki339PSUyrKysuDh4aFUXq9ePbi6uirVUbWOx7ehSlxcHJydnaWHr69v7XaIiIiIjJZGCdGCBQvwwgsvqCxr1KgREhISKlx5Zqrmz58PuVwuPW7cuGHokIiIiEhHNJqHyN/fH/7+/pWW+/j4YNy4cbUOCnjUPQc8upTf29tbWp6dnY327dtLdW7fvq30uocPH+LevXvS6728vJCdna1Up/x5eR1VbGxslG5kS0RERHWXRi1E5bZs2YLo6GgEBwcjODgY0dHR2Lp1q1YDCwgIgJeXFw4cOCAtUygUOH78OEJDQwEAoaGhyM3NRVJSklTn4MGDKCsrQ9euXaU6hw8fRklJiVRn3759aNmyJRo0aKDVmImIiMg0aZQQlZWVYfjw4Rg+fDguXLiA5s2bo3nz5jh//jyGDx+OESNGaDQPUV5eHpKTk5GcnAzg0UDq5ORkpKenQyaTYfr06ViyZAl27NiBc+fOYezYsfDx8cHgwYMBAK1bt0ZUVBSmTJmCEydO4MiRI4iNjcWIESPg4+MDABg1ahSsra0xadIknD9/Hps2bcLHH3+MmTNnarLrepUpL8TR1DvIlBcaOhS9Mtf9JiIiI6DJpWsrVqwQrq6u4pdffqlQ9vPPPwtXV1excuVKtdcXHx8vAFR4jBs3Tgjx6NL7BQsWCE9PT2FjYyP69u0rLl++rLSOu3fvipEjRwoHBwfh5OQkJkyYIO7fv69U58yZM+KZZ54RNjY2olGjRmLp0qWa7LYQQn+X3f9w4roImLdT+M/dKQLm7RQ/nLiu0+0ZC3PdbyIi0i11z98a3dy1bdu2mD59eqV3tP/666/x8ccf4+zZs7XP1IyMPm7umikvRPelB1H22H/EUibD7/N61+l7XZnrfhMRke6pe/7WqMvsypUrSvMCPUnVrTVIfWl38pWSAgAoFQLX7hQYJiA9Mdf9JiIi46FRQmRra4vc3NxKyxUKBerXr1/bmMxWgJs9LJ6484mlTIYmbnaGCUhPzHW/iYjIeGiUEIWGhmL16tWVlq9atUq6Aow05+1si7joEFj+935wljIZ3osOrvPdRua630REZDw0mofojTfeQFhYGO7evYtZs2ahVatWEELg4sWL+PDDD/Hzzz8jPj5eV7GaheGd/dAz0B3X7hSgiZud2SQF5rrfRERkHDQaVA0A27dvx0svvYR79+4pLW/QoAHWrl2LoUOHajVAY6GPQdVERESkXeqevzVOiACgoKAAe/bskQZQBwYGIiIiAnZ2dXfMBxMiIiIi06Pu+VujLrODBw8iNjYWx44dw5AhQ5TK5HI52rRpgzVr1qBHjx41i5qIiIjIADQaVP3RRx9hypQpKjMsZ2dn/POf/8SKFSu0FhwRERGRPmiUEJ05cwZRUVGVlkdERCjdV4yIiIjIFGiUEGVnZ8PKyqrS8nr16iEnJ6fWQRERERHpk0YJUaNGjZCSklJp+dmzZ+Ht7V3roIiIiIj0SaOEqH///liwYAEePHhQoaywsBALFy7EwIEDtRYcERERkT5odNl9dnY2OnToAEtLS8TGxqJly5YAgEuXLmHVqlUoLS3F6dOn4enpqbOADYWX3RMREZkenVx27+npiaNHj2LatGmYP38+ynMpmUyGyMhIrFq1qk4mQ0RERFS3aZQQAYC/vz9+/fVX/P3337h69SqEEGjRogUaNGigi/iIiIiIdE7jhKhcgwYN0LlzZ23GQkRERGQQGg2qJiIiIqqLmBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCREREREZVKa8EEdT7yBTXmiwGOoZbMtUpUx5IdLu5CPAzR7ezraGDoeIiEgnNp1Mx/xt51AmAAsZEBcdguGd/fQeBxMiI2Qsbw4iIiJdypQXSuc7ACgTwOvbUtAz0F3vjQHsMjMylb05DNmMSEREpAtpd/Kl8125UiFw7U6B3mNhQmRkdP3mMIZ+WiIiIgAIcLOHhUx5maVMhiZudnqPhQmRkdHlm2PTyXR0X3oQo748ju5LD2LTyfRar5OIiKimvJ1tERcdAkvZoxOfpUyG96KDDTJ2ViaEENVXI4VCAWdnZ8jlcjg5Oel0W5tOpuP1bSkoFUJ6c9R2DFGmvBDdlx5Uan2ylMnw+7zeHLRNREQGlSkvxLU7BWjiZqf1c5K6528OqjZCwzv7oWegu1bfHFV1xTEhIiIiQ/J2tjX4uYgJkZHS9pujvCvuyRYiQ/TTEhERGRuOITITxtRPS0REZGzYQmRGdNEVR0REVBcwITJiupit2hj6aYmIiIwNEyIj9eRs1ZOeCcDEZwKYzBAREemA0Y8hWrRoEWQymdKjVatWUvmDBw8QExODhg0bwsHBAUOHDkV2drbSOtLT0zFgwADY2dnBw8MDs2fPxsOHD/W9K2pTNVv1l/9Jw9Nxhps7iBM6EhFRXWYSLURt2rTB/v37pef16v0v7BkzZmDXrl3YsmULnJ2dERsbi+joaBw5cgQAUFpaigEDBsDLywtHjx5FZmYmxo4dCysrK7z33nt63xd1qLpEHgAEDHOPF95bjYiI6jqjbyECHiVAXl5e0sPNzQ0AIJfL8fXXX2PFihXo06cPOnbsiPXr1+Po0aM4duwYAGDv3r24cOECNmzYgPbt26Nfv3545513sGrVKhQXFxtytyqlarbqcvq+xwvvrUZERObAJBKiK1euwMfHB02bNsXo0aORnv6o2ygpKQklJSUIDw+X6rZq1Qp+fn5ITEwEACQmJiIkJASenp5SncjISCgUCpw/f16/O6Km8kvkVSVF+p47yJhuvGeM2JVIRFQ3GH2XWdeuXfHNN9+gZcuWyMzMxOLFi9GjRw+kpKQgKysL1tbWcHFxUXqNp6cnsrKyAABZWVlKyVB5eXlZZYqKilBUVCQ9VygUWtoj9ZRfIr/+SBq+OpyGMhhm7iBO6Fg5diUSEdUdRp8Q9evXT/q7bdu26Nq1K/z9/bF582bY2uouMYiLi8PixYt1tn51eDvb4vX+QZjQPcBgcweVt1Y9eW81c7/arbKuRH2P7yIiIu0w+oToSS4uLggMDMTVq1fxj3/8A8XFxcjNzVVqJcrOzoaXlxcAwMvLCydOnFBaR/lVaOV1VJk/fz5mzpwpPVcoFPD19dXinqjP0HMHcULHinhvOCKiusUkxhA9Li8vD6mpqfD29kbHjh1hZWWFAwcOSOWXL19Geno6QkNDAQChoaE4d+4cbt++LdXZt28fnJycEBQUVOl2bGxs4OTkpPQwZ97Otght1rBWJ/u6NN5G1cB3diUSEZkuo28hmjVrFgYNGgR/f39kZGRg4cKFsLS0xMiRI+Hs7IxJkyZh5syZcHV1hZOTE1555RWEhoaiW7duAICIiAgEBQXhxRdfxAcffICsrCy8+eabiImJgY2NjYH3znzUtfE27EokIqpbjD4hunnzJkaOHIm7d+/C3d0dzzzzDI4dOwZ3d3cAwMqVK2FhYYGhQ4eiqKgIkZGR+Pzzz6XXW1paYufOnZg2bRpCQ0Nhb2+PcePG4e233zbULpmdujrehl2JRER1h0wIoWIKQHqSQqGAs7Mz5HK52Xefaepo6h2M+vJ4heXfT+mG0GYNDRAREZkjXdwfkoyfuudvo28hItPHS/eJyNDqWrc9aZ/JDaom01M+3sZS9mgUMsfbEJE+1bUZ9+vSBSrGhC1EpBccb0NEhlKXpslgS5fusIWI9EYbl+6X4y8kIlJXXZkmo661dBkbJkRkcjadTEf3pQcx6svj6L70IDadTDd0SERkxOpKtz3vLalb7DIjk1JXL+EnIt2qC932vEBFt9hCRCaFv5CIqKa02W1vCHWlpctYsYWITEL5/CH21pb8hURq4ZwzVBfVhZYuY8WEiIzek1dVDHmqEX76I4O3zKBK6ftKHCZfpE+GvuF3XcWEiIyaqjFDP/2RgW0vh6KguIy/kKgCfY8z42XQpCtMtPWLCREZtcrGDBUUl/G2H6SSPuecqQuD/HnSNU5MtPWPCRHpnSZfwLyqonrmfEJTte/6eM+Ub/duXpHK5Cvp2t9wdTD+/4m2Trrm/B7UhbqQaJsiJkSkV5p+AZdfVfH6thSOGVLBnH9FVrbvun7PPLldGYDHcyIZgFd/+MPo/yfaOulW9x40hWTJ2GKsSzNrmxImRKQ3Nf0C5lUVqpnzr8jq9l1X7xlV25XJAAsBlOHRPCYCMIn/iTZOutX9H7SdsOsicTHGHxVsGTcMzkNEelObOYRMff4QXTDnOZnU2XddvGdUbVcI4NNRT+H7Kd3wyain8ESx0f5PtHE7i6r+D9q+zYQuZqhXFeP8becMfisMY5xvyBxul8QWItIb/urRLnM+noba98q228G/AbydbZEpL9R6XNpuFXl8fbXtWqzq/6DNbh9dtYaqirFMAOuPpOH1/kE1Xq82GFPLuDG2oukCW4hIb4zxV48pM+fjaah9r2672o5L260iT64PAH6f1xvfT+mG3+f11vgkV9X+avOGqrpqDVUVIwB8dTjNKFpCjKFl3JxuKCsTQjzZwksqKBQKODs7Qy6Xw8nJydDhmLRMeaFR/OqpK8z5eBpq36vbrjbiypQXovvSgxVaX36f17vSdVbVmlST9am7/sf3F4BU5/CfORVaoGp6FduTsVsA+GTUU+j439a5mnp31wV8+Z+0Csu/n9KNU3sAOJp6B6O+PF5huSkdH3XP3+wyI73jLKvaZc7H01D7Xt12axNXdZf0V9blVF23Rm27sKpaf/n+qqrz+7zetU4On7xysPzKvtiNf9S6C2fiMwH46j9pSmO/zKXrWR3m1DXPLjMiIiPxeJfWaz8k48nenMpOROp0a6jThVXZwFl11l9ZHQBa6fYZ3tkPv8/rjc9GPgWZ7H9THdS2C8fb2RZLh5pn17M6zKlrni1ERCbG2OZMIe2o7pL+qk5E6rT+VDc/U1UtQOqsXx9z53g728LVQfvbMaYBzMZI1fGpi99DTIiITIi5XO1hjiq7pP+zUU/B1d6myhO1ut0alZ34q7uKS53166trRVfbMXTXs7EnGI8fn7r6PcQuMzI55jAfhirmdLWHOaqsS6uDf4Nqu5w06dZQdeVSdVdxqbN+fXWt1MUuHF3MsaQrdfl7iC1EZFLq6i8TdehrOn9j/6VaV9X2liO16fZRp9VFnfXrq+tJn11cuv48mNqM83X5tiJMiMhkmNoXh7bpo0vCnBNOY1DbE31Nu33UTcbUWb++up70sR1NPg81TZxMLcGoy1edMSEik2FqXxzaVtsWhOqYe8JpLAw1loUDi5Vp8nmozQ8JU0swNPkeMrXWZiZEZDJM7YtDF3R50jL3hJMMP7DYmKj7eajtDwld/9DRBXW+h0yxtZkJEZkMU/zi0AVdnbSMPeE0tV+bZNrU/Txo44eEsbTOafIZq+p7yFRbm5kQkUkxli8OU6BpAmHMCWdNfm0ygdINQx9XfW1f3c+Dtn5IPD6f0+PP9UWbLTqm2trMe5mpifcyI1NS2ZebOicTY7s3Wk3uwaXOl7uuTqyGThh0qTYnTW0cF0N0w6jzedh0Mr3W92wzZBeTNu5zp8v11RbvZUZkpiprrs4tKMH7uy9V+4VrbONIKvu1efr63xjQVvVAzuqa63V18jHFcRPqqk03iDaOi6G6YdT5PNS25drQXUzabtEx5tbmqnBiRjNgrhMZmqvKvtyW/nbJJCdTUzVhIfDoxp6qJrCrbpJBXU0sp8l6a/qZNORnubrjWhltHe+abl9fVE14qS519k2X/3t17nOnqfJ7z30/pRt+n9fbJH4YsIWojqvLv1hJNVVjGp58DphGnz7wv1+bj59UgUc391T1K7q6MR26Gt+g7npr+pk09Ge5pmNltHW8jX3Qf21Ut2+6/t/rqkXH2Fqbq8MWojqsLk+xXhVzbxFTdWuDuf1aVfoL0BSO1/DOfvh4RPsKyytrIZj8TID05fbkl7sufg2ru96afiYN9Vl+/L2h6n01p19LpN3JrzIObR3vunjLjnJV7Zu+/vePt+hsezkUvq52Rv2doAtsIarDTHWkf20Y+le0sVA1psHF1qrCL8DDf+aYzPHq1MS12haCJ///Lz3TFBOeaaLynlu6+DVc3Xpr+pk0xGe5ss9S+fvq7M1cvP+bemPStHW86/JVppXtmz7/997Otib1naBtTIjqsLrcxKyKoQcmGpsnm6uf/MIFoHQliLEfr+pOrKr+/1//noYJzzSpsC5dnVirW29NP5P6/iyr81ka/dUxtd872jzeptYNowlV+1aT/31Nr+gz9+9QdpnVYXW5iVkVXQ+6NIWupeo8PvDT2AepqlLVQE1N96c2g2CrUtV6a/qZ1PdnubpjWZNBwLo63sautt8bmv7vN51MR/elBzHqy+N4eulBrD2cqva2TPE7QZvYQlTH1eUm5ifp8ld0XeyKM5UWxCd/7VbWQmAq+1PTz2RNXlfTloLqjqWhBwGbCm0dB3X/90+28AgBxP16CRDAP3s1q3Y7pvIZ0hW2EBmYPlod1PllVldaP3TxK7quDk43hRbEx3/tdl96UOVl9uV0vT/a/IzUtLVEk9dpcuxUbaeqY2kMg4D1oTb/c3WOgybrV+d/r6qFBwDe/+2S2tsw9u8EXWILkQEZy68oY4lDG3TRIlaXB6cbcwtiTcYz6Gp/TO0zoo2xINUdS2MYBKxLtf2fV3ccdPGeCnCzh0z2qGXocWWA2sffmL8TdI0tRAZiLL+ijCUObdL2WAVdXaZtLIx1bEdNxzNoe39M8TOirbEg1R1LVeV14fOijf95VcdBV+8pb2dbzOvXqsJyTY+/sX4n6BoTIgMxlsFr2oyjLnS7qWLuzciGYiwnVmP5rGrCkMeuLnxetPE/r+o46PI99c+ezTC/X6tK5+GiyrHLzEAC3Owhw6PZdsvJAL1/2WtrEJ2pdSloypybkVXRxw1MdTVfkKZMcaCpOsdOl/9DU/+8aOt/Xtlx0PV76p+9muHZ9j4me/wNhXe7V5O273afKS/E03EHlRMiGXB0Xh+9v3lre6dmbd7ZuC7fKbyu0Hfyq87dxnVNG3czN4TKjp2hfsDo4/OtrW3o+n9uqu8pU8S73Ru5tDv5eDITFUL9gW/aVNtfc9oaRFnXW5nqAkNM3FbdRHz6OMlW9hkx9gRe1bEz1OR7+vh8a3Mbum7lMvVWtLrIrMYQrVq1Ck2aNEH9+vXRtWtXnDhxwmCxGMv4iHK1GUSnjX0xxYGr5sjYxpzV5tJyTT35Ganptg091s4QY6L08fnWZBvq/g+0ObhY1TbNdfCysTKbhGjTpk2YOXMmFi5ciNOnT6Ndu3aIjIzE7du3DRJPXRh4WE4b+2KKA1crY+gTni5pK5Ffm5CKp+Nql8gYMomu6bb1mcBVxhA/xvTx+VZ3G7WZyVldT34HGMP/napnNl1mK1aswJQpUzBhwgQAwJo1a7Br1y6sW7cO8+bNM0hMdanJtLb7YooDV1Wp691+2hjovPZwKuJ+uyQ9r2mXjSHnu6nJto3lPlGGGKyuj8+3Otuo7UzO6njyO2Buv1bSTXAB87s/mCkxi4SouLgYSUlJmD9/vrTMwsIC4eHhSExMVPmaoqIiFBUVSc8VCoVOYqtufIQpqc2+GMsVRbVhLCc8XatN8pspL8TSx5KhcjVJZAyZRNdk28Y0YaG+f4zp4/Otzjaqmsn52fY+OpnV/vFkqJwpTlRpDswiIbpz5w5KS0vh6emptNzT0xOXLlX8cgaAuLg4LF68WB/h0X+ZeouZMZ3wdK2myW/anfwKs+gCj/ruNU1kDJlE12TbxtYKqu8fY/r4fFe3DW3M5FwVVd8BZQIVplgxxdZvc2AWCVFNzJ8/HzNnzpSeKxQK+Pr6GjAi82DKLWbGdsIzRqqOEfCoW6Em/3dDJtGabrsutILWlj4+31Vto3wm57hflX8Ia+tzWtl3wJyolvhg92Wz/b+bCrNIiNzc3GBpaYns7Gyl5dnZ2fDy8lL5GhsbG9jY2OgjPKojeMKr3pPHqHyMxT971nz8hiGTaE23beqtoHXBP3s2A8q7sqDdC1oq+w4Y3tmPEyWaALOZmLFr167o0qULPv30UwBAWVkZ/Pz8EBsbq9agam1PzEh1lzFMJGjseIzI0HT5HuT727hwYsYnzJw5E+PGjUOnTp3QpUsXfPTRR8jPz5euOiPSFlPu9tMXHiMyNF2+B/n+Nk1mkxANHz4cOTk5eOutt5CVlYX27dtj9+7dFQZaExERkfkxmy6z2mKXGRERkelR9/xtNjNVExEREVWGCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmz2xu3VFb5RN6KxQKA0dCRERE6io/b1d3Yw4mRGq6f/8+AMDX19fAkRAREZGm7t+/D2dn50rLeS8zNZWVlSEjIwOOjo6QyWSGDkdvFAoFfH19cePGDd7DrZZ4LLWDx1F7eCy1g8dRe3RxLIUQuH//Pnx8fGBhUflIIbYQqcnCwgKNGzc2dBgG4+TkxA+6lvBYagePo/bwWGoHj6P2aPtYVtUyVI6DqomIiMjsMSEiIiIis8eEiKpkY2ODhQsXwsbGxtChmDweS+3gcdQeHkvt4HHUHkMeSw6qJiIiIrPHFiIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIgIAHD58GIMGDYKPjw9kMhl++uknpXIhBN566y14e3vD1tYW4eHhuHLlimGCNXLVHcvx48dDJpMpPaKiogwTrBGLi4tD586d4ejoCA8PDwwePBiXL19WqvPgwQPExMSgYcOGcHBwwNChQ5GdnW2giI2TOscxLCyswnty6tSpBorYeK1evRpt27aVJg0MDQ3Fb7/9JpXz/aie6o6jod6PTIgIAJCfn4927dph1apVKss/+OADfPLJJ1izZg2OHz8Oe3t7REZG4sGDB3qO1PhVdywBICoqCpmZmdLj+++/12OEpiEhIQExMTE4duwY9u3bh5KSEkRERCA/P1+qM2PGDPzyyy/YsmULEhISkJGRgejoaANGbXzUOY4AMGXKFKX35AcffGCgiI1X48aNsXTpUiQlJeHUqVPo06cPnnvuOZw/fx4A34/qqu44AgZ6PwqiJwAQ27dvl56XlZUJLy8vsWzZMmlZbm6usLGxEd9//70BIjQdTx5LIYQYN26ceO655wwSjym7ffu2ACASEhKEEI/eg1ZWVmLLli1SnYsXLwoAIjEx0VBhGr0nj6MQQvTq1Uu89tprhgvKhDVo0EB89dVXfD/WUvlxFMJw70e2EFG10tLSkJWVhfDwcGmZs7MzunbtisTERANGZroOHToEDw8PtGzZEtOmTcPdu3cNHZLRk8vlAABXV1cAQFJSEkpKSpTel61atYKfnx/fl1V48jiW++677+Dm5obg4GDMnz8fBQUFhgjPZJSWluKHH35Afn4+QkND+X6soSePYzlDvB95c1eqVlZWFgDA09NTabmnp6dURuqLiopCdHQ0AgICkJqaitdffx39+vVDYmIiLC0tDR2eUSorK8P06dPRvXt3BAcHA3j0vrS2toaLi4tSXb4vK6fqOALAqFGj4O/vDx8fH5w9exZz587F5cuXsW3bNgNGa5zOnTuH0NBQPHjwAA4ODti+fTuCgoKQnJzM96MGKjuOgOHej0yIiPRsxIgR0t8hISFo27YtmjVrhkOHDqFv374GjMx4xcTEICUlBb///ruhQzFplR3Hl156Sfo7JCQE3t7e6Nu3L1JTU9GsWTN9h2nUWrZsieTkZMjlcmzduhXjxo1DQkKCocMyOZUdx6CgIIO9H9llRtXy8vICgApXS2RnZ0tlVHNNmzaFm5sbrl69auhQjFJsbCx27tyJ+Ph4NG7cWFru5eWF4uJi5ObmKtXn+1K1yo6jKl27dgUAvidVsLa2RvPmzdGxY0fExcWhXbt2+Pjjj/l+1FBlx1EVfb0fmRBRtQICAuDl5YUDBw5IyxQKBY4fP67U50s1c/PmTdy9exfe3t6GDsWoCCEQGxuL7du34+DBgwgICFAq79ixI6ysrJTel5cvX0Z6ejrfl4+p7jiqkpycDAB8T6qhrKwMRUVFfD/WUvlxVEVf70d2mREAIC8vTyn7TktLQ3JyMlxdXeHn54fp06djyZIlaNGiBQICArBgwQL4+Phg8ODBhgvaSFV1LF1dXbF48WIMHToUXl5eSE1NxZw5c9C8eXNERkYaMGrjExMTg40bN+Lnn3+Go6OjNA7D2dkZtra2cHZ2xqRJkzBz5ky4urrCyckJr7zyCkJDQ9GtWzcDR288qjuOqamp2LhxI/r374+GDRvi7NmzmDFjBnr27Im2bdsaOHrjMn/+fPTr1w9+fn64f/8+Nm7ciEOHDmHPnj18P2qgquNo0Pej3q9rI6MUHx8vAFR4jBs3Tgjx6NL7BQsWCE9PT2FjYyP69u0rLl++bNigjVRVx7KgoEBEREQId3d3YWVlJfz9/cWUKVNEVlaWocM2OqqOIQCxfv16qU5hYaF4+eWXRYMGDYSdnZ0YMmSIyMzMNFzQRqi645ieni569uwpXF1dhY2NjWjevLmYPXu2kMvlhg3cCE2cOFH4+/sLa2tr4e7uLvr27Sv27t0rlfP9qJ6qjqMh348yIYTQbcpFREREZNw4hoiIiIjMHhMiIiIiMntMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiNSSlZWFV155BU2bNoWNjQ18fX0xaNAgpXs3HT16FP3790eDBg1Qv359hISEYMWKFSgtLZXqXLt2DZMmTUJAQABsbW3RrFkzLFy4EMXFxUrb+/LLL9GuXTs4ODjAxcUFTz31FOLi4qTyRYsWQSaTISoqqkKsy5Ytg0wmQ1hYmFr7Vr4umUyGevXqoUmTJpgxYwby8vI0PEpEZKp4LzMiqta1a9fQvXt3uLi4YNmyZQgJCUFJSQn27NmDmJgYXLp0Cdu3b8cLL7yACRMmID4+Hi4uLti/fz/mzJmDxMREbN68GTKZDJcuXUJZWRnWrl2L5s2bIyUlBVOmTEF+fj6WL18OAFi3bh2mT5+OTz75BL169UJRURHOnj2LlJQUpbi8vb0RHx+PmzdvKt3Bfd26dfDz89NoH9u0aYP9+/fj4cOHOHLkCCZOnIiCggKsXbu2Qt3i4mJYW1vX4EjqjjHGRGRSdH5zECIyef369RONGjUSeXl5Fcr+/vtvkZeXJxo2bCiio6MrlO/YsUMAED/88EOl6//ggw9EQECA9Py5554T48ePrzKmhQsXinbt2omBAweKJUuWSMuPHDki3NzcxLRp00SvXr3U2Lv/retxU6ZMEV5eXkrlX375pWjSpImQyWRCiEf7PmnSJOHm5iYcHR1F7969RXJysrSO5ORkERYWJhwcHISjo6Po0KGDOHnypBBCiGvXromBAwcKFxcXYWdnJ4KCgsSuXbuEEEKsX79eODs7K8Wzfft28fhXdk1jIiLV2GVGRFW6d+8edu/ejZiYGNjb21cod3Fxwd69e3H37l3MmjWrQvmgQYMQGBiI77//vtJtyOVyuLq6Ss+9vLxw7NgxXL9+vdr4Jk6ciG+++UZ6vm7dOowePbrWrSW2trZK3XhXr17Fjz/+iG3btiE5ORkA8Pzzz+P27dv47bffkJSUhA4dOqBv3764d+8eAGD06NFo3LgxTp48iaSkJMybNw9WVlYAHt2FvqioCIcPH8a5c+fw/vvvw8HBQaMYaxITEanGLjMiqtLVq1chhECrVq0qrfPnn38CAFq3bq2yvFWrVlIdVev/9NNPpe4yAFi4cCGio6PRpEkTBAYGIjQ0FP3798ewYcNgYaH8O27gwIGYOnUqDh8+jI4dO2Lz5s34/fffsW7dOk13VZKUlISNGzeiT58+0rLi4mL8+9//hru7OwDg999/x4kTJ3D79m3Y2NgAAJYvX46ffvoJW7duxUsvvYT09HTMnj1bOnYtWrSQ1peeno6hQ4ciJCQEANC0aVON46xJTESkGhMiIqqSEEIndQHg1q1biIqKwvPPP48pU6ZIy729vZGYmIiUlBQcPnwYR48exbhx4/DVV19h9+7dSkmRlZUVxowZg/Xr1+Ovv/5CYGAg2rZtq1EcAHDu3Dk4ODigtLQUxcXFGDBgAD777DOp3N/fX0o8AODMmTPIy8tDw4YNldZTWFiI1NRUAMDMmTMxefJkfPvttwgPD8fzzz+PZs2aAQBeffVVTJs2DXv37kV4eDiGDh2qcdw1iYmIVGNCRERVatGihTQYujKBgYEAgIsXL+Lpp5+uUH7x4kUEBQUpLcvIyEDv3r3x9NNP44svvlC53uDgYAQHB+Pll1/G1KlT0aNHDyQkJKB3795K9SZOnIiuXbsiJSUFEydO1HQXAQAtW7bEjh07UK9ePfj4+FTocnuyuzAvLw/e3t44dOhQhXW5uLgAeHT12qhRo7Br1y789ttvWLhwIX744QcMGTIEkydPRmRkJHbt2oW9e/ciLi4OH374IV555RVYWFhUSC5LSkoqbKcmMRGRahxDRERVcnV1RWRkJFatWoX8/PwK5bm5uYiIiICrqys+/PDDCuU7duzAlStXMHLkSGnZrVu3EBYWho4dO2L9+vUVusFUKU+oVMXQpk0btGnTBikpKRg1apQmuyextrZG8+bN0aRJE7XGH3Xo0AFZWVmoV68emjdvrvRwc3OT6gUGBmLGjBnYu3cvoqOjsX79eqnM19cXU6dOxbZt2/B///d/+PLLLwEA7u7uuH//vtK+lo8R0kZMRFQREyIiqtaqVatQWlqKLl264Mcff8SVK1dw8eJFfPLJJwgNDYW9vT3Wrl2Ln3/+GS+99BLOnj2La9eu4euvv8b48eMxbNgwvPDCCwD+lwz5+flh+fLlyMnJQVZWFrKysqTtTZs2De+88w6OHDmC69ev49ixYxg7dizc3d0RGhqqMsaDBw8iMzNTby0h4eHhCA0NxeDBg7F3715cu3YNR48exRtvvIFTp06hsLAQsbGxOHToEK5fv44jR47g5MmT0jir6dOnY8+ePUhLS8Pp06cRHx8vlXXt2hV2dnZ4/fXXkZqaio0bNyoNHK9pTERUOXaZEVG1mjZtitOnT+Pdd9/F//3f/yEzMxPu7u7o2LEjVq9eDQAYNmwY4uPj8e6776JHjx548OABWrRogTfeeAPTp0+HTCYDAOzbtw9Xr17F1atXleYOAv43Bik8PBzr1q3D6tWrcffuXbi5uSE0NBQHDhyoMD6mnKor4HRJJpPh119/xRtvvIEJEyYgJycHXl5e6NmzJzw9PWFpaYm7d+9i7NixyM7OhpubG6Kjo7F48WIAQGlpKWJiYnDz5k04OTkhKioKK1euBPCoVW7Dhg2YPXs2vvzyS/Tt2xeLFi2qdlB0dTERUeVkQtNRkERERER1DLvMiIiIyOwxISKiOs/BwaHSx3/+8x9Dh0dERoBdZkRU5129erXSskaNGsHW1laP0RCRMWJCRERERGaPXWZERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZvf8HoD+tO7SHDZIAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwWUlEQVR4nO3deVxU1fsH8M+wyCYMssgiCIi4myaZYrmTYC6ZWu4rShpYiHvulbnva5ZbfsUtyUxLRVwqRTPM1EJTQs0EFwhwZZv7+4PfjAz7wAz3zszn/XrxUuYeLmeu49xnznnOc2SCIAggIiIioiplInYHiIiIiIwRgzAiIiIiETAIIyIiIhIBgzAiIiIiETAIIyIiIhIBgzAiIiIiETAIIyIiIhIBgzAiIiIiETAIIyIiIhIBgzAiIirV1q1bIZPJcPPmTbG7QmRQGIQRkejOnz+P8PBwNG7cGDY2Nqhduzbeffdd/PXXX0XadujQATKZDDKZDCYmJrCzs0P9+vUxZMgQxMTEaPR7v/vuO7Rv3x41a9aEtbU16tSpg3fffReHDx/W1lMr4rPPPsP+/fuLPH7mzBnMmTMH6enpOvvdhc2ZM0d1LWUyGaytrdGoUSPMmDEDmZmZWvkdUVFRWLFihVbORWRoGIQRkegWLlyIffv2oXPnzli5ciVCQ0Px448/okWLFrhy5UqR9h4eHti+fTu++uorLF68GD179sSZM2fQpUsX9OvXDzk5OWX+ziVLlqBnz56QyWSYNm0ali9fjj59+uD69evYtWuXLp4mgNKDsLlz51ZpEKa0fv16bN++HcuWLUODBg0wb948BAcHQxtbCzMIIyqZmdgdICKKjIxEVFQUqlWrpnqsX79+aNq0KRYsWID//e9/au3lcjkGDx6s9tiCBQvwwQcfYN26dfD29sbChQtL/H25ubn45JNP8MYbb+Do0aNFjt+/f7+Sz0g6nj59Cmtr61Lb9O3bF05OTgCAMWPGoE+fPoiOjsbZs2cREBBQFd0kMkocCSMi0bVp00YtAAMAPz8/NG7cGAkJCeU6h6mpKVatWoVGjRphzZo1yMjIKLHtw4cPkZmZiddee63Y4zVr1lT7/vnz55gzZw7q1asHS0tLuLm5oXfv3khMTFS1WbJkCdq0aQNHR0dYWVnB398fX3/9tdp5ZDIZnjx5gm3btqmmAIcPH445c+Zg0qRJAAAfHx/VsYI5WP/73//g7+8PKysrODg4oH///vjnn3/Uzt+hQwc0adIE8fHxaNeuHaytrfHRRx+V6/oV1KlTJwBAUlJSqe3WrVuHxo0bw8LCAu7u7ggLC1MbyevQoQMOHTqEW7duqZ6Tt7e3xv0hMlQcCSMiSRIEAffu3UPjxo3L/TOmpqYYMGAAZs6ciZ9//hndunUrtl3NmjVhZWWF7777DuPGjYODg0OJ58zLy0P37t0RGxuL/v3748MPP8SjR48QExODK1euwNfXFwCwcuVK9OzZE4MGDUJ2djZ27dqFd955BwcPHlT1Y/v27Rg1ahReffVVhIaGAgB8fX1hY2ODv/76Czt37sTy5ctVo1LOzs4AgHnz5mHmzJl49913MWrUKDx48ACrV69Gu3bt8Ntvv8He3l7V39TUVHTt2hX9+/fH4MGD4eLiUu7rp6QMLh0dHUtsM2fOHMydOxeBgYEYO3Ysrl27hvXr1+P8+fM4ffo0zM3NMX36dGRkZODOnTtYvnw5AKB69eoa94fIYAlERBK0fft2AYCwadMmtcfbt28vNG7cuMSf++abbwQAwsqVK0s9/6xZswQAgo2NjdC1a1dh3rx5Qnx8fJF2mzdvFgAIy5YtK3JMoVCo/v706VO1Y9nZ2UKTJk2ETp06qT1uY2MjDBs2rMi5Fi9eLAAQkpKS1B6/efOmYGpqKsybN0/t8cuXLwtmZmZqj7dv314AIGzYsKHE513Q7NmzBQDCtWvXhAcPHghJSUnC559/LlhYWAguLi7CkydPBEEQhC1btqj17f79+0K1atWELl26CHl5earzrVmzRgAgbN68WfVYt27dBC8vr3L1h8jYcDqSiCTn6tWrCAsLQ0BAAIYNG6bRzypHWh49elRqu7lz5yIqKgovv/wyjhw5gunTp8Pf3x8tWrRQmwLdt28fnJycMG7cuCLnkMlkqr9bWVmp/v7ff/8hIyMDbdu2xYULFzTqf2HR0dFQKBR499138fDhQ9WXq6sr/Pz8cOLECbX2FhYWGDFihEa/o379+nB2doaPjw/ee+891K1bF4cOHSoxl+zYsWPIzs5GREQETExe3EZGjx4NOzs7HDp0SPMnSmSEOB1JRJKSkpKCbt26QS6X4+uvv4apqalGP//48WMAgK2tbZltBwwYgAEDBiAzMxPnzp3D1q1bERUVhR49euDKlSuwtLREYmIi6tevDzOz0t8uDx48iE8//RQXL15EVlaW6vGCgVpFXL9+HYIgwM/Pr9jj5ubmat/XqlWrSH5dWfbt2wc7OzuYm5vDw8NDNcVaklu3bgHID94KqlatGurUqaM6TkSlYxBGRJKRkZGBrl27Ij09HT/99BPc3d01PoeypEXdunXL/TN2dnZ444038MYbb8Dc3Bzbtm3DuXPn0L59+3L9/E8//YSePXuiXbt2WLduHdzc3GBubo4tW7YgKipK4+dQkEKhgEwmww8//FBsQFo4x6rgiFx5tWvXTpWHRkRVh0EYEUnC8+fP0aNHD/z11184duwYGjVqpPE58vLyEBUVBWtra7z++usV6scrr7yCbdu2ITk5GUB+4vy5c+eQk5NTZNRJad++fbC0tMSRI0dgYWGhenzLli1F2pY0MlbS476+vhAEAT4+PqhXr56mT0cnvLy8AADXrl1DnTp1VI9nZ2cjKSkJgYGBqscqOxJIZMiYE0ZEosvLy0O/fv0QFxeHvXv3Vqg2VV5eHj744AMkJCTggw8+gJ2dXYltnz59iri4uGKP/fDDDwBeTLX16dMHDx8+xJo1a4q0Ff6/mKmpqSlkMhny8vJUx27evFlsUVYbG5tiC7La2NgAQJFjvXv3hqmpKebOnVukeKogCEhNTS3+SepQYGAgqlWrhlWrVqn1adOmTcjIyFBblWpjY1NquRAiY8aRMCIS3YQJE3DgwAH06NEDaWlpRYqzFi7MmpGRoWrz9OlT3LhxA9HR0UhMTET//v3xySeflPr7nj59ijZt2qB169YIDg6Gp6cn0tPTsX//fvz000/o1asXXn75ZQDA0KFD8dVXXyEyMhK//PIL2rZtiydPnuDYsWN4//338dZbb6Fbt25YtmwZgoODMXDgQNy/fx9r165F3bp1cenSJbXf7e/vj2PHjmHZsmVwd3eHj48PWrVqBX9/fwDA9OnT0b9/f5ibm6NHjx7w9fXFp59+imnTpuHmzZvo1asXbG1tkZSUhG+++QahoaGYOHFipa6/ppydnTFt2jTMnTsXwcHB6NmzJ65du4Z169ahZcuWav9e/v7+2L17NyIjI9GyZUtUr14dPXr0qNL+EkmWmEsziYgE4UVphZK+SmtbvXp1wc/PTxg8eLBw9OjRcv2+nJwc4YsvvhB69eoleHl5CRYWFoK1tbXw8ssvC4sXLxaysrLU2j99+lSYPn264OPjI5ibmwuurq5C3759hcTERFWbTZs2CX5+foKFhYXQoEEDYcuWLaoSEAVdvXpVaNeunWBlZSUAUCtX8cknnwi1atUSTExMipSr2Ldvn/D6668LNjY2go2NjdCgQQMhLCxMuHbtmtq1Ka18R2HK/j148KDUdoVLVCitWbNGaNCggWBubi64uLgIY8eOFf777z+1No8fPxYGDhwo2NvbCwBYroKoAJkgaGFzMCIiIiLSCHPCiIiIiETAIIyIiIhIBAzCiIiIiETAIIyIiIhIBAzCiIiIiETAIIyIiIhIBCzWKmEKhQJ3796Fra0tt/4gIiLSE4Ig4NGjR3B3d4eJScnjXQzCJOzu3bvw9PQUuxtERERUAf/88w88PDxKPM4gTMJsbW0B5P8jlrYPHhEREUlHZmYmPD09VffxkjAIkzDlFKSdnR2DMCIiIj1TVioRE/OJiIiIRMAgjIiIiEgEDMKIiIiIRMCcMCIiIgOTl5eHnJwcsbthsMzNzWFqalrp8+hNENazZ09cvHgR9+/fR40aNRAYGIiFCxfC3d1d1UYQBCxduhQbN27ErVu34OTkhPfffx/Tp09XtTl58iQiIyPxxx9/wNPTEzNmzMDw4cPVftfatWuxePFipKSkoFmzZli9ejVeffVV1fHnz59jwoQJ2LVrF7KyshAUFIR169bBxcVF1eb27dsYO3YsTpw4gerVq2PYsGGYP38+zMz05pITEZGeEQQBKSkpSE9PF7srBs/e3h6urq6VquOpNxFBx44d8dFHH8HNzQ3//vsvJk6ciL59++LMmTOqNh9++CGOHj2KJUuWoGnTpkhLS0NaWprqeFJSErp164YxY8Zgx44diI2NxahRo+Dm5oagoCAAwO7duxEZGYkNGzagVatWWLFiBYKCgnDt2jXUrFkTADB+/HgcOnQIe/fuhVwuR3h4OHr37o3Tp08DyP8E0q1bN7i6uuLMmTNITk7G0KFDYW5ujs8++6wKrxoRERkTZQBWs2ZNWFtbs9C3DgiCgKdPn+L+/fsAADc3t0qdTC99++23gkwmE7KzswVBEIQ///xTMDMzE65evVriz0yePFlo3Lix2mP9+vUTgoKCVN+/+uqrQlhYmOr7vLw8wd3dXZg/f74gCIKQnp4umJubC3v37lW1SUhIEAAIcXFxgiAIwvfffy+YmJgIKSkpqjbr168X7OzshKysrHI/x4yMDAGAkJGRUe6fISIi45Sbmyv8+eefwsOHD8XuilF4+PCh8Oeffwq5ublFjpX3/q2XiflpaWnYsWMH2rRpA3NzcwDAd999hzp16uDgwYPw8fGBt7c3Ro0apTYSFhcXh8DAQLVzBQUFIS4uDgCQnZ2N+Ph4tTYmJiYIDAxUtYmPj0dOTo5amwYNGqB27dqqNnFxcWjatKna9GRQUBAyMzPxxx9/lPi8srKykJmZqfZFRERUHsocMGtra5F7YhyU17kyuXd6FYRNmTIFNjY2cHR0xO3bt/Htt9+qjv3999+4desW9u7di6+++gpbt25FfHw8+vbtq2qTkpKiFhgBgIuLCzIzM/Hs2TM8fPgQeXl5xbZJSUlRnaNatWqwt7cvtU1x51AeK8n8+fMhl8tVX9yyiIiINMUpyKqhjessahA2depUyGSyUr+uXr2qaj9p0iT89ttvOHr0KExNTTF06FAIggAgf7PrrKwsfPXVV2jbti06dOiATZs24cSJE7h27ZpYT1Ej06ZNQ0ZGhurrn3/+EbtLREREpCOiJuZPmDChyMrEwurUqaP6u5OTE5ycnFCvXj00bNgQnp6eOHv2LAICAuDm5gYzMzPUq1dP1b5hw4YA8lcq1q9fH66urrh3757a+e/duwc7OztYWVnB1NQUpqamxbZxdXUFALi6uiI7Oxvp6elqo2GF2/zyyy9FzqE8VhILCwtYWFiUej2IiIjIMIg6Eubs7IwGDRqU+lWtWrVif1ahUADIz6MCgNdeew25ublITExUtfnrr78AAF5eXgCAgIAAxMbGqp0nJiYGAQEBAIBq1arB399frY1CoUBsbKyqjb+/P8zNzdXaXLt2Dbdv31a1CQgIwOXLl1UrJ5S/x87ODo0aNarAlSIiMhypqalITk5GcnIy4uPv4euvUxEff0/1WGpqqthdpCo2fPhw1QyYubk5XFxc8MYbb2Dz5s2q+315bN26tUi6kJTpRYmKc+fO4fz583j99ddRo0YNJCYmYubMmfD19VUFPoGBgWjRogVGjhyJFStWQKFQICwsDG+88YZqdGzMmDFYs2YNJk+ejJEjR+L48ePYs2cPDh06pPpdkZGRGDZsGF555RW8+uqrWLFiBZ48eYIRI0YAAORyOUJCQhAZGQkHBwfY2dlh3LhxCAgIQOvWrQEAXbp0QaNGjTBkyBAsWrQIKSkpmDFjBsLCwjjSRURGLTU1FWvWrAEAXLjwMr77rjsEwQQymQI9ehxEixa/AQDCw8Ph6OgoZleNTmpqKrKzs0s8Xq1aNZ3+mwQHB2PLli3Iy8vDvXv3cPjwYXz44Yf4+uuvceDAAYOss6kXz8ja2hrR0dGYPXs2njx5Ajc3NwQHB2PGjBmqoMbExATfffcdxo0bh3bt2sHGxgZdu3bF0qVLVefx8fHBoUOHMH78eKxcuRIeHh748ssvVTXCAKBfv3548OABZs2ahZSUFDRv3hyHDx9WS7Rfvnw5TExM0KdPH7VirUqmpqY4ePAgxo4di4CAANjY2GDYsGH4+OOPq+BqERFJl/Imn5FhqwrAAEAQTPDdd93h63sDcvmjUoMB0r6CwXFpdBkcW1hYqFJ2atWqhRYtWqB169bo3Lkztm7dilGjRmHZsmXYsmUL/v77bzg4OKBHjx5YtGgRqlevjpMnT6oGTJRJ87Nnz8acOXOwfft2rFy5EteuXYONjQ06deqEFStWqOp/ikUvgrCmTZvi+PHjZbZzd3fHvn37Sm3ToUMH/Pbbb6W2CQ8PR3h4eInHLS0tsXbtWqxdu7bENl5eXvj+++9L7zARkZFKS3NE4SpJgmCCtDQHyOWPROqV8Spv0FvVwXGnTp3QrFkzREdHY9SoUTAxMcGqVavg4+ODv//+G++//z4mT56MdevWoU2bNlixYgVmzZqlWpBXvXp1APllJD755BPUr18f9+/fR2RkJIYPHy76fVovgjAiIjIsDg6pkMkUaoGYTKaAg0NaKT9FxqhBgwa4dOkSACAiIkL1uLe3Nz799FOMGTMG69atQ7Vq1SCXyyGTyYosghs5cqTq73Xq1MGqVavQsmVLPH78WBWoiUGv6oQREZFhkMsfoUePg5DJ8pOulTlhHAWjwgRBUE0vHjt2DJ07d0atWrVga2uLIUOGIDU1FU+fPi31HPHx8ejRowdq164NW1tbtG/fHkB+9QQxcSSMiIhE0aLFb/D1vYG0NAc4OKQxAKNiJSQkwMfHBzdv3kT37t0xduxYzJs3Dw4ODvj5558REhKC7OzsEncKePLkCYKCghAUFIQdO3bA2dkZt2/fRlBQkOi5hwzCiIhINHL5IwZfVKLjx4/j8uXLGD9+POLj46FQKLB06VKYmORP5O3Zs0etfbVq1ZCXl6f22NWrV5GamooFCxaodqL59ddfq+YJlIHTkURERCS6rKwspKSk4N9//8WFCxfw2Wef4a233kL37t0xdOhQ1K1bFzk5OVi9ejX+/vtvbN++HRs2bFA7h7e3Nx4/fozY2Fg8fPgQT58+Re3atVGtWjXVzx04cACffPKJSM9SHYMwIjJoBQuDFvfFwqBVq6QC3BVtR4bj8OHDcHNzg7e3N4KDg3HixAmsWrUK3377LUxNTdGsWTMsW7YMCxcuRJMmTbBjxw7Mnz9f7Rxt2rTBmDFj0K9fPzg7O2PRokVwdnbG1q1bsXfvXjRq1AgLFizAkiVLRHqW6mSCcvNFkpzMzEzI5XJkZGTAzs5O7O4Q6R0p1D6iosQuCmqonj9/jqSkJPj4+MDS0lKjn+X/Fc2Vdr3Le/9mThgRSVZlb9aFfzYjwxZpaY5wcEhVy0MSOznX2PAmLj2Ojo4IDw9ncFzFGIQR6TFDHlHQ9ifz0rbIISIGx2JgEEakpwx9+kCbo1hlbZFDhsWQP5yQYWEQRqSnjGmqrbKjWNwix3gY+ocTMiwMwogMgCFPtWljFItb5BgPY/pwQvqPQRiRnjP0qTZtjGIpt8gpHKgawvWhkhnyhxMyDAzCiPScvky1VTRPR1ujWNwix7jo+sMJ885IGxiEEek5fZhqq0yeTmVGsQoX/CxpixwWBjU8uvxwwrwz0hYGYUR6Th+m2sqbf1NSu4qOYrH2kfHS5YcT5p2RtjAIIzIA+jbVVtJNqyBtjWIxwDJOVfXhpKy8M05bSsPJkyfRsWNH/Pfff7C3ty/Xz3h7eyMiIgIRERE66xeDMCI9pa9TbeVNluYoFlWWrj+clJV3dufOHXz//fdlnofTlsDw4cOxbds2vPfee0U25Q4LC8O6deswbNgwbN26VZwO6giDMCI9pY9BiqbJ0lLqO+mHqvxwUlbeWeEAjNOWpfP09MSuXbuwfPlyWFlZAcjfnzEqKgq1a9cWuXe6wSCMSI/pW5CiLys5SX9V5YcTTfLOTp8OQExMIACWyyhJixYtkJiYiOjoaAwaNAgAEB0djdq1a8PHx0fVLisrC5MmTcKuXbuQmZmJV155BcuXL0fLli1Vbb7//ntERETgn3/+QevWrTFs2LAiv+/nn3/GtGnT8Ouvv8LJyQlvv/025s+fDxsbG90/2f9nUnYTIiLtUN60Cip403r48CGSk5ORnJyM1NRUMbpIBsDR0RFubm4lfmnrw4sy70z5mi4p7yw/AHsDyluucgQ4I8NWK/3QhTt3gBMn8v+sSiNHjsSWLVtU32/evBkjRoxQazN58mTs27cP27Ztw4ULF1C3bl0EBQUhLS3/feSff/5B79690aNHD1y8eBGjRo3C1KlT1c6RmJiI4OBg9OnTB5cuXcLu3bvx888/Izw8XPdPsgCOhBFRlSkrWTo6OlqtPXNlSOrKyjvLyLDFsWOBAGRqj0t5BHjTJiA0FFAoABMTYONGICSkan734MGDMW3aNNy6dQsAcPr0aezatQsnT54EADx58gTr16/H1q1b0bVrVwDAF198gZiYGGzatAmTJk3C+vXr4evri6VLlwIA6tevj8uXL2PhwoWq3zN//nwMGjRIlXTv5+eHVatWoX379li/fj0sLS2r5PkyCCMinSuYf6NJsjRzZUiKypt3BhQ/BZ9PWrX8lO7ceRGAAfl/vvceEBQEeHjo/vc7OzujW7du2Lp1KwRBQLdu3eDk5KQ6npiYiJycHLz22muqx8zNzfHqq68iISEBAJCQkIBWrVqpnTcgIEDt+99//x2XLl3Cjh07VI8JggCFQoGkpCQ0bNhQF0+vCAZhRJXA5eflUzhP5+HDh0VGvYj0RXnyztLT07Fnz55i88YAAW+8cUySo2DXr78IwJTy8oAbN6omCAPypySV04Jr164ts31ubi4UCgUUCgWys7PV/g4AJiZFg+DHjx/jvffewwcffFDkWFUuAmAQRnpHKoEPq2ZrprRrUJ66YURSUt7/08VNwQcGHsNrr8XpuIcV4+eXPwVZMBAzNQXq1q26PgQHByM7OxsymQxBQUFqx3x9fVGtWjWcPn0aXl5eyM3Nxb///otffvkFo0ePxr17aahVywexsYfx8OFD1c+dOXNG7TwtWrTAn3/+ibpV+cSKwSCM9IqUAp/KVoGnfNxkmQxdWVPwUqrl5+GRnwP23nv5I2CmpsDnn1fdKBgAmJqaqqYWTU1N1Y7Z2Nhg7NixmDRpEhwcHODm5oZ58+bh+fPneOutkbh3zwVvvhmJL79cj1mz5mPo0Hdw+fJlfPXVV2rnmTJlClq3bo3w8HCMGjUKNjY2+PPPPxETE1Oue4y2MAgjvSLl7UI4mqM5XW+yTCWTyoiyoSpv3tjgwYMld51DQvJzwG7cyB8Bq8oATMnOzq7EYwsWLIBCocCQIUPw6NEjvPTSS9i+fScEwQuADK6utbFw4T4sXz4e//vfF2jevDk+/vhjhIaGqs7x0ksv4dSpU5g+fTratm0LQRDg6+uLfv36VcGze4FBGOktKY2gSKkv+oR1w8QhpRFlQ6WPxZQL8vCo2uCrrEr4+/fvV/3d0tISq1atwqpVq5CdnY2HDx8iK6saUlNfrEBt27Y72rbtDkfHh7CwyIaTkxNGjx6tds6WLVvi6NGjJf7OmzdvVuSpaIRBGOklKY2gSKkv+kaXmyxTyTiVXjWkGmAZIjOzXAAC1EuBCP//uHSxWCvppdJGUIy5L/pCOVVTVrFLKeXKGLKMDFskJXlLungoUWlMTRWwt89AfiAGAALs7TNgaqoo7cdEx5Ew0ktSGkGRUl/0ReGpmlmzHuDmTTN4e+fC3b0lgJaSnqoxJJxKJ0Nhbf0UFhbPkZtrBjOzXMkHYACDMNJTZVVeN9a+6JOCAZabG+DvL2JnjBSn0snQmJoqYGqqP9PoDMJIb2lSeV0XylsFnlNqJFVcGGGYBEEou5GBKK4Qa2XaaUIb15lBGOmV8i77rorAR99XPxFxKt2wmJubAwCePn0KKysrkXtTNczMzFCzZk0oCpf5L8DExARmZtoPd54+fQrgxXWvCAZhpFekFvgwwCJ9xql0w2Jqagp7e3vcv38fAGBtbQ2ZTFbGTxk+hUKB3FztrZIUBAFPnz7F/fv3YW9vX6SgrCYYhJHeYeBDVDmcSjdcrq6uAKAKxEh37O3tVde7omSCMU0e65nMzEzI5XJkZGSUWj2YiEhTrJhv2PLy8pCTkyN2NwyWubl5qSNg5b1/cySMiMgIMcAybKamppWaJqOqwSCMiKgSOKJERBXFIIyIqIK4ByMRVQaDMCPBT+tE2sc9GImoMhiEGQF+WiciIpIebuBtBAp/Ci9ps15+WiciIqo6HAkzMtysl0h3MjJskZbmCAeHVBY8JaIyMQgzIlLYrJe5aWSo+AGHKoPvjcaJQZgREXuzXuamkaGSwgcc0l98bzRezAkzIsrNeguqys16mZtGhqq0DzhEZeEqW+PFkTAjIqXNejl1Q4ZAubei8gNOwUCs4Acc7sFIRMVhEGZkStust6pw6kY/MWelKEdHR4SHhyM7Oxu1amViyhQ58vJkMDUVsHBhJgYOHGCU14Uqhws8jAeDMCNQ+FO4XP6o2P/YVfVpXezcNNIcc1ZKpny+EyYA/foBN24AdevK4OFhD8BezK6RHuIsgXFhEGYECn5aL0lVflova+qGpIc5K+Xj4ZH/RVQRnCUwPgzCjISURieklJtGRCQVnCUwPgzCSBRSyE2jimPOCpH2cZbA+DAIoyojtdw0qhjmrBBpl/I9r6xZAr43Gh4GYVRlpJabRppjzgqR9hV+b5w16wFu3jSDt3cu3N1bAmjJ90YDxSCMqhTfRPQbc1aIdKPge6ObG+DvX3w7looxLAzCiKjcmLNCJB6WijE83LaIiMpUOGdFuf0Vc1aIqg5LxRgejoQRUZmYs0IkPVylrP8YhBFRuZQ3Z4WIdI+rlA0DgzAiIiI9UtlVykzulw4GYURERHqkMquUmdwvLUzMJyIi0iPKVcoFlXeVMpP7pYVBGBERkR4pa5WyJjIybJGU5I2MDFttd5PKgdORREREeqBgCZjS9t8tb6kYJveLj0EYERGRHtDm1m9lJfc/fPiwUuen8mEQRkSkJ7iqjbT171tWcn90dHSJP8ukfe3Rm5ywnj17onbt2rC0tISbmxuGDBmCu3fvqo7PmTMHMpmsyJeNjY3aefbu3YsGDRrA0tISTZs2xffff692XBAEzJo1C25ubrCyskJgYCCuX7+u1iYtLQ2DBg2CnZ0d7O3tERISgsePH6u1uXTpEtq2bQtLS0t4enpi0aJFWr4iRGRMlKvaNm7cWOLXmjVrkJqaKnZXSQ9URXI/lU1vgrCOHTtiz549uHbtGvbt24fExET07dtXdXzixIlITk5W+2rUqBHeeecdVZszZ85gwIABCAkJwW+//YZevXqhV69euHLliqrNokWLsGrVKmzYsAHnzp2DjY0NgoKC8Pz5c1WbQYMG4Y8//kBMTAwOHjyIH3/8EaGhoarjmZmZ6NKlC7y8vBAfH4/Fixdjzpw52Lhxo46vEhEZKq5qI20qT3I/k/Z1TyYIgiB2JyriwIED6NWrF7KysmBubl7k+O+//47mzZvjxx9/RNu2bQEA/fr1w5MnT3Dw4EFVu9atW6N58+bYsGEDBEGAu7s7JkyYgIkTJwIAMjIy4OLigq1bt6J///5ISEhAo0aNcP78ebzyyisAgMOHD+PNN9/EnTt34O7ujvXr12P69OlISUlRJUhOnToV+/fvx9WrV8v9HDMzMyGXy5GRkQE7O7sKXysi0n/Jycnl+iAXGhoKNze3KugR6aPCdcLytz4qmtxfWtI+X2NlK+/9Wy9zwtLS0rBjxw60adOm2AAMAL788kvUq1dPFYABQFxcHCIjI9XaBQUFYf/+/QCApKQkpKSkIDAwUHVcLpejVatWiIuLQ//+/REXFwd7e3tVAAYAgYGBMDExwblz5/D2228jLi4O7dq1U1uhEhQUhIULF+K///5DjRo1tHEZiIiINFJacv/Dhw8RHR1d6Yr8VH56FYRNmTIFa9aswdOnT9G6dWu1Ea2Cnj9/jh07dmDq1Klqj6ekpMDFxUXtMRcXF6SkpKiOKx8rrU3NmjXVjpuZmcHBwUGtjY+PT5FzKI+VFIRlZWUhKytL9X1mZmax7YiIuHkzVVRZSfWVqchPmhE1J2zq1KnFJtMX/Co4fTdp0iT89ttvOHr0KExNTTF06FAUN5v6zTff4NGjRxg2bFhVPp1Kmz9/PuRyuerL09NT7C4RkQRduPAyVqyIwLZtw7BiRQQuXHhZ7C6RAalM0j5pRtSRsAkTJmD48OGltqlTp47q705OTnByckK9evXQsGFDeHp64uzZswgICFD7mS+//BLdu3cvMqLl6uqKe/fuqT127949uLq6qo4rHys4333v3j00b95c1eb+/ftq58jNzUVaWpraeYr7PQV/R3GmTZumNl2amZnJQIzIiBUsSaGs28SpItI1ZdJ+4Zwwvr60T9QgzNnZGc7OzhX6WYUiP0ovOH0H5Od1nThxAgcOHCjyMwEBAYiNjUVERITqsZiYGFUQ5+PjA1dXV8TGxqqCrszMTJw7dw5jx45VnSM9PR3x8fHw9/cHABw/fhwKhQKtWrVStZk+fTpycnJUOWsxMTGoX79+qflgFhYWsLCwqMDVICJDU9JGy5wqIl3RdkV+Kpte5ISdO3cO58+fx+uvv44aNWogMTERM2fOhK+vb5FRsM2bN8PNzQ1du3Ytcp4PP/wQ7du3x9KlS9GtWzfs2rULv/76q2rFkUwmQ0REBD799FP4+fnBx8cHM2fOhLu7O3r16gUAaNiwIYKDgzF69Ghs2LABOTk5CA8PR//+/eHu7g4AGDhwIObOnYuQkBBMmTIFV65cwcqVK7F8+XLdXigiMhgllZpQThUVDMQKThXxBkkVpc2K/FQ+ehGEWVtbIzo6GrNnz8aTJ0/g5uaG4OBgzJgxQ23kSKFQYOvWrRg+fDhMTU2LnKdNmzaIiorCjBkz8NFHH8HPzw/79+9HkyZNVG0mT56MJ0+eIDQ0FOnp6Xj99ddx+PBhWFpaqtrs2LED4eHh6Ny5M0xMTNCnTx+sWrVKdVwul+Po0aMICwuDv78/nJycMGvWLLVaYkREFVF4qsjERMCiRZkYOHAAb5BUaXz9VC29rRNmDFgnjMh4lVUXTFnfady4rvD3dymxnVi4xRIZM4OuE0ZEZGwKl6RQfrm7K8r+4SpWUj5bYdyDkIwdgzAiIokrrXq5FHGLJaLy0Zu9I4mIjFFJJSm4nx+R/mMQRkQkYaWVpCAi/cbpSCIiCVKWmpBiSYqyku4zMjIKfc8tloiKwyCMiEiCCtZsqlUrE1OmyJGXJ4OpqYCFC8UrSVHepHslfctnI6pKDMKIiCRKGWBNmAD06wfcuAHUrSuDh4c9AHtR+qRJMj23WCIqHYMwIiI94OGR/6VPuMUSUekYhBFJEAtdkr4oLd9LivlsRFLCIIyMkpSDHBa6JH1RWr7Xu+++C3t7e0nlsxFJDYMwMjpSD3JY6JL0QVn5Xvb29nBzc5NUPhuR1DAII6NTOHgpaTpFKkEOl/eTFGmS76WP+WxEVYFBGBk1qS+fl3r/yHiVle9F0iHl9AtjxyCMjJbUl89LvX9knJTJ9HL5I/TocbDIhwTla5NJ99Ig9fQLY1ehIOzEiRPo2LGjtvtCVKWkvnxe6v0j41SwiCwAzJr1ADdvmsHbOxfu7i0BtOTIioQwx1TaKhSEBQcHw8PDAyNGjMCwYcPg6emp7X4R6ZzUp1Ok3j8yXgUDLDc3wN9fxM6QRphjKi0V2sD733//RXh4OL7++mvUqVMHQUFB2LNnDyNp0ivK6RSZTAEARaZTxCb1/hGRfrlw4WWsWBGBbduGYcWKCFy48LLYXTJ6FRoJc3Jywvjx4zF+/HhcuHABW7Zswfvvv4/3338fAwcOREhICJo1a6btvhJpXYsWv8HX9wbS0hzg4JAmiQCnYC5Naf1jzg0RlRdzTKWp0on5LVq0gKurKxwdHbFgwQJs3rwZ69atQ0BAADZs2IDGjRtro59EWlM4eJHLHxX7JiRWkFM456Y4zLkhQ8cVfdrFHFNpqnAQlpOTg2+//RabN29GTEwMXnnlFaxZswYDBgzAgwcPMGPGDLzzzjv4888/tdlfokrThyCHNxcyZlzRp33MMZWmCgVh48aNw86dOyEIAoYMGYJFixahSZMmquM2NjZYsmQJ3N3dtdZRIm3iGzeRdHFFn/aVVVKExFGhIOzPP//E6tWr0bt3b1hYWBTbxsnJCSdOnKhU54iIqHicrqPyYI6ptFUoCIuNjS37xGZmaN++fUVOT0REpTC26TqWVag4fUi/MGYVzgm7du0aVq9ejYSEBABAw4YNMW7cONSvX19rnSMioqKMabqOW3dVHgMs6apQnbB9+/ahSZMmiI+PR7NmzdCsWTNcuHABTZo0wb59+7TdRyIiKkVGhi2SkryRkWErdle0qqSyCob2PMl4VWgkbPLkyZg2bRo+/vhjtcdnz56NyZMno0+fPlrpHBGRVEklJ8uQR4pYVoEMXYWCsOTkZAwdOrTI44MHD8bixYsr3SkiIimTSk6WoRfgZFkFMnQVmo7s0KEDfvrppyKP//zzz2jbtm2lO0VEJGVSyckqbaRInylX6pW1dRdX9JG+q9BIWM+ePTFlyhTEx8ejdevWAICzZ89i7969mDt3Lg4cOKDWlojIkIm1es9QR4oKr+ibNesBbt40g7d3LtzdWwJoqTbdK5WpYSJNVSgIe//99wEA69atw7p164o9BgAymQx5eXmV6B4RkbSJmZNlyAU4CwZNbm6Av3/x7aQyNUxUERUKwhQKhbb7QUSkd8TKyWIBzhekMjUsBo4A6r9Kb+BNRGSsxFq9xwKcJTOWwq6GMALIIFKDIGzVqlXlPukHH3xQoc4QEekTMXOyDP3mVBGGXK6jsMLBS0nBp1RHAAsHkSX1X8pBpDaUOwhbvnx5udrJZDIGYURkFAw5J0vfGHq5jtLoY/BZMDgsrf9SDSK1pdxBWFJSki77QUSkN5iTJT3GWthV34NPfe9/ZTEnjIhIQ8zJkh5DLddRFn0PPvW9/5VV4SDszp07OHDgAG7fvl3kjWjZsmWV7hiR2Aomjd69a4KkJDP4+OTC3T1/dTBvssaN//bSYqxTw/oefOp7/yurQkFYbGwsevbsiTp16uDq1ato0qQJbt68CUEQ0KJFC233kajKFUwaLS1fwdCTRvUdV18ZPmOfGtb34FPf+19ZFQrCpk2bhokTJ2Lu3LmwtbXFvn37ULNmTQwaNAjBwcHa7iNRlVPeuMvKVzD0pFF9ZghL+KlsnBouPfjUB/re/8qoUBCWkJCAnTt35p/AzAzPnj1D9erV8fHHH+Ott97C2LFjtdpJIrEYe76CPtP3JfxUfoYcYJWk8MieXP6o2PckfRkBLKn/hq5CQZiNjY3qjcvNzQ2JiYlo3LgxAODhw4fa6x2RyIw9X8FQ6OMSfqLS6PsIYHmDQ30JIiuqQkFY69at8fPPP6Nhw4Z48803MWHCBFy+fBnR0dGqDb2JDIGx5ysYAmNfAk+GS6oBVnnoexCpLRUKwpYtW4bHjx8DAObOnYvHjx9j9+7d8PPz48pIMjjGnK9gCDilTCRNhh5glUeFgrA6deqo/m5jY4MNGzZorUNEUmSs+QqGgFPKRCRVlSrWmp2djfv370OhUKg9Xrt27Up1isRz5w5w/Trg5wd4eIjdG6LK45QyGQOWY9FPFQrC/vrrL4SEhODMmTNqjwuCAJlMhry8PK10jqrWpk1AaCigUAAmJsDGjUBIiNi9EgeTRg2LMU4p86ZsPFiORX9VKAgbMWIEzMzMcPDgQbi5uUEmk2m7X1SFUlNTcfNmLkJDa0KhyP+3VCiA994T0Lz5fXh7mxndf1wmjeo/Q1vCrwnelI0Ly7HorwoFYRcvXkR8fDwaNGig7f5QFVO+WScleUOhGKZ2LC9PhtWrf4CPzy2jfLM2tudraIw5kOZN2XixHIt+qVAQ1qhRI9YDMxDKN+Gykpf5Zk36yBADLE3xpmw8WI5F/5iU3SRfZmam6mvhwoWYPHkyTp48idTUVLVjmZmZuuwv6YgyeVkmy19kweRlIv1X0k05I8NW5J6RLpRWjoWkqdwjYfb29mq5X4IgoHPnzmptmJiv34wxeZnIkLFGmnExxHIsBReY3L1rgqQkM/j45MLdPX/AQN9TCsodhJ04cUKX/SCJYD0sIsNhiDdlKpmhlWMpuMCktGl1fc5ZLncQ1r59e9Xfb9++DU9PzyKrIgVBwD///KO93hERUYUZ2k2ZymZIMxrKEbCyct30OWe5Qon5Pj4+SE5ORs2aNdUeT0tLg4+PD6cjiYgkwpBuylQ8Qy/HYsjT6hUKwpS5X4U9fvwYlpaWle4UEek3FgoVl6HflEmdoZdjMeRpdY2CsMjISACATCbDzJkzYW1trTqWl5eHc+fOoXnz5lrtIOkWK8OTthUuFFpSjSp9zuOQOkO/KVNRhvxvacjT6hoFYb/9lp8EJwgCLl++rHZjrlatGpo1a4aJEydqt4ekU3yzJm0r+FoqLZlWn/M49AH/z5IhMdRpdY2CMOUKyREjRmDlypWws7PTSaeoavHNmnSBhSOJSJsMcfV+uYu1FrRlyxYGYERUKhaOJCIqXYUS8588eYIFCxYgNjYW9+/fh0KhUDv+999/a6VzRKS/DDmZloh0zxhylisUhI0aNQqnTp3CkCFD4ObmVuxKSdI/d+4A168Dfn6Ah4fYvSF9Z8jJtESke8aQs1yhIOyHH37AoUOH8Nprr2m7PySSTZuA0FBAoQBMTICNG4GQELF7RfrOUJNpiahq6HOAVR4VygmrUaMGHByY12Eo7tx5EYAB+X++917+40SVJZc/go/PLQZgRESFVCgI++STTzBr1iw8ffpU2/2hKpaamoqzZ1NRKK0PeXnAuXOpSE1NFadjpLeMIY+DiEgbKjQduXTpUiQmJsLFxQXe3t4wNzdXO37hwgWtdI50S1lUMyPDFjJZRJEE6tOnt+HKlUcsqvn/mDNXPsaQx0FEpA0VCsJ69eql5W6QGJQ3ybISqI25qKZy+52oKCtMniyHQiGDiYmARYsyMHDgM4MOJgpuPXT3rgmSkszg45MLd/f8YdPSnruhXhMiIm2qUBA2e/ZsbfeDRMYE6qIKjhSuWBEBQchfBaxQyDBpkh3+/Xcz5HLDHCksuPVQaVXvDfG5K3H/SyLSNY2CsF9++QX+/v4wNTUt9nhWVha+/fZbvPvuu1rpHFUtQ6xGXBnKG3BpRUfl8kcGOVKofE5lVb03xOcOcP9LIqoaGiXmBwQEqCVq29nZqRVmTU9Px4ABA7TXuwJ69uyJ2rVrw9LSEm5ubhgyZAju3r2r1ubIkSNo3bo1bG1t4ezsjD59+uDmzZtqbU6ePIkWLVrAwsICdevWxdatW4v8rrVr18Lb2xuWlpZo1aoVfvnlF7Xjz58/R1hYGBwdHVG9enX06dMH9+7dU2tz+/ZtdOvWDdbW1qhZsyYmTZqE3NxcrVwLqlrKoqMFGUvRUWOtel94/8sVKyKwbdswrFgRgQsXXi62HRGRpjQKwgRBKPX7kh7Tho4dO2LPnj24du0a9u3bh8TERPTt21d1PCkpCW+99RY6deqEixcv4siRI3j48CF69+6t1qZbt27o2LEjLl68iIiICIwaNQpHjhxRtdm9ezciIyMxe/ZsXLhwAc2aNUNQUBDu37+vajN+/Hh899132Lt3L06dOoW7d++q/Z68vDx069YN2dnZOHPmDLZt24atW7di1qxZOrk2pFvKnDllIGZMRUeNOQAFSh4JzMiwFblnRGQIKpQTVhpdVc8fP3686u9eXl6YOnUqevXqhZycHJibmyM+Ph55eXn49NNPYWKS/4Y5ceJEvPXWW6o2GzZsgI+PD5YuXQoAaNiwIX7++WcsX74cQUFBAIBly5Zh9OjRGDFiBABgw4YNOHToEDZv3oypU6ciIyMDmzZtQlRUFDp16gQgfy/Nhg0b4uzZs2jdujWOHj2KP//8E8eOHYOLiwuaN2+OTz75BFOmTMGcOXO4NL+cpLQa0Vhz5oy96n1ZU9FERJVRoTphYktLS8OOHTvQpk0bVXkMf39/mJiYYMuWLcjLy0NGRga2b9+OwMBAVZu4uDgEBgaqnSsoKAhxcXEA8qcW4uPj1dqYmJggMDBQ1SY+Ph45OTlqbRo0aIDatWur2sTFxaFp06ZwcXFR+z2ZmZn4448/SnxeWVlZyMzMVPsyVps2AV5eQKdO+X9u2iR2j4y36GiLFr8hImIFhg3bioiIFaqkfGNg7COBRKRbGgdhf/75Jy5duoRLly5BEARcvXpV9X1pAYY2TJkyBTY2NnB0dMTt27fx7bffqo75+Pjg6NGj+Oijj2BhYQF7e3vcuXMHe/bsUbVJSUlRC4wAwMXFBZmZmXj27BkePnyIvLy8YtukpKSozlGtWjXY29uX2qa4cyiPlWT+/PmQy+WqL09Pz3JemYqRYlHN1NRUxMffQ2ioUKiCv4D4+HssHisSYw1AjXkqmoh0T+PpyM6dO6vlfXXv3h1A/jSkIAgaTUdOnToVCxcuLLVNQkICGjRoAACYNGkSQkJCcOvWLcydOxdDhw7FwYMHIZPJkJKSgtGjR2PYsGEYMGAAHj16hFmzZqFv376IiYnRi03Gp02bhsjISNX3mZmZOg3EpFZUU7kiLSnJGwrFMLVjeXkyrF79A3x8bnFFGlUpY52KZokOIt3TKAhLSkrS6i+fMGEChg8fXmqbOnXqqP7u5OQEJycn1KtXDw0bNoSnpyfOnj2LgIAArF27FnK5HIsWLVK1/9///gdPT0+cO3cOrVu3hqura5FVjPfu3YOdnR2srKxgamoKU1PTYtu4uroCAFxdXZGdnY309HS10bDCbQqvqFSeU9mmOBYWFrCwsCj1emiblN5ElW/4yimgwhX8lVNAVbUiTYojhVXFmJ97cYytfAtLdBBVDY2CMC8vL41O/v777+Pjjz+Gk5NTscednZ3h7Oys0TmVFP8/V5WVlQUAePr0qSohX0lZz0zZNiAgAN9//71am5iYGAQEBADIv6H4+/sjNjZWtSuAQqFAbGwswsPDAeTnnpmbmyM2NhZ9+vQBAFy7dg23b99WnScgIADz5s3D/fv3UbNmTdXvsbOzQ6NGjSr0fI2JVJLBpTZSWJWM+bmnpqYiPT0dQMnBh5KhBqGFS3SUVKyXJTqIKkfrqyML+t///oeJEyeWGISV17lz53D+/Hm8/vrrqFGjBhITEzFz5kz4+vqqAp9u3bph+fLl+Pjjj1XTkR999BG8vLzw8sv5dX3GjBmDNWvWYPLkyRg5ciSOHz+OPXv24NChQ6rfFRkZiWHDhuGVV17Bq6++ihUrVuDJkyeq1ZJyuRwhISGIjIyEg4MD7OzsMG7cOAQEBKB169YAgC5duqBRo0YYMmQIFi1ahJSUFMyYMQNhYWFVPtKlr6QyBWSIQUZ5GeNzL+9OAf369YOzs7PBX6OyivUSUeXodHWktmqGWVtbIzo6Gp07d0b9+vUREhKCl156CadOnVIFNZ06dUJUVBT279+Pl19+GcHBwbCwsMDhw4dhZWUFID95/9ChQ4iJiUGzZs2wdOlSfPnll6ryFED+m+uSJUswa9YsNG/eHBcvXsThw4fVEu2XL1+O7t27o0+fPmjXrh1cXV0RHR2tOm5qaoqDBw/C1NQUAQEBGDx4MIYOHYqPP/5YK9fDWBhrMjiJp6ydApT1weRyucEHYIDxFuslqio6HQnTlqZNm+L48eNltuvfvz/69+9fapsOHTrgt99KX2IfHh6umn4sjqWlJdauXYu1a9eW2MbLy6vI1CcR6QfWB8tXVn4mEVWOXtYJIyqvO3eAEyfy/yQqL9YHy8cSHUS6pRcjYUQVsWkTEBqaX2fMxATYuBEICRG7V6QPpLI4RAqkkp9JZIgYhJFkaKssQmpqKm7ezEVoaE0oFPn14ZQFX5s3vw9vbzOjyOehymHw8YKxleggqio6DcIGDx4MOzs7Xf4KMiDaKIvAgq+kTcYafLBOHFHVqFAQplAoitTkUj5+584d1K5dGwCwfv36yvWOjE5lAyOpFXwl0kfGXCeOqCpplJifmZmJd999FzY2NnBxccGsWbOQl5enOv7gwQP4+PhovZNEmmJCMVUER4BecHR0hJubW4lfDMCIKk+jkbCZM2fi999/x/bt25Geno5PP/0UFy5cQHR0tOpNSVu1wYgqizk9pCmOABFRVdIoCNu/fz+2bduGDh06AAB69eqFbt26oUePHjhw4AAA6MVG2WQ8jDWnhyqOAZZ+K7jx+N27JkhKMoOPTy7c3fNHxRlEk5RoFIQ9ePBAbf9IJycnHDt2DEFBQXjzzTfx5Zdfar2DRERE5VHebae4MIekQqOcsNq1ayMhIUHtMVtbWxw9ehTPnj3D22+/rdXOERERlVd5t53iwhySCo2CsC5dumDLli1FHq9evTqOHDkCS0tLrXWMiIioIrjnJekLjaYj586di7t37xZ7zNbWFjExMbhw4YJWOkZUEVzdRlWtYA5ScZiDVPW45yXpC42CsBo1aqBGjRolHre1tUX79u0r3SmiiuLqNqpKBXOQgPxpsLQ0Rzg4pKotCHn33Xdhb29f7Dn4etQ+bjtVMi5ckBaNi7Xm5uZi+fLl2LlzJ/766y8AQL169TBw4EB8+OGHMDc313oniTTBNxCqKgWD/dISwffs2QOg5CCNieLaxxI1RenbwoU7d4Dr1wE/P8DDQ+ze6IZGQdizZ8/wxhtvIC4uDoGBgWjXrh0AICEhAVOmTMGBAwdw9OhR5oYRkVEpKRHc1/eG6uZf2k2PieK6wRI16spauKB8vYr5elSO1EVFWWHyZDkUChlMTAQsWpSBgQOfGdxInUZB2IIFC/DPP//gt99+w0svvaR27Pfff0fPnj2xYMECzJkzR5t9JBKFMXwKI+0oLRFcLn9UriBNF5ivRsUp6/UqFuVIXUaGLVasiIAg5NcdVShkmDTJDv/+uxly+SPJjNRpg0ZB2K5du7Bs2bIiARgANGvWDEuWLMH06dMZhJHeMrZPYaQdZSWCi3HTK2++miHd0Lgwp3ykunBB+YGhrP8vhjRyrFEQduvWLbz66qslHm/dujVu375d6U4RicEYP4WRdpSVCC7GTa+8+WqGdEPjwpzykfrCBakGibqgURBmZ2eH+/fvw9PTs9jjKSkpsLW11UrHiKqaMX4KI+0pLRFczJueWFOhYjH2AKu8pLxwQepBojZpFIR17NgRn332Gfbt21fs8QULFqBjx45a6RiRWIzpUxhpV2mJ4GLd9KSa/0Pik/LCBSkHidqkURA2e/ZstGrVCq1bt0ZkZCQaNGgAQRCQkJCA5cuX488//8TZs2d11VeiKmFMn8KocjTNLRLjpscPFaSvpBwkaotGQVijRo0QExODkJAQ9O/fHzJZfs6MIAho0KABjh49isaNG+uko0RVyVg+hVHllJWDlJGRgd27d5d5Hl0miuvDhwqu4qwaXLggPRoXa23dujX++OMPXLx4Ua1Ya/PmzbXdNyJRGcOnMKq80oIDNzc3SSSKS/lDhTGu4hQLFy5Ij8ZBWGZmJqpXr47mzZurBV4KhQKPHz+GnZ2dNvtHRKTXpHJDk+qHCmNcxSkmqbwei2OMI3UaBWHffPMNpkyZgosXL8La2lrt2LNnz9CyZUssWbIEPXr00GoniYhIM/p2QzO2VZxUlDGO1GkUhK1fvx6TJ08uEoABgI2NDaZMmYI1a9YwCCO9pG83LalgPo806dsNjas4CZD2SJ0uaBSEXblyBevWrSvxeLt27TBjxoxKd4pIDPp205IC5vNImz5dc67iJGOkURD233//ITc3t8TjOTk5+O+//yrdKSKx6NNNSwqYz0Paog+rOIm0TaMgzNvbG7/++isaNGhQ7PFff/0VXl5eWukYEekP5vOQNkh5FSeRLpiU3eSF3r17Y/r06bh3716RYykpKZgxYwb69Omjtc4RkX4oLZ+HSBNy+SP4+NxiAEZGQaORsKlTp+Lbb7+Fn58fBg8ejPr16wMArl69ih07dsDT0xNTp07VSUeJSLqYz0MVxQUxZMw0CsJsbW1x+vRpTJs2Dbt371blf9nb22Pw4MGYN28eN/AmMkLM59EeY1ttygUxZMw0LtYql8uxbt06rF27Fg8fPoQgCHB2dlZtYVTQ6dOn8corr8DCwkIrnSUi6WI+T+UZ62pTQ3ouRJrQOAhTkslkcHZ2LrVN165dcfHiRdSpU6eiv4aI9IhUq7LrC642JTIuGiXma0oQBF2enohExnwe3ShptWlGBtM9iAxJhUfCiIiYz6MbrB5PZBwYhBFRpTDA0j6uNiUyDgzCiIgkhqtNydAZ2yrgkug0CCtuxSQREZWttNWmDx8+VGtrLDcsMgzGugq4ODoNwpiYT0RUcSWtNo2Oji7ymDHcsMgwcBXwCzoNwh494tC5MeHwMlHllGcVaUmjBsZwwzJUxvreyT1nNQzCOnXqVK52x48fr1BnSH9xeJmo8opbbfrw4UPVyFdpowaknwq/d5bEEN87uQpYwyDs5MmT8PLyQrdu3WBubq6rPpEe4vAykXaUdKPlqIFhKvyeaEwjnVwFrGEQtnDhQmzZsgV79+7FoEGDMHLkSDRp0kRXfSM9xBsFGSqxp4w4amD4jG2kk6uANQzCJk2ahEmTJiEuLg6bN2/Ga6+9hvr162PkyJEYOHAg7OzsdNVPqqSquoHwRkGGSApTRhw1MGzG+gHW2PecrVBifkBAAAICArBy5Urs3bsXa9euxcSJE3H37l0GYhJUlflavFGQIZLClBFHDQybMX+ANeY9Zyu1OvLChQs4deoUEhIS0KRJE+aJSVRV5mvxRkGGTswpI2MfNTBk+vwBVtOZFu45+4LGQdjdu3exdetWbN26FZmZmRg8eDDOnTuHRo0a6aJ/pEVVNdzNGwUZKjGmjArfiEoaNTCGG5Yh09cPsBWZaeGesy9oFIS9+eabOHHiBLp06YLFixejW7duMDPjzkf6oiqHu415eJkMlxhTRrxhGQ99/ABb0ZkWvl7zaRRBHT58GG5ubrh9+zbmzp2LuXPnFtvuwoULWukcaZcuh7s5vEz6rrQpFeU2QWJNGfGGZbgMZaTTWBcWVJZGQdjs2bN11Q+qAroc7uanddJn5V39qK9TRiRdhvLeacwLCyqDQZiR0eVwt9TfJIhKosmiFH2cMiJpM4T3Tn1eWCAmrSR0nTp1Ck+ePEFAQABq1KihjVOSDjFfi6h0JSUXK+nrlJGuiF3IlsTHUeKK0bhi/uPHj/HJJ58AAARBQNeuXXH06FEAQM2aNREbG4vGjRtrv6dUYczXIiq/0pKLe/fuDScnp2J/zlgDDSkUsqUXxAyIOUqsOY2CsN27d2PKlCmq77/++mv8+OOP+Omnn9CwYUMMHToUc+fOxZ49e7TeUao4Q8k5INK1spKLnZyc4ObmJnIvpaW8U7mGuPeh1EghIOZMi2Y0CsKSkpLw0ksvqb7//vvv0bdvX7z22msAgBkzZuCdd97Rbg9JKxhgEZWNycWVV9ZULumOGAExZ1oqR6MgLDc3FxYWFqrv4+LiEBERofre3d1dtZSbiEjfMLm4coxtA2qpq4qAmDMtlaNREObr64sff/wRderUwe3bt/HXX3+hXbt2quN37tzhhSYivcXk4opjnShpqcqAmPf9itMoCAsLC0N4eDh++uknnD17FgEBAWrbFR0/fhwvv/yy1jtJRKRLBadKSksu5pRKyXQ5lcvVl5phQKw/NArCRo8eDVNTU3z33Xdo165dkbphd+/exciRI7XaQSIiXeOUSuXpaipXCsnm+oa5jfpD4zphI0eOLDHQWrduXaU7REQkBt7AK0dXU7lcfak55jbqD+6+TUREFVbVU7lcfVk25jbqD42CsJycHEyfPh3R0dFwcHDAmDFj1EbF7t27B3d3d+Tl5Wm9o0REJD1VOZXL1ZelY26j/tEoCJs3bx6++uorTJw4Eenp6YiMjMS5c+fw+eefq9oIgqD1ThIRkXRVxVQuk83LxtxG/aNRELZjxw58+eWX6N69OwBg+PDh6Nq1K0aMGIHNmzcDAGQymfZ7SVWGq5CISIqYbF4+fH/WLxoFYf/++y+aNGmi+r5u3bo4efIkOnXqhCFDhmDRokVa7yBVHa5CIiKpYrI5GSKTspu84OrqisTERLXHatWqhRMnTuD8+fMYPny4NvtGVYyrkIhIqpTJ5jKZAgCYbE4GQaMgrFOnToiKiiryuLu7O44fP46kpCStdaywnj17onbt2rC0tISbmxuGDBmCu3fvqrXZs2cPmjdvDmtra3h5eWHx4sVFznPy5Em0aNECFhYWqFu3LrZu3Vqkzdq1a+Ht7Q1LS0u0atUKv/zyi9rx58+fIywsDI6OjqhevTr69OmDe/fuqbW5ffs2unXrBmtra9SsWROTJk1Cbm5u5S8EEZERKZxsHhGxAsOGbUVExAq1pHxtJ5unpqYiOTm5xK/U1FSt/j4yThpNR86cORNXr14t9litWrVw6tQpxMTEaKVjhXXs2BEfffQR3Nzc8O+//2LixIno27cvzpw5AwD44YcfMGjQIKxevRpdunRBQkICRo8eDSsrK4SHhwPI34C8W7duGDNmDHbs2IHY2FiMGjUKbm5uCAoKAgDs3r0bkZGR2LBhA1q1aoUVK1YgKCgI165dQ82aNQEA48ePx6FDh7B3717I5XKEh4ejd+/eOH36NAAgLy8P3bp1g6urK86cOYPk5GQMHToU5ubm+Oyzz3RyfaSGuWVEpA1iJJszNYOqikzQ0+WMBw4cQK9evZCVlQVzc3MMHDgQOTk52Lt3r6rN6tWrsWjRIty+fRsymQxTpkzBoUOHcOXKFVWb/v37Iz09HYcPHwYAtGrVCi1btlT9B1QoFPD09MS4ceMwdepUZGRkwNnZGVFRUejbty8A4OrVq2jYsCHi4uLQunVr/PDDD+jevTvu3r0LFxcXAMCGDRswZcoUPHjwoNyf2DIzMyGXy5GRkQE7OzutXLfSJCcnY+PGjWW2Cw0NhZubW4nH+QZGRPpMW++Fho4ftktW3vt3hYq17t27Fzt37sRff/0FAKhXrx4GDhyoCkp0LS0tDTt27ECbNm1gbm4OAMjKyoK1tbVaOysrK9y5cwe3bt2Ct7c34uLiEBgYqNYmKCgIERERAPJzneLj4zFt2jTVcRMTEwQGBiIuLg4AEB8fj5ycHLXzNGjQALVr11YFYXFxcWjatKkqAFP+nrFjx+KPP/7Qm/01K1oUkbllRGRIWCC2KH7Y1g6NgjCFQoEBAwZg7969qFevHho0aAAA+OOPP9CvXz+888472Llzp87KVEyZMgVr1qzB06dP0bp1axw8eFB1LCgoCOPHj8fw4cPRsWNH3LhxA0uXLgWQ/6nG29sbKSkpaoERALi4uCAzMxPPnj3Df//9h7y8vGLbKKdhU1JSUK1aNdjb2xdpk5KSompT3DmUx0qSlZWFrKws1feZmZnluSw6waKIRC/wE7/x4nth8fhhWzs0CsJWrlyJY8eO4cCBA6paYUoHDhzAiBEjsHLlStXIUlmmTp2KhQsXltomISFBFexNmjQJISEhuHXrFubOnYuhQ4fi4MGDkMlkGD16NBITE9G9e3fk5OTAzs4OH374IebMmQMTE43WH4hm/vz5mDt3rtjdYFFEogL4id948b2w/DhaWDEaBWFbtmzB4sWLiwRgQP7qxUWLFmkUhE2YMKHMshZ16tRR/d3JyQlOTk6oV68eGjZsCE9PT5w9exYBAQGQyWRYuHAhPvvsM6SkpMDZ2RmxsbFq53B1dS2yivHevXuws7ODlZUVTE1NYWpqWmwbV1dX1Tmys7ORnp6uNhpWuE3hFZXKcyrbFGfatGmIjIxUfZ+ZmQlPT89Sr482KXPVyiqKyC0vyJjwE7/xYoHY8uFoYcVpFIRdv369SE5VQYGBgaqViOXh7OwMZ2dnTbqgolDk14opOH0HAKampqhVqxYAYOfOnQgICFD9joCAAHz//fdq7WNiYhAQEAAgPwjx9/dHbGwsevXqpfo9sbGxqufl7+8Pc3NzxMbGok+fPgCAa9eu4fbt26rzBAQEYN68ebh//75qRWVMTAzs7OzQqFGjEp+ThYUFLCwsKnQ9tEG5CunmzVxs3y5AoXgxrWxqKmDcuK7w9jbT+NM+PyERkT5igdiycbSwcjQKwqysrJCeno7atWsXezwzMxOWlpZa6VhB586dw/nz5/H666+jRo0aSExMxMyZM+Hr66sKfB4+fIivv/4aHTp0wPPnz7Flyxbs3bsXp06dUp1nzJgxWLNmDSZPnoyRI0fi+PHj2LNnDw4dOqRqExkZiWHDhuGVV17Bq6++ihUrVuDJkycYMWIEAEAulyMkJASRkZFwcHCAnZ0dxo0bh4CAALRu3RoA0KVLFzRq1Ei1i0BKSgpmzJiBsLAwUYOs4hSX6+LuDixalIEpU+TIy5PB1BT4/HMZ/P1dSjhLyfgJiQwNP1QYD2WB2MLvYfx3f4GjhZWjURAWEBCA9evXY/369cUeX7t2rSoo0iZra2tER0dj9uzZePLkCdzc3BAcHIwZM2aoBTXbtm3DxIkTIQgCAgICcPLkSbz66quq4z4+Pjh06BDGjx+PlStXwsPDA19++aWqRhgA9OvXDw8ePMCsWbOQkpKC5s2b4/Dhw2qJ9suXL4eJiQn69OmDrKwsBAUFYd26darjpqamOHjwIMaOHYuAgADY2Nhg2LBh+Pjjj7V+bSqjrFyXDz6wRVqaAyZMeAtNm9bQ+Pz8hESGRmofKrhgQDcKF4j19b2BtDQHODikqb13MTWDo4WVpVEQNn36dHTo0AGpqamYOHEiGjRoAEEQkJCQgKVLl+Lbb7/FiRMntN7Jpk2b4vjx46W2cXJyUpWRKE2HDh3w22+lv2mGh4eXOq1qaWmJtWvXYu3atSW28fLyKjL1KTVl5bDI5Y8glz+Ck9Nzjc7L3DIyRFL7UMEFA7ojRoFYfcXRwsrRKAhr06YNdu/ejdDQUOzbt0/tWI0aNbBz50689tprWu0g6R9d5ZYRiUlq0y5cMKBbfH8qHUcLtUPjYq1vv/02goKCcOTIEVy/fh1AfrHWLl26FCmWSsbL0dERjo7Axo3Ae+8BeXmoVG4Zkdg47UL0AkcLtUOjIOz48eMIDw/H2bNn8fbbb6sdy8jIQOPGjbFhwwa0bdtWq50k/RUSAgQFATduAHXrAh4eYveISDPKT/JlTbvwEz8ZGwZYladRELZixQqMHj262H2Q5HI53nvvPSxbtoxBGKnx8GDwRfqr8Cf+WbMe4OZNM3h758LdvSWAlpL4xM9Vm0T6R6Mg7Pfffy+1wn2XLl2wZMmSSneKiEhKCgZYbm6Av7+InSmG1FZtGhquQiVd0SgIu3fvnmrD7GJPZmaGBw8eVLpTRERUPlJbtWlouAqVdEmjTRVr1aqFK1eulHj80qVLcHNzq3SnqGqUN4eFuS5E0lXaqk2qPK5CJV3SaCTszTffxMyZMxEcHFykMv6zZ88we/bsYveVJGkqnOty964JkpLM4OOTC3f3/G2hOMxOJE3KD0dlrdrkhygi6dIoCJsxYwaio6NRr149hIeHo379+gCAq1evYu3atcjLy8P06dN10lHSDWWAtWkTEBoKKBSAiUl+aYmQEJE7R0QlKvghqlatzALbjAlYuDATAwcO4IcoHeACCNImmSAIgiY/cOvWLYwdOxZHjhyB8kdlMhmCgoKwdu1a+Pj46KSjxigzMxNyuRwZGRnFrkjVljt3AC+v/ABMydQUuHmTqxqJ9MWdOywFowvJycnYuHEjgNIXQISGhjIdh1TKe//WuFircjue//77Dzdu3IAgCPDz80ONGprvLUjScP26egAG5BdXvXGDb+ZE+oKlYHSLCyBIFzQOwpRq1KiBli1barMvJBI/v/wpyMIjYXXritcnIiJNaLOMRMFzPXz4EID2tq1iuQsqqMJBGBkOD4/ithcy3E/VfBMkMizaLCNR0rm0sW0Vy11QYQzCCIDxbC/EN0Eiw6PNMhIltdHGtlUsd0GFMQgjFWPIKeGbIBFVVIsWv8HX9wbS0hwwaFArNGkinW2rSD8xCCMiIionufwR5PJHaNIkqNKrIVnughiEERGRQdFmcKOrQIn7fRLAIIyIiAyINoMbXQVKLHdBSgzCiIioSuh6ZbI2gxtdBkraKndB+o9BGBER6VxVrEzWZnCjy0BJG+UuyDCYlN2EiIiocnS5MrnwZuYFabqZuTbPVdK5leUulOevSLkLMgwcCSOjUt43N74JEukPbW5mrsuN0QueGwBmzXqAmzfN4O2dC3d3lrswRhpv4E1Vp6o28DY2BfNS7t41QVKSGXx8cuHunv+plG+CRNpXcCNsoORVh6VthF3enDJtbmZuDBujcxcR7dPZBt5E+k75ZrJpExAamr9npolJ/tZNISEid47ICFRk1aEmOWUeHo5aC5gMvYg1dxERF3PCyCjdufMiAAPy/3zvvfzHiUh3Slp1mJFhW+rPcbcL3eB1FReDMDJK16+/CMCU8vLypx2ISHdKW3VIZGwYhJFR8vPLn4IsyNQ0P++DiHSnrFWH5ZWRYYukJO8yR9CIpIw5YWSUPDzyc8Deey9/BMzUFPj8c8PO/SASU+HyDIVzwjQpz8Atf3SH+1lWLQZhZLRCQoCgIMNf+UQkBdoqz8Atf3SHwW3VYxBGRs3QVz4RSUnBAMvNDfD31/wc3PJHNxjcioM5YUREpDe0lVNG6rhgQhwMwoiISPK45Y9u6HKbJiobK+ZLGCvmExG9UHi3ixc5ZdztojKU1zUqyqrQNk0ZGDjwGa9rBZT3/s0gTMIYhBGRMeI2OuIxhm2aqgK3LSIiIr3DbXTExcVKVYtBGJEe4MgAGYvybo9z//59/p8gvccgjEjiODJAVNSePXvKbMP/EyR1XB1JJHHcYJeMWWW2J+L/CZI6joQREZEksYI7GTqOhBERkeSUVMG9uBExbuZN+oojYUR6hhvskjEo7/ZEHC0jfcYgjEiP8IZDxkJZwb1gIFZ4eyLud6hbXJWtewzCiPQEbzhkDApvT1T4Q0fB1zo389YdrsquGgzCiPQEbzhkDBwdHREeHq4agZk160GB7YlaAmiJjIwM7N69u1yjZVQxXJVdNRiEEUlc4Q12S7rhcINdMhQFR1bc3AB/f/Xj5R0t4/8JkjoGYUQSV3BkoFatzEIb7GZi4MABzM0go1Ke0TL+nyB9wCCMSA8obyYTJgD9+ik32JXBw8MegL2YXSMSRVmjZaRdXJWtGwzCiPQMN9gloqrEVdm6wyCMDBaXVxMRVQ5XZesWgzAySFxeTURUeVyVrVsMwsggcXk1EVHFGeqqbKnNkDAIIyIiIjWGuCpbijMkDMLIKHBlDxGRZgxtVbYUZ0gYhJHB48oeIqLK4aps3TApuwmR/ippZU9Ghq3IPSMiImPHIIwMWmkre4iIiMTEIIwMmnJlT0Hc4JeIiKSAQRgZpMIb/CoDMW7wS0REQH66SlKSt6jpKUzMJ4PEDX6JpEFqdZmIAOks2GIQRgaLG/wSiUuKdZnIeClnPsraiqkqZ0gYhBERkU4UHgErqV4fd66gqqCcITlxAli+vOiCrddeG4YOHcCK+USkW3fuANevA35+rP1DVUMq0z9k3BwdHdG6NWBiAigKrNkyNQVatXJEVQ/IMjGfyMhs2gR4eQGdOuX/uWmT2D0iQ8d6fSQlHh7Axo35gReQ/+fnn4vzgZRBGJERuXMHCA198QlQoQDeey//cSJdYb0+kpqQEODmTeDEifw/Q0LE6QenI4mMyPXr6kPwAJCXl78nHKclSVeU9foKBmKs10dik8JWTAzCqMKYV6R//PyKz4WoW1e8PpHhU9brK5wTVjA531iwZAcVxCCMKmTTphfTWiYm+fPrYg3nUvkpcyHeey9/BEzMXAgyLi1a/AZf3xtIS3OAg0Oa0QZgLNlBBTEII42VlFcUFMSbuT4ICcn/t7pxI38EjP9mpCuF6y3J5Y+KDb6MZeeK8pbiYMkO46F3iflZWVlo3rw5ZDIZLl68qHbs0qVLaNu2LSwtLeHp6YlFixYV+fm9e/eiQYMGsLS0RNOmTfH999+rHRcEAbNmzYKbmxusrKwQGBiI69evq7VJS0vDoEGDYGdnB3t7e4SEhODx48ca90VflZZXRNKVmpqK5ORkJCcnw9Q0GfXr5/+pfCw1NVXsLpKBUdZlCg0NLfGLoz5kzPRuJGzy5Mlwd3fH77//rvZ4ZmYmunTpgsDAQGzYsAGXL1/GyJEjYW9vj9DQUADAmTNnMGDAAMyfPx/du3dHVFQUevXqhQsXLqBJkyYAgEWLFmHVqlXYtm0bfHx8MHPmTAQFBeHPP/+EpaUlAGDQoEFITk5GTEwMcnJyMGLECISGhiIqKqrcfdFnzCvSP5wGIbHw9VSykorXkvHQqyDshx9+wNGjR7Fv3z788MMPasd27NiB7OxsbN68GdWqVUPjxo1x8eJFLFu2TBX4rFy5EsHBwZg0aRIA4JNPPkFMTAzWrFmDDRs2QBAErFixAjNmzMBbb70FAPjqq6/g4uKC/fv3o3///khISMDhw4dx/vx5vPLKKwCA1atX480338SSJUvg7u5err7oM+YV6R9OgxBJC4vXEqBH05H37t3D6NGjsX37dlhbWxc5HhcXh3bt2qnlFgQFBeHatWv477//VG0CAwPVfi4oKAhxcXEAgKSkJKSkpKi1kcvlaNWqlapNXFwc7O3tVQEYAAQGBsLExATnzp0rd1+Kk5WVhczMTLUvqZJKjRUiIn3D4rWkpBdBmCAIGD58OMaMGaMW/BSUkpICFxcXtceU36ekpJTapuDxgj9XUpuaNWuqHTczM4ODg0OZv6fg7yjO/PnzIZfLVV+enp4ltpUCDw+gQweOgBERaYLFa0lJ1CBs6tSpkMlkpX5dvXoVq1evxqNHjzBt2jQxu6tz06ZNQ0ZGhurrn3/+EbtLRESkZcritQWxeK1xEjUnbMKECRg+fHipberUqYPjx48jLi4OFhYWasdeeeUVDBo0CNu2bYOrqyvu3bundlz5vaurq+rP4toUPK58zM3NTa1N8+bNVW3u37+vdo7c3FykpaWV+XsK/o7iWFhYFHmORERkGJQpKmUVrzWWkh0kchDm7OwMZ2fnMtutWrUKn376qer7u3fvIigoCLt370arVq0AAAEBAZg+fTpycnJgbm4OAIiJiUH9+vVRo0YNVZvY2FhERESozhUTE4OAgAAAgI+PD1xdXREbG6sKujIzM3Hu3DmMHTtWdY709HTEx8fD398fAHD8+HEoFAqN+kJERMZFWbJDuQBm1qwHuHnTDN7euXB3bwmgJSvmGxm9WB1Zu3Ztte+rV68OAPD19YXH/yckDRw4EHPnzkVISAimTJmCK1euYOXKlVi+fLnq5z788EO0b98eS5cuRbdu3bBr1y78+uuv2LhxIwBAJpMhIiICn376Kfz8/FQlKtzd3dGrVy8AQMOGDREcHIzRo0djw4YNyMnJQXh4OPr37w93d/dy94WIiIxPwQDLzQ34/8/yZKT0IggrD7lcjqNHjyIsLAz+/v5wcnLCrFmz1EpCtGnTBlFRUZgxYwY++ugj+Pn5Yf/+/aoaYUB+HbInT54gNDQU6enpeP3113H48GFVjTAgvxxGeHg4OnfuDBMTE/Tp0werVq3SqC9EVam80xucBiEiqjoyQRAEsTtBxcvMzIRcLkdGRgbs7OzE7g7pOW4cTERUNcp7/zaYkTAiKh0DLCIiaWEQRkREREZBajMCDMKIiIi0SGo3esonxT10GYQRERFpiRRv9JRPinvo6sW2RURERPpAijd6ki4GYUREREQiYBBGRFSMO3eAEyfy/yQi0gUGYUREhWzaBHh5AZ065f+5aZPYPSIiQ8TEfNIIV/2QobtzBwgNBRSK/O8VCuC994CgIOD/d0kjKreMDFukpTnCwSFVtUE3kRKDMCo3rvohY3D9+osATCkvD7hxg0EYaebChZfx3XfdIQgmkMkU6NHjIFq0+E3sbpGEcDqSyo2rfsgY+PkBJoXeGU1Ngbp1xekP6aeMDFtVAAYAgmCC777rjowMW5F7ZrykuIcuR8KIiArw8AA2bsyfgszLyw/APv+co2BUPsobeFqaoyoAUxIEE6SlOUAuf1SlN3rK5+joiPDwcEml1DAIIyIqJCQkPwfsxo38ETAGYFReyhv9zZu52L5dgEIhUx0zNRUwblxXeHubMWVDJFK77gzCiIj+X8GFJ6amQP36+Y8nJ+f/yYUnVB6Ojo5wdCxuRFUGf38XsbtH/+/OnfwcUD8/8T5oMQgjIgIXnpD2cURVujZterEK2sQkP2AOCan6fjAxn4gIXHhCuuHhAXTowABMSkoqQyNGYWaOhBERkdpU7N27JkhKMoOPTy7c3fPvVJyKJUMhpTI0DMKo3KS4vJeIKq/gVGxpta04FUuGQFmGpmAgJlYZGgZhVG5SXN5LRJWn/D9dUm0rX98bkMsfcSqWDIKUytAwCCONMMAiMlxl1bYiMhRSWTTBIIyIiAAADg6pkMkUaoGYTKaAg0OaiL0i0g0PD/EXTHB1JBERAQDk8kfo0eMgZLL8ZBllThhHwYh0gyNhRETgwhOlFi1+g6/vDaSlOcDBIY0BGJEOMQgjIgIXnhQklz9i8EVUBRiEERH9P2MIsIhIOpgTRkRk5DgVSyQOjoQRERk5TsUSiYNBGBERMcAiEgGnI4mIiIhEwCCMiIiISAQMwoiIiIhEwCCMiIiISAQMwoiIiIhEwCCMiIiISAQMwoiIiIhEwCCMiIiISAQMwoiIiIhEwIr5EiYIAgAgMzNT5J4QERFReSnv28r7eEkYhEnYo0ePAACenp4i94SIiIg09ejRI8jl8hKPy4SywjQSjUKhwN27d2FrawuZTCZ2d6pMZmYmPD098c8//8DOzk7s7ug1Xkvt4HXUHl5L7eB11B5dXEtBEPDo0SO4u7vDxKTkzC+OhEmYiYkJPDw8xO6GaOzs7PjmoiW8ltrB66g9vJbaweuoPdq+lqWNgCkxMZ+IiIhIBAzCiIiIiETAIIwkx8LCArNnz4aFhYXYXdF7vJbaweuoPbyW2sHrqD1iXksm5hMRERGJgCNhRERERCJgEEZEREQkAgZhRERERCJgEEZEREQkAgZhJJoff/wRPXr0gLu7O2QyGfbv3692XBAEzJo1C25ubrCyskJgYCCuX78uTmclrqxrOXz4cMhkMrWv4OBgcTorYfPnz0fLli1ha2uLmjVrolevXrh27Zpam+fPnyMsLAyOjo6oXr06+vTpg3v37onUY2kqz3Xs0KFDkdfkmDFjROqxdK1fvx4vvfSSqpBoQEAAfvjhB9Vxvh7Lp6zrKNbrkUEYiebJkydo1qwZ1q5dW+zxRYsWYdWqVdiwYQPOnTsHGxsbBAUF4fnz51XcU+kr61oCQHBwMJKTk1VfO3furMIe6odTp04hLCwMZ8+eRUxMDHJyctClSxc8efJE1Wb8+PH47rvvsHfvXpw6dQp3795F7969Rey19JTnOgLA6NGj1V6TixYtEqnH0uXh4YEFCxYgPj4ev/76Kzp16oS33noLf/zxBwC+HsurrOsIiPR6FIgkAIDwzTffqL5XKBSCq6ursHjxYtVj6enpgoWFhbBz504Reqg/Cl9LQRCEYcOGCW+99ZYo/dFn9+/fFwAIp06dEgQh/zVobm4u7N27V9UmISFBACDExcWJ1U3JK3wdBUEQ2rdvL3z44YfidUqP1ahRQ/jyyy/5eqwk5XUUBPFejxwJI0lKSkpCSkoKAgMDVY/J5XK0atUKcXFxIvZMf508eRI1a9ZE/fr1MXbsWKSmpordJcnLyMgAADg4OAAA4uPjkZOTo/a6bNCgAWrXrs3XZSkKX0elHTt2wMnJCU2aNMG0adPw9OlTMbqnN/Ly8rBr1y48efIEAQEBfD1WUOHrqCTG65EbeJMkpaSkAABcXFzUHndxcVEdo/ILDg5G79694ePjg8TERHz00Ufo2rUr4uLiYGpqKnb3JEmhUCAiIgKvvfYamjRpAiD/dVmtWjXY29urteXrsmTFXUcAGDhwILy8vODu7o5Lly5hypQpuHbtGqKjo0XsrTRdvnwZAQEBeP78OapXr45vvvkGjRo1wsWLF/l61EBJ1xEQ7/XIIIzICPTv31/196ZNm+Kll16Cr68vTp48ic6dO4vYM+kKCwvDlStX8PPPP4vdFb1W0nUMDQ1V/b1p06Zwc3ND586dkZiYCF9f36rupqTVr18fFy9eREZGBr7++msMGzYMp06dErtbeqek69ioUSPRXo+cjiRJcnV1BYAiq3zu3bunOkYVV6dOHTg5OeHGjRtid0WSwsPDcfDgQZw4cQIeHh6qx11dXZGdnY309HS19nxdFq+k61icVq1aAQBfk8WoVq0a6tatC39/f8yfPx/NmjXDypUr+XrUUEnXsThV9XpkEEaS5OPjA1dXV8TGxqoey8zMxLlz59Tm8Kli7ty5g9TUVLi5uYndFUkRBAHh4eH45ptvcPz4cfj4+Kgd9/f3h7m5udrr8tq1a7h9+zZflwWUdR2Lc/HiRQDga7IcFAoFsrKy+HqsJOV1LE5VvR45HUmiefz4sdqnjKSkJFy8eBEODg6oXbs2IiIi8Omnn8LPzw8+Pj6YOXMm3N3d0atXL/E6LVGlXUsHBwfMnTsXffr0gaurKxITEzF58mTUrVsXQUFBIvZaesLCwhAVFYVvv/0Wtra2qrwauVwOKysryOVyhISEIDIyEg4ODrCzs8O4ceMQEBCA1q1bi9x76SjrOiYmJiIqKgpvvvkmHB0dcenSJYwfPx7t2rXDSy+9JHLvpWXatGno2rUrateujUePHiEqKgonT57EkSNH+HrUQGnXUdTXY5WvxyT6fydOnBAAFPkaNmyYIAj5ZSpmzpwpuLi4CBYWFkLnzp2Fa9euidtpiSrtWj59+lTo0qWL4OzsLJibmwteXl7C6NGjhZSUFLG7LTnFXUMAwpYtW1Rtnj17Jrz//vtCjRo1BGtra+Htt98WkpOTxeu0BJV1HW/fvi20a9dOcHBwECwsLIS6desKkyZNEjIyMsTtuASNHDlS8PLyEqpVqyY4OzsLnTt3Fo4ePao6ztdj+ZR2HcV8PcoEQRB0G+YRERERUWHMCSMiIiISAYMwIiIiIhEwCCMiIiISAYMwIiIiIhEwCCMiIiISAYMwIiIiIhEwCCMiIiISAYMwIiIiIhEwCCMiyUpJScG4ceNQp04dWFhYwNPTEz169FDbK+/MmTN48803UaNGDVhaWqJp06ZYtmwZ8vLyVG1u3ryJkJAQ+Pj4wMrKCr6+vpg9ezays7PVft8XX3yBZs2aoXr16rC3t8fLL7+M+fPnq47PmTMHMpkMwcHBRfq6ePFiyGQydOjQoVzPTXkumUwGMzMzeHt7Y/z48Xj8+LGGV4mI9BX3jiQiSbp58yZee+012NvbY/HixWjatClycnJw5MgRhIWF4erVq/jmm2/w7rvvYsSIEThx4gTs7e1x7NgxTJ48GXFxcdizZw9kMhmuXr0KhUKBzz//HHXr1sWVK1cwevRoPHnyBEuWLAEAbN68GREREVi1ahXat2+PrKwsXLp0CVeuXFHrl5ubG06cOIE7d+7Aw8ND9fjmzZtRu3ZtjZ5j48aNcezYMeTm5uL06dMYOXIknj59is8//7xI2+zsbFSrVq0CV1J3pNgnIr2i842RiIgqoGvXrkKtWrWEx48fFzn233//CY8fPxYcHR2F3r17Fzl+4MABAYCwa9euEs+/aNEiwcfHR/X9W2+9JQwfPrzUPs2ePVto1qyZ0L17d+HTTz9VPX769GnByclJGDt2rNC+fftyPLsX5ypo9OjRgqurq9rxL774QvD29hZkMpkgCPnPPSQkRHBychJsbW2Fjh07ChcvXlSd4+LFi0KHDh2E6tWrC7a2tkKLFi2E8+fPC4IgCDdv3hS6d+8u2NvbC9bW1kKjRo2EQ4cOCYIgCFu2bBHkcrlaf7755huh4G2ion0iouJxOpKIJCctLQ2HDx9GWFgYbGxsihy3t7fH0aNHkZqaiokTJxY53qNHD9SrVw87d+4s8XdkZGTAwcFB9b2rqyvOnj2LW7duldm/kSNHYuvWrarvN2/ejEGDBlV6VMjKykptivTGjRvYt28foqOjcfHiRQDAO++8g/v37+OHH35AfHw8WrRogc6dOyMtLQ0AMGjQIHh4eOD8+fOIj4/H1KlTYW5uDgAICwtDVlYWfvzxR1y+fBkLFy5E9erVNepjRfpERMXjdCQRSc6NGzcgCAIaNGhQYpu//voLANCwYcNijzdo0EDVprjzr169WjUVCQCzZ89G79694e3tjXr16iEgIABvvvkm+vbtCxMT9c+r3bt3x5gxY/Djjz/C398fe/bswc8//4zNmzdr+lRV4uPjERUVhU6dOqkey87OxldffQVnZ2cAwM8//4xffvkF9+/fh4WFBQBgyZIl2L9/P77++muEhobi9u3bmDRpkura+fn5qc53+/Zt9OnTB02bNgUA1KlTR+N+VqRPRFQ8BmFEJDmCIOikLQD8+++/CA4OxjvvvIPRo0erHndzc0NcXByuXLmCH3/8EWfOnMGwYcPw5Zdf4vDhw2qBmLm5OQYPHowtW7bg77//Rr169fDSSy9p1A8AuHz5MqpXr468vDxkZ2ejW7duWLNmjeq4l5eXKtgBgN9//x2PHz+Go6Oj2nmePXuGxMREAEBkZCRGjRqF7du3IzAwEO+88w58fX0BAB988AHGjh2Lo0ePIjAwEH369NG43xXpExEVj0EYEUmOn5+fKqG+JPXq1QMAJCQkoE2bNkWOJyQkoFGjRmqP3b17Fx07dkSbNm2wcePGYs/bpEkTNGnSBO+//z7GjBmDtm3b4tSpU+jYsaNau5EjR6JVq1a4cuUKRo4cqelTBADUr18fBw4cgJmZGdzd3YtMZxaein38+DHc3Nxw8uTJIueyt7cHkL/qcuDAgTh06BB++OEHzJ49G7t27cLbb7+NUaNGISgoCIcOHcLRo0cxf/58LF26FOPGjYOJiUmRgDYnJ6fI76lIn4ioeMwJIyLJcXBwQFBQENauXYsnT54UOZ6eno4uXbrAwcEBS5cuLXL8wIEDuH79OgYMGKB67N9//0WHDh3g7++PLVu2FJliLI4yiCuuD40bN0bjxo1x5coVDBw4UJOnp1KtWjXUrVsX3t7e5cona9GiBVJSUmBmZoa6deuqfTk5Oana1atXD+PHj8fRo0fRu3dvbNmyRXXM09MTY8aMQXR0NCZMmIAvvvgCAODs7IxHjx6pPVdlzpc2+kRERTEIIyJJWrt2LfLy8vDqq69i3759uH79OhISErBq1SoEBATAxsYGn3/+Ob799luEhobi0qVLuHnzJjZt2oThw4ejb9++ePfddwG8CMBq166NJUuW4MGDB0hJSUFKSorq940dOxaffPIJTp8+jVu3buHs2bMYOnQonJ2dERAQUGwfjx8/juTk5Cob8QkMDERAQAB69eqFo0eP4ubNmzhz5gymT5+OX3/9Fc+ePUN4eDhOnjyJW7du4fTp0zh//rwqby4iIgJHjhxBUlISLly4gBMnTqiOtWrVCtbW1vjoo4+QmJiIqKgotcUHFe0TEZWM05FEJEl16tTBhQsXMG/ePEyYMAHJyclwdnaGv78/1q9fDwDo27cvTpw4gXnz5qFt27Z4/vw5/Pz8MH36dEREREAmkwEAYmJicOPGDdy4cUOtthfwIqcsMDAQmzdvxvr165GamgonJycEBAQgNja2SL6TUnErN3VJJpPh+++/x/Tp0zFixAg8ePAArq6uaNeuHVxcXGBqaorU1FQMHToU9+7dg5OTE3r37o25c+cCAPLy8hAWFoY7d+7Azs4OwcHBWL58OYD80cf//e9/mDRpEr744gt07twZc+bMKTOxvqw+EVHJZIKmWa1EREREVGmcjiQiIiISAYMwIiIdqF69eolfP/30k9jdIyIJ4HQkEZEO3Lhxo8RjtWrVgpWVVRX2hoikiEEYERERkQg4HUlEREQkAgZhRERERCJgEEZEREQkAgZhRERERCJgEEZEREQkAgZhRERERCJgEEZEREQkAgZhRERERCL4PwM6cqQOq5s2AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAHHCAYAAAARcURhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB74ElEQVR4nO3deViUVfsH8O+wL8IgOwgK4i6moqajuRWK5pIvmktqqBhlkppmau6ZpVZuueWb21uaK5V7IpqVIplrFpoabgkuIANugMz5/cFvHhmYgRkYGGC+n+uaC+d5zjxz5mmM23Pucx+ZEEKAiIiIiEzGwtQdICIiIjJ3DMiIiIiITIwBGREREZGJMSAjIiIiMjEGZEREREQmxoCMiIiIyMQYkBERERGZGAMyIiIiIhNjQEZERERkYgzIiIioSOvXr4dMJsPVq1dN3RWiKosBGRGZ3IkTJxAdHY3GjRvD0dERNWvWRP/+/fH3338XatupUyfIZDLIZDJYWFjA2dkZ9evXx9ChQxEbG2vQ++7atQsdO3aEp6cnHBwcULt2bfTv3x/79+831kcr5OOPP8b3339f6PixY8cwa9YspKenl9l7FzRr1izpXspkMjg4OKBRo0aYNm0aMjIyjPIemzZtwuLFi41yLaKqjAEZEZnc/PnzsWPHDrz00ktYsmQJoqKi8PPPPyMkJATnz58v1N7Pzw9ff/01/ve//+HTTz9F7969cezYMXTt2hUDBgxATk5Ose/52WefoXfv3pDJZJgyZQoWLVqEvn374tKlS9i8eXNZfEwARQdks2fPLteATG3lypX4+uuvsXDhQjRo0ABz585Ft27dYIytjhmQEenHytQdICIaP348Nm3aBBsbG+nYgAED0KRJE8ybNw/ffPONRnu5XI4hQ4ZoHJs3bx7GjBmDFStWICAgAPPnz9f5fk+fPsWcOXPQpUsXHDhwoND5O3fulPITVRyPHj2Cg4NDkW369esHd3d3AMBbb72Fvn37IiYmBsePH4dCoSiPbhKZPY6QEZHJtW3bViMYA4C6deuicePGSExM1OsalpaWWLp0KRo1aoRly5ZBqVTqbHvv3j1kZGSgXbt2Ws97enpqPH/y5AlmzZqFevXqwc7ODj4+PggPD8eVK1ekNp999hnatm0LNzc32Nvbo0WLFti+fbvGdWQyGR4+fIgNGzZI04TDhg3DrFmzMHHiRABAYGCgdC5/ztY333yDFi1awN7eHq6urhg4cCBu3Lihcf1OnTohODgYJ0+eRIcOHeDg4IAPPvhAr/uX34svvggASEpKKrLdihUr0LhxY9ja2sLX1xejR4/WGOHr1KkT9uzZg2vXrkmfKSAgwOD+EJkDjpARUYUkhMDt27fRuHFjvV9jaWmJQYMGYfr06fj111/Ro0cPre08PT1hb2+PXbt24Z133oGrq6vOa+bm5qJnz56Ii4vDwIEDMXbsWGRmZiI2Nhbnz59HUFAQAGDJkiXo3bs3Bg8ejOzsbGzevBmvvvoqdu/eLfXj66+/xsiRI/H8888jKioKABAUFARHR0f8/fff+Pbbb7Fo0SJptMrDwwMAMHfuXEyfPh39+/fHyJEjcffuXXzxxRfo0KEDTp8+DRcXF6m/qamp6N69OwYOHIghQ4bAy8tL7/unpg403dzcdLaZNWsWZs+ejdDQUIwaNQoXL17EypUrceLECRw9ehTW1taYOnUqlEolbt68iUWLFgEAqlWrZnB/iMyCICKqgL7++msBQKxZs0bjeMeOHUXjxo11vu67774TAMSSJUuKvP6MGTMEAOHo6Ci6d+8u5s6dK06ePFmo3dq1awUAsXDhwkLnVCqV9OdHjx5pnMvOzhbBwcHixRdf1Dju6OgoIiIiCl3r008/FQBEUlKSxvGrV68KS0tLMXfuXI3jf/zxh7CystI43rFjRwFArFq1Sufnzm/mzJkCgLh48aK4e/euSEpKEl9++aWwtbUVXl5e4uHDh0IIIdatW6fRtzt37ggbGxvRtWtXkZubK11v2bJlAoBYu3atdKxHjx6iVq1aevWHyJxxypKIKpwLFy5g9OjRUCgUiIiIMOi16hGYzMzMItvNnj0bmzZtQvPmzfHjjz9i6tSpaNGiBUJCQjSmSXfs2AF3d3e88847ha4hk8mkP9vb20t/vn//PpRKJdq3b49Tp04Z1P+CYmJioFKp0L9/f9y7d096eHt7o27dujh8+LBGe1tbWwwfPtyg96hfvz48PDwQGBiIN998E3Xq1MGePXt05p4dPHgQ2dnZGDduHCwsnv0aeeONN+Ds7Iw9e/YY/kGJzBynLImoQklJSUGPHj0gl8uxfft2WFpaGvT6Bw8eAACcnJyKbTto0CAMGjQIGRkZSEhIwPr167Fp0yb06tUL58+fh52dHa5cuYL69evDyqro/13u3r0bH330Ec6cOYOsrCzpeP6grSQuXboEIQTq1q2r9by1tbXG8xo1ahTKxyvOjh074OzsDGtra/j5+UnTsLpcu3YNQF4gl5+NjQ1q164tnSci/TEgI6IKQ6lUonv37khPT8cvv/wCX19fg6+hLpNRp04dvV/j7OyMLl26oEuXLrC2tsaGDRuQkJCAjh076vX6X375Bb1790aHDh2wYsUK+Pj4wNraGuvWrcOmTZsM/gz5qVQqyGQy7Nu3T2twWjAnK/9Inb46dOgg5a0RkWkwICOiCuHJkyfo1asX/v77bxw8eBCNGjUy+Bq5ubnYtGkTHBwc8MILL5SoHy1btsSGDRuQnJwMIC/pPiEhATk5OYVGo9R27NgBOzs7/Pjjj7C1tZWOr1u3rlBbXSNmuo4HBQVBCIHAwEDUq1fP0I9TJmrVqgUAuHjxImrXri0dz87ORlJSEkJDQ6VjpR0hJDIXzCEjIpPLzc3FgAEDEB8fj23btpWo9lVubi7GjBmDxMREjBkzBs7OzjrbPnr0CPHx8VrP7du3D8Cz6bi+ffvi3r17WLZsWaG24v8Lp1paWkImkyE3N1c6d/XqVa0FYB0dHbUWf3V0dASAQufCw8NhaWmJ2bNnFyrUKoRAamqq9g9ZhkJDQ2FjY4OlS5dq9GnNmjVQKpUaq1sdHR2LLEFCRHk4QkZEJjdhwgTs3LkTvXr1QlpaWqFCsAWLwCqVSqnNo0ePcPnyZcTExODKlSsYOHAg5syZU+T7PXr0CG3btkWbNm3QrVs3+Pv7Iz09Hd9//z1++eUX9OnTB82bNwcAvP766/jf//6H8ePH47fffkP79u3x8OFDHDx4EG+//TZeeeUV9OjRAwsXLkS3bt3w2muv4c6dO1i+fDnq1KmDc+fOabx3ixYtcPDgQSxcuBC+vr4IDAxE69at0aJFCwDA1KlTMXDgQFhbW6NXr14ICgrCRx99hClTpuDq1avo06cPnJyckJSUhO+++w5RUVF47733SnX/DeXh4YEpU6Zg9uzZ6NatG3r37o2LFy9ixYoVaNWqlcZ/rxYtWmDLli0YP348WrVqhWrVqqFXr17l2l+iSsGUSzyJiIR4Vq5B16OottWqVRN169YVQ4YMEQcOHNDr/XJycsR///tf0adPH1GrVi1ha2srHBwcRPPmzcWnn34qsrKyNNo/evRITJ06VQQGBgpra2vh7e0t+vXrJ65cuSK1WbNmjahbt66wtbUVDRo0EOvWrZPKSuR34cIF0aFDB2Fvby8AaJTAmDNnjqhRo4awsLAoVAJjx44d4oUXXhCOjo7C0dFRNGjQQIwePVpcvHhR494UVRKkIHX/7t69W2S7gmUv1JYtWyYaNGggrK2thZeXlxg1apS4f/++RpsHDx6I1157Tbi4uAgALIFBpINMCCNsVkZEREREJcYcMiIiIiITY0BGREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRERERCbGwrAVmEqlwq1bt+Dk5MTtR4iIiCoJIQQyMzPh6+sLCwv9xr4YkFVgt27dgr+/v6m7QURERCVw48YN+Pn56dWWAVkF5uTkBCDvP2hR+/IRERFRxZGRkQF/f3/p97g+GJBVYOppSmdnZwZkRERElYwh6UZM6iciIiIyMQZkRERERCbGgIyIiIjIxJhDVsmpVCpkZ2ebuhtVmo2Njd7LlomIiEqi0gRkvXv3xpkzZ3Dnzh1Ur14doaGhmD9/Pnx9faU2Qgh8/vnnWL16Na5duwZ3d3e8/fbbmDp1qtTmp59+wvjx4/Hnn3/C398f06ZNw7BhwzTea/ny5fj000+RkpKCpk2b4osvvsDzzz8vnX/y5AkmTJiAzZs3IysrC2FhYVixYgW8vLykNtevX8eoUaNw+PBhVKtWDREREfjkk09gZWW8W56dnY2kpCSoVCqjXZMKs7CwQGBgIGxsbEzdFSIiqqIqTUDWuXNnfPDBB/Dx8cG///6L9957D/369cOxY8ekNmPHjsWBAwfw2WefoUmTJkhLS0NaWpp0PikpCT169MBbb72FjRs3Ii4uDiNHjoSPjw/CwsIAAFu2bMH48eOxatUqtG7dGosXL0ZYWBguXrwIT09PAMC7776LPXv2YNu2bZDL5YiOjkZ4eDiOHj0KAMjNzUWPHj3g7e2NY8eOITk5Ga+//jqsra3x8ccfG+V+CCGQnJwMS0tL+Pv7cwSnjKiL8yYnJ6NmzZos0EtERGVDVFI//PCDkMlkIjs7WwghxF9//SWsrKzEhQsXdL7m/fffF40bN9Y4NmDAABEWFiY9f/7558Xo0aOl57m5ucLX11d88sknQggh0tPThbW1tdi2bZvUJjExUQAQ8fHxQggh9u7dKywsLERKSorUZuXKlcLZ2VlkZWXp/RmVSqUAIJRKZaFz2dnZ4q+//hLp6el6X49KJj09Xfz111/Sd42IiKgoRf3+1qVSDqukpaVh48aNaNu2LaytrQEAu3btQu3atbF7924EBgYiICAAI0eO1Bghi4+PR2hoqMa1wsLCEB8fDyBvCvDkyZMabSwsLBAaGiq1OXnyJHJycjTaNGjQADVr1pTaxMfHo0mTJhpTmGFhYcjIyMCff/6p83NlZWUhIyND46FLbm4uAHAarRyo77H6nhMRERlbpQrIJk2aBEdHR7i5ueH69ev44YcfpHP//PMPrl27hm3btuF///sf1q9fj5MnT6Jfv35Sm5SUFI0gCQC8vLyQkZGBx48f4969e8jNzdXaJiUlRbqGjY0NXFxcimyj7Rrqc7p88sknkMvl0kOfbZM4hVb2eI+JiKismTQgmzx5MmQyWZGPCxcuSO0nTpyI06dP48CBA7C0tMTrr78OIQSAvFyfrKws/O9//0P79u3RqVMnrFmzBocPH8bFixdN9RENMmXKFCiVSulx48YNU3eJiIiIyoFJk/onTJhQaIVjQbVr15b+7O7uDnd3d9SrVw8NGzaEv78/jh8/DoVCAR8fH1hZWaFevXpS+4YNGwLIW/FYv359eHt74/bt2xrXv337NpydnWFvbw9LS0tYWlpqbePt7Q0A8Pb2RnZ2NtLT0zVGyQq2+e233wpdQ31OF1tbW9ja2hZ5P4iIiKjqMekImYeHBxo0aFDkQ1eOlLrUQ1ZWFgCgXbt2ePr0Ka5cuSK1+fvvvwEAtWrVAgAoFArExcVpXCc2NhYKhQJAXq5QixYtNNqoVCrExcVJbVq0aAFra2uNNhcvXsT169elNgqFAn/88Qfu3Lmj8T7Ozs5o1KhRCe5U1TFs2DBp9NPa2hpeXl7o0qUL1q5da1D5jvXr1xeaNiYiIipKamoqkpOTkZycjJMnb2P79lScPHlbOpaammqyvlWKshcJCQk4ceIEXnjhBVSvXh1XrlzB9OnTERQUJAVBoaGhCAkJwYgRI7B48WKoVCqMHj0aXbp0kUbN3nrrLSxbtgzvv/8+RowYgUOHDmHr1q3Ys2eP9F7jx49HREQEWrZsieeffx6LFy/Gw4cPMXz4cACAXC5HZGQkxo8fD1dXVzg7O+Odd96BQqFAmzZtAABdu3ZFo0aNMHToUCxYsAApKSmYNm0aRo8eXWFGwFJTU4ssKGtjYwM3N7cyee9u3bph3bp1yM3Nxe3bt7F//36MHTsW27dvx86dO41aq42IiAjI+723bNkyAMCpU82xa1dPCGEBmUyFXr12IyTkNAAgOjq6zH7/FaVS/OZzcHBATEwMZs6ciYcPH8LHxwfdunXDtGnTpADHwsICu3btwjvvvIMOHTrA0dER3bt3x+effy5dJzAwEHv27MG7776LJUuWwM/PD1999ZVUgwwABgwYgLt372LGjBlISUlBs2bNsH//fo0k/UWLFsHCwgJ9+/bVKAyrZmlpid27d2PUqFFQKBRwdHREREQEPvzww3K4W8XL/6UsSll9KW1tbaWp2xo1aiAkJARt2rTBSy+9hPXr12PkyJFYuHAh1q1bh3/++Qeurq7o1asXFixYgGrVquGnn36SAmR1wv3MmTMxa9YsfP3111iyZAkuXrwIR0dHvPjii1i8eLFUQ46IiMyTehBCqXSSgjEAEMICu3b1RFDQZcjlmSbb/aZSBGRNmjTBoUOHim3n6+uLHTt2FNmmU6dOOH36dJFtoqOjER0drfO8nZ0dli9fjuXLl+tsU6tWLezdu7foDpuIvl+28vxSvvjii2jatCliYmIwcuRIWFhYYOnSpQgMDMQ///yDt99+G++//z5WrFiBtm3bYvHixZgxY4a0YKNatWoAgJycHMyZMwf169fHnTt3MH78eAwbNqzC/rcgIqLylZbmhoJVv4SwQFqaK+TyTBP1qpIEZGQeGjRogHPnzgEAxo0bJx0PCAjARx99hLfeegsrVqyAjY0N5HI5ZDJZoUUSI0aMkP5cu3ZtLF26FK1atcKDBw+koI2IiMyXq2sqZDKVRlAmk6ng6ppWxKvKXqWqQ0ZVmxBCmoI8ePAgXnrpJdSoUQNOTk4YOnQoUlNT8ejRoyKvcfLkSfTq1Qs1a9aEk5MTOnbsCCBvpS0REZFcnolevXZDJstbSKbOITPl6BjAETKqQBITExEYGIirV6+iZ8+eGDVqFObOnQtXV1f8+uuviIyMRHZ2NhwcHLS+/uHDhwgLC0NYWBg2btwIDw8PXL9+HWFhYSbLCSAiooonJOQ0goIuIy3NFa6uaSYPxgAGZFRBHDp0CH/88QfeffddnDx5EiqVCp9//rm0afrWrVs12tvY2BTayujChQtITU3FvHnzpF0Ofv/99/L5AEREVKnI5ZkVIhBT45QllbusrCykpKTg33//xalTp/Dxxx/jlVdeQc+ePfH666+jTp06yMnJwRdffIF//vkHX3/9NVatWqVxjYCAADx48ABxcXG4d+8eHj16hJo1a8LGxkZ63c6dOzFnzhwTfUoiIiL9MSCjcrd//374+PggICAA3bp1w+HDh7F06VL88MMPsLS0RNOmTbFw4ULMnz8fwcHB2LhxIz755BONa7Rt2xZvvfUWBgwYAA8PDyxYsAAeHh5Yv349tm3bhkaNGmHevHn47LPPTPQpiYioLOQv7qrtoau4q65C8yVtZ2wyod4MkiqcjIwMyOVyKJVKODs7a5x78uQJkpKSEBgYCDs7O4Oua+o6ZJVNae41EREZT2l/f5VXUfSifn/rwhwyM+Tm5obo6GiTVeonIiIyhDqQunfvnsZxpdIJaWlucHVN1cgH0/X7rSL/XmNAZqYq8peSiIhIHYSlp6cXWtgFFL39UWXEgIyIiIgqlKKmJpVKJ9y44V/k9keVEQMyIiIiqlAKTjmqpyZv3fLBwYOhhbY+AirG9kelwYCMiIiIKqz8U5OAACDT2q4ibH9UGix7QURERBWSUumkMTVZVDBWEbY/Kg2OkBEREZFJ5C9DoVQqkZOTAwC4f/8+ACAtzU3r9OQzKvTrtx3+/jcrdTAGMCAjIiIiE9CnppiraypkMpWOoEyF3r13Izg4sdAZUxV3LQ0GZERERFTuiqqFmb++WGjoQcTGdkH+6UqZTIXIyK/g55csHQsPD4e7u3ulraPJHDKqUn766SfIZDKkp6fr/ZqAgAAsXry4zPpERESaUlNTtRZ5TUoKwNGjCixePA4bNkRg8eJxsLd/gi5dYgGoADzLF8sfjAGAr68vfHx8KmUwBnCEjMrZsGHDsGHDBrz55puFNgwfPXo0VqxYgYiICKxfv940HSQiojJ15coVfPPNNxrHdK2kVNcXGzduMYKDzyMtzRWurmka+WLh4eHw9fWttIGYGkfIqNz5+/tj8+bNePz4sXTsyZMn2LRpE2rWrGnCnhERUVlKTU0tFIzdvOmDnTt1r6TMX18sMPBaoeT9qhCMAQzIyARCQkLg7++PmJgY6VhMTAxq1qyJ5s2bS8eysrIwZswYeHp6ws7ODi+88AJOnDihca29e/eiXr16sLe3R+fOnXH16tVC7/frr7+iffv2sLe3h7+/P8aMGYOHDx+W2ecjIiLtCuaNHT2qwFdfjURR4Uj++mLh4eGIioqSHro2Ea+MGJARbt4EDh/O+1leRowYgXXr1knP165di+HDh2u0ef/997Fjxw5s2LABp06dQp06dRAWFoa0tLy/mDdu3EB4eDh69eqFM2fOYOTIkZg8ebLGNa5cuYJu3bqhb9++OHfuHLZs2YJff/0V0dHRZf8hiYjMVGpqKpKTkws98ueNHT2q+P9kfW2hiABQuL6Yu7s7fHx8pEdVCcYA5pCZvTVrgKgoQKUCLCyA1auByMiyf98hQ4ZgypQpuHbtGgDg6NGj2Lx5M3766ScAwMOHD7Fy5UqsX78e3bt3BwD897//RWxsLNasWYOJEydi5cqVCAoKwueffw4AqF+/Pv744w/Mnz9fep9PPvkEgwcPxrhx4wAAdevWxdKlS9GxY0esXLkSdnZ2Zf9hiYjMiD7lLJRKJxw8GArthV5V6NLlIHx9bxXKF6vKGJCZsZs3nwVjQN7PN98EwsIAP7+yfW8PDw/06NED69evhxACPXr0gLu7u3T+ypUryMnJQbt27aRj1tbWeP7555GYmFdzJjExEa1bt9a4rkKh0Hh+9uxZnDt3Dhs3bpSOCSGgUqmQlJSEhg0blsXHIyIyW0WVs1DTXfBVhZEjvyq0glKtMtYX0xcDMjN26dKzYEwtNxe4fLnsAzIgb9pSPXW4fPnyMnmPBw8e4M0338SYMWMKneMCAiKi0slfaV8tKSmp2NdpL/gq0KXLQSkY69y5Mzw8PODi4gIAlba+mL4YkJmxunXzpinzB2WWlkCdOuXz/t26dUN2djZkMhnCwsI0zgUFBcHGxgZHjx5FrVq1AAA5OTk4ceKENP3YsGFD7Ny5U+N1x48f13geEhKCv/76C3XK60MREZmB1NRU3L17F1u2bCmynVLphBs3/AEA/v43pOlHuTwTvXrtlkpdyGQqhIYeRLt28dJr69atCx8fn7L7EBUMAzIz5ueXlzP25pt5I2OWlsCXX5bP6BgAWFpaStOPlpaWGuccHR0xatQoTJw4Ea6urqhZsyYWLFiAR48eIfL/k9zeeustfP7555g4cSJGjhyJkydPFqpfNmnSJLRp0wbR0dEYOXIkHB0d8ddffyE2NrbYHAciIipMnxwxIK+22M6dPfEsaV+gd+9dCAk5DQAICTmNoKDLWmuLAVV7elIbBmRmLjIyL2fs8uW8kbHyCsbUnJ2ddZ6bN28eVCoVhg4diszMTLRs2RI//vgjqlevDiBvynHHjh1499138cUXX+D555/Hxx9/jBEjRkjXeO6553DkyBFMnToV7du3hxACQUFBGDBgQJl/NiKiqqjgFKV6myNr6yzk5NjC1TUVAAoEYwAgw65dPREUdFljpExb0v6QIUOq9PSkNjIhhDB1J0i7jIwMyOVyKJXKQoHLkydPkJSUhMDAQK4ULGO810REzyQnJ2P16tUAtFfYl8lUUCjicexYO62vj4hYj8DAa9LekwVVhVyxon5/68IRMiIiIjKYUumULxgD8m93FB+vQN7ek5orKfMXeVXXFKM8LAxLREREBtNduiIvKGvbNh7qDcGBwkVezS1HrDgcISMiIiKDaS9dkUcmU6F16wS0bp2AGzfykpP9/W9KwdiAAQMq/bSksTEgIyIiIoPJ5ZkIDT34/9sf5a+4LxAaejBf4n6iltfKy6eTlQinLCs5rskoe7zHRETa+fomo/D2RzL4+t4q8nWcriyMI2SVlLpuV3Z2Nuzt7U3cm6pNvcS7YK00IiJzlD+Y0jZtmT9xv0uXLggMDCz0ek5XFsaArJKysrKCg4MD7t69C2tra1hYcLCzLKhUKty9excODg6wsuJfFyIiNzc39O/fH1u3btVacT9/4n5gYCBXUuqJv2EqKZlMBh8fHyQlJeHatWum7k6VZmFhgZo1a0ImKzgsT0Rknjw9PaU/F1Vxn1OT+mNh2ApMn8JyKpWqUNVkMi4bGxuOQBIRFaBtY/H8zHlqkoVhzZCFhQWrxxMRUbkz12CrrDAgIyIiMgMc0arYGJARERFVcampqVi2bFmx7aKjoxmUmQgDMiIioiqgqBGwe/fu6XUN5iSbDgMyIiKiSk7fETCquLh0jIiIqJIrOLKlVDohKSkASqWTiXpEhuIIGRERURVy6lTzQoVaQ0JOa7RRKp2QluYGV9dUjbphZDoMyIiIiCqh/Dlj6hwxpdJJCsYAQAgL7NrVE0FBl6XAS5+AjcofAzIiIqJKRlfOWFqam8a+kkBeUJaW5gq5PFOvgI1MgzlkRERElYyunDFr6yzIZCqNc/k3+y4qYCPT4ggZERFRJVZwCvK5587h3LnntG727eqaCplMpRGU5Q/YuPek6TAgIyIiqgT0zRk7d+45REZ+hfR0FwAy+PvfkK4hl2di5sxbmDOnBnJzZbC0FJg/PwOvvTaIlfpNjAEZERFRBWdozthffzVGfLxCa+J+VJQlIiNluHwZqFNHBj8/FwAuZf8hqEgMyIiIiCo4XRX0dU1BHjumgDpNXFvivp9f3oMqDib1ExERVVJyeSZ69dotJfLLZCooFPEo+OudifsVH0fIiIiIKpn8hV1DQk4jKOgy0tJcpeR89XSlWv7EfaqYGJARERFVIroKu+avI9ar1+5CbdTnuZKyYmJARkREVEkUV9i1S5cucHJyQng48O67/yA1tToCAp7C17cVgFZcSVmBMSAjIiKqIPKXtshPXeaiuEr8gYGB8PHxKZe+knExICMiIqoAdJW2yK+4wq5UeXGVJRERUQWgq7RFftpWVTI/rGrgCBkREVEFlH8lZf6E/Y8+CsSMGXdx9aoV88OqEAZkREREFYyulZQA4O7uDh8fL7RoYeJOklExICMiIipHxSXuF7eSkqomBmRERETlRJ/E/eJWUlLVxKR+IiKicqJP4r56JWV+XElZ9TEgIyIiMhGl0glJSQFQKp2kY8WtpKSqiVOWREREJlBU4n7B/SnzB2MsbVE1MSAjIiIyIl1J+4D+ifvh4eFwd3cv9HqWtqi6GJARERGVUMHgKz09HVu3bi32dcUl7ueVtuAWSOak0uSQ9e7dGzVr1oSdnR18fHwwdOhQ3Lp1Szo/a9YsyGSyQg9HR0eN62zbtg0NGjSAnZ0dmjRpgr1792qcF0JgxowZ8PHxgb29PUJDQ3Hp0iWNNmlpaRg8eDCcnZ3h4uKCyMhIPHjwQKPNuXPn0L59e9jZ2cHf3x8LFiww8h0hIiJTUq+YXL16tfTQJxgDmLhPhVWagKxz587YunUrLl68iB07duDKlSvo16+fdP69995DcnKyxqNRo0Z49dVXpTbHjh3DoEGDEBkZidOnT6NPnz7o06cPzp8/L7VZsGABli5dilWrViEhIQGOjo4ICwvDkydPpDaDBw/Gn3/+idjYWOzevRs///wzoqKipPMZGRno2rUratWqhZMnT+LTTz/FrFmzsHr16jK+S0REVF70WTGpLWkfYOI+FSYTQghTd6Ikdu7ciT59+iArKwvW1taFzp89exbNmjXDzz//jPbt2wMABgwYgIcPH2L37t1SuzZt2qBZs2ZYtWoVhBDw9fXFhAkT8N577wEAlEolvLy8sH79egwcOBCJiYlo1KgRTpw4gZYtWwIA9u/fj5dffhk3b96Er68vVq5cialTpyIlJUVKvpw8eTK+//57XLhwQe/PmJGRAblcDqVSCWdn5xLfKyIiMr7k5OQi/6FdVNK+Wt72SIUT96Ojo5krVomV5Pd3pcwhS0tLw8aNG9G2bVutwRgAfPXVV6hXr54UjAFAfHw8xo8fr9EuLCwM33//PQAgKSkJKSkpCA0Nlc7L5XK0bt0a8fHxGDhwIOLj4+Hi4iIFYwAQGhoKCwsLJCQk4D//+Q/i4+PRoUMHjZUwYWFhmD9/Pu7fv4/q1asb4zYQEVEFVdKkfYCJ++aqUgVkkyZNwrJly/Do0SO0adNGY6QrvydPnmDjxo2YPHmyxvGUlBR4eXlpHPPy8kJKSop0Xn2sqDaenp4a562srODq6qrRJjAwsNA11Od0BWRZWVnIysqSnmdkZGhtR0REFU/+zcCZtE+GMmkO2eTJk7Um4ud/5J/imzhxIk6fPo0DBw7A0tISr7/+OrTNuH733XfIzMxEREREeX6cUvvkk08gl8ulh7+/v6m7REREejh1qjkWLx6HDRsisHjxONy65cOkfTKISUfIJkyYgGHDhhXZpnbt2tKf3d3d4e7ujnr16qFhw4bw9/fH8ePHoVAoNF7z1VdfoWfPnoVGury9vXH79m2NY7dv34a3t7d0Xn0s/79cbt++jWbNmklt7ty5o3GNp0+fIi0tTeM62t4n/3toM2XKFI0p1YyMDAZlREQmUFQtMUCzOKu26cmDB0MRGnoQBw+GauSQMWmfdDFpQObh4QEPD48SvValyvuXR/4pPiAvD+zw4cPYuXNnodcoFArExcVh3Lhx0rHY2FgpoAsMDIS3tzfi4uKkACwjIwMJCQkYNWqUdI309HScPHkSLVq0AAAcOnQIKpUKrVu3ltpMnToVOTk5Uo5bbGws6tevX2T+mK2tLWxtbUtwN4iIyFj02QAcyFsoBuiuKebrewvjxi1mtX3SS6XIIUtISMCJEyfwwgsvoHr16rhy5QqmT5+OoKCgQqNja9euhY+PD7p3717oOmPHjkXHjh3x+eefo0ePHti8eTN+//13aZWMTCbDuHHj8NFHH6Fu3boIDAzE9OnT4evriz59+gAAGjZsiG7duuGNN97AqlWrkJOTg+joaAwcOBC+vr4AgNdeew2zZ89GZGQkJk2ahPPnz2PJkiVYtGhR2d4oIiIqNX3KWQCQUmbUNcXyB2Xq6Um5PBNRUS9DLpdL55i0T9pUioDMwcEBMTExmDlzJh4+fAgfHx9069YN06ZN0xhRUqlUWL9+PYYNGwZLS8tC12nbti02bdqEadOm4YMPPkDdunXx/fffIzg4WGrz/vvv4+HDh4iKikJ6ejpeeOEF7N+/H3Z2dlKbjRs3Ijo6Gi+99BIsLCzQt29fLF26VDovl8tx4MABjB49Gi1atIC7uztmzJihUauMiIgqNxcXF0RHRyM7Oxs1amRg0iQ5cnNlsLQUmD8/A6+9NojBF+mt0tYhMwesQ0ZEVLa05Yrdu3cPMTExxb42KipKI9/45k3g8mWgTh3Az8/oXaVKxGzqkBEREZWWvrli+ctZFJWU7+fHQIxKjgEZERGZJX1yxfSptk9kDJVmL0siIqLypKvafsF9KYmMgQEZERGRFkVV2ycyNk5ZEhFRlacreT+/grliRZWzAFhLjIyLARkREVVp+iTv68oV69VrN3bv7gWViuUsqGwxICMioiqtuOR9XbliQUGXERJyGjNmtEZmphfq1JHBz88FgEuZ95nMDwMyIiIya0XlisnlmfD1VSFfuTGiMsGAjIiIKiV9NgDXNq3IXDGqiBiQERFRpZA/AFMqldiyZUuxr4mOjtZ4zlwxqqgYkBERUYWnb1X9gvKPoDFXjCoyBmRERFThFZyaLDjtqM/2RswVo4qMARkREVUqBacdn3vuHM6de67Y7Y2KyxUjMiVW6iciokpD27Tj2bNNdW5vpFQqpaR8uTwTvXrthkymAgApeFOPqDF5n0ypRCNkhw8fRufOnY3dFyIioiJpm3YEZBrP8k9D5uTkwM3NDdHR0dK054wZd3H1qhUCAp7C17cVgFZM3ieTK1FA1q1bN/j5+WH48OGIiIiAv7+/sftFRERUiLZpR0Agf1CmbRoyf7Dl4wO0aFHGHSUyUImmLP/9919ER0dj+/btqF27NsLCwrB169ZiqyETERGVhrZpRz+/G8gLygBA4LnnzulM7CeqqEoUkLm7u+Pdd9/FmTNnkJCQgHr16uHtt9+Gr68vxowZg7Nnzxq7n0RERACAkJDTGDduMSIi1iMy8iv8+68fno2QyXDu3HNSDpmVFdeuUeVQ6m9qSEgIvL294ebmhnnz5mHt2rVYsWIFFAoFVq1ahcaNGxujn0REZAZ0Vd9XKpUaz+XyTMjlmUhKCiiylIWLi0tZdpfIaEockOXk5OCHH37A2rVrERsbi5YtW2LZsmUYNGgQ7t69i2nTpuHVV1/FX3/9Zcz+EhFRFaVv8df+/fvj6dOniImJYSkLqjJKFJC98847+PbbbyGEwNChQ7FgwQIEBwdL5x0dHfHZZ5/B19fXaB0lIqKqTd885PyjXuqcsoLbITGHjCqbEgVkf/31F7744guEh4fD1tZWaxt3d3ccPny4VJ0jIqKqSdvU5L179/R+ff6aYSEhpxEUdBlpaa5wdU3TCMZYW4wqixIFZHFxccVf2MoKHTt2LMnliYioCtN3arKo7ZAK1hbThrXFqDIpcQ7ZxYsX8cUXXyAxMREA0LBhQ7zzzjuoX7++0TpHRERVjz5TkwW3R9K2HRKDLapKSlT2YseOHQgODsbJkyfRtGlTNG3aFKdOnUJwcDB27Nhh7D4SEVEVplQ6ISkpIN92R4W3R8q/HRJRVVSiEbL3338fU6ZMwYcffqhxfObMmXj//ffRt29fo3SOiIgqL10lLPLnimkbCate/X6RpSyIqqISBWTJycl4/fXXCx0fMmQIPv3001J3ioiIKjd98sR0jYRFRn7FUhZkdko0ZdmpUyf88ssvhY7/+uuvaN++fak7RURElZs+eWLaNgoXwgI5OTaFtkfKX8qCKyepKirRCFnv3r0xadIknDx5Em3atAEAHD9+HNu2bcPs2bOxc+dOjbZERGQ+UlNTC5Ww0LZisqiiroGB1xAdXRcZGZ4ICHgKX99WAFpx5SRVWTIhhCi+mSYLC/0G1mQyGXJzcw3uFOXJyMiAXC6HUqmEs7OzqbtDRFQsbVOVRa2YLOpcVFQUfHx8yv0zEJVWSX5/l2iETKVSleRlRERUxd29e1fjua48saCgy5DLM1nUlej/lXpzcSIiIgC4cuUKtmzZonHsxg3/IldMhoeHw93dvdC1ODVJ5kbvgGzp0qV6X3TMmDEl6gwREVVOqamp+Oabb6TnSqUTfv65PU6ebFGobf4Vk+7u7pyWJIIBAdmiRYv0aieTyRiQERGZmfyrKk+dao6dO3tC20J+bv5NpJ3eAVlSUlJZ9oOIiKoApdJJZzAGAH37bkdwcKL0nHliRHmYQ0ZEREaTluYG3SUuVfD3vwkACA8Ph6+vL/PEiP5fiQOymzdvYufOnbh+/XqhAoALFy4sdceIiKjs5d/e6NYtCyQlWSEw8Cl8ffNW0xuaXO/qmgpAhcJBmUCXLgelqUp3d3cGY0T5lCggi4uLQ+/evVG7dm1cuHABwcHBuHr1KoQQCAkJMXYfiYioDOSvGVZUPbD+/fvDxcVFr+BMLs9E7967C0xbCnTpEot27eKldpyqJNJUooBsypQpeO+99zB79mw4OTlhx44d8PT0xODBg9GtWzdj95GIiMqAemSsuFphW7dulV4THR1dbFCmri1244YfAMDf/6ZGEn///v05OkZUQIn2skxMTJQ2F7eyssLjx49RrVo1fPjhh5g/f75RO0hERGVL156Sf/7ZCEqlk8ZxffaoBPJGyoKDExEcnFhoRaWnp2fpOkxUBZUoIHN0dJT+Uvr4+ODKlSvSuYL7lxERUcWm3lNSk8CBA92wePE4nDrVvNhr6DsFOWTIEI6OEWlRoinLNm3a4Ndff0XDhg3x8ssvY8KECfjjjz8QExMjbTZORESVg1yeiV69duebthQAZAAKT1/q4ubmhujo6CJH0Fh9n0i3EgVkCxcuxIMHDwAAs2fPxoMHD7BlyxbUrVuXKyyJiCohdd7Xn382woEDmrnA+bc6KgqDLaKSK1FAVrt2benPjo6OWLVqldE6REREpiGXZ6Jx478QG9tVI6cs/1ZHRFQ2SlUYNjs7G3fu3IFKpZl7ULNmzVJ1ioiIinfzJnDpElC3LuDnZ9hrU1NTteb8Fpy+5FZHROWjRAHZ33//jcjISBw7dkzjuBACMpkMubm5RukcERFpt2YNEBUFqFSAhQWwejUQGam9bf7irwCgVCqxZcsWnddWT1+mpbnC1TWNwRhROShRQDZ8+HBYWVlh9+7d8PHxgUwmM3a/iIhIi9TUVFy9+hRRUZ5QqfL+36tSAW++KdCs2R0EBFhp5HLlL/6qi1LphLQ0N7i6pkrBl1yeqTUQY0FXorJRooDszJkzOHnyJBo0aGDs/hARkQ7q4CopKQAqVYTGudxcGb74Yh8CA69pFG8tuOqxYPBVVIX+8PBwuLu7S6/lKkmislOigKxRo0asN0ZEVM7UwZW6bpiuxHtdpScKBl+hoQdx8GCozgr97u7u8PHxKeNPRUSAAYVhMzIypMf8+fPx/vvv46effkJqaqrGuYyMjLLsLxGR2VMn3quLueqTeK9te6TY2FCtFfrT0lzLrvNEpJXeI2QuLi4auWJCCLz00ksabZjUT0RUPvRJvM+/kvLGDf9CwRdgUeRIGxGVH70DssOHD5dlP4iIyEC6Eu8BzWR+9VRlQQWnLVnigsh09A7IOnbsKP35+vXr8Pf3L7S6UgiBGzduGK93RERUIuo8soJTlc88S+APDj7PEhdEJlaipP7AwEAkJyfD09NT43haWhoCAwM5ZUlEVEGkpblpCcaAfv22Izg4EQBLXBBVBCUKyNS5YgU9ePAAdnZ2pe4UEREVLuhaktXtulZk+vvf1GjXv39/uLi4SM9Z4oKofBkUkI0fPx4AIJPJMH36dDg4OEjncnNzkZCQgGbNmhm1g0RE5qhgQddn9cOcip1WtLGxkQK54rZCCg8Ph6+vL4MvIhMzKCA7fTqvWKAQAn/88YfGcLaNjQ2aNm2K9957z7g9JCIyQ/lHxkpSvDU5OVk6VtSKTHd3dwZjRBWAQQGZeqXl8OHDsWTJEjg7O5dJp4iIKI+2+mElKd5a1IpMIjI9vQvD5rdu3ToGY0RE5UBbUj6LtxJVPSVK6n/48CHmzZuHuLg43LlzByqVSuP8P//8Y5TOERGZu+K2SdJF3xWSXElJVDGUKCAbOXIkjhw5gqFDh8LHx0friksiInN08yZw6RJQty7g51f66xWXlK+Lm5sboqOjde5rCXAlJVFFUqKAbN++fdizZw/atWtn7P4QEVVaa9YAUVGASgVYWACrVwORkaW/rj7bJGnDYIuo8ihRDln16tXh6sr8BSIitZs3nwVjQN7PN9/MO24McnkmAgOvMTGfqIoqUUA2Z84czJgxA48ePTJ2f4iIKp3U1FQcP56KAum0yM0FEhJSkZqaavA1mQNGZF5KNGX5+eef48qVK/Dy8kJAQACsra01zp86dcoonSMiqujUBVyVSifIZOMKrIhU4ejRDTh/PhPR0dEGTSEyB4zIvJQoIOvTp4+Ru0FEVDkVrIi/c2dPPJt8kOH8+WD4+ibj11+v4vnn89rqG0gx2CIyHyUKyGbOnGnsfhARVXpBQZchkwFCqI/IEBvbBYAM//ufZoX9/v37w9PTk0EXEQEwMIfst99+Q25urs7zWVlZ2Lp1a6k7RURUGWkr4grklQUSwgI7d/bEzZt5VfW3bt2KZcuWlSi/jIiqHoMCMoVCofE/D2dnZ40isOnp6Rg0aJDxepdP7969UbNmTdjZ2cHHxwdDhw7FrVu3NNr8+OOPaNOmDZycnODh4YG+ffvi6tWrGm1++uknhISEwNbWFnXq1MH69esLvdfy5csREBAAOzs7tG7dGr/99pvG+SdPnmD06NFwc3NDtWrV0LdvX9y+fVujzfXr19GjRw84ODjA09MTEydOxNOnT41yL4ioYlIXcdXNAmvWjMSpU82lI0XliBGR+TAoIBPPxuG1Ptd1zBg6d+6MrVu34uLFi9ixYweuXLmCfv36SeeTkpLwyiuv4MUXX8SZM2fw448/4t69ewgPD9do06NHD3Tu3BlnzpzBuHHjMHLkSPz4449Smy1btmD8+PGYOXMmTp06haZNmyIsLAx37tyR2rz77rvYtWsXtm3bhiNHjuDWrVsa75Obm4sePXogOzsbx44dw4YNG7B+/XrMmDGjTO4NEVUM6jyyZ0GZtv9H5u1FqVQ6lW/niKhCkwkDIigLCwukpKTA09MTAODk5ISzZ8+idu3aAIDbt2/D19e3yGlNY9m5cyf69OmDrKwsWFtbY/v27Rg0aBCysrJgYZEXZ+7atQuvvPKK1GbSpEnYs2cPzp8/L11n4MCBSE9Px/79+wEArVu3RqtWrbBs2TIAgEqlgr+/P9555x1MnjwZSqUSHh4e2LRpkxQQXrhwAQ0bNkR8fDzatGmDffv2oWfPnrh16xa8vLwAAKtWrcKkSZNw9+5dvZepZ2RkQC6XQ6lUcu9QonKmb8X95ORkrF69WuOYUumEtDRX3Lrli9jYUGj7t29ExHoEBl5DVFSUXpuDE1HlUZLf3yWqQ2ZqaWlp2LhxI9q2bSuV3GjRogUsLCywbt065ObmQqlU4uuvv0ZoaKjUJj4+HqGhoRrXCgsLQ3x8PIC8qYOTJ09qtLGwsEBoaKjU5uTJk8jJydFo06BBA9SsWVNqEx8fjyZNmkjBmPp9MjIy8Oeff+r8XFlZWcjIyNB4EFH5W7MGqFULePHFvJ9r1hj2enUR13bt4jFy5FeFpjH12YuSiMyLwQHZX3/9hXPnzuHcuXMQQuDChQvS86KCDWOYNGkSHB0d4ebmhuvXr+OHH36QzgUGBuLAgQP44IMPYGtrCxcXF9y8eVNjkUFKSopGkAQAXl5eyMjIwOPHj3Hv3j3k5uZqbZOSkiJdw8bGBi4uLkW20XYN9TldPvnkE8jlcunh7++v550hImNITU3FyZO3ERUlClTcFzh58rbWBPziRrz9/JI1pjH13YuSiMyLwQHZSy+9hGbNmqFZs2Z49OgRevbsiWbNmqF58+aFRp+KM3nyZMhksiIfFy5ckNpPnDgRp0+fxoEDB2BpaYnXX39dyllLSUnBG2+8gYiICJw4cQJHjhyBjY0N+vXrV2Z5bcY2ZcoUKJVK6XHjxg1Td4nIbKgLvH7xxX6oVDKNc7m5Mnzxxb5CqyJTU1ORnZ2NLl26FHntkJDTGDduMSIi1mPcuMVS6QsiIjWD6pAlJSUZ9c0nTJiAYcOGFdlGnZ8GAO7u7nB3d0e9evXQsGFD+Pv74/jx41AoFFi+fDnkcjkWLFggtf/mm2/g7++PhIQEtGnTBt7e3oVWQ96+fRvOzs6wt7eHpaUlLC0ttbbx9vYGAHh7eyM7Oxvp6ekao2QF2xRcmam+prqNNra2trC1tS3yfhBR2VCvdlSvlMxfviL/FKO6nTqAU8vLG3ODq2uq1tEvuTyTo2JEpJNBAVmtWrUMuvjbb7+NDz/8EO7u7lrPe3h4wMPDw6Brqqn+fz4hKysLAPDo0SMpmV/N0tJSo61CocDevXs12sTGxkKhUADIm3po0aIF4uLipN0IVCoV4uLiEB0dDSAvV83a2hpxcXHo27cvAODixYu4fv26dB2FQoG5c+fizp070gKI2NhYODs7o1GjRiX6vERUPtQrJXft6gkhLApNMZ4/n46jR20glz9beX3qVPNC7fUdBeNelEQEGLjK0lDOzs44c+aMxihXSSQkJODEiRN44YUXUL16dVy5cgXTp0/H7du38eeff8LW1haHDh1CaGgoZs2ahUGDBiEzMxMffPABLly4gMTERNjb2yMpKQnBwcEYPXo0RowYgUOHDmHMmDHYs2cPwsLCAOSVvYiIiMCXX36J559/HosXL8bWrVtx4cIFKQ9s1KhR2Lt3L9avXw9nZ2e88847AIBjx44ByCt70axZM/j6+mLBggVISUnB0KFDMXLkSHz88cd6f26usiQqPwVXS6pXSrq6pknBmLbAKyjoMhYvHldoRG3cuMWQyzMRHh6u8x+l3IuSqGoqye/vEm2dpC9jxXoODg6IiYnBzJkz8fDhQ/j4+KBbt26YNm2aNMX34osvYtOmTViwYAEWLFgABwcHKBQK7N+/H/b29gDyEv/37NmDd999F0uWLIGfnx+++uorKRgDgAEDBuDu3buYMWMGUlJS0KxZM+zfv18jSX/RokWwsLBA3759kZWVhbCwMKxYsUI6b2lpid27d2PUqFFQKBRwdHREREQEPvzwQ6PcDyIqewWnGJVKJykYA57VE+vbd0eh6vxCWCAtzRVyeSbc3d1Z1oKIilWmI2QF65SRYThCRlR+tNUTyy8pKQAbNkQUOt6v31bs2NFP5wgZ64wRmR+zqUNGRGSomzeBw4fzfpaEtm2RZDIV/P1vsqwFEZVamU5ZEhFVBGvWAFFReTXFLCyA1auByEjDrlFUsn9IyGkEBV0ulHNGRKQvBmREVGWlpqbi6tWniIrylGqLqQu9Nmt2BwEBVlJSvT6rHYsKvFjWgohKo0wDsiFDhjD3iYhMQl0nLCkpACqVZu6XutBrYOA1REdHw83NDW5uboiOjpbqjKndu3cPMTEx0nNDAy+WtSAifZQoIFOpVIVqfqmP37x5EzVr1gQArFy5snS9IyIqIUMLvQIoVQkKbeUtWNaCiPRlUFJ/RkYG+vfvD0dHR3h5eWHGjBnIzc2Vzt+9exeBgYFG7yQRUUmpc79KmnSv7wiXr68vfHx8NB4MxohIXwaNkE2fPh1nz57F119/jfT0dHz00Uc4deoUYmJipP9pVZZ9I4nIfJQm6V7XVGZ+HAkjotIyKCD7/vvvsWHDBnTq1AkA0KdPH/To0QO9evXCzp07AQAymayIKxARmYau3K979+7h1i0LJCVZITDwKXx980bS8gdZDLaIqKwZNGV59+5djf0s3d3dcfDgQWRmZuLll1/Go0ePjN5BIqKyNG1aElq18sCrr7qhVSsPvPXWCaxevRrLli1DamqqqbtHRGbCoICsZs2aSExM1Djm5OSEAwcO4PHjx/jPf/5j1M4REZUlXdshKZVOAFDkNCURkTEZFJB17doV69atK3S8WrVq+PHHH2FnZ2e0jhERlbW0NDed+1ASEZUng3LIZs+ejVu3bmk95+TkhNjYWJw6dcooHSMiMkRqaqrGiJZSqSz2NcWVxCAiKi8GBWTVq1dH9erVdZ53cnJCx44dS90pIiJ9paam4s6dO9i6dat0TKl0QlqaG1xdnTQS+Zs27YHUVFfI5Xfw558/FrkdEhFReTK4MOzTp0+xaNEifPvtt/j7778BAPXq1cNrr72GsWPHwtra2uidJCLSRl2NX02pdEJCQmscO6YA8CzACgk5jVOnmmPWrBDkZWoEoHfvOwgJOc19KImoQjAoIHv8+DG6dOmC+Ph4hIaGokOHDgCAxMRETJo0CTt37sSBAweYS0ZE5SL/FOWpU801EvSBZ0n6np4p2LmzJ56lzVpg586eCAq6LJXDYCBGRKZkUEA2b9483LhxA6dPn8Zzzz2nce7s2bPo3bs35s2bh1mzZhmzj0RkJm7eBC5dAurWBfz8im6bmpqKe/fuASi8WjI/ISzw9991UXgNkwVu3PCDXJ5Y6DVEROXNoFWWmzdvxsKFCwsFYwDQtGlTfPbZZ9i0aZPROkdEVV9qaiqSk5Px+efpqFVL4MUXgVq1BD7/PB3Jyclaa4GppyrVm37fuOGvNRgD8pL0q1V7UKK+cWNwIiovBo2QXbt2Dc8//7zO823atMH169dL3SkiMg/qwEqpdMLixeMgRN5OHyqVDBMnOuPff9dCLs9EdHS0RrV8bVOV2uXlkAUFXcbevQLAs51EZDIV/P1vAgA6d+6MunXraryS2yERUXkyKCBzdnbGnTt34O/vr/V8SkoKnJycjNIxIqr61IFVUfXA5PJMnQVadU9VqtC2bTxat06QcsN6996lczVl9erV4ePjY9wPR0RkAIMCss6dO+Pjjz/Gjh07tJ6fN28eOnfubJSOEZH5KGk9MG2BHAD067cdwcGauWFcTUlEFZlBAdnMmTPRunVrtGnTBuPHj0eDBg0ghEBiYiIWLVqEv/76C8ePHy+rvhJRFVXSemC6Ajn1VKS292EgRkQVkUEBWaNGjRAbG4vIyEgMHDgQMllePoYQAg0aNMCBAwfQuHHjMukoEVVtRY1gqVdTFnxurMKuVlYGl2QkIjIqg/8v1KZNG/z55584c+aMRmHYZs2aGbtvRGRmdI1grVsX+/+V91MLnS8qkOvcuTMOHz5c7Pu6uLiUuu9ERKVhcECWkZGBatWqoVmzZhpBmEqlwoMHD+Ds7GzM/hGRmctf8DV/5f38dAVyHh4eer0Hy1sQkakZFJB99913mDRpEs6cOQMHBweNc48fP0arVq3w2WefoVevXkbtJBGZp4KrKNWV99UV9ovj6emJ6Ohonas0AZa3IKKKwaCAbOXKlXj//fcLBWMA4OjoiEmTJmHZsmUMyIgIQF6dsaKCoUePHhX5+uLKYYSHh8Pd3V3raxloEVFlYlBAdv78eaxYsULn+Q4dOmDatGml7hQRVX7aNv7Wlgc2ZMiQQv/Iu3fvHmJiYooth+Hu7s76YURUJRgUkN2/fx9Pnz7VeT4nJwf3798vdaeIqPLTtfF3wTwwBwcHnUGVsVZREhFVdAYFZAEBAfj999/RoEEDred///131KpVyygdI6KqobR5YCzoSkTmwKDNxcPDwzF16lTcvn270LmUlBRMmzYNffv2NVrniKjyKyoPTF9yeSYCA68xGCOiKsugEbLJkyfjhx9+QN26dTFkyBDUr18fAHDhwgVs3LgR/v7+mDx5cpl0lIgqp5Jsi6RvGQqWqyCiqsKggMzJyQlHjx7FlClTsGXLFilfzMXFBUOGDMHcuXO5uTiRmVOvrCxNNX03NzeWqyAisyITQoiSvFAIgXv37kEIAQ8PD2kbpfyOHj2Kli1bwtbWttQdNUcZGRmQy+VQKpUsuEuVQlErKwFozQOLioriSkkiqlJK8vu7xBu4yWSyYqtgd+/eHWfOnEHt2rVL+jZEVInou7KSiIg0GZTUb6gSDr4RUSWna2WlUlk4pYF5YEREpRghIyLSRd8K+8wDIyLKw4CMiIyOFfaJiAxTplOWRGSe1CsrZTIVABRaWXnv3j2kpqaasotERBVKmY6QaVt5SUSVU3EbhRfMBctfYd/aOhs5ObZQKp0gl2ciJiYGABAdHc0pSyIilHFAxqR+oqqhYDkLXfr376/xXC7PxJUrdXSutiwqwCMiMidlGpBlZnKbE6Lyps9IlqGjUgWvl7++WP6aYupi0fnblWYfSyIic2FQQPbiiy/q1e7QoUMl6gwRlU5RhVnzB0ClmSosqr5YbGysRtviVlsSEVEegwKyn376CbVq1UKPHj1gbW1dVn0iohLStzBrSacKixrxAlAo+CvJPpZERObIoIBs/vz5WLduHbZt24bBgwdjxIgRCA4OLqu+EVEJGTpVWNw0p1KpBKB7xCshoTXi4xWFgr+S7GNJRGSODArIJk6ciIkTJyI+Ph5r165Fu3btUL9+fYwYMQKvvfYa91skKmOlDZy0TRXqm7APaB/xAlRSMKZ+n/zBX/7VlgX3sSQiojwlSupXKBRQKBRYsmQJtm3bhuXLl+O9997DrVu3GJQRlRF988MAw6YK9U3YB6B1xEuhiMexY+002hUM/uTyTAZiRERFKNUqy1OnTuHIkSNITExEcHAw88qIypAhG3eXdKpQnw3BC454AdAYIQP0zxPjPpZERHkMDshu3bqF9evXY/369cjIyMCQIUOQkJCARo0alUX/iKgAffPDDJ0q1Pe62kbQigr+1PtWFsR9LImInjEoIHv55Zdx+PBhdO3aFZ9++il69OgBKytuh0lUngzJDzNkqlCf6+oaQSsq+OO+lURExTMomtq/fz98fHxw/fp1zJ49G7Nnz9ba7tSpU0bpHBEVZoxSEunp6QA0pwyLu25xI2i6gj9OSxIRFc+ggGzmzJll1Q8i0lNx+WH9+/eHi4sLlEoltmzZovUaW7dulf48YMAAva5b3AiatqlJTksSEemHARlRJVTUFKGLi4tBU4Q5OTl6Xbe4ETROTRIRlZxF8U2Kd+TIEezdu7fQPnZEVHbk8kwEBl7TO0dMqXRCUlIAlEonjeMF95zVdV31CJpMpgIAFnklIjIigyv1P3jwAHPmzAEACCHQvXt3HDhwAADg6emJuLg4NG7c2Pg9JTJz+uZiaWunz/6TXbt2RbVq1aTXWFlZwcXFBffu3UNMTAwAw1duEhGRfgwKyLZs2YJJkyZJz7dv346ff/4Zv/zyCxo2bIjXX38ds2fP1shPISLjcHNzQ3R0dJGV+rXlbOlbzkL9D6v8oqOjC+WFscgrEZHxGRSQJSUl4bnnnpOe7927F/369UO7dnlVuqdNm4ZXX33VuD0kIklJEuR1JePfuOEHuTyxyNdmZ2eXamSOiIj0Y1BA9vTpU9ja2krP4+PjMW7cOOm5r68v7t27Z7TOEVHpad9/Eti+vR+ys/OmLovaLqmkI3NERKQ/gwKyoKAg/Pzzz6hduzauX7+Ov//+Gx06dJDO37x5k/9TJqpgCpazeCZv6vLxYzscPBha5HZJ/HtNRFS2DArIRo8ejejoaPzyyy84fvw4FAqFxpZJhw4dQvPmzY3eSSLST2pqqjSSpVQqpeMhIadhY5OF7ds1UwqEsEBsbCjUC6515ZcREVHZMigge+ONN2BpaYldu3ahQ4cOheqS3bp1CyNGjDBqB4lIP6mpqVi2bJnO8/7+N7TWEdN3GyYiIio7Bm9EOWLECJ1B14oVK0rdISIqmaJyvADtlfhDQw9K05Vqhm7DREREpcedwYmqKG2J+trqiNnbP9G5XRIREZUPgwKynJwcTJ06FTExMXB1dcVbb72lMVp2+/Zt+Pr6Ijc31+gdJSL9FVUIdvjwLrCyspLqBRZV7JWlLIiIyodBAdncuXPxv//9D++99x7S09Mxfvx4JCQk4Msvv5TaCCGM3kki0l9xhWDVe06ylAURUcVhUEC2ceNGfPXVV+jZsycAYNiwYejevTuGDx+OtWvXAgBkMpnxe0lUAeRfwahNRQlgdBWCLZioXxH6SkREeQwKyP79918EBwdLz+vUqYOffvoJL774IoYOHYoFCxYYvYNEFUFxKxjVoqOjTR7oaCsEy0R9IqKKzaL4Js94e3vjypUrGsdq1KiBw4cP48SJExg2bJgx+0ZUYRS3gtHQdmVJvZpSJlMBABP1iYgqAYMCshdffBGbNm0qdNzX1xeHDh1CUlKS0TpWUO/evVGzZk3Y2dnBx8cHQ4cOxa1btzTabN26Fc2aNYODgwNq1aqFTz/9tNB1fvrpJ4SEhMDW1hZ16tTB+vXrC7VZvnw5AgICYGdnh9atW+O3337TOP/kyROMHj0abm5uqFatGvr27Yvbt29rtLl+/Tp69OgBBwcHeHp6YuLEiXj69GnpbwSZpdTUVCQnJ+t8pKamaiTgh4ScxrhxixERsR7jxi3WqLzPRH0ioorHoCnL6dOn48KFC1rP1ahRA0eOHEFsbKxROlZQ586d8cEHH8DHxwf//vsv3nvvPfTr1w/Hjh0DAOzbtw+DBw/GF198ga5duyIxMRFvvPEG7O3tER0dDSBvc/QePXrgrbfewsaNGxEXF4eRI0fCx8cHYWFhAIAtW7Zg/PjxWLVqFVq3bo3FixcjLCwMFy9ehKenJwDg3XffxZ49e7Bt2zbI5XJER0cjPDwcR48eBQDk5uaiR48e8Pb2xrFjx5CcnIzXX38d1tbW+Pjjj8vk/lDZUOeNmXKPVkOmS5moT0RUOclEJV0WuXPnTvTp0wdZWVmwtrbGa6+9hpycHGzbtk1q88UXX2DBggW4fv06ZDIZJk2ahD179uD8+fNSm4EDByI9PR379+8HALRu3RqtWrWSfgGqVCr4+/vjnXfeweTJk6FUKuHh4YFNmzahX79+AIALFy6gYcOGiI+PR5s2bbBv3z707NkTt27dgpeXFwBg1apVmDRpEu7evav3CEVGRgbkcjmUSiWcnZ2Nct9If/oGQvlFRUXBx8fHqP1ITk7G6tWri20XHh4OX19fBlxERCZWkt/fBk1Zqm3btg3h4eEIDg5GcHAwwsPDsX379pJcqkTS0tKwceNGtG3bFtbW1gCArKws2NnZabSzt7fHzZs3ce3aNQBAfHw8QkNDNdqEhYUhPj4eQF7+z8mTJzXaWFhYIDQ0VGpz8uRJ5OTkaLRp0KABatasKbWJj49HkyZNpGBM/T4ZGRn4888/jXUbqIwVNdKkVDohKSkASqVTOfao6PeOiYnBsmXLkJqaWu59IiKi0jFoylKlUmHQoEHYtm0b6tWrhwYNGgAA/vzzTwwYMACvvvoqvv322zIrfTFp0iQsW7YMjx49Qps2bbB7927pXFhYGN59910MGzYMnTt3xuXLl/H5558DyBthCAgIQEpKikaQBABeXl7IyMjA48ePcf/+feTm5mpto56qTUlJgY2NDVxcXAq1SUlJkdpou4b6nC5ZWVnIysqSnmdkZOhzW6icFVV0tSjGKJuhz3tXhIUFRERkGIMCsiVLluDgwYPYuXOnVItMbefOnRg+fDiWLFmCcePG6XW9yZMnY/78+UW2SUxMlAK/iRMnIjIyEteuXcPs2bPx+uuvY/fu3ZDJZHjjjTdw5coV9OzZEzk5OXB2dsbYsWMxa9YsWFiUaCCw3H3yySeYPXu2qbtBRSiu6Kouxiiboe29d+7sCU/PFPj5JZfg0xARUUVhUKSybt06fPrpp4WCMSBvFeSCBQukArH6mDBhAhITE4t81K5dW2rv7u6OevXqoUuXLti8eTP27t2L48ePA8grSDt//nw8ePAA165dQ0pKCp5//nkAkK7h7e1daDXk7du34ezsDHt7e7i7u8PS0lJrG29vb+ka2dnZSE9PL7KNtmuoz+kyZcoUKJVK6XHjxg297iOVn6KKrgK6VzAao2yGtvcGLLBmzUicOtVcr+sTEVHFZNAI2aVLlwrlYOUXGhoqrWjUh4eHBzw8PAzpgkSlyquxlH+KDwAsLS1Ro0YNAMC3334LhUIhvYdCocDevXs12sfGxkKhUADI+2XaokULxMXFoU+fPtL7xMXFSZ+rRYsWsLa2RlxcHPr27QsAuHjxIq5fvy5dR6FQYO7cubhz5460MjM2NhbOzs5o1KiRzs9ka2sLW1vbEt0PKntKpRMePnQoVHTVwkLgnXe6IyDAqkwT6rUVfAX0H6UjIqKKy6CAzN7eHunp6ahZs6bW8xkZGYUS640hISEBJ06cwAsvvIDq1avjypUrmD59OoKCgqQg6N69e9i+fTs6deqEJ0+eYN26ddi2bRuOHDkiXeett97CsmXL8P7772PEiBE4dOgQtm7dij179khtxo8fj4iICLRs2RLPP/88Fi9ejIcPH2L48OEAALlcjsjISIwfPx6urq5wdnbGO++8A4VCgTZt2gAAunbtikaNGkm7F6SkpGDatGkYPXo0A65yZqztjvLnbgEqKTCSyVRYsCADLVp4FXuN/JRKJ6SlucHVNVXvIEpd8HXnzp4oOLitbWskIiKqPAwKyBQKBVauXImVK1dqPb98+XIpQDImBwcHxMTEYObMmXj48CF8fHzQrVs3TJs2TSPA2bBhA9577z0IIaBQKPDTTz9J05YAEBgYiD179uDdd9/FkiVL4Ofnh6+++kqqQQYAAwYMwN27dzFjxgykpKSgWbNm2L9/v0aS/qJFi2BhYYG+ffsiKysLYWFhWLFihXTe0tISu3fvxqhRo6BQKODo6IiIiAh8+OGHRr83pJuxtjsqmLsFWEAIFfr12wp//5t47bVBAFy0vr86GMxfx8zQRQEFC756eqZgzZqR3BqJiKgKMSggmzp1Kjp16oTU1FS89957aNCgAYQQSExMxOeff44ffvgBhw8fNnonmzRpgkOHDhXZxt3dXSo7UZROnTrh9OmiV8SpC2zqYmdnh+XLl2P58uU629SqVavQ9CiVr9LmbakDIV25W46OjyCXZ2rNG9MVDJZkUYCbmxuio6Nx69YtxMTEwM8vGb167S4U1HF0jIio8jIoIGvbti22bNmCqKgo7NixQ+Nc9erV8e2336Jdu3ZG7SCRqagDoatXn+LrrwVUqmflXCwti84b0xXkFbUooKiAquB7hIScRlDQZaSlucLVNU3jtdwaiYio8jEoIAOA//znPwgLC8OPP/6IS5cuAQDq1auHrl27wsHBwegdJDIlNzc3uLkBq1cDb74J5OYClpbAl1/KDM4bA7Qn5us73agOELk1EhFR1WNQQHbo0CFER0fj+PHj+M9//qNxTqlUonHjxli1ahXat29v1E4SmVpkJBAWBly+DNSpA/j5lew66sR8XdONxY1uMdgiIqqaDArIFi9ejDfeeEPrvkxyuRxvvvkmFi5cyICMqiQ/v5IHYvlXVeafbhw8uDWCg1sBaMXRLSIiM2ZQQHb27NkiK+t37doVn332Wak7RVSV6FpVKZdnwt+/jdE3IyciosrHoEr9t2/fljbz1sbKygp3794tdaeIqgpdqyrVG4Nv2bKFm4ETEZFhAVmNGjVw/vx5nefPnTvHf+1ThaHvasOyXJVY3FZLADcDJyIiA6csX375ZUyfPh3dunUrVJH/8ePHmDlzptZ9LolMoeCqxFu3LJCUZIXAwKfw9c3bequs8rbUQV5pVlUSEZH5kAkhhL6Nb9++jZCQEFhaWiI6Ohr169cHAFy4cAHLly9Hbm4uTp06pVHVnkouIyMDcrkcSqVS60IK0t+aNUBUFKBSARYWeWUsIiPL9j0TExOxdevWQtsudelyEO3aPStiHBUVxZFlIqIqpCS/vw0aIfPy8sKxY8cwatQoTJkyBepYTiaTISwsDMuXL2cwRhXOzZvPgjEg7+ebb+aVsSjpqkl9uLi4AMgr4vr4sR0OHgyFEBY4eDAU9vZPitwuiYiIzIvBhWHVWwLdv38fly9fhhACdevWRfXq1cuif0SldunSs2BMLTc3r6ZYWQZkakqlkxSMAfptl0RERObF4IBMrXr16mjVqpUx+0JUJurWzZumzB+UWVrmFXgtqdTUVNy9exc5OTnIzMzE06dPNc5bWT37q1XS7ZKIiMh8lDggIzK11NRUvbYR8vPTtvVRyUfHdG0crgsT+4mIqDgMyKhS0jcoio6Ohpubm9G2PgIML1NR2u2SiIio6mNARpWSvkFR/nal2fqotD76KBAzZtzF1atWCAh4Cl9fbpdERETPMCAjMqL8e1bmzw9zd3eHj48XWrQwYeeIiKjCYkBGVEpKpRNu3PBHUlIATp5sAUBzz0oiIqLiMCAjKoVTp5pj586eKLgLGUtbEBGRIRiQERVQ3OpNpVL5/z+dtAZjaixtQURE+mJARpSPISUt0tLcoCsYA1jagoiI9Kf7twmRGTKkpIWrayoAlY6zLG1BRET64wgZVUr6BjhlFQj1798fMpkMcvktzJ5dA0LIAAAymcCAATcxYMBtNGhQD3I5S1sQEVHxGJBRpeTm5obo6GhpROvWLQskJVkhMPApfH3zRq0MCYTUeWP37t3TOK6rjMXTp0/h6+uLmTPzis7Gx+cdVyhk8PPzB+Bf+g9JRERmQyaEEKbuBGmXkZEBuVwOpVIJZ2dnU3enwlqzBoiKytur0sIib5ukyEj9X68rb+zUqeaFqusXLGOh3gmAiIhIrSS/v5lDRpXazZvPgjEg7+ebb+Yd15e2vDGl0kkKxoBnZSyUSqdiX0tERGQoBmRUqV269CwYU8vNzduzsjTS0tw0NgMHnpWxICIiMjYGZFSp1a2bN02Zn6Vl3gbiJaVUOuHhQwfIZJqRHstYEBFRWWFSP1Vqfn55OWNvvpk3MmZpCXz5Zck3Ec+fNwaoIJOppBwyhSLeqH0nIiJS4wgZVXqRkcDVq8Dhw3k/DUnoz69g3hhgASGAFi1OQAjg2LF2WLx4HE6dam6knhMREeXhCBlVCX5+JR8VU9OWNwZY4NSpvA3DAe5RSUREZYMjZET/z9U1tVDeGKBicj8REZU5BmRk9tTV/OXyTPTqtVsKymQyFbp0OVhkcj+3RCIiImNgYdgKjIVhy4+6Uj+QV/X/6lUruLndh5vbY8TEVMeHH9aASiWDpaXA/PlKvPbaY26JREREWpXk9zcDsgqMAVnJ5Q+wtDE0mLp5M6+2WZ06pc9VIyKiqq0kv7+Z1E9Vjq6tkAoyZNsjYywaICIi0oUBGZmUsUeyAODOnTt6teO2R0REVFEwICOTKYuRrNTUVGzdurW0XSMiIipXXGVJJqPvCJUhI1m6NgpPSgootDE4ERFRRcERMqrS8m+FJJOp0KvXboSEnDZ1t4iIiDRwhIyqrIJbIamr7HOkjIiIKhoGZFRhGHtqMSGhNavsExFRpcApS6oQjDW1mJ6eDiAvuDt2TFHofP4q+0RERBUFR8jI5Iw1tZh/hWVamhu0fb0VinhpU3Bue0RERBUFAzIyubQ0N6NMLeZfYalro/DWrRMAAAMGDOC2R0REVGEwICOTUY9QaQueSruBt7aNwnv33i2Njnl4eJSm60REREbFHDIyGTc3N0RHRyM7Oxs1amRg0iQ5cnPVG3hn4LXXBpVqA++QkNMICrqMtDRXuLqmScEYR8eIiKiiYUBGJqUOjCZMAAYMUG/gLYOfnwsAl1JdW6l0QlqaG1xdU6VgDADkcnmprktERGRsDMiowjDmBt4sCEtERJUJAzIyWFlsCG5MulZtBgVd1hgpIyIiqigYkJFBymJDcGMratUmAzIiIqqIGJCRQcpiQ3BDFDU6py4Kq161mT8oK+2qTSIiorLEgIwqDX1H56KiXi6TVZtERERlhQEZlYqulYxlQd9RN7lcjgkTXIy+apOIiKisMCCjEqvoKxmNuWqTiIioLLFSP5WIsfafJCIiIgZkVELG2n+SiIiIGJBRCRW3/yQRERHpjwEZGURdMkLb5t29ej3bvLs8SksolU5ISgrgNCkREVV6TOong+TfEBwAZsy4i6tXrRAQ8BS+vq0AtNKrtERpq/1X9AUFREREhmBARgbLHyj5+AAtWhj2+pJW+1ePuhW3NRILvxIRUWXDgIzKXcGRMV21zAq2U4/OHT4MLFpUeEFBu3YR6NQJLPxKRESVDgMyKpWbN4FLl4C6dUtW88vQqUc3Nze0aQNYWACqfGsKLC2B1q3dwFiMiIgqIyb1U4mtWQPUqgW8+GLezzVrDHt9SWuZ+fkBq1fnBWFA3s8vv2QRWCIiqrwYkFGJ3LwJREU9G6VSqYA338w7rq/S1DKLjASuXgUOH877GRmp//sSERFVNJyypBK5dElzyhAAcnPz9o7Ud6RKXcssf1BmSC0zbo1ERERVBUfIzNDNm3kjS4aMZhVUt25eHld+lpZAnTpFvy41NRX37t0DUHwtMyIiInPBETIzs2bNs6lGC4u8XKySTPep87jefDNvZEyfPC5t5S5CQk4jKOgy0tJc4eqaxmCMiIjMEgMyM6Ir7yssrGRTf5GRea+9fDlvZKy4a+gqBCuXZ2oNxFhPjIiIzEWlm7LMyspCs2bNIJPJcObMGY1z586dQ/v27WFnZwd/f38sWLCg0Ou3bduGBg0awM7ODk2aNMHevXs1zgshMGPGDPj4+MDe3h6hoaG4dOmSRpu0tDQMHjwYzs7OcHFxQWRkJB48eGBwX8pbUXlfhkhNTUVycjKSk5NhaZmM+vXzfqqPpaamlqqf4eHhhYrCEhERVWWVboTs/fffh6+vL86ePatxPCMjA127dkVoaChWrVqFP/74AyNGjICLiwuioqIAAMeOHcOgQYPwySefoGfPnti0aRP69OmDU6dOITg4GACwYMECLF26FBs2bEBgYCCmT5+OsLAw/PXXX7CzswMADB48GMnJyYiNjUVOTg6GDx+OqKgobNq0Se++mII676tg/a7i8r7yK2mVfW10FYR1d3dnMEZERGalUgVk+/btw4EDB7Bjxw7s27dP49zGjRuRnZ2NtWvXwsbGBo0bN8aZM2ewcOFCKQhasmQJunXrhokTJwIA5syZg9jYWCxbtgyrVq2CEAKLFy/GtGnT8MorrwAA/ve//8HLywvff/89Bg4ciMTEROzfvx8nTpxAy5YtAQBffPEFXn75ZXz22Wfw9fXVqy+mUJK8r4KK2n/SkHbci5KIiOiZSjNlefv2bbzxxhv4+uuv4eDgUOh8fHw8OnTooJF3FBYWhosXL+L+/ftSm9DQUI3XhYWFIT4+HgCQlJSElJQUjTZyuRytW7eW2sTHx8PFxUUKxgAgNDQUFhYWSEhI0Lsv2mRlZSEjI0PjYWwVoX5XSQvCEhERVVWVIiATQmDYsGF46623NAKh/FJSUuDl5aVxTP08JSWlyDb5z+d/na42np6eGuetrKzg6upa7Pvkfw9tPvnkE8jlcunh7++vs21p+PkBnTqZroZXaQrCEhERVUUmDcgmT54MmUxW5OPChQv44osvkJmZiSlTppiyu2VuypQpUCqV0uPGjRum7lKZUBeEzc+QgrBERERVjUlzyCZMmIBhw4YV2aZ27do4dOgQ4uPjYWtrq3GuZcuWGDx4MDZs2ABvb2/cvn1b47z6ube3t/RTW5v859XHfHx8NNo0a9ZManPnzh2Nazx9+hRpaWnFvk/+99DG1ta20GesStRTuOqCsAVzyNSJ/Sx3QURE5sakAZmHhwc8PDyKbbd06VJ89NFH0vNbt24hLCwMW7ZsQevWrQEACoUCU6dORU5ODqytrQEAsbGxqF+/PqpXry61iYuLw7hx46RrxcbGQqFQAAACAwPh7e2NuLg4KQDLyMhAQkICRo0aJV0jPT0dJ0+eRIsWLQAAhw4dgkqlMqgv5sjNzQ3R0dFSwv+MGXdx9aoVAgKewte3FYBWsLGx4QpLIiIyO5VilWXNmjU1nlerVg0AEBQUBL//T4R67bXXMHv2bERGRmLSpEk4f/48lixZgkWLFkmvGzt2LDp27IjPP/8cPXr0wObNm/H7779j9erVAACZTIZx48bho48+Qt26daWyF76+vujTpw8AoGHDhujWrRveeOMNrFq1Cjk5OYiOjsbAgQPh6+urd1/MVf5gy8cH+P+YloiIyKxVioBMH3K5HAcOHMDo0aPRokULuLu7Y8aMGRplJtq2bYtNmzZh2rRp+OCDD1C3bl18//33Ug0yIK/O2cOHDxEVFYX09HS88MIL2L9/v1SDDMgrsREdHY2XXnoJFhYW6Nu3L5YuXWpQXyorfacTOe1IRESkP5kQQpi6E6RdRkYG5HI5lEolnJ2dTd0dSWpqapF1xjjtSERE5qwkv7+rzAgZlR8GW0RERMbFgIxKjCNlRERExsGAjAyiDsKUSiW2bNlSbHtuEk5ERFQ8BmSkN303Fs9P370viYiIzFml2DqJKgYGV0RERGWDARkRERGRiTEgI8nNm8Dhw3k/iYiIqPwwICMAwJo1QK1awIsv5v1cs8bUPSIiIjIfTOo3E0WVqLh1ywJRUZ5QqWQAAJUKePNNICwM+P+dqbRSKp2QluYGV9dUaWNwIiIiMhwDMjNQ3OrIpKQAqFQRGsdyc4HLl3UHZKdONceuXT0hhAVkMhV69dqNkJDTxuw2ERGR2eCUpRkobnWkq2sqZDKVxjFLS6BOHe3tlUonKRgDACEssGtXTyiVToXack9LIiKi4nGEjCCXZ6JXr93Ys6cXcnNlsLQEvvyy8OiYOrhKS3OTgjE1ISyQluYKuTwT/fv3h4uLCyv1ExER6Ymbi1dgxtpcPDk5GatXry62Xc+ebyEz0wt16uieqkxNTcXVq0/x/PPPcs4AwNJSICHhDgICrBiEERGRWePm4lQqNjZ3UL9+3tRlcrL6mOYol5ubG9zcgNWr8xL/c3Pzpjc/+USGjAwvPH5sip4TERFVbgzISBITE6P1uLb9KCMj81ZhXr4M/P47MGlS3upMC4u8YC0ysjx6TEREVDUwIKNi6VoUoJ7WfOmlvGAM0L9kBhERET3DVZYEpdIJSUkBWldJFufSpWfBmJq6ZAYRERHphyNkZqCo0hOlrSdWt27eNGX+oKyokhlERERUGAMyM+Dm5obo6Ghp6vHevXuIiYnRWU8sKOiy3pX3/fwKJ/hrK5lBREREujEgMxPaSlEUV09MX/kT/IsqmUFERETaMSAzY+oK/fmDMplMBVfXNIOv5efHQIyIiKikmNRvxtQV+tXbJqlzyLhROBERUfniCJmZCwk5jaCgy0hLc4Wra5rWYIz7URIREZUtBmQEuTxTayAWHh4OX19fboVERERUxjhlSTq5u7szGCMiIioHDMjMkL5TkJyqJCIiKh+csjRDBeuSaVNwU3EiIiIqOwzIzBSDLSIiooqDU5ZEREREJsaAjIiIiMjEGJARERERmRgDMiIiIiITY0BGREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRERERCbGSv0VmBACAJCRkWHinhAREZG+1L+31b/H9cGArALLzMwEAPj7+5u4J0RERGSozMxMyOVyvdrKhCHhG5UrlUqFW7duwcnJCTKZrMTXycjIgL+/P27cuAFnZ2cj9rBy4X3Iw/uQh/chD+/DM7wXeXgf8pTmPgghkJmZCV9fX1hY6JcdxhGyCszCwgJ+fn5Gu56zs7NZ/+VS433Iw/uQh/chD+/DM7wXeXgf8pT0Pug7MqbGpH4iIiIiE2NARkRERGRiDMjMgK2tLWbOnAlbW1tTd8WkeB/y8D7k4X3Iw/vwDO9FHt6HPOV9H5jUT0RERGRiHCEjIiIiMjEGZEREREQmxoCMiIiIyMQYkBERERGZGAOySmrlypV47rnnpIJ1CoUC+/btk84/efIEo0ePhpubG6pVq4a+ffvi9u3bGte4fv06evToAQcHB3h6emLixIl4+vRpeX8Uo5o3bx5kMhnGjRsnHTOHezFr1izIZDKNR4MGDaTz5nAP1P79918MGTIEbm5usLe3R5MmTfD7779L54UQmDFjBnx8fGBvb4/Q0FBcunRJ4xppaWkYPHgwnJ2d4eLigsjISDx48KC8P0qJBQQEFPo+yGQyjB49GoD5fB9yc3Mxffp0BAYGwt7eHkFBQZgzZ47G/oLm8H0A8rbwGTduHGrVqgV7e3u0bdsWJ06ckM5X1fvw888/o1evXvD19YVMJsP333+vcd5Yn/vcuXNo37497Ozs4O/vjwULFhjeWUGV0s6dO8WePXvE33//LS5evCg++OADYW1tLc6fPy+EEOKtt94S/v7+Ii4uTvz++++iTZs2om3bttLrnz59KoKDg0VoaKg4ffq02Lt3r3B3dxdTpkwx1Ucqtd9++00EBASI5557TowdO1Y6bg73YubMmaJx48YiOTlZety9e1c6bw73QAgh0tLSRK1atcSwYcNEQkKC+Oeff8SPP/4oLl++LLWZN2+ekMvl4vvvvxdnz54VvXv3FoGBgeLx48dSm27duommTZuK48ePi19++UXUqVNHDBo0yBQfqUTu3Lmj8V2IjY0VAMThw4eFEObzfZg7d65wc3MTu3fvFklJSWLbtm2iWrVqYsmSJVIbc/g+CCFE//79RaNGjcSRI0fEpUuXxMyZM4Wzs7O4efOmEKLq3oe9e/eKqVOnipiYGAFAfPfddxrnjfG5lUql8PLyEoMHDxbnz58X3377rbC3txdffvmlQX1lQFaFVK9eXXz11VciPT1dWFtbi23btknnEhMTBQARHx8vhMj7klpYWIiUlBSpzcqVK4Wzs7PIysoq976XVmZmpqhbt66IjY0VHTt2lAIyc7kXM2fOFE2bNtV6zlzugRBCTJo0Sbzwwgs6z6tUKuHt7S0+/fRT6Vh6erqwtbUV3377rRBCiL/++ksAECdOnJDa7Nu3T8hkMvHvv/+WXefL0NixY0VQUJBQqVRm9X3o0aOHGDFihMax8PBwMXjwYCGE+XwfHj16JCwtLcXu3bs1joeEhIipU6eazX0oGJAZ63OvWLFCVK9eXePvxqRJk0T9+vUN6h+nLKuA3NxcbN68GQ8fPoRCocDJkyeRk5OD0NBQqU2DBg1Qs2ZNxMfHAwDi4+PRpEkTeHl5SW3CwsKQkZGBP//8s9w/Q2mNHj0aPXr00PjMAMzqXly6dAm+vr6oXbs2Bg8ejOvXrwMwr3uwc+dOtGzZEq+++io8PT3RvHlz/Pe//5XOJyUlISUlReNeyOVytG7dWuNeuLi4oGXLllKb0NBQWFhYICEhofw+jJFkZ2fjm2++wYgRIyCTyczq+9C2bVvExcXh77//BgCcPXsWv/76K7p37w7AfL4PT58+RW5uLuzs7DSO29vb49dffzWb+1CQsT53fHw8OnToABsbG6lNWFgYLl68iPv37+vdH24uXon98ccfUCgUePLkCapVq4bvvvsOjRo1wpkzZ2BjYwMXFxeN9l5eXkhJSQEApKSkaPzPVn1efa4y2bx5M06dOqWRD6GWkpJiFveidevWWL9+PerXr4/k5GTMnj0b7du3x/nz583mHgDAP//8g5UrV2L8+PH44IMPcOLECYwZMwY2NjaIiIiQPou2z5r/Xnh6emqct7Kygqura6W6F2rff/890tPTMWzYMADm83cCACZPnoyMjAw0aNAAlpaWyM3Nxdy5czF48GAAMJvvg5OTExQKBebMmYOGDRvCy8sL3377LeLj41GnTh2zuQ8FGetzp6SkIDAwsNA11OeqV6+uV38YkFVi9evXx5kzZ6BUKrF9+3ZERETgyJEjpu5Wubpx4wbGjh2L2NjYQv/6Myfqf/EDwHPPPYfWrVujVq1a2Lp1K+zt7U3Ys/KlUqnQsmVLfPzxxwCA5s2b4/z581i1ahUiIiJM3DvTWLNmDbp37w5fX19Td6Xcbd26FRs3bsSmTZvQuHFjnDlzBuPGjYOvr6/ZfR++/vprjBgxAjVq1IClpSVCQkIwaNAgnDx50tRdo//HKctKzMbGBnXq1EGLFi3wySefoGnTpliyZAm8vb2RnZ2N9PR0jfa3b9+Gt7c3AMDb27vQqir1c3WbyuDkyZO4c+cOQkJCYGVlBSsrKxw5cgRLly6FlZUVvLy8zOZe5Ofi4oJ69erh8uXLZvV98PHxQaNGjTSONWzYUJq+VX8WbZ81/724c+eOxvmnT58iLS2tUt0LALh27RoOHjyIkSNHSsfM6fswceJETJ48GQMHDkSTJk0wdOhQvPvuu/jkk08AmNf3ISgoCEeOHMGDBw9w48YN/Pbbb8jJyUHt2rXN6j7kZ6zPbay/LwzIqhCVSoWsrCy0aNEC1tbWiIuLk85dvHgR169fh0KhAAAoFAr88ccfGl+02NhYODs7F/qFVpG99NJL+OOPP3DmzBnp0bJlSwwePFj6s7nci/wePHiAK1euwMfHx6y+D+3atcPFixc1jv3999+oVasWACAwMBDe3t4a9yIjIwMJCQka9yI9PV1j5ODQoUNQqVRo3bp1OXwK41m3bh08PT3Ro0cP6Zg5fR8ePXoECwvNX3OWlpZQqVQAzO/7AACOjo7w8fHB/fv38eOPP+KVV14xy/sAGO+/v0KhwM8//4ycnBypTWxsLOrXr6/3dCUAlr2orCZPniyOHDkikpKSxLlz58TkyZOFTCYTBw4cEELkLWuvWbOmOHTokPj999+FQqEQCoVCer16WXvXrl3FmTNnxP79+4WHh0elW9auTf5VlkKYx72YMGGC+Omnn0RSUpI4evSoCA0NFe7u7uLOnTtCCPO4B0LklT6xsrISc+fOFZcuXRIbN24UDg4O4ptvvpHazJs3T7i4uIgffvhBnDt3Trzyyital7k3b95cJCQkiF9//VXUrVu3wi/vLyg3N1fUrFlTTJo0qdA5c/k+REREiBo1akhlL2JiYoS7u7t4//33pTbm8n3Yv3+/2Ldvn/jnn3/EgQMHRNOmTUXr1q1Fdna2EKLq3ofMzExx+vRpcfr0aQFALFy4UJw+fVpcu3ZNCGGcz52eni68vLzE0KFDxfnz58XmzZuFg4MDy16YixEjRohatWoJGxsb4eHhIV566SUpGBNCiMePH4u3335bVK9eXTg4OIj//Oc/Ijk5WeMaV69eFd27dxf29vbC3d1dTJgwQeTk5JT3RzG6ggGZOdyLAQMGCB8fH2FjYyNq1KghBgwYoFF7yxzugdquXbtEcHCwsLW1FQ0aNBCrV6/WOK9SqcT06dOFl5eXsLW1FS+99JK4ePGiRpvU1FQxaNAgUa1aNeHs7CyGDx8uMjMzy/NjlNqPP/4oABT6bEKYz/chIyNDjB07VtSsWVPY2dmJ2rVri6lTp2qUJzCX78OWLVtE7dq1hY2NjfD29hajR48W6enp0vmqeh8OHz4sABR6RERECCGM97nPnj0rXnjhBWFraytq1Kgh5s2bZ3BfZULkK1lMREREROWOOWREREREJsaAjIiIiMjEGJARERERmRgDMiIiIiITY0BGREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRFTmUlJS8M4776B27dqwtbWFv78/evXqpbGH3LFjx/Dyyy+jevXqsLOzQ5MmTbBw4ULk5uZKba5evYrIyEgEBgbC3t4eQUFBmDlzJrKzszXe77///S+aNm2KatWqwcXFBc2bN5c2lAaAWbNmQSaToVu3boX6+umnn0Imk6FTp07Ffq6AgADIZDKdj2HDhhl+syq4Tp06Ydy4cabuBlGVY2XqDhBR1Xb16lW0a9cOLi4u+PTTT9GkSRPk5OTgxx9/xOjRo3HhwgV899136N+/P4YPH47Dhw/DxcUFBw8exPvvv4/4+Hhs3boVMpkMFy5cgEqlwpdffok6derg/PnzeOONN/Dw4UN89tlnAIC1a9di3LhxWLp0KTp27IisrCycO3cO58+f1+iXj48PDh8+jJs3b8LPz086vnbtWtSsWVOvz3bixAkpYDx27Bj69u2LixcvwtnZGQBgb29vjFtYLnJycmBtbV1u75ednQ0bG5tyez+iCq+E20MREemle/fuokaNGuLBgweFzt2/f188ePBAuLm5ifDw8ELnd+7cKQCIzZs367z+ggULRGBgoPT8lVdeEcOGDSuyTzNnzhRNmzYVPXv2FB999JF0/OjRo8Ld3V2MGjVKdOzYUY9P94x6z7z79+9Lx77//nvRvHlzYWtrKwIDA8WsWbM09oMEIFatWiV69Ogh7O3tRYMGDcSxY8fEpUuXRMeOHYWDg4NQKBQa+5Kq+75q1Srh5+cn7O3txauvvqqxL6EQQvz3v/8VDRo0ELa2tqJ+/fpi+fLl0rmkpCTpvnbo0EHY2tqKdevWiXv37omBAwcKX19fYW9vL4KDg8WmTZuk10VERBTaEzApKUmsW7dOyOVyjff/7rvvRP5fMep+//e//xUBAQFCJpMJIfK+A5GRkcLd3V04OTmJzp07izNnzhh074mqAk5ZElGZSUtLw/79+zF69Gg4OjoWOu/i4oIDBw4gNTUV7733XqHzvXr1Qr169fDtt9/qfA+lUglXV1fpube3N44fP45r164V278RI0Zg/fr10vO1a9di8ODBRhm5+eWXX/D6669j7Nix+Ouvv/Dll19i/fr1mDt3rka7OXPm4PXXX8eZM2fQoEEDvPbaa3jzzTcxZcoU/P777xBCIDo6WuM1ly9fxtatW7Fr1y7s378fp0+fxttvvy2d37hxI2bMmIG5c+ciMTERH3/8MaZPn44NGzZoXGfy5MkYO3YsEhMTERYWhidPnqBFixbYs2cPzp8/j6ioKAwdOhS//fYbAGDJkiVQKBR44403kJycjOTkZPj7++t9Ty5fvowdO3YgJiYGZ86cAQC8+uqruHPnDvbt24eTJ08iJCQEL730EtLS0gy53USVn6kjQiKquhISEgQAERMTo7PNvHnzCo0s5de7d2/RsGFDrecuXboknJ2dxerVq6Vjt27dEm3atBEARL169URERITYsmWLyM3NldqoR2uys7OFp6enOHLkiHjw4IFwcnISZ8+eFWPHji31CNlLL70kPv74Y402X3/9tfDx8ZGeAxDTpk2TnsfHxwsAYs2aNdKxb7/9VtjZ2Wn03dLSUty8eVM6tm/fPmFhYSGSk5OFEEIEBQVpjGwJIcScOXOEQqEQQjwbIVu8eHGxn6tHjx5iwoQJ0vOOHTuKsWPHarTRd4TM2tpa3LlzRzr2yy+/CGdnZ/HkyRON1wYFBYkvv/yy2L4RVSXMISOiMiOEKJO2APDvv/+iW7duePXVV/HGG29Ix318fBAfH4/z58/j559/xrFjxxAREYGvvvoK+/fvh4XFs4kBa2trDBkyBOvWrcM///yDevXq4bnnnjOoH7qcPXsWR48e1RgRy83NxZMnT/Do0SM4ODgAgMb7eXl5AQCaNGmicezJkyfIyMiQctNq1qyJGjVqSG0UCgVUKhUuXrwIJycnXLlyBZGRkRr35enTp5DL5Rp9bNmypcbz3NxcfPzxx9i6dSv+/fdfZGdnIysrS+pradWqVQseHh7S87Nnz+LBgwdwc3PTaPf48WNcuXLFKO9JVFkwICOiMlO3bl0pGV+XevXqAQASExPRtm3bQucTExPRqFEjjWO3bt1C586d0bZtW6xevVrrdYODgxEcHIy3334bb731Ftq3b48jR46gc+fOGu1GjBiB1q1b4/z58xgxYoShH1GnBw8eYPbs2QgPDy90zs7OTvpz/kR6mUym85hKpdL7fYG8laatW7fWOGdpaanxvOA08qeffoolS5Zg8eLFaNKkCRwdHTFu3LhCq1gLsrCwKBRQ5+TkFGpX8P0ePHgAHx8f/PTTT4Xauri4FPmeRFUNAzIiKjOurq4ICwvD8uXLMWbMmEK/kNPT09G1a1e4urri888/LxSQ7dy5E5cuXcKcOXOkY//++y86d+6MFi1aYN26dRojXrqoA7qHDx8WOte4cWM0btwY586dw2uvvVaSj6lVSEgILl68iDp16hjtmmrXr1/HrVu34OvrCwA4fvw4LCwsUL9+fXh5ecHX1xf//PMPBg8ebNB1jx49ildeeQVDhgwBkBcE/v333xoBsY2NjUYpEgDw8PBAZmYmHj58KP03VueIFSUkJAQpKSmwsrJCQECAQX0lqmoYkBFRmVq+fDnatWuH559/Hh9++CGee+45PH36FLGxsVi5ciUSExPx5ZdfYuDAgYiKikJ0dDScnZ0RFxeHiRMnol+/fujfvz+AvGCsU6dOqFWrFj777DPcvXtXeh9vb28AwKhRo+Dr64sXX3wRfn5+SE5OxkcffQQPDw8oFAqtfTx06BBycnKMOiozY8YM9OzZEzVr1kS/fv1gYWGBs2fP4vz58/joo49KdW07OztERETgs88+Q0ZGBsaMGYP+/ftL92D27NkYM2YM5HI5unXrhqysLPz++++4f/8+xo8fr/O6devWxfbt23Hs2DFUr14dCxcuxO3btzUCsoCAACQkJODq1auoVq0aXF1d0bp1azg4OOCDDz7AmDFjkJCQoLFYQpfQ0FAoFAr06dMHCxYsQL169XDr1i3s2bMH//nPfwpNqRJVZVxlSURlqnbt2jh16hQ6d+6MCRMmIDg4GF26dEFcXBxWrlwJAOjXrx8OHz6M69evo3379qhfvz4WLVqEqVOnYvPmzdK0XWxsLC5fvoy4uDj4+fnBx8dHeqiFhobi+PHjePXVV1GvXj307dsXdnZ2iIuLK5SrpObo6Gj0KbKwsDDs3r0bBw4cQKtWrdCmTRssWrQItWrVKvW169Spg/DwcLz88svo2rUrnnvuOaxYsUI6P3LkSHz11VdYt24dmjRpgo4dO2L9+vUIDAws8rrTpk1DSEgIwsLC0KlTJ3h7e6NPnz4abd577z1YWlqiUaNG8PDwwPXr1+Hq6opvvvkGe/fuRZMmTfDtt99i1qxZxX4OmUyGvXv3okOHDhg+fDjq1auHgQMH4tq1a1I+HZG5kAlDM2mJiMhkZs2ahe+//16vKUEiqjw4QkZERERkYgzIiIiKUK1aNZ2PX375xdTdI6IqglOWRERFuHz5ss5zNWrUqFT7VRJRxcWAjIiIiMjEOGVJREREZGIMyIiIiIhMjAEZERERkYkxICMiIiIyMQZkRERERCbGgIyIiIjIxBiQEREREZkYAzIiIiIiE/s/cQ2omzjrMrQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrJklEQVR4nO3deXxM5/4H8M9kJBEkk1UWiSSSoHbSltDaK9RSVxelagvBtVxLbVdtVbXWrlQv4bq02qIXXYSiVcJVmipFRROkkmBCYmkjMuf3x/xmZJLMJDOZmXNmzuf9euWlM+fkzDPTyTnf8zzf5/soBEEQQERERCQDLmI3gIiIiMheGPgQERGRbDDwISIiItlg4ENERESywcCHiIiIZIOBDxEREckGAx8iIiKSDQY+REREJBsMfIiIiEg2GPgQEUnQ5s2boVAokJGRIXZTiJwKAx8imTp16hTGjBmDhg0bonr16qhduzZee+01/Pbbb6X2bd++PRQKBRQKBVxcXODl5YV69erhzTffxIEDB8x63b1796Jdu3aoWbMmqlWrhjp16uC1117DN998Y623Vsp7772HL774otTzx48fx5w5c3D37l2bvXZJc+bM0X+WCoUC1apVQ4MGDfD2228jPz/fKq+xfft2rFixwirHInI2DHyIZGrRokXYuXMnOnXqhJUrVyIxMRHff/89WrRogXPnzpXaPzQ0FFu3bsW///1vLFmyBL169cLx48fRpUsX9O3bF4WFheW+5tKlS9GrVy8oFApMnz4dy5cvx8svv4zLly/jk08+scXbBGA68Jk7d65dAx+ddevWYevWrVi2bBnq16+P+fPno2vXrrDG8okMfIiMqyJ2A4hIHBMnTsT27dvh5uamf65v375o3LgxFi5ciP/85z8G+6tUKgwYMMDguYULF2LcuHH44IMPEBERgUWLFhl9vcePH2PevHl44YUXkJycXGr7zZs3K/mOpOPhw4eoVq2ayX1eeeUV+Pv7AwBGjhyJl19+Gbt27cKJEycQFxdnj2YSyRJ7fIhkqnXr1gZBDwDExMSgYcOGuHDhQoWOoVQqsWrVKjRo0ABr1qxBXl6e0X1v376N/Px8tGnTpsztNWvWNHj8119/Yc6cOahbty6qVq2K4OBg9OnTB1euXNHvs3TpUrRu3Rp+fn7w8PBAbGwsPv/8c4PjKBQKPHjwAFu2bNEPLw0ePBhz5szB5MmTAQCRkZH6bcVzav7zn/8gNjYWHh4e8PX1xeuvv47r168bHL99+/Zo1KgRTp8+jbZt26JatWr45z//WaHPr7iOHTsCANLT003u98EHH6Bhw4Zwd3dHSEgIRo8ebdBj1b59e3z55Ze4evWq/j1FRESY3R4iZ8UeHyLSEwQBOTk5aNiwYYV/R6lUol+/fpg5cyZ++OEHdO/evcz9atasCQ8PD+zduxdjx46Fr6+v0WMWFRWhR48e+Pbbb/H666/jH//4B+7du4cDBw7g3LlziIqKAgCsXLkSvXr1whtvvIFHjx7hk08+wauvvop9+/bp27F161YMGzYMzz77LBITEwEAUVFRqF69On777Td8/PHHWL58ub73JSAgAAAwf/58zJw5E6+99hqGDRuGW7duYfXq1Wjbti1++ukneHt769urVqvRrVs3vP766xgwYAACAwMr/Pnp6AI6Pz8/o/vMmTMHc+fORefOnTFq1ChcunQJ69atw6lTp3Ds2DG4urpixowZyMvLQ2ZmJpYvXw4AqFGjhtntIXJaAhHR/9u6dasAQNi4caPB8+3atRMaNmxo9Pd2794tABBWrlxp8vizZs0SAAjVq1cXunXrJsyfP184ffp0qf02bdokABCWLVtWaptGo9H/98OHDw22PXr0SGjUqJHQsWNHg+erV68uDBo0qNSxlixZIgAQ0tPTDZ7PyMgQlEqlMH/+fIPnf/nlF6FKlSoGz7dr104AIKxfv97o+y5u9uzZAgDh0qVLwq1bt4T09HThww8/FNzd3YXAwEDhwYMHgiAIQlJSkkHbbt68Kbi5uQldunQRioqK9Mdbs2aNAEDYtGmT/rnu3bsL4eHhFWoPkdxwqIuIAAAXL17E6NGjERcXh0GDBpn1u7oehXv37pncb+7cudi+fTuaN2+O/fv3Y8aMGYiNjUWLFi0Mhtd27twJf39/jB07ttQxFAqF/r89PDz0/33nzh3k5eXh+eefx5kzZ8xqf0m7du2CRqPBa6+9htu3b+t/goKCEBMTg8OHDxvs7+7ujiFDhpj1GvXq1UNAQAAiIyMxYsQIREdH48svvzSaG3Tw4EE8evQI48ePh4vLk1P38OHD4eXlhS+//NL8N0okQxzqIiJkZ2eje/fuUKlU+Pzzz6FUKs36/fv37wMAPD09y923X79+6NevH/Lz83Hy5Els3rwZ27dvR8+ePXHu3DlUrVoVV65cQb169VCliulT1L59+/Duu+8iNTUVBQUF+ueLB0eWuHz5MgRBQExMTJnbXV1dDR7XqlWrVL5UeXbu3AkvLy+4uroiNDRUP3xnzNWrVwFoA6bi3NzcUKdOHf12IjKNgQ+RzOXl5aFbt264e/cujh49ipCQELOPoZv+Hh0dXeHf8fLywgsvvIAXXngBrq6u2LJlC06ePIl27dpV6PePHj2KXr16oW3btvjggw8QHBwMV1dXJCUlYfv27Wa/h+I0Gg0UCgW+/vrrMoPAkjkzxXueKqpt27b6vCIish8GPkQy9tdff6Fnz5747bffcPDgQTRo0MDsYxQVFWH79u2oVq0annvuOYva8fTTT2PLli3IysoCoE0+PnnyJAoLC0v1rujs3LkTVatWxf79++Hu7q5/PikpqdS+xnqAjD0fFRUFQRAQGRmJunXrmvt2bCI8PBwAcOnSJdSpU0f//KNHj5Ceno7OnTvrn6tsjxeRM2OOD5FMFRUVoW/fvkhJScFnn31mUe2YoqIijBs3DhcuXMC4cePg5eVldN+HDx8iJSWlzG1ff/01gCfDOC+//DJu376NNWvWlNpX+P8Cf0qlEgqFAkVFRfptGRkZZRYqrF69eplFCqtXrw4Apbb16dMHSqUSc+fOLVVQUBAEqNXqst+kDXXu3Blubm5YtWqVQZs2btyIvLw8g9l01atXN1lagEjO2ONDJFOTJk3Cnj170LNnT+Tm5pYqWFiyWGFeXp5+n4cPHyItLQ27du3ClStX8Prrr2PevHkmX+/hw4do3bo1WrVqha5duyIsLAx3797FF198gaNHj6J3795o3rw5AGDgwIH497//jYkTJ+J///sfnn/+eTx48AAHDx7E3//+d7z00kvo3r07li1bhq5du6J///64efMm1q5di+joaJw9e9bgtWNjY3Hw4EEsW7YMISEhiIyMRMuWLREbGwsAmDFjBl5//XW4urqiZ8+eiIqKwrvvvovp06cjIyMDvXv3hqenJ9LT07F7924kJibirbfeqtTnb66AgABMnz4dc+fORdeuXdGrVy9cunQJH3zwAZ555hmD/1+xsbHYsWMHJk6ciGeeeQY1atRAz5497dpeIskSc0oZEYlHNw3b2I+pfWvUqCHExMQIAwYMEJKTkyv0eoWFhcJHH30k9O7dWwgPDxfc3d2FatWqCc2bNxeWLFkiFBQUGOz/8OFDYcaMGUJkZKTg6uoqBAUFCa+88opw5coV/T4bN24UYmJiBHd3d6F+/fpCUlKSfrp4cRcvXhTatm0reHh4CAAMprbPmzdPqFWrluDi4lJqavvOnTuF5557TqhevbpQvXp1oX79+sLo0aOFS5cuGXw2pqb6l6Rr361bt0zuV3I6u86aNWuE+vXrC66urkJgYKAwatQo4c6dOwb73L9/X+jfv7/g7e0tAODUdqJiFIJghYVhiIiIiBwAc3yIiIhINhj4EBERkWww8CEiIiLZYOBDREREssHAh4iIiGSDgQ8RERHJBgsYlqDRaHDjxg14enqy7DsREZGDEAQB9+7dQ0hICFxcjPfrMPAp4caNGwgLCxO7GURERGSB69evIzQ01Oh2Bj4leHp6AtB+cKbWHSIiIiLpyM/PR1hYmP46bgwDnxJ0w1teXl4MfIiIiBxMeWkqTG4mIiIi2WDgQ0RERLLBwIeIiIhkgzk+REREVlBUVITCwkKxm+G0XF1doVQqK30cBj5ERESVIAgCsrOzcffuXbGb4vS8vb0RFBRUqTp7DHyIiIgqQRf01KxZE9WqVWPxWxsQBAEPHz7EzZs3AQDBwcEWH4uBDxERkYWKior0QY+fn5/YzXFqHh4eAICbN2+iZs2aFg97MbmZiIjIQrqcnmrVqoncEnnQfc6VyaVi4ENERFRJHN6yD2t8zhzqsiG1Wo1Hjx4Z3e7m5sauUSIiIjti4GMjarUaa9asKXe/MWPGMPghIiKyEw512Yipnh5L9hObWq1GVlaW0R+1Wi12E4mIyAyDBw+GQqGAQqGAq6srAgMD8cILL2DTpk3QaDQVPs7mzZvh7e1tu4ZaGXt8qFzsvSIisg2xUyK6du2KpKQkFBUVIScnB9988w3+8Y9/4PPPP8eePXtQpYrzhQnO947I6pyt94qISAqkcFPp7u6OoKAgAECtWrXQokULtGrVCp06dcLmzZsxbNgwLFu2DElJSfj999/h6+uLnj17YvHixahRowaOHDmCIUOGAHiSeDx79mzMmTMHW7duxcqVK3Hp0iVUr14dHTt2xIoVK1CzZk2bvJeK4lAXmS0vzxPp6RHIy/MUuyl2V3zI7/TpHHz+uRqnT+dwyI+IzCbVm8qOHTuiadOm2LVrFwDAxcUFq1atwvnz57FlyxYcOnQIU6ZMAQC0bt0aK1asgJeXl/48+NZbbwHQTjmfN28efv75Z3zxxRfIyMjA4MGD7fpeysIeHzLLmTPNsXdvDwiCCxQKDXr23IcWLX4Su1l2UfzuzNTnwCE/InJ09evXx9mzZwEA48eP1z8fERGBd999FyNHjsQHH3wANzc3qFQqKBQKfc+RztChQ/X/XadOHaxatQrPPPMM7t+/jxo1atjlfZSFPT5UYXl5nvqLPQAIggv27u0hm54f3V1XeZ8Dh/yIyNEJgqAfujp48CA6deqEWrVqwdPTE2+++SbUajUePnxo8hinT59Gz549Ubt2bXh6eqJdu3YAgGvXrtm8/aYw8KEKy83101/sdQTBBbm5vnZrgxRml0nhcyAisqULFy4gMjISGRkZ6NGjB5o0aYKdO3fi9OnTWLt2LQDTN3kPHjxAfHw8vLy8sG3bNpw6dQq7d+8u9/fsgUNdNuLm5mbV/aTA11cNhUJjcNFXKDTw9c21y+tLIREQEP9zICKypUOHDuGXX37BhAkTcPr0aWg0Grz//vtwcdGe8z799FOD/d3c3FBUVGTw3MWLF6FWq7Fw4UKEhYUBAH788Uf7vIFyMPCxET8/P4wZM0YSlZutNV1SpbqHnj33lcptUanuWbO5RpV8D3l5nsjN9YOvr9qgDba+mxD7cyAispaCggJkZ2cbTGdfsGABevTogYEDB+LcuXMoLCzE6tWr0bNnTxw7dgzr1683OEZERATu37+Pb7/9Fk2bNkW1atVQu3ZtuLm5YfXq1Rg5ciTOnTuHefPmifQuDTHwsaHiwURmJnD5MhATA4SG2q8N1uglKd4r1aLFT4iKSkNuri98fXMNLvb27L0SO8na1Ofg6MSuK0JE9vPNN98gODgYVapUgY+PD5o2bYpVq1Zh0KBBcHFxQdOmTbFs2TIsWrQI06dPR9u2bbFgwQIMHDhQf4zWrVtj5MiR6Nu3L9RqtX46++bNm/HPf/4Tq1atQosWLbB06VL06tVLxHerxcDHDjZuBBITAY0GcHEBNmwAEhLs89rWmC4ppd4rwHhycVRUml0DEJXqnlMFPEDpQNlYr1p5w4nFg6cbN1yQnl4FkZGPERKirQbL4IlI/JSIzZs3Y/PmzeXuN2HCBEyYMMHguTfffNPg8bp167Bu3TqD5/r164d+/foZPCcIgmWNtSIGPjaWmfkk6AG0/44YAcTH27fnp7KkdJEylVzsbIFIZZnbe1N8X1O9aqaOyWn/RBUjtZtKuWDgY2OXLz8JenSKioC0NMcKfKRErORise/OzFWZYc7K9KqVN+1fdwyxZ3bImVhD71Qagxr7Y+BjYzEx2uGt4sGPUglER4vTHmNDF45ErORiR7s7q0wyuDV61dgzJ01iDr0TSQEDHxsLDdWeWEaM0Pb0KJXAhx+Kc5cldkKwNYmVXCyVoMZc5v6/t0avGqf9S4+zDL0TVQYLGNpBQgKQkQEcPqz9V4y7K2eoulxyCEmluofIyKulgh6pDDVJhSX/73W9agqF9gppSa+aNY5B1qNWq3HihLrMofeTJ9VcZ45kgz0+dhIaKu4dlTMMOzjaUJNUlPf//vbt2/rn8/Ly9P9tjV41Z57270h0+V55eZ5QKMaX6oU7dmwLzp27x4RzkgUGPk5O1/tR3rCDo/SS8KRsvvL+3+tWYC6LNabsO+O0f0eju1koLz+OCeckBwx8nFzxXpJatfIxdaoKRUUKKJUCFi3KR//+/dhL4uRskQzuKIEylcZeOJI7Bj4yoAtqJk0C+vbVTqWPjlYgNNQbgLeYTSM7KetiZ2yW12uvvQZvb2+jxyovUHa0af9yxF44kjOHCny+//57LFmyBKdPn0ZWVhZ2796N3r1767cLgoDZs2fjo48+wt27d9GmTRusW7cOMTEx4jVaYsTONSL7KSsZXHexMzXLy9vbG8HBwRa/LnOxiAgAjhw5gg4dOuDOnTsmb6aKi4iIwPjx4zF+/HibtcuhZnU9ePAATZs2xdq1a8vcvnjxYqxatQrr16/HyZMnUb16dcTHx+Ovv/6yc0uJxKcLQBITE5GYmIg+ffoAsM8MPz8/PwQHBxv9YdBDJL7BgwdDoVBg5MiRpbaNHj0aCoUCgwcPtn/DbMyheny6deuGbt26lblNEASsWLECb7/9Nl566SUAwL///W8EBgbiiy++wOuvv27PphJJQlkBhjPM8CMi6wgLC8Mnn3yC5cuXw8PDAwDw119/Yfv27ahdu7bIrbMNh+rxMSU9PR3Z2dno3Lmz/jmVSoWWLVsiJSXF6O8VFBQgPz/f4IfImelmeRXHwoJE8tSiRQuEhYUZzO7ctWsXateujebNm+ufKygowLhx41CzZk1UrVoVzz33HE6dOmVwrK+++gp169aFh4cHOnTogIyMjFKv98MPP+D555+Hh4cHwsLCMG7cODx48MBm768sThP4ZGdnAwACAwMNng8MDNRvK8uCBQugUqn0P2FhYTZtJ5HYWFhQfphw7hgyM7WFbjMz7fu6Q4cORVJSkv7xpk2bMGTIEIN9pkyZgp07d2LLli04c+YMoqOjER8fj9xc7Q3T9evX0adPH/Ts2ROpqakYNmwYpk2bZnCMK1euoGvXrnj55Zdx9uxZ7NixAz/88APGjBlj+zdZjEMNddnC9OnTMXHiRP3j/Px8Bj/klIpf1ExNaebFz/nYI+FcrVbrj3/jhgvS06sgMvIxQkI0Vjm+sxNzDbUBAwZg+vTpuHr1KgDg2LFj+OSTT3DkyBEA2vzadevWYfPmzfp0k48++ggHDhzAxo0bMXnyZKxbtw5RUVF4//33AQD16tXDL7/8gkWLFulfZ8GCBXjjjTf0icsxMTFYtWoV2rVrh3Xr1qFq1ap2eb9OE/gEBQUBAHJycgxmpOTk5KBZs2ZGf8/d3R3u7u62bh6R6DjbSt5s+f9VVxkaMD1jkJWhyyb2GmoBAQHo3r07Nm/eDEEQ0L17d/j7++u3X7lyBYWFhWjTpo3+OVdXVzz77LO4cOECAODChQto2bKlwXHj4uIMHv/88884e/Ystm3bpn9OEARoNBqkp6fjqaeessXbK8VpAp/IyEgEBQXh22+/1Qc6+fn5OHnyJEaNGiVu44gkghcdsgVdMG1sxmBUVBpUqnusDG3E5csocw21tDT7lR8ZOnSofsjJ2Mzpyrp//z5GjBiBcePGldpmz0Rqhwp87t+/j7S0NP3j9PR0pKamwtfXF7Vr18b48ePx7rvvIiYmBpGRkZg5cyZCQkIMav0QEZFtcMagZWJitMNbxYMfpRKIjrZfG7p27YpHjx5BoVAgPj7eYFtUVBTc3Nxw7NgxhIeHAwAKCwtx6tQp/bDVU089hT179hj83okTJwwet2jRAr/++iui7fnGyuBQgc+PP/6IDh066B/rcnMGDRqEzZs3Y8qUKXjw4AESExNx9+5dPPfcc/jmm2/sNm5IZG3F8ybKwqEpx+Ls/z/LWxeuspw1jyg0VJvTM2KEtqdHqQQ+/NC+xWaVSqV+2EqpVBpsq169OkaNGoXJkyfrOxoWL16Mhw8fIuH/E5FGjhyJ999/H5MnT8awYcNw+vRpbN682eA4U6dORatWrTBmzBgMGzYM1atXx6+//ooDBw7oh0rtwaECn/bt20MQBKPbFQoF3nnnHbzzzjt2bBWRbRTPmzCFeROOQQ7/P22xLpyOs+cRJSRoc3q0SwqJU2Hfy8vL6LaFCxdCo9HgzTffxL179/D0009j//798PHxAaAdqtq5cycmTJiA1atX49lnn8V7772HoUOH6o/RpEkTfPfdd5gxYwaef/55CIKAqKgo9O3b1+bvrTiHCnyI5KSi+RDMm3AMcvn/aatFUM3JI3LUnjV7LylUskempC+++EL/31WrVsWqVauwatUqo/v36NEDPXr0MHiu5LT4Z555BsnJyUaPUVbtH2tj4ENEDsdRL2zFGVsk1hnYchHU8vKIMjMz8dVXX5V7HEftGaLKY+BDRA7FGYaMTA3VkGnl5REVD3ry8jxx/bq2LltY2HWDYMzRe9bIcgx8iMihOPqQUXlDNY7InpWhK5pHdOZMc+zZ0xOA4v+f0aBXLwaYxMCHyGE489CInDjjlG97F8csL49IF1w+CXoAwAV79jh2gEnWwcCHyAFwaMR52HrKt1jsPaxoKo+orOBSy3YBpqkZx2Q91vicnWaRUiJnZWxoJC/PU+SWSUNenifS0yMc5vPgIrG2pwsuS7N+gOnq6goAePjwoVWPS2XTfc66z90S7PEhkihdPkR5QyNyXlTUkXrCuEhs5ZjzuZTMA9LS5vhYO8BUKpXw9vbGzZs3AQDVqlWDQqEo57fIXIIg4OHDh7h58ya8vb1LFVk0BwMfIonS5U1kZDzG1q0CNJonJ1OlUsDYsd0QEVFFsjOXbM3RkoS5SGzlVOTzu3v3Lj799FMAT4LL69e1hXHCwjJt9r3QLZKtC37Idry9vfWft6UY+BBJmJ+fH/z8yipnr0BsbKDYzROVIyYJM6ipHHM/P20e0IUyt1mzZ02hUCA4OBg1a9ZEYWGh1Y5LhlxdXSvV06PDwIfIAUihnL1U6C5Y5SUJc8hIfir6/3zAgAE2CUKVSqVVLsxkWwqBqegG8vPzoVKpkJeXZ3LdEiISj65y8/btHpg6VYWiIgWUSgGLFuWhf/8/OWQkY85Q1dsRSPFzruj1m4FPCQx8bEeKfyjk+DIz2RNGZE9SrZ5e0es3h7rILqT6h0KOz94LOxLJnaNXT2cdH7KLkn8AxmqvSPUPhYiInAN7fMjuHKn2ChERORf2+JBdsQoxERGJiT0+ZFeOWHuFiJwTJ1zIEwMfsiupLtDIEyCRvHDChfXk5XkiN9cPvr5qh7iBZeBDdlVyDR0pLNDIEyCR/Dj6zCSpcMScTQY+ZHemFmgUA0+AREQVp6uQXd56eVKtns7Ah+yi5B+Adg2d0gGPFP5QHK3blmyLw6DywL/7itMtGHv4MLB8eemczTZtBqF9e+muTcfAh+zCUVamdsRuW7IdDoPKA//uzefn54dWrQAXF0CjefK8Ugm0bKldXFmqGPiQ3Uj9wlBety3JD4dBnR//7i0XGgps2ACMGAEUFWmDng8/lH4ldQY+EpCZCVy+DMTESP8L48w41Z5Ifiryd8/hTuMSEoD4eMdaL4+Bj8g2bgQSE7VdhS4u2ug5IUHsVsmTVKfak30Vv8jdvn1b5NaQrZX3d5+Xl4cdO3aUexw5D3c62np5DHxEolarkZHxGImJNaHRKABog58RIwQ0a3YTERFVZPtHJBYpTrUn+yovp4cJsM5DN5GivL97QRAqdDwOdzoOBj4i0J1c09MjoNEMMthWVKTA6tVfIzLyqqzvIOyp+EwyU1PtpTDjjGzL1MWLCbDOpeSEi1mzbiEjowoiIh4jJOQZAM/Azc2NAY0TYuAjAt0fUnldrPyDsw9HmXFG4mECrHMq/jcdHAzExpbeJysry+Axe/0cHwMfEXFoRToY1JApTHwnoHK9fkyQlg6nDHzWrl2LJUuWIDs7G02bNsXq1avx7LPPit2sMkmtijERPaG7u3d1LTDZO8thUOdXmV4/1oOSFqcLfHbs2IGJEydi/fr1aNmyJVasWIH4+HhcunQJNWvWFLt5ZTJWxZiIxFPy7r5Jk7M4e7YJBMEFLi4CFi/OR//+/XinLhOV6fVjPShpcbrAZ9myZRg+fDiGDBkCAFi/fj2+/PJLbNq0CdOmTRO5dWQO1jcisZR1d3/2bBMkJPwLhYVuGDu2G2JjAwF4i9rOkjicYjssd+E8nCrwefToEU6fPo3p06frn3NxcUHnzp2RkpIiYsuoonQn7u3bPTBligoajeL/767z0L//nzxxk10Yu7svLHRDZORVhIRojPymeDicYhsVnfZuznCnsQRpY3WjeN6zLqcKfG7fvo2ioiIEBgYaPB8YGIiLFy+W+TsFBQUoKCjQP87Pz7dpG8k43Yk7L88TK1aMhyDo6hspMHmyF/74YxNUqns8cZPN6C5e5d3di5HTU15vTl5eXoWOw+EU81R02ntFz0mmEqR37dpl9Pd43rMepwp8LLFgwQLMnTvXrq9Z/KRpamqk3BImdSeW8sbSeeImWyl+katVKx9Tp6pQVKSAUilg0SLxcnoq2ptDtlGRae8VUZkEaZ73rMepAh9/f38olUrk5OQYPJ+Tk4OgoKAyf2f69OmYOHGi/nF+fj7CwsJs2k7dyXXzZiXeeaf0cA4g765NjqWTmHR/d5MmAX376tYgUiA01Bti5fRYctFjvRnpYVkEaXCqwMfNzQ2xsbH49ttv0bt3bwCARqPBt99+izFjxpT5O+7u7nB3d7djK7X+/NMPU6Zol6kAtMM5U6d6o29fb9kn8rK+EUmFo61BpMMq09JUkZs6Bqy251SBDwBMnDgRgwYNwtNPP41nn30WK1aswIMHD/SzvKTi8uUnQY9OUZH27tIRT7TWxvpGRMaZujiyyrT0VDRBmgGrfThd4NO3b1/cunULs2bNQnZ2Npo1a4ZvvvmmVMKzmNRqNby8HsPF5ckCpQCgVArw9LwJtZoLlAKsb0RUlvIujhxOkR5TCdJubpHYtesnBqx25HSBD6DNfjc2tCW24kmKPXoYnsC6d9+Hffu0JzBm8BNRSRW5ODJHTpqMJUhnZWm7/hmw2o9TBj5SVjxJ0dRwDjP4iaikilwcrVlvhuyHAav9MPARGYdznqjoCZknbpKr8i6Or732Gry9vQFUvt4M2YctCiSSaQx8SDJKjoOXhSdueRN7SQaxXr+iF8eaNWvqX78y9WbIfqxdIJHKx8CHJIV/3GSM2EsyiPn6vDg6N2sVSKSKYeBDRA5B7BWuxX59XhyJrIOBDxE5JLELvYn9+rYg9lAikT0w8CEihyN2oTexX98WxB5KJLIXBj52xplLRJUjdqE3sV/fVkr29Bjr0WKpjYph75l0MfCxM85cImdn6xO+2IXexH59e3DGHi17Yu+ZtDHwEYFUv+iZmdo1xGJiuF4YWcYeJ3yxC72J/fq25qw9WvbE3jNpcyl/F5KDjRuB8HCgY0ftvxs3it0ickRlnfDT0yOQl+dpcj9z6GrZKBTaUv8la9nYmtivb2umerTIfGfONMeKFeOxZcsgrFgxHmfONBe7SbLHHh9CZiaQmPhktXiNBhgxAoiPZ88PWc7awyXF895MLfdiq/w4sV/fXpy9R8ue2HsmTQx8CJcvPwl6dIqKgLQ08QMfDr85Jluc8MXOjxP79e2lvOrQVHFyyAdzRAx8CDExgIuLYfCjVALR0eK1CdAOt+l6olxcgA0bgIQEcdtEFWOrE77YQYXYr28vpnq0AM5Yqij2nkkTAx+ZU6vVUCofYfFiD0ydqkJRkQJKpYBFi/KgVP4Jtdr+JzC1Wo2MjMdITKwJjUYBQDf8JqBZs5uIiKjCk6rE8YTveEoO0RlbQPnhw4fYsGGD/rGxxF3OWGLvmVQx8JGxkjNwxo3z1N/h3b9/D7pzmz1PYLo2padHQKMZZLCtqEiB1au/RmTkVZ5UJY4nfMdT0aG84ttN5XFxxpJWeb1nZH8MfGSs5InJ2B2ePU9gutcqr8eAJ1Xp4wnf8VTkZiIrKwsAE3dNqWjvmaMnwjsqBj4kSewxMJ8U8i54wpcPJu4aJ5dEeEfFwIckiz0GFVdy2FKsvAue8OWDeVym8TsuXQx8SNKM9RiQISnlXfCELw9y7ZUt3rN644YL0tOrIDLyMUJCtNNiGdhLHwMfIifCvAvxSGGo0d7k1itbvGfV1A0GJ19IGwMfsjoWHRQP8y7EIZWhRjHIqVdWF9iWd4PByRfSxsCHrIpFB8XFvAtxSGmo0dYqmpjuzAnsvMFwbAx8ZMzaJzBrrPnFk2rlyDXvQirkMNTIBHbHvsGQ45BsSQx8ZMzaJzBrrPkl95OqNRIn5ZZ3ISVy6Qlw1r+/inLUG4ySQ7LGOOOQbHEMfGTOWl9utVoNL6/HcHF5sswEACiVAjw9b0KtrvgyE878B2eKNRMn5ZR3ISWO3BNA5nHEG4ySN5TGctGcYUjWFAY+VGnFL9g9ehhesLt334d9+zjToSIqkzjJIUJpcNSeALKMI99gmLq5cnYWBT4PHjxA9erVrd0WclDFL8Sm7oKc/S7CWiwZLpH7EKGUOGJPAMmLHHLRTLEo8AkMDMRrr72GoUOH4rnnnrN2m8jBOfJdkBRYOlzCoEY6+DfgnEz1mBYfNpJ6z6pcctGMsSjw+c9//oPNmzejY8eOiIiIwNChQzFw4ECEhIRYu31EssPhEsfDoUZ5MNazun27B955RwWNRgEXFwENGyokXcZD7rloFgU+vXv3Ru/evXHr1i1s3boVmzdvxsyZMxEfH4+hQ4eiV69eqFKF6UNEluJwiWPhUKN8FP9/qFarkZHxGFOmqPSTOjQaBUaMENCs2U1ERFR8Uoc9yf3mqlLRSUBAACZOnIiJEydi9erVmDx5Mr766iv4+/tj5MiRmDZtGqpVq2aVhs6fPx9ffvklUlNT4ebmhrt375ba59q1axg1ahQOHz6MGjVqYNCgQViwYAGDMHJIHC5xLFK8wJHt6CZ1pKdHQKMZZLCtqEiB1au/RmTkVclO6pDzzVWlIoKcnBxs2bIFmzdvxtWrV/HKK68gISEBmZmZWLRoEU6cOIHk5GSrNPTRo0d49dVXERcXh40bN5baXlRUhO7duyMoKAjHjx9HVlYWBg4cCFdXV7z33ntWaQMR2RaLq5Gj0H1Pyxs2ktKkjpJDrcZurpx9SNaiwGfXrl1ISkrC/v370aBBA/z973/HgAED4O3trd+ndevWeOqpp6zVTsydOxcAsHnz5jK3Jycn49dff8XBgwcRGBiIZs2aYd68eZg6dSrmzJnj9P8jyfHJPU9EzutdkeNypGEjDslqWRT4DBkyBK+//jqOHTuGZ555psx9QkJCMGPGjEo1zhwpKSlo3LgxAgMD9c/Fx8dj1KhROH/+PJo3b17m7xUUFKCgoED/OD8/3+ZtdTZyv2Bbi9xPSnJa74qciyMNGznr+cMcFgU+WVlZ5ebueHh4YPbs2RY1yhLZ2dkGQQ8A/ePs7Gyjv7dgwQJ9bxJZRu4XbGviZ8QaI+SYmJPnOCwKfKpVq4aioiLs3r0bFy5cAAA89dRT6N27t1mJxNOmTcOiRYtM7nPhwgXUr1/fkmZWyPTp0zFx4kT94/z8fISFhdns9ZwVL9hkLXKvMUJEtmVR4HP+/Hn07NkTOTk5qFevHgBg0aJFCAgIwN69e9GoUaMKHWfSpEkYPHiwyX3q1KlToWMFBQXhf//7n8FzOTk5+m3GuLu7w93dvUKvQUS2J/caI0RkWxYFPsOGDUOjRo1w+vRp+Pj4AADu3LmDwYMHIzExEcePH6/QcQICAhAQEGBJE0qJi4vD/PnzcfPmTdSsWRMAcODAAXh5eaFBgwZWeQ2yvcxM7SrvMTEVX9GdnIsjJYsSOaPisytv3HBBenoVREY+RkiIBoDjpy5YFPikpqbixx9/1Ac9AODj44P58+cbTXaurGvXriE3NxfXrl1DUVERUlNTAQDR0dGoUaMGunTpggYNGuDNN9/E4sWLkZ2djbfffhujR49mj46D2LgRSEwENBrAxQXYsAGSrn5K1qNWq3H79m39Y0dKFiV5ctZJHcVnV5qaZODIsystCnzq1q2LnJwcNGzY0OD5mzdvIjo62ioNK2nWrFnYsmWL/rFultbhw4fRvn17KJVK7Nu3D6NGjUJcXByqV6+OQYMG4Z133rFJe8i6MjOfBD2A9t8RI4D4ePb8ODtT09gjI6+K2DIi45x1Uofu/ZQ3ycCRZ1daFPgsWLAA48aNw5w5c9CqVSsAwIkTJ/DOO+9g0aJFBlPCvby8rNLQzZs3G63hoxMeHo6vvvrKKq9H9qNWq3HiBKDRGJ4gioqAkyfV8PBg8rQzq+g0dh1Hu4Mm5+XM5yVnnmRgUeDTo0cPAMBrr70GhUK7PokgCACAnj176h8rFAoUFRVZo53kpHR3+3l5nlAoxpdKaD12bAvOnbvn0N2qVDHl3WH26dMHISEh/B4Q2YEzTzKwKPA5fPiwtdtBMqW72y8vodWRu1WpYsq7w/T395dN0MMkfxKbM08ysCjwadeunbXbQcSEVplz5jvMitDNpNm+3UO/2reLi4DFi/PQv/+fDpkvQo7NWc/JFi9SevfuXWzcuFFfwLBhw4YYOnQoVCqV1RpH8sPqp/LlzHeY5Sk+5LtixXgIgjaFQKNRYPJkL/zxxyaoVBzyJftzxnOyRYHPjz/+iPj4eHh4eODZZ58FACxbtgzz589HcnIyWrRoYdVGEpE8OOsdZnl0Q7nlDfdxyJeo8iwKfCZMmIBevXrho48+0i9R8fjxYwwbNgzjx4/H999/b9VGEpF8OOMdZkXJfbiPxOes9YmKs7jHp3jQAwBVqlTBlClT8PTTT1utcUTk/ORwoq0oOQ/3kTQ4a32i4iwKfLy8vHDt2rVSi4dev34dnp6eVmkYEcmDHE605pDrcB9Jh7P/rVkU+PTt2xcJCQlYunQpWrduDQA4duwYJk+ejH79+lm1geTceLdPgPOfaM0l5+E+IluzKPBZunQpFAoFBg4ciMePHwMAXF1dMWrUKCxcuNCqDSTnxrt9IiKyJ7MDn6KiIpw4cQJz5szBggULcOXKFQBAVFQUqlWrZvUGOgsWJDOOQQ0REdmLS/m7GFIqlejSpQvu3r2LatWqoXHjxmjcuDGDHhM2bgTCw4GOHbX/btxom9fJzAQOH9b+S0SOg0O+RPZj0VBXo0aN8PvvvyMyMtLa7XEqarUaGRmPkZhYExqNriAZMGKEgGbNbiIioorVejs2bnyyurmLC7BhA5CQYJVDE0mOrsqxMY42PMohXyL7UQi61UXN8M0332D69OmYN28eYmNjUb16dYPt1lqRXQz5+flQqVTIy8ur1PvQVWJNT4/Ali2DSm0fNGgzIiOvWqUSa2amtidJo3nynFIJZGRwWI2cj+5vSycvzxO5uX7w9VUbJASzyjGRvFT0+m1Rj8+LL74IAOjVq5d+dXaAK7IXp7tzK68gWWUrsarVapw4AWg0hif4oiLg5Ek1PDyYQ0POpfjfzJkzzUvVvGnR4icAwI0bN4z+fbH3xHaYz0hSx9XZbcyWBcmKr++jUIwvFVwdO7YF585xfR9yTnl5nvq/K0C7tMPevT0QFZUGleoedu3apd+PPUL2wSF3cgQWBT6RkZEICwsz6O0BtD0+169ft0rDnImtCpLp7mbLC664vg85o/LWtQJM9wjx78K6MjOfBD2ALp8RiI9nzw9Ji8WBT1ZWFmrWrGnwfG5uLiIjIznUVQZbFyRjtVeSm/KGkcvrESLr4ZA7ORKLAh9dLk9J9+/fR9WqVSvdKLIMq73Kh7PNarJEeT2dFekRosrjkDs5GrMCn4kTJwIAFAoFZs6caVC7p6ioCCdPnkSzZs2s2kAiMlRyVpMxcrjQmOrpFGul8+JB6Y0bLkhPr4LIyMcICdGOATlbUMohd3I0ZgU+P/2kHRsXBAG//PKLQTEtNzc3NG3aFG+99ZZ1W0hEBkpeQIwl78rlQmOsp1OMlc6LB6Wm8oucNSjlkDs5ArMCH91sriFDhmDlypUOXa/H1liJlezB1MXVWZnzN2PvC7Eu2Cwvv8iZg1IOuZPUWZTjk5SUZO12OB1WYiVbk2vybnl/W7dv39ZPZQfEuRAzv4hIuiwKfB48eICFCxfi22+/xc2bN6EpXjIYwO+//26Vxjk6Wwc17FWSNzlfXE39bUnh70Ks/CKSPhZ4FJ9Fgc+wYcPw3Xff4c0330RwcHCZM7zI9tirJG+8uJZNCn8XYuQXkfSxwKM0WBT4fP311/jyyy/Rpk0ba7eHzMSgRr54cTVOCn8XTPSl4ljgUTosCnx8fHzg6+tr7bYQkZl4cZU2OST6SmFo0RFcvmy4kDSgLfCYlsbAx94sCnzmzZuHWbNmYcuWLQa1fIjI9kpeQIxdXOV+oaGKq0zeiRSGFqVOrVbDy+sxXFxqQqN5khqiVArw9LwJtbqKrD8fe7Mo8Hn//fdx5coVBAYGIiIiAq6urgbbz5w5Y5XGEVFpvNBIlyP1fugKLW7f7oEpU1TQaBRwcRGweHEe+vf/06zvEL9rxhWv7dSjh2H5ie7d92HfPueu7SRFFgU+vXv3tnIziMgcPEFKk6MEpcWXmVixYjwEQdsLodEoMHmyF/74YxNUKi4zYQ3FvwumhqalUttJDrPOLAp8Zs+ebe12mJSRkYF58+bh0KFDyM7ORkhICAYMGIAZM2YY3DmdPXsWo0ePxqlTpxAQEICxY8diypQpdm0rEcmbIwQKuotseSURpHIxdiZSzvuSy6wzl/J3eeJ///ufyZXXCwoK8Omnn1a6USVdvHgRGo0GH374Ic6fP4/ly5dj/fr1+Oc//6nfJz8/H126dEF4eDhOnz6NJUuWYM6cOdiwYYPV20NE5Ax0JRGKY0kE+VGr1Th9OgeJiUKJWWcCTp/OgVqtFreBVmZW4BMXF2fwAXh5eRkUK7x79y769etnvdb9v65duyIpKQldunRBnTp10KtXL7z11lsG1Vm3bduGR48eYdOmTWjYsCFef/11jBs3DsuWLbN6e4iInIGuJIIu+GFJBPnRDXuuXv2NQeI1ABQVKbB69ddYs2aNUwU/Zg11CYJg8rGx52whLy/PYEp9SkoK2rZtazD0FR8fj0WLFuHOnTvw8fEp8zgFBQUoKCjQP87Pz7ddo4lIkoqvqF4WKeTl2ApLIsib7ntfXkFUZxr2tCjHxxR7VHFOS0vD6tWrsXTpUv1z2dnZiIyMNNgvMDBQv81Y4LNgwQLMnTvXdo0lIkkrPusGML7avTMn+ko574TsQ04FUa0e+Jhj2rRpWLRokcl9Lly4gPr16+sf//HHH+jatSteffVVDB8+vNJtmD59OiZOnKh/nJ+fj7CwsEofl4gcQ/E7WVOr3TvTHS9RWeTS+2d24PPrr78iOzsbgHZY6+LFi7h//z4A7arI5pg0aRIGDx5scp86dero//vGjRvo0KEDWrduXSppOSgoCDk5OQbP6R4HBQUZPb67uzvc3d3NajcROR+5rnZPtuVItZ0AefT+mR34dOrUySCPp0ePHgC0Q1yCIJg11BUQEICAgIAK7fvHH3+gQ4cOiI2NRVJSElxcDPOy4+LiMGPGDBQWFuoLKh44cAD16tUzOsxFRKQjp9XuHe1i7MgcpbaTnJgV+KSnp9uqHSb98ccfaN++PcLDw7F06VLcunVLv03Xm9O/f3/MnTsXCQkJmDp1Ks6dO4eVK1di+fLlorS5ouScVEkkJXJa7Z4XY/vi5ygtZgU+4eHhZh3873//O9555x34+/ub9XslHThwAGlpaUhLS0NoiVKSut4nlUqF5ORkjB49GrGxsfD398esWbOQmJhYqde2pZJJlcY4c1IlkVTIKbkT4MWY5Mumyc3/+c9/8NZbb1U68Bk8eHC5uUAA0KRJExw9erRSr2VPFU2WZFIlkX2YSu4smcPIHhFyBnIc9rRp4GOvmj7Owtg0WiKyH2PJncULpuqwN5YcnRyHPUWdzk5PmJpGSyRX9siBq8ydLHtjyRk4U1BTEQx8JIDTaIlKs1cOXFl3vLdv3zbo4WFvLJHzYOAjAXKaRktUUfbMgTMVOLE3lsi5mLVIKdkGV0gmkiZjvbF5eZ4it4yILGXTHp8BAwbAy8vLli/hFKw1jZY1gYisi72xRM7HosBHo9GUqpysez4zMxO1a9cGAKxbt65yrXNyxZMqTU2jrUjyJWsCkbMTI89GTkUNieTCrMAnPz8fw4YNw969e+Hl5YURI0Zg9uzZUCqVAIBbt24hMjISRUVFNmmss7HmNELWBCJHZKqXsnjdHLHybORW1JBIDswKfGbOnImff/4ZW7duxd27d/Huu+/izJkz2LVrl75XgrV7zMPeF5KrivZSijHr0Zq9sSR9mZnA5ctATAxQYnEAckJmBT5ffPEFtmzZgvbt2wMAevfuje7du6Nnz57Ys2cPAJi1SCkRyVdFex/FyLORY1E3udq4EUhMBDQawMUF2LABSEgQu1VkS2YFPrdu3TJYr8vf3x8HDx5EfHw8XnzxRfzrX/+yegOdjb0SkFl3hJxFeXk2tup1YVDj3NRqNTIyHiMxsSY0Gu0Nu0YDjBghoFmzm4iIqOK03wG593CZFfjUrl0bFy5cQGRkpP45T09PJCcno0uXLvjb3/5m9QY6E3slILPuCDmTIUNeQK1a+Zg6VYWiIgWUSgGLFuWjf/9+7HUhi+jOxenpEdBoBhlsKypSYPXqrxEZedWpJoPobrq3b/fAlCkqaDQKuLgIWLw4D/37/ymrvyWzAp8uXbogKSkJL774osHzNWrUwP79+/HCCy9YtXHOxh4JyKwCTY7KWC+lv78/Jk3yRt++QFoaEB2tQGioNwBvsZpKDk53ji2vN9FZJoPoAr28PE+sWDEegqDr4VJg8mQv/PHHJqhU95wq0DPFrMBn7ty5uHHjRpnbPD09ceDAAZw5c8YqDSPLsO4IOaKK9FKGhsqzW55sRy6z9nQBXHnXB2cJ9MpjVuDj4+MDHx8fo9s9PT3Rrl27SjeKzKfLcxArH4LIUuylJDGZmrXnbFiXSsvsAoaPHz/G8uXL8fHHH+O3334DANStWxf9+/fHP/7xD7i6ulq9kVS+4rNQmA9BjoS9lCQ2leqeLL5rcunhKo9Zgc+ff/6JF154ASkpKejcuTPatm0LALhw4QKmTp2KPXv2IDk5GVWrVrVJY8k0XVAzaRKYD0GSx15KIvuTUw+XMWYFPgsXLsT169fx008/oUmTJgbbfv75Z/Tq1QsLFy7EnDlzrNlGp2XLKefMhyCpYy9l5XBtPrKUXHq4jDEr8Pnkk0+wbNmyUkEPADRt2hRLly7FjBkzGPhUAKecE7GX0lJcm4905F6TxxKlVxo14erVq3j22WeNbm/VqhWuXbtW6UY5K12XvbFkzrw8T4P9iOQkNBRo354n74oo2dOTl+eJ9PQI/TnE2H6kVdFzrFTPxWq1GllZWXj//bsIDxfQsSMQHi7g/ffvIisrC2q1WuwmSppZPT5eXl64efMmwsLCytyenZ0NT0/PMrfRk679w4eB5ctLJ3O2aTMI7duzYiwRVRx7j83nyEuSWFKTx9EDPWszK/Dp0KED3nvvPezcubPM7QsXLkSHDh2s0jBn5efnh1attGvCaDRPnlcqgZYt/SDBvzMikiiWArCcFIOairCkJo8jB3q2YFbgM3v2bLRs2RKtWrXCxIkTUb9+fQiCgAsXLmD58uX49ddfceLECVu11WmEhmoXwhsxAigq0gY9H37ILn4iMg9LAciXuTV55BLUVIRZgU+DBg1w4MABJCQk4PXXX9evxC4IAurXr4/k5GQ0bNjQJg11NgkJQHy8LpmTQQ8RmY8F6eSLNXksZ3YBw1atWuH8+fNITU01KGDYrFkza7fN6XHKORFVhi0vfpwubxl7zrJiTR7LmB345Ofno0aNGmjWrJlBsKPRaHD//n14eXlZs31ERGSCLS5+nC5vHjFXPpd7TR5LmDWdfffu3Xj66afx119/ldr2559/4plnnsHevXut1jgiIiqt5OwbleoeIiOvlroAWjpLp6LT4Dld/kmQuGTJx5g82QsajeEsqyVLPsaaNWs4xVxCzOrxWbduHaZMmYJq1aqV2la9enVMnToVa9asQc+ePa3WQCIiMmTvWTq2rDLv6LjyueMxK/A5d+4cPvjgA6Pb27Zti7fffrvSjSIiItPsNcTEOkEVY69Ec9bkqTyzAp87d+7g8ePHRrcXFhbizp07lW4UERGJj3WCKs5es6xYk6fyzAp8IiIi8OOPP6J+/fplbv/xxx8RHh5ulYaV1KtXL6SmpuLmzZvw8fFB586dsWjRIoSEhOj3OXv2LEaPHo1Tp04hICAAY8eOxZQpU2zSHiIiZ8c6Qeax1ywrBjWVY1Zyc58+fTBjxgzk5OSU2padnY23334bL7/8stUaV1yHDh3w6aef4tKlS9i5cyeuXLmCV155Rb89Pz8fXbp0QXh4OE6fPo0lS5Zgzpw52LBhg03aQ0Tk7HTDN8WxTpBpxhLNSTrM6vGZNm0a/vvf/yImJgYDBgxAvXr1AAAXL17Etm3bEBYWhmnTptmkoRMmTND/d3h4OKZNm4bevXujsLAQrq6u2LZtGx49eoRNmzbBzc0NDRs2RGpqKpYtW4bExESbtImIbId1ZMTHInnkjMwKfDw9PXHs2DFMnz4dO3bs0OfzeHt7Y8CAAZg/f75dFinNzc3Ftm3b0Lp1a7i6ugIAUlJS0LZtW4OErvj4eCxatAh37tyBj4+PzdtFRNbBOjLiKn4eNTV8wwRackRmFzBUqVT44IMPsHbtWty+fRuCICAgIEC/fEVxx44dw9NPPw13d3erNFY3Xf7hw4do1aoV9u3bp9+WnZ2NyMhIg/0DAwP124wFPgUFBSgoKNA/zs/Pt0pbichyrCMjLibQVhxnWTkeswMfHYVCgYCAAJP7dOvWDampqahTp06Z26dNm4ZFixaZPMaFCxf0ydSTJ09GQkICrl69irlz52LgwIHYt29fmUFXRS1YsABz5861+PeJiJwRg5qKYZDoeCwOfCpCEAST2ydNmoTBgweb3Kd40OTv7w9/f3/UrVsXTz31FMLCwnDixAnExcUhKCioVNK17nFQUJDR40+fPh0TJ07UP87Pz0dYWJjJNhERkfU5al6XFNtExtk08ClPQEBAub1Gxmg02pkGumGquLg4zJgxQ5/sDAAHDhxAvXr1TOb3uLu7W20ojoiILMO8LrIXs6azi+XkyZNYs2YNUlNTcfXqVRw6dAj9+vVDVFQU4uLiAAD9+/eHm5sbEhIScP78eezYsQMrV6406M0hIiJpKtnTk5fnifT0COTleZrcj8hcovb4VFS1atWwa9cuzJ49Gw8ePEBwcDC6du2Kt99+W99bo1KpkJycjNGjRyM2Nhb+/v6YNWsWp7ITETkYLpNBtmTTwKcyScfFNW7cGIcOHSp3vyZNmuDo0aNWeU0iIrI/LpNBtiZqcjPJh6MmLZI4Sk79NbY6uBhThPldti0uk0G2ZtPA5949fkmJSYtkvuJThLdv98A776ig0Sjg4iJg8eI89O//pygBBr/LtmevVc5JvswKfDp27Fih/SoyLEXywWJ0ZAk/Pz9kZgJTpgD/P4kTGo0CU6d6o29fb4gRV/C7bHtcJsM09jhWnlmBz5EjRxAeHo7u3bvrp4wTEdnK5ctPgh6doiIgLQ0IDRWnTWR79lrl3NGwx9E6zAp8Fi1ahKSkJHz22Wd44403MHToUDRq1MhWbSMimYuJAVxcDIMfpRKIjhavTWQbJfO1VKp7ZQY8cl76oawp/2XlvrHH0TSzAp/Jkydj8uTJSElJwaZNm9CmTRvUq1cPQ4cORf/+/eHl5WWrdhKRDIWGAhs2ACNGaHt6lErgww/Z2+OMuPSDeTjl33IWJTfHxcUhLi4OK1euxGeffYa1a9firbfewo0bNxj8EJFVJSQA8fHa4a3oaAY9zoxBTcVwyn/lVGpW15kzZ/Ddd9/hwoULaNSoEfN+iMgmQkMZ8BDpcMp/5Zi9ZMWNGzfw3nvvoW7dunjllVfg6+uLkydP4sSJE/Dw8LBFG4mIJMnYsgpEtqSb8l8cp/xXnFk9Pi+++CIOHz6MLl26YMmSJejevTuqVHGIVS9IRBVNRpRz0iI5huLfUVM5Fvwuky1xyn/lKAQzyiu7uLggODgYNWvWNLkcxZkzZ6zSODHk5+dDpVIhLy+P+UpWxNoT5CzUajUyMh7j2WdrQqN5ch5UKgWcPHkTERFV+F0mm8jKysKGDRv0j7WzukpP+U9MTERwcLAYTRRVRa/fZnXXzJ49u9INI3nihYCchZ+fH86eLau+kAL37gWKUliR5IFT/q3DrB4fOWCPj+1lZmoL08XEMGGVHFNmJhAeXrq+UEYGv9PWwB5i4/jZGGeTHh9jvvvuOzx48ABxcXHw8fGxxiHJSW3cCCQmai8YLi7aGi0JCWK3isg8rC9kO6xObJoc37O1mV25+f79+5g3bx4A7err3bp1Q3JyMgCgZs2a+Pbbb9GwYUPrt5QcXmbmk6AH0P47YoS2RgsvGORoWF/INrgeGtmaWdPZd+zYYbBExeeff47vv/8eR48exe3bt/H0009j7ty5Vm8kOQdT6y4ROaLQUKB9ewY9RI7ErMAnPT0dTZo00T/+6quv8Morr6BNmzbw9fXF22+/jZSUFKs3kpyDbt2l4rjuEhGZwlpJZG1mDXU9fvwY7u7u+scpKSkYP368/nFISAhu375ttcaRc2FeBBGZg+tRkS2Y1eMTFRWF77//HgBw7do1/Pbbb2jbtq1+e2ZmJhOvyKSEBO3Ml8OHtf8ysZmIymJsPSr2/FBlmdXjM3r0aIwZMwZHjx7FiRMnEBcXhwYNGui3Hzp0CM2bN7d6I8m5cN0lIioP16MiWzEr8Bk+fDiUSiX27t2Ltm3blipoeOPGDQwdOtSqDSQiImmyZU0Z3XpUxYMfrkdF1mB2HZ+hQ4caDW4++OCDSjeIiIikz9r1dnRBVF5eHoDy16NidWKyFFcYJSIis1mz3o6xIKpFi58QFZWmX49q+PBu8PZ+xuyeJFY7puLMCnwKCwsxY8YM7Nq1C76+vhg5cqRB709OTg5CQkJQVFRk9YYSEZFzMhWUFF+Pytvb2+zFN1kJmkoya1bX/Pnz8e9//xsjR45Ely5dMHHiRIwYMcJgHy79RUREUsFK0FSSWT0+27Ztw7/+9S/06NEDADB48GB069YNQ4YMwaZNmwAACoXC+q0kIiIisgKzenz++OMPgyUroqOjceTIERw/fhxvvvkmh7iIiGTKmhWWbVmtmZWgyawen6CgIFy5cgURERH652rVqoXDhw+jQ4cOGDx4sJWbR0RElrJXUq81KyzbslozK0ETYGbg07FjR2zfvh2dOnUyeD4kJASHDh1C+/btrdk2IiKykL2Seo1VWI6KSjO70KA1j2XPY5NjMSvwmTlzJi5evFjmtlq1auG7777DgQMHrNIwIiKynK2TenV1dMqrsGxOvR1bVmtmJWjSMSvwCQ8PR3h4uNHtISEhGDRoUKUbRURE0ubn54cxY8YgI+Mxtm4VoNE8mdiiVAoYO7YbIiKqVKg3SRcclVetuTJFC1kJmnTMSm7W+eyzz9CnTx80atQIjRo1Qp8+ffD5559bu21lKigoQLNmzaBQKJCammqw7ezZs3j++edRtWpVhIWFYfHixXZpExGRHPn5+SE2NhAbNiigVGqfUyqBDz9UIDY2sMJDaLogavLkfliyJB9KpfD/xxKwZEk+Jk/uZ/GQnC5Y0lWCVig0AMBK0DJmVo+PRqNBv3798Nlnn6Fu3bqoX78+AOD8+fPo27cvXn31VXz88cc2ndI+ZcoUhISE4OeffzZ4Pj8/H126dEHnzp2xfv16/PLLLxg6dCi8vb2RmJhos/YQETmziiRIJyT4IT4eSEsDoqMtW4RYF9RMmgT07as7lgKhod4AvC1qu+64Y8aM0b+HWbNuISOjCiIiHiMk5BkA5leCJsdmVuCzcuVKHDx4EHv27NHX8tHZs2cPhgwZgpUrV2L8+PHWbKPe119/jeTkZOzcuRNff/21wbZt27bh0aNH2LRpE9zc3NCwYUOkpqZi2bJlDHyIiCxgToJ0aKifRQFPWUJDLQuejCke1AQHA7Gx1js2OR6zhrqSkpKwZMmSUkEPAPTq1QuLFy/WFzK0tpycHAwfPhxbt25FtWrVSm1PSUlB27ZtDbor4+PjcenSJdy5c8focQsKCpCfn2/wQ0TkbCypX8Oqx+SMzAp8Ll++jM6dOxvd3rlzZ1y+fLnSjSpJEAQMHjwYI0eOxNNPP13mPtnZ2QgMDDR4Tvc4Ozvb6LEXLFgAlUql/wkLC7New4mIJODMmeZYsWI8tmwZhBUrxuPMmeZiN4lINGYFPh4eHrh7967R7fn5+ahatWqFjzdt2jQoFAqTPxcvXsTq1atx7949TJ8+3ZzmVsj06dORl5en/7l+/brVX4OIyN50vd/G6tfoen6Y1EtyY1aOT1xcHNatW4d169aVuX3t2rWIi4ur8PEmTZpUbrXnOnXq4NChQ0hJSYG7u7vBtqeffhpvvPEGtmzZgqCgIOTk5Bhs1z0OCgoyenx3d/dSxyUC7Ff1lsgWdEm9hw8Dy5eXrl/Tps0gtG8PfodJdswKfGbMmIH27dtDrVbjrbfeQv369SEIAi5cuID3338f//3vf3H48OEKHy8gIAABAQHl7rdq1Sq8++67+sc3btxAfHw8duzYgZYtWwLQBmUzZsxAYWEhXF1dAQAHDhxAvXr14OPjY87bJLJb1VsiW/Lz80OrVoCLC6DRPHleqQRatvQDv7ri4Y2VeMwKfFq3bo0dO3YgMTERO3fuNNjm4+ODjz/+GG3atLFqAwGgdu3aBo9r1KgBAIiKikLo/6f+9+/fH3PnzkVCQgKmTp2Kc+fOYeXKlVi+fLnV20POj0md5CxCQ4ENG4ARI4CiIl2dHctmTeXleSI31w++vmpWO64E3liJy6zABwD+9re/IT4+Hvv379cnMtetWxddunQpc7aVvahUKiQnJ2P06NGIjY2Fv78/Zs2axansRCR7CQmodJ0dLvBpPbyxEpdZgc+hQ4cwZswYnDhxAn/7298MtuXl5aFhw4ZYv349nn/+eas2sqSIiAgIglDq+SZNmuDo0aM2fW0iIkdkSW2c8hKkdQt8MkGaHIlZs7pWrFiB4cOHw8vLq9Q2lUqFESNGYNmyZVZrHBERiUeXIN269aAyF/hs02YQh2PI4ZgV+Pz888/o2rWr0e1dunTB6dOnK90oIiKSBm2CtB9cSlwtniRIM+ipLEuKS5LlzBrqysnJ0c+YKvNgVarg1q1blW4UERFJhzUTpMkQc6fsz6wen1q1auHcuXNGt589exbBwcGVbhQREUlLQgKQkQEcPqz9NyFB7BY5vvKKS5JtmBX4vPjii5g5cyb++uuvUtv+/PNPzJ49u8x1vIgcTUWTNZnUSXISGgq0b8+eHmvJzfUrM3cqN9dXpBbJg1lDXW+//TZ27dqFunXrYsyYMahXrx4A4OLFi1i7di2KioowY8YMmzSUyJ50SZ266aQ3brggPb0KIiMfIyREWwmOBcbImbCgnv3obph8fdVQKDQGwY9CoYGvb67BfmRdCqGseeEmXL16FaNGjcL+/fv1U8oVCgXi4+Oxdu1aREZG2qSh9pKfnw+VSoW8vLwyZ6+R/GzcCCQmaivfurhocx3YzU/OhAX17E8XaG7f7oGpU1UoKlJAqRSwaFEe+vf/k4GmBSp6/TY78NG5c+cO0tLSIAgCYmJinGZZCAY+VFxmJhAeXrrcf0YGu/vJeWRlZWHDhg3l7peYmMg8ThvIzKxccUnSquj12+zKzTo+Pj545plnLP11Iodw+bJh0ANoZ7WkpfEERfJz9+5dk9vZS2EZS4pLkuUsDnyIyuJseQIxMWUv8BgdLV6biMTy6aeflrsPh8NI6hj4kNU4Y54A65cQmYfrS5HUMfAhqyl5wjO2krOjnRitscAjERFJAwMfsglnq0bKMXiSE2M3LUTOgIEPWV15KzkTkXQ5200LUUlmVW4mqghWIyVyLLpCeeYsocCFNclRsceHrK68aqREJC26SuWHDwPLl5e+aWnTZhAaNryFHTt2AGCvEDk29viQ1alU99Cz5z4oFNo54LoTI4e5iKTLz88PrVr5waXEVUGpBFq29INKpQLAhTXJ8bHHh2yiRYufEBWVhtxcX/j65jLoIXIApso3qNXa4TBTQ9kq1T2uL0WSx8DHwWRmaqsJx8RIb5ZRyROeSnWvzICHJ0Yi6TJWvkE3HJaR8RhbtwrQaBT631EqBYwd2w0REVUcpkYXyZfFa3U5Kymv1eUIi2U6W+VmIipt48bSvUJSOxeR/Nh8kVJnJdXAh4tlEpGUcGFN2+DNo+Vsvkgp2RcXyyQiKWFRT+tzxmV/pIizuhyEbrHM4rhYJhGR86jocj6OtuyP1DDwcRC62RZKpfYxF8skIiIyH4e6HAgXyyQiIqocBj4OhuPqREREluNQFxERkQRxPTTbYI8PERGRxHA9NNthjw8REZGEcD0022LgQ0REJAG65XxMrYdWfD+yjMMEPhEREVAoFAY/CxcuNNjn7NmzeP7551G1alWEhYVh8eLFIrWWiIjIPLr10MaO7QoXF8NFFXTrobF4YeU5VI7PO++8g+HDh+sfe3o+6fbLz89Hly5d0LlzZ6xfvx6//PILhg4dCm9vbyQmJorRXCIiIrP4+fnBz09bt81wPTQFYmMDxW6eU3CowMfT0xNBQUFlbtu2bRsePXqETZs2wc3NDQ0bNkRqaiqWLVvGwIeIiBwK67bZjsMMdQHAwoUL4efnh+bNm2PJkiV4/PixfltKSgratm1rMPYZHx+PS5cu4c6dO0aPWVBQgPz8fIMfIiIisYWGAu3bM+ixNofp8Rk3bhxatGgBX19fHD9+HNOnT0dWVhaWLVsGAMjOzkZkZKTB7wQGBuq3+fj4lHncBQsWYO7cubZtPBEREUmCqIHPtGnTsGjRIpP7XLhwAfXr18fEiRP1zzVp0gRubm4YMWIEFixYAHd3d4vbMH36dINj5+fnIywszOLjERER0RNqtdrkwqpubm52TdgWNfCZNGkSBg8ebHKfOnXqlPl8y5Yt8fjxY2RkZKBevXoICgpCTk6OwT66x8byggDA3d29UoETERERlU2tVmPNmjXl7mfP2WqiBj4BAQEICAiw6HdTU1Ph4uKCmjVrAgDi4uIwY8YMFBYWwtXVFQBw4MAB1KtXz+gwF5E9ZWYCly8DMTEcsycieTDV02PJftbgEMnNKSkpWLFiBX7++Wf8/vvv2LZtGyZMmIABAwbog5r+/fvDzc0NCQkJOH/+PHbs2IGVK1caDGMRiWXjRiA8HOjYUfvvxo1it4iISJ4cIrnZ3d0dn3zyCebMmYOCggJERkZiwoQJBkGNSqVCcnIyRo8ejdjYWPj7+2PWrFmcyk6iy8wEEhMBjUb7WKPR1ueIj2fPDxGRvTlE4NOiRQucOHGi3P2aNGmCo0eP2qFFRBV3+fKToEenqEhbn4OBD9mC1JJJiaTEIQIfIkcWEwO4uBgGP0qltigZkbVJMZmUSEocIseHyJGFhmrLzyuV2sfa8vPs7SHbkGIyKZGUsMeHyA5Yfp7EkpfnidxcP/j6qqFS3RO7OUSiY+BDZCehoQx4yL7OnGmOvXt7QBBcoFBo0LPnPrRo8ZPYzSIZKb6MlDX2swYGPkRETigvz1Mf9ACAILhg794eiIpKY88P2Y2fnx/GjBkjqWR7Bj5ENsTZNSSW3Fw/fdCjIwguyM31ZeBDdiW1cxwDHyIb4ewaEpOvrxoKhcYg+FEoNPD1zRWxVSR3Uqhgz1ldRDbC2TUkJpXqHnr23AeFQltHQZfjw94eEotUKtizx4eIyIkUTxJt0eInREWlITfXF76+uQZBjz2TSYmkVMGegQ8RkRORYjIpkZQq2DPwISJyMgxqSGqkVMGegQ8RETktzqyUBl0F+xEjtD09YlawZ+BDREROiTMrpUUqFewZ+BARkVPizErpkUIFe05nJ7IRKZZqJyKSO/b4ENkIZ9cQSQsXbCWAgQ+RTTGoIZIGLthKOhzqIiIip2Zswda8PE+RW0ZiYOBDREROzdSCrSQ/DHyIiMip6RZsLY4LtsoXAx8iInJKuhmT5S3YypmV8qIQBEEQuxFSkp+fD5VKhby8PHh5eYndHCIiqoTilZtv3HBBRkYVREQ8RkiINgjizErnUdHrN2d1ERGR0yoe1AQHA7GxIjaGJIFDXURERCQbDHyIiIhINhj4EBERkWww8CEiIiLZYOBDREREssHAh4iIiGSDgQ8RERHJhkMFPl9++SVatmwJDw8P+Pj4oHfv3gbbr127hu7du6NatWqoWbMmJk+ejMePH4vTWCtSq9XIysoy+qNWq8VuIhERkUNwmAKGO3fuxPDhw/Hee++hY8eOePz4Mc6dO6ffXlRUhO7duyMoKAjHjx9HVlYWBg4cCFdXV7z33nsitrxy1Go11qxZU+5+Y8aMYfVRIiKicjhE4PP48WP84x//wJIlS5CQkKB/vkGDBvr/Tk5Oxq+//oqDBw8iMDAQzZo1w7x58zB16lTMmTPHYddi0ZVat9Z+REREcuYQQ11nzpzBH3/8ARcXFzRv3hzBwcHo1q2bQY9PSkoKGjdujMDAQP1z8fHxyM/Px/nz58VoNhEREUmMQwQ+v//+OwBgzpw5ePvtt7Fv3z74+Pigffv2yM3NBQBkZ2cbBD0A9I+zs7ONHrugoAD5+fkGP0REROScRA18pk2bBoVCYfLn4sWL0Gi0q+jOmDEDL7/8MmJjY5GUlASFQoHPPvusUm1YsGABVCqV/icsLMwab42IiIgkSNQcn0mTJmHw4MEm96lTpw6ysrIAGOb0uLu7o06dOrh27RoAICgoCP/73/8MfjcnJ0e/zZjp06dj4sSJ+sf5+fkMfoiIHIxarTaZ6+jm5sYJIARA5MAnICAAAQEB5e4XGxsLd3d3XLp0Cc899xwAoLCwEBkZGQgPDwcAxMXFYf78+bh58yZq1qwJADhw4AC8vLwMAqaS3N3d4e7uboV3Q0SVlZkJXL4MxMQAoaFit4YcBWe/kjkcYlaXl5cXRo4cidmzZyMsLAzh4eFYsmQJAODVV18FAHTp0gUNGjTAm2++icWLFyM7Oxtvv/02Ro8ezcCGyAFs3AgkJgIaDeDiAmzYABSbxElkFGe/SpvUeuMcIvABgCVLlqBKlSp488038eeff6Jly5Y4dOgQfHx8AABKpRL79u3DqFGjEBcXh+rVq2PQoEF45513RG555VR0Gr6jTtcnArQ9PbqgB9D+O2IEEB/Pnh8iRybF3jiHCXxcXV2xdOlSLF261Og+4eHh+Oqrr+zYKtvz8/PDmDFjJBUtE1nb5ctPgh6doiIgLY2BD5kvL88Tubl+8PVVQ6W6J3ZzZE2KvXEOE/jIGYMacnYxMdrhreLBj1IJREeL1yZyTGfONMfevT0gCC5QKDTo2XMfWrT4SexmkYQ4RB0fInJuoaHanB6lUvtYqQQ+/JC9PWSevDxPfdADAILggr17eyAvz1PklpGUsMeHiCQhIUGb05OWpu3pYdBD5srN9dMHPTqC4ILcXF8OeZEeAx8ikozQUAY8ZDlfXzUUCo1B8KNQaODrmytiq0hqONRFREQOTTerVaW6h54990Gh0CaL6XJ8dL09nP1KAHt8iIjIwZWc/Tpr1i1kZFRBRMRjhIQ8A+AZzn4lPQY+RCQqqRU3I8dU/DsSHAzExorYGNKTYi06Bj5EJBopFjcjIuuRYi06Bj5EJBopFjcjIuuS2k0Lk5uJiIhINhj4EBERkWww8CEikoDMTODwYe2/RGQ7DHyIiES2cSMQHg507Kj9d+NGsVtE5LwY+BARiSgzE0hMfLJAq0YDjBjBnh9yTlLo2WTgQ0QkErVajRMn1Aar0gNAURFw8qQaarVanIYR2YBUejYZ+BCRaKRY3MxedDWMjh/fol9iQUeh0ODYsS1Ys2YNgx9yClLq2WQdHyISjRSLm9mL7j3r1pfau7cHBMGl1PpSrGFEzuDyZZTZs5mWZv+FiRn4EJGonDGoMVeLFj8hKioNubm+8PXN1Qc9RM4iJgZwcTEMfpRKIDra/m3hUBcRkQSoVPcQGXmVQQ85pdBQYMMGbbADaP/98EP79/YA7PEhIiIiO0hIAOLjtcNb0dHiBD0AAx8iIiKyk9BQ8QIeHQ51ERERkWww8CEiIiLZYOBDRCQCOdcwIhITc3yIiEQg5xpGRGJi4ENEJBIGNUT2x6EuIiIikg0GPkRERCQbDHyIiIhINhj4EBERkWww8CEiIiLZcIjA58iRI1AoFGX+nDp1Sr/f2bNn8fzzz6Nq1aoICwvD4sWLRWw1ERERSY1DTGdv3bo1srKyDJ6bOXMmvv32Wzz99NMAgPz8fHTp0gWdO3fG+vXr8csvv2Do0KHw9vZGYmKiGM0mIiIiiXGIwMfNzQ1BQUH6x4WFhfjvf/+LsWPHQqFQAAC2bduGR48eYdOmTXBzc0PDhg2RmpqKZcuWMfAhIiIiAA4y1FXSnj17oFarMWTIEP1zKSkpaNu2rUF59/j4eFy6dAl37twxeqyCggLk5+cb/BAREZFzcogen5I2btyI+Ph4hBZb2z47OxuRkZEG+wUGBuq3+fj4lHmsBQsWYO7cuaWeZwBERETkOHTXbUEQTO4nauAzbdo0LFq0yOQ+Fy5cQP369fWPMzMzsX//fnz66adWacP06dMxceJE/eM//vgDDRo0QFhYmFWOT0RERPZz7949qFQqo9tFDXwmTZqEwYMHm9ynTp06Bo+TkpLg5+eHXr16GTwfFBSEnJwcg+d0j4vnB5Xk7u4Od3d3/eMaNWrg+vXr8PT01OcPyUF+fj7CwsJw/fp1eHl5id0ch8bP0jr4OVoPP0vr4OdoPbb4LAVBwL179xASEmJyP1EDn4CAAAQEBFR4f0EQkJSUhIEDB8LV1dVgW1xcHGbMmIHCwkL9tgMHDqBevXpGh7nK4uLiYjCEJjdeXl78g7YSfpbWwc/RevhZWgc/R+ux9mdpqqdHx6GSmw8dOoT09HQMGzas1Lb+/fvDzc0NCQkJOH/+PHbs2IGVK1caDGMRERGRvDlUcvPGjRvRunVrg5wfHZVKheTkZIwePRqxsbHw9/fHrFmzOJWdiIiI9Bwq8Nm+fbvJ7U2aNMHRo0ft1Brn4u7ujtmzZxvkO5Fl+FlaBz9H6+FnaR38HK1HzM9SIZQ374uIiIjISThUjg8RERFRZTDwISIiItlg4ENERESywcCHiIiIZIOBj8x8//336NmzJ0JCQqBQKPDFF18YbBcEAbNmzUJwcDA8PDzQuXNnXL58WZzGSlx5n+XgwYOhUCgMfrp27SpOYyVswYIFeOaZZ+Dp6YmaNWuid+/euHTpksE+f/31F0aPHg0/Pz/UqFEDL7/8cqlK7XJXkc+xffv2pb6TI0eOFKnF0rVu3To0adJEX1wvLi4OX3/9tX47v48VU97nKNb3kYGPzDx48ABNmzbF2rVry9y+ePFirFq1CuvXr8fJkydRvXp1xMfH46+//rJzS6WvvM8SALp27YqsrCz9z8cff2zHFjqG7777DqNHj8aJEydw4MABFBYWokuXLnjw4IF+nwkTJmDv3r347LPP8N133+HGjRvo06ePiK2Wnop8jgAwfPhwg+/k4sWLRWqxdIWGhmLhwoU4ffo0fvzxR3Ts2BEvvfQSzp8/D4Dfx4oq73MERPo+CiRbAITdu3frH2s0GiEoKEhYsmSJ/rm7d+8K7u7uwscffyxCCx1Hyc9SEARh0KBBwksvvSRKexzZzZs3BQDCd999JwiC9jvo6uoqfPbZZ/p9Lly4IAAQUlJSxGqm5JX8HAVBENq1ayf84x//EK9RDszHx0f417/+xe9jJek+R0EQ7/vIHh/SS09PR3Z2Njp37qx/TqVSoWXLlkhJSRGxZY7ryJEjqFmzJurVq4dRo0ZBrVaL3STJy8vLAwD4+voCAE6fPo3CwkKD72X9+vVRu3Ztfi9NKPk56mzbtg3+/v5o1KgRpk+fjocPH4rRPIdRVFSETz75BA8ePEBcXBy/jxYq+TnqiPF9dKjKzWRb2dnZAIDAwECD5wMDA/XbqOK6du2KPn36IDIyEleuXME///lPdOvWDSkpKVAqlWI3T5I0Gg3Gjx+PNm3aoFGjRgC030s3Nzd4e3sb7MvvpXFlfY6Adk3D8PBwhISE4OzZs5g6dSouXbqEXbt2idhaafrll18QFxeHv/76CzVq1MDu3bvRoEEDpKam8vtoBmOfIyDe95GBD5GNvP766/r/bty4MZo0aYKoqCgcOXIEnTp1ErFl0jV69GicO3cOP/zwg9hNcWjGPsfiaxc2btwYwcHB6NSpE65cuYKoqCh7N1PS6tWrh9TUVOTl5eHzzz/HoEGD8N1334ndLIdj7HNs0KCBaN9HDnWRXlBQEACUmp2Qk5Oj30aWq1OnDvz9/ZGWliZ2UyRpzJgx2LdvHw4fPozQ0FD980FBQXj06BHu3r1rsD+/l2Uz9jmWpWXLlgDA72QZ3NzcEB0djdjYWCxYsABNmzbFypUr+X00k7HPsSz2+j4y8CG9yMhIBAUF4dtvv9U/l5+fj5MnTxqMyZJlMjMzoVarERwcLHZTJEUQBIwZMwa7d+/GoUOHEBkZabA9NjYWrq6uBt/LS5cu4dq1a/xeFlPe51iW1NRUAOB3sgI0Gg0KCgr4fawk3edYFnt9HznUJTP37983iKbT09ORmpoKX19f1K5dG+PHj8e7776LmJgYREZGYubMmQgJCUHv3r3Fa7REmfosfX19MXfuXLz88ssICgrClStXMGXKFERHRyM+Pl7EVkvP6NGjsX37dvz3v/+Fp6enPk9CpVLBw8MDKpUKCQkJmDhxInx9feHl5YWxY8ciLi4OrVq1Ern10lHe53jlyhVs374dL774Ivz8/HD27FlMmDABbdu2RZMmTURuvbRMnz4d3bp1Q+3atXHv3j1s374dR44cwf79+/l9NIOpz1HU76Pd55GRqA4fPiwAKPUzaNAgQRC0U9pnzpwpBAYGCu7u7kKnTp2ES5cuidtoiTL1WT58+FDo0qWLEBAQILi6ugrh4eHC8OHDhezsbLGbLTllfYYAhKSkJP0+f/75p/D3v/9d8PHxEapVqyb87W9/E7KyssRrtASV9zleu3ZNaNu2reDr6yu4u7sL0dHRwuTJk4W8vDxxGy5BQ4cOFcLDwwU3NzchICBA6NSpk5CcnKzfzu9jxZj6HMX8PioEQRBsG1oRERERSQNzfIiIiEg2GPgQERGRbDDwISIiItlg4ENERESywcCHiIiIZIOBDxEREckGAx8iIiKSDQY+REREJBsMfIjIQHZ2NsaOHYs6derA3d0dYWFh6Nmzp8HaRMePH8eLL74IHx8fVK1aFY0bN8ayZctQVFSk3ycjIwMJCQmIjIyEh4cHoqKiMHv2bDx69Mjg9T766CM0bdoUNWrUgLe3N5o3b44FCxbot8+ZMwcKhQJdu3Yt1dYlS5ZAoVCgffv2FXpvumMpFApUqVIFERERmDBhAu7fv2/mp0REjoprdRGRXkZGBtq0aQNvb28sWbIEjRs3RmFhIfbv34/Ro0fj4sWL2L17N1577TUMGTIEhw8fhre3Nw4ePIgpU6YgJSUFn376KRQKBS5evAiNRoMPP/wQ0dHROHfuHIYPH44HDx5g6dKlAIBNmzZh/PjxWLVqFdq1a4eCggKcPXsW586dM2hXcHAwDh8+jMzMTIMVxzdt2oTatWub9R4bNmyIgwcP4vHjxzh27BiGDh2Khw8f4sMPPyy176NHj+Dm5mbBJ2k7UmwTkUOx+aIYROQwunXrJtSqVUu4f/9+qW137twR7t+/L/j5+Ql9+vQptX3Pnj0CAOGTTz4xevzFixcLkZGR+scvvfSSMHjwYJNtmj17ttC0aVOhR48ewrvvvqt//tixY4K/v78watQooV27dhV4d0+OVdzw4cOFoKAgg+0fffSREBERISgUCkEQtO89ISFB8Pf3Fzw9PYUOHToIqamp+mOkpqYK7du3F2rUqCF4enoKLVq0EE6dOiUIgiBkZGQIPXr0ELy9vYVq1aoJDRo0EL788ktBEAQhKSlJUKlUBu3ZvXu3UPzUbGmbiKhsHOoiIgBAbm4uvvnmG4wePRrVq1cvtd3b2xvJyclQq9V46623Sm3v2bMn6tati48//tjoa+Tl5cHX11f/OCgoCCdOnMDVq1fLbd/QoUOxefNm/eNNmzbhjTfeqHTvh4eHh8HwW1paGnbu3Ildu3YhNTUVAPDqq6/i5s2b+Prrr3H69Gm0aNECnTp1Qm5uLgDgjTfeQGhoKE6dOoXTp09j2rRpcHV1BaBdNb2goADff/89fvnlFyxatAg1atQwq42WtImIysahLiICoL24CoKA+vXrG93nt99+AwA89dRTZW6vX7++fp+yjr969Wr9MBcAzJ49G3369EFERATq1q2LuLg4vPjii3jllVfg4mJ4X9ajRw+MHDkS33//PWJjY/Hpp5/ihx9+wKZNm8x9q3qnT5/G9u3b0bFjR/1zjx49wr///W8EBAQAAH744Qf873//w82bN+Hu7g4AWLp0Kb744gt8/vnnSExMxLVr1zB58mT9ZxcTE6M/3rVr1/Dyyy+jcePGAIA6deqY3U5L2kREZWPgQ0QAAEEQbLIvAPzxxx/o2rUrXn31VQwfPlz/fHBwMFJSUnDu3Dl8//33OH78OAYNGoR//etf+OabbwyCH1dXVwwYMABJSUn4/fffUbduXTRp0sSsdgDAL7/8gho1aqCoqAiPHj1C9+7dsWbNGv328PBwfYABAD///DPu378PPz8/g+P8+eefuHLlCgBg4sSJGDZsGLZu3YrOnTvj1VdfRVRUFABg3LhxGDVqFJKTk9G5c2e8/PLLZrfbkjYRUdkY+BARAG0vhS4p2Zi6desCAC5cuIDWrVuX2n7hwgU0aNDA4LkbN26gQ4cOaN26NTZs2FDmcRs1aoRGjRrh73//O0aOHInnn38e3333HTp06GCw39ChQ9GyZUucO3cOQ4cONfctAgDq1auHPXv2oEqVKggJCSk1VFZymO/+/fsIDg7GkSNHSh3L29sbgHa2WP/+/fHll1/i66+/xuzZs/HJJ5/gb3/7G4YNG4b4+Hh8+eWXSE5OxoIFC/D+++9j7NixcHFxKRVEFhYWlnodS9pERGVjjg8RAQB8fX0RHx+PtWvX4sGDB6W23717F126dIGvry/ef//9Utv37NmDy5cvo1+/fvrn/vjjD7Rv3x6xsbFISkoqNXxVFl3gVFYbGjZsiIYNG+LcuXPo37+/OW9Pz83NDdHR0YiIiKhQflCLFi2QnZ2NKlWqIDo62uDH399fv1/dunUxYcIEJCcno0+fPkhKStJvCwsLw8iRI7Fr1y5MmjQJH330EQAgICAA9+7dM3ivuhwea7SJiEpj4ENEemvXrkVRURGeffZZ7Ny5E5cvX8aFCxewatUqxMXFoXr16vjwww/x3//+F4mJiTh79iwyMjKwceNGDB48GK+88gpee+01AE+Cntq1a2Pp0qW4desWsrOzkZ2drX+9UaNGYd68eTh27BiuXr2KEydOYODAgQgICEBcXFyZbTx06BCysrLs1rPRuXNnxMXFoXfv3khOTkZGRgaOHz+OGTNm4Mcff8Sff/6JMWPG4MiRI7h69SqOHTuGU6dO6fOgxo8fj/379yM9PR1nzpzB4cOH9dtatmyJatWq4Z///CeuXLmC7du3GyRwW9omIjKOQ11EpFenTh2cOXMG8+fPx6RJk5CVlYWAgADExsZi3bp1AIBXXnkFhw8fxvz58/H888/jr7/+QkxMDGbMmIHx48dDoVAAAA4cOIC0tDSkpaUZ1N4BnuQIde7cGZs2bcK6deugVqvh7++PuLg4fPvtt6XyV3TKmnFmSwqFAl999RVmzJiBIUOG4NatWwgKCkLbtm0RGBgIpVIJtVqNgQMHIicnB/7+/ujTpw/mzp0LACgqKsLo0aORmZkJLy8vdO3aFcuXLweg7WX7z3/+g8mTJ+Ojjz5Cp06dMGfOnHKTk8trExEZpxDMzVIkIiIiclAc6iIiIiLZYOBDRE6jRo0aRn+OHj0qdvOISAI41EVETiMtLc3otlq1asHDw8OOrSEiKWLgQ0RERLLBoS4iIiKSDQY+REREJBsMfIiIiEg2GPgQERGRbDDwISIiItlg4ENERESywcCHiIiIZIOBDxEREcnG/wGBBQm9y8tLyAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHHCAYAAAC4BYz1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0gUlEQVR4nO3dd3iTVfsH8G86aaFN96KlLWXJpkWhKFOkIENelCGgBYpFBAFBlmwRWcpwgSjrRVBQqj/AwRYRCiLTKiBgCxRaRkpThnTl/P7Im9C0zWqTZn0/19ULkufJk5PHam7Puc99S4QQAkREREQOxsnSAyAiIiKyBAZBRERE5JAYBBEREZFDYhBEREREDolBEBERETkkBkFERETkkBgEERERkUNiEEREREQOiUEQEREROSQGQUREVmjdunWQSCTIyMiw9FCI7BaDICIHdezYMYwePRqNGjVC9erVUatWLfTr1w9///13mXM7dOgAiUQCiUQCJycneHt7o379+njppZewe/duo953+/btaN++PYKCguDp6YnatWujX79++Omnn0z10cp499138d1335V5/vDhw5g9ezZyc3PN9t6lzZ49W30vJRIJPD090bBhQ0yfPh15eXkmeY9NmzZh2bJlJrkWkT1jEETkoBYuXIitW7fi6aefxvLly5GcnIxffvkFsbGxSEtLK3N+eHg4NmzYgP/+979YvHgxevXqhcOHD6NLly7o378/CgsL9b7ne++9h169ekEikWDq1KlYunQpnn/+eVy4cAFfffWVOT4mAN1B0Jw5c6o0CFJZsWIFNmzYgCVLlqBBgwaYN28eunbtClO0c2QQRGQYF0sPgIgsY/z48di0aRPc3NzUz/Xv3x9NmjTBggUL8MUXX2icL5VKMXjwYI3nFixYgDFjxuCTTz5BVFQUFi5cqPX9ioqKMHfuXDzzzDPYtWtXmeM3b96s5CeyHg8ePICnp6fOc1544QUEBAQAAF599VU8//zzSElJwZEjRxAfH18VwyRyeJwJInJQbdq00QiAAKBu3bpo1KgRzp49a9A1nJ2d8cEHH6Bhw4b46KOPIJfLtZ57+/Zt5OXl4cknnyz3eFBQkMbjhw8fYvbs2ahXrx6qVauG0NBQ9OnTB5cuXVKf895776FNmzbw9/eHh4cH4uLi8M0332hcRyKR4P79+1i/fr16CWrIkCGYPXs2Jk6cCACIjo5WHyuZg/PFF18gLi4OHh4e8PPzw4ABA3D16lWN63fo0AGNGzfG8ePH0a5dO3h6euKtt94y6P6V1KlTJwBAenq6zvM++eQTNGrUCO7u7ggLC8OoUaM0ZrI6dOiA77//HpcvX1Z/pqioKKPHQ+QIOBNERGpCCNy4cQONGjUy+DXOzs548cUXMWPGDPz666/o3r17uecFBQXBw8MD27dvx+uvvw4/Pz+t1ywuLkaPHj2wd+9eDBgwAGPHjsXdu3exe/dupKWlISYmBgCwfPly9OrVC4MGDUJBQQG++uor9O3bFzt27FCPY8OGDRg+fDieeOIJJCcnAwBiYmJQvXp1/P333/jyyy+xdOlS9axMYGAgAGDevHmYMWMG+vXrh+HDh+PWrVv48MMP0a5dO5w8eRI+Pj7q8cpkMnTr1g0DBgzA4MGDERwcbPD9U1EFd/7+/lrPmT17NubMmYPOnTtj5MiROH/+PFasWIFjx47h0KFDcHV1xbRp0yCXy5GZmYmlS5cCAGrUqGH0eIgcgiAi+p8NGzYIAGL16tUaz7dv3140atRI6+u+/fZbAUAsX75c5/VnzpwpAIjq1auLbt26iXnz5onjx4+XOW/NmjUCgFiyZEmZYwqFQv33Bw8eaBwrKCgQjRs3Fp06ddJ4vnr16iIxMbHMtRYvXiwAiPT0dI3nMzIyhLOzs5g3b57G83/88YdwcXHReL59+/YCgFi5cqXWz13SrFmzBABx/vx5cevWLZGeni4+/fRT4e7uLoKDg8X9+/eFEEKsXbtWY2w3b94Ubm5uokuXLqK4uFh9vY8++kgAEGvWrFE/1717dxEZGWnQeIgcGZfDiAgAcO7cOYwaNQrx8fFITEw06rWqmYa7d+/qPG/OnDnYtGkTWrRogZ07d2LatGmIi4tDbGysxhLc1q1bERAQgNdff73MNSQSifrvHh4e6r/fuXMHcrkcbdu2xYkTJ4waf2kpKSlQKBTo168fbt++rf4JCQlB3bp1sX//fo3z3d3dMXToUKPeo379+ggMDER0dDRGjBiBOnXq4Pvvv9eaS7Rnzx4UFBRg3LhxcHJ69J/uV155Bd7e3vj++++N/6BEDo7LYUSE7OxsdO/eHVKpFN988w2cnZ2Nev29e/cAAF5eXnrPffHFF/Hiiy8iLy8PR48exbp167Bp0yb07NkTaWlpqFatGi5duoT69evDxUX3f6J27NiBd955B6dOnUJ+fr76+ZKBUkVcuHABQgjUrVu33OOurq4aj2vWrFkmv0qfrVu3wtvbG66urggPD1cv8Wlz+fJlAMrgqSQ3NzfUrl1bfZyIDMcgiMjByeVydOvWDbm5uTh48CDCwsKMvoZqS32dOnUMfo23tzeeeeYZPPPMM3B1dcX69etx9OhRtG/f3qDXHzx4EL169UK7du3wySefIDQ0FK6urli7di02bdpk9GcoSaFQQCKR4Mcffyw3ICydY1NyRspQ7dq1U+chEZFlMAgicmAPHz5Ez5498ffff2PPnj1o2LCh0dcoLi7Gpk2b4OnpiaeeeqpC42jZsiXWr1+PrKwsAMrE5aNHj6KwsLDMrIvK1q1bUa1aNezcuRPu7u7q59euXVvmXG0zQ9qej4mJgRAC0dHRqFevnrEfxywiIyMBAOfPn0ft2rXVzxcUFCA9PR2dO3dWP1fZmTAiR8GcICIHVVxcjP79+yM1NRVff/11hWrTFBcXY8yYMTh79izGjBkDb29vrec+ePAAqamp5R778ccfATxa6nn++edx+/ZtfPTRR2XOFf8rJujs7AyJRILi4mL1sYyMjHKLIlavXr3cgojVq1cHgDLH+vTpA2dnZ8yZM6dM8UIhBGQyWfkf0ow6d+4MNzc3fPDBBxpjWr16NeRyucauvOrVq+ssV0BESpwJInJQEyZMwLZt29CzZ0/k5OSUKY5YujCiXC5Xn/PgwQNcvHgRKSkpuHTpEgYMGIC5c+fqfL8HDx6gTZs2aN26Nbp27YqIiAjk5ubiu+++w8GDB9G7d2+0aNECAPDyyy/jv//9L8aPH4/ffvsNbdu2xf3797Fnzx689tpreO6559C9e3csWbIEXbt2xcCBA3Hz5k18/PHHqFOnDs6cOaPx3nFxcdizZw+WLFmCsLAwREdHo1WrVoiLiwMATJs2DQMGDICrqyt69uyJmJgYvPPOO5g6dSoyMjLQu3dveHl5IT09Hd9++y2Sk5Px5ptvVur+GyswMBBTp07FnDlz0LVrV/Tq1Qvnz5/HJ598gscff1zjn1dcXBw2b96M8ePH4/HHH0eNGjXQs2fPKh0vkU2w5NY0IrIc1dZubT+6zq1Ro4aoW7euGDx4sNi1a5dB71dYWCg+++wz0bt3bxEZGSnc3d2Fp6enaNGihVi8eLHIz8/XOP/Bgwdi2rRpIjo6Wri6uoqQkBDxwgsviEuXLqnPWb16tahbt65wd3cXDRo0EGvXrlVvQS/p3Llzol27dsLDw0MA0NguP3fuXFGzZk3h5ORUZrv81q1bxVNPPSWqV68uqlevLho0aCBGjRolzp8/r3FvdJUPKE01vlu3buk8r/QWeZWPPvpINGjQQLi6uorg4GAxcuRIcefOHY1z7t27JwYOHCh8fHwEAG6XJ9JCIoQJGtUQERER2RjmBBEREZFDYhBEREREDolBEBERETkkBkFERETkkBgEERERkUNiEEREREQOicUSS1EoFLh+/Tq8vLxYep6IiMhGCCFw9+5dhIWFwcnJsDkeBkGlXL9+HREREZYeBhEREVXA1atXER4ebtC5DIJK8fLyAqC8ibr6IBEREZH1yMvLQ0REhPp73BAMgkpRLYF5e3szCCIiIrIxxqSyMDGaiIiIHBKDICIiInJIDIKIiIjIITEnqAKKi4tRWFho6WHYLVdXVzg7O1t6GEREZOcYBBlBCIHs7Gzk5uZaeih2z8fHByEhIazVREREZsMgyAiqACgoKAienp78gjYDIQQePHiAmzdvAgBCQ0MtPCIiIrJXDIIMVFxcrA6A/P39LT0cu+bh4QEAuHnzJoKCgrg0RkREZsHEaAOpcoA8PT0tPBLHoLrPzL0iIiJzYRBkJC6BVQ3eZyIiMjcuhxEREVWQTCZDQUGB1uNubm5MobBiDIKIiIgqQCaT4aOPPtJ73ujRoxkIWSkuhzmAIUOGQCKRQCKRwNXVFcHBwXjmmWewZs0aKBQKg6+zbt06+Pj4mG+gREQ2RNcMUEXO00cmkyErK0vrj0wmM8n7OBLOBFUhS06bdu3aFWvXrkVxcTFu3LiBn376CWPHjsU333yDbdu2wcWFvwpERNaKs07mwW++KmLpX2B3d3eEhIQAAGrWrInY2Fi0bt0aTz/9NNatW4fhw4djyZIlWLt2Lf755x/4+fmhZ8+eWLRoEWrUqIGff/4ZQ4cOBfAoaXnWrFmYPXs2NmzYgOXLl+P8+fOoXr06OnXqhGXLliEoKMjkn4OIyBFV9ayTo+ByWBWxxl/gTp06oVmzZkhJSQEAODk54YMPPsCff/6J9evXY9++fZg0aRIAoE2bNli2bBm8vb3VU69vvvkmAOU29rlz5+L06dP47rvvkJGRgSFDhlTZ5yAicjRyuRfS06Mgl3uZ9Loll9yOH7+Bb76R4fjxG3a75MaZIAfXoEEDnDlzBgAwbtw49fNRUVF455138Oqrr+KTTz6Bm5sbpFIpJBKJekZJZdiwYeq/165dGx988AEef/xx3Lt3DzVq1KiSz0FE5ChOnGiB7dt7QAgnSCQK9Oy5A7GxJyt93ZIrFrrew56W3DgT5OCEEOrlrT179uDpp59GzZo14eXlhZdeegkymQwPHjzQeY3jx4+jZ8+eqFWrFry8vNC+fXsAwJUrV8w+fiIiRyKXe6mDEwAQwgnbt/cwyYyQaiVC33vY05IbgyAHd/bsWURHRyMjIwM9evRA06ZNsXXrVhw/fhwff/wxAN2/8Pfv30dCQgK8vb2xceNGHDt2DN9++63e1xERkfFycvzVwYmKEE7IyfEDANy+fbvSS1b63sOecDnMge3btw9//PEH3njjDRw/fhwKhQLvv/8+nJyUv/xbtmzRON/NzQ3FxcUaz507dw4ymQwLFixAREQEAOD333+vmg9ARGRBbm5uJj3PEH5+MkgkCo0gRSJRwM8vBwDUOZ6VWbLS9x72hEGQg8jPz0d2drbGFvn58+ejR48eePnll5GWlobCwkJ8+OGH6NmzJw4dOoSVK1dqXCMqKgr37t3D3r170axZM3h6eqJWrVpwc3PDhx9+iFdffRVpaWmYO3euhT4lEZF5lS510r9/f40ehy4uLhr11Exd+kQqvYuePXeUWK5SID4+tcx5lZmJL/0eqpwgqfRuJUZunRgEOYiffvoJoaGhcHFxga+vL5o1a4YPPvgAiYmJcHJyQrNmzbBkyRIsXLgQU6dORbt27TB//ny8/PLL6mu0adMGr776Kvr37w+ZTKbeIr9u3Tq89dZb+OCDDxAbG4v33nsPvXr1suCnJSIyPX2lTuRyL+Tk+GPChF5o0sTXpO9dcjYpNvYkYmIu4ujRVkhNjcfhw08iNTXeZAnSJd8jJ8cPfn45GgHQ7du31WOy9QRpiRBCWHoQ1iQvLw9SqRRyuRze3t7q5x8+fIj09HRER0ejWrVqRl/X0nWCbE1l7zcRkallZWVh1apV5R4ruZvKyUlg1SoJkpJM+/4ymQzXr19HSkoK5HIvLFs2rsyS1bhxyyCV3kVycjJCQ0ONur6uz6cK8Pz8lPlGqr+/8ko3+Pj4WEVApO37WxfOBFURf39/jB49mo32iIjsTOndVAqFBCNGAAkJQHi46d7H399f/R2iK3lZ37KVtu4Fqhme0koGeIACgASABBKJApcu2fbWeQZBVcjWfjmIiEi/8gKS4mLg4kXTBkElVTR52dBVCZXSAV7JTeWqrfMxMRchld41KA8pMxO4cAGoW9d898YY3CJPRERUAaqqza6u+ZBINJtROzsDdeqY771Vycuq9zU0ebl0oKKt8nTHjh0BlB/glWTM1vnVq4HISKBTJ+Wfq1cb9DKz4kwQERGRkUpXVG7a9AzOnGkKIZzg7Czw6acSs8906EpeNoSuqtC+vsrE7vJmnEoydOt8ZiaQnAwo/hcrKhQwy5KhsTgTREREZITyKiqfOdMUSUmfIzFxHY4evWnypGiV0jWHpNK7iI6+XCYA0lebyNDK06VnnACF0bNPMpkMR47I1AGQSnExcPSozKL9yDgTREREZARtScmFhW6Ijr6MsDCFlldWnq5NNnK5HIWFhXBxcUFBQQGysrI0jpcMjIxJrC4946R8vWGzT6ocJLncCxJJ2d1shw6tR1raXYslVTMIIiIiMoAqiNCXlGzKCtHlKS9YkMlk2Lx5s97X9u/fH4DxidVS6V2NgMfQpTdVsKavAKOl2iwxCCIiIjJAyVmYmjXzMHmyFMXFEjg7CyxcmIeBA1+0WKkTQ4MIVXVrfUGJi4vpw4PK5jCZA4MgIiIiA6kCnAkTgP79ldvg69SRIDzcB4CPJYemoWRxQ23Bhq6gxMfHRx3wyeVyg2aZDJkBKz2jZGk2FQT98ssvWLx4MY4fP46srCx8++236N27t/q4EAKzZs3CZ599htzcXDz55JNYsWIF6tata7lBO4Cff/4ZHTt2xJ07dzR65ugSFRWFcePGYdy4cWYdGxGRuYSHW0etm9J07foqPcOjLSgpOaMVGhpqt8V+bSoIun//Ppo1a4Zhw4ahT58+ZY4vWrQIH3zwAdavX4/o6GjMmDEDCQkJ+Ouvvxy69cKQIUOwfv16jBgxokxT1FGjRuGTTz5BYmIi1q1bZ5kBEhGRSWjb9aUqaFhyhkeb8gIaWwxwDGFTQVC3bt3QrVu3co8JIbBs2TJMnz4dzz33HADgv//9L4KDg/Hdd99hwIABVTlUqxMREYGvvvoKS5cuhYeHBwBlf65NmzahVq1aFh4dERGZgiG7vuw1oKkIu6kTlJ6ejuzsbHTu3Fn9nFQqRatWrZCamqr1dfn5+cjLy9P4sUexsbGIiIhASkqK+rmUlBTUqlULLVq0UD+Xn5+PMWPGICgoCNWqVcNTTz2FY8eOaVzrhx9+QL169eDh4YGOHTsiIyOjzPv9+uuvaNu2LTw8PBAREYExY8bg/v37Zvt8RET0aNdXSYYWNHREdhMEZWdnAwCCg4M1ng8ODlYfK8/8+fMhlUrVPxEREWYdp0pmJrB/v/LPqjJs2DCsXbtW/XjNmjUYOnSoxjmTJk3C1q1bsX79epw4cQJ16tRBQkICcnKU/wJdvXoVffr0Qc+ePXHq1CkMHz4cU6ZM0bjGpUuX0LVrVzz//PM4c+YMNm/ejF9//RWjR482/4ckInJgFW2nYS6Glgswd1kBbWxqOcwcpk6divHjx6sf5+XlmT0QWr36UflwJydg1SqYrbpoSYMHD8bUqVNx+fJlAMChQ4fw1Vdf4eeffwagzLlasWIF1q1bp152/Oyzz7B7926sXr0aEydOxIoVKxATE4P3338fAFC/fn388ccfWLhwofp95s+fj0GDBqmTnuvWrYsPPvgA7du3x4oVKxw6P4uIyBxKBhG6dn0ZEmyU7DJ//boT0tNdEB1dpC4CaUwStK7ijiXHZKklOrsJgkJCQgAAN27cQGhoqPr5GzduoHnz5lpf5+7uDnd3d3MPT82S/VMCAwPRvXt3rFu3DkIIdO/eHQEBAerjly5dQmFhIZ588kn1c66urnjiiSdw9uxZAMDZs2fRqlUrjevGx8drPD59+jTOnDmDjRs3qp8TQkChUCA9PR2PPfaYOT4eEZHDMlWwUbLLvK5dZsZUeLbmHCS7CYKio6MREhKCvXv3qoOevLw8HD16FCNHjrTs4Eq4cAHl9k+5eLFqtloOGzZMvSz18ccfm+U97t27hxEjRmDMmDFljjEJm4jIPEwRbKiCKH27zCxV4dnUbCoIunfvHi5evKh+nJ6ejlOnTsHPzw+1atXCuHHj8M4776Bu3brqLfJhYWEatYQsrW5d5RJYyUDI2RmoU6dq3r9r164oKCiARCJBQkKCxrGYmBi4ubnh0KFDiIyMBKCsLnrs2DH10tZjjz2Gbdu2abzuyJEjGo9jY2Px119/oU5VfSgiIjIpY3qL2TKbCoJ+//13dOzYUf1YlcujqnEzadIk3L9/H8nJycjNzcVTTz2Fn376yapyUMLDlTlAI0YoZ4CcnYFPP626glvOzs7qpS1nZ2eNY9WrV8fIkSMxceJEdWC5aNEiPHjwAEn/S1p69dVX8f7772PixIkYPnw4jh8/Xqa+0OTJk9G6dWuMHj0aw4cPR/Xq1fHXX39h9+7d6mlWIiJbUDI/pjxVnc9i6vGUzv85depfyOVeRvcWs1U2FQR16NABQgitxyUSCd5++228/fbbVTgq4yUlKXOAlOXWq77iqLe3t9ZjCxYsgEKhwEsvvYS7d++iZcuW2LlzJ3x9fQEol7O2bt2KN954Ax9++CGeeOIJvPvuuxg2bJj6Gk2bNsWBAwcwbdo0tG3bFkIIxMTEqBv3ERHZgpL5MbpUVQd0U4+n/PyfYEgk49Cz5w6dvcXshUToiiocUF5eHqRSKeRyuUaw8PDhQ6SnpyM6OtqqZpbsFe83EVlaVlYWVq1apfe85ORkjQ051jqe0rNIt2/fRkpKCuRyLyxbNq7MrM+4ccsAoNxdZlX1mY2h7ftbF5uaCSIiIrIl5lxOM6RJqsqlS5fwxRdflHtMV/5PdPRlu5v9KYlBEBERkRmYczlN1/b18sZRMgCSy71w9aqyHl5ExFWHyf8pD4MgIiIiMzB0G7mx2831bV/Xdf0TJ1pg27aeACT/e0aBXr2Mz/+xVIVnU2MQREREZABjlp/MqaLb11XB06MACACcsG1bD7zxxjKMG7es3PyfPn36aBTWtWSFZ1NjEGQk5pFXDd5nIrImxiw/mVtFl6/KC56UdOf/BAQEWF0StKnYTQNVc3N1dQUAPHjwwMIjcQyq+6y670RElqJt+Uku9zL6OunpUUa/rrSKNkktr8O8kmPk/5SHM0EGcnZ2ho+PD27evAkA8PT0hEQi0fMqMpYQAg8ePMDNmzfh4+NTpqAjEVFVUeW96Ft+MiQ/xhQzSZVtkqoKnkoGdKqcIEfI/ykPgyAjqJq0qgIhMh8fHx/1/SYisgRVU9KMjCJs2CCgUDz6H19nZ4HXX++GqCgXvfkxxiYy6xtPZbbcq4Knq1eVVXojIjIdJv+nPAyCjCCRSBAaGoqgoCAUFhZaejh2y9XVlTNARGQV/P394e9fXrsjCeLigg26hin7cJkiIJFK70IqPVvusbCwMLsOekpjEFQBzs7O/JImInIgFWl3pFpG0pfIbO7lJkOvP3jwYIcKgAC2zSijImW3iYiIyqOqGL1pkwcmT5aiuFgCZ2eBhQvlGDjwX5MsNxlSlRrQXY/IHpa9KvL9zSCoFAZBRESPWFsXdVuWmWn6xtnW1uTVktg7jIiITIZfsKYVHm664EfFXFWpHQXrBBERUblKf3Fqq3PDL1iyVZwJIiIivaypYjKRqXAmiIiIdDJVxWQia8OZICIi0smUdW7sEZPHbReDICIi0klfnZvbt28DcMwve2tLHreWTve2gkEQERHpVLrnVOmGnSkpKepzHW2nmDXtzmLelvEYBBERkV66GnaWxJ1iVUtVCFFffzJ7boJaGQyCiIioXKW/OJU9p5TBjyWXXaw5B6eq74uqqer+/cDSpWXztp58MhEdOpim55g9YhBERETlKtm1/Pbt2+plL0suu1hbDk5Jlrov/v7+aN0acHICFIpHzzs7A61aKRvAUvm4RZ6IiLTy9/dHaGgoAgICAFh+u7w15eCUZOn7Eh6u7HSv6u2t7HRv+grV9oYzQURERsjMBC5cAOrWdcwvGHvcLm+K5TVruC8V6XTv6BgEEREZaPVqIDlZueTg5KT8P++kJEuPqmrp2y5fGYZ2QzclUy2vmfO+GMMc/cnsGYMgIiI9ZDIZMjKKkJwcBIVCAkAZCI0YIdC8+U1ERbk4TOKpvu3yFWVoMNK/f3+Nx5VNRK7s8poqMNN3X7g7yzoxCCIi0kH15ZyeHgWFIlHjWHGxBB9++COioy/bfX2ckl/iurbLV/TL3tBgpLCwUP13a6iLUzJ5HABmzryFjAwXREUVISzscQCPO2QRSVvBIIiISAfVl5u+5Q57r49T+su+PFX5Za+vLk5lrmvszFLJzxwaCsTFVfjtqYoxCCIiMoC5loFsiTXNZhibiKwt30jV8gOwjpklqlp2GQR9/PHHWLx4MbKzs9GsWTN8+OGHeOKJJyw9LCKycYZWTabK0zYj4+Ki/NrSNzNXclnOkHwjc80skXWzuyBo8+bNGD9+PFauXIlWrVph2bJlSEhIwPnz5xEUFGTp4RGRjStZNZnMQ9eMjI+Pj3pZrmbNPEyeLEVxsQTOzgILF+Zh4MAXyyzLGbJUaQ1b3Knq2V0QtGTJErzyyisYOnQoAGDlypX4/vvvsWbNGkyZMsXCoyMi0uSIdYfKW5pSLUsZMiOjCnAmTAD691fVxZEgPNwHgE+FxmQtW9ypatlVEFRQUIDjx49j6tSp6uecnJzQuXNnpKamWnBkRESPqIKATZs8MGmSFAqFBE5OAosWyTFw4L92vZtI39KUsTMyqro4MpkMWVnlz/iUzPsByl9q4xZ3x2RXQdDt27dRXFyM4OBgjeeDg4Nx7ty5cl+Tn5+P/Px89eO8vDyzjpGIHJsqCJDLvbBs2TgIoao7JMHEid64dm0NpNK7Nr/l3pBE5PIYk+tT8r0MqTEE6F5qe+edaG5xdzB2FQRVxPz58zFnzhxLD4OIKsGcS0qGzgAYep4qMNA342HLW+6NCUpKU83I7NjREwqF7lwfFUPvlb6ltoCAAISGBnOLuwOxqyAoICAAzs7OuHHjhsbzN27cQEhISLmvmTp1KsaPH69+nJeXh4iICLOOk4hMx9ytLMxVH8eec1CMCeDKW5qKjT2JmTNb4e7d4Ern+pTE5Gcqza6CIDc3N8TFxWHv3r3o3bs3AEChUGDv3r0YPXp0ua9xd3eHu7t7FY6SiEwlM/NRAASoWlkom0iackbIHEshrDuke2kqLEyB0NCKXVfb9np7DjypYuwqCAKA8ePHIzExES1btsQTTzyBZcuW4f79++rdYkRkPy5ceBQAqRQXK3cL2cJOK0epO1ReUGKuujy6AismP1NpdhcE9e/fH7du3cLMmTORnZ2N5s2b46effiqTLE1Etk0mk8HbuwhOTo+amgKAs7OAl9dNyGS20dTU3usOaQtKzLE0pS+w6tOnD5KTA5j8TGp2FwQBwOjRo7UufxGR7SuZeNujh+aXbPfuO7Bjh/L//G19h5Wt0xWUmGNpSl9gpUx8DmV/L1KzyyCIiOxbycRbXUtKtrzDyh7oCkqioy+bfGmKOT9kLAZBRGTzbGlJydRb7q2ZvqDEVHV5VPeKOT9kLAZBRERVyFxb7lW0FSkEgNzcXEgkEkilUpO/b+nrAPqDkrCwMPj7+1d6aar0PWXODxmKQRARURUz15dxZYoUqpgij8oSQUnJazHnhwzFIIiIyE6YIgfKVHlUDErIFjAIIiKyU9qKBuo6Vl5vLy4lkb1iEEREZId0FQ3UdSwlJaXc67HcANkjBkFEZHMcaYdVReiqzwNAZ0FBbTNEqmUyXYnXAGeNyLYwCCIim2PuHVZVyRxBha76PIBE67FLl+ponSFSjdWQxGvOGpGtYBBERFYjM1PZD6xuXf29v+zhS9ZcQYW++jzlHXN1LdDby6t0sKZv1ojI2jnpP4WIyPxWrwYiI4FOnZR/rl5t6RGZX3lBRXp6FORyL53n6aOqzyORKLvLlqzPo+1YYaG7jtmjsk6caIFly8Zh/fpELFs2DidOtDBqjETWgDNBRGRxmZlAcvKjjvAKBTBiBJCQYBvd4E1BV7KyoUrmQOlqJ1LeMbncy+CWE+bqAE9U1RgEEZHFXbjwKABSKS4GLl40PAgyZinN2pgqqNCXK1Vexejbt28jJSVFb3XnkszRAZ7IEhgEEZHF1a0LODlpBkLOzkCdOoa9fvXqRzNJTk7AqlVAUpJ5xmoOpggqDEmwfuyxx3ReQ9fsUUlsVEr2gkEQEVmUTCaDs3MBFi3ywOTJUhQXS+DsLLBwoRzOzv9CJtO+O0omkyEjowjJyUFQKCQAVEtpAs2b30RUlItNJFBXNqgonWCtLWG5vATr0mUEtDWjdXNzUwdZxswaEVkzBkFEZDGlv7zHjPFSz0Lcu3cXq1Ypny/vy1v12vT0KCgUiRrHiosl+PDDHxEdfdkmtmtXNqgoOQOkK7eovJkiY8oNZGVlqZ8zdNaIyJoxCCIiiyn9xattFqK8L2jVc/pmUWxlu7YpgoqK5hYZGiQaM2tEZAsYBBGRTTPl0kxVV0M2dVBh7oRleypSSQQwCCIiO2CKWZTK5NVUlKmDiqpIWGaAQ/aEQRAR2QVtsyiGqkxeTWWYIqiQy+UAlPegc+c92L27MwAmLBPpwyCIiKgEU9XsqaqlNZlMhs2bNwNQBm979jwKgDp33mN0wUUiR8IgiIjMwlaLF5qqZk9VLa2pAq3ygrc9ezqjceM0zgQRacEgiIhMzpaLF5oir8YSS2uGBG/ctUWkiQ1UiciktPUBy8wse66hX8rlnVeZ1+qiq/mosbQtrZVukFoZubm5AB4FbyWVDN769evHpGaiUjgTREQmZUwfsMrsjir52tzcXBQVFQEAsrNdcOWKO2rVykdEhAQFBQWQyWRGBQCmKgRo7i3rMpkMW7ZsAaC/VICPj0+l34/I3jAIIiKTkclk8PYugpPTozYWAODsLODldRMyWdk2FpWZnfD399cIBHQtPRmbf1PZ3WaA+beslw4eY2Iu4vnntwIQiIjIZC4QkR4MgojIJEomA/fooRmMdO++Azt2VCwY0UdXYnDJXV368m/MsbxWlT22dAWARFS+CgVB9+/fR/Xq1U09FiKyYSWDDF3LSeZqY1HZpSdzVUOuih5bptrWT+RoKhQEBQcHo1+/fhg2bBieeuopU4+JiOyAKZaTjGGKpSdzJQ6Xdy/kci8cOuSG1q0rX0KAO8OIKqZCu8O++OIL5OTkoFOnTqhXrx4WLFiA69evm3psREQGM+WursrSF3CcONECy5aNQ9++/oiMVJYUqAx9O8P69+/PnWFE5ajQTFDv3r3Ru3dv3Lp1Cxs2bMC6deswY8YMJCQkYNiwYejVqxdcXJhuRERVqyqWngyhbWlNLpfj6lWBt99uACGUiePKEgICzZvfRFRU2cRxQ+jLPZJKpZX/UER2qFJ1ggIDAzF+/HicOXMGS5YswZ49e/DCCy8gLCwMM2fOxIMHD0w1TsybNw9t2rSBp6en1q2eV65cQffu3eHp6YmgoCBMnDhRvW2WiByDVHoX0dGXLZ4L4+/vj9DQUPWPm5sbNm/ejI0bf9PYOQcAxcUSfPjhj/joo48gk8kq9H6xsScxbtwyJCauw7hxy5gUTWSASk3X3LhxA+vXr8e6detw+fJlvPDCC0hKSkJmZiYWLlyII0eOYNeuXSYZaEFBAfr27Yv4+HisLmfuuLi4GN27d0dISAgOHz6MrKwsvPzyy3B1dcW7775rkjEQke26ffs2ANP17DKWalZIX+6SMYnjpZfdtOVhMR+IqHwVCoJSUlKwdu1a7Ny5Ew0bNsRrr72GwYMHa8zQtGnTBo899pipxok5c+YAANatW1fu8V27duGvv/7Cnj17EBwcjObNm2Pu3LmYPHkyZs+ezf8IENkpXf9ul+zZlZKSon7e1Nv0jWHKbfPm2tFG5CgqFAQNHToUAwYMwKFDh/D444+Xe05YWBimTZtWqcEZIzU1FU2aNEFwcLD6uYSEBIwcORJ//vknWrRoUe7r8vPzkZ+fr36cl5dn9rES2SNztbHQp2QgcPv2bXWwU1U9uyrClLlLDHCIKq5CQVBWVhY8PT11nuPh4YFZs2ZVaFAVkZ2drREAAVA/zs7O1vq6+fPnq2eZiKjiLDkrUfqatlA3p6pLCBBRWRUKgjw9PVFcXIxvv/0WZ8+eBQA89thj6N27t1G7wqZMmYKFCxfqPOfs2bNo0KBBRYZpkKlTp2L8+PHqx3l5eYiIiDDb+xHZM2uZlTB3zy4isg8VCoL+/PNP9OzZEzdu3ED9+vUBAAsXLkRgYCC2b9+Oxo0bG3SdCRMmYMiQITrPqV27tkHXCgkJwW+//abx3I0bN9THtHF3d4e7u7tB70FEtsHcPbuIyD5UKAgaPnw4GjdujOPHj8PX1xcAcOfOHQwZMgTJyck4fPiwQdcJDAxEYGBgRYZQRnx8PObNm4ebN28iKCgIALB79254e3ujYcOGJnkPInuUmans/F63buUrF1uLquzZVZpMJlMvCV6/7oT0dBdERxfBze222d+biIxToSDo1KlT+P3339UBEAD4+vpi3rx5WhOlK+vKlSvIycnBlStXUFxcjFOnTgEA6tSpgxo1aqBLly5o2LAhXnrpJSxatAjZ2dmYPn06Ro0axZkeIi1WrwaSk5UF+5ycgFWrgKQkS49KqWQwUR59+UWWKJxYsols2cTso4iN1X8N7mQlqjoVCoLq1auHGzduoFGjRhrP37x5E3Xq1DHJwEqbOXMm1q9fr36s2u21f/9+dOjQAc7OztixYwdGjhyJ+Ph4VK9eHYmJiXj77bfNMh4iW5eZ+SgAAlSVi4GEBMvPCJUMJgDNre4lgxl9W92rOvnY0I72ffr0QUBAQJnXczs7UdWqUBA0f/58jBkzBrNnz0br1q0BAEeOHMHbb7+NhQsXamwz9/b2NslA161bp7VGkEpkZCR++OEHk7wfkT2TyWQ4cgRQKDS/cIuLgaNHZfDwsGySc8kZIGO2ultqm35p+hKzAwICEBoaatYxEJF+FQqCevToAQDo168fJBJl+XchBACgZ8+e6scSiQTFxcWmGCcRmYhqlkUu94JEMq5M8vChQ+uRlnbXogUFVYzd6m4txQOZmE1kGyoUBO3fv9/U4yCiKqIKEPQlD1u6oCCgf0bl+nUnnDunmdRt6cANsGxiNhEZrkJBUPv27U09DiKyAGvpuq6NrhmVEyda4O23g/6X1C2waJEcAwf+azV5NdZ+b4moEg1Uc3NzsXr1anWxxEaNGmHYsGGQSqUmGxwRmZ81Vy7WNqMC4H/PKZfjFQoJJk70xrVrayCVWsdSHmDd95aIKhgE/f7770hISICHhweeeOIJAMCSJUswb9487Nq1C7GG7AMlIjJAeTMq6elROpfJrGEpj4isX4WCoDfeeAO9evXCZ599pm6TUVRUhOHDh2PcuHH45ZdfTDpIInJspWdUrDXx2Fp2pxGRYSo8E1QyAAIAFxcXTJo0CS1btjTZ4IjIMekLEqw18dhadqcRkWEqFAR5e3vjypUrZRqbXr16FV5eXiYZGBE5Lm3BxO3bt5GSkgLAehOPGeAQ2Y4KBUH9+/dHUlIS3nvvPbRp0wYAcOjQIUycOBEvvviiSQdIRKZlK0s2hgQTTDwmosqoUBD03nvvQSKR4OWXX0ZRUREAwNXVFSNHjsSCBQtMOkAiMi0u2RARKRkdBBUXF+PIkSOYPXs25s+fj0uXLgEAYmJi4OnpafIBElkTe+m4zgCHiAhw0n+KJmdnZ3Tp0gW5ubnw9PREkyZN0KRJEwZAZPdWrwYiI4FOnZR/rl5d/nmZmcD+/co/ybRsZSmPiGxDhZbDGjdujH/++QfR0dGmHg+R1ZHJZMjIKEJychAUClVxPmDECIHmzW8iKspFPbOyevWjzuxOTsCqVUBSkiVHbz4ymazKl9S4lEdEpiQRqs6nRvjpp58wdepUzJ07F3FxcahevbrGcVN1jreEvLw8SKVSyOVym/4cZBqqZqPp6VFYvz6xzPHExHWIjr6M0aNH499//REZqQyAVJydgYwM2146K4/qvqjI5V7IyfGHn59MI1HZWio3E5H9q8j3d4Vmgp599lkAQK9evdRd5AF2jif7o5px0Fec7+bNm/jzT0Ch0PzCLy4Gjh6VwcPDvvJwbt26pf77iRMtytTriY09CUB7E1Z7ya0iItvGLvJEBtBXnG/Lli2Qy70gkYwrEygdOrQeaWnW08+qsmQyGTZv3gxAOQO0bVsPqNILhXDC9u09EBNzUevWdUdaMiQi61ahICg6OhoREREas0CAcibo6tWrJhkYkbXRV5xPX6BkL/2sSn6Oo0dbofT+ipI9vErLzHwUAAGq3CogIYEzQkRU9SocBGVlZSEoKEjj+ZycHERHR3M5jOyWvuJ81lrF2Bzkci+kpsaXc6T8Hl4ymQxHjjjOkiERWb8KBUGq3J/S7t27h2rVqlV6UES2zNJVjKtq11ZOjn+ZTu4A0KZNapnPr0qkdpQlQyKyDUYFQePHjwcASCQSzJgxQ6M2UHFxMY4ePYrmzZubdIBEZLjSu7a0qWiwIZPJcPv2bQCAq2s+AAVKLodJJAq0anW0zOtUQZmjLBkSkW0wKgg6eVK540MIgT/++EOjIJmbmxuaNWuGN99807QjJCKDlQ4itG1dr0iwUTLAUu0IUwZAAoDE4E7ujrRkSETWzaggSLUrbOjQoVi+fDnr6JDds+XKw7q2rleEKnCSy73U11VSBkBJSZ8jPDxL4zXa7p+llwyJiIAK5gStXbvW1OMgskqGVCiWy+XqLePWonSgYsjWdUOVlwskhBMKCzUDnn79+jG/h4isWoWCoPv372PBggXYu3cvbt68CUXJErkA/vnnH5MMjsga6Psit8Z+VtoCFW1b142hr3Ckimr3aGYmcOSIG+RyL87+EJFVqVAQNHz4cBw4cAAvvfQSQkNDy90pRuQorLGflaGBSkXoS27u06cPwsLC4O/vX6Iwoj8kknGVXpIjIjKlCgVBP/74I77//ns8+eSTph4PkU2ytmUffYFKZelKbg4ICIC/v3+ZwoimXJIjIjKFCgVBvr6+8PPzM/VYiMiEzL0LS19y84ULms1kAf1LcraciE5EtqdCQdDcuXMxc+ZMrF+/XqNWEBFZVukgQlugYkiwUZkmpzKZDN7eRXByCoJC8Wi53MlJYNCgVggPbwUfH58yY7K2GTUism8VCoLef/99XLp0CcHBwYiKioKrq6vG8RMnTphkcERknMrmJ6mqTW/a5IFJk6RQKCRwchJYtEiO7t3lBo3hwYMHWLVqFQCgRw/Nbfo9euzA4cPKnCBWhyYiS6tQENS7d28TD4OITKWigUXJ1hbLlo2DEMoZHIVCgokTvXHt2hpIpcqt76VncVTc3Nw0ArDY2JMICsrGlSu1UKvWFY06QqwOTUSWVqEgaNasWaYeh04ZGRmYO3cu9u3bh+zsbISFhWHw4MGYNm2axrT+mTNnMGrUKBw7dgyBgYF4/fXXMWnSpCodK5GtUgUl+rbX+/j4IDQ0VOt1srIeBTqmLthIRGRKZbsf6vDbb7/p7BCfn5+PLVu2VHpQpZ07dw4KhQKffvop/vzzTyxduhQrV67EW2+9pT4nLy8PXbp0QWRkJI4fP47Fixdj9uzZ6ml5IjKMant9SRXZXq+tYKNc7mWysRIRVYZRQVB8fDxkMpn6sbe3t0ZhxNzcXLz44oumG93/dO3aFWvXrkWXLl1Qu3Zt9OrVC2+++SZSUlLU52zcuBEFBQVYs2YNGjVqhAEDBmDMmDFYsmSJycdDZM9U2+tVgZCx2+vlcmXukK4ZpZLnERFZilHLYUIInY+1PWcOcrlcY5t+amoq2rVrp7E8lpCQgIULF+LOnTvw9fUt9zr5+fnIz89XP87LyzPfoInMRJXQrI2xO68qs72+sLAQgP6CjarziIgspUI5QbpURfXoixcv4sMPP8R7772nfi47OxvR0dEa5wUHB6uPaQuC5s+fjzlz5phvsERmVrK7O6C9c7yxu7Eq2+TU3AUbiYgqy+RBkDGmTJmChQsX6jzn7NmzaNCggfrxtWvX0LVrV/Tt2xevvPJKpccwdepUjB8/Xv04Ly8PERERlb4uUVUpOQOkKxHZEruxzF2wkYioMowOgv766y9kZ2cDUC59nTt3Dvfu3QMA3L5926hrTZgwAUOGDNF5Tu3atdV/v379Ojp27Ig2bdqUSXgOCQnBjRs3NJ5TPQ4JCdF6fXd3d7i7uxs1biJrZM7O8cZwcdH8z4q2GaXS5xERVTWj/yv09NNPa+T99OjRA4ByGUwIYdRyWGBgIAIDAw0699q1a+jYsSPi4uKwdu1aODlpJlzGx8dj2rRpKCwsVBdv3L17N+rXr691KYzInlS2c7yhLSv0naethlBFzyMiMhejgqD09HRzjUOna9euoUOHDoiMjMR7772HW7duqY+pZnkGDhyIOXPmICkpCZMnT0ZaWhqWL1+OpUuXWmTMZBqmTvi1Z5XtHF/ZatNERLbGqCAoMjLSqIu/9tprePvttxEQEGDU60rbvXs3Ll68iIsXLyK8VBMj1ayUVCrFrl27MGrUKMTFxSEgIAAzZ85EcnJypd6bLKd0wq82bL+gZIpEZN5HInIkZl2U/+KLL/Dmm29WOggaMmSI3twhAGjatCkOHjxYqfci62FoIq89t18wZCasJGtIRDbVshoRkbmZNQiqqppB5Bi0bf22V4bOhPXr10/jcWW3tlcWl9WIyFZwewbZBHvsQaVvlsfQisqGbkaoypkXBjhEZAsYBJHVs5at36Zk6CxPSdpmwqRSKWdeiIgqgEEQWb3Kbv22RsbmMembCWOAQ0RkPKMaqBJZgqm6mtsqdmMnIjIPswZBgwcPhre3tznfguyQTCZDVlaWugJ5Zbua2zp93diJiKhiKrQcplAoylRsVj2fmZmJWrVqAQBWrFhRudGRw9GWK6Nr67c9bLXWtfOtskUQiYiofEYFQXl5eRg+fDi2b98Ob29vjBgxArNmzYKzszMA4NatW4iOjkZxcbFZBkv2T1euTMmt33369EFAQIBVJvwaW9tHX74Pu7ETEZmHUUHQjBkzcPr0aWzYsAG5ubl45513cOLECaSkpKj/w87aQFQVAgICEBoaaulhlGHorq/+/fsDMHznm7aZMLncC0ePeqJlS6BUMXUiItLDqCDou+++w/r169GhQwcAQO/evdG9e3f07NkT27ZtA2B4zRIie2Torq/CwkIA+ne+9evXT2uj0U2bPPD221IsXSqBkxOwahWQlFSp4RMRORSjgqBbt25p9A8LCAjAnj17kJCQgGeffRaff/65yQdItseUTU/ttUq0i4vyXz19+T5BQUFl7pVMJkNGRhEmTZJCoVD+T4dCAYwYIdC8+U1ERbnA398fmZnAhQtA3bqcJSIiKo9RQVCtWrVw9uxZREdHq5/z8vLCrl270KVLF/znP/8x+QDJtpiy6ak9VolW8fHxURc4rFkzD5MnS1FcLIGzs8DChXkYOPDFcoNF1f1NT4+CQpGocay4WIIPP/wR0dGX4eycjFmzQqBQSODkJLBokRwDB/5rlTlURESWYtQW+S5dumDt2rVlnq9RowZ27tyJatWqmWxgZJtM1fTUXmrjyOVeSE+PKnfc/v7+CA0NxYQJPsjIkGD/fiAjQ4IJE3wQGhpabrCium+6aifJ5V6YOTO4xCyRBBMnemPx4i/x0UcfQSaTmeGTEhHZHqNmgubMmYPr16+Xe8zLywu7d+/GiRMnTDIwcmz2UCXamJms8HDjlqx07RhLT4/See+MrVZNRGSvjAqCfH194evrq/W4l5cX2rdvX+lBkeNS7TLUlytj7bWBqqLfmbYdY6wrRERkGKOLJRYVFWHp0qX48ssv8ffffwMA6tWrh4EDB2Ls2LFwdXU1+SDJcfj7+1coV8baVNVMVsnaSSWfY10hIiL9jAqC/v33XzzzzDNITU1F586d0a5dOwDA2bNnMXnyZGzbtg27du1ibhBViirAmTAB6N8fuHgRqFNHgvBwHwA+lhyaXtYyk6WrwjYRESkZFQQtWLAAV69excmTJ9G0aVONY6dPn0avXr2wYMECzJ4925RjJBtW2S3uxubKWFrJmSw/v2zMmhWq3qE1c+Z19OnzDFxdXVFQUACZTGbWGa3yZomIiOgRo4Kgr776CkuWLCkTAAFAs2bN8N5772HatGkMggiAfW9x18Xf3x8ymQzFxR9h7Fgv9WwMcBcpKZrnGlIqAIC65o+3t1l7HhMRORSj/ot6+fJlPPHEE1qPt27dGleuXKn0oMh2qZZ59G1xt/bE5spS7cCSSu8iOvoyAJS7VV7XTi2ZTIasrCy8/34uIiMFOnUCnngiCCdOtDDfwImIHIhRM0He3t64efMmIiIiyj2enZ0NLy/bquNCpqVaDtq/H1i6tGxi8JNPJqJDB1h9YrMpVWRGTFUUUS73wrJl4yDEo5o/JXeZlWyrkZubiy1btugdj70HoEREhjIqCOrYsSPeffddbN26tdzjCxYsQMeOHU0yMLJd/v7+aN0acHJStnNQcXYGWrXyhwPFPxXeKq+aIdK3y8zHx0fdSDY0NFSdj6SNLeysIyKqKkYFQbNmzUKrVq3QunVrjB8/Hg0aNIAQAmfPnsXSpUvx119/4ciRI+YaK9mQ8HBlQ88RI4DiYmUA9OmntpXkbAqV3SpvbM0fBjhERIYzKghq2LAhdu/ejaSkJAwYMEDdMV4IgQYNGmDXrl1o1KiRWQZKticpCUhIUG1xd7wACKh84ULW/CEiMh+jiyW2bt0af/75J06dOqVRLLF58+amHhvZAVvb4l4RMpmszBLU7du3AWgPYgBlovT1607432qWVqz5Q0RkHkYHQXl5eahRowaaN2+uEfgoFArcu3cP3t7ephwfkVVTJTDrUjqIuXSpzv+SnZ2wYYPAokW5eju8s+YPEZHpGbVF/ttvv0XLli3x8OHDMsf+/fdfPP7449i+fbvJBkdk7QxtRlpyq3zJRGl2eCcishyjgqAVK1Zg0qRJ8PT0LHOsevXqmDx5st7/KyayZ3K5V7n1gFS7JnUlSgOGB1VERFR5Ri2HpaWl4ZNPPtF6vF27dpg+fXqlB0Vki3TVA/L19QVgeKK0obV8WPOHiKjijAqC7ty5g6KiIq3HCwsLcefOnUoPisjWGFoPyNDdXiV7kGnDmj9ERJVjVBAUFRWF33//HQ0aNCj3+O+//47IyEiTDKy0Xr164dSpU7h58yZ8fX3RuXNnLFy4EGFhYepzzpw5g1GjRuHYsWMIDAzE66+/jkmTJpllPEQlGVMPyNDdXgxwiIjMy6icoD59+mDatGm4ceNGmWPZ2dmYPn06nn/+eZMNrqSOHTtiy5YtOH/+PLZu3YpLly7hhRdeUB/Py8tDly5dEBkZiePHj2Px4sWYPXs2Vq1aZZbxEJWkWuYqSVc9IFWiNHd8ERFZjlEzQVOmTMH//d//oW7duhg8eDDq168PADh37hw2btyIiIgITJkyxSwDfeONN9R/j4yMxJQpU9C7d28UFhbC1dUVGzduREFBAdasWQM3Nzc0atQIp06dwpIlS5CcnGyWMZH1K6+GT0mmWlJiUUMiIttjVBDk5eWFQ4cOYerUqdi8ebM6/8fHxweDBw/GvHnzqqSBak5ODjZu3Ig2bdrA1dUVAJCamop27dppJIomJCRg4cKFuHPnjjoxlRyHITV8AGD06NEVDoRK/r7pWuZycTG6JBcREZmZ0f9llkql+OSTT/Dxxx/j9u3bEEIgMDBQ3UKjpEOHDqFly5Zwd3c3yWBVW/AfPHiA1q1bY8eOHepj2dnZiI6O1jg/ODhYfUxbEJSfn4/8/Hz147y8PJOMlSzP0O3mldmWbmgCs6G424uIqOpU+H9PJRIJAgMDdZ7TrVs3nDp1CrVr1y73+JQpU7Bw4UKd1zh79qw6EXvixIlISkrC5cuXMWfOHLz88svYsWNHuQGYoebPn485c+ZU+PVEhs4icbcXEZF1MescvRBC5/EJEyZgyJAhOs8pGUAFBAQgICAA9erVw2OPPYaIiAgcOXIE8fHxCAkJKZOwrXocEhKi9fpTp07F+PHj1Y/z8vIQERGhc0zkGEydT8QAh4jIulg0USEwMFDvbJI2CoVyJ45qKSs+Ph7Tpk1TJ0oDwO7du1G/fn2d+UDu7u4mW64j+1EV+URERGRZRm2Rt5SjR4/io48+wqlTp3D58mXs27cPL774ImJiYhAfHw8AGDhwINzc3JCUlIQ///wTmzdvxvLlyzVmeYgMVXoGSFs7DLa5ICKyXTaxZcXT0xMpKSmYNWsW7t+/j9DQUHTt2hXTp09Xz+JIpVLs2rULo0aNQlxcHAICAjBz5kxuj6dK09UOg4iIbJdZg6DKJCyX1KRJE+zbt0/veU2bNsXBgwdN8p5EgOHtMIiIyPZYNDGabE9VFR+sqJLjy83N1Tgml3shJ8cffn4yjQBG17Z0Y9phEBGRbTFrEHT3Lr8k7Im1JwvrGl/JJS0nJ4FFi+QYOPBfvUGboV3fiYjI9hgVBHXq1Mmg8wxZuiLbUxXFBytD2/uWXtJSKCSYPNkH/fv7QF+spq8dxu3bty0++0VERBVjVBD0888/IzIyEt27d1dvQyeyduUtaRUXAxcvAuHh+l+vqx1GSkoKAG6VJyKyRUYFQQsXLsTatWvx9ddfY9CgQRg2bBgaN25srrERmUR5S1rOzkCdOtpfUzpPSCq9C6n0rnqrfOm8Im6VJyKyPUbVCZo4cSL++usvfPfdd7h79y6efPJJPPHEE1i5ciV7bpHVUi1pSSTKApvOzgKffqp7FkjVE6xPnz7q506caIFly8Zh/fpELFs2DidOtDD30ImIyIwqVCwxPj4en332GbKysjBq1CisWbMGYWFhDITIasXGnsS4ccuQmLgOR4/eRFKS/tf4+/sjICAAgPat8qWLJxIRke2o1O6wEydO4MCBAzh79iwaN27MPCGyaqolrbAwhdGv5VZ5IiL7Y/RM0PXr1/Huu++iXr16eOGFF+Dn54ejR4/iyJEj8PDwMMcYiSpEW6uLilDlFZXErfJERLbNqJmgZ599Fvv370eXLl2wePFidO/eHS4uNtF5g0xAV1HBipxnaiXfV1eri4qMT99WeSIisj0SYURZZycnJ4SGhiIoKEhnS4wTJ06YZHCWkJeXB6lUCrlcDm9vb0sPx+rYQsXojIwiPPFEEBSKR7+jzs4CR4/eRFSUi1Hjy8rKwqpVq9SPlVWny26VT05ORmhoqGk+BBERGa0i399GTePMmjWrQgMj+2HttXD8/f1x5gygKJX2U1wswd27wXqLI5ambau8vvOIiMj6GTUT5Ag4E2S4zEzgwgWgbl3Dig5WlT/+uIPmzX3KnQkKC1MYPVtl7bNfRERUBTNB2hw4cAD3799HfHw8fH19TXFJsnKrVwPJycoZFycnYNUqGLTt3NxkMhlSUj5Cjx6aOUHdu+/Ajh0n1ecZU+GZAQ4RkX0yumL0vXv3MHfuXADKLvHdunXDrl27AABBQUHYu3cvGjVqZPqRktXIzHwUAAHKP0eMABISLD8jpJqx0dXqouR5RETkuIzaIr9582aNNhnffPMNfvnlFxw8eBC3b99Gy5YtMWfOHJMPkqzLhQvl5dwoe3FZE6n0LqKjL3MHFxERlcuoICg9PR1NmzZVP/7hhx/wwgsv4Mknn4Sfnx+mT5+O1NRUkw+SrEvdusolsJL09eKyFFPWCiIiIvti1HJYUVER3N3d1Y9TU1Mxbtw49eOwsDDcvn3bZIMj6xQerswBGjFCOQPk7Ay9vbgsQVetICIiIqNmgmJiYvDLL78AAK5cuYK///4b7dq1Ux/PzMxkEqmDSEoCMjKA/fuVf1pDUnRJ7PVFRET6GDUTNGrUKIwePRoHDx7EkSNHEB8fj4YNG6qP79u3Dy1asLO2owgPt77ZHxX2+iIiIn2MCoJeeeUVODs7Y/v27WjXrl2Z4onXr1/HsGHDTDpAIhVD6vWoqHp9lQyE2OuLiIhKMrpO0LBhw7QGOp988kmlB0RUHplMho8++kjveb169QKgv9cXKzwTERErRpfCitHWqXQPL12effZZ1KhRAz4+Prh+3QkZGS6IiipCWJhyXz8rPBMR2Z+KfH8blRhdWFiISZMmoU6dOnjiiSewZs0ajeM3btyAs7OzMZckMrkffvgBW7ZsgZubG+LigvH88/6IiwtGaGgoQkNDGQAREREAI4OgefPm4b///S9effVVdOnSBePHj8eIESM0zuHEElkLVoUmIiJdjMoJ2rhxIz7//HP06NEDADBkyBB069YNQ4cOVc8KSSQSXZcgIiIisgpGzQRdu3ZNo21GnTp18PPPP+Pw4cN46aWXUFxcbPIBEpVHLvdCWlpDpKU1RGZmKKtCExGR0YyaCQoJCcGlS5cQFRWlfq5mzZrYv38/OnbsiCFDhph4eOQIjNn6DigrQW/b1gOPYngBQMKq0EREZBSjgqBOnTph06ZNePrppzWeDwsLw759+9ChQwdTjo0cgKFb3/v37w9AOQOkGQABgHIJVlUVOibmIgsiEhGRXkYFQTNmzMC5c+fKPVazZk0cOHAAu3fvNsnAyDEYmrysSrjPyfGHrlVcVoUmIiJDGZUTFBkZiYSEBK3Hw8LCkJiYWOlBEZXm4+ODwYMHw89PBkCh9TxWhSYiIkMZFQSpfP311+jTpw8aN26Mxo0bo0+fPvjmm29MPbZy5efno3nz5pBIJDh16pTGsTNnzqBt27aoVq0aIiIisGjRoioZE1WNmJgYTJuWiLlzs6EZCClniVgVmoiIjGHUcphCocCLL76Ir7/+GvXq1UODBg0AAH/++Sf69++Pvn374ssvvzTrNvlJkyYhLCwMp0+f1ng+Ly8PXbp0QefOnbFy5Ur88ccfGDZsGHx8fJCcnGy28VDFyWQy3L5926jX+Pv7Y/p04Lnn7iA1VblMFhFRjH//dfpfVejHATzOqtBERKSXUUHQ8uXLsWfPHmzbtk1dK0hl27ZtGDp0KJYvX45x48aZcoxqP/74I3bt2oWtW7fixx9/1Di2ceNGFBQUYM2aNXBzc0OjRo1w6tQpLFmyhEGQFTI0IVqbJk180aSJCQdEREQOx6jlsLVr12Lx4sVlAiBA2bhy0aJFZVppmMqNGzfwyiuvYMOGDfD09CxzPDU1Fe3atdNYAklISMD58+dx584drdfNz89HXl6exg+Zn7aEaLncizV/iIioShgVBF24cAGdO3fWerxz5864cOFCpQdVmhACQ4YMwauvvoqWLVuWe052djaCg4M1nlM9zs7O1nrt+fPnQyqVqn8iIiJMN3AyyokTLbBs2TisX5+IZcvG4cSJFpYeEhER2TGjgiAPDw/k5uZqPZ6Xl4dq1aoZfL0pU6ZAIpHo/Dl37hw+/PBD3L17F1OnTjVmuAaZOnUq5HK5+ufq1asmfw/STy73wvbtPSCE8ldSVfNHNSPEJGciIjI1o3KC4uPjsWLFCqxYsaLc4x9//DHi4+MNvt6ECRP0VpmuXbs29u3bh9TUVLi7u2sca9myJQYNGoT169cjJCQEN27c0DiuehwSEqL1+u7u7mWua+8MqdBc1UnFOTn+6gBIRQgnNG7cG889J2WSMxERmZxRQdC0adPQoUMHyGQyvPnmm2jQoAGEEDh79izef/99/N///R/2799v8PUCAwMRGBio97wPPvgA77zzjvrx9evXkZCQgM2bN6NVq1YAlAHatGnTUFhYCFdXVwDA7t27Ub9+ffj6+hrzMe2aoQnJo0ePrtLAw89PBolEoREISSQKRETko6CgAFlZWdzxRUREJmVUENSmTRts3rwZycnJ2Lp1q8YxX19ffPnll3jyySdNOkAAqFWrlsbjGjVqAFDWjQkPDwcADBw4EHPmzEFSUhImT56MtLQ0LF++HEuXLjX5eGyZoRWaDT3PlOLjU5GaGg8hnNQ1fw4fPonDhx+dU9XBGRER2S+jgiAA+M9//oOEhATs3LlTnQRdr149dOnSpdxdW1VFKpVi165dGDVqFOLi4hAQEICZM2dye7wNOHGiRYl8IAXatDmEVq2Oltv6whLBGRER2SejgqB9+/Zh9OjROHLkCP7zn/9oHJPL5WjUqBFWrlyJtm3bmnSQpUVFRal7SZXUtGlTHDx40KzvTaahSnQunRANOCE1NR6tWh213OCIiMghGLU7bNmyZXjllVfg7e1d5phUKsWIESOwZMkSkw2O7Je/vz9Gjx6NNm0Sy02Izsnxs9DIiIjIURgVBJ0+fRpdu3bVerxLly44fvx4pQdFjsHf3x+tW/vDqdRvoUSigKtrAYsmEhGRWRm1HHbjxg31zqtyL+biglu3blV6UOQ4wsOBVauAESMEioslkEgUaNr0DFavHq6RIB0be9LSQyUiIjtj1ExQzZo1kZaWpvX4mTNnEBoaWulBkWNJSgKOHr2JxMR1SEr6HGfONNVaNJGIiMhUjAqCnn32WcyYMQMPHz4sc+zff//FrFmzyu0rRtbD0MrLVV2hOSxMgejoyygsdGeOEBERVQmjlsOmT5+OlJQU1KtXD6NHj0b9+vUBAOfOncPHH3+M4uJiTJs2zSwDJdNQJSSrtppfv+6E9HQXREcXISxMAaBiFaMrW4VaFXRpK5ro55ejcR4REVFlSUR5e811uHz5MkaOHImdO3eqt6lLJBIkJCTg448/RnR0tFkGWlXy8vIglUohl8vL3QVnT1avBpKTAYUCcHJS5uYkJRl/HVNVoVYFUps2eWDyZCmKiyVwdhZYuFCOgQP/ZcVoIiLSqiLf30YHQSp37tzBxYsXIYRA3bp17aY1haMEQZmZQGSkMgBScXYGMjKUycrGyMrKwqpVq/Sel5ycbHDOWGYmcPEiUKeO8eMhIiLHU5Hvb6MrRqv4+vri8ccfr+jLycIuXNAMgACguFgZeFhD0BEebh3jICIi+1XhIIiqlqk7v9etq1wCKz0TVKeO8WPLzc01+DzuHiQiImvBIMgGmKPz+6P6PMoZIGdn4NNPKzb7UlRUZNLziIiIqgKDIBtQegZILvdCTo4//PxkGk1GjW0umpQEJCQw94aIiBwTgyAbU7LjuimqKZsj90ZbkEZERGRNGATZkNId11XVlGNiLlpNsGHqII2IiMhcjKoYTZaVk+NvldWUVf3ktAVpqpYXuvrOERERVTUGQTZEVU25pJLVlC1FKpUC0B+kqc4jIiKyBgyCbIhUehc9e+5QB0Kq5SZrWQpzdc0HULr2poCrq3EJ20RERFWBOUE2Jjb2JGJiLiInxw9+fjlWEQCp+nkVFroDkJQ6KkFhoZvGeURERNaAQVAVycxUVmmuW9f43Vilgwep9G65wY+lggxVU9aMjCJs2CCgUDwKhJydBV5/vRuiolzY94uIiKxKhXuH2Stz9A4zRaNSU1eMNpfVq8sWYKxIU1YiIiJjVGkDVXtl6iDIlI1KrVF5wdn1607IyHBBVFQRZ4CIiKhKVGkDVTKMtTcqrQx97TzS0pR/GtPOg4iIqKpwd5iZqRqVllTRRqXWxtA2Hca28yAiIqoKDILMTNWo1NlZ+bgyjUqJiIjIdLgcVgXYqJSIiMj6MAiqIuZoVEpEREQVx+UwMhm53Avp6VHqXmFERETWjDNBZBLsHk9ERLaGM0FUafq6xxMREVkjBkFUYao2Hfq6x7NnGBERWSObCYKioqIgkUg0fhYsWKBxzpkzZ9C2bVtUq1YNERERWLRokYVG6xhUPcNef70rnJw0C4+reoaxUCIREVkrm8oJevvtt/HKK6+oH3t5PVpuycvLQ5cuXdC5c2esXLkSf/zxB4YNGwYfHx8kJydbYrgOwd/fH/7+ylpImj3DJIiLC7b08IiIiLSyqSDIy8sLISEh5R7buHEjCgoKsGbNGri5uaFRo0Y4deoUlixZwiCoCrAWEhER2RqbWQ4DgAULFsDf3x8tWrTA4sWLUVRUpD6WmpqKdu3aaeSfJCQk4Pz587hz547Wa+bn5yMvL0/jhyomPBzo0IEBEBER2QabmQkaM2YMYmNj4efnh8OHD2Pq1KnIysrCkiVLAADZ2dmIjo7WeE1wcLD6mK+vb7nXnT9/PubMmWPewRMREZHVsWgQNGXKFCxcuFDnOWfPnkWDBg0wfvx49XNNmzaFm5sbRowYgfnz58Pd3b3CY5g6darGtfPy8hAREVHh69kjmUymswmqm5sbk5+JiMjmWDQImjBhAoYMGaLznNq1a5f7fKtWrVBUVISMjAzUr18fISEhuHHjhsY5qsfa8ogAwN3dvVJBlL2TyWT46KOP9J7HXWBERGRrLBoEBQYGIjAwsEKvPXXqFJycnBAUFAQAiI+Px7Rp01BYWAhXV1cAwO7du1G/fn2tS2G2KjMTuHABqFvX/Pk3umaAKnIeERGRtbCJxOjU1FQsW7YMp0+fxj///IONGzfijTfewODBg9UBzsCBA+Hm5oakpCT8+eef2Lx5M5YvX66x1GUPVq8GIiOBTp2Uf65ebekRERER2SabSIx2d3fHV199hdmzZyM/Px/R0dF44403NAIcqVSKXbt2YdSoUYiLi0NAQABmzpxpV9vjMzOB5GRAoVA+ViiUtXkSErgji4iIyFg2EQTFxsbiyJEjes9r2rQpDh48WAUjsowLFx4FQCrFxcraPIYEQUxwJiIiesQmgiBSqlsXcHLSDIScnZXFCfVhgjMREZEmm8gJIqXwcGV7Cmdn5WNlewrDZoGY4ExERKSJM0E2xlTtKeRyL+Tk+MPPTwap9K5pB0lERGQDGATZoPDwyiVCnzjRAtu394AQTpBIFOjZcwdiY0+We27JNiS6GHoeERGRtWAQ5GDkci91AAQAQjhh+/YeiIm5WO6MkL+/P0aPHs2EaiIisjsMgmyEqXZ25eT4qwMgFSGckJPjp3VZjAEOERHZIwZBNsCUO7v8/GSQSBQagZBEooCfX45BY6nKatVERETmxN1hNsCUO7uk0rvo2XMHJBLlPntVTpAhydGsVk1ERPaEM0EOomTicmzsScTEXEROjh/8/HI0AiBtCc6sVk1ERPaGQZCDqGyCc2WrVRMREVkbBkEOpDIJzpWpVk1ERGSNGATZOVPtKlNVqx4xQjkDZEy1aiIiImvEIMiOmbpfmKmqVRMREVkDBkF2zBz9wipbrZqIiMhacIu8DWDrCiIiItPjTJANMFXrCjZNJSIieoRBkI2obOsKY5qmEhEROQIuhzkAbU1T5XIvC4+MiIjIchgEOQBdTVOJiIgcFYMgB6BqmlqSMU1TiYiI7BGDIDum2i2mr2kqd5UREZEjkgghhKUHYU3y8vIglUohl8vh7e1t6eFUWsmK0devOyEjwwVRUUUIC1MGRIZWjCYiIrJmFfn+5u4wO1cywAkNBeLiLDgYIiIiK8LlMCIiInJIDIKIiIjIITEIIiIiIofEIIiIiIgcEoMgIiIickgMgoiIiMghMQgiIiIih2RTQdD333+PVq1awcPDA76+vujdu7fG8StXrqB79+7w9PREUFAQJk6ciKKiIssMFspChVlZWVp/ZDKZxcZGRETk6GymWOLWrVvxyiuv4N1330WnTp1QVFSEtLQ09fHi4mJ0794dISEhOHz4MLKysvDyyy/D1dUV7777bpWPVyaT4aOPPtJ73ujRo1mxmYiIyAJsIggqKirC2LFjsXjxYiQlJamfb9iwofrvu3btwl9//YU9e/YgODgYzZs3x9y5czF58mTMnj27yvtjqVpVmOo8IiIiMi2bWA47ceIErl27BicnJ7Ro0QKhoaHo1q2bxkxQamoqmjRpguDgYPVzCQkJyMvLw59//mmJYRMREZEVs4kg6J9//gEAzJ49G9OnT8eOHTvg6+uLDh06ICcnBwCQnZ2tEQABUD/Ozs7Weu38/Hzk5eVp/BAREZH9s2gQNGXKFEgkEp0/586dg0Kh7Hg+bdo0PP/884iLi8PatWshkUjw9ddfV2oM8+fPh1QqVf9ERESY4qMRERGRlbNoTtCECRMwZMgQnefUrl0bWVlZADRzgNzd3VG7dm1cuXIFABASEoLffvtN47U3btxQH9Nm6tSpGD9+vPpxXl6e1QVCMplMZ+6Qm5sbk6uJiIiMZNEgKDAwEIGBgXrPi4uLg7u7O86fP4+nnnoKAFBYWIiMjAxERkYCAOLj4zFv3jzcvHkTQUFBAIDdu3fD29tbI3gqzd3dHe7u7ib4NMaTy71w6JAbWrcGwsPLP4e7zIiIiMzDJnKCvL298eqrr2LWrFnYtWsXzp8/j5EjRwIA+vbtCwDo0qULGjZsiJdeegmnT5/Gzp07MX36dIwaNcpiQY4uJ060wLJl49C3rz8iI4HVq8s/z9DdY9evX2ftISIiIiPYxBZ5AFi8eDFcXFzw0ksv4d9//0WrVq2wb98++Pr6AgCcnZ2xY8cOjBw5EvHx8ahevToSExPx9ttvW2S8urbky+Ve2L69B4RQxqAKBTBiBJCQoH1GSJ+UlBT13zkrREREpJ9ECCEsPQhrkpeXB6lUCrlcDm9v70pdS1suz6FDbujbt2yQsn8/0KGD5nNZWVlYtWqV+rFc7oWcHH/4+ckgld4t932Tk5MRGhpaqbETERHZkop8f9vMTJAt0jYb07o14OSknAFScXYG6tTRfb0TJ1qoZ5AkEgV69tyB2NiTJhwxERGR47CJnCB7Ex4OrFqlDHwA5Z+ffqp7Kaz0EpoQTti+vQfkcq8qGDEREZH94UyQhSQlKXOALl5UzgDpywXKyfFXB0AqQjghJ8dP67IYERERaccgyILCww1PhPbzk0EiUWgEQhKJAn5+OWYaHRERkX3jcpiVU+0yk0rvomfPHZBIlIlEqpwgzgIRERFVDGeCrJy/vz9Gjx6NgoIC3L59GzExy5CT4wc/vxwGQERERJXAIKiKVaQFhuqxm5sbpNK7eoMfXTWKiIiISIlBUBWqbAuMkrNC2rCPGBERkWEYBFUhQ1tg6DqPAQ4REZFpMDGaiIiIHBKDICIiInJIDIIsRC73Qnp6FCs+ExERWQhzgiyAPcCIiIgsjzNBVcyUPcAyM5Wd5zMzTT1KIiIi+8cgqArl5ubq7AFmjNWrgchIoFMn5Z+rV5typERERPaPQVAVkclk2LJli7oHWEmle4DpK3aYmQkkJwOK/11GoQBGjOCMEBERkTEYBFURVe0ffT3A+vfvr7cW0IULjwIgleJiZUd6IiIiMgwToy0gNvYkYmIultsDTCqV6n193bqAk5NmIOTsDNSpY47REhER2SfOBFmIVHoX0dGXK9QENTwcWLVKGfgAyj8//VT5PBERERmGM0E2KikJSEhQLoHVqcMAiIiIyFgMgmxYeDiDHyIioorichgRERE5JAZBRERE5JAYBFURfbV/jD2PiIiIKoc5QVXE398fo0ePVtcLKo+bm5veGkFERERkGgyCqhADHCIiIuvB5TAiIiJySAyCiIiIyCExCCIiIiKHxCCIiIiIHBKDICIiInJINhEE/fzzz5BIJOX+HDt2TH3emTNn0LZtW1SrVg0RERFYtGiRBUdNRERE1swmtsi3adMGWVlZGs/NmDEDe/fuRcuWLQEAeXl56NKlCzp37oyVK1fijz/+wLBhw+Dj44Pk5GRLDJuIiIismE0EQW5ubggJCVE/LiwsxP/93//h9ddfh0QiAQBs3LgRBQUFWLNmDdzc3NCoUSOcOnUKS5YsYRBEREREZdjEclhp27Ztg0wmw9ChQ9XPpaamol27dhptJxISEnD+/HncuXNH67Xy8/ORl5en8UNERET2zyZmgkpbvXo1EhISEB4ern4uOzsb0dHRGucFBwerj/n6+pZ7rfnz52POnDllnmcwREREZDtU39tCCINfY9EgaMqUKVi4cKHOc86ePYsGDRqoH2dmZmLnzp3YsmWLScYwdepUjB8/Xv342rVraNiwISIiIkxyfSIiIqo6d+/ehVQqNehciwZBEyZMwJAhQ3SeU7t2bY3Ha9euhb+/P3r16qXxfEhICG7cuKHxnOpxyXyi0tzd3eHu7q5+XKNGDVy9ehVeXl7qfKOKyMvLQ0REBK5evQpvb+8KX8fW8T4o8T4o8T4o8T4o8T48wnuhVJn7IITA3bt3ERYWZvBrLBoEBQYGIjAw0ODzhRBYu3YtXn75Zbi6umoci4+Px7Rp01BYWKg+tnv3btSvX1/rUlh5nJycNJbZKsvb29uhf6FVeB+UeB+UeB+UeB+UeB8e4b1Qquh9MHQGSMWmEqP37duH9PR0DB8+vMyxgQMHws3NDUlJSfjzzz+xefNmLF++XGOpi4iIiEjFphKjV69ejTZt2mjkCKlIpVLs2rULo0aNQlxcHAICAjBz5kxujyciIqJy2VQQtGnTJp3HmzZtioMHD1bRaHRzd3fHrFmzNPKNHBHvgxLvgxLvgxLvgxLvwyO8F0pVfR8kwpi9ZERERER2wqZygoiIiIhMhUEQEREROSQGQUREROSQGAQRERGRQ2IQZIQVK1agadOm6iJO8fHx+PHHH9XHHz58iFGjRsHf3x81atTA888/X6aK9ZUrV9C9e3d4enoiKCgIEydORFFRUVV/FJNZsGABJBIJxo0bp37OUe7D7NmzIZFINH5Klm9wlPsAKNvNDB48GP7+/vDw8ECTJk3w+++/q48LITBz5kyEhobCw8MDnTt3xoULFzSukZOTg0GDBsHb2xs+Pj5ISkrCvXv3qvqjVFhUVFSZ3weJRIJRo0YBcJzfh+LiYsyYMQPR0dHw8PBATEwM5s6dq9HPyRF+HwBl+4Zx48YhMjISHh4eaNOmDY4dO6Y+bq/34ZdffkHPnj0RFhYGiUSC7777TuO4qT73mTNn0LZtW1SrVg0RERFYtGiR8YMVZLBt27aJ77//Xvz999/i/Pnz4q233hKurq4iLS1NCCHEq6++KiIiIsTevXvF77//Llq3bi3atGmjfn1RUZFo3Lix6Ny5szh58qT44YcfREBAgJg6daqlPlKl/PbbbyIqKko0bdpUjB07Vv28o9yHWbNmiUaNGomsrCz1z61bt9THHeU+5OTkiMjISDFkyBBx9OhR8c8//4idO3eKixcvqs9ZsGCBkEql4rvvvhOnT58WvXr1EtHR0eLff/9Vn9O1a1fRrFkzceTIEXHw4EFRp04d8eKLL1riI1XIzZs3NX4Xdu/eLQCI/fv3CyEc5/dh3rx5wt/fX+zYsUOkp6eLr7/+WtSoUUMsX75cfY4j/D4IIUS/fv1Ew4YNxYEDB8SFCxfErFmzhLe3t8jMzBRC2O99+OGHH8S0adNESkqKACC+/fZbjeOm+NxyuVwEBweLQYMGibS0NPHll18KDw8P8emnnxo1VgZBleTr6ys+//xzkZubK1xdXcXXX3+tPnb27FkBQKSmpgohlL8YTk5OIjs7W33OihUrhLe3t8jPz6/ysVfG3bt3Rd26dcXu3btF+/bt1UGQI92HWbNmiWbNmpV7zJHuw+TJk8VTTz2l9bhCoRAhISFi8eLF6udyc3OFu7u7+PLLL4UQQvz1118CgDh27Jj6nB9//FFIJBJx7do18w3ejMaOHStiYmKEQqFwqN+H7t27i2HDhmk816dPHzFo0CAhhOP8Pjx48EA4OzuLHTt2aDwfGxsrpk2b5jD3oXQQZKrP/cknnwhfX1+NfzcmT54s6tevb9T4uBxWQcXFxfjqq69w//59xMfH4/jx4ygsLETnzp3V5zRo0AC1atVCamoqACA1NRVNmjRBcHCw+pyEhATk5eXhzz//rPLPUBmjRo1C9+7dNT4vAIe7DxcuXEBYWBhq166NQYMG4cqVKwAc6z5s27YNLVu2RN++fREUFIQWLVrgs88+Ux9PT09Hdna2xr2QSqVo1aqVxr3w8fFBy5Yt1ed07twZTk5OOHr0aNV9GBMpKCjAF198gWHDhkEikTjU70ObNm2wd+9e/P333wCA06dP49dff0W3bt0AOM7vQ1FREYqLi1GtWjWN5z08PPDrr786zH0ozVSfOzU1Fe3atYObm5v6nISEBJw/fx537twxeDw2VTHaGvzxxx+Ij4/Hw4cPUaNGDXz77bdo2LAhTp06BTc3N/j4+GicHxwcjOzsbABAdna2xn/gVMdVx2zFV199hRMnTmisbatkZ2c7zH1o1aoV1q1bh/r16yMrKwtz5sxB27ZtkZaW5lD34Z9//sGKFSswfvx4vPXWWzh27BjGjBkDNzc3JCYmqj9LeZ+15L0ICgrSOO7i4gI/Pz+buhcq3333HXJzczFkyBAAjvXvxZQpU5CXl4cGDRrA2dkZxcXFmDdvHgYNGgQADvP74OXlhfj4eMydOxePPfYYgoOD8eWXXyI1NRV16tRxmPtQmqk+d3Z2NqKjo8tcQ3XM0MbpDIKMVL9+fZw6dQpyuRzffPMNEhMTceDAAUsPq8pcvXoVY8eOxe7du8v8H46jUf2fLaBs2dKqVStERkZiy5Yt8PDwsODIqpZCoUDLli3x7rvvAgBatGiBtLQ0rFy5EomJiRYenWWsXr0a3bp1Q1hYmKWHUuW2bNmCjRs3YtOmTWjUqBFOnTqFcePGISwszOF+HzZs2IBhw4ahZs2acHZ2RmxsLF588UUcP37c0kOj/+FymJHc3NxQp04dxMXFYf78+WjWrBmWL1+OkJAQFBQUIDc3V+P8GzduICQkBAAQEhJSZjeI6rHqHGt3/Phx3Lx5E7GxsXBxcYGLiwsOHDiADz74AC4uLggODnaI+1AeHx8f1KtXDxcvXnSY3wcACA0NRcOGDTWee+yxx9RLg6rPUt5nLXkvbt68qXG8qKgIOTk5NnUvAODy5cvYs2cPhg8frn7OkX4fJk6ciClTpmDAgAFo0qQJXnrpJbzxxhuYP38+AMf6fYiJicGBAwdw7949XL16Fb/99hsKCwtRu3Zth7oPJZnqc5vq3xcGQZWkUCiQn5+PuLg4uLq6Yu/evepj58+fx5UrVxAfHw8AiI+Pxx9//KHxD3f37t3w9vYu8yVirZ5++mn88ccfOHXqlPqnZcuWGDRokPrvjnAfynPv3j1cunQJoaGhDvP7AABPPvkkzp8/r/Hc33//jcjISABAdHQ0QkJCNO5FXl4ejh49qnEvcnNzNf4Ped++fVAoFGjVqlUVfArTWbt2LYKCgtC9e3f1c470+/DgwQM4OWl+tTg7O0OhUABwvN8HAKhevTpCQ0Nx584d7Ny5E88995xD3gfAdP/84+Pj8csvv6CwsFB9zu7du1G/fn2Dl8IAcIu8MaZMmSIOHDgg0tPTxZkzZ8SUKVOERCIRu3btEkIot8DWqlVL7Nu3T/z+++8iPj5exMfHq1+v2gLbpUsXcerUKfHTTz+JwMBAm9sCW1rJ3WFCOM59mDBhgvj5559Fenq6OHTokOjcubMICAgQN2/eFEI4zn347bffhIuLi5g3b564cOGC2Lhxo/D09BRffPGF+pwFCxYIHx8f8X//93/izJkz4rnnnit3S2yLFi3E0aNHxa+//irq1q1r9VuBSysuLha1atUSkydPLnPMUX4fEhMTRc2aNdVb5FNSUkRAQICYNGmS+hxH+X346aefxI8//ij++ecfsWvXLtGsWTPRqlUrUVBQIISw3/tw9+5dcfLkSXHy5EkBQCxZskScPHlSXL58WQhhms+dm5srgoODxUsvvSTS0tLEV199JTw9PblF3pyGDRsmIiMjhZubmwgMDBRPP/20OgASQoh///1XvPbaa8LX11d4enqK//znPyIrK0vjGhkZGaJbt27Cw8NDBAQEiAkTJojCwsKq/igmVToIcpT70L9/fxEaGirc3NxEzZo1Rf/+/TVq4zjKfRBCiO3bt4vGjRsLd3d30aBBA7Fq1SqN4wqFQsyYMUMEBwcLd3d38fTTT4vz589rnCOTycSLL74oatSoIby9vcXQoUPF3bt3q/JjVNrOnTsFgDKfTQjH+X3Iy8sTY8eOFbVq1RLVqlUTtWvXFtOmTdPYyuwovw+bN28WtWvXFm5ubiIkJESMGjVK5Obmqo/b633Yv3+/AFDmJzExUQhhus99+vRp8dRTTwl3d3dRs2ZNsWDBAqPHKhGiRBlPIiIiIgfBnCAiIiJySAyCiIiIyCExCCIiIiKHxCCIiIiIHBKDICIiInJIDIKIiIjIITEIIiIiIofEIIiIiIgcEoMgIjuVnZ2N119/HbVr14a7uzsiIiLQs2dPjZ49hw8fxrPPPgtfX19Uq1YNTZo0wZIlS1BcXKw+JyMjA0lJSYiOjoaHhwdiYmIwa9YsFBQUaLzfZ599hmbNmqFGjRrw8fFBixYt1E0zAWD27NmQSCTo2rVrmbEuXrwYEokEHTp00Pu5oqKiIJFItP4MGTLE+Jtl5Tp06IBx48ZZehhEdsfF0gMgItPLyMjAk08+CR8fHyxevBhNmjRBYWEhdu7ciVGjRuHcuXP49ttv0a9fPwwdOhT79++Hj48P9uzZg0mTJiE1NRVbtmyBRCLBuXPnoFAo8Omnn6JOnTpIS0vDK6+8gvv37+O9994DAKxZswbjxo3DBx98gPbt2yM/Px9nzpxBWlqaxrhCQ0Oxf/9+ZGZmIjw8XP38mjVrUKtWLYM+27Fjx9RB2uHDh/H888/j/Pnz8Pb2BgB4eHiY4hZWicLCQri6ulbZ+xUUFMDNza3K3o/I6lWwNQgRWbFu3bqJmjVrinv37pU5dufOHXHv3j3h7+8v+vTpU+b4tm3bBADx1Vdfab3+okWLRHR0tPrxc889J4YMGaJzTLNmzRLNmjUTPXr0EO+88476+UOHDomAgAAxcuRI0b59ewM+3SOqHkV37txRP/fdd9+JFi1aCHd3dxEdHS1mz56t0X8LgFi5cqXo3r278PDwEA0aNBCHDx8WFy5cEO3btxeenp4iPj5eow+cauwrV64U4eHhwsPDQ/Tt21ejD5QQQnz22WeiQYMGwt3dXdSvX198/PHH6mPp6enq+9quXTvh7u4u1q5dK27fvi0GDBggwsLChIeHh2jcuLHYtGmT+nWJiYllejClp6eLtWvXCqlUqvH+3377rSj5n3XVuD/77DMRFRUlJBKJEEL5O5CUlCQCAgKEl5eX6Nixozh16pRR957IHnA5jMjO5OTk4KeffsKoUaNQvXr1Msd9fHywa9cuyGQyvPnmm2WO9+zZE/Xq1cOXX36p9T3kcjn8/PzUj0NCQnDkyBFcvnxZ7/iGDRuGdevWqR+vWbMGgwYNMskMxcGDB/Hyyy9j7Nix+Ouvv/Dpp59i3bp1mDdvnsZ5c+fOxcsvv4xTp06hQYMGGDhwIEaMGIGpU6fi999/hxACo0eP1njNxYsXsWXLFmzfvh0//fQTTp48iddee019fOPGjZg5cybmzZuHs2fP4t1338WMGTOwfv16jetMmTIFY8eOxdmzZ5GQkICHDx8iLi4O33//PdLS0pCcnIyXXnoJv/32GwBg+fLliI+PxyuvvIKsrCxkZWUhIiLC4Hty8eJFbN26FSkpKTh16hQAoG/fvrh58yZ+/PFHHD9+HLGxsXj66aeRk5NjzO0msn2WjsKIyLSOHj0qAIiUlBSt5yxYsKDMDEpJvXr1Eo899li5xy5cuCC8vb01OsVfv35dtG7dWgAQ9erVE4mJiWLz5s2iuLhYfY5qVqKgoEAEBQWJAwcOiHv37gkvLy9x+vRpMXbs2ErPBD399NPi3Xff1Thnw4YNIjQ0VP0YgJg+fbr6cWpqqgAgVq9erX7uyy+/FNWqVdMYu7Ozs8jMzFQ/9+OPPwonJyd1J/iYmBiNGRwhhJg7d66Ij48XQjyaCVq2bJnez9W9e3cxYcIE9eP27duLsWPHapxj6EyQq6uruHnzpvq5gwcPCm9vb/Hw4UON18bExIhPP/1U79iI7AlzgojsjBDCLOcCwLVr19C1a1f07dsXr7zyivr50NBQpKamIi0tDb/88gsOHz6MxMREfP755/jpp5/g5PRo0tnV1RWDBw/G2rVr8c8//6BevXpo2rSpUePQ5vTp0zh06JDGzE9xcTEePnyIBw8ewNPTEwA03i84OBgA0KRJE43nHj58iLy8PHWuUa1atVCzZk31OfHx8VAoFDh//jy8vLxw6dIlJCUladyXoqIiSKVSjTG2bNlS43FxcTHeffddbNmyBdeuXUNBQQHy8/PVY62syMhIBAYGqh+fPn0a9+7dg7+/v8Z5//77Ly5dumSS9ySyFQyCiOxM3bp11QnN2tSrVw8AcPbsWbRp06bM8bNnz6Jhw4Yaz12/fh0dO3ZEmzZtsGrVqnKv27hxYzRu3BivvfYaXn31VbRt2xYHDhxAx44dNc4bNmwYWrVqhbS0NAwbNszYj6jVvXv3MGfOHPTp06fMsWrVqqn/XjIZWSKRaH1OoVAY/L6Acodcq1atNI45OztrPC69RLl48WIsX74cy5YtQ5MmTVC9enWMGzeuzO670pycnMoEsYWFhWXOK/1+9+7dQ2hoKH7++ecy5/r4+Oh8TyJ7wyCIyM74+fkhISEBH3/8McaMGVPmSzA3NxddunSBn58f3n///TJB0LZt23DhwgXMnTtX/dy1a9fQsWNHxMXFYe3atRozO9qogqj79++XOdaoUSM0atQIZ86cwcCBAyvyMcsVGxuL8+fPo06dOia7psqVK1dw/fp1hIWFAQCOHDkCJycn1K9fH8HBwQgLC8M///yDQYMGGXXdQ4cO4bnnnsPgwYMBKAOvv//+WyMIdXNz0yhbAACBgYG4e/cu7t+/r/5nrMr50SU2NhbZ2dlwcXFBVFSUUWMlsjcMgojs0Mcff4wnn3wSTzzxBN5++200bdoURUVF2L17N1asWIGzZ8/i008/xYABA5CcnIzRo0fD29sbe/fuxcSJE/HCCy+gX79+AJQBUIcOHRAZGYn33nsPt27dUr9PSEgIAGDkyJEICwtDp06dEB4ejqysLLzzzjsIDAxEfHx8uWPct28fCgsLTTr7MHPmTPTo0QO1atXCCy+8ACcnJ5w+fRppaWl45513KnXtatWqITExEe+99x7y8vIwZswY9OvXT30P5syZgzFjxkAqlaJr167Iz8/H77//jjt37mD8+PFar1u3bl188803OHz4MHx9fbFkyRLcuHFDIwiKiorC0aNHkZGRgRo1asDPzw+tWrWCp6cn3nrrLYwZMwZHjx7VSDjXpnPnzoiPj0fv3r2xaNEi1KtXD9evX8f333+P//znP2WW64jsGXeHEdmh2rVr48SJE+jYsSMmTJiAxo0b45lnnsHevXuxYsUKAMALL7yA/fv348qVK2jbti3q16+PpUuXYtq0afjqq6/US0K7d+/GxYsXsXfvXoSHhyM0NFT9o9K5c2ccOXIEffv2Rb169fD888+jWrVq2Lt3b5ncE5Xq1aubfPklISEBO3bswK5du/D444+jdevWWLp0KSIjIyt97Tp16qBPnz549tln0aVLFzRt2hSffPKJ+vjw4cPx+eefY+3atWjSpAnat2+PdevWITo6Wud1p0+fjtjYWCQkJKBDhw4ICQlB7969Nc5588034ezsjIYNGyIwMBBXrlyBn58fvvjiC/zwww9o0qQJvvzyS8yePVvv55BIJPjhhx/Qrl07DB06FPXq1cOAAQNw+fJldX4UkaOQCGMzI4mIHMzs2bPx3XffGbTcRES2gzNBRERE5JAYBBGR1alRo4bWn4MHD1p6eERkJ7gcRkRW5+LFi1qP1axZ06b6gxGR9WIQRERERA6Jy2FERETkkBgEERERkUNiEEREREQOiUEQEREROSQGQUREROSQGAQRERGRQ2IQRERERA6JQRARERE5pP8HSi3/nfWVEUYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHHCAYAAADZHa63AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlzUlEQVR4nO3de1zO5+M/8Nfd4e6oQulAkUPk8KNl6m4zbE05xcaGGZqYnDbLqcYkhpxmc97m0GxOsaFhQtiBNCwMFaOcklMqQsfr90ff3h+3+y5FdXffvZ6Px/3gvt7X/b6v9/1W98t1va/rLRNCCBARERGRVtPTdAOIiIiI6OUx1BERERHpAIY6IiIiIh3AUEdERESkAxjqiIiIiHQAQx0RERGRDmCoIyIiItIBDHVEREREOoChjoiIiEgHMNQREb0kmUyGGTNmaLoZEn9/fzRq1EjTzSCiKsZQR0Q6KSIiAjKZTHoYGxvDxcUFY8eOxa1btyr1vY8ePYoZM2YgIyOjQvfbuXNnpWOqU6cOXn31VaxduxaFhYUV8h5z5szBjh07KmRfRFS1DDTdACKiyjRz5kw4OzvjyZMn+Ouvv7By5Urs2bMHZ8+ehampaYW8x+PHj2Fg8L9fp0ePHkVYWBj8/f1hZWVVIe9RrEGDBpg7dy4A4M6dO1i/fj0CAgJw4cIFhIeHv/T+58yZg379+qFPnz4vvS8iqloMdUSk07p164b27dsDAIYPH466deviq6++ws6dOzFw4MAX3m9hYSFyc3NhbGwMY2Pjimruc1laWuLDDz+Uno8cORLNmzfHsmXLMGvWLBgaGlZZW4ioeuHwKxHVKG+++SYAIDk5GQCwcOFCeHl5oW7dujAxMYG7uzu2bdum8jqZTIaxY8diw4YNaNWqFYyMjLB3715pW/E1dTNmzMCkSZMAAM7OztJQaUpKCjp16oS2bduqbVfz5s3h4+NT7uMxNTWFp6cnsrOzcefOnRLrZWdnY8KECXB0dISRkRGaN2+OhQsXQgihdIzZ2dn44YcfpHb7+/uXu01EpBnsqSOiGuXSpUsAgLp16wIAvvnmG/j5+WHQoEHIzc3F5s2b8d5772HXrl3o0aOH0msPHjyIyMhIjB07FtbW1monI7z77ru4cOECNm3ahMWLF8Pa2hoAYGNjg8GDB2PEiBE4e/YsWrduLb3m+PHjuHDhAqZNm/ZCx3T58mXo6+uXONQrhICfnx8OHTqEgIAAtGvXDtHR0Zg0aRJu3LiBxYsXAwB+/PFHDB8+HB06dMDHH38MAGjSpMkLtYmINEAQEemgdevWCQDiwIED4s6dO+LatWti8+bNom7dusLExERcv35dCCHEo0ePlF6Xm5srWrduLd58802lcgBCT09PnDt3TuW9AIjQ0FDp+YIFCwQAkZycrFQvIyNDGBsbiylTpiiVf/LJJ8LMzEw8fPiw1GPq1KmTaNGihbhz5464c+eOSEhIEJ988okAIHr16iXVGzp0qGjYsKH0fMeOHQKA+PLLL5X2169fPyGTycR///0nlZmZmYmhQ4eW2g4iqp44/EpEOs3b2xs2NjZwdHTEgAEDYG5uju3bt6N+/foAABMTE6nu/fv3kZmZiY4dO+Kff/5R2VenTp3QsmXLF26LpaUlevfujU2bNknDngUFBdiyZQv69OkDMzOz5+4jMTERNjY2sLGxgaurK5YuXYoePXpg7dq1Jb5mz5490NfXxyeffKJUPmHCBAgh8Ntvv73wMRFR9cHhVyLSacuXL4eLiwsMDAxga2uL5s2bQ0/vf/+f3bVrF7788kucOnUKOTk5UrlMJlPZl7Oz80u3Z8iQIdiyZQv+/PNPvPHGGzhw4ABu3bqFwYMHl+n1jRo1wvfffy8t09KsWTPUq1ev1NdcuXIFDg4OqFWrllK5q6urtJ2ItB9DHRHptA4dOkizX5/1559/ws/PD2+88QZWrFgBe3t7GBoaYt26ddi4caNK/ad79V6Uj48PbG1t8dNPP+GNN97ATz/9BDs7O3h7e5fp9WZmZmWuS0Q1C4dfiajG+vnnn2FsbIzo6GgMGzYM3bp1q5DApK6Xr5i+vj4++OADbNu2Dffv38eOHTswcOBA6Ovrv/T7lqRhw4ZITU3FgwcPlMoTExOl7cVKazsRVW8MdURUY+nr60Mmk6GgoEAqS0lJeek7KhRfG1fSHSUGDx6M+/fvY+TIkXj48KHSunOVoXv37igoKMCyZcuUyhcvXgyZTIZu3bpJZWZmZhV+JwwiqhocfiWiGqtHjx746quv4Ovriw8++AC3b9/G8uXL0bRpU5w5c+aF9+vu7g4AmDp1KgYMGABDQ0P06tVLCntubm5o3bo1tm7dCldXV7zyyisVcjwl6dWrF7p06YKpU6ciJSUFbdu2xb59+7Bz506MHz9eadkSd3d3HDhwAF999RUcHBzg7OwMDw+PSm0fEVUM9tQRUY315ptvYs2aNUhLS8P48eOxadMmzJs3D++8885L7ffVV1/FrFmzcPr0afj7+2PgwIEqCwMPGTIEAMo8QeJl6OnpISoqCuPHj8euXbswfvx4nD9/HgsWLMBXX32lVPerr76Cu7s7pk2bhoEDB2LlypWV3j4iqhgyIZ5aTpyIiKrEN998g88++wwpKSlwcnLSdHOISAcw1BERVTEhBNq2bYu6devi0KFDmm4OEekIXlNHRFRFsrOzERUVhUOHDuHff//Fzp07Nd0kItIh7KkjIqoiKSkpcHZ2hpWVFUaPHo3Zs2druklEpEMY6oiIiIh0AGe/EhEREekAhjoiIiIiHcCJEtVYYWEhUlNTUatWLd66h4iISEsIIfDgwQM4ODhAT6/q+s8Y6qqx1NRUODo6aroZRERE9AKuXbuGBg0aVNn7MdRVY7Vq1QJQ9I/CwsJCw60hIiKissjKyoKjo6P0PV5VGOqqseIhVwsLC4Y6IiIiLVPVl05xogQRERGRDmCoIyIiItIBDHVEREREOoDX1Gm5goIC5OXlaboZVAUMDQ2hr6+v6WYQEVE1pTWhzs/PD6dOncLt27dRu3ZteHt7Y968eXBwcJDqCCGwaNEifPfdd7hy5Qqsra0xevRoTJ06Vapz+PBhBAUF4dy5c3B0dMS0adPg7++v9F7Lly/HggULkJaWhrZt22Lp0qXo0KGDtP3JkyeYMGECNm/ejJycHPj4+GDFihWwtbWV6ly9ehWjRo3CoUOHYG5ujqFDh2Lu3LkwMKiYj1wIgbS0NGRkZFTI/kg7WFlZwc7OjusWEhGRCq0JdV26dMHnn38Oe3t73LhxAxMnTkS/fv1w9OhRqc6nn36Kffv2YeHChWjTpg3S09ORnp4ubU9OTkaPHj0QGBiIDRs2ICYmBsOHD4e9vT18fHwAAFu2bEFQUBBWrVoFDw8PfP311/Dx8UFSUhLq1asHAPjss8+we/dubN26FZaWlhg7dizeffddHDlyBEBR71mPHj1gZ2eHo0eP4ubNmxgyZAgMDQ0xZ86cCvk8igNdvXr1YGpqyi95HSeEwKNHj3D79m0AgL29vYZbRERE1Y7QUjt37hQymUzk5uYKIYQ4f/68MDAwEImJiSW+ZvLkyaJVq1ZKZf379xc+Pj7S8w4dOogxY8ZIzwsKCoSDg4OYO3euEEKIjIwMYWhoKLZu3SrVSUhIEABEbGysEEKIPXv2CD09PZGWlibVWblypbCwsBA5OTllPsbMzEwBQGRmZiqV5+fni/Pnz4u7d++WeV+kG+7evSvOnz8v8vPzNd0UIiIqQUnf35VNKydKpKenY8OGDfDy8oKhoSEA4Ndff0Xjxo2xa9cuODs7o1GjRhg+fLhST11sbCy8vb2V9uXj44PY2FgAQG5uLk6ePKlUR09PD97e3lKdkydPIi8vT6lOixYt4OTkJNWJjY1FmzZtlIZjfXx8kJWVhXPnzpV4XDk5OcjKylJ6qFN8DZ2pqenzPyzSKcXnnNdREhHRs7Qq1E2ZMgVmZmaoW7curl69ip07d0rbLl++jCtXrmDr1q1Yv349IiIicPLkSfTr10+qk5aWphS0AMDW1hZZWVl4/Pgx7t69i4KCArV10tLSpH3I5XJYWVmVWkfdPoq3lWTu3LmwtLSUHs+7RRiHXGsennMiIiqJRkNdcHAwZDJZqY/ExESp/qRJkxAfH499+/ZBX18fQ4YMgRACAFBYWIicnBysX78eHTt2ROfOnbFmzRocOnQISUlJmjrEcgkJCUFmZqb0uHbtmqabRERERFpCoxMlJkyYoDLz9FmNGzeW/m5tbQ1ra2u4uLjA1dUVjo6OOHbsGBQKBezt7WFgYAAXFxepvqurK4CimajNmzeHnZ0dbt26pbT/W7duwcLCAiYmJtDX14e+vr7aOnZ2dgAAOzs75ObmIiMjQ6m37tk6f//9t8o+ireVxMjICEZGRqV+HkRERETqaLSnzsbGBi1atCj1IZfL1b62sLAQQNF1aADw2muvIT8/H5cuXZLqXLhwAQDQsGFDAIBCoUBMTIzSfvbv3w+FQgEAkMvlcHd3V6pTWFiImJgYqY67uzsMDQ2V6iQlJeHq1atSHYVCgX///VeaqVj8PhYWFmjZsuULfFK6w9/fX+qFNTQ0hK2tLd5++22sXbtWOqdlERERoTIETkREVJNpxTV1cXFxWLZsGU6dOoUrV67g4MGDGDhwIJo0aSIFKW9vb7zyyisYNmwY4uPjcfLkSYwcORJvv/221HsXGBiIy5cvY/LkyUhMTMSKFSsQGRmJzz77THqvoKAgfP/99/jhhx+QkJCAUaNGITs7Gx999BEAwNLSEgEBAQgKCsKhQ4dw8uRJfPTRR1AoFPD09AQAdO3aFS1btsTgwYNx+vRpREdHY9q0aRgzZgx74gD4+vri5s2bSElJwW+//YYuXbrg008/Rc+ePZGfn6/p5hEREWmnKp1r+4LOnDkjunTpIurUqSOMjIxEo0aNRGBgoLh+/bpSvRs3boh3331XmJubC1tbW+Hv7y/u3bunVOfQoUOiXbt2Qi6Xi8aNG4t169apvN/SpUuFk5OTkMvlokOHDuLYsWNK2x8/fixGjx4tateuLUxNTcU777wjbt68qVQnJSVFdOvWTZiYmAhra2sxYcIEkZeXV67jLmlK9OPHj8X58+fF48ePy7W/6mDo0KGid+/eKuUxMTECgPj++++FEEIsWrRItG7dWpiamooGDRqIUaNGiQcPHgghis4hAKVHaGioEEKI9evXC3d3d+nfwMCBA8WtW7eq6vAqnTafeyKi6mTnTiEUiqI/K5qmljSRCfF/Mw2o2snKyoKlpSUyMzNhYWEhlT958gTJyclwdnaGsbExgKLFaTW1zIWhoWGZZ2X6+/sjIyMDO3bsUNnWrl07ODg4YM+ePfj666/Rtm1bODs74/Llyxg9ejTefPNNrFixArm5uVi5ciWmT58uTYIxNzeHubk51q5dC3t7ezRv3hy3b99GUFAQrKyssGfPnoo8ZI1Rd+6JiKj8vL3v4cQJA7RsaYmn7mNQIUr6/q5sWnNHCSpdXl4e5s6dq5H3DgkJKfHax/Jo0aIFzpw5AwAYP368VN6oUSN8+eWXCAwMxIoVKyCXy2FpaQmZTKYy8WTYsGHS3xs3bowlS5bg1VdfxcOHD2Fubv7SbSQiIu1WWFiIefPmoWPHXHh4mKBDh0kAdGO5KK24po5qBiGE1ON34MABvPXWW6hfvz5q1aqFwYMH4969e3j06FGp+zh58iR69eoFJycn1KpVC506dQJQNAOaiIhqtlu3bmHWrFnIzc0FAFhYCPTurRuBDmBPnc4wNDRESEiIxt67IiQkJMDZ2RkpKSno2bMnRo0ahdmzZ6NOnTr466+/EBAQgNzc3BLvpJGdnQ0fHx/4+Phgw4YNsLGxwdWrV+Hj4yP9ABMRUc0UExODv/76S3ru5OT03GXVtA1DnY6QyWQVMgSqKQcPHsS///6Lzz77DCdPnkRhYSEWLVoEPb2izuTIyEil+nK5HAUFBUpliYmJuHfvHsLDw6W7cZw4caJqDoCIiKql/Px8zJ49W6nsvffe08klxhjqqMrl5OQgLS0NBQUFuHXrFvbu3Yu5c+eiZ8+eGDJkCM6ePYu8vDwsXboUvXr1wpEjR7Bq1SqlfTRq1AgPHz5ETEwM2rZtC1NTUzg5OUEul2Pp0qUIDAzE2bNnMWvWLA0dJRERadr169exZs0apbJJkybp7L3TeU0dVbm9e/fC3t4ejRo1gq+vLw4dOoQlS5Zg586d0NfXR9u2bfHVV19h3rx5aN26NTZs2KAyCcTLywuBgYHo378/bGxsMH/+fNjY2CAiIgJbt25Fy5YtER4ejoULF2roKImISJN2796tFOiaN2+O0NBQnQ10AMAlTaqx8ixpQjUDzz0RUelyc3NVOgIGDRqEpk2bVlkbuKQJERER0UtITk7G+vXrlcqCg4NrzN2cGOqIiIhI661bt05p+ap27dqhd+/eGmxR1WOoIyIiIq2VkZGBb775RqnM398fDRs21FCLNIehjoiIiLTSr7/+in/++UepbP/+zxEaWjHrp2obhjoiIiLSOmFhYSpl0dGhCA7WQGOqCYY6IiIi0hrnzp3Dtm3bninrichId4SGaqhR1QRDHREREWkFdb1zMTFTMHEil3gCGOqIiIiomhNCYObMmSrlbm6hNb537mkMdURERFRtRUdH49ixY0plWVl26NRpJPz8NNSoaoqhjnSSv78/MjIysGPHDgBA586d0a5dO3z99dcvvM+K2AcREZWduuHWmrSYcHnx3q9Upfz9/SGTySCTySCXy9G0aVPMnDkT+fn5lfq+v/zyC2bNmlWmuocPH4ZMJkNGRsYL74OIiF5cXl6e2kAXGhrKQFcK9tRRlfP19cW6deuQk5ODPXv2YMyYMTA0NERISIhSvdzcXMjl8gp5zzp16lSLfRARUelmzZqFwsJCpbIrV1pj7dq+GmqR9mBPHVU5IyMj2NnZoWHDhhg1ahS8vb0RFRUFf39/9OnTB7Nnz4aDgwOaN28OALh27Rref/99WFlZoU6dOujduzdSUlKk/RUUFCAoKAhWVlaoW7cuJk+eDCGE0nt27twZ48ePl57n5ORgypQpcHR0hJGREZo2bYo1a9YgJSUFXbp0AQDUrl0bMpkM/v7+avdx//59DBkyBLVr14apqSm6deuGixcvStsjIiJgZWWF6OhouLq6wtzcHL6+vrh586ZU5/Dhw+jQoQPMzMxgZWWF1157DVeuXKmgT5qISLuEhYWpBLpZs6bh6FEGurJgqCONMzExQW5uLgAgJiYGSUlJ2L9/P3bt2oW8vDz4+PigVq1a+PPPP3HkyBEpHBW/ZtGiRYiIiMDatWvx119/IT09Hdu3by/1PYcMGYJNmzZhyZIlSEhIwLfffgtzc3M4Ojri559/BgAkJSXh5s2bKrefKebv748TJ04gKioKsbGxEEKge/fuyMvLk+o8evQICxcuxI8//og//vgDV69excSJEwEA+fn56NOnDzp16oQzZ84gNjYWH3/8MWQy2Ut/pkRE2iQzM1PtcKubWyg6dNDH/PkaaJQW4vAraYwQAjExMYiOjsa4ceNw584dmJmZYfXq1dKw608//YTCwkKsXr1aCjvr1q2DlZUVDh8+jK5du+Lrr79GSEgI3n33XQDAqlWrEB0dXeL7XrhwAZGRkdi/fz+8vb0BAI0bN5a2Fw+z1qtXD1ZWVmr3cfHiRURFReHIkSPw8vICAGzYsAGOjo7YsWMH3nvvPQBF14WsWrUKTZo0AQCMHTtWmpaflZWFzMxM9OzZU9ru6upa/g+SiEiLqQtzt2+7YPnygQDAGa7lwJ46QlQU4OVV9GdV2LVrF8zNzWFsbIxu3bqhf//+mDFjBgCgTZs2StfRnT59Gv/99x9q1aoFc3NzmJubo06dOnjy5AkuXbqEzMxM3Lx5Ex4eHtJrDAwM0L59+xLf/9SpU9DX10enTp1e+BgSEhJgYGCg9L5169ZF8+bNkZCQIJWZmppKgQ0A7O3tcfv2bQBF4dHf3x8+Pj7o1asXvvnmG6WhWSIiXacu0C1cOB0+PgM10Brtx546Qng4EBtb9GdV/I+oS5cuWLlyJeRyORwcHGBg8L9/hmZmZkp1Hz58CHd3d2zYsEFlPzY2Ni/0/iYmJi/0uhdhaKh8U2mZTKZ0vd+6devwySefYO/evdiyZQumTZuG/fv3w9PTs8raSERU1W7cuIHVq1erlEdHh2LDBvbOvSj21BGCgwGFAlV2E2QzMzM0bdoUTk5OSoFOnVdeeQUXL15EvXr10LRpU6WHpaUlLC0tYW9vj7i4OOk1+fn5OHnyZIn7bNOmDQoLC/H777+r3V7cU1hQUFDiPlxdXZGfn6/0vvfu3UNSUhJatmxZ6jE9y83NDSEhITh69Chat26NjRs3luv1RETaJCwsTCXQtW3bFqGhoTh6lIHuZTDUEfz8UG1/kAYNGgRra2v07t0bf/75J5KTk3H48GF88sknuH79OgDg008/RXh4OHbs2IHExESMHj1aZY25pzVq1AhDhw7FsGHDsGPHDmmfkZGRAICGDRtCJpNh165duHPnDh4+fKiyj2bNmqF3794YMWIE/vrrL5w+fRoffvgh6tevj969e5fp2JKTkxESEoLY2FhcuXIF+/btw8WLF3ldHRHprJLWnuvTp0/VN0YHMdRRtWZqaoo//vgDTk5OePfdd+Hq6oqAgAA8efIEFhYWAIAJEyZg8ODBGDp0KBQKBWrVqoV33nmn1P2uXLkS/fr1w+jRo9GiRQuMGDEC2dnZAID69esjLCwMwcHBsLW1xdixY9XuY926dXB3d0fPnj2hUCgghMCePXtUhlxLO7bExET07dsXLi4u+PjjjzFmzBiMHDmyHJ8QEVH1t27dqRJnt1LFkYlnF/SiaiMrKwuWlpbIzMyUAgwAPHnyBMnJyXB2doaxsbEGW0hVjeeeiLSNujCXlPQ2Nm3ygkJRNFKka0r6/q5snChBRERElaKk3jk3NyAlpequ5a4pGOqIiIioQm3evBlJSUkq5TNmhEq9c9XxOm5tx1BHREREFUZd79y///ZB8+Ztq3SlhZqIoY6IiIgqREnDraGcD1ElGOq0GOe41Dw850RUHYWHhyMnJ0elvHi4lUOtVYOhTgsVL5nx6NGjKr07Amneo0ePAKjeqYKISFPU9c75+/vj9OmGHG6tYgx1WkhfXx9WVlbSPURNTU2lm92TbhJC4NGjR7h9+zasrKygr6+v6SYRUQ1XWFiIWbNmqZSH/t9Ya8OG7KGragx1WsrOzg4ApGBHNYOVlZV07omINEVd7xzwv0BHmsFQp6VkMhns7e1Rr1495OXlabo5VAUMDQ3ZQ0dEGqcu0H366aewsrKq+saQEoY6Laevr88veiIiqnRPnjzBvHnzVMrZO1d9MNQRERFRqTjcqh0Y6oiIiKhE6gJdSEgI5HK5BlpDpWGoIyIiIhX37t3DsmXLVMrZO1d9MdQRERGREg63aieGOiIiIpKoC3TTp0/neqhagKGOiIiIkJSUhM2bN6uUs3dOezDUERER1XDqeufkcjlCQkI00Bp6UXqabgARERFpjrpA5+YWil9/DUFUlAYaRC+MPXVEREQ10IEDB3DkyBGVcje3UISHA7GxQHg479+qTRjqiIiIahh1vXPOzs4YMmSI9Dw8HAgOrspW0ctiqCMiIqpB1AW6ZydD+Pmxh04bMdQRERHVAF999RUePHigUs7ZrbqDoY6IiEjHqeudS0z0xMCBPhpoDVUWhjoiIiIdpi7QzZgRCoWCQ6y6hqGOiIhIB5V0qy83t6JAx0kQuoehjoiISMeoC3R9+/ZF69atAbCHTldx8WEiIiIdUVhYqDbQRUeH4vLl1hpoEVUl9tQRERHpgJKGW6OjQ7mQcA3BUEdERKTl1AW6kSNHws7ODm5uXEi4pmCoIyIi0lKPHj3CggULVMqfXnuOCwnXHAx1REREWqik4VYuJlxzMdQRERFpGXWBbvLkyTAxMdFAa6i6YKgjIiLSEjdv3sR3332nUu7mFgrmOWKoIyIi0gIlDbfy7hBUjKGOiIiomlMX6KZPn45ff5Xx7hAkYagjIiKqpk6cOIHdu3erlBdPhuDMVnoaQx0REVE1xNmtVF4MdURERNWMukDn5hbKXjkqFUMdERFRNbFt2zacO3dOpZyTIags9DTdgLLy8/ODk5MTjI2NYW9vj8GDByM1NVXaPmPGDMhkMpWHmZmZ0n62bt2KFi1awNjYGG3atMGePXuUtgshMH36dNjb28PExATe3t64ePGiUp309HQMGjQIFhYWsLKyQkBAAB4+fKhU58yZM+jYsSOMjY3h6OiI+fPnV/AnQkREuiQsLEwl0Onr68PNLZSTIahMtCbUdenSBZGRkUhKSsLPP/+MS5cuoV+/ftL2iRMn4ubNm0qPli1b4r333pPqHD16FAMHDkRAQADi4+PRp08f9OnTB2fPnpXqzJ8/H0uWLMGqVasQFxcHMzMz+Pj44MmTJ1KdQYMG4dy5c9i/fz927dqFP/74Ax9//LG0PSsrC127dkXDhg1x8uRJLFiwADNmzFC7thAREZG64dbQ0FBMmzYNfn7A0aPspaPnkwkhhKYb8SKioqLQp08f5OTkwNDQUGX76dOn0a5dO/zxxx/o2LEjAKB///7Izs7Grl27pHqenp5o164dVq1aBSEEHBwcMGHCBEycOBEAkJmZCVtbW0RERGDAgAFISEhAy5Ytcfz4cbRv3x4AsHfvXnTv3h3Xr1+Hg4MDVq5cialTpyItLQ1yuRwAEBwcjB07diAxMbHMx5iVlQVLS0tkZmbCwsLihT8rIiKqnjgZQjdp6vtba3rqnpaeno4NGzbAy8tLbaADgNWrV8PFxUUKdAAQGxsLb29vpXo+Pj6IjY0FACQnJyMtLU2pjqWlJTw8PKQ6sbGxsLKykgIdAHh7e0NPTw9xcXFSnTfeeEMKdMXvk5SUhPv377/k0RMRkS5QF+hatWrFQEcvTKtC3ZQpU2BmZoa6devi6tWr2Llzp9p6T548wYYNGxAQEKBUnpaWBltbW6UyW1tbpKWlSduLy0qrU69ePaXtBgYGqFOnjlIddft4+j3UycnJQVZWltKDiIh0j7pAFx0dqnRZEVF5aTTUBQcHq53c8PTj6eHKSZMmIT4+Hvv27YO+vj6GDBkCdaPH27dvx4MHDzB06NCqPJyXNnfuXFhaWkoPR0dHTTeJiIgqUFhYWImBjhMh6GVpdEmTCRMmwN/fv9Q6jRs3lv5ubW0Na2truLi4wNXVFY6Ojjh27BgUCoXSa1avXo2ePXuq9JbZ2dnh1q1bSmW3bt2CnZ2dtL24zN7eXqlOu3btpDq3b99W2kd+fj7S09OV9qPufZ5+D3VCQkIQFBQkPc/KymKwIyLSEerCXIMGvlizxgPBwZwIQS9Po6HOxsYGNjY2L/TawsJCAEVDlk9LTk7GoUOHEBUVpfIahUKBmJgYjB8/Xirbv3+/FAqdnZ1hZ2eHmJgYKcRlZWUhLi4Oo0aNkvaRkZGBkydPwt3dHQBw8OBBFBYWwsPDQ6ozdepU5OXlSdf87d+/H82bN0ft2rVLPCYjIyMYGRm9wKdBRETVlRACM2fOVCkPDQ2FlxcQGwuEhzPU0cvTisWH4+LicPz4cbz++uuoXbs2Ll26hC+++AJNmjRR6aVbu3Yt7O3t0a1bN5X9fPrpp+jUqRMWLVqEHj16YPPmzThx4oS01IhMJsP48ePx5ZdfolmzZnB2dsYXX3wBBwcH9OnTBwDg6uoKX19fjBgxAqtWrUJeXh7Gjh2LAQMGwMHBAQDwwQcfICwsDAEBAZgyZQrOnj2Lb775BosXL67cD4qIiKqV581uDQ4uCnQceqWKoBVLmvz777/49NNPcfr0aWRnZ8Pe3h6+vr6YNm0a6tevL9UrLCxEw4YNMWTIEMyePVvtvrZu3Ypp06YhJSUFzZo1w/z589G9e3dpuxACoaGh+O6775CRkYHXX38dK1asgIuLi1QnPT0dY8eOxa+//go9PT307dsXS5Ysgbm5uVTnzJkzGDNmDI4fPw5ra2uMGzcOU6ZMKddxc0kTIiLtpS7QBQQEoEGDBhpoDVUlTX1/a0Woq6kY6oiItM+jR4+wYMEClXIuVVJzaOr7WyuGX4mIiLQBFxMmTWKoIyIiqgDqAt3EiRNV7kFOVFm0avFhIiKi6ubGjRtqA52bWyjeftsMahZjIKoU7KkjIiJ6QaUNt3K5EqpqDHVEREQvQF2g++KLL6CnVzQIxuVKqKox1BEREZVDXFwc9u7dq1Lu5hYKvacuavLzYw8dVS2GOiIiojIqabh1xoxQKBQMcaRZDHVERERloC7QhYaGIioKUCg4zEqax1BHRERUisjISCQkJKiUF689x2FWqi4Y6oiIiErAxYRJm3CdOiIiIjXUBbro6FC4uTHQUfXEnjoiIqKnlNQ7Fx0dynXnqFpjqCMiIvo/6gJdkyZN8OGHH8LNjevOUfXGUEdERISSh1uPHi36OydEUHXHUEdERDVaacOt7JUjbcJQR0RENZa6QHfhwlvo3/91cIIraRuGOiIiqnGEEJg5c6ZKOZcqIW3GUEdERDUK154jXcV16oiIqMZQF+h++GEIoqMZ6Ej7MdQREZHOe/TokdpA5+YWCjs7Z06IIJ3A4VciItJpzxtu5TIlpCsY6oiISGepC3RBQUGoVauWBlpDVLkY6oiISOdcu3YNa9euVSnnZAjSZQx1RESkUzi7lWoqhjoiItIZ6gLdvn1f4MgRzgsk3cdQR0REWu/PP//EwYMHVcp5qy+qSRjqiIhIq5U23MoRV6pJ2B9NRERaS12gmzEjlIsJU43EnjoiItI633//PVJTU1XK3dxCoVCAQ65UIzHUERGRVuFiwkTqMdQREZHWUBfouFQJURGGOiIiqvZK6p2LjuZkCKJiDHVERFStqQt0BgZm2L17Iq+dI3oKQx0REVVbpQ23Tp1a1a0hqt4Y6oiIqNrhcCtR+THUERFRtaIu0CUleSAlxZfDrUSlYKgjIqJqQQiBmTNnqpQX3+qLS5UQlY6hjoiINI63+iJ6eQx1RESkEVFRQHg44OOjGuj69++PFi1aaKBVRNqLoY6IiDRi0aJH8PFZoFLOxYSJXgxDHRERVbmwsDC8+aZqOQMd0YtjqCMioiql7vq5Tz75BLVr19ZAa4h0B0MdERFViStXriAiIkKlnL1zRBWj3KFOX18fN2/eRL169ZTK7927h3r16qGgoKDCGkdERLqhpNmtbm4MdEQVpdyhTgihtjwnJwdyufylG0RERLpFXaCbNm0a9PX1NdAaIt1V5lC3ZMkSAIBMJsPq1athbm4ubSsoKMAff/zB6edERCQ5fPgwfv/9d5VyDrcSVY4yh7rFixcDKOqpW7VqldL/sORyORo1aoRVq1ZVfAuJiKjaK15zrvjOD6UtJkxElaPMoS45ORkA0KVLF/zyyy+cpURERJLwcCA2FpgyBYiPVw10DHNEla/c19QdOnSoMtpBRERaLDgYOHLkG5iaZqhsY6AjqhrlDnXDhg0rdfvatWtfuDFERKSd4uPDYGqqWs5AR1R1yh3q7t+/r/Q8Ly8PZ8+eRUZGBt5Utzw4ERHpNHXXzzHMEVW9coe67du3q5QVFhZi1KhRaNKkSYU0ioiIqj+uPUdUvchESQvPlVNSUhI6d+6MmzdvVsTuCEBWVhYsLS2RmZkJCwsLTTeHiEia5erjw9mtRCXR1Pd3hd0m7NKlS8jPz6+o3RERUTVUUqBjmCPSvHKHuqCgIKXnQgjcvHkTu3fvxtChQyusYUREVL2EhYXBx0e1nIGOqHood6iLj49Xeq6npwcbGxssWrTouTNjiYhIO6m7fq5p06YYNGiQBlpDROpwnToiIiqREAIzZ85UKWfvHFH188LX1N2+fRtJSUkAgObNm6NevXoV1igiItI83uqLSLuUO9RlZWVhzJgx2LRpEwoLCwEA+vr66N+/P5YvXw5LS8sKbyQREVUtdYHOz88Pbm5uGmgNEZWFXnlfMGLECMTFxWH37t3IyMhARkYGdu3ahRMnTmDkyJGV0UYiIqoi2dnZJS4mzEBHVL2Ve506MzMzREdH4/XXX1cq//PPP+Hr64vs7OwKbWBNxnXqiKgqcbiVqGJozTp1devWVTvEamlpidq1a1dIo4iIqGqpC3SjR4+GjY2NBlpDRC+i3MOv06ZNQ1BQENLS0qSytLQ0TJo0CV988UWFNo6IiCpWVBTg5VX0JwAkJyeXONzKQEekXco9/Orm5ob//vsPOTk5cHJyAgBcvXoVRkZGaNasmVLdf/75p+JaWgNx+JWIKpqXFxAbCygUvNUXUWXRmuHX3r17QyaTVUZbiIiokgUHl3yrr6lTp8LAoMLuHklEVazcPXVUddhTR0QVISqqKMgFBwOmpgdw5MgRlTrsnSOqOJr6/i73NXWNGzfGvXv3VMozMjLQuHHjCmkUERFVnPDwoiHX+PgwBjoiHVbufvaUlBQUFBSolOfk5OD69esV0igiIqoYUVFAejowY4b6yRBEpDvK3FMXFRWFqP+bLhUdHS09j4qKwvbt2zFr1iw4OztXWkP9/Pzg5OQEY2Nj2NvbY/DgwUhNTVWqEx0dDU9PT9SqVQs2Njbo27cvUlJSlOocPnwYr7zyCoyMjNC0aVNERESovNfy5cvRqFEjGBsbw8PDA3///bfS9idPnmDMmDGoW7cuzM3N0bdvX9y6dUupztWrV9GjRw+YmpqiXr16mDRpEvLz8yvksyAiKouoKCA2dh4GDmSgI6oJynxNnZ5eUf6TyWR49iWGhoZo1KgRFi1ahJ49e1Z8KwEsXrwYCoUC9vb2uHHjBiZOnAgAOHr0KICiafmurq4ICgpCQEAAMjMz8dlnn+HBgwfSLNzk5GS0bt0agYGBGD58OGJiYjB+/Hjs3r0bPj4+AIAtW7ZgyJAhWLVqFTw8PPD1119j69atSEpKku5vO2rUKOzevRsRERGwtLTE2LFjoaenJw1rFBQUoF27drCzs8OCBQtw8+ZNDBkyBCNGjMCcOXPKfMy8po6IXgYXEybSDE19f5d7ooSzszOOHz8Oa2vrympTmURFRaFPnz7IycmBoaEhtm3bhoEDByInJ0cKoL/++it69+4t1ZkyZQp2796Ns2fPSvsZMGAAMjIysHfvXgCAh4cHXn31VSxbtgwAUFhYCEdHR4wbNw7BwcHIzMyEjY0NNm7ciH79+gEAEhMT4erqitjYWHh6euK3335Dz549kZqaCltbWwDAqlWrMGXKFNy5cwdyubxMx8hQR0QvqqS154io8mnNRInk5GSNB7r09HRs2LABXl5eMDQ0BAC4u7tDT08P69atQ0FBATIzM/Hjjz/C29tbqhMbGwtvb2+lffn4+CA2NhYAkJubi5MnTyrV0dPTg7e3t1Tn5MmTyMvLU6rTokULODk5SXViY2PRpk0bKdAVv09WVhbOnTtX4nHl5OQgKytL6UFEVB5hYWEMdEQ1VLknSsycObPU7dOnT3/hxjzPlClTsGzZMjx69Aienp7YtWuXtM3Z2Rn79u3D+++/j5EjR6KgoAAKhQJ79uyR6qSlpSkFLQCwtbVFVlYWHj9+jPv376OgoEBtncTERGkfcrkcVlZWKnWK77JR0vsUbyvJ3LlzSxwuISJ61tNLlfj5cbiVqKYrd0/d9u3blR6RkZGYN28eFi1ahB07dpRrX8HBwZDJZKU+isMUAEyaNAnx8fHYt28f9PX1MWTIEOn6vrS0NIwYMQJDhw7F8ePH8fvvv0Mul6Nfv34q1wBWVyEhIcjMzJQe165d03STiKgaK16qJDy85OFWBjqimqPcPXXx8fEqZVlZWfD398c777xTrn1NmDAB/v7+pdZ5eu07a2trWFtbw8XFBa6urnB0dMSxY8egUCiwfPlyWFpaYv78+VL9n376CY6OjoiLi4Onpyfs7OxUZqneunULFhYWMDExgb6+PvT19dXWsbOzAwDY2dkhNzcXGRkZSr11z9Z5dsZs8T6L66hjZGQEIyOjUj8PIqJiwcFFa8+pwzBHVPOUu6dOHQsLC4SFheGLL74o1+tsbGzQokWLUh8lTSooLCwEUHQdGgA8evRImiBRTF9fX6muQqFATEyMUp39+/dDoVAAAORyOdzd3ZXqFBYWIiYmRqrj7u4OQ0NDpTpJSUm4evWqVEehUODff//F7du3ld7HwsICLVu2LNdnRESkTlSU+kDn6OjIQEdUQ1XYTf6KhwwrQ1xcHI4fP47XX38dtWvXxqVLl/DFF1+gSZMmUpDq0aMHFi9ejJkzZ2LgwIF48OABPv/8czRs2BBubm4AgMDAQCxbtgyTJ0/GsGHDcPDgQURGRmL37t3SewUFBWHo0KFo3749OnTogK+//hrZ2dn46KOPAACWlpYICAhAUFAQ6tSpAwsLC4wbNw4KhQKenp4AgK5du6Jly5YYPHgw5s+fj7S0NEybNg1jxoxhTxwRvTQhBOLjVa9vZpgjqtnKHeqWLFmi9FwIgZs3b+LHH39Et27dKqxhTzM1NcUvv/yC0NBQZGdnw97eHr6+vpg2bZoUkt58801s3LgR8+fPx/z582FqagqFQoG9e/fCxMQEQNFkit27d+Ozzz7DN998gwYNGmD16tXSGnUA0L9/f9y5cwfTp09HWloa2rVrh7179ypNfFi8eDH09PTQt29f5OTkwMfHBytWrJC26+vrY9euXRg1ahQUCgXMzMwwdOjQ504yISIqTUm9cwADHRG94Dp1T9PT04ONjQ3efPNNhISEoFatWhXawJqM69QR0dPUTYbo1q0bOnTooIHWEFFJNPX9Xe6euuTk5MpoBxERleDRo0dYsGCBSjl754joaS90TV1GRgb+++8/AEDTpk1V1mwjIqKKwbXniKisyjX7NSUlBT169IC1tTU8PDzg4eEBa2tr9OzZEykpKZXURCKimiEqCvDyKvoTUB/oAgMDGeiISK0yX1N37do1vPrqqzA0NMTo0aPh6uoKADh//jxWrlyJ/Px8HD9+HA0aNKjUBtckvKaOqGbx8ipaTLh79xR06PCDynaGOSLtoKnv7zKHuoCAAPz333+Ijo6GsbGx0rbHjx/D19cXzZo1w+rVqyuloTURQx1RzcLZrUS6odpPlNi7dy+2bNmiEugAwMTEBLNmzcKAAQMqtHFERDWJukD3+eefw9DQUAOtISJtU+ZQd/fuXTRq1KjE7Y0bN0Z6enpFtImIqEaJiYnBX3/9pVLO3jkiKo8yhzp7e3ucP3++xGvmzp49W+p9TYmISBVntxJRRSlzqOvTpw8mTpyImJgY2NjYKG27ffs2pkyZgj59+lR0+4iIdJa6QMcwR0QvqswTJe7fvw8PDw+kpaXhww8/RIsWLSCEQEJCAjZu3Ag7OzscO3YMderUqew21xicKEGkm2bPXoj8/GyVcgY6It1Q7SdK1K5dG3Fxcfj888+xefNmZGRkAACsrKzwwQcfYM6cOQx0RETPweFWIqos5b73KwAIIXDnzh0AgI2NDWQyWYU3jNhTR6RrONxKVDNU+566p8lkMtSrV6+i20JEpJPYO0dEVaFctwkjIqLyYaAjoqryQj11RERUsqgoIDwc8PHhcCsRVR321BERVZCoqKL7t8bHhzHQEVGVY08dEVEFKal3zszMERMnDtNAi4ioJilTqFuyZEmZd/jJJ5+8cGOIiLRN8VDrlCkCPj4zVbazd46IqkqZljRxdnYu285kMly+fPmlG0VFuKQJUfXn5aW+dw5goCOqqar1kibJycmV3Q4iIq2kLtD5+vrCw8NDA60hoprsha+py83NRXJyMpo0aQIDA16aR0Q1y5MnTzBv3jyVcvbOEZGmlHv266NHjxAQEABTU1O0atUKV69eBQCMGzcO4eHhFd5AIqLqJiwsjIGOiKqdcoe6kJAQnD59GocPH4axsbFU7u3tjS1btlRo44iIqht1iwkHBgYy0BGRxpV73HTHjh3YsmULPD09le752qpVK1y6dKlCG0dEVF3cuHEDq1evVilnmCOi6qLcoe7OnTtq7/uanZ2tFPKIiHQFb/VFRNqg3KGuffv22L17N8aNGwcAUpBbvXo1FApFxbaOiEjD1AW6zz//HIaGhhpoDRFRycod6ubMmYNu3brh/PnzyM/PxzfffIPz58/j6NGj+P333yujjUREVS4uLg579+5VKWfvHBFVV+WeKPH666/j1KlTyM/PR5s2bbBv3z7Uq1cPsbGxcHd3r4w2EhFVqbCwMAY6ItI6ZbqjBGkG7yhBVLWiooD4eNXhVoY5IiqPan1HiaysrDLvkOGDiLTRmjVrcP36dZVyBjoi0hZlCnVWVlZlntlaUFDwUg0iIqpqnN1KRLqgTKHu0KFD0t9TUlIQHBwMf39/abZrbGwsfvjhB8ydO7dyWklEVEnUBTqGOSLSRuW+pu6tt97C8OHDMXDgQKXyjRs34rvvvsPhw4crsn01Gq+pI6o87J0josqiqe/vcs9+jY2NRfv27VXK27dvj7///rtCGkVEVJkY6IhIF5V7nTpHR0d8//33mD9/vlL56tWr4ejoWGENIyKqDBxuJSJdVe5Qt3jxYvTt2xe//fYbPDw8AAB///03Ll68iJ9//rnCG0hEVBHYO0dEuq7cw6/du3fHxYsX0atXL6SnpyM9PR29evXChQsX0L1798poIxHRS1EX6MzNnRnoiEincPHhaowTJYhejhACM2fOVClnmCOiylStFx9+VkZGBtasWYOEhAQAQKtWrTBs2DBYWlpWaOOIiF4Uh1uJqKYpd0/diRMn4OPjAxMTE3To0AEAcPz4cTx+/Bj79u3DK6+8UikNrYnYU0f0YtQFum7dukm/s4iIKpOmvr/LHeo6duyIpk2b4vvvv4eBQVFHX35+PoYPH47Lly/jjz/+qJSG1kQMdUTls317Ds6cCVcpZ+8cEVUlrQl1JiYmiI+PR4sWLZTKz58/j/bt2+PRo0cV2sCajKGOqOw43EpE1YXWXFNnYWGBq1evqoS6a9euoVatWhXWMCKislIX6D7++GPY29troDVERJpR7lDXv39/BAQEYOHChfDy8gIAHDlyBJMmTVK5dRgRUWWaNu0mDA2/Uyln7xwR1UTlDnULFy6ETCbDkCFDkJ+fDwAwNDTEqFGjEB6uei0LEVFlCAsLg6GharmbGwMdEdVML7xO3aNHj3Dp0iUAQJMmTWBqalqhDSNeU0dUEnXDrSEhIZDL5RpoDRGRMq25pq6Yqakp2rRpU5FtISIq1YkTJ7B7926Vcg63EhGVI9QNGzasTPXWrl37wo0hIioJZ7cSEZWuzKEuIiICDRs2hJubG3hnMSKqSuoCHcMcEZGyMoe6UaNGYdOmTUhOTsZHH32EDz/8EHXq1KnMthFRDRcZGSndjvBpubkMdEREzyrXRImcnBz88ssvWLt2LY4ePYoePXogICAAXbt2hUwmq8x21kicKEE1GYdbiUhbac0dJYpduXIFERERWL9+PfLz83Hu3DmYm5tXdPtqNIY6qqnUBTo3t1D4+WmgMURE5aR1s1/19PQgk8kghEBBQUFFtomIaij2zhERvTi98lTOycnBpk2b8Pbbb8PFxQX//vsvli1bhqtXr7KXjoheCgMdEdHLKXNP3ejRo7F582Y4Ojpi2LBh2LRpE6ytrSuzbURUQ3B2KxHRyyvzNXV6enpwcnKCm5tbqZMifvnllwprXE3Ha+pI15XUOxcdHYqjR6u4MUREFaTaX1M3ZMgQznAlogqjLtBZWbXEli3vIThYAw0iItJyLzz7lSofe+pIV3G4lYh0WbXvqSMielmlDbcy0xERvRyGOiKqEuoCXX5+H8TEtOVwKxFRBWCoI6JKlZeXhzlz5qiUFw+3zppV1S0iItJNDHVEVGm49hwRUdVhqCOiSqEu0AUGBsLW1lYDrSEi0n0MdURUoe7du4dly5aplLu5hYJ5joio8jDUEVGFKWm4dcaMUCgUgJ9fFTeIiKgGYagjogqhLtCFhIRg7145FApwhisRUSVjqCOil3Lu3Dls27ZNpbx4MoSfH3voiIiqgp6mG1BWfn5+cHJygrGxMezt7TF48GCkpqYq1YmMjES7du1gamqKhg0bYsGCBSr7OXz4MF555RUYGRmhadOmiIiIUKmzfPlyNGrUCMbGxvDw8MDff/+ttP3JkycYM2YM6tatC3Nzc/Tt2xe3bt1SqnP16lX06NEDpqamqFevHiZNmoT8/PyX/yCIqpGwsLBSAx0REVUdrQl1Xbp0QWRkJJKSkvDzzz/j0qVL6Nevn7T9t99+w6BBgxAYGIizZ89ixYoVWLx4sdIF28nJyejRowe6dOmCU6dOYfz48Rg+fDiio6OlOlu2bEFQUBBCQ0Pxzz//oG3btvDx8cHt27elOp999hl+/fVXbN26Fb///jtSU1Px7rvvStsLCgrQo0cP5Obm4ujRo/jhhx8QERGB6dOnV/KnRFR11A23Tp8+nYGOiEhDtPber1FRUejTpw9ycnJgaGiIDz74AHl5edi6datUZ+nSpZg/fz6uXr0KmUyGKVOmYPfu3Th79qxUZ8CAAcjIyMDevXsBAB4eHnj11VelMFhYWAhHR0eMGzcOwcHByMzMhI2NDTZu3CiFysTERLi6uiI2Nhaenp747bff0LNnT6SmpkrLN6xatQpTpkzBnTt3IJfLy3SMvPcrVUe//fabSu81wN45IqJimvr+1pqeuqelp6djw4YN8PLygqGhIQAgJycHxsbGSvVMTExw/fp1XLlyBQAQGxsLb29vpTo+Pj6IjY0FAOTm5uLkyZNKdfT09ODt7S3VOXnyJPLy8pTqtGjRAk5OTlKd2NhYtGnTRmk9Lh8fH2RlZeHcuXMlHldOTg6ysrKUHkTVSVhYGAMdEVE1pVWhbsqUKTAzM0PdunVx9epV7Ny5U9rm4+ODX375BTExMSgsLMSFCxewaNEiAMDNmzcBAGlpaSoLn9ra2iIrKwuPHz/G3bt3UVBQoLZOWlqatA+5XA4rK6tS66jbR/G2ksydOxeWlpbSw9HRsawfDVGlUzfcGhoaykBHRFRNaDTUBQcHQyaTlfpITEyU6k+aNAnx8fHYt28f9PX1MWTIEBSPHo8YMQJjx45Fz549IZfL4enpiQEDBgAo6m3TBiEhIcjMzJQe165d03STiPDtt9+WGOiiogAvLyAqSgMNIyIiJRpd0mTChAnw9/cvtU7jxo2lv1tbW8Pa2houLi5wdXWFo6Mjjh07BoVCAZlMhnnz5mHOnDlIS0uDjY0NYmJilPZhZ2enMkv11q1bsLCwgImJCfT19aGvr6+2jp2dnbSP3NxcZGRkKPXWPVvn2SGq4n0W11HHyMgIRkZGpX4eRFVJXZjLzjbFX39NQmgoEB4OxMYW/cllS4iINEujoc7GxgY2NjYv9NrCwkIARdehPU1fXx/169cHAGzatAkKhUJ6D4VCgT179ijV379/PxQKBQBALpfD3d0dMTEx6NOnj/Q+MTExGDt2LADA3d0dhoaGiImJQd++fQEASUlJuHr1qrQfhUKB2bNn4/bt26hXr570PhYWFmjZsuULHS9RVVMX6DZvDkXt2v9bSDg4uCjQcWFhIiLN04rFh+Pi4nD8+HG8/vrrqF27Ni5duoQvvvgCTZo0kYLU3bt3sW3bNnTu3BlPnjzBunXrpCVHigUGBmLZsmWYPHkyhg0bhoMHDyIyMhK7d++W6gQFBWHo0KFo3749OnTogK+//hrZ2dn46KOPAACWlpYICAhAUFAQ6tSpAwsLC4wbNw4KhQKenp4AgK5du6Jly5YYPHgw5s+fj7S0NEybNg1jxoxhTxxVeyXd6is6OhTz5in3yHFhYSKi6kMrQp2pqSl++eUXhIaGIjs7G/b29vD19cW0adOUQtIPP/yAiRMnQggBhUKBw4cPo0OHDtJ2Z2dn7N69G5999hm++eYbNGjQAKtXr4aPj49Up3///rhz5w6mT5+OtLQ0tGvXDnv37lWa+LB48WLo6emhb9++yMnJgY+PD1asWCFt19fXx65duzBq1CgoFAqYmZlh6NChmDlzZiV/UkQvR12g69ChA7p16wY3t6JeOYBBjoioOtLadepqAq5TR1VJXaCLjg5FcHBRiPPyKrp+TqEAjh7VQAOJiLSEpr6/taKnjogqT2nDrU9PguD1c0RE1RtDHVENpi7Q9e/fHy1atJCGW4tDHK+fIyKq3hjqiGqg/Px8zJ49W6X86YWEGeKIiLQLQx1RDVPScCvvDEFEpN0Y6ohqEHWBbuzYsahbt64GWkNERBVJO+6fRUQvJSsrq8TZrUeOMNAREekC9tQR6biyzm4lIiLtxlBHpMPUBbqQkBDI5XKV2a1ERKTdGOqIdNCVK1cQERGhUs7ZrUREuovX1BHpmLCwsOcGuqdFRRXdLSIqqpIbRkRElYqhjkiHqBtunTFjOqKjS16uJDwc0rV1RESkvTj8SqQDjh07hujoaJVyN7dQKBSlXzfH238REekGmRBCaLoRpJ6mbghM2oWLCRMRVS+a+v5mTx2RFlMX6BjmiIhqJoY6Ii20efNmJCUlqZQz0BER1VwMdURaRl3vnIODA0aMGKGB1hARUXXBUEekRTjcSkREJWGoI9ICERERuHLlikp5bi4DHRERFWGoI6rm1PXO7dnTC3///QqMjYHZszXQKCIiqna4+DBRNVbScOuNG68AAOrWreoWERFRdcWeOqJq6Hlrz61YwQWDiYhIGUMdUTWjLtB99NFHcHJykp77+RU9iIiIijHUEVUThYWFmDVrlko5Z7cSEVFZMNQRVQPludVXVNT/hl7ZW0dERMU4UYJIw9QFusOHP4Obm/oeuvBwIDa26E8iIqJi7Kkj0pBHjx5hwYIFKuXR0aGIjQVyctT3xAUHc5IEERGpYqgj0oDShlvd3EoPbZwkQURE6jDUEVUxdYHu888/h6GhIQCGNiIiejG8po6oiqSlpakNdNHRofjtN0MNtIiIiHQJe+qIqkBJw60LF4bi4cOi4Vb2zhER0ctgqCOqZOoC3fTp0/HaazI8fAiYm3PSAxERvTwOvxJVkrNnz5Z471aZTIbgYEChADZsYC8dERG9PPbUEVUCdWHOyMgIwU91yXFCBBERVSSGOqIKVlLvHBERUWViqCOqIPv27UNsbKxKOQMdERFVBYY6ogqgrneuZcuWeO+99zTQGiIiqokY6oheEodbiYioOmCoI3pB69evR3Jysko5Ax0REWkCQx3RC1DXO9e1a1coFAoNtIaIiIihjqjc1AU6N7dQMM8REZEmMdQRldHy5ctx9+5dlfIZM4oCHdecIyIiTWKoIyoDdb1zsbEj4O7uAIWCt/kiIiLNY6gjKkVhYSFmzZqlUr55cygSE4ErV4CEBA00jIiI6BkMdUQlUNc7BxTNbt20qejvQlRhg4iIiErBUEekhrpAFxQUhFq1agEA5s8HwsM57EpERNUHQx3RU3JychAeHq5S/uzac35+nBhBRETVC0Md0f8pbbiViIioumOoI4L6QDd16lQYGPBHhIiItIOephtApEkZGRklLib8xhsGiIrSQKOIiIheALshqMZSF+Zq1aqFoKAgeHkBsbFFkyF47RwREWkDhjqqkdQFuunTp0MmkwEomtXK2a1ERKRNGOqoRklNTcX333+vUs7ZrUREpO0Y6qjGUNc717JlS7z33nsaaA0REVHFYqijGkFdoONSJUREpEsY6kinJSQkIDIyUqU8OjoUbm4cYiUiIt3BUEc6S13vnK+vLz77zIMzW4mISOcw1JFOKm24lTNbiYhIFzHUkU75888/cfDgQZXyp6+f48xWIiLSRQx1pDPU9c4NGjQITZs21UBriIiIqhZvE0Y6oaTh1uJAFxUFeHmBt/0iIiKdxZ460mrbtm3DuXPnVMqfXa4kPJy3/SIiIt3GUEdaS13v3KhRo1CvXj2Vck6OICIiXcdQR1pHCIGZM2eqlJe2mDAnRxARka7jNXVULZT1mreIiIhyBzoiIqKagD11VC2U5Zo3dcOtrVtPRN++ZpXcOiIiouqPoY6qhdKuecvLy8OcOXNUytk7R0RE9D8MdVQtlHTN2+zZs5Gfn69UZmZmhokTJ1ZRy4iIiLQDr6mjUmlyfbewsDCVQDd16lQGOiIiIjW0LtTl5OSgXbt2kMlkOHXqlNK2M2fOoGPHjjA2NoajoyPmz5+v8vqtW7eiRYsWMDY2Rps2bbBnzx6l7UIITJ8+Hfb29jAxMYG3tzcuXryoVCc9PR2DBg2ChYUFrKysEBAQgIcPH5a7Ldrg6WvdqsqjR49KXEzYwICdy0REROpoXaibPHkyHBwcVMqzsrLQtWtXNGzYECdPnsSCBQswY8YMfPfdd1Kdo0ePYuDAgQgICEB8fDz69OmDPn364OzZs1Kd+fPnY8mSJVi1ahXi4uJgZmYGHx8fPHnyRKozaNAgnDt3Dvv378euXbvwxx9/4OOPPy5XW7RFcDCgUFTd+m5hYWFYsGCBUlnTpk15/RwREdFzyIQQQtONKKvffvsNQUFB+Pnnn9GqVSvEx8ejXbt2AICVK1di6tSpSEtLg1wuBwAEBwdjx44dSExMBAD0798f2dnZ2LVrl7RPT09PtGvXDqtWrYIQAg4ODpgwYYI0xJeZmQlbW1tERERgwIABSEhIQMuWLXH8+HG0b98eALB37150794d169fh4ODQ5naUhZZWVmwtLREZmYmLCwsXvrzq+7U9c5Nnz4dMplMA60hIiJ6MZr6/taanrpbt25hxIgR+PHHH2FqaqqyPTY2Fm+88YYUogDAx8cHSUlJuH//vlTH29tb6XU+Pj6IjY0FACQnJyMtLU2pjqWlJTw8PKQ6sbGxsLKykgIdAHh7e0NPTw9xcXFlbos6OTk5yMrKUnrUBBkZGWoDXXR0KH79lYGOiIioLLQi1Akh4O/vj8DAQKUw9bS0tDTY2toqlRU/T0tLK7XO09uffl1JdZ69DZWBgQHq1Knz3Pd5+j3UmTt3LiwtLaWHo6NjiXV1RVhYGL755hulMm9vb0RHh1b5tXxERETaTKOhLjg4GDKZrNRHYmIili5digcPHiAkJESTza10ISEhyMzMlB7Xrl3TdJMqVUmTIV577bUqv5aPiIhI22l0KuGECRPg7+9fap3GjRvj4MGDiI2NhZGRkdK29u3bY9CgQfjhhx9gZ2eHW7duKW0vfm5nZyf9qa7O09uLy+zt7ZXqFF+7Z2dnh9u3byvtIz8/H+np6c99n6ffQx0jIyOVY9RFqamp+P7771XKn54MwXu1EhERlY9GQ52NjQ1sbGyeW2/JkiX48ssvpeepqanw8fHBli1b4OHhAQBQKBSYOnUq8vLyYGhoCADYv38/mjdvjtq1a0t1YmJiMH78eGlf+/fvh0KhAAA4OzvDzs4OMTExUojLyspCXFwcRo0aJe0jIyMDJ0+ehLu7OwDg4MGDKCwsLFdbaip1vXMffvghmjRpooHWEBER6Q6tmv1aLCUlBc7OzkqzXzMzM9G8eXN07doVU6ZMwdmzZzFs2DAsXrxYWm7k6NGj6NSpE8LDw9GjRw9s3rwZc+bMwT///IPWrVsDAObNm4fw8HD88MMPcHZ2xhdffIEzZ87g/PnzMDY2BgB069YNt27dwqpVq5CXl4ePPvoI7du3x8aNG8vclrLQtdmvJQ23EhER6RJNfX/rzEqulpaW2LdvH8aMGQN3d3dYW1tj+vTpSiHKy8sLGzduxLRp0/D555+jWbNm2LFjhxTogKJ18LKzs/Hxxx8jIyMDr7/+Ovbu3SsFOgDYsGEDxo4di7feegt6enro27cvlixZUq621CQXL16UAu/TGOiIiIgqjlb21NUUutBTp653buTIkaVeW0hERKTN2FNHOofDrURERFWHoY4q3IkTJ7B7926VcgY6IiKiysNQRxVKXe/cZ599prXDx0RERNqCoY4qhBACM2fOVCln7xwREVHVYKijl3bgwAEcOXJEqaxevXrS2n5ERERU+Rjq6KWoG26dMmWK0hIwREREVPkY6uiFFBYWYtasWSrlHG4lIiLSDIY6Krfjx49jz549SmWvvfYavL29NdQiIiIiYqgjREUB4eFAcDDg51d6XXXDrdOmTYO+vn4ltY6IiIjKQk/TDSDNCw8HYmOL/ixJXl5eiYsJM9ARERFpHkMdITgYUCiK/lTn0KFDmDNnjlJZ//794eYWCi+vop4+IiIi0ize+7Uaqw73flXXOzd9+nTIZDJ4eRX18CkUwNGjGmgcERFRNaSp72/21JFaubm5JQ63ymQyAM/v4SMiIqKqw4kSpELd7NaPPvoITk5OSmV+fs+fWEFERERVg6GOlJTUO0dERETVG4dfCQDw6NEjlUD36quvlinQRUWBEyaIiIg0jD11hL/++gsxMTFKZePHj4elpWWZXv/0kigcjiUiItIM9tTVcNu3b1cJdKGhoWUOdAAnTBAREVUH7KmrgaKigIULn+Ctt+YplXfu3BmdOnUq9/44YYKIiEjzGOpqoNWrL+KttzYqlX3++ecwNDTUUIuIiIjoZTHU1UDu7v8LdB4eHvD19dVga4iIiKgiMNTVQG+88Qbi4uIwZMgQODg4aLo5REREVAF4m7BqrDrcJoyIiIjKh7cJIyIiIqIXxlBHREREpAMY6oiIiIh0AEMdERERkQ5gqCMiIiLSAQx1RERERDqAoY6IiIhIBzDUEREREekAhjoiIiIiHcBQR0RERKQDGOqIiIiIdABDHREREZEOYKgjIiIi0gEMdUREREQ6wEDTDaCSCSEAAFlZWRpuCREREZVV8fd28fd4VWGoq8YePHgAAHB0dNRwS4iIiKi8Hjx4AEtLyyp7P5mo6hhJZVZYWIjU1FTUqlULMplM082pdFlZWXB0dMS1a9dgYWGh6eZQCXieqj+eI+3A86QdXuQ8CSHw4MEDODg4QE+v6q50Y09dNaanp4cGDRpouhlVzsLCgr/gtADPU/XHc6QdeJ60Q3nPU1X20BXjRAkiIiIiHcBQR0RERKQDGOqo2jAyMkJoaCiMjIw03RQqBc9T9cdzpB14nrSDNp0nTpQgIiIi0gHsqSMiIiLSAQx1RERERDqAoY6IiIhIBzDUEREREekAhjqqEDk5OWjXrh1kMhlOnTqltO3MmTPo2LEjjI2N4ejoiPnz56u8fuvWrWjRogWMjY3Rpk0b7NmzR2m7EALTp0+Hvb09TExM4O3tjYsXLyrVSU9Px6BBg2BhYQErKysEBATg4cOH5W6LLvLz84OTkxOMjY1hb2+PwYMHIzU1ValOZGQk2rVrB1NTUzRs2BALFixQ2c/hw4fxyiuvwMjICE2bNkVERIRKneXLl6NRo0YwNjaGh4cH/v77b6XtT548wZgxY1C3bl2Ym5ujb9++uHXrllKdq1evokePHjA1NUW9evUwadIk5Ofnv/wHUc2V5TxFR0fD09MTtWrVgo2NDfr27YuUlBSlOjxPlet552nGjBmQyWQqDzMzM6X98Pde5SrLz5MQAgsXLoSLiwuMjIxQv359zJ49W6mOVv08CaIK8Mknn4hu3boJACI+Pl4qz8zMFLa2tmLQoEHi7NmzYtOmTcLExER8++23Up0jR44IfX19MX/+fHH+/Hkxbdo0YWhoKP7991+pTnh4uLC0tBQ7duwQp0+fFn5+fsLZ2Vk8fvxYquPr6yvatm0rjh07Jv7880/RtGlTMXDgwHK1RVd99dVXIjY2VqSkpIgjR44IhUIhFAqFtH3Pnj3CwMBArFy5Uly6dEns2rVL2Nvbi6VLl0p1Ll++LExNTUVQUJA4f/68WLp0qdDX1xd79+6V6mzevFnI5XKxdu1ace7cOTFixAhhZWUlbt26JdUJDAwUjo6OIiYmRpw4cUJ4enoKLy8vaXt+fr5o3bq18Pb2FvHx8WLPnj3C2tpahISEVPKnpHnPO0+XL18WRkZGIiQkRPz333/i5MmT4o033hBubm5KdXieKtfzztODBw/EzZs3lR4tW7YUQ4cOlerw917le955EkKIcePGiebNm4udO3eKy5cvixMnToh9+/ZJ27Xt54mhjl7anj17RIsWLcS5c+dUQt2KFStE7dq1RU5OjlQ2ZcoU0bx5c+n5+++/L3r06KG0Tw8PDzFy5EghhBCFhYXCzs5OLFiwQNqekZEhjIyMxKZNm4QQQpw/f14AEMePH5fq/Pbbb0Imk4kbN26UuS01xc6dO4VMJhO5ublCCCEGDhwo+vXrp1RnyZIlokGDBqKwsFAIIcTkyZNFq1atlOr0799f+Pj4SM87dOggxowZIz0vKCgQDg4OYu7cuUKIovNmaGgotm7dKtVJSEgQAERsbKwQoujfk56enkhLS5PqrFy5UlhYWCidu5rg2fO0detWYWBgIAoKCqQ6UVFRSnV4nqres+fpWadOnRIAxB9//CGV8fde1Xv2PJ0/f14YGBiIxMTEEl+jbT9PHH6ll3Lr1i2MGDECP/74I0xNTVW2x8bG4o033oBcLpfKfHx8kJSUhPv370t1vL29lV7n4+OD2NhYAEBycjLS0tKU6lhaWsLDw0OqExsbCysrK7Rv316q4+3tDT09PcTFxZW5LTVBeno6NmzYAC8vLxgaGgIoGj43NjZWqmdiYoLr16/jypUrAJ5/nnJzc3Hy5EmlOnp6evD29pbqnDx5Enl5eUp1WrRoAScnJ6Vz2aZNG9ja2iq9T1ZWFs6dO1dRH0O1p+48ubu7Q09PD+vWrUNBQQEyMzPx448/wtvbW6rD81S11J2nZ61evRouLi7o2LGjVMbfe1VL3Xn69ddf0bhxY+zatQvOzs5o1KgRhg8fjvT0dOl12vbzxFBHL0wIAX9/fwQGBir9UnlaWlqa0j9SANLztLS0Uus8vf3p15VUp169ekrbDQwMUKdOnee+z9PvocumTJkCMzMz1K1bF1evXsXOnTulbT4+Pvjll18QExODwsJCXLhwAYsWLQIA3Lx5E0DJn19WVhYeP36Mu3fvoqCg4LnnSS6Xw8rKqtQ6PE/qz5OzszP27duHzz//HEZGRrCyssL169cRGRkp1eF5qhqlnaenPXnyBBs2bEBAQIBSOX/vVY3SztPly5dx5coVbN26FevXr0dERAROnjyJfv36SXW07eeJoY5UBAcHq73I9+lHYmIili5digcPHiAkJETTTa6Rynqeik2aNAnx8fHYt28f9PX1MWTIEIj/u6HMiBEjMHbsWPTs2RNyuRyenp4YMGAAgKL/ddKLq8jzlJaWhhEjRmDo0KE4fvw4fv/9d8jlcvTr10+qQy+mIs/T07Zv344HDx5g6NChVXk4Oqsiz1NhYSFycnKwfv16dOzYEZ07d8aaNWtw6NAhJCUlaeoQX4qBphtA1c+ECRPg7+9fap3GjRvj4MGDiI2NVbkfXvv27TFo0CD88MMPsLOzU5nhU/zczs5O+lNdnae3F5fZ29sr1WnXrp1U5/bt20r7yM/PR3p6+nPf5+n30CZlPU/FrK2tYW1tDRcXF7i6usLR0RHHjh2DQqGATCbDvHnzMGfOHKSlpcHGxgYxMTFK+yjp87OwsICJiQn09fWhr6//3HOZm5uLjIwMpf+1Plvn2ZljPE9F52n58uWwtLRUmr34008/wdHREXFxcfD09OR5ekEVeZ6etnr1avTs2VOlF4a/915MRZ4ne3t7GBgYwMXFRarv6uoKoGgmavPmzbXv56nMV98RPePKlSvi33//lR7R0dECgNi2bZu4du2aEOJ/F+k+fQFxSEiIykSJnj17Ku1boVCoXDC8cOFCaXtmZqbaC4ZPnDgh1YmOjlZ7wXBpbakprly5IgCIQ4cOlVhn8ODBSjPFJk+eLFq3bq1UZ+DAgSoXDI8dO1Z6XlBQIOrXr69ywfC2bdukOomJiWovGH565ti3334rLCwsxJMnT17sgLXUs+cpKChIdOjQQalOamqqACCOHDkihOB50oSSfp4uX74sZDKZ+PXXX1Vew997Ve/Z81T8nfXff/9JdYontSQlJQkhtO/niaGOKkxycrLK7NeMjAxha2srBg8eLM6ePSs2b94sTE1NVZY0MTAwEAsXLhQJCQkiNDRU7dR+KysrsXPnTnHmzBnRu3dvtVP73dzcRFxcnPjrr79Es2bNlKb2l6UtuujYsWNi6dKlIj4+XqSkpIiYmBjh5eUlmjRpIv2yuHPnjli5cqVISEgQ8fHx4pNPPhHGxsYiLi5O2k/x1P5JkyaJhIQEsXz5crVT+42MjERERIQ4f/68+Pjjj4WVlZXSjK7AwEDh5OQkDh48KE6cOKGyzEDx1P6uXbuKU6dOib179wobGxudXyqjLOcpJiZGyGQyERYWJi5cuCBOnjwpfHx8RMOGDcWjR4+EEDxPla0s56nYtGnThIODg8jPz1fZD3/vVa6ynKeCggLxyiuviDfeeEP8888/4sSJE8LDw0O8/fbb0n607eeJoY4qjLpQJ4QQp0+fFq+//rowMjIS9evXF+Hh4SqvjYyMFC4uLkIul4tWrVqJ3bt3K20vLCwUX3zxhbC1tRVGRkbirbfekv4nVezevXti4MCBwtzcXFhYWIiPPvpIPHjwoNxt0TVnzpwRXbp0EXXq1BFGRkaiUaNGIjAwUFy/fl2qc+fOHeHp6SnMzMyEqampeOutt8SxY8dU9nXo0CHRrl07IZfLRePGjcW6detU6ixdulQ4OTkJuVwuOnTooLKfx48fi9GjR4vatWsLU1NT8c4774ibN28q1UlJSRHdunUTJiYmwtraWkyYMEHk5eVVzAdSTZXlPAkhxKZNm4Sbm5swMzMTNjY2ws/PTyQkJCjV4XmqPGU9TwUFBaJBgwbi888/L3Ff/L1Xecp6nm7cuCHeffddYW5uLmxtbYW/v7+4d++eUh1t+nmSCcGra4mIiIi0Hae1EREREekAhjoiIiIiHcBQR0RERKQDGOqIiIiIdABDHREREZEOYKgjIiIi0gEMdUREREQ6gKGOiIhUHD58GDKZDBkZGS+1n0aNGuHrr7+ukDYRUekY6oioQqWlpWHcuHFo3LgxjIyM4OjoiF69eiEmJkaqc/ToUXTv3h21a9eGsbEx2rRpg6+++goFBQVSnZSUFAQEBMDZ2RkmJiZo0qQJQkNDkZubq/R+33//Pdq2bQtzc3NYWVnBzc0Nc+fOlbbPmDEDMpkMvr6+Km1dsGABZDIZOnfuXObjy8rKwtSpU9GiRQsYGxvDzs4O3t7e+OWXX/D0Wu7nzp3D+++/DxsbGxgZGcHFxQXTp0/Ho0ePpDrp6ekYN24cmjdvDhMTEzg5OeGTTz5BZmZmmdqSkpICmUym9nHs2LEyH1Pnzp0xfvz4MtcnourJQNMNICLdkZKSgtdeew1WVlZYsGAB2rRpg7y8PERHR2PMmDFITEzE9u3b8f777+Ojjz7CoUOHYGVlhQMHDmDy5MmIjY1FZGQkZDIZEhMTUVhYiG+//RZNmzbF2bNnMWLECGRnZ2PhwoUAgLVr12L8+PFYsmQJOnXqhJycHJw5cwZnz55Vape9vT0OHTqE69evo0GDBlL52rVr4eTkVObjy8jIwOuvv47MzEx8+eWXePXVV2FgYIDff/8dkydPxptvvgkrKyscO3YM3t7e8Pb2xu7du2Fra4u///4bEyZMQExMDA4dOgS5XI7U1FSkpqZi4cKFaNmyJa5cuYLAwECkpqZi27ZtZW7XgQMH0KpVK6WyunXrlvn1RKQjynVTMSKiUnTr1k3Ur19fPHz4UGXb/fv3xcOHD0XdunXFu+++q7I9KipKABCbN28ucf/z588Xzs7O0vPevXsLf3//UtsUGhoq2rZtK3r27Cm+/PJLqfzIkSPC2tpajBo1SnTq1KkMRyfEqFGjhJmZmbhx44bKtgcPHoi8vDxRWFgoWrZsKdq3by8KCgqU6pw6dUrIZLJS770ZGRkp5HJ5me75WNL9lp9WfPzr168XDRs2FBYWFqJ///4iKytLCCHE0KFDBQClR3Jysjh06JAAIA4cOCDc3d2FiYmJUCgUIjExUdr3f//9J/z8/ES9evWEmZmZaN++vdi/f7/S+zds2FAsXrxYeg5ArFixQvj6+gpjY2Ph7Owstm7dKm3v0qWLGDNmjNI+bt++LQwNDcWBAwee+5kQ1WQcfiWiCpGeno69e/dizJgxMDMzU9luZWWFffv24d69e5g4caLK9l69esHFxQWbNm0q8T0yMzNRp04d6bmdnR2OHTuGK1euPLd9w4YNQ0REhPR87dq1GDRoEORy+XNfCwCFhYXYvHkzBg0aBAcHB5Xt5ubmMDAwwKlTp3D+/HkEBQVBT0/5V2zbtm3h7e393GO0sLCAgUHFDaRcunQJO3bswK5du7Br1y78/vvvCA8PBwB88803UCgUGDFiBG7evImbN2/C0dFReu3UqVOxaNEinDhxAgYGBhg2bJi07eHDh+jevTtiYmIQHx8PX19f9OrVC1evXi21PV988QX69u2L06dPY9CgQRgwYAASEhIAAMOHD8fGjRuRk5Mj1f/pp59Qv359vPnmmxX2mRDpIoY6IqoQ//33H4QQaNGiRYl1Lly4AABwdXVVu71FixZSHXX7X7p0KUaOHCmVhYaGwsrKCo0aNULz5s3h7++PyMhIFBYWqry+Z8+eyMrKwh9//IHs7GxERkYqBZTnuXv3Lu7fv1/q8QHPP0ZXV9cSj/Hu3buYNWsWPv744zK3CwC8vLxgbm6u9HhaYWEhIiIi0Lp1a3Ts2BGDBw+WrnG0tLSEXC6Hqakp7OzsYGdnB319fem1s2fPRqdOndCyZUsEBwfj6NGjePLkCYCikDpy5Ei0bt0azZo1w6xZs9CkSRNERUWV2t733nsPw4cPh4uLC2bNmoX27dtj6dKlAIB3330XALBz506pfkREBPz9/SGTycr1uRDVNAx1RFQhxFOTBCqyLgDcuHEDvr6+eO+99zBixAip3N7eHrGxsfj333/x6aefIj8/H0OHDoWvr69KsDM0NMSHH36IdevWYevWrXBxccH/+3//r9LaXN76WVlZ6NGjB1q2bIkZM2aU67VbtmzBqVOnlB5Pa9SoEWrVqiU9t7e3x+3bt8u076c/I3t7ewCQXvvw4UNMnDgRrq6usLKygrm5ORISEp7bU6dQKFSeF/fUGRsbY/DgwVi7di0A4J9//sHZs2fh7+9fpvYS1WScKEFEFaJZs2bSBIeSuLi4AAASEhLg5eWlsj0hIQEtW7ZUKktNTUWXLl3g5eWF7777Tu1+W7dujdatW2P06NEIDAxEx44d8fvvv6NLly5K9YYNGwYPDw+cPXu2XL10AGBjYwMrK6tSjw9QPkY3NzeV7QkJCVKdYg8ePICvry9q1aqF7du3w9DQsFxtc3R0RNOmTUvc/uz+ZDKZ2t7M5722uKes+LUTJ07E/v37sXDhQjRt2hQmJibo16+fygzl8ho+fDjatWuH69evY926dXjzzTfRsGHDl9onUU3AnjoiqhB16tSBj48Pli9fjuzsbJXtGRkZ6Nq1K+rUqYNFixapbI+KisLFixcxcOBAqezGjRvo3Lkz3N3dsW7dOpVr1NQpDoXq2tCqVSu0atUKZ8+exQcffFCew4Oenh4GDBiADRs2IDU1VWX7w4cPkZ+fj3bt2qFFixZYvHixSnA6ffo0Dhw4oHSMWVlZ6Nq1K+RyOaKiomBsbFyudlUEuVyutJxMWR05cgT+/v5455130KZNG9jZ2SElJeW5r3t2uZVjx44pDVe3adMG7du3x/fff4+NGzeWO4AT1VQMdURUYZYvX46CggJ06NABP//8My5evIiEhAQsWbIECoUCZmZm+Pbbb7Fz5058/PHHOHPmDFJSUrBmzRr4+/ujX79+eP/99wH8L9A5OTlh4cKFuHPnDtLS0pCWlia936hRozBr1iwcOXIEV65cwbFjxzBkyBDY2NioDPEVO3jwIG7evAkrK6tyH9/s2bPh6OgIDw8PrF+/HufPn8fFixexdu1auLm54eHDh5DJZFizZg3Onz+Pvn374u+//8bVq1exdetW9OrVCwqFQloTrjjQZWdnY82aNcjKypKOsTwh6969e9Lrih/F172VRaNGjRAXF4eUlBTcvXu3zL14zZo1wy+//IJTp07h9OnT+OCDD8r02q1bt2Lt2rW4cOECQkND8ffff2Ps2LFKdYYPH47w8HAIIfDOO++U+ViIajRNTr0lIt2TmpoqxowZIxo2bCjkcrmoX7++8PPzE4cOHZLq/PHHH8LHx0dYWFgIuVwuWrVqJRYuXCjy8/OlOuvWrVNZaqP4UWzbtm2ie/fuwt7eXsjlcuHg4CD69u0rzpw5I9UpXtKjJJ9++mmZlzQRQoiMjAwRHBwsmjVrJuRyubC1tRXe3t5i+/btorCwUKp35swZ0bdvX1GnTh1haGgomjRpIqZNmyays7OlOsXLhqh7JCcnP7ctxUuaqHts2rSpxONfvHixaNiwofQ8KSlJeHp6ChMTE5UlTe7fvy/Vi4+PV2pbcnKy6NKlizAxMRGOjo5i2bJlolOnTuLTTz+VXqNuSZPly5eLt99+WxgZGYlGjRqJLVu2qBzbgwcPhKmpqRg9evRzPwciKiITopxX8xIREb0gmUyG7du3o0+fPqXWS0lJQZMmTXD8+HG88sorVdM4Ii3HiRJERFRt5OXl4d69e5g2bRo8PT0Z6IjKgdfUERH9n2fXenv68eeff1Z5ewIDA0tsT2BgYJW3pyocOXIE9vb2OH78OFatWqXp5hBpFQ6/EhH9n//++6/EbfXr14eJiUkVtqZoPbisrCy12ywsLFCvXr0qbQ8RVW8MdUREREQ6gMOvRERERDqAoY6IiIhIBzDUEREREekAhjoiIiIiHcBQR0RERKQDGOqIiIiIdABDHREREZEOYKgjIiIi0gH/H1vGzWntUJnfAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbm0lEQVR4nO3deVhUZf8/8PeAzLAoA8qmhohauKakSVC5RYKp6NO+KJLmnmaaCmkgruSCppW2KFqZWyXyNRXNNCswy0BFhdTAjUVSZFyS9f79wY/JcWZwBgZme7+uay6b+5w58znxJO/nXs4tEUIIEBEREVkBG2MXQERERNRQGHyIiIjIajD4EBERkdVg8CEiIiKrweBDREREVoPBh4iIiKwGgw8RERFZDQYfIiIishoMPkRERGQ1GHyIyCxJJBLMmTPH2GUoRUREoHXr1sYug4jug8GHiAxm/fr1kEgkype9vT0eeughvPnmmygoKKjX705JScGcOXNw/fp1g163T58+KvfUtGlTPProo1i3bh0qKysN8h0LFy5EYmKiQa5FRDVrZOwCiMjyzJ07F76+vrhz5w5++eUXrF69Grt27UJGRgYcHR0N8h3//vsvGjX676+wlJQUxMbGIiIiAi4uLgb5jmoPPPAAFi1aBAAoLCzEF198gVGjRuGvv/5CXFxcna+/cOFCPP/88xg6dGidr0VENWPwISKDGzBgAHr06AEAeOONN9CsWTPEx8djx44deOWVV2p93crKSpSWlsLe3h729vaGKve+5HI5hg0bpnw/duxY+Pn54cMPP8S8efNgZ2fXYLUQUd1wqIuI6l2/fv0AANnZ2QCApUuXIigoCM2aNYODgwO6d++Ob775Ru1zEokEb775JjZu3IhOnTpBJpNhz549ymPVc3zmzJmD6dOnAwB8fX2Vw1I5OTno3bs3unbtqrEuPz8/hISE6H0/jo6OeOyxx3Dr1i0UFhZqPe/WrVuYNm0avL29IZPJ4Ofnh6VLl0IIoXKPt27dwoYNG5R1R0RE6F0TEemGPT5EVO/OnTsHAGjWrBkA4IMPPkBYWBhee+01lJaWYvPmzXjhhRewc+dODBw4UOWzP/74I7Zu3Yo333wTbm5uGicQP/vss/jrr7+wadMmLF++HG5ubgAAd3d3DB8+HKNHj0ZGRgY6d+6s/Mzvv/+Ov/76C7Nnz67VPf3999+wtbXVOqwmhEBYWBgOHDiAUaNGoVu3bkhOTsb06dNx+fJlLF++HADw5Zdf4o033kDPnj0xZswYAEDbtm1rVRMR6UAQERlIQkKCACB++OEHUVhYKC5evCg2b94smjVrJhwcHMSlS5eEEELcvn1b5XOlpaWic+fOol+/firtAISNjY04efKk2ncBEDExMcr3S5YsEQBEdna2ynnXr18X9vb2YubMmSrtkydPFk5OTuLmzZs13lPv3r1F+/btRWFhoSgsLBSnT58WkydPFgDE4MGDleeNGDFC+Pj4KN8nJiYKAGL+/Pkq13v++eeFRCIRZ8+eVbY5OTmJESNG1FgHERkGh7qIyOCCg4Ph7u4Ob29vvPzyy2jcuDG2b9+Oli1bAgAcHByU5xYVFaG4uBhPPvkk/vzzT7Vr9e7dGx07dqx1LXK5HEOGDMGmTZuUQ0wVFRXYsmULhg4dCicnp/teIzMzE+7u7nB3d0eHDh2watUqDBw4EOvWrdP6mV27dsHW1haTJ09WaZ82bRqEENi9e3et74mIao9DXURkcB999BEeeughNGrUCJ6envDz84ONzX//P2vnzp2YP38+0tPTUVJSomyXSCRq1/L19a1zPeHh4diyZQt+/vln9OrVCz/88AMKCgowfPhwnT7funVrfPbZZ8ol+g8++CA8PDxq/Mz58+fRokULNGnSRKW9Q4cOyuNE1PAYfIjI4Hr27Klc1XWvn3/+GWFhYejVqxc+/vhjNG/eHHZ2dkhISMDXX3+tdv7dvUO1FRISAk9PT3z11Vfo1asXvvrqK3h5eSE4OFinzzs5Oel8LhGZNg51EVGD+vbbb2Fvb4/k5GSMHDkSAwYMMEio0NRbVM3W1havvvoqvvnmGxQVFSExMRGvvPIKbG1t6/y92vj4+CA3Nxc3btxQac/MzFQer1ZT7URkWAw+RNSgbG1tIZFIUFFRoWzLycmp85OLq+fqaHty8/Dhw1FUVISxY8fi5s2bKs/lqQ/PPPMMKioq8OGHH6q0L1++HBKJBAMGDFC2OTk5GfyJ00SkGYe6iKhBDRw4EPHx8QgNDcWrr76KK1eu4KOPPkK7du1w/PjxWl+3e/fuAIBZs2bh5Zdfhp2dHQYPHqwMRP7+/ujcuTO2bduGDh064JFHHjHI/WgzePBg9O3bF7NmzUJOTg66du2KvXv3YseOHZgyZYrKkvXu3bvjhx9+QHx8PFq0aAFfX18EBATUa31E1oo9PkTUoPr164e1a9ciPz8fU6ZMwaZNm/D+++/jf//7X52u++ijj2LevHk4duwYIiIi8Morr6g9XDA8PBwAdJ7UXBc2NjZISkrClClTsHPnTkyZMgWnTp3CkiVLEB8fr3JufHw8unfvjtmzZ+OVV17B6tWr670+ImslEeKuR4gSEVmwDz74AG+//TZycnLQqlUrY5dDREbA4ENEVkEIga5du6JZs2Y4cOCAscshIiPhHB8ismi3bt1CUlISDhw4gBMnTmDHjh3GLomIjIg9PkRk0XJycuDr6wsXFxdMmDABCxYsMHZJRGREDD5ERERkNbiqi4iIiKwGgw8RERFZDU5uvkdlZSVyc3PRpEkTPkaeiIjITAghcOPGDbRo0UJlU+R7MfjcIzc3F97e3sYug4iIiGrh4sWLeOCBB7QeZ/C5R5MmTQBU/YtzdnY2cjVERESkC4VCAW9vb+XvcW0YfO5RPbzl7OzM4ENERGRm7jdNhZObiYiIyGow+BAREZHVYPAhIiIiq8E5PrVQUVGBsrIyY5dBDcDOzg62trbGLoOIiAyEwUcPQgjk5+fj+vXrxi6FGpCLiwu8vLz4XCciIgvA4KOH6tDj4eEBR0dH/iK0cEII3L59G1euXAEANG/e3MgVERFRXTH46KiiokIZepo1a2bscqiBODg4AACuXLkCDw8PDnsREZk5Tm7WUfWcHkdHRyNXQg2t+mfOeV1EROaPwUdPHN6yPvyZExFZDgYfIiIishoMPkRERGQ1GHysQEREBCQSCSQSCezs7ODp6Ymnn34a69atQ2Vlpc7XWb9+PVxcXOqvUCIionrG4GMlQkNDkZeXh5ycHOzevRt9+/bFW2+9hUGDBqG8vNzY5RERkRWorKxERUWFUWtg8LESMpkMXl5eaNmyJR555BG8++672LFjB3bv3o3169cDAOLj49GlSxc4OTnB29sbEyZMwM2bNwEABw8exOuvv47i4mJl79GcOXMAAF9++SV69OiBJk2awMvLC6+++qry2TdEREQAsHv3bsybNw+ff/65Uetg8KkDIQRKS0uN8hJC1Ln+fv36oWvXrvjuu+8AADY2Nli5ciVOnjyJDRs24Mcff8SMGTMAAEFBQVixYgWcnZ2Rl5eHvLw8vPPOOwCqlnnPmzcPx44dQ2JiInJychAREVHn+oiIyPyVlZUhNjYWR44cAVD1MGBD/A6rLT7AsA7KysqwaNEio3x3VFQUpFJpna/Tvn17HD9+HAAwZcoUZXvr1q0xf/58jBs3Dh9//DGkUinkcjkkEgm8vLxUrjFy5EjlP7dp0wYrV67Eo48+ips3b6Jx48Z1rpGIiMzTr7/+ih9++EGlbebMmUZ9TAiDj5UTQij/B/jDDz9g0aJFyMzMhEKhQHl5Oe7cuYPbt2/X+ODGo0ePYs6cOTh27BiKioqUE6YvXLiAjh07Nsh9EBGR6UhKAtLSYlXanJ0fxNtvv2qkiv7D4FMHdnZ2iIqKMtp3G8Lp06fh6+uLnJwcDBo0COPHj8eCBQvQtGlT/PLLLxg1ahRKS0u1Bp9bt24hJCQEISEh2LhxI9zd3XHhwgWEhISgtLTUIDUSEZH5KCoqQlraSpW2n39+ArdvP4W33zZSUXdh8KkDiURikOEmY/nxxx9x4sQJvP322zh69CgqKyuxbNky2NhUTf3aunWryvlSqVRtNn5mZiauXr2KuLg4eHt7AwD++OOPhrkBIiIyKevXr8f58+dV2jp3nobk5MaIjDRSUfdg8LESJSUlyM/PR0VFBQoKCrBnzx4sWrQIgwYNQnh4ODIyMlBWVoZVq1Zh8ODB+PXXX7FmzRqVa7Ru3Ro3b97E/v370bVrVzg6OqJVq1aQSqVYtWoVxo0bh4yMDMybN89Id0lERMYSGxur1hYTEwMAeO65hq5GO67qshJ79uxB8+bN0bp1a4SGhuLAgQNYuXIlduzYAVtbW3Tt2hXx8fF4//330blzZ2zcuFFt4nZQUBDGjRuHl156Ce7u7li8eDHc3d2xfv16bNu2DR07dkRcXByWLl1qpLskIqKGVlhYqBZ62rZtqww9pkYijLmmzAQpFArI5XIUFxfD2dlZ2X7nzh1kZ2fD19cX9vb2RqyQGhp/9kREmmnq5ZkyZQrkcnmD16Lt9/e92ONDREREetM2tFVT6ElKAoKCqv40Fs7xISIiovtKSgLi4oB+/TJhZ7dF5djt2654/PHJ971GXByQmlr1Z1hYfVVaMwYfIiIiuq+4OCAkpG5DW5GRVdcx5govDnURERGRkrbhKE2h535DW/cKCwNSUozX2wMw+BAREdFd7h6OAoCdO3dqnM+TnBxj1Lk6tcXgQ0REREqRkUBgYNWfsbGxOHr0qMrxSZMmITk5RiUcmRMGHyIiIlKqHo66d68tAPD3j0HTpk1VwpG54eRmIiIiUtq8eTOysrLU2u9+IGFYmHHn6dQFgw8REREB0PxsnsmTJ8PV1dUI1dQPsxrqOnToEAYPHowWLVpAIpEgMTFR5bgQAtHR0WjevDkcHBwQHByMM2fOGKdYKxQREYGhQ4cq3/fp0wdTpkyp0zUNcQ0iIqqZEELrAwktKfQAZhZ8bt26ha5du+Kjjz7SeHzx4sVYuXIl1qxZg99++w1OTk4ICQnBnTt3GrhS0xIREQGJRKLcTb5du3aYO3cuysvL6/V7v/vuO503LD148CAkEgmuX79e62sQEZH+li5dirlz56q1m+peW3VlVkNdAwYMwIABAzQeE0JgxYoVmD17NoYMGQIA+OKLL+Dp6YnExES8/PLLDVmqyQkNDUVCQgJKSkqwa9cuTJw4EXZ2doiKilI5r7S0FFKp1CDf2bRpU5O4BhERaaapl2fp0qno0qUJLDT3mFePT02ys7ORn5+P4OBgZZtcLkdAQABSU1O1fq6kpAQKhULlZYlkMhm8vLzg4+OD8ePHIzg4GElJScrhqQULFqBFixbw8/MDAFy8eBEvvvgiXFxc0LRpUwwZMgQ5OTnK61VUVGDq1KlwcXFBs2bNMGPGDNy73+29w1QlJSWYOXMmvL29IZPJ0K5dO6xduxY5OTno27cvAMDV1RUSiQQREREar1FUVITw8HC4urrC0dERAwYMUBnOXL9+PVxcXJCcnIwOHTqgcePGCA0NRV5envKcgwcPomfPnnBycoKLiwsef/xxnD9/3kD/pomITF9FRYXG0OPvH4MuXZqY5WotXVlM8MnPzwcAeHp6qrR7enoqj2myaNEiyOVy5cvb27te6zQVDg4OKC0tBQDs378fWVlZ2LdvH3bu3ImysjKEhISgSZMm+Pnnn/Hrr78qA0T1Z5YtW4b169dj3bp1+OWXX3Dt2jVs3769xu8MDw/Hpk2bsHLlSpw+fRqffPIJGjduDG9vb3z77bcAgKysLOTl5eGDDz7QeI2IiAj88ccfSEpKQmpqKoQQeOaZZ1BWVqY85/bt21i6dCm+/PJLHDp0CBcuXMA777wDACgvL8fQoUPRu3dvHD9+HKmpqRgzZgwkEkmd/50SEZmD2NhYzJ8/X609JibGJJ6sXN/MaqirPkRFRWHq1KnK9wqFwqLDjxAC+/fvR3JyMiZNmoTCwkI4OTnh888/Vw5xffXVV6isrMTnn3+uDAQJCQlwcXHBwYMH0b9/f6xYsQJRUVF49tlnAQBr1qxBcnKy1u/966+/sHXrVuzbt0/ZK9emTRvl8eohLQ8PD7i4uGi8xpkzZ5CUlIRff/0VQUFBAICNGzfC29sbiYmJeOGFFwAAZWVlWLNmDdq2bQsAePPNN5Xj1wqFAsXFxRg0aJDyeIcOHfT/F0lEZIY09fLMnDkT9vb2RqjGOCymx8fLywsAUFBQoNJeUFCgPKaJTCaDs7OzyqshaNsLpb7s3LkTjRs3hr29PQYMGICXXnoJc+bMAQB06dJFZV7PsWPHcPbsWTRp0gSNGzdG48aN0bRpU9y5cwfnzp1DcXEx8vLyEBAQoPxMo0aN0KNHD63fn56eDltbW/Tu3bvW93D69Gk0atRI5XubNWsGPz8/nD59Wtnm6OioDDUA0Lx5c1y5cgVAVcCKiIhASEgIBg8ejA8++EBlGIyIyBKVlpZqXbVlTaEHsKAeH19fX3h5eWH//v3o1q0bgKr/d//bb79h/Pjxxi1Og7v3QmmILsW+ffti9erVkEqlaNGiBRo1+u9H7+TkpHLuzZs30b17d2zcuFHtOu7u7rX6fgcHh1p9rjbs7OxU3kskEpX5RwkJCZg8eTL27NmDLVu2YPbs2di3bx8ee+yxBquRiKghJCVpfgIzYLmrtu7HrHp8bt68ifT0dKSnpwOomtCcnp6OCxcuQCKRYMqUKZg/fz6SkpJw4sQJhIeHo0WLFirPljEVDf24bycnJ7Rr1w6tWrVSCT2aPPLIIzhz5gw8PDzQrl07lVf1XKjmzZvjt99+U36mvLxcbT+Xu3Xp0gWVlZX46aefNB6v7nGqqKjQeo0OHTqgvLxc5XuvXr2KrKwsdOzYscZ7upe/vz+ioqKQkpKCzp074+uvv9br80RE5kBT6Hn33XetNvQAZhZ8/vjjD/j7+8Pf3x8AMHXqVPj7+yM6OhoAMGPGDEyaNAljxozBo48+ips3b2LPnj0m2Y1nyhPIXnvtNbi5uWHIkCH4+eefkZ2djYMHD2Ly5Mm4dOkSAOCtt95CXFwcEhMTkZmZiQkTJqg9g+durVu3xogRIzBy5EgkJiYqr7l161YAgI+PDyQSCXbu3InCwkLcvHlT7RoPPvgghgwZgtGjR+OXX37BsWPHMGzYMLRs2VL5CIP7yc7ORlRUFFJTU3H+/Hns3bsXZ86c4TwfIrIot27d0jq0dW+vuLUxq6GuPn36qC2ZvptEIsHcuXM1PoiJdOfo6IhDhw5h5syZePbZZ3Hjxg20bNkSTz31lHIO1LRp05CXl4cRI0bAxsYGI0eOxP/+9z8UFxdrve7q1avx7rvvYsKECbh69SpatWqFd999FwDQsmVLxMbGIjIyEq+//jrCw8Oxfv16tWskJCTgrbfewqBBg1BaWopevXph165dOv+H7OjoiMzMTGzYsAFXr15F8+bNMXHiRIwdO1b/f1FERCZIU+ABrHdo614SUVOSsEIKhQJyuRzFxcUqE53v3LmD7Oxs+Pr6mmQPEtUf/uyJyBxom8/z3nvvwcbGrAZ4akXb7+97mVWPDxEREam7du0a0tJWqbWzl0cdgw8REZEZ0zS0ZWdnp5xKQKoYfIiIiMyUptATHR3Np9HXwPIH/YiIiCzMuXPnNIae5OQYhp77YI+PnjgX3PrwZ05EpkTbqq3k5BiL3lzUUNjjo6Pq5dK3b982ciXU0Kp/5tb+7AsiMj5Noae0NAb+/pzErCv2+OjI1tYWLi4uyj2fHB0d2Z1o4YQQuH37Nq5cuQIXFxfY2toauyQislJpaWlI0rC5Y/WqraCght0GyZwx+OiherPT6vBD1sHFxaXGjW6JiOqTtqEtf/8YBAVVbX0UGVkVejjUdX98gOE9dHkAUkVFBcrKyhq4MjIGOzs79vQQkdFo23YC+K+XJzCwagska8cHGNYjW1tb/jIkIqJ6c/DgQY2bOt/9QEL28tQOgw8REZEJ0dTL07hxY0ybNk2lLSyM83lqg8GHiIjIRNQ0tEWGweBDRERkZImJiTh27JhaO0OP4TH4EBERGZGmXh4fHx9EREQ0fDFWgMGHiIjISDi01fAYfIiIiBrYxx9/jMLCQrV2hp76x+BDRETUgDT18ly8+Ag+/3ywEaqxPtyri4iIqIFo21E9LIyhp6Gwx4eIiKieadt2IiYmBhzdaljs8SEiIqpHmkJP7969lfN5kpKqtp/QsAcp1QP2+BAREdUTXVZtxcVxZ/WGxOBDRERkYDUNbd2Le241LAYfIiIiA9IUesrLwzBvnr/G87nnVsPiHB8iIiID0RR65syJwYoVmkMPNTz2+BAREdWRtqGt0tIYNG4MTJ7cwAWRVgw+REREekhK+m9OTliY5tDz4osvokOHDgCABQsaukKqCYMPERGRHv5bhSWQljZX7Ti3nTBtDD5ERER6iIwE0tI0D235+8cgKOi/3iAyPQw+REREetAUet544w20bNkSQUF8Jo+ps8hVXR999BFat24Ne3t7BAQE4MiRI8YuiYiIzFx5ebnG+Tz+/jFo2bIlgKqensBAPpPHlEmEEMLYRRjSli1bEB4ejjVr1iAgIAArVqzAtm3bkJWVBQ8Pj/t+XqFQQC6Xo7i4GM7Ozg1QMRERmTptq7bmzIlBYCCQktLABZEaXX9/W1yPT3x8PEaPHo3XX38dHTt2xJo1a+Do6Ih169YZuzQiIjJDmkJPhw5vYvPmGPj5sXfH3FhU8CktLcXRo0cRHBysbLOxsUFwcDBSU1ONWBkREZmbW7duad1ra8WKZsjMBJo25Vwec2NRk5v/+ecfVFRUwNPTU6Xd09MTmZmZGj9TUlKCkpIS5XuFQlGvNRIRkWm6+/k82lZtVS9V5/5a5suienxqY9GiRZDL5cqXt7e3sUsiIiIjqH4+j6bQ8+OP78Df/7/n84SFVc3rYW+P+bGo4OPm5gZbW1sUFBSotBcUFMDLy0vjZ6KiolBcXKx8Xbx4sSFKJSIiEzNlyj+YM0c99CQnx+DQISfExRmhKDI4iwo+UqkU3bt3x/79+5VtlZWV2L9/PwIDAzV+RiaTwdnZWeVFRESWJykJCAqq+vNesbGxOH36I7X2mJgYLlG3MBY1xwcApk6dihEjRqBHjx7o2bMnVqxYgVu3buH11183dmlERGRE/201oTpEpWkC875972LGDDsAVedySMtyWFzweemll1BYWIjo6Gjk5+ejW7du2LNnj9qEZyIisi73TkjOycnBhg0b1M5bujQGN2/y6cuWyuIeYFhXfIAhEZHl0/ZAwk2bYpCVBTRuDGzcyOBjTnT9/W1xPT5EREQ10RR6kpOjkZoqQfv2/83nYeixTAw+RERkFY4dO4bExES19piYGPj7/zcMxsBj2Rh8iIjI4mkb2qp+ICEnMFsPBh8iIrJo2radIOvE4ENERBZp//79+OWXX9TaGXqsG4MPERFZnPsNbZH1YvAhIiKLwqEtqgmDDxERWYSvvvoK586dU2tn6KG7WdReXUREZJ1iY2M1hp6lSxl6SBV7fIiIyKxpGtoqLY3BypXA5MlGKIhMGoMPERGZpYULF6KsrEytvXpoa8GChq6IzAGHuoiIyKQkJQFBQVV/ahMbG6sx9Pj7c2iLasYeHyIiMilxcUBqqvbd0blqi+qCwYeIiExKZOR/+2bdTduzedjLQ/rgUBcREZm8mkIP99gifbDHh4iITMq9Q10c2iJDYvAhIiKTUj3UFRISC00dPQw9VBcMPkREZFLCwoC0NPXE4+npiXHjxhmhIrIkDD5ERGRSOLRF9YnBh4iITAJ3VKeGwOBDRERGlZSkeWirW7duGDJkiBEqIkvG4ENEREaRlPTfJOZ7sZeH6guDDxERGUVaWixCQtTbGXqoPvEBhkREVC+07bmVlKR5Ps/TTz/N0EP1jj0+RERULzTtuSWEQFraXLVzGXiooTD4EBFRvbh3zy2u2iJTwOBDRET1orqXJy5O86qtF198ER06dGjgqsjaMfgQEVG9Wby4DCEhC9Xa2ctDxsLgQ0RE9SI2NhZPP63eztBDxsTgQ0REBqdpPs9DD43CK688YIRqiP7D5exERFQndy9bv3nzpta9thh6yBSYTfBZsGABgoKC4OjoCBcXF43nXLhwAQMHDoSjoyM8PDwwffp0lJeXN2yhRERWpnrZelpaLJYtW6Z2nENbZErMZqirtLQUL7zwAgIDA7F27Vq14xUVFRg4cCC8vLyQkpKCvLw8hIeHw87ODgsXqk+sIyIiw4iM1Lxq66233tL6f1SJjEUihBDGLkIf69evx5QpU3D9+nWV9t27d2PQoEHIzc2Fp6cnAGDNmjWYOXMmCgsLIZVKdbq+QqGAXC5HcXExnJ2dDV0+EZFFyc/PxyeffKLWzl4eami6/v42m6Gu+0lNTUWXLl2UoQcAQkJCoFAocPLkSa2fKykpgUKhUHkREdH9xcbGMvSQ2TGboa77yc/PVwk9AJTv8/PztX5u0aJFWp8mSkREmmn6ezMyMhIymcwI1RDpzqg9PpGRkZBIJDW+MjMz67WGqKgoFBcXK18XL16s1+8jIjJnmZmZWldtMfSQOTBqj8+0adMQERFR4zlt2rTR6VpeXl44cuSISltBQYHymDYymYz/sRIR6YB7bZElMGrwcXd3h7u7u0GuFRgYiAULFuDKlSvw8PAAAOzbtw/Ozs7o2LGjQb6DiMhaaQo97733HmxsLGaqKFkJs5njc+HCBVy7dg0XLlxARUUF0tPTAQDt2rVD48aN0b9/f3Ts2BHDhw/H4sWLkZ+fj9mzZ2PixIns0SEiqqWUlBTs27dPrZ29PGSuzGY5e0REBDZs2KDWfuDAAfTp0wcAcP78eYwfPx4HDx6Ek5MTRowYgbi4ODRqpHu+43J2IrJGSUlVDyKMjKzaVT0pSfOzeQCGHjJNuv7+Npvg01AYfIjIGgUFVT19OTAQSEnRPLTFwEOmzOqe40NERLUXGVkVeoKDExl6yKKZzRwfIiKqP2FhHNoi68DgQ0RE7OUhq8HgQ0RkhaonMw8Z8jHu3ClUO87QQ5aKwYeIyArFxQEhIbG4c0f9GEMPWTIGHyIiKxQSwqEtsk4MPkREVoTbTpC143J2IiIrwdBDxB4fIiKrwFVbRFUYfIiILBh7eYhUcaiLiMhCMfQQqdO7x8fW1hZ5eXnw8PBQab969So8PDxQUVFhsOKIiKh2OLRFpJnewUfbnqYlJSWQSqV1LoiIiHR3767q7OUhqpnOwWflypUAAIlEgs8//xyNGzdWHquoqMChQ4fQvn17w1dIRERqqgNPURGQmVn1z5r22pJKpYiKijJChUSmSefgs3z5cgBVPT5r1qyBra2t8phUKkXr1q2xZs0aw1dIRERq4uKA1FTAz69qV3U+kJBINzoHn+zsbABA37598d1338HV1bXeiiIioppFRv637YQmDD1Emum9quvAgQMMPUREDSwpCQgKqvoTqJrPoyn0tGnThqGHqAZ6T24eOXJkjcfXrVtX62KIiEiz6qGtuDjtk5gZeIjuT+/gU1RUpPK+rKwMGRkZuH79Ovr162ewwoiI6D93D21pWrjF0EOkG72Dz/bt29XaKisrMX78eLRt29YgRRERkaqwMM2rtjw9H8e4ccFGqIjIPEmEtgfz6CkrKwt9+vRBXl6eIS5nNAqFAnK5HMXFxXB2djZ2OUREEEJg7ty5au3s5SH6j66/vw22V9e5c+dQXl5uqMsREVm9pCTNvTwAQw9RbekdfKZOnaryXgiBvLw8fP/99xgxYoTBCiMisnaaQs/gwYPxyCOPGKEaIsugd/BJS0tTeW9jYwN3d3csW7bsviu+iIjo/srLy7FgwQK1dvbyENWd3sHnwIED9VEHERFB+15b/v4MPUSGUOs5PleuXEFWVhYAwM/PT223diIiUnfvpqJ30xR6IiIi4OPj00DVEVk+vZ/crFAoMHz4cLRo0QK9e/dG79690bJlSwwbNgzFxcX1USMRkcW4+0GE1W7duqX1gYQMPUSGpXfwGT16NH777Td8//33uH79Oq5fv46dO3fijz/+wNixY+ujRiIiixEZWbWpaGRk1fvY2FgsXbpU7TzO5yGqH3o/x8fJyQnJycl44oknVNp//vlnhIaG4tatWwYtsKHxOT5E1FA09fJMmjQJTZs2NUI1ROZN19/fevf4NGvWDHK5XK1dLpdz81IiIi3u3mT0ypUrWoe2GHqI6pfewWf27NmYOnUq8vPzlW35+fmYPn063nvvPYMWVy0nJwejRo2Cr68vHBwc0LZtW8TExKC0tFTlvOPHj+PJJ5+Evb09vL29sXjx4nqph4hIX9Vze9LSYrF69Wq14xzaImoYeq/qWr16Nc6ePYtWrVqhVatWAIALFy5AJpOhsLAQn3zyifLcP//80yBFZmZmorKyEp988gnatWuHjIwMjB49Grdu3VKOjSsUCvTv3x/BwcFYs2YNTpw4gZEjR8LFxQVjxowxSB1ERPq4ewVXZKTmBxLOmDEDDg4ORqiOyDrpHXyGDBkCiURSH7VoFRoaitDQUOX7Nm3aICsrC6tXr1YGn40bN6K0tBTr1q2DVCpFp06dkJ6ejvj4eAYfIjKK6l6ezz47hx49vlI7zl4eooand/CZM2dOPZShv+LiYpWx8NTUVPTq1QtSqVTZFhISgvfffx9FRUVa5x+VlJSgpKRE+V6hUNRf0URkVbT18gAMPUTGovccnzZt2uDq1atq7devX0ebNm0MUtT9nD17FqtWrVJZPp+fnw9PT0+V86rf3z0f6V6LFi2CXC5Xvry9veunaCKyOppCz+zZsxl6iIxI7+CTk5ODiooKtfaSkhJcunRJr2tFRkZCIpHU+MrMzFT5zOXLlxEaGooXXngBo0eP1rd8NVFRUSguLla+Ll68WOdrEpF1+/PPP7Wu2rK1tTVCRURUTeehrqSkJOU/Jycnqyxpr6iowP79++Hr66vXl0+bNg0RERE1nnN3L1Jubi769u2LoKAgfPrppyrneXl5oaCgQKWt+r2Xl5fW68tkMshkMr3qJiLSRtteW+zlITINOgefoUOHAgAkEglGjBihcszOzg6tW7fGsmXL9Ppyd3d3uLu763Tu5cuX0bdvX3Tv3h0JCQmwsVHtrAoMDMSsWbNQVlYGOzs7AMC+ffvg5+fH5wsRUYPQFHqio6MbfEEIEWmnc/CprKwEAPj6+uL333+Hm5tbvRV1r8uXL6NPnz7w8fHB0qVLUVhYqDxW3Zvz6quvIjY2FqNGjcLMmTORkZGBDz74AMuXL2+wOonIOu3duxepqalq7f7+MWDmITIteq/qys7Oro86arRv3z6cPXsWZ8+exQMPPKByrHrHDblcjr1792LixIno3r073NzcEB0dzaXsRFSvOLRFZF703qtr7ty5NR6Pjo6uU0HGxr26iEhX2iYwE1HD0/X3t949Ptu3b1d5X1ZWhuzsbDRq1Aht27Y1++BDRHQ/mzZtwl9//aXWztBDZPr0Dj5paWlqbQqFAhEREfjf//5nkKKIiEwVh7aIzJveQ13anDhxAoMHD0ZOTo4hLmc0HOoiIm00hR5//xiEhRmhGCJSUW9DXdpUPwCQiMjSxMfH48aNG2rtc+bEIDAQDD5EZkTv4LNy5UqV90II5OXl4csvv8SAAQMMVhgRkSnQNrTl718VeiIjG7ggIqoTvYe67n06s42NDdzd3dGvXz9ERUWhSZMmBi2woXGoi4iqaQo9yckxSEkxQjFEVKN6G+oyxnN8iIgakrZenuTkGPbwEJm5Ws3xuX79Os6ePQsAaNeuHVxcXAxZExGR0dS0aosLt4jMn167s+fk5GDgwIFwc3NDQEAAAgIC4ObmhkGDBpn9ai4iIm2rtpKTY3DXPs1EZMZ0nuNz8eJFPProo7Czs8OECRPQoUMHAMCpU6ewevVqlJeX4/fff1fbUsLccI4PkfWpqZcnKAhITQUCA8G5PUQmTNff3zoHn1GjRuHs2bNITk6Gvb29yrF///0XoaGhePDBB/H555/XrXIjY/AhsmxJSUBcXNVqrLAwzaHH3d0dEyZM0Hg+EZkmgwefli1bYsuWLXjiiSc0Hj906BBefvll5Obm1q5iE8HgQ2TZ7u7BCQnhXltElsLgq7r++ecftG7dWuvxNm3a4Nq1a3oVSUTUUKp7bvr21Rx4gKpVW/7+7NkhsmQ6T25u3rw5Tp06pfV4RkYGvLy8DFIUEZGhxcVV9fRIpeqhp0uXLkhOjkFqatV5RGS5dO7xGTp0KN555x3s378f7u7uKseuXLmCmTNnYujQoYauj4jIICIjgbQ0zau2qnuCqs8jIsul8xyfoqIiBAQEID8/H8OGDUP79u0hhMDp06fx9ddfw8vLC4cPH0bTpk3ru+Z6xTk+RJaHq7aILJ/B5/i4urrit99+w7vvvovNmzfj+vXrAAAXFxe8+uqrWLhwodmHHiKyPJpCT3BwMB5//HEAVT081au2iMjy6b1XF1C1MWlhYSGAqmWfEonE4IUZC3t8iCyDEAJz585Va+eqLSLLVG97dQGARCKBh4dHrYsjIqpPNQ1tEZF102vLCiIiU6cp9Lz00kuIianadiIoCNx+gsiKMfgQkVmrDjM7dlRoDD0xMTFo3749gP+WtHPJOpH1YvAhIrMWF1f1QML09Plqx+4d2oqMrFq9xYnMRNarVnN8iIhMhaanMKemjsaePS3U2sPC+FRmImunU/BZuXKlzhecPHlyrYshItLVnTt38P7776u1JyfHsEeHiLTSaTm7r6+vbheTSPD333/XuShj4nJ2ItPHVVtEdC+DLmfPzs42WGFERHWhKfRMmTIFcrncCNUQkbmp9eTm0tJSZGVloby83JD1EBGpqF619c03xVpXbTH0EJGu9A4+t2/fxqhRo+Do6IhOnTrhwoULAIBJkyYhjmtEicjAqldtnTy5Qu0Yh7aISF96B5+oqCgcO3YMBw8ehL29vbI9ODgYW7ZsMWhxRESaVm1FRkYy9BBRrei9nD0xMRFbtmzBY489prJHV6dOnXDu3DmDFkdE1is/Px+ffPKJWjsDDxHVhd49PoWFhRr36bp161a9blYaFhaGVq1awd7eHs2bN8fw4cORm5urcs7x48fx5JNPwt7eHt7e3li8eHG91UNE9Sc2NlZj6ElOZughorrRO/j06NED33//vfJ9ddj5/PPPERgYaLjK7tG3b19s3boVWVlZ+Pbbb3Hu3Dk8//zzyuMKhQL9+/eHj48Pjh49iiVLlmDOnDn49NNP660mIjI8TROYu3WbzefzEJFB6PQcn7v98ssvGDBgAIYNG4b169dj7NixOHXqFFJSUvDTTz+he/fu9VWriqSkJAwdOhQlJSWws7PD6tWrMWvWLOTn50MqlQKomgeQmJiIzMxMna/L5/gQGceZM2fw9ddfq7VzaIuIdKHr72+9e3yeeOIJpKeno7y8HF26dMHevXvh4eGB1NTUBgs9165dw8aNGxEUFAQ7OzsAQGpqKnr16qUMPQAQEhKCrKwsFBUVNUhdRFQ7sbGxDD1E1CBqtVdX27Zt8dlnnxm6lvuaOXMmPvzwQ9y+fRuPPfYYdu7cqTyWn5+v9oRpT09P5TFXV1eN1ywpKUFJSYnyvUKhqIfKiUgbTUNb0dHR9TpnkIisl049PgqFQueXPiIjIyGRSGp83T1MNX36dKSlpWHv3r2wtbVFeHg49BypU7No0SLI5XLly9vbu07XIyLdpKWlaX0gIUMPEdUXneb42NjY6PwXUUVFhc5fXlhYiKtXr9Z4Tps2bVSGr6pdunQJ3t7eSElJQWBgIMLDw6FQKJCYmKg858CBA+jXrx+uXbumV4+Pt7c35/gQ1SPutUVEhmbQvboOHDig/OecnBxERkYiIiJCuYorNTUVGzZswKJFi/Qq0t3dHe7u7np9plplZSUAKENLYGAgZs2ahbKyMuW8n3379sHPz09r6AEAmUwGmUxWqxqISH/aenmIiBqC3qu6nnrqKbzxxht45ZVXVNq//vprfPrppzh48KAh6wMA/Pbbb/j999/xxBNPwNXVFefOncN7772HgoICnDx5EjKZDMXFxfDz80P//v0xc+ZMZGRkYOTIkVi+fDnGjBmj83dxVRdR/Thw4AAOHTqk1s7QQ0SGUG+rulJTU9GjRw+19h49euDIkSP6Xk4njo6O+O677/DUU0/Bz88Po0aNwsMPP4yffvpJ2Vsjl8uxd+9eZGdno3v37pg2bRqio6P1Cj1EVD9iY2MZeojIJOjd4+Pn54chQ4aoPRV5xowZ2LFjB7KysgxaYENjjw+RYXFoi4gagkHn+Nxt+fLleO6557B7924EBAQAAI4cOYIzZ87g22+/rX3FRGRRduzYgfT0dLV2hh4iMia9h7qeeeYZnDlzBoMHD8a1a9dw7do1DB48GH/99ReeeeaZ+qiRiMxMbGysWugRAvD3Z+ghIuPSe6jL0nGoi6hu9BnaSkoC4uKAyEggLKy+KyMiS1ZvQ10AcP36daxduxanT58GAHTq1AkjR46EXC6vXbVEZPbWrl2LS5cuqbXXNLQVFwekplb9yeBDRA1B76GuP/74A23btsXy5cuVQ13x8fFo27Yt/vzzz/qokYhMXGxsrFro8fLyuu98nshIIDAQ3HWdiBqM3kNdTz75JNq1a4fPPvsMjRpVdRiVl5fjjTfewN9//61xyao54VAXkX64aouITIGuv7/1Dj4ODg5IS0tD+/btVdpPnTqFHj164Pbt27Wr2EQw+BDp5sMPP9S45QxDDxEZQ73N8XF2dsaFCxfUgs/FixfRpEkT/SslIrOjqZfn0iV/fPYZJ+oQkWnTe47PSy+9hFGjRmHLli24ePEiLl68iM2bN2vcxoKILI+m0JOcHIPBgxl6iMj06d3js3TpUkgkEoSHh6O8vBwAYGdnh/HjxyMuLs7gBRKRaahpR3WObhGRuaj1c3xu376Nc+fOAQDatm0LR0dHgxZmLJzjQ6ROU+h5+umnERQUpHzPZ/IQkTHV2+RmS8fgQ6RK11VbQUFVz+QJDARSUhqiMiKi/xh8cvPIkSN1Om/dunW6XpKITFhNQ1uaREb+1+NDRGSqdA4+69evh4+PD/z9/cFOIiLLpin0PPfcc+jcubPWz4SFcYiLiEyfzsFn/Pjx2LRpE7Kzs/H6669j2LBhaNq0aX3WRkQNTAiBuXPnqrXr8mwezvEhInOg1xyfkpISfPfdd1i3bh1SUlIwcOBAjBo1Cv3794dEIqnPOhsM5/iQtdJ3aOtenONDRMZU75Obz58/j/Xr1+OLL75AeXk5Tp48icaNG9e6YFPB4EPWSFPoiYiIgI+Pj87XYI8PERlTve7ODgA2NjaQSCQQQqCioqK2lyEiI6qsrMS8efPU2muz7QTn+BCROdAr+Nw91PXLL79g0KBB+PDDDxEaGgobG70fAk1ERqRtaMvfn08jJCLLpXPwmTBhAjZv3gxvb2+MHDkSmzZtgpubW33WRkT1RFPo+fnnidi/3w2Bgey5ISLLpXPwWbNmDVq1aoU2bdrgp59+wk8//aTxvO+++85gxRGRYZWVlWHhwoVq7TExMUhKAm7f5nN4iMiy6Rx8wsPDLWblFpE1ut+qLc7RISJroNcDDInIPGkKPdOmTbOIlZhERPqo9aouIjJ9//77LxYvXqzWXptVW0REloDBh8hC1fWBhERElojBh8gCaQo9UVFRkEqlRqiGiMh0MPgQWRCFQoHly5ertbOXh4ioCoMPkYXg0BYR0f3xcctEFkBT6Nmy5T34+1c9nycoqGovLSIia8ceHyIzVlhYiI8//litfc6cql6euLiq96mpVf/M5/QQkbVj8CEyUzXtteXnB0gk/z2FuXrXdCIia2d2waekpAQBAQE4duwY0tLS0K1bN+Wx48ePY+LEifj999/h7u6OSZMmYcaMGcYrlqieaAo90dHRyqer39uzw54eIqIqZjfHZ8aMGWjRooVau0KhQP/+/eHj44OjR49iyZIlmDNnDj799FMjVElUPy5evKgx9MTExHBLGSIiHZhVj8/u3buxd+9efPvtt9i9e7fKsY0bN6K0tBTr1q2DVCpFp06dkJ6ejvj4eIwZM8ZIFRMZjqbA06hRI8yaNcsI1RARmSezCT4FBQUYPXo0EhMT4ejoqHY8NTUVvXr1UnlAW0hICN5//30UFRXB1dVV43VLSkpQUlKifK9QKAxfPFEdaevlISIi/ZjFUJcQAhERERg3bhx69Oih8Zz8/Hx4enqqtFW/z8/P13rtRYsWQS6XK1/e3t6GK5yojrKyshh6iIgMyKjBJzIyEhKJpMZXZmYmVq1ahRs3biAqKsrgNURFRaG4uFj5unjxosG/g6g2YmNjsXnzZpU2T09PZejh83mIiPRn1KGuadOmISIiosZz2rRpgx9//BGpqamQyWQqx3r06IHXXnsNGzZsgJeXFwoKClSOV7/38vLSen2ZTKZ2XSJj06WXJy6Oz+chItKXUYOPu7s73N3d73veypUrMX/+fOX73NxchISEYMuWLQgICAAABAYGYtasWSgrK4OdnR0AYN++ffDz89M6v4fI1Bw+fBjJyclq7ZqGtiIj+XweIiJ9SYQQwthF6CsnJwe+vr4qz/EpLi6Gn58f+vfvj5kzZyIjIwMjR47E8uXL9VrVpVAoIJfLUVxcDGdn53q6AyJ1mnp5fH19ER4eboRqiIjMi66/v81mVdf9yOVy7N27FxMnTkT37t3h5uaG6OhoLmUns8AJzEREDcMse3zqE3t8qCHt27cPKSkpau13T2CuHs7iPB4iIu2srseHyNxo6uXx9/dH2F0JhxOYiYgMi8GHyAh0HdriBGYiIsNi8CFqQDt27EB6erpau7b5PGFh7OkhIjIkBh+iBqKpl6dFi6eRkBAEf38GHCKihmAWW1YQmTttQ1sJCUHKOTxERFT/2ONDVI/Wr1+P8+fPq7VXD21xDg8RUcNi8CGqJ5p6eZ599ll06dJF+Z5zeIiIGhaHuojqgbahrbtDz9244SgRUcNgjw+RAS1fvhwKhUKt/X5PYebzeoiIGgaDD5GBaOrlGT58ONq0aXPfz3KuDxFRw2DwITKAuu61xbk+REQNg8GHqA4WLVqE0tJStXZuMEpEZJoYfIhqSVMvz7hx4+Dp6WmEaoiISBcMPkR6EkJg7ty5au3s5SEiMn1czk6kh2XLltUYergsnYjItLHHh0hHmoa2OnWagueflyvfc1k6EZFpY48P0X1UVFRoXbUllcpVengiI4HAQC5LJyIyVRIhhDB2EaZEoVBALpejuLgYzs7Oxi6HjExT4AH+G9oKCqrq4QkMBFJSGrIyIiK6m66/vznURaSFptAzc+ZM2NvbK9/zwYNEROaFwYfoHqWlpVi0aJFau6ZVW3zwIBGReeEcHyvCFUf3Fxsbq3PoISIi88MeHyvCFUc10zS0NWvWLDRqxP9MiIgsBXt8rAhXHGl2+/Ztrau2GHqIiCwL/1a3IpyPok5T4JFIJIiOjjZCNUREVN8YfMhqaQo97733Hmxs2BFKRGSpGHzI6ty4cQPx8fFq7ZzATERk+Rh8yKpo6uVxdXXF5MmTjVANERE1NAYfshqaQk90dDQkEokRqiEiImPgZAayeFevXtUYevz9Y/D44xI+14iIyIqwx4csmuYd1Tvh+eefV+6zxecaERFZD7Pp8WndujUkEonKKy4uTuWc48eP48knn4S9vT28vb2xePFiI1VLpkDbs3mef/55AHyuERGRNTKrHp+5c+di9OjRyvdNmjRR/rNCoUD//v0RHByMNWvW4MSJExg5ciRcXFwwZswYY5RLRpKbm4vPPvtMrf3eVVt8rhERkfUxq+DTpEkTeHl5aTy2ceNGlJaWYt26dZBKpejUqRPS09MRHx/P4GNFNPXyBAQEIDQ01AjVEBGRqTGboS4AiIuLQ7NmzeDv748lS5agvLxceSw1NRW9evWCVCpVtoWEhCArKwtFRUVar1lSUgKFQqHyIvOkbWiLoYeIiKqZTY/P5MmT8cgjj6Bp06ZISUlBVFQU8vLylA+iy8/Ph6+vr8pnPD09lcdcXV01XnfRokUaf2GS+cjOzsYXX3yh1s4HEhIR0b2MGnwiIyPx/vvv13jO6dOn0b59e0ydOlXZ9vDDD0MqlWLs2LFYtGgRZDJZrWuIiopSubZCoYC3t3etr0cNS1Nofeqpp/DEE08YoRoiIjJ1Rg0+06ZNQ0RERI3ntGnTRmN7QEAAysvLkZOTAz8/P3h5eaGgoEDlnOr32uYFAYBMJqtTcCLj0Ta0RUREpI1Rg4+7uzvc3d1r9dn09HTY2NjAw8MDABAYGIhZs2ahrKwMdnZ2AIB9+/bBz89P6zAXmadTp05h27Ztau0MPUREdD9mMccnNTUVv/32G/r27YsmTZogNTUVb7/9NoYNG6YMNa+++ipiY2MxatQozJw5ExkZGfjggw+wfPlyI1dPhqSpl2fw4MF45JFHjFANERGZG7NY1SWTybB582b07t0bnTp1woIFC/D222/j008/VZ4jl8uxd+9eZGdno3v37pg2bRqio6O5lN0EJSUBQUHQe6sIbUNbDD1ERKQriRBCGLsIU6JQKCCXy1FcXAxnZ2djl2ORqreKCAwEUlLuf/4ff/yB77//Xq2dQ1tERFRN19/fZjHURZYlMrJqfyxdtorQ1Mvz0ksvoX379vVQGRERWToGH2pwum4VwVVbRERkaAw+ZHIOHz6M5ORktXaGHiIiqisGHzIpmnp5RowYgdatWzd8MUREZHEYfMhkaAo9/v4xYOYhIiJDYfAhoztw4AAOHTqk1j5nTgwCA3WbD0RERKQLBh8yKk29PBMmTEBqqjsCA3Vb+UVERKQrBh8ymppWbem68ouIiEgfZvHkZrIsu3btqvVS9do+9ZmIiAhgjw81ME2B56233oKLi4tOn4+Lq3rqc1wce4SIiEh/7PGhBiGE0NrLo2voAarm/HDuDxER1RZ7fKje7dy5E0ePHlVps7W1xezZs/W+Fuf+EBFRXTD4UL3S1MszY8YMODg4GKEaIiKydgw+VC8qKysxb948tXZuO0FERMbE4EMG98033+DkyZMqbS4uLnjrrbeMVBEREVEVBh8yKE1DW1FRUZBKpUaohoiISBWDDxlERUUF5s+fr9bOoS0iIjIlDD5UZ9999x1OnDih0pab2wUDBz5rpIqIiIg0Y/ChOtE0tLV372ykpNjixAkuPSciItPC4EO1UlZWhoULF6q1x8TEwN+/6snKfMggERGZGgYf0tuXX36Jv//+W6UtICAAoaGhAPiQQSIiMl0MPqQXTUNb0dHRkEgkRqiGiIhIPww+pJM7d+7g/fffV2vnqi0iIjInDD50X2vWrEFBQYFKW58+fdC7d28jVURERFQ7DD5UIw5tERGRJWHwIY1u3ryJZcuWqbVzaIuIiMwZgw+pWbp0KW7duqXSFhoaioCAACNVREREZBgMPqRC09AWe3mIiMhSMPgQAKC4uBgrVqxQa2foISIiS8LgQxp7ef73v//h4YcfNkI1RERE9cfG2AXo4/vvv0dAQAAcHBzg6uqKoUOHqhy/cOECBg4cCEdHR3h4eGD69OkoLy83TrFmQtvQFkMPERFZIrPp8fn2228xevRoLFy4EP369UN5eTkyMjKUxysqKjBw4EB4eXkhJSUFeXl5CA8Ph52dncY9pazdP//8g48++kitnUNbRERkySRCCGHsIu6nvLwcrVu3RmxsLEaNGqXxnN27d2PQoEHIzc2Fp6cngKoH782cOROFhYWQSqU6fZdCoYBcLkdxcTGcnZ0Ndg+mRFMvz8svvww/Pz8jVENERFR3uv7+Nouhrj///BOXL1+GjY0N/P390bx5cwwYMEClxyc1NRVdunRRhh4ACAkJgUKhwMmTJ41RtknSNrTF0ENERNbALIJP9U7gc+bMwezZs7Fz5064urqiT58+uHbtGgAgPz9fJfQAUL7Pz8/Xeu2SkhIoFAqVlyUqLCzkUnUiIrJ6Rg0+kZGRkEgkNb4yMzNRWVkJAJg1axaee+45dO/eHQkJCZBIJNi2bVudali0aBHkcrny5e3tbYhbMynz58/Hxx9/rNI2YsQIhh4iIrI6Rp3cPG3aNERERNR4Tps2bZCXlwcA6Nixo7JdJpOhTZs2uHDhAgDAy8sLR44cUfls9caaXl5eWq8fFRWFqVOnKt8rFAqLCj/s5SEiIvqPUYOPu7s73N3d73te9+7dIZPJkJWVhSeeeAIAUFZWhpycHPj4+AAAAgMDsWDBAly5cgUeHh4AgH379sHZ2VklMN1LJpNBJpMZ4G5MS15eHj799FOVNolEgujoaCNVREREZHxmsZzd2dkZ48aNQ0xMDLy9veHj44MlS5YAAF544QUAQP/+/dGxY0cMHz4cixcvRn5+PmbPno2JEydaZLCpiaZengkTJugUMomIiCyZWUxuBoAlS5bg5ZdfxvDhw/Hoo4/i/Pnz+PHHH+Hq6goAsLW1xc6dO2Fra4vAwEAMGzYM4eHhmDt3rpEr119SEhAUVPWnvrQNbTH0EBERmclzfBqSKTzHJygISE0FAgOBlBTdPlNQUIA1a9aotDVp0kRl/hIREZGl0vX3t1kMdVmbyEggLq7qT1188MEHuH79ukrb5MmTlb1hREREVIXBxwSFhVW9dKFpaMvfPwbMPEREROoYfMzU1atX8eGHH6q0Xbrkj88/D0NgoO7BiYiIyJow+JihxMREHDt2TKVt5syZ2LvXHidP6j5ERkREZG0YfMxMTQ8k1GeIjIiIyBox+JiJK1euYPXq1SptQ4YMQbdu3YxTEBERkRli8DEDW7ZsQWZmpkrbu+++Czs7OyNVREREZJ4YfEyYEELtAYzcdoKIiKj2GHxMlKa9tp5//nl06tTJSBURERGZPwYfE/TFF18gOztbpW3WrFlo1Ig/LiIiorrgb1ITomloy8HBATNmzDBSRURERJaFwcdEFBcXY8WKFSptr7zyCh566CHjFERERGSBGHxMwNGjR7Fz506Vtvfeew82NjZGqoiIiMgyMfg0kKSk/zYerX7IoBACH374Ia5du6Y8LyQkBI899piRqiQiIrJsDD4NJC4OSE2t+jMsDCgqKsLKlStVzuGO6kRERPWLYykNJDISCAys+vO3335TCT1NmzZFdHR0rUJPUhIQFFT1JxEREdVMIoQQxi7ClCgUCsjlchQXF8PZ2dmg1xZCYMWKFVAoFMq2gQMHokePHrW+ZlBQVU9SYCCQkmKIKomIiMyPrr+/OdTVQK5evYoPP/xQpW3KlCmQy+V1um5k5H9zh4iIiKhmDD4N5O7Q4+npibFjx0IikdT5utyRnYiISHcMPg2ka9euOHbsGHdUJyIiMiLO8blHfc7xISIiovqh6+9vruoiIiIiq8HgQ0RERFaDwYeIiIisBoMPERERWQ0GHyIiIrIaDD5ERERkNRh8iIiIyGow+BAREZHVYPAhIiIiq8HgQ0RERFbDLILPwYMHIZFINL5+//135XnHjx/Hk08+CXt7e3h7e2Px4sVGrJqIiIhMjVlsUhoUFIS8vDyVtvfeew/79+9Hjx49AFTt0dG/f38EBwdjzZo1OHHiBEaOHAkXFxeMGTPGGGUTERGRiTGL4COVSuHl5aV8X1ZWhh07dmDSpEmQSCQAgI0bN6K0tBTr1q2DVCpFp06dkJ6ejvj4eAYfIiIiAmAmQ133SkpKwtWrV/H6668r21JTU9GrVy9IpVJlW0hICLKyslBUVKT1WiUlJVAoFCovIiIiskxm0eNzr7Vr1yIkJAQPPPCAsi0/Px++vr4q53l6eiqPubq6arzWokWLEBsbq9bOAERERGQ+qn9vCyFqPM+owScyMhLvv/9+jeecPn0a7du3V76/dOkSkpOTsXXrVoPUEBUVhalTpyrfZ2dno1u3bvD29jbI9YmIiKjh3LhxA3K5XOtxowafadOmISIiosZz2rRpo/I+ISEBzZo1Q1hYmEq7l5cXCgoKVNqq3989P+heMpkMMplM+d7HxwcAcOHChRr/xZkrhUIBb29vXLx4Ec7OzsYux6As+d4Ay74/S743wLLvz5LvDbDs+7O0exNC4MaNG2jRokWN5xk1+Li7u8Pd3V3n84UQSEhIQHh4OOzs7FSOBQYGYtasWSgrK1Me27dvH/z8/LQOc2liY1M17Ukul1vE/xC0cXZ2ttj7s+R7Ayz7/iz53gDLvj9LvjfAsu/Pku5Nlw4Ls5rc/OOPPyI7OxtvvPGG2rFXX30VUqkUo0aNwsmTJ7FlyxZ88MEHKsNYREREZN3ManLz2rVrERQUpDLnp5pcLsfevXsxceJEdO/eHW5uboiOjuZSdiIiIlIyq+Dz9ddf13j84Ycfxs8//1yn75DJZIiJiVGZ92NJLPn+LPneAMu+P0u+N8Cy78+S7w2w7Puz5HuriUTcb90XERERkYUwqzk+RERERHXB4ENERERWg8GHiIiIrAaDDxEREVkNBp//7+DBg5BIJBpfv//+u/K848eP48knn4S9vT28vb2xePFiI1atv++//x4BAQFwcHCAq6srhg4dqnL8woULGDhwIBwdHeHh4YHp06ejvLzcOMXqoXXr1mo/t7i4OJVzzP1nB1RtqtutWzdIJBKkp6erHDPX+wsLC0OrVq1gb2+P5s2bY/jw4cjNzVU5x1zvLScnB6NGjYKvry8cHBzQtm1bxMTEoLS0VOU8c72/BQsWICgoCI6OjnBxcdF4jrn+nQIAH330EVq3bg17e3sEBATgyJEjxi6pVg4dOoTBgwejRYsWkEgkSExMVDkuhEB0dDSaN28OBwcHBAcH48yZM8YptiEIEkIIUVJSIvLy8lReb7zxhvD19RWVlZVCCCGKi4uFp6eneO2110RGRobYtGmTcHBwEJ988omRq9fNN998I1xdXcXq1atFVlaWOHnypNiyZYvyeHl5uejcubMIDg4WaWlpYteuXcLNzU1ERUUZsWrd+Pj4iLlz56r8/G7evKk8bu4/u2qTJ08WAwYMEABEWlqast2c7y8+Pl6kpqaKnJwc8euvv4rAwEARGBioPG7O97Z7924REREhkpOTxblz58SOHTuEh4eHmDZtmvIcc76/6OhoER8fL6ZOnSrkcrnacXP+O2Xz5s1CKpWKdevWiZMnT4rRo0cLFxcXUVBQYOzS9LZr1y4xa9Ys8d133wkAYvv27SrH4+LihFwuF4mJieLYsWMiLCxM+Pr6in///dc4BdczBh8tSktLhbu7u5g7d66y7eOPPxaurq6ipKRE2TZz5kzh5+dnjBL1UlZWJlq2bCk+//xzrefs2rVL2NjYiPz8fGXb6tWrhbOzs8o9myIfHx+xfPlyrcfN+WdXbdeuXaJ9+/bi5MmTasHHEu6v2o4dO4REIhGlpaVCCMu6NyGEWLx4sfD19VW+t4T7S0hI0Bh8zPnvlJ49e4qJEycq31dUVIgWLVqIRYsWGbGqurs3+FRWVgovLy+xZMkSZdv169eFTCYTmzZtMkKF9Y9DXVokJSXh6tWreP3115Vtqamp6NWrF6RSqbItJCQEWVlZKCoqMkaZOvvzzz9x+fJl2NjYwN/fH82bN8eAAQOQkZGhPCc1NRVdunSBp6ensi0kJAQKhQInT540Rtl6iYuLQ7NmzeDv748lS5aodKeb888OqNpwd/To0fjyyy/h6Oiodtzc76/atWvXsHHjRgQFBSn33LOUe6tWXFyMpk2bKt9b2v3dzVz/TiktLcXRo0cRHBysbLOxsUFwcDBSU1ONWJnhZWdnIz8/X+Ve5XI5AgICLO5eqzH4aLF27VqEhITggQceULbl5+er/AcMQPk+Pz+/QevT199//w0AmDNnDmbPno2dO3fC1dUVffr0wbVr1wCY9/1NnjwZmzdvxoEDBzB27FgsXLgQM2bMUB4353sTQiAiIgLjxo1Djx49NJ5jzvcHADNnzoSTkxOaNWuGCxcuYMeOHcpj5n5vdzt79ixWrVqFsWPHKtss6f7uZa739s8//6CiokJj7aZcd21U34813Gs1iw8+kZGRWictV78yMzNVPnPp0iUkJydj1KhRRqpad7reX2VlJQBg1qxZeO6559C9e3ckJCRAIpFg27ZtRr4LzfT52U2dOhV9+vTBww8/jHHjxmHZsmVYtWoVSkpKjHwX2ul6f6tWrcKNGzcQFRVl7JJ1pu9/d9OnT0daWhr27t0LW1tbhIeHQ5jwQ+Vr8/fK5cuXERoaihdeeAGjR482UuX3V5t7IzInZrVXV21MmzYNERERNZ7Tpk0blfcJCQlo1qwZwsLCVNq9vLxQUFCg0lb93svLq+7F1oKu95eXlwcA6Nixo7JdJpOhTZs2uHDhAoCqe7h31YIx7682P7tqAQEBKC8vR05ODvz8/Mz6Z/fjjz8iNTVVbT+dHj164LXXXsOGDRtM7v70/dm5ubnBzc0NDz30EDp06ABvb28cPnwYgYGBJndvgP73l5ubi759+yIoKAiffvqpynmmdn91+e/uXqb2d4qu3NzcYGtrq/HnYsp110b1/RQUFKB58+bK9oKCAnTr1s1IVdUzY08yMjWVlZXC19dXZdVFtepJiNWTLoUQIioqyiwmIRYXFwuZTKYyubm0tFR4eHgoV49UT0S8e9XCJ598IpydncWdO3cavOa6+Oqrr4SNjY24du2aEMK8f3bnz58XJ06cUL6Sk5MFAPHNN9+IixcvCiHM+/7udf78eQFAHDhwQAhh/vd26dIl8eCDD4qXX35ZlJeXqx039/sT4v6Tm83x75SePXuKN998U/m+oqJCtGzZ0mInNy9dulTZVv37wlInNzP43OOHH34QAMTp06fVjl2/fl14enqK4cOHi4yMDLF582bh6OhoFstOhRDirbfeEi1bthTJyckiMzNTjBo1Snh4eCjDQfXS0/79+4v09HSxZ88e4e7ubvJLT1NSUsTy5ctFenq6OHfunPjqq6+Eu7u7CA8PV55j7j+7u2VnZ6ut6jLX+zt8+LBYtWqVSEtLEzk5OWL//v0iKChItG3bVvmL0VzvTYiq0NOuXTvx1FNPiUuXLqk8bqGaOd/f+fPnRVpamoiNjRWNGzcWaWlpIi0tTdy4cUMIYb5/pwhRtZxdJpOJ9evXi1OnTokxY8YIFxcXlRVq5uLGjRvKnw0AER8fL9LS0sT58+eFEFXL2V1cXMSOHTvE8ePHxZAhQ7ic3Zq88sorIigoSOvxY8eOiSeeeELIZDLRsmVLERcX14DV1U1paamYNm2a8PDwEE2aNBHBwcEiIyND5ZycnBwxYMAA4eDgINzc3MS0adNEWVmZkSrWzdGjR0VAQICQy+XC3t5edOjQQSxcuFDt/1Ga88/ubpqCjxDmeX/Hjx8Xffv2FU2bNhUymUy0bt1ajBs3Tly6dEnlPHO8NyGqekIAaHzdzVzvb8SIERrvrbq3Tgjz/Dul2qpVq0SrVq2EVCoVPXv2FIcPHzZ2SbVy4MABjT+nESNGCCGqen3ee+894enpKWQymXjqqadEVlaWcYuuRxIhTHgGIREREZEBWfyqLiIiIqJqDD5ERERkNRh8iIiIyGow+BAREZHVYPAhIiIiq8HgQ0RERFaDwYeIiIisBoMPERERWQ0GHyILk5+fj0mTJqFNmzaQyWTw9vbG4MGDsX//fuU5KSkpeOaZZ+Dq6gp7e3t06dIF8fHxqKioUJ6Tk5ODUaNGwdfXFw4ODmjbti1iYmJQWlqq8n2fffYZunbtisaNG8PFxQX+/v5YtGiR8vicOXMgkUgQGhqqVuuSJUsgkUjQp08fne9PoVBg1qxZaN++Pezt7eHl5YXg4GB89913Kju6nzx5Ei+++CLc3d0hk8nw0EMPITo6Grdv31aec+3aNUyaNAl+fn5wcHBAq1atMHnyZBQXF+tUS05OjtYdzA8fPqzzPfXp0wdTpkzR+Xwiqj2L352dyJrk5OTg8ccfh4uLC5YsWYIuXbqgrKwMycnJmDhxIjIzM7F9+3a8+OKLeP3113HgwAG4uLjghx9+wIwZM5CamoqtW7dCIpEgMzMTlZWV+OSTT9CuXTtkZGRg9OjRuHXrFpYuXQoAWLduHaZMmYKVK1eid+/eKCkpwfHjx5GRkaFSV/PmzXHgwAFcunQJDzzwgLJ93bp1aNWqlc73d/36dTzxxBMoLi7G/Pnz8eijj6JRo0b46aefMGPGDPTr1w8uLi44fPgwgoODERwcjO+//x6enp44cuQIpk2bhv379+PAgQOQSqXIzc1Fbm4uli5dio4dO+L8+fMYN24ccnNz8c033+hc1w8//IBOnTqptDVr1kznz+tCCIGKigo0asS/tonqxLg7ZhCRIQ0YMEC0bNlS3Lx5U+1YUVGRuHnzpmjWrJl49tln1Y4nJSUJAGLz5s1ar7948WLh6+urfD9kyBARERFRY00xMTGia9euYtCgQWL+/PnK9l9//VW4ubmJ8ePHi969e+twd0KMHz9eODk5icuXL6sdu3HjhigrKxOVlZWiY8eOokePHqKiokLlnPT0dCGRSGrcC2vr1q1CKpXqtJ+Utn3T7lZ9/1988YXw8fERzs7O4qWXXhIKhUIIoXm/q+zsbOX+Srt27RKPPPKIsLOzEwcOHBB37twRkyZNEu7u7kImk4nHH39cHDlyRPl91Z/buXOn6NKli5DJZCIgIECcOHFCCCHEzZs3RZMmTcS2bdtU6ty+fbtwdHRU1kVkqTjURWQhrl27hj179mDixIlwcnJSO+7i4oK9e/fi6tWreOedd9SODx48GA899BA2bdqk9TuKi4vRtGlT5XsvLy8cPnwY58+fv299I0eOxPr165Xv161bh9deew1SqfS+nwWAyspKbN68Ga+99hpatGihdrxx48Zo1KgR0tPTcerUKUydOhU2Nqp/xXXt2hXBwcH3vUdnZ2eD9qycO3cOiYmJ2LlzJ3bu3ImffvoJcXFxAIAPPvgAgYGBGD16NPLy8pCXlwdvb2/lZyMjIxEXF4fTp0/j4YcfxowZM/Dtt99iw4YN+PPPP9GuXTuEhITg2rVrKt85ffp0LFu2DL///jvc3d0xePBglJWVwcnJCS+//DISEhJUzk9ISMDzzz+PJk2aGOy+iUwRgw+RhTh79iyEEGjfvr3Wc/766y8AQIcOHTQeb9++vfIcTddftWoVxo4dq2yLiYmBi4sLWrduDT8/P0RERGDr1q2orKxU+/ygQYOgUChw6NAh3Lp1C1u3bsXIkSN1vr9//vkHRUVFNd4fcP977NChg9Z7/OeffzBv3jyMGTNG57oAICgoCI0bN1Z53a2yshLr169H586d8eSTT2L48OHKOVdyuRxSqRSOjo7w8vKCl5cXbG1tlZ+dO3cunn76abRt2xYymQyrV6/GkiVLMGDAAHTs2BGfffYZHBwcsHbtWpXvjImJwdNPP40uXbpgw4YNKCgowPbt2wEAb7zxBpKTk5GXlwcAuHLlCnbt2qXXz4PIXDH4EFkIcdfEXkOeCwCXL19GaGgoXnjhBYwePVrZ3rx5c6SmpuLEiRN46623UF5ejhEjRiA0NFQt/NjZ2WHYsGFISEjAtm3b8NBDD+Hhhx+ut5r1PV+hUGDgwIHo2LEj5syZo9dnt2zZgvT0dJXX3Vq3bq3Sk9K8eXNcuXJFp2v36NFD+c/nzp1DWVkZHn/8cWWbnZ0devbsidOnT6t8LjAwUPnPTZs2hZ+fn/Kcnj17olOnTtiwYQMA4KuvvoKPjw969eql2w0TmTEGHyIL8eCDDyonJWvz0EMPAYDaL8lqp0+fVp5TLTc3F3379kVQUBA+/fRTjZ/r3LkzJkyYgK+++gr79u3Dvn378NNPP6mdN3LkSGzbtg0fffSR3r0L7u7ucHFxqfH+gNrd440bNxAaGoomTZpg+/btsLOz06s2b29vtGvXTuV1t3uvJ5FINPaKaaJp2NIQ3njjDeXQY0JCAl5//XVIJJJ6+S4iU8LgQ2QhmjZtipCQEHz00Ue4deuW2vHr16+jf//+aNq0KZYtW6Z2PCkpCWfOnMErr7yibLt8+TL69OmD7t27IyEhQW3OjCYdO3YEAI01dOrUCZ06dUJGRgZeffVVfW4PNjY2ePnll7Fx40bk5uaqHb958ybKy8vRrVs3tG/fHsuXL1cLF8eOHcMPP/ygco8KhQL9+/eHVCpFUlIS7O3t9arLEKRSqcqjBLRp27YtpFIpfv31V2VbWVkZfv/9d+W/92p3L6cvKirCX3/9pTL8N2zYMJw/fx4rV67EqVOnMGLECAPcCZHpY/AhsiAfffQRKioq0LNnT3z77bc4c+YMTp8+jZUrVyIwMBBOTk745JNPsGPHDowZMwbHjx9HTk4O1q5di4iICDz//PN48cUXAfwXelq1aoWlS5eisLAQ+fn5yM/PV37f+PHjMW/ePPz66684f/48Dh8+jPDwcLi7u6sMtdztxx9/RF5eHlxcXPS+vwULFsDb2xsBAQH44osvcOrUKZw5cwbr1q2Dv78/bt68CYlEgrVr1+LUqVN47rnncOTIEVy4cAHbtm3D4MGDERgYqHxmTnXouXXrFtauXQuFQqG8R12CSLWrV68qP1f9unPnjs6fb926NX777Tfk5OTgn3/+0dob5OTkhPHjx2P69OnYs2cPTp06hdGjR+P27dsYNWqUyrlz587F/v37kZGRgYiICLi5uWHo0KHK466urnj22Wcxffp09O/fX+UxA0QWzahryojI4HJzc8XEiROFj4+PkEqlomXLliIsLEwcOHBAec6hQ4dESEiIcHZ2FlKpVHTq1EksXbpUlJeXK89JSEhQW2Zd/ar2zTffiGeeeUY0b95cSKVS0aJFC/Hcc8+J48ePK8+pXs6tzVtvvaXzcnYhhLh+/bqIjIwUDz74oJBKpcLT01MEBweL7du3i8rKSuV5x48fF88995xo2rSpsLOzE23bthWzZ88Wt27dUp5TvfRb0ys7O/u+tVQvZ9f02rRpk9b7X758ufDx8VG+z8rKEo899phwcHBQW85eVFSk8tl///1XTJo0Sbi5udW4nP3//u//RKdOnYRUKhU9e/YUx44dU6t///79AoDYunXrfe+VyFJIhNBzBiAREZmsgwcPom/fvigqKrpvr9qXX36Jt99+G7m5uTo/VoDI3PERoEREVub27dvIy8tDXFwcxo4dy9BDVoVzfIjIZNz7LJy7Xz///HOD1zNu3Dit9YwbN67B6zGUxYsXo3379vDy8kJUVJSxyyFqUBzqIiKTcfbsWa3HWrZsCQcHhwaspurBfgqFQuMxZ2dneHh4NGg9RFR3DD5ERERkNTjURURERFaDwYeIiIisBoMPERERWQ0GHyIiIrIaDD5ERERkNRh8iIiIyGow+BAREZHVYPAhIiIiq/H/AByAXbngZb0WAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfpUlEQVR4nO3deVxUVf8H8M+AgOyI7AqICyqCmjuZisoDuJWi5Zq7PRpU6s+1MrUsLE3bTG3RniezXNIyLXfEJ8UNQ8UtJRSVRdSYkUVAOL8/fLiPIwPMwKzM5/16zevF3HPm3u+9zMz9zjnnnisTQggQERERmTELQwdAREREZGhMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIyGQsWrQIMplMrboymQyLFi3SaTxhYWEICwsz2vURkfqYEBGRxr755hvIZDLpUa9ePTRq1Ajjx4/HrVu3DB2e0WnSpInS8fLw8ECPHj2wfft2ray/oKAAixYtwqFDh7SyPiJzxISIiGrs7bffxrfffos1a9agX79+2LBhA3r16oUHDx7oZHtvvvkmCgsLdbJuXWvfvj2+/fZbfPvtt5g1axYyMjIQHR2NNWvW1HrdBQUFWLx4MRMiolqoZ+gAiMh09evXD506dQIATJ48GW5ubnj//fexY8cOvPDCC1rfXr169VCvnml+bTVq1AhjxoyRno8dOxbNmzfHypUrMXXqVANGRkQAW4iISIt69OgBAEhNTVVafunSJQwbNgyurq6oX78+OnXqhB07dijVKSkpweLFi9GiRQvUr18fDRs2xDPPPIN9+/ZJdVSNISoqKsKMGTPg7u4OR0dHPPvss7h582aF2MaPH48mTZpUWK5qnevXr0efPn3g4eEBGxsbBAUFYfXq1Rodi+p4eXmhdevWSEtLq7Le7du3MWnSJHh6eqJ+/fpo164d/vWvf0nl165dg7u7OwBg8eLFUrecrsdPEdU1pvlTi4iM0rVr1wAADRo0kJadP38e3bt3R6NGjTBv3jzY29tj8+bNGDx4MH788UcMGTIEwKPEJC4uDpMnT0aXLl2gUChw6tQpnD59Gv/4xz8q3ebkyZOxYcMGjBo1Ck8//TQOHjyIAQMG1Go/Vq9ejTZt2uDZZ59FvXr18Msvv+Dll19GWVkZYmJiarXuciUlJbhx4wYaNmxYaZ3CwkKEhYXh6tWriI2NRUBAALZs2YLx48cjNzcXr732Gtzd3bF69WpMmzYNQ4YMQXR0NACgbdu2WomTyGwIIiINrV+/XgAQ+/fvFzk5OeLGjRti69atwt3dXdjY2IgbN25Idfv27StCQkLEgwcPpGVlZWXi6aefFi1atJCWtWvXTgwYMKDK7S5cuFA8/rWVnJwsAIiXX35Zqd6oUaMEALFw4UJp2bhx44S/v3+16xRCiIKCggr1IiMjRdOmTZWW9erVS/Tq1avKmIUQwt/fX0RERIicnByRk5Mjzpw5I0aMGCEAiFdeeaXS9X300UcCgNiwYYO0rLi4WISGhgoHBwehUCiEEELk5ORU2F8i0gy7zIioxsLDw+Hu7g5fX18MGzYM9vb22LFjBxo3bgwAuHfvHg4ePIgXXngB9+/fx507d3Dnzh3cvXsXkZGRuHLlinRVmouLC86fP48rV66ovf1ff/0VAPDqq68qLZ8+fXqt9svW1lb6Wy6X486dO+jVqxf++usvyOXyGq1z7969cHd3h7u7O9q1a4ctW7bgxRdfxPvvv1/pa3799Vd4eXlh5MiR0jIrKyu8+uqryMvLQ0JCQo1iIaKK2GVGRDW2atUqBAYGQi6XY926dTh8+DBsbGyk8qtXr0IIgQULFmDBggUq13H79m00atQIb7/9Np577jkEBgYiODgYUVFRePHFF6vs+rl+/TosLCzQrFkzpeUtW7as1X4dOXIECxcuRGJiIgoKCpTK5HI5nJ2dNV5n165dsWTJEshkMtjZ2aF169ZwcXGp8jXXr19HixYtYGGh/Nu1devWUjkRaQcTIiKqsS5dukhXmQ0ePBjPPPMMRo0ahcuXL8PBwQFlZWUAgFmzZiEyMlLlOpo3bw4A6NmzJ1JTU/Hzzz9j7969+Oqrr7By5UqsWbMGkydPrnWslU3oWFpaqvQ8NTUVffv2RatWrbBixQr4+vrC2toav/76K1auXCntk6bc3NwQHh5eo9cSke4xISIirbC0tERcXBx69+6Nzz77DPPmzUPTpk0BPOrmUScZcHV1xYQJEzBhwgTk5eWhZ8+eWLRoUaUJkb+/P8rKypCamqrUKnT58uUKdRs0aIDc3NwKy59sZfnll19QVFSEHTt2wM/PT1oeHx9fbfza5u/vj7Nnz6KsrEyplejSpUtSOVB5skdE6uMYIiLSmrCwMHTp0gUfffQRHjx4AA8PD4SFhWHt2rXIzMysUD8nJ0f6++7du0plDg4OaN68OYqKiirdXr9+/QAAn3zyidLyjz76qELdZs2aQS6X4+zZs9KyzMzMCrNFW1paAgCEENIyuVyO9evXVxqHrvTv3x9ZWVnYtGmTtOzhw4f49NNP4eDggF69egEA7OzsAEBlwkdE6mELERFp1ezZs/H888/jm2++wdSpU7Fq1So888wzCAkJwZQpU9C0aVNkZ2cjMTERN2/exJkzZwAAQUFBCAsLQ8eOHeHq6opTp05h69atiI2NrXRb7du3x8iRI/H5559DLpfj6aefxoEDB3D16tUKdUeMGIG5c+diyJAhePXVV1FQUIDVq1cjMDAQp0+flupFRETA2toagwYNwj//+U/k5eXhyy+/hIeHh8qkTpdeeuklrF27FuPHj0dSUhKaNGmCrVu34siRI/joo4/g6OgI4NEg8KCgIGzatAmBgYFwdXVFcHAwgoOD9RovkUkz9GVuRGR6yi+7P3nyZIWy0tJS0axZM9GsWTPx8OFDIYQQqampYuzYscLLy0tYWVmJRo0aiYEDB4qtW7dKr1uyZIno0qWLcHFxEba2tqJVq1bi3XffFcXFxVIdVZfIFxYWildffVU0bNhQ2Nvbi0GDBokbN26ovAx97969Ijg4WFhbW4uWLVuKDRs2qFznjh07RNu2bUX9+vVFkyZNxPvvvy/WrVsnAIi0tDSpniaX3Vc3pUBl68vOzhYTJkwQbm5uwtraWoSEhIj169dXeO3Ro0dFx44dhbW1NS/BJ6oBmRCPtQsTERERmSGOISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIiIjI7DEhIiIiIrPHhIiIiIjMHidmVFNZWRkyMjLg6OjIafKJiIhMhBAC9+/fh4+PT4UbJT+OCZGaMjIy4Ovra+gwiIiIqAZu3LiBxo0bV1rOhEhN5VPk37hxA05OTgaOhoiIiNShUCjg6+srnccrw4RITeXdZE5OTkyIiIiITEx1w104qJqIiIjMHhMiIiIiMntMiIiIiMjscQwREZERKy0tRUlJiaHDIDJaVlZWsLS0rPV6mBARERkhIQSysrKQm5tr6FCIjJ6Liwu8vLxqNU8gEyIiIiNUngx5eHjAzs6OE8ISqSCEQEFBAW7fvg0A8Pb2rvG6mBARERmZ0tJSKRlq2LChocMhMmq2trYAgNu3b8PDw6PG3WccVE1EZGTKxwzZ2dkZOBIi01D+WanNeDsmRERERordZETq0cZnhQkRERERmT0mRERERFTBoUOHIJPJan2lY5MmTfDRRx9pJSZdYkJUR2TKC3E09Q4y5YWGDoWIzFxWVhZeeeUVNG3aFDY2NvD19cWgQYNw4MABqc7Ro0fRv39/NGjQAPXr10dISAhWrFiB0tJSqc61a9cwadIkBAQEwNbWFs2aNcPChQtRXFystL0vv/wS7dq1g4ODA1xcXPDUU08hLi5OKl+0aBFkMhmioqIqxLps2TLIZDKEhYWpvX8KhQJvvPEGWrVqhfr168PLywvh4eHYtm0bhBBSvfPnz+OFF16Au7s7bGxsEBgYiLfeegsFBQVSnXv37uGVV15By5YtYWtrCz8/P7z66quQy+VqxXLt2jXIZDKVj2PHjqm9T2FhYZg+fbra9esiXmVWB2w6mY75286hTAAWMiAuOgTDO/sZOiwiMkPXrl1D9+7d4eLigmXLliEkJAQlJSXYs2cPYmJicOnSJWzfvh0vvPACJkyYgPj4eLi4uGD//v2YM2cOEhMTsXnzZshkMly6dAllZWVYu3YtmjdvjpSUFEyZMgX5+flYvnw5AGDdunWYPn06PvnkE/Tq1QtFRUU4e/YsUlJSlOLy9vZGfHw8bt68icaNG0vL161bBz8/9b8vc3Nz8cwzz0Aul2PJkiXo3Lkz6tWrh4SEBMyZMwd9+vSBi4sLjh07hvDwcISHh2PXrl3w9PTEiRMn8H//9384cOAA4uPjYW1tjYyMDGRkZGD58uUICgrC9evXMXXqVGRkZGDr1q1qx7V//360adNGaRmvUNSQMKDPP/9chISECEdHR+Ho6Ci6desmfv31V6m8sLBQvPzyy8LV1VXY29uL6OhokZWVpbSO69evi/79+wtbW1vh7u4uZs2aJUpKSpTqxMfHi6eeekpYW1uLZs2aifXr12scq1wuFwCEXC6v0b7qSkZugQiYt1P4z/3fo+m8XSIjt8DQoRFRDRUWFooLFy6IwsJCQ4eisX79+olGjRqJvLy8CmV///23yMvLEw0bNhTR0dEVynfs2CEAiB9++KHS9X/wwQciICBAev7cc8+J8ePHVxnTwoULRbt27cTAgQPFkiVLpOVHjhwRbm5uYtq0aaJXr15q7J0Q06ZNE/b29uLWrVsVyu7fvy9KSkpEWVmZCAoKEp06dRKlpaVKdZKTk4VMJhNLly6tdBubN28W1tbWFc5lqqSlpQkA4o8//qi0Tvn+//vf/xb+/v7CyclJDB8+XCgUCiGEEOPGjRMAlB5paWkiPj5eABD79+8XHTt2FLa2tiI0NFRcunRJWvfVq1fFs88+Kzw8PIS9vb3o1KmT2Ldvn9L2/f39xcqVK6XnAMTnn38uoqKiRP369UVAQIDYsmWLVN67d28RExOjtI7bt28LKysrsX//fpX7WNVnRt3zt0G7zBo3boylS5ciKSkJp06dQp8+ffDcc8/h/PnzAIAZM2bgl19+wZYtW5CQkICMjAxER0dLry8tLcWAAQNQXFyMo0eP4l//+he++eYbvPXWW1KdtLQ0DBgwAL1790ZycjKmT5+OyZMnY8+ePXrfX11Iu5OPMqG8rFQIXLtToPoFRGRW9Nmdfu/ePezevRsxMTGwt7evUO7i4oK9e/fi7t27mDVrVoXyQYMGITAwEN9//32l25DL5XB1dZWee3l54dixY7h+/Xq18U2cOBHffPON9HzdunUYPXo0rK2tq30tAJSVleGHH37A6NGj4ePjU6HcwcEB9erVQ3JyMi5cuICZM2fCwkL5NNuuXTuEh4dXu49OTk6oV097nTipqan46aefsHPnTuzcuRMJCQlYunQpAODjjz9GaGgopkyZgszMTGRmZsLX11d67RtvvIEPP/wQp06dQr169TBx4kSpLC8vD/3798eBAwfwxx9/ICoqCoMGDUJ6enqV8SxYsABDhw7FmTNnMHr0aIwYMQIXL14EAEyePBkbN25EUVGRVH/Dhg1o1KgR+vTpo7VjUkGV6ZIBNGjQQHz11VciNzdXWFlZKWWNFy9eFABEYmKiEEKIX3/9VVhYWCi1Gq1evVo4OTmJoqIiIYQQc+bMEW3atFHaxvDhw0VkZKRGcbGFiIj0RVstRD+cuC59PwTM2yl+OHFdSxGqdvz4cQFAbNu2rdI6S5cuFQDE33//rbL82WefFa1bt1ZZduXKFeHk5CS++OILaVlGRobo1q2bACACAwPFuHHjxKZNm5RaZspbSIqLi4WHh4dISEgQeXl5wtHRUZw5c0a89tprarUQZWdnCwBixYoVVdb74Ycfqmy1efXVV4Wtra3KspycHOHn5ydef/31auMR4n8tRLa2tsLe3l7pUW7hwoXCzs5OahESQojZs2eLrl27Ss979eolXnvtNaV1P95CVG7Xrl0CQJXvzTZt2ohPP/1Ueq6qhWjq1KlKr+natauYNm2aEOLR+79BgwZi06ZNUnnbtm3FokWLKt2mybcQPa60tBQ//PAD8vPzERoaiqSkJJSUlCA8PFyq06pVK/j5+SExMREAkJiYiJCQEHh6ekp1IiMjoVAopFamxMREpXWU1ylfR2WKioqgUCiUHsbI29kWcdEhsPzvHAyWMhneiw6Gt7OtgSMjIkPKlBdKYwsBoEwAr29L0WlLkRCi+ko1qAsAt27dQlRUFJ5//nlMmTJFWu7t7Y3ExEScO3cOr732Gh4+fIhx48YhKioKZWVlSuuwsrLCmDFjsH79emzZsgWBgYFo27atzmLWtL5CocCAAQMQFBSERYsWafTaTZs2ITk5WenxuCZNmsDR0VF67u3tLd3uojqPH6PyW2OUvzYvLw+zZs1C69at4eLiAgcHB1y8eLHaFqLQ0NAKz8tbiOrXr48XX3wR69atAwCcPn0aKSkpGD9+vFrx1pTBB1WfO3cOoaGhePDgARwcHLB9+3YEBQUhOTkZ1tbWcHFxUarv6emJrKwsAI+uZHg8GSovLy+rqo5CoUBhYaE05feT4uLisHjxYm3sos4N7+yHnoHuuHanAE3c7JgMEVGV3em6+o5o0aKFNBi6MoGBgQCAixcv4umnn65QfvHiRQQFBSkty8jIQO/evfH000/jiy++ULne4OBgBAcH4+WXX8bUqVPRo0cPJCQkoHfv3kr1Jk6ciK5duyIlJUWp60cd7u7ucHFxqXL/AOV9fOqppyqUX7x4UapT7v79+4iKioKjoyO2b98OKysrjWLz9fVF8+bNKy1/cn0ymaxCwqjOa8snQCx/7axZs7Bv3z4sX74czZs3h62tLYYNG1bhSkBNTZ48Ge3bt8fNmzexfv169OnTB/7+/rVaZ3UM3kLUsmVLJCcn4/jx45g2bRrGjRuHCxcuGDoszJ8/H3K5XHrcuHHD0CFVydvZFqHNGjIZIiIAQICbPSyemLzXUiZDEzfd3Q7E1dUVkZGRWLVqFfLz8yuU5+bmIiIiAq6urvjwww8rlO/YsQNXrlzByJEjpWW3bt1CWFgYOnbsiPXr11cYk6NKeUKlKoY2bdqgTZs2SElJwahRozTZPVhYWGDEiBH47rvvkJGRUaE8Ly8PDx8+RPv27dGqVSusXLmyQtJx5swZ7N+/X2kfFQoFIiIiYG1tjR07dqB+/foaxaUN1tbWSlMeqOvIkSMYP348hgwZgpCQEHh5eeHatWvVvu7JKQGOHTuG1q1bS89DQkLQqVMnfPnll9i4caPGyWtNGDwhsra2RvPmzdGxY0fExcWhXbt2+Pjjj+Hl5YXi4uIKE0JlZ2fDy8sLwKPBdNnZ2RXKy8uqquPk5FRp6xAA2NjYwMnJSelBRGQqDNWdvmrVKpSWlqJLly748ccfceXKFVy8eBGffPIJQkNDYW9vj7Vr1+Lnn3/GSy+9hLNnz+LatWv4+uuvMX78eAwbNgwvvPACgP8lQ35+fli+fDlycnKQlZUl9QAAwLRp0/DOO+/gyJEjuH79Oo4dO4axY8fC3d29QrdMuYMHDyIzM7NCD4Q63n33Xfj6+qJr167497//jQsXLuDKlStYt24dnnrqKeTl5UEmk+Hrr7/GhQsXMHToUJw4cQLp6enYsmULBg0ahNDQUGnOn/JkKD8/H19//TUUCoW0j5okKHfv3pVeV/548OCB2q9v0qQJjh8/jmvXruHOnTtqtx61aNEC27ZtQ3JyMs6cOYNRo0ap9dotW7Zg3bp1+PPPP7Fw4UKcOHECsbGxSnUmT56MpUuXQgiBIUOGqL0vNVblCCMD6N27txg3bpw0qHrr1q1S2aVLl1QOqs7OzpbqrF27Vjg5OYkHDx4IIR4Nqg4ODlbaxsiRI+vMoGoiqnu0edl9Rm6BOHr1jl4vtMjIyBAxMTHC399fWFtbi0aNGolnn31WxMfHS3UOHz4sIiMjhZOTk7C2thZt2rQRy5cvFw8fPpTqrF+/vsLl4OWPclu3bhX9+/cX3t7ewtraWvj4+IihQ4eKs2fPSnXKB1VXRt1B1eVyc3PFvHnzRIsWLYS1tbXw9PQU4eHhYvv27aKsrEyqd/bsWTF06FDh6uoqrKysRLNmzcSbb74p8vPzpTrlA5dVPdLS0qqNpXxQtarH999/X+n+r1y5Uvj7+0vPL1++LLp16yZsbW0rXHb/+AD4P/74Qym2tLQ00bt3b2Frayt8fX3FZ599VmGAtqpB1atWrRL/+Mc/hI2NjWjSpInSAOpy9+/fF3Z2duLll1+u9jhoY1C1QROiefPmiYSEBJGWlibOnj0r5s2bJ2Qymdi7d68QQoipU6cKPz8/cfDgQXHq1CkRGhoqQkNDpdc/fPhQBAcHi4iICJGcnCx2794t3N3dxfz586U6f/31l7CzsxOzZ88WFy9eFKtWrRKWlpZi9+7dGsXKhIiI9MWU5yEiqg4AsX379mrrpaWlCQsLC5GUlFRtXW0kRAYdVH379m2MHTsWmZmZcHZ2Rtu2bbFnzx784x//AACsXLkSFhYWGDp0KIqKihAZGYnPP/9cer2lpSV27tyJadOmSU2x48aNw9tvvy3VCQgIwK5duzBjxgx8/PHHaNy4Mb766itERkbqfX+JiIioaiUlJbh79y7efPNNdOvWDR06dNDLdmX/zdaoGgqFAs7OztKEWUREuvLgwQOkpaUhICDAIANszZmDg0OlZb/99ht69Oihx2iAqVOnYsOGDSrLxowZgzVr1ug1Hm2QyWTYvn07Bg8erLL80KFD6N27NwIDA7F161aEhIRUu86qPjPqnr8Nftk9ERGRsXhy/p7HNWrUSH+B/Nfbb7+tclZvACb747y6dpiwsDCN53DSBiZERERE/1XVXD6G4OHhAQ8PD0OHYRYMftk9ERERkaExISIiMlLqzgVDZO608VlhlxkRkZGxtraGhYUFMjIy4O7uDmtra+mWCUT0P0IIFBcXIycnBxYWFrC2tq7xupgQEREZGQsLCwQEBCAzM1PlLSKISJmdnR38/PzUurVLZZgQEREZIWtra/j5+eHhw4c1uscUkbmwtLREvXr1at2KyoSIiMhIyWQyWFlZaXzncyLSHAdVExERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9gyaEMXFxaFz585wdHSEh4cHBg8ejMuXLyvVCQsLg0wmU3pMnTpVqU56ejoGDBgAOzs7eHh4YPbs2Xj48KFSnUOHDqFDhw6wsbFB8+bN8c033+h694iIiMhEGDQhSkhIQExMDI4dO4Z9+/ahpKQEERERyM/PV6o3ZcoUZGZmSo8PPvhAKistLcWAAQNQXFyMo0eP4l//+he++eYbvPXWW1KdtLQ0DBgwAL1790ZycjKmT5+OyZMnY8+ePXrbVyIiIjJeMiGEMHQQ5XJycuDh4YGEhAT07NkTwKMWovbt2+Ojjz5S+ZrffvsNAwcOREZGBjw9PQEAa9aswdy5c5GTkwNra2vMnTsXu3btQkpKivS6ESNGIDc3F7t371YrNoVCAWdnZ8jlcjg5OdVuR4mIiEgv1D1/G9UYIrlcDgBwdXVVWv7dd9/Bzc0NwcHBmD9/PgoKCqSyxMREhISESMkQAERGRkKhUOD8+fNSnfDwcKV1RkZGIjExUVe7QkRERCaknqEDKFdWVobp06eje/fuCA4OlpaPGjUK/v7+8PHxwdmzZzF37lxcvnwZ27ZtAwBkZWUpJUMApOdZWVlV1lEoFCgsLIStrW2FeIqKilBUVCQ9VygU2tlRIiIiMjpGkxDFxMQgJSUFv//+u9Lyl156Sfo7JCQE3t7e6Nu3L1JTU9GsWTOdxRMXF4fFixfrbP1ERERkPIyiyyw2NhY7d+5EfHw8GjduXGXdrl27AgCuXr0KAPDy8kJ2drZSnfLnXl5eVdZxcnJS2ToEAPPnz4dcLpceN27c0HzHiIiIyCQYNCESQiA2Nhbbt2/HwYMHERAQUO1rkpOTAQDe3t4AgNDQUJw7dw63b9+W6uzbtw9OTk4ICgqS6hw4cEBpPfv27UNoaGil27GxsYGTk5PSg4iIiOomgyZEMTEx2LBhAzZu3AhHR0dkZWUhKysLhYWFAIDU1FS88847SEpKwrVr17Bjxw6MHTsWPXv2RNu2bQEAERERCAoKwosvvogzZ85gz549ePPNNxETEwMbGxsAwNSpU/HXX39hzpw5uHTpEj7//HNs3rwZM2bMMNi+ExERkfEw6GX3MplM5fL169dj/PjxuHHjBsaMGYOUlBTk5+fD19cXQ4YMwZtvvqnUYnP9+nVMmzYNhw4dgr29PcaNG4elS5eiXr3/DZE6dOgQZsyYgQsXLqBx48ZYsGABxo8fr3asvOyeiIjI9Kh7/jaqeYiMGRMiIiIi02OS8xARERERGQITIiIiIjJ7TIiIiIjI7DEhIiIiIrPHhIiIiIjMHhMiIiIiMntMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIiIjI7DEhIiIiIrPHhIiIiIjMHhMiIiIiMntMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIiIiIjJ7TIiIiIjI7DEhIiIiIrNXo4QoPj5e23EQERERGUyNEqKoqCg0a9YMS5YswY0bN7QdExEREZFe1SghunXrFmJjY7F161Y0bdoUkZGR2Lx5M4qLi7UdHxEREZHO1SghcnNzw4wZM5CcnIzjx48jMDAQL7/8Mnx8fPDqq6/izJkz2o6TiIiISGdqPai6Q4cOmD9/PmJjY5GXl4d169ahY8eO6NGjB86fP6+NGImIiIh0qsYJUUlJCbZu3Yr+/fvD398fe/bswWeffYbs7GxcvXoV/v7+eP7557UZKxEREZFOyIQQQtMXvfLKK/j+++8hhMCLL76IyZMnIzg4WKlOVlYWfHx8UFZWprVgDUmhUMDZ2RlyuRxOTk6GDoeIiIjUoO75u15NVn7hwgV8+umniI6Oho2Njco6bm5uvDyfiIiITEKNWojMEVuIiIiITI9OW4gA4PLly/j0009x8eJFAEDr1q3xyiuvoGXLljVdJREREZFB1GhQ9Y8//ojg4GAkJSWhXbt2aNeuHU6fPo3g4GD8+OOP2o6RiIiISKdq1GXWrFkzjB49Gm+//bbS8oULF2LDhg1ITU3VWoDGgl1mREREpkfd83eNWogyMzMxduzYCsvHjBmDzMzMmqySiIiIyGBqlBCFhYXhP//5T4Xlv//+O3r06FHroIiIiIj0qUaDqp999lnMnTsXSUlJ6NatGwDg2LFj2LJlCxYvXowdO3Yo1SUiIiIyZjUaQ2RhoV7DkkwmQ2lpqcZBGSOOISIiIjI9Or3svq7MPk1EREQEaOHmrrURFxeHzp07w9HRER4eHhg8eDAuX76sVOfBgweIiYlBw4YN4eDggKFDhyI7O1upTnp6OgYMGAA7Ozt4eHhg9uzZePjwoVKdQ4cOoUOHDrCxsUHz5s3xzTff6Hr3iIiIyESo3UL0ySefqL3SV199Va16CQkJiImJQefOnfHw4UO8/vrriIiIwIULF2Bvbw8AmDFjBnbt2oUtW7bA2dkZsbGxiI6OxpEjRwAApaWlGDBgALy8vHD06FHpCjgrKyu89957AIC0tDQMGDAAU6dOxXfffYcDBw5g8uTJ8Pb2RmRkpNr7RURERHWT2mOIAgIC1FuhTIa//vqrRsHk5OTAw8MDCQkJ6NmzJ+RyOdzd3bFx40YMGzYMAHDp0iW0bt0aiYmJ6NatG3777TcMHDgQGRkZ8PT0BACsWbMGc+fORU5ODqytrTF37lzs2rULKSkp0rZGjBiB3Nxc7N69W63YOIaIiIjI9Gh9DFFaWppWAquKXC4HALi6ugIAkpKSUFJSgvDwcKlOq1at4OfnJyVEiYmJCAkJkZIhAIiMjMS0adNw/vx5PPXUU0hMTFRaR3md6dOnVxpLUVERioqKpOcKhUIbu0hERERGyKBjiB5XVlaG6dOno3v37ggODgYAZGVlwdraGi4uLkp1PT09kZWVJdV5PBkqLy8vq6qOQqFAYWGhynji4uLg7OwsPXx9fWu9j0RERGScanxz15s3b2LHjh1IT09HcXGxUtmKFSs0Xl9MTAxSUlLw+++/1zQkrZo/fz5mzpwpPVcoFEyKiIiI6qgaJUQHDhzAs88+i6ZNm+LSpUsIDg7GtWvXIIRAhw4dNF5fbGwsdu7cicOHD6Nx48bSci8vLxQXFyM3N1eplSg7OxteXl5SnRMnTiitr/wqtMfrPHllWnZ2NpycnGBra6syJhsbG9jY2Gi8L0RERGR6atRlNn/+fMyaNQvnzp1D/fr18eOPP+LGjRvo1asXnn/+ebXXI4RAbGwstm/fjoMHD1YYuN2xY0dYWVnhwIED0rLLly8jPT0doaGhAIDQ0FCcO3cOt2/flurs27cPTk5OCAoKkuo8vo7yOuXrICIiIjMnasDBwUFcvXpVCCGEi4uLSElJEUIIkZycLPz9/dVez7Rp04Szs7M4dOiQyMzMlB4FBQVSnalTpwo/Pz9x8OBBcerUKREaGipCQ0Ol8ocPH4rg4GAREREhkpOTxe7du4W7u7uYP3++VOevv/4SdnZ2Yvbs2eLixYti1apVwtLSUuzevVvtWOVyuQAg5HK52q8hIiIiw1L3/F2jFiJ7e3tp3JC3tzdSU1Olsjt37qi9ntWrV0MulyMsLAze3t7SY9OmTVKdlStXYuDAgRg6dCh69uwJLy8vbNu2TSq3tLTEzp07YWlpidDQUIwZMwZjx47F22+/LdUJCAjArl27sG/fPrRr1w4ffvghvvrqK85BRERERABqeC+zwYMHY8CAAZgyZQpmzZqFn3/+GePHj8e2bdvQoEED7N+/XxexGhTnISIiIjI9Or2X2YoVK5CXlwcAWLx4MfLy8rBp0ya0aNGiRleYERERERlSjVqIzBFbiIiIiEyPTluIyhUXF+P27dsoKytTWu7n51eb1RIRERHpVY0Soj///BOTJk3C0aNHlZYLISCTyVBaWqqV4IiIiIj0oUYJ0YQJE1CvXj3s3LkT3t7ekMlk2o6LiIiISG9qlBAlJycjKSkJrVq10nY8RERERHpXo3mIgoKCNJpviIiIiMiYqZ0QKRQK6fH+++9jzpw5OHToEO7evatUplAodBkvERERkdap3WXm4uKiNFZICIG+ffsq1eGgaiIiIjJFaidE8fHxuoyDiIiIyGDUToh69eol/Z2eng5fX98KV5cJIXDjxg3tRUdERESkBzUaVB0QEICcnJwKy+/du4eAgIBaB0VERESkTzVKiMrHCj0pLy8P9evXr3VQRERERPqk0TxEM2fOBADIZDIsWLAAdnZ2UllpaSmOHz+O9u3bazVAIiIiIl3TKCH6448/ADxqITp37hysra2lMmtra7Rr1w6zZs3SboREREREOqZRQlR+pdmECRPw8ccf867vREREVCfU6NYd69ev13YcRERERAZTo4QoPz8fS5cuxYEDB3D79m2UlZUplf/1119aCY6IiIhIH2qUEE2ePBkJCQl48cUXebd7IiIiMnk1Soh+++037Nq1C927d9d2PERERER6V6N5iBo0aABXV1dtx0JERERkEDVKiN555x289dZbKCgo0HY8RERERHpXoy6zDz/8EKmpqfD09ESTJk1gZWWlVH769GmtBEdERESkDzVKiAYPHqzlMIiIiIgMRyaEEIYOwhQoFAo4OztDLpdzQkoiIiIToe75W6MxRCdOnEBpaWml5UVFRdi8ebMmqyQiIiIyOI0SotDQUNy9e1d67uTkpDQJY25uLkaOHKm96IiIiIj0QKOE6MneNVW9beyBIyIiIlNTo8vuq8JZq4mIiMjUaD0hIiIiIjI1Gl92f+HCBWRlZQF41D126dIl5OXlAQDu3Lmj3eiIiIiI9ECjy+4tLCwgk8lUjhMqXy6Tyaq8Es1U8bJ7IiIi06Pu+VujFqK0tLRaB0ZERERkbDRKiPz9/TVa+csvv4y3334bbm5uGr2OiIiISJ90Oqh6w4YNUCgUutwEERERUa3pNCHinERERERkCnjZPREREZk9JkRERERk9pgQERERkdljQkRERERmT6cJ0ZgxYziJIRERERm9GiVEZWVllS5PT0+Xnq9evZpzEBEREZHR0yghUigUeOGFF2Bvbw9PT0+89dZbSrfpyMnJQUBAgNaDJCIiItIljWaqXrBgAc6cOYNvv/0Wubm5WLJkCU6fPo1t27bB2toaAOceIiIiItOjUQvRTz/9hLVr12LYsGGYPHkyTp06hZycHAwaNAhFRUUAHt3kVV2HDx/GoEGD4OPjA5lMhp9++kmpfPz48ZDJZEqPqKgopTr37t3D6NGj4eTkBBcXF0yaNAl5eXlKdc6ePYsePXqgfv368PX1xQcffKDJbhMREVEdp1FClJOTo3Q/Mzc3N+zfvx/3799H//79UVBQoNHG8/Pz0a5dO6xatarSOlFRUcjMzJQe33//vVL56NGjcf78eezbtw87d+7E4cOH8dJLL0nlCoUCERER8Pf3R1JSEpYtW4ZFixbhiy++0ChWIiIiqrs06jLz8/PDxYsXlcYJOTo6Yu/evYiIiMCQIUM02ni/fv3Qr1+/KuvY2NjAy8tLZdnFixexe/dunDx5Ep06dQIAfPrpp+jfvz+WL18OHx8ffPfddyguLsa6detgbW2NNm3aIDk5GStWrFBKnIiIiMh8adRCFBERgfXr11dY7uDggD179qB+/fpaC6zcoUOH4OHhgZYtW2LatGm4e/euVJaYmAgXFxcpGQKA8PBwWFhY4Pjx41Kdnj17SmOcACAyMhKXL1/G33//rfV4iYiIyPRo1EK0ePFiZGRkqCxzdHTEvn37cPr0aa0EBjzqLouOjkZAQABSU1Px+uuvo1+/fkhMTISlpSWysrLg4eGh9Jp69erB1dUVWVlZAICsrKwKV755enpKZQ0aNFC57aKiImlcFPCo642IiIjqJo0SogYNGlSaQACPkqJevXrVOqhyI0aMkP4OCQlB27Zt0axZMxw6dAh9+/bV2nZUiYuLw+LFi3W6DSIiIjIOGk/M+PDhQyxbtgwdOnSAg4MDHBwc0KFDByxfvhwlJSW6iFHStGlTuLm54erVqwAALy8v3L59u0J89+7dk8YdeXl5ITs7W6lO+fPKxiYBwPz58yGXy6XHjRs3tLkrREREZEQ0SogKCwsRFhaGefPmwd3dHZMnT8bkyZPh7u6OuXPnom/fvnjw4IGuYsXNmzdx9+5deHt7AwBCQ0ORm5uLpKQkqc7BgwdRVlaGrl27SnUOHz6slKzt27cPLVu2rLK1y8bGBk5OTkoPIiIiqps06jJbunQpbty4gT/++ANt27ZVKjtz5gyeffZZLF26FIsWLVJrfXl5eVJrDwCkpaUhOTkZrq6ucHV1xeLFizF06FB4eXkhNTUVc+bMQfPmzREZGQkAaN26NaKiojBlyhSsWbMGJSUliI2NxYgRI+Dj4wMAGDVqFBYvXoxJkyZh7ty5SElJwccff4yVK1dqsutERERUlwkNBAYGiq1bt1ZavnnzZtGiRQu11xcfHy8AVHiMGzdOFBQUiIiICOHu7i6srKyEv7+/mDJlisjKylJax927d8XIkSOFg4ODcHJyEhMmTBD3799XqnPmzBnxzDPPCBsbG9GoUSOxdOlSTXZbCCGEXC4XAIRcLtf4tURERGQY6p6/ZUKof6+N+vXr48qVK/D19VVZfuPGDbRo0UKn3WaGolAo4OzsDLlczu4zIiIiE6Hu+VujMUROTk4VBjE/LisrC46OjpqskoiIiMjgNEqIevfujffee6/S8qVLl6J37961DoqIiIhInzQaVL1w4UJ07doV3bp1w8yZM9GqVSsIIXDx4kWsXLkSFy5cwLFjx3QVKxEREZFOaJQQBQUFYd++fZg0aRJGjBgh3dleCIFWrVph7969aNOmjU4CJSIiItIVjRIiAOjWrRvOnz+P5ORk/PnnnwCAwMBAtG/fXtuxEREREemFxgmRQqGAg4MD2rdvr5QElZWVIS8vj1dgERERkcnRaFD19u3b0alTJ5WX1RcWFqJz58745ZdftBYcERERkT5olBCtXr0ac+bMgZ2dXYUye3t7zJ07F5999pnWgiMiIiLSB40SopSUFISFhVVa3rNnT5w7d662MRERERHplUYJ0d9//42HDx9WWl5SUoK///671kERERER6ZNGCVGTJk1w6tSpSstPnToFf3//WgdFREREpE8aJUTR0dF44403kJ2dXaEsKysLb775JoYOHaq14IiIiIj0QaObu96/fx+hoaFIT0/HmDFj0LJlSwDApUuX8N1338HX1xfHjh2rk/cz481diYiITI+652+N5iFydHTEkSNHMH/+fGzatEkaL+Ti4oIxY8bg3XffrZPJEBEREdVtGrUQPU4IgTt37kAIAXd3d+k2Ho87cuQIOnXqBBsbm1oHamhsISIiIjI96p6/NRpD9DiZTAZ3d3d4eHioTIYAoF+/frh161ZNN0FERERmIFNeiKOpd5ApLzRYDBrfukMTNWx8IiIiIjOx6WQ65m87hzIBWMiAuOgQDO/sp/c4atxCRERERFQbmfJCKRkCgDIBvL4txSAtRUyIiIiIyCDS7uRLyVC5UiFw7U6B3mNhQkREREQGEeBmD4snhiFbymRo4lbxnqm6ptOEqLLB1kRERETezraIiw6B5X/zBUuZDO9FB8Pb2VbvsXBQNRERERnM8M5+6Bnojmt3CtDEzc4gyRCg44To/v37ulw9ERER1QHezrYGS4TKaZQQ9enTR616Bw8erFEwRERERIagUUJ06NAh+Pv7Y8CAAbCystJVTERERER6pVFC9P7772P9+vXYsmULRo8ejYkTJyI4OFhXsRERERHphUZXmc2ePRsXLlzATz/9hPv376N79+7o0qUL1qxZA4VCoasYiYiIiHSqxjd3BYCCggJs2bIFq1atwoULF5CRkVFnb3zKm7sSERGZHp3f3BUATp8+jYSEBFy8eBHBwcEcV0REREQmSeOEKCMjA++99x4CAwMxbNgwuLq64vjx4zh27BhsbQ17yRwRERFRTWg0qLp///6Ij49HREQEli1bhgEDBqBePZ1OZURERESkcxqNIbKwsIC3tzc8PDyqvC3H6dOntRKcMeEYIiIiItOj7vlbo+adhQsX1jowIiIiImNTq6vMzAlbiIgMJ1NeiLQ7+Qhwszf49P5EZFp00kJUmYSEBOTn5yM0NBQNGjTQxiqJiAAAm06mY/62cygTgIUMiIsOwfDOfoYOi4jqGI2uMnv//fexYMEC6bkQAlFRUejduzcGDhyI1q1b4/z581oPkojMU6a8UEqGAKBMAK9vS0GmvNCwgRFRnaNRQrRp0yalW3Vs3boVhw8fxn/+8x/cuXMHnTp1wuLFi7UeJFFdlikvxNHUOzzJq5B2J19KhsqVCoFrdwoMExAR1VkadZmlpaWhbdu20vNff/0Vw4YNQ/fu3QEAb775Jp5//nntRkhUh7E7qGoBbvawkEEpKbKUydDEzc5wQRFRnaRRC9HDhw9hY2MjPU9MTMTTTz8tPffx8cGdO3e0Fx1RHcbuoOp5O9siLjoElv+d5sNSJsN70cEcWE1EWqdRC1GzZs1w+PBhNG3aFOnp6fjzzz/Rs2dPqfzmzZto2LCh1oMkqouq6g7iCf9/hnf2Q89Ad1y7U4AmbnY8NkSkExolRDExMYiNjcV//vMfHDt2DKGhoQgKCpLKDx48iKeeekrrQRLVRewOUp+3sy0TISLSKY26zKZMmYJPPvkE9+7dQ8+ePfHjjz8qlWdkZGDixIlaDZCormJ3EBGR8eDEjGrixIykK5nyQnYHERHpiF4nZiSimmN3EBGR4WnUZVZSUoI5c+agefPm6NKlC9atW6dUnp2dDUtLS60GSERERKRrGiVE7777Lv79739j6tSpiIiIwMyZM/HPf/5TqY4mPXCHDx/GoEGD4OPjA5lMhp9++qnCut566y14e3vD1tYW4eHhuHLlilKde/fuYfTo0XBycoKLiwsmTZqEvLw8pTpnz55Fjx49UL9+ffj6+uKDDz7QZLeJiIiojtMoIfruu+/w1VdfYdasWViyZAlOnTqFgwcPYsKECVIiJPvvAFF15Ofno127dli1apXK8g8++ACffPIJ1qxZg+PHj8Pe3h6RkZF48OCBVGf06NE4f/489u3bh507d+Lw4cN46aWXpHKFQoGIiAj4+/sjKSkJy5Ytw6JFi/DFF19osutERERUlwkN2NrairS0NKVlN2/eFIGBgWL06NHi1q1bwsLCQpNVSgCI7du3S8/LysqEl5eXWLZsmbQsNzdX2NjYiO+//14IIcSFCxcEAHHy5Empzm+//SZkMpm4deuWEEKIzz//XDRo0EAUFRVJdebOnStatmypUXxyuVwAEHK5vCa7R0RERAag7vlboxYiLy8vpKamKi1r1KgR4uPjcfLkSYwfP15beRrS0tKQlZWF8PBwaZmzszO6du2KxMREAI9mynZxcUGnTp2kOuHh4bCwsMDx48elOj179oS1tbVUJzIyEpcvX8bff/9d6faLioqgUCiUHkRERFQ3aZQQ9enTBxs3bqyw3MfHBwcPHkRaWprWAsvKygIAeHp6Ki339PSUyrKysuDh4aFUXq9ePbi6uirVUbWOx7ehSlxcHJydnaWHr69v7XaIiIiIjJZGCdGCBQvwwgsvqCxr1KgREhISKlx5Zqrmz58PuVwuPW7cuGHokIiIiEhHNJqHyN/fH/7+/pWW+/j4YNy4cbUOCnjUPQc8upTf29tbWp6dnY327dtLdW7fvq30uocPH+LevXvS6728vJCdna1Up/x5eR1VbGxslG5kS0RERHWXRi1E5bZs2YLo6GgEBwcjODgY0dHR2Lp1q1YDCwgIgJeXFw4cOCAtUygUOH78OEJDQwEAoaGhyM3NRVJSklTn4MGDKCsrQ9euXaU6hw8fRklJiVRn3759aNmyJRo0aKDVmImIiMg0aZQQlZWVYfjw4Rg+fDguXLiA5s2bo3nz5jh//jyGDx+OESNGaDQPUV5eHpKTk5GcnAzg0UDq5ORkpKenQyaTYfr06ViyZAl27NiBc+fOYezYsfDx8cHgwYMBAK1bt0ZUVBSmTJmCEydO4MiRI4iNjcWIESPg4+MDABg1ahSsra0xadIknD9/Hps2bcLHH3+MmTNnarLrepUpL8TR1DvIlBcaOhS9Mtf9JiIiI6DJpWsrVqwQrq6u4pdffqlQ9vPPPwtXV1excuVKtdcXHx8vAFR4jBs3Tgjx6NL7BQsWCE9PT2FjYyP69u0rLl++rLSOu3fvipEjRwoHBwfh5OQkJkyYIO7fv69U58yZM+KZZ54RNjY2olGjRmLp0qWa7LYQQn+X3f9w4roImLdT+M/dKQLm7RQ/nLiu0+0ZC3PdbyIi0i11z98a3dy1bdu2mD59eqV3tP/666/x8ccf4+zZs7XP1IyMPm7umikvRPelB1H22H/EUibD7/N61+l7XZnrfhMRke6pe/7WqMvsypUrSvMCPUnVrTVIfWl38pWSAgAoFQLX7hQYJiA9Mdf9JiIi46FRQmRra4vc3NxKyxUKBerXr1/bmMxWgJs9LJ6484mlTIYmbnaGCUhPzHW/iYjIeGiUEIWGhmL16tWVlq9atUq6Aow05+1si7joEFj+935wljIZ3osOrvPdRua630REZDw0mofojTfeQFhYGO7evYtZs2ahVatWEELg4sWL+PDDD/Hzzz8jPj5eV7GaheGd/dAz0B3X7hSgiZud2SQF5rrfRERkHDQaVA0A27dvx0svvYR79+4pLW/QoAHWrl2LoUOHajVAY6GPQdVERESkXeqevzVOiACgoKAAe/bskQZQBwYGIiIiAnZ2dXfMBxMiIiIi06Pu+VujLrODBw8iNjYWx44dw5AhQ5TK5HI52rRpgzVr1qBHjx41i5qIiIjIADQaVP3RRx9hypQpKjMsZ2dn/POf/8SKFSu0FhwRERGRPmiUEJ05cwZRUVGVlkdERCjdV4yIiIjIFGiUEGVnZ8PKyqrS8nr16iEnJ6fWQRERERHpk0YJUaNGjZCSklJp+dmzZ+Ht7V3roIiIiIj0SaOEqH///liwYAEePHhQoaywsBALFy7EwIEDtRYcERERkT5odNl9dnY2OnToAEtLS8TGxqJly5YAgEuXLmHVqlUoLS3F6dOn4enpqbOADYWX3RMREZkenVx27+npiaNHj2LatGmYP38+ynMpmUyGyMhIrFq1qk4mQ0RERFS3aZQQAYC/vz9+/fVX/P3337h69SqEEGjRogUaNGigi/iIiIiIdE7jhKhcgwYN0LlzZ23GQkRERGQQGg2qJiIiIqqLmBARERGR2WNCRERERGaPCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCREREREZVKa8EEdT7yBTXmiwGOoZbMtUpUx5IdLu5CPAzR7ezraGDoeIiEgnNp1Mx/xt51AmAAsZEBcdguGd/fQeBxMiI2Qsbw4iIiJdypQXSuc7ACgTwOvbUtAz0F3vjQHsMjMylb05DNmMSEREpAtpd/Kl8125UiFw7U6B3mNhQmRkdP3mMIZ+WiIiIgAIcLOHhUx5maVMhiZudnqPhQmRkdHlm2PTyXR0X3oQo748ju5LD2LTyfRar5OIiKimvJ1tERcdAkvZoxOfpUyG96KDDTJ2ViaEENVXI4VCAWdnZ8jlcjg5Oel0W5tOpuP1bSkoFUJ6c9R2DFGmvBDdlx5Uan2ylMnw+7zeHLRNREQGlSkvxLU7BWjiZqf1c5K6528OqjZCwzv7oWegu1bfHFV1xTEhIiIiQ/J2tjX4uYgJkZHS9pujvCvuyRYiQ/TTEhERGRuOITITxtRPS0REZGzYQmRGdNEVR0REVBcwITJiupit2hj6aYmIiIwNEyIj9eRs1ZOeCcDEZwKYzBAREemA0Y8hWrRoEWQymdKjVatWUvmDBw8QExODhg0bwsHBAUOHDkV2drbSOtLT0zFgwADY2dnBw8MDs2fPxsOHD/W9K2pTNVv1l/9Jw9Nxhps7iBM6EhFRXWYSLURt2rTB/v37pef16v0v7BkzZmDXrl3YsmULnJ2dERsbi+joaBw5cgQAUFpaigEDBsDLywtHjx5FZmYmxo4dCysrK7z33nt63xd1qLpEHgAEDHOPF95bjYiI6jqjbyECHiVAXl5e0sPNzQ0AIJfL8fXXX2PFihXo06cPOnbsiPXr1+Po0aM4duwYAGDv3r24cOECNmzYgPbt26Nfv3545513sGrVKhQXFxtytyqlarbqcvq+xwvvrUZERObAJBKiK1euwMfHB02bNsXo0aORnv6o2ygpKQklJSUIDw+X6rZq1Qp+fn5ITEwEACQmJiIkJASenp5SncjISCgUCpw/f16/O6Km8kvkVSVF+p47yJhuvGeM2JVIRFQ3GH2XWdeuXfHNN9+gZcuWyMzMxOLFi9GjRw+kpKQgKysL1tbWcHFxUXqNp6cnsrKyAABZWVlKyVB5eXlZZYqKilBUVCQ9VygUWtoj9ZRfIr/+SBq+OpyGMhhm7iBO6Fg5diUSEdUdRp8Q9evXT/q7bdu26Nq1K/z9/bF582bY2uouMYiLi8PixYt1tn51eDvb4vX+QZjQPcBgcweVt1Y9eW81c7/arbKuRH2P7yIiIu0w+oToSS4uLggMDMTVq1fxj3/8A8XFxcjNzVVqJcrOzoaXlxcAwMvLCydOnFBaR/lVaOV1VJk/fz5mzpwpPVcoFPD19dXinqjP0HMHcULHinhvOCKiusUkxhA9Li8vD6mpqfD29kbHjh1hZWWFAwcOSOWXL19Geno6QkNDAQChoaE4d+4cbt++LdXZt28fnJycEBQUVOl2bGxs4OTkpPQwZ97Otght1rBWJ/u6NN5G1cB3diUSEZkuo28hmjVrFgYNGgR/f39kZGRg4cKFsLS0xMiRI+Hs7IxJkyZh5syZcHV1hZOTE1555RWEhoaiW7duAICIiAgEBQXhxRdfxAcffICsrCy8+eabiImJgY2NjYH3znzUtfE27EokIqpbjD4hunnzJkaOHIm7d+/C3d0dzzzzDI4dOwZ3d3cAwMqVK2FhYYGhQ4eiqKgIkZGR+Pzzz6XXW1paYufOnZg2bRpCQ0Nhb2+PcePG4e233zbULpmdujrehl2JRER1h0wIoWIKQHqSQqGAs7Mz5HK52Xefaepo6h2M+vJ4heXfT+mG0GYNDRAREZkjXdwfkoyfuudvo28hItPHS/eJyNDqWrc9aZ/JDaom01M+3sZS9mgUMsfbEJE+1bUZ9+vSBSrGhC1EpBccb0NEhlKXpslgS5fusIWI9EYbl+6X4y8kIlJXXZkmo661dBkbJkRkcjadTEf3pQcx6svj6L70IDadTDd0SERkxOpKtz3vLalb7DIjk1JXL+EnIt2qC932vEBFt9hCRCaFv5CIqKa02W1vCHWlpctYsYWITEL5/CH21pb8hURq4ZwzVBfVhZYuY8WEiIzek1dVDHmqEX76I4O3zKBK6ftKHCZfpE+GvuF3XcWEiIyaqjFDP/2RgW0vh6KguIy/kKgCfY8z42XQpCtMtPWLCREZtcrGDBUUl/G2H6SSPuecqQuD/HnSNU5MtPWPCRHpnSZfwLyqonrmfEJTte/6eM+Ub/duXpHK5Cvp2t9wdTD+/4m2Trrm/B7UhbqQaJsiJkSkV5p+AZdfVfH6thSOGVLBnH9FVrbvun7PPLldGYDHcyIZgFd/+MPo/yfaOulW9x40hWTJ2GKsSzNrmxImRKQ3Nf0C5lUVqpnzr8jq9l1X7xlV25XJAAsBlOHRPCYCMIn/iTZOutX9H7SdsOsicTHGHxVsGTcMzkNEelObOYRMff4QXTDnOZnU2XddvGdUbVcI4NNRT+H7Kd3wyain8ESx0f5PtHE7i6r+D9q+zYQuZqhXFeP8becMfisMY5xvyBxul8QWItIb/urRLnM+noba98q228G/AbydbZEpL9R6XNpuFXl8fbXtWqzq/6DNbh9dtYaqirFMAOuPpOH1/kE1Xq82GFPLuDG2oukCW4hIb4zxV48pM+fjaah9r2672o5L260iT64PAH6f1xvfT+mG3+f11vgkV9X+avOGqrpqDVUVIwB8dTjNKFpCjKFl3JxuKCsTQjzZwksqKBQKODs7Qy6Xw8nJydDhmLRMeaFR/OqpK8z5eBpq36vbrjbiypQXovvSgxVaX36f17vSdVbVmlST9am7/sf3F4BU5/CfORVaoGp6FduTsVsA+GTUU+j439a5mnp31wV8+Z+0Csu/n9KNU3sAOJp6B6O+PF5huSkdH3XP3+wyI73jLKvaZc7H01D7Xt12axNXdZf0V9blVF23Rm27sKpaf/n+qqrz+7zetU4On7xysPzKvtiNf9S6C2fiMwH46j9pSmO/zKXrWR3m1DXPLjMiIiPxeJfWaz8k48nenMpOROp0a6jThVXZwFl11l9ZHQBa6fYZ3tkPv8/rjc9GPgWZ7H9THdS2C8fb2RZLh5pn17M6zKlrni1ERCbG2OZMIe2o7pL+qk5E6rT+VDc/U1UtQOqsXx9z53g728LVQfvbMaYBzMZI1fGpi99DTIiITIi5XO1hjiq7pP+zUU/B1d6myhO1ut0alZ34q7uKS53166trRVfbMXTXs7EnGI8fn7r6PcQuMzI55jAfhirmdLWHOaqsS6uDf4Nqu5w06dZQdeVSdVdxqbN+fXWt1MUuHF3MsaQrdfl7iC1EZFLq6i8TdehrOn9j/6VaV9X2liO16fZRp9VFnfXrq+tJn11cuv48mNqM83X5tiJMiMhkmNoXh7bpo0vCnBNOY1DbE31Nu33UTcbUWb++up70sR1NPg81TZxMLcGoy1edMSEik2FqXxzaVtsWhOqYe8JpLAw1loUDi5Vp8nmozQ8JU0swNPkeMrXWZiZEZDJM7YtDF3R50jL3hJMMP7DYmKj7eajtDwld/9DRBXW+h0yxtZkJEZkMU/zi0AVdnbSMPeE0tV+bZNrU/Txo44eEsbTOafIZq+p7yFRbm5kQkUkxli8OU6BpAmHMCWdNfm0ygdINQx9XfW1f3c+Dtn5IPD6f0+PP9UWbLTqm2trMe5mpifcyI1NS2ZebOicTY7s3Wk3uwaXOl7uuTqyGThh0qTYnTW0cF0N0w6jzedh0Mr3W92wzZBeTNu5zp8v11RbvZUZkpiprrs4tKMH7uy9V+4VrbONIKvu1efr63xjQVvVAzuqa63V18jHFcRPqqk03iDaOi6G6YdT5PNS25drQXUzabtEx5tbmqnBiRjNgrhMZmqvKvtyW/nbJJCdTUzVhIfDoxp6qJrCrbpJBXU0sp8l6a/qZNORnubrjWhltHe+abl9fVE14qS519k2X/3t17nOnqfJ7z30/pRt+n9fbJH4YsIWojqvLv1hJNVVjGp58DphGnz7wv1+bj59UgUc391T1K7q6MR26Gt+g7npr+pk09Ge5pmNltHW8jX3Qf21Ut2+6/t/rqkXH2Fqbq8MWojqsLk+xXhVzbxFTdWuDuf1aVfoL0BSO1/DOfvh4RPsKyytrIZj8TID05fbkl7sufg2ru96afiYN9Vl+/L2h6n01p19LpN3JrzIObR3vunjLjnJV7Zu+/vePt+hsezkUvq52Rv2doAtsIarDTHWkf20Y+le0sVA1psHF1qrCL8DDf+aYzPHq1MS12haCJ///Lz3TFBOeaaLynlu6+DVc3Xpr+pk0xGe5ss9S+fvq7M1cvP+bemPStHW86/JVppXtmz7/997Otib1naBtTIjqsLrcxKyKoQcmGpsnm6uf/MIFoHQliLEfr+pOrKr+/1//noYJzzSpsC5dnVirW29NP5P6/iyr81ka/dUxtd872jzeptYNowlV+1aT/31Nr+gz9+9QdpnVYXW5iVkVXQ+6NIWupeo8PvDT2AepqlLVQE1N96c2g2CrUtV6a/qZ1PdnubpjWZNBwLo63sautt8bmv7vN51MR/elBzHqy+N4eulBrD2cqva2TPE7QZvYQlTH1eUm5ifp8ld0XeyKM5UWxCd/7VbWQmAq+1PTz2RNXlfTloLqjqWhBwGbCm0dB3X/90+28AgBxP16CRDAP3s1q3Y7pvIZ0hW2EBmYPlod1PllVldaP3TxK7quDk43hRbEx3/tdl96UOVl9uV0vT/a/IzUtLVEk9dpcuxUbaeqY2kMg4D1oTb/c3WOgybrV+d/r6qFBwDe/+2S2tsw9u8EXWILkQEZy68oY4lDG3TRIlaXB6cbcwtiTcYz6Gp/TO0zoo2xINUdS2MYBKxLtf2fV3ccdPGeCnCzh0z2qGXocWWA2sffmL8TdI0tRAZiLL+ijCUObdL2WAVdXaZtLIx1bEdNxzNoe39M8TOirbEg1R1LVeV14fOijf95VcdBV+8pb2dbzOvXqsJyTY+/sX4n6BoTIgMxlsFr2oyjLnS7qWLuzciGYiwnVmP5rGrCkMeuLnxetPE/r+o46PI99c+ezTC/X6tK5+GiyrHLzEAC3Owhw6PZdsvJAL1/2WtrEJ2pdSloypybkVXRxw1MdTVfkKZMcaCpOsdOl/9DU/+8aOt/Xtlx0PV76p+9muHZ9j4me/wNhXe7V5O273afKS/E03EHlRMiGXB0Xh+9v3lre6dmbd7ZuC7fKbyu0Hfyq87dxnVNG3czN4TKjp2hfsDo4/OtrW3o+n9uqu8pU8S73Ru5tDv5eDITFUL9gW/aVNtfc9oaRFnXW5nqAkNM3FbdRHz6OMlW9hkx9gRe1bEz1OR7+vh8a3Mbum7lMvVWtLrIrMYQrVq1Ck2aNEH9+vXRtWtXnDhxwmCxGMv4iHK1GUSnjX0xxYGr5sjYxpzV5tJyTT35Ganptg091s4QY6L08fnWZBvq/g+0ObhY1TbNdfCysTKbhGjTpk2YOXMmFi5ciNOnT6Ndu3aIjIzE7du3DRJPXRh4WE4b+2KKA1crY+gTni5pK5Ffm5CKp+Nql8gYMomu6bb1mcBVxhA/xvTx+VZ3G7WZyVldT34HGMP/napnNl1mK1aswJQpUzBhwgQAwJo1a7Br1y6sW7cO8+bNM0hMdanJtLb7YooDV1Wp691+2hjovPZwKuJ+uyQ9r2mXjSHnu6nJto3lPlGGGKyuj8+3Otuo7UzO6njyO2Buv1bSTXAB87s/mCkxi4SouLgYSUlJmD9/vrTMwsIC4eHhSExMVPmaoqIiFBUVSc8VCoVOYqtufIQpqc2+GMsVRbVhLCc8XatN8pspL8TSx5KhcjVJZAyZRNdk28Y0YaG+f4zp4/Otzjaqmsn52fY+OpnV/vFkqJwpTlRpDswiIbpz5w5KS0vh6emptNzT0xOXLlX8cgaAuLg4LF68WB/h0X+ZeouZMZ3wdK2myW/anfwKs+gCj/ruNU1kDJlE12TbxtYKqu8fY/r4fFe3DW3M5FwVVd8BZQIVplgxxdZvc2AWCVFNzJ8/HzNnzpSeKxQK+Pr6GjAi82DKLWbGdsIzRqqOEfCoW6Em/3dDJtGabrsutILWlj4+31Vto3wm57hflX8Ia+tzWtl3wJyolvhg92Wz/b+bCrNIiNzc3GBpaYns7Gyl5dnZ2fDy8lL5GhsbG9jY2OgjPKojeMKr3pPHqHyMxT971nz8hiGTaE23beqtoHXBP3s2A8q7sqDdC1oq+w4Y3tmPEyWaALOZmLFr167o0qULPv30UwBAWVkZ/Pz8EBsbq9agam1PzEh1lzFMJGjseIzI0HT5HuT727hwYsYnzJw5E+PGjUOnTp3QpUsXfPTRR8jPz5euOiPSFlPu9tMXHiMyNF2+B/n+Nk1mkxANHz4cOTk5eOutt5CVlYX27dtj9+7dFQZaExERkfkxmy6z2mKXGRERkelR9/xtNjNVExEREVWGCRERERGZPSZEREREZPaYEBEREZHZY0JEREREZo8JEREREZk9JkRERERk9pgQERERkdljQkRERERmz2xu3VFb5RN6KxQKA0dCRERE6io/b1d3Yw4mRGq6f/8+AMDX19fAkRAREZGm7t+/D2dn50rLeS8zNZWVlSEjIwOOjo6QyWSGDkdvFAoFfH19cePGDd7DrZZ4LLWDx1F7eCy1g8dRe3RxLIUQuH//Pnx8fGBhUflIIbYQqcnCwgKNGzc2dBgG4+TkxA+6lvBYagePo/bwWGoHj6P2aPtYVtUyVI6DqomIiMjsMSEiIiIis8eEiKpkY2ODhQsXwsbGxtChmDweS+3gcdQeHkvt4HHUHkMeSw6qJiIiIrPHFiIiIiIye0yIiIiIyOwxISIiIiKzx4SIiIiIzB4TIgIAHD58GIMGDYKPjw9kMhl++uknpXIhBN566y14e3vD1tYW4eHhuHLlimGCNXLVHcvx48dDJpMpPaKiogwTrBGLi4tD586d4ejoCA8PDwwePBiXL19WqvPgwQPExMSgYcOGcHBwwNChQ5GdnW2giI2TOscxLCyswnty6tSpBorYeK1evRpt27aVJg0MDQ3Fb7/9JpXz/aie6o6jod6PTIgIAJCfn4927dph1apVKss/+OADfPLJJ1izZg2OHz8Oe3t7REZG4sGDB3qO1PhVdywBICoqCpmZmdLj+++/12OEpiEhIQExMTE4duwY9u3bh5KSEkRERCA/P1+qM2PGDPzyyy/YsmULEhISkJGRgejoaANGbXzUOY4AMGXKFKX35AcffGCgiI1X48aNsXTpUiQlJeHUqVPo06cPnnvuOZw/fx4A34/qqu44AgZ6PwqiJwAQ27dvl56XlZUJLy8vsWzZMmlZbm6usLGxEd9//70BIjQdTx5LIYQYN26ceO655wwSjym7ffu2ACASEhKEEI/eg1ZWVmLLli1SnYsXLwoAIjEx0VBhGr0nj6MQQvTq1Uu89tprhgvKhDVo0EB89dVXfD/WUvlxFMJw70e2EFG10tLSkJWVhfDwcGmZs7MzunbtisTERANGZroOHToEDw8PtGzZEtOmTcPdu3cNHZLRk8vlAABXV1cAQFJSEkpKSpTel61atYKfnx/fl1V48jiW++677+Dm5obg4GDMnz8fBQUFhgjPZJSWluKHH35Afn4+QkND+X6soSePYzlDvB95c1eqVlZWFgDA09NTabmnp6dURuqLiopCdHQ0AgICkJqaitdffx39+vVDYmIiLC0tDR2eUSorK8P06dPRvXt3BAcHA3j0vrS2toaLi4tSXb4vK6fqOALAqFGj4O/vDx8fH5w9exZz587F5cuXsW3bNgNGa5zOnTuH0NBQPHjwAA4ODti+fTuCgoKQnJzM96MGKjuOgOHej0yIiPRsxIgR0t8hISFo27YtmjVrhkOHDqFv374GjMx4xcTEICUlBb///ruhQzFplR3Hl156Sfo7JCQE3t7e6Nu3L1JTU9GsWTN9h2nUWrZsieTkZMjlcmzduhXjxo1DQkKCocMyOZUdx6CgIIO9H9llRtXy8vICgApXS2RnZ0tlVHNNmzaFm5sbrl69auhQjFJsbCx27tyJ+Ph4NG7cWFru5eWF4uJi5ObmKtXn+1K1yo6jKl27dgUAvidVsLa2RvPmzdGxY0fExcWhXbt2+Pjjj/l+1FBlx1EVfb0fmRBRtQICAuDl5YUDBw5IyxQKBY4fP67U50s1c/PmTdy9exfe3t6GDsWoCCEQGxuL7du34+DBgwgICFAq79ixI6ysrJTel5cvX0Z6ejrfl4+p7jiqkpycDAB8T6qhrKwMRUVFfD/WUvlxVEVf70d2mREAIC8vTyn7TktLQ3JyMlxdXeHn54fp06djyZIlaNGiBQICArBgwQL4+Phg8ODBhgvaSFV1LF1dXbF48WIMHToUXl5eSE1NxZw5c9C8eXNERkYaMGrjExMTg40bN+Lnn3+Go6OjNA7D2dkZtra2cHZ2xqRJkzBz5ky4urrCyckJr7zyCkJDQ9GtWzcDR288qjuOqamp2LhxI/r374+GDRvi7NmzmDFjBnr27Im2bdsaOHrjMn/+fPTr1w9+fn64f/8+Nm7ciEOHDmHPnj18P2qgquNo0Pej3q9rI6MUHx8vAFR4jBs3Tgjx6NL7BQsWCE9PT2FjYyP69u0rLl++bNigjVRVx7KgoEBEREQId3d3YWVlJfz9/cWUKVNEVlaWocM2OqqOIQCxfv16qU5hYaF4+eWXRYMGDYSdnZ0YMmSIyMzMNFzQRqi645ieni569uwpXF1dhY2NjWjevLmYPXu2kMvlhg3cCE2cOFH4+/sLa2tr4e7uLvr27Sv27t0rlfP9qJ6qjqMh348yIYTQbcpFREREZNw4hoiIiIjMHhMiIiIiMntMiIiIiMjsMSEiIiIis8eEiIiIiMweEyIiIiIye0yIiIiIyOwxISIiIiKzx4SIiNSSlZWFV155BU2bNoWNjQ18fX0xaNAgpXs3HT16FP3790eDBg1Qv359hISEYMWKFSgtLZXqXLt2DZMmTUJAQABsbW3RrFkzLFy4EMXFxUrb+/LLL9GuXTs4ODjAxcUFTz31FOLi4qTyRYsWQSaTISoqqkKsy5Ytg0wmQ1hYmFr7Vr4umUyGevXqoUmTJpgxYwby8vI0PEpEZKp4LzMiqta1a9fQvXt3uLi4YNmyZQgJCUFJSQn27NmDmJgYXLp0Cdu3b8cLL7yACRMmID4+Hi4uLti/fz/mzJmDxMREbN68GTKZDJcuXUJZWRnWrl2L5s2bIyUlBVOmTEF+fj6WL18OAFi3bh2mT5+OTz75BL169UJRURHOnj2LlJQUpbi8vb0RHx+PmzdvKt3Bfd26dfDz89NoH9u0aYP9+/fj4cOHOHLkCCZOnIiCggKsXbu2Qt3i4mJYW1vX4EjqjjHGRGRSdH5zECIyef369RONGjUSeXl5Fcr+/vtvkZeXJxo2bCiio6MrlO/YsUMAED/88EOl6//ggw9EQECA9Py5554T48ePrzKmhQsXinbt2omBAweKJUuWSMuPHDki3NzcxLRp00SvXr3U2Lv/retxU6ZMEV5eXkrlX375pWjSpImQyWRCiEf7PmnSJOHm5iYcHR1F7969RXJysrSO5ORkERYWJhwcHISjo6Po0KGDOHnypBBCiGvXromBAwcKFxcXYWdnJ4KCgsSuXbuEEEKsX79eODs7K8Wzfft28fhXdk1jIiLV2GVGRFW6d+8edu/ejZiYGNjb21cod3Fxwd69e3H37l3MmjWrQvmgQYMQGBiI77//vtJtyOVyuLq6Ss+9vLxw7NgxXL9+vdr4Jk6ciG+++UZ6vm7dOowePbrWrSW2trZK3XhXr17Fjz/+iG3btiE5ORkA8Pzzz+P27dv47bffkJSUhA4dOqBv3764d+8eAGD06NFo3LgxTp48iaSkJMybNw9WVlYAHt2FvqioCIcPH8a5c+fw/vvvw8HBQaMYaxITEanGLjMiqtLVq1chhECrVq0qrfPnn38CAFq3bq2yvFWrVlIdVev/9NNPpe4yAFi4cCGio6PRpEkTBAYGIjQ0FP3798ewYcNgYaH8O27gwIGYOnUqDh8+jI4dO2Lz5s34/fffsW7dOk13VZKUlISNGzeiT58+0rLi4mL8+9//hru7OwDg999/x4kTJ3D79m3Y2NgAAJYvX46ffvoJW7duxUsvvYT09HTMnj1bOnYtWrSQ1peeno6hQ4ciJCQEANC0aVON46xJTESkGhMiIqqSEEIndQHg1q1biIqKwvPPP48pU6ZIy729vZGYmIiUlBQcPnwYR48exbhx4/DVV19h9+7dSkmRlZUVxowZg/Xr1+Ovv/5CYGAg2rZtq1EcAHDu3Dk4ODigtLQUxcXFGDBgAD777DOp3N/fX0o8AODMmTPIy8tDw4YNldZTWFiI1NRUAMDMmTMxefJkfPvttwgPD8fzzz+PZs2aAQBeffVVTJs2DXv37kV4eDiGDh2qcdw1iYmIVGNCRERVatGihTQYujKBgYEAgIsXL+Lpp5+uUH7x4kUEBQUpLcvIyEDv3r3x9NNP44svvlC53uDgYAQHB+Pll1/G1KlT0aNHDyQkJKB3795K9SZOnIiuXbsiJSUFEydO1HQXAQAtW7bEjh07UK9ePfj4+FTocnuyuzAvLw/e3t44dOhQhXW5uLgAeHT12qhRo7Br1y789ttvWLhwIX744QcMGTIEkydPRmRkJHbt2oW9e/ciLi4OH374IV555RVYWFhUSC5LSkoqbKcmMRGRahxDRERVcnV1RWRkJFatWoX8/PwK5bm5uYiIiICrqys+/PDDCuU7duzAlStXMHLkSGnZrVu3EBYWho4dO2L9+vUVusFUKU+oVMXQpk0btGnTBikpKRg1apQmuyextrZG8+bN0aRJE7XGH3Xo0AFZWVmoV68emjdvrvRwc3OT6gUGBmLGjBnYu3cvoqOjsX79eqnM19cXU6dOxbZt2/B///d/+PLLLwEA7u7uuH//vtK+lo8R0kZMRFQREyIiqtaqVatQWlqKLl264Mcff8SVK1dw8eJFfPLJJwgNDYW9vT3Wrl2Ln3/+GS+99BLOnj2La9eu4euvv8b48eMxbNgwvPDCCwD+lwz5+flh+fLlyMnJQVZWFrKysqTtTZs2De+88w6OHDmC69ev49ixYxg7dizc3d0RGhqqMsaDBw8iMzNTby0h4eHhCA0NxeDBg7F3715cu3YNR48exRtvvIFTp06hsLAQsbGxOHToEK5fv44jR47g5MmT0jir6dOnY8+ePUhLS8Pp06cRHx8vlXXt2hV2dnZ4/fXXkZqaio0bNyoNHK9pTERUOXaZEVG1mjZtitOnT+Pdd9/F//3f/yEzMxPu7u7o2LEjVq9eDQAYNmwY4uPj8e6776JHjx548OABWrRogTfeeAPTp0+HTCYDAOzbtw9Xr17F1atXleYOAv43Bik8PBzr1q3D6tWrcffuXbi5uSE0NBQHDhyoMD6mnKor4HRJJpPh119/xRtvvIEJEyYgJycHXl5e6NmzJzw9PWFpaYm7d+9i7NixyM7OhpubG6Kjo7F48WIAQGlpKWJiYnDz5k04OTkhKioKK1euBPCoVW7Dhg2YPXs2vvzyS/Tt2xeLFi2qdlB0dTERUeVkQtNRkERERER1DLvMiIiIyOwxISKiOs/BwaHSx3/+8x9Dh0dERoBdZkRU5129erXSskaNGsHW1laP0RCRMWJCRERERGaPXWZERERk9pgQERERkdljQkRERERmjwkRERERmT0mRERERGT2mBARERGR2WNCRERERGaPCRERERGZvf8HoD+tO7SHDZIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSgElEQVR4nO3deVxU1f8/8NeggOyLgICxBSKyqJVLSLkkuVtuqWnlbhpq5ie3ytTS0DSz+vhVP5a0mHtiVpaWopZbKuGSaMoHFQUUXGZkERHO7w9/zIeRGZgZ7jBzx9fz8ZjHw7n3zr3ve7zc+77nnnOuQgghQERERCRDNuYOgIiIiMhYTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREssVEhoiIiGSLiQwRERHJFhMZIiIiki0mMkRERCRbTGSIyOTmzJkDhUKh17IKhQJz5swxaTwdO3ZEx44dLXZ9RKQ/JjJED5Evv/wSCoVC/alfvz4aN26M4cOH48qVK+YOz+IEBwdrlJePjw+efvppJCcnS7L+oqIizJkzB3v27JFkfUQPIyYyRA+h9957D9988w1WrFiB7t27Y82aNejQoQPu3Lljku298847KC4uNsm6Ta1ly5b45ptv8M033+DNN99EdnY2+vXrhxUrVtR63UVFRZg7dy4TGaJaqG/uAIio7nXv3h2tWrUCAIwePRpeXl5YuHAhtm3bhoEDB0q+vfr166N+fXmebho3boyXXnpJ/f2VV15BWFgYPv74Y4wbN86MkRERwBoZIgLw9NNPAwAyMjI0pp85cwYDBgyAp6cnGjRogFatWmHbtm0ay5SWlmLu3Llo0qQJGjRogIYNG+Kpp57Cr7/+ql5GWxuZkpISvPHGG/D29oaLiwuee+45XL58uUpsw4cPR3BwcJXp2taZlJSEZ555Bj4+PrC3t0dkZCSWL19uUFnUxNfXF82aNUNmZma1y127dg2jRo1Co0aN0KBBA7Ro0QJfffWVev6FCxfg7e0NAJg7d6768ZWp2wcRWRt53iIRkaQuXLgAAPDw8FBP+/vvvxEXF4fGjRtjxowZcHJywsaNG9GnTx9899136Nu3L4D7CUViYiJGjx6NNm3aQKVS4ejRo0hNTcWzzz6rc5ujR4/GmjVrMGTIELRr1w67d+9Gz549a7Ufy5cvR1RUFJ577jnUr18fP/zwA1577TWUl5cjISGhVuuuUFpaiqysLDRs2FDnMsXFxejYsSPOnz+PCRMmICQkBJs2bcLw4cNx69YtvP766/D29sby5csxfvx49O3bF/369QMANG/eXJI4iR4agogeGklJSQKA+O2330ReXp7IysoSmzdvFt7e3sLe3l5kZWWpl+3cubOIiYkRd+7cUU8rLy8X7dq1E02aNFFPa9GihejZs2e12509e7aofLpJS0sTAMRrr72msdyQIUMEADF79mz1tGHDhomgoKAa1ymEEEVFRVWW69q1q3j00Uc1pnXo0EF06NCh2piFECIoKEh06dJF5OXliby8PHH8+HExePBgAUBMnDhR5/qWLl0qAIg1a9aop929e1fExsYKZ2dnoVKphBBC5OXlVdlfIjIMHy0RPYTi4+Ph7e2NgIAADBgwAE5OTti2bRseeeQRAMCNGzewe/duDBw4ELdv30Z+fj7y8/Nx/fp1dO3aFefOnVP3cnJ3d8fff/+Nc+fO6b397du3AwAmTZqkMX3y5Mm12i8HBwf1v5VKJfLz89GhQwf897//hVKpNGqdO3fuhLe3N7y9vdGiRQts2rQJL7/8MhYuXKjzN9u3b4evry9efPFF9TRbW1tMmjQJBQUF2Lt3r1GxEFFVfLRE9BBatmwZwsPDoVQqsXr1auzbtw/29vbq+efPn4cQArNmzcKsWbO0ruPatWto3Lgx3nvvPTz//PMIDw9HdHQ0unXrhpdffrnaRyQXL16EjY0NQkNDNaY3bdq0Vvu1f/9+zJ49GwcPHkRRUZHGPKVSCTc3N4PX2bZtW8ybNw8KhQKOjo5o1qwZ3N3dq/3NxYsX0aRJE9jYaN4rNmvWTD2fiKTBRIboIdSmTRt1r6U+ffrgqaeewpAhQ3D27Fk4OzujvLwcAPDmm2+ia9euWtcRFhYGAGjfvj0yMjLw/fffY+fOnfj888/x8ccfY8WKFRg9enStY9U1kF5ZWZnG94yMDHTu3BkRERFYsmQJAgICYGdnh+3bt+Pjjz9W75OhvLy8EB8fb9Rvicj0mMgQPeTq1auHxMREdOrUCf/+978xY8YMPProowDuPw7R5yLu6emJESNGYMSIESgoKED79u0xZ84cnYlMUFAQysvLkZGRoVELc/bs2SrLenh44NatW1WmP1ir8cMPP6CkpATbtm1DYGCgenpKSkqN8UstKCgIJ06cQHl5uUatzJkzZ9TzAd1JGhHpj21kiAgdO3ZEmzZtsHTpUty5cwc+Pj7o2LEjVq5ciZycnCrL5+Xlqf99/fp1jXnOzs4ICwtDSUmJzu11794dAPDpp59qTF+6dGmVZUNDQ6FUKnHixAn1tJycnCqj69arVw8AIIRQT1MqlUhKStIZh6n06NEDubm52LBhg3ravXv38Nlnn8HZ2RkdOnQAADg6OgKA1kSNiPTDGhkiAgBMnToVL7zwAr788kuMGzcOy5Ytw1NPPYWYmBiMGTMGjz76KK5evYqDBw/i8uXLOH78OAAgMjISHTt2xBNPPAFPT08cPXoUmzdvxoQJE3Ruq2XLlnjxxRfxf//3f1AqlWjXrh127dqF8+fPV1l28ODBmD59Ovr27YtJkyahqKgIy5cvR3h4OFJTU9XLdenSBXZ2dujduzdeffVVFBQUYNWqVfDx8dGajJnS2LFjsXLlSgwfPhzHjh1DcHAwNm/ejP3792Pp0qVwcXEBcL9xcmRkJDZs2IDw8HB4enoiOjoa0dHRdRovkayZu9sUEdWdiu7XR44cqTKvrKxMhIaGitDQUHHv3j0hhBAZGRnilVdeEb6+vsLW1lY0btxY9OrVS2zevFn9u3nz5ok2bdoId3d34eDgICIiIsT8+fPF3bt31cto6ypdXFwsJk2aJBo2bCicnJxE7969RVZWltbuyDt37hTR0dHCzs5ONG3aVKxZs0brOrdt2yaaN28uGjRoIIKDg8XChQvF6tWrBQCRmZmpXs6Q7tc1dS3Xtb6rV6+KESNGCC8vL2FnZydiYmJEUlJSld8eOHBAPPHEE8LOzo5dsYmMoBCiUj0sERERkYywjQwRERHJFhMZIiIiki0mMkRERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZsvoB8crLy5GdnQ0XFxcOB05ERCQTQgjcvn0b/v7+VV7AWpnVJzLZ2dkICAgwdxhERERkhKysLDzyyCM651t9IlMxFHhWVhZcXV3NHA0RERHpQ6VSISAgQH0d18XqE5mKx0murq5MZIiIiGSmpmYhbOxLREREssVEhoiIiGSLiQwRERHJltW3kSEisjRlZWUoLS01dxhEZmVra4t69erVej1MZIiI6ogQArm5ubh165a5QyGyCO7u7vD19a3VOG9MZIiI6khFEuPj4wNHR0cO0kkPLSEEioqKcO3aNQCAn5+f0etiIkNEVAfKysrUSUzDhg3NHQ6R2Tk4OAAArl27Bh8fH6MfM7GxLxFRHahoE+Po6GjmSIgsR8XfQ23ajDGRISKqQ3ycRPQ/Uvw9MJEhIiIi2WIiQ0RERLLFRMbMcpTFOJCRjxxlsblDISKqVm5uLiZOnIhHH30U9vb2CAgIQO/evbFr1y71MgcOHECPHj3g4eGBBg0aICYmBkuWLEFZWZl6mQsXLmDUqFEICQmBg4MDQkNDMXv2bNy9e1dje6tWrUKLFi3g7OwMd3d3PPbYY0hMTFTPnzNnDhQKBbp161Yl1kWLFkGhUKBjx456759KpcLbb7+NiIgINGjQAL6+voiPj8eWLVsghFAv9/fff2PgwIHw9vaGvb09wsPD8e6776KoqEi9zI0bNzBx4kQ0bdoUDg4OCAwMxKRJk6BUKvWK5cKFC1AoFFo/hw4d0nufOnbsiMmTJ+u9vByx15IZbThyCTO3nES5AGwUQGK/GAxqHWjusIiIqrhw4QLi4uLg7u6ORYsWISYmBqWlpdixYwcSEhJw5swZJCcnY+DAgRgxYgRSUlLg7u6O3377DdOmTcPBgwexceNGKBQKnDlzBuXl5Vi5ciXCwsJw6tQpjBkzBoWFhVi8eDEAYPXq1Zg8eTI+/fRTdOjQASUlJThx4gROnTqlEZefnx9SUlJw+fJlPPLII+rpq1evRmCg/ufTW7du4amnnoJSqcS8efPQunVr1K9fH3v37sW0adPwzDPPwN3dHYcOHUJ8fDzi4+Px008/oVGjRvjzzz/xr3/9C7t27UJKSgrs7OyQnZ2N7OxsLF68GJGRkbh48SLGjRuH7OxsbN68We+4fvvtN0RFRWlMk7rXmxACZWVlqF9fpimBsHJKpVIAEEql0tyhaMi+VSRCZvwogqb/7/PojJ9E9q0ic4dGRCZQXFwsTp8+LYqLi80dilG6d+8uGjduLAoKCqrMu3nzpigoKBANGzYU/fr1qzJ/27ZtAoBYv369zvV/+OGHIiQkRP39+eefF8OHD682ptmzZ4sWLVqIXr16iXnz5qmn79+/X3h5eYnx48eLDh066LF3QowfP144OTmJK1euVJl3+/ZtUVpaKsrLy0VkZKRo1aqVKCsr01gmLS1NKBQKsWDBAp3b2Lhxo7CzsxOlpaU1xpOZmSkAiL/++kvnMhX7//XXX4ugoCDh6uoqBg0aJFQqlRBCiGHDhgkAGp/MzEyRkpIiAIjt27eLxx9/XNja2oqUlBRx584dMXHiROHt7S3s7e1FXFyc+PPPP9Xbq/jdjz/+KGJiYoS9vb1o27atOHnypBBCiIKCAuHi4iI2bdqkEWdycrJwdHRUx1VZdX8X+l6/+WjJTDLzC1EuNKeVCYEL+UXaf0BEVEldPpa+ceMGfvnlFyQkJMDJyanKfHd3d+zcuRPXr1/Hm2++WWV+7969ER4ejnXr1unchlKphKenp/q7r68vDh06hIsXL9YY38iRI/Hll1+qv69evRpDhw6FnZ1djb8FgPLycqxfvx5Dhw6Fv79/lfnOzs6oX78+0tLScPr0aUyZMgU2NpqXzxYtWiA+Pr7GfXR1dZW05iMjIwNbt27Fjz/+iB9//BF79+7FggULAACffPIJYmNjMWbMGOTk5CAnJwcBAQHq386YMQMLFixAeno6mjdvjmnTpuG7777DV199hdTUVISFhaFr1664ceOGxjanTp2Kjz76CEeOHIG3tzd69+6N0tJSODk5YfDgwUhKStJYPikpCQMGDICLi4tk+10ZExkzCfFygs0Dvc7qKRQI9uIYE0RUvQ1HLiFuwW4MWXUYcQt2Y8ORSybd3vnz5yGEQEREhM5l/vnnHwBAs2bNtM6PiIhQL6Nt/Z999hleffVV9bTZs2fD3d0dwcHBaNq0KYYPH46NGzeivLy8yu979eoFlUqFffv2obCwEBs3bsTIkSP13r/8/HzcvHmz2v0Dat7HZs2a6dzH/Px8vP/++xg7dqzecQFAu3bt4OzsrPGprLy8HF9++SWio6Px9NNP4+WXX1a3WXJzc4OdnR0cHR3h6+sLX19fjUHn3nvvPTz77LMIDQ2Fvb09li9fjkWLFqF79+6IjIzEqlWr4ODggC+++EJjm7Nnz8azzz6LmJgYfPXVV7h69SqSk5MBAKNHj8aOHTuQk5MD4P5gd9u3bzfo/8NQTGTMxM/NAYn9YlDv//ehr6dQ4IN+0fBzczBzZERkyXKUxeq2dQBQLoC3tpwyac2MEKLmhYxYFgCuXLmCbt264YUXXsCYMWPU0/38/HDw4EGcPHkSr7/+Ou7du4dhw4ahW7duVZIZW1tbvPTSS0hKSsKmTZsQHh6O5s2bmyxmQ5dXqVTo2bMnIiMjMWfOHIN+u2HDBqSlpWl8KgsODtao6fDz81MP+1+TVq1aqf+dkZGB0tJSxMXFqafZ2tqiTZs2SE9P1/hdbGys+t+enp5o2rSpepk2bdogKioKX331FQBgzZo1CAoKQvv27fXbYSPItGWPdRjUOhDtw71xIb8IwV6OTGKIqEbVPZY21TmkSZMm6ka6uoSHhwMA0tPT0a5duyrz09PTERkZqTEtOzsbnTp1Qrt27fCf//xH63qjo6MRHR2N1157DePGjcPTTz+NvXv3olOnThrLjRw5Em3btsWpU6cMvvv39vaGu7t7tfsHaO7jY489VmV+enq6epkKt2/fRrdu3eDi4oLk5GTY2toaFFtAQADCwsJ0zn9wfQqFQmutlTbaHhNKYfTo0Vi2bBlmzJiBpKQkjBgxwqQDQbJGxsz83BwQG9qQSQwR6cUcj6U9PT3RtWtXLFu2DIWFhVXm37p1C126dIGnpyc++uijKvO3bduGc+fO4cUXX1RPu3LlCjp27IgnnngCSUlJVdqcaFORCGmLISoqClFRUTh16hSGDBliyO7BxsYGgwcPxrfffovs7Owq8wsKCnDv3j20bNkSERER+Pjjj6skC8ePH8dvv/2msY8qlQpdunSBnZ0dtm3bhgYNGhgUlxTs7Ow0ur7rEhoaCjs7O+zfv189rbS0FEeOHKmSgFbu/n3z5k38888/Go/bXnrpJVy8eBGffvopTp8+jWHDhkmwJ7oxkSEikhFzPZZetmwZysrK0KZNG3z33Xc4d+4c0tPT8emnnyI2NhZOTk5YuXIlvv/+e4wdOxYnTpzAhQsX8MUXX2D48OEYMGAABg4cCOB/SUxgYCAWL16MvLw85ObmIjc3V7298ePH4/3338f+/ftx8eJFHDp0CK+88gq8vb01Hm1Utnv3buTk5MDd3d3g/Zs/fz4CAgLQtm1bfP311zh9+jTOnTuH1atX47HHHkNBQQEUCgW++OILnD59Gv3798eff/6JS5cuYdOmTejduzdiY2PVY7ZUJDGFhYX44osvoFKp1PuoT2JR4fr16+rfVXzu3Lmj9++Dg4Nx+PBhXLhwAfn5+Tpra5ycnDB+/HhMnToVv/zyC06fPo0xY8agqKgIo0aN0lj2vffew65du3Dq1CkMHz4cXl5e6NOnj3q+h4cH+vXrh6lTp6JLly4a3eJNoto+TVbAUrtfE9HDReru19m3isSB8/l1OmRDdna2SEhIEEFBQcLOzk40btxYPPfccyIlJUW9zL59+0TXrl2Fq6ursLOzE1FRUWLx4sXi3r176mWSkpKqdAuu+FTYvHmz6NGjh/Dz8xN2dnbC399f9O/fX5w4cUK9TEX3Y11ef/11vbtfCyHErVu3xIwZM0STJk2EnZ2daNSokYiPjxfJycmivLxcvdyJEydE//79haenp7C1tRWhoaHinXfeEYWFheplKroqa/tkZmbWGEtF92ttn3Xr1unc/48//lgEBQWpv589e1Y8+eSTwsHBoUr365s3b2r8tri4WEycOFF4eXlV2/36hx9+EFFRUcLOzk60adNGHD9+vEr8u3btEgDExo0bq91PKbpfK4QwsNWSzKhUKri5uam7vRERmcOdO3eQmZmJkJAQszxiIKqtPXv2oFOnTrh582aNtV7ffPMN3njjDWRnZ1fbDb66vwt9r99s7EtERESSKCoqQk5ODhYsWIBXX31V77F8aoNtZIiIyOo9OBZL5c/vv/9e5/GMGzdOZzzjxo2r83ik8uGHHyIiIgK+vr6YOXNmnWyTj5aIiOoAHy2Z1/nz53XOa9y4MRwc6rbn6LVr16BSqbTOc3V1hY+PT53GYy58tERERKSH6sZiMQcfH5+HJlkxNT5aIiIiItliIkNEVIf0HXWV6GEgxd8DHy0REdUBOzs72NjYIDs7G97e3rCzszPpsO1ElkwIgbt37yIvLw82Nja16t3ERIaIqA7Y2NggJCQEOTk5WofBJ3oYOTo6IjAwUK9XVOjCRIaIqI7Y2dkhMDAQ9+7dM2iYeiJrVK9ePdSvX7/WNZNMZIiI6pBCoYCtra3Bb0EmIu3Y2JeIiIhki4kMERERyRYTGSIiIpItJjJEREQkW0xkiIiISLaYyBAREZFsMZEhIiIi2WIiQ0RERLLFRIaIiIhki4kMERERyZZZE5l9+/ahd+/e8Pf3h0KhwNatW9XzSktLMX36dMTExMDJyQn+/v545ZVX+LI1IiIiUjNrIlNYWIgWLVpg2bJlVeYVFRUhNTUVs2bNQmpqKrZs2YKzZ8/iueeeM0OkREREZIkUQghh7iCA+y9SS05ORp8+fXQuc+TIEbRp0wYXL15EYGCgXutVqVRwc3ODUqmEq6urRNESERGRKel7/ZbV26+VSiUUCgXc3d11LlNSUoKSkhL1d5VKVQeRERERkTnIprHvnTt3MH36dLz44ovVZmaJiYlwc3NTfwICAuowSiIiIqpLskhkSktLMXDgQAghsHz58mqXnTlzJpRKpfqTlZVVR1ESERFRXbP4R0sVSczFixexe/fuGtu52Nvbw97evo6iIyIiInOy6ESmIok5d+4cUlJS0LBhQ3OHRERERBbErIlMQUEBzp8/r/6emZmJtLQ0eHp6ws/PDwMGDEBqaip+/PFHlJWVITc3FwDg6ekJOzs7c4VNREREFsKs3a/37NmDTp06VZk+bNgwzJkzByEhIVp/l5KSgo4dO+q1DXa/JiIikh9ZdL/u2LEjqsujLGSIGyIiIrJQsui1RERERKQNExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyZdZEZt++fejduzf8/f2hUCiwdetWjflCCLz77rvw8/ODg4MD4uPjce7cOfMES0RERBbHrIlMYWEhWrRogWXLlmmd/+GHH+LTTz/FihUrcPjwYTg5OaFr1664c+dOHUdKRERElqi+OTfevXt3dO/eXes8IQSWLl2Kd955B88//zwA4Ouvv0ajRo2wdetWDB48uC5DJSIiIgtksW1kMjMzkZubi/j4ePU0Nzc3tG3bFgcPHjRjZERERGQpzFojU53c3FwAQKNGjTSmN2rUSD1Pm5KSEpSUlKi/q1Qq0wRIREREZmexNTLGSkxMhJubm/oTEBBg7pCIiIjIRCw2kfH19QUAXL16VWP61atX1fO0mTlzJpRKpfqTlZVl0jiJiIjIfCw2kQkJCYGvry927dqlnqZSqXD48GHExsbq/J29vT1cXV01PkRERGSdzNpGpqCgAOfPn1d/z8zMRFpaGjw9PREYGIjJkydj3rx5aNKkCUJCQjBr1iz4+/ujT58+5guaiIiILIZZE5mjR4+iU6dO6u9TpkwBAAwbNgxffvklpk2bhsLCQowdOxa3bt3CU089hV9++QUNGjQwV8hERERkQRRCCGHuIExJpVLBzc0NSqWSj5mIiIhkQt/rt8W2kSEiIiKqCRMZIiIiki0mMkRERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREsmVUIlNYWCh1HEREREQGMyqRadSoEUaOHIk//vhD6niIiIiI9GZUIrNmzRrcuHEDzzzzDMLDw7FgwQJkZ2dLHRsRERFRtYxKZPr06YOtW7fiypUrGDduHNauXYugoCD06tULW7Zswb1796SOk4iIiKgKyd619Nlnn2Hq1Km4e/cuvLy8MG7cOMyYMQOOjo5SrN5ofNcSERGR/Oh7/a7V26+vXr2Kr776Cl9++SUuXryIAQMGYNSoUbh8+TIWLlyIQ4cOYefOnbXZBBEREZFORiUyW7ZsQVJSEnbs2IHIyEi89tpreOmll+Du7q5epl27dmjWrJlUcRIRERFVYVQiM2LECAwePBj79+9H69attS7j7++Pt99+u1bBEREREVXHqDYyRUVFZm/7oi+2kSEiIpIfk7aRcXR0RFlZGZKTk5Geng4AaNasGfr06YP69WvV7IaIiIhIb0ZlHX///Td69+6Nq1evomnTpgCAhQsXwtvbGz/88AOio6MlDZKIiIhIG6PGkRk9ejSio6Nx+fJlpKamIjU1FVlZWWjevDnGjh0rdYxEREREWhlVI5OWloajR4/Cw8NDPc3DwwPz58/X2fiXiIiISGpG1ciEh4fj6tWrVaZfu3YNYWFhtQ6KiIiISB9GJTKJiYmYNGkSNm/ejMuXL+Py5cvYvHkzJk+ejIULF0KlUqk/RERERKZiVPdrG5v/5T8KhQIAULGayt8VCgXKysqkiNNo7H5NREQkPybtfp2SkmJ0YERERERSMSqR6dChg9RxEBERERnM6NHrbt26hS+++EI9IF5UVBRGjhwJNzc3yYIjIiIiqo5RjX2PHj2K0NBQfPzxx7hx4wZu3LiBJUuWIDQ0FKmpqVLHSERERKSVUY19n376aYSFhWHVqlXqVxLcu3cPo0ePxn//+1/s27dP8kCNxca+RERE8qPv9duoRMbBwQF//fUXIiIiNKafPn0arVq1QlFRkeERmwgTGSIiIvnR9/pt1KMlV1dXXLp0qcr0rKwsuLi4GLNKIiIiIoMZlcgMGjQIo0aNwoYNG5CVlYWsrCysX78eo0ePxosvvih1jERERERaGdVrafHixVAoFHjllVdw7949AICtrS3Gjx+PBQsWSBogERERkS4Gt5EpKyvD/v37ERMTA3t7e2RkZAAAQkND4ejoaJIga4NtZIiIiOTHZCP71qtXD126dEF6ejpCQkIQExNTq0CJiIiIjGVUG5no6Gj897//lToWIiIiIoMYlcjMmzcPb775Jn788Ufk5ORovO2ab7wmIiKiuiLZ268By3njdWVsI0NERCQ/fPs1ERERWT2jEpmQkBAEBARo1MYA92tksrKyJAmMiIiIqCZGtZEJCQlBXl5elek3btxASEhIrYMiIiIi0odRiUxFW5gHFRQUoEGDBrUOqkJZWRlmzZqFkJAQODg4IDQ0FO+//z6MaNZDREREVsigR0tTpkwBcL+B76xZszQGwCsrK8Phw4fRsmVLyYJbuHAhli9fjq+++gpRUVE4evQoRowYATc3N0yaNEmy7RAREZE8GZTI/PXXXwDu18icPHkSdnZ26nl2dnZo0aIF3nzzTcmCO3DgAJ5//nn07NkTABAcHIx169bhzz//lGwbREREJF8GJTIVvZVGjBiBTz75xOTdmdu1a4f//Oc/+OeffxAeHo7jx4/jjz/+wJIlS3T+pqSkBCUlJervHNeGiIjIehnVaykpKUnqOLSaMWMGVCoVIiIiUK9ePZSVlWH+/PkYOnSozt8kJiZi7ty5dRIfERERmZdRiUxhYSEWLFiAXbt24dq1aygvL9eYL9XrCzZu3Ihvv/0Wa9euRVRUFNLS0jB58mT4+/tj2LBhWn8zc+ZMdVse4H6NTEBAgCTxEBERkWUxKpEZPXo09u7di5dffhl+fn5aezBJYerUqZgxYwYGDx4MAIiJicHFixeRmJioM5Gxt7eHvb29SeIhIiIiy2JUIvPzzz/jp59+QlxcnNTxaCgqKtJ4HQJw/+3bD9YAERER0cPJqETGw8MDnp6eUsdSRe/evTF//nwEBgYiKioKf/31F5YsWYKRI0eafNtERERk+Yx6aeSaNWvw/fff46uvvtIYS0Zqt2/fxqxZs5CcnIxr167B398fL774It59912Nrt/V4UsjiYiI5Eff67dRicxjjz2GjIwMCCEQHBwMW1tbjfmpqamGR2wiTGSIiIjkx6Rvv+7Tp4+xcRERERFJxqgaGTlhjQwREZH86Hv9NuilkX/++SfKysp0zi8pKcHGjRsNWSURERGR0QxKZGJjY3H9+nX1d1dXV43B727duoUXX3xRuuiIiIiIqmFQIvPgUyhtT6Ws/EkVERERWRCDEhl9mGqUXyIiIqIHSZ7IEBEREdUVg7tfnz59Grm5uQDuP0Y6c+YMCgoKAAD5+fnSRkdERERUDYO6X9vY2EChUGhtB1MxXaFQVNuzqa6x+zUREZH8mGRAvMzMzFoHRkRERCQVgxKZoKAgg1b+2muv4b333oOXl5dBvyMiIiLSh0kb+65ZswYqlcqUmyAiIqKHmEkTGY4pQ0RERKbE7tdEREQkW0xkiIiISLaYyBAREZFsMZEhIiIi2TJpIvPSSy9xEDoiIiIyGaMSmfLycp3TL126pP6+fPlyjiFDREREJmNQIqNSqTBw4EA4OTmhUaNGePfddzVeR5CXl4eQkBDJgyQiIiLSxqCRfWfNmoXjx4/jm2++wa1btzBv3jykpqZiy5YtsLOzA8CxY4iIiKjuGFQjs3XrVqxcuRIDBgzA6NGjcfToUeTl5aF3794oKSkBcP/lkURERER1waBEJi8vT+N9S15eXvjtt99w+/Zt9OjRA0VFRZIHSERERKSLQYlMYGAg0tPTNaa5uLhg586dKC4uRt++fSUNjoiIiKg6BiUyXbp0QVJSUpXpzs7O2LFjBxo0aCBZYEREREQ1Maix79y5c5Gdna11nouLC3799VekpqZKEhgRERFRTQxKZDw8PODh4aFzvouLCzp06FDroIiIiIj0YfCAePfu3cOiRYvw+OOPw9nZGc7Oznj88cexePFilJaWmiJGIiIiIq0MqpEpLi7Gs88+i4MHDyI+Ph7t27cHAKSnp2P69OnYtm0bdu7cybYyREREVCcMSmQWLFiArKws/PXXX2jevLnGvOPHj+O5557DggULMGfOHCljJCIiItLKoEdL69evx5IlS6okMQDQokULLF68GGvXrpUsOCIiIqLqGJTIXLx4EW3atNE5/8knn9R4aSQRERGRKRmUyLi6uuLatWs65+fm5sLFxaXWQRERERHpw6BEplOnTvjggw90zl+wYAE6depU66CIiIiI9GFQY9/Zs2ejbdu2ePLJJzFlyhRERERACIH09HR8/PHHOH36NA4dOmSqWImIiIg0GJTIREZG4tdff8WoUaMwePBg9ZuuhRCIiIjAzp07ERUVZZJAiYiIiB5kUCID3G/Q+/fffyMtLQ3//PMPACA8PBwtW7aUOjYiIiKiahmcyKhUKjg7O6Nly5YayUt5eTkKCgrg6uoqZXxEREREOhnU2Dc5ORmtWrXCnTt3qswrLi5G69at8cMPP0gWHBEREVF1DEpkli9fjmnTpsHR0bHKPCcnJ0yfPh3//ve/JQuOiIiIqDoGJTKnTp1Cx44ddc5v3749Tp48WduYNFy5cgUvvfQSGjZsCAcHB8TExODo0aOSboOIiIjkyaA2Mjdv3sS9e/d0zi8tLcXNmzdrHVTl7cXFxaFTp074+eef4e3tjXPnzsHDw0OybRAREZF8GZTIBAcH4+jRo4iIiNA6/+jRowgKCpIkMABYuHAhAgICkJSUpJ4WEhIi2fqJiIhI3gx6tNSvXz+8/fbbuHr1apV5ubm5eOedd9C/f3/Jgtu2bRtatWqFF154AT4+PnjsscewatWqan9TUlIClUql8SEiIiLrpBBCCH0Xvn37NmJjY3Hp0iW89NJLaNq0KQDgzJkz+PbbbxEQEIBDhw5J9r6lBg0aAACmTJmCF154AUeOHMHrr7+OFStWYNiwYVp/M2fOHMydO7fKdKVSya7hREREMqFSqeDm5lbj9dugRAa4nxDMnDkTGzZsULeHcXd3x+DBgzF//nxJ26/Y2dmhVatWOHDggHrapEmTcOTIERw8eFDrb0pKSlBSUqL+rlKpEBAQwESGiIhIRvRNZAweEM/NzQ3/93//h2XLliE/Px9CCHh7e6tfV1DZ/v370apVK9jb2xu6GQCAn58fIiMjNaY1a9YM3333nc7f2NvbG709IiIikheD2shUplAo4O3tDR8fH61JDAB0794dV65cMTq4uLg4nD17VmPaP//8I2mDYiIiIpIvoxMZfRj41KqKN954A4cOHcIHH3yA8+fPY+3atfjPf/6DhIQEiSIkIiIiOTNpIlNbrVu3RnJyMtatW4fo6Gi8//77WLp0KYYOHWru0IiIiMgCGNxGpq716tULvXr1MncYREREZIEsukaGiIiIqDomTWR0NQImIiIikoJFN/YlIiIiqo5J28jcvn3blKsnIiKih5xBicwzzzyj13K7d+82KhgiIiIiQxiUyOzZswdBQUHo2bMnbG1tTRUTERERkV4MSmQWLlyIpKQkbNq0CUOHDsXIkSMRHR1tqtiIiIiIqmVQY9+pU6fi9OnT2Lp1K27fvo24uDi0adMGK1asgEqlMlWMRERERFoZ/PbryoqKirBp0yYsW7YMp0+fRnZ2tsW9YVrft2cSERGR5dD3+l2r7tepqanYu3cv0tPTER0dzXYzREREVKcMTmSys7PxwQcfIDw8HAMGDICnpycOHz6MQ4cOwcHBwRQxEhEREWllUGPfHj16ICUlBV26dMGiRYvQs2dP1K9v8a9rIiIiIitlUBsZGxsb+Pn5wcfHp9rXD6SmpkoSnBTYRoaIiEh+9L1+G1SdMnv27FoHRkRERCSVWvVakgPWyBAREcmPSWpkdNm7dy8KCwsRGxsLDw8PKVZJREREVCODR/YtKCjA+++/D+D+2627d++OnTt3AgB8fHywa9cuREVFSR8pERER0QMM6n69YcMGjVcSbN68Gfv27cPvv/+O/Px8tGrVCnPnzpU8SCIiIiJtDEpkMjMz0bx5c/X37du3Y8CAAYiLi4OnpyfeeecdHDx4UPIgiYiIiLQxKJG5d+8e7O3t1d8PHjyIdu3aqb/7+/sjPz9fuuiIiIiIqmFQIhMaGop9+/YBAC5duoR//vkH7du3V8+/fPkyGjZsKG2ERERERDoY1Ng3ISEBEyZMwO+//45Dhw4hNjYWkZGR6vm7d+/GY489JnmQRERERNoYlMiMGTMG9erVww8//ID27dtXGSAvOzsbI0eOlDRAIiIiIl04IB4RERFZHH2v3wa//ZqIiIjIUhiUyJSWlmLatGkICwtDmzZtsHr1ao35V69eRb169SQNkIiIiEgXgxKZ+fPn4+uvv8a4cePQpUsXTJkyBa+++qrGMlb+pIqIiIgsiEGNfb/99lt8/vnn6NWrFwBg+PDh6N69O0aMGKGunVEoFNJHSURERKSFQTUyV65c0XhFQVhYGPbs2YMDBw7g5ZdfRllZmeQBEhEREeliUCLj6+uLjIwMjWmNGzdGSkoKjhw5guHDh0sZGxEREVG1DEpknnnmGaxdu7bKdH9/f+zevRuZmZmSBUZERERUE4PayMyaNQtnzpzROq9x48bYu3cvfv31V0kCIyIiIqoJB8QjIiIii2PSAfE2bdqEfv36ITo6GtHR0ejXrx82b95sdLBERERExjAokSkvL8egQYMwaNAgnD59GmFhYQgLC8Pff/+NQYMGYfDgwRxHhoiIiOqMQW1kPvnkE/z222/Ytm2beiyZCtu2bcOIESPwySefYPLkyVLGSERERKSVQTUySUlJWLRoUZUkBgCee+45fPjhh1VeW0BERERkKgYlMufOnUN8fLzO+fHx8Th37lytgyIiIiLSh0GJjIODA27duqVzvkqlQoMGDWobExEREZFeDEpkYmNjsXz5cp3zly1bhtjY2FoHRURERKQPgxKZt99+G1988QUGDhyIP//8EyqVCkqlEocOHcILL7yA1atX4+233zZVrFiwYAEUCgUbExMREREAA3sttWvXDhs2bMDYsWPx3Xffaczz8PDAunXrEBcXJ2mAFY4cOYKVK1eiefPmJlk/ERERyY9BiQwA9O3bF127dsWOHTvUDXvDw8PRpUsXODo6Sh4gABQUFGDo0KFYtWoV5s2bZ5JtEBERkfwY9Ghp9+7diIyMxL1799C3b19MmzYN06ZNQ58+fVBaWoqoqCj8/vvvkgeZkJCAnj17VttjqkJJSQlUKpXGh4iIiKyTQYnM0qVLMWbMGK3vPHBzc8Orr76KJUuWSBYcAKxfvx6pqalITEzUa/nExES4ubmpPwEBAZLGQ0RERJbDoETm+PHj6Natm875Xbp0wbFjx2odVIWsrCy8/vrr+Pbbb/Xu1j1z5kwolUr1JysrS7J4iIiIyLIY1Ebm6tWrsLW11b2y+vWRl5dX66AqHDt2DNeuXcPjjz+unlZWVoZ9+/bh3//+N0pKSlCvXj2N39jb28Pe3l6yGIiIiMhyGZTING7cGKdOnUJYWJjW+SdOnICfn58kgQFA586dcfLkSY1pI0aMQEREBKZPn14liSEiIqKHi0GJTI8ePTBr1ix069atyqOe4uJizJ49W+t7mIzl4uKC6OhojWlOTk5o2LBhlelERET08DEokXnnnXewZcsWhIeHY8KECWjatCkA4MyZM1i2bBnKyspMOiAeERERUWUKIYQw5AcXL17E+PHjsWPHDlT8VKFQoGvXrli2bBlCQkJMEqixVCoV3NzcoFQqtfa2IiIiIsuj7/Xb4AHxgoKCsH37dty8eRPnz5+HEAJNmjSBh4dHrQImIiIiMpTBiUwFDw8PtG7dWspYiIiIiAxi0DgyRERERJaEiQwRERHJFhMZIiIiMkqOshgHMvKRoyw2WwxGt5EhIiKih9eGI5cwc8tJlAvARgEk9ovBoNaBdR4Ha2SIiIjIIDnKYnUSAwDlAnhryymz1MwwkSEiIiKDZOYXqpOYCmVC4EJ+UZ3HwkSGiIiIDBLi5QQbhea0egoFgr0c6zwWJjJERERkED83ByT2i0E9xf1spp5CgQ/6RcPPzaHOY2FjXyIiIjLYoNaBaB/ujQv5RQj2cjRLEgMwkSEiIiIj+bk5mC2BqcBHS0RERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREssVEhohMxhJeKEdE1o3dr4nIJCzlhXJEZN1YI0NEkrOkF8oRkXVjIkNEkrOkF8oRkXVjIkNEkrOkF8oRkXVjIkNEkrOkF8oRkXVjY18iMglLeaEcEVk3JjJERspRFiMzvxAhXk68SOtgCS+UIyLrxkSGyAjsWkxEZBnYRobIQOxaTERkOZjIEBmIXYuJiCwHExkiA7FrMRGR5WAiQ2Qgdi0mIrIcbOxLZAR2LSYisgxMZIiMxK7FRETmx0dLVGs5ymIcyMhnrx0iIqpzrJGhWuF4KkREZE6skSGjcTwVIqKHmyXUyLNGhoxW3XgqbDtCRGTdLKVGnjUyRrKELNTcOJ4KEdHDyZJq5JnIGGHDkUuIW7AbQ1YdRtyC3dhw5JK5QzILjqdCRPRwsqQRzvloyUC6stD24d4P5QWc46kQET18KmrkKycz5qqRt+gamcTERLRu3RouLi7w8fFBnz59cPbsWbPGZElZqKXwc3NAbGhDJjFERA8JS6qRt+gamb179yIhIQGtW7fGvXv38NZbb6FLly44ffo0nJyczBKTJWWhRERE5mIpNfIKIYSoeTHLkJeXBx8fH+zduxft27fX6zcqlQpubm5QKpVwdXWVJI4NRy7hrS2nUCaEOgvl2ClERETS0ff6bdE1Mg9SKpUAAE9PT7PGYSlZKBkvR1mMzPxChHg58f+PiEjGZJPIlJeXY/LkyYiLi0N0dLTO5UpKSlBSUqL+rlKpTBIP37MjX5Yy9gEREdWeRTf2rSwhIQGnTp3C+vXrq10uMTERbm5u6k9AQEAdRUhyYEljHxARUe3JIpGZMGECfvzxR6SkpOCRRx6pdtmZM2dCqVSqP1lZWXUUJckBe50REVkXi360JITAxIkTkZycjD179iAkJKTG39jb28Pe3r4OoiM5Yq8zIiLrYtE1MgkJCVizZg3Wrl0LFxcX5ObmIjc3F8XFfAxAxrGksQ+IiKj2LLr7tUKh0Do9KSkJw4cP12sdpuh+TfKXoyxmrzMzYq8xIqqJVXS/tuAcSzZ4wdCOvc7Mh73GiEhKFp3IUO3wgkGWhu8qIyKpWXQbGTIeuxmTJWKvMSKSGhMZK8ULBlmiil5jlbHXGBHVBhMZKyXlBSNHWYwDGfmszaFaY68xIpIa28hYqYoLxoMvtzT0gsF2NiQ1S35XGRvHE8mPRXe/lsLD3v26Nt2Mc5TFiFuwu8rgcX/M6MSTPFkdJu1ElkXf6zcfLZmAJT2K8XNzQGxoQ6MSD7azoYcFG8cTyRcfLUnMmu7qOJw/PSyqS9pZ+0hk2VgjIyFru6tjw0x6WLA3FRnLkmrgpSSn/WKNjISs8a7OkhtmEklFqsbx5sJGyuZhTTXwlcltv5jISOjkZWWVadZwV8fh/OlhIMekPUdZjNV/ZOKLPzJlc9GxFtY6SrUc94uJjERylMVY+MuZKtOndW9qsf/5RKRJTkn7hiOXMOO7k6hcCSyHi461sMYaeECe+8U2MhLR9p8PAM0bu9d5LJZMTs9diWrLVMd7xV2ztrEz2LOwblhruyo57hdrZCTCHj7aVX52v++fPFk9dyWqDVO2M9B14wTwvFNX5N6uShc57hcHxJPQhiOXqvznP8wX6son8ooEv/LBxsH1yFqZejBJbesHdCdMuhoD69tImI2JdavNoKOWzBL2S9/rN2tkJCR1Y0E5nzwebDBWXRW43PaNqCambmfw4F2zDYDR7UMwIi6kyvp11QzpW2Mktx4sdU1O7aoMIaf9YiIjMan+8+V+8qiu6rsCq8DJWtXFo2Z9bpx09UCJ8HXRq2eKHHuwWDI535xaMjb2tUDWMLCetgZjCkA9TQ7PXYmMVVeDSdb0ChJdNUNHLtzUOv2nEzka5xm+pkQ6G45cQtyC3Riy6jDiFuzGhiOX6mS7D0MHC9bIWCA5dn97kK4GY3Ibp4PIWJYwLo2umqHWwR5VpgPAvJ/S8cH2dHUNsFw7MVhazYe5arbkXrOvLyYytVDbBnS6yPXk8SBdJ3JLOLEQ1QVztzPQdUPRIsBDY3pllS+yADDqqRD1gHtyqEm1xIu3OW5OH6bHgkxkjFTbBnTVkWP3N13MfSK3ZJZ21yg1a98/udB1Q1Ex/acTOZj3U7rGb8qEQNL+THz+e6a61+FYHY2JLYmlXrzNcXNqDTX7+mIiY4TaNqDThyVUS5PpWOJdo5Rqu391mQRZY8L14D7puqHwc3NAz+Z++GB7usZFz0YBrNqXqe5tKAB88fsFjIgLqZP4jSXlxVvK48IcN6fWUrOvDyYyRjC0AZ2xGTBrM6yTpd41SqW2+2fKJO/Bi5M1JpSG7pO2i+zIp4Kx6vdMjeXkcDcv1cXbFMeFqW9OtSWv1lKzXxMmMkYwpAGdlBmwNd45Poysvcq3NvtnyiTvwYvT9O4RWPjzGatKKI0tvwcvsgDU7WIq1OZcVlfnLiku3lIcg7r2V9+bU0PLS1fi9bDU7DORMYK+DeikzICt4c6Ridh91l7lW5v9M1WSp+3iVDmJkXJb1cVg6uO/NuX34EVWqnNZXZ+7anvxru0xWNv9NfT3NSVeD0PNPhMZI9XUgE7KDLimA1UOCYI1JGJSsfYq39rsn6mSPG0Xp4pGrA++NsMUCWVdHf9Slp8U5zJzPUatzcW7NmVY2/015vfWXsOrDyYytVBdAzopD6DqDlQ5vIjR2tuEGMPaq3yN3T9TJXm6Lk7TujXFh7+cNWlCWZfHv9TlV9tzmRwvstrKcFr3psjML1TP10XX/qZevAkPp5pvNo0pL2uv4dUHExkZ0HWgOtrZyCJBkOPJrC5Ye5WvPvunrTbRFEmergv8oNaBeK6lv0kTyro+/i0pSZbrRbZyGZ64fEv9GLKml3I62dWrsr8KBTBh7V8QqPlm05jysvYaXn0wkZEBXQdq4d0yWSQIcj2ZkWlV97jFFEledQM0Wls3WEtJkuviIns86yb+vHADbYI90SLAQ7L1VsQ49PND1d4sPngc932sMbb+lX3/ZZ4KQIj/Pb6s6WbT2PKypOTVHJjIyIS2AzVHWSyLBEFOdwxyaG9kDeTYdgIw7viQ0/GvS23+LnSduwxZn67l/7UxDd+lXlF/7/94Y3w0sKVB8VVeNwCN7dRUm6btON76Vza2vBaLorvlyC+4g4nr0nT+XpvaPJaV0zElJSYyMvLggSqnE6Qc7hjYIFk/UiR7cnzcWJvjQ6qGs+ZIsqUarVxXDUZN69O1/PGsmxpJDAB8l3oFr8QGoUWAh17lVXndFe+4rfwIqH24d7U3i7qO46K75YgNbWj0zebDnJQYg4mMzMkhQahgyX+cdVFDYA21PVIle3J73CjF8VHT8V/d8WGuJFvqvwtD11fd8n9euKF1G0cv3MSZ3Ns1lteD666cj1Rs548Znaq9WazpOLbEm01rOA89iImMidXFQWPJCYJcmLqGwBpqe6S8qFniCb465jw+zNnrT+r9NnR91S3fJthT6zaCvRwx5utjNZaXtnVr2051N4v6HMeWdLNpDechbZjImJC1HjTWyJQ1BJbU/bw2ibXUFzVto8keyMi3yDtFfY4PY8u2puPDnI/hpP67qG592sqvuuX93BzQ//HGVdrIONjV16u8tK27sgdrVmrTpsUSbjYt6TwkNRtzB2CtdB00Ocpi8wb2kMpRFuNARr7O8q+4s6qnuP+kXMoaguouRFKrbj83HLmEuAW7MWTVYcQt2I0NRy4ZtO6KE39l+lzUqovJz80BsaENse+fPL1jq+n/0lg1xVnd8VGbsq3p+NBW7jYAHO1Md/quKAsAkv5d6CpHXf//NZX7RwNb4vuEdpjVsxm+T2iHjwa21Ps4fXDdCtzvKm3MflYcx5acENTleaiuKYQQ1VSuyZ9KpYKbmxuUSiVcXV3rbLsHMvIxZNXhKtPXjXkSsaEN6ywOMqxmLEdZLHkVcI6yGHELdle5q/xjRidJT3w1PZ6QIoYNRy5pHYtF35hGPRWCkU+FaGxTW2w2CiD5tXZVutOaqpZTn/XmKItx9MIN2CgUeDzIQ70PtS1bfX5fudwrmKqWV1tZmGK08so1cTXtv6F/l4Ycpw/GYgmPgEyhrs5DUtL3+s0aGRMx9u6VpGVozZgp7qykqu2prsagpv2U6m5sUOtA/DGjE9aNeRJ/zOhk8DtgVv2eiXaJmjUWul4f0GfZAY3lTFXLqc96K2pcJq5Lw8R1f2HfP3nVxm9I2epzfAxqHYgtr8Wqawx0xVlbusoCgKR/F5X/zvQpP0P/Lg05TiuvWw41K8YyZa2zubGNjInIrTGjtbKUbr61bfBXU41BTfspVVsHQ9qB6GpMKaD5bF5XW4UHl5Py/7LyfhgzVkhN8RtatvqMtVJ4twwP1p9LfSyb4+/FmPLT5zi0hHYplsaSGh5LiYmMCcnloNH34iTHbnuW1M3X2BOrPo306qIbqKGPdaprTFn54lgRW+V91LacVP+XD+7H9G4RRo0V8mD8tb1pqWmslZrGNJGCuUYhNqT8Vu7NwIKfz+g15D9VZY0JHhMZE7P0g0bfi1NNy1lqkmMNNWP63CWbuhuoMT0eqktQHrw4DmodiAhfF/RZdkDn26il+L/Uth8f/nIW07tH4MOftb88Up+Lu5Q3LbrKuqYxTQzdhra/V1P/vejarr7lt3JfBhJ/PqP+bk09b8h4skhkli1bhkWLFiE3NxctWrTAZ599hjZt2pg7LNnT9+JU03JSNsA0RUIkl5oxXap7aWjl7sqm7AZq7COHipiS9mfi832ZKIfuZ/MtAjywoL9px+TQtR/NG7vjjxmdjB4rpGI5U/dyk+JYrunv1VR/LzVtt6byy1EWY0GlJKaCpY8IbYjanv8s9YbS1Cw+kdmwYQOmTJmCFStWoG3btli6dCm6du2Ks2fPwsfHx9zhyZq+F6eaGuNJNTaBKcfdsfSascoePBlpu5D2ecwfff/vQJWyMtV+1uaRg5+bA97qEYkRcSE1XhxNkYxVLs+axiWpTVxS0ecxobHbP551EzO+O1njSwylPo6kGMMkM7+wShsh4H6Plbp+VGyKhKG257+Hedwyi++1tGTJEowZMwYjRoxAZGQkVqxYAUdHR6xevdrcocmevj2rqltOqt4wHHfnPl3jkVTuhbHltVgk/3WlTstKih4P+vYIkbLnyIPlue+fPKP3o656tJiqd8mGI5fQ5/80H90BdTOWiBTnCW3nIQCY3j2iTm9Sajsekza1Pf897OdPi66RuXv3Lo4dO4aZM2eqp9nY2CA+Ph4HDx7U+puSkhKUlJSov6tUKpPHKVeGVJlXt5wUjQMtpXeROdV011rxOZCRb5ayktsjuuramuh6jGQppC7rirLQVqNRF43fpWhE/OB5yEZxP4l5tX2oCSLWzlSj49b2/Pewnz8tOpHJz89HWVkZGjVqpDG9UaNGOHOm6rNSAEhMTMTcuXPrIjyroO8JU9dyUjUOtKTeReai78nInGUlp0d01ZWnHMYKkbKsdXWFtwHqpPG7VOcJcyfTpkoYavs3/bCfPy06kTHGzJkzMWXKFPV3lUqFgIAAM0Zk+fQ9YepaToqTizX0LqotfU9GLCv9POwn98q0lYWu0ZNNRaokxJzJtKmOqdr+TT/s5wSLfkXB3bt34ejoiM2bN6NPnz7q6cOGDcOtW7fw/fff17gOc72igIxjilcEyImxQ6s/jGWlD0NfqWDNWBbSMGU51vZv2trOCfpevy06kQGAtm3bok2bNvjss88AAOXl5QgMDMSECRMwY8aMGn/PRIbkxtpORubG8vwfloU0WI51Q9/rt8U/WpoyZQqGDRuGVq1aoU2bNli6dCkKCwsxYsQIc4dGZBJyaociByzP/2FZSIPlaFksPpEZNGgQ8vLy8O677yI3NxctW7bEL7/8UqUBMBERET18LP7RUm3x0RIREZH86Hv9tvgB8YiIiIh0YSJDREREssVEhoiIiGSLiQwRERHJFhMZIiIiki0mMkRERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZsvhXFNRWxcDFKpXKzJEQERGRviqu2zW9gMDqE5nbt28DAAICAswcCRERERnq9u3bcHNz0znf6t+1VF5ejuzsbLi4uEChUJg7nDqlUqkQEBCArKwsvmeqFliO0mFZSoPlKB2WpTRMUY5CCNy+fRv+/v6wsdHdEsbqa2RsbGzwyCOPmDsMs3J1deUfqARYjtJhWUqD5SgdlqU0pC7H6mpiKrCxLxEREckWExkiIiKSLSYyVsze3h6zZ8+Gvb29uUORNZajdFiW0mA5SodlKQ1zlqPVN/YlIiIi68UaGSIiIpItJjJEREQkW0xkiIiISLaYyBAREZFsMZGRuX379qF3797w9/eHQqHA1q1bNeYLIfDuu+/Cz88PDg4OiI+Px7lz58wTrIWrqSyHDx8OhUKh8enWrZt5grVgiYmJaN26NVxcXODj44M+ffrg7NmzGsvcuXMHCQkJaNiwIZydndG/f39cvXrVTBFbJn3KsWPHjlWOyXHjxpkpYsu1fPlyNG/eXD1YW2xsLH7++Wf1fB6P+qmpHM11PDKRkbnCwkK0aNECy5Yt0zr/ww8/xKeffooVK1bg8OHDcHJyQteuXXHnzp06jtTy1VSWANCtWzfk5OSoP+vWravDCOVh7969SEhIwKFDh/Drr7+itLQUXbp0QWFhoXqZN954Az/88AM2bdqEvXv3Ijs7G/369TNj1JZHn3IEgDFjxmgckx9++KGZIrZcjzzyCBYsWIBjx47h6NGjeOaZZ/D888/j77//BsDjUV81lSNgpuNRkNUAIJKTk9Xfy8vLha+vr1i0aJF62q1bt4S9vb1Yt26dGSKUjwfLUgghhg0bJp5//nmzxCNn165dEwDE3r17hRD3j0FbW1uxadMm9TLp6ekCgDh48KC5wrR4D5ajEEJ06NBBvP766+YLSsY8PDzE559/zuOxlirKUQjzHY+skbFimZmZyM3NRXx8vHqam5sb2rZti4MHD5oxMvnas2cPfHx80LRpU4wfPx7Xr183d0gWT6lUAgA8PT0BAMeOHUNpaanGcRkREYHAwEAel9V4sBwrfPvtt/Dy8kJ0dDRmzpyJoqIic4QnG2VlZVi/fj0KCwsRGxvL49FID5ZjBXMcj1b/0siHWW5uLgCgUaNGGtMbNWqknkf669atG/r164eQkBBkZGTgrbfeQvfu3XHw4EHUq1fP3OFZpPLyckyePBlxcXGIjo4GcP+4tLOzg7u7u8ayPC5101aOADBkyBAEBQXB398fJ06cwPTp03H27Fls2bLFjNFappMnTyI2NhZ37tyBs7MzkpOTERkZibS0NB6PBtBVjoD5jkcmMkR6Gjx4sPrfMTExaN68OUJDQ7Fnzx507tzZjJFZroSEBJw6dQp//PGHuUORNV3lOHbsWPW/Y2Ji4Ofnh86dOyMjIwOhoaF1HaZFa9q0KdLS0qBUKrF582YMGzYMe/fuNXdYsqOrHCMjI812PPLRkhXz9fUFgCqt769evaqeR8Z79NFH4eXlhfPnz5s7FIs0YcIE/Pjjj0hJScEjjzyinu7r64u7d+/i1q1bGsvzuNROVzlq07ZtWwDgMamFnZ0dwsLC8MQTTyAxMREtWrTAJ598wuPRQLrKUZu6Oh6ZyFixkJAQ+Pr6YteuXeppKpUKhw8f1nimSca5fPkyrl+/Dj8/P3OHYlGEEJgwYQKSk5Oxe/duhISEaMx/4oknYGtrq3Fcnj17FpcuXeJxWUlN5ahNWloaAPCY1EN5eTlKSkp4PNZSRTlqU1fHIx8tyVxBQYFGtpuZmYm0tDR4enoiMDAQkydPxrx589CkSROEhIRg1qxZ8Pf3R58+fcwXtIWqriw9PT0xd+5c9O/fH76+vsjIyMC0adMQFhaGrl27mjFqy5OQkIC1a9fi+++/h4uLi7qdgZubGxwcHODm5oZRo0ZhypQp8PT0hKurKyZOnIjY2Fg8+eSTZo7ectRUjhkZGVi7di169OiBhg0b4sSJE3jjjTfQvn17NG/e3MzRW5aZM2eie/fuCAwMxO3bt7F27Vrs2bMHO3bs4PFogOrK0azHY533kyJJpaSkCABVPsOGDRNC3O+CPWvWLNGoUSNhb28vOnfuLM6ePWveoC1UdWVZVFQkunTpIry9vYWtra0ICgoSY8aMEbm5ueYO2+JoK0MAIikpSb1McXGxeO2114SHh4dwdHQUffv2FTk5OeYL2gLVVI6XLl0S7du3F56ensLe3l6EhYWJqVOnCqVSad7ALdDIkSNFUFCQsLOzE97e3qJz585i586d6vk8HvVTXTma83hUCCGEaVMlIiIiItNgGxkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExmih0Bubi4mTpyIRx99FPb29ggICEDv3r013i9z4MAB9OjRAx4eHmjQoAFiYmKwZMkSlJWVqZe5cOECRo0ahZCQEDg4OCA0NBSzZ8/G3bt3Nba3atUqtGjRAs7OznB3d8djjz2GxMRE9fw5c+ZAoVCgW7duVWJdtGgRFAoFOnbsqNe+VaxLoVCgfv36CA4OxhtvvIGCggIDS4mI5IjvWiKychcuXEBcXBzc3d2xaNEixMTEoLS0FDt27EBCQgLOnDmD5ORkDBw4ECNGjEBKSgrc3d3x22+/Ydq0aTh48CA2btwIhUKBM2fOoLy8HCtXrkRYWBhOnTqFMWPGoLCwEIsXLwYArF69GpMnT8ann36KDh06oKSkBCdOnMCpU6c04vLz80NKSgouX76s8Vbn1atXIzAw0KB9jIqKwm+//YZ79+5h//79GDlyJIqKirBy5coqy969exd2dnZGlKTpWGJMRLJh8pcgEJFZde/eXTRu3FgUFBRUmXfz5k1RUFAgGjZsKPr161dl/rZt2wQAsX79ep3r//DDD0VISIj6+/PPPy+GDx9ebUyzZ88WLVq0EL169RLz5s1TT9+/f7/w8vIS48ePFx06dNBj7/63rsrGjBkjfH19NeavWrVKBAcHC4VCIYS4v++jRo0SXl5ewsXFRXTq1EmkpaWp15GWliY6duwonJ2dhYuLi3j88cfFkSNHhBBCXLhwQfTq1Uu4u7sLR0dHERkZKX766SchhBBJSUnCzc1NI57k5GRR+XRrbExEVBUfLRFZsRs3buCXX35BQkICnJycqsx3d3fHzp07cf36dbz55ptV5vfu3Rvh4eFYt26dzm0olUp4enqqv/v6+uLQoUO4ePFijfGNHDkSX375pfr76tWrMXTo0FrXTjg4OGg87jp//jy+++47bNmyBWlpaQCAF154AdeuXcPPP/+MY8eO4fHHH0fnzp1x48YNAMDQoUPxyCOP4MiRIzh27BhmzJgBW1tbAPffTF1SUoJ9+/bh5MmTWLhwIZydnQ2K0ZiYiKgqPloismLnz5+HEAIRERE6l/nnn38AAM2aNdM6PyIiQr2MtvV/9tln6sdKADB79mz069cPwcHBCA8PR2xsLHr06IEBAwbAxkbz3qlXr14YN24c9u3bhyeeeAIbN27EH3/8gdWrVxu6q2rHjh3D2rVr8cwzz6in3b17F19//TW8vb0BAH/88Qf+/PNPXLt2Dfb29gCAxYsXY+vWrdi8eTPGjh2LS5cuYerUqeqya9KkiXp9ly5dQv/+/RETEwMAePTRRw2O05iYiKgqJjJEVkwY8HJ7Q5YFgCtXrqBbt2544YUXMGbMGPV0Pz8/HDx4EKdOncK+fftw4MABDBs2DJ9//jl++eUXjWTG1tYWL730EpKSkvDf//4X4eHhaN68uUFxAMDJkyfh7OyMsrIy3L17Fz179sS///1v9fygoCB1wgAAx48fR0FBARo2bKixnuLiYmRkZAAApkyZgtGjR+Obb75BfHw8XnjhBYSGhgIAJk2ahPHjx2Pnzp2Ij49H//79DY7bmJiIqComMkRWrEmTJupGurqEh4cDANLT09GuXbsq89PT0xEZGakxLTs7G506dUK7du3wn//8R+t6o6OjER0djddeew3jxo3D008/jb1796JTp04ay40cORJt27bFqVOnMHLkSEN3EQDQtGlTbNu2DfXr14e/v3+VR1MPPlYrKCiAn58f9uzZU2Vd7u7uAO73hhoyZAh++ukn/Pzzz5g9ezbWr1+Pvn37YvTo0ejatSt++ukn7Ny5E4mJifjoo48wceJE2NjYVEkKS0tLq2zHmJiIqCq2kSGyYp6enujatSuWLVuGwsLCKvNv3bqFLl26wNPTEx999FGV+du2bcO5c+fw4osvqqdduXIFHTt2xBNPPIGkpKQqj4u0qUiEtMUQFRWFqKgonDp1CkOGDDFk99Ts7OwQFhaG4OBgvdrXPP7448jNzUX9+vURFham8fHy8lIvFx4ejjfeeAM7d+5Ev379kJSUpJ4XEBCAcePGYcuWLfjXv/6FVatWAQC8vb1x+/ZtjX2taAMjRUxEpImJDJGVW7ZsGcrKytCmTRt89913OHfuHNLT0/Hpp58iNjYWTk5OWLlyJb7//nuMHTsWJ06cwIULF/DFF19g+PDhGDBgAAYOHAjgf0lMYGAgFi9ejLy8POTm5iI3N1e9vfHjx+P999/H/v37cfHiRRw6dAivvPIKvL29ERsbqzXG3bt3Iycnp85qHuLj4xEbG4s+ffpg586duHDhAg4cOIC3334bR48eRXFxMSZMmIA9e/bg4sWL2L9/P44cOaJuRzR58mTs2LEDmZmZSE1NRUpKinpe27Zt4ejoiLfeegsZGRlYu3atRoNmY2MiIu34aInIyj366KNITU3F/Pnz8a9//Qs5OTnw9vbGE088geXLlwMABgwYgJSUFMyfPx9PP/007ty5gyZNmuDtt9/G5MmToVAoAAC//vorzp8/j/Pnz2uM/QL8r41NfHw8Vq9ejeXLl+P69evw8vJCbGwsdu3aVaX9RwVtPapMSaFQYPv27Xj77bcxYsQI5OXlwdfXF+3bt0ejRo1Qr149XL9+Ha+88gquXr0KLy8v9OvXD3PnzgUAlJWVISEhAZcvX4arqyu6deuGjz/+GMD9WrA1a9Zg6tSpWLVqFTp37ow5c+bU2Fi3ppiISDuFMLSFHxEREZGF4KMlIiIiki0mMkRk0ZydnXV+fv/9d3OHR0RmxkdLRGTRzp8/r3Ne48aN4eDgUIfREJGlYSJDREREssVHS0RERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREssVEhoiIiGSLiQwRERHJFhMZIiIikq3/B80dznzoItdLAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHHCAYAAAC1G/yyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABm2klEQVR4nO3deXxMV/8H8M9k32STPZKIEEEi9hhqqzwJUm0ttVesLaWoR4u2ilZLq7W0j6ILnl+1aimt2mOLInZBbCVCkMWaGSGynt8fntzOSMLMZJKZST7v12tezD1n7v3em5m53znn3HNlQggBIiIiIgIAmBk6ACIiIiJjwuSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIhMxowZMyCTyTSqK5PJMGPGjAqNp2PHjujYsaPRro+IdMPkiIi0tmLFCshkMulhYWEBX19fDBkyBDdv3jR0eEandu3aasfLw8MD7dq1w4YNG/Sy/kePHmHGjBnYu3evXtZHVN0xOSIinX388cf46aefsGTJEnTt2hUrV65Ehw4d8Pjx4wrZ3ocffoicnJwKWXdFa9KkCX766Sf89NNPmDRpEtLS0tCzZ08sWbKk3Ot+9OgRZs6cyeSISE8sDB0AEZmurl27okWLFgCAESNGwM3NDZ9//jk2btyIPn366H17FhYWsLAwza8tX19fDBo0SHo+ePBg1K1bF/Pnz8eoUaMMGBkRPY0tR0SkN+3atQMAJCcnqy2/cOECevfuDVdXV9jY2KBFixbYuHGjWp38/HzMnDkT9erVg42NDWrWrIkXXngBcXFxUp3Sxhzl5ubinXfegbu7O2rUqIGXX34ZN27cKBHbkCFDULt27RLLS1vn8uXL8eKLL8LDwwPW1tZo2LAhFi9erNWxeB4vLy80aNAAKSkpz6x369YtDB8+HJ6enrCxsUF4eDj++9//SuVXr16Fu7s7AGDmzJlS111Fj7ciqspM8ycYERmlq1evAgBcXFykZWfPnkXbtm3h6+uLKVOmwN7eHmvWrMGrr76K3377DT169ADwJEmZPXs2RowYgVatWkGpVOLYsWM4ceIE/vWvf5W5zREjRmDlypUYMGAA2rRpg927dyMmJqZc+7F48WI0atQIL7/8MiwsLPDnn3/irbfeQlFREcaMGVOudRfLz8/H9evXUbNmzTLr5OTkoGPHjrh8+TLGjh2LwMBArF27FkOGDEFWVhbGjx8Pd3d3LF68GKNHj0aPHj3Qs2dPAEDjxo31EidRtSSIiLS0fPlyAUDs3LlT3L59W1y/fl2sW7dOuLu7C2tra3H9+nWpbufOnUVYWJh4/PixtKyoqEi0adNG1KtXT1oWHh4uYmJinrnd6dOnC9WvrcTERAFAvPXWW2r1BgwYIACI6dOnS8tiY2NFQEDAc9cphBCPHj0qUS86OlrUqVNHbVmHDh1Ehw4dnhmzEEIEBASIqKgocfv2bXH79m1x6tQp0a9fPwFAvP3222Wub8GCBQKAWLlypbQsLy9PyOVy4eDgIJRKpRBCiNu3b5fYXyLSHbvViEhnkZGRcHd3h5+fH3r37g17e3ts3LgRtWrVAgDcu3cPu3fvRp8+ffDgwQPcuXMHd+7cwd27dxEdHY1Lly5JV7c5Ozvj7NmzuHTpksbb37JlCwBg3LhxassnTJhQrv2ytbWV/q9QKHDnzh106NABV65cgUKh0GmdO3bsgLu7O9zd3REeHo61a9fi9ddfx+eff17ma7Zs2QIvLy/0799fWmZpaYlx48YhOzsb8fHxOsVCRM/GbjUi0tmiRYsQHBwMhUKBZcuWYd++fbC2tpbKL1++DCEEpk2bhmnTppW6jlu3bsHX1xcff/wxXnnlFQQHByM0NBRdunTB66+//szuoWvXrsHMzAxBQUFqy+vXr1+u/Tpw4ACmT5+OhIQEPHr0SK1MoVDAyclJ63VGRERg1qxZkMlksLOzQ4MGDeDs7PzM11y7dg316tWDmZn679gGDRpI5USkf0yOiEhnrVq1kq5We/XVV/HCCy9gwIABuHjxIhwcHFBUVAQAmDRpEqKjo0tdR926dQEA7du3R3JyMv744w/s2LEDP/zwA+bPn48lS5ZgxIgR5Y61rMkjCwsL1Z4nJyejc+fOCAkJwbx58+Dn5wcrKyts2bIF8+fPl/ZJW25uboiMjNTptURUuZgcEZFemJubY/bs2ejUqRP+85//YMqUKahTpw6AJ11BmiQGrq6uGDp0KIYOHYrs7Gy0b98eM2bMKDM5CggIQFFREZKTk9Vaiy5evFiirouLC7Kyskosf7r15c8//0Rubi42btwIf39/afmePXueG7++BQQE4PTp0ygqKlJrPbpw4YJUDpSd+BGRbjjmiIj0pmPHjmjVqhUWLFiAx48fw8PDAx07dsTSpUuRnp5eov7t27el/9+9e1etzMHBAXXr1kVubm6Z2+vatSsA4Ouvv1ZbvmDBghJ1g4KCoFAocPr0aWlZenp6iVmqzc3NAQBCCGmZQqHA8uXLy4yjonTr1g0ZGRlYvXq1tKygoADffPMNHBwc0KFDBwCAnZ0dAJSa/BGR9thyRER69e677+K1117DihUrMGrUKCxatAgvvPACwsLCMHLkSNSpUweZmZlISEjAjRs3cOrUKQBAw4YN0bFjRzRv3hyurq44duwY1q1bh7Fjx5a5rSZNmqB///749ttvoVAo0KZNG+zatQuXL18uUbdfv36YPHkyevTogXHjxuHRo0dYvHgxgoODceLECaleVFQUrKys0L17d7z55pvIzs7G999/Dw8Pj1ITvIr0xhtvYOnSpRgyZAiOHz+O2rVrY926dThw4AAWLFiAGjVqAHgygLxhw4ZYvXo1goOD4erqitDQUISGhlZqvERVhqEvlyMi01N8Kf/Ro0dLlBUWFoqgoCARFBQkCgoKhBBCJCcni8GDBwsvLy9haWkpfH19xUsvvSTWrVsnvW7WrFmiVatWwtnZWdja2oqQkBDx6aefiry8PKlOaZfd5+TkiHHjxomaNWsKe3t70b17d3H9+vVSL23fsWOHCA0NFVZWVqJ+/fpi5cqVpa5z48aNonHjxsLGxkbUrl1bfP7552LZsmUCgEhJSZHqaXMp//OmKShrfZmZmWLo0KHCzc1NWFlZibCwMLF8+fISrz148KBo3ry5sLKy4mX9ROUkE0Kl7ZiIiIiomuOYIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUcBJIDRUVFSEtLQ01atTgVP1EREQmQgiBBw8ewMfHp8RNnMvC5EhDaWlp8PPzM3QYREREpIPr16+jVq1aGtVlcqSh4mn6r1+/DkdHRwNHQ0RERJpQKpXw8/OTzuOaYHKkoeKuNEdHRyZHREREJkabITEckE1ERESkgskRERERkQomR0REREQqOOaIiMiIFRYWIj8/39BhEBktS0tLmJub63WdTI6IiIyQEAIZGRnIysoydChERs/Z2RleXl56m4eQyRERkREqTow8PDxgZ2fHyWeJSiGEwKNHj3Dr1i0AgLe3t17Wy+SIiMjIFBYWSolRzZo1DR0OkVGztbUFANy6dQseHh566WLjgGwiIiNTPMbIzs7OwJEQmYbiz4q+xucxOSIiMlLsSiPSjL4/K0yOiIiIiFQwOSIiIqIS9u7dC5lMVu4rJmvXro0FCxboJabKwuTIwNIVOTiYfAfpihxDh0JEpBcZGRl4++23UadOHVhbW8PPzw/du3fHrl27pDoHDx5Et27d4OLiAhsbG4SFhWHevHkoLCyU6ly9ehXDhw9HYGAgbG1tERQUhOnTpyMvL09te99//z3Cw8Ph4OAAZ2dnNG3aFLNnz5bKZ8yYAZlMhi5dupSIde7cuZDJZOjYsaPG+6dUKvHBBx8gJCQENjY28PLyQmRkJNavXw8hhFTv7Nmz6NOnD9zd3WFtbY3g4GB89NFHePTokVTn3r17ePvtt1G/fn3Y2trC398f48aNg0Kh0CiWq1evQiaTlfo4dOiQxvvUsWNHTJgwQeP6VR2vVjOg1UdTMXX9GRQJwEwGzO4Zhr4t/Q0dFhGRzq5evYq2bdvC2dkZc+fORVhYGPLz87F9+3aMGTMGFy5cwIYNG9CnTx8MHToUe/bsgbOzM3bu3In33nsPCQkJWLNmDWQyGS5cuICioiIsXboUdevWRVJSEkaOHImHDx/iyy+/BAAsW7YMEyZMwNdff40OHTogNzcXp0+fRlJSklpc3t7e2LNnD27cuIFatWpJy5ctWwZ/f82/d7OysvDCCy9AoVBg1qxZaNmyJSwsLBAfH4/33nsPL774IpydnXHo0CFERkYiMjISmzdvhqenJ44cOYJ///vf2LVrF/bs2QMrKyukpaUhLS0NX375JRo2bIhr165h1KhRSEtLw7p16zSOa+fOnWjUqJHaMl7pWA7CgL799lsRFhYmatSoIWrUqCFat24ttmzZIpXn5OSIt956S7i6ugp7e3vRs2dPkZGRobaOa9euiW7duglbW1vh7u4uJk2aJPLz89Xq7NmzRzRt2lRYWVmJoKAgsXz5cq1jVSgUAoBQKBQ67evT0rIeicApm0TA5H8edaZsFmlZj/SyfiIyXTk5OeLcuXMiJyfH0KForWvXrsLX11dkZ2eXKLt//77Izs4WNWvWFD179ixRvnHjRgFA/Prrr2Wu/4svvhCBgYHS81deeUUMGTLkmTFNnz5dhIeHi5deeknMmjVLWn7gwAHh5uYmRo8eLTp06KDB3gkxevRoYW9vL27evFmi7MGDByI/P18UFRWJhg0bihYtWojCwkK1OomJiUImk4k5c+aUuY01a9YIKyurEuey0qSkpAgA4uTJk2XWKd7///u//xMBAQHC0dFR9O3bVyiVSiGEELGxsQKA2iMlJUXs2bNHABA7d+4UzZs3F7a2tkIul4sLFy5I6758+bJ4+eWXhYeHh7C3txctWrQQcXFxatsPCAgQ8+fPl54DEN9++63o0qWLsLGxEYGBgWLt2rVSeadOncSYMWPU1nHr1i1haWkpdu7cWeo+Puszo8v526DdarVq1cKcOXNw/PhxHDt2DC+++CJeeeUVnD17FgDwzjvv4M8//8TatWsRHx+PtLQ09OzZU3p9YWEhYmJikJeXh4MHD+K///0vVqxYgY8++kiqk5KSgpiYGHTq1AmJiYmYMGECRowYge3bt1f6/qpKufMQRUJ9WaEQuHrnUekvICLSQWV23d+7dw/btm3DmDFjYG9vX6Lc2dkZO3bswN27dzFp0qQS5d27d0dwcDBWrVpV5jYUCgVcXV2l515eXjh06BCuXbv23PiGDRuGFStWSM+XLVuGgQMHwsrK6rmvBYCioiL8+uuvGDhwIHx8fEqUOzg4wMLCAomJiTh37hwmTpwIMzP102x4eDgiIyOfu4+Ojo6wsNBf505ycjJ+//13bNq0CZs2bUJ8fDzmzJkDAFi4cCHkcjlGjhyJ9PR0pKenw8/PT3rtBx98gK+++grHjh2DhYUFhg0bJpVlZ2ejW7du2LVrF06ePIkuXbqge/fuSE1NfWY806ZNQ69evXDq1CkMHDgQ/fr1w/nz5wEAI0aMwC+//ILc3Fyp/sqVK+Hr64sXX3xRb8fkmTROoyqJi4uL+OGHH0RWVpawtLRUyybPnz8vAIiEhAQhhBBbtmwRZmZmaq1JixcvFo6OjiI3N1cIIcR7770nGjVqpLaNvn37iujoaK3iYssREVUWfbUc/XrkmvQ9Ezhlk/j1yDU9RVi6w4cPCwBi/fr1ZdaZM2eOACDu379favnLL78sGjRoUGrZpUuXhKOjo/juu++kZWlpaaJ169YCgAgODhaxsbFi9erVai02xS0neXl5wsPDQ8THx4vs7GxRo0YNcerUKTF+/HiNWo4yMzMFADFv3rxn1vv111+f2Zozbtw4YWtrW2rZ7du3hb+/v3j//fefG48Q/7Qc2draCnt7e7VHsenTpws7OzuppUgIId59910REREhPe/QoYMYP3682rpVW46Kbd68WQB45nuzUaNG4ptvvpGel9ZyNGrUKLXXREREiNGjRwshnrz/XVxcxOrVq6Xyxo0bixkzZpS5zSrVcqSqsLAQv/76Kx4+fAi5XI7jx48jPz8fkZGRUp2QkBD4+/sjISEBAJCQkICwsDB4enpKdaKjo6FUKqXWp4SEBLV1FNcpXkdZcnNzoVQq1R765O1ki9k9w2D+v7kZzGUyfNYzFN5OtnrdDhFVT+mKHGlMIwAUCeD99UkV2oIkhHh+JR3qAsDNmzfRpUsXvPbaaxg5cqS03NvbGwkJCThz5gzGjx+PgoICxMbGokuXLigqKlJbh6WlJQYNGoTly5dj7dq1CA4ORuPGjSssZm3rK5VKxMTEoGHDhpgxY4ZWr129ejUSExPVHqpq166NGjVqSM+9vb2lW248j+oxKr49R/Frs7OzMWnSJDRo0ADOzs5wcHDA+fPnn9tyJJfLSzwvbjmysbHB66+/jmXLlgEATpw4gaSkJAwZMkSjePXB4AOyz5w5A7lcjsePH8PBwQEbNmxAw4YNkZiYCCsrKzg7O6vV9/T0REZGBoAnV0SoJkbF5cVlz6qjVCqRk5MjTTv+tNmzZ2PmzJn62MUy9W3pj/bB7rh65xFqu9kxMSIivXlW131FfdfUq1dPGkhdluDgYADA+fPn0aZNmxLl58+fR8OGDdWWpaWloVOnTmjTpg2+++67UtcbGhqK0NBQvPXWWxg1ahTatWuH+Ph4dOrUSa3esGHDEBERgaSkJLXuIU24u7vD2dn5mfsHqO9j06ZNS5SfP39eqlPswYMH6NKlC2rUqIENGzbA0tJSq9j8/PxQt27dMsufXp9MJiuRPGry2uLJFotfO2nSJMTFxeHLL79E3bp1YWtri969e5e4olBbI0aMQJMmTXDjxg0sX74cL774IgICAsq1Tm0YvOWofv36SExMxOHDhzF69GjExsbi3Llzhg4LU6dOhUKhkB7Xr1+vkO14O9lCHlSTiRER6VWgmz3Mnpo02FwmQ223irsliaurK6Kjo7Fo0SI8fPiwRHlWVhaioqLg6uqKr776qkT5xo0bcenSJfTv319advPmTXTs2BHNmzfH8uXLS4zhKU1xclVaDI0aNUKjRo2QlJSEAQMGaLN7MDMzQ79+/fDzzz8jLS2tRHl2djYKCgrQpEkThISEYP78+SUSkFOnTmHnzp1q+6hUKhEVFQUrKyts3LgRNjY2WsWlD1ZWVmrTKGjqwIEDGDJkCHr06IGwsDB4eXnh6tWrz33d09MMHDp0CA0aNJCeh4WFoUWLFvj+++/xyy+/aJ3IlpfBkyMrKyvUrVsXzZs3x+zZsxEeHo6FCxfCy8sLeXl5JSafyszMhJeXF4AnA/EyMzNLlBeXPauOo6Njma1GAGBtbQ1HR0e1BxGRqTBU1/2iRYtQWFiIVq1a4bfffsOlS5dw/vx5fP3115DL5bC3t8fSpUvxxx9/4I033sDp06dx9epV/PjjjxgyZAh69+6NPn36APgnMfL398eXX36J27dvIyMjQ+oZAIDRo0fjk08+wYEDB3Dt2jUcOnQIgwcPhru7e4mum2K7d+9Genp6iZ4JTXz66afw8/NDREQE/u///g/nzp3DpUuXsGzZMjRt2hTZ2dmQyWT48ccfce7cOfTq1QtHjhxBamoq1q5di+7du0Mul0tzChUnRg8fPsSPP/4IpVIp7aM2ycrdu3el1xU/Hj9+rPHra9eujcOHD+Pq1au4c+eOxq1K9erVw/r165GYmIhTp05hwIABGr127dq1WLZsGf7++29Mnz4dR44cwdixY9XqjBgxAnPmzIEQAj169NB4X/RC49FJlaRTp04iNjZWGpC9bt06qezChQulDsjOzMyU6ixdulQ4OjqKx48fCyGeDMgODQ1V20b//v0NPiCbiKgs+ryUPy3rkTh4+U6lXuyRlpYmxowZIwICAoSVlZXw9fUVL7/8stizZ49UZ9++fSI6Olo4OjoKKysr0ahRI/Hll1+KgoICqc7y5ctLXGJe/Ci2bt060a1bN+Ht7S2srKyEj4+P6NWrlzh9+rRUp3hAdlk0HZBdLCsrS0yZMkXUq1dPWFlZCU9PTxEZGSk2bNggioqKpHqnT58WvXr1Eq6ursLS0lIEBQWJDz/8UDx8+FCqUzzoubRHSkrKc2MpHpBd2mPVqlVl7v/8+fNFQECA9PzixYuidevWwtbWtsSl/KqD50+ePKkWW0pKiujUqZOwtbUVfn5+4j//+U+Jwd2lDchetGiR+Ne//iWsra1F7dq11QZfF3vw4IGws7MTb7311nOPg74HZBs0OZoyZYqIj48XKSkp4vTp02LKlClCJpOJHTt2CCGEGDVqlPD39xe7d+8Wx44dE3K5XMjlcun1BQUFIjQ0VERFRYnExESxbds24e7uLqZOnSrVuXLlirCzsxPvvvuuOH/+vFi0aJEwNzcX27Zt0ypWJkdEVFlMeZ4joucBIDZs2PDceikpKcLMzEwcP378uXX1nRwZdED2rVu3MHjwYKSnp8PJyQmNGzfG9u3b8a9//QsAMH/+fJiZmaFXr17Izc1FdHQ0vv32W+n15ubm2LRpE0aPHi0118bGxuLjjz+W6gQGBmLz5s145513sHDhQtSqVQs//PADoqOjK31/iYiI6Nny8/Nx9+5dfPjhh2jdujWaNWtW6THI/pfF0XMolUo4OTlJk3MREVWUx48fIyUlBYGBgQYZnFudOTg4lFm2detWtGvXrhKjAUaNGoWVK1eWWjZo0CAsWbKkUuPRB5lMhg0bNuDVV18ttXzv3r3o1KkTgoODsW7dOoSFhT13nc/6zOhy/jb4pfxERETG4un5gVT5+vpWXiD/8/HHH5c6mzgAk/2h/rw2mY4dO2o9R5S+MTkiIiL6n2fNFWQIHh4e8PDwMHQY1Y7BL+UnIiIiMiZMjoiIjJSmc80QVXf6/qywW42IyMhYWVnBzMwMaWlpcHd3h5WVlXTbBiL6hxACeXl5uH37NszMzGBlZaWX9TI5IiIyMmZmZggMDER6enqpt6kgInV2dnbw9/fX6PYymmByRERkhKysrODv74+CggKd7nlFVF2Ym5vDwsJCr62rTI6IiIyUTCaDpaWl1ndoJ6Ly4YBsIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIhUGTo9mzZ6Nly5aoUaMGPDw88Oqrr+LixYtqdTp27AiZTKb2GDVqlFqd1NRUxMTEwM7ODh4eHnj33XdRUFCgVmfv3r1o1qwZrK2tUbduXaxYsaKid4+IiIhMkEGTo/j4eIwZMwaHDh1CXFwc8vPzERUVhYcPH6rVGzlyJNLT06XHF198IZUVFhYiJiYGeXl5OHjwIP773/9ixYoV+Oijj6Q6KSkpiImJQadOnZCYmIgJEyZgxIgR2L59e6XtKxEREZkGmRBCGDqIYrdv34aHhwfi4+PRvn17AE9ajpo0aYIFCxaU+pqtW7fipZdeQlpaGjw9PQEAS5YsweTJk3H79m1YWVlh8uTJ2Lx5M5KSkqTX9evXD1lZWdi2bZtGsSmVSjg5OUGhUMDR0bF8O0pERESVQpfzt1GNOVIoFAAAV1dXteU///wz3NzcEBoaiqlTp+LRo0dSWUJCAsLCwqTECACio6OhVCpx9uxZqU5kZKTaOqOjo5GQkFBRu0JEREQmysLQARQrKirChAkT0LZtW4SGhkrLBwwYgICAAPj4+OD06dOYPHkyLl68iPXr1wMAMjIy1BIjANLzjIyMZ9ZRKpXIycmBra1tiXhyc3ORm5srPVcqlfrZUSIiIjJqRpMcjRkzBklJSdi/f7/a8jfeeEP6f1hYGLy9vdG5c2ckJycjKCiowuKZPXs2Zs6cWWHrJyIiIuNkFN1qY8eOxaZNm7Bnzx7UqlXrmXUjIiIAAJcvXwYAeHl5ITMzU61O8XMvL69n1nF0dCy11QgApk6dCoVCIT2uX7+u/Y4RERGRyTFociSEwNixY7Fhwwbs3r0bgYGBz31NYmIiAMDb2xsAIJfLcebMGdy6dUuqExcXB0dHRzRs2FCqs2vXLrX1xMXFQS6Xl7kda2trODo6qj2IiIio6jNocjRmzBisXLkSv/zyC2rUqIGMjAxkZGQgJycHAJCcnIxPPvkEx48fx9WrV7Fx40YMHjwY7du3R+PGjQEAUVFRaNiwIV5//XWcOnUK27dvx4cffogxY8bA2toaADBq1ChcuXIF7733Hi5cuIBvv/0Wa9aswTvvvGOwfSciIiLjZNBL+WUyWanLly9fjiFDhuD69esYNGgQkpKS8PDhQ/j5+aFHjx748MMP1Vpyrl27htGjR2Pv3r2wt7dHbGws5syZAwuLf4ZU7d27F++88w7OnTuHWrVqYdq0aRgyZIjGsfJSfiIiItOjy/nbqOY5MmZMjoiIiEyPyc9zRERERGRoTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIhU7J0Z49e/QdBxEREZFR0Ck56tKlC4KCgjBr1ixcv35d3zERERERGYxOydHNmzcxduxYrFu3DnXq1EF0dDTWrFmDvLw8fcdHREREVKl0So7c3NzwzjvvIDExEYcPH0ZwcDDeeust+Pj4YNy4cTh16pS+4yQiIiKqFOUekN2sWTNMnToVY8eORXZ2NpYtW4bmzZujXbt2OHv2rD5iJCIiIqo0OidH+fn5WLduHbp164aAgABs374d//nPf5CZmYnLly8jICAAr732mj5jJSIiIqpwMiGE0PZFb7/9NlatWgUhBF5//XWMGDECoaGhanUyMjLg4+ODoqIivQVrSEqlEk5OTlAoFHB0dDR0OERERKQBXc7fFrps6Ny5c/jmm2/Qs2dPWFtbl1rHzc2Nl/wTERGRydGp5ag6YssRERGR6am0liMAuHjxIr755hucP38eANCgQQO8/fbbqF+/vq6rJCIiIjI4nQZk//bbbwgNDcXx48cRHh6O8PBwnDhxAqGhofjtt9/0HSMRERFRpdGpWy0oKAgDBw7Exx9/rLZ8+vTpWLlyJZKTk/UWoLFgtxoREZHp0eX8rVPLUXp6OgYPHlxi+aBBg5Cenq7LKomIiIiMgk7JUceOHfHXX3+VWL5//360a9eu3EERERERGYpOA7JffvllTJ48GcePH0fr1q0BAIcOHcLatWsxc+ZMbNy4Ua0uERERkanQacyRmZlmDU4ymQyFhYVaB2WMOOaIiIjI9FTapfxVZdZrIiIioqeV+8az5TF79my0bNkSNWrUgIeHB1599VVcvHhRrc7jx48xZswY1KxZEw4ODujVqxcyMzPV6qSmpiImJgZ2dnbw8PDAu+++i4KCArU6e/fuRbNmzWBtbY26detixYoVFb17REREZII0bjn6+uuvNV7puHHjNKoXHx+PMWPGoGXLligoKMD777+PqKgonDt3Dvb29gCAd955B5s3b8batWvh5OSEsWPHomfPnjhw4AAAoLCwEDExMfDy8sLBgwelK+ksLS3x2WefAQBSUlIQExODUaNG4eeff8auXbswYsQIeHt7Izo6WuP9IiIioqpP4zFHgYGBmq1QJsOVK1d0Cub27dvw8PBAfHw82rdvD4VCAXd3d/zyyy/o3bs3AODChQto0KABEhIS0Lp1a2zduhUvvfQS0tLS4OnpCQBYsmQJJk+ejNu3b8PKygqTJ0/G5s2bkZSUJG2rX79+yMrKwrZt2zSKjWOOiIiITE+FjjlKSUnROTBNKRQKAICrqysA4Pjx48jPz0dkZKRUJyQkBP7+/lJylJCQgLCwMCkxAoDo6GiMHj0aZ8+eRdOmTZGQkKC2juI6EyZMKDOW3Nxc5ObmSs+VSqU+dpGIiIiMnEHHHKkqKirChAkT0LZtW4SGhgIAMjIyYGVlBWdnZ7W6np6eyMjIkOqoJkbF5cVlz6qjVCqRk5NTajyzZ8+Gk5OT9PDz8yv3PhIREZHx0/nGszdu3MDGjRuRmpqKvLw8tbJ58+Zpvb4xY8YgKSkJ+/fv1zUkvZo6dSomTpwoPVcqlUyQiIiIqgGdkqNdu3bh5ZdfRp06dXDhwgWEhobi6tWrEEKgWbNmWq9v7Nix2LRpE/bt24datWpJy728vJCXl4esrCy11qPMzEx4eXlJdY4cOaK2vuKr2VTrPH2FW2ZmJhwdHWFra1tqTNbW1rC2ttZ6X4iIiMi06dStNnXqVEyaNAlnzpyBjY0NfvvtN1y/fh0dOnTAa6+9pvF6hBAYO3YsNmzYgN27d5cY9N28eXNYWlpi165d0rKLFy8iNTUVcrkcACCXy3HmzBncunVLqhMXFwdHR0c0bNhQqqO6juI6xesgIiIikggdODg4iMuXLwshhHB2dhZJSUlCCCESExNFQECAxusZPXq0cHJyEnv37hXp6enS49GjR1KdUaNGCX9/f7F7925x7NgxIZfLhVwul8oLCgpEaGioiIqKEomJiWLbtm3C3d1dTJ06Vapz5coVYWdnJ959911x/vx5sWjRImFubi62bdumcawKhUIAEAqFQuPXEBERkWHpcv7WqeXI3t5eGmfk7e2N5ORkqezOnTsar2fx4sVQKBTo2LEjvL29pcfq1aulOvPnz8dLL72EXr16oX379vDy8sL69eulcnNzc2zatAnm5uaQy+UYNGgQBg8ejI8//liqExgYiM2bNyMuLg7h4eH46quv8MMPP3COIyIiIipBp3urvfrqq4iJicHIkSMxadIk/PHHHxgyZAjWr18PFxcX7Ny5syJiNSjOc0RERGR6Ku3eavPmzUN2djYAYObMmcjOzsbq1atRr149na5UIyIiIjIWOrUcVUdsOSIiIjI9ldZyVCwvLw+3bt1CUVGR2nJ/f//yrJaIiIjIYHRKjv7++28MHz4cBw8eVFsuhIBMJkNhYaFegiMiIiKqbDolR0OHDoWFhQU2bdoEb29vyGQyfcdFREREZBA6JUeJiYk4fvw4QkJC9B0PERERkUHpNM9Rw4YNtZrPiIiIiMhUaJwcKZVK6fH555/jvffew969e3H37l21MqVSWZHxEhEREVUojbvVnJ2d1cYWCSHQuXNntTockE1ERESmTuPkaM+ePRUZBxEREZFR0Dg56tChg/T/1NRU+Pn5lbhKTQiB69ev6y86IiIiokqm04DswMBA3L59u8Tye/fuITAwsNxBERERERmKTslR8diip2VnZ8PGxqbcQREREREZilbzHE2cOBEAIJPJMG3aNNjZ2UllhYWFOHz4MJo0aaLXAImIiIgqk1bJ0cmTJwE8aTk6c+YMrKyspDIrKyuEh4dj0qRJ+o2QiIiIqBJplRwVX7E2dOhQLFy4kHenJyIioipHp9uHLF++XN9xEBERERkFnZKjhw8fYs6cOdi1axdu3bqFoqIitfIrV67oJTgiIiKiyqZTcjRixAjEx8fj9ddfh7e3d6lXrhERERGZIp2So61bt2Lz5s1o27atvuMhIiIiMiid5jlycXGBq6urvmMhIiIiMjidkqNPPvkEH330ER49eqTveIiIiIgMSqduta+++grJycnw9PRE7dq1YWlpqVZ+4sQJvQRHREREVNl0So5effVVPYdBREREZBxkQghh6CBMgVKphJOTExQKBSe/JCIiMhG6nL+1GnN05MgRFBYWllmem5uLNWvWaLNKIiIiIqOiVXIkl8tx9+5d6bmjo6PahI9ZWVno37+//qIjIiIiqmRaJUdP98CV1iPHXjoiIiIyZTpdyv8snC2biIiITJnekyMiIiIiU6b1pfznzp1DRkYGgCddaBcuXEB2djYA4M6dO/qNjoiIiKiSaXUpv5mZGWQyWanjioqXy2SyZ17RZqp4KT8REZHp0eX8rVXLUUpKik6BEREREZkKrZKjgIAArVb+1ltv4eOPP4abm5tWryMiIiIylAodkL1y5UoolcqK3AQRERGRXlVocsQ5j4iIiMjU8FJ+IiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEhFhSZHgwYN4oSJREREZFJ0So6KiorKXJ6amio9X7x4Mec4IiIiIpOiVXKkVCrRp08f2Nvbw9PTEx999JHarUJu376NwMBAvQdJREREVFm0miF72rRpOHXqFH766SdkZWVh1qxZOHHiBNavXw8rKysAnNuIiIiITJtWLUe///47li5dit69e2PEiBE4duwYbt++je7duyM3NxfAkxvQamrfvn3o3r07fHx8IJPJ8Pvvv6uVDxkyBDKZTO3RpUsXtTr37t3DwIED4ejoCGdnZwwfPhzZ2dlqdU6fPo127drBxsYGfn5++OKLL7TZbSIiIqpGtEqObt++rXZ/NTc3N+zcuRMPHjxAt27d8OjRI602/vDhQ4SHh2PRokVl1unSpQvS09Olx6pVq9TKBw4ciLNnzyIuLg6bNm3Cvn378MYbb0jlSqUSUVFRCAgIwPHjxzF37lzMmDED3333nVaxEhERUfWgVbeav78/zp8/rzauqEaNGtixYweioqLQo0cPrTbetWtXdO3a9Zl1rK2t4eXlVWrZ+fPnsW3bNhw9ehQtWrQAAHzzzTfo1q0bvvzyS/j4+ODnn39GXl4eli1bBisrKzRq1AiJiYmYN2+eWhJFREREBGjZchQVFYXly5eXWO7g4IDt27fDxsZGb4EV27t3Lzw8PFC/fn2MHj0ad+/elcoSEhLg7OwsJUYAEBkZCTMzMxw+fFiq0759e2lMFABER0fj4sWLuH//vt7jJSIiItOmVcvRzJkzkZaWVmpZjRo1EBcXhxMnTuglMOBJl1rPnj0RGBiI5ORkvP/+++jatSsSEhJgbm6OjIwMeHh4qL3GwsICrq6uyMjIAABkZGSUuILO09NTKnNxcSl127m5udI4KuBJ9xwRERFVfVolRy4uLmUmE8CTBKlDhw7lDqpYv379pP+HhYWhcePGCAoKwt69e9G5c2e9bac0s2fPxsyZMyt0G0RERGR8tJ4EsqCgAHPnzkWzZs3g4OAABwcHNGvWDF9++SXy8/MrIkZJnTp14ObmhsuXLwMAvLy8cOvWrRLx3bt3Txqn5OXlhczMTLU6xc/LGssEAFOnToVCoZAe169f1+euEBERkZHSKjnKyclBx44dMWXKFLi7u2PEiBEYMWIE3N3dMXnyZHTu3BmPHz+uqFhx48YN3L17F97e3gAAuVyOrKwsHD9+XKqze/duFBUVISIiQqqzb98+tcQtLi4O9evXf2YrmLW1NRwdHdUeREREVPVp1a02Z84cXL9+HSdPnkTjxo3Vyk6dOoWXX34Zc+bMwYwZMzRaX3Z2ttQKBAApKSlITEyEq6srXF1dMXPmTPTq1QteXl5ITk7Ge++9h7p16yI6OhoA0KBBA3Tp0gUjR47EkiVLkJ+fj7Fjx6Jfv37w8fEBAAwYMAAzZ87E8OHDMXnyZCQlJWHhwoWYP3++NrtORERE1YXQQnBwsFi3bl2Z5WvWrBH16tXTeH179uwRAEo8YmNjxaNHj0RUVJRwd3cXlpaWIiAgQIwcOVJkZGSorePu3buif//+wsHBQTg6OoqhQ4eKBw8eqNU5deqUeOGFF4S1tbXw9fUVc+bM0Wa3hRBCKBQKAUAoFAqtX0tERESGocv5WyaE5vf7sLGxwaVLl+Dn51dq+fXr11GvXr0K7VozFKVSCScnJygUCnaxERERmQhdzt9ajTlydHQsMQBaVUZGBmrUqKHNKomIiIiMilbJUadOnfDZZ5+VWT5nzhx06tSp3EERERERGYpWA7KnT5+OiIgItG7dGhMnTkRISAiEEDh//jzmz5+Pc+fO4dChQxUVKxEREVGF0yo5atiwIeLi4jB8+HD069cPMpkMACCEQEhICHbs2IFGjRpVSKBERERElUGr5AgAWrdujbNnzyIxMRF///03ACA4OBhNmjTRd2xERERElU7r5EipVMLBwQFNmjRRS4iKioqQnZ3NK7mIiIjIpGk1IHvDhg1o0aJFqZfq5+TkoGXLlvjzzz/1FhwRERFRZdMqOVq8eDHee+892NnZlSizt7fH5MmT8Z///EdvwRERERFVNq2So6SkJHTs2LHM8vbt2+PMmTPljYmIiIjIYLRKju7fv4+CgoIyy/Pz83H//v1yB0VERERkKFolR7Vr18axY8fKLD927BgCAgLKHRQRERGRoWiVHPXs2RMffPABMjMzS5RlZGTgww8/RK9evfQWHBEREVFl0+rGsw8ePIBcLkdqaioGDRqE+vXrAwAuXLiAn3/+GX5+fjh06FCVvL8abzxLRERkenQ5f2s1z1GNGjVw4MABTJ06FatXr5bGFzk7O2PQoEH49NNPq2RiRERERNWHVi1HqoQQuHPnDoQQcHd3l24lourAgQNo0aIFrK2tyx2oobHliIiIyPTocv7WasyRKplMBnd3d3h4eJSaGAFA165dcfPmTV03QTpKV+TgYPIdpCtyDB0KERGRydH69iHa0LFRisph9dFUTF1/BkUCMJMBs3uGoW9Lf0OHRUREZDJ0bjki45OuyJESIwAoEsD765PYgkRERKQFJkdVSMqdh1JiVKxQCFy988gwAREREZkgJkdVSKCbPcyeGv5lLpOhtlvJe+ERERFR6So0OSproDZVDG8nW8zuGQbz/x13c5kMn/UMhbeTrYEjIyIiMh0ckF3F9G3pj/bB7rh65xFqu9kxMSIiItJShSZHDx48qMjVUxm8nWyZFBEREelIq+ToxRdf1Kje7t27dQqGiIiIyNC0So727t2LgIAAxMTEwNLSsqJiIiIiIjIYrZKjzz//HMuXL8fatWsxcOBADBs2DKGhoRUVGxEREVGl0+pqtXfffRfnzp3D77//jgcPHqBt27Zo1aoVlixZAqVSWVExEhEREVUanW88CwCPHj3C2rVrsWjRIpw7dw5paWlV9qasvPEsERGR6anUG88CwIkTJxAfH4/z588jNDSU45CIiIjI5GmdHKWlpeGzzz5DcHAwevfuDVdXVxw+fBiHDh2CrS0vHyciIiLTptWA7G7dumHPnj2IiorC3LlzERMTAwuLCp0qiYiIiKhSaTXmyMzMDN7e3vDw8HjmrUFOnDihl+CMCcccERERmR5dzt9aNftMnz5dp8CIiIiITEW5rlarTiq75ShdkYOUOw8R6GbPW4EQERHpqMJbjsoSHx+Phw8fQi6Xw8XFRR+rrNZWH03F1PVnUCQAMxkwu2cY+rb0N3RYRERE1YJWV6t9/vnnmDZtmvRcCIEuXbqgU6dOeOmll9CgQQOcPXtW70FWJ+mKHCkxAoAiAby/PgnpihzDBkZERFRNaJUcrV69Wu12IevWrcO+ffvw119/4c6dO2jRogVmzpyp9yCrk5Q7D6XEqFihELh659FzX5uuyMHB5DtMpIiIiMpBq261lJQUNG7cWHq+ZcsW9O7dG23btgUAfPjhh3jttdf0G2E1E+hmDzMZ1BIkc5kMtd3snvk6dsURERHph1YtRwUFBbC2tpaeJyQkoE2bNtJzHx8f3LlzR3/RVUPeTraY3TMM5v+bKsFcJsNnPUOfOSibXXFERET6o1XLUVBQEPbt24c6deogNTUVf//9N9q3by+V37hxAzVr1tR7kNVN35b+aB/sjqt3HqG2m91zr1Z7Vlccr3QjIiLSjlbJ0ZgxYzB27Fj89ddfOHToEORyORo2bCiV7969G02bNtV7kNWRt5OtxomNrl1xREREVJJW3WojR47E119/jXv37qF9+/b47bff1MrT0tIwbNgwvQZIz6dLVxwRERGVjpNAasgUbh+SrsjRuCuOiIioOjDYJJBkHLTpiiMiIqLSadWtlp+fj/feew9169ZFq1atsGzZMrXyzMxMmJub6zVAIiIiosqkVXL06aef4v/+7/8watQoREVFYeLEiXjzzTfV6mjTS7dv3z50794dPj4+kMlk+P3330us66OPPoK3tzdsbW0RGRmJS5cuqdW5d+8eBg4cCEdHRzg7O2P48OHIzs5Wq3P69Gm0a9cONjY28PPzwxdffKHNbhMREVE1olVy9PPPP+OHH37ApEmTMGvWLBw7dgy7d+/G0KFDpaRI9r9BwZp4+PAhwsPDsWjRolLLv/jiC3z99ddYsmQJDh8+DHt7e0RHR+Px48dSnYEDB+Ls2bOIi4vDpk2bsG/fPrzxxhtSuVKpRFRUFAICAnD8+HHMnTsXM2bMwHfffafNrhMREVF1IbRga2srUlJS1JbduHFDBAcHi4EDB4qbN28KMzMzbVYpASA2bNggPS8qKhJeXl5i7ty50rKsrCxhbW0tVq1aJYQQ4ty5cwKAOHr0qFRn69atQiaTiZs3bwohhPj222+Fi4uLyM3NlepMnjxZ1K9fX6v4FAqFACAUCoUuu0dEREQGoMv5W6uWIy8vLyQnJ6st8/X1xZ49e3D06FEMGTJEXzkbUlJSkJGRgcjISGmZk5MTIiIikJCQAODJDN3Ozs5o0aKFVCcyMhJmZmY4fPiwVKd9+/awsrKS6kRHR+PixYu4f/9+mdvPzc2FUqlUexAREVHVp1Vy9OKLL+KXX34psdzHxwe7d+9GSkqK3gLLyMgAAHh6eqot9/T0lMoyMjLg4eGhVm5hYQFXV1e1OqWtQ3UbpZk9ezacnJykh5+fX/l2iIiIiEyCVsnRtGnT0KdPn1LLfH19ER8fX+IKNlM1depUKBQK6XH9+nVDh0RERESVQKt5jgICAhAQEFBmuY+PD2JjY8sdFPCkCw94Mj2At7e3tDwzMxNNmjSR6ty6dUvtdQUFBbh37570ei8vL2RmZqrVKX5eXKc01tbWajfZJSIioupBq5ajYmvXrkXPnj0RGhqK0NBQ9OzZE+vWrdNrYIGBgfDy8sKuXbukZUqlEocPH4ZcLgcAyOVyZGVl4fjx41Kd3bt3o6ioCBEREVKdffv2IT8/X6oTFxeH+vXrw8XFRa8xExERkenTKjkqKipC37590bdvX5w7dw5169ZF3bp1cfbsWfTt2xf9+vXTap6j7OxsJCYmIjExEcCTQdiJiYlITU2FTCbDhAkTMGvWLGzcuBFnzpzB4MGD4ePjg1dffRUA0KBBA3Tp0gUjR47EkSNHcODAAYwdOxb9+vWDj48PAGDAgAGwsrLC8OHDcfbsWaxevRoLFy7ExIkTtdl10kK6IgcHk+8gXZFTrjpEREQGoc3lcPPmzROurq7izz//LFH2xx9/CFdXVzF//nyN17dnzx4BoMQjNjZWCPHkcv5p06YJT09PYW1tLTp37iwuXryoto67d++K/v37CwcHB+Ho6CiGDh0qHjx4oFbn1KlT4oUXXhDW1tbC19dXzJkzR5vdFkLwUn5N/XrkmgicskkETN4kAqdsEr8euaZTHSIiIn3Q5fyt1Y1nGzdujAkTJmDYsGGllv/4449YuHAhTp8+Xf6szciYwo1nDS1dkYO2c3ajSOUdZS6TYf+UTtI93zSpQ0REpC+6nL+16la7dOmS2rxDTyvt9h5UfaTceaiW9ABAoRC4eueRVnWIiIgMSavkyNbWFllZWWWWK5VK2NjYlDcmMlGBbvYwe+ruMeYyGWq72WlVh4iIyJC0So7kcjkWL15cZvmiRYukK8mo+vF2ssXsnmEw/9/99cxlMnzWM1Stu0yTOkRERIak1TxHH3zwATp27Ii7d+9i0qRJCAkJgRAC58+fx1dffYU//vgDe/bsqahYyQT0bemP9sHuuHrnEWq72ZWa9GhSh4iIyFC0GpANABs2bMAbb7yBe/fuqS13cXHB0qVL0atXL70GaCw4IJuIiMj06HL+1jo5AoBHjx5h+/bt0uDr4OBgREVFwc6u6o4bYXJERERkenQ5f2vVrbZ7926MHTsWhw4dQo8ePdTKFAoFGjVqhCVLlqBdu3barJaIiIjIaGg1IHvBggUYOXJkqZmXk5MT3nzzTcybN09vwRERERFVNq2So1OnTqFLly5llkdFRand54yIiIjI1GiVHGVmZsLS0rLMcgsLC9y+fbvcQREREREZilbJka+vL5KSksosP336NLy9vcsdFBEREZGhaJUcdevWDdOmTcPjx49LlOXk5GD69Ol46aWX9BYcERERUWXT6lL+zMxMNGvWDObm5hg7dizq168PALhw4QIWLVqEwsJCnDhxAp6enhUWsKHwUn4iIiLTU+GX8nt6euLgwYMYPXo0pk6diuK8SiaTITo6GosWLaqSiRERERFVH1olRwAQEBCALVu24P79+7h8+TKEEKhXrx5cXFwqIj4iIiKiSqV1clTMxcUFLVu21GcsRERERAan1YBsIiIioqqOyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkgskRERERkQomR0REREQqmBwRERERqWByRERERKSCyRERERGRCiZHRERERCqYHJFepCtycDD5DtIVOYYOhYiIqFwsDB0Amb7VR1Mxdf0ZFAnATAbM7hmGvi39DR0WEdIVOUi58xCBbvbwdrI1dDhEZCKYHFG5pCtypMQIAIoE8P76JLQPdufJiAyKSTsR6YrdalQuKXceSolRsUIhcPXOI8MERISyk3Z2+xKRJpgcUbkEutnDTKa+zFwmQ203uwrdLsc40bMwaSei8mByROXi7WSL2T3DYC57kiGZy2T4rGdohXaprT6airZzdmPA94fRds5urD6aWmHbItNkqKSdiKoGmRBCPL8aKZVKODk5QaFQwNHR0dDhGJ10RQ6u3nmE2m52FZoYpSty0HbObrVWAXOZDPundOIYJ1Kz+mgq3l+fhEIhpKSdY46Iqh9dzt8ckE164e1kWynJybO6S5gckaq+Lf3RPti9UpJ2IqpamByRSSnuLnm65YjdJVSaykraiahq4ZgjMimGGONERETVC1uOyOSwu4SIiCoSkyMySewuIWPD2biJqg4mR2TyeFIiQ+Ns3ERVi9GPOZoxYwZkMpnaIyQkRCp//PgxxowZg5o1a8LBwQG9evVCZmam2jpSU1MRExMDOzs7eHh44N1330VBQUFl7wpVAM55VD0Y86SfnI2bqOoxiZajRo0aYefOndJzC4t/wn7nnXewefNmrF27Fk5OThg7dix69uyJAwcOAAAKCwsRExMDLy8vHDx4EOnp6Rg8eDAsLS3x2WefVfq+kP7wvm7Vg7G3ynB6CaKqx+hbjoAnyZCXl5f0cHNzAwAoFAr8+OOPmDdvHl588UU0b94cy5cvx8GDB3Ho0CEAwI4dO3Du3DmsXLkSTZo0QdeuXfHJJ59g0aJFyMvLM+RuUTnxFhFVnym0ynA2bqKqxySSo0uXLsHHxwd16tTBwIEDkZr6pOvk+PHjyM/PR2RkpFQ3JCQE/v7+SEhIAAAkJCQgLCwMnp6eUp3o6GgolUqcPXu2cnfEhBhzN0YxnpSqPlNIgDm9BFHVY/TdahEREVixYgXq16+P9PR0zJw5E+3atUNSUhIyMjJgZWUFZ2dntdd4enoiIyMDAJCRkaGWGBWXF5eVJTc3F7m5udJzpVKppz0yfsbejVGs+KT09C0ieFKqOkxl0k9OL0FUtRh9ctS1a1fp/40bN0ZERAQCAgKwZs0a2NpW3BfQ7NmzMXPmzApbv7EytXE8PClVbaaUAHN6CaKqw+iTo6c5OzsjODgYly9fxr/+9S/k5eUhKytLrfUoMzMTXl5eAAAvLy8cOXJEbR3FV7MV1ynN1KlTMXHiROm5UqmEn5+fHvfEOJni4FKelKo2JsBEVNlMYsyRquzsbCQnJ8Pb2xvNmzeHpaUldu3aJZVfvHgRqampkMvlAAC5XI4zZ87g1q1bUp24uDg4OjqiYcOGZW7H2toajo6Oao/qgON4qKLpMp7N28kW8qCaTIyIqFIYfcvRpEmT0L17dwQEBCAtLQ3Tp0+Hubk5+vfvDycnJwwfPhwTJ06Eq6srHB0d8fbbb0Mul6N169YAgKioKDRs2BCvv/46vvjiC2RkZODDDz/EmDFjYG1tbeC9Mz6m1I1BpsdUxrMRUfVm9MnRjRs30L9/f9y9exfu7u544YUXcOjQIbi7uwMA5s+fDzMzM/Tq1Qu5ubmIjo7Gt99+K73e3NwcmzZtwujRoyGXy2Fvb4/Y2Fh8/PHHhtolo8duDKoIpjaejYiqL5kQQjy/GimVSjg5OUGhUBhlFxtvoUHG7mDyHQz4/nCJ5atGtoY8qKYBIiKi6kCX87fRtxzR87GrgkyBqVyWT0RkcgOySZ0pzCBsChNKUsXjZIlEZCrYcmTijP3Se7ZqkSqOZyMiU8CWIxNnzJfem0KrFlW+yr4sny2XRKQtJkcmzpi7KkzhvlhUta0+moq2c3ZjwPeH0XbObqw+mmrokIjIBLBbrQow1q4KDsAlQ+LUAUSkK7YcVRHGOIOwMbdqUdXHlksi0hVbjqhCGWurFj2fqc+dxZZLMhWm/lmripgcUYXjjWFNT1W4ypC3wqneTCXhqAqftaqIM2RryNhnyK4uTOULz5SlK3LQds7uEi0u+6d0Msljnq7IYctlNWMqCUdV+6wZK86QTVXa0vhkzNl6AQLG/YVn6ox97ixtseWyejGlgfhV7bNWlXBAdhVSFedzKd6nL7dfwOz/JUZA+eZMevo4VcXjVh7GPHcW0fM+r4YYiK/rdwg/a8aLLUdVRHmakY21q0p1n0pT2i+s5+3L08epR1NfbDh50+ib3ysTx+qQsdLke66yB+KX57uXnzXjxTFHGjLmMUfl6bc21r750vbpaWYADkx9UdpH1X2RAZjSNQRvdgjSap3s7/8Hx+qQMdHme2710dQSCUdFfK/pa8wQP2sVi2OOqild+62NuW++tH162uSuIVKcT++LADB76wVcu/sQb3euB28nW43Wyf7+f1T0WB1jbbEk46TN91xlTSGirzFDHBdnfJgcGRldThi6NiMb82DA0vapmJnsSWL0Zvt/WoXKSnx+OXIdq45cx5xeYWgf7F7mOouxv79yGGuLJRmPp78Ltf2eq4yEg3NpVV0ckG1EdL0PlK4zURvzYMDS9mlq1xCsGtkaB6a8qJYYAU/2RVbaivCkFen99UkAUGKdvZr5cgbvSsYbEtPzlPZdaIwz7htjTKQfHHOkoYoec6SPvmtd+q0rq28eAE5dv48jV++hVW1XhPu5aPQabfZpaXwyZm+9UGb5qpGtIQ+qiXRFDo5fvQ/IgOYBT+Jgf3/lOZh8BwO+P1xiefHfh6qP0lrKn/ddaIzjc4wxJvoHxxyZMH10cenSjFxZffP/XpOI307clJ73auaLr/o0ee7rtNmnNzsEATLg860XShxL1RaxfX/fZpeOAbErgoCyu1af911ojONzjC0mjucrP3arGQlDdnFV9E1rT12/r5YYAcBvJ27i1PX7et/Wm+2DcGDKi3ijfaD05lZt6maXjuGxK4Ke9Tk05u5+U6Dr8AxDM7b55thyZCSq8nwXR67eK3X5sav3Ne5e04a3ky3e79YQQ9sGlmgRM+ZB6NWJIW5IbEy/po0pFkN41udQHlSzyn4XVjRjvgL5WYzxAg0mR0akqt7BvlVt11KXt6it/8RIVWlN3ezSMS4ClTPk0Zi+fI0pFkN53uewqn4XVjRT/PFnrAkdu9WMTEV3cRlCuJ8LejXzVVvWq5lvhbQaPQ+7dIxDZTb9G1NXqjaxGFs3gz5p8jmsit+FFc0UuyQNcbsXTbDliCrFV32aYLA8AMeu3keL2i4GSYyK8VepYVX2L0Vj+jWtaSzVoXWpun0OK6MrVZPhGcbWpWusrflMjqjShPsZNilSZWxXl1QnlZ2sGNOXryaxGGs3Q0Uwpc9heZKKykx2n5V0GmPSbazjbZkcEVGlquxkxZi+fDWJxZhauuiJ8t7Yu7KT3dKSzlPX72PK+jMQRph0G2MrIpMjIqpUhkhWjOnL93mxGFNLF5U/uTGGZHf10VRM+e1MicsfjCnpNrZWRCZHRNWMMYw50Feyos2+GNOX77NiMaaWLip/cmPoZLc4uSvtulAm3WVjckRUDsaQaGhDtXtABmBK15AnM4tXoLKOUXmTFWMcP6EvxtTSVczU3uu6KG0fy5vcGDrZLeum3GYyMOl+BiZHRDoytZPz090DAnhyLzoZStzIV1/bW74/Bd//lQIBzY+RJidhQw5arqwkwVAtXaXtn6m913VR1j7qI7kxZLJbWnJnBmDDW22M5gIZY8TkiEgHpnhFUVm/ID/fegEvh/voNW7VE00xTY6Rpifh8nZ16JrgVPUkobT9ax/sbnLvdW097/Osj+TGUMluWckdE6NnY3JEpANdTs6G7pYIdLOHDCgx9qBIQK+DMk9dv1/q4E/g2cdIm4TzeV0dzzrWuiY4ppgQa6Os/VvQL9zgA4r1paz3hSafZ2Mas6YtY+ymNXZMjoh0oO04BGNocfB2ssWUriFPutJU6HNQ5uqjqU8uFy6j/Fnb0ibhfFZXx7OOdXkSHGO46qgilbV/ZjJZlbh67lnvC0MPmq4MppzcGQJvH0KkA21uQ5KuyMGU34zj9hVvdgjC1G4h0i0GdBk/UdZtLaSrYsrIjMzw7AGg2t76oG9Lf+yf0gmrRrbG/imd0Lel/3Nvz1GeWxWY4q0Zij39Nyvtb1jW/jULcDH5W+48731RFW8rVN7bz1Tl29dogi1HRDrStKl62f4Uo5pf5M32QXg53EenJvZn/foua0yTDMDIdnUw9IXaz9yWLgNfn/41/LzWnfK0EBj6qiNdPf0369HUFxtO3tRq4LGpd8to0upn6vuoqrwt1cbQ0m1oMiHK+p1HqpRKJZycnKBQKODo6GjocMjIlDWWIV2Rg7Zzdpf4YjYDcGDqiyb1BVzavpjLZNg/pRO8nWxLLTeTaX9VTLoiR+cT1PNiBJ588T+dAGjzxV+e+CpbWe8/VU8fH1PaP01p8r6oKsq7r1XxWOly/mbLEVE56dKaMqJ9oF6+aCpzkPfzfn3r66qY8oyN0KR1p7wtBBU9dkOff9Oy3n+q9D3w2NAXHpTGVFv9dFHesXFVfWydppgcEZXD8wb4ljrHiAyICfPGweQ7sLcyx8O8QqO/mSWg2aBVY+ia0CQGYx2cqu+/aWl/s6fpe0C+sXbHGMN7szKUd3B5dRicrgkOyCYqh+cN8C1toGePpr7o8e1BDPj+MF5Z9OTftnN2Y/XRVI23+7wBpqUNpizvAEtNB616O9lCHlTToCcfY4hBW8/7m+qi+G9W1he9PmdJLi3+qb+dMaoBvZX1vjDkYObyDi6vioPTdcGWI6JyKG3uIJkMZbam2FmZoce3B0skVPq8meW+v2+X+PUOQC+/6KvLr29DqKjujL4t/WFvbYGxv5wsUfZ1v6Z4KdxH53WrKi3+IgDL91/F+zEN9LINU2AMrWfl/Zzyc87kiEj/SunCKO7GOZh8p8wuDn3czNLOyqzkr/f/XV5fXLW8kxcaa5eUqavI7ozmAS6lrrt5bf3NklzWJKM/7L/y3CsVqwpjmii0vJ/T6v45Z7caUTmk3HlY4mQggDLnzSltLpliutzM8umm74d5haW2SpU1lQAZj4rszqiMrhJvJ1uMbBdYYnnxDOzVQVmtf8ev3q+0brbqPj+RvrDliNQY45UmxkzbX/tPXzWj+hp93MwyXZFT6gBw8VSCVB0HWJqCiuzOqIyukqEvBOKH/SnVdjBvad8HMgDjfj1ZKd1shujSq6rnDM5zpKHqMM+RMfSVmyJd5s0pnkvGzsoMj/KK9HqyKi0eAOWa24foWVRPkPv+vl2t32uqnz8zPPlR8vQPk4qYM6gi5ycqLQFKV+Rg+f4UfP/Xk0lujfmcocv5m8mRhqp6clQVJ/6qTBU1cZ4mv8rK+uJ6Op6qOLkfGV5pP6qq+2De4s/a3Ye5pQ6EXzWyNeRBNfW6zYPJdzDg+8N631Zpf18AamOrihnrOYOTQD7HokWLMHfuXGRkZCA8PBzffPMNWrVqZeiwjAIn/ioffQ1efPoX+PNa8spq7Sstnuo+wNIYmXqXRFkDkPdP6aT3k78pKf6sldbNXVHdjPoY0P/0+7Gs6RlQxtxZhUJg8+l0xDT2Nsn3s6pqkxytXr0aEydOxJIlSxAREYEFCxYgOjoaFy9ehIeHh6HDMzhO/GV4qolO8ZjtZ11hZkxXxpD2tOnG1kcSVRGJGH9UPVtlzsxd3m2pff/IgCldQxDm61Tq9AylXZFbbNbm8/hsy3mj7WLTVLVJjubNm4eRI0di6NChAIAlS5Zg8+bNWLZsGaZMmWLg6AyvOk2vb4yeTnRK++55+qTDE5Pp0iax1cdYwIoaT8gfVc9XmXMG6bqtEt8/Api95QLGdAoqdYD588biVIUfatXiUv68vDwcP34ckZGR0jIzMzNERkYiISGh1Nfk5uZCqVSqPaq6vi39sX9KJ6wa2Rr7p3Qy6azf1GhyD6ynTzqlTQvAE5NpeN7M6sX0MWt2Rcy8XYyzKWumMmds12VbZX3/LN6TjMldQqS/b1kJw4shJXtfTH26kGrRcnTnzh0UFhbC09NTbbmnpycuXLhQ6mtmz56NmTNnVkZ4RoXjUgyjrEuAZf9bVtpJh619pkvTFhd9tA5WdAsjZ1M2fYFu9pD9b8oPVUUAGtdyxv4pnZ45wLxXM1/svXirSrUgVovkSBdTp07FxIkTpedKpRJ+fn4GjIiqsrISneeddHhiMk2aJrb66LaqjK4v/qgybd5OtpjSNQSzt6g3FhS/T543wLxZgEuV+6FWLZIjNzc3mJubIzMzU215ZmYmvLy8Sn2NtbU1rK2tKyM8IgBlJzrP+4Lhick0aZLY6qN1kC2MpIk32wcBAvh86wUUQfvW6qr2Q63azHMUERGBVq1a4ZtvvgEAFBUVwd/fH2PHjtVoQHZVn+eIiIyXPuao4jxXpAlN3iem9l7iPEfPMHHiRMTGxqJFixZo1aoVFixYgIcPH0pXrxERGSt9tA6yhZE0ocn7pDq8l6pNctS3b1/cvn0bH330ETIyMtCkSRNs27atxCBtIiIiqt6qTbdaebFbjYiIyPTocv6uFvMcEREREWmKyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkotrcPqS8iicSVyqVBo6EiIiINFV83tbmhiBMjjT04MEDAICfn5+BIyEiIiJtPXjwAE5OThrV5b3VNFRUVIS0tDTUqFEDMplM5/UolUr4+fnh+vXr1foebTwOT/A4PMHj8ASPwxM8Dv/gsXiiPMdBCIEHDx7Ax8cHZmaajSZiy5GGzMzMUKtWLb2tz9HRsVq/0YvxODzB4/AEj8MTPA5P8Dj8g8fiCV2Pg6YtRsU4IJuIiIhIBZMjIiIiIhVMjiqZtbU1pk+fDmtra0OHYlA8Dk/wODzB4/AEj8MTPA7/4LF4orKPAwdkExEREalgyxERERGRCiZHRERERCqYHBERERGpYHJEREREpILJkR4sXrwYjRs3lianksvl2Lp1q1T++PFjjBkzBjVr1oSDgwN69eqFzMxMtXWkpqYiJiYGdnZ28PDwwLvvvouCgoLK3hW9mTNnDmQyGSZMmCAtqy7HYcaMGZDJZGqPkJAQqby6HAcAuHnzJgYNGoSaNWvC1tYWYWFhOHbsmFQuhMBHH30Eb29v2NraIjIyEpcuXVJbx7179zBw4EA4OjrC2dkZw4cPR3Z2dmXvis5q165d4v0gk8kwZswYANXn/VBYWIhp06YhMDAQtra2CAoKwieffKJ2v6vq8H4AntzGYsKECQgICICtrS3atGmDo0ePSuVV9Tjs27cP3bt3h4+PD2QyGX7//Xe1cn3t9+nTp9GuXTvY2NjAz88PX3zxhfbBCiq3jRs3is2bN4u///5bXLx4Ubz//vvC0tJSJCUlCSGEGDVqlPDz8xO7du0Sx44dE61btxZt2rSRXl9QUCBCQ0NFZGSkOHnypNiyZYtwc3MTU6dONdQulcuRI0dE7dq1RePGjcX48eOl5dXlOEyfPl00atRIpKenS4/bt29L5dXlONy7d08EBASIIUOGiMOHD4srV66I7du3i8uXL0t15syZI5ycnMTvv/8uTp06JV5++WURGBgocnJypDpdunQR4eHh4tChQ+Kvv/4SdevWFf379zfELunk1q1bau+FuLg4AUDs2bNHCFF93g+ffvqpqFmzpti0aZNISUkRa9euFQ4ODmLhwoVSnerwfhBCiD59+oiGDRuK+Ph4cenSJTF9+nTh6Ogobty4IYSousdhy5Yt4oMPPhDr168XAMSGDRvUyvWx3wqFQnh6eoqBAweKpKQksWrVKmFrayuWLl2qVaxMjiqIi4uL+OGHH0RWVpawtLQUa9eulcrOnz8vAIiEhAQhxJM3jJmZmcjIyJDqLF68WDg6Oorc3NxKj708Hjx4IOrVqyfi4uJEhw4dpOSoOh2H6dOni/Dw8FLLqtNxmDx5snjhhRfKLC8qKhJeXl5i7ty50rKsrCxhbW0tVq1aJYQQ4ty5cwKAOHr0qFRn69atQiaTiZs3b1Zc8BVo/PjxIigoSBQVFVWr90NMTIwYNmyY2rKePXuKgQMHCiGqz/vh0aNHwtzcXGzatEltebNmzcQHH3xQbY7D08mRvvb722+/FS4uLmqfjcmTJ4v69etrFR+71fSssLAQv/76Kx4+fAi5XI7jx48jPz8fkZGRUp2QkBD4+/sjISEBAJCQkICwsDB4enpKdaKjo6FUKnH27NlK34fyGDNmDGJiYtT2F0C1Ow6XLl2Cj48P6tSpg4EDByI1NRVA9ToOGzduRIsWLfDaa6/Bw8MDTZs2xffffy+Vp6SkICMjQ+1YODk5ISIiQu1YODs7o0WLFlKdyMhImJmZ4fDhw5W3M3qSl5eHlStXYtiwYZDJZNXq/dCmTRvs2rULf//9NwDg1KlT2L9/P7p27Qqg+rwfCgoKUFhYCBsbG7Xltra22L9/f7U5Dk/T134nJCSgffv2sLKykupER0fj4sWLuH//vsbx8MazenLmzBnI5XI8fvwYDg4O2LBhAxo2bIjExERYWVnB2dlZrb6npycyMjIAABkZGWpffMXlxWWm4tdff8WJEyfU+s6LZWRkVJvjEBERgRUrVqB+/fpIT0/HzJkz0a5dOyQlJVWr43DlyhUsXrwYEydOxPvvv4+jR49i3LhxsLKyQmxsrLQvpe2r6rHw8PBQK7ewsICrq6tJHYtiv//+O7KysjBkyBAA1etzMWXKFCiVSoSEhMDc3ByFhYX49NNPMXDgQACoNu+HGjVqQC6X45NPPkGDBg3g6emJVatWISEhAXXr1q02x+Fp+trvjIwMBAYGllhHcZmLi4tG8TA50pP69esjMTERCoUC69atQ2xsLOLj4w0dVqW5fv06xo8fj7i4uBK/iKqb4l/CANC4cWNEREQgICAAa9asga2trQEjq1xFRUVo0aIFPvvsMwBA06ZNkZSUhCVLliA2NtbA0RnGjz/+iK5du8LHx8fQoVS6NWvW4Oeff8Yvv/yCRo0aITExERMmTICPj0+1ez/89NNPGDZsGHx9fWFubo5mzZqhf//+OH78uKFDo/9ht5qeWFlZoW7dumjevDlmz56N8PBwLFy4EF5eXsjLy0NWVpZa/czMTHh5eQEAvLy8SlydUvy8uI6xO378OG7duoVmzZrBwsICFhYWiI+Px9dffw0LCwt4enpWi+NQGmdnZwQHB+Py5cvV5v0AAN7e3mjYsKHasgYNGkhdjMX7Utq+qh6LW7duqZUXFBTg3r17JnUsAODatWvYuXMnRowYIS2rTu+Hd999F1OmTEG/fv0QFhaG119/He+88w5mz54NoHq9H4KCghAfH4/s7Gxcv34dR44cQX5+PurUqVOtjoMqfe23vj4vTI4qSFFREXJzc9G8eXNYWlpi165dUtnFixeRmpoKuVwOAJDL5Thz5ozaHz0uLg6Ojo4lTi7GqnPnzjhz5gwSExOlR4sWLTBw4EDp/9XhOJQmOzsbycnJ8Pb2rjbvBwBo27YtLl68qLbs77//RkBAAAAgMDAQXl5easdCqVTi8OHDasciKytL7Rf17t27UVRUhIiIiErYC/1Zvnw5PDw8EBMTIy2rTu+HR48ewcxM/ZRjbm6OoqIiANXv/QAA9vb28Pb2xv3797F9+3a88sor1fI4APr7+8vlcuzbtw/5+flSnbi4ONSvX1/jLjUAvJRfH6ZMmSLi4+NFSkqKOH36tJgyZYqQyWRix44dQognl+r6+/uL3bt3i2PHjgm5XC7kcrn0+uJLdaOiokRiYqLYtm2bcHd3N7lLdZ+merWaENXnOPz73/8We/fuFSkpKeLAgQMiMjJSuLm5iVu3bgkhqs9xOHLkiLCwsBCffvqpuHTpkvj555+FnZ2dWLlypVRnzpw5wtnZWfzxxx/i9OnT4pVXXin10t2mTZuKw4cPi/3794t69eoZ/SXLTyssLBT+/v5i8uTJJcqqy/shNjZW+Pr6Spfyr1+/Xri5uYn33ntPqlNd3g/btm0TW7duFVeuXBE7duwQ4eHhIiIiQuTl5Qkhqu5xePDggTh58qQ4efKkACDmzZsnTp48Ka5duyaE0M9+Z2VlCU9PT/H666+LpKQk8euvvwo7Ozteym8Iw4YNEwEBAcLKykq4u7uLzp07S4mREELk5OSIt956S7i4uAg7OzvRo0cPkZ6erraOq1eviq5duwpbW1vh5uYm/v3vf4v8/PzK3hW9ejo5qi7HoW/fvsLb21tYWVkJX19f0bdvX7W5farLcRBCiD///FOEhoYKa2trERISIr777ju18qKiIjFt2jTh6ekprK2tRefOncXFixfV6ty9e1f0799fODg4CEdHRzF06FDx4MGDytyNctu+fbsAUGLfhKg+7welUinGjx8v/P39hY2NjahTp4744IMP1C65ri7vh9WrV4s6deoIKysr4eXlJcaMGSOysrKk8qp6HPbs2SMAlHjExsYKIfS336dOnRIvvPCCsLa2Fr6+vmLOnDlaxyoTQmV6UiIiIqJqjmOOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiqmYyMDLz99tuoU6cOrK2t4efnh+7du6vd0+jgwYPo1q0bXFxcYGNjg7CwMMybNw+FhYVSnatXr2L48OEIDAyEra0tgoKCMH36dOTl5alt7/vvv0d4eDgcHBzg7OyMpk2bSjcbBYAZM2ZAJpOhS5cuJWKdO3cuZDIZOnbs+Nz9ql27NmQyWZmPIUOGaH+wjFzHjh0xYcIEQ4dBVOVYGDoAIqo8V69eRdu2beHs7Iy5c+ciLCwM+fn52L59O8aMGYMLFy5gw4YN6NOnD4YOHYo9e/bA2dkZO3fuxHvvvYeEhASsWbMGMpkMFy5cQFFREZYuXYq6desiKSkJI0eOxMOHD/Hll18CAJYtW4YJEybg66+/RocOHZCbm4vTp08jKSlJLS5vb2/s2bMHN27cQK1ataTly5Ytg7+/v0b7dvToUSl5O3jwIHr16oWLFy/C0dERAGBra6uPQ1gp8vPzYWlpWWnby8vLg5WVVaVtj8jo6XiLFCIyQV27dhW+vr4iOzu7RNn9+/dFdna2qFmzpujZs2eJ8o0bNwoA4tdffy1z/V988YUIDAyUnr/yyitiyJAhz4xp+vTpIjw8XLz00kti1qxZ0vIDBw4INzc3MXr0aNGhQwcN9u4fxfdwun//vrTs999/F02bNhXW1tYiMDBQzJgxQ+3+ZADEkiVLRExMjLC1tRUhISHi4MGD4tKlS6JDhw7Czs5OyOVytfvkFce+ZMkSUatWLWFraytee+01tftkCSHE999/L0JCQoS1tbWoX7++WLRokVSWkpIiHdf27dsLa2trsXz5cnHnzh3Rr18/4ePjI2xtbUVoaKj45ZdfpNfFxsaWuEdVSkqKWL58uXByclLb/oYNG4Tq131x3N9//72oXbu2kMlkQogn74Hhw4cLNzc3UaNGDdGpUyeRmJio1bEnqgrYrUZUTdy7dw/btm3DmDFjYG9vX6Lc2dkZO3bswN27dzFp0qQS5d27d0dwcDBWrVpV5jYUCgVcXV2l515eXjh06BCuXbv23PiGDRuGFStWSM+XLVuGgQMH6qVF46+//sLgwYMxfvx4nDt3DkuXLsWKFSvw6aefqtX75JNPMHjwYCQmJiIkJAQDBgzAm2++ialTp+LYsWMQQmDs2LFqr7l8+TLWrFmDP//8E9u2bcPJkyfx1ltvSeU///wzPvroI3z66ac4f/48PvvsM0ybNg3//e9/1dYzZcoUjB8/HufPn0d0dDQeP36M5s2bY/PmzUhKSsIbb7yB119/HUeOHAEALFy4EHK5HCNHjkR6ejrS09Ph5+en8TG5fPkyfvvtN6xfvx6JiYkAgNdeew23bt3C1q1bcfz4cTRr1gydO3fGvXv3tDncRKbP0NkZEVWOw4cPCwBi/fr1ZdaZM2dOiRYXVS+//LJo0KBBqWWXLl0Sjo6O4rvvvpOWpaWlidatWwsAIjg4WMTGxorVq1eLwsJCqU5xK0ZeXp7w8PAQ8fHxIjs7W9SoUUOcOnVKjB8/vtwtR507dxafffaZWp2ffvpJeHt7S88BiA8//FB6npCQIACIH3/8UVq2atUqYWNjoxa7ubm5uHHjhrRs69atwszMTKSnpwshhAgKClJr8RFCiE8++UTI5XIhxD8tRwsWLHjufsXExIh///vf0vMOHTqI8ePHq9XRtOXI0tJS3Lp1S1r2119/CUdHR/H48WO11wYFBYmlS5c+NzaiqoRjjoiqCSFEhdQFgJs3b6JLly547bXXMHLkSGm5t7c3EhISkJSUhH379uHgwYOIjY3FDz/8gG3btsHM7J/Ga0tLSwwaNAjLly/HlStXEBwcjMaNG2sVR1lOnTqFAwcOqLUUFRYW4vHjx3j06BHs7OwAQG17np6eAICwsDC1ZY8fP4ZSqZTGMvn7+8PX11eqI5fLUVRUhIsXL6JGjRpITk7G8OHD1Y5LQUEBnJyc1GJs0aKF2vPCwkJ89tlnWLNmDW7evIm8vDzk5uZKsZZXQEAA3N3dpeenTp1CdnY2atasqVYvJycHycnJetkmkalgckRUTdSrV08aSF2W4OBgAMD58+fRpk2bEuXnz59Hw4YN1ZalpaWhU6dOaNOmDb777rtS1xsaGorQ0FC89dZbGDVqFNq1a4f4+Hh06tRJrd6wYcMQERGBpKQkDBs2TNtdLFN2djZmzpyJnj17liizsbGR/q86CFomk5W5rKioSOPtAk+u2IuIiFArMzc3V3v+dFfn3LlzsXDhQixYsABhYWGwt7fHhAkTSlwN+DQzM7MSyW1+fn6Jek9vLzs7G97e3ti7d2+Jus7Ozs/cJlFVw+SIqJpwdXVFdHQ0Fi1ahHHjxpU4OWZlZSEqKgqurq746quvSiRHGzduxKVLl/DJJ59Iy27evIlOnTqhefPmWL58uVpLUFmKk6uHDx+WKGvUqBEaNWqE06dPY8CAAbrsZqmaNWuGixcvom7dunpbZ7HU1FSkpaXBx8cHAHDo0CGYmZmhfv368PT0hI+PD65cuYKBAwdqtd4DBw7glVdewaBBgwA8Scj+/vtvteTUyspKbXoFAHB3d8eDBw/w8OFD6W9cPKboWZo1a4aMjAxYWFigdu3aWsVKVNUwOSKqRhYtWoS2bduiVatW+Pjjj9G4cWMUFBQgLi4Oixcvxvnz57F06VL069cPb7zxBsaOHQtHR0fs2rUL7777Lnr37o0+ffoAeJIYdezYEQEBAfjyyy9x+/ZtaTteXl4AgNGjR8PHxwcvvvgiatWqhfT0dMyaNQvu7u6Qy+Wlxrh7927k5+frtbXio48+wksvvQR/f3/07t0bZmZmOHXqFJKSkjBr1qxyrdvGxgaxsbH48ssvoVQqMW7cOPTp00c6BjNnzsS4cePg5OSELl26IDc3F8eOHcP9+/cxceLEMtdbr149rFu3DgcPHoSLiwvmzZuHzMxMteSodu3aOHz4MK5evQoHBwe4uroiIiICdnZ2eP/99zFu3DgcPnxYbaB7WSIjIyGXy/Hqq6/iiy++QHBwMNLS0rB582b06NGjRLcfUVXGq9WIqpE6dergxIkT6NSpE/79738jNDQU//rXv7Br1y4sXrwYANC7d2/s2bMHqampaNeuHerXr4/58+fjgw8+wK+//ip1LcXFxeHy5cvYtWsXatWqBW9vb+lRLDIyEocOHcJrr72G4OBg9OrVCzY2Nti1a1eJsS3F7O3t9d6NEx0djU2bNmHHjh1o2bIlWrdujfnz5yMgIKDc665bty569uyJbt26ISoqCo0bN8a3334rlY8YMQI//PADli9fjrCwMHTo0AErVqxAYGDgM9f74YcfolmzZoiOjkbHjh3h5eWFV199Va3OpEmTYG5ujoYNG8Ld3R2pqalwdXXFypUrsWXLFoSFhWHVqlWYMWPGc/dDJpNhy5YtaN++PYYOHYrg4GD069cP165dk8ZfEVUXMqHtyEsiIgLwZHbv33//XaNuKyIyHWw5IiIiIlLB5IiITIaDg0OZj7/++svQ4RFRFcFuNSIyGZcvXy6zzNfX16Tun0ZExovJEREREZEKdqsRERERqWByRERERKSCyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKv4f93OVvhUxit4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZh0lEQVR4nO3deVhU9f4H8PeA7DuyI5sgIoKkuYSaS5FLapm5poV7bqnXUjEzNTUxvWp1Tc0Su5l7ambmkpqau7mSu6GigEoKI4vI8v394Y+5DDAwMxyY7f16nnke5nzPnPmcM2fmfPhuRyaEECAiIiIycGa6DoCIiIhICkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoio2s2YMQMymUytdWUyGWbMmFGt8bRr1w7t2rXT2+0RkXaY1BCZkFWrVkEmkyketWrVgq+vLwYOHIi7d+/qOjy9ExgYqHS8PDw88OKLL2LLli2SbD8nJwczZszA77//Lsn2iEwdkxoiE/TJJ5/g+++/x7Jly9C5c2esXr0abdu2xZMnT6rl/T766CPk5uZWy7ar23PPPYfvv/8e33//PT744AOkpKSgR48eWLZsWZW3nZOTg5kzZzKpIZJILV0HQEQ1r3PnzmjatCkAYOjQoXBzc8O8efOwbds29O7dW/L3q1WrFmrVMsyfG19fXwwYMEDx/J133kFISAgWLVqEESNG6DAyIiqNNTVEhBdffBEAcOPGDaXlly9fRs+ePeHq6gpra2s0bdoU27ZtU1onPz8fM2fORL169WBtbY3atWujdevW2LNnj2Kd8vrU5OXl4V//+hfc3d3h4OCA1157DXfu3CkT28CBAxEYGFhmeXnbTEhIwEsvvQQPDw9YWVkhPDwcS5cu1ehYVMbLywsNGjRAUlJShevdv38fQ4YMgaenJ6ytrREVFYXvvvtOUX7z5k24u7sDAGbOnKlo4qru/kRExsww/3UiIkndvHkTAODi4qJY9tdff6FVq1bw9fVFXFwc7OzssGHDBnTv3h0//vgj3njjDQDPkou5c+di6NChaN68OeRyOU6dOoXTp0/jlVdeUfmeQ4cOxerVq/HWW2+hZcuW2LdvH7p06VKl/Vi6dCkaNmyI1157DbVq1cLPP/+MUaNGoaioCKNHj67Stovl5+cjOTkZtWvXVrlObm4u2rVrh+vXr2PMmDEICgrCxo0bMXDgQGRkZGDcuHFwd3fH0qVLMXLkSLzxxhvo0aMHAKBRo0aSxElkkgQRmYyEhAQBQPz222/iwYMHIjk5WWzatEm4u7sLKysrkZycrFj35ZdfFpGRkeLJkyeKZUVFRaJly5aiXr16imVRUVGiS5cuFb7v9OnTRcmfm7NnzwoAYtSoUUrrvfXWWwKAmD59umJZbGysCAgIqHSbQgiRk5NTZr2OHTuKunXrKi1r27ataNu2bYUxCyFEQECA6NChg3jw4IF48OCBOHfunOjbt68AIN577z2V21u8eLEAIFavXq1Y9vTpUxEdHS3s7e2FXC4XQgjx4MGDMvtLRNpj8xORCYqJiYG7uzv8/PzQs2dP2NnZYdu2bahTpw4A4OHDh9i3bx969+6Nx48fIz09Henp6fjnn3/QsWNHXLt2TTFaytnZGX/99ReuXbum9vvv2LEDADB27Fil5ePHj6/SftnY2Cj+zszMRHp6Otq2bYu///4bmZmZWm1z9+7dcHd3h7u7O6KiorBx40a8/fbbmDdvnsrX7NixA15eXujXr59imYWFBcaOHYusrCwcOHBAq1iIqGJsfiIyQUuWLEFoaCgyMzOxcuVKHDx4EFZWVory69evQwiBadOmYdq0aeVu4/79+/D19cUnn3yC119/HaGhoYiIiECnTp3w9ttvV9iMcuvWLZiZmSE4OFhpef369au0X4cPH8b06dNx9OhR5OTkKJVlZmbCyclJ4222aNECs2fPhkwmg62tLRo0aABnZ+cKX3Pr1i3Uq1cPZmbK/zc2aNBAUU5E0mNSQ2SCmjdvrhj91L17d7Ru3RpvvfUWrly5Ant7exQVFQEAPvjgA3Ts2LHcbYSEhAAA2rRpgxs3buCnn37C7t278c0332DRokVYtmwZhg4dWuVYVU3aV1hYqPT8xo0bePnllxEWFoaFCxfCz88PlpaW2LFjBxYtWqTYJ025ubkhJiZGq9cSUc1iUkNk4szNzTF37ly0b98e//nPfxAXF4e6desCeNZkos4F3dXVFYMGDcKgQYOQlZWFNm3aYMaMGSqTmoCAABQVFeHGjRtKtTNXrlwps66LiwsyMjLKLC9d2/Hzzz8jLy8P27Ztg7+/v2L5/v37K41fagEBATh//jyKioqUamsuX76sKAdUJ2xEpB32qSEitGvXDs2bN8fixYvx5MkTeHh4oF27dli+fDlSU1PLrP/gwQPF3//8849Smb29PUJCQpCXl6fy/Tp37gwA+OKLL5SWL168uMy6wcHByMzMxPnz5xXLUlNTy8zqa25uDgAQQiiWZWZmIiEhQWUc1eXVV19FWloa1q9fr1hWUFCAL7/8Evb29mjbti0AwNbWFgDKTdqISHOsqSEiAMDEiRPRq1cvrFq1CiNGjMCSJUvQunVrREZGYtiwYahbty7u3buHo0eP4s6dOzh37hwAIDw8HO3atcPzzz8PV1dXnDp1Cps2bcKYMWNUvtdzzz2Hfv364auvvkJmZiZatmyJvXv34vr162XW7du3LyZPnow33ngDY8eORU5ODpYuXYrQ0FCcPn1asV6HDh1gaWmJbt264d1330VWVhZWrFgBDw+PchOz6jR8+HAsX74cAwcOxJ9//onAwEBs2rQJhw8fxuLFi+Hg4ADgWcfm8PBwrF+/HqGhoXB1dUVERAQiIiJqNF4io6Hr4VdEVHOKh3SfPHmyTFlhYaEIDg4WwcHBoqCgQAghxI0bN8Q777wjvLy8hIWFhfD19RVdu3YVmzZtUrxu9uzZonnz5sLZ2VnY2NiIsLAwMWfOHPH06VPFOuUNv87NzRVjx44VtWvXFnZ2dqJbt24iOTm53CHOu3fvFhEREcLS0lLUr19frF69utxtbtu2TTRq1EhYW1uLwMBAMW/ePLFy5UoBQCQlJSnW02RId2XD1VVt7969e2LQoEHCzc1NWFpaisjISJGQkFDmtUeOHBHPP/+8sLS05PBuoiqSCVGirpaIiIjIQLFPDRERERkFJjVERERkFJjUEBERkVFgUkNERERGgUkNERERGQUmNURERGQUjH7yvaKiIqSkpMDBwYFTkhMRERkIIQQeP34MHx+fMjeHVcXok5qUlBT4+fnpOgwiIiLSQnJyMurUqaPWukaf1BRPR56cnAxHR0cdR0NERETqkMvl8PPzU1zH1WH0SU1xk5OjoyOTGiIiIgOjSdcRdhQmIiIio8CkhoiIiIwCkxoiIiIyCkbfp4aISN8UFhYiPz9f12EQ6ZSFhQXMzc0l3SaTGiKiGiKEQFpaGjIyMnQdCpFecHZ2hpeXl2TzyDGpISKqIcUJjYeHB2xtbTkhKJksIQRycnJw//59AIC3t7ck22VSQ0RUAwoLCxUJTe3atXUdDpHO2djYAADu378PDw8PSZqi2FGYiKgGFPehsbW11XEkRPqj+PsgVR8zJjVERDWITU5E/yP194FJDRERERkFJjVERERkFJjUaCk1MxdHbqQjNTNX16EQEdWItLQ0vPfee6hbty6srKzg5+eHbt26Ye/evYp1jhw5gldffRUuLi6wtrZGZGQkFi5ciMLCQsU6N2/exJAhQxAUFAQbGxsEBwdj+vTpePr0qdL7rVixAlFRUbC3t4ezszMaN26MuXPnKspnzJgBmUyGTp06lYl1/vz5kMlkaNeundr7J5fLMXXqVISFhcHa2hpeXl6IiYnB5s2bIYRQrPfXX3+hd+/ecHd3h5WVFUJDQ/Hxxx8jJydHsc7Dhw/x3nvvoX79+rCxsYG/vz/Gjh2LzMxMtWK5efMmZDJZuY9jx46pvU/t2rXD+PHj1V7f0HH0kxbWn7yNKZsvoEgAZjJgbo9I9Gnmr+uwiIiqzc2bN9GqVSs4Oztj/vz5iIyMRH5+Pnbt2oXRo0fj8uXL2LJlC3r37o1BgwZh//79cHZ2xm+//YZJkybh6NGj2LBhA2QyGS5fvoyioiIsX74cISEhSExMxLBhw5CdnY0FCxYAAFauXInx48fjiy++QNu2bZGXl4fz588jMTFRKS5vb2/s378fd+7cQZ06dRTLV65cCX9/9X+XMzIy0Lp1a2RmZmL27Nlo1qwZatWqhQMHDmDSpEl46aWX4OzsjGPHjiEmJgYxMTH45Zdf4OnpiRMnTuD999/H3r17sX//flhaWiIlJQUpKSlYsGABwsPDcevWLYwYMQIpKSnYtGmT2nH99ttvaNiwodIyqUfPCSFQWFiIWrWMICUQRi4zM1MAEJmZmZJsLyUjRwTFbRcBk//3qBv3i0jJyJFk+0RknHJzc8XFixdFbm6urkPRSufOnYWvr6/IysoqU/bo0SORlZUlateuLXr06FGmfNu2bQKAWLduncrtf/bZZyIoKEjx/PXXXxcDBw6sMKbp06eLqKgo0bVrVzF79mzF8sOHDws3NzcxcuRI0bZtWzX2ToiRI0cKOzs7cffu3TJljx8/Fvn5+aKoqEiEh4eLpk2bisLCQqV1zp49K2QymYiPj1f5Hhs2bBCWlpYiPz+/0niSkpIEAHHmzBmV6xTv/3//+18REBAgHB0dRZ8+fYRcLhdCCBEbGysAKD2SkpLE/v37BQCxY8cO0aRJE2FhYSH2798vnjx5It577z3h7u4urKysRKtWrcSJEycU71f8uu3bt4vIyEhhZWUlWrRoIS5cuCCEECIrK0s4ODiIjRs3KsW5ZcsWYWtrq4irpIq+F9pcv9n8pKGk9GwUCeVlhULgZnpO+S8gIqoGNdkE/vDhQ+zcuROjR4+GnZ1dmXJnZ2fs3r0b//zzDz744IMy5d26dUNoaCjWrl2r8j0yMzPh6uqqeO7l5YVjx47h1q1blcY3ePBgrFq1SvF85cqV6N+/PywtLSt9LQAUFRVh3bp16N+/P3x8fMqU29vbo1atWjh79iwuXryICRMmwMxM+fIZFRWFmJiYSvfR0dFR0hqRGzduYOvWrdi+fTu2b9+OAwcOID4+HgDw+eefIzo6GsOGDUNqaipSU1Ph5+eneG1cXBzi4+Nx6dIlNGrUCJMmTcKPP/6I7777DqdPn0ZISAg6duyIhw8fKr3nxIkT8e9//xsnT56Eu7s7unXrhvz8fNjZ2aFv375ISEhQWj8hIQE9e/aEg4ODZPutCpMaDQW52cGs1Ag0c5kMgW6ce4KIasb6k7fRKn4f3lpxHK3i92H9ydvV+n7Xr1+HEAJhYWEq17l69SoAoEGDBuWWh4WFKdYpb/tffvkl3n33XcWy6dOnw9nZGYGBgahfvz4GDhyIDRs2oKioqMzru3btCrlcjoMHDyI7OxsbNmzA4MGD1d6/9PR0PHr0qML9AyrfxwYNGqjcx/T0dMyaNQvDhw9XOy4AaNmyJezt7ZUeJRUVFWHVqlWIiIjAiy++iLffflvRx8nJyQmWlpawtbWFl5cXvLy8lCa4++STT/DKK68gODgYVlZWWLp0KebPn4/OnTsjPDwcK1asgI2NDb799lul95w+fTpeeeUVREZG4rvvvsO9e/ewZcsWAMDQoUOxa9cupKamAng2sd6OHTs0+jyqgkmNhrydbDC3RyTM/39svblMhk97RMDbyUbHkRGRKUjNzFX06QOAIgF8uDmxWmtshBCVr6TFugBw9+5ddOrUCb169cKwYcMUy729vXH06FFcuHAB48aNQ0FBAWJjY9GpU6cyiY2FhQUGDBiAhIQEbNy4EaGhoWjUqFG1xazp+nK5HF26dEF4eDhmzJih0WvXr1+Ps2fPKj1KCgwMVKoB8fb2Vtx6oDJNmzZV/H3jxg3k5+ejVatWimUWFhZo3rw5Ll26pPS66Ohoxd+urq6oX7++Yp3mzZujYcOG+O677wAAq1evRkBAANq0aaPeDleREfQKqnl9mvmjTag7bqbnINDNlgkNEdWYiprAq+u3qF69eooOvqqEhoYCAC5duoSWLVuWKb906RLCw8OVlqWkpKB9+/Zo2bIlvv7663K3GxERgYiICIwaNQojRozAiy++iAMHDqB9+/ZK6w0ePBgtWrRAYmKixrUC7u7ucHZ2rnD/AOV9bNy4cZnyS5cuKdYp9vjxY3Tq1AkODg7YsmULLCwsNIrNz88PISEhKstLb08mk5Vbm1We8poSpTB06FAsWbIEcXFxSEhIwKBBg2ps0knW1GjJ28kG0cG1mdAQUY3SRRO4q6srOnbsiCVLliA7O7tMeUZGBjp06ABXV1f8+9//LlO+bds2XLt2Df369VMsu3v3Ltq1a4fnn38eCQkJZfqolKc4KSovhoYNG6Jhw4ZITEzEW2+9pcnuwczMDH379sUPP/yAlJSUMuVZWVkoKCjAc889h7CwMCxatKhM4nDu3Dn89ttvSvsol8vRoUMHWFpaYtu2bbC2ttYoLilYWloqDadXJTg4GJaWljh8+LBiWX5+Pk6ePFkmGS05pPzRo0e4evWqUpPcgAEDcOvWLXzxxRe4ePEiYmNjJdgT9TCpISIyILpqAl+yZAkKCwvRvHlz/Pjjj7h27RouXbqEL774AtHR0bCzs8Py5cvx008/Yfjw4Th//jxu3ryJb7/9FgMHDkTPnj3Ru3dvAP9LaPz9/bFgwQI8ePAAaWlpSEtLU7zfyJEjMWvWLBw+fBi3bt3CsWPH8M4778Dd3V2p+aOkffv2ITU1Fc7Ozhrv35w5c+Dn54cWLVrgv//9Ly5evIhr165h5cqVaNy4MbKysiCTyfDtt9/i4sWLePPNN3HixAncvn0bGzduRLdu3RAdHa2YE6Y4ocnOzsa3334LuVyu2Ed1koxi//zzj+J1xY8nT56o/frAwEAcP34cN2/eRHp6uspaHDs7O4wcORITJ07Ezp07cfHiRQwbNgw5OTkYMmSI0rqffPIJ9u7di8TERAwcOBBubm7o3r27otzFxQU9evTAxIkT0aFDB6Wh9tVO7XFSBkrqId1ERNqQekh3SkaOOHI9vUank0hJSRGjR48WAQEBwtLSUvj6+orXXntN7N+/X7HOwYMHRceOHYWjo6OwtLQUDRs2FAsWLBAFBQWKdRISEsoMNS5+FNu0aZN49dVXhbe3t7C0tBQ+Pj7izTffFOfPn1esUzykWZVx48apPaRbCCEyMjJEXFycqFevnrC0tBSenp4iJiZGbNmyRRQVFSnWO3/+vHjzzTeFq6ursLCwEMHBweKjjz4S2dnZinWKhz+X90hKSqo0luIh3eU91q5dq3L/Fy1aJAICAhTPr1y5Il544QVhY2NTZkj3o0ePlF6bm5sr3nvvPeHm5lbhkO6ff/5ZNGzYUFhaWormzZuLc+fOlYl/7969AoDYsGFDhfsp9ZBumRAa9ngyMHK5HE5OToqhdEREuvDkyRMkJSUhKChIJ80QRFX1+++/o3379nj06FGltWHff/89/vWvfyElJaXCofUVfS+0uX6zozARERFJIicnB6mpqYiPj8e7776r9lxBUmGfGiIiMnql53op+Th06FCNxzNixAiV8YwYMaLG45HKZ599hrCwMHh5eWHKlCk1/v5sfiIiqgFsftKt69evqyzz9fWFjU3NjmS9f/8+5HJ5uWWOjo7w8PCo0Xh0hc1PREREGqporhdd8PDwMJnEpSax+YmIiIiMApMaIqIapO5sr0SmQOrvA5ufiIhqgKWlJczMzJCSkgJ3d3dYWlrW2NTxRPpGCIGnT5/iwYMHMDMzk2yUFJMaIqIaYGZmhqCgIKSmppY7FT+RKbK1tYW/v79at8lQB5MaIqIaYmlpCX9/fxQUFGg0VT6RMTI3N0etWrUkrbFkUkNEVINkMhksLCw0vlszEVWOHYWJiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjoNOk5uDBg+jWrRt8fHwgk8mwdetWRVl+fj4mT56MyMhI2NnZwcfHB++88w5vBEdERETl0mlSk52djaioKCxZsqRMWU5ODk6fPo1p06bh9OnT2Lx5M65cuYLXXntNB5ESERGRvpMJIYSugwCe3eRty5Yt6N69u8p1Tp48iebNm+PWrVvw9/dXa7tyuRxOTk7IzMyEo6OjRNESERFRddLm+m1Qd+nOzMyETCaDs7OzynXy8vKQl5eneC6Xy2sgMiIiItI1g+ko/OTJE0yePBn9+vWrMGObO3cunJycFA8/P78ajJKIiIh0xSCSmvz8fPTu3RtCCCxdurTCdadMmYLMzEzFIzk5uYaiJCIiIl3S++an4oTm1q1b2LdvX6XtalZWVrCysqqh6IiIiEhf6HVSU5zQXLt2Dfv370ft2rV1HRIRERHpKZ0mNVlZWbh+/brieVJSEs6ePQtXV1d4e3ujZ8+eOH36NLZv347CwkKkpaUBAFxdXWFpaamrsImIiEgP6XRI9++//4727duXWR4bG4sZM2YgKCio3Nft378f7dq1U+s9OKSbiIjI8BjckO527dqhopxKT6bQISIiIgNgEKOfiIiIiCrDpIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgo6TWoOHjyIbt26wcfHBzKZDFu3blUqF0Lg448/hre3N2xsbBATE4Nr167pJlgiIiLSazpNarKzsxEVFYUlS5aUW/7ZZ5/hiy++wLJly3D8+HHY2dmhY8eOePLkSQ1HSkRERPquli7fvHPnzujcuXO5ZUIILF68GB999BFef/11AMB///tfeHp6YuvWrejbt29NhkpERER6Tm/71CQlJSEtLQ0xMTGKZU5OTmjRogWOHj2qw8iIiIhIH+m0pqYiaWlpAABPT0+l5Z6enoqy8uTl5SEvL0/xXC6XV0+AREREpFf0tqZGW3PnzoWTk5Pi4efnp+uQiIiIqAbobVLj5eUFALh3757S8nv37inKyjNlyhRkZmYqHsnJydUaJxEREekHvU1qgoKC4OXlhb179yqWyeVyHD9+HNHR0SpfZ2VlBUdHR6UHERERGT+d9qnJysrC9evXFc+TkpJw9uxZuLq6wt/fH+PHj8fs2bNRr149BAUFYdq0afDx8UH37t11FzQRERHpJZ0mNadOnUL79u0VzydMmAAAiI2NxapVqzBp0iRkZ2dj+PDhyMjIQOvWrbFz505YW1vrKmQiIiLSUzIhhNB1ENVJLpfDyckJmZmZbIoiIiIyENpcv/W2Tw0RERGRJpjUEBERkVFgUkNERERGgUkNERERGQUmNURERGQUmNQQERGRUWBSQ0REREZBq6QmOztb6jiIiIiIqkSrpMbT0xODBw/GH3/8IXU8RERERFrRKqlZvXo1Hj58iJdeegmhoaGIj49HSkqK1LERERERqU2rpKZ79+7YunUr7t69ixEjRmDNmjUICAhA165dsXnzZhQUFEgdJxEREVGFJLv305dffomJEyfi6dOncHNzw4gRIxAXFwdbW1spNq813vuJiIjI8Ghz/a7SXbrv3buH7777DqtWrcKtW7fQs2dPDBkyBHfu3MG8efNw7Ngx7N69uypvQURERKQWrZKazZs3IyEhAbt27UJ4eDhGjRqFAQMGwNnZWbFOy5Yt0aBBA6niJCIiIqqQVknNoEGD0LdvXxw+fBjNmjUrdx0fHx9MnTq1SsERERERqUurPjU5OTk67yujLvapISIiMjw11qfG1tYWhYWF2LJlCy5dugQAaNCgAbp3745atarUTYeIiIhIK1plIH/99Re6deuGe/fuoX79+gCAefPmwd3dHT///DMiIiIkDZKIiIioMlrNUzN06FBERETgzp07OH36NE6fPo3k5GQ0atQIw4cPlzpGIiIiokppVVNz9uxZnDp1Ci4uLoplLi4umDNnjsqOw0RERETVSauamtDQUNy7d6/M8vv37yMkJKTKQRERERFpSqukZu7cuRg7diw2bdqEO3fu4M6dO9i0aRPGjx+PefPmQS6XKx5ERERENUGrId1mZv/LhWQyGQCgeDMln8tkMhQWFkoRp9Y4pJuIiMjw1NiQ7v3792vzMiIiIqJqo1VS07ZtW6njICIiIqoSrWfKy8jIwLfffquYfK9hw4YYPHgwnJycJAuOiIiISF1adRQ+deoUgoODsWjRIjx8+BAPHz7EwoULERwcjNOnT0sdIxEREVGltOoo/OKLLyIkJAQrVqxQ3BahoKAAQ4cOxd9//42DBw9KHqi22FGYiIjI8Ghz/dYqqbGxscGZM2cQFhamtPzixYto2rQpcnJyNN1ktWFSQ0REZHi0uX5r1fzk6OiI27dvl1menJwMBwcHbTZJREREVCVaJTV9+vTBkCFDsH79eiQnJyM5ORnr1q3D0KFD0a9fP6ljJCIiIqqUVqOfFixYAJlMhnfeeQcFBQUAAAsLC4wcORLx8fGSBkhERESkDo371BQWFuLw4cOIjIyElZUVbty4AQAIDg6Gra1ttQRZFexTQ0REZHhqZEZhc3NzdOjQAZcuXUJQUBAiIyM1DpSIiIhIalr1qYmIiMDff/8tdSxEREREWtMqqZk9ezY++OADbN++HampqUp35eaduYmIiEgXJLtLN6A/d+YuiX1qiIiIDA/v0k1EREQmS6ukJigoCH5+fkq1NMCzmprk5GRJAiMiIiLShFZ9aoKCgvDgwYMyyx8+fIigoKAqB0VERESkKa2SmuK+M6VlZWXB2tq6ykEVKywsxLRp0xAUFAQbGxsEBwdj1qxZ0KIbEBERERk5jZqfJkyYAOBZ5+Bp06YpTbZXWFiI48eP47nnnpMsuHnz5mHp0qX47rvv0LBhQ5w6dQqDBg2Ck5MTxo4dK9n7EBERkeHTKKk5c+YMgGc1NRcuXIClpaWizNLSElFRUfjggw8kC+7IkSN4/fXX0aVLFwBAYGAg1q5dixMnTkj2HkRERGQcNEpqikc9DRo0CJ9//nm1D5Fu2bIlvv76a1y9ehWhoaE4d+4c/vjjDyxcuFDla/Ly8pCXl6d4znlziIiITINWo58SEhKkjqNccXFxkMvlCAsLg7m5OQoLCzFnzhz0799f5Wvmzp2LmTNn1kh8REREpD+0Smqys7MRHx+PvXv34v79+ygqKlIql+oWChs2bMAPP/yANWvWoGHDhjh79izGjx8PHx8fxMbGlvuaKVOmKPr+AM9qavz8/CSJh4iIiPSXVknN0KFDceDAAbz99tvw9vYudySUFCZOnIi4uDj07dsXABAZGYlbt25h7ty5KpMaKysrWFlZVUs8REREpL+0Smp+/fVX/PLLL2jVqpXU8SjJyclRuiUD8Owu4aVrhoiIiIi0SmpcXFzg6uoqdSxldOvWDXPmzIG/vz8aNmyIM2fOYOHChRg8eHC1vzcREREZFq1uaLl69Wr89NNP+O6775TmqpHa48ePMW3aNGzZsgX379+Hj48P+vXrh48//lhpOHlFeENLIiIiw6PN9VurpKZx48a4ceMGhBAIDAyEhYWFUvnp06c13WS1YVJDRERkeGrsLt3du3fX5mVERERE1UarmhpDwpoaIiIiw6PN9VujG1qeOHEChYWFKsvz8vKwYcMGTTZJREREJAmNkpro6Gj8888/iueOjo5KE+1lZGSgX79+0kVHREREpCaNkprSLVXltVwZeWsWERER6SmNkhp1VNfswkREREQVkTypISIiItIFjYd0X7x4EWlpaQCeNTVdvnwZWVlZAID09HRpoyMiIiJSk0ZDus3MzCCTycrtN1O8XCaTVThCqqZxSDcREZHhqfbJ95KSkrQKjIiIiKi6aZTUBAQEaLTxUaNG4ZNPPoGbm5tGryMiIiLSVLV2FF69ejXkcnl1vgURERERgGpOajhnDREREdUUDukmIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyChUa1IzYMAATnhHRERENUKrpKaoqEjl8tu3byueL126lHPUEBERUY3QKKmRy+Xo3bs37Ozs4OnpiY8//ljplggPHjxAUFCQ5EESERERVUajGYWnTZuGc+fO4fvvv0dGRgZmz56N06dPY/PmzbC0tATAuWmIiIhINzSqqdm6dSuWL1+Onj17YujQoTh16hQePHiAbt26IS8vD8CzG1sSERER1TSNkpoHDx4o3f/Jzc0Nv/32Gx4/foxXX30VOTk5kgdIREREpA6Nkhp/f39cunRJaZmDgwN2796N3NxcvPHGG5IGR0RERKQujZKaDh06ICEhocxye3t77Nq1C9bW1pIFRkRERKQJjToKz5w5EykpKeWWOTg4YM+ePTh9+rQkgRERERFpQqOkxsXFBS4uLirLHRwc0LZt2yoHRURERKQpjSffKygowPz589GkSRPY29vD3t4eTZo0wYIFC5Cfn18dMRIRERFVSqOamtzcXLzyyis4evQoYmJi0KZNGwDApUuXMHnyZGzbtg27d+9m3xoiIiKqcRolNfHx8UhOTsaZM2fQqFEjpbJz587htddeQ3x8PGbMmCFljERERESV0qj5ad26dVi4cGGZhAYAoqKisGDBAqxZs0ay4IiIiIjUpVFSc+vWLTRv3lxl+QsvvKB0Q0siIiKimqJRUuPo6Ij79++rLE9LS4ODg0OVgyIiIiLSlEZJTfv27fHpp5+qLI+Pj0f79u2rHBQRERGRpjTqKDx9+nS0aNECL7zwAiZMmICwsDAIIXDp0iUsWrQIFy9exLFjx6orViIiIiKVNEpqwsPDsWfPHgwZMgR9+/ZV3JFbCIGwsDDs3r0bDRs2rJZAiYiIiCqiUVIDPOsM/Ndff+Hs2bO4evUqACA0NBTPPfec1LERERERqU3jpEYul8Pe3h7PPfecUiJTVFSErKwsODo6ShkfERERkVo06ii8ZcsWNG3aFE+ePClTlpubi2bNmuHnn3+WLDgiIiIidWmU1CxduhSTJk2Cra1tmTI7OztMnjwZ//nPfyQLjoiIiEhdGiU1iYmJaNeuncryNm3a4MKFC1WNScndu3cxYMAA1K5dGzY2NoiMjMSpU6ckfQ8iIiIyfBr1qXn06BEKCgpUlufn5+PRo0dVDqrk+7Vq1Qrt27fHr7/+Cnd3d1y7dg0uLi6SvQcREREZB42SmsDAQJw6dQphYWHllp86dQoBAQGSBAYA8+bNg5+fHxISEhTLgoKCJNs+ERERGQ+Nmp969OiBqVOn4t69e2XK0tLS8NFHH+HNN9+ULLht27ahadOm6NWrFzw8PNC4cWOsWLGiwtfk5eVBLpcrPYiIiMj4yYQQQt2VHz9+jOjoaNy+fRsDBgxA/fr1AQCXL1/GDz/8AD8/Pxw7dkyy+z9ZW1sDACZMmIBevXrh5MmTGDduHJYtW4bY2NhyXzNjxgzMnDmzzPLMzEwONyciIjIQcrkcTk5OGl2/NUpqgGfJwZQpU7B+/XpF/xlnZ2f07dsXc+bMkbS/i6WlJZo2bYojR44olo0dOxYnT57E0aNHy31NXl4e8vLyFM/lcjn8/PyY1BARERkQbZIajSffc3JywldffYUlS5YgPT0dQgi4u7srbplQ0uHDh9G0aVNYWVlp+jYAAG9vb4SHhysta9CgAX788UeVr7GystL6/YiIiMhwadSnpiSZTAZ3d3d4eHiUm9AAQOfOnXH37l2tg2vVqhWuXLmitOzq1auSdkYmIiIi46B1UqMODVu2yvjXv/6FY8eO4dNPP8X169exZs0afP311xg9erREERIREZGxqNakpqqaNWuGLVu2YO3atYiIiMCsWbOwePFi9O/fX9ehERERkZ7RuE9NTevatSu6du2q6zCIiIhIz+l1TQ0RERGRuqo1qVHVgZiIiIhIanrdUZiIiIhIXdXap+bx48fVuXkiIiIiBY2Smpdeekmt9fbt26dVMERERETa0iip+f333xEQEIAuXbrAwsKiumIiIiIi0phGSc28efOQkJCAjRs3on///hg8eDAiIiKqKzYiIiIitWnUUXjixIm4ePEitm7disePH6NVq1Zo3rw5li1bBrlcXl0xEhEREVVK47t0l5STk4ONGzdiyZIluHjxIlJSUvTuTtja3OWTiIiIdEub63eVhnSfPn0aBw4cwKVLlxAREcF+NkRERKQzGic1KSkp+PTTTxEaGoqePXvC1dUVx48fx7Fjx2BjY1MdMRIRERFVSqOOwq+++ir279+PDh06YP78+ejSpQtq1dL720cRERGRCdCoT42ZmRm8vb3h4eFR4S0QTp8+LUlwUmCfGiIiIsOjzfVbo2qW6dOnaxUYERERUXWr0ugnQ8CaGiIiIsNT7TU1qhw4cADZ2dmIjo6Gi4uLFJskIiIi0ojGMwpnZWVh1qxZAJ7dhbtz587YvXs3AMDDwwN79+5Fw4YNpY+UiIiIqAIaDelev3690m0RNm3ahIMHD+LQoUNIT09H06ZNMXPmTMmDJCIiIqqMRklNUlISGjVqpHi+Y8cO9OzZE61atYKrqys++ugjHD16VPIgiYiIiCqjUVJTUFAAKysrxfOjR4+iZcuWiuc+Pj5IT0+XLjoiIiIiNWmU1AQHB+PgwYMAgNu3b+Pq1ato06aNovzOnTuoXbu2tBESERERqUGjjsKjR4/GmDFjcOjQIRw7dgzR0dEIDw9XlO/btw+NGzeWPEgiIiKiymiU1AwbNgzm5ub4+eef0aZNmzKT8aWkpGDw4MGSBkhERESkDk6+R0RERHpHm+u3xnfpJiIiItJHGiU1+fn5mDRpEkJCQtC8eXOsXLlSqfzevXswNzeXNEAiIiIidWiU1MyZMwf//e9/MWLECHTo0AETJkzAu+++q7SOkbdmERERkZ7SqKPwDz/8gG+++QZdu3YFAAwcOBCdO3fGoEGDFLU2MplM+iiJiIiIKqFRTc3du3eVbpMQEhKC33//HUeOHMHbb7+NwsJCyQMkIiIiUodGSY2Xlxdu3LihtMzX1xf79+/HyZMnMXDgQCljIyIiIlKbRknNSy+9hDVr1pRZ7uPjg3379iEpKUmywIiIiIg0oVGfmmnTpuHy5cvllvn6+uLAgQPYs2ePJIERERERaYKT7xEREZHeqbHJ9zZu3IgePXogIiICERER6NGjBzZt2qTNpoiIiIgkoVFSU1RUhD59+qBPnz64ePEiQkJCEBISgr/++gt9+vRB3759OU8NERER6YRGfWo+//xz/Pbbb9i2bZtirppi27Ztw6BBg/D5559j/PjxUsZIREREVCmNamoSEhIwf/78MgkNALz22mv47LPPytw6gYiIiKgmaJTUXLt2DTExMSrLY2JicO3atSoHRURERKQpjZIaGxsbZGRkqCyXy+WwtrauakxEREREGtMoqYmOjsbSpUtVli9ZsgTR0dFVDoqIiIhIUxolNVOnTsW3336L3r1748SJE5DL5cjMzMSxY8fQq1cvrFy5ElOnTq2uWBEfHw+ZTMaOyERERFSGRqOfWrZsifXr12P48OH48ccflcpcXFywdu1atGrVStIAi508eRLLly9Ho0aNqmX7REREZNg0SmoA4I033kDHjh2xa9cuRafg0NBQdOjQAba2tpIHCABZWVno378/VqxYgdmzZ1fLexAREZFh06j5ad++fQgPD0dBQQHeeOMNTJo0CZMmTUL37t2Rn5+Phg0b4tChQ5IHOXr0aHTp0qXCkVfF8vLyIJfLlR5ERERk/DRKahYvXoxhw4aVew8GJycnvPvuu1i4cKFkwQHAunXrcPr0acydO1et9efOnQsnJyfFw8/PT9J4iIiISD9plNScO3cOnTp1UlneoUMH/Pnnn1UOqlhycjLGjRuHH374Qe2h4lOmTEFmZqbikZycLFk8REREpL806lNz7949WFhYqN5YrVp48OBBlYMq9ueff+L+/fto0qSJYllhYSEOHjyI//znP8jLy4O5ubnSa6ysrGBlZSVZDERERGQYNEpqfH19kZiYiJCQkHLLz58/D29vb0kCA4CXX34ZFy5cUFo2aNAghIWFYfLkyWUSGiIiIjJdGiU1r776KqZNm4ZOnTqVaQ7Kzc3F9OnTy70vlLYcHBwQERGhtMzOzg61a9cus5yIiIhMm0ZJzUcffYTNmzcjNDQUY8aMQf369QEAly9fxpIlS1BYWFitk+8RERERqSITQghNXnDr1i2MHDkSu3btQvFLZTIZOnbsiCVLliAoKKhaAtWWXC6Hk5MTMjMzyx21RURERPpHm+u3xpPvBQQEYMeOHXj06BGuX78OIQTq1asHFxcXjQMmIiIikorGSU0xFxcXNGvWTMpYiIiIiLSm0Tw1RERERPqKSQ0REREZBSY1eiQ1MxdHbqQjNTNX16EQEREZHK371JC01p+8jSmbL6BIAGYyYG6PSPRp5q/rsIiIiAwGa2r0QGpmriKhAYAiAXy4OZE1NkRERBpgUqMHktKzFQlNsUIhcDM9RzcBERERGSAmNXogyM0OZjLlZeYyGQLdbHUTEBERkQFiUqMHvJ1sMLdHJMxlzzIbc5kMn/aIgLeTjY4jIyIiMhzsKKwn+jTzR5tQd9xMz0Ggmy0TGiIiIg0xqdEj3k42TGaIiIi0xOYnIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqJMabUhIREekGh3RLiDelJCIi0h3W1EiEN6UkIiLSLSY1EuFNKYmIiHSLSY1EeFNKIiIi3WJSIxHelJKIiEi32FFYQrwpJRERke4wqZGYNjelTM3MRVJ6NoLc7JgIERERaYlJjY5xGDgREZE02KdGhzgMnIiISDpManSIw8CJiIikw6RGhzgMnIiISDpManSIw8CJiIikw47COsZh4ERERNJgUqMHtBkGTkRERMrY/EQKqZm5OHIjnaOviIjIILGmhgBwvhwiIjJ8rKkhnEt+hDjOl0NERAaOSY2JW3/yNrovOQLB+XKIiMjAMakxYcUzGotyyjhfDhGZOvYzNDzsU2PCypvRGHjWp4bz5RCRKWM/Q8PEmhoTVt6MxmYAtoxqyS8vEZks3pfPcOl1UjN37lw0a9YMDg4O8PDwQPfu3XHlyhVdh2U0ypvReO6bkYjyc9FxZEREusP78hkuvW5+OnDgAEaPHo1mzZqhoKAAH374ITp06ICLFy/Czs5O1+EZBc5oTESkrLgWu2Riw36GhkEmROlxL/rrwYMH8PDwwIEDB9CmTRu1XiOXy+Hk5ITMzEw4OjpWc4RERGQM1p+8jQ83J6JQCMV9+dgsX7O0uX7rdU1NaZmZmQAAV1dXHUeiv1Izc5GUno0gNzvWuhARaYm12IbJYJKaoqIijB8/Hq1atUJERITK9fLy8pCXl6d4LpfLayI8vcDe+kRE0uF9+QyPXncULmn06NFITEzEunXrKlxv7ty5cHJyUjz8/PxqKELdYm99IiIydQaR1IwZMwbbt2/H/v37UadOnQrXnTJlCjIzMxWP5OTkGopSt9hbn4iITJ1eNz8JIfDee+9hy5Yt+P333xEUFFTpa6ysrGBlZVUD0ekX9tYnIiJTp9c1NaNHj8bq1auxZs0aODg4IC0tDWlpacjNZZNKaeXNOcNZgYmIyJTo9ZBumUxW7vKEhAQMHDhQrW2Y2pDu1Mxck+mtz5FeRETGy+iGdOtxvqW3TKW3Pkd6GQYmnkRUk/Q6qSEqj6qRXm1C3Xnh1CNMPImopul1nxqi8nCkl/7jFANEpAtMasjglHd3cY700i9MPIlIF5jUkMHhSC/dSc3MxZEb6ZXWuDDxJCJdYJ8aMijFHU/bhLrjj7j2JjPSSx9o0kemOPEsfUNAfk5EVJ30eki3FExtSLcxY8dT3UnNzEWr+H1lJnf8I659hYmKKU0xQETS0ub6zeYnMgjseKpb2vaR8XayQXRwbY0TGnWbuYiISmLzExmEii6qrAGofjV5Gw7WyBGRtlhTQwaBHU91q3TnbDMZMLh1oOTvwxo5orJYc6k+JjWkEV19uTjiSff6NPPHH3HtMbxNEIQAVhxKQqv4fVh/8rZk78Gh4ETK1p+8jVbx+/DWiuOSf9+koG8JF5ufSG3aNgtINVV+n2b+aBPqzo6nOvbNoSQU5x1Sz+bMu80T/Y++z56uj03FrKkhtWjbLCD1fxnadjwlaVR3TQpr5Ij+R59rLvW1qZg1NRIx9hv3adNRV9//yyDN1URNSnGN3J83HwEy4PkAF8m2TWRI9LnmUl8Hb7CmRgL63uYpBW066urzfxnGrrrauWuqJuXg1QcYu+4Mxqw5Y7TfKaLK6HPNpb4O3mBNTRWZUm3E0NZB+OZQEopQ+ZcrNTMX/2Tl6e1/Gcasutu5VfVtkqq20pS+U0SV0de+hPo6aziTmirS1yo4KZW+SA5vXReDWgeq3L+S68sAyGSAEPr1X4YmDKlpsaYSAm8nG6XtSZlImcJ3ikgTpb9v+kIfEy4mNVWkz22eUjiX/Ahxmy9AlLhIfvtHEgapmKOk9EVVADATwH/eaowmAS56cdJrQh9791dEFwmB1ImUsX+niIyJviVc7FNTRfrc5llV60/eRvclR1D67mAV9Ysp76JaBMDVzsrgjom+9u6vSE20c5furyN13ylj/k4RUfViTY0E9LEKrqqKL+jl3e20ooukMf2Xrataj6o0dVV3O3d5NVdtQt0l/8yN8TtFRNWPSY1E9K0KrqrKu6AXm9S5vsp91faiqqt+KxW9b00naFI1dVVXQqCq5uqPuPbVkkjV1HfKkPpMEVHFmNRQuYLc7CADyq2paeTrXOFrNb2o6qrfSmXvqypBA4AjN9IlvQhK3S+lOhKCimquDLVmxdD6TJH0mNQaFyY1VC5vJxvEdQ7D3F8vKy1Xt6ZC3Yuqrobvqvu+pS/WB68+QKv4fZJfBGuqqasqP+CV1VwZWm2l1OceL47SqaljWdWklp+5/mFSQyq92zYYkAHzfr2Momoakq2r4buavG/xxbo6EzB1mrqq+gNa1R9wfZ2XQltSnnus8amcuudvTR3Lqn6f+ZnrJyY1VKF32wTjtSgfSZoVUjNz8eetRxBCoGmgK7ydbMq9mJsB1d6xWJv+MlInYKV/5CtKGKT4j1KKhMxQm5nKI1WfKU4WWDl1z9+aPJZV+T7zM9dfTGqoUlI0K6w/eRtxP/5vNJUMQPybz37Y5vaIVCoTeDZNfnX+16NNrYOUHYdV/cirmqm3qj+gUiZk1dnMVJPV+VLVPKk6tqdvPUKXRrzAaXL+1mTNbVW+z5wgUn8xqaFqV97wcAFgyo8X0CbUHW1C3RWzDheX1cR/PZrWOkh1EazsR746fugNYai9Lqrzpah5Ku/YAsCYNWeQlVdg8k0Smpy/NXmelvd9ntSpPpLSsxXlqhjC98lUMamhaqdqeHgRgJvpORAQOvuvR9Nah4ougurWMmiapEjxA6rv/WF0WZ1f1Zqn4mNbMn6g5pJzfafJ+VuTIw4B5e/z+bsZiv6DlSXV+v59MmVMaqjaqfpPtmTfGUP6r6e8i2DpWobJncIQWcdJkvlvpPoB1ef+MIZend+nmT9sLc3x3tqzSssNaR+qi6bnrzYjDqvSbFm8fv9vjmmUVOvz98mUMakxcIYwpLD4R63kPaRkAOa+GamIueSPnpkMGKzi3lL6qLxahuKh8JrMf1PR5yfVD6i+Drs2hur8poGuBr8P1UWbpl51RxxK0WypbVKtr98nU8akRseqkpQY0pDC4h+107ceQQjg+UDlm1sWlyccTsKKg0lYcSgJ3/6RVGaf9DGJq2j2ZXXnv1FnX6r7B1SXx9YYqvOrax/08ZzXhjbnb2XJhrrNlpUdQ2NIqtVRfBzsLM2R/bTQ4M+p8jCp0aGqJCWGOKTQ28mm0tEg3xxKUnQoLr1P+prEqWpeK1bZ/Df6QB+OrTFU50u9D/rwuWhDqkSssmRDnRoWdY5hRQmpsSSVJY9DsZLHw1j2k0mNjlQ1KTH0Pgjlqexuz/qaxJX+QSxN3//j06cEWVWipy8/uOrEIVWyqk+fS3lUHQspE7HKar8qS3o0OYblJaSGmlSWVvo4FCs+Hhk5+Zi3U71O0vqOSY2OVDUpMYbq0tI/ihXtk74ncaVHUXz26xWDaUbR92OrLxeWmo5Dnz8XVceiOhKximq/Kkt6ND2GJRNSfU8qNVFRE3mhEIj/9bLKGnJDw6RGR6qalBh6HwRVP4oV7ZO+J3HFP4jRwbUlm4W5JuhzgqwvFxZdxKFqtu1/svOQmpmrs/OqomNRXYlYRbVfFSU9hjbBntQ1kiX70KhqIi9vub4kz9pgUqMjUiQlpb/MQPXM5SC1in4UVf1AGVoSp0/9ZSpT+tjWxOiz6prTp7roIo7Sn4sMz+a+GbPmTLk1RVJcENXZRkXHQlcJsqrvW1V+N2p6XyqrCdT08y29vTca+2LrmZQyTeRFAopzq5i+/FOjDSY1OiRFp8LiL7O+VNGro7ILhKofKGPoSKqvVI0+G9I6CINbB0l6rDU5V1XVVthamkkWjzrKjUNW/XH0aeaPjJx8zC3RPABUTyd6dbdR0cVeH//50PZ3oyb3pbKaQE0/3/K2t/VMCjaPisadR7kYveZMmdcUf6b68JlVhUyIcno2GhG5XA4nJydkZmbC0dFR1+FUi9TMXMXkVMXMZTL8EddeL09MQ4vXVJT3uQDK9+mqjveo7LNff/J2mU7Y2l64qzqFglRxqEvVZ1Js7bAXEOhmW+Xvk6afS8ljUXwRLF2rYCz/fNTEvhy5kY63Vhwvs1zbz7ei7QmIcsv+068xattb6dVnps31mzU1RkBfqujVpY//zWmjqtX9+jKip5iqzoQC0vUf0eZc7dPMH2FeDuj+1RHF5I3a9Gmpam2GIo4lRzTqVFmVz7miDp5SdqLXdBuV1X4YUvNrZWpiX6QaJFFRH5qSTUrllZWeO8xQManRE1X54dPnjp6qGHpTUlUvkPrYXFjRfDtSJcnanqvZTwtRuk5Zk5ik6uib/bQQpQ9PRXFU9XNWeYsRGSTtRK/N52JMiYuuFf+jV/Jc0fTzXX7ghmIUU+k+NKX/cTSGfypVqdmGaSrX+pO30Sp+H95acRyt4vdh/cnbGr2++AthLpMBMJw20eKRQrocxXHkRjpSM3M1WkfVBbKi7ZTeZlVeX12KzyMzWdkyqZJkbc/V4ouutjFVNgeSujSJQ4rPufTxMgMwvE0QDse9pEiOqvL9Lz6/ARjkb4ixKU7cSybw6ny+yw/eUOp3VbIPzdphL+CPuPZKyXSfZv74I659uWWGziBqapYsWYL58+cjLS0NUVFR+PLLL9G8eXNdhyUJqf6DNPSaj5pW8j9oGYC4zmF4t22wynVK/pdd1ep+fW4uLNlh+JuDSSiC9Bc4bW8RUZX/LqWqzdQkDik+59TMXPi52mLzqGjkPC1Seby0Oablnd9/xLXnb4gOFF8Hik8XAWDKjxcQ5uWAKD+XCj/f1MxcxP//veZKKhQCdx7loksjn3Lf01hr2vQ+qVm/fj0mTJiAZcuWoUWLFli8eDE6duyIK1euwMPDQ9fhVZmUFzhjPUmlVjqRFPj/G1DKgHfbBJe7Tslks6oXSG1eX7J5EkC19sXxdrLBh6+GY1CroGq7wGlzrlYlcZeyH5e6cVT1PCkv6YgOrq1yfVXHtLymbVXn9+ZR0RBlGtioupV3HSgC0P2rI4j//3+mVH2+SenZZZpmi41ZcwZZeQVGVRNTGb1PahYuXIhhw4Zh0KBBAIBly5bhl19+wcqVKxEXF6fj6KrOEPvDGDpVnS/n/XoZr0X5wNvJpsJkMzq4dpUukJpeYEvXKgFQtJtXZ18cfUySqxKTlLWZ6sRRlURKqhpcTWsbiztj60s/L1Ohqu+UUONzr6gvnJSd/A2FXic1T58+xZ9//okpU6YolpmZmSEmJgZHjx4t9zV5eXnIy8tTPJfL5dUeZ1UYy0ggQxLkZldmsing2Y9CcQ1ZZclmVS+Q6r6+vFqlkvGa2g9WVdV0oqbteSJV05UmtY0AqjS6jLSn6Cj84wUUlSqr7HMvfQ0pTV+atmuKXncUTk9PR2FhITw9PZWWe3p6Ii0trdzXzJ07F05OToqHn59fTYRaJcbcaUsfeTvZIK5zWJnlJZMWdTrnVbWjszqvr2hIL6BdZ1eqWdqcJ1XtGA1UnhiV7oBcGs+tmtWnmT+2jG4JmRafe/E1ZMlbjVG6n7+p1fzrdU2NNqZMmYIJEyYonsvlcoNIbPSxqt+Yvds2GJA9a3JSNYumPnS+rqhqGTC9HyxTIUUNria1jbaWZnjjqyNsBtexKD8XxGv5uXs72aBLIxtk5RWYdM2/Xs8o/PTpU9ja2mLTpk3o3r27YnlsbCwyMjLw008/VboNU5hRmLRnCDOflpy9VQYAsmfNBOXN5ErGparnZ2Uz/2q7LlWvqn7uhvC7pg5trt96ndQAQIsWLdC8eXN8+eWXAICioiL4+/tjzJgxanUUZlJDxqDkjxQAo/jBopqhyQXOWC6GZByM8jYJEyZMQGxsLJo2bYrmzZtj8eLFyM7OVoyGIjIFpZsnecEhdWnStM1mcDJ0ep/U9OnTBw8ePMDHH3+MtLQ0PPfcc9i5c2eZzsNERERk2vS++amq2PxERERkeLS5fuv1kG4iIiIidTGpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCjo/W0Sqqp4wmS5XK7jSIiIiEhdxddtTW58YPRJzePHjwEAfn5+Oo6EiIiINPX48WM4OTmpta7R3/upqKgIKSkpcHBwgEwm03o7crkcfn5+SE5ONul7SPE4PMPj8AyPw//wWDzD4/AMj8MzVTkOQgg8fvwYPj4+MDNTr7eM0dfUmJmZoU6dOpJtz9HR0aRP0GI8Ds/wODzD4/A/PBbP8Dg8w+PwjLbHQd0ammLsKExERERGgUkNERERGQUmNWqysrLC9OnTYWVlpetQdIrH4Rkeh2d4HP6Hx+IZHodneByeqenjYPQdhYmIiMg0sKaGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqNg0knN0qVL0ahRI8WkQNHR0fj1118V5U+ePMHo0aNRu3Zt2Nvb480338S9e/eUtnH79m106dIFtra28PDwwMSJE1FQUFDTuyKp+Ph4yGQyjB8/XrHMFI7FjBkzIJPJlB5hYWGKclM4BsXu3r2LAQMGoHbt2rCxsUFkZCROnTqlKBdC4OOPP4a3tzdsbGwQExODa9euKW3j4cOH6N+/PxwdHeHs7IwhQ4YgKyurpnelSgIDA8ucEzKZDKNHjwZgOudEYWEhpk2bhqCgINjY2CA4OBizZs1SuiePqZwTjx8/xvjx4xEQEAAbGxu0bNkSJ0+eVJQb43E4ePAgunXrBh8fH8hkMmzdulWpXKp9Pn/+PF588UVYW1vDz88Pn332mebBChO2bds28csvv4irV6+KK1euiA8//FBYWFiIxMREIYQQI0aMEH5+fmLv3r3i1KlT4oUXXhAtW7ZUvL6goEBERESImJgYcebMGbFjxw7h5uYmpkyZoqtdqrITJ06IwMBA0ahRIzFu3DjFclM4FtOnTxcNGzYUqampiseDBw8U5aZwDIQQ4uHDhyIgIEAMHDhQHD9+XPz9999i165d4vr164p14uPjhZOTk9i6das4d+6ceO2110RQUJDIzc1VrNOpUycRFRUljh07Jg4dOiRCQkJEv379dLFLWrt//77S+bBnzx4BQOzfv18IYTrnxJw5c0Tt2rXF9u3bRVJSkti4caOwt7cXn3/+uWIdUzknevfuLcLDw8WBAwfEtWvXxPTp04Wjo6O4c+eOEMI4j8OOHTvE1KlTxebNmwUAsWXLFqVyKfY5MzNTeHp6iv79+4vExESxdu1aYWNjI5YvX65RrCad1JTHxcVFfPPNNyIjI0NYWFiIjRs3KsouXbokAIijR48KIZ590GZmZiItLU2xztKlS4Wjo6PIy8ur8dir6vHjx6JevXpiz549om3btoqkxlSOxfTp00VUVFS5ZaZyDIQQYvLkyaJ169Yqy4uKioSXl5eYP3++YllGRoawsrISa9euFUIIcfHiRQFAnDx5UrHOr7/+KmQymbh79271BV/Nxo0bJ4KDg0VRUZFJnRNdunQRgwcPVlrWo0cP0b9/fyGE6ZwTOTk5wtzcXGzfvl1peZMmTcTUqVNN4jiUTmqk2uevvvpKuLi4KH0vJk+eLOrXr69RfCbd/FRSYWEh1q1bh+zsbERHR+PPP/9Efn4+YmJiFOuEhYXB398fR48eBQAcPXoUkZGR8PT0VKzTsWNHyOVy/PXXXzW+D1U1evRodOnSRWmfAZjUsbh27Rp8fHxQt25d9O/fH7dv3wZgWsdg27ZtaNq0KXr16gUPDw80btwYK1asUJQnJSUhLS1N6Vg4OTmhRYsWSsfC2dkZTZs2VawTExMDMzMzHD9+vOZ2RkJPnz7F6tWrMXjwYMhkMpM6J1q2bIm9e/fi6tWrAIBz587hjz/+QOfOnQGYzjlRUFCAwsJCWFtbKy23sbHBH3/8YTLHoSSp9vno0aNo06YNLC0tFet07NgRV65cwaNHj9SOx+hvaFmZCxcuIDo6Gk+ePIG9vT22bNmC8PBwnD17FpaWlnB2dlZa39PTE2lpaQCAtLQ0pR+r4vLiMkOybt06nD59WqltuFhaWppJHIsWLVpg1apVqF+/PlJTUzFz5ky8+OKLSExMNJljAAB///03li5digkTJuDDDz/EyZMnMXbsWFhaWiI2NlaxL+Xta8lj4eHhoVReq1YtuLq6GtSxKGnr1q3IyMjAwIEDAZjO9wIA4uLiIJfLERYWBnNzcxQWFmLOnDno378/AJjMOeHg4IDo6GjMmjULDRo0gKenJ9auXYujR48iJCTEZI5DSVLtc1paGoKCgspso7jMxcVFrXhMPqmpX78+zp49i8zMTGzatAmxsbE4cOCArsOqUcnJyRg3bhz27NlT5j8QU1L8XycANGrUCC1atEBAQAA2bNgAGxsbHUZWs4qKitC0aVN8+umnAIDGjRsjMTERy5YtQ2xsrI6j051vv/0WnTt3ho+Pj65DqXEbNmzADz/8gDVr1qBhw4Y4e/Ysxo8fDx8fH5M7J77//nsMHjwYvr6+MDc3R5MmTdCvXz/8+eefug6NYOKjnwDA0tISISEheP755zF37lxERUXh888/h5eXF54+fYqMjAyl9e/duwcvLy8AgJeXV5mRDsXPi9cxBH/++Sfu37+PJk2aoFatWqhVqxYOHDiAL774ArVq1YKnp6fJHIuSnJ2dERoaiuvXr5vU+eDt7Y3w8HClZQ0aNFA0xRXvS3n7WvJY3L9/X6m8oKAADx8+NKhjUezWrVv47bffMHToUMUyUzonJk6ciLi4OPTt2xeRkZF4++238a9//Qtz584FYFrnRHBwMA4cOICsrCwkJyfjxIkTyM/PR926dU3qOBSTap+l+q6YfFJTWlFREfLy8vD888/DwsICe/fuVZRduXIFt2/fRnR0NAAgOjoaFy5cUPqw9uzZA0dHxzIXBX328ssv48KFCzh79qzi0bRpU/Tv31/xt6kci5KysrJw48YNeHt7m9T50KpVK1y5ckVp2dWrVxEQEAAACAoKgpeXl9KxkMvlOH78uNKxyMjIUPrvdd++fSgqKkKLFi1qYC+klZCQAA8PD3Tp0kWxzJTOiZycHJiZKV8uzM3NUVRUBMA0zwk7Ozt4e3vj0aNH2LVrF15//XWTPA5S7XN0dDQOHjyI/Px8xTp79uxB/fr11W56AmDaQ7rj4uLEgQMHRFJSkjh//ryIi4sTMplM7N69WwjxbLimv7+/2Ldvnzh16pSIjo4W0dHRitcXD9fs0KGDOHv2rNi5c6dwd3c3uOGa5Sk5+kkI0zgW77//vvj9999FUlKSOHz4sIiJiRFubm7i/v37QgjTOAZCPBvWX6tWLTFnzhxx7do18cMPPwhbW1uxevVqxTrx8fHC2dlZ/PTTT+L8+fPi9ddfL3cIZ+PGjcXx48fFH3/8IerVq6fXw1ZVKSwsFP7+/mLy5MllykzlnIiNjRW+vr6KId2bN28Wbm5uYtKkSYp1TOWc2Llzp/j111/F33//LXbv3i2ioqJEixYtxNOnT4UQxnkcHj9+LM6cOSPOnDkjAIiFCxeKM2fOiFu3bgkhpNnnjIwM4enpKd5++22RmJgo1q1bJ2xtbTmkWxODBw8WAQEBwtLSUri7u4uXX35ZkdAIIURubq4YNWqUcHFxEba2tuKNN94QqampStu4efOm6Ny5s7CxsRFubm7i/fffF/n5+TW9K5IrndSYwrHo06eP8Pb2FpaWlsLX11f06dNHaW4WUzgGxX7++WcREREhrKysRFhYmPj666+VyouKisS0adOEp6ensLKyEi+//LK4cuWK0jr//POP6Nevn7C3txeOjo5i0KBB4vHjxzW5G5LYtWuXAFBm/4QwnXNCLpeLcePGCX9/f2FtbS3q1q0rpk6dqjT81lTOifXr14u6desKS0tL4eXlJUaPHi0yMjIU5cZ4HPbv3y8AlHnExsYKIaTb53PnzonWrVsLKysr4evrK+Lj4zWOVSZEiSkhiYiIiAwU+9QQERGRUWBSQ0REREaBSQ0REREZBSY1REREZBSY1BAREZFRYFJDRERERoFJDRERERkFJjVERERkFJjUEBmItLQ0vPfee6hbty6srKzg5+eHbt26Kd1z5ciRI3j11Vfh4uICa2trREZGYuHChSgsLFSsc/PmTQwZMgRBQUGwsbFBcHAwpk+fjqdPnyq934oVKxAVFQV7e3s4OzujcePGihsYAsCMGTMgk8nQqVOnMrHOnz8fMpkM7dq1q3S/AgMDIZPJVD4GDhyo+cHSc+3atcP48eN1HQaR0aml6wCIqHI3b95Eq1at4OzsjPnz5yMyMhL5+fnYtWsXRo8ejcuXL2PLli3o3bs3Bg0ahP3798PZ2Rm//fYbJk2ahKNHj2LDhg2QyWS4fPkyioqKsHz5coSEhCAxMRHDhg1DdnY2FixYAABYuXIlxo8fjy+++AJt27ZFXl4ezp8/j8TERKW4vL29sX//fty5cwd16tRRLF+5ciX8/f3V2reTJ08qkq4jR47gzTffxJUrV+Do6AgAsLGxkeIQ1oj8/HxYWFjU2Ps9ffoUlpaWNfZ+RHpPy1tBEFEN6ty5s/D19RVZWVllyh49eiSysrJE7dq1RY8ePcqUb9u2TQAQ69atU7n9zz77TAQFBSmev/7662LgwIEVxjR9+nQRFRUlunbtKmbPnq1YfvjwYeHm5iZGjhwp2rZtq8be/U/xPWYePXqkWLZ161bRuHFjYWVlJYKCgsSMGTOU7p0EQCxbtkx06dJF2NjYiLCwMHHkyBFx7do10bZtW2Frayuio6OV7uNVHPuyZctEnTp1hI2NjejVq5fSPXyEEGLFihUiLCxMWFlZifr164slS5YoypKSkhTHtU2bNsLKykokJCSI9PR00bdvX+Hj4yNsbGxERESEWLNmjeJ1sbGxZe6hk5SUJBISEoSTk5PS+2/ZskWU/JkujnvFihUiMDBQyGQyIcSzc2DIkCHCzc1NODg4iPbt24uzZ89qdOyJjAGbn4j03MOHD7Fz506MHj0adnZ2ZcqdnZ2xe/du/PPPP/jggw/KlHfr1g2hoaFYu3atyvfIzMyEq6ur4rmXlxeOHTuGW7duVRrf4MGDsWrVKsXzlStXon///pLUIBw6dAjvvPMOxo0bh4sXL2L58uVYtWoV5syZo7TerFmz8M477+Ds2bMICwvDW2+9hXfffRdTpkzBqVOnIITAmDFjlF5z/fp1bNiwAT///DN27tyJM2fOYNSoUYryH374AR9//DHmzJmDS5cu4dNPP8W0adPw3XffKW0nLi4O48aNw6VLl9CxY0c8efIEzz//PH755RckJiZi+PDhePvtt3HixAkAwOeff47o6GgMGzYMqampSE1NhZ+fn9rH5Pr16/jxxx+xefNmnD17FgDQq1cv3L9/H7/++iv+/PNPNGnSBC+//DIePnyoyeEmMny6zqqIqGLHjx8XAMTmzZtVrhMfH1+mhqOk1157TTRo0KDcsmvXrglHR0elO3GnpKSIF154QQAQoaGhIjY2Vqxfv14UFhYq1imuNXj69Knw8PAQBw4cEFlZWcLBwUGcO3dOjBs3rso1NS+//LL49NNPldb5/vvvhbe3t+I5APHRRx8pnh89elQAEN9++61i2dq1a4W1tbVS7Obm5uLOnTuKZb/++qswMzNT3GU7ODhYqYZFCCFmzZoloqOjhRD/q6lZvHhxpfvVpUsX8f777yuet23bVowbN05pHXVraiwsLMT9+/cVyw4dOiQcHR3FkydPlF4bHBwsli9fXmlsRMaEfWqI9JwQolrWBYC7d++iU6dO6NWrF4YNG6ZY7u3tjaNHjyIxMREHDx7EkSNHEBsbi2+++QY7d+6Emdn/KnktLCwwYMAAJCQk4O+//0ZoaCgaNWqkURyqnDt3DocPH1aqmSksLMSTJ0+Qk5MDW1tbAFB6P09PTwBAZGSk0rInT55ALpcr+ur4+/vD19dXsU50dDSKiopw5coVODg44MaNGxgyZIjScSkoKICTk5NSjE2bNlV6XlhYiE8//RQbNmzA3bt38fTpU+Tl5SliraqAgAC4u7srnp87dw5ZWVmoXbu20nq5ubm4ceOGJO9JZCiY1BDpuXr16ik6+KoSGhoKALh06RJatmxZpvzSpUsIDw9XWpaSkoL27dujZcuW+Prrr8vdbkREBCIiIjBq1CiMGDECL774Ig4cOID27dsrrTd48GC0aNECiYmJGDx4sKa7qFJWVhZmzpyJHj16lCmztrZW/F2yc65MJlO5rKioSO33BZ6NAGvRooVSmbm5udLz0k2C8+fPx+eff47FixcjMjISdnZ2GD9+fJnRZaWZmZmVSUrz8/PLrFf6/bKysuDt7Y3ff/+9zLrOzs4VvieRsWFSQ6TnXF1d0bFjRyxZsgRjx44tc1HLyMhAhw4d4Orqin//+99lkppt27bh2rVrmDVrlmLZ3bt30b59ezz//PNISEhQqnlRpTgpys7OLlPWsGFDNGzYEOfPn8dbb72lzW6Wq0mTJrhy5QpCQkIk22ax27dvIyUlBT4+PgCAY8eOwczMDPXr14enpyd8fHzw999/o3///hpt9/Dhw3j99dcxYMAAAM8SqatXryollZaWlkrD7AHA3d0djx8/RnZ2tuIzLu4zU5EmTZogLS0NtWrVQmBgoEaxEhkbJjVEBmDJkiVo1aoVmjdvjk8++QSNGjVCQUEB9uzZg6VLl+LSpUtYvnw5+vbti+HDh2PMmDFwdHTE3r17MXHiRPTs2RO9e/cG8CyhadeuHQICArBgwQI8ePBA8T5eXl4AgJEjR8LHxwcvvfQS6tSpg9TUVMyePRvu7u6Ijo4uN8Z9+/YhPz9f0tqBjz/+GF27doW/vz969uwJMzMznDt3DomJiZg9e3aVtm1tbY3Y2FgsWLAAcrkcY8eORe/evRXHYObMmRg7diycnJzQqVMn5OXl4dSpU3j06BEmTJigcrv16tXDpk2bcOTIEbi4uGDhwoW4d++eUlITGBiI48eP4+bNm7C3t4erqytatGgBW1tbfPjhhxg7diyOHz+u1AFblZiYGERHR6N79+747LPPEBoaipSUFPzyyy944403yjSPERkzjn4iMgB169bF6dOn0b59e7z//vuIiIjAK6+8gr1792Lp0qUAgJ49e2L//v24ffs2XnzxRdSvXx+LFi3C1KlTsW7dOkUTzJ49e3D9+nXs3bsXderUgbe3t+JRLCYmBseOHUOvXr0QGhqKN998E9bW1ti7d2+ZvhvF7OzsJG/u6NixI7Zv347du3ejWbNmeOGFF7Bo0SIEBARUedshISHo0aMHXn31VXTo0AGNGjXCV199pSgfOnQovvnmGyQkJCAyMhJt27bFqlWrEBQUVOF2P/roIzRp0gQdO3ZEu3bt4OXlhe7duyut88EHH8Dc3Bzh4eFwd3fH7du34erqitWrV2PHjh2IjIzE2rVrMWPGjEr3QyaTYceOHWjTpg0GDRqE0NBQ9O3bF7du3VL0LyIyFTKhac9CIiIDN2PGDGzdulWt5h0iMhysqSEiIiKjwKSGiKqdvb29ysehQ4d0HR4RGQk2PxFRtbt+/brKMl9fX4O6vxMR6S8mNURERGQU2PxERERERoFJDRERERkFJjVERERkFJjUEBERkVFgUkNERERGgUkNERERGQUmNURERGQUmNQQERGRUfg/m8X4cdn2MvMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(alm_surr, data_validation)\n", + "surrogate_parity(alm_surr, data_validation)\n", + "surrogate_residual(alm_surr, data_validation)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSgElEQVR4nO3deVxU1f8/8NeggOyLgICxBSKyqJVLSLkkuVtuqWnlbhpq5ie3ytTS0DSz+vhVP5a0mHtiVpaWopZbKuGSaMoHFQUUXGZkERHO7w9/zIeRGZgZ7jBzx9fz8ZjHw7n3zr3ve7zc+77nnnOuQgghQERERCRDNuYOgIiIiMhYTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREssVEhoiIiGSLiQwRERHJFhMZIiIiki0mMkRERCRbTGSIyOTmzJkDhUKh17IKhQJz5swxaTwdO3ZEx44dLXZ9RKQ/JjJED5Evv/wSCoVC/alfvz4aN26M4cOH48qVK+YOz+IEBwdrlJePjw+efvppJCcnS7L+oqIizJkzB3v27JFkfUQPIyYyRA+h9957D9988w1WrFiB7t27Y82aNejQoQPu3Lljku298847KC4uNsm6Ta1ly5b45ptv8M033+DNN99EdnY2+vXrhxUrVtR63UVFRZg7dy4TGaJaqG/uAIio7nXv3h2tWrUCAIwePRpeXl5YuHAhtm3bhoEDB0q+vfr166N+fXmebho3boyXXnpJ/f2VV15BWFgYPv74Y4wbN86MkRERwBoZIgLw9NNPAwAyMjI0pp85cwYDBgyAp6cnGjRogFatWmHbtm0ay5SWlmLu3Llo0qQJGjRogIYNG+Kpp57Cr7/+ql5GWxuZkpISvPHGG/D29oaLiwuee+45XL58uUpsw4cPR3BwcJXp2taZlJSEZ555Bj4+PrC3t0dkZCSWL19uUFnUxNfXF82aNUNmZma1y127dg2jRo1Co0aN0KBBA7Ro0QJfffWVev6FCxfg7e0NAJg7d6768ZWp2wcRWRt53iIRkaQuXLgAAPDw8FBP+/vvvxEXF4fGjRtjxowZcHJywsaNG9GnTx9899136Nu3L4D7CUViYiJGjx6NNm3aQKVS4ejRo0hNTcWzzz6rc5ujR4/GmjVrMGTIELRr1w67d+9Gz549a7Ufy5cvR1RUFJ577jnUr18fP/zwA1577TWUl5cjISGhVuuuUFpaiqysLDRs2FDnMsXFxejYsSPOnz+PCRMmICQkBJs2bcLw4cNx69YtvP766/D29sby5csxfvx49O3bF/369QMANG/eXJI4iR4agogeGklJSQKA+O2330ReXp7IysoSmzdvFt7e3sLe3l5kZWWpl+3cubOIiYkRd+7cUU8rLy8X7dq1E02aNFFPa9GihejZs2e12509e7aofLpJS0sTAMRrr72msdyQIUMEADF79mz1tGHDhomgoKAa1ymEEEVFRVWW69q1q3j00Uc1pnXo0EF06NCh2piFECIoKEh06dJF5OXliby8PHH8+HExePBgAUBMnDhR5/qWLl0qAIg1a9aop929e1fExsYKZ2dnoVKphBBC5OXlVdlfIjIMHy0RPYTi4+Ph7e2NgIAADBgwAE5OTti2bRseeeQRAMCNGzewe/duDBw4ELdv30Z+fj7y8/Nx/fp1dO3aFefOnVP3cnJ3d8fff/+Nc+fO6b397du3AwAmTZqkMX3y5Mm12i8HBwf1v5VKJfLz89GhQwf897//hVKpNGqdO3fuhLe3N7y9vdGiRQts2rQJL7/8MhYuXKjzN9u3b4evry9efPFF9TRbW1tMmjQJBQUF2Lt3r1GxEFFVfLRE9BBatmwZwsPDoVQqsXr1auzbtw/29vbq+efPn4cQArNmzcKsWbO0ruPatWto3Lgx3nvvPTz//PMIDw9HdHQ0unXrhpdffrnaRyQXL16EjY0NQkNDNaY3bdq0Vvu1f/9+zJ49GwcPHkRRUZHGPKVSCTc3N4PX2bZtW8ybNw8KhQKOjo5o1qwZ3N3dq/3NxYsX0aRJE9jYaN4rNmvWTD2fiKTBRIboIdSmTRt1r6U+ffrgqaeewpAhQ3D27Fk4OzujvLwcAPDmm2+ia9euWtcRFhYGAGjfvj0yMjLw/fffY+fOnfj888/x8ccfY8WKFRg9enStY9U1kF5ZWZnG94yMDHTu3BkRERFYsmQJAgICYGdnh+3bt+Pjjz9W75OhvLy8EB8fb9Rvicj0mMgQPeTq1auHxMREdOrUCf/+978xY8YMPProowDuPw7R5yLu6emJESNGYMSIESgoKED79u0xZ84cnYlMUFAQysvLkZGRoVELc/bs2SrLenh44NatW1WmP1ir8cMPP6CkpATbtm1DYGCgenpKSkqN8UstKCgIJ06cQHl5uUatzJkzZ9TzAd1JGhHpj21kiAgdO3ZEmzZtsHTpUty5cwc+Pj7o2LEjVq5ciZycnCrL5+Xlqf99/fp1jXnOzs4ICwtDSUmJzu11794dAPDpp59qTF+6dGmVZUNDQ6FUKnHixAn1tJycnCqj69arVw8AIIRQT1MqlUhKStIZh6n06NEDubm52LBhg3ravXv38Nlnn8HZ2RkdOnQAADg6OgKA1kSNiPTDGhkiAgBMnToVL7zwAr788kuMGzcOy5Ytw1NPPYWYmBiMGTMGjz76KK5evYqDBw/i8uXLOH78OAAgMjISHTt2xBNPPAFPT08cPXoUmzdvxoQJE3Ruq2XLlnjxxRfxf//3f1AqlWjXrh127dqF8+fPV1l28ODBmD59Ovr27YtJkyahqKgIy5cvR3h4OFJTU9XLdenSBXZ2dujduzdeffVVFBQUYNWqVfDx8dGajJnS2LFjsXLlSgwfPhzHjh1DcHAwNm/ejP3792Pp0qVwcXEBcL9xcmRkJDZs2IDw8HB4enoiOjoa0dHRdRovkayZu9sUEdWdiu7XR44cqTKvrKxMhIaGitDQUHHv3j0hhBAZGRnilVdeEb6+vsLW1lY0btxY9OrVS2zevFn9u3nz5ok2bdoId3d34eDgICIiIsT8+fPF3bt31cto6ypdXFwsJk2aJBo2bCicnJxE7969RVZWltbuyDt37hTR0dHCzs5ONG3aVKxZs0brOrdt2yaaN28uGjRoIIKDg8XChQvF6tWrBQCRmZmpXs6Q7tc1dS3Xtb6rV6+KESNGCC8vL2FnZydiYmJEUlJSld8eOHBAPPHEE8LOzo5dsYmMoBCiUj0sERERkYywjQwRERHJFhMZIiIiki0mMkRERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZsvoB8crLy5GdnQ0XFxcOB05ERCQTQgjcvn0b/v7+VV7AWpnVJzLZ2dkICAgwdxhERERkhKysLDzyyCM651t9IlMxFHhWVhZcXV3NHA0RERHpQ6VSISAgQH0d18XqE5mKx0murq5MZIiIiGSmpmYhbOxLREREssVEhoiIiGSLiQwRERHJltW3kSEisjRlZWUoLS01dxhEZmVra4t69erVej1MZIiI6ogQArm5ubh165a5QyGyCO7u7vD19a3VOG9MZIiI6khFEuPj4wNHR0cO0kkPLSEEioqKcO3aNQCAn5+f0etiIkNEVAfKysrUSUzDhg3NHQ6R2Tk4OAAArl27Bh8fH6MfM7GxLxFRHahoE+Po6GjmSIgsR8XfQ23ajDGRISKqQ3ycRPQ/Uvw9MJEhIiIi2WIiQ0RERLLFRMbMcpTFOJCRjxxlsblDISKqVm5uLiZOnIhHH30U9vb2CAgIQO/evbFr1y71MgcOHECPHj3g4eGBBg0aICYmBkuWLEFZWZl6mQsXLmDUqFEICQmBg4MDQkNDMXv2bNy9e1dje6tWrUKLFi3g7OwMd3d3PPbYY0hMTFTPnzNnDhQKBbp161Yl1kWLFkGhUKBjx456759KpcLbb7+NiIgINGjQAL6+voiPj8eWLVsghFAv9/fff2PgwIHw9vaGvb09wsPD8e6776KoqEi9zI0bNzBx4kQ0bdoUDg4OCAwMxKRJk6BUKvWK5cKFC1AoFFo/hw4d0nufOnbsiMmTJ+u9vByx15IZbThyCTO3nES5AGwUQGK/GAxqHWjusIiIqrhw4QLi4uLg7u6ORYsWISYmBqWlpdixYwcSEhJw5swZJCcnY+DAgRgxYgRSUlLg7u6O3377DdOmTcPBgwexceNGKBQKnDlzBuXl5Vi5ciXCwsJw6tQpjBkzBoWFhVi8eDEAYPXq1Zg8eTI+/fRTdOjQASUlJThx4gROnTqlEZefnx9SUlJw+fJlPPLII+rpq1evRmCg/ufTW7du4amnnoJSqcS8efPQunVr1K9fH3v37sW0adPwzDPPwN3dHYcOHUJ8fDzi4+Px008/oVGjRvjzzz/xr3/9C7t27UJKSgrs7OyQnZ2N7OxsLF68GJGRkbh48SLGjRuH7OxsbN68We+4fvvtN0RFRWlMk7rXmxACZWVlqF9fpimBsHJKpVIAEEql0tyhaMi+VSRCZvwogqb/7/PojJ9E9q0ic4dGRCZQXFwsTp8+LYqLi80dilG6d+8uGjduLAoKCqrMu3nzpigoKBANGzYU/fr1qzJ/27ZtAoBYv369zvV/+OGHIiQkRP39+eefF8OHD682ptmzZ4sWLVqIXr16iXnz5qmn79+/X3h5eYnx48eLDh066LF3QowfP144OTmJK1euVJl3+/ZtUVpaKsrLy0VkZKRo1aqVKCsr01gmLS1NKBQKsWDBAp3b2Lhxo7CzsxOlpaU1xpOZmSkAiL/++kvnMhX7//XXX4ugoCDh6uoqBg0aJFQqlRBCiGHDhgkAGp/MzEyRkpIiAIjt27eLxx9/XNja2oqUlBRx584dMXHiROHt7S3s7e1FXFyc+PPPP9Xbq/jdjz/+KGJiYoS9vb1o27atOHnypBBCiIKCAuHi4iI2bdqkEWdycrJwdHRUx1VZdX8X+l6/+WjJTDLzC1EuNKeVCYEL+UXaf0BEVEldPpa+ceMGfvnlFyQkJMDJyanKfHd3d+zcuRPXr1/Hm2++WWV+7969ER4ejnXr1unchlKphKenp/q7r68vDh06hIsXL9YY38iRI/Hll1+qv69evRpDhw6FnZ1djb8FgPLycqxfvx5Dhw6Fv79/lfnOzs6oX78+0tLScPr0aUyZMgU2NpqXzxYtWiA+Pr7GfXR1dZW05iMjIwNbt27Fjz/+iB9//BF79+7FggULAACffPIJYmNjMWbMGOTk5CAnJwcBAQHq386YMQMLFixAeno6mjdvjmnTpuG7777DV199hdTUVISFhaFr1664ceOGxjanTp2Kjz76CEeOHIG3tzd69+6N0tJSODk5YfDgwUhKStJYPikpCQMGDICLi4tk+10ZExkzCfFygs0Dvc7qKRQI9uIYE0RUvQ1HLiFuwW4MWXUYcQt2Y8ORSybd3vnz5yGEQEREhM5l/vnnHwBAs2bNtM6PiIhQL6Nt/Z999hleffVV9bTZs2fD3d0dwcHBaNq0KYYPH46NGzeivLy8yu979eoFlUqFffv2obCwEBs3bsTIkSP13r/8/HzcvHmz2v0Dat7HZs2a6dzH/Px8vP/++xg7dqzecQFAu3bt4OzsrPGprLy8HF9++SWio6Px9NNP4+WXX1a3WXJzc4OdnR0cHR3h6+sLX19fjUHn3nvvPTz77LMIDQ2Fvb09li9fjkWLFqF79+6IjIzEqlWr4ODggC+++EJjm7Nnz8azzz6LmJgYfPXVV7h69SqSk5MBAKNHj8aOHTuQk5MD4P5gd9u3bzfo/8NQTGTMxM/NAYn9YlDv//ehr6dQ4IN+0fBzczBzZERkyXKUxeq2dQBQLoC3tpwyac2MEKLmhYxYFgCuXLmCbt264YUXXsCYMWPU0/38/HDw4EGcPHkSr7/+Ou7du4dhw4ahW7duVZIZW1tbvPTSS0hKSsKmTZsQHh6O5s2bmyxmQ5dXqVTo2bMnIiMjMWfOHIN+u2HDBqSlpWl8KgsODtao6fDz81MP+1+TVq1aqf+dkZGB0tJSxMXFqafZ2tqiTZs2SE9P1/hdbGys+t+enp5o2rSpepk2bdogKioKX331FQBgzZo1CAoKQvv27fXbYSPItGWPdRjUOhDtw71xIb8IwV6OTGKIqEbVPZY21TmkSZMm6ka6uoSHhwMA0tPT0a5duyrz09PTERkZqTEtOzsbnTp1Qrt27fCf//xH63qjo6MRHR2N1157DePGjcPTTz+NvXv3olOnThrLjRw5Em3btsWpU6cMvvv39vaGu7t7tfsHaO7jY489VmV+enq6epkKt2/fRrdu3eDi4oLk5GTY2toaFFtAQADCwsJ0zn9wfQqFQmutlTbaHhNKYfTo0Vi2bBlmzJiBpKQkjBgxwqQDQbJGxsz83BwQG9qQSQwR6cUcj6U9PT3RtWtXLFu2DIWFhVXm37p1C126dIGnpyc++uijKvO3bduGc+fO4cUXX1RPu3LlCjp27IgnnngCSUlJVdqcaFORCGmLISoqClFRUTh16hSGDBliyO7BxsYGgwcPxrfffovs7Owq8wsKCnDv3j20bNkSERER+Pjjj6skC8ePH8dvv/2msY8qlQpdunSBnZ0dtm3bhgYNGhgUlxTs7Ow0ur7rEhoaCjs7O+zfv189rbS0FEeOHKmSgFbu/n3z5k38888/Go/bXnrpJVy8eBGffvopTp8+jWHDhkmwJ7oxkSEikhFzPZZetmwZysrK0KZNG3z33Xc4d+4c0tPT8emnnyI2NhZOTk5YuXIlvv/+e4wdOxYnTpzAhQsX8MUXX2D48OEYMGAABg4cCOB/SUxgYCAWL16MvLw85ObmIjc3V7298ePH4/3338f+/ftx8eJFHDp0CK+88gq8vb01Hm1Utnv3buTk5MDd3d3g/Zs/fz4CAgLQtm1bfP311zh9+jTOnTuH1atX47HHHkNBQQEUCgW++OILnD59Gv3798eff/6JS5cuYdOmTejduzdiY2PVY7ZUJDGFhYX44osvoFKp1PuoT2JR4fr16+rfVXzu3Lmj9++Dg4Nx+PBhXLhwAfn5+Tpra5ycnDB+/HhMnToVv/zyC06fPo0xY8agqKgIo0aN0lj2vffew65du3Dq1CkMHz4cXl5e6NOnj3q+h4cH+vXrh6lTp6JLly4a3eJNoto+TVbAUrtfE9HDReru19m3isSB8/l1OmRDdna2SEhIEEFBQcLOzk40btxYPPfccyIlJUW9zL59+0TXrl2Fq6ursLOzE1FRUWLx4sXi3r176mWSkpKqdAuu+FTYvHmz6NGjh/Dz8xN2dnbC399f9O/fX5w4cUK9TEX3Y11ef/11vbtfCyHErVu3xIwZM0STJk2EnZ2daNSokYiPjxfJycmivLxcvdyJEydE//79haenp7C1tRWhoaHinXfeEYWFheplKroqa/tkZmbWGEtF92ttn3Xr1unc/48//lgEBQWpv589e1Y8+eSTwsHBoUr365s3b2r8tri4WEycOFF4eXlV2/36hx9+EFFRUcLOzk60adNGHD9+vEr8u3btEgDExo0bq91PKbpfK4QwsNWSzKhUKri5uam7vRERmcOdO3eQmZmJkJAQszxiIKqtPXv2oFOnTrh582aNtV7ffPMN3njjDWRnZ1fbDb66vwt9r99s7EtERESSKCoqQk5ODhYsWIBXX31V77F8aoNtZIiIyOo9OBZL5c/vv/9e5/GMGzdOZzzjxo2r83ik8uGHHyIiIgK+vr6YOXNmnWyTj5aIiOoAHy2Z1/nz53XOa9y4MRwc6rbn6LVr16BSqbTOc3V1hY+PT53GYy58tERERKSH6sZiMQcfH5+HJlkxNT5aIiIiItliIkNEVIf0HXWV6GEgxd8DHy0REdUBOzs72NjYIDs7G97e3rCzszPpsO1ElkwIgbt37yIvLw82Nja16t3ERIaIqA7Y2NggJCQEOTk5WofBJ3oYOTo6IjAwUK9XVOjCRIaIqI7Y2dkhMDAQ9+7dM2iYeiJrVK9ePdSvX7/WNZNMZIiI6pBCoYCtra3Bb0EmIu3Y2JeIiIhki4kMERERyRYTGSIiIpItJjJEREQkW0xkiIiISLaYyBAREZFsMZEhIiIi2WIiQ0RERLLFRIaIiIhki4kMERERyZZZE5l9+/ahd+/e8Pf3h0KhwNatW9XzSktLMX36dMTExMDJyQn+/v545ZVX+LI1IiIiUjNrIlNYWIgWLVpg2bJlVeYVFRUhNTUVs2bNQmpqKrZs2YKzZ8/iueeeM0OkREREZIkUQghh7iCA+y9SS05ORp8+fXQuc+TIEbRp0wYXL15EYGCgXutVqVRwc3ODUqmEq6urRNESERGRKel7/ZbV26+VSiUUCgXc3d11LlNSUoKSkhL1d5VKVQeRERERkTnIprHvnTt3MH36dLz44ovVZmaJiYlwc3NTfwICAuowSiIiIqpLskhkSktLMXDgQAghsHz58mqXnTlzJpRKpfqTlZVVR1ESERFRXbP4R0sVSczFixexe/fuGtu52Nvbw97evo6iIyIiInOy6ESmIok5d+4cUlJS0LBhQ3OHRERERBbErIlMQUEBzp8/r/6emZmJtLQ0eHp6ws/PDwMGDEBqaip+/PFHlJWVITc3FwDg6ekJOzs7c4VNREREFsKs3a/37NmDTp06VZk+bNgwzJkzByEhIVp/l5KSgo4dO+q1DXa/JiIikh9ZdL/u2LEjqsujLGSIGyIiIrJQsui1RERERKQNExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyZdZEZt++fejduzf8/f2hUCiwdetWjflCCLz77rvw8/ODg4MD4uPjce7cOfMES0RERBbHrIlMYWEhWrRogWXLlmmd/+GHH+LTTz/FihUrcPjwYTg5OaFr1664c+dOHUdKRERElqi+OTfevXt3dO/eXes8IQSWLl2Kd955B88//zwA4Ouvv0ajRo2wdetWDB48uC5DJSIiIgtksW1kMjMzkZubi/j4ePU0Nzc3tG3bFgcPHjRjZERERGQpzFojU53c3FwAQKNGjTSmN2rUSD1Pm5KSEpSUlKi/q1Qq0wRIREREZmexNTLGSkxMhJubm/oTEBBg7pCIiIjIRCw2kfH19QUAXL16VWP61atX1fO0mTlzJpRKpfqTlZVl0jiJiIjIfCw2kQkJCYGvry927dqlnqZSqXD48GHExsbq/J29vT1cXV01PkRERGSdzNpGpqCgAOfPn1d/z8zMRFpaGjw9PREYGIjJkydj3rx5aNKkCUJCQjBr1iz4+/ujT58+5guaiIiILIZZE5mjR4+iU6dO6u9TpkwBAAwbNgxffvklpk2bhsLCQowdOxa3bt3CU089hV9++QUNGjQwV8hERERkQRRCCGHuIExJpVLBzc0NSqWSj5mIiIhkQt/rt8W2kSEiIiKqCRMZIiIiki0mMkRERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREsmVUIlNYWCh1HEREREQGMyqRadSoEUaOHIk//vhD6niIiIiI9GZUIrNmzRrcuHEDzzzzDMLDw7FgwQJkZ2dLHRsRERFRtYxKZPr06YOtW7fiypUrGDduHNauXYugoCD06tULW7Zswb1796SOk4iIiKgKyd619Nlnn2Hq1Km4e/cuvLy8MG7cOMyYMQOOjo5SrN5ofNcSERGR/Oh7/a7V26+vXr2Kr776Cl9++SUuXryIAQMGYNSoUbh8+TIWLlyIQ4cOYefOnbXZBBEREZFORiUyW7ZsQVJSEnbs2IHIyEi89tpreOmll+Du7q5epl27dmjWrJlUcRIRERFVYVQiM2LECAwePBj79+9H69attS7j7++Pt99+u1bBEREREVXHqDYyRUVFZm/7oi+2kSEiIpIfk7aRcXR0RFlZGZKTk5Geng4AaNasGfr06YP69WvV7IaIiIhIb0ZlHX///Td69+6Nq1evomnTpgCAhQsXwtvbGz/88AOio6MlDZKIiIhIG6PGkRk9ejSio6Nx+fJlpKamIjU1FVlZWWjevDnGjh0rdYxEREREWhlVI5OWloajR4/Cw8NDPc3DwwPz58/X2fiXiIiISGpG1ciEh4fj6tWrVaZfu3YNYWFhtQ6KiIiISB9GJTKJiYmYNGkSNm/ejMuXL+Py5cvYvHkzJk+ejIULF0KlUqk/RERERKZiVPdrG5v/5T8KhQIAULGayt8VCgXKysqkiNNo7H5NREQkPybtfp2SkmJ0YERERERSMSqR6dChg9RxEBERERnM6NHrbt26hS+++EI9IF5UVBRGjhwJNzc3yYIjIiIiqo5RjX2PHj2K0NBQfPzxx7hx4wZu3LiBJUuWIDQ0FKmpqVLHSERERKSVUY19n376aYSFhWHVqlXqVxLcu3cPo0ePxn//+1/s27dP8kCNxca+RERE8qPv9duoRMbBwQF//fUXIiIiNKafPn0arVq1QlFRkeERmwgTGSIiIvnR9/pt1KMlV1dXXLp0qcr0rKwsuLi4GLNKIiIiIoMZlcgMGjQIo0aNwoYNG5CVlYWsrCysX78eo0ePxosvvih1jERERERaGdVrafHixVAoFHjllVdw7949AICtrS3Gjx+PBQsWSBogERERkS4Gt5EpKyvD/v37ERMTA3t7e2RkZAAAQkND4ejoaJIga4NtZIiIiOTHZCP71qtXD126dEF6ejpCQkIQExNTq0CJiIiIjGVUG5no6Gj897//lToWIiIiIoMYlcjMmzcPb775Jn788Ufk5ORovO2ab7wmIiKiuiLZ268By3njdWVsI0NERCQ/fPs1ERERWT2jEpmQkBAEBARo1MYA92tksrKyJAmMiIiIqCZGtZEJCQlBXl5elek3btxASEhIrYMiIiIi0odRiUxFW5gHFRQUoEGDBrUOqkJZWRlmzZqFkJAQODg4IDQ0FO+//z6MaNZDREREVsigR0tTpkwBcL+B76xZszQGwCsrK8Phw4fRsmVLyYJbuHAhli9fjq+++gpRUVE4evQoRowYATc3N0yaNEmy7RAREZE8GZTI/PXXXwDu18icPHkSdnZ26nl2dnZo0aIF3nzzTcmCO3DgAJ5//nn07NkTABAcHIx169bhzz//lGwbREREJF8GJTIVvZVGjBiBTz75xOTdmdu1a4f//Oc/+OeffxAeHo7jx4/jjz/+wJIlS3T+pqSkBCUlJervHNeGiIjIehnVaykpKUnqOLSaMWMGVCoVIiIiUK9ePZSVlWH+/PkYOnSozt8kJiZi7ty5dRIfERERmZdRiUxhYSEWLFiAXbt24dq1aygvL9eYL9XrCzZu3Ihvv/0Wa9euRVRUFNLS0jB58mT4+/tj2LBhWn8zc+ZMdVse4H6NTEBAgCTxEBERkWUxKpEZPXo09u7di5dffhl+fn5aezBJYerUqZgxYwYGDx4MAIiJicHFixeRmJioM5Gxt7eHvb29SeIhIiIiy2JUIvPzzz/jp59+QlxcnNTxaCgqKtJ4HQJw/+3bD9YAERER0cPJqETGw8MDnp6eUsdSRe/evTF//nwEBgYiKioKf/31F5YsWYKRI0eafNtERERk+Yx6aeSaNWvw/fff46uvvtIYS0Zqt2/fxqxZs5CcnIxr167B398fL774It59912Nrt/V4UsjiYiI5Eff67dRicxjjz2GjIwMCCEQHBwMW1tbjfmpqamGR2wiTGSIiIjkx6Rvv+7Tp4+xcRERERFJxqgaGTlhjQwREZH86Hv9NuilkX/++SfKysp0zi8pKcHGjRsNWSURERGR0QxKZGJjY3H9+nX1d1dXV43B727duoUXX3xRuuiIiIiIqmFQIvPgUyhtT6Ws/EkVERERWRCDEhl9mGqUXyIiIqIHSZ7IEBEREdUVg7tfnz59Grm5uQDuP0Y6c+YMCgoKAAD5+fnSRkdERERUDYO6X9vY2EChUGhtB1MxXaFQVNuzqa6x+zUREZH8mGRAvMzMzFoHRkRERCQVgxKZoKAgg1b+2muv4b333oOXl5dBvyMiIiLSh0kb+65ZswYqlcqUmyAiIqKHmEkTGY4pQ0RERKbE7tdEREQkW0xkiIiISLaYyBAREZFsMZEhIiIi2TJpIvPSSy9xEDoiIiIyGaMSmfLycp3TL126pP6+fPlyjiFDREREJmNQIqNSqTBw4EA4OTmhUaNGePfddzVeR5CXl4eQkBDJgyQiIiLSxqCRfWfNmoXjx4/jm2++wa1btzBv3jykpqZiy5YtsLOzA8CxY4iIiKjuGFQjs3XrVqxcuRIDBgzA6NGjcfToUeTl5aF3794oKSkBcP/lkURERER1waBEJi8vT+N9S15eXvjtt99w+/Zt9OjRA0VFRZIHSERERKSLQYlMYGAg0tPTNaa5uLhg586dKC4uRt++fSUNjoiIiKg6BiUyXbp0QVJSUpXpzs7O2LFjBxo0aCBZYEREREQ1Maix79y5c5Gdna11nouLC3799VekpqZKEhgRERFRTQxKZDw8PODh4aFzvouLCzp06FDroIiIiIj0YfCAePfu3cOiRYvw+OOPw9nZGc7Oznj88cexePFilJaWmiJGIiIiIq0MqpEpLi7Gs88+i4MHDyI+Ph7t27cHAKSnp2P69OnYtm0bdu7cybYyREREVCcMSmQWLFiArKws/PXXX2jevLnGvOPHj+O5557DggULMGfOHCljJCIiItLKoEdL69evx5IlS6okMQDQokULLF68GGvXrpUsOCIiIqLqGJTIXLx4EW3atNE5/8knn9R4aSQRERGRKRmUyLi6uuLatWs65+fm5sLFxaXWQRERERHpw6BEplOnTvjggw90zl+wYAE6depU66CIiIiI9GFQY9/Zs2ejbdu2ePLJJzFlyhRERERACIH09HR8/PHHOH36NA4dOmSqWImIiIg0GJTIREZG4tdff8WoUaMwePBg9ZuuhRCIiIjAzp07ERUVZZJAiYiIiB5kUCID3G/Q+/fffyMtLQ3//PMPACA8PBwtW7aUOjYiIiKiahmcyKhUKjg7O6Nly5YayUt5eTkKCgrg6uoqZXxEREREOhnU2Dc5ORmtWrXCnTt3qswrLi5G69at8cMPP0gWHBEREVF1DEpkli9fjmnTpsHR0bHKPCcnJ0yfPh3//ve/JQuOiIiIqDoGJTKnTp1Cx44ddc5v3749Tp48WduYNFy5cgUvvfQSGjZsCAcHB8TExODo0aOSboOIiIjkyaA2Mjdv3sS9e/d0zi8tLcXNmzdrHVTl7cXFxaFTp074+eef4e3tjXPnzsHDw0OybRAREZF8GZTIBAcH4+jRo4iIiNA6/+jRowgKCpIkMABYuHAhAgICkJSUpJ4WEhIi2fqJiIhI3gx6tNSvXz+8/fbbuHr1apV5ubm5eOedd9C/f3/Jgtu2bRtatWqFF154AT4+PnjsscewatWqan9TUlIClUql8SEiIiLrpBBCCH0Xvn37NmJjY3Hp0iW89NJLaNq0KQDgzJkz+PbbbxEQEIBDhw5J9r6lBg0aAACmTJmCF154AUeOHMHrr7+OFStWYNiwYVp/M2fOHMydO7fKdKVSya7hREREMqFSqeDm5lbj9dugRAa4nxDMnDkTGzZsULeHcXd3x+DBgzF//nxJ26/Y2dmhVatWOHDggHrapEmTcOTIERw8eFDrb0pKSlBSUqL+rlKpEBAQwESGiIhIRvRNZAweEM/NzQ3/93//h2XLliE/Px9CCHh7e6tfV1DZ/v370apVK9jb2xu6GQCAn58fIiMjNaY1a9YM3333nc7f2NvbG709IiIikheD2shUplAo4O3tDR8fH61JDAB0794dV65cMTq4uLg4nD17VmPaP//8I2mDYiIiIpIvoxMZfRj41KqKN954A4cOHcIHH3yA8+fPY+3atfjPf/6DhIQEiSIkIiIiOTNpIlNbrVu3RnJyMtatW4fo6Gi8//77WLp0KYYOHWru0IiIiMgCGNxGpq716tULvXr1MncYREREZIEsukaGiIiIqDomTWR0NQImIiIikoJFN/YlIiIiqo5J28jcvn3blKsnIiKih5xBicwzzzyj13K7d+82KhgiIiIiQxiUyOzZswdBQUHo2bMnbG1tTRUTERERkV4MSmQWLlyIpKQkbNq0CUOHDsXIkSMRHR1tqtiIiIiIqmVQY9+pU6fi9OnT2Lp1K27fvo24uDi0adMGK1asgEqlMlWMRERERFoZ/PbryoqKirBp0yYsW7YMp0+fRnZ2tsW9YVrft2cSERGR5dD3+l2r7tepqanYu3cv0tPTER0dzXYzREREVKcMTmSys7PxwQcfIDw8HAMGDICnpycOHz6MQ4cOwcHBwRQxEhEREWllUGPfHj16ICUlBV26dMGiRYvQs2dP1K9v8a9rIiIiIitlUBsZGxsb+Pn5wcfHp9rXD6SmpkoSnBTYRoaIiEh+9L1+G1SdMnv27FoHRkRERCSVWvVakgPWyBAREcmPSWpkdNm7dy8KCwsRGxsLDw8PKVZJREREVCODR/YtKCjA+++/D+D+2627d++OnTt3AgB8fHywa9cuREVFSR8pERER0QMM6n69YcMGjVcSbN68Gfv27cPvv/+O/Px8tGrVCnPnzpU8SCIiIiJtDEpkMjMz0bx5c/X37du3Y8CAAYiLi4OnpyfeeecdHDx4UPIgiYiIiLQxKJG5d+8e7O3t1d8PHjyIdu3aqb/7+/sjPz9fuuiIiIiIqmFQIhMaGop9+/YBAC5duoR//vkH7du3V8+/fPkyGjZsKG2ERERERDoY1Ng3ISEBEyZMwO+//45Dhw4hNjYWkZGR6vm7d+/GY489JnmQRERERNoYlMiMGTMG9erVww8//ID27dtXGSAvOzsbI0eOlDRAIiIiIl04IB4RERFZHH2v3wa//ZqIiIjIUhiUyJSWlmLatGkICwtDmzZtsHr1ao35V69eRb169SQNkIiIiEgXgxKZ+fPn4+uvv8a4cePQpUsXTJkyBa+++qrGMlb+pIqIiIgsiEGNfb/99lt8/vnn6NWrFwBg+PDh6N69O0aMGKGunVEoFNJHSURERKSFQTUyV65c0XhFQVhYGPbs2YMDBw7g5ZdfRllZmeQBEhEREeliUCLj6+uLjIwMjWmNGzdGSkoKjhw5guHDh0sZGxEREVG1DEpknnnmGaxdu7bKdH9/f+zevRuZmZmSBUZERERUE4PayMyaNQtnzpzROq9x48bYu3cvfv31V0kCIyIiIqoJB8QjIiIii2PSAfE2bdqEfv36ITo6GtHR0ejXrx82b95sdLBERERExjAokSkvL8egQYMwaNAgnD59GmFhYQgLC8Pff/+NQYMGYfDgwRxHhoiIiOqMQW1kPvnkE/z222/Ytm2beiyZCtu2bcOIESPwySefYPLkyVLGSERERKSVQTUySUlJWLRoUZUkBgCee+45fPjhh1VeW0BERERkKgYlMufOnUN8fLzO+fHx8Th37lytgyIiIiLSh0GJjIODA27duqVzvkqlQoMGDWobExEREZFeDEpkYmNjsXz5cp3zly1bhtjY2FoHRURERKQPgxKZt99+G1988QUGDhyIP//8EyqVCkqlEocOHcILL7yA1atX4+233zZVrFiwYAEUCgUbExMREREAA3sttWvXDhs2bMDYsWPx3Xffaczz8PDAunXrEBcXJ2mAFY4cOYKVK1eiefPmJlk/ERERyY9BiQwA9O3bF127dsWOHTvUDXvDw8PRpUsXODo6Sh4gABQUFGDo0KFYtWoV5s2bZ5JtEBERkfwY9Ghp9+7diIyMxL1799C3b19MmzYN06ZNQ58+fVBaWoqoqCj8/vvvkgeZkJCAnj17VttjqkJJSQlUKpXGh4iIiKyTQYnM0qVLMWbMGK3vPHBzc8Orr76KJUuWSBYcAKxfvx6pqalITEzUa/nExES4ubmpPwEBAZLGQ0RERJbDoETm+PHj6Natm875Xbp0wbFjx2odVIWsrCy8/vrr+Pbbb/Xu1j1z5kwolUr1JysrS7J4iIiIyLIY1Ebm6tWrsLW11b2y+vWRl5dX66AqHDt2DNeuXcPjjz+unlZWVoZ9+/bh3//+N0pKSlCvXj2N39jb28Pe3l6yGIiIiMhyGZTING7cGKdOnUJYWJjW+SdOnICfn58kgQFA586dcfLkSY1pI0aMQEREBKZPn14liSEiIqKHi0GJTI8ePTBr1ix069atyqOe4uJizJ49W+t7mIzl4uKC6OhojWlOTk5o2LBhlelERET08DEokXnnnXewZcsWhIeHY8KECWjatCkA4MyZM1i2bBnKyspMOiAeERERUWUKIYQw5AcXL17E+PHjsWPHDlT8VKFQoGvXrli2bBlCQkJMEqixVCoV3NzcoFQqtfa2IiIiIsuj7/Xb4AHxgoKCsH37dty8eRPnz5+HEAJNmjSBh4dHrQImIiIiMpTBiUwFDw8PtG7dWspYiIiIiAxi0DgyRERERJaEiQwRERHJFhMZIiIiMkqOshgHMvKRoyw2WwxGt5EhIiKih9eGI5cwc8tJlAvARgEk9ovBoNaBdR4Ha2SIiIjIIDnKYnUSAwDlAnhryymz1MwwkSEiIiKDZOYXqpOYCmVC4EJ+UZ3HwkSGiIiIDBLi5QQbhea0egoFgr0c6zwWJjJERERkED83ByT2i0E9xf1spp5CgQ/6RcPPzaHOY2FjXyIiIjLYoNaBaB/ujQv5RQj2cjRLEgMwkSEiIiIj+bk5mC2BqcBHS0RERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREssVEhohMxhJeKEdE1o3dr4nIJCzlhXJEZN1YI0NEkrOkF8oRkXVjIkNEkrOkF8oRkXVjIkNEkrOkF8oRkXVjIkNEkrOkF8oRkXVjY18iMglLeaEcEVk3JjJERspRFiMzvxAhXk68SOtgCS+UIyLrxkSGyAjsWkxEZBnYRobIQOxaTERkOZjIEBmIXYuJiCwHExkiA7FrMRGR5WAiQ2Qgdi0mIrIcbOxLZAR2LSYisgxMZIiMxK7FRETmx0dLVGs5ymIcyMhnrx0iIqpzrJGhWuF4KkREZE6skSGjcTwVIqKHmyXUyLNGhoxW3XgqbDtCRGTdLKVGnjUyRrKELNTcOJ4KEdHDyZJq5JnIGGHDkUuIW7AbQ1YdRtyC3dhw5JK5QzILjqdCRPRwsqQRzvloyUC6stD24d4P5QWc46kQET18KmrkKycz5qqRt+gamcTERLRu3RouLi7w8fFBnz59cPbsWbPGZElZqKXwc3NAbGhDJjFERA8JS6qRt+gamb179yIhIQGtW7fGvXv38NZbb6FLly44ffo0nJyczBKTJWWhRERE5mIpNfIKIYSoeTHLkJeXBx8fH+zduxft27fX6zcqlQpubm5QKpVwdXWVJI4NRy7hrS2nUCaEOgvl2ClERETS0ff6bdE1Mg9SKpUAAE9PT7PGYSlZKBkvR1mMzPxChHg58f+PiEjGZJPIlJeXY/LkyYiLi0N0dLTO5UpKSlBSUqL+rlKpTBIP37MjX5Yy9gEREdWeRTf2rSwhIQGnTp3C+vXrq10uMTERbm5u6k9AQEAdRUhyYEljHxARUe3JIpGZMGECfvzxR6SkpOCRRx6pdtmZM2dCqVSqP1lZWXUUJckBe50REVkXi360JITAxIkTkZycjD179iAkJKTG39jb28Pe3r4OoiM5Yq8zIiLrYtE1MgkJCVizZg3Wrl0LFxcX5ObmIjc3F8XFfAxAxrGksQ+IiKj2LLr7tUKh0Do9KSkJw4cP12sdpuh+TfKXoyxmrzMzYq8xIqqJVXS/tuAcSzZ4wdCOvc7Mh73GiEhKFp3IUO3wgkGWhu8qIyKpWXQbGTIeuxmTJWKvMSKSGhMZK8ULBlmiil5jlbHXGBHVBhMZKyXlBSNHWYwDGfmszaFaY68xIpIa28hYqYoLxoMvtzT0gsF2NiQ1S35XGRvHE8mPRXe/lsLD3v26Nt2Mc5TFiFuwu8rgcX/M6MSTPFkdJu1ElkXf6zcfLZmAJT2K8XNzQGxoQ6MSD7azoYcFG8cTyRcfLUnMmu7qOJw/PSyqS9pZ+0hk2VgjIyFru6tjw0x6WLA3FRnLkmrgpSSn/WKNjISs8a7OkhtmEklFqsbx5sJGyuZhTTXwlcltv5jISOjkZWWVadZwV8fh/OlhIMekPUdZjNV/ZOKLPzJlc9GxFtY6SrUc94uJjERylMVY+MuZKtOndW9qsf/5RKRJTkn7hiOXMOO7k6hcCSyHi461sMYaeECe+8U2MhLR9p8PAM0bu9d5LJZMTs9diWrLVMd7xV2ztrEz2LOwblhruyo57hdrZCTCHj7aVX52v++fPFk9dyWqDVO2M9B14wTwvFNX5N6uShc57hcHxJPQhiOXqvznP8wX6son8ooEv/LBxsH1yFqZejBJbesHdCdMuhoD69tImI2JdavNoKOWzBL2S9/rN2tkJCR1Y0E5nzwebDBWXRW43PaNqCambmfw4F2zDYDR7UMwIi6kyvp11QzpW2Mktx4sdU1O7aoMIaf9YiIjMan+8+V+8qiu6rsCq8DJWtXFo2Z9bpx09UCJ8HXRq2eKHHuwWDI535xaMjb2tUDWMLCetgZjCkA9TQ7PXYmMVVeDSdb0ChJdNUNHLtzUOv2nEzka5xm+pkQ6G45cQtyC3Riy6jDiFuzGhiOX6mS7D0MHC9bIWCA5dn97kK4GY3Ibp4PIWJYwLo2umqHWwR5VpgPAvJ/S8cH2dHUNsFw7MVhazYe5arbkXrOvLyYytVDbBnS6yPXk8SBdJ3JLOLEQ1QVztzPQdUPRIsBDY3pllS+yADDqqRD1gHtyqEm1xIu3OW5OH6bHgkxkjFTbBnTVkWP3N13MfSK3ZJZ21yg1a98/udB1Q1Ex/acTOZj3U7rGb8qEQNL+THz+e6a61+FYHY2JLYmlXrzNcXNqDTX7+mIiY4TaNqDThyVUS5PpWOJdo5Rqu391mQRZY8L14D7puqHwc3NAz+Z++GB7usZFz0YBrNqXqe5tKAB88fsFjIgLqZP4jSXlxVvK48IcN6fWUrOvDyYyRjC0AZ2xGTBrM6yTpd41SqW2+2fKJO/Bi5M1JpSG7pO2i+zIp4Kx6vdMjeXkcDcv1cXbFMeFqW9OtSWv1lKzXxMmMkYwpAGdlBmwNd45Poysvcq3NvtnyiTvwYvT9O4RWPjzGatKKI0tvwcvsgDU7WIq1OZcVlfnLiku3lIcg7r2V9+bU0PLS1fi9bDU7DORMYK+DeikzICt4c6Ridh91l7lW5v9M1WSp+3iVDmJkXJb1cVg6uO/NuX34EVWqnNZXZ+7anvxru0xWNv9NfT3NSVeD0PNPhMZI9XUgE7KDLimA1UOCYI1JGJSsfYq39rsn6mSPG0Xp4pGrA++NsMUCWVdHf9Slp8U5zJzPUatzcW7NmVY2/015vfWXsOrDyYytVBdAzopD6DqDlQ5vIjR2tuEGMPaq3yN3T9TJXm6Lk7TujXFh7+cNWlCWZfHv9TlV9tzmRwvstrKcFr3psjML1TP10XX/qZevAkPp5pvNo0pL2uv4dUHExkZ0HWgOtrZyCJBkOPJrC5Ye5WvPvunrTbRFEmergv8oNaBeK6lv0kTyro+/i0pSZbrRbZyGZ64fEv9GLKml3I62dWrsr8KBTBh7V8QqPlm05jysvYaXn0wkZEBXQdq4d0yWSQIcj2ZkWlV97jFFEledQM0Wls3WEtJkuviIns86yb+vHADbYI90SLAQ7L1VsQ49PND1d4sPngc932sMbb+lX3/ZZ4KQIj/Pb6s6WbT2PKypOTVHJjIyIS2AzVHWSyLBEFOdwxyaG9kDeTYdgIw7viQ0/GvS23+LnSduwxZn67l/7UxDd+lXlF/7/94Y3w0sKVB8VVeNwCN7dRUm6btON76Vza2vBaLorvlyC+4g4nr0nT+XpvaPJaV0zElJSYyMvLggSqnE6Qc7hjYIFk/UiR7cnzcWJvjQ6qGs+ZIsqUarVxXDUZN69O1/PGsmxpJDAB8l3oFr8QGoUWAh17lVXndFe+4rfwIqH24d7U3i7qO46K75YgNbWj0zebDnJQYg4mMzMkhQahgyX+cdVFDYA21PVIle3J73CjF8VHT8V/d8WGuJFvqvwtD11fd8n9euKF1G0cv3MSZ3Ns1lteD666cj1Rs548Znaq9WazpOLbEm01rOA89iImMidXFQWPJCYJcmLqGwBpqe6S8qFniCb465jw+zNnrT+r9NnR91S3fJthT6zaCvRwx5utjNZaXtnVr2051N4v6HMeWdLNpDechbZjImJC1HjTWyJQ1BJbU/bw2ibXUFzVto8keyMi3yDtFfY4PY8u2puPDnI/hpP67qG592sqvuuX93BzQ//HGVdrIONjV16u8tK27sgdrVmrTpsUSbjYt6TwkNRtzB2CtdB00Ocpi8wb2kMpRFuNARr7O8q+4s6qnuP+kXMoaguouRFKrbj83HLmEuAW7MWTVYcQt2I0NRy4ZtO6KE39l+lzUqovJz80BsaENse+fPL1jq+n/0lg1xVnd8VGbsq3p+NBW7jYAHO1Md/quKAsAkv5d6CpHXf//NZX7RwNb4vuEdpjVsxm+T2iHjwa21Ps4fXDdCtzvKm3MflYcx5acENTleaiuKYQQ1VSuyZ9KpYKbmxuUSiVcXV3rbLsHMvIxZNXhKtPXjXkSsaEN6ywOMqxmLEdZLHkVcI6yGHELdle5q/xjRidJT3w1PZ6QIoYNRy5pHYtF35hGPRWCkU+FaGxTW2w2CiD5tXZVutOaqpZTn/XmKItx9MIN2CgUeDzIQ70PtS1bfX5fudwrmKqWV1tZmGK08so1cTXtv6F/l4Ycpw/GYgmPgEyhrs5DUtL3+s0aGRMx9u6VpGVozZgp7qykqu2prsagpv2U6m5sUOtA/DGjE9aNeRJ/zOhk8DtgVv2eiXaJmjUWul4f0GfZAY3lTFXLqc96K2pcJq5Lw8R1f2HfP3nVxm9I2epzfAxqHYgtr8Wqawx0xVlbusoCgKR/F5X/zvQpP0P/Lg05TiuvWw41K8YyZa2zubGNjInIrTGjtbKUbr61bfBXU41BTfspVVsHQ9qB6GpMKaD5bF5XW4UHl5Py/7LyfhgzVkhN8RtatvqMtVJ4twwP1p9LfSyb4+/FmPLT5zi0hHYplsaSGh5LiYmMCcnloNH34iTHbnuW1M3X2BOrPo306qIbqKGPdaprTFn54lgRW+V91LacVP+XD+7H9G4RRo0V8mD8tb1pqWmslZrGNJGCuUYhNqT8Vu7NwIKfz+g15D9VZY0JHhMZE7P0g0bfi1NNy1lqkmMNNWP63CWbuhuoMT0eqktQHrw4DmodiAhfF/RZdkDn26il+L/Uth8f/nIW07tH4MOftb88Up+Lu5Q3LbrKuqYxTQzdhra/V1P/vejarr7lt3JfBhJ/PqP+bk09b8h4skhkli1bhkWLFiE3NxctWrTAZ599hjZt2pg7LNnT9+JU03JSNsA0RUIkl5oxXap7aWjl7sqm7AZq7COHipiS9mfi832ZKIfuZ/MtAjywoL9px+TQtR/NG7vjjxmdjB4rpGI5U/dyk+JYrunv1VR/LzVtt6byy1EWY0GlJKaCpY8IbYjanv8s9YbS1Cw+kdmwYQOmTJmCFStWoG3btli6dCm6du2Ks2fPwsfHx9zhyZq+F6eaGuNJNTaBKcfdsfSascoePBlpu5D2ecwfff/vQJWyMtV+1uaRg5+bA97qEYkRcSE1XhxNkYxVLs+axiWpTVxS0ecxobHbP551EzO+O1njSwylPo6kGMMkM7+wShsh4H6Plbp+VGyKhKG257+Hedwyi++1tGTJEowZMwYjRoxAZGQkVqxYAUdHR6xevdrcocmevj2rqltOqt4wHHfnPl3jkVTuhbHltVgk/3WlTstKih4P+vYIkbLnyIPlue+fPKP3o656tJiqd8mGI5fQ5/80H90BdTOWiBTnCW3nIQCY3j2iTm9Sajsekza1Pf897OdPi66RuXv3Lo4dO4aZM2eqp9nY2CA+Ph4HDx7U+puSkhKUlJSov6tUKpPHKVeGVJlXt5wUjQMtpXeROdV011rxOZCRb5ayktsjuuramuh6jGQppC7rirLQVqNRF43fpWhE/OB5yEZxP4l5tX2oCSLWzlSj49b2/Pewnz8tOpHJz89HWVkZGjVqpDG9UaNGOHOm6rNSAEhMTMTcuXPrIjyroO8JU9dyUjUOtKTeReai78nInGUlp0d01ZWnHMYKkbKsdXWFtwHqpPG7VOcJcyfTpkoYavs3/bCfPy06kTHGzJkzMWXKFPV3lUqFgIAAM0Zk+fQ9YepaToqTizX0LqotfU9GLCv9POwn98q0lYWu0ZNNRaokxJzJtKmOqdr+TT/s5wSLfkXB3bt34ejoiM2bN6NPnz7q6cOGDcOtW7fw/fff17gOc72igIxjilcEyImxQ6s/jGWlD0NfqWDNWBbSMGU51vZv2trOCfpevy06kQGAtm3bok2bNvjss88AAOXl5QgMDMSECRMwY8aMGn/PRIbkxtpORubG8vwfloU0WI51Q9/rt8U/WpoyZQqGDRuGVq1aoU2bNli6dCkKCwsxYsQIc4dGZBJyaociByzP/2FZSIPlaFksPpEZNGgQ8vLy8O677yI3NxctW7bEL7/8UqUBMBERET18LP7RUm3x0RIREZH86Hv9tvgB8YiIiIh0YSJDREREssVEhoiIiGSLiQwRERHJFhMZIiIiki0mMkRERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZsvhXFNRWxcDFKpXKzJEQERGRviqu2zW9gMDqE5nbt28DAAICAswcCRERERnq9u3bcHNz0znf6t+1VF5ejuzsbLi4uEChUJg7nDqlUqkQEBCArKwsvmeqFliO0mFZSoPlKB2WpTRMUY5CCNy+fRv+/v6wsdHdEsbqa2RsbGzwyCOPmDsMs3J1deUfqARYjtJhWUqD5SgdlqU0pC7H6mpiKrCxLxEREckWExkiIiKSLSYyVsze3h6zZ8+Gvb29uUORNZajdFiW0mA5SodlKQ1zlqPVN/YlIiIi68UaGSIiIpItJjJEREQkW0xkiIiISLaYyBAREZFsMZGRuX379qF3797w9/eHQqHA1q1bNeYLIfDuu+/Cz88PDg4OiI+Px7lz58wTrIWrqSyHDx8OhUKh8enWrZt5grVgiYmJaN26NVxcXODj44M+ffrg7NmzGsvcuXMHCQkJaNiwIZydndG/f39cvXrVTBFbJn3KsWPHjlWOyXHjxpkpYsu1fPlyNG/eXD1YW2xsLH7++Wf1fB6P+qmpHM11PDKRkbnCwkK0aNECy5Yt0zr/ww8/xKeffooVK1bg8OHDcHJyQteuXXHnzp06jtTy1VSWANCtWzfk5OSoP+vWravDCOVh7969SEhIwKFDh/Drr7+itLQUXbp0QWFhoXqZN954Az/88AM2bdqEvXv3Ijs7G/369TNj1JZHn3IEgDFjxmgckx9++KGZIrZcjzzyCBYsWIBjx47h6NGjeOaZZ/D888/j77//BsDjUV81lSNgpuNRkNUAIJKTk9Xfy8vLha+vr1i0aJF62q1bt4S9vb1Yt26dGSKUjwfLUgghhg0bJp5//nmzxCNn165dEwDE3r17hRD3j0FbW1uxadMm9TLp6ekCgDh48KC5wrR4D5ajEEJ06NBBvP766+YLSsY8PDzE559/zuOxlirKUQjzHY+skbFimZmZyM3NRXx8vHqam5sb2rZti4MHD5oxMvnas2cPfHx80LRpU4wfPx7Xr183d0gWT6lUAgA8PT0BAMeOHUNpaanGcRkREYHAwEAel9V4sBwrfPvtt/Dy8kJ0dDRmzpyJoqIic4QnG2VlZVi/fj0KCwsRGxvL49FID5ZjBXMcj1b/0siHWW5uLgCgUaNGGtMbNWqknkf669atG/r164eQkBBkZGTgrbfeQvfu3XHw4EHUq1fP3OFZpPLyckyePBlxcXGIjo4GcP+4tLOzg7u7u8ayPC5101aOADBkyBAEBQXB398fJ06cwPTp03H27Fls2bLFjNFappMnTyI2NhZ37tyBs7MzkpOTERkZibS0NB6PBtBVjoD5jkcmMkR6Gjx4sPrfMTExaN68OUJDQ7Fnzx507tzZjJFZroSEBJw6dQp//PGHuUORNV3lOHbsWPW/Y2Ji4Ofnh86dOyMjIwOhoaF1HaZFa9q0KdLS0qBUKrF582YMGzYMe/fuNXdYsqOrHCMjI812PPLRkhXz9fUFgCqt769evaqeR8Z79NFH4eXlhfPnz5s7FIs0YcIE/Pjjj0hJScEjjzyinu7r64u7d+/i1q1bGsvzuNROVzlq07ZtWwDgMamFnZ0dwsLC8MQTTyAxMREtWrTAJ598wuPRQLrKUZu6Oh6ZyFixkJAQ+Pr6YteuXeppKpUKhw8f1nimSca5fPkyrl+/Dj8/P3OHYlGEEJgwYQKSk5Oxe/duhISEaMx/4oknYGtrq3Fcnj17FpcuXeJxWUlN5ahNWloaAPCY1EN5eTlKSkp4PNZSRTlqU1fHIx8tyVxBQYFGtpuZmYm0tDR4enoiMDAQkydPxrx589CkSROEhIRg1qxZ8Pf3R58+fcwXtIWqriw9PT0xd+5c9O/fH76+vsjIyMC0adMQFhaGrl27mjFqy5OQkIC1a9fi+++/h4uLi7qdgZubGxwcHODm5oZRo0ZhypQp8PT0hKurKyZOnIjY2Fg8+eSTZo7ectRUjhkZGVi7di169OiBhg0b4sSJE3jjjTfQvn17NG/e3MzRW5aZM2eie/fuCAwMxO3bt7F27Vrs2bMHO3bs4PFogOrK0azHY533kyJJpaSkCABVPsOGDRNC3O+CPWvWLNGoUSNhb28vOnfuLM6ePWveoC1UdWVZVFQkunTpIry9vYWtra0ICgoSY8aMEbm5ueYO2+JoK0MAIikpSb1McXGxeO2114SHh4dwdHQUffv2FTk5OeYL2gLVVI6XLl0S7du3F56ensLe3l6EhYWJqVOnCqVSad7ALdDIkSNFUFCQsLOzE97e3qJz585i586d6vk8HvVTXTma83hUCCGEaVMlIiIiItNgGxkiIiKSLSYyREREJFtMZIiIiEi2mMgQERGRbDGRISIiItliIkNERESyxUSGiIiIZIuJDBEREckWExmih0Bubi4mTpyIRx99FPb29ggICEDv3r013i9z4MAB9OjRAx4eHmjQoAFiYmKwZMkSlJWVqZe5cOECRo0ahZCQEDg4OCA0NBSzZ8/G3bt3Nba3atUqtGjRAs7OznB3d8djjz2GxMRE9fw5c+ZAoVCgW7duVWJdtGgRFAoFOnbsqNe+VaxLoVCgfv36CA4OxhtvvIGCggIDS4mI5IjvWiKychcuXEBcXBzc3d2xaNEixMTEoLS0FDt27EBCQgLOnDmD5ORkDBw4ECNGjEBKSgrc3d3x22+/Ydq0aTh48CA2btwIhUKBM2fOoLy8HCtXrkRYWBhOnTqFMWPGoLCwEIsXLwYArF69GpMnT8ann36KDh06oKSkBCdOnMCpU6c04vLz80NKSgouX76s8Vbn1atXIzAw0KB9jIqKwm+//YZ79+5h//79GDlyJIqKirBy5coqy969exd2dnZGlKTpWGJMRLJh8pcgEJFZde/eXTRu3FgUFBRUmXfz5k1RUFAgGjZsKPr161dl/rZt2wQAsX79ep3r//DDD0VISIj6+/PPPy+GDx9ebUyzZ88WLVq0EL169RLz5s1TT9+/f7/w8vIS48ePFx06dNBj7/63rsrGjBkjfH19NeavWrVKBAcHC4VCIYS4v++jRo0SXl5ewsXFRXTq1EmkpaWp15GWliY6duwonJ2dhYuLi3j88cfFkSNHhBBCXLhwQfTq1Uu4u7sLR0dHERkZKX766SchhBBJSUnCzc1NI57k5GRR+XRrbExEVBUfLRFZsRs3buCXX35BQkICnJycqsx3d3fHzp07cf36dbz55ptV5vfu3Rvh4eFYt26dzm0olUp4enqqv/v6+uLQoUO4ePFijfGNHDkSX375pfr76tWrMXTo0FrXTjg4OGg87jp//jy+++47bNmyBWlpaQCAF154AdeuXcPPP/+MY8eO4fHHH0fnzp1x48YNAMDQoUPxyCOP4MiRIzh27BhmzJgBW1tbAPffTF1SUoJ9+/bh5MmTWLhwIZydnQ2K0ZiYiKgqPloismLnz5+HEAIRERE6l/nnn38AAM2aNdM6PyIiQr2MtvV/9tln6sdKADB79mz069cPwcHBCA8PR2xsLHr06IEBAwbAxkbz3qlXr14YN24c9u3bhyeeeAIbN27EH3/8gdWrVxu6q2rHjh3D2rVr8cwzz6in3b17F19//TW8vb0BAH/88Qf+/PNPXLt2Dfb29gCAxYsXY+vWrdi8eTPGjh2LS5cuYerUqeqya9KkiXp9ly5dQv/+/RETEwMAePTRRw2O05iYiKgqJjJEVkwY8HJ7Q5YFgCtXrqBbt2544YUXMGbMGPV0Pz8/HDx4EKdOncK+fftw4MABDBs2DJ9//jl++eUXjWTG1tYWL730EpKSkvDf//4X4eHhaN68uUFxAMDJkyfh7OyMsrIy3L17Fz179sS///1v9fygoCB1wgAAx48fR0FBARo2bKixnuLiYmRkZAAApkyZgtGjR+Obb75BfHw8XnjhBYSGhgIAJk2ahPHjx2Pnzp2Ij49H//79DY7bmJiIqComMkRWrEmTJupGurqEh4cDANLT09GuXbsq89PT0xEZGakxLTs7G506dUK7du3wn//8R+t6o6OjER0djddeew3jxo3D008/jb1796JTp04ay40cORJt27bFqVOnMHLkSEN3EQDQtGlTbNu2DfXr14e/v3+VR1MPPlYrKCiAn58f9uzZU2Vd7u7uAO73hhoyZAh++ukn/Pzzz5g9ezbWr1+Pvn37YvTo0ejatSt++ukn7Ny5E4mJifjoo48wceJE2NjYVEkKS0tLq2zHmJiIqCq2kSGyYp6enujatSuWLVuGwsLCKvNv3bqFLl26wNPTEx999FGV+du2bcO5c+fw4osvqqdduXIFHTt2xBNPPIGkpKQqj4u0qUiEtMUQFRWFqKgonDp1CkOGDDFk99Ts7OwQFhaG4OBgvdrXPP7448jNzUX9+vURFham8fHy8lIvFx4ejjfeeAM7d+5Ev379kJSUpJ4XEBCAcePGYcuWLfjXv/6FVatWAQC8vb1x+/ZtjX2taAMjRUxEpImJDJGVW7ZsGcrKytCmTRt89913OHfuHNLT0/Hpp58iNjYWTk5OWLlyJb7//nuMHTsWJ06cwIULF/DFF19g+PDhGDBgAAYOHAjgf0lMYGAgFi9ejLy8POTm5iI3N1e9vfHjx+P999/H/v37cfHiRRw6dAivvPIKvL29ERsbqzXG3bt3Iycnp85qHuLj4xEbG4s+ffpg586duHDhAg4cOIC3334bR48eRXFxMSZMmIA9e/bg4sWL2L9/P44cOaJuRzR58mTs2LEDmZmZSE1NRUpKinpe27Zt4ejoiLfeegsZGRlYu3atRoNmY2MiIu34aInIyj366KNITU3F/Pnz8a9//Qs5OTnw9vbGE088geXLlwMABgwYgJSUFMyfPx9PP/007ty5gyZNmuDtt9/G5MmToVAoAAC//vorzp8/j/Pnz2uM/QL8r41NfHw8Vq9ejeXLl+P69evw8vJCbGwsdu3aVaX9RwVtPapMSaFQYPv27Xj77bcxYsQI5OXlwdfXF+3bt0ejRo1Qr149XL9+Ha+88gquXr0KLy8v9OvXD3PnzgUAlJWVISEhAZcvX4arqyu6deuGjz/+GMD9WrA1a9Zg6tSpWLVqFTp37ow5c+bU2Fi3ppiISDuFMLSFHxEREZGF4KMlIiIiki0mMkRk0ZydnXV+fv/9d3OHR0RmxkdLRGTRzp8/r3Ne48aN4eDgUIfREJGlYSJDREREssVHS0RERCRbTGSIiIhItpjIEBERkWwxkSEiIiLZYiJDREREssVEhoiIiGSLiQwRERHJFhMZIiIikq3/B80dznzoItdLAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding](./surrogate_embedding_usr.ipynb) file." ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHHCAYAAAC1G/yyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABm2klEQVR4nO3deXxMV/8H8M9k32STPZKIEEEi9hhqqzwJUm0ttVesLaWoR4u2ilZLq7W0j6ILnl+1aimt2mOLInZBbCVCkMWaGSGynt8fntzOSMLMZJKZST7v12tezD1n7v3em5m53znn3HNlQggBIiIiIgIAmBk6ACIiIiJjwuSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIhMxowZMyCTyTSqK5PJMGPGjAqNp2PHjujYsaPRro+IdMPkiIi0tmLFCshkMulhYWEBX19fDBkyBDdv3jR0eEandu3aasfLw8MD7dq1w4YNG/Sy/kePHmHGjBnYu3evXtZHVN0xOSIinX388cf46aefsGTJEnTt2hUrV65Ehw4d8Pjx4wrZ3ocffoicnJwKWXdFa9KkCX766Sf89NNPmDRpEtLS0tCzZ08sWbKk3Ot+9OgRZs6cyeSISE8sDB0AEZmurl27okWLFgCAESNGwM3NDZ9//jk2btyIPn366H17FhYWsLAwza8tX19fDBo0SHo+ePBg1K1bF/Pnz8eoUaMMGBkRPY0tR0SkN+3atQMAJCcnqy2/cOECevfuDVdXV9jY2KBFixbYuHGjWp38/HzMnDkT9erVg42NDWrWrIkXXngBcXFxUp3Sxhzl5ubinXfegbu7O2rUqIGXX34ZN27cKBHbkCFDULt27RLLS1vn8uXL8eKLL8LDwwPW1tZo2LAhFi9erNWxeB4vLy80aNAAKSkpz6x369YtDB8+HJ6enrCxsUF4eDj++9//SuVXr16Fu7s7AGDmzJlS111Fj7ciqspM8ycYERmlq1evAgBcXFykZWfPnkXbtm3h6+uLKVOmwN7eHmvWrMGrr76K3377DT169ADwJEmZPXs2RowYgVatWkGpVOLYsWM4ceIE/vWvf5W5zREjRmDlypUYMGAA2rRpg927dyMmJqZc+7F48WI0atQIL7/8MiwsLPDnn3/irbfeQlFREcaMGVOudRfLz8/H9evXUbNmzTLr5OTkoGPHjrh8+TLGjh2LwMBArF27FkOGDEFWVhbGjx8Pd3d3LF68GKNHj0aPHj3Qs2dPAEDjxo31EidRtSSIiLS0fPlyAUDs3LlT3L59W1y/fl2sW7dOuLu7C2tra3H9+nWpbufOnUVYWJh4/PixtKyoqEi0adNG1KtXT1oWHh4uYmJinrnd6dOnC9WvrcTERAFAvPXWW2r1BgwYIACI6dOnS8tiY2NFQEDAc9cphBCPHj0qUS86OlrUqVNHbVmHDh1Ehw4dnhmzEEIEBASIqKgocfv2bXH79m1x6tQp0a9fPwFAvP3222Wub8GCBQKAWLlypbQsLy9PyOVy4eDgIJRKpRBCiNu3b5fYXyLSHbvViEhnkZGRcHd3h5+fH3r37g17e3ts3LgRtWrVAgDcu3cPu3fvRp8+ffDgwQPcuXMHd+7cwd27dxEdHY1Lly5JV7c5Ozvj7NmzuHTpksbb37JlCwBg3LhxassnTJhQrv2ytbWV/q9QKHDnzh106NABV65cgUKh0GmdO3bsgLu7O9zd3REeHo61a9fi9ddfx+eff17ma7Zs2QIvLy/0799fWmZpaYlx48YhOzsb8fHxOsVCRM/GbjUi0tmiRYsQHBwMhUKBZcuWYd++fbC2tpbKL1++DCEEpk2bhmnTppW6jlu3bsHX1xcff/wxXnnlFQQHByM0NBRdunTB66+//szuoWvXrsHMzAxBQUFqy+vXr1+u/Tpw4ACmT5+OhIQEPHr0SK1MoVDAyclJ63VGRERg1qxZkMlksLOzQ4MGDeDs7PzM11y7dg316tWDmZn679gGDRpI5USkf0yOiEhnrVq1kq5We/XVV/HCCy9gwIABuHjxIhwcHFBUVAQAmDRpEqKjo0tdR926dQEA7du3R3JyMv744w/s2LEDP/zwA+bPn48lS5ZgxIgR5Y61rMkjCwsL1Z4nJyejc+fOCAkJwbx58+Dn5wcrKyts2bIF8+fPl/ZJW25uboiMjNTptURUuZgcEZFemJubY/bs2ejUqRP+85//YMqUKahTpw6AJ11BmiQGrq6uGDp0KIYOHYrs7Gy0b98eM2bMKDM5CggIQFFREZKTk9Vaiy5evFiirouLC7Kyskosf7r15c8//0Rubi42btwIf39/afmePXueG7++BQQE4PTp0ygqKlJrPbpw4YJUDpSd+BGRbjjmiIj0pmPHjmjVqhUWLFiAx48fw8PDAx07dsTSpUuRnp5eov7t27el/9+9e1etzMHBAXXr1kVubm6Z2+vatSsA4Ouvv1ZbvmDBghJ1g4KCoFAocPr0aWlZenp6iVmqzc3NAQBCCGmZQqHA8uXLy4yjonTr1g0ZGRlYvXq1tKygoADffPMNHBwc0KFDBwCAnZ0dAJSa/BGR9thyRER69e677+K1117DihUrMGrUKCxatAgvvPACwsLCMHLkSNSpUweZmZlISEjAjRs3cOrUKQBAw4YN0bFjRzRv3hyurq44duwY1q1bh7Fjx5a5rSZNmqB///749ttvoVAo0KZNG+zatQuXL18uUbdfv36YPHkyevTogXHjxuHRo0dYvHgxgoODceLECaleVFQUrKys0L17d7z55pvIzs7G999/Dw8Pj1ITvIr0xhtvYOnSpRgyZAiOHz+O2rVrY926dThw4AAWLFiAGjVqAHgygLxhw4ZYvXo1goOD4erqitDQUISGhlZqvERVhqEvlyMi01N8Kf/Ro0dLlBUWFoqgoCARFBQkCgoKhBBCJCcni8GDBwsvLy9haWkpfH19xUsvvSTWrVsnvW7WrFmiVatWwtnZWdja2oqQkBDx6aefiry8PKlOaZfd5+TkiHHjxomaNWsKe3t70b17d3H9+vVSL23fsWOHCA0NFVZWVqJ+/fpi5cqVpa5z48aNonHjxsLGxkbUrl1bfP7552LZsmUCgEhJSZHqaXMp//OmKShrfZmZmWLo0KHCzc1NWFlZibCwMLF8+fISrz148KBo3ry5sLKy4mX9ROUkE0Kl7ZiIiIiomuOYIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUcBJIDRUVFSEtLQ01atTgVP1EREQmQgiBBw8ewMfHp8RNnMvC5EhDaWlp8PPzM3QYREREpIPr16+jVq1aGtVlcqSh4mn6r1+/DkdHRwNHQ0RERJpQKpXw8/OTzuOaYHKkoeKuNEdHRyZHREREJkabITEckE1ERESkgskRERERkQomR0REREQqOOaIiMiIFRYWIj8/39BhEBktS0tLmJub63WdTI6IiIyQEAIZGRnIysoydChERs/Z2RleXl56m4eQyRERkREqTow8PDxgZ2fHyWeJSiGEwKNHj3Dr1i0AgLe3t17Wy+SIiMjIFBYWSolRzZo1DR0OkVGztbUFANy6dQseHh566WLjgGwiIiNTPMbIzs7OwJEQmYbiz4q+xucxOSIiMlLsSiPSjL4/K0yOiIiIiFQwOSIiIqIS9u7dC5lMVu4rJmvXro0FCxboJabKwuTIwNIVOTiYfAfpihxDh0JEpBcZGRl4++23UadOHVhbW8PPzw/du3fHrl27pDoHDx5Et27d4OLiAhsbG4SFhWHevHkoLCyU6ly9ehXDhw9HYGAgbG1tERQUhOnTpyMvL09te99//z3Cw8Ph4OAAZ2dnNG3aFLNnz5bKZ8yYAZlMhi5dupSIde7cuZDJZOjYsaPG+6dUKvHBBx8gJCQENjY28PLyQmRkJNavXw8hhFTv7Nmz6NOnD9zd3WFtbY3g4GB89NFHePTokVTn3r17ePvtt1G/fn3Y2trC398f48aNg0Kh0CiWq1evQiaTlfo4dOiQxvvUsWNHTJgwQeP6VR2vVjOg1UdTMXX9GRQJwEwGzO4Zhr4t/Q0dFhGRzq5evYq2bdvC2dkZc+fORVhYGPLz87F9+3aMGTMGFy5cwIYNG9CnTx8MHToUe/bsgbOzM3bu3In33nsPCQkJWLNmDWQyGS5cuICioiIsXboUdevWRVJSEkaOHImHDx/iyy+/BAAsW7YMEyZMwNdff40OHTogNzcXp0+fRlJSklpc3t7e2LNnD27cuIFatWpJy5ctWwZ/f82/d7OysvDCCy9AoVBg1qxZaNmyJSwsLBAfH4/33nsPL774IpydnXHo0CFERkYiMjISmzdvhqenJ44cOYJ///vf2LVrF/bs2QMrKyukpaUhLS0NX375JRo2bIhr165h1KhRSEtLw7p16zSOa+fOnWjUqJHaMl7pWA7CgL799lsRFhYmatSoIWrUqCFat24ttmzZIpXn5OSIt956S7i6ugp7e3vRs2dPkZGRobaOa9euiW7duglbW1vh7u4uJk2aJPLz89Xq7NmzRzRt2lRYWVmJoKAgsXz5cq1jVSgUAoBQKBQ67evT0rIeicApm0TA5H8edaZsFmlZj/SyfiIyXTk5OeLcuXMiJyfH0KForWvXrsLX11dkZ2eXKLt//77Izs4WNWvWFD179ixRvnHjRgFA/Prrr2Wu/4svvhCBgYHS81deeUUMGTLkmTFNnz5dhIeHi5deeknMmjVLWn7gwAHh5uYmRo8eLTp06KDB3gkxevRoYW9vL27evFmi7MGDByI/P18UFRWJhg0bihYtWojCwkK1OomJiUImk4k5c+aUuY01a9YIKyurEuey0qSkpAgA4uTJk2XWKd7///u//xMBAQHC0dFR9O3bVyiVSiGEELGxsQKA2iMlJUXs2bNHABA7d+4UzZs3F7a2tkIul4sLFy5I6758+bJ4+eWXhYeHh7C3txctWrQQcXFxatsPCAgQ8+fPl54DEN9++63o0qWLsLGxEYGBgWLt2rVSeadOncSYMWPU1nHr1i1haWkpdu7cWeo+Puszo8v526DdarVq1cKcOXNw/PhxHDt2DC+++CJeeeUVnD17FgDwzjvv4M8//8TatWsRHx+PtLQ09OzZU3p9YWEhYmJikJeXh4MHD+K///0vVqxYgY8++kiqk5KSgpiYGHTq1AmJiYmYMGECRowYge3bt1f6/qpKufMQRUJ9WaEQuHrnUekvICLSQWV23d+7dw/btm3DmDFjYG9vX6Lc2dkZO3bswN27dzFp0qQS5d27d0dwcDBWrVpV5jYUCgVcXV2l515eXjh06BCuXbv23PiGDRuGFStWSM+XLVuGgQMHwsrK6rmvBYCioiL8+uuvGDhwIHx8fEqUOzg4wMLCAomJiTh37hwmTpwIMzP102x4eDgiIyOfu4+Ojo6wsNBf505ycjJ+//13bNq0CZs2bUJ8fDzmzJkDAFi4cCHkcjlGjhyJ9PR0pKenw8/PT3rtBx98gK+++grHjh2DhYUFhg0bJpVlZ2ejW7du2LVrF06ePIkuXbqge/fuSE1NfWY806ZNQ69evXDq1CkMHDgQ/fr1w/nz5wEAI0aMwC+//ILc3Fyp/sqVK+Hr64sXX3xRb8fkmTROoyqJi4uL+OGHH0RWVpawtLRUyybPnz8vAIiEhAQhhBBbtmwRZmZmaq1JixcvFo6OjiI3N1cIIcR7770nGjVqpLaNvn37iujoaK3iYssREVUWfbUc/XrkmvQ9Ezhlk/j1yDU9RVi6w4cPCwBi/fr1ZdaZM2eOACDu379favnLL78sGjRoUGrZpUuXhKOjo/juu++kZWlpaaJ169YCgAgODhaxsbFi9erVai02xS0neXl5wsPDQ8THx4vs7GxRo0YNcerUKTF+/HiNWo4yMzMFADFv3rxn1vv111+f2Zozbtw4YWtrW2rZ7du3hb+/v3j//fefG48Q/7Qc2draCnt7e7VHsenTpws7OzuppUgIId59910REREhPe/QoYMYP3682rpVW46Kbd68WQB45nuzUaNG4ptvvpGel9ZyNGrUKLXXREREiNGjRwshnrz/XVxcxOrVq6Xyxo0bixkzZpS5zSrVcqSqsLAQv/76Kx4+fAi5XI7jx48jPz8fkZGRUp2QkBD4+/sjISEBAJCQkICwsDB4enpKdaKjo6FUKqXWp4SEBLV1FNcpXkdZcnNzoVQq1R765O1ki9k9w2D+v7kZzGUyfNYzFN5OtnrdDhFVT+mKHGlMIwAUCeD99UkV2oIkhHh+JR3qAsDNmzfRpUsXvPbaaxg5cqS03NvbGwkJCThz5gzGjx+PgoICxMbGokuXLigqKlJbh6WlJQYNGoTly5dj7dq1CA4ORuPGjSssZm3rK5VKxMTEoGHDhpgxY4ZWr129ejUSExPVHqpq166NGjVqSM+9vb2lW248j+oxKr49R/Frs7OzMWnSJDRo0ADOzs5wcHDA+fPnn9tyJJfLSzwvbjmysbHB66+/jmXLlgEATpw4gaSkJAwZMkSjePXB4AOyz5w5A7lcjsePH8PBwQEbNmxAw4YNkZiYCCsrKzg7O6vV9/T0REZGBoAnV0SoJkbF5cVlz6qjVCqRk5MjTTv+tNmzZ2PmzJn62MUy9W3pj/bB7rh65xFqu9kxMSIivXlW131FfdfUq1dPGkhdluDgYADA+fPn0aZNmxLl58+fR8OGDdWWpaWloVOnTmjTpg2+++67UtcbGhqK0NBQvPXWWxg1ahTatWuH+Ph4dOrUSa3esGHDEBERgaSkJLXuIU24u7vD2dn5mfsHqO9j06ZNS5SfP39eqlPswYMH6NKlC2rUqIENGzbA0tJSq9j8/PxQt27dMsufXp9MJiuRPGry2uLJFotfO2nSJMTFxeHLL79E3bp1YWtri969e5e4olBbI0aMQJMmTXDjxg0sX74cL774IgICAsq1Tm0YvOWofv36SExMxOHDhzF69GjExsbi3Llzhg4LU6dOhUKhkB7Xr1+vkO14O9lCHlSTiRER6VWgmz3Mnpo02FwmQ223irsliaurK6Kjo7Fo0SI8fPiwRHlWVhaioqLg6uqKr776qkT5xo0bcenSJfTv319advPmTXTs2BHNmzfH8uXLS4zhKU1xclVaDI0aNUKjRo2QlJSEAQMGaLN7MDMzQ79+/fDzzz8jLS2tRHl2djYKCgrQpEkThISEYP78+SUSkFOnTmHnzp1q+6hUKhEVFQUrKyts3LgRNjY2WsWlD1ZWVmrTKGjqwIEDGDJkCHr06IGwsDB4eXnh6tWrz33d09MMHDp0CA0aNJCeh4WFoUWLFvj+++/xyy+/aJ3IlpfBkyMrKyvUrVsXzZs3x+zZsxEeHo6FCxfCy8sLeXl5JSafyszMhJeXF4AnA/EyMzNLlBeXPauOo6Njma1GAGBtbQ1HR0e1BxGRqTBU1/2iRYtQWFiIVq1a4bfffsOlS5dw/vx5fP3115DL5bC3t8fSpUvxxx9/4I033sDp06dx9epV/PjjjxgyZAh69+6NPn36APgnMfL398eXX36J27dvIyMjQ+oZAIDRo0fjk08+wYEDB3Dt2jUcOnQIgwcPhru7e4mum2K7d+9Genp6iZ4JTXz66afw8/NDREQE/u///g/nzp3DpUuXsGzZMjRt2hTZ2dmQyWT48ccfce7cOfTq1QtHjhxBamoq1q5di+7du0Mul0tzChUnRg8fPsSPP/4IpVIp7aM2ycrdu3el1xU/Hj9+rPHra9eujcOHD+Pq1au4c+eOxq1K9erVw/r165GYmIhTp05hwIABGr127dq1WLZsGf7++29Mnz4dR44cwdixY9XqjBgxAnPmzIEQAj169NB4X/RC49FJlaRTp04iNjZWGpC9bt06qezChQulDsjOzMyU6ixdulQ4OjqKx48fCyGeDMgODQ1V20b//v0NPiCbiKgs+ryUPy3rkTh4+U6lXuyRlpYmxowZIwICAoSVlZXw9fUVL7/8stizZ49UZ9++fSI6Olo4OjoKKysr0ahRI/Hll1+KgoICqc7y5ctLXGJe/Ci2bt060a1bN+Ht7S2srKyEj4+P6NWrlzh9+rRUp3hAdlk0HZBdLCsrS0yZMkXUq1dPWFlZCU9PTxEZGSk2bNggioqKpHqnT58WvXr1Eq6ursLS0lIEBQWJDz/8UDx8+FCqUzzoubRHSkrKc2MpHpBd2mPVqlVl7v/8+fNFQECA9PzixYuidevWwtbWtsSl/KqD50+ePKkWW0pKiujUqZOwtbUVfn5+4j//+U+Jwd2lDchetGiR+Ne//iWsra1F7dq11QZfF3vw4IGws7MTb7311nOPg74HZBs0OZoyZYqIj48XKSkp4vTp02LKlClCJpOJHTt2CCGEGDVqlPD39xe7d+8Wx44dE3K5XMjlcun1BQUFIjQ0VERFRYnExESxbds24e7uLqZOnSrVuXLlirCzsxPvvvuuOH/+vFi0aJEwNzcX27Zt0ypWJkdEVFlMeZ4joucBIDZs2PDceikpKcLMzEwcP378uXX1nRwZdED2rVu3MHjwYKSnp8PJyQmNGzfG9u3b8a9//QsAMH/+fJiZmaFXr17Izc1FdHQ0vv32W+n15ubm2LRpE0aPHi0118bGxuLjjz+W6gQGBmLz5s145513sHDhQtSqVQs//PADoqOjK31/iYiI6Nny8/Nx9+5dfPjhh2jdujWaNWtW6THI/pfF0XMolUo4OTlJk3MREVWUx48fIyUlBYGBgQYZnFudOTg4lFm2detWtGvXrhKjAUaNGoWVK1eWWjZo0CAsWbKkUuPRB5lMhg0bNuDVV18ttXzv3r3o1KkTgoODsW7dOoSFhT13nc/6zOhy/jb4pfxERETG4un5gVT5+vpWXiD/8/HHH5c6mzgAk/2h/rw2mY4dO2o9R5S+MTkiIiL6n2fNFWQIHh4e8PDwMHQY1Y7BL+UnIiIiMiZMjoiIjJSmc80QVXf6/qywW42IyMhYWVnBzMwMaWlpcHd3h5WVlXTbBiL6hxACeXl5uH37NszMzGBlZaWX9TI5IiIyMmZmZggMDER6enqpt6kgInV2dnbw9/fX6PYymmByRERkhKysrODv74+CggKd7nlFVF2Ym5vDwsJCr62rTI6IiIyUTCaDpaWl1ndoJ6Ly4YBsIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIhUGTo9mzZ6Nly5aoUaMGPDw88Oqrr+LixYtqdTp27AiZTKb2GDVqlFqd1NRUxMTEwM7ODh4eHnj33XdRUFCgVmfv3r1o1qwZrK2tUbduXaxYsaKid4+IiIhMkEGTo/j4eIwZMwaHDh1CXFwc8vPzERUVhYcPH6rVGzlyJNLT06XHF198IZUVFhYiJiYGeXl5OHjwIP773/9ixYoV+Oijj6Q6KSkpiImJQadOnZCYmIgJEyZgxIgR2L59e6XtKxEREZkGmRBCGDqIYrdv34aHhwfi4+PRvn17AE9ajpo0aYIFCxaU+pqtW7fipZdeQlpaGjw9PQEAS5YsweTJk3H79m1YWVlh8uTJ2Lx5M5KSkqTX9evXD1lZWdi2bZtGsSmVSjg5OUGhUMDR0bF8O0pERESVQpfzt1GNOVIoFAAAV1dXteU///wz3NzcEBoaiqlTp+LRo0dSWUJCAsLCwqTECACio6OhVCpx9uxZqU5kZKTaOqOjo5GQkFBRu0JEREQmysLQARQrKirChAkT0LZtW4SGhkrLBwwYgICAAPj4+OD06dOYPHkyLl68iPXr1wMAMjIy1BIjANLzjIyMZ9ZRKpXIycmBra1tiXhyc3ORm5srPVcqlfrZUSIiIjJqRpMcjRkzBklJSdi/f7/a8jfeeEP6f1hYGLy9vdG5c2ckJycjKCiowuKZPXs2Zs6cWWHrJyIiIuNkFN1qY8eOxaZNm7Bnzx7UqlXrmXUjIiIAAJcvXwYAeHl5ITMzU61O8XMvL69n1nF0dCy11QgApk6dCoVCIT2uX7+u/Y4RERGRyTFociSEwNixY7Fhwwbs3r0bgYGBz31NYmIiAMDb2xsAIJfLcebMGdy6dUuqExcXB0dHRzRs2FCqs2vXLrX1xMXFQS6Xl7kda2trODo6qj2IiIio6jNocjRmzBisXLkSv/zyC2rUqIGMjAxkZGQgJycHAJCcnIxPPvkEx48fx9WrV7Fx40YMHjwY7du3R+PGjQEAUVFRaNiwIV5//XWcOnUK27dvx4cffogxY8bA2toaADBq1ChcuXIF7733Hi5cuIBvv/0Wa9aswTvvvGOwfSciIiLjZNBL+WUyWanLly9fjiFDhuD69esYNGgQkpKS8PDhQ/j5+aFHjx748MMP1Vpyrl27htGjR2Pv3r2wt7dHbGws5syZAwuLf4ZU7d27F++88w7OnTuHWrVqYdq0aRgyZIjGsfJSfiIiItOjy/nbqOY5MmZMjoiIiEyPyc9zRERERGRoTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEgFkyMiIiIiFUyOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIhU7J0Z49e/QdBxEREZFR0Ck56tKlC4KCgjBr1ixcv35d3zERERERGYxOydHNmzcxduxYrFu3DnXq1EF0dDTWrFmDvLw8fcdHREREVKl0So7c3NzwzjvvIDExEYcPH0ZwcDDeeust+Pj4YNy4cTh16pS+4yQiIiKqFOUekN2sWTNMnToVY8eORXZ2NpYtW4bmzZujXbt2OHv2rD5iJCIiIqo0OidH+fn5WLduHbp164aAgABs374d//nPf5CZmYnLly8jICAAr732mj5jJSIiIqpwMiGE0PZFb7/9NlatWgUhBF5//XWMGDECoaGhanUyMjLg4+ODoqIivQVrSEqlEk5OTlAoFHB0dDR0OERERKQBXc7fFrps6Ny5c/jmm2/Qs2dPWFtbl1rHzc2Nl/wTERGRydGp5ag6YssRERGR6am0liMAuHjxIr755hucP38eANCgQQO8/fbbqF+/vq6rJCIiIjI4nQZk//bbbwgNDcXx48cRHh6O8PBwnDhxAqGhofjtt9/0HSMRERFRpdGpWy0oKAgDBw7Exx9/rLZ8+vTpWLlyJZKTk/UWoLFgtxoREZHp0eX8rVPLUXp6OgYPHlxi+aBBg5Cenq7LKomIiIiMgk7JUceOHfHXX3+VWL5//360a9eu3EERERERGYpOA7JffvllTJ48GcePH0fr1q0BAIcOHcLatWsxc+ZMbNy4Ua0uERERkanQacyRmZlmDU4ymQyFhYVaB2WMOOaIiIjI9FTapfxVZdZrIiIioqeV+8az5TF79my0bNkSNWrUgIeHB1599VVcvHhRrc7jx48xZswY1KxZEw4ODujVqxcyMzPV6qSmpiImJgZ2dnbw8PDAu+++i4KCArU6e/fuRbNmzWBtbY26detixYoVFb17REREZII0bjn6+uuvNV7puHHjNKoXHx+PMWPGoGXLligoKMD777+PqKgonDt3Dvb29gCAd955B5s3b8batWvh5OSEsWPHomfPnjhw4AAAoLCwEDExMfDy8sLBgwelK+ksLS3x2WefAQBSUlIQExODUaNG4eeff8auXbswYsQIeHt7Izo6WuP9IiIioqpP4zFHgYGBmq1QJsOVK1d0Cub27dvw8PBAfHw82rdvD4VCAXd3d/zyyy/o3bs3AODChQto0KABEhIS0Lp1a2zduhUvvfQS0tLS4OnpCQBYsmQJJk+ejNu3b8PKygqTJ0/G5s2bkZSUJG2rX79+yMrKwrZt2zSKjWOOiIiITE+FjjlKSUnROTBNKRQKAICrqysA4Pjx48jPz0dkZKRUJyQkBP7+/lJylJCQgLCwMCkxAoDo6GiMHj0aZ8+eRdOmTZGQkKC2juI6EyZMKDOW3Nxc5ObmSs+VSqU+dpGIiIiMnEHHHKkqKirChAkT0LZtW4SGhgIAMjIyYGVlBWdnZ7W6np6eyMjIkOqoJkbF5cVlz6qjVCqRk5NTajyzZ8+Gk5OT9PDz8yv3PhIREZHx0/nGszdu3MDGjRuRmpqKvLw8tbJ58+Zpvb4xY8YgKSkJ+/fv1zUkvZo6dSomTpwoPVcqlUyQiIiIqgGdkqNdu3bh5ZdfRp06dXDhwgWEhobi6tWrEEKgWbNmWq9v7Nix2LRpE/bt24datWpJy728vJCXl4esrCy11qPMzEx4eXlJdY4cOaK2vuKr2VTrPH2FW2ZmJhwdHWFra1tqTNbW1rC2ttZ6X4iIiMi06dStNnXqVEyaNAlnzpyBjY0NfvvtN1y/fh0dOnTAa6+9pvF6hBAYO3YsNmzYgN27d5cY9N28eXNYWlpi165d0rKLFy8iNTUVcrkcACCXy3HmzBncunVLqhMXFwdHR0c0bNhQqqO6juI6xesgIiIikggdODg4iMuXLwshhHB2dhZJSUlCCCESExNFQECAxusZPXq0cHJyEnv37hXp6enS49GjR1KdUaNGCX9/f7F7925x7NgxIZfLhVwul8oLCgpEaGioiIqKEomJiWLbtm3C3d1dTJ06Vapz5coVYWdnJ959911x/vx5sWjRImFubi62bdumcawKhUIAEAqFQuPXEBERkWHpcv7WqeXI3t5eGmfk7e2N5ORkqezOnTsar2fx4sVQKBTo2LEjvL29pcfq1aulOvPnz8dLL72EXr16oX379vDy8sL69eulcnNzc2zatAnm5uaQy+UYNGgQBg8ejI8//liqExgYiM2bNyMuLg7h4eH46quv8MMPP3COIyIiIipBp3urvfrqq4iJicHIkSMxadIk/PHHHxgyZAjWr18PFxcX7Ny5syJiNSjOc0RERGR6Ku3eavPmzUN2djYAYObMmcjOzsbq1atRr149na5UIyIiIjIWOrUcVUdsOSIiIjI9ldZyVCwvLw+3bt1CUVGR2nJ/f//yrJaIiIjIYHRKjv7++28MHz4cBw8eVFsuhIBMJkNhYaFegiMiIiKqbDolR0OHDoWFhQU2bdoEb29vyGQyfcdFREREZBA6JUeJiYk4fvw4QkJC9B0PERERkUHpNM9Rw4YNtZrPiIiIiMhUaJwcKZVK6fH555/jvffew969e3H37l21MqVSWZHxEhEREVUojbvVnJ2d1cYWCSHQuXNntTockE1ERESmTuPkaM+ePRUZBxEREZFR0Dg56tChg/T/1NRU+Pn5lbhKTQiB69ev6y86IiIiokqm04DswMBA3L59u8Tye/fuITAwsNxBERERERmKTslR8diip2VnZ8PGxqbcQREREREZilbzHE2cOBEAIJPJMG3aNNjZ2UllhYWFOHz4MJo0aaLXAImIiIgqk1bJ0cmTJwE8aTk6c+YMrKyspDIrKyuEh4dj0qRJ+o2QiIiIqBJplRwVX7E2dOhQLFy4kHenJyIioipHp9uHLF++XN9xEBERERkFnZKjhw8fYs6cOdi1axdu3bqFoqIitfIrV67oJTgiIiKiyqZTcjRixAjEx8fj9ddfh7e3d6lXrhERERGZIp2So61bt2Lz5s1o27atvuMhIiIiMiid5jlycXGBq6urvmMhIiIiMjidkqNPPvkEH330ER49eqTveIiIiIgMSqduta+++grJycnw9PRE7dq1YWlpqVZ+4sQJvQRHREREVNl0So5effVVPYdBREREZBxkQghh6CBMgVKphJOTExQKBSe/JCIiMhG6nL+1GnN05MgRFBYWllmem5uLNWvWaLNKIiIiIqOiVXIkl8tx9+5d6bmjo6PahI9ZWVno37+//qIjIiIiqmRaJUdP98CV1iPHXjoiIiIyZTpdyv8snC2biIiITJnekyMiIiIiU6b1pfznzp1DRkYGgCddaBcuXEB2djYA4M6dO/qNjoiIiKiSaXUpv5mZGWQyWanjioqXy2SyZ17RZqp4KT8REZHp0eX8rVXLUUpKik6BEREREZkKrZKjgIAArVb+1ltv4eOPP4abm5tWryMiIiIylAodkL1y5UoolcqK3AQRERGRXlVocsQ5j4iIiMjU8FJ+IiIiIhVMjoiIiIhUMDkiIiIiUsHkiIiIiEhFhSZHgwYN4oSJREREZFJ0So6KiorKXJ6amio9X7x4Mec4IiIiIpOiVXKkVCrRp08f2Nvbw9PTEx999JHarUJu376NwMBAvQdJREREVFm0miF72rRpOHXqFH766SdkZWVh1qxZOHHiBNavXw8rKysAnNuIiIiITJtWLUe///47li5dit69e2PEiBE4duwYbt++je7duyM3NxfAkxvQamrfvn3o3r07fHx8IJPJ8Pvvv6uVDxkyBDKZTO3RpUsXtTr37t3DwIED4ejoCGdnZwwfPhzZ2dlqdU6fPo127drBxsYGfn5++OKLL7TZbSIiIqpGtEqObt++rXZ/NTc3N+zcuRMPHjxAt27d8OjRI602/vDhQ4SHh2PRokVl1unSpQvS09Olx6pVq9TKBw4ciLNnzyIuLg6bNm3Cvn378MYbb0jlSqUSUVFRCAgIwPHjxzF37lzMmDED3333nVaxEhERUfWgVbeav78/zp8/rzauqEaNGtixYweioqLQo0cPrTbetWtXdO3a9Zl1rK2t4eXlVWrZ+fPnsW3bNhw9ehQtWrQAAHzzzTfo1q0bvvzyS/j4+ODnn39GXl4eli1bBisrKzRq1AiJiYmYN2+eWhJFREREBGjZchQVFYXly5eXWO7g4IDt27fDxsZGb4EV27t3Lzw8PFC/fn2MHj0ad+/elcoSEhLg7OwsJUYAEBkZCTMzMxw+fFiq0759e2lMFABER0fj4sWLuH//vt7jJSIiItOmVcvRzJkzkZaWVmpZjRo1EBcXhxMnTuglMOBJl1rPnj0RGBiI5ORkvP/+++jatSsSEhJgbm6OjIwMeHh4qL3GwsICrq6uyMjIAABkZGSUuILO09NTKnNxcSl127m5udI4KuBJ9xwRERFVfVolRy4uLmUmE8CTBKlDhw7lDqpYv379pP+HhYWhcePGCAoKwt69e9G5c2e9bac0s2fPxsyZMyt0G0RERGR8tJ4EsqCgAHPnzkWzZs3g4OAABwcHNGvWDF9++SXy8/MrIkZJnTp14ObmhsuXLwMAvLy8cOvWrRLx3bt3Txqn5OXlhczMTLU6xc/LGssEAFOnToVCoZAe169f1+euEBERkZHSKjnKyclBx44dMWXKFLi7u2PEiBEYMWIE3N3dMXnyZHTu3BmPHz+uqFhx48YN3L17F97e3gAAuVyOrKwsHD9+XKqze/duFBUVISIiQqqzb98+tcQtLi4O9evXf2YrmLW1NRwdHdUeREREVPVp1a02Z84cXL9+HSdPnkTjxo3Vyk6dOoWXX34Zc+bMwYwZMzRaX3Z2ttQKBAApKSlITEyEq6srXF1dMXPmTPTq1QteXl5ITk7Ge++9h7p16yI6OhoA0KBBA3Tp0gUjR47EkiVLkJ+fj7Fjx6Jfv37w8fEBAAwYMAAzZ87E8OHDMXnyZCQlJWHhwoWYP3++NrtORERE1YXQQnBwsFi3bl2Z5WvWrBH16tXTeH179uwRAEo8YmNjxaNHj0RUVJRwd3cXlpaWIiAgQIwcOVJkZGSorePu3buif//+wsHBQTg6OoqhQ4eKBw8eqNU5deqUeOGFF4S1tbXw9fUVc+bM0Wa3hRBCKBQKAUAoFAqtX0tERESGocv5WyaE5vf7sLGxwaVLl+Dn51dq+fXr11GvXr0K7VozFKVSCScnJygUCnaxERERmQhdzt9ajTlydHQsMQBaVUZGBmrUqKHNKomIiIiMilbJUadOnfDZZ5+VWT5nzhx06tSp3EERERERGYpWA7KnT5+OiIgItG7dGhMnTkRISAiEEDh//jzmz5+Pc+fO4dChQxUVKxEREVGF0yo5atiwIeLi4jB8+HD069cPMpkMACCEQEhICHbs2IFGjRpVSKBERERElUGr5AgAWrdujbNnzyIxMRF///03ACA4OBhNmjTRd2xERERElU7r5EipVMLBwQFNmjRRS4iKioqQnZ3NK7mIiIjIpGk1IHvDhg1o0aJFqZfq5+TkoGXLlvjzzz/1FhwRERFRZdMqOVq8eDHee+892NnZlSizt7fH5MmT8Z///EdvwRERERFVNq2So6SkJHTs2LHM8vbt2+PMmTPljYmIiIjIYLRKju7fv4+CgoIyy/Pz83H//v1yB0VERERkKFolR7Vr18axY8fKLD927BgCAgLKHRQRERGRoWiVHPXs2RMffPABMjMzS5RlZGTgww8/RK9evfQWHBEREVFl0+rGsw8ePIBcLkdqaioGDRqE+vXrAwAuXLiAn3/+GX5+fjh06FCVvL8abzxLRERkenQ5f2s1z1GNGjVw4MABTJ06FatXr5bGFzk7O2PQoEH49NNPq2RiRERERNWHVi1HqoQQuHPnDoQQcHd3l24lourAgQNo0aIFrK2tyx2oobHliIiIyPTocv7WasyRKplMBnd3d3h4eJSaGAFA165dcfPmTV03QTpKV+TgYPIdpCtyDB0KERGRydH69iHa0LFRisph9dFUTF1/BkUCMJMBs3uGoW9Lf0OHRUREZDJ0bjki45OuyJESIwAoEsD765PYgkRERKQFJkdVSMqdh1JiVKxQCFy988gwAREREZkgJkdVSKCbPcyeGv5lLpOhtlvJe+ERERFR6So0OSproDZVDG8nW8zuGQbz/x13c5kMn/UMhbeTrYEjIyIiMh0ckF3F9G3pj/bB7rh65xFqu9kxMSIiItJShSZHDx48qMjVUxm8nWyZFBEREelIq+ToxRdf1Kje7t27dQqGiIiIyNC0So727t2LgIAAxMTEwNLSsqJiIiIiIjIYrZKjzz//HMuXL8fatWsxcOBADBs2DKGhoRUVGxEREVGl0+pqtXfffRfnzp3D77//jgcPHqBt27Zo1aoVlixZAqVSWVExEhEREVUanW88CwCPHj3C2rVrsWjRIpw7dw5paWlV9qasvPEsERGR6anUG88CwIkTJxAfH4/z588jNDSU45CIiIjI5GmdHKWlpeGzzz5DcHAwevfuDVdXVxw+fBiHDh2CrS0vHyciIiLTptWA7G7dumHPnj2IiorC3LlzERMTAwuLCp0qiYiIiKhSaTXmyMzMDN7e3vDw8HjmrUFOnDihl+CMCcccERERmR5dzt9aNftMnz5dp8CIiIiITEW5rlarTiq75ShdkYOUOw8R6GbPW4EQERHpqMJbjsoSHx+Phw8fQi6Xw8XFRR+rrNZWH03F1PVnUCQAMxkwu2cY+rb0N3RYRERE1YJWV6t9/vnnmDZtmvRcCIEuXbqgU6dOeOmll9CgQQOcPXtW70FWJ+mKHCkxAoAiAby/PgnpihzDBkZERFRNaJUcrV69Wu12IevWrcO+ffvw119/4c6dO2jRogVmzpyp9yCrk5Q7D6XEqFihELh659FzX5uuyMHB5DtMpIiIiMpBq261lJQUNG7cWHq+ZcsW9O7dG23btgUAfPjhh3jttdf0G2E1E+hmDzMZ1BIkc5kMtd3snvk6dsURERHph1YtRwUFBbC2tpaeJyQkoE2bNtJzHx8f3LlzR3/RVUPeTraY3TMM5v+bKsFcJsNnPUOfOSibXXFERET6o1XLUVBQEPbt24c6deogNTUVf//9N9q3by+V37hxAzVr1tR7kNVN35b+aB/sjqt3HqG2m91zr1Z7Vlccr3QjIiLSjlbJ0ZgxYzB27Fj89ddfOHToEORyORo2bCiV7969G02bNtV7kNWRt5OtxomNrl1xREREVJJW3WojR47E119/jXv37qF9+/b47bff1MrT0tIwbNgwvQZIz6dLVxwRERGVjpNAasgUbh+SrsjRuCuOiIioOjDYJJBkHLTpiiMiIqLSadWtlp+fj/feew9169ZFq1atsGzZMrXyzMxMmJub6zVAIiIiosqkVXL06aef4v/+7/8watQoREVFYeLEiXjzzTfV6mjTS7dv3z50794dPj4+kMlk+P3330us66OPPoK3tzdsbW0RGRmJS5cuqdW5d+8eBg4cCEdHRzg7O2P48OHIzs5Wq3P69Gm0a9cONjY28PPzwxdffKHNbhMREVE1olVy9PPPP+OHH37ApEmTMGvWLBw7dgy7d+/G0KFDpaRI9r9BwZp4+PAhwsPDsWjRolLLv/jiC3z99ddYsmQJDh8+DHt7e0RHR+Px48dSnYEDB+Ls2bOIi4vDpk2bsG/fPrzxxhtSuVKpRFRUFAICAnD8+HHMnTsXM2bMwHfffafNrhMREVF1IbRga2srUlJS1JbduHFDBAcHi4EDB4qbN28KMzMzbVYpASA2bNggPS8qKhJeXl5i7ty50rKsrCxhbW0tVq1aJYQQ4ty5cwKAOHr0qFRn69atQiaTiZs3bwohhPj222+Fi4uLyM3NlepMnjxZ1K9fX6v4FAqFACAUCoUuu0dEREQGoMv5W6uWIy8vLyQnJ6st8/X1xZ49e3D06FEMGTJEXzkbUlJSkJGRgcjISGmZk5MTIiIikJCQAODJDN3Ozs5o0aKFVCcyMhJmZmY4fPiwVKd9+/awsrKS6kRHR+PixYu4f/9+mdvPzc2FUqlUexAREVHVp1Vy9OKLL+KXX34psdzHxwe7d+9GSkqK3gLLyMgAAHh6eqot9/T0lMoyMjLg4eGhVm5hYQFXV1e1OqWtQ3UbpZk9ezacnJykh5+fX/l2iIiIiEyCVsnRtGnT0KdPn1LLfH19ER8fX+IKNlM1depUKBQK6XH9+nVDh0RERESVQKt5jgICAhAQEFBmuY+PD2JjY8sdFPCkCw94Mj2At7e3tDwzMxNNmjSR6ty6dUvtdQUFBbh37570ei8vL2RmZqrVKX5eXKc01tbWajfZJSIioupBq5ajYmvXrkXPnj0RGhqK0NBQ9OzZE+vWrdNrYIGBgfDy8sKuXbukZUqlEocPH4ZcLgcAyOVyZGVl4fjx41Kd3bt3o6ioCBEREVKdffv2IT8/X6oTFxeH+vXrw8XFRa8xExERkenTKjkqKipC37590bdvX5w7dw5169ZF3bp1cfbsWfTt2xf9+vXTap6j7OxsJCYmIjExEcCTQdiJiYlITU2FTCbDhAkTMGvWLGzcuBFnzpzB4MGD4ePjg1dffRUA0KBBA3Tp0gUjR47EkSNHcODAAYwdOxb9+vWDj48PAGDAgAGwsrLC8OHDcfbsWaxevRoLFy7ExIkTtdl10kK6IgcHk+8gXZFTrjpEREQGoc3lcPPmzROurq7izz//LFH2xx9/CFdXVzF//nyN17dnzx4BoMQjNjZWCPHkcv5p06YJT09PYW1tLTp37iwuXryoto67d++K/v37CwcHB+Ho6CiGDh0qHjx4oFbn1KlT4oUXXhDW1tbC19dXzJkzR5vdFkLwUn5N/XrkmgicskkETN4kAqdsEr8euaZTHSIiIn3Q5fyt1Y1nGzdujAkTJmDYsGGllv/4449YuHAhTp8+Xf6szciYwo1nDS1dkYO2c3ajSOUdZS6TYf+UTtI93zSpQ0REpC+6nL+16la7dOmS2rxDTyvt9h5UfaTceaiW9ABAoRC4eueRVnWIiIgMSavkyNbWFllZWWWWK5VK2NjYlDcmMlGBbvYwe+ruMeYyGWq72WlVh4iIyJC0So7kcjkWL15cZvmiRYukK8mo+vF2ssXsnmEw/9/99cxlMnzWM1Stu0yTOkRERIak1TxHH3zwATp27Ii7d+9i0qRJCAkJgRAC58+fx1dffYU//vgDe/bsqahYyQT0bemP9sHuuHrnEWq72ZWa9GhSh4iIyFC0GpANABs2bMAbb7yBe/fuqS13cXHB0qVL0atXL70GaCw4IJuIiMj06HL+1jo5AoBHjx5h+/bt0uDr4OBgREVFwc6u6o4bYXJERERkenQ5f2vVrbZ7926MHTsWhw4dQo8ePdTKFAoFGjVqhCVLlqBdu3barJaIiIjIaGg1IHvBggUYOXJkqZmXk5MT3nzzTcybN09vwRERERFVNq2So1OnTqFLly5llkdFRand54yIiIjI1GiVHGVmZsLS0rLMcgsLC9y+fbvcQREREREZilbJka+vL5KSksosP336NLy9vcsdFBEREZGhaJUcdevWDdOmTcPjx49LlOXk5GD69Ol46aWX9BYcERERUWXT6lL+zMxMNGvWDObm5hg7dizq168PALhw4QIWLVqEwsJCnDhxAp6enhUWsKHwUn4iIiLTU+GX8nt6euLgwYMYPXo0pk6diuK8SiaTITo6GosWLaqSiRERERFVH1olRwAQEBCALVu24P79+7h8+TKEEKhXrx5cXFwqIj4iIiKiSqV1clTMxcUFLVu21GcsRERERAan1YBsIiIioqqOyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkgskRERERkQomR0REREQqmBwRERERqWByRERERKSCyRERERGRCiZHRERERCqYHJFepCtycDD5DtIVOYYOhYiIqFwsDB0Amb7VR1Mxdf0ZFAnATAbM7hmGvi39DR0WEdIVOUi58xCBbvbwdrI1dDhEZCKYHFG5pCtypMQIAIoE8P76JLQPdufJiAyKSTsR6YrdalQuKXceSolRsUIhcPXOI8MERISyk3Z2+xKRJpgcUbkEutnDTKa+zFwmQ203uwrdLsc40bMwaSei8mByROXi7WSL2T3DYC57kiGZy2T4rGdohXaprT6airZzdmPA94fRds5urD6aWmHbItNkqKSdiKoGmRBCPL8aKZVKODk5QaFQwNHR0dDhGJ10RQ6u3nmE2m52FZoYpSty0HbObrVWAXOZDPundOIYJ1Kz+mgq3l+fhEIhpKSdY46Iqh9dzt8ckE164e1kWynJybO6S5gckaq+Lf3RPti9UpJ2IqpamByRSSnuLnm65YjdJVSaykraiahq4ZgjMimGGONERETVC1uOyOSwu4SIiCoSkyMySewuIWPD2biJqg4mR2TyeFIiQ+Ns3ERVi9GPOZoxYwZkMpnaIyQkRCp//PgxxowZg5o1a8LBwQG9evVCZmam2jpSU1MRExMDOzs7eHh44N1330VBQUFl7wpVAM55VD0Y86SfnI2bqOoxiZajRo0aYefOndJzC4t/wn7nnXewefNmrF27Fk5OThg7dix69uyJAwcOAAAKCwsRExMDLy8vHDx4EOnp6Rg8eDAsLS3x2WefVfq+kP7wvm7Vg7G3ynB6CaKqx+hbjoAnyZCXl5f0cHNzAwAoFAr8+OOPmDdvHl588UU0b94cy5cvx8GDB3Ho0CEAwI4dO3Du3DmsXLkSTZo0QdeuXfHJJ59g0aJFyMvLM+RuUTnxFhFVnym0ynA2bqKqxySSo0uXLsHHxwd16tTBwIEDkZr6pOvk+PHjyM/PR2RkpFQ3JCQE/v7+SEhIAAAkJCQgLCwMnp6eUp3o6GgolUqcPXu2cnfEhBhzN0YxnpSqPlNIgDm9BFHVY/TdahEREVixYgXq16+P9PR0zJw5E+3atUNSUhIyMjJgZWUFZ2dntdd4enoiIyMDAJCRkaGWGBWXF5eVJTc3F7m5udJzpVKppz0yfsbejVGs+KT09C0ieFKqOkxl0k9OL0FUtRh9ctS1a1fp/40bN0ZERAQCAgKwZs0a2NpW3BfQ7NmzMXPmzApbv7EytXE8PClVbaaUAHN6CaKqw+iTo6c5OzsjODgYly9fxr/+9S/k5eUhKytLrfUoMzMTXl5eAAAvLy8cOXJEbR3FV7MV1ynN1KlTMXHiROm5UqmEn5+fHvfEOJni4FKelKo2JsBEVNlMYsyRquzsbCQnJ8Pb2xvNmzeHpaUldu3aJZVfvHgRqampkMvlAAC5XI4zZ87g1q1bUp24uDg4OjqiYcOGZW7H2toajo6Oao/qgON4qKLpMp7N28kW8qCaTIyIqFIYfcvRpEmT0L17dwQEBCAtLQ3Tp0+Hubk5+vfvDycnJwwfPhwTJ06Eq6srHB0d8fbbb0Mul6N169YAgKioKDRs2BCvv/46vvjiC2RkZODDDz/EmDFjYG1tbeC9Mz6m1I1BpsdUxrMRUfVm9MnRjRs30L9/f9y9exfu7u544YUXcOjQIbi7uwMA5s+fDzMzM/Tq1Qu5ubmIjo7Gt99+K73e3NwcmzZtwujRoyGXy2Fvb4/Y2Fh8/PHHhtolo8duDKoIpjaejYiqL5kQQjy/GimVSjg5OUGhUBhlFxtvoUHG7mDyHQz4/nCJ5atGtoY8qKYBIiKi6kCX87fRtxzR87GrgkyBqVyWT0RkcgOySZ0pzCBsChNKUsXjZIlEZCrYcmTijP3Se7ZqkSqOZyMiU8CWIxNnzJfem0KrFlW+yr4sny2XRKQtJkcmzpi7KkzhvlhUta0+moq2c3ZjwPeH0XbObqw+mmrokIjIBLBbrQow1q4KDsAlQ+LUAUSkK7YcVRHGOIOwMbdqUdXHlksi0hVbjqhCGWurFj2fqc+dxZZLMhWm/lmripgcUYXjjWFNT1W4ypC3wqneTCXhqAqftaqIM2RryNhnyK4uTOULz5SlK3LQds7uEi0u+6d0Msljnq7IYctlNWMqCUdV+6wZK86QTVXa0vhkzNl6AQLG/YVn6ox97ixtseWyejGlgfhV7bNWlXBAdhVSFedzKd6nL7dfwOz/JUZA+eZMevo4VcXjVh7GPHcW0fM+r4YYiK/rdwg/a8aLLUdVRHmakY21q0p1n0pT2i+s5+3L08epR1NfbDh50+ib3ysTx+qQsdLke66yB+KX57uXnzXjxTFHGjLmMUfl6bc21r750vbpaWYADkx9UdpH1X2RAZjSNQRvdgjSap3s7/8Hx+qQMdHme2710dQSCUdFfK/pa8wQP2sVi2OOqild+62NuW++tH162uSuIVKcT++LADB76wVcu/sQb3euB28nW43Wyf7+f1T0WB1jbbEk46TN91xlTSGirzFDHBdnfJgcGRldThi6NiMb82DA0vapmJnsSWL0Zvt/WoXKSnx+OXIdq45cx5xeYWgf7F7mOouxv79yGGuLJRmPp78Ltf2eq4yEg3NpVV0ckG1EdL0PlK4zURvzYMDS9mlq1xCsGtkaB6a8qJYYAU/2RVbaivCkFen99UkAUGKdvZr5cgbvSsYbEtPzlPZdaIwz7htjTKQfHHOkoYoec6SPvmtd+q0rq28eAE5dv48jV++hVW1XhPu5aPQabfZpaXwyZm+9UGb5qpGtIQ+qiXRFDo5fvQ/IgOYBT+Jgf3/lOZh8BwO+P1xiefHfh6qP0lrKn/ddaIzjc4wxJvoHxxyZMH10cenSjFxZffP/XpOI307clJ73auaLr/o0ee7rtNmnNzsEATLg860XShxL1RaxfX/fZpeOAbErgoCyu1af911ojONzjC0mjucrP3arGQlDdnFV9E1rT12/r5YYAcBvJ27i1PX7et/Wm+2DcGDKi3ijfaD05lZt6maXjuGxK4Ke9Tk05u5+U6Dr8AxDM7b55thyZCSq8nwXR67eK3X5sav3Ne5e04a3ky3e79YQQ9sGlmgRM+ZB6NWJIW5IbEy/po0pFkN41udQHlSzyn4XVjRjvgL5WYzxAg0mR0akqt7BvlVt11KXt6it/8RIVWlN3ezSMS4ClTPk0Zi+fI0pFkN53uewqn4XVjRT/PFnrAkdu9WMTEV3cRlCuJ8LejXzVVvWq5lvhbQaPQ+7dIxDZTb9G1NXqjaxGFs3gz5p8jmsit+FFc0UuyQNcbsXTbDliCrFV32aYLA8AMeu3keL2i4GSYyK8VepYVX2L0Vj+jWtaSzVoXWpun0OK6MrVZPhGcbWpWusrflMjqjShPsZNilSZWxXl1QnlZ2sGNOXryaxGGs3Q0Uwpc9heZKKykx2n5V0GmPSbazjbZkcEVGlquxkxZi+fDWJxZhauuiJ8t7Yu7KT3dKSzlPX72PK+jMQRph0G2MrIpMjIqpUhkhWjOnL93mxGFNLF5U/uTGGZHf10VRM+e1MicsfjCnpNrZWRCZHRNWMMYw50Feyos2+GNOX77NiMaaWLip/cmPoZLc4uSvtulAm3WVjckRUDsaQaGhDtXtABmBK15AnM4tXoLKOUXmTFWMcP6EvxtTSVczU3uu6KG0fy5vcGDrZLeum3GYyMOl+BiZHRDoytZPz090DAnhyLzoZStzIV1/bW74/Bd//lQIBzY+RJidhQw5arqwkwVAtXaXtn6m913VR1j7qI7kxZLJbWnJnBmDDW22M5gIZY8TkiEgHpnhFUVm/ID/fegEvh/voNW7VE00xTY6Rpifh8nZ16JrgVPUkobT9ax/sbnLvdW097/Osj+TGUMluWckdE6NnY3JEpANdTs6G7pYIdLOHDCgx9qBIQK+DMk9dv1/q4E/g2cdIm4TzeV0dzzrWuiY4ppgQa6Os/VvQL9zgA4r1paz3hSafZ2Mas6YtY+ymNXZMjoh0oO04BGNocfB2ssWUriFPutJU6HNQ5uqjqU8uFy6j/Fnb0ibhfFZXx7OOdXkSHGO46qgilbV/ZjJZlbh67lnvC0MPmq4MppzcGQJvH0KkA21uQ5KuyMGU34zj9hVvdgjC1G4h0i0GdBk/UdZtLaSrYsrIjMzw7AGg2t76oG9Lf+yf0gmrRrbG/imd0Lel/3Nvz1GeWxWY4q0Zij39Nyvtb1jW/jULcDH5W+48731RFW8rVN7bz1Tl29dogi1HRDrStKl62f4Uo5pf5M32QXg53EenJvZn/foua0yTDMDIdnUw9IXaz9yWLgNfn/41/LzWnfK0EBj6qiNdPf0369HUFxtO3tRq4LGpd8to0upn6vuoqrwt1cbQ0m1oMiHK+p1HqpRKJZycnKBQKODo6GjocMjIlDWWIV2Rg7Zzdpf4YjYDcGDqiyb1BVzavpjLZNg/pRO8nWxLLTeTaX9VTLoiR+cT1PNiBJ588T+dAGjzxV+e+CpbWe8/VU8fH1PaP01p8r6oKsq7r1XxWOly/mbLEVE56dKaMqJ9oF6+aCpzkPfzfn3r66qY8oyN0KR1p7wtBBU9dkOff9Oy3n+q9D3w2NAXHpTGVFv9dFHesXFVfWydppgcEZXD8wb4ljrHiAyICfPGweQ7sLcyx8O8QqO/mSWg2aBVY+ia0CQGYx2cqu+/aWl/s6fpe0C+sXbHGMN7szKUd3B5dRicrgkOyCYqh+cN8C1toGePpr7o8e1BDPj+MF5Z9OTftnN2Y/XRVI23+7wBpqUNpizvAEtNB616O9lCHlTToCcfY4hBW8/7m+qi+G9W1he9PmdJLi3+qb+dMaoBvZX1vjDkYObyDi6vioPTdcGWI6JyKG3uIJkMZbam2FmZoce3B0skVPq8meW+v2+X+PUOQC+/6KvLr29DqKjujL4t/WFvbYGxv5wsUfZ1v6Z4KdxH53WrKi3+IgDL91/F+zEN9LINU2AMrWfl/Zzyc87kiEj/SunCKO7GOZh8p8wuDn3czNLOyqzkr/f/XV5fXLW8kxcaa5eUqavI7ozmAS6lrrt5bf3NklzWJKM/7L/y3CsVqwpjmii0vJ/T6v45Z7caUTmk3HlY4mQggDLnzSltLpliutzM8umm74d5haW2SpU1lQAZj4rszqiMrhJvJ1uMbBdYYnnxDOzVQVmtf8ev3q+0brbqPj+RvrDliNQY45UmxkzbX/tPXzWj+hp93MwyXZFT6gBw8VSCVB0HWJqCiuzOqIyukqEvBOKH/SnVdjBvad8HMgDjfj1ZKd1shujSq6rnDM5zpKHqMM+RMfSVmyJd5s0pnkvGzsoMj/KK9HqyKi0eAOWa24foWVRPkPv+vl2t32uqnz8zPPlR8vQPk4qYM6gi5ycqLQFKV+Rg+f4UfP/Xk0lujfmcocv5m8mRhqp6clQVJ/6qTBU1cZ4mv8rK+uJ6Op6qOLkfGV5pP6qq+2De4s/a3Ye5pQ6EXzWyNeRBNfW6zYPJdzDg+8N631Zpf18AamOrihnrOYOTQD7HokWLMHfuXGRkZCA8PBzffPMNWrVqZeiwjAIn/ioffQ1efPoX+PNa8spq7Sstnuo+wNIYmXqXRFkDkPdP6aT3k78pKf6sldbNXVHdjPoY0P/0+7Gs6RlQxtxZhUJg8+l0xDT2Nsn3s6pqkxytXr0aEydOxJIlSxAREYEFCxYgOjoaFy9ehIeHh6HDMzhO/GV4qolO8ZjtZ11hZkxXxpD2tOnG1kcSVRGJGH9UPVtlzsxd3m2pff/IgCldQxDm61Tq9AylXZFbbNbm8/hsy3mj7WLTVLVJjubNm4eRI0di6NChAIAlS5Zg8+bNWLZsGaZMmWLg6AyvOk2vb4yeTnRK++55+qTDE5Pp0iax1cdYwIoaT8gfVc9XmXMG6bqtEt8/Api95QLGdAoqdYD588biVIUfatXiUv68vDwcP34ckZGR0jIzMzNERkYiISGh1Nfk5uZCqVSqPaq6vi39sX9KJ6wa2Rr7p3Qy6azf1GhyD6ynTzqlTQvAE5NpeN7M6sX0MWt2Rcy8XYyzKWumMmds12VbZX3/LN6TjMldQqS/b1kJw4shJXtfTH26kGrRcnTnzh0UFhbC09NTbbmnpycuXLhQ6mtmz56NmTNnVkZ4RoXjUgyjrEuAZf9bVtpJh619pkvTFhd9tA5WdAsjZ1M2fYFu9pD9b8oPVUUAGtdyxv4pnZ45wLxXM1/svXirSrUgVovkSBdTp07FxIkTpedKpRJ+fn4GjIiqsrISneeddHhiMk2aJrb66LaqjK4v/qgybd5OtpjSNQSzt6g3FhS/T543wLxZgEuV+6FWLZIjNzc3mJubIzMzU215ZmYmvLy8Sn2NtbU1rK2tKyM8IgBlJzrP+4Lhick0aZLY6qN1kC2MpIk32wcBAvh86wUUQfvW6qr2Q63azHMUERGBVq1a4ZtvvgEAFBUVwd/fH2PHjtVoQHZVn+eIiIyXPuao4jxXpAlN3iem9l7iPEfPMHHiRMTGxqJFixZo1aoVFixYgIcPH0pXrxERGSt9tA6yhZE0ocn7pDq8l6pNctS3b1/cvn0bH330ETIyMtCkSRNs27atxCBtIiIiqt6qTbdaebFbjYiIyPTocv6uFvMcEREREWmKyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKpgcEREREalgckRERESkotrcPqS8iicSVyqVBo6EiIiINFV83tbmhiBMjjT04MEDAICfn5+BIyEiIiJtPXjwAE5OThrV5b3VNFRUVIS0tDTUqFEDMplM5/UolUr4+fnh+vXr1foebTwOT/A4PMHj8ASPwxM8Dv/gsXiiPMdBCIEHDx7Ax8cHZmaajSZiy5GGzMzMUKtWLb2tz9HRsVq/0YvxODzB4/AEj8MTPA5P8Dj8g8fiCV2Pg6YtRsU4IJuIiIhIBZMjIiIiIhVMjiqZtbU1pk+fDmtra0OHYlA8Dk/wODzB4/AEj8MTPA7/4LF4orKPAwdkExEREalgyxERERGRCiZHRERERCqYHBERERGpYHJEREREpILJkR4sXrwYjRs3lianksvl2Lp1q1T++PFjjBkzBjVr1oSDgwN69eqFzMxMtXWkpqYiJiYGdnZ28PDwwLvvvouCgoLK3hW9mTNnDmQyGSZMmCAtqy7HYcaMGZDJZGqPkJAQqby6HAcAuHnzJgYNGoSaNWvC1tYWYWFhOHbsmFQuhMBHH30Eb29v2NraIjIyEpcuXVJbx7179zBw4EA4OjrC2dkZw4cPR3Z2dmXvis5q165d4v0gk8kwZswYANXn/VBYWIhp06YhMDAQtra2CAoKwieffKJ2v6vq8H4AntzGYsKECQgICICtrS3atGmDo0ePSuVV9Tjs27cP3bt3h4+PD2QyGX7//Xe1cn3t9+nTp9GuXTvY2NjAz88PX3zxhfbBCiq3jRs3is2bN4u///5bXLx4Ubz//vvC0tJSJCUlCSGEGDVqlPDz8xO7du0Sx44dE61btxZt2rSRXl9QUCBCQ0NFZGSkOHnypNiyZYtwc3MTU6dONdQulcuRI0dE7dq1RePGjcX48eOl5dXlOEyfPl00atRIpKenS4/bt29L5dXlONy7d08EBASIIUOGiMOHD4srV66I7du3i8uXL0t15syZI5ycnMTvv/8uTp06JV5++WURGBgocnJypDpdunQR4eHh4tChQ+Kvv/4SdevWFf379zfELunk1q1bau+FuLg4AUDs2bNHCFF93g+ffvqpqFmzpti0aZNISUkRa9euFQ4ODmLhwoVSnerwfhBCiD59+oiGDRuK+Ph4cenSJTF9+nTh6Ogobty4IYSousdhy5Yt4oMPPhDr168XAMSGDRvUyvWx3wqFQnh6eoqBAweKpKQksWrVKmFrayuWLl2qVaxMjiqIi4uL+OGHH0RWVpawtLQUa9eulcrOnz8vAIiEhAQhxJM3jJmZmcjIyJDqLF68WDg6Oorc3NxKj708Hjx4IOrVqyfi4uJEhw4dpOSoOh2H6dOni/Dw8FLLqtNxmDx5snjhhRfKLC8qKhJeXl5i7ty50rKsrCxhbW0tVq1aJYQQ4ty5cwKAOHr0qFRn69atQiaTiZs3b1Zc8BVo/PjxIigoSBQVFVWr90NMTIwYNmyY2rKePXuKgQMHCiGqz/vh0aNHwtzcXGzatEltebNmzcQHH3xQbY7D08mRvvb722+/FS4uLmqfjcmTJ4v69etrFR+71fSssLAQv/76Kx4+fAi5XI7jx48jPz8fkZGRUp2QkBD4+/sjISEBAJCQkICwsDB4enpKdaKjo6FUKnH27NlK34fyGDNmDGJiYtT2F0C1Ow6XLl2Cj48P6tSpg4EDByI1NRVA9ToOGzduRIsWLfDaa6/Bw8MDTZs2xffffy+Vp6SkICMjQ+1YODk5ISIiQu1YODs7o0WLFlKdyMhImJmZ4fDhw5W3M3qSl5eHlStXYtiwYZDJZNXq/dCmTRvs2rULf//9NwDg1KlT2L9/P7p27Qqg+rwfCgoKUFhYCBsbG7Xltra22L9/f7U5Dk/T134nJCSgffv2sLKykupER0fj4sWLuH//vsbx8MazenLmzBnI5XI8fvwYDg4O2LBhAxo2bIjExERYWVnB2dlZrb6npycyMjIAABkZGWpffMXlxWWm4tdff8WJEyfU+s6LZWRkVJvjEBERgRUrVqB+/fpIT0/HzJkz0a5dOyQlJVWr43DlyhUsXrwYEydOxPvvv4+jR49i3LhxsLKyQmxsrLQvpe2r6rHw8PBQK7ewsICrq6tJHYtiv//+O7KysjBkyBAA1etzMWXKFCiVSoSEhMDc3ByFhYX49NNPMXDgQACoNu+HGjVqQC6X45NPPkGDBg3g6emJVatWISEhAXXr1q02x+Fp+trvjIwMBAYGllhHcZmLi4tG8TA50pP69esjMTERCoUC69atQ2xsLOLj4w0dVqW5fv06xo8fj7i4uBK/iKqb4l/CANC4cWNEREQgICAAa9asga2trQEjq1xFRUVo0aIFPvvsMwBA06ZNkZSUhCVLliA2NtbA0RnGjz/+iK5du8LHx8fQoVS6NWvW4Oeff8Yvv/yCRo0aITExERMmTICPj0+1ez/89NNPGDZsGHx9fWFubo5mzZqhf//+OH78uKFDo/9ht5qeWFlZoW7dumjevDlmz56N8PBwLFy4EF5eXsjLy0NWVpZa/czMTHh5eQEAvLy8SlydUvy8uI6xO378OG7duoVmzZrBwsICFhYWiI+Px9dffw0LCwt4enpWi+NQGmdnZwQHB+Py5cvV5v0AAN7e3mjYsKHasgYNGkhdjMX7Utq+qh6LW7duqZUXFBTg3r17JnUsAODatWvYuXMnRowYIS2rTu+Hd999F1OmTEG/fv0QFhaG119/He+88w5mz54NoHq9H4KCghAfH4/s7Gxcv34dR44cQX5+PurUqVOtjoMqfe23vj4vTI4qSFFREXJzc9G8eXNYWlpi165dUtnFixeRmpoKuVwOAJDL5Thz5ozaHz0uLg6Ojo4lTi7GqnPnzjhz5gwSExOlR4sWLTBw4EDp/9XhOJQmOzsbycnJ8Pb2rjbvBwBo27YtLl68qLbs77//RkBAAAAgMDAQXl5easdCqVTi8OHDasciKytL7Rf17t27UVRUhIiIiErYC/1Zvnw5PDw8EBMTIy2rTu+HR48ewcxM/ZRjbm6OoqIiANXv/QAA9vb28Pb2xv3797F9+3a88sor1fI4APr7+8vlcuzbtw/5+flSnbi4ONSvX1/jLjUAvJRfH6ZMmSLi4+NFSkqKOH36tJgyZYqQyWRix44dQognl+r6+/uL3bt3i2PHjgm5XC7kcrn0+uJLdaOiokRiYqLYtm2bcHd3N7lLdZ+merWaENXnOPz73/8We/fuFSkpKeLAgQMiMjJSuLm5iVu3bgkhqs9xOHLkiLCwsBCffvqpuHTpkvj555+FnZ2dWLlypVRnzpw5wtnZWfzxxx/i9OnT4pVXXin10t2mTZuKw4cPi/3794t69eoZ/SXLTyssLBT+/v5i8uTJJcqqy/shNjZW+Pr6Spfyr1+/Xri5uYn33ntPqlNd3g/btm0TW7duFVeuXBE7duwQ4eHhIiIiQuTl5Qkhqu5xePDggTh58qQ4efKkACDmzZsnTp48Ka5duyaE0M9+Z2VlCU9PT/H666+LpKQk8euvvwo7Ozteym8Iw4YNEwEBAcLKykq4u7uLzp07S4mREELk5OSIt956S7i4uAg7OzvRo0cPkZ6erraOq1eviq5duwpbW1vh5uYm/v3vf4v8/PzK3hW9ejo5qi7HoW/fvsLb21tYWVkJX19f0bdvX7W5farLcRBCiD///FOEhoYKa2trERISIr777ju18qKiIjFt2jTh6ekprK2tRefOncXFixfV6ty9e1f0799fODg4CEdHRzF06FDx4MGDytyNctu+fbsAUGLfhKg+7welUinGjx8v/P39hY2NjahTp4744IMP1C65ri7vh9WrV4s6deoIKysr4eXlJcaMGSOysrKk8qp6HPbs2SMAlHjExsYKIfS336dOnRIvvPCCsLa2Fr6+vmLOnDlaxyoTQmV6UiIiIqJqjmOOiIiIiFQwOSIiIiJSweSIiIiISAWTIyIiIiIVTI6IiIiIVDA5IiIiIlLB5IiIiIhIBZMjIiIiIhVMjoiqmYyMDLz99tuoU6cOrK2t4efnh+7du6vd0+jgwYPo1q0bXFxcYGNjg7CwMMybNw+FhYVSnatXr2L48OEIDAyEra0tgoKCMH36dOTl5alt7/vvv0d4eDgcHBzg7OyMpk2bSjcbBYAZM2ZAJpOhS5cuJWKdO3cuZDIZOnbs+Nz9ql27NmQyWZmPIUOGaH+wjFzHjh0xYcIEQ4dBVOVYGDoAIqo8V69eRdu2beHs7Iy5c+ciLCwM+fn52L59O8aMGYMLFy5gw4YN6NOnD4YOHYo9e/bA2dkZO3fuxHvvvYeEhASsWbMGMpkMFy5cQFFREZYuXYq6desiKSkJI0eOxMOHD/Hll18CAJYtW4YJEybg66+/RocOHZCbm4vTp08jKSlJLS5vb2/s2bMHN27cQK1ataTly5Ytg7+/v0b7dvToUSl5O3jwIHr16oWLFy/C0dERAGBra6uPQ1gp8vPzYWlpWWnby8vLg5WVVaVtj8jo6XiLFCIyQV27dhW+vr4iOzu7RNn9+/dFdna2qFmzpujZs2eJ8o0bNwoA4tdffy1z/V988YUIDAyUnr/yyitiyJAhz4xp+vTpIjw8XLz00kti1qxZ0vIDBw4INzc3MXr0aNGhQwcN9u4fxfdwun//vrTs999/F02bNhXW1tYiMDBQzJgxQ+3+ZADEkiVLRExMjLC1tRUhISHi4MGD4tKlS6JDhw7Czs5OyOVytfvkFce+ZMkSUatWLWFraytee+01tftkCSHE999/L0JCQoS1tbWoX7++WLRokVSWkpIiHdf27dsLa2trsXz5cnHnzh3Rr18/4ePjI2xtbUVoaKj45ZdfpNfFxsaWuEdVSkqKWL58uXByclLb/oYNG4Tq131x3N9//72oXbu2kMlkQogn74Hhw4cLNzc3UaNGDdGpUyeRmJio1bEnqgrYrUZUTdy7dw/btm3DmDFjYG9vX6Lc2dkZO3bswN27dzFp0qQS5d27d0dwcDBWrVpV5jYUCgVcXV2l515eXjh06BCuXbv23PiGDRuGFStWSM+XLVuGgQMH6qVF46+//sLgwYMxfvx4nDt3DkuXLsWKFSvw6aefqtX75JNPMHjwYCQmJiIkJAQDBgzAm2++ialTp+LYsWMQQmDs2LFqr7l8+TLWrFmDP//8E9u2bcPJkyfx1ltvSeU///wzPvroI3z66ac4f/48PvvsM0ybNg3//e9/1dYzZcoUjB8/HufPn0d0dDQeP36M5s2bY/PmzUhKSsIbb7yB119/HUeOHAEALFy4EHK5HCNHjkR6ejrS09Ph5+en8TG5fPkyfvvtN6xfvx6JiYkAgNdeew23bt3C1q1bcfz4cTRr1gydO3fGvXv3tDncRKbP0NkZEVWOw4cPCwBi/fr1ZdaZM2dOiRYXVS+//LJo0KBBqWWXLl0Sjo6O4rvvvpOWpaWlidatWwsAIjg4WMTGxorVq1eLwsJCqU5xK0ZeXp7w8PAQ8fHxIjs7W9SoUUOcOnVKjB8/vtwtR507dxafffaZWp2ffvpJeHt7S88BiA8//FB6npCQIACIH3/8UVq2atUqYWNjoxa7ubm5uHHjhrRs69atwszMTKSnpwshhAgKClJr8RFCiE8++UTI5XIhxD8tRwsWLHjufsXExIh///vf0vMOHTqI8ePHq9XRtOXI0tJS3Lp1S1r2119/CUdHR/H48WO11wYFBYmlS5c+NzaiqoRjjoiqCSFEhdQFgJs3b6JLly547bXXMHLkSGm5t7c3EhISkJSUhH379uHgwYOIjY3FDz/8gG3btsHM7J/Ga0tLSwwaNAjLly/HlStXEBwcjMaNG2sVR1lOnTqFAwcOqLUUFRYW4vHjx3j06BHs7OwAQG17np6eAICwsDC1ZY8fP4ZSqZTGMvn7+8PX11eqI5fLUVRUhIsXL6JGjRpITk7G8OHD1Y5LQUEBnJyc1GJs0aKF2vPCwkJ89tlnWLNmDW7evIm8vDzk5uZKsZZXQEAA3N3dpeenTp1CdnY2atasqVYvJycHycnJetkmkalgckRUTdSrV08aSF2W4OBgAMD58+fRpk2bEuXnz59Hw4YN1ZalpaWhU6dOaNOmDb777rtS1xsaGorQ0FC89dZbGDVqFNq1a4f4+Hh06tRJrd6wYcMQERGBpKQkDBs2TNtdLFN2djZmzpyJnj17liizsbGR/q86CFomk5W5rKioSOPtAk+u2IuIiFArMzc3V3v+dFfn3LlzsXDhQixYsABhYWGwt7fHhAkTSlwN+DQzM7MSyW1+fn6Jek9vLzs7G97e3ti7d2+Jus7Ozs/cJlFVw+SIqJpwdXVFdHQ0Fi1ahHHjxpU4OWZlZSEqKgqurq746quvSiRHGzduxKVLl/DJJ59Iy27evIlOnTqhefPmWL58uVpLUFmKk6uHDx+WKGvUqBEaNWqE06dPY8CAAbrsZqmaNWuGixcvom7dunpbZ7HU1FSkpaXBx8cHAHDo0CGYmZmhfv368PT0hI+PD65cuYKBAwdqtd4DBw7glVdewaBBgwA8Scj+/vtvteTUyspKbXoFAHB3d8eDBw/w8OFD6W9cPKboWZo1a4aMjAxYWFigdu3aWsVKVNUwOSKqRhYtWoS2bduiVatW+Pjjj9G4cWMUFBQgLi4Oixcvxvnz57F06VL069cPb7zxBsaOHQtHR0fs2rUL7777Lnr37o0+ffoAeJIYdezYEQEBAfjyyy9x+/ZtaTteXl4AgNGjR8PHxwcvvvgiatWqhfT0dMyaNQvu7u6Qy+Wlxrh7927k5+frtbXio48+wksvvQR/f3/07t0bZmZmOHXqFJKSkjBr1qxyrdvGxgaxsbH48ssvoVQqMW7cOPTp00c6BjNnzsS4cePg5OSELl26IDc3F8eOHcP9+/cxceLEMtdbr149rFu3DgcPHoSLiwvmzZuHzMxMteSodu3aOHz4MK5evQoHBwe4uroiIiICdnZ2eP/99zFu3DgcPnxYbaB7WSIjIyGXy/Hqq6/iiy++QHBwMNLS0rB582b06NGjRLcfUVXGq9WIqpE6dergxIkT6NSpE/79738jNDQU//rXv7Br1y4sXrwYANC7d2/s2bMHqampaNeuHerXr4/58+fjgw8+wK+//ip1LcXFxeHy5cvYtWsXatWqBW9vb+lRLDIyEocOHcJrr72G4OBg9OrVCzY2Nti1a1eJsS3F7O3t9d6NEx0djU2bNmHHjh1o2bIlWrdujfnz5yMgIKDc665bty569uyJbt26ISoqCo0bN8a3334rlY8YMQI//PADli9fjrCwMHTo0AErVqxAYGDgM9f74YcfolmzZoiOjkbHjh3h5eWFV199Va3OpEmTYG5ujoYNG8Ld3R2pqalwdXXFypUrsWXLFoSFhWHVqlWYMWPGc/dDJpNhy5YtaN++PYYOHYrg4GD069cP165dk8ZfEVUXMqHtyEsiIgLwZHbv33//XaNuKyIyHWw5IiIiIlLB5IiITIaDg0OZj7/++svQ4RFRFcFuNSIyGZcvXy6zzNfX16Tun0ZExovJEREREZEKdqsRERERqWByRERERKSCyRERERGRCiZHRERERCqYHBERERGpYHJEREREpILJEREREZEKJkdEREREKv4f93OVvhUxit4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZh0lEQVR4nO3deVhU9f4H8PeA7DuyI5sgIoKkuYSaS5FLapm5poV7bqnXUjEzNTUxvWp1Tc0Su5l7ambmkpqau7mSu6GigEoKI4vI8v394Y+5DDAwMxyY7f16nnke5nzPnPmcM2fmfPhuRyaEECAiIiIycGa6DoCIiIhICkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoio2s2YMQMymUytdWUyGWbMmFGt8bRr1w7t2rXT2+0RkXaY1BCZkFWrVkEmkyketWrVgq+vLwYOHIi7d+/qOjy9ExgYqHS8PDw88OKLL2LLli2SbD8nJwczZszA77//Lsn2iEwdkxoiE/TJJ5/g+++/x7Jly9C5c2esXr0abdu2xZMnT6rl/T766CPk5uZWy7ar23PPPYfvv/8e33//PT744AOkpKSgR48eWLZsWZW3nZOTg5kzZzKpIZJILV0HQEQ1r3PnzmjatCkAYOjQoXBzc8O8efOwbds29O7dW/L3q1WrFmrVMsyfG19fXwwYMEDx/J133kFISAgWLVqEESNG6DAyIiqNNTVEhBdffBEAcOPGDaXlly9fRs+ePeHq6gpra2s0bdoU27ZtU1onPz8fM2fORL169WBtbY3atWujdevW2LNnj2Kd8vrU5OXl4V//+hfc3d3h4OCA1157DXfu3CkT28CBAxEYGFhmeXnbTEhIwEsvvQQPDw9YWVkhPDwcS5cu1ehYVMbLywsNGjRAUlJShevdv38fQ4YMgaenJ6ytrREVFYXvvvtOUX7z5k24u7sDAGbOnKlo4qru/kRExsww/3UiIkndvHkTAODi4qJY9tdff6FVq1bw9fVFXFwc7OzssGHDBnTv3h0//vgj3njjDQDPkou5c+di6NChaN68OeRyOU6dOoXTp0/jlVdeUfmeQ4cOxerVq/HWW2+hZcuW2LdvH7p06VKl/Vi6dCkaNmyI1157DbVq1cLPP/+MUaNGoaioCKNHj67Stovl5+cjOTkZtWvXVrlObm4u2rVrh+vXr2PMmDEICgrCxo0bMXDgQGRkZGDcuHFwd3fH0qVLMXLkSLzxxhvo0aMHAKBRo0aSxElkkgQRmYyEhAQBQPz222/iwYMHIjk5WWzatEm4u7sLKysrkZycrFj35ZdfFpGRkeLJkyeKZUVFRaJly5aiXr16imVRUVGiS5cuFb7v9OnTRcmfm7NnzwoAYtSoUUrrvfXWWwKAmD59umJZbGysCAgIqHSbQgiRk5NTZr2OHTuKunXrKi1r27ataNu2bYUxCyFEQECA6NChg3jw4IF48OCBOHfunOjbt68AIN577z2V21u8eLEAIFavXq1Y9vTpUxEdHS3s7e2FXC4XQgjx4MGDMvtLRNpj8xORCYqJiYG7uzv8/PzQs2dP2NnZYdu2bahTpw4A4OHDh9i3bx969+6Nx48fIz09Henp6fjnn3/QsWNHXLt2TTFaytnZGX/99ReuXbum9vvv2LEDADB27Fil5ePHj6/SftnY2Cj+zszMRHp6Otq2bYu///4bmZmZWm1z9+7dcHd3h7u7O6KiorBx40a8/fbbmDdvnsrX7NixA15eXujXr59imYWFBcaOHYusrCwcOHBAq1iIqGJsfiIyQUuWLEFoaCgyMzOxcuVKHDx4EFZWVory69evQwiBadOmYdq0aeVu4/79+/D19cUnn3yC119/HaGhoYiIiECnTp3w9ttvV9iMcuvWLZiZmSE4OFhpef369au0X4cPH8b06dNx9OhR5OTkKJVlZmbCyclJ4222aNECs2fPhkwmg62tLRo0aABnZ+cKX3Pr1i3Uq1cPZmbK/zc2aNBAUU5E0mNSQ2SCmjdvrhj91L17d7Ru3RpvvfUWrly5Ant7exQVFQEAPvjgA3Ts2LHcbYSEhAAA2rRpgxs3buCnn37C7t278c0332DRokVYtmwZhg4dWuVYVU3aV1hYqPT8xo0bePnllxEWFoaFCxfCz88PlpaW2LFjBxYtWqTYJ025ubkhJiZGq9cSUc1iUkNk4szNzTF37ly0b98e//nPfxAXF4e6desCeNZkos4F3dXVFYMGDcKgQYOQlZWFNm3aYMaMGSqTmoCAABQVFeHGjRtKtTNXrlwps66LiwsyMjLKLC9d2/Hzzz8jLy8P27Ztg7+/v2L5/v37K41fagEBATh//jyKioqUamsuX76sKAdUJ2xEpB32qSEitGvXDs2bN8fixYvx5MkTeHh4oF27dli+fDlSU1PLrP/gwQPF3//8849Smb29PUJCQpCXl6fy/Tp37gwA+OKLL5SWL168uMy6wcHByMzMxPnz5xXLUlNTy8zqa25uDgAQQiiWZWZmIiEhQWUc1eXVV19FWloa1q9fr1hWUFCAL7/8Evb29mjbti0AwNbWFgDKTdqISHOsqSEiAMDEiRPRq1cvrFq1CiNGjMCSJUvQunVrREZGYtiwYahbty7u3buHo0eP4s6dOzh37hwAIDw8HO3atcPzzz8PV1dXnDp1Cps2bcKYMWNUvtdzzz2Hfv364auvvkJmZiZatmyJvXv34vr162XW7du3LyZPnow33ngDY8eORU5ODpYuXYrQ0FCcPn1asV6HDh1gaWmJbt264d1330VWVhZWrFgBDw+PchOz6jR8+HAsX74cAwcOxJ9//onAwEBs2rQJhw8fxuLFi+Hg4ADgWcfm8PBwrF+/HqGhoXB1dUVERAQiIiJqNF4io6Hr4VdEVHOKh3SfPHmyTFlhYaEIDg4WwcHBoqCgQAghxI0bN8Q777wjvLy8hIWFhfD19RVdu3YVmzZtUrxu9uzZonnz5sLZ2VnY2NiIsLAwMWfOHPH06VPFOuUNv87NzRVjx44VtWvXFnZ2dqJbt24iOTm53CHOu3fvFhEREcLS0lLUr19frF69utxtbtu2TTRq1EhYW1uLwMBAMW/ePLFy5UoBQCQlJSnW02RId2XD1VVt7969e2LQoEHCzc1NWFpaisjISJGQkFDmtUeOHBHPP/+8sLS05PBuoiqSCVGirpaIiIjIQLFPDRERERkFJjVERERkFJjUEBERkVFgUkNERERGgUkNERERGQUmNURERGQUjH7yvaKiIqSkpMDBwYFTkhMRERkIIQQeP34MHx+fMjeHVcXok5qUlBT4+fnpOgwiIiLSQnJyMurUqaPWukaf1BRPR56cnAxHR0cdR0NERETqkMvl8PPzU1zH1WH0SU1xk5OjoyOTGiIiIgOjSdcRdhQmIiIio8CkhoiIiIwCkxoiIiIyCkbfp4aISN8UFhYiPz9f12EQ6ZSFhQXMzc0l3SaTGiKiGiKEQFpaGjIyMnQdCpFecHZ2hpeXl2TzyDGpISKqIcUJjYeHB2xtbTkhKJksIQRycnJw//59AIC3t7ck22VSQ0RUAwoLCxUJTe3atXUdDpHO2djYAADu378PDw8PSZqi2FGYiKgGFPehsbW11XEkRPqj+PsgVR8zJjVERDWITU5E/yP194FJDRERERkFJjVERERkFJjUaCk1MxdHbqQjNTNX16EQEdWItLQ0vPfee6hbty6srKzg5+eHbt26Ye/evYp1jhw5gldffRUuLi6wtrZGZGQkFi5ciMLCQsU6N2/exJAhQxAUFAQbGxsEBwdj+vTpePr0qdL7rVixAlFRUbC3t4ezszMaN26MuXPnKspnzJgBmUyGTp06lYl1/vz5kMlkaNeundr7J5fLMXXqVISFhcHa2hpeXl6IiYnB5s2bIYRQrPfXX3+hd+/ecHd3h5WVFUJDQ/Hxxx8jJydHsc7Dhw/x3nvvoX79+rCxsYG/vz/Gjh2LzMxMtWK5efMmZDJZuY9jx46pvU/t2rXD+PHj1V7f0HH0kxbWn7yNKZsvoEgAZjJgbo9I9Gnmr+uwiIiqzc2bN9GqVSs4Oztj/vz5iIyMRH5+Pnbt2oXRo0fj8uXL2LJlC3r37o1BgwZh//79cHZ2xm+//YZJkybh6NGj2LBhA2QyGS5fvoyioiIsX74cISEhSExMxLBhw5CdnY0FCxYAAFauXInx48fjiy++QNu2bZGXl4fz588jMTFRKS5vb2/s378fd+7cQZ06dRTLV65cCX9/9X+XMzIy0Lp1a2RmZmL27Nlo1qwZatWqhQMHDmDSpEl46aWX4OzsjGPHjiEmJgYxMTH45Zdf4OnpiRMnTuD999/H3r17sX//flhaWiIlJQUpKSlYsGABwsPDcevWLYwYMQIpKSnYtGmT2nH99ttvaNiwodIyqUfPCSFQWFiIWrWMICUQRi4zM1MAEJmZmZJsLyUjRwTFbRcBk//3qBv3i0jJyJFk+0RknHJzc8XFixdFbm6urkPRSufOnYWvr6/IysoqU/bo0SORlZUlateuLXr06FGmfNu2bQKAWLduncrtf/bZZyIoKEjx/PXXXxcDBw6sMKbp06eLqKgo0bVrVzF79mzF8sOHDws3NzcxcuRI0bZtWzX2ToiRI0cKOzs7cffu3TJljx8/Fvn5+aKoqEiEh4eLpk2bisLCQqV1zp49K2QymYiPj1f5Hhs2bBCWlpYiPz+/0niSkpIEAHHmzBmV6xTv/3//+18REBAgHB0dRZ8+fYRcLhdCCBEbGysAKD2SkpLE/v37BQCxY8cO0aRJE2FhYSH2798vnjx5It577z3h7u4urKysRKtWrcSJEycU71f8uu3bt4vIyEhhZWUlWrRoIS5cuCCEECIrK0s4ODiIjRs3KsW5ZcsWYWtrq4irpIq+F9pcv9n8pKGk9GwUCeVlhULgZnpO+S8gIqoGNdkE/vDhQ+zcuROjR4+GnZ1dmXJnZ2fs3r0b//zzDz744IMy5d26dUNoaCjWrl2r8j0yMzPh6uqqeO7l5YVjx47h1q1blcY3ePBgrFq1SvF85cqV6N+/PywtLSt9LQAUFRVh3bp16N+/P3x8fMqU29vbo1atWjh79iwuXryICRMmwMxM+fIZFRWFmJiYSvfR0dFR0hqRGzduYOvWrdi+fTu2b9+OAwcOID4+HgDw+eefIzo6GsOGDUNqaipSU1Ph5+eneG1cXBzi4+Nx6dIlNGrUCJMmTcKPP/6I7777DqdPn0ZISAg6duyIhw8fKr3nxIkT8e9//xsnT56Eu7s7unXrhvz8fNjZ2aFv375ISEhQWj8hIQE9e/aEg4ODZPutCpMaDQW52cGs1Ag0c5kMgW6ce4KIasb6k7fRKn4f3lpxHK3i92H9ydvV+n7Xr1+HEAJhYWEq17l69SoAoEGDBuWWh4WFKdYpb/tffvkl3n33XcWy6dOnw9nZGYGBgahfvz4GDhyIDRs2oKioqMzru3btCrlcjoMHDyI7OxsbNmzA4MGD1d6/9PR0PHr0qML9AyrfxwYNGqjcx/T0dMyaNQvDhw9XOy4AaNmyJezt7ZUeJRUVFWHVqlWIiIjAiy++iLffflvRx8nJyQmWlpawtbWFl5cXvLy8lCa4++STT/DKK68gODgYVlZWWLp0KebPn4/OnTsjPDwcK1asgI2NDb799lul95w+fTpeeeUVREZG4rvvvsO9e/ewZcsWAMDQoUOxa9cupKamAng2sd6OHTs0+jyqgkmNhrydbDC3RyTM/39svblMhk97RMDbyUbHkRGRKUjNzFX06QOAIgF8uDmxWmtshBCVr6TFugBw9+5ddOrUCb169cKwYcMUy729vXH06FFcuHAB48aNQ0FBAWJjY9GpU6cyiY2FhQUGDBiAhIQEbNy4EaGhoWjUqFG1xazp+nK5HF26dEF4eDhmzJih0WvXr1+Ps2fPKj1KCgwMVKoB8fb2Vtx6oDJNmzZV/H3jxg3k5+ejVatWimUWFhZo3rw5Ll26pPS66Ohoxd+urq6oX7++Yp3mzZujYcOG+O677wAAq1evRkBAANq0aaPeDleREfQKqnl9mvmjTag7bqbnINDNlgkNEdWYiprAq+u3qF69eooOvqqEhoYCAC5duoSWLVuWKb906RLCw8OVlqWkpKB9+/Zo2bIlvv7663K3GxERgYiICIwaNQojRozAiy++iAMHDqB9+/ZK6w0ePBgtWrRAYmKixrUC7u7ucHZ2rnD/AOV9bNy4cZnyS5cuKdYp9vjxY3Tq1AkODg7YsmULLCwsNIrNz88PISEhKstLb08mk5Vbm1We8poSpTB06FAsWbIEcXFxSEhIwKBBg2ps0knW1GjJ28kG0cG1mdAQUY3SRRO4q6srOnbsiCVLliA7O7tMeUZGBjp06ABXV1f8+9//LlO+bds2XLt2Df369VMsu3v3Ltq1a4fnn38eCQkJZfqolKc4KSovhoYNG6Jhw4ZITEzEW2+9pcnuwczMDH379sUPP/yAlJSUMuVZWVkoKCjAc889h7CwMCxatKhM4nDu3Dn89ttvSvsol8vRoUMHWFpaYtu2bbC2ttYoLilYWloqDadXJTg4GJaWljh8+LBiWX5+Pk6ePFkmGS05pPzRo0e4evWqUpPcgAEDcOvWLXzxxRe4ePEiYmNjJdgT9TCpISIyILpqAl+yZAkKCwvRvHlz/Pjjj7h27RouXbqEL774AtHR0bCzs8Py5cvx008/Yfjw4Th//jxu3ryJb7/9FgMHDkTPnj3Ru3dvAP9LaPz9/bFgwQI8ePAAaWlpSEtLU7zfyJEjMWvWLBw+fBi3bt3CsWPH8M4778Dd3V2p+aOkffv2ITU1Fc7Ozhrv35w5c+Dn54cWLVrgv//9Ly5evIhr165h5cqVaNy4MbKysiCTyfDtt9/i4sWLePPNN3HixAncvn0bGzduRLdu3RAdHa2YE6Y4ocnOzsa3334LuVyu2Ed1koxi//zzj+J1xY8nT56o/frAwEAcP34cN2/eRHp6uspaHDs7O4wcORITJ07Ezp07cfHiRQwbNgw5OTkYMmSI0rqffPIJ9u7di8TERAwcOBBubm7o3r27otzFxQU9evTAxIkT0aFDB6Wh9tVO7XFSBkrqId1ERNqQekh3SkaOOHI9vUank0hJSRGjR48WAQEBwtLSUvj6+orXXntN7N+/X7HOwYMHRceOHYWjo6OwtLQUDRs2FAsWLBAFBQWKdRISEsoMNS5+FNu0aZN49dVXhbe3t7C0tBQ+Pj7izTffFOfPn1esUzykWZVx48apPaRbCCEyMjJEXFycqFevnrC0tBSenp4iJiZGbNmyRRQVFSnWO3/+vHjzzTeFq6ursLCwEMHBweKjjz4S2dnZinWKhz+X90hKSqo0luIh3eU91q5dq3L/Fy1aJAICAhTPr1y5Il544QVhY2NTZkj3o0ePlF6bm5sr3nvvPeHm5lbhkO6ff/5ZNGzYUFhaWormzZuLc+fOlYl/7969AoDYsGFDhfsp9ZBumRAa9ngyMHK5HE5OToqhdEREuvDkyRMkJSUhKChIJ80QRFX1+++/o3379nj06FGltWHff/89/vWvfyElJaXCofUVfS+0uX6zozARERFJIicnB6mpqYiPj8e7776r9lxBUmGfGiIiMnql53op+Th06FCNxzNixAiV8YwYMaLG45HKZ599hrCwMHh5eWHKlCk1/v5sfiIiqgFsftKt69evqyzz9fWFjU3NjmS9f/8+5HJ5uWWOjo7w8PCo0Xh0hc1PREREGqporhdd8PDwMJnEpSax+YmIiIiMApMaIqIapO5sr0SmQOrvA5ufiIhqgKWlJczMzJCSkgJ3d3dYWlrW2NTxRPpGCIGnT5/iwYMHMDMzk2yUFJMaIqIaYGZmhqCgIKSmppY7FT+RKbK1tYW/v79at8lQB5MaIqIaYmlpCX9/fxQUFGg0VT6RMTI3N0etWrUkrbFkUkNEVINkMhksLCw0vlszEVWOHYWJiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjoNOk5uDBg+jWrRt8fHwgk8mwdetWRVl+fj4mT56MyMhI2NnZwcfHB++88w5vBEdERETl0mlSk52djaioKCxZsqRMWU5ODk6fPo1p06bh9OnT2Lx5M65cuYLXXntNB5ESERGRvpMJIYSugwCe3eRty5Yt6N69u8p1Tp48iebNm+PWrVvw9/dXa7tyuRxOTk7IzMyEo6OjRNESERFRddLm+m1Qd+nOzMyETCaDs7OzynXy8vKQl5eneC6Xy2sgMiIiItI1g+ko/OTJE0yePBn9+vWrMGObO3cunJycFA8/P78ajJKIiIh0xSCSmvz8fPTu3RtCCCxdurTCdadMmYLMzEzFIzk5uYaiJCIiIl3S++an4oTm1q1b2LdvX6XtalZWVrCysqqh6IiIiEhf6HVSU5zQXLt2Dfv370ft2rV1HRIRERHpKZ0mNVlZWbh+/brieVJSEs6ePQtXV1d4e3ujZ8+eOH36NLZv347CwkKkpaUBAFxdXWFpaamrsImIiEgP6XRI9++//4727duXWR4bG4sZM2YgKCio3Nft378f7dq1U+s9OKSbiIjI8BjckO527dqhopxKT6bQISIiIgNgEKOfiIiIiCrDpIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCgwqSEiIiKjwKSGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqPApIaIiIiMApMaIiIiMgo6TWoOHjyIbt26wcfHBzKZDFu3blUqF0Lg448/hre3N2xsbBATE4Nr167pJlgiIiLSazpNarKzsxEVFYUlS5aUW/7ZZ5/hiy++wLJly3D8+HHY2dmhY8eOePLkSQ1HSkRERPquli7fvHPnzujcuXO5ZUIILF68GB999BFef/11AMB///tfeHp6YuvWrejbt29NhkpERER6Tm/71CQlJSEtLQ0xMTGKZU5OTmjRogWOHj2qw8iIiIhIH+m0pqYiaWlpAABPT0+l5Z6enoqy8uTl5SEvL0/xXC6XV0+AREREpFf0tqZGW3PnzoWTk5Pi4efnp+uQiIiIqAbobVLj5eUFALh3757S8nv37inKyjNlyhRkZmYqHsnJydUaJxEREekHvU1qgoKC4OXlhb179yqWyeVyHD9+HNHR0SpfZ2VlBUdHR6UHERERGT+d9qnJysrC9evXFc+TkpJw9uxZuLq6wt/fH+PHj8fs2bNRr149BAUFYdq0afDx8UH37t11FzQRERHpJZ0mNadOnUL79u0VzydMmAAAiI2NxapVqzBp0iRkZ2dj+PDhyMjIQOvWrbFz505YW1vrKmQiIiLSUzIhhNB1ENVJLpfDyckJmZmZbIoiIiIyENpcv/W2Tw0RERGRJpjUEBERkVFgUkNERERGgUkNERERGQUmNURERGQUmNQQERGRUWBSQ0REREZBq6QmOztb6jiIiIiIqkSrpMbT0xODBw/GH3/8IXU8RERERFrRKqlZvXo1Hj58iJdeegmhoaGIj49HSkqK1LERERERqU2rpKZ79+7YunUr7t69ixEjRmDNmjUICAhA165dsXnzZhQUFEgdJxEREVGFJLv305dffomJEyfi6dOncHNzw4gRIxAXFwdbW1spNq813vuJiIjI8Ghz/a7SXbrv3buH7777DqtWrcKtW7fQs2dPDBkyBHfu3MG8efNw7Ngx7N69uypvQURERKQWrZKazZs3IyEhAbt27UJ4eDhGjRqFAQMGwNnZWbFOy5Yt0aBBA6niJCIiIqqQVknNoEGD0LdvXxw+fBjNmjUrdx0fHx9MnTq1SsERERERqUurPjU5OTk67yujLvapISIiMjw11qfG1tYWhYWF2LJlCy5dugQAaNCgAbp3745atarUTYeIiIhIK1plIH/99Re6deuGe/fuoX79+gCAefPmwd3dHT///DMiIiIkDZKIiIioMlrNUzN06FBERETgzp07OH36NE6fPo3k5GQ0atQIw4cPlzpGIiIiokppVVNz9uxZnDp1Ci4uLoplLi4umDNnjsqOw0RERETVSauamtDQUNy7d6/M8vv37yMkJKTKQRERERFpSqukZu7cuRg7diw2bdqEO3fu4M6dO9i0aRPGjx+PefPmQS6XKx5ERERENUGrId1mZv/LhWQyGQCgeDMln8tkMhQWFkoRp9Y4pJuIiMjw1NiQ7v3792vzMiIiIqJqo1VS07ZtW6njICIiIqoSrWfKy8jIwLfffquYfK9hw4YYPHgwnJycJAuOiIiISF1adRQ+deoUgoODsWjRIjx8+BAPHz7EwoULERwcjNOnT0sdIxEREVGltOoo/OKLLyIkJAQrVqxQ3BahoKAAQ4cOxd9//42DBw9KHqi22FGYiIjI8Ghz/dYqqbGxscGZM2cQFhamtPzixYto2rQpcnJyNN1ktWFSQ0REZHi0uX5r1fzk6OiI27dvl1menJwMBwcHbTZJREREVCVaJTV9+vTBkCFDsH79eiQnJyM5ORnr1q3D0KFD0a9fP6ljJCIiIqqUVqOfFixYAJlMhnfeeQcFBQUAAAsLC4wcORLx8fGSBkhERESkDo371BQWFuLw4cOIjIyElZUVbty4AQAIDg6Gra1ttQRZFexTQ0REZHhqZEZhc3NzdOjQAZcuXUJQUBAiIyM1DpSIiIhIalr1qYmIiMDff/8tdSxEREREWtMqqZk9ezY++OADbN++HampqUp35eaduYmIiEgXJLtLN6A/d+YuiX1qiIiIDA/v0k1EREQmS6ukJigoCH5+fkq1NMCzmprk5GRJAiMiIiLShFZ9aoKCgvDgwYMyyx8+fIigoKAqB0VERESkKa2SmuK+M6VlZWXB2tq6ykEVKywsxLRp0xAUFAQbGxsEBwdj1qxZ0KIbEBERERk5jZqfJkyYAOBZ5+Bp06YpTbZXWFiI48eP47nnnpMsuHnz5mHp0qX47rvv0LBhQ5w6dQqDBg2Ck5MTxo4dK9n7EBERkeHTKKk5c+YMgGc1NRcuXIClpaWizNLSElFRUfjggw8kC+7IkSN4/fXX0aVLFwBAYGAg1q5dixMnTkj2HkRERGQcNEpqikc9DRo0CJ9//nm1D5Fu2bIlvv76a1y9ehWhoaE4d+4c/vjjDyxcuFDla/Ly8pCXl6d4znlziIiITINWo58SEhKkjqNccXFxkMvlCAsLg7m5OQoLCzFnzhz0799f5Wvmzp2LmTNn1kh8REREpD+0Smqys7MRHx+PvXv34v79+ygqKlIql+oWChs2bMAPP/yANWvWoGHDhjh79izGjx8PHx8fxMbGlvuaKVOmKPr+AM9qavz8/CSJh4iIiPSXVknN0KFDceDAAbz99tvw9vYudySUFCZOnIi4uDj07dsXABAZGYlbt25h7ty5KpMaKysrWFlZVUs8REREpL+0Smp+/fVX/PLLL2jVqpXU8SjJyclRuiUD8Owu4aVrhoiIiIi0SmpcXFzg6uoqdSxldOvWDXPmzIG/vz8aNmyIM2fOYOHChRg8eHC1vzcREREZFq1uaLl69Wr89NNP+O6775TmqpHa48ePMW3aNGzZsgX379+Hj48P+vXrh48//lhpOHlFeENLIiIiw6PN9VurpKZx48a4ceMGhBAIDAyEhYWFUvnp06c13WS1YVJDRERkeGrsLt3du3fX5mVERERE1UarmhpDwpoaIiIiw6PN9VujG1qeOHEChYWFKsvz8vKwYcMGTTZJREREJAmNkpro6Gj8888/iueOjo5KE+1lZGSgX79+0kVHREREpCaNkprSLVXltVwZeWsWERER6SmNkhp1VNfswkREREQVkTypISIiItIFjYd0X7x4EWlpaQCeNTVdvnwZWVlZAID09HRpoyMiIiJSk0ZDus3MzCCTycrtN1O8XCaTVThCqqZxSDcREZHhqfbJ95KSkrQKjIiIiKi6aZTUBAQEaLTxUaNG4ZNPPoGbm5tGryMiIiLSVLV2FF69ejXkcnl1vgURERERgGpOajhnDREREdUUDukmIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyChUa1IzYMAATnhHRERENUKrpKaoqEjl8tu3byueL126lHPUEBERUY3QKKmRy+Xo3bs37Ozs4OnpiY8//ljplggPHjxAUFCQ5EESERERVUajGYWnTZuGc+fO4fvvv0dGRgZmz56N06dPY/PmzbC0tATAuWmIiIhINzSqqdm6dSuWL1+Onj17YujQoTh16hQePHiAbt26IS8vD8CzG1sSERER1TSNkpoHDx4o3f/Jzc0Nv/32Gx4/foxXX30VOTk5kgdIREREpA6Nkhp/f39cunRJaZmDgwN2796N3NxcvPHGG5IGR0RERKQujZKaDh06ICEhocxye3t77Nq1C9bW1pIFRkRERKQJjToKz5w5EykpKeWWOTg4YM+ePTh9+rQkgRERERFpQqOkxsXFBS4uLirLHRwc0LZt2yoHRURERKQpjSffKygowPz589GkSRPY29vD3t4eTZo0wYIFC5Cfn18dMRIRERFVSqOamtzcXLzyyis4evQoYmJi0KZNGwDApUuXMHnyZGzbtg27d+9m3xoiIiKqcRolNfHx8UhOTsaZM2fQqFEjpbJz587htddeQ3x8PGbMmCFljERERESV0qj5ad26dVi4cGGZhAYAoqKisGDBAqxZs0ay4IiIiIjUpVFSc+vWLTRv3lxl+QsvvKB0Q0siIiKimqJRUuPo6Ij79++rLE9LS4ODg0OVgyIiIiLSlEZJTfv27fHpp5+qLI+Pj0f79u2rHBQRERGRpjTqKDx9+nS0aNECL7zwAiZMmICwsDAIIXDp0iUsWrQIFy9exLFjx6orViIiIiKVNEpqwsPDsWfPHgwZMgR9+/ZV3JFbCIGwsDDs3r0bDRs2rJZAiYiIiCqiUVIDPOsM/Ndff+Hs2bO4evUqACA0NBTPPfec1LERERERqU3jpEYul8Pe3h7PPfecUiJTVFSErKwsODo6ShkfERERkVo06ii8ZcsWNG3aFE+ePClTlpubi2bNmuHnn3+WLDgiIiIidWmU1CxduhSTJk2Cra1tmTI7OztMnjwZ//nPfyQLjoiIiEhdGiU1iYmJaNeuncryNm3a4MKFC1WNScndu3cxYMAA1K5dGzY2NoiMjMSpU6ckfQ8iIiIyfBr1qXn06BEKCgpUlufn5+PRo0dVDqrk+7Vq1Qrt27fHr7/+Cnd3d1y7dg0uLi6SvQcREREZB42SmsDAQJw6dQphYWHllp86dQoBAQGSBAYA8+bNg5+fHxISEhTLgoKCJNs+ERERGQ+Nmp969OiBqVOn4t69e2XK0tLS8NFHH+HNN9+ULLht27ahadOm6NWrFzw8PNC4cWOsWLGiwtfk5eVBLpcrPYiIiMj4yYQQQt2VHz9+jOjoaNy+fRsDBgxA/fr1AQCXL1/GDz/8AD8/Pxw7dkyy+z9ZW1sDACZMmIBevXrh5MmTGDduHJYtW4bY2NhyXzNjxgzMnDmzzPLMzEwONyciIjIQcrkcTk5OGl2/NUpqgGfJwZQpU7B+/XpF/xlnZ2f07dsXc+bMkbS/i6WlJZo2bYojR44olo0dOxYnT57E0aNHy31NXl4e8vLyFM/lcjn8/PyY1BARERkQbZIajSffc3JywldffYUlS5YgPT0dQgi4u7srbplQ0uHDh9G0aVNYWVlp+jYAAG9vb4SHhysta9CgAX788UeVr7GystL6/YiIiMhwadSnpiSZTAZ3d3d4eHiUm9AAQOfOnXH37l2tg2vVqhWuXLmitOzq1auSdkYmIiIi46B1UqMODVu2yvjXv/6FY8eO4dNPP8X169exZs0afP311xg9erREERIREZGxqNakpqqaNWuGLVu2YO3atYiIiMCsWbOwePFi9O/fX9ehERERkZ7RuE9NTevatSu6du2q6zCIiIhIz+l1TQ0RERGRuqo1qVHVgZiIiIhIanrdUZiIiIhIXdXap+bx48fVuXkiIiIiBY2Smpdeekmt9fbt26dVMERERETa0iip+f333xEQEIAuXbrAwsKiumIiIiIi0phGSc28efOQkJCAjRs3on///hg8eDAiIiKqKzYiIiIitWnUUXjixIm4ePEitm7disePH6NVq1Zo3rw5li1bBrlcXl0xEhEREVVK47t0l5STk4ONGzdiyZIluHjxIlJSUvTuTtja3OWTiIiIdEub63eVhnSfPn0aBw4cwKVLlxAREcF+NkRERKQzGic1KSkp+PTTTxEaGoqePXvC1dUVx48fx7Fjx2BjY1MdMRIRERFVSqOOwq+++ir279+PDh06YP78+ejSpQtq1dL720cRERGRCdCoT42ZmRm8vb3h4eFR4S0QTp8+LUlwUmCfGiIiIsOjzfVbo2qW6dOnaxUYERERUXWr0ugnQ8CaGiIiIsNT7TU1qhw4cADZ2dmIjo6Gi4uLFJskIiIi0ojGMwpnZWVh1qxZAJ7dhbtz587YvXs3AMDDwwN79+5Fw4YNpY+UiIiIqAIaDelev3690m0RNm3ahIMHD+LQoUNIT09H06ZNMXPmTMmDJCIiIqqMRklNUlISGjVqpHi+Y8cO9OzZE61atYKrqys++ugjHD16VPIgiYiIiCqjUVJTUFAAKysrxfOjR4+iZcuWiuc+Pj5IT0+XLjoiIiIiNWmU1AQHB+PgwYMAgNu3b+Pq1ato06aNovzOnTuoXbu2tBESERERqUGjjsKjR4/GmDFjcOjQIRw7dgzR0dEIDw9XlO/btw+NGzeWPEgiIiKiymiU1AwbNgzm5ub4+eef0aZNmzKT8aWkpGDw4MGSBkhERESkDk6+R0RERHpHm+u3xnfpJiIiItJHGiU1+fn5mDRpEkJCQtC8eXOsXLlSqfzevXswNzeXNEAiIiIidWiU1MyZMwf//e9/MWLECHTo0AETJkzAu+++q7SOkbdmERERkZ7SqKPwDz/8gG+++QZdu3YFAAwcOBCdO3fGoEGDFLU2MplM+iiJiIiIKqFRTc3du3eVbpMQEhKC33//HUeOHMHbb7+NwsJCyQMkIiIiUodGSY2Xlxdu3LihtMzX1xf79+/HyZMnMXDgQCljIyIiIlKbRknNSy+9hDVr1pRZ7uPjg3379iEpKUmywIiIiIg0oVGfmmnTpuHy5cvllvn6+uLAgQPYs2ePJIERERERaYKT7xEREZHeqbHJ9zZu3IgePXogIiICERER6NGjBzZt2qTNpoiIiIgkoVFSU1RUhD59+qBPnz64ePEiQkJCEBISgr/++gt9+vRB3759OU8NERER6YRGfWo+//xz/Pbbb9i2bZtirppi27Ztw6BBg/D5559j/PjxUsZIREREVCmNamoSEhIwf/78MgkNALz22mv47LPPytw6gYiIiKgmaJTUXLt2DTExMSrLY2JicO3atSoHRURERKQpjZIaGxsbZGRkqCyXy+WwtrauakxEREREGtMoqYmOjsbSpUtVli9ZsgTR0dFVDoqIiIhIUxolNVOnTsW3336L3r1748SJE5DL5cjMzMSxY8fQq1cvrFy5ElOnTq2uWBEfHw+ZTMaOyERERFSGRqOfWrZsifXr12P48OH48ccflcpcXFywdu1atGrVStIAi508eRLLly9Ho0aNqmX7REREZNg0SmoA4I033kDHjh2xa9cuRafg0NBQdOjQAba2tpIHCABZWVno378/VqxYgdmzZ1fLexAREZFh06j5ad++fQgPD0dBQQHeeOMNTJo0CZMmTUL37t2Rn5+Phg0b4tChQ5IHOXr0aHTp0qXCkVfF8vLyIJfLlR5ERERk/DRKahYvXoxhw4aVew8GJycnvPvuu1i4cKFkwQHAunXrcPr0acydO1et9efOnQsnJyfFw8/PT9J4iIiISD9plNScO3cOnTp1UlneoUMH/Pnnn1UOqlhycjLGjRuHH374Qe2h4lOmTEFmZqbikZycLFk8REREpL806lNz7949WFhYqN5YrVp48OBBlYMq9ueff+L+/fto0qSJYllhYSEOHjyI//znP8jLy4O5ubnSa6ysrGBlZSVZDERERGQYNEpqfH19kZiYiJCQkHLLz58/D29vb0kCA4CXX34ZFy5cUFo2aNAghIWFYfLkyWUSGiIiIjJdGiU1r776KqZNm4ZOnTqVaQ7Kzc3F9OnTy70vlLYcHBwQERGhtMzOzg61a9cus5yIiIhMm0ZJzUcffYTNmzcjNDQUY8aMQf369QEAly9fxpIlS1BYWFitk+8RERERqSITQghNXnDr1i2MHDkSu3btQvFLZTIZOnbsiCVLliAoKKhaAtWWXC6Hk5MTMjMzyx21RURERPpHm+u3xpPvBQQEYMeOHXj06BGuX78OIQTq1asHFxcXjQMmIiIikorGSU0xFxcXNGvWTMpYiIiIiLSm0Tw1RERERPqKSQ0REREZBSY1eiQ1MxdHbqQjNTNX16EQEREZHK371JC01p+8jSmbL6BIAGYyYG6PSPRp5q/rsIiIiAwGa2r0QGpmriKhAYAiAXy4OZE1NkRERBpgUqMHktKzFQlNsUIhcDM9RzcBERERGSAmNXogyM0OZjLlZeYyGQLdbHUTEBERkQFiUqMHvJ1sMLdHJMxlzzIbc5kMn/aIgLeTjY4jIyIiMhzsKKwn+jTzR5tQd9xMz0Ggmy0TGiIiIg0xqdEj3k42TGaIiIi0xOYnIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqJMabUhIREekGh3RLiDelJCIi0h3W1EiEN6UkIiLSLSY1EuFNKYmIiHSLSY1EeFNKIiIi3WJSIxHelJKIiEi32FFYQrwpJRERke4wqZGYNjelTM3MRVJ6NoLc7JgIERERaYlJjY5xGDgREZE02KdGhzgMnIiISDpManSIw8CJiIikw6RGhzgMnIiISDpManSIw8CJiIikw47COsZh4ERERNJgUqMHtBkGTkRERMrY/EQKqZm5OHIjnaOviIjIILGmhgBwvhwiIjJ8rKkhnEt+hDjOl0NERAaOSY2JW3/yNrovOQLB+XKIiMjAMakxYcUzGotyyjhfDhGZOvYzNDzsU2PCypvRGHjWp4bz5RCRKWM/Q8PEmhoTVt6MxmYAtoxqyS8vEZks3pfPcOl1UjN37lw0a9YMDg4O8PDwQPfu3XHlyhVdh2U0ypvReO6bkYjyc9FxZEREusP78hkuvW5+OnDgAEaPHo1mzZqhoKAAH374ITp06ICLFy/Czs5O1+EZBc5oTESkrLgWu2Riw36GhkEmROlxL/rrwYMH8PDwwIEDB9CmTRu1XiOXy+Hk5ITMzEw4OjpWc4RERGQM1p+8jQ83J6JQCMV9+dgsX7O0uX7rdU1NaZmZmQAAV1dXHUeiv1Izc5GUno0gNzvWuhARaYm12IbJYJKaoqIijB8/Hq1atUJERITK9fLy8pCXl6d4LpfLayI8vcDe+kRE0uF9+QyPXncULmn06NFITEzEunXrKlxv7ty5cHJyUjz8/PxqKELdYm99IiIydQaR1IwZMwbbt2/H/v37UadOnQrXnTJlCjIzMxWP5OTkGopSt9hbn4iITJ1eNz8JIfDee+9hy5Yt+P333xEUFFTpa6ysrGBlZVUD0ekX9tYnIiJTp9c1NaNHj8bq1auxZs0aODg4IC0tDWlpacjNZZNKaeXNOcNZgYmIyJTo9ZBumUxW7vKEhAQMHDhQrW2Y2pDu1Mxck+mtz5FeRETGy+iGdOtxvqW3TKW3Pkd6GQYmnkRUk/Q6qSEqj6qRXm1C3Xnh1CNMPImopul1nxqi8nCkl/7jFANEpAtMasjglHd3cY700i9MPIlIF5jUkMHhSC/dSc3MxZEb6ZXWuDDxJCJdYJ8aMijFHU/bhLrjj7j2JjPSSx9o0kemOPEsfUNAfk5EVJ30eki3FExtSLcxY8dT3UnNzEWr+H1lJnf8I659hYmKKU0xQETS0ub6zeYnMgjseKpb2vaR8XayQXRwbY0TGnWbuYiISmLzExmEii6qrAGofjV5Gw7WyBGRtlhTQwaBHU91q3TnbDMZMLh1oOTvwxo5orJYc6k+JjWkEV19uTjiSff6NPPHH3HtMbxNEIQAVhxKQqv4fVh/8rZk78Gh4ETK1p+8jVbx+/DWiuOSf9+koG8JF5ufSG3aNgtINVV+n2b+aBPqzo6nOvbNoSQU5x1Sz+bMu80T/Y++z56uj03FrKkhtWjbLCD1fxnadjwlaVR3TQpr5Ij+R59rLvW1qZg1NRIx9hv3adNRV9//yyDN1URNSnGN3J83HwEy4PkAF8m2TWRI9LnmUl8Hb7CmRgL63uYpBW066urzfxnGrrrauWuqJuXg1QcYu+4Mxqw5Y7TfKaLK6HPNpb4O3mBNTRWZUm3E0NZB+OZQEopQ+ZcrNTMX/2Tl6e1/Gcasutu5VfVtkqq20pS+U0SV0de+hPo6aziTmirS1yo4KZW+SA5vXReDWgeq3L+S68sAyGSAEPr1X4YmDKlpsaYSAm8nG6XtSZlImcJ3ikgTpb9v+kIfEy4mNVWkz22eUjiX/Ahxmy9AlLhIfvtHEgapmKOk9EVVADATwH/eaowmAS56cdJrQh9791dEFwmB1ImUsX+niIyJviVc7FNTRfrc5llV60/eRvclR1D67mAV9Ysp76JaBMDVzsrgjom+9u6vSE20c5furyN13ylj/k4RUfViTY0E9LEKrqqKL+jl3e20ooukMf2Xrataj6o0dVV3O3d5NVdtQt0l/8yN8TtFRNWPSY1E9K0KrqrKu6AXm9S5vsp91faiqqt+KxW9b00naFI1dVVXQqCq5uqPuPbVkkjV1HfKkPpMEVHFmNRQuYLc7CADyq2paeTrXOFrNb2o6qrfSmXvqypBA4AjN9IlvQhK3S+lOhKCimquDLVmxdD6TJH0mNQaFyY1VC5vJxvEdQ7D3F8vKy1Xt6ZC3Yuqrobvqvu+pS/WB68+QKv4fZJfBGuqqasqP+CV1VwZWm2l1OceL47SqaljWdWklp+5/mFSQyq92zYYkAHzfr2Momoakq2r4buavG/xxbo6EzB1mrqq+gNa1R9wfZ2XQltSnnus8amcuudvTR3Lqn6f+ZnrJyY1VKF32wTjtSgfSZoVUjNz8eetRxBCoGmgK7ydbMq9mJsB1d6xWJv+MlInYKV/5CtKGKT4j1KKhMxQm5nKI1WfKU4WWDl1z9+aPJZV+T7zM9dfTGqoUlI0K6w/eRtxP/5vNJUMQPybz37Y5vaIVCoTeDZNfnX+16NNrYOUHYdV/cirmqm3qj+gUiZk1dnMVJPV+VLVPKk6tqdvPUKXRrzAaXL+1mTNbVW+z5wgUn8xqaFqV97wcAFgyo8X0CbUHW1C3RWzDheX1cR/PZrWOkh1EazsR746fugNYai9Lqrzpah5Ku/YAsCYNWeQlVdg8k0Smpy/NXmelvd9ntSpPpLSsxXlqhjC98lUMamhaqdqeHgRgJvpORAQOvuvR9Nah4ougurWMmiapEjxA6rv/WF0WZ1f1Zqn4mNbMn6g5pJzfafJ+VuTIw4B5e/z+bsZiv6DlSXV+v59MmVMaqjaqfpPtmTfGUP6r6e8i2DpWobJncIQWcdJkvlvpPoB1ef+MIZend+nmT9sLc3x3tqzSssNaR+qi6bnrzYjDqvSbFm8fv9vjmmUVOvz98mUMakxcIYwpLD4R63kPaRkAOa+GamIueSPnpkMGKzi3lL6qLxahuKh8JrMf1PR5yfVD6i+Drs2hur8poGuBr8P1UWbpl51RxxK0WypbVKtr98nU8akRseqkpQY0pDC4h+107ceQQjg+UDlm1sWlyccTsKKg0lYcSgJ3/6RVGaf9DGJq2j2ZXXnv1FnX6r7B1SXx9YYqvOrax/08ZzXhjbnb2XJhrrNlpUdQ2NIqtVRfBzsLM2R/bTQ4M+p8jCp0aGqJCWGOKTQ28mm0tEg3xxKUnQoLr1P+prEqWpeK1bZ/Df6QB+OrTFU50u9D/rwuWhDqkSssmRDnRoWdY5hRQmpsSSVJY9DsZLHw1j2k0mNjlQ1KTH0Pgjlqexuz/qaxJX+QSxN3//j06cEWVWipy8/uOrEIVWyqk+fS3lUHQspE7HKar8qS3o0OYblJaSGmlSWVvo4FCs+Hhk5+Zi3U71O0vqOSY2OVDUpMYbq0tI/ihXtk74ncaVHUXz26xWDaUbR92OrLxeWmo5Dnz8XVceiOhKximq/Kkt6ND2GJRNSfU8qNVFRE3mhEIj/9bLKGnJDw6RGR6qalBh6HwRVP4oV7ZO+J3HFP4jRwbUlm4W5JuhzgqwvFxZdxKFqtu1/svOQmpmrs/OqomNRXYlYRbVfFSU9hjbBntQ1kiX70KhqIi9vub4kz9pgUqMjUiQlpb/MQPXM5SC1in4UVf1AGVoSp0/9ZSpT+tjWxOiz6prTp7roIo7Sn4sMz+a+GbPmTLk1RVJcENXZRkXHQlcJsqrvW1V+N2p6XyqrCdT08y29vTca+2LrmZQyTeRFAopzq5i+/FOjDSY1OiRFp8LiL7O+VNGro7ILhKofKGPoSKqvVI0+G9I6CINbB0l6rDU5V1XVVthamkkWjzrKjUNW/XH0aeaPjJx8zC3RPABUTyd6dbdR0cVeH//50PZ3oyb3pbKaQE0/3/K2t/VMCjaPisadR7kYveZMmdcUf6b68JlVhUyIcno2GhG5XA4nJydkZmbC0dFR1+FUi9TMXMXkVMXMZTL8EddeL09MQ4vXVJT3uQDK9+mqjveo7LNff/J2mU7Y2l64qzqFglRxqEvVZ1Js7bAXEOhmW+Xvk6afS8ljUXwRLF2rYCz/fNTEvhy5kY63Vhwvs1zbz7ei7QmIcsv+068xattb6dVnps31mzU1RkBfqujVpY//zWmjqtX9+jKip5iqzoQC0vUf0eZc7dPMH2FeDuj+1RHF5I3a9Gmpam2GIo4lRzTqVFmVz7miDp5SdqLXdBuV1X4YUvNrZWpiX6QaJFFRH5qSTUrllZWeO8xQManRE1X54dPnjp6qGHpTUlUvkPrYXFjRfDtSJcnanqvZTwtRuk5Zk5ik6uib/bQQpQ9PRXFU9XNWeYsRGSTtRK/N52JMiYuuFf+jV/Jc0fTzXX7ghmIUU+k+NKX/cTSGfypVqdmGaSrX+pO30Sp+H95acRyt4vdh/cnbGr2++AthLpMBMJw20eKRQrocxXHkRjpSM3M1WkfVBbKi7ZTeZlVeX12KzyMzWdkyqZJkbc/V4ouutjFVNgeSujSJQ4rPufTxMgMwvE0QDse9pEiOqvL9Lz6/ARjkb4ixKU7cSybw6ny+yw/eUOp3VbIPzdphL+CPuPZKyXSfZv74I659uWWGziBqapYsWYL58+cjLS0NUVFR+PLLL9G8eXNdhyUJqf6DNPSaj5pW8j9oGYC4zmF4t22wynVK/pdd1ep+fW4uLNlh+JuDSSiC9Bc4bW8RUZX/LqWqzdQkDik+59TMXPi52mLzqGjkPC1Seby0Oablnd9/xLXnb4gOFF8Hik8XAWDKjxcQ5uWAKD+XCj/f1MxcxP//veZKKhQCdx7loksjn3Lf01hr2vQ+qVm/fj0mTJiAZcuWoUWLFli8eDE6duyIK1euwMPDQ9fhVZmUFzhjPUmlVjqRFPj/G1DKgHfbBJe7Tslks6oXSG1eX7J5EkC19sXxdrLBh6+GY1CroGq7wGlzrlYlcZeyH5e6cVT1PCkv6YgOrq1yfVXHtLymbVXn9+ZR0RBlGtioupV3HSgC0P2rI4j//3+mVH2+SenZZZpmi41ZcwZZeQVGVRNTGb1PahYuXIhhw4Zh0KBBAIBly5bhl19+wcqVKxEXF6fj6KrOEPvDGDpVnS/n/XoZr0X5wNvJpsJkMzq4dpUukJpeYEvXKgFQtJtXZ18cfUySqxKTlLWZ6sRRlURKqhpcTWsbiztj60s/L1Ohqu+UUONzr6gvnJSd/A2FXic1T58+xZ9//okpU6YolpmZmSEmJgZHjx4t9zV5eXnIy8tTPJfL5dUeZ1UYy0ggQxLkZldmsing2Y9CcQ1ZZclmVS+Q6r6+vFqlkvGa2g9WVdV0oqbteSJV05UmtY0AqjS6jLSn6Cj84wUUlSqr7HMvfQ0pTV+atmuKXncUTk9PR2FhITw9PZWWe3p6Ii0trdzXzJ07F05OToqHn59fTYRaJcbcaUsfeTvZIK5zWJnlJZMWdTrnVbWjszqvr2hIL6BdZ1eqWdqcJ1XtGA1UnhiV7oBcGs+tmtWnmT+2jG4JmRafe/E1ZMlbjVG6n7+p1fzrdU2NNqZMmYIJEyYonsvlcoNIbPSxqt+Yvds2GJA9a3JSNYumPnS+rqhqGTC9HyxTIUUNria1jbaWZnjjqyNsBtexKD8XxGv5uXs72aBLIxtk5RWYdM2/Xs8o/PTpU9ja2mLTpk3o3r27YnlsbCwyMjLw008/VboNU5hRmLRnCDOflpy9VQYAsmfNBOXN5ErGparnZ2Uz/2q7LlWvqn7uhvC7pg5trt96ndQAQIsWLdC8eXN8+eWXAICioiL4+/tjzJgxanUUZlJDxqDkjxQAo/jBopqhyQXOWC6GZByM8jYJEyZMQGxsLJo2bYrmzZtj8eLFyM7OVoyGIjIFpZsnecEhdWnStM1mcDJ0ep/U9OnTBw8ePMDHH3+MtLQ0PPfcc9i5c2eZzsNERERk2vS++amq2PxERERkeLS5fuv1kG4iIiIidTGpISIiIqPApIaIiIiMApMaIiIiMgpMaoiIiMgoMKkhIiIio8CkhoiIiIwCkxoiIiIyCkxqiIiIyCjo/W0Sqqp4wmS5XK7jSIiIiEhdxddtTW58YPRJzePHjwEAfn5+Oo6EiIiINPX48WM4OTmpta7R3/upqKgIKSkpcHBwgEwm03o7crkcfn5+SE5ONul7SPE4PMPj8AyPw//wWDzD4/AMj8MzVTkOQgg8fvwYPj4+MDNTr7eM0dfUmJmZoU6dOpJtz9HR0aRP0GI8Ds/wODzD4/A/PBbP8Dg8w+PwjLbHQd0ammLsKExERERGgUkNERERGQUmNWqysrLC9OnTYWVlpetQdIrH4Rkeh2d4HP6Hx+IZHodneByeqenjYPQdhYmIiMg0sKaGiIiIjAKTGiIiIjIKTGqIiIjIKDCpISIiIqNg0knN0qVL0ahRI8WkQNHR0fj1118V5U+ePMHo0aNRu3Zt2Nvb480338S9e/eUtnH79m106dIFtra28PDwwMSJE1FQUFDTuyKp+Ph4yGQyjB8/XrHMFI7FjBkzIJPJlB5hYWGKclM4BsXu3r2LAQMGoHbt2rCxsUFkZCROnTqlKBdC4OOPP4a3tzdsbGwQExODa9euKW3j4cOH6N+/PxwdHeHs7IwhQ4YgKyurpnelSgIDA8ucEzKZDKNHjwZgOudEYWEhpk2bhqCgINjY2CA4OBizZs1SuiePqZwTjx8/xvjx4xEQEAAbGxu0bNkSJ0+eVJQb43E4ePAgunXrBh8fH8hkMmzdulWpXKp9Pn/+PF588UVYW1vDz88Pn332mebBChO2bds28csvv4irV6+KK1euiA8//FBYWFiIxMREIYQQI0aMEH5+fmLv3r3i1KlT4oUXXhAtW7ZUvL6goEBERESImJgYcebMGbFjxw7h5uYmpkyZoqtdqrITJ06IwMBA0ahRIzFu3DjFclM4FtOnTxcNGzYUqampiseDBw8U5aZwDIQQ4uHDhyIgIEAMHDhQHD9+XPz9999i165d4vr164p14uPjhZOTk9i6das4d+6ceO2110RQUJDIzc1VrNOpUycRFRUljh07Jg4dOiRCQkJEv379dLFLWrt//77S+bBnzx4BQOzfv18IYTrnxJw5c0Tt2rXF9u3bRVJSkti4caOwt7cXn3/+uWIdUzknevfuLcLDw8WBAwfEtWvXxPTp04Wjo6O4c+eOEMI4j8OOHTvE1KlTxebNmwUAsWXLFqVyKfY5MzNTeHp6iv79+4vExESxdu1aYWNjI5YvX65RrCad1JTHxcVFfPPNNyIjI0NYWFiIjRs3KsouXbokAIijR48KIZ590GZmZiItLU2xztKlS4Wjo6PIy8ur8dir6vHjx6JevXpiz549om3btoqkxlSOxfTp00VUVFS5ZaZyDIQQYvLkyaJ169Yqy4uKioSXl5eYP3++YllGRoawsrISa9euFUIIcfHiRQFAnDx5UrHOr7/+KmQymbh79271BV/Nxo0bJ4KDg0VRUZFJnRNdunQRgwcPVlrWo0cP0b9/fyGE6ZwTOTk5wtzcXGzfvl1peZMmTcTUqVNN4jiUTmqk2uevvvpKuLi4KH0vJk+eLOrXr69RfCbd/FRSYWEh1q1bh+zsbERHR+PPP/9Efn4+YmJiFOuEhYXB398fR48eBQAcPXoUkZGR8PT0VKzTsWNHyOVy/PXXXzW+D1U1evRodOnSRWmfAZjUsbh27Rp8fHxQt25d9O/fH7dv3wZgWsdg27ZtaNq0KXr16gUPDw80btwYK1asUJQnJSUhLS1N6Vg4OTmhRYsWSsfC2dkZTZs2VawTExMDMzMzHD9+vOZ2RkJPnz7F6tWrMXjwYMhkMpM6J1q2bIm9e/fi6tWrAIBz587hjz/+QOfOnQGYzjlRUFCAwsJCWFtbKy23sbHBH3/8YTLHoSSp9vno0aNo06YNLC0tFet07NgRV65cwaNHj9SOx+hvaFmZCxcuIDo6Gk+ePIG9vT22bNmC8PBwnD17FpaWlnB2dlZa39PTE2lpaQCAtLQ0pR+r4vLiMkOybt06nD59WqltuFhaWppJHIsWLVpg1apVqF+/PlJTUzFz5ky8+OKLSExMNJljAAB///03li5digkTJuDDDz/EyZMnMXbsWFhaWiI2NlaxL+Xta8lj4eHhoVReq1YtuLq6GtSxKGnr1q3IyMjAwIEDAZjO9wIA4uLiIJfLERYWBnNzcxQWFmLOnDno378/AJjMOeHg4IDo6GjMmjULDRo0gKenJ9auXYujR48iJCTEZI5DSVLtc1paGoKCgspso7jMxcVFrXhMPqmpX78+zp49i8zMTGzatAmxsbE4cOCArsOqUcnJyRg3bhz27NlT5j8QU1L8XycANGrUCC1atEBAQAA2bNgAGxsbHUZWs4qKitC0aVN8+umnAIDGjRsjMTERy5YtQ2xsrI6j051vv/0WnTt3ho+Pj65DqXEbNmzADz/8gDVr1qBhw4Y4e/Ysxo8fDx8fH5M7J77//nsMHjwYvr6+MDc3R5MmTdCvXz/8+eefug6NYOKjnwDA0tISISEheP755zF37lxERUXh888/h5eXF54+fYqMjAyl9e/duwcvLy8AgJeXV5mRDsXPi9cxBH/++Sfu37+PJk2aoFatWqhVqxYOHDiAL774ArVq1YKnp6fJHIuSnJ2dERoaiuvXr5vU+eDt7Y3w8HClZQ0aNFA0xRXvS3n7WvJY3L9/X6m8oKAADx8+NKhjUezWrVv47bffMHToUMUyUzonJk6ciLi4OPTt2xeRkZF4++238a9//Qtz584FYFrnRHBwMA4cOICsrCwkJyfjxIkTyM/PR926dU3qOBSTap+l+q6YfFJTWlFREfLy8vD888/DwsICe/fuVZRduXIFt2/fRnR0NAAgOjoaFy5cUPqw9uzZA0dHxzIXBX328ssv48KFCzh79qzi0bRpU/Tv31/xt6kci5KysrJw48YNeHt7m9T50KpVK1y5ckVp2dWrVxEQEAAACAoKgpeXl9KxkMvlOH78uNKxyMjIUPrvdd++fSgqKkKLFi1qYC+klZCQAA8PD3Tp0kWxzJTOiZycHJiZKV8uzM3NUVRUBMA0zwk7Ozt4e3vj0aNH2LVrF15//XWTPA5S7XN0dDQOHjyI/Px8xTp79uxB/fr11W56AmDaQ7rj4uLEgQMHRFJSkjh//ryIi4sTMplM7N69WwjxbLimv7+/2Ldvnzh16pSIjo4W0dHRitcXD9fs0KGDOHv2rNi5c6dwd3c3uOGa5Sk5+kkI0zgW77//vvj9999FUlKSOHz4sIiJiRFubm7i/v37QgjTOAZCPBvWX6tWLTFnzhxx7do18cMPPwhbW1uxevVqxTrx8fHC2dlZ/PTTT+L8+fPi9ddfL3cIZ+PGjcXx48fFH3/8IerVq6fXw1ZVKSwsFP7+/mLy5MllykzlnIiNjRW+vr6KId2bN28Wbm5uYtKkSYp1TOWc2Llzp/j111/F33//LXbv3i2ioqJEixYtxNOnT4UQxnkcHj9+LM6cOSPOnDkjAIiFCxeKM2fOiFu3bgkhpNnnjIwM4enpKd5++22RmJgo1q1bJ2xtbTmkWxODBw8WAQEBwtLSUri7u4uXX35ZkdAIIURubq4YNWqUcHFxEba2tuKNN94QqampStu4efOm6Ny5s7CxsRFubm7i/fffF/n5+TW9K5IrndSYwrHo06eP8Pb2FpaWlsLX11f06dNHaW4WUzgGxX7++WcREREhrKysRFhYmPj666+VyouKisS0adOEp6ensLKyEi+//LK4cuWK0jr//POP6Nevn7C3txeOjo5i0KBB4vHjxzW5G5LYtWuXAFBm/4QwnXNCLpeLcePGCX9/f2FtbS3q1q0rpk6dqjT81lTOifXr14u6desKS0tL4eXlJUaPHi0yMjIU5cZ4HPbv3y8AlHnExsYKIaTb53PnzonWrVsLKysr4evrK+Lj4zWOVSZEiSkhiYiIiAwU+9QQERGRUWBSQ0REREaBSQ0REREZBSY1REREZBSY1BAREZFRYFJDRERERoFJDRERERkFJjVERERkFJjUEBmItLQ0vPfee6hbty6srKzg5+eHbt26Kd1z5ciRI3j11Vfh4uICa2trREZGYuHChSgsLFSsc/PmTQwZMgRBQUGwsbFBcHAwpk+fjqdPnyq934oVKxAVFQV7e3s4OzujcePGihsYAsCMGTMgk8nQqVOnMrHOnz8fMpkM7dq1q3S/AgMDIZPJVD4GDhyo+cHSc+3atcP48eN1HQaR0aml6wCIqHI3b95Eq1at4OzsjPnz5yMyMhL5+fnYtWsXRo8ejcuXL2PLli3o3bs3Bg0ahP3798PZ2Rm//fYbJk2ahKNHj2LDhg2QyWS4fPkyioqKsHz5coSEhCAxMRHDhg1DdnY2FixYAABYuXIlxo8fjy+++AJt27ZFXl4ezp8/j8TERKW4vL29sX//fty5cwd16tRRLF+5ciX8/f3V2reTJ08qkq4jR47gzTffxJUrV+Do6AgAsLGxkeIQ1oj8/HxYWFjU2Ps9ffoUlpaWNfZ+RHpPy1tBEFEN6ty5s/D19RVZWVllyh49eiSysrJE7dq1RY8ePcqUb9u2TQAQ69atU7n9zz77TAQFBSmev/7662LgwIEVxjR9+nQRFRUlunbtKmbPnq1YfvjwYeHm5iZGjhwp2rZtq8be/U/xPWYePXqkWLZ161bRuHFjYWVlJYKCgsSMGTOU7p0EQCxbtkx06dJF2NjYiLCwMHHkyBFx7do10bZtW2Frayuio6OV7uNVHPuyZctEnTp1hI2NjejVq5fSPXyEEGLFihUiLCxMWFlZifr164slS5YoypKSkhTHtU2bNsLKykokJCSI9PR00bdvX+Hj4yNsbGxERESEWLNmjeJ1sbGxZe6hk5SUJBISEoSTk5PS+2/ZskWU/JkujnvFihUiMDBQyGQyIcSzc2DIkCHCzc1NODg4iPbt24uzZ89qdOyJjAGbn4j03MOHD7Fz506MHj0adnZ2ZcqdnZ2xe/du/PPPP/jggw/KlHfr1g2hoaFYu3atyvfIzMyEq6ur4rmXlxeOHTuGW7duVRrf4MGDsWrVKsXzlStXon///pLUIBw6dAjvvPMOxo0bh4sXL2L58uVYtWoV5syZo7TerFmz8M477+Ds2bMICwvDW2+9hXfffRdTpkzBqVOnIITAmDFjlF5z/fp1bNiwAT///DN27tyJM2fOYNSoUYryH374AR9//DHmzJmDS5cu4dNPP8W0adPw3XffKW0nLi4O48aNw6VLl9CxY0c8efIEzz//PH755RckJiZi+PDhePvtt3HixAkAwOeff47o6GgMGzYMqampSE1NhZ+fn9rH5Pr16/jxxx+xefNmnD17FgDQq1cv3L9/H7/++iv+/PNPNGnSBC+//DIePnyoyeEmMny6zqqIqGLHjx8XAMTmzZtVrhMfH1+mhqOk1157TTRo0KDcsmvXrglHR0elO3GnpKSIF154QQAQoaGhIjY2Vqxfv14UFhYq1imuNXj69Knw8PAQBw4cEFlZWcLBwUGcO3dOjBs3rso1NS+//LL49NNPldb5/vvvhbe3t+I5APHRRx8pnh89elQAEN9++61i2dq1a4W1tbVS7Obm5uLOnTuKZb/++qswMzNT3GU7ODhYqYZFCCFmzZoloqOjhRD/q6lZvHhxpfvVpUsX8f777yuet23bVowbN05pHXVraiwsLMT9+/cVyw4dOiQcHR3FkydPlF4bHBwsli9fXmlsRMaEfWqI9JwQolrWBYC7d++iU6dO6NWrF4YNG6ZY7u3tjaNHjyIxMREHDx7EkSNHEBsbi2+++QY7d+6Emdn/KnktLCwwYMAAJCQk4O+//0ZoaCgaNWqkURyqnDt3DocPH1aqmSksLMSTJ0+Qk5MDW1tbAFB6P09PTwBAZGSk0rInT55ALpcr+ur4+/vD19dXsU50dDSKiopw5coVODg44MaNGxgyZIjScSkoKICTk5NSjE2bNlV6XlhYiE8//RQbNmzA3bt38fTpU+Tl5SliraqAgAC4u7srnp87dw5ZWVmoXbu20nq5ubm4ceOGJO9JZCiY1BDpuXr16ik6+KoSGhoKALh06RJatmxZpvzSpUsIDw9XWpaSkoL27dujZcuW+Prrr8vdbkREBCIiIjBq1CiMGDECL774Ig4cOID27dsrrTd48GC0aNECiYmJGDx4sKa7qFJWVhZmzpyJHj16lCmztrZW/F2yc65MJlO5rKioSO33BZ6NAGvRooVSmbm5udLz0k2C8+fPx+eff47FixcjMjISdnZ2GD9+fJnRZaWZmZmVSUrz8/PLrFf6/bKysuDt7Y3ff/+9zLrOzs4VvieRsWFSQ6TnXF1d0bFjRyxZsgRjx44tc1HLyMhAhw4d4Orqin//+99lkppt27bh2rVrmDVrlmLZ3bt30b59ezz//PNISEhQqnlRpTgpys7OLlPWsGFDNGzYEOfPn8dbb72lzW6Wq0mTJrhy5QpCQkIk22ax27dvIyUlBT4+PgCAY8eOwczMDPXr14enpyd8fHzw999/o3///hpt9/Dhw3j99dcxYMAAAM8SqatXryollZaWlkrD7AHA3d0djx8/RnZ2tuIzLu4zU5EmTZogLS0NtWrVQmBgoEaxEhkbJjVEBmDJkiVo1aoVmjdvjk8++QSNGjVCQUEB9uzZg6VLl+LSpUtYvnw5+vbti+HDh2PMmDFwdHTE3r17MXHiRPTs2RO9e/cG8CyhadeuHQICArBgwQI8ePBA8T5eXl4AgJEjR8LHxwcvvfQS6tSpg9TUVMyePRvu7u6Ijo4uN8Z9+/YhPz9f0tqBjz/+GF27doW/vz969uwJMzMznDt3DomJiZg9e3aVtm1tbY3Y2FgsWLAAcrkcY8eORe/evRXHYObMmRg7diycnJzQqVMn5OXl4dSpU3j06BEmTJigcrv16tXDpk2bcOTIEbi4uGDhwoW4d++eUlITGBiI48eP4+bNm7C3t4erqytatGgBW1tbfPjhhxg7diyOHz+u1AFblZiYGERHR6N79+747LPPEBoaipSUFPzyyy944403yjSPERkzjn4iMgB169bF6dOn0b59e7z//vuIiIjAK6+8gr1792Lp0qUAgJ49e2L//v24ffs2XnzxRdSvXx+LFi3C1KlTsW7dOkUTzJ49e3D9+nXs3bsXderUgbe3t+JRLCYmBseOHUOvXr0QGhqKN998E9bW1ti7d2+ZvhvF7OzsJG/u6NixI7Zv347du3ejWbNmeOGFF7Bo0SIEBARUedshISHo0aMHXn31VXTo0AGNGjXCV199pSgfOnQovvnmGyQkJCAyMhJt27bFqlWrEBQUVOF2P/roIzRp0gQdO3ZEu3bt4OXlhe7duyut88EHH8Dc3Bzh4eFwd3fH7du34erqitWrV2PHjh2IjIzE2rVrMWPGjEr3QyaTYceOHWjTpg0GDRqE0NBQ9O3bF7du3VL0LyIyFTKhac9CIiIDN2PGDGzdulWt5h0iMhysqSEiIiKjwKSGiKqdvb29ysehQ4d0HR4RGQk2PxFRtbt+/brKMl9fX4O6vxMR6S8mNURERGQU2PxERERERoFJDRERERkFJjVERERkFJjUEBERkVFgUkNERERGgUkNERERGQUmNURERGQUmNQQERGRUfg/m8X4cdn2MvMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" } - ], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(alm_surr, data_validation)\n", - "surrogate_parity(alm_surr, data_validation)\n", - "surrogate_residual(alm_surr, data_validation)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding](./surrogate_embedding_usr.ipynb) file." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization.ipynb index 2783470f..97485dd5 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "53c44468", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": null, @@ -710,8 +737,7 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" - }, - "orig_nbformat": 4 + } }, "nbformat": 4, "nbformat_minor": 2 diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization.py b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization.py index df312dc4..5936a332 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization.py +++ b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization.py @@ -1,15 +1,16 @@ -############################################################################### +################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. -############################################################################### +# +################################################################################# """ Maintainer: Javal Vyas diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization_doc.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization_doc.ipynb index b4786423..a53ec77c 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization_doc.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization_doc.ipynb @@ -2,7 +2,33 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -37,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -47,7 +73,7 @@ "" ] }, - "execution_count": 1, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -75,7 +101,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -128,36 +154,162 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2023-08-19 23:43:01 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n", - "2023-08-19 23:43:03 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:03 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:03 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n", - "2023-08-19 23:43:03 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", + "2025-03-17 17:38:27 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:27 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "--------------------------------------------------------------------\n", "The degrees of freedom for the flowsheet is 0\n", - "--------------------------------------------------------------------\n", + "--------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Ipopt 3.13.2: \n", "\n", "******************************************************************************\n", @@ -217,12 +369,25 @@ "Number of equality constraint Jacobian evaluations = 4\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", - "Total CPU secs in NLP function evaluations = 0.001\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", "\n", "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "====================================================================================\n", + "====================================================================================\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Unit : fs.boiler Time: 0.0\n", "------------------------------------------------------------------------------------\n", " Unit Performance\n", @@ -358,7 +523,13 @@ " Unit Performance\n", "\n", " Variables: \n", - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Key : Value : Units : Fixed : Bounds\n", " Heat Duty : -3.4109e+05 : watt : False : (None, None)\n", "\n", @@ -709,10 +880,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" - }, - "orig_nbformat": 4 + "version": "3.11.11" + } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization_test.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization_test.ipynb index b4786423..1edd7306 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization_test.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization_test.ipynb @@ -1,718 +1,743 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with ALAMO Surrogate Object - flowsheet_optimization (Part 3)\n", - "\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "\n", - "With the surrogate model being embedded in the property package, it is ready to be used in the flowsheet. We start by creating the following flowsheet using the IDAES package. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", - "text/plain": [ - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"CO2_flowsheet.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. Importing libraries\n", - "\n", - "We will be using the unit models from the `IDAES` package along with components from `pyomo.environ` and `pyomo.network`. " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " ConcreteModel,\n", - " Block,\n", - " Var,\n", - " Param,\n", - " Constraint,\n", - " SolverFactory,\n", - " TransformationFactory,\n", - " TerminationCondition,\n", - " value,\n", - " Expression,\n", - " minimize,\n", - " units,\n", - ")\n", - "from pyomo.network import Arc, SequentialDecomposition\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core import FlowsheetBlock, UnitModelBlockData\n", - "from idaes.models.unit_models import (\n", - " Mixer,\n", - " MomentumMixingType,\n", - " PressureChanger,\n", - " Heater,\n", - " Separator,\n", - " HeatExchanger,\n", - ")\n", - "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state\n", - "from properties import SCO2ParameterBlock\n", - "\n", - "import idaes.logger as idaeslog\n", - "\n", - "_log = idaeslog.getModelLogger(\"my_model\", level=idaeslog.DEBUG, tag=\"model\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Constructing the flowsheet\n", - "\n", - "To construct the flowsheet we need to define a ConcreteModel using pyomo and then add a FlowsheetBlock to the ConcreteModel. Here since we are focusing on the steady state process, we shall have the dynamic flag as False in the FlowsheetBlock. Next, we define the properties in the FlowsheetBlock that we imported from the properties.py file. Then start adding the unit models to the FlowsheetBlock with the suitable arguments, after which we connect them using Arcs as in the flowsheet above. \n", - "\n", - "Once we have the connected flowsheet, we initialize individual unit models. Before initializing, we fix desired variables for the desired behavior of the unit model and then use `propagate_state` to pass on the state variables to next unit model in the flowsheet. After completely initializing the flowsheet, we convert the network to a mathematical form by using `network.expand_arcs` from the TransformationFactory and apply it on the flowsheet block. Then we call the solver and solve the flowsheet to calculate the total work in the process. " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with ALAMO Surrogate Object - flowsheet_optimization (Part 3)\n", + "\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "\n", + "With the surrogate model being embedded in the property package, it is ready to be used in the flowsheet. We start by creating the following flowsheet using the IDAES package. " + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-08-19 23:43:01 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n", - "2023-08-19 23:43:03 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:03 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:03 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n", - "2023-08-19 23:43:03 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", - "--------------------------------------------------------------------\n", - "The degrees of freedom for the flowsheet is 0\n", - "--------------------------------------------------------------------\n", - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 452\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 118\n", - "\n", - "Total number of variables............................: 178\n", - " variables with only lower bounds: 32\n", - " variables with lower and upper bounds: 59\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 178\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 9.79e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 1.43e-01 1.25e-02 -1.0 2.50e+01 - 9.88e-01 1.00e+00h 1\n", - " 2 0.0000000e+00 8.54e-06 1.06e-06 -1.0 2.50e+01 - 1.00e+00 1.00e+00h 1\n", - " 3 0.0000000e+00 7.45e-09 2.83e-08 -2.5 1.79e-04 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 5.8207660913467407e-11 7.4505805969238281e-09\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 5.8207660913467407e-11 7.4505805969238281e-09\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", - "Total CPU secs in NLP function evaluations = 0.001\n", - "\n", - "EXIT: Optimal Solution Found.\n", - "\n", - "====================================================================================\n", - "Unit : fs.boiler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.3897e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 685.15 893.15\n", - " pressure pascal 3.4510e+07 3.4300e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.turbine Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.92700 : dimensionless : True : (None, None)\n", - " Mechanical Work : -1.1759e+06 : watt : False : (None, None)\n", - " Pressure Change : -24.979 : pascal : False : (None, None)\n", - " Pressure Ratio : 0.27174 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 893.15 692.18\n", - " pressure pascal 3.4300e+07 9.3207e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.HTR_pseudo_shell Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -1.2825e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 692.18 489.15\n", - " pressure pascal 9.3207e+06 9.2507e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.HTR_pseudo_tube Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.2825e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 560.75 747.89\n", - " pressure pascal 3.4560e+07 3.4490e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.LTR_pseudo_shell Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -1.1004e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 489.15 354.15\n", - " pressure pascal 9.2507e+06 9.1807e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.LTR_pseudo_tube Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.1004e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 86647. 86647.\n", - " temperature kelvin 416.53 598.89\n", - " pressure pascal 3.4620e+07 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.splitter_1 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Split Fraction [('bypass',)] : 0.25000 : dimensionless : True : (None, None)\n", - " Split Fraction [('to_cooler',)] : 0.75000 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet bypass to_cooler\n", - " flow_mol mole / second 1.2110e+05 30275. 90825.\n", - " temperature kelvin 354.15 354.15 354.15\n", - " pressure pascal 9.1807e+06 9.1807e+06 9.1807e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.co2_cooler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -3.4109e+05 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 90825. 90825.\n", - " temperature kelvin 354.15 308.15\n", - " pressure pascal 9.1807e+06 9.1107e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.main_compressor Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 3.7116e+05 : watt : False : (None, None)\n", - " Pressure Change : 25.510 : pascal : False : (None, None)\n", - " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 90825. 90825.\n", - " temperature kelvin 308.15 416.53\n", - " pressure pascal 9.1107e+06 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.bypass_compressor Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 1.4569e+05 : watt : False : (None, None)\n", - " Pressure Change : 25.706 : pascal : False : (None, None)\n", - " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 30275. 30275.\n", - " temperature kelvin 354.15 473.64\n", - " pressure pascal 9.1807e+06 3.4886e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.splitter_2 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Split Fraction [('to_FG_cooler',)] : 0.046000 : dimensionless : True : (None, None)\n", - " Split Fraction [('to_LTR',)] : 0.95400 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet to_FG_cooler to_LTR \n", - " flow_mol mole / second 90825. 4177.9 86647.\n", - " temperature kelvin 416.53 416.53 416.53\n", - " pressure pascal 3.4620e+07 3.4620e+07 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.FG_cooler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 21707. : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 4177.9 4177.9\n", - " temperature kelvin 416.53 483.15\n", - " pressure pascal 3.4620e+07 3.4560e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.mixer Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units FG_out LTR_out bypass Outlet \n", - " flow_mol mole / second 4177.9 86647. 30275. 1.2110e+05\n", - " temperature kelvin 483.15 598.89 473.64 560.75\n", - " pressure pascal 3.4560e+07 3.4620e+07 3.4886e+07 3.4560e+07\n", - "====================================================================================\n", - "659.042605510511 kW\n" - ] + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"CO2_flowsheet.png\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1. Importing libraries\n", + "\n", + "We will be using the unit models from the `IDAES` package along with components from `pyomo.environ` and `pyomo.network`. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " ConcreteModel,\n", + " Block,\n", + " Var,\n", + " Param,\n", + " Constraint,\n", + " SolverFactory,\n", + " TransformationFactory,\n", + " TerminationCondition,\n", + " value,\n", + " Expression,\n", + " minimize,\n", + " units,\n", + ")\n", + "from pyomo.network import Arc, SequentialDecomposition\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core import FlowsheetBlock, UnitModelBlockData\n", + "from idaes.models.unit_models import (\n", + " Mixer,\n", + " MomentumMixingType,\n", + " PressureChanger,\n", + " Heater,\n", + " Separator,\n", + " HeatExchanger,\n", + ")\n", + "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state\n", + "from properties import SCO2ParameterBlock\n", + "\n", + "import idaes.logger as idaeslog\n", + "\n", + "_log = idaeslog.getModelLogger(\"my_model\", level=idaeslog.DEBUG, tag=\"model\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Constructing the flowsheet\n", + "\n", + "To construct the flowsheet we need to define a ConcreteModel using pyomo and then add a FlowsheetBlock to the ConcreteModel. Here since we are focusing on the steady state process, we shall have the dynamic flag as False in the FlowsheetBlock. Next, we define the properties in the FlowsheetBlock that we imported from the properties.py file. Then start adding the unit models to the FlowsheetBlock with the suitable arguments, after which we connect them using Arcs as in the flowsheet above. \n", + "\n", + "Once we have the connected flowsheet, we initialize individual unit models. Before initializing, we fix desired variables for the desired behavior of the unit model and then use `propagate_state` to pass on the state variables to next unit model in the flowsheet. After completely initializing the flowsheet, we convert the network to a mathematical form by using `network.expand_arcs` from the TransformationFactory and apply it on the flowsheet block. Then we call the solver and solve the flowsheet to calculate the total work in the process. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2023-08-19 23:43:01 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n", + "2023-08-19 23:43:02 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:02 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:02 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:02 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:02 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n", + "2023-08-19 23:43:02 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:02 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n", + "2023-08-19 23:43:03 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:03 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:03 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n", + "2023-08-19 23:43:03 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", + "--------------------------------------------------------------------\n", + "The degrees of freedom for the flowsheet is 0\n", + "--------------------------------------------------------------------\n", + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 452\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 118\n", + "\n", + "Total number of variables............................: 178\n", + " variables with only lower bounds: 32\n", + " variables with lower and upper bounds: 59\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 178\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 9.79e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.43e-01 1.25e-02 -1.0 2.50e+01 - 9.88e-01 1.00e+00h 1\n", + " 2 0.0000000e+00 8.54e-06 1.06e-06 -1.0 2.50e+01 - 1.00e+00 1.00e+00h 1\n", + " 3 0.0000000e+00 7.45e-09 2.83e-08 -2.5 1.79e-04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 5.8207660913467407e-11 7.4505805969238281e-09\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 5.8207660913467407e-11 7.4505805969238281e-09\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\n", + "====================================================================================\n", + "Unit : fs.boiler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.3897e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 685.15 893.15\n", + " pressure pascal 3.4510e+07 3.4300e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.turbine Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.92700 : dimensionless : True : (None, None)\n", + " Mechanical Work : -1.1759e+06 : watt : False : (None, None)\n", + " Pressure Change : -24.979 : pascal : False : (None, None)\n", + " Pressure Ratio : 0.27174 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 893.15 692.18\n", + " pressure pascal 3.4300e+07 9.3207e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.HTR_pseudo_shell Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -1.2825e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 692.18 489.15\n", + " pressure pascal 9.3207e+06 9.2507e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.HTR_pseudo_tube Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.2825e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 560.75 747.89\n", + " pressure pascal 3.4560e+07 3.4490e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.LTR_pseudo_shell Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -1.1004e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 489.15 354.15\n", + " pressure pascal 9.2507e+06 9.1807e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.LTR_pseudo_tube Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.1004e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 86647. 86647.\n", + " temperature kelvin 416.53 598.89\n", + " pressure pascal 3.4620e+07 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.splitter_1 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Split Fraction [('bypass',)] : 0.25000 : dimensionless : True : (None, None)\n", + " Split Fraction [('to_cooler',)] : 0.75000 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet bypass to_cooler\n", + " flow_mol mole / second 1.2110e+05 30275. 90825.\n", + " temperature kelvin 354.15 354.15 354.15\n", + " pressure pascal 9.1807e+06 9.1807e+06 9.1807e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.co2_cooler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -3.4109e+05 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 90825. 90825.\n", + " temperature kelvin 354.15 308.15\n", + " pressure pascal 9.1807e+06 9.1107e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.main_compressor Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 3.7116e+05 : watt : False : (None, None)\n", + " Pressure Change : 25.510 : pascal : False : (None, None)\n", + " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 90825. 90825.\n", + " temperature kelvin 308.15 416.53\n", + " pressure pascal 9.1107e+06 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.bypass_compressor Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 1.4569e+05 : watt : False : (None, None)\n", + " Pressure Change : 25.706 : pascal : False : (None, None)\n", + " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 30275. 30275.\n", + " temperature kelvin 354.15 473.64\n", + " pressure pascal 9.1807e+06 3.4886e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.splitter_2 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Split Fraction [('to_FG_cooler',)] : 0.046000 : dimensionless : True : (None, None)\n", + " Split Fraction [('to_LTR',)] : 0.95400 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet to_FG_cooler to_LTR \n", + " flow_mol mole / second 90825. 4177.9 86647.\n", + " temperature kelvin 416.53 416.53 416.53\n", + " pressure pascal 3.4620e+07 3.4620e+07 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.FG_cooler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 21707. : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 4177.9 4177.9\n", + " temperature kelvin 416.53 483.15\n", + " pressure pascal 3.4620e+07 3.4560e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.mixer Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units FG_out LTR_out bypass Outlet \n", + " flow_mol mole / second 4177.9 86647. 30275. 1.2110e+05\n", + " temperature kelvin 483.15 598.89 473.64 560.75\n", + " pressure pascal 3.4560e+07 3.4620e+07 3.4886e+07 3.4560e+07\n", + "====================================================================================\n", + "659.042605510511 kW\n" + ] + } + ], + "source": [ + "def main():\n", + " # Setup solver and options\n", + " solver = SolverFactory(\"ipopt\")\n", + " outlvl = 0\n", + " tee = True\n", + "\n", + " # Set up concrete model\n", + " m = ConcreteModel()\n", + "\n", + " # Create a flowsheet block\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + " # Create the properties param block\n", + " m.fs.properties = SCO2ParameterBlock()\n", + "\n", + " # Add unit models to the flowsheet\n", + " m.fs.boiler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.turbine = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=False,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.HTR_pseudo_shell = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.HTR_pseudo_tube = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.LTR_pseudo_shell = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.LTR_pseudo_tube = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.splitter_1 = Separator(\n", + " property_package=m.fs.properties, outlet_list=[\"bypass\", \"to_cooler\"]\n", + " )\n", + "\n", + " m.fs.co2_cooler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.main_compressor = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.bypass_compressor = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.splitter_2 = Separator(\n", + " property_package=m.fs.properties,\n", + " ideal_separation=False,\n", + " outlet_list=[\"to_FG_cooler\", \"to_LTR\"],\n", + " )\n", + "\n", + " m.fs.FG_cooler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.mixer = Mixer(\n", + " property_package=m.fs.properties, inlet_list=[\"FG_out\", \"LTR_out\", \"bypass\"]\n", + " )\n", + "\n", + " # # Connect the flowsheet\n", + " m.fs.s01 = Arc(source=m.fs.boiler.outlet, destination=m.fs.turbine.inlet)\n", + " m.fs.s02 = Arc(source=m.fs.turbine.outlet, destination=m.fs.HTR_pseudo_shell.inlet)\n", + " m.fs.s03 = Arc(\n", + " source=m.fs.HTR_pseudo_shell.outlet, destination=m.fs.LTR_pseudo_shell.inlet\n", + " )\n", + " m.fs.s04 = Arc(\n", + " source=m.fs.LTR_pseudo_shell.outlet, destination=m.fs.splitter_1.inlet\n", + " )\n", + " m.fs.s05 = Arc(source=m.fs.splitter_1.to_cooler, destination=m.fs.co2_cooler.inlet)\n", + " m.fs.s06 = Arc(\n", + " source=m.fs.splitter_1.bypass, destination=m.fs.bypass_compressor.inlet\n", + " )\n", + " m.fs.s07 = Arc(\n", + " source=m.fs.co2_cooler.outlet, destination=m.fs.main_compressor.inlet\n", + " )\n", + " m.fs.s08 = Arc(source=m.fs.bypass_compressor.outlet, destination=m.fs.mixer.bypass)\n", + " m.fs.s09 = Arc(\n", + " source=m.fs.main_compressor.outlet, destination=m.fs.splitter_2.inlet\n", + " )\n", + " m.fs.s10 = Arc(\n", + " source=m.fs.splitter_2.to_FG_cooler, destination=m.fs.FG_cooler.inlet\n", + " )\n", + " m.fs.s11 = Arc(\n", + " source=m.fs.splitter_2.to_LTR, destination=m.fs.LTR_pseudo_tube.inlet\n", + " )\n", + " m.fs.s12 = Arc(source=m.fs.LTR_pseudo_tube.outlet, destination=m.fs.mixer.LTR_out)\n", + " m.fs.s13 = Arc(source=m.fs.FG_cooler.outlet, destination=m.fs.mixer.FG_out)\n", + " m.fs.s14 = Arc(source=m.fs.mixer.outlet, destination=m.fs.HTR_pseudo_tube.inlet)\n", + "\n", + " # NETL Baseline\n", + " m.fs.boiler.inlet.flow_mol.fix(121.1)\n", + " m.fs.boiler.inlet.temperature.fix(685.15)\n", + " m.fs.boiler.inlet.pressure.fix(34.51)\n", + "\n", + " m.fs.boiler.outlet.temperature.fix(893.15) # Turbine inlet T = 620 C\n", + " m.fs.boiler.deltaP.fix(-0.21)\n", + "\n", + " m.fs.boiler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s01)\n", + "\n", + " m.fs.turbine.ratioP.fix(1 / 3.68)\n", + " m.fs.turbine.efficiency_isentropic.fix(0.927)\n", + " m.fs.turbine.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s02)\n", + " m.fs.HTR_pseudo_shell.outlet.temperature.fix(489.15)\n", + " m.fs.HTR_pseudo_shell.deltaP.fix(-0.07)\n", + "\n", + " m.fs.HTR_pseudo_shell.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s03)\n", + "\n", + " m.fs.LTR_pseudo_shell.outlet.temperature.fix(354.15)\n", + " m.fs.LTR_pseudo_shell.deltaP.fix(-0.07)\n", + " m.fs.LTR_pseudo_shell.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s04)\n", + " m.fs.splitter_1.split_fraction[0, \"bypass\"].fix(0.25)\n", + "\n", + " m.fs.splitter_1.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s05)\n", + " m.fs.co2_cooler.outlet.temperature.fix(308.15)\n", + " m.fs.co2_cooler.deltaP.fix(-0.07)\n", + " m.fs.co2_cooler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s06)\n", + " m.fs.bypass_compressor.efficiency_isentropic.fix(0.85)\n", + " m.fs.bypass_compressor.ratioP.fix(3.8)\n", + " m.fs.bypass_compressor.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s07)\n", + " m.fs.main_compressor.efficiency_isentropic.fix(0.85)\n", + " m.fs.main_compressor.ratioP.fix(3.8)\n", + " m.fs.main_compressor.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s09)\n", + "\n", + " m.fs.splitter_2.split_fraction[0, \"to_FG_cooler\"].fix(0.046)\n", + " m.fs.splitter_2.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s10)\n", + " m.fs.FG_cooler.outlet.temperature.fix(483.15)\n", + " m.fs.FG_cooler.deltaP.fix(-0.06)\n", + " m.fs.FG_cooler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s11)\n", + "\n", + " m.fs.LTR_pseudo_tube.deltaP.fix(0)\n", + " m.fs.LTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.LTR_pseudo_shell.heat_duty[0]))\n", + " m.fs.LTR_pseudo_tube.initialize(outlvl=outlvl)\n", + "\n", + " # Add constraint heats of the LTR_pseudo shell and tube\n", + " m.fs.LTR_pseudo_tube.heat_duty[0].unfix()\n", + " m.fs.c1 = Constraint(\n", + " expr=m.fs.LTR_pseudo_shell.heat_duty[0] == -m.fs.LTR_pseudo_tube.heat_duty[0]\n", + " )\n", + "\n", + " propagate_state(m.fs.s08)\n", + " propagate_state(m.fs.s12)\n", + " propagate_state(m.fs.s13)\n", + "\n", + " m.fs.mixer.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s14)\n", + "\n", + " m.fs.HTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.HTR_pseudo_shell.heat_duty[0]))\n", + " m.fs.HTR_pseudo_tube.deltaP.fix(-0.07)\n", + " m.fs.HTR_pseudo_tube.initialize(outlvl=outlvl)\n", + "\n", + " m.fs.HTR_pseudo_tube.heat_duty[0].unfix()\n", + " m.fs.c2 = Constraint(\n", + " expr=m.fs.HTR_pseudo_shell.heat_duty[0] == -m.fs.HTR_pseudo_tube.heat_duty[0]\n", + " )\n", + "\n", + " TransformationFactory(\"network.expand_arcs\").apply_to(m.fs)\n", + "\n", + " print(\"--------------------------------------------------------------------\")\n", + " print(\"The degrees of freedom for the flowsheet is \", degrees_of_freedom(m))\n", + " print(\"--------------------------------------------------------------------\")\n", + "\n", + " solver.solve(m, tee=tee)\n", + "\n", + " #\n", + " from idaes.core.util.units_of_measurement import (\n", + " convert_quantity_to_reporting_units,\n", + " report_quantity,\n", + " )\n", + "\n", + " # Print reports\n", + " for i in m.fs.component_objects(Block):\n", + " if isinstance(i, UnitModelBlockData):\n", + " i.report()\n", + "\n", + " # Converting units for readability\n", + " print(\n", + " -1 * value(units.convert(m.fs.turbine.work_mechanical[0], units.kW))\n", + " - 1 * value(units.convert(m.fs.main_compressor.work_mechanical[0], units.kW))\n", + " - 1 * value(units.convert(m.fs.bypass_compressor.work_mechanical[0], units.kW)),\n", + " units.kW,\n", + " )\n", + " return m\n", + "\n", + "\n", + "if __name__ == \"__main__\":\n", + " m = main()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" } - ], - "source": [ - "def main():\n", - " # Setup solver and options\n", - " solver = SolverFactory(\"ipopt\")\n", - " outlvl = 0\n", - " tee = True\n", - "\n", - " # Set up concrete model\n", - " m = ConcreteModel()\n", - "\n", - " # Create a flowsheet block\n", - " m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - " # Create the properties param block\n", - " m.fs.properties = SCO2ParameterBlock()\n", - "\n", - " # Add unit models to the flowsheet\n", - " m.fs.boiler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.turbine = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=False,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.HTR_pseudo_shell = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.HTR_pseudo_tube = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.LTR_pseudo_shell = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.LTR_pseudo_tube = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.splitter_1 = Separator(\n", - " property_package=m.fs.properties, outlet_list=[\"bypass\", \"to_cooler\"]\n", - " )\n", - "\n", - " m.fs.co2_cooler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.main_compressor = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.bypass_compressor = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.splitter_2 = Separator(\n", - " property_package=m.fs.properties,\n", - " ideal_separation=False,\n", - " outlet_list=[\"to_FG_cooler\", \"to_LTR\"],\n", - " )\n", - "\n", - " m.fs.FG_cooler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.mixer = Mixer(\n", - " property_package=m.fs.properties, inlet_list=[\"FG_out\", \"LTR_out\", \"bypass\"]\n", - " )\n", - "\n", - " # # Connect the flowsheet\n", - " m.fs.s01 = Arc(source=m.fs.boiler.outlet, destination=m.fs.turbine.inlet)\n", - " m.fs.s02 = Arc(source=m.fs.turbine.outlet, destination=m.fs.HTR_pseudo_shell.inlet)\n", - " m.fs.s03 = Arc(\n", - " source=m.fs.HTR_pseudo_shell.outlet, destination=m.fs.LTR_pseudo_shell.inlet\n", - " )\n", - " m.fs.s04 = Arc(\n", - " source=m.fs.LTR_pseudo_shell.outlet, destination=m.fs.splitter_1.inlet\n", - " )\n", - " m.fs.s05 = Arc(source=m.fs.splitter_1.to_cooler, destination=m.fs.co2_cooler.inlet)\n", - " m.fs.s06 = Arc(\n", - " source=m.fs.splitter_1.bypass, destination=m.fs.bypass_compressor.inlet\n", - " )\n", - " m.fs.s07 = Arc(\n", - " source=m.fs.co2_cooler.outlet, destination=m.fs.main_compressor.inlet\n", - " )\n", - " m.fs.s08 = Arc(source=m.fs.bypass_compressor.outlet, destination=m.fs.mixer.bypass)\n", - " m.fs.s09 = Arc(\n", - " source=m.fs.main_compressor.outlet, destination=m.fs.splitter_2.inlet\n", - " )\n", - " m.fs.s10 = Arc(\n", - " source=m.fs.splitter_2.to_FG_cooler, destination=m.fs.FG_cooler.inlet\n", - " )\n", - " m.fs.s11 = Arc(\n", - " source=m.fs.splitter_2.to_LTR, destination=m.fs.LTR_pseudo_tube.inlet\n", - " )\n", - " m.fs.s12 = Arc(source=m.fs.LTR_pseudo_tube.outlet, destination=m.fs.mixer.LTR_out)\n", - " m.fs.s13 = Arc(source=m.fs.FG_cooler.outlet, destination=m.fs.mixer.FG_out)\n", - " m.fs.s14 = Arc(source=m.fs.mixer.outlet, destination=m.fs.HTR_pseudo_tube.inlet)\n", - "\n", - " # NETL Baseline\n", - " m.fs.boiler.inlet.flow_mol.fix(121.1)\n", - " m.fs.boiler.inlet.temperature.fix(685.15)\n", - " m.fs.boiler.inlet.pressure.fix(34.51)\n", - "\n", - " m.fs.boiler.outlet.temperature.fix(893.15) # Turbine inlet T = 620 C\n", - " m.fs.boiler.deltaP.fix(-0.21)\n", - "\n", - " m.fs.boiler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s01)\n", - "\n", - " m.fs.turbine.ratioP.fix(1 / 3.68)\n", - " m.fs.turbine.efficiency_isentropic.fix(0.927)\n", - " m.fs.turbine.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s02)\n", - " m.fs.HTR_pseudo_shell.outlet.temperature.fix(489.15)\n", - " m.fs.HTR_pseudo_shell.deltaP.fix(-0.07)\n", - "\n", - " m.fs.HTR_pseudo_shell.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s03)\n", - "\n", - " m.fs.LTR_pseudo_shell.outlet.temperature.fix(354.15)\n", - " m.fs.LTR_pseudo_shell.deltaP.fix(-0.07)\n", - " m.fs.LTR_pseudo_shell.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s04)\n", - " m.fs.splitter_1.split_fraction[0, \"bypass\"].fix(0.25)\n", - "\n", - " m.fs.splitter_1.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s05)\n", - " m.fs.co2_cooler.outlet.temperature.fix(308.15)\n", - " m.fs.co2_cooler.deltaP.fix(-0.07)\n", - " m.fs.co2_cooler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s06)\n", - " m.fs.bypass_compressor.efficiency_isentropic.fix(0.85)\n", - " m.fs.bypass_compressor.ratioP.fix(3.8)\n", - " m.fs.bypass_compressor.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s07)\n", - " m.fs.main_compressor.efficiency_isentropic.fix(0.85)\n", - " m.fs.main_compressor.ratioP.fix(3.8)\n", - " m.fs.main_compressor.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s09)\n", - "\n", - " m.fs.splitter_2.split_fraction[0, \"to_FG_cooler\"].fix(0.046)\n", - " m.fs.splitter_2.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s10)\n", - " m.fs.FG_cooler.outlet.temperature.fix(483.15)\n", - " m.fs.FG_cooler.deltaP.fix(-0.06)\n", - " m.fs.FG_cooler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s11)\n", - "\n", - " m.fs.LTR_pseudo_tube.deltaP.fix(0)\n", - " m.fs.LTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.LTR_pseudo_shell.heat_duty[0]))\n", - " m.fs.LTR_pseudo_tube.initialize(outlvl=outlvl)\n", - "\n", - " # Add constraint heats of the LTR_pseudo shell and tube\n", - " m.fs.LTR_pseudo_tube.heat_duty[0].unfix()\n", - " m.fs.c1 = Constraint(\n", - " expr=m.fs.LTR_pseudo_shell.heat_duty[0] == -m.fs.LTR_pseudo_tube.heat_duty[0]\n", - " )\n", - "\n", - " propagate_state(m.fs.s08)\n", - " propagate_state(m.fs.s12)\n", - " propagate_state(m.fs.s13)\n", - "\n", - " m.fs.mixer.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s14)\n", - "\n", - " m.fs.HTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.HTR_pseudo_shell.heat_duty[0]))\n", - " m.fs.HTR_pseudo_tube.deltaP.fix(-0.07)\n", - " m.fs.HTR_pseudo_tube.initialize(outlvl=outlvl)\n", - "\n", - " m.fs.HTR_pseudo_tube.heat_duty[0].unfix()\n", - " m.fs.c2 = Constraint(\n", - " expr=m.fs.HTR_pseudo_shell.heat_duty[0] == -m.fs.HTR_pseudo_tube.heat_duty[0]\n", - " )\n", - "\n", - " TransformationFactory(\"network.expand_arcs\").apply_to(m.fs)\n", - "\n", - " print(\"--------------------------------------------------------------------\")\n", - " print(\"The degrees of freedom for the flowsheet is \", degrees_of_freedom(m))\n", - " print(\"--------------------------------------------------------------------\")\n", - "\n", - " solver.solve(m, tee=tee)\n", - "\n", - " #\n", - " from idaes.core.util.units_of_measurement import (\n", - " convert_quantity_to_reporting_units,\n", - " report_quantity,\n", - " )\n", - "\n", - " # Print reports\n", - " for i in m.fs.component_objects(Block):\n", - " if isinstance(i, UnitModelBlockData):\n", - " i.report()\n", - "\n", - " # Converting units for readability\n", - " print(\n", - " -1 * value(units.convert(m.fs.turbine.work_mechanical[0], units.kW))\n", - " - 1 * value(units.convert(m.fs.main_compressor.work_mechanical[0], units.kW))\n", - " - 1 * value(units.convert(m.fs.bypass_compressor.work_mechanical[0], units.kW)),\n", - " units.kW,\n", - " )\n", - " return m\n", - "\n", - "\n", - "if __name__ == \"__main__\":\n", - " m = main()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization_usr.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization_usr.ipynb index b4786423..1edd7306 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization_usr.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/flowsheet_optimization_usr.ipynb @@ -1,718 +1,743 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with ALAMO Surrogate Object - flowsheet_optimization (Part 3)\n", - "\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "\n", - "With the surrogate model being embedded in the property package, it is ready to be used in the flowsheet. We start by creating the following flowsheet using the IDAES package. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", - "text/plain": [ - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"CO2_flowsheet.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. Importing libraries\n", - "\n", - "We will be using the unit models from the `IDAES` package along with components from `pyomo.environ` and `pyomo.network`. " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " ConcreteModel,\n", - " Block,\n", - " Var,\n", - " Param,\n", - " Constraint,\n", - " SolverFactory,\n", - " TransformationFactory,\n", - " TerminationCondition,\n", - " value,\n", - " Expression,\n", - " minimize,\n", - " units,\n", - ")\n", - "from pyomo.network import Arc, SequentialDecomposition\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core import FlowsheetBlock, UnitModelBlockData\n", - "from idaes.models.unit_models import (\n", - " Mixer,\n", - " MomentumMixingType,\n", - " PressureChanger,\n", - " Heater,\n", - " Separator,\n", - " HeatExchanger,\n", - ")\n", - "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state\n", - "from properties import SCO2ParameterBlock\n", - "\n", - "import idaes.logger as idaeslog\n", - "\n", - "_log = idaeslog.getModelLogger(\"my_model\", level=idaeslog.DEBUG, tag=\"model\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Constructing the flowsheet\n", - "\n", - "To construct the flowsheet we need to define a ConcreteModel using pyomo and then add a FlowsheetBlock to the ConcreteModel. Here since we are focusing on the steady state process, we shall have the dynamic flag as False in the FlowsheetBlock. Next, we define the properties in the FlowsheetBlock that we imported from the properties.py file. Then start adding the unit models to the FlowsheetBlock with the suitable arguments, after which we connect them using Arcs as in the flowsheet above. \n", - "\n", - "Once we have the connected flowsheet, we initialize individual unit models. Before initializing, we fix desired variables for the desired behavior of the unit model and then use `propagate_state` to pass on the state variables to next unit model in the flowsheet. After completely initializing the flowsheet, we convert the network to a mathematical form by using `network.expand_arcs` from the TransformationFactory and apply it on the flowsheet block. Then we call the solver and solve the flowsheet to calculate the total work in the process. " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with ALAMO Surrogate Object - flowsheet_optimization (Part 3)\n", + "\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "\n", + "With the surrogate model being embedded in the property package, it is ready to be used in the flowsheet. We start by creating the following flowsheet using the IDAES package. " + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-08-19 23:43:01 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:01 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:02 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n", - "2023-08-19 23:43:03 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:03 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:43:03 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n", - "2023-08-19 23:43:03 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", - "--------------------------------------------------------------------\n", - "The degrees of freedom for the flowsheet is 0\n", - "--------------------------------------------------------------------\n", - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 452\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 118\n", - "\n", - "Total number of variables............................: 178\n", - " variables with only lower bounds: 32\n", - " variables with lower and upper bounds: 59\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 178\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 9.79e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 1.43e-01 1.25e-02 -1.0 2.50e+01 - 9.88e-01 1.00e+00h 1\n", - " 2 0.0000000e+00 8.54e-06 1.06e-06 -1.0 2.50e+01 - 1.00e+00 1.00e+00h 1\n", - " 3 0.0000000e+00 7.45e-09 2.83e-08 -2.5 1.79e-04 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 5.8207660913467407e-11 7.4505805969238281e-09\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 5.8207660913467407e-11 7.4505805969238281e-09\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", - "Total CPU secs in NLP function evaluations = 0.001\n", - "\n", - "EXIT: Optimal Solution Found.\n", - "\n", - "====================================================================================\n", - "Unit : fs.boiler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.3897e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 685.15 893.15\n", - " pressure pascal 3.4510e+07 3.4300e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.turbine Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.92700 : dimensionless : True : (None, None)\n", - " Mechanical Work : -1.1759e+06 : watt : False : (None, None)\n", - " Pressure Change : -24.979 : pascal : False : (None, None)\n", - " Pressure Ratio : 0.27174 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 893.15 692.18\n", - " pressure pascal 3.4300e+07 9.3207e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.HTR_pseudo_shell Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -1.2825e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 692.18 489.15\n", - " pressure pascal 9.3207e+06 9.2507e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.HTR_pseudo_tube Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.2825e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 560.75 747.89\n", - " pressure pascal 3.4560e+07 3.4490e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.LTR_pseudo_shell Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -1.1004e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 489.15 354.15\n", - " pressure pascal 9.2507e+06 9.1807e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.LTR_pseudo_tube Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.1004e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 86647. 86647.\n", - " temperature kelvin 416.53 598.89\n", - " pressure pascal 3.4620e+07 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.splitter_1 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Split Fraction [('bypass',)] : 0.25000 : dimensionless : True : (None, None)\n", - " Split Fraction [('to_cooler',)] : 0.75000 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet bypass to_cooler\n", - " flow_mol mole / second 1.2110e+05 30275. 90825.\n", - " temperature kelvin 354.15 354.15 354.15\n", - " pressure pascal 9.1807e+06 9.1807e+06 9.1807e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.co2_cooler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -3.4109e+05 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 90825. 90825.\n", - " temperature kelvin 354.15 308.15\n", - " pressure pascal 9.1807e+06 9.1107e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.main_compressor Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 3.7116e+05 : watt : False : (None, None)\n", - " Pressure Change : 25.510 : pascal : False : (None, None)\n", - " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 90825. 90825.\n", - " temperature kelvin 308.15 416.53\n", - " pressure pascal 9.1107e+06 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.bypass_compressor Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 1.4569e+05 : watt : False : (None, None)\n", - " Pressure Change : 25.706 : pascal : False : (None, None)\n", - " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 30275. 30275.\n", - " temperature kelvin 354.15 473.64\n", - " pressure pascal 9.1807e+06 3.4886e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.splitter_2 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Split Fraction [('to_FG_cooler',)] : 0.046000 : dimensionless : True : (None, None)\n", - " Split Fraction [('to_LTR',)] : 0.95400 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet to_FG_cooler to_LTR \n", - " flow_mol mole / second 90825. 4177.9 86647.\n", - " temperature kelvin 416.53 416.53 416.53\n", - " pressure pascal 3.4620e+07 3.4620e+07 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.FG_cooler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 21707. : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 4177.9 4177.9\n", - " temperature kelvin 416.53 483.15\n", - " pressure pascal 3.4620e+07 3.4560e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.mixer Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units FG_out LTR_out bypass Outlet \n", - " flow_mol mole / second 4177.9 86647. 30275. 1.2110e+05\n", - " temperature kelvin 483.15 598.89 473.64 560.75\n", - " pressure pascal 3.4560e+07 3.4620e+07 3.4886e+07 3.4560e+07\n", - "====================================================================================\n", - "659.042605510511 kW\n" - ] + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"CO2_flowsheet.png\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1. Importing libraries\n", + "\n", + "We will be using the unit models from the `IDAES` package along with components from `pyomo.environ` and `pyomo.network`. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " ConcreteModel,\n", + " Block,\n", + " Var,\n", + " Param,\n", + " Constraint,\n", + " SolverFactory,\n", + " TransformationFactory,\n", + " TerminationCondition,\n", + " value,\n", + " Expression,\n", + " minimize,\n", + " units,\n", + ")\n", + "from pyomo.network import Arc, SequentialDecomposition\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core import FlowsheetBlock, UnitModelBlockData\n", + "from idaes.models.unit_models import (\n", + " Mixer,\n", + " MomentumMixingType,\n", + " PressureChanger,\n", + " Heater,\n", + " Separator,\n", + " HeatExchanger,\n", + ")\n", + "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state\n", + "from properties import SCO2ParameterBlock\n", + "\n", + "import idaes.logger as idaeslog\n", + "\n", + "_log = idaeslog.getModelLogger(\"my_model\", level=idaeslog.DEBUG, tag=\"model\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Constructing the flowsheet\n", + "\n", + "To construct the flowsheet we need to define a ConcreteModel using pyomo and then add a FlowsheetBlock to the ConcreteModel. Here since we are focusing on the steady state process, we shall have the dynamic flag as False in the FlowsheetBlock. Next, we define the properties in the FlowsheetBlock that we imported from the properties.py file. Then start adding the unit models to the FlowsheetBlock with the suitable arguments, after which we connect them using Arcs as in the flowsheet above. \n", + "\n", + "Once we have the connected flowsheet, we initialize individual unit models. Before initializing, we fix desired variables for the desired behavior of the unit model and then use `propagate_state` to pass on the state variables to next unit model in the flowsheet. After completely initializing the flowsheet, we convert the network to a mathematical form by using `network.expand_arcs` from the TransformationFactory and apply it on the flowsheet block. Then we call the solver and solve the flowsheet to calculate the total work in the process. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2023-08-19 23:43:01 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:01 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n", + "2023-08-19 23:43:02 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:02 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:02 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:02 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:02 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n", + "2023-08-19 23:43:02 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:02 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n", + "2023-08-19 23:43:03 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:03 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:43:03 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n", + "2023-08-19 23:43:03 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", + "--------------------------------------------------------------------\n", + "The degrees of freedom for the flowsheet is 0\n", + "--------------------------------------------------------------------\n", + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 452\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 118\n", + "\n", + "Total number of variables............................: 178\n", + " variables with only lower bounds: 32\n", + " variables with lower and upper bounds: 59\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 178\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 9.79e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.43e-01 1.25e-02 -1.0 2.50e+01 - 9.88e-01 1.00e+00h 1\n", + " 2 0.0000000e+00 8.54e-06 1.06e-06 -1.0 2.50e+01 - 1.00e+00 1.00e+00h 1\n", + " 3 0.0000000e+00 7.45e-09 2.83e-08 -2.5 1.79e-04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 5.8207660913467407e-11 7.4505805969238281e-09\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 5.8207660913467407e-11 7.4505805969238281e-09\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\n", + "====================================================================================\n", + "Unit : fs.boiler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.3897e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 685.15 893.15\n", + " pressure pascal 3.4510e+07 3.4300e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.turbine Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.92700 : dimensionless : True : (None, None)\n", + " Mechanical Work : -1.1759e+06 : watt : False : (None, None)\n", + " Pressure Change : -24.979 : pascal : False : (None, None)\n", + " Pressure Ratio : 0.27174 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 893.15 692.18\n", + " pressure pascal 3.4300e+07 9.3207e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.HTR_pseudo_shell Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -1.2825e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 692.18 489.15\n", + " pressure pascal 9.3207e+06 9.2507e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.HTR_pseudo_tube Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.2825e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 560.75 747.89\n", + " pressure pascal 3.4560e+07 3.4490e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.LTR_pseudo_shell Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -1.1004e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 489.15 354.15\n", + " pressure pascal 9.2507e+06 9.1807e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.LTR_pseudo_tube Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.1004e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 86647. 86647.\n", + " temperature kelvin 416.53 598.89\n", + " pressure pascal 3.4620e+07 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.splitter_1 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Split Fraction [('bypass',)] : 0.25000 : dimensionless : True : (None, None)\n", + " Split Fraction [('to_cooler',)] : 0.75000 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet bypass to_cooler\n", + " flow_mol mole / second 1.2110e+05 30275. 90825.\n", + " temperature kelvin 354.15 354.15 354.15\n", + " pressure pascal 9.1807e+06 9.1807e+06 9.1807e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.co2_cooler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -3.4109e+05 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 90825. 90825.\n", + " temperature kelvin 354.15 308.15\n", + " pressure pascal 9.1807e+06 9.1107e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.main_compressor Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 3.7116e+05 : watt : False : (None, None)\n", + " Pressure Change : 25.510 : pascal : False : (None, None)\n", + " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 90825. 90825.\n", + " temperature kelvin 308.15 416.53\n", + " pressure pascal 9.1107e+06 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.bypass_compressor Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 1.4569e+05 : watt : False : (None, None)\n", + " Pressure Change : 25.706 : pascal : False : (None, None)\n", + " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 30275. 30275.\n", + " temperature kelvin 354.15 473.64\n", + " pressure pascal 9.1807e+06 3.4886e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.splitter_2 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Split Fraction [('to_FG_cooler',)] : 0.046000 : dimensionless : True : (None, None)\n", + " Split Fraction [('to_LTR',)] : 0.95400 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet to_FG_cooler to_LTR \n", + " flow_mol mole / second 90825. 4177.9 86647.\n", + " temperature kelvin 416.53 416.53 416.53\n", + " pressure pascal 3.4620e+07 3.4620e+07 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.FG_cooler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 21707. : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 4177.9 4177.9\n", + " temperature kelvin 416.53 483.15\n", + " pressure pascal 3.4620e+07 3.4560e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.mixer Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units FG_out LTR_out bypass Outlet \n", + " flow_mol mole / second 4177.9 86647. 30275. 1.2110e+05\n", + " temperature kelvin 483.15 598.89 473.64 560.75\n", + " pressure pascal 3.4560e+07 3.4620e+07 3.4886e+07 3.4560e+07\n", + "====================================================================================\n", + "659.042605510511 kW\n" + ] + } + ], + "source": [ + "def main():\n", + " # Setup solver and options\n", + " solver = SolverFactory(\"ipopt\")\n", + " outlvl = 0\n", + " tee = True\n", + "\n", + " # Set up concrete model\n", + " m = ConcreteModel()\n", + "\n", + " # Create a flowsheet block\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + " # Create the properties param block\n", + " m.fs.properties = SCO2ParameterBlock()\n", + "\n", + " # Add unit models to the flowsheet\n", + " m.fs.boiler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.turbine = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=False,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.HTR_pseudo_shell = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.HTR_pseudo_tube = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.LTR_pseudo_shell = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.LTR_pseudo_tube = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.splitter_1 = Separator(\n", + " property_package=m.fs.properties, outlet_list=[\"bypass\", \"to_cooler\"]\n", + " )\n", + "\n", + " m.fs.co2_cooler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.main_compressor = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.bypass_compressor = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.splitter_2 = Separator(\n", + " property_package=m.fs.properties,\n", + " ideal_separation=False,\n", + " outlet_list=[\"to_FG_cooler\", \"to_LTR\"],\n", + " )\n", + "\n", + " m.fs.FG_cooler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.mixer = Mixer(\n", + " property_package=m.fs.properties, inlet_list=[\"FG_out\", \"LTR_out\", \"bypass\"]\n", + " )\n", + "\n", + " # # Connect the flowsheet\n", + " m.fs.s01 = Arc(source=m.fs.boiler.outlet, destination=m.fs.turbine.inlet)\n", + " m.fs.s02 = Arc(source=m.fs.turbine.outlet, destination=m.fs.HTR_pseudo_shell.inlet)\n", + " m.fs.s03 = Arc(\n", + " source=m.fs.HTR_pseudo_shell.outlet, destination=m.fs.LTR_pseudo_shell.inlet\n", + " )\n", + " m.fs.s04 = Arc(\n", + " source=m.fs.LTR_pseudo_shell.outlet, destination=m.fs.splitter_1.inlet\n", + " )\n", + " m.fs.s05 = Arc(source=m.fs.splitter_1.to_cooler, destination=m.fs.co2_cooler.inlet)\n", + " m.fs.s06 = Arc(\n", + " source=m.fs.splitter_1.bypass, destination=m.fs.bypass_compressor.inlet\n", + " )\n", + " m.fs.s07 = Arc(\n", + " source=m.fs.co2_cooler.outlet, destination=m.fs.main_compressor.inlet\n", + " )\n", + " m.fs.s08 = Arc(source=m.fs.bypass_compressor.outlet, destination=m.fs.mixer.bypass)\n", + " m.fs.s09 = Arc(\n", + " source=m.fs.main_compressor.outlet, destination=m.fs.splitter_2.inlet\n", + " )\n", + " m.fs.s10 = Arc(\n", + " source=m.fs.splitter_2.to_FG_cooler, destination=m.fs.FG_cooler.inlet\n", + " )\n", + " m.fs.s11 = Arc(\n", + " source=m.fs.splitter_2.to_LTR, destination=m.fs.LTR_pseudo_tube.inlet\n", + " )\n", + " m.fs.s12 = Arc(source=m.fs.LTR_pseudo_tube.outlet, destination=m.fs.mixer.LTR_out)\n", + " m.fs.s13 = Arc(source=m.fs.FG_cooler.outlet, destination=m.fs.mixer.FG_out)\n", + " m.fs.s14 = Arc(source=m.fs.mixer.outlet, destination=m.fs.HTR_pseudo_tube.inlet)\n", + "\n", + " # NETL Baseline\n", + " m.fs.boiler.inlet.flow_mol.fix(121.1)\n", + " m.fs.boiler.inlet.temperature.fix(685.15)\n", + " m.fs.boiler.inlet.pressure.fix(34.51)\n", + "\n", + " m.fs.boiler.outlet.temperature.fix(893.15) # Turbine inlet T = 620 C\n", + " m.fs.boiler.deltaP.fix(-0.21)\n", + "\n", + " m.fs.boiler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s01)\n", + "\n", + " m.fs.turbine.ratioP.fix(1 / 3.68)\n", + " m.fs.turbine.efficiency_isentropic.fix(0.927)\n", + " m.fs.turbine.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s02)\n", + " m.fs.HTR_pseudo_shell.outlet.temperature.fix(489.15)\n", + " m.fs.HTR_pseudo_shell.deltaP.fix(-0.07)\n", + "\n", + " m.fs.HTR_pseudo_shell.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s03)\n", + "\n", + " m.fs.LTR_pseudo_shell.outlet.temperature.fix(354.15)\n", + " m.fs.LTR_pseudo_shell.deltaP.fix(-0.07)\n", + " m.fs.LTR_pseudo_shell.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s04)\n", + " m.fs.splitter_1.split_fraction[0, \"bypass\"].fix(0.25)\n", + "\n", + " m.fs.splitter_1.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s05)\n", + " m.fs.co2_cooler.outlet.temperature.fix(308.15)\n", + " m.fs.co2_cooler.deltaP.fix(-0.07)\n", + " m.fs.co2_cooler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s06)\n", + " m.fs.bypass_compressor.efficiency_isentropic.fix(0.85)\n", + " m.fs.bypass_compressor.ratioP.fix(3.8)\n", + " m.fs.bypass_compressor.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s07)\n", + " m.fs.main_compressor.efficiency_isentropic.fix(0.85)\n", + " m.fs.main_compressor.ratioP.fix(3.8)\n", + " m.fs.main_compressor.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s09)\n", + "\n", + " m.fs.splitter_2.split_fraction[0, \"to_FG_cooler\"].fix(0.046)\n", + " m.fs.splitter_2.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s10)\n", + " m.fs.FG_cooler.outlet.temperature.fix(483.15)\n", + " m.fs.FG_cooler.deltaP.fix(-0.06)\n", + " m.fs.FG_cooler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s11)\n", + "\n", + " m.fs.LTR_pseudo_tube.deltaP.fix(0)\n", + " m.fs.LTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.LTR_pseudo_shell.heat_duty[0]))\n", + " m.fs.LTR_pseudo_tube.initialize(outlvl=outlvl)\n", + "\n", + " # Add constraint heats of the LTR_pseudo shell and tube\n", + " m.fs.LTR_pseudo_tube.heat_duty[0].unfix()\n", + " m.fs.c1 = Constraint(\n", + " expr=m.fs.LTR_pseudo_shell.heat_duty[0] == -m.fs.LTR_pseudo_tube.heat_duty[0]\n", + " )\n", + "\n", + " propagate_state(m.fs.s08)\n", + " propagate_state(m.fs.s12)\n", + " propagate_state(m.fs.s13)\n", + "\n", + " m.fs.mixer.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s14)\n", + "\n", + " m.fs.HTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.HTR_pseudo_shell.heat_duty[0]))\n", + " m.fs.HTR_pseudo_tube.deltaP.fix(-0.07)\n", + " m.fs.HTR_pseudo_tube.initialize(outlvl=outlvl)\n", + "\n", + " m.fs.HTR_pseudo_tube.heat_duty[0].unfix()\n", + " m.fs.c2 = Constraint(\n", + " expr=m.fs.HTR_pseudo_shell.heat_duty[0] == -m.fs.HTR_pseudo_tube.heat_duty[0]\n", + " )\n", + "\n", + " TransformationFactory(\"network.expand_arcs\").apply_to(m.fs)\n", + "\n", + " print(\"--------------------------------------------------------------------\")\n", + " print(\"The degrees of freedom for the flowsheet is \", degrees_of_freedom(m))\n", + " print(\"--------------------------------------------------------------------\")\n", + "\n", + " solver.solve(m, tee=tee)\n", + "\n", + " #\n", + " from idaes.core.util.units_of_measurement import (\n", + " convert_quantity_to_reporting_units,\n", + " report_quantity,\n", + " )\n", + "\n", + " # Print reports\n", + " for i in m.fs.component_objects(Block):\n", + " if isinstance(i, UnitModelBlockData):\n", + " i.report()\n", + "\n", + " # Converting units for readability\n", + " print(\n", + " -1 * value(units.convert(m.fs.turbine.work_mechanical[0], units.kW))\n", + " - 1 * value(units.convert(m.fs.main_compressor.work_mechanical[0], units.kW))\n", + " - 1 * value(units.convert(m.fs.bypass_compressor.work_mechanical[0], units.kW)),\n", + " units.kW,\n", + " )\n", + " return m\n", + "\n", + "\n", + "if __name__ == \"__main__\":\n", + " m = main()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" } - ], - "source": [ - "def main():\n", - " # Setup solver and options\n", - " solver = SolverFactory(\"ipopt\")\n", - " outlvl = 0\n", - " tee = True\n", - "\n", - " # Set up concrete model\n", - " m = ConcreteModel()\n", - "\n", - " # Create a flowsheet block\n", - " m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - " # Create the properties param block\n", - " m.fs.properties = SCO2ParameterBlock()\n", - "\n", - " # Add unit models to the flowsheet\n", - " m.fs.boiler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.turbine = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=False,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.HTR_pseudo_shell = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.HTR_pseudo_tube = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.LTR_pseudo_shell = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.LTR_pseudo_tube = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.splitter_1 = Separator(\n", - " property_package=m.fs.properties, outlet_list=[\"bypass\", \"to_cooler\"]\n", - " )\n", - "\n", - " m.fs.co2_cooler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.main_compressor = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.bypass_compressor = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.splitter_2 = Separator(\n", - " property_package=m.fs.properties,\n", - " ideal_separation=False,\n", - " outlet_list=[\"to_FG_cooler\", \"to_LTR\"],\n", - " )\n", - "\n", - " m.fs.FG_cooler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.mixer = Mixer(\n", - " property_package=m.fs.properties, inlet_list=[\"FG_out\", \"LTR_out\", \"bypass\"]\n", - " )\n", - "\n", - " # # Connect the flowsheet\n", - " m.fs.s01 = Arc(source=m.fs.boiler.outlet, destination=m.fs.turbine.inlet)\n", - " m.fs.s02 = Arc(source=m.fs.turbine.outlet, destination=m.fs.HTR_pseudo_shell.inlet)\n", - " m.fs.s03 = Arc(\n", - " source=m.fs.HTR_pseudo_shell.outlet, destination=m.fs.LTR_pseudo_shell.inlet\n", - " )\n", - " m.fs.s04 = Arc(\n", - " source=m.fs.LTR_pseudo_shell.outlet, destination=m.fs.splitter_1.inlet\n", - " )\n", - " m.fs.s05 = Arc(source=m.fs.splitter_1.to_cooler, destination=m.fs.co2_cooler.inlet)\n", - " m.fs.s06 = Arc(\n", - " source=m.fs.splitter_1.bypass, destination=m.fs.bypass_compressor.inlet\n", - " )\n", - " m.fs.s07 = Arc(\n", - " source=m.fs.co2_cooler.outlet, destination=m.fs.main_compressor.inlet\n", - " )\n", - " m.fs.s08 = Arc(source=m.fs.bypass_compressor.outlet, destination=m.fs.mixer.bypass)\n", - " m.fs.s09 = Arc(\n", - " source=m.fs.main_compressor.outlet, destination=m.fs.splitter_2.inlet\n", - " )\n", - " m.fs.s10 = Arc(\n", - " source=m.fs.splitter_2.to_FG_cooler, destination=m.fs.FG_cooler.inlet\n", - " )\n", - " m.fs.s11 = Arc(\n", - " source=m.fs.splitter_2.to_LTR, destination=m.fs.LTR_pseudo_tube.inlet\n", - " )\n", - " m.fs.s12 = Arc(source=m.fs.LTR_pseudo_tube.outlet, destination=m.fs.mixer.LTR_out)\n", - " m.fs.s13 = Arc(source=m.fs.FG_cooler.outlet, destination=m.fs.mixer.FG_out)\n", - " m.fs.s14 = Arc(source=m.fs.mixer.outlet, destination=m.fs.HTR_pseudo_tube.inlet)\n", - "\n", - " # NETL Baseline\n", - " m.fs.boiler.inlet.flow_mol.fix(121.1)\n", - " m.fs.boiler.inlet.temperature.fix(685.15)\n", - " m.fs.boiler.inlet.pressure.fix(34.51)\n", - "\n", - " m.fs.boiler.outlet.temperature.fix(893.15) # Turbine inlet T = 620 C\n", - " m.fs.boiler.deltaP.fix(-0.21)\n", - "\n", - " m.fs.boiler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s01)\n", - "\n", - " m.fs.turbine.ratioP.fix(1 / 3.68)\n", - " m.fs.turbine.efficiency_isentropic.fix(0.927)\n", - " m.fs.turbine.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s02)\n", - " m.fs.HTR_pseudo_shell.outlet.temperature.fix(489.15)\n", - " m.fs.HTR_pseudo_shell.deltaP.fix(-0.07)\n", - "\n", - " m.fs.HTR_pseudo_shell.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s03)\n", - "\n", - " m.fs.LTR_pseudo_shell.outlet.temperature.fix(354.15)\n", - " m.fs.LTR_pseudo_shell.deltaP.fix(-0.07)\n", - " m.fs.LTR_pseudo_shell.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s04)\n", - " m.fs.splitter_1.split_fraction[0, \"bypass\"].fix(0.25)\n", - "\n", - " m.fs.splitter_1.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s05)\n", - " m.fs.co2_cooler.outlet.temperature.fix(308.15)\n", - " m.fs.co2_cooler.deltaP.fix(-0.07)\n", - " m.fs.co2_cooler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s06)\n", - " m.fs.bypass_compressor.efficiency_isentropic.fix(0.85)\n", - " m.fs.bypass_compressor.ratioP.fix(3.8)\n", - " m.fs.bypass_compressor.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s07)\n", - " m.fs.main_compressor.efficiency_isentropic.fix(0.85)\n", - " m.fs.main_compressor.ratioP.fix(3.8)\n", - " m.fs.main_compressor.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s09)\n", - "\n", - " m.fs.splitter_2.split_fraction[0, \"to_FG_cooler\"].fix(0.046)\n", - " m.fs.splitter_2.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s10)\n", - " m.fs.FG_cooler.outlet.temperature.fix(483.15)\n", - " m.fs.FG_cooler.deltaP.fix(-0.06)\n", - " m.fs.FG_cooler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s11)\n", - "\n", - " m.fs.LTR_pseudo_tube.deltaP.fix(0)\n", - " m.fs.LTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.LTR_pseudo_shell.heat_duty[0]))\n", - " m.fs.LTR_pseudo_tube.initialize(outlvl=outlvl)\n", - "\n", - " # Add constraint heats of the LTR_pseudo shell and tube\n", - " m.fs.LTR_pseudo_tube.heat_duty[0].unfix()\n", - " m.fs.c1 = Constraint(\n", - " expr=m.fs.LTR_pseudo_shell.heat_duty[0] == -m.fs.LTR_pseudo_tube.heat_duty[0]\n", - " )\n", - "\n", - " propagate_state(m.fs.s08)\n", - " propagate_state(m.fs.s12)\n", - " propagate_state(m.fs.s13)\n", - "\n", - " m.fs.mixer.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s14)\n", - "\n", - " m.fs.HTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.HTR_pseudo_shell.heat_duty[0]))\n", - " m.fs.HTR_pseudo_tube.deltaP.fix(-0.07)\n", - " m.fs.HTR_pseudo_tube.initialize(outlvl=outlvl)\n", - "\n", - " m.fs.HTR_pseudo_tube.heat_duty[0].unfix()\n", - " m.fs.c2 = Constraint(\n", - " expr=m.fs.HTR_pseudo_shell.heat_duty[0] == -m.fs.HTR_pseudo_tube.heat_duty[0]\n", - " )\n", - "\n", - " TransformationFactory(\"network.expand_arcs\").apply_to(m.fs)\n", - "\n", - " print(\"--------------------------------------------------------------------\")\n", - " print(\"The degrees of freedom for the flowsheet is \", degrees_of_freedom(m))\n", - " print(\"--------------------------------------------------------------------\")\n", - "\n", - " solver.solve(m, tee=tee)\n", - "\n", - " #\n", - " from idaes.core.util.units_of_measurement import (\n", - " convert_quantity_to_reporting_units,\n", - " report_quantity,\n", - " )\n", - "\n", - " # Print reports\n", - " for i in m.fs.component_objects(Block):\n", - " if isinstance(i, UnitModelBlockData):\n", - " i.report()\n", - "\n", - " # Converting units for readability\n", - " print(\n", - " -1 * value(units.convert(m.fs.turbine.work_mechanical[0], units.kW))\n", - " - 1 * value(units.convert(m.fs.main_compressor.work_mechanical[0], units.kW))\n", - " - 1 * value(units.convert(m.fs.bypass_compressor.work_mechanical[0], units.kW)),\n", - " units.kW,\n", - " )\n", - " return m\n", - "\n", - "\n", - "if __name__ == \"__main__\":\n", - " m = main()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/properties.py b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/properties.py index 74e18ab0..ce6248dc 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/properties.py +++ b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/properties.py @@ -1,15 +1,16 @@ -############################################################################## -# Institute for the Design of Advanced Energy Systems Process Systems -# Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the -# software owners: The Regents of the University of California, through -# Lawrence Berkeley National Laboratory, National Technology & Engineering -# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia -# University Research Corporation, et al. All rights reserved. +################################################################################# +# The Institute for the Design of Advanced Energy Systems Integrated Platform +# Framework (IDAES IP) was produced under the DOE Institute for the +# Design of Advanced Energy Systems (IDAES). # -# Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and -# license information, respectively. Both files are also available online -# at the URL "https://github.com/IDAES/idaes-pse". -############################################################################## +# Copyright (c) 2018-2025 by the software owners: The Regents of the +# University of California, through Lawrence Berkeley National Laboratory, +# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon +# University, West Virginia University Research Corporation, et al. +# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md +# for full copyright and license information. +# +################################################################################# """ Surrogate property package for SCO2 cycle. diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding.ipynb index 5eab16fe..4d1c92d0 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "183293d6", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": null, @@ -490,8 +517,7 @@ "metadata": { "language_info": { "name": "python" - }, - "orig_nbformat": 4 + } }, "nbformat": 4, "nbformat_minor": 2 diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding_doc.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding_doc.ipynb index 40a5d434..b44b725c 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding_doc.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding_doc.ipynb @@ -2,7 +2,33 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -62,7 +88,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -143,7 +169,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -214,7 +240,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -338,7 +364,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -483,16 +509,24 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_doc.ipynb). To learn in detail about making a custom property package, one should go through [Property Package Example](../../../properties/custom/custom_physical_property_packages_doc.ipynb). " + "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_doc.md). To learn in detail about making a custom property package, one should go through [Property Package Example](../../../properties/custom/custom_physical_property_packages_doc.md). " ] } ], "metadata": { "language_info": { - "name": "python" - }, - "orig_nbformat": 4 + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding_test.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding_test.ipynb index fb1cfe4b..1c925335 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding_test.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding_test.ipynb @@ -1,498 +1,523 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "##############################################################################\n", - "# Institute for the Design of Advanced Energy Systems Process Systems\n", - "# Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the\n", - "# software owners: The Regents of the University of California, through\n", - "# Lawrence Berkeley National Laboratory, National Technology & Engineering\n", - "# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia\n", - "# University Research Corporation, et al. All rights reserved.\n", - "#\n", - "# Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and\n", - "# license information, respectively. Both files are also available online\n", - "# at the URL \"https://github.com/IDAES/idaes-pse\".\n", - "##############################################################################" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "##############################################################################\n", + "# Institute for the Design of Advanced Energy Systems Process Systems\n", + "# Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the\n", + "# software owners: The Regents of the University of California, through\n", + "# Lawrence Berkeley National Laboratory, National Technology & Engineering\n", + "# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia\n", + "# University Research Corporation, et al. All rights reserved.\n", + "#\n", + "# Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and\n", + "# license information, respectively. Both files are also available online\n", + "# at the URL \"https://github.com/IDAES/idaes-pse\".\n", + "##############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with ALAMO Surrogate Object - Embedding Surrogate (Part 2)\n", + "\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "\n", + "## 1. Integration of Surrogate into Custom Property Package\n", + "\n", + "Here we shall see how to integrate the trained surrogate in the custom property package. One can read more about making a properties package from read the docs. To integrate the surrogate we first define the physical parameter block which will return the properties based on the state variables. State variables would be called from the State Block as Pyomo variables. We will define the surrogate input and output as pyomo variables as well. Once we have defined the variables in the state block then we define our surrogate block.\n", + "\n", + "*NOTE:* For ease of explanation the property package is written in \".ipynb\" format, ideally it should be in a python script. Each class of this package is separated in different cell for the same reason, in practice all the classes in this notebook should be part of the same python script. This folder includes \"properties.py\" file which is how embedding file should look like. \n", + "\n", + "### 1.1 Steps in Creating a Property Package\n", + "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", + "\n", + "1. Defining the **units of measurement** for the property package.\n", + "2. Defining the **properties supported** by the property package and the associated metadata.\n", + "3. Defining the **phases and components** of interest.\n", + "4. Defining the necessary **parameters** required to calculate the properties of interest.\n", + "5. Declaring the **state variables** to be used for the property package.\n", + "6. Creating **variables and constraints** to describe the properties of interest.\n", + "7. Creating an **initialization routine** for the property package.\n", + "8. Defining **interface methods** used to couple the property package with unit models." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Importing libraries for making Property Package\n", + "\n", + "To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries. We shall also use the Surrogate API in the IDAES framework to embed the trained surrogate in the property package." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Python libraries\n", + "import logging\n", + "\n", + "# Import Pyomo libraries\n", + "from pyomo.environ import (\n", + " Constraint,\n", + " Param,\n", + " Reals,\n", + " Set,\n", + " value,\n", + " Var,\n", + " NonNegativeReals,\n", + " units,\n", + ")\n", + "from pyomo.opt import SolverFactory, TerminationCondition\n", + "\n", + "# Import IDAES cores\n", + "from idaes.core import (\n", + " declare_process_block_class,\n", + " PhysicalParameterBlock,\n", + " StateBlockData,\n", + " StateBlock,\n", + " MaterialBalanceType,\n", + " EnergyBalanceType,\n", + " LiquidPhase,\n", + " Component,\n", + ")\n", + "from idaes.core.util.initialization import solve_indexed_blocks\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.misc import extract_data\n", + "from idaes.core.solvers import get_solver\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", + "from idaes.core.surrogate.alamopy import AlamoSurrogate\n", + "\n", + "from pyomo.util.model_size import build_model_size_report\n", + "\n", + "# Some more information about this module\n", + "__author__ = \"Javal Vyas\"\n", + "\n", + "\n", + "# Set up logger\n", + "_log = logging.getLogger(__name__)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3 Defining Classes\n", + "\n", + "We shall be going through each class of the property package in detail. Since there are not reactions occurring in the flowsheet we shall only write the Physical Parameter Block.\n", + "\n", + "## 3.1 Physical Parameter Block\n", + "\n", + "The Physical Parameter Block serves as the central point of reference for all aspects of the property package, and needs to define a number of things about the package. These are summarized below:\n", + "\n", + "* Units of measurement\n", + "* What properties are supported and how they are implemented\n", + "* What components and phases are included in the packages\n", + "* All the global parameters necessary for calculating properties\n", + "* A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", + "\n", + "To assemble the above mentioned things in a class we need to follow the following steps:\n", + "\n", + "* Declaring the new class and inheriting from the PhysicalParameterBlock base class\n", + "* Declaring any necessary configuration arguments\n", + "* Writing the build method for our class\n", + "* Creating a define_metadata method for the class.\n", + "\n", + "The code below follows the above mentioned steps. \n", + "\n", + "*NOTE*: The SCO2StateBlock will be discussed in the next section." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"SCO2ParameterBlock\")\n", + "class PhysicalParameterData(PhysicalParameterBlock):\n", + " \"\"\"\n", + " Property Parameter Block Class\n", + "\n", + " Contains parameters and indexing sets associated with properties for\n", + " supercritical CO2.\n", + "\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction.\n", + " \"\"\"\n", + " super(PhysicalParameterData, self).build()\n", + "\n", + " self._state_block_class = SCO2StateBlock\n", + "\n", + " # List of valid phases in property package\n", + " self.Liq = LiquidPhase()\n", + "\n", + " # Component list - a list of component identifiers\n", + " self.CO2 = Component()\n", + "\n", + " @classmethod\n", + " def define_metadata(cls, obj):\n", + " obj.add_properties(\n", + " {\n", + " \"flow_mol\": {\"method\": None, \"units\": \"kmol/s\"},\n", + " \"pressure\": {\"method\": None, \"units\": \"MPa\"},\n", + " \"temperature\": {\"method\": None, \"units\": \"K\"},\n", + " \"enth_mol\": {\"method\": None, \"units\": \"kJ/kmol\"},\n", + " \"entr_mol\": {\"method\": None, \"units\": \"kJ/kmol/K\"},\n", + " }\n", + " )\n", + "\n", + " obj.add_default_units(\n", + " {\n", + " \"time\": units.s,\n", + " \"length\": units.m,\n", + " \"mass\": units.kg,\n", + " \"amount\": units.mol,\n", + " \"temperature\": units.K,\n", + " }\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.2 State Block\n", + "\n", + "After the Physical Parameter Block class has been created, the next step is to write the code necessary to create the State Blocks that will be used through out the flowsheet.\n", + "\n", + "For this example, we will begin by describing the content of the StateBlockData objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. \n", + "\n", + "We start by defining the 5 state variables: flow_mol, pressure, temperature, enth_mol and entr_mol as the Pyomo Var, each of this variable has a unit for unit consistency. This is done in _make_state_vars function. We get the enth_mol and entr_mol variables from trained surrogate which we define in this function as well. To get the output variables from the surrogate:\n", + "\n", + "1. Define the input and output variables to the trained surrogate\n", + "2. Load the surrogate from the folder it is saved in, here it is saved in the folder called alamo_surrogate (look at the alamo_training_test.ipynb file) using the Alamopy Surrogate API of IDAES package\n", + "3. Define a `SurrogateBlock` and call the build_model method on the block with the input variables, output variables, model formulation and the loaded surrogate as the arguments. \n", + "4. Define the constraints necessary for ensuring physical feasibility of the system like the mass balance and energy balance. Check for the state variables to be within the bounds. \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"SCO2StateBlock\", block_class=StateBlock)\n", + "class SCO2StateBlockData(StateBlockData):\n", + " \"\"\"\n", + " An example property package for ideal gas properties with Gibbs energy\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction\n", + " \"\"\"\n", + " super(SCO2StateBlockData, self).build()\n", + " self._make_state_vars()\n", + "\n", + " def _make_state_vars(self):\n", + " # Create state variables\n", + "\n", + " self.flow_mol = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=1.0,\n", + " units=units.kmol / units.s,\n", + " doc=\"Total molar flowrate [kmol/s]\",\n", + " )\n", + "\n", + " self.pressure = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=8,\n", + " bounds=(7.38, 40),\n", + " units=units.MPa,\n", + " doc=\"State pressure [MPa]\",\n", + " )\n", + "\n", + " self.temperature = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=350,\n", + " bounds=(304.2, 760 + 273.15),\n", + " units=units.K,\n", + " doc=\"State temperature [K]\",\n", + " )\n", + "\n", + " self.entr_mol = Var(\n", + " domain=Reals,\n", + " initialize=10,\n", + " units=units.kJ / units.kmol / units.K,\n", + " doc=\"Entropy [kJ/ kmol / K]\",\n", + " )\n", + "\n", + " self.enth_mol = Var(\n", + " domain=Reals,\n", + " initialize=1,\n", + " units=units.kJ / units.kmol,\n", + " doc=\"Enthalpy [kJ/ kmol]\",\n", + " )\n", + "\n", + " inputs = [self.pressure, self.temperature]\n", + " outputs = [self.enth_mol, self.entr_mol]\n", + " self.alamo_surrogate = AlamoSurrogate.load_from_file(\"alamo_surrogate.json\")\n", + " self.surrogate_enth = SurrogateBlock()\n", + " self.surrogate_enth.build_model(\n", + " self.alamo_surrogate,\n", + " input_vars=inputs,\n", + " output_vars=outputs,\n", + " )\n", + "\n", + " def get_material_flow_terms(self, p, j):\n", + " return self.flow_mol\n", + "\n", + " def get_enthalpy_flow_terms(self, p):\n", + " return self.flow_mol * self.enth_mol\n", + "\n", + " def default_material_balance_type(self):\n", + " return MaterialBalanceType.componentTotal\n", + "\n", + " def default_energy_balance_type(self):\n", + " return EnergyBalanceType.enthalpyTotal\n", + "\n", + " def define_state_vars(self):\n", + " return {\n", + " \"flow_mol\": self.flow_mol,\n", + " \"temperature\": self.temperature,\n", + " \"pressure\": self.pressure,\n", + " }\n", + "\n", + " def model_check(blk):\n", + " \"\"\"\n", + " Model checks for property block\n", + " \"\"\"\n", + " # Check temperature bounds\n", + " if value(blk.temperature) < blk.temperature.lb:\n", + " _log.error(\"{} Temperature set below lower bound.\".format(blk.name))\n", + " if value(blk.temperature) > blk.temperature.ub:\n", + " _log.error(\"{} Temperature set above upper bound.\".format(blk.name))\n", + "\n", + " # Check pressure bounds\n", + " if value(blk.pressure) < blk.pressure.lb:\n", + " _log.error(\"{} Pressure set below lower bound.\".format(blk.name))\n", + " if value(blk.pressure) > blk.pressure.ub:\n", + " _log.error(\"{} Pressure set above upper bound.\".format(blk.name))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.3 Define Initialization Routine\n", + "\n", + "After defining the variables and constraints required to describe the properties of interest for S-CO2, we need to provide them with a good initial guess. It is often the case that the default values provided to the variables while creating the model are not likely the actual conditions the user would simulate. Given the highly non-linear nature of the physical property calculations, it is more often than not impossible to solve a State Block without providing a set of good initial values for all the variables we have declared.\n", + "\n", + "Any initialization routine can be written by following a 3 step process:\n", + "1. `Fix the state` of the model such that there are no degrees of freedom. For State Blocks, it should only be necessary to fix the state variables to a set of initial guesses provided by the user or unit model, as well as deactivating any constraints like the sum of mole fractions.\n", + "\n", + "2. `Iteratively build up a solution` for the full model. This often involves multiple steps and can involve deactivating constraints and fixing some variables to reduce complexity, as well as analytically calculating values for variables based on the known state (and any previously calculated variables). Solvers can be called as part of any step to efficiently initialize large numbers of variables simultaneously.\n", + "\n", + "3. `Return the state of the model` to where it originally started (with the exception of variable values). Any variable that was fixed or constraint that was deactivated during initialization should be unfixed or reactivated, so that the degrees of freedom are restored to what they were before the initialization began.\n", + "\n", + "\n", + "Thus, we start with fixing the state variables. Here since enth_mol and entr_mol are a function of pressure and temperature, we do not fix them as fixing pressure and temperature would in turn fix them. So, we check if a state variable if fixed or not, if it is fixed then we do not change them, if they are not fixed then we check for an initial guess from the `state_args`, if we get a value then we fix the variable with state_args, else we fix it with the value provided by the user. This should bring the degrees of freedom to 0. Here since we do not have any variable/constrained that we have unfixed/deactivated we can skip step 2 and move to step 3. We unfix the variables that were fixed in step 1 using the `release_state` function. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class _StateBlock(StateBlock):\n", + " \"\"\"\n", + " This Class contains methods which should be applied to Property Blocks as a\n", + " whole, rather than individual elements of indexed Property Blocks.\n", + " \"\"\"\n", + "\n", + " def initialize(\n", + " blk,\n", + " state_args=None,\n", + " hold_state=False,\n", + " outlvl=1,\n", + " state_vars_fixed=False,\n", + " solver=\"ipopt\",\n", + " optarg={\"tol\": 1e-8},\n", + " ):\n", + " \"\"\"\n", + " Initialisation routine for property package.\n", + "\n", + " Keyword Arguments:\n", + " flow_mol : value at which to initialize component flows\n", + " (default=None)\n", + " pressure : value at which to initialize pressure (default=None)\n", + " temperature : value at which to initialize temperature\n", + " (default=None)\n", + " outlvl : sets output level of initialisation routine\n", + "\n", + " * 0 = no output (default)\n", + " * 1 = return solver state for each step in routine\n", + " * 2 = include solver output information (tee=True)\n", + " state_vars_fixed: Flag to denote if state vars have already been\n", + " fixed.\n", + " - True - states have already been fixed by the\n", + " control volume 1D. Control volume 0D\n", + " does not fix the state vars, so will\n", + " be False if this state block is used\n", + " with 0D blocks.\n", + " - False - states have not been fixed. The state\n", + " block will deal with fixing/unfixing.\n", + " optarg : solver options dictionary object (default=None)\n", + " solver : str indicating which solver to use during\n", + " initialization (default = 'ipopt')\n", + " hold_state : flag indicating whether the initialization routine\n", + " should unfix any state variables fixed during\n", + " initialization (default=False).\n", + " - True - states variables are not unfixed, and\n", + " a dict of returned containing flags for\n", + " which states were fixed during\n", + " initialization.\n", + " - False - state variables are unfixed after\n", + " initialization by calling the\n", + " release_state method\n", + "\n", + " Returns:\n", + " If hold_states is True, returns a dict containing flags for\n", + " which states were fixed during initialization.\n", + " \"\"\"\n", + " if state_vars_fixed is False:\n", + " # Fix state variables if not already fixed\n", + " Fcflag = {}\n", + " Pflag = {}\n", + " Tflag = {}\n", + "\n", + " for k in blk.keys():\n", + " if blk[k].flow_mol.fixed is True:\n", + " Fcflag[k] = True\n", + " else:\n", + " Fcflag[k] = False\n", + " if state_args is None:\n", + " blk[k].flow_mol.fix()\n", + " else:\n", + " blk[k].flow_mol.fix(state_args[\"flow_mol\"])\n", + "\n", + " if blk[k].pressure.fixed is True:\n", + " Pflag[k] = True\n", + " else:\n", + " Pflag[k] = False\n", + " if state_args is None:\n", + " blk[k].pressure.fix()\n", + " else:\n", + " blk[k].pressure.fix(state_args[\"pressure\"])\n", + "\n", + " if blk[k].temperature.fixed is True:\n", + " Tflag[k] = True\n", + " else:\n", + " Tflag[k] = False\n", + " if state_args is None:\n", + " blk[k].temperature.fix()\n", + " else:\n", + " blk[k].temperature.fix(state_args[\"temperature\"])\n", + "\n", + " # If input block, return flags, else release state\n", + " flags = {\"Fcflag\": Fcflag, \"Pflag\": Pflag, \"Tflag\": Tflag}\n", + "\n", + " else:\n", + " # Check when the state vars are fixed already result in dof 0\n", + " for k in blk.keys():\n", + " if degrees_of_freedom(blk[k]) != 0:\n", + " raise Exception(\n", + " \"State vars fixed but degrees of freedom \"\n", + " \"for state block is not zero during \"\n", + " \"initialization.\"\n", + " )\n", + "\n", + " if state_vars_fixed is False:\n", + " if hold_state is True:\n", + " return flags\n", + " else:\n", + " blk.release_state(flags)\n", + "\n", + " def release_state(blk, flags, outlvl=0):\n", + " \"\"\"\n", + " Method to release state variables fixed during initialisation.\n", + "\n", + " Keyword Arguments:\n", + " flags : dict containing information of which state variables\n", + " were fixed during initialization, and should now be\n", + " unfixed. This dict is returned by initialize if\n", + " hold_state=True.\n", + " outlvl : sets output level of of logging\n", + " \"\"\"\n", + " if flags is None:\n", + " return\n", + "\n", + " # Unfix state variables\n", + " for k in blk.keys():\n", + " if flags[\"Fcflag\"][k] is False:\n", + " blk[k].flow_mol.unfix()\n", + " if flags[\"Pflag\"][k] is False:\n", + " blk[k].pressure.unfix()\n", + " if flags[\"Tflag\"][k] is False:\n", + " blk[k].temperature.unfix()\n", + "\n", + " if outlvl > 0:\n", + " if outlvl > 0:\n", + " _log.info(\"{} State Released.\".format(blk.name))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_test.ipynb). To learn in detail about making a custom property package, one should go through [Property Package Example](../../../properties/custom/custom_physical_property_packages_test.ipynb). " + ] + } + ], + "metadata": { + "language_info": { + "name": "python" + } }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with ALAMO Surrogate Object - Embedding Surrogate (Part 2)\n", - "\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "\n", - "## 1. Integration of Surrogate into Custom Property Package\n", - "\n", - "Here we shall see how to integrate the trained surrogate in the custom property package. One can read more about making a properties package from read the docs. To integrate the surrogate we first define the physical parameter block which will return the properties based on the state variables. State variables would be called from the State Block as Pyomo variables. We will define the surrogate input and output as pyomo variables as well. Once we have defined the variables in the state block then we define our surrogate block.\n", - "\n", - "*NOTE:* For ease of explanation the property package is written in \".ipynb\" format, ideally it should be in a python script. Each class of this package is separated in different cell for the same reason, in practice all the classes in this notebook should be part of the same python script. This folder includes \"properties.py\" file which is how embedding file should look like. \n", - "\n", - "### 1.1 Steps in Creating a Property Package\n", - "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", - "\n", - "1. Defining the **units of measurement** for the property package.\n", - "2. Defining the **properties supported** by the property package and the associated metadata.\n", - "3. Defining the **phases and components** of interest.\n", - "4. Defining the necessary **parameters** required to calculate the properties of interest.\n", - "5. Declaring the **state variables** to be used for the property package.\n", - "6. Creating **variables and constraints** to describe the properties of interest.\n", - "7. Creating an **initialization routine** for the property package.\n", - "8. Defining **interface methods** used to couple the property package with unit models." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Importing libraries for making Property Package\n", - "\n", - "To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries. We shall also use the Surrogate API in the IDAES framework to embed the trained surrogate in the property package." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Python libraries\n", - "import logging\n", - "\n", - "# Import Pyomo libraries\n", - "from pyomo.environ import (\n", - " Constraint,\n", - " Param,\n", - " Reals,\n", - " Set,\n", - " value,\n", - " Var,\n", - " NonNegativeReals,\n", - " units,\n", - ")\n", - "from pyomo.opt import SolverFactory, TerminationCondition\n", - "\n", - "# Import IDAES cores\n", - "from idaes.core import (\n", - " declare_process_block_class,\n", - " PhysicalParameterBlock,\n", - " StateBlockData,\n", - " StateBlock,\n", - " MaterialBalanceType,\n", - " EnergyBalanceType,\n", - " LiquidPhase,\n", - " Component,\n", - ")\n", - "from idaes.core.util.initialization import solve_indexed_blocks\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.misc import extract_data\n", - "from idaes.core.solvers import get_solver\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", - "from idaes.core.surrogate.alamopy import AlamoSurrogate\n", - "\n", - "from pyomo.util.model_size import build_model_size_report\n", - "\n", - "# Some more information about this module\n", - "__author__ = \"Javal Vyas\"\n", - "\n", - "\n", - "# Set up logger\n", - "_log = logging.getLogger(__name__)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3 Defining Classes\n", - "\n", - "We shall be going through each class of the property package in detail. Since there are not reactions occurring in the flowsheet we shall only write the Physical Parameter Block.\n", - "\n", - "## 3.1 Physical Parameter Block\n", - "\n", - "The Physical Parameter Block serves as the central point of reference for all aspects of the property package, and needs to define a number of things about the package. These are summarized below:\n", - "\n", - "* Units of measurement\n", - "* What properties are supported and how they are implemented\n", - "* What components and phases are included in the packages\n", - "* All the global parameters necessary for calculating properties\n", - "* A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", - "\n", - "To assemble the above mentioned things in a class we need to follow the following steps:\n", - "\n", - "* Declaring the new class and inheriting from the PhysicalParameterBlock base class\n", - "* Declaring any necessary configuration arguments\n", - "* Writing the build method for our class\n", - "* Creating a define_metadata method for the class.\n", - "\n", - "The code below follows the above mentioned steps. \n", - "\n", - "*NOTE*: The SCO2StateBlock will be discussed in the next section." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"SCO2ParameterBlock\")\n", - "class PhysicalParameterData(PhysicalParameterBlock):\n", - " \"\"\"\n", - " Property Parameter Block Class\n", - "\n", - " Contains parameters and indexing sets associated with properties for\n", - " supercritical CO2.\n", - "\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction.\n", - " \"\"\"\n", - " super(PhysicalParameterData, self).build()\n", - "\n", - " self._state_block_class = SCO2StateBlock\n", - "\n", - " # List of valid phases in property package\n", - " self.Liq = LiquidPhase()\n", - "\n", - " # Component list - a list of component identifiers\n", - " self.CO2 = Component()\n", - "\n", - " @classmethod\n", - " def define_metadata(cls, obj):\n", - " obj.add_properties(\n", - " {\n", - " \"flow_mol\": {\"method\": None, \"units\": \"kmol/s\"},\n", - " \"pressure\": {\"method\": None, \"units\": \"MPa\"},\n", - " \"temperature\": {\"method\": None, \"units\": \"K\"},\n", - " \"enth_mol\": {\"method\": None, \"units\": \"kJ/kmol\"},\n", - " \"entr_mol\": {\"method\": None, \"units\": \"kJ/kmol/K\"},\n", - " }\n", - " )\n", - "\n", - " obj.add_default_units(\n", - " {\n", - " \"time\": units.s,\n", - " \"length\": units.m,\n", - " \"mass\": units.kg,\n", - " \"amount\": units.mol,\n", - " \"temperature\": units.K,\n", - " }\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.2 State Block\n", - "\n", - "After the Physical Parameter Block class has been created, the next step is to write the code necessary to create the State Blocks that will be used through out the flowsheet.\n", - "\n", - "For this example, we will begin by describing the content of the StateBlockData objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. \n", - "\n", - "We start by defining the 5 state variables: flow_mol, pressure, temperature, enth_mol and entr_mol as the Pyomo Var, each of this variable has a unit for unit consistency. This is done in _make_state_vars function. We get the enth_mol and entr_mol variables from trained surrogate which we define in this function as well. To get the output variables from the surrogate:\n", - "\n", - "1. Define the input and output variables to the trained surrogate\n", - "2. Load the surrogate from the folder it is saved in, here it is saved in the folder called alamo_surrogate (look at the alamo_training_test.ipynb file) using the Alamopy Surrogate API of IDAES package\n", - "3. Define a `SurrogateBlock` and call the build_model method on the block with the input variables, output variables, model formulation and the loaded surrogate as the arguments. \n", - "4. Define the constraints necessary for ensuring physical feasibility of the system like the mass balance and energy balance. Check for the state variables to be within the bounds. \n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"SCO2StateBlock\", block_class=StateBlock)\n", - "class SCO2StateBlockData(StateBlockData):\n", - " \"\"\"\n", - " An example property package for ideal gas properties with Gibbs energy\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction\n", - " \"\"\"\n", - " super(SCO2StateBlockData, self).build()\n", - " self._make_state_vars()\n", - "\n", - " def _make_state_vars(self):\n", - " # Create state variables\n", - "\n", - " self.flow_mol = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=1.0,\n", - " units=units.kmol / units.s,\n", - " doc=\"Total molar flowrate [kmol/s]\",\n", - " )\n", - "\n", - " self.pressure = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=8,\n", - " bounds=(7.38, 40),\n", - " units=units.MPa,\n", - " doc=\"State pressure [MPa]\",\n", - " )\n", - "\n", - " self.temperature = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=350,\n", - " bounds=(304.2, 760 + 273.15),\n", - " units=units.K,\n", - " doc=\"State temperature [K]\",\n", - " )\n", - "\n", - " self.entr_mol = Var(\n", - " domain=Reals,\n", - " initialize=10,\n", - " units=units.kJ / units.kmol / units.K,\n", - " doc=\"Entropy [kJ/ kmol / K]\",\n", - " )\n", - "\n", - " self.enth_mol = Var(\n", - " domain=Reals,\n", - " initialize=1,\n", - " units=units.kJ / units.kmol,\n", - " doc=\"Enthalpy [kJ/ kmol]\",\n", - " )\n", - "\n", - " inputs = [self.pressure, self.temperature]\n", - " outputs = [self.enth_mol, self.entr_mol]\n", - " self.alamo_surrogate = AlamoSurrogate.load_from_file(\"alamo_surrogate.json\")\n", - " self.surrogate_enth = SurrogateBlock()\n", - " self.surrogate_enth.build_model(\n", - " self.alamo_surrogate,\n", - " input_vars=inputs,\n", - " output_vars=outputs,\n", - " )\n", - "\n", - " def get_material_flow_terms(self, p, j):\n", - " return self.flow_mol\n", - "\n", - " def get_enthalpy_flow_terms(self, p):\n", - " return self.flow_mol * self.enth_mol\n", - "\n", - " def default_material_balance_type(self):\n", - " return MaterialBalanceType.componentTotal\n", - "\n", - " def default_energy_balance_type(self):\n", - " return EnergyBalanceType.enthalpyTotal\n", - "\n", - " def define_state_vars(self):\n", - " return {\n", - " \"flow_mol\": self.flow_mol,\n", - " \"temperature\": self.temperature,\n", - " \"pressure\": self.pressure,\n", - " }\n", - "\n", - " def model_check(blk):\n", - " \"\"\"\n", - " Model checks for property block\n", - " \"\"\"\n", - " # Check temperature bounds\n", - " if value(blk.temperature) < blk.temperature.lb:\n", - " _log.error(\"{} Temperature set below lower bound.\".format(blk.name))\n", - " if value(blk.temperature) > blk.temperature.ub:\n", - " _log.error(\"{} Temperature set above upper bound.\".format(blk.name))\n", - "\n", - " # Check pressure bounds\n", - " if value(blk.pressure) < blk.pressure.lb:\n", - " _log.error(\"{} Pressure set below lower bound.\".format(blk.name))\n", - " if value(blk.pressure) > blk.pressure.ub:\n", - " _log.error(\"{} Pressure set above upper bound.\".format(blk.name))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.3 Define Initialization Routine\n", - "\n", - "After defining the variables and constraints required to describe the properties of interest for S-CO2, we need to provide them with a good initial guess. It is often the case that the default values provided to the variables while creating the model are not likely the actual conditions the user would simulate. Given the highly non-linear nature of the physical property calculations, it is more often than not impossible to solve a State Block without providing a set of good initial values for all the variables we have declared.\n", - "\n", - "Any initialization routine can be written by following a 3 step process:\n", - "1. `Fix the state` of the model such that there are no degrees of freedom. For State Blocks, it should only be necessary to fix the state variables to a set of initial guesses provided by the user or unit model, as well as deactivating any constraints like the sum of mole fractions.\n", - "\n", - "2. `Iteratively build up a solution` for the full model. This often involves multiple steps and can involve deactivating constraints and fixing some variables to reduce complexity, as well as analytically calculating values for variables based on the known state (and any previously calculated variables). Solvers can be called as part of any step to efficiently initialize large numbers of variables simultaneously.\n", - "\n", - "3. `Return the state of the model` to where it originally started (with the exception of variable values). Any variable that was fixed or constraint that was deactivated during initialization should be unfixed or reactivated, so that the degrees of freedom are restored to what they were before the initialization began.\n", - "\n", - "\n", - "Thus, we start with fixing the state variables. Here since enth_mol and entr_mol are a function of pressure and temperature, we do not fix them as fixing pressure and temperature would in turn fix them. So, we check if a state variable if fixed or not, if it is fixed then we do not change them, if they are not fixed then we check for an initial guess from the `state_args`, if we get a value then we fix the variable with state_args, else we fix it with the value provided by the user. This should bring the degrees of freedom to 0. Here since we do not have any variable/constrained that we have unfixed/deactivated we can skip step 2 and move to step 3. We unfix the variables that were fixed in step 1 using the `release_state` function. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "class _StateBlock(StateBlock):\n", - " \"\"\"\n", - " This Class contains methods which should be applied to Property Blocks as a\n", - " whole, rather than individual elements of indexed Property Blocks.\n", - " \"\"\"\n", - "\n", - " def initialize(\n", - " blk,\n", - " state_args=None,\n", - " hold_state=False,\n", - " outlvl=1,\n", - " state_vars_fixed=False,\n", - " solver=\"ipopt\",\n", - " optarg={\"tol\": 1e-8},\n", - " ):\n", - " \"\"\"\n", - " Initialisation routine for property package.\n", - "\n", - " Keyword Arguments:\n", - " flow_mol : value at which to initialize component flows\n", - " (default=None)\n", - " pressure : value at which to initialize pressure (default=None)\n", - " temperature : value at which to initialize temperature\n", - " (default=None)\n", - " outlvl : sets output level of initialisation routine\n", - "\n", - " * 0 = no output (default)\n", - " * 1 = return solver state for each step in routine\n", - " * 2 = include solver output information (tee=True)\n", - " state_vars_fixed: Flag to denote if state vars have already been\n", - " fixed.\n", - " - True - states have already been fixed by the\n", - " control volume 1D. Control volume 0D\n", - " does not fix the state vars, so will\n", - " be False if this state block is used\n", - " with 0D blocks.\n", - " - False - states have not been fixed. The state\n", - " block will deal with fixing/unfixing.\n", - " optarg : solver options dictionary object (default=None)\n", - " solver : str indicating which solver to use during\n", - " initialization (default = 'ipopt')\n", - " hold_state : flag indicating whether the initialization routine\n", - " should unfix any state variables fixed during\n", - " initialization (default=False).\n", - " - True - states variables are not unfixed, and\n", - " a dict of returned containing flags for\n", - " which states were fixed during\n", - " initialization.\n", - " - False - state variables are unfixed after\n", - " initialization by calling the\n", - " release_state method\n", - "\n", - " Returns:\n", - " If hold_states is True, returns a dict containing flags for\n", - " which states were fixed during initialization.\n", - " \"\"\"\n", - " if state_vars_fixed is False:\n", - " # Fix state variables if not already fixed\n", - " Fcflag = {}\n", - " Pflag = {}\n", - " Tflag = {}\n", - "\n", - " for k in blk.keys():\n", - " if blk[k].flow_mol.fixed is True:\n", - " Fcflag[k] = True\n", - " else:\n", - " Fcflag[k] = False\n", - " if state_args is None:\n", - " blk[k].flow_mol.fix()\n", - " else:\n", - " blk[k].flow_mol.fix(state_args[\"flow_mol\"])\n", - "\n", - " if blk[k].pressure.fixed is True:\n", - " Pflag[k] = True\n", - " else:\n", - " Pflag[k] = False\n", - " if state_args is None:\n", - " blk[k].pressure.fix()\n", - " else:\n", - " blk[k].pressure.fix(state_args[\"pressure\"])\n", - "\n", - " if blk[k].temperature.fixed is True:\n", - " Tflag[k] = True\n", - " else:\n", - " Tflag[k] = False\n", - " if state_args is None:\n", - " blk[k].temperature.fix()\n", - " else:\n", - " blk[k].temperature.fix(state_args[\"temperature\"])\n", - "\n", - " # If input block, return flags, else release state\n", - " flags = {\"Fcflag\": Fcflag, \"Pflag\": Pflag, \"Tflag\": Tflag}\n", - "\n", - " else:\n", - " # Check when the state vars are fixed already result in dof 0\n", - " for k in blk.keys():\n", - " if degrees_of_freedom(blk[k]) != 0:\n", - " raise Exception(\n", - " \"State vars fixed but degrees of freedom \"\n", - " \"for state block is not zero during \"\n", - " \"initialization.\"\n", - " )\n", - "\n", - " if state_vars_fixed is False:\n", - " if hold_state is True:\n", - " return flags\n", - " else:\n", - " blk.release_state(flags)\n", - "\n", - " def release_state(blk, flags, outlvl=0):\n", - " \"\"\"\n", - " Method to release state variables fixed during initialisation.\n", - "\n", - " Keyword Arguments:\n", - " flags : dict containing information of which state variables\n", - " were fixed during initialization, and should now be\n", - " unfixed. This dict is returned by initialize if\n", - " hold_state=True.\n", - " outlvl : sets output level of of logging\n", - " \"\"\"\n", - " if flags is None:\n", - " return\n", - "\n", - " # Unfix state variables\n", - " for k in blk.keys():\n", - " if flags[\"Fcflag\"][k] is False:\n", - " blk[k].flow_mol.unfix()\n", - " if flags[\"Pflag\"][k] is False:\n", - " blk[k].pressure.unfix()\n", - " if flags[\"Tflag\"][k] is False:\n", - " blk[k].temperature.unfix()\n", - "\n", - " if outlvl > 0:\n", - " if outlvl > 0:\n", - " _log.info(\"{} State Released.\".format(blk.name))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_test.ipynb). To learn in detail about making a custom property package, one should go through [Property Package Example](../../../properties/custom/custom_physical_property_packages_test.ipynb). " - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding_usr.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding_usr.ipynb index efd3caff..edd5a83d 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding_usr.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/alamo/surrogate_embedding_usr.ipynb @@ -1,501 +1,523 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "##############################################################################\n", - "# Institute for the Design of Advanced Energy Systems Process Systems\n", - "# Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the\n", - "# software owners: The Regents of the University of California, through\n", - "# Lawrence Berkeley National Laboratory, National Technology & Engineering\n", - "# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia\n", - "# University Research Corporation, et al. All rights reserved.\n", - "#\n", - "# Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and\n", - "# license information, respectively. Both files are also available online\n", - "# at the URL \"https://github.com/IDAES/idaes-pse\".\n", - "##############################################################################" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "##############################################################################\n", + "# Institute for the Design of Advanced Energy Systems Process Systems\n", + "# Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the\n", + "# software owners: The Regents of the University of California, through\n", + "# Lawrence Berkeley National Laboratory, National Technology & Engineering\n", + "# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia\n", + "# University Research Corporation, et al. All rights reserved.\n", + "#\n", + "# Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and\n", + "# license information, respectively. Both files are also available online\n", + "# at the URL \"https://github.com/IDAES/idaes-pse\".\n", + "##############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with ALAMO Surrogate Object - Embedding Surrogate (Part 2)\n", + "\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "\n", + "## 1. Integration of Surrogate into Custom Property Package\n", + "\n", + "Here we shall see how to integrate the trained surrogate in the custom property package. One can read more about making a properties package from read the docs. To integrate the surrogate we first define the physical parameter block which will return the properties based on the state variables. State variables would be called from the State Block as Pyomo variables. We will define the surrogate input and output as pyomo variables as well. Once we have defined the variables in the state block then we define our surrogate block.\n", + "\n", + "*NOTE:* For ease of explanation the property package is written in \".ipynb\" format, ideally it should be in a python script. Each class of this package is separated in different cell for the same reason, in practice all the classes in this notebook should be part of the same python script. This folder includes \"properties.py\" file which is how embedding file should look like. \n", + "\n", + "### 1.1 Steps in Creating a Property Package\n", + "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", + "\n", + "1. Defining the **units of measurement** for the property package.\n", + "2. Defining the **properties supported** by the property package and the associated metadata.\n", + "3. Defining the **phases and components** of interest.\n", + "4. Defining the necessary **parameters** required to calculate the properties of interest.\n", + "5. Declaring the **state variables** to be used for the property package.\n", + "6. Creating **variables and constraints** to describe the properties of interest.\n", + "7. Creating an **initialization routine** for the property package.\n", + "8. Defining **interface methods** used to couple the property package with unit models." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Importing libraries for making Property Package\n", + "\n", + "To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries. We shall also use the Surrogate API in the IDAES framework to embed the trained surrogate in the property package." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Python libraries\n", + "import logging\n", + "\n", + "# Import Pyomo libraries\n", + "from pyomo.environ import (\n", + " Constraint,\n", + " Param,\n", + " Reals,\n", + " Set,\n", + " value,\n", + " Var,\n", + " NonNegativeReals,\n", + " units,\n", + ")\n", + "from pyomo.opt import SolverFactory, TerminationCondition\n", + "\n", + "# Import IDAES cores\n", + "from idaes.core import (\n", + " declare_process_block_class,\n", + " PhysicalParameterBlock,\n", + " StateBlockData,\n", + " StateBlock,\n", + " MaterialBalanceType,\n", + " EnergyBalanceType,\n", + " LiquidPhase,\n", + " Component,\n", + ")\n", + "from idaes.core.util.initialization import solve_indexed_blocks\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.misc import extract_data\n", + "from idaes.core.solvers import get_solver\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", + "from idaes.core.surrogate.alamopy import AlamoSurrogate\n", + "\n", + "from pyomo.util.model_size import build_model_size_report\n", + "\n", + "# Some more information about this module\n", + "__author__ = \"Javal Vyas\"\n", + "\n", + "\n", + "# Set up logger\n", + "_log = logging.getLogger(__name__)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3 Defining Classes\n", + "\n", + "We shall be going through each class of the property package in detail. Since there are not reactions occurring in the flowsheet we shall only write the Physical Parameter Block.\n", + "\n", + "## 3.1 Physical Parameter Block\n", + "\n", + "The Physical Parameter Block serves as the central point of reference for all aspects of the property package, and needs to define a number of things about the package. These are summarized below:\n", + "\n", + "* Units of measurement\n", + "* What properties are supported and how they are implemented\n", + "* What components and phases are included in the packages\n", + "* All the global parameters necessary for calculating properties\n", + "* A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", + "\n", + "To assemble the above mentioned things in a class we need to follow the following steps:\n", + "\n", + "* Declaring the new class and inheriting from the PhysicalParameterBlock base class\n", + "* Declaring any necessary configuration arguments\n", + "* Writing the build method for our class\n", + "* Creating a define_metadata method for the class.\n", + "\n", + "The code below follows the above mentioned steps. \n", + "\n", + "*NOTE*: The SCO2StateBlock will be discussed in the next section." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"SCO2ParameterBlock\")\n", + "class PhysicalParameterData(PhysicalParameterBlock):\n", + " \"\"\"\n", + " Property Parameter Block Class\n", + "\n", + " Contains parameters and indexing sets associated with properties for\n", + " supercritical CO2.\n", + "\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction.\n", + " \"\"\"\n", + " super(PhysicalParameterData, self).build()\n", + "\n", + " self._state_block_class = SCO2StateBlock\n", + "\n", + " # List of valid phases in property package\n", + " self.Liq = LiquidPhase()\n", + "\n", + " # Component list - a list of component identifiers\n", + " self.CO2 = Component()\n", + "\n", + " @classmethod\n", + " def define_metadata(cls, obj):\n", + " obj.add_properties(\n", + " {\n", + " \"flow_mol\": {\"method\": None, \"units\": \"kmol/s\"},\n", + " \"pressure\": {\"method\": None, \"units\": \"MPa\"},\n", + " \"temperature\": {\"method\": None, \"units\": \"K\"},\n", + " \"enth_mol\": {\"method\": None, \"units\": \"kJ/kmol\"},\n", + " \"entr_mol\": {\"method\": None, \"units\": \"kJ/kmol/K\"},\n", + " }\n", + " )\n", + "\n", + " obj.add_default_units(\n", + " {\n", + " \"time\": units.s,\n", + " \"length\": units.m,\n", + " \"mass\": units.kg,\n", + " \"amount\": units.mol,\n", + " \"temperature\": units.K,\n", + " }\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.2 State Block\n", + "\n", + "After the Physical Parameter Block class has been created, the next step is to write the code necessary to create the State Blocks that will be used through out the flowsheet.\n", + "\n", + "For this example, we will begin by describing the content of the StateBlockData objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. \n", + "\n", + "We start by defining the 5 state variables: flow_mol, pressure, temperature, enth_mol and entr_mol as the Pyomo Var, each of this variable has a unit for unit consistency. This is done in _make_state_vars function. We get the enth_mol and entr_mol variables from trained surrogate which we define in this function as well. To get the output variables from the surrogate:\n", + "\n", + "1. Define the input and output variables to the trained surrogate\n", + "2. Load the surrogate from the folder it is saved in, here it is saved in the folder called alamo_surrogate (look at the alamo_training_usr.ipynb file) using the Alamopy Surrogate API of IDAES package\n", + "3. Define a `SurrogateBlock` and call the build_model method on the block with the input variables, output variables, model formulation and the loaded surrogate as the arguments. \n", + "4. Define the constraints necessary for ensuring physical feasibility of the system like the mass balance and energy balance. Check for the state variables to be within the bounds. \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"SCO2StateBlock\", block_class=StateBlock)\n", + "class SCO2StateBlockData(StateBlockData):\n", + " \"\"\"\n", + " An example property package for ideal gas properties with Gibbs energy\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction\n", + " \"\"\"\n", + " super(SCO2StateBlockData, self).build()\n", + " self._make_state_vars()\n", + "\n", + " def _make_state_vars(self):\n", + " # Create state variables\n", + "\n", + " self.flow_mol = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=1.0,\n", + " units=units.kmol / units.s,\n", + " doc=\"Total molar flowrate [kmol/s]\",\n", + " )\n", + "\n", + " self.pressure = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=8,\n", + " bounds=(7.38, 40),\n", + " units=units.MPa,\n", + " doc=\"State pressure [MPa]\",\n", + " )\n", + "\n", + " self.temperature = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=350,\n", + " bounds=(304.2, 760 + 273.15),\n", + " units=units.K,\n", + " doc=\"State temperature [K]\",\n", + " )\n", + "\n", + " self.entr_mol = Var(\n", + " domain=Reals,\n", + " initialize=10,\n", + " units=units.kJ / units.kmol / units.K,\n", + " doc=\"Entropy [kJ/ kmol / K]\",\n", + " )\n", + "\n", + " self.enth_mol = Var(\n", + " domain=Reals,\n", + " initialize=1,\n", + " units=units.kJ / units.kmol,\n", + " doc=\"Enthalpy [kJ/ kmol]\",\n", + " )\n", + "\n", + " inputs = [self.pressure, self.temperature]\n", + " outputs = [self.enth_mol, self.entr_mol]\n", + " self.alamo_surrogate = AlamoSurrogate.load_from_file(\"alamo_surrogate.json\")\n", + " self.surrogate_enth = SurrogateBlock()\n", + " self.surrogate_enth.build_model(\n", + " self.alamo_surrogate,\n", + " input_vars=inputs,\n", + " output_vars=outputs,\n", + " )\n", + "\n", + " def get_material_flow_terms(self, p, j):\n", + " return self.flow_mol\n", + "\n", + " def get_enthalpy_flow_terms(self, p):\n", + " return self.flow_mol * self.enth_mol\n", + "\n", + " def default_material_balance_type(self):\n", + " return MaterialBalanceType.componentTotal\n", + "\n", + " def default_energy_balance_type(self):\n", + " return EnergyBalanceType.enthalpyTotal\n", + "\n", + " def define_state_vars(self):\n", + " return {\n", + " \"flow_mol\": self.flow_mol,\n", + " \"temperature\": self.temperature,\n", + " \"pressure\": self.pressure,\n", + " }\n", + "\n", + " def model_check(blk):\n", + " \"\"\"\n", + " Model checks for property block\n", + " \"\"\"\n", + " # Check temperature bounds\n", + " if value(blk.temperature) < blk.temperature.lb:\n", + " _log.error(\"{} Temperature set below lower bound.\".format(blk.name))\n", + " if value(blk.temperature) > blk.temperature.ub:\n", + " _log.error(\"{} Temperature set above upper bound.\".format(blk.name))\n", + "\n", + " # Check pressure bounds\n", + " if value(blk.pressure) < blk.pressure.lb:\n", + " _log.error(\"{} Pressure set below lower bound.\".format(blk.name))\n", + " if value(blk.pressure) > blk.pressure.ub:\n", + " _log.error(\"{} Pressure set above upper bound.\".format(blk.name))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.3 Define Initialization Routine\n", + "\n", + "After defining the variables and constraints required to describe the properties of interest for S-CO2, we need to provide them with a good initial guess. It is often the case that the default values provided to the variables while creating the model are not likely the actual conditions the user would simulate. Given the highly non-linear nature of the physical property calculations, it is more often than not impossible to solve a State Block without providing a set of good initial values for all the variables we have declared.\n", + "\n", + "Any initialization routine can be written by following a 3 step process:\n", + "1. `Fix the state` of the model such that there are no degrees of freedom. For State Blocks, it should only be necessary to fix the state variables to a set of initial guesses provided by the user or unit model, as well as deactivating any constraints like the sum of mole fractions.\n", + "\n", + "2. `Iteratively build up a solution` for the full model. This often involves multiple steps and can involve deactivating constraints and fixing some variables to reduce complexity, as well as analytically calculating values for variables based on the known state (and any previously calculated variables). Solvers can be called as part of any step to efficiently initialize large numbers of variables simultaneously.\n", + "\n", + "3. `Return the state of the model` to where it originally started (with the exception of variable values). Any variable that was fixed or constraint that was deactivated during initialization should be unfixed or reactivated, so that the degrees of freedom are restored to what they were before the initialization began.\n", + "\n", + "\n", + "Thus, we start with fixing the state variables. Here since enth_mol and entr_mol are a function of pressure and temperature, we do not fix them as fixing pressure and temperature would in turn fix them. So, we check if a state variable if fixed or not, if it is fixed then we do not change them, if they are not fixed then we check for an initial guess from the `state_args`, if we get a value then we fix the variable with state_args, else we fix it with the value provided by the user. This should bring the degrees of freedom to 0. Here since we do not have any variable/constrained that we have unfixed/deactivated we can skip step 2 and move to step 3. We unfix the variables that were fixed in step 1 using the `release_state` function. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class _StateBlock(StateBlock):\n", + " \"\"\"\n", + " This Class contains methods which should be applied to Property Blocks as a\n", + " whole, rather than individual elements of indexed Property Blocks.\n", + " \"\"\"\n", + "\n", + " def initialize(\n", + " blk,\n", + " state_args=None,\n", + " hold_state=False,\n", + " outlvl=1,\n", + " state_vars_fixed=False,\n", + " solver=\"ipopt\",\n", + " optarg={\"tol\": 1e-8},\n", + " ):\n", + " \"\"\"\n", + " Initialisation routine for property package.\n", + "\n", + " Keyword Arguments:\n", + " flow_mol : value at which to initialize component flows\n", + " (default=None)\n", + " pressure : value at which to initialize pressure (default=None)\n", + " temperature : value at which to initialize temperature\n", + " (default=None)\n", + " outlvl : sets output level of initialisation routine\n", + "\n", + " * 0 = no output (default)\n", + " * 1 = return solver state for each step in routine\n", + " * 2 = include solver output information (tee=True)\n", + " state_vars_fixed: Flag to denote if state vars have already been\n", + " fixed.\n", + " - True - states have already been fixed by the\n", + " control volume 1D. Control volume 0D\n", + " does not fix the state vars, so will\n", + " be False if this state block is used\n", + " with 0D blocks.\n", + " - False - states have not been fixed. The state\n", + " block will deal with fixing/unfixing.\n", + " optarg : solver options dictionary object (default=None)\n", + " solver : str indicating which solver to use during\n", + " initialization (default = 'ipopt')\n", + " hold_state : flag indicating whether the initialization routine\n", + " should unfix any state variables fixed during\n", + " initialization (default=False).\n", + " - True - states variables are not unfixed, and\n", + " a dict of returned containing flags for\n", + " which states were fixed during\n", + " initialization.\n", + " - False - state variables are unfixed after\n", + " initialization by calling the\n", + " release_state method\n", + "\n", + " Returns:\n", + " If hold_states is True, returns a dict containing flags for\n", + " which states were fixed during initialization.\n", + " \"\"\"\n", + " if state_vars_fixed is False:\n", + " # Fix state variables if not already fixed\n", + " Fcflag = {}\n", + " Pflag = {}\n", + " Tflag = {}\n", + "\n", + " for k in blk.keys():\n", + " if blk[k].flow_mol.fixed is True:\n", + " Fcflag[k] = True\n", + " else:\n", + " Fcflag[k] = False\n", + " if state_args is None:\n", + " blk[k].flow_mol.fix()\n", + " else:\n", + " blk[k].flow_mol.fix(state_args[\"flow_mol\"])\n", + "\n", + " if blk[k].pressure.fixed is True:\n", + " Pflag[k] = True\n", + " else:\n", + " Pflag[k] = False\n", + " if state_args is None:\n", + " blk[k].pressure.fix()\n", + " else:\n", + " blk[k].pressure.fix(state_args[\"pressure\"])\n", + "\n", + " if blk[k].temperature.fixed is True:\n", + " Tflag[k] = True\n", + " else:\n", + " Tflag[k] = False\n", + " if state_args is None:\n", + " blk[k].temperature.fix()\n", + " else:\n", + " blk[k].temperature.fix(state_args[\"temperature\"])\n", + "\n", + " # If input block, return flags, else release state\n", + " flags = {\"Fcflag\": Fcflag, \"Pflag\": Pflag, \"Tflag\": Tflag}\n", + "\n", + " else:\n", + " # Check when the state vars are fixed already result in dof 0\n", + " for k in blk.keys():\n", + " if degrees_of_freedom(blk[k]) != 0:\n", + " raise Exception(\n", + " \"State vars fixed but degrees of freedom \"\n", + " \"for state block is not zero during \"\n", + " \"initialization.\"\n", + " )\n", + "\n", + " if state_vars_fixed is False:\n", + " if hold_state is True:\n", + " return flags\n", + " else:\n", + " blk.release_state(flags)\n", + "\n", + " def release_state(blk, flags, outlvl=0):\n", + " \"\"\"\n", + " Method to release state variables fixed during initialisation.\n", + "\n", + " Keyword Arguments:\n", + " flags : dict containing information of which state variables\n", + " were fixed during initialization, and should now be\n", + " unfixed. This dict is returned by initialize if\n", + " hold_state=True.\n", + " outlvl : sets output level of of logging\n", + " \"\"\"\n", + " if flags is None:\n", + " return\n", + "\n", + " # Unfix state variables\n", + " for k in blk.keys():\n", + " if flags[\"Fcflag\"][k] is False:\n", + " blk[k].flow_mol.unfix()\n", + " if flags[\"Pflag\"][k] is False:\n", + " blk[k].pressure.unfix()\n", + " if flags[\"Tflag\"][k] is False:\n", + " blk[k].temperature.unfix()\n", + "\n", + " if outlvl > 0:\n", + " if outlvl > 0:\n", + " _log.info(\"{} State Released.\".format(blk.name))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_usr.ipynb). To learn in detail about making a custom property package, one should go through [Property Package Example](../../../properties/custom/custom_physical_property_packages_usr.ipynb). " + ] + } + ], + "metadata": { + "language_info": { + "name": "python" + } }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with ALAMO Surrogate Object - Embedding Surrogate (Part 2)\n", - "\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "\n", - "## 1. Integration of Surrogate into Custom Property Package\n", - "\n", - "Here we shall see how to integrate the trained surrogate in the custom property package. One can read more about making a properties package from read the docs. To integrate the surrogate we first define the physical parameter block which will return the properties based on the state variables. State variables would be called from the State Block as Pyomo variables. We will define the surrogate input and output as pyomo variables as well. Once we have defined the variables in the state block then we define our surrogate block.\n", - "\n", - "*NOTE:* For ease of explanation the property package is written in \".ipynb\" format, ideally it should be in a python script. Each class of this package is separated in different cell for the same reason, in practice all the classes in this notebook should be part of the same python script. This folder includes \"properties.py\" file which is how embedding file should look like. \n", - "\n", - "### 1.1 Steps in Creating a Property Package\n", - "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", - "\n", - "1. Defining the **units of measurement** for the property package.\n", - "2. Defining the **properties supported** by the property package and the associated metadata.\n", - "3. Defining the **phases and components** of interest.\n", - "4. Defining the necessary **parameters** required to calculate the properties of interest.\n", - "5. Declaring the **state variables** to be used for the property package.\n", - "6. Creating **variables and constraints** to describe the properties of interest.\n", - "7. Creating an **initialization routine** for the property package.\n", - "8. Defining **interface methods** used to couple the property package with unit models." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Importing libraries for making Property Package\n", - "\n", - "To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries. We shall also use the Surrogate API in the IDAES framework to embed the trained surrogate in the property package." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Changes the divide behavior to not do integer division\n", - "from __future__ import division\n", - "\n", - "# Import Python libraries\n", - "import logging\n", - "\n", - "# Import Pyomo libraries\n", - "from pyomo.environ import (\n", - " Constraint,\n", - " Param,\n", - " Reals,\n", - " Set,\n", - " value,\n", - " Var,\n", - " NonNegativeReals,\n", - " units,\n", - ")\n", - "from pyomo.opt import SolverFactory, TerminationCondition\n", - "\n", - "# Import IDAES cores\n", - "from idaes.core import (\n", - " declare_process_block_class,\n", - " PhysicalParameterBlock,\n", - " StateBlockData,\n", - " StateBlock,\n", - " MaterialBalanceType,\n", - " EnergyBalanceType,\n", - " LiquidPhase,\n", - " Component,\n", - ")\n", - "from idaes.core.util.initialization import solve_indexed_blocks\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.misc import extract_data\n", - "from idaes.core.solvers import get_solver\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", - "from idaes.core.surrogate.alamopy import AlamoSurrogate\n", - "\n", - "from pyomo.util.model_size import build_model_size_report\n", - "\n", - "# Some more information about this module\n", - "__author__ = \"Javal Vyas\"\n", - "\n", - "\n", - "# Set up logger\n", - "_log = logging.getLogger(__name__)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3 Defining Classes\n", - "\n", - "We shall be going through each class of the property package in detail. Since there are not reactions occurring in the flowsheet we shall only write the Physical Parameter Block.\n", - "\n", - "## 3.1 Physical Parameter Block\n", - "\n", - "The Physical Parameter Block serves as the central point of reference for all aspects of the property package, and needs to define a number of things about the package. These are summarized below:\n", - "\n", - "* Units of measurement\n", - "* What properties are supported and how they are implemented\n", - "* What components and phases are included in the packages\n", - "* All the global parameters necessary for calculating properties\n", - "* A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", - "\n", - "To assemble the above mentioned things in a class we need to follow the following steps:\n", - "\n", - "* Declaring the new class and inheriting from the PhysicalParameterBlock base class\n", - "* Declaring any necessary configuration arguments\n", - "* Writing the build method for our class\n", - "* Creating a define_metadata method for the class.\n", - "\n", - "The code below follows the above mentioned steps. \n", - "\n", - "*NOTE*: The SCO2StateBlock will be discussed in the next section." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"SCO2ParameterBlock\")\n", - "class PhysicalParameterData(PhysicalParameterBlock):\n", - " \"\"\"\n", - " Property Parameter Block Class\n", - "\n", - " Contains parameters and indexing sets associated with properties for\n", - " supercritical CO2.\n", - "\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction.\n", - " \"\"\"\n", - " super(PhysicalParameterData, self).build()\n", - "\n", - " self._state_block_class = SCO2StateBlock\n", - "\n", - " # List of valid phases in property package\n", - " self.Liq = LiquidPhase()\n", - "\n", - " # Component list - a list of component identifiers\n", - " self.CO2 = Component()\n", - "\n", - " @classmethod\n", - " def define_metadata(cls, obj):\n", - " obj.add_properties(\n", - " {\n", - " \"flow_mol\": {\"method\": None, \"units\": \"kmol/s\"},\n", - " \"pressure\": {\"method\": None, \"units\": \"MPa\"},\n", - " \"temperature\": {\"method\": None, \"units\": \"K\"},\n", - " \"enth_mol\": {\"method\": None, \"units\": \"kJ/kmol\"},\n", - " \"entr_mol\": {\"method\": None, \"units\": \"kJ/kmol/K\"},\n", - " }\n", - " )\n", - "\n", - " obj.add_default_units(\n", - " {\n", - " \"time\": units.s,\n", - " \"length\": units.m,\n", - " \"mass\": units.kg,\n", - " \"amount\": units.mol,\n", - " \"temperature\": units.K,\n", - " }\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.2 State Block\n", - "\n", - "After the Physical Parameter Block class has been created, the next step is to write the code necessary to create the State Blocks that will be used through out the flowsheet.\n", - "\n", - "For this example, we will begin by describing the content of the StateBlockData objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. \n", - "\n", - "We start by defining the 5 state variables: flow_mol, pressure, temperature, enth_mol and entr_mol as the Pyomo Var, each of this variable has a unit for unit consistency. This is done in _make_state_vars function. We get the enth_mol and entr_mol variables from trained surrogate which we define in this function as well. To get the output variables from the surrogate:\n", - "\n", - "1. Define the input and output variables to the trained surrogate\n", - "2. Load the surrogate from the folder it is saved in, here it is saved in the folder called alamo_surrogate (look at the alamo_training_usr.ipynb file) using the Alamopy Surrogate API of IDAES package\n", - "3. Define a `SurrogateBlock` and call the build_model method on the block with the input variables, output variables, model formulation and the loaded surrogate as the arguments. \n", - "4. Define the constraints necessary for ensuring physical feasibility of the system like the mass balance and energy balance. Check for the state variables to be within the bounds. \n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"SCO2StateBlock\", block_class=StateBlock)\n", - "class SCO2StateBlockData(StateBlockData):\n", - " \"\"\"\n", - " An example property package for ideal gas properties with Gibbs energy\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction\n", - " \"\"\"\n", - " super(SCO2StateBlockData, self).build()\n", - " self._make_state_vars()\n", - "\n", - " def _make_state_vars(self):\n", - " # Create state variables\n", - "\n", - " self.flow_mol = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=1.0,\n", - " units=units.kmol / units.s,\n", - " doc=\"Total molar flowrate [kmol/s]\",\n", - " )\n", - "\n", - " self.pressure = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=8,\n", - " bounds=(7.38, 40),\n", - " units=units.MPa,\n", - " doc=\"State pressure [MPa]\",\n", - " )\n", - "\n", - " self.temperature = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=350,\n", - " bounds=(304.2, 760 + 273.15),\n", - " units=units.K,\n", - " doc=\"State temperature [K]\",\n", - " )\n", - "\n", - " self.entr_mol = Var(\n", - " domain=Reals,\n", - " initialize=10,\n", - " units=units.kJ / units.kmol / units.K,\n", - " doc=\"Entropy [kJ/ kmol / K]\",\n", - " )\n", - "\n", - " self.enth_mol = Var(\n", - " domain=Reals,\n", - " initialize=1,\n", - " units=units.kJ / units.kmol,\n", - " doc=\"Enthalpy [kJ/ kmol]\",\n", - " )\n", - "\n", - " inputs = [self.pressure, self.temperature]\n", - " outputs = [self.enth_mol, self.entr_mol]\n", - " self.alamo_surrogate = AlamoSurrogate.load_from_file(\"alamo_surrogate.json\")\n", - " self.surrogate_enth = SurrogateBlock()\n", - " self.surrogate_enth.build_model(\n", - " self.alamo_surrogate,\n", - " input_vars=inputs,\n", - " output_vars=outputs,\n", - " )\n", - "\n", - " def get_material_flow_terms(self, p, j):\n", - " return self.flow_mol\n", - "\n", - " def get_enthalpy_flow_terms(self, p):\n", - " return self.flow_mol * self.enth_mol\n", - "\n", - " def default_material_balance_type(self):\n", - " return MaterialBalanceType.componentTotal\n", - "\n", - " def default_energy_balance_type(self):\n", - " return EnergyBalanceType.enthalpyTotal\n", - "\n", - " def define_state_vars(self):\n", - " return {\n", - " \"flow_mol\": self.flow_mol,\n", - " \"temperature\": self.temperature,\n", - " \"pressure\": self.pressure,\n", - " }\n", - "\n", - " def model_check(blk):\n", - " \"\"\"\n", - " Model checks for property block\n", - " \"\"\"\n", - " # Check temperature bounds\n", - " if value(blk.temperature) < blk.temperature.lb:\n", - " _log.error(\"{} Temperature set below lower bound.\".format(blk.name))\n", - " if value(blk.temperature) > blk.temperature.ub:\n", - " _log.error(\"{} Temperature set above upper bound.\".format(blk.name))\n", - "\n", - " # Check pressure bounds\n", - " if value(blk.pressure) < blk.pressure.lb:\n", - " _log.error(\"{} Pressure set below lower bound.\".format(blk.name))\n", - " if value(blk.pressure) > blk.pressure.ub:\n", - " _log.error(\"{} Pressure set above upper bound.\".format(blk.name))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.3 Define Initialization Routine\n", - "\n", - "After defining the variables and constraints required to describe the properties of interest for S-CO2, we need to provide them with a good initial guess. It is often the case that the default values provided to the variables while creating the model are not likely the actual conditions the user would simulate. Given the highly non-linear nature of the physical property calculations, it is more often than not impossible to solve a State Block without providing a set of good initial values for all the variables we have declared.\n", - "\n", - "Any initialization routine can be written by following a 3 step process:\n", - "1. `Fix the state` of the model such that there are no degrees of freedom. For State Blocks, it should only be necessary to fix the state variables to a set of initial guesses provided by the user or unit model, as well as deactivating any constraints like the sum of mole fractions.\n", - "\n", - "2. `Iteratively build up a solution` for the full model. This often involves multiple steps and can involve deactivating constraints and fixing some variables to reduce complexity, as well as analytically calculating values for variables based on the known state (and any previously calculated variables). Solvers can be called as part of any step to efficiently initialize large numbers of variables simultaneously.\n", - "\n", - "3. `Return the state of the model` to where it originally started (with the exception of variable values). Any variable that was fixed or constraint that was deactivated during initialization should be unfixed or reactivated, so that the degrees of freedom are restored to what they were before the initialization began.\n", - "\n", - "\n", - "Thus, we start with fixing the state variables. Here since enth_mol and entr_mol are a function of pressure and temperature, we do not fix them as fixing pressure and temperature would in turn fix them. So, we check if a state variable if fixed or not, if it is fixed then we do not change them, if they are not fixed then we check for an initial guess from the `state_args`, if we get a value then we fix the variable with state_args, else we fix it with the value provided by the user. This should bring the degrees of freedom to 0. Here since we do not have any variable/constrained that we have unfixed/deactivated we can skip step 2 and move to step 3. We unfix the variables that were fixed in step 1 using the `release_state` function. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "class _StateBlock(StateBlock):\n", - " \"\"\"\n", - " This Class contains methods which should be applied to Property Blocks as a\n", - " whole, rather than individual elements of indexed Property Blocks.\n", - " \"\"\"\n", - "\n", - " def initialize(\n", - " blk,\n", - " state_args=None,\n", - " hold_state=False,\n", - " outlvl=1,\n", - " state_vars_fixed=False,\n", - " solver=\"ipopt\",\n", - " optarg={\"tol\": 1e-8},\n", - " ):\n", - " \"\"\"\n", - " Initialisation routine for property package.\n", - "\n", - " Keyword Arguments:\n", - " flow_mol : value at which to initialize component flows\n", - " (default=None)\n", - " pressure : value at which to initialize pressure (default=None)\n", - " temperature : value at which to initialize temperature\n", - " (default=None)\n", - " outlvl : sets output level of initialisation routine\n", - "\n", - " * 0 = no output (default)\n", - " * 1 = return solver state for each step in routine\n", - " * 2 = include solver output information (tee=True)\n", - " state_vars_fixed: Flag to denote if state vars have already been\n", - " fixed.\n", - " - True - states have already been fixed by the\n", - " control volume 1D. Control volume 0D\n", - " does not fix the state vars, so will\n", - " be False if this state block is used\n", - " with 0D blocks.\n", - " - False - states have not been fixed. The state\n", - " block will deal with fixing/unfixing.\n", - " optarg : solver options dictionary object (default=None)\n", - " solver : str indicating which solver to use during\n", - " initialization (default = 'ipopt')\n", - " hold_state : flag indicating whether the initialization routine\n", - " should unfix any state variables fixed during\n", - " initialization (default=False).\n", - " - True - states variables are not unfixed, and\n", - " a dict of returned containing flags for\n", - " which states were fixed during\n", - " initialization.\n", - " - False - state variables are unfixed after\n", - " initialization by calling the\n", - " release_state method\n", - "\n", - " Returns:\n", - " If hold_states is True, returns a dict containing flags for\n", - " which states were fixed during initialization.\n", - " \"\"\"\n", - " if state_vars_fixed is False:\n", - " # Fix state variables if not already fixed\n", - " Fcflag = {}\n", - " Pflag = {}\n", - " Tflag = {}\n", - "\n", - " for k in blk.keys():\n", - " if blk[k].flow_mol.fixed is True:\n", - " Fcflag[k] = True\n", - " else:\n", - " Fcflag[k] = False\n", - " if state_args is None:\n", - " blk[k].flow_mol.fix()\n", - " else:\n", - " blk[k].flow_mol.fix(state_args[\"flow_mol\"])\n", - "\n", - " if blk[k].pressure.fixed is True:\n", - " Pflag[k] = True\n", - " else:\n", - " Pflag[k] = False\n", - " if state_args is None:\n", - " blk[k].pressure.fix()\n", - " else:\n", - " blk[k].pressure.fix(state_args[\"pressure\"])\n", - "\n", - " if blk[k].temperature.fixed is True:\n", - " Tflag[k] = True\n", - " else:\n", - " Tflag[k] = False\n", - " if state_args is None:\n", - " blk[k].temperature.fix()\n", - " else:\n", - " blk[k].temperature.fix(state_args[\"temperature\"])\n", - "\n", - " # If input block, return flags, else release state\n", - " flags = {\"Fcflag\": Fcflag, \"Pflag\": Pflag, \"Tflag\": Tflag}\n", - "\n", - " else:\n", - " # Check when the state vars are fixed already result in dof 0\n", - " for k in blk.keys():\n", - " if degrees_of_freedom(blk[k]) != 0:\n", - " raise Exception(\n", - " \"State vars fixed but degrees of freedom \"\n", - " \"for state block is not zero during \"\n", - " \"initialization.\"\n", - " )\n", - "\n", - " if state_vars_fixed is False:\n", - " if hold_state is True:\n", - " return flags\n", - " else:\n", - " blk.release_state(flags)\n", - "\n", - " def release_state(blk, flags, outlvl=0):\n", - " \"\"\"\n", - " Method to release state variables fixed during initialisation.\n", - "\n", - " Keyword Arguments:\n", - " flags : dict containing information of which state variables\n", - " were fixed during initialization, and should now be\n", - " unfixed. This dict is returned by initialize if\n", - " hold_state=True.\n", - " outlvl : sets output level of of logging\n", - " \"\"\"\n", - " if flags is None:\n", - " return\n", - "\n", - " # Unfix state variables\n", - " for k in blk.keys():\n", - " if flags[\"Fcflag\"][k] is False:\n", - " blk[k].flow_mol.unfix()\n", - " if flags[\"Pflag\"][k] is False:\n", - " blk[k].pressure.unfix()\n", - " if flags[\"Tflag\"][k] is False:\n", - " blk[k].temperature.unfix()\n", - "\n", - " if outlvl > 0:\n", - " if outlvl > 0:\n", - " _log.info(\"{} State Released.\".format(blk.name))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_usr.ipynb). To learn in detail about making a custom property package, one should go through [Property Package Example](../../../properties/custom/custom_physical_property_packages_usr.ipynb). " - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization.ipynb index 44ad9dba..c5327c41 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "fc859e61", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": 1, diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization.py b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization.py index 286827cc..2c25c88d 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization.py +++ b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization.py @@ -1,15 +1,16 @@ -############################################################################### +################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. -############################################################################### +# +################################################################################# """ Maintainer: Javal Vyas diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization_doc.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization_doc.ipynb index fa30ded7..b57af297 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization_doc.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization_doc.ipynb @@ -3,6 +3,32 @@ { "cell_type": "code", "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -37,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -47,7 +73,7 @@ "" ] }, - "execution_count": 2, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -75,16 +101,26 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "WARNING: DEPRECATED: pyomo.core.expr.current is deprecated. Please import\n", - "expression symbols from pyomo.core.expr (deprecated in 6.6.2) (called from\n", - ":241)\n" + "2025-03-17 17:38:32.532072: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2025-03-17 17:38:32.532801: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", + "2025-03-17 17:38:32.535873: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", + "2025-03-17 17:38:32.542717: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", + "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", + "E0000 00:00:1742258312.554978 362716 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1742258312.558363 362716 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "W0000 00:00:1742258312.567611 362716 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "W0000 00:00:1742258312.567624 362716 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "W0000 00:00:1742258312.567625 362716 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "W0000 00:00:1742258312.567626 362716 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "2025-03-17 17:38:32.571151: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" ] } ], @@ -138,36 +174,189 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:34.163864: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:36 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:36 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:36 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:36 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:36 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:36 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:36 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:36 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:36 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:36 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:36 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:36 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:36 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:37 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:37 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:37 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:37 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:37 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:37 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:37 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:37 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:37 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--------------------------------------------------------------------\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "2024-01-24 21:41:57 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n", - "2024-01-24 21:42:01 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:02 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:03 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n", - "2024-01-24 21:42:03 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:03 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n", - "2024-01-24 21:42:03 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:04 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:04 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n", - "2024-01-24 21:42:04 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:05 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:07 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:07 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:07 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n", - "2024-01-24 21:42:08 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:08 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n", - "2024-01-24 21:42:08 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:09 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:09 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n", - "2024-01-24 21:42:09 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", - "--------------------------------------------------------------------\n", "The degrees of freedom for the flowsheet is 0\n", - "--------------------------------------------------------------------\n", + "--------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Ipopt 3.13.2: \n", "\n", "******************************************************************************\n", @@ -206,16 +395,16 @@ "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", " 0 0.0000000e+00 9.10e-01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 7.86e-09 7.53e-01 -1.0 9.10e-01 - 9.89e-01 1.00e+00h 1\n", + " 1 0.0000000e+00 7.45e-09 2.74e-01 -1.0 9.10e-01 - 9.89e-01 1.00e+00h 1\n", "\n", "Number of Iterations....: 1\n", "\n", " (scaled) (unscaled)\n", "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 1.1641532182693481e-10 7.8580342233181000e-09\n", + "Constraint violation....: 1.8833292723041867e-12 7.4505805969238281e-09\n", "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 1.1641532182693481e-10 7.8580342233181000e-09\n", + "Overall NLP error.......: 1.8833292723041867e-12 7.4505805969238281e-09\n", "\n", "\n", "Number of objective function evaluations = 2\n", @@ -225,10 +414,17 @@ "Number of equality constraint Jacobian evaluations = 2\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 1\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.362\n", - "Total CPU secs in NLP function evaluations = 0.008\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.065\n", + "Total CPU secs in NLP function evaluations = 0.001\n", "\n", "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "====================================================================================\n", "Unit : fs.boiler Time: 0.0\n", @@ -238,7 +434,7 @@ " Variables: \n", "\n", " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.3854e+06 : watt : False : (None, None)\n", + " Heat Duty : 1.3471e+06 : watt : False : (None, None)\n", "\n", "------------------------------------------------------------------------------------\n", " Stream Table\n", @@ -257,7 +453,7 @@ "\n", " Key : Value : Units : Fixed : Bounds\n", " Isentropic Efficiency : 0.92700 : dimensionless : True : (None, None)\n", - " Mechanical Work : -1.0221e+06 : watt : False : (None, None)\n", + " Mechanical Work : -9.3116e+05 : watt : False : (None, None)\n", " Pressure Change : -24.979 : pascal : False : (None, None)\n", " Pressure Ratio : 0.27174 : dimensionless : True : (None, None)\n", "\n", @@ -265,7 +461,7 @@ " Stream Table\n", " Units Inlet Outlet \n", " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 893.15 719.28\n", + " temperature kelvin 893.15 723.73\n", " pressure pascal 3.4300e+07 9.3207e+06\n", "====================================================================================\n", "\n", @@ -277,13 +473,13 @@ " Variables: \n", "\n", " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -1.5254e+06 : watt : False : (None, None)\n", + " Heat Duty : -1.5011e+06 : watt : False : (None, None)\n", "\n", "------------------------------------------------------------------------------------\n", " Stream Table\n", " Units Inlet Outlet \n", " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 719.28 489.15\n", + " temperature kelvin 723.73 489.15\n", " pressure pascal 9.3207e+06 9.2507e+06\n", "====================================================================================\n", "\n", @@ -295,13 +491,13 @@ " Variables: \n", "\n", " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.5254e+06 : watt : False : (None, None)\n", + " Heat Duty : 1.5011e+06 : watt : False : (None, None)\n", "\n", "------------------------------------------------------------------------------------\n", " Stream Table\n", " Units Inlet Outlet \n", " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 543.23 750.68\n", + " temperature kelvin 507.38 713.84\n", " pressure pascal 3.4560e+07 3.4490e+07\n", "====================================================================================\n", "\n", @@ -313,7 +509,7 @@ " Variables: \n", "\n", " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -1.0875e+06 : watt : False : (None, None)\n", + " Heat Duty : -1.0563e+06 : watt : False : (None, None)\n", "\n", "------------------------------------------------------------------------------------\n", " Stream Table\n", @@ -331,13 +527,13 @@ " Variables: \n", "\n", " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.0875e+06 : watt : False : (None, None)\n", + " Heat Duty : 1.0563e+06 : watt : False : (None, None)\n", "\n", "------------------------------------------------------------------------------------\n", " Stream Table\n", " Units Inlet Outlet \n", " flow_mol mole / second 86647. 86647.\n", - " temperature kelvin 396.40 579.39\n", + " temperature kelvin 364.57 531.48\n", " pressure pascal 3.4620e+07 3.4620e+07\n", "====================================================================================\n", "\n", @@ -368,7 +564,7 @@ " Variables: \n", "\n", " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -3.1174e+05 : watt : False : (None, None)\n", + " Heat Duty : -3.2521e+05 : watt : False : (None, None)\n", "\n", "------------------------------------------------------------------------------------\n", " Stream Table\n", @@ -385,17 +581,17 @@ "\n", " Variables: \n", "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 2.7059e+05 : watt : False : (None, None)\n", - " Pressure Change : 25.510 : pascal : False : (None, None)\n", - " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", + " Mechanical Work : -12681. : watt : False : (None, None)\n", + " Pressure Change : 25.510 : pascal : False : (None, None)\n", + " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", "\n", "------------------------------------------------------------------------------------\n", " Stream Table\n", " Units Inlet Outlet \n", " flow_mol mole / second 90825. 90825.\n", - " temperature kelvin 308.15 396.40\n", + " temperature kelvin 308.15 364.57\n", " pressure pascal 9.1107e+06 3.4620e+07\n", "====================================================================================\n", "\n", @@ -406,17 +602,17 @@ "\n", " Variables: \n", "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 1.0998e+05 : watt : False : (None, None)\n", - " Pressure Change : 25.706 : pascal : False : (None, None)\n", - " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 80458. : watt : False : (None, None)\n", + " Pressure Change : 25.706 : pascal : False : (None, None)\n", + " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", "\n", "------------------------------------------------------------------------------------\n", " Stream Table\n", " Units Inlet Outlet \n", " flow_mol mole / second 30275. 30275.\n", - " temperature kelvin 354.15 452.96\n", + " temperature kelvin 354.15 445.82\n", " pressure pascal 9.1807e+06 3.4886e+07\n", "====================================================================================\n", "\n", @@ -435,7 +631,7 @@ " Stream Table\n", " Units Inlet to_FG_cooler to_LTR \n", " flow_mol mole / second 90825. 4177.9 86647.\n", - " temperature kelvin 396.40 396.40 396.40\n", + " temperature kelvin 364.57 364.57 364.57\n", " pressure pascal 3.4620e+07 3.4620e+07 3.4620e+07\n", "====================================================================================\n", "\n", @@ -447,13 +643,13 @@ " Variables: \n", "\n", " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 25836. : watt : False : (None, None)\n", + " Heat Duty : 37619. : watt : False : (None, None)\n", "\n", "------------------------------------------------------------------------------------\n", " Stream Table\n", " Units Inlet Outlet \n", " flow_mol mole / second 4177.9 4177.9\n", - " temperature kelvin 396.40 483.15\n", + " temperature kelvin 364.57 483.15\n", " pressure pascal 3.4620e+07 3.4560e+07\n", "====================================================================================\n", "\n", @@ -463,10 +659,10 @@ " Stream Table\n", " Units FG_out LTR_out bypass Outlet \n", " flow_mol mole / second 4177.9 86647. 30275. 1.2110e+05\n", - " temperature kelvin 483.15 579.39 452.96 543.23\n", + " temperature kelvin 483.15 531.48 445.82 507.38\n", " pressure pascal 3.4560e+07 3.4620e+07 3.4886e+07 3.4560e+07\n", "====================================================================================\n", - "641.5293430698576 kW\n" + "863.3861430194434 kW\n" ] } ], @@ -724,7 +920,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization_test.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization_test.ipynb index fa30ded7..3d458b82 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization_test.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization_test.ipynb @@ -1,732 +1,758 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with OMLT Surrogate Object - flowsheet_optimization (Part 3)\n", - "\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "\n", - "With the surrogate model being embedded in the property package, it is ready to be used in the flowsheet. We start by creating the following flowsheet using the IDAES package. " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", - "text/plain": [ - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"CO2_flowsheet.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. Importing libraries\n", - "\n", - "We will be using the unit models from the `IDAES` package along with components from `pyomo.environ` and `pyomo.network`. " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: DEPRECATED: pyomo.core.expr.current is deprecated. Please import\n", - "expression symbols from pyomo.core.expr (deprecated in 6.6.2) (called from\n", - ":241)\n" - ] - } - ], - "source": [ - "from pyomo.environ import (\n", - " ConcreteModel,\n", - " Block,\n", - " Var,\n", - " Param,\n", - " Constraint,\n", - " SolverFactory,\n", - " TransformationFactory,\n", - " TerminationCondition,\n", - " value,\n", - " Expression,\n", - " minimize,\n", - " units,\n", - ")\n", - "from pyomo.network import Arc, SequentialDecomposition\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core import FlowsheetBlock, UnitModelBlockData\n", - "from idaes.models.unit_models import (\n", - " Mixer,\n", - " MomentumMixingType,\n", - " PressureChanger,\n", - " Heater,\n", - " Separator,\n", - " HeatExchanger,\n", - ")\n", - "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state\n", - "from properties import SCO2ParameterBlock\n", - "\n", - "import idaes.logger as idaeslog\n", - "\n", - "_log = idaeslog.getModelLogger(\"my_model\", level=idaeslog.DEBUG, tag=\"model\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Constructing the flowsheet\n", - "\n", - "To construct the flowsheet we need to define a ConcreteModel using pyomo and then add a FlowsheetBlock to the ConcreteModel. Here since we are focusing on the steady state process, we shall have the dynamic flag as False in the FlowsheetBlock. Next, we define the properties in the FlowsheetBlock that we imported from the properties.py file. Then start adding the unit models to the FlowsheetBlock with the suitable arguments, after which we connect them using Arcs as in the flowsheet above. \n", - "\n", - "Once we have the connected flowsheet, we initialize individual unit models. Before initializing, we fix desired variables for the desired behavior of the unit model and then use `propagate_state` to pass on the state variables to next unit model in the flowsheet. After completely initializing the flowsheet, we convert the network to a mathematical form by using `network.expand_arcs` from the TransformationFactory and apply it on the flowsheet block. Then we call the solver and solve the flowsheet to calculate the total work in the process. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with OMLT Surrogate Object - flowsheet_optimization (Part 3)\n", + "\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "\n", + "With the surrogate model being embedded in the property package, it is ready to be used in the flowsheet. We start by creating the following flowsheet using the IDAES package. " + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-01-24 21:41:57 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n", - "2024-01-24 21:42:01 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:02 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:03 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n", - "2024-01-24 21:42:03 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:03 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n", - "2024-01-24 21:42:03 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:04 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:04 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n", - "2024-01-24 21:42:04 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:05 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:07 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:07 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:07 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n", - "2024-01-24 21:42:08 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:08 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n", - "2024-01-24 21:42:08 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:09 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:09 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n", - "2024-01-24 21:42:09 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", - "--------------------------------------------------------------------\n", - "The degrees of freedom for the flowsheet is 0\n", - "--------------------------------------------------------------------\n", - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 51411\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 2674\n", - "\n", - "Total number of variables............................: 5920\n", - " variables with only lower bounds: 32\n", - " variables with lower and upper bounds: 5669\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 5920\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 9.10e-01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 7.86e-09 7.53e-01 -1.0 9.10e-01 - 9.89e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 1\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 1.1641532182693481e-10 7.8580342233181000e-09\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 1.1641532182693481e-10 7.8580342233181000e-09\n", - "\n", - "\n", - "Number of objective function evaluations = 2\n", - "Number of objective gradient evaluations = 2\n", - "Number of equality constraint evaluations = 2\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 2\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 1\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.362\n", - "Total CPU secs in NLP function evaluations = 0.008\n", - "\n", - "EXIT: Optimal Solution Found.\n", - "\n", - "====================================================================================\n", - "Unit : fs.boiler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.3854e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 685.15 893.15\n", - " pressure pascal 3.4510e+07 3.4300e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.turbine Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.92700 : dimensionless : True : (None, None)\n", - " Mechanical Work : -1.0221e+06 : watt : False : (None, None)\n", - " Pressure Change : -24.979 : pascal : False : (None, None)\n", - " Pressure Ratio : 0.27174 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 893.15 719.28\n", - " pressure pascal 3.4300e+07 9.3207e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.HTR_pseudo_shell Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -1.5254e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 719.28 489.15\n", - " pressure pascal 9.3207e+06 9.2507e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.HTR_pseudo_tube Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.5254e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 543.23 750.68\n", - " pressure pascal 3.4560e+07 3.4490e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.LTR_pseudo_shell Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -1.0875e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 489.15 354.15\n", - " pressure pascal 9.2507e+06 9.1807e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.LTR_pseudo_tube Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.0875e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 86647. 86647.\n", - " temperature kelvin 396.40 579.39\n", - " pressure pascal 3.4620e+07 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.splitter_1 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Split Fraction [('bypass',)] : 0.25000 : dimensionless : True : (None, None)\n", - " Split Fraction [('to_cooler',)] : 0.75000 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet bypass to_cooler\n", - " flow_mol mole / second 1.2110e+05 30275. 90825.\n", - " temperature kelvin 354.15 354.15 354.15\n", - " pressure pascal 9.1807e+06 9.1807e+06 9.1807e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.co2_cooler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -3.1174e+05 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 90825. 90825.\n", - " temperature kelvin 354.15 308.15\n", - " pressure pascal 9.1807e+06 9.1107e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.main_compressor Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 2.7059e+05 : watt : False : (None, None)\n", - " Pressure Change : 25.510 : pascal : False : (None, None)\n", - " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 90825. 90825.\n", - " temperature kelvin 308.15 396.40\n", - " pressure pascal 9.1107e+06 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.bypass_compressor Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 1.0998e+05 : watt : False : (None, None)\n", - " Pressure Change : 25.706 : pascal : False : (None, None)\n", - " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 30275. 30275.\n", - " temperature kelvin 354.15 452.96\n", - " pressure pascal 9.1807e+06 3.4886e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.splitter_2 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Split Fraction [('to_FG_cooler',)] : 0.046000 : dimensionless : True : (None, None)\n", - " Split Fraction [('to_LTR',)] : 0.95400 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet to_FG_cooler to_LTR \n", - " flow_mol mole / second 90825. 4177.9 86647.\n", - " temperature kelvin 396.40 396.40 396.40\n", - " pressure pascal 3.4620e+07 3.4620e+07 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.FG_cooler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 25836. : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 4177.9 4177.9\n", - " temperature kelvin 396.40 483.15\n", - " pressure pascal 3.4620e+07 3.4560e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.mixer Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units FG_out LTR_out bypass Outlet \n", - " flow_mol mole / second 4177.9 86647. 30275. 1.2110e+05\n", - " temperature kelvin 483.15 579.39 452.96 543.23\n", - " pressure pascal 3.4560e+07 3.4620e+07 3.4886e+07 3.4560e+07\n", - "====================================================================================\n", - "641.5293430698576 kW\n" - ] + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"CO2_flowsheet.png\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1. Importing libraries\n", + "\n", + "We will be using the unit models from the `IDAES` package along with components from `pyomo.environ` and `pyomo.network`. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: DEPRECATED: pyomo.core.expr.current is deprecated. Please import\n", + "expression symbols from pyomo.core.expr (deprecated in 6.6.2) (called from\n", + ":241)\n" + ] + } + ], + "source": [ + "from pyomo.environ import (\n", + " ConcreteModel,\n", + " Block,\n", + " Var,\n", + " Param,\n", + " Constraint,\n", + " SolverFactory,\n", + " TransformationFactory,\n", + " TerminationCondition,\n", + " value,\n", + " Expression,\n", + " minimize,\n", + " units,\n", + ")\n", + "from pyomo.network import Arc, SequentialDecomposition\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core import FlowsheetBlock, UnitModelBlockData\n", + "from idaes.models.unit_models import (\n", + " Mixer,\n", + " MomentumMixingType,\n", + " PressureChanger,\n", + " Heater,\n", + " Separator,\n", + " HeatExchanger,\n", + ")\n", + "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state\n", + "from properties import SCO2ParameterBlock\n", + "\n", + "import idaes.logger as idaeslog\n", + "\n", + "_log = idaeslog.getModelLogger(\"my_model\", level=idaeslog.DEBUG, tag=\"model\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Constructing the flowsheet\n", + "\n", + "To construct the flowsheet we need to define a ConcreteModel using pyomo and then add a FlowsheetBlock to the ConcreteModel. Here since we are focusing on the steady state process, we shall have the dynamic flag as False in the FlowsheetBlock. Next, we define the properties in the FlowsheetBlock that we imported from the properties.py file. Then start adding the unit models to the FlowsheetBlock with the suitable arguments, after which we connect them using Arcs as in the flowsheet above. \n", + "\n", + "Once we have the connected flowsheet, we initialize individual unit models. Before initializing, we fix desired variables for the desired behavior of the unit model and then use `propagate_state` to pass on the state variables to next unit model in the flowsheet. After completely initializing the flowsheet, we convert the network to a mathematical form by using `network.expand_arcs` from the TransformationFactory and apply it on the flowsheet block. Then we call the solver and solve the flowsheet to calculate the total work in the process. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-01-24 21:41:57 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n", + "2024-01-24 21:42:01 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:02 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:03 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n", + "2024-01-24 21:42:03 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:03 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n", + "2024-01-24 21:42:03 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:04 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:04 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n", + "2024-01-24 21:42:04 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:05 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:07 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:07 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:07 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n", + "2024-01-24 21:42:08 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:08 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n", + "2024-01-24 21:42:08 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:09 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:09 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n", + "2024-01-24 21:42:09 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", + "--------------------------------------------------------------------\n", + "The degrees of freedom for the flowsheet is 0\n", + "--------------------------------------------------------------------\n", + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 51411\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 2674\n", + "\n", + "Total number of variables............................: 5920\n", + " variables with only lower bounds: 32\n", + " variables with lower and upper bounds: 5669\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 5920\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 9.10e-01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 7.86e-09 7.53e-01 -1.0 9.10e-01 - 9.89e-01 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.1641532182693481e-10 7.8580342233181000e-09\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.1641532182693481e-10 7.8580342233181000e-09\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.362\n", + "Total CPU secs in NLP function evaluations = 0.008\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\n", + "====================================================================================\n", + "Unit : fs.boiler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.3854e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 685.15 893.15\n", + " pressure pascal 3.4510e+07 3.4300e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.turbine Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.92700 : dimensionless : True : (None, None)\n", + " Mechanical Work : -1.0221e+06 : watt : False : (None, None)\n", + " Pressure Change : -24.979 : pascal : False : (None, None)\n", + " Pressure Ratio : 0.27174 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 893.15 719.28\n", + " pressure pascal 3.4300e+07 9.3207e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.HTR_pseudo_shell Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -1.5254e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 719.28 489.15\n", + " pressure pascal 9.3207e+06 9.2507e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.HTR_pseudo_tube Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.5254e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 543.23 750.68\n", + " pressure pascal 3.4560e+07 3.4490e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.LTR_pseudo_shell Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -1.0875e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 489.15 354.15\n", + " pressure pascal 9.2507e+06 9.1807e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.LTR_pseudo_tube Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.0875e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 86647. 86647.\n", + " temperature kelvin 396.40 579.39\n", + " pressure pascal 3.4620e+07 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.splitter_1 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Split Fraction [('bypass',)] : 0.25000 : dimensionless : True : (None, None)\n", + " Split Fraction [('to_cooler',)] : 0.75000 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet bypass to_cooler\n", + " flow_mol mole / second 1.2110e+05 30275. 90825.\n", + " temperature kelvin 354.15 354.15 354.15\n", + " pressure pascal 9.1807e+06 9.1807e+06 9.1807e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.co2_cooler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -3.1174e+05 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 90825. 90825.\n", + " temperature kelvin 354.15 308.15\n", + " pressure pascal 9.1807e+06 9.1107e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.main_compressor Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 2.7059e+05 : watt : False : (None, None)\n", + " Pressure Change : 25.510 : pascal : False : (None, None)\n", + " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 90825. 90825.\n", + " temperature kelvin 308.15 396.40\n", + " pressure pascal 9.1107e+06 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.bypass_compressor Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 1.0998e+05 : watt : False : (None, None)\n", + " Pressure Change : 25.706 : pascal : False : (None, None)\n", + " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 30275. 30275.\n", + " temperature kelvin 354.15 452.96\n", + " pressure pascal 9.1807e+06 3.4886e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.splitter_2 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Split Fraction [('to_FG_cooler',)] : 0.046000 : dimensionless : True : (None, None)\n", + " Split Fraction [('to_LTR',)] : 0.95400 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet to_FG_cooler to_LTR \n", + " flow_mol mole / second 90825. 4177.9 86647.\n", + " temperature kelvin 396.40 396.40 396.40\n", + " pressure pascal 3.4620e+07 3.4620e+07 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.FG_cooler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 25836. : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 4177.9 4177.9\n", + " temperature kelvin 396.40 483.15\n", + " pressure pascal 3.4620e+07 3.4560e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.mixer Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units FG_out LTR_out bypass Outlet \n", + " flow_mol mole / second 4177.9 86647. 30275. 1.2110e+05\n", + " temperature kelvin 483.15 579.39 452.96 543.23\n", + " pressure pascal 3.4560e+07 3.4620e+07 3.4886e+07 3.4560e+07\n", + "====================================================================================\n", + "641.5293430698576 kW\n" + ] + } + ], + "source": [ + "def main():\n", + " # Setup solver and options\n", + " solver = SolverFactory(\"ipopt\")\n", + " outlvl = 0\n", + " tee = True\n", + "\n", + " # Set up concrete model\n", + " m = ConcreteModel()\n", + "\n", + " # Create a flowsheet block\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + " # Create the properties param block\n", + " m.fs.properties = SCO2ParameterBlock()\n", + "\n", + " # Add unit models to the flowsheet\n", + " m.fs.boiler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.turbine = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=False,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.HTR_pseudo_shell = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.HTR_pseudo_tube = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.LTR_pseudo_shell = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.LTR_pseudo_tube = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.splitter_1 = Separator(\n", + " property_package=m.fs.properties, outlet_list=[\"bypass\", \"to_cooler\"]\n", + " )\n", + "\n", + " m.fs.co2_cooler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.main_compressor = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.bypass_compressor = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.splitter_2 = Separator(\n", + " property_package=m.fs.properties,\n", + " ideal_separation=False,\n", + " outlet_list=[\"to_FG_cooler\", \"to_LTR\"],\n", + " )\n", + "\n", + " m.fs.FG_cooler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.mixer = Mixer(\n", + " property_package=m.fs.properties, inlet_list=[\"FG_out\", \"LTR_out\", \"bypass\"]\n", + " )\n", + "\n", + " # # Connect the flowsheet\n", + " m.fs.s01 = Arc(source=m.fs.boiler.outlet, destination=m.fs.turbine.inlet)\n", + " m.fs.s02 = Arc(source=m.fs.turbine.outlet, destination=m.fs.HTR_pseudo_shell.inlet)\n", + " m.fs.s03 = Arc(\n", + " source=m.fs.HTR_pseudo_shell.outlet, destination=m.fs.LTR_pseudo_shell.inlet\n", + " )\n", + " m.fs.s04 = Arc(\n", + " source=m.fs.LTR_pseudo_shell.outlet, destination=m.fs.splitter_1.inlet\n", + " )\n", + " m.fs.s05 = Arc(source=m.fs.splitter_1.to_cooler, destination=m.fs.co2_cooler.inlet)\n", + " m.fs.s06 = Arc(\n", + " source=m.fs.splitter_1.bypass, destination=m.fs.bypass_compressor.inlet\n", + " )\n", + " m.fs.s07 = Arc(\n", + " source=m.fs.co2_cooler.outlet, destination=m.fs.main_compressor.inlet\n", + " )\n", + " m.fs.s08 = Arc(source=m.fs.bypass_compressor.outlet, destination=m.fs.mixer.bypass)\n", + " m.fs.s09 = Arc(\n", + " source=m.fs.main_compressor.outlet, destination=m.fs.splitter_2.inlet\n", + " )\n", + " m.fs.s10 = Arc(\n", + " source=m.fs.splitter_2.to_FG_cooler, destination=m.fs.FG_cooler.inlet\n", + " )\n", + " m.fs.s11 = Arc(\n", + " source=m.fs.splitter_2.to_LTR, destination=m.fs.LTR_pseudo_tube.inlet\n", + " )\n", + " m.fs.s12 = Arc(source=m.fs.LTR_pseudo_tube.outlet, destination=m.fs.mixer.LTR_out)\n", + " m.fs.s13 = Arc(source=m.fs.FG_cooler.outlet, destination=m.fs.mixer.FG_out)\n", + " m.fs.s14 = Arc(source=m.fs.mixer.outlet, destination=m.fs.HTR_pseudo_tube.inlet)\n", + "\n", + " # initialize twice if needed\n", + " def init_once_or_twice(blk, outlvl=0):\n", + " try:\n", + " blk.initialize(outlvl=outlvl)\n", + " except:\n", + " blk.initialize(outlvl=outlvl)\n", + "\n", + " # NETL Baseline\n", + " m.fs.boiler.inlet.flow_mol.fix(121.1)\n", + " m.fs.boiler.inlet.temperature.fix(685.15)\n", + " m.fs.boiler.inlet.pressure.fix(34.51)\n", + "\n", + " m.fs.boiler.outlet.temperature.fix(893.15) # Turbine inlet T = 620 C\n", + " m.fs.boiler.deltaP.fix(-0.21)\n", + "\n", + " init_once_or_twice(m.fs.boiler)\n", + "\n", + " propagate_state(m.fs.s01)\n", + "\n", + " m.fs.turbine.ratioP.fix(1 / 3.68)\n", + " m.fs.turbine.efficiency_isentropic.fix(0.927)\n", + " m.fs.turbine.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s02)\n", + " m.fs.HTR_pseudo_shell.outlet.temperature.fix(489.15)\n", + " m.fs.HTR_pseudo_shell.deltaP.fix(-0.07)\n", + "\n", + " init_once_or_twice(m.fs.HTR_pseudo_shell)\n", + "\n", + " propagate_state(m.fs.s03)\n", + "\n", + " m.fs.LTR_pseudo_shell.outlet.temperature.fix(354.15)\n", + " m.fs.LTR_pseudo_shell.deltaP.fix(-0.07)\n", + " m.fs.LTR_pseudo_shell.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s04)\n", + " m.fs.splitter_1.split_fraction[0, \"bypass\"].fix(0.25)\n", + "\n", + " m.fs.splitter_1.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s05)\n", + " m.fs.co2_cooler.outlet.temperature.fix(308.15)\n", + " m.fs.co2_cooler.deltaP.fix(-0.07)\n", + " m.fs.co2_cooler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s06)\n", + " m.fs.bypass_compressor.efficiency_isentropic.fix(0.85)\n", + " m.fs.bypass_compressor.ratioP.fix(3.8)\n", + " m.fs.bypass_compressor.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s07)\n", + " m.fs.main_compressor.efficiency_isentropic.fix(0.85)\n", + " m.fs.main_compressor.ratioP.fix(3.8)\n", + " m.fs.main_compressor.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s09)\n", + "\n", + " m.fs.splitter_2.split_fraction[0, \"to_FG_cooler\"].fix(0.046)\n", + " m.fs.splitter_2.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s10)\n", + " m.fs.FG_cooler.outlet.temperature.fix(483.15)\n", + " m.fs.FG_cooler.deltaP.fix(-0.06)\n", + " m.fs.FG_cooler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s11)\n", + "\n", + " m.fs.LTR_pseudo_tube.deltaP.fix(0)\n", + " m.fs.LTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.LTR_pseudo_shell.heat_duty[0]))\n", + " m.fs.LTR_pseudo_tube.initialize(outlvl=outlvl)\n", + "\n", + " # Add constraint heats of the LTR_pseudo shell and tube\n", + " m.fs.LTR_pseudo_tube.heat_duty[0].unfix()\n", + " m.fs.c1 = Constraint(\n", + " expr=m.fs.LTR_pseudo_shell.heat_duty[0] == -m.fs.LTR_pseudo_tube.heat_duty[0]\n", + " )\n", + "\n", + " propagate_state(m.fs.s08)\n", + " propagate_state(m.fs.s12)\n", + " propagate_state(m.fs.s13)\n", + "\n", + " m.fs.mixer.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s14)\n", + "\n", + " m.fs.HTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.HTR_pseudo_shell.heat_duty[0]))\n", + " m.fs.HTR_pseudo_tube.deltaP.fix(-0.07)\n", + " m.fs.HTR_pseudo_tube.initialize(outlvl=outlvl)\n", + "\n", + " m.fs.HTR_pseudo_tube.heat_duty[0].unfix()\n", + " m.fs.c2 = Constraint(\n", + " expr=m.fs.HTR_pseudo_shell.heat_duty[0] == -m.fs.HTR_pseudo_tube.heat_duty[0]\n", + " )\n", + "\n", + " TransformationFactory(\"network.expand_arcs\").apply_to(m.fs)\n", + "\n", + " print(\"--------------------------------------------------------------------\")\n", + " print(\"The degrees of freedom for the flowsheet is \", degrees_of_freedom(m))\n", + " print(\"--------------------------------------------------------------------\")\n", + "\n", + " solver.solve(m, tee=tee)\n", + "\n", + " #\n", + " from idaes.core.util.units_of_measurement import (\n", + " convert_quantity_to_reporting_units,\n", + " report_quantity,\n", + " )\n", + "\n", + " # Print reports\n", + " for i in m.fs.component_objects(Block):\n", + " if isinstance(i, UnitModelBlockData):\n", + " i.report()\n", + "\n", + " # Converting units for readability\n", + " print(\n", + " -1 * value(units.convert(m.fs.turbine.work_mechanical[0], units.kW))\n", + " - 1 * value(units.convert(m.fs.main_compressor.work_mechanical[0], units.kW))\n", + " - 1 * value(units.convert(m.fs.bypass_compressor.work_mechanical[0], units.kW)),\n", + " units.kW,\n", + " )\n", + " return m\n", + "\n", + "\n", + "if __name__ == \"__main__\":\n", + " m = main()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" } - ], - "source": [ - "def main():\n", - " # Setup solver and options\n", - " solver = SolverFactory(\"ipopt\")\n", - " outlvl = 0\n", - " tee = True\n", - "\n", - " # Set up concrete model\n", - " m = ConcreteModel()\n", - "\n", - " # Create a flowsheet block\n", - " m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - " # Create the properties param block\n", - " m.fs.properties = SCO2ParameterBlock()\n", - "\n", - " # Add unit models to the flowsheet\n", - " m.fs.boiler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.turbine = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=False,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.HTR_pseudo_shell = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.HTR_pseudo_tube = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.LTR_pseudo_shell = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.LTR_pseudo_tube = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.splitter_1 = Separator(\n", - " property_package=m.fs.properties, outlet_list=[\"bypass\", \"to_cooler\"]\n", - " )\n", - "\n", - " m.fs.co2_cooler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.main_compressor = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.bypass_compressor = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.splitter_2 = Separator(\n", - " property_package=m.fs.properties,\n", - " ideal_separation=False,\n", - " outlet_list=[\"to_FG_cooler\", \"to_LTR\"],\n", - " )\n", - "\n", - " m.fs.FG_cooler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.mixer = Mixer(\n", - " property_package=m.fs.properties, inlet_list=[\"FG_out\", \"LTR_out\", \"bypass\"]\n", - " )\n", - "\n", - " # # Connect the flowsheet\n", - " m.fs.s01 = Arc(source=m.fs.boiler.outlet, destination=m.fs.turbine.inlet)\n", - " m.fs.s02 = Arc(source=m.fs.turbine.outlet, destination=m.fs.HTR_pseudo_shell.inlet)\n", - " m.fs.s03 = Arc(\n", - " source=m.fs.HTR_pseudo_shell.outlet, destination=m.fs.LTR_pseudo_shell.inlet\n", - " )\n", - " m.fs.s04 = Arc(\n", - " source=m.fs.LTR_pseudo_shell.outlet, destination=m.fs.splitter_1.inlet\n", - " )\n", - " m.fs.s05 = Arc(source=m.fs.splitter_1.to_cooler, destination=m.fs.co2_cooler.inlet)\n", - " m.fs.s06 = Arc(\n", - " source=m.fs.splitter_1.bypass, destination=m.fs.bypass_compressor.inlet\n", - " )\n", - " m.fs.s07 = Arc(\n", - " source=m.fs.co2_cooler.outlet, destination=m.fs.main_compressor.inlet\n", - " )\n", - " m.fs.s08 = Arc(source=m.fs.bypass_compressor.outlet, destination=m.fs.mixer.bypass)\n", - " m.fs.s09 = Arc(\n", - " source=m.fs.main_compressor.outlet, destination=m.fs.splitter_2.inlet\n", - " )\n", - " m.fs.s10 = Arc(\n", - " source=m.fs.splitter_2.to_FG_cooler, destination=m.fs.FG_cooler.inlet\n", - " )\n", - " m.fs.s11 = Arc(\n", - " source=m.fs.splitter_2.to_LTR, destination=m.fs.LTR_pseudo_tube.inlet\n", - " )\n", - " m.fs.s12 = Arc(source=m.fs.LTR_pseudo_tube.outlet, destination=m.fs.mixer.LTR_out)\n", - " m.fs.s13 = Arc(source=m.fs.FG_cooler.outlet, destination=m.fs.mixer.FG_out)\n", - " m.fs.s14 = Arc(source=m.fs.mixer.outlet, destination=m.fs.HTR_pseudo_tube.inlet)\n", - "\n", - " # initialize twice if needed\n", - " def init_once_or_twice(blk, outlvl=0):\n", - " try:\n", - " blk.initialize(outlvl=outlvl)\n", - " except:\n", - " blk.initialize(outlvl=outlvl)\n", - "\n", - " # NETL Baseline\n", - " m.fs.boiler.inlet.flow_mol.fix(121.1)\n", - " m.fs.boiler.inlet.temperature.fix(685.15)\n", - " m.fs.boiler.inlet.pressure.fix(34.51)\n", - "\n", - " m.fs.boiler.outlet.temperature.fix(893.15) # Turbine inlet T = 620 C\n", - " m.fs.boiler.deltaP.fix(-0.21)\n", - "\n", - " init_once_or_twice(m.fs.boiler)\n", - "\n", - " propagate_state(m.fs.s01)\n", - "\n", - " m.fs.turbine.ratioP.fix(1 / 3.68)\n", - " m.fs.turbine.efficiency_isentropic.fix(0.927)\n", - " m.fs.turbine.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s02)\n", - " m.fs.HTR_pseudo_shell.outlet.temperature.fix(489.15)\n", - " m.fs.HTR_pseudo_shell.deltaP.fix(-0.07)\n", - "\n", - " init_once_or_twice(m.fs.HTR_pseudo_shell)\n", - "\n", - " propagate_state(m.fs.s03)\n", - "\n", - " m.fs.LTR_pseudo_shell.outlet.temperature.fix(354.15)\n", - " m.fs.LTR_pseudo_shell.deltaP.fix(-0.07)\n", - " m.fs.LTR_pseudo_shell.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s04)\n", - " m.fs.splitter_1.split_fraction[0, \"bypass\"].fix(0.25)\n", - "\n", - " m.fs.splitter_1.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s05)\n", - " m.fs.co2_cooler.outlet.temperature.fix(308.15)\n", - " m.fs.co2_cooler.deltaP.fix(-0.07)\n", - " m.fs.co2_cooler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s06)\n", - " m.fs.bypass_compressor.efficiency_isentropic.fix(0.85)\n", - " m.fs.bypass_compressor.ratioP.fix(3.8)\n", - " m.fs.bypass_compressor.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s07)\n", - " m.fs.main_compressor.efficiency_isentropic.fix(0.85)\n", - " m.fs.main_compressor.ratioP.fix(3.8)\n", - " m.fs.main_compressor.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s09)\n", - "\n", - " m.fs.splitter_2.split_fraction[0, \"to_FG_cooler\"].fix(0.046)\n", - " m.fs.splitter_2.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s10)\n", - " m.fs.FG_cooler.outlet.temperature.fix(483.15)\n", - " m.fs.FG_cooler.deltaP.fix(-0.06)\n", - " m.fs.FG_cooler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s11)\n", - "\n", - " m.fs.LTR_pseudo_tube.deltaP.fix(0)\n", - " m.fs.LTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.LTR_pseudo_shell.heat_duty[0]))\n", - " m.fs.LTR_pseudo_tube.initialize(outlvl=outlvl)\n", - "\n", - " # Add constraint heats of the LTR_pseudo shell and tube\n", - " m.fs.LTR_pseudo_tube.heat_duty[0].unfix()\n", - " m.fs.c1 = Constraint(\n", - " expr=m.fs.LTR_pseudo_shell.heat_duty[0] == -m.fs.LTR_pseudo_tube.heat_duty[0]\n", - " )\n", - "\n", - " propagate_state(m.fs.s08)\n", - " propagate_state(m.fs.s12)\n", - " propagate_state(m.fs.s13)\n", - "\n", - " m.fs.mixer.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s14)\n", - "\n", - " m.fs.HTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.HTR_pseudo_shell.heat_duty[0]))\n", - " m.fs.HTR_pseudo_tube.deltaP.fix(-0.07)\n", - " m.fs.HTR_pseudo_tube.initialize(outlvl=outlvl)\n", - "\n", - " m.fs.HTR_pseudo_tube.heat_duty[0].unfix()\n", - " m.fs.c2 = Constraint(\n", - " expr=m.fs.HTR_pseudo_shell.heat_duty[0] == -m.fs.HTR_pseudo_tube.heat_duty[0]\n", - " )\n", - "\n", - " TransformationFactory(\"network.expand_arcs\").apply_to(m.fs)\n", - "\n", - " print(\"--------------------------------------------------------------------\")\n", - " print(\"The degrees of freedom for the flowsheet is \", degrees_of_freedom(m))\n", - " print(\"--------------------------------------------------------------------\")\n", - "\n", - " solver.solve(m, tee=tee)\n", - "\n", - " #\n", - " from idaes.core.util.units_of_measurement import (\n", - " convert_quantity_to_reporting_units,\n", - " report_quantity,\n", - " )\n", - "\n", - " # Print reports\n", - " for i in m.fs.component_objects(Block):\n", - " if isinstance(i, UnitModelBlockData):\n", - " i.report()\n", - "\n", - " # Converting units for readability\n", - " print(\n", - " -1 * value(units.convert(m.fs.turbine.work_mechanical[0], units.kW))\n", - " - 1 * value(units.convert(m.fs.main_compressor.work_mechanical[0], units.kW))\n", - " - 1 * value(units.convert(m.fs.bypass_compressor.work_mechanical[0], units.kW)),\n", - " units.kW,\n", - " )\n", - " return m\n", - "\n", - "\n", - "if __name__ == \"__main__\":\n", - " m = main()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization_usr.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization_usr.ipynb index fa30ded7..3d458b82 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization_usr.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/flowsheet_optimization_usr.ipynb @@ -1,732 +1,758 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with OMLT Surrogate Object - flowsheet_optimization (Part 3)\n", - "\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "\n", - "With the surrogate model being embedded in the property package, it is ready to be used in the flowsheet. We start by creating the following flowsheet using the IDAES package. " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", - "text/plain": [ - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"CO2_flowsheet.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. Importing libraries\n", - "\n", - "We will be using the unit models from the `IDAES` package along with components from `pyomo.environ` and `pyomo.network`. " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: DEPRECATED: pyomo.core.expr.current is deprecated. Please import\n", - "expression symbols from pyomo.core.expr (deprecated in 6.6.2) (called from\n", - ":241)\n" - ] - } - ], - "source": [ - "from pyomo.environ import (\n", - " ConcreteModel,\n", - " Block,\n", - " Var,\n", - " Param,\n", - " Constraint,\n", - " SolverFactory,\n", - " TransformationFactory,\n", - " TerminationCondition,\n", - " value,\n", - " Expression,\n", - " minimize,\n", - " units,\n", - ")\n", - "from pyomo.network import Arc, SequentialDecomposition\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core import FlowsheetBlock, UnitModelBlockData\n", - "from idaes.models.unit_models import (\n", - " Mixer,\n", - " MomentumMixingType,\n", - " PressureChanger,\n", - " Heater,\n", - " Separator,\n", - " HeatExchanger,\n", - ")\n", - "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state\n", - "from properties import SCO2ParameterBlock\n", - "\n", - "import idaes.logger as idaeslog\n", - "\n", - "_log = idaeslog.getModelLogger(\"my_model\", level=idaeslog.DEBUG, tag=\"model\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Constructing the flowsheet\n", - "\n", - "To construct the flowsheet we need to define a ConcreteModel using pyomo and then add a FlowsheetBlock to the ConcreteModel. Here since we are focusing on the steady state process, we shall have the dynamic flag as False in the FlowsheetBlock. Next, we define the properties in the FlowsheetBlock that we imported from the properties.py file. Then start adding the unit models to the FlowsheetBlock with the suitable arguments, after which we connect them using Arcs as in the flowsheet above. \n", - "\n", - "Once we have the connected flowsheet, we initialize individual unit models. Before initializing, we fix desired variables for the desired behavior of the unit model and then use `propagate_state` to pass on the state variables to next unit model in the flowsheet. After completely initializing the flowsheet, we convert the network to a mathematical form by using `network.expand_arcs` from the TransformationFactory and apply it on the flowsheet block. Then we call the solver and solve the flowsheet to calculate the total work in the process. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with OMLT Surrogate Object - flowsheet_optimization (Part 3)\n", + "\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "\n", + "With the surrogate model being embedded in the property package, it is ready to be used in the flowsheet. We start by creating the following flowsheet using the IDAES package. " + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-01-24 21:41:57 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n", - "2024-01-24 21:42:01 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:02 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:03 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n", - "2024-01-24 21:42:03 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:03 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n", - "2024-01-24 21:42:03 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:04 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:04 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n", - "2024-01-24 21:42:04 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:05 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:07 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:07 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:07 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n", - "2024-01-24 21:42:08 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:08 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n", - "2024-01-24 21:42:08 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:09 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-01-24 21:42:09 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n", - "2024-01-24 21:42:09 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", - "--------------------------------------------------------------------\n", - "The degrees of freedom for the flowsheet is 0\n", - "--------------------------------------------------------------------\n", - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 51411\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 2674\n", - "\n", - "Total number of variables............................: 5920\n", - " variables with only lower bounds: 32\n", - " variables with lower and upper bounds: 5669\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 5920\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 9.10e-01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 7.86e-09 7.53e-01 -1.0 9.10e-01 - 9.89e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 1\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 1.1641532182693481e-10 7.8580342233181000e-09\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 1.1641532182693481e-10 7.8580342233181000e-09\n", - "\n", - "\n", - "Number of objective function evaluations = 2\n", - "Number of objective gradient evaluations = 2\n", - "Number of equality constraint evaluations = 2\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 2\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 1\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.362\n", - "Total CPU secs in NLP function evaluations = 0.008\n", - "\n", - "EXIT: Optimal Solution Found.\n", - "\n", - "====================================================================================\n", - "Unit : fs.boiler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.3854e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 685.15 893.15\n", - " pressure pascal 3.4510e+07 3.4300e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.turbine Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.92700 : dimensionless : True : (None, None)\n", - " Mechanical Work : -1.0221e+06 : watt : False : (None, None)\n", - " Pressure Change : -24.979 : pascal : False : (None, None)\n", - " Pressure Ratio : 0.27174 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 893.15 719.28\n", - " pressure pascal 3.4300e+07 9.3207e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.HTR_pseudo_shell Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -1.5254e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 719.28 489.15\n", - " pressure pascal 9.3207e+06 9.2507e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.HTR_pseudo_tube Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.5254e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 543.23 750.68\n", - " pressure pascal 3.4560e+07 3.4490e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.LTR_pseudo_shell Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -1.0875e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 489.15 354.15\n", - " pressure pascal 9.2507e+06 9.1807e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.LTR_pseudo_tube Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.0875e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 86647. 86647.\n", - " temperature kelvin 396.40 579.39\n", - " pressure pascal 3.4620e+07 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.splitter_1 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Split Fraction [('bypass',)] : 0.25000 : dimensionless : True : (None, None)\n", - " Split Fraction [('to_cooler',)] : 0.75000 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet bypass to_cooler\n", - " flow_mol mole / second 1.2110e+05 30275. 90825.\n", - " temperature kelvin 354.15 354.15 354.15\n", - " pressure pascal 9.1807e+06 9.1807e+06 9.1807e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.co2_cooler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -3.1174e+05 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 90825. 90825.\n", - " temperature kelvin 354.15 308.15\n", - " pressure pascal 9.1807e+06 9.1107e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.main_compressor Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 2.7059e+05 : watt : False : (None, None)\n", - " Pressure Change : 25.510 : pascal : False : (None, None)\n", - " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 90825. 90825.\n", - " temperature kelvin 308.15 396.40\n", - " pressure pascal 9.1107e+06 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.bypass_compressor Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 1.0998e+05 : watt : False : (None, None)\n", - " Pressure Change : 25.706 : pascal : False : (None, None)\n", - " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 30275. 30275.\n", - " temperature kelvin 354.15 452.96\n", - " pressure pascal 9.1807e+06 3.4886e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.splitter_2 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Split Fraction [('to_FG_cooler',)] : 0.046000 : dimensionless : True : (None, None)\n", - " Split Fraction [('to_LTR',)] : 0.95400 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet to_FG_cooler to_LTR \n", - " flow_mol mole / second 90825. 4177.9 86647.\n", - " temperature kelvin 396.40 396.40 396.40\n", - " pressure pascal 3.4620e+07 3.4620e+07 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.FG_cooler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 25836. : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 4177.9 4177.9\n", - " temperature kelvin 396.40 483.15\n", - " pressure pascal 3.4620e+07 3.4560e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.mixer Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units FG_out LTR_out bypass Outlet \n", - " flow_mol mole / second 4177.9 86647. 30275. 1.2110e+05\n", - " temperature kelvin 483.15 579.39 452.96 543.23\n", - " pressure pascal 3.4560e+07 3.4620e+07 3.4886e+07 3.4560e+07\n", - "====================================================================================\n", - "641.5293430698576 kW\n" - ] + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"CO2_flowsheet.png\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1. Importing libraries\n", + "\n", + "We will be using the unit models from the `IDAES` package along with components from `pyomo.environ` and `pyomo.network`. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: DEPRECATED: pyomo.core.expr.current is deprecated. Please import\n", + "expression symbols from pyomo.core.expr (deprecated in 6.6.2) (called from\n", + ":241)\n" + ] + } + ], + "source": [ + "from pyomo.environ import (\n", + " ConcreteModel,\n", + " Block,\n", + " Var,\n", + " Param,\n", + " Constraint,\n", + " SolverFactory,\n", + " TransformationFactory,\n", + " TerminationCondition,\n", + " value,\n", + " Expression,\n", + " minimize,\n", + " units,\n", + ")\n", + "from pyomo.network import Arc, SequentialDecomposition\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core import FlowsheetBlock, UnitModelBlockData\n", + "from idaes.models.unit_models import (\n", + " Mixer,\n", + " MomentumMixingType,\n", + " PressureChanger,\n", + " Heater,\n", + " Separator,\n", + " HeatExchanger,\n", + ")\n", + "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state\n", + "from properties import SCO2ParameterBlock\n", + "\n", + "import idaes.logger as idaeslog\n", + "\n", + "_log = idaeslog.getModelLogger(\"my_model\", level=idaeslog.DEBUG, tag=\"model\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Constructing the flowsheet\n", + "\n", + "To construct the flowsheet we need to define a ConcreteModel using pyomo and then add a FlowsheetBlock to the ConcreteModel. Here since we are focusing on the steady state process, we shall have the dynamic flag as False in the FlowsheetBlock. Next, we define the properties in the FlowsheetBlock that we imported from the properties.py file. Then start adding the unit models to the FlowsheetBlock with the suitable arguments, after which we connect them using Arcs as in the flowsheet above. \n", + "\n", + "Once we have the connected flowsheet, we initialize individual unit models. Before initializing, we fix desired variables for the desired behavior of the unit model and then use `propagate_state` to pass on the state variables to next unit model in the flowsheet. After completely initializing the flowsheet, we convert the network to a mathematical form by using `network.expand_arcs` from the TransformationFactory and apply it on the flowsheet block. Then we call the solver and solve the flowsheet to calculate the total work in the process. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-01-24 21:41:57 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n", + "2024-01-24 21:42:01 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:02 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:03 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n", + "2024-01-24 21:42:03 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:03 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n", + "2024-01-24 21:42:03 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:04 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:04 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n", + "2024-01-24 21:42:04 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:05 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:07 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:07 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:07 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n", + "2024-01-24 21:42:08 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:08 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n", + "2024-01-24 21:42:08 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:09 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-01-24 21:42:09 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n", + "2024-01-24 21:42:09 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", + "--------------------------------------------------------------------\n", + "The degrees of freedom for the flowsheet is 0\n", + "--------------------------------------------------------------------\n", + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 51411\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 2674\n", + "\n", + "Total number of variables............................: 5920\n", + " variables with only lower bounds: 32\n", + " variables with lower and upper bounds: 5669\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 5920\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 9.10e-01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 7.86e-09 7.53e-01 -1.0 9.10e-01 - 9.89e-01 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.1641532182693481e-10 7.8580342233181000e-09\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.1641532182693481e-10 7.8580342233181000e-09\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.362\n", + "Total CPU secs in NLP function evaluations = 0.008\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\n", + "====================================================================================\n", + "Unit : fs.boiler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.3854e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 685.15 893.15\n", + " pressure pascal 3.4510e+07 3.4300e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.turbine Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.92700 : dimensionless : True : (None, None)\n", + " Mechanical Work : -1.0221e+06 : watt : False : (None, None)\n", + " Pressure Change : -24.979 : pascal : False : (None, None)\n", + " Pressure Ratio : 0.27174 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 893.15 719.28\n", + " pressure pascal 3.4300e+07 9.3207e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.HTR_pseudo_shell Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -1.5254e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 719.28 489.15\n", + " pressure pascal 9.3207e+06 9.2507e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.HTR_pseudo_tube Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.5254e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 543.23 750.68\n", + " pressure pascal 3.4560e+07 3.4490e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.LTR_pseudo_shell Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -1.0875e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 489.15 354.15\n", + " pressure pascal 9.2507e+06 9.1807e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.LTR_pseudo_tube Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.0875e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 86647. 86647.\n", + " temperature kelvin 396.40 579.39\n", + " pressure pascal 3.4620e+07 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.splitter_1 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Split Fraction [('bypass',)] : 0.25000 : dimensionless : True : (None, None)\n", + " Split Fraction [('to_cooler',)] : 0.75000 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet bypass to_cooler\n", + " flow_mol mole / second 1.2110e+05 30275. 90825.\n", + " temperature kelvin 354.15 354.15 354.15\n", + " pressure pascal 9.1807e+06 9.1807e+06 9.1807e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.co2_cooler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -3.1174e+05 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 90825. 90825.\n", + " temperature kelvin 354.15 308.15\n", + " pressure pascal 9.1807e+06 9.1107e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.main_compressor Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 2.7059e+05 : watt : False : (None, None)\n", + " Pressure Change : 25.510 : pascal : False : (None, None)\n", + " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 90825. 90825.\n", + " temperature kelvin 308.15 396.40\n", + " pressure pascal 9.1107e+06 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.bypass_compressor Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 1.0998e+05 : watt : False : (None, None)\n", + " Pressure Change : 25.706 : pascal : False : (None, None)\n", + " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 30275. 30275.\n", + " temperature kelvin 354.15 452.96\n", + " pressure pascal 9.1807e+06 3.4886e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.splitter_2 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Split Fraction [('to_FG_cooler',)] : 0.046000 : dimensionless : True : (None, None)\n", + " Split Fraction [('to_LTR',)] : 0.95400 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet to_FG_cooler to_LTR \n", + " flow_mol mole / second 90825. 4177.9 86647.\n", + " temperature kelvin 396.40 396.40 396.40\n", + " pressure pascal 3.4620e+07 3.4620e+07 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.FG_cooler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 25836. : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 4177.9 4177.9\n", + " temperature kelvin 396.40 483.15\n", + " pressure pascal 3.4620e+07 3.4560e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.mixer Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units FG_out LTR_out bypass Outlet \n", + " flow_mol mole / second 4177.9 86647. 30275. 1.2110e+05\n", + " temperature kelvin 483.15 579.39 452.96 543.23\n", + " pressure pascal 3.4560e+07 3.4620e+07 3.4886e+07 3.4560e+07\n", + "====================================================================================\n", + "641.5293430698576 kW\n" + ] + } + ], + "source": [ + "def main():\n", + " # Setup solver and options\n", + " solver = SolverFactory(\"ipopt\")\n", + " outlvl = 0\n", + " tee = True\n", + "\n", + " # Set up concrete model\n", + " m = ConcreteModel()\n", + "\n", + " # Create a flowsheet block\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + " # Create the properties param block\n", + " m.fs.properties = SCO2ParameterBlock()\n", + "\n", + " # Add unit models to the flowsheet\n", + " m.fs.boiler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.turbine = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=False,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.HTR_pseudo_shell = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.HTR_pseudo_tube = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.LTR_pseudo_shell = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.LTR_pseudo_tube = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.splitter_1 = Separator(\n", + " property_package=m.fs.properties, outlet_list=[\"bypass\", \"to_cooler\"]\n", + " )\n", + "\n", + " m.fs.co2_cooler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.main_compressor = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.bypass_compressor = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.splitter_2 = Separator(\n", + " property_package=m.fs.properties,\n", + " ideal_separation=False,\n", + " outlet_list=[\"to_FG_cooler\", \"to_LTR\"],\n", + " )\n", + "\n", + " m.fs.FG_cooler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.mixer = Mixer(\n", + " property_package=m.fs.properties, inlet_list=[\"FG_out\", \"LTR_out\", \"bypass\"]\n", + " )\n", + "\n", + " # # Connect the flowsheet\n", + " m.fs.s01 = Arc(source=m.fs.boiler.outlet, destination=m.fs.turbine.inlet)\n", + " m.fs.s02 = Arc(source=m.fs.turbine.outlet, destination=m.fs.HTR_pseudo_shell.inlet)\n", + " m.fs.s03 = Arc(\n", + " source=m.fs.HTR_pseudo_shell.outlet, destination=m.fs.LTR_pseudo_shell.inlet\n", + " )\n", + " m.fs.s04 = Arc(\n", + " source=m.fs.LTR_pseudo_shell.outlet, destination=m.fs.splitter_1.inlet\n", + " )\n", + " m.fs.s05 = Arc(source=m.fs.splitter_1.to_cooler, destination=m.fs.co2_cooler.inlet)\n", + " m.fs.s06 = Arc(\n", + " source=m.fs.splitter_1.bypass, destination=m.fs.bypass_compressor.inlet\n", + " )\n", + " m.fs.s07 = Arc(\n", + " source=m.fs.co2_cooler.outlet, destination=m.fs.main_compressor.inlet\n", + " )\n", + " m.fs.s08 = Arc(source=m.fs.bypass_compressor.outlet, destination=m.fs.mixer.bypass)\n", + " m.fs.s09 = Arc(\n", + " source=m.fs.main_compressor.outlet, destination=m.fs.splitter_2.inlet\n", + " )\n", + " m.fs.s10 = Arc(\n", + " source=m.fs.splitter_2.to_FG_cooler, destination=m.fs.FG_cooler.inlet\n", + " )\n", + " m.fs.s11 = Arc(\n", + " source=m.fs.splitter_2.to_LTR, destination=m.fs.LTR_pseudo_tube.inlet\n", + " )\n", + " m.fs.s12 = Arc(source=m.fs.LTR_pseudo_tube.outlet, destination=m.fs.mixer.LTR_out)\n", + " m.fs.s13 = Arc(source=m.fs.FG_cooler.outlet, destination=m.fs.mixer.FG_out)\n", + " m.fs.s14 = Arc(source=m.fs.mixer.outlet, destination=m.fs.HTR_pseudo_tube.inlet)\n", + "\n", + " # initialize twice if needed\n", + " def init_once_or_twice(blk, outlvl=0):\n", + " try:\n", + " blk.initialize(outlvl=outlvl)\n", + " except:\n", + " blk.initialize(outlvl=outlvl)\n", + "\n", + " # NETL Baseline\n", + " m.fs.boiler.inlet.flow_mol.fix(121.1)\n", + " m.fs.boiler.inlet.temperature.fix(685.15)\n", + " m.fs.boiler.inlet.pressure.fix(34.51)\n", + "\n", + " m.fs.boiler.outlet.temperature.fix(893.15) # Turbine inlet T = 620 C\n", + " m.fs.boiler.deltaP.fix(-0.21)\n", + "\n", + " init_once_or_twice(m.fs.boiler)\n", + "\n", + " propagate_state(m.fs.s01)\n", + "\n", + " m.fs.turbine.ratioP.fix(1 / 3.68)\n", + " m.fs.turbine.efficiency_isentropic.fix(0.927)\n", + " m.fs.turbine.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s02)\n", + " m.fs.HTR_pseudo_shell.outlet.temperature.fix(489.15)\n", + " m.fs.HTR_pseudo_shell.deltaP.fix(-0.07)\n", + "\n", + " init_once_or_twice(m.fs.HTR_pseudo_shell)\n", + "\n", + " propagate_state(m.fs.s03)\n", + "\n", + " m.fs.LTR_pseudo_shell.outlet.temperature.fix(354.15)\n", + " m.fs.LTR_pseudo_shell.deltaP.fix(-0.07)\n", + " m.fs.LTR_pseudo_shell.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s04)\n", + " m.fs.splitter_1.split_fraction[0, \"bypass\"].fix(0.25)\n", + "\n", + " m.fs.splitter_1.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s05)\n", + " m.fs.co2_cooler.outlet.temperature.fix(308.15)\n", + " m.fs.co2_cooler.deltaP.fix(-0.07)\n", + " m.fs.co2_cooler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s06)\n", + " m.fs.bypass_compressor.efficiency_isentropic.fix(0.85)\n", + " m.fs.bypass_compressor.ratioP.fix(3.8)\n", + " m.fs.bypass_compressor.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s07)\n", + " m.fs.main_compressor.efficiency_isentropic.fix(0.85)\n", + " m.fs.main_compressor.ratioP.fix(3.8)\n", + " m.fs.main_compressor.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s09)\n", + "\n", + " m.fs.splitter_2.split_fraction[0, \"to_FG_cooler\"].fix(0.046)\n", + " m.fs.splitter_2.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s10)\n", + " m.fs.FG_cooler.outlet.temperature.fix(483.15)\n", + " m.fs.FG_cooler.deltaP.fix(-0.06)\n", + " m.fs.FG_cooler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s11)\n", + "\n", + " m.fs.LTR_pseudo_tube.deltaP.fix(0)\n", + " m.fs.LTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.LTR_pseudo_shell.heat_duty[0]))\n", + " m.fs.LTR_pseudo_tube.initialize(outlvl=outlvl)\n", + "\n", + " # Add constraint heats of the LTR_pseudo shell and tube\n", + " m.fs.LTR_pseudo_tube.heat_duty[0].unfix()\n", + " m.fs.c1 = Constraint(\n", + " expr=m.fs.LTR_pseudo_shell.heat_duty[0] == -m.fs.LTR_pseudo_tube.heat_duty[0]\n", + " )\n", + "\n", + " propagate_state(m.fs.s08)\n", + " propagate_state(m.fs.s12)\n", + " propagate_state(m.fs.s13)\n", + "\n", + " m.fs.mixer.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s14)\n", + "\n", + " m.fs.HTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.HTR_pseudo_shell.heat_duty[0]))\n", + " m.fs.HTR_pseudo_tube.deltaP.fix(-0.07)\n", + " m.fs.HTR_pseudo_tube.initialize(outlvl=outlvl)\n", + "\n", + " m.fs.HTR_pseudo_tube.heat_duty[0].unfix()\n", + " m.fs.c2 = Constraint(\n", + " expr=m.fs.HTR_pseudo_shell.heat_duty[0] == -m.fs.HTR_pseudo_tube.heat_duty[0]\n", + " )\n", + "\n", + " TransformationFactory(\"network.expand_arcs\").apply_to(m.fs)\n", + "\n", + " print(\"--------------------------------------------------------------------\")\n", + " print(\"The degrees of freedom for the flowsheet is \", degrees_of_freedom(m))\n", + " print(\"--------------------------------------------------------------------\")\n", + "\n", + " solver.solve(m, tee=tee)\n", + "\n", + " #\n", + " from idaes.core.util.units_of_measurement import (\n", + " convert_quantity_to_reporting_units,\n", + " report_quantity,\n", + " )\n", + "\n", + " # Print reports\n", + " for i in m.fs.component_objects(Block):\n", + " if isinstance(i, UnitModelBlockData):\n", + " i.report()\n", + "\n", + " # Converting units for readability\n", + " print(\n", + " -1 * value(units.convert(m.fs.turbine.work_mechanical[0], units.kW))\n", + " - 1 * value(units.convert(m.fs.main_compressor.work_mechanical[0], units.kW))\n", + " - 1 * value(units.convert(m.fs.bypass_compressor.work_mechanical[0], units.kW)),\n", + " units.kW,\n", + " )\n", + " return m\n", + "\n", + "\n", + "if __name__ == \"__main__\":\n", + " m = main()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" } - ], - "source": [ - "def main():\n", - " # Setup solver and options\n", - " solver = SolverFactory(\"ipopt\")\n", - " outlvl = 0\n", - " tee = True\n", - "\n", - " # Set up concrete model\n", - " m = ConcreteModel()\n", - "\n", - " # Create a flowsheet block\n", - " m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - " # Create the properties param block\n", - " m.fs.properties = SCO2ParameterBlock()\n", - "\n", - " # Add unit models to the flowsheet\n", - " m.fs.boiler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.turbine = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=False,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.HTR_pseudo_shell = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.HTR_pseudo_tube = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.LTR_pseudo_shell = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.LTR_pseudo_tube = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.splitter_1 = Separator(\n", - " property_package=m.fs.properties, outlet_list=[\"bypass\", \"to_cooler\"]\n", - " )\n", - "\n", - " m.fs.co2_cooler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.main_compressor = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.bypass_compressor = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.splitter_2 = Separator(\n", - " property_package=m.fs.properties,\n", - " ideal_separation=False,\n", - " outlet_list=[\"to_FG_cooler\", \"to_LTR\"],\n", - " )\n", - "\n", - " m.fs.FG_cooler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.mixer = Mixer(\n", - " property_package=m.fs.properties, inlet_list=[\"FG_out\", \"LTR_out\", \"bypass\"]\n", - " )\n", - "\n", - " # # Connect the flowsheet\n", - " m.fs.s01 = Arc(source=m.fs.boiler.outlet, destination=m.fs.turbine.inlet)\n", - " m.fs.s02 = Arc(source=m.fs.turbine.outlet, destination=m.fs.HTR_pseudo_shell.inlet)\n", - " m.fs.s03 = Arc(\n", - " source=m.fs.HTR_pseudo_shell.outlet, destination=m.fs.LTR_pseudo_shell.inlet\n", - " )\n", - " m.fs.s04 = Arc(\n", - " source=m.fs.LTR_pseudo_shell.outlet, destination=m.fs.splitter_1.inlet\n", - " )\n", - " m.fs.s05 = Arc(source=m.fs.splitter_1.to_cooler, destination=m.fs.co2_cooler.inlet)\n", - " m.fs.s06 = Arc(\n", - " source=m.fs.splitter_1.bypass, destination=m.fs.bypass_compressor.inlet\n", - " )\n", - " m.fs.s07 = Arc(\n", - " source=m.fs.co2_cooler.outlet, destination=m.fs.main_compressor.inlet\n", - " )\n", - " m.fs.s08 = Arc(source=m.fs.bypass_compressor.outlet, destination=m.fs.mixer.bypass)\n", - " m.fs.s09 = Arc(\n", - " source=m.fs.main_compressor.outlet, destination=m.fs.splitter_2.inlet\n", - " )\n", - " m.fs.s10 = Arc(\n", - " source=m.fs.splitter_2.to_FG_cooler, destination=m.fs.FG_cooler.inlet\n", - " )\n", - " m.fs.s11 = Arc(\n", - " source=m.fs.splitter_2.to_LTR, destination=m.fs.LTR_pseudo_tube.inlet\n", - " )\n", - " m.fs.s12 = Arc(source=m.fs.LTR_pseudo_tube.outlet, destination=m.fs.mixer.LTR_out)\n", - " m.fs.s13 = Arc(source=m.fs.FG_cooler.outlet, destination=m.fs.mixer.FG_out)\n", - " m.fs.s14 = Arc(source=m.fs.mixer.outlet, destination=m.fs.HTR_pseudo_tube.inlet)\n", - "\n", - " # initialize twice if needed\n", - " def init_once_or_twice(blk, outlvl=0):\n", - " try:\n", - " blk.initialize(outlvl=outlvl)\n", - " except:\n", - " blk.initialize(outlvl=outlvl)\n", - "\n", - " # NETL Baseline\n", - " m.fs.boiler.inlet.flow_mol.fix(121.1)\n", - " m.fs.boiler.inlet.temperature.fix(685.15)\n", - " m.fs.boiler.inlet.pressure.fix(34.51)\n", - "\n", - " m.fs.boiler.outlet.temperature.fix(893.15) # Turbine inlet T = 620 C\n", - " m.fs.boiler.deltaP.fix(-0.21)\n", - "\n", - " init_once_or_twice(m.fs.boiler)\n", - "\n", - " propagate_state(m.fs.s01)\n", - "\n", - " m.fs.turbine.ratioP.fix(1 / 3.68)\n", - " m.fs.turbine.efficiency_isentropic.fix(0.927)\n", - " m.fs.turbine.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s02)\n", - " m.fs.HTR_pseudo_shell.outlet.temperature.fix(489.15)\n", - " m.fs.HTR_pseudo_shell.deltaP.fix(-0.07)\n", - "\n", - " init_once_or_twice(m.fs.HTR_pseudo_shell)\n", - "\n", - " propagate_state(m.fs.s03)\n", - "\n", - " m.fs.LTR_pseudo_shell.outlet.temperature.fix(354.15)\n", - " m.fs.LTR_pseudo_shell.deltaP.fix(-0.07)\n", - " m.fs.LTR_pseudo_shell.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s04)\n", - " m.fs.splitter_1.split_fraction[0, \"bypass\"].fix(0.25)\n", - "\n", - " m.fs.splitter_1.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s05)\n", - " m.fs.co2_cooler.outlet.temperature.fix(308.15)\n", - " m.fs.co2_cooler.deltaP.fix(-0.07)\n", - " m.fs.co2_cooler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s06)\n", - " m.fs.bypass_compressor.efficiency_isentropic.fix(0.85)\n", - " m.fs.bypass_compressor.ratioP.fix(3.8)\n", - " m.fs.bypass_compressor.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s07)\n", - " m.fs.main_compressor.efficiency_isentropic.fix(0.85)\n", - " m.fs.main_compressor.ratioP.fix(3.8)\n", - " m.fs.main_compressor.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s09)\n", - "\n", - " m.fs.splitter_2.split_fraction[0, \"to_FG_cooler\"].fix(0.046)\n", - " m.fs.splitter_2.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s10)\n", - " m.fs.FG_cooler.outlet.temperature.fix(483.15)\n", - " m.fs.FG_cooler.deltaP.fix(-0.06)\n", - " m.fs.FG_cooler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s11)\n", - "\n", - " m.fs.LTR_pseudo_tube.deltaP.fix(0)\n", - " m.fs.LTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.LTR_pseudo_shell.heat_duty[0]))\n", - " m.fs.LTR_pseudo_tube.initialize(outlvl=outlvl)\n", - "\n", - " # Add constraint heats of the LTR_pseudo shell and tube\n", - " m.fs.LTR_pseudo_tube.heat_duty[0].unfix()\n", - " m.fs.c1 = Constraint(\n", - " expr=m.fs.LTR_pseudo_shell.heat_duty[0] == -m.fs.LTR_pseudo_tube.heat_duty[0]\n", - " )\n", - "\n", - " propagate_state(m.fs.s08)\n", - " propagate_state(m.fs.s12)\n", - " propagate_state(m.fs.s13)\n", - "\n", - " m.fs.mixer.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s14)\n", - "\n", - " m.fs.HTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.HTR_pseudo_shell.heat_duty[0]))\n", - " m.fs.HTR_pseudo_tube.deltaP.fix(-0.07)\n", - " m.fs.HTR_pseudo_tube.initialize(outlvl=outlvl)\n", - "\n", - " m.fs.HTR_pseudo_tube.heat_duty[0].unfix()\n", - " m.fs.c2 = Constraint(\n", - " expr=m.fs.HTR_pseudo_shell.heat_duty[0] == -m.fs.HTR_pseudo_tube.heat_duty[0]\n", - " )\n", - "\n", - " TransformationFactory(\"network.expand_arcs\").apply_to(m.fs)\n", - "\n", - " print(\"--------------------------------------------------------------------\")\n", - " print(\"The degrees of freedom for the flowsheet is \", degrees_of_freedom(m))\n", - " print(\"--------------------------------------------------------------------\")\n", - "\n", - " solver.solve(m, tee=tee)\n", - "\n", - " #\n", - " from idaes.core.util.units_of_measurement import (\n", - " convert_quantity_to_reporting_units,\n", - " report_quantity,\n", - " )\n", - "\n", - " # Print reports\n", - " for i in m.fs.component_objects(Block):\n", - " if isinstance(i, UnitModelBlockData):\n", - " i.report()\n", - "\n", - " # Converting units for readability\n", - " print(\n", - " -1 * value(units.convert(m.fs.turbine.work_mechanical[0], units.kW))\n", - " - 1 * value(units.convert(m.fs.main_compressor.work_mechanical[0], units.kW))\n", - " - 1 * value(units.convert(m.fs.bypass_compressor.work_mechanical[0], units.kW)),\n", - " units.kW,\n", - " )\n", - " return m\n", - "\n", - "\n", - "if __name__ == \"__main__\":\n", - " m = main()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training.ipynb index d958de18..4aaa8c04 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "69350c71", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": 1, @@ -1115,8 +1142,7 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" - }, - "orig_nbformat": 4 + } }, "nbformat": 4, "nbformat_minor": 2 diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training_doc.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training_doc.ipynb index c873f19b..8a8e7d59 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training_doc.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training_doc.ipynb @@ -3,6 +3,32 @@ { "cell_type": "code", "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -53,662 +79,3684 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"CO2_flowsheet.png\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Training and Validating Surrogate\n", + "\n", + "First, let's import the required Python and IDAES modules:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2025-03-17 17:38:42.032800: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2025-03-17 17:38:42.033487: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", + "2025-03-17 17:38:42.036537: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", + "2025-03-17 17:38:42.043175: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", + "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", + "E0000 00:00:1742258322.054590 362852 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1742258322.057876 362852 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "W0000 00:00:1742258322.067226 362852 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "W0000 00:00:1742258322.067243 362852 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "W0000 00:00:1742258322.067244 362852 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "W0000 00:00:1742258322.067245 362852 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "2025-03-17 17:38:42.070698: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] + } + ], + "source": [ + "# Import statements\n", + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "import random as rn\n", + "import tensorflow as tf\n", + "import tensorflow.keras as keras\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", + "from idaes.core.surrogate.sampling.scaling import OffsetScaler\n", + "from idaes.core.surrogate.keras_surrogate import KerasSurrogate\n", + "from idaes.core.surrogate.plotting.sm_plotter import (\n", + " surrogate_scatter2D,\n", + " surrogate_parity,\n", + " surrogate_residual,\n", + ")\n", + "\n", + "# fix environment variables to ensure consist neural network training\n", + "os.environ[\"PYTHONHASHSEED\"] = \"0\"\n", + "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"\"\n", + "np.random.seed(46)\n", + "rn.seed(1342)\n", + "tf.random.set_seed(62)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.1 Importing Training and Validation Datasets\n", + "\n", + "In this section, we read the dataset from the CSV file located in this directory. 500 data points were simulated for S-CO2 physical properties using REFPROP package. This example is trained on the entire dataset because neural network can overfit on smaller dataset. The data is separated using an 80/20 split into training and validation data using the IDAES split_training_validation() method.\n", + "\n", + "We rename the column headers because they contained \".\", which may cause errors while reading the column names in subsequent code, thus as a good practice we change them to the variable names to be used in the property package. Further, the input variables are **pressure**, **temperature** , while the output variables are **enth_mol**, **entr_mol**, hence we create two new dataframes for the input and output variables. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dang/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be removed in a future version. Please use 'DataFrame.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + } + ], + "source": [ + "# Import training data\n", + "np.set_printoptions(precision=6, suppress=True)\n", + "\n", + "csv_data = pd.read_csv(datafile_path(\"500_Points_DataSet.csv\"))\n", + "csv_data.columns.values[0:6] = [\n", + " \"pressure\",\n", + " \"temperature\",\n", + " \"enth_mol\",\n", + " \"entr_mol\",\n", + " \"CO2_enthalpy\",\n", + " \"CO2_entropy\",\n", + "]\n", + "data = csv_data.sample(n=500)\n", + "\n", + "# Creating input_data and output_data from data\n", + "input_data = data.iloc[:, :2]\n", + "output_data = data.iloc[:, 2:4]\n", + "\n", + "# Define labels, and split training and validation data\n", + "input_labels = input_data.columns\n", + "output_labels = output_data.columns\n", + "\n", + "n_data = data[input_labels[0]].size\n", + "data_training, data_validation = split_training_validation(data, 0.8, seed=n_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2 Training Surrogate with TensorFlow Keras\n", + "TensorFlow Keras provides an interface to pass regression settings, build neural networks and train surrogate models. Keras enables the usage of two API formats: Sequential and Functional. While the Functional API offers more versatility, including multiple input and output layers in a single neural network, the Sequential API is more stable and user-friendly. Further, the Sequential API integrates cleanly with existing IDAES surrogate tools and will be utilized in this example.\n", + "\n", + "In the code below, we build the neural network structure based on our training data structure and desired regression settings. Offline, neural network models were trained for the list of settings below, and the options bolded and italicized were determined to have the minimum mean squared error for the dataset:\n", + "\n", + "* Activation function: sigmoid, **tanh**\n", + "* Optimizer: **Adam**\n", + "* Number of hidden layers: 3, **4**, 5, 6\n", + "* Number of neurons per layer: **20**, 40, 60\n", + "\n", + "Important thing to note here is that we do not use ReLU activation function for the training as the flowsheet we intend to solve with this surrogate model is a NLP problem and using ReLU activation function will make it an MINLP. Another thing to note here is the network is smaller (4,20) in order to avoid overfitting. \n", + "\n", + "Typically, Sequential Keras models are built vertically; the dataset is scaled and normalized. The network is defined for the input layer, hidden layers, and output layer for the passed activation functions and network/layer sizes. Then, the model is compiled using the passed optimizer and trained using a desired number of epochs. Keras internally validates while training and updates each epoch's model weight (coefficient) values.\n", + "\n", + "Finally, after training the model, we save the results and model expressions to a folder that contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." + ] + }, + { + "cell_type": "code", + "execution_count": 6, "metadata": {}, "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"CO2_flowsheet.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Training and Validating Surrogate\n", - "\n", - "First, let's import the required Python and IDAES modules:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/250\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dang/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n", + "2025-03-17 17:38:44.131094: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 1s - 84ms/step - loss: 0.0188 - mae: 0.0963 - mse: 0.0188 - val_loss: 0.0043 - val_mae: 0.0456 - val_mse: 0.0043\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 0.0034 - mae: 0.0438 - mse: 0.0034 - val_loss: 0.0031 - val_mae: 0.0438 - val_mse: 0.0031\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 0.0023 - mae: 0.0382 - mse: 0.0023 - val_loss: 0.0018 - val_mae: 0.0349 - val_mse: 0.0018\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 0.0016 - mae: 0.0297 - mse: 0.0016 - val_loss: 0.0014 - val_mae: 0.0274 - val_mse: 0.0014\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 5/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 0.0015 - mae: 0.0280 - mse: 0.0015 - val_loss: 0.0013 - val_mae: 0.0279 - val_mse: 0.0013\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 6/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 0.0013 - mae: 0.0279 - mse: 0.0013 - val_loss: 0.0013 - val_mae: 0.0279 - val_mse: 0.0013\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 7/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 0.0012 - mae: 0.0268 - mse: 0.0012 - val_loss: 0.0012 - val_mae: 0.0263 - val_mse: 0.0012\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 8/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 0.0012 - mae: 0.0259 - mse: 0.0012 - val_loss: 0.0011 - val_mae: 0.0260 - val_mse: 0.0011\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 9/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 0.0011 - mae: 0.0254 - mse: 0.0011 - val_loss: 0.0011 - val_mae: 0.0257 - val_mse: 0.0011\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 10/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 0.0011 - mae: 0.0247 - mse: 0.0011 - val_loss: 0.0011 - val_mae: 0.0251 - val_mse: 0.0011\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 11/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 9ms/step - loss: 0.0010 - mae: 0.0241 - mse: 0.0010 - val_loss: 0.0010 - val_mae: 0.0246 - val_mse: 0.0010\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 12/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 9.6390e-04 - mae: 0.0236 - mse: 9.6390e-04 - val_loss: 9.5685e-04 - val_mae: 0.0240 - val_mse: 9.5685e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 13/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 9.2020e-04 - mae: 0.0230 - mse: 9.2020e-04 - val_loss: 9.0503e-04 - val_mae: 0.0234 - val_mse: 9.0503e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 14/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 8.8350e-04 - mae: 0.0226 - mse: 8.8350e-04 - val_loss: 8.6211e-04 - val_mae: 0.0229 - val_mse: 8.6211e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 15/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 8.5257e-04 - mae: 0.0223 - mse: 8.5257e-04 - val_loss: 8.2819e-04 - val_mae: 0.0224 - val_mse: 8.2819e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 16/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 8.2619e-04 - mae: 0.0220 - mse: 8.2619e-04 - val_loss: 8.0146e-04 - val_mae: 0.0221 - val_mse: 8.0146e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 17/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 8.0318e-04 - mae: 0.0217 - mse: 8.0318e-04 - val_loss: 7.7882e-04 - val_mae: 0.0218 - val_mse: 7.7882e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 18/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 7.8315e-04 - mae: 0.0215 - mse: 7.8315e-04 - val_loss: 7.5925e-04 - val_mae: 0.0215 - val_mse: 7.5925e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 19/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 7.6577e-04 - mae: 0.0213 - mse: 7.6577e-04 - val_loss: 7.4256e-04 - val_mae: 0.0212 - val_mse: 7.4256e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 20/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 7.5078e-04 - mae: 0.0212 - mse: 7.5078e-04 - val_loss: 7.2850e-04 - val_mae: 0.0210 - val_mse: 7.2850e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 21/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 7.3792e-04 - mae: 0.0210 - mse: 7.3792e-04 - val_loss: 7.1661e-04 - val_mae: 0.0208 - val_mse: 7.1661e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 22/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 7.2692e-04 - mae: 0.0209 - mse: 7.2692e-04 - val_loss: 7.0647e-04 - val_mae: 0.0207 - val_mse: 7.0647e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 23/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 7.1753e-04 - mae: 0.0208 - mse: 7.1753e-04 - val_loss: 6.9782e-04 - val_mae: 0.0206 - val_mse: 6.9782e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 24/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 7.0953e-04 - mae: 0.0208 - mse: 7.0953e-04 - val_loss: 6.9039e-04 - val_mae: 0.0205 - val_mse: 6.9039e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 25/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 7.0270e-04 - mae: 0.0207 - mse: 7.0270e-04 - val_loss: 6.8392e-04 - val_mae: 0.0204 - val_mse: 6.8392e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 26/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 6.9683e-04 - mae: 0.0207 - mse: 6.9683e-04 - val_loss: 6.7824e-04 - val_mae: 0.0203 - val_mse: 6.7824e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 27/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 6.9177e-04 - mae: 0.0206 - mse: 6.9177e-04 - val_loss: 6.7317e-04 - val_mae: 0.0203 - val_mse: 6.7317e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 28/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 6.8736e-04 - mae: 0.0206 - mse: 6.8736e-04 - val_loss: 6.6858e-04 - val_mae: 0.0202 - val_mse: 6.6858e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 29/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 6.8348e-04 - mae: 0.0205 - mse: 6.8348e-04 - val_loss: 6.6437e-04 - val_mae: 0.0201 - val_mse: 6.6437e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 30/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 6.8002e-04 - mae: 0.0205 - mse: 6.8002e-04 - val_loss: 6.6044e-04 - val_mae: 0.0201 - val_mse: 6.6044e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 31/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.7689e-04 - mae: 0.0205 - mse: 6.7689e-04 - val_loss: 6.5676e-04 - val_mae: 0.0200 - val_mse: 6.5676e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 32/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 6.7403e-04 - mae: 0.0204 - mse: 6.7403e-04 - val_loss: 6.5325e-04 - val_mae: 0.0200 - val_mse: 6.5325e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 33/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 6.7138e-04 - mae: 0.0204 - mse: 6.7138e-04 - val_loss: 6.4990e-04 - val_mae: 0.0199 - val_mse: 6.4990e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 34/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.6889e-04 - mae: 0.0204 - mse: 6.6889e-04 - val_loss: 6.4668e-04 - val_mae: 0.0199 - val_mse: 6.4668e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 35/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 6.6654e-04 - mae: 0.0203 - mse: 6.6654e-04 - val_loss: 6.4356e-04 - val_mae: 0.0198 - val_mse: 6.4356e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 36/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.6429e-04 - mae: 0.0203 - mse: 6.6429e-04 - val_loss: 6.4054e-04 - val_mae: 0.0198 - val_mse: 6.4054e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 37/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.6212e-04 - mae: 0.0203 - mse: 6.6212e-04 - val_loss: 6.3761e-04 - val_mae: 0.0197 - val_mse: 6.3761e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 38/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.6001e-04 - mae: 0.0203 - mse: 6.6001e-04 - val_loss: 6.3475e-04 - val_mae: 0.0197 - val_mse: 6.3475e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 39/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 6.5795e-04 - mae: 0.0202 - mse: 6.5795e-04 - val_loss: 6.3196e-04 - val_mae: 0.0197 - val_mse: 6.3196e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 40/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.5593e-04 - mae: 0.0202 - mse: 6.5593e-04 - val_loss: 6.2924e-04 - val_mae: 0.0196 - val_mse: 6.2924e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 41/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 6.5392e-04 - mae: 0.0202 - mse: 6.5392e-04 - val_loss: 6.2658e-04 - val_mae: 0.0196 - val_mse: 6.2658e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 42/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.5194e-04 - mae: 0.0201 - mse: 6.5194e-04 - val_loss: 6.2397e-04 - val_mae: 0.0195 - val_mse: 6.2397e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 43/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.4996e-04 - mae: 0.0201 - mse: 6.4996e-04 - val_loss: 6.2141e-04 - val_mae: 0.0195 - val_mse: 6.2141e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 44/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 6.4799e-04 - mae: 0.0201 - mse: 6.4799e-04 - val_loss: 6.1891e-04 - val_mae: 0.0194 - val_mse: 6.1891e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 45/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.4602e-04 - mae: 0.0200 - mse: 6.4602e-04 - val_loss: 6.1645e-04 - val_mae: 0.0194 - val_mse: 6.1645e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 46/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 6.4405e-04 - mae: 0.0200 - mse: 6.4405e-04 - val_loss: 6.1403e-04 - val_mae: 0.0193 - val_mse: 6.1403e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 47/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.4207e-04 - mae: 0.0200 - mse: 6.4207e-04 - val_loss: 6.1164e-04 - val_mae: 0.0193 - val_mse: 6.1164e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 48/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.4009e-04 - mae: 0.0199 - mse: 6.4009e-04 - val_loss: 6.0930e-04 - val_mae: 0.0193 - val_mse: 6.0930e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 49/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 6.3810e-04 - mae: 0.0199 - mse: 6.3810e-04 - val_loss: 6.0698e-04 - val_mae: 0.0192 - val_mse: 6.0698e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 50/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 6.3611e-04 - mae: 0.0199 - mse: 6.3611e-04 - val_loss: 6.0470e-04 - val_mae: 0.0192 - val_mse: 6.0470e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 51/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 6.3410e-04 - mae: 0.0199 - mse: 6.3410e-04 - val_loss: 6.0244e-04 - val_mae: 0.0191 - val_mse: 6.0244e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 52/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 6.3209e-04 - mae: 0.0198 - mse: 6.3209e-04 - val_loss: 6.0021e-04 - val_mae: 0.0191 - val_mse: 6.0021e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 53/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 9ms/step - loss: 6.3006e-04 - mae: 0.0198 - mse: 6.3006e-04 - val_loss: 5.9800e-04 - val_mae: 0.0190 - val_mse: 5.9800e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 54/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 6.2803e-04 - mae: 0.0198 - mse: 6.2803e-04 - val_loss: 5.9581e-04 - val_mae: 0.0190 - val_mse: 5.9581e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 55/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 6.2599e-04 - mae: 0.0197 - mse: 6.2599e-04 - val_loss: 5.9364e-04 - val_mae: 0.0190 - val_mse: 5.9364e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 56/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.2394e-04 - mae: 0.0197 - mse: 6.2394e-04 - val_loss: 5.9149e-04 - val_mae: 0.0189 - val_mse: 5.9149e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 57/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.2188e-04 - mae: 0.0197 - mse: 6.2188e-04 - val_loss: 5.8935e-04 - val_mae: 0.0189 - val_mse: 5.8935e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 58/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 6.1981e-04 - mae: 0.0196 - mse: 6.1981e-04 - val_loss: 5.8723e-04 - val_mae: 0.0188 - val_mse: 5.8723e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 59/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 6.1773e-04 - mae: 0.0196 - mse: 6.1773e-04 - val_loss: 5.8513e-04 - val_mae: 0.0188 - val_mse: 5.8513e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 60/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 6.1564e-04 - mae: 0.0196 - mse: 6.1564e-04 - val_loss: 5.8304e-04 - val_mae: 0.0188 - val_mse: 5.8304e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 61/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.1355e-04 - mae: 0.0195 - mse: 6.1355e-04 - val_loss: 5.8096e-04 - val_mae: 0.0187 - val_mse: 5.8096e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 62/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.1144e-04 - mae: 0.0195 - mse: 6.1144e-04 - val_loss: 5.7890e-04 - val_mae: 0.0187 - val_mse: 5.7890e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 63/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.0933e-04 - mae: 0.0195 - mse: 6.0933e-04 - val_loss: 5.7685e-04 - val_mae: 0.0186 - val_mse: 5.7685e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 64/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.0720e-04 - mae: 0.0194 - mse: 6.0720e-04 - val_loss: 5.7481e-04 - val_mae: 0.0186 - val_mse: 5.7481e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 65/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 6.0508e-04 - mae: 0.0194 - mse: 6.0508e-04 - val_loss: 5.7279e-04 - val_mae: 0.0186 - val_mse: 5.7279e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 66/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.0294e-04 - mae: 0.0194 - mse: 6.0294e-04 - val_loss: 5.7077e-04 - val_mae: 0.0185 - val_mse: 5.7077e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 67/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 6.0079e-04 - mae: 0.0193 - mse: 6.0079e-04 - val_loss: 5.6877e-04 - val_mae: 0.0185 - val_mse: 5.6877e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 68/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.9864e-04 - mae: 0.0193 - mse: 5.9864e-04 - val_loss: 5.6678e-04 - val_mae: 0.0185 - val_mse: 5.6678e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 69/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 5.9648e-04 - mae: 0.0193 - mse: 5.9648e-04 - val_loss: 5.6480e-04 - val_mae: 0.0184 - val_mse: 5.6480e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 70/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 5.9431e-04 - mae: 0.0192 - mse: 5.9431e-04 - val_loss: 5.6284e-04 - val_mae: 0.0184 - val_mse: 5.6284e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 71/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 5.9214e-04 - mae: 0.0192 - mse: 5.9214e-04 - val_loss: 5.6089e-04 - val_mae: 0.0183 - val_mse: 5.6089e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 72/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 5.8997e-04 - mae: 0.0192 - mse: 5.8997e-04 - val_loss: 5.5895e-04 - val_mae: 0.0183 - val_mse: 5.5895e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 73/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 5.8778e-04 - mae: 0.0191 - mse: 5.8778e-04 - val_loss: 5.5703e-04 - val_mae: 0.0183 - val_mse: 5.5703e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 74/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 5.8560e-04 - mae: 0.0191 - mse: 5.8560e-04 - val_loss: 5.5512e-04 - val_mae: 0.0182 - val_mse: 5.5512e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 75/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 5.8341e-04 - mae: 0.0191 - mse: 5.8341e-04 - val_loss: 5.5322e-04 - val_mae: 0.0182 - val_mse: 5.5322e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 76/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.8122e-04 - mae: 0.0190 - mse: 5.8122e-04 - val_loss: 5.5134e-04 - val_mae: 0.0182 - val_mse: 5.5134e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 77/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 5.7902e-04 - mae: 0.0190 - mse: 5.7902e-04 - val_loss: 5.4947e-04 - val_mae: 0.0181 - val_mse: 5.4947e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 78/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 5.7683e-04 - mae: 0.0190 - mse: 5.7683e-04 - val_loss: 5.4761e-04 - val_mae: 0.0181 - val_mse: 5.4761e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 79/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.7463e-04 - mae: 0.0189 - mse: 5.7463e-04 - val_loss: 5.4577e-04 - val_mae: 0.0181 - val_mse: 5.4577e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 80/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 5.7244e-04 - mae: 0.0189 - mse: 5.7244e-04 - val_loss: 5.4394e-04 - val_mae: 0.0180 - val_mse: 5.4394e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 81/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.7024e-04 - mae: 0.0189 - mse: 5.7024e-04 - val_loss: 5.4212e-04 - val_mae: 0.0180 - val_mse: 5.4212e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 82/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.6805e-04 - mae: 0.0188 - mse: 5.6805e-04 - val_loss: 5.4031e-04 - val_mae: 0.0179 - val_mse: 5.4031e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 83/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.6586e-04 - mae: 0.0188 - mse: 5.6586e-04 - val_loss: 5.3850e-04 - val_mae: 0.0179 - val_mse: 5.3850e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 84/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 5.6368e-04 - mae: 0.0188 - mse: 5.6368e-04 - val_loss: 5.3671e-04 - val_mae: 0.0179 - val_mse: 5.3671e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 85/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 5.6150e-04 - mae: 0.0187 - mse: 5.6150e-04 - val_loss: 5.3492e-04 - val_mae: 0.0178 - val_mse: 5.3492e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 86/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 5.5932e-04 - mae: 0.0187 - mse: 5.5932e-04 - val_loss: 5.3313e-04 - val_mae: 0.0178 - val_mse: 5.3313e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 87/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 5.5715e-04 - mae: 0.0187 - mse: 5.5715e-04 - val_loss: 5.3134e-04 - val_mae: 0.0178 - val_mse: 5.3134e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 88/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.5499e-04 - mae: 0.0186 - mse: 5.5499e-04 - val_loss: 5.2955e-04 - val_mae: 0.0177 - val_mse: 5.2955e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 89/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.5284e-04 - mae: 0.0186 - mse: 5.5284e-04 - val_loss: 5.2776e-04 - val_mae: 0.0177 - val_mse: 5.2776e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 90/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.5069e-04 - mae: 0.0186 - mse: 5.5069e-04 - val_loss: 5.2595e-04 - val_mae: 0.0177 - val_mse: 5.2595e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 91/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 10ms/step - loss: 5.4855e-04 - mae: 0.0185 - mse: 5.4855e-04 - val_loss: 5.2414e-04 - val_mae: 0.0177 - val_mse: 5.2414e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 92/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 5.4642e-04 - mae: 0.0185 - mse: 5.4642e-04 - val_loss: 5.2230e-04 - val_mae: 0.0176 - val_mse: 5.2230e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 93/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 5.4431e-04 - mae: 0.0185 - mse: 5.4431e-04 - val_loss: 5.2045e-04 - val_mae: 0.0176 - val_mse: 5.2045e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 94/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.4220e-04 - mae: 0.0184 - mse: 5.4220e-04 - val_loss: 5.1858e-04 - val_mae: 0.0175 - val_mse: 5.1858e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 95/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.4010e-04 - mae: 0.0184 - mse: 5.4010e-04 - val_loss: 5.1669e-04 - val_mae: 0.0175 - val_mse: 5.1669e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 96/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 5.3802e-04 - mae: 0.0184 - mse: 5.3802e-04 - val_loss: 5.1476e-04 - val_mae: 0.0175 - val_mse: 5.1476e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 97/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 5.3595e-04 - mae: 0.0183 - mse: 5.3595e-04 - val_loss: 5.1281e-04 - val_mae: 0.0174 - val_mse: 5.1281e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 98/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.3388e-04 - mae: 0.0183 - mse: 5.3388e-04 - val_loss: 5.1082e-04 - val_mae: 0.0174 - val_mse: 5.1082e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 99/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.3184e-04 - mae: 0.0182 - mse: 5.3184e-04 - val_loss: 5.0880e-04 - val_mae: 0.0174 - val_mse: 5.0880e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 100/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.2980e-04 - mae: 0.0182 - mse: 5.2980e-04 - val_loss: 5.0674e-04 - val_mae: 0.0173 - val_mse: 5.0674e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 101/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 5.2777e-04 - mae: 0.0182 - mse: 5.2777e-04 - val_loss: 5.0465e-04 - val_mae: 0.0173 - val_mse: 5.0465e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 102/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 5.2575e-04 - mae: 0.0181 - mse: 5.2575e-04 - val_loss: 5.0252e-04 - val_mae: 0.0172 - val_mse: 5.0252e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 103/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.2374e-04 - mae: 0.0181 - mse: 5.2374e-04 - val_loss: 5.0036e-04 - val_mae: 0.0172 - val_mse: 5.0036e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 104/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.2173e-04 - mae: 0.0181 - mse: 5.2173e-04 - val_loss: 4.9817e-04 - val_mae: 0.0171 - val_mse: 4.9817e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 105/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.1972e-04 - mae: 0.0180 - mse: 5.1972e-04 - val_loss: 4.9596e-04 - val_mae: 0.0171 - val_mse: 4.9596e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 106/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 5.1770e-04 - mae: 0.0180 - mse: 5.1770e-04 - val_loss: 4.9373e-04 - val_mae: 0.0170 - val_mse: 4.9373e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 107/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 5.1566e-04 - mae: 0.0180 - mse: 5.1566e-04 - val_loss: 4.9150e-04 - val_mae: 0.0169 - val_mse: 4.9150e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 108/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.1361e-04 - mae: 0.0179 - mse: 5.1361e-04 - val_loss: 4.8926e-04 - val_mae: 0.0169 - val_mse: 4.8926e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 109/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 5.1152e-04 - mae: 0.0179 - mse: 5.1152e-04 - val_loss: 4.8704e-04 - val_mae: 0.0168 - val_mse: 4.8704e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 110/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.0940e-04 - mae: 0.0178 - mse: 5.0940e-04 - val_loss: 4.8484e-04 - val_mae: 0.0168 - val_mse: 4.8484e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 111/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.0723e-04 - mae: 0.0178 - mse: 5.0723e-04 - val_loss: 4.8268e-04 - val_mae: 0.0167 - val_mse: 4.8268e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 112/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.0500e-04 - mae: 0.0177 - mse: 5.0500e-04 - val_loss: 4.8055e-04 - val_mae: 0.0166 - val_mse: 4.8055e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 113/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 5.0271e-04 - mae: 0.0177 - mse: 5.0271e-04 - val_loss: 4.7846e-04 - val_mae: 0.0166 - val_mse: 4.7846e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 114/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 5.0035e-04 - mae: 0.0176 - mse: 5.0035e-04 - val_loss: 4.7642e-04 - val_mae: 0.0165 - val_mse: 4.7642e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 115/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 4.9791e-04 - mae: 0.0176 - mse: 4.9791e-04 - val_loss: 4.7443e-04 - val_mae: 0.0164 - val_mse: 4.7443e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 116/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 4.9541e-04 - mae: 0.0175 - mse: 4.9541e-04 - val_loss: 4.7248e-04 - val_mae: 0.0164 - val_mse: 4.7248e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 117/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 4.9282e-04 - mae: 0.0175 - mse: 4.9282e-04 - val_loss: 4.7056e-04 - val_mae: 0.0163 - val_mse: 4.7056e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 118/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 4.9018e-04 - mae: 0.0174 - mse: 4.9018e-04 - val_loss: 4.6866e-04 - val_mae: 0.0163 - val_mse: 4.6866e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 119/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 4.8747e-04 - mae: 0.0174 - mse: 4.8747e-04 - val_loss: 4.6678e-04 - val_mae: 0.0162 - val_mse: 4.6678e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 120/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 4.8471e-04 - mae: 0.0173 - mse: 4.8471e-04 - val_loss: 4.6490e-04 - val_mae: 0.0161 - val_mse: 4.6490e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 121/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 4.8192e-04 - mae: 0.0173 - mse: 4.8192e-04 - val_loss: 4.6302e-04 - val_mae: 0.0161 - val_mse: 4.6302e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 122/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 4.7910e-04 - mae: 0.0172 - mse: 4.7910e-04 - val_loss: 4.6112e-04 - val_mae: 0.0160 - val_mse: 4.6112e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 123/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 4.7626e-04 - mae: 0.0172 - mse: 4.7626e-04 - val_loss: 4.5921e-04 - val_mae: 0.0160 - val_mse: 4.5921e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 124/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 4.7342e-04 - mae: 0.0171 - mse: 4.7342e-04 - val_loss: 4.5728e-04 - val_mae: 0.0159 - val_mse: 4.5728e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 125/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 4.7059e-04 - mae: 0.0170 - mse: 4.7059e-04 - val_loss: 4.5532e-04 - val_mae: 0.0159 - val_mse: 4.5532e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 126/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 4.6776e-04 - mae: 0.0170 - mse: 4.6776e-04 - val_loss: 4.5335e-04 - val_mae: 0.0158 - val_mse: 4.5335e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 127/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 4.6495e-04 - mae: 0.0169 - mse: 4.6495e-04 - val_loss: 4.5135e-04 - val_mae: 0.0158 - val_mse: 4.5135e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 128/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 9ms/step - loss: 4.6215e-04 - mae: 0.0169 - mse: 4.6215e-04 - val_loss: 4.4932e-04 - val_mae: 0.0157 - val_mse: 4.4932e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 129/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 4.5937e-04 - mae: 0.0168 - mse: 4.5937e-04 - val_loss: 4.4728e-04 - val_mae: 0.0157 - val_mse: 4.4728e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 130/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 4.5662e-04 - mae: 0.0168 - mse: 4.5662e-04 - val_loss: 4.4522e-04 - val_mae: 0.0156 - val_mse: 4.4522e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 131/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 4.5388e-04 - mae: 0.0167 - mse: 4.5388e-04 - val_loss: 4.4313e-04 - val_mae: 0.0155 - val_mse: 4.4313e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 132/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 4.5116e-04 - mae: 0.0167 - mse: 4.5116e-04 - val_loss: 4.4103e-04 - val_mae: 0.0155 - val_mse: 4.4103e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 133/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 4.4845e-04 - mae: 0.0166 - mse: 4.4845e-04 - val_loss: 4.3892e-04 - val_mae: 0.0154 - val_mse: 4.3892e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 134/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 4.4576e-04 - mae: 0.0166 - mse: 4.4576e-04 - val_loss: 4.3678e-04 - val_mae: 0.0154 - val_mse: 4.3678e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 135/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 4.4307e-04 - mae: 0.0165 - mse: 4.4307e-04 - val_loss: 4.3464e-04 - val_mae: 0.0153 - val_mse: 4.3464e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 136/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 4.4040e-04 - mae: 0.0165 - mse: 4.4040e-04 - val_loss: 4.3247e-04 - val_mae: 0.0153 - val_mse: 4.3247e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 137/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 9ms/step - loss: 4.3773e-04 - mae: 0.0164 - mse: 4.3773e-04 - val_loss: 4.3030e-04 - val_mae: 0.0152 - val_mse: 4.3030e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 138/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 4.3507e-04 - mae: 0.0163 - mse: 4.3507e-04 - val_loss: 4.2811e-04 - val_mae: 0.0152 - val_mse: 4.2811e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 139/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 4.3242e-04 - mae: 0.0163 - mse: 4.3242e-04 - val_loss: 4.2591e-04 - val_mae: 0.0151 - val_mse: 4.2591e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 140/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 4.2977e-04 - mae: 0.0162 - mse: 4.2977e-04 - val_loss: 4.2370e-04 - val_mae: 0.0151 - val_mse: 4.2370e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 141/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 4.2712e-04 - mae: 0.0162 - mse: 4.2712e-04 - val_loss: 4.2148e-04 - val_mae: 0.0150 - val_mse: 4.2148e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 142/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 4.2447e-04 - mae: 0.0161 - mse: 4.2447e-04 - val_loss: 4.1924e-04 - val_mae: 0.0150 - val_mse: 4.1924e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 143/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 4.2182e-04 - mae: 0.0161 - mse: 4.2182e-04 - val_loss: 4.1700e-04 - val_mae: 0.0149 - val_mse: 4.1700e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 144/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 4.1917e-04 - mae: 0.0160 - mse: 4.1917e-04 - val_loss: 4.1475e-04 - val_mae: 0.0149 - val_mse: 4.1475e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 145/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 4.1652e-04 - mae: 0.0159 - mse: 4.1652e-04 - val_loss: 4.1249e-04 - val_mae: 0.0148 - val_mse: 4.1249e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 146/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 4.1387e-04 - mae: 0.0159 - mse: 4.1387e-04 - val_loss: 4.1022e-04 - val_mae: 0.0148 - val_mse: 4.1022e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 147/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 4.1122e-04 - mae: 0.0158 - mse: 4.1122e-04 - val_loss: 4.0795e-04 - val_mae: 0.0147 - val_mse: 4.0795e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 148/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 4.0856e-04 - mae: 0.0158 - mse: 4.0856e-04 - val_loss: 4.0567e-04 - val_mae: 0.0146 - val_mse: 4.0567e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 149/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 4.0591e-04 - mae: 0.0157 - mse: 4.0591e-04 - val_loss: 4.0338e-04 - val_mae: 0.0146 - val_mse: 4.0338e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 150/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 4.0325e-04 - mae: 0.0157 - mse: 4.0325e-04 - val_loss: 4.0108e-04 - val_mae: 0.0145 - val_mse: 4.0108e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 151/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 4.0058e-04 - mae: 0.0156 - mse: 4.0058e-04 - val_loss: 3.9878e-04 - val_mae: 0.0145 - val_mse: 3.9878e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 152/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.9792e-04 - mae: 0.0155 - mse: 3.9792e-04 - val_loss: 3.9648e-04 - val_mae: 0.0144 - val_mse: 3.9648e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 153/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 3.9525e-04 - mae: 0.0155 - mse: 3.9525e-04 - val_loss: 3.9417e-04 - val_mae: 0.0144 - val_mse: 3.9417e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 154/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.9258e-04 - mae: 0.0154 - mse: 3.9258e-04 - val_loss: 3.9185e-04 - val_mae: 0.0143 - val_mse: 3.9185e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 155/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 3.8991e-04 - mae: 0.0154 - mse: 3.8991e-04 - val_loss: 3.8953e-04 - val_mae: 0.0142 - val_mse: 3.8953e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 156/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.8724e-04 - mae: 0.0153 - mse: 3.8724e-04 - val_loss: 3.8720e-04 - val_mae: 0.0142 - val_mse: 3.8720e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 157/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.8457e-04 - mae: 0.0152 - mse: 3.8457e-04 - val_loss: 3.8487e-04 - val_mae: 0.0141 - val_mse: 3.8487e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 158/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.8189e-04 - mae: 0.0152 - mse: 3.8189e-04 - val_loss: 3.8254e-04 - val_mae: 0.0141 - val_mse: 3.8254e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 159/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 3.7922e-04 - mae: 0.0151 - mse: 3.7922e-04 - val_loss: 3.8020e-04 - val_mae: 0.0140 - val_mse: 3.8020e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 160/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 3.7654e-04 - mae: 0.0150 - mse: 3.7654e-04 - val_loss: 3.7785e-04 - val_mae: 0.0140 - val_mse: 3.7785e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 161/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 3.7387e-04 - mae: 0.0150 - mse: 3.7387e-04 - val_loss: 3.7551e-04 - val_mae: 0.0139 - val_mse: 3.7551e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 162/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 3.7120e-04 - mae: 0.0149 - mse: 3.7120e-04 - val_loss: 3.7316e-04 - val_mae: 0.0139 - val_mse: 3.7316e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 163/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.6852e-04 - mae: 0.0149 - mse: 3.6852e-04 - val_loss: 3.7080e-04 - val_mae: 0.0138 - val_mse: 3.7080e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 164/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.6585e-04 - mae: 0.0148 - mse: 3.6585e-04 - val_loss: 3.6844e-04 - val_mae: 0.0137 - val_mse: 3.6844e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 165/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 3.6318e-04 - mae: 0.0147 - mse: 3.6318e-04 - val_loss: 3.6608e-04 - val_mae: 0.0137 - val_mse: 3.6608e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 166/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 3.6051e-04 - mae: 0.0147 - mse: 3.6051e-04 - val_loss: 3.6371e-04 - val_mae: 0.0136 - val_mse: 3.6371e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 167/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 3.5785e-04 - mae: 0.0146 - mse: 3.5785e-04 - val_loss: 3.6134e-04 - val_mae: 0.0136 - val_mse: 3.6134e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 168/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.5518e-04 - mae: 0.0145 - mse: 3.5518e-04 - val_loss: 3.5896e-04 - val_mae: 0.0135 - val_mse: 3.5896e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 169/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.5252e-04 - mae: 0.0145 - mse: 3.5252e-04 - val_loss: 3.5659e-04 - val_mae: 0.0135 - val_mse: 3.5659e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 170/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 3.4987e-04 - mae: 0.0144 - mse: 3.4987e-04 - val_loss: 3.5420e-04 - val_mae: 0.0134 - val_mse: 3.5420e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 171/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.4722e-04 - mae: 0.0144 - mse: 3.4722e-04 - val_loss: 3.5182e-04 - val_mae: 0.0133 - val_mse: 3.5182e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 172/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.4457e-04 - mae: 0.0143 - mse: 3.4457e-04 - val_loss: 3.4943e-04 - val_mae: 0.0133 - val_mse: 3.4943e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 173/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 3.4193e-04 - mae: 0.0142 - mse: 3.4193e-04 - val_loss: 3.4704e-04 - val_mae: 0.0132 - val_mse: 3.4704e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 174/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 3.3929e-04 - mae: 0.0142 - mse: 3.3929e-04 - val_loss: 3.4464e-04 - val_mae: 0.0132 - val_mse: 3.4464e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 175/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 3.3666e-04 - mae: 0.0141 - mse: 3.3666e-04 - val_loss: 3.4224e-04 - val_mae: 0.0131 - val_mse: 3.4224e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 176/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 3.3403e-04 - mae: 0.0140 - mse: 3.3403e-04 - val_loss: 3.3984e-04 - val_mae: 0.0130 - val_mse: 3.3984e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 177/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.3141e-04 - mae: 0.0140 - mse: 3.3141e-04 - val_loss: 3.3743e-04 - val_mae: 0.0130 - val_mse: 3.3743e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 178/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.2879e-04 - mae: 0.0139 - mse: 3.2879e-04 - val_loss: 3.3502e-04 - val_mae: 0.0129 - val_mse: 3.3502e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 179/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 3.2619e-04 - mae: 0.0138 - mse: 3.2619e-04 - val_loss: 3.3261e-04 - val_mae: 0.0129 - val_mse: 3.3261e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 180/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 9ms/step - loss: 3.2358e-04 - mae: 0.0138 - mse: 3.2358e-04 - val_loss: 3.3019e-04 - val_mae: 0.0128 - val_mse: 3.3019e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 181/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 3.2099e-04 - mae: 0.0137 - mse: 3.2099e-04 - val_loss: 3.2777e-04 - val_mae: 0.0128 - val_mse: 3.2777e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 182/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 10ms/step - loss: 3.1840e-04 - mae: 0.0137 - mse: 3.1840e-04 - val_loss: 3.2535e-04 - val_mae: 0.0127 - val_mse: 3.2535e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 183/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 3.1582e-04 - mae: 0.0136 - mse: 3.1582e-04 - val_loss: 3.2292e-04 - val_mae: 0.0126 - val_mse: 3.2292e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 184/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 3.1325e-04 - mae: 0.0135 - mse: 3.1325e-04 - val_loss: 3.2049e-04 - val_mae: 0.0126 - val_mse: 3.2049e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 185/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.1069e-04 - mae: 0.0135 - mse: 3.1069e-04 - val_loss: 3.1806e-04 - val_mae: 0.0125 - val_mse: 3.1806e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 186/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.0813e-04 - mae: 0.0134 - mse: 3.0813e-04 - val_loss: 3.1562e-04 - val_mae: 0.0125 - val_mse: 3.1562e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 187/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 3.0558e-04 - mae: 0.0133 - mse: 3.0558e-04 - val_loss: 3.1318e-04 - val_mae: 0.0124 - val_mse: 3.1318e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 188/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 3.0304e-04 - mae: 0.0133 - mse: 3.0304e-04 - val_loss: 3.1074e-04 - val_mae: 0.0123 - val_mse: 3.1074e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 189/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 9ms/step - loss: 3.0051e-04 - mae: 0.0132 - mse: 3.0051e-04 - val_loss: 3.0829e-04 - val_mae: 0.0123 - val_mse: 3.0829e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 190/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 2.9799e-04 - mae: 0.0131 - mse: 2.9799e-04 - val_loss: 3.0584e-04 - val_mae: 0.0122 - val_mse: 3.0584e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 191/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 2.9547e-04 - mae: 0.0131 - mse: 2.9547e-04 - val_loss: 3.0339e-04 - val_mae: 0.0122 - val_mse: 3.0339e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 192/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.9296e-04 - mae: 0.0130 - mse: 2.9296e-04 - val_loss: 3.0093e-04 - val_mae: 0.0121 - val_mse: 3.0093e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 193/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.9046e-04 - mae: 0.0130 - mse: 2.9046e-04 - val_loss: 2.9847e-04 - val_mae: 0.0120 - val_mse: 2.9847e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 194/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.8797e-04 - mae: 0.0129 - mse: 2.8797e-04 - val_loss: 2.9601e-04 - val_mae: 0.0120 - val_mse: 2.9601e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 195/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.8549e-04 - mae: 0.0128 - mse: 2.8549e-04 - val_loss: 2.9354e-04 - val_mae: 0.0119 - val_mse: 2.9354e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 196/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.8302e-04 - mae: 0.0128 - mse: 2.8302e-04 - val_loss: 2.9107e-04 - val_mae: 0.0118 - val_mse: 2.9107e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 197/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.8056e-04 - mae: 0.0127 - mse: 2.8056e-04 - val_loss: 2.8860e-04 - val_mae: 0.0118 - val_mse: 2.8860e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 198/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.7810e-04 - mae: 0.0126 - mse: 2.7810e-04 - val_loss: 2.8613e-04 - val_mae: 0.0117 - val_mse: 2.8613e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 199/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.7565e-04 - mae: 0.0126 - mse: 2.7565e-04 - val_loss: 2.8365e-04 - val_mae: 0.0116 - val_mse: 2.8365e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 200/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 2.7321e-04 - mae: 0.0125 - mse: 2.7321e-04 - val_loss: 2.8117e-04 - val_mae: 0.0116 - val_mse: 2.8117e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 201/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 2.7078e-04 - mae: 0.0124 - mse: 2.7078e-04 - val_loss: 2.7869e-04 - val_mae: 0.0115 - val_mse: 2.7869e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 202/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.6836e-04 - mae: 0.0124 - mse: 2.6836e-04 - val_loss: 2.7620e-04 - val_mae: 0.0115 - val_mse: 2.7620e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 203/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.6595e-04 - mae: 0.0123 - mse: 2.6595e-04 - val_loss: 2.7371e-04 - val_mae: 0.0114 - val_mse: 2.7371e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 204/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 2.6354e-04 - mae: 0.0122 - mse: 2.6354e-04 - val_loss: 2.7122e-04 - val_mae: 0.0113 - val_mse: 2.7122e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 205/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.6115e-04 - mae: 0.0122 - mse: 2.6115e-04 - val_loss: 2.6873e-04 - val_mae: 0.0113 - val_mse: 2.6873e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 206/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 2.5876e-04 - mae: 0.0121 - mse: 2.5876e-04 - val_loss: 2.6623e-04 - val_mae: 0.0112 - val_mse: 2.6623e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 207/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 2.5638e-04 - mae: 0.0120 - mse: 2.5638e-04 - val_loss: 2.6373e-04 - val_mae: 0.0111 - val_mse: 2.6373e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 208/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 9ms/step - loss: 2.5400e-04 - mae: 0.0120 - mse: 2.5400e-04 - val_loss: 2.6123e-04 - val_mae: 0.0111 - val_mse: 2.6123e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 209/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 2.5164e-04 - mae: 0.0119 - mse: 2.5164e-04 - val_loss: 2.5873e-04 - val_mae: 0.0110 - val_mse: 2.5873e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 210/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 9ms/step - loss: 2.4928e-04 - mae: 0.0118 - mse: 2.4928e-04 - val_loss: 2.5623e-04 - val_mae: 0.0109 - val_mse: 2.5623e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 211/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 9ms/step - loss: 2.4694e-04 - mae: 0.0118 - mse: 2.4694e-04 - val_loss: 2.5372e-04 - val_mae: 0.0109 - val_mse: 2.5372e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 212/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 9ms/step - loss: 2.4459e-04 - mae: 0.0117 - mse: 2.4459e-04 - val_loss: 2.5121e-04 - val_mae: 0.0108 - val_mse: 2.5121e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 213/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 2.4226e-04 - mae: 0.0116 - mse: 2.4226e-04 - val_loss: 2.4870e-04 - val_mae: 0.0107 - val_mse: 2.4870e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 214/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 2.3994e-04 - mae: 0.0116 - mse: 2.3994e-04 - val_loss: 2.4619e-04 - val_mae: 0.0107 - val_mse: 2.4619e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 215/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 2.3762e-04 - mae: 0.0115 - mse: 2.3762e-04 - val_loss: 2.4368e-04 - val_mae: 0.0106 - val_mse: 2.4368e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 216/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 2.3531e-04 - mae: 0.0114 - mse: 2.3531e-04 - val_loss: 2.4116e-04 - val_mae: 0.0105 - val_mse: 2.4116e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 217/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 2.3301e-04 - mae: 0.0114 - mse: 2.3301e-04 - val_loss: 2.3865e-04 - val_mae: 0.0105 - val_mse: 2.3865e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 218/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 2.3071e-04 - mae: 0.0113 - mse: 2.3071e-04 - val_loss: 2.3613e-04 - val_mae: 0.0104 - val_mse: 2.3613e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 219/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 2.2843e-04 - mae: 0.0112 - mse: 2.2843e-04 - val_loss: 2.3362e-04 - val_mae: 0.0103 - val_mse: 2.3362e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 220/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.2615e-04 - mae: 0.0112 - mse: 2.2615e-04 - val_loss: 2.3110e-04 - val_mae: 0.0103 - val_mse: 2.3110e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 221/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 2.2388e-04 - mae: 0.0111 - mse: 2.2388e-04 - val_loss: 2.2859e-04 - val_mae: 0.0102 - val_mse: 2.2859e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 222/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.2161e-04 - mae: 0.0110 - mse: 2.2161e-04 - val_loss: 2.2607e-04 - val_mae: 0.0101 - val_mse: 2.2607e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 223/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 2.1935e-04 - mae: 0.0110 - mse: 2.1935e-04 - val_loss: 2.2356e-04 - val_mae: 0.0100 - val_mse: 2.2356e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 224/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 2.1710e-04 - mae: 0.0109 - mse: 2.1710e-04 - val_loss: 2.2105e-04 - val_mae: 0.0100 - val_mse: 2.2105e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 225/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.1486e-04 - mae: 0.0108 - mse: 2.1486e-04 - val_loss: 2.1854e-04 - val_mae: 0.0099 - val_mse: 2.1854e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 226/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 2.1263e-04 - mae: 0.0108 - mse: 2.1263e-04 - val_loss: 2.1603e-04 - val_mae: 0.0098 - val_mse: 2.1603e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 227/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.1040e-04 - mae: 0.0107 - mse: 2.1040e-04 - val_loss: 2.1352e-04 - val_mae: 0.0098 - val_mse: 2.1352e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 228/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 2.0818e-04 - mae: 0.0106 - mse: 2.0818e-04 - val_loss: 2.1102e-04 - val_mae: 0.0097 - val_mse: 2.1102e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 229/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 2.0597e-04 - mae: 0.0106 - mse: 2.0597e-04 - val_loss: 2.0853e-04 - val_mae: 0.0096 - val_mse: 2.0853e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 230/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 2.0376e-04 - mae: 0.0105 - mse: 2.0376e-04 - val_loss: 2.0603e-04 - val_mae: 0.0096 - val_mse: 2.0603e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 231/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 2.0157e-04 - mae: 0.0105 - mse: 2.0157e-04 - val_loss: 2.0354e-04 - val_mae: 0.0095 - val_mse: 2.0354e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 232/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 1.9938e-04 - mae: 0.0104 - mse: 1.9938e-04 - val_loss: 2.0106e-04 - val_mae: 0.0094 - val_mse: 2.0106e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 233/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 1.9719e-04 - mae: 0.0103 - mse: 1.9719e-04 - val_loss: 1.9859e-04 - val_mae: 0.0093 - val_mse: 1.9859e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 234/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 1.9502e-04 - mae: 0.0103 - mse: 1.9502e-04 - val_loss: 1.9612e-04 - val_mae: 0.0093 - val_mse: 1.9612e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 235/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 1.9285e-04 - mae: 0.0102 - mse: 1.9285e-04 - val_loss: 1.9366e-04 - val_mae: 0.0092 - val_mse: 1.9366e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 236/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 1.9069e-04 - mae: 0.0102 - mse: 1.9069e-04 - val_loss: 1.9121e-04 - val_mae: 0.0091 - val_mse: 1.9121e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 237/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 1.8854e-04 - mae: 0.0101 - mse: 1.8854e-04 - val_loss: 1.8877e-04 - val_mae: 0.0091 - val_mse: 1.8877e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 238/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 1.8639e-04 - mae: 0.0100 - mse: 1.8639e-04 - val_loss: 1.8634e-04 - val_mae: 0.0090 - val_mse: 1.8634e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 239/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 1.8425e-04 - mae: 0.0100 - mse: 1.8425e-04 - val_loss: 1.8392e-04 - val_mae: 0.0089 - val_mse: 1.8392e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 240/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 1.8212e-04 - mae: 0.0099 - mse: 1.8212e-04 - val_loss: 1.8152e-04 - val_mae: 0.0088 - val_mse: 1.8152e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 241/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 1.7999e-04 - mae: 0.0099 - mse: 1.7999e-04 - val_loss: 1.7914e-04 - val_mae: 0.0088 - val_mse: 1.7914e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 242/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 1.7787e-04 - mae: 0.0098 - mse: 1.7787e-04 - val_loss: 1.7676e-04 - val_mae: 0.0087 - val_mse: 1.7676e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 243/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 1.7575e-04 - mae: 0.0098 - mse: 1.7575e-04 - val_loss: 1.7441e-04 - val_mae: 0.0086 - val_mse: 1.7441e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 244/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 5ms/step - loss: 1.7364e-04 - mae: 0.0097 - mse: 1.7364e-04 - val_loss: 1.7208e-04 - val_mae: 0.0086 - val_mse: 1.7208e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 245/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 7ms/step - loss: 1.7154e-04 - mae: 0.0097 - mse: 1.7154e-04 - val_loss: 1.6977e-04 - val_mae: 0.0085 - val_mse: 1.6977e-04\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "WARNING: DEPRECATED: pyomo.core.expr.current is deprecated. Please import\n", - "expression symbols from pyomo.core.expr (deprecated in 6.6.2) (called from\n", - ":241)\n" + "Epoch 246/250\n" ] - } - ], - "source": [ - "# Import statements\n", - "import os\n", - "import numpy as np\n", - "import pandas as pd\n", - "import random as rn\n", - "import tensorflow as tf\n", - "import tensorflow.keras as keras\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", - "from idaes.core.surrogate.sampling.scaling import OffsetScaler\n", - "from idaes.core.surrogate.keras_surrogate import KerasSurrogate\n", - "from idaes.core.surrogate.plotting.sm_plotter import (\n", - " surrogate_scatter2D,\n", - " surrogate_parity,\n", - " surrogate_residual,\n", - ")\n", - "\n", - "# fix environment variables to ensure consist neural network training\n", - "os.environ[\"PYTHONHASHSEED\"] = \"0\"\n", - "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"\"\n", - "np.random.seed(46)\n", - "rn.seed(1342)\n", - "tf.random.set_seed(62)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.1 Importing Training and Validation Datasets\n", - "\n", - "In this section, we read the dataset from the CSV file located in this directory. 500 data points were simulated for S-CO2 physical properties using REFPROP package. This example is trained on the entire dataset because neural network can overfit on smaller dataset. The data is separated using an 80/20 split into training and validation data using the IDAES split_training_validation() method.\n", - "\n", - "We rename the column headers because they contained \".\", which may cause errors while reading the column names in subsequent code, thus as a good practice we change them to the variable names to be used in the property package. Further, the input variables are **pressure**, **temperature** , while the output variables are **enth_mol**, **entr_mol**, hence we create two new dataframes for the input and output variables. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Import training data\n", - "np.set_printoptions(precision=6, suppress=True)\n", - "\n", - "csv_data = pd.read_csv(datafile_path(\"500_Points_DataSet.csv\"))\n", - "csv_data.columns.values[0:6] = [\n", - " \"pressure\",\n", - " \"temperature\",\n", - " \"enth_mol\",\n", - " \"entr_mol\",\n", - " \"CO2_enthalpy\",\n", - " \"CO2_entropy\",\n", - "]\n", - "data = csv_data.sample(n=500)\n", - "\n", - "# Creating input_data and output_data from data\n", - "input_data = data.iloc[:, :2]\n", - "output_data = data.iloc[:, 2:4]\n", - "\n", - "# Define labels, and split training and validation data\n", - "input_labels = input_data.columns\n", - "output_labels = output_data.columns\n", - "\n", - "n_data = data[input_labels[0]].size\n", - "data_training, data_validation = split_training_validation(data, 0.8, seed=n_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.2 Training Surrogate with TensorFlow Keras\n", - "TensorFlow Keras provides an interface to pass regression settings, build neural networks and train surrogate models. Keras enables the usage of two API formats: Sequential and Functional. While the Functional API offers more versatility, including multiple input and output layers in a single neural network, the Sequential API is more stable and user-friendly. Further, the Sequential API integrates cleanly with existing IDAES surrogate tools and will be utilized in this example.\n", - "\n", - "In the code below, we build the neural network structure based on our training data structure and desired regression settings. Offline, neural network models were trained for the list of settings below, and the options bolded and italicized were determined to have the minimum mean squared error for the dataset:\n", - "\n", - "* Activation function: sigmoid, **tanh**\n", - "* Optimizer: **Adam**\n", - "* Number of hidden layers: 3, **4**, 5, 6\n", - "* Number of neurons per layer: **20**, 40, 60\n", - "\n", - "Important thing to note here is that we do not use ReLU activation function for the training as the flowsheet we intend to solve with this surrogate model is a NLP problem and using ReLU activation function will make it an MINLP. Another thing to note here is the network is smaller (4,20) in order to avoid overfitting. \n", - "\n", - "Typically, Sequential Keras models are built vertically; the dataset is scaled and normalized. The network is defined for the input layer, hidden layers, and output layer for the passed activation functions and network/layer sizes. Then, the model is compiled using the passed optimizer and trained using a desired number of epochs. Keras internally validates while training and updates each epoch's model weight (coefficient) values.\n", - "\n", - "Finally, after training the model, we save the results and model expressions to a folder that contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 1.6944e-04 - mae: 0.0096 - mse: 1.6944e-04 - val_loss: 1.6748e-04 - val_mae: 0.0084 - val_mse: 1.6748e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 247/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 1.6734e-04 - mae: 0.0095 - mse: 1.6734e-04 - val_loss: 1.6522e-04 - val_mae: 0.0084 - val_mse: 1.6522e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 248/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 8ms/step - loss: 1.6525e-04 - mae: 0.0095 - mse: 1.6525e-04 - val_loss: 1.6299e-04 - val_mae: 0.0083 - val_mse: 1.6299e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 249/250\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 1/250\n", - "13/13 - 3s - loss: 0.4963 - mae: 0.5592 - mse: 0.4963 - val_loss: 0.1685 - val_mae: 0.3349 - val_mse: 0.1685 - 3s/epoch - 249ms/step\n", - "Epoch 2/250\n", - "13/13 - 0s - loss: 0.1216 - mae: 0.2839 - mse: 0.1216 - val_loss: 0.0809 - val_mae: 0.2245 - val_mse: 0.0809 - 237ms/epoch - 18ms/step\n", - "Epoch 3/250\n", - "13/13 - 0s - loss: 0.0665 - mae: 0.2043 - mse: 0.0665 - val_loss: 0.0359 - val_mae: 0.1503 - val_mse: 0.0359 - 262ms/epoch - 20ms/step\n", - "Epoch 4/250\n", - "13/13 - 0s - loss: 0.0294 - mae: 0.1329 - mse: 0.0294 - val_loss: 0.0221 - val_mae: 0.1119 - val_mse: 0.0221 - 283ms/epoch - 22ms/step\n", - "Epoch 5/250\n", - "13/13 - 0s - loss: 0.0170 - mae: 0.0964 - mse: 0.0170 - val_loss: 0.0115 - val_mae: 0.0792 - val_mse: 0.0115 - 351ms/epoch - 27ms/step\n", - "Epoch 6/250\n", - "13/13 - 0s - loss: 0.0097 - mae: 0.0734 - mse: 0.0097 - val_loss: 0.0067 - val_mae: 0.0636 - val_mse: 0.0067 - 364ms/epoch - 28ms/step\n", - "Epoch 7/250\n", - "13/13 - 0s - loss: 0.0061 - mae: 0.0610 - mse: 0.0061 - val_loss: 0.0048 - val_mae: 0.0550 - val_mse: 0.0048 - 245ms/epoch - 19ms/step\n", - "Epoch 8/250\n", - "13/13 - 0s - loss: 0.0042 - mae: 0.0521 - mse: 0.0042 - val_loss: 0.0034 - val_mae: 0.0464 - val_mse: 0.0034 - 203ms/epoch - 16ms/step\n", - "Epoch 9/250\n", - "13/13 - 0s - loss: 0.0032 - mae: 0.0458 - mse: 0.0032 - val_loss: 0.0027 - val_mae: 0.0418 - val_mse: 0.0027 - 300ms/epoch - 23ms/step\n", - "Epoch 10/250\n", - "13/13 - 0s - loss: 0.0028 - mae: 0.0420 - mse: 0.0028 - val_loss: 0.0024 - val_mae: 0.0379 - val_mse: 0.0024 - 255ms/epoch - 20ms/step\n", - "Epoch 11/250\n", - "13/13 - 0s - loss: 0.0024 - mae: 0.0384 - mse: 0.0024 - val_loss: 0.0021 - val_mae: 0.0358 - val_mse: 0.0021 - 247ms/epoch - 19ms/step\n", - "Epoch 12/250\n", - "13/13 - 0s - loss: 0.0022 - mae: 0.0358 - mse: 0.0022 - val_loss: 0.0018 - val_mae: 0.0330 - val_mse: 0.0018 - 321ms/epoch - 25ms/step\n", - "Epoch 13/250\n", - "13/13 - 0s - loss: 0.0020 - mae: 0.0338 - mse: 0.0020 - val_loss: 0.0017 - val_mae: 0.0315 - val_mse: 0.0017 - 219ms/epoch - 17ms/step\n", - "Epoch 14/250\n", - "13/13 - 0s - loss: 0.0018 - mae: 0.0323 - mse: 0.0018 - val_loss: 0.0015 - val_mae: 0.0302 - val_mse: 0.0015 - 272ms/epoch - 21ms/step\n", - "Epoch 15/250\n", - "13/13 - 0s - loss: 0.0017 - mae: 0.0311 - mse: 0.0017 - val_loss: 0.0015 - val_mae: 0.0296 - val_mse: 0.0015 - 299ms/epoch - 23ms/step\n", - "Epoch 16/250\n", - "13/13 - 0s - loss: 0.0016 - mae: 0.0303 - mse: 0.0016 - val_loss: 0.0014 - val_mae: 0.0289 - val_mse: 0.0014 - 271ms/epoch - 21ms/step\n", - "Epoch 17/250\n", - "13/13 - 0s - loss: 0.0016 - mae: 0.0293 - mse: 0.0016 - val_loss: 0.0014 - val_mae: 0.0281 - val_mse: 0.0014 - 248ms/epoch - 19ms/step\n", - "Epoch 18/250\n", - "13/13 - 0s - loss: 0.0015 - mae: 0.0287 - mse: 0.0015 - val_loss: 0.0013 - val_mae: 0.0275 - val_mse: 0.0013 - 256ms/epoch - 20ms/step\n", - "Epoch 19/250\n", - "13/13 - 0s - loss: 0.0015 - mae: 0.0285 - mse: 0.0015 - val_loss: 0.0014 - val_mae: 0.0285 - val_mse: 0.0014 - 153ms/epoch - 12ms/step\n", - "Epoch 20/250\n", - "13/13 - 0s - loss: 0.0015 - mae: 0.0282 - mse: 0.0015 - val_loss: 0.0012 - val_mae: 0.0269 - val_mse: 0.0012 - 239ms/epoch - 18ms/step\n", - "Epoch 21/250\n", - "13/13 - 0s - loss: 0.0015 - mae: 0.0278 - mse: 0.0015 - val_loss: 0.0012 - val_mae: 0.0266 - val_mse: 0.0012 - 263ms/epoch - 20ms/step\n", - "Epoch 22/250\n", - "13/13 - 0s - loss: 0.0015 - mae: 0.0279 - mse: 0.0015 - val_loss: 0.0012 - val_mae: 0.0266 - val_mse: 0.0012 - 243ms/epoch - 19ms/step\n", - "Epoch 23/250\n", - "13/13 - 0s - loss: 0.0014 - mae: 0.0274 - mse: 0.0014 - val_loss: 0.0012 - val_mae: 0.0265 - val_mse: 0.0012 - 138ms/epoch - 11ms/step\n", - "Epoch 24/250\n", - "13/13 - 0s - loss: 0.0014 - mae: 0.0264 - mse: 0.0014 - val_loss: 0.0012 - val_mae: 0.0259 - val_mse: 0.0012 - 189ms/epoch - 15ms/step\n", - "Epoch 25/250\n", - "13/13 - 0s - loss: 0.0014 - mae: 0.0268 - mse: 0.0014 - val_loss: 0.0012 - val_mae: 0.0258 - val_mse: 0.0012 - 280ms/epoch - 22ms/step\n", - "Epoch 26/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0268 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0258 - val_mse: 0.0011 - 222ms/epoch - 17ms/step\n", - "Epoch 27/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0265 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0247 - val_mse: 0.0011 - 286ms/epoch - 22ms/step\n", - "Epoch 28/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0259 - mse: 0.0013 - val_loss: 0.0012 - val_mae: 0.0259 - val_mse: 0.0012 - 116ms/epoch - 9ms/step\n", - "Epoch 29/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0259 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0252 - val_mse: 0.0011 - 157ms/epoch - 12ms/step\n", - "Epoch 30/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0256 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0248 - val_mse: 0.0011 - 267ms/epoch - 21ms/step\n", - "Epoch 31/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0254 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0245 - val_mse: 0.0011 - 264ms/epoch - 20ms/step\n", - "Epoch 32/250\n", - "13/13 - 0s - loss: 0.0012 - mae: 0.0254 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0243 - val_mse: 0.0010 - 269ms/epoch - 21ms/step\n", - "Epoch 33/250\n", - "13/13 - 0s - loss: 0.0012 - mae: 0.0248 - mse: 0.0012 - val_loss: 0.0012 - val_mae: 0.0251 - val_mse: 0.0012 - 353ms/epoch - 27ms/step\n", - "Epoch 34/250\n", - "13/13 - 1s - loss: 0.0012 - mae: 0.0256 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0248 - val_mse: 0.0010 - 537ms/epoch - 41ms/step\n", - "Epoch 35/250\n", - "13/13 - 0s - loss: 0.0012 - mae: 0.0254 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0243 - val_mse: 0.0010 - 330ms/epoch - 25ms/step\n", - "Epoch 36/250\n", - "13/13 - 0s - loss: 0.0012 - mae: 0.0245 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0234 - val_mse: 0.0010 - 289ms/epoch - 22ms/step\n", - "Epoch 37/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0244 - mse: 0.0011 - val_loss: 0.0010 - val_mae: 0.0239 - val_mse: 0.0010 - 155ms/epoch - 12ms/step\n", - "Epoch 38/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0243 - mse: 0.0011 - val_loss: 9.9094e-04 - val_mae: 0.0235 - val_mse: 9.9094e-04 - 289ms/epoch - 22ms/step\n", - "Epoch 39/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0243 - mse: 0.0011 - val_loss: 0.0010 - val_mae: 0.0238 - val_mse: 0.0010 - 118ms/epoch - 9ms/step\n", - "Epoch 40/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0241 - mse: 0.0011 - val_loss: 9.7491e-04 - val_mae: 0.0239 - val_mse: 9.7491e-04 - 299ms/epoch - 23ms/step\n", - "Epoch 41/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0241 - mse: 0.0011 - val_loss: 9.9821e-04 - val_mae: 0.0227 - val_mse: 9.9821e-04 - 151ms/epoch - 12ms/step\n", - "Epoch 42/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0240 - mse: 0.0011 - val_loss: 0.0010 - val_mae: 0.0235 - val_mse: 0.0010 - 192ms/epoch - 15ms/step\n", - "Epoch 43/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0238 - mse: 0.0011 - val_loss: 9.4863e-04 - val_mae: 0.0232 - val_mse: 9.4863e-04 - 237ms/epoch - 18ms/step\n", - "Epoch 44/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0236 - mse: 0.0011 - val_loss: 9.8018e-04 - val_mae: 0.0230 - val_mse: 9.8018e-04 - 154ms/epoch - 12ms/step\n", - "Epoch 45/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0239 - mse: 0.0011 - val_loss: 9.5093e-04 - val_mae: 0.0233 - val_mse: 9.5093e-04 - 158ms/epoch - 12ms/step\n", - "Epoch 46/250\n", - "13/13 - 0s - loss: 0.0010 - mae: 0.0230 - mse: 0.0010 - val_loss: 9.4785e-04 - val_mae: 0.0223 - val_mse: 9.4785e-04 - 218ms/epoch - 17ms/step\n", - "Epoch 47/250\n", - "13/13 - 0s - loss: 0.0010 - mae: 0.0231 - mse: 0.0010 - val_loss: 9.7827e-04 - val_mae: 0.0230 - val_mse: 9.7827e-04 - 116ms/epoch - 9ms/step\n", - "Epoch 48/250\n", - "13/13 - 0s - loss: 0.0010 - mae: 0.0232 - mse: 0.0010 - val_loss: 9.0671e-04 - val_mae: 0.0225 - val_mse: 9.0671e-04 - 288ms/epoch - 22ms/step\n", - "Epoch 49/250\n", - "13/13 - 0s - loss: 0.0010 - mae: 0.0230 - mse: 0.0010 - val_loss: 9.2521e-04 - val_mae: 0.0218 - val_mse: 9.2521e-04 - 140ms/epoch - 11ms/step\n", - "Epoch 50/250\n", - "13/13 - 0s - loss: 0.0010 - mae: 0.0231 - mse: 0.0010 - val_loss: 9.7818e-04 - val_mae: 0.0231 - val_mse: 9.7818e-04 - 149ms/epoch - 11ms/step\n", - "Epoch 51/250\n", - "13/13 - 0s - loss: 9.9977e-04 - mae: 0.0232 - mse: 9.9977e-04 - val_loss: 9.4350e-04 - val_mae: 0.0221 - val_mse: 9.4350e-04 - 146ms/epoch - 11ms/step\n", - "Epoch 52/250\n", - "13/13 - 0s - loss: 9.8599e-04 - mae: 0.0229 - mse: 9.8599e-04 - val_loss: 9.0638e-04 - val_mae: 0.0230 - val_mse: 9.0638e-04 - 265ms/epoch - 20ms/step\n", - "Epoch 53/250\n", - "13/13 - 0s - loss: 9.8295e-04 - mae: 0.0228 - mse: 9.8295e-04 - val_loss: 9.0667e-04 - val_mae: 0.0215 - val_mse: 9.0667e-04 - 179ms/epoch - 14ms/step\n", - "Epoch 54/250\n", - "13/13 - 0s - loss: 9.7266e-04 - mae: 0.0225 - mse: 9.7266e-04 - val_loss: 9.0391e-04 - val_mae: 0.0224 - val_mse: 9.0391e-04 - 287ms/epoch - 22ms/step\n", - "Epoch 55/250\n", - "13/13 - 0s - loss: 9.5234e-04 - mae: 0.0225 - mse: 9.5234e-04 - val_loss: 8.7426e-04 - val_mae: 0.0219 - val_mse: 8.7426e-04 - 284ms/epoch - 22ms/step\n", - "Epoch 56/250\n", - "13/13 - 0s - loss: 9.4315e-04 - mae: 0.0221 - mse: 9.4315e-04 - val_loss: 8.6742e-04 - val_mae: 0.0224 - val_mse: 8.6742e-04 - 297ms/epoch - 23ms/step\n", - "Epoch 57/250\n", - "13/13 - 0s - loss: 9.9226e-04 - mae: 0.0230 - mse: 9.9226e-04 - val_loss: 8.7793e-04 - val_mae: 0.0225 - val_mse: 8.7793e-04 - 206ms/epoch - 16ms/step\n", - "Epoch 58/250\n", - "13/13 - 0s - loss: 9.4137e-04 - mae: 0.0226 - mse: 9.4137e-04 - val_loss: 8.7477e-04 - val_mae: 0.0225 - val_mse: 8.7477e-04 - 160ms/epoch - 12ms/step\n", - "Epoch 59/250\n", - "13/13 - 0s - loss: 9.2474e-04 - mae: 0.0219 - mse: 9.2474e-04 - val_loss: 8.5320e-04 - val_mae: 0.0212 - val_mse: 8.5320e-04 - 274ms/epoch - 21ms/step\n", - "Epoch 60/250\n", - "13/13 - 0s - loss: 9.1133e-04 - mae: 0.0217 - mse: 9.1133e-04 - val_loss: 8.6082e-04 - val_mae: 0.0217 - val_mse: 8.6082e-04 - 160ms/epoch - 12ms/step\n", - "Epoch 61/250\n", - "13/13 - 0s - loss: 9.1801e-04 - mae: 0.0217 - mse: 9.1801e-04 - val_loss: 8.5403e-04 - val_mae: 0.0223 - val_mse: 8.5403e-04 - 143ms/epoch - 11ms/step\n", - "Epoch 62/250\n", - "13/13 - 0s - loss: 9.1987e-04 - mae: 0.0221 - mse: 9.1987e-04 - val_loss: 8.5714e-04 - val_mae: 0.0219 - val_mse: 8.5714e-04 - 128ms/epoch - 10ms/step\n", - "Epoch 63/250\n", - "13/13 - 0s - loss: 9.0862e-04 - mae: 0.0222 - mse: 9.0862e-04 - val_loss: 8.6160e-04 - val_mae: 0.0225 - val_mse: 8.6160e-04 - 154ms/epoch - 12ms/step\n", - "Epoch 64/250\n", - "13/13 - 0s - loss: 8.9349e-04 - mae: 0.0220 - mse: 8.9349e-04 - val_loss: 8.2851e-04 - val_mae: 0.0214 - val_mse: 8.2851e-04 - 284ms/epoch - 22ms/step\n", - "Epoch 65/250\n", - "13/13 - 0s - loss: 8.7848e-04 - mae: 0.0216 - mse: 8.7848e-04 - val_loss: 8.5189e-04 - val_mae: 0.0218 - val_mse: 8.5189e-04 - 168ms/epoch - 13ms/step\n", - "Epoch 66/250\n", - "13/13 - 0s - loss: 8.9773e-04 - mae: 0.0219 - mse: 8.9773e-04 - val_loss: 8.5650e-04 - val_mae: 0.0211 - val_mse: 8.5650e-04 - 113ms/epoch - 9ms/step\n", - "Epoch 67/250\n", - "13/13 - 0s - loss: 8.7443e-04 - mae: 0.0217 - mse: 8.7443e-04 - val_loss: 8.2545e-04 - val_mae: 0.0214 - val_mse: 8.2545e-04 - 264ms/epoch - 20ms/step\n", - "Epoch 68/250\n", - "13/13 - 0s - loss: 8.9141e-04 - mae: 0.0217 - mse: 8.9141e-04 - val_loss: 8.4471e-04 - val_mae: 0.0219 - val_mse: 8.4471e-04 - 189ms/epoch - 15ms/step\n", - "Epoch 69/250\n", - "13/13 - 0s - loss: 8.9507e-04 - mae: 0.0224 - mse: 8.9507e-04 - val_loss: 8.7916e-04 - val_mae: 0.0217 - val_mse: 8.7916e-04 - 175ms/epoch - 13ms/step\n", - "Epoch 70/250\n", - "13/13 - 0s - loss: 8.5737e-04 - mae: 0.0216 - mse: 8.5737e-04 - val_loss: 8.8807e-04 - val_mae: 0.0215 - val_mse: 8.8807e-04 - 322ms/epoch - 25ms/step\n", - "Epoch 71/250\n", - "13/13 - 0s - loss: 8.5560e-04 - mae: 0.0214 - mse: 8.5560e-04 - val_loss: 8.3750e-04 - val_mae: 0.0213 - val_mse: 8.3750e-04 - 207ms/epoch - 16ms/step\n", - "Epoch 72/250\n", - "13/13 - 0s - loss: 8.5576e-04 - mae: 0.0218 - mse: 8.5576e-04 - val_loss: 8.1156e-04 - val_mae: 0.0210 - val_mse: 8.1156e-04 - 257ms/epoch - 20ms/step\n", - "Epoch 73/250\n", - "13/13 - 0s - loss: 8.4688e-04 - mae: 0.0216 - mse: 8.4688e-04 - val_loss: 8.0221e-04 - val_mae: 0.0210 - val_mse: 8.0221e-04 - 233ms/epoch - 18ms/step\n", - "Epoch 74/250\n", - "13/13 - 0s - loss: 8.3636e-04 - mae: 0.0211 - mse: 8.3636e-04 - val_loss: 7.9384e-04 - val_mae: 0.0208 - val_mse: 7.9384e-04 - 250ms/epoch - 19ms/step\n", - "Epoch 75/250\n", - "13/13 - 0s - loss: 8.4758e-04 - mae: 0.0222 - mse: 8.4758e-04 - val_loss: 8.2932e-04 - val_mae: 0.0212 - val_mse: 8.2932e-04 - 119ms/epoch - 9ms/step\n", - "Epoch 76/250\n", - "13/13 - 0s - loss: 8.4142e-04 - mae: 0.0213 - mse: 8.4142e-04 - val_loss: 8.0552e-04 - val_mae: 0.0209 - val_mse: 8.0552e-04 - 150ms/epoch - 12ms/step\n", - "Epoch 77/250\n", - "13/13 - 0s - loss: 8.5035e-04 - mae: 0.0215 - mse: 8.5035e-04 - val_loss: 8.6014e-04 - val_mae: 0.0215 - val_mse: 8.6014e-04 - 126ms/epoch - 10ms/step\n", - "Epoch 78/250\n", - "13/13 - 0s - loss: 8.9015e-04 - mae: 0.0228 - mse: 8.9015e-04 - val_loss: 9.2548e-04 - val_mae: 0.0225 - val_mse: 9.2548e-04 - 242ms/epoch - 19ms/step\n", - "Epoch 79/250\n", - "13/13 - 0s - loss: 8.1577e-04 - mae: 0.0212 - mse: 8.1577e-04 - val_loss: 8.4703e-04 - val_mae: 0.0211 - val_mse: 8.4703e-04 - 165ms/epoch - 13ms/step\n", - "Epoch 80/250\n", - "13/13 - 0s - loss: 8.0555e-04 - mae: 0.0211 - mse: 8.0555e-04 - val_loss: 8.5652e-04 - val_mae: 0.0214 - val_mse: 8.5652e-04 - 131ms/epoch - 10ms/step\n", - "Epoch 81/250\n", - "13/13 - 0s - loss: 8.3478e-04 - mae: 0.0219 - mse: 8.3478e-04 - val_loss: 9.1057e-04 - val_mae: 0.0222 - val_mse: 9.1057e-04 - 166ms/epoch - 13ms/step\n", - "Epoch 82/250\n", - "13/13 - 0s - loss: 8.2593e-04 - mae: 0.0217 - mse: 8.2593e-04 - val_loss: 8.1172e-04 - val_mae: 0.0209 - val_mse: 8.1172e-04 - 143ms/epoch - 11ms/step\n", - "Epoch 83/250\n", - "13/13 - 0s - loss: 8.2887e-04 - mae: 0.0213 - mse: 8.2887e-04 - val_loss: 8.2033e-04 - val_mae: 0.0211 - val_mse: 8.2033e-04 - 115ms/epoch - 9ms/step\n", - "Epoch 84/250\n", - "13/13 - 0s - loss: 8.1454e-04 - mae: 0.0219 - mse: 8.1454e-04 - val_loss: 8.1589e-04 - val_mae: 0.0211 - val_mse: 8.1589e-04 - 148ms/epoch - 11ms/step\n", - "Epoch 85/250\n", - "13/13 - 0s - loss: 8.0777e-04 - mae: 0.0212 - mse: 8.0777e-04 - val_loss: 7.8637e-04 - val_mae: 0.0208 - val_mse: 7.8637e-04 - 282ms/epoch - 22ms/step\n", - "Epoch 86/250\n", - "13/13 - 0s - loss: 7.8107e-04 - mae: 0.0213 - mse: 7.8107e-04 - val_loss: 7.8138e-04 - val_mae: 0.0212 - val_mse: 7.8138e-04 - 246ms/epoch - 19ms/step\n", - "Epoch 87/250\n", - "13/13 - 0s - loss: 7.9729e-04 - mae: 0.0210 - mse: 7.9729e-04 - val_loss: 7.3667e-04 - val_mae: 0.0204 - val_mse: 7.3667e-04 - 237ms/epoch - 18ms/step\n", - "Epoch 88/250\n", - "13/13 - 0s - loss: 7.5931e-04 - mae: 0.0205 - mse: 7.5931e-04 - val_loss: 7.5522e-04 - val_mae: 0.0210 - val_mse: 7.5522e-04 - 208ms/epoch - 16ms/step\n", - "Epoch 89/250\n", - "13/13 - 0s - loss: 7.6036e-04 - mae: 0.0211 - mse: 7.6036e-04 - val_loss: 7.5503e-04 - val_mae: 0.0207 - val_mse: 7.5503e-04 - 193ms/epoch - 15ms/step\n", - "Epoch 90/250\n", - "13/13 - 0s - loss: 7.6322e-04 - mae: 0.0204 - mse: 7.6322e-04 - val_loss: 7.7629e-04 - val_mae: 0.0203 - val_mse: 7.7629e-04 - 168ms/epoch - 13ms/step\n", - "Epoch 91/250\n", - "13/13 - 0s - loss: 7.5436e-04 - mae: 0.0208 - mse: 7.5436e-04 - val_loss: 7.4549e-04 - val_mae: 0.0210 - val_mse: 7.4549e-04 - 156ms/epoch - 12ms/step\n", - "Epoch 92/250\n", - "13/13 - 0s - loss: 7.8479e-04 - mae: 0.0208 - mse: 7.8479e-04 - val_loss: 8.0607e-04 - val_mae: 0.0208 - val_mse: 8.0607e-04 - 137ms/epoch - 11ms/step\n", - "Epoch 93/250\n", - "13/13 - 0s - loss: 7.7194e-04 - mae: 0.0211 - mse: 7.7194e-04 - val_loss: 7.7994e-04 - val_mae: 0.0206 - val_mse: 7.7994e-04 - 174ms/epoch - 13ms/step\n", - "Epoch 94/250\n", - "13/13 - 0s - loss: 7.4802e-04 - mae: 0.0205 - mse: 7.4802e-04 - val_loss: 7.2386e-04 - val_mae: 0.0201 - val_mse: 7.2386e-04 - 303ms/epoch - 23ms/step\n", - "Epoch 95/250\n", - "13/13 - 0s - loss: 7.2616e-04 - mae: 0.0203 - mse: 7.2616e-04 - val_loss: 7.2728e-04 - val_mae: 0.0204 - val_mse: 7.2728e-04 - 129ms/epoch - 10ms/step\n", - "Epoch 96/250\n", - "13/13 - 0s - loss: 7.2310e-04 - mae: 0.0204 - mse: 7.2310e-04 - val_loss: 7.1349e-04 - val_mae: 0.0206 - val_mse: 7.1349e-04 - 218ms/epoch - 17ms/step\n", - "Epoch 97/250\n", - "13/13 - 0s - loss: 7.0905e-04 - mae: 0.0201 - mse: 7.0905e-04 - val_loss: 7.6242e-04 - val_mae: 0.0205 - val_mse: 7.6242e-04 - 128ms/epoch - 10ms/step\n", - "Epoch 98/250\n", - "13/13 - 0s - loss: 7.1839e-04 - mae: 0.0200 - mse: 7.1839e-04 - val_loss: 7.7098e-04 - val_mae: 0.0202 - val_mse: 7.7098e-04 - 147ms/epoch - 11ms/step\n", - "Epoch 99/250\n", - "13/13 - 0s - loss: 7.3924e-04 - mae: 0.0208 - mse: 7.3924e-04 - val_loss: 7.8554e-04 - val_mae: 0.0206 - val_mse: 7.8554e-04 - 130ms/epoch - 10ms/step\n", - "Epoch 100/250\n", - "13/13 - 0s - loss: 7.5556e-04 - mae: 0.0209 - mse: 7.5556e-04 - val_loss: 8.6021e-04 - val_mae: 0.0215 - val_mse: 8.6021e-04 - 174ms/epoch - 13ms/step\n", - "Epoch 101/250\n", - "13/13 - 0s - loss: 7.9288e-04 - mae: 0.0213 - mse: 7.9288e-04 - val_loss: 7.2968e-04 - val_mae: 0.0203 - val_mse: 7.2968e-04 - 125ms/epoch - 10ms/step\n", - "Epoch 102/250\n", - "13/13 - 0s - loss: 7.1861e-04 - mae: 0.0204 - mse: 7.1861e-04 - val_loss: 7.0941e-04 - val_mae: 0.0207 - val_mse: 7.0941e-04 - 260ms/epoch - 20ms/step\n", - "Epoch 103/250\n", - "13/13 - 0s - loss: 7.5092e-04 - mae: 0.0208 - mse: 7.5092e-04 - val_loss: 6.8788e-04 - val_mae: 0.0198 - val_mse: 6.8788e-04 - 275ms/epoch - 21ms/step\n", - "Epoch 104/250\n", - "13/13 - 0s - loss: 7.0460e-04 - mae: 0.0200 - mse: 7.0460e-04 - val_loss: 7.2570e-04 - val_mae: 0.0200 - val_mse: 7.2570e-04 - 125ms/epoch - 10ms/step\n", - "Epoch 105/250\n", - "13/13 - 0s - loss: 6.9255e-04 - mae: 0.0202 - mse: 6.9255e-04 - val_loss: 6.7411e-04 - val_mae: 0.0199 - val_mse: 6.7411e-04 - 275ms/epoch - 21ms/step\n", - "Epoch 106/250\n", - "13/13 - 0s - loss: 6.8175e-04 - mae: 0.0196 - mse: 6.8175e-04 - val_loss: 6.7593e-04 - val_mae: 0.0196 - val_mse: 6.7593e-04 - 157ms/epoch - 12ms/step\n", - "Epoch 107/250\n", - "13/13 - 0s - loss: 6.7018e-04 - mae: 0.0196 - mse: 6.7018e-04 - val_loss: 6.8702e-04 - val_mae: 0.0196 - val_mse: 6.8702e-04 - 183ms/epoch - 14ms/step\n", - "Epoch 108/250\n", - "13/13 - 0s - loss: 6.7955e-04 - mae: 0.0198 - mse: 6.7955e-04 - val_loss: 7.6778e-04 - val_mae: 0.0204 - val_mse: 7.6778e-04 - 192ms/epoch - 15ms/step\n", - "Epoch 109/250\n", - "13/13 - 1s - loss: 6.8953e-04 - mae: 0.0198 - mse: 6.8953e-04 - val_loss: 6.7251e-04 - val_mae: 0.0195 - val_mse: 6.7251e-04 - 516ms/epoch - 40ms/step\n", - "Epoch 110/250\n", - "13/13 - 0s - loss: 6.6819e-04 - mae: 0.0197 - mse: 6.6819e-04 - val_loss: 6.8310e-04 - val_mae: 0.0197 - val_mse: 6.8310e-04 - 146ms/epoch - 11ms/step\n", - "Epoch 111/250\n", - "13/13 - 0s - loss: 6.7136e-04 - mae: 0.0197 - mse: 6.7136e-04 - val_loss: 6.5858e-04 - val_mae: 0.0199 - val_mse: 6.5858e-04 - 208ms/epoch - 16ms/step\n", - "Epoch 112/250\n", - "13/13 - 0s - loss: 6.5784e-04 - mae: 0.0195 - mse: 6.5784e-04 - val_loss: 6.5838e-04 - val_mae: 0.0196 - val_mse: 6.5838e-04 - 215ms/epoch - 17ms/step\n", - "Epoch 113/250\n", - "13/13 - 0s - loss: 6.6861e-04 - mae: 0.0198 - mse: 6.6861e-04 - val_loss: 6.9871e-04 - val_mae: 0.0196 - val_mse: 6.9871e-04 - 149ms/epoch - 11ms/step\n", - "Epoch 114/250\n", - "13/13 - 0s - loss: 6.6345e-04 - mae: 0.0196 - mse: 6.6345e-04 - val_loss: 6.8190e-04 - val_mae: 0.0196 - val_mse: 6.8190e-04 - 141ms/epoch - 11ms/step\n", - "Epoch 115/250\n", - "13/13 - 0s - loss: 6.4121e-04 - mae: 0.0193 - mse: 6.4121e-04 - val_loss: 6.6493e-04 - val_mae: 0.0196 - val_mse: 6.6493e-04 - 166ms/epoch - 13ms/step\n", - "Epoch 116/250\n", - "13/13 - 0s - loss: 6.5036e-04 - mae: 0.0194 - mse: 6.5036e-04 - val_loss: 6.5858e-04 - val_mae: 0.0191 - val_mse: 6.5858e-04 - 107ms/epoch - 8ms/step\n", - "Epoch 117/250\n", - "13/13 - 0s - loss: 6.4983e-04 - mae: 0.0194 - mse: 6.4983e-04 - val_loss: 7.0443e-04 - val_mae: 0.0198 - val_mse: 7.0443e-04 - 109ms/epoch - 8ms/step\n", - "Epoch 118/250\n", - "13/13 - 0s - loss: 6.4994e-04 - mae: 0.0195 - mse: 6.4994e-04 - val_loss: 6.3181e-04 - val_mae: 0.0193 - val_mse: 6.3181e-04 - 296ms/epoch - 23ms/step\n", - "Epoch 119/250\n", - "13/13 - 0s - loss: 6.6252e-04 - mae: 0.0199 - mse: 6.6252e-04 - val_loss: 6.3527e-04 - val_mae: 0.0191 - val_mse: 6.3527e-04 - 165ms/epoch - 13ms/step\n", - "Epoch 120/250\n", - "13/13 - 0s - loss: 6.4578e-04 - mae: 0.0193 - mse: 6.4578e-04 - val_loss: 6.3127e-04 - val_mae: 0.0189 - val_mse: 6.3127e-04 - 190ms/epoch - 15ms/step\n", - "Epoch 121/250\n", - "13/13 - 0s - loss: 6.1375e-04 - mae: 0.0191 - mse: 6.1375e-04 - val_loss: 6.5351e-04 - val_mae: 0.0192 - val_mse: 6.5351e-04 - 125ms/epoch - 10ms/step\n", - "Epoch 122/250\n", - "13/13 - 0s - loss: 6.4650e-04 - mae: 0.0196 - mse: 6.4650e-04 - val_loss: 8.0733e-04 - val_mae: 0.0210 - val_mse: 8.0733e-04 - 142ms/epoch - 11ms/step\n", - "Epoch 123/250\n", - "13/13 - 0s - loss: 6.5887e-04 - mae: 0.0198 - mse: 6.5887e-04 - val_loss: 6.2666e-04 - val_mae: 0.0191 - val_mse: 6.2666e-04 - 278ms/epoch - 21ms/step\n", - "Epoch 124/250\n", - "13/13 - 0s - loss: 6.1387e-04 - mae: 0.0189 - mse: 6.1387e-04 - val_loss: 6.1020e-04 - val_mae: 0.0188 - val_mse: 6.1020e-04 - 246ms/epoch - 19ms/step\n", - "Epoch 125/250\n", - "13/13 - 0s - loss: 6.1348e-04 - mae: 0.0191 - mse: 6.1348e-04 - val_loss: 6.1093e-04 - val_mae: 0.0193 - val_mse: 6.1093e-04 - 135ms/epoch - 10ms/step\n", - "Epoch 126/250\n", - "13/13 - 0s - loss: 6.1374e-04 - mae: 0.0189 - mse: 6.1374e-04 - val_loss: 6.1062e-04 - val_mae: 0.0188 - val_mse: 6.1062e-04 - 174ms/epoch - 13ms/step\n", - "Epoch 127/250\n", - "13/13 - 0s - loss: 6.1279e-04 - mae: 0.0190 - mse: 6.1279e-04 - val_loss: 6.4391e-04 - val_mae: 0.0190 - val_mse: 6.4391e-04 - 142ms/epoch - 11ms/step\n", - "Epoch 128/250\n", - "13/13 - 0s - loss: 6.0951e-04 - mae: 0.0189 - mse: 6.0951e-04 - val_loss: 5.9592e-04 - val_mae: 0.0188 - val_mse: 5.9592e-04 - 249ms/epoch - 19ms/step\n", - "Epoch 129/250\n", - "13/13 - 0s - loss: 6.2194e-04 - mae: 0.0192 - mse: 6.2194e-04 - val_loss: 5.9344e-04 - val_mae: 0.0188 - val_mse: 5.9344e-04 - 279ms/epoch - 21ms/step\n", - "Epoch 130/250\n", - "13/13 - 0s - loss: 6.1795e-04 - mae: 0.0191 - mse: 6.1795e-04 - val_loss: 5.8880e-04 - val_mae: 0.0188 - val_mse: 5.8880e-04 - 356ms/epoch - 27ms/step\n", - "Epoch 131/250\n", - "13/13 - 0s - loss: 6.6297e-04 - mae: 0.0199 - mse: 6.6297e-04 - val_loss: 7.2306e-04 - val_mae: 0.0197 - val_mse: 7.2306e-04 - 151ms/epoch - 12ms/step\n", - "Epoch 132/250\n", - "13/13 - 0s - loss: 5.8788e-04 - mae: 0.0189 - mse: 5.8788e-04 - val_loss: 6.0686e-04 - val_mae: 0.0189 - val_mse: 6.0686e-04 - 102ms/epoch - 8ms/step\n", - "Epoch 133/250\n", - "13/13 - 0s - loss: 5.7425e-04 - mae: 0.0184 - mse: 5.7425e-04 - val_loss: 5.7895e-04 - val_mae: 0.0183 - val_mse: 5.7895e-04 - 239ms/epoch - 18ms/step\n", - "Epoch 134/250\n", - "13/13 - 0s - loss: 5.8783e-04 - mae: 0.0186 - mse: 5.8783e-04 - val_loss: 5.7846e-04 - val_mae: 0.0188 - val_mse: 5.7846e-04 - 285ms/epoch - 22ms/step\n", - "Epoch 135/250\n", - "13/13 - 0s - loss: 5.8541e-04 - mae: 0.0188 - mse: 5.8541e-04 - val_loss: 6.7887e-04 - val_mae: 0.0191 - val_mse: 6.7887e-04 - 178ms/epoch - 14ms/step\n", - "Epoch 136/250\n", - "13/13 - 0s - loss: 5.9158e-04 - mae: 0.0185 - mse: 5.9158e-04 - val_loss: 5.9231e-04 - val_mae: 0.0188 - val_mse: 5.9231e-04 - 113ms/epoch - 9ms/step\n", - "Epoch 137/250\n", - "13/13 - 0s - loss: 5.9616e-04 - mae: 0.0192 - mse: 5.9616e-04 - val_loss: 7.0218e-04 - val_mae: 0.0212 - val_mse: 7.0218e-04 - 138ms/epoch - 11ms/step\n", - "Epoch 138/250\n", - "13/13 - 0s - loss: 6.2132e-04 - mae: 0.0190 - mse: 6.2132e-04 - val_loss: 6.3436e-04 - val_mae: 0.0186 - val_mse: 6.3436e-04 - 144ms/epoch - 11ms/step\n", - "Epoch 139/250\n", - "13/13 - 0s - loss: 5.8416e-04 - mae: 0.0189 - mse: 5.8416e-04 - val_loss: 5.7793e-04 - val_mae: 0.0184 - val_mse: 5.7793e-04 - 279ms/epoch - 21ms/step\n", - "Epoch 140/250\n", - "13/13 - 0s - loss: 6.5695e-04 - mae: 0.0195 - mse: 6.5695e-04 - val_loss: 5.8062e-04 - val_mae: 0.0189 - val_mse: 5.8062e-04 - 174ms/epoch - 13ms/step\n", - "Epoch 141/250\n", - "13/13 - 0s - loss: 6.4168e-04 - mae: 0.0200 - mse: 6.4168e-04 - val_loss: 6.9879e-04 - val_mae: 0.0196 - val_mse: 6.9879e-04 - 118ms/epoch - 9ms/step\n", - "Epoch 142/250\n", - "13/13 - 0s - loss: 6.5517e-04 - mae: 0.0198 - mse: 6.5517e-04 - val_loss: 6.3928e-04 - val_mae: 0.0193 - val_mse: 6.3928e-04 - 120ms/epoch - 9ms/step\n", - "Epoch 143/250\n", - "13/13 - 0s - loss: 5.8456e-04 - mae: 0.0190 - mse: 5.8456e-04 - val_loss: 5.4596e-04 - val_mae: 0.0181 - val_mse: 5.4596e-04 - 304ms/epoch - 23ms/step\n", - "Epoch 144/250\n", - "13/13 - 0s - loss: 5.9458e-04 - mae: 0.0186 - mse: 5.9458e-04 - val_loss: 5.8598e-04 - val_mae: 0.0181 - val_mse: 5.8598e-04 - 178ms/epoch - 14ms/step\n", - "Epoch 145/250\n", - "13/13 - 0s - loss: 5.6787e-04 - mae: 0.0186 - mse: 5.6787e-04 - val_loss: 5.6263e-04 - val_mae: 0.0186 - val_mse: 5.6263e-04 - 131ms/epoch - 10ms/step\n", - "Epoch 146/250\n", - "13/13 - 0s - loss: 5.3545e-04 - mae: 0.0178 - mse: 5.3545e-04 - val_loss: 5.3802e-04 - val_mae: 0.0179 - val_mse: 5.3802e-04 - 396ms/epoch - 30ms/step\n", - "Epoch 147/250\n", - "13/13 - 0s - loss: 5.2310e-04 - mae: 0.0177 - mse: 5.2310e-04 - val_loss: 5.4103e-04 - val_mae: 0.0179 - val_mse: 5.4103e-04 - 151ms/epoch - 12ms/step\n", - "Epoch 148/250\n", - "13/13 - 0s - loss: 5.2826e-04 - mae: 0.0176 - mse: 5.2826e-04 - val_loss: 5.9310e-04 - val_mae: 0.0181 - val_mse: 5.9310e-04 - 155ms/epoch - 12ms/step\n", - "Epoch 149/250\n", - "13/13 - 0s - loss: 5.3295e-04 - mae: 0.0179 - mse: 5.3295e-04 - val_loss: 5.4002e-04 - val_mae: 0.0176 - val_mse: 5.4002e-04 - 120ms/epoch - 9ms/step\n", - "Epoch 150/250\n", - "13/13 - 0s - loss: 5.1491e-04 - mae: 0.0174 - mse: 5.1491e-04 - val_loss: 5.9602e-04 - val_mae: 0.0179 - val_mse: 5.9602e-04 - 137ms/epoch - 11ms/step\n", - "Epoch 151/250\n", - "13/13 - 0s - loss: 5.2334e-04 - mae: 0.0179 - mse: 5.2334e-04 - val_loss: 5.2811e-04 - val_mae: 0.0178 - val_mse: 5.2811e-04 - 315ms/epoch - 24ms/step\n", - "Epoch 152/250\n", - "13/13 - 0s - loss: 5.2768e-04 - mae: 0.0178 - mse: 5.2768e-04 - val_loss: 5.5139e-04 - val_mae: 0.0184 - val_mse: 5.5139e-04 - 198ms/epoch - 15ms/step\n", - "Epoch 153/250\n", - "13/13 - 0s - loss: 5.2962e-04 - mae: 0.0179 - mse: 5.2962e-04 - val_loss: 5.7462e-04 - val_mae: 0.0178 - val_mse: 5.7462e-04 - 129ms/epoch - 10ms/step\n", - "Epoch 154/250\n", - "13/13 - 0s - loss: 5.0260e-04 - mae: 0.0173 - mse: 5.0260e-04 - val_loss: 5.3387e-04 - val_mae: 0.0181 - val_mse: 5.3387e-04 - 131ms/epoch - 10ms/step\n", - "Epoch 155/250\n", - "13/13 - 0s - loss: 5.0501e-04 - mae: 0.0175 - mse: 5.0501e-04 - val_loss: 5.0751e-04 - val_mae: 0.0172 - val_mse: 5.0751e-04 - 267ms/epoch - 21ms/step\n", - "Epoch 156/250\n", - "13/13 - 0s - loss: 5.0518e-04 - mae: 0.0173 - mse: 5.0518e-04 - val_loss: 5.5553e-04 - val_mae: 0.0174 - val_mse: 5.5553e-04 - 182ms/epoch - 14ms/step\n", - "Epoch 157/250\n", - "13/13 - 0s - loss: 5.0064e-04 - mae: 0.0172 - mse: 5.0064e-04 - val_loss: 5.1205e-04 - val_mae: 0.0172 - val_mse: 5.1205e-04 - 160ms/epoch - 12ms/step\n", - "Epoch 158/250\n", - "13/13 - 0s - loss: 4.9541e-04 - mae: 0.0172 - mse: 4.9541e-04 - val_loss: 5.0799e-04 - val_mae: 0.0172 - val_mse: 5.0799e-04 - 131ms/epoch - 10ms/step\n", - "Epoch 159/250\n", - "13/13 - 0s - loss: 5.4153e-04 - mae: 0.0182 - mse: 5.4153e-04 - val_loss: 5.2077e-04 - val_mae: 0.0171 - val_mse: 5.2077e-04 - 172ms/epoch - 13ms/step\n", - "Epoch 160/250\n", - "13/13 - 0s - loss: 4.8280e-04 - mae: 0.0170 - mse: 4.8280e-04 - val_loss: 5.1410e-04 - val_mae: 0.0168 - val_mse: 5.1410e-04 - 164ms/epoch - 13ms/step\n", - "Epoch 161/250\n", - "13/13 - 0s - loss: 4.8993e-04 - mae: 0.0171 - mse: 4.8993e-04 - val_loss: 5.1744e-04 - val_mae: 0.0171 - val_mse: 5.1744e-04 - 169ms/epoch - 13ms/step\n", - "Epoch 162/250\n", - "13/13 - 0s - loss: 4.8044e-04 - mae: 0.0169 - mse: 4.8044e-04 - val_loss: 5.1099e-04 - val_mae: 0.0168 - val_mse: 5.1099e-04 - 188ms/epoch - 14ms/step\n", - "Epoch 163/250\n", - "13/13 - 0s - loss: 4.9657e-04 - mae: 0.0171 - mse: 4.9657e-04 - val_loss: 4.9877e-04 - val_mae: 0.0171 - val_mse: 4.9877e-04 - 258ms/epoch - 20ms/step\n", - "Epoch 164/250\n", - "13/13 - 0s - loss: 4.8858e-04 - mae: 0.0170 - mse: 4.8858e-04 - val_loss: 5.0099e-04 - val_mae: 0.0169 - val_mse: 5.0099e-04 - 150ms/epoch - 12ms/step\n", - "Epoch 165/250\n", - "13/13 - 0s - loss: 4.7747e-04 - mae: 0.0170 - mse: 4.7747e-04 - val_loss: 5.8449e-04 - val_mae: 0.0174 - val_mse: 5.8449e-04 - 158ms/epoch - 12ms/step\n", - "Epoch 166/250\n", - "13/13 - 0s - loss: 4.9897e-04 - mae: 0.0171 - mse: 4.9897e-04 - val_loss: 4.9512e-04 - val_mae: 0.0173 - val_mse: 4.9512e-04 - 265ms/epoch - 20ms/step\n", - "Epoch 167/250\n", - "13/13 - 0s - loss: 4.8695e-04 - mae: 0.0173 - mse: 4.8695e-04 - val_loss: 5.0306e-04 - val_mae: 0.0165 - val_mse: 5.0306e-04 - 151ms/epoch - 12ms/step\n", - "Epoch 168/250\n", - "13/13 - 0s - loss: 4.7948e-04 - mae: 0.0171 - mse: 4.7948e-04 - val_loss: 6.8895e-04 - val_mae: 0.0193 - val_mse: 6.8895e-04 - 128ms/epoch - 10ms/step\n", - "Epoch 169/250\n", - "13/13 - 0s - loss: 4.8055e-04 - mae: 0.0168 - mse: 4.8055e-04 - val_loss: 4.9053e-04 - val_mae: 0.0171 - val_mse: 4.9053e-04 - 234ms/epoch - 18ms/step\n", - "Epoch 170/250\n", - "13/13 - 0s - loss: 4.5980e-04 - mae: 0.0168 - mse: 4.5980e-04 - val_loss: 5.2267e-04 - val_mae: 0.0170 - val_mse: 5.2267e-04 - 167ms/epoch - 13ms/step\n", - "Epoch 171/250\n", - "13/13 - 0s - loss: 4.6495e-04 - mae: 0.0168 - mse: 4.6495e-04 - val_loss: 4.6718e-04 - val_mae: 0.0165 - val_mse: 4.6718e-04 - 243ms/epoch - 19ms/step\n", - "Epoch 172/250\n", - "13/13 - 0s - loss: 4.6046e-04 - mae: 0.0168 - mse: 4.6046e-04 - val_loss: 4.6731e-04 - val_mae: 0.0166 - val_mse: 4.6731e-04 - 148ms/epoch - 11ms/step\n", - "Epoch 173/250\n", - "13/13 - 0s - loss: 4.6993e-04 - mae: 0.0168 - mse: 4.6993e-04 - val_loss: 4.8190e-04 - val_mae: 0.0167 - val_mse: 4.8190e-04 - 143ms/epoch - 11ms/step\n", - "Epoch 174/250\n", - "13/13 - 0s - loss: 4.8411e-04 - mae: 0.0172 - mse: 4.8411e-04 - val_loss: 5.0800e-04 - val_mae: 0.0164 - val_mse: 5.0800e-04 - 131ms/epoch - 10ms/step\n", - "Epoch 175/250\n", - "13/13 - 0s - loss: 4.5295e-04 - mae: 0.0164 - mse: 4.5295e-04 - val_loss: 6.2583e-04 - val_mae: 0.0182 - val_mse: 6.2583e-04 - 136ms/epoch - 10ms/step\n", - "Epoch 176/250\n", - "13/13 - 0s - loss: 5.3742e-04 - mae: 0.0183 - mse: 5.3742e-04 - val_loss: 5.6727e-04 - val_mae: 0.0187 - val_mse: 5.6727e-04 - 141ms/epoch - 11ms/step\n", - "Epoch 177/250\n", - "13/13 - 0s - loss: 5.3634e-04 - mae: 0.0182 - mse: 5.3634e-04 - val_loss: 4.6197e-04 - val_mae: 0.0157 - val_mse: 4.6197e-04 - 316ms/epoch - 24ms/step\n", - "Epoch 178/250\n", - "13/13 - 0s - loss: 4.8847e-04 - mae: 0.0169 - mse: 4.8847e-04 - val_loss: 4.6646e-04 - val_mae: 0.0160 - val_mse: 4.6646e-04 - 214ms/epoch - 16ms/step\n", - "Epoch 179/250\n", - "13/13 - 0s - loss: 4.3622e-04 - mae: 0.0160 - mse: 4.3622e-04 - val_loss: 5.3203e-04 - val_mae: 0.0164 - val_mse: 5.3203e-04 - 181ms/epoch - 14ms/step\n", - "Epoch 180/250\n", - "13/13 - 0s - loss: 4.7108e-04 - mae: 0.0165 - mse: 4.7108e-04 - val_loss: 4.6548e-04 - val_mae: 0.0161 - val_mse: 4.6548e-04 - 144ms/epoch - 11ms/step\n", - "Epoch 181/250\n", - "13/13 - 0s - loss: 4.3932e-04 - mae: 0.0164 - mse: 4.3932e-04 - val_loss: 4.4195e-04 - val_mae: 0.0157 - val_mse: 4.4195e-04 - 302ms/epoch - 23ms/step\n", - "Epoch 182/250\n", - "13/13 - 0s - loss: 4.3340e-04 - mae: 0.0159 - mse: 4.3340e-04 - val_loss: 4.5463e-04 - val_mae: 0.0158 - val_mse: 4.5463e-04 - 216ms/epoch - 17ms/step\n", - "Epoch 183/250\n", - "13/13 - 0s - loss: 4.2639e-04 - mae: 0.0162 - mse: 4.2639e-04 - val_loss: 4.3874e-04 - val_mae: 0.0156 - val_mse: 4.3874e-04 - 296ms/epoch - 23ms/step\n", - "Epoch 184/250\n", - "13/13 - 0s - loss: 4.4119e-04 - mae: 0.0159 - mse: 4.4119e-04 - val_loss: 4.7791e-04 - val_mae: 0.0169 - val_mse: 4.7791e-04 - 195ms/epoch - 15ms/step\n", - "Epoch 185/250\n", - "13/13 - 0s - loss: 4.4805e-04 - mae: 0.0164 - mse: 4.4805e-04 - val_loss: 4.6275e-04 - val_mae: 0.0163 - val_mse: 4.6275e-04 - 119ms/epoch - 9ms/step\n", - "Epoch 186/250\n", - "13/13 - 0s - loss: 4.4495e-04 - mae: 0.0163 - mse: 4.4495e-04 - val_loss: 4.4746e-04 - val_mae: 0.0155 - val_mse: 4.4746e-04 - 115ms/epoch - 9ms/step\n", - "Epoch 187/250\n", - "13/13 - 0s - loss: 4.7030e-04 - mae: 0.0167 - mse: 4.7030e-04 - val_loss: 5.6234e-04 - val_mae: 0.0169 - val_mse: 5.6234e-04 - 147ms/epoch - 11ms/step\n", - "Epoch 188/250\n", - "13/13 - 0s - loss: 4.4920e-04 - mae: 0.0160 - mse: 4.4920e-04 - val_loss: 4.2347e-04 - val_mae: 0.0154 - val_mse: 4.2347e-04 - 451ms/epoch - 35ms/step\n", - "Epoch 189/250\n", - "13/13 - 0s - loss: 4.1850e-04 - mae: 0.0159 - mse: 4.1850e-04 - val_loss: 4.5828e-04 - val_mae: 0.0156 - val_mse: 4.5828e-04 - 110ms/epoch - 8ms/step\n", - "Epoch 190/250\n", - "13/13 - 0s - loss: 4.2816e-04 - mae: 0.0159 - mse: 4.2816e-04 - val_loss: 4.2983e-04 - val_mae: 0.0155 - val_mse: 4.2983e-04 - 121ms/epoch - 9ms/step\n", - "Epoch 191/250\n", - "13/13 - 0s - loss: 4.1442e-04 - mae: 0.0156 - mse: 4.1442e-04 - val_loss: 4.5135e-04 - val_mae: 0.0154 - val_mse: 4.5135e-04 - 173ms/epoch - 13ms/step\n", - "Epoch 192/250\n", - "13/13 - 0s - loss: 4.1126e-04 - mae: 0.0159 - mse: 4.1126e-04 - val_loss: 4.2590e-04 - val_mae: 0.0151 - val_mse: 4.2590e-04 - 149ms/epoch - 11ms/step\n", - "Epoch 193/250\n", - "13/13 - 0s - loss: 4.1197e-04 - mae: 0.0155 - mse: 4.1197e-04 - val_loss: 4.2111e-04 - val_mae: 0.0151 - val_mse: 4.2111e-04 - 243ms/epoch - 19ms/step\n", - "Epoch 194/250\n", - "13/13 - 0s - loss: 4.0958e-04 - mae: 0.0157 - mse: 4.0958e-04 - val_loss: 4.1117e-04 - val_mae: 0.0149 - val_mse: 4.1117e-04 - 272ms/epoch - 21ms/step\n", - "Epoch 195/250\n", - "13/13 - 0s - loss: 3.9243e-04 - mae: 0.0153 - mse: 3.9243e-04 - val_loss: 4.1405e-04 - val_mae: 0.0150 - val_mse: 4.1405e-04 - 136ms/epoch - 10ms/step\n", - "Epoch 196/250\n", - "13/13 - 0s - loss: 4.0300e-04 - mae: 0.0153 - mse: 4.0300e-04 - val_loss: 4.3989e-04 - val_mae: 0.0150 - val_mse: 4.3989e-04 - 151ms/epoch - 12ms/step\n", - "Epoch 197/250\n", - "13/13 - 0s - loss: 4.0142e-04 - mae: 0.0154 - mse: 4.0142e-04 - val_loss: 4.3665e-04 - val_mae: 0.0151 - val_mse: 4.3665e-04 - 160ms/epoch - 12ms/step\n", - "Epoch 198/250\n", - "13/13 - 0s - loss: 3.9936e-04 - mae: 0.0153 - mse: 3.9936e-04 - val_loss: 4.2897e-04 - val_mae: 0.0149 - val_mse: 4.2897e-04 - 114ms/epoch - 9ms/step\n", - "Epoch 199/250\n", - "13/13 - 0s - loss: 4.0143e-04 - mae: 0.0153 - mse: 4.0143e-04 - val_loss: 4.0877e-04 - val_mae: 0.0148 - val_mse: 4.0877e-04 - 209ms/epoch - 16ms/step\n", - "Epoch 200/250\n", - "13/13 - 0s - loss: 3.9668e-04 - mae: 0.0152 - mse: 3.9668e-04 - val_loss: 4.3571e-04 - val_mae: 0.0150 - val_mse: 4.3571e-04 - 198ms/epoch - 15ms/step\n", - "Epoch 201/250\n", - "13/13 - 0s - loss: 3.9516e-04 - mae: 0.0154 - mse: 3.9516e-04 - val_loss: 5.1984e-04 - val_mae: 0.0161 - val_mse: 5.1984e-04 - 147ms/epoch - 11ms/step\n", - "Epoch 202/250\n", - "13/13 - 0s - loss: 4.5166e-04 - mae: 0.0161 - mse: 4.5166e-04 - val_loss: 5.4696e-04 - val_mae: 0.0182 - val_mse: 5.4696e-04 - 128ms/epoch - 10ms/step\n", - "Epoch 203/250\n", - "13/13 - 0s - loss: 4.5904e-04 - mae: 0.0166 - mse: 4.5904e-04 - val_loss: 4.1240e-04 - val_mae: 0.0150 - val_mse: 4.1240e-04 - 137ms/epoch - 11ms/step\n", - "Epoch 204/250\n", - "13/13 - 0s - loss: 3.9851e-04 - mae: 0.0150 - mse: 3.9851e-04 - val_loss: 4.5210e-04 - val_mae: 0.0154 - val_mse: 4.5210e-04 - 141ms/epoch - 11ms/step\n", - "Epoch 205/250\n", - "13/13 - 0s - loss: 3.8760e-04 - mae: 0.0151 - mse: 3.8760e-04 - val_loss: 4.0982e-04 - val_mae: 0.0149 - val_mse: 4.0982e-04 - 121ms/epoch - 9ms/step\n", - "Epoch 206/250\n", - "13/13 - 0s - loss: 4.1937e-04 - mae: 0.0156 - mse: 4.1937e-04 - val_loss: 3.8857e-04 - val_mae: 0.0145 - val_mse: 3.8857e-04 - 294ms/epoch - 23ms/step\n", - "Epoch 207/250\n", - "13/13 - 0s - loss: 3.7173e-04 - mae: 0.0146 - mse: 3.7173e-04 - val_loss: 3.9353e-04 - val_mae: 0.0147 - val_mse: 3.9353e-04 - 146ms/epoch - 11ms/step\n", - "Epoch 208/250\n", - "13/13 - 0s - loss: 3.9673e-04 - mae: 0.0153 - mse: 3.9673e-04 - val_loss: 3.9003e-04 - val_mae: 0.0145 - val_mse: 3.9003e-04 - 115ms/epoch - 9ms/step\n", - "Epoch 209/250\n", - "13/13 - 0s - loss: 4.2359e-04 - mae: 0.0155 - mse: 4.2359e-04 - val_loss: 3.9027e-04 - val_mae: 0.0146 - val_mse: 3.9027e-04 - 150ms/epoch - 12ms/step\n", - "Epoch 210/250\n", - "13/13 - 0s - loss: 3.9302e-04 - mae: 0.0154 - mse: 3.9302e-04 - val_loss: 4.1320e-04 - val_mae: 0.0152 - val_mse: 4.1320e-04 - 167ms/epoch - 13ms/step\n", - "Epoch 211/250\n", - "13/13 - 0s - loss: 3.6641e-04 - mae: 0.0147 - mse: 3.6641e-04 - val_loss: 3.9564e-04 - val_mae: 0.0141 - val_mse: 3.9564e-04 - 167ms/epoch - 13ms/step\n", - "Epoch 212/250\n", - "13/13 - 0s - loss: 3.6259e-04 - mae: 0.0143 - mse: 3.6259e-04 - val_loss: 3.8787e-04 - val_mae: 0.0146 - val_mse: 3.8787e-04 - 309ms/epoch - 24ms/step\n", - "Epoch 213/250\n", - "13/13 - 0s - loss: 4.0665e-04 - mae: 0.0156 - mse: 4.0665e-04 - val_loss: 5.0910e-04 - val_mae: 0.0160 - val_mse: 5.0910e-04 - 158ms/epoch - 12ms/step\n", - "Epoch 214/250\n", - "13/13 - 0s - loss: 4.5758e-04 - mae: 0.0169 - mse: 4.5758e-04 - val_loss: 4.1241e-04 - val_mae: 0.0141 - val_mse: 4.1241e-04 - 125ms/epoch - 10ms/step\n", - "Epoch 215/250\n", - "13/13 - 0s - loss: 4.0666e-04 - mae: 0.0155 - mse: 4.0666e-04 - val_loss: 4.6639e-04 - val_mae: 0.0151 - val_mse: 4.6639e-04 - 177ms/epoch - 14ms/step\n", - "Epoch 216/250\n", - "13/13 - 0s - loss: 3.6615e-04 - mae: 0.0145 - mse: 3.6615e-04 - val_loss: 3.8294e-04 - val_mae: 0.0138 - val_mse: 3.8294e-04 - 253ms/epoch - 19ms/step\n", - "Epoch 217/250\n", - "13/13 - 0s - loss: 3.8135e-04 - mae: 0.0149 - mse: 3.8135e-04 - val_loss: 5.1259e-04 - val_mae: 0.0162 - val_mse: 5.1259e-04 - 136ms/epoch - 10ms/step\n", - "Epoch 218/250\n", - "13/13 - 0s - loss: 3.5877e-04 - mae: 0.0144 - mse: 3.5877e-04 - val_loss: 3.7918e-04 - val_mae: 0.0142 - val_mse: 3.7918e-04 - 254ms/epoch - 20ms/step\n", - "Epoch 219/250\n", - "13/13 - 0s - loss: 4.1097e-04 - mae: 0.0155 - mse: 4.1097e-04 - val_loss: 3.7973e-04 - val_mae: 0.0144 - val_mse: 3.7973e-04 - 167ms/epoch - 13ms/step\n", - "Epoch 220/250\n", - "13/13 - 0s - loss: 3.7840e-04 - mae: 0.0149 - mse: 3.7840e-04 - val_loss: 4.7988e-04 - val_mae: 0.0153 - val_mse: 4.7988e-04 - 157ms/epoch - 12ms/step\n", - "Epoch 221/250\n", - "13/13 - 0s - loss: 3.5545e-04 - mae: 0.0143 - mse: 3.5545e-04 - val_loss: 3.7230e-04 - val_mae: 0.0136 - val_mse: 3.7230e-04 - 218ms/epoch - 17ms/step\n", - "Epoch 222/250\n", - "13/13 - 0s - loss: 3.4610e-04 - mae: 0.0141 - mse: 3.4610e-04 - val_loss: 4.1371e-04 - val_mae: 0.0142 - val_mse: 4.1371e-04 - 141ms/epoch - 11ms/step\n", - "Epoch 223/250\n", - "13/13 - 0s - loss: 3.7775e-04 - mae: 0.0149 - mse: 3.7775e-04 - val_loss: 3.8045e-04 - val_mae: 0.0142 - val_mse: 3.8045e-04 - 176ms/epoch - 14ms/step\n", - "Epoch 224/250\n", - "13/13 - 0s - loss: 3.5911e-04 - mae: 0.0145 - mse: 3.5911e-04 - val_loss: 3.5609e-04 - val_mae: 0.0134 - val_mse: 3.5609e-04 - 421ms/epoch - 32ms/step\n", - "Epoch 225/250\n", - "13/13 - 0s - loss: 3.5933e-04 - mae: 0.0144 - mse: 3.5933e-04 - val_loss: 3.5900e-04 - val_mae: 0.0134 - val_mse: 3.5900e-04 - 159ms/epoch - 12ms/step\n", - "Epoch 226/250\n", - "13/13 - 0s - loss: 3.6466e-04 - mae: 0.0144 - mse: 3.6466e-04 - val_loss: 3.5378e-04 - val_mae: 0.0135 - val_mse: 3.5378e-04 - 307ms/epoch - 24ms/step\n", - "Epoch 227/250\n", - "13/13 - 0s - loss: 3.5876e-04 - mae: 0.0144 - mse: 3.5876e-04 - val_loss: 3.6523e-04 - val_mae: 0.0133 - val_mse: 3.6523e-04 - 193ms/epoch - 15ms/step\n", - "Epoch 228/250\n", - "13/13 - 0s - loss: 3.4559e-04 - mae: 0.0142 - mse: 3.4559e-04 - val_loss: 3.5907e-04 - val_mae: 0.0139 - val_mse: 3.5907e-04 - 133ms/epoch - 10ms/step\n", - "Epoch 229/250\n", - "13/13 - 0s - loss: 3.4162e-04 - mae: 0.0142 - mse: 3.4162e-04 - val_loss: 4.2194e-04 - val_mae: 0.0141 - val_mse: 4.2194e-04 - 107ms/epoch - 8ms/step\n", - "Epoch 230/250\n", - "13/13 - 0s - loss: 3.6967e-04 - mae: 0.0146 - mse: 3.6967e-04 - val_loss: 3.7720e-04 - val_mae: 0.0138 - val_mse: 3.7720e-04 - 165ms/epoch - 13ms/step\n", - "Epoch 231/250\n", - "13/13 - 0s - loss: 3.3735e-04 - mae: 0.0136 - mse: 3.3735e-04 - val_loss: 3.3976e-04 - val_mae: 0.0129 - val_mse: 3.3976e-04 - 276ms/epoch - 21ms/step\n", - "Epoch 232/250\n", - "13/13 - 0s - loss: 3.3844e-04 - mae: 0.0141 - mse: 3.3844e-04 - val_loss: 3.8716e-04 - val_mae: 0.0135 - val_mse: 3.8716e-04 - 134ms/epoch - 10ms/step\n", - "Epoch 233/250\n", - "13/13 - 0s - loss: 3.6741e-04 - mae: 0.0145 - mse: 3.6741e-04 - val_loss: 3.8668e-04 - val_mae: 0.0136 - val_mse: 3.8668e-04 - 146ms/epoch - 11ms/step\n", - "Epoch 234/250\n", - "13/13 - 0s - loss: 3.4129e-04 - mae: 0.0139 - mse: 3.4129e-04 - val_loss: 3.4933e-04 - val_mae: 0.0133 - val_mse: 3.4933e-04 - 165ms/epoch - 13ms/step\n", - "Epoch 235/250\n", - "13/13 - 0s - loss: 3.2338e-04 - mae: 0.0137 - mse: 3.2338e-04 - val_loss: 3.4566e-04 - val_mae: 0.0133 - val_mse: 3.4566e-04 - 153ms/epoch - 12ms/step\n", - "Epoch 236/250\n", - "13/13 - 0s - loss: 3.1652e-04 - mae: 0.0134 - mse: 3.1652e-04 - val_loss: 3.9728e-04 - val_mae: 0.0136 - val_mse: 3.9728e-04 - 187ms/epoch - 14ms/step\n", - "Epoch 237/250\n", - "13/13 - 0s - loss: 3.2047e-04 - mae: 0.0136 - mse: 3.2047e-04 - val_loss: 3.3756e-04 - val_mae: 0.0130 - val_mse: 3.3756e-04 - 209ms/epoch - 16ms/step\n", - "Epoch 238/250\n", - "13/13 - 0s - loss: 3.3167e-04 - mae: 0.0138 - mse: 3.3167e-04 - val_loss: 3.3191e-04 - val_mae: 0.0126 - val_mse: 3.3191e-04 - 175ms/epoch - 13ms/step\n", - "Epoch 239/250\n", - "13/13 - 0s - loss: 3.2033e-04 - mae: 0.0134 - mse: 3.2033e-04 - val_loss: 3.2969e-04 - val_mae: 0.0128 - val_mse: 3.2969e-04 - 234ms/epoch - 18ms/step\n", - "Epoch 240/250\n", - "13/13 - 0s - loss: 3.5224e-04 - mae: 0.0141 - mse: 3.5224e-04 - val_loss: 3.9061e-04 - val_mae: 0.0148 - val_mse: 3.9061e-04 - 130ms/epoch - 10ms/step\n", - "Epoch 241/250\n", - "13/13 - 0s - loss: 3.9777e-04 - mae: 0.0153 - mse: 3.9777e-04 - val_loss: 3.7065e-04 - val_mae: 0.0137 - val_mse: 3.7065e-04 - 122ms/epoch - 9ms/step\n", - "Epoch 242/250\n", - "13/13 - 0s - loss: 3.2502e-04 - mae: 0.0138 - mse: 3.2502e-04 - val_loss: 3.3236e-04 - val_mae: 0.0124 - val_mse: 3.3236e-04 - 128ms/epoch - 10ms/step\n", - "Epoch 243/250\n", - "13/13 - 0s - loss: 3.0734e-04 - mae: 0.0133 - mse: 3.0734e-04 - val_loss: 3.2635e-04 - val_mae: 0.0126 - val_mse: 3.2635e-04 - 321ms/epoch - 25ms/step\n", - "Epoch 244/250\n", - "13/13 - 0s - loss: 3.2928e-04 - mae: 0.0137 - mse: 3.2928e-04 - val_loss: 3.2871e-04 - val_mae: 0.0125 - val_mse: 3.2871e-04 - 167ms/epoch - 13ms/step\n", - "Epoch 245/250\n", - "13/13 - 0s - loss: 2.9711e-04 - mae: 0.0131 - mse: 2.9711e-04 - val_loss: 3.2920e-04 - val_mae: 0.0121 - val_mse: 3.2920e-04 - 129ms/epoch - 10ms/step\n", - "Epoch 246/250\n", - "13/13 - 0s - loss: 3.2661e-04 - mae: 0.0134 - mse: 3.2661e-04 - val_loss: 3.6936e-04 - val_mae: 0.0134 - val_mse: 3.6936e-04 - 191ms/epoch - 15ms/step\n", - "Epoch 247/250\n", - "13/13 - 0s - loss: 2.9618e-04 - mae: 0.0128 - mse: 2.9618e-04 - val_loss: 3.3549e-04 - val_mae: 0.0123 - val_mse: 3.3549e-04 - 119ms/epoch - 9ms/step\n", - "Epoch 248/250\n", - "13/13 - 0s - loss: 2.9979e-04 - mae: 0.0130 - mse: 2.9979e-04 - val_loss: 3.8099e-04 - val_mae: 0.0135 - val_mse: 3.8099e-04 - 122ms/epoch - 9ms/step\n", - "Epoch 249/250\n", - "13/13 - 0s - loss: 3.0599e-04 - mae: 0.0131 - mse: 3.0599e-04 - val_loss: 3.2729e-04 - val_mae: 0.0122 - val_mse: 3.2729e-04 - 150ms/epoch - 12ms/step\n", - "Epoch 250/250\n", - "13/13 - 0s - loss: 3.1256e-04 - mae: 0.0134 - mse: 3.1256e-04 - val_loss: 3.3855e-04 - val_mae: 0.0134 - val_mse: 3.3855e-04 - 127ms/epoch - 10ms/step\n" + "13/13 - 0s - 7ms/step - loss: 1.6316e-04 - mae: 0.0094 - mse: 1.6316e-04 - val_loss: 1.6079e-04 - val_mae: 0.0082 - val_mse: 1.6079e-04\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 250/250\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 - 0s - 6ms/step - loss: 1.6107e-04 - mae: 0.0094 - mse: 1.6107e-04 - val_loss: 1.5862e-04 - val_mae: 0.0082 - val_mse: 1.5862e-04\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTK0lEQVR4nO3deVxUVeM/8M/MIMMmmyCgILjvYoES+uCSPIKaSWihoiL6ZLmlD9q3bAG1eqj0l1halqW0uRZqi0tKUqaY5r7loz6YG4u4sKkgw/n9MXJjHJBBLnNZPu/X675kzj333jO3iflw7jn3qoQQAkRERET1hFrpBhARERHJieGGiIiI6hWGGyIiIqpXGG6IiIioXmG4ISIionqF4YaIiIjqFYYbIiIiqlcYboiIiKheYbghIiKieoXhhughjR8/Hj4+Pg+17dy5c6FSqeRtEClGpVJh7ty50uvExESoVCqcP3++0m19fHwwfvx4WdtTnc8mUX3AcEP1jkqlMmlJSUlRuqmKGD9+PFQqFezt7XH79m2j9WfOnJHO0cKFCw3WnT9/HtHR0WjdujWsrKzg7u6OPn36IC4uzqBev379KjzvHTp0qNH39yAvvPACVCoVzp49W2GdV199FSqVCkePHjVjy6ruypUrmDt3Lg4fPqx0UyTnz5+X/ju/+eab5daJjIyESqWCnZ2dQXlJSQm++OILBAQEwNnZGY0bN0a7du0wbtw47N27V6qXkpLywP+v16xZU6PvkeoGC6UbQCS3L7/80uD1F198ge3btxuVd+zYsVrHWb58OUpKSh5q29deew0vv/xytY5fHRYWFrh16xa+//57PPPMMwbrvv76a1hZWeHOnTsG5WfPnkWPHj1gbW2NCRMmwMfHB+np6Th48CDeeecdzJs3z6C+p6cn4uPjjY7t4OAg/xsyUWRkJD744AOsWrUKsbGx5dZZvXo1unbtim7duj30ccaOHYuRI0dCq9U+9D4qc+XKFcybNw8+Pj7o3r27wbrqfDblYGVlhdWrV+O1114zKC8oKMCmTZtgZWVltM0LL7yApUuXYtiwYYiMjISFhQVOnz6NLVu2oFWrVnjssceM6vfo0cNoP4GBgfK+GaqTGG6o3hkzZozB671792L79u1G5fe7desWbGxsTD5Oo0aNHqp9gD5cWFgo97+fVqtF7969sXr1aqNws2rVKgwZMgTffvutQfmiRYuQn5+Pw4cPw9vb22BdVlaW0TEcHBwqPefmFhAQgDZt2mD16tXlhpvU1FSkpaXh7bffrtZxNBoNNBpNtfZRHdX5bMph8ODBSEpKwpEjR+Dr6yuVb9q0CUVFRQgNDcXPP/8slWdmZuLDDz/Es88+i08++cRgXwkJCbh69arRMYKCgjBixIiaexNUp/GyFDVI/fr1Q5cuXXDgwAH06dMHNjY2eOWVVwDofwEPGTIEzZo1g1arRevWrfHGG29Ap9MZ7OP+cQ2lXfILFy7EJ598gtatW0Or1aJHjx7Yv3+/wbbljblRqVSYNm0aNm7ciC5dukCr1aJz587YunWrUftTUlLg7+8PKysrtG7dGh9//HGVx/GMHj0aW7Zswc2bN6Wy/fv348yZMxg9erRR/XPnzsHT09Mo2ABA06ZNTT7ug2RmZsLCwsKoFwgATp8+DZVKhSVLlgAA7t69i3nz5qFt27awsrJCkyZN8I9//APbt29/4DEiIyPx559/4uDBg0brVq1aBZVKhVGjRqGoqAixsbHw8/ODg4MDbG1tERQUhJ07d1b6PsobcyOEwJtvvglPT0/Y2Nigf//+OHHihNG2169fx+zZs9G1a1fY2dnB3t4egwYNwpEjR6Q6KSkpUq9FdHS0dEkmMTERQPljbgoKCjBr1ix4eXlBq9Wiffv2WLhwIYQQBvWq8jmsSGBgIFq2bIlVq1YZlH/99dcIDQ2Fs7OzQXlaWhqEEOjdu7fRvlQqlWyfL2o4GG6owbp27RoGDRqE7t27IyEhAf379weg/2Kys7NDTEwMFi9eDD8/P8TGxpp8GWnVqlVYsGABnnvuObz55ps4f/48wsPDcffu3Uq3/e233zBlyhSMHDkS7777Lu7cuYPhw4fj2rVrUp1Dhw4hNDQU165dw7x58zBx4kTMnz8fGzdurNL7Dw8Ph0qlQlJSkkHbO3TogEcffdSovre3Ny5evGjwF/eD6HQ6ZGdnGy0FBQUVbuPm5oa+ffti3bp1RuvWrl0LjUaDp59+GoA+IM6bNw/9+/fHkiVL8Oqrr6JFixblhpayIiMjpfd6f3vXrVuHoKAgtGjRArm5ufj000/Rr18/vPPOO5g7dy6uXr2KkJCQhxrnEhsbi9dffx2+vr5YsGABWrVqhYEDBxqdj//973/YuHEjnnjiCbz33nt48cUXcezYMfTt2xdXrlwBoL+kOn/+fADApEmT8OWXX+LLL79Enz59yj22EAJPPvkkFi1ahNDQULz33nto3749XnzxRcTExBjVN+VzWJlRo0ZhzZo1UnjKzs7GTz/9VG5wLg3M69evx61bt0zaf15eXrmfr/vDGjVQgqiemzp1qrj/o963b18BQCxbtsyo/q1bt4zKnnvuOWFjYyPu3LkjlUVFRQlvb2/pdVpamgAgmjRpIq5fvy6Vb9q0SQAQ33//vVQWFxdn1CYAwtLSUpw9e1YqO3LkiAAgPvjgA6ls6NChwsbGRly+fFkqO3PmjLCwsDDaZ3mioqKEra2tEEKIESNGiAEDBgghhNDpdMLd3V3MmzdPei8LFiyQtjt+/LiwtrYWAET37t3FjBkzxMaNG0VBQYHRMUrPb3nLc88998D2ffzxxwKAOHbsmEF5p06dxOOPPy699vX1FUOGDKn0/ZanR48ewtPTU+h0Oqls69atAoD4+OOPhRBCFBcXi8LCQoPtbty4Idzc3MSECRMMygGIuLg46fXKlSsFAJGWliaEECIrK0tYWlqKIUOGiJKSEqneK6+8IgCIqKgoqezOnTsG7RJC/9nSarVi/vz5Utn+/fsFALFy5Uqj93f/Z3Pjxo0CgHjzzTcN6o0YMUKoVCqDz5ypn8PylP3cHD9+XAAQu3btEkIIsXTpUmFnZycKCgoMPoOlxo0bJwAIJycn8dRTT4mFCxeKU6dOGR1j586dFX62AIj09PQHtpEaBvbcUIOl1WoRHR1tVG5tbS39XPrXYVBQEG7duoU///yz0v1GRETAyclJeh0UFARA/xd5ZYKDg9G6dWvpdbdu3WBvby9tq9PpsGPHDoSFhaFZs2ZSvTZt2mDQoEGV7v9+o0ePRkpKCjIyMvDzzz8jIyOj3L+sAaBz5844fPgwxowZg/Pnz2Px4sUICwuDm5sbli9fblTfx8cH27dvN1pmzpz5wDaFh4fDwsICa9eulcqOHz+OkydPIiIiQipzdHTEiRMncObMmSq/7zFjxuDSpUv49ddfpbJVq1bB0tJS6hnSaDSwtLQEoJ/Jc/36dRQXF8Pf37/S3qH77dixA0VFRZg+fbrBpcPyzoVWq4Varf/VrNPpcO3aNdjZ2aF9+/ZVPm6pzZs3Q6PR4IUXXjAonzVrFoQQ2LJli0F5ZZ9DU3Tu3BndunXD6tWrAejP77Bhwyoc17Zy5UosWbIELVu2xIYNGzB79mx07NgRAwYMwOXLl43qx8bGlvv5uv+SFzVMDDfUYDVv3lz68irrxIkTeOqpp+Dg4AB7e3u4urpKA2NzcnIq3W+LFi0MXpcGnRs3blR529LtS7fNysrC7du30aZNG6N65ZVVZvDgwWjcuDHWrl2Lr7/+Gj169Hjgftq1a4cvv/wS2dnZOHr0KP7zn//AwsICkyZNwo4dOwzq2traIjg42GipbCq4i4sLBgwYYHBpau3atbCwsEB4eLhUNn/+fNy8eRPt2rVD165d8eKLL5o8fXvkyJHQaDTSpak7d+5gw4YNGDRokEEw/fzzz9GtWzdpTI+rqyt+/PFHkz4HZf31118AgLZt2xqUu7q6GhwP0AepRYsWoW3bttBqtXBxcYGrqyuOHj1a5eOWPX6zZs3QuHFjg/LSGYOl7StV2efQVKNHj8b69etx9uxZ7Nmzp8LgDABqtRpTp07FgQMHkJ2djU2bNmHQoEH4+eefMXLkSKP6Xbt2LffzVd7/09TwMNxQg1W2h6bUzZs30bdvXxw5cgTz58/H999/j+3bt+Odd94BAJOm11Y0S0aYMBagOts+DK1Wi/DwcHz++efYsGHDA798ytJoNOjatSvmzJmDDRs2ANAPFpXLyJEj8d///lca27Ju3ToMGDAALi4uUp0+ffrg3LlzWLFiBbp06YJPP/0Ujz76KD799NNK99+0aVP885//xLfffou7d+/i+++/R15enjQeBwC++uorjB8/Hq1bt8Znn32GrVu3Yvv27Xj88cdrdJr1f/7zH8TExKBPnz746quvsG3bNmzfvh2dO3c22/RuuT6Ho0aNQnZ2Np599lk0adIEAwcONGm7Jk2a4Mknn8TmzZvRt29f/Pbbb0YBjOhBOBWcqIyUlBRcu3YNSUlJBoMz09LSFGzV35o2bQorK6tyb0L3oBvTPcjo0aOxYsUKqNXqcv9Croy/vz8AID09/aGOX56wsDA899xz0qWp//73v5gzZ45RPWdnZ0RHRyM6Ohr5+fno06cP5s6di3/961+VHiMyMhJbt27Fli1bsGrVKtjb22Po0KHS+m+++QatWrVCUlKSwaWk+29YaIrSAbNnzpxBq1atpPKrV68a9YZ888036N+/Pz777DOD8ps3bxqEu6rMjPP29saOHTuQl5dn0HtTepm1vBlwcmjRogV69+6NlJQUTJ48+aFuf+Dv749ffvkF6enpNdZOqn/Yc0NURulfrGX/Qi0qKsKHH36oVJMMaDQaBAcHY+PGjdLMGUAfbO4fN2Gq/v3744033sCSJUvg7u5eYb1du3aVO+Nr8+bNAID27ds/1PHL4+joiJCQEKxbtw5r1qyBpaUlwsLCDOrcP3PHzs4Obdq0QWFhoUnHCAsLg42NDT788ENs2bIF4eHhBjeXK++z8PvvvyM1NbXK7yc4OBiNGjXCBx98YLC/hIQEo7oajcaoh2T9+vVG405sbW0BwGAqf0UGDx4MnU4nTaMvtWjRIqhUqocar2WqN998E3FxcZg+fXqFdTIyMnDy5Emj8qKiIiQnJ0OtVj/UZVdquNhzQ1RGr1694OTkhKioKOlW/V9++WWtml46d+5c/PTTT+jduzcmT54sfWl16dLloaYoq9VqozvJluedd97BgQMHEB4eLt299+DBg/jiiy/g7OxsNDg2JycHX331Vbn7MuXmfhERERgzZgw+/PBDhISEwNHR0WB9p06d0K9fP/j5+cHZ2Rl//PEHvvnmG0ybNq3SfQP6MBQWFiaNuyl7SQoAnnjiCSQlJeGpp57CkCFDkJaWhmXLlqFTp07Iz8836RilXF1dMXv2bMTHx+OJJ57A4MGDcejQIWzZssWgN6b0uPPnz0d0dDR69eqFY8eO4euvvzbo8QGA1q1bw9HREcuWLUPjxo1ha2uLgIAAtGzZ0uj4Q4cORf/+/fHqq6/i/Pnz8PX1xU8//YRNmzZh5syZBoOH5da3b1/07dv3gXUuXbqEnj174vHHH8eAAQPg7u6OrKwsrF69GkeOHMHMmTONztOuXbuM7qIN6Ac/V+fu0lQ/MNwQldGkSRP88MMPmDVrFl577TU4OTlhzJgxGDBgAEJCQpRuHgDAz88PW7ZswezZs/H666/Dy8sL8+fPx6lTp0yazfWwXnnlFaxatQq//PILvv76a9y6dQseHh4YOXIkXn/9daMv1UuXLmHs2LHl7suUcPPkk0/C2toaeXl5BrOkSr3wwgv47rvv8NNPP6GwsBDe3t5488038eKLL5r8niIjI7Fq1Sp4eHjg8ccfN1g3fvx4ZGRk4OOPP8a2bdvQqVMnfPXVV1i/fv1DPZfszTffhJWVFZYtW4adO3ciICAAP/30E4YMGWJQ75VXXkFBQQFWrVqFtWvX4tFHH8WPP/5odJ+lRo0a4fPPP8ecOXPw/PPPo7i4GCtXriw33KjVanz33XeIjY3F2rVrsXLlSvj4+GDBggWYNWtWld+L3Nq3b4+EhARs3rwZH374ITIzM2FlZYUuXbpg+fLlmDhxotE277//frn7iouLY7ghqERt+pOUiB5aWFjYQ0+NJiKqTzjmhqgOuv9p3mfOnMHmzZvRr18/ZRpERFSLsOeGqA7y8PDA+PHj0apVK/z111/46KOPUFhYiEOHDhndS4WIqKHhmBuiOig0NBSrV69GRkYGtFotAgMD8Z///IfBhogI7LkhIiKieoZjboiIiKheYbghIiKieqXBjbkpKSnBlStX0Lhx4yrdvpyIiIiUI4RAXl4emjVrBrX6wX0zDS7cXLlyBV5eXko3g4iIiB7CxYsX4enp+cA6DS7clD407uLFi7C3t1e4NURERGSK3NxceHl5GTz8tSINLtyUXoqyt7dnuCEiIqpjTBlSwgHFREREVK8w3BAREVG9wnBDRERE9UqDG3NDRETVV1JSgqKiIqWbQfWMpaVlpdO8TcFwQ0REVVJUVIS0tDSUlJQo3RSqZ9RqNVq2bAlLS8tq7YfhhoiITCaEQHp6OjQaDby8vGT5K5sI+Psmu+np6WjRokW1brTLcENERCYrLi7GrVu30KxZM9jY2CjdHKpnXF1dceXKFRQXF6NRo0YPvZ9aEbmXLl0KHx8fWFlZISAgAPv27auwbmJiIlQqlcFiZWVlxtYSETVcOp0OAKp92YCoPKWfq9LP2cNSPNysXbsWMTExiIuLw8GDB+Hr64uQkBBkZWVVuI29vT3S09Ol5a+//jJji4mIiM/mo5og1+dK8XDz3nvv4dlnn0V0dDQ6deqEZcuWwcbGBitWrKhwG5VKBXd3d2lxc3MzY4vLp9MBKSnA6tX6f6sZOomIiOghKRpuioqKcODAAQQHB0tlarUawcHBSE1NrXC7/Px8eHt7w8vLC8OGDcOJEycqrFtYWIjc3FyDRW5JSYCPD9C/PzB6tP5fHx99ORER1U8+Pj5ISEgwuX5KSgpUKhVu3rxZY20iPUXDTXZ2NnQ6nVHPi5ubGzIyMsrdpn379lixYgU2bdqEr776CiUlJejVqxcuXbpUbv34+Hg4ODhIi9xPBE9KAkaMAO4//OXL+nIGHCIiY+bs7b5/nOb9y9y5cx9qv/v378ekSZNMrt+rVy+kp6fDwcHhoY5nqtIQ5eTkhDt37his279/v/S+y1q+fDl8fX1hZ2cHR0dHPPLII4iPj5fWz507t9xz16FDhxp9Lw+rzs2WCgwMRGBgoPS6V69e6NixIz7++GO88cYbRvXnzJmDmJgY6XXpU0XloNMBM2YAQhivEwJQqYCZM4FhwwCNRpZDEhHVeUlJ+t+dZf8o9PQEFi8GwsPlP156err089q1axEbG4vTp09LZXZ2dtLPQgjodDpYWFT+9ejq6lqldlhaWsLd3b1K21RH48aNsWHDBowaNUoq++yzz9CiRQtcuHBBKluxYgVmzpyJ999/H3379kVhYSGOHj2K48ePG+yvc+fO2LFjh0GZKedJCYr23Li4uECj0SAzM9OgPDMz0+QPQKNGjfDII4/g7Nmz5a7XarXSE8DlfhL4rl3GPTZlCQFcvKivR0REyvR2lx2j6eDgYDBu888//0Tjxo2xZcsW+Pn5QavV4rfffsO5c+cwbNgwuLm5wc7ODj169DD6Yr//spRKpcKnn36Kp556CjY2Nmjbti2+++47af39l6USExPh6OiIbdu2oWPHjrCzs0NoaKhBGCsuLsYLL7wAR0dHNGnSBC+99BKioqIQFhZW6fuOiooyGL96+/ZtrFmzBlFRUQb1vvvuOzzzzDOYOHEi2rRpg86dO2PUqFF46623DOpZWFgYnEt3d3e4uLhU2g4lKBpuLC0t4efnh+TkZKmspKQEycnJBr0zD6LT6XDs2DF4eHjUVDMrVObzJ0s9IqK6RgigoMC0JTcXeOGFinu7AX2PTm6uafsrbz8P6+WXX8bbb7+NU6dOoVu3bsjPz8fgwYORnJyMQ4cOITQ0FEOHDjXo8SjPvHnz8Mwzz+Do0aMYPHgwIiMjcf369Qrr37p1CwsXLsSXX36JX3/9FRcuXMDs2bOl9e+88w6+/vprrFy5Ert370Zubi42btxo0nsaO3Ysdu3aJbX522+/hY+PDx599FGDeu7u7ti7d2/9mnksFLZmzRqh1WpFYmKiOHnypJg0aZJwdHQUGRkZQgghxo4dK15++WWp/rx588S2bdvEuXPnxIEDB8TIkSOFlZWVOHHihEnHy8nJEQBETk5Otdu+c6cQ+v+9Hrzs3FntQxER1Qq3b98WJ0+eFLdv3xZCCJGfb9rvwZpY8vOr3v6VK1cKBwcH6fXOnTsFALFx48ZKt+3cubP44IMPpNfe3t5i0aJF0msA4rXXXpNe5+fnCwBiy5YtBse6ceOG1BYA4uzZs9I2S5cuFW5ubtJrNzc3sWDBAul1cXGxaNGihRg2bFiF7Sx7nLCwMDFv3jwhhBD9+/cXixcvFhs2bBBlv/6vXLkiHnvsMQFAtGvXTkRFRYm1a9cKnU4n1YmLixNqtVrY2toaLM8991yl560q7v98lVWV72/FL5ZFRETg6tWriI2NRUZGBrp3746tW7dKg4wvXLhgcHvvGzdu4Nlnn0VGRgacnJzg5+eHPXv2oFOnTmZve1CQ/jrx5cvl/wWhUunXBwWZvWlERFQF/v7+Bq/z8/Mxd+5c/Pjjj0hPT0dxcTFu375dac9Nt27dpJ9tbW1hb2//wPu22djYoHXr1tJrDw8PqX5OTg4yMzPRs2dPab1Go4Gfn5/Jz/WaMGECZsyYgTFjxiA1NRXr16/HrvvGSnh4eCA1NRXHjx/Hr7/+ij179iAqKgqffvoptm7dKn0Ht2/f3uAyGwBZh3rISfFwAwDTpk3DtGnTyl2XkpJi8HrRokVYtGiRGVpVOY1GPwBuxAjjdaUD0RMSOJiYiOovGxsgP9+0ur/+CgweXHm9zZuBPn1MO7ZcbG1tDV7Pnj0b27dvx8KFC9GmTRtYW1tjxIgRlT4J/f5HBqhUqgcGkfLqCxmvtw0aNAiTJk3CxIkTMXToUDRp0qTCul26dEGXLl0wZcoUPP/88wgKCsIvv/yC/v37A9APJWnTpo1sbatJit/Er64LDwe++Qa4/z6Cnp768poY+U9EVFuoVICtrWnLwIH6340V3YRWpQK8vPT1TNlfTd4keffu3Rg/fjyeeuopdO3aFe7u7jh//nzNHbAcDg4OcHNzw/79+6UynU6HgwcPmrwPCwsLjBs3DikpKZgwYYLJ25VeDSkoKDC9wbVIrei5qevCw4GWLYFHHwXs7YFNm/SXothjQ0T0t7K93SqV4eX82tbb3bZtWyQlJWHo0KFQqVR4/fXXTb4UJKfp06cjPj4ebdq0QYcOHfDBBx/gxo0bVXpMwRtvvIEXX3yxwl6byZMno1mzZnj88cfh6emJ9PR0vPnmm3B1dTWY3FNcXGx0DzqVSlUrnhJwP/bcyKR0qr9WC/TrVzv+5yQiqm1Ke7ubNzcsr2293e+99x6cnJzQq1cvDB06FCEhIUazjMzhpZdewqhRozBu3DgEBgbCzs4OISEhVXpgtKWlJVxcXCoMRMHBwdi7dy+efvpptGvXDsOHD4eVlRWSk5MNAtGJEyfg4eFhsHh7e1f7PdYElZDz4l4dkJubCwcHB+Tk5Mg6EOrECaBLF8DFBbh6VbbdEhHVKnfu3EFaWhpatmxZpS/Y++l0+nuApacDHh7s7TZVSUkJOnbsiGeeeabcG9fWdQ/6fFXl+5uXpWRSOqFLgV5LIqI6R6PR93LTg/3111/46aefpDsHL1myBGlpaRg9erTSTavVeFlKJgw3REQkN7VajcTERPTo0QO9e/fGsWPHsGPHDnTs2FHpptVq7LmRCcMNERHJzcvLC7t371a6GXUOe25kUjpOi+GGiIhIWQw3MintuWlYw7OJiIhqH4YbmfCyFBERUe3AcCMThhsiIqLageFGJgw3REREtQPDjUwYboiIiGoHhhuZcLYUEVH91q9fP8ycOVN67ePjg4SEhAduo1KpsHHjxmofW679NBQMNzLhbCkioirQ6YCUFGD1av2/Ol2NHWro0KEIDQ0td92uXbugUqlw9OjRKu93//79mDRpUnWbZ2Du3Lno3r27UXl6ejoGDRok67Hul5iYCJVKVe4NAtevXw+VSgUfHx+pTKfT4e2330aHDh1gbW0NZ2dnBAQE4NNPP5XqjB8/HiqVymip6L+HXHgTP5moy8REIf7uySEiovskJQEzZgCXLv1d5umpf2R4DTw5c+LEiRg+fDguXboET09Pg3UrV66Ev78/unXrVuX9urq6ytXESrm7u5vlOLa2tsjKykJqaqrBE8E/++wztGjRwqDuvHnz8PHHH2PJkiXw9/dHbm4u/vjjD9y4ccOgXmhoKFauXGlQptVqa+5NgD03sikbbnhpioioAklJwIgRhsEGAC5f1pcnJcl+yCeeeAKurq5ITEw0KM/Pz8f69esxceJEXLt2DaNGjULz5s1hY2ODrl27YvXq1Q/c7/2Xpc6cOYM+ffrAysoKnTp1wvbt2422eemll9CuXTvY2NigVatWeP3113H37l0A+p6TefPm4ciRI1IPR2mb778sdezYMTz++OOwtrZGkyZNMGnSJOTn50vrx48fj7CwMCxcuBAeHh5o0qQJpk6dKh2rIhYWFhg9ejRWrFghlV26dAkpKSlGz7P67rvvMGXKFDz99NNo2bIlfH19MXHiRMyePdugnlarhbu7u8Hi5OT0wHZUF8ONTBhuiKhBEgIoKDBtyc0FXnih/Ov3pWUzZujrmbI/E8cBWFhYYNy4cUhMTIQos8369euh0+kwatQo3LlzB35+fvjxxx9x/PhxTJo0CWPHjsW+fftMOkZJSQnCw8NhaWmJ33//HcuWLcNLL71kVK9x48ZITEzEyZMnsXjxYixfvhyLFi0CAERERGDWrFno3Lkz0tPTkZ6ejoiICKN9FBQUICQkBE5OTti/fz/Wr1+PHTt2YNq0aQb1du7ciXPnzmHnzp34/PPPkZiYaBTwyjNhwgSsW7cOt27dAqAPXaGhoXBzczOo5+7ujp9//hlXr1416RyZlWhgcnJyBACRk5Mj635v3hRC/3+aEHfuyLprIqJa4/bt2+LkyZPi9u3b+oL8/L9/+Zl7yc83ud2nTp0SAMTOnTulsqCgIDFmzJgKtxkyZIiYNWuW9Lpv375ixowZ0mtvb2+xaNEiIYQQ27ZtExYWFuLy5cvS+i1btggAYsOGDRUeY8GCBcLPz096HRcXJ3x9fY3qld3PJ598IpycnER+mff/448/CrVaLTIyMoQQQkRFRQlvb29RXFws1Xn66adFREREhW1ZuXKlcHBwEEII0b17d/H555+LkpIS0bp1a7Fp0yaxaNEi4e3tLdU/ceKE6Nixo1Cr1aJr167iueeeE5s3bzbYZ1RUlNBoNMLW1tZgeeutt8ptg9Hnq4yqfH+z50YmZcfYsOeGiKh26dChA3r16iVdbjl79ix27dqFiRMnAtAPjn3jjTfQtWtXODs7w87ODtu2bcOFCxdM2v+pU6fg5eWFZs2aSWVlx6yUWrt2LXr37g13d3fY2dnhtddeM/kYZY/l6+sLW1tbqax3794oKSnB6dOnpbLOnTtDo9FIrz08PJCVlWXSMSZMmICVK1fil19+QUFBAQYPHmxUp1OnTjh+/Dj27t2LCRMmICsrC0OHDsW//vUvg3r9+/fH4cOHDZbnn3++Su+5qhhuZHL/gGIiogbBxgbIzzdt2bzZtH1u3mza/mxsqtTUiRMn4ttvv0VeXh5WrlyJ1q1bo2/fvgCABQsWYPHixXjppZewc+dOHD58GCEhISgqKqrqGalQamoqIiMjMXjwYPzwww84dOgQXn31VVmPUVajRo0MXqtUKpSY+Nd3ZGQk9u7di7lz52Ls2LGwsCh//pFarUaPHj0wc+ZMJCUlITExEZ999hnS0tKkOra2tmjTpo3B4uzs/PBvzAScLSUTjrkhogZJpQLK9CA80MCB+llRly+X/1egSqVfP3AgUKbHQS7PPPMMZsyYgVWrVuGLL77A5MmTobrX7b57924MGzYMY8aMAaAfQ/Pf//4XnTp1MmnfHTt2xMWLF5Geng4PDw8AwN69ew3q7NmzB97e3nj11Velsr/++sugjqWlJXSVTIvv2LEjEhMTUVBQIPXe7N69G2q1Gu3btzepvZVxdnbGk08+iXXr1mHZsmUmb1d6vgoKCmRpx8Niz41MGG6IiCqh0einewPG98sofZ2QUCPBBgDs7OwQERGBOXPmID09HePHj5fWtW3bFtu3b8eePXtw6tQpPPfcc8jMzDR538HBwWjXrh2ioqJw5MgR7Nq1yyDElB7jwoULWLNmDc6dO4f3338fGzZsMKjj4+ODtLQ0HD58GNnZ2SgsLDQ6VmRkJKysrBAVFYXjx49j586dmD59OsaOHWs06Lc6EhMTkZ2djQ4dOpS7fsSIEVi0aBF+//13/PXXX0hJScHUqVPRrl07g20KCwuRkZFhsGRnZ8vWzvIw3MiE4YaIyATh4cA33wDNmxuWe3rqy2vgPjdlTZw4ETdu3EBISIjB+JjXXnsNjz76KEJCQtCvXz+4u7sjLCzM5P2q1Wps2LABt2/fRs+ePfGvf/0Lb731lkGdJ598Ev/+978xbdo0dO/eHXv27MHrr79uUGf48OEIDQ1F//794erqWu50dBsbG2zbtg3Xr19Hjx49MGLECAwYMABLliyp2smoROk084qEhITg+++/x9ChQ6Vg16FDB/z0008Gl7G2bt0KDw8Pg+Uf//iHrG29n0qIhjVCJDc3Fw4ODsjJyYG9vb1s+y0uBkovb167BtTw5UQiIkXcuXMHaWlpaNmyJaysrB5+RzodsGsXkJ4OeHgAQUE11mNDdceDPl9V+f7mmBuZlO1hbVhxkYjoIWg0QL9+SreC6ilelpIJL0sRERHVDgw3MuF9boiIiGoHhhsZlfbeMNwQEREph+FGRgw3RNRQNLC5KGQmcn2uGG5kxHBDRPVd6e38a+quutSwlX6uNNWcOcfZUjIqHXfDP2iIqL6ysLCAjY0Nrl69ikaNGkGt5t/IJI+SkhJcvXoVNjY2FT7uwVQMNzJizw0R1XcqlQoeHh5IS0szenQAUXWp1Wq0aNFCeizGw2K4kRHDDRE1BJaWlmjbti0vTZHsLC0tZekNZLiREcMNETUUarW6encoJqpBvFgqI4YbIiIi5THcyIjhhoiISHkMNzLibCkiIiLlMdzIiD03REREymO4kRHDDRERkfIYbmTEcENERKQ8hhsZMdwQEREpj+FGRhxQTEREpDyGGxmx54aIiEh5DDcyYrghIiJSHsONjBhuiIiIlMdwIyOGGyIiIuUx3MiI4YaIiEh5DDcy4mwpIiIi5THcyIg9N0RERMpjuJERww0REZHyGG5kxHBDRESkPIYbGTHcEBERKY/hRkYMN0RERMpjuJERZ0sREREpj+FGRuy5ISIiUh7DjYwYboiIiJRXK8LN0qVL4ePjAysrKwQEBGDfvn0mbbdmzRqoVCqEhYXVbANNxHBDRESkPMXDzdq1axETE4O4uDgcPHgQvr6+CAkJQVZW1gO3O3/+PGbPno2goCAztbRyDDdERETKUzzcvPfee3j22WcRHR2NTp06YdmyZbCxscGKFSsq3Ean0yEyMhLz5s1Dq1atzNjaB2O4ISIiUp6i4aaoqAgHDhxAcHCwVKZWqxEcHIzU1NQKt5s/fz6aNm2KiRMnVnqMwsJC5ObmGiw1hbOliIiIlKdouMnOzoZOp4Obm5tBuZubGzIyMsrd5rfffsNnn32G5cuXm3SM+Ph4ODg4SIuXl1e1210R9twQEREpT/HLUlWRl5eHsWPHYvny5XBxcTFpmzlz5iAnJ0daLl68WGPtY7ghIiJSnoWSB3dxcYFGo0FmZqZBeWZmJtzd3Y3qnzt3DufPn8fQoUOlspJ7ScLCwgKnT59G69atDbbRarXQarU10HpjDDdERETKU7TnxtLSEn5+fkhOTpbKSkpKkJycjMDAQKP6HTp0wLFjx3D48GFpefLJJ9G/f38cPny4Ri85mYLhhoiISHmK9twAQExMDKKiouDv74+ePXsiISEBBQUFiI6OBgCMGzcOzZs3R3x8PKysrNClSxeD7R0dHQHAqFwJpeGGA4qJiIiUo3i4iYiIwNWrVxEbG4uMjAx0794dW7dulQYZX7hwAWp13RgaVDpbij03REREylEJ0bD6GXJzc+Hg4ICcnBzY29vLuu/Bg4EtW4CVK4Hx42XdNRERUYNWle/vutElUkdwzA0REZHyGG5kxHBDRESkPIYbGTHcEBERKY/hRkZ8/AIREZHyGG5kxJ4bIiIi5THcyIjhhoiISHkMNzJiuCEiIlIew42MGG6IiIiUx3AjI4YbIiIi5THcyIizpYiIiJTHcCMj9twQEREpj+FGRgw3REREymO4kRHDDRERkfIYbmTEcENERKQ8hhsZlYYbDigmIiJSDsONjEpnS7HnhoiISDkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYwYboiIiJTHcCMjzpYiIiJSHsONjDhbioiISHkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYwYboiIiJTHcCMjzpYiIiJSHsONjDhbioiISHkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYwYboiIiJTHcCMjzpYiIiJSHsONjDhbioiISHkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYw4oJiIiEh5DDcy4oBiIiIi5THcyIiXpYiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYw4W4qIiEh5DDcy4mwpIiIi5THcyIiXpYiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYw4W4qIiEh5DDcy4mwpIiIi5THcyIiXpYiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MuKAYiIiIuUx3MiIPTdERETKY7iREWdLERERKa9WhJulS5fCx8cHVlZWCAgIwL59+yqsm5SUBH9/fzg6OsLW1hbdu3fHl19+acbWVow9N0RERMpTPNysXbsWMTExiIuLw8GDB+Hr64uQkBBkZWWVW9/Z2RmvvvoqUlNTcfToUURHRyM6Ohrbtm0zc8uNMdwQEREpTyWEssNfAwIC0KNHDyxZsgQAUFJSAi8vL0yfPh0vv/yySft49NFHMWTIELzxxhuV1s3NzYWDgwNycnJgb29frbbfb+tWYNAg4JFHgIMHZd01ERFRg1aV729Fe26Kiopw4MABBAcHS2VqtRrBwcFITU2tdHshBJKTk3H69Gn06dOn3DqFhYXIzc01WGoKZ0sREREpT9Fwk52dDZ1OBzc3N4NyNzc3ZGRkVLhdTk4O7OzsYGlpiSFDhuCDDz7AP//5z3LrxsfHw8HBQVq8vLxkfQ9l8bIUERGR8hQfc/MwGjdujMOHD2P//v146623EBMTg5SUlHLrzpkzBzk5OdJy8eLFGmsXZ0sREREpz0LJg7u4uECj0SAzM9OgPDMzE+7u7hVup1ar0aZNGwBA9+7dcerUKcTHx6Nfv35GdbVaLbRaraztrrhd+n8ZboiIiJSjaM+NpaUl/Pz8kJycLJWVlJQgOTkZgYGBJu+npKQEhYWFNdHEKmG4ISIiUp6iPTcAEBMTg6ioKPj7+6Nnz55ISEhAQUEBoqOjAQDjxo1D8+bNER8fD0A/hsbf3x+tW7dGYWEhNm/ejC+//BIfffSRkm8DAMMNERFRbaB4uImIiMDVq1cRGxuLjIwMdO/eHVu3bpUGGV+4cAFq9d8dTAUFBZgyZQouXboEa2trdOjQAV999RUiIiKUegsSzpYiIiJSnuL3uTG3mrzPTWoq0KsX0Lo1cPasrLsmIiJq0OrMfW7qG86WIiIiUh7DjYw45oaIiEh5DDcyYrghIiJSHsONjBhuiIiIlMdwIyPOliIiIlIew42MOKCYiIhIeQw3MuJlKSIiIuUx3MiI4YaIiEh5DDcyYrghIiJSHsONjDigmIiISHkMNzJizw0REZHyGG5kxNlSREREymO4kRF7boiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MuJsKSIiIuUx3MiIPTdERETKq1K4effdd3H79m3p9e7du1FYWCi9zsvLw5QpU+RrXR3D2VJERETKUwlh+kUUjUaD9PR0NG3aFABgb2+Pw4cPo1WrVgCAzMxMNGvWDDqdrmZaK4Pc3Fw4ODggJycH9vb2su47MxNwd9f/zEtTRERE8qnK93eVem7uz0FVyEUNgrrM2eSpISIiUgbH3MiobLjhpSkiIiJlMNzIiD03REREyrOo6gaffvop7OzsAADFxcVITEyEi4sLAP2A4oaMPTdERETKq9KAYh8fH6hKpwQ9QFpaWrUaVZNqckBxbi7g4KD/+fZtwMpK1t0TERE1WFX5/q5Sz8358+er0656jz03REREyuOYGxkx3BARESmvSuEmNTUVP/zwg0HZF198gZYtW6Jp06aYNGmSwU39GhoOKCYiIlJelcLN/PnzceLECen1sWPHMHHiRAQHB+Pll1/G999/j/j4eNkbWVew54aIiEh5VQo3hw8fxoABA6TXa9asQUBAAJYvX46YmBi8//77WLduneyNrCsYboiIiJRXpXBz48YNuLm5Sa9/+eUXDBo0SHrdo0cPXLx4Ub7W1TFlJ5Ix3BARESmjSuHGzc1NmuZdVFSEgwcP4rHHHpPW5+XloVGjRvK2sA5hzw0REZHyqhRuBg8ejJdffhm7du3CnDlzYGNjg6CgIGn90aNH0bp1a9kbWVew54aIiEh5VbrPzRtvvIHw8HD07dsXdnZ2SExMhKWlpbR+xYoVGDhwoOyNrEvUan2w4WwpIiIiZVQp3Li4uODXX39FTk4O7OzsoNFoDNavX78ejRs3lrWBdU1puGHPDRERkTKqFG4mTJhgUr0VK1Y8VGPqg9JxNww3REREyqhSuElMTIS3tzceeeQRVOGRVA1K6bgbhhsiIiJlVCncTJ48GatXr0ZaWhqio6MxZswYODs711Tb6iT23BARESmrSrOlli5divT0dPzf//0fvv/+e3h5eeGZZ57Btm3b2JNzD8MNERGRsqr84EytVotRo0Zh+/btOHnyJDp37owpU6bAx8cH+fn5NdHGOqU03DDrERERKaNaTwVXq9VQqVQQQkCn08nVpjqNPTdERETKqnK4KSwsxOrVq/HPf/4T7dq1w7Fjx7BkyRJcuHABdnZ2NdHGOoUDiomIiJRVpQHFU6ZMwZo1a+Dl5YUJEyZg9erVcHFxqam21UnsuSEiIlKWSlRhJLBarUaLFi3wyCOPQFX2WQP3SUpKkqVxNSE3NxcODg7IycmBvb297Pt3dQWys4Hjx4HOnWXfPRERUYNUle/vKvXcjBs37oGhhjigmIiISGlVvokfPRgvSxERESmrWrOlyBjDDRERkbIYbmTG2VJERETKYriRGXtuiIiIlMVwIzOGGyIiImUx3MiMs6WIiIiUxXAjM/bcEBERKYvhRmYMN0RERMpiuJEZZ0sREREpi+FGZuy5ISIiUhbDjcwYboiIiJTFcCMzzpYiIiJSVq0IN0uXLoWPjw+srKwQEBCAffv2VVh3+fLlCAoKgpOTE5ycnBAcHPzA+ubGnhsiIiJlKR5u1q5di5iYGMTFxeHgwYPw9fVFSEgIsrKyyq2fkpKCUaNGYefOnUhNTYWXlxcGDhyIy5cvm7nl5WO4ISIiUpZKCGUvoAQEBKBHjx5YsmQJAKCkpAReXl6YPn06Xn755Uq31+l0cHJywpIlSzBu3LhK6+fm5sLBwQE5OTmwt7evdvvv9+ijwKFDwJYtQGio7LsnIiJqkKry/a1oz01RUREOHDiA4OBgqUytViM4OBipqakm7ePWrVu4e/cunJ2da6qZVcKeGyIiImVZKHnw7Oxs6HQ6uLm5GZS7ubnhzz//NGkfL730Epo1a2YQkMoqLCxEYWGh9Do3N/fhG2wChhsiIiJlKT7mpjrefvttrFmzBhs2bICVlVW5deLj4+Hg4CAtXl5eNdomzpYiIiJSlqLhxsXFBRqNBpmZmQblmZmZcHd3f+C2CxcuxNtvv42ffvoJ3bp1q7DenDlzkJOTIy0XL16Upe0VYc8NERGRshQNN5aWlvDz80NycrJUVlJSguTkZAQGBla43bvvvos33ngDW7duhb+//wOPodVqYW9vb7DUJIYbIiIiZSk65gYAYmJiEBUVBX9/f/Ts2RMJCQkoKChAdHQ0AGDcuHFo3rw54uPjAQDvvPMOYmNjsWrVKvj4+CAjIwMAYGdnBzs7O8XeRyk+W4qIiEhZioebiIgIXL16FbGxscjIyED37t2xdetWaZDxhQsXoFb/3cH00UcfoaioCCNGjDDYT1xcHObOnWvOppeLPTdERETKUjzcAMC0adMwbdq0ctelpKQYvD5//nzNN6gaOKCYiIhIWXV6tlRtxJ4bIiIiZTHcyIzhhoiISFkMNzJjuCEiIlIWw43MOFuKiIhIWQw3MmPPDRERkbIYbmTG2VJERETKYriRGXtuiIiIlMVwIzOGGyIiImUx3MiMA4qJiIiUxXAjM/bcEBERKatWPH6hXtDpgF27EHQpHdfgAVEcBECjdKuIiIgaHIYbOSQlATNmAJcuYSaAmQDyYj2B5ouB8HBl20ZERNTA8LJUdSUlASNGAJcuGRTb3bysL09KUqhhREREDRPDTXXodPoem3JuaqPCvbKZM/X1iIiIyCwYbqpj1y6jHhsDQgAXL+rrERERkVkw3FRHerq89YiIiKjaGG6qw8ND3npERERUbQw31REUBHh6/n3nvvupVICXl74eERERmQXDTXVoNMDixfqf7ws4AvdeJyTo6xEREZFZMNxUV3g48M03Rpeech089eW8zw0REZFZMdzIITwcOH5cejkQ2/DBv9MYbIiIiBTAcCMXW1vpx33oCR0fvUBERKQIhhu5NGokjbuxwp3y7utHREREZsBwIxeVCrCyAqAPN3wqOBERkTIYbuR0L9xoUchwQ0REpBCGGzmx54aIiEhxDDdy0moBMNwQEREpieFGTuy5ISIiUhzDjZzKhBvOliIiIlIGw42c2HNDRESkOIYbOXG2FBERkeIYbuTEAcVERESKY7iREy9LERERKY7hRk4MN0RERIpjuJETZ0sREREpjuFGThxQTEREpDiGGznxshQREZHiGG7kxNlSREREimO4kRN7boiIiBTHcCMnDigmIiJSHMONnNhzQ0REpDiGGzlxthQREZHiGG7kVGZA8f/+B6SkADqdsk0iIiJqaBhuZLTv2N+XpfbsAfr3B3x8gKQkZdtFRETUkDDcyCQpCXgn4e9wU+ryZWDECAYcIiIic2G4kYFOB8yYAdyGcbgpnTU1cyYvUREREZkDw40Mdu0CLl0C7pQTbgB9wLl4UV+PiIiIahbDjQzS0/X/loYbLQofWI+IiIhqDsONDDw89P8W4u/ZUg+qR0RERDWH4UYGQUGApydQWMFlKZUK8PLS1yMiIqKaxXAjA40GWLy4/DE3KpX+34QEfT0iIiKqWQw3MgkPB97/xDjceHoC33yjX09EREQ1j+FGRoPD9eGmEYph1UiHnTuBtDQGGyIiInNiuJHTvccvAIDqbiGCgngpioiIyNwYbuR078GZgP7SVEGBgm0hIiJqoBhu5GRhAXGvq8YKd5Cfr3B7iIiIGiCGG5mprP4eVMxwQ0REZH6Kh5ulS5fCx8cHVlZWCAgIwL59+yqse+LECQwfPhw+Pj5QqVRISEgwX0NNVSbc5OUp3BYiIqIGSNFws3btWsTExCAuLg4HDx6Er68vQkJCkJWVVW79W7duoVWrVnj77bfh7u5u5taayOrvRzCw54aIiMj8FA037733Hp599llER0ejU6dOWLZsGWxsbLBixYpy6/fo0QMLFizAyJEjoS0zM6lW0f79CAb23BAREZmfYuGmqKgIBw4cQHBw8N+NUasRHByM1NRU2Y5TWFiI3Nxcg6VGccwNERGRohQLN9nZ2dDpdHBzczMod3NzQ0ZGhmzHiY+Ph4ODg7R4eXnJtu9yMdwQEREpSvEBxTVtzpw5yMnJkZaLFy/W7AE5oJiIiEhRFkod2MXFBRqNBpmZmQblmZmZsg4W1mq15h2fw54bIiIiRSnWc2NpaQk/Pz8kJydLZSUlJUhOTkZgYKBSzaq+e0FKi0L23BARESlAsZ4bAIiJiUFUVBT8/f3Rs2dPJCQkoKCgANHR0QCAcePGoXnz5oiPjwegH4R88uRJ6efLly/j8OHDsLOzQ5s2bRR7HwbYc0NERKQoRcNNREQErl69itjYWGRkZKB79+7YunWrNMj4woULUKv/7ly6cuUKHnnkEen1woULsXDhQvTt2xcpKSnmbn75yoSb6ww3REREZqdouAGAadOmYdq0aeWuuz+w+Pj4QAhhhlZVAwcUExERKarez5YyO16WIiIiUhTDjdwsLQEAj+AQ2l5OAXQ6ZdtDRETUwDDcyCkpCbj36Ihh+A4fnuoP+Pjoy4mIiMgsGG7kkpQEjBgBo4E2ly/ryxlwiIiIzILhRg46HTBjBlDeYOfSspkzeYmKiIjIDBhu5LBrF3DpUsXrhQAuXtTXIyIiohrFcCOH9HR56xEREdFDY7iRg4eHvPWIiIjooTHcyCEoCPD0BFSq8terVICXl74eERER1SiGGzloNMDixeWuEqWBJyFBX4+IiIhqFMONXMLDgW++Ae49F6tUUVNPfXl4uEINIyIialgYbuQUHg7s2wcA0EGFfvgZS2elQTeMwYaIiMhcGG5ktum3JgAADQT+QA/M+j8Nb1JMRERkRgw3MkpKAp6KtEEx9GNrHJADgDcpJiIiMieGG5lINymGCjlwAPB3uOFNiomIiMyH4UYmZW9SfH+4AXiTYiIiInNhuJFJ2ZsPl4YbR9x8YD0iIiKSH8ONTMrefPgmHAEY9tyUV4+IiIjkx3Ajk7I3KS7vshRvUkxERGQeDDcyKXuT4vvDDW9STEREZD4MNzIqvUmxzs4w3HjyJsVERERmY6F0A+qb8HCg5IAD8B99uGnaFEhLY48NERGRubDnpgaonR0B6GdL3brFYENERGRODDc1weHvy1L5+UBRkcLtISIiakAYbmqCg+GYm+vXlWwMERFRw8JwUxPuhRtnjT7cXLumZGOIiIgaFoabmnAv3Diq2HNDRERkbgw3NcHREQBgL9hzQ0REZG4MNzXhXs+NnS4HKpSw54aIiMiMGG5qwr1wo4aAHfLZc0NERGRGDDc1wcoKaNQIgH7GFHtuiIiIzIfhpiaoVAbTwdlzQ0REZD4MNzVBpwMsLQEA/bATN6/pFG4QERFRw8FwI7ekJMDHB7hyBQCwBC9gyY8++nIiIiKqcQw3ckpKAkaMAC5dMih2KbysL2fAISIiqnEMN3LR6YAZMwAhjFapca9s5kx9PSIiIqoxDDdy2bXLqMfGgBDAxYv6ekRERFRjGG7kkp5uUrV9m0yrR0RERA+H4UYuHh4mVXspwYNDb4iIiGoQw41cgoIAT08Ilarc1SVQ4QK8sAtBHHpDRERUgxhu5KLRAIsXA0IfZMoquffvTCRABw2H3hAREdUghhs5hYfjt5nf4DKaGxTfgi3iMBebMEwqM3GIDhEREVURw43MdMPC4YPzeB3zcAtWAAA7FOANxOE8fPAU9ANuTByiQ0RERFXEcCOzoCBgQpNNmIe5sMYdg3XNcRnfYASebZKEoCCFGkhERFTPMdzITAMdFmMGAIH7hxaX3swvATOhAUcUExER1QSGG7nt2gWba5cqPLFqCNhc44hiIiKimsJwIzfezI+IiEhRDDdy4838iIiIFMVwI7dKb+YHXIAnb+ZHRERUQxhu5PaAm/kB+hNug9t4Ept4Mz8iIqIawHBTE+7dzO86nMtd7Yzr+AYj8BSSeDM/IiIimTHc1BDdE8NwG9b3Jn8bKjsl/OxpXpciIiKSE8NNDQnCLnjhUjkXpvTUEGiBi0ietwvr15u1aURERPUaw00N0WSZdr1pCpZgdIQOa9fWcIOIiIgaCAulG1BvmTgl/Bl8i8HCHstH/gv/fvsp+M0MQvYNDVxdgebN9ZOvNJoabisREVE9ohJClDcspN7Kzc2Fg4MDcnJyYG9vX3MH0ukAHx+ISxVfmirPNThhI4ZhJx6HC67htnUT9O10FR7aaxAAVE2c0cijKXRZ16Bp2kT69276VeBa9evIvb9qHbO5OzI0zVHo1wvaA3vgVnwZxVcy9XVUamR36YeiwH7IvqFBkybAtWtAkybAVf1uAADOzkDTpn+vu3YNBsER0M9YS0/X51GzhEmdToGDEhHVbVX5/ma4qUlJSRDDh1cp3JAxHVTQlDs0G8iFLdbjaSkMZqMJXHEVTaAPSdfhjKtoKq0rW8dNrU9AmSV/17lt3QR9u1xDi0dqJui5/Hc32qZth1VRnvQe7tg44WznYbj5yOOKhMs6F3p5LngueC5q/bmw8HCFbbvm6DolCBpLef54q9L3t6gFlixZIry9vYVWqxU9e/YUv//++wPrr1u3TrRv315otVrRpUsX8eOPP5p8rJycHAFA5OTkVLfZJtHNmCkEwIULFy5cuDS45bLGU6S++K0s36dV+f5WfEDx2rVrERMTg7i4OBw8eBC+vr4ICQlBVlZWufX37NmDUaNGYeLEiTh06BDCwsIQFhaG48ePm7nlplGHDVO6CURERIpw111CzwUjsPf/zPu8IcUvSwUEBKBHjx5YsmQJAKCkpAReXl6YPn06Xn75ZaP6ERERKCgowA8//CCVPfbYY+jevTuWLVtW6fHMelkKeOixN0RERPVBCVRI13jC/VZatS5RVeX7W9Gem6KiIhw4cADBwcFSmVqtRnBwMFJTU8vdJjU11aA+AISEhFRYv7CwELm5uQaLWd17HIMKqGDUCBERUf2lhkBz3UUc+9B8zxtSNNxkZ2dDp9PBzc3NoNzNzQ0ZGRnlbpORkVGl+vHx8XBwcJAWLy8veRpfFeHhwLffQuVc/uMYiIiI6rtb58z3vCHFx9zUtDlz5iAnJ0daLl68qExDwsOBrCwgIoI9OERE1ODYtDbt/m9yUDTcuLi4QKPRIDMz06A8MzMT7u7u5W7j7u5epfparRb29vYGi2I0GmDNGqjWr4dwcVWuHURERGZSAhUua7zQdUqQ2Y6paLixtLSEn58fkpOTpbKSkhIkJycjMDCw3G0CAwMN6gPA9u3bK6xfK40YAVVGOrBzJ0q++ArpodEotOUlKyIiql9K7v17MSZBtvvdmELxxy/ExMQgKioK/v7+6NmzJxISElBQUIDo6GgAwLhx49C8eXPEx8cDAGbMmIG+ffvi//2//4chQ4ZgzZo1+OOPP/DJJ58o+TaqTqMB+vWDGoDH2Mi/71p7+TJw9SpKnJrgf/uvIbO4CYqu1O+bQpVX17XoMtqd+h7aguvSKbtj44QznYYCeflGN8Kri0qgkp4QT0RUH6VrvHAxJgGPvRtu1uMqHm4iIiJw9epVxMbGIiMjA927d8fWrVulQcMXLlyAWv13B1OvXr2watUqvPbaa3jllVfQtm1bbNy4EV26dFHqLcjjXtgppQbQJgpoo1iDaoH7HlNgFRSErqWPKbgvDFbl+QslTk1wZs9VpJ+4BiGAZl2d0TqgKc4f0IfJ4swaDnr3Hh1xNyBIeqxESebVWn/H0YZwzNraLp4LnovacsyHuUNxczP22JRS/D435mb2+9wQERFRtdWZ+9wQERERyY3hhoiIiOoVhhsiIiKqVxhuiIiIqF5huCEiIqJ6heGGiIiI6hWGGyIiIqpXGG6IiIioXmG4ISIionpF8ccvmFvpDZlzc3MVbgkRERGZqvR725QHKzS4cJOXp3/YopeXl8ItISIioqrKy8uDg4PDA+s0uGdLlZSU4MqVK2jcuDFUKpUs+8zNzYWXlxcuXrzI51XVMJ5r8+B5Nh+ea/PgeTafmjrXQgjk5eWhWbNmBg/ULk+D67lRq9Xw9PSskX3b29vzfxoz4bk2D55n8+G5Ng+eZ/OpiXNdWY9NKQ4oJiIionqF4YaIiIjqFYYbGWi1WsTFxUGr1SrdlHqP59o8eJ7Nh+faPHiezac2nOsGN6CYiIiI6jf23BAREVG9wnBDRERE9QrDDREREdUrDDdERERUrzDcyGDp0qXw8fGBlZUVAgICsG/fPqWbVKfNnTsXKpXKYOnQoYO0/s6dO5g6dSqaNGkCOzs7DB8+HJmZmQq2uG749ddfMXToUDRr1gwqlQobN240WC+EQGxsLDw8PGBtbY3g4GCcOXPGoM7169cRGRkJe3t7ODo6YuLEicjPzzfju6gbKjvX48ePN/qMh4aGGtThua5cfHw8evTogcaNG6Np06YICwvD6dOnDeqY8vviwoULGDJkCGxsbNC0aVO8+OKLKC4uNudbqfVMOdf9+vUz+lw///zzBnXMda4Zbqpp7dq1iImJQVxcHA4ePAhfX1+EhIQgKytL6abVaZ07d0Z6erq0/Pbbb9K6f//73/j++++xfv16/PLLL7hy5QrCw8MVbG3dUFBQAF9fXyxdurTc9e+++y7ef/99LFu2DL///jtsbW0REhKCO3fuSHUiIyNx4sQJbN++HT/88AN+/fVXTJo0yVxvoc6o7FwDQGhoqMFnfPXq1Qbrea4r98svv2Dq1KnYu3cvtm/fjrt372LgwIEoKCiQ6lT2+0Kn02HIkCEoKirCnj178PnnnyMxMRGxsbFKvKVay5RzDQDPPvuswef63XffldaZ9VwLqpaePXuKqVOnSq91Op1o1qyZiI+PV7BVdVtcXJzw9fUtd93NmzdFo0aNxPr166WyU6dOCQAiNTXVTC2s+wCIDRs2SK9LSkqEu7u7WLBggVR28+ZNodVqxerVq4UQQpw8eVIAEPv375fqbNmyRahUKnH58mWztb2uuf9cCyFEVFSUGDZsWIXb8Fw/nKysLAFA/PLLL0II035fbN68WajVapGRkSHV+eijj4S9vb0oLCw07xuoQ+4/10II0bdvXzFjxowKtzHnuWbPTTUUFRXhwIEDCA4OlsrUajWCg4ORmpqqYMvqvjNnzqBZs2Zo1aoVIiMjceHCBQDAgQMHcPfuXYNz3qFDB7Ro0YLnvBrS0tKQkZFhcF4dHBwQEBAgndfU1FQ4OjrC399fqhMcHAy1Wo3ff//d7G2u61JSUtC0aVO0b98ekydPxrVr16R1PNcPJycnBwDg7OwMwLTfF6mpqejatSvc3NykOiEhIcjNzcWJEyfM2Pq65f5zXerrr7+Gi4sLunTpgjlz5uDWrVvSOnOe6wb34Ew5ZWdnQ6fTGfyHAgA3Nzf8+eefCrWq7gsICEBiYiLat2+P9PR0zJs3D0FBQTh+/DgyMjJgaWkJR0dHg23c3NyQkZGhTIPrgdJzV95nuXRdRkYGmjZtarDewsICzs7OPPdVFBoaivDwcLRs2RLnzp3DK6+8gkGDBiE1NRUajYbn+iGUlJRg5syZ6N27N7p06QIAJv2+yMjIKPdzX7qOjJV3rgFg9OjR8Pb2RrNmzXD06FG89NJLOH36NJKSkgCY91wz3FCtM2jQIOnnbt26ISAgAN7e3li3bh2sra0VbBmRPEaOHCn93LVrV3Tr1g2tW7dGSkoKBgwYoGDL6q6pU6fi+PHjBuPzqGZUdK7Ljgnr2rUrPDw8MGDAAJw7dw6tW7c2axt5WaoaXFxcoNFojEbeZ2Zmwt3dXaFW1T+Ojo5o164dzp49C3d3dxQVFeHmzZsGdXjOq6f03D3os+zu7m40UL64uBjXr1/nua+mVq1awcXFBWfPngXAc11V06ZNww8//ICdO3fC09NTKjfl94W7u3u5n/vSdWSoonNdnoCAAAAw+Fyb61wz3FSDpaUl/Pz8kJycLJWVlJQgOTkZgYGBCrasfsnPz8e5c+fg4eEBPz8/NGrUyOCcnz59GhcuXOA5r4aWLVvC3d3d4Lzm5ubi999/l85rYGAgbt68iQMHDkh1fv75Z5SUlEi/xOjhXLp0CdeuXYOHhwcAnmtTCSEwbdo0bNiwAT///DNatmxpsN6U3xeBgYE4duyYQZjcvn077O3t0alTJ/O8kTqgsnNdnsOHDwOAwefabOda1uHJDdCaNWuEVqsViYmJ4uTJk2LSpEnC0dHRYDQ4Vc2sWbNESkqKSEtLE7t37xbBwcHCxcVFZGVlCSGEeP7550WLFi3Ezz//LP744w8RGBgoAgMDFW517ZeXlycOHTokDh06JACI9957Txw6dEj89ddfQggh3n77beHo6Cg2bdokjh49KoYNGyZatmwpbt++Le0jNDRUPPLII+L3338Xv/32m2jbtq0YNWqUUm+p1nrQuc7LyxOzZ88WqampIi0tTezYsUM8+uijom3btuLOnTvSPniuKzd58mTh4OAgUlJSRHp6urTcunVLqlPZ74vi4mLRpUsXMXDgQHH48GGxdetW4erqKubMmaPEW6q1KjvXZ8+eFfPnzxd//PGHSEtLE5s2bRKtWrUSffr0kfZhznPNcCODDz74QLRo0UJYWlqKnj17ir179yrdpDotIiJCeHh4CEtLS9G8eXMREREhzp49K62/ffu2mDJlinBychI2NjbiqaeeEunp6Qq2uG7YuXOnAGC0REVFCSH008Fff/114ebmJrRarRgwYIA4ffq0wT6uXbsmRo0aJezs7IS9vb2Ijo4WeXl5Cryb2u1B5/rWrVti4MCBwtXVVTRq1Eh4e3uLZ5991ugPIp7rypV3jgGIlStXSnVM+X1x/vx5MWjQIGFtbS1cXFzErFmzxN27d838bmq3ys71hQsXRJ8+fYSzs7PQarWiTZs24sUXXxQ5OTkG+zHXuVbdazQRERFRvcAxN0RERFSvMNwQERFRvcJwQ0RERPUKww0RERHVKww3REREVK8w3BAREVG9wnBDRERE9QrDDRE1SCqVChs3blS6GURUAxhuiMjsxo8fD5VKZbSEhoYq3TQiqgcslG4AETVMoaGhWLlypUGZVqtVqDVEVJ+w54aIFKHVauHu7m6wODk5AdBfMvroo48waNAgWFtbo1WrVvjmm28Mtj927Bgef/xxWFtbo0mTJpg0aRLy8/MN6qxYsQKdO3eGVquFh4cHpk2bZrA+OzsbTz31FGxsbNC2bVt899130robN24gMjISrq6usLa2Rtu2bY3CGBHVTgw3RFQrvf766xg+fDiOHDmCyMhIjBw5EqdOnQIAFBQUICQkBE5OTti/fz/Wr1+PHTt2GISXjz76CFOnTsWkSZNw7NgxfPfdd2jTpo3BMebNm4dnnnkGR48exeDBgxEZGYnr169Lxz958iS2bNmCU6dO4aOPPoKLi4v5TgARPTzZH8VJRFSJqKgoodFohK2trcHy1ltvCSH0TyB+/vnnDbYJCAgQkydPFkII8cknnwgnJyeRn58vrf/xxx+FWq2Wnq7drFkz8eqrr1bYBgDitddek17n5+cLAGLLli1CCCGGDh0qoqOj5XnDRGRWHHNDRIro378/PvroI4MyZ2dn6efAwECDdYGBgTh8+DAA4NSpU/D19YWtra20vnfv3igpKcHp06ehUqlw5coVDBgw4IFt6Natm/Szra0t7O3tkZWVBQCYPHkyhg8fjoMHD2LgwIEICwtDr169Huq9EpF5MdwQkSJsbW2NLhPJxdra2qR6jRo1MnitUqlQUlICABg0aBD++usvbN68Gdu3b8eAAQMwdepULFy4UPb2EpG8OOaGiGqlvXv3Gr3u2LEjAKBjx444cuQICgoKpPW7d++GWq1G+/bt0bhxY/j4+CA5OblabXB1dUVUVBS++uorJCQk4JNPPqnW/ojIPNhzQ0SKKCwsREZGhkGZhYWFNGh3/fr18Pf3xz/+8Q98/fXX2LdvHz777DMAQGRkJOLi4hAVFYW5c+fi6tWrmD59OsaOHQs3NzcAwNy5c/H888+jadOmGDRoEPLy8rB7925Mnz7dpPbFxsbCz88PnTt3RmFhIX744QcpXBFR7cZwQ0SK2Lp1Kzw8PAzK2rdvjz///BOAfibTmjVrMGXKFHh4eGD16tXo1KkTAMDGxgbbtm3DjBkz0KNHD9jY2GD48OF47733pH1FRUXhzp07WLRoEWbPng0XFxeMGDHC5PZZWlpizpw5OH/+PKytrREUFIQ1a9bI8M6JqKaphBBC6UYQEZWlUqmwYcMGhIWFKd0UIqqDOOaGiIiI6hWGGyIiIqpXOOaGiGodXi0noupgzw0RERHVKww3REREVK8w3BAREVG9wnBDRERE9QrDDREREdUrDDdERERUrzDcEBERUb3CcENERET1CsMNERER1Sv/H/3nbZyJcUQcAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAHHCAYAAACfqw0dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZ39JREFUeJzt3XlcVFXjBvBnGGTYZFcGFAX3DbFQCDc0+YnKq6GZu6JSWJppqBWV4vZGLqVmllkqVq74omkuhSRmiuYC7vpqL+bGgEuCooIO5/cHcfPKgAMCl9Hn+/ncj8y555577nVkHs+5945KCCFARERERKVipnQHiIiIiEwRQxQRERFRGTBEEREREZUBQxQRERFRGTBEEREREZUBQxQRERFRGTBEEREREZUBQxQRERFRGTBEEREREZUBQxRRFTd8+HB4enqWadupU6dCpVKVb4dIMSqVClOnTpVex8bGQqVS4fz584/d1tPTE8OHDy/X/jzJe5PoacAQRVRGKpXKqCUpKUnpripi+PDhUKlUsLOzw927d4usP3v2rHSO5s6dK1t3/vx5jBgxAvXr14elpSW0Wi06duyI6OhoWb1OnToVe96bNGlSocdXkrfeegsqlQrnzp0rts4HH3wAlUqFo0ePVmLPSu/KlSuYOnUqUlNTle6K5Pz589Lf88yZMw3WGTx4MFQqFWxtbWXl+fn5+Pbbb+Hv7w8nJydUr14djRo1wrBhw7Bv3z6pXlJSUon/rtesWVOhx0imwVzpDhCZqu+++072+ttvv0VCQkKR8qZNmz7Rfr7++mvk5+eXadsPP/wQ77333hPt/0mYm5vjzp072Lx5M/r16ydbt3LlSlhaWuLevXuy8nPnzqFNmzawsrLCyJEj4enpifT0dBw+fBizZs3CtGnTZPVr166NmJiYIvu2t7cv/wMy0uDBg7Fw4UKsWrUKU6ZMMVhn9erV8Pb2RsuWLcu8n6FDh2LAgAHQaDRlbuNxrly5gmnTpsHT0xOtWrWSrXuS92Z5sLS0xOrVq/Hhhx/KynNycvDDDz/A0tKyyDZvvfUWFi1ahJdeegmDBw+Gubk5zpw5g23btqFevXp44YUXitRv06ZNkXYCAgLK92DIJDFEEZXRkCFDZK/37duHhISEIuWPunPnDqytrY3eT7Vq1crUP6AgxJibK/fPXKPRoF27dli9enWRELVq1SqEhITgP//5j6x83rx5uH37NlJTU1G3bl3ZuszMzCL7sLe3f+w5r2z+/v5o0KABVq9ebTBEJScnIy0tDR9//PET7UetVkOtVj9RG0/iSd6b5aFHjx6Ij4/HkSNH4OPjI5X/8MMPyMvLQ7du3fDLL79I5RkZGfjiiy/w2muvYcmSJbK25s+fj6tXrxbZR4cOHdC3b9+KOwgyaZzOI6pAnTp1QosWLXDo0CF07NgR1tbWeP/99wEU/KIPCQmBu7s7NBoN6tevjxkzZkCv18vaePS6k8KpjLlz52LJkiWoX78+NBoN2rRpgwMHDsi2NXRNlEqlwptvvomNGzeiRYsW0Gg0aN68ObZv316k/0lJSWjdujUsLS1Rv359fPXVV6W+zmrQoEHYtm0bbt68KZUdOHAAZ8+exaBBg4rU/+OPP1C7du0iAQoAatasafR+S5KRkQFzc/Mio1oAcObMGahUKnz++ecAgPv372PatGlo2LAhLC0t4ezsjPbt2yMhIaHEfQwePBinT5/G4cOHi6xbtWoVVCoVBg4ciLy8PEyZMgW+vr6wt7eHjY0NOnTogJ07dz72OAxdEyWEwMyZM1G7dm1YW1ujc+fOOHHiRJFtb9y4gYkTJ8Lb2xu2traws7ND9+7dceTIEalOUlKSNAozYsQIaSorNjYWgOFronJycjBhwgR4eHhAo9GgcePGmDt3LoQQsnqleR8WJyAgAF5eXli1apWsfOXKlejWrRucnJxk5WlpaRBCoF27dkXaUqlU5fb+omcHQxRRBbt+/Tq6d++OVq1aYf78+ejcuTOAgg9AW1tbREZGYsGCBfD19cWUKVOMnn5btWoV5syZg1GjRmHmzJk4f/48+vTpg/v37z92299++w2jR4/GgAEDMHv2bNy7dw8vv/wyrl+/LtVJSUlBt27dcP36dUybNg3h4eGYPn06Nm7cWKrj79OnD1QqFeLj42V9b9KkCZ5//vki9evWrYuLFy/KRhBKotfrce3atSJLTk5Osdu4uroiMDAQ69atK7Ju7dq1UKvVeOWVVwAUBNFp06ahc+fO+Pzzz/HBBx+gTp06BsPRwwYPHiwd66P9XbduHTp06IA6deogOzsb33zzDTp16oRZs2Zh6tSpuHr1KoKDg8t0HdKUKVMwefJk+Pj4YM6cOahXrx66du1a5Hz873//w8aNG/Gvf/0Ln376KSZNmoRjx44hMDAQV65cAVAwFT19+nQAQEREBL777jt899136Nixo8F9CyHQq1cvzJs3D926dcOnn36Kxo0bY9KkSYiMjCxS35j34eMMHDgQa9askULatWvX8PPPPxsM6IXBPC4uDnfu3DGq/Vu3bhl8fz0aCukZJYioXIwZM0Y8+k8qMDBQABCLFy8uUv/OnTtFykaNGiWsra3FvXv3pLKwsDBRt25d6XVaWpoAIJydncWNGzek8h9++EEAEJs3b5bKoqOji/QJgLCwsBDnzp2Tyo4cOSIAiIULF0plPXv2FNbW1uLy5ctS2dmzZ4W5uXmRNg0JCwsTNjY2Qggh+vbtK7p06SKEEEKv1wutViumTZsmHcucOXOk7Y4fPy6srKwEANGqVSsxbtw4sXHjRpGTk1NkH4Xn19AyatSoEvv31VdfCQDi2LFjsvJmzZqJF198UXrt4+MjQkJCHnu8hrRp00bUrl1b6PV6qWz79u0CgPjqq6+EEEI8ePBA5Obmyrb766+/hKurqxg5cqSsHICIjo6WXi9fvlwAEGlpaUIIITIzM4WFhYUICQkR+fn5Ur33339fABBhYWFS2b1792T9EqLgvaXRaMT06dOlsgMHDggAYvny5UWO79H35saNGwUAMXPmTFm9vn37CpVKJXvPGfs+NOTh983x48cFALF7924hhBCLFi0Stra2IicnR/YeLDRs2DABQDg6OorevXuLuXPnilOnThXZx86dO4t9bwEQ6enpJfaRng0ciSKqYBqNBiNGjChSbmVlJf1c+L/dDh064M6dOzh9+vRj2+3fvz8cHR2l1x06dABQMMLwOEFBQahfv770umXLlrCzs5O21ev12LFjB0JDQ+Hu7i7Va9CgAbp37/7Y9h81aNAgJCUlQafT4ZdffoFOpzM4UgAAzZs3R2pqKoYMGYLz589jwYIFCA0NhaurK77++usi9T09PZGQkFBkGT9+fIl96tOnD8zNzbF27Vqp7Pjx4zh58iT69+8vlTk4OODEiRM4e/ZsqY97yJAhuHTpEn799VepbNWqVbCwsJBGutRqNSwsLAAU3Dl248YNPHjwAK1bt37saNejduzYgby8PIwdO1Y25WroXGg0GpiZFXwE6PV6XL9+Hba2tmjcuHGp91to69atUKvVeOutt2TlEyZMgBAC27Ztk5U/7n1ojObNm6Nly5ZYvXo1gILz+9JLLxV73eHy5cvx+eefw8vLCxs2bMDEiRPRtGlTdOnSBZcvXy5Sf8qUKQbfX49OFdKziSGKqILVqlVL+pB82IkTJ9C7d2/Y29vDzs4ONWrUkC6QzsrKemy7derUkb0uDFR//fVXqbct3L5w28zMTNy9excNGjQoUs9Q2eP06NED1atXx9q1a7Fy5Uq0adOmxHYaNWqE7777DteuXcPRo0fx0UcfwdzcHBEREdixY4esro2NDYKCgoosj3vEgYuLC7p06SKb0lu7di3Mzc3Rp08fqWz69Om4efMmGjVqBG9vb0yaNMnoxxIMGDAAarVamtK7d+8eNmzYgO7du8sC8IoVK9CyZUvpmqsaNWpgy5YtRr0PHvbnn38CABo2bCgrr1Gjhmx/QEFgmzdvHho2bAiNRgMXFxfUqFEDR48eLfV+H96/u7s7qlevLisvvEO1sH+FHvc+NNagQYMQFxeHc+fOYe/evcUGdAAwMzPDmDFjcOjQIVy7dg0//PADunfvjl9++QUDBgwoUt/b29vg+8vQv2l69jBEEVWwh0ecCt28eROBgYE4cuQIpk+fjs2bNyMhIQGzZs0CAKNuGy/urixhxLUaT7JtWWg0GvTp0wcrVqzAhg0bSvyQe5harYa3tzeioqKwYcMGAAUXDZeXAQMG4L///a907dG6devQpUsXuLi4SHU6duyIP/74A8uWLUOLFi3wzTff4Pnnn8c333zz2PZr1qyJ//u//8N//vMf3L9/H5s3b8atW7ek66UA4Pvvv8fw4cNRv359LF26FNu3b0dCQgJefPHFCn18wEcffYTIyEh07NgR33//PX766SckJCSgefPmlfbYgvJ6Hw4cOBDXrl3Da6+9BmdnZ3Tt2tWo7ZydndGrVy9s3boVgYGB+O2334oEPaKS8BEHRApISkrC9evXER8fL7tINy0tTcFe/aNmzZqwtLQ0+LDIkh4gWZJBgwZh2bJlMDMzM/g//sdp3bo1ACA9Pb1M+zckNDQUo0aNkqb0/vvf/yIqKqpIPScnJ4wYMQIjRozA7du30bFjR0ydOhWvvvrqY/cxePBgbN++Hdu2bcOqVatgZ2eHnj17SuvXr1+PevXqIT4+XjYF9+iDRY1ReOH02bNnUa9ePan86tWrRUZ31q9fj86dO2Pp0qWy8ps3b8pCZGnuxKxbty527NiBW7duyUajCqenDd1xWR7q1KmDdu3aISkpCW+88UaZHuvRunVr7Nq1C+np6RXWT3r6cCSKSAGF/wN/+H/ceXl5+OKLL5TqkoxarUZQUBA2btwo3akFFASoR69rMVbnzp0xY8YMfP7559BqtcXW2717t8E7DLdu3QoAaNy4cZn2b4iDgwOCg4Oxbt06rFmzBhYWFggNDZXVefROMVtbWzRo0AC5ublG7SM0NBTW1tb44osvsG3bNvTp00f2EEhD74X9+/cjOTm51McTFBSEatWqYeHChbL25s+fX6SuWq0uMuITFxdX5LogGxsbAJA9oqI4PXr0gF6vlx4PUWjevHlQqVRlup7OWDNnzkR0dDTGjh1bbB2dToeTJ08WKc/Ly0NiYiLMzMzKNF1Nzy6ORBEpoG3btnB0dERYWJj0FSHfffddlbpteurUqfj555/Rrl07vPHGG9KHY4sWLcp0672ZmVmRJ0sbMmvWLBw6dAh9+vSRnuZ9+PBhfPvtt3BycipykXRWVha+//57g20Z8xDO/v37Y8iQIfjiiy8QHBwMBwcH2fpmzZqhU6dO8PX1hZOTEw4ePIj169fjzTfffGzbQEHoCg0Nla6LengqDwD+9a9/IT4+Hr1790ZISAjS0tKwePFiNGvWDLdv3zZqH4Vq1KiBiRMnIiYmBv/617/Qo0cPpKSkYNu2bbLRpcL9Tp8+HSNGjEDbtm1x7NgxrFy5UjaCBQD169eHg4MDFi9ejOrVq8PGxgb+/v7w8vIqsv+ePXuic+fO+OCDD3D+/Hn4+Pjg559/xg8//IDx48fLLiIvb4GBgQgMDCyxzqVLl+Dn54cXX3wRXbp0gVarRWZmJlavXo0jR45g/PjxRc7T7t27izxVHyi4CP5JnjZPTweGKCIFODs748cff8SECRPw4YcfwtHREUOGDEGXLl0QHBysdPcAAL6+vti2bRsmTpyIyZMnw8PDA9OnT8epU6eMunuwrN5//32sWrUKu3btwsqVK3Hnzh24ublhwIABmDx5cpEP70uXLmHo0KEG2zImRPXq1QtWVla4deuW7K68Qm+99RY2bdqEn3/+Gbm5uahbty5mzpyJSZMmGX1MgwcPxqpVq+Dm5oYXX3xRtm748OHQ6XT46quv8NNPP6FZs2b4/vvvERcXV6bvXZw5cyYsLS2xePFi7Ny5E/7+/vj5558REhIiq/f+++8jJycHq1atwtq1a/H8889jy5YtRZ5TVq1aNaxYsQJRUVF4/fXX8eDBAyxfvtxgiDIzM8OmTZswZcoUrF27FsuXL4enpyfmzJmDCRMmlPpYylvjxo0xf/58bN26FV988QUyMjJgaWmJFi1a4Ouvv0Z4eHiRbT777DODbUVHRzNEEVSiKv3Xl4iqvNDQ0DLf8k9E9DThNVFEVKy7d+/KXp89exZbt25Fp06dlOkQEVEVwpEoIiqWm5sbhg8fjnr16uHPP//El19+idzcXKSkpBR5FhER0bOG10QRUbG6deuG1atXQ6fTQaPRICAgAB999BEDFBEROBJFREREVCa8JoqIiIioDBiiiIiIiMqA10RVoPz8fFy5cgXVq1cv1VcnEBERkXKEELh16xbc3d1hZlb8eBNDVAW6cuUKPDw8lO4GERERlcHFixdRu3btYtczRFWgwi/gvHjxIuzs7BTuDRERERkjOzsbHh4esi/SNoQhqgIVTuHZ2dkxRBEREZmYx12KwwvLiYiIiMqAIYqIiIioDBiiiIiIiMqA10QREVGVptfrcf/+faW7QU+RatWqQa1WP3E7DFFERFQlCSGg0+lw8+ZNpbtCTyEHBwdotdoneo4jQxQREVVJhQGqZs2asLa25kOLqVwIIXDnzh1kZmYCANzc3MrcFkMUERFVOXq9XgpQzs7OSneHnjJWVlYAgMzMTNSsWbPMU3u8sJyIiKqcwmugrK2tFe4JPa0K31tPcr0dQxQREVVZnMKjilIe7y1O55kYvR7YvRtITwfc3IAOHYByuMGAiIiISokjUSYkPh7w9AQ6dwYGDSr409OzoJyIiJ5Onp6emD9/vtH1k5KSoFKpeFdjJWCIMhHx8UDfvsClS/Lyy5cLyhmkiIiK0uuBpCRg9eqCP/X6ituXSqUqcZk6dWqZ2j1w4AAiIiKMrt+2bVukp6fD3t6+TPszVmFYc3R0xL1792TrDhw4IB33w77++mv4+PjA1tYWDg4OeO655xATEyOtnzp1qsFz16RJkwo9lrLidJ4J0OuBceMAIYquEwJQqYDx44GXXuLUHhFRofj4gt+dD//ns3ZtYMECoE+f8t9fenq69PPatWsxZcoUnDlzRiqztbWVfhZCQK/Xw9z88R/DNWrUKFU/LCwsoNVqS7XNk6hevTo2bNiAgQMHSmVLly5FnTp1cOHCBals2bJlGD9+PD777DMEBgYiNzcXR48exfHjx2XtNW/eHDt27JCVGXOelMCRKBOwe3fREaiHCQFcvFhQj4iIlBm912q10mJvbw+VSiW9Pn36NKpXr45t27bB19cXGo0Gv/32G/744w+89NJLcHV1ha2tLdq0aVMkQDw6nadSqfDNN9+gd+/esLa2RsOGDbFp0yZp/aPTebGxsXBwcMBPP/2Epk2bwtbWFt26dZOFvgcPHuCtt96Cg4MDnJ2d8e677yIsLAyhoaGPPe6wsDAsW7ZMen337l2sWbMGYWFhsnqbNm1Cv379EB4ejgYNGqB58+YYOHAg/v3vf8vqmZuby86lVquFi4vLY/uhBIYoE/DQ+7xc6hERmRohgJwc45bsbOCtt4ofvQcKRqiys41rz1A7ZfXee+/h448/xqlTp9CyZUvcvn0bPXr0QGJiIlJSUtCtWzf07NlTNoJjyLRp09CvXz8cPXoUPXr0wODBg3Hjxo1i69+5cwdz587Fd999h19//RUXLlzAxIkTpfWzZs3CypUrsXz5cuzZswfZ2dnYuHGjUcc0dOhQ7N69W+rzf/7zH3h6euL555+X1dNqtdi3bx/+/PNPo9o1BQxRJsDYh6k+wUNXiYiqtDt3AFtb4xZ7+4IRp+IIUTBCZW9vXHt37pTfcUyfPh3/93//h/r168PJyQk+Pj4YNWoUWrRogYYNG2LGjBmoX7++bGTJkOHDh2PgwIFo0KABPvroI9y+fRu///57sfXv37+PxYsXo3Xr1nj++efx5ptvIjExUVq/cOFCREVFoXfv3mjSpAk+//xzODg4GHVMNWvWRPfu3REbGwugYNpu5MiRRepFR0fDwcEBnp6eaNy4MYYPH45169YhPz9fVu/YsWOwtbWVLa+//rpRfalsDFEmoEOHgnn84h5poVIBHh4F9YiIqOpq3bq17PXt27cxceJENG3aFA4ODrC1tcWpU6ceOxLVsmVL6WcbGxvY2dlJX2NiiLW1NerXry+9dnNzk+pnZWUhIyMDfn5+0nq1Wg1fX1+jj2vkyJGIjY3F//73PyQnJ2Pw4MFF6ri5uSE5ORnHjh3DuHHj8ODBA4SFhaFbt26yINW4cWOkpqbKlunTpxvdl8pUNa/UIhm1uuBCyL59CwLTw0PLhcFq/nxeVE5ETy9ra+D2bePq/vor0KPH4+tt3Qp07GjcvsuLjY2N7PXEiRORkJCAuXPnokGDBrCyskLfvn2Rl5dXYjvVqlWTvVapVEVGdB5XX5TjPGX37t0RERGB8PBw9OzZs8Sv6mnRogVatGiB0aNH4/XXX0eHDh2wa9cudO7cGUDBhfENGjQot75VJI5EmYg+fYD164FateTltWsXlFfEnSZERFWFSgXY2Bi3dO1q3Oh9167GtVeRD03fs2cPhg8fjt69e8Pb2xtarRbnz5+vuB0aYG9vD1dXVxw4cEAq0+v1OHz4sNFtmJubY9iwYUhKSjI4lVecZs2aAQBycnKM73AVwpEoE9KnT8FjDOztCy52XLECGDyYI1BERA8zpdH7hg0bIj4+Hj179oRKpcLkyZNLHFGqKGPHjkVMTAwaNGiAJk2aYOHChfjrr79K9dUoM2bMwKRJk4odhXrjjTfg7u6OF198EbVr10Z6ejpmzpyJGjVqICAgQKr34MED6HQ62bYqlQqurq5lO7gKxJEoE6NWAxYWBT/7+VWNXwJERFWNqYzef/rpp3B0dETbtm3Rs2dPBAcHF7mrrTK8++67GDhwIIYNG4aAgADY2toiODgYlpaWRrdhYWEBFxeXYoNXUFAQ9u3bh1deeQWNGjXCyy+/DEtLSyQmJsqC14kTJ+Dm5iZb6tat+8THWBFUojwnRUkmOzsb9vb2yMrKgp2dXbm16+ICXL8OnDgB/D0SSkT0VLl37x7S0tLg5eVVqg/yR/H7RssmPz8fTZs2Rb9+/TBjxgylu1MhSnqPGfv5zek8E1QY8hUY8SUiMilqNdCpk9K9qPr+/PNP/Pzzz9KTxD///HOkpaVh0KBBSnetSuN0ngky+/tvjWOIRERUHszMzBAbG4s2bdqgXbt2OHbsGHbs2IGmTZsq3bUqjSNRJqgwRHEkioiIyoOHhwf27NmjdDdMDkeiTBCn84iIiJTHEGWCOJ1HRESkPIYoE8TpPCIiIuUxRJkgTucREREpjyHKBHE6j4iISHkMUSaI03lERETKY4gyQZzOIyJ6enXq1Anjx4+XXnt6emL+/PklbqNSqbBx48Yn3nd5tfOsYIgyQZzOIyIykl4PJCUBq1cX/KnXV9iuevbsiW7duhlct3v3bqhUKhw9erTU7R44cAARERFP2j2ZqVOnolWrVkXK09PT0b1793Ld16NiY2OhUqkMPsgzLi4OKpUKnp6eUpler8fHH3+MJk2awMrKCk5OTvD398c333wj1Rk+fDhUKlWRpbi/j/KieIhatGgRPD09YWlpCX9/f/z+++8l1o+Li0OTJk1gaWkJb29vbN26VbY+Pj4eXbt2hbOzM1QqFVJTU2Xrz58/b/BEq1QqxMXFSfUMrV+zZk25HfeT4HQeEZER4uMBT0+gc2dg0KCCPz09C8orQHh4OBISEnDp0qUi65YvX47WrVujZcuWpW63Ro0asLa2Lo8uPpZWq4VGo6nw/djY2CAzMxPJycmy8qVLl6JOnTqysmnTpmHevHmYMWMGTp48iZ07dyIiIgI3b96U1evWrRvS09Nly+rVqyv0OBQNUWvXrkVkZCSio6Nx+PBh+Pj4IDg4GJmZmQbr7927FwMHDkR4eDhSUlIQGhqK0NBQHD9+XKqTk5OD9u3bY9asWQbb8PDwKHKSp02bBltb2yLpe/ny5bJ6oaGh5XbsT4LTeUREjxEfD/TtCzwaaC5fLiivgCD1r3/9CzVq1EBsbKys/Pbt24iLi0N4eDiuX7+OgQMHolatWrC2toa3t/djP+gfnc47e/YsOnbsCEtLSzRr1gwJCQlFtnn33XfRqFEjWFtbo169epg8eTLu378PoGAkaNq0aThy5Ig0SFDY50en844dO4YXX3wRVlZWcHZ2RkREBG7fvi2tHz58OEJDQzF37ly4ubnB2dkZY8aMkfZVHHNzcwwaNAjLli2Tyi5duoSkpKQi39e3adMmjB49Gq+88gq8vLzg4+OD8PBwTJw4UVZPo9FAq9XKFkdHxxL78aQUDVGffvopXnvtNYwYMQLNmjXD4sWLYW1tLTupD1uwYAG6deuGSZMmoWnTppgxYwaef/55fP7551KdoUOHYsqUKQgKCjLYhlqtLnKSN2zYgH79+sHW1lZW18HBQVbvSb5JvDxxOo+InjlCADk5xi3Z2cBbbxn+JVlYNm5cQT1j2jPyl625uTmGDRuG2NhYiIe2iYuLg16vx8CBA3Hv3j34+vpiy5YtOH78OCIiIjB06NDHzsIUys/PR58+fWBhYYH9+/dj8eLFePfdd4vUq169OmJjY3Hy5EksWLAAX3/9NebNmwcA6N+/PyZMmIDmzZtLgwT9+/cv0kZOTg6Cg4Ph6OiIAwcOIC4uDjt27MCbb74pq7dz50788ccf2LlzJ1asWIHY2NgiQdKQkSNHYt26dbhz5w6AgnDXrVs3uLq6yupptVr88ssvuHr1qlHnqFIJheTm5gq1Wi02bNggKx82bJjo1auXwW08PDzEvHnzZGVTpkwRLVu2LFI3LS1NABApKSkl9uPgwYMCgNizZ4+sHIBwd3cXzs7Ook2bNmLp0qUiPz+/xLbu3bsnsrKypOXixYsCgMjKyipxu9Jq0UIIQIgdO8q1WSKiKuPu3bvi5MmT4u7duwUFt28X/OJTYrl92+h+nzp1SgAQO3fulMo6dOgghgwZUuw2ISEhYsKECdLrwMBAMW7cOOl13bp1pc++n376SZibm4vLly9L67dt2yYAFPk8fdicOXOEr6+v9Do6Olr4+PgUqfdwO0uWLBGOjo7i9kPHv2XLFmFmZiZ0Op0QQoiwsDBRt25d8eDBA6nOK6+8Ivr3719sX5YvXy7s7e2FEEK0atVKrFixQuTn54v69euLH374QcybN0/UrVtXqn/ixAnRtGlTYWZmJry9vcWoUaPE1q1bZW2GhYUJtVotbGxsZMu///3vYvtR5D32kKysLKM+vxUbibp27Rr0en2RxOnq6gqdTmdwG51OV6r6xli6dCmaNm2Ktm3bysqnT5+OdevWISEhAS+//DJGjx6NhQsXlthWTEwM7O3tpcXDw6PM/SoJp/OIiKqmJk2aoG3bttKMyrlz57B7926Eh4cDKLhIesaMGfD29oaTkxNsbW3x008/4cKFC0a1f+rUKXh4eMDd3V0qCwgIKFJv7dq1aNeuHbRaLWxtbfHhhx8avY+H9+Xj4wMbGxuprF27dsjPz8eZM2eksubNm0OtVkuv3dzcir0s51EjR47E8uXLsWvXLuTk5KBHjx5F6jRr1gzHjx/Hvn37MHLkSGRmZqJnz5549dVXZfU6d+6M1NRU2fL666+X6phLS/ELy5V09+5drFq1SnpzP2zy5Mlo164dnnvuObz77rt45513MGfOnBLbi4qKQlZWlrRcvHixQvrN6TwieuZYWwO3bxu3PHLDUbG2bjWuvVJe1B0eHo7//Oc/uHXrFpYvX4769esjMDAQADBnzhwsWLAA7777Lnbu3InU1FQEBwcjLy+vtGekWMnJyRg8eDB69OiBH3/8ESkpKfjggw/KdR8Pq1atmuy1SqVCvpH/yx88eDD27duHqVOnYujQoTA3NzdYz8zMDG3atMH48eMRHx+P2NhYLF26FGlpaVIdGxsbNGjQQLY4OTmV/cCMoFiIcnFxgVqtRkZGhqw8IyMDWq3W4DZarbZU9R9n/fr1uHPnDoYNG/bYuv7+/rh06RJyc3OLraPRaGBnZydbKgLvziOiZ45KBdjYGLd07QrUrv3PsL2htjw8CuoZ015x7RSjX79+MDMzw6pVq/Dtt99i5MiRUP3dxp49e/DSSy9hyJAh8PHxQb169fDf//7X6LabNm2KixcvIj09XSrbt2+frM7evXtRt25dfPDBB2jdujUaNmyIP//8U1bHwsIC+sc87qFp06Y4cuQIcnJypLI9e/bAzMwMjRs3NrrPJXFyckKvXr2wa9cujBw50ujtmjVrBgCyvilBsRBlYWEBX19fJCYmSmX5+flITEw0ODQJFAxZPlwfABISEoqt/zhLly5Fr169UKNGjcfWTU1NhaOjY6Xc+vk4nM4jIiqBWg0sWFDw86MBqPD1/PkF9SqAra0t+vfvj6ioKKSnp2P48OHSuoYNGyIhIQF79+7FqVOnMGrUqCKDAyUJCgpCo0aNEBYWhiNHjmD37t344IMPZHUaNmyICxcuYM2aNfjjjz/w2WefYcOGDbI6np6eSEtLQ2pqKq5du2ZwgGDw4MGwtLREWFgYjh8/jp07d2Ls2LEYOnRokUtrnkRsbCyuXbuGJk2aGFzft29fzJs3D/v378eff/6JpKQkjBkzBo0aNZJtk5ubC51OJ1uuXbtWbv00RNHpvMjISHz99ddYsWIFTp06hTfeeAM5OTkYMWIEAGDYsGGIioqS6o8bNw7bt2/HJ598gtOnT2Pq1Kk4ePCg7E6BGzduIDU1FSdPngQAnDlzBqmpqUWumzp37hx+/fXXInOqALB582Z88803OH78OM6dO4cvv/wSH330EcaOHVsRp6HUOJ1HRPQYffoA69cDtWrJy2vXLijv06dCdx8eHo6//voLwcHBsuuXPvzwQzz//PMIDg5Gp06doNVqS/X4HDMzM2zYsAF3796Fn58fXn31Vfz73/+W1enVqxfefvttvPnmm2jVqhX27t2LyZMny+q8/PLL6NatGzp37owaNWoYfMyCtbU1fvrpJ9y4cQNt2rRB37590aVLF9kd8eWh8PEJxQkODsbmzZvRs2dPKUA2adIEP//8s2z6b/v27XBzc5Mt7du3L9e+FlHiZeeVYOHChaJOnTrCwsJC+Pn5iX379knrAgMDRVhYmKz+unXrRKNGjYSFhYVo3ry52LJli2z98uXLBYAiS3R0tKxeVFSU8PDwEHq9vkiftm3bJlq1aiVsbW2FjY2N8PHxEYsXLzZYtyTGXt1fWn5+BTeMbNpUrs0SEVUZJd05VSoPHgixc6cQq1YV/PnQXWT0bCuPu/NUQnA8o6JkZ2fD3t4eWVlZ5Xp91AsvAPv3Axs3Ai+9VG7NEhFVGffu3UNaWhq8vLyqzDP66OlS0nvM2M/vZ/ruPFPF6TwiIiLlMUSZIN6dR0REpDyGKBPEu/OIiIiUxxBlgjidR0TPCl62SxWlPN5bDFEmiNN5RPS0K3wKduGX0xKVt8L31qNPXC8Nw89XpyqN03lE9LRTq9VwcHCQvoPN2tpaeuo30ZMQQuDOnTvIzMyEg4OD7Hv/SoshygRxOo+IngWFX+ll7JfZEpWGg4NDmb82rhBDlAnidB4RPQtUKhXc3NxQs2ZN3L9/X+nu0FOkWrVqTzQCVYghygRxOo+IniVqtbpcPvCIyhsvLDdBnM4jIiJSHkOUCeJ0HhERkfIYokwQp/OIiIiUxxBlgjidR0REpDyGKBPE6TwiIiLlMUSZIE7nERERKY8hygRxOo+IiEh5DFEmiNN5REREymOIMkGcziMiIlIeQ5QJ4nQeERGR8hiiTBCn84iIiJTHEGWCGKKIiIiUxxBlggqvieJ0HhERkXIYokwQR6KIiIiUxxBlghiiiIiIlMcQZYI4nUdERKQ8higTxJEoIiIi5TFEmSCGKCIiIuUxRJkgTucREREpjyHKBHEkioiISHkMUSaIIYqIiEh5DFEmiNN5REREymOIMkEciSIiIlIeQ5QJYogiIiJSHkOUCeJ0HhERkfIUD1GLFi2Cp6cnLC0t4e/vj99//73E+nFxcWjSpAksLS3h7e2NrVu3ytbHx8eja9eucHZ2hkqlQmpqapE2OnXqBJVKJVtef/11WZ0LFy4gJCQE1tbWqFmzJiZNmoQHDx488fGWB45EERERKU/RELV27VpERkYiOjoahw8fho+PD4KDg5GZmWmw/t69ezFw4ECEh4cjJSUFoaGhCA0NxfHjx6U6OTk5aN++PWbNmlXivl977TWkp6dLy+zZs6V1er0eISEhyMvLw969e7FixQrExsZiypQp5XPgT4ghioiIqAoQCvLz8xNjxoyRXuv1euHu7i5iYmIM1u/Xr58ICQmRlfn7+4tRo0YVqZuWliYAiJSUlCLrAgMDxbhx44rt19atW4WZmZnQ6XRS2Zdffins7OxEbm7uY47qH1lZWQKAyMrKMnobY0yaJAQgxIQJ5dosERERCeM/vxUbicrLy8OhQ4cQFBQklZmZmSEoKAjJyckGt0lOTpbVB4Dg4OBi65dk5cqVcHFxQYsWLRAVFYU7d+7I9uPt7Q1XV1fZfrKzs3HixIli28zNzUV2drZsqQgciSIiIlKeuVI7vnbtGvR6vSyoAICrqytOnz5tcBudTmewvk6nK9W+Bw0ahLp168Ld3R1Hjx7Fu+++izNnziA+Pr7E/RSuK05MTAymTZtWqr6UBUMUERGR8hQLUUqKiIiQfvb29oabmxu6dOmCP/74A/Xr1y9zu1FRUYiMjJReZ2dnw8PD44n6agjvziMiIlKeYtN5Li4uUKvVyMjIkJVnZGRAq9Ua3Ear1ZaqvrH8/f0BAOfOnStxP4XriqPRaGBnZydbKgJHooiIiJSnWIiysLCAr68vEhMTpbL8/HwkJiYiICDA4DYBAQGy+gCQkJBQbH1jFT4Gwc3NTdrPsWPHZHcJJiQkwM7ODs2aNXuifZUHhigiIiLlKTqdFxkZibCwMLRu3Rp+fn6YP38+cnJyMGLECADAsGHDUKtWLcTExAAAxo0bh8DAQHzyyScICQnBmjVrcPDgQSxZskRq88aNG7hw4QKuXLkCADhz5gyAghEkrVaLP/74A6tWrUKPHj3g7OyMo0eP4u2330bHjh3RsmVLAEDXrl3RrFkzDB06FLNnz4ZOp8OHH36IMWPGQKPRVOYpMojTeURERFVAJd0tWKyFCxeKOnXqCAsLC+Hn5yf27dsnrQsMDBRhYWGy+uvWrRONGjUSFhYWonnz5mLLli2y9cuXLxcAiizR0dFCCCEuXLggOnbsKJycnIRGoxENGjQQkyZNKnIb4/nz50X37t2FlZWVcHFxERMmTBD3798v1bFV1CMOpk0reMSBgSc7EBER0RMy9vNbJQTHMypKdnY27O3tkZWVVa7XR82cCUyeDLz2GvDQIBwRERGVA2M/vxX/2hcqPU7nERERKY8hygTxwnIiIiLlMUSZIIYoIiIi5TFEmSBO5xERESmPIcoEcSSKiIhIeQxRJoghioiISHkMUSaI03lERETKY4gyQRyJIiIiUh5DlAliiCIiIlIeQ5QJ4nQeERGR8hiiTBBHooiIiJTHEGWCGKKIiIiUxxBlgjidR0REpDyGKBPEkSgiIiLlMUSZIIYoIiIi5TFEmSBO5xERESmPIcoEcSSKiIhIeQxRJoghioiISHkMUSaI03lERETKY4gyQRyJIiIiUh5DlAliiCIiIlIeQ5QJ4nQeERGR8hiiTBBHooiIiJTHEGWCGKKIiIiUxxBlgjidR0REpDyGKBPEkSgiIiLlMUSZIIYoIiIi5TFEmSBO5xERESmPIcoEcSSKiIhIeQxRJoghioiISHkMUSaI03lERETKY4gyQRyJIiIiUh5DlAliiCIiIlIeQ5QJ4nQeERGR8hQPUYsWLYKnpycsLS3h7++P33//vcT6cXFxaNKkCSwtLeHt7Y2tW7fK1sfHx6Nr165wdnaGSqVCamqqbP2NGzcwduxYNG7cGFZWVqhTpw7eeustZGVlyeqpVKoiy5o1a8rlmJ8UR6KIiIiUp2iIWrt2LSIjIxEdHY3Dhw/Dx8cHwcHByMzMNFh/7969GDhwIMLDw5GSkoLQ0FCEhobi+PHjUp2cnBy0b98es2bNMtjGlStXcOXKFcydOxfHjx9HbGwstm/fjvDw8CJ1ly9fjvT0dGkJDQ0tl+N+UgxRREREylMJodykkL+/P9q0aYPPP/8cAJCfnw8PDw+MHTsW7733XpH6/fv3R05ODn788Uep7IUXXkCrVq2wePFiWd3z58/Dy8sLKSkpaNWqVYn9iIuLw5AhQ5CTkwNzc3MABSNRGzZseKLglJ2dDXt7e2RlZcHOzq7M7Txq1y6gUyegSRPg1Klya5aIiIhg/Oe3YiNReXl5OHToEIKCgv7pjJkZgoKCkJycbHCb5ORkWX0ACA4OLra+sQpPUmGAKjRmzBi4uLjAz88Py5Ytw+PyZm5uLrKzs2VLReBIFBERkfLMH1+lYly7dg16vR6urq6ycldXV5w+fdrgNjqdzmB9nU73RP2YMWMGIiIiZOXTp0/Hiy++CGtra/z8888YPXo0bt++jbfeeqvYtmJiYjBt2rQy98VYDFFERETKUyxEVQXZ2dkICQlBs2bNMHXqVNm6yZMnSz8/99xzyMnJwZw5c0oMUVFRUYiMjJS17+HhUe795t15REREylNsOs/FxQVqtRoZGRmy8oyMDGi1WoPbaLXaUtUvya1bt9CtWzdUr14dGzZsQLVq1Uqs7+/vj0uXLiE3N7fYOhqNBnZ2drKlInAkioiISHmKhSgLCwv4+voiMTFRKsvPz0diYiICAgIMbhMQECCrDwAJCQnF1i9OdnY2unbtCgsLC2zatAmWlpaP3SY1NRWOjo7QaDSl2ldFYIgiIiJSnqLTeZGRkQgLC0Pr1q3h5+eH+fPnIycnByNGjAAADBs2DLVq1UJMTAwAYNy4cQgMDMQnn3yCkJAQrFmzBgcPHsSSJUukNm/cuIELFy7gypUrAIAzZ84AKBjF0mq1UoC6c+cOvv/+e9kF4DVq1IBarcbmzZuRkZGBF154AZaWlkhISMBHH32EiRMnVubpKRan84iIiKoAobCFCxeKOnXqCAsLC+Hn5yf27dsnrQsMDBRhYWGy+uvWrRONGjUSFhYWonnz5mLLli2y9cuXLxcAiizR0dFCCCF27txpcD0AkZaWJoQQYtu2baJVq1bC1tZW2NjYCB8fH7F48WKh1+tLdWxZWVkCgMjKyir1eSnJwYNCAELUrl2uzRIREZEw/vNb0edEPe0q6jlRKSnA888D7u7A5cvl1iwRERHBBJ4TRWXH6TwiIiLlMUSZIF5YTkREpDyGKBPEEEVERKQ8higTxOk8IiIi5TFEmSCORBERESmPIcoEMUQREREpjyHKBHE6j4iISHkMUSaII1FERETKY4gyQQxRREREymOIMkGcziMiIlIeQ5QJ4kgUERGR8hiiTBBDFBERkfIYokwQp/OIiIiUxxBlgjgSRUREpDyGKBPEEEVERKQ8higTxOk8IiIi5TFEmSCzh/7WGKSIiIiUwRBlgh4OUZzSIyIiUgZDlAkqnM4DOBJFRESkFIYoE8SRKCIiIuUxRJkghigiIiLlMUSZIE7nERERKY8hygRxJIqIiEh5DFEmiCGKiIhIeQxRJojTeURERMpjiDJBHIkiIiJSHkOUCWKIIiIiUh5DlAnidB4REZHyGKJMEEeiiIiIlMcQZYIeHoliiCIiIlIGQ5SJKgxSnM4jIiJSBkOUiSqc0uNIFBERkTIYokwUQxQREZGyGKJMFKfziIiIlKV4iFq0aBE8PT1haWkJf39//P777yXWj4uLQ5MmTWBpaQlvb29s3bpVtj4+Ph5du3aFs7MzVCoVUlNTi7Rx7949jBkzBs7OzrC1tcXLL7+MjIwMWZ0LFy4gJCQE1tbWqFmzJiZNmoQHDx488fGWF45EERERKUvRELV27VpERkYiOjoahw8fho+PD4KDg5GZmWmw/t69ezFw4ECEh4cjJSUFoaGhCA0NxfHjx6U6OTk5aN++PWbNmlXsft9++21s3rwZcXFx2LVrF65cuYI+ffpI6/V6PUJCQpCXl4e9e/dixYoViI2NxZQpU8rv4J8QQxQREZHChIL8/PzEmDFjpNd6vV64u7uLmJgYg/X79esnQkJCZGX+/v5i1KhRReqmpaUJACIlJUVWfvPmTVGtWjURFxcnlZ06dUoAEMnJyUIIIbZu3SrMzMyETqeT6nz55ZfCzs5O5ObmGn18WVlZAoDIysoyehtj2dgIAQjxxx/l3jQREdEzzdjP71KNRM2ePRt3796VXu/Zswe5ubnS61u3bmH06NFGtZWXl4dDhw4hKChIKjMzM0NQUBCSk5MNbpOcnCyrDwDBwcHF1jfk0KFDuH//vqydJk2aoE6dOlI7ycnJ8Pb2hqurq2w/2dnZOHHiRLFt5+bmIjs7W7ZUFI5EERERKatUISoqKgq3bt2SXnfv3h2XL1+WXt+5cwdfffWVUW1du3YNer1eFlQAwNXVFTqdzuA2Op2uVPWLa8PCwgIODg7FtlPcfgrXFScmJgb29vbS4uHhYXS/SoshioiISFmlClHikVvBHn39rIuKikJWVpa0XLx4scL2xbvziIiIlGWu1I5dXFygVquL3BWXkZEBrVZrcButVluq+sW1kZeXh5s3b8pGox5uR6vVFrlLsHC/Je1Lo9FAo9EY3ZcnwZEoIiIiZSl2d56FhQV8fX2RmJgoleXn5yMxMREBAQEGtwkICJDVB4CEhIRi6xvi6+uLatWqydo5c+YMLly4ILUTEBCAY8eOye4STEhIgJ2dHZo1a2b0vioSQxQREZGySj0S9c0338DW1hYA8ODBA8TGxsLFxQUAZNdLGSMyMhJhYWFo3bo1/Pz8MH/+fOTk5GDEiBEAgGHDhqFWrVqIiYkBAIwbNw6BgYH45JNPEBISgjVr1uDgwYNYsmSJ1OaNGzdw4cIFXLlyBUBBQAIKRpC0Wi3s7e0RHh6OyMhIODk5wc7ODmPHjkVAQABeeOEFAEDXrl3RrFkzDB06FLNnz4ZOp8OHH36IMWPGVNpI0+NwOo+IiEhhpbnlr27dusLT0/OxS2ksXLhQ1KlTR1hYWAg/Pz+xb98+aV1gYKAICwuT1V+3bp1o1KiRsLCwEM2bNxdbtmyRrV++fLkAUGSJjo6W6ty9e1eMHj1aODo6Cmtra9G7d2+Rnp4ua+f8+fOie/fuwsrKSri4uIgJEyaI+/fvl+rYKvIRB66uBY84OHKk3JsmIiJ6phn7+a0SgmMZFSU7Oxv29vbIysqCnZ1dubbt7g6kpwMpKUCrVuXaNBER0TPN2M9vxb/2hcqG03lERETKKlWISk5Oxo8//igr+/bbb+Hl5YWaNWsiIiJC9vBNqji8sJyIiEhZpQpR06dPlz2x+9ixYwgPD0dQUBDee+89bN68WboInCoWQxQREZGyShWiUlNT0aVLF+n1mjVr4O/vj6+//hqRkZH47LPPsG7dunLvJBVVGKI4nUdERKSMUoWov/76S/Z1KLt27UL37t2l123atKnQp3TTPwqvieJIFBERkTJKFaJcXV2RlpYGoOALhA8fPiw9WwkoeE5UtWrVyreHZBCn84iIiJRVqhDVo0cPvPfee9i9ezeioqJgbW2NDh06SOuPHj2K+vXrl3snqShO5xERESmrVE8snzFjBvr06YPAwEDY2toiNjYWFhYW0vply5aha9eu5d5JKorTeURERMoqVYhycXHBr7/+iqysLNja2kKtVsvWx8XFoXr16uXaQTKM03lERETKKlWIGjlypFH1li1bVqbOkPE4nUdERKSsUoWo2NhY1K1bF8899xz4bTHK4nQeERGRskoVot544w2sXr0aaWlpGDFiBIYMGQInJ6eK6huVgNN5REREyirV3XmLFi1Ceno63nnnHWzevBkeHh7o168ffvrpJ45MVTJO5xERESmr1F9ArNFoMHDgQCQkJODkyZNo3rw5Ro8eDU9PT9y+fbsi+kgGcDqPiIhIWaUOUbKNzcygUqkghIBery+vPpEROJ1HRESkrFKHqNzcXKxevRr/93//h0aNGuHYsWP4/PPPceHCBdja2lZEH8kATucREREpq1QXlo8ePRpr1qyBh4cHRo4cidWrV8PFxaWi+kYl4HQeERGRskoVohYvXow6deqgXr162LVrF3bt2mWwXnx8fLl0jorH6TwiIiJllSpEDRs2DKrCIRBSFKfziIiIlFXqh21S1cDpPCIiImU90d15pBxO5xERESmLIcpEcTqPiIhIWQxRJorTeURERMpiiDJRnM4jIiJSFkOUieJ0HhERkbIYokwUp/OIiIiUxRBlojidR0REpCyGKBPF6TwiIiJlMUSZKE7nERERKYshykRxOo+IiEhZDFEmitN5REREymKIMlGcziMiIlIWQ5SJ4nQeERGRshiiTBSn84iIiJRVJULUokWL4OnpCUtLS/j7++P3338vsX5cXByaNGkCS0tLeHt7Y+vWrbL1QghMmTIFbm5usLKyQlBQEM6ePSutT0pKgkqlMrgcOHAAAHD+/HmD6/ft21f+J6AMOJ1HRESkLMVD1Nq1axEZGYno6GgcPnwYPj4+CA4ORmZmpsH6e/fuxcCBAxEeHo6UlBSEhoYiNDQUx48fl+rMnj0bn332GRYvXoz9+/fDxsYGwcHBuHfvHgCgbdu2SE9Ply2vvvoqvLy80Lp1a9n+duzYIavn6+tbcSejFDidR0REpDChMD8/PzFmzBjptV6vF+7u7iImJsZg/X79+omQkBBZmb+/vxg1apQQQoj8/Hyh1WrFnDlzpPU3b94UGo1GrF692mCbeXl5okaNGmL69OlSWVpamgAgUlJSynpoIisrSwAQWVlZZW6jOP37CwEI8dln5d40ERHRM83Yz29FR6Ly8vJw6NAhBAUFSWVmZmYICgpCcnKywW2Sk5Nl9QEgODhYqp+WlgadTierY29vD39//2Lb3LRpE65fv44RI0YUWderVy/UrFkT7du3x6ZNm0o8ntzcXGRnZ8uWisLpPCIiImUpGqKuXbsGvV4PV1dXWbmrqyt0Op3BbXQ6XYn1C/8sTZtLly5FcHAwateuLZXZ2trik08+QVxcHLZs2YL27dsjNDS0xCAVExMDe3t7afHw8Ci27pPidB4REZGyzJXugNIuXbqEn376CevWrZOVu7i4IDIyUnrdpk0bXLlyBXPmzEGvXr0MthUVFSXbJjs7u8KCFO/OIyIiUpaiI1EuLi5Qq9XIyMiQlWdkZECr1RrcRqvVlli/8E9j21y+fDmcnZ2LDUYP8/f3x7lz54pdr9FoYGdnJ1sqCqfziIiIlKVoiLKwsICvry8SExOlsvz8fCQmJiIgIMDgNgEBAbL6AJCQkCDV9/LyglarldXJzs7G/v37i7QphMDy5csxbNgwVKtW7bH9TU1NhZubm9HHV5E4nUdERKQsxafzIiMjERYWhtatW8PPzw/z589HTk6OdJH3sGHDUKtWLcTExAAAxo0bh8DAQHzyyScICQnBmjVrcPDgQSxZsgQAoFKpMH78eMycORMNGzaEl5cXJk+eDHd3d4SGhsr2/csvvyAtLQ2vvvpqkX6tWLECFhYWeO655wAA8fHxWLZsGb755psKPBvG43QeERGRshQPUf3798fVq1cxZcoU6HQ6tGrVCtu3b5cuDL9w4QLMzP4ZMGvbti1WrVqFDz/8EO+//z4aNmyIjRs3okWLFlKdd955Bzk5OYiIiMDNmzfRvn17bN++HZaWlrJ9L126FG3btkWTJk0M9m3GjBn4888/YW5ujiZNmmDt2rXo27dvBZyF0uN0HhERkbJUQnAso6JkZ2fD3t4eWVlZ5X591GuvAd98A8ycCXzwQbk2TURE9Ewz9vNb8SeWU9lwOo+IiEhZDFEmitN5REREymKIMlG8O4+IiEhZDFEmitN5REREymKIMlGcziMiIlIWQ5SJ4nQeERGRshiiTBSn84iIiJTFEGWiOJ1HRESkLIYoE8XpPCIiImUxRJkoTucREREpiyHKRHE6j4iISFkMUSaK03lERETKYogyUZzOIyIiUhZDlInidB4REZGyGKJMFKfziIiIlMUQZaI4nUdERKQshigTxek8IiIiZTFEmShO5xERESmLIcpEcTqPiIhIWQxRJorTeURERMpiiDJRnM4jIiJSFkOUieJ0HhERkbIYokwUp/OIiIiUxRBlojidR0REpCyGKBPF6TwiIiJlMUSZKE7nERERKYshykRxOo+IiEhZDFEmitN5REREymKIMlGcziMiIlIWQ5SJ4nQeERGRshiiTBSn84iIiJTFEGWiOJ1HRESkLIYoE8XpPCIiImUxRJkoTucREREpq0qEqEWLFsHT0xOWlpbw9/fH77//XmL9uLg4NGnSBJaWlvD29sbWrVtl64UQmDJlCtzc3GBlZYWgoCCcPXtWVsfT0xMqlUq2fPzxx7I6R48eRYcOHWBpaQkPDw/Mnj27fA64HHA6j4iISFmKh6i1a9ciMjIS0dHROHz4MHx8fBAcHIzMzEyD9ffu3YuBAwciPDwcKSkpCA0NRWhoKI4fPy7VmT17Nj777DMsXrwY+/fvh42NDYKDg3Hv3j1ZW9OnT0d6erq0jB07VlqXnZ2Nrl27om7dujh06BDmzJmDqVOnYsmSJRVzIkqJ03lEREQKEwrz8/MTY8aMkV7r9Xrh7u4uYmJiDNbv16+fCAkJkZX5+/uLUaNGCSGEyM/PF1qtVsyZM0daf/PmTaHRaMTq1aulsrp164p58+YV268vvvhCODo6itzcXKns3XffFY0bNzb62LKysgQAkZWVZfQ2xvr2WyEAIYKDy71pIiKiZ5qxn9+KjkTl5eXh0KFDCAoKksrMzMwQFBSE5ORkg9skJyfL6gNAcHCwVD8tLQ06nU5Wx97eHv7+/kXa/Pjjj+Hs7IznnnsOc+bMwYMHD2T76dixIywsLGT7OXPmDP7666+yH3Q54XQeERGRssyV3Pm1a9eg1+vh6uoqK3d1dcXp06cNbqPT6QzW1+l00vrCsuLqAMBbb72F559/Hk5OTti7dy+ioqKQnp6OTz/9VGrHy8urSBuF6xwdHYv0LTc3F7m5udLr7Ozs4g/+CXE6j4iISFmKhiglRUZGSj+3bNkSFhYWGDVqFGJiYqDRaMrUZkxMDKZNm1ZeXSwR784jIiJSlqLTeS4uLlCr1cjIyJCVZ2RkQKvVGtxGq9WWWL/wz9K0CQD+/v548OABzp8/X+J+Ht7Ho6KiopCVlSUtFy9eLHZ/T4rTeURERMpSNERZWFjA19cXiYmJUll+fj4SExMREBBgcJuAgABZfQBISEiQ6nt5eUGr1crqZGdnY//+/cW2CQCpqakwMzNDzZo1pf38+uuvuH//vmw/jRs3NjiVBwAajQZ2dnaypaJwOo+IiEhZij/iIDIyEl9//TVWrFiBU6dO4Y033kBOTg5GjBgBABg2bBiioqKk+uPGjcP27dvxySef4PTp05g6dSoOHjyIN998EwCgUqkwfvx4zJw5E5s2bcKxY8cwbNgwuLu7IzQ0FEDBRePz58/HkSNH8L///Q8rV67E22+/jSFDhkgBadCgQbCwsEB4eDhOnDiBtWvXYsGCBbJpQCVxOo+IiEhZil8T1b9/f1y9ehVTpkyBTqdDq1atsH37duki7gsXLsDM7J+s17ZtW6xatQoffvgh3n//fTRs2BAbN25EixYtpDrvvPMOcnJyEBERgZs3b6J9+/bYvn07LC0tARSMGK1ZswZTp05Fbm4uvLy88Pbbb8sCkr29PX7++WeMGTMGvr6+cHFxwZQpUxAREVFJZ6ZknM4jIiJSlkoIjmVUlOzsbNjb2yMrK6vcp/Y2bgR69wYCAoC9e8u1aSIiomeasZ/fik/nUdlwOo+IiEhZDFEmitN5REREylL8migqJb0e2L0btXenIxBuuKvvAECtdK+IiIieOQxRpiQ+Hhg3Drh0Cc8BSAKQcbQ2EL8A6NNH4c4RERE9WzidZyri44G+fYFLl2TFNe5fLiiPj1eoY0RERM8mhihToNcXjEAZuIrcDH+XjR9fUI+IiIgqBUOUKdi9u8gIlIwQwMWLBfWIiIioUjBEmYL09PKtR0RERE+MIcoUuLmVbz0iIiJ6YgxRpqBDB6B27X8eDvUolQrw8CioR0RERJWCIcoUqNXAggUFPz8SpPLx9+v58wvqERERUaVgiDIVffoA69cDtWrJinXmtQvK+ZwoIiKiSsUQZUr69AHOnwfCwwEAW9AdneumMUAREREpgCHK1KjVgL8/ACAfajwQnMIjIiJSAkOUKapZs+APZPILiImIiBTCEGWKHgpRBh5iTkRERJWAIcoUcSSKiIhIcQxRpujvEGWDO9A8yFG4M0RERM8mhihTZGuLfI0lAMDq9lUkJfG7h4mIiCobQ5QJit+gwpX7BaNRlrcy0bkz4OkJxMcr2y8iIqJnCUOUiYmPB/r2BdLz/7kuCgAuXy4oZ5AiIiKqHAxRJkSvB8aNA4QAMiEPUYV36Y0fz6k9IiKiysAQZUJ27wYuXSr4+SpqAPgnRAEFQerixYJ6REREVLEYokxIevo/P1+FCwCgA3YjEEkwg95gPSIiIqoYDFEmxM2t4M/eiMdr+AYAEIKtSEJnnIcneiNeVo+IiIgqDkOUCenQAXjVOR7r0Rf2yJKtq4XLWI++eM05Hh06KNRBIiKiZwhDlAlRQ48FGAdAQPXIOjMUXFk+H+OhBq8sJyIiqmgMUaZk925YX79U7F+aGQSsr/PKciIiosrAEGVKjL1inFeWExERVTiGKFNi7BXjvLKciIiowjFEmZIOHYDatQHVo1dE/U2lAjw8wCvLiYiIKh5DlClRq4EFCwp+fjRIFb6eP7+gHhEREVUohihT06cPsH49UKuWvLx27YLyPn2U6RcREdEzhiHKFPXpA5w/j9tNWwMAPreLAtLSGKCIiIgqUZUIUYsWLYKnpycsLS3h7++P33//vcT6cXFxaNKkCSwtLeHt7Y2tW7fK1gshMGXKFLi5ucHKygpBQUE4e/astP78+fMIDw+Hl5cXrKysUL9+fURHRyMvL09WR6VSFVn27dtXvgdfVmo10LAhAODPnBoQZpzCIyIiqkyKh6i1a9ciMjIS0dHROHz4MHx8fBAcHIzMzEyD9ffu3YuBAwciPDwcKSkpCA0NRWhoKI4fPy7VmT17Nj777DMsXrwY+/fvh42NDYKDg3Hv3j0AwOnTp5Gfn4+vvvoKJ06cwLx587B48WK8//77Rfa3Y8cOpKenS4uvr2/FnIgysKxV8P15DvpryM5WuDNERETPGqEwPz8/MWbMGOm1Xq8X7u7uIiYmxmD9fv36iZCQEFmZv7+/GDVqlBBCiPz8fKHVasWcOXOk9Tdv3hQajUasXr262H7Mnj1beHl5Sa/T0tIEAJGSklKWwxJCCJGVlSUAiKysrDK3UaJp04QAxGJEiDNnKmYXREREzxpjP78VHYnKy8vDoUOHEBQUJJWZmZkhKCgIycnJBrdJTk6W1QeA4OBgqX5aWhp0Op2sjr29Pfz9/YttEwCysrLg5ORUpLxXr16oWbMm2rdvj02bNpXq+CqcS8FIlAuuISND4b4QERE9Y8yV3Pm1a9eg1+vh6uoqK3d1dcXp06cNbqPT6QzW1+l00vrCsuLqPOrcuXNYuHAh5s6dK5XZ2trik08+Qbt27WBmZob//Oc/CA0NxcaNG9GrVy+D7eTm5iI3N1d6nV3Rc2wPhaj16wG9vuARUXzCARERUcVT/JoopV2+fBndunXDK6+8gtdee00qd3FxQWRkJPz9/dGmTRt8/PHHGDJkCObMmVNsWzExMbC3t5cWDw+PCu377lP/hKjPPgM6dwY8PYH4+ArdLREREUHhEOXi4gK1Wo2MR+aiMjIyoNVqDW6j1WpLrF/4pzFtXrlyBZ07d0bbtm2xZMmSx/bX398f586dK3Z9VFQUsrKypOXixYuPbbOs4uOBN6f+E6IKXb4M9O3LIEVERFTRFA1RFhYW8PX1RWJiolSWn5+PxMREBAQEGNwmICBAVh8AEhISpPpeXl7QarWyOtnZ2di/f7+szcuXL6NTp07w9fXF8uXLYWb2+FORmpoKtxK+l06j0cDOzk62VAS9Hhg3DriKghDljOtQIR8AIERBnfHjC+oRERFRxVD0migAiIyMRFhYGFq3bg0/Pz/Mnz8fOTk5GDFiBABg2LBhqFWrFmJiYgAA48aNQ2BgID755BOEhIRgzZo1OHjwoDSSpFKpMH78eMycORMNGzaEl5cXJk+eDHd3d4SGhgL4J0DVrVsXc+fOxdWrV6X+FI5WrVixAhYWFnjuuecAAPHx8Vi2bBm++eabyjo1xdq9G7h0CbCAMwDAHHrYIws34QigIEhdvFhQr1MnBTtKRET0FFM8RPXv3x9Xr17FlClToNPp0KpVK2zfvl26MPzChQuyUaK2bdti1apV+PDDD/H++++jYcOG2LhxI1q0aCHVeeedd5CTk4OIiAjcvHkT7du3x/bt22FpaQmgYOTq3LlzOHfuHGrXri3rjygcygEwY8YM/PnnnzA3N0eTJk2wdu1a9O3btyJPh1HS0wv+zIMG2agOO9yCC65JIerRekRERFT+VOLh1EDlKjs7G/b29sjKyirXqb2kpIKLyAHgD9RDPaQhAHuxD/Ip0J07ORJFRERUWsZ+fj/zd+eZog4dCr5vWKUCrqHoxeUqFeDhUVCPiIiIKgZDlAlSq4EFCwp+vvb3dVEh+BGBSIIaBVeTz5/P50URERFVJIYoE9WnD7B3Yjw6qX4FALyOJUhCZ1xQe2LvxHj06aNwB4mIiJ5yDFGmKj4eL8ztCytxR1bsln8ZL8zlg6KIiIgqGkOUKSp8UJQQUD2ySsUHRREREVUKhihTVPigqOI8/KAoIiIiqhAMUabI2AdA8UFRREREFYYhyhSV8NUzD/v1rHH1iIiIqPQYokzRww+KMiAfKlyABzpHd+D15URERBWEIcoU/f2gKIGCwPSwv7+GGJH4BPlQIyKC15cTERFVBIYoU9WnD05MXY/LqCUrNvt7+QKj8TLicP06MGOGIj0kIiJ6qjFEmbBjDfvgbcyDoS8/rIlriEM/rMQAzJymx7RpHJEiIiIqTwxRJsytph7z8LbBEAUAKgCDsBY6uOLI1Hg4OADTpzNMERERlQeGKBPWAbvhgUuP/Ut0xnWsx8sIvh2H6GgwTBEREZUDhigTps407jlQKhT8Ra9FPyzDcPS6vRK/RCfBxVGPuLgK7SIREdFTiyHKlBn5vKhCagAjsAIrMQRJ6Iwzt7RY2y8OAwZwVIqIiKi0GKJMWYcOgItLmTcvvPi819oBcLLXc4qPiIioFBiiTJlaDXzxBQAUe3H54xRefH4xxx61okfgNZuVWDEiCfo8pikiIqKSqIQQZf38pcfIzs6Gvb09srKyYGdnV3E7eucdYM6ccm3yOpyQ0Gwcasz7AJ26qKFWl2vzREREVZaxn98MURWo0kIUAKxfD4SHA9nZ5drsbVgjVv0qbgf1Rp3BHeDuoUaHDmCoIiKipxZDVBVQqSEKKLigacYMiOnToaqAv9brcMRGvITfrV5Ex+bXUc29BrKr10K2Twe4uqtRqxYYsIiIyOQxRFUBlR6iCq1fD7zyCgQAw19RXL7+gh1WYBjOoz7uWjkjsMV11HnOGfrM61DXdMZ93XVcxT+Bq4ZWjevXAWdn4Pp1oEYNMIAREVGVwRBVBSgWogAgPh6IiChIKVXIw4HrGpzhguu4BmfUwFW4VbsOr3qASyMnVHOrKYUwKYylXwWuXy8Ih86G6xgb3JydgatX/zk9Tk5AzZoodR0GQCKipw9DVBWgaIgCCqb3/v1vYMEC4MaNyt9/FVFScHNGQSi7ASdcRU1pXWnrPC4AGh0EtTVwRVULR+07QJipyxzujKnLAEhEZBhDVBWgeIgqpNcDu3cDGzdCfP01VHfuKNcXMkoWquNndMVeBJQ53Blb966VMwKbXYWbpuRRPmNGAouto60BnboW7rXpgGt/qZ94JJABkIgqEkNUFVBlQtTD/h6dEnPmQHX7ttK9oWdM4c0JO/FiuYwEGhsAyzsIZl5Xc5qX6CnGEFUFVMkQVagwTC1YANUzPNVHVFrX4Ygf0BNXULvypnnLWqeWFjp1LeT58/EkRKXBEFUFVOkQVejvqb78i5dxfspSeJ3fWSl39BFR5Xn48SSFd89WWHArRR1zV2e4ml9HvTbOMPuLQ3hUdTBEVQEmEaIeoV+3HvqI0bDIuqp0V4joGXWvWnWc9eqKa40DKjTclSrkXf/7Aj0zM6BTp4KFQe+pxRBVBZhiiAIgG53KWJUIp90/QJPDKT8iokJ5Fjb4r88ruPnci5Ue7mR1M67CSVxH9eqARysnqN20HM0rBwxRVYDJhqhHPRSq/rf/Ku7/93/w2v0tLO9lKd0zIiIy4J61I841fwk3n3ux3INbedygUdWv02OIqgKemhBlSOFjEy5fBq5eRb6jM/534DoyHjjjQcY//5hq5jBwERGRXOENGteq1X6imy/M3WrAplEteI/uALVF+aUxhqgq4KkOUaXxSOB69ImQ+Y7OOLv3KtJPXEe+ePJhcAY3IqJnyxV1bVyIXIAXZvcpl/YYoqoAhigFPSa4ldf3vhgbAI0Jgo6pO9HoSByq5fL5XUREpZEPAFDh90nryyVImVSIWrRoEebMmQOdTgcfHx8sXLgQfn5+xdaPi4vD5MmTcf78eTRs2BCzZs1Cjx49pPVCCERHR+Prr7/GzZs30a5dO3z55Zdo2LChVOfGjRsYO3YsNm/eDDMzM7z88stYsGABbG1tpTpHjx7FmDFjcODAAdSoUQNjx47FO++8Y/RxMURRqen1QFJSwZKfX/Yv9TOi7sNTsHlXKu46CMfUnWhwgjcnEFHFyocK6era0N5Je+KpPZMJUWvXrsWwYcOwePFi+Pv7Y/78+YiLi8OZM2dQs2bNIvX37t2Ljh07IiYmBv/617+watUqzJo1C4cPH0aLFi0AALNmzUJMTAxWrFgBLy8vTJ48GceOHcPJkydhaWkJAOjevTvS09Px1Vdf4f79+xgxYgTatGmDVatWASg4gY0aNUJQUBCioqJw7NgxjBw5EvPnz0dERIRRx8YQRfQ3QyODTzASWNoAyCBI9OxInbcTrcZ3eqI2TCZE+fv7o02bNvj8888BAPn5+fDw8MDYsWPx3nvvFanfv39/5OTk4Mcff5TKXnjhBbRq1QqLFy+GEALu7u6YMGECJk6cCADIysqCq6srYmNjMWDAAJw6dQrNmjXDgQMH0Lp1awDA9u3b0aNHD1y6dAnu7u748ssv8cEHH0Cn08HCwgIA8N5772Hjxo04ffq0UcfGEEX0FHk4CGZkVNo0b1nr1Mi7jEanNjP40TNn75ur0HbhwCdqw9jPb/Mn2ssTysvLw6FDhxAVFSWVmZmZISgoCMnJyQa3SU5ORmRkpKwsODgYGzduBACkpaVBp9MhKChIWm9vbw9/f38kJydjwIABSE5OhoODgxSgACAoKAhmZmbYv38/evfujeTkZHTs2FEKUIX7mTVrFv766y84OjqWxykgIlOhVhc8YNEIZgAahwGNK7RDRnjk8SQP3z2r9BPLL6Rcx64TzrC6U/A1OS9iJ15BHKqD1wTSk7Gu71Zp+1I0RF27dg16vR6urq6ycldX12JHe3Q6ncH6Op1OWl9YVlKdR6cKzc3N4eTkJKvj5eVVpI3CdYZCVG5uLnJzc6XX2dnZBo+BiKhS/B38zAA0GAo0ULo/j+gvm+Udih8cv4YmOQnOx5MAkV/h4a40Ia8GrqIt9qArEmCPW8qeODKo8Joo79EdKm2fioaop01MTAymTZumdDeIiExC0cE9NRDWBUAXZTr0iP6PzOCmXo/EkXw9vG/uhru4jPyMq4p8HU1hnT9vO+P07quwzi2oUwuX8RI2wxnP3hRu/t9/Xoycj1rl+Lyox1E0RLm4uECtViMjI0NWnpGRAa1Wa3AbrVZbYv3CPzMyMuDm5iar06pVK6lOZmamrI0HDx7gxo0bsnYM7efhfTwqKipKNtWYnZ0NDw8Pg3WJiKhqMzyDqwZQpFAxj96zsc1RD8sDu+H64J+QV1WeWF6RN2ikqz1wMXJ+uT0nyliKhigLCwv4+voiMTERoaGhAAouLE9MTMSbb75pcJuAgAAkJiZi/PjxUllCQgICAgIAAF5eXtBqtUhMTJRCU3Z2Nvbv34833nhDauPmzZs4dOgQfH19AQC//PIL8vPz4e/vL9X54IMPcP/+fVSrVk3aT+PGjYu9Hkqj0UCj0TzROSEiIjKW4dG8ToYrK26o7Dq9s79lPPHNFw8/sbwyR6AkQmFr1qwRGo1GxMbGipMnT4qIiAjh4OAgdDqdEEKIoUOHivfee0+qv2fPHmFubi7mzp0rTp06JaKjo0W1atXEsWPHpDoff/yxcHBwED/88IM4evSoeOmll4SXl5e4e/euVKdbt27iueeeE/v37xe//fabaNiwoRg4cKC0/ubNm8LV1VUMHTpUHD9+XKxZs0ZYW1uLr776yuhjy8rKEgBEVlbWk5wiIiIiqkTGfn4rHqKEEGLhwoWiTp06wsLCQvj5+Yl9+/ZJ6wIDA0VYWJis/rp160SjRo2EhYWFaN68udiyZYtsfX5+vpg8ebJwdXUVGo1GdOnSRZw5c0ZW5/r162LgwIHC1tZW2NnZiREjRohbt27J6hw5ckS0b99eaDQaUatWLfHxxx+X6rgYooiIiEyPsZ/fij8n6mnG50QRERGZHmM/v80qsU9ERERETw2GKCIiIqIyYIgiIiIiKgOGKCIiIqIyYIgiIiIiKgOGKCIiIqIyYIgiIiIiKgN+AXEFKnwEV3Z2tsI9ISIiImMVfm4/7lGaDFEV6NatWwDALyEmIiIyQbdu3YK9vX2x6/nE8gqUn5+PK1euoHr16lCpVE/cXnZ2Njw8PHDx4kU+Ab2C8VxXDp7nysNzXTl4nitPRZ5rIQRu3boFd3d3mJkVf+UTR6IqkJmZGWrXrl3u7drZ2fEfZyXhua4cPM+Vh+e6cvA8V56KOtcljUAV4oXlRERERGXAEEVERERUBgxRJkSj0SA6OhoajUbprjz1eK4rB89z5eG5rhw8z5WnKpxrXlhOREREVAYciSIiIiIqA4YoIiIiojJgiCIiIiIqA4YoIiIiojJgiDIhixYtgqenJywtLeHv74/ff/9d6S6ZtKlTp0KlUsmWJk2aSOvv3buHMWPGwNnZGba2tnj55ZeRkZGhYI9Nx6+//oqePXvC3d0dKpUKGzdulK0XQmDKlClwc3ODlZUVgoKCcPbsWVmdGzduYPDgwbCzs4ODgwPCw8Nx+/btSjyKqu9x53n48OFF3uPdunWT1eF5fryYmBi0adMG1atXR82aNREaGoozZ87I6hjz++LChQsICQmBtbU1atasiUmTJuHBgweVeShVnjHnulOnTkXe16+//rqsTmWda4YoE7F27VpERkYiOjoahw8fho+PD4KDg5GZmal010xa8+bNkZ6eLi2//fabtO7tt9/G5s2bERcXh127duHKlSvo06ePgr01HTk5OfDx8cGiRYsMrp89ezY+++wzLF68GPv374eNjQ2Cg4Nx7949qc7gwYNx4sQJJCQk4Mcff8Svv/6KiIiIyjoEk/C48wwA3bp1k73HV69eLVvP8/x4u3btwpgxY7Bv3z4kJCTg/v376Nq1K3JycqQ6j/t9odfrERISgry8POzduxcrVqxAbGwspkyZosQhVVnGnGsAeO2112Tv69mzZ0vrKvVcCzIJfn5+YsyYMdJrvV4v3N3dRUxMjIK9Mm3R0dHCx8fH4LqbN2+KatWqibi4OKns1KlTAoBITk6upB4+HQCIDRs2SK/z8/OFVqsVc+bMkcpu3rwpNBqNWL16tRBCiJMnTwoA4sCBA1Kdbdu2CZVKJS5fvlxpfTclj55nIYQICwsTL730UrHb8DyXTWZmpgAgdu3aJYQw7vfF1q1bhZmZmdDpdFKdL7/8UtjZ2Ync3NzKPQAT8ui5FkKIwMBAMW7cuGK3qcxzzZEoE5CXl4dDhw4hKChIKjMzM0NQUBCSk5MV7JnpO3v2LNzd3VGvXj0MHjwYFy5cAAAcOnQI9+/fl53zJk2aoE6dOjznTygtLQ06nU52bu3t7eHv7y+d2+TkZDg4OKB169ZSnaCgIJiZmWH//v2V3mdTlpSUhJo1a6Jx48Z44403cP36dWkdz3PZZGVlAQCcnJwAGPf7Ijk5Gd7e3nB1dZXqBAcHIzs7GydOnKjE3puWR891oZUrV8LFxQUtWrRAVFQU7ty5I62rzHPNLyA2AdeuXYNer5e9IQDA1dUVp0+fVqhXps/f3x+xsbFo3Lgx0tPTMW3aNHTo0AHHjx+HTqeDhYUFHBwcZNu4urpCp9Mp0+GnROH5M/R+Llyn0+lQs2ZN2Xpzc3M4OTnx/JdCt27d0KdPH3h5eeGPP/7A+++/j+7duyM5ORlqtZrnuQzy8/Mxfvx4tGvXDi1atAAAo35f6HQ6g+/5wnVUlKFzDQCDBg1C3bp14e7ujqNHj+Ldd9/FmTNnEB8fD6ByzzVDFD2zunfvLv3csmVL+Pv7o27duli3bh2srKwU7BlR+RgwYID0s7e3N1q2bIn69esjKSkJXbp0UbBnpmvMmDE4fvy47PpJqhjFneuHr9nz9vaGm5sbunTpgj/++AP169ev1D5yOs8EuLi4QK1WF7nTIyMjA1qtVqFePX0cHBzQqFEjnDt3DlqtFnl5ebh586asDs/5kys8fyW9n7VabZGbJh48eIAbN27w/D+BevXqwcXFBefOnQPA81xab775Jn788Ufs3LkTtWvXlsqN+X2h1WoNvucL15FccefaEH9/fwCQva8r61wzRJkACwsL+Pr6IjExUSrLz89HYmIiAgICFOzZ0+X27dv4448/4ObmBl9fX1SrVk12zs+cOYMLFy7wnD8hLy8vaLVa2bnNzs7G/v37pXMbEBCAmzdv4tChQ1KdX375Bfn5+dIvTCq9S5cu4fr163BzcwPA82wsIQTefPNNbNiwAb/88gu8vLxk6435fREQEIBjx47JQmtCQgLs7OzQrFmzyjkQE/C4c21IamoqAMje15V2rsv1MnWqMGvWrBEajUbExsaKkydPioiICOHg4CC7+4BKZ8KECSIpKUmkpaWJPXv2iKCgIOHi4iIyMzOFEEK8/vrrok6dOuKXX34RBw8eFAEBASIgIEDhXpuGW7duiZSUFJGSkiIAiE8//VSkpKSIP//8UwghxMcffywcHBzEDz/8II4ePSpeeukl4eXlJe7evSu10a1bN/Hcc8+J/fv3i99++000bNhQDBw4UKlDqpJKOs+3bt0SEydOFMnJySItLU3s2LFDPP/886Jhw4bi3r17Uhs8z4/3xhtvCHt7e5GUlCTS09Ol5c6dO1Kdx/2+ePDggWjRooXo2rWrSE1NFdu3bxc1atQQUVFRShxSlfW4c33u3Dkxffp0cfDgQZGWliZ++OEHUa9ePdGxY0epjco81wxRJmThwoWiTp06wsLCQvj5+Yl9+/Yp3SWT1r9/f+Hm5iYsLCxErVq1RP/+/cW5c+ek9Xfv3hWjR48Wjo6OwtraWvTu3Vukp6cr2GPTsXPnTgGgyBIWFiaEKHjMweTJk4Wrq6vQaDSiS5cu4syZM7I2rl+/LgYOHChsbW2FnZ2dGDFihLh165YCR1N1lXSe79y5I7p27Spq1KghqlWrJurWrStee+21Iv/x4nl+PEPnGIBYvny5VMeY3xfnz58X3bt3F1ZWVsLFxUVMmDBB3L9/v5KPpmp73Lm+cOGC6Nixo3BychIajUY0aNBATJo0SWRlZcnaqaxzrfq700RERERUCrwmioiIiKgMGKKIiIiIyoAhioiIiKgMGKKIiIiIyoAhioiIiKgMGKKIiIiIyoAhioiIiKgMGKKIiCqQSqXCxo0ble4GEVUAhigiemoNHz4cKpWqyNKtWzelu0ZETwFzpTtARFSRunXrhuXLl8vKNBqNQr0hoqcJR6KI6Kmm0Wig1Wpli6OjI4CCqbYvv/wS3bt3h5WVFerVq4f169fLtj927BhefPFFWFlZwdnZGREREbh9+7aszrJly9C8eXNoNBq4ubnhzTfflK2/du0aevfuDWtrazRs2BCbNm2S1v31118YPHgwatSoASsrKzRs2LBI6COiqokhioieaZMnT8bLL7+MI0eOYPDgwRgwYABOnToFAMjJyUFwcDAcHR1x4MABxMXFYceOHbKQ9OWXX2LMmDGIiIjAsWPHsGnTJjRo0EC2j2nTpqFfv344evQoevTogcGDB+PGjRvS/k+ePIlt27bh1KlT+PLLL+Hi4lJ5J4CIyq7cv9KYiKiKCAsLE2q1WtjY2MiWf//730KIgm+Mf/3112Xb+Pv7izfeeEMIIcSSJUuEo6OjuH37trR+y5YtwszMTOh0OiGEEO7u7uKDDz4otg8AxIcffii9vn37tgAgtm3bJoQQomfPnmLEiBHlc8BEVKl4TRQRPdU6d+6ML7/8Ulbm5OQk/RwQECBbFxAQgNTUVADAqVOn4OPjAxsbG2l9u3btkJ+fjzNnzkClUuHKlSvo0qVLiX1o2bKl9LONjQ3s7OyQmZkJAHjjjTfw8ssv4/Dhw+jatStCQ0PRtm3bMh0rEVUuhigieqrZ2NgUmV4rL1ZWVkbVq1atmuy1SqVCfn4+AKB79+74888/sXXrViQkJKBLly4YM2YM5s6dW+79JaLyxWuiiOiZtm/fviKvmzZtCgBo2rQpjhw5gpycHGn9nj17YGZmhsaNG6N69erw9PREYmLiE/WhRo0aCAsLw/fff4/58+djyZIlT9QeEVUOjkQR0VMtNzcXOp1OVmZubi5dvB0XF4fWrVujffv2WLlyJX7//XcsXboUADB48GBER0cjLCwMU6dOxdWrVzF27FgMHToUrq6uAICpU6fi9ddfR82aNdG9e3fcunULe/bswdixY43q35QpU+Dr64vmzZsjNzcXP/74oxTiiKhqY4gioqfa9u3b4ebmJitr3LgxTp8+DaDgzrk1a9Zg9OjRcHNzw+rVq9GsWTMAgLW1NX766SeMGzcObdq0gbW1NV5++WV8+umnUlthYWG4d+8e5s2bh4kTJ8LFxQV9+/Y1un8WFhaIiorC+fPnYWVlhQ4dOmDNmjXlcOREVNFUQgihdCeIiJSgUqmwYcMGhIaGKt0VIjJBvCaKiIiIqAwYooiIiIjKgNdEEdEzi1czENGT4EgUERERURkwRBERERGVAUMUERERURkwRBERERGVAUMUERERURkwRBERERGVAUMUERERURkwRBERERGVAUMUERERURn8PxaORWsiByI6AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -776,17 +3824,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: keras_surrogate\\assets\n" - ] - } - ], + "outputs": [], "source": [ "# Adding input bounds and variables along with scalers and output variable to kerasSurrogate\n", "xmin, xmax = [7, 306], [40, 1000]\n", @@ -816,19 +3856,28 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "13/13 [==============================] - 1s 3ms/step\n" + "\r", + "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChQElEQVR4nO2deXgT1f7/30m6UKBNIWVppdBSkEURBbQUFBGqRQHlC0pxA2QTLqAFZFNAwAXhKjuKXhEQqYKC/qQoCojeq5SqKCKKXOUWBNsCDTQta5fM7484IUmzTCaznJl8Xs/TB5JMJme2c97nsx0Dx3EcCIIgCIIgCEUxqt0AgiAIgiCIcIREGEEQBEEQhAqQCCMIgiAIglABEmEEQRAEQRAqQCKMIAiCIAhCBUiEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYQRAE4Zd169bBYDDg2LFjajeFIHQFiTCCIFTnu+++w4QJE3DdddehXr16aN68OQYPHoz//ve/tbbt2bMnDAYDDAYDjEYj4uLi0KZNGzz66KPYuXNnUL+7bds23H777WjcuDHq1q2Lli1bYvDgwdixY4dUh1aLF198ER999FGt9/fu3Yu5c+eirKxMtt/2ZO7cuc5zaTAYULduXbRv3x6zZs1CeXm5JL+Rm5uLpUuXSrIvgtAbJMIIglCdhQsXYsuWLejduzeWLVuGMWPG4N///jc6deqEQ4cO1dq+WbNm2LBhA95++23885//xL333ou9e/firrvuQnZ2NqqqqgL+5ssvv4x7770XBoMBM2fOxJIlSzBo0CD8/vvveO+99+Q4TAD+Rdi8efMUFWE8r732GjZs2IDFixejbdu2eOGFF9CnTx9IsbQwiTCC8E2E2g0gCIKYPHkycnNzERUV5XwvOzsbHTp0wEsvvYR33nnHbXuz2YxHHnnE7b2XXnoJTzzxBF599VWkpKRg4cKFPn+vuroazz33HO688058/vnntT4/ffp0iEfEDhcvXkTdunX9bnP//fcjISEBADB27FgMGjQIW7duxb59+5CRkaFEMwkiLCFLGEEQqtOtWzc3AQYArVu3xnXXXYfDhw8L2ofJZMLy5cvRvn17rFy5Ejabzee2paWlKC8vR/fu3b1+3rhxY7fXly9fxty5c3HttdeiTp06SExMxMCBA3H06FHnNi+//DK6desGi8WCmJgYdO7cGR988IHbfgwGAy5cuID169c7XYDDhw/H3LlzMXXqVABAamqq8zPXGKx33nkHnTt3RkxMDBo2bIghQ4bgxIkTbvvv2bMnrr/+euzfvx89evRA3bp18fTTTws6f6706tULAFBYWOh3u1dffRXXXXcdoqOjkZSUhPHjx7tZ8nr27Int27fj+PHjzmNKSUkJuj0EoVfIEkYQBJNwHIdTp07huuuuE/wdk8mEBx98ELNnz8bXX3+Nvn37et2ucePGiImJwbZt2zBx4kQ0bNjQ5z5ramrQr18/7N69G0OGDMGTTz6JiooK7Ny5E4cOHUJaWhoAYNmyZbj33nvx8MMPo7KyEu+99x4eeOAB5OXlOduxYcMGjBo1CrfccgvGjBkDAEhLS0O9evXw3//+F++++y6WLFnitEo1atQIAPDCCy9g9uzZGDx4MEaNGoUzZ85gxYoV6NGjB3788UfEx8c722u1WnH33XdjyJAheOSRR9CkSRPB54+HF5cWi8XnNnPnzsW8efOQmZmJcePG4ciRI3jttdfw3Xff4ZtvvkFkZCSeeeYZ2Gw2nDx5EkuWLAEA1K9fP+j2EIRu4QiCIBhkw4YNHABuzZo1bu/ffvvt3HXXXefzex9++CEHgFu2bJnf/c+ZM4cDwNWrV4+7++67uRdeeIHbv39/re3eeustDgC3ePHiWp/Z7Xbn/y9evOj2WWVlJXf99ddzvXr1cnu/Xr163LBhw2rt65///CcHgCssLHR7/9ixY5zJZOJeeOEFt/d//vlnLiIiwu3922+/nQPArV692udxu/Lss89yALgjR45wZ86c4QoLC7nXX3+di46O5po0acJduHCB4ziOW7t2rVvbTp8+zUVFRXF33XUXV1NT49zfypUrOQDcW2+95Xyvb9++XIsWLQS1hyDCDXJHEgTBHL/99hvGjx+PjIwMDBs2LKjv8paWiooKv9vNmzcPubm5uOmmm/DZZ5/hmWeeQefOndGpUyc3F+iWLVuQkJCAiRMn1tqHwWBw/j8mJsb5/3PnzsFms+G2227DDz/8EFT7Pdm6dSvsdjsGDx6M0tJS51/Tpk3RunVr7Nmzx2376OhoPPbYY0H9Rps2bdCoUSOkpqbi8ccfR6tWrbB9+3afsWS7du1CZWUlcnJyYDReHUZGjx6NuLg4bN++PfgDJYgwhNyRBEEwRUlJCfr27Quz2YwPPvgAJpMpqO+fP38eABAbGxtw2wcffBAPPvggysvLUVBQgHXr1iE3Nxf9+/fHoUOHUKdOHRw9ehRt2rRBRIT/7jIvLw/PP/88Dhw4gCtXrjjfdxVqYvj999/BcRxat27t9fPIyEi319dcc02t+LpAbNmyBXFxcYiMjESzZs2cLlZfHD9+HIBDvLkSFRWFli1bOj8nCMI/JMIIgmAGm82Gu+++G2VlZfjPf/6DpKSkoPfBl7Ro1aqV4O/ExcXhzjvvxJ133onIyEisX78eBQUFuP322wV9/z//+Q/uvfde9OjRA6+++ioSExMRGRmJtWvXIjc3N+hjcMVut8NgMODTTz/1Kkg9Y6xcLXJC6dGjhzMOjSAI5SARRhAEE1y+fBn9+/fHf//7X+zatQvt27cPeh81NTXIzc1F3bp1ceutt4pqR5cuXbB+/XoUFxcDcATOFxQUoKqqqpbViWfLli2oU6cOPvvsM0RHRzvfX7t2ba1tfVnGfL2flpYGjuOQmpqKa6+9NtjDkYUWLVoAAI4cOYKWLVs636+srERhYSEyMzOd74VqCSQIPUMxYQRBqE5NTQ2ys7ORn5+P999/X1RtqpqaGjzxxBM4fPgwnnjiCcTFxfnc9uLFi8jPz/f62aeffgrgqqtt0KBBKC0txcqVK2tty/1dzNRkMsFgMKCmpsb52bFjx7wWZa1Xr57Xgqz16tUDgFqfDRw4ECaTCfPmzatVPJXjOFitVu8HKSOZmZmIiorC8uXL3dq0Zs0a2Gw2t6zUevXq+S0XQhDhDFnCCIJQnSlTpuDjjz9G//79cfbs2VrFWT0Ls9psNuc2Fy9exB9//IGtW7fi6NGjGDJkCJ577jm/v3fx4kV069YNXbt2RZ8+fZCcnIyysjJ89NFH+M9//oMBAwbgpptuAgAMHToUb7/9NiZPnoxvv/0Wt912Gy5cuIBdu3bhH//4B+677z707dsXixcvRp8+ffDQQw/h9OnTWLVqFVq1aoWDBw+6/Xbnzp2xa9cuLF68GElJSUhNTUV6ejo6d+4MAHjmmWcwZMgQREZGon///khLS8Pzzz+PmTNn4tixYxgwYABiY2NRWFiIDz/8EGPGjMFTTz0V0vkPlkaNGmHmzJmYN28e+vTpg3vvvRdHjhzBq6++iptvvtntenXu3BmbNm3C5MmTcfPNN6N+/fro37+/ou0lCGZRMzWTIAiC466WVvD152/b+vXrc61bt+YeeeQR7vPPPxf0e1VVVdy//vUvbsCAAVyLFi246Ohorm7dutxNN93E/fOf/+SuXLnitv3Fixe5Z555hktNTeUiIyO5pk2bcvfffz939OhR5zZr1qzhWrduzUVHR3Nt27bl1q5d6ywB4cpvv/3G9ejRg4uJieEAuJWreO6557hrrrmGMxqNtcpVbNmyhbv11lu5evXqcfXq1ePatm3LjR8/njty5IjbufFXvsMTvn1nzpzxu51niQqelStXcm3btuUiIyO5Jk2acOPGjePOnTvnts358+e5hx56iIuPj+cAULkKgnDBwHESLA5GEARBEARBBAXFhBEEQRAEQagAiTCCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVIBEGEEQBEEQhAqQCCMIgiAIglABKtbKMHa7HUVFRYiNjaWlPwiCIAhCI3Ach4qKCiQlJcFo9G3vIhHGMEVFRUhOTla7GQRBEARBiODEiRNo1qyZz89JhDFMbGwsAMdF9LcOHkEQBEEQ7FBeXo7k5GTnOO4LEmEMw7sg4+LiSIQRBEEQhMYIFEpEgfkEQRAEQRAqQCKMIAiCIAhCBUiEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYQRAEQRCECpAIIwiCIAiCUAHNiLB7770XzZs3R506dZCYmIhHH30URUVFbttwHIeXX34Z1157LaKjo3HNNdfghRdecNvmyy+/RKdOnRAdHY1WrVph3bp1tX5r1apVSElJQZ06dZCeno5vv/3W7fPLly9j/PjxsFgsqF+/PgYNGoRTp065bfPnn3+ib9++qFu3Lho3boypU6eiurpampNBEARBEITm0YwIu+OOO7B582YcOXIEW7ZswdGjR3H//fe7bfPkk0/izTffxMsvv4zffvsNH3/8MW655Rbn54WFhejbty/uuOMOHDhwADk5ORg1ahQ+++wz5zabNm3C5MmT8eyzz+KHH35Ax44dkZWVhdOnTzu3mTRpErZt24b3338fX331FYqKijBw4EDn5zU1Nejbty8qKyuxd+9erF+/HuvWrcOcOXNkPEOEGKxWK4qLi33+Wa1WtZtIEARB6BQDx3Gc2o0Qw8cff4wBAwbgypUriIyMxOHDh3HDDTfg0KFDaNOmjdfvTJ8+Hdu3b8ehQ4ec7w0ZMgRlZWXYsWMHACA9PR0333wzVq5cCQCw2+1ITk7GxIkTMWPGDNhsNjRq1Ai5ublOEfjbb7+hXbt2yM/PR9euXfHpp5+iX79+KCoqQpMmTQAAq1evxvTp03HmzBlERUUJOsby8nKYzWbYbDZmli2yWq2orKz0+XlUVBQsFouCLRKP1Wp1Xmd/TJgwQTPHRASPnu5pgiDYQOj4rcm1I8+ePYuNGzeiW7duiIyMBABs27YNLVu2RF5eHvr06QOO45CZmYlFixahYcOGAID8/HxkZma67SsrKws5OTkAgMrKSuzfvx8zZ850fm40GpGZmYn8/HwAwP79+1FVVeW2n7Zt26J58+ZOEZafn48OHTo4BRj/O+PGjcMvv/yCm266yetxXblyBVeuXHG+Li8vD+EsSY/eRIu/gVfMdoT20Ns9TRCEttCUCJs+fTpWrlyJixcvomvXrsjLy3N+9r///Q/Hjx/H+++/j7fffhs1NTWYNGkS7r//fnzxxRcAgJKSEjdhBABNmjRBeXk5Ll26hHPnzqGmpsbrNr/99ptzH1FRUYiPj6+1TUlJid/f4T/zxYIFCzBv3rwgzoiykGjRBmTZEQ7d0wThgPoNdVBVhM2YMQMLFy70u83hw4fRtm1bAMDUqVMxcuRIHD9+HPPmzcPQoUORl5cHg8EAu92OK1eu4O2338a1114LAFizZg06d+6MI0eO+HRRssTMmTMxefJk5+vy8nIkJyer2CJCa5BlhyCIYKF+Qz1UFWFTpkzB8OHD/W7TsmVL5/8TEhKQkJCAa6+9Fu3atUNycjL27duHjIwMJCYmIiIiwinAAKBdu3YAHJmKbdq0QdOmTWtlMZ46dQpxcXGIiYmByWSCyWTyuk3Tpk0BAE2bNkVlZSXKysrcrGGe23hmVPL75LfxRnR0NKKjo/2eD4LwB1l2CIIIFuo31ENVEdaoUSM0atRI1HftdjsAOGOounfvjurqahw9ehRpaWkAgP/+978AgBYtWgAAMjIy8Mknn7jtZ+fOncjIyADgMLd27twZu3fvxoABA5y/s3v3bkyYMAEA0LlzZ0RGRmL37t0YNGgQAODIkSP4888/nfvJyMjACy+8gNOnT6Nx48bO34mLi0P79u1FHS+hf8gdIA10HrUJXTd2sNlicfasBQ0bWmE2V6jaFr3fF5qICSsoKMB3332HW2+9FQ0aNMDRo0cxe/ZspKWlOYVPZmYmOnXqhBEjRmDp0qWw2+0YP3487rzzTqd1bOzYsVi5ciWmTZuGESNG4IsvvsDmzZuxfft2529NnjwZw4YNQ5cuXXDLLbdg6dKluHDhAh577DEAgNlsxsiRIzF58mQ0bNgQcXFxmDhxIjIyMtC1a1cAwF133YX27dvj0UcfxaJFi1BSUoJZs2Zh/PjxZOkSgd4fQoDcAVJB51Gb0HVjhx9+uAnbtvUDxxlhMNjRv38eOnX6UZW2hMN9oQkRVrduXWzduhXPPvssLly4gMTERPTp0wezZs1yihqj0Yht27Zh4sSJ6NGjB+rVq4e7774br7zyinM/qamp2L59OyZNmoRly5ahWbNmePPNN5GVleXcJjs7G2fOnMGcOXNQUlKCG2+8ETt27HALtF+yZAmMRiMGDRqEK1euICsrC6+++qrzc5PJhLy8PIwbNw4ZGRmoV68ehg0bhvnz5ytwtvSFnh9CV3FZWloq6DvkDvBPqG4VliwA4QS5w9jAZot1CjAA4Dgjtm3rh7S0P1R5Hjyvt6/nU8v3hSZEWIcOHZwZjv5ISkrCli1b/G7Ts2dP/Pijf1U/YcIEp/vRG3Xq1MGqVauwatUqn9u0aNGiluuTCB45O2eh9dqEbhcMQsUloRwsWQAI/cKyZf/sWYtTgPFwnBFnzzZUfVKi1+dTEyKMYAM1RYscWCwWTJgwwdkhFhUZUVgYgdTUaiQlOWIO5eoQ5Zi5Wa1WwRY1wnG+bDYbgMAWAK3c03pBrxZJ1i37DRtaYTDY3YSYwWBHw4ZnFW+LK6xZ6KSERBghGE/R4g2txWfxbV2zBhgzBrDbAaMReOMNYORIlRsXBL46d70OZqFSVlaGzZs3O1/7sgB07DgI/frV19Q9rXX0avEA2He7ms0V6N8/r9b5F9J3yGnhY9lCFyokwoig0ONgdPLkVQEGOP59/HEgKwto1kzdtgnFW+fnbzALF8uOLxFaXV3ttp0vC8D119dR9J5n2VWlBHq2eHiDlUmSa3/QqdOPSEv7A2fPNkTDhmfd2uWr35DbwseqhU4KSIQRojl5Evj9d6B1a+2IFW/8/vtVAcZTUwP88Qd7x1VaWipoIPY1mE2Y0BqdOjXW9UDOE4xFxZcFICnpZsXay7qrSgn0bPHwhCWLX6heDrkC6MvKygCEZqFjHRJhhCi07r5zpXVrxzG4CjGTCWjVSr02+erEtm7dCiDwQOxrMCsvDw8BFsiicu7cuVrf8W4BUE6Ese6qkgvXWEY9WzxcYdHiJ1W/IJW4tFqtbiEDaWl/YNCgLQA4JCef1IUAA0iEESLQg/vOlWbNHCLy8ccdFjCTCXj99avHorSLSEgnFmgg9jWYpaRU+/mWduGvER9oH8iismfPHq/7MZsrdNO5awFP618gi4de3Oh6tfhJKS5d+7hAfaKW7wsSYUTQKOm+83y4fFmIQn0IR450iMg//nBYwFwFmBIuIv64IiOvSNKJseBekwIhAhhArWsUrEWFldgc1pB7AuJt394skgMHDkRSUpJurLh6tfjJIS4DCbvs7GxN3xckwoigUdJ95xqrkJsbg/nzzbDbDTAaOSxaZMNDD12SzBLVrFltESmXi8hVNLrO8gA7gNA7MZstFg0anMPIkW+iqipKFfdaqAgVwIMHD671XjAxJCzF5riitjBUI0bN9ZhTU487309ISND0QOuJXmOc5BCXgYSd2WwWvW8WIBFGBE0g9x2PVLNoi8WCkyeBadNcXaAGTJ8ej+zseGixb+bF5bFj1Zg/vzE4zvD3J0YAHACDc1t/nRh/jl3rg3kTFa4DmlYQKmw9Mx15/GV58bAYmwOwIQyVjlGTMpaI1QzTULMQWUcOcalXqyEPiTBCFL7cdzxSz6K1lMEoFIvFgoMHax8XYHB2Ov46MW/nmIqOuuMZ4+VpXQo0y1bjfLEqDOW0zEl1zKxnmOqx1qInQiY/waBXqyEPiTBCNN7cdzxSz6JZzGCUAm/HZTDYnW7EyMhKVFVFw2aLrdXpeDt3vkRF9+7D0LOnPuu8eeJLLHiztKSl/eF1lj18+K3o0KG/KueLxaBtuS1zUh2zFjJM9fgMek5WfCW4iJ3USC3sWIJEGKEJhLpAtUbt4+LQt28emjUrFjXweTPdm0wc0tMtmnTbuiLEEuPrnPmytOTkLPU6y27T5mbFB0t+gArkflHaOqeEZU4ul5PacXVywZrLVQkLn14zl0mEEZohkAtUCeTo1F2Py2Ipw9atvkWDq1vRW4fnzXS/cGE5mjWLl6StoSJ28BAiSP2dM3+WFrXrg/G4DmTXXFOO6dPNqKkxwGTisHBhOR566EFVXFVKWObkcDnJab1TUwR5ulx99UlKu1yl/i29rVXsCxJhhKbw5wKVGzk79avH1QBJSROwZw+wZIl/t2JxcbHb53xnnJb2B3JyljpFxUMPPQggXpJ2hoLYeB2hlhh/YsGXpSUyshKFhSm1svHUgj/uKVOA7Gx+wmH4W0THq9ImOQOj5QpUl8N6xwsvz3VHlRZBQutnKelydRWlRUVGFBZGIDW1GklJjjgLMaI0HOLnABJhBOEXvvNXMuDdYrGga1fvMXC+3IosZNMFQmy8TiBLTGRkJAD/YsFsrsD8+SV49tlE2O2OxIcbbjiINWtGMXvO1JxwuCJnYLRcA63U1jtf1qeiokTs2pWpighiJYHD9dz464fEiFKtCywhkAgjCD/wg4QQy5SUBBMDx0pnLDVCY6QaNWok2I13992nsGLFp4iMrHQKMEA/50xKlCqnIMdAG+iecS3p4oovwefL+uRaTsbbPSSn25KVBA7++AL1Q3pbbksqSIQRkuDZ2Xh2cloOkBVjmZICoTFwrHTGwRLonhATIxXIjZeUZEdq6nEUFqZo8pwpiZbdQYGsd1u3bhXlRvQUGq71/AD3e+jEiRP49NNP3b4rpduStfpZWu2H1IZEGBEygWJ9/JmotRJUqVZ2pj+XFKvZdEIQ6j4VEyMlxI3H2gDGKiwKLH8Itd6JjaXyJjRccb2HXAXYN99kSO62ZK1+Fj1T4iARRoSMv07Em4l6+/b+mDMnHSkpEZrq5FnIznSF1Wy6QIh1n0oRI8UP0movFM1aiQG94Gm98xZEf+JEMj7+uB/45cGCcUV7Exq8S9KXCPrmmwzs3Hkn/LktxcJS/SyzuQKZmbtqiU2ygvmHRBghK95mjjU1BlRUNNFk3SpWgqV5WMymC0Qgt4WnK1tKQeI5SM+ZcwbHjkUgJaX678XNb5ZdALFe1V3r+Dpn7rFc7vi6/zzvBW/iPTNzF5KSiryKIJstFjt3ZsKf2zJU1K6fVVZWBsBxfnkBBjjOC0uJLqxCIoyQFe/FQ7Vf6Z5FWBKI3iw9/OAWyG2xdevWWvuTUpC47icxEejcWZLdCsbzvPiKFaJAZumoHcvljmu5krVrd9aK2XIlGOvT2bMW8BY3z98T66ZjqX6W1WrF5s2bvZxfI3btysT11x8iS1gASIQRsuI5c9RLpXs1Yd2VFcjSIyaWRa+CRAulRfSAv1iuQOVKfBVFFiIufLkvMzN3iRYnLCVM8G1gJSj/5EnHOsOtW2tnjCERRkiO58yenzl27z4M6ekWzTwcQlFSFGnBlSVEMHXq9CMmTGiNEyeicejQR86OWstZtMGi19IiLOLL+jpo0AeIjy8LWK5EqFUpOzsbZrMZNpsNmzZtqjXhAOy4885d6N49P6TjYc1NLSQoXy7LHN//5ubGYNo0M+x2A4xGDosW2fDQQ5ec/S+rAo1EGCEpvmb2ZnMFunWrRGKiNL/DijVIaVGkhQWKPfElrK6/Ph7XXw+cOOF4L9ysQqxYD8IBX9bX668/LKhcSSjWJ5aC5+UikHU7Oztblv6Y739ttlgsXZoDjnPE3tntBkydGoe//noLZnMF4uOnYPLk+rDbHaWG3njDkWjFAiTCCMlQambPkjVIbVHEuuVIqLAKR6uQ2in9rExklMKXGBJ6HeRafJrFEjJi8Cc2zWazLL8pxB0KAPPn13PWeLTbgccf53DjjaeZyNAnEUaEDN+JBJrZS9XZqC18WIF1y1EwwiocrUJq1nlidRFoufEmhuS4DkL7ukceeYTp8xusC0+tTE1/QvrsWQvsdvfs1JoaA1as+BSpqcdVv8dJhBEhw5vqjx2rxoYNnNsNbzJxmDjxbiZmHEqglGVKC5ajYISVGlYhFixBarmqWFwEWg6EiiGprwNLwfNiWbMGGDMGTLrwPAkkpP31LWrf4yTCCEmwWBzL99SuKm9A585NZP1tVlxySlqmtGA5CkZYKW0VUtOl7SkMfFkPlHBTySHmXcVtUZERhYURSE2tRlKSwx+kpPjwJ4ZKS0vdyqFIbcVhWWD5w2q14tixaowZ09g5oVbShSc2gN6XkGZtZQFPSIQRkqJ0VXlWXHJKW6bUjicSgpDOT6lFoj1Rs1aXnFaSYK17Uot5V3Hr79mUWtyKEX4s1dtiBf76FRamwG4f5vaZNxee1OcwVOubLyHNcnIEiTBCcpQqGsqSS05pyxTLs7tghJVQQQIAxcXFfrcRO6irIeTlzBTj8RfnxSO1mOevY6BnU0pxK1b46cFlKDX8uQh0X/DbSXUOlbC+qb2ygC9IhBGCYSGGxhWWXHJyWaY8zzm/RAigrOUoGILtmIV00HK5DlkS8qEiJs5LLjGv5LMZivALJ4EVDMHcF6Gew2Ctb3qDRBghCJbKQvCw4JKTc0FoIefcbK7AmDH3uKWAszB7l/L35XQdsiTkpSJYYSmHq0aNZ1OP11JNlHLhBWt9c0UPrmISYYQgWCoLIafwCRY5F4QWKj7MZjMSpaqCyzhSuw5ZEPJSI0aMSO2qUcNdrsdrqTZKuPAcMXwpaNjQGvQ9E0ziBauQCCM0h5zCR2x7ePwtCB2KO1cq8cGaSzkY5HAdshxbJxYpl5AJZSKjdDC0Hq+l3nEE4jeG3T7Meb1ycpYGdc/46q+0knhBIowQhdplIYQKH1YIxZ0rlfhg0aUcDHK5m1jOnBKDEDEiRUC1t4xEs7msVluUPJ96u5Z65uRJPhPSEYjP92s5OUuRmno85P1rJfGCRBgRNP6sMqWlpUzc2KwRSlyTVOJDzbIMUuDLwnPhQj3YbLEoLS0FIKxjZalWlxwIESOhPKO+MxIboH//m1RduYHVLDjiKlarFfv2AXa7+z0odQyfFsYhEmFEUASyyvA+eFatKSwQrGtRjlgXVuqrBYM3Cw/HAR988AAMBjuOHs1Dp07C7j+tzJJDQU4xIjQj0RdaFbeBEFtolBWUcOG5LrptMOSEfQwfiTAiKIRaZVi1psiJv3gr3kojZtCSOtZFy2UZeAvPiRPN8MEH9wMQX4dKKoHFSoV4NWJgAvUHAwcOREJCQq3fl/J8qB37w1//3NwYTJtmht1ugNHIYdEiGx566JKmxLwSkxN+3xTD54BEGBEUvqwykZHhJ7pcERpvJda1KGWsi9ZS+b25Ds+evQRegPGocQxqVYj3hhrWvUBW2oSEBNkzd9W0arpadZYuzQHH8YVGDZg6NQ5//fUWzOYKTXkGlGxnMP2aXq2nJMLCDLHZcb7KQgAcOM6INWtGacKlJRdC462CcS3KFbektVR+10GWTztn5RjUqBDvD6UHelasGWoJHP66BprYKHX9tegO9dWvuVpRtWRNDBYSYWFEKNlx/EBYVFQEYCsaNy7Bm2+Ogi93UDjjzyISbCVqOWb4rAycweB5jKwdg9asi1Kip4xEsSKGhUlBqOsusoYSVlQWIBEWRoSaHWexWJyfVVVFgwV3kJJIFfMVzKAl1+xPDwMnS8fAwiCsJnrISAxFxEg5KQhWCCqx7mIoaNE6pyQkwsKUULPjQh10tFY0VOjiyEItImqURNBjWQZWBn/WLHOEcKQSMVJMCoIVgiysu+hPZHk7nnvukaUZmoVEWBgiRXZcoEHHX80mLRYNFbo4ciBx6i1bjEdu4alEADMrmYJqwJJlTm7UzkiUCqlFjNhJgVghGMq6i1LgTzReLcYKl+MBCgqMvncYhpAIC0NCiV9x7VQ9Bx0AzjXAXNfs8uzAtFw0NJCADSRO1Y5zkFMAKZEpyPrgz4plTm70UmdNbREDSCME1bDE+hJZWVlATIz3Yqw1NcAvv1wRtH/WBbxUkAgLQ0JxJXrLVDObK/wOuv46MK0VDRUiYMPJIuKKEpmCehn8tY7DBWXRTZyPmu5kqYSgkv2Or4r3NTXA7t3HcezYOp/FWA8c+ABmMzB48GDEx8d73X84PcMkwsKQUDscqdY2VLpoqBSuMqECVg/xVt7wdw55F7TcmYIsdc6sW+bkQG9ZeDxiRIyU118KIaiEJTZQxfufftoCsznw8cTHx4dF9mMgSISFKSwU/1QyrV8qV1mgjkXNmC+5EXoOwylTkDXLnJyZaKxn4UlBsCJG6uuvBSt6MBXvtXA8akMiLIxgrfinkoO1lK4yfx2L2jFfciL0HIZLpuBVwWNR1SWnxLI5LGThyYWvmFShSH28WoorFCKypD4evZW8IBEWRrBW/FONwVoq65uWOkqpCee4ONbWCVRq2RwWAtjlIDc35u/zpo2YVBZRsi/UoyucRFiYwVrxT6UHa7HWt3CM/fFFqHFxWoXFdQKVXjZHT1bOkyeBadPMzuuotVU/Tp4Evv++Lmy22KCy2rWKv2xMLVvESIQRkiF00FWzaKjYQYS12B810dNAHAysrRPoipKufT1YOX1l9/myigfbF8ntMrtqETLDaJzktMR6UlRkxIkTdXDpkln6RijM779fFWA8NTXAH3+QCCPCFLHWISGC5uLFi6isrERxcbHkRT/FDiLhILCEEspArPVZOYuJB0oLYy1bOQNl9/HXkS+hEGxfE6zLLNh+tLZFyIDp0+ORnR3vJkb05rpr3dpxHK5CzGQCWrVSr01SQCKMEE0o1iF/nZrVasUbb7wBQL6in1oeRPyhZNCqr3Oo5wxRgF1LoB4sVEogNLsv2BIKYrNHg+lH/dXnKiiwIibGsT8tuO6CmYxZrVaYTJVYtCgG06ebUVNjgMnEYeFCG0ymS7BatduvkAgjQkKOG1+Jop96grVgcT1niPKwKnj0OrmQC6muY6jZo0Kez0AWvG++WY9Dhxwxib//bhHkuhMzaRMqnrKzs2E2e3eDBtMneS5z98QTsc7rdf58Bf6er2syMxcgEUaoiK/Cn1FR0hf91GtgvZLB4no9h2IhwaMPpLiOSmSPCrXgnTlzBnFx1TAar1rkAMBk4hAbexpWq8MiJ9ZdqXR8rOfv+LpeWp2UkwgjVMF/4c8CdOokbeyNXgPrlQwW1+s5JAJDAtxBIMuRUq5qfxa8TZs2AQD69XPvV/v2zUNeniOUY+DAJzBmTAPR7kp6xqWDRBihCkJdjlJ2aHruOJQKFtfzOVQTsbF8SokjEuDCA92VclUHsuD5a8eRI3ZdZhpqERJhhKoEsuCwGnvDGqwGiyuFEgkJcgmeULLYlBRHehZYgQg20J0VV7WvdpjNp2E0NvTrriSUgUQYoSpCLDisdGisE66CValUfKkFTyhrMbqLThow5URIRqLW2Lt3s193pVaD3LUIiTBCVcLdgiMUoZaecBKsaiwoLdX+Qsmm01v9J6UJxqIpNCNx8ODBcjVXNvxN2rQa5K5FSIQRquOrMwi0sK5r8UI9LejKI6T0hNaQ6lppfUFpMdl0SolOvT5PPMFYNIuLiwEEnixWV1cr0napCadJG6uQCCOYwLMzcM2YdBUePHwnqVergNDSE8HOwNUcYKW8VnpZUFqoJVgp0anX58kTMefIn+UoMjJS0D5CmThpcdIlBXrPzCURRsiKmEHfM2PSsSyHGT17XnHO9q1WK/bvP6WoK0pJhJaeMBgM3r5ei6ioKNUGWDktOHpwZwuJ5fMnOgEORUVJSE09Llp0quHa1SK+A93NsidICLHglZWVYfPmzaJ/g0X0nplLIoyQDX+Dvr9Zizfh4Trbf+SRR/DOO+9o1hUVDIEsPUI6/4sXL/49wHKKD7BKWHD0kJAg1C1kNlcgM3MXdu68EwAvwA3YtSsT119/SNRva921ywpKnJtAv8GSNUhKq7ue7zsSYYTkCJ1Ve4qH0tJSbN26NaDwuHjxIoDQXVFaiH0RYukRsg6nkAH20iWL5OdDKbdhOMW2JCUV46oAc8BbR8vKyoJeMkovrl0isNWI72PlJlzc2lJgDLwJG9x7771o3rw56tSpg8TERDz66KMoKipyfj537lwYDIZaf/Xq1XPbz/vvv4+2bduiTp066NChAz755BO3zzmOw5w5c5CYmIiYmBhkZmbi999/d9vm7NmzePjhhxEXF4f4+HiMHDkS58+fd9vm4MGDuO2221CnTh0kJydj0aJFEp8RNuFn1StW7HCrQQM4Bv2XXvoKU6bk4eefz8FisaCmJhG//ZaImppE56LPvPAwGBxFeXy5mIRu5401a4AWLYBevRz/rlkjxdHLQ6dOPyInZymGDVuHnJylzgXMheA5wLriOsCuW2eS9XyEcq0Id7xdS94luXnzZlitVlH7pWukDywWCxITE73+8X2snPiqqXbypOw/rUk0Ywm744478PTTTyMxMRF//fUXnnrqKdx///3Yu3cvAOCpp57C2LFj3b7Tu3dv3Hzzzc7Xe/fuxYMPPogFCxagX79+yM3NxYABA/DDDz/g+uuvBwAsWrQIy5cvx/r165GamorZs2cjKysLv/76K+rUqQMAePjhh1FcXIydO3eiqqoKjz32GMaMGYPc3FwAQHl5Oe666y5kZmZi9erV+PnnnzFixAjEx8djzJgxSpwu1Qg0q/7gg/sBGLFhA4dHHwU2bLg6W1q06GrBHaEupmBdUVqNfQnV0uPPomazxWL+fLNHpyn9+RDjNtSCtVIO+MzgoiIjPA1bgVySZ86cCWvXLuEbJYLcf//9qgDjoWr8vtGMCJs0aZLz/y1atMCMGTMwYMAAVFVVITIyEvXr10f9+vWd2/z000/49ddfsXr1aud7y5YtQ58+fTB16lQAwHPPPYedO3di5cqVWL16NTiOw9KlSzFr1izcd999AIC3334bTZo0wUcffYQhQ4bg8OHD2LFjB7777jt06dIFALBixQrcc889ePnll5GUlISNGzeisrISb731FqKionDdddfhwIEDWLx4se5FGI+3QZ/jAN74arcbsH49B34QsduBadPMePLJWGfHH0ycjJDtwj32xdcAe/asxavVUo7zEYyY1LNLw98g55oZvGEDhzfeAO65x30bfy7JTZs2hXTNwsm1Gwi9ZeYpEeTeurXjeXUVYiYT0KqV6F3qGs2IMFfOnj2LjRs3olu3bj5Tg998801ce+21uO2225zv5efnY/LkyW7bZWVl4aOPPgIAFBYWoqSkBJmZmc7PzWYz0tPTkZ+fjyFDhiA/Px/x8fFOAQYAmZmZMBqNKCgowP/93/8hPz8fPXr0cHsws7KysHDhQpw7dw4NGjTw2uYrV67gypUrztfl5eXCTwqDuA76Fy7UwwcfPOCxhfsgYrcbnFl/ckCxL94HWNbOhxBrpdYHR2+DYVlZGU6eBObPb+tWkuTxxzl8+mmZW9081q6ZXtFjZp6cbbVarTCZKrFoUQymTzejpsYAk4nDwoU2mEyXYLVq61wpgaZE2PTp07Fy5UpcvHgRXbt2RV5entftLl++jI0bN2LGjBlu75eUlKBJkyZu7zVp0gQlJSXOz/n3/G3TuHFjt88jIiLQsGFDt21SU1Nr7YP/zJcIW7BgAebNm+f94DUKP+g7Kk7XTq13FWJyLDjtq02slzVQUmSwdD6CsVZqfXB0bZvVasXmzZv/Pu52btvV1Bgwd+5Z5OfnuF0fVq6Z3mH5HmIJ/tnleeKJWKfV/fz5CrzxhuN9tT0NrIU4qCrCZsyYgYULF/rd5vDhw2jbti0AYOrUqRg5ciSOHz+OefPmYejQocjLy6tVK+nDDz9ERUUFhg0b5m2XzDJz5kw3S115eTmSk5NVbJF0eBvob7jhIA4evEGVQYT12BelZ+CsnI9grJXBZgGyjP86YHbk52c43+M4I7Zt64ecnKXIyVmq+jUjCKC29dWXW1tNKy2LIQ6qirApU6Zg+PDhfrdp2bKl8/8JCQlISEjAtddei3bt2iE5ORn79u1DRkaG23fefPNN9OvXr5ZFq2nTpjh16pTbe6dOnULTpk2dn/PvuXbwp06dwo033ujc5vTp0277qK6uxtmzZ9324+13XH/DG9HR0YiOjvb5udJIPWPwNtD36vVF0INI3bp1BW0XyErEeuyL0rNFOc6HWIseS9Y5V+SeRXs77oyMfOzd291tOz7+KzX1eMjnROuuXYIQgq+szawsdS1iqoqwRo0aoVGjRqK+a//7TLrGUAGOuK49e/bg448/rvWdjIwM7N69Gzk5Oc73du7c6RRxqampaNq0KXbv3u0UXeXl5SgoKMC4ceOc+ygrK8P+/fvRuXNnAMAXX3wBu92O9PR05zbPPPOMM2mA/502bdr4dEWyhlwzBs+B3tfAP3DgQK/p1Lz1R+uuKKVQe+AM5VqxYp3jUWoW7XncANwsYYB41703EUnPExEOsJq1qYmYsIKCAnz33Xe49dZb0aBBAxw9ehSzZ89GWlpaLSvYW2+9hcTERNx999219vPkk0/i9ttvxyuvvIK+ffvivffew/fff483/nZWGwwG5OTk4Pnnn0fr1q2dJSqSkpIwYMAAAEC7du3Qp08fjB49GqtXr0ZVVRUmTJiAIUOGICkpCQDw0EMPYd68eRg5ciSmT5+OQ4cOYdmyZViyZIm8J0oCQi3hINWgn5CQ4NfdRAOCMPwNsEoVbgzlWrFgrVSjrInncUthFfQnItV+nliL0yG0g9B7h9WsTU2IsLp162Lr1q149tlnceHCBSQmJqJPnz6YNWuWm/vObrdj3bp1GD58OEwmU639dOvWDbm5uZg1axaefvpptG7dGh999JGzRhgATJs2DRcuXMCYMWNQVlaGW2+9FTt27HDWCAOAjRs3YsKECejduzeMRiMGDRqE5cuXOz83m834/PPPMX78eHTu3BkJCQmYM2cO8+UppCjh4DnoKzXQE75Re4DVMqyUNQnVKsiqKwZgM05HC5BwDe7eadbM8fnjjzssYCYT8Prr6p87TYiwDh064Isvvgi4ndFoxIkTJ/xu88ADD+CBBzxLJVzFYDBg/vz5mD9/vs9tGjZs6CzM6osbbrgB//nPf/w3mDGkKuHA6qBPsS/uaPl8FBUZ8dtv8g9ALJU1CcYq6HrNrFYr9u0D7Hb357KmBigosCImRr1nlmVxyDIkXIO7d6xWKyorK3HPPUBBgRHHjkUgJaUaSUl2FBer627XhAgjlIWFoGg5Bn6KfXFHq+fjhx9uwvz5jRUdgFh4JnzhGT/pes14S56jRExOLRH5zTfrcehQRUiWPLEWGZbFIcvoRbiGaskTGuPlWTqD55DHevdqlc4gEUZ4RaqgaKFiKjs7G2az2fkduR4GMfvVs9mftUEu0P1is8X+LYRcY7OUGYDkTBQIZdLhL36SF9iBRKRYS54/i4y/50YJcahXWA0wD8ayLoUlT2iMl9B7W63SGSTCCJ9IERStVWsLD5n9lcXf/VJWVoa9e6M9amgpazmRK1HA23FLHU8ptYj0Z5H57DP/z43c4lDPsBpgLrSvv3TJErIlT0+V+UmEEbJjsVhqzYpdX7P6rOjF7K81vHWefEV5PVtOPJ+TpCTpY/akEpH+XInbt5/FP/7RwCOT1Pdzw1opEpZhXXwI+e09e0Kz5GmlMr9QSIQRsuNpTXr0UWDDBratSyzFq+jZHSqUcLCc1La6KmtFFnqfBXIl7tq1G3a7e/JToOeGhVIkrKMX8RGqJU8LlfmDgUQYISverEnr11/9nBXrkusAFBPDTrwKuUNrozfLif86ZNVISZHfupGbG4Np04TdZ4EEcXLyCa+ZpK7PDRE8lZWVbou4a1F8sG7JUwMSYYQTT7eG5wPvazt/eAsi9URJ65K32b6n0Fm0yFFjTm2rC7lDfaOU5UTuMh4s1CGz2WIxf75Z1H3mSxDr1VqpJrm5MVi61H0R906dfgxqH2pa1fViyZMaEmGEE9fAytzcmL87ZgOMRg6LFtnw0EOXgnJ/WK1WxMVVw2i8OsN3wAG4+lop65I3q1JWVm2hM326GU88EQuzuUI1qwtL7tBwRu7EEhbqkJ09a/F4PoO7z7wJYr1ZK9Xm5Elg2jSzMyuYX8Q9Le0PwedWbCarVOjNjSgVxsCbEOGExWJBTU0ipk2Ld3GNGDB9ejxqahKDEmArV65EXt5q9Ou3DQaDQ+UYDHZ07PiT2+vMzF2yz5K9W5U4bN9+zkuQqAFnzzZ0vjabKyRZKFko/Lnbu3e98zzx8IJ15cqVsFqtirQn3LFYLEhMTPT5J4UY5q2urs+FFHXIhFjoeAHoihT3mdLPjZ5xeBTchTK/iLsQfFnVT550iLMWLYBevRz/rlkjdevVhfWi1GQJI2ohRR0aVzHlbVbcuPFp7NyZCY4zYteuTMTEXA7atB4M3o/JgF27dsJguF+SxZGlIhyC0InayGE9ErJ2qBr3GesDI2s4gtk5NyEWTD/lq0/Pz9d/yAPrZZJIhBFu+HIhmkwcYmNPw2oVt1ixq+nZZovFrl2Z4A2xrqZ1OfB1TAaDHcnJJ5mthA6QWyfckCPWTcjzqvR9JmRgLC2tg4MHG4R1VjBwNZh9zpwazJuXJKqf8pWRyHFsFn6VGpZDN0iEEU5cAyf79bvJTZj07ZuHvDyHpSrUuK2zZy21Cm7ypvWysjKf1b/F4O+Y+E6MdaFD6ftkORFLMLE+St9n/voQIVnB4VC6xTOYPScnNuh+yl9GYlraFS8TbvULv/pDb30BiTDCSSAXorftxOAvCHnz5s2SBucLPSYSOmzDukuBReQqbyL34CYkK1hvpVt8CUqhweyueC7e7i8jMS/PMTnNy+sPu10b5SL01heQCCN8IpcwUTPWScpj0spMSy9opVNlATnLm/gaBMvKyrB58+aA3/f33AjJCpZi2RuWkEJQ8ou4e4oPISLOc3KqhXIRLLZJLCTCCFVg3QXIw3dunsgx0+Jnw3FxlLQcLsjhWlGivIm37ycmJoZkoRC6qHdKymOw25u7fVerpVukEsv+FnEXQrDlIsS4gvXmRpQKEmGEamjBBRhq5yYU99lwY/Trd5Os2aJEcMgVfyS1a0WokJGran0oAkhoVvBPP32g+koWUiFFJrrSiLXc8ff6sWPVKCyMQGpqNZKS3A9eS25EqSARRshCuM1mQqH2bNggqBAjnWNlkDv+SMpBJ5jyJixbJgLFb3o7NgAoLEzBsWPV0MI4LiQTnTVCtdx99JFFV7F8UsDeVSZ0gbcZPl+XSEsoMQB5mw1znBHduw9Dt27eLSThOGNUA60sHeXNlR3I5c96gLM/S7nnsR092sq5pM+GDRzzg7vQTPTs7Gw1m1mLUCx3WnmWlIZEGCEbWhIJ3mK/lBiA/M2GU1KqSWypiFaWjvLnyg7k8meh/WLhj81mi3WKGMBhSWZ9cBeatV1VVaVG83ziq96YkJIWWnS9KgGJMMIJy+4JsQhta1JSkuIDklJ12YjgCSa2Ss1rI9aVrSe81R3U2uDuSyxHRAgbopXok/3VGxNS0iIUAadnSIQRTuR2T6gh8lh2uShVl40InmCXjnIN3AeUKSLqy1LHFz4OFxHmre5gqCt8SI3n/bFvXxRsttiA1yg+Pj6k/kuqvjRQvbFAJS1CFXB6hkQY4YacD4JagkjM/tSoxq2FbNFwJFBslas70PC3R5nj5A08DmSpU3PtU6XxJpRZsiR7vz8sMBhy0L9/XsAs6FDaLlVNN6FFY7317aEKOL1DIoxQFC08ZHqrxk2Ejq9Bp6jI6OYO5Lirn8kZeCzUUicGtZYDCsVqw6ol2dNd7Hp/uK6ZK+fkS46absEQioALB0iEEYQLlMEjHrkGb5bXCDxw4EKtYGNXlAjiF1P42JfgUXMCEshSHsh6wx/32bMWt9dq4i0Y3RU1XcdamBCHAyTCCMIFyuARh1yDN+tWyV9++aiWO9AVpYL4fVkXgsn6ZWEC4u/8eFpvPEve/PDDTbUsgmoWPPaV+eyKVK5jlicqQrDZYvHNN1Ho2lWb7Q8FWh+FIP7G0WmegtHIub3vCPI9BavVqlLL2MbX4H3yJJv7lRLeHWgwOBrp+Pfq/5VaE9UX/IoPrn++Aqf37bN6nYAUFFiZufctFovzOFzFpWeZCt7VZ7PFqtJOPg4qL281+vXb5rw/ALvbvRLIdSzERbtmDdCiBdCrl+PfNWukOALl+OGHm7B0aQ4eeMCiyfaHClnCCAJULkIsctXS0kqNLqC2OxAA82uiuqKVchz+8Famgnf12Ww2RZYec8Vf5rOjvbXvD0+rpZCYLBasl6FQu8abttovBSTCiIBo3dQtBDXKRWi9Lptcg3eg/e7YsQXbtkVjypR70aFDA0mPiSfYc+7pDtSC+OLxF+SfkZFfazsW8Vamgnf1bdq0SXUBKeT+ELNOrdbDJ/RQ4y1USIQRfmE9JkculCgXwXINMyEEW0tLiv3ecMNBrFkzSvblaQJdGy0uwSUEfgJSUJCOvXszsHdvd+TnZzjXZmQVqe9BLSBk7Ump+g65Jozea7xdLeAaDgYAEmGET7Ru6tYCrAqsYBGToRfsfiMjK50CDJB/eRqWr43cVtT8/AzwIcN8fNWcOWegsFfPL57HFso9qLXBXunwiVAmjP7uQU/xbDIBr7/uuAbhYgAgEUb4ROumbqkJ5wweIchlPeT3W1iY4tV1wVqMmBLIaUX1FV/1008XkJJiZeY8WywWDB482K1shZh7UIuDvRrhE2Kvu7+CsdXV1Rg4EJg06X+wWhsgJaUaSUl27N9vxJgxVy18ejYAkAgjfEJrfV2FT39fssSomY5aDCxbBHzF/WghcNwVqc6xXMfq7TwDHN577w+cOJHP1HmOj48P6ft6sfazvtqG5/1itVq91nw7dMjxb2FhCuz2YW6f6dUAQCUqCK841voqxqJFZTCZHCUbHGt9lcFkKlY9Zf3kSWDPHmXKFfjK4GGpVIIUsJ7q7q0cRDBxP1LeM2LcfFFRUcyfY8BxnjMzdwFwLdViwK5dmbDZYnUVX+XP2q8mSvZvahDoHuInAq7o1QBAljCiFqyv9SW3+8Bmi8XZsxY0bGiF2VwRFhk8WrEIiI37kfqe8XSx8K4VVyIjI2E2mwE4BNilSxZNnGMASEoqBuBeYFTNkg9yIGdgu1iRDmjTPSo1/IQrL68/7HZ9L/ZNIoyoBctrfcklFvgO0FvV7bS0P7xk8EifgaQmWor/C9b1Itc943rdA4mSq8VQ2at75k0wsF7yIVTkDmz3FOk2mw1VVVVu20RERDjdqXz8npB79eRJYN++KNhssUy7IEPFc8LFggFADkiEhSEsx/0EQi6xYLFYMHDgE5g/Px4c55gV81lhOTlLa6W/8x21zRaLHj1GoksXs+bOJY9Yi4BcGXpS1kVjoegr68VQecFQVFTkLLuhlZIPYu9BJQLbgxHpPIH6t6tWMgsMhhzVl2aSG5YMAHJBIizM0LqpW85kgdLSBrU6QN4F462j1kOwfigWAbky9Dz3K7YmFyviR656alJisVhq/b5cZUekRKp7kIXA9kCToZ9/jsKYMVf7KH6SmJb2h+ptJ8RDIiyM0Ercjy8cyQKVWLQoBtOnm1FTI12sgK8O0HWBXdeOWi/LbYRqEZBLvEixXxbFjxaEjSssiJNA6MEtJWQy5C1jkJ8k+rpGrK62QVyFRFgYoaW4H0/kTBbw1wH6WmBXr8H6Whh0xaC2+PFM9tDjOSbEI2Qy1LChFUYj5zZJNBo5PPxwOpKTuzqTQIqKjCgsjECbNkZYLNIu66XlUBZWIREWRgh15Tke4hTngMECciYLCLUGueJ9uQ19BeuzglSxZ2qIn5MngRdeiMXrr+e4CXsW43jIasIO3u5Vs7kC/fptc5sk9uuXh717r4YMfPSRRbZwEylDWeheuwqJsDBBqCvP8aA1ht0+zOuA4Tqj1ytCBmtvLi45lgsJZ67OurW5xuayZecxaVI9cFx953ssx/F4q0BPsIW/SeKxY9WyhZtIHcriK5ZPr2uy+oNEWBgg1JU3cOATfwd+umcH8gOGZ/mGFi0u4skn1TgiNlBquZBwpPas26KppIeffz6HSZPMzkxbVwLF8UhNMC6kUCvQE/Lja5JYWBghW7iJHKEsrE2a1IIq5ocB3lx5qanHaz3IR47YvWYHdu8+DP36jUVeXn+n+43jjJgypb5uKzoLxde59IXeK2FLga9Zt1bOmdVqxbffnqsVM8jjmuwhN8FW6Jd7YXBW0ONxms2nYTRybu85QiROhbTCiSNp6ZQs+/ZEj9clEGQJI5ykplZ7jRlLT7doOqifFbReHkQJWKjrFQr+ymIAtZdackXq+mgO95TnIsgcbrzxNFJSvMctyrkwOEvo8Tj37t0seeFZuYvaeuLruvDJBqmp1T7vXa1CIoxwEhV1GosWRXuNGUtIqAOjsYEs9bm0wsCBAwFAVMwCq+VBWJp5Sl3XS41j81UWA7CjW7d8pKcXuAmwgQMHIiEhQdIBnz+P3hdBNmDFik+Rmnrc53lkZYCTOxOPleOUEqlDJJQoauuJ53XR++SVRBjhhBcX3mLGbLZYDBs2DOvXN9T9Wl6+SEhIEP1dVi2JLFkEpK7rpfaxCcm0TUhIELUOoz+Bwh+vv6WHXLdjEb0PvJ5IORGQMwtY6QxjVievUkIijKiF54PmGpDvmNHvRXp6gaJreclp1Qhm32IGLjkXCpYCFgW0VHW91D42OQYtoQIlkJhlFb0NvEIsev4mDOGYMcjD6uRVSkiEEX7xrAwPGJGfn4H09AK37eSeVctp1Qhm38XFxUHtW+mYCj1BRU3dERPnpXaR2mDRekygJ8FY9Hwdl56C0INFzmXqWIFEGOEXb5XhlU6x57l0ySJbjIjQjj1Yi5waMRVax7O6PBFcnJcnWhGzrKz1KRVSWfS8TRJdA9Wjok7r0lImdpk6rVX1JxEWBoQykwoUV6IUrMSIhGqR08qAqBaetehYrS4vFUKfTT3EeQWCxbU+xSK1Rc91W8++cNGiaMnazQpil6ljZZwIBhJhYUAg4eAv5oCFuBLWYkSknIXzVp+iIiNExGdrBiGz06Iio5vrm+Xq8qEycOBAJCUlBX0vsfA8KoHW3KiuyGnR89YXTp9uxhNPxCpyjpSyUotZpo61cUIoJMLChFCEg9odol6DM12tPhs2cJqYtYlByOzUarXiwIEL4Lgmbu+r5foWi1DLlhgBxqP286gUWrUay2XR821dMwh6RkJNWvJnpWYhbk2r4wSJMEIQanaIYoIzWY8L8Ex4sNsNmpi1BYPQQPJAlgNP1zcLHb4vlCqL4e95LC2tg8LClIDWCpbPo16QSjALfUays7NhNptrfT/UpKVjx6oxf35j5zJcHGfE9u39MWdOOjPFU7UaxE8ijGC6MxYTnKmFuABvCQ9amLUJJZhAcqGWA7EuPKVRs325uTGYNi0edvswGI0cFi2y4aGHLtXaTmvV4LWMFBNYoc+I2WwWVXfOHxaLBQcPerMyGVBR0QQs3EZig/hZgEQY4XX2HmxtGjmEnJjgTKXjAsRa3LwFWLNSN0wKxAaS+7McJCQkaP68yInNFov5880u974B06eb0bPnFWasFUToKO2OZr3OodggflYgEUYAcJ+9nzwJHDkSBZstcLCnnNYJMcGZSsYFeLO4ZWW5izJf4tTbjFaPdcPEBJJrNRZIbc6etbgNkoCwZYrkhvXQAC2i1DOihTqHYsYJlhAswsrLywXvNC4uTlRjCPW5KiwsMBhyApYIYMk6oeSMzZvFbcwYgOMcf1fdoO5WRlcLY7jUDQuXQHI5EWJpZrF8RTChASytY0o4oDqH8iNYhMXHx8NgMPjdhuM4GAwG1NTUhNwwQnk8hYWWSgQoOWPzlaXkaoFzd4P6/r1wsfqEy3HKhZBlbVgqXyGmur/cSQ1kkQsdpZ5juZeSYwnBImzPnj1ytoNgAG+uPK2UCFBqxuYvS8kTPQXaE+ojRHywYHUMJinDmxCTAyWTdciiFzpyLiXHGoJF2O233y5nOwgG8JbiG6g6PqsdiVwztmPHqp3p/55WB44DAH0G2hPaQW2rI0vV/cVY5EJFqTIleidczo/owPyysjKsWbMGhw8fBgBcd911GDFihNcaJQT7eEvxNRo5zJlThIED70RkZGSta8tCR2KzxeKbb6KQmlot+285ZtONYbcPc7p6cnKWOq0OR4+2YjJwlXXIcqBNArn31HaPhmKRCxWp90fPSG34+y8urrY3Qkvrz4oSYd9//z2ysrIQExODW265BQCwePFivPDCC/j888/RqVMnSRtJyIu/FF+gAnylCtaEBF/BeckSI4xGDv363STbOoNX4+WuFivctq0fcnKWIjX1OAAKXHUlmEGDLAfawWq1orKy8u96ZGbY7Qa3emSe111N9yhLFrlQoWfEHXf3cmO3vl9r68+KEmGTJk3Cvffei3/961+IiHDsorq6GqNGjUJOTg7+/e9/S9pIQl5YTfH1N5B7qzgvVxKBr0B8b/FyaruCWCHYQYP1wYOCut3jIZcuzXFWT7fbDZg6NQ5//fUWzOYKZGdnu31P7WdCbYucVATzjOj5fq2dmX617wfgc/1ZVq2Eoi1hrgIMACIiIjBt2jR06dJFssYR4Y2/gfybb6KwZIm7GVqOJIJgl9QJRDi5FVgXVoEQYvVh4RiVuqf459Dbag+uz15VVVVIvyMHLCQsKIWUSQgs9le+Esi6dx8GjoPXceH220fCYmEzVEqUCIuLi8Off/6Jtm3bur1/4sQJxMbGStIwggC8D+RWqxWpqdUwGjm3emBiRFEghC4XIhRyK2gDoVYfFlz0St9Tgdx7rKK2RU5u5EhCYK2/8lcLMiWlGlFRUV7Xj+zcmU0BBogUYdnZ2Rg5ciRefvlldOvWDQDwzTffYOrUqXjwwQclbSBBuOKvHpgQURTKjE2q2bTagzYRGKFWH1biiZS8p/Tg3nMN3NYDciYhsNJfCa0FOW/eaMydm6iZ9SNFibCXX34ZBoMBQ4cORXW1IystMjIS48aNw0svvSRpA3nuvfdeHDhwAKdPn0aDBg2QmZmJhQsXIikpybnNZ599hmeffRa//PIL6tSpgx49euCVV15BSkqKc5svv/wSkydPxi+//ILk5GTMmjULw4cPd/utVatW4Z///CdKSkrQsWNHrFixwpmAAACXL1/GlClT8N577+HKlSvIysrCq6++iiZNmji3+fPPPzFu3Djs2bMH9evXx7Bhw7BgwQI3F64ekTsWQWg9sIEDByIhIcHtu1LM2PQ+m2YJFuJatGr1kRt/z57QPk4tl7tn4LbZXIQxY4qD6h9YuDdd0VMSgi+E9v01Nf/S1PqRohRBVFQUli1bhgULFuDo0aMAgLS0NNStW1fSxrlyxx134Omnn0ZiYiL++usvPPXUU7j//vuxd+9eAEBhYSHuu+8+TJ48GRs3boTNZsOkSZMwcOBA/PDDD85t+vbti7Fjx2Ljxo3YvXs3Ro0ahcTERGRlZQEANm3ahMmTJ2P16tVIT0/H0qVLkZWVhSNHjqBx48YAHIkJ27dvx/vvvw+z2YwJEyZg4MCB+OabbwAANTU16Nu3L5o2bYq9e/eiuLgYQ4cORWRkJF588UXZzpHaKFkQkceXKEpISEBiYqK8P+4DLaVHswZrcVhqWn1YG+g98fXsxcfHM+XCcsUzoYfjjJg3Lwk229KA7mXW7k1vSHG/sn7f8fibELOSXCaEkMwydevWRYcOHaRqi18mTZrk/H+LFi0wY8YMDBgwAFVVVYiMjMT+/ftRU1OD559/Hkaj4wF76qmncN999zm3Wb16NVJTU/HKK68AANq1a4evv/4aS5YscYqwxYsXY/To0XjssccAAKtXr8b27dvx1ltvYcaMGbDZbFizZg1yc3PRq1cvAMDatWvRrl077Nu3D127dsXnn3+OX3/9Fbt27UKTJk1w44034rnnnsP06dMxd+5cXQRde+JtLcWry/ao2zYl8ZUercdrDkjbYbMQh+Wt9pCSQd1aGOiFwEIbvT1zYt3LLNybQgnlflVjIh0KepjwihJhly9fxooVK7Bnzx6cPn0ado9UBd7yJBdnz57Fxo0b0a1bN0RGRgIAOnfuDKPRiLVr12L48OE4f/48NmzYgMzMTOc2+fn5yMzMdNtXVlYWcnJyADhU8v79+zFz5kzn50ajEZmZmcjPzwcA7N+/H1VVVW77adu2LZo3b478/Hx07doV+fn56NChg5t7MisrC+PGjcMvv/yCm266yetxXblyBVeuXHG+DmbR9FCQIgPGW8ZKOC3bM3DgQFRWNsb8+Y2dHTTHGbF9e388//xtsFgaqNxC6ZG6w1YrDsu78HGvPaSEG1pLA70WcA0q59fXFOte1lqMoJj7VWsTaa3VA/OFKBE2cuRIfP7557j//vtxyy23BFzYWyqmT5+OlStX4uLFi+jatSvy8vKcn6WmpuLzzz/H4MGD8fjjj6OmpgYZGRn45JNPnNuUlJS4CSMAaNKkCcrLy3Hp0iWcO3cONTU1Xrf57bffnPuIiopCfHx8rW1KSkr8/g7/mS8WLFiAefPmCTwb0hFqBoy/jJVwWbYnMjISR45EuB0/4AiK/e9/7UhKsurmHMi9FIyScVj+hI/Si9ezNNDzwhQAioqMKCyMQELCBUHfZcnq63kfhuqu02uMoK9aiDU1QEGBFTExbFg3eby5lZV+XqVClAjLy8vDJ598gu7du4f04zNmzMDChQv9bnP48GFnKYypU6di5MiROH78OObNm4ehQ4ciLy8PBoMBJSUlGD16NIYNG4YHH3wQFRUVmDNnDu6//37s3LlTMaEYCjNnzsTkyZOdr8vLy5GcnKzIb4t9wIRmrGh19i50QNm0aZPPWmLffLMehw7pw4KhxFIwSsZhCRU+SqL2QO/6TLtbGxqgf/+r1sHBgwfXmoxqwV0airtOD5mhngSqhchi/8XS8xoqokTYNddcI0k9sClTptTKTPSkZcuWzv8nJCQgISEB1157Ldq1a4fk5GTs27cPGRkZWLVqFcxmMxYtWuTc/p133kFycjIKCgrQtWtXNG3aFKdOnXLb/6lTpxAXF4eYmBiYTCaYTCav2zRt2hQA0LRpU1RWVqKsrMytA/Lc5ttvv621D/4zX0RHRyM6Otrv+WANoRkrrJjpg0WIlbCsrAybN28O2EFr9Ry4olQWllRxWEJj1sQKHzmsPmoP9Py1C2RtiI+PVy35JVRCcS/rrfCr0FqILPVfak9UpESUCHvllVcwffp0rF69Gi1atBD9440aNUKjRo1EfZePQ+NjqC5evOgMyOcxmUxu23q6JwFg586dyMjIAODoUDt37ozdu3djwIABzu/u3r0bEyZMAOCIPYuMjMTu3bsxaNAgAMCRI0fw559/OveTkZGBF154AadPn3ZmVO7cuRNxcXFo3769qOPVCnLHzoQavyYmkDyY2Z/eOmhfKCEUxN5LvoLbx4y5gFGjLnh1lwY6HrlKnviChftIT9YGqfF3b6qRXShVZXsW7jtfuLZd7YmKlIgSYV26dMHly5fRsmVL1K1b1xn4znP2rLRqtKCgAN999x1uvfVWNGjQAEePHsXs2bORlpbmFD59+/bFkiVLMH/+fKc78umnn0aLFi2cgfBjx47FypUrMW3aNIwYMQJffPEFNm/ejO3btzt/a/LkyRg2bBi6dOmCW265BUuXLsWFCxec2ZJmsxkjR47E5MmT0bBhQ8TFxWHixInIyMhA165dAQB33XUX2rdvj0cffRSLFi1CSUkJZs2ahfHjx2vO0sUaocSvKZX5Ey61xFjssP3FeK1eXR+rV9fFvffmYeHCa2tNAP0djxolT9S+j/RkbVCKN96owfz5nOJZrVJWtlf7vvOFxWLB4MGDsXnzZgDi+h+W4hV5RImwBx98EH/99RdefPFFNGnSRPZ4q7p162Lr1q149tlnceHCBSQmJqJPnz6YNWuWU9T06tULubm5WLRoERYtWoS6desiIyMDO3bsQExMDABH8P727dsxadIkLFu2DM2aNcObb77pLE8BOFYDOHPmDObMmYOSkhLceOON2LFjh1ug/ZIlS2A0GjFo0CC3Yq08JpMJeXl5GDduHDIyMlCvXj0MGzYM8+fPl/U8hQvBdmYnTwJ79wKjRwMc53iP9cwfVgg0q2etw/YX4+WAd6k56kINHjzY7VPWjkdN9GRtUGINRIfwT1Itq5WVeC058YxB9PW8Km25DgVRImzv3r3Iz89Hx44dpW6PVzp06IAvvvgi4HZDhgzBkCFD/G7Ts2dP/Pij/zTWCRMmON2P3qhTpw5WrVqFVatW+dymRYsWtVyfhPI4rF9craxFgN3MH7XxV6vqrrtKZftdKQdKb1YcHleXGr/iB+EdFq2dYgjVUiTknmMhq5VwoGax7mARJcLatm2LS5cuSd0WgpAUR90b7wIMYDfzR00C16raCbNMa+FK7VJxteK4wqpLTQlrDY+3EhSpqdVISrKjtNRdaPuyNpSWltb6Lt8+Fp+lUNrk794MtQYZEd6IEmEvvfQSpkyZghdeeAEdOnSoFRMWFxcnSeMIQiy+6t7wsJz5oyZql2yQcvDmrTgFBenYuzcDQG2Xmmff5QslYkmkFKH+8F2CIriCl7NmFWLbtuu8flePk5pAx6Mn9y2hHKJEWJ8+fQAAvXv3dnuf4zgYDAbU1NSE3jJCEyg5exdKoLo3gwZ9gOTkk5J1jiyeg1AJdVbPyrGazRW4665dSE8v8OpS49d+ZWWdQyV+R2gJCn8E+m64Tmq06L7VY/+lJUSJsD179kjdDkKjKDV7D4ZAdW+uv/6wpL/H4jkIFTElG3hYPFZ/AfestVUpAlk7vV1j3vVG5St8o7XkDj32X1pClAi7/fbbBW33j3/8A/Pnz/fZWRP6gOWHU6mZKcvnQCyslWwgpCWQtdPfNab4J32hlf4rGKudGvXaxCBKhAnlnXfewVNPPUUijFAVrc1MWUJr545cJsIJJYaJ4p+8Y7PF4uxZCxo2tDJ3LrQiSvwh1Gr30UcWRWpCSoGsIozjizIRBEEoAN9Jnz592lnU0R/hLtpCsRSzGv/kL/MTkN61dvHiRQCBkxzUuNf8lZtRooisHARqryMr3iHAAPZrQsoqwgiCIJTGYrFQnEsQhGLtZM1SKjTzU6rsTavVinfeeSdgosIjjzyi+L0WuNyMMkVklcRXVjzLNSFJhBEEyCLCo6dMKdY6W0J+hGZ+SpW9KbSkS926dSX5PTnappdM1kBZ8azWhCQRRoQtfPYXWUTcXTg9ejyE//3PhObNr6BpU0dF+cjISJj/rtJK50vbhCK0tSLSlc7eZDlRgeW2eUNs7FqgrHhWa0KSCCN0h9ABICkpicQElHfhEOoSiqtWLTev6yRByG8qLTxYTlRguW2eOJaZCz2gntV4RW/IKsIeeeQRqp5PKA7FAwWH0i4cQn1CXcJHSVwnCYDvDETX9X7VEB4sD/wstw1wXONjx6oxZkxj5zJzdrtj2bnExFKkpxuDvu9Yi1f0hWgRVlZWhm+//RanT5+GnU9D+JuhQ4cCAF577bXQWkcQIiGBFTxUgFMegrXiEO64njt/llrPc6yG8GB54Ge1bbzILixMgd0+zO0zu92Afv0s6N8/D2+91V2Xz4koEbZt2zY8/PDDOH/+POLi4mAwXF0g2WAwOEUYQRDaQWuxI1ogGCuOHgcYKRGzzFKwwkPp8hbEVfHsrf8Brl7nH344gk6d9DfBFiXCpkyZghEjRuDFF19UJeuDIJRCDwUOhaKl2BEe1q1MYq04UsH6+QkGuS21FBupLnz/8/HH/QDUvs4bNxZg797jujv/okTYX3/9hSeeeIIEGKFL9FjgUCi8C+fEiWYADEhOPuH8rKysjKmlilizMnkTPKWlpc62iV0sO5T2uJ4fX2hlUBNiqQ0le1NMbCTL2aIst80XnTr9iMaNS7BmzSif11lvsamiRFhWVha+//57tGzZUur2EISqhGOBQ0+OHm3l1QqwefNmpo5bbSuTK/4FoTrxdp7H7UukamVQE2KplSIpJ5hrxXISEMtt80ezZsWiLPJaFJ1AECLs448/dv6/b9++mDp1Kn799Vd06NABkZGRbtvee++90rWQIBREywUOpXA9aTFDUg0rkyeBBGFa2h+qxtsFWlJHKwgJtg9VVAQbG8maiHGF5bb5Q0xShVZFp2ARNmDAgFrvzZ8/v9Z7BoMBNTU1ITWKINQmUEdss9mc77MQwBuKa851ZqjFDEmW2uxLEObkLFUt3k4pkapU/JncWX5ajI3UI/x1ttliUViYImhRdNYElhAEizDPMhQEoWcCdcSbNm0CwE4AbyiuOYvFguzsbGzatEmTGZIstdmfIFSrVpMSIlXO+DM13Eys19UKF7z1ZaWlpUxatMQiKibs7bffRnZ2NqKjo93er6ysxHvvvUclKoiQYSErMVBHzKLrTqzVg1+SSItWAJbaHEgQqlGrSQmRGkr8mRALmhpuJlbraukNX+LZd1+2VFdxuaJE2GOPPYY+ffqgcePGbu9XVFTgscceIxFGiILFrER/HTFLbjAp26RFKwArbRYrCOUMFlZapAYTfxaMBY2lzFxCOvhYrqKiImzdutX5vhbjcsUgSoRxHOdWoJXn5MmTzhk1QQSDFrMSWXKDSd0mLVoBWGmzP0HILxrvihKTC6VEarCWWJYyOLWaXecNrdWH89YWFvtXOQhKhN10000wGAwwGAzo3bs3IiKufr2mpgaFhYXo06eP5I0k9I+aWYmuHdahQ2WCg0BZcoOx3Ca5YHnQ9CUIExISFLPoeB63rzZJeX5CscSqncGp1ew6T5Ssnydl2IinRSxc+rKgRBifIXngwAFkZWWhfv36zs+ioqKQkpKCQYMGSdpAIrxQevbjvUp2O8GDACtusFDbFIqgUWvWzdKgyaIgVOP8iH1+WSgzAmgzu84TuevnyRk2YrFY3NrFYv8qNUGJsGeffRYAkJKSguzsbNSpU0eWRhHhi9KzH6FVsl3dSGVlZdi8ebNbm1nrHIJtk9gBW+2q7KwMmiwJQlfUiKEU8/yyGF+pdeQQtnKHjZw8CezbFwWbLdbZRhb7VykRFRM2bJhjpfPKykqcPn26VvmK5s2bh94yImxRY/YTzCBQXV0taJ/8kjWuyDUQS2GJEdMulmJ61MabQHU97srKShQXFztfa8G1JQYxz2+4xP8oiRzCVo6wkdqWNQsMhhzNFhQOFlEi7Pfff8eIESOwd+9et/f5gH0q1kqEitDZj+tAF0rR1ECDwNq1O72KC3/4+o4cViEWLDFqx/SwhNoWQqUJNf5MjAVNa8HnSiOnsJVq374sa2q5o9VAlAgbPnw4IiIikJeXh8TERK+ZkgQhN97jucQVTfU3CPjbt6ubsrS01JlircZahmoOOKzE9LCC0GusFwuhFJOAYCxo4SZyxSBnaIdU+xZqWfOGFrJUhSBKhB04cAD79+9H27ZtpW4PQQhGaDyX0IHO2yAQaN/est30tkyMECimxz++3LR6Qsy9JtaCRm5wYcgZ2hHqvl3jvwJZ1jxLu+jJyilKhLVv395rvAtBiCWUmCYpBYDnICBm3ywtE5Odne2zdp+UHRnF9PgmWDctS+JabqSwoOnJDS7HtZczsD3YffuL//JnWQultAsLq6/4Q5QIW7hwIaZNm4YXX3wRHTp0QGRkpNvncXFxkjSOCB9C6YxZi30I9B0p1j4Tagng17j0hVTumnCp6RMswVpFw9HNFspx6MkNLtW1Z7FcChA4/isnZylycpZKYrVjcfUVX4gSYZmZmQCAXr16ucWDUWA+EQpiH4pQBECgjkjMvj2/A9iRkZHv/JyPG5NqIBViCVDCXRMONX2CJViraLjFkoWKntzgUrlY+QntmTNnUFVV5XUb10LrSiEk/is19XjI101rq6+IuhJ79uyRuh0EERJiBYAvC5xrkL2YffPfKShIR35+Bvbu7Y78/AzJA/SFWALkdNeoUZVdS4RqpfU1EEthTdUDenWDS/HMulrBpaqaL4WVTe5rpubqK2IQJcJuv/12/Oc//8Hrr7+Oo0eP4oMPPsA111yDDRs2IDU1Veo2EoQgxMY+COmExO47Pz9DVldJoI5GbncNC6UxWCYUK62/gVhqa6pW0aMbXIpnVq6q+VI870pdM60IdFEibMuWLXj00Ufx8MMP48cff8SVK1cAADabDS+++CI++eQTSRtJEEojZsbn+R0lXCWBOhol2hDOIsAXrveCP0uqr/tM6EDMymxeTfTmBpfymZVjEibF8x7sNRNjSdeKQBclwp5//nmsXr0aQ4cOxXvvved8v3v37nj++eclaxxB+EPOAFQxMz7PBWiVmIkF6mi0MhvUG6FaDHwNxCdONIPZfFjStmoROdzgrGSlSvnMshwzx//+2bMWt9d33nmnm0ctlPMeSOyxkDkpSoQdOXIEPXr0qPW+2WxGWVlZqG0iCEHI4QoLtSN2XYBWqZkY39GcONEMgAHJySecnwVqg5JLK4UboZxDbwMxAGzZcj8qK6+6k/jrF27XTOpnn6WsVCn7DZYnYb7cpDt37pT0PPsS6G+8UYP58znVMydFibCmTZvijz/+QEpKitv7X3/9NVq2bClFuwhCEFI+LFJ1xK4TEblcJZ4z/KNHW/mM+/DXBj62yBM9xhqFKrCVtJTwA/HHH/cDcHUA9XQnuV4/PV4zf0h5rKxlpUrVb4Qq6OS656UqsC0WR+ZkEhOZk6JE2OjRo/Hkk0/irbfegsFgQFFREfLz8/HUU09h9uzZUreRkAm5HjBWzPrBIkVHbLVasXnzZrf35CiWaLFYMHjwYGzevFlQ3EewbdBbrFGoAlspS4lnLFlU1BV88MEDbtv4cifp7ZqpiRorHMiVaSxW0Hne86FmWLq2W203KUuZk6JE2IwZM2C329G7d29cvHgRPXr0QHR0NJ566ilMnDhR6jYSMiDXoMKSWT9UxHTEwTy8oZZtiI+PBxC4Q/G1viUQHsvpAKELbKUsJZ5xhcnJJ5h1J+kVtSrwy5lpLGYiKHWGpcViQXZ2NjZt2iSrm1RIv8qSm1aUCDMYDHjmmWcwdepU/PHHHzh//jzat2+P+vXrS90+QibkWntNL2u6SdUR+zr+7OxsWCwWSayGgToUX0t+6Gm5Fz0RKK4wM3NXrWBmQhrUrsAv1cRUyqQlKc8Jv4SanPGy/sQsPwllKXMypLK5UVFRaN++vVRtIVRCrsFYq4O8VJ2Ov+M3m82SWQ3FdChqDzZqE6oF0Nf3bTab6DXuXPFV4qKoKAm7dmVq7pnSCmq7yaRCSquaXOdEztIiQo6LldImyq9dQDCFXIOxlgd5KTodIccvpYsr2A5FL4ONGEKdHPj7/qZNmyRxtbsOoq4u5LffHirqmdJqnKbSsOSmChWprqec50TOxcW18PsAibCwR67BWMuDvBSdjhLHH0ogr54Gm2AIdXIgpbgOhOcgKvae0lOcptyw5KZiBTFlbnhI3AeGRFiYI9dgrOVBXoqOWMzxB+siC8XlEK6DTajiWM3JhdhnirXyCywS6goHekdMmRseV3EvZ4FtrUIiLMyRazDW4iAvZUcc7PGLdZEFO8sM98Em1MmB9yKqwr8vxi3IX4tA95Rer5kS0BqogQnkuhOShKX2eWZRBJIII2QLUGQl8FEoUnQQwYgc/neUjJ9TuxNUi1CFjOf33YuoGnD0aKuAolmsW9Dzms2ZcwbHjkUgJaUaSUk3A7g5qGvGQlkSFmPU9HbPh0owQiSYSaSa55nF/o9EWJgiV2FAufYrBUp0/EIfcuBqLIXSLq5wHGyECJmLFy+isrISxcXFXvdx991349NPP0Va2h8wGACO4z8xCBLNobgFXa9ZYiLQubOgXdWChYxlilHTBoH6Mj5hRKlJpGv/XVRkRGFhBFJTq5GUZAcgvP9m7Z4iERamyDUjUHum4UtolZWV1apk7w2pMtv84TkIaTl+Tkv4EzJWqxVvvPGGoP1oNemElYxlilHTDmqWsHDFtc/0N5HQonAnERbGyHWzqvUQCJ1h+0OJjt/zNyjWR32Cue5aFc1aFY8E24TyPAj1TggN3dCicCcRRugGLT6APN7ixwYOHIikpCTNzez0jlSiWenYLDnFI4sxXoQyiE3CCmZtSh49TiRIhBGEyrh2Pqmpx53vJyQk0MDFGNnZ2c6lV0IJkFcyNkvu7MpQY7xYSBTQC2qJYTFJWELXpiwqKnJup1UrtD9IhBFhCSsdPwuB0kRtfN0fZrPZuSyR2AB5pWOzPOM0J036H/73PyOSk6+gadNUAKmIiIhwJiUEO1CHEuNF9790KJ3wIFUSlq/noXHjElRVRWPt2p3O/Wqx9FEgSIQRusXXQMpKx89KoDThjtz3hxouFX7QtVqt+OorRwLCiRO+t1ciwJnuf2lROuFBqiQsX8/DmjWjvD6DWit9FAgSYYQu8TWQstTx6zG+QevIeX/wFoFALhU5EzFYykyk+19elLD2SyHUvRdA5vw+gyys+SgVJMII1ZE6jsHfQMpSx6/H+AatI+f94Wo5uOaackyfbkZNjQEmE4eFC8vx0EMP6iKAPdDgH6wYpaD/4GHF2i8ETxcjYMfVQsgO9CzOSYQRqiJHHIO/gVRNKwQPLUOjLEIGcaWsVPw9PGUKkJ0N/PEH0KqVAc2axQOID2nfLCBk8A9GjFJh1+BhydovFFcXY2RkpdMVySN0cqrFPpNEGKEqUrpHhAykZnMF5s8/hblzm6pmhZB6GZpwRKh1JJhBXGkrVbNmjj+9EMzgL1SMsuQ+1QosWfuDwdXF6G9yOnDgQCQkJNT6vlb7TBJhhG4IZoY9fLi6VgiplqEJR4IRVsEM4nzWo16tVN6QMm5I7OCvNzGqNqyFOfiaMNlsNp/f8Rd8n5CQ4HxW9QCJMEJXCJ1hh1vHr6e4GiWsI+Fwf0gVN8RCwgFxFZbKOAidMA0ePBjV1dXYunWr8z09Bd/7g0RYmKOnwdmTcBhIhUBxNYQnUsYNKZlwoHZ9P5b7S1eR68+SpKQY9jxXvq5ffHy84HbpTcyTCAtjWByc1e5k9QjF1RA8/AAWyHUY7ECnRMKB2hl/LPaXrkhVt0suAl0/1tsvFyTCwhjWBme1O1lC/4S7yOcHumPHqrFhAwe73eD8zGTiMHHi3UhJiQhpoJPDAs1Cxh9r/aU3WBUoQq8fq+2XExJhREBKS0t9fialm0HtTpbQJkKFFYl8BxaLBRYL8MYbwOOPAzU1gMkEvP66AZ07N1G7eV7RasYfS6jpSqXr5xvNiLB7770XBw4cwOnTp9GgQQNkZmZi4cKFSEpKcm6zefNmvPjii/jvf/+LRo0aYcKECZg6darbfr788ktMnjwZv/zyC5KTkzFr1iwMHz7cbZtVq1bhn//8J0pKStCxY0esWLECt9xyi/Pzy5cvY8qUKXjvvfdw5coVZGVl4dVXX0WTJlc7sD///BPjxo3Dnj17UL9+fQwbNgwLFixARIRmTrkT12BJb4RifpfLPcIKLMeQ6AGhwopEfm1GjgSysnjXIZvxk2oG/Xs+u56TUS1ZVY8ePYp33nkn4HZyuVJZy9hkCc0ogjvuuANPP/00EhMT8ddff+Gpp57C/fffj7179wIAPv30Uzz88MNYsWIF7rrrLhw+fBijR49GTEwMJkyYAAAoLCxE3759MXbsWGzcuBG7d+/GqFGjkJiYiKysLADApk2bMHnyZKxevRrp6elYunQpsrKycOTIETRu3BgAMGnSJGzfvh3vv/8+zGYzJkyYgIEDB+Kbb74BANTU1KBv375o2rQp9u7di+LiYgwdOhSRkZF48cUXVTh78uJPZAgRIXK7R9SC9RgSrSNEWOld5IcK68kraq0yEOjZ1ZJV1Wq1ChJggHyuVJYyNllDMyJs0qRJzv+3aNECM2bMwIABA1BVVYXIyEhs2LABAwYMwNixYwEALVu2xMyZM7Fw4UKMHz8eBoMBq1evRmpqKl555RUAQLt27fD1119jyZIlThG2ePFijB49Go899hgAYPXq1di+fTveeustzJgxAzabDWvWrEFubi569eoFAFi7di3atWuHffv2oWvXrvj888/x66+/YteuXWjSpAluvPFGPPfcc5g+fTrmzp0bNh1+MCKkc+cmmnKPCIHVGBItzeC9EYywUiIGipAXNVYZ8PdMas2q6r1GV2h9gBgLv94W3pYKzYgwV86ePYuNGzeiW7duiIyMBABcuXIFdevWddsuJiYGJ0+exPHjx5GSkoL8/HxkZma6bZOVlYWcnBwAjpt1//79mDlzpvNzo9GIzMxM5OfnAwD279+Pqqoqt/20bdsWzZs3R35+Prp27Yr8/Hx06NDBzT2ZlZWFcePG4ZdffsFNN90k6fmQCqkH52BFiBbcI1pHSzN4XwQrrFiLgSIXtXhCtdxJce61Ht8Uah8QzOTa0+Dgq/ZXuBgmvKEpETZ9+nSsXLkSFy9eRNeuXZGXl+f8LCsrC5MmTcLw4cNxxx134I8//nBavIqLi5GSkoKSkhI3YQQATZo0QXl5OS5duoRz586hpqbG6za//fYbAKCkpARRUVGIj4+vtU1JSYlzG2/74D/zxZUrV3DlyhXn6/LyciGnRRJYGZxZd49oEb6DCzSD99cRsiYcxAgrFkQ+uajVI5hz7w8txzfZbLH4+ON+4BfIFmPFE1r7i1+FIhzLTgSDqiJsxowZWLhwod9tDh8+jLZt2wIApk6dipEjR+L48eOYN28ehg4diry8PBgMBowePRpHjx5Fv379UFVVhbi4ODz55JOYO3cujEaj399ghQULFmDevHmK/Z7QwTkQpaWlYf8gsQxvOdqzB1iypPYMvnv3YejZ03d6OMvCIVhhpbbIZ9VFHQ6Ecu49hYa/+CabzcZsf1hQkA5egPGEYsUTumA74RtVRdiUKVNqZSZ60rJlS+f/ExISkJCQgGuvvRbt2rVDcnIy9u3bh4yMDBgMBixcuBAvvvgiSkpK0KhRI+zevdttH02bNsWpU6fc9n/q1CnExcUhJiYGJpMJJpPJ6zZNmzZ17qOyshJlZWVu1jDPbb799tta++A/88XMmTMxefJk5+vy8nIkJyf7PT+hEGhwvv76AThxYoPzPV8zHj57kmbv7GKxWNC1K2A0Anb71fdNJiA93WFV8gXrwkFtYaU1WLNqso4voeErvmnTpk0A2OsPbbZY5OdnePlEnBVPa7FxrKKqCGvUqBEaNWok6rv2v0cSV/cdAJhMJlxzzTUAgHfffRcZGRnO38jIyMAnn3zitv3OnTuRkeG4MaOiotC5c2fs3r0bAwYMcP7O7t27nSbqzp07IzIyErt378agQYMAAEeOHMGff/7p3E9GRgZeeOEFnD592plRuXPnTsTFxaF9+/Y+jyk6OhrR0dGizodY/A3OHTvWw4kTjtdCZjw0e2ebZs28ue9IwIQTLFs1WSSQ0PAnNljrD73FsgFAt275okST1mPjWEETMWEFBQX47rvvcOutt6JBgwY4evQoZs+ejbS0NKfwKS0txQcffICePXvi8uXLWLt2Ld5//3189dVXzv2MHTsWK1euxLRp0zBixAh88cUX2Lx5M7Zv3+7cZvLkyRg2bBi6dOmCW265BUuXLsWFCxec2ZJmsxkjR47E5MmT0bBhQ8TFxWHixInIyMhA165dAQB33XUX2rdvj0cffRSLFi1CSUkJZs2ahfHjxysusoQQE2PFokUmj/RvG+rVOweAZjxSwUJWIgtxUYR6sG7VVBIhz6NSQkMJ66SvWLb09AK33wl1f1qIjWMJTYiwunXrYuvWrXj22Wdx4cIFJCYmok+fPpg1a5abqFm/fj2eeuopcByHjIwMfPnll25FVlNTU7F9+3ZMmjQJy5YtQ7NmzfDmm286y1MAQHZ2Ns6cOYM5c+agpKQEN954I3bs2OEWaL9kyRIYjUYMGjTIrVgrj8lkQl5eHsaNG4eMjAzUq1cPw4YNw/z582U+U8HjOjN+4olYp3n9/PkK/G1Vl6wjYkGEKIlrh+bPkqh0ZhC57/QBuRXFE8iyL7RIrBTIbZ3kjyVQLNsjjzwS1P6p9pc0aEKEdejQAV988YXfbRISEpxlJPzRs2dP/Pij/6y/CRMm+M2QqVOnDlatWoVVq1b53KZFixa1XJ8s4tqJ+zKvi+2I1BYhag9SrqUU5s9vDI5zlFLgOCO2b++POXPSqUZVmCN2YkJuRfEIsez7KxI7e3YRgAq3/YUyuZTbOum5MPacOWdw7FgEUlKqkZR0M4CbRfeFVPsrdDQhwgh1ETvjUVOEsDJIWSwWHDzoHm8HADU1BlRUNPEbEC83aovUcCeUsjDkVhSPUMu+ryKxJpMJb7zh2IaV0j6BcH2OExOBzp3F70srtb+00r+RCCMEIXbGo5YIYWmQat3ae+JDq1a+vyN3BxJKzaRwcytLiRQ124jgsVqtsNlsAMStQ+nqwi8udvwrV6ws68+Xp2XNG0oIHH99ZFlZGTZv3ux87eucsmApJhFGCCZQNpAvxIgQPRFsVqISVrxgRKrabmU9EWrNNqlhfcCXAs/nyZdlf/Tou9G4cWPB516OoH0tWtbUQGgfCfg/pyxYikmEhSGuM4jS0tKgv++r4/Y1CFNphOCyElmy4gEU2yY1odRskxKtDPih4u058WbZj4+/2es97GlxKSsrAyDOouYPykIXjtCq/Vo4pyTCwoxgZhCuZGdnw2w2Izc3BvPnm2G3G2A0cli0yIaHHroU0PxMpRG0nZXIcmwbSwh1I6s1MSF36FWEWPb99ZeeFjVHaZ9yPPTQg6LccVR3Sxz+JhNaOKckwsIMsdYTs9mMmppETJt2dSC22w2YPj0e2dnxggZhpUSI1WoVZeEj/BPubuVABOtGVmNiwpo7lHUC9Ze8Ra1792FIT7egWbN4APGifovqbgVPoMmEFs4piTBCEFFRUT4sIY5BJJQBRMogdLGWPiIw5Fb2jxg3slQTk2Biu1hxh+oFs7kC3bpVIjFRXF8mtI5XOFgngyWQpUsLtcxIhBFeGThwIBISEgBc7TjksIRIHYTOQqClniG3MhuEmiwRzoJarmQEsX2ZnHW89I4QSxfrtcxIhBFu8B1UZWVjJCY2cfssUMctZhaoVBB6sMkE4UYwA5OWY9v0ghTJEnoU1N76INfQBDmTEULpy6Ss4xVOCLV0ic3sVwISYYQT1w5qwwYOb7zh6Khd8dVxs1Ic1RveOt7nn09FUlJS2M4u9Vh2QivFGaVCimQJPQnqQH2QFJly4VDSQ2uEYulioX8jEUYAqN1B2e0GPP64Q3B5dtLeOm6hs8CioiK3beUOoPfV8c6Zc4bZAdmzY5DDiqe3shMsTwLkhJIlrhKoDwoUPxToeQrWiqYVwabFyYvQqv18Vr+vfbBwXCTCCADeOygpgu492bp1q3Q7E4CvjvfYsQhmTf6uMSJiS4II/R29lJ1grbaaUoRzbFeweIsfMpk4TJx4t9uEw1sdxWCtaP4Em7+Jp9LCQKuTF1aq9ksBibAww9dsz3sHpf0Ztb/AzeJidh9gi8WCkycRUkkQIZAlRT6UsoToMbZLDvj4oe3b+/+9GDfw+usGdO58NfbVlygRYkXjBUEgwRZoIqqk4NHy5EULAksIJMLCDH8ziGuuKcf06WaXDkr7HbqvwM1///tH/Pvf/r+r9uzv99/lKQniCllSpEPNODs9xXZJhTcR3KnTj5gzJx0VFU28ClZfYkOIFa3470UlQy0Qqqbg0YoLVU+QCAtDfAmLKVOA7Gxtz6i9DXBiAzfVnv0pZaUKZEnRYsyIGugtzk7L+BPBSUl2JCYGtz9v1fE9rWg8WigQ6o1wWcaKNUiEhTknTzosLq1bX51Nsyi+hFoPPC19RUVGFBZGIDW1GklJDjVjs9mwadMm2doqFUpaqXxdd63GjKiFnuLstIpc6wW6TuYmTry7lgATWnTVtZ2sWJ20sMaiXiERFsasWQOMGeMYMIxGeC1JoSSuBWJdCdbSwm/L2vGJQe14Hy3HjKgFxdmpi5TrBXoKJf6Pn9C5EqjoamlpqjMejDWrkxbWWNQrJMLClJMnrwoUwPGvr5IUQpAiziUhIQE1NYluljmx+Ds+kynkpioKq9ZJllHTykBxdt6R263N90GB3IFC+yoxQklI0VUWrU5adaHqARJhYYrUQd/+Av5LS0sFlabIzY1xZgOGarnyd3xt2ojbp5pQXJZ/WCs+q7YFkzWUcGu79kHuSUYcFi4sx0MPPSj4OZFTKLFoddLCGot6hURYmCKHy8RX5yZk4LPZYv+uh+V4HaplTk8uIYrLCgyLQfFkwbyKUm5t/vq6JxkZ0KxZPIB4wfuRUyixZHVy7Zv9JTDx29FkUHpIhIUpcrtM3AP+AxfWKyioiyVLDG7vhWKZ83d8f2eSawaKyxIGBcUTrogRwVK7NL3tO5DVScmldIIpekqTQXkgERbGyOUy8R4Q7/+h7NJFesuVr+MT2smxsK4YERx6soASyiOlS9PfvoHagfvAzapYkoT+nqdQ8xV3Ge6TwWAhERbmSO0yERLw71kWg2+HHJY5b8cnpIwFmdW1CQXFE6EilUvT374B34H7WoC17E4tQyKMEI23+IB9+6Jgt7uLF1e3or+yEUoGM+upjIWcKLGYuNSEa1B8oHidixcvom7duj4/V3LiwVKNLH9QXF9tWMzu1DIkwghR+IoPsNliYTDkeF2DUoiVTMlOT+oyHXpEqcXEpSbcBk+h8TqBUCKeR+tWlHAPTmcxu1PLkAgjROGrE/K1vEezZsCePfKvhRgMSqzNqAeUWkycEI9UcThyx/MItaKwKnQoOJ2t7E49QCKMkBxfy3uwFjTNWntYhgQrEQq8uzqQFSUqKoppoUOZylRTTGpIhBGywC/vERV1GsXFjtHbZAIWL47FlCn1mQia1koQNwtxWSRYiVBwreO2YQMHu/1qORqTicPEiXc767gVC6who2ehwzr+aooRwUEijJAVb5Xyf/zxCVitDZgImtZCEDcLcVlaEawEu1gsFlgs3u4jQ63FsLWCVhIMpMBzksdPtANtR/iHRBihOAkJl9Ghg9qtuIoWgrhZiMvSgmAlHAQSB4E+lzMmK9j7iFWho/UEg2AJprArIRwSYQQRBGoGDEsdlyXmWLQgWMOdQOIg0OdKxGQJvY+UEjrBPgvhWqaBBJb0kAgjCIGoHTAsZVyW2sdCyEMgcSBEPLASfK6U0AnmWeDRQ5kGVjNQww0SYYQowtHvr/bgJGVcltrHQkiL0OxDIdmJrFxzpYSOmGdB62UaaBLGDiTCCFF4iw8oLS31GojvC5qJBQ/FZRHeEJJ9GB9/HmVl9SXLTpSLsrIyAGwKHRYX4RYDrQPJDiTCCNGEIpBoJhY8vGg1mYA2bRzvuY6XJFrDm8DZh44MxGCzE5UMjLdardi8eTOAwELn4sWLfgWj2OfB3/Gyugh3KIRbggFrkAgjVEHP7rDS0lIA0ooiEq1XIQuqfwJZS4Oxpio9QHteV1/1qO655x688847AfcX7PMg5Hj1sgg3EL4JBixBIoyQhJMnge+/rwubLTbgw8tS3IkcuLpkpRJFehatwUBiVBiBsg+FZCeyMED7skrVqVNH0PeDeR5YOF6l0UOCgdYhEUaEzJo1/ELYZhiNk5wFRL3BWynUjjtRCq2IIlZrMXlCYlQ51B6g/VmlKircf1+K+1ft41UDFuPuwg0SYURInDzJCzDHa9cCohQ0rg0oJoRwhQ8qDzRAyxl8HsgqtXPnTue2Ut2/4ShIaB1I9SERRoREOC3sLHQNRy3AH0ugwU6OgVbKmC4tXwNWcQ0+v+aackyfbkZNjQEmE4eFC8vx0EMPyh53J9QqJYULUS8Zj2KhdSDVhUQYERL+CoiePOkQaa1b60OQuQ5Ob7xRg6VLk1SzHoUqPvhj2bMHWLKk9mDXvfsw9OwpfYVsKWO6yIInH/y5nzIFyM7mg/gNaNYsHkC87L8v1CpVUJAesgtRjxmPgRC6DqTNZkNRkRGFhRFITa1GUpLd+X09nQ81IRFGhISvAqKffXbVTWk0OrYZOVLt1oYOv4bj/PkcOM5Ra0npAF6pxIfFYkHXrt5FdHq6RZb1KIXGahUVFTnb6I1wDKJWCzWWqhLiJrPZYrF3b0at74pxIeop41EI/taBLCsrc5YJmT79vz77mnBPfpEKEmFEyHimvANAixaucWIOkZaVdbUzF2raZ9EF4HDBGtze4zgjfv21Pdq3/1VWESC1+JCyCr+U8Bmmvjr6cAyiDgdcn/dAbrKzZy0AjPAkIyOf7gEBBBJQgfoaNZNf9ORlIRFGSILrbHnPnsBxYv5mYjysmrwdLljOQ4hx+OyzPvj887tkcYsJXZZGjGhVswp/ILeqr/sjHIOowwEh/QJvqfF2DwB2pKcXOF+xOInTCqxNdPhY0tzcGEybZobdboDRyDmz8VkdLwJBIoyQHKELTbs+MFqa2TRrBixefAGTJtX9u5PiAHh3TUo1CAhZloZfdkYMaricXN2qgB3duuUjPb3Abwcf7kHU4YDQezjQPZCdna3JQZkVWJro8LGkNlssli7NcYaC2O0GTJ0ah7/+egtmc4UmXaQkwgjJCdbFdbXOmHbix558sj569TqHrVuNmDvX7PaZXIHtgZel0Q6erg7AiL17uyM/P8OvJTEcg6jDHc9sWn5FCsC/y9Jsdn8uieBgqXwFf/0DWee0WB+QRBghC0JdXLXrjNWOH2OVDh0aoEEDYP585QLbAX0s4u2tMwWExbiFWxB1OCMkm9ZXZh9ZQ0OHtfIVLFnnpIJEGCEbQlxcWq8zplZguxruQynxHs/jIJwC7GkdTP94nhtfMYQDBw5EQkKC83W4nzcp8SVy1YAl65xUkAgjVEVo/BjL6MEypRSeMV0ff9wPnhluWp/ZCsXTyuNLYGgxzkUO/JVmSUhIQGJiosotJJSANetcqJAII1SF1RIJwaJ1y5RS8DFdjjpgW5GW9gcKCtKRn5+hm5mtUFytPP4EhhbjXKSG6sIphxbKB7FknQsVEmGE6pAlKbxwteqYzRW4665dSE8v8DqzDYe4HhIYgWGtXIKe0XL5IC1CIoxgArIkhRfU0V+FBEZg9BiQzTLh8NyxAokwgiD8IlcNt3Dv6MvKygCQwBCCHgOyw5lg+xQtuEjFQiKMIHSKFOJJizXctIDVanWuz3f0aCtw3NXPSGB4R28B2eGKmD5Fz5ZzEmEEoUNCFU9WqxXHjlVjzJjGzur8jhpuHG688bTf6vxaWv1ALfjBhI8Hc80Q5TggLe0PlVrGFp6WDaoJpm1CqQupRYElBBJhBKEzQi2Ay5dOKCxMgd0+zO2zmhoDVqz4FKmpx72WTiDLWXB4L1pL8WA8eraAhBtWqxX79gF2u/u1qqkBCgqsiInRr9DyB4kwgvCBFi06UnR0/IAXKFbJc2DU8uoHaiEkHkwvVh6xz1M4Dsx6w3XtR4Mhp9b9/s0363HokDbXfgyV2uWqCYLAmjVAixZAr16Of9esUbtFgeE7ur1718NgcF+GgO/oVq5cCavVKmh/fDA0vy9/sUoO8Wf1uvpBQYFV8G+GG4HOsdYXobZarSguLsYrr5ShRQvu7+eJwyuvlKG4uJjuizCBn7AFut+lrol38iSwZ4/jX1YhSxhBeKBVi45nR+crkyyYjk5IMDTNckNDr4tQu94XS5fmgOP42EIDpk6Nw19/vQWzme6LcEOpBAuthEaQCCMID7S+niUgrKMT6h4KVJ1aDvEXbuipAjgPf70D1UHjt9Oi+58Qh9z3u5Ym0iTCCMIDPaxnCfjv6OSaJVIZAX0jRigJiXtj1WpBwlB7aC0BgGLCCMIDfj1Lk8nxWqvrWfqiqMjodZYoVdyE2VyB1NTjJMD8oMXik2LjJAPFAcl9P4pF7rhQLcQraQ2p42KVgCxhRMjocbYox3qWap0nmy0WZ89a0LChFWZzBQoLI0S5Wz33Q4hHa6UXQnXv+LOQHjhwwWdChxpWi1Bq5AmFVcuf1tFiaASJMCIk9NyZSLmepVrn6YcfbqrVEfXrV+3X3erN+uJtPyxZabRIsAO5WiJeKveOL/f4L798xExCRyg18oTuX26BRzjQSmgEiTCNY7fbVVP1JSXACy8AyclX33vxRaB3b6BpU1WaFDLnzp1DVVWV87XBYIDJZILB4OgwxVgn1AoS5aux84MbxxmxbVs/zJlzBm+84WhDTU1td6unlaaoyIj58xs7s9s4zojt2/vj0iWDfI0n3FBLxCuR+cqS1UJsjTwhyC3wWEYt97sWEl5IhGmYyspKFBYWwu5py1eIy5eBV1+t/f65c8ClS8q3J1RqampQUVH7gb106RK+++47XL58GQCC7iSVyrb07MB8ZaWdPFknoLvV9fh++81b+w2ayhZljWCsWmpmeinl3mHNaiHHguFyCjzW0Zr7XUk0J8KuXLmC9PR0/PTTT/jxxx9x4403Oj87ePAgxo8fj++++w6NGjXCxIkTMW3aNLfvv//++5g9ezaOHTuG1q1bY+HChbjnnnucn3Mch2effRb/+te/UFZWhu7du+O1115D69atnducPXsWEydOxLZt22A0GjFo0CAsW7YM9evXD6otocBxHIqLi2EymZCcnAyjUfkci8pKh5jwJC0N0KKnqrKyEmVlZW7vcRyHc+fOoU2bNvjpp5+c2wWDUtmW3ixYGzZwTrcHABiNHJo1u4zi4oswmYA2bRzvFxc7/vXWEQZqvxaDzNUkWKuWHCJejGszWKEU7PVmzWohlzCUQ+BpgXAUWELQnAibNm0akpKSnAMiT3l5Oe666y5kZmZi9erV+PnnnzFixAjEx8djzJgxAIC9e/fiwQcfxIIFC9CvXz/k5uZiwIAB+OGHH3D99dcDABYtWoTly5dj/fr1SE1NxezZs5GVlYVff/0VderUAQA8/PDDKC4uxs6dO1FVVYXHHnsMY8aMQW5uruC2hEp1dTUuXryIpKQk1K1bV5J9BkudOo6soePHr77XogUQF6dKc0LGaDQiIqL2I2E2m9GoUSNERUWJmqXy2Za+3H9S4trRJSZ6/i6Hvn23IS/vR7/78LT0BWq/2FmuHhM6AiHGqiW1iA/FtRmMUAp0X5SWlmLr1q1Cm60KcglD1ix/hHpoSoR9+umn+Pzzz7FlyxZ8+umnbp9t3LgRlZWVeOuttxAVFYXrrrsOBw4cwOLFi53CZ9myZejTpw+mTp0KAHjuueewc+dOrFy5EqtXrwbHcVi6dClmzZqF++67DwDw9ttvo0mTJvjoo48wZMgQHD58GDt27MB3332HLl26AABWrFiBe+65By+//DKSkpIEtSVUav42QaltXWjUCDCbgStXgOhobVrAAmE0GmE0GhEZGSnaVSBHtmWwvxsbezqgAAO8W/qCcV8KQc8JHf4I1qpltVphMlVi0aIYTJ9uRk2NASYTh4ULbTCZLsFqDc6Fo7Rrk6wfvmHN8keog2ZE2KlTpzB69Gh89NFHXi0/+fn56NGjh5soycrKwsKFC3Hu3Dk0aNAA+fn5mDx5stv3srKy8NFHHwEACgsLUVJSgszMTOfnZrMZ6enpyM/Px5AhQ5Cfn4/4+HinAAOAzMxMGI1GFBQU4P/+7/8EtUUq+IBxNYmK0qf44pHqHEuZbSnmd4uLQ4sdlKr9WqpmLTXBWLX4QG6eJ56IdVpOzp+vwBtvON4PJkZRD6tBEIQvtBgaoQkRxnEchg8fjrFjx6JLly44duxYrW1KSkqQmprq9l6TJk2cnzVo0AAlJSXO91y3KSkpcW7n+j1f2zRu3Njt84iICDRs2NBtm0Bt8caVK1dw5coV5+vy8nKv2xGElglnIRCMa9rTIunLchKMdVYvq0EQhDe0mACgasX8GTNmwGAw+P377bffsGLFClRUVGDmzJlqNld2FixYALPZ7PxLdq39oBOGDx/uvLaRkZFo0qQJ7rzzTrz11ltBZXmuW7cO8fHx8jWUAfRaUZsXAq6EkxAYORI4dsxxbY8dU84N63BtFmPRojKYTBwA/O3aLIPJVKx4FXEWrRYstokIDovFgsTERJ9/LAkwQGVL2JQpUzB8+HC/27Rs2RJffPEF8vPzER0d7fZZly5d8PDDD2P9+vVo2rQpTp065fY5/7rp30WrfG3j+jn/XmJiots2fBZm06ZNcfr0abd9VFdX4+zZswF/x/U3vDFz5kw3d2l5ebkuhVifPn2wdu1a1NTU4NSpU9ixYweefPJJfPDBB/j444+9BseHG6zETFmtVslnlUomKohBroQB13MpNDNVyt8W49qUU5SwaLWQs00k8AhvqDraNWrUCI0aNQq43fLly/H88887XxcVFSErKwubNm1Ceno6ACAjIwPPPPMMqqqqEBkZCQDYuXMn2rRp43T/ZWRkYPfu3cjJyXHua+fOncjIyAAApKamomnTpti9e7dTdJWXl6OgoADjxo1z7qOsrAz79+9H586dAQBffPEF7HZ7UG3xRnR0dC2hKRdyDK5CiY6OdorRa665Bp06dULXrl3Ru3dvrFu3DqNGjcLixYuxdu1a/O9//0PDhg3Rv39/LFq0CPXr18eXX36Jxx57DMDVeK1nn30Wc+fOxYYNG7Bs2TIcOXIE9erVQ69evbB06dJaLmRvCC3zIXcnKUXMlLfrW1paGlQ7PAduX4gpLqlWokIg5BK/cp5LIYh1bcotlFizSgDytYlF0RmusJSZrQmTQ/Pmzd1e8/W40tLS0OzvM/jQQw9h3rx5GDlyJKZPn45Dhw5h2bJlWLJkifN7Tz75JG6//Xa88sor6Nu3L9577z18//33eOPvaaDBYEBOTg6ef/55tG7d2lmiIikpCQMGDAAAtGvXDn369MHo0aOxevVqVFVVYcKECRgyZAiSkpIEt0VN1B4QvNGrVy907NgRW7duxahRo2A0GrF8+XKkpqbif//7H/7xj39g2rRpePXVV9GtWzcsXboUc+bMwZEjRwBcvSeqqqrw3HPPoU2bNjh9+jQmT56M4cOH45NPPgnYhoiICDRu3LiWW/Ty5csoLy/H4MGDUa9ePdnPSagxU0Kur5B1IIXGGonNGFUrUcEXciYMyH0u5YREgXTQuVQfVrwMPJoQYUIwm834/PPPMX78eHTu3BkJCQmYM2eOW0mIbt26ITc3F7NmzcLTTz+N1q1b46OPPnLWCAMcdcguXLiAMWPGoKysDLfeeit27NjhrBEGOMphTJgwAb1793YWa12+fHlQbVETVgeEtm3b4uDBgwDgZq1MSUnB888/j7Fjx+LVV19FVFQUzGYzDAZDLffuiBEjnP9v2bIlli9fjptvvhnnz593K6brC2+uULvdDpPJhMaNG7vdB3IRavB0oOvmbR3ITp2ulq4IV3dIOCcMEPLAksWFYDMzW5MiLCUlBRzH1Xr/hhtuwH/+8x+/333ggQfwwAMP+PzcYDBg/vz5mD9/vs9tGjZs6CzM6gshbSHc4TjO6V7ctWsXFixYgN9++w3l5eWorq7G5cuXcfHiRb/Faffv34+5c+fip59+wrlz55xWrT///BPt27dX5DhCRc6YKW/rSW7f3h9z5qQjKcke1u4QyhwkpIQ1iwvB5kRL1exIgnDl8OHDSE1NxbFjx9CvXz/ccMMN2LJlC/bv349Vq1YB8G/luXDhArKyshAXF4eNGzfiu+++w4cffhjwe3JitVpRXFzs889XRppcGXTe1pOsqTGgoqIJk5lDSsKLX5PJ8VrthAEK5NYuviwuest01hosZmZr0hJG6I8vvvgCP//8MyZNmoT9+/fDbrfjlVdecQbLb9682W37qKgo56oBPL/99husViteeuklZ1bp999/r8wBeCHU2Ds5Yqa8LR6sdifEEq4JA/XqAefPOwbOUK7DyZPAvn1RsNlig6qQToHc2oVFiwvBZmY2iTBCca5cuYKSkhK3EhX8ep5Dhw7FoUOHUFVVhRUrVqB///745ptvsHr1ard9pKSk4Pz589i9ezc6duyIunXronnz5oiKisKKFSswduxYHDp0CM8995xKR8lm7J3n4sFKd0JqZuUKpVkz4LPPpHElXXVJWWAw5NSKvwuE2ueCEAe5ttmD73vuuQcoKDDi2LEIpKRUIynJjuJi9foeEmGE4uzYsQOJiYmIiIhAgwYN0LFjRyxfvhzDhg2D0WhEx44dsXjxYixcuBAzZ85Ejx49sGDBAgwdOtS5j27dumHs2LHIzs6G1Wp1lqhYt24dnn76aSxfvhydOnXCyy+/jHvvvVfFo2UPfvHg7t2HIT3doqgAE5K12aPHSHTpYlZtdipV8K7nfjjOiG3b+iEt7Q/F1wwk16ZySL3eJxE6vvqeQ4fcXytZEYCHRBihKOvWrcO6desCbjdp0iRMmjTJ7b1HH33U7fVrr72G1157ze29Bx98EA8++KDbe96SOMIds7kC3bpVwqUmcS2kHriFZm0uWWJUNZBZKleSt/1wnBFnzzb0KcLkEkFKuTbDPRtQjvU+idBh0SvBQyIsDKFZsb6R6voqGZPkmbWpdOq4q5s0Ls4Io7Ex7ParC7ebTBxatQpuIXfvLikOEyfejaSk2kt0ye0OkXvQp2xAedb7JPQNibAwhAJ+9Y2U11epe8B71qYygczeXBX9+rnXUuvbNw8xMd0BCD8f3oOADejcuYnER6A+LNZfIggtQCIsTCGBpW+0dn3VzNr0Jlb5uDnelWQ2V6Cy8uag983q8kyBCNatSNmABCEOqhNGiKK6uhqVlZU+/6qrq9VuIqEh+KxNg8ExkrOQOm42VyA19XjIQfTNmgE9e2pHjKxZA7RoAfTq5fh3zZrA32Gx/hJBaAGyhBFBU11djdOnTwfcrnHjxl6XAQoXKPYuONTK2iSuItatyGL9JYLQAuE7QhKi8VzgOtTt9ArF3gWPkKxNQj5CcSuy7HoN96xNgl1IhBGEjJDAugpZBtkn1CKjcqzyECqUtUmw3PeQCCMIQhHIMsg+YtyKLK+CoHTWJsuDfTjDct9DIowgCMXQssAqLS0V3FGzLEwCEYxbMdT1UeVG6axNlgf7cIfVc04ijNAVX375Je644w6cO3cO8fHxgr6TkpKCnJwc5OTkyNo2gk2EWiW2bt0KILCgYF2YCEGoW5HlSuSAOms4snpNCTahEhWEogwfPhwGgwFjx46t9dn48eNhMBgwfPhw5RvGCFarFcXFxT7/rFYrk/vWMrz1YuDAgYK2DyQoWBcm4QTvXjWZHK8pa5NgDbKEEYqTnJyM9957D0uWLEFMTAwA4PLly8jNzUXz5s1Vbp16yGlB0YN1Rk4sFkvYiyItu1D9wXLWJkGQCCOCxuhZlTHI7Tp16oSjR49i69atePjhhwE4XD3NmzdHamqqc7srV65g6tSpeO+991BeXo4uXbpgyZIluPnmq5XLP/nkE+Tk5ODEiRPo2rUrhg0bVuv3vv76a8ycORPff/89EhIS8H//939YsGAB6tWrF8xhy46cFhSyzhD+0LtIZzFrkyAAckcSIoiIiEDjxo2RkJDg8y9QodYRI0Zg7dq1ztdvvfUWHnvsMbdtpk2bhi1btmD9+vX44Ycf0KpVK2RlZeHs2bMAgBMnTmDgwIHo378/Dhw4gFGjRmHGjBlu+zh69Cj69OmDQYMG4eDBg9i0aRO+/vprTJgwQcIzQhDaRo8indzvhBYgSxghqpBhqJXwH3nkEcycORPHjx8HAHzzzTd477338OWXXwIALly4gNdeew3r1q3D3XffDQD417/+hZ07d2LNmjWYOnUqXnvtNaSlpeGVV14BALRp0wY///wzFi5c6PydBQsW4OGHH3YG3bdu3RrLly/H7bffjtdeew116tQJ6TiI0NGrG4xQD71b9gj9QCIszFGrkGGjRo3Qt29frFu3DhzHoW/fvkhISHB+fvToUVRVVaF79+7O9yIjI3HLLbfg8OHDAIDDhw8jPT3dbb8ZGRlur3/66SccPHgQGzdudL7HcRzsdjsKCwvRrl07OQ6PEAgNloQc6NGyR+gTEmFhjNKFDD0ZMWKE0y24atUqWX7j/PnzePzxx/HEE0/U+iyckwBYgQZLbUPFSQkiNEiEhTFKFzL0pE+fPqisrITBYEBWVpbbZ2lpaYiKisI333yDFi1aAACqqqrw3XffOV2L7dq1w8cff+z2vX379rm97tSpE3799Ve0krMwEKELpBIU4SRMqDgpQYQGibAwRo1Chq6YTCana9HEF/L5m3r16mHcuHGYOnUqGjZsiObNm2PRokW4ePEiRv7tLx07dixeeeUVTJ06FaNGjcL+/fuxbt06t/1Mnz4dXbt2xYQJEzBq1CjUq1cPv/76K3bu3CnIDUaED1IJinATJno5DoJQAxJhYYyYdeKkJi4uzudnL730Eux2Ox599FFUVFSgS5cu+Oyzz9CgQQMADnfili1bMGnSJKxYsQK33HILXnzxRYwYMcK5jxtuuAFfffUVnnnmGdx2223gOA5paWnIzs6W/diCRU4LSjhZZ0JBKkFBwoQgCCEYOI7j1G4E4Z3y8nKYzWbYbLZaYuXy5csoLCxEampqyBl+J09SIUN/SHmuAyFnpiCLWYjFxcV44403Am43ZswYJCYmKtCi8ERvCRJ0XxFq42/8doUsYQQVMmQIOQc4LQyehDqEmwuVIFiBRBhBEAShK4FF7ndCK5AIIwhCNWiwJOSALHuEViARRhCEatBgScgF3TOEFiARRhCEqtBgSRBEuEILeGscSm6VHzrHBEEQhByQCNMofHFTWs5Ffvhz7FlQliAIgiBCgdyRGiUiIgJ169bFmTNnEBkZCaOR9LQc2O12nDlzBnXr1kVEBD0uBEEQhHTQqKJRDAYDEhMTUVhYiOPHj6vdHF1jNBrRvHlzGAwGtZtCEARB6AgSYRomKioKrVu3JpekzERFRZGlkSAIgpAcEmEax2g0yr6UDkEQBEEQ0kPTe4IgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgGLCGIYvElpeXq5ySwiCIAiCEAo/bgcq9k0ijGEqKioAAMnJySq3hCAIgiCIYKmoqIDZbPb5uYGjNVmYxW63o6ioCLGxsWFZo6q8vBzJyck4ceIE4uLi1G6OZqHzKA10HkOHzqE00HmUBjnPI8dxqKioQFJSkt8SR2QJYxij0YhmzZqp3QzViYuLo45GAug8SgOdx9ChcygNdB6lQa7z6M8CxkOB+QRBEARBECpAIowgCIIgCEIFSIQRzBIdHY1nn30W0dHRajdF09B5lAY6j6FD51Aa6DxKAwvnkQLzCYIgCIIgVIAsYQRBEARBECpAIowgCIIgCEIFSIQRBEEQBEGoAIkwgiAIgiAIFSARRqjOv//9b/Tv3x9JSUkwGAz46KOP3D7nOA5z5sxBYmIiYmJikJmZid9//12dxjJKoHM4fPhwGAwGt78+ffqo01iGWbBgAW6++WbExsaicePGGDBgAI4cOeK2zeXLlzF+/HhYLBbUr18fgwYNwqlTp1RqMZsIOY89e/asdU+OHTtWpRazyWuvvYYbbrjBWUw0IyMDn376qfNzuheFEeg8qnkvkggjVOfChQvo2LEjVq1a5fXzRYsWYfny5Vi9ejUKCgpQr149ZGVl4fLlywq3lF0CnUMA6NOnD4qLi51/7777roIt1AZfffUVxo8fj3379mHnzp2oqqrCXXfdhQsXLji3mTRpErZt24b3338fX331FYqKijBw4EAVW80eQs4jAIwePdrtnly0aJFKLWaTZs2a4aWXXsL+/fvx/fffo1evXrjvvvvwyy+/AKB7USiBziOg4r3IEQRDAOA+/PBD52u73c41bdqU++c//+l8r6ysjIuOjubeffddFVrIPp7nkOM4btiwYdx9992nSnu0zOnTpzkA3FdffcVxnOPei4yM5N5//33nNocPH+YAcPn5+Wo1k3k8zyPHcdztt9/OPfnkk+o1SqM0aNCAe/PNN+leDBH+PHKcuvciWcIIpiksLERJSQkyMzOd75nNZqSnpyM/P1/FlmmPL7/8Eo0bN0abNm0wbtw4WK1WtZvEPDabDQDQsGFDAMD+/ftRVVXldj+2bdsWzZs3p/vRD57nkWfjxo1ISEjA9ddfj5kzZ+LixYtqNE8T1NTU4L333sOFCxeQkZFB96JIPM8jj1r3Ii3gTTBNSUkJAKBJkyZu7zdp0sT5GRGYPn36YODAgUhNTcXRo0fx9NNP4+6770Z+fj5MJpPazWMSu92OnJwcdO/eHddffz0Ax/0YFRWF+Ph4t23pfvSNt/MIAA899BBatGiBpKQkHDx4ENOnT8eRI0ewdetWFVvLHj///DMyMjJw+fJl1K9fHx9++CHat2+PAwcO0L0YBL7OI6DuvUgijCDCgCFDhjj/36FDB9xwww1IS0vDl19+id69e6vYMnYZP348Dh06hK+//lrtpmgaX+dxzJgxzv936NABiYmJ6N27N44ePYq0tDSlm8ksbdq0wYEDB2Cz2fDBBx9g2LBh+Oqrr9RulubwdR7bt2+v6r1I7kiCaZo2bQoAtTJ+Tp065fyMCJ6WLVsiISEBf/zxh9pNYZIJEyYgLy8Pe/bsQbNmzZzvN23aFJWVlSgrK3Pbnu5H7/g6j95IT08HALonPYiKikKrVq3QuXNnLFiwAB07dsSyZcvoXgwSX+fRG0reiyTCCKZJTU1F06ZNsXv3bud75eXlKCgocPPnE8Fx8uRJWK1WJCYmqt0UpuA4DhMmTMCHH36IL774AqmpqW6fd+7cGZGRkW7345EjR/Dnn3/S/ehCoPPojQMHDgAA3ZMBsNvtuHLlCt2LIcKfR28oeS+SO5JQnfPnz7vNOAoLC3HgwAE0bNgQzZs3R05ODp5//nm0bt0aqampmD17NpKSkjBgwAD1Gs0Y/s5hw4YNMW/ePAwaNAhNmzbF0aNHMW3aNLRq1QpZWVkqtpo9xo8fj9zcXPy///f/EBsb64ytMZvNiImJgdlsxsiRIzF58mQ0bNgQcXFxmDhxIjIyMtC1a1eVW88Ogc7j0aNHkZubi3vuuQcWiwUHDx7EpEmT0KNHD9xwww0qt54dZs6cibvvvhvNmzdHRUUFcnNz8eWXX+Kzzz6jezEI/J1H1e9FVXIyCcKFPXv2cABq/Q0bNozjOEeZitmzZ3NNmjThoqOjud69e3NHjhxRt9GM4e8cXrx4kbvrrru4Ro0acZGRkVyLFi240aNHcyUlJWo3mzm8nUMA3Nq1a53bXLp0ifvHP/7BNWjQgKtbty73f//3f1xxcbF6jWaQQOfxzz//5Hr06ME1bNiQi46O5lq1asVNnTqVs9ls6jacMUaMGMG1aNGCi4qK4ho1asT17t2b+/zzz52f070oDH/nUe170cBxHCe/1CMIgiAIgiBcoZgwgiAIgiAIFSARRhAEQRAEoQIkwgiCIAiCIFSARBhBEARBEIQKkAgjCIIgCIJQARJhBEEQBEEQKkAijCAIgiAIQgVIhBEEQRAEQagAiTCCIAiCIAgVIBFGEAQhgsrKSrWbUAsW20QQhG9IhBEEQQDo2bMnJkyYgAkTJsBsNiMhIQGzZ88Gv7JbSkoKnnvuOQwdOhRxcXEYM2YMAODrr7/GbbfdhpiYGCQnJ+OJJ57AhQsXnPt99dVX0bp1a9SpUwdNmjTB/fff7/zsgw8+QIcOHRATEwOLxYLMzEznd3v27ImcnBy3Ng4YMADDhw93vhbbJoIg2IBEGEEQxN+sX78eERER+Pbbb7Fs2TIsXrwYb775pvPzl19+GR07dsSPP/6I2bNn4+jRo+jTpw8GDRqEgwcPYtOmTfj6668xYcIEAMD333+PJ554AvPnz8eRI0ewY8cO9OjRAwBQXFyMBx98ECNGjMDhw4fx5ZdfYuDAgQh2Od9g20QQBDvQAt4EQRBwWJ5Onz6NX375BQaDAQAwY8YMfPzxx/j111+RkpKCm266CR9++KHzO6NGjYLJZMLrr7/ufO/rr7/G7bffjgsXLuCTTz7BY489hpMnTyI2Ntbt93744Qd07twZx44dQ4sWLby258Ybb8TSpUud7w0YMADx8fFYt24dAIhqU506dUI6TwRBSAdZwgiCIP6ma9euTgEGABkZGfj9999RU1MDAOjSpYvb9j/99BPWrVuH+vXrO/+ysrJgt9tRWFiIO++8Ey1atEDLli3x6KOPYuPGjbh48SIAoGPHjujduzc6dOiABx54AP/6179w7ty5oNscbJsIgmAHEmEEQRACqVevntvr8+fP4/HHH8eBAwecfz/99BN+//13pKWlITY2Fj/88APeffddJCYmYs6cOejYsSPKyspgMpmwc+dOfPrpp2jfvj1WrFiBNm3aOIWS0Wis5ZqsqqoKuU0EQbADiTCCIIi/KSgocHu9b98+tG7dGiaTyev2nTp1wq+//opWrVrV+ouKigIAREREIDMzE4sWLcLBgwdx7NgxfPHFFwAAg8GA7t27Y968efjxxx8RFRXldC02atQIxcXFzt+qqanBoUOHAh6DkDYRBMEGJMIIgiD+5s8//8TkyZNx5MgRvPvuu1ixYgWefPJJn9tPnz4de/fuxYQJE3DgwAH8/vvv+H//7/85g+Dz8vKwfPlyHDhwAMePH8fbb78Nu92ONm3aoKCgAC+++CK+//57/Pnnn9i6dSvOnDmDdu3aAQB69eqF7du3Y/v27fjtt98wbtw4lJWVBTyGQG0iCIIdItRuAEEQBCsMHToUly5dwi233AKTyYQnn3zSWfbBGzfccAO++uorPPPMM7jtttvAcRzS0tKQnZ0NAIiPj8fWrVsxd+5cXL58Ga1bt8a7776L6667DocPH8a///1vLF26FOXl5WjRogVeeeUV3H333QCAESNG4KeffsLQoUMRERGBSZMm4Y477gh4DIHaRBAEO1B2JEEQBLxnIxIEQcgJuSMJgiAIgiBUgEQYQRAEQRCECpA7kiAIgiAIQgXIEkYQBEEQBKECJMIIgiAIgiBUgEQYQRAEQRCECpAIIwiCIAiCUAESYQRBEARBECpAIowgCIIgCEIFSIQRBEEQBEGoAIkwgiAIgiAIFSARRhAEQRAEoQL/H6+AZe06G5giAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAm0tJREFUeJztnXl4FMX2978z2UiATEgCJDGBhIAsiiBBIaCIEg3KIi8oARdAQIRL0ACyKbsLgsqOolcERVBQ0B+LIqveq0QuIshFkau5YbtJgAQyYRESkn7/iN3MTGame3qtnjmf5/GRTPf0VFdXV33rnFOnLBzHcSAIgiAIgiB0xWp0AQiCIAiCIAIREmEEQRAEQRAGQCKMIAiCIAjCAEiEEQRBEARBGACJMIIgCIIgCAMgEUYQBEEQBGEAJMIIgiAIgiAMgEQYQRAEQRCEAZAIIwiCIAiCMAASYQRBEIRXVq1aBYvFguPHjxtdFILwK0iEEQRhOPv370d2djZuueUW1K5dG40aNUL//v3xn//8p8a5Xbt2hcVigcVigdVqRWRkJJo3b44nn3wSO3bs8Ol3N2/ejHvuuQcNGjRAREQEmjRpgv79+2Pbtm1q3VoNXn31VXzxxRc1Pt+7dy9mzpyJ0tJSzX7blZkzZwp1abFYEBERgVatWmHq1KkoKytT5TfWrl2LhQsXqnItgvA3SIQRBGE4c+fOxYYNG9CtWzcsWrQII0aMwD/+8Q+0a9cOR44cqXF+YmIiVq9ejQ8//BCvv/46evfujb179+KBBx5AVlYWKioqRH/zjTfeQO/evWGxWDBlyhQsWLAA/fr1w++//45PPvlEi9sE4F2EzZo1S1cRxvP2229j9erVmD9/Plq0aIFXXnkF3bt3hxpbC5MIIwjPBBtdAIIgiHHjxmHt2rUIDQ0VPsvKykLr1q3x2muv4aOPPnI632az4YknnnD67LXXXsOzzz6Lt956C8nJyZg7d67H37t+/Tpeeukl3H///di+fXuN42fPnlV4R+xw5coVREREeD3nkUceQWxsLABg5MiR6NevHzZu3IgffvgB6enpehSTIAISsoQRBGE4nTp1chJgANCsWTPccsstOHr0qKRrBAUFYfHixWjVqhWWLl0Ku93u8dzi4mKUlZWhc+fObo83aNDA6e+rV69i5syZuPnmm1GrVi3Ex8ejb9++yMvLE85544030KlTJ8TExCA8PBxpaWn47LPPnK5jsVhw+fJlfPDBB4ILcMiQIZg5cyYmTJgAAEhJSRGOOcZgffTRR0hLS0N4eDiio6MxYMAAnDp1yun6Xbt2xa233ooDBw6gS5cuiIiIwAsvvCCp/hy57777AAD5+flez3vrrbdwyy23ICwsDAkJCRg9erSTJa9r167YunUrTpw4IdxTcnKyz+UhCH+FLGEEQTAJx3E4c+YMbrnlFsnfCQoKwsCBAzFt2jR899136NGjh9vzGjRogPDwcGzevBljxoxBdHS0x2tWVlaiZ8+e2LVrFwYMGIDnnnsOFy9exI4dO3DkyBGkpqYCABYtWoTevXvj8ccfR3l5OT755BM8+uij2LJli1CO1atXY/jw4bjzzjsxYsQIAEBqaipq166N//znP/j444+xYMECwSpVv359AMArr7yCadOmoX///hg+fDjOnTuHJUuWoEuXLjh48CCioqKE8paUlODBBx/EgAED8MQTT6Bhw4aS64+HF5cxMTEez5k5cyZmzZqFjIwMjBo1CseOHcPbb7+N/fv34/vvv0dISAhefPFF2O12nD59GgsWLAAA1KlTx+fyEITfwhEEQTDI6tWrOQDcihUrnD6/5557uFtuucXj9z7//HMOALdo0SKv158+fToHgKtduzb34IMPcq+88gp34MCBGue9//77HABu/vz5NY5VVVUJ/75y5YrTsfLycu7WW2/l7rvvPqfPa9euzQ0ePLjGtV5//XUOAJefn+/0+fHjx7mgoCDulVdecfr83//+NxccHOz0+T333MMB4JYvX+7xvh2ZMWMGB4A7duwYd+7cOS4/P5975513uLCwMK5hw4bc5cuXOY7juJUrVzqV7ezZs1xoaCj3wAMPcJWVlcL1li5dygHg3n//feGzHj16cI0bN5ZUHoIINMgdSRAEc/z2228YPXo00tPTMXjwYJ++y1taLl686PW8WbNmYe3atbj99tvx9ddf48UXX0RaWhratWvn5ALdsGEDYmNjMWbMmBrXsFgswr/Dw8OFf1+4cAF2ux133303fvrpJ5/K78rGjRtRVVWF/v37o7i4WPgvLi4OzZo1w549e5zODwsLw1NPPeXTbzRv3hz169dHSkoKnnnmGTRt2hRbt271GEu2c+dOlJeXIycnB1brjWHk6aefRmRkJLZu3er7jRJEAELuSIIgmKKoqAg9evSAzWbDZ599hqCgIJ++f+nSJQBA3bp1Rc8dOHAgBg4ciLKyMuzbtw+rVq3C2rVr0atXLxw5cgS1atVCXl4emjdvjuBg793lli1b8PLLL+PQoUO4du2a8LmjUJPD77//Do7j0KxZM7fHQ0JCnP6+6aabasTXibFhwwZERkYiJCQEiYmJgovVEydOnABQLd4cCQ0NRZMmTYTjBEF4h0QYQRDMYLfb8eCDD6K0tBT//Oc/kZCQ4PM1+JQWTZs2lfydyMhI3H///bj//vsREhKCDz74APv27cM999wj6fv//Oc/0bt3b3Tp0gVvvfUW4uPjERISgpUrV2Lt2rU+34MjVVVVsFgs+Oqrr9wKUtcYK0eLnFS6dOkixKERBKEfJMIIgmCCq1evolevXvjPf/6DnTt3olWrVj5fo7KyEmvXrkVERATuuusuWeVo3749PvjgAxQWFgKoDpzft28fKioqalideDZs2IBatWrh66+/RlhYmPD5ypUra5zryTLm6fPU1FRwHIeUlBTcfPPNvt6OJjRu3BgAcOzYMTRp0kT4vLy8HPn5+cjIyBA+U2oJJAh/hmLCCIIwnMrKSmRlZSE3NxeffvqprNxUlZWVePbZZ3H06FE8++yziIyM9HjulStXkJub6/bYV199BeCGq61fv34oLi7G0qVLa5zL/ZXMNCgoCBaLBZWVlcKx48ePu03KWrt2bbcJWWvXrg0ANY717dsXQUFBmDVrVo3kqRzHoaSkxP1NakhGRgZCQ0OxePFipzKtWLECdrvdaVVq7dq1vaYLIYhAhixhBEEYzvjx47Fp0yb06tUL58+fr5Gc1TUxq91uF865cuUK/vjjD2zcuBF5eXkYMGAAXnrpJa+/d+XKFXTq1AkdO3ZE9+7dkZSUhNLSUnzxxRf45z//iT59+uD2228HAAwaNAgffvghxo0bh3/961+4++67cfnyZezcuRN/+9vf8PDDD6NHjx6YP38+unfvjsceewxnz57FsmXL0LRpUxw+fNjpt9PS0rBz507Mnz8fCQkJSElJQYcOHZCWlgYAePHFFzFgwACEhISgV69eSE1Nxcsvv4wpU6bg+PHj6NOnD+rWrYv8/Hx8/vnnGDFiBJ5//nlF9e8r9evXx5QpUzBr1ix0794dvXv3xrFjx/DWW2/hjjvucHpeaWlpWLduHcaNG4c77rgDderUQa9evXQtL0Ewi5FLMwmCIDjuRmoFT/95O7dOnTpcs2bNuCeeeILbvn27pN+rqKjg/v73v3N9+vThGjduzIWFhXERERHc7bffzr3++uvctWvXnM6/cuUK9+KLL3IpKSlcSEgIFxcXxz3yyCNcXl6ecM6KFSu4Zs2acWFhYVyLFi24lStXCikgHPntt9+4Ll26cOHh4RwAp3QVL730EnfTTTdxVqu1RrqKDRs2cHfddRdXu3Ztrnbt2lyLFi240aNHc8eOHXOqG2/pO1zhy3fu3Dmv57mmqOBZunQp16JFCy4kJIRr2LAhN2rUKO7ChQtO51y6dIl77LHHuKioKA4ApasgCAcsHKfC5mAEQRAEQRCET1BMGEEQBEEQhAGQCCMIgiAIgjAAEmEEQRAEQRAGQCKMIAiCIAjCAEiEEQRBEARBGACJMIIgCIIgCAOgZK0MU1VVhYKCAtStW5e2/iAIgiAIk8BxHC5evIiEhARYrZ7tXSTCGKagoABJSUlGF4MgCIIgCBmcOnUKiYmJHo+TCGOYunXrAqh+iN72wSMIgiAIgh3KysqQlJQkjOOeIBHGMLwLMjIykkQYQRAEQZgMsVAiCswnCIIgCIIwABJhBEEQBEEQBkAijCAIgiAIwgBIhBEEQRAEQRgAiTCCIAiCIAgDIBFGEARBEARhACTCCIIgCIIgDIBEGEEQBEEQhAGYRoT17t0bjRo1Qq1atRAfH48nn3wSBQUFTudwHIc33ngDN998M8LCwnDTTTfhlVdecTrnm2++Qbt27RAWFoamTZti1apVNX5r2bJlSE5ORq1atdChQwf861//cjp+9epVjB49GjExMahTpw769euHM2fOOJ1z8uRJ9OjRAxEREWjQoAEmTJiA69evq1MZBEEQBEGYHtOIsHvvvRfr16/HsWPHsGHDBuTl5eGRRx5xOue5557De++9hzfeeAO//fYbNm3ahDvvvFM4np+fjx49euDee+/FoUOHkJOTg+HDh+Prr78Wzlm3bh3GjRuHGTNm4KeffkKbNm2QmZmJs2fPCueMHTsWmzdvxqeffopvv/0WBQUF6Nu3r3C8srISPXr0QHl5Ofbu3YsPPvgAq1atwvTp0zWsIUIOJSUlKCws9PhfSUmJ0UUkCIIg/BQLx3Gc0YWQw6ZNm9CnTx9cu3YNISEhOHr0KG677TYcOXIEzZs3d/udSZMmYevWrThy5Ijw2YABA1BaWopt27YBADp06IA77rgDS5cuBQBUVVUhKSkJY8aMweTJk2G321G/fn2sXbtWEIG//fYbWrZsidzcXHTs2BFfffUVevbsiYKCAjRs2BAAsHz5ckyaNAnnzp1DaGiopHssKyuDzWaD3W5nZtuikpISlJeXezweGhqKmJgYHUskn5KSEuE5eyM7O9s090T4jj+1aYIg2EDq+G3KvSPPnz+PNWvWoFOnTggJCQEAbN68GU2aNMGWLVvQvXt3cByHjIwMzJs3D9HR0QCA3NxcZGRkOF0rMzMTOTk5AIDy8nIcOHAAU6ZMEY5brVZkZGQgNzcXAHDgwAFUVFQ4XadFixZo1KiRIMJyc3PRunVrQYDxvzNq1Cj88ssvuP32293e17Vr13Dt2jXh77KyMgW1pD7+Jlq8DbxyziPMh7+1aYIgzIWpRNikSZOwdOlSXLlyBR07dsSWLVuEY//9739x4sQJfPrpp/jwww9RWVmJsWPH4pFHHsHu3bsBAEVFRU7CCAAaNmyIsrIy/Pnnn7hw4QIqKyvdnvPbb78J1wgNDUVUVFSNc4qKirz+Dn/ME3PmzMGsWbN8qBF9IdFiDsiyIx1q0wRRDfUbxmCoCJs8eTLmzp3r9ZyjR4+iRYsWAIAJEyZg2LBhOHHiBGbNmoVBgwZhy5YtsFgsqKqqwrVr1/Dhhx/i5ptvBgCsWLECaWlpOHbsmEcXJUtMmTIF48aNE/4uKytDUlKSgSUizAZZdgiC8BXqN4zDUBE2fvx4DBkyxOs5TZo0Ef4dGxuL2NhY3HzzzWjZsiWSkpLwww8/ID09HfHx8QgODhYEGAC0bNkSQPVKxebNmyMuLq7GKsYzZ84gMjIS4eHhCAoKQlBQkNtz4uLiAABxcXEoLy9HaWmpkzXM9RzXFZX8Nflz3BEWFoawsDCv9UEQ3iDLDkEQvkL9hnEYKsLq16+P+vXry/puVVUVAAgxVJ07d8b169eRl5eH1NRUAMB//vMfAEDjxo0BAOnp6fjyyy+drrNjxw6kp6cDqDa3pqWlYdeuXejTp4/wO7t27UJ2djYAIC0tDSEhIdi1axf69esHADh27BhOnjwpXCc9PR2vvPIKzp49iwYNGgi/ExkZiVatWsm6X8L/IXeAOlA9mhN6boQ7/L1dmCImbN++fdi/fz/uuusu1KtXD3l5eZg2bRpSU1MF4ZORkYF27dph6NChWLhwIaqqqjB69Gjcf//9gnVs5MiRWLp0KSZOnIihQ4di9+7dWL9+PbZu3Sr81rhx4zB48GC0b98ed955JxYuXIjLly/jqaeeAgDYbDYMGzYM48aNQ3R0NCIjIzFmzBikp6ejY8eOAIAHHngArVq1wpNPPol58+ahqKgIU6dOxejRo8nSJQN/fwkBcgeoBdWjOaHnRrgjENqFKURYREQENm7ciBkzZuDy5cuIj49H9+7dMXXqVEHUWK1WbN68GWPGjEGXLl1Qu3ZtPPjgg3jzzTeF66SkpGDr1q0YO3YsFi1ahMTERLz33nvIzMwUzsnKysK5c+cwffp0FBUVoW3btti2bZtToP2CBQtgtVrRr18/XLt2DZmZmXjrrbeE40FBQdiyZQtGjRqF9PR01K5dG4MHD8bs2bN1qC3/wp9fQkdxWVxcLOk75A7wDrlVzAk9N8IdgdAuTCHCWrduLaxw9EZCQgI2bNjg9ZyuXbvi4MGDXs/Jzs4W3I/uqFWrFpYtW4Zly5Z5PKdx48Y1XJ+E72j5EkrN1yb1PF+QKi4JfbHb6+L8+RhER5fAZrtodHEIPyQQLPuEdEwhwgg2MFK0aEFMTAyys7MN6RC1mLmVlJRItqgR1fVlt9uFv3/66XZs3twTHGeFxVKFXr22oF276gmbWdo0wTb+bNkn5EEijJCMkaJFKxzLevo08PvvQLNmQGKigYWSAVnWfKO0tBTr168X/rbb6woCDAA4zorNm3siJ6clbrst2lRtmmAXf3avkYVPHiTCCJ/w15doxQpgxAigqgqwWoF33wWGDTO6VNLx1Pl5cq8FumXn+vXrTn+fPx8jCDAejrPi/Hl9BRgNZIQRKPVykIVPPiTCiIDn9OkbAgyo/v8zzwCZmexZxIqLiyUPxO7cay+/nIKEhISA6QilxnhFR5fAYqlyEmIWSxWSk697/I7a0EBGGIWrl6OgwIr8/GCkpFxHQkJ1x+it39HKwldaWurT+WaERBghGzO77xz5/fcbAoynshL44w/j7suTeNi4cSMA8YHYk3tt+vRzATOAe4vxunDhgtO5NttF9Oq1pcb5CQl36FZef3ZVecNdLCMtkNAfvl9gxStQUlLiFDLgr5AII2TByouqBs2aVd+DoxALCgKaNq3+t94uIm/igUdsIPbkXjt+PBhpaaoVlRn4Z8QH2nsSoampf8Bmu4g9e/bUuEa7dgeRmvoHzp+PRnT0+b8Gf/1EWCDizvpHCySMgyWvgC+TDTO3CxJhhM/o+aLqsSIzMbFaRD7zTLUFLCgIeOed6s/1dhGJiQepsOBeUwMpAhhAjWfkLcbLWz3abBfJ8uKA1hMQ12t7av/Z2c3Qrl2DgLHiGgWLXgExsrKyTN0uSIQRPqPni6o0VkEqw4ZVi8g//qi2gPH3oZWLyFU08u6Xy5cjZIkHV1hwrylFqgDu379/jc88idDo6PNur0Hur5oYEaPmSTyXlfmnAGOt3Yl5BYzGXX3ZbDaDS6UMEmGEz0h9UdWaResVq5CYqN9sz1Fcrl0bjtmzbaiqssBi4QBwACzCud7EA1/H7mJq6tW7gGHD3kNFRagp3WtSha3rSkfAswh1N9BJcf8agdEDtBExampYcFleYeo4+WLR7erNK2A0rL6nSiERRviMlBdV7Vk0S7EKahETE4PTp4GJE2/cF8dZAFTBYuFExYOnOnbXWaWknABg7tgJX3Ef4+WMmPvXqPry1wFHDKUWXNZXmPKTr+PHr2P27AZ/ve/V7W7r1l6YPr0DkpODDbX6efIKGIm399TskAgjZCH2oqo9izZjrIIU3N0XYEW/futRu/YVhISUo6IiDHZ73Roiwl3dueustmxho3M3AtcYL1frkif3V9u2j6BHj9qG1JdacYFmRKkF1wwrTGNiYnD4sLv+zIKLFxuChVfUV6+Ap/AKtfITeovxNDskwgjZ6Om+Yz1WQS7u7stiqUJS0mnk5TX12RrirrOqqmKnc9cDTwOAO+tSauofbt1ft9wSprsA4wcosUUFRlnntHaPerPg+htK+zPWXK6ewiusVg7z5tnx2GN/KiqTrzGeZoJEGGEKWI5VUELN++LQo8cWABB1k7nrhN11VkFBHJo2tdQ41wiUDB5SRIAnN57nbYkWMrOAwdFVtXo1h6qqG88sKIjDmDEPGmbN1No9ajbrn1IRpKQ/Y9Xl6i68oqrKgkmTopCVFeXzJNBxsmGzXURGxk7s3JlRI0zD7CEWJMII08BCrIIW1gDn+7IgPLwz9uzpjAULalpDOncejK5dqzu8wsLCGtdyF1Mzd24ZEhOjVCmrEpQMHlJEgLeB3Jt1iaX8YDExMYiJcTdAW5CW1tCQMmkpkFi3/jnCCy/XfUc9ISaC5PZnLLpc+br54YdQVFU533NlJXDggB2Jib6tYnS1ru3aZQPHVS9eevHFi/jb3+5AaGhn04dYkAgjTIWeLlBAv9VMzvcVg44d3bsrOnSI8Tij5AViauofyMlZKIiKxx4bCCBKUfnUQO7gISYCQkJCAHgfyKOjS2C1OluXLJYqhISUIz8/GdHRJUy5vliYcPDIzbkmBa2tf2pNmqROIByR0t717s+0wLFu7Pa6sFhyargNv/12Be66a7DPz9HT4qU5c2x45hmbX4RYkAgjCC8YtZrJV3eFP66mk2olqV+/vqSB/JZbLHjmGQ6VlRZYLFW47bbDWLFiOLN1ZvQAzde/WDyO0gmIVtY/b++Ea0oXHk9uRLlWJdZit7TA8f68pYaRW4f+uiiLh0QYoQqunY2nTs6MGLWaSao1xGzxNFLx1UoiNpAPGwa0bXsWS5Z8hZCQckGAAf5TZ2ri6A666aYyTJpkQ2WlBUFBHObOLcNjjw1UVUSoaf0Teyf4PVjdoVYs1alTp/DVV1+JnudvG7JLSQ3jC/66KIuHRBihGCmmerWXLOuNUR2BN2uImeJp3CHFVeSrlURsIE9IqEJKygnk5ydr5mLzJ3hxMH48kJV1I26xOsYwSvXfU2r9k/pOeEOtWCopAkzN32MJNbf/8tdFWTwkwgjFiHUijm4BtZYs6w2LHQHLq+nE8NV96ouVRIpw1drFJoYZ3VRGu0el4O2d0CqlgdE7Gxj9+3rAUoyk2pAIIzTF1S2gZMmy0bDYEbC4mk4MMVeRqyubFyRqiAC9XWzuYDXFgL/g/E7ciAH0tPOEK47tz1Nb4IVPQUF8jbQJesYVshALWlpaqsvvmGESIAcSYYSmuHMLmDmoktWOgDWB6M7Sww9uYq4id/E6agoSvV1srrCYYsAfcYwBdBeb5MmC5Nr+srOznf52FD6O+7zqFVfIW2lZ2HKrpKSkRrqOQLDMqQmJMEJT3CcP9Z+gSiPw5MoKCgKaN+c7aeMsKGKWHjnZr7USJKyKakId+BhAV3yxIDm2PVfhwwswHk9xZ3Z7XZw6lQQASEo6pUic8NbcPXsgmktQa1zfSxYsc2aDRBihKa5LllmIpVIbPeN7zODKEhNMfJvYsqUXqqp8cxX5I2Q50A9eDG3a1BOA9JWx3gL+HbFaq2Mxa9e+gHXr1gGoFiaOvwdw6N17syJxEhMjL5eglhhlmTNjfKUjJMII1XEdVPgly507D0aHDjGqCDBWXjy9RZG/uLLatTuI6dM74PjxYHz//QfC4BdogoQsB/rh7EZ0RmzlpLeAf94lGRTECbGYhYXVyshur+siwADAoorbkrXFQt7CDEaMeEiT/tgMk1IxSIQRquJpULHZLqJTp3LExyv/DZZePH8RRVriSVglJFQhIaEcR45UfxZogsTo/G6sTGT0oKYb0RnX3RPc1b+nRTCvvWZB+/Z8XKHzd86fj4GzAKtGrRQyLMWCegszsNl827JIKlL71YKCArfnstDGSYQRitE7UJSEzw1YtxxJFVZGCxIj0HI7IDFYmsjogTc3oq+7J0gRPo6pUIAquAoxXpw88cQTiuuXlbhGb5tsG40eyXnlQiKMUAxLgaKBBOuWI1+ElRGCxGhLkJwFCmoRKBMZsbxw/fp9hqioUp93TxATPq6pUCZMsAlbnlksHF5/vQxDhvi+lyLL/PTT7YIAA6qQkbGTqf7IE0a3cRJhhCqwGChqBHpZpsxgOfJFWOktSIy0BPHCwNs+e47nmQ2jxa0j3vLCTZtWAOCoZrsnuKZCyc2t/jw9nU+HwiZynl9Nd68VO3dm4NZbjzDTH7EKiTBCNYwKFGXFJaenZcpIV5ZUpAgrowSJkZYgR2EAANOnn8Px48FITr6OhIQ7ANwhW6jIFUBqvUNGiVsp9z1+fJRTXrjw8HAsXarP7gmJicCjjyq+jOb4+vzMvnUaC5AII1RF70BRVlxyelumjHRlieGLsJIqSACgsLDQ628qGdT1FvKOZY2PB9LSlF/TlwHUETXfISPErS/3nZjouDrb+N0TWMPX56fW1mlqWU9ZmZD7AokwQjJSXxS9AkVZcslpZZlyrXN+ixCWXVm+WnrEBInW1hVWhLxS5Aggrd8hPQZFJcLP6N0T/AGlW6ep9X6b9T0mEUZIgsXVVCy45LTcEFqszvn8a23bPoJbbglT7MpSEzUtPVpaV1gS8mojRQBp+Q6ZbVBkZZWhWZHrBVHyfktdmc+fw6KVjEQYIQmWVlNpKXx8RcsNoaXUpc12EfffH4L4eDY369YCNTtTFoS8FkgVQFq5tY0Ut6wOtmbE17rUW8iKrczn32OWJwQkwgjToaXwkVseQNyloTTuQY3BhaWVa3JQuzNlObZOLlIEkNYLIowStywPtmbDLHXpeWU+h+jo80xsdO4NEmGEKWE1lsPTTFCpO1eNDpFFl7IvaGFdERMhZkSKAFJjhaY7QV9cXAzAGHHrz65lvTGbJdP9ynwL+vQZzHz+ShJhhCw8vSjFxcW6W1PMEMuhxJ2rVofIkktZDmLighcAUtqf4+yXj607fz76ry1WLro9zyxIFUBK4vbEBL0R4tZfXctGoHVdOgp4/r0FlE023ceksZ+/kkQY4TPeXhR+ewhWrSms4MtsT6sO0WyxM2LiwnFrErH252oJcgfrrllP6CGAXOvNXVvSW9z6o2tZb/SIt/Uk4NWYbLqbkLO20bkrJMIIn5D6orBqTdESb/FWSmZ7WgwuZon3cMSduMjI2PnXJsnwuf2pJbBYibMzyrrnrS099dT9iI2NrVFONevD6B0IWHn+aqBHvK2nutLS+sbSRueukAgjfIJM/u6RGm8lZ7antmXDbLEznsRFQUFCjc2C9RaSrs/dk3VRD8uwEdY9sbYUGxuL+Ph41X7PHVruQCCG2eMs3WFUvK3Wq91ZDVshERZgyJ21STVTBypSLX++iFitLBtmE9KOg2xxcbHgdvzww0GGC0nH5+7NIqSXZVjvgZ6VtqTFDgRSMHucpRh6CBfHiYvjZNNq5TBvnv/vXEAiLIBQMmvjB8KCggLk5TlbZdLTc7UqsmnxZBHxRcRqZdkwo5B2vUdWBn8es1kX1cKMbUlLzBZnaTTuJi45OQtx/nw0xox58K+M+1FGF1NTSIQFEEpnbTExMSgvL0e7dhuRmvoH9u3rgL1707F3b2fk5qabIq5ICWrEfPnqWtRi9ucPaRlYG/xZE4V64Q9tSS2MirM0a0yap4lLTs5CpKScQEJClcgV/AMSYYRscnPTAcib+Zut41Az5suolAj+lJaBtcGfNVGoJ97akhlQoy8yyhJq5pi0QJ24uEIijJCFkpxNZuw41Ir56tu3b43VYjxaC089Arf1FNcsDf6siUKtcRXqNttFt/fKuqBXqy9SKijkvjdmjkkL5ImLIyTCAhg58QtSA/S95Wwyc8fBIzfmS4/VYt7QUuTpIa5ZHvxZEoVa4y951qTkO3N3nitKBIWa7w0rMWneRKXdbgdgXEoR1iARFqDIjV9w7HxttgLMmpUgOvNnWUzJQc2YL39CrQHNG6wP/p5EoT/CusDyFSUxXUree7XeGz1j0ryJrNLSUqxfv170Gv3798eIEVG6phRhERJhAYjS+AX+5RgxohB2+0Jh5g8A+fnJPs/C9Jq96RX7YfZ4K29olZDWF1jqnKU+T7M/d39Hbp+odpyl3PdGz5g0qZY7MaKiohAfH69rShEWIREWgKgZEMnP/OV2HnrN3vSK/TAy5ktrpCYmDaR0Daxb5tTEbItpfEFun6jm81fy3ugZ5O5vng2jIREWQGi1L5jczkPPwVqv2A+jY760RGpi0kBb9WS08NBDHLG0M4AWKInpUut+lbw3Rga5i3kyWIlTYxUSYQGEVvuCye08jBqsjYr98BfExLM/r3pyFDwFBVbk5wcjJeW6kNNIb2uQXuKItZ0B1IaF91rJe2NU+cX6UjPuUas3JMICDC32BZPbeRgxWLMS+2FmxMQzCwOaFjgKHm+Di57WIL3FkT+7mo1e3SrnvTGyXxJrC/7cVtSERFgAo9a+YL52HnyHYMQSZRZiP8yOFPFs9ICmBfyzFxtcjLAG6TXg+Yurmbdo8ukSeIxOeeLre2NkvyTWFvylrWgNiTBCNnJnYa4dh7slyleuXEF5eTkKCws9/racjoWF2A+zI1V0Gz2gaQWLg4teZfIHV7NUF27//v0RFRWl+eRKae47o/olsbbgD21FD0iEEbJRMgtz/Mx1iXJJSQneffdd0d+X4/bxV1eZ3ngT3f68QhRgc3DRq0z+8P5IdeHyKRSkIneBhC/9KEsrVMXagpqeDpbuW21IhBGK0KLha530099cZUYFi3uasfvzClGATSGiZ5n85f1R04WrNAWOlPeTle3epHpAsrKyMGKETXEyVlbuWytIhBGG4Wl2o0XST5a3u1GCnsHilJj0BiwKET3L5A87A6jpwtVjtwipv3Hu3DlNrUa+ekCUJmP1h23uvEEijDAEKbMbNWeq/hpYr2ewuL/WoVxYFCJalckfBbhWLlw90jJ4+41169aJfl/ppMzId9zf8o6RCCMMQcqsTu1gY38WB3oFZvtzHZoRvcSRPwpwLVy4eqxS9eU3tLDIGYk/5h0jEUYYjqcXi8UAaFahutIeFq1BeoojMwksqajtwtVjMiT1N7wJFseQD1dYFdP+mneMRBhhKGIvFmsB0KxCdaU9agsetRZUsDhgmgkxF66UlXk8ekyGpPyGWL+6ceNGr7/BYpA7i6lh1IBEGGEoYi8WiwHQrBJodWXEqlC1rsdi9v1AwReLpi85xQB9JkNSfkOqYDGTu9Jfrf0kwghDkfJi+ctKRl/xZQbOw2KwuBaYXcTIWVDB2r6VZsUXi6Zjsmhv7ez69evCeXpMhsR+Q0q/arb4Kn+19pMIIwxF7MXylPjT3wccX2fggQbLWwj5glSLhdlFJ2v4Wkdi7SwkJMTpfC0mjlLT7PDHvPWrZoqv8vd9e0mEEYbjy8zRMXO0py2NHM8zK1KzelssFknXM7KD0tKCY/Y4EakuFq1FJ1nZvCO+ab1N8wUSUix4paWlWL9+PQDv/aqZ3ht/XJnrCIkwwhCkzOrs9rp4882falh/nnjiCXz00UdO57mzEvmDVUBs0JXS+Tvuw6n3AKu1BcfscSK+uli0GDzJyiaOlHamR92I/YZUa5nZ3ht/bnckwgjVkbrPl6t4KC4uFlbteBsMrly5InzH23msu6KkIGXQ9dZBOe7DacQAq7UFxx/iRHyxBLsbPAEOBQUJSEk5gdLSUp+3jPIX166WmKWdiVmN+D7WLPcTCJhGhPXu3RuHDh3C2bNnUa9ePWRkZGDu3LlISEgAAMycOROzZs2q8b2IiAhcvnxZ+PvTTz/FtGnTcPz4cTRr1gxz587FQw89JBznOA4zZszA3//+d5SWlqJz5854++230axZM+Gc8+fPY8yYMdi8eTOsViv69euHRYsWoU6dOsI5hw8fxujRo7F//37Ur18fY8aMwcSJE7WoGqaQGsvkbdCXGq9gprgGuSidsfoywJ4+Dfz+O9CsGZCYqO59aOn+8IdVoVIXVNhsF5GRsRM7dtwPgHdFW7BzZwZuvfUI1q9fL1tQm8lFZQRmaWdSn71Z7sffsYqfwgb33nsv1q9fj2PHjmHDhg3Iy8vDI488Ihx//vnnUVhY6PRfq1at8Oijjwrn7N27FwMHDsSwYcNw8OBB9OnTB3369MGRI0eEc+bNm4fFixdj+fLl2LdvH2rXro3MzExcvXpVOOfxxx/HL7/8gh07dmDLli34xz/+gREjRgjHy8rK8MADD6Bx48Y4cOAAXn/9dcycOVOwSPgzrrFMCxfm4IMPBmPhwhz89NPtbs9zxdtgIOc8R/hYssLCQhw4cAaffVaCAwfOCJ+VlJRIuk+94GesFku161DujFWsrt59txKNG3O47z6gcWMOb75Zqmp98GLSETXdHzbbRaSknAiIgSQhoRA3BFg1js/y3Llzsq6r9TPyB8zezty5K93dj1mD3M2IaSxhY8eOFf7duHFjTJ48GX369EFFRQVCQkJQp04dJ0vUzz//jF9//RXLly8XPlu0aBG6d++OCRMmAABeeukl7NixA0uXLsXy5cvBcRwWLlyIqVOn4uGHHwYAfPjhh2jYsCG++OILDBgwAEePHsW2bduwf/9+tG/fHgCwZMkSPPTQQ3jjjTeQkJCANWvWoLy8HO+//z5CQ0Nxyy234NChQ5g/f76TWPNnxCwvfMZmxxil0NDqz6Raf3y1Epk19kWNGau3urLb62LhwgRwXPXAXlVlwYQJkfjf/96HzXZRlfog94czSrLvi7kk161bJ+uZ0TOqCYu7JCjB34PczYhpRJgj58+fx5o1a9CpU6caS4N53nvvPdx88824++67hc9yc3Mxbtw4p/MyMzPxxRdfAADy8/NRVFSEjIwM4bjNZkOHDh2Qm5uLAQMGIDc3F1FRUYIAA4CMjAxYrVbs27cP/+///T/k5uaiS5cuTi9mZmYm5s6diwsXLqBevXpuy3zt2jVcu3ZN+LusrEx6pTCGJ8vLqVOJOH/+T6xcuQN5eU1dOvx9aNdO+mDg66Bh5tgXpfm/vNVVfn6yVzeUWvUhVUxKWaln9sHR3WBYWloq5JsqKgpGQUFtHD9+HeXlhU7bzIi5JJU8M3JROeOPokXLskqNByZuYCoRNmnSJCxduhRXrlxBx44dsWXLFrfnXb16FWvWrMHkyZOdPi8qKkLDhg2dPmvYsCGKioqE4/xn3s5p0KCB0/Hg4GBER0c7nZOSklLjGvwxTyJszpw5buPazIgny8tnnz0CwPrXMYD3iLsKIamDgZxBwwyxL1qIDE91pedKKSlbxEi1Vpp9cHQsW0lJiZBaQEoSTW8uSaVtOFAS/kqF5TbEEq7xwJ5gzdNgNIaKsMmTJ2Pu3Llezzl69ChatGgBAJgwYQKGDRuGEydOYNasWRg0aBC2bNlSI1fS559/josXL2Lw4MGalV0LpkyZ4mSpKysrQ1JSkoElko87y4ur6HLFdRDxJVjZl0HDDMuztZqBu6srltxQvlgrfV0FyDJS7huAsMjFDG2YCCxc+yozbYlkJIaKsPHjx2PIkCFez2nSpInw79jYWMTGxuLmm29Gy5YtkZSUhB9++AHp6elO33nvvffQs2fPGhatuLg4nDlzxumzM2fOIC4uTjjOf+bYwZ85cwZt27YVzjl79qzTNa5fv47z5887Xcfd7zj+hjvCwsIQFhbm8bjZcLS8XL5cG5999qjX86UOIhEREZJ+35OViCXR4Q09Z4tauaHkWvTMYK3UAk/3vW9fB+Tmpju1V7XasNlduwR7mG1LJCMxVITVr18f9evXl/Xdqqrq+BDHGCqgOq5rz5492LRpU43vpKenY9euXcjJyRE+27FjhyDiUlJSEBcXh127dgmiq6ysDPv27cOoUaOEa5SWluLAgQNIS0sDAOzevRtVVVXo0KGDcM6LL74oLBrgf6d58+YeXZH+Cm95sdvrup2589YxX7crUmolCpTYF18GTi3cUHKfVaBaetwH3VcJAgy4YR3LyVmInJyFituwP8Y9EcYRCKmD1MQUMWH79u3D/v37cdddd6FevXrIy8vDtGnTkJqaWsMK9v777yM+Ph4PPvhgjes899xzuOeee/Dmm2+iR48e+OSTT/Djjz8KqSMsFgtycnLw8ssvo1mzZkhJScG0adOQkJCAPn36AABatmyJ7t274+mnn8by5ctRUVGB7OxsDBgwQMhZ9thjj2HWrFkYNmwYJk2ahCNHjmDRokVYsGCBthWlAkoDK321PnkSQrGxsV7dTWoMCIEQ++JtgHVMjqt1GXyFJWulnlv6uLvv9PRc7N3b2ek83iqoVroEEliEWgSqFVsuphBhERER2LhxI2bMmIHLly8jPj4e3bt3x9SpU53cd1VVVVi1ahWGDBmCoKCgGtfp1KkT1q5di6lTp+KFF15As2bN8MUXX+DWW28Vzpk4cSIuX76MESNGoLS0FHfddRe2bduGWrVqCeesWbMG2dnZ6Natm5CsdfHixcJxm82G7du3Y/To0UhLS0NsbCymT5/OfHoKNRKtug76jgO9J+sTvZjaYtYBlgVrpRFpTVzvG4CTJQyQbxXUMiEvQQCBa8WWiylEWOvWrbF7927R86xWK06dOuX1nEcffdQpgasrFosFs2fPxuzZsz2eEx0djbVr13r9ndtuuw3//Oc/vReYMaRuGi0WWOltMDLS+kSxL86YoT6MtlYaldbE9b59tQo6PjPekrd2bTgmTrShqsoCq5XDvHl2PPbYn+RqJFSFJSs2D8upM0whwgh9YcGnr8XAT7EvzlB9SMdoF4s3q6Br/KTjM+MtedUJeXM0TcjrK3q6eQl9YcGKzcN66gwSYUQN1BxwpIqprKws2Gw24TtavQzUqTvDWn1IbS/FxbXw22/6udW0drFIuW9PVkFv8ZO8yBF7p/VOG2DW3SsIz7jbEslde9Xbss566gwSYUQN1BxwyNpC+IK39sJnlP+//4tF27ZRqKqCbm41rV0s7u5bzYUTWopIOXFmZt69gnCPnn29XPcii6kzSIQRNVB7wCGBRfiCu/bCZ5Q30q2mtYvFtdxqxuyp/U6rFWdmtJvXbLDuwtXjt+UuIGMhzMYdJMIIt7Dk0zcC1ju7QIMVt5qeCwXUtiyo9U5LjTO7557HUVxcz+t7QyvppEMu3GrkLiBjVfCTCCM8YvTKNKOgzo5d/HHQ1jsPmdJ3Woogzstrilmzmnh8bxzLw9pKOlbxBxeumqsUfbVssdp3kAgjBLRMWXD6NPDjj3YkJV1FQkIV09Yl1jo7yu10A70Hba3TeLAk+H1tZ54GtZCQcp/em0C3uvsKqxYdMdTIQ+mIr/XAquAnEUYIqO3+qBk3YoPFUhe33XYYhw/fxrx1ycjOjnI7eUbPQVvrYGNWBP+771Zi9mzOp3bmaVCrqAjz+b0JVKu7HFi16IihVh5KHjn1wKLgJxFGOKHWwO4pboTjrPj55zYAbvxtlCndkxsoNLQYgHGdHcu5nVhB79gsrdFK8Eux0FW3swRZ7czdoOZpn1jWRYJZYNWiIxW1AuSl1gOrqTN4SIQRmuAtboQXYDx6mtJ5l0ts7AVs3OjJDbQP7doZ19mxEoRO6IdWgl/K3qFK25nroCblvTHDbg0sw6JFRypqTjik1APraZJIhBFOqB0k7G5wATg4CjGtZ8nuXXtR6NnzdqSm/uF1VmZkZ2dWtwPhO1oKfrH3VYt2JvbesD4wsgTffxUXF9eIozKT+OJRu71JqQeW2xGJMEJAiyBhd4OLa0xYRsZO4SUqLS31mP1byT25c+1t3twT/fptEJ2VGdXZmd3toCaBYDkxSvBr1c7E3huWB0ZWqNkn5/icaJS1dDtK25u/9QUkwggBrYKE3Q0uDRqcxY4dGeA4K3buzEB4+FW0a3cQ69evVzXWScy1B3BMW5vM7HZQk0CxnBgl+H1pZ2YZ3PwBqX2yI66bt0uZWEvJ6aYmSvo1f+sLSIQRNdAiSNhxcLHb62LnzgwA+q0E82QCT0o6LXtWptdgZFa3g9qYpVM1K1LbmadBsLS0FOvXrxf9vrf3hjWrDSuI9cn8Ju6u9SNFxInldNNyKzDahYVEGOEGrWORjEj94M0E7m1WxndurgTqYECoixauFT2EjLvvx8fHK7JQSLXaZGVlwWazBZRIE+uTvW3iDnjuc0+dStQtNYq/uRHVgkQYUQOtY5GMCjj3JrY8zcrEOjeCUIIWufmkxnVqgRIBJNX1tm7dOsMT2+qN0j7ZU58LWHSbEPubG1EtSIQRblEai+RtNmNkwLkZXHs0Ywws1Bx0fInrZLWdiVnKjU5sqxZSLJaOKOmTPfW5SUmndJ0QB5rAkgKJMMIjSn32rrMePi8RYJ6Acz0HoBvbxtCMkVCGFJc/q5YJMUu5WbftccQX16sjSvpkT30urcA2FhJhhGaIdd4sWaXcxX7pMQB53p4oCI89RmLLSMwcJC7V5c9i+cUs5f6QP0+qxbKiokLV33XX55plQuyvkAgjBFh1TyhBalkTEhJ0H5BoeyJ2YWljbSnwVtTIyOrB3Ow55sTiN93dGwDk5yejoMAKs4Rxiln1goOlDdFK+2QpE2LHSYmnMrDwLpgNEmGEgNbuCSNEHqsuF4C2J2IZVjbW9oZ7K2oD9Ox5O9q1O2h6C4c3YeB6b3l5Tf+ayFixejWHefNKTbHRvZhVLyoqSlH/pVZf6jgpAVAjcz+Pp0kJCTjPkAgjnNDyRTBKELH+cvuDe8VfYTX+SGwnCF4ksuTyVxv+3lyFspksyVIslkrKrlZON8fve7MMu+vblQo4f4dEGKErgfiSiWF215E/I0cg31hgASQmalMuqVZUMyHXamN2S7LWFks1c7r5krmfR4mACwRIhBEEA5jddeSviAnk4uJiAMBvv13Cf/8bhF9+CceiRXEOCyzsmrrF5FpRWYzrFLOUe7Le+IMl2QiLpZz2qET0yxFwgQCJMIJgBH92HZkZbwJ548aNTrN7gAOg3wILMZFo1KpfuXgrl6v1hk95w6ol2TEO6tixy8jLs6JRo2sAgF9+KYfdXtfwMvqKEsHrT1ZbNSERRhB/YeaUBCyglRtOD/eeGJ4EsuvsnhdgPHq4xbyJRKk7Ppil7XsqA2uWZE+ra4HqLPWABRZLayd3nDtYs1gqEbz+YLHUAhJhBAHzpSRgBc95zpS54bS6rtq4m907otcgo8SK6i9tn7//8+djnP622+26bz3maXUtcKOtuLrjXK2WrLRxV+QKXlYtlkZDIowgYExKArPnZdMqzxkL+dOk1rm72T3vkjTLIGOGdBxS8CQg161bZ5iAFBPpjpZSM+1TK1f0s2axZAESYQThgJ5xCyznMJOCVnnOWMifJvZsvMUjZWTsREJCgekGGTPH7LAqIN2L9BsosZTq6UJWc8JIsa/OkAgjCAf0jltgVWD5glZ1ZnQMidRnY8TsXgsrqtH17SuO98aqgHQV6UAVLBYodsfp7UJWMmE0u8Vfa0iEEYQDFLfgO1rVmdj2NEeOlArnGm0x1Ht2r4UV1V19p6fnCseLi4sNr2dHYmJi0L9/f6xfv55pAekq0gEoFuxGuJDlPndvCWOvX78OACgpCceePUBKyhnmFoNoDYkwQhQWVqfpCcUt+I5WdeZte5oPPzRX4LjaaHGvfH3v29cBe/emY+/ezsjNTf9L/G4EwFY9R0VFAWB/8uQq0tUqF6sWQFdc20tJSYmQ883Mi0HUgEQY4RazrE7TCopb8B2t6szT9jRGxv3IcZ2Yyd2Sm5sOfiUfK/FVYgTi5IllC6A3/GUxiBqQCCNqwMLqNIJwhaVZv6uLxdG1whMSEgKbzQbAXK4VsXo2IuWDVHyZCGgZ2K6XSGfdAiiGWFs7cqQU338fymTOOrUgEUbUgIXVaXojpQO02+ti+/YK3Hqr/8YtsOx6Zm3W7/jcxURJSUkJCgsLAbCXDNW17XtKu1FQkICUlBOGpnxQC60D211Fut1uR0VFhdM5wcHBgjtVyfM3swXQ2zv900+3Y9as5n7vpiQRRniEtUFPS9wFjzruVefPcQtyXc9arXrydL6cWT8LmeBZT4bKt/2CggIh7UZGxk7s2HE/buwAYMHOnRm49dYjTE3A5LZBPdxhvoh0pZg1fMLb4ptAcVOSCCM8wrKpWwuLDd9p8teOjKzuAPw5bkGJ61mrPGeu1+VzcgG+zfpZET9miH+JiYlx+v2EhEJ424KJFZS2QZZc3CxMGIzA3Tudn5/MzHPRGhJhhFdYMnVruVjA/bUboGfP21Gv3gW/7RCUup61GhS8XVfqrJ818cPSgC+GmazgStogK/fp64TB33Jvub7TrDwXPSARRojCgqlby8UC3q69eXNPDBv2nt93CP7c6bEifsxUxyxbwdWElfuUOmEoKCjA8ePXkZ8fjC5dHkNs7FUAzotAeMxsOWPluegBibAAhOXga09ouVhA7NoVFaEeOwS7vS6+/PJPtG1r7mB9ljs9pbN+VsQPy3UM1Kw/lqzgWsLSfYr1b1On5mPz5lv+aj/1mIgplIOUd5ql56IlJMICBH/J+6XlgOrt2ikpJ2p0CCwGWSuB1U5PadyPUeKHf+eKi4tht9fF+fMxSE39Azk5C5mrY8A5Az0PC1ZwPWDlPr31Qay41dXA0zvtGP8JsPNctIREWADgqyuP5XgDLQdUsWs7dgj+1CE6wmqnp1TQ6i0wa8b45LgV66zBp0wgjMFbH+Rvwepmm6RqBYmwAMBXV55Wq97UQssBVeq1WYkzIqSjl8AsKSlBQUEBAOD06XivYp01WJ6AqQnL9+mpDxLzAhQXF3u8phqLlgDtV22y/Fy0gkRYACHVlVcdMxbDdMyYlgOqlGuzEmfkb5h9mb6rBWzTpp7gt//h8STW1RxY5NYj6xMwtWD9Pt31QWKWet6Nx7u+o6NLnK6hZNESoE+aF9afixaQCAsgxF7i4uJi0ZgxMwb1q0Xfvn0BQEhoyXKQtVRYmnmq3eEbcW+uq9xcBRjgLNb79u2L2NhYVQcWpfXoTwOcN8x4n2KWem/PW8miJT3DL8z4XJRAIizA8PYSr1y5w2vMWFDQ05gxI960Qf1KiY2NdfpbjluUNRHL0sxT7Q7fyHtz564GUEOsx8bGqp5NnbX8aIQ4vkwEPFnqxZ63Eij8QjtIhAUgnl5iby8aACxcGGfYZt5aWjV8ubbrwCXFdcn6ylTWBLSaHb5R9+Z+/8UqDBv2HhITC3UpAw2c5sHbhMF1xaAntHzeFH6hHSTCCAFvL5rRm3lradXw5dr8JsxS0TLJrL/iDx2+J3e1EgHmGOflDtf2b8Z6NHtMoBI83ZfUSaKWz9tfwi9YhEQYISD2ohndoWvZ+Uq9tq8WOS2TzPor/tLhq7mK1zHOC/AefM1jtnpkZa9P1hCbJPKWMq2ftxFpXlgIk9AaEmEBgC8uOm8vWnp6LnJz003RoWuFXIucGa0SRsJq4lhfEXNXS303HdubL8HXZqpHf4plU9uiJ/VcrZ+3nmlepE46zC7ESIQFAFJnUjyuL5pjpw9UoVOn79Ghwz6mO3QtkfPSm80qwQKsJo5Vg759+yIhIcHntiQn+Nps9Wj2WDajLXpme97ukDvpMCMkwgIEuS+7a6cPWJGbm44OHfapV7gAwUxWCb0pKSkRkk16mvWaAamWLTkCDDC/QJGC2a3GWln0PLnnSktLJX1f60VLWqDlik9WIBFGeIWlTp+19A5y8IdZqlSkxnRItRw4fo9VtE6LIUWgGD1wKsVfrMZq9p1S3XNZWVmw2Ww1vq/HoiUtYGn80QoSYYTXztjoWSnr6R2UwnemBQVWqJwuylB8iemQajmQ68LTGy3LJ0WgGD1wqoE/WI3V7DuluudsNpvqeeeMbCdS69DMq2pJhBFuO21fV9xoMav29/QOjp3p6tUc5s0r9QthCciL6RCb9cbGxpq+XtTAm0DxtH+gGduU2a3GWlj0jHDPGSlwpNSh0TF4SiERRgDwPtvx1ulraZ1Qkt6BFdelJ3Hq2pn6i7B0xZdBw2irq5nwJFA2btzo1yvJzIbaFj293XMsCByxOjT7qlrJIqysrEzyRSMjI2UVhmAXT52+HtYJX03SLLkuXa2MvIUxUPKG+TJo+EsskBZItTSbeSWZ2WPZPKGmRU/viQorAkdKHZo1fkyyCIuKioLFYvF6DsdxsFgsqKysVFwwguDxxSSth+vSV/O8u98LFKuPr/fpD7FAWiBlWxuWVpLJSbTpD7FsWmPUREVvgSNnKzmz9qmSRdiePXu0LAdBeEWqSVprC5OYeb66jDEYP743Wreu5/E6gWL1kXOfZo8F0gox8cGKJUBJok1/EFhaW/SMmKjoLXDkbCVn1j5Vsgi75557tCwHwRCnTwM//hgBu72uaAPW0zUgZXDWurMQM89zHABIC7QPFKtPoNyn0bBiCWAp0aYRW9/oYdHTe6JihMCRUz9m7GtkB+aXlpZixYoVOHr0KADglltuwdChQ93mKCHYp2Y8lQ1W61hMn/4/9O17ASEhITWeLYuuAb06C09WBx6pbtBAsfp4u09/jQXSG9YsAUa7R43c+kbt67HwjphF4JitT5Ulwn788UdkZmYiPDwcd955JwBg/vz5eOWVV7B9+3a0a9dO1UIS2uItnmrWrATY7etNtWJPj87CndXBFX8MtJeKL4MGxQKph9ZtX4plicdo9yhLFjmlsPKOmE3gmAFZImzs2LHo3bs3/v73vyM4uPoS169fx/Dhw5GTk4N//OMfqhaS0Ba94ql8RU5wJo+anYXjwHPkSCny85MRHV1Sw+rAuyJ5zBAUqhW+DhoksNRDq4HSl6ztADvuUaMtcmpB74h7WLASKkG2JcxRgAFAcHAwJk6ciPbt26tWOEJfWOk0eaQM5MXFtXD4cD1ERp7RpAzuA/FbCrPpnJyFgtUhL6+pakltWe0wfMHsg4YR8URy0KtNSbUsVVRUAGDHPWq0Rc7MmKG/YsVKKBdZIiwyMhInT55EixYtnD4/deoU6tatq0rBCP1hpdN0xN2LUzN+DbBaG6Bnz9tr7DOoFLFA/JychUhJOQFAmivI7B1GoOBq9fEECy56vduUL5YlFuKIWJtcaoUWkwbW+iuzTIx8QZYIy8rKwrBhw/DGG2+gU6dOAIDvv/8eEyZMwMCBA1UtIKEvLHSa3vAWvybFxSB3xiZ1Ni3FFWS2TiIQce3oPbneWIkn0rNN+WpZMjqOiMXJpdpouQiBlf5K6j32798fV65Em2b/SFki7I033oDFYsGgQYNw/fp1AEBISAhGjRqF1157TdUC8vTu3RuHDh3C2bNnUa9ePWRkZGDu3LlISEgQzvn6668xY8YM/PLLL6hVqxa6dOmCN998E8nJycI533zzDcaNG4dffvkFSUlJmDp1KoYMGeL0W8uWLcPrr7+OoqIitGnTBkuWLBEWIADA1atXMX78eHzyySe4du0aMjMz8dZbb6Fhw4bCOSdPnsSoUaOwZ88e1KlTB4MHD8acOXOcXLisYnSn6Q2p8Wt9+/ZFbGys03ElL2GgzKaJmnhzvQUiYu+C1D5OTxeWlP02WR2kpeBPixA8IfUeJ0/+3VT7R8pSBKGhoVi0aBHmzJmDvLw8AEBqaioiIiJULZwj9957L1544QXEx8fjf//7H55//nk88sgj2Lt3LwAgPz8fDz/8MMaNG4c1a9bAbrdj7Nix6Nu3L3766SfhnB49emDkyJFYs2YNdu3aheHDhyM+Ph6ZmZkAgHXr1mHcuHFYvnw5OnTogIULFyIzMxPHjh1DgwYNAFQvTNi6dSs+/fRT2Gw2ZGdno2/fvvj+++8BAJWVlejRowfi4uKwd+9eFBYWYtCgQQgJCcGrr76qWR0FEmIDQWxsLOLj41X7vUCYTbMAa+4GfwnqVhOxdyEqKoopFxaPt/02ebwN0qy1TXcEQnv1do8ATLd/pCKzTEREBFq3bq1WWbwyduxY4d+NGzfG5MmT0adPH1RUVCAkJAQHDhxAZWUlXn75ZVit1Q/g+eefx8MPPyycs3z5cqSkpODNN98EALRs2RLfffcdFixYIIiw+fPn4+mnn8ZTTz0FAFi+fDm2bt2K999/H5MnT4bdbseKFSuwdu1a3HfffQCAlStXomXLlvjhhx/QsWNHbN++Hb/++it27tyJhg0bom3btnjppZcwadIkzJw50y+Cro3GCFGkxFVLz1wcI/M6ecKIDZNZH+gB8XeBhTJ6e+d8dS+bJUYwEBYheLtHwGK6+5clwq5evYolS5Zgz549OHv2LKqqqpyO85YnrTh//jzWrFmDTp06ISQkBACQlpYGq9WKlStXYsiQIbh06RJWr16NjIwM4Zzc3FxkZGQ4XSszMxM5OTkAql/AAwcOYMqUKcJxq9WKjIwM5ObmAgAOHDiAiooKp+u0aNECjRo1Qm5uLjp27Ijc3Fy0bt3ayT2ZmZmJUaNG4ZdffsHtt9/u9r6uXbuGa9euCX/7smm6EtRcAXP6NPD770CzZkBiotKSeceI+DVPs2l37k8eVgZO1jHKpeJO+PAuKj3d0CyKUG+wHLYAOAeV8/trAvLcy2aJEQyEsAmxezTb/csSYcOGDcP27dvxyCOP4M477xTd2FstJk2ahKVLl+LKlSvo2LEjtmzZIhxLSUnB9u3b0b9/fzzzzDOorKxEeno6vvzyS+GcoqIiJ2EEAA0bNkRZWRn+/PNPXLhwAZWVlW7P+e2334RrhIaGIioqqsY5RUVFXn+HP+aJOXPmYNasWRJrQz2UroCpuVrRAquVw7x5dq/b9qgBKwMBL/SBmpt6l5eXo6SkhImBUw20ttbo6VIRs3DoaXFlKa7H3TO22+2SvsuS1de1HarRtliOEZTbXs1igQXE79FsYSOyRNiWLVvw5ZdfonPnzop+fPLkyZg7d67Xc44ePSqkwpgwYQKGDRuGEydOYNasWRg0aBC2bNkCi8WCoqIiPP300xg8eDAGDhyIixcvYvr06XjkkUewY8cO3YSiEqZMmYJx48YJf5eVlSEpKUmX35b7gnlbrShl2x7WkTqgrFu3DoD3DtqsdeCIHtYaPV0qUiwceltcjY7rkep669+/f43JKEuDtTuUti2jn40UfG2vZrPAAt7vkfUV/q7IEmE33XSTKvnAxo8fX2NloitNmjQR/h0bG4vY2FjcfPPNaNmyJZKSkvDDDz8gPT0dy5Ytg81mw7x584TzP/roIyQlJWHfvn3o2LEj4uLicOaMc1LPM2fOIDIyEuHh4QgKCkJQUJDbc+Li4gAAcXFxKC8vR2lpqVMH5HrOv/71rxrX4I95IiwsDGFhYV7rgzVYzbavFlKshKWlpVi/fr1oB23WOnBED2uNUS4Vb/fjyeKqhdXH6Lgeqa63qKgoVRe/6IHStmX0s5GKLx4CliywvuDtHlnxkEhBlgh78803MWnSJCxfvhyNGzeW/eP169dH/fr1ZX2Xj0PjY6iuXLkiBOTzBAUFOZ3r6p4EgB07diA9PR1AdYealpaGXbt2oU+fPsJ3d+3ahezsbADVsWchISHYtWsX+vXrBwA4duwYTp48KVwnPT0dr7zyCs6ePSusqNyxYwciIyPRqlUrWffLOnoNnEZkcJY6+zNLB60GWloElLoA5bhWxO5H7ZQn3mAprodl15sclLYtlp6NI2r0i6xb+dyV3dMEwUzIEmHt27fH1atX0aRJE0RERDjFwwDVgfNqsm/fPuzfvx933XUX6tWrh7y8PEybNg2pqamC8OnRowcWLFiA2bNnC+7IF154AY0bNxYC4UeOHImlS5di4sSJGDp0KHbv3o3169dj69atwm+NGzcOgwcPRvv27XHnnXdi4cKFuHz5srBa0mazYdiwYRg3bhyio6MRGRmJMWPGID09HR07dgQAPPDAA2jVqhWefPJJzJs3D0VFRZg6dSpGjx5tOkuXVPSKnWEtg7MjrHbQWqC14JTrUvBlf0PHCaDY/aid8sQbrKRDYX1QlosSd5XYs+EXdLiidZ+kRr/I+iQyJiYG/fv3x/r16wHImyCwFK/II0uEDRw4EP/73//w6quvomHDhprHW0VERGDjxo2YMWMGLl++jPj4eHTv3h1Tp04VRM19992HtWvXYt68eZg3bx4iIiKQnp6Obdu2ITw8HEB18P7WrVsxduxYLFq0CImJiXjvvfeE9BRAded87tw5TJ8+HUVFRWjbti22bdvmFGi/YMECWK1W9OvXzylZK09QUBC2bNmCUaNGIT09HbVr18bgwYMxe/ZsTevJaPTyxbMSl+AKK4OnHughOOW4FKS6VvgYvv79+wNgT0CzENfC+qDsC66DrxL3srdn45hzzBWtY6qUXpu1d8AdfAgQS5ZrpcgSYXv37kVubi7atGmjdnnc0rp1a+zevVv0vAEDBmDAgAFez+natSsOHvSulrOzswX3oztq1aqFZcuWYdmyZR7Pady4cQ3XZyDAoi/e0T3lunIRUPflZGHwVIo3dx4/09dCcKrpavbUSTdoUITExELhPH7HDxYFtNHvkhkGZakotRRJFXEAu+krxGDxHfAES5ZrpcgSYS1atMCff/6pdlkIQnUc3VN6rVw0evBUgtSVcYD6glNNV7OnTvq994ajd2/3bgujBbSe8Y5qCG2jXG9yUVImb21TaQ4yljD6HZCKP00QZImw1157DePHj8crr7yC1q1b14gJi4yMVKVwBCEXfpApLi6G3V4Xp04lYdOmngD8d+WiGkhdGcejtuBUa/B210lX4/zcXfsuPVdBuqJXvKNaQttI15sRiN2Pv8TQmWESaSarnRiyRFj37t0BAN26dXP6nOM4WCwWVFZWKi8ZYQqMWK0oRk3rV46bwVi9+BYW60ANlMzqjb5X107aEcfnzu/9yspCDz1+x9cJhz+63rTArDF0Zu2/zGK1E0OWCNuzZ4/a5SBMCourFfmyuM5MXVHLfM1iHShFTuArDyv32q7dQTRoUIT33hsO3gIK1HzuLJTVSDwJKXfP2J9cb2pjVheZmfsvM1jtxJAlwu655x5J5/3tb3/D7NmzPXbWhH/A4ssJuJ+Z8qhtvma1DuTiL4GviYmF6N3bP9wWWuBNSHl7xv7ielMTM7vIzNJ/mdVq5w1ZIkwqH330EZ5//nkSYYQheJqZ9uv3GZKSTpuiczQKs87q3XW+/uK2UBslQsqsrjetobamLWa22nlCUxHGcZyWlycIr3iamd5661Gji8Y8Zp3V85302bNnhaSOgLEB96yiREixLNL13oz6ypUrTn+z1NbMtDG3VMxWXjE0FWEEYTQ0M5WPWesuJibGL2fMaqNESLEq0qWu/FRr9WZJSQk++ugj0fOeeOIJ3dua3nXBAmYUnSTCCL9HSvBmIFtEHFEzs7jRsNbZsoZSIcWiSJeaYkWt1ZtSfy8iIkKV3/MFvevCaKRuWcaa6CQRRgQs/OovFmdHeuM4g+zfv7+QSZ4nJCQENpsNAJuzSUI6jgLam5ByJ7TNJNL1Xr3J8mpRlsumFlK3LGNNdJIII/wOqQNAQkICiQkEptsikFHiqjXKzeurm0nv1ZssrxZluWxaYLb71VSEPfHEE5Q9n9AdigfyjUBzWxDKt/DRE18mCTx6r95kebUoy2XjUTOWywz364hsEVZaWop//etfOHv2LKqqqpyODRo0CADw9ttvKysdQciEBJY8AsFtoTdmDBZmCani3/E8vVdvsrxalOWyAerHcrF+v67IEmGbN2/G448/jkuXLiEyMhIWi0U4ZrFYBBFGEIR5MJsZ3wyQq1d9xPYzBeQvOpArmFldLcp62QDpsVwFBQUAxCfYrN+vK7JE2Pjx4zF06FC8+uqrhqz6IAhCfcxmxgfYtzLJseKoCev14yu+WGp9Xb2pVDCzuFqUh+Wy8bibBG7a1BMNGhQhMbFQ2C5LyoTFDPfLI0uE/e9//8Ozzz5LAozwS/xt4JKKmBm/tLSUqa2KWLMyuWs3xcXFTn9LseKoWR6W6kcpUiy1SlZvyhHMLK8WZbls7nC/zZwVK1YMl7W60Sz7SsoSYZmZmfjxxx/RpEkTtctDEIbibwOXL4iZ8devX8/UfRttZXJESrvRO96OpfpRAymWWjUX5UgRzCwvAmK5bO5wNwkEpIdFmHVfSckibNOmTcK/e/TogQkTJuDXX39F69atERIS4nRu79691SshQeiImVcKqmHB4834p04lArAgKemU03EW75tHTyuTK2L1QvF2ypEacK2GqPBFMLMiYtzBctlc4SeBmzb1BOB7WITZRCePZBHWp0+fGp/Nnj27xmcWiwWVlZWKCkUQLOCtI7bb7V6/q/fLrsSC5zozzMtraroVkqyt6nQVhCzE22ktUrV24+sVcE2C2TjatTuIBg2KsGLFcFmrG1kTWFKQLMJc01AQhD8j1hGvW7dO9Bp6uu6UuJ5iYmKQlZWFdevWmXIAYq3M7gRhauofhi6b11qkaunGV5LhXw4sCOZAJjGx0KvYLi4uZtKiJRdZMWEffvghsrKyEBYW5vR5eXk5PvnkE0pRQZgeXzpiFl2Wvlo9+C2JzDgAsVRmT4IwJ2ehYcvm9RCpSiYBUixoerqZzJZnyuy4E8/exLYvqyTNgCwR9tRTT6F79+5o0KCB0+cXL17EU089RSKMkAVLqxKldsSsucGUlsmMAxBLZfYmCPWw4vhaJqOFtS8WNL1W5potz5TZ4WO5CgoKBIEF3FjdaLfXRX5+MlOTXDWRJcI4jnNK0Mpz+vRpYUZNEL6gdtZkpUjpiFlzg6lRJjMOQCyVWUwQPvXU/YiNjXX6jtaTCyNEqlRLLEsrOPV2e2oJSxNaKXgqC4uTXLXxSYTdfvvtsFgssFgs6NatG4KDb3y9srIS+fn56N69u+qFJPwfqVmTteiMHTssx7xOYgn/WLQwqFEmsyQ6ZHHQFBOEsbGxull0+PsWK5Pa9WPWgdOsq+tcMWuaHVeLGIuTXC3wSYTxKyQPHTqEzMxM1KlTRzgWGhqK5ORk9OvXT9UCEoGF3i+eWIflLeEfS24wpWVSktjRqFk3S4Mmi4LQtX6mTz+H48eDkZx8HQkJdwC4Q/X6Ufr+GplmBDDn6jpXtLYuavm+x8TECNdmcZKrBT6JsBkzZgAAkpOTkZWVhVq1amlSKCJw0fvFk5oXrG/fvoIbqbS0FOvXr2fKDcYjt0xyBY3Rs25WBk2WBKEjjr8XHw+kpWn7e0reX7Na0FhHTWGr5/vO4iRXC2TFhA0ePBhA9QB29uzZGukrGjVqpLxkREBi5IsndRC4fv268G9vVg/XLWsA7QZiNSwxcsrFUkyP0bgTqI73XV5ejsLCQuFvM7i2fEXu+xsorie9UVvYapHM2vU94ftNFie5WiBLhP3+++8YOnQo9u7d6/Q5H7BPyVoJufj64qllGhcbBBxX7bgrs7vyefqOFlYhVi0xgYrRFkK9URp/JseCZrbgc73RWtiqIfDE3hOzxKcqQZYIGzJkCIKDg7FlyxbEx8e7XSlJEHKR+uKpOdDJdaM4uimLi4u9ijUeraxCLAw4Rsf0sEKgWQiVxp/5akELNJErBy1DO9QSeFIsa6xvPK4UWSLs0KFDOHDgAFq0aKF2eQgCgPeAeB41TeNig4Cna3tb7Wb2bWJ8hWJ6Ahs58WdyLWiBJnLloGVohxYCz1v/4TjZBfzLyilLhLVq1cptvAtByEXqrMbTeUoFgLdBQM61WdkmJisry2PuPjU7Morp8Y4vgpw1ca0lRqzgZBk1n72WMVVyBZ6n+C+x/kPP1C56I0uEzZ07FxMnTsSrr76K1q1bIyQkxOl4ZGSkKoUjAgclMU1qCQB3blA51xb7jhp7n0md4YvtcamWuyZQlpPLwRdBHohuNjVWcPqDG1ytZ69HuhQ5As/b/andf5hpIiNLhGVkZAAA7rvvPqd4MArMJ5Qg96VQ8gKL5ceSc22x77C095la7ppAWU7uK76KeHKz+Y6/uMHVevb8hPbcuXOoqKhwe45jonW5+Bo07y18RM3+w2wTGVlPYs+ePWqXgyBko+QF9mSB44Ps5Vxb6nfUHEiNsgQYlZXdLGhlIVTDmuoPkBvcM2JWcMB3IaIkqbMj7oSzWq5TLdJoaIksEXbPPffgn//8J9555x3k5eXhs88+w0033YTVq1cjJSVF7TIShFeUxj5464TkXNv1O0AV0tNzfb0tyUixBGgl0iimxztaWQhZsqYaiT+7wZW8s1pZVNVIheNJOOfkLEROzkJV01GYwUoqS4Rt2LABTz75JB5//HEcPHgQ165dAwDY7Xa8+uqr+PLLL1UtJEGIoXY+GTlxFe6+s29fB+TmpmPv3s7IzU1XvROQYgnQuiPSOyu7GVDLQig2ELMymzcKf3WDq/3OqjkJUyr6vQnnlJQTqqWjMIuVVJYIe/nll7F8+XIMGjQIn3zyifB5586d8fLLL6tWOILwhlqmcXfImfG5bkALALm56Zp2AmKWALN0RP6GGhZCM8zijUILNzgrwdxqv7OstSMx4Xz//fc7edTk1rtZrKSyRNixY8fQpUuXGp/bbDaUlpYqLRNBSEKLLPFKO2K9N6AV69DEyqDn1kqBhhILodSBmH9+gfbM1HaDsxTMrWa/weIkTEw479ixQ5e9Jz2l2dL7XZIlwuLi4vDHH38gOTnZ6fPvvvsOTZo0UaNcBCEJNV8WtTpifiKipatEqiVArAx6bq1kNEoFtp6WEk8D8alTibDZjgqfOT4/f3xm3lDTDc7SqlQ1+w2lgk6rNi8WPqJGPYv1jd52N9HzXZIlwp5++mk899xzeP/992GxWFBQUIDc3Fw8//zzmDZtmtplJDRCqxeMFbO+r6jREZeUlGD9+vUAtE2WGBMTg/79+2P9+vVCh3bqVCIAC5KSTgnnyS2Dv8UaKRXYellKeHHtbiAGgA0bHkF5uXt3kr89s0BDCxerEkGndpt3Fz4CVAtFx7/VREzssbByUpYImzx5MqqqqtCtWzdcuXIFXbp0QVhYGJ5//nmMGTNG7TISGqDVoMKSWd8IXF9erZIlAkBUVJTw77y8ph7jPl5+OUVw10RGnsXevYEXV6RUYOtlKXGMK8zL24JNm3oCuDGAsuBOCgSMSPmixUpjJRNBtdt8TEwMsrKyhNQZWsWqSY0VZiVWTpYIs1gsePHFFzFhwgT88ccfuHTpElq1aoU6deqoXT5CI7TKpWK2HC3eUKsjdtcJZGVlISYmRhWrobQtPxoiLQ0oLCzH3r2yb4XQAT6usF27jQgNvYbPPnvU6TiLwcX+hJGDs1ouVi2y5qvRH/JbqGkZq+YtVpjP/8hSrJyitLmhoaFo1aqVWmUhDEKrToeVmYYc1Cq7p47LZrOpZjVUEvfhD9u9sITdbldljzt+cExKOuWXKRhYhaXBWQlqL1pSuy/XetGS2H2xtHJS+d4FhKnRqtMxc2emVtnFOi61zP1y4z7MLJKNxpN4XbdunSqudsdB1GYrwKxZCcJzysjY6XMcjVnjNPWGpcFZKWo9Ty36cqPzuxn9+46QCAtwtOp0zNyZqVF2PUSokkBeM4tkNVBiAVRLXIvBD6IjRhTCbq/OJF5QkICdOzN8Es6BHqfpCywNzqwgJ80Njydxr+WiJSkY/fuOkAgLcLTqdMzcmalRdj1EqJJAXjOLZKUosQAaJV75a3/44SCff5ul9AusQnugekZumhseR3GvRayaXNTeZUUuJMICHK1mBCzNNKSiZkcsR8jJsc74GsjrLQWCY/n8dbBRKqKMyLvEPwux3/bXZ6YHtAeqZ5T25Y7tXYsE276g5S4rciERRmg2I2BlpiEVNTpiX4ScY0ekV3yW4z3edFMZJk2yobLSgqAgDnPnluGxxwb65WCjVMhIFa/ekOsW5J/Z8ePXsXo1h6oqi3AsKIjDmDEPIjk52FTPjMUYNdoD1RmpVitfMbKdGi0C3UEiLEDRakbA4kyDx9eOX05HLFXIATe2zdDbxcXf4/jxQFYW8McfQNOmFiQmRgGIUv33WECKkImKuoTy8nIUFha6vcaDDz6Ir776yklcA9WB8lrnXYqJiUFMDPDuu8AzzwCVlUBQEPDOOxakpTWUdF1WoBg1cyAmWPh0Dzxar7RWS7iz1qZIhAUoWs0IjJ5peHpRS0tLhUz23lBrZRuPOyHnOggZGZ+VmFj9XyDgTcgkJwdj6dKPJF2nXbuD+PPPWkKA/M6dGQgPv6rLytJhw4DMTF44y3t2RqcloRg182BUCgtX/Fm4kwgLYLRqrEa9BFJfVG/o0fG7/kagxmcZhTshU1go/bnb7XUFAQbov7JUiXCmtCSE2iix5Eu1bvmzcCcRRvgNZnwBAc/xY089dT8SEhJMN7MzA0qEjFkD5LV0e7MY40Xog1xLvi/WLVeMtuaqCYkwgmAAd4GvsbF30MDFGFlZWbh8uZ4qAfJ6DSRar670Z1eR2TBCDMtdrCJ10lxQUOD0t79Zc0mEEQEJSzMpx7KkpJwwtCyEd2w2G1q0aKg4QF7PgcTbogSrlcPjj3dAYmIHYVGCrwO1UlcRS++imdFbDKudW81TO3AN/ve3JNMkwgi/xdNLzdJMiqWyEDcQEwZKAuSNGEj4RQnz51/C2LERQnvr2XML9u6t2d70slpR+1cPveOm1MytJrUd+GOSaRJhhF/i6aVmaSbFUlmIG0gdEHyNK2Mh6Wr//hdx4sS7ovme9IivpPZvftTIreapHTRoUISKijCniZCZd2LxBIkwwnDUjmPw1rmzNJNiqSxENVoKA1aSrnrK3acXvopRCvqXh1ncvJ7awYoVw2tMhMy4E4sYJMIIQ9EijsFb585COohA3zpIb6QM4npZqfwp6aonxAZ/X8QoBf3Lw0xuXnf9IMB5nAgZveek2pAIIwxFzTgGKeLGZruI2bPPYObMOMO26wnUrYPURKp1xJdBXE8rlRpJV1lE6uAvVYz6c34orTCbm9fVugVUAfA8Eerbty9iY2NrXMesfSaJMMJv8EXcDBli7HY9gbh1kFr4Iqx8GcTj4+N1tVL5224FcgZ/fxWjRsJamIOnCZPdbhf+7WjdCgkpF1yRPI4egtjYWMTHx2tfcJ0gEUb4FVLFDUsDoB5l8ae4Gq2tI4EkDNSIG1LqymXpXfQHWApelzph6t+/P65fvy6ko/C3uC9vkAgLcPxpcHaFOvdqKK7GdwKh7agVN8TKggM9YLm/VDtvlxpInQhFRUU5lcvf4r68QSIsgGFxcDbLih4zQXE1BA8/gIm5Dn0d6AJhwQGL/aUjaubtMgLX8ruD5fLLhURYAMPa4GymFT0EYUb4gW7PHmDBgpquw86dB6NrV8ge6LR25Ro5SWOtv3SHGnm7tETKytlAg0QYIUpxcbHHY2rNTMy2oocwJ2RprR7oOnYErFagqurG50FBQIcO1RYtJWjlyqVJmjKMdqXS83OPaURY7969cejQIZw9exb16tVDRkYG5s6di4SEBOGc9evX49VXX8V//vMf1K9fH9nZ2ZgwYYLTdb755huMGzcOv/zyC5KSkjB16lQMGTLE6Zxly5bh9ddfR1FREdq0aYMlS5bgzjvvFI5fvXoV48ePxyeffIJr164hMzMTb731Fho2vGF2P3nyJEaNGoU9e/agTp06GDx4MObMmYPgYNNUuYDj3l3uUGJ+ZyGLuJYY3fEFAlKFFQ0CN0hMdOc6ZC8OTiv3qRRc311vk1HWycvLw0cffSR6nlauVJpke8Y0iuDee+/FCy+8gPj4ePzvf//D888/j0ceeQR79+4FAHz11Vd4/PHHsWTJEjzwwAM4evQonn76aYSHhyM7OxsAkJ+fjx49emDkyJFYs2YNdu3aheHDhyM+Ph6ZmZkAgHXr1mHcuHFYvnw5OnTogIULFyIzMxPHjh1DgwYNAABjx47F1q1b8emnn8JmsyE7Oxt9+/bF999/DwCorKxEjx49EBcXh71796KwsBCDBg1CSEgIXn31VQNqT1u8iQwpIsRfg3pZjyHxB8SElZGDOOuYYRWo1u5TT0h9d81ASUmJJAEGaOdKZS1tBkuYRoSNHTtW+Hfjxo0xefJk9OnTBxUVFQgJCcHq1avRp08fjBw5EgDQpEkTTJkyBXPnzsXo0aNhsViwfPlypKSk4M033wQAtGzZEt999x0WLFggiLD58+fj6aefxlNPPQUAWL58ObZu3Yr3338fkydPht1ux4oVK7B27Vrcd999AICVK1eiZcuW+OGHH9CxY0ds374dv/76K3bu3ImGDRuibdu2eOmllzBp0iTMnDmT2Q5fbVeNLyIkLa2h3wX1miGGxIz4IqyMGsTNghlWgWrtPnWHlHfSLK5tLfoXXy38LKXNYA3TiDBHzp8/jzVr1qBTp04ICQkBAFy7dg0RERFO54WHh+P06dM4ceIEkpOTkZubi4yMDKdzMjMzkZOTA6C6sR44cABTpkwRjlutVmRkZCA3NxcAcODAAVRUVDhdp0WLFmjUqBFyc3PRsWNH5ObmonXr1k7uyczMTIwaNQq//PILbr/9dlXrQw20cNX4KkLMMDP3B8wyeHjCV2FlxCDuDXJR+45a7lO16j6QXdu+TK5ZTJvBGqYSYZMmTcLSpUtx5coVdOzYEVu2bBGOZWZmYuzYsRgyZAjuvfde/PHHH4LFq7CwEMnJySgqKnISRgDQsGFDlJWV4c8//8SFCxdQWVnp9pzffvsNAFBUVITQ0FBERUXVOKeoqEg4x901+GOeuHbtGq5duyb8XVZWJqVaFMOSv94MM3Oz4djBeRs8vHWErAkHX4UVKzFQ5KKWj9JJmi917w2W+ku5KJmI+boLhZnTZuiBoSJs8uTJmDt3rtdzjh49ihYtWgAAJkyYgGHDhuHEiROYNWsWBg0ahC1btsBiseDpp59GXl4eevbsiYqKCkRGRuK5557DzJkzYbVavf4GK8yZMwezZs3S7fekBsXzeHpxi4uLA/5FYhnHZJqzZzcAx1XH3XGcFVu39sL06R28xt2xKhx8FVYsWFrJRa0MJZM0teperL+02+1M94fff5+OHTsyAOhjxWM9bYbRGCrCxo8fX2NloitNmjQR/h0bG4vY2FjcfPPNaNmyJZKSkvDDDz8gPT0dFosFc+fOxauvvoqioiLUr18fu3btcrpGXFwczpw543T9M2fOIDIyEuHh4QgKCkJQUJDbc+Li4oRrlJeXo7S01Mka5nrOv/71rxrX4I95YsqUKRg3bpzwd1lZGZKSkrzWjxLEMl0//ngH7N17AoB3Cwq/epJm7+wSExODw4edrUYAUFlpwcWLDb265FgWDr4KK7K0smfVNAOOE1Cx+KZ169YBYLM/rBZg9wO4MRFTasUze3iD0RgqwurXr4/69evL+m7VX6OJo/sOAIKCgnDTTTcBAD7++GOkp6cLv5Geno4vv/zS6fwdO3YgPT0dQHXnk5aWhl27dqFPnz7C7+zatUswUaelpSEkJAS7du1Cv379AADHjh3DyZMnheukp6fjlVdewdmzZ4UVlTt27EBkZCRatWrl8Z7CwsIQFhYmqz7k4i3T9a23RmHvXunmd5q9s02zZu7dd02bGlcmNSBhJR1WrZos424CKmVvQ9b6Q7u9LnbuzAAvwHiUrFIM5Ng4tTBFTNi+ffuwf/9+3HXXXahXrx7y8vIwbdo0pKamCsKnuLgYn332Gbp27YqrV69i5cqV+PTTT/Htt98K1xk5ciSWLl2KiRMnYujQodi9ezfWr1+PrVu3CueMGzcOgwcPRvv27XHnnXdi4cKFuHz5srBa0mazYdiwYRg3bhyio6MRGRmJMWPGID09HR07dgQAPPDAA2jVqhWefPJJzJs3D0VFRZg6dSpGjx6tu8iSQklJCR56qBz79lkd/PVVwi73ai0vDvQZk9H3z0pcFGEcLFs1WcTTBDQnZyFycha63dtQDnpYJ93149XcsOL5EiDvD7FxLGAKERYREYGNGzdixowZuHz5MuLj49G9e3dMnTrVSdR88MEHeP7558FxHNLT0/HNN984JVlNSUnB1q1bMXbsWCxatAiJiYl47733hPQUAJCVlYVz585h+vTpKCoqQtu2bbFt2zanQPsFCxbAarWiX79+TslaeYKCgrBlyxaMGjUK6enpqF27NgYPHozZs2drXFO+425mfOSI8zlqLC8OxBmTGgHxasNCXBShDuRW1A4p8bIpKSd0T+Uj53ny9+KuHwc43H//TthsF/HEE0/4dH3K/aUOphBhrVu3xu7du72eExsbK6SR8EbXrl1x8KD3wT87O9vrCplatWph2bJlWLZsmcdzGjduXMP1ySJSZrxiy4s9YXSiTKMHKaUB8VpB7jvzQ25F5XizTHuLl7VaOVXzW2ltnXTcGPumm8owaZINlZUWWK0cXnihDH/7W2uEhqb53E4o95c6mEKEEcbTrt1BpKb+4ZP53chEmawMUkoC4rXGaJFKyHdRk1tRGVIs857iZefOtePSJfFV4yzBv8fjxwNZWbwl3ILERBsAm0/XMkvuL7P0byTCCMnYbBd97mSMSpTJ0iAlJyBe6w5ESc4kMww6rMKiizoQKCkpEWJcfbXMu7rwg4L+xLvvVh8zY5iFUku4o2UNMC73l7c+srS0FOvXrxe9BguWYhJhhM/4OggHekC4r/evhxXPF5FKwkE9WHVR+zOu75OnWKY2bfqhZ886buveUbgUFlb/P5AD043O/aXW3p4sWIpJhAUgjjOI4uJin74rdxAO9IBwX+6fJSseQMJBbVhyUQeCVdP1PfEUy3TrrbXctmFXi0tpaSkA8cB0uZOSQHgmSvG172O5TkmEBRhyZxBZWVm4fLmeokE40APCzXz/LAkHlpHqRjYqZxtZNT3HMlW70pzx1l+6E3NBQRzGjHlQ9qTEjO5N1mG9TkmEBRhyrSc2mw2FhQ1NMQiXlJT4bOEjxPHXZK9q4YsbOTExxhAXPVk1q3G/0KimCPPWX7qKOT7JdVpaQ4/f8UYguzeV4snSZYY6JRFGOOGpMYeGhmo2CKsZhK5WrABRk0CP7RPDVzeyUS56smpWI2ehkSu8mOvceTA6dIhBeHgJCgt968uk7uHrz9ZJJXizdJkhlxmJMELAsTFbrRzmzbPjscf+dOo41B6E1Q5CZyHQ0p8J9Ng+tZHronYdkL1NntxBVk31sNkuolOncoSGyuvLxPbwVeLe9HfELF1myGVGIowAULMxV1VZMGlSFLKyopxmxt4GYTkWLb2C0H0dpAjPmDm2zV9wTBOwdm04Zs+2oarK4nHy5Iq/WjXd9UGuoQlaBWkr6cu87eEr170ZCIhZuuQmGtcTEmEEAPeNubKyWmy5dszuBmFWkqO6w525+uWXU5CQkBCws0ullhQWMUtyRrWIiYnB6dPAxIk3LFqeJk/u8DerppQ+iPUgbX97JlojxdLlLdE4C/0biTACgKeVPtLdE1JngQUFBU7nah1A78lcPX36OWYHZD0EklJLCmuwPAnQkt9/dxfb5X7y5A5/smqK9UFqbJ+mR6oDvZ+JGScvUrP2Z2VlwWZzvyMAK/dFIowA4G6lD4d33rGo3hls3LhR3QuK4Mlcffx4sO4JBqWil0BSaklhCdZyq+kFxXZJx1Nf4Lp9mqc8impZ0bxNPPUWBmadvLCStV8NSIQFGN5me45m2/HjH0br1vV0LJk2eDNX+7qKSU/0EkhKLSmEsfhrbJcWeLL2O26f5kmUSLGiuQp8T1YzsYmonoLHzJMXo7P2qwWJsADDdQZRUGBFfn4wUlKuIyGhejSuFiDmF2CAZ3P1P/5xEP/4h/fvGj3700MgkSVFPYyKs6M4ImnwfcHWrb1QWWlxK1g9iQ0pVrRCfj8jKLOasSh4CO0gERaA8MJixQpgxIjqAdhqrZ5RDxtmcOEU4m6A8xaY6Q2jO0M9BJIUS4oZY0aMwMg4O3+K7dKSdu0OYvr0Drh4saFPglWKFY3HDAlCCXYgERagnD59Q4AB1f9/5pnqGTWLnblU64EUS5/dbse6des0K6ta6OVqEks7YsaYEaPwpzg7s+PJEpmQUIX4eN+uJSVmVmrSVZZheY9Ff4VEWIDCYixQ3759UV7ewIN7VPro5U+WPr1cTZ4sKWaOGTEKFt+tQEOLVBSOFvUxYx6skb9LLOnq4493wN69JxSVQUtYT9/hr5AIC1DUdnWpEeeyfXsSJk6MUkU0ebP0BQUpLqqukKvJXFCcnXu0dmvzfZAaqSg8wScA5SeIrnhLunrrrVHYu/fGuSxZnciFahwkwgIUtV1d3tyAoaFnRVcE2e11/4qhqf5bqXvUmzWieXPfr2c0FJflHZaSz9KKxZro4dbm+6A9e4AFC8RTUUhBrlByZ8F2iNtnzupkZheq2SERFsCo7ery5AacP7+26HfPn49xMt8Dylw4/mSNoLgscVhLPksrFp3Ry60dExODjh3dv/vugui9oVQoebJgs2R14iclYpnn+fNoMqg+JMICHLVdXe7cgOPH18HBg88iNvYqAPfB8sXFtbB6tXqiyZs1wnFGagYoLksarAXFkxvZGJRYIrV0aUoN3NdzKx3HyctNN5Vh0iTbX+k7OMydW4bHHhsoCCuaDGoDiTBCVTy5AUtK6qF1a8/B8vHx6rtwPFkjpHZyLOwrRvgGBcUTgHxLpBYuTddrewrcHzPmQSQnB+suYPjfGz8eyMri68yCxMQoAFHCeTQZ1AYSYYSqeHMDiqXF0MKF484aIT1hLc3mzIY/uaEJZci1RKrp0nR3bU+B+66rLY2ArLf6QyKMkI27+ICgIGDevHAHs/YNi9aePeJWCr06AX9KY6ElLAW8SyGQg+LF4nWuXLmCiIgIj8dp4nEDrduRP8QMsrS608yQCCNkIRYf8OyzdWvsQcmalcJsCWuNgLWAdyn4wwDnK1LjdcSgeJ4beGpHagWnm9nqxNrqTjNDIoyQhZjfn8+nwwfjA+xZKSh+SBqsBbxLwcwDnBzUisPRK55HzIrCyio813ZEwelsre70B0iEEbrCkpWCNcscy5BgJZTg6K72ZkUJDQ1lWuhQcDrlFFMbEmGEphQXFzv9HRoaisTEGCYGbtYsc55gIS6LBCuhBMeVgbNnNwDHVa8M5Dgrtm7thenTOwgrAwsl5pDxZ6HDMmI5xQjfIBFGaIq7TPksmepZssx5goW4LLMIVoJdYmJicPiwO4uqBRcvNmTSrU3cgJ/kuW5mzlsz+QkhK4t0zAKJMEJ3WJvBmiF+iIW4LDMIVkIdtIrJIouqeXFN7TN9+jkcPx6M5OTrSEi4A8AdzC3SMQMkwgjCB4wMGFY7LkvOvZhBsBLK0DImi1WLqtz3OtDSNDjWQXw8kJZmYGH8BBJhBCERowOG1bQiGH0vhLaIiQNvx7UOPvfVoqq10PHlXXDE7GkaWFmBGuiQCCNkEYh+f6NXRqlpRTD6Xgh1kbr6UOx4aGioLs9cqkVVD6Ej510we5oGmoSxA4kwQhau8QFA9UpId4H4nqCZmO9QXBbhDimrD6OiLqG0tI5qqxO1orS0FACbQofFTbjlQJMwdiARRshGiUCimZjv8KI1KAho3rz6M8fxkkRrYCO2+jAtraGHrcPYWZ1YUlKC9evXAxAXOleuXPEqGLV4H1jdhJswLyTCCFU4fRr44YdQ2O11Jc1S/XkmxudGU3MQINF6A7KgekYsbpD11YmOz9VbPqqHHnoIH330kej1tHgfWN+EmzAXJMIIxdzYBDsGFkuOaNyGXnEnRuHoklVrEPBn0eoLJEa9IxY3KCeu0KgVgN7yUdWqVUvSNeS8D1Lv159CAwJtlSdLkAgjFOG6CbZjjElCQlWN83krhdFxJ3rh76JIb0iMiiMmDnwRD0avAGzX7iBSU//A+fPRiI4+LwiEixe1EQq+3q8/pGwx+hkHOiTCCEW4z11VHWNSWVl9vFkz83dU/g7NhP0LMXHg7TgfVC4WGK9X8LnNdrFGm9yxY4fqv8PiQgCtCcR7Zg0SYYQiPMWY/Pgj0K1b9edWa7ULZNgw48qpBlL3cDQDvmyorDYU08U2fPD5nj3AggU1A+M7dx6Mrl2VLcyRih7vmL+seJQDbcZtPCTCCEW4izGZMweYNMlxe53q45mZ5raIOablePfdSixcmGBaE74vGyqrCcV0mYOYmBh07Oh+gtWhQ4wuKyl9cZMpEWuBuOKRF5Rim3Hb7XaP3/en+jASEmGEYlxjTNTeXocl+D0cZ8/mnISL3iZ8NSwERmyoLDVWq6CgAIC4tcXM1kjWMXKLIV/cZGrENAXaikfHCeVNN5Vh0iQbKistCAriMHNmESorq+t43bp1Hq9BEyV1IBFGqIJrjInYMnippn0WXQDVItPi9BnHWfHrr63QqtWvmosBNQNpWU1ZwK8w9dbRU0Cx9ui9AlCqa5BH7Zgmf1rxKAb/Xo0fD2Rl8fdsQVCQBe++K/79QF78oiYkwgjVkTKDds24X1BgRX5+MFJSrgurKlk1eVcLF85FiHH4+uvu2L79AU3EgFbB0qxuqMzjqaOngGL90HMFoBTXYETEeSGh6759HVSP4/KHFY++4njPrC5c99dYUhJhhCZImVHyL8yNPGPmCOJPTATmz7+MsWMj/hoAOADuXZNqWfK0DJY20+w/kIOoAwUx12BhYfUkzW6vi71702t8n49pysrKMuWgzBosuPz9OZaURBihGVJmlK55xswSxP/cc3Vw330XsHGjFTNn2pyOabWCTMtgaaNm/7528IEYRB2o8JODAwfsSEy8ioSEKhQW3tiR4vz5GADWGt9LT8/9K62FrcYxwjdYcfn7c35AEmGEoZg5iL9163qoVw+YPVu/FWSsuw99wbGDB6rQqVMuOnTYJyrGAi2IOpAJDy/BoUNLcehQzWPuVvYBVejQYR8ANuNJzQTLLn8WrHNqQSKMMBRWA8OlYoQoMpP70BOuHTxgxd69nZGbmy55tu0P9eCvcS5q4a1uXLc1CgriMHduGR57bGDA15sasJpDjBXrnFqQCCMMxR8sO0aIAbMGD3uL6QJ8n22btR4A/45z0Qt+W6POnQejQ4cYJCZGAYgyuFT+gVgOMSNg2Tonl5q9IEHozLBhwPHjwJ491f9nOSjfE4mJQNeu5hUEesHHdD3++J2wWGruLQrcmG37O/4c56InNttFdOpUTu+eSvATJd7SyL+njhuoO56nJ96sc2aFLGEEE5jZokH4RkxMDNq1A3r12oJNm3rCdS7oONumuB7CEX+KBWIV1/RB06efw/HjwUhOvo6EhDsA3GGYu5dF65xSSIQRBKE7MTExeP/9zjh+/BxWrKiNd96pjaoqS0DH9ZDA8I6/xQKxjON7Fx8PpKUZWBgHXOMAXa1zZoREGEEQhsCvckxLA1544UbG7kCJ6yktLRX+TQLDO/4YC0RIx9EizscBnj8fjejo807P34yWcxJhBEEYTqC5o0tKSoSs7yQwxGF1pR6hD64uUneY1XJOIowgiBo4pk4w05ZSZsFxMCGB4RnesiEWC2RGCwjhG/7a35AIIwg/5fTp6mS4zZr5ZmVyTJ3gzU1GqRPUwR+DjdXC0QJy001lmDTJhsrKwI4dNCuUE889JMIIwo/gO7q1a8MxcaINVVUWWK0c5s2z47HH/pTU0fEdpZibzFOHKlf8BSp5eU3BcTf+ZiEVAEvw7XX8eCArK/BiB/0ByonnGRJhBOEBs4kJvqOz2+ti4cIccFz1vopVVRZMmBCJ//3vfdhsFyV3dL64ydQQf4EIL3Qd03RwHJCa+gcAmH4TarWtH4EWO+gvuLYBTyuBAzEnHokwgnDDihU3Nha3Wquz+rOeRJbvwMTEk9SOTqqbTG3xF0i43zngxrMy8ybUZP0g3EErgZ2hjPkE4cLp0zcEGFD9/2eeqf7cDPDiyRE5MUZiGbN5pIg/x/OIG6j1rFiEdgQgXPEU4mC31zW4ZMZBljCCcOH33503FAeq97X84w9zuELUTGjoLSePKxRg7jv+mHzSE5SMltBjJbDZFgCQCCMUY7bYKTGaNat2QToKsaCg6s25zYIU8ST1uVW7xcQ7yEASFErx5+ST7iAXFAFoP1EzowucRBihCDPGTomRmFh9H888U20BCwoC3nnHfALTm3jS6rn5YjkLZPw5+aQrYqtsi4uLPX7XiDowmyXFTGg9UTPjAgASYYRsPMVOZWaaT7C4MmxY9X1UL4c3//04UlBg9frcpFpfPJ0n1XIW6JhlIFcqSsRcUBs3bvT6+3paLbS2pJDA02+iZhbrK4kwk1NVVWWYqs/LA5KSan7+3/8CsbH6l0cNLly4gIqKCuHv1FQLrNYgFBZWr/hT0kka5bZ1nQ3m5wd7jXkLJCsN4R1XUeLJsuBNlEh1QbFgtdDSkmJGV5lauE7YPE3U1HK/m2krMBJhJqa8vBz5+fmoch1RdSI6Gli+vObn9eoB+fn6l0cplZWVuHix5gv6559/Yv/+/bh69SoAeZ2kHm5bdx2Yu9lg375W0Zg3d/fnKCL9bIwgPOAoNrxZFryJEikuKBatFmqXKZBXi+o9sTPTVmCmE2HXrl1Dhw4d8PPPP+PgwYNo27atcOzw4cMYPXo09u/fj/r162PMmDGYOHGi0/c//fRTTJs2DcePH0ezZs0wd+5cPPTQQ8JxjuMwY8YM/P3vf0dpaSk6d+6Mt99+G82aNRPOOX/+PMaMGYPNmzfDarWiX79+WLRoEerUqeNTWZTAcRwKCwsRFBSEpKQkWK3GZBuJiQEKCm78nZBQLc7MSHl5OUpLS50+4zgOFy5cQPPmzfHzzz8L5/mCXm5b146uoMCK2bMbCHm7OM6KLVt6Yfr0s5g3r9RlCxg7goL+REmJ+47Qm4hU6r4k2EeOZUHq4gMWrRZ6lCnQVovqad0z00pt04mwiRMnIiEhQRgQecrKyvDAAw8gIyMDy5cvx7///W8MHToUUVFRGDFiBABg7969GDhwIObMmYOePXti7dq16NOnD3766SfceuutAIB58+Zh8eLF+OCDD5CSkoJp06YhMzMTv/76K2rVqgUAePzxx1FYWIgdO3agoqICTz31FEaMGIG1a9dKLotSrl+/jitXriAhIQERERGqXFMOCQnVrsdr14CwMMDM46zVakVwcM1XwmazoX79+ggNDZU1S9Uz5YVjR/fbbzV/t6rKgiVLvkJKygk8+2xdYVC8dOki3n23+hxXS5+YiCT3pT4YuQpZjmVBrF0UFxdj48aNTFottC4Ti5Y/f8JMK7VNJcK++uorbN++HRs2bMBXX33ldGzNmjUoLy/H+++/j9DQUNxyyy04dOgQ5s+fLwifRYsWoXv37pgwYQIA4KWXXsKOHTuwdOlSLF++HBzHYeHChZg6dSoefvhhAMCHH36Ihg0b4osvvsCAAQNw9OhRbNu2Dfv370f79u0BAEuWLMFDDz2EN954AwkJCZLKopTKykoAbFgXQkPNLb7EsFqtsFqtCAkJkSXCjEp54e53HWeDnuIyXO9RiogkgaUNrGwHJdeyIKVsLFottCwTi5Y/f8QsK7VNkzH/zJkzePrpp7F69Wq3lp/c3Fx06dLFSZRkZmbi2LFjuHDhgnBORkaG0/cyMzORm5sLAMjPz0dRUZHTOTabDR06dBDOyc3NRVRUlCDAACAjIwNWqxX79u2TXBa1sFgsql6PqInSOuZTXgQFVf+tV8qLmr/LyZoN8mLOEbPlTTMjfCD3669/jAkTIlFV5bwd1Ouvf4ylS5eipKRE87JI3T2BtWuzWCaxnSUI+bhbAJCScqLGc2PBeMFjCksYx3EYMmQIRo4cifbt2+P48eM1zikqKkJKSorTZw0bNhSO1atXD0VFRcJnjucUFRUJ5zl+z9M5DRo0cDoeHByM6Ohop3PEyuKOa9eu4dq1a8LfZWVlbs8jzIdRKS8cf7du3bPYssV3l4e/5E1jCSmuRbX3AlWKlpYFFq0WWpWJRcufv2DG0AhDRdjkyZMxd+5cr+ccPXoU27dvx8WLFzFlyhSdSmYMc+bMwaxZs4wuhqYMGTIEH3zwAYAb4vW2227DwIEDMWTIEMkLDFatWoWcnJwagfQsk5hojHDhf7ewUP4qWi1EpL/ttCAVX1fKqjVoO+aoKiiwIj8/GCkp15GQUN0upAxOauaA0zttgRT0KJOZ4pXMCEsCSwqGirDx48djyJAhXs9p0qQJdu/ejdzcXISFhTkda9++PR5//HF88MEHiIuLw5kzZ5yO83/HxcUJ/3d3juNx/rP4+Hinc/hVmHFxcTh79qzTNa5fv47z58+L/o7jb7hjypQpGDdunPB3WVkZktwl4jI53bt3x8qVK1FZWYkzZ85g27ZteO655/DZZ59h06ZNboPjCWNwHLiDgoDmzas/Lyys/r/cWaU/7rQgRklJCY4fv44RIxo4uBaBZ57h0LbtWSQnB7utSzUGbcccVd6Cwl0XZWi58pVFq4WWZQq0raoIaRg62tWvXx/169cXPW/x4sV4+eWXhb8LCgqQmZmJdevWoUOHDgCA9PR0vPjii6ioqEBISAgAYMeOHWjevLng/ktPT8euXbuQk5MjXGvHjh1IT08HAKSkpCAuLg67du0SRFdZWRn27duHUaNGCdcoLS3FgQMHkJaWBgDYvXs3qqqqfCqLO8LCwmoITa0wMnNzWFiYIEZvuukmtGvXDh07dkS3bt2watUqDB8+HPPnz8fKlSvx3//+F9HR0ejVqxfmzZuHOnXq4JtvvsFTTz0F4Ea81owZMzBz5kysXr0aixYtwrFjx1C7dm3cd999WLhwYQ0XsjukWuHM0Em6e77etofxdA0tkkv6804LnuDrMj8/GVVVg52OVVbeWLHqqS6Vusb4tiAWFO7aZrQWSixaLbQqE4uikzAeU5gcGjVq5PQ3n48rNTUViX/12o899hhmzZqFYcOGYdKkSThy5AgWLVqEBQsWCN977rnncM899+DNN99Ejx498Mknn+DHH3/Eu3+tzbdYLMjJycHLL7+MZs2aCSkqEhIS0KdPHwBAy5Yt0b17dzz99NNYvnw5KioqkJ2djQEDBiAhIUFyWYyExczN9913H9q0aYONGzdi+PDhsFqtWLx4MVJSUvDf//4Xf/vb3zBx4kS89dZb6NSpExYuXIjp06fj2LFjAG60iYqKCrz00kto3rw5zp49i3HjxmHIkCH48ssvRcsQHByMBg0a1Eh+e/XqVZSVlaF///6oXbu2bnUi110n9fmKoVVyST1TdrACX0dirkWxpKdKXVZyU00Q6kB1SbhiChEmBZvNhu3bt2P06NFIS0tDbGwspk+f7pQSolOnTli7di2mTp2KF154Ac2aNcMXX3wh5AgDqvOQXb58GSNGjEBpaSnuuusubNu2TcgRBlSnw8jOzka3bt2EZK2LFy/2qSxGwmrm5hYtWuDw4cMA4GStTE5Oxssvv4yRI0firbfeQmhoKGw2GywWSw337tChQ4V/N2nSBIsXL8Ydd9yBS5cuOSXT9YQ7V2hVVRWCgoLQoEEDp3agJUrcdUqfm9aWPqNSdrCA0fFAFBROEGxhShGWnJwMjuNqfH7bbbfhn//8p9fvPvroo3j00Uc9HrdYLJg9ezZmz57t8Zzo6GghMasnpJSFcIbjOMG9uHPnTsyZMwe//fYbysrKcP36dVy9ehVXrlzxmpz2wIEDmDlzJn7++WdcuHBBsGqdPHkSrVq10uU+lKKXu65v376IddnkUw93COurLbVeMGDkSkCjRSBBEM6YUoQR/snRo0eRkpKC48ePo2fPnhg1ahReeeUVREdH47vvvsOwYcNQXl7uUYRdvnwZmZmZyMzMxJo1a1C/fn2cPHkSmZmZhu3HJif2Tg93nd1eF8eOJaBevRhDxI9RKTvE0GvBgBTXolZB8SymgyCIQIVEGMEEu3fvxr///W+MHTsWBw4cQFVVFd58800hWH79+vVO54eGhgq7BvD89ttvKCkpwWuvvSasKv3xxx/1uQE3yI2909pdx6+OW7DAaujKRKNSdniCtQUDWgZyq5lqgiAI+ZAII3Tn2rVrKCoqckpRwe/nOWjQIBw5cgQVFRVYsmQJevXqhe+//x7Lly93ukZycjIuXbqEXbt2oU2bNoiIiECjRo0QGhqKJUuWYOTIkThy5Aheeuklg+5Sfuydlu4619VxegsNI1flisHiggEK5CYIdWC17yERRujOtm3bEB8fj+DgYNSrVw9t2rTB4sWLMXjwYFitVrRp0wbz58/H3LlzMWXKFHTp0gVz5szBoEGDhGt06tQJI0eORFZWFkpKSoQUFatWrcILL7yAxYsXo127dnjjjTfQu3dvA+9WHlq569ytjtNLaLC4KtcRf14woGW+L8IZVgf7QMa177Hb6+L8+RhER5c4WYSN6HtIhBG6smrVKqxatUr0vLFjx2Ls2LFOnz355JNOf7/99tt4++23nT4bOHAgBg4c6PSZu0UcZkALd5271XGehIbaAzerq3J5tLRAGi2CKEeVPrA82Acyju3eW7JiI/oeEmEBiNEDAqEt3p6b6+o4b0IjkAZu3nrx0EPAvn1WHD8ejOTk6i19CguV3ycLdekPz4l1WB7sCfFkxUZAIiwAYWFAILRDyvN9+WU7Skrqibo6A6ENeHKTfv+9sxVDqfUiEOqSqIbFwZ6Ql6xYa0iEBSg0IPg3Ys/XYWvUgMedWHVnxZBrvQjUjcoDGRYHe4LNZMXSNssjCBeuX7+O8vJyj/9dv37d6CISJsRur4vvvw/F6dPGlsGdFaOgwPfucsUKoHFj4L77qv+/YoXapSVYhB/sHTF6sCduhGPwz4aFZMVkCSN85vr16zh79qzoeQ0aNHC7DVCgQLF3vsFK/jJPVozjx4ORlib9OqzlHSP0g3YmYBfWkhUH7ghJyMZ1g2ul5/krFHsnHaPzlzniyWWRnOybdZfFvGNaQ67XG7A22BM3YClZMYkwgtAQElg38GbxMzJ/mSuerBgJCXf4dB1/zjvmDr22fDITLA32gQzLXgkSYQRB6II3y2BBgRWrV3OoqrIInxkpWNxbMXwTYaxvVK4WJSUlOH78OkaMaCA8v2pLJoe2bc8iOTk4YCYjLA/2gQzLXgkSYQRB6IanTi4+nj3B4mrFKC4ultxRa513jBX49B75+cmoqhrsdKyy0oIlS75CSsqJgElOyvJgH+iwWuckwgi/4ptvvsG9996LCxcuICoqStJ3kpOTkZOTg5ycHE3LRnhHq62axJBqldi4cSMA8WznnvKOHTni/DfLwkRqbBcvNsSW/gdSclJWnynBJpSigtCVIUOGwGKxYOTIkTWOjR49GhaLBUOGDNG/YIxQUlKCwsJCj/+VlJQweW21SEwEunbV1wLGWy/69u0r6XwxQcH69kxiyEmrweLSf4IwA2QJI3QnKSkJn3zyCRYsWIDw8HAAwNWrV7F27Vo0atTI4NIZh5YbXLO+ebbRxMTEMCuK9EJpbBetBiQI3yFLGOEzVqu0ZuPpvHbt2iEpKUlw7wDVrp5GjRrh9ttvFz67du0ann32WTRo0AC1atXCXXfdhf379ztd68svv8TNN9+M8PBw3HvvvTh+/HiN3/vuu+9w9913Izw8HElJSXj22Wdx+fJlSfegJ1paUMxunSG0hRfpS5Zsc1ocAdyI7Vq6dKmotdRmu4iUlBMkwAhCIiTCCJ8JDg5GgwYNEBsb6/E/sUStQ4cOxcqVK4W/33//fTz11FNO50ycOBEbNmzABx98gJ9++glNmzZFZmYmzp+vjjM5deoU+vbti169euHQoUMYPnw4Jk+e7HSNvLw8dO/eHf369cPhw4exbt06fPfdd8jOzlaxRgjC3LjGdjli1tguR/f7gQNn8NlnJThw4AxT7neCIHckISvBotJM+E888QSmTJmCEydOAAC+//57fPLJJ/jmm28AAJcvX8bbb7+NVatW4cEHHwQA/P3vf8eOHTuwYsUKTJgwAW+//TZSU1Px5ptvAgCaN2+Of//735g7d67wO3PmzMHjjz8uBN03a9YMixcvxj333IO3334btWrVUnQfhHL4lYSeoNVk+uEvmd4d3e/u9gFt1+4ggMB1vxPsQCIswDEqwWL9+vXRo0cPrFq1ChzHoUePHoiNjRWO5+XloaKiAp07dxY+CwkJwZ133omjR48CAI4ePYoOHTo4XTc9Pd3p759//hmHDx/GmjVrhM84jkNVVRXy8/PRsmVLLW6PkAjFqrGHP8R28aLe0z6gqal/wGa7aCrLHuGfkAgLYIze227o0KGCW3DZsmWa/MalS5fwzDPP4Nlnn61xLJAXAbACxaqxidRM76wnJ/W0D+j589GmFJeE/0EiLIAxem+77t27o7y8HBaLBZmZmU7HUlNTERoaiu+//x6NGzcGAFRUVGD//v2Ca7Fly5bYtGmT0/d++OEHp7/btWuHX3/9FU39da8YQjXUEhSsCxM1YT05qVj+MoIwGhJhAYzRe9sFBQUJrsWgoCCnY7Vr18aoUaMwYcIEREdHo1GjRpg3bx6uXLmCYX/5S0eOHIk333wTEyZMwPDhw3HgwAGsWrXK6TqTJk1Cx44dkZ2djeHDh6N27dr49ddfsWPHDkluMCJwUEtQsC5M1Ibl+/CXGDfCfyERFsCwsLddZGSkx2OvvfYaqqqq8OSTT+LixYto3749vv76a9SrVw9AtTtxw4YNGDt2LJYsWYI777wTr776KoYOHSpc47bbbsO3336LF198EXfffTc4jkNqaiqysrI0vzdf0dKCEkjWGSWoJShYFiaBhj/EuBH+i4XjOM7oQhDuKSsrg81mg91uryFWrl69ivz8fKSkpChe4Xf6tP5bxZgJNetaDC1XCrK4CrGwsBDvvvuu6HkjRoxAfHy8DiUKTPxtgQS1K8JovI3fjpAljEBiIokvVtBygDPD4EkYQ6C5UAmCFUiEEQRBEH4lsMj9TpgFEmEEQRgGDZaEFpBljzALJMIIgjAMGiwJraA2Q5gBEmEEQRgKDZYEQQQqtIG3yaHFrdpDdUwQBEFoAYkwk8InN6XtXLSHr2PXhLIEQRAEoQRyR5qU4OBgRERE4Ny5cwgJCYHVSnpaC6qqqnDu3DlEREQgOJheF4IgCEI9aFQxKRaLBfHx8cjPz8eJEyeMLo5fY7Va0ahRI1gsFqOLQhAEQfgRJMJMTGhoKJo1a0YuSY0JDQ0lSyNBEAShOiTCTI7VatV8Kx2CIAiCINSHpvcEQRAEQRAGQCKMIAiCIAjCAEiEEQRBEARBGADFhDEMnyS0rKzM4JIQBEEQBCEVftwWS/ZNIoxhLl68CABISkoyuCQEQRAEQfjKxYsXYbPZPB63cLQnC7NUVVWhoKAAdevWDcgcVWVlZUhKSsKpU6cQGRlpdHFMC9WjOlA9KofqUB2oHtVBy3rkOA4XL15EQkKC1xRHZAljGKvVisTERKOLYTiRkZHU0agA1aM6UD0qh+pQHage1UGrevRmAeOhwHyCIAiCIAgDIBFGEARBEARhACTCCGYJCwvDjBkzEBYWZnRRTA3VozpQPSqH6lAdqB7VgYV6pMB8giAIgiAIAyBLGEEQBEEQhAGQCCMIgiAIgjAAEmEEQRAEQRAGQCKMIAiCIAjCAEiEEYbzj3/8A7169UJCQgIsFgu++OILp+Mcx2H69OmIj49HeHg4MjIy8PvvvxtTWEYRq8MhQ4bAYrE4/de9e3djCsswc+bMwR133IG6deuiQYMG6NOnD44dO+Z0ztWrVzF69GjExMSgTp066NevH86cOWNQidlESj127dq1RpscOXKkQSVmk7fffhu33XabkEw0PT0dX331lXCc2qI0xOrRyLZIIowwnMuXL6NNmzZYtmyZ2+Pz5s3D4sWLsXz5cuzbtw+1a9dGZmYmrl69qnNJ2UWsDgGge/fuKCwsFP77+OOPdSyhOfj2228xevRo/PDDD9ixYwcqKirwwAMP4PLly8I5Y8eOxebNm/Hpp5/i22+/RUFBAfr27WtgqdlDSj0CwNNPP+3UJufNm2dQidkkMTERr732Gg4cOIAff/wR9913Hx5++GH88ssvAKgtSkWsHgED2yJHEAwBgPv888+Fv6uqqri4uDju9ddfFz4rLS3lwsLCuI8//tiAErKPax1yHMcNHjyYe/jhhw0pj5k5e/YsB4D79ttvOY6rbnshISHcp59+Kpxz9OhRDgCXm5trVDGZx7UeOY7j7rnnHu65554zrlAmpV69etx7771HbVEhfD1ynLFtkSxhBNPk5+ejqKgIGRkZwmc2mw0dOnRAbm6ugSUzH9988w0aNGiA5s2bY9SoUSgpKTG6SMxjt9sBANHR0QCAAwcOoKKiwqk9tmjRAo0aNaL26AXXeuRZs2YNYmNjceutt2LKlCm4cuWKEcUzBZWVlfjkk09w+fJlpKenU1uUiWs98hjVFmkDb4JpioqKAAANGzZ0+rxhw4bCMUKc7t27o2/fvkhJSUFeXh5eeOEFPPjgg8jNzUVQUJDRxWOSqqoq5OTkoHPnzrj11lsBVLfH0NBQREVFOZ1L7dEz7uoRAB577DE0btwYCQkJOHz4MCZNmoRjx45h48aNBpaWPf79738jPT0dV69eRZ06dfD555+jVatWOHToELVFH/BUj4CxbZFEGEEEAAMGDBD+3bp1a9x2221ITU3FN998g27duhlYMnYZPXo0jhw5gu+++87oopgaT/U4YsQI4d+tW7dGfHw8unXrhry8PKSmpupdTGZp3rw5Dh06BLvdjs8++wyDBw/Gt99+a3SxTIenemzVqpWhbZHckQTTxMXFAUCNFT9nzpwRjhG+06RJE8TGxuKPP/4wuihMkp2djS1btmDPnj1ITEwUPo+Li0N5eTlKS0udzqf26B5P9eiODh06AAC1SRdCQ0PRtGlTpKWlYc6cOWjTpg0WLVpEbdFHPNWjO/RsiyTCCKZJSUlBXFwcdu3aJXxWVlaGffv2OfnzCd84ffo0SkpKEB8fb3RRmILjOGRnZ+Pzzz/H7t27kZKS4nQ8LS0NISEhTu3x2LFjOHnyJLVHB8Tq0R2HDh0CAGqTIlRVVeHatWvUFhXC16M79GyL5I4kDOfSpUtOM478/HwcOnQI0dHRaNSoEXJycvDyyy+jWbNmSElJwbRp05CQkIA+ffoYV2jG8FaH0dHRmDVrFvr164e4uDjk5eVh4sSJaNq0KTIzMw0sNXuMHj0aa9euxf/93/+hbt26QmyNzWZDeHg4bDYbhg0bhnHjxiE6OhqRkZEYM2YM0tPT0bFjR4NLzw5i9ZiXl4e1a9fioYceQkxMDA4fPoyxY8eiS5cuuO222wwuPTtMmTIFDz74IBo1aoSLFy9i7dq1+Oabb/D1119TW/QBb/VoeFs0ZE0mQTiwZ88eDkCN/wYPHsxxXHWaimnTpnENGzbkwsLCuG7dunHHjh0zttCM4a0Or1y5wj3wwANc/fr1uZCQEK5x48bc008/zRUVFRldbOZwV4cAuJUrVwrn/Pnnn9zf/vY3rl69elxERAT3//7f/+MKCwuNKzSDiNXjyZMnuS5dunDR0dFcWFgY17RpU27ChAmc3W43tuCMMXToUK5x48ZcaGgoV79+fa5bt27c9u3bhePUFqXhrR6NbosWjuM47aUeQRAEQRAE4QjFhBEEQRAEQRgAiTCCIAiCIAgDIBFGEARBEARhACTCCIIgCIIgDIBEGEEQBEEQhAGQCCMIgiAIgjAAEmEEQRAEQRAGQCKMIAiCIAjCAEiEEQRBEARBGACJMIIgCBmUl5cbXYQasFgmgiA8QyKMIAgCQNeuXZGdnY3s7GzYbDbExsZi2rRp4Hd2S05OxksvvYRBgwYhMjISI0aMAAB89913uPvuuxEeHo6kpCQ8++yzuHz5snDdt956C82aNUOtWrXQsGFDPPLII8Kxzz77DK1bt0Z4eDhiYmKQkZEhfLdr167IyclxKmOfPn0wZMgQ4W+5ZSIIgg1IhBEEQfzFBx98gODgYPzrX//CokWLMH/+fLz33nvC8TfeeANt2rTBwYMHMW3aNOTl5aF79+7o168fDh8+jHXr1uG7775DdnY2AODHH3/Es88+i9mzZ+PYsWPYtm0bunTpAgAoLCzEwIEDMXToUBw9ehTffPMN+vbtC1+38/W1TARBsANt4E0QBIFqy9PZs2fxyy+/wGKxAAAmT56MTZs24ddff0VycjJuv/12fP7558J3hg8fjqCgILzzzjvCZ9999x3uueceXL58GV9++SWeeuopnD59GnXr1nX6vZ9++glpaWk4fvw4Gjdu7LY8bdu2xcKFC4XP+vTpg6ioKKxatQoAZJWpVq1aiuqJIAj1IEsYQRDEX3Ts2FEQYACQnp6O33//HZWVlQCA9u3bO53/888/Y9WqVahTp47wX2ZmJqqqqpCfn4/7778fjRs3RpMmTfDkk09izZo1uHLlCgCgTZs26NatG1q3bo1HH30Uf//733HhwgWfy+xrmQiCYAcSYQRBEBKpXbu209+XLl3CM888g0OHDgn//fzzz/j999+RmpqKunXr4qeffsLHH3+M+Ph4TJ8+HW3atEFpaSmCgoKwY8cOfPXVV2jVqhWWLFmC5s2bC0LJarXWcE1WVFQoLhNBEOxAIowgCOIv9u3b5/T3Dz/8gGbNmiEoKMjt+e3atcOvv/6Kpk2b1vgvNDQUABAcHIyMjAzMmzcPhw8fxvHjx7F7924AgMViQefOnTFr1iwcPHgQoaGhgmuxfv36KCwsFH6rsrISR44cEb0HKWUiCIINSIQRBEH8xcmTJzFu3DgcO3YMH3/8MZYsWYLnnnvO4/mTJk3C3r17kZ2djUOHDuH333/H//3f/wlB8Fu2bMHixYtx6NAhnDhxAh9++CGqqqrQvHlz7Nu3D6+++ip+/PFHnDx5Ehs3bsS5c+fQsmVLAMB9992HrVu3YuvWrfjtt98watQolJaWit6DWJkIgmCHYKMLQBAEwQqDBg3Cn3/+iTvvvBNBQUF47rnnhLQP7rjtttvw7bff4sUXX8Tdd98NjuOQmpqKrKwsAEBUVBQ2btyImTNn4urVq2jWrBk+/vhj3HLLLTh69Cj+8Y9/YOHChSgrK0Pjxo3x5ptv4sEHHwQADB06FD///DMGDRqE4OBgjB07Fvfee6/oPYiViSAIdqDVkQRBEHC/GpEgCEJLyB1JEARBEARhACTCCIIgCIIgDIDckQRBEARBEAZAljCCIAiCIAgDIBFGEARBEARhACTCCIIgCIIgDIBEGEEQBEEQhAGQCCMIgiAIgjAAEmEEQRAEQRAGQCKMIAiCIAjCAEiEEQRBEARBGACJMIIgCIIgCAP4/2WQFiKceIhIAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -838,7 +3887,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHjklEQVR4nO3deVhUZf8G8PsMAgLCIDsoCuKKO1g4uGWh6M8lX/EVfbU0MatXK7RcyrQ9zRa1rKy0tNLS1MolTTBbFCLXzDXlxYUAl0EG3ACZ5/fHNIdZYdgclvtzXVzKnGfOnJlIb5/ne76PJIQQICIiIqI7SmHvCyAiIiJqiBjCiIiIiOyAIYyIiIjIDhjCiIiIiOyAIYyIiIjIDhjCiIiIiOyAIYyIiIjIDhjCiIiIiOyAIYyIiIjIDhjCiIioTKtWrYIkSTh79qy9L4WoXmEIIyK727dvH6ZNm4aOHTvCzc0NLVq0wOjRo/HXX3+Zjb3nnnsgSRIkSYJCoYCHhwfatWuHBx54AElJSRV63S1btqBfv37w8/ODq6srWrVqhdGjR2PHjh3V9dbMvPbaa/j222/NHk9JScELL7yAvLy8GnttUy+88IL8WUqSBFdXV4SHh+O5555Dfn5+tbzG2rVrsWTJkmo5F1F9wxBGRHb3+uuvY+PGjbjvvvuwdOlSTJkyBb/88gsiIiJw9OhRs/HNmzfH559/js8++wxvvPEGhg8fjpSUFAwcOBDx8fEoLi4u9zXffPNNDB8+HJIk4ZlnnsHixYsRFxeH06dP46uvvqqJtwmg7BD24osv3tEQpvfBBx/g888/x9tvv4327dvj1VdfxaBBg1AdWwszhBFZ18jeF0BENGPGDKxduxZOTk7yY/Hx8ejcuTMWLlyIL774wmi8UqnE+PHjjR5buHAhnnjiCbz//vsICQnB66+/bvX1bt++jZdffhkDBgzAzp07zY5funSpiu+o9rhx4wZcXV3LHDNq1Cj4+PgAAB599FHExcVh06ZN+O2336BSqe7EZRI1SJwJIyK7i46ONgpgANCmTRt07NgRJ06csOkcDg4OeOeddxAeHo5ly5ZBo9FYHXvlyhXk5+ejV69eFo/7+fkZfX/r1i288MILaNu2LRo3bozAwECMHDkS6enp8pg333wT0dHR8Pb2houLCyIjI7Fhwwaj80iShOvXr2P16tXyEuDEiRPxwgsvYObMmQCA0NBQ+ZhhDdYXX3yByMhIuLi4wMvLC2PGjMGFCxeMzn/PPfegU6dOOHDgAPr27QtXV1c8++yzNn1+hu69914AQEZGRpnj3n//fXTs2BHOzs4ICgrC1KlTjWby7rnnHmzbtg3nzp2T31NISEiFr4eovuJMGBHVSkIIXLx4ER07drT5OQ4ODhg7dizmzZuHPXv2YMiQIRbH+fn5wcXFBVu2bMHjjz8OLy8vq+csKSnB0KFDsWvXLowZMwZPPvkkCgoKkJSUhKNHjyIsLAwAsHTpUgwfPhzjxo1DUVERvvrqK/z73//G1q1b5ev4/PPPMXnyZNx9992YMmUKACAsLAxubm7466+/8OWXX2Lx4sXyrJSvry8A4NVXX8W8efMwevRoTJ48GZcvX8a7776Lvn374tChQ/D09JSvV61WY/DgwRgzZgzGjx8Pf39/mz8/PX249Pb2tjrmhRdewIsvvoiYmBg89thjOHXqFD744APs27cPe/fuhaOjI+bOnQuNRoPMzEwsXrwYANCkSZMKXw9RvSWIiGqhzz//XAAQK1euNHq8X79+omPHjlaf98033wgAYunSpWWef/78+QKAcHNzE4MHDxavvvqqOHDggNm4Tz75RAAQb7/9ttkxrVYr//7GjRtGx4qKikSnTp3Evffea/S4m5ubmDBhgtm53njjDQFAZGRkGD1+9uxZ4eDgIF599VWjx//880/RqFEjo8f79esnAIjly5dbfd+Gnn/+eQFAnDp1Sly+fFlkZGSIDz/8UDg7Owt/f39x/fp1IYQQn376qdG1Xbp0STg5OYmBAweKkpIS+XzLli0TAMQnn3wiPzZkyBDRsmVLm66HqKHhciQR1TonT57E1KlToVKpMGHChAo9Vz/TUlBQUOa4F198EWvXrkX37t3xww8/YO7cuYiMjERERITREujGjRvh4+ODxx9/3OwckiTJv3dxcZF/f/XqVWg0GvTp0wcHDx6s0PWb2rRpE7RaLUaPHo0rV67IXwEBAWjTpg12795tNN7Z2RkPPfRQhV6jXbt28PX1RWhoKB555BG0bt0a27Zts1pLlpycjKKiIiQmJkKhKP1r5OGHH4aHhwe2bdtW8TdK1ABxOZKIapWcnBwMGTIESqUSGzZsgIODQ4Wef+3aNQCAu7t7uWPHjh2LsWPHIj8/H2lpaVi1ahXWrl2LYcOG4ejRo2jcuDHS09PRrl07NGpU9h+XW7duxSuvvILDhw+jsLBQftwwqFXG6dOnIYRAmzZtLB53dHQ0+r5Zs2Zm9XXl2bhxIzw8PODo6IjmzZvLS6zWnDt3DoAuvBlycnJCq1at5ONEVDaGMCKqNTQaDQYPHoy8vDz8+uuvCAoKqvA59C0tWrdubfNzPDw8MGDAAAwYMACOjo5YvXo10tLS0K9fP5ue/+uvv2L48OHo27cv3n//fQQGBsLR0RGffvop1q5dW+H3YEir1UKSJGzfvt1iIDWtsTKckbNV37595To0IrpzGMKIqFa4desWhg0bhr/++gvJyckIDw+v8DlKSkqwdu1auLq6onfv3pW6jh49emD16tXIzs4GoCucT0tLQ3Fxsdmsk97GjRvRuHFj/PDDD3B2dpYf//TTT83GWpsZs/Z4WFgYhBAIDQ1F27ZtK/p2akTLli0BAKdOnUKrVq3kx4uKipCRkYGYmBj5sarOBBLVZ6wJIyK7KykpQXx8PFJTU/H1119XqjdVSUkJnnjiCZw4cQJPPPEEPDw8rI69ceMGUlNTLR7bvn07gNKltri4OFy5cgXLli0zGyv+aWbq4OAASZJQUlIiHzt79qzFpqxubm4WG7K6ubkBgNmxkSNHwsHBAS+++KJZ81QhBNRqteU3WYNiYmLg5OSEd955x+iaVq5cCY1GY3RXqpubW5ntQogaMs6EEZHdPfXUU9i8eTOGDRuG3Nxcs+aspo1ZNRqNPObGjRs4c+YMNm3ahPT0dIwZMwYvv/xyma9348YNREdHo2fPnhg0aBCCg4ORl5eHb7/9Fr/++itGjBiB7t27AwAefPBBfPbZZ5gxYwZ+//139OnTB9evX0dycjL++9//4v7778eQIUPw9ttvY9CgQfjPf/6DS5cu4b333kPr1q1x5MgRo9eOjIxEcnIy3n77bQQFBSE0NBRRUVGIjIwEAMydOxdjxoyBo6Mjhg0bhrCwMLzyyit45plncPbsWYwYMQLu7u7IyMjAN998gylTpuDpp5+u0udfUb6+vnjmmWfw4osvYtCgQRg+fDhOnTqF999/H3fddZfRf6/IyEisW7cOM2bMwF133YUmTZpg2LBhd/R6iWote96aSUQkRGlrBWtfZY1t0qSJaNOmjRg/frzYuXOnTa9XXFwsPv74YzFixAjRsmVL4ezsLFxdXUX37t3FG2+8IQoLC43G37hxQ8ydO1eEhoYKR0dHERAQIEaNGiXS09PlMStXrhRt2rQRzs7Oon379uLTTz+VW0AYOnnypOjbt69wcXERAIzaVbz88suiWbNmQqFQmLWr2Lhxo+jdu7dwc3MTbm5uon379mLq1Kni1KlTRp9NWe07TOmv7/Lly2WOM21Robds2TLRvn174ejoKPz9/cVjjz0mrl69ajTm2rVr4j//+Y/w9PQUANiugsiAJEQ1bA5GRERERBXCmjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDNmutxbRaLbKysuDu7s6tP4iIiOoIIQQKCgoQFBQEhcL6fBdDWC2WlZWF4OBge18GERERVcKFCxfQvHlzq8cZwmoxd3d3ALr/iGXtg0dERES1R35+PoKDg+W/x61hCKvF9EuQHh4eDGFERER1THmlRCzMJyIiIrIDhjAiIiIiO2AIIyIiIrID1oTVcVqtFkVFRfa+jHrNycmpzFuMiYiIKoMhrA4rKipCRkYGtFqtvS+lXlMoFAgNDYWTk5O9L4WIiOoRhrA6SgiB7OxsODg4IDg4mDM1NUTfMDc7OxstWrRg01wiIqo2DGF11O3bt3Hjxg0EBQXB1dXV3pdTr/n6+iIrKwu3b9+Go6OjvS+HiIjqCU6f1FElJSUAwCWyO0D/Ges/cyIioupQZ0LY8OHD0aJFCzRu3BiBgYF44IEHkJWVZTRGCIE333wTbdu2hbOzM5o1a4ZXX33VaMxPP/2EiIgIODs7o3Xr1li1apXZa7333nsICQlB48aNERUVhd9//93o+K1btzB16lR4e3ujSZMmiIuLw8WLF43GnD9/HkOGDIGrqyv8/Pwwc+ZM3L59u3o+DANcHqt5/IyJiKgm1JkQ1r9/f6xfvx6nTp3Cxo0bkZ6ejlGjRhmNefLJJ7FixQq8+eabOHnyJDZv3oy7775bPp6RkYEhQ4agf//+OHz4MBITEzF58mT88MMP8ph169ZhxowZeP7553Hw4EF07doVsbGxuHTpkjxm+vTp2LJlC77++mv8/PPPyMrKwsiRI+XjJSUlGDJkCIqKipCSkoLVq1dj1apVmD9/fg1+QkRERFQWtVqN7Oxsq19qtfqOXo8khBB39BWryebNmzFixAgUFhbC0dERJ06cQJcuXXD06FG0a9fO4nNmz56Nbdu24ejRo/JjY8aMQV5eHnbs2AEAiIqKwl133YVly5YB0BVmBwcH4/HHH8ecOXOg0Wjg6+uLtWvXyiHw5MmT6NChA1JTU9GzZ09s374dQ4cORVZWFvz9/QEAy5cvx+zZs3H58mWblxDz8/OhVCqh0WjMti26desWMjIyEBoaisaNG1fsw6MK4WdNRFR3qdVqFBUVIS8vD+vXry93/LRp0+Dt7V2l1yzr729DdWYmzFBubi7WrFmD6OhouVB6y5YtaNWqFbZu3YrQ0FCEhIRg8uTJyM3NlZ+XmpqKmJgYo3PFxsYiNTUVgK7lw4EDB4zGKBQKxMTEyGMOHDiA4uJiozHt27dHixYt5DGpqano3LmzHMD0r5Ofn49jx45ZfV+FhYXIz883+qpvJk6cCEmSIEkSHB0d4e/vjwEDBuCTTz6pUKuNVatWwdPTs+YulIiI6jy1Wo1ly5bho48+simAAcDly5dr+KpK1akQNnv2bLi5ucHb2xvnz5/Hd999Jx/73//+h3PnzuHrr7/GZ599hlWrVuHAgQNGS5Y5OTlGwQgA/P39kZ+fj5s3b+LKlSsoKSmxOCYnJ0c+h5OTk1kAMB1j6Rz6Y9YsWLAASqVS/goODrbxk6k4e07JDho0CNnZ2Th79iy2b9+O/v3748knn8TQoUNrpG6OiIgaJsNSIlsVFxfXwJVYZtcQNmfOHHlWxNrXyZMn5fEzZ87EoUOHsHPnTjg4OODBBx+EfjVVq9WisLAQn332Gfr06YN77rkHK1euxO7du3Hq1Cl7vcUKeeaZZ6DRaOSvCxcu1MjrGP7LwNrXsmXLaiyIOTs7IyAgAM2aNUNERASeffZZfPfdd9i+fbt8o8Tbb7+Nzp07w83NDcHBwfjvf/+La9euAdDdXPHQQw9Bo9HIPycvvPACAODzzz9Hjx494O7ujoCAAPznP/+p1P+ERERUt6nVaptnv+zFrn3CnnrqKUycOLHMMa1atZJ/7+PjAx8fH7Rt2xYdOnRAcHAwfvvtN6hUKgQGBqJRo0Zo27atPL5Dhw4AdHcqtmvXDgEBAWZ3MV68eBEeHh5wcXGBg4MDHBwcLI4JCAgAAAQEBMhry4azYaZjTO+o1J9TP8YSZ2dnODs7l/l5VAdbtzm6k9sh3XvvvejatSs2bdqEyZMnQ6FQ4J133kFoaCj+97//4b///S9mzZqF999/H9HR0ViyZAnmz58vB+wmTZoA0P0L5uWXX0a7du1w6dIlzJgxAxMnTsT3339/x94LERHZX13Y0s+uIczX1xe+vr6Veq6+fqiwsBAA0KtXL9y+fRvp6ekICwsDAPz1118AgJYtWwIAVCqV2V/GSUlJUKlUAHT9oCIjI7Fr1y6MGDFCfp1du3Zh2rRpAIDIyEg4Ojpi165diIuLAwCcOnUK58+fl8+jUqnw6quv4tKlS/Dz85Nfx8PDA+Hh4ZV6vw1B+/btceTIEQBAYmKi/HhISAheeeUVPProo3j//ffh5OQEpVIJSZLMQu2kSZPk37dq1QrvvPMO7rrrLly7dk0OakREVD+lp6fj4sWLuH37ttXaLo3GHbm53vDyUkOpLLjDV2isTnTMT0tLw759+9C7d280bdoU6enpmDdvHsLCwuTgExMTg4iICEyaNAlLliyBVqvF1KlTMWDAAHl27NFHH8WyZcswa9YsTJo0CT/++CPWr1+Pbdu2ya81Y8YMTJgwAT169MDdd9+NJUuW4Pr163jooYcAAEqlEgkJCZgxYwa8vLzg4eGBxx9/HCqVCj179gQADBw4EOHh4XjggQewaNEi5OTk4LnnnsPUqVPvyExXXSWEkHtyJScnY8GCBTh58iTy8/Nx+/Zt3Lp1Czdu3Chzh4ADBw7ghRdewB9//IGrV6/KYf38+fMMwERE9ZD+7scLFy5g+/btZY49eLA7tmwZCiEUkCQthg3bioiIQ3foSs3ViRDm6uqKTZs24fnnn8f169cRGBiIQYMG4bnnnpNDjUKhwJYtW/D444+jb9++cHNzw+DBg/HWW2/J5wkNDcW2bdswffp0LF26FM2bN8eKFSsQGxsrj4mPj8fly5cxf/585OTkoFu3btixY4dRof3ixYuhUCgQFxeHwsJCxMbG4v3335ePOzg4YOvWrXjsscegUqng5uaGCRMm4KWXXroDn1bddeLECYSGhuLs2bMYOnQoHnvsMbz66qvw8vLCnj17kJCQgKKiIqsh7Pr164iNjUVsbCzWrFkDX19fnD9/HrGxsXViWpqIiComPT0dX3zxRbnjNBp3XLgQjM2bh0JfDi+EAps3D4WfXw6aN8+u4Su1rE6EsM6dO+PHH38sd1xQUBA2btxY5ph77rkHhw6VnXqnTZsmLz9a0rhxY7z33nt47733rI5p2bIl65Aq4Mcff8Sff/6J6dOn48CBA9BqtXjrrbfkjclNiyudnJzMthE6efIk1Go1Fi5cKN9Zun///jvzBoiI6I5Sq9U2BTDD2S9zCqxcOdloRqxRozsXjepUiwqqHwoLC5GTk4O///4bBw8exGuvvYb7778fQ4cOxYMPPojWrVujuLgY7777Lv73v//h888/x/Lly43OERISgmvXrmHXrl24cuUKbty4gRYtWsDJyUl+3ubNm/Hyyy/b6V0SEVFNUKvVOHnyZJl9N/UyMwOxebO1AKYjhAJbtgyFRuMOAHIt953AEEZ33I4dOxAYGIiQkBAMGjQIu3fvxjvvvIPvvvsODg4O6Nq1K95++228/vrr6NSpE9asWYMFCxYYnSM6OhqPPvoo4uPj4evri0WLFsHX1xerVq3C119/jfDwcCxcuBBvvvmmnd4lERFVN32LpXXr1mH37t1ljj14sDtWrpwMW6KOEAp06jSiWrrlV0Sd3baoIaipbYv0P8TludM/jLUVty0iIrI/tVqNrKwsbNq0yeoY/Z2Pjo6FWLHCWgDTxx7J6LGdOzUYMMCzWq7V1m2L6kRNGFUvb29vTJs2rcxidScnJwYwIiKyK/2djxqNBuvWrbM6TqNxR1paFFJSVNAFLy2sz4BJFh9zdPSs8vVWFENYA8WARUREtVl5qzb6Wa+srEAkJ8eY1H1VrNrKwQFo3bqSF1oFDGFERERUa6jValy+fBlnz561Osb4jkcBy7Nb5dE9z8EB+PBDoHnzyl1vVTCEERERUa1gS98vjcbdpOWELQHMUlCTsHgxMGqUfQIYwLsjiYiIqBawpe+XRuOOY8c6ltlywjIJkkkGc3CwbwADOBNGREREdqIvvM/Ly8O5c+fKHFuVJUgHB4GFCyXMmQOUlMCuS5CGGMKIiIjojrO1XRKgb7o6DKXBq2IB7MMPJSQkAGPGAGfO6Irw7R3AAIYwIiIisoPLly/bNG7vXhWSkmJQ0eJ7SdLi44+vITbWQw5czZvXjvClxxBGREREd9zVq1etHtNvuH3qVBv8+WdXVLT4XpIEFi++gYQE641SawOGMKpXfvrpJ/Tv3x9Xr16Fp6enTc8JCQlBYmIiEhMTa/TaiIgaMsP6r7y8POzcuVM+pu/55eWlRnp6a5Olx7Log5cWffr8Cn//ixg8eDAGDnRH8+ZNauidVB+GMLqjJk6ciNWrV+ORRx4x25R76tSpeP/99zFhwgSsWrXKPhdIRETVzlL9l362KyMjBAcPRhoU3NtWdN+37260bXsaxcVOmDixN9q1awsnp07w9navkfdQExjC6I4LDg7GV199hcWLF8PFxQWAbn/GtWvXokWLFna+OiIiqm6m2+QdPNjdymyXZOExS7SIjDyEUaN6ol27dnV2Fxj2CaM7LiIiAsHBwUabsG7atAktWrRA9+7d5ccKCwvxxBNPwM/PD40bN0bv3r2xb98+o3N9//33aNu2LVxcXNC/f3+LHZb37NmDPn36wMXFBcHBwXjiiSdw/fr1Gnt/RERUKj09HadPn5a/12jcK7DcaIkWw4dvhVJZUKcDGMAQRgAyM4Hdu3W/3imTJk3Cp59+Kn//ySef4KGHHjIaM2vWLGzcuBGrV6/GwYMH0bp1a8TGxiI3NxcAcOHCBYwcORLDhg3D4cOHMXnyZMyZM8foHOnp6Rg0aBDi4uJw5MgRrFu3Dnv27MG0adNq/k0SETUgarUa2dnZRl+7d+/GF198gd27dwPQtZrYteteVC6AafHSSyexf/9lLF9+F6ZNm1anAxjA5cgGb+VKYMoUQKsFFArgo4+AhISaf93x48fjmWeekZvz7d27F1999RV++uknAMD169fxwQcfYNWqVRg8eDAA4OOPP0ZSUhJWrlyJmTNn4oMPPkBYWBjeeustAEC7du3w559/4vXXX5dfZ8GCBRg3bpxcdN+mTRu888476NevHz744AM0bty45t8sEVE9Z0vPr/XrR+H48XBULIDp6sMkSYthw7biv//tVeeDlyGGsAYsM7M0gAG6Xx95BIiNrfk+Kr6+vhgyZAhWrVoFIQSGDBkCHx8f+Xh6ejqKi4vRq1cv+TFHR0fcfffdOHHiBADgxIkTiIqKMjqvSqUy+v6PP/7AkSNHsGbNGvkxIQS0Wi0yMjLQoUOHmnh7REQNimnNF1BaeA8A5883LyeAWSrG12LAgGTcf38zhIc7oUuX+hXAAIawBu306dIApldSousmfCea2U2aNEleFnzvvfdq5DWuXbuGRx55BE888YTZMd4EQERUdWq1GkePHjV6zLzwvrw7Hs2PjRq1AS+91Lle/2OZIawBa9NGtwRpGMQcHHTbOdwJgwYNQlFRESRJQmxsrNGxsLAwODk5Ye/evWjZsiUAoLi4GPv27ZOXFjt06IDNmzcbPe+3334z+j4iIgLHjx9H6zv1poiIGgi1Wo3Lly9j3bp1Ro/rthgaCuNgVVYA0/8lVFqmLklaBAdnws/vvuq63FqJIawBa95cVwP2yCP22dDUwcFBXlp0cHAwOubm5obHHnsMM2fOhJeXF1q0aIFFixbhxo0bSPinaO3RRx/FW2+9hZkzZ2Ly5Mk4cOCAWX+x2bNno2fPnpg2bRomT54MNzc3HD9+HElJSTbvWUZERMbS09PxxRdfyN/rm61mZQUiKWkAyq/7Mq71AiBvzi1JWrz0Ug4ee2xCvVt+NMUQ1sAlJOhqwOy1oamHh/UtJRYuXAitVosHHngABQUF6NGjB3744Qc0bdoUgG45cePGjZg+fTreffdd3H333XjttdcwadIk+RxdunTBzz//jLlz56JPnz4QQiAsLAzx8fE1/t6IiOoTw47369evB6ALX2lpUUhJUUE3k1XWsmNpd/u7705Dhw6n4OWVC6WyAAAQFnYGubleGDOmBwYN6lTzb6gWkIQQwt4XQZbl5+dDqVRCo9GYhZVbt24hIyMDoaGhvMOvhvGzJqKGzNqy48GD3eXZq/LpiuyDgrKMgpdejx490KJFC7i6uiIsLKwar94+yvr72xBnwoiIiMgia60nNBr3CgQwgbFjv0S7dmesjmjfvn29CF8VxRBGREREFhm2ntDXfTk6FuL8+ZY2BjAAkODkVGz16PDhwxtkAAMYwoiIiMiEvv7rypUrAEyXHvW1XbZttC1JWnh55Ro9Nnr0aHh6esLJyaneF9+XhSGMiIiIZIZLkLqGq+EmS4+Sya+WGN/9aFgDNnr06Hrd+6siGMLqON5XUfP4GRNRQ6FWq3Hq1CkAFS281xOIjNyP7t0PobjYyWIRvp+fXzVecd3GEFZH6ftqFRUVwcXFxc5XU7/payJMe5kREdUH+qVHjUYj3wGp0bibdLwvnyRpEROTjF69UuXHOnXqhMDAQHh5eUGpVDb45UdTDGF1VKNGjeDq6orLly/D0dERCkVF/qVCttJqtbh8+TJcXV3RqBH/dyGiuk+tVuPSpUu4ffs2CgoKkJSUZDbml1/6wNYAJklaxMVtQHBwptmsV3R0NAIDA6vjsusl/q1SR0mShMDAQGRkZODcuXP2vpx6TaFQoEWLFpAk2/9FSERUG1lrOaGn33T7wIEeNp1PX/PVqdMJi8ednJwqdZ0NBUNYHebk5IQ2bdpY3L2eqo+TkxNnGomoXrDWcqK42BlZWYFITo4ppwastOt9dHQqoqLSzGa/AGDkyJEICgri0mM5GMLqOIVCwS7uRERkleHy49WrVwFUtuWEQJ8+v6BVqwyLBfeGGMBswxBGRERUT1laftQV3Q+Fbq9HoPyWE1pERh5A376/Wgxe/fv3h6+vLzw9PQGAxfcVwBBGRERUj+jvdgQgN1vVy8wMxI4dg1AawMqixahRlgvuDbVp04bF95XEEEZERFRPlFV4v27dKJw4EY6KNFm1VnBviMX3lccQRkREVA+o1WpkZWWZPa7RuCM5+T4bAhgQGbkfnTodK7fmKyoqCi1btoSfnx+XHquAIYyIiKiOszYDtnevCklJA2DrHo/W6r5M3XXXXQxf1YAhjIiIqI4xrPsCjGu/9L2+Tp1qiz//7ILK7vE4cOBANGnSBI6OjlAqlfLjLLyvPgxhREREdYi1WS+Nxh1paVFISVHB1sL7Pn1+NWs5MXDgQLRt25ZB6w5gCCMiIqpDLl++bPR9ZmYgfv65L06fbgfbthoS6Nz5D8TE/Ghx6TEkJIQB7A5hCCMiIqrlrG2yvWnTv3DuXAhsDV+RkfttrvuimscQRkREVIulp6fjiy++MHpMV3AfA9uWHQFAiwEDktGrV2q1Xx9VHkMYERFRLaVWq40CmL7dRPkF93oC0dEpVvd4tIR9v+4chjAiIqJayvAOSNvbTehqvtq1+6vcbvcAMGDAAISGhgLgnY93GkMYERFRLaKv/8rLy8OxYxpkZITgxIl2+P33KNgSwAYMSKrQsmO7du0YvOyEIYyIiKiWMGw/cfBgd2zZMhRC9IS+n5d1Zd/xCOi63Ddr1gwA5N5fnPmyL4YwIiKiWuLs2dvIyAhBUVEjbN48DKXBy1oAKz986XXt2pUbbdcyDGFERES1wMqVwJQpftBqJ6D8mS+AdzzWfQxhREREdpaZCTz8sIAQ5c18ARWZ/TLEux5rH4YwIiIiO8nMBE6f1s2ClQawslR89is+Ph6+vr6s/aqFGMKIiIjuAMNNt7OyFFixwg0ffuj2T/gqv/C+Mt3ux48fj7CwsCpdN9UchjAiIqIaZnjXo+V+X2UHsIq2nQAYwOoChjAiIqIadunSJWg07vjllz44cKAHbCm6/7//2wZX15s2NVw1xOXHuoMhjIiIqBqZLjv++ectrF17AcnJiRDClr0eBQYMSMbddx+06fVGjhwJHx8fAOx4X9cwhBEREVUTy81WFQBaoLwlR93xihfeBwUFMXjVUQxhRERE1UQ/A6bRuBsEMKCsZquRkfvRvfshFBc7wcsr16alx9GjR8PT05MzX3UcQxgREVE10mjcsXPnQBuWHivXbJUF9/UHQxgREVE1efttCYsXJwIoO4B17PgnBg5MqlDBPaArumcAqz8YwoiIiKogMxPYv1+DH34owvLl/rDlzsfKBDAA8PX1rdQ1Uu3EEEZERFQB+/YBO3ZcQ2TkTaSmOuGVVzwAKFF2w1XdMUnSYtiwrRUOYCNHjmQBfj3EEEZERGSjiROB1asFgCYA3P55tOz9HiVJi5iYZAQFZdlceG+KAax+YggjIiIqQ2Ym8NNPf+Pq1SKsXh2C8kJXqcptNQQAPXr0QNOmTeHl5cXGq/UYQxgREZEVK1cCU6YIaLXNUP7+jqX0s18VvfNRr2fPngxeDQBDGBERkQm1Wo20NC0eftjnnw22AdsCmBajRm2o0FZDhh3vAXa9b0hs2T+hVhg+fDhatGiBxo0bIzAwEA888ACysrLk4y+88AIkSTL7cnNzMzrP119/jfbt26Nx48bo3Lkzvv/+e6PjQgjMnz8fgYGBcHFxQUxMDE6fPm00Jjc3F+PGjYOHhwc8PT2RkJCAa9euGY05cuQI+vTpg8aNGyM4OBiLFi2q5k+EiIiqU2YmsHs3kJSUh+HDT2LIEG+DAGYLLYYP34pOnU5UaPnRx8cHgYGB8hcDWMNRZ0JY//79sX79epw6dQobN25Eeno6Ro0aJR9/+umnkZ2dbfQVHh6Of//73/KYlJQUjB07FgkJCTh06BBGjBiBESNG4OjRo/KYRYsW4Z133sHy5cuRlpYGNzc3xMbG4tatW/KYcePG4dixY0hKSsLWrVvxyy+/YMqUKfLx/Px8DBw4EC1btsSBAwfwxhtv4IUXXsBHH31Uw58SERFVxsqVQMuWwL33AgMHKpGS0gu2/xWpRWTkPkyfvgQREYcq/NpOTk4Vfg7VD5IQQtj7Iipj8+bNGDFiBAoLC+Ho6Gh2/I8//kC3bt3wyy+/oE+fPgB0Te6uX7+OrVu3yuN69uyJbt26Yfny5RBCICgoCE899RSefvppAIBGo4G/vz9WrVqFMWPG4MSJEwgPD8e+ffvQo0cPAMCOHTvwf//3f8jMzERQUBA++OADzJ07Fzk5OfL/XHPmzMG3336LkydP2vwe8/PzoVQqodFo4OHhUenPioiIrMvMBFq2FNBqKzLrBURFpSA4OLNCS4+m2P2+frL17+86WROWm5uLNWvWIDo62mIAA4AVK1agbdu2cgADgNTUVMyYMcNoXGxsLL799lsAQEZGBnJychATEyMfVyqViIqKQmpqKsaMGYPU1FR4enrKAQwAYmJioFAokJaWhn/9619ITU1F3759jf51Exsbi9dffx1Xr15F06ZNLV5zYWEhCgsL5e/z8/Nt/1CIiKjC1Go1kpOvQattWaHnSZIW0dG/VSh8DRgwAF5eXlAqlQBY+0V1aDkSAGbPng03Nzd4e3vj/Pnz+O677yyOu3XrFtasWYOEhASjx3NycuDv72/0mL+/P3JycuTj+sfKGuPn52d0vFGjRvDy8jIaY+kchq9hyYIFC6BUKuWv4OBgq2OJiKhq1Go1li1bhr17fwCgtfl5lWm4On78eERHR6N9+/as/SKZXUPYnDlzLBbTG34ZLt/NnDkThw4dws6dO+Hg4IAHH3wQllZTv/nmGxQUFGDChAl38u1U2TPPPAONRiN/Xbhwwd6XRERUbxUVFeHgwe5YuXIydH8dlledo8WoUeuRmGhb7dfIkSMxZcoUTJs2jUuOZJFdlyOfeuopTJw4scwxrVq1kn/v4+MDHx8ftG3bFh06dEBwcDB+++03qFQqo+esWLECQ4cONZuNCggIwMWLF40eu3jxIgICAuTj+scCAwONxnTr1k0ec+nSJaNz3L59G7m5uUbnsfQ6hq9hibOzM5ydna0eJyKiisvMBE6fBtq0AZo3L3380KFG2LJlKITQz0dYrwnTz3516nTC5tdll3sqj11DmK+vb6U3I9VqdVPHhjVUgK6ua/fu3di8ebPZc1QqFXbt2oXExET5saSkJDnEhYaGIiAgALt27ZJDV35+PtLS0vDYY4/J58jLy8OBAwcQGRkJAPjxxx+h1WoRFRUlj5k7dy6Ki4vlmrWkpCS0a9fOaj0YERFVP12zVUCrBRQK4KOPgIQE4M03gZkzfWDLZtsV7fs1cOBAtG3blgGMylUn7o5MS0vDvn370Lt3bzRt2hTp6emYN28eLl68iGPHjhnNHs2bNw+ffPIJzp8/DwcHB6PzpKSkoF+/fli4cCGGDBmCr776Cq+99hoOHjyITp06AQBef/11LFy4EKtXr0ZoaCjmzZuHI0eO4Pjx42jcuDEAYPDgwbh48SKWL1+O4uJiPPTQQ+jRowfWrl0LQHdHZbt27TBw4EDMnj0bR48exaRJk7B48WKjVhbl4d2RRESVo1arcfbsbdx9t5/RXY8KhUC/fnnYvdsTlgOYFpIECKGQZ78q2nZi2rRpDGANXL26O9LV1RWbNm3C888/j+vXryMwMBCDBg3Cc889ZxTAtFotVq1ahYkTJ5oFMACIjo7G2rVr8dxzz+HZZ59FmzZt8O2338oBDABmzZqF69evY8qUKcjLy0Pv3r2xY8cOOYABwJo1azBt2jTcd999UCgUiIuLwzvvvCMfVyqV2LlzJ6ZOnYrIyEj4+Phg/vz5FQpgRERUOfqC+4yMEGi1xrXBWq2E3bstr0joQ1dY2Bnk5nrZvNl2//790aZNGwC845Eqpk7MhDVUnAkjIqq47OxsfPTRR8jMDMTKlZMNar7KosXkySvQvHl2hV8vPj4e7du3r/iFUr1Vr2bCiIiIKuLgwe7YvHkoSu96LKv2S2DAgORKBTAAct8vooqqU33CiIiIDOn3e8zMLH0sK0thEMCA8gJYnz6/oFev1EpfA7cdosriTBgREdVJlu58HDFCjYULG8G2OQYtBgxItjmARUVFoVmzZnB0dGTXe6oWDGFERFQnZGYCKSm634eGlgYwQPfrlCkCmzal4Pvvh5RxFi0iIw8gNDSjwns+3nXXXQxcVK0YwoiIqNZbuRJ4+GGg9FYy8zovrVbC998PK+MsFSu+HzlyJHx8fABwxotqBkMYERHVapmZpgEMKL/Jqikthg/fWqHiex8fH6PdU4iqG0MYERHVGoZbDAG6369efRNCuFTyjLrlx759f63Q0iPRncAQRkREtYJhob30z0SXbvarcVlPs0iStIiLq9h2Q0R3GkMYERHZXWamcaF91ZYeBWJikiu02bYlbD1BNY0hjIiI7G7p0tIAVjUVazthaPDgwQgODgbAQny6MxjCiIjIrv788yreessT5TVVLfu4FtHRqYiKSqvU8uPo0aPRoUOHCj+PqCoYwoiIyG7S09Px1lt7IMQEC0f1wcv011KSpIVKVfnwpefn51fp5xJVFkMYERHZhVqtxhdffAEvL3dIktZko21Lwcvw+6rNfOmNHj0afn5+XHoku2AIIyIiuygqKgIAKJUFGDZsK7ZsGfpPEDMNXoYkxMbuQHj48UqHrwEDBiA0NJR1X2R33MCbiIjuCEubbeuFhZ1BXNxGREWloKzaL0nSVimAAUC7du0QGBjIAEZ2x5kwIiKqcaabbS9cCISGOkGjccfRo52QlBQD3byAKOMsutYTFQlgAwcOREhIiPw9Z7+oNmEIIyKiGmXaA0yrBWbNAgBvAInQzXxZqvsyVLnWE23btmXoolqLIYyIiGrU6dNl9QCzVBWjK7zXHatcAf7IkSMRFBTEAEa1GkMYERHVGLVaDQ+P21Ao/KDV2tr5XovJk1eguNgJXl65lar/8vHxYQCjWo8hjIiIaoRarcayZcsAAEOHdje4+7EsAgMGJKN58+wqvTa3HKK6gCGMiIiqXWYm8NtvQGZmILKygnDtWhPcc8+P2L07xupzJEmLmJjKbTmkFx8fD19fX86CUZ3AEEZERBWWmamr9WrTBmje3PhY6Z2Q3gAeRmmRvUBprZehqjdeZdNVqosYwoiIqEJM20189BGQkKA7ZnonpPFdjvrf64JYVbccGj16NDw9Pdl2guoshjAiIrKZpXYTU6YARUVA795XsWiRE7RatzLOIKFv358QGnqu0kX3ADB+/HiEhYVV6rlEtQVDGBER2cxSuwmtFvjvfwFAibK63esItG17utKF92w9QfUJty0iIiKb6NpNXIRCYa2rvQJlhzCBrl3/qNKdjwxgVJ9wJoyIiMpVuXYTAKBF//67UFLSqFIzYCNHjoSPjw8AbjlE9Q9DGBFRA1fWnY56RUVF0GjckZvrjbCwMxgz5kt8+eV/UN7yY2TkAfTrl1Lpa/Px8UFgYGCln09UmzGEERE1YGXd6Who7VoXLFmS+M/sl0Dp/o6W9nnU06Jv31+rdH1sukr1GWvCiIgaKEt3Oj7yiO5x03GzZikNlh8llP71odvnsXPnw9AFMj0thg/fWum7HwHdHZBcfqT6jDNhREQNlKU7HUtKgDNnSpcl1Wo1fvtN33jVGgUiIg4jJuZHXLige2JwcGa5AaxDhw4ICAgAADRq1Aju7u5o1KgRe39Rg8EQRkTUQO3fb/6YQgG0bq2b/dq/X4NfflmNo0c7ARiAspYd9T2/lMoTNr9+hw4d0Llz58pcOlG9wBBGRNRAGBbgX716FXPmeMI0WGm1Ao8+ehPbt7tAq1UCSPxnjLUApttwuyrLjkQNFUMYEVEDYFyAL9Cz53Fotb0sjJSwbZsLSkNXWaXDAn36/FLpDbddXV0r9Tyi+oIhjIionsvMBB5+GBD/1M1rtRJSUqJheTNtoPyu9wCgxYAByRUKYAMGDIC7uzsAXQDjtkPU0DGEERHVA9Z6fWVm6tpOCLMm9xIiI/fjwIFIVORG+cpuuj148GDcfffdNo8naggYwoiI6jhrvb4MH7ckNDQDffv+il9+6YMDB3qg/BkwLRISVlRq26Hg4OAKP4eovmOfMCKiOsxar699+8oOYIBWbiMxbNj3GDAgCbrlScskSdf3q7L7PrLpKpE5zoQREdVh1np97dlTdgCLjDyAU6fawtX1JoKDL6BXr1S0bHkWK1dONtoTUpK0iIvbYFPfL2tGjx7Nnl9EFjCEERHVIaa1X23a6JYgDQOXg4NAu3ZXoFD4QKstXWKUJC06dTqCP//sigMH7jI4q26WKyLiEIYN2ypvzi1JWgwbthWdOtne+8sSPz+/Kj2fqL6ShDAv16TaIT8/H0qlEhqNBh4eHva+HCKyszfeAGbP1hXZKxTA229fw+jRBVi71gWzZytRUiJBoRAYOnQLwsLOIC0tCqmpKoP9Hsva61GL6dOXQKks+Gejbi+5AautBgwYgNDQUKPH2PmeGiJb//7mTBgRUR3w5pvArFml32u1wPTprjh37iMolQV44onS4JSe3tpgs20tjFtRWCu+VyA31+ufrvcFlVp6DA0NRWBgYIWfR9RQsTCfiKiWy8zUzYCZEkIh79WoVBYgNPQcAMjLiToK2PZHvW7roapg8T1RxXAmjIiolrNUfK+3ceMoFBXp6rkAIDfX26iw3jLTJUldTVhFZr969OgBLy8vNGnSBI0aNYKfnx+XHYkqiCGMiKiW8/G5CoXC06jIXk8IBbZsGYqwsDNQKgvg5aWG9U74OpGR+xEamoEbN1z+uTuy4nc+RkREcOmRqIoYwoiIaglLXe/T09OxadMXGDq0u8kyYyn9smRu7k1kZQWirKarkqRF376/VnnDbS49ElUdQxgRUS1gqev9iBFqfPHFFwCAiIhDCAs7gwsXmmPDhlEwnOmSJK3BY9bufoTccqKyAWzkyJHw8fHhHY9E1YQhjIjIzqx1ve/W7bbRON1diydQVGTcy0vXaKi8ux8rv+WQXlBQEMMXUTViCCMisrOUFMtd78+eLf0jWte7yxteXmp5Viw31wvnzzfH7t0x5bxCxbYc0s94GeLsF1H1YwgjIrIj/TKkKQcHICTkNo4eBQ4e7G7WxT4i4hB+/PFe/PFHV6vnliQtVKpUREWlVWgJ0sfHh0X3RHcAQxgRkZ3oliGF2V2PCoXA669rkJubi6NHw40K8vV3Q0rS7X8CWM0tPxJRzWIIIyKyk/37NdBqlWaPd+++H7/8ko2ZM4dCiA5mx4VQ4Lvv/oXyCvArG8B45yPRncEQRkR0h5i2oAgOvgXAHaY9vQ4ejMSBAzB7vJS1OyAF/u//tqJdu9M2LT/26tUL/v7+8veOjo7w9fVl7RfRHcIQRkR0B5i2oHj77Wu4995LiI4+g5SUXkZjy+54b60Rq0DXrn/g7rsPlnstI0eO5J2ORLUA944kIqphllpQTJ/uik8/TUJUVBokyfjWSN335vsUSZIWY8d+aTYe0GLs2LX417++s+l6fHx8GMCIagGGMCKiKsrMBHbv1v1qiaUWFEIokJvrBaWyAMOGbZWDlSRpEROTjI4dj5udRwgFnJyKzcYPH74V7dqdqdb3REQ1z+blyPz8fJtP6uHhUamLISKqayx1uk9IKD2+dOk1TJ/uBvMaLgFHxyIAMOr7lZUVhOTkmH+WJI1rvyRJCy+vXISGnpPHe3nlVnkLIiKyD5tDmKenJyTJ+n5kACCEgCRJKCkpqfKFERHVdtY63cfG6grv//zzKqZPV0IIS392SiguLr0LUaksQEFBE4MAphujD2KmWw7puudXLnzx7kei2sHmELZ79+6avA4iojrn9GnLne7PnNGFsIMHCyBEU4vP1c9q6R082B2bNw+FeZWIhNjYHQgPP17p0BUfHw+lUtcKg53viWoPm0NYv379avI6iIjqnDZtdEuQhkHMwQFo3RpQq9Vwc8uCJDU3u9vRdFZLo3HHli2WAphubGUCWP/+/dGmTRuGLqJarNItKvLy8rBy5UqcOHECANCxY0dMmjRJ/tcWEVF9plarcfHibUyZ4oYPP3STlxy1WoFVq7JRUvIxAGDYsEsGHe+1iI7WbSNUUNAEP/7YD02aXIOr602LbSlMw1pF+Pn5cesholpOEkKIij5p//79iI2NhYuLC+6++24AwL59+3Dz5k3s3LkTERER1X6hDVF+fj6USiU0Gg1vdiCqRdRqNSZN2msQrswL6BMTlxjNdBkW0X/zzf0mWw7pp9IMg5gWkydXftuhKVOmMIQR2Ymtf39XaiZs+vTpGD58OD7++GM0aqQ7xe3btzF58mQkJibil19+qdxVExHVAWfP3jbaz9H0zkd9+wkAyM31hpeXGqGh5wAAmZmBFvZ81M2S6RuxVnXbIYDF90R1QaVC2P79+40CGAA0atQIs2bNQo8ePart4oiIaqOMjEZldrWXJC2ysoLw2WcPQojSUBURcQgpKdGwvOWQAqNGrYeb240qtZ2Ij4/n1kNEdUSlQpiHhwfOnz+P9u3bGz1+4cIFuLu7V8uFERHVRmq1GkrlJUhSU5MgVtpKIiYm2ajVhBAKbNkyFH5+OThxItzKmbUIDs4sM3wNHDgQTZo0QaNGjeDp6Wl2nEX4RHVLpUJYfHw8EhIS8OabbyI6OhoAsHfvXsycORNjx46t1gskIqot1Go1li1bBgAYNqy7vCSpD15BQVnw8spFbq632UyZEAqcP9/Cygyarut9ebNfISEhrPMiqkcqtW3Rm2++iZEjR+LBBx9ESEgIQkJCMHHiRIwaNQqvv/56dV8jAGD48OFo0aIFGjdujMDAQDzwwAPIysoyGvPDDz+gZ8+ecHd3h6+vL+Li4nD27FmjMT/99BMiIiLg7OyM1q1bY9WqVWav9d577yEkJASNGzdGVFQUfv/9d6Pjt27dwtSpU+Ht7Y0mTZogLi4OFy9eNBpz/vx5DBkyBK6urvDz88PMmTNx+/btavksiKj6lbf1EAAUFRXJv4+IOITExCUYNWo94uI2olOnowgNPQelsgBeXmoL+zsK3LzpYnHfx8mTVyAi4lC518g6L6L6pVIhzMnJCUuXLsXVq1dx+PBhHD58GLm5uVi8eDGcnZ2r+xoB6HrerF+/HqdOncLGjRuRnp6OUaNGycczMjJw//33495778Xhw4fxww8/4MqVKxg5cqTRmCFDhqB///44fPgwEhMTMXnyZPzwww/ymHXr1mHGjBl4/vnncfDgQXTt2hWxsbG4dOmSPGb69OnYsmULvv76a/z888/Iysoyep2SkhIMGTIERUVFSElJwerVq7Fq1SrMnz+/Rj4bIqqalSuBli2Be+/V/bpype7x8oJZenprbNw4Chs2/BuLFydi584YaDS6kowWLc5Bt0SpJ2HPnj6IiUk22/exvAL8kSNHYtq0aVxqJKpnKtWiojbYvHkzRowYgcLCQjg6OmLDhg0YO3YsCgsLoVDosuWWLVtw//33y2Nmz56Nbdu24ejRo/J5xowZg7y8POzYsQMAEBUVhbvuuktectBqtQgODsbjjz+OOXPmQKPRwNfXF2vXrpVD4MmTJ9GhQwekpqaiZ8+e2L59O4YOHYqsrCz4+/sDAJYvX47Zs2fj8uXLNv9rli0qiGpeZqYueJk2XF2wAJgzx3hPyG7dLuLdd3fAy0uNgoImWLFiMsz/LSv++bL8b9wJE1b9s2Rp+76PDGBEdUuNtqi4desW3n33XezevRuXLl2C1mTfjoMHD1bmtDbLzc3FmjVrEB0dDUdHRwBAZGQkFAoFPv30U0ycOBHXrl3D559/jpiYGHlMamoqYmJijM4VGxuLxMREALqlhgMHDuCZZ56RjysUCsTExCA1NRUAcODAARQXFxudp3379mjRooUcwlJTU9G5c2c5gOlf57HHHsOxY8fQvXt3i++rsLAQhYWF8vcV2TSdiCrH2tZDs2cD+n+iarXAww8DkuQHrXYCyg5aEizf/QgAWjl4lRW+Ro4cCR8fHwAstieqzyoVwhISErBz506MGjUKd999d7kbe1eX2bNnY9myZbhx4wZ69uyJrVu3ysdCQ0Oxc+dOjB49Go888ghKSkqgUqnw/fffy2NycnKMghEA+Pv7Iz8/Hzdv3sTVq1dRUlJicczJkyflczg5OZndmeTv74+cnJwyX0d/zJoFCxbgxRdftPHTIKKqUqvV8PC4DYXCD1pt6Z9jCoUw+h7QBbLSjbjLClrWCAwYkGzTzJePjw8L8IkagEqFsK1bt+L7779Hr169qvTic+bMKbeQ/8SJE3IrjJkzZyIhIQHnzp3Diy++iAcffBBbt26FJEnIycnBww8/jAkTJmDs2LEoKCjA/PnzMWrUKCQlJd2xoFgVzzzzDGbMmCF/n5+fj+DgYDteEVH9ZXin49Chxnc63nefcYuJqtLfPdmrV2q1nI+I6odKhbBmzZpVSz+wp556ChMnTixzTKtWreTf+/j4wMfHB23btkWHDh0QHByM3377DSqVCu+99x6USiUWLVokj//iiy8QHByMtLQ09OzZEwEBAWZ3MV68eBEeHh5wcXGBg4MDHBwcLI4JCAgAAAQEBKCoqAh5eXlGs2GmY0zvqNSfUz/GEmdn5xq7sYGIjJne6RgWdsaoTsvF5ZbRno/lz34JC8cFIiP3o2/fXyvdfJWI6q9K/TPvrbfewuzZs3Hu3Lkqvbivry/at29f5pe1InZ9HZq+hurGjRtyQb6eg4OD0ViVSoVdu3YZjUlKSoJKpQKgq72IjIw0GqPVarFr1y55TGRkJBwdHY3GnDp1CufPn5fHqFQq/Pnnn0Z3VCYlJcHDwwPh4dYaNRLRnaC/4zEry/jPC6WyQG4xAQBhYWcQEXEApbVfwqC9hKX7mSR07Pgn9PtASpIWAwYkYdiw7yscwNiKgqhhqNRMWI8ePXDr1i20atUKrq6ucuG7Xm5ubrVcnF5aWhr27duH3r17o2nTpkhPT8e8efMQFhYmB58hQ4Zg8eLFeOmll+TlyGeffRYtW7aUC+EfffRRLFu2DLNmzcKkSZPw448/Yv369di2bZv8WjNmzMCECRPQo0cP3H333ViyZAmuX7+Ohx56CACgVCqRkJCAGTNmwMvLCx4eHnj88cehUqnQs2dPALqu1uHh4XjggQewaNEi5OTk4LnnnsPUqVM500VkRytXAlOm6O949MPQod0t9uc6eLA7Nm8eCuN/pyogROn+jpY27R44MAkDByZV6M5HU+PHj2chPlEDUakQNnbsWPz999947bXX4O/vX+P1Vq6urti0aROef/55XL9+HYGBgRg0aBCee+45OdTce++9WLt2LRYtWoRFixbB1dUVKpUKO3bsgIuLCwBd8f62bdswffp0LF26FM2bN8eKFSsQGxsrv1Z8fDwuX76M+fPnIycnB926dcOOHTuMCu0XL14MhUKBuLg4FBYWIjY2Fu+//7583MHBAVu3bsVjjz0GlUoFNzc3TJgwAS+99FKNfk5EZCwzU3f3Y5s2uu/1AQwAtFoJmzcPhZNTIYKDL8iBSaNxx5YtpgFMz/AxCYZbFQ0bVtrx3pbwNXr0aLMbfHgnJFHDUqk+Ya6urkhNTUXXrl1r4proH+wTRlR5xrNeAlOmXMfy5U0sjjXcYDsjIwSrV0+w+XViY3cgPPx4hWa9xo8fj7CwMJvHE1HdUqN9wtq3b4+bN29W+uKIiGpSZqb5rNeHH7qidCnRmH6D7bCwM3B0LISlIntJ0v7TN0xh9FhFAtjIkSMRFBTE2S4iAlDJwvyFCxfiqaeewk8//QS1Wo38/HyjLyIie1Gr1fjtN7VZA1YhFIiOTrWwd2Pp8bS0qH+64BsGMC2io/ciMXEJhg/farTlkOESpC18fHwYwIhIVqmZsEGDBgEA7rvvPqPHhRCQJAklJSVVvzIiogrS9/7SaNwhSYlGfb4kSYuoqDRERaXhwoXm2LhxlNnxlBQVLP3bNCoqDUplgcVWFhXBux6JyFClQtju3bur+zqIiKpM3/tLqSzAsGFbjRqwGhfOn0BRkfFxlSoVKSmWGlArkJvrZVR0X5m7HkePHs1ZMCIyUqkQ1q9fP5vG/fe//8VLL70k74FGRHSnlDdrZXq8oKCJxZkwSdLt91hVfn5+VT4HEdUvlQphtvriiy/w9NNPM4QRkV2UN2ulVBagoKAJdu4ciGPHwmHa/6sidV+Gm26bYusJIrKkRkNYJbpfEBHdERqNOzZvHob09NYwLsTX9f0aPHgb2rU7bfPSI+96JKKKqtEQRkRUG1nuiF9KCAV8fdVmAWzgwIEICQkxG8+ZLiKqDIYwImpQyu6Ir2OtDiwkJASBgYE1eHVE1JAwhBFRnaNWq+U7IbOyFMjIaITQ0NtwcrpS5vM0GnccO9bRqDWFOet1YGwxQUTViSGMiOoUfS8wQLesaNyGIg0REZafZzjWUkd8QCAs7AyGD99iFMD69+8PX19f+Pn5ccmRiKpVjYaw8ePHc89DIqpW+hkw/bKiflbLcOshw824c3O9UVTUyKQGrHTzbUCLjh2PQaVKRfPm2Wav16ZNGy5BElGNqHQIy8vLw++//45Lly5Ba7I/yIMPPggA+OCDD6p2dUREVuTmepstKwpR2li1/JkvqVKbbxMRVZdKhbAtW7Zg3LhxuHbtGjw8PCBJpX+4SZIkhzAiopri5aX+Z1Nt462HHB2LcPRouIWZL2MV3XybiKi6VSqEPfXUU5g0aRJee+01uLq6Vvc1EVEDk5kJnD4NtGkDNG9e+rhhAb5eRkYGAPOtiQBACGDFiodhKXQZq/jm20RE1a1SIezvv//GE088wQBGRJWmD1hr17pg1iwltFoJCoXAiy/m4P77r+DmzZv46qs9yM31hpeXGgDk3yuVunOEhZ2BcU/osu561JEkLRISVlis/yIiupMqFcJiY2Oxf/9+tGrVqrqvh4gaAP0djhqNO5YsSYQQupkrrVbC/Pn+yM39EunprbFlS6JBTZeALmRpER2diqioNFy4EAxbgpe+Jky/DVFFAhjbUhBRTbE5hG3evFn+/ZAhQzBz5kwcP34cnTt3hqOjo9HY4cOHV98VElG9o19itFZcf+FCc6NlRt3yon6JUYGUlF5ISYmGLlxZJ0laxMVtgKdnHoqLnSxu5A1Y3/eRnfCJqCbZHMJGjBhh9thLL71k9pgkSSgpKanSRRFR/WNY33X0aB4yMkLg6FhoVlwPaAFI5TRUBYyDWelzJQkGfcO2olOnE+Vem4+PD9tQENEdZ3MIM21DQURkK8sNVjtAkrTo0uUI/vijCwzvZNRolBbCWflGjdqA4OBM5OZ6WZ31IiKqLSr2J9w/PvvsMxQWFpo9XlRUhM8++6zKF0VEdVtmJrB7t+5XoOwGq3/80QWS0YSWhOTkGMTEJEOSdP/40/1a3j8EBTw986BUFiA09FyFAhjrvojIHioVwh566CFoNBqzxwsKCvDQQw9V+aKIqO5Rq9XIzs7GW2/loWVLgXvvBVq2FHjrrTxcuaLb09FSDRigsFgXFhSUhcTEJZgwYdU/gUw+auUKJBQXVyxMjRw5EtOmTWPdFxHZRaXujhRCGDVo1cvMzIRSf+84ETUYZd3tOHOmB/7+OwlKpeUGq4Z1XHqSpIWXVy4A4Pp1NyQlxcC48ap+Vszyc2wVFBTEAEZEdlOhENa9e3dIkgRJknDfffehUaPSp5eUlCAjIwODBg2q9oskotrt0qVLAMrfSsi0waq+eB6A2WO6FhVDrdSFKRAdvRepqSqj5+iXIAcMGICmTZvi9u3bAABHR0ezfyDyzkcisrcKhTD9HZKHDx9GbGwsmjRpIh9zcnJCSEgI4uLiqvUCiah2U6vVWL9+PQAgKysQpvs0ms5QRUQcQljYGbPiecPHAPwzo2a5YkKStIiKSkNUVJrFIvzQ0FDe7UhEtV6FQtjzzz8PAAgJCUF8fDwaN25cIxdFRHWHYdF9cnIMjNtGCMTEJJsVyetnxaw9dvRoeBl3Rhqfk3dAElFdVamasAkTJgDQ/eF76dIls/YVLVq0qPqVEVGtpO/3pdFoUFxcjKtXrwKwVnQvQanU9QTTbTdUfmDSt7CwTkJQUFbl3wARUS1RqRB2+vRpTJo0CSkpKUaP6wv22ayVqH7RB6+8vDx8/PF2s/0cHR0Dcf26K3QF88ZF9xs3jjKq24qIOGT1dUxbWFhSmQJ8IqLaqFIhbOLEiWjUqBG2bt2KwMBAi3dKElH9YN5o1dJ+jvo6MIHSIKbvfK/780EIBbZsGYqwsDNWZ8Qsz6aVMi3At4Z9v4ioLqhUCDt8+DAOHDiA9u3bV/f1EFEtY63RqvG2QaW/SpJAXNx6ABI2bPi30bmEUODYsXB07HgcgH4WrRDFxc7w8lJbbGEhSVoMHrwNrq43ERycaRTALO35yLseiaiuqFQICw8Pl5svElHDUN4slZ4QCri53YCXV66FnmACO3cOws6dsTCdRdPPcllqYWFtCZN7PhJRXVapEPb6669j1qxZeO2119C5c2c4OjoaHffw8KiWiyMi+9HXgen/wWW50ao5fc2WaU8w49YV5rNo+uXKxMQlSExcYtP+j1x2JKK6TBJCWNsDxCqFwnCpoLQejIX51Ss/Px9KpRIajYbBlu4owzowQLcUmZvrjaysQCQnx1gIVcazWYYzVxqNO44dC8fOnbY1cp4wYRVCQ8+VOy4+Pp4lEURUK9n693elZsJ2795d6QsjotpPXwcGlLaM0C8Ptm59GqdPt4VxQ1aBuLivjWq29MHNy0uNjh2PIylpoM2zaLbw9fWt+BsjIqpFKhXC+vXrh19//RUffvgh0tPTsWHDBjRr1gyff/45QkNDq/saichOTIvxhVCYBTD9425uN+QAZhrchg3bipiYZCQlDTB7rsFZLDZ2NaQvxGfxPRHVB+VX2VqwceNGxMbGwsXFBYcOHUJhYSEAQKPR4LXXXqvWCySiO0OtViM7OxvZ2dlyHZi1BqymDGewLAW3LVuGwtGxyOJzdbQYMCAJvXqllnmNQUFBCAwMZAAjonqhUjNhr7zyCpYvX44HH3wQX331lfx4r1698Morr1TbxRHRnWFaA6ZnuRjfeG9I/QwWAGRkhOD6dVeLm3ir1V4WX7tv392IjDxkNgNm2n6Cs19EVN9UKoSdOnUKffv2NXtcqVQiLy+vqtdERDVAf7ejKY1Gg0uXLpk8VlrPZdoyokuXIzhypMs/QUuLAQOS4eJyS95wW5K0MO+cD6SlqWBpc29LAQxg+wkiqv8qFcICAgJw5swZhISEGD2+Z88etGrVqjqui4iqkbWZLkss1XOZtoy4994f5e8ByAEMgEk3fcMZMwmAFpIkjM7NDbiJqKGqVAh7+OGH8eSTT+KTTz6BJEnIyspCamoqnn76acybN6+6r5GIrDCc3crLy8Pt27eNjjs6OkKpVNrcXNlaPVdi4hKjthFKZYEcnjIyQmyqG9NRIC5uvdzMlT3AiKghq1QImzNnDrRaLe677z7cuHEDffv2hbOzM55++mk8/vjj1X2NRGRBRWa3TBkuNxoGoQsXgi3Wc+XmelkNTNbrxvQd8UtJktZs6yFLxo8fz/ovIqr3KhXCJEnC3LlzMXPmTJw5cwbXrl1DeHg4mjRpUt3XR0RWmNZ3GQYrABZDFmC+3BgTk4xevVJx8GB3bN481Ox1TO98ND2vUlmA3r1/xa+/9oX5XpKltWHlLT/Gx8dDqVSyAJ+IGoxKhTA9JycnhIeHV9e1EFElGQYrw1ko0w72lpYbk5IG4NYtZ+zZ0wfmXWu06N37V+TmeuPo0U5yt3zT87q43IL5EqSEvn1/gp/fZQAoc/NtBi8iaoiqFMKIyP5Mg5Xhvoz6mq6wsDNQKgus9v369VdLAQwAFPj117749dd+MCy0Nz1vixbnYKl1Rdu2p9G8ebbF6+bdj0TU0FWqWSsR1R6Wg1UpfU0XUFq/ZU5h5XHAfInR/LzNm2eja9c/oAtiACDQtesfVgMYERFxJoyozrNcGF9KX9Olr+cyr9+CXBtWujl3+Uz3efzXv77DXXf9jgsXWiA4+DwDGBFRORjCiOo4pbLArKGqEIBhTVh6emuj4+Hhx3H8eAejMbqlRQ1u3GiM7duHWAlj+iVHy0X2zZtn2xy+2IKCiBo6hjCieiAi4hDCws4YNVAtq5nqiRMdMHnyChQXO8HLKxfp6a2NOt536HACJ050MCj01wUv/eyZZK0NmBX6Ox/1WIhPRMQQRlSrWdpqSKPRoLi4GAUFxrNQhg1U9d8DlpupCqFAcbETQkPPWbxj8vjxcOiDV+fORxAcfOGf2THLhfmm+zwaYuAiIrKMIYyoFlKr1bh06RLWr19fqedHR0cjJSUFgOWaMcN6Lmt3TOoo8Oef3fDnn11geh+PYRNX3ulIRFRxDGFEtUxVOuHrBQQEyL+3VDNmWM9VXmG/juGypI5pYT4REVUMQxhRLWO6/FgdTGvGlMoCo+73hiHNvN+XniSHNW6+TURUdQxhRHWYtT0gLTGsGTPusK9FdHQqEhJW4PjxjkhJibb4fEnSIiGhtJifAYyIqGoYwojqCNPAZboHpOE2QlevXrX6XAAmHfYVSEnphZQU1T/fG3e918+ADRu21Wr7CbabICKqOIYwolpOo3FHWlrUPyFJYbGxqundirt375afbxrWVKpUK/Vflh6TEBu7A+Hhx7nvIxFRNWMII6rFjJcNdXSbbsegrLsV9Sy1n0hJUdlQiK+jb+xquvTIuyGJiKqOIYyoBlnq82WorFkk8425DSnKbDuhZ7n9hAIREftw4EAkyto+lsX3REQ1iyGMqIbY2mpi2rRpFoNYWRtzmy5JWgtM1tpP6AKY5bb3kqRFXNwGBAdnWg1grAEjIqo6hjCiGmJrqwnTcfqAY71/V2kRfqdOR5Gb64URIzrhjz8OmZ3btEdYKevhbtiwrejU6YTZMX0dGGvAiIiqR/lFIUR0R3l7e2P8+PFygJIkLQBdQIqO3ovp05fId0EqlQUIDT2HsDBns/NoNO7IyAhBWNgZxMVttOGVdS0o9Oc2FRQUhMDAQAYwIqJqwpkwIju7cuWK0fdOTk5wdXUFYLnJqi1M74iMiUm2MKumhSTBaDnTtAUFZ7+IiGoOQxiRjapSZF+WTZs2mT02evRo+femG3NbYtgXzNIdkcnJMejd+1fs2dPHKHSVF/CCgoIYvoiIaghDGJENqlpkD1Ssu/3t27crdH2GfcHS0qLM6siEUODXX/tgwIBkBAVlwcsrF//+twpNmoSanatRo0bw9PTk7BcRUQ1jCCOyQWWL7PXK6m5fEeUFOY3G3aDzvSndjFhi4hIolQUICQlhry8iIjtiCCMqg34J0rRuqyIsLQ8adre39RxpaVFITVWVGeRyc71R1v02lhq6EhGRfdSZuyOHDx+OFi1aoHHjxggMDMQDDzyArKwsozHr169Ht27d4OrqipYtW+KNN94wO89PP/2EiIgIODs7o3Xr1li1apXZmPfeew8hISFo3LgxoqKi8Pvvvxsdv3XrFqZOnQpvb280adIEcXFxuHjxotGY8+fPY8iQIXB1dYWfnx9mzpxZ4SUmsi/9EuRHH31ksW7LkitXriA7OxvZ2dnQaDQALPf70ochWxw82B2LFyciJaWXWZDTaNwBlN4J6ehYKN9NaYmlhq5ERGQfdWYmrH///nj22WcRGBiIv//+G08//TRGjRqFlJQUAMD27dsxbtw4vPvuuxg4cCBOnDiBhx9+GC4uLpg2bRoAICMjA0OGDMGjjz6KNWvWYNeuXZg8eTICAwMRGxsLAFi3bh1mzJiB5cuXIyoqCkuWLEFsbCxOnToFPz8/AMD06dOxbds2fP3111AqlZg2bRpGjhyJvXv3AgBKSkowZMgQBAQEICUlBdnZ2XjwwQfh6OiI1157zQ6fHlXGpUuXKvwcS2HNUr8vW8OQfhbN0r+X9EEuPb210VJnly5HcORIF/l7IQB9h312wCciqj0kIXR/RNc1mzdvxogRI1BYWAhHR0f85z//QXFxMb7++mt5zLvvvotFixbh/PnzkCQJs2fPxrZt23D06FF5zJgxY5CXl4cdO3YAAKKionDXXXfJRdharRbBwcF4/PHHMWfOHGg0Gvj6+mLt2rUYNWoUAODkyZPo0KEDUlNT0bNnT2zfvh1Dhw5FVlYW/P39AQDLly/H7NmzcfnyZZu7jefn50OpVEKj0cDDw6NaPjeyja2F+LY6eLA7tm0bhpISyWgp0VqNV3x8PNatW4eMjBCsXj3B4jklSdfXa+XKyWYBLyFhBYqLneSgZ+kOyClTprAmjIioBtj693edWY40lJubizVr1iA6OhqOjo4AgMLCQjRu3NhonIuLCzIzM3Hu3DkAQGpqKmJiYozGxMbGIjU1FYCuqPrAgQNGYxQKBWJiYuQxBw4cQHFxsdGY9u3bo0WLFvKY1NRUdO7cWQ5g+tfJz8/HsWPHqutjoBpUXiG+fvlPvxxYnoiIQ0hLu4QNG9RITNQ1Wz14sDuWLEnE6tUTsGRJIg4e7C6PLy4uxujRozF0aDuLy4v6IHf8eEeLS53FxU4IDT0nt7fQ/94Qtx4iIrKvOrMcCQCzZ8/GsmXLcOPGDfTs2RNbt26Vj8XGxmL69OmYOHEi+vfvjzNnzuCtt94CAGRnZyMkJAQ5OTlGwQgA/P39kZ+fj5s3b+Lq1asoKSmxOObkyZMAgJycHDg5OcHT09NsTE5OjjzG0jn0x6wpLCxEYWGh/H1+fr4tHwvdYZW909HVNRfdujnh6NGCcov1DZc1hw27ZDBWi+joVISHH0NWVpDFOyENlzr1zVZNsf0EEZH92XUmbM6cOZAkqcwvffgBgJkzZ+LQoUPYuXMnHBwc8OCDD0K/mvrwww9j2rRpGDp0KJycnNCzZ0+MGTMGgG42qy5YsGABlEql/BUcHGzvS6q31Gq1XEBv6SsvL8/i86yFJ1tmxNavX4/i4mIAFSvWj4g4hMTEJZgwYRUmT14BAFixYjK+/95yrZhKlSrPeum3GjL9YgAjIrI/u86EPfXUU5g4cWKZY1q1aiX/3sfHBz4+Pmjbti06dOiA4OBg/Pbbb1CpVJAkCa+//jpee+015OTkwNfXF7t27TI6R0BAgNldjBcvXoSHhwdcXFzg4OAABwcHi2MCAgLkcxQVFSEvL89oNsx0jOkdlfpz6sdY8swzz2DGjBny9/n5+QxiNaCy9V4ajTuOHbO8/Gdr2wd9sX9Fi/WVygKkp7fG5s2Wg1cpLaKi0gDo6soYtoiIai+7hjBfX1/4+vpW6rlara5OxnD5DgAcHBzQrFkzAMCXX34JlUolv4ZKpcL3339vND4pKQkqlW5Jx8nJCZGRkdi1axdGjBghv86uXbvkOywjIyPh6OiIXbt2IS4uDgBw6tQpnD9/Xj6PSqXCq6++ikuXLsl3VCYlJcHDwwPh4eFW35OzszOcnc03YqbqZWvjVUOGS5CAACDJxxQKYXPbB31ne/3m3KbLmtaCXFl3SZbSYvjw0nMolUqbromIiOyjTtSEpaWlYd++fejduzeaNm2K9PR0zJs3D2FhYXLwuXLlCjZs2IB77rkHt27dwqeffoqvv/4aP//8s3yeRx99FMuWLcOsWbMwadIk/Pjjj1i/fj22bdsmj5kxYwYmTJiAHj164O6778aSJUtw/fp1PPTQQwB0f7ElJCRgxowZ8PLygoeHBx5//HGoVCr07NkTADBw4ECEh4fjgQcewKJFi5CTk4PnnnsOU6dOZci6wyzt91jRxqumS5C6AKYLYpKkxYsv5qCkpMBovC3bE9myObf+XNevu5rNwBnS3xFpuAE3C++JiGq3OhHCXF1dsWnTJjz//PO4fv06AgMDMWjQIDz33HNGoWb16tV4+umnIYSASqXCTz/9hLvvvls+Hhoaim3btmH69OlYunQpmjdvjhUrVsg9wgDdEs7ly5cxf/585OTkoFu3btixY4dRof3ixYuhUCgQFxeHwsJCxMbG4v3335ePOzg4YOvWrXjsscegUqng5uaGCRMm4KWXXqrhT4oMVVebCUv1W4CE2NgdmDOnNTp3bgr9y1S0aL+szblNzwVoYWkmTP86+gAWHx8PX19fLkUSEdVydbZPWEPAPmFVk52djY8++qjK59m7V4WkpAEwXIKUJC0SE5dg7twJ8Pb2xsmTJ/HRR99jyZJEszov/V6NllibNcvMDLTY/0vfeBXQIjLyAEJDMxAcnCk/Nz4+Hu3bt6/yeyYiosqz9e/vOjETRmQvERHD8dJL3WAYwACBxMQcTJnyf/IjSqWyzDseLYUwa7NmBw92t1iAL4QCo0ath5vbDavLl5WtsSQiojuPIYyoDBs3HoFW293kUQm5uTuxbp2uCbD+po2K3PFordWFm1uB1TsgJUkrz3rFx8ebFd6z9xcRUd3CEEZUBluCVVFREZycnMzueAQAIYD09NZmdWEXLgRbnDX78sv/wHjWrfQ1hw3bioceGoCgoCCGLSKieoAhjOocS3c8GqrojFBZdzPa2krC29sb06ZNw9mzt7Fli2GIMu6ED8BgudGUceuLUqV3PgYF9WIAIyKqJxjCqE6x9Y5H/RJheWy5m7G8VhKGLS8uXHCFEMZByrAuzHq/L8t3PgJAdHQqmjfPxujRoxnAiIjqEYYwqlNsbbR6+fJleYsga8rbv9FQWa0kDPd51GjcoVBMh1ZrfCelfvnScrsLwPIMmO65+g74pvuVEhFR3VY3NlUkqqB169YZhSNLKrJ/o62UygLMmpX+T18vXYiKiUlGbq43NBp3ucbMmBbWliHL6qJPRER1G2fCqMGq6P6NtmrceA0SE92Rm+uFrKwgJCfHyMudMTHJUKlSkZKiAlD6mH6M4XWYdsAnIqL6hSGM6gy1Wl3hLYcMmRbgm9/NqAtEFW2saon++GefPWi03Klv+ipJWqhUexEVlQalsgAuLrfMatMYwIiI6jeGMKoTqroFkaUC/Ndfb4spU5To0qUAr77qASEUSE6OgYvLLbPi/IpuRwRY3+4I0AWy1FSVXO9lyz6S3AuSiKh+YQijOuHSpUuVfq61Avz58y+jSRN/vPYaoN+8S3/Mzy8HxcXO8PJSA4DNBfyGLC13GjLtpm+t+J97QRIR1U8MYVTrqdVqrF+/vtLPt1aAf/ZsI+TnA1qTOnkhFFixYjL0NVsqVWqFtiPSS09vjbJ2ZpUkLf71r85o2zbK6p2P7IJPRFR/MYRRrWdrWwprrBXgh4Tchr8/oFCYBjEB/Y3D+mVD0z5ekqSFo2MRMjJCLNaIWe8HVvr8YcO2ondvNl8lImqo2KKC6j19Ab5h24hhw7YiKEiL5s2Bjz4CHByEfMy0XYQQCkRHpxo9v0uXI1i5cjJWr56AJUsScfCgbn9JjcYdGRkhOHWqrdVlSECLL75IxyefMIARETVknAmjBsFS4btG0xZOTk5ISPBGt26X8O672+HoWISVKyebzZpFRaUhKioNXbvGwdGxCOPHdzGrEbt5s7FBqwnL65D6ANi//10MYEREDRxDGNVptrSNMBwTGnpOfnzdunUAdFscBQVp5WNl7RU5cKAT9u5tYrFGLCkpBqWTy6bNV7WIjk6VW1I4OfWq8nsnIqK6jSGM6ixb2kbYMsa05qy8dhGhobct3PVYWkdmyahRG9Cp0wmMHDkSQUFBnAUjIiLWhFHdZK3tRGZmIDIyQqDRuFsdo9G42/gq5lsJ5eXlIShIa1Rjpgtglvd+BHRLkMHBmQAAHx8fBjAiIgLAmTCqo6y1ndDXc1W0tYRhI9SyZs/Wr1+P+Ph4REQcgp9fjtzKwhrT5UwiIiI9hjCq9Sx1irfcCFUYzXqlpKhs3hvS29sb8fHx+Oij78ttzKpvHFtc7IyyWlDExW1AcHCmUQBj13siItJjCKNaz9vbG9OmTTOq3dq79xzS0lKRmqqS9300D0QKqFR75THlzUoplUqrM2yGs2e7d+8GYL0jvv51OnU6AUDX8V6pVLLxKhERGWEIozrBMLysXAlMmRIArVaC7q7DvQgPP1Zma4my9mQ0ZK2xq+HsmeHdlsZ3Ugo8+OAVjBt3Bc2bt4Gn510MXkREZBVDGNUpmZnAlCn4J4ABgK6jfXj4MahUqVZnvWytydI3drXWosJSvVhi4hLk5nrh8ccHIzLSH4BvDbxzIiKqbxjCqMao1eoytxyqzCzR0qVl7/WonxnT9+MyZK2nWEZGBq5cuYKbN28CKG1RceFCcwASgoMvyM+3VC+WmLgEoaHnEBRkcmFERERlYAijGqFWq7Fs2bJyx02bNs3mIJaZCbz1lqUjhj26dDNjUVFpAIDRo0fD09MT7713E0uWhFi84zEpKcnsjOnprc1mvJo2vVqpjbyJiIgsYZ8wqhG2brpdkc25T58GhMXdgMz3eszN9QIAeHp6oqQkEAsWhNrcL8zajJejY6FBb7B/XtnK3ZZERETlYQijOqNNG0Bh9hOrLTcYnT5tWEOmYxjUTFm7Q7K42MniRuCcBSMiosrgciRVK30d2JUrV6r93M2bAx99BDzyCFBSUhqCAGDz5qHQ14QZBiMnJ6d/wpswCmJlzWCVdYdkaOi5Mrc0IiIishVDGFUbW+vAqiIhAYiNBc6cAby9NfDxuQtr17pg61YJWi2gUEjo27cv/vMf4/YQ8+f/jRdfDCqzX5i11hMKhcDQocZ3WloKX2zESkREFcEQRtWmIvVdVdG8ue4LaIrMTGDWrNI7JrVaCbNne2LgQAEfn1vIzs4GAPTv/z9oNOvlGayCgiZISekJb+8rcHK6jaysQCQnx1htPRES0gtFRXdZvSb2AyMioopiCCO7srRsqZ9RsqW9ha7ey/hYSQnw1lvfITT0nNHjSqVuFuubb+7HH390ha6gX5j8arn1BAMWERFVN4YwsqtNmzZV+rnTpk1DmzbeUCiMg5iDg7Ba75WZGWgQwGDhVx22niAioprGuyOpzioqKpKL9R0cdI85OACvv66xGp7On28J08BlCVtPEBFRTWMIoypTq9XIzs6ukTsibZGQAJw9C+zerfv1//4v2+rYFi3OQbf0aInucdPCfRbcExFRTeByJFXJnbgj0hb6Yv309HSsX7/e6JjhXY/u7tcQFnYG6emtYTgjJklaxMQkIygoC15euXj44cHcgJuIiGoUQxhVyZ26I9KSK1euGIUktVqNL774wmiM4YbbgBa64KUvxC8lBNCp01EolQWIj49H+/bt78h7ICKihovLkXRHaDTuyMgIsbpVUGVs2rQJy5Ytg1qtBmAeCE23H9L9uFsuxAdKO+grlcpqu0YiIiJrOBNGNc5wNsp082xbGC4nWiq4LyoqglqtNqtJ++WXPmbbD1nDQnwiIrrTGMKoRlnbDDss7IxN7R9sCXB5eXlmdWB796pw4ECPcs6u6w3GPSCJiMgeGMKoRlnbDFvfg6usWS5LAW7z5qHw88tB8+ald0Devn3b6HmZmYFIShoAy60oSoOXYSE+AxgREd1pDGFUYzQad1y/7gpdQbz5Ztims1y6UJQtBzJLAQ5QYOXKyVaXNA8e7P7PZt6WApgWkyevQHGxU5nBiy0piIjoTmAIoxphfFeigD6I6Zf+AJjNculnr/RjwsLOQJK0FmfSLC1p6mfOLN9vIjBgQLI8gzZy5Ej4+PiYjWJLCiIiulMYwqhKLM0amd+VKEGSBOLi1iM4OBMAcOxYRwuzXOZ7Nw4btvWfmS3rS5p6lmfOAECgT59f0KtXqvxIUFAQwxYREdkVQxhVibe3N6ZNm2bUHmLvXicsXmwemtzcbiA9vbXJDJnlLYSEUOD48XCEhx/H5MkrsHLlZKOAZXg3Y0GBLohlZQVaOaeEVq0y5O/Gjx/PAEZERHbHPmFUZd7e3ggMDERgYCBKSgKh1XpDMslBkqSFo2OR2QxZadNU062EBH74YRCWLEnEpUsBGDZsKyRJK5/L8G7GpKQkaDTuSE6OgaVQZxjY4uPjERYWVi3vm4iIqCo4E0bVZuVKYMoUQKsFJEn3JYRuU+233rqBZs3isGKF+RJkbOwOaLUKJCfHmAQ046XJxMQlaNnyPoSHOyEgIBRAKAoKCpCUlGR1KdI0sLERKxER1RYMYVQtMjNLAxhQGr6+/BJQqYDmzZsgM7MJFIrSMQDg4CAQHn4cAJCUFGPx3Pr6r9DQc8jL+xYpKeZjvLzUFor4tUhIWGHUzoKIiKi24HIkVYvTp43DFQCUlAC+vrqNtQHdrx99pAtngO7X11/XyO0orP04Gi4nWtv+SKksMFuyHD58KwMYERHVWpwJo2rRpg0szHIBrVsbj0tIAGJjgTNndMccHG7io4+szWQBQOlyYnnd8yMiDiEs7Axyc73YgJWIiGo9zoRRtbA0y/Xhh6WzYKZj77nH+JjpTJa+UF9f4G9t+yNLM2KhoefYiJWIiGo9zoRRtTGd5bIUwEwZhqKIiEPw88sxakehD1txcRvL3P6oPCNHjmRvMCIiqlUYwqhaNW9uW/jS0/cZy8rKwqZNm1Bc7GwxbAHCbLnSsFasPD4+PgxgRERUq3A5kmpcZiawe7fuV0NqtRrZ2dkoKipCTk4jZGSEwNGx0GBJUkf3vYSYmGSrvcLKw2VIIiKqbTgTRtUuM1N3t2SbNsAPP5S2rlAodHVjCQm6ALZs2TIAhvtMdoAkadGlyxEcOdJFLsAXAtiw4d8Gm3xnmRXeW9sLEuB+kEREVDsxhFG1Mm7YqiuuF0JXXa/VAo88ItCt2yW4uV0FYLng/siRLkhIWIG8PE9s2DAK+glbIXQNXRMTl5jNgLHei4iI6hqGMKo25g1bzbcQKimR8O672xEaeg6A5U23hVCguNgJbm43YWnj7k6dRkClKoSnpycAznQREVHdxJowspm12i5At7z4229qs4atpkyL6fX9wSyNsXbs6NFvsX79ejg5OSEwMJABjIiI6iSGMLLJypVAy5bAvffqfl25svSYvr4rJWW1WWgypVKlGi0lpqe3hjDau1sLlSoVgOUu+IbF+EVFRdXy3oiIiOyBy5FULtNlRl1tl64nWPPmpWFIH5pKa7wE9Btx//NMREWlyd/p68GM/y0gISWlF1JTVXJHfHbBJyKi+oghjMplbV/IM2d0v//tNydoNO5QKguMQlNWVhCSk2OMthnShyiNxh3HjnW0sE2RLrTpm7SGhZ2BUlnA8EVERPUOQxiVy9q+kPv3A/fdB2i13pCkRHnmSh+aQkPPoVOno0azWBqNO9LSopCSooJuBsx0tqxURTriExER1TUMYVQu/b6QjzyimwFzcAAWLABmzza8E9J45krPcBbLcAPuUhJKg5hxIKtIR3wiIqK6hoX5DVRZdzpaGpOQAJw9C6xfD6xdCzRpYr5EqZ+5ssS0H5gxXQDr0+eXSnfEJyIiqms4E9YAGTZUNexiX94YwLhA35ThzJVG447cXG94eamhVBZY7Adm8my0apWBHj0OsAifiIgaBIawBqa8Ox2tjZkyRfzze8v1W4YzV4bLjvrHw8LOmG3Abfp8ffDifpBERNQQMIQ1MGXd6agPYZbGWAtfeoMHb0PTpleRmRlotg3Rli1DkZi4xKR9hSGBmJjkMsOX6d6Q7JJPRER1XZ2rCSssLES3bt0gSRIOHz5sdOzIkSPo06cPGjdujODgYCxatMjs+V9//TXat2+Pxo0bo3Pnzvj++++NjgshMH/+fAQGBsLFxQUxMTE4ffq00Zjc3FyMGzcOHh4e8PT0REJCAq5du1bha7EH/Z2OhhwcgNatyx4DaK02YpUkgR07hmL16glYufJhi9sQ5eZ6ISLiEBITlyA6ei8A/bm0GDAgCb16pZZ53T4+PggMDJS/GMCIiKiuq3MhbNasWQgKCjJ7PD8/HwMHDkTLli1x4MABvPHGG3jhhRfwkb6YCUBKSgrGjh2LhIQEHDp0CCNGjMCIESNw9OhRecyiRYvwzjvvYPny5UhLS4ObmxtiY2Nx69Ytecy4ceNw7NgxJCUlYevWrfjll18wZcqUCl2LvejvdHRw0H3v4AB8+GHpLJjxGN0SpCRpMWBA8j+d7PXhSd/mXgshSmfKLO0XaVgrplQWYODAZEyfvgQTJqzC9OlLyg1gRERE9ZEkhPGmMbXZ9u3bMWPGDGzcuBEdO3bEoUOH0K1bNwDABx98gLlz5yInJ0euFZozZw6+/fZbnDx5EgAQHx+P69evY+vWrfI5e/bsiW7dumH58uUQQiAoKAhPPfUUnn76aQCARqOBv78/Vq1ahTFjxuDEiRMIDw/Hvn370KNHDwDAjh078H//93/IzMxEUFCQTddii/z8fCiVSmg0Gnh4eFT58zOUmalbgmzd2jiAGTpw4CLefXe7WdNVlSoV4eHHUFzshOvX3bBhw7+tvo5CITB06BZERByq0vVOmTIFgYGBVToHERHRnWDr3991Zibs4sWLePjhh/H555/D1dXV7Hhqair69u1rVKwdGxuLU6dO4erVq/KYmJgYo+fFxsYiNVU3E5ORkYGcnByjMUqlElFRUfKY1NRUeHp6ygEMAGJiYqBQKJCWlmbztdhb8+bAPfdYD2AAEBSkm8HSBzBAt7SYmqqCu/s1hIaeQ3DwhTL3ixw58usqBzCARfhERFT/1InCfCEEJk6ciEcffRQ9evTA2bNnzcbk5OQgNDTU6DF/f3/5WNOmTZGTkyM/ZjgmJydHHmf4PGtj/Pz8jI43atQIXl5eRmPKuxZLCgsLUVhYKH+fn59vcdydZKm1hGEne/P9IktJkhbBwWU0IrOCRfhERNQQ2HUmbM6cOZAkqcyvkydP4t1330VBQQGeeeYZe15ujVuwYAGUSqX8FRwcXKOvZ0vDVi8vtdlMl2kne0sF91VpthoUFMQifCIiqvfsOhP21FNPYeLEiWWOadWqFX788UekpqbC2dnZ6FiPHj0wbtw4rF69GgEBAbh48aLRcf33AQEB8q+Wxhge1z9mWH908eJFufYsICAAly5dMjrH7du3kZubW+7rGL6GJc888wxmzJghf5+fn19jQcyWhq2ArpA+JibZ6kbchuMGDkxGVFRalZqtjh8/nqGLiIgaBLuGMF9fX/j6+pY77p133sErr7wif5+VlYXY2FisW7cOUVFRAACVSoW5c+eiuLgYjo6OAICkpCS0a9dOXv5TqVTYtWsXEhMT5XMlJSVBpVIBAEJDQxEQEIBdu3bJoSs/Px9paWl47LHH5HPk5eXhwIEDiIyMBAD8+OOP0Gq1FboWS5ydnc2CZk2wpWEroFsGPHiwu0FNmBYxMckWa7wMO+SHhp6z+tr9+/c3+wwcHR2hVCq57EhERA1KnagJa9GihdH3TZo0AQCEhYWh+T+p4T//+Q9efPFFJCQkYPbs2Th69CiWLl2KxYsXy8978skn0a9fP7z11lsYMmQIvvrqK+zfv19uHSFJEhITE/HKK6+gTZs2CA0Nxbx58xAUFIQRI0YAADp06IBBgwbh4YcfxvLly1FcXIxp06ZhzJgxcusMW67Fnmxp2AoAN296Y+vWYQZtJxRITo5Bp05HjWa5LHXIt1aM36ZNG97lSEREhDoSwmyhVCqxc+dOTJ06FZGRkfDx8cH8+fON+ndFR0dj7dq1eO655/Dss8+iTZs2+Pbbb9GpUyd5zKxZs3D9+nVMmTIFeXl56N27N3bs2IHGjRvLY9asWYNp06bhvvvug0KhQFxcHN55550KXYs9tWkDSBJg2JxEoTBu2Arow5px3y/DonyNxh0XLgRj8+ah0JcX6jvkh4Wd4d6PREREZahTfcIamprqE5aZCbRoYRzCJAk4f954JiwzE2jZUhgFMUnSIjFxCdLTW1vZgkhnwoRVFpcl2e+LiIjqu3rXJ4yqz+nTxgEM0H1/5gygVquRnZ2N7OxsODhkY/78v+W7I/VLjQDKDGCmd08aYr8vIiIinXqzHEm20+8NaVgX5uAAFBfn4dFHfwQABAdfkJcTExPdje54zMgIKTOAWbp7cuTIkQgKCmLhPRER0T8Ywhog/d6QjzyiK8h3cADGjwdiY5UQQr8FkcDw4brthvRNWfX0vcMMg5gkaREXtwHBwZkWa8F8fHwYwIiIiAxwObIByswEWrUCUlN1zVpTU4HPPjPdfFvCli1DodG4mz1f3yXfdJmyU6cTVovxuQxJRERkjDNhDYylJq2tWpnXiAG6Ox0vXGgOpfKE2bGIiEMICztTbmPWgQMHom3btpwFIyIiMsGZsAbEWpPWJk10d0dasmHDKBw82N3iMaWyAKGh58psRRESEsIARkREZAFDWANirUnr9evAxx8DkmSpW4nC6rIkERERVR5DWAOivyvSkIMD4OamW5LcuvUK+vbdbfY8fYNWIiIiqj4MYQ2Ii4saixblwcFBN+Pl4CAwcuQN9OwpcO+9wLBhPnB2LpYL7vXK6vtFRERElcPC/AZCrVZj2bJlAIAnntD1/XJ0LMLKlZPluyK1WgnJyTGIiUmWN+221veLiIiIqoYhrIEoKiqSf6/v+2Wp6aoQCowZ0xqdOi0p985HIiIiqjyGsAYsKysQgABQemukg4NA165uuHChoFrCF/uDERERWcYQ1kBpNO5ITo6BYQADBJ54IhtOTuoqnTs+Ph5KpRJOTk5sT0FERGQFQ1gDlZvrbWH/Rwm5uTuxadM5m84xcuRI+Pj4GD3G4EVERGQbhrAGytr+jxW5C5IbchMREVUeQ1gDpd//ccuWoRW6C1I/+8UZLyIioqphCGvAbN3/0ZCPjw8CAwPvwNURERHVbwxhDYS1uxT17SqIiIjozmLH/AbC29sbAwcOtPdlEBER0T8YwhoItVqN4uJie18GERER/YPLkQ2A4ZZFREREVDtwJqwBMNyyqKrYAZ+IiKh6cCaMbBIfHw9fX1+2pSAiIqomDGFkVf/+/eHr6ws/Pz+GLyIiomrGEEZWtWnThj3BiIiIaghrwsgq1n8RERHVHIYwsig+Pp5LkERERDWIIYws8vX1tfclEBER1WusCWsAbF1WHD16NDw9Pbk5NxER0R3AENYAeHt7Y9q0aWX2C2PwIiIiurMYwhoIBiwiIqLahTVhRERERHbAEEZERERkBwxhRERERHbAEEZERERkBwxhRERERHbAEEZERERkBwxhRERERHbAEEZERERkBwxhRERERHbAjvm1mBACAJCfn2/nKyEiIiJb6f/e1v89bg1DWC1WUFAAAAgODrbzlRAREVFFFRQUQKlUWj0uifJiGtmNVqtFVlYW3N3dIUlSpc+Tn5+P4OBgXLhwAR4eHtV4hXUHPwMdfg78DAB+BgA/Az1+DjXzGQghUFBQgKCgICgU1iu/OBNWiykUCjRv3rzazufh4dFg/yfT42egw8+BnwHAzwDgZ6DHz6H6P4OyZsD0WJhPREREZAcMYURERER2wBDWADg7O+P555+Hs7OzvS/FbvgZ6PBz4GcA8DMA+Bno8XOw72fAwnwiIiIiO+BMGBEREZEdMIQRERER2QFDGBEREZEdMIQRERER2QFDWB31wQcfoEuXLnJzOZVKhe3bt8vHb926halTp8Lb2xtNmjRBXFwcLl68aHSO8+fPY8iQIXB1dYWfnx9mzpyJ27dv3+m3Um0WLlwISZKQmJgoP9YQPocXXngBkiQZfbVv314+3hA+AwD4+++/MX78eHh7e8PFxQWdO3fG/v375eNCCMyfPx+BgYFwcXFBTEwMTp8+bXSO3NxcjBs3Dh4eHvD09ERCQgKuXbt2p99KpYSEhJj9HEiShKlTpwJoGD8HJSUlmDdvHkJDQ+Hi4oKwsDC8/PLLRvv31fefA0C3VU5iYiJatmwJFxcXREdHY9++ffLx+vgZ/PLLLxg2bBiCgoIgSRK+/fZbo+PV9Z6PHDmCPn36oHHjxggODsaiRYuqduGC6qTNmzeLbdu2ib/++kucOnVKPPvss8LR0VEcPXpUCCHEo48+KoKDg8WuXbvE/v37Rc+ePUV0dLT8/Nu3b4tOnTqJmJgYcejQIfH9998LHx8f8cwzz9jrLVXJ77//LkJCQkSXLl3Ek08+KT/eED6H559/XnTs2FFkZ2fLX5cvX5aPN4TPIDc3V7Rs2VJMnDhRpKWlif/973/ihx9+EGfOnJHHLFy4UCiVSvHtt9+KP/74QwwfPlyEhoaKmzdvymMGDRokunbtKn777Tfx66+/itatW4uxY8fa4y1V2KVLl4x+BpKSkgQAsXv3biFEw/g5ePXVV4W3t7fYunWryMjIEF9//bVo0qSJWLp0qTymvv8cCCHE6NGjRXh4uPj555/F6dOnxfPPPy88PDxEZmamEKJ+fgbff/+9mDt3rti0aZMAIL755huj49XxnjUajfD39xfjxo0TR48eFV9++aVwcXERH374YaWvmyGsHmnatKlYsWKFyMvLE46OjuLrr7+Wj504cUIAEKmpqUII3Q+sQqEQOTk58pgPPvhAeHh4iMLCwjt+7VVRUFAg2rRpI5KSkkS/fv3kENZQPofnn39edO3a1eKxhvIZzJ49W/Tu3dvqca1WKwICAsQbb7whP5aXlyecnZ3Fl19+KYQQ4vjx4wKA2Ldvnzxm+/btQpIk8ffff9fcxdeQJ598UoSFhQmtVttgfg6GDBkiJk2aZPTYyJEjxbhx44QQDePn4MaNG8LBwUFs3brV6PGIiAgxd+7cBvEZmIaw6nrP77//vmjatKnR/w+zZ88W7dq1q/S1cjmyHigpKcFXX32F69evQ6VS4cCBAyguLkZMTIw8pn379mjRogVSU1MBAKmpqejcuTP8/f3lMbGxscjPz8exY8fu+HuoiqlTp2LIkCFG7xdAg/ocTp8+jaCgILRq1Qrjxo3D+fPnATScz2Dz5s3o0aMH/v3vf8PPzw/du3fHxx9/LB/PyMhATk6O0eegVCoRFRVl9Dl4enqiR48e8piYmBgoFAqkpaXduTdTDYqKivDFF19g0qRJkCSpwfwcREdHY9euXfjrr78AAH/88Qf27NmDwYMHA2gYPwe3b99GSUkJGjdubPS4i4sL9uzZ0yA+A1PV9Z5TU1PRt29fODk5yWNiY2Nx6tQpXL16tVLXxg2867A///wTKpUKt27dQpMmTfDNN98gPDwchw8fhpOTEzw9PY3G+/v7IycnBwCQk5Nj9Iet/rj+WF3x1Vdf4eDBg0b1Dno5OTkN4nOIiorCqlWr0K5dO2RnZ+PFF19Enz59cPTo0QbzGfzvf//DBx98gBkzZuDZZ5/Fvn378MQTT8DJyQkTJkyQ34el92n4Ofj5+Rkdb9SoEby8vOrM56D37bffIi8vDxMnTgTQcP5fmDNnDvLz89G+fXs4ODigpKQEr776KsaNGwcADeLnwN3dHSqVCi+//DI6dOgAf39/fPnll0hNTUXr1q0bxGdgqrrec05ODkJDQ83OoT/WtGnTCl8bQ1gd1q5dOxw+fBgajQYbNmzAhAkT8PPPP9v7su6YCxcu4Mknn0RSUpLZv/oaEv2/8gGgS5cuiIqKQsuWLbF+/Xq4uLjY8cruHK1Wix49euC1114DAHTv3h1Hjx7F8uXLMWHCBDtf3Z23cuVKDB48GEFBQfa+lDtq/fr1WLNmDdauXYuOHTvi8OHDSExMRFBQUIP6Ofj8888xadIkNGvWDA4ODoiIiMDYsWNx4MABe18ameByZB3m5OSE1q1bIzIyEgsWLEDXrl2xdOlSBAQEoKioCHl5eUbjL168iICAAABAQECA2Z1R+u/1Y2q7AwcO4NKlS4iIiECjRo3QqFEj/Pzzz3jnnXfQqFEj+Pv7N4jPwZSnpyfatm2LM2fONJifhcDAQISHhxs91qFDB3lZVv8+LL1Pw8/h0qVLRsdv376N3NzcOvM5AMC5c+eQnJyMyZMny481lJ+DmTNnYs6cORgzZgw6d+6MBx54ANOnT8eCBQsANJyfg7CwMPz888+4du0aLly4gN9//x3FxcVo1apVg/kMDFXXe66J/0cYwuoRrVaLwsJCREZGwtHREbt27ZKPnTp1CufPn4dKpQIAqFQq/Pnnn0Y/dElJSfDw8DD7y6y2uu+++/Dnn3/i8OHD8lePHj0wbtw4+fcN4XMwde3aNaSnpyMwMLDB/Cz06tULp06dMnrsr7/+QsuWLQEAoaGhCAgIMPoc8vPzkZaWZvQ55OXlGc0W/Pjjj9BqtYiKiroD76J6fPrpp/Dz88OQIUPkxxrKz8GNGzegUBj/tebg4ACtVgugYf0cAICbmxsCAwNx9epV/PDDD7j//vsb3GcAVN9/d5VKhV9++QXFxcXymKSkJLRr165SS5EA2KKirpozZ474+eefRUZGhjhy5IiYM2eOkCRJ7Ny5Uwihux29RYsW4scffxT79+8XKpVKqFQq+fn629EHDhwoDh8+LHbs2CF8fX3r1O3olhjeHSlEw/gcnnrqKfHTTz+JjIwMsXfvXhETEyN8fHzEpUuXhBAN4zP4/fffRaNGjcSrr74qTp8+LdasWSNcXV3FF198IY9ZuHCh8PT0FN999504cuSIuP/++y3eot69e3eRlpYm9uzZI9q0aVOrb8s3VVJSIlq0aCFmz55tdqwh/BxMmDBBNGvWTG5RsWnTJuHj4yNmzZolj2kIPwc7duwQ27dvF//73//Ezp07RdeuXUVUVJQoKioSQtTPz6CgoEAcOnRIHDp0SAAQb7/9tjh06JA4d+6cEKJ63nNeXp7w9/cXDzzwgDh69Kj46quvhKurK1tUNESTJk0SLVu2FE5OTsLX11fcd999cgATQoibN2+K//73v6Jp06bC1dVV/Otf/xLZ2dlG5zh79qwYPHiwcHFxET4+PuKpp54SxcXFd/qtVCvTENYQPof4+HgRGBgonJycRLNmzUR8fLxRf6yG8BkIIcSWLVtEp06dhLOzs2jfvr346KOPjI5rtVoxb9484e/vL5ydncV9990nTp06ZTRGrVaLsWPHiiZNmggPDw/x0EMPiYKCgjv5Nqrkhx9+EADM3pcQDePnID8/Xzz55JOiRYsWonHjxqJVq1Zi7ty5Ri0FGsLPwbp160SrVq2Ek5OTCAgIEFOnThV5eXny8fr4GezevVsAMPuaMGGCEKL63vMff/whevfuLZydnUWzZs3EwoULq3TdkhAGrYSJiIiI6I5gTRgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgR1Sv33HMPEhMT7X0ZNe6FF15At27d7H0ZRFQFDGFERLVIUVHRHX09IQRu3759R1+TiHQYwoio3pg4cSJ+/vlnLF26FJIkQZIknD17FkePHsXgwYPRpEkT+Pv744EHHsCVK1fk591zzz14/PHHkZiYiKZNm8Lf3x8ff/wxrl+/joceegju7u5o3bo1tm/fLj/np59+giRJ2LZtG7p06YLGjRujZ8+eOHr0qNE17dmzB3369IGLiwuCg4PxxBNP4Pr16/LxkJAQvPzyy3jwwQfh4eGBKVOmAABmz56Ntm3bwtXVFa1atcK8efNQXFwMAFi1ahVefPFF/PHHH/L7XLVqFc6ePQtJknD48GH5/Hl5eZAkCT/99JPRdW/fvh2RkZFwdnbGnj17oNVqsWDBAoSGhsLFxQVdu3bFhg0bqvs/EREZYAgjonpj6dKlUKlUePjhh5GdnY3s7Gy4u7vj3nvvRffu3bF//37s2LEDFy9exOjRo42eu3r1avj4+OD333/H448/jsceewz//ve/ER0djYMHD2LgwIF44IEHcOPGDaPnzZw5E2+99Rb27dsHX19fDBs2TA5L6enpGDRoEOLi4nDkyBGsW7cOe/bswbRp04zO8eabb6Jr1644dOgQ5s2bBwBwd3fHqlWrcPz4cSxduhQff/wxFi9eDACIj4/HU089hY4dO8rvMz4+vkKf1Zw5c7Bw4UKcOHECXbp0wYIFC/DZZ59h+fLlOHbsGKZPn47x48fj559/rtB5iagCqrT9NxFRLdOvXz/x5JNPyt+//PLLYuDAgUZjLly4IACIU6dOyc/p3bu3fPz27dvCzc1NPPDAA/Jj2dnZAoBITU0VQgixe/duAUB89dVX8hi1Wi1cXFzEunXrhBBCJCQkiClTphi99q+//ioUCoW4efOmEEKIli1bihEjRpT7vt544w0RGRkpf//888+Lrl27Go3JyMgQAMShQ4fkx65evSoAiN27dxtd97fffiuPuXXrlnB1dRUpKSlG50tISBBjx44t99qIqHIa2TMAEhHVtD/++AO7d+9GkyZNzI6lp6ejbdu2AIAuXbrIjzs4OMDb2xudO3eWH/P39wcAXLp0yegcKpVK/r2XlxfatWuHEydOyK995MgRrFmzRh4jhIBWq0VGRgY6dOgAAOjRo4fZta1btw7vvPMO0tPTce3aNdy+fRseHh4Vfv/WGL7mmTNncOPGDQwYMMBoTFFREbp3715tr0lExhjCiKheu3btGoYNG4bXX3/d7FhgYKD8e0dHR6NjkiQZPSZJEgBAq9VW6LUfeeQRPPHEE2bHWrRoIf/ezc3N6FhqairGjRuHF198EbGxsVAqlfjqq6/w1ltvlfl6CoWuwkQIIT+mXxo1Zfia165dAwBs27YNzZo1Mxrn7Oxc5msSUeUxhBFRveLk5ISSkhL5+4iICGzcuBEhISFo1Kj6/8j77bff5EB19epV/PXXX/IMV0REBI4fP47WrVtX6JwpKSlo2bIl5s6dKz927tw5ozGm7xMAfH19AQDZ2dnyDJZhkb414eHhcHZ2xvnz59GvX78KXSsRVR4L84moXgkJCUFaWhrOnj2LK1euYOrUqcjNzcXYsWOxb98+pKen44cffsBDDz1kFmIq46WXXsKuXbtw9OhRTJw4ET4+PhgxYgQA3R2OKSkpmDZtGg4fPozTp0/ju+++MyvMN9WmTRucP38eX331FdLT0/HOO+/gm2++MXufGRkZOHz4MK5cuYLCwkK4uLigZ8+ecsH9zz//jOeee67c9+Du7o6nn34a06dPx+rVq5Geno6DBw/i3XffxerVqyv92RBR2RjCiKheefrpp+Hg4IDw8HD4+vqiqKgIe/fuRUlJCQYOHIjOnTsjMTERnp6e8vJdVSxcuBBPPvkkIiMjkZOTgy1btsDJyQmArs7s559/xl9//YU+ffqge/fumD9/PoKCgso85/DhwzF9+nRMmzYN3bp1Q0pKinzXpF5cXBwGDRqE/v37w9fXF19++SUA4JNPPsHt27cRGRmJxMREvPLKKza9j5dffhnz5s3DggUL0KFDBwwaNAjbtm1DaGhoJT4VIrKFJAyLB4iIyCY//fQT+vfvj6tXr8LT09Pel0NEdRBnwoiIiIjsgCGMiIiIyA64HElERERkB5wJIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrKD/wcnjf4SfQ+W4gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAiVFJREFUeJzt3XlcVNX7B/DPHQQEhFF2EBTEfRc0HNyyQDSX/KmJZqaJWX21RM2lzbLNbNWyMtPSb2pqan1d0gQzMyUyl4xcUkLFANFBBkRlm/v7Y7yX2VkEhuXzfr14AfeeuXPuDePhnOc8RxBFUQQRERER1SiFrTtARERE1BAxCCMiIiKyAQZhRERERDbAIIyIiIjIBhiEEREREdkAgzAiIiIiG2AQRkRERGQDDMKIiIiIbIBBGBEREZENMAgjIiKr1qxZA0EQcOHCBVt3haheYRBGRDZ35MgRzJgxA506dYKLiwtatGiBsWPH4u+//zZpe++990IQBAiCAIVCATc3N7Rr1w4TJ05EfHx8hd53x44dGDBgALy9veHs7IxWrVph7Nix2LNnT1Xdmok333wT3333ncnxw4cP45VXXkFOTk61vbexV155RX6WgiDA2dkZHTt2xIsvvojc3NwqeY8NGzZg6dKlVXItovqGQRgR2dySJUuwdetW3H///Vi2bBmmTZuGn3/+GaGhoUhOTjZpHxAQgK+++gr//e9/8c4772DEiBE4fPgwBg0ahJiYGBQVFZX5nu+++y5GjBgBQRDw3HPP4YMPPsDo0aNx7tw5bNy4sTpuE4D1IGzRokU1GoRJPv30U3z11Vd4//330b59e7zxxhsYPHgwqmJrYQZhRJY1snUHiIhmz56NDRs2wMHBQT4WExODLl264K233sK6desM2iuVSjzyyCMGx9566y0888wz+OSTTxAUFIQlS5ZYfL/i4mK89tpriIqKwt69e03OZ2Vl3eUd1R43b96Es7Oz1TZjxoyBp6cnAODJJ5/E6NGjsW3bNvz6669QqVQ10U2iBokjYURkcxEREQYBGAC0adMGnTp1wunTp8t1DTs7O3z44Yfo2LEjli9fDo1GY7HttWvXkJubiz59+pg97+3tbfD97du38corr6Bt27Zo3Lgx/Pz8MGrUKKSkpMht3n33XURERMDDwwNOTk4ICwvDli1bDK4jCALy8/Oxdu1aeQpw8uTJeOWVVzB37lwAQHBwsHxOPwdr3bp1CAsLg5OTE9zd3TFu3DikpaUZXP/ee+9F586dcfToUfTv3x/Ozs54/vnny/X89N13330AgNTUVKvtPvnkE3Tq1AmOjo7w9/fH9OnTDUby7r33XuzatQsXL16U7ykoKKjC/SGqrzgSRkS1kiiKuHLlCjp16lTu19jZ2WH8+PF46aWX8Msvv2Do0KFm23l7e8PJyQk7duzA008/DXd3d4vXLCkpwbBhw7Bv3z6MGzcOM2fORF5eHuLj45GcnIyQkBAAwLJlyzBixAhMmDABhYWF2LhxIx566CHs3LlT7sdXX32FqVOn4p577sG0adMAACEhIXBxccHff/+Nr7/+Gh988IE8KuXl5QUAeOONN/DSSy9h7NixmDp1Kq5evYqPPvoI/fv3x/Hjx9G0aVO5v2q1GkOGDMG4cePwyCOPwMfHp9zPTyIFlx4eHhbbvPLKK1i0aBEiIyPx1FNP4ezZs/j0009x5MgRHDp0CPb29njhhReg0Whw+fJlfPDBBwCAJk2aVLg/RPWWSERUC3311VciAHH16tUGxwcMGCB26tTJ4uu+/fZbEYC4bNkyq9dfuHChCEB0cXERhwwZIr7xxhvi0aNHTdp98cUXIgDx/fffNzmn1Wrlr2/evGlwrrCwUOzcubN43333GRx3cXERJ02aZHKtd955RwQgpqamGhy/cOGCaGdnJ77xxhsGx//880+xUaNGBscHDBggAhBXrFhh8b71vfzyyyIA8ezZs+LVq1fF1NRU8bPPPhMdHR1FHx8fMT8/XxRFUfzyyy8N+paVlSU6ODiIgwYNEktKSuTrLV++XAQgfvHFF/KxoUOHii1btixXf4gaGk5HElGtc+bMGUyfPh0qlQqTJk2q0GulkZa8vDyr7RYtWoQNGzagR48e+OGHH/DCCy8gLCwMoaGhBlOgW7duhaenJ55++mmTawiCIH/t5OQkf339+nVoNBr069cPx44dq1D/jW3btg1arRZjx47FtWvX5A9fX1+0adMG+/fvN2jv6OiIxx57rELv0a5dO3h5eSE4OBhPPPEEWrdujV27dlnMJUtISEBhYSHi4uKgUJT+Gnn88cfh5uaGXbt2VfxGiRogTkcSUa2SmZmJoUOHQqlUYsuWLbCzs6vQ62/cuAEAcHV1LbPt+PHjMX78eOTm5iIpKQlr1qzBhg0bMHz4cCQnJ6Nx48ZISUlBu3bt0KiR9f9d7ty5E6+//jpOnDiBgoIC+bh+oFYZ586dgyiKaNOmjdnz9vb2Bt83b97cJL+uLFu3boWbmxvs7e0REBAgT7FacvHiRQC64E2fg4MDWrVqJZ8nIusYhBFRraHRaDBkyBDk5OTg4MGD8Pf3r/A1pJIWrVu3Lvdr3NzcEBUVhaioKNjb22Pt2rVISkrCgAEDyvX6gwcPYsSIEejfvz8++eQT+Pn5wd7eHl9++SU2bNhQ4XvQp9VqIQgCdu/ebTYgNc6x0h+RK6/+/fvLeWhEVHMYhBFRrXD79m0MHz4cf//9NxISEtCxY8cKX6OkpAQbNmyAs7Mz+vbtW6l+9OzZE2vXrkVGRgYAXeJ8UlISioqKTEadJFu3bkXjxo3xww8/wNHRUT7+5ZdfmrS1NDJm6XhISAhEUURwcDDatm1b0dupFi1btgQAnD17Fq1atZKPFxYWIjU1FZGRkfKxux0JJKrPmBNGRDZXUlKCmJgYJCYm4ptvvqlUbaqSkhI888wzOH36NJ555hm4ublZbHvz5k0kJiaaPbd7924ApVNto0ePxrVr17B8+XKTtuKdYqZ2dnYQBAElJSXyuQsXLpgtyuri4mK2IKuLiwsAmJwbNWoU7OzssGjRIpPiqaIoQq1Wm7/JahQZGQkHBwd8+OGHBn1avXo1NBqNwapUFxcXq+VCiBoyjoQRkc3NmTMH27dvx/Dhw5GdnW1SnNW4MKtGo5Hb3Lx5E+fPn8e2bduQkpKCcePG4bXXXrP6fjdv3kRERAR69+6NwYMHIzAwEDk5Ofjuu+9w8OBBjBw5Ej169AAAPProo/jvf/+L2bNn47fffkO/fv2Qn5+PhIQE/Oc//8GDDz6IoUOH4v3338fgwYPx8MMPIysrCx9//DFat26NkydPGrx3WFgYEhIS8P7778Pf3x/BwcEIDw9HWFgYAOCFF17AuHHjYG9vj+HDhyMkJASvv/46nnvuOVy4cAEjR46Eq6srUlNT8e2332LatGl49tln7+r5V5SXlxeee+45LFq0CIMHD8aIESNw9uxZfPLJJ+jVq5fBf6+wsDBs2rQJs2fPRq9evdCkSRMMHz68RvtLVGvZcmkmEZEolpZWsPRhrW2TJk3ENm3aiI888oi4d+/ecr1fUVGR+Pnnn4sjR44UW7ZsKTo6OorOzs5ijx49xHfeeUcsKCgwaH/z5k3xhRdeEIODg0V7e3vR19dXHDNmjJiSkiK3Wb16tdimTRvR0dFRbN++vfjll1/KJSD0nTlzRuzfv7/o5OQkAjAoV/Haa6+JzZs3FxUKhUm5iq1bt4p9+/YVXVxcRBcXF7F9+/bi9OnTxbNnzxo8G2vlO4xJ/bt69arVdsYlKiTLly8X27dvL9rb24s+Pj7iU089JV6/ft2gzY0bN8SHH35YbNq0qQiA5SqI9AiiWAWbgxERERFRhTAnjIiIiMgGGIQRERER2QCDMCIiIiIbYBBGREREZAMMwoiIiIhsgEEYERERkQ2wWGstptVqkZ6eDldXV279QUREVEeIooi8vDz4+/tDobA83sUgrBZLT09HYGCgrbtBRERElZCWloaAgACL5xmE1WKurq4AdP8Rre2DR0RERLVHbm4uAgMD5d/jljAIq8WkKUg3NzcGYURERHVMWalETMwnIiIisgEGYUREREQ2wCCMiIiIyAaYE1bHabVaFBYW2rob9ZqDg4PVJcZERESVwSCsDissLERqaiq0Wq2tu1KvKRQKBAcHw8HBwdZdISKieoRBWB0liiIyMjJgZ2eHwMBAjtRUE6lgbkZGBlq0aMGiuUREVGUYhNVRxcXFuHnzJvz9/eHs7Gzr7tRrXl5eSE9PR3FxMezt7W3dHSIiqic4fFJHlZSUAACnyGqA9IylZ05ERFQV6kwQNmLECLRo0QKNGzeGn58fJk6ciPT0dIM2oiji3XffRdu2beHo6IjmzZvjjTfeMGjz008/ITQ0FI6OjmjdujXWrFlj8l4ff/wxgoKC0LhxY4SHh+O3334zOH/79m1Mnz4dHh4eaNKkCUaPHo0rV64YtLl06RKGDh0KZ2dneHt7Y+7cuSguLq6ah6GH02PVj8+YiIiqQ50JwgYOHIjNmzfj7Nmz2Lp1K1JSUjBmzBiDNjNnzsSqVavw7rvv4syZM9i+fTvuuece+XxqaiqGDh2KgQMH4sSJE4iLi8PUqVPxww8/yG02bdqE2bNn4+WXX8axY8fQrVs3REdHIysrS24za9Ys7NixA9988w0OHDiA9PR0jBo1Sj5fUlKCoUOHorCwEIcPH8batWuxZs0aLFy4sBqfEBEREVmjVquRkZFh8UOtVtdofwRRFMUafccqsn37dowcORIFBQWwt7fH6dOn0bVrVyQnJ6Ndu3ZmXzN//nzs2rULycnJ8rFx48YhJycHe/bsAQCEh4ejV69eWL58OQBdYnZgYCCefvppLFiwABqNBl5eXtiwYYMcBJ45cwYdOnRAYmIievfujd27d2PYsGFIT0+Hj48PAGDFihWYP38+rl69Wu4pxNzcXCiVSmg0GpNti27fvo3U1FQEBwejcePGFXt4VCF81kREdZdarUZhYSFycnKwefPmMtvPmDEDHh4ed/We1n5/66szI2H6srOzsX79ekRERMiJ0jt27ECrVq2wc+dOBAcHIygoCFOnTkV2drb8usTERERGRhpcKzo6GomJiQB0JR+OHj1q0EahUCAyMlJuc/ToURQVFRm0ad++PVq0aCG3SUxMRJcuXeQATHqf3Nxc/PXXXxbvq6CgALm5uQYf9c3kyZMhCAIEQYC9vT18fHwQFRWFL774okKlNtasWYOmTZtWX0eJiKjOU6vVWL58OVauXFmuAAwArl69Ws29KlWngrD58+fDxcUFHh4euHTpEv73v//J5/755x9cvHgR33zzDf773/9izZo1OHr0qMGUZWZmpkFgBAA+Pj7Izc3FrVu3cO3aNZSUlJhtk5mZKV/DwcHBJAAwbmPuGtI5SxYvXgylUil/BAYGlvPJVJwth2QHDx6MjIwMXLhwAbt378bAgQMxc+ZMDBs2rFry5oiIqGHSTyUqr6KiomroiXk2DcIWLFggj4pY+jhz5ozcfu7cuTh+/Dj27t0LOzs7PProo5BmU7VaLQoKCvDf//4X/fr1w7333ovVq1dj//79OHv2rK1usUKee+45aDQa+SMtLa1a3kf/LwNLH8uXL6+2QMzR0RG+vr5o3rw5QkND8fzzz+N///sfdu/eLS+UeP/999GlSxe4uLggMDAQ//nPf3Djxg0AusUVjz32GDQajfxz8sorrwAAvvrqK/Ts2ROurq7w9fXFww8/XKl/hEREVLep1epyj37Zik3rhM2ZMweTJ0+22qZVq1by156envD09ETbtm3RoUMHBAYG4tdff4VKpYKfnx8aNWqEtm3byu07dOgAQLdSsV27dvD19TVZxXjlyhW4ubnByckJdnZ2sLOzM9vG19cXAODr6yvPLeuPhhm3MV5RKV1TamOOo6MjHB0drT6PqlDebY5qcjuk++67D926dcO2bdswdepUKBQKfPjhhwgODsY///yD//znP5g3bx4++eQTREREYOnSpVi4cKEcYDdp0gSA7i+Y1157De3atUNWVhZmz56NyZMn4/vvv6+xeyEiIturC1v62TQI8/LygpeXV6VeK+UPFRQUAAD69OmD4uJipKSkICQkBADw999/AwBatmwJAFCpVCa/jOPj46FSqQDo6kGFhYVh3759GDlypPw++/btw4wZMwAAYWFhsLe3x759+zB69GgAwNmzZ3Hp0iX5OiqVCm+88QaysrLg7e0tv4+bmxs6duxYqfttCNq3b4+TJ08CAOLi4uTjQUFBeP311/Hkk0/ik08+gYODA5RKJQRBMAlqp0yZIn/dqlUrfPjhh+jVqxdu3LghB2pERFQ/paSk4MqVKyguLq7R3K7KqhMV85OSknDkyBH07dsXzZo1Q0pKCl566SWEhITIgU9kZCRCQ0MxZcoULF26FFqtFtOnT0dUVJQ8Ovbkk09i+fLlmDdvHqZMmYIff/wRmzdvxq5du+T3mj17NiZNmoSePXvinnvuwdKlS5Gfn4/HHnsMAKBUKhEbG4vZs2fD3d0dbm5uePrpp6FSqdC7d28AwKBBg9CxY0dMnDgRb7/9NjIzM/Hiiy9i+vTpNTLSVVeJoijX5EpISMDixYtx5swZ5Obmori4GLdv38bNmzet7hBw9OhRvPLKK/jjjz9w/fp1OVi/dOkSA2AionpIWv2YlpaG3bt327o7FVIngjBnZ2ds27YNL7/8MvLz8+Hn54fBgwfjxRdflIMahUKBHTt24Omnn0b//v3h4uKCIUOG4L333pOvExwcjF27dmHWrFlYtmwZAgICsGrVKkRHR8ttYmJicPXqVSxcuBCZmZno3r079uzZY5Bo/8EHH0ChUGD06NEoKChAdHQ0PvnkE/m8nZ0ddu7ciaeeegoqlQouLi6YNGkSXn311Rp4WnXX6dOnERwcjAsXLmDYsGF46qmn8MYbb8Dd3R2//PILYmNjUVhYaDEIy8/PR3R0NKKjo7F+/Xp4eXnh0qVLiI6OrhPD0kREVDEpKSlYt26drbtRaXUiCOvSpQt+/PHHMtv5+/tj69atVtvce++9OH78uNU2M2bMkKcfzWncuDE+/vhjfPzxxxbbtGzZknlIFfDjjz/izz//xKxZs3D06FFotVq899578sbkxsmVDg4OJtsInTlzBmq1Gm+99Za8svT333+vmRsgIqIapVar7yoA02hckZ3tAXd3NZTKPPl4o0Y1FxrViSCM6peCggJkZmaipKQEV65cwZ49e7B48WIMGzYMjz76KJKTk1FUVISPPvoIw4cPx6FDh7BixQqDawQFBeHGjRvYt28funXrBmdnZ7Ro0QIODg746KOP8OSTTyI5ORmvvfaaje6SiIiqg1qtxtWrV+9q5fuxYz2wY8cwiKICgqDF8OE7ERqqG6CRcrlrQp2qE0b1w549e+Dn54egoCAMHjwY+/fvx4cffoj//e9/sLOzQ7du3fD+++9jyZIl6Ny5M9avX4/FixcbXCMiIgJPPvkkYmJi4OXlhbfffhteXl5Ys2YNvvnmG3Ts2BFvvfUW3n33XRvdJRERVTWpxNKmTZuwf//+Sl1Do3GVAzAAEEUFduwYhoiIsVVSLb8i6uy2RQ1BdW1bJP0Ql6WmfxhrK25bRERke2q1Gunp6di2bVulXi9NP+bnO2PLlodMzn/3nQYPPqi8224CKP+2RZyObIA8PDwwY8YMq8nqDg4ODMCIiMimpJWPGo0GmzZtqtBr9XO+UlJa641+aQGIAAS91iL8/asmAKsIBmENFAMsIiKqzco7a2OOfs6XLuASUZqBZS4TS0B+fuX6eTcYhBEREVGtISXeX7hwoVKv12hcsX37cJSOdAkwHPUyZWcHtG5dqbe7KwzCiIiIqFaoirpfaWmBKCvo0qdQAJ99BgQE3NXbVgqDMCIiIrK5ytb9knK/7O0LkJ7uj3/+CS73awUB+PVXoFevCr9tlWAQRkRERDYhJd7n5OTg4sWL5X6dFHj9808Qfvmln17ulzQCZpx4b96SJbYLwAAGYURERGQDlU28N02618/9gt7XlgMxhUIXgD37bIXfvkoxCCMiIqIad/Xq1Qq1v3zZD3/+2QVJSb1hPvAyJmDgwALs3+9ocmbjRuAh01JhNY5BGBEREdW469evl6udRuOKbdv+DxcvBqEiCfeAiNmzHXHgAKDVlh61swNUqor0tPpw2yKqV3766ScIgoCcnJxyvyYoKAhLly6ttj4REZFu+jEjIwOnT59GYmIi9u7da7W9RuOKvXsj8cEHs3DxYjAqFoABkyYJGDYMWLlSF3gBus+2WglpDoMwqlGTJ0+GIAh48sknTc5Nnz4dgiBg8uTJNd8xIiKqNlL+18qVK7F58+YyA7Bjx3rggw/icPhwH1Q0+AKATz8F1qzRfR0bC1y4AOzfr/scG1vhy1UbBmFU4wIDA7Fx40bcunVLPnb79m1s2LABLVq0sGHPiIioOljbJk+i0bgiNTUIZ8+2xvbtw1DZEMXODhg2zPBYQABw7721ZwRMwiCMalxoaCgCAwMNNmHdtm0bWrRogR49esjHCgoK8Mwzz8Db2xuNGzdG3759ceTIEYNrff/992jbti2cnJwwcOBAsxWWf/nlF/Tr1w9OTk4IDAzEM888g3xb7E9BRNQApaSk4Ny5c1bbHDvWA0uXxmHt2kn4+uuHcTcBWG2abiwLgzDC5cu6YdrLl2vuPadMmYIvv/xS/v6LL77AY489ZtBm3rx52Lp1K9auXYtjx46hdevWiI6ORnZ2NgAgLS0No0aNwvDhw3HixAlMnToVCxYsMLhGSkoKBg8ejNGjR+PkyZPYtGkTfvnlF8yYMaP6b5KIqAGRcr70P/bv349169Zh//79Fl+n0bjqlZwArE8/ihg8+BYEQTQ4qlAAmzfXvunGsnB1ZAO3ejUwbZpu5YhCoUtgrIkf4EceeQTPPfecXJzv0KFD2LhxI3766ScAQH5+Pj799FOsWbMGQ4YMAQB8/vnniI+Px+rVqzF37lx8+umnCAkJwXvvvQcAaNeuHf78808sWbJEfp/FixdjwoQJiIuLAwC0adMGH374IQYMGIBPP/0UjRs3rv6bJSKq5ypa80sqtururkZ2todeAGaNFnv35iIqqilWrwaeeAIoKSkd/aoNJScqikFYA3b5cmkABug+P/EEEB1d/UO5Xl5eGDp0KNasWQNRFDF06FB4enrK51NSUlBUVIQ+ffrIx+zt7XHPPffg9OnTAIDTp08jPDzc4Loqo3XHf/zxB06ePIn169fLx0RRhFarRWpqKjp06FAdt0dE1KCUJ+dLol9sVRC0CA09irIq3AuCiA8+uImoqKYAdIMF0dHA+fO6jbfryvSjMQZhDdi5c4a1UwDdXxXnz9fMD/SUKVPkacGPP/64Wt7jxo0beOKJJ/DMM8+YnOMiACKiu6dWq5GcnFyutsZTj6KowNGjvaALwkwJgog5cwTMnCkgIKCJwbmAgLobfEkYhDVgbdropiCNi9i1bl0z7z948GAUFhZCEARER0cbnAsJCYGDgwMOHTqEli1bAgCKiopw5MgReWqxQ4cO2L59u8Hrfv31V4PvQ0NDcerUKbSuqZsiImog1Go1rl69ik2bNpX7NWlpgRamHk1Hwfr334/ly7ujS5dmd9HL2o2J+Q1YQIBti9jZ2dnh9OnTOHXqFOykTtzh4uKCp556CnPnzsWePXtw6tQpPP7447h58yZi7yStPfnkkzh37hzmzp2Ls2fPYsOGDVgjFYa5Y/78+Th8+DBmzJiBEydO4Ny5c/jf//7HxHwioruQkpKC5cuXVygAO3RIhS1bRperrSCI9T4AAzgS1uDZel7dzc3N4rm33noLWq0WEydORF5eHnr27IkffvgBzZrp/lG2aNECW7duxaxZs/DRRx/hnnvuwZtvvokpU6bI1+jatSsOHDiAF154Af369YMoiggJCUFMTEy13xsRUX2iVqtRWFiInJwcbN682WpbKfHe3r4ARUWO+OefIBw82B/lK7wqYskSod4HYAAgiKJofiKWbC43NxdKpRIajcYkWLl9+zZSU1MRHBzMFX7VjM+aiBqyikw7ajSuSEoKx+HDKugm26SEe+uJ9xKFQheAPfvsXXbaxqz9/tbHkTAiIiIyq7ylJ0yDL4lg9NkSEZs3C1CphDqfbF8RDMKIiIjIrPKUnjh0SIX4+EhUPM1cNzqmUIhYuVKok3W+7haDMCIiIjIg5X9du3bNajtdABaF8uZ6Se0EQcQLL+SiZ08gLEzZoEa/9DEIIyIiIll5piA1GlekpQXeGQErXwDWr9/P8PG5goiICDz0UAACApRV0t+6jEFYHcd1FdWPz5iIGgq1Wo2zZ89aPK/RuOLnn/vh6NGeKF/wJRHQqlUqgoMv4tFH74eHx113tV5gEFZHSXW1CgsL4eTkZOPe1G9SToRxLTMiovpAmnrUaDRmV0BK5SbS0/3Kkfsl/dFqGKApFCKefnoIgoIawYMRmIxBWB3VqFEjODs74+rVq7C3t4dCwbq71UGr1eLq1atwdnZGo0b850JEdZ9arUZWVhaKi4uRl5eH+Ph4i23193ksb5mJqKh45Oe7yCsldYXABYSF+VTZPdQXrBNWi5VVZ6SwsBCpqanQGm8ASVVKoVAgODgYDg4Otu4KEdFdKW/JCQC4fNkPq1dPtbDNkD7D4EwQtIiLWwoAGDAgtkEm3rNOWAPg4OCANm3aVGj3eqo4BwcHjjQSUb1Q1u+Lik09AuZGx0RRgc6dR+LBB5Xw8GDyvTUMwuo4hULBKu5ERGSR/vTj9evXTc7rB14JCZEVmHo030YQtOjVqxk8POr/tkN3i0EYERFRPVXW9KPlnK/KBWAKhYj337/ZIPZ9rAoMwoiIiOoRabUjAKvFVjUaV2zfPgylU44VKzkBaKE/XalQAL/+KqBXryYV7XKDxSCMiIionihr5EsqsnrzphPOn2+NsstNmA/MBEGLyMgEefpStwIS6NXrrrrf4DAIIyIiqgfUajXS09Mtnj92rAe2bx8O6yNeusBLELQWV0UKghYzZ/6FadMCUVysgVrdDK1bo8GtgKwKDMKIiIjqOGsjYNLoV9kBGBAW9js6d/4L9vaFZspTaDFmzBYEBl7GCy9MYtHVKsAgjIiIqI7Rz/sCLOd+GSbeWycIWvTvfxBKZR4AYMGCVCxZ0gparQA7OxFLluTi4Yf7wcHBgQFYFWEQRkREVIdUZINtw8R7a7QYPnwnlMo8DBo0CG3btoWHhwf+8x/g/HmgdWsBAQFNATS9+xsgGYMwIiKiOuTq1atWz1dk9EtfSMh5AEBQUJA80hUQwFyv6sQgjIiIqJYra5NtiUbjWqkADFAgO9tdnoqkmsEgjIiIqBZLSUnBunXrytU2O9ujEgGYLh/M3T27wq+ju8MgjIiIqJZSq9VWAzAp9wsAmja9jvx8Z6vlJSS6NgCggCCU5oMBuv1yqWYwCCMiIqqlLG24rdG4IikpHIcPR6C07IRUXFXUaykd00IQdJtrS0FXSMh5ZGe7Y+TIzggP7wWgF1c+1jAGYURERLWIlP+Vk5NjkoSv0bji55/74ejRnjCt+WVu30cRY8Z8g8DAywCA7Gx3uLtny6NeSmUe+vUbzsDLRhiEERER1RKWyk+YH/kqDwVcXG5CqcxDeHg4mjdvDgCwt7eHUqnkyJeNMQgjIiKqJYynH0uDLxXKV+/LkH7Cfbdu3eDn51cV3aQqwiCMiIiolkhLS5O/PnRIhfj4KFRs5AvQ3/9RP+Geah8GYURERLWAWq3G7t27AdxdAHbPPUno0OGMQe4XwFWPtRGDMCIiologKysLgG4KMj4+EhUPwABAQIcOZxAcfFE+EhMTAy8vL+Z+1UIMwoiIiGqA8abb+nJycrB582YAuoKrZed/SaUnDBkXXX3kkUcQEhJSyR5TdWMQRkREVM3Ks+m2JD3dD+aDrNJcr65dT+Lkya53irKazwFjAFb7MQgjIiKqZtJUI2BY5T4wMM0gb0ujcUVCgrmpSC2iohLg758u53rdd9+PyM52h719IYqKHOTjnH6sOxiEERERVSHjaUf9qcZjx3pg+/ZhKJ1uFDFixA6EhJxHWlogsrK8zG45NGbMFnTufNrgmFKZB6UyD6NGjYKnpycAsO5XHcMgjIiIqIpYm3bUaFyNAjAAELB9+3DophRLAzP9kTBB0MoV783x9/dn4FVHMQgjIiKqIuaKrWZne8DdXW0l4V6A4fSjtP+j5VpfY8eORdOmTTnyVccxCCMiIqoGx471wI4dw+RNsyMjEwBoUb7K97pNt2NjVyEgIMPgDBPu64+K74FAREREZuXk5ADQjYBJARgAiKICCQmRiIqSArHyUKCoyLDAakxMDAOweoRBGBER0V1Sq9U4c+YMNm/eDI3GFXv3DjJJsBdFBQoKHDB16ir077+/zGsa1/wCAC8vryrtN9kWpyOJiIgqSH8F5OXLl/H9998DkLYbioSlMY6ff74XP/88AFFR8RAErVGgJkJK0DfOBRs1ahQT8OshBmFEREQVYLwCUpd8H4R//gnCwYP9UfZ2QwISEiIRGZmAhIRIOWds+PCdCAk5j+xsd5N9HxmA1U8MwoiIiMqQkpKCmzdvAgD+/fdf+bjhyJf5rYTMEUUF/P3TERe31CToUirz0LNnTzRr1gzu7u4svFqPMQgjIiKyIiUlBevWrZO/v3zZD3//PQD//uuHlJS2KA28LAVgpsGZlO8lFVw11rt3bwZeDQCDMCIiIiP6OV/6I1/ffvsg/vijG8o34iUiLOx3uLtfN8gTM5fvJVW8B1j1viGpM6sjR4wYgRYtWqBx48bw8/PDxIkTkZ6eLp9/5ZVXIAiCyYeLi4vBdb755hu0b98ejRs3RpcuXeRkSokoili4cCH8/Pzg5OSEyMhInDt3zqBNdnY2JkyYADc3NzRt2hSxsbG4ceOGQZuTJ0+iX79+aNy4MQIDA/H2229X8RMhIqLqIOV8rVy5EitXrsRXX53B4cO9cfx4l3IHYIKgRVRUPIYP/x59+iRi1qylGDNmM8aM2Yy4uKUIDT0ut/X09ISfn5/8wQCs4agzI2EDBw7E888/Dz8/P/z777949tlnMWbMGBw+fBgA8Oyzz+LJJ580eM3999+PXr16yd8fPnwY48ePx+LFizFs2DBs2LABI0eOxLFjx9C5c2cAwNtvv40PP/wQa9euRXBwMF566SVER0fj1KlTaNy4MQBgwoQJyMjIQHx8PIqKivDYY49h2rRp2LBhAwAgNzcXgwYNQmRkJFasWIE///wTU6ZMQdOmTTFt2rSaeFxERFQJarVa/gNft83QcKSktIZ+FXvrtBgzZgsCAy8bTDPqph1Pm32Fg4OD2eNU/wmiKIq27kRlbN++HSNHjkRBQQHs7e1Nzv/xxx/o3r07fv75Z/Tr1w+Arshdfn4+du7cKbfr3bs3unfvjhUrVkAURfj7+2POnDl49tlnAQAajQY+Pj5Ys2YNxo0bh9OnT6Njx444cuQIevbsCQDYs2cPHnjgAVy+fBn+/v749NNP8cILLyAzM1P+x7VgwQJ89913OHPmTLnvMTc3F0qlEhqNBm5ubpV+VkREZJ1arcbVq1exadMmaDSuSEoKx+HDKlRswkiLESN2GoxylYXV7+un8v7+rjMjYfqys7Oxfv16REREmA3AAGDVqlVo27atHIABQGJiImbPnm3QLjo6Gt999x0AIDU1FZmZmYiMjJTPK5VKhIeHIzExEePGjUNiYiKaNm0qB2AAEBkZCYVCgaSkJPzf//0fEhMT0b9/f4O/bqKjo7FkyRJcv34dzZo1M9vngoICFBQUyN/n5uaW/6EQEVGFqdVqZGVlyUVWk5IiKxV8hYUdRf/+B80m2UuioqLg7u4OpVIJgLlfVMeCsPnz52P58uW4efMmevfubTCipe/27dtYv349FixYYHA8MzMTPj4+Bsd8fHyQmZkpn5eOWWvj7e1tcL5Ro0Zwd3c3aBMcHGxyDemcpSBs8eLFWLRokfmbJyKiKqVf70t/n8fy6t79d7Ru/Y/J1KM5HPEic2yamL9gwQKzyfT6H/rTd3PnzsXx48exd+9e2NnZ4dFHH4W52dRvv/0WeXl5mDRpUk3ezl177rnnoNFo5I+0tDRbd4mIqN6SVj8a7/NYHoKgxcCBP6Nz59MWA7BRo0Zh2rRpmDFjBgMwMsumI2Fz5szB5MmTrbZp1aqV/LWnpyc8PT3Rtm1bdOjQAYGBgfj111+hUqkMXrNq1SoMGzbMZETL19cXV65cMTh25coV+Pr6yuelY35+fgZtunfvLrfJysoyuEZxcTGys7MNrmPuffTfwxxHR0c4OjpaPE9ERFUvO9ujQgEYIKJr15Nljn6xyj2VxaZBmJeXV6U3I9VqdbvQ6+dQAbq8rv3792P79u0mr1GpVNi3bx/i4uLkY/Hx8XIQFxwcDF9fX+zbt08OunJzc5GUlISnnnpKvkZOTg6OHj2KsLAwAMCPP/4IrVaL8PBwuc0LL7yAoqIiOWctPj4e7dq1szgVSUREtuHurjazj6M1Ak6e7Ir77vvRbCA2aNAgtG3blgEYlalO5IQlJSXhyJEj6Nu3L5o1a4aUlBS89NJLCAkJMRkF++KLL+Dn54chQ4aYXGfmzJkYMGAA3nvvPQwdOhQbN27E77//jpUrVwIABEFAXFwcXn/9dbRp00YuUeHv74+RI0cCADp06IDBgwfj8ccfx4oVK1BUVIQZM2Zg3Lhx8Pf3BwA8/PDDWLRoEWJjYzF//nwkJydj2bJl+OCDD6r3QREREQDDYqv6cnJyUFxcDHt7e6SliUhNDYK7uxrDh+/E9u3DUN4sHVFUIDvb3WwQxgCMyqtOBGHOzs7Ytm0bXn75ZeTn58PPzw+DBw/Giy++aDB9p9VqsWbNGkyePBl2dnYm14mIiMCGDRvw4osv4vnnn0ebNm3w3XffyTXCAGDevHnIz8/HtGnTkJOTg759+2LPnj1yjTAAWL9+PWbMmIH7778fCoUCo0ePxocffiifVyqV2Lt3L6ZPn46wsDB4enpi4cKFrBFGRFQDzG+w7QF3d7UcNB06pLqzeXYHuYL91KmrsHr1VKMRMS0eeGAXvv9+KPQDNGnbIUBXx7JNmzYAuOKRKqbO1glrCFgnjIio4jIyMuQZDv1Vj1KwdetWY8THR0G/8KogaBEXtxQpKa1N2oeGHjd7HakeWExMDNq3b2+LW6Vaql7XCSMiIiqL8apHUVTc+R4wrnwvTS+Ghh5HSMh5ZGe7yxtsA7B4HIBc94uoohiEERFRvZSWFmiSbG85+V4Le3tdDpluiyHTXC9Lx7ntEFUWgzAiIqo31Go1rl27hmPHetxJtDdmbv9HEYACq1dPNZhmNBYeHo7mzZvD3t6eVe+pSjAIIyKiekFKyNdNQ8bBdKWjpQ24dcek6cqQkPNmR7x69erFgIuqFIMwIiKqU/TLT6SnK5Ca2gjBwcUoKEgBYK34qgDLgZiOfumJUaNGwdPTEwBHvKh6MAgjIqI6w9J+j4KgRWTkH/D3D8I//wShrFEvHdHkmH7pCU9PT4PdU4iqGoMwIiKq1aSRr/R0BX788TaSkzvC3r7QoLiqKCr0yk5YH+0qJSAi4hASE1UGpSfK2o6IqKowCCMiolorJSUF69at00u0VwBoCfOBlmD02TpB0CI8PAnh4UlmS08QVTcGYUREVCtJAZhG42pmS6HyBVqlpKBN99l41IulJ8gWGIQREVGto1ar8fHH/0N2dhCSkzuivHs6WiYgOnoPAgMvoajIweyo15AhQxAYGAiAifhUMxiEERGRTemvdjx7Nh8pKQr8/ruIzz6Lu7PKsazd9YynJkVItb8kgqBFx46nLE43jh07Fh06dLiLuyCqOAZhRERkM9KUI6C/qbYUeFnL8TKcXiz9rEVUVAKcnG6b7PVoLd/L29u76m6KqJwYhBERkU2o1WqDAMxwU21rOV9aM+10AdjUqasQEJABABb3etQ3duxYeHt7c+qRbIJBGBER2YQ0BanRuCI+PhLWAy/9ES9L+WEKFBWVJtNb2usxKioKwcHBzPsim2MQRkRENpWd7QHzgZWlKUfz9AutWtOuXTsGX1QrMAgjIiKbcndXQxC0RlsNmQu8rE9Rmsv7GjRoEIKCguTvOfpFtQmDMCIisimlMg/Dh++UE+nLH3jpRr9UqkSEhyeZnXps27Ytgy6qtRiEERFRjbh8GTh3DmjTBggIMDwXGnocISHn8ddfHbF372ArVyldBRkRYTn4GjVqFPz9/RmAUa3GIIyIiKqNVANswwYnzJunhFYrQKEQMXNmJlq0yIJG42pQtb5Fi0uwnPslol+/n9GqVWqZWwx5enoyAKNaj0EYERFVC7VajeXLl0OjccXSpXEQRV1gpdUK+OADXwB+EIQuiIxMQJ8+iQCAoiJHmA/AdPW/pHZl4ZZDVBcwCCMiomohlaDIzvYwSroHpEBLFBWIj4/C7duOaNXqAuztC8wk6RvW/7ImJiYGXl5eHAWjOoFBGBERVSvzqx/1CTh4sD8OHhwAQdCia9eTOHmyq0G1+7ICMBZdpbqIQRgREVUbjcYV2dkeiIxM0NuSyJzSkbGTJ7siNnaVxY22JWPHjkXTpk1ZdoLqLAZhRERUJaQk/JycHFy+DKxe3QSbNsUB0I1o9e17EAcP9oPlivc6oqirfB8cfNFim0ceeQQhISFV2n+imsYgjIiI7pqUhA8Ax4710Kv5pSOKChw82A9RUQkWNunWZ7nyPUtPUH3CIIyIiMpFGukCgPR0BVJTG8HZWYu0NDtcuXIVGo0rAJgEYKUU+OefYMTFLUV2tjsKC+2xceN4k0r5UVEJFqcgGYBRfcIgjIiIymR5pEsazXIH0BYtW160kvcFpKS0Rl5eE3mqUb9SviBoDcpVALqRL09PTwDccojqHwZhRERUJmkETKNxNRrp0p9OVODixaAyriQgLa2FvNpRqpSfne1uNgnf09MTfn5+VXIPRLUNgzAiIio38zW/9Fnf6xEQERh4yeCIUplncfqRRVepPrO+RIWIiEiPVPOr/LTQTVkCgIhu3f4oV9FVQLcCktOPVJ9xJIyIiCySkvGvXbtmoeaX/gpH49WOIvr1O4h27c4iLa0FAgMvGQRgHTp0gK+vLwCgUaNGcHV1RaNGjVj7ixoMBmFERA3c5cvAuXNAmzZAQEDpcdNk/Di9wKt0dCss7Hfk5rri3Ln2RlcW0KpVKgICMsyOfnXo0AFdunSpjlsiqhMYhBERNUDSCNeGDU6YN08JrVaAQiHi7bc1ePjhW3BwcCgjGV8a8VLg6NEwCGZTwSzX+yIiBmFERA2ONMKl0bhi6dI4iKIugtJqBcyd64Z///0CSmUehgwZAqA8yfgKiKLp0YiIRIsJ9wDg7Ox8N7dBVOcxCCMiamCysrIAmA+uRFGB7Gx3AMAnn5yGu7sr0tP9YLm6PQBoIQgwuJYgaBEenmTQKioqCq6uuoKuzs7O3HaIGjwGYUREDYharcbmzZsBwEJwJeLwYRXOn29zJ6jSwnD60Ziuwr2T022DoqvDh+80GAUbMmQI7rnnnmq5J6K6ikEYEVEDceQIsGtXI/z7rx9cXW8gISESpsGVgHPn2kI/58s6Af7+6QgOvmi16GpgYGDV3ARRPcIgjIioHktJScHNmzfx4ovNsX17MwBKAI8jJOS8lTyvsgqu6rUUSpPvWXSVqGIYhBER1VMpKSlYt24dLl/2w/btj6M0uBKQktIauqnGitbsLp2+NDftaM7YsWNZ84vIDAZhRET1gH6tLycnXfmJf//9FxqNK06c6AFz046dOiXj1KlOZoquWvbAAzvh7HwLABAYeLnMAAwAvL29K3w/RA0BgzAiojrKUq2vYcMOITT0uJkCq4YJ+F27nsSgQfHIznbHP/8E4+DBfrA2MiYIWrRrd85i4BUVFYXg4GCDY6x8T2QZgzAiojrIWq2vHTuGwds700yBVdHg88aN4zF8+E6Ehh5HcPBF+PhkYcuWh8y+X3mmHoODg+Hn51eVt0lUrzEIIyKqg6Rq9pZqfaWltTCTeK8fiOnaSQFbQEAGAgPTIAhak3pfo0dvKdfUI5PviSqGQRgRUR0i5X65uekCJXd3tdnAydzxO2cNvhNFBVatmooRI3QjYsOH7zSp99W582mTfvTs2RPu7u5o0qQJGjVqBG9vb047ElUQgzAiolpOyv365BNnvPGGG0RRgELhjWHDepgNnLp2PYmNG8dXIOFeNyIWEnIeoaHHrdb7koSGhnLqkeguMQgjIqrFpDIThw6pEB8fBSmg0moFbN+um0rUD5zs7QuxevVUo1ywsknbFUm1vjj1SFT9GIQREdVSarUa69atg0bjaqG6vQKrV0+Vk+uVyjykpgaVsdm2JaVFVy0ZNWoUPD09ueKRqIpU5l8qERHVAGvJ9xIpuV6j0W2M7e6uhq4IqyXinQ/DY1FRCWWOfvn7+8PPz48BGFEV4UgYEVEtZznJXke3GjIA2dm37mzKrT9iJgVkunyxyEjTzbYjIxPQp0+i/AppxEsfR7+Iqh6DMCKiWkK/6n1AQOlxpTLPIPneONleELTYsmUMdJMbxueAceO+hoNDkUGivbXke09PTybdE9UABmFERDZkqer9229rMGjQNbmdfvJ9ero/EhIi5ZEsUQRKs0tMS1B8/fV4jBixE8HBF+Xj5Um+J6LqxSCMiMhGrFW9nzvXDf/+Gw+lUtdWo3FFdrYH3N3VCA6+iM6dk5Gd7Y78fBeLVe5LlZagKE/gxZWPRDWDQRgRkY1IifdpaYFmq95LJSN0e0AaFlCVVkNevuwHXd6X9XVW+teT9OnTBz4+PvL39vb28PLyYu4XUQ1hEEZEZANqtRrXrl2TAyxjgqCFvX0hkpM7GuwBKa2GDAk5j5SU1ndea36DbuO8MakExahRo+Dv789gi8jGGIQREdUw/WnIHTvizKx61FW9Nyy6WkoUFTh7tg2+/34YSgOt0n0hpar5J092NRg9k0bBPD09GYAR1QIMwoiIakjpvo/FAKzX//rjj66wPMWoxfffD4Vp8VYB/fvvR1iYbqryvvt+LHP7ISKynXIHYbm5ueW+qJubW6U6Q0RU35hf/ajb9zEk5DzM53NZy+/SQhd8md+OyNv7qhxwcQUkUe1W7or5TZs2RbNmzax+SG2IiKh02vGdd77G3Llu0GpLVz9KeWBRUQkwrmAvCFqYq3ovCFo88MAuWN4PUovAwMtl9ourH4lqh3KPhO3fv786+0FEVO9cvXoVgPXVj1Klev26X5GRCUhP98dff3U2eY2z8y0L1fO1GDFip9mRr5iYGCjv1Lpg5Xui2qPcQdiAAQOqsx9ERHWWuUr3arUaWVlZOHasB7ZvN139CIiwt9eVqOjTJ1Gu+6VfiNXcCsfAwMsG1fMFQQuVKhHh4UkGAdjAgQPRpk0bBl1EtVilE/NzcnKwevVqnD59GgDQqVMnTJkyRf5ri4ioPrNW6f6BBzKwefNmefWj+cwPAUVFpdOCSmUe8vKa6AVgujb6Kx6lFY761fMtJd17e3tz6yGiWq5SQdjvv/+O6OhoODk54Z577gEAvP/++3jjjTewd+9ehIaGVmkniYhqk7Ir3X8BpdL66kf9ul0A9EbMjNsLiI7eg44dTxkEW2Ul3fMPYqLar1JB2KxZszBixAh8/vnnaNRId4ni4mJMnToVcXFx+Pnnn6u0k0REtYlU6d5ckKVfmd7dXW02f0vK+8rOLp0mLC26CpO2xgFYeTD5nqj2q/RImH4ABgCNGjXCvHnz0LNnzyrrHBFRbWZvX2AmyBKRnu6P4OCLUCrzDPK3AC0iIhLh4pJvkIivUiWaHTEzLrJaHjExMdx6iKiOqFQQ5ubmhkuXLqF9+/YGx9PS0uDq6lolHSMiqo2MtxsyTaAXkJAQic6dk83mbwG4M4VZug1RYqIKpvXCtIiNXYWAgAz5yKBBg9CkSRM0atQITZs2Nekbk/CJ6pZKBWExMTGIjY3Fu+++i4iICADAoUOHMHfuXIwfP75KO0hEVFtY3m7IsG6XNCUJ6KYs3d3VCA6+CABITQ0yO4UZEXEIiYkqg22G9AMwAAgKCmKyPVE9Uu5irfreffddjBo1Co8++iiCgoIQFBSEyZMnY8yYMViyZElV9xEAMGLECLRo0QKNGzeGn58fJk6ciPT0dIM2P/zwA3r37g1XV1d4eXlh9OjRuHDhgkGbn376CaGhoXB0dETr1q2xZs0ak/f6+OOPERQUhMaNGyM8PBy//fabwfnbt29j+vTp8PDwQJMmTTB69GhcuXLFoM2lS5cwdOhQODs7w9vbG3PnzkVxcXGVPAsisg1ruWD6BEGL9HR/LF0ah7VrJ2Hp0jgcO9YDAJCe7gfj4qyACBeXfMTFLcWkSWsQF7cUoaHHTa7LPC+i+qVSQZiDgwOWLVuG69ev48SJEzhx4gSys7PxwQcfwNHRsar7CEBX82bz5s04e/Ystm7dipSUFIwZM0Y+n5qaigcffBD33XcfTpw4gR9++AHXrl3DqFGjDNoMHToUAwcOxIkTJxAXF4epU6fihx9+kNts2rQJs2fPxssvv4xjx46hW7duiI6ORlZWltxm1qxZ2LFjB7755hscOHAA6enpBu9TUlKCoUOHorCwEIcPH8batWuxZs0aLFy4sFqeDRHVLCnh3pAusJKS7vVLTYiiAjt2DMPly35ISIiEuT0f4+MjAUDOJdM3atQozJgxg1ONRPWMIIqi8Z9kdcL27dsxcuRIFBQUwN7eHlu2bMH48eNRUFAAhUL3P74dO3bgwQcflNvMnz8fu3btQnJysnydcePGIScnB3v27AEAhIeHo1evXli+fDkAQKvVIjAwEE8//TQWLFgAjUYDLy8vbNiwQQ4Cz5w5gw4dOiAxMRG9e/fG7t27MWzYMKSnp8PHxwcAsGLFCsyfPx9Xr14t91+zubm5UCqV0Gg03I+TqBbIyMjAypUrAcAgJ0wQtOjb9yBatUqFu3s2srM9sHbtJJPXDxq0B3v3DrZ4/UmT1sjTlvoYgBHVLeX9/V2pnLDbt2/jo48+wv79+5GVlQWt1vAvwmPHjlXmsuWWnZ2N9evXIyIiAvb29gCAsLAwKBQKfPnll5g8eTJu3LiBr776CpGRkXKbxMREREZGGlwrOjoacXFxAHRTDUePHsVzzz0nn1coFIiMjERiom5rkaNHj6KoqMjgOu3bt0eLFi3kICwxMRFdunSRAzDpfZ566in89ddf6NGjh9n7KigoQEFBgfx9RTZNJ6K7Y67qvTGNRiN/HRp6HLduNUZ8vG7E6+DBfigpaYTw8CQLpSlE3LrlZGHLIQAorRs2atQoeHp6AmCyPVF9VqkgLDY2Fnv37sWYMWNwzz33QBAsbSZbtebPn4/ly5fj5s2b6N27N3bu3CmfCw4Oxt69ezF27Fg88cQTKCkpgUqlwvfffy+3yczMNAiMAMDHxwe5ubm4desWrl+/jpKSErNtzpw5I1/DwcHBZGWSj48PMjMzrb6PdM6SxYsXY9GiReV8GkR0tyxVvV+48F+MGnUdarUTLl50gL9/PlxcriM+Pl5+rUbjemdqUQqoFDh8uA8SE1UYPnwnOnQ4jVOnOkJ/1eQvv/QzmarUMdz30dPTkwn4RA1ApYKwnTt34vvvv0efPn3u6s0XLFhQZiL/6dOn5VIYc+fORWxsLC5evIhFixbh0Ucfxc6dOyEIAjIzM/H4449j0qRJGD9+PPLy8rBw4UKMGTMG8fHxNRYo3o3nnnsOs2fPlr/Pzc1FYGCgDXtEVH9Zq3q/aJE/Dh06ZVDLa/jwnQgJcZVXO5rblBsozf/SXc901aS/fzri4pYiLS0AN286wdn5FgIDL1e4GCsR1X2VCsKaN29eJfXA5syZg8mTJ1tt06pVK/lrT09PeHp6om3btujQoQMCAwPx66+/QqVS4eOPP4ZSqcTbb78tt1+3bh0CAwORlJSE3r17w9fX12QV45UrV+Dm5gYnJyfY2dnBzs7ObBtfX18AgK+vLwoLC5GTk2MwGmbcxnhFpXRNqY05jo6O1bawgYgMlVX1XpcoX5pYv337MAgC9OqCWU6ntbxyUivv9ahUnr77myCiOq1SqyPfe+89zJ8/HxcvmiaQVoSXlxfat29v9cNSEruUhyblUN28eVNOyJfY2dkZtFWpVNi3b59Bm/j4eKhUKgC63IuwsDCDNlqtFvv27ZPbhIWFwd7e3qDN2bNncenSJbmNSqXCn3/+abCiMj4+Hm5ubujYsWMFnxIRVSdzKx113xv/71FhVBesov/7FBEVlVCuES+WoiBqGCoVhPXs2RO3b99Gq1at4OrqCnd3d4OPqpaUlITly5fjxIkTuHjxIn788UeMHz8eISEhcuAzdOhQHDlyBK+++irOnTuHY8eO4bHHHkPLli3lRPgnn3wS//zzD+bNm4czZ87gk08+webNmzFr1iz5vWbPno3PP/8ca9euxenTp/HUU08hPz8fjz32GADdprixsbGYPXs29u/fj6NHj+Kxxx6DSqVC7969AeiqWnfs2BETJ07EH3/8gR9++AEvvvgipk+fzpEuolpG2lpICsSkEhOmJSjKYm2huYioqHj06ZNY5lUeeeQRJuITNRCVmo4cP348/v33X7z55pvw8fGp9nwrZ2dnbNu2DS+//DLy8/Ph5+eHwYMH48UXX5SDmvvuuw8bNmzA22+/jbfffhvOzs5QqVTYs2cPnJycAOiS93ft2oVZs2Zh2bJlCAgIwKpVqxAdHS2/V0xMDK5evYqFCxciMzMT3bt3x549ewwS7T/44AMoFAqMHj0aBQUFiI6OxieffCKft7Ozw86dO/HUU09BpVLBxcUFkyZNwquvvlqtz4mIKsd4ayGlMg9OTrexfbv+ptr6WxOZI1hoo8XUqatMqt+PHTvWZIEPV0ISNSyVqhPm7OyMxMREdOvWrTr6RHewThhR1ZBWQQLA2bP5SElRQKnMwl9//WDxNZcv+2HVqsdhGFRJQZb0v039c+amMIGIiEMYNCjB4NgjjzyCkJCQStwJEdUF1VonrH379rh161alO0dEVFOkVZCAcYHVIAwfnmV2e6Bjx3rcGQUzrWxfGmxpoQvGFGar5AO6qc3w8CT5+1GjRsHf35+jXUQEoJJB2FtvvYU5c+bgjTfeQJcuXeRiqBKO2hCRreiPeqWnK3DiRD40Gt1qbikAA0pXPDo4FCAwME1OmNdtzq0/DalPhH5dMECLMWM2yyUmnJxuG1TRHz58p0EivqenJwMwIpJVKggbPFi37cb9999vcFwURQiCgJKSkrvvGRFRBZkf9fKBIMRBpUo0UzpCgS1bHpIDptDQ41Y25zaX76WAi8tNOdAyl1umj6seiUhfpYKw/fv3V3U/iIjumjQCJo1m6Y96JSaqYClvSyqwGhJyHv/8EwTTgEuL8eO/xsaN402mG6WthiS6GmCmZSjGjh3LUTAiMlCpIGzAgAHlavef//wHr776qrwHGhFRTbBUgDUi4hASE1UWK93//HM/HD3aE8bJ+FFRCWjX7jyGD99pdbrRGm9v77u4IyKqjyoVhJXXunXr8OyzzzIII6IaZW4DbSlJPjw8CWlpAdi6dYzJ+aNHw2AuGd/fPx2A9elG/U23jbH0BBGZU61BWCWqXxAR3TWpAKulUSul8jQKCw3Pq1SJOHzYdD9c4ylHS9ONXPVIRBVVrUEYEZGtlJUkb3wegJmpShGRkaVbDQ0aNAhBQUEm78WRLiKqDAZhRFRvWRq1AnTJ+9nZHigsbIS//uoED49rd0bDVJDKT0RFJRhsNRQUFAQ/P7+a6TwR1XsMwoioztGvBabv2rVr5Xq9ftFWwyr4wp2pyUMID09iiQkiqlYMwoioTtGvBVYZxuUrShPxdZ+lchZSpfuBAwfCy8sL3t7enHIkoipVrUHYI488wur5RFSljEfApGlFd3d1ucpFWC7GWkoUFcjOdodSmYc2bdpwCpKIqkWlg7CcnBz89ttvyMrKglarNTj36KOPAgA+/fTTu+sdEZEVhntBlla9t0SjcUV+vrNJ+Qpj5oqwEhFVtUoFYTt27MCECRNw48YNuLm5QRBK6+oIgiAHYURE1cVcVXyp6r3+PpDSKFlKSmu99lq9QMw0J6wiRViJiCqrUkHYnDlzMGXKFLz55ptwdnau6j4REQEwn4CfmpoKwHJVfGka0TD5XhqtL918WxR1m2/b2xfJgZqDQ5HZchZERNWhUkHYv//+i2eeeYYBGBFVmqUVjhqNBkVFRbh16xZ2795t8fWWquK7u2ebSb43N/Wo23w7OPgigPN3dzNERJVQqSAsOjoav//+O1q1alXV/SGiBuBuVzgCplXxAUAUgeTkzhAEsczk+/LmfbEsBRFVl3IHYdu3b5e/Hjp0KObOnYtTp06hS5cusLe3N2g7YsSIqushEdU75V3hqH8cgEmbkJDzMNwdTYH4+Cjo53iZZ5j3ZWnfR1bCJ6LqVO4gbOTIkSbHXn31VZNjgiCgpKTkrjpFRPWP/vSjflFVSyscTQuqipAq2UdEJN7ZiDsQplON+nW/TAMxQdAiNnYVAgIy5GOenp4sQ0FENa7cQZhxGQoiovKyNP1oaYWjt3emmYKqUjClwOHDfXD4cAR0QZY1Ajp1+hOnTnUyCPL0AzAiIlupVE7Yf//7X8TExMDR0dHgeGFhITZu3MgSFURkwNL0Y36+s9kVjpcutSgzp8swMJNfbXBMELQYNCgegwbFW9zIG2DeFxHZRqWCsMceewyDBw+Gt7e3wfG8vDw89thjDMKIGiBLqx0B69OPuvIR+gGXiFu3nMosqGpOWNjvOHYszGDUSwq6zAVfo0aNgr+/P/O+iMgmKhWEiaJoUKBVcvnyZSiVyrvuFBHVLcbTjdYS7Y2nH3VBmP4IloBffumHyMgEJCREygGVLgHfWlCmRf/+B9G//0Gro176GIARkS1VKAjr0aMHBEGAIAi4//770ahR6ctLSkqQmpqKwYMHV3kniah2y8rKkr+2tpWQ+X0bTQMrUVTA3z8dcXFLkZ3tjvR0/zsBGWBc4V4i/V2oVOZhzJjeaNasGYqLiwEA9vb2Jn8gcuUjEdlahYIwaYXkiRMnEB0djSZNmsjnHBwcEBQUhNGjR1dpB4modlOr1di8eTOAsrcSMldgVbeFEMwWXQWA/HwXxMdHojRYE2A6hWlYLT84OJirHYmo1qtQEPbyyy8DAIKCghATE4PGjRtXS6eIqO7QzwMraysh4wKr0kgZAJNjhns9GlNYrJZPRFRXVConbNKkSQB0//PNysoyKV/RokWLu+8ZEdVKUgK+tL3Q9evX5XPp6X4wt0JRPzgKDT2OkJDzJnlb+scAYOnSOIuJ+YKgNckZ46bbRFTXVCoIO3fuHKZMmYLDhw8bHJcS9lmslah+kQKvnJwceerRmEbjioSESBiWjRARGZlgEhxJo2KWjqWmBllZGam7Zp8+iejcObncSfhERLVNpYKwyZMno1GjRti5cyf8/PzMrpQkovqhvPs8mk+6F6BU5iA1NchkpaQ19vYFMJf3JV3T3z8dgPlgDmDdLyKqGyoVhJ04cQJHjx5F+/btq7o/RFTLWNvnEdAFX/b2BcjPd4Zp4KTF1q1jzK6UtERaXWmpHIX+9Ka5PR+56pGI6opKBWEdO3Y0KL5IRA2D5f0c9ctGSIGYFoAAUdSNlIuiAtu3D4ODQwECA9PMjmAZr640ZTi9yT0fiaguq1QQtmTJEsybNw9vvvkmunTpAnt7e4Pzbm5uVdI5IrIdKQ9M+oPLNEDS3zao9LMgiBg9ejMAAVu2PGR0VQW2bHlITqz3988wmKY0P6Up0SIqSpcLJuG0IxHVZZUKwiIjIwEA9913n0E+GBPzieoHc3lg1gOkUqKogIvLTbi7Z1vcekgUFYiPj4JU8ysiIhHh4Ulm64gJghajR29BYOBlg9GzmJgYTjsSUZ1WqSBs//79Vd0PIqpFzO0Bab7QqikpZ8u4JpiZlnc+K3D4cB8kJqowfPhOs3XEOnc+bfJqLy+vStwZEVHtIYiibiOQijp48CA+++wzpKSkYMuWLWjevDm++uorBAcHo2/fvlXdzwYpNzcXSqUSGo2GU7xUozIyMrBy5Ur5eykZPz3dT67NZVgPTPe1ueR7jcYVaWkBcoK+NYKgRVzcUgAwW3pCSsRn8j0R1Wbl/f1dqZGwrVu3YuLEiZgwYQKOHz+OgoICAIBGo8Gbb76J77//vnK9JiKbkXLAABgsvDHeC7J163M4d64tDAuyihg9+huDKUP9VZSdO59GYaG1UTEdqbp+cPBFs4n73HCbiOqTSgVhr7/+OlasWIFHH30UGzdulI/36dMHr7/+epV1johqhqVaYOb2gjQOwKTjLi435cDJ3CbeISHnUda4u7XyExz9IqL6plJB2NmzZ9G/f3+T40qlEjk5OXfbJyKqBvojXfo0Gg2ysrLMvsZSAVZj+sGTpU28hwz5HpZqf+mw/AQRNSyVCsJ8fX1x/vx5BAUFGRz/5Zdf0KpVq6roFxFVofJWvTdmPhnfcG9IKXgCdNsN5ec7m93E+8YNFyvvZFp+goiovqtUEPb4449j5syZ+OKLLyAIAtLT05GYmIhnn30WL730UlX3kYgs0B/dysnJQXFxscF5e3t7KJXKChdX1s/nMl6t2LXrSZw82fVOoKULnpycbssbbguCFuYq5zdvng5zAdyYMd+YlJ8AWAOMiOq/Sq2OFEURb775JhYvXoybN28CABwdHfHss8/itddeq/JONlRcHUnWVHZ0qyyW8rn0VyvqgjR3eQpSCsBK6VfTLz3WrdsfcgBnbRujRx55BCEhIVV+b0RENaG8v78rXaIC0NUSOn/+PG7cuIGOHTuiSZMmlb0UmcEgjKyxVEZCf09HS5tm67fVP6/RuJoEVFLZCEubb6emBmHt2klmzphuwC0IWsTGrkJRkYNJ+YmYmBgolUom4BNRnVetJSokDg4O6Nix491cgoiqgKU9Hc2NNhmPdEVGluZipaUFms3nys52txiEWS7iar5SflGRA4KDLxqsfmTgRUQN0V0FYURke9b2dJRWJoaEnJenEY1XLuq2DwKcnG5j+/ZhJtcXBC3y812g0bgCMB1hUyrzEBp6FEeP9iqzr/qrKLn6kYgaOgZhRHVcWXs66o9kWSo5ER8fCd02sMbnRIgi7mzEbXmELTj4goUgrHRKUnqNpRE1IqKGhkEYUR1X1p6O+qNP1qYOzWeHlo6qWRthCwxMg/HKRyn/KyenKQCYXQFJRNSQWd/IjYhqPWmjbF1pCOiViDAcfZKS8fv2PQhdwKRPK7++vKQRNqkPI0bsMOjD8OE7ERCQgc6dT6Nz59MsQUFEZIQjYUT1QGjocYMyEoDhBtjGyfgdO57CqVMdoD+1CKDMvR316Y+wmeuDuZWPEibiExExCCOq1cxtNaTRaFBUVIS8PMORJaUyzyDw0d9I2zgZ//TpDpg61bBUhEbjitGjt+LmzcbYvXuomWBMGinTFWnVz+8y3udRHwMuIiLzGIQR1UJqtRpZWVnYvHlzpV4fERGBw4cPAzCfuK9fKgIwLVvRocNpnD7dQf5epUqEi0s+EhIiIYq4k8RfiisdiYgqjkEYUS1TFZXwfX195a/NJeOXteH2qVMdoUuy19UR69w52aCIq3FiPhERVRwT84lqGePpx7tlLnFffyrRUtkKHQXi4yNx9mwbi0VciYiocjgSRtQAmEual1ZL2tsXWC1xASjw/fdDYa4EhX5iPhERVQyDMKI6wtx+j5b2gLx+/brJ6/UT9w23OdIiJCQF//wTorftkVHS151kfEEQDTbflq7HchNERBXHIIyoltNoXJGUFI7Dh1WwVFLCuIL9/v37Ta6hv7m3YSkKBVJS2kAXjJ1HSkqIhZ4oMHr0Zri43MSECeHo3LkXgF5c/UhEVEkMwohqMcMRKx1RVGD79mEQBJQrUd545aNKlWhh6lFxJwAzHgXTEQStXPW+c+doroYkIrpLDMKIqpG5Ol/6rI0imW7Mrc90myH9PSItXUMUFTh8WGUlB8xyAMZ9H4mIqhaDMKJqUt5SEzNmzDAbiFnfmFtrMBIGmE+UN38NBUJDj+Do0TCUtUBaELQYPXqLyb6PzAEjIrp7DMKIqkl5S00Yt5MCHMubbWsxYoRhTphCIWLYMNORKkvX0AVg5ke9JNLoV+fOpwGUVsVnDhgRUdVgEEZUy3h4eOCRRx7BunXrMHz4TpN8rvDwJDnYkspOTJgQjsOHj5tcS6oRZjqtaXkEzNLol7+/P4MvIqIqxCCMyMauXbtm8L2DgwOcnZ0BWN8UGygtO+HrG2ZyXWlFZEjIeYwevRVbtjxUZl84+kVEVHMYhBGV090k2Vuzbds2k2Njx46VvzbemNsc47pgxisiIyMTzExL6ueVaRERYTjKBnD0i4ioOjEIIyqHu02yBywXVjWnuLi4Qv3TrwtmbkVkQkIkIiMT7mzArQvMFixIxcCBhUhLc0RgYAF8fd0ARKFRo0Zo2rQpR7+IiKoZgzCicqhskr3EeGRKv7BqVTO3IlIUFVAqcxAXt1Se2nz66fHw87NUmJWIiKobN/AmskKtViMjI8Mkb6sizI1M7dgxDBqNa6WulZoaZPW16el+0G09ZGjLljFISWmN4OCLrPdFRFQL1JkgbMSIEWjRogUaN24MPz8/TJw4Eenp6QZtNm/ejO7du8PZ2RktW7bEO++8Y3Kdn376CaGhoXB0dETr1q2xZs0akzYff/wxgoKC0LhxY4SHh+O3334zOH/79m1Mnz4dHh4eaNKkCUaPHo0rV64YtLl06RKGDh0KZ2dneHt7Y+7cuRWeYiLbkqYgV65caTZvy5xr164hIyMDGRkZ0Gg0ACyPTGVnu5e7LxqNK/bujcTSpXFYu3YSli6Nw7FjPcy2S0iIhPnyE5UP/oiIqOrVmenIgQMH4vnnn4efnx/+/fdfPPvssxgzZgwOHz4MANi9ezcmTJiAjz76CIMGDcLp06fx+OOPw8nJCTNmzAAApKamYujQoXjyySexfv167Nu3D1OnToWfnx+io6MBAJs2bcLs2bOxYsUKhIeHY+nSpYiOjsbZs2fh7e0NAJg1axZ27dqFb775BkqlEjNmzMCoUaNw6NAhAEBJSQmGDh0KX19fHD58GBkZGXj00Udhb2+PN9980wZPjyojKyurwq8xF6yZq9VlrrCqJceO9cD27cOg/zeTpW2KrBd4NV9Vn4iIbEMQRePNT+qG7du3Y+TIkSgoKIC9vT0efvhhFBUV4ZtvvpHbfPTRR3j77bdx6dIlCIKA+fPnY9euXUhOTpbbjBs3Djk5OdizZw8AIDw8HL169ZKTsLVaLQIDA/H0009jwYIF0Gg08PLywoYNGzBmzBgAwJkzZ9ChQwckJiaid+/e2L17N4YNG4b09HT4+PgAAFasWIH58+fj6tWr5a42npubC6VSCY1GAzc3typ5blQ+ZSXiVyTJHtAFUrt2DUdJiVCunLCYmBhs2rQJGo0rli6NsxhYTZq0BsHBF+X+2NsXYPXqqRbbC4IWcXFLoVTmYdq0adz/kYioGpT393edGQnTl52djfXr1yMiIgL29vYAgIKCArm2ksTJyQmXL1/GxYsXERQUhMTERERGRhq0iY6ORlxcHABdUvXRo0fx3HPPyecVCgUiIyORmJgIADh69CiKiooMrtO+fXu0aNFCDsISExPRpUsXOQCT3uepp57CX3/9hR49TKeRqHaxlohfmST70NDjWLgwHBcuNMKhQ2vlwM1SMFdUVISxY8fihx8KrQZU7u7ZJv3p2vUkTp7sKn+v+zNLYbL/I7ceIiKyrToVhM2fPx/Lly/HzZs30bt3b+zcuVM+Fx0djVmzZmHy5MkYOHAgzp8/j/feew8AkJGRgaCgIGRmZhoERgDg4+OD3Nxc3Lp1C9evX0dJSYnZNmfOnAEAZGZmwsHBAU2bNjVpk5mZKbcxdw3pnCUFBQUoKCiQv8/NzS3PY6EaZCnJ3nha0Bxn52x07+6A5GRdO2vBnDStqdG4QhC6mARiUnsAJv05ebIrYmNXoajIARMmhMPd3R0XLjRCUFAx/P17AejF8hNERLWATRPzFyxYAEEQrH5IwQ8AzJ07F8ePH8fevXthZ2eHRx99FNJs6uOPP44ZM2Zg2LBhcHBwQO/evTFu3DgAutGsumDx4sVQKpXyR2BgoK27VG9Jqx4tfeTk5Ji8RqNxxV9/dap0kv3mzZtRVFQkX6s8KyalbYcEQXvniBYREYcQF7cUISHnsXfvILP9KSpyQHDwRYSGeiMszAejR3sgLMwHfn5+8PPzYwBGRFQL2HQkbM6cOZg8ebLVNq1atZK/9vT0hKenJ9q2bYsOHTogMDAQv/76K1QqFQRBwJIlS/Dmm28iMzMTXl5e2Ldvn8E1fH19TVYxXrlyBW5ubnBycoKdnR3s7OzMtvH19ZWvUVhYiJycHIPRMOM2xisqpWtKbcx57rnnMHv2bPn73NxcBmLVoLyFV/Xpj1rpyj+Urj5UKMRyJ9lLyf7WVkwaj6jpb11kb1+IoiJH/P57GA4e7A9zqyClacqYmBgGW0REtZhNgzAvLy94eXlV6rVarW5kQH/6DgDs7OzQvHlzAMDXX38NlUolv4dKpcL3339v0D4+Ph4qlQqALkcmLCwM+/btw8iRI+X32bdvn7zCMiwsDPb29ti3bx9Gjx4NADh79iwuXbokX0elUuGNN95AVlaWvKIyPj4ebm5u6Nixo8V7cnR0hKOjY6WeB5VfeQuvSoxHrXSBjy4QEwQtFi5MB1C+1YZSZfuKrphUKvOQktLaYiCoT6VKvLPVkbJcfSIiItuoEzlhSUlJOHLkCPr27YtmzZohJSUFL730EkJCQuTA59q1a9iyZQvuvfde3L59G19++SW++eYbHDhwQL7Ok08+ieXLl2PevHmYMmUKfvzxR2zevBm7du2S28yePRuTJk1Cz549cc8992Dp0qXIz8/HY489BgBQKpWIjY3F7Nmz4e7uDjc3Nzz99NNQqVTo3bs3AGDQoEHo2LEjJk6ciLfffhuZmZl48cUXMX36dAZZNczcfo8VLbxqvuyDgOjoPejY8RTGjh2CzZtLz5Rn5aQ0zWicE2apvflA0BwtwsOTADDxnoiotqsTQZizszO2bduGl19+Gfn5+fDz88PgwYPx4osvGgQ1a9euxbPPPgtRFKFSqfDTTz/hnnvukc8HBwdj165dmDVrFpYtW4aAgACsWrVKrhEG6EoDXL16FQsXLkRmZia6d++OPXv2GCTaf/DBB1AoFBg9ejQKCgoQHR2NTz75RD5vZ2eHnTt34qmnnoJKpYKLiwsmTZqEV199tZqfFOmrzLSjOaUV6EsDH0HQomPHU5g27QGD0dyKrJzUn2Z0d8+2mthfVv0vHS1GjNgp94lTkUREtVudrRPWELBO2N3JyMjAypUr7+oa5ut0iYiKikefPonyht1nzpzBypXfm7TVr8tV2fcvu/6XiLCw39G//0FMm/YA2rdvX6n3IiKiqlGv64QR1ZTWrYeYnYocN641IiJayEeUSmWFku0llqYuNRpXJCWFIzFRZbb+V+nInBZRUQno00dXx66yOZZERFTzGIQRWXH+/G4IQjuT0a3k5O+QlqYLmqRFGxVNtrc0dWlpmyL9+l9Dhw6AQuF2p/ZXFwBdWPuLiKiOYRBGDZ61RPryJNAXFhbCwcHBpC0AiCKQktLaJC/MUp0wb+9M7NhhGIBJRFEBlSoSDz6oZLBFRFQPMAijOsfcikd9FRkRKk8ifXkS6D08PDBjxgxcuFCMHTv0Vy6ar6iflhZodury3Lk2Vrcp6tWrGTw8mpXr3oiIqHZjEEZ1SnlXPEpThNZUZAsiXd0t83ld+iUv0tKcIYqG5SOM88JKpxuNaXHgwACz7yEIWrz6aia6dPEv876IiKhuYBBGdUp5C61evXpV3iLIksok0psj7fMI6AI7hWIWtFrDchZSXpgU+JlON2qhS7Q3rv9VuvIxNnZ8uftERES1X93YVJGogjZt2mQQHAG6ACg1NUjen1FKpNdnLZG+PJTKPMyblyJf1ziHzFK9rzZt/ob5AqwCOnf+q9IlLoiIqPbiSBg1CJZyvypStb68Gjdej7g4VzmHDABSU4Pg7q42u4IS0OL8+bZmr3W3QSEREdVeDMKozlCr1RXecgiwnvslJd2npQUAEBAYmFYlfZVyyIyDv8jIBKhUiTh8WAVAd0z3fR8zV6maoJCIiGonBmFUJ9zNFkSWcr+6dx+DqCh7bNjghGXLlNBqBatbDZVnT0jj9sbBX3x8FKSNv1WqQ/I+j1JRVokgaBEbuwoBARnyMe4FSURUvzAIozohKyur0q+1VES1UydHlJT4YN48QHsnNUy/XldRkaMccFVkT0iJpY2/pfdJTFQhPDzJYi0yKQCLiYnhXpBERPUQgzCq9dRqNTZv3lzp11sKcvz9e+HMmdIATCKKCqxaNRXSdGFkZAISEiLLVcpCn/n8L8P3CQmJxn33KTBtWlMsXHgVFy40ulMFvxeAXqyCT0RUjzEIo1qvvGUprDFfcLUX2rQBFArjQEyEtHBYFBUGAZjcohylLJTKPPTtexAHD/aHuZWPgqBF//7+6NBBV3zVzw8IC7u7+yQiorqDJSqoTjMuO2GNUpmH4OCLBoFTQACwciVgZycCwJ3SEqbFVnV1vEoJghb29oVW3/vYsR44eLCfyfUAQKEQ8cEHN9GlC6vfExE1VBwJozqrMnla+jQaDRwcHBAb64Hu3bPw0Ue7YW9fiNWrp5rkj+lPSSoUIrp0OSm3M/felouyAoAWO3ao8cADXndx90REVNcxCKM6qSJbDlla1bhp0yYAui2O/P21CA6+CABm88dCQ4+jc+dk9OkzCU5OWgwb1tXsewO6hPyrV80XZZWuFx5uriQFERE1JAzCqE6yVHYiLS0A2dm3KrSq0TjnzNKG3UplHiIiCnHokIPZ905KCtcrNSGa6bUW69alIDq6D5PtiYiIQRjVTZYqz2/dOsagMGplVjUCljfszsnJQXCwu9mSF1IB1jtHjF6pxYgROzFwYC8GYEREBICJ+VSHqVSJens/6hLqDQujWl7VaMy4EKqlhP/NmzfDxeU6hg/fabA/pK9vBqz9cxozZkuF8tWIiKj+40gY1XrGAZL+FCOgRUTEIfj7p2PLloeMXqkwO2Jlbi9GDw8PxMTEYNOmTWVOYWZlZclTlklJ4Th8WIWMjOYW+y8IWgQGXjZ7L0RE1HAxCKNaz8PDAzNmzEBhYSHS0xV49VVviKI03aerPB8bu8pswKU/JVnWBt1KpbJcCf/79++XX5OYqD8FaUoQtHj11SuIjR3PwqtERGSAQRjVCVLw8v775ivcFxU5WF3VaJxkb4mlhH9zhVnNb0uko1CI+PTTHKhUQJcufhW8WyIiaggYhFGdcfky8N57pselwqnNml1HbOwqFBU5mKxqLM+G24DlfSbNTWFa2pbIzg747DMBsbEsxEpERJYxCKNqo1arrW45VNHpuXPnANFM5YdWrVJMCqdKNb/0WaoXlpqaimvXruHWrVsW95nUb69/Hf22CoWI2bMFzJypq8RPRERkjSCK5n6tUW2Qm5t7J09JAzc3N1t3p0LUajWWL19eZrsZM2aUOxC7fBlo2dJ4OlILQYDJyFVc3FIolXkYO3YsmjZtio8/voU33wwqd3V9XaBlOoVpLmlfqin29NNDEBbmU657ISKi+qu8v79ZooKqRXk33a7I5tyl+zzqvhcELSIiEq2WoWjatClKSvyweHGwSbK9tf0mlco8uLtnIzvbQ25nKWkfAIKDL8LfX2vxekRERMY4HUl1SmwsEB0NJCWpcejQWgDQq1KvY5zDde4coNWabsptLtleYm7Eq1mz6+VO2iciIioLR8KoSqnVamRkZODatWvV9h4BAcC995Ym3A8fvhO6Yq0AYJjD5eDggDZtdKsV9VlKtgcsj3jZ2xfoFYct+zpERETWcCSMqkx588Cqgn7tsA0bnLBzpwCtFlAoBPTv3x8PP9zLIPF/4cJ/sWiRf7nqhVkqU2GpDIZ+wEdERFReDMKoylQkv6sqeHh44PJlYN680mR9rVbA/PlNMWiQCE/P28jIyAAADBz4DzSazeWqF2au9ISdnYinnx4Cf38tFi68igsXGiEoqBj+/r0A9GIhViIiqjAGYWRT5qYtpRGl8pS30OV7GZ4rKQHee+9/JmUqlEpYDb4slZ6wsxPx2WeCvPLRzw8ICyvvHRIREZnHIIxsatu2bZV+7YwZM9CmjQcUCsNAzM5OLDNP6/JlP1y61BIeHtfg4FCM9HQ/k+2N4uKWsvQEERFVGwZhVGcVFhbKZSueeEI3AmZnByxZosGNG5ZHvL799kH88Uc3AAIA0ehzaSJ+XNxSlp4gIqJqw9WRdNdqYkWkNbGxwIULwP79us8PPJBhse3ly356ARjMfNbRrzXGhHsiIqoOHAmju1KTKyKtCQjQfaSkpGDz5s0W21261BLGAZc5CoUuET8oqBET7omIqFowCKO7Ut4VkZb2bbwb165dM1iVqFarsW7dOquvadHiIvSnHg3pjisUIlauFJgHRkRE1YpBGFU7c9Xnre3bWF5SUr+0/6SlgFA/AHR1vYGQkPNISWkN/VwwQdAiMjIB/v7pTMQnIqIawSCMqpWl6vMhIeerbESssLAQarXabE6afgCoq6ovoDT40kKXFqkLwPr0SQQAJuITEVGNYBBG1UajccVff3W66/0Wy5rKzMnJMZsHZhwAGq5DkYIx3fGEhEh07pzMPSCJiKjGMAijamE4AmWYg6W/32JZAVZ5pjKLi4vN9sHc9kOWcCNuIiKqaQzCqMqZjkAZ5l5J+y2WFWDd7VTmP/8EwXISviH9wJAlKYiIqCYwCKMqZ34ESkB09B507HgKSmWe2QBr+/ZhcHAoQGBgGpTKPIsbaaelBUCpPG21D4cOqXDwYH8YBmCi3BdBEO9cT4CdnYglS3Lx8MPjuQckERHVGAZhdFfMjRqZ2wBbELQGAZi5XDFAgS1bHpJHxUJCzptcBwC2bh2DwkLLKywvX/ZDfHwUTEfABIwZsxkuLjcxZ86DaNasGc6fB1q3FhAQ0BRA04rePhERUaUxCKO74uHhgRkzZsjlIdLTFUhNbQQXlzwsXuyGkhJd3a1hw0ynIC1NFepvGzR8+E5s3z4M+kn1xtOSeXmlU5PHjvW4097cFKQWgYGXMX36gwgJaQZAV+CViIjIFhiE0V2Tpu9WrwamTdNtpq1QAEuWAD17Ah4eOdi27bjVXDFjUqJ8aOhxODgUYMuWh8yeVyrzEB8fD6A0h8z8blwioqISMG3aAwgJCamyeyciIqos7h1JVeLy5dIADNB9XrAAaN0a6NKlGWbMmIGIiElmc8UGDNgPQTCszSUIWuTnu0CjcUVgYJrJeYVCxIQJ4YiKipKPWV4NKSIqKh59+iRCqVRWwd0SERHdPY6EUZU4d640AJOUlADnz+um/Dw8PNC7t26ETL+dnZ2I0NDjUCrzDKYpRREG+WHDh+80WEk5bNhOHD5smBPm7q5GaQFWfSI6d06uhrsmIiKqPAZhVCXatDEXYOlGwiQBAcDKlcATT+gCNDs7YMkSDW7cyENo6HHcutUY8fGR0AVRuilK/fywuLilyM52h7t7ttkSFbqtiMxhDTAiIqp9OB1JVUIKsOzsdN/b2QGffWaa+B4bC1y4AOzfr/v88MO3AOjyuRISpADMkH7+V3DwRbPBlLV8MP0aYERERLUFR8KoysTGAtHRuFP2wfLKw4CA0nMZGbrP1qrblyeIsvR6/eKwAAuxEhFR7cEgjKqUfoBVHlJQZK62mI5hEGVpmyPzr9ciNnYVAgIyMGrUKPj7+7MQKxER1RoMwsimpDpj6enpSEnZqZecr0WnTqegUh1GQIBuuMzaNkdKZZ5J8v7w4Tvl13p6ejIAIyKiWoVBGNmMWq2Wi7wCQGjocYSEnEdSUjgSE1X466/OOHWqo1w9v6x9JKXXm0ve5zQkERHVNgzCyCbUajWWL19u9lxiosok2Bo9eqvZfSSlhP1Ro0bB09PT7PW4HyQREdVGDMKoWuiPcklbGQUHF8PfX1fDQqPRmH2dpU27AdHsfpRSwj7zvYiIqK5hEEZV7s8/r+O993bC3V2NlJTWFvO49EkJ9/b2BWaDrcDAyxg+fCd27hwOrVa3H+Xbb+fi4YfHc6SLiIjqJAZhVCWkka8NG5wwb15TaLWToKteL8C48Kp+HhdgmnDftetJnDzZ1SBwUyrzTHK+Jk+eBA8PP5vcLxER0d1iEEbldvmybnuiNm0My1BI+V0ajSuWLo2DKEobclsvvArAZFNvUVTg5MmuiI1dhaIiB3m6MTU1SC5LIb1WP6mfiIiormEQRuWyenXpBt0Kha46fmys7pwUDFkruCoxLrxqKQesqMgBwcEXrZalICIiqsu4bRGV6fLl0gAM0H1+4gndcX1SwVRrVKpEs0VW9UmBmrlRsh07hkGjcb37myIiIrIxBmFUpnPnDDfmBnQbcJ8/b3hMKphaGlSJRlfSIjw8yeQ1kZEJ8mv0c8AsjZJlZ7vf5R0RERHZHqcjGyhL+V3mtGmjm4LUD8Ts7HT7Q16+DPz6qwM0GleT5Pn0dH8kJESaJNjrO3ash9wG0CIyMkGebjS3FRE34yYiovqCQVgDZC2/y5yAAF2bJ57QjYDZ2QGffQb88IN0HQ8IQpycryUlzwcHX0TnzslmK9gDpkn5gALx8ZFQKjUIDEyzuBWR8XWIiIjqIkEUReM5I6olcnNzoVQqodFo4ObmViXXvHwZaNnSdFTrwoWyR8QuX9ZNQbZurfve+DqCoEVc3NJyB0mpqUFYu3aS2XP6Sfi6GmKmgdy0adPg58cSFUREVLuU9/c3R8IaGGv5XcZB2OXLwO+/axAYeBv+/lrY2QGurgr8+msjqNUKaLXNDNobl58wR78o69WrHtDVEjNfykK/ppi5a3I/SCIiqssYhDUw1vK79OmmLEVotUoIgiuGD98JAAZTg8YBVFn5WvrlJnRJ+1I9Mf2vS1nbG5JV8omIqK6rc6sjCwoK0L17dwiCgBMnThicO3nyJPr164fGjRsjMDAQb7/9tsnrv/nmG7Rv3x6NGzdGly5d8P333xucF0URCxcuhJ+fH5ycnBAZGYlz584ZtMnOzsaECRPg5uaGpk2bIjY2Fjdu3KhwX2xByu+ys9N9L+V36Y+ClZakKK10v337MJNyEbofH91stkIh4uWX0/HQQyqz72ua/6UfdAnQBXTmS1UAgKenJ/z8/OQPBmBERFTX1bkgbN68efD39zc5npubi0GDBqFly5Y4evQo3nnnHbzyyitYuXKl3Obw4cMYP348YmNjcfz4cYwcORIjR45EcnKy3Obtt9/Ghx9+iBUrViApKQkuLi6Ijo7G7du35TYTJkzAX3/9hfj4eOzcuRM///wzpk2bVqG+2FJsrC4HbP9+3WfjpHxzU5aAwkIhVl0ANWXK5wBWY+/evQCA/v0fRqdOMxARMRZAeQq5KhARkWi2VAUREVF9VKcS83fv3o3Zs2dj69at6NSpE44fP47u3bsDAD799FO88MILyMzMlHOFFixYgO+++w5nzpwBAMTExCA/Px87d+6Ur9m7d290794dK1asgCiK8Pf3x5w5c/Dss88CADQaDXx8fLBmzRqMGzcOp0+fRseOHXHkyBH07NkTALBnzx488MADuHz5Mvz9/cvVl/KojsT88jCXvA9oIQiwGEhNmrQGwcEXAeimHfU32h42bAdCQs7f2dLI/OulpH4ATMInIqI6rby/v+vMSNiVK1fw+OOP46uvvoKzs7PJ+cTERPTv398gWTs6Ohpnz57F9evX5TaRkZEGr4uOjkZiYiIAIDU1FZmZmQZtlEolwsPD5TaJiYlo2rSpHIABQGRkJBQKBZKSksrdl9qsdMpSF58LghYjRuw0KsRaSn/aUJp2lKYytVoBO3YMAwCLrwdKK+lLpS2MR8CYhE9ERPVNnUjMF0URkydPxpNPPomePXviwoULJm0yMzMRHBxscMzHx0c+16xZM2RmZsrH9NtkZmbK7fRfZ6mNt7e3wflGjRrB3d3doE1ZfTGnoKAABQUF8ve5ublm29WE2Fige/csfPTRboNRqZCQ80hKCsfhwyoApbW7AF3Jifx8Z4tV7kNDj8PbOxOrVk2FYfxvWEmfSfhERNQQ2DQIW7BgAZYsWWK1zenTp7F3717k5eXhueeeq6Ge2cbixYuxaNEiW3dD5u+vlacYpdIS7u5qDBqUgPDwJHnaMCWltTzVWNaqyYCADIwYYb0Aq7+/P4MuIiKq92wahM2ZMweTJ0+22qZVq1b48ccfkZiYCEdHR4NzPXv2xIQJE7B27Vr4+vriypUrBuel7319feXP5tron5eO6ecfXblyRc498/X1RVZWlsE1iouLkZ2dXeb76L+HOc899xxmz54tf5+bm4vAwECL7WuKfmkJ/SKqSmWe2U22dXRlJ8wFWfpbGxnnfj3yyCMMwIiIqEGwaRDm5eUFLy+vMtt9+OGHeP311+Xv09PTER0djU2bNiE8PBwAoFKp8MILL6CoqAj29vYAgPj4eLRr106e/lOpVNi3bx/i4uLka8XHx0Ol0pVVCA4Ohq+vL/bt2ycHXbm5uUhKSsJTTz0lXyMnJwdHjx5FWFgYAODHH3+EVqutUF/McXR0NAk0bcnBwcFskKVfRNXyqkfdqsnY2FUICMiQjw4cONDkGdjb20OpVHLakYiIGpQ6kRPWokULg++bNGkCAAgJCUHAnQJXDz/8MBYtWoTY2FjMnz8fycnJWLZsGT744AP5dTNnzsSAAQPw3nvvYejQodi4cSN+//13uXSEIAiIi4vD66+/jjZt2iA4OBgvvfQS/P39MXLkSABAhw4dMHjwYDz++ONYsWIFioqKMGPGDIwbN04unVGevtQGZW3i7eHhgdDQGIs5XkplntlNtkspUFRkmFDfpk0brnIkIiJCHVodWRalUom9e/ciNTUVYWFhmDNnDhYuXGhQvysiIgIbNmzAypUr0a1bN2zZsgXfffcdOnfuLLeZN28enn76aUybNg29evXCjRs3sGfPHjRu3Fhus379erRv3x73338/HnjgAfTt29egBlh5+mJrq1frylDcd5/u8+rV5tt16NDIZEWjfo6XtMl2WasmiYiIyFCdqhPW0FRXnbCKbOKdkZGBSZP+REJCpElOmD6NxtXsqknjdqz3RURE9R038CaLrG3i7eSkRmFhoXx85coSOQADtIiMTDAJrADdiJjxqkluuk1ERGQZg7AGqE0b3Kl+X3pMoQA8PK5j+fLl8jGNxtWoyr0CCQmR6Nw52eJ2QlLBVWOjRo1i6QkiIiI99SYnjO6OKMJgBAwwv9+jlJRfUZ6engzAiIiI9DAIa4DOnTMcBQN031+4YDgwKq181Gcp2V6jcUVqahA0Glez78lpSCIiIkOcjmyA2rTRTT8aJ+YHBRUjObn0mLTy0VJ1e6mKfnq6n8XE/UGDBqFt27YcBSMiIjLCIKwBkjbofuIJXUK+nR3w2We6bYqMWapur19FX6qOD5gWcw0KCmIARkREZAaDsAYqNhaIjtatiGzdWheYHT2qQGpqENzd1QbJ9cbJ9sZV9KUATKJfzJWIiIjMYxDWgAUElNYFW70amDbNG1rtJABaREUloE+fRLOvs7xVkQ6LtBIREZWNQVgDolbraoClpyuQmtoIwcHF8PfXIj1dcScAk0a0FIiPjwIAs4GY+a2KLG/YTURERKYYhDUQarUay5cvN8jlkgKmZs2u3xkB0ydYrAlmLmE/MjIB/v7pFou0EhERkSEGYQ1EYWGhSS6XlEQfG7sKgBbGFUtEUYG0tAAoladNrmcpYZ+IiIjKh3XCGhBLxVeLihwQFZUA3ZSioS1bxuDYsR5mr6dU5iE4+KLVAIz1wYiIiMzjSFgDYi6XS0qiDw6+CABISIiCKOqvdjQsOVEeMTExUCqVcHBwYHkKIiIiCxiENSBlFV/t0ycRSqUGW7Y8ZPA6SyUnRo0aBU9PT4NjDLyIiIjKh0FYA2Mul0uqfO/urkZgYJrF0TJj3JCbiIio8hiENUD6xVfNrZa0NlomjX5xxIuIiOjuMAhrwCytloyLW4q4uKVmVz56enrCz8/PVl0mIiKqNxiENRDmVilaWi2Zne1e5qpHIiIiujssUdFAeHh4YNCgQQbHpNWS+rjlEBERUc1gENZAqNVqFBUVGRxLSWkNUa80GLccIiIiqjmcjmwApC2L9En5YPpxuCgCISHna7h3REREDRNHwhqAwsJCk2Pm8sEAXT6YNayAT0REVDU4EtZAWaueb05MTAy8vLxYloKIiKiKMAhroMqqng8AAwcOhJeXF7y9vRl8ERERVTEGYQ2Yuer5+tq0acOaYERERNWEQVgDp1893xjzv4iIiKoPE/PJrJiYGE5BEhERVSMGYWSWl5eXrbtARERUr3E6sgEo77Ti2LFj0bRpU27OTUREVAMYhDUAHh4emDFjhtl6YRIGXkRERDWLQVgDwQCLiIiodmFOGBEREZENMAgjIiIisgEGYUREREQ2wCCMiIiIyAYYhBERERHZAIMwIiIiIhtgEEZERERkAwzCiIiIiGyAQRgRERGRDbBifi0miiIAIDc318Y9ISIiovKSfm9Lv8ctYRBWi+Xl5QEAAgMDbdwTIiIiqqi8vDwolUqL5wWxrDCNbEar1SI9PR2urq4QBKHS18nNzUVgYCDS0tLg5uZWhT2sO/gMdPgc+AwAPgOAz0DC51A9z0AUReTl5cHf3x8KheXML46E1WIKhQIBAQFVdj03N7cG+49Mwmegw+fAZwDwGQB8BhI+h6p/BtZGwCRMzCciIiKyAQZhRERERDbAIKwBcHR0xMsvvwxHR0dbd8Vm+Ax0+Bz4DAA+A4DPQMLnYNtnwMR8IiIiIhvgSBgRERGRDTAIIyIiIrIBBmFERERENsAgjIiIiMgGGITVUZ9++im6du0qF5dTqVTYvXu3fP727duYPn06PDw80KRJE4wePRpXrlwxuMalS5cwdOhQODs7w9vbG3PnzkVxcXFN30qVeeuttyAIAuLi4uRjDeE5vPLKKxAEweCjffv28vmG8AwA4N9//8UjjzwCDw8PODk5oUuXLvj999/l86IoYuHChfDz84OTkxMiIyNx7tw5g2tkZ2djwoQJcHNzQ9OmTREbG4sbN27U9K1USlBQkMnPgSAImD59OoCG8XNQUlKCl156CcHBwXByckJISAhee+01g/376vvPAaDbKicuLg4tW7aEk5MTIiIicOTIEfl8fXwGP//8M4YPHw5/f38IgoDvvvvO4HxV3fPJkyfRr18/NG7cGIGBgXj77bfvruMi1Unbt28Xd+3aJf7999/i2bNnxeeff160t7cXk5OTRVEUxSeffFIMDAwU9+3bJ/7+++9i7969xYiICPn1xcXFYufOncXIyEjx+PHj4vfffy96enqKzz33nK1u6a789ttvYlBQkNi1a1dx5syZ8vGG8BxefvllsVOnTmJGRob8cfXqVfl8Q3gG2dnZYsuWLcXJkyeLSUlJ4j///CP+8MMP4vnz5+U2b731lqhUKsXvvvtO/OOPP8QRI0aIwcHB4q1bt+Q2gwcPFrt16yb++uuv4sGDB8XWrVuL48ePt8UtVVhWVpbBz0B8fLwIQNy/f78oig3j5+CNN94QPTw8xJ07d4qpqaniN998IzZp0kRctmyZ3Ka+/xyIoiiOHTtW7Nixo3jgwAHx3Llz4ssvvyy6ubmJly9fFkWxfj6D77//XnzhhRfEbdu2iQDEb7/91uB8VdyzRqMRfXx8xAkTJojJycni119/LTo5OYmfffZZpfvNIKweadasmbhq1SoxJydHtLe3F7/55hv53OnTp0UAYmJioiiKuh9YhUIhZmZmym0+/fRT0c3NTSwoKKjxvt+NvLw8sU2bNmJ8fLw4YMAAOQhrKM/h5ZdfFrt162b2XEN5BvPnzxf79u1r8bxWqxV9fX3Fd955Rz6Wk5MjOjo6il9//bUoiqJ46tQpEYB45MgRuc3u3btFQRDEf//9t/o6X01mzpwphoSEiFqttsH8HAwdOlScMmWKwbFRo0aJEyZMEEWxYfwc3Lx5U7SzsxN37txpcDw0NFR84YUXGsQzMA7CquqeP/nkE7FZs2YG/x7mz58vtmvXrtJ95XRkPVBSUoKNGzciPz8fKpUKR48eRVFRESIjI+U27du3R4sWLZCYmAgASExMRJcuXeDj4yO3iY6ORm5uLv76668av4e7MX36dAwdOtTgfgE0qOdw7tw5+Pv7o1WrVpgwYQIuXboEoOE8g+3bt6Nnz5546KGH4O3tjR49euDzzz+Xz6empiIzM9PgOSiVSoSHhxs8h6ZNm6Jnz55ym8jISCgUCiQlJdXczVSBwsJCrFu3DlOmTIEgCA3m5yAiIgL79u3D33//DQD4448/8Msvv2DIkCEAGsbPQXFxMUpKStC4cWOD405OTvjll18axDMwVlX3nJiYiP79+8PBwUFuEx0djbNnz+L69euV6hs38K7D/vzzT6hUKty+fRtNmjTBt99+i44dO+LEiRNwcHBA06ZNDdr7+PggMzMTAJCZmWnwP1vpvHSurti4cSOOHTtmkO8gyczMbBDPITw8HGvWrEG7du2QkZGBRYsWoV+/fkhOTm4wz+Cff/7Bp59+itmzZ+P555/HkSNH8Mwzz8DBwQGTJk2S78Pcfeo/B29vb4PzjRo1gru7e515DpLvvvsOOTk5mDx5MoCG829hwYIFyM3NRfv27WFnZ4eSkhK88cYbmDBhAgA0iJ8DV1dXqFQqvPbaa+jQoQN8fHzw9ddfIzExEa1bt24Qz8BYVd1zZmYmgoODTa4hnWvWrFmF+8YgrA5r164dTpw4AY1Ggy1btmDSpEk4cOCArbtVY9LS0jBz5kzEx8eb/NXXkEh/5QNA165dER4ejpYtW2Lz5s1wcnKyYc9qjlarRc+ePfHmm28CAHr06IHk5GSsWLECkyZNsnHvat7q1asxZMgQ+Pv727orNWrz5s1Yv349NmzYgE6dOuHEiROIi4uDv79/g/o5+OqrrzBlyhQ0b94cdnZ2CA0Nxfjx43H06FFbd42McDqyDnNwcEDr1q0RFhaGxYsXo1u3bli2bBl8fX1RWFiInJwcg/ZXrlyBr68vAMDX19dkZZT0vdSmtjt69CiysrIQGhqKRo0aoVGjRjhw4AA+/PBDNGrUCD4+Pg3iORhr2rQp2rZti/PnzzeYnwU/Pz907NjR4FiHDh3kaVnpPszdp/5zyMrKMjhfXFyM7OzsOvMcAODixYtISEjA1KlT5WMN5edg7ty5WLBgAcaNG4cuXbpg4sSJmDVrFhYvXgyg4fwchISE4MCBA7hx4wbS0tLw22+/oaioCK1atWowz0BfVd1zdfwbYRBWj2i1WhQUFCAsLAz29vbYt2+ffO7s2bO4dOkSVCoVAEClUuHPP/80+KGLj4+Hm5ubyS+z2ur+++/Hn3/+iRMnTsgfPXv2xIQJE+SvG8JzMHbjxg2kpKTAz8+vwfws9OnTB2fPnjU49vfff6Nly5YAgODgYPj6+ho8h9zcXCQlJRk8h5ycHIPRgh9//BFarRbh4eE1cBdV48svv4S3tzeGDh0qH2soPwc3b96EQmH4a83Ozg5arRZAw/o5AAAXFxf4+fnh+vXr+OGHH/Dggw82uGcAVN1/d5VKhZ9//hlFRUVym/j4eLRr165SU5EAWKKirlqwYIF44MABMTU1VTx58qS4YMECURAEce/evaIo6pajt2jRQvzxxx/F33//XVSpVKJKpZJfLy1HHzRokHjixAlxz549opeXV51ajm6O/upIUWwYz2HOnDniTz/9JKampoqHDh0SIyMjRU9PTzErK0sUxYbxDH777TexUaNG4htvvCGeO3dOXL9+vejs7CyuW7dObvPWW2+JTZs2Ff/3v/+JJ0+eFB988EGzS9R79OghJiUlib/88ovYpk2bWr0s31hJSYnYokULcf78+SbnGsLPwaRJk8TmzZvLJSq2bdsmenp6ivPmzZPbNISfgz179oi7d+8W//nnH3Hv3r1it27dxPDwcLGwsFAUxfr5DPLy8sTjx4+Lx48fFwGI77//vnj8+HHx4sWLoihWzT3n5OSIPj4+4sSJE8Xk5GRx48aNorOzM0tUNERTpkwRW7ZsKTo4OIheXl7i/fffLwdgoiiKt27dEv/zn/+IzZo1E52dncX/+7//EzMyMgyuceHCBXHIkCGik5OT6OnpKc6ZM0csKiqq6VupUsZBWEN4DjExMaKfn5/o4OAgNm/eXIyJiTGoj9UQnoEoiuKOHTvEzp07i46OjmL79u3FlStXGpzXarXiSy+9JPr4+IiOjo7i/fffL549e9agjVqtFsePHy82adJEdHNzEx977DExLy+vJm/jrvzwww8iAJP7EsWG8XOQm5srzpw5U2zRooXYuHFjsVWrVuILL7xgUFKgIfwcbNq0SWzVqpXo4OAg+vr6itOnTxdzcnLk8/XxGezfv18EYPIxadIkURSr7p7/+OMPsW/fvqKjo6PYvHlz8a233rqrfguiqFdKmIiIiIhqBHPCiIiIiGyAQRgRERGRDTAIIyIiIrIBBmFERERENsAgjIiIiMgGGIQRERER2QCDMCIiIiIbYBBGREREZAMMwoioXrn33nsRFxdn625Uu1deeQXdu3e3dTeI6C4wCCMiqkUKCwtr9P1EUURxcXGNvicR6TAII6J6Y/LkyThw4ACWLVsGQRAgCAIuXLiA5ORkDBkyBE2aNIGPjw8mTpyIa9euya+799578fTTTyMuLg7NmjWDj48PPv/8c+Tn5+Oxxx6Dq6srWrdujd27d8uv+emnnyAIAnbt2oWuXbuicePG6N27N5KTkw369Msvv6Bfv35wcnJCYGAgnnnmGeTn58vng4KC8Nprr+HRRx+Fm5sbpk2bBgCYP38+2rZtC2dnZ7Rq1QovvfQSioqKAABr1qzBokWL8Mcff8j3uWbNGly4cAGCIODEiRPy9XNyciAIAn766SeDfu/evRthYWFwdHTEL7/8Aq1Wi8WLFyM4OBhOTk7o1q0btmzZUtX/iYhID4MwIqo3li1bBpVKhccffxwZGRnIyMiAq6sr7rvvPvTo0QO///479uzZgytXrmDs2LEGr127di08PT3x22+/4emnn8ZTTz2Fhx56CBERETh27BgGDRqEiRMn4ubNmwavmzt3Lt577z0cOXIEXl5eGD58uBwspaSkYPDgwRg9ejROnjyJTZs24ZdffsGMGTMMrvHuu++iW7duOH78OF566SUAgKurK9asWYNTp05h2bJl+Pzzz/HBBx8AAGJiYjBnzhx06tRJvs+YmJgKPasFCxbgrbfewunTp9G1a1csXrwY//3vf7FixQr89ddfmDVrFh555BEcOHCgQtclogq4q+2/iYhqmQEDBogzZ86Uv3/ttdfEQYMGGbRJS0sTAYhnz56VX9O3b1/5fHFxseji4iJOnDhRPpaRkSECEBMTE0VRFMX9+/eLAMSNGzfKbdRqtejk5CRu2rRJFEVRjI2NFadNm2bw3gcPHhQVCoV469YtURRFsWXLluLIkSPLvK933nlHDAsLk79/+eWXxW7duhm0SU1NFQGIx48fl49dv35dBCDu37/foN/fffed3Ob27duis7OzePjwYYPrxcbGiuPHjy+zb0RUOY1sGQASEVW3P/74A/v370eTJk1MzqWkpKBt27YAgK5du8rH7ezs4OHhgS5dusjHfHx8AABZWVkG11CpVPLX7u7uaNeuHU6fPi2/98mTJ7F+/Xq5jSiK0Gq1SE1NRYcOHQAAPXv2NOnbpk2b8OGHHyIlJQU3btxAcXEx3NzcKnz/lui/5/nz53Hz5k1ERUUZtCksLESPHj2q7D2JyBCDMCKq127cuIHhw4djyZIlJuf8/Pzkr+3t7Q3OCYJgcEwQBACAVqut0Hs/8cQTeOaZZ0zOtWjRQv7axcXF4FxiYiImTJiARYsWITo6GkqlEhs3bsR7771n9f0UCl2GiSiK8jFpatSY/nveuHEDALBr1y40b97coJ2jo6PV9ySiymMQRkT1ioODA0pKSuTvQ0NDsXXrVgQFBaFRo6r/X96vv/4qB1TXr1/H33//LY9whYaG4tSpU2jdunWFrnn48GG0bNkSL7zwgnzs4sWLBm2M7xMAvLy8AAAZGRnyCJZ+kr4lHTt2hKOjIy5duoQBAwZUqK9EVHlMzCeieiUoKAhJSUm4cOECrl27hunTpyM7Oxvjx4/HkSNHkJKSgh9++AGPPfaYSRBTGa+++ir27duH5ORkTJ48GZ6enhg5ciQA3QrHw4cPY8aMGThx4gTOnTuH//3vfyaJ+cbatGmDS5cuYePGjUhJScGHH36Ib7/91uQ+U1NTceLECVy7dg0FBQVwcnJC79695YT7AwcO4MUXXyzzHlxdXfHss89i1qxZWLt2LVJSUnDs2DF89NFHWLt2baWfDRFZxyCMiOqVZ599FnZ2dujYsSO8vLxQWFiIQ4cOoaSkBIMGDUKXLl0QFxeHpk2bytN3d+Ott97CzJkzERYWhszMTOzYsQMODg4AdHlmBw4cwN9//41+/fqhR48eWLhwIfz9/a1ec8SIEZg1axZmzJiB7t274/Dhw/KqScno0aMxePBgDBw4EF5eXvj6668BAF988QWKi4sRFhaGuLg4vP766+W6j9deew0vvfQSFi9ejA4dOmDw4MHYtWsXgoODK/FUiKg8BFE/eYCIiMrlp59+wsCBA3H9+nU0bdrU1t0hojqII2FERERENsAgjIiIiMgGOB1JREREZAMcCSMiIiKyAQZhRERERDbAIIyIiIjIBhiEEREREdkAgzAiIiIiG2AQRkRERGQDDMKIiIiIbIBBGBEREZENMAgjIiIisoH/B8bICXAr8uw/AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -848,7 +3897,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUCUlEQVR4nO2deXxU1d3/PzOTxQSSCSQsCVvCUiyCVKKGQEWKyCJg/YFNKi6gKGpBRaggj48ouCCobFq3FsGqKFTQKqgFKloFpJVFRJEKD1FigsBgJoEACZn7+2O4kzuTu6/nznzfrxcvzcydO2fuPfecz/lux8NxHAeCIAiCIIgEwOt0AwiCIAiCIOyChA9BEARBEAkDCR+CIAiCIBIGEj4EQRAEQSQMJHwIgiAIgkgYSPgQBEEQBJEwkPAhCIIgCCJhIOFDEARBEETCQMKHIAiCIIiEgYQPQRAEgyxfvhwejwdlZWVON4Ug4goSPgSRoPznP//B5MmTccEFF6BZs2bo2LEjSkpK8N///rfJsQMHDoTH44HH44HX60VmZia6d++OG2+8ERs2bND0ve+99x4uv/xytG7dGunp6ejcuTNKSkrw4YcfmvXTmvD444/jnXfeafL6li1b8PDDD6Oqqsqy747l4YcfjlxLj8eD9PR09OjRA//7v/+L6upqU75jxYoVWLRokSnnIoh4g4QPQSQo8+bNw+rVq3HFFVdg8eLFmDhxIv71r3+hT58+2LNnT5Pj27dvj1dffRV//etf8eSTT+Lqq6/Gli1bMGTIEJSWlqK+vl7xO5966ilcffXV8Hg8mDlzJhYuXIgxY8bgu+++w5tvvmnFzwQgL3xmz55tq/Dhef755/Hqq69iwYIFOP/88/HYY49h2LBhMGP7RBI+BCFNktMNIAjCGaZOnYoVK1YgJSUl8lppaSl69eqFJ554Aq+99lrU8X6/HzfccEPUa0888QTuvvtuPPfcc8jPz8e8efMkv+/s2bN45JFHcOWVV2L9+vVN3j9y5IjBX8QOtbW1SE9Plz3m2muvRU5ODgDgjjvuwJgxY7BmzRp8/vnnKC4utqOZBJGQkMWHIBKUfv36RYkeAOjWrRsuuOAC7N27V9U5fD4flixZgh49euDZZ59FMBiUPPbYsWOorq5G//79Rd9v3bp11N+nT5/Gww8/jF/84hc477zzkJubi9GjR+PAgQORY5566in069cP2dnZSEtLQ2FhId56662o83g8Hpw8eRKvvPJKxL00fvx4PPzww7jvvvsAAAUFBZH3hDE1r732GgoLC5GWloaWLVvi97//PQ4dOhR1/oEDB6Jnz57Yvn07BgwYgPT0dPzP//yPqusnZNCgQQCAgwcPyh733HPP4YILLkBqairy8vIwadKkKIvVwIEDsW7dOnz//feR35Sfn6+5PQQRr5DFhyCICBzH4aeffsIFF1yg+jM+nw/XXXcdHnzwQXz22WcYMWKE6HGtW7dGWloa3nvvPdx1111o2bKl5DkbGhowcuRI/POf/8Tvf/973HPPPaipqcGGDRuwZ88edOnSBQCwePFiXH311bj++utRV1eHN998E7/73e+wdu3aSDteffVV3Hrrrbj00ksxceJEAECXLl3QrFkz/Pe//8Ubb7yBhQsXRqwvrVq1AgA89thjePDBB1FSUoJbb70VR48exTPPPIMBAwZg586dyMrKirQ3EAhg+PDh+P3vf48bbrgBbdq0UX39eHhBl52dLXnMww8/jNmzZ2Pw4MG48847sW/fPjz//PP4z3/+g82bNyM5ORkPPPAAgsEgysvLsXDhQgBA8+bNNbeHIOIWjiAI4hyvvvoqB4BbunRp1OuXX345d8EFF0h+7u233+YAcIsXL5Y9/6xZszgAXLNmzbjhw4dzjz32GLd9+/Ymx7388sscAG7BggVN3guFQpH/r62tjXqvrq6O69mzJzdo0KCo15s1a8aNGzeuybmefPJJDgB38ODBqNfLyso4n8/HPfbYY1Gvf/XVV1xSUlLU65dffjkHgHvhhRckf7eQhx56iAPA7du3jzt69Ch38OBB7sUXX+RSU1O5Nm3acCdPnuQ4juOWLVsW1bYjR45wKSkp3JAhQ7iGhobI+Z599lkOAPfyyy9HXhsxYgTXqVMnVe0hiESDXF0EQQAAvv32W0yaNAnFxcUYN26cps/yFoWamhrZ42bPno0VK1bgoosuwj/+8Q888MADKCwsRJ8+faLca6tXr0ZOTg7uuuuuJufweDyR/09LS4v8/88//4xgMIjLLrsMO3bs0NT+WNasWYNQKISSkhIcO3Ys8q9t27bo1q0bNm3aFHV8amoqbr75Zk3f0b17d7Rq1QoFBQW4/fbb0bVrV6xbt04yNmjjxo2oq6vDlClT4PU2Dt233XYbMjMzsW7dOu0/lCASEHJ1EQSBw4cPY8SIEfD7/Xjrrbfg8/k0ff7EiRMAgIyMDMVjr7vuOlx33XWorq7Gtm3bsHz5cqxYsQKjRo3Cnj17cN555+HAgQPo3r07kpLkh6i1a9fi0Ucfxa5du3DmzJnI60JxpIfvvvsOHMehW7duou8nJydH/d2uXbsm8VJKrF69GpmZmUhOTkb79u0j7jspvv/+ewBhwSQkJSUFnTt3jrxPEIQ8JHwIIsEJBoMYPnw4qqqq8OmnnyIvL0/zOfj0965du6r+TGZmJq688kpceeWVSE5OxiuvvIJt27bh8ssvV/X5Tz/9FFdffTUGDBiA5557Drm5uUhOTsayZcuwYsUKzb9BSCgUgsfjwQcffCAqAmNjZoSWJ7UMGDAgEldEEIR9kPAhiATm9OnTGDVqFP773/9i48aN6NGjh+ZzNDQ0YMWKFUhPT8evf/1rXe24+OKL8corr6CyshJAOPh427ZtqK+vb2Jd4Vm9ejXOO+88/OMf/0Bqamrk9WXLljU5VsoCJPV6ly5dwHEcCgoK8Itf/ELrz7GETp06AQD27duHzp07R16vq6vDwYMHMXjw4MhrRi1eBBHPUIwPQSQoDQ0NKC0txdatW/G3v/1NV+2YhoYG3H333di7dy/uvvtuZGZmSh5bW1uLrVu3ir73wQcfAGh044wZMwbHjh3Ds88+2+RY7lyBP5/PB4/Hg4aGhsh7ZWVlooUKmzVrJlqksFmzZgDQ5L3Ro0fD5/Nh9uzZTQoKchyHQCAg/iMtZPDgwUhJScGSJUui2rR06VIEg8GobLpmzZrJlhYgiESGLD4EkaBMmzYN7777LkaNGoXjx483KVgYW6wwGAxGjqmtrcX+/fuxZs0aHDhwAL///e/xyCOPyH5fbW0t+vXrh759+2LYsGHo0KEDqqqq8M477+DTTz/FNddcg4suuggAcNNNN+Gvf/0rpk6din//+9+47LLLcPLkSWzcuBF/+MMf8Nvf/hYjRozAggULMGzYMIwdOxZHjhzBn/70J3Tt2hW7d++O+u7CwkJs3LgRCxYsQF5eHgoKClBUVITCwkIAwAMPPIDf//73SE5OxqhRo9ClSxc8+uijmDlzJsrKynDNNdcgIyMDBw8exNtvv42JEyfij3/8o6Hrr5VWrVph5syZmD17NoYNG4arr74a+/btw3PPPYdLLrkk6n4VFhZi5cqVmDp1Ki655BI0b94co0aNsrW9BMEsTqaUEQThHHwattQ/uWObN2/OdevWjbvhhhu49evXq/q++vp67s9//jN3zTXXcJ06deJSU1O59PR07qKLLuKefPJJ7syZM1HH19bWcg888ABXUFDAJScnc23btuWuvfZa7sCBA5Fjli5dynXr1o1LTU3lzj//fG7ZsmWRdHEh3377LTdgwAAuLS2NAxCV2v7II49w7dq147xeb5PU9tWrV3O//vWvuWbNmnHNmjXjzj//fG7SpEncvn37oq6NXKp/LHz7jh49KntcbDo7z7PPPsudf/75XHJyMtemTRvuzjvv5H7++eeoY06cOMGNHTuWy8rK4gBQajtBCPBwnAkbwxAEQRAEQbgAivEhCIIgCCJhIOFDEARBEETCQMKHIAiCIIiEgYQPQRAEQRAJAwkfgiAIgiASBhI+BEEQBEEkDFTAMIZQKISKigpkZGRQ2XeCIAiCcAkcx6GmpgZ5eXnweqXtOiR8YqioqECHDh2cbgZBEARBEDo4dOgQ2rdvL/k+CZ8YMjIyAIQvnNy+QwRBEARBsEN1dTU6dOgQmcelIOETA+/eyszMJOFDEARBEC5DKUyFgpsJgiAIgkgYSPgQBEEQBJEwkPAhCIIgCCJhoBgfgiAIgjCBhoYG1NfXO92MuCU5ORk+n8/weUj4EARBEIQBOI7D4cOHUVVV5XRT4p6srCy0bdvWUJ09Ej4EQRAEYQBe9LRu3Rrp6elU/NYCOI5DbW0tjhw5AgDIzc3VfS4SPgRBEAShk4aGhojoyc7Odro5cU1aWhoA4MiRI2jdurVutxcFNxMEQRCETviYnvT0dIdbkhjw19lILBUJH4IgCIIwCLm37MGM60yuLhcQCARQV1cn+X5KSgqZWAmCIAhCBSR8GCcQCODZZ59VPG7y5MkkfgiCIAhCAXJ1MY6cpUfPcQRBEAQBAOPHj4fH44HH40FycjLatGmDK6+8Ei+//DJCoZDq8yxfvhxZWVnWNdRkyOJDEARBEA7hdCjDsGHDsGzZMjQ0NOCnn37Chx9+iHvuuQdvvfUW3n33XSQlxZ9McM0vmjt3LtasWYNvv/0WaWlp6NevH+bNm4fu3btHjjl9+jSmTZuGN998E2fOnMHQoUPx3HPPoU2bNg62nCAIgiCawkIoQ2pqKtq2bQsAaNeuHfr06YO+ffviiiuuwPLly3HrrbdiwYIFWLZsGf7v//4PLVu2xKhRozB//nw0b94cH3/8MW6++WYAjYHHDz30EB5++GG8+uqrWLx4Mfbt24dmzZph0KBBWLRoEVq3bm3Jb1GLa1xdn3zyCSZNmoTPP/8cGzZsQH19PYYMGYKTJ09Gjrn33nvx3nvv4W9/+xs++eQTVFRUYPTo0Q62miAIgiDEYTWUYdCgQejduzfWrFkDAPB6vViyZAm+/vprvPLKK/joo48wffp0AEC/fv2waNEiZGZmorKyEpWVlfjjH/8IIJxy/sgjj+DLL7/EO++8g7KyMowfP97W3yKGayw+H374YdTfy5cvR+vWrbF9+3YMGDAAwWAQS5cuxYoVKzBo0CAAwLJly/DLX/4Sn3/+Ofr27etEswmCIAjCdZx//vnYvXs3AGDKlCmR1/Pz8/Hoo4/ijjvuwHPPPYeUlBT4/X54PJ6I5Yjnlltuifx/586dsWTJElxyySU4ceIEmjdvbsvvEMM1Fp9YgsEgAKBly5YAgO3bt6O+vh6DBw+OHHP++eejY8eO2Lp1q+R5zpw5g+rq6qh/BEEQBJHIcBwXcV1t3LgRV1xxBdq1a4eMjAzceOONCAQCqK2tlT3H9u3bMWrUKHTs2BEZGRm4/PLLAQA//PCD5e2Xw5XCJxQKYcqUKejfvz969uwJILxXSkpKSpPI8jZt2uDw4cOS55o7dy78fn/kX4cOHaxsOkEQBEEwz969e1FQUICysjKMHDkSF154IVavXo3t27fjT3/6EwB5F9zJkycxdOhQZGZm4vXXX8d//vMfvP3224qfswPXuLqETJo0CXv27MFnn31m+FwzZ87E1KlTI39XV1czJX5SUlKi/g4GM3D8eDZatgzA76+RPM4oTmcaEARBEM7w0Ucf4auvvsK9996L7du3IxQK4emnn4bXG7aVrFq1Kur4lJQUNDQ0RL327bffIhAI4IknnojMqV988YU9P0AB1wmfyZMnY+3atfjXv/6F9u3bR15v27Yt6urqUFVVFWX1+emnn5r4HYWkpqYiNTXVyiYbIjs7G5MnT0ZdXR1WrEjDnDl+hEIeeL0c5s8PYuzYU6aLEKszDUhUEQRBsMGZM2dw+PDhqHT2uXPnYuTIkbjpppuwZ88e1NfX45lnnsGoUaOwefNmvPDCC1HnyM/Px4kTJ/DPf/4TvXv3Rnp6Ojp27IiUlBQ888wzuOOOO7Bnzx488sgjDv3KaFwjfDiOw1133YW3334bH3/8MQoKCqLeLywsRHJyMv75z39izJgxAIB9+/bhhx9+QHFxsRNNNo3s7GyUlwPTpwN8TalQyIMZM7JQWpoFoUYwQ1RYmWnAQvomQRAEEebDDz9Ebm4ukpKS0KJFC/Tu3RtLlizBuHHj4PV60bt3byxYsADz5s3DzJkzMWDAAMydOxc33XRT5Bz9+vXDHXfcgdLSUgQCgUg6+/Lly/E///M/WLJkCfr06YOnnnoKV199tYO/NoxrhM+kSZOwYsUK/P3vf0dGRkYkbsfv9yMtLQ1+vx8TJkzA1KlT0bJlS2RmZuKuu+5CcXFxXGR0ffddo+jhaWgA9u8HeMOXG0QFq+mbBEEQdqM2RMHsUAae5cuXY/ny5YrH3Xvvvbj33nujXrvxxhuj/n7++efx/PPPR7123XXX4brrrot6jeM4fY01EdcIH/6CDhw4MOr1ZcuWReoCLFy4EF6vF2PGjIkqYBgPdOsGeL3R4sfnA7p2bfybRAVBEIR7EIYySEGuf/NxjfBRoxLPO+88/OlPf4pEnMcT7dsDL70E3H572NLj8wFPP30CPl8NKivDxxw7dszZRhIEQRCaIFFjP64RPgQwYQIwdGjYvZWd/TPWrFmCl15yulUEQRAE4R5I+LiM9u3D/yorT9v2nVIp9ARBEAThNkj4xDFmCJYdOy7Ce++NBMd54fGEMGrUWvTps5OpNhIEQRCEWkj4xClGBAufQRAMZkTOAQAc58V7741Ely774ffXGM40sFpUqYFqChEEQSQWJHziBKHlBICsYFGCzzTYtAlYuDB6VxOO86J//3EYOFBfUJ5aUVVbW4tKPmpb4jxGiycGg0GsXLlS8TNq0v9JQBEEQbgDEj6MIzWhCjO4Yi0nxcVbI4KCh+O8OH68pWpLTXZ2Nvr2FU+hLyrKht45XI2o+tWvqvDaa68pnktrPSK1dY5iUUr/d0P9JIIgCCIMCR8b0GsNUDOhillOtmwphscTihI/Ph+Hu+4ajvz8JNWTr1gK/YsvNhZM1IuSqPL5rKlHZFX9IqqfRBAE4R5I+FiMEWuAmony+PHsJtYdwIvi4s3YurUYHOc9J1g8KCxso6XpAKJT6Lt2NS56eORElYyHyxGOHTsmK06pfhJBEERTPv74Y/zmN7/Bzz//HLWHphz5+fmYMmUKpkyZYlm7YmdMwmTMtAYEgxk4eDAfwWBG5LWWLQPweKL3svB4Qigq2oYpUxbhnXeCKCsLCxi9tG8PDBwIpKUFUFlZKfkvEAhoOu+ECUBZGbBpEwy30UrWrFmDZ599tsnv40XtmjVrHGoZQRCEfsaPHw+Px4M77rijyXuTJk2Cx+OJ7IwQT5DFx2b0pm9LZUD5/TUYNWpt5D2fj8O8edUYO/a6c1YKvynttiqOha9LJIddKe9K3xMrTsl1RRCE2+nQoQPefPNNLFy4EGlpaQCA06dPY8WKFejYsaPDrbMGEj42ojd9WykDqk+fnejSZT/69x+HoqJstG+fBSDL1LY7FcdiZcq7UOgcONDV8dR6giAIu+nTpw8OHDiANWvW4PrrrwcQtnJ37NgRBQUFkePOnDmD++67D2+++Saqq6tx8cUXY+HChbjkkksix7z//vuYMmUKDh06hL59+2LcuHFNvu+zzz7DzJkz8cUXXyAnJwf/7//9P8ydOxfNmjWz/seeg1xdNiElXoRuKynE4ng4zotDhxpNJX5/Dfr1qzMtBkcJMbebFd+h95opsWPHRVi0aApeeWUcFi6cgnffHaX6ewKBsMtPKrbHjmtDEET8UV4edv2Xl9v7vbfccguWLVsW+fvll1/GzTffHHXM9OnTsXr1arzyyivYsWMHunbtiqFDh+L48eMAgEOHDmH06NEYNWoUdu3ahVtvvRX3339/1DkOHDiAYcOGYcyYMdi9ezdWrlyJzz77DJMnT7b+Rwogi49NSIkXPsVcDj6OJ/bzb711Lerq7LdM2FV40Mg1kyNWUInpf15Y+v17o15XcvmxUJTRDVDdI4KIZulSYOLEcKar1xtO/rAr7vGGG27AzJkz8f333wMANm/ejDfffBMff/wxAODkyZN4/vnnsXz5cgwfPhwA8Oc//xkbNmzA0qVLcd999+H5559Hly5d8PTTTwMAunfvjq+++grz5s2LfM/cuXNx/fXXRwKXu3XrhiVLluDyyy/H888/j/POO8+W30vCxybExIvHE0LLlscVPxsbx9NItMuLt0BYOWkoud3MgK8zpHTNtFaO5o8Xz4RripiwlJusy8tzLa10zTJahAzVPSKIaMrLG0UPEP7v7beHM2rtsOK3atUKI0aMwPLly8FxHEaMGIGcnJzI+wcOHEB9fT369+8feS05ORmXXnop9u4NLw737t2LoqKiqPMWFxdH/f3ll19i9+7deP311yOvcRyHUCiEgwcP4pe//KUVP68JJHxsIla88NYAObEgnCj79NmJlJQzeOut30Udw3FefP11D1xwwTdR2UVWTRpWWWGE8EUO6+rq0K5dNWbM8KOhwRMVuF1bW4u6ujrJ6s5i4o8/b1nZWbz6KodQyCN4NwSPB7LCUo4dOy7Cu++ORKz1iOO86NnzGvz2t/64ncS1Chmqe0QQ0Xz3XXRNMyBc5mP/fnuEDxB2d/Eupz/96U+WfMeJEydw++234+67727ynp2B1CR8LCZWvHTpsh/Hj7dEy5bHoyZTMWsAP1FXVFRgzZo16NDhkIjLi8P69cOwYcOQKLeKVZOGEcuVFniRMG0aUFrK1xHyoH37LAQCDXjppZcUzyEm/rKzw1Wno2sIcRgxYq2ksFQSdbwVTMxl5vGE0Lt3s7gVPQAVcCQIo3TrJl7QtWtX+9owbNgw1NXVwePxYOjQoVHvdenSBSkpKdi8eTM6deoEAKivr8d//vOfiNvql7/8Jd59992oz33++edRf/fp0wfffPMNutr5w0Qg4WMxQuuFFHKuKeEKuanLiwMQtlqocTmZEVehx3JllNiUdzMmWmFhxuzsKqxZsxPBYIaiay32nMFgBr7++gJR1xl/bfLz+zd5L1Ghgo8E0RSrquRrwefzRdxWPp8v6r1mzZrhzjvvxH333YeWLVuiY8eOmD9/PmprazHhXCDSHXfcgaeffhr33Xcfbr31Vmzfvh3Lly+POs+MGTPQt29fTJ48GbfeeiuaNWuGb775Bhs2bNC1nZBeSPjYgNHVvpjV6Ouve2D9+mFRx8lZJ2LdEVI1a6RcZEYsV1ajt85Po6Bqgbw8da41qT3ShCIUADweDmvXBlBU1N911h6rAo+rqqqwatUqI00jiLjFqir5WsjMzJR874knnkAoFMKNN96ImpoaXHzxxfjHP/6BFi1aAAi7qlavXo17770XzzzzDC699FI8/vjjuOWWWyLnuPDCC/HJJ5/ggQcewGWXXQaO49ClSxeUlpZa/tuEkPBxAUKr0bFjx7BmzRpccME32LBhiGqXk3Aik8s8kprwjFqurMKsLCqtrrWmmWEe8OLH4wnhySercdVVrYz9OAfQEq8DoIkYlOPo0aOG2kYQ8Y6agq5mEmuRieWdd96J/P95552HJUuWYMmSJZLHjxw5EiNHjox6LTYt/pJLLsH69eslz1FWVibbJjMg4eMSYgWFXpeTkaws1iwXVmWYqXGtiWeGeTB06Ifo0eMbjB17HcwuIqkXLRYctW7Eo0ePYuXKlZrasWnTJtHX7arMTRAEAZDwcTVyLicp7MjKsgunfkswmIGTJ9MBhCAMaPZ4QujR4xumUtetSh2vr6+XfE+LkKG6RwRB2A0JH5fj99domuTtysqyAyd+S9O4nrD48XhCeOihCkyceB1TxffszrjSImSULHZ2iUcqpkgQiQUJH5ehdjKQOs6JrCyrUPNb9ExqsZ/hY1jE4no8Hg5jxqxChw7lmDjxOuTm5pr3AzUi9luNZlBpsd5odT1KWezsrHtExRQJIvEg4eMyzAgy5l1k4b2+POjQ4VDkPX6irKjw4uDBJBQUnEVeXkjVeZUoLw8X6urWzVgAn9oMs0OHDuGDDz6I/K0mk01uIpSaqJs1q3VcOKqdwKWuAX/fpbLW1FhvxNL65VyPyclnRC12dtY9SvQaRGTtMg+O45xuQkJgxnUm4eNCzBiIpHYjX7NmjeyEp3Xlyw+sK1akYfp0P0IhD7xeDvPnBzF27CnFgVU4MAvFWElJCaqqqrB+/fqIu4/fHJSf1IWiR20mm1idHl4osOwmVDMxy10DYdVvQJv1Rj6tP4Tk5Lqo+yL1Gb5NeXmXgLAesnaZQ3JyMgCgtrYWaWlpDrcm/qmtrQXQeN31QMInQRBaSeQmNQCyE56WlS8/sAaDGVi0aAo4LjwhhkIe3HdfJn788WX4/TWSA6twYG46aW+Lsj7ITep6s7/EzulWN6FZbqhY641SWv+FF+7G0qW3Rl2vLl32i3wmhAkT/oL27SuRkkIFH+0g0a1dZuHz+ZCVlYUjR44AANLT0+HxeBQ+RWiF4zjU1tbiyJEjyMrKalJkUQskfOIQMZdSdnY2SkpKsGrVKtlJDfCYlinFD5hKk6jUwMq/rjRpK72vJ/tL6pxTpizClCmLNBVvdMKdEOvS0noNlKxbSUnhoUMurb9Dhx8ioof/vvfeG4nhw98X+YwXxcWD43pPM7WQ+8l9tG3bFgAi4oewjqysrMj11gsJH8YwGgezdGnjLr9eb7gM+rmK4sjKygIgP6nV1DQ33Z1j1EWkNGkrva/n++XOWVDwPW6++cqo3YulJiMn3AlilqouXfZLXgOxuB+/vwYPPVSBRx5p16SKtVDgSV3bHj2+kbyG778/okmbWdnTzOmaQnb1F9o6xFw8Hg9yc3PRunVr2VIPhDGSk5MNWXp4SPgwhJxoUSIQCKCs7CwmTmwd2XU8FAJuv51Dbu4x1NWloEOHxkmouHgrtm4tjpochXE/sXEXRiYBo5lkSsJF6X093690zpycHFUZXHIxQ8LvN8udIGepErsGUrFeADBxog8TJniiqlgLizLyQfZi23yMGHEVKit9ePVVLtIfw0THAIVhI7aHhZpCdrif1IorQjs+n8+UiZmwFhI+jFBe3ih6AF60hPduUbL88APZwYP5CIXGRb3X0ODBiBHZALzwejPRq9dvsXv3hecmxhD69duMoqJtAHAuDkc87kKsvVosU3qKLfIoCRc1wkbr91uR9m/HxCpnqerTZycmT+6GQ4dSsWfPOwCi73lTF2IQfj/QvXv4PJUx3SAlJQW5ubmi23wAWTj/fH7jRQ4NDeH+JLaD/bXXvoWePfcCsFb4yKX7W1UFnEWkRJPT1i4rYdV9yGq74h0SPgwQCATw+edAKBTdwRsagG3bAkhLk8/k4h8cMStFeIUd/jsU8uDLL3ujccXtxdatxSgq2iYRq+FFfX3TuBW9limtxRaFKAkXNcJG6/cbEWux2DWxKlmqevbMQs+ewKFDNTh4MF/WRahmSwre5SK1x9CECcCll1bh6af/juTkuqiYH75tHTqUAwhvYmrVQK9k5VByl7JSidsqWLB2WQWr2WustisRIOHjMMLMJ49nSpNJYfPmV7Bnj3TmkxAxK4VY4KkQfnBXGwezZ08VJk5s28Sd9qtfHUF+fpKlD6iScNErrISTWuwEJ3VOrROh1dtr8O1RslSlpKTICmWt8VxqXC69erXA00+PwtGjR3HkiHTb+J3brRjoldopdi18Pg533TXc8n4thx1WGDNEOcuWC1az11htVyJAwsdh+E6tNGGp7fxCK4XYCluszgpvzVDj2nn99X8jFPpl1GsNDR4888wHKCj4nsnVSWlpKfx+v+h7sQOyVbvQW10DKLbds2YdRVlZEvLzz56Lnbkk0u5AIABAmzvP6AScnZ2Nuro6VVY0JwZ6/lqsWzfqXKwS8OKLHhQWtrG9LTx2WWEOHepgyNpFlgvCbZDwYQizXCtCK0XsxHbhhbsjMT6xE53c9//mN7/Bpk2bFCdw4aRldHsNtZ8vKSmJZKyJnUPrYGvF4GzHViHCdufmAoWF0scpiaSqqqqIBUZuAuZjZLRcZ6mCk3YiJuT69NmJWbOKUFPTBl27Gqsubkb77HCN8vc2Fo8nhOuvL0KfPqMU76vbLBesxjKx1C6WLXhmQMKHScwrfiUmZgYN+khSXEm5dlq0aBF5X+0ELmY9id0KQ+4Bssr64hRmxgwZRa1IUpqAhRWftazonYwpkfvuvLwQHNxuLYLVrlFArPgkT/ia9Ox5iWueLbWwGsukt11WCJREsOCR8GEIqx7KWDFjJMgY0DaBCx8MPUHRbn2weMyIGVIa3Gpra5Geni7bBr3XUWoC/uabHujR4xtdKflOZlA5nb2l5l4Cyq5RM4KtxRMajGfZKe0HF4tc/xRer6qqKpw9ezbq/eTk5IgbW6mfO33vzW6XVQLF7hIcTkDChxGseChjO6yZplQt4kmuxpAdQdFWILWHWOyGrkatVrGDm9I9VLMRqxakMgX/8Y9hWL9+iC5xboc1w87vVrvqVjtR3XDDDUhPTxetj8QXkDTyvPCiSUpc8Vl2esSVlv3ghIj1Tz31huT6uZP9Tg697bJKoFRVVUX+n1ULmVFI+DCCkYdSbICK7bBisT12dGClGkMsB0VLIb+HWNMNXY38LuGgpTQIqd2IVQuxrk1hcLxece7kZq9mf7eWVbfae5Ceni5bH8koQjFuprgysngTuzZ6+mxdXV0TIcpbmozee6viXszok2YJlEAgEIntY9VCZgYkfBjBSOePtSrs2VOF2bO7R3VYYf0ePR2Y35tJK2pTp1k0m0oVaVS7h5iZv8nofmVaEYpp3rX5zTc98I9/DIs6Ts+K2YxAb62TkJZ0fy0YCexVY4GVqo8Ui9brwf+/meJKzeJNjRtMSkAIP8t/X+x5Dh06hA8++EC0fUbuvRVuJbP6pJnPvrAPbdtWxKSFzAxI+DgM79NX6vz8cVIIH7bNm1NU1+8RduDRo0dH7T/FI6z9ohc7sprMgJ9AVqxIw/TpfoRCHni9HObPD2Ls2FNRg5CdpnOj+5VpRSimjx07hjVr1qBHj2+wfv0Q3StTMTGlZbNXHj2TkJZ0fyOodSeb6UIwOimrFVdKSC1ukpPrcPBgPioqcrFx42BVbrDJkydH/S28XmGrY7gwa+x5YkVP7P3g+13Pntegd+9mqu+9FW4ls/qkFeNQMJiBLVuKm7xul2XWakj4OIwwKFVuMpALXhUSCASQnX0cHk8L2fo9AIeKijwUFHwfeSUvL0821kQNcpMWS1lNYgiLSYa3cuDjkTy4775M/Pjjy/D7a1BSUgLAXpeN0f3K9BDbF4yKV7Oy9PROQmoz2fSiVsyYbZ1zOp1cznJx4YW7BbXEmrpJW7c+jPr6VNl71zT7zNPkPGLXbvPmYlGh5ffXYPjwNOTm6qvRZKZoNdIn+VgcK57948ezIba9THHxVubGbT2Q8GEMIxlXwpXfqFHRD+cvf7kX33zTA43ix4ONGwejZ889mDjxKrRq1Up2wjFr0jKaUWYl/G9TWkHxmSV2WrGUvsuuthgVr2bHcbESfKlFzFhtKbSrHozQvVZaWor6+nqMHg3ceOO/sXbttyIFVJtanfn35e6dVPaZ8Dyx127z5mJs2HAljMajxcJK3IswFsfvr8HgwRubiDwj7RFPaghF9nV0OyR84gihKImdoI4fz8Y331wQdXzjgOFXNSG5JfjYKFpWUGqEgNYNXaUwY78yPVi1jYdRWJmEAG1ixsgKXW6jVcA+IajkXisogOhecNFwqu6d+CTcSOy1CwYzsGHDYKhx72uFlcyw2KQHXvQAIQwevNHwPVezkHLz/nUkfOKY2AnKqUwaPZglFvSg1XoiJQSOHTsmGyukR0gqWcyssKixWkiSlUkI0CZm9Frn5Esb2CsE1bgbpTdN9gAIIdaVInXvxK4XxwHCGB/hZ6TcNGaMd05mJArh3VxN3YDeiCVfb8A+j9xCqrS01NULYRI+CYLcYFtVVYVcC8vVSpneY7M0ePTu/m4mZlhPli3bIBsrNHnyZJw6lS0r8MxaVRk9j5ODXGzNpF27TiEYzGBmEgK0r5D1BHcrlTZo0eJnR4SglJVJ7JoMHrwReXkVovsIxt47uesFQPLZlBJcgwdvNKV+mdNJGkI3l1LmlVGBIrWQktr70C2Q8EkgpAbbVatWWVZHZ9UqPlA4elCMHSw7darFPfeELT286AH4QofA0KHOWH7EHvrk5GRVn1eySCxf7sP06fICT421xcrKzU4jXjOpDTyeKRg1aq3jk5AWMWOW5UzKsjNhwl9sF4JKVia5a6J072Kvl1Ll5mAwiJUrVzYRJ0AIV165Ef37bzXlNzudpCEsp6GUeaVVoOjZX9FJ67xeSPgkGFKTuRUZH+XlwNSpzc+ZpcOD4rp1o3D77cWYMycnYgnhOC+mTWuOMWPCDxAvengaGsJ1Rlh5qPx+v+wExqd/y1kkgsEMzJnjjxF44pWsjYqW8nJg0yZ3DUw8SjWTpkxZhClTFjk2CWkVM2YIUClBXV+fYrsQVBL3sSUy+GcDUCcgorOe1Fullc6t1QJqdZyb2krwQqzIvNLan5Ws86yKIhI+DiP1oMS6h9wYSCYuYjzYt6+VqLjZvj2I9u1Pw+tt3NoCAHw+DhkZRxAIsLO1hZp2yJnFw5Wso4MvzaxkraYekZ7z6xmgzUBugi0o+N72YGsnd6+WE9QFBd/rro9kdlsAICcnJ0qwWCkg1J77hhtu0HxvrIxz01oJnsfMzKtogaL8G9RsQ/TOO9mOhyxIQcLHYcQeqBUr0s5ZA8KT1YIFJ5Gd3dzBVmonEAggM/NsExHj9XJo02Y/vN6uTV7/5JOl8PtrMHJk9MM/YsRarF0r/vCbiR4zrxJSK08rK1mrrUek9VrqHaDNQOl6xVoWrBQeavdPs6qvKsWZ3HzzlU0KkVp1PbTGvFghIBonbWuD8K3qT3orwZsVb6Q1plLNNkQtWx7H4sX3Mrs3IwkfBhB2gvJyROI+gPBkxbuBlEyFrFiFhBNDrIgZOXItvvtup+jr/AMrZ6a2cmsLq1Z1YitPK4Mk1dYj0notndiqg0fpesVaFqxE7f5pZlwHoWVpz54qHDyYj5YtA7LPiJ3XAtAe82LGpCdt0fRh7Fh3xrXpyVI04tLTu3m0mm2Ijh/PttSibRQSPoxhJMZFbOIuKyvD+vXrLWipNHL1hNSIG8C5Qof8w2iHb9rqIEm9WU9Kv92pNHKng0pjsTp9XNzC9ssmmVNOYNRlZcRlapVF02n0Pq9S114uo+urr37G00+vxcmT6QiFfhf1nlqBorQYYXlvRhI+NqF2Iu3WLWxuFIofnw/o2lXd97D4oEunRLJZxdnOdHorr4Eeq5Ka3+5kGrmZ18uouLVaAKq1sMVih+XXiHXUqMvUKoum05htBZbK6Ao/41kIhcbB4wkhtqaSFoEitRhhIe1fDhI+NqBlIm3fPvz+7beHLT0+H/Dii2xFxMczZqTTs+JyBNRbSdSYvXlYH9TkMDPo2y4BqCVzyk4Xj97vMctlaub1NyKCzbQOq3le9cYiij3jjQUhw+JHz7MstRhhzUIrhISPxWiZSPlB+aqrgG3bvIKdekOorNQ3qFkRsBuvBAIBfP45EApFX+OGBmDbtgDS0tQN9nKrYWE6r10oWUnUBCsWFHyP0tLSyOt2DWpm9l+zXSR2CUCtmVNuwajFzOj1NyKCrcqa5H+X3G/QY22Te8Y5zotrr12FZs1qTX+WWbXqk/CxGLUxO1J73+zZE/23Vr81q9sNsIZwUvR4pjSZZDZvfgV79qifFN10PdUEKwJAfX191OfsGNTM7L96XCRisSh+f1XkfTsEoJstbFIEgxk4eTLdsMVG7/U3IoJZiDFSqvgeW7tL6Rnv0KHc1f1JKyR8LEZtzE5Z2dlIxoZcB9Tjt3bLJGzXrtJCeDN1Zqa6HdeNxg2wbIFjdYK1OzWeRzoWpQUGDy6OVAK2QwCy7DZQCy8iX3qpIVLNHQhF7oXe/qbn+huJEzI7xkjrmKAUOiH2/lVXhd9j9Rm3GxI+FhIIBODz1WH+/DTMmOFHQ4MHPh+HefOC8PlOIRAIr1TDHbV1JNjMqh2VWUbtrtJmCoLoAaI1Ro68CH367LR0krHDAmdEXMn99mPHzlMlzll3m6od/OViUTZsuBIAZLdB0HId1MSJsOo2UENTK0njppocF8K1164ybHXQs3AyEidkVoyRljFBKXRC6v1t2xrbaHR8Y/35VgMJH4uIdV3dfXdGpKOdOFGDl14Kvz569N2YOLFFVLBZbMaG1GaerKL1wRCbWNatG4VZs4oi6a38ec1a/TcdIDxR193KScZqC5xRcSX223fsuAhz5nRFKNQtKpZBy3n1YkVpAbHBn3/OKiq8EIbMiK3sAQ82bGjcBbukpARZWVmRd9VcB6U4kWAwaM6PZQA5KwngRbNmtYaeN7GFkxq0WkDKy4HPP09BMJhhqvVEzTOjFIN45kwVdu7MEn3/yy9PRr1mZHyTG1/4/dKUcFo8kfCxCLEqm2Idbd++UJMYIKG5NPaBbteuGtOmWdlyadROQHIPBr/RoHBzwc2bU7BwYfRg2NDgQU1NG1gVsykWe2VHLRq7MFN8NArTxliGGTOyUFqaZXm2oZWlBYTPpPA5e/VVDvPnV2HIkGMApLYGAAAvtm0rwpAhG+HxeDQFGKuNE1GD05OIFvRYSWLHndjfK5Uddu+9/4eUlIDis6DWAtLYF7Mjm+RqEdBGUBuDKPX+nj3vQM+G6vy1jr0HUtc0NzfXFTGlJHwcpqDgbJMYIOFGlrEP9IwZfpSW2p/ernUCknswYunb11jtIj2IxV7ZVYvGbYit0rVmumlFb1VZPcQ+Z43iYwOA8CT2619/ik8/HQAguhrt1q3FKCrahpUrV2oKZlUbJxJrSYqFhUlEC1qsJCkpKRLjTnhhdeTIEaxatUryGi5f/pnqKsFyFhCpNPBYCzHQVECbJdT5/qJ0/YxaocRKI5g19rMECR+HycsLnavbw6GhwdNkI8umE47H9p3KzahtI4XaOCgzEftOr5eL2jaDaERqla41000tatPrzfpeqYlz27YibN1aHJlAOnUqw/ffFzQ5zkjBPCULSFZWlitT1eWQs7DwE29tbe05scFJCl9eEFq5711VVRVWrVolmQYutBCLCWixcdKo61bJQmUkhie2NIKVY7+TkPBxmGPHjuGqq4APPqjC669vi+qoyclnmjzQPh+Hrl09UqezBCPbaMihNg7KzIlV7jsTVfQouUqsznSLRW16vdbvlfqdUrtc86IHCE9yP/zQCXJVbvWQqFk2UhaWnJwcpKSk4KWXXlIUviUlJZFzWXUNz54NZ3uqcdGpsYya5bpVitHRG8MT+4xYNfY7DQkfhxEWsysQLCaFJlOAAxC2Bj39dC3at7d3p3aj22hIIZy4pDIygsEMbNoUdoeZ8aCpjb2Swk3xFGqRiskSFlt0Ip3a7Akt9nfyv0/se4qLt2LLlv5Rn+c4L/r12xxlBVLTHqUVfjykqpuJWuHLixJA+zVU+xwnJycDUNcXlSyjjYks4fecsJ4IXVmxiLlNrRr7nYaED4PEmkzDoofDm29+j8suOw+VlTW2+vat3kZDKpWdf33hQq/le2bFIjZAuC2eQgtqKxXbPSmbLQqkfmfs9wCIsvgA4UmsqGgbioq2qW6P2hW+m1PVrUKr8NVyDdVmPqrZcFlte8USWey2nmip8u1EGIJdkPBhEPGYAw/ef/8T7N37feQ1O3YftmIbDSFSGRmtWx+O8Zfbuzpy6zYA8YjVokBobSwoaHy+lIJI5VAKzk5Pr7Ls97CIltpSWsSGEdSMW5WVlVF/K/VFufb6/Ufg9baM9AcgHLqQkXEEgYB5wfpm4EQYgp3EpfD505/+hCeffBKHDx9G79698cwzz+DSSy+1tQ1GXCJqUz6t3n3Yqm00hEgFlv7wQ0dRf7nbfcsEW8gVzjS6HYJSjEoioaW2lFaxwRpS7d2yZRVGjozubyNGrMXatfK70TuB2pAAq+cgq4g74bNy5UpMnToVL7zwAoqKirBo0SIMHToU+/btQ+vWrW1rh9KDLrdZJSsBj2o7tZHOLyXyOnb8QSSwO+xbtqKgHZFYBAIB7NlTJbs7OGBsOwQzKvtKLaDMeAbsfo5YmdSdRE5MK4lCNShVr47HGEU9xJ3wWbBgAW677TbcfPPNAIAXXngB69atw8svv4z777/f1rZoedBjO2yiBDxKibz27SujXud9yytXQlDl1t64HyI+EFpkOO6XUe8ZKWIZO6koLWBKS0tx8mQLHDyYhIKCs1FVyvnziY0hZmQGWVkY0i74wGMlWJvs9YhpNRaz5ct9WLy4VZMK4DzxHKOolbgSPnV1ddi+fTtmzpwZec3r9WLw4MHYulV8T50zZ87gzJkzkb+rq6stb2csUuZ2t5l4tVJVVQVAehUU+/qPPyKmym181JQwgpWrdqc2VLX6e82wyMQGv0tNKnILmHXr2mL69CzV4kNNUUelXbvtLAxpNX6/n5l97+xA7neUlwP/+7/RW/DYVV3djcSV8Dl27BgaGhrQpk2bqNfbtGmDb7/9VvQzc+fOxezZs+1onihSwb1Cc7uTWLVjeiAQwKpVqyJ/S4k84eviBR21xf2wvDu6Vqxetduxoarc95aVndVsDdGCEZdyXl6e6u8X69vBYAbmzPGrTm1WEzf0888tsXbtKElrqN2FIfWi5RllYd87vsihk8RrvR2riCvho4eZM2di6tSpkb+rq6vRoUMHy7+Xf7iVStY7yYoVaZGdlM3eNd6sKrdaa0o4NZmbjdUVVRstSdmODJzvvJNtiytGTRXhWMzoH8ePZ0dl9wDy24AoWamSk+ti9lNrasWxqjCk2bD2jCp9DwuLpHitt2MVcSV8cnJy4PP58NNPP0W9/tNPP6Ft27ain0lNTUVqaqodzYtCuKp99VUuahBkYc+o8vJwLA0/kLJgiYpdoeutJ8SaqNHqrlLapdno/llOx3/YXSZfroqwnpIGFRVeHDyYL2sl1bsNiJSVqr4+VXR7G6EVR+kcTi+0hLD2jPKIPatGElnMwupaa0ZhLSElroRPSkoKCgsL8c9//hPXXHMNACAUCuGf//xn1IPPCtnZ2cjOju6wWgYhK1caYdNp9IqUBUsUv0Lv2fMa9O7dzLR6Qk6hVWSo3aVZr7vC6b15rBZ1VhO+n60RCo2TtZIa2QZEakdwLVacREmeMBO5Z9XJPmlFrTWluYUPgTh27DzFHeidXkiJEVfCBwCmTp2KcePG4eKLL8all16KRYsW4eTJk5EsL5aI7bBffnkSe/a8ozgIjR49WlOMgR7CplN1lii7Tb1+fw0OHXoVhw5Fvy412bO22uDRIzLU7tKs113hZKyAVlEnvK982528x433U52V1Ij4iLVS6bHixHvyhJkYWRBYGVdoVa01OSvWihVp5+LTPHj1VXkh4/RCSoq4Ez6lpaU4evQoZs2ahcOHD+NXv/oVPvzwwyYBz04j1WH9fuXP5uTkWL7CCJtOPZFd48Pp5NUYO/a6qOOEqwmnBYbYQ8riaoPHqMgwe9UeCASQmXkWXm9rxFaXra09hnfeScHFF/stu7daRJ3wvnrONZXj7L3Hwv6eliZuqeI4L3r2vAbFxWeQlZXVxO1hpvgwoz8EgxnYvDnFtL3x4gUjz6qVMUtaa61pGaOlFpHTp6sXMqwGXced8AHC6pZF15YQIwGEVltY5Eyn/PfHPhQsCgxWVxs8ZgQkmjVxCoV4bHXZnj13Y+TIC8FxXni9HF56yWP5vZWbxCsqvFH3leMaP6fmHpuxAo/u7xxGjtyMLl32i1qq9ux5B4cOhS1VUhtEmoWR/qBmbzynFzdOUF4OHD1q7FllwT1rxhitVciwGnQdl8InnlBbL8Qs9JhOWRUYrK42APY2AJTaHyk5uQ5Ll94q2DPNY9u9lZrEd+062eS+ClGKBzK6Am/a3z14772RmDJlkSXuRzuILash9gyzuLixmvBvDrv8PR4OHk9430QtzyoLYjF2saB3jNYqZFgNuibhwzh2b5apZ5sKPQJD7aq7pKQEZ8+e1ZUVwepqww0bAPKiQ6p2kpOBxl9//U4Ty4oQNUHeetstFXzNB/5bFTRshpVX7hxiZTWE9/nUqWwmFzdWEha4jXGO4QzXEK699m/o0KFc1bMqJxbtFEQHDyaZsgjUI2QmTAj3k/37w2MvC/2FhA9hGD0Cw8imhWpgzaIixE0bAOpNu7YSsRigsLvLWiuLUvA1H/hvRdCw1POiJVVa7BzBYBArV65UvM/5+TcjFOoYdT6nBbBRlISHWGYr4EWzZrVN7q9YP5OzhP/jH/ZazwoKzpq2CFQrZPiQCf67uncPv84P505m4pLwiQPsNqXGBkDqNWfq7fRK1aSVLCpPPhn+/LRpV6NXrxa62pAoGM0es6pvxlpWAFiemq02+FoOKatLbJ8WO07sedEaryT1zCn9pi+/fEtU7H344Wq8916q654lNW47LZmtYkhZwrdutT80IC8vZNjlpEXISIVMxOKUVZuEj8ux2+8eGwC5YMEJlJTUmFpDQs33y1WTlrOoCD//6quc6+IUnNhyQ6/7xuq+KZbSbRd6r4mY1UWYHuz1cliw4CSys5vrPl8sap9Bud8kJowuvHB3JP7LTc+SmphE3mI8a1YDZs/O01XoUcoSznH2xx4eO3bM0BitVcjoCZmwExI+LsbuoGKxAMh7703H99+/FDUYGK0hEQs/iUvta9a69WHU16cqFtNq2n77AnXNwqly/lrdN3r6Jgul/7Wg16UlvDdN04M9mDatOcaMUd8nzbzXcr+JlaB3oyjFJMZO8lOmZGgWuHKu9i5dzoiUjNDndlL7zMS6Q7WO0awLGa2Q8HEIM1budmct6d1XzOjDwE/2mzYBCxc2/f6lS28DxzUW07rqKvXtZyXLSwtWmobN2JRWb/VlK0v/s5BZE4sbq1SzHPSuFqWYRLUxeFIoudrXrg2XjFi3btQ5QaTO7WTldhluESxmQcLHIcxYududtaS0uaFVhB/4bHTq1PT3Any2RaNVYds28WwfMzY5jVdSUlJUuRGVMLqlhhUTJitp2MJFjNJ1+vDD1dizp9LxndKlEHuWAGeD3mMRq+ydk/MzcnJOyyY9GEWNcOrTZycmT+6G6urWqtxORrfLMGNBE0+Q8HEQIwODVVlLchamWD9/uHCbtZsbxj7wN94IvPZaeHUpJoIaGoCyMvFuLdZ+FrK8WODUqWysXTvK8Ka0Vm+poRWz6pdoQWxX99gJTeo6ARw4zou//OVWXHnlRkycyOZKnG/3u++OBMCLHw8OHOiKPn12Om5BkKrs7fH4MWrUp+jTZ6dkGYnS0lJb2rhlyyoAym4noyENZixo4g0SPi7EyjowcimvgL2bG4o98K+9xuHdd4/h1Ckv0tJCGDUqp4mvPD//bJPBhCe2/U7UzXEiQFkJKzalNbuv6LkeX311WlQcW+mS0Vp7q0+fnWjd+jD+8pdb0SgivNiw4Uo891w1HnnE9CaaQrhStbByticilp0kdtwQVvaOFfRifbK+vl7zd5r5rMaKRiMhDRUVXtG4SK0LmniDhI8LsboOjNJkYNfmhuIPvAerVq1DQcH3AKK3V+AtOCkpR2TP63TdHKcClKWQ2qNLjRtTacA3s6/EXreqqiqcPXs26pjk5GT4/X4Eg0G89NL7WLfu3wA6oFFQ6K9DZKVgra9PjWpjGA8efzwTJSU/W5YqbmTClov5cxKxcUOIUUHPw1v2rH5WjYQ0HDyYpCsuM94h4UMwi9gDHzsZi1lwdMa/2oodokZNQK8w1qRv3yJs3Vos6poqKSlBVlZW1GedKEAm/D4pq0p5ObB4cQZefHFKxH0EhGC0wKGVgrVly0CkjUJCIQ+efvrvePDBy9ClSxfN51VC6TdVVVVh1apVou/JxfwFg0FbK84LERs3hJgVl1hX1xrfftsmEkNkFUa2fSgoOOtIXCaLVm0hJHwIJhHGME2f7j+3V454HQ0pqwK/IjOSDeRW1Ab01tXVRcUAACH067cZRUXboq5pVlaWYxOZFpYuBW67DeA4YR2c8D5LY8asQocO5YZWulYJPb+/BldeuREbNlwJoKnV7bXXXrPMFSt3ztzc3ChhJHyW5OK4Vq5cqdheKzLtxMeNsK+L46THEK3s2HER5sxpbXnAvNyG0Wpq8OTlhXQX2xSip1AmS1btWEj4EJajVdXHxjDdc4/2OhqA/fucsYKWYMjYGADAi61bi1FUtM3WNhslEAigrOwsJk5sHQnQFsJx4lsNsET//lsBABs3DmZqk1O5yUkujkuuvVZk2smNG4D6yt5JSfLTYmM9sOhsUrMD5vVsGB1LSkqK5D0SZnopjdF6hAzLySIkfAjTUJPNogajdTQSHS3BkPEQA8BPEAcP5iMUGid6jB3mfTPo338revbcY0vygFnYUdxSDUrjhto2ZmVlyU7ymzenNKknJny+zHLfGC0ayFuL+I2ehaxZ0wKLF7eLVAu/4AKPovBkWchohYQPYRpSFhY7isdRnYowUoHKPh+HjIwjCASSovbT8fuPwONpYVoMgBO+fX7gF68tA9PcG1pQ6vNKZSNY7cNm3De7C6/qQW6S79tXPtjYjA1ljSK3xUQwmIFFi6YILFbRVbdZLPZpNiR8CEuxo3gc1akIIxzshNluHk8II0asxdq14WsyefJkAIgcO2pU0+und+J10rfftCZOCP36bW0Sr2Q1avo8f50qKipcFX+WnZ2NkpISyYBnJbQIc7vhF09yW9+orZ9mxoayRpB7/uQq2Nu9a7xTkPBxIXavqvV8X3k5sGULH2gafs0KX7jU/l3CWiKsZxiYhXCw0xJ7YXa9HSdN4lbWmVKzEtbixtGymSNLxGb3qUWLMLerD/HueeFGsfzWN8IJv7wc+OKLIP71r1cifUpr/TRWAn6lKtg3a2b/rvFOQcLHhdj9AGn9PuGKNxazTdpqaomwMuDYjRaXCcvuFa1o+S1qxa4aK44b996yE73C3EpycnLQ0JAbs1Fs9ITfeO/98HimRCzKeuqBsXD/Yy2jfHr8iRPsuyDNgoSPS3GyfoocsSveWMzeG0uulkhtbW3kNRYGHDfjdmuYEK2F59RYcfTuURZP11UrrIhtuZgjILYKdHxUPuaFZ//+41BUlB2J7bFz70cnEd/NkSB0Ilc1NewLr4LPV4lAIGDK9/GrF48n/KXCGJXXXnvNtO9JVEaPHs3EhpNmwgfhq/lNYStOQHLbC75/xe69JdYfhcfxZGdn44YbblDVblZEUry5jvmCh0L4CV9sPGOhOrUZ+P01+MUvKuDzVaKyshI+XyUWLDgBny/8vpZCiW6DLD6EqYQHEa7J1gdjxryFDh3KVfnCtQ6YrJjN45GcnJy4Ej1a0GLFEaI1zqhLly7MuGLVxDGx6jrWI7Rqa2uRnl4pGayck3MevN4WstXjgeisUrPgf49SxqoRgSkWWL9z590IBFqga9f4FD0ACR/CRPiMh1mzGjB7dl5UllDPnnubHC81cKoZWGNL6bNiNifsR+vAr/Z4IzvNa+2PLIhLLRmYLLQ3lthxIxgMNtlwNCkpKRKcXVtbi9deey3ynlSw8uzZt+Hhh3PR0CBe+Tk2q7Rdu2pMm2bO78nKmoY5c5pF6u3Mnx/E2LGnIsdYITBzck6jVy9TT8kcJHwIU4itGzFlir5qyzwsDqwEmwgnPLHJDmic8PROFEpWnIoKLw4ezHdtHSmrigrajZq93HgqKyuj/pYSqw0Nf44SRcJjxLJKZ8zwo7TU+HUrLwemTm0uuCcezJiRhdLSLMVzG7ECHTt2TPR88TQmk/AhTIGqLduHlDvCitgLt8Rp8IOylVuUSPXpFSv4faHGubKOFGWjKSN178Vr4nhMyYQyUuhRzGqutoCi1DHxFOtHwocgXIScO0Jr7IXYsWHLRRIKCs4iP9+5YnJuIRjMiNR/AdyX9aM3G00PdgZF21V9WLwmDoeuXZvuF6cVsV3mtWRZmf3sxlO8JAkfgnAJatwRWga72GPtqLKtBTeUzj9+PDsqkB9w115nRuKYtGJXULSd/fiaay6G31+BOXMa972KreKsl/btw22//fawpcfuLKt43gaIhA9BuAAr3RHCnc35STwsqjj86ldHHLH8sCbCpJCrIyWGXa5DPaLRyqrXPFb3IytjlcSEwKZNmwBsitoJXk3mqlomTAi3ff9+2JplJbYNUDxBwodwJfFWS0QOK90RcjubNzR48MwzH6Cg4Hvb/PssijA5lCwlfLFEwL4AUSOi0e2xeVZtgKq0H6CeKs5y8DurA2FLT/fu4df5eGwr+5LUNkCzZh2V3MPMbZDwIRzDiChhtZaIGcSu1q10R8jtbC60XNjh32dNhKntn3KWEr5Yol3ES3aWHqzaAFVuP0ArRKLczupCtD4Havuz1DZAZWVJKCxU/XVMQ8KHsBWt2wXI4UZRo4TYav2qqxrft8odoSSqrIQXepmZZwGwIcIAeXEdmyFjl6VEzoWVyNlZejZANSoErIrjiu1vUrE2Wp8Dqf4c25elnr/8/LOS53ZDPJ4QEj6EKagdRPLy8uJ28DWCnIvngw+qoo61apK1I8Yjlmih1xojR16EPn12OibCYmGpr8q5sOzMztKCXROing1Q5YRtMBjEypUrAWiP4zITJRebVtTce6lFUF7eJaLHuyUeTwgJH8IU4tn1ZDVKLp7XX9+GggJ72mKGqFIz2YkLPU/EheCECGMZJReWndlZanFyQlTbj6XGo9zcXEyePBlHjx5FfX19k8ytP/5xP9LTre2TdrnYxBatYs9fSkr/Jse51bVKwoeIYHR1RqJGH2rjbNxA7GQ3dSpwzz3R/UlO6AldCE4E2rJoslfjwhKiRTRalSTg1gkxFt7qAyAqc8tq0QPY52Izsmi1Kpjcakj4EADYMleyOPnYgZNxNkaRctU99RTw9NMcFi48iXvuaQ6APaHHZ9A0VmCO3hdJbNC3K6tQrQurtLQ06nNaLB5mW2rjJdbI6Wr0dj4f/P0QZpMJqaurQ2VlZZO+YLTIolOQ8ElwWEsfZkmAOYEbXTxyFhwA4DgP7r03Hb1770evXi0ir7Mg9ITCYtGiKeC4Rrfbffdl4scfX4bf3zQ2xi7XrloXltj+ZGox8/lmNdbIKYwIX7ufDz3ZZE4XWdQLCZ8EhqX0YdYEmJPoXVnqGWTNsFzIWXB4OM6L5cs/Q0HB9ygpKYm87rTQ49uu5FYQEzh290enr5UaWIw1shphrSYhZghfO++52nsSe5xTRRaNQMIngWGlhgtLAswp1JSHlxpgAf2DrJmWi9jJToiwP509e7bJ57QM6FYUpWTF7aaEmwoMxk7aACI72McTZtdqqq2tjfpb6p7HHuck7du7Q/DwkPAhHHc56BFg8RQHtGJF2jk3i3zKqlXF8MwUk/xkt21bEbZsKQagvz+JCT2rMgOdfgZiaaxt1NR65ib4STs2Lbtdu2pMm2be97BQyd2sMSk9Pd3U48wkGMzA5s0p6NsXSEsTjwfiYTmLl4QPAYANM7raySde4oB499706a0jsSVu291bDL+/BkOGbERR0TZD/cnuqsdOPwPiQdaNtY3kSEpSN5Q7sYWLWFr2jBl+lJZqEwhywsLpchrxMibJwYvXhQu98Ho5jBy5OapfilmtWbXSk/AhIrBgRpebfILBICoqvHERB6Q2pVuI2/YdY6E/acWpNssFWasRwllZWczW0RKLn2po8GjK8FIjLJx69sNjkvtT9+WIFa+x/VKq0CKrsVwkfAjHqajwRnz/cvVbVq5cGTdxQGrde2Zu8cEKycnJqo5zm9AzgtogazlY7R9SfVxthpdTNYHU9r9Dh85zZS0bLcj1SwCShRZZhYQP4SjhlVxrhELjVJVkdzoQ22yU3Ht2u3vswO/3M2udcBq9QdYsi0QjGV5O1gRS6z47dcpvuJaN0I3n8xlotEXI9UslUcQiJHwIQ+gN6BNLX1cT38JaEKoQvdeCd+8dOtQegAcdOhyyrI1WoGfSZUXUOBUUK9VXlPq3nQHfepC6Tnrip1ioCaR03kAgAJ+vEvPnp2HGDD8aGjzw+TjMmxeEz3cKgYDyvYl1482fnyZ7vFXI9fHYfunzcRgxorFfuiEjUggJnwRG76Cvp9Jt7Oe1xrcIcToIVYjRa8Fz4EBXUR95VVUV8xYffmV85MgRrFq1SvF4lqwTdgbFyvWVIUOORY6T6985OTloaMhlNqNReD2N7mDPek2g2IJ/d9/duKXFiRM1eOml8OtywkzMjTdjhh93351h+7im5ll49NEgAoEWyMg4EtnxnuXFqBQkfBIYPYO+3kq3QszYsoCFwFkzrgUgvxnhqlWrXBG3lJ2d7XhmjV7saI9yX9kAv7/xeKn+/dJLDZgzh9MtsO3AinYoLXacKG+hdksLuedBfK8rj6qYLisWEEr3Ljc3fK0//zwJwWCjOGNpMaoGEj42I7UXCo/dA5jW7zJS6TYWpZVCv34lCAZbo6DgLNLTj6uyJtiJWdfCjGvJCqxMvqxhRvByWDTl6RbYbkdKWIQtaO5MJZfa62ratN8iJ+e05OfsnCeEc1ajtTIbHs+UqJhMFhajaiHhYyN69kJhFbMq3UqtFHbsuAhz5pwfWdnOmqV/LyKrMXot3FI1mDCOkXsdTwLZLILBDMyZ43dtKrnUXlfCPe2cRDhnxVor1cRkslRdWoi7y4K6DL17obAIb63xeMIjjhG/rt9fg4KC7yOf5V0/jbV6PJg9Ow/BYIbiufbsqcJbbwWwfftPqKysRGVlJQIBa0vk67kWQjO1mdeSYBsj95oXTUISXSAfP54dGSd4+Iwvq597owQCAVRWVuKqqyqxbdtPeOutALZt+wlXXWXPuKUG4VykJ3vrtddeY+J3xEIWHwdRsz8Ty1jl19XrDtix4yLMnt1ddOsHq61oWq9FdnY2SktLsXLlSl2fdxKh6TtcgykJBQVnkZcXnpRZijdhEbl7LZa1xQcJuy2I1I6MOaM1gpxCyvq/Z0/03yy1X6+1ksWFPAkfh5CqdKkXp2KHrPDrqi3qBzROCnIBwna5AbReC78wmlXH551AOGDL9WGnB2zWYulikbrXSnWb3CSQ7Qh2ZzXjSwk3Wv/dJrzlIOHjAEqTtFbiKXYI0FfUz0jQKKEefiBmQWhKEfs8SFlW3fI8xOIGgcxj5PqqtQS5SQy6nXi51iR8HMDsSTp2kpEa6FlZPagZ0LQ+YBQgbC+sCE0xy86xY401ceSsUqw8D/GGWanlchYjozWCzICFHeGdwE3CWwoSPg5g5SRttgstFjMedqkBzchgFmslAkIoLt4adW6z3RtGr4WbB04WhKa8Zcd8y6oR3Hyv1WBWIc9Y1HzGqVhJt9atIjQIn+rqatUnzczM1NWYRMEqX6kdA71ZD7uVRc62bSvC1q3F2LKlP7ZuLcaoUWsBhAWVme4No9fCyOedjmFhwd8v/P1igr9Fi5+ZsEoBxu4166LJrEKeerB6oaeE0u8pLwc2bWKzynYio1r4ZGVlwePxyB7DcRw8Hg8aGhoMNyweEQ5Mcq4cvQOYXe4H1lcwW7cWWxZ7Yrbg0HMtWYlhYcXfLyX4J0z4iyNWKSv6iNOWBTn3lZlFTdUSDAaZsuiJEbsHl5sKK/JonYvckqmsWvhs2rTJynYkBFYPYCy4H4xgxsrWSvHHiuBQsnTYGcPCgr9f6p7X16fYbpWyqo84sdjQ6r6ya/wJBAJYuXIljh/PZ8aiF4vYHlxuKqzIk52djZKSElVV86XGIhbdt6qFz+WXX25lOxKGeHc/6EG4Qi4pKcHZs2ej3k9OTo6kfscOtrEPlZWDr1rBUVFRISk6zFyZs77itQu5e15Q8L2tVimWRKkRtLiveOwaf7Ts9efUpCu+Bxewf39Y+LDuvhSSlZWleEwwmIG1a0dFVXVet24UHn30MmRns1GFWoju4OaqqiosXboUe/fuBQBccMEFuOWWW5rUJiHshRX3g1qMrpB5K1pFRYVtRd6UBAcfoG21RciJzCoWB2yle+6EVcrtolSv+8rO8UfpvpeUlDhmKcvMPAuvt3VUVWmfj0NGxhEEAklMuC/NRLyCtgeBAHuiB9ApfL744gsMHToUaWlpuPTSSwEACxYswGOPPYb169ejT58+pjaSkCd2kpEa6FlYPcRixgo5Ozs76n2rB181gsOO1b4Trk1WB2w999zK54GVdH+j6OljRoSm1lR4ufuuxlJhNsKF3MiR0WPAiBFrsXYtGwU+YzFagqBlywC8Xi5G6AFdu5rYSBPRJXzuvfdeXH311fjzn/+MpKTwKc6ePYtbb70VU6ZMwb/+9S9TG0nIw+pkpAWjK+Sqqqqov61c5StNBnat9p1ybbLaj6Tuudg2EFY/D26Pt+Oxo48ZTYVnIc6MR+0CjCVXpxlB2H5/DebPD2LGjKyozVZZjWfSbfERih4ASEpKwvTp03HxxReb1jhCPaxORmoxskIOBAKqgu/MQmkysHO17zbXppmotdjk5eXZ/nzYJUrtKGtgZR9zMhXeDlgSZWKIBWFPnAhceCFwySXh19Q+Z+PHN6C0NBzH1LUru6IH0Cl8MjMz8cMPP+D888+Pev3QoUPIyFDeQZsgYjGyQlZbuRowz73BTwaHDrUH4EGHDoci79m92md9cLUK1i2dVotSO7MM5fqYkbgvJ1LhiUbEgrBDIaBv30bLj9JzVlVVBY/Hg7q6Ovh8lejePfx6ZWX4vyx6G3QJn9LSUkyYMAFPPfUU+vXrBwDYvHkz7rvvPlx33XWmNpBIDMxaIcvF1pSWlpr6AB440FX0u6xe7bMYYOwUsfcz1gJSV1eHSn4Ehv2DsJWilJUMMjMEaLy4Bt1Gt25h95aY+BGm30vdO7XWdtYsdrqEz1NPPQWPx4ObbropknqcnJyMO++8E0888YSpDSQSB6MrZKXYGj7jUK97QCgklL5L7rcI95JS+k4xWLd0OAULm/U6IUr1xJQpPQPBYFBTG8ywKKldLJDwN4dAIACfrw7z5zfGVgkRpt9L4cZd5gGdwiclJQWLFy/G3LlzceDAAQBAly5dkJ6ebmrjeMrKyvDII4/go48+wuHDh5GXl4cbbrgBDzzwQFTn3r17NyZNmoT//Oc/aNWqFe666y5Mnz7dkjYR1mBkhawmtsbI5Cgs5qXmu6R+i3A/MqXvlCLRRI0aWNis1wlRqjWmTK2LTA1migu1Cx8S/saJ7QO33JKLpUtvbWJxy84OAmAzJd0IhjYpTU9PR69evcxqiyTffvstQqEQXnzxRXTt2hV79uzBbbfdhpMnT+Kpp54CEN5LbMiQIRg8eDBeeOEFfPXVV7jllluQlZWFiRMnWt5GQh9mrt7UmMuNrlD4FFkrTPOsrYrcjJN7ONk94Wrti2pdZCUlJbIp4VaIC7ULHxI1xogda9q3rxS1uAEFCARCcXe9dQmf06dP45lnnsGmTZtw5MgRhGIchDt27DClcTzDhg3DsGHDIn937twZ+/btw/PPPx8RPq+//jrq6urw8ssvIyUlBRdccAF27dqFBQsWkPCxGDmzOR/4JlXYMiUlxbTVm57YGr2rXaXvEqZQx+4675b9bNyK24sHakVvTJnSdcrKykJubq4dPyFucLMbTmhxS06uQ319KpYt2+/qrDopdAmfCRMmYP369bj22mtx6aWXKm5eagXBYBAtW7aM/L1161YMGDAgqkMNHToU8+bNw88//4wWLeLPXMcCal1HckyePNm0AVZLnJBRq4Dcd+Xk5Ij+Jqd3k04E9JQTcHq3e6PoiY+LlyKLLOF2N5zfXyOatBFv1mhdwmft2rV4//330b9/f7Pbo4r9+/fjmWeeiVh7AODw4cMoKCiIOq5NmzaR96SEz5kzZ3DmzJnI39XV1Ra0OH4x44Eweg4tlav579JrFTBSJTvRLBFOodX1w0JQtBlojY9jIZPKzRYSKVjuI0pIjVGzZh1FPBn/dAmfdu3amVKv5/7778e8efNkj9m7d29UvaAff/wRw4YNw+9+9zvcdttthtswd+5czJ492/B5tOD21SVraFll8anNele7RlZ0tMK2B62uH7XCu6KiAgA7E5tR0cDCpsZut5BIYXQLCKeQGqPKypJQWOhQoyxAl/B5+umnMWPGDLzwwgvo1KmT7i+fNm0axo8fL3tM586dI/9fUVGB3/zmN+jXrx9eeumlqOPatm2Ln376Keo1/u+2bdtKnn/mzJmYOnVq5O/q6mp06NBB7U/QDCurS6vEl1z8ipWxLWraGggEIqnkRla7eu8LCytsu3FK5BspjSDVT/k4LVYsP2aIBq3XyYr7ycK1NAOjW2+oxUpRJTVGZWYeQSDQ9F651WKnS/hcfPHFOH36NDp37oz09HQkJydHvX/8uLqBvFWrVmjVqpWqY3/88Uf85je/QWFhIZYtWwavN1qVFhcX44EHHkB9fX2kPRs2bED37t1l43tSU1ORmpqqqg1mwELdA6vEl1z8itOxLbG/2YnVLgsrbDuxW+SbsVmvmn7KUryDGddNrYvMzkrRbsOurTfM2FdLDqkxasuWndiypem9davFTpfwue666/Djjz/i8ccfR5s2bSwPbv7xxx8xcOBAdOrUCU899RSOHj0aeY+35owdOxazZ8/GhAkTMGPGDOzZsweLFy/GwoULLW2bG7FCfMnFrwBwPLZF7LfIrXbNXKEIz2XXd7KAGf1Mi4XB6CCcKDFYelfprFSKZhE7tt4Q21dLWF1ZC3J9QOvmqqyJGjXoEj5btmzB1q1b0bt3b7PbI8qGDRuwf/9+7N+/H+1j7jDHcQAAv9+P9evXY9KkSSgsLEROTg5mzZrl2lR2seq+PCwqaLkHHvAwG9sSu9odPXq06ZtaunVV5DR6LEZGrqFUHz50qD38/r26z8saJBCtwyp3diAQwOefA6FQ9D1paAC2bQsgLU1b3+f7QEVFBZYt29DEchfv+//pEj7nn38+Tp06ZXZbJBk/frxiLBAAXHjhhfj000+tb5ANSFX35WHNnKz0wLMW2yJlps/JybHkurJ0r9yC3W5hsT4MAKtXX4u6ukaLBr8ocbNYtUIgsrCQcRor3NlCN5rHM6XJOLp58yvYs0e7Gy07OxuvvZZ6zjWXWOU1dAmfJ554AtOmTcNjjz2GXr16NYnxyczMNKVxhDSsmJN5k6nSAy/3nt0uHqfjjRIV1gs38n343XdHAmicXGItGsJFCWsLEDtIxCB9LRjdczAWfqxXGmO1zgnl5cDUqc1xzmmSUJY7XcKHr6J8xRVXRL3OcRw8Hg8aGhqMt4xwBbFm81mzjqKsLAn5+WeRl3cJqqq6wePxYOJEf5P3gEtsXzWTmd4ZzBCbUsIpGAwaKoAZG4OVknIGb731u6hjpCwarCxA7CTegvSFcWQVFV4cPJiEgoKzyMsLB9PoGaOschUZFVV8RlhOzs/Yty/UxHWWKJY7XcJn06ZNZreDcBCjK3HhoJCbi6h6D8IJKfY9JyAzvf2YITblhNPKlSsNWV6E8Q5r1qxBhw6HyKKhgNlWDacQxpHJ9TGWLHt6RZUwI8zj8WPw4I3weAZb0s9Zr2OkS/hcfvnlqo77wx/+gDlz5kT2LCLYy9xJNLcPmentx6jYVCOcjFpehJOamEVj8OCNOH48O/I+ER8BsGoruevpX2ILSqPWSb3EZoRxnBcbNw7G4MEbsXHjYFMtd1an3JuBod3ZlXjttdfwxz/+kYSPgFjXUKxpNXZDSz0opQDX1tYCUH7YWRNpRlAbixRPv9lp+GupJDaVrrldVjrhs3ns2DF06bIIx4+3REVFXpPJIZ4XB1JYUayOlSr2RvtY7G+WWlAatU7qQSojjOO8yMurwJQpi1Rb7pTurZkp91ZiqfDhU82JaPhOL6aMr7rK2LnVpgDfcMMN2LkzCwsXNn3Y+/cfh4ED4ysTSSkWyYl4o3hHeM3btavGjBl+NDR44PNxmDevGmPHXofa2lrU1dVFthIRYkaVbT1t5uEngb/+9SZdbjpWJnWzMLssAytV7AHjfSw7OxslJSVYtWqVJdYjvShlhPFiR6wvjx49Ospooebefvddo+jhaWgA9u9PIOFDSCOljLdt88p/UAG1D1V6ejr69s2G1xvdUX0+oKgoGy4aj1UjF4tEWAN/zadNA0pLwwNg164etG+fhUCgocnWM2LEWumAsOtJrbXHiADRawlgaVI3EzPbGntPpGIN7RAKZgRsZ2VlAWArjlBtRpgYOTk5mtxygUAAmZln4fW2RijUWNTY5+OQkXEEgUASM32dhI9DSCnj8vLzVH0+GAwaXjG2bx+2Mt1+e/i7fT7gxRfZUuZE/NC+fXTf0jKh9emzE6dOnRdxOW3cOBhpaacVXU5GBYheSwALW9O4CRZiDc0K2DbbQmmWi9HKgHThczZyZPS9HDFiLdauZStInISPQ3TrBlFrS2GhH7/+9WQcOXIEq1atkvz8ypUrARjvSBMmhP2v4ZU4iR6CTYLBjIjoAdS7nPQKEIoJsw+WSkyYEbBtdrq/mS5Gvg1mB+oL26a05QULGV8kfBwiLS2A+fN9MXEPQfh8pyDs30qp5masGGNX4gTBGna7DygmzD5Ycg2ZhdnWFbP6mV2WNSkBGd653vmML83C5+zZs3j88cdxyy23NNk3K5YbbriBqjiLIDQL3n13RuThOHGiBsKQBxbMvwTBAkYzw/RgZkwY61WrncTJEhNWZKrx6LUeWVFQEdBuWTP7mQoGMzBnjp+JjC/NwicpKQlPPvkkbrrpJsVjn3/+eV2NineEVhqph4Ml8y9B2IGUOCgtLYXf75fMDGPd8kILGHmcrATN2gbCVhZUVLKslZSURAK0rfjNx49nRwU9A85lfOlydQ0aNAiffPIJ8vPzTW4OwROP5t9EI97Sma1EbpD3+/3Izc0VzQwDsjR9j92WF5YWMCz3RycrQZv1m82wHllZUFHJspaVlWVpccWWLQPwejkmMr50CZ/hw4fj/vvvx1dffYXCwkI0a9Ys6v2rr77alMYlMnrNv1aabt0CCwN8vKYzW4EWcWAkHs0JywsrCxgW+2PsGCRl/XbLWGWm9cisfiO8dk7vseb312DkyPeYyPjSJXz+8Ic/AAAWLFjQ5D3apNQc9HZS1ky3dsPKAB+P6cxaBKWaY/lBWWmQN2Pis9vyYlbVarNgsT/G41hlVlvNinvKzs5GaWlpJAvY6T3WlDK+7EKX8AnFFqAhLEFvJxU+fCykDtoJiwN8PKBFUAJQfezkyZNRVnYWr77a1AR+113DkZ9vzARup7gSoqZqtdFJnQXLplFYb59TmGmd8fv9Tc5ttuDR8vywsMebLuHz17/+FaWlpUhNTY16va6uDm+++aaqwOdEQzhI8aX41aDUSeQ6nBs2iyPcgRWCsq6uDrm5ucjOFiuk6UFhYRu9zY3ACxArxZXcdwPhqtVDhvyM//43dC4dPrxwFG7VoVWksGLZJKzDaeuMFuSsd2bsP2k2uoTPzTffjGHDhqF169ZRr9fU1ODmm28m4ROD2kEqFj6bRQq5wdItm8URBGBtIc3s7GxLxZUSgUAAa9aEn/89e6SP0yJSyLKZGEgtfPnFs5np7kZxk8DWJXw4joPH42nyenl5uexEnajoHXxatWqluzO5ZbM4guCxupCmU1XKWRQpVFfI3axZs8b0dPdEQpPwueiii+DxeODxeHDFFVcgKanx4w0NDTh48CCGDRtmeiMTBeFuuEZVu9SWGF27Gm0loQeaaNiAqpRTXSGWURsroyXdnTJ9m6JJ+FxzzTUAgF27dmHo0KFo3rx55L2UlBTk5+djzJgxpjYwkZDbDVdrkLJTG5DGQ8Cl2dBEQ7ACS3WFiKYoZbrx8TJa0t3Nyp6Lp0QZTcLnoYceAgDk5+ejtLQU552nbidxwhh6g5TtNu1TwGUj/OpJaaJJpFUWYR1KFkWnstsI7agZG7Wmu+sdb/mFbHiPLT9CIQ+8Xg7z5wcxduwpVYKJRYuTrhifcePGAQj7pI8cOdIkvb1jx47GW0YAMB6kbKdpn4VYhtiHR2pCsPoh41dZmzYBCxc2nWj69x+HgQPdFRAoRIvrjtx80Zh9PdRYFLVmt5HlVj1OXCuz0t3lrDj8QjYYzMCiRVPAceE+Ewp5cN99mfjxx5fh99coLmRZrNekS/h89913uOWWW7Bly5ao1/mgZypgaB4UpKwN4UO2YkXauU3xtK9SzGpL377isVZFReFMIzlYmnyEQlFuoo0VlFqOTQTMdntqcV2pzW4jy616nLxWetPd1Vpx+LFHyUqoZiHLWj/RJXzGjx+PpKQkrF27Frm5uaIZXoR6+BVgRYUXsSE+FKSsnezsbJSXA9OnCy1lHsyYkYXS0ixFwWEmemOtWJt8hBaDOXNaR1Z/HOfFunWjMGtWUZTFQMuxiYKZ8TVGXFdKLnAWLLduwelrpbUYoBYrDo9ZVaRZQpfw2bVrF7Zv347zzz/f7PbEJXIrW+EK8NVXuSbxO04FKbsdlixlemKtnB5QxcjOzsbu3WLX1YOamjZRglLLsfGOFfE1RgszUnabNbDu1lWy4hw61B7Hj5/Cjh1H0LbtWQDO7/FlBbqET48ePTRVH050pHycFRXeqBVxKOQRjd+Rmzj1ukNYcqNYAWuWsniZaLRcV9bugVNYVT3a6cKMRDR2ZG+aFSgsZsUBQli9+lpwnBd//Svf/vA7bqoirQZdwmfevHmYPn06Hn/8cfTq1QvJyclR72dmZprSuHhCbFD79lv1VgmxiVOvO8QKN0ogEGBKDJOlzBq0XFe6B41YKVKcKsxINGJXmQCzAoVjrThACIAnyi0d234W9tgyC13CZ/DgwQCAQYMGRcX3UHCzNoyuiPW6Q8x2o+jdksNqaEKwBi3Xle5BNFZdDystiqy7b1hAS10do5hliRdacU6ebIa33vpd1PtWtZ8FdAmfTZs2md2OhCReVsRa40zszObRMiHEu/vPTLRcVxbcfCzdWxauh1pYKL7J0r2Twq0BwLwVJxjMcGX79aJL+Fx++eX49NNP8eKLL+LAgQN466230K5dO7z66qsoKCgwu41xjR0r4lgXlFMuqdGjRyMvL8/xQUoMu7Ko3DCIxxusZci5BRaqPLvl3rk9ANhI+91YlkKX8Fm9ejVuvPFGXH/99di5cyfOnDkDAAgGg3j88cfx/vvvm9rIeMfqFeCaNWusO7kGcnJymJ1Y7Mii0jKIE+bBYoYcy7BU5Zn1eye8BnIBwHaLA6kFltyiV679wn0khbh1oaZL+Dz66KN44YUXcNNNN+HNN9+MvN6/f388+uijpjWOcDcUGxCNlkGcxTLvRGJgVRZaPMJiVeLYBZaWcVgqgFluH0k3okv47Nu3DwMGDGjyut/vR1VVldE2xT3xtNmbFGKxAYR6YgfUigovDh5MQkHBWeTlhaPh3braItjHqVT5WEsFS5miUrD2DAqvn1yM1ujRowGw4xGwE13Cp23btti/fz/y8/OjXv/ss8/QuXNnM9oVt+jdcNRNSMUGzJp1tEllakIafkBNhD5DsImdWXlqXMFkRVaPUoxWTk5OwlqWdQmf2267Dffccw9efvlleDweVFRUYOvWrfjjH/+IBx980Ow2xg1GNxyNxerOqPf8UrEBZWVJKCw0o2WJg9l9hnAGNwe1G41BVPvblVzBLGSYacXJ+64mxZ5FV50d6BI+999/P0KhEK644grU1tZiwIABSE1NxR//+EfcddddZrcxbjB7GwW5Tnvs2DFVJkwzgtZiBZJUaucvfuGN/SihAEtbbxD6cEtmkhWYFdDPQoaZVg4cOIDXXntN8Tir7rvaFPt463Nq0CV8PB4PHnjgAdx3333Yv38/Tpw4gR49eqB58+Zmty+usKKEv9FOa0bQmpgAa9euGjNm+NHQ4IHPx+Hpp2uRlxdCZWWl5HnicWVhFNr2gS30rOBZz0yyErN+u50FAs0gEAioEj2AtRuYujnF3kp0CR+elJQU9OjRw6y2xD3xUrBQjNjBfto0oLSUjw3wIC3tDNOrXlZ93fHcZ+zCrHubyJYbp1GyXgSDQaYWTmJixon4pHjbY8ssDAkfQjt2BQuyMJELYwMqK9le9drh69Z7T2jbB2OYlSGXyJYbJ4gVCnLWi5UrVwJgV3SaEZ+kN14onvbYMgsSPg5gR8l6LRO52en1bk3XFw4aVvwGIxOwm7Y5YBHKkHMXUkJByXrBougMBjPw7rsjAeiPT9JibWRh0cs6JHziGDUrH7MngniYWKz8DTQBOwdlyLkDpUBmt1kvtm0rAi96eLTGJ2mxNubm5iZkppYWSPjEEVqtFGZPBHLn8/m0n88J7JgcaQI2F7UuAMqQcx65OBe1W2W4iWAwA1u3Fou8Y2wDUKV4oUQWNWog4RMn6LEgmD0RyJ2ve3ft53MCOyZHmoDNQ4sLoFu3bMqQcxClOBe5rTK8Xs70ncLtqLEjJuIAoF+/rbpFnBvrGbEGCZ84QK8FwexU6XhIvbbjN8TDdWIFLS4ApzLkYmMppFbr8Rhzwf8mJfcVf5zUVhnz5gVx4oR51h67MvSkstGKirZF/tZy391Yz4hFSPi4DLFVyuefpyAUin441VgQzJ4I5M4nU76HKeyYHOMpRd1tFYmdyJATBrWvWJGGOXP8CIU88Ho5zJ8fxNixp5i7TmbA943S0lJs3pwi6r7q338cBg5s6pqJvU8+3ym89FLj+0ZTw63O0OPFjFI22g033KDpvseTG9BJSPi4CKlVSjCYAY9nStQDEWtBkIr/MXsikDqfmzIN7Jgc4yFF3a11bfRmyBnpw3z25PTpQsusBzNmZKG0NAsMXR5TENshPHaM4qu5Z2e3ED1HdDmMxtfd4OqJzeCcNesoysqSkJ9/Fnl5lwC4RJfYVVuNmZCHhI+LkFp9xK4qfD4OL77oiQwaSvE/ZqdKi53PbXvC2JE+LvcdbrCkJFpdG6P1gBIptiv2nktZPnJyLlF1Pq0uMxYQ9oPcXJiyTyFVYzYHEj5xgrDGxV13DUdhYRsAbGUQOT1RuwW3WlISASPlCBI9tku8Do+48BET/iUlJdiyJVWTy0wtrO/6LhR0cvWMWBJ+LEPCJ47ga1zwq08gsVaZZuOU1SXRLCluQ+9iIp5iu/Sipg6PnPCXcusXFWXrdhe60XUmBgtWYLdAwifOSfRVpl7I6kJIYWQxEQ+xXVYjN7k3desbE49uypJywzjjBhc9QMInLjl27Fjk/30+YMGCDEyb1pypVSbr21qQ1cUdOBE0b3QxQduPGIN39fTvPw5FRdlISwvI7gUoN9lSlpQ25IRNVVUVVq1aFflbyn3IwmKRhE8csmbNmiav7dx5NwKBFkysMmm7BsIsnHABkMsqGrHJULj4sgK/vwb9+tUhJUWfZZYXwkpZUhQz04haKzgg7z5kYbFIwidByMk5jV69nG4FW8HWRHxg9eayYpDLKozaydCq4GG9llmhYG7XrhozZvjR0OCBz8dh3rxqjB17HTNuGVaIvYZS99QN7kMSPi4iHlYfFGwdP7BWm8luSyK5rNQJD7nVv5NjGi9qpk0DSkt5EetB+/ZZALIca5cbkLunbnAfkvBxEWJm/WPHjom6tliFgq3jB5YyTciSyCZiq/9160Zh1qwi5OcnMWNRIRGrHiWLjhuKLJLwcRmsDBR6ofgIZVizpMjhhJtJDLIksonY6r+hwYOamjaq089Zr7GTaChZdNxQZJGED2E7FB8hD0uWFLU4HbBOlkQ2EVv9i90XYYB0VVVV5HUlNxkLgbKJhhqLjlyRRRYg4UM4AuumZaetLiyJGiVYcDORJZFN+NX/unWjzgUPN70vcnsQKrnJKlXufiyXZebEIsIt9W7EUGvRUVOs0ilI+BCECCxZXVivecSKm4ksiWzSp89OzJpVhJqaNqL3ReoZ0+Mmk3KLKcVB2llbJh6Koxqx6LDgoifh43KctkzEMywMOk67kNTAkpuJdUtiopKXF0JurrbPqHGTCcc1I1tP2Okyc2tx1Ng5RMqiU1paCr/fL3kOFsZVEj4uhyXLRDzjhNWFBReSGsjNlLjEToZSFhc9C6+m21NwePFFT1S/4se/srKzmDOnNTjOA6DRLTZ5cjds2bJK4hsILcTTXEPCJw7Q0tHc7Ft2CqesLqy4kNRAbiY2sfp5F06GK1akYc4cP0IhD7xeDvPnBzF27ClD3yF0qdx113AUFrYRbcPu3WLPigfV1a11fS8hTrzMDSR8Egi3+padFGtOWl1YciGpgdxMbGHX856dnY3ycmD6dOFz4sGMGVkoLc3SvWs6D+9SycsLSR4j9azk55/Fnj3Gvt9qKF3ffkj4uBit7hc3+padFmtOWl3IhUQYwc7n3WnrpNSzIieWWMBIXBKhH6/yIQSLLF0KdOoEDBoU/u/SpU63yBqcFmv8SlKInVaXCROAsjJg06bwf1kLbCYIwNznJBjMwMGD+QgGMzR9Ts2zovfcViBVAZmFtsU7rrP4nDlzBkVFRfjyyy+xc+dO/OpXv4q8t3v3bkyaNAn/+c9/0KpVK9x1112YPn26c421CLcEvcYDLFhdyIXELhQzF8bIc6I2M0tNgLTcs8KadcUNe1rFK64TPtOnT0deXh6+/PLLqNerq6sxZMgQDB48GC+88AK++uor3HLLLcjKysLEiRMdaq01OG1WTjTMDNyliTJ+UOuGLSkpQVZWluh78XS/9T4nSplZRvb14sWS0v5Sdpb74L9LqQIylSCxDlcJnw8++ADr16/H6tWr8cEHH0S99/rrr6Ourg4vv/wyUlJScMEFF2DXrl1YsGBB3AkftwW9xgNmWF2cjlcizEWte3XVKvl06ni633qfE7nMLC37eomdd/Lkydi0CVi4sKl1pX//cRg40N5sJWEmXLt21Zgxw3+uqjWHefOqMXbsdXEliFnENcLnp59+wm233YZ33nkH6enpTd7funUrBgwYEKWShw4dinnz5uHnn39GixYtRM975swZnDlzJvJ3dXW1+Y03GTmzMutVfhMZp+OVCDah+x3GqgVddnY2+vYVP3dRUbbhrDO9bQKAadOA0lLeSuZB+/ZZALKijiUrsfm4QvhwHIfx48fjjjvuwMUXX4yysrImxxw+fBgFBQVRr7Vp0ybynpTwmTt3LmbPnm16m61GzKzshiq/VsHvxUODAEG4Eyvj6ViI1ZNrm1Q7yEpsDY4Kn/vvvx/z5s2TPWbv3r1Yv349ampqMHPmTNPbMHPmTEydOjXyd3V1NTp06GD691iB8IFRE/Acz9tbCPfiMXMQoNUW4Va0VlVmoa9bWQjTjUU2yUpsDY4Kn2nTpmH8+PGyx3Tu3BkfffQRtm7ditTU1Kj3Lr74Ylx//fV45ZVX0LZtW/z0009R7/N/t23bVvL8qampTc7rRtQEPLux5LgeEWbWIECrLcLNaKmqzFJfF7OAmCXKKEOSABwWPq1atUKrVq0Uj1uyZAkeffTRyN8VFRUYOnQoVq5ciaKiIgBAcXExHnjgAdTX1yM5ORkAsGHDBnTv3l3SzRVPqPWPu22CFg7ex44dU9xl2UxotUW4HbVVlVnu6yyJMqehKs/m4IoYn44dO0b93bx5cwBAly5d0P6cfB87dixmz56NCRMmYMaMGdizZw8WL16MhQsX2t5eJ2DZh20U4WBGDz5BaMPt5S9YFmV2wlodIjfjCuGjBr/fj/Xr12PSpEkoLCxETk4OZs2aFXep7HK40YethRUr0rBo0RR68AkmMDsWzqoYGyp/4X6U6hAR2nCl8MnPzwfHcU1ev/DCC/Hpp5860CJ20OLDdlPqe9hc748qbua2Bz+eg8sTkdiYuYoKLw4eTEJBwVnk5YUQDAaxcuVKxfOkpKRY6s6JZ2twokBVns3FlcKHMI7bUt/D5npP1Gtue/CVJkqAveByHhYyfliE/83iz1Ou6vtdWVmp6vv0unPi3Roc7yhVeSa0QcInAXHjXl9hcz0XJX7c+ODLT5QON04CCi6VR/55Yud+U0aT++Ctv35/DUaNWtskxodf9JGVWBskfBIQNwY7tm8PLFhwEvfemx558AcP3ojjx8MTi1hdErMxK7DabcKTgkvlUXqe3Ha/7UKvFTGREhxircSzZh1FWVkS8vPPIi/vEgCXJKy11QgkfBIQtwY73nNPcwwa9DP++98Qdu1KwuOPXylZl8QMzNw1WogbhSchjdLz5Ib7rbXYoVG0WBGFJGJmk3A8y80FCgsdbEycQMInAXFzsGOvXi3QogVQUiJfl8QMrNo12q3CkxBH6Xlyy/0uLS1FfX091qxpgcWL20UWFbNm/YiSkhq0bt3atEWFFisiizusE+6GhE+C4uZgRztX0FbsGu2E8KTgZGuRe55YX2gIrS/BYMa5khFhkR8KeTB7dh6CwUV44IFxjrSPxR3WCXdDwieBcWuwo90raCu+z07hScHJ9iD3PGm933bGsQgFsVzadF1dnWMCmsUd1vVACxA2IOFDuA67V9BWfZ9dwlOtW6GiogKA8so5kYJLzUTuflsVT6YVubRptXWJrBLQrFvOlKAFCDuQ8CFcid2uOje7BtXC74MmN/AmYnCpHVgVT6YVubTp+vp6VeewMrvPzc8hZUeyAwkfwrXY7apzq2tQK7EDLwWX2oMV8WR66NNnJ7p02Y/jx1uiZcvjEateTY111j0tVsREeQ4J6yDhQxCELBRcah+sZID5/TVNBMiGDRss+a5EtSKSy9g5SPgQRIKhZ8CNl+BS1mEhjsWOCTnRrYiJKvZYgYQPQSQQRgZcFiblRMDJOBa7JuREtiLSTuvOQ8KHIBIEsQH33XdHonXrw2jfXt0mmW4OLnUTdsaxqLW+xGLUMpSoVkTaad15vMqHEAThZviJTWzABbxYuvRW7NhxkerztW8PDBxIoide4K0v/fqNE52Q+/cfh5KSkqjXd+y4CIsWTcErr4zDokVTNPUfIbwV0ecL/50IVkS+ZIAQN2647GZI+BBEnMNPbNdff2mTARdoXNkHgxkOtI5ggbD1JRvemBmBt75kZWVFXpOyDPH9R2tczoQJQFkZsGlT+L9271pvF7E7rfPPIu20bj/k6iKIBCA7Oxt9+gCjRq3Fu++OROyaR2hqp4E3MZGL4aoUeELlXDUTJ16lKy4nEVLUaad1diDhQxAJQnZ2Nl5+uT+2bQtg5MicSJE8APD5ONx113BbiuQR7KImhquiIhcAB6Cx//CuGr/fb1tb3QjttM4GJHwIIoHIzs7GVVcBf/5z7Mreg8LCNk43j2AAMeuLMAB648bBEIoegMPgwRvJWmgQ2sfLPjwcx3FON4Ilqqur4ff7EQwGkZmZ6XRzCMIyyssTMzuLJhh9BAIBbNoE/O53Ta/NW28F4jb93A5oHy9zUDt/k8WHIBKURIiriIUmGHVIicOCAi+8Xg6hkNBNGt/p53YQe62lSgXQPl7mQMKHYIrycuC778Kl+904KZvVfrdfB1ahjSKVURKHI0c2FjlMhPRzu6GqztZD6ewEMyxdCnTqBAwaFP7v0qVOt0gbZrXf7deBcDdKoq9Pn52YMmUR3norENfp506gVCqAMAcSPi6lvDxc96K83OmWmEN5OTBxYmMF11AoHHzrlt9nVvvdfh3cRjCYgYMH82li0YjfX4N+/erI0mMycqUCnCae5hxydbmQpUsbJ0evN1x7w+2rru++iy5bD4Qzjvbvd4cZ3Yz2BwIBfP45EApFB0s0NADbtgWQlkbBo2ZCLgWCNfiqzkLx42RVZz7Wa8WKNEyf7kco5IHXy2H+/CDGjj3l2kQAsvi4jHi1CHTrBtGqsV27OtMerRhtPx9XsWXLK6Ll7DdvfgXPPvssAoGA6OfjaTVmB+RSUA9ZxexDqaqznfBj0pNPvoH77suMBLSHQh7cd18mnnzyDdkxiWXI4uMy3G4ZkcLNO38HAgH4fHWYPz8NM2b40dDggc/HYd68IHy+UwgElFdFfFwFP/DFWiL4gU8s/iIeLYBWUVVVBYA2ilQLWcXsp0+fnejSZT+OH295riikM/2RH2uUnhU3JgKQ8HEZvGUhdjdjt1hG5HDjzt+xGTB3350RGbBOnKjBSy+FX9eSHq1l4JOyAA4d6o7rZyeBQACrVq0CwJ5LgUW07tZO6Ce28KPfXyN6jZ0oEBmPzwoJH5fhZsuIGtxWWyZ2tSM1YGldFUmdJ5Z4tQBagfAe+P01GDx4IzZuHCxqWaMKxGQVs5PYfbzEcCqeRskK7UZI+LgQN1pGiDBm1ucJBALIzDwLr7d1TEE5DhkZRxAI0L5bUuzYcVFE9AAhDB68MeLCKS0tTejrxos+pZU+iUNzYbnPseJ+MwsSPi7FbZYRwtxYHKGLTVhQzuMJYcSItVi7NjyJJ3oFYjFiXTiAFxs3DkbPnnvOWdoSe6NNofWhXbvqmLi1aowde51rs3kI/ai1QrsBEj4EYQMVFV5TY3GEJnG51ZgbAw+thlw4yvCiZto0oLSUty570L59FoAsJ5tGEIYh4UPENaxs/XDwYJKlsTjxtBqzmngM1rQSsi4T8QbV8SHiFie3foitfVJQcFa2zo/aeAmKqzAOS7VSCIJV4nlMIosP4ThSO0Hz6IkncDLNW6z2ycSJIdlsPJazOuKReAvWJAiziecxiYQP4ShKO0HzaA3StSvNO3a1I1X75NFHg4rZeG4cQNwEy7VSCIJF4nVMIuFDOIra4FutQbp2FXqMXRVt3pyChQubBs4GAi0AaI+XYCVGKR6I5xWsECssqIT7obGkERI+RFxiZ6FH4STSt695gou2ojCfeJ/wYy2owWAGjh/PRsuWgSjrFpU5SAzidZNRo5DwIeIWJwo9miW4lGKU4jnwkNCP0NIjt88WlTmIf3gRHAxmYNGiKeC46E1Gf/zxZfj9NQkpgkn4EHGNE6m4ZggupRilRHHbEPqgfbaIeN5k1CgkfAjCAowKLjUxSiRqCCmoSCPBQ3WrmkLChyAsRk+wabxvRktYC012BE88bjJqFBI+BGEhRtL1aTNaAtCXjaM02R07dgxAeCuVgweTUFBwFnl5YfMiuUjjDzvrVrkhe4yED+Eo8R6kazRdn7YLSEzMyMaRm+zWrFkjG/yciAGv8Y4d29q4JROVhA/hKBSkay9uWI2xhBPXy8xsHKnJTin42e6AV6E7mKxQ7sTJavlaIeFDOA4NaPbgltUYKzh1vYxk46i1jLIU/Cx0B5MVyr3YVS3fDEj4EISAeLWIuGk1xgIsXC89AcpKFtRjx45hzZo1TAU/8221wwoVr8+3GHaGEQQCAWRmnoXX2xqhkCfyus/HISPjCAKBJKZEKwkfgjhHPFtE3LQaswotkx4L10tvNo6aCYbFTB+rrFCJWr3YrjACocVu5Mhoi92IEWuxdi17FjsSPgQBNlb4VmLX3mWsolXUsnK9rMzGYW2HeiusUIlevdiO3yQUVnJ9iqVCiV7lQwgi/pFb4ccDfF0gny/8dyLVBZISteXl4scHAgH4fJWYP78KPh8HIGyynzevCj5fJQKBgO52bNok/b1S+P01KCj43hJhYuW59bRl1Ki18HjCN8oMK5SaeCnhcYRxWOpTUpDFhyBg3QqfpXT9RK0LpMVtFVt36e67MyKr1xMnavDSS+HXtVoI4tmNaiZWWaFYimkinIeED0HAnErJUhWaS0pKcPbsWSQnJ8Pv9zd5P9bPrqfSs1oSsS6QFlEbe92l0sG1WAhYcqOyJMSlsKLeDIsxTYRzkPAhiHMYsYioqdAcDGZgwIAJuPhiv+S5jVR6JsRxevsPrYHSVoqTRK6bxVpME+EcJHwIQoBei4iSBYCvT7JwoVfW1WG00jMhjpNuPq1uVKvFCWuixk4rlB3Viwn2IeFDEBYTW58k3jLGzMCq+ipCt6HPB3TvHn69sjL8X6utG+FA6TrMn5+GGTP8aGjwnAuUDsLnO4VAQPz7WRMnVpLIVijCGUj4EITFiGWUJFoNHTmsCvx12m1oVaB0PJLov9/NuCFuLBYSPkTcYWVwsB7EMkoSqYaOHFYG/jrtNrQiUJrQhhsnZbfhRosdCR8irnB6lS9GbEZJItXQUYKFCslE/OLGSdmNuO36kfAh4gqnV/lS8Bkl/fuPQ1FRNk3q52ClQjIPWQjiD7dNyoT1kPAhCJvw+2vQr18dcnOdbgk7OJ1qHgtZCAgi/iHhQxAmYJalIBEtDqxVlCZRQxDxDQkfgjABsywFVlgcWAv2FiMRK0oTBOEMJHwIwiTMEg9mihAWg70JgiCchHZnJ4g4Rk0QdzCYoWvXcCvQu4O5GE67DZ3+foIgxCGLD0EkMGq30rADswsZOh2o7PT3EwQhjquEz7p16zBnzhzs3r0b5513Hi6//HK88847kfd/+OEH3Hnnndi0aROaN2+OcePGYe7cuUhKctXPlMQNsRpOQ6ts9bC0lYbZhQwbt8BwtnRAoj+PTmDV9ieEMVi6L65RBKtXr8Ztt92Gxx9/HIMGDcLZs2exZ8+eyPsNDQ0YMWIE2rZtiy1btqCyshI33XQTkpOT8fjjjzvYcnOgWA110CpbPSxtpWFmIUOrtsAg2IfuPZuwdl88HMdxzn29Os6ePYv8/HzMnj0bEySu1gcffICRI0eioqICbdq0AQC88MILmDFjBo4ePap6hV9dXQ2/349gMIjMzEzTfoNRKisr8RK/uY8MEydORC4ViiHOIddvgsEMLFo0pclWGmVlzlh8OnVqWshQa1vMOg/hPujes4md90Xt/O2K4OYdO3bgxx9/hNfrxUUXXYTc3FwMHz48yuKzdetW9OrVKyJ6AGDo0KGorq7G119/LXnuM2fOoLq6OuofQSQC/FYaHk94RLK7eGAgEEBlZSUqKyvh81Vi/vwq+HzcubZwePrpE5rbImc5IuIbuvdswuJ9cYWr6//+7/8AAA8//DAWLFiA/Px8PP300xg4cCD++9//omXLljh8+HCU6AEQ+fvw4cOS5547dy5mz55tXeMJgmGc2kpDynUr3MG8qqoGgYA21y1rW2AQ9kH3nk1YvC+OWnzuv/9+eDwe2X/ffvstQueu2AMPPIAxY8agsLAQy5Ytg8fjwd/+9jdDbZg5cyaCwWDk36FDh8z4aQTBBGpcvH5/DQYOtNcdIBWD5ffXoKDg+8gu5lr3VOO3wPD5wn87vQUGYQ+BQEDUajhvXhV8vkoEAgGHW5i4sPhMOmrxmTZtGsaPHy97TOfOnVFZWQkA6NGjR+T11NRUdO7cGT/88AMAoG3btvj3v/8d9dmffvop8p4UqampSE1N1dN8gmCeRAz2Zm0LDKthKVvGCWKth0Kr4YkTNeBD3BI98cNJWHsmHRU+rVq1QqtWrRSPKywsRGpqKvbt24df//rXAID6+nqUlZWhU6dOAIDi4mI89thjOHLkCFq3bg0A2LBhAzIzM6MEE0EkGok42CfKFhisZcs4Qayo9/trIhZDueMI6xGWYPH5gO7dw6+fs2U4tuhyRYxPZmYm7rjjDjz00EPo0KEDOnXqhCeffBIA8Lvf/Q4AMGTIEPTo0QM33ngj5s+fj8OHD+N///d/MWnSJLLoEAQRd5hd+4ggzITlEiyuED4A8OSTTyIpKQk33ngjTp06haKiInz00Udo0aIFAMDn82Ht2rW48847UVxcjGbNmmHcuHGYM2eOwy03ByrMRxCEEDNrHxGE2ai1sDlhiXON8ElOTsZTTz2Fp556SvKYTp064f3337exVfaRiLEaBJFIaI3VYTFbhiDcgGuED5GYsRoEkQjoidXhs2Vuvz1s6WEhW4Yg3IArChgSBBFfkOu2EalYHTU71E+YEK6Au2lT+L+JFthMEHogiw9BELZDrttGjMbqJEoGG0GYBQkfIuGhXe+dga5pGIrVMQZZDwmtkPAhEhqWUy4TBbOEp1sFLMXqGIOsh4RWSPgQCY3VKZdunYztwizh6XYBq7WyLfWraBLpt7oFli1xJHwIwiLcPhnbgVnCk+WaIWpRG6vjln6V6FtpJDosW+JI+BCERcTDZEywhxv6FW2lQQDsWuIonZ0gCIIwDSPp+QRhByR8CIIgCNOQS88nCBYg4UMQBEGYBp+eL4TS8wmWoBgfgiAIh4jH7CxKzydYh4QPkdCwnHJpJfE44boNt2Rn6UFrej5B2AkJHyKhYTnl0ipYmnDNEp5uFLBuyM4yAm2lQbAKCR8i4bFqcmd1MmZpwjVLeCaSgGW1XxGEWyDhQxAWkUiTsRHM+v2Jch2pXxGEMUj4EISF0ORDWAGr/Ypixwg3QMKHIAiCMAxLsWMEIQfV8SEIgiAMw1LsGEHIQcKHIAiCIIiEgYQPQRCEA1B2FkE4A8X4EESCQRMuG1B2FkE4AwkfgkgwaMJlB7rGBGE/JHwIIgGhCZcgiESFYnwIgiAIgkgYSPgQBEEQhqHYMcItkKuLIAiCMAzFjhFugYQPQRAEYQokagg3QK4ugiAIgiASBhI+BEEQBEEkDCR8CIIgCIJIGEj4EARBEASRMJDwIQiCIAgiYSDhQxAEQRBEwkDChyAIgiCIhIGED0EQBEEQCQMJH4IgCIIgEgaq3BwDx3EAgOrqaodbQhAEQRCEWvh5m5/HpSDhE0NNTQ0AoEOHDg63hCAIgiAIrdTU1MDv90u+7+GUpFGCEQqFUFFRgYyMDHg8HqebYzvV1dXo0KEDDh06hMzMTKeb41roOpoDXUfj0DU0B7qO5mDldeQ4DjU1NcjLy4PXKx3JQxafGLxeL9q3b+90MxwnMzOTHm4ToOtoDnQdjUPX0BzoOpqDVddRztLDQ8HNBEEQBEEkDCR8CIIgCIJIGEj4EFGkpqbioYceQmpqqtNNcTV0Hc2BrqNx6BqaA11Hc2DhOlJwM0EQBEEQCQNZfAiCIAiCSBhI+BAEQRAEkTCQ8CEIgiAIImEg4UMQBEEQRMJAwidB+de//oVRo0YhLy8PHo8H77zzTtT7HMdh1qxZyM3NRVpaGgYPHozvvvvOmcYyitI1HD9+PDweT9S/YcOGOdNYhpk7dy4uueQSZGRkoHXr1rjmmmuwb9++qGNOnz6NSZMmITs7G82bN8eYMWPw008/OdRiNlFzHQcOHNikT95xxx0OtZhNnn/+eVx44YWRAnvFxcX44IMPIu9TX1SH0nV0si+S8ElQTp48id69e+NPf/qT6Pvz58/HkiVL8MILL2Dbtm1o1qwZhg4ditOnT9vcUnZRuoYAMGzYMFRWVkb+vfHGGza20B188sknmDRpEj7//HNs2LAB9fX1GDJkCE6ePBk55t5778V7772Hv/3tb/jkk09QUVGB0aNHO9hq9lBzHQHgtttui+qT8+fPd6jFbNK+fXs88cQT2L59O7744gsMGjQIv/3tb/H1118DoL6oFqXrCDjYFzki4QHAvf3225G/Q6EQ17ZtW+7JJ5+MvFZVVcWlpqZyb7zxhgMtZJ/Ya8hxHDdu3Djut7/9rSPtcTNHjhzhAHCffPIJx3HhvpecnMz97W9/ixyzd+9eDgC3detWp5rJPLHXkeM47vLLL+fuuece5xrlUlq0aMH95S9/ob5oEP46cpyzfZEsPkQTDh48iMOHD2Pw4MGR1/x+P4qKirB161YHW+Y+Pv74Y7Ru3Rrdu3fHnXfeiUAg4HSTmCcYDAIAWrZsCQDYvn076uvro/rj+eefj44dO1J/lCH2OvK8/vrryMnJQc+ePTFz5kzU1tY60TxX0NDQgDfffBMnT55EcXEx9UWdxF5HHqf6Im1SSjTh8OHDAIA2bdpEvd6mTZvIe4Qyw4YNw+jRo1FQUIADBw7gf/7nfzB8+HBs3boVPp/P6eYxSSgUwpQpU9C/f3/07NkTQLg/pqSkICsrK+pY6o/SiF1HABg7diw6deqEvLw87N69GzNmzMC+ffuwZs0aB1vLHl999RWKi4tx+vRpNG/eHG+//TZ69OiBXbt2UV/UgNR1BJztiyR8CMIifv/730f+v1evXrjwwgvRpUsXfPzxx7jiiiscbBm7TJo0CXv27MFnn33mdFNcjdR1nDhxYuT/e/XqhdzcXFxxxRU4cOAAunTpYnczmaV79+7YtWsXgsEg3nrrLYwbNw6ffPKJ081yHVLXsUePHo72RXJ1EU1o27YtADTJVPjpp58i7xHa6dy5M3JycrB//36nm8IkkydPxtq1a7Fp0ya0b98+8nrbtm1RV1eHqqqqqOOpP4ojdR3FKCoqAgDqkzGkpKSga9euKCwsxNy5c9G7d28sXryY+qJGpK6jGHb2RRI+RBMKCgrQtm1b/POf/4y8Vl1djW3btkX5ZwltlJeXIxAIIDc31+mmMAXHcZg8eTLefvttfPTRRygoKIh6v7CwEMnJyVH9cd++ffjhhx+oPwpQuo5i7Nq1CwCoTyoQCoVw5swZ6osG4a+jGHb2RXJ1JSgnTpyIUtYHDx7Erl270LJlS3Ts2BFTpkzBo48+im7duqGgoAAPPvgg8vLycM011zjXaMaQu4YtW7bE7NmzMWbMGLRt2xYHDhzA9OnT0bVrVwwdOtTBVrPHpEmTsGLFCvz9739HRkZGJFbC7/cjLS0Nfr8fEyZMwNSpU9GyZUtkZmbirrvuQnFxMfr27etw69lB6ToeOHAAK1aswFVXXYXs7Gzs3r0b9957LwYMGIALL7zQ4dazw8yZMzF8+HB07NgRNTU1WLFiBT7++GP84x//oL6oAbnr6HhfdCSXjHCcTZs2cQCa/Bs3bhzHceGU9gcffJBr06YNl5qayl1xxRXcvn37nG00Y8hdw9raWm7IkCFcq1atuOTkZK5Tp07cbbfdxh0+fNjpZjOH2DUEwC1btixyzKlTp7g//OEPXIsWLbj09HTu//2//8dVVlY612gGUbqOP/zwAzdgwACuZcuWXGpqKte1a1fuvvvu44LBoLMNZ4xbbrmF69SpE5eSksK1atWKu+KKK7j169dH3qe+qA656+h0X/RwHMdZL68IgiAIgiCch2J8CIIgCIJIGEj4EARBEASRMJDwIQiCIAgiYSDhQxAEQRBEwkDChyAIgiCIhIGED0EQBEEQCQMJH4IgCIIgEgYSPgRBEARBJAwkfAiCIAiCSBhI+BAE4Rrq6uqcbkITWGwTQRDSkPAhCMIxBg4ciMmTJ2Py5Mnw+/3IycnBgw8+CH4nnfz8fDzyyCO46aabkJmZiYkTJwIAPvvsM1x22WVIS0tDhw4dcPfdd+PkyZOR8z733HPo1q0bzjvvPLRp0wbXXntt5L233noLvXr1QlpaGrKzszF48ODIZwcOHIgpU6ZEtfGaa67B+PHjI3/rbRNBEGxAwocgCEd55ZVXkJSUhH//+99YvHgxFixYgL/85S+R95966in07t0bO3fuxIMPPogDBw5g2LBhGDNmDHbv3o2VK1fis88+w+TJkwEAX3zxBe6++27MmTMH+/btw4cffogBAwYAACorK3Hdddfhlltuwd69e/Hxxx9j9OjR0LplodY2EQTBDrRJKUEQjjFw4EAcOXIEX3/9NTweDwDg/vvvx7vvvotvvvkG+fn5uOiii/D2229HPnPrrbfC5/PhxRdfjLz22Wef4fLLL8fJkyfx/vvv4+abb0Z5eTkyMjKivm/Hjh0oLCxEWVkZOnXqJNqeX/3qV1i0aFHktWuuuQZZWVlYvnw5AOhq03nnnWfoOhEEYR5k8SEIwlH69u0bET0AUFxcjO+++w4NDQ0AgIsvvjjq+C+//BLLly9H8+bNI/+GDh2KUCiEgwcP4sorr0SnTp3QuXNn3HjjjXj99ddRW1sLAOjduzeuuOIK9OrVC7/73e/w5z//GT///LPmNmttE0EQ7EDChyAIpmnWrFnU3ydOnMDtt9+OXbt2Rf59+eWX+O6779ClSxdkZGRgx44deOONN5Cbm4tZs2ahd+/eqKqqgs/nw4YNG/DBBx+gR48eeOaZZ9C9e/eIOPF6vU3cXvX19YbbRBAEO5DwIQjCUbZt2xb19+eff45u3brB5/OJHt+nTx9888036Nq1a5N/KSkpAICkpCQMHjwY8+fPx+7du1FWVoaPPvoIAODxeNC/f3/Mnj0bO3fuREpKSsRt1apVK1RWVka+q6GhAXv27FH8DWraRBAEG5DwIQjCUX744QdMnToV+/btwxtvvIFnnnkG99xzj+TxM2bMwJYtWzB58mTs2rUL3333Hf7+979HAonXrl2LJUuWYNeuXfj+++/x17/+FaFQCN27d8e2bdvw+OOP44svvsAPP/yANWvW4OjRo/jlL38JABg0aBDWrVuHdevW4dtvv8Wdd96Jqqoqxd+g1CaCINghyekGEASR2Nx00004deoULr30Uvh8Ptxzzz2RFHExLrzwQnzyySd44IEHcNlll4HjOHTp0gWlpaUAgKysLKxZswYPP/wwTp8+jW7duuGNN97ABRdcgL179+Jf//oXFi1ahOrqanTq1AlPP/00hg8fDgC45ZZb8OWXX+Kmm25CUlIS7r33XvzmN79R/A1KbSIIgh0oq4sgCMcQy6IiCIKwEnJ1EQRBEASRMJDwIQiCIAgiYSBXF0EQBEEQCQNZfAiCIAiCSBhI+BAEQRAEkTCQ8CEIgiAIImEg4UMQBEEQRMJAwocgCIIgiISBhA9BEARBEAkDCR+CIAiCIBIGEj4EQRAEQSQMJHwIgiAIgkgY/j8koO3uKDDgCwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAiE9JREFUeJztnXl4VNX9/9+TFRKSCUlISEwgIVAoqxI1BiogBIEK1h8ocUFZRS2ggFXka0VxQ0ARwb1FsCoKAlrFqoDiSqQWRESRAgUFE5YMZhKJkJC5vz/GO8xM7r6eO/N5PU8eyMzNnXPvnHvO+3y24+I4jgNBEARBEEQUEGN3AwiCIAiCIKyChA9BEARBEFEDCR+CIAiCIKIGEj4EQRAEQUQNJHwIgiAIgogaSPgQBEEQBBE1kPAhCIIgCCJqIOFDEARBEETUQMKHIAiCIIiogYQPQRAEg6xYsQIulwsHDx60uykEEVGQ8CGIKOXLL7/E1KlT0a1bNyQnJ6Ndu3YYPXo0/vvf/zY7dsCAAXC5XHC5XIiJiUFqaio6d+6M66+/Hhs3blT1uW+//Tb69++PrKwsJCUloUOHDhg9ejTee+89oy6tGQ8//DDefPPNZq9v2bIF9913H2pqakz77HDuu+++wL10uVxISkpC165d8de//hW1tbWGfMbKlSuxePFiQ85FEJEGCR+CiFLmz5+PtWvXYtCgQXjiiScwefJkfPLJJ+jduzd27drV7Pi8vDy89NJL+Mc//oGFCxfi8ssvx5YtW3DppZeivLwcjY2Nsp/56KOP4vLLL4fL5cLs2bPx+OOPY9SoUdi7dy9ee+01My4TgLTwmTt3rqXCh+eZZ57BSy+9hEWLFqFLly546KGHMHToUBixfSIJH4IQJ87uBhAEYQ8zZ87EypUrkZCQEHitvLwcPXr0wCOPPIKXX3455Hi3240xY8aEvPbII4/g1ltvxdNPP42CggLMnz9f9PPOnDmDBx54AIMHD8aGDRuavX/s2DGdV8QO9fX1SEpKkjzmyiuvRGZmJgDg5ptvxqhRo7Bu3Tp88cUXKC0ttaKZBBGVkMWHIKKUPn36hIgeAOjUqRO6deuG3bt3KzpHbGwslixZgq5du+LJJ5+E1+sVPba6uhq1tbXo27ev4PtZWVkhv586dQr33Xcffve736FFixbIycnByJEjsX///sAxjz76KPr06YOMjAy0bNkSxcXFWLNmTch5XC4XTp48iRdffDHgXho3bhzuu+8+3HHHHQCAwsLCwHvBMTUvv/wyiouL0bJlS6Snp+Pqq6/GoUOHQs4/YMAAdO/eHdu2bUO/fv2QlJSE//u//1N0/4IZOHAgAODAgQOSxz399NPo1q0bEhMTkZubiylTpoRYrAYMGIB33nkHP/zwQ+CaCgoKVLeHICIVsvgQBBGA4zgcPXoU3bp1U/w3sbGxuOaaa3DPPffgs88+w2WXXSZ4XFZWFlq2bIm3334b06ZNQ3p6uug5m5qaMHz4cHzwwQe4+uqrcdttt6Gurg4bN27Erl27UFRUBAB44okncPnll+O6665DQ0MDXnvtNVx11VVYv359oB0vvfQSJk2ahAsvvBCTJ08GABQVFSE5ORn//e9/8eqrr+Lxxx8PWF/atGkDAHjooYdwzz33YPTo0Zg0aRKOHz+OpUuXol+/fvjqq6+QlpYWaK/H48GwYcNw9dVXY8yYMcjOzlZ8/3h4QZeRkSF6zH333Ye5c+eirKwMt9xyC/bs2YNnnnkGX375JT7//HPEx8fj7rvvhtfrxeHDh/H4448DAFq1aqW6PQQRsXAEQRC/8dJLL3EAuGXLloW83r9/f65bt26if/fGG29wALgnnnhC8vxz5szhAHDJycncsGHDuIceeojbtm1bs+NeeOEFDgC3aNGiZu/5fL7A/+vr60Pea2ho4Lp3784NHDgw5PXk5GRu7Nixzc61cOFCDgB34MCBkNcPHjzIxcbGcg899FDI69988w0XFxcX8nr//v05ANyzzz4ret3B3HvvvRwAbs+ePdzx48e5AwcOcM899xyXmJjIZWdncydPnuQ4juOWL18e0rZjx45xCQkJ3KWXXso1NTUFzvfkk09yALgXXngh8Npll13GtW/fXlF7CCLaIFcXQRAAgO+//x5TpkxBaWkpxo4dq+pveYtCXV2d5HFz587FypUrcd555+H999/H3XffjeLiYvTu3TvEvbZ27VpkZmZi2rRpzc7hcrkC/2/ZsmXg/z///DO8Xi8uvvhibN++XVX7w1m3bh18Ph9Gjx6N6urqwE/btm3RqVMnbN68OeT4xMREjB8/XtVndO7cGW3atEFhYSFuuukmdOzYEe+8845obNCmTZvQ0NCA6dOnIybm7NB94403IjU1Fe+88476CyWIKIRcXQRB4MiRI7jsssvgdruxZs0axMbGqvr7X375BQCQkpIie+w111yDa665BrW1tdi6dStWrFiBlStXYsSIEdi1axdatGiB/fv3o3PnzoiLkx6i1q9fjwcffBA7duzA6dOnA68HiyMt7N27FxzHoVOnToLvx8fHh/x+zjnnNIuXkmPt2rVITU1FfHw88vLyAu47MX744QcAfsEUTEJCAjp06BB4nyAIaUj4EESU4/V6MWzYMNTU1ODTTz9Fbm6u6nPw6e8dO3ZU/DepqakYPHgwBg8ejPj4eLz44ovYunUr+vfvr+jvP/30U1x++eXo168fnn76aeTk5CA+Ph7Lly/HypUrVV9DMD6fDy6XC++++66gCAyPmQm2PCmlX79+gbgigiCsg4QPQUQxp06dwogRI/Df//4XmzZtQteuXVWfo6mpCStXrkRSUhL+8Ic/aGrH+eefjxdffBFVVVUA/MHHW7duRWNjYzPrCs/atWvRokULvP/++0hMTAy8vnz58mbHilmAxF4vKioCx3EoLCzE7373O7WXYwrt27cHAOzZswcdOnQIvN7Q0IADBw6grKws8JpeixdBRDIU40MQUUpTUxPKy8tRUVGB119/XVPtmKamJtx6663YvXs3br31VqSmpooeW19fj4qKCsH33n33XQBn3TijRo1CdXU1nnzyyWbHcr8V+IuNjYXL5UJTU1PgvYMHDwoWKkxOThYsUpicnAwAzd4bOXIkYmNjMXfu3GYFBTmOg8fjEb5IEykrK0NCQgKWLFkS0qZly5bB6/WGZNMlJydLlhYgiGiGLD4EEaXcfvvteOuttzBixAicOHGiWcHC8GKFXq83cEx9fT327duHdevWYf/+/bj66qvxwAMPSH5efX09+vTpg4suughDhw5Ffn4+ampq8Oabb+LTTz/FFVdcgfPOOw8AcMMNN+Af//gHZs6ciX//+9+4+OKLcfLkSWzatAl//vOf8ac//QmXXXYZFi1ahKFDh+Laa6/FsWPH8NRTT6Fjx47YuXNnyGcXFxdj06ZNWLRoEXJzc1FYWIiSkhIUFxcDAO6++25cffXViI+Px4gRI1BUVIQHH3wQs2fPxsGDB3HFFVcgJSUFBw4cwBtvvIHJkyfjL3/5i677r5Y2bdpg9uzZmDt3LoYOHYrLL78ce/bswdNPP40LLrgg5PsqLi7GqlWrMHPmTFxwwQVo1aoVRowYYWl7CYJZ7EwpIwjCPvg0bLEfqWNbtWrFderUiRszZgy3YcMGRZ/X2NjI/e1vf+OuuOIKrn379lxiYiKXlJTEnXfeedzChQu506dPhxxfX1/P3X333VxhYSEXHx/PtW3blrvyyiu5/fv3B45ZtmwZ16lTJy4xMZHr0qULt3z58kC6eDDff/89169fP65ly5YcgJDU9gceeIA755xzuJiYmGap7WvXruX+8Ic/cMnJyVxycjLXpUsXbsqUKdyePXtC7o1Uqn84fPuOHz8ueVx4OjvPk08+yXXp0oWLj4/nsrOzuVtuuYX7+eefQ4755ZdfuGuvvZZLS0vjAFBqO0EE4eI4AzaGIQiCIAiCcAAU40MQBEEQRNRAwocgCIIgiKiBhA9BEARBEFEDCR+CIAiCIKIGEj4EQRAEQUQNJHwIgiAIgogaqIBhGD6fD5WVlUhJSaGy7wRBEAThEDiOQ11dHXJzcxETI27XIeETRmVlJfLz8+1uBkEQBEEQGjh06BDy8vJE3yfhE0ZKSgoA/42T2neIIAiCIAh2qK2tRX5+fmAeF4OETxi8eys1NZWED0EQBEE4DLkwFQpuJgiCIAgiaiDhQxAEQRBE1EDChyAIgiCIqIFifAiCIAjCAJqamtDY2Gh3MyKW+Ph4xMbG6j4PCR+CIAiC0AHHcThy5AhqamrsbkrEk5aWhrZt2+qqs0fChyAIgiB0wIuerKwsJCUlUfFbE+A4DvX19Th27BgAICcnR/O5SPgQBEEQhEaampoCoicjI8Pu5kQ0LVu2BAAcO3YMWVlZmt1eFNxMEARBEBrhY3qSkpJsbkl0wN9nPbFUJHwIgiAIQifk3rIGI+4zubocgMfjQUNDg+j7CQkJZGIlCIIgCAWQ8GEcj8eDJ598Uva4qVOnkvghCIIgCBnI1cU4UpYeLccRBEEQBACMGzcOLpcLLpcL8fHxyM7OxuDBg/HCCy/A5/MpPs+KFSuQlpZmXkMNhiw+BEEQBGETdocyDB06FMuXL0dTUxOOHj2K9957D7fddhvWrFmDt956C3FxkScTHHNF8+bNw7p16/D999+jZcuW6NOnD+bPn4/OnTsHjjl16hRuv/12vPbaazh9+jSGDBmCp59+GtnZ2Ta2nCAIgiCaw0IoQ2JiItq2bQsAOOecc9C7d29cdNFFGDRoEFasWIFJkyZh0aJFWL58Of73v/8hPT0dI0aMwIIFC9CqVSt89NFHGD9+PICzgcf33nsv7rvvPrz00kt44oknsGfPHiQnJ2PgwIFYvHgxsrKyTLkWpTjG1fXxxx9jypQp+OKLL7Bx40Y0Njbi0ksvxcmTJwPHzJgxA2+//TZef/11fPzxx6isrMTIkSNtbDVBEARBCMNqKMPAgQPRq1cvrFu3DgAQExODJUuW4Ntvv8WLL76IDz/8EHfeeScAoE+fPli8eDFSU1NRVVWFqqoq/OUvfwHgTzl/4IEH8PXXX+PNN9/EwYMHMW7cOEuvRQjHWHzee++9kN9XrFiBrKwsbNu2Df369YPX68WyZcuwcuVKDBw4EACwfPly/P73v8cXX3yBiy66yI5mEwRBEITj6NKlC3bu3AkAmD59euD1goICPPjgg7j55pvx9NNPIyEhAW63Gy6XK2A54pkwYULg/x06dMCSJUtwwQUX4JdffkGrVq0suQ4hHGPxCcfr9QIA0tPTAQDbtm1DY2MjysrKAsd06dIF7dq1Q0VFheh5Tp8+jdra2pAfgiAIgohmOI4LuK42bdqEQYMG4ZxzzkFKSgquv/56eDwe1NfXS55j27ZtGDFiBNq1a4eUlBT0798fAPDjjz+a3n4pHCl8fD4fpk+fjr59+6J79+4A/HulJCQkNIssz87OxpEjR0TPNW/ePLjd7sBPfn6+mU0nCIIgCObZvXs3CgsLcfDgQQwfPhw9e/bE2rVrsW3bNjz11FMApF1wJ0+exJAhQ5CamopXXnkFX375Jd544w3Zv7MCx7i6gpkyZQp27dqFzz77TPe5Zs+ejZkzZwZ+r62tZUr8JCQkhPzu9abgxIkMpKd74HbXiR6nFzMzDezOYiAIgiDE+fDDD/HNN99gxowZ2LZtG3w+Hx577DHExPhtJatXrw45PiEhAU1NTSGvff/99/B4PHjkkUcCc+p//vMfay5ABscJn6lTp2L9+vX45JNPkJeXF3i9bdu2aGhoQE1NTYjV5+jRo838jsEkJiYiMTHRzCbrIiMjA1OnTkVDQwNWrmyJ++93w+dzISaGw4IFXlx77a+GCwUzMw1YyGIgCIIg/Jw+fRpHjhwJSWefN28ehg8fjhtuuAG7du1CY2Mjli5dihEjRuDzzz/Hs88+G3KOgoIC/PLLL/jggw/Qq1cvJCUloV27dkhISMDSpUtx8803Y9euXXjggQdsuspQHOPq4jgOU6dOxRtvvIEPP/wQhYWFIe8XFxcjPj4eH3zwQeC1PXv24Mcff0RpaanVzTWUjIwMNDXl4M470+Dz+X2uPp8Ls2aloakpJ0QgeDyeQGS90I/H45H9PDMzDVjNYiAIgohG3nvvPeTk5KCgoABDhw7F5s2bsWTJEvzzn/9EbGwsevXqhUWLFmH+/Pno3r07XnnlFcybNy/kHH369MHNN9+M8vJytGnTBgsWLECbNm2wYsUKvP766+jatSseeeQRPProozZdZSiOsfhMmTIFK1euxD//+U+kpKQE4nbcbjdatmwJt9uNiRMnYubMmUhPT0dqaiqmTZuG0tLSiMjo2rsXCC+k2dQE7NsH8IYvsqYQBEE4B6UhCkaHMvCsWLECK1askD1uxowZmDFjRshr119/fcjvzzzzDJ555pmQ16655hpcc801Ia9xHKetsQbiGOHD39ABAwaEvL58+fJAXYDHH38cMTExGDVqVEgBw0igUycgJiZU/MTGAh07nv2drCkEQRDOITiUQQyKeTQexwgfJSqxRYsWeOqppwIR55FEXh7w/PPATTf5LT2xscBjj/2C2Ng6VFX5j6murra3kQRBEIQqSNRYj2OEDwFMnAgMGeJ3b2Vk/Ix165bg+efN/1yxTDLWz00QBEEQ4ZDwcRh5ef6fqqpTlnze9u3n4e23h4PjYuBy+TBixHr07v0V8+cmCIIgCCFI+BCieL0pAWECABwXg7ffHo6ion26rTNmnlsNVFOIIAgiuiDhE8FodSPxGQQnTmQEhAkPx8XgxIl0uN11mjINlJ67vr4eVXzwksh5tAiSYKHj9XqxatUq2b9RkgVHAoogCMIZkPBhHLEJVS6QWY8bic80OHjwDF56iQvUDgKA2FgO06YNQ0FBnKaJXMm509J+wcsvvyx7LrVp+UrT/cORy4KjMgIEQRDOgYQPw2idqOXcSEosNRkZGcjIaJ5J9txzLhQXZ6tuk5pzV1X55E8C9Wn5ZqXxUxkBgiAI50DCxwK0ukHUTJTBbi0xN1LfvmMxYIC69MngTLKOHc8WSzQCM89tJNXV1eSqIgiCiBBI+JiMFW6QcLdWWdkmuFy+EPETGwuUlPgtLWrhM8nMwMxzyxEeAyUWE7Vu3ToAwt+Rx+Oh+kkEQRACfPTRR7jkkkvw888/h+yhKUVBQQGmT5+O6dOnm9YuEj4mY7YbRMittWlTGcrKNmHTpjJwXMxvbiT9AsOuAF4zav2Ei8WePXdi586ekjFR4dcuJmqpNhFBEE5g3LhxePHFF3HTTTc123h0ypQpePrppzF27FhF21o4CRI+DkfMrXXTTcV47DEvPJ7WhriR7ArgNaPWj5BY/PrrXgBcgd+VpNYLiUCqTUQQhJPIz8/Ha6+9hscffxwtW7YEAJw6dQorV65Eu3btbG6dOThmd3ZCmPR0D1yu0GBg3q3Vo0drDBhgjCvJjgBesSBtrzdF13mFxCIveng4LgaHDgnfOI/Hg6qqqmYuLrPaSxAEYRa9e/dGfn5+wKUP+N377dq1w3nnnRd47fTp07j11luRlZWFFi1a4A9/+AO+/PLLkHP961//wu9+9zu0bNkSl1xyCQ4ePNjs8z777DNcfPHFaNmyJfLz83Hrrbfi5MmTpl2fECR8HI7bXYcRI9YHxI9Rbi0WkKr1owchsQg03wtuzZorsX37eSGv8Zav559/PmSgAIBDh/JNaW8kwotHsR+Px2N3EwnCcg4fBjZv9v9rJRMmTMDy5csDv7/wwgsYP358yDF33nkn1q5dixdffBHbt29Hx44dMWTIEJw4cQIAcOjQIYwcORIjRozAjh07MGnSJNx1110h59i/fz+GDh2KUaNGYefOnVi1ahU+++wzTJ061fyLDIJcXQ5CLHakd++vUFS0D927X4FevZJRUBAHwLkZSHy6PS9QgsWEy+VDevqJkOPUnpcXi2IxPmdp7vISs2ht334e3npreLPX9bTXSaiJ/6K6RwTRnGXLgMmTAZ8PiInxl/uYONGazx4zZgxmz56NH374AQDw+eef47XXXsNHH30EADh58iSeeeYZrFixAsOGDQMA/O1vf8PGjRuxbNky3HHHHXjmmWdQVFSExx57DADQuXNnfPPNN5g/f37gc+bNm4frrrsuELjcqVMnLFmyBP3798czzzyDFi1aWHK9JHwYJniilIsdcbvrcOjQSzh0yP+72ZOGmQG8fJHDhoYGnHNOLWbNcqOpyYXYWA7z59fi2muvQX19PRoaGkSrOwsFWgefFwDmzDmOgwfjkJp6DFu2/BOdOu3FmjVXhfxNcDVpMXgXV7gBlf+exo8fjNzc3IidxNUKGap7RBChHD58VvQA/n9vuslf7sMK632bNm1w2WWXYcWKFeA4DpdddhkyMzMD7+/fvx+NjY3o27dv4LX4+HhceOGF2L17NwBg9+7dKCkpCTlvaWlpyO9ff/01du7ciVdeeSXwGsdx8Pl8OHDgAH7/+9+bcXnNIOFjMWoEAz9Rb99+DHPndm4WO5KVdQR5ecITv5mThhUBvLxIuP12oLycr/XjQl5eGjyeJjyvYFt6IfEX/HtODlBcDFRVNWDLFiA//5CkhUkIrzcF337bTSBmCBg1ag26d9+NzMwLIlb0AFTAkSD0snfvWdHD09TkH/esCluYMGFCwOX01FNPmfIZv/zyC2666Sbceuutzd6zMpCahI/JKLXaiLlBMjIy4PVCMHbk73+fhMsvVy46jEhHt2Nz0fBaP0ZPtFIusBEj1geuKyEhIeScwd+nP0bobIC0y+VDfr7FjnoHIFT3iNL/iWinUye/eytY/MTG+gu7WsXQoUPR0NAAl8uFIUOGhLxXVFSEhIQEfP7552jfvj0AoLGxEV9++WXAbfX73/8eb731VsjfffHFFyG/9+7dG9999x06WnlhApDwMZngvanuvz8LHHc2Zfqdd0ZgzpwS2X2vCgvPNLNE+FEuOoyKq5DbXNSJiLnACgrOIDf3AgAXBFxr/KQdLgD9oscvfoQEk5PQK5DFhExNTQ1Wr14dciyl/xOEf2HXfAsfa5NUYmNjA26r2NjYkPeSk5Nxyy234I477kB6ejratWuHBQsWoL6+HhN/C0S6+eab8dhjj+GOO+7ApEmTsG3btmb1f2bNmoWLLroIU6dOxaRJk5CcnIzvvvsOGzdu1LQ9k1ZI+FhARkYGdu4UMmW6UFeXLVtNuaAgLsQSEYxS0aHXSmJWwLERGGExEHKB8Xg8nmauNbGU+CFD3kPXrt9h/PjByMy8wHFbXagRyABCxCAgLWSOHz8ecg47rIcEwSosbOGTmpoq+t4jjzwCn8+H66+/HnV1dTj//PPx/vvvo3Xr1gD8rqq1a9dixowZWLp0KS688EI8/PDDmDBhQuAcPXv2xMcff4y7774bF198MTiOQ1FREcrLy02/tmBI+FiEHlNmRkYGXnihL7Zu9WD48MyA1ciPDydPJsPrTTF1slAScGzHJG+FxUBIDIoJwK5dv4PbXYfMzEzk5OQY2g6tqLHgKBXIx48fx6pVq0JekxMymzdvDjk+Eq2HBKEHq7fwkavI/Oabbwb+36JFCyxZsgRLliwRPX748OEYPjw0uzU8Lf6CCy7Ahg0bRM8hVPvHaEj4WIReU2ZGRgb++Edg4cIa3HFH6m8Thg+AC2vWXGWJm0Aq4BhIM+1zxbDTYqAkHogFzEodb2xsbPaaWiETH39adTA5QRCEXkj4WIgRpsxrr/0VP/30Ag4dysPatVeGxAypmfT1uofs3FyUxy6LAX/vior2Yfr0xThxIh3p6SeYdG/pdXEq7SdebwpOnkwSFDLx8Q04cKAg5BxCgeF2iUe79qAjCMIeSPhYjF7BkJCQALe7DidO/Co56UtNGpESUCoXbwRom9TC/0ZpDIvd7i2ha9WTQaW0n4SKGF/gO+ELQy5bNinkHEVF+wQCw32YOPHvyMurwsiRIy2re0TFFAki+iDh4zCCs8ReeomDz3c23ic2lsO0acMks8Tk3EPhE2Uwdqx8hSbzmpoaAPLupkOHDuHdd9+V/YzgSU1qImQ5GFfJBC4lZPjvXSxrTexam2e3xYDjfLjyytVIS6sJiJ7gc4watVYwQ7Gx0S/WMzMzLetn0V6DiKxdRDRCwseBZGRkICNDKGbIheLibMm/lXMPhe8/FY7ala+egVXJZM5v18G7m4InZSWiBwid1KTaynIwrtzELCdkwr93pdcqnN0Wg+TkejQ2Jgqeo76+BfzxaRTbYydk7TIWjmu+3x9hPEbcZxI+DkZNzJDSdHQ51Kx89Q6sSj/L7a4zLa4p+G/03jsrCb9WtaJN6bXKHde8/pQP7757Gfyih726R9FUTDHarV1GER8fDwCor69Hy5YtbW5N5FNfXw/g7H3XAgkfh6M0ZigjIwOjR4/G6tWrJd1DRmL1wCo1aWmJaxL6Gy2ZXFa7E4TaXVS0T1SgCN03OTdiXFycouNC60/5sxDPlmPwix47YnuEYCX2jdxPziI2NhZpaWk4duwYACApKQkul0vmrwi1cByH+vp6HDt2DGlpac2KLKqBhE+EoGSwTEtLAyDtHjITvatprcJGS2yO2N9Mn74Y06cvRvfuV6BXr+RAZWexychqd4JUu4UEyv79HUXv24MPFgpWsQ4XeFL9Kfi9kyeTBTeBtSO2JxxW4res6i+0dYixtG3bFgAC4ocwj7S0tMD91goJnwhA6WA5evTowP/5ge3EiYyQ33mMHgT1rqb1CBstsTlSf1NY+AOGDWuJnBzpeCrAequXVLvDBQoALF48XfS++bPUskOqWAcTvM1HOF6vFxzHIS0tDdXV1Vi3bh283hRmXYWsxG9Z0V+ExgtWrF1OxeVyIScnB1lZWYI1rghjiI+P12Xp4SHhwwB6TdtKB8EzZ84E/i810Bk9COpdTesVNlpic8yK5zF7VS3X7vHjBwMA1q1bhwMHCiTvm9frlfyshIQE0fR9odfl3GJmI5Xu76T4Lb2E3wNWrF1mYpX7MDY2VtXETG5NeyDhYzNWukJ+/vlnANIDHQDDB0G9q2m9wkbLhGvGJG3Fqlqu3ZmZmYFj5e5b+JYUQijpl8GuMSm3WE1NjWkDvdxzxmolbivcT6xYu8yC1ew1VtsVDZDwsRkrXSH8XklSA50/+FR8ENRS50fvatoIYSM14QZPakonabUTodmrajXt5vuSEeJOSb/ka0/x+3uJZeHxO7ebMdAraWfv3l9h6tROqK3NahbTZMfEY5X7KT7+NPSWF2DZcsFq9hqr7YoGSPhEIHKrRLUpyMHvaanzo3WC5SdzvcKmvLwcbrdb9DOC2xu8GatUu9QO4mavqtW02+PxBF5TGugu1qd4ISx3TzIyMpga6MWup3v3NOTk2L+6tsr9xIsrPeUFyHIRebAsZI2AhE+EoWSVKCUkvN4UlJZWoKKiNOS9K644v9nu2kIEPyx6rSfhk7lQhlF9fT2SkpJE26PlATXjgbYihkRpu5WIpJqamoAFRqpPBQthtRObXVlETgjktcL91LzqtrbyAiwJWiWwmr3GSruiQciS8Ikg1KwShYRI+J5Lffp8jpKSrXC769C69chmnyX3kBphPQl+LycHohlGrGNmYK+W1ZnSAUtNn1IzsdklPpwSyGuFUBYTVyyUFzALVkWv1naZYZlxmpDVAgkfxtCj+sUGskOH8nDixK+BcwZ/RmHhD4HPDd9zqaKiFCUlW5t9jpqHNNIGTrUYETMkNbh5vV7DgpCFEOtT333XFV27fqe5HpNd4sPuQF65iYqvSmtFsLXVmYti8YFy29bw96umpiYkMxXwpzfzbmy5SZ5V0au1XdFgmTELEj4MoVX1y21HsWbNlQDO7pa9c2fPZp+hdELQ8pBGor9Y6TXptXopHdzk0Lo6E+pTAIf33x+KDRsu1bRitlN8mDHZK+0LSr/LMWPGBNy3YgUk9TwvSmPntIgrpW7RcIQmZy19X2qS19vvzBrHtLbLLMsMvwk0DysuOCMh4cMIelYjwZPrOefU4s473fD5XL8N8ACfrcFxMfj6614AXM0+Q+mEoPYhjcRVidpr0nNdagctowep8MmRD4AFtK+YjRAfWicho12OavqC0u8yKSkpUAfJDPeuktg5LZO4njGssrIy0B7+s7WI9WPHjuH48eMhRQT5Mh56+p2Z4xhLNaQ8Hk8gtg9g1zWoFxI+NsObtuUEBX+cGPzDdvvtwIABR7F06buCWwTwk1b4ZxQW/qBobya1D2kk+ovtvCaj9yMTQ8hF9913XfH++0NDjtNiqdErPrRMQmaVKdDTF4wUqWqFoBmxc3osKuHWoKlTp2pqQ/CkHY4eC5cZz7zRljcj+lNw+1l1DRoBCR+b4U3acoJCKnMpGI/Hg6SkEygs/EFwi4DgFXv4Z0jtzWRU7RfWzaZKJpBwrLomo/cjkyLYKsBvOdG163fYsOFSzStTo8SHlknIrDIF4SjtC0aKVFasqkoWRUrvj5xQBKDpmeP7ndK99szESMubGZYZu+PhzISEDyMYYYIPHwCFzikU48N/Bp+6KrT6U1r7RWrSYt1sqmXPM6uuyYz9yOQwqh5T8PnMEB9KJ1OzJzalfcFokWq3VVXOcgEABw4UoLIyB5s2lWl6VkIzTrnffrQ9c253neK99sQwarGjx/LGx+KYZZlhyQVnNCR8GELvrulCA5vQOQcO/DDk9/LycrRp00Y2rVzPpOUEs6naPc+svCYz9iNTipFuIqPFBytiWk1f0CNSpfYbC26LFRbI4LaUl5ejsbERI0cC11//b6xf/z3S009g//6OQRvhNo8Py8o6gsbGRMm2CtUbUhJn5vWm4NChfABAfv4hw+4FC30uOBbHLMvM/v0df4sR9cPKNi5GQMKHSVzyh6ggfIuA5r+7FU1IeiYtJ5pN5SYQK6/JjP3IlGKVm0gtLIlpNX1Bq0hVYpG0alKWa0thoZhgOQvHxWDZskmybRW6t+HnCb/P27efh7fe4itSAwCHyy9/W/e9YKXPHTt2LPB/MxY9/HUGb2PCcQjs51heXu6YZBQhSPgwhBm7ogdP3GITeU1Njegu20bhNLOpku9C7pq07Gsmht5tO/Suzuwc5MKtHPx9ZUlMq+nfWkWqnEXSyklZiXVUTrAAnKK2CpdUOItQHFGo6AEAlyH3goU+F5555XbXoaxsUzM3oh7LjPB3d/Y6xbYAcgokfBjB6EErfOIWq98D+DMhzA58NNMiYTRKvwu5a9Kyr1k4St1Mo0ePRlpamug5nLo6k7IssCSmlfRvszLLeFiYlIMRqwHlt/yEbooKNG+rVOwQX6ZD6D6fOJHR7NxC5zfqmqzuc+Gic/v28wKiB/ChrGxTYGzXaplh4TrNhIQPIxg5aAlN3GL1e/hzmx34CJhrkTASue8iPj4+8LqSuCwxS1tw7ZJggoUKq24mq5C6bhbEtJr+bfR3Gd6v7JyshPq40PdTVrYJubmViI9vCLi5xNoafr+mT9+PAwdikZ9/GgBw6FAiOnTwoXNnfwYUX8Xcn/XVXFjpuRdmFn3Ug1DF/U2bytC9+y5NlhlWr9NoSPjYjFzVZf5BVdPRhM2UwvV7zJ4k1O4azsIELx9P45a8Jj79GzCmkq2Wa2blXhpN+ARrl5gWCuwNJi4uLmCBCxeyRiDWr+wQglJ9PLxERnJyO6xaVQEAiibW8KynSy4Rb0fwpH355etD3F16J26zij7yaH1ejbbyKb1OAKiqqlLdXlYg4WMz4VWXZ81yo6nJhdhYDvPn1+Laa69R3YmkTcx+rDRbBrdd6AFvaGjA999/b+qeU2pQYklQ0gY97ks9Fjgz67rYKajEJli3uw7jxw9GZmamJe2wu26OVL+yWgjK9fHMzEzk5GQHpWlnmyYg+LH0+PHjGDmyEVOn7sHXX/vrn/XqVY+2bQsRF9cJWVlZms/PY2RFbT39qbIyB0aP7XLXqabsh5D7nQVRRMKHAYKrLpeXA/v2AR07upCXlwYgTfF5pMyUwTE+gD9Cf//+jqalYQpNkDU1NZKVVZVgZoVno91ySlZjZqQem1XXxc4JX9kEa26APo+VdXOCnyOlQd3hIhAwb7LRYnEwQkBICXC3242EhAT06JGBwYPVn9tqtPYnrzcFmzaVIdSaz6GsbJOpVj6l7ZUa6+3eooiED2Pk5fl/tBBuppwx439YseKzgPr/+uueQUebl/FhxMaadlR4NjoGQ85lZmXxQyPupdDAK3ReM8Qpa4G7ViD2HMn1KytFoJ7UfLM37rV7cjUbsZCG3NzKwG9SizQ7rbd2b1FEwifCCF9NtW17BqtWrcKBAwWQy6IwCqUTpNjrdhYIM/JBl3KZWZV6bNa9tPo7YjnLxCyRLm7RsD/wVE8QrF7hYnelarNR2p/kngmpjC4jxSPr2xAJQcInwuGj+u2aOMQmSLHXWSkQZhRiLjMrLBhq7qWaPcrs+I6MyuAyepVrl0gP7lfXXVeC7t2t3XNKT7BvpAsXPSjpT0pFZ5s2bUQ/x6jvQK69rIoiEj4MYYbp0c70RLEJMivriOjEaadLw6j7H34vwytlA9YIUaX3Uunqr7y8XNV5jcDIuCujXSRWC8DwSYT/6d59iGWurWDMCvZVi9bJVa+7zYw955T0J62iUyheLPiz1d5DufaysLWHGCR8GMEsv7XZaZhSiE2Qhw61E5047bJMGXn/pWKF+FR3K2rQKL2XSld/fMq2ld+RkXFXWla5UntjWSkAWZ5E9KLHKqD1vuh53s0aq9X0J7WiU6rNWu+hVHsBMG25J+HDCGaaf+1amYlNkPn5P4pOnHYVpTP6/osNeFYWdNR6L+UmIqu/I7NcN3LXKTfBWSUAI8X9y4vIYGuDHkFnRbkIoePMGqvN7E9ibdFzD6Xay3oyAgkfE4nUInJKEZsg8/KqJCdOFio8m+WbtqISsx5xpXQiUlKxmmWUXKfcxGWV+5j1SUQJQiJSr6CLhPsC2BOOwI9vJ08mqb6HStvLajICQMLHNPSaQ1kNClOL2ASpZd8pq4Si2W4Fs69Bq7iSm4ji4kKHC6HYJf7cLGOkBYXvx716jUL37i1UuY/lFkZerxcA2xltShG6Tr3Cxcj7ome81TtWG1Utub6+HklJSYLvSVnZwrf3kLuHUu1NTv4dVq36ionMQylI+JiEHnOo0/35SoJ7AWDy5D8220vGbitYpLgVtNxDuYkoLS0tIvYNk7tOfpJQGgDqdtehpORXdOnSXnEb1NS6Yn0S0YpW4aLU4uD1ehX1Rz3jrVFjtVHVkuUQGt/834Ff/Ch1W4u317zK3EZCwocxImHiZX1jTVYCVllDbiKqrq62rCKwmW5iuesU2kNNboJbtWqVqmBWpQujYOsnq5OIFngRWVa2KbCzuFJBx48vx44dA7Ba1HLMb4Ej9b0oGW/D+yI/Vlg5VhuV2i82vl155WokJ9cbElrASrafFCR8LEKpOTRSJl6lg7HVcVCsBKyyiNwKWmxTVaMr5JpdmVdtcLbSCc6MujNpaWmBVHVWJxG1hItIfsf29PQTv223cQHq6+vR0NAg6tpJSEgICEIxizKP1PciN95KbbPjxLFaPOHkMNzuOowcOTKwuHGqqFYCCR8LkFothpvVo2nitaP0vN6A1UhEaTC0GEZP+GZlzWi9TrEJbuvWElx66SZVbRAjUmL65BASkZs2lWH69MVwu/17riUkJOD555+XPdfo0aN1t0duvD1z5ozmvw12lRotIuT6i5RbVmp8s3K7Ezsh4WMycqvF8FV0pPrzhbBz7yepz2Qhq8xKxFyTfM0hHrsmZ6M+N/w6lV6f0AQHAFu2lKKkZKvue+H0mD41KLGSKH3ew0WJmn6iNE4oPj5e9BxqLaRGLeDk+ovc+9E2vglBwsdktJhDgzvm8OFd0LlzIYBCxMXFBcy/kWaGtGPwl/pMK3e4ZgEzA0D1YPTnil2n1Oe43XUoLa3Ali19w/5Kv9UnEmL61GCWRVttP1GaSSUnwtRYDisrK0XPp3Rskesvcu8Hu7Lk2hDJ5VhI+JiM0gddrBz9t9/+gG+/FT63FbsPW9H57Rj85T4zWky+SrBrcrbqc6U+B/AvXrp2/RZbtpQifKPfigphq4/cc1NTUxM4t9PiRLSgplaNUktw8Pta+omSINzwGCOhtsjFGPGIxcjxKBnP5fqL3PtKxzU7whCsJCKFz1NPPYWFCxfiyJEj6NWrF5YuXYoLL7zQ0jYofdAB7ataszfxs6rz2zH4R8uEYwR23SurPlcqhqeiojTwXBYV7cf+/Z1k26Mm9ThaYvrUbJ0TLDaUjI1W9ROl47RW16yS8VyuvxjVnyJ9I9mIEz6rVq3CzJkz8eyzz6KkpASLFy/GkCFDsGfPHmRlZVnWDrkHvbq6EOvWrVO0WrErtsKqGBw7Bv9omXCMwK57ZebnejweyYQCwBcQPYD/ufzf/4qgpNibmuchmmL61KY5K7XkWNE/lbbFLJew0oV0NPUnPUSc8Fm0aBFuvPFGjB8/HgDw7LPP4p133sELL7yAu+66y9K2KHnQ5VYrrAQ+mtkOuYc1vJCcEe61aMze0opd98qszw23yAh9jlBMD8fFoE+fz0OsQHomlfLy8kABz0iq0WMUcmMjH3hsxWSvxKqkVBxpWcgqsZgFV242uj9FWtZhRAmfhoYGbNu2DbNnzw68FhMTg7KyMlRUVAj+zenTp3H69OnA77W1taa3Mxip1QorgY9mtYOPcwCkgwSFfONa3WtWbhLqdOy6V2Z/rpBFJvxzAIRYfAD/c1lSshUlJVvRvfsV6NUrWdGkIp5a7FZVo8eIeDsnBazKWXLcbrfpVYL5PqbEqqREHOlZQKqxmBlZ84mVxbeRRJTwqa6uRlNTE7Kzs0Nez87Oxvfffy/4N/PmzcPcuXOtaJ4gUquVXbu6MhGHYoYP3ePxNCsMJhQkaLR7jfWq0ixh172y63PD+5+UFeFPf3Ir+nwlNbzCEbo2I+LtnBKwqiYQ2uwqwcF98ZxzajFrlhtNTS7ExnKYP78W1157TaDIoZw4YmUhqwYntlkJESV8tDB79mzMnDkz8HttbS3y8/NN/1y5Ve327efhrbeGN/s7O+JQzPChK4kfMmulQaJGOXbdKys/V0xcP/hgoS4rgtoaXsGEiw+lQl8oZZpvr1MCVtUEQlvVHgC4/XagvBzYtw/o2NGFvLw0AGmKhZoTEyqc2GYlRJTwyczMRGxsLI4ePRry+tGjR9G2bVvBv0lMTERiYqIVzQtBaFXLF1TjB8zw1Fm74lDMjvEQEjhFRfskJw0z4n6cgpPcFawjJa79qb/Zmq0IeiYNreJDalsRJ8Hqfk95ef6fYJQmspgVhG3nvnZOJaKET0JCAoqLi/HBBx/giiuuAAD4fD588MEHjnrwhQZMABg1ag26d98d+N3KOBQtWxkoQWxVPGrUWslJw8i4HyfhFHeFVqwUdWab8c2cNNQGmwrd00gLWLUTKaGmxnWnFrPGAzPbzAIRJXwAYObMmRg7dizOP/98XHjhhVi8eDFOnjwZyPJiBakOK7WRHACMHDkSubm5pk9s4Z1arFCXns4vtioGOMmgb6u3tmAFM90VdluSrBZ1Rprxg++d1+sFYJ6l1AgXcCQGrLKKma47s8YD1tyNRhNxwqe8vBzHjx/HnDlzcOTIEZx77rl47733mgU8241UR5QbMDMzMy3pcFYEmUqJPKF7sH9/RxqwgzBq1c6CJcnqGBSjLDJS9y7YUjp2bF9kZhZi3bqz/VXt96dkywK580VqwCrLsOq6k8KJbVZKxAkfwD84O8m1BTQfAO1MtbZy5S8l8oRSjBcvnh4RA7YR99jIVTuLga9yk7jWe2i0GV/unvCW0i5dhgBoFXhdy/cnZaVSuiiI1IBVs7DbEqoGcl8qIyKFj9MQGwDd7rpmm2Va7W4Qe5CMXPlLibxg99qBAwURMWAbYV0xe9Uu9r0HB5Wb2Rfl0sD5FGI5hO6hHjO+0CQolpYuhdbvT8xKFR/foPh8cpauaE4cCIcFS6hSyH2pHBI+NsPaZpnBg7rUg6R35a80fmj06NE4c+aM6qwIlldpRlhXzFy1S33v4UHlZgz4etLAwxG7h1rM+Gr24JJD7fcnZ6VqbEyUPZ9SS5fQ/Q2uMi3UNrsnfbNg0RIqBLkv1UHCx2ZYNTub/SCpiR/iNy1UGizqpFUaoM08bVbGkNrv3YwBn9VnQum1Sn2fSisBhy8MxKxUqanHsGXLV/B6U2T7g9A5vv76JHbtelP2vq5atUryfVaepWiFxWeG5cUnCR+bYbVOgtIHSU/n1tLplaTVW7W5qhFoNU+blTHEwgCq5ZlgJbZB7vtUUglY7JkRslJ5PMCWLcrjlcLPkZtbhUOH9N8vFp4lI+HHtXC3Hyv9LBwr5hE1Yz3ri08SPjbD6maZSh4kqzq3nrR6lv3eWqxqZu9jJRVDcuBAgSUDvtJngp+EKitzsGlTmeXfcfgkqPT7lKsErIZITzu2A7FxjcWxRKn7MnhfRKFzKNnjTc1Yz7qLkISPTbC+WaaSyccqy4rWtHrW/d5arCtmlxgQ+t579tyJZcsmKR7w9WZbAfKWveBJCOAAuABY9x0LTYKtW/+s6vv0eDyIjW1A587+33/z6AZQ+j0amXas1aJhVdC7FYgVe1Qzlljl5pETvl7v77Bq1SrZRAC5xaleIcOapYyEj004YbNMNdWazV4NabkPLLhtpNBqnjajT4iJjvj4hoDoAZQN+FqtgHLPRPiWLmfvmyvkOLO/Y7FJcOLEvyuO22HRFaDkGRabwKwIejcCJYJECDVjidLvVihgXMuYb4TwVbs4VSNkWLSUkfCxET0Dg1UrCjG3UjCsWlZYjZ/iYcnNGS46eJGhtoSA3pWhkj4rtqULj9nfsdgk2NiYgBEj1mP9+hHw+aTjdlhzBSh5htVMYCzG/KgRJOGoGUuUXrtYwDiropFHTT9gdW4g4eNAzFwtKnWt1dTU4MyZMwCssaxoEXpywsIu8zyrbk6h62dRPAq1iXd3GR3boPTz+XtSWPgD5swpQV1dtua4HTuQe4ZZncDUoFSQNDY2hvzOWzfKyjY1iyUzY88qM0WjXpeT2n7AqtWdhI8DMTO2Rsjd4PV6Q1YnXm8K5s//92+fZ/7kqEfoCQkL/n4tX77RtKKMUrDm5hQSlUr3m5Ib8I307UsFcpaVbUJubiXS009g8uQ/AjAmtkHp5wffk4KCOBj11VVXV5vaF5Sm17M6gZlNuHUjuJ/5i8vKB4+zEt9ihMtJbT9gceEEkPBxPGb4T6UeYrHPM9Nlo1ToVVZWoqGhITBp8wS768wsyqgGVkzZSkRl795fYfr03+PEiXRV2UJG903pQM4eAHo0q/0kh5rv3MwMKrnYGbNEuVx6/R//OAyrV69Wne3n9XotLbxqBkLWjU2byjB9+mLFxWWlngErBZFRFju1QoYld34wJHwcjNXmZ6nPUxMIrYRgK0SwS0poIPF/bnMLzujRo5GWliYaFOtEc73RKJ34u3RphZwc5ROvWffa7o0Tzfh8JQLx+PHjpollufT6YGF0551u+Hwu2Wy/VatW2RKrEjxueL3eELfVzz//HHKsnPDQa+WSegaU7qtmVCynURY7pUKGVXc+DwkfB2O1+Vnu89TU15FCzAohNpBwHAA0H0DS0tJCVmTRaq5Xg1GrUKvvNT9B8JOd2knOLpQKRKuERF6e/yeYYGE0YMBRLF36rqJsP6sDnNVsKSIlNuPi/NOi2ura4Yg9A4cO5Sn6zo2M5dTrclIrZFhz54dDwsfBWO0/lfu8kSNHhmyoCmjr3GKurZMnkwQHkuD/S1kVWPU3s4KRrikr77XcBMFiOi2P1OTodu8OeZ2FTKncXB8KC39gcsNgNVuKSAmPtLQ0zdW1gxF7BgCXonunN/PP4/EEgvv1xuppETKsuPOFIOHjYKz2n8p9nhkbqoYWqvMhuFidEFKDL6v+ZiNRW1aedyMa5ZpSGgBsVRYMq+5NqaBiAFiz5ko0NLAj0HiUBkOzjBJrpJ7q2nLPQH7+IUu2lwhfDAhZasrLy9GmTRvVhTKdDgkfh2N0bA1Ln9e8UJ1f/LhcXGAg4d1cPHIDiNX3y0rUmMYBhBxrlGuKtS0UWHVv8vepsrIS+/evD+vnABCDt96yX6CFk5GRgdGjR2P16tUhkzrgz3iSaysLG1eqdWEFu/+Utl/oGUhPP4FPPvELWbMXBWJtDA9HcLvdESVolELCx4Ho2bvKCJQUNTQC4UJ1MRg1ajWSk+uRnn5CMEhQrm1Wtd9q9JjGjVzB2x2AzOP1puDkyST4LYXsWSb4PY16916HhITTWLPmqrAjYrB1awkuvXSTLe0TIy0tDYB/EfHrry0CtW02bSpDy5anRK1UVlerDo7rAhAS4xUsPJS6sLS2/+wzkIGePbUvCliNU3MiJHwciNWBY0oFlNFCS2wyzs8/HHjwlVhw7Gq/3agdKEtLK1BRUep4N6DXm4KtW0sC1+J3j/rFj5kuNz3WjPz8QwgXaABQUVGKkpKtTH4PXm9KQPQA8m5EK6tVN3eRuxBc4JIfN/r2HYuSkgxFLiwj2q91UaA3To1EUygkfByKleZJuyL0lcbkiFlwampqkJOTw3yGgRmoGSjDJ4k+fT5vNtk6RRRu334e3nprOEIFhAsuF4dRo1YjP/+w4sJzatBqDQiOB+nTpwJbtvQNOZ4Ft5wYrLoRhV3kfsLFWZ8+DWC93JDeODWWg/vtgoQPoQi1E4RRvnw9MTmrV68OTDSRJGrkUDNQCk0SvJUB8Gfq5ebmOuL+8dcSbjUB/PcgObleceE5HqX9WKs1IDhmpqRka5CVyg8rbrlglAY42yWW5fZyY0GcqUGPwJQbC4JrpAGRtwAUg4QPYTjhq18xM6uYL19pDFMwRm7b4XTUDJRyx2ZmZjpmIJSa8LQICLXB4lrJysoCYG0mnB7kqj0rTfc22v0ilynHE9wX6uvrJat82xlzY4TAlHu++crgwbC+SaoRkPAhDINfHctVWpbbIkKJa6qmpiawDxOZckNRE6js5LRkHrkJT6uA0BPToWZSZC0TTgl60r0B87baEa4yzQEAOM6FmBgOCxb4xVl9fT1efvll2fMGV4A3s/1y16NFYGp5vqNhsUjChzAEISvPoUP5IfEWanzTSgd5Vuu02ImaekWRUNsoeIJITz+Ke+9tG5jwbrihGtddV428vE5IS7NGQGiZFFnJhNOCULVnKcx8ZsUEGdBcnCndzy18o1srxxytAlNpPS0hwt1f/PlYEt56IeFDGELwKiE0WDYUo/3rrAZY2oHW/XFY3EtHLfyg/Ne/AuPGBU8QbQC0MeQzlFhxnCjEra6tY9UzGy7I1IgzKewac9QITCEr4tdfn8SuXW8G2ii3MW44keQCI+FDGErzYNlQjHajRIKrxijUZq9FaqabWguEEqSsOMErZKcJcStr67AeFK0Up7Q/3IqYm1uFQ4f8fVCLVTKSXGAkfAhDkQswNdqNEgmuGiNRMzk5UdTYgZwVJ3iF7DQhbmVtHaOCos1CaVxW+JgTE8NhzpxKjBw5GPHx8WhoaEBVVRWzCwcnWiWNhoQPYShiA/+oUWtCCg8aSSRvQ8FjpjuChW0EWEaNFccpmVl2oTco2izkLCDhoih8zAHqIOQh0mopM/OZlOvP0VDskIQPYShiA3/37rvl/1gFdm/bYSVmuiOs3kZASXtYE2FqrTjBk+J115Wge3c2M7PsxgyXpBbkLCBiokhJmQ0tljKzn0mp/hwtGbIkfAjDUWqB0SNKoqkac/g1GlmzyEpXhxysiTA9mTH8pNi9+xDFxRJZwMmrfa2iWcoCAsByt5BZz6Rcfwasv1a7IOFDmILYamjkyJHIzMw0RJREgqhRSySvyFgSYYB0fZ2EhEKsWyfuCrEDvdYyJ/ctLaJZSbC104LVpRDrz6mpx7Bly1c4cKAgYq5VDhI+hCEotd44ZfsDq5GatPisISuCElmYwFlCrL5OVZUv8DoLgkGvtczpAa9aRLNUsPV99x1FU5P/upW4OZ3y3Aj156qqBmzZ4rzAfD2Q8CEMIZpcT0ajdNIye/Vp5QQuJPTCC6c5YTKxQjAoseTotZZFkmVDDeLB1jnweKbi+PHjcLsrcf/958DncwUyuC655Hxs3rwZgPnPjVVbY0RTYD4JH8IwSNRoQ2kMj5krMr0TuBo3ixKhx4IVRQlmCwalori8vFzT+SOlto4RCAVbr1q1CgBw220pIRlcv2ke04Wv1Vtj1NTUYOrUPTh0KBH5+afRtm0hgMJAmr7H44mIcZ6ED0EwhNRAZ2bNIj0TuJrJuU2bNrLWCavdLlpiY6wSDEotOY2NjZrOb0ZtHRYy84ywkgRfg1jMopnC1+qtMTweT8j2HIcOCR8bCRWcSfhEOcGDVGVlDA4ciENh4Rnk5vpjGMg9ZR1KBjqzahbpsSYpnZz51fPo0aMlj7PS7aI1NiZSivEBxtbWYSEzz0proZnC12r3I2vJBWZCwieKCR6kpAYLKxQ+CTDlA52RNYvs8O+fOXMm5PfwSdrKIEs9g71Ti/FJobe2jt2Tp9XWQre7DvfeW4kHHjjHMOFbX18PQF5U8ccR6iHhE8Xwg4/cYGG2wmdJgNmJ3EDHlwIQQusgK5WynZurrfCeGmuD2PfttCBLq4rxyd1bp2dn6cVs15PQvZ88ORYTJ7oME75JSUkA5Bcj/HFmIdfXWHBpaoWED2F7RgcrAsxq+IGDz2aSG+gyMzNNKYYnlrKthXAhU1pagZKSraon6d69v8LUqZ1QW5ulS4RFEkosOXY/y3ZhdsyV3L03S/jatR2P3PWy4NLUAwkfgpn6DdE0aIsNHE7ed0xIyGzZ0hdbtpTi8svVT9Ldu6chJ8faQdPOFHqpFH+5RUFcnH8oZy07S+x+8tdllJA1M+bKbiuakq0xjETJ9drt0tQLCR+CmR3O5QZtr9cbeN3pcUBSA4JT9x0TEjJ+hCcKVgQ3j50p9HIraDmRmJaWxlywtdT9DN7R3iirgFkxV3YvyKwW43ZfrxWQ8CEAsGFpkBNgfFZQJMYBiQ1uRm7xYTZCQoYneOCMj48HwFbBNLtX9XIrYyWWHJaCrdXcT6lr1xpHYoTriYUaR3aIcS0LEicUGw2GhA8RwEqTavCAtmtXDQ4cKEB6ukdWgEViHJDU4GZWXI+RiGWGBRM8cLrdbsMDqvXC+iqXv7fr14+AzydvybF753Mj7qfdcSRK3Gf19fVoaGhAVVWV4Dn09GOrxbiaDM/gcdYpxUaDIeFDqEZv6rlwFtfvQx4asQeb9QlKLXKDW01NDfPCh58gjh07BmA1ior2YevWEmzZUgpAeOA0MqBaD1au6pXsxyZF795fYc6cEtTVZTORNi+E0vupBBbiSKSsaB5PE55//nnZc2gVZlaPdWoyPHmhZ7elVCskfKIYpYN58HFGpJ4rzeISgrW4EL0pnXKD2+rVqx3hvsvIyGg2cFZW2m/JkcOqQoRKrRc8Yq6DhIRj6NzZv8AINjKwcl+D76fbXYm5c3NtjRs0knArmlnCzE4Xm9oFiVMXoiR8LIal2gdaNhY1MvVcy0PDSiA20HwyE5uspISLEiHnJPcdK5YcNVgRG6PmO1QaFBwOKwKZb8PkyVXwehcH7XGFgEub5UnRblirCi6VbcjaQlQpJHwsxIiJ0mi0fo4RSl/uoenWbQi83iy0a3cayck/Y+PGjQDYCMQGoNjPLZfBFS7kyso20cRgE3bHxuhxHbAokPm4QSfGgdgJK4HqcpZKuYUoq9WlSfhYiBETJSsYofSlHprt28/D3LkXht2f0L8VmgiEYiXMXh1pmayCzdS9e3+FX39tgY0by8BxMdi0qQwtW56iiSEKcarrQAqj4kDkagKFY7X7T21mk1Lrv51iXMlcJLUQffnll5mxRAZDwscGnBoQFoxRLiehh0bP/Vm+fKPlVjQtk1VGRgbKy8uxatUqeL0p2LSpDIAz+gNL7tpIw6muAyF4cS/3fCiJVWHd/afWomV3xprRSGUEs7iQJ+FjA2as6uzY5NMol1P4Q6P1/thlRdM6WbndbgDOWuU7ZcBmXZyJWQfGjx/cLK7jnnsqAbDVD5TAx6ocPHgGL73EwedzBd6LjeUwbdowFBTEyX4PrLv/tLSPhYw1LUhZtZxUy4eEjw0Yvaqzc5NPM2r/qNmss7q6GuvWrbPViqbX+uWkVb4TBmzWxZlc3abbb08LieuIjY1FcNa0kyYYf7Yf8PzzwE03AU1NQGws8NxzLhQXZ0v+rVKLkd2w3j6jkOq3TovhIuFjA0ZnJjltk08507aWzTrtHnz0WL9YylRTi92TsFTGiRx2PA9KBXpwXEdw2rrTJhieiROBIUN4MacsZkXKYhQTw9m+MDAy7dzu50gOqX4LwHGhGyR8bMKMzCQrJn8ttX/CEUuj5603gPr7Izf4VFdXm+7eUGv9Cg9wFrteVvfosnsSVlsbx06MiHdhOTZQiWsxLy9DdZCumMVo/nwvfvnF3ms2Ku3c7udICVL9FnA5zuJFwsdGjHYTWeEy0VL7R+w8cqi5P823S/ChtLQi8D4vqIx0b+gVgXrupd0xLCxMwqxYMJWgJ97FyCBhM7DCtRhuMYqN/ZUJ95/etHMWniMlyM0tTnHV85DwsRAjrCVSWOUyYTXLgLeabN1agoqKUmzZ0hcVFaWGBjmHC47y8nI0NjYGfo+Li0NaWlrgdzkBouVeshDDYrdrUQ1WT4pSojQ3F1i06CRuv72V4ngXo4KEzcKquK9g99/333sDr7NiMdGSds76cyS+D19ovTGnuepJ+FiIUdYSKVgp7qcFo4RhRUWpKSsoVgpQshBg7JSAbKsnRaWi9KuvboXH01pVvIvWIGGt2G1VFMPj8WDVqlUAnGMxEYP15ygjIwOjR4/G6tWrA/XGNm1qXm/Maa56Ej4WY8VAYeUu60YQPMD263ct/ve/WLRrdxpt254BAMTHxwdSv8MH2/CHyswVlNIClJWVlaIThhmThR1mfhYDssPvgx2TolKxmZl5Cj16qD+/liBhLaixKlpN8D1m1f0nh5qd0O2Gt2Dz9cbEnqfx4wcHsm157C4bIYZi4VNbW6v4pKmpqZoaQ0QfelPxeStaZWUl1q1bZ8kKSm5C5eOJrLAIWW3RYDUgW+g+tG79M9NuBK1YUcmXBauiEqSe99GjR9tmkVJiKVO6EzoryIlMoWxbVlEsfNLS0uByuSSP4TgOLpcLTU1NuhtGKMfs2CEzMSIVPyMjA8eOHQNgjSVCiVXJimKKdlg0rHDXqkXsPkyc+HfLd7cmrLVASj3vwbF2VqE1/s4JG/qy7pZTg2Lhs3nzZjPbQeiAxclILXpcVB6PB6tXrw78XlS0D6NGrQXAIT//sOUFFq0SJHYFRrLWj8TuQ2NjAkaMWI/160fA57Nnd2vW67MYjRYLpN5YIrOfdzU4xVKmBRbd21pRLHz69+9vZjsInbA2GalFz2pCaeyNUchlOFglSCJpBaYFJQXkCgt/wIMPXvxbILG1u1tb0RetCkBWIuC0CH69GYqsZHRFMkrd216vV+jPmVx0aw5urqmpwbJly7B7924AQLdu3TBhwoRAECpBqMGI1YSSgdco94ZUhoNVgiSSVmBaECsgFxPDYc6cSowcOfi3wPhTyMz0lz/2eKyz9Jht9bOqrIGcuNBTZ0iPhcTpGV1OQcqjUFNTE7C285l2Qti9d184moTPf/7zHwwZMgQtW7bEhRdeCABYtGgRHnroIWzYsAG9e/c2tJFEdKA3FV9u4C0vLzfs4ZPLcDBTkLAaYGwHwQXkLr30Zzz22D9/E5h1ENu024pB2AqrnxVuFSXiwq46Q6zXwAEix9Wp97tjzbWnSfjMmDEDl19+Of72t78hLs5/ijNnzmDSpEmYPn06PvnkE0MbSUQPelLx5SwtvDVSq3sgWEjIDbpSgkRoLyk15uBIiOkyg8zMUygs/EH2ODMHYSP3bzITuWeAd1soFRdW1hlyyj1m3Q3Hap0mK9Bs8QkWPYC/Yu2dd96J888/37DG8Rw8eBAPPPAAPvzwQxw5cgS5ubkYM2YM7r777pDOvXPnTkyZMgVffvkl2rRpg2nTpuHOO+80vD0EmyixtOgpQhhczEuJO0tMxC1fvlF3mnukDkhOx6j9m8xEzR5nasWF3jpDSiwkTrjHrLvhlPaB0aNHIysrS/G9dIqFS5PwSU1NxY8//oguXbqEvH7o0CGkpKQY0rBgvv/+e/h8Pjz33HPo2LEjdu3ahRtvvBEnT57Eo48+CsBfZ+jSSy9FWVkZnn32WXzzzTeYMGEC0tLSMHnyZMPbRJxFauVQU1MDl8slGvtVX1+v6DOUrt7k3GVKA6HFrodPkdXqzrIizZ2wF737N2lF6aSjtJ+NHj0aaWlpqsWF1jpDaiwkdt1jpbDuhlPaB/j4HSWLMtYtXMFoEj7l5eWYOHEiHn30UfTp0wcA8Pnnn+OOO+7ANddcY2gDAWDo0KEYOnRo4PcOHTpgz549eOaZZwLC55VXXkFDQwNeeOEFJCQkoFu3btixYwcWLVpEwsdElFpQpN4bM2YMkpKSRD9D7epNibvMiBWZlMgaOXJkoIopv+s866vASEPN6tMss78VxQYBcyadtLQ05OTkWCIu9DwbVt1jJTjFDReO3LMiJ5ScNrZpEj6PPvooXC4XbrjhBpw5c3ZbgVtuuQWPPPKIoQ0Uw+v1Ij09PfB7RUUF+vXrF9KhhgwZgvnz5+Pnn39G69atBc9z+vRpnD59OvC7mgrVhHILitR7SUlJuip+qingyLfXqBWZmMgSqmLK+iowklAjBFjY9FUPVkw6ZouLSHk2nOCGC8cI0ey070+T8ElISMATTzyBefPmYf/+/QCAoqIiyVW7kezbtw9Lly4NWHsA4MiRIygsLAw5Ljs7O/CemPCZN28e5s6da15jBYjEoDKpwReAqQOzmmDfqip/WrPWlHM9VbKjve6OVagVAk4vOqd30rEzLsOpFhIpWHfDBSP0rLz11nBkZR1BXl6V4vM4bWzTtUlpUlISemjZae837rrrLsyfP1/ymN27d4fEEv30008YOnQorrrqKtx4442aP5tn9uzZmDlzZuD32tpa5Ofn6z6vGKysLo0WX1KDL+AyfTWgpK0ejyeQUaU1RkdPRlW0192xCrNWn9XV1UwtSowQDWpX+0aPG060kKiBJTecEELPChCDZcsmKbL8OGmz1WA0CZ9Tp05h6dKl2Lx5M44dOwafzxfy/vbt2xWd5/bbb8e4ceMkj+nQoUPg/5WVlbjkkkvQp08fPP/88yHHtW3bFkePHg15jf+9bdu2oudPTExEYmKiovYaAQurSzPEl9zga/dqQCgWqXXrnzFx4t/R2Jigqm6QnkFYb60ip2GlddNs6wG/+SwrLi+9okGtZcysRZuTLCRSONGSL/SsAM37gpjod+Jmq4BG4TNx4kRs2LABV155JS688ELZzUvFaNOmDdq0aaPo2J9++gmXXHIJiouLsXz5csTEhH5RpaWluPvuu9HY2Ij4+HgAwMaNG9G5c2dRN1e0Ev5wipm61YgvOcVvt6VDLhZJSf0Xo9BTq8hJGDFRqplMjLIe6A30tBI9okGtZcyKRRvrFhIxWLHkq4Uft996azgA8b4gJfqdttkqoFH4rF+/Hv/617/Qt29fo9sjyE8//YQBAwagffv2ePTRR3H8+PHAe7w159prr8XcuXMxceJEzJo1C7t27cITTzyBxx9/3JI2asXuugdGZoNIWTNYsXQoXeUaaZrVExfkZPROlFomE73WAyel5IajVDREYlyN3ZgtCo22JoVXf8/KOoJlyybJWuVZEv160CR8zjnnHFPq9YixceNG7Nu3D/v27UNe2JPNcRwAf1XeDRs2YMqUKSguLkZmZibmzJnDdCq71CArVN2Xx8iNB40OOpayZrBg6ZBb5Y4cORK5ubmGrsqo0rI29E4maq0HSp8H/tl06ncW6XE1kYYZ1iS+Dxw/fhyrVq1CXl5Vs42XS0srdLacXTQJn8ceewyzZs3Cs88+i/bt2xvdpmaMGzdONhYIAHr27IlPP/3U9PYYgdwgu05so6HfMMJkakQQqBGrQitXlnKr3MzMTFMGfJpE7LduyiH2PBw6lAe3e3fgteBnkzXXhVIiJa6GVYzs62ZZk/zbjPgFUGVlJYB1KCrah61bS1BRUYotW/qioqLUUVZPpWgSPueffz5OnTqFDh06ICkpKRBTw3PiBJspbCyhV3QYYXI0IgVRzpohV7nZ6pUlZVbZgxEuJLHJxOv1GlIHSizQc+3aK9HQINzeSDD9a42rYV3IKsVoN5IT3KVS11xRUeqYQoRa0SR8rrnmGvz00094+OGHkZ2drTm4OZphoe6BUSJAalDQMyGZBSvxRtGCES5Vqclk1apVuiwvwave/fubB3pG6uCvBydM7kow2o1kRTFJvYJT6pqdVohQK5qEz5YtW1BRUYFevXoZ3Z6IR2ndAx6zV1XRKgJYiDeKFowosCc3mei1vGRkZKChoQG9e69DQsJprFlzleb2RjpO255ACqPdSGYLByMEp9S1sLAgtwJNwqdLly749ddfjW5LVCBX96C6ujAQQ2DWqio8pkZMBERSVke0ZlaxgN7B1KpVKP/d5+cfEmzvyZPJ8HpTHDe5GwV/f+S+DzXPkBNr30gh19f1uGW1Cs7weyyVOBMtoQCahM8jjzyC22+/HQ899BB69OjRLMYnNTXVkMZFKkrqHuhZVSkZTKIty4gyq6zHqKquwrE3xq9Cg/uI212JuXNzA+3lOGDNmqtULUAibVLn78/Bg2fw0kscfL6zIQ6xsRymTRuGgoI4xdfk1No3Qijt63rcsloWAErucbhXQcoLECkLQ03Ch98pfdCgQSGvcxwHl8uFpqYm/S2LcrSuctUMJizG35gJ64NnpKGkqmt9fT0aGhoCe6gF4/V6AYgVWXNh//6OhgsQ/t/Jk6vg9S7GoUN5WLPmysDnqlllR8qkHow/Ewh4/nngppuApiYgNhZ47jkXiouzVZ2LhSr24WgNLcjIyMDo0aOxevVq2fABrdejxXIq91liXgW3uw7jxw9GZmZm4FinCXUpNAmfzZs3G90OIgy5Ti5WQpzFwYSIXqSsmx6Pp9nWM2IUFe2DywX8VrYLgMt0AeJ21+HEiV8hVdFWjEh/DidOBIYM4dPgnVltORy9oQVpaWmB/xsZQ2jkfljBwg6Q3jw6MzNT1eLYSRZOTcKnf//+io7785//jPvvvz9ENRLSKO3kSvcNipSUUyLyUDPpa7WAahUgVN1YHqduLyGEGQHbRo29Ru2HFS7sSksrDIudc5qFU9fu7HK8/PLL+Mtf/kLCRwApdVxeXv5bLaSNshlXUgN7pKScEoTV2SZU3Ti6MDqA3uixV+9+WELCrqKiFIAPwRZNrc+UGfs/mompwoc7a5cmglCqjgHtJtNISjklogOpFbIRZn61UHVja7HDOm2GZU/v2GuGy0hM2PXp83mgYKFRz5QTFtymCh9CGCtUb7QUoiIiA6nBsry8PFD5W6uZn0fr5KrXrUMuZ2nsmizNsOzpGXvNchmJCbuSkq0oKdmKEyfSMXZsX3Tpov6ZCsYpC24SPhFKtBSiYhknBfvZidxg6Xa7A0GWWsz8PHZNrqysgFntj3ZPlkZb9vSMvWYFxctZTN3uOnTpMkR3pq+c6BOrIWR13yPh4xDUrhijpRCVECwM8E4L9rMTK6yTdk2udk/qPCz2RzMKIupFj2XPyOwrowj+LD7N/tChPAAu5OcfMvzz5ESf1ObbVvY9Ej4OQM2KUaijR3IhqnBYGeCdFuynBDWCUsmxPFZYJ612/bI2qbOYXm90QUS7MSr7Khi9LtKMjAyUl5dj1apVAID9+zuaan1UsuBmYSxULXzOnDmDhx9+GBMmTECejDQeM2YMVXHWidoVY7RXKGZRcLDi6tCDGkEJQNGxY8aMAWDuCtmutHSpST0mhsN115UgL68kULxRyzPJgmVTL0YWRGQBvdlXwRg1bvDxcVZZH6UW3KyMhaqFT1xcHBYuXIgbbrhB9thnnnlGU6MikeBBSmqvlHC0rBhZH+ysgoWHjBVXh17MsBgkJSUZvkIOx860dH5SX7ToF8yYkRToh8OHr8eWLc37oRorJCuWTaOIxIKIejBj3DDT6qlk/0eWxkJNrq6BAwfi448/RkFBgcHNiUzUpK8HU15ejpMnW0eEGdhqWHnIKLtOGiNXyHKfYVda+ujRdfjhh+cl63EB6kQji64rvURSQUS9aA0SBsQtfWa6lKU8DdXV1Vi3bh1TY6Em4TNs2DDcdddd+Oabb1BcXIzk5OSQ9y+//HJDGhcpyA0+Yu6YNm3aoEuXjIgxA1sJKw9ZpGbXqYk9YCmV267J1cgtDIyApe+EaI6eIGFAfAsWMxNe5BbhLI2FmoTPn//8ZwDAokWLmr1Hm5SqI9gdExPDYcECL6699tcQ1U5mYPWw8pBFYnadGhciC+5GIhT6TthFaWaYHMGLbVYSXlgaCzUJH5/PZ3Q7opJwd4zP58KsWWkoL09DuHh2ihmYlYBLlh4yud2anYQaFyIr7sZoQKkFh74TtpHLDKuuLgyx9ij53llKeGFlLNQkfP7xj3+gvLwciYmJIa83NDTgtddeUxT4TAi7Y5qa/JYdJ4iccFgLuLTzIVMS7Cd0HOuocSGy4m5kDaPdTEosOKyl1xPiKI17U2O50zreGrGQZXEs1CR8xo8fj6FDhyIrKyvk9bq6OowfP56Ej0KE3DGxsX53lhNhIeCSlYeMpVWWkahxIbLibmQJo91MSi04amvmsGK5dQJ23Cs9ljul7TVqIcviWKhJ+HAcB5fL1ez1w4cPB2oGEPKEu2NiYzk895zLkdYeVmDpIdP7GSxNPlqq0rJUwZYF7E5RVlozhzXLLcvYda+0WlPVtNfImmis9RNVwue8886Dy+WCy+XCoEGDEBd39s+bmppw4MABDB061PBGRjLB7php04ZRtpYBsPaQaYG1yUdtVVqz6/M4CTPcTHoKM8olS7BguXUKdt0rrdZUre2NtIB4VcLniiuuAADs2LEDQ4YMQatWrQLvJSQkoKCgAKNGjTK0gZGA3IDGu2MKCqzbQcQKawKlzGqHxclHTc0dK+rzOAUztmbQW5jRKckShDBGJW+IjdHBdYIiMSBe1Ux77733AgAKCgpQXl6OFi1amNKoSMNM94sWAWOFNSHSVgh2QyLS2ZixNYPdhRmJ5pj9nBqZmi41RgdnjkVikoImE8PYsWMB+Febx44da5be3q5dO/0tizDMMOtrFTBmWBM8Hk9glRCJKwQ7IREZOZhVk8tMCw6JbmVY8ZwatYgWG6Ozso6gsTEx5LuOxCQFTcJn7969mDBhArZs2RLyOh/0TAUMpTl8GNi7F+jUSd9gxYo7JFyAOXWFwFIwMQ+JyMjDSW4mFkQ3i89lOFY+p0Zcq9gYvWzZpGbfNUs10YxCk/AZN24c4uLisH79euTk5AhmeBHCLFsGTJ4M+HxATIzf9D1xormfGb6vi5pNUpUQPihZvRO2EVgVTKx2EHeqiGQNJ0yerMGC6GYtyF8Mpz2nQmM0wIl+16wUHjQKTcJnx44d2LZtG7p06WJ0eyKaw4fPih7A/+9NN/lN32auAOX2dTEasRXC+PGDkZuby+QEY4X1TM0gzhOJZmarccrkyRosTOasWLXlcNpzGj5GAz4A0t81C4UHjUKT8OnatavhVoNoYO/es6KHx8mVmqUQWiFkZl4Q1ROLlkE8Es3MVuOUyZMV9KTKRxta6ltZgZiF0+v1Bv4fPEbHxzcE3Fw8wd/1yJEjkZmZ2ex8TrWUahI+8+fPx5133omHH34YPXr0QHx8fMj7qamphjQu0ujUye/eChY/Tq7ULAdrO1Krwe6ATlY2FiSiD72p8noIn7BZX2CrrW9lBUotnKNHj8aZM2cCHgEp4ZaZmYmcnBxT220lmoRPWVkZAGDgwIEh8T0U3CxNXp5QOmvkWXucjlUBnVLiiqUK1JGG3aLWCdiRKq9kwmbxu2OtZpXSistpaWkhx0VaHI8UmoTP5s2bjW5H1GBWOqsexB4MrdYEFgcnpVgV0KlEXJGoMR67spScHFxtVRaanKuRhQwztdj9vcvdM1b2NrQaTcKnf//++PTTT/Hcc89h//79WLNmDc455xy89NJLKCwsNLqNEYdRA4kxnXEinnjiHPh8LsTEcFiwwItrr/1V8wPpxMEpGCsCOlnIlolG7Lrv0R5cbcTk78RnZv/+/Xj55ZdljzPre1dyz6LVsqxJ+KxduxbXX389rrvuOnz11Vc4ffo0AH/g1MMPP4x//etfhjaSEEaq01ZXV8tmc3m9KQHRAwA+nwuzZqWhvDwNavo5L8DkHrT6+npUVVVJnsfuB8yK7AwWsmWiEbvuezQHV2vJZBTCac+Mx+NRJHoA8753pffM7jHXDjQJnwcffBDPPvssbrjhBrz22muB1/v27YsHH3zQsMYR8gR32uDCiAIB+M04cSIjZN8gQFuWGS/ANm8GHn+8+YPWt+9YnHtuja2rHzmszM5wWuprpGDEfbfbdeE09Ii+YJe50zLMWBCxNM6Io0n47NmzB/369Wv2utvtRk1Njd42ERoIL4y4aFGK7N+kp3sQExO+aaK2LLOMjAxcdJFw1lpJSQZiY9le9VqRncFq6mukY9R9j3aXlZUIucyDv7uYGA5z5lRi5MjBiI+PR0NDAzweD9P3XW/so1rRTaUwxNEkfNq2bYt9+/ahoKAg5PXPPvsMHTp0MKJdhAqECiPefnsrfPXVrcjMPCX6dwkJCejWzWVYlplU1pqEh4sZzM7OYDH1NRow6r4b5bJycvC/XpRcu5jLfPr0xZg+fXEg6wioQ7g3n1XR+fnnpdi4sQyAtthHrS7DaMrUUoMm4XPjjTfitttuwwsvvACXy4XKykpUVFTgL3/5C+655x6j20jIIFYY0eNpjR49pP/W6CwzFrPWWIK11NdogZX77vTgfz0ovXap2JTCwh8kJ28WXEzh+EXPYAB+y7qWwGw1ojtaM7XUoEn43HXXXfD5fBg0aBDq6+vRr18/JCYm4i9/+QumTZtmdBsJGZQURpTaGNXodFUnbcJIOB+nxN04MTPJKJRcu9KK0U7C603Bpk1l4EUPj97AbKoBpg9NwsflcuHuu+/GHXfcgX379uGXX35B165d0apVK6PbRyhArjCiHRujEoQV2Bl3o9Zl5bTMJCNRcu1SFaPvuacSwNl7ZIS70ArBLHTdfrQLOaoBph9NwocnISEBXbt2NaothA7EXEx2bYxKEFZgV6q4GpcV7X2l3IojVjE6NjYWzz/vP8YId6FVgllsF/TBgzdpSmaIZquhkegSPoT1SK1SYmOBHj1CVymsbowazQGekYRT3ExGonbysXPvKzvxeDyBTTG1ZNQFu8z55AijJn6zBbNUJmFZ2Sb07VsBABgzZoyq7z2arYZGQsLHQWhZpbCyMWrwwCa1YovkVW+kEa3p3VomHzv2vrITob4hlGE0evRoZGVlKe4fTpn4pTMJewDooUnsRlL8k52Q8HEQWlYprGyMyg8EBw+ewf33Z4HjzmY4vPPOCMyZU4KCgriImiAjHRYrEptpSTTKZRUNwf9i33l4hlFaWpqqZ96sid+MfmNGJiHV5jEGEj5RACsp5hkZGdi5U8j15kJdXbaqbTIinWh0IenF7FTxaHVZ2UF4/+cL45pR/NMJJQaCr0uqNg9ZzJVBwidKYGWVyYrrTQl2iY9odSHpwaqgz2hzWdmBXP/nJ/5zz70S3bol6ir+6ZRgYUpRNxYSPoSlsOJ6k8NO8cGiC0kJdgas2xH7wcpiwgmo6RtK+rXbXYfBg+ORk5Otq11OiRkCnJGi7hRLNQmfCKS6ujrkd1Y6Gw8rrjcpnCo+7MIudwGlirOP2X1Dz2RLwcLqkLrXNTU1WL16deB3MbHLgqWahE8Esi58Axuw0dmCodVy5GCnu4DibuxHaDLkF19m9w2tllnaMFg94fdayoonJXZZWCyS8IkSWOhshDZYr3lkt7uA4m7sQ054GNE3pPq/VsssbRisnuB7KCVsnBA3RcLHQdDqI/pgOeOERTcTWRKtRU546O0bZvZ/VjaudRpywsbuhZASSPg4CKHI/urqakHXFmEsdlhdWF85kZuJkIN3Ja1fPwI+n7q+oaX/s24djQTkhI0T4qZI+DgMmkSsxy6rixNWTuRmIuTo3fsrzJlTgrq6bFV9Q23/Z9k6GknICRsnFFkk4UMQEthhdWHRhaQEcjMRYhaX3FwfcnLE/y44QJovVqik//N/w7p1NJJQImykiiyyAAkfghCAFxVyq04zxAe5kAgnotXiIhYgHT7BxsRwWLAgtP9X/bZ7qdxzGl7iIxg7niWn1LsRQ4mwCd+ehCVI+BCEAMF7i730EgefzxV4LzaWw7Rpw0zdW4xcSIST0GNxkRIAwRPstGnDUFycDaH+L2cdkouDtLLcR6RUZtcqbFiwVJPwcThKOxELnc1pZGRkICNDqNK067cB2BrIhUSwjpnxaPwEm5vra/ae0no8clhZ7sOpxVGVziHl5eVwu92i52BBzJHwcTi0h4v5OKHSNEEIYbZLxYx4NDWZWXL1eKqrC0OsPSxmfbHYJiEiaa4h4RMBqOloTvQts9BmsroQTsMKl4rR8Wha4oSU1uNhMeuLxTZJwdrcoBUSPlGEE33LTmwzQbCAVS4Vo+LRzMzMYjHri8U2RQsx8ocQkYITfctObDNBRCt5ecCAAdqso1JxQnox89xaYbFN0YLjhM/p06dx7rnnwuVyYceOHSHv7dy5ExdffDFatGiB/Px8LFiwwJ5GEgRBEKrg44SCMarir5nn1gqLbYoWHOfquvPOO5Gbm4uvv/465PXa2lpceumlKCsrw7PPPotvvvkGEyZMQFpaGiZPnmxTa83l8GFg716gUyeKPyEIO5CLP6uvr0dSUpLo+1bG1LEaRGvFTuksVhNmsU3RgqOEz7vvvosNGzZg7dq1ePfdd0Pee+WVV9DQ0IAXXngBCQkJ6NatG3bs2IFFixZFpPBZtgyYPBnw+YCYGH/K9cSJdreKkIOFQG3CGJTGn8lhRXway0G0Zu6UHiyWpIruWVnug8U2RRuOET5Hjx7FjTfeiDfffFNwBVVRUYF+/fqFdJYhQ4Zg/vz5+Pnnn9G6dWsrm2sqhw+fFT2A/9+bbvKnXJPlh10oUDuyMCquzOz4NCcE0Zq1UzqLKdhq20SLJeNxhPDhOA7jxo3DzTffjPPPPx8HDx5sdsyRI0dQWFgY8lp2dnbgPTHhc/r0aZw+fTrwe21trXENN4m9e8+KHp6mJn82RbQKH74kPcuDAAVqE3bghM1uzYTF8UBpm2ixZA62Cp+77roL8+fPlzxm9+7d2LBhA+rq6jB79mzD2zBv3jzMnTvX8POaSadOfvdWsPiJjfUX14tWgouUGTkI0GqLUAprMTRO3eyWOEv42CPWx2ixpA5bhc/tt9+OcePGSR7ToUMHfPjhh6ioqEBiYmLIe+effz6uu+46vPjii2jbti2OHj0a8j7/e9u2bUXPP3v2bMycOTPwe21tLfLz81VeibXk5QltoyBv7XHi9hZa2mLUIECrLUIpSmJorBZGaosLkshnG5bjtJyGrcKnTZs2aNOmjexxS5YswYMPPhj4vbKyEkOGDMGqVatQUlICACgtLcXdd9+NxsZGxMfHAwA2btyIzp07S8b3JCYmNhNUTkDLNgos+rvlCG5zdXW17GaDRkKuKUIJSmJo7Jq0lBYXZF3kR7soc0KclpNwRIxPu3btQn5v1aoVAKCoqAh5v8341157LebOnYuJEydi1qxZ2LVrF5544gk8/vjjlrfXKoS2UZBLcXfi4BDcZtbcCXqIpGuJZuRiaFiZtKS2XWFZ5LMuyqwg2uO0jMYRwkcJbrcbGzZswJQpU1BcXIzMzEzMmTMnIlPZxYj0FPeVK1ti8eLpEWHqJbN15CAXQ6N00op2q4YYLIsyq5DrY4Q6HCl8CgoKwHFcs9d79uyJTz/91IYW2U+kp7gfPgzceacbHOcC4GxTLysWAEIfSgvvKQkuZs2qwbI1kuW2mQUVOzQWRwofojmRnuLuvz5XyGtOM/XyE6WcBYCl4HIeskY0R0nhPb5ys1xwcVVVlaLPtMKqwbI1kuW2mY1UsUNCHSR8IoRIT3H3Xx8XIn6sNvXqXWnyE+XBg2fw0kuh1xIby2HatGEoKIhjTkCwZo1gCaWF9/TuXG4VLFsjWW6bWYQvgtzuOsFrZXGxxDIkfCIErSnuTiEvD1i06CRmzEiSNfWaMQgYtdLMyMhARobQd+VCcXG24e02AoqxMAap4OJw7HLnsBxEy3LbzMKJmbhOgIRPBKElxd1J3HZbKwwc+DP++18fCgrOACjBgQN9UVh4Brm5flOXkYMAL6DkVppahFakf1eEdux051gZRKvWfRqtAb4kaoyHhE+EoWZV6UR69GiNHj2syWDjV1ubNwOPP958pdm371gMGKB9YHLqdxWNwaVWYZc7p76+HoC5O6QHo8Z9ykMBvoRRkPAhHIeVGWwZGRm46CLh+KmSEr/bygkYFZwczcGlVmCHO8fj8eDll18O/C4WRDtmzBjDrA9q3Ke0mzlhNCR8ohi5YoesYnUGm9Pjp4wKTo7G4FKrscOdIyRChIJok5KSTMvuk7IiRlKcC2VHsgEJnyjFycUO7chgc3JMjtLVdWVlJQBx1100BpdahdKaQHZaNbxeL1atWiV7nNrsPiVWxEgQA5QdyQ4kfKIQpxc7tMsC49SYHKXw+6CJDbzRGlxqBUpqAlllDRCzvjQ2Nir6ezXZfdFkRaSd1tmBhE8UEgnFDp1sgbEbueDk8IHXCdaISEBpTSAzkbK+1NUZL0Si1YpIsXL2QsInComUYoeRboExAy0DLkvWCMI85KwvGzdubHa83uy+aLQiRpOVi1VI+EQhTg/WJbQhNOC+9dZwZGUdQV6e9JYJLFgjCHNRY30xymIRjSnq0WrlYgkSPlEKuYqiD6EBF4jBsmWTyNROKLa+GGGxiOYU9Wi0crEGCZ8ohlxF0YXQgAuQqT3aURrDxWOExSKSUtTVEo1WLtYg4UMQEU74xPbWW8MBkKmd8KMkhqumpgarV68GAFRW5gDgAOjbMDgSRY1SaKd1eyHhQxARDj+x+ev0rENW1hEsWzaJTO1EAKUxXF5vCjZtKkOw6AE4lJVtouw+GWindXYg4UMQUUDwxJaXV0Vp6YQmhOPEXMjN9Re/LC8vj2pLjhTR7N5jDRI+BBElUFo6oRe5wFy3221X0xwBPVtsQMKHIKIISkun/ZK0QEUszYf6pXW4OI7j7G4ES9TW1sLtdsPr9SI1NdXu5hAEYSC0X5J2gifmysqYIGuhvxIqTczaCe+XYsUhqV9Ko3T+JosPQRBRg9J9kKJ9vyQ560NBQRyKi2kCNorgey1VHDLa+6VRkPAhCCJqMWLbhUiDrGL2QdtZWAMJH4IgohLaKFIYsorZB21nYQ0kfAiCESi40TpoZa0csopZB2vbWYTHdR04EIfCQufHdZHwIQgGoOBGa6GVtTLIKmYtLG1nETwmSfUDJ45JJHwIQidGWGoouNEaampqALC3smYRsorZAyvbWfBjjVw/cOKYRMKHIHRgtKWGJhvz8Hg8gf2mWFpZswpZxexDbDsLO4jEfkDChyB0YLSlJhIHGVYI/w6KivZh1Ki1ADjk5x8Oub9UiI+sYlaitL/Z0S8jsR+Q8CEIAzDKUqN1kDl8GNi7F+jUCcjL03YN0YSUSKX9pvyQVcw6WN7HKxL7AQkfgjAAoyw1agYZPrZo5cqWuPNON3w+F2JiOCxY4MW11/7q2IwLs5ETqdG+31SwVUEq3oSsYsbC8rPKStyRUZDwIQgDMNIcrGSQ4WOLvN4ULF48HRznAgD4fC7ccUcqfvrpBbjddY7MuDAbcidKw7L1gbAPluKO9ELChyAMwGhzsNwgw09KcpO4EzMuzCYSYxaMhkQNEcmQ8CGYwsmxKnrMwVqDG2kSV08kxiwQhNGwHHCtFxI+BDMsWwZMngz4fEBMDPD888DEiXa3Sh1azcFa3Qs0iWsj0mIWCMJoItnlScKHsB2Px4ODB89g8uQs+Hx8rApw000czj33GAoK4ph9uIxcFWm9RprElRH+HYiJVCeuYAnCDFgdd/VCwoewFT5I98CBAvh8Y0Pea2pyYenSd1FY+AOzQbqsrIoiKfDQLFj5rsyG9nwjCGlI+BC2wg/QcrEqLAfpqplEnBzDFAlE+oQfXklcDFYXEgRhBSR8CCaIhliVSIhhIthG6QKB5YUEYRxk/ROGhA/BDJEcq3L48FnRA/AxTMCQIdosP5GccUEYh9jecUTkY/Q+gpEECR+CKSI1VmXv3rOih6epCdi3T5vwiZZ4FUI7UttyEJGP0fsIRhIkfAjCZDweD1JTzyAm5mzWGgDExnJISTkGj0db1hqJGkIMo/aOI5wP9YXmkPAhCBMJNjcPHx666rrssvVYv96/6opGczNhHnIVvaurq0X/liyFkQVt0dIcEj4EYSLBZmSpGKZoNDcT4ugNSpXLkly3bp3k55MQjxyountzSPgQthKpQbp82npqauhKK1JjmAjjMCIlXW+WpNVCnLKPzCMaMmbVQsKHsJVIDNINTVvPwvDh51FQKaGY8GdBLBtH6JkJXiAoyZJkIeuLag+ZTyRnzGqBhA9hO2YOZlYXDGyetu7SFUhIBQ+jG7WZWXILierq6oCbi5WsL6o9ZA1mWpuDLXaVlTE4cCAOhYVnkJvrHwhZW7yS8HEoNCHKY0fBQKG0da2BhFTwMLrRmo2jZIJhOdPHaCtUtLrRrAojCLbYSYlplix2JHwcCE2I8hhdMFApnTr5v5Ng8aMlkNCu9hPsTJRmZuOwmuljtBUqmt1oVoUR8OeXE9MsWexI+DgMmhCVYXTBQKXk5fmF6E03+T8vNpbDZZepDyS0q/3RDksTpZnZOCxm+phhhYp2N5qVYo5VMS1EjPwhBEtITYjEWXjLSzCxsUDHjuZ9psfjQVVVFf74xyps3XoUa9Z4sHHjPkUr1nBzsx3tJ4QDiw8cKIDXmyJ5nBnw2Tgul/+BNzIbx8xza0Vq4jQKse+T0A8vpoOxW0yLQRYfhyHkSqEJsTnNLS/Ac8+ZZy1RaikoLy+H2+0OeS3c3OzxeBAb24AFC1pi1iw3mppciI3lMH++F7Gxv8LjicyYBNZgIfjX6GwcpVlfdpSPMNsKxcL3Gck4KW2ehI/DsHpCdzITJ/pdgPv2+YWhmfdIqQXA7XYjJydH9P1wAXXrrSmBiemXX+rw/PP+1yMxJoEl7Az+DRcdYtk4WsQJy+UjzJw4WQ7mjiSckjZPwseBWDmhO528PGfdn/AJSWzSi9SYBKPRGqhsZ7yC2eKENcFshRXKSfEnTscJRVpJ+DgUp03oBGE14dYzsTRpIeuZUW4XrcKLNXFiJlZYoVgM5ibsg4QPQRARSfBEKhXfITThGuF2YSlDjHXMvn4nxZ84DSduO0TCh4g4WKnDwiLRWPhSa3yH3ngFPVtPEMbAcjB3pMBy3JgYJHyIiIJW2eJEa+FLNfEdZgUWU0aRPThxUnYiTrt/JHyIiCLaC5aJEc2FL9XEd5gxUVJGkb04bVImzIeED0EYAOt+7miuBK02vsPoiZIyigiCLUj4EIQBGGUpMEtARXvhSzvri1BGEUGwBQkfgjAIIywFZrhaqBK0H7vqi1BGEUGwBQkfgmAMI0VINFeCZsn96JSKtgQRDZDwIYgIJporQdud0WPm1hMEQWjHUcLnnXfewf3334+dO3eiRYsW6N+/P958883A+z/++CNuueUWbN68Ga1atcLYsWMxb948xMU56jJFofo0BKEOO58Hu4UXQRDCOEYRrF27FjfeeCMefvhhDBw4EGfOnMGuXbsC7zc1NeGyyy5D27ZtsWXLFlRVVeGGG25AfHw8Hn74YRtbbgxUn0YZLLk3CCKan0WCYBVHCJ8zZ87gtttuw8KFCzExqOJa165dA//fsGEDvvvuO2zatAnZ2dk499xz8cADD2DWrFm47777HD/RUX0aZdAqmyAIgpAiRv4Q+9m+fTt++uknxMTE4LzzzkNOTg6GDRsWYvGpqKhAjx49kJ2dHXhtyJAhqK2txbfffmtHswmbyMjIQE5OjuiPlOg5fBjYvNn/L2EddN8JgrAKRwif//3vfwCA++67D3/961+xfv16tG7dGgMGDMCJE/5aGEeOHAkRPQACvx85ckT03KdPn0ZtbW3IDxGdLFsGtG8PDBzo/3fZMrtbFNl4PB5UVVXhscdq0L4999t95/DYYzWoqqqCx+Oxu4kEQUQgtgqfu+66Cy6XS/Ln+++/h++3qmt33303Ro0aheLiYixfvhwulwuvv/66rjbMmzcPbrc78JOfn2/EpREOQ2xLB7JAmAMfs7Zw4au4445U+HwuAIDP58Idd6Ri4cJX8eSTT5L4IRTBi2ixH+pHRDC2xvjcfvvtGDdunOQxHTp0QFVVFYDQmJ7ExER06NABP/74IwCgbdu2+Pe//x3yt0ePHg28J8bs2bMxc+bMwO+1tbUkfqKQSN3SgdVgbz4GS247h2iPWSPkocQPQi22Cp82bdqgTZs2sscVFxcjMTERe/bswR/+8AcAQGNjIw4ePIj27dsDAEpLS/HQQw/h2LFjyMrKAgBs3LgRqampIYIpnMTERCQmJhpwNYSTidQtHVgP9qbtHAi9UOIHu7BagsURWV2pqam4+eabce+99yI/Px/t27fHwoULAQBXXXUVAODSSy9F165dcf3112PBggU4cuQI/vrXv2LKlCkkbAhZ8vKA55/3u7eamvyi57nnjLX2HD7styx16mStFYnlVS5t50AQkQnLljhHCB8AWLhwIeLi4nD99dfj119/RUlJCT788EO0bt0aABAbG4v169fjlltuQWlpKZKTkzF27Fjcf//9NrfcGFh1WUQSEycCQ4b43VsdOxorTpYtOxtDFBPjF1lBlRmiGtrOgSAiD5YtcY4RPvHx8Xj00Ufx6KOPih7Tvn17/Otf/7KwVdbBussiUsjLM94aIxY4PWSIs+OHjMSuDUQJgog+HCN8CLZdFoQ4kRo4TRAEoRSvNwUnTmQgPd1j+yKHhA9BmEykBk4TBIuwNMESfrZvP69ZHF/v3l/Z1h4SPgRhMlYETjsNilkjzIC1CZbwC1H+OwH85Srefns4ior22SZMSfgQUY8VKZdmBk47EYpZI4yCF8dyEyyJaHuQq9VlByR8iKjGypRLMwKnnQx/P8WEZ0NDA6qqqhQLIFZrhhDmwovozZuBxx9vPsH27TsWAwZQjKRdsFiri4QPEdWYnXJJk7E04cJTLD5DTniyXDPEDKhfhZKRkYGLLhKOpSspyUAU3Qpm4C1scrW67LDEkfAhCJOItslYC8GTt1R8hpzwDH9fTEBFQvVe6lfCUCwdW4S7s+fMOY6DB+NQUHAGubkXALiAKjcTRKTBcgEv1jAyADLSA1ypX4lDsXRsESxqcnKA4mIbGxOErbuzEwRBANIBkGoQE1Beb4phbSXYJi8PGDCARA8hDgkfgiBshw+ADEZLAKRRAoogiMiFhA9BRDmHDwObN/v/tQs+AJIXP1o3KzVKQBEEEblQjA9BRDEsbZ5qxGalTtvtnbKzCMJ6SPgQUU20VhD2eDw4ePAMJk/Ogs/nAsBvnsrh3HOPoaAgzpYJ14jNSp2y27tR2Vm0RQNBqIOEDxHVRGMFYX7CPXCgAD7f2JD3mppcWLr0XRQW/mBJOrRRwjP8fTEBxZKANSI7K9Iz2AjCDEj4EFGPWZM7q9YkfiKVq6hqRTq0UcIzmgQsbdFAEPog4UMQJsH6ZMxKPIxR1x8JokYJtEUDQeiDhA9BmAjrk49T4mGIUFjdooGCtQknQMKHIKIcIwKKCethbYsG2kqDcAokfAiCIBwKS1s00FYahFMg4UMQBMEAWtPS8/JoewaCUAMJH4IgCBsIzrqSSkun7CyCMBYSPgQRZbCaZh9t8NlZBw+ewf33Z4Hj/IUkOS4G77wzAnPmlNhWSJIgIhkSPgQRZbCeZh9NZGRkYOfO0MwswF9Isq4u27bsLIKIZEj4EEQUQqKGHTp1Ek5L79jRvjYRRCRDu7MTBEHYCJ+WHhvr/93utHSCiHTI4kMQBGEzLKWla4Vixwin4OI4jrO7ESxRW1sLt9sNr9eL1NRUu5tDEAThGKhyM2EnSudvsvgQBEEQhhAsag4fBvbu9ccwOdGCRUQuFONDEARBGMqyZUD79sDAgf5/ly2zu0UEcRYSPgRBEIRhHD4MTJ58NkvN5/PvJ3b4sL3tIggeEj4EQRCEYezdK1SXyB+4TRAsQMKHIAiCMAy+LlEwVJeIYAkSPgRBEIRhUF0ignUoq4sgCIIwlEioS0RELiR8CIIgCMPJyyPBQ7AJuboIgiAIgogaSPgQBEEQBBE1kPAhCIIgCCJqIOFDEARBEETUQMKHIAiCIIiogYQPQRAEQRBRAwkfgiAIgiCiBhI+BEEQBEFEDSR8CIIgCIKIGkj4EARBEAQRNZDwIQiCIAgiaqC9usLgOA4AUFtba3NLCIIgCIJQCj9v8/O4GCR8wqirqwMA5Ofn29wSgiAIgiDUUldXB7fbLfq+i5OTRlGGz+dDZWUlUlJS4HK57G6O5dTW1iI/Px+HDh1Camqq3c1xLHQfjYHuo37oHhoD3UdjMPM+chyHuro65ObmIiZGPJKHLD5hxMTEIC8vz+5m2E5qaio93AZA99EY6D7qh+6hMdB9NAaz7qOUpYeHgpsJgiAIgogaSPgQBEEQBBE1kPAhQkhMTMS9996LxMREu5viaOg+GgPdR/3QPTQGuo/GwMJ9pOBmgiAIgiCiBrL4EARBEAQRNZDwIQiCIAgiaiDhQxAEQRBE1EDChyAIgiCIqIGET5TyySefYMSIEcjNzYXL5cKbb74Z8j7HcZgzZw5ycnLQsmVLlJWVYe/evfY0llHk7uG4cePgcrlCfoYOHWpPYxlm3rx5uOCCC5CSkoKsrCxcccUV2LNnT8gxp06dwpQpU5CRkYFWrVph1KhROHr0qE0tZhMl93HAgAHN+uTNN99sU4vZ5JlnnkHPnj0DBfZKS0vx7rvvBt6nvqgMuftoZ18k4ROlnDx5Er169cJTTz0l+P6CBQuwZMkSPPvss9i6dSuSk5MxZMgQnDp1yuKWsovcPQSAoUOHoqqqKvDz6quvWthCZ/Dxxx9jypQp+OKLL7Bx40Y0Njbi0ksvxcmTJwPHzJgxA2+//TZef/11fPzxx6isrMTIkSNtbDV7KLmPAHDjjTeG9MkFCxbY1GI2ycvLwyOPPIJt27bhP//5DwYOHIg//elP+PbbbwFQX1SK3H0EbOyLHBH1AODeeOONwO8+n49r27Ytt3DhwsBrNTU1XGJiIvfqq6/a0EL2Cb+HHMdxY8eO5f70pz/Z0h4nc+zYMQ4A9/HHH3Mc5+978fHx3Ouvvx44Zvfu3RwArqKiwq5mMk/4feQ4juvfvz9322232dcoh9K6dWvu73//O/VFnfD3kePs7Ytk8SGaceDAARw5cgRlZWWB19xuN0pKSlBRUWFjy5zHRx99hKysLHTu3Bm33HILPB6P3U1iHq/XCwBIT08HAGzbtg2NjY0h/bFLly5o164d9UcJwu8jzyuvvILMzEx0794ds2fPRn19vR3NcwRNTU147bXXcPLkSZSWllJf1Ej4feSxqy/SJqVEM44cOQIAyM7ODnk9Ozs78B4hz9ChQzFy5EgUFhZi//79+L//+z8MGzYMFRUViI2Ntbt5TOLz+TB9+nT07dsX3bt3B+DvjwkJCUhLSws5lvqjOEL3EQCuvfZatG/fHrm5udi5cydmzZqFPXv2YN26dTa2lj2++eYblJaW4tSpU2jVqhXeeOMNdO3aFTt27KC+qAKx+wjY2xdJ+BCESVx99dWB//fo0QM9e/ZEUVERPvroIwwaNMjGlrHLlClTsGvXLnz22Wd2N8XRiN3HyZMnB/7fo0cP5OTkYNCgQdi/fz+KioqsbiazdO7cGTt27IDX68WaNWswduxYfPzxx3Y3y3GI3ceuXbva2hfJ1UU0o23btgDQLFPh6NGjgfcI9XTo0AGZmZnYt2+f3U1hkqlTp2L9+vXYvHkz8vLyAq+3bdsWDQ0NqKmpCTme+qMwYvdRiJKSEgCgPhlGQkICOnbsiOLiYsybNw+9evXCE088QX1RJWL3UQgr+yIJH6IZhYWFaNu2LT744IPAa7W1tdi6dWuIf5ZQx+HDh+HxeJCTk2N3U5iC4zhMnToVb7zxBj788EMUFhaGvF9cXIz4+PiQ/rhnzx78+OOP1B+DkLuPQuzYsQMAqE/K4PP5cPr0aeqLOuHvoxBW9kVydUUpv/zyS4iyPnDgAHbs2IH09HS0a9cO06dPx4MPPohOnTqhsLAQ99xzD3Jzc3HFFVfY12jGkLqH6enpmDt3LkaNGoW2bdti//79uPPOO9GxY0cMGTLExlazx5QpU7By5Ur885//REpKSiBWwu12o2XLlnC73Zg4cSJmzpyJ9PR0pKamYtq0aSgtLcVFF11kc+vZQe4+7t+/HytXrsQf//hHZGRkYOfOnZgxYwb69euHnj172tx6dpg9ezaGDRuGdu3aoa6uDitXrsRHH32E999/n/qiCqTuo+190ZZcMsJ2Nm/ezAFo9jN27FiO4/wp7ffccw+XnZ3NJSYmcoMGDeL27Nljb6MZQ+oe1tfXc5deeinXpk0bLj4+nmvfvj134403ckeOHLG72cwhdA8BcMuXLw8c8+uvv3J//vOfudatW3NJSUnc//t//4+rqqqyr9EMIncff/zxR65fv35ceno6l5iYyHXs2JG74447OK/Xa2/DGWPChAlc+/btuYSEBK5NmzbcoEGDuA0bNgTep76oDKn7aHdfdHEcx5kvrwiCIAiCIOyHYnwIgiAIgogaSPgQBEEQBBE1kPAhCIIgCCJqIOFDEARBEETUQMKHIAiCIIiogYQPQRAEQRBRAwkfgiAIgiCiBhI+BEEQBEFEDSR8CIIgCIKIGkj4EAThGBoaGuxuQjNYbBNBEOKQ8CEIwjYGDBiAqVOnYurUqXC73cjMzMQ999wDfiedgoICPPDAA7jhhhuQmpqKyZMnAwA+++wzXHzxxWjZsiXy8/Nx66234uTJk4HzPv300+jUqRNatGiB7OxsXHnllYH31qxZgx49eqBly5bIyMhAWVlZ4G8HDBiA6dOnh7TxiiuuwLhx4wK/a20TQRBsQMKHIAhbefHFFxEXF4d///vfeOKJJ7Bo0SL8/e9/D7z/6KOPolevXvjqq69wzz33YP/+/Rg6dChGjRqFnTt3YtWqVfjss88wdepUAMB//vMf3Hrrrbj//vuxZ88evPfee+jXrx8AoKqqCtdccw0mTJiA3bt346OPPsLIkSOhdstCtW0iCIIdaJNSgiBsY8CAATh27Bi+/fZbuFwuAMBdd92Ft956C9999x0KCgpw3nnn4Y033gj8zaRJkxAbG4vnnnsu8Npnn32G/v374+TJk/jXv/6F8ePH4/Dhw0hJSQn5vO3bt6O4uBgHDx5E+/btBdtz7rnnYvHixYHXrrjiCqSlpWHFihUAoKlNLVq00HWfCIIwDrL4EARhKxdddFFA9ABAaWkp9u7di6amJgDA+eefH3L8119/jRUrVqBVq1aBnyFDhsDn8+HAgQMYPHgw2rdvjw4dOuD666/HK6+8gvr6egBAr169MGjQIPTo0QNXXXUV/va3v+Hnn39W3Wa1bSIIgh1I+BAEwTTJyckhv//yyy+46aabsGPHjsDP119/jb1796KoqAgpKSnYvn07Xn31VeTk5GDOnDno1asXampqEBsbi40bN+Ldd99F165dsXTpUnTu3DkgTmJiYpq5vRobG3W3iSAIdiDhQxCErWzdujXk9y+++AKdOnVCbGys4PG9e/fGd999h44dOzb7SUhIAADExcWhrKwMCxYswM6dO3Hw4EF8+OGHAACXy4W+ffti7ty5+Oqrr5CQkBBwW7Vp0wZVVVWBz2pqasKuXbtkr0FJmwiCYAMSPgRB2MqPP/6ImTNnYs+ePXj11VexdOlS3HbbbaLHz5o1C1u2bMHUqVOxY8cO7N27F//85z8DgcTr16/HkiVLsGPHDvzwww/4xz/+AZ/Ph86dO2Pr1q14+OGH8Z///Ac//vgj1q1bh+PHj+P3v/89AGDgwIF455138M477+D777/HLbfcgpqaGtlrkGsTQRDsEGd3AwiCiG5uuOEG/Prrr7jwwgsRGxuL2267LZAiLkTPnj3x8ccf4+6778bFF18MjuNQVFSE8vJyAEBaWhrWrVuH++67D6dOnUKnTp3w6quvolu3bti9ezc++eQTLF68GLW1tWjfvj0ee+wxDBs2DAAwYcIEfP3117jhhhsQFxeHGTNm4JJLLpG9Brk2EQTBDpTVRRCEbQhlUREEQZgJuboIgiAIgogaSPgQBEEQBBE1kKuLIAiCIIiogSw+BEEQBEFEDSR8CIIgCIKIGkj4EARBEAQRNZDwIQiCIAgiaiDhQxAEQRBE1EDChyAIgiCIqIGED0EQBEEQUQMJH4IgCIIgogYSPgRBEARBRA3/H8oQ4pH3dFZVAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -858,7 +3907,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVjklEQVR4nO3deXwTdf4/8NekFy20KbQUWlpoKQhySovWgnJoOZRj/YHS9QStorugVhHQ5SuKruKJoK4HisKqrLDAuoCrUhQvWqtyiBVEwBaoLUJTmpZDemR+f4SZziQzySRNz7yejwcPaTKZTEY0b96f9+f9FkRRFEFERETkB0zNfQFERERETYWBDxEREfkNBj5ERETkNxj4EBERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RUQu0cuVKCIKAoqKi5r4UojaFgQ+Rn/ruu+8we/Zs9O/fH+3bt0f37t0xbdo0/PLLL07Hjho1CoIgQBAEmEwmREREoE+fPrj55puRk5Pj0ftu2rQJI0eORExMDMLCwtCzZ09MmzYNH3/8sa8+mpMnn3wSH3zwgdPjubm5ePTRR1FRUdFo7+3o0Ucfle+lIAgICwtDv3798H//93+orKz0yXusXr0aS5cu9cm5iNoaBj5Efurpp5/G+vXrceWVV2LZsmWYOXMmvvzyS6SkpKCgoMDp+Pj4eLzzzjv45z//iWeffRaTJ09Gbm4uxo4di8zMTNTU1Lh9z+eeew6TJ0+GIAh46KGH8MILL2Dq1Kk4cOAA3n///cb4mABcBz6LFi1q0sBH8uqrr+Kdd97BkiVL0LdvXzzxxBMYP348fDE+kYEPkb7A5r4AImoe999/P1avXo3g4GD5sczMTAwcOBBPPfUU3n33XdXxZrMZN910k+qxp556Cvfccw9eeeUVJCYm4umnn9Z9v9raWjz++OMYM2YMtmzZ4vT88ePHG/iJWo4zZ84gLCzM5THXXnstoqOjAQB33XUXpk6dig0bNuCbb75Benp6U1wmkV9ixofITw0bNkwV9ABA79690b9/f+zbt8/QOQICAvDiiy+iX79+ePnll2G1WnWPLSsrQ2VlJYYPH675fExMjOrnP/74A48++iguuOACtGvXDrGxsZgyZQoOHTokH/Pcc89h2LBhiIqKQmhoKFJTU7Fu3TrVeQRBwOnTp7Fq1Sp5eWnGjBl49NFHMXfuXABAUlKS/Jyypubdd99FamoqQkND0alTJ/z5z3/G0aNHVecfNWoUBgwYgB07dmDEiBEICwvD3/72N0P3T+mKK64AABQWFro87pVXXkH//v0REhKCuLg4zJo1S5WxGjVqFD788EMcPnxY/kyJiYkeXw9RW8WMDxHJRFHE77//jv79+xt+TUBAAK6//no8/PDD+PrrrzFhwgTN42JiYhAaGopNmzbh7rvvRqdOnXTPWVdXh4kTJ+LTTz/Fn//8Z9x7772oqqpCTk4OCgoKkJycDABYtmwZJk+ejBtvvBHV1dV4//33cd1112Hz5s3ydbzzzju4/fbbcckll2DmzJkAgOTkZLRv3x6//PIL/vWvf+GFF16Qsy+dO3cGADzxxBN4+OGHMW3aNNx+++04ceIEXnrpJYwYMQK7du1CZGSkfL0WiwVXXXUV/vznP+Omm25Cly5dDN8/iRTQRUVF6R7z6KOPYtGiRcjIyMBf/vIX7N+/H6+++iq+++47bN++HUFBQViwYAGsViuKi4vxwgsvAAA6dOjg8fUQtVkiEdF577zzjghAXLFiherxkSNHiv3799d93X/+8x8RgLhs2TKX51+4cKEIQGzfvr141VVXiU888YS4Y8cOp+PeeustEYC4ZMkSp+dsNpv8+zNnzqieq66uFgcMGCBeccUVqsfbt28vTp8+3elczz77rAhALCwsVD1eVFQkBgQEiE888YTq8R9//FEMDAxUPT5y5EgRgPjaa6/pfm6lRx55RAQg7t+/Xzxx4oRYWFgovv7662JISIjYpUsX8fTp06IoiuLbb7+turbjx4+LwcHB4tixY8W6ujr5fC+//LIIQHzrrbfkxyZMmCD26NHD0PUQ+RsudRERAODnn3/GrFmzkJ6ejunTp3v0WimjUFVV5fK4RYsWYfXq1RgyZAg++eQTLFiwAKmpqUhJSVEtr61fvx7R0dG4++67nc4hCIL8+9DQUPn3J0+ehNVqxeWXX46dO3d6dP2ONmzYAJvNhmnTpqGsrEz+1bVrV/Tu3Rvbtm1THR8SEoJbb73Vo/fo06cPOnfujKSkJNx5553o1asXPvzwQ93aoK1bt6K6uhrZ2dkwmer/133HHXcgIiICH374oecflMgPcamLiHDs2DFMmDABZrMZ69atQ0BAgEevP3XqFAAgPDzc7bHXX389rr/+elRWViI/Px8rV67E6tWrMWnSJBQUFKBdu3Y4dOgQ+vTpg8BA1/+L2rx5M/7+979j9+7dOHfunPy4MjjyxoEDByCKInr37q35fFBQkOrnbt26OdVLubN+/XpEREQgKCgI8fHx8vKdnsOHDwOwB0xKwcHB6Nmzp/w8EbnGwIfIz1mtVlx11VWoqKjAV199hbi4OI/PIW1/79Wrl+HXREREYMyYMRgzZgyCgoKwatUq5OfnY+TIkYZe/9VXX2Hy5MkYMWIEXnnlFcTGxiIoKAhvv/02Vq9e7fFnULLZbBAEAR999JFmEOhYM6PMPBk1YsQIua6IiJoOAx8iP/bHH39g0qRJ+OWXX7B161b069fP43PU1dVh9erVCAsLw2WXXebVdQwdOhSrVq1CaWkpAHvxcX5+PmpqapyyK5L169ejXbt2+OSTTxASEiI//vbbbzsdq5cB0ns8OTkZoigiKSkJF1xwgacfp1H06NEDALB//3707NlTfry6uhqFhYXIyMiQH2toxouoLWOND5GfqqurQ2ZmJvLy8vDvf//bq94xdXV1uOeee7Bv3z7cc889iIiI0D32zJkzyMvL03zuo48+AlC/jDN16lSUlZXh5ZdfdjpWPN/gLyAgAIIgoK6uTn6uqKhIs1Fh+/btNZsUtm/fHgCcnpsyZQoCAgKwaNEip4aCoijCYrFof8hGlJGRgeDgYLz44ouqa1qxYgWsVqtqN1379u1dthYg8mfM+BD5qTlz5mDjxo2YNGkSysvLnRoWOjYrtFqt8jFnzpzBwYMHsWHDBhw6dAh//vOf8fjjj7t8vzNnzmDYsGG49NJLMX78eCQkJKCiogIffPABvvrqK1xzzTUYMmQIAOCWW27BP//5T9x///349ttvcfnll+P06dPYunUr/vrXv+JPf/oTJkyYgCVLlmD8+PG44YYbcPz4cfzjH/9Ar169sGfPHtV7p6amYuvWrViyZAni4uKQlJSEtLQ0pKamAgAWLFiAP//5zwgKCsKkSZOQnJyMv//973jooYdQVFSEa665BuHh4SgsLMR//vMfzJw5Ew888ECD7r+nOnfujIceegiLFi3C+PHjMXnyZOzfvx+vvPIKLr74YtW/r9TUVKxZswb3338/Lr74YnTo0AGTJk1q0uslarGac0sZETUfaRu23i9Xx3bo0EHs3bu3eNNNN4lbtmwx9H41NTXiG2+8IV5zzTVijx49xJCQEDEsLEwcMmSI+Oyzz4rnzp1THX/mzBlxwYIFYlJSkhgUFCR27dpVvPbaa8VDhw7Jx6xYsULs3bu3GBISIvbt21d8++235e3iSj///LM4YsQIMTQ0VASg2tr++OOPi926dRNNJpPT1vb169eLl112mdi+fXuxffv2Yt++fcVZs2aJ+/fvV90bV1v9HUnXd+LECZfHOW5nl7z88sti3759xaCgILFLly7iX/7yF/HkyZOqY06dOiXecMMNYmRkpAiAW9uJFARR9MFgGCIiIqJWgDU+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNBj5ERETkNxj4EBERkd9gA0MHNpsNJSUlCA8PZ9t3IiKiVkIURVRVVSEuLg4mk35eh4GPg5KSEiQkJDT3ZRAREZEXjh49ivj4eN3nGfg4CA8PB2C/ca7mDhEREVHLUVlZiYSEBPl7XA8DHwfS8lZERAQDHyIiolbGXZkKi5uJiIjIbzDwISIiIr/BwIeIiIj8Bmt8vGCz2VBdXd3cl9GmBQcHu9yOSERE5A0GPh6qrq5GYWEhbDZbc19Km2YymZCUlITg4ODmvhQiImpDGPh4QBRFlJaWIiAgAAkJCcxINBKpiWRpaSm6d+/ORpJEROQzDHw8UFtbizNnziAuLg5hYWHNfTltWufOnVFSUoLa2loEBQU19+UQEVEbwZSFB+rq6gCAyy9NQLrH0j0nIiLyBQY+XuDSS+PjPSYiosbApS4iIiLyKYvF4nL3c3BwMKKioprwiuox8CEiIiKfsVgsePnll90eN3v27GYJfrjU5QdmzJgBQRAgCAKCgoLQpUsXjBkzBm+99ZZH2/JXrlyJyMjIxrtQIiJq9Yz2uWuufnjM+DSh5kz9jR8/Hm+//Tbq6urw+++/4+OPP8a9996LdevWYePGjQgM5B8FIiJq+1rNt93ixYuxYcMG/PzzzwgNDcWwYcPw9NNPo0+fPvIxf/zxB+bMmYP3338f586dw7hx4/DKK6+gS5cuzXjlds2d+gsJCUHXrl0BAN26dUNKSgouvfRSXHnllVi5ciVuv/12LFmyBG+//TZ+/fVXdOrUCZMmTcIzzzyDDh064PPPP8ett94KoL7w+JFHHsGjjz6Kd955B8uWLcP+/fvRvn17XHHFFVi6dCliYmJ8/jmIiIgaotUsdX3xxReYNWsWvvnmG+Tk5KCmpgZjx47F6dOn5WPuu+8+bNq0Cf/+97/xxRdfoKSkBFOmTGnGq67XElN/V1xxBQYPHowNGzYAsHdLfvHFF/HTTz9h1apV+OyzzzBv3jwAwLBhw7B06VJERESgtLQUpaWleOCBBwAANTU1ePzxx/HDDz/ggw8+QFFREWbMmNFkn4OIiMioVpPx+fjjj1U/r1y5EjExMdixYwdGjBgBq9WKFStWYPXq1bjiiisAAG+//TYuvPBCfPPNN7j00kub47JbvL59+2LPnj0AgOzsbPnxxMRE/P3vf8ddd92FV155BcHBwTCbzRAEQc4cSW677Tb59z179sSLL76Iiy++GKdOnUKHDh2a5HMQEREZ0WoyPo6sVisAoFOnTgCAHTt2oKamBhkZGfIxffv2Rffu3ZGXl6d7nnPnzqGyslL1y5+IoigvXW3duhVXXnklunXrhvDwcNx8882wWCw4c+aMy3Ps2LEDkyZNQvfu3REeHo6RI0cCAI4cOdLo109EROSJVhn42Gw2ZGdnY/jw4RgwYAAA4NixYwgODnbaddSlSxccO3ZM91yLFy+G2WyWfyUkJDTmpbc4+/btQ1JSEoqKijBx4kQMGjQI69evx44dO/CPf/wDgOvlt9OnT2PcuHGIiIjAe++9h++++w7/+c9/3L6OiIioObSapS6lWbNmoaCgAF9//XWDz/XQQw/h/vvvl3+urKz0m+Dns88+w48//oj77rsPO3bsgM1mw/PPPy8PX127dq3q+ODgYKcREj///DMsFgueeuop+b59//33TfMBiIioWbjapSytyNT/HI7y8ih06mSB2VwlP95c459aXeAze/ZsbN68GV9++SXi4+Plx7t27Yrq6mpUVFSosj6///67U02KUkhICEJCQhrzkluEc+fO4dixY6rt7IsXL8bEiRNxyy23oKCgADU1NXjppZcwadIkbN++Ha+99prqHImJiTh16hQ+/fRTDB48GGFhYejevTuCg4Px0ksv4a677kJBQQEef/zxZvqURETU2IzuUp42bRr+979YPPaYGTabAJNJxMKFv2HKlJMICgpCdXU1SktLm7yLc6sJfERRxN13343//Oc/+Pzzz5GUlKR6PjU1FUFBQfj0008xdepUAMD+/ftx5MgRpKenN8cltygff/wxYmNjERgYiI4dO2Lw4MF48cUXMX36dJhMJgwePBhLlizB008/jYceeggjRozA4sWLccstt8jnGDZsGO666y5kZmbCYrHI29lXrlyJv/3tb3jxxReRkpKC5557DpMnT27GT0tERHoa2lPOaBnDmTOdMG+ePegBAJtNwKJFcbBa16oyP0DTdnFuNYHPrFmzsHr1avz3v/9FeHi4XLdjNpsRGhoKs9mMrKws3H///ejUqRMiIiJw9913Iz09vUXs6DKa0muM1N/KlSuxcuVKt8fdd999uO+++1SP3XzzzaqfX331Vbz66quqx66//npcf/31qsdEUfTuYomIqNE0ZU+5wsJAOeiRiKIJ5eWdnAKfpqwJbTWBj/RlO2rUKNXjb7/9ttwz5oUXXoDJZMLUqVNVDQxbgqioKMyePbvFDm0jIqK2ryl7yiUl1cJkElXBjyDY0KlTeYPP3RCtJvAxkkFo164d/vGPf8i7kVoaBjVERORLLXkKelycDc88Y8XcuREQRRMEwYZJkzY7ZXuaWqsJfIiIiKhec49CMuKGG87it9/eQnl5J3TqVN7sQQ/AwIeIiKhVaimjkPS2q0vM5qoWEfBIGPgQERH5KXdBizs7dw7Bpk0TVUtZKSm7Gu39fIGBDxERkR/yNGiRSLuPrdZw+fWAfcfWpk0TkZx8EGZzFaxWK2pqahr8fr7GwIeIiKgN8CSb4i5oKSsrUx3vWCSdmZmJ7duD5ddLlNvV16xZY/j9mrKLMwMfIiKiRtbYu6+MZlOkAKO8PMpl0LJhwwan186ePRsA5IJqqzUcgpCtOo/ednW99xs+fDpGjWraXc8MfIiIiAzwNnhp7N1X7rIpSlJPuaKiWrzzjmc9dhw/u9lchUmTNjsFXFrZpk6dLBAEmyr4CQgA0tKi0NQbzhj4UIN9/vnnGD16NE6ePKmak+ZKYmIisrOzkZ2d3ajXRkTkCw0JXhp795W77I2jqCh7sLF8OXDnnUBdHQz12Dlw4IDTYykpu5CcfNDtdnXHICkgQMTrrwtQjNxsMgx8/MCMGTOwatUq3HnnnU6DR2fNmoVXXnkF06dPNzTWgojIHxkNSkpKSpyOdayXMVKLYyS7JC1baWVTlNkbvfqZrCxg3DggP9+C7dtXua0L2rZtm+bjRrerK4Oku+++CqmpXdy+pjEw8PETCQkJeP/99/HCCy8gNDQUAPDHH39g9erV6N69ezNfHRFR66IXvGjVxigZqcXxJLskjULq1q0S8+ebUVcnICBAxNNPV+KGG653WzsUHw8EBFSjoKD+MzRky7nRnj5xcTaPzutLJveHUFuQkpKChIQE1X+UGzZsQPfu3TFkyBD5sXPnzuGee+5BTEwM2rVrh8suuwzfffed6lz/+9//cMEFFyA0NBSjR49GUVGR0/t9/fXXuPzyyxEaGoqEhATcc889OH36dKN9PiKiprJz5xAsXZqNVaumY+nSbOzcOcT9i6Bfi2O1hquO82RpLCoqCrGxsZgzJxJFRQK2bQOKigTMmROJ2NhYj2uGPP1sVms4CgsTYbWGe31fmhoDn2ZSXAxs22b/Z1O57bbb8Pbbb8s/v/XWW7j11ltVx8ybNw/r16/HqlWrsHPnTvTq1Qvjxo1Debk9ZXr06FFMmTIFkyZNwu7du3H77bfjwQcfVJ3j0KFDGD9+PKZOnYo9e/ZgzZo1+Prrr+UdAURErZWR4EUZDCi5qsVx955a53MUHw+MGgXDdTMWiwWlpaXyUpzRwEyiDHReeCEbGzdOcnptcXGsoWtvSlzqagYrVgAzZwI2G2Ay2QvMsrIa/31vuukmPPTQQzh8+DAAYPv27Xj//ffx+eefAwBOnz6NV199FStXrsRVV10FAHjjjTeQk5ODFStWYO7cuXj11VeRnJyM559/HgDQp08f/Pjjj3j66afl91m8eDFuvPFGuXC5d+/eePHFFzFy5Ei8+uqraNeuXeN/WCKiRuCukNjVUpa7WhwtjdX0T2s5Te+z7d3bD/367VUtXTkGSVp5FFE0YcWK2zWvXVn31NSDVBn4NLHi4vqgB7D/88477QVmjV3d3rlzZ0yYMAErV66EKIqYMGECoqOj5ecPHTqEmpoaDB8+XH4sKCgIl1xyCfbt2wcA2LdvH9LS0lTnTU9PV/38ww8/YM+ePXjvvffkx0RRhM1mQ2FhIS688MLG+HhERD7jWFwsfVG7Cl7cbSv3ZPs34Nk2dU9pLadpfTZAxCefjMeWLWPlwMVqDcdPP/V3CpKcibrX7lgL1ZSDVBn4NLEDB+qDHkldHXDwYOMHPoB9uUtacvrHP/7RKO9x6tQp3HnnnbjnnnucnmMhNRG1dI7ZkPqC3XCXwUthYaLbbeWutn877r5yl10qKyvzabbE8bMBIgBBft9Nmybi7Nl22Lo1w+l5OxsEAeefs8ExC+Rqi31jD1JVYuDTxHr3ti9vKYOfgACgV6+mef/x48ejuroagiBg3LhxqueSk5MRHByM7du3o0ePHgCAmpoafPfdd/Ky1YUXXoiNGzeqXvfNN9+ofk5JScHevXvRq6k+FBGRDym/hPWWmrSCF3dLWVOmTFFl2ZW0Ahh355OyJr7Mlkifbe/efvjkk/Gq50TRpAh6AHvQYw9+pHsj3ZegoGp5mUvr2psTi5ubWHy8vaYnIMD+c0AA8PrrTZPtsb9fAPbt24e9e/ciQLqI89q3b4+//OUvmDt3Lj7++GPs3bsXd9xxB86cOYOs80VId911Fw4cOIC5c+di//79WL16tVP/n/nz5yM3NxezZ8/G7t27ceDAAfz3v/9lcTMRtSquin3N5irMnHkB5s69HlOmTAFQnzERBPvfbB2XsqKjoxEbG6v5SytwcXc+iS+yJcoCarO5Cv367ZXft57jMhgACBg37mNkZy9FSsoumM1VSEo6jPj4UkPX3hyY8WkGUtOogwftmZ6m7lwZERGh+9xTTz0Fm82Gm2++GVVVVRg6dCg++eQTdOzYEYB9qWr9+vW477778NJLL+GSSy7Bk08+idtuu00+x6BBg/DFF19gwYIFuPzyyyGKIpKTk5GZmdnon42IyFfcLTXl5ORg9uzZiIuLk5/3ZClLj/I45fmCgqpRUxMiBycSqf7I22UvvazWpEmbsXnzJNhsAkwmEVdeudUh42MPaBwLn43ci+YkiKIoNvdFtCSVlZUwm82wWq1OAcIff/yBwsJCJCUlcWdSI+O9JqLmUlpaiuXLl8NqDcfSpdlOxb5jxuRg+PA8AMDMmTMRGxvr8yGkFosFJSUl8nKW0d1dRpe9XH1GQbAhO3spzOaq8/VNnXDllT3w669fNtouM+k+NoSr728lZnyIiIg0mM1VyMjYipycMagv4hWwdWsGBgwoUGUwfL0jKSoqSg6kPNnd5Rh86QVkUpbIXVZL+vXrr/Y2KA3N4jSkK7SvMPAhIiLSERdXCvXOJde7kxqDJ/11lIyMvvCmt5Cr2VyuApvGyhZ5ioEPERGRDm8Cg6a4Bq3+Oo6MFD172lvIFVeBjbusldH6J19g4ENERKSg/BL2NjDQWmKyWq2oqakBAAQGBiIyMtLpfV3t7nLVX0cKICoqKjyulTFSQO2Ou8Bm0KCpmlmr4cOnY9Qo3y8VusLAxwusB298vMdE5K3iYnuz2N69gdDQ+gCkpMSEwsJAJCXVytPBtYKNs2ejkJh4K374YR3M5iqXdS1Wq9Xp/SsqKrB27VrFMcbrWpTFyVq7u/T660hLb2vXrsW0adMQExPjdG5X12E2V+HQoV6K4MWGYcPykJaWr3nNjufSW44bMOAaDBtWjZqaCM0edmlpUWjCmAcAAx+PSH1vqqurERoa2sxX07ZJ/6Ny7DVERKRFyrCsXh2KefPM8hbsiRO3IyVll8tlGKnHmPr13SEI2fJxyroW5Zf+mjVr5GtQBwP2x/TeVy8IUWaJoqKiMHv2bFRXV6OsrAwbNmxAv357sWXLWJdLb1LQNW3aNPkxd/U1WrO3cnOHIzc33SkA0jpXcvJBzSXBgoIPcPSo/XVLlszBnDkdUFfX9D3slBj4eCAwMBBhYWE4ceIEgoKCYDKx/2NjsNlsOHHiBMLCwhAYyD+iROSaVMRbvzXbvgxkswnYtGkiYmKOuVyGOX78ONauXev0eq3dU3oBhF4woPW+yrEP7op8HbNRniy91dbWAjC2K0wrY2NnD4Dy8tJdfqbs7KVur2vatCpMndqh2XrYSfit4gFBEBAbG4vCwkJ5wjk1DpPJhO7du0MQBPcHE1Gbo1yucvcFKWVJ9JZbjh7t7nLLthQguNvarRdA6AVWU6eu1zyfsgmg0cGjWsteR4/GAxCQkHDU5f1x9bmk54OCzmkUUKuPd/WZyss7GdrqHh/ffAGPhIGPh4KDg9G7d+8mHajmj4KDg5lRI2rFPAlcHK1YAcycaa8HMZnsY37GjXN/Pr0dWAkJRwztzHK3g0svgDhyRDuwAkSNYMI5uDCyPT4qKgqZmZny0pon9Th6n6ukJA7//OctcoZm0KA9+OGHQdCbZiWKJhw/Hg3HAaQmkyjfI1db3VsKBj5eMJlM7CZMRKRDK3A5P+7PiRQgdegA/PabFcHB1Zg5Mxo2m7RcBdxxh32zgygKLs+ntwwkzY1ytzzkbhlJL4Do3l07sEpIKHY632WXfYWvv77cq+3x5vOFQ3r1ONJylLRsFhQUpPu5MjK2OmWe9uwZhNtvfxN79/ZHbm46nAMgEV9+ORr2XWX24EcQbFi4sARAyw52lBj4EBGRzxQX1wc9gP2fd95pz9g4ZmqUAZL9y9QM+xeqY8PA+p/t5xNx0UXHkZgY6FQDo7fcYrTjsKvjvAmsUlJ24ezZdsjJsQcZX399OQYN2oM9ewZpBldG5m7p1eM4LpvV1NTgpptuQlhYGABg4cIT+OGH0ygo+EA3e1VTE4yxY7ciLS0f+flpyMtLd9pCb5/GLmLq1LVISCjG6NFDsW1b/Xn0CrelzybxdrZYQzHwISIin7BYLPjmG8BmU3+Z1dUB+fkWhIbWF+s6Bkj1X6qOX7LO6uoEvPTSR0hKOizvyFLSW24xugzj6jhPAyurNRxbt2ZAyp5ImZWsrDdRUxPsFFxJs7kA+64sZa8faeu8dkNDyOeXls2kc0lb5GNjgcREi7zLytWyntlcJQdAP/3UD1u2OG+hb9/+DMzmKmxTRD2udo8pP5vE6GwxX2LgQ0REDabcWSUIzkMvt29fhYKCKjlQ0QqQ6gmKL2UpA6QMhEQEBdnrLJuj3tKTwMpVZiUpyfUmGWUvIMf3mTRpMzZunAjH5SitZTO9LfLdulWqtv4/8MBBhIUpexTZMzd6S3mO7+PJTDGta2sqDHyIiKjBpC8wd3Uyyq3jjgGSRBBsckbk9On2WLfuOscjUFNj3+VktVrl2hdvSbUwjcHIyAtPGhxOmzbt/G7XNUhOPqhajjLaVVrKsMyYYcFvv70gZ6mUQY8ycwPYkJx8CL/+muzyfdztimspGPgQEZFPuaqTkbaO641hUNbNADgfIOkHDjU1NYbnPGVmZjoFSb6cEaVcmiosLEROTo7bQNDTBoeRkZGIjY3F7NmzUVJSArN5A9LS8r0aN1FdXa2ZpdIqnj50qDfsu8e2O+0ek65Va0u89O+qJUxllzDwISLycw3Zeq7HSD2N84yoYKcvbyMN+5TLN3rcFdK6e/2ZM2fkImF357dYLMjJydH8nI71P942OIyKilJl2ZTb2xs6+dxVM8O8vHSkpeXLjzgGblqF2768Nl9g4ENE5Mc82XreGJQBkl72w8iOrIYWyCqDFmUApBwseubMGafholoBlfNwUu1sh97SkKsGh8qdUVKxs7vamqKiIhQWFsrZNsA+iUD5s/I6XTUzdNfQUVm4HRRUjYqKjli3biqUxd1GGjY2JgY+RER+ysjW8+JiIDfX/vthwxqv6667L29vGuMpgxgjA0qlAm3lNSkDFr0AxtXOJFe7nLR3Z7lucKi1M8pdbc2WLVvc3iutzI1WM0PlMuPRowm6hdsnT3ZyWC7TvrbmwMCHiMhPHTignpYN2LeeHzxoD3BWrADuuAMQ7f0DIQjAG280TkbI14WxyiDG3YBSKWhRZmqMLOFI59BbIjMSzLlrLAi4b3BopIDaFb3MjdTMUFk8nZGxFeXlUSgoGHB+m76aINgQFFStG/R4em2NgYEPEZEfslgsiIiohckUI3dJBoCAABHh4cfx44/BuOOOjnLQA9gDIL1mhA3l6Ze3lH0pK9Puoi8FI+6CD62gRes1P/wwGNKWer3lGinDJC1HGQnmtJbxQkP/cArUAKCwMFGzONhdHZQyUwXYMzUAkJBwFGZzlaFmhuXlnVBSEqcIyrR6Ldnft6YmxGXQo7w2XxaXG8XAh4jIzyizIVdema4qpJ0wYTM2b96FwsJEiOJ0p9cqM0JKRr/A9LaOezJ1XJmNeecdEc88U4EbbjirWW/jTSZJu7jXsZu0+hyOy2SA+2BuypQpAOyN/ZRBSseOJ1UNDg8d6nV+arx+cbBzobi9QPzQoV6Kfj+OPZHsM7769fvJbTNDAPJcL637AQDXXrsOAwbs092JN3XqOiQkFOPWW8cgOvpidm4mIqKmIWU5du4covgbvH0ZQ11/IqrGRQD2gZSieBAWSyfVl5bRnVWuGClidszG2GwC5s6NwG+/vQWzucqp3sabZSDt2ht1hsPxHHoFzcqlK8dgLjo6WvUarSW5Tp3KDTUFlN6vpCRW9X72jF39tnS1+hlfrsZoAK52etXfj4SEYgD6QeyAAfvkzx0bG6t7rsbGwIeIyA9p9WrZujUDAwYUKOpPNqm6AwuCDRMnbsaXX+7Cl186F/Ua/du7FCBVVFTgxIkTqpEHekXMo0ePxrZt29xmcBwDEE8ySa5e4y4wUHIMYDIytiIursTljDCt5bWNGydixIgv3Was1M0G6wM0V4GK4/mUu7FuvDENAwZcDOBiWK1WrFmzxmUwqHU/jM5Gaw4MfIiI/JAn9SdHj9rXtRISilVfYN6OG5ACpNjYWERGRqoCHz0dO3aE1RqO06fDIE0Gl7jL4HjzJaz1miuu+MztObQCmK1bM5CdvdTpNRUVFee7MOtlVEz48stRcJVtcg5g9WecuaIcozFgwDinjIxeIbargE4viG2Ouh4lBj5ERH7I6BKQ/ctrn+qx+mUVE5pqxeLdd0PkOhd7IGAPfoyOafBmO7zja4ycw1VAKT0vFSgrZ3G5GjxqD2a0syvulqCMMrLTymgAqdUhW9JcdT1KDHyIiPxMRUWF7hIQUL97CFB/UQPOhcWN1fDQcSfS0qW9VFkNQRAxdepapyyUN6TdWBUVFV6NVggODpazX3oBZUlJnFwcrFWg7DzCw5GAceM+Rr9+e1XX5Tpgcj3lXnl9RoJH6Tq1jpsyZQqio6NbRGDjDgMfIiI/YrFY5EyD49/glbuH7F+aIpRZleTkg06FxQ3d3q617OFYI5OenqeZRWnf/ozul7XR5ZQzZ85g+fLlivfV3j01ZswYhIeH63ZuLi21zxYz0ptHr0A5Ofmgqn2AkiDY5KBH2g329ts5TgXUzqRlQa0p9zZce+06l8Gj0fsYFxfX4gMeCQMfIiI/olX8qzV+QPklKX1RT5263unLVW97u1HK3WAVFRUoLgYee6yvvJtMFE3IzU3XzKIEBenXGBndZWa0309SUpLhnUiOAaW7eqoxY8YgJ8cexDjvvAKkHXf1W+dDsWZNV7z2WjakwDQlZQd27LjY4XUCrr3232jf/owc2OrttHK8LxJfzEFraRj4EBE1g8YYDNoQ7mpFpCyQYwAiNTy0WAK9/vKLioqSM1GFhYmw2S50OMKE9PTtcgdhQIQomrBixe1O08wLCirkVwUHB7sNVqRMjbvgpKKiwuW5HDMjjktCruqpwsPDAbjaRm8vkA4N/QMAsGhRT9UxomjCzp2p0Cr6VmZzXNXouFqqak1BjREMfIiImlhzDwbV4rpWpP5L1HEZR2p4CLieWeWOuxqZtLR89Ov3E95883Y4DrxUTjP/5z/1R1J4+vmVwcnatWtdnksrM1JWVqa5HKVXU2M2V52fkSV1iVZvTbffd0ArKySKJgwbtl01XkLvPbSWtZq7t05TYuBDRNSEjAwGbQ5atSnSl6zyS9RV1sDb7e3urkN6b62lIFE0IScnA3rTv41ek1ZxsSgCBQUDEBdXik6dLCgpKUF1dbXu0o7jhPcNGzqqOi672/5ttYZjz55BqK/Dce4WrUcKDqXxEp72zmnuLeZNiYEPEVETcjcYtDk5BjUAVF+iyh1PSUmHff7+0vmTkw8iO3up0xe4XlbG05EUepyLi03IyRkDaRv5oUObkZJin44ubdl2nPouNfyzWsMVheL1/Xyyst48H8DVj4I4e/YsAGPdkbUzPursjqtdV1paW41OQzHwISLykjd1Or1725e3lMFPQADQq1fjXKOntHrXAK4nnPvC6tWhbudRGZ1mDrgufNajXVysPZh0zZo1Lu+JXs2QtFSnPD4iIgKA61EZynYDjjve0tLy3QZ5/rSU5Q4DHyIiL3hbpxMfbz/2zjvtmZ6AAOD115s/2+OKux1PDWGxWFBUVIt582JUO7n0zu9umrlUDCwVPpeVlRnOaLirc1JmkqzWcNU4D+maY2KOIT6+1GWhsnT85s2TcN99/QDUAjDeHdmbURD+tJTlDgMfIiIPeVunI9V+XH01kJ9vQlFRIBIT7UskpaVNs+TgzRegNxPOjZAmmtt3cqknwbs6v2NWKiVlF2JijmHFits1grOlmsNLJcr74Vznoz8qIj8/DVr1Rm++eTsmT7ZncpxrptTH22wCVq78WrVsaKQ7srsO0o7LWv62lOUOAx8iIg95U6cjfck7KihQ/9yQnVFGOO4+Kisrw4YNG1y+xpsJ50a428ll9PxWaziOHOnh0fBSSVRUFDIzM+W6nI4dT8rDOktK4px2YgFAQUE/5OYO07ma+myVMogJCqpWBWauPqM34zWUuKzlGgMfIiI3HGt5vKnTMbq7yNVx3tQUab3G08DKmwnnjXV+x5ESepPJAWPBk8ViQU1NjWa9zvDheRgwoECns7U+ZcClDGIa8x6ScQx8iIhccKzlWbLkFKZNq8Izz4Ri/nwz6uoEBASIePppKwICzsJiaZxlBW9qinzZL8jIEkxwcLDXjRldnX/YsGHIzc11CHJsSE3dgZ07Ux26TWsP89Ty448n8fzzmxEUdA6bNmktkx100dlan17A5c2UeG+wnsc1Bj5ERDqKi4E77oC8xdlmA+67LwyHDy+H2VyFe+4Jl7/ETp2qwvmRTz5frvKmpsjoazz5knQ1oDIuLg4ffBDlNtBSBkYBAdrnt1rDVYNS33uvBEFBsQ6Bh0ljRAOgN8zTkT0ojDxfW6TueAw41xi5n4JubFp8Q5exXMnMzETnzp1Zz+MGAx8iIh3LltUHPRK9ZQwl5XKV9EUfEeE+U6DHm5oio69xrPmpqKhAba19l9HJkyexbds2t9cXHR2Ns2ej3AZajhmoZ54JdTqXY1ZHmhnmareVknKYp+OEd8C+tJWfb8Mdd0TLu8jsQY/rZTLXO75suP12e11QY2Zypk2bphqQqsQCZuMY+BARaSguBpYs0XrGeNGt+os+BhMnDvGq9403NUWevEb5haksii0tLTUU+FRUVOCnn4Jhs6m/eOvqgPx8C86dq0BFRQfMnBkDm80eXNhswLx5Ztx7b7gcpBw9mqDaIq7MwmjV8DhSZlsca3a6davEjBkW3Hbb9vOPO57H9TKZ3o4v6dj4+FLNaxo9erShe+gqqAEY2PgSAx8iIg1aGRMAGDYsz9Df6J2XmgSvet9YLBYEBFR7VFPkzWsaYu3atbBawyEI2U67lrZvX4WCgirNLes2m4Dy8k6qqeGuCdBalgJsuPbadfJATq2+Q3PnmhEbe9DN+9jPn5X1pmYg47hLy0iGp2PHjm4+k11kZCR3YjURBj5E5Nf0inGjo0/CZIqUMxQAYDKJSEvLN3RercDJ0943jlvgjdQUefMaX3C3M0tvy3pQULVHRcNZWW9i797+TsM4BwzYJx+n3XdIwBNP/GHgfUyoqdGve/K0RicoKMjQcSxIbjoMfIjIb+nterJYLNiw4WVMnKheLpk40fj2Y62lJqluxHFLtpLyC9Bxa7uRmiJvXqPH0y9jV7uWzOYqzQnlNTUhLoIRGwQBquPj40sRH1/qchinvabHOTO0b19/jcc93wLvic6dOztNbXfEZaymxcCHiPySq11Pp06dANCw7cfx8cDNNwOrVtU/lplZjW7dbsO8eWbYbAJMJhHPPGPFDTfYh1S2tC9Ax8JnLdJQToleoLVz5xDFTC37KIaUlF3nl8icM0FTp9qXrgDoBlKudk4NG5aH3NzhqsdF0YRhw7arskUXXrgPe/deCCM7sowYO3YsEhMTAbS8f59kx8CHiPyS3q6nHTus2L3b/Re5KxUVFSgpMeGdd2KgzCasXRuCtWtDFAW+AubPj0RmZmSLndXl7ovbPp08UTN7JXHugWOfVD5gQIHuEply6cqbQCQtLV8OcCSCYENaWr5TtsiegfNNb53ExETW6rRwbTLw+cc//oFnn30Wx44dw+DBg/HSSy/hkksuae7LIqIWRG/XU3z8H9i9u2HnXrt2rW4xryN329JbMvtSYQxstukuJ7a7m/XVGI393NUcGckeTZkyBYGBgVi7dm2Dr4dajjYX+KxZswb3338/XnvtNaSlpWHp0qUYN24c9u/fj5iYmOa+PCJqAVztegoOPm74PI7DIAH70s/y5f/D6dNhcK4nqa9Zkbjblt4SSRPVldvTld2OAahqmLRqbhxrafSCD1f1UO40NKCKjo72uM6JRcotX5sLfJYsWYI77rgDt956KwDgtddew4cffoi33noLDz74YDNfHRH5irejEdztenIzr1NFaxjk6tWhinlOIhw7+gKQsxBNMerC19xNVM/PT3PacWWnzHYZq6XRmp8lZZS0+t441hsBDe+UrKxzUjZ3VAoKCoLZbGZNTyvRpgKf6upq7NixAw899JD8mMlkQkZGBvLy8jRfc+7cOZw7d07+ubKystGvk4gapiEzqIzuevJGcbG9KV99czwBgiBi6tS1co8ZAKoshDdbzBuSBWko6f6VlMRCa0dUbm46pMyOlAWyd79WHgc5M6RHqxfPhx9OwsKFaUhMDGzSAEN6L9butA1tKvApKytDXV0dunTponq8S5cu+PnnnzVfs3jxYixatKgpLo+IfMCbuVVaGiN4sBdMq+t4RNGE9u3PGKopcQzKtJZNtLIgyuNcLbUoP3NDlmSs1nBs3ZoBdRZHPB/gONfyODLSz0irLqiuTkBVVRfoxTxcZiIj2lTg442HHnoI999/v/xzZWUlEhISmvGKiMgVb+ZWOXK1hOIJxy9ae8G0qAp+GtIXxnE7eUmJCY89FiNnlETRhM2bJ+HsWUH3NZLVq0Px2GP12+j79xe8mtReUVGhM7BTgNY4CftWdcBVfY9WrZR9V5z6Xrqrh4qKisK0adNYjEwueT81rwWKjo5GQEAAfv/9d9Xjv//+O7p27ar5mpCQEERERKh+EVHLJe3GUvKkQLikxOS0hLJp00RYreEeXce0adOcllvi44GFC3+DINgjM3d9YaQp5K7eOyoqCrGxsQgODkZhYaBTRslmE/DEE6dgsVicXiP9qquLxbx5kapt9Hfeac+eKRUXA9u2OT8usVgsWLt2rdyF2R1BsCE9PQ9jxmx1uicA5M8u1Uopf6WmdsHy5YI8wT0gAHj9dffBrat5V0RAG8v4BAcHIzU1FZ9++imuueYaAIDNZsOnn36K2bNnN+/FEZFPxMfba3ruvNOe6TH6hSgpLAx0ubXaKMddohaLBdXV1Rg9+ldYrWvd7iTSyjrpkQqKteZhAcBrr4UhNHQ5FiyYrjm365tvoDtANDTUHigZqZuSskhaW8Wdl7nsj9mbCNqQmroDSUmFSEgoxqFDveQCcGmA6Jw5zvfy6quB/HwTiooCkZhYi7g4G0pLm64xIJfO2qY2FfgAwP3334/p06dj6NChuOSSS7B06VKcPn1a3uVFRK2XL74Qk5JqNTsFOy5H6S2/FBYGok8fE6Ki6odPOu4UM5tdN93TKtzdtGkiFi48Aa36WWXAkZ7u3JEYsAduRUW12LMH6NABOHXKPm9swwbtgEk5QHTKlHswc2ZHj+qmHLeKKweNOgdCJuzYcTF27kxVja2QPvv8+WZkZtrfy/FeSgoK1D/rFYIbDVZuuukmhIWF6T7PHVptV5sLfDIzM3HixAksXLgQx44dw0UXXYSPP/7YqeCZiFoXb78QHbe9x8XZXDa2kzhuVXeVETEy90pJr6FfUVEgUlPVxxYXA998EwyrNRxmcxXS0vJVO6cAexBTUhKHSy6JUdU/mUyRmDhxCFJSdmnOyZI+87ffnoTNpp4iXlcHrFhhxZQpNgwcqD1hXFmkLQVCR4/G4/jxGHz55Sin40XRhJycDDhWWdTVCXKNltF7qXeckTEbDGr8W5sLfAD7//i4tEXUtnjzhegYrCxZcgpjx1YYamynzBz4aieZRG9SeWKiukdM/fVHQRCy5SLsyZPVgVt9UONc/7Np00ScPdtOc06W5KefPtBYQhPx6KNmLFpkwwsvnMK993aQn9HbEafM+jhuda9ncvrsvm7iyKCGXGmTgQ8RkVawct99YcjO/kheitIKeDIzM9G5c2fVl6cvdpIp6Y1TCAvrDYvF3qPG8fqVnZEdAzftXVb1r1MuLTnOydK6HmXQIoomzJnTHlOnAr//bsKWLRlyxkm5I855HpcAreBHHajZmzi+/rrQKkd2UOvEwIeI2iStYMVIEbPZbHbKGOjN9WpIlkIr67R2rT0Lc9NNN2HXrkingmTl9TsGbo5ZlHrOj2vdh5SUXYiJOYY337wdWktRs2adwaZNMRDFLqrzSMGY3hb3/v1/xN69/Z1aBwwYUIDy8k6YM+dPuktpRI2BgQ8RtUlawYo3PXVczfWSRk0YNXr0aGzbtk3+WS/r9O677+oWJGtdv17GxjG74u48FRUdod3lRMTGjdqFwFIQpbd8N3ZsDsaOzVEFeKNHj0bHjh0RGBiIyMg/UFpaCoC7qKhpMPAhombjzbwtox2XpW3v9TU+IiZOVBcxuzuXu7le0qiJzMxMQ9fesaNzZkPvGtxNF3eUnHwQU6euByAiMrICNTXBcqARGvqH6jzp6c4jfHbuHIKNGydqnFmvVsdOCqI8mYauDP4cGb2XRN5i4ENEzcKbeVtGOy5L294rKkIBmKH1xW3kXEbnetXU1Lj9vN58HqPTxY2eJz8/Dbm56cjNHY68vHSn+hznbI/jdHk1QRAxf/6vGDmyHwBg6NA6JCcv9XoaOuD9vSQyioEPETU5b3ZJ6XVcTk4+qPqCraiowNq1a1FcHIsVK26XdzpJO5yk4Zh65/JGYKCx/5UGBQXJv9fr5eP4edwNUTV6HgDIy3MeIKpfnwNcffWH+OijCU7PSVmjtLR8tGtXhfz8+ufc9TByx+i95LIYeYuBDxE1OW92SR092s5Qka4gCIplG+3jAUH3XN6IjIzE7NmzUVRUi8LCQCQl2ZsqKgUHB6sySHq9fH76qR/6999rOHjQO4/jfXH1ft27H9Gsz+nT5wACA5W1QzYMG2YPeBprKrx0L9mHhxoLAx8ianLe7JIaOtTsNADUZBKRnv4nDB1ajbg4G4KDg1FUVKuzbKMu6jXSvdkTH3wQ5XbpTiriBbR7+QAitmwZj5ycsZpLb1r1QJ06WeC4JCUINlRXByE391J0734Y8fGlLt9PEGwYNGgP9uwZ5FSfY3S5zZcY1FBjYuBDRE3KyC4prXlTjq8RBBGiCNx1V0eYTCKWL7dPG9+2zaK5bONYbKtXiHvmzBmPP1NJicnjpTt3vXM2bZqImJhjqKkJQadOFqeREHPnHkRY2L9w6FAvqGuYbOjWrRj/+tcNkHrpDB78A/7f//uvy/fbs2cQsrLeVBVFK6+1KQIeoqbAwIeImozRXVLKsRNarzl6NB7r1l0LKcthnzYuYtw4QXMWF2BDVtabiI+vz7joZTLeffdd3TlQeuxT09WPaS3dOdalSNfw00/9sGXLeNVzomg6X6PkPPtKFE147rneuO222PPZrfrARxCA4uIExWMCfvhhMC6++FtFr5474FjwLYom1NQEIynpsOHPTdQa6ZfrExH5mNYuqaSkw07ZBOVxWq9p3/4stJrs7dhhRXX1r5g0aTMEwR6JCIINkydvVgU9nry/EWbzcZhMouqxgAAR4eG/w2KxALAXdO/ZE4WRI290uob+/ffK11tPVBUsO35em03AkSPdNet2nHexCTh6tDsAoKYmRON5AGjYUh9Ra8GMDxG1Olr1KiaTiC++WHG+LgVe16VYreHYvj0Yl14KnDzZDoWFiW57BuXmrsXEieot5RMmbMZ779l3TCUlXYvHHmt/vv4nWR4cKnFe9nK9jRywB3R6Rcn2nWzK4EZEQsIR3XsHiBgzZmuLWM7ibi1qbAx8iKjV0WqW98ADBxEW1rC6FKkfzgsvmCAIANARojgdJpOIZ56x4oYbzqqOLysrw4YNGwA4L50dOtQLS5dmK+pp7JTb6h1HRkivDwqqlpe56onnf9XXJMXHl2LQoD344YfBkOp5Bg3aAwCqxwYP/kHOeGndu4yMrRg+3LmpYWObNm0aIiMj5Z+5W4uaAgMfImqVHAMNZdDjDed+OPXP2WwC5s+PRGZmpMsO01KwpT2ws57ezDBlsKY9gkJEevp2eTu51RqOH34YBGU9z549g5CdvRQXX/wtjh7tjoSEI07LfM2xUyszMxNms1n+mUEONRcGPkTUavlyt5GrCeeAZ9PY3Z3LyNZ5raGhomhCXl460tLsHQPz89Og16soKemwZl2TxJf37uqrr0aHDh1U2RslBjnUkjDwIaJGJ83kiohwv59CWWNjdH6XL2jXvtSzFysfh8US6PZLXKu3jnJwqKuZW0r2QmT9Rov2TsyOmq5IecqUKYiLi2NQQ60KAx8ialTqmVwxToW9SsoaG6kJ4NVXN811ahUYCwJUxcqbN9uv2912d63eOmPGbEVcXImhpSWpUWFQ0DnNQuSSkjhodZ8GgGHD8pqsSJlBD7VGDHyIyKeUE9cBx5lc2oW9gHONjdQEcNeudk127Y61LwA062Ck7e4lJSanXV/1Az/VvXUGDChwO3OrvDwKJSWx2Lo1Qw64+vbdh337+kFZx7N1awayst7U3NElLYM1xJQpUxAUFISamhoEBgZqLmFx+YpaKwY+ROQzjhPX77/feSaXKJowfPh0DBum7pWzfXswXnjBsTcPYLF0lGc3KXdRNZRUbOt4TsfaF71gxf5ZY2CzTVdNRDc6O0tJOV3dsaPyvn0XQq/ZoF736YaKjo5GbGxsg89D1BIx8CEin9CauP7CCzi/XFR/XEAAkJYWBeX3qsViQVJSrdMsLqmuBgj02RfxtGnTEBMT06BsRf2ICvWIieTkg5q1Qq6KmUeMuAGPPdZLniLv3FzQpHu+pKTDTb47i6i1Y+BDRD6hN3H9rrtO4Y032uvO5FKOpNBqAqisqzFqypQpiI6OdnrcV8szu3ef1sxkSbupPMnEWCydVMGeI6nPjnL5S3k+ztEi8gwDHyLyCa2J64JgQ2joctxzD3RncinHQ7jqL1NdXW24q29jF93+9NMHEIRshyUtG06fbg+rNVz3c1it4Th6NAEAkJBw9PzIjFqn++a4AywlZRcGDChosswOuydTW8bAh4gaTHt6unNmwpHWTCxXGYyoqCinYMlRUxTdao+YELBu3XWqYEX5OXbuHIKNGyehfinLPkMsM/MkFi2qw8KFXVWdlB13gHmT2Rk9ejQ6duwIADh58iS2bdvm9jXTpk1j0TK1aQx8iKhBXE1cb4zMRFN8KUs7rFzN6JKyOkePxmP9+mvlGh1lvY+rnV6ACRs3TkRy8lKYzVXIzvb9fevdu7dcG2WxWAwFPjExMT55b6KWioEPETWI1vR0XwY89du8TWiMjUaOyzrKHVbK7I0Ws7kK5eVn3e7i0u/kXH9cY9fqtJRsGVFzY+BDRC2WMgh55x0Ry5cDWVnqXkEN7e4sBQQnTpzA0aMiHnusryp7s3nzJNx6axz69u2Ampoap+30Wk0GHXdx6XeFbtwuy45BHYMaIsde6ERELYRzQ0MBd94JPPss0KMHcMUV9n+uWKF+XXExsG2b/Z+eWLNmDd5771unHVY2m4APPijAmjVrEBQUpHpu584hiinq9j37gmBDerp60rlUEyQI9RXMgiBi8mTf9N3RwlodIm3M+BBRi6S1PFRXB8yfL8oZGXt3ZxEXXXQciYmB+OCDKFUDRSlD5E51dTWs1nCcPh3mMntTU1MDoH531saNE1H/90cBgA2iCOTmDkdeXrpqmUxZEwQACQnFjbq0pTcwlMjfMfAhomalt3VarxGgczAk4KWXPkKnTuVYtuw+OWPjGBS5yn6sXh2KpUuz5R1a0vto9eBRd1l2VP+YVpGzvY5nn7tbQkSNiIEPETUp5Y4pqZhWWXQrjZBw3DLu2MhPImVkysujnJappKAoKemw7mDR4mJg3jyzonOyCaJow7XXrnXKypSVtXMR9DhzN6qiMbEXD5E2Bj5E1CSmTJmCLVsS8NhjZthsAkwmEf37C8jK0i+61Roaevp0e+TmpkMa5aDMyLhapqqurnYqirZYLPjmG8Bmc3x/E9q3P+MUsPzyi97uLOm97a/Vev/GotWlmruziPQx8CGiBjGaWSgra4d588yKpSjB0FKUtM3bcZt5evp2pKXlq5aRXI2KWL06FPPm1df/LFlyChUVL6O4OBaCcLvLXVmAtMTVUeMKRVx77b+RkFCMQ4d6NcrQUFc4UJTIMwx8iKhB3PWHsVqtWLNmDVatyoXN1lv1nN5SlGMDQccdXqJoQl5eOtLS8lXnczUqwp5psh9nswFz5rTHFVekK5bO1GMilAFL/ftrzdQS5SUxVyM33HHM3Ej3zR0uaRF5hoEPURvhy942njKyrOJuarm0FPXEE+F4/fVsVdakY8eTmk0Cjx6NR3n5WVWHZa1GgHr1Pzk5GXDclZWV9Sbi40udXq9f16Ou4/G2EaFj5iY2NpYNB4kaAQMfojZgxQp4vI27qQMld0tRK1aIWLhQhCh2kF8j7YzKynpTM2hat+5aKGt99DosG90hBphQU+OcQdFvQKhfxzN69GgEBQVhy5Ytrm6LSwxqiHyPgQ9RK2axWFBUVIuZM2M82sbtTaDkC66WopYu7aq5lCSK9mDEMWhSFhJrbR1X8nSHmNKUKVMAAIcOKYeS6i+LSYzMxSKipsfAh6iVkoaDFhYmwmabrnpOr3bG20DJl/SWolztlurUqRxJSYfloOn06fZYt+461XHuto5rBV2hoX+4LUYOCgpCTU2N6vVBQdWoqQlutEGsRNR4GPgQtVJS7YeR2hnAu0BJj6+XyfSWkhyDESloslrDXX5mvenqjkGXkWJkZYFxYw4SZZEyUdNg4EPUyrmrnZEUFdWisDDR7VBNV8W0QOMskzl+BsCGYcPyVNvVJVJQo1yqUn7mnTuHYPPmSXKvoIkTNyElZZf8uqCgc6ipCZGDosaeii7R6rcjYZEyUdNh4EPUBrjLXNiDlRjYbNMhCDYMGrQHe/YM8qjfTGMvkxnJvjj28snI2Iq4uBL5eKs1/Pz8rPpeQZs2TcTZs+10t63rFUT7GvvtELUMDHyI2gi9zEVBQQVmzuwqByuiaMKePYOQlfWm4TqVhiyTebKE4yr7otXLZ+vWDGRnL5Vfk5+fBmXnZOVx9Rmu+vvgqiB6ypQpCAwMxNq1aw1fPxG1fAx8iNoAvZoWAHjvvW9hs12oekzaKZWUdNjQ+T2tJ1Jy1eBQmstlhFYBtLKg2WoNR15eusYrtbehO77ekd6yFBG1bgx8iFo5x+Ufx+Ubd8GKJ4zWEznyRf2Ku89x9GiCZoCTmroDO3em6gQ/jT9Li4haFgY+RK2A1i6qiooKzeUfx+UbV8GKVqaopMSEn3/W37HVkLEMelxlrCSuPsfOnUPO1/aoCYINI0Z8hU6dTiInZwykZS47EWPGbNV9v+DgYLeF3p7gri2iloGBD1ELZbFYUF1dfX64Zv1E82eeseLqq0uxdu1alJcnulz+kWgFK1qZIgB47LGY8zu27O91ww1nUVFRoXoPX+yEslgssFqtqusAbBgzZiuGD8/TfI3W55CCP8faHmVgJJ1PGlEhFUYPH56HzMxMmM1m1WulXValperRFe7o7dziri2iloOBD1ELJBUT2zsaZ8sdjW02AXPnRuC3396C2ezZMpYyWNHKFG3cOBGCAJ338u12b+Xn27QpW3H9pvOZGWD48DxcddVVCA8PxxtvfKTKCCmvR6/54dSp6zBgwD755+HD8zBgQIFTpspsNuvutvI0S8OdW0QtHwMfIg9JmRg9vvjbvXR+vYLevXv7oV+/vV7X3GgHC6bzYyDU7+WqG7K3XH0+QMDWrRkYMKAAH330EQIC7jgf/GnXMJWUxELaoi6fQbAhIaHY6X21MlVlZWW6/86kwuySkhLDRdhE1LIx8CHygJSpcMdI92MjtDsai/jkk/HYsmWsHAR4WnOjfV7b+YxPw4ugjerUyQLABq0t6OXlnQAAy5bFylkoxxomqzUcW7dmwLF2JyNDv3bHkRTQ6P078+TfI+t4iFo+Bj5EHjBa7Oqroljnjsb1mQ1peSom5hji40s9ysroZYoAeJw9UvL0i99srsKYMVudCo+lgKu8PEruPyRRZqH0MkZxcSUeXQfg+t+Zqy35EtbxELUODHyIGsDIbqSGkjI6e/f2wyefjHd41oQVK273qgOxXqZI+RgAFBYmolMnC667Lh0dOnRAYGAgIiMjnc7n7Re/VHisNX4CgMsaJl9u1XeHQQ1R28DAh8hLrvrnlJWVAfBdFsBsrkK/fnuxZctYzZofvQ7EjjuWHBsGatW8SI85fr5DhzYjJWULAGDatGlOwU91dTUsFovXwY924bHrGiZva5yIyH8x8CHygrv+Ocrgwlf1PtKXvL1fjfst7PbX6O9YcsXd51u7dq1utsvbz6u3Rd5dDVNj9BUioraLgQ+RF4zstpL4sgleSsouxMQcw4oVtxta3vG22NbdeAhX2S5Xn1dqxBgRoT1CQo+7vkFNNWGdiFo/Bj5EXjC628pT0lZ5qSuzVkYlPr7U5fKO1ERPa5nNaCCkt+srKKjaULdorc+kbMQoCDFIT89AWlo+AxYialKGA5/KykrDJ42IiPDqYohaC3e7rVwFAnqUW+XtGRX93jVGlneqq6tVnYelQEhrd5LVakVNTQ1OnjyJbdu26Xw+eyF1enqeoW7Rys/k2IhRFAXk5g5Hbm46Jk/2LkgkIvKG4cAnMjISgiC4PEYURQiCgLq6ugZfGFFLpMyYuNpt5U3jPykYMZpR0Vve2bBhg8f1N1IdUGlpKbZt2yZ/PsdlNVE0nZ+Aru69o1xqU876Cghw1agQAOxb8q++Oh4jR4bJhdieTG33FfbgIfIPhgMf6X+GRP5MmTGRvpy1dls1ZEu1q/oa6XlX2+e9rb/RUlMTonkt/fv/iL17+2sOC1XO+lq40P6XIO2lM4kJd911ESZP3oy33hreLNvGb7rpJm5XJ/IThgOfkSNHNuZ1ELUajl+Q7rZUS1vbtWjV4ej1pikpicM//3mL7vIXYDxbZJReLdNPPw0EYMOwYdvlOp36966f9bVoURyys8Nd7kizs19nUdEJREX5Nvty0003ISwsTPd5Nh4k8i9eFzdXVFRgxYoV2LfPPgSwf//+uO2225ymHBP5A1c1N9KSjdHlJ61AKiNjq9zgD3AOaEaPHo1t27a53Y3ljmPA4aqWCbAve6Wl5QNwvxNMWjp78807oB4xUX9sUVEgUlPdd0o2uhQ2bdo0JCcnuz2OiPyHV4HP999/j3HjxiE0NBSXXHIJAGDJkiV44oknsGXLFqSkpPj0IolaIq0gwVfLT46BVH5+msugomPHjgAa3slYayinkVomADh9OgxatT9BQdVy9+f4+FJMnrxJlZVSHhsVdRJAlHwtDaXVYZqI/JtXgc99992HyZMn44033kBgoP0UtbW1uP3225GdnY0vv/zSpxdJ1BIZzUq4W34qLCyUj1eSAimrNRy5uelO59cKaHzRyTgqKsrpM+l1jnZcgrNnhOzBjyDYMGjQHrk4WhnwJScfRH5+2vnPVf9cVFSS4eskIvKG1xkfZdADAIGBgZg3bx6GDh3qs4sjaumMZCXcLQHl5OS4fb1WXUx6ep5XnY7dsVgssFqtTo8bWYIDBAiCiKlT1yIoqAb/+tf18rU7Bnxjx25FWlq+w3UaC3yM1gBxpxYROfIq8ImIiMCRI0fQt29f1eNHjx5FeHi4Ty6MqK0wuvykVwOk10xQqq3R4m0nY2UvIa1rcgyq9IK6kpJu57e9u643crzOkydPGpr3xWnpROQtrwKfzMxMZGVl4bnnnsOwYcMAANu3b8fcuXNx/fXX+/QCiVo75wJhQBSBQ4d6yXU+rmqAjCxfKbOvrlRUVADQDwqUgYTeNTkGK1pBnbSE5chdvdG2bduwbds2Q/O+GNQQkTe8Cnyee+45CIKAW265BbW1tQCAoKAg/OUvf8FTTz3l0wskam2kEQ3Kmp3k5IMQReVR9cs+ANxuQXe3fBUTEyNnQKxWK9asWaN5bWvXrpV/rwwuHK/ZkyaKjkFZenoecnOHa7y78XojX843IyJS8irwCQ4OxrJly7B48WIcOnQIAJCcnOyyV0ZDFBUV4fHHH8dnn32GY8eOIS4uDjfddBMWLFigWsPfs2cPZs2ahe+++w6dO3fG3XffjXnz5jXKNRFpcVwqkmjV6dTviBIMbUHXW77KzMx0mf3QW0KTggut5a2ffurv8pqk7fOAc1AGAHl56U5ZoKysNxEfXwoioubUoCGlYWFhGDhwoK+uRdfPP/8Mm82G119/Hb169UJBQQHuuOMOnD59Gs899xwA+yyxsWPHIiMjA6+99hp+/PFH3HbbbYiMjMTMmTMb/RqJAP1Mhbs6n4ZsQe/cubPuc66W0LSuWXm8umeP+pqk7fMSx6BMa2mOQQ8RtQReBT5//PEHXnrpJWzbtg3Hjx+HzWZTPb9z506fXJxk/PjxGD++vn9Iz549sX//frz66qty4PPee++huroab731FoKDg9G/f3/s3r0bS5YsYeBDhigno0tLuEpBQUEwm80eFc0qsy16dTpWazjS0/PkLInetHUtrq7F0y7Ojsfbgx578ON4vd9+2x5Wa7juslVDd5YRETUWrwKfrKwsbNmyBddeey0uueQSt8NLG4PVakWnTp3kn/Py8jBixAjV0te4cePw9NNP4+TJk05/QyVS0lui0mOk+FYr25KdvVQVDKgzLOoREJLo6Gh5iKjetSuzNlKdjqddnLUHiQoYN+5j9Ou31+l6BSFbM4Mk8XZnGRFRY/Iq8Nm8eTP+97//YfhwrQLGxnfw4EG89NJLcrYHAI4dO4akJHUPkC5dusjP6QU+586dw7lz5+SfKysrG+GKqaXztJjW3fF62Zbs7KVISjqseYzjCAiJq140rgI2T7s46x0vBT2+ngNGRNQctKYFutWtWzef9Ot58MEHIQiCy18///yz6jW//fYbxo8fj+uuuw533HFHg69h8eLFMJvN8q+EhIQGn5N8x2KxoLS0VPeXxWJp7kvU5G7CupFjpkyZoplZUt6TkpIS3WuQdlwJgn0p2l0XZ63j09Pz3F7v8OHTMXPmTEyZMkX3WoiIWgqvMj7PP/885s+fj9deew09evTw+s3nzJmDGTNmuDymZ8+e8u9LSkowevRoDBs2DMuXL1cd17VrV/z++++qx6Sfu3btqnv+hx56CPfff7/8c2VlJYOfFsLo8pNjcOC49OPISI2OVJsTFHQONTUhTjuiHMdLOJ7TSLbFyDHV1dWqhn7u7om7hoNan0HZpVk6/ssvL8eOHanIzR2OvLx0TJq0GVOmtMc774iw2eqXtgMCRCQm1iI4OFi3Dskb7LhMRI3Fq8Bn6NCh+OOPP9CzZ0+EhYUhKChI9Xx5ufHdKK52pCj99ttvGD16NFJTU/H222/DZFL/zTM9PR0LFixATU2NfD05OTno06ePy/qekJAQhISEGLoGalpGl5+Ux3kbLClp7Wxy3BGlNRl89uzZ8u+NNB10d4zyPaTrdXVPjDQcVAZGetPNCwoGYMeOoZB2dNUvaS3FxImnVe8xYcJmbN5svyeZmZm616ZFr2ibHZeJqDF5Ffhcf/31+O233/Dkk0+iS5cujV7c/Ntvv2HUqFHo0aMHnnvuOZw4cUJ+Tsrm3HDDDVi0aBGysrIwf/58FBQUYNmyZXjhhRca9dqoZfEmWFLS3tlkrJ6lurpalakwsrPJ6O4nV0taWtetdb1GtrZbreHIycmAchu7dL7y8k4ur7empsblNTqKi4tjgENETc6rwCc3Nxd5eXkYPHiwr69HU05ODg4ePIiDBw8iPj5e9Zx4vh2u2WzGli1bMGvWLKSmpiI6OhoLFy7kVvZWSKvzcVPR3tlk52pHlMToDCkA8mfcsGGD2+JgKTszbdo01eNSBuf06TCXO7jcBUbTpk3D/v2n8eqrFrgbNdHQ3VpTpkxh0ENEzcarwKdv3744e/asr69F14wZM9zWAgHAoEGD8NVXXzX+BVGj8XRbua9pDwS1k7789TohSxrzC12Z7XTM4AA2KIMWZbDibmv7+vVmLFzYR7NxISAiI2Or22DH6LwwBj1E1Jy8CnyeeuopzJkzB0888QQGDhzoVOMTERHhk4sj/9NcM5qkLIzzQFF1jc+hQ73cLhc1hLugShoToZXBsQds9uDHsV7IVSG11RqOZctiIYpSsFPfuBCwYcyYrRg+vH53l57IyEhOTCeiFs+rwEfqonzllVeqHhdFEYIgoK6uruFXRtSElEtUFRUVmD17P44eDUG7dnU4ceIMDh/+FACwdGl2g/vYKHedKZfzHDM46el5Ts0MJXoZnGuvXYv27c9o1gspu0MD9VvVy8ujVDu17NSNC41iUENELZ1XgY/0t06ils5dBkVJ+tKOjY3FhRfWP15aWorly6tQWJjoUSdkLXpLeVoZnNzc4cjNTcfkyc5ZJb0MTkJCMczmKowZMwY5OTkAHHep2dCjRyEOH06Ut6pnZGx12biQiKgt8SrwGTlypKHj/vrXv+Kxxx7zaX8PIkd6PV+M7GLyhKedkLXoLQPpF1Xbs0rBweeQkHBUDkTcbYWXxrlodYc+fDgRyt1qW7dmICNjK7ZuzdDdek9E1FY0aDq7O++++y4eeOABBj5kWEVFhe5zyuzNrbeOQXR0tFPNiBQEudvF5EmDPL36H8cAoSFN91wVVYuiCevWXecUvM2ZEykvySUknEPXrkkAkhAUFISqKvs16c3fcjx/XFyJ0xwxT7HpIBG1Bo0a+EhbzYmMsFgsWLt2reZzjtmbbt0qMWdOpNNxUq3Otm3ACy9oj1cYNcqzWhTHLeoLF55AUVEgEhNrERd3MYCL5QDMXddovcDOuajamWPwplxyPnpU+/2Cgs7BeZeWmpS1MrJNfcyYMU4z8QAWLRNR69GogQ+RJ4w2FRRFE+bPNyMzE3Bo6wTAHqhceilgMgE2W/3jAQFAWloUvPl+Vn6px8YCqanOx3izFV+ZxZKaA+bnpyE3Nx1a/XS0aopc1THV1ITAVdBjdKu6JCkpyeWkeCKilo6BDzUZb7MhWss1dXUCDh7UDnwA++PLlwN33gnU1dmDntdf1z/eFzzdiq9XgzR27FakpeXj6NF4rFt3LfR687g6h0R7Cc3zreoSLmcRUWvHwIeaREMaE2p9eQcEAL16uX5dVhYwbhxw8KD92MYMejzlrgbJ/msfqqv1a4r0zhETcwwVFfb5dAkJR53qkjIytiIursRwLY80U4vLWUTUFjDwIZ/Tyux4O35CWsZR7joKCBDx+uuCoUAmPr5lBTwSd52UJSkpuzB7dm9UVsbINUVlZUnYsGGD7jnefPN21GeJREyevKlBhcvR0dFc3iKiNsPjwKe2thZPPvkkbrvtNqe5WY5uuukmdnH2M74cOeG4jCNlKu6++yqkpnbxyXs0F72t8adPt4fVGq4KTgYMiERsrHOmRX8ZS/mzgE2bJiI7eymSkg57da1c3iKitsTjwCcwMBDPPvssbrnlFrfHvvrqq15dFLVevho5obWMs3VrBrKzlyIuzubm1S2Dq6Jjra3xogjNbevO57XK5xg0aA9++GEw1GMm1Dxpsigta0m4vEVEbY1XS11XXHEFvvjiCyQmJvr4cojsXC0FecNdYbWvv+D1io61dnE5FjG7G4VRU1MDwB5Y7dkzCPXBjnbw40mTRS5rEVFb51Xgc9VVV+HBBx/Ejz/+iNTUVLRv3171/OTJk31yceS/XHVJlpZejAYzRpffZs+e7ZPgR6/o+OzZdk7dkVNSdqG8/Cwct667ytJIU9D1mxPWT2n3tAszl7WIqK3zKvD561//CgBYsmSJ03McUkoNkZmZCbPZDADo1q0S8+ebUVcnICBAxNNPV2LGjOkeBzNGl9+qq6vlYMpqtcqZFaXAwEBERkZqZoikoEEvWyUFPdLPUlbH3SgMx2AkMjISgH5wmJX1Jioq7MdIs7uMyMzM5LIWEbV5XgU+NlvrqLGg1sdsNstLLZmZQEICIAhAerqA+PhI+ThPghmjrFYr1qxZY/h4xwyR1OG5qKgW77wjOkw8dx5HIWV1kpIOq+p9pCDvhhuud7kEpzdCIz6+FPHxpYY/h6Rz584ev4aIqLXxKvD55z//iczMTISEhKger66uxvvvv2+o8Jlal6aqkZGyGytWADNn2jsvm0z2ZoRZWQ0+vUtaGR5XpPvheG/CwiowcWK+0440ZcYHUGd1pHqf4cOnIy0t6nyQF+n2GqTXGd2q7li8LGERMxH5C68Cn1tvvRXjx49HTEyM6vGqqirceuutDHzaGE+WlYzS+gKWvnyLi+uDHsD+zzvvtDcjbGk9efTuTUoKnAKS0NA/dJsRAvYMzrBh1YiNVQdTJSUmFBYGIimpFnFxNqeeSEZmbElYvExE/s6rwEcURQiC87bZ4uJiuT6D2g5PlpWMFsfGxcXpZhgOHFDP2ALsYydcjahoLq7ujWNAoszOBAVVo6YmxKlnD6AOptyNpCAiIs94FPgMGTIEgiBAEARceeWV8u4SAKirq0NhYSHGjx/v84uk1sNxkrkWd8sqvXtrDxh1N6LCKFf9dRqb2VyFQ4d6uQxmpHvnbqwFERF5zqPA55prrgEA7N69G+PGjUOHDh3k54KDg5GYmIipU6f69AKp9XEV1EhLODt2/K5avpEEBwcjPj6q0QaMNncGxUgwY1/aSsTp02Eux1oolwsLCwuRk5PTZJ+DiKi18ijweeSRRwAAiYmJyMzMRLt27RrloqhtkpZw3AUfs2fPRlZWlM8GjErLb+6CDmUG05eUGSZ3M7pWrAAeeSQGNtt02PvxqBsSKguilfU6wcHBhgIf9ukhIn/n1f/pp0+fDsCekj9+/LjT9vbu3bs3/MqozbH3x3Gf8ZCWelwNGHX8AtdbvpKW1WbPno1t24AXXnAOOoYPn45Ro5zrdaRzBgWdQ01NiObSWEVFhcvr0Jo35th7x2QSERRUjYKCfli3rgvqAx0TABsEQdQtiJb4YomRiMgfeBX4HDhwALfddhtyc3NVj0tFz2xgSHqMTiV3R/qiP378ONauDceyZd1gswkwmUQsXPgbpkw5iaCgINXxl16qXTuUlhaFqCh7RkqiDFikrItjdurMmTNYu3at5mu0trBLTQyVjwuCDQMH7sGKFbdrdGEGABOmTl2L9u3PuN2uzqCGiMg9rwKfGTNmIDAwEJs3b0ZsbKzmDi8iACgutu/S6t3bHmS461LsqTfe+AhLl2ZDFO1/Bm02AYsWxcFqXSsHCVKjwfh4uKwdUjYgfOyxGPmcUgZGFE3YvHkSFi5MQ2JioCq7ojdUVSvIi4srQXb2Unl3l37QY783nnRfJiIi17wKfHbv3o0dO3agb9++vr4eaoGM1oU4HufYhPCZZ0J1uw1788VeXV1tKIOkDFCysuCydigqKgp79jhvp5fYbAKqqrogKgooLa3vjqx3Hcq5WYA9kAkKqpaX0I4c6eEy6PH23hARkTavAp9+/fo5NVGjtknahZWZmanqbHzq1CnU1NQgMDAQ4eHhCAy0Z0CkYKCsrB1mzuyoakI4f74Z99wT7nG3YVe8ySC5qh0CtLfTS/S21etdR0bGVnz66RjYbPalskGDlMtaUuGycwHz1Knr3GZ6WKhMROQ5rwKfp59+GvPmzcOTTz6JgQMHqmopACAiIsInF0fNy2jHZi2FhYnndybVq6sT5EyMJ92GXfFlBkniuCQmcbWtXu86UlJ2Ye7cBLz3Xr7GspZyKU1dRzRgwD6n91BuX2ehMhGRd7wKfDIyMgAAV1xxhaq+h8XNbYsnAz4d+bqWxxVfZpAkyiWx9u2B06fdb6tPTj6IqVPXAxBV2ZquXWuRlHQYhYWJustagIBx4z5Gv357da+f4yaIiBrOq8Bn27Ztvr4OamMakomxWq3y741mNtxlkLwZsqq1JKY8j3K510hjRK1gUCIINpdBDxER+YZXgc/IkSPx1Vdf4fXXX8ehQ4ewbt06dOvWDe+88w6SkpJ8fY3UTBx71HhKKxOTmZkpz3OrqKhQbQeXrFmzRvWz8jWA58s8eu/jSNr9pUdv6c/oaAnHYNBxectd0MOaHiKihvMq8Fm/fj1uvvlm3Hjjjdi1axfOnTsHwP439SeffBL/+9//fHqR1PQsFouhYMEdx0yM2Wz2eLnGMRACPJsEX1tba+g4d0t7es+721l29uxZ+XHnQaXBLpfnpLoe1vQQEfmGXsGBS3//+9/x2muv4Y033lAVNg8fPhw7d+702cVR82lIfY9R0kwqqzXc49d6Mgnesfje16QlLCVBsOH06fawWsPx0UcfqZ4zm6uQlHQY8fGlSEo67DLTExcXh9jYWAY9REQ+4lXGZ//+/RgxYoTT42azucHLI9Ty+WK6ub3Hj30mlbfDQh3HNNgDKfXg0+DgYK+COK2aIL0WDlr1TKIIrFt3nVefjVkeIqLG41Xg07VrVxw8eBCJiYmqx7/++mv07NnTF9dFLZQvppsXF0uNDes7ImvVxBghBQaOzRKXL7fvzALUjQaNMLqNXxkASktYR4/GY926ayElU735bHFxcQx4iIgaiVeBzx133IF7770Xb731FgRBQElJCfLy8vDAAw/g4Ycf9vU1UgthtIjXnQMHnJsDejOvS1IfSNl/ttnsPXjGjQNCQy2Gm21Kxxk5Xi8ALC8/C8cVZOVncyzUdsQsDxFR4/Iq8HnwwQdhs9lw5ZVX4syZMxgxYgRCQkLwwAMP4O677/b1NVILoVfEO3z4dPTvf0KzCNlRcHCwZmfkhvT40Qqk6uqAHTus2L3beAPGDRs2GDrOVQDorn+RN8XdRETkO14FPoIgYMGCBZg7dy4OHjyIU6dOoV+/fujQoYOvr49aEK0vdZNJRGJiLcxmMzIzMyGKIiIjIzVfr8xm2Dsji6irM76dW49WIBUQICIsrMSr87njahdXUtJhn3eSJiIi3/Eq8JEEBwejX79+vroWauG0ingnTtyMzZvVNT7u+uEA9vqbSy6pwPPP/7fB3Zbj44ElS07hvvvC5OuaMGEzcnM9qz0yyl1WpzE6SRMRkW80KPChtktvq7iRL3Wju6gGDuyI55+fpDreaLNBx+ubNq0Khw8vNxRseLorzfH4Q4d6QRTrn9fK6vhqFhkREfkWAx/S5LhVHLAX/W7YsMHpS10rkCguttfe9O7ter6VMjNUXAwcOxaLKVPuQXT0HwD0t6hrZZSMBBue7kpzPP6yy77CV19dDmUBsyja53QZwe7LRETNi4EP6TKyu0grkFi9OhTz5mlvLdej3o7eEcuX2x/X26LuDU93pWkd/9VXI1A/VV1Sv2tLOUHdEXdsERE1PwY+ZJjUaVnK7GgFBhs3TsTmzYLm1nK9zI/ednSbDfKSkv0xERdddFzO/EiMZlHcjZaQSBms06fDNAaKOgY96voeTlAnImrZGPiQIVqdljt2PKkRGJg0t5YfPKgf+OhtR3dUVyfgpZc+QlLSYafnMjMz3X4Gd0XJgHMGC7DB9WQX7toiImpNvJrVRf5Fr9NyUNA5pxlVgA0mk6h6JCAA6NVL//zSdnTH1wgOyRVXvX5qamqMfBSkp+fJ1+xYlKyVwbJfg+NnrL+e229/U1UjxBoeIqKWjRmfNkZrxpSSN3Umep2Wa2qCNXvWjBgxAvPnR6Kuzh7AvP66frbHYrEgIKAazzwTivnzzairExAQIOLpp60AgHnzzLDZGt7rR53JETFs2HakpeWrznf0aILmUtiIEZ/jyy9HOZ0zPT0P8fH2cRiZmZno3Lkza3iIiFo4Bj5tiNEZU0b67Ci56rSclHTYaXv7jBnDkZlpX97q1ct10KO83nvuCZfPc+qUPSC5995wQ1vUAwP1/yg7Z3IE5OWlIy0tXz5m584h2LhxotNrBcGGCy74BV99NcIhKLLJr8/MzETfvn1135+IiFoOBj5tiNH+OZ5OK//kEzj0rRHx7LOVuOGG652OlZZ6AgJK0aeP/THHGaFS1snxOrS2oxvthxMZGSlvvy8rK8Pbb+fIW+zdFTVLgZHjyq+UZYqPL3XZjdnV7C0iImpZGPiQS1J9jzrwEZCZGYnY2Ein4z3JOvlaVFQULBYLNmzoiKVLs+UgJSNjq8uiZq0lLgBYtOgX2Gz2+h1XjRtZ10NE1How8CGXtOp7bDYgP99em+PIarUaOq+nWScjLBYLnnhilRz0APbMztatGcjI2IqtWzOcMjZS7Y8jQbDh6qs7IjFxts9rpoiIqPkw8CGX9Op7tm9fhYKClrWFu7q6WndZKy6uBNnZS1UZG8fan3r2wKh9+wsQFcXaHSKitoTb2dsAi8WC0tJSlJWV+fzc8fH2jskBAfafldkSqzUchYWJsFrDff6+njpz5gzKysrkXj1K0rKW2VyFpKTD8jKVVpAEANdeuw4pKbuwZs0aWCyWJrl+IiJqGsz4tHJGa2oaIivL3nk5P9+C7dtXqZaIjM68aohp06YhMjJS9VhFRQVqa2sBAGfPnsW7774LADCb4bIQWUmroSEgwmqtf6/GWJIjIqLmw8CnlWuqL+b4eCAgoBoFBdqjKlzNvGqoyMhIeQxEcTHw/fdWfPnlv3Tfy7EQGYBq1IbEbK46P3RUOX9LwNatGRgwoIDdmImI2iAGPn6oobuQjM688tV1SMfVDzI1QxCyXWaZpG3wrjJTO3cOwddfXw7H+VvefBYiImodGPj4CWlquC92IRmZeWVEVFSU3HtHj3S9joNMjWSZXGWmAOgUNnv3WYiIqHVg4OMnfDk13GyuMlxHo0fK4iiDsOJi+/b53r2duz3rjc1wlZnRG0FRXt4JgKAZ9HDoKBFR28bAh7ziqqGfVjGyklbWqX4Zy759fvlye1G1xL6tXpQHpQKuMzOuRlBIr9HKWmVlvSnP3yIioraHgQ8Z5liTozdOIiYmxqPlNMdlLJsNuPNO+04yKfMTGmrBxInbDWWZ9EZQmEwiFi06hro6+2u0slYMeoiI2jYGPmSYJzU5ElfLVxKtZay6OvuQU+k11dXVLrNMSnojKF59tQKTJglYvtz+s5HzcRwFEVHbwsCnlfN0Z1RDeZLJcbd8JdHqDh0QYJ/s7sjd0FJXS1zp6cazVpmZmejcuTPHURARtTGCKCrHT1JlZSXMZjOsVisiIiKa+3IMsVgszTJPylU2p7gY6NHDOZgpKtLO/KxYYV/eqquzH/f66+ogqbS0FMulVI0DqzUc5eVRCAo6hxUrbnfK9phMIpYsOY177+0AoPnuFxERNR6j39/M+LRSzf3l7S6bY2T5SmKxWHD11dXIzzehqCgQiYm1iIuzobS0/rPocezTo7fENXNmR/lnBjVERP6LgU8rZHRMxezZs+UveV8GSkaKkY0uX2l9loIC5/fMzMx0ekyrTw8gQtmQUBBsSE3l2AkiIrJj4NMKGR1TUVRUiz17gOjok9iwwbNAyRUj2RxpuKnj8pVjtsfoZ6mpqXF6THvIqAAp+JF2asXFXWzoPYiIqO3jdPY2aufOIbjkkhhccQVw0UWR2LlziNvXGA1CpGyOklY2JyvLXtOzbZv9n1qFzd6yWsNx+nQYAJvGs4Lck6exBqcSEVHr1OoCn3PnzuGiiy6CIAjYvXu36rk9e/bg8ssvR7t27ZCQkIBnnnmmeS6ymUlLQFKzP5tNwKZNE2G1hvvk/FI2JyDA/rNeNgew99/p06cUAQGlKC11/lVRUWHoPQMD65OTO3cOwdKl2Vi37jo4ztmSiKIJNTXcik5ERGqtbqlr3rx5iIuLww8//KB6vLKyEmPHjkVGRgZee+01/Pjjj7jtttsQGRmJmTNnNtPVNg9vh4harVaX51XWAWVl2Wt6Dh60Z3q0gh6jtUhGREZGYvbs2fjxx5NYtKin4vNpBz7KDs3sxUNERJJWFfh89NFH2LJlC9avX4+PPvpI9dx7772H6upqvPXWWwgODkb//v2xe/duLFmyxO8CH2+HiK5Zs8btuZV1QPHx+k0JAeDEiRPGLtigqKgoiGIU3DVgMJlEPPNMJW644XpuTSciIpVWs9T1+++/44477sA777yDsLAwp+fz8vIwYsQI1d/ux40bh/379+PkyZO65z137hwqKytVv1ozqadNRsZWBATYI4SAANFngzeN1gEB2gXJ3iorK0NpaSkiIn6HyaQd+QQEAGvXAocPC5gzJxKxsbEMeoiISKVVZHxEUcSMGTNw1113YejQoSgqKnI65tixY0hKSlI91qVLF/m5jh07Or0GABYvXoxFixb5/Jqbg2NPmzlzjuPSSwMREXEcubmtu8h3w4YN8u8nThyi2MZu38El1Rldd12zXSIREbUCzRr4PPjgg3j66addHrNv3z5s2bIFVVVVeOihh3x+DQ899BDuv/9++efKykokJCT4/H18SatmRaunzfPPd0Z29lKfZHqaipSx6tTJonvdyhlb06ZNQFhYZ906IyIiIqVmDXzmzJmDGTNmuDymZ8+e+Oyzz5CXl4eQkBDVc0OHDsWNN96IVatWoWvXrvj9999Vz0s/d+3aVff8ISEhTudt6bSGhW7fHowXXvC8oLkl+eOPG7FsWTJsNgEmk4iJEzfpbkeXZmwNGVKL2NgmvlAiImq1mjXw6dy5Mzp37uz2uBdffBF///vf5Z9LSkowbtw4rFmzBmlpaQCA9PR0LFiwADU1NQgKCgIA5OTkoE+fPrrLXK2ZY+3KpZc6d0o2UtDcUlit4Vi6tCdEUb0FPzn5IMzmKkOZICIiIndaRY1P9+7dVT936GAfNpmcnIz48+sbN9xwAxYtWoSsrCzMnz8fBQUFWLZsGV544YUmv97m4NwpWcSECdoFzS0xiHC1Bf/QoV6q2qVJkzazMSEREXmlVQQ+RpjNZmzZsgWzZs1CamoqoqOjsXDhQr/ayq7srRMefhybNzsHB44F0L4MIhzngVVVGQ+q9LbgBwVVO9UuKTNBREREnmiVgU9iYiJEjWYugwYNwldffdUMV9S8iovt87N6967vrVNa6jzKQasA2tMgQq8ZoJFmha4yTWZzFSZN2ixfn73GZzNqakK8asZIRESkpVUGPlRvxYr6Sekmk325S28mlicdnfv3HwerNQbdu59D1661AOxjI6qrq2GxWJxqjNz199m5cwg2bpwIe+soGyZPds40KXdr3XhjGnJzd8FqDfeqGSMREZEWBj6tWHFxfdAD2P9555325S5pjpaS0Y7OO3cOwaJFl7hcDjM6yR2wZ3rqgx4AMGHjRu1Mk7RbKz4+Tf5ZmQmSrkd6HcdREBGRJxj4tGIHDqh3cQH2wuaDB4GBA9UBgbKj89atGXIQkZGxFeXl9gBG2j1lZDnMkw7OR48mwLlJuAlHj8YDKNZc/pJmc0nvs3DhCRQVBSIxsRZxcRcDuJjjKIiIyGMMfFqx3r2dt7AHBNiHhip7/axeHYrHHjPL/XEyMnIQF1eCkpI4VRA0adJmdOx4sslqavbvvwDr11+rm1lSBjWxsUBqqk/fnoiI/FCrmdVFzqQt7NKyljS2QepgHBUVhbq6WMybFwmbrb4/zmefjcG0aRPw6adjVJmdDz+chLFjh0EQ1GkkIzU1FRUVus8lJByFfbSE2o8/DnbKLFmt4QC4hEVERI2DgU8rl5UFFBUB27bZ/+lY2Ky9HCZg//7OcjCkfPyPPwIwadJmOfhxrKnRYrFYsHbtWt3nzeYqTJ68CYDjTjP1+4uiCcOHT/eofoiIiMgTXOpqA6Qt7Fr0lsMuuwwwmURV8CMINhQUfICUlCp5d1WnTuVul7hOnDjh9Jjj1vWUlF0IDj6Hdev0p4gGBABpaVFgzENERI2FGZ82Tm85rGdPCxYu/E03s2M2VyEp6TAAoLAwUV6CcmSxWLBmzRrVYzt3DsHSpdlYtWo6li7Nxs6dQwDYl7wcl9GkJbCAAFG1TEdERNQYmPHxA8qOzr16AaGh9c0Gs7PDdTM7Rro8O+7ucrcrzHFrekbGVsTFleDuu69CamqXRrwLREREDHz8hnI5rLS0PliR+uY4chfABAcHw2KxoKysTPU6vSaJP/3UD/3771U1KVQGW3Fxzp2miYiIfI2BD2nSC2CGD5+OUaPsP2uNqNBqkgiI2LJlPHJyxp7P8JS2qAGpRETkPxj4kExZkKwVwCiLj0tLSzXPYTZXqZok2mt47AXUomhCTs4YAAKnrBMRUbNg4EMAtOt5lPU4jj2CXJ2nPuixwbl+vj4I4pR1IiJqatzVRSgujsXGjdr1PNnZS7FunUWzR5AjaSZXfZZIyvhokzpCExERNRVmfPyclOlxjIGloCQp6TBGjYKh3jr5+WlO55GWtRyXvQBOWScioqbHwMePOe7cUhIEG268MQ0pKZMMdVG2WsORl5eu8YwNWVlvoqYmWHM2GKesExFRU2Lg44ekIENr55adVHg83PDoiKNHEzTPNX26BQ8+eCXCwsIAACUlnLJORETNh4GPH5ImtxcV1eKdd9RjK0wmEZs2WZCWZjzo2blzCDZunOj0uCDYcPfdNiQnJ8uPcco6ERE1JxY3+6moqCikpnbB8uWCapzF8uUCrr66s9ugR8oaSctljn+UpKWsyMhTjXH5REREXhFEUdTfduOHKisrYTabYbVaERER0dyX0+gsFguKimoVy0/qDsqulqEOHTqExx//GqtWTXd67tpr12LAgH0AwGnrRETU6Ix+f3Opy49ZLBZV9+WCAu3jpk2bhsjISNVjwcHBCAsL0+nUbENCQrH8k+M8LyIioubCwKeFKy4GDhwAevd23TzQ8TgjrzMakKxdu1bz8czMTHnwqL3GRwp+BBw61ItdmYmIqMVhjU8LtmIF0KMHcMUV9n+uWGHsuBkzjL2uoWpqagAAyckHIQjKZwRs2jQRVmt447wxERGRlxj4NKHiYmDbNvs/jRw7cyZgO19yY7MBd97p/Fqt41atcv86LVZrOAoLEz0OWLS2srMrMxERtURc6moiK1bUBygmE7B8uesREAcO1Acvkro64OBB9dKV1nGO6uqA/HwLQkOhW2SsNavL3VLVyZMnXW5lZ1dmIiJqaZjxaQJGszdKvXvbAySlgACgVy/3xznOxxIEG7ZvX4WXX34ZFovF6b0cOzhLs7qkzI9eJuiDD753uZWdw0eJiKilYcanCRjN3ijFx9uzQnfeaT9Wazq6xWJBQEA1nnkmFPPmmc83IrTBcR6WMgg5fvy4XNRcVlYGQLuDs7RUdehQL91MkF7n56lT18lb2YmIiFoSBj5NQMrKKIMfreyNo6wsYNw4e4DUq5dz0KPcin7vveE4ejQe69dfC1GsD3xE0V58LNHaoaW1JV0QbAgKqtbMBCUnH4TZXKX7OuVWdoBzuIiIqOXgUlcTkLI3yg7JjtkbV68dNcr5WMet6GZzFdq3P6uRgdEvMpaWsABg0qTNEAR7ZCZldmpqQlwWLUtb2R1fJ2WXpkyZwuaFRETUojDj00RcZW88VVwMfPNNMKzWcFUdjV4GRqvIWKuYOTt7KcrLO+H//b+B2L17F6zWcLfnS0nZheTkgygv74ROncpV1xMdHc2gh4iIWhRmfJqQXvbGE1LPnuuui8LSpdnYuXOI/Jy7DIxEr5gZAJKSDuOSS+Iwe/ZszJ17PZ59thIBAfZi6YAAEc8+W4lbbx2jOp/ZXIWkpMMsZiYiohaPGZ9WxHF3mGPNDeA6AyNxVcwsHS9laubMATIzpUyVgPj4SJSWnm3ET0lERNR4GPi0MK5GTWjtDnMMWAB7BsZV9sWTJTHAfh0NyVIRERG1FFzqakH0RlRIHZ87dHDu2eNNo0CjS2J6jO7S4m4uIiJqaZjxaSG0mxyKKCqqxJNPRsBmE2AyiZg69Sw2bAhFXZ3gccAyduxYbNmyBYCxJTE9UVFRmD17tsshp8HBwSxsJiKiFoeBTwuh3eRQwBNPhMt9eWw2AevWtUNW1hsYNWoCduxY41HA0rFjR9XPektiRjI1DGqIiKg1YuDTQmg1OQRsmkXIFRWRuOIKE8aPn47q6mqUlZVhw4YNbt9DFEVkZmbKU9UdBQYGIiYmBlFRUS5rjYiIiForBj4tRP2IClFexsrI2IqtWzOcgp91667FpZdWYs6cSI/eQ9m12WoNR3l5FDp1sqiyPpmZmVi5MkAegWEyiXjmGStuuOEsl6+IiKjVE0RRFN0f5j8qKythNpthtVoRERHR5O+/Y8fveOmlj+S6G2WjQaWAABFFRQLi453HV7jjahK71RqOpUuznXZ8ZWcvhdlcxU7MRETUIhn9/mbGp4WJi7MhKemw/HNKyi4EB5/DunXXqY6rqxPkIadGio2tVivWrFmj27xQ6gXkrsePq/cgIiJq6Rj4tAIJCUed+u4EBIjo1at+GKnRLIy7wMbTHj9EREStCfv4tAJafXcefvg3BASUorTU/stisRg6lxTYKCkDm4b2+CEiImrJmPFpJRz77gBVWL5cfYxW/Y3FYkFRUS127z6L4uJY1NSEqIqmpSLq8nL768zmqgb1+CEiImrJGPi0MK566LgbRaGsv7FYLDh+/DgefPDA+ZqeLgDuAFC/YywurgQlJXGqIEgqdHb3XkRERK0RA58WRlmoXFJiQmFhIMzm48jNXev2tSUlJvz8MxAdfRIbNrx8vpBZuUPLXhMkiibk5GTg9tvfVG2X1xp6SkRE1JYw8GmBoqKisGJF/QgLk6kTJk4cIm8517Jz5xA89ljM+eMjMXHiEHTseNKpkLmeCXl56W6ntBMREbUlLG5uYtLA0eJi18eo53YJ2LRpIqzWcM3jpS3qNpugOj4o6JxTIbPS3r39AegXOmvh4FEiImrNmPFpQuosjr1Tc1aW83Fac7u0MjFS9+XTp8M0Mzc1NcGYNGmzZgNE6Zhhw7bLmR/HHVyZmZkwm83y8ezcTERErR0DnyaiPX0dGDfOeRaW1twux0yMY/dle+bGufdOUtJhxMQcw5tv3g7HBJ8g2JCWlo+0tHzNHVxmsxmxsbE+ugNERETNj0tdTUR7+jpw8KDzsdLcroAA+88BAaIqE6PVfdm+W8s+fcRkUh9fUxMCrX/V6el58u6tpKTDrOshIqI2jxmfJqKVxQkIAHr10j4+K8ueDTp4EIiKqsCGDfWFzVrdlwEBomjDsGG5SEvLVwUxWt2YAXu2h4iIyJ8w49NEnLM4wOuvOy9zSSwWCwICStGlyz4AxRgzZgxGjx6N0aNHY+LEPjCZtGbL2ndqOdLqxjx5MrsxExGR/2HGpwllZQGDBgFffw1cdhlw8cXaxxmZtj5x4nHNomW97ejsxkxERMTAp0kZ3dVlZAJ6SsouzaJlV9vR2Y2ZiIj8HZe6mojeri69fj5WazgKCxN1e/cAQHx8KSZP5kBRIiIio5jxaSKudnU51vmsXh2KpUuzneZnaWnMJSw2KyQioraGgU8TcbWry2KxyMtbJSUmzJsXA1Gsn6vlbn5WQ5ewpk2bhsjISNVjbFZIRERtEQOfJiLt6rrzTnumR9rVFRqqLmQuLEyEzTZd9dqGzs+aMmUKoqOjNZ9jgENERP6EgU8TUvbm6dXLHgyVlqoLmbV67ribn+VOXFwcgxsiIiIw8Gly8fH6vXuA+p47ynEU3hYsT5kyhUEPERGRAgOfFshXBcvR0dEMeoiIiBQY+LRQjgXLQ4cOBQB8//33zXVJRERErR4Dn1aCAQ8REVHDsYFhEykuBrZtc25YWFJictuo0Fvsw0NERKTGjE8T0BtVYX88BjbbdLeNCpWmTJmCwMBA1NbWOj0XFBQEs9nMbepEREQaWlXG58MPP0RaWhpCQ0PRsWNHXHPNNarnjxw5ggkTJiAsLAwxMTGYO3euZnDQlH788SRmzhQdRlWI+N//Tpx/vL5R4caNE91mfqzWcOzfH4fw8AvRseNAlJUNRMeOAzFwoP1X3759ERsby6CHiIhIQ6vJ+Kxfvx533HEHnnzySVxxxRWora1FQUGB/HxdXR0mTJiArl27Ijc3F6WlpbjlllsQFBSEJ598slmu2WKx4PnnNzs1JKyrE/Diiztgs413eIUJ+flpGDt2q+b5du4cgk2bJuKFF0wQ7PESRNH1wFMiIiKq1yoyPrW1tbj33nvx7LPP4q677sIFF1yAfv36Ydq0afIxW7Zswd69e/Huu+/ioosuwlVXXYXHH38c//jHPwxNO28M1dXVckNCJUGwISHhCACb02vy8tI1sz5Wa7jc2wewBzyiaH/O3cBTIiIismsVgc/OnTvx22+/wWQyYciQIYiNjcVVV12lyvjk5eVh4MCB6NKli/zYuHHjUFlZiZ9++kn33OfOnUNlZaXqly9JDQkdJ6jHx5di2LA8p+Ol8RSOysujVN2cHUkDT4mIiEhfq1jq+vXXXwEAjz76KJYsWYLExEQ8//zzGDVqFH755Rd06tQJx44dUwU9AOSfjx07pnvuxYsXY9GiRY138dBvSJiWlo+8vHRD4ym0RlkoSQNPiYiISF+zZnwefPBBCILg8tfPP/8M2/nK4AULFmDq1KlITU3F22+/DUEQ8O9//7tB1/DQQw/BarXKv44ePeqLj+bEbK5CUtJhVVNCKRsUEGBfs3I1nsI5cyRCEOyvCwgQ8frrrkdhEBERUTNnfObMmYMZM2a4PKZnz54oLS0FAPTr109+PCQkBD179sSRI0cAAF27dsW3336reu3vv/8uP6cnJCQEISEh3ly+T6Sk7MLChWkoKgrExx+vR01NCKzWcM3gxzFzBED+/TXXTAfAnVxERESuNGvg07lzZ3Tu3NntcampqQgJCcH+/ftx2WWXAQBqampQVFSEHj16AADS09PxxBNP4Pjx44iJiQEA5OTkICIiQhUwtURxcTZ8/nkAVqy4XTWYVKunj+MoC+n3JSUlqK6uZv8eIiIiF1pFjU9ERATuuusuPPLII0hISECPHj3w7LPPAgCuu+46AMDYsWPRr18/3HzzzXjmmWdw7Ngx/N///R9mzZrVrBkdI0pKTJg3zwxRrO/ps2nTRCQnHzQ8oHTDhg3y72fPns3gh4iISEOrCHwA4Nlnn0VgYCBuvvlmnD17Fmlpafjss8/QsWNHAEBAQAA2b96Mv/zlL0hPT0f79u0xffp0PPbYY812zUZHRhw92k5uZCiRdnd5M5m9ubbvExERtXSCKErdYAgAKisrYTabYbVaERER0eDzWSwWzUDEPqMrEH36mNCxY0f06CGqgh9BsCE7e6lXgc/MmTMRGxvboOsmIiJqTYx+f7eajE9rpbXkpDW765lnrJg7N0JV4+NN0ENERET6GPg0seLi+qAHqO+6vGuXiN9+W+rU64eIiIh8h4FPEztwoD7okdTVARZLRyxYMN1pWaysrExVuExERETeY+DTBJR1PhERJphMMap6noAAEb16CZrLYkYLpImIiMg9Bj6NzGKx4OWXX1Y9NnHiEHngqCDYMGHCZhw5Eo2TJ+3DSQMDAxETE4OoqChERUVh9uzZqK6uZvaHiIiogRj4NDKtHV1as7tycpxfm5mZic6dO8uZIKPZH2aJiIiItDHwaWQVFRVOj1mt4Sgvj0KnThaXRcxr1qwBUN+QUJn90cPOzURERPoY+DSy2tpa1c87d6qXufRGUygpAx0GNURERN5r1uns/sZqDZeDHqB+NIXVGt7MV0ZEROQfGPg0ofLyKDnokUijKYiIiKjxMfBpQp06WSAI6iY+gmBDp07lzXRFRERE/oWBTxMym6swadJmOfjhaAoiIqKmxeLmRmSxWHDq1CnVY1pb2YmIiKhpMPBpJFqNCyVmcxUDHiIiombApa5G4qrXjqfYkJCIiMg3mPFpYaZMmYLo6Gj5ZzYkJCIi8h0GPi1MdHQ0YmNjm/syiIiI2iQudREREZHfYOBDREREfoOBDxEREfkNBj4tDHdwERERNR4GPo3EmwAmMzOTO7iIiIgaEXd1NZKoqCjMnj0b1dXVKCsrw4YNG9y+xmw2N8GVERER+S8GPo2I2RsiIqKWhUtdRERE5DcY+DQBo/U+LGwmIiJqXFzqagLKeh89HE1BRETU+Bj4NBEGNURERM2PS11ERETkNxj4EBERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DfYudmBKIoAgMrKyma+EiIiIjJK+t6Wvsf1MPBxUFVVBQBISEho5ishIiIiT1VVVcFsNus+L4juQiM/Y7PZUFJSgvDwcAiC4PV5KisrkZCQgKNHjyIiIsKHV9h68B7Y8T7wHgC8BwDvgYT3oXHugSiKqKqqQlxcHEwm/UoeZnwcmEwmxMfH++x8ERERfvsHW8J7YMf7wHsA8B4AvAcS3gff3wNXmR4Ji5uJiIjIbzDwISIiIr/BwKeRhISE4JFHHkFISEhzX0qz4T2w433gPQB4DwDeAwnvQ/PeAxY3ExERkd9gxoeIiIj8BgMfIiIi8hsMfIiIiMhvMPAhIiIiv8HAxwOvvvoqBg0aJDdcSk9Px0cffSQ//8cff2DWrFmIiopChw4dMHXqVPz++++qcxw5cgQTJkxAWFgYYmJiMHfuXNTW1jb1R/GZp556CoIgIDs7W37MH+7Do48+CkEQVL/69u0rP+8P9wAAfvvtN9x0002IiopCaGgoBg4ciO+//15+XhRFLFy4ELGxsQgNDUVGRgYOHDigOkd5eTluvPFGREREIDIyEllZWTh16lRTfxSvJCYmOv05EAQBs2bNAuAffw7q6urw8MMPIykpCaGhoUhOTsbjjz+umpfU1v8cAPYxCdnZ2ejRowdCQ0MxbNgwfPfdd/LzbfEefPnll5g0aRLi4uIgCAI++OAD1fO++sx79uzB5Zdfjnbt2iEhIQHPPPNMwy5cJMM2btwofvjhh+Ivv/wi7t+/X/zb3/4mBgUFiQUFBaIoiuJdd90lJiQkiJ9++qn4/fffi5deeqk4bNgw+fW1tbXigAEDxIyMDHHXrl3i//73PzE6Olp86KGHmusjNci3334rJiYmioMGDRLvvfde+XF/uA+PPPKI2L9/f7G0tFT+deLECfl5f7gH5eXlYo8ePcQZM2aI+fn54q+//ip+8skn4sGDB+VjnnrqKdFsNosffPCB+MMPP4iTJ08Wk5KSxLNnz8rHjB8/Xhw8eLD4zTffiF999ZXYq1cv8frrr2+Oj+Sx48ePq/4M5OTkiADEbdu2iaLoH38OnnjiCTEqKkrcvHmzWFhYKP773/8WO3ToIC5btkw+pq3/ORBFUZw2bZrYr18/8YsvvhAPHDggPvLII2JERIRYXFwsimLbvAf/+9//xAULFogbNmwQAYj/+c9/VM/74jNbrVaxS5cu4o033igWFBSI//rXv8TQ0FDx9ddf9/q6Gfg0UMeOHcU333xTrKioEIOCgsR///vf8nP79u0TAYh5eXmiKNr/kJhMJvHYsWPyMa+++qoYEREhnjt3rsmvvSGqqqrE3r17izk5OeLIkSPlwMdf7sMjjzwiDh48WPM5f7kH8+fPFy+77DLd5202m9i1a1fx2WeflR+rqKgQQ0JCxH/961+iKIri3r17RQDid999Jx/z0UcfiYIgiL/99lvjXXwjuffee8Xk5GTRZrP5zZ+DCRMmiLfddpvqsSlTpog33nijKIr+8efgzJkzYkBAgLh582bV4ykpKeKCBQv84h44Bj6++syvvPKK2LFjR9V/D/Pnzxf79Onj9bVyqctLdXV1eP/993H69Gmkp6djx44dqKmpQUZGhnxM37590b17d+Tl5QEA8vLyMHDgQHTp0kU+Zty4caisrMRPP/3U5J+hIWbNmoUJEyaoPi8Av7oPBw4cQFxcHHr27Ikbb7wRR44cAeA/92Djxo0YOnQorrvuOsTExGDIkCF444035OcLCwtx7Ngx1X0wm81IS0tT3YfIyEgMHTpUPiYjIwMmkwn5+flN92F8oLq6Gu+++y5uu+02CILgN38Ohg0bhk8//RS//PILAOCHH37A119/jauuugqAf/w5qK2tRV1dHdq1a6d6PDQ0FF9//bVf3ANHvvrMeXl5GDFiBIKDg+Vjxo0bh/379+PkyZNeXRuHlHroxx9/RHp6Ov744w906NAB//nPf9CvXz/s3r0bwcHBiIyMVB3fpUsXHDt2DABw7Ngx1f/gpOel51qL999/Hzt37lStX0uOHTvmF/chLS0NK1euRJ8+fVBaWopFixbh8ssvR0FBgd/cg19//RWvvvoq7r//fvztb3/Dd999h3vuuQfBwcGYPn26/Dm0PqfyPsTExKieDwwMRKdOnVrNfZB88MEHqKiowIwZMwD4z38LDz74ICorK9G3b18EBASgrq4OTzzxBG688UYA8Is/B+Hh4UhPT8fjjz+OCy+8EF26dMG//vUv5OXloVevXn5xDxz56jMfO3YMSUlJTueQnuvYsaPH18bAx0N9+vTB7t27YbVasW7dOkyfPh1ffPFFc19Wkzl69Cjuvfde5OTkOP3txp9If5sFgEGDBiEtLQ09evTA2rVrERoa2oxX1nRsNhuGDh2KJ598EgAwZMgQFBQU4LXXXsP06dOb+eqa3ooVK3DVVVchLi6uuS+lSa1duxbvvfceVq9ejf79+2P37t3Izs5GXFycX/05eOedd3DbbbehW7duCAgIQEpKCq6//nrs2LGjuS+NHHCpy0PBwcHo1asXUlNTsXjxYgwePBjLli1D165dUV1djYqKCtXxv//+O7p27QoA6Nq1q9OODuln6ZiWbseOHTh+/DhSUlIQGBiIwMBAfPHFF3jxxRcRGBiILl26+MV9cBQZGYkLLrgABw8e9Js/C7GxsejXr5/qsQsvvFBe8pM+h9bnVN6H48ePq56vra1FeXl5q7kPAHD48GFs3boVt99+u/yYv/w5mDt3Lh588EH8+c9/xsCBA3HzzTfjvvvuw+LFiwH4z5+D5ORkfPHFFzh16hSOHj2Kb7/9FjU1NejZs6ff3AMlX33mxvhvhIFPA9lsNpw7dw6pqakICgrCp59+Kj+3f/9+HDlyBOnp6QCA9PR0/Pjjj6p/0Tk5OYiIiHD6AmmprrzySvz444/YvXu3/Gvo0KG48cYb5d/7w31wdOrUKRw6dAixsbF+82dh+PDh2L9/v+qxX375BT169AAAJCUloWvXrqr7UFlZifz8fNV9qKioUP2t+LPPPoPNZkNaWloTfArfePvttxETE4MJEybIj/nLn4MzZ87AZFJ/lQQEBMBmswHwrz8HANC+fXvExsbi5MmT+OSTT/CnP/3J7+4B4Lt/7+np6fjyyy9RU1MjH5OTk4M+ffp4tcwFgNvZPfHggw+KX3zxhVhYWCju2bNHfPDBB0VBEMQtW7aIomjfutq9e3fxs88+E7///nsxPT1dTE9Pl18vbV0dO3asuHv3bvHjjz8WO3fu3Kq2rmpR7uoSRf+4D3PmzBE///xzsbCwUNy+fbuYkZEhRkdHi8ePHxdF0T/uwbfffisGBgaKTzzxhHjgwAHxvffeE8PCwsR3331XPuapp54SIyMjxf/+97/inj17xD/96U+a21mHDBki5ufni19//bXYu3fvFr2F11FdXZ3YvXt3cf78+U7P+cOfg+nTp4vdunWTt7Nv2LBBjI6OFufNmycf4w9/Dj7++GPxo48+En/99Vdxy5Yt4uDBg8W0tDSxurpaFMW2eQ+qqqrEXbt2ibt27RIBiEuWLBF37dolHj58WBRF33zmiooKsUuXLuLNN98sFhQUiO+//74YFhbG7exN5bbbbhN79OghBgcHi507dxavvPJKOegRRVE8e/as+Ne//lXs2LGjGBYWJv6///f/xNLSUtU5ioqKxKuuukoMDQ0Vo6OjxTlz5og1NTVN/VF8yjHw8Yf7kJmZKcbGxorBwcFit27dxMzMTFX/Gn+4B6Ioips2bRIHDBgghoSEiH379hWXL1+uet5ms4kPP/yw2KVLFzEkJES88sorxf3796uOsVgs4vXXXy926NBBjIiIEG+99VaxqqqqKT9Gg3zyySciAKfPJYr+8eegsrJSvPfee8Xu3buL7dq1E3v27CkuWLBAtf3YH/4crFmzRuzZs6cYHBwsdu3aVZw1a5ZYUVEhP98W78G2bdtEAE6/pk+fLoqi7z7zDz/8IF522WViSEiI2K1bN/Gpp55q0HULoqhor0lERETUhrHGh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AYDHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIGmzUqFHIzs5u7stodI8++iguuuii5r4MImoABj5E5Peqq6ub9P1EUURtbW2TvicR2THwIaIGmTFjBr744gssW7YMgiBAEAQUFRWhoKAAV111FTp06IAuXbrg5ptvRllZmfy6UaNG4e6770Z2djY6duyILl264I033sDp06dx6623Ijw8HL169cJHH30kv+bzzz+HIAj48MMPMWjQILRr1w6XXnopCgoKVNf09ddf4/LLL0doaCgSEhJwzz334PTp0/LziYmJePzxx3HLLbcgIiICM2fOBADMnz8fF1xwAcLCwtCzZ088/PDD8lTolStXYtGiRfjhhx/kz7ly5UoUFRVBEATs3r1bPn9FRQUEQcDnn3+uuu6PPvoIqampCAkJwddffw2bzYbFixcjKSkJoaGhGDx4MNatW+frf0VEpMDAh4gaZNmyZUhPT8cdd9yB0tJSlJaWIjw8HFdccQWGDBmC77//Hh9//DF+//13TJs2TfXaVatWITo6Gt9++y3uvvtu/OUvf8F1112HYcOGYefOnRg7dixuvvlmnDlzRvW6uXPn4vnnn8d3332Hzp07Y9KkSXKAcujQIYwfPx5Tp07Fnj17sGbNGnz99deYPXu26hzPPfccBg8ejF27duHhhx8GAISHh2PlypXYu3cvli1bhjfeeAMvvPACACAzMxNz5sxB//795c+ZmZnp0b168MEH8dRTT2Hfvn0YNGgQFi9ejH/+85947bXX8NNPP+G+++7DTTfdhC+++MKj8xKRBxo04pSISBTFkSNHivfee6/88+OPPy6OHTtWdczRo0dVU8xHjhwpXnbZZfLztbW1Yvv27cWbb75Zfqy0tFQEIObl5YmiWD8N+v3335ePsVgsYmhoqLhmzRpRFEUxKytLnDlzpuq9v/rqK9FkMolnz54VRVEUe/ToIV5zzTVuP9ezzz4rpqamyj8/8sgj4uDBg1XHFBYWigDEXbt2yY+dPHlSBCBu27ZNdd0ffPCBfMwff/whhoWFibm5uarzZWVliddff73bayMi7wQ2Z9BFRG3TDz/8gG3btqFDhw5Ozx06dAgXXHABAGDQoEHy4wEBAYiKisLAgQPlx7p06QIAOH78uOoc6enp8u87deqEPn36YN++ffJ779mzB++99558jCiKsNlsKCwsxIUXXggAGDp0qNO1rVmzBi+++CIOHTqEU6dOoba2FhERER5/fj3K9zx48CDOnDmDMWPGqI6prq7GkCFDfPaeRKTGwIeIfO7UqVOYNGkSnn76aafnYmNj5d8HBQWpnhMEQfWYIAgAAJvN5tF733nnnbjnnnucnuvevbv8+/bt26uey8vLw4033ohFixZh3LhxMJvNeP/99/H888+7fD+TyV4xIIqi/Ji07OZI+Z6nTp0CAHz44Yfo1q2b6riQkBCX70lE3mPgQ0QNFhwcjLq6OvnnlJQUrF+/HomJiQgM9P3/Zr755hs5iDl58iR++eUXOZOTkpKCvXv3olevXh6dMzc3Fz169MCCBQvkxw4fPqw6xvFzAkDnzp0BAKWlpXKmRlnorKdfv34ICQnBkSNHMHLkSI+ulYi8x+JmImqwxMRE5Ofno6ioCGVlZZg1axbKy8tx/fXX47vvvsOhQ4fwySef4NZbb3UKHLzx2GOP4dNPP0VBQQFmzJiB6OhoXHPNNQDsO7Nyc3Mxe/Zs7N69GwcOHMB///tfp+JmR71798aRI0fw/vvv49ChQ3jxxRfxn//8x+lzFhYWYvfu3SgrK8O5c+cQGhqKSy+9VC5a/uKLL/B///d/bj9DeHg4HnjgAdx3331YtWoVDh06hJ07d+Kll17CqlWrvL43ROQaAx8iarAHHngAAQEB6NevHzp37ozq6mps374ddXV1GDt2LAYOHIjs7GxERkbKS0MN8dRTT+Hee+9Famoqjh07hk2bNiE4OBiAvW7oiy++wC+//ILLL78cQ4YMwcKFCxEXF+fynJMnT8Z9992H2bNn46KLLkJubq6820sydepUjB8/HqNHj0bnzp3xr3/9CwDw1ltvoba2FqmpqcjOzsbf//53Q5/j8ccfx8MPP4zFixfjwgsvxPjx4/Hhhx8iKSnJi7tCREYIonJhmoioBfv8888xevRonDx5EpGRkc19OUTUCjHjQ0RERH6DgQ8RERH5DS51ERERkd9gxoeIiIj8BgMfIiIi8hsMfIiIiMhvMPAhIiIiv8HAh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/Mb/ByivaIjw4Gq5AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjoBJREFUeJzt3Xl4FGX2NuCns5JA0iErCQkkBAQBYUjUGFBwCdsPYfxAiYgIGgQdosZdhnFfEBfEZVxQFBUVGEAHURSiiAsxo6wiiBADBhOEBNIJa5au74+2KlXVVdXVnc7az31dXJLu6uqqhpk+nPe851gEQRBARERE5AP8WvoCiIiIiJoLAx8iIiLyGQx8iIiIyGcw8CEiIiKfwcCHiIiIfAYDHyIiIvIZDHyIiIjIZzDwISIiIp/BwIeIiIh8BgMfIqJWaPHixbBYLNi/f39LXwpRu8LAh8hH/fDDD8jNzUW/fv3QsWNHdOvWDRMnTsSvv/7qdOzFF18Mi8UCi8UCPz8/hIeHo3fv3pgyZQrWr1/v1vt+/PHHGDZsGGJjYxEaGooePXpg4sSJ+Oyzz7x1a06eeOIJfPTRR06Pb9q0CQ899BAqKyub7L3VHnroIemztFgsCA0NRd++ffGvf/0LVVVVXnmP999/HwsWLPDKuYjaGwY+RD5q3rx5WLlyJS677DI8//zzmDFjBr7++mukpaVh586dTscnJibi3XffxTvvvIOnn34a48aNw6ZNmzBixAhkZ2ejtrbW5Xs+88wzGDduHCwWC2bPno3nnnsOEyZMwN69e7F06dKmuE0AxoHPww8/3KyBj+iVV17Bu+++i/nz56NPnz54/PHHMWrUKHhjfCIDHyJ9AS19AUTUMu644w68//77CAoKkh7Lzs7GOeecgyeffBJLlixRHG+1WnHttdcqHnvyySdx66234uWXX0ZycjLmzZun+351dXV49NFHMXz4cKxbt87p+cOHDzfyjlqPkydPIjQ01PCYK6+8EtHR0QCAm266CRMmTMCqVavw/fffIzMzszkuk8gnMeND5KMGDx6sCHoAoFevXujXrx92795t6hz+/v544YUX0LdvX7z00kuw2Wy6x5aXl6OqqgpDhgzRfD42Nlbx8+nTp/HQQw/hrLPOQocOHRAfH4/x48ejqKhIOuaZZ57B4MGDERUVhZCQEKSnp2PFihWK81gsFpw4cQJvv/22tLw0bdo0PPTQQ7j77rsBACkpKdJz8pqaJUuWID09HSEhIYiMjMTVV1+NkpISxfkvvvhi9O/fH5s3b8bQoUMRGhqKf/7zn6Y+P7lLL70UAFBcXGx43Msvv4x+/fohODgYCQkJmDVrliJjdfHFF+OTTz7BgQMHpHtKTk52+3qI2itmfIhIIggC/vzzT/Tr18/0a/z9/TFp0iTcf//9+PbbbzFmzBjN42JjYxESEoKPP/4Yt9xyCyIjI3XPWV9fj8svvxxffPEFrr76atx2222orq7G+vXrsXPnTqSmpgIAnn/+eYwbNw6TJ09GTU0Nli5diquuugpr1qyRruPdd9/F9OnTcf7552PGjBkAgNTUVHTs2BG//vorPvjgAzz33HNS9iUmJgYA8Pjjj+P+++/HxIkTMX36dBw5cgQvvvgihg4diq1btyIiIkK63oqKCowePRpXX301rr32WsTFxZn+/ERiQBcVFaV7zEMPPYSHH34YWVlZuPnmm7Fnzx688sor+OGHH/Ddd98hMDAQc+bMgc1mw8GDB/Hcc88BADp16uT29RC1WwIR0V/effddAYCwaNEixePDhg0T+vXrp/u6Dz/8UAAgPP/884bnf+CBBwQAQseOHYXRo0cLjz/+uLB582an4958800BgDB//nyn5+x2u/T7kydPKp6rqakR+vfvL1x66aWKxzt27ChMnTrV6VxPP/20AEAoLi5WPL5//37B399fePzxxxWP//TTT0JAQIDi8WHDhgkAhFdffVX3vuUefPBBAYCwZ88e4ciRI0JxcbHw2muvCcHBwUJcXJxw4sQJQRAE4a233lJc2+HDh4WgoCBhxIgRQn19vXS+l156SQAgvPnmm9JjY8aMEbp3727qeoh8DZe6iAgA8Msvv2DWrFnIzMzE1KlT3XqtmFGorq42PO7hhx/G+++/j0GDBuHzzz/HnDlzkJ6ejrS0NMXy2sqVKxEdHY1bbrnF6RwWi0X6fUhIiPT7Y8eOwWaz4aKLLsKWLVvcun61VatWwW63Y+LEiSgvL5d+denSBb169cKGDRsUxwcHB+P666936z169+6NmJgYpKSkYObMmejZsyc++eQT3dqg/Px81NTUIC8vD35+Df/XfeONNyI8PByffPKJ+zdK5IO41EVEOHToEMaMGQOr1YoVK1bA39/frdcfP34cABAWFuby2EmTJmHSpEmoqqpCYWEhFi9ejPfffx9jx47Fzp070aFDBxQVFaF3794ICDD+v6g1a9bgsccew7Zt23DmzBnpcXlw5Im9e/dCEAT06tVL8/nAwEDFz127dnWql3Jl5cqVCA8PR2BgIBITE6XlOz0HDhwA4AiY5IKCgtCjRw/peSIyxsCHyMfZbDaMHj0alZWV+Oabb5CQkOD2OcTt7z179jT9mvDwcAwfPhzDhw9HYGAg3n77bRQWFmLYsGGmXv/NN99g3LhxGDp0KF5++WXEx8cjMDAQb731Ft5//32370HObrfDYrFg7dq1mkGgumZGnnkya+jQoVJdERE1HwY+RD7s9OnTGDt2LH799Vfk5+ejb9++bp+jvr4e77//PkJDQ3HhhRd6dB3nnnsu3n77bZSVlQFwFB8XFhaitrbWKbsiWrlyJTp06IDPP/8cwcHB0uNvvfWW07F6GSC9x1NTUyEIAlJSUnDWWWe5eztNonv37gCAPXv2oEePHtLjNTU1KC4uRlZWlvRYYzNeRO0Za3yIfFR9fT2ys7NRUFCA//znPx71jqmvr8ett96K3bt349Zbb0V4eLjusSdPnkRBQYHmc2vXrgXQsIwzYcIElJeX46WXXnI6VvirwZ+/vz8sFgvq6+ul5/bv36/ZqLBjx46aTQo7duwIAE7PjR8/Hv7+/nj44YedGgoKgoCKigrtm2xCWVlZCAoKwgsvvKC4pkWLFsFmsyl203Xs2NGwtQCRL2PGh8hH3XnnnVi9ejXGjh2Lo0ePOjUsVDcrtNls0jEnT57Evn37sGrVKhQVFeHqq6/Go48+avh+J0+exODBg3HBBRdg1KhRSEpKQmVlJT766CN88803uOKKKzBo0CAAwHXXXYd33nkHd9xxB/73v//hoosuwokTJ5Cfn49//OMf+Pvf/44xY8Zg/vz5GDVqFK655hocPnwY//73v9GzZ0/s2LFD8d7p6enIz8/H/PnzkZCQgJSUFGRkZCA9PR0AMGfOHFx99dUIDAzE2LFjkZqaisceewyzZ8/G/v37ccUVVyAsLAzFxcX48MMPMWPGDNx1112N+vzdFRMTg9mzZ+Phhx/GqFGjMG7cOOzZswcvv/wyzjvvPMWfV3p6OpYtW4Y77rgD5513Hjp16oSxY8c26/UStVotuaWMiFqOuA1b75fRsZ06dRJ69eolXHvttcK6detMvV9tba3w+uuvC1dccYXQvXt3ITg4WAgNDRUGDRokPP3008KZM2cUx588eVKYM2eOkJKSIgQGBgpdunQRrrzySqGoqEg6ZtGiRUKvXr2E4OBgoU+fPsJbb70lbReX++WXX4ShQ4cKISEhAgDF1vZHH31U6Nq1q+Dn5+e0tX3lypXChRdeKHTs2FHo2LGj0KdPH2HWrFnCnj17FJ+N0VZ/NfH6jhw5Yniceju76KWXXhL69OkjBAYGCnFxccLNN98sHDt2THHM8ePHhWuuuUaIiIgQAHBrO5GMRRC8MBiGiIiIqA1gjQ8RERH5DAY+RERE5DMY+BAREZHPYOBDREREPoOBDxEREfkMBj5ERETkM9jAUMVut6O0tBRhYWFs+05ERNRGCIKA6upqJCQkwM9PP6/DwEeltLQUSUlJLX0ZRERE5IGSkhIkJibqPs/ARyUsLAyA44MzmjtERERErUdVVRWSkpKk73E9DHxUxOWt8PBwBj5ERERtjKsyFRY3ExERkc9g4ENEREQ+g4EPERER+QzW+HjAbrejpqampS+jXQsKCjLcjkhEROQJBj5uqqmpQXFxMex2e0tfSrvm5+eHlJQUBAUFtfSlEBFRO8LAxw2CIKCsrAz+/v5ISkpiRqKJiE0ky8rK0K1bNzaSJCIir2Hg44a6ujqcPHkSCQkJCA0NbenLaddiYmJQWlqKuro6BAYGtvTlEBFRO8GUhRvq6+sBgMsvzUD8jMXPnIiIyBsY+HiASy9Nj58xERE1BS51ERERkVdVVFQY7n4OCgpCVFRUM15RAwY+RERE5DUVFRV46aWXXB6Xm5vbIsEPl7p8wLRp02CxWGCxWBAYGIi4uDgMHz4cb775plvb8hcvXoyIiIimu1AiImrzzPa5a6l+eMz4NKOWTP2NGjUKb731Furr6/Hnn3/is88+w2233YYVK1Zg9erVCAjgXwUiImr/2sy33dy5c7Fq1Sr88ssvCAkJweDBgzFv3jz07t1bOub06dO48847sXTpUpw5cwYjR47Eyy+/jLi4uBa8coeWTv0FBwejS5cuAICuXbsiLS0NF1xwAS677DIsXrwY06dPx/z58/HWW2/ht99+Q2RkJMaOHYunnnoKnTp1wldffYXrr78eQEPh8YMPPoiHHnoI7777Lp5//nns2bMHHTt2xKWXXooFCxYgNjbW6/dBRETUGG1mqWvjxo2YNWsWvv/+e6xfvx61tbUYMWIETpw4IR1z++234+OPP8Z//vMfbNy4EaWlpRg/fnwLXnWD1pj6u/TSSzFw4ECsWrUKgKNb8gsvvICff/4Zb7/9Nr788kvcc889AIDBgwdjwYIFCA8PR1lZGcrKynDXXXcBAGpra/Hoo49i+/bt+Oijj7B//35Mmzat2e6DiIjIrDaT8fnss88UPy9evBixsbHYvHkzhg4dCpvNhkWLFuH999/HpZdeCgB46623cPbZZ+P777/HBRdc0BKX3er16dMHO3bsAADk5eVJjycnJ+Oxxx7DTTfdhJdffhlBQUGwWq2wWCxS5kh0ww03SL/v0aMHXnjhBZx33nk4fvw4OnXq1Cz3QUREZEabyfio2Ww2AEBkZCQAYPPmzaitrUVWVpZ0TJ8+fdCtWzcUFBTonufMmTOoqqpS/PIlgiBIS1f5+fm47LLL0LVrV4SFhWHKlCmoqKjAyZMnDc+xefNmjB07Ft26dUNYWBiGDRsGAPj999+b/PqJiIjc0SYDH7vdjry8PAwZMgT9+/cHABw6dAhBQUFOu47i4uJw6NAh3XPNnTsXVqtV+pWUlNSUl97q7N69GykpKdi/fz8uv/xyDBgwACtXrsTmzZvx73//G4Dx8tuJEycwcuRIhIeH47333sMPP/yADz/80OXriIiIWkKbWeqSmzVrFnbu3Ilvv/220eeaPXs27rjjDunnqqoqnwl+vvzyS/z000+4/fbbsXnzZtjtdjz77LPS8NXly5crjg8KCnIaIfHLL7+goqICTz75pPS5/fjjj81zA0RE1CKMdimLKzINP4fh6NEoREZWwGqtdjquuZsZtrnAJzc3F2vWrMHXX3+NxMRE6fEuXbqgpqYGlZWViqzPn3/+6VSTIhccHIzg4OCmvORW4cyZMzh06JBiO/vcuXNx+eWX47rrrsPOnTtRW1uLF198EWPHjsV3332HV199VXGO5ORkHD9+HF988QUGDhyI0NBQdOvWDUFBQXjxxRdx0003YefOnXj00Udb6C6JiKipmd2lPHHiRKxcacWCBV0gCH6wWOwYO3YN0tK2AgCWLVsmHduczQzbzFKXIAjIzc3Fhx9+iC+//BIpKSmK59PT0xEYGIgvvvhCemzPnj34/fffkZmZ2dyX2+p89tlniI+PR3JyMkaNGoUNGzbghRdewH//+1/4+/tj4MCBmD9/PubNm4f+/fvjvffew9y5cxXnGDx4MG666SZkZ2cjJiYGTz31FGJiYrB48WL85z//Qd++ffHkk0/imWeeaaG7JCIiVyoqKqTduVq/KioqDF9vtozh5MlIPPhgPATBEWoIgh8+/vhy2GxhHp/TG9pMxmfWrFl4//338d///hdhYWFS3Y7VakVISAisVitycnJwxx13IDIyEuHh4bjllluQmZnZKnZ0mZ3o3hST3xcvXozFixe7PO7222/H7bffrnhsypQpip9feeUVvPLKK4rHJk2ahEmTJikeEwTBs4slIqIm05w95YqLA2C3KwdOC4Ifjh6NVCx5Nbc2E/iIX7YXX3yx4vG33npL6hnz3HPPwc/PDxMmTFA0MGwNoqKikJub22qHthERUfvXnD3lUlLq4OcnKIIfi8WOyMijjT53Y7SZwMdMBqFDhw7497//Le1Gam0Y1BARkTe15inoCQl2PPWUDXffHa6o8WnJbA/QhgIfIiIiatDSo5BEeru2AOCaa07hjz/exNGjkVKmp7g4WfPY5sLAh4iIqA1qDaOQtmwZhI8/vlxz15bIaq2G1Vpt6tjm0GZ2dREREVHrYbOFSYEM4Lxrq7y8HOXl5aaObU7M+BAREfkovWUqMWARyWuFxDFGR49GSYGMSL5rSxyAbebYptjRrIeBDxERURNrjUXIRktP8qBFlJubCwBYsmQJACAysgIWi10R0Ojt2tI61t9fwC23jEZycgA7NxMREbUXraUIGWjoFae39JSauk+36FgduFmt1Rg7do1T8KT1evWx/v4CXnvNgvT0OC/foWsMfIiIiEzwNGvTXEXIRrurRGJPuQ0bgOee01960qJe/gKAtLStSE3dJ+3aMtqpJT/2lltGt0jQAzDwIS/46quvcMkll+DYsWOKOWlGkpOTkZeXh7y8vCa9NiIib2hNWRst7uyYioqKwgUXAH5+gN3e8Lir5oJay1/qYMtV8CXu8EpIsDs911wY+PiAadOm4e2338bMmTOdBo/OmjULL7/8MqZOnWpqrAURkS8ym40pLS11OlYrU+KKmeyS2WUrrcLhxERg4UJg5kygvh6KZSozmSPAOdgaMGAHduwYoAi+HBke1+dqTgx8fERSUhKWLl2K5557DiEhIQCA06dP4/3330e3bt1a+OqIiNoHrayIu9zJLhktWw0ZMhUXX6w/NSAnBxg5EigsrMB3373tVq8drWBr+/aBACzSz6tXXw6LBS3et0eNfXx8RFpaGpKSkhT/o1y1ahW6deuGQYMGSY+dOXMGt956K2JjY9GhQwdceOGF+OGHHxTn+vTTT3HWWWchJCQEl1xyCfbv3+/0ft9++y0uuugihISEICkpCbfeeitOnDjRZPdHRNReuFMT5Fi2ioKf6tvc3x/IyIgyXHarqKiAv38ZzjqrVMr0aGWOdu7s69RvR2t7uhj0NPBrFX171Bj4tJCDB4ENGxz/bS433HAD3nrrLennN998E9dff73imHvuuQcrV67E22+/jS1btqBnz54YOXIkjh51rPuWlJRg/PjxGDt2LLZt24bp06fjvvvuU5yjqKgIo0aNwoQJE7Bjxw4sW7YM3377rbQVkoiIvEdctvL3d/zs7w+89prjcT1iVmnhwoXSP4j1eu2sWHEVFizIw5Ytjn8k22xhOHEiFBaLuk7HeKamWDwNOJb/ysrKUFZWhoqKCvM36wVc6moBixYBM2Y4isr8/Bx/YXNymv59r732WsyePRsHDhwAAHz33XdYunQpvvrqKwDAiRMn8Morr2Dx4sUYPXo0AOD111/H+vXrsWjRItx999145ZVXkJqaimeffRYA0Lt3b/z000+YN2+e9D5z587F5MmTpcLlXr164YUXXsCwYcPwyiuvoEOHDk1/s0REjaCusfGkTkeP2Road4jLVvv2AT17Ggc9gHZWSavXjkjM2Jw61QH5+Vl/HWOXjlfX+AB2ODJA2pPZ1UuCzVkUzsCnmR082BD0AI7/zpzp+Avr6i9qY8XExGDMmDFYvHgxBEHAmDFjEB0dLT1fVFSE2tpaDBkyRHosMDAQ559/Pnbv3g0A2L17NzIyMhTnzczMVPy8fft27NixA++99570mCAIsNvtKC4uxtlnn90Ut0dE5BVma2w8YVRDo9e92Ki7snwLfWJi475H1L121ATBTxb0AI6lLDuuvHI5kpIOwmqtxqWXfiltbS8q6mmqxw/QtPPE1Bj4NLO9e5XbBwFHRf2+fU0f+ACO5S5xyenf//53k7zH8ePHMXPmTNx6661Oz7GQmohaOzNfwkZZG73nBg+eiEce6QNBaCgA/uSTsXjggQzd7sVmuit7I1siXnNq6j7k5S1ASUkiVqy4EsqKGK1skB86djwp3ae4XR1wr8dPc2Lg08x69XLuneDv70hNNodRo0ahpqYGFosFI0eOVDyXmpqKoKAgfPfdd+jevTsAoLa2Fj/88IO0bHX22Wdj9erVitd9//33ip/T0tKwa9cu9GyumyIiakZGwYjRczZbLOx2ZQFwfb0F1dVx0IpbzHZXbmy2RO+aa2qUXZmzsvJVGR/XvX/kgZB4Ty29vZ2BTzNT904wU4TmTf7+/tKylb9YCfeXjh074uabb8bdd9+NyMhIdOvWDU899RROnjyJnL+KkG666SY8++yzuPvuuzF9+nRs3rzZqf/PvffeiwsuuAC5ubmYPn06OnbsiF27dmH9+vVNlj4mImoOWsHImjVjkZq6DwAMA5WUlDq3/uHrarCnSKw/8mTel1FwlZa2FVOmxKK8PAK//voprNZqhIScNly+Mgps3Gmy2JQY+LQAd4vQvC08PFz3uSeffBJ2ux1TpkxBdXU1zj33XHz++efo3LkzAMdS1cqVK3H77bfjxRdfxPnnn48nnngCN9xwg3SOAQMGYOPGjZgzZw4uuugiCIKA1NRUZGdnN/m9ERE1Ja1gxG63/LVbyWIYqCQnB5j6h69Y66NdbGxHYKAywyMvFHZ32ctVcPXzz58DAC66aAB27NhhuHxlnO1yfzZYU7EIgmC8/8zHVFVVwWq1wmazOQUIp0+fRnFxMVJSUrgzqYnxsyaillJWVoaFCxdKP8uzGACwYEGeaso4sHXrMdTU1OD885XLWf7+AgoLDytqeA4edP0P34qKCpSWluJf/yqWBQwCAIthtmTGjBmIj49XnEdrKay8vByrVq2CzRbmdD8Wix15eQvcCkhcnae4OBlvvz3V6XVTpy5GSsoBp+v2hNH3txwzPkRERDq0shhaU8bPOceRFXfO6DhPIDez+yoqKgo1NTVIS1uF2NhDWLRoutvZEjO709yZsC6nXtJylTnSyl65qg9qKgx8iIiINOgtz+TlLUBe3gLNKeNNUcpQWxusGVTs2tUXffvuavQWcfnyVWBgDWprg3HwYDxqa4MRGHgGtbXBipodrWAwNXWfYWDjKsDS28rfFBj4EBERyYhfwnpZjMLCDIwYka87ZTwxEQgJcSwxlZU1PG6z2VBbWwsACAgIQEREhNP7atXnaNf6CPj881FYt26EYtmrsrJSd8nIqPDYaq1W9N0Rl9XUy2upqft0g0GjwGbixImYMSMCDzxwBPv3ByA5uQ4JCecBOM+jouzGYOBDRETtlpkp5+ov3aioKGRnZ2Phwk81Oxlv2pSJjIxCWK3V2L9/P8rLyxWBTGVlJZYvX+7R9cqLk8UAzLmxoBiUOC97LV++HBMnTkRsbKzivK52VKmzWw0dl5XvM2HCSt0lLXEXWFVVLJKSzqBLlxQAKQgMDERMTAyioqIQHw+kp3v00XgNAx8PsB686fEzJiJ3aAU4ZgMQsamr/PW1tbWwWquRmVmATZuGqF7RULuybt26Rl+7nPwaoqKikJubi5qaGpSXlyM1dQF27eqLzz8fpXiNeou7eM8TJ04EYLyjCnBktk6cCNXs1qx+H0AwXNISd4GVlDi/vjnHUhhh4OMGse9NTU0NQkJCWvhq2jfxf/zqXkNERGqNHTFx+PBh3QApI6MQmzZlQt7B2N2iXK0lJrON/OSBgtVajb59d2HduhGmioTr6uoAGC/ZFRRkSlkgx3wto+DHMX9L3sjQbDE00LxjKYww8HFDQEAAQkNDceTIEQQGBsLPj8Ptm4LdbseRI0cQGhqKgAD+FSUiY439QhUDBC1WazXGjTO360krmNFaYgLgdiM//WUvQBCAwsIMaflNTa8fkBj0OM7h99cxYvCjrPERg54VK66SujgnJJQiMvIorrjiXGzYYHj5rQq/VdxgsVgQHx+P4uJiacI5NQ0/Pz9069YNFovF9cFE1C54Uo/TFNQBjLppHwAUFyeb2umkXmJavfpyWCzQXHZylfnJzs7GsmXLkJq6D8pqAD9s2jQEBQWZmkGU1o4qrSU8QfDDlVcuR8eOJ//a3RWEwMAaVFZGYOXKKxUzxvLzs6QePWKDW73Pr7Vh4OOmoKAg9OrVq9Wk7NqroKAgZtSIfIjZ5SozdSJ6X7xmvpD1ioDFmVNmAxy9QmDHRHPlI1pjKLRYrVYAjqUrrSUpdRAVGBgoPacVvMkzPoBjyUycsi6nt51e65pby1gKIwx8PODn58duwkREKo3J2Jj9x2Rpaal0rNb59L54zXwhuxqroPe83k4nrUJgwK7I+ADKGh0zc7e0l64a3lcMSGpra3HttdciNDRUel7s2AzAdONCV80Hjx07ZurzE+9N1Nzb2EUMfIiIqNHcydgAzoGO+ktRj3wulfx8gP4Xb2zsIVNzolx1H9Z7Xm+nU1LSQad6HAAYMGAHduwYoBlwyO9v4sSJil4/NpsNQMPS1erVl0Od+ZEHJOK5tLbIA85ZIHXQI8+QGQVJG/4q8HH1+an/7NTX1lwY+BARUaOZzdgY7aBq7PvqffGWlHQztVTjKrOh97w6wJEHBlr1ODt2DEBOzhuorQ3SDDhERp+TGLSod2ZpZW30tsgDji3/YnH3sWPHpCBGniED7Bg8uMDlNXsylqIlykYY+BARUbMx2kElZ7ZA1mazSbUv+oHJ74ZfyGItjKuxCkbP62VPtOpxBMEPtbVBSEk54Na9Ao4skMViwbJly2C1VmPEiHxkZBQqxk3YbGGmtshXVFRoBlfOzQyVxdPidat5OveruTHwISKiVkWvgFgrOKitrdXd6i2+NjGxDGPHrsGaNWNht1vg7y9g3rwqXHPNJKcZUUbLP1pjFzp2PAu1tSm6nZtdZUH0ao/0gqGIiAjEx8cjNzcXpaWlWLVqldO4CbNFxXrZFq3MGaC/RCi/Vr3PrzXt9GLgQ0RErYZenY5jucix7DJunPJLXb18ozcP6tQpy1/DQy1ITIwAECGdQ/565fU45mvJA5uEBDsSEsQC6xjDGhWjLIjevZ461cGpQaA6iBGntxt9Zq62yOsxWzwNGO+CE7W2nV4MfIiIyOvML1U5jhOngGuNTlD+7OiFo/5SlwcfRvOg9Kaly5d/GgIKG5YtW2Zwlw6uCnRTU/dhwoSVAATFdnG9miQx6BF/1tsZJRY7uyoq3r9/P4qLixXLjAEBAU7LjupiZlfF02YCLm8HZd7AwIeIiLzK7L/wlQW08g7BDUM4tfmhpCQRVutuw+twd3u9p6MvjN7D6LPQ66js7s4oV8tpZuaJaV3n7bcvMCyedhVw2Wxh+PnnfqZ7ADUXBj5ERD6oqbokm/0Xvv40cMdylsUiSDuKjOdHafOkIaKrHUausljiZypmZVx9FlrLYPI5WCJXO6MaW1Ssd515eQsUxdPqmiejgEs7qDV3P02NgQ8RkY/xZpdkkVgk7CoLIO6g0iugdfDDhAkNoxPeeONGqL84k5IOAoDuPD+z26SNjpMHOq6Kh7U+U1efBaBdTB0Sclpzvpd6TIacq548Rlxdp/hLi2P0hWOIq9YsMoeGmV/qoExdXN4cGPgQEfkYT7oky2llg8QC4/376/DuuwLs9oZAxd9fwC23jEZycsNXjlEBLWBHREQlEhPLAADjxn2sm82oq6tDWVmZ7nWJ3N1VpO5j4/jybphVpc5iaX1Orpagxo8fDwDSzizxOjt3PqbomVNU1BMLFuS5XDrUC1Dk9w4AJSVJAICkpBJYrdUe9d9RL41lZn4nDUktLk7W+HO1YOTIz9C37y5cf/1wREefx87NRETUumjVk4iuvfZapKamKh6LiopCVBSwcCEwcyZQXw/4+wOvvWZBenqcdFxubi4OHz6MoqI1GsshAgA/LFo0XfqCN8pmaHVyNjvGQo9WHxs1V3UqYrAhX7pSB23R0dEurzMy8qjbxcF6mSp1ACc2JszIKDS9VGazhaGkJMnpmgoKMpGRUQhAP+Dr23cXrNZqREdHIz4+XvPamwMDHyIictuSJUt0l8JycoCRI/HX1nHnnVSOACkKb74Ziy1b9uC99wpRUxOIpUsn6X7BX3HFuVJXYSPqzIsnu4qMl+EcjDIi6gAmKysfCQmlTkFbZWUlLBaL7nWuXn05hg792lRxsBjslJbGKwKthjYA8v9C+lnemDAvbwGOHo3E5MkZ6N/f0QZAvrNNmQVTUi+NGQVSLbG8JcfAh4jIx3naXM5oySwxUX/ruCgqKgr9+9cgJeWA5vKI/Mu0c+fOHl2zmTobNb3dVuJwUVcZEXUAk5+fhby8BU7Hy7smawdbfvj664vhqjhYr5DYVfAmkhczp6QcQP/+I50yMs5ZMCX1Et6MGdG6/ZRaYnlLjoEPEZGPqayslH7vahlIXNoAGmpCmoLZCeBmrtmd8wLOu7H0MhZ6y21BQUFSEOhJoKV3nQ30i4P1d8e5x9U1GmXB1NeUkJCAqKgow35KLYmBDxGRD5HPZ3K1DLRlyyBVEzsB48Z93CRdd10tj4jLXO4uXbk6r3y8hJxeXZHVWq2Ymi5mMMQCa08KhbWu01lDcbCrifKecHWNelmwK69cgaSkgy1esOwOBj5ERD7EzDTzo0cjAUCjc6/F61135fUerrZku9MQz+x5xRobLfJdUuPHj0d0dLTLL3ZXIyqMlufE69yzpxc+/fRyqJe3xKBHvhtMOyCRF4obZYBcbzF3NQetf39HE0kxy9MWMPAhIvJRRtkJranigDLIkI9P8PRf+uI2+MOHD2P58uW6W7LdbYinnt+lRb5EJdILTgICAgx3IrkKtIyW54YPH47169cDAIqKemLt2jEwWt46fvy4VPOkFZCkpW1GSkoxbLYIrF+fBf0GkK63mJudg9ZWgh6AgQ8Rkc+yWqsNt1trdU2WBxlmtpKbIR+4qUW7jkU7KFAHY662TYtLVIBx7dDy5csN708r0CovL8eqVatcLs+FhYUZ3KcdOTlvSD2NAOcRFGKgVViYgU2bMrF583nYsiVdGjtRUpKIkydDsHbtGI+2mJudg9ZWMPAhIvJRW7YMko1HcGy7Fr/ordZqjBunHFTpahSC2caIZsgzL9p1LNo1L54GY2Zqh8SGjnoZDq1Bp4D5gme9nV21tea2fxcUODooy68/L2+BtBwVECB4PNaiPWHgQ0Tkg7Sa9OXnZ6F//51O4xRKShz70sXJ4p5ufzdLqw+O1pJcUtLvit1NWtdkNhgzE5zIg6rs7GxYrVan82hNdDdb8OxpYbTZ6zeqdWrp3jrNiYEPEZEP0vuiLClJxNGjp6TxBkePRkkBD+B+F2R36fXBUQ7vdAwwFbs7A2j0NbkbdKiDGyOudpbV1dXpHpeVlf9XvRU0i73FYM/MeAx1p2hRW6vRaSwGPkREPkhve/LKlVfKCogd4yPkfWzc7YLsirqHjl5AlpBQipycN/DGG9OhXs6RdydWX1N5ebmpL3at7eSC4Cg29kZgp862yIuJ5Vkp+XGlpQlO9VdpaVths4VJ9TzyPx+j4Kot7bpqagx8iIiaibr2Q605/uWttz1ZnOMkCOJuKeehnBMmrPSoOZ8erYnm7u40czU+QVye0qv1kS/xpKbu+yuIEjnGRgQFnfG4eaN6CU59jpqaGthsNqfXnTjRUZbhavgzOHWqg+Jx+XN5eQv+qum5AgMHdmyzu66aGgMfIqJmoPUlr8XTnVFmqXcf5eY6ZmWdONERK1Zcpfs6MQvkaQ2KFq0g0NWykNb7K+dRaV+TXsAZFRWF7OxsLFu2TGcLvx9WrLhKdwnNqN7JaFlQbwCsq3lYetvTxWAvJeUARo8OQXx8nNMx5MDAh4ioGZgtsvXmzig96sAqJeUAbLYwg5EJYjHxQdNTvD0hBhGpqfukgZnqrsla7w9AkbnKzCww/Z4VFRWora0FYDw2QmtZzyiw8WQ4qpl5WGZmZZExBj5ERG5oDctVTUErqBAzKfIAo3PnY8jJeQO1tUFe3RlkFEQMHjwYmzZtAqC/M0nsY1NQkKmYOG5Un6POwrkaGyFfQnMV2JgpHlcHQK7mYSkLvOVa1/Tz1o6BDxGRSd5crmrqLeGeUAcVAKTfFxX1xIIFeYrAJCXlAADHjqHGFM+6CiLEoEek1925oCDTrQyLVgAr38LfUOjtIM+qGAU2Vutu3VqlFSuuhDyYlAdmruZhWa3VCAk5rQgQMzMLkJFRCKu1GtnZ2YiJiWmTgXdzYuBDRGSSt5armnpLuDvU2QF1UGEmuxEdHd2oL1tPJ5qL3JnhJc/Yybs8yzk+g92oqdFf1istjYfWLKwVK65ETY3jz1MvgyZemzowczUPa/z48ZgxI1o1NqIHgB5tNtPYEhj4EBE1I09qP9zlznKc0UwrceSCq8CksrLS8HpOnjyJ0NBQzfMDjWvc584ML1cZO3UWTm9ZzWYLQ35+FtRBj0PDn2da2lZMmRKLNWt+0Swe1wrMjJoMilm19jA2oiUx8CEi8pAny1XuZjfcrSnyZDnOVabAVWCyfPlyl+9nxNVOLjn5Zw5AVY9jboaXFr0snNaymlEtDqD88+zduyN+/lm7eFz+GU6cOBERERG652RGx3sY+BARadAKOORfnp4uV7mT3fAkiGmK3WPuBCaeMsp0iJTZHTv69dulEYCYm+El504WzmYLw4kToW7vsHL1GUZERLgcqErewcCHiEjFzJKIu8tVeo0D1V+A8pobdXDiyTyqxhRRy6/FTGBi5v2MnhezKzZbGIqLkxVjMwIDzzjNFvv55/7QWt5SBz16xGs5cSLUVBbOeVlNOhrqLtfi6+RLfJyV1Tow8CEiUjly5Ijh854U46praZQFqq477HqSYWpsEbVR/Y9IPpTT1fuZuR51VkfsIK2fYdFf3jKivhbHe+ln4Zx77MjrewRMn+7Y4v///t85OP985Z+nq8+Qy1jNi4EPEZFMRUWF0wBKdZbC1XKVq2LfoKAgpKdHmS5Q9UYzPE+LqM1+Ibt6PzPPl5QkYfXqy9EQgCjHMmjtonLQXt7Syy5pXYsj8HEEP1oBlHFdjx9qa4OQknIA558/0mnJikFN69IuA59///vfePrpp3Ho0CEMHDgQL774Is4///yWviwiagPU/zLXy1IYLVeZKfZ1ZzSFJxmmxm4Rd5er9zN6vqiop2HH4gYWqDMzgPbyllF2qaQkSeO9/JCe/gP69/9ZWoYaP348AgICsHz5csOuzuya3La0u8Bn2bJluOOOO/Dqq68iIyMDCxYswMiRI7Fnzx7Exsa29OURUStgtFNKXsBss4UpMhDyLEVa2lbk5vZCVVWsYrlKvvQjnsPduhw1T7Z7N2aLuCtavXBcvZ/e84GBNSaDHsfxOTlvYNeuflKzQq3sjFF2SQyytGzZko6hQ7+RzhUdHW0w1FV7eY21Oq1fuwt85s+fjxtvvBHXX389AODVV1/FJ598gjfffBP33XdfC18dEbU0szulAKCwMANa08DFLEb//hGIj9fP2hhlHdTbq43qPDzZVdVUO7H0Pj9X76f3fG1tsEHQY4fFAsXxiYllSEwsw2OPxeLo0UjNoNOoq7JRkKWVEZPX6FRWViI3dw9KSoLRoUM9Tp/2R1LSGSQlnQWrlVPQ24p2FfjU1NRg8+bNmD17tvSYn58fsrKyUFCgPbTuzJkzOHPmjPRzVVVVk18nEbUcs5kWmy0MBQWZGs+Yy5q4qmnR2l5ttPxldleV2Z1YnmYmjD4/V9eYmroPEyasBCBIIxj0+ttMmOAY0zB48GBUVcUiJaUeffq4LgIH9EY/CCguTnGRWRJQWpogjeIQie8VHx+Ps882eDm1Ce0q8CkvL0d9fT3i4uIUj8fFxeGXX37RfM3cuXPx8MMPN8flEVErpLcUpVfMOnhwgWHWRCxsNqppEZ93tfzlapyE1nFNvYvIVeG23jUaNQg0GtNwySW9TF+rfFkqKysf69cPR0MxtAVbtqTDuUZIUByTn5+F/v13tpr5aeR97Srw8cTs2bNxxx13SD9XVVUhKSmpBa+IiJqL0VKUXk1KRkah9LNW1qSurs7w9aWlCXjnnetMbTH3NIhpquWWiooKp8JtM32CXGW/Hnssxe3t/VqioqIwceJELF++HAkJZVDvABMEPwwe/J2iPqg5C8CpdWhXgU90dDT8/f3x559/Kh7/888/0aVLF83XBAcHIzg4uDkuj4haEVdfxq5qViZOnOg0KqKmpgbHjh0D4Mg6DBiwA9u3D4TYa+bss3cjPz/LrS3m4nvoFWTX1NSgrKysWepLzO54U3O14ys6Ohrx8XHS9n7xXsV7UzO6V3Hsg1HgmpFRiKNHIxEYWINFi6Y3SQE4tV7tKvBx9MZIxxdffIErrrgCAGC32/HFF18gNze3ZS+OiBrN3blVRsxs9zaqWZHvEtUq+LXZwrBjxwDIl1F27TobRsXSejwZXSF/bVMsexkFjoByKc/Rgdm4QaD8ej29V/F+AHPF1gBMd9Gm9qNdBT4AcMcdd2Dq1Kk499xzcf7552PBggU4ceKEtMuLiNqmxn4hqrnafj1+/HhER0drvlYdLGiNlvj5536avWI82WJutiD78OHDHg0szc7OhtVq1XxOLzDSCxwLCzOctpo7yJedzI/p0KN3nNkO2fJzeGOZjdqOdhf4ZGdn48iRI3jggQdw6NAh/O1vf8Nnn33mVPBMRG2Lt4dvusoIOJZf3B8a6TzPSTlHKisrX1ru8nSLuV5dzfLlyz0aWKruVK2mFUzqBY6bNmVC3fdIEADl5wApM6ReMvQG+fni4+GyQ7aZY6j9aHeBD+D4HymXtojaN0+Gb1ZUVCh2JXl7u7f2PCdlo7u0tK3o33+n5nuWl5e7zDS4qqspLS11ai4ovz5PBpZqBVBFRT3/CmhEwl8/O2eB1OTLe2JNjp7GDFkl0tIuAx8iat88Gb6pXvaRf6HK+7ZkZ2cjJibGoyyE9hZ45zlSelu+xd4+1157rWKqtxjAmJm/pdUfCGjcwFLx/cWgUbwOdZDj/DP+ygopnzNbQNzYIatEWhj4EFGb4unwTXnWwugL1Wq1au7W0iPPDOkt/6jnSLmyZMkSzceN6mpGjMjXPV9jB5aqgym9AE9NXuPjbgGxt4asEqkx8CGiNqWxwzfd+UJ1pzgYcF03dMkll2DDhg2Ka3FnGUdvUOamTZnIyChs9MBSs9ej1xlZXcCck/MGEhMd29HlS4pXXHEuOnd2DACVb1mXB0HNPWSVfAcDHyJqU8wM39TK0ojLNe58oWrt1tIKDGpra6XfG9UNde7cWfq9J8s4Vms1MjMLsGnTENUzyutXX6eZz8zs9YwYMQKdOnWC1VqKRx7pCrvdUb80YMAO7NgxQPH6sLDjKC5Olq5DvD558KcmBpFNOWSVfBsDHyJqU1xlVSorK526C8t5+oVqFBgEBCj/r1SvhicwMBCAe1kndRCTkVGo2Dklv36bLQyFhRnS8/LrNNpN5s71rFu3Tvr9bbeFKQK8O+88hi++OIDIyKMoKuqJBQvy3K7PEf6qmHb158weO+QpBj5E1CaYHb5psShrTdSBgydTy10FBhEREaZGS4jPm8066QVb48Y5X39RUU+nyePidZ461UHWMdqxpV4ehOhdz88/90W/fvr1SeoA77ffvkZKirlASi97pv4s2WOHvI2BDxG1CWbnVpkpYjY76VxkJlAx80Us1rKYyToZBQ/q6wcgZVfUBMFPMSYD8HMaxKlXs7Nu3SisXz/C7d1Uep9XSUkirNbdLpfV3O3DQ+QOBj5E1KwaM0LBneDCzCwus0Wy3q43MZN1chVsXXHFuVKtTHFxsmbQ4+B6EKf6euSFyp7sptIrwl658krYbPluzysj8iYGPkTUbDwdO+FJsOTprqCTJ086PebJ8pjedYpcZZ1cBVvyQmm9QAOwY/jwfFXGRztoS0vbitjYQ3jjjelwNU/MaPeX+FxWVj7Wr89SnEsQ/Jwe0zo/UVNi4ENEzcbsLin5cUaNB+WvEYMlm80GwPxykvpcS5Ys0RzRYBSoqDsky8mDsqioKGRnZ0sjIsRzHD0apfhZ/L1RsHX8+HHDYzMzC6Qt7iEhp00FbbW1wdBrQuiqeBpwXlpMT9+MzZvPU53Ns3llRN7CwIeIWoTZ7dNmGw/W1NSgoqIChw8fBtAQDKxeLXYYVn7huzoX4LxzyFXHZT3yQEo+DNTVZ2AUbMl3VwGOPjkTJqwEICAp6aB0bEZGBoBC6TyBgTWorQ2GzRZmKssECLjwwm8Uw0elZ1QT2dVLi1u2pENrKrs35pUReYqBDxE1O0+68rp6TXFxMdavX684vrw8ChYLIAiOwZjuvr+rgury8nKXQQ+gPevK7DWYqUUyCqDq6+ul88h3fukFm5mZBbIAx46+fXfjm28uglYmSLzuo0cjAVg0lxYHD/7OaVq70bwyblOnpsbAh4ianSf1N65eIw96tmwZJMv0NBwrBhbuvL8726b1luH27t0rLYdVVzcsb3myhVzrPY0CqB9//NHUccqp8nYMHvwd+vb9GYsWOdf8yMmXqbSWsDIyCpGRUegU5Fit1bjxxtGKIaXcpk7NgYEPETU7T3ZJ6b3mxImOimUb/QGaDcFNU3QFNsq6aHUq9mQLuVZgZTaIMzoOUC5TAX4oKMhEQkKpwW4xQL18aFSTNGPG/ymW+RjkUEth4ENEzc6TXVJarxEEYMWKqxSBhvYATQcxuHH1/vIMDeDozCxmJrS+sD1ZunN3C7leYGU2iDM6Ti8oAgTN3WLq4mn5NHk2HKTWjoEPEbUId5sIyl9TUpKIFSuuhJjVkQcKelu71cGN0fsbzZICnLfbe7p1XryGn3/ui3XrRjm9vqQkEUePnkJg4BnDwEq+dVwviHQV7GkFRUlJB1XBmR2DBzcEPBMnTkRsbCwbDlKbwsCHiJqN2V1SRgWuVms1jh49Bb1eMCkpBwy/rM28vyvqYmVPt86L19Cv3y6sXz9CFTzZsXLllbLslvb9FhX1RH5+Q9AjjqM4eDAev//eHd26HZAmpGt1fBaHiMo/Mz8/AQ8//Cf+/vfhCAgIUGVxegDowSwOtVkMfIio2ZgdOyH/QtUKglwFGp5kk0TyAAWAbqM+Ob1sCuAILEpL4522b8vrd5yXvexw7JJqWPqSL4WJ9xsYWOOUCcrPz8LBg12xe3ffv44XMHDgdvy///df6b2s1mp8912mU5YoL28Bjh6NxC23jEZ6ejyAeOn9mMWh9oKBDxE1K60sgbwzc01NjTR2QiTWkIjbx83UCOllc4YPH47IyEip0Fa+JV29s8kROFh0t34bdWKWTyc3qt+ZOHGiVD+Um7sH771XiBMnOmLFiqtUV26B2BNHvJ7a2mDNTFBD0ON43fbtA3Heef+TMj+OoGe40zXl5S1ASsoBJCTYnT43ovaCgQ8RNQmzYybcGWMRHR0t/expVqd3796awZe6QFlvK7zVWq0ofM7OzkZtbS2OHTuGDRs2wGqt1jiXcmK8vP4nIiIC8fENmZWUlAOw2cI0M1o5OW+gtjZIul+t49SZIfH9S0q6ITGxDDZb2F9LY/rXRNSeMfAhIq9zZ8yEO2MszNYIybMockZ1KUa7wQBlYOCqaaGrc2ntuqqoqJDGbeiNoAgLO+5yrMWFF36Db74ZCmVgIyAp6XcX19ZwTWwiSO0ZAx8iajR1dkeeETEzGsLMsYBnNUJm6Q/6dHCnz4+jPkg5qkHMxKiX5Ww2GyorK7F8+XLFOcSMljgba9OmISgoyNRcchOEhv927mzDwIHbsX37QIg1PuPGHcOUKX2wYUOZbv+g4cPzpaU3Fi1Te8bAh4gaRT+7EwbAeX6TXn8bd8ZINAWtAmPHuAv350kVFfWEMuPimJKekFCKK67oj4yM81BZ2QvLly+XBpbqKShwDAQFnD8T52aNDbU6jpqebPzf/1lx3nmRqKjoJy3FqbNEWVn5GDKkAAAQGxvrzsdG1OYw8CGiRjEaIpqZWWC6v42nvXAay6hA2XFd+jVEWstyDcGIfAcW0L//Tlit1cjIGKmo6THi6jMxej4l5QBmzDiJ+HhHEbc6W6bcon4OgHO4RZ18AgMfIvIKrYyNI1vhPJ1ba8moKcZImCEGBEeOHEFtbS2qq6tRV1cHoId0TEDAWYiMjERtba3mDjBXnaM9DeBcfSalpfHQ2uauV6vDRoNEDHyIyEv0vvC1pnNrBQCejLHwJldLToBjBxdgvCznKlgR65/kdVBq8kyS3meivTtLQFYWa3WIjDDwISKv0PvC15vOrcVoi3pxcbEULAQGBioGXgKNG3ppVCwtV1tbC8B4CUrdOVodwOntCBODHa1mh3l5C1BSkgjAgqSkEt1rACxISCgFAM1dbUTEwIeIvMRVxkYv4DG7RX39+vUur8GTbeye8HbnaGXjROdmh1lZ+U7BUGrqvhZZGiRq6xj4EJHXuPuFLwYk8qJbeSdlQL+vjxb1lnA59WBRTwQEOP4vU29n1NGjUdLzZueAmWl2KAY94s/izi2jQJO9eIi0MfAhIq/S+8IfP368ovOyPAujF5C46uvjDq3lLLH/kLreRi/YioiIwLXXXoslS5YogrzS0gTDWVxGXDU7BPQHlKalbUVubi9UVcX+tTvrPADncXcWkQEGPkTUKGYzC2K2RCSfyaX1RW1UQAyYGx5qRG9UhqtgKzQ0VPq9+N7vvHOd6V5F6uvWaygoNjuUL3OJ5Eta/ftHID6eQQ6RWQx8iKhRXHVTttlsWLZsmeEyFOC8FKVXQFxYmOG0S0wemOhla9RZHa1dVa6aKGq9xuz2dXVAJTYNFJfN1qwZC7vdAn9/AbNnV6FXLxu2bVsBq7UaISGnuaRF5CUMfIio0dxZVtELTA4fPqxYdtIrIN60Sb+TsVG2xtV8LcB1EKN1DjP9h7QCKsd0dGDIkAKkpW3FAw9koLo6Dj17WpCYaAVgxZgxU3UaDnJJi8hTDHyIqNkYBSbqjJDeoM5Nm4YojhMDE8D8eAw9njZRzMwsMOxVpLf1fP36LKmjc0KCHeqGzmw4SOR9DHyI2jD5cNDSUj8UFwcgJaUOCQl2AN7fxt0YZmdxyWmNkBADDJEYmDS2Y7KYiVJvHb/vvmKMGnUuNmzY4PQa5TZ0OwYP/g4ZGYVO76c/ALXpR3IQkRIDH6I2Sl6ca5RJkdfOtGSg5GlgIt8lZrOF/ZX1cSx3qbMrnva10aq/SUgoRWTkUQQHV0Mj5tHYhu4Y0ZGRUah5D1lZ+X8tb5kbL0FETYOBD1EbJQYwrjIp4nGeBEre5M4yklYdkPMAVGV2xczIC6OhovLPLz8/C3l5C3QDMpstDD//3E8zkCspScTRo6ecapiefTYey5dX4YknwqUi5nnzqnDNNZNaVWaOqL1j4EPUxpnNpLgbKKnJs0VaXH15mw1MtHZtpabu0xyAqs6uiEtj/ftfgYEDOyIoKAWrVjkCOm8NFdXrsgw4ArkVK66EPBslBpTR0dF49FErZs4E9u3DX0XMEQAidD8zIvI+Bj5EbZy7BbmeLDnp9bxRc5UtMursvGXLIKxefTnkk9zFoGzChJWmsytWazXOO+8EoqNDIO4+Nwr2AgPPuJWJcu6y3NBzRxAAvR1nosRExy8iahkMfIjaOFeZFHF7+M6dlSguTnbri15kdoin1nFmZnGJAYU86BGJmRWta9bLrqi3nZvpCSQPYMaOXYPrrx+OgIAAxW6zkpIkzd1ZI0d+hrCwaqxYcZXTe7B4mah1YeBD1A4YZVJWrVolW545GxaLHQMG7MCOHQN0l5xccWd+llGDQ3Eul9HYBovFjqSkg07BnZnsishMTyBH9saOnJw3kJhYhujo8xTnaMhIOV9f3767pN9zaChR68bAh6iNqqyslH5vFIhoLfPs2DEAOTlvoLY2yNQwUTlP5me5KtzV2+4tD8rkwd2JEx3dyq6ouyPr9QQC/FBb67y7Sj8jJWDAgB3Se3JoKFHrx8CHqJUy2npeWVkpLcG4CkT0lnlqa4OQknLA6X21xjKIQZYnvXiM7s9mswFwXq5z9MQpcOqJIy6T2WxhbmdX3OkJBDgCFfHz189IWbBjxwBceumXsFqr8dhjKeywTNTKMfAhaoXMbj03E4i4W/xsNNqhsU0Cte5PpLVcN3r0aISFhSnqbPQaDZpZrlPXF6lnZKm3l1dUVAAwakCovP/o6GjEx8exwzJRK8bAh8hNjd3WbYbZredmAhGj4md3anUAz0c66N2fmjowWbt2LSZOnCj9bNRo0FW/Hi1paVuRm9sLJ08mID3d6rS9XKxPKi0tRVHRGtWOLs/vn4haDgMfIjeoMxV6X7DeagKoF9js2tUXffvuMh2IaGVT9DJJRkGDmV483lZXVwfAfKNBd2uQNm1yZJMuvDAXgPOfmfjnmJa2Cqmp+1BYmKHbOZp1PEStHwMfIjfIMxVGX7Bmt3+7or3EIuDzz0dh3boRGDt2jelARD36QSuTdOpUB6flI3XQYLSDrCm++I8dOwbA3DKbzRam6AUkz5CJ59DLAhn9mal3ppWWso6HqK1i4EPkAW8W+RpxLvpt6BQsCH5YvfpyTJ/+BvLyFmgGInr0gggx6NG6pxEjRqBTp04ICAhARESE0zmb6otfHA5qJrtVWJgB9c4rdb8eszvR1Dgpnah90G6cQUSGjJagbLYwlJeXo6ysTCqObYy0tK3Iy1uAkSM/g3w8goMfFi2ajqKinkhJOWA66BKDCCXn4l0xowIA69atw6pVq7B8+XLFVnpRTU2Nx/drs4WhuDgZNluY7jFiEChetzq7ZbOFoaAgU+OVdsXuLTGgO3gw3qNrJaK2jRkfIg+4WoIqKlqDtDTH7ihv1PtYrdXo23cX1q0boRmc6GWbsrOzYbVapZ/FhoFatTryXVIivcJd+S4rNXfvVzn7yo7hw/MxZEiB5rFGy2x6W8779duFn3/ur3hMEPzwxhvTMW6c+5kfImrbGPgQecDVEpSZoZ+evqd6npX4nlpbymNiYnSDEK0gIiTktFMwdPRolPT+Zrhzv86zr/ywfv1wANANfrRGXgDQHcWRmbkJu3b11QiKHEuF3l6eJKLWjYEPkYfEwGHXrr74/PNRiuc8ndEkbpXXWkoS3zM29hAWLZqum5kZP348oqOjTdXcqIMIeTBUWprgstDZnXuSE+9PO0tjQX5+Fvr332n689OamC5ec2JimU6XZgDgLC0iX8PAh6gR9JagPOntYnarfGJimamdXDU1NSgrK5N+DgoKMrXrSjzPO+9c1+jibVdT3SMjKwDY4SqD5c5IDvXMLQDIyChUzeUSsQcPka9h4EPkBq3AwVu9bcxulQdcDyXVk5ubqzswFDAeGupOMKJ1T1qs1moMH57/1/JWQ+G2n58gBSSejORQz9yyWqsxbpy6AaEd48axBw+Rr2HgQ+QGeT8XMUgAjAMRdxltlQeUvWg8Ca7i413vZnK1ddwoGJHP+tKa+6Um1vKIy2r+/sC8eTYcP15tqm1AaWk85DVW6msViX9GJSWJAICkpIPSOa699lr24CHyEQx8iNyk9wWpF4iIX/7qQaOAdu8bvWyLO71o3B1FoXUv6qGhmZkF0rmNghGjjJOeIUMK0L//TgwZMhUZGVEICanHSy+5blpos4UhPz8Lym3+ArKy8hVBTWhoqO57s/EgkW8xHfhUVVWZPml4eLhHF0PUHq1atcowQ6Le/q2XbZHXqKiDjUsuuURq9OfuyAY5+XKPmCERA65Nm4agoCATmZkFXhlUqma1VmPw4Bo4ElKOzNr+/XV4910BdntDYOPvL2Dy5Axs2nRAtzg6IaEUADBx4kSkpqZ6fE1E1P6YbmAYERGBzp07G/4SjyHyBWZrQvQyJGKzvsOHDyuO12rU16NHEfQKgAFI/7tz9V6uiEt548ePlx5TN/9zNAlUNj80W8ztqlGhzWZTXEt6ehwWLrTA39/xmL8/8NprFvTvHwFAuxGj/Fq0OkwTkW8znfER/zVJRA7q+U1qZguFly9fjokTJ0rDOAFlzVBgYA3eeGO60/m1gg0zRclm7ku8J73z9ev3E3bt6udWMbe6UeHgwQXIyChUvK62ttbpdTk5wMiRwL59QM+eQGIiIG5Wa4mhqUTUtpkOfIYNG9aU10HUJpmpDdHr8lxamoCUlAMAHJ2QHXU5yYrCZau1GsXFydBKzmZmFjh9wZud1m6koqJCyrzoXfvPP58DR/DynVPwolVfpNWoUFw6ky/FHTt2DBUVFU6fa2Ki45dIa0muuYamElHb5nFxc2VlJRYtWoTdu3cDAPr164cbbrhB0R6fiBxZiaws9ZZtZZM+o7oc7eDDjoyMQs33MsqAiIXWegW96r47Rh2qAceyl/w69O5Db5yEulZpw4YN2LBhg8uxF66ybUb3SES+zaPA58cff8TIkSMREhKC888/HwAwf/58PP7441i3bh3S0tK8epFEbV1CQhnUA0blNTpGu6TMLOcEBDT8T9lsjx+t4EIrkDDbodpot5d28OZ8DqPrUGNQQ0Se8Cjwuf322zFu3Di8/vrr0v/h1tXVYfr06cjLy8PXX3/t1YskakvEEQ3yHjZGS1Bm6nJc9QmKjY116i/kqs5FHlxoXbOcmQ7VRveRknJAd84YuycTUXMyvatL7scff8S9996r+FdmQEAA7rnnHvz4449euzjR/v37kZOTg5SUFISEhCA1NRUPPvig078Kd+zYgYsuuggdOnRAUlISnnrqKa9fC5ERcalo4cKFWLVqlbSLCYDTTi0xayMO15TTqsuxWquRknJAcwJ7VFQUoqKiEB8fj+jo6EZdsx6t3WbiPdhsYThxIhRGu73S0rZi+vQ34FguUxyF6upObl0zEZGnPMr4hIeH4/fff0efPn0Uj5eUlCAszNy2WXf88ssvsNvteO2119CzZ0/s3LkTN954I06cOIFnnnkGgKPP0IgRI5CVlYVXX30VP/30E2644QZERERgxowZXr8man/kA0LlO6xEgYGBsFqthrUjrsZO5OUtUGRtjIZrmt2ZFBMT48ntal6zmrpQWcw89e9/BXbu/EjnHhyzt7Tuo7Y2GOolP8CCN96YjnHjPBuCSkTkDo8Cn+zsbOTk5OCZZ57B4MGDAQDfffcd7r77bkyaNMmrFwgAo0aNwqhRDbUFPXr0wJ49e/DKK69Igc97772HmpoavPnmmwgKCkK/fv2wbds2zJ8/n4EPuaQ3IDQw8Axqa4OdOiC7Kr7Vq3fJy1sg7eQyM1wTaJi2rkXctSQfRqpervK0i7NeobLVWo3zzjuBkhLnuh5H4CZgwoTl0kgI+fvr1/p4NgSViMhdHgU+zzzzDCwWC6677jrpX8aBgYG4+eab8eSTT3r1AvXYbDZERkZKPxcUFGDo0KGK7asjR47EvHnzcOzYMd3GimfOnMGZM2ekn93pUE3th16mRp2FETMSropvzdTtmBmuCQDR0dG687VcTT/3tIuzmRlZRvfZseNJ3d1qyl1iytc1tvszEZErHtX4BAUF4fnnn8exY8ewbds2bNu2DUePHsVzzz2H4OBgb1+jk3379uHFF1/EzJkzpccOHTqEuLg4xXHiz4cOHdI919y5c2G1WqVfSUlJTXPR5JGKigqUlZXp/qqoqPDq+2lnYdzvgOyqo7DZYwDjXjSulqk86eJss4Xh55/76QYmgOMfOq7u4eDBeKxerR085eS8AU+7PxMRNUajhpSGhobinHPO8fj19913H+bNm2d4zO7duxW1RH/88QdGjRqFq666CjfeeKPH7y2aPXs27rjjDunnqqoqBj+thKtshki97CTW6ugxqtHR6zcDKDMS6uUk9TnNbEF3dcz48eORkJDgdK3y+zOafu4q6yS+Vj4mQivbJZIHJjExMdIusq5dq3DvvVbU1zdkxoqKeuLjj513cMl3eY0bp3/vbDxIRE3Fo8Dn9OnTePHFF7FhwwYcPnwYdrvyX25btmwxdZ4777wT06ZNMzymR48e0u9LS0txySWXYPDgwVi4cKHiuC5duuDPP/9UPCb+3KVLF93zBwcHN0uWitxnppeL+jhPgyWRUb8Z8YvfZgvDs89u0az7kXO1Bd3MMTU1NYpOxmbvT+9e5MGLegeXdrarYanvllt24sorL0Dnzp0Vn/k115zCiBECfv3Vju++exsAsGBBnuFnCACPPZaCBx44gv37A5CcXIeEhPMAnMfGg0TUpDwKfHJycrBu3TpceeWVOP/882GxqHdpmBMTE2N6R8off/yBSy65BOnp6Xjrrbfg56f8P9XMzEzMmTMHtbW1Uhp+/fr16N27Nwen+hB1sKRX2KsXVOl1KlZnMrRqZrTOKTYgNKJ3jDwwyc7ORkxMjMtgUH2/7syx0pt0PnLkZ+jbdxes1mqsX6//3tnZ2di50zFiQztrpnx/R+1SHNLTDW+JiMirPAp81qxZg08//RRDhgzx9vVo+uOPP3DxxReje/fueOaZZ3DkyBHpOTGbc8011+Dhhx9GTk4O7r33XuzcuRPPP/88nnvuuWa5Rmp67u5O8rSwVz0gtLY2SMpSyDMZWgW/TbVEs2zZMgDAxIkTdY/Ru19XWSeRXoZIDHpcEQeM6p1HvVuNy1lE1BI8Cny6du3aJP169Kxfvx779u3Dvn37kCifVAhAEBzN0KxWK9atW4dZs2YhPT0d0dHReOCBB7iVvQ3S6iLsbhBjdleSHq0sjFYmQ70TyewMKQCKLstmyYN+OVf36+qeR48ejbVr15rKEOkFoGJDU71Mkxj0iNkrLmcRUUvwKPB59tlnce+99+LVV19F9+7dvX1NTqZNm+ayFggABgwYgG+++abJr4eajlYNiydBjJnt5HJmsg9mJ5835gvdVVZrw4YNmsefOBHaqO3hISEhALSyXcGw2cKkcxgFoBEREYqgj/U7RNQaeRT4nHvuuTh9+jR69OiB0NBQqaZGdPQot6SSZ7QyJe4GMYD5IEUkz9SoOzcfO3YMGzZscLtmRo/erix1UJGZWYCMjELd86uPFzsmG92vXmB17Ngx6fdWa7VmLVNq6j6XAag8qImPB+t3iKjV8SjwmTRpEv744w888cQTiIuL87i4mcgMd4MYwNx2cjXxS1vdLLCsrEzKtLhTM6NFb1eWVlZr06Yh2LQpU3OUg9bxjs/IEfz4+Qm4/HLl/Rpla+SZJL0M24QJK9l0kIjaPI8Cn02bNqGgoAADBw709vUQKYgZiqysfOTnZ7nV86WxQYoeMzUzevRqf/T7B7nXMfnKK5ejY8eTmDw5A5s2NQRL7iwXFhZmaJ4bENwOQImIWhuPAp8+ffrg1KlT3r4WIgV1hiIrKx8JCaWIjDyK668fjuho55oRdRCkF6S4s6PI7LGN2aVk1D9IEPywa1dfxe4qvSyYOB8rIqKf4hxmlwtttjBs2pTpdA3iub2x1EdE1JI8CnyefPJJ3HnnnXj88cdxzjnnONX4hIeHe+XiyPdUVlYC0M5Q5OdnIS9vAazWat35VWZ3VblTYNsU5xTJa270ZlgBAj7/fBTWrRuhGBRqFIR8+umnijOYWS4UR1VoTbLJzCxQTGfXyqJxezoRtQUeBT7ipPTLLrtM8bggCLBYLKivr2/8lZHPqaiowPLlywF4VtAsaopdQ2bPqTUuw2azST1uqquNa27y8hagsDDjr6yLcmyEennK3aW8zMwCFBRkagZKRqMqADsyMgoBAMOHD0dKSorTublbi4jaCo8CH/WWWiIzXM3QErM9gGcFzS3NnXESejU3eXkLMGJEPjIyCrFrV198/vkoxevUwZ+ZeiNlUGPH4MHfoW/fn6Wt6gAMR1XIA6TevXszwCGiNs2jwGfYsGGmjvvHP/6BRx55BNHR0Z68DbUj7gQFgOML3ZOC5pZkdrYY4DqjZbVWo2/fXVi3bkSjgj/n+Vt+2LQpU5H5ycwsMBxVoVdPRUTUFmmPofaSJUuWoKqqqinfglqhiooKlJWVKX6Vlpa6dY4tWwZJQQ/gKGwWt15nZ2e3+S9gMaMlpw5qxDoePz9Hd3J/fwFPP12F668fbvp9tHeL+SkyTQUFmXD0AFJei1hMLdZTtfXPnIgI8DDjY5Y4ToJ8h7uZHS1aWYr8/Cz077/zr2yItfEX2gyMujCb7TOUlrYVDzyQgerqOPTsaUFiYgTKypQ7Ko3eJzDwDJxrdpQEwQ+DB3+nW//TGrNrRESeatLAh3yPO8s9ehpT2Nxa6DULlAcp6uJkwDEPTB3AJCTYId/AZrPZXL6PqLY2GEZBD+DI7mRkFCIjoxD9+1+BgQM7csQEEbVbDHyo1WmKwmZXhdXe/ILXK1w+daqDU82SuDXdnSGs4g4xM00JjfoDicSt6gAwenQI4uPjvPI5EBG1Rgx8qEV4YxnIbDBjdvktNzfXK8GPXsaqoWZJGaQAMN1VGWiYgq73PiUliTh69JT02Sr7A+lvVQe4rEVE7R8DH2p2ZrIbrhrluRPMOPfV0Q66ampqpGBK3ntHLiAgABEREYYZIu0si3PWRVy+AyyGS3vqYCQiIkL3fSwWO1asuBKOfQt2DB+ejyFDCqTPsrQ0QXenXHsoGicicsXtwKeurg5PPPEEbrjhBiQmJhoee+2117KLMym4Wp7Jzs42LF4WA46ysjKn8+oFM3JGQZfNZsOyZctM34uYIRKDJbEPkVbGSr41XyRfvlMHMP7+Am65ZTSSkwN0gxGrtRoDBuzA9u0DIfbecewnaCgKX7/esQNsyBDHclZKygH0779TM6BsK0XjRESN4XbgExAQgKeffhrXXXedy2NfeeUVjy6KWh9v1ci4KlyOiYlxO+tgtj7GVdClleExImaItDJPWhmrkJDTust38kDJ3x947TUL0tONa21stjDs2DEADUtXFjgXMlsUO+IA78wvIyJqqzxa6rr00kuxceNGJCcne/lyqDVyZ1nJFa3lGTPZDT3uTB1vit1iRsGgOsAwWr4TnxsyZCoyMqIQElKBsjLtc5eXl+vejxb5PY4fP16zoSh3bxGRr/Ao8Bk9ejTuu+8+/PTTT0hPT0fHjh0Vz48bN84rF0etg9kt6jU1NU5ZA/USlLgM9MknY1FfbzGd3dDjTjDj7m4x8doDA8+gtjZYsxDbXeJnYLOFOW1dt1qrMXhwDYKCzAWa2rVEYu+shsyP/B71hrsSEfkKjwKff/zjHwCA+fPnOz3HIaW+TT7J/P33Q/DII1bY7Rb4+Ql46ikbrrnmFIKCgnDqlAX79gE9ewIuSsUMuRPMmN0tBmgP7XS1zdwsV0tzZgNNvfvR2jbfVvofERE1NY8CH7vd7vog8llRUVE4eBC45x5A/Ktit1tw770RGDFCQHT0afj7l6F3b8dz8jpld5dc3AlmAOPlJpFz52jt6ehmybNegHtb19Wvlx8zfvx4zJgRjQceOIKCgiP47bd10vN6BcxERL7Oo8DnnXfeQXZ2NoKDgxWP19TUYOnSpaYKn6l927u3IegR1dcDzz77X6SkHDB8rbv9dFwFM+rlN73iXqP+OCJXNUHqIEWd3dEaCCo/p3obvVF2SFy2io8HkpMD8NJL8h1aLGAmItLiUeBz/fXXY9SoUYiNjVU8Xl1djeuvv56BD6FXL8DPTxn8+PsLprovm1nqMRvMiBkkrX4+6uPE5426HauX0cQt7IBzkKLewi4Ijsno6nP7+TV8LvLt9O4Ubpu9RxYwE5Gv8yjwEQQBFovz/J+DBw+yFwgBcNTtLFwIzJzpyPT4+wPz5tlw/Lh3ll3EL/rDhw+jrq5O85jAwEDF8a5UVDiWovS6HauX0U6ePInly5cD0A5S1H17HPyQmakcCHr55cqlOTFrdOJEqFu70BjUEBG55lbgM2jQIFgsFlgsFlx22WXS0gAA1NfXo7i4GKNGjfL6RVLblJMDjBwJqYjZ3/8UFi707nuIgYcRs0tn8qyJzWZDbu4elJQEo0OHepw+7Y+kpDNITOyFiIjzFBkiQH93GWBHQ0NB5UBQraU5ZVG1HeoRE42dWUZE5OvcCnyuuOIKAMC2bdswcuRIdOrUSXouKCgIycnJmDBhglcvkFqe2boQ+bKPuKySmNiwa0vVbNlwXpcZ7myzN0sMkOLj49Gnj/Gx8u7RervLsrLy8cUXw2G3O2eM1FmekpIkrF59OeSdlwE7LBaBO7SIiLzErcDnwQcfBAAkJycjOzsbHTp0aJKLotZD7NicnZ0tFd0eP34c69atczpWnX0xyrS4M43crMYGUo2ht7ssLW0r7r47Ce+9Vyhld4wKoJ35YcKE5ejY8aTmzDIiInKPRzU+U6dOBeD4l/Thw4edtrd369at8VdGLc5sx2Y9paWlimyLmBFyp2jXrKYIpNyVmroPEyasBCAgKemgdC9dutRJO9nUS1np6ZuxeXM65MthchaLXTqXvOsyC5WJiDzjUeCzd+9e3HDDDdi0aZPicbHomQ0M2we9JSKzmZVVq1ZpPu6q27I4kgEw9wXfFIGUHvnMMvl1mgm8nPsD+WHz5vN030u9tMWuy0REjedR4DNt2jQEBARgzZo1iI+P19zhRW2fvGZH5I3Miqtuy+qAST2xXR0MmRlb4Y0hq3oZMLOBl9nZWhaLHRMmrFBkjYiIyDs8Cny2bduGzZs3o4+r6k9qsyoqKpxqdryRWRGDmK5dq3DPPVbNol81eW8bkXwgqqtAqrKy0iu7v/QCJ7Pzwoz6A8mve+zYNejff7fTc6zpISJqPI8Cn759+yrS/NT+aH3Je2O6udVqRXx8PO68E7j44j/x4otrPRqrIL8+V2Mr9Pr8GJ3THa4Cr1OnTimuU7lzq+F4rSyPGCiypoeIyDs8CnzmzZuHe+65B0888QTOOeccRaM4AAgPD/fKxVHr4u50c1cSEuyK8RXu7sqSZ0CMxlao/36aobU0phfsuwq81q5d63SdhYUZiiaG8iyPWMTMYIeIyPs8CnyysrIAAJdeeqmivofFze2buwNB3aFXO2QUDLk7ikLkKsAyu5tNfh514AUAxcXJmu9htVZjxIh83SaGLGImImo6HgU+GzZs8PZ1UBuhlVnRCiTcyd7o1Q6dOtVBGvugV0htpiDZ3d1XZpa89M6jNZhUrwCcg0SJiJqfR4HPsGHD8M033+C1115DUVERVqxYga5du+Ldd99FSkqKt6+RWhn5F/aWLYOwZs1YRZEyALd2funVDq1fnwWxFsaTQmp15sZVcbYYILmqXzM6j/zetd5DvUNNjctbRERNy6PAZ+XKlZgyZQomT56MrVu34syZMwAAm82GJ554Ap9++qlXL5JaJ5stTAp6AMeX/OrVl8Nige4Xv1Y2Q692qLGF1OrMjavibL2+Q2pG5wEshu8hFncTEVHLcN1URMNjjz2GV199Fa+//rqicHTIkCHYsmWL1y6OWhebLQzFxcmw2cIAOAIAMehp4Kf5xT9kyFSn7eJiECTWDlksjg7g4owr8WeRq0LqiooKlJWVSb/UmRsxwHLnnFr3bXQeT9+DiIiah0cZnz179mDo0KFOj1utVs2md9T2qDMzWnUrqan7NDIzdvj5WRQBkb8/kJERBfUKjro4+YEHjmDnztPYvn0lrNZqhISc1i2kVl+fmYJkT4qz9ep1srLyneqPxPM0VQE4ERE1nkeBT5cuXbBv3z4kJycrHv/222/Ro0cPb1wXtTB5UFJa6odHHomFIDQsaX388eXIy1ug+SU/dOhQ3HtvBOrrHUHPa681TGjXeh9RfDyQng5UVExVBEP79wcgObkOCQnnAThPsw7GTEGyzRaGzp2PISfnDdTWBun2DxILswMDzzjV66xefTn++CNeNl/LkZ2S1zAZba0nIqKW5VHgc+ONN+K2227Dm2++CYvFgtLSUhQUFOCuu+7C/fff7+1rpBYiBhe//AKo5tBKdStaX/LXXHMesrMjsG8f0LOnftDj6n2BhmCosbQyN/IeQnrHOXdZVs/X8kN+fhb699+pCHC4Y4uIqHXyKPC57777YLfbcdlll+HkyZMYOnQogoODcdddd+GWW27x9jVSC+vVC/DzUwY/8roVrS/5xET3Ax49ZuZsGTE7akPrOEAAYDyLTl68LJ+grnWd3LFFRNSyPAp8LBYL5syZg7vvvhv79u3D8ePH0bdvX3Tq1Mnb10etwOefA4LQ8HNz1q2YbSaYnZ2t+FneR8jsqI2SkiSNDI8FgB1G+wDkQSCbDxIRtW4eBT6ioKAg9O3b11vXQq3QwYPAjBnKwEcQIPWsaWpm52fV1tZKv1cvV4k7xIxGbWzZMuivGVpKFosdV1/9AT74YBK0gx/jomsiImpdGhX4UOtjZlnIneWWvXud63sAsWcN3JqtpcXV9dpsNrfOp7VclZ+fpdiF5ecn4PLLG4IV8TVag0PHjl2DoKA6p+cAoF+/nzBixHqpMWFMTAyXsoiIWjkGPu2I2WUhdT8dI3r1PaWlCXjnnes0uzObzXqYvV536C1rJSSUIi9vgeZOK63XAMCECSvQv/9u2Gxhmtv25UFPnz59vHofRETUNDxqYEitk9llIbPHAY4C5YULHdvSAcDfX8CcOdX44ovhiqzKJ5+MxeWX3+RWUOXOdYjUzQRFAQGOGN6ogaDVWo2UlANO2anAwDNw1PEoX5OUdBCAdoPFceMaMkZGIyiIiKh1YcaHXMrJAUaOxF/b0y3Yu9eKxx5THlNfb0F1dRyiory/3CYyGv4ZERGB3NxcHD58GIGB+/D00z1NNRAUz+n4N4BjB5fWa4x687Cuh4io7WDgQ6aI29MrKioQHl4HP79YVXdmAWFhh1FUdBxLlixxeb7c3Fy33t/slvTly5cjNBTIywtz2UBQfU4x6MnJeQOJiWUYP348QkNDERoaqntd3KJORNS2MPAh0+Q1OZdfrsy+jBmzBmvW6E9gV9PKCMm3oKuDFTNb0uXnlPcW0juv3jlrax0ZnMDAQKSmppq+JyIiav0Y+LQD4tKSeiint8kDC2+PZTBaxgL0J7iLW9JPnjyJkydPunVerXMCDedctmyZWzVLRETU+jHwaeOaYmeUWXpjGdzlahlr4sSJiIiIQNeuVbj3Xivq6y3w8xPwwAOlGD9+OE6dOqW5vObqvFZrNbKy8rF+fRYa6vwtKCrqKQVHnhRgExFR68XAp41r7V/MRstXIlfLWBEREYiPj8eddwLZ2cDmzTZs3LgIQDVWrdJ/b61OzPLzbtkyCPn58qAHACyatUNERNQ+MPDxQc21C8nV8pV4Ha6WseTXm5gI+PufxLZtxkGJUSfmyMijGoXNDbTGWRARUfvAwMdHiMMzvbkLySibY2YXVlRUFHJzc1FTU6NYxvL3FzBvXhWuuWaSR9d78GC8YSdmq7UaxcXJmkGPeJx8nAUREbUfDHx8hLeHZ7rK5pgdDCoGNeIyltgrKDExAkCER9flyPTod2IG9AqbAfXsLSIial8Y+JDbzGRz3Fm+Eom9gvTo7V4TM0+BgWc0Mz3ie4udmIGGbszy4C0zswAZGYUMeoiI2jEGPmSaGKy4yuZce+21CA0N9eryld7uNXXmSWv5SsxIXX/9cAQEBGD58uUAvL8ln4iIWj8GPmSaWJOzf38d3n1XcOrcfMsto5GcHOD15StAv+GhOvMkjp1o0NCJOTr6PKdzuNqSz3EURETtCwOfNs7sF7O3vsCjoqIQFeUYXDpzJlBf7xhg+tprFqSnxzkd72r5qjG0p6pb4Bg42lB7lJhYBsC9zyA7OxsxMTFsXkhE1M4w8Gnj5Duj9DTFPCnl4NLGBTdmhpqq2WxhOHEiFGKQ08COSZM+QFBQrbR8NX78eCQkJEifQUt8XkRE1Dow8Gmj3J2A3hQT072RzTHbeTo7O1v6vbyux7G0JRIA+GHp0kkYO3YNUlIOAHDsaJPfG4MaIiLfxcCnDTIbLIhzptw9vjmZ7TxdW1sLQHuiegPH7/UmtxMREWl3cKNWzWywIB7n7vGtmXZdjzNxlxkREZFcmwt8zpw5g7/97W+wWCzYtm2b4rkdO3bgoosuQocOHZCUlISnnnqqZS6SmozYH8gVdl8mIiItbW6p65577kFCQgK2b9+ueLyqqgojRoxAVlYWXn31Vfz000+44YYbEBERgRkzZrTQ1bas0lI//PILEB7ecvFtUVERTp48qfv8qVOnFD/rjcEICHD8VVU3HhS3rzt6+ADy3Vxc5iIiIrU2FfisXbsW69atw8qVK7F27VrFc++99x5qamrw5ptvIigoCP369cO2bdswf/58nwx8tmwZhEceiYXdDvj5xeLyywcpRkposdlshs+7WwBdVFSEJUuWmD7eaAxGREQEcnNzceTIEQDLpMaDgYE1qK0NkrI7Ws0I2YuHiIhEbSbw+fPPP3HjjTfio48+QmhoqNPzBQUFGDp0qOJLbuTIkZg3bx6OHTuGzp07N+fltqiGAmBHsa/dbjFV7Lts2TKX53anANoo06PmagxGeXk5oqOjYbVakZ2djdraWikLVFdXpzhXYGAgrFYrAG5NJyIipTYR+AiCgGnTpuGmm27Cueeei/379zsdc+jQIaSkpCgei4uLk57TC3zOnDmDM2fOSD9XVVV578JbiNkBoZ5oqgJoV9e8atUqzde1xE40IiJqu1q0uPm+++6DxWIx/PXLL7/gxRdfRHV1NWbPnu31a5g7dy6sVqv0Kykpyevv0dy0CoBbQ7GvzRaG4uJk2GxhTs+5uma917aFnWhERNR6tGjG584778S0adMMj+nRowe+/PJLFBQUIDg4WPHcueeei8mTJ+Ptt99Gly5d8OeffyqeF3/u0qWL7vlnz56NO+64Q/q5qqqq1Qc/rmpWtCaPt3Sx75Ytg7B6tTg53Y5x4xrqdzIyMpCcnKwYaurnJ+Dyyx3XbFT7Q0RE5I4WDXxiYmIQExPj8rgXXngBjz32mPRzaWkpRo4ciWXLliEjIwMAkJmZiTlz5qC2thaBgYEAgPXr16N3796G9T3BwcFOAVVrZ2ZMhc1mQ2rqglYxedxmC5MFPQDgh9WrG+p3CgsLUVhYiIkTJ+Lii8/g4MEOSEw8jTVrtrqs/SEiInJHm6jx6datm+LnTp06AQBSU1OR+NfMhGuuuQYPP/wwcnJycO+992Lnzp14/vnn8dxzzzX79TYHvbqWgweBvXsdW9j1Jo/rbRl39xizSkqS4Lyq6oeSkkRYrbulR5YvXy79vndvx4iKpqxXIiIi39MmAh8zrFYr1q1bh1mzZiE9PR3R0dF44IEHfGor+6JFwIwZMNzCbmbZyNOlJfU8sGPHjnl8L+KICrH2Rx78tIZ6JSIiapvaZOCTnJwMQRCcHh8wYAC++eabFriilnfwYEPQA2hvYTezbOTp0pLRPLCkpBKIjQYb2BERUekys9Qa65WIiKjtapOBDznbu7ch6BGpl4TMLBu5OqayslKzN45RvZHVWo1x4z5WdVv2wxtvTIcjGLIYZpbS0rZKDQtbul6JiIjatjY3q4u09eoF+Kn+NNVLQtpzruw4caKjtE3c1bby5cuX46WXXkJFRYVb15eWthU5OW/8dW4x8+MH9UR18TrE5oQiq7UaKSkHnIIedmUmIiJ3MOPTTiQmAgsXAjNnAvX1gL+/gDFjlEtCznOuHEHIihVXKTIuZpaWXPXP0VrCqq0NNpysLs8siSMqjN6HXZmJiMhdDHzakZwcYORIYN8+oGdPC0JChqCm5jwAjoGlxcUBGDbsGFJTF6CkJBErV14pjbWQ1/I0dmlJrzhaq1BZTp2hYlBDRETexqWudiYxEbj4Ysd/o6KiEB8fj08/jcf558fhqquicNllPdG9+wxkZ1+mWcvTv/8VABqWlgDodluWq6ysBKBfHG2zhUkZp4alNLv0exYtExFRc2DGp51z3u0F3HlnJxQUdIKfn7Ig2t9fQFLSGZSUOH42u629oqJC6sHjqjhanU1yvIYT1YmIqHkw8GkHxKaFvXo5Mj1yWru96uuBEyeA+fOP4/bbQ6XAZsyYNdi0yRHYuLOt/ciRI9LvtZezGgqoxaaKVms1LrnkEnTu3BkBAQGIiIiQjmbtDhERNRUGPm2csmmho8A5J6fheXG3lzKzA0RFHcOllx5EXt56zYyL2Y7JFRUVWLZsmfSz2QJqANiwYYP0Ok5ZJyKi5sDApw3TWsaaOdNR4Cxmfpx3ewHPPnscq1a9AACwWqFZV2O2Y7LWrqvU1H2YMGElTp7sgLVrxzgVUAcFnUFSUonifTllnYiImgMDnzZMbxlr3z7lkpdytxfg71+NhQudz6fegm60rT0oKAgVFRUoLy9XnENeF+TI9jhnjbSyP0RERM2BgU8bpreM1bOn87GJiQ3BUFmZ8/N6hcypqfvQv/8VGDiwIxISzgNwnlR4rB5RoTWF3XlUhQOnrBMRUUvgdvY2TFzG8vd3/OzvD7z2mnOBsysHD8Zj9Wr9LeijR4cgPT0O8fHxiI+PR1RUlObSVGFhBpz/Slk0ukVDep+jRyPdu1giIqJGYManjVMvY7kb9IiZHq0lKXUhsxGbLQwFBZkaz9iRk/MGKisjsGLFlYr34ZR1IiJqbgx82gH5MpY71FvW5dwNSkpKkjTPM3hwARITy5CYWIaaGk5ZJyKilsXAx4dpbVl3cC5kNrJly6C/anuULBY7MjIKpZ85ZZ2IiFoaAx8fprdlPSfnDSQmlmH8+PFISEgw7K8jZo3US2V6GR2xeaEaOzUTEVFzYODjg8QgQ2/LemKiY9uXq6AH0M8aTZiwAv3778b48eMRGhqK0NBQw+th80IiImoODHx8UFRUFHJzc6WdWQ88cAT79wcgOblOsWXdTDCilzVKSjoIAIiOjkZ8fHyT3AcREZG7uJ3dR4mT24OCgpCQYMfgwTVISGjYdl5TU4OysjJUVFRovl6dNdKbsn7y5MkmvhMiIiLzLIIgCC19Ea1JVVUVrFYrbDYbwsPDW/pymlRFRYVTE0ItenO0ioqKsGTJEgCOWp+SkkQAFqdxFJzDRURETc3s9zeXunyY2flYpaWlTscGBQUp6naKinpqdn52532IiIiaGgMfkqhndYlWrVqleXx2drb0Onk/II6jICKi1oqBDwHQn9VlpLa2FoD2zi53Oz8TERE1BwY+7UhFRYXhspLeTi1XGRu9TNCxY8cAAIGBZzR3dnEcBRERtTYMfNoJdaGyXrCiVWhslLExqt3ZsGGDIlMkTmLnOAoiImqtGPi0YfIMT3l5ufS40bLV4cOHnV6j14snMLDGZSZIOevLAnEoqdgEkYiIqDVh4NNGaWd4khEYeMYwWFm+fLnTufQ6ONfWBhvW7mh3bfZDbS3HTxARUevEwKeNktfyKJeb7FD3pdQrNJYvh2kNELXZwgxrd/QyReraHs7hIiKi1oKBTxvnvNzUUGsj0gpG9JbDrNZqXHLJJdiwYYNuJkgMoFw9b2bIKRERUXNi4NPGaS83KYMedaGxq11csbGx0rFamSA5o+ejo6MZ9BARUavCwKeN01pukhMEIDV1n+IxV313rFarYoipWnl5uaKpoeM13MFFREStHwOfNk693OTMub7HTG0OMzVERNQecTp7K3fwILBhg+O/etLStiIvbwGuvHK5NCVdpFXf42qiuitmi5VZ1ExERK0NMz6t2KJFwIwZgN0O+PkBCxcCOTnaxzqWm3ajpka/2HjEiBFYt24dANe1O0aioqIMl8IA/S7RRERELYmBTytUUVGB/fvrMGNGLOx2R6Gy3Q7MnCngb387jOTkAN1silFA07lzZ8WxerU5ZjI1DGqIiKgtYuDTyoiNCYuLk2G3T1U8V19vwYsvrkVKygHk5uZKWRezxcaCICA7O1saLqoWEBCA2NhYBjVERNRuMfBpZcTlI6MCZJstDBs2ABdcEIXERPPn1urarJabm+v2NRMREbUVDHxaKb3mgOLQ0Oee85Pqfv7v/7z3vqWlpbq1O6zbISKito6BTyumrtcBgAUL8qQskKPuB9i6tYPb59ab3i4umbkz3Z2IiKitYODTysnrdYqLk5169dTXAxUVnV3usrLZbFi2bBkA4+ntrp43eg8iIqLWjoFPG6JV9+PvLyAs7DCAAMTHx7s8h6txFa6eJyIiasvYwLAN0Wo8OGbMx1iz5lW89NJLqKiocHpNRUUFysrKUF5eDsB4XIWZ54mIiNoyZnzaGKM+PfJlqIqKChw+fNhpJ5ercRVmxlkQERG1Vcz4tDJazQNttjAUFyfDZgsD4Mj8pKQc0F16EnsBaW1fdzWuorHjLIiIiFozZnxaGfU4iPffD8Ejj1hht1s0C5G1qAuQxR1agYFnUFsbjNTUfcjLW6A7rqIx4yyIiIhaMwY+rczBg8DevVHo1cvx8z33OLatAw2FxrGxh5CYWGbqfPIdWoAAwDmAstnCEBMzGEeObFJkfhjwEBFRe8PApxk5ghqgVy9odlxWDyW9446GoEckCH54443pGDfOdeZHvUMLsEjnWL3asVNLbIjo2Lp+vsuMEieuExFRW8bAp5m4mrR+8GDD84Djv/PnO45VBz+A9hZzceeW0Q4u+Tm+/voibNmSrrt1ffz48YiOjpZewc7NRETU1jHwaQZaQc3MmcDIkQ2Zn717nQMcux246y5g/nxBmtIuEreYa3VdFmnt0JKTBz1a542OjjbVG4iIiKit4K6uZqAV1NTXA/v2Nfzcq5cjuyPn7y/g6qv/xAcf7AegPIHWFnOt3V/yHVpqjqDH9XmJiIjaCwY+zUA7qAF69mz4OTHRsfzl7+/4Wd6ccPfudzBunPMW85Ej+0mv37JlEBYsyMPbb0/FggV52LJlEADHDq28vAVIT/8BjuLmBhaLHcOH53PrOhER+QwudTUDMaiZOdOR6fH3B157zbnAOSfHsfxVWFiB7757WxGAaG0x//57x3Nmxkxs2ZIOsbjZQUBWVj6GDClA//47uXWdiIh8AgOfZiIGNfv2OTI9Wru6AMfj/v412LnTOQDR22JuNGbCaq3WKXK2ICGh1PC8RERE7Q0Dn2aUmKgf8HhC3piQYyiIiIhcY+DTRskbE1osdgwYsAM7dgyQftYaQyE/3kwtD3v2EBFRe8PApxWoqKhQjJkQ+/CIGZ3IyApFkKJV07NjxwBcffUHCAqqdXsMxcSJExEREaE4nj17iIioPWLg08LEgaJq6oyOvKOyXk3PBx9Mwrhxa5CSckDxXHZ2NqxWq+b7M8AhIiJfwsCnhakHigKud2npNyZ07ryckJDAwIaIiOgv7OPTChnt0gKMGxPKj4uOjmbQQ0REJMPApxUSMzpy6l1YaWlbkZPzBth5mYiIyDwGPq2QOqNjsdhx9937cMUV5yqOS0ws0+zozJ48RERE2ljj00qpd2GFhlZjwwbXxzHoISIi0seMTytmtVYjJeWAUzAzfPhwU8exDw8REZFSm8r4fPLJJ3jkkUewY8cOdOjQAcOGDcNHH30kPf/777/j5ptvxoYNG9CpUydMnToVc+fORUBAy92mukePms1mc/ucKSkpyM3NNTwvt6kTERE5azOBz8qVK3HjjTfiiSeewKWXXoq6ujrs3LlTer6+vh5jxoxBly5dsGnTJpSVleG6665DYGAgnnjiiRa5Zr0ePd7AoIaIiMh9bSLwqaurw2233Yann34aOTk50uN9+/aVfr9u3Trs2rUL+fn5iIuLw9/+9jc8+uijuPfee/HQQw+1yLKPUUZGTuycXF5ejlWrVjXxVREREfmuNlHjs2XLFvzxxx/w8/PDoEGDEB8fj9GjRysyPgUFBTjnnHMQFxcnPTZy5EhUVVXh559/bonL1mSzhaG4OBk2W5j0WEREBOLj4xEdHW14HBERETVOm8j4/PbbbwCAhx56CPPnz0dycjKeffZZXHzxxfj1118RGRmJQ4cOKYIeANLPhw4d0j33mTNncObMGennqqqqJrgDB6MxFABQWVlp6jgiIiLyTItmfO677z5YLBbDX7/88gvsdkefmjlz5mDChAlIT0/HW2+9BYvFgv/85z+Nuoa5c+fCarVKv5KSkrxxa070xlCIGZ2KigosX77c5XGAY4hpWVmZ9KuioqJJrpmIiKi9adGMz5133olp06YZHtOjRw+UlZUBUNb0BAcHo0ePHvj9998BAF26dMH//vc/xWv//PNP6Tk9s2fPxh133CH9XFVV1STBj6sxFGI9kNFx4nZ1rTqg3NxcFjwTERG50KKBT0xMDGJiYlwel56ejuDgYOzZswcXXnghAKC2thb79+9H9+7dAQCZmZl4/PHHcfjwYcTGxgIA1q9fj/DwcEXApBYcHIzg4GAv3I0xrcGiWuMlzB6nVlpaipqaGm5jJyIiMtAmipvDw8Nx00034cEHH8S6deuwZ88e3HzzzQCAq666CgAwYsQI9O3bF1OmTMH27dvx+eef41//+hdmzZrVLIGNK1pjKLTGS5g9Tm3VqlVYuHAhXnrpJS59ERER6WgTxc0A8PTTTyMgIABTpkzBqVOnkJGRgS+//BKdO3cGAPj7+2PNmjW4+eabkZmZiY4dO2Lq1Kl45JFHWuyatbbQC4Lyv+Jx8q3vjR1DYXYbPRERka+xCIL8K5iqqqpgtVphs9kQHh7e6POJnZtLS/1w/vmxsNst0nP+/gK2bq3EOed0RllZGRYuXNjo9wOAGTNmID4+3ivnIiIiagvMfn+3mYxPWyXW2/zyC/DX5jRJfb0FFRWdPT63zRaGo0ejEBlZweGkREREJjDwaSa9egF+fsrgx98f6NnTvfOIwU5paTzy87PY64eIiMgNDHyaSWIisHAhMHMmUF/vCHpee83xOGBukrq8sSEgAHAsm4m9flJT9zHzQ0REZICBTzMQ63z+7/+AwkI/7N8fgOTkOiQk2FFW1jBJXWvius1mw7Jly5waG4pBj0jd64eIiIicMfBpYnoT2mVjxgAAw4cPR1iYoztzQEAAYmNjERUVhfj4eOTm5mLDBuC55/S7D5jp9UNEROTrGPg0MVdby8WanRUrvnfK1mRnZyMmJgZRUVG44ALAz09Q7AoTl7vUvX5aYhI9ERFRW8DAp4mJg0e1KGt27Bg+PB9DhhRIzy9btgyAYxxFYmIUFi60YOZMAfX1Fvj7C5g9uwp/+1vdX8tm5wE4j52biYiIDDDwaWJ1dXWajzvX7Phh/frhAKAIfoCGrFFODjBypAX79gE9e1qQmGhtsusmIiJqj9rEyIr2SGsYKWBBfn6WYhK7WmIicPHFDbvBiIiIyDwGPi0kMrICgN3pcfnEdiIiIvIuBj7NxGYLQ3FxspTNsVqrMXx4PhwFyg24O4uIiKjpsManGciLmOVdlsVaHnUHZvbiISIiahoMfJpQRUUFfvutRlHErO6yPGRIAfr334mjRyMRGFiD2tpg2GxhDH6IiIiaAAOfJiI2LiwuToYgpCueU3dZtlqrUVTUUzMrRERERN7DGp8mIm5Bj4ysgMWiLGJW1/Got7aLWSGxHogNCYmIiLyDgU8Ts1qrMXbsGin40arj0draLgh+GDJkKnJzc9mQkIiIyEu41NUM0tK2IjV1H44ejURk5FGn+h0xKyQPfvz9gYyMKDDmISIi8h5mfJqJ1VqNlJQDmkXL6qyQvz/w2mtsUkhERORtzPi0EmJWaMiQqcjIiGLQQ0RE1ASY8Wkh6oaGgCPzM3hwDYMeIiKiJsKMTwvQa2gIcAcXERFRU2LGp4noBTBGW9ezs7O5g4uIiKgJMePTRKKiopCbm4uamhqUl5dj1apVAPS3rjsaGlpb4lKJiIh8BgOfJqSVvdHaus7BpERERM2DS13NzExDQyIiImoazPg0A3W9j15DQxY2ExERNS0GPs1AXu+jJygoiIXNRERETYyBTzORBzUHDwJ79wK9erE7MxERUXNijU8zW7QI6N4duPRSx38XLWrpKyIiIvIdDHya0cGDwIwZgN1R1wy7HZg50/E4ERERNT0GPs1o796GoEdUXw/s29cy10NERORrGPg0o169AD/VJ+7vD/Ts2TLXQ0RE5GsY+DSjxERg4UJHsAM4/vvaayxwJiIiai7c1dXMcnKAkSMdy1s9ezLoISIiak4MfFpAYiIDHiIiopbApS4iIiLyGQx8iIiIyGcw8CEiIiKfwcCHiIiIfAYDHyIiIvIZDHyIiIjIZzDwISIiIp/BwIeIiIh8BgMfIiIi8hkMfIiIiMhnMPAhIiIin8FZXSqCIAAAqqqqWvhKiIiIyCzxe1v8HtfDwEeluroaAJCUlNTCV0JERETuqq6uhtVq1X3eIrgKjXyM3W5HaWkpwsLCYLFYPD5PVVUVkpKSUFJSgvDwcC9eYdvBz8CBnwM/A4CfAcDPQMTPoWk+A0EQUF1djYSEBPj56VfyMOOj4ufnh8TERK+dLzw83Gf/Yov4GTjwc+BnAPAzAPgZiPg5eP8zMMr0iFjcTERERD6DgQ8RERH5DAY+TSQ4OBgPPvgggoODW/pSWgw/Awd+DvwMAH4GAD8DET+Hlv0MWNxMREREPoMZHyIiIvIZDHyIiIjIZzDwISIiIp/BwIeIiIh8BgMfN7zyyisYMGCA1HApMzMTa9eulZ4/ffo0Zs2ahaioKHTq1AkTJkzAn3/+qTjH77//jjFjxiA0NBSxsbG4++67UVdX19y34jVPPvkkLBYL8vLypMd84XN46KGHYLFYFL/69OkjPe8LnwEA/PHHH7j22msRFRWFkJAQnHPOOfjxxx+l5wVBwAMPPID4+HiEhIQgKysLe/fuVZzj6NGjmDx5MsLDwxEREYGcnBwcP368uW/FI8nJyU5/DywWC2bNmgXAN/4e1NfX4/7770dKSgpCQkKQmpqKRx99VDEvqb3/PQAcYxLy8vLQvXt3hISEYPDgwfjhhx+k59vjZ/D1119j7NixSEhIgMViwUcffaR43lv3vGPHDlx00UXo0KEDkpKS8NRTTzXuwgUybfXq1cInn3wi/Prrr8KePXuEf/7zn0JgYKCwc+dOQRAE4aabbhKSkpKEL774Qvjxxx+FCy64QBg8eLD0+rq6OqF///5CVlaWsHXrVuHTTz8VoqOjhdmzZ7fULTXK//73PyE5OVkYMGCAcNttt0mP+8Ln8OCDDwr9+vUTysrKpF9HjhyRnveFz+Do0aNC9+7dhWnTpgmFhYXCb7/9Jnz++efCvn37pGOefPJJwWq1Ch999JGwfft2Ydy4cUJKSopw6tQp6ZhRo0YJAwcOFL7//nvhm2++EXr27ClMmjSpJW7JbYcPH1b8HVi/fr0AQNiwYYMgCL7x9+Dxxx8XoqKihDVr1gjFxcXCf/7zH6FTp07C888/Lx3T3v8eCIIgTJw4Uejbt6+wceNGYe/evcKDDz4ohIeHCwcPHhQEoX1+Bp9++qkwZ84cYdWqVQIA4cMPP1Q87417ttlsQlxcnDB58mRh586dwgcffCCEhIQIr732msfXzcCnkTp37iy88cYbQmVlpRAYGCj85z//kZ7bvXu3AEAoKCgQBMHxl8TPz084dOiQdMwrr7wihIeHC2fOnGn2a2+M6upqoVevXsL69euFYcOGSYGPr3wODz74oDBw4EDN53zlM7j33nuFCy+8UPd5u90udOnSRXj66aelxyorK4Xg4GDhgw8+EARBEHbt2iUAEH744QfpmLVr1woWi0X4448/mu7im8htt90mpKamCna73Wf+HowZM0a44YYbFI+NHz9emDx5siAIvvH34OTJk4K/v7+wZs0axeNpaWnCnDlzfOIzUAc+3rrnl19+WejcubPifw/33nuv0Lt3b4+vlUtdHqqvr8fSpUtx4sQJZGZmYvPmzaitrUVWVpZ0TJ8+fdCtWzcUFBQAAAoKCnDOOecgLi5OOmbkyJGoqqrCzz//3Oz30BizZs3CmDFjFPcLwKc+h7179yIhIQE9evTA5MmT8fvvvwPwnc9g9erVOPfcc3HVVVchNjYWgwYNwuuvvy49X1xcjEOHDik+B6vVioyMDMXnEBERgXPPPVc6JisrC35+figsLGy+m/GCmpoaLFmyBDfccAMsFovP/D0YPHgwvvjiC/z6668AgO3bt+Pbb7/F6NGjAfjG34O6ujrU19ejQ4cOisdDQkLw7bff+sRnoOatey4oKMDQoUMRFBQkHTNy5Ejs2bMHx44d8+jaOKTUTT/99BMyMzNx+vRpdOrUCR9++CH69u2Lbdu2ISgoCBEREYrj4+LicOjQIQDAoUOHFP8HJz4vPtdWLF26FFu2bFGsX4sOHTrkE59DRkYGFi9ejN69e6OsrAwPP/wwLrroIuzcudNnPoPffvsNr7zyCu644w7885//xA8//IBbb70VQUFBmDp1qnQfWvcp/xxiY2MVzwcEBCAyMrLNfA6ijz76CJWVlZg2bRoA3/nfwn333Yeqqir06dMH/v7+qK+vx+OPP47JkycDgE/8PQgLC0NmZiYeffRRnH322YiLi8MHH3yAgoIC9OzZ0yc+AzVv3fOhQ4eQkpLidA7xuc6dO7t9bQx83NS7d29s27YNNpsNK1aswNSpU7Fx48aWvqxmU1JSgttuuw3r1693+teNLxH/NQsAAwYMQEZGBrp3747ly5cjJCSkBa+s+djtdpx77rl44oknAACDBg3Czp078eqrr2Lq1KktfHXNb9GiRRg9ejQSEhJa+lKa1fLly/Hee+/h/fffR79+/bBt2zbk5eUhISHBp/4evPvuu7jhhhvQtWtX+Pv7Iy0tDZMmTcLmzZtb+tJIhUtdbgoKCkLPnj2Rnp6OuXPnYuDAgXj++efRpUsX1NTUoLKyUnH8n3/+iS5dugAAunTp4rSjQ/xZPKa127x5Mw4fPoy0tDQEBAQgICAAGzduxAsvvICAgADExcX5xOegFhERgbPOOgv79u3zmb8L8fHx6Nu3r+Kxs88+W1ryE+9D6z7ln8Phw4cVz9fV1eHo0aNt5nMAgAMHDiA/Px/Tp0+XHvOVvwd333037rvvPlx99dU455xzMGXKFNx+++2YO3cuAN/5e5CamoqNGzfi+PHjKCkpwf/+9z/U1taiR48ePvMZyHnrnpvifyMMfBrJbrfjzJkzSE9PR2BgIL744gvpuT179uD3339HZmYmACAzMxM//fST4g96/fr1CA8Pd/oCaa0uu+wy/PTTT9i2bZv069xzz8XkyZOl3/vC56B2/PhxFBUVIT4+3mf+LgwZMgR79uxRPPbrr7+ie/fuAICUlBR06dJF8TlUVVWhsLBQ8TlUVlYq/lX85Zdfwm63IyMjoxnuwjveeustxMbGYsyYMdJjvvL34OTJk/DzU36V+Pv7w263A/CtvwcA0LFjR8THx+PYsWP4/PPP8fe//93nPgPAe3/umZmZ+Prrr1FbWysds379evTu3dujZS4A3M7ujvvuu0/YuHGjUFxcLOzYsUO47777BIvFIqxbt04QBMfW1W7duglffvml8OOPPwqZmZlCZmam9Hpx6+qIESOEbdu2CZ999pkQExPTprauapHv6hIE3/gc7rzzTuGrr74SiouLhe+++07IysoSoqOjhcOHDwuC4Bufwf/+9z8hICBAePzxx4W9e/cK7733nhAaGiosWbJEOubJJ58UIiIihP/+97/Cjh07hL///e+a21kHDRokFBYWCt9++63Qq1evVr2FV62+vl7o1q2bcO+99zo95wt/D6ZOnSp07dpV2s6+atUqITo6WrjnnnukY3zh78Fnn30mrF27Vvjtt9+EdevWCQMHDhQyMjKEmpoaQRDa52dQXV0tbN26Vdi6dasAQJg/f76wdetW4cCBA4IgeOeeKysrhbi4OGHKlCnCzp07haVLlwqhoaHczt5cbrjhBqF79+5CUFCQEBMTI1x22WVS0CMIgnDq1CnhH//4h9C5c2chNDRU+H//7/8JZWVlinPs379fGD16tBASEiJER0cLd955p1BbW9vct+JV6sDHFz6H7OxsIT4+XggKChK6du0qZGdnK/rX+MJnIAiC8PHHHwv9+/cXgoODhT59+ggLFy5UPG+324X7779fiIuLE4KDg4XLLrtM2LNnj+KYiooKYdKkSUKnTp2E8PBw4frrrxeqq6ub8zYa5fPPPxcAON2XIPjG34OqqirhtttuE7p16yZ06NBB6NGjhzBnzhzF9mNf+HuwbNkyoUePHkJQUJDQpUsXYdasWUJlZaX0fHv8DDZs2CAAcPo1depUQRC8d8/bt28XLrzwQiE4OFjo2rWr8OSTTzbqui2CIGuvSURERNSOscaHiIiIfAYDHyIiIvIZDHyIiIjIZzDwISIiIp/BwIeIiIh8BgMfIiIi8hkMfIiIiMhnMPAhIiIin8HAh4ga7eKLL0ZeXl5LX0aTe+ihh/C3v/2tpS+DiBqBgQ8R+byamppmfT9BEFBXV9es70lEDgx8iKhRpk2bho0bN+L555+HxWKBxWLB/v37sXPnTowePRqdOnVCXFwcpkyZgvLycul1F198MW655Rbk5eWhc+fOiIuLw+uvv44TJ07g+uuvR1hYGHr27Im1a9dKr/nqq69gsVjwySefYMCAAejQoQMuuOAC7Ny5U3FN3377LS666CKEhIQgKSkJt956K06cOCE9n5ycjEcffRTXXXcdwsPDMWPGDADAvffei7POOguhoaHo0aMH7r//fmkq9OLFi/Hwww9j+/bt0n0uXrwY+/fvh8ViwbZt26TzV1ZWwmKx4KuvvlJc99q1a5Geno7g4GB8++23sNvtmDt3LlJSUhASEoKBAwdixYoV3v4jIiIZBj5E1CjPP/88MjMzceONN6KsrAxlZWUICwvDpZdeikGDBuHHH3/EZ599hj///BMTJ05UvPbtt99GdHQ0/ve//+GWW27BzTffjKuuugqDBw/Gli1bMGLECEyZMgUnT55UvO7uu+/Gs88+ix9++AExMTEYO3asFKAUFRVh1KhRmDBhAnbs2IFly5bh22+/RW5uruIczzzzDAYOHIitW7fi/vvvBwCEhYVh8eLF2LVrF55//nm8/vrreO655wAA2dnZuPPOO9GvXz/pPrOzs936rO677z48+eST2L17NwYMGIC5c+finXfewauvvoqff/4Zt99+O6699lps3LjRrfMSkRsaNeKUiEgQhGHDhgm33Xab9POjjz4qjBgxQnFMSUmJYor5sGHDhAsvvFB6vq6uTujYsaMwZcoU6bGysjIBgFBQUCAIQsM06KVLl0rHVFRUCCEhIcKyZcsEQRCEnJwcYcaMGYr3/uabbwQ/Pz/h1KlTgiAIQvfu3YUrrrjC5X09/fTTQnp6uvTzgw8+KAwcOFBxTHFxsQBA2Lp1q/TYsWPHBADChg0bFNf90UcfScecPn1aCA0NFTZt2qQ4X05OjjBp0iSX10ZEngloyaCLiNqn7du3Y8OGDejUqZPTc0VFRTjrrLMAAAMGDJAe9/f3R1RUFM455xzpsbi4OADA4cOHFefIzMyUfh8ZGYnevXtj9+7d0nvv2LED7733nnSMIAiw2+0oLi7G2WefDQA499xzna5t2bJleOGFF1BUVITjx4+jrq4O4eHhbt+/Hvl77tu3DydPnsTw4cMVx9TU1GDQoEFee08iUmLgQ0Red/z4cYwdOxbz5s1zei4+Pl76fWBgoOI5i8WieMxisQAA7Ha7W+89c+ZM3HrrrU7PdevWTfp9x44dFc8VFBRg8uTJePjhhzFy5EhYrVYsXboUzz77rOH7+fk5KgYEQZAeE5fd1OTvefz4cQDAJ598gq5duyqOCw4ONnxPIvIcAx8iarSgoCDU19dLP6elpWHlypVITk5GQID3/2/m+++/l4KYY8eO4ddff5UyOWlpadi1axd69uzp1jk3bdqE7t27Y86cOdJjBw4cUByjvk8AiImJAQCUlZVJmRp5obOevn37Ijg4GL///juGDRvm1rUSkedY3ExEjZacnIzCwkLs378f5eXlmDVrFo4ePYpJkybhhx9+QFFRET7//HNcf/31ToGDJx555BF88cUX2LlzJ6ZNm4bo6GhcccUVABw7szZt2oTc3Fxs27YNe/fuxX//+1+n4ma1Xr164ffff8fSpUtRVFSEF154AR9++KHTfRYXF2Pbtm0oLy/HmTNnEBISggsuuEAqWt64cSP+9a9/ubyHsLAw3HXXXbj99tvx9ttvo6ioCFu2bMGLL76It99+2+PPhoiMMfAhoka766674O/vj759+yImJgY1NTX47rvvUF9fjxEjRuCcc85BXl4eIiIipKWhxnjyySdx2223IT09HYcOHcLHH3+MoKAgAI66oY0bN+LXX3/FRRddhEGDBuGBBx5AQkKC4TnHjRuH22+/Hbm5ufjb3/6GTZs2Sbu9RBMmTMCoUaNwySWXICYmBh988AEA4M0330RdXR3S09ORl5eHxx57zNR9PProo7j//vsxd+5cnH322Rg1ahQ++eQTpKSkePCpEJEZFkG+ME1E1Ip99dVXuOSSS3Ds2DFERES09OUQURvEjA8RERH5DAY+RERE5DO41EVEREQ+gxkfIiIi8hkMfIiIiMhnMPAhIiIin8HAh4iIiHwGAx8iIiLyGQx8iIiIyGcw8CEiIiKfwcCHiIiIfAYDHyIiIvIZ/x82+9K61LFB6QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -870,12 +3919,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "13/13 [==============================] - 0s 3ms/step\n" + "\r", + "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 12ms/step" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step \n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzzUlEQVR4nO3deVxU1fsH8M+wbwKKKKiguAEuP9dESCuMRFPR1FIzlVzKPVcWN0RTkdxyr6+5VOZWppMbGi6VorngLmiK4oZoCIjKOuf3xzQXrqCCAjMDn/frNS+55z5z5xkmnadz7jlHIYQQICIiIiKdZqDtBIiIiIjo5Vi0EREREekBFm1EREREeoBFGxEREZEeYNFGREREpAdYtBERERHpARZtRERERHqARRsRERGRHmDRRkRERKQHWLQREb0mhUKB6dOnazsNib+/P2rVqqXtNIiomLFoI6Iyae3atVAoFNLDzMwM9evXx8iRI3Hv3r0Sfe0jR45g+vTpSE5OLtbrvvPOO7L3VKlSJbzxxhtYvXo1VCpVsbzG7NmzsW3btmK5FhEVLyNtJ0BEVJJmzJgBFxcXpKen46+//sKKFSuwa9cunD9/HhYWFsXyGk+fPoWRUe4/p0eOHEFoaCj8/f1ha2tbLK+hUaNGDcyZMwcAcP/+fXz//fcYNGgQLl++jLCwsNe+/uzZs9GzZ09069btta9FRMWLRRsRlWkdO3ZEy5YtAQCDBw+GnZ0dFixYgO3bt6NPnz6vfF2VSoXMzEyYmZnBzMysuNJ9KRsbG3zyySfS8eeffw5XV1csXboUM2fOhLGxcanlQkSli8OjRFSutGvXDgAQFxcHAJg3bx68vLxgZ2cHc3NztGjRAj///HO+5ykUCowcORLr169Hw4YNYWpqij179kjnNPe0TZ8+HRMnTgQAuLi4SEOZ169fx9tvv40mTZoUmJerqyt8fX2L/H4sLCzQunVrPH78GPfv339u3OPHjzF+/Hg4OTnB1NQUrq6umDdvHoQQsvf4+PFjrFu3Tsrb39+/yDkRUclgTxsRlStXr14FANjZ2QEAvv76a/j5+aFv377IzMzExo0b8eGHH2LHjh3o1KmT7Ln79+/H5s2bMXLkSFSuXLnAm/27d++Oy5cvY8OGDVi4cCEqV64MALC3t0e/fv0wZMgQnD9/Ho0aNZKec/z4cVy+fBlTpkx5pfd07do1GBoaPncoVggBPz8/HDhwAIMGDULTpk0RERGBiRMn4vbt21i4cCEA4IcffsDgwYPRqlUrfPbZZwCAOnXqvFJORFQCBBFRGbRmzRoBQPz+++/i/v374ubNm2Ljxo3Czs5OmJubi1u3bgkhhHjy5InseZmZmaJRo0aiXbt2snYAwsDAQFy4cCHfawEQISEh0vFXX30lAIi4uDhZXHJysjAzMxOBgYGy9tGjRwtLS0uRlpb2wvf09ttvCzc3N3H//n1x//59cenSJTF69GgBQHTp0kWKGzBggKhZs6Z0vG3bNgFAfPnll7Lr9ezZUygUCvHPP/9IbZaWlmLAgAEvzIOItIPDo0RUpvn4+MDe3h5OTk7o3bs3rKys8Ouvv6J69eoAAHNzcyn24cOHSElJQdu2bXHq1Kl813r77bfRoEGDV87FxsYGXbt2xYYNG6RhyZycHGzatAndunWDpaXlS68RExMDe3t72Nvbw93dHUuWLEGnTp2wevXq5z5n165dMDQ0xOjRo2Xt48ePhxACu3fvfuX3RESlh8OjRFSmLVu2DPXr14eRkRGqVq0KV1dXGBjk/v/qjh078OWXX+L06dPIyMiQ2hUKRb5rubi4vHY+/fv3x6ZNm/Dnn3/irbfewu+//4579+6hX79+hXp+rVq18L///U9axqRevXqoUqXKC59z48YNVKtWDRUqVJC1u7u7S+eJSPexaCOiMq1Vq1bS7NFn/fnnn/Dz88Nbb72F5cuXw9HREcbGxlizZg1++umnfPF5e+Vela+vL6pWrYoff/wRb731Fn788Uc4ODjAx8enUM+3tLQsdCwRlS0cHiWicuuXX36BmZkZIiIiMHDgQHTs2LFYCqKCeuk0DA0N8fHHH+Pnn3/Gw4cPsW3bNvTp0weGhoav/brPU7NmTdy5cwePHj2StcfExEjnNV6UOxFpF4s2Iiq3DA0NoVAokJOTI7Vdv379tXcE0Nyb9rwdEfr164eHDx/i888/R1pammzdtZLw/vvvIycnB0uXLpW1L1y4EAqFAh07dpTaLC0ti30nByIqHhweJaJyq1OnTliwYAE6dOiAjz/+GImJiVi2bBnq1q2Ls2fPvvJ1W7RoAQCYPHkyevfuDWNjY3Tp0kUq5po1a4ZGjRphy5YtcHd3R/PmzYvl/TxPly5d4O3tjcmTJ+P69eto0qQJ9u7di+3bt2PMmDGyZT1atGiB33//HQsWLEC1atXg4uICDw+PEs2PiAqHPW1EVG61a9cO3333HRISEjBmzBhs2LABc+fOxQcffPBa133jjTcwc+ZMnDlzBv7+/ujTp0++hW/79+8PAIWegPA6DAwMoFQqMWbMGOzYsQNjxozBxYsX8dVXX2HBggWy2AULFqBFixaYMmUK+vTpgxUrVpR4fkRUOAoh8iyHTUREpeLrr7/G2LFjcf36dTg7O2s7HSLSAyzaiIhKmRACTZo0gZ2dHQ4cOKDtdIhIT/CeNiKiUvL48WMolUocOHAA586dw/bt27WdEhHpEfa0ERGVkuvXr8PFxQW2trYYPnw4Zs2ape2UiEiPsGgjIiIi0gOcPUpERESkB1i0EREREekBTkTQYSqVCnfu3EGFChW4tQwREZGeEELg0aNHqFatGgwMiq9/jEWbDrtz5w6cnJy0nQYRERG9gps3b6JGjRrFdj0WbTqsQoUKANQfurW1tZazISIiosJITU2Fk5OT9D1eXFi06TDNkKi1tTWLNiIiIj1T3Lc2cSICERERkR5g0UZERESkB1i0EREREekB3tOm53JycpCVlaXtNKgUGBsbw9DQUNtpEBGRlrBo01NCCCQkJCA5OVnbqVApsrW1hYODA9ftIyIqh1i06SlNwValShVYWFjwS7yME0LgyZMnSExMBAA4OjpqOSMiIiptLNr0UE5OjlSw2dnZaTsdKiXm5uYAgMTERFSpUoVDpURE5QwnIughzT1sFhYWWs6ESpvmM+d9jERE5Y/eFG1+fn5wdnaGmZkZHB0d0a9fP9y5c0cWI4TAvHnzUL9+fZiamqJ69eqYNWuWLObgwYNo3rw5TE1NUbduXaxduzbfay1btgy1atWCmZkZPDw88Pfff8vOp6enY8SIEbCzs4OVlRV69OiBe/fuyWLi4+PRqVMnWFhYoEqVKpg4cSKys7OL55fxHw6Jlj/8zImIyi+9Kdq8vb2xefNmxMbG4pdffsHVq1fRs2dPWcwXX3yBVatWYd68eYiJiYFSqUSrVq2k83FxcejUqRO8vb1x+vRpjBkzBoMHD0ZERIQUs2nTJowbNw4hISE4deoUmjRpAl9fX+leIgAYO3YsfvvtN2zZsgWHDh3CnTt30L17d+l8Tk4OOnXqhMzMTBw5cgTr1q3D2rVrMW3atBL8DREREVGZJvTU9u3bhUKhEJmZmUIIIS5evCiMjIxETEzMc58TEBAgGjZsKGvr1auX8PX1lY5btWolRowYIR3n5OSIatWqiTlz5gghhEhOThbGxsZiy5YtUsylS5cEABEVFSWEEGLXrl3CwMBAJCQkSDErVqwQ1tbWIiMjo9DvMSUlRQAQKSkpsvanT5+KixcviqdPnxb6WlQ28LMnItJ9z/v+fl1609OWV1JSEtavXw8vLy8YGxsDAH777TfUrl0bO3bsgIuLC2rVqoXBgwcjKSlJel5UVBR8fHxk1/L19UVUVBQAIDMzEydPnpTFGBgYwMfHR4o5efIksrKyZDFubm5wdnaWYqKiotC4cWNUrVpV9jqpqam4cOHCc99XRkYGUlNTZY+yxt/fHwqFAgqFAsbGxqhatSree+89rF69GiqVqtDXWbt2LWxtbUsuUSIiIh2jV0VbYGAgLC0tYWdnh/j4eGzfvl06d+3aNdy4cQNbtmzB999/j7Vr1+LkyZOyIdSEhARZIQUAVatWRWpqKp4+fYoHDx4gJyenwJiEhATpGiYmJvkKhmdjCrqG5tzzzJkzBzY2NtLDycmpkL8Z/dKhQwfcvXsX169fx+7du+Ht7Y0vvvgCnTt3Lvb7/oiIiAqSlpaGx48fazuNItFq0RYUFCT1ujzvERMTI8VPnDgR0dHR2Lt3LwwNDdG/f38IIQAAKpUKGRkZ+P7779G2bVu88847+O6773DgwAHExsZq6y0WSXBwMFJSUqTHzZs3tZ1SiTA1NYWDgwOqV6+O5s2bY9KkSdi+fTt2794tTQxZsGABGjduDEtLSzg5OWH48OFIS0sDoJ5M8umnnyIlJUX672T69OkAgB9++AEtW7ZEhQoV4ODggI8//lh2PyIREZVvQggsW7YM8+fPx8qVK6U6Qh9odZ228ePHw9/f/4UxtWvXln6uXLkyKleujPr168Pd3R1OTk44evQoPD094ejoCCMjI9SvX1+Kd3d3B6Ceyenq6goHB4d8szzv3bsHa2trmJubw9DQEIaGhgXGODg4AAAcHByQmZmJ5ORkWW/bszHPzjjVXFMTUxBTU1OYmpq+8PfxPEIIrS0DYWxs/NqzGtu1a4cmTZpg69atGDx4MAwMDLB48WK4uLjg2rVrGD58OAICArB8+XJ4eXlh0aJFmDZtmlSQW1lZAVAvhTFz5ky4uroiMTER48aNg7+/P3bt2vXa75OIiPRbcnIyvv76a+n48ePHejUrX6tFm729Pezt7V/puZr7nzIyMgAAb775JrKzs3H16lXUqVMHAHD58mUAQM2aNQEAnp6e+b689+3bB09PTwCAiYkJWrRogcjISHTr1k16ncjISIwcORIA0KJFCxgbGyMyMhI9evQAAMTGxiI+Pl66jqenJ2bNmiUtgqp5HWtrazRo0OCV3u/LZGVlYc6cOSVy7ZcJDg6GiYnJa1/Hzc0NZ8+eBQCMGTNGaq9Vqxa+/PJLDB06FMuXL4eJiQlsbGygUCjyFcEDBw6Ufq5duzYWL16MN954A2lpaVJhR0RE5c/x48dlNYCNjQ2++OILLWZUdHqxI8KxY8dw/PhxtGnTBhUrVsTVq1cxdepU1KlTRyqUfHx80Lx5cwwcOBCLFi2CSqXCiBEj8N5770m9b0OHDsXSpUsREBCAgQMHYv/+/di8eTN27twpvda4ceMwYMAAtGzZEq1atcKiRYvw+PFjfPrppwDUH/KgQYMwbtw4VKpUCdbW1hg1ahQ8PT3RunVrAED79u3RoEED9OvXD+Hh4UhISMCUKVMwYsSIV+5JKw+EENL/8fz++++YM2cOYmJikJqaiuzsbKSnp+PJkycvXFT45MmTmD59Os6cOYOHDx9KxX18fHyJFcxERKS7hBBYvHixbK/u999/H2+88Yb2knpFelG0WVhYYOvWrQgJCcHjx4/h6OiIDh06YMqUKVIRZGBggN9++w2jRo3CW2+9BUtLS3Ts2BHz58+XruPi4oKdO3di7Nix+Prrr1GjRg2sWrUKvr6+UkyvXr1w//59TJs2DQkJCWjatCn27Nkjm1iwcOFCGBgYoEePHsjIyICvry+WL18unTc0NMSOHTswbNgweHp6wtLSEgMGDMCMGTNK7HdkbGyM4ODgErv+y167OFy6dAkuLi64fv06OnfujGHDhmHWrFmoVKkS/vrrLwwaNAiZmZnPLdoeP34MX19f+Pr6Yv369bC3t0d8fDx8fX2RmZlZLDkSEZH+SEpKwpIlS2RtDRp8gTfesNVOQq9JL4q2xo0bY//+/S+Nq1atGn755ZcXxrzzzjuIjo5+YczIkSOl4dCCmJmZYdmyZVi2bNlzY2rWrFmq91EpFIpiGaLUlv379+PcuXMYO3YsTp48CZVKhfnz58PAQD1XZvPmzbJ4ExMT5OTkyNpiYmLw77//IiwsTJp5e+LEidJ5A0REpFOioqKwd+9e6TgtrTLmzRsOT08FPvxQi4m9Br1a8oPKhoyMDCQkJOD27ds4deoUZs+eja5du6Jz587o378/6tati6ysLCxZsgTXrl3DDz/8gJUrV8quUatWLaSlpSEyMhIPHjzAkydP4OzsDBMTE+l5SqUSM2fO1NK7JCIibVCpVJg3b56sYOvSpQvath0BT08FvL0BLy9AqdRikq+IRRuVuj179sDR0RG1atVChw4dcODAASxevBjbt2+HoaEhmjRpggULFmDu3Llo1KgR1q9fn2+ShZeXF4YOHYpevXrB3t4e4eHhsLe3x9q1a7FlyxY0aNAAYWFhmDdvnpbeJRERlbYHDx5g5syZsvXXDh4ci+bNm8PPDzhyBDhwAIiKAsLCtJjoK1IIfVqgpJxJTU2FjY0NUlJSYG1tLbWnp6cjLi4OLi4uMDMz02KGVNr42RMRFezPP/+U3UqlUjliwYIhGD1agVmzcuOUSnXB5u2tLuCCggA/v+LN5Xnf36+LPW1ERESkt1QqFWbPni0r2D744APs2/cZ0tIUOHBA3aZUqodFAf3tcWPRRkRERHopMTERM2fOlC0u36jRePzf//0fvL0BKyt1jxqgLs7yFmlBQYCnp/pPfcGijYiIiPTOgQMHsGLFCuk4KckZ06dPw/z5Vv+dB9LSIPW0aYo0zUQEQN3jVtxDoyWJRRsRERHpjZycHISGzsAff/whtZ0+3RPvvvspPD0VUs/Zsz1tZWEigl6s00ZERER09+5dfPvtt7K2X3+dgPR0SwDqokzj2Z42jaAgdcGmT8OiGizaiIiISOft27cPR/JUZQ8e1MZ77/VDRARw5kxuz5lmZujDh4Cra/7izM9Pv4ZE82LRRkRERDorOzsbs/Ku2QEgK6sXTp50w3vvqQu0c+fUf2omG5w7p+5l8/TU3wKtICzaiIiISCfdunUL3333naxt7twAGBqaIy0tt3dNMwyqGfrMuwZbWcKijYiIiHTO7t278ffff0vH9+654v793jA0BDp0AG7fzi3KNPeo6fPQZ2GwaKMyyd/fH8nJydi2bRsA4J133kHTpk2xaNGiV75mcVyDiIheLCsrC7Nnz5a1HTz4MQ4erAczMyA9HdizB1i/PrdAK8uFWl5c8oNKlb+/PxQKBRQKBUxMTFC3bl3MmDED2dnZJfq6W7duLfTm8QcPHoRCoUBycvIrX4OIiIouPj4+X8H2f/8XiKNH6wEA7OzUy3jkHRotT9jTRqWuQ4cOWLNmDTIyMrBr1y6MGDECxsbGCA4OlsVlZmbCxMSkWF6zUqVKOnENIiLKT6kEfvtNiRo1oqW2u3cb4f33eyAsTN27Zm6uLtgGDCib96sVBnvaqNSZmprCwcEBNWvWxLBhw+Dj4wOlUgl/f39069YNs2bNQrVq1eDq6goAuHnzJj766CPY2tqiUqVK6Nq1K65fvy5dLycnB+PGjYOtrS3s7OwQEBAAIYTsNd955x2MGTNGOs7IyEBgYCCcnJxgamqKunXr4rvvvsP169fh/d9KjBUrVoRCoYC/v3+B13j48CH69++PihUrwsLCAh07dsSVK1ek82vXroWtrS0iIiLg7u4OKysrdOjQAXfv3pViDh48iFatWsHS0hK2trZ48803cePGjWL6TRMR6TalEmjUKBPR0aGygu348X6ws+shTSrw9AScnYHYWHXBpm87GRQXFm2kdebm5sjMzAQAREZGIjY2Fvv27cOOHTuQlZUFX19fVKhQAX/++ScOHz4sFT+a58yfPx9r167F6tWr8ddffyEpKQm//vrrC1+zf//+2LBhAxYvXoxLly7hm2++gZWVFZycnPDLL78AAGJjY3H37l18/fXXBV7D398fJ06cgFKpRFRUFIQQeP/992V74D158gTz5s3DDz/8gD/++APx8fGYMGECAPU09m7duuHtt9/G2bNnERUVhc8++wwKheK1f6dERPpg/vw4fPjhHFnb778HY+fO2li8WL18h6ZICw/Xv71CixuHR0lrhBCIjIxEREQERo0ahfv378PS0hKrVq2ShkV//PFHqFQqrFq1Sipm1qxZA1tbWxw8eBDt27fHokWLEBwcjO7duwMAVq5ciYiIiOe+7uXLl7F582bs27cPPj4+AIDatWtL5zXDoFWqVIGtrW2B17hy5QqUSiUOHz4Mr/82sVu/fj2cnJywbds2fPjhhwDUN9SuXLkSderUAQCMHDkSM2bMAACkpqYiJSUFnTt3ls67u7sX/RdJRKSHtm7dinbtzknHlSo1xahRXdGsGZCTA1Svrp5wkHcbqvLYu5YXe9oISqV681ylsnReb8eOHbCysoKZmRk6duyIXr16Yfr06QCAxo0by+5jO3PmDP755x9UqFABVlZWsLKyQqVKlZCeno6rV68iJSUFd+/ehYeHh/QcIyMjtGzZ8rmvf/r0aRgaGuLtt99+5fdw6dIlGBkZyV7Xzs4Orq6uuHTpktRmYWEhFWQA4OjoiMTERADq4tDf3x++vr7o0qULvv76a9nQKRFRWaNUAi4uGQgNDcW5c7kF2++/+6Nmza4AcvcIvX274G2oyjMWbSStIF1aM3G8vb1x+vRpXLlyBU+fPsW6detgaaneN07zp0ZaWhpatGiB06dPyx6XL1/Gxx9//Eqvb25u/trvobCMjY1lxwqFQna/3Zo1axAVFQUvLy9s2rQJ9evXx9GjR0stPyKi0rRq1T/w95d/2ezbNwl//VUz33dQUBCHQ5/Foo1K/S+GpaUl6tatC2dnZxgZvXiEvnnz5rhy5QqqVKmCunXryh42NjawsbGBo6Mjjh07Jj0nOzsbJ0+efO41GzduDJVKhUOHDhV4XtPTl5OT89xruLu7Izs7W/a6//77L2JjY9GgQYMXvqdnNWvWDMHBwThy5AgaNWqEn376qUjPJyLSZUol4O4ODB68GS1arJfac3JaIiQkBAEBxgV+B2l63Mr7kGheLNpIp/9i9O3bF5UrV0bXrl3x559/Ii4uDgcPHsTo0aNx69YtAMAXX3yBsLAwbNu2DTExMRg+fHi+NdbyqlWrFgYMGICBAwdi27Zt0jU3b94MAKhZsyYUCgV27NiB+/fvIy0tLd816tWrh65du2LIkCH466+/cObMGXzyySeoXr06unbtWqj3FhcXh+DgYERFReHGjRvYu3cvrly5wvvaiKhMmTfvKXr3DoWTU+6tI4MGDcKMGZ0A6PZ3kK5h0UY6zcLCAn/88QecnZ3RvXt3uLu7Y9CgQUhPT4e1tTUAYPz48ejXrx8GDBgAT09PVKhQAR988MELr7tixQr07NkTw4cPh5ubG4YMGYLHjx8DAKpXr47Q0FAEBQWhatWqGDlyZIHXWLNmDVq0aIHOnTvD09MTQgjs2rUr35Doi95bTEwMevTogfr16+Ozzz7DiBEj8PnnnxfhN0REpJuUSqBr11i8+264rH3y5MmoUaOGlrLSbwrx7IJWpDNSU1NhY2ODlJQUqUABgPT0dMTFxcHFxQVmZmZazJBKGz97ItJlSmXuPqD7969BxYrx0rm4OE+sXdtei9mVnud9f78u9rQRERHRK8u7AkFYGHDhQgqio0NlBdsPPwxB9+7tS321grKG67QRERHRK8u7AoG//yHcvXtQdn7v3ilYsMAQfn7qgk0Ty3vYio5FGxEREb2yoCB1EebrG4q8S03Gxzvh8OGBiInJH8tlPF4NizYiIiIqkrz3rmVkJMHXd4ns/M6d/XD8eG24ucmfx10NXg+LNj3GOSTlDz9zItIFmiHRX375HbVrH5admzlzCurVM+TCuCWARZse0iwp8eTJk1Jd3Z+078mTJwDy77RARFTS8vauVa8uMH36DNl5laoONm36BPXqAXPnsketJLBo00OGhoawtbWV9rC0sLCQNlOnskkIgSdPniAxMRG2trYwNDTUdkpEVM5oetdGjXqAgQOXyc75+/ujT5+aiI1V77DDgq1ksGjTUw4ODgAgFW5UPtja2kqfPRFRafL2Bmxtd8PD429Z+5QpU2BoaMhJBqWAi+vqsMIszpeTk4OsrKxSzoy0wdjYmD1sRKQV27cLnD4tHw51d3fHRx99pKWMdFtJLa7LnjY9Z2hoyC9yIiIqMffu3cPp0ytlbYMGDeJWVFrAHRGIiIiowN0KlEolVq6UF2xTp05lwaYl7GkjIiIi2c4GXboIzJghHw6Ni/s/rF37gZayI4BFGxEREUE9gSAgAHjy5A5mzPif7NzKlZ/D1paToLSNw6NERETl1LNDos2a/YwPPpAXbE2bToOLiwPmztVCgiTD2aM6rKRmnxAREQG5G7h7eanQvv1M2bkrV1rgxx87aykz/cbZo0RERFSsvL2Bf/+9ifbtV8va//prOEaNstdSVvQ8LNqIiIjKIaUSuHlzAz7++LKsfdq0adxlR0fxnjYiIqIy7tl713JychAdHYo6dXILtsOHPREREcKCTYexp42IiKgMUyqBvn2BtDT1ch6NG8fh+++/l8W4u49ERIQdt6DScSzaiIiIyhilUl2geXsDixerCzYrK6BHj3X4/vvrsljNcCh3pNJ9LNqIiIjKkLw9a+fOqf+0tMzGhAmzkJaWG3f16lv4/ntv7SVKRcaijYiIqAwJC1MXamZmgI0N0LDhP+jYcb0s5tChLzBmjK12EqRXxqKNiIioDAkKUhduDx8Cbdv+D9Wr35GdDwkJ0VJm9Lo4e5SIiKgM0MwQBYBDh7LQu3eorGBzdHyXBZueY08bERFRGaDZ8D0oKAbR0Ztk5xo2HIuePbmzjr5j0UZERKSnlEogMBAQAujRA2jRYikqV/5XFsPetbKDRRsREZEeyLuMx4EDufeuxcQAJiYZMDEJQ+XKufEdOnSAh4eH9hKmYseijYiISA9ohj81y3iEhakLt2XLzsPL6xdZ7Pjx42FlZaWlTKmksGgjIiLScZMnA9HRQPXqwIABuT1tV67Mh5dX7uJrBgYGmDp1qhYzpZLEoo2IiEhHaYZEo6OB9HQgJQWYNQtIT0/H3LlzZbGdO3dGixYttJQplQYWbURERDpKMyRavbq6YOvQAejZ8zQaN94ui5s4cSIsLCy0lCWVFhZtREREOiooKHd26PLlwPHjc2BklCmdNzc3R0BAgBYzpNLExXWJiIh0hGaBXKVSfeznB1SsCNy8+QTR0aGygq1bt24s2MoZ9rQRERHpCM1waFhY7vG77x6Hr+8uWVxgYCDMzMy0kCFpE4s2IiIiHaBUAklJgJtb7hpsvr6hshgbGxuMGTNGOwmS1rFoIyIi0jKlEujbV73+mqcn4O39CNHRC2QxH374IRo0aKClDEkXsGgjIiLSorwFm5UVMHBgFBYs2CuLCQ4OhomJiZYyJF3Boo2IiEgLNGuwJSXlFmwTJoTi9u3cmCpVqmDYsGHaS5J0Cos2IiIiLQgMVO8bWr064O2dgrffXiQ737t3b7i6umonOdJJLNqIiIhK0ZtvAkeOAJrJnx4ef+D//u+ALGbSpEkwNjbWQnaky1i0ERERlQKlEggIAGJj1cfp6cD06fLZoTVq1MCgQYO0kB3pAxZtREREJSzvZAMAqFjxIb74YrEs5pNPPkGdOnW0kB3pC73ZEcHPzw/Ozs4wMzODo6Mj+vXrhzt37kjnp0+fDoVCke9haWkpu86WLVvg5uYGMzMzNG7cGLt2yRcsFEJg2rRpcHR0hLm5OXx8fHDlyhVZTFJSEvr27Qtra2vY2tpi0KBBSNP8TfzP2bNn0bZtW5iZmcHJyQnh4eHF/BshIiJdlHdXA83PgYHqgs3MDPjww8h8BdvkyZNZsNFL6U3R5u3tjc2bNyM2Nha//PILrl69ip49e0rnJ0yYgLt378oeDRo0wIcffijFHDlyBH369MGgQYMQHR2Nbt26oVu3bjh//rwUEx4ejsWLF2PlypU4duwYLC0t4evri/T0dCmmb9++uHDhAvbt24cdO3bgjz/+wGeffSadT01NRfv27VGzZk2cPHkSX331FaZPn45vv/22hH9LRESkbZpdDYYPB7p1U//86BHg6SkQFBSKhg3/kmJr166NkJAQGBlx4IteTiGEENpO4lUolUp069YNGRkZBd6seebMGTRt2hR//PEH2rZtCwDo1asXHj9+jB07dkhxrVu3RtOmTbFy5UoIIVCtWjWMHz8eEyZMAACkpKSgatWqWLt2LXr37o1Lly6hQYMGOH78OFq2bAkA2LNnD95//33cunUL1apVw4oVKzB58mQkJCRI6+oEBQVh27ZtiImJKfR7TE1NhY2NDVJSUmBtbf3KvysiIio9kycDixcDGRlAVpa67Y03HqBTp2WyOH9/f9SsWVMLGVJJK6nvb73pacsrKSkJ69evh5eX13Nn16xatQr169eXCjYAiIqKgo+PjyzO19cXUVFRAIC4uDgkJCTIYmxsbODh4SHFREVFwdbWVirYAMDHxwcGBgY4duyYFPPWW2/JFkL09fVFbGwsHj58+Nz3lZGRgdTUVNmDiIj0y7p16qFQU1P1cGiPHnvyFWxTpkxhwUZFpldFW2BgICwtLWFnZ4f4+Hhs3769wLj09HSsX78+3wychIQEVK1aVdZWtWpVJCQkSOc1bS+KqVKliuy8kZERKlWqJIsp6Bp5X6Mgc+bMgY2NjfRwcnJ6biwREemmpCT1nzk56uHQxo2PSefc3NwQEhICQ0NDLWVH+kyrRVtQUFCBkwfyPvIOJ06cOBHR0dHYu3cvDA0N0b9/fxQ0uvvrr7/i0aNHGDBgQGm+ndcWHByMlJQU6XHz5k1tp0RERIWQd/LB2LFArVqJCAycIYsZNGgQevXqpaUMqSzQ6p2P48ePh7+//wtjateuLf1cuXJlVK5cGfXr14e7uzucnJxw9OhReHp6yp6zatUqdO7cOV9vl4ODA+7duydru3fvHhwcHKTzmjZHR0dZTNOmTaWYxMRE2TWys7ORlJQku05Br5P3NQpiamoKU1PT554nIiLt0Ww7FRQE+PnJz2kmH4SFAcHBv8HE5JTs/NSpU2FgoFeDW6SDtPpfkL29Pdzc3F74eN4GuSqVCoD6PrC84uLicODAgQIXJ/T09ERkZKSsbd++fVLR5+LiAgcHB1lMamoqjh07JsV4enoiOTkZJ0+elGL2798PlUoFDw8PKeaPP/5AluYO1P9ex9XVFRUrViz074eIiHRH3sIsb88aoC7kPD0FfH1DcepUbsHWuHFjhISEsGCjYqEXs0ePHTuG48ePo02bNqhYsSKuXr2KqVOn4t69e7hw4YKsd2rq1KlYvXo14uPj890zcOTIEbz99tsICwtDp06dsHHjRsyePRunTp1Co0aNAABz585FWFgY1q1bBxcXF0ydOhVnz57FxYsXYfbfniMdO3bEvXv3sHLlSmRlZeHTTz9Fy5Yt8dNPPwFQzzh1dXVF+/btERgYiPPnz2PgwIFYuHChbGmQl+HsUSIi3ZG3p02zb6ibG3DpEnD37t18yzp99tlnslEbKj9K6vtbLxaGsbCwwNatWxESEoLHjx/D0dERHTp0wJQpU2QFm0qlwtq1a+Hv71/gTZ5eXl746aefMGXKFEyaNAn16tXDtm3bpIINAAICAvD48WN89tlnSE5ORps2bbBnzx6pYAOA9evXY+TIkXj33XdhYGCAHj16YPHi3IUSbWxssHfvXowYMQItWrRA5cqVMW3atCIVbEREpFs0Q6JhYep11wBACGDr1q04d+6cLHbatGlQKBSlnCGVdXrR01ZesaeNiEh78vasAeqfk5LUe4e6ugJ2diq0bz9T9pwWLVqgc+fOWsiWdEm57mkjIiIqTXn3Cg0LU7dFRamHQz09gVGjbuLy5dWy5wwbNizfklBExYlFGxER0TPCwtQFm0IBxMcDmhWkgoKAx4834PLly7J4DodSaeB0FiIiIshnhAYFAVZW6nvWbt8GDhwA/vwzB9HRobKCrXXr1ggJCWHBRqWC97TpMN7TRkRUery81EOgBgbqos3DQz1LVAhg6tTr+OefdbL4kSNHws7OTkvZki7jPW1EREQlRKlUD4MCgEql3vD90SP1jNHvv/8e//wTJ4vncChpA4s2IiIq1z78EPj559xjAwNg9Gj1bjezZs2SxbZt2xbt2rUr5QyJ1Fi0ERFRuaRZ0uPo0dw2Nzdg7lygQYN/MGvWeln8F198AVtb29JNkigPFm1ERFSuaIq1hw/VuxpUqgQkJwPduwNbtqj3r46Ovi17TkhIiHaSJcqDRRsREZUbkycDc+aoJxdUr65ec02zAXxWVhZCQ2fL4tu1a4e2bdtqKVsiORZtRERU5imV6pmgsbHqgg0AKlQAjhxR/xwbG4uNGzfKnjN27FjO3CedwqKNiIjKvLAw9VAooF4wt1o19b1rALBs2TI8ePBAFs/hUNJFLNqIiKjMCwrKXXMtPFw9HJqRkYHQ0DBZnK+vL1q3bq2lLIlejEUbERGVSZoJB97e6h0N5s5VF2sAcP78efzyyy+y+PHjx8PKykoLmRIVDos2IiIqUzTFWny8eguq06eBp0/VbX5+wMKFC5GamirFKxQKTJs2TXsJExUSizYiIipTwsLU21GZmamPK1UCnJ2BCRPSERo6VxbbqVMntGzZUgtZEhUdizYiIipTgoLkw6JBQYCz82ls375dFjdx4kRYWFhoKUuiomPRRkREeuvZ+9Y0a65p7l0DgLCwMERHZ0jHpqamCAoK0kK2RK+HRRsREeklpRLo2xdISwOio4H0dCAgILdge/LkCb766ivZc7p164YmTZpoIVui18eijYiI9FJYmLpgMzAALCzURZtCoT534sQJ7Ny5UxYfGBgIM82NbkR6iEUbERHppaAgoFcvdbFmbp67JVVoaKgsztraGmPHjtVSlkTFh0UbERHpJT8/oFYt9U4HFSoAe/emYf78+bKYnj17omHDhtpJkKiYGWg7ASIiosJSKgEvL/WfgHrBXE9PYPz4qHwFW3BwMAs2KlPY00ZERDpNqVRPMEhLA/79Vz0cqlko188PiI4Oxe3bufH29vYYPny49hImKiEs2oiISGflnSGqYWWlvnctNTUVCxculMX37t0brq6upZwlUelg0UZERDorMFBdsJmYAPb26oItPByoWPFPLFy4XxY7adIkGBsbaylTopLHoo2IiHTShx+qJxkAgItL7s/Pzg6tXr06Bg8eXMrZEZU+Fm1ERKR1Be1ssHVr7vnwcODhw4dYvHix7HmffPIJ6tSpU8rZEmkHizYiItI6zSbv586ph0PDwoDu3dWFW/fugJXVfixe/KfsOZMnT4aREb/GqPzgkh9ERKQVeZfvCApSL90xenTuIrlbtgDZ2QKNGoXizz9zCzYXFxeEhISwYKNyh//FExGRVmh61zTDoufOqf88ckR9/t9//8XSpUtlzxkwYABq1apV+skS6QAWbUREVOqUSuDhQ8DVVd2rplnWY/FiYNYsICIiAkePHpU9Z8qUKTA0NNRSxkTapxBCCG0nQQVLTU2FjY0NUlJSYG1tre10iIiKjbu7ejaomxtw6RIwebK6YBs9WsDEZIYs1tXVFb1799ZSpkRFV1Lf37ynjYiISo3mPrbERPXxo0fqP2fNAq5eTcxXsA0aNIgFG9F/ODxKRESlQqkEevVSb0OlWQO3QgX1n7/99htOnToli586dSoMDNi3QKTBoo2IiEqUUqne2eDqVSArS91WpQrg7AwEBgqEhsp71xo1aoQePXpoIVMi3caijYiISkxBe4eamQHLlwNvvHEX3377rSz+s88+g6OjYylnSaQfWLQREVGJyFuwmZsDlSqph0PnzgWys7fi22/PyeKnTZsGhUKhpWyJdB+LNiIiKjaaoVAhAIVCXbBZWQHr1wN+foBKpcLMmTNlz2nevDm6dOmipYyJ9AeLNiIiKjZhYbkbu7u65u5u4OcH3Lp1C999950sftiwYahSpYoWMiXSPyzaiIio2Hh7A6dPq4dCw8PVxRoAbNq0CTGaau4/HA4lKpoiF22Ghoa4e/duvv8z+vfff1GlShXk5OQUW3JERKT7nh0SffpUPTPUzw/IycnBl19+KYv38PBAhw4dtJQtkf4qctH2vA0UMjIyYGJi8toJERGRflAq1cOhSUlAbKy6rXr13CHR69evY926dbLnjBw5EnZ2dlrIlkj/FbpoW7x4MQBAoVBg1apVsLKyks7l5OTgjz/+gJubW/FnSEREOuXZYs3cHDAxATIz1bNDjxwBvv/+e6xbFyd7HodDiV5PofcedXFxAQDcuHEDNWrUkG3aa2Jiglq1amHGjBnw8PAomUzLIe49SkS6yMsLiIpS7xt644Z6OLR6dfWQaEBANs6cmSWLb9OmDd59910tZUtU+krq+7vQPW1xcer/Y/L29sbWrVtRsWLFYkuCiIj0h7c3cO4c0L078Msv6t42Kyvghx+u4scff5TFjh49mt8XRMWkyJu6HThwgH8BiYjKEc0m70ql+vjAAfX6awcOqGeIenoCgwZ9l69gCwkJ4fcFUTEq8kSEgQMHvvD86tWrXzkZIiLSPWFh6uHQgAD1z97e6vagIKBjxyxER8/Gkye58d7e3njrrbe0kyxRGVbkou3hw4ey46ysLJw/fx7Jyclo165dsSVGRETapZlwoCnS4uPVQ6EPHwKXLgGxsbGYPXuj7DljxoyBjY2NFrIlKvuKXLT9+uuv+dpUKhWGDRuGOnXqFEtSRESkfZoetqQk9WK5GkIAy5cvx/3792XxISEhpZwhUflS6NmjLxMbG4t33nkHd+/eLY7LETh7lIi0S9PT9vChemsqNzegcuVM+PjMkcW1b98enp6eWsqSSPdoffboy1y9ehXZ2dnFdTkiIiplmp0NHj1SH1tZqScaAOri7fPPL+D69Z9lzxk/frxs3U4iKjlFLtrGjRsnOxZC4O7du9i5cycGDBhQbIkREVHpyrvZe962I0eAa9cW4fr1FNk5DocSla4iF23R0dGyYwMDA9jb22P+/PkvnVlKRES6afJkIDpavaNBejpgbQ1UrgxMnJiO0NC5sthOnTqhZcuWWsqUqPwqctF24MCBksiDiIi0aPFidbGWmQmoVED9+sCKFWewbds2WdzEiRNhYWGhnSSJyrkiL66rkZiYiD///BN//vknEhMTizMnIiIqBXkXze3QATAwAFq3Vi+W+/77c2UFm4mJCUJCQliwEWlRkXvaUlNTMWLECGzYsAEqlQoAYGhoiF69emHZsmVcn4eISE9olvQIC1Mfq1SAkdETtGv3FXJycuO6du2Kpk2baiVHIspV5J62IUOG4NixY9i5cyeSk5ORnJyMHTt24MSJE/j8889LIkciIipGmh42b291r1pQkPrx4Ycn0a7dV7LYwMBAFmxEOqLI67RZWloiIiICbdq0kbX/+eef6NChAx4/flysCZZnXKeNiIqDZr21oCD1cd++6r1DrayA9esBPz9gxowZyPt1UKFChXyrBRBR4ejMOm12dnYFDoHa2NhwY2AiIh307DBoWpr6/rW0NGDBgjRER8+Xxffo0QONGjXSQqZE9CJFHh6dMmUKxo0bh4SEBKktISEBEydOxNSpU4s1OSIien1BQephUG9v9ZZUbm7qtl69jsLbe/4zsUEs2Ih0VJGHR5s1a4Z//vkHGRkZcHZ2BgDEx8fD1NQU9erVk8WeOnWq+DIthzg8SkTFyctL3ePm6Qn4+obKzlWuXBkjRozQUmZEZYvODI927doVCoWi2BIgIqLipdmOSgj1NlR+fur2oCBg4cJUvPPOQll8r1694ObmpoVMiagoim3DeCp+7GkjoqLQFGvXr6sXygUAV1egUiV1wVax4p/Yv3+/7DmTJk2CsbFx6SdLVIbpTE9b7dq1cfz4cdjZ2cnak5OT0bx5c1y7dq3YkiMiosLLu3eomRlQsyagUKiHRKOj5cOh1apVw5AhQ7SQJRG9qiIXbdevX0dO3lUX/5ORkYFbt24VS1JERFR0QUHA8OFAYiJgZ6ceGs3ISMbFi1/L4vr27Yu6detqKUsielWFLtqUSqX0c0REhGzZj5ycHERGRsLFxaV4syMiokLz81P3tt2+rX78/PMB1Knzhyxm8uTJMDIq8v+vE5EOKPSSH926dUO3bt2gUCgwYMAA6bhbt27o3bs39u3bh/nz57/8Qq/Iz88Pzs7OMDMzg6OjI/r164c7d+7IYiIiItC6dWtUqFAB9vb26NGjB65fvy6LOXjwIJo3bw5TU1PUrVsXa9euzfday5YtQ61atWBmZgYPDw/8/fffsvPp6ekYMWIE7OzsYGVlhR49euDevXuymPj4eHTq1AkWFhaoUqUKJk6ciOzs7GL5XRARPU9QEODmJjB9eqisYKtVqxZCQkJYsBHpsUIXbSqVCiqVCs7OzkhMTJSOVSoVMjIyEBsbi86dO5dYot7e3ti8eTNiY2Pxyy+/4OrVq+jZs6d0Pi4uDl27dkW7du1w+vRpRERE4MGDB+jevbssplOnTvD29sbp06cxZswYDB48GBEREVLMpk2bMG7cOISEhODUqVNo0qQJfH19kZiYKMWMHTsWv/32G7Zs2YJDhw7hzp07stfJyclBp06dkJmZiSNHjmDdunVYu3Ytpk2bVmK/HyIqn5RKwN1dvfaaUgm8+ea/6N17hixmwIABGDBggJYyJKJiI/TU9u3bhUKhEJmZmUIIIbZs2SKMjIxETk6OFKNUKmUxAQEBomHDhrLr9OrVS/j6+krHrVq1EiNGjJCOc3JyRLVq1cScOXOEEEIkJycLY2NjsWXLFinm0qVLAoCIiooSQgixa9cuYWBgIBISEqSYFStWCGtra5GRkVHo95iSkiIAiJSUlEI/h4jKtu3bhfD0VP8phBBubkKoF/cQwt9/j5g+fbrskZ2drd2Eicqhkvr+LnI/+YwZM154vjR6k5KSkrB+/Xp4eXlJU9VbtGgBAwMDrFmzBv7+/khLS8MPP/wAHx8fKSYqKgo+Pj6ya/n6+mLMmDEAgMzMTJw8eRLBwcHSeQMDA/j4+CAqKgoAcPLkSWRlZcmu4+bmBmdnZ0RFRaF169aIiopC48aNUbVqVdnrDBs2DBcuXECzZs0KfF8ZGRnIyMiQjlNTU1/jt0REZZFmS6oPPgC6d1cv7wEITJ8u/7e5fv366NOnjzZSJKISUuSi7ddff5UdZ2VlIS4uDkZGRqhTp06JFm2BgYFYunQpnjx5gtatW2PHjh3SORcXF+zduxcfffQRPv/8c+Tk5MDT0xO7du2SYhISEmSFFABUrVoVqampePr0KR4+fIicnJwCY2L+m0efkJAAExMT2Nra5ovRbO31vNfRnHueOXPmIDQ09Lnniaj80mz67u2tLtpUKuDnnwF7+0QEBa2QxQ4cOBBOTk5aypSISkqR9x6Njo6WPc6fP4+7d+/i3XffxdixY4t0raCgICgUihc+NMUSAEycOBHR0dHYu3cvDA0N0b9/f4j/1gZOSEjAkCFDMGDAABw/fhyHDh2CiYkJevbsKcXouuDgYKSkpEiPmzdvajslItIRmh62rVtz27p02YERI+QF29SpU1mwEZVRxTKNyNraGqGhoejSpQv69etX6OeNHz8e/v7+L4ypXbu29HPlypVRuXJl1K9fH+7u7nBycsLRo0fh6emJZcuWwcbGBuHh4VL8jz/+CCcnJxw7dgytW7eGg4NDvlme9+7dg7W1NczNzWFoaAhDQ8MCYxwcHAAADg4OyMzMRHJysqy37dmYZ2ecaq6piSmIqakpTE1NX/j7IKLyKShIXbglJQEKhUBIiHw4tFGjRujRo4eWsiOi0lBsc781vUNFYW9vD3t7+1d6PZVKBQDSPWBPnjyBgYG849DQ0FAW++xwKQDs27cPnp6eAAATExO0aNECkZGR6Natm/TcyMhIjBw5EoD63jljY2NERkZK/0DGxsYiPj5euo6npydmzZqFxMREVKlSRXoda2trNGjQ4JXeLxGVb35+6sfGjXcRG/ut7NyQIUNQrVo1LWVGRKWlyEXb4sWLZcdCCNy9exc//PADOnbsWGyJ5XXs2DEcP34cbdq0QcWKFXH16lVMnToVderUkQqlTp06YeHChZgxYwb69OmDR48eYdKkSahZs6Z04//QoUOxdOlSBAQEYODAgdi/fz82b96MnTt3Sq81btw4DBgwAC1btkSrVq2waNEiPH78GJ9++ikAwMbGBoMGDcK4ceNQqVIlWFtbY9SoUfD09ETr1q0BAO3bt0eDBg3Qr18/hIeHIyEhAVOmTMGIESPYk0ZERaa5n61371/x8OFZ2blp06ZBoVBoKTMiKk1F3jD+2V0PDAwMYG9vj3bt2iE4OBgVKlQo1gQB4Ny5c/jiiy9w5swZPH78GI6OjujQoQOmTJmC6tWrS3EbN25EeHg4Ll++DAsLC3h6emLu3Llwc3OTYg4ePIixY8fi4sWLqFGjBqZOnZpviHbp0qX46quvkJCQgKZNm2Lx4sXw8PCQzqenp2P8+PHYsGEDMjIy4Ovri+XLl8uGPm/cuIFhw4bh4MGDsLS0xIABAxAWFlakhS25YTxR+aRUAgEBQFoaUKECoFCo0KvXTFlMs2bN4Ofnp6UMiehFSur7u8hFG5UeFm1E5ZOXl3rSAQBUr34bQ4askp0fOnRovhnqRKQ7Sur7+5XuaUtOTsY///wDAKhbt26+5S+IiKjwNMOfQUHq44cPgerVAR+fTXBxiZHFcjiUqPwqUtF2/fp1jBgxAhEREdIyGgqFAh06dMDSpUtRq1atksiRiKhM0yznERamPr58OQfTpn0pi2nVqlWJ3TdMRPqh0MOjN2/exBtvvAFjY2MMHz4c7u7uAICLFy9ixYoVyM7OxvHjx1GjRo0STbg84fAoUfmgVAKBgcCjR4CDww106bJWdn7EiBGoXLmydpIjoiLT+j1tgwYNwj///IOIiAiYmZnJzj19+hQdOnRAvXr1sGrVqudcgYqKRRtR+eHlBdSt+wPq1Lkma+dwKJH+0fo9bXv27MGmTZvyFWwAYG5ujpkzZ6J3797FlhgRUXmRnZ0NX99ZsrY2bdrg3Xff1VJGRKSLCl20PXjw4IX3rNWuXRtJSUnFkRMRUblx9epV/Pjjj7K20aNHo2LFilrKiIh0VaH3HnV0dMTFixefe/78+fMv3KKJiKg8UyrVQ6BKZW7bd999l69gCwkJYcFGRAUqdE9bt27dMGHCBERGRubbeioxMRGBgYHS1k9ERCQXEADExgK9egEbNmThzJnZsvPvvPMO3n77bS1lR0T6oNBFW0hICHbt2oU6dergk08+gZubG4QQuHTpEn766Sc4ODhg2rRpJZkrEZHe0swlcHa+jDNnNsjOjRkzBjY2NlrIioj0SaGLtooVK+LYsWOYNGkSNm7ciOTkZACAra0tPv74Y8yePRuVKlUqqTyJiPTa3LlARMQKVKmSKGsPCQnRUkZEpG9eaRsrIQTu378PALC3t+d09BLCJT+I9Jtmp4OJEzNx9uwc2bn33nsPXl5eWsqMiEqS1pf8yEuhUKBKlSrFlgQRUVmRd0uqsDAgJeUizp7dIosZN24cKlSooKUMiUhfvVLRRkREBcu7JVWXLl8jMzNZdp7DoUT0qli0EREVA00Pm7c38OhROnx95yIzM/f8+++/jzfeeEN7CRKR3mPRRkRUDDQ9bI6OZ9Gz56+ycxMnToSFhYWWMiOisoJFGxHRa1IqgYcPgaCgcJiZPZXaDQyMMXXqJC1mRkRlSaGKtsWLFxf6gqNHj37lZIiI9IlmSPTx46fo3Ttcds7Pzw/NmjXTUmZEVBYVaskPFxeXwl1MocC1a9deOylS45IfRLrNzQ2wtDwFP7/fZO2NGwege3dzLWVFRNqm1SU/4uLiiu0FiYjKio8+mglDQ5V0bGVlhfHjx2sxIyIqy175nrbMzEzExcWhTp06MDLirXFEVD4olcCCBY/h7T0Phoa57UeOdEdERGPtJUZEZZ5BUZ/w5MkTDBo0CBYWFmjYsCHi4+MBAKNGjUJYWFixJ0hEpG1KJeDurh4OXbXqGLy958nOb9kShBEjWLARUckqctEWHByMM2fO4ODBgzAzM5PafXx8sGnTpmJNjohIF4SFATExQJ8+oWjRYo/Ubmdnh5CQEJw/bwo/Py0mSETlQpHHNbdt24ZNmzahdevWsj1HGzZsiKtXrxZrckRE2pS7YG4qfH0Xys599NFHcHd311JmRFQeFblou3//foH7jj5+/JgbxxNRmRIWBhgY/AUTk0hZe3BwMExMTLSUFRGVV0UeHm3ZsiV27twpHWsKtVWrVsHT07P4MiMi0hKlEvDyAnx9Q/Hee7kFW0qKI5o1C2HBRkRaUeSettmzZ6Njx464ePEisrOz8fXXX+PixYs4cuQIDh06VBI5EhGVCqUSCAwEkpKSMXz417JzH3/8MerVq6elzIiIXqGnrU2bNjh9+jSys7PRuHFj7N27F1WqVEFUVBRatGhREjkSEZWKsDDAweFAvoKtSZPJLNiISOsKtSMCaQd3RCAqeZrJBoGBAqdPz5Cdq1mzJvz9/bWTGBHpLa3uiJCamlroC7K4ICJ9EhYGxMYm4fTpJbL2/v37F3oLPyKi0lCoos3W1rbQM0NzcnJeKyEiotIyeTJgbb0Xo0dHydqnTJkCw7zbHRAR6YBCFW0HDhyQfr5+/TqCgoLg7+8vzRaNiorCunXrMGfOnJLJkoiomAkhYGIyA3knvScm1oOv78dgvUZEuqjI97S9++67GDx4MPr06SNr/+mnn/Dtt9/i4MGDxZlfucZ72oiKl+b+tS++uI+YmOWyc1lZn+LLL521lBkRlSUl9f1d5NmjUVFRaNmyZb72li1b4u+//y6WpIiIipNm3bXAQKBSpZ35CrYZM6Zi/34WbESk24pctDk5OeF///tfvvZVq1bBycmpWJIiIipOYWHA0aMCvXuH4o03Tkjtd+82RGZmCDw8DBAUpMUEiYgKociL6y5cuBA9evTA7t274eHhAQD4+++/ceXKFfzyyy/FniAR0etQKgEhEhAS8o2sPSpqCPbsqaalrIiIiq7IPW3vv/8+rly5gi5duiApKQlJSUno0qULLl++jPfff78kciQiemU7dmxDhw7ygm3jxmkYPpwFGxHpFy6uq8M4EYHo1alUKsycOVPWdupUUyiVXeHpCRw5oqXEiKjM0+rius9KTk7Gd999h0uXLgEAGjZsiIEDB8LGxqbYEiMiKgrNzNCgIKBFi9tYtWqV7PzQoUNx7FhV3L8P3r9GRHqpyD1tJ06cgK+vL8zNzdGqVSsAwPHjx/H06VPs3bsXzZs3L5FEyyP2tBEVnrs7EBMDDBq0GU5Ol2Tnmjadhq5dC7dAOBHR6yqp7+8iF21t27ZF3bp18b///Q9GRuqOuuzsbAwePBjXrl3DH3/8UWzJlXcs2ogKz91dhd695cOhN268gTVr3udwKBGVKp0ZHj1x4oSsYAMAIyMjBAQEFLh+GxFRSbtx4wZ6914ra/vrrxEYNaoyYmI4HEpEZUORizZra2vEx8fDzc1N1n7z5k1UqFCh2BIjIiqMBQt+xKNHV2Vt8+ZNw/r1Cvj5AX5+WkqMiKiYFblo69WrFwYNGoR58+bBy8sLAHD48GFMnDgx39ZWREQlZdu2HJw586Ws7f79N3HqlA/Wr2exRkRlT5GLtnnz5kGhUKB///7Izs4GABgbG2PYsGEICwsr9gSJiJ517do1nDnzg6zt669HIT29Ep480VJSREQl7JXXaXvy5AmuXlUPSdSpUwcWFhbFmhhxIgJRQVavXo2bN2/K2qZPnwZAgerVgVu3tJMXEZGGzkxE0LCwsEDjxo2LLREiohfJzs7GrFmzZG3vvPMOOnd+GwBgYAAsX17QM4mIyoZCF20DBw4sVNzq1atfORkiooJcvnwZGzZskLU1bDgGb79tg9GjgcWLgdGjeR8bEZVthR4eNTAwQM2aNdGsWTO86Cm//vprsSVX3nF4lAhYuXIl7t27J2ubPj2Ea68Rkc7S+vDosGHDsGHDBsTFxeHTTz/FJ598gkqVKhVbIkREeWVmZmLOnDmytmrVfLBgwZtwdeXaa0RU/hgUNnDZsmW4e/cuAgIC8Ntvv8HJyQkfffQRIiIiXtjzRkRUVJcuXcpXsDVqNA7jxr2JmBigUiUOhRJR+fPKs0dv3LiBtWvX4vvvv0d2djYuXLgAKyur4s6vXOPwKJU3SiVw+PBiWFg8lLU3axaCsDAgKgqwsgLXYSMinab14dFnGRgYQKFQQAiBnJycYkuIiMqnjIwMREeHIe/qQR07dkSrVq2k47Aw9bAoCzYiKo+KVLRlZGRg69atWL16Nf766y907twZS5cuRYcOHWBgUOiRViIimbNnz+abxDRhwgRYWlpKx9ySiojKu0IXbcOHD8fGjRvh5OSEgQMHYsOGDahcuXJJ5kZE5cCsWV8hOzt3GwMjIyM0bjwZ773HXjUioryKtOSHs7MzmjVrBoVC8dy4rVu3Flty5R3vaaOy7OnTpwgPD5e1ZWf7YdGiZrCxAW7fBpf1ICK9pPV72vr37//CYo2IqLDWrDmF+PjfZG2ZmQGYM8ccQgAZGeqCjct6EBHlKnTRtnbt2hJMg4jKiy+//FI2ecnS0hL1609A376Apt+/ShX2sBERPeuVZ48SERXF48ePMW/ePFlbdnZ3TJjQGF5eQFoaYGYG1KoFzJ2rnRyJiHQZizYiKnF///03du/eLWubMycILi6miIwEvL3VbZx4QET0fCzaiKhEhYaGyo4rVqyIWrVGo3lzIClJvWAuwOFQIqKXYdFGRCXi0aNHWLBggazto48+wpUr7tIiuQBkPxMR0fO98jZWVPK45Afpq8OHD+P333+XtQUHB8PExAReXureNS7nQURlldaX/CAiKoxnh0MdHBzw+eefS8dBQexdIyJ6FSzaiKhYpKSkYNGiRbK22rU/xooV9eDomDvBgNtRERG9GhZtRPTaDh48iEOHDsna9u2bjAcPjBAbCwQEsFAjInpderPLu5+fH5ydnWFmZgZHR0f069cPd+7ckcVs3rwZTZs2hYWFBWrWrImvvvoq33UOHjyI5s2bw9TUFHXr1i1w0eBly5ahVq1aMDMzg4eHB/7++2/Z+fT0dIwYMQJ2dnawsrJCjx49cO/ePVlMfHw8OnXqBAsLC1SpUgUTJ05Ednb26/8iiHSIEAKhoaGygs3S0hkRESEICDBCWpq6TfMnERG9Or0p2ry9vbF582bExsbil19+wdWrV9GzZ0/p/O7du9G3b18MHToU58+fx/Lly7Fw4UIsXbpUiomLi0OnTp3g7e2N06dPY8yYMRg8eDAiIiKkmE2bNmHcuHEICQnBqVOn0KRJE/j6+iIxMVGKGTt2LH777Tds2bIFhw4dwp07d9C9e3fpfE5ODjp16oTMzEwcOXIE69atw9q1azFt2rQS/i0RlZ6kpCTMmDFD1tavXz9MmPCpdN+aRoUKpZwcEVEZpLezR5VKJbp164aMjAwYGxvj448/RlZWFrZs2SLFLFmyBOHh4YiPj4dCoUBgYCB27tyJ8+fPSzG9e/dGcnIy9uzZAwDw8PDAG2+8IRV7KpUKTk5OGDVqFIKCgpCSkgJ7e3v89NNPUtEYExMDd3d3REVFoXXr1ti9ezc6d+6MO3fuoGrVqgCAlStXIjAwEPfv34eJiUmh3iNnj5Ku2rdvH448M/Vz794pCAw0hJ8fpBmirq5ApUpcNJeIypeS+v7Wm562vJKSkrB+/Xp4eXnB2NgYAJCRkQEzMzNZnLm5OW7duoUbN24AAKKiouDj4yOL8fX1RdR/q3tmZmbi5MmTshgDAwP4+PhIMSdPnkRWVpYsxs3NDc7OzlJMVFQUGjduLBVsmtdJTU3FhQsXiuvXQFTqNMOheQu2unXrIiIiBEeOGEq9a0FB6iU9wsPVy3qwYCMien16VbQFBgbC0tISdnZ2iI+Px/bt26Vzvr6+2Lp1KyIjI6FSqXD58mXMnz8fAHD37l0AQEJCgqyQAoCqVasiNTUVT58+xYMHD5CTk1NgTEJCgnQNExMT2NravjCmoGtozj1PRkYGUlNTZQ8iXXH//v18w6H16n2Kvn37IigIcHNT73CgVKqLNBZrRETFS6tFW1BQEBQKxQsfMTExUvzEiRMRHR2NvXv3wtDQEP3794dmdHfIkCEYOXIkOnfuDBMTE7Ru3Rq9e/cGoO4t0wdz5syBjY2N9HByctJ2SkQAgF27dmH58uWythkzpmLpUmfp+NYtIDZWfi8bEREVH60u+TF+/Hj4+/u/MKZ27drSz5UrV0blypVRv359uLu7w8nJCUePHoWnpycUCgXmzp2L2bNnIyEhAfb29oiMjJRdw8HBId8sz3v37sHa2hrm5uYwNDSEoaFhgTEODg7SNTIzM5GcnCzrbXs25tkZp5pramIKEhwcjHHjxknHqampLNxIq4QQ+XrXLlxogHPnPoSHh3wrqrQ0wMqKi+YSEZUUrRZt9vb2sLe3f6XnqlQqAOohxbwMDQ1RvXp1AMCGDRvg6ekpvYanpyd27doli9+3bx88PT0BACYmJmjRogUiIyPRrVs36XUiIyMxcuRIAECLFi1gbGyMyMhI9OjRAwAQGxuL+Ph46Tqenp6YNWsWEhMTUaVKFel1rK2t0aBBg+e+J1NTU5iamr7S74OouCUkJOCbb76RtUVEDMbDh9UhhHxyQd5dDjgkSkRUMvRi9uixY8dw/PhxtGnTBhUrVsTVq1cxdepU3Lt3DxcuXICpqSkePHiAn3/+Ge+88w7S09OxZs0afPvttzh06BBatWoFQL3kR6NGjTBixAgMHDgQ+/fvx+jRo7Fz5074+voCUC/5MWDAAHzzzTdo1aoVFi1ahM2bNyMmJka6L23YsGHYtWsX1q5dC2tra4waNQoApJuzc3Jy0LRpU1SrVg3h4eFISEhAv379MHjwYMyePbvQ75uzR0lbtm/fjtOnT8vaIiKmIijIAGFh6pmhVlbA+vUs0oiInlVi399CD5w9e1Z4e3uLSpUqCVNTU1GrVi0xdOhQcevWLSnm/v37onXr1sLS0lJYWFiId999Vxw9ejTftQ4cOCCaNm0qTExMRO3atcWaNWvyxSxZskQ4OzsLExMT0apVq3zXefr0qRg+fLioWLGisLCwEB988IG4e/euLOb69euiY8eOwtzcXFSuXFmMHz9eZGVlFel9p6SkCAAiJSWlSM8jelU5OTli+vTpsse2bdtkMZMmCWFgIAQghKenlhIlItJhJfX9rRc9beUVe9qoNN2+fRurVq2StX3++ef4+28H2dCnZg029rQRERWspL6/WbTpMBZtVFq2bNmCixcvytqmTZsGhUIhFWlubkDFioC3N3DgAO9fIyJ6npL6/uaG8UTlmEqlwsyZM2VtLVu2RE5OJ7z5prpAS0pSF2xCqIs3QL0GGxERlS4WbUTlVHx8PNasWSNrGz58OOzt7aXetXPn1Et5eHrKZ4gSEVHpY9FGVA4tXPgTUlOvyNoiIqahWTMF/PzUhVlAgLpgq149dyiUw6FERNqjH1sFEFGx2LYtB6GhobKCzcvLCxERIYiKUiAwUD3RAFBv9H77tvpPFmtERNrHnjaiciIuLg5nznwva2vQYBTee68Snj5VD30mJamHRfv2BUaPVsdwOJSISDewaCMqB9asWYP4+HhZm2Z2KJA79KlUqgu2tDT1DFFOOCAi0h0cHiUqw7KzsxEaGior2N5++22EhIRAoVBAqVQPhyqV6nN+fuq11zQTD4iISHewaCMqo65cuYJZs2bJ2r744gukpr4jFWqaLanCwnJj/PzUPWy8j42ISLewaCMqg7755hv89NNPsraQkBDY2trKCrWgIMDVFXj4MLe3jYiIdBOLNqIyJDMzE6GhoUhISJDaqlXzQUREiFSUBQWpF8uNjwcCA9VtMTHy3jYiItI9LNqIyohLly5hzpw5srZx48ZhzZo3ZUOgfn7q7ahu31YXawoF72EjItIHnD1KVAYsWbIESUlJsraIiBA0aybfyUBzH5tmeyqFApg7l/evERHpAxZtRHosIyMDYc+Ma3bo0AFjx3pIvWt5JxVotqcC1L1sRESkPzg8SqSnzp07l69gmzBhAjw8PBAUpB7y9PaWL+mhaedQKBGR/lEIIYS2k6CCpaamwsbGBikpKbC2ttZ2OqRD5s2bh8ePH0vHKpUhsrOn4MCB3H1CgdyeNU9PLpRLRFRaSur7m8OjRHrk6dOnCA8Pl7WdP98FP//cHFZW6p0MwsJyi7a897MREZF+Y9FGpCeio6OhfGYxtf37A9Cmjbk0FKrpaQPkkw7yzhwlIiL9xKKNSA/MmjUL2dnZ0rG5uTnWrAlATAyQmAhcupT/OZpFdM+dy98DR0RE+odFG5EOe/z4MebNmydr++CDD/B///d/WL1afSxEbq+appdN08MG5O+BIyIi/cSijUhH/f3339i9e7esLTAwEGZmZgCA8PDcQu3ZPUQ1y3pw8gERUdnBoo1IB4WGhsqObW1t8cUXX8ja/Pzkw53P9rSxZ42IqGxh0UakQx49eoQFCxbI2j788EM0aNDghc/TFG+aYo09bEREZQ+LNiIdceTIEezbt0/WFhwcDBMTk0I9P+8QKSccEBGVPdwRgUgHhIaGygq2hISqiIgIkRVsSmXu7gaanydPzm3jbgdERGUbd0TQYdwRoexLSUnBokWLZG21a/fBrFn1823mnnd3A0D9s2ZBXe54QESkO7gjAlEZc+jQIRw8eFDWNmnSJBgbG2PFivxDnc/ubqBZ1oPLeRARlQ/sadNh7Gkrm4QQmDFjhqzNyckJAwcOlI7zrrvG+9OIiPQLe9qIyoC0tDTMnz9f1vbJJ5+gTp06srZnl/MgIiLiRASiUnL27Nl8BduUKVPyFWyAfNIBERERwKKNqMQJIfC///0Pv/76q9RmZ9ccEREh2LnTsMDnPLvDAREREYs2ohKUmpqKGTNm4M6dO1Kbu/twBAd3QVQU8MEH6mU7nsXlO4iI6FmciKDDOBFBv0VHR0OZZ3zT3NwcEyZMQJs2BtLeoIB62Y5Hj7SQIBERlQhORCDSE0IIrFixAvfv35fa3nvvPXh5eQHIXbqjenVgzx5g9GhtZUpERPqERRtRMSposdxRo0ahUqVK0jFnhhIR0atg0UZUTI4fP45du3ZJxzY2Nvjiiy+gUCi0mBUREZUVnIhA9JqEEPj6669lBVtkZEfcvz8Gb76p4LIdRERULNjTRvQakpKSsGTJElnbt99+gTt3bBEdrd4XNO9WVERERK+KPW1Er+jo0aOygi0trTKaNp2GFSts4empnmDwomU7uIAuEREVBXvaiIpIpVJhwYIFePz4sdR27FgX7N7dHIcP5xZpHh7ArFnPv07eBXTZE0dERC/DnjaiInjw4AFmzpwpK9gWLBiLuLjmUq9aYXcz4AK6RERUFCzaiArpr7/+wrJly6RjlcoBGzdOg6OjNebOBY4cUfeYeXurF8z19s59bkFDoX5+uc8hIiJ6GQ6PEr2AUgnMnatChw5zoVJlSu1bt3bDtWtNkJamLtDyOnBAPQHhwIHcNg6FEhHR62JPG9ELLF2aiPbtZ8oKtkaNxsPSsglGj1YXbJoZohoFDXtyKJSIiF4X9x7VYdx7tHQpleriKyhI3Rt28OBBHDp0SDrv7OwMf39/abFcpRIICAAUCmDuXPagERGRGvceJSphmiHMuXNzcPr0LOT9/5nTp3uiWbOGyLu5QVgYEBur7kFjwUZERCWNw6NE/wkKAtq3T0D79l/KCratWydg27aG+WaDaoY8vb253hoREZU8Fm1E/7Gw+B1eXt9Ixw8e1Mb06SHIzLQs8H40zezPAwcKt8QHERHR6+DwKJV727Zl48wZ+Sq4vXr1wuXLbjh5Mvcet+fRrM3GSQZERFSSOBFBh3EiQsm7ffs2Vq1aJWsLCAiAubm5ljIiIiJ9x4kIRMVs+fI9uH//mHRsY+OKMWN6azEjIiKi52PRRuVOVlYWZs+eLWv7+OOPUa9ePS1lRERE9HIs2qhciY+Px5o1a2Rt//d/gahXz0xLGRERERUOizYqN3777TecOnVKOm7UqBF69OihxYyIiIgKj0UblSnP7lIAAF99lQkfnzmyuH79+qF27dpayJCIiOjVsGijMkGzBdXDh+pdCgD1caVKcfDx+V4WGxQUBFNTUy1kSURE9OpYtJHeUyqBvn3VG7e7uqofCgXQu/evePjwrBTXtGlTdO3aVYuZEhERvToWbaT3wsLUBZuVFRAeDvj6ZiAsLAwPH+bG+Pv7o2bNmtpLkoiI6DVxGyvSaUpl/n09n23z9lYXbKNHAw0a/IOwZ/aTmjRpEgs2IiLSe9wRQYdxRwR1cRYVpd6Y/ciRgts0x0OHboaDwyXpuS1btkSnTp20lDkREZVXJfX9zZ420jl5e9KCgpBvs/Zn2yZMeIrp00NlBdugQYNYsBERUZnCe9pI54SFqXvOwsLUPWmazdonTwYWL1YPg2p63WJjY3Hu3EbZ8ydPngwjI/6nTUREZQt72kjnPNuTpul5W7BAPeFg8WJ1+08//YSNG3MLttatWyMkJIQFGxERlUm8p02H6do9bZq10IKCcnu/SoO7OxATA9jZARkZwOjRT2Bi8pUsZsiQIahWrVrpJUVERPQcvKeNtC7vsOXLFDTrU9Pu7g64ueU/9zya/62oXBk4duxivoJtypQpLNiIiKjMY9FGhVbQpIDneV6BFxam7jWLjc1/7nmFXni4+nWHDFmHLVu2SO1t27ZFSEgIDA0NX/EdERER6Q+9K9oyMjLQtGlTKBQKnD59Wnbu7NmzaNu2LczMzODk5ITw8PB8z9+yZQvc3NxgZmaGxo0bY9euXbLzQghMmzYNjo6OMDc3h4+PD65cuSKLSUpKQt++fWFtbQ1bW1sMGjQIaWlpRc5F3/j5yScGvMjzCrygIHUvm6tr/nPPK/TatUuDr28o0tKuS21Dhw5Fu3btXu2NEBER6SG9K9oCAgIKHApLTU1F+/btUbNmTZw8eRJfffUVpk+fjm+//VaKOXLkCPr06YNBgwYhOjoa3bp1Q7du3XD+/HkpJjw8HIsXL8bKlStx7NgxWFpawtfXF+np6VJM3759ceHCBezbtw87duzAH3/8gc8++6xIuZR1zyvw/PzUG7lXqpT/OQUVeufOncP8+fOlYyMjI0yZMgVVq1YtocyJiIh0lNAju3btEm5ubuLChQsCgIiOjpbOLV++XFSsWFFkZGRIbYGBgcLV1VU6/uijj0SnTp1k1/Tw8BCff/65EEIIlUolHBwcxFdffSWdT05OFqampmLDhg1CCCEuXrwoAIjjx49LMbt37xYKhULcvn270LkURkpKigAgUlJSivQ8XefpKQQghJWVENu3FxyjUqnE//73PzF9+nTpcfDgwdJNlIiI6BWU1Pe33vS03bt3D0OGDMEPP/wACwuLfOejoqLw1ltvwcTERGrz9fVFbGwsHv63CWVUVBR8fHxkz/P19UVUVBQAIC4uDgkJCbIYGxsbeHh4SDFRUVGwtbVFy5YtpRgfHx8YGBjg2LFjhc6lrHrefWl5BQWpt51KSyt4UsOjR48wY8YM3L59W2obPnw43n777RLImIiISD/oRdEmhIC/vz+GDh0qK5bySkhIyDdkpjlOSEh4YUze83mf97yYKlWqyM4bGRmhUqVKL32dvK9RkIyMDKSmpsoe+qYwM0z9/ID16wu+5y06OhoLFiyQjs3NzTF16lTY29uXUMZERET6QatFW1BQEBQKxQsfMTExWLJkCR49eoTg4GBtplvi5syZAxsbG+nh5OSk7ZSKrLAzTJ+9500IgRUrVkCZp4vOx8cHAQEBMDDQi/+3ICIiKlFaXTp+/Pjx8Pf3f2FM7dq1sX//fkRFRcHU1FR2rmXLlujbty/WrVsHBwcH3Lt3T3Zec+zg4CD9WVBM3vOaNkdHR1lM06ZNpZjExETZNbKzs5GUlPTS18n7GgUJDg7GuHHjpOPU1FS9K9z8/Iq+8G5KSgoWLVokaxs5ciTs7OyKLzEiIiI9p9UuDHt7e7i5ub3wYWJigsWLF+PMmTM4ffo0Tp8+LS3TsWnTJsyaNQsA4OnpiT/++ANZWVnS9fft2wdXV1dUrFhRiomMjJTlsG/fPnh6egIAXFxc4ODgIItJTU3FsWPHpBhPT08kJyfj5MmTUsz+/fuhUqng4eFR6FwKYmpqCmtra9mjNBXmfrTiduLECVnBZm1tjWnTprFgIyIielaxTmsoJXFxcflmjyYnJ4uqVauKfv36ifPnz4uNGzcKCwsL8c0330gxhw8fFkZGRmLevHni0qVLIiQkRBgbG4tz585JMWFhYcLW1lZs375dnD17VnTt2lW4uLiIp0+fSjEdOnQQzZo1E8eOHRN//fWXqFevnujTp0+RcimM0p49qpnV6elZuPjt29Wxz5sB+iIqlUp8/fXXstmhR48eLfqFiIiIdExJfX+XmaJNCCHOnDkj2rRpI0xNTUX16tVFWFhYvudu3rxZ1K9fX5iYmIiGDRuKnTt3ys6rVCoxdepUUbVqVWFqaireffddERsbK4v5999/RZ8+fYSVlZWwtrYWn376qXj06FGRc3mZ0i7ailqEFVTkFeYaSUlJsmJt+vTpIikp6fWSJyIi0hEl9f3NDeN1WGluGP8qm8E/+xylEujbV72Uh6eneqLBs44ePYqIiAjp2M7ODiNGjIBCoSimd0JERKRdJfX9zaJNh5Vm0eblpV6q43nFVlGuYWWlXtIjb/GnUqmwcOFC2XZfnTt3RosWLV4zcyIiIt1SUt/fXEuBABRtM/iXXePZgu3ff//FzJkzZQXbmDFjWLAREREVAXvadFhp9rSVlL/++ks2G9fBwQGfffYZh0OJiKjMKqnvb62u00a6SakEAgIAhUK9uXtR110D1MOh4eHhyMjIkNq6deuGJk2aFGOmRERE5QeLNsonLAyIjc39uahFW2JiIlasWCFrGzduHCpUqFBMGRIREZU/vKetHHrZIrpBQYCrK1C9OpCUVLTFdg8dOiQr2JycnDBt2jQWbERERK+J97TpsJIaEy/sTNGizCjNycnB7NmzoVKppLYePXqgUaNGxZQ1ERGRfuDsUSo2hZ0pWti4hIQEfPnll7KCbcKECSzYiIiIihF72nSYPswe/f3333H48GHp2MXFBf3799diRkRERNrFnjYqMa+yUXx2djZCQ0NlBdtHH33Ego2IiKiEcPYoISxMfe9aYWeK3r59G6tWrZK1BQQEwNzcvIQyJCIiIhZthKCg3D1EX2bPnj04duyYdFy/fn306dOnBLMjIiIigEVbuZZ3w/eXzQ7NysrC7NmzZW19+vRB/fr1SzBDIiIi0mDRVo4Vdlj05s2bWL16tawtMDAQZmZmJZwhERERabBoK8cKMyy6Y8cOnDx5Ujpu2LAhevbsWQrZERERUV4s2soxP7/n97BlZmZizpw5srZPPvkEderUKYXMiIiI6Fks2iif69evY926dbK2oKAgmJqaaikjIiIiYtFGMtu2bcOZM2ek4yZNmqBbt27aS4iIiIgAsGij/2RkZCAsLEzWNmDAANSqVUs7CREREZEMizbC1atX8eOPP8ragoODYWJioqWMiIiI6Fks2sq5LVu24OLFi9JxixYt0LlzZy1mRERERAVh0VZOpaenY+7cubK2gQMHwsnJSUsZERER0YuwaCuHLl++jA0bNsjaJk2aBGNjYy1lRERERC/Doq0cyluwtW7dGr6+vlrMhoiIiAqDRVs5NmTIEFSrVk3baRAREVEhKIQQQttJUMFSU1NhY2ODlJQUWFtbazsdIiIiKoSS+v42KLYrEREREVGJYdFGREREpAdYtBERERHpARZtRERERHqARRsRERGRHmDRRkRERKQHWLQRERER6QEWbURERER6gEUbERERkR5g0UZERESkB1i0EREREekBFm1EREREeoBFGxEREZEeYNFGREREpAeMtJ0APZ8QAgCQmpqq5UyIiIiosDTf25rv8eLCok2HPXr0CADg5OSk5UyIiIioqB49egQbG5tiu55CFHcZSMVGpVLhzp07qFChAhQKhbbTKVWpqalwcnLCzZs3YW1tre10KA9+NrqLn43u4mej24r78xFC4NGjR6hWrRoMDIrvTjT2tOkwAwMD1KhRQ9tpaJW1tTX/gdNR/Gx0Fz8b3cXPRrcV5+dTnD1sGpyIQERERKQHWLQRERER6QEWbaSTTE1NERISAlNTU22nQs/gZ6O7+NnoLn42uk1fPh9ORCAiIiLSA+xpIyIiItIDLNqIiIiI9ACLNiIiIiI9wKKNiIiISA+waKNil5GRgaZNm0KhUOD06dOyc2fPnkXbtm1hZmYGJycnhIeH53v+li1b4ObmBjMzMzRu3Bi7du2SnRdCYNq0aXB0dIS5uTl8fHxw5coVWUxSUhL69u0La2tr2NraYtCgQUhLSytyLmWFn58fnJ2dYWZmBkdHR/Tr1w937tyRxWzevBlNmzaFhYUFatasia+++irfdQ4ePIjmzZvD1NQUdevWxdq1a/PFLFu2DLVq1YKZmRk8PDzw999/y86np6djxIgRsLOzg5WVFXr06IF79+7JYuLj49GpUydYWFigSpUqmDhxIrKzs1//F6GDCvPZREREoHXr1qhQoQLs7e3Ro0cPXL9+XRbDz6ZkvOzzmT59OhQKRb6HpaWl7Dr8d634FebvjhAC8+bNQ/369WFqaorq1atj1qxZshi9+rsjiIrZ6NGjRceOHQUAER0dLbWnpKSIqlWrir59+4rz58+LDRs2CHNzc/HNN99IMYcPHxaGhoYiPDxcXLx4UUyZMkUYGxuLc+fOSTFhYWHCxsZGbNu2TZw5c0b4+fkJFxcX8fTpUymmQ4cOokmTJuLo0aPizz//FHXr1hV9+vQpUi5lyYIFC0RUVJS4fv26OHz4sPD09BSenp7S+V27dgkjIyOxYsUKcfXqVbFjxw7h6OgolixZIsVcu3ZNWFhYiHHjxomLFy+KJUuWCENDQ7Fnzx4pZuPGjcLExESsXr1aXLhwQQwZMkTY2tqKe/fuSTFDhw4VTk5OIjIyUpw4cUK0bt1aeHl5Seezs7NFo0aNhI+Pj4iOjha7du0SlStXFsHBwSX8W9KOl302165dE6ampiI4OFj8888/4uTJk+Ktt94SzZo1k8XwsykZL/t8Hj16JO7evSt7NGjQQAwYMECK4b9rJeNln40QQowaNUq4urqK7du3i2vXrokTJ06IvXv3Suf17e8OizYqVrt27RJubm7iwoUL+Yq25cuXi4oVK4qMjAypLTAwULi6ukrHH330kejUqZPsmh4eHuLzzz8XQgihUqmEg4OD+Oqrr6TzycnJwtTUVGzYsEEIIcTFixcFAHH8+HEpZvfu3UKhUIjbt28XOpeybPv27UKhUIjMzEwhhBB9+vQRPXv2lMUsXrxY1KhRQ6hUKiGEEAEBAaJhw4aymF69eglfX1/puFWrVmLEiBHScU5OjqhWrZqYM2eOEEL9WRkbG4stW7ZIMZcuXRIARFRUlBBC/d+QgYGBSEhIkGJWrFghrK2tZZ9XWfXsZ7NlyxZhZGQkcnJypBilUimL4WdTep79fJ51+vRpAUD88ccfUhv/XSsdz342Fy9eFEZGRiImJua5z9G3vzscHqVic+/ePQwZMgQ//PADLCws8p2PiorCW2+9BRMTE6nN19cXsbGxePjwoRTj4+Mje56vry+ioqIAAHFxcUhISJDF2NjYwMPDQ4qJioqCra0tWrZsKcX4+PjAwMAAx44dK3QuZVVSUhLWr18PLy8vGBsbA1APaZuZmcnizM3NcevWLdy4cQPAyz+bzMxMnDx5UhZjYGAAHx8fKebkyZPIysqSxbi5ucHZ2Vn2+TVu3BhVq1aVvU5qaiouXLhQXL8GnVTQZ9OiRQsYGBhgzZo1yMnJQUpKCn744Qf4+PhIMfxsSkdBn8+zVq1ahfr166Nt27ZSG/9dK3kFfTa//fYbateujR07dsDFxQW1atXC4MGDkZSUJD1P3/7usGijYiGEgL+/P4YOHSr7RyWvhIQE2X+wAKTjhISEF8bkPZ/3ec+LqVKliuy8kZERKlWq9NLXyfsaZU1gYCAsLS1hZ2eH+Ph4bN++XTrn6+uLrVu3IjIyEiqVCpcvX8b8+fMBAHfv3gXw/N9Zamoqnj59igcPHiAnJ+eln42JiQlsbW1fGMPPJvezcXFxwd69ezFp0iSYmprC1tYWt27dwubNm6UYfjYl60WfT17p6elYv349Bg0aJGvnv2sl50WfzbVr13Djxg1s2bIF33//PdauXYuTJ0+iZ8+eUoy+/d1h0UYvFBQUVOBNtnkfMTExWLJkCR49eoTg4GBtp1xuFPaz0Zg4cSKio6Oxd+9eGBoaon///hD/bYgyZMgQjBw5Ep07d4aJiQlat26N3r17A1D/XyUVTXF+NgkJCRgyZAgGDBiA48eP49ChQzAxMUHPnj2lGCqa4vx88vr111/x6NEjDBgwoDTfTplSnJ+NSqVCRkYGvv/+e7Rt2xbvvPMOvvvuOxw4cACxsbHaeouvxUjbCZBuGz9+PPz9/V8YU7t2bezfvx9RUVH59m1r2bIl+vbti3Xr1sHBwSHfbBrNsYODg/RnQTF5z2vaHB0dZTFNmzaVYhITE2XXyM7ORlJS0ktfJ+9r6LrCfjYalStXRuXKlVG/fn24u7vDyckJR48ehaenJxQKBebOnYvZs2cjISEB9vb2iIyMlF3jeb8za2trmJubw9DQEIaGhi/9/DIzM5GcnCz7v9JnY56dmVWeP5tly5bBxsZGNgvwxx9/hJOTE44dO4bWrVvzsymi4vx88lq1ahU6d+6cr0eF/64VXnF+No6OjjAyMkL9+vWleHd3dwDqmZyurq7693en0He/Eb3AjRs3xLlz56RHRESEACB+/vlncfPmTSFE7k2yeW/gDQ4OzjcRoXPnzrJre3p65rthd968edL5lJSUAm/YPXHihBQTERFR4A27L8qlLLtx44YAIA4cOPDcmH79+slmYgUEBIhGjRrJYvr06ZPvht2RI0dKxzk5OaJ69er5btj9+eefpZiYmJgCb9jNOzPrm2++EdbW1iI9Pf3V3rAeefazGTdunGjVqpUs5s6dOwKAOHz4sBCCn01pet7fnWvXrgmFQiF+++23fM/hv2ul49nPRvM99M8//0gxmokisbGxQgj9+7vDoo1KRFxcXL7Zo8nJyaJq1aqiX79+4vz582Ljxo3CwsIi35IfRkZGYt68eeLSpUsiJCSkwKnxtra2Yvv27eLs2bOia9euBU6Nb9asmTh27Jj466+/RL169WRT4wuTS1lx9OhRsWTJEhEdHS2uX78uIiMjhZeXl6hTp470j8X9+/fFihUrxKVLl0R0dLQYPXq0MDMzE8eOHZOuo5kaP3HiRHHp0iWxbNmyAqfGm5qairVr14qLFy+Kzz77TNja2spmTA0dOlQ4OzuL/fv3ixMnTuSbpq+ZGt++fXtx+vRpsWfPHmFvb18ml5UozGcTGRkpFAqFCA0NFZcvXxYnT54Uvr6+ombNmuLJkydCCH42JaUwn4/GlClTRLVq1UR2dna+6/DfteJXmM8mJydHNG/eXLz11lvi1KlT4sSJE8LDw0O899570nX07e8OizYqEQUVbUIIcebMGdGmTRthamoqqlevLsLCwvI9d/PmzaJ+/frCxMRENGzYUOzcuVN2XqVSialTp4qqVasKU1NT8e6770r/16Tx77//ij59+ggrKythbW0tPv30U/Ho0aMi51IWnD17Vnh7e4tKlSoJU1NTUatWLTF06FBx69YtKeb+/fuidevWwtLSUlhYWIh3331XHD16NN+1Dhw4IJo2bSpMTExE7dq1xZo1a/LFLFmyRDg7OwsTExPRqlWrfNd5+vSpGD58uKhYsaKwsLAQH3zwgbh7964s5vr166Jjx47C3NxcVK5cWYwfP15kZWUVzy9EhxTmsxFCiA0bNohmzZoJS0tLYW9vL/z8/MSlS5dkMfxsil9hP5+cnBxRo0YNMWnSpOdei/+uFa/Cfja3b98W3bt3F1ZWVqJq1arC399f/Pvvv7IYffq7oxCCd7ISERER6TpOCyMiIiLSAyzaiIiIiPQAizYiIiIiPcCijYiIiEgPsGgjIiIi0gMs2oiIiIj0AIs2IiIiIj3Aoo2IqAQoFAps27ZN22nIHDx4EAqFAsnJydpOhYheAYs2IqLXMH36dGlTbyKiksSijYiIiEgPsGgjonJNpVJhzpw5cHFxgbm5OZo0aYKff/4ZQO5wYmRkJFq2bAkLCwt4eXkhNjYWALB27VqEhobizJkzUCgUUCgUWLt2rXTtBw8e4IMPPoCFhQXq1asHpVJZqJw0rxsREYFmzZrB3Nwc7dq1Q2JiInbv3g13d3dYW1vj448/xpMnT6TnZWRkYPTo0ahSpQrMzMzQpk0bHD9+vPh+WUSkVSzaiKhcmzNnDr7//nusXLkSFy5cwNixY/HJJ5/g0KFDUszkyZMxf/58nDhxAkZGRhg4cCAAoFevXhg/fjwaNmyIu3fv4u7du+jVq5f0vNDQUHz00Uc4e/Ys3n//ffTt2xdJSUmFzm369OlYunQpjhw5gps3b+Kjjz7CokWL8NNPP2Hnzp3Yu3cvlixZIsUHBATgl19+wbp163Dq1CnUrVsXvr6+RXpNItJhRdpenoioDElPTxcWFhbiyJEjsvZBgwaJPn36iAMHDggA4vfff5fO7dy5UwAQT58+FUIIERISIpo0aZLv2gDElClTpOO0tDQBQOzevfuleRX0unPmzBEAxNWrV6W2zz//XPj6+krXNzY2FuvXr5fOZ2ZmimrVqonw8HDZdR8+fPjSHIhI9xhpsV4kItKqf/75B0+ePMF7770na8/MzESzZs2k4//7v/+TfnZ0dAQAJCYmwtnZ+YXXz/s8S0tLWFtbIzExsdD55X1+1apVYWFhgdq1a8va/v77bwDA1atXkZWVhTfffFM6b2xsjFatWuHSpUuFfk0i0l0s2oio3EpLSwMA7Ny5E9WrV5edMzU1xdWrVwGoix8NhUIBQH0v3MvkfZ7muYV5XkHPVygUr309ItJvvKeNiMqtBg0awNTUFPHx8ahbt67s4eTkVKhrmJiYICcnp4Qzfbk6derAxMQEhw8fltqysrJw/PhxNGjQQIuZEVFxYU8bEZVbFSpUwIQJEzB27FioVCq0adMGKSkpOHz4MKytrVGzZs2XXqNWrVqIi4vD6dOnUaNGDVSoUAGmpqalkL2cpaUlhg0bhokTJ6JSpUpwdnZGeHg4njx5gkGDBpV6PkRU/Fi0EVG5NnPmTNjb22POnDm4du0abG1t0bx5c0yaNKlQQ489evTA1q1b4e3tjeTkZKxZswb+/v4ln3gBwsLCoFKp0K9fPzx69AgtW7ZEREQEKlasqJV8iKh4KYQQQttJEBEREdGL8Z42IiIiIj3Aoo2IqJQNHToUVlZWBT6GDh2q7fSISEdxeJSIqJQlJiYiNTW1wHPW1taoUqVKKWdERPqARRsRERGRHuDwKBEREZEeYNFGREREpAdYtBERERHpARZtRERERHqARRsRERGRHmDRRkRERKQHWLQRERER6QEWbURERER64P8BmFTol2Xcs30AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAb8BJREFUeJzt3XdYVEfbBvB76U3AQlNBsQGW2IgKMSYaEjQ2EkzsSiyxGztgQ2wg9m7eGEsSNWo0ulY0WJIoduyARlFsiAkCigLCzvfHfhw9ggoK7C7cv+vi0vPM7NlnORGezJyZoxBCCBARERGRVtPTdAJERERE9GYs2oiIiIh0AIs2IiIiIh3Aoo2IiIhIB7BoIyIiItIBLNqIiIiIdACLNiIiIiIdwKKNiIiISAewaCMiIiLSASzaiIjekUKhwJQpUzSdhsTPzw9Vq1bVdBpEVMhYtBFRibRmzRooFArpy8TEBLVq1cLQoUNx//79In3vo0ePYsqUKUhOTi7U83788ceyz1SuXDm8//77WLVqFVQqVaG8x8yZM7Ft27ZCORcRFS4DTSdARFSUpk6dCmdnZ6Snp+Pvv//G8uXLsXv3bly8eBFmZmaF8h5Pnz6FgcHzH6dHjx5FcHAw/Pz8YG1tXSjvkaNy5coICQkBADx48AA//fQT+vbtiytXriA0NPSdzz9z5kx06tQJPj4+73wuIipcLNqIqERr06YN3N3dAQD9+vVD+fLlMW/ePGzfvh1du3Z96/OqVCpkZmbCxMQEJiYmhZXuG1lZWaFHjx7S8YABA+Di4oIlS5Zg2rRpMDQ0LLZciKh4cXqUiEqVVq1aAQDi4uIAAHPmzIGnpyfKly8PU1NTNG7cGL/99luu1ykUCgwdOhTr1q1DnTp1YGxsjL1790ptOfe0TZkyBWPHjgUAODs7S1OZN27cwEcffYT69evnmZeLiwu8vb0L/HnMzMzQrFkzpKWl4cGDB6/sl5aWhtGjR8PR0RHGxsZwcXHBnDlzIISQfca0tDSsXbtWytvPz6/AORFR0eBIGxGVKteuXQMAlC9fHgCwcOFCdOjQAd27d0dmZiZ+/fVXfPXVV9i5cyfatm0re+2BAwewadMmDB06FBUqVMjzZv8vv/wSV65cwYYNGzB//nxUqFABAGBjY4OePXuif//+uHjxIurWrSu95uTJk7hy5QomTpz4Vp/p+vXr0NfXf+VUrBACHTp0wMGDB9G3b180aNAA4eHhGDt2LO7cuYP58+cDAH7++Wf069cPTZo0wbfffgsAqF69+lvlRERFQBARlUCrV68WAMQff/whHjx4IG7duiV+/fVXUb58eWFqaipu374thBDiyZMnstdlZmaKunXrilatWsniAISenp64dOlSrvcCIIKCgqTj2bNnCwAiLi5O1i85OVmYmJgIf39/WXz48OHC3NxcPH78+LWf6aOPPhKurq7iwYMH4sGDByI6OloMHz5cABDt27eX+vXu3VtUqVJFOt62bZsAIKZPny47X6dOnYRCoRD//POPFDM3Nxe9e/d+bR5EpBmcHiWiEs3Lyws2NjZwdHREly5dYGFhgd9//x2VKlUCAJiamkp9Hz58iJSUFHz44Yc4c+ZMrnN99NFHqF279lvnYmVlhY4dO2LDhg3StGR2djY2btwIHx8fmJubv/EcMTExsLGxgY2NDdzc3LB48WK0bdsWq1ateuVrdu/eDX19fQwfPlwWHz16NIQQ2LNnz1t/JiIqPpweJaISbenSpahVqxYMDAxgZ2cHFxcX6Ok9///VnTt3Yvr06Th79iwyMjKkuEKhyHUuZ2fnd86nV69e2LhxI/766y+0aNECf/zxB+7fv4+ePXvm6/VVq1bFDz/8IG1jUrNmTdja2r72NTdv3kTFihVRpkwZWdzNzU1qJyLtx6KNiEq0Jk2aSKtHX/bXX3+hQ4cOaNGiBZYtWwYHBwcYGhpi9erVWL9+fa7+L47KvS1vb2/Y2dnhl19+QYsWLfDLL7/A3t4eXl5e+Xq9ubl5vvsSUcnC6VEiKrW2bNkCExMThIeHo0+fPmjTpk2hFER5jdLl0NfXR7du3fDbb7/h4cOH2LZtG7p27Qp9ff13ft9XqVKlCu7evYtHjx7J4jExMVJ7jtflTkSaxaKNiEotfX19KBQKZGdnS7EbN2688xMBcu5Ne9UTEXr27ImHDx9iwIABePz4sWzftaLw+eefIzs7G0uWLJHF58+fD4VCgTZt2kgxc3PzQn+SAxEVDk6PElGp1bZtW8ybNw+tW7dGt27dkJiYiKVLl6JGjRo4f/78W5+3cePGAIAJEyagS5cuMDQ0RPv27aVirmHDhqhbty42b94MNzc3NGrUqFA+z6u0b98eLVu2xIQJE3Djxg3Ur18f+/btw/bt2zFixAjZth6NGzfGH3/8gXnz5qFixYpwdnZG06ZNizQ/IsofjrQRUanVqlUr/Pjjj0hISMCIESOwYcMGzJo1C1988cU7nff999/HtGnTcO7cOfj5+aFr1665Nr7t1asXAOR7AcK70NPTg1KpxIgRI7Bz506MGDECly9fxuzZszFv3jxZ33nz5qFx48aYOHEiunbtiuXLlxd5fkSUPwohXtgOm4iIisXChQsxcuRI3LhxA05OTppOh4h0AIs2IqJiJoRA/fr1Ub58eRw8eFDT6RCRjuA9bURExSQtLQ1KpRIHDx7EhQsXsH37dk2nREQ6hCNtRETF5MaNG3B2doa1tTUGDx6MGTNmaDolItIhLNqIiIiIdABXjxIRERHpABZtRERERDqACxG0mEqlwt27d1GmTBk+WoaIiEhHCCHw6NEjVKxYEXp6hTc+xqJNi929exeOjo6aToOIiIjewq1bt1C5cuVCOx+LNi1WpkwZAOqLbmlpqeFsiIiIKD9SU1Ph6Ogo/R4vLCzatFjOlKilpSWLNiIiIh1T2Lc2cSECERERkQ5g0UZERESkA1i0EREREekA3tOm47Kzs/Hs2TNNp0HFwNDQEPr6+ppOg4iINIRFm44SQiAhIQHJycmaToWKkbW1Nezt7blvHxFRKcSiTUflFGy2trYwMzPjL/ESTgiBJ0+eIDExEQDg4OCg4YyIiKi4sWjTQdnZ2VLBVr58eU2nQ8XE1NQUAJCYmAhbW1tOlRIRlTJciKCDcu5hMzMz03AmVNxyrjnvYyQiKn10pmjr0KEDnJycYGJiAgcHB/Ts2RN3796V9RFCYM6cOahVqxaMjY1RqVIlzJgxQ9bn0KFDaNSoEYyNjVGjRg2sWbMm13stXboUVatWhYmJCZo2bYoTJ07I2tPT0zFkyBCUL18eFhYW8PX1xf3792V94uPj0bZtW5iZmcHW1hZjx45FVlZW4Xwz/h+nREsfXnMiotJLZ4q2li1bYtOmTYiNjcWWLVtw7do1dOrUSdbnu+++w8qVKzFnzhzExMRAqVSiSZMmUntcXBzatm2Lli1b4uzZsxgxYgT69euH8PBwqc/GjRsxatQoBAUF4cyZM6hfvz68vb2le4kAYOTIkdixYwc2b96Mw4cP4+7du/jyyy+l9uzsbLRt2xaZmZk4evQo1q5dizVr1mDy5MlF+B0iIiKiEk3oqO3btwuFQiEyMzOFEEJcvnxZGBgYiJiYmFe+Zty4caJOnTqyWOfOnYW3t7d03KRJEzFkyBDpODs7W1SsWFGEhIQIIYRITk4WhoaGYvPmzVKf6OhoAUBERkYKIYTYvXu30NPTEwkJCVKf5cuXC0tLS5GRkZHvz5iSkiIAiJSUFFn86dOn4vLly+Lp06f5PheVDLz2RETa71W/v9+Vzoy0vSgpKQnr1q2Dp6cnDA0NAQA7duxAtWrVsHPnTjg7O6Nq1aro168fkpKSpNdFRkbCy8tLdi5vb29ERkYCADIzM3H69GlZHz09PXh5eUl9Tp8+jWfPnsn6uLq6wsnJSeoTGRmJevXqwc7OTvY+qampuHTp0is/V0ZGBlJTU2VfJY2fnx8UCgUUCgUMDQ1hZ2eHTz/9FKtWrYJKpcr3edasWQNra+uiS5SIiEjL6FTR5u/vD3Nzc5QvXx7x8fHYvn271Hb9+nXcvHkTmzdvxk8//YQ1a9bg9OnTsinUhIQEWSEFAHZ2dkhNTcXTp0/x77//Ijs7O88+CQkJ0jmMjIxyFQwv98nrHDltrxISEgIrKyvpy9HRMZ/fGd3SunVr3Lt3Dzdu3MCePXvQsmVLfPfdd2jXrl2h3/dHRESUl8ePHyMtLU3TaRSIRou2gIAAadTlVV8xMTFS/7FjxyIqKgr79u2Dvr4+evXqBSEEAEClUiEjIwM//fQTPvzwQ3z88cf48ccfcfDgQcTGxmrqIxZIYGAgUlJSpK9bt25pOqUiYWxsDHt7e1SqVAmNGjXC+PHjsX37duzZs0daGDJv3jzUq1cP5ubmcHR0xODBg/H48WMA6sUk33zzDVJSUqT/TqZMmQIA+Pnnn+Hu7o4yZcrA3t4e3bp1k92PSEREpZsQAkuXLsXcuXOxYsUKqY7QBRrdp2306NHw8/N7bZ9q1apJf69QoQIqVKiAWrVqwc3NDY6Ojjh27Bg8PDzg4OAAAwMD1KpVS+rv5uYGQL2S08XFBfb29rlWed6/fx+WlpYwNTWFvr4+9PX18+xjb28PALC3t0dmZiaSk5Nlo20v93l5xWnOOXP65MXY2BjGxsav/X68ihBCY9tAGBoavvOqxlatWqF+/frYunUr+vXrBz09PSxatAjOzs64fv06Bg8ejHHjxmHZsmXw9PTEggULMHnyZKkgt7CwAKDeCmPatGlwcXFBYmIiRo0aBT8/P+zevfudPycREem25ORkLFy4UDpOS0vTqVX5Gi3abGxsYGNj81avzbn/KSMjAwDwwQcfICsrC9euXUP16tUBAFeuXAEAVKlSBQDg4eGR65f3/v374eHhAQAwMjJC48aNERERAR8fH+l9IiIiMHToUABA48aNYWhoiIiICPj6+gIAYmNjER8fL53Hw8MDM2bMkDZBzXkfS0tL1K5d+60+75s8e/YMISEhRXLuNwkMDISRkdE7n8fV1RXnz58HAIwYMUKKV61aFdOnT8fAgQOxbNkyGBkZwcrKCgqFIlcR3KdPH+nv1apVw6JFi/D+++/j8ePHUmFHRESlz8mTJ2U1gJWVFb777jsNZlRwOvFEhOPHj+PkyZNo3rw5ypYti2vXrmHSpEmoXr26VCh5eXmhUaNG6NOnDxYsWACVSoUhQ4bg008/lUbfBg4ciCVLlmDcuHHo06cPDhw4gE2bNmHXrl3Se40aNQq9e/eGu7s7mjRpggULFiAtLQ3ffPMNAPVF7tu3L0aNGoVy5crB0tISw4YNg4eHB5o1awYA+Oyzz1C7dm307NkTYWFhSEhIwMSJEzFkyJC3HkkrDYQQ0v/x/PHHHwgJCUFMTAxSU1ORlZWF9PR0PHny5LWbCp8+fRpTpkzBuXPn8PDhQ6m4j4+PL7KCmYiItJcQAosWLZI9q/vzzz/H+++/r7mk3pJOFG1mZmbYunUrgoKCkJaWBgcHB7Ru3RoTJ06UiiA9PT3s2LEDw4YNQ4sWLWBubo42bdpg7ty50nmcnZ2xa9cujBw5EgsXLkTlypWxcuVKeHt7S306d+6MBw8eYPLkyUhISECDBg2wd+9e2cKC+fPnQ09PD76+vsjIyIC3tzeWLVsmtevr62Pnzp0YNGgQPDw8YG5ujt69e2Pq1KlF9j0yNDREYGBgkZ3/Te9dGKKjo+Hs7IwbN26gXbt2GDRoEGbMmIFy5crh77//Rt++fZGZmfnKoi0tLQ3e3t7w9vbGunXrYGNjg/j4eHh7eyMzM7NQciQiIt2RlJSExYsXy2Lfffedzu4+oBNFW7169XDgwIE39qtYsSK2bNny2j4ff/wxoqKiXttn6NCh0nRoXkxMTLB06VIsXbr0lX2qVKlSrPdRKRSKQpmi1JQDBw7gwoULGDlyJE6fPg2VSoW5c+dCT0+9VmbTpk2y/kZGRsjOzpbFYmJi8N9//yE0NFRaeXvq1Kni+QBERKRVIiMjsW/fPum4QoUKGDx4sE7dw/YynSjaqGTJyMhAQkICsrOzcf/+fezduxchISFo164devXqhYsXL+LZs2dYvHgx2rdvjyNHjmDFihWyc1StWhWPHz9GREQE6tevDzMzMzg5OcHIyAiLFy/GwIEDcfHiRUybNk1Dn5KIiDRBpVJh3rx5su082rdvj0aNGmkwq8KhU/u0Ucmwd+9eODg4oGrVqmjdujUOHjyIRYsWYfv27dDX10f9+vUxb948zJo1C3Xr1sW6detyLbLw9PTEwIED0blzZ9jY2CAsLAw2NjZYs2YNNm/ejNq1ayM0NBRz5szR0KckIqLi9u+//2LatGmygm3kyJGygk2pBDw91X/qGoXQpQ1KSpnU1FRYWVkhJSUFlpaWUjw9PR1xcXFwdnaGiYmJBjOk4sZrT0SUt7/++kt2K5WDgwP69++fazrU0xOIjAQ8PICjR4sml1f9/n5XHGkjIiIinaVSqTBz5kxZwfbFF1/g22+/zfP+tYAAdcHWsqXujbixaCMiIiKdlJiYiGnTpsk2lx89ejTee++9XH1zpkUB9QjbwYPqEbfQ0OLK9t2xaCMiIiKdc/DgQSxfvlw6dnJywuTJk6WN1F++d83fX12k+furj3NG3AICijvzt8fVo0RERKQzsrOzMWPGDNkzQzt16oQ6derI+g0eDNy5o/6zQwcgp/ujR+piLiCg6O5pKyocaSMiIiKdcO/ePUyfPl1WsI0ZMyZXwQYA//0n/zMsTD2yVqaM7k2L5mDRRkRERFpv//79+N///icdV6tWDUFBQTA3N5diL06JtmsH6Omp/wTUo21HjwKzZunetGgOTo8SERGR1srKysKMGTNksc6dO8PV1RUAMGECsGgR0Lo1sHcv8PgxMG6cempUpVL/+aIOHdRfuogjbURERKSVbt++natgGzduHK5ccZVG1BYtUhdqW7eq/7SwABSK53/XxRG1V+FIGxEREWmdPXv24MSJE9Kxi4sLunTpAkB9P1rOfWnDhz8fabtz53mRFhqq/ruujqrlhUUblUh+fn5ITk7Gtm3bAAAff/wxGjRogAULFrz1OQvjHERE9HrPnj3DzJkzZbFu3bqhZs2amDABmD8fMDUFXF3VG+QePAisW5e7OCtJxVoOTo9SsfLz84NCoYBCoYCRkRFq1KiBqVOnIisrq0jfd+vWrfl+ePyhQ4egUCiQnJz81ucgIqKCi4+Pz1Ww+fv7Y82amihTBpg9G3j6FEhKAsqW1c0Nct8FR9qo2LVu3RqrV69GRkYGdu/ejSFDhsDQ0BCBgYGyfpmZmTAyMiqU9yxXrpxWnIOIiPKmVCoRFRUlHdetWxe+vr5QKtVFmUoFGBqqR9lMTYGHD4Evv1T3LUn3rb0OR9qo2BkbG8Pe3h5VqlTBoEGD4OXlBaVSCT8/P/j4+GDGjBmoWLEiXFxcAAC3bt3C119/DWtra5QrVw4dO3bEjRs3pPNlZ2dj1KhRsLa2Rvny5TFu3DjZHj6AempzxIgR0nFGRgb8/f3h6OgIY2Nj1KhRAz/++CNu3LiBli1bAgDKli0LhUIBPz+/PM/x8OFD9OrVC2XLloWZmRnatGmDq1evSu1r1qyBtbU1wsPD4ebmBgsLC7Ru3Rr37t2T+hw6dAhNmjSBubk5rK2t8cEHH+DmzZuF9J0mItJ+mZmZCA4OlhVsPXv2hK+vL4DnBZtCAdjaAr/+Cri4ADEx6pG2o0dL5lRoXli0kcaZmpoiMzMTABAREYHY2Fjs378fO3fuxLNnz+Dt7Y0yZcrgr7/+wpEjR6TiJ+c1c+fOxZo1a7Bq1Sr8/fffSEpKwu+///7a9+zVqxc2bNiARYsWITo6Gt9//z0sLCzg6OiILVu2AABiY2Nx7949LFy4MM9z+Pn54dSpU1AqlYiMjIQQAp9//rnsGXhPnjzBnDlz8PPPP+PPP/9EfHw8xowZA0C9jN3HxwcfffQRzp8/j8jIyFc+4JiIqCSKi4tDSEiILPbee4Fo27YaKld+ft+ahwdQq5Z6oUHOAgNd3WvtXXB6lDRGCIGIiAiEh4dj2LBhePDgAczNzbFy5UppWvSXX36BSqXCypUrpWJm9erVsLa2xqFDh/DZZ59hwYIFCAwMxJf/P06+YsUKhIeHv/J9r1y5gk2bNmH//v3w8vICoN6kMUfONKitrS2sra3zPMfVq1ehVCpx5MgReP7/E4jXrVsHR0dHbNu2DV999RUA9Q21K1asQPXq1QEAQ4cOxdSpUwEAqampSElJQbt27aR2Nze3gn8jiYh00NatW3HhwgXpuEGDBujYsSM8PdWjaDlyRtNypklzVoSWltG1F3GkjXI9VLeo7dy5ExYWFjAxMUGbNm3QuXNnTJkyBQBQr1492X1s586dwz///IMyZcrAwsICFhYWKFeuHNLT03Ht2jWkpKTg3r17aNq0qfQaAwMDuLu7v/L9z549C319fXz00Udv/Rmio6NhYGAge9/y5cvDxcUF0dHRUszMzEwqyADAwcEBiYmJANTFoZ+fH7y9vdG+fXssXLhQNnVKRFQSZWRkIDg4WFaw+fn5oWPHjgDURZmrK1CuHGBioh5pA54/0aA0Fms5WLSRbL+b4tCyZUucPXsWV69exdOnT7F27VrpMSQvPo4EAB4/fozGjRvj7Nmzsq8rV66gW7dub/X+pqam7/wZ8svQ0FB2rFAoZPfbrV69GpGRkfD09MTGjRtRq1YtHDt2rNjyIyIqTv/88w9CX/plU7/+eHTtWkUaOOjQAYiOVt+3lp6uHmkjNRZtVOz3Bpibm6NGjRpwcnKCgcHrZ+gbNWqEq1evwtbWFjVq1JB9WVlZwcrKCg4ODjh+/Lj0mqysLJw+ffqV56xXrx5UKhUOHz6cZ3vOSF92dvYrz+Hm5oasrCzZ+/7333+IjY1F7dq1X/uZXtawYUMEBgbi6NGjqFu3LtavX1+g1xMR6YJNmzZh3bp10rG7uzuCgoIQGGiIyEigSxf5jE9pvW/tdVi0kVYPOXfv3h0VKlRAx44d8ddffyEuLg6HDh3C8OHDcfv2bQDAd999h9DQUGzbtg0xMTEYPHhwrj3WXlS1alX07t0bffr0wbZt26Rzbtq0CQBQpUoVKBQK7Ny5Ew8ePMDjx49znaNmzZro2LEj+vfvj7///hvnzp1Djx49UKlSJWmI/03i4uIQGBiIyMhI3Lx5E/v27cPVq1d5XxsRlShPnz5FcHCw7NaRvn37om3btlAqgZzNAJ4+lc/4aPPvJk1h0UZazczMDH/++SecnJzw5Zdfws3NDX379kV6ejosLS0BAKNHj0bPnj3Ru3dveHh4oEyZMvjiiy9ee97ly5ejU6dOGDx4MFxdXdG/f3+kpaUBACpVqoTg4GAEBATAzs4OQ4cOzfMcq1evRuPGjdGuXTt4eHhACIHdu3fnmhJ93WeLiYmBr68vatWqhW+//RZDhgzBgAEDCvAdIiLSXrGxsQgLC5PF6tefgK+/rgylUv1g9/R09f5rrq4cVXsThXh5QyvSGqmpqbCyskJKSopUoABAeno64uLi4OzsDBMTEw1mSMWN156IdMXq1asRHx8vHXt4eCA9/TN07qwu1Fxc1HuvxcSoC7YXBuJ03qt+f78rbvlBREREhSYlJSXXM5p//70/NmyoCIVCXbAB6oJt1qzn23jQm7FoIyIiokJx+PBhHDp0SBabNm0isrP1AQCVKqm38ShfXl2wldb91t4WizYiIiJ6Z8HBwbLjBw8csW1bH9jbq48tLNSja3fuAE5OLNbeBos2IiIiemtJSUlYvHixLHbgQE/8+af6STOurkDZss+nQDkd+vZYtOkwriEpfXjNiUib/PHHHzhy5Igstm/fRNy8qZ4ONTUFhHi+gTu38Hg3LNp0UM6WEk+ePCnW3f1J8548eQIg95MWiIiKkxBCeo5yjjJlquO333ogMlI9uvbixrgcXSscLNp0kL6+PqytraVnWJqZmUkPU6eSSQiBJ0+eIDExEdbW1tDX19d0SkRUSv37779YunSpLLZqlR/MzKpACHXBlrPIIAdH1woHizYdZf//d3bmFG5UOlhbW0vXnoiouO3ZswcnTpyQxRo0mIhKlfSRlATExqoXHFDRYNGmoxQKBRwcHGBra4tnz55pOh0qBoaGhhxhIyKNyGs69PJlN5w//zUaNlQf+/oCixYBjx+rp0M5ulb4WLTpOH19ff4iJyKiInP//n2sWLFCFtu4sS+ioyujUiV1gRYZqY6vW8f714oSizYiIiLKk1KpRFRUlCwWHDwJxsbqR5eXKaMu0HIKNW6WW7RYtBEREZFMXtOh5869h717v0CtWuqp0IMHWagVNxZtREREJLl79y5++OEHWWzFigFISbGHkxMQFsYiTVNYtBEREREA4LfffsOlS5dksczMyXj8WIFy5dSrQ7nIQHNYtBEREZVyKpUK06ZNk8Wysxtj6tR28PRUrwitXFm+YS4VPxZtREREpditW7ewatUqWWzp0sF4+tQGU6fmXmhAmsOijYiIqJSaP38DUlOvyGKLF09GWpoCo0apj7nQQHuwaCMiIiplsrOzMX36dFnM1tYDP//8GVatYpGmrVi0ERERlSJxcXH46aefZLErV4ZizpzyfJqBlmPRRkREVEqsXbsWN27ckMWmTJkMCwsFHj9WPzeUCw20F4s2IiKiEi4rKwszZsyQxeztW2DBgpZwccm9WS5pJxZtREREJdg///yDdevWyWLfffcdrK2tMWCAhpKit6Kn6QSIiIioaPzwww+5CraGDYPw+efWUCo1lBS9NY60ERERlTDPnj3DzJkzZbE//vgEZ882R716QGQkFxzoIhZtREREJUhMTAw2btwoi82dOxLp6ZYYOxZo2vT5ZrmkW1i0ERERlRChoUuQkfGfLDZlShAA9SOoctYicIRNN7FoIyIi0nEZGRkIDQ2VxU6fbo169ZrC1RUQgiNrJQGLNiIiIh2lVAJLl16Ep+cWWXz27NFIS7PAv/8C0dEaSo4KHYs2IiIiHRUZOReeno+lY5VKDz/+OAnW1kDlyhxdK2lYtBEREemY9PR0zJo1CyYmz2OOju3Qp09jBAdrLi8qWizaiIiIdMjq1WcRH79dFhs7dizMzMw0lBEVFxZtREREOiIkJASZmZnSsampKcaNG6fBjKg4sWgjIiLSYkolMHfuE7RqNVsWr1LFB35+9TWUFWkCizYiIiIttm7dSbRqtVsWi4jwx59/mrziFVRSsWgjIiLSUsHBwahd+/lxcrIV9u4dgVmzNJcTaQ6LNiIiIi3z6NEjzJs3TxbbvPkrXLpUGx4efKJBacWijYiISItERkZi3759sth77wWiYUMjPjO0lGPRRkREpGFKpfoh7t7e8k3WHj2yRYsWg6SRNY6wlW4s2oiIiDRIqQQGDkzBgAELZPEuXbrAxcVFM0mRVtLTdAJERESlkVIJeHoCa9f+matg279/PAs2yoUjbURERBrg7w906SKfDv3338r444++XB1KeWLRRkREVEyUSqBPH0Cleojvvlska+vRoweqV6+uocxIF+jM9GiHDh3g5OQEExMTODg4oGfPnrh7967UPmXKFCgUilxf5ubmsvNs3rwZrq6uMDExQb169bB7t3zDQiEEJk+eDAcHB5iamsLLywtXr16V9UlKSkL37t1haWkJa2tr9O3bF48fP5b1OX/+PD788EOYmJjA0dERYWFhhfwdISIiXaJUAt27A/XrR+Qq2CZMmMCCjd5IZ4q2li1bYtOmTYiNjcWWLVtw7do1dOrUSWofM2YM7t27J/uqXbs2vvrqK6nP0aNH0bVrV/Tt2xdRUVHw8fGBj48PLl68KPUJCwvDokWLsGLFChw/fhzm5ubw9vZGenq61Kd79+64dOkS9u/fj507d+LPP//Et99+K7Wnpqbis88+Q5UqVXD69GnMnj0bU6ZMwf/+978i/i4REZG2Cg0VGDMmGC1a/C3FqlWrhqCgIBgYcOKL3kwhhBCaTuJtKJVK+Pj4ICMjA4aGhrnaz507hwYNGuDPP//Ehx9+CADo3Lkz0tLSsHPnTqlfs2bN0KBBA6xYsQJCCFSsWBGjR4/GmDFjAAApKSmws7PDmjVr0KVLF0RHR6N27do4efIk3N3dAQB79+7F559/jtu3b6NixYpYvnw5JkyYgISEBBgZGQEAAgICsG3bNsTExOT7M6ampsLKygopKSmwtLR86+8VERFpRs5WHi1b/gsjo6Wytpo1/dCtWxUNZUZFqah+f+vMSNuLkpKSsG7dOnh6euZZsAHAypUrUatWLalgA9QbFnp5ecn6eXt7IzIyEgAQFxeHhIQEWR8rKys0bdpU6hMZGQlra2upYAMALy8v6Onp4fjx41KfFi1aSAVbzvvExsbi4cOHr/xcGRkZSE1NlX0REZFuUiqBzp0BK6u9uQq2iRMnsmCjAtOpos3f3x/m5uYoX7484uPjsX379jz7paenY926dejbt68snpCQADs7O1nMzs4OCQkJUntO7HV9bG1tZe0GBgYoV66crE9e53jxPfISEhICKysr6cvR0fGVfYmISLv5+wsEBASjWbPjUszKyhVBQUHQ19fXYGakqzRatAUEBOS5eODFrxenE8eOHYuoqCjs27cP+vr66NWrF/Ka3f3999/x6NEj9O7duzg/zjsLDAxESkqK9HXr1i1Np0RERAX01VeAvX0iunSZKov37dsXI0Z01lBWVBJo9M7H0aNHw8/P77V9qlWrJv29QoUKqFChAmrVqgU3Nzc4Ojri2LFj8PDwkL1m5cqVaNeuXa7RLnt7e9y/f18Wu3//Puzt7aX2nJiDg4OsT4MGDaQ+iYmJsnNkZWUhKSlJdp683ufF98iLsbExjI2NX9lORETaLyNjBwYNOiOLTZo0CXp6OjW5RVpIo0WbjY0NbGxs3uq1KpUKgPo+sBfFxcXh4MGDUCqVuV7j4eGBiIgIjBgxQort379fKvqcnZ1hb2+PiIgIqUhLTU3F8ePHMWjQIOkcycnJOH36NBo3bgwAOHDgAFQqFZo2bSr1mTBhAp49eybdc7d//364uLigbNmyb/V5iYhIe6kXHAh4e0/F//9qAADUq1cPX375peYSoxJFJ8r+48ePY8mSJTh79ixu3ryJAwcOoGvXrqhevXquUbZVq1bBwcEBbdq0yXWe7777Dnv37sXcuXMRExODKVOm4NSpUxg6dCgAQKFQYMSIEZg+fTqUSiUuXLiAXr16oWLFivDx8QEAuLm5oXXr1ujfvz9OnDiBI0eOYOjQoejSpQsqVqwIAOjWrRuMjIzQt29fXLp0CRs3bsTChQsxatSoov1GERGRRixdeg/e3vLpUBeXb1mwUaHSiY1hzMzMsHXrVgQFBSEtLQ0ODg5o3bo1Jk6cKJtOVKlUWLNmDfz8/PK8ydPT0xPr16/HxIkTMX78eNSsWRPbtm1D3bp1pT7jxo1DWloavv32WyQnJ6N58+bYu3cvTExMpD7r1q3D0KFD8cknn0BPTw++vr5YtOj5RolWVlbYt28fhgwZgsaNG6NChQqYPHmybC83IiIqGbZu3QpPzwuy2OTJk6FQKDSUEZVUOrtPW2nAfdqIiLSTUgnMmqXCZ59Nk8UbN26Mdu3aaSgr0hZF9ftbJ0baiIiItEHOZrnp6bfQseMqWdugQYNybQlFVJhYtBEREeVTaChQteoGuLhckcU5HUrFgUUbERHRGyiVgL9/Nrp0mS6L29g0w+DB3hrKikobFm1ERESvkDMdamh4A126rJW1DR06FOXLl9dQZlQasWgjIiLKg1IJdO8OfPnlT6hWLU7WxulQ0gQWbURERC9RKoFu3bIwduwMWfzDDz9Eq1atNJQVlXYs2oiIiP7fhAnAokVAnTr/YOzYdbK27777DtbW1ppJjAgs2oiIiAA8v3+tT5+VqFz5jqwtKChIQ1kRPceijYiISrWvvgK2bAEMDZ9h8uSZsrZWrVrhww8/1FBmRHIs2oiIqFTKGVk7dgyoVSsWXbv+KmsfOXIkn0ZDWoVFGxERlUqhoUBkJDB8+FKUK/evrI3ToaSNWLQREVGpkjPC1rJlBry9Q2Vt3t7eaNasmYYyI3o9Fm1ERFRqKJVAly5AtWoXYWS0RdY2evRoWFhYaCgzojdj0UZERKWCUgl07gwMGjQfVlapUlyhUGDy5MkazIwof1i0ERFRiadUAn36pCMgYJYs3rZtW7i7u2soK6KCYdFGREQlmlIJzJx5FsOGbZfFx44dCzMzMw1lRVRweppOgIiIqChMmACUKQMcOxaKNm2eF2zGxsYICgpiwUY6hyNtRERUIv3wwxOMGTNbFvPx8UH9+vU1lBHRu2HRRkREJYpSCfzyyykMGbJLFvf394eJiYmGsiJ6dyzaiIhI5+U86H34cMDIKBh16jxvs7S0xMiRIzWXHFEhYdFGREQ6b9EiAHgMI6O5sninTp1Q58UKjkiHsWgjIiKdlTPC1q5dJFxd98naAgMDYWRkpKHMiAofizYiItJJSiUQEgIEBQXL4jY2Nhg8eLCGsiIqOizaiIhIJ82fn4qgoPmyWJcuXeDi4qKhjIiKFos2IiLSGTkPe/fz+wsff3xA1jZ+/HgYGhpqKDOioseijYiIdIJSCXTvDowZE4x7957HK1WqhH79+mkuMaJiwqKNiIi0llIJ+PsDjx4BWVkPMWbMIll7jx49UL16dQ1lR1S8WLQREZFWmjBBvdBACKBVqwNo0eKvl9onwMCAv8ao9OB/7UREpJXmzQOEEJgyZaos7uzsjF69emkoKyLNYdFGRERaqVq1//D110tksd69e6Nq1aqaSYhIw1i0ERGR1shZHdqjRzi+/vqYrG3ixInQ19fXUGZEmseijYiINC6nWEtKEujadSoePHje5uLigi5dumguOSItwaKNiIg0bvBgIDMzEUOGLJfF+/bti8qVK2soKyLtwqKNiIg0Imd0LSAAcHffgYYNz8jaJ02aBD09PQ1lR6R9WLQREVGxmzBBXbAJIRAVNRUNGz5vq1u3Lnx9fTWXHJGWYtFGRETFJmd07dQpwNb2HgYO/J+s/dtvv4WDg4OGsiPSbizaiIioWCiVQOfOQHo64Ou7FfXqXZC1T548GQqFQkPZEWk/Fm1ERFQs/P2BjAwVpkyZJos3atQI7du311BWRLqDRRsRERUZpRIYNw54/BgwMLiNoKAfZe2DBg2Cra2thrIj0i0s2oiIqMiEhgKxsUDnzhvh5hYja+N0KFHBFLho09fXx71793L9n9F///0HW1tbZGdnF1pyRESke3IWG7RsCSQnZ2PKlOmy9qZNm6J169Yayo5IdxW4aBNC5BnPyMiAkZHROydERES6S6kEundXT4c+fHgDXbqslbUPHToU5cuX11B2RLot30XbokWLAAAKhQIrV66EhYWF1JadnY0///wTrq6uhZ8hERHpjJz71/z8fkLVqnGyNk6HEr2bfBdt8+fPB6AeaVuxYoXsob1GRkaoWrUqVqxYUfgZEhGR1suZEn3yJAtTpsyQtTVv3hyffPKJhjIjKjnyXbTFxan/j6lly5bYunUrypYtW2RJERGRbvH3B549u4a+fX+RxYcPH87fF0SFpMD3tB08eLAo8iAiIh2jVKof9J6YCPTu/SMqV74taw8KCtJQZkQlU4GLtj59+ry2fdWqVW+dDBERab+cqdCkJOD+/WeYOHGmrL1ly5Zo0aKFhrIjKrkKXLQ9fPhQdvzs2TNcvHgRycnJaNWqVaElRkRE2snfH4iJATw8YtG166+ythEjRsDKykpDmRGVbAUu2n7//fdcMZVKhUGDBqF69eqFkhQREWkvIYDBg5fB1vaBLM7pUKKipRCv2nitgGJjY/Hxxx/j3r17hXE6ApCamgorKyukpKTA0tJS0+kQUSmnVAKzZ2fCyytEFv/ss8/g4eGhoayItE9R/f4utMdYXbt2DVlZWYV1OiIi0hI597Dp61+Cl9dvsrbRo0fL9u0koqJT4KJt1KhRsmMhBO7du4ddu3ahd+/ehZYYERFpVk6xFh8PfPXVAlhbp8jaOR1KVLwKXLRFRUXJjvX09GBjY4O5c+e+cWUpERHpjtBQ4MyZdAQGzpLFHR3bok8fdw1lRVR6cZ82IiLKRakErKzOITBwmyw+duxYmJmZaSYpolJO721fmJiYiL/++gt//fUXEhMTCzMnIiLSkAkTAFNT4OjRWWjWbJsUNzIyQlBQEAs2Ig0q8EhbamoqhgwZgg0bNkClUgEA9PX10blzZyxdupT78xAR6SClUv2w91u3niAgYLasrWPHjmjQoIFmEiMiSYFH2vr374/jx49j165dSE5ORnJyMnbu3IlTp05hwIABRZEjEREVsXHjAAuL0xg3Tl6w+fv7s2Aj0hIF3qfN3Nwc4eHhaN68uSz+119/oXXr1khLSyvUBEsz7tNGREUpZ3VoQABw+vRU6Ok9/3VQpkyZXLsFEFH+aM0+beXLl89zCtTKygply5YtlKSIiKjohYYC588/RlTUXOi9MO/i6+uLunXrai4xIspTgadHJ06ciFGjRiEhIUGKJSQkYOzYsZg0aVKhJkdERIVPqQTc3IAyZY5h7Ni5srb33gtgwUakpQo8PdqwYUP8888/yMjIgJOTEwAgPj4exsbGqFmzpqzvmTNnCi/TUojTo0RU2JRKoHt3YMyYYFm8QoUKGDJkiIayIipZtGZ6tGPHjlAoFIWWABERFa0X712bPz8VY8bMl7V37twZrq6uGsqOiPKr0B4YT4WPI21EVBg8PYHISOCLL/5C/foHZG3jx4+HoaGhhjIjKpm0ZqStWrVqOHnyJMqXLy+LJycno1GjRrh+/XqhJUdERO8uIACIipJPh1asWBH9+/fXUEZE9DYKXLTduHED2dnZueIZGRm4fft2oSRFRETvJmdKtGXLZBgZLZS1Va/eHT161NBQZkT0tvJdtCmVSunv4eHhsm0/srOzERERAWdn58LNjoiICixnscH77x+EkdGfsrYJEybAwKDA/79ORFog31t++Pj4wMfHBwqFAr1795aOfXx80KVLF+zfvx9z585984neUocOHeDk5AQTExM4ODigZ8+euHv3rqxPeHg4mjVrhjJlysDGxga+vr64ceOGrM+hQ4fQqFEjGBsbo0aNGlizZk2u91q6dCmqVq0KExMTNG3aFCdOnJC1p6enY8iQIShfvjwsLCzg6+uL+/fvy/rEx8ejbdu2MDMzg62tLcaOHYusrKxC+V4QEb2KumATGDMmGB999Lxgs7CoiqCgIBZsRDos30WbSqWCSqWCk5MTEhMTpWOVSoWMjAzExsaiXbt2RZZoy5YtsWnTJsTGxmLLli24du0aOnXqJLXHxcWhY8eOaNWqFc6ePYvw8HD8+++/+PLLL2V92rZti5YtW+Ls2bMYMWIE+vXrh/DwcKnPxo0bMWrUKAQFBeHMmTOoX78+vL29kZiYKPUZOXIkduzYgc2bN+Pw4cO4e/eu7H2ys7PRtm1bZGZm4ujRo1i7di3WrFmDyZMnF9n3h4hIqQQGDvwPY8ZMlcV79+6N0aN7aygrIiosOrt6VKlUwsfHBxkZGTA0NMRvv/2Grl27IiMjA3r/v7X3jh070LFjR6mPv78/du3ahYsXL0rn6dKlC5KTk7F3714AQNOmTfH+++9jyZIlANTFqqOjI4YNG4aAgACkpKTAxsYG69evl4rGmJgYuLm5ITIyEs2aNcOePXvQrl073L17F3Z2dgCAFStWwN/fHw8ePICRkVG+PiNXjxJRQXzzTTiqVj0mi02cOBH6+voayoiodNKa1aNTp059bXtxjCYlJSVh3bp18PT0lJaqN27cGHp6eli9ejX8/Pzw+PFj/Pzzz/Dy8pL6REZGwsvLS3Yub29vjBgxAgCQmZmJ06dPIzAwUGrX09ODl5cXIiMjAQCnT5/Gs2fPZOdxdXWFk5OTVLRFRkaiXr16UsGW8z6DBg3CpUuX0LBhwzw/V0ZGBjIyMqTj1NTUd/guEVFpsX27wNmzU1G16vPYnTu10K5dV7BeIyo5Cly0/f7777LjZ8+eIS4uDgYGBqhevXqRFm3+/v5YsmQJnjx5gmbNmmHnzp1Sm7OzM/bt24evv/4aAwYMQHZ2Njw8PLB7926pT0JCgqyQAgA7Ozukpqbi6dOnePjwIbKzs/PsExMTI53DyMgI1tbWufrkPNrrVe+T0/YqISEhCA4OfmU7EdHLNm5MREzMclmsT58+cHR01FBGRFRUCvzs0aioKNnXxYsXce/ePXzyyScYOXJkgc4VEBAAhULx2q+cYgkAxo4di6ioKOzbtw/6+vro1asXcmZ3ExIS0L9/f/Tu3RsnT57E4cOHYWRkhE6dOkFXZoADAwORkpIifd26dUvTKRGRllEq1ZvlKpXA0qU7cxVskyZNYsFGVEIVyjIiS0tLBAcHo3379ujZs2e+Xzd69Gj4+fm9tk+1atWkv1eoUAEVKlRArVq14ObmBkdHRxw7dgweHh5YunQprKysEBYWJvX/5Zdf4OjoiOPHj6NZs2awt7fPtcrz/v37sLS0hKmpKfT19aGvr59nH3t7ewCAvb09MjMzkZycLBtte7nPyytOc86Z0ycvxsbGMDY2fu33g4hKt9BQ4Ngxgago+a0qN2/WxapVvhrKioiKQ6Gt/c4ZHSoIGxsb2NjYvNX7qVQqAJDuAXvy5Im0ACFHzs23OX1fni4FgP3798PDwwMAYGRkhMaNGyMiIgI+Pj7SayMiIjB06FAA6nvnDA0NERERAV9f9Q/I2NhYxMfHS+fx8PDAjBkzkJiYCFtbW+l9LC0tUbt27bf6vEREADB8+D14e/9PFtu7tz8CAytqKCMiKi4FXj26aNEi2bEQAvfu3cPPP/+Mjz76COvXry/UBAHg+PHjOHnyJJo3b46yZcvi2rVrmDRpEu7fv49Lly7B2NgYBw4cgJeXF6ZMmYKuXbvi0aNHGD9+PGJiYhAdHQ1TU1PExcWhbt26GDJkCPr06YMDBw5g+PDh2LVrF7y9vQGot/zo3bs3vv/+ezRp0gQLFizApk2bEBMTI92XNmjQIOzevRtr1qyBpaUlhg0bBgA4evQoAPWWHw0aNEDFihURFhaGhIQE9OzZE/369cPMmTPz/bm5epSIciiVwM6dv6NSpfOy+OTJk6FQKDSUFRHlRWtWj86fP192rKenBxsbG/Tu3Vu26rIwmZmZYevWrQgKCkJaWhocHBzQunVrTJw4UZpObNWqFdavX4+wsDCEhYXBzMwMHh4e2Lt3L0xNTQGoFyvs2rULI0eOxMKFC1G5cmWsXLlSKtgAoHPnznjw4AEmT56MhIQENGjQAHv37pUtLJg/fz709PTg6+uLjIwMeHt7Y9myZVK7vr4+du7ciUGDBsHDwwPm5ubo3bv3G1feEhHlRaVSISpqGipVeh47c6YhjIw6gPUaUemhs/u0lQYcaSOiO3fuYOXKlbLYkSMDMXSoHTp00FBSRPRaWjPSBgDJycn4559/AAA1atTItf0FERG9uwULNiIlJUYW43QoUelVoKLtxo0bGDJkCMLDw6VtNBQKBVq3bo0lS5ag6os7OxIR0VvZvj0bZ89Ol8Vu3mwCH582nA4lKsXyXbTdunULzZo1g6GhIaZNmwY3NzcAwOXLl7F8+XJ4eHjg5MmTqFy5cpElS0RU0t28eRNnz66RxdzchiAoqIJmEiIirZHve9r69u2Lf/75B+Hh4TAxMZG1PX36FK1bt0bNmjVz3XtBb4/3tBGVDkqlev+1Tp1+xqNH12VtDRpMRseOHF4j0iUav6dt79692LhxY66CDQBMTU0xbdo0dOnSpdASIyIqLWbNyoK39ww8evQ8dv16c6xd+4nmkiIirZPvou3ff/997T1r1apVQ1JSUmHkRERUaly7dg2fffaLLPbDD8OxbFlZDWVERNoq30Wbg4MDLl++/Mp71i5evPjaRzQREZHcjz/+iNu3b8tiv/4ahGXLwO08iCiXfBdtPj4+GDNmDCIiInI9eioxMRH+/v7So5+IiOjVnj17luvpKB9//DE++ugjBAVpKCki0nr5Xojw8OFDNG3aFAkJCejRowdcXV0hhEB0dDTWr18Pe3t7HDt2DOXKlSvqnEsNLkQgKnmuXLmCDRs2yGIjRoyAlZWVhjIiosKm8YUIZcuWxfHjxzF+/Hj8+uuvSE5OBgBYW1ujW7dumDlzJgs2IqLXWL58ORITE2WxIA6tEVE+vdVjrIQQePDgAQDAxsaGu3MXEY60EZUMmZmZCAkJkcU+/fRTeHp6aigjIipKGh9pe5FCoYCtrW2hJUFEVFJdvnwZmzdvlsWWLx+FoKAyGsqIiHTVWxVtRET0ZgsXLpRuJckxY0YQxo7VTD5EpNtYtBERFbL09HTMmjVLFvv888/x/vvvc3UoEb01Fm1ERIVozZrzuHnzd1nswIGxCAoy01BGRFRSsGgjIiokYWFhePr0qXQshCH27RuPgAANJkVEJUa+irZFixbl+4TDhw9/62SIiHTR06dPERYWJott29YBpqYNcfSohpIiohInX0Xb/Pnz83UyhULBoo2ISpUzZ85gx44dslhm5jiYmppyhI2IClW+ira4uLiizoOISOdMmzYNKpVKOn782AJz5oyGhwc4wkZEhe6t72nLzMxEXFwcqlevDgMD3hpHRKVHWloa5syZI4v99tuXyMqqBw8PcISNiIpEgautJ0+eYNiwYVi7di0A9XP0qlWrhmHDhqFSpUoI4E8rIirBjh8/jr1798piM2cGQE/PGBs3Ah06aCgxIirx9Ar6gsDAQJw7dw6HDh2CiYmJFPfy8sLGjRsLNTkiIm0SHBwsK9iSk8tjypQgZGYao2pVFmxEVLQKPNK2bds2bNy4Ec2aNZM9c7ROnTq4du1aoSZHRKQNUlNTcy3Icnb+GtbWbti7FxACeGkvXSKiQlfgou3Bgwd5Pnc0LS2ND44nohLn77//RkREhCw2Y0Yg3N2NcPQoR9eIqPgUeHrU3d0du3btko5zCrWVK1fCw8Oj8DIjItKw4OBgWcF2964DLl4Mgru7ERcbEFGxK/BI28yZM9GmTRtcvnwZWVlZWLhwIS5fvoyjR4/i8OHDRZEjEVGxSk5OxsKFC2WxLVu64cKFmtzOg4g0psAjbc2bN8fZs2eRlZWFevXqYd++fbC1tUVkZCQaN25cFDkSERWbgwcP5irYMjMnYPr0mtzOg4g0SiGEEJpOgvKWmpoKKysrpKSkwNLSUtPpEJVoQghMnTpVFktMrIJly/w4ukZEBVJUv7/zNT2ampqa7xOyuCAiXZOUlITFixfLYmvX9oKRkTNH14hIa+SraLO2ts73ytDs7Ox3SoiIqDjt27cPkZGRslhY2EQ4Oelj1iyuDiUi7ZGvou3gwYPS32/cuIGAgAD4+flJq0UjIyOxdu1ahISEFE2WRESFLK/p0Dt3auLPP7thwwYWa0SkfQp8T9snn3yCfv36oWvXrrL4+vXr8b///Q+HDh0qzPxKNd7TRlQ0Hjx4gGXLlsliP//8Da5dc+L9a0T0zorq93eBV49GRkbC3d09V9zd3R0nTpwolKSIiIrKrl27chVsU6dOwsOHTrx/jYi0WoH3aXN0dMQPP/yAsLAwWXzlypVwdHQstMSIiApTXtOh167Vwc8/dwIA2NpyhI2ItFuBi7b58+fD19cXe/bsQdOmTQEAJ06cwNWrV7Fly5ZCT5CI6F0lJCTg+++/l8UiI/sjPLwiXFyAcuU4wkZE2q/ARdvnn3+Oq1evYtmyZYiJiQEAtG/fHgMHDuRIGxFpnW3btuHcuXOy2Jw5kzF8uAKpqepijYsOiEgXcHNdLcaFCERvT6VSYdq0abLYmTMNsGtXR2RngwsOiKjIaHRz3ZclJyfjxx9/RHR0NACgTp066NOnD6ysrAotMSKit3Xnzh2sXLlSFlu+fCDu37cDALi6cjqUiHRPgVePnjp1CtWrV8f8+fORlJSEpKQkzJs3D9WrV8eZM2eKIkcionzbtGlTroJtypTJyMqyk47LluWUKBHpngKPtI0cORIdOnTADz/8AAMD9cuzsrLQr18/jBgxAn/++WehJ0lE9CZ5TYe+//77yMr6XLaVR2goR9mISDcV+J42U1NTREVFwdXVVRa/fPky3N3d8eTJk0JNsDTjPW1E+XPz5k2sWbNGFhsyZAiOHq0gFWkcWSOi4qI1m+taWloiPj4+V/zWrVsoU6ZMoSRFRJRfv/zyS66CLTx8slSwRUaqR9eIiHRdgadHO3fujL59+2LOnDnw9PQEABw5cgRjx47N9WgrIqKikp2djenTp8tif//9ASIivCDE82lQTocSUUlR4KJtzpw5UCgU6NWrF7KysgAAhoaGGDRoEEL5v7NEVAyuX7+On3/+WRZbtmwYHj4sByEAC4vnU6KcFiWikuKt92l78uQJrl27BgCoXr06zMzMCjUx4j1tRHlZtWoVbt26JYtNmTIZgAKGhoC7O+9hIyLN0qp92gDAzMwM9erVK7REiIheJysrCzNmzJDFLlz4GL///pF0zOeHElFJlu+irU+fPvnqt2rVqrdOhogoL1euXMGGDRtksREjRsDKygpmZsDTp4BCASxbpqEEiYiKQb6LtjVr1qBKlSpo2LAh+OQrIiouK1aswP3792Wx8PAgNGyongIdORJYtAgYPpxTokRUsuX7nrYhQ4Zgw4YNqFKlCr755hv06NED5cqVK+r8SjXe00alWWZmJkJCQmQxLy8vjB37ASIj+exQItJeGt+nbenSpbh37x7GjRuHHTt2wNHREV9//TXCw8M58kZEhSo6OjpXwTZq1Ch88MEHCAiA7AkHRESlxVuvHs3Zgfynn35CVlYWLl26BAsLi8LOr1TjSBuVRosWLcLDhw9lsYYNgwAA48ap712bNYtToUSkvbRu9aienh4UCgWEEMjOzi60hIiodMrIyMi112N0dBts3NgEHh7q49hY9Z+hoSzaiKj0KVDRlpGRga1bt2LVqlX4+++/0a5dOyxZsgStW7eGnl6Bn4hFRAQAOH/+PH7//XdZbMyYMYiIMEd8/POp0JyRNk6NElFplO+ibfDgwfj111/h6OiIPn36YMOGDahQoUJR5kZEpcDs2bPx5MkT6Tg72wDu7hNgbp77iQYcXSOi0izf97Tp6enByckJDRs2hEKheGW/rVu3FlpypR3vaaOS7OnTpwgLC5PFLl7sgN9+awgXF6BcOT7ZgIh0k8bvaevVq9drizUiovw6c+YMduzYIYtlZo7DgQOmUCiABw/U96/x3jUioucKtLkuEdG7mj59umzxUkaGOUJCxkBPD1Cp1LFHj7itBxHRy9569SgRUUGkpaVhzpw5sliVKl+iXLl6sLAAHj9+HuczRImIcmPRRkRF7sSJE9izZ48sFhISAGdnY0RHA+vWqadCW7YEDh7kCBsRUV5YtBFRkQoODpYdly1bFsuWDUdGhnoa1NNTXaRxZI2I6PVYtBFRkXj06BHmzZsni3399ddwc3ND1arqkbWkJCAykgsOiIjyg0UbERW6I0eO4I8//pDFAgMDYWRkBOD5/mtKpbpg43QoEdGbsWgjokL18nSovb09BgwYIB2/WKi9vHkuERG9Gp89RUSFIiUlJVfBVq1aN6xdOwBK5fNYaOjzKVEiIso/Fm1E9M4OHTqEBQsWyGL160/AzJk1ERkJ+Ps/jwcEcA82IqK3oTNFW4cOHeDk5AQTExM4ODigZ8+euHv3rqzPpk2b0KBBA5iZmaFKlSqYPXt2rvMcOnQIjRo1grGxMWrUqJHnpsFLly5F1apVYWJigqZNm+LEiROy9vT0dAwZMgTly5eHhYUFfH19cf/+fVmf+Ph4tG3bFmZmZrC1tcXYsWORlZX17t8IIi0ihEBwcDAOHz4sxR4+dMKUKUEICzNAzkPyXnxYXocO6pWinBYlIioYnSnaWrZsiU2bNiE2NhZbtmzBtWvX0KlTJ6l9z5496N69OwYOHIiLFy9i2bJlmD9/PpYsWSL1iYuLQ9u2bdGyZUucPXsWI0aMQL9+/RAeHi712bhxI0aNGoWgoCCcOXMG9evXh7e3NxITE6U+I0eOxI4dO7B582YcPnwYd+/exZdffim1Z2dno23btsjMzMTRo0exdu1arFmzBpMnTy7i7xJR8UlKSsLUqVNlsZ49e6JVq2+kkTRfX8DCQv0nERG9m3w/MF7bKJVK+Pj4ICMjA4aGhujWrRuePXuGzZs3S30WL16MsLAwxMfHQ6FQwN/fH7t27cLFixelPl26dEFycjL27t0LAGjatCnef/99qdhTqVRwdHTEsGHDEBAQgJSUFNjY2GD9+vVS0RgTEwM3NzdERkaiWbNm2LNnD9q1a4e7d+/Czs4OALBixQr4+/vjwYMH0gq6N+ED40lb7d+/H0df2lht4sSJ0NfXB/B8scHDh0BMjHo6lPuwEVFpUVS/v3VmpO1FSUlJWLduHTw9PWFoaAgAyMjIgImJiayfqakpbt++jZs3bwIAIiMj4eXlJevj7e2NyMhIAEBmZiZOnz4t66OnpwcvLy+pz+nTp/Hs2TNZH1dXVzg5OUl9IiMjUa9ePalgy3mf1NRUXLp0qbC+DUTFLmc69MWCrUaNGmjYMAgffqgvLTjIWWwgBO9fIyIqLDpVtPn7+8Pc3Bzly5dHfHw8tm/fLrV5e3tj69atiIiIgEqlwpUrVzB37lwAwL179wAACQkJskIKAOzs7JCamoqnT5/i33//RXZ2dp59EhISpHMYGRnB2tr6tX3yOkdO26tkZGQgNTVV9kWkLR48eJBrOvSbb75B9+7d4e+vLtI6d1aPsuUsNggL4/1rRESFRaNFW0BAABQKxWu/YmJipP5jx45FVFQU9u3bB319ffTq1Qs5s7v9+/fH0KFD0a5dOxgZGaFZs2bo0qULAPVomS4ICQmBlZWV9OXo6KjplIgAALt378ayZctksUmTJsHJyQnA84UG6enPn27AYo2IqHBpdHPd0aNHw8/P77V9qlWrJv29QoUKqFChAmrVqgU3Nzc4Ojri2LFj8PDwgEKhwKxZszBz5kwkJCTAxsYGERERsnPY29vnWuV5//59WFpawtTUFPr6+tDX18+zj729vXSOzMxMJCcny0bbXu7z8orTnHPm9MlLYGAgRo0aJR2npqaycCONEkLkGl2rXbs2jI2/QvPmzzfIDQtTb+shBKdCiYiKikaLNhsbG9jY2LzVa1UqFQD1lOKL9PX1UalSJQDAhg0b4OHhIb2Hh4cHdu/eLeu/f/9+eHh4AACMjIzQuHFjREREwMfHR3qfiIgIDB06FADQuHFjGBoaIiIiAr7/vyQuNjYW8fHx0nk8PDwwY8YMJCYmwtbWVnofS0tL1K5d+5WfydjYGMbGxm/1/SAqbAkJCfj+++9lsVq1+mH+/EqIjwfu3AHGjXv+VAOOqhERFS2deIzV8ePHcfLkSTRv3hxly5bFtWvXMGnSJFSvXl0qlP7991/89ttv+Pjjj5Geno7Vq1dLW3LkGDhwIJYsWYJx48ahT58+OHDgADZt2oRdu3ZJfUaNGoXevXvD3d0dTZo0wYIFC5CWloZvvvkGAGBlZYW+ffti1KhRKFeuHCwtLTFs2DB4eHigWbNmAIDPPvsMtWvXRs+ePREWFoaEhARMnDgRQ4YMYVFGOmH79u04e/asLBYePgm//qqHmBhAoVDHcv4kIqKipxNFm5mZGbZu3YqgoCCkpaXBwcEBrVu3xsSJE2VF0Nq1azFmzBgIIeDh4YFDhw6hSZMmUruzszN27dqFkSNHYuHChahcuTJWrlwJb29vqU/nzp3x4MEDTJ48GQkJCWjQoAH27t0rW1gwf/586OnpwdfXFxkZGfD29pbd76Ovr4+dO3di0KBB8PDwgLm5OXr37p1rmolI26hUKkybNk0Wa9CgAWbN6ojISMDFBTAxUd+7ZmICzJqloUSJiEohnd2nrTTgPm1UnO7cuYOVK1fKYgMGDIC9vT2USvVUqEIBPHqknhp1dQWiozWULBGRFiuq3986MdJGREVr8+bNuHz5siw2efJkKBQKaaNcQL1RrosL914jItIEFm1EpVhe06Hu7u5o27atdJyzUa6r6/NijYsOiIiKH4s2olIqPj4eq1evlsUGDx4MGxsbaXStZUsgKUldsM2axWKNiEiTWLQRlULr16/H1atXZbGc6VDg+eja8eOASqUeYWPBRkSkWSzaiEqR7OxsTJ8+XRbz9PTE06ef4oMPnt+n9vDh81WiFha8f42ISBuwaCMqJeLi4vDTTz/JYrVrD8Onn5aDp6d6ZM3fH7h9G3j8WL3goFw53sNGRKQtWLQRlQKrV69GfHy8LDZlymR4eCjw1Vfqwiw0VH3/2uPH6tG1sDAWa0RE2oRFG1EJlpWVhRkzZshihw59hISEj2XbduQ8hipnAQJH14iItI+ephMgoqJx9erVXAVbnTrfISPjY8yaBRw9qo65ugJubuqCrUMHdZwFGxGR9uFIG1EJ9P333yMhIUEWCwoKAgB06qQ+ViqB7t3V06GAeoSNxRoRkfZi0UZUgmRmZiIkJEQW8/LywgcffCAdK5XqBQc3bjx/hmjVqlwhSkSk7Vi0EZUQ0dHR2LRpkyw2atQolClTRhYLDVU/jgpQLzhYt44jbEREuoBFG1EJsHjxYiQlJcliOdOhLy4uANR7sFWqxBWiRES6hkUbkQ7LyMhAaM7T3P9f69at0bRpU+k45+kGLz703cPj+UIEIiLSDSzaiHTUhQsXsHXrVllszJgxMDc3l42u5ezBljPS9uLfiYhId7BoI9JBc+bMQVpamnSsr6+PiRMnSsc5o2vjxgEKBSCEOp6zHxsREekeFm1EOuTp06cICwuTxdq3b49GjRrJYgEB6oItPh54+lQd45YeRES6jZvrEumIqKioXAXbuHHjcPt2I3h6AhMmAJ6ezzfJLVdOXbCZmqqfI8opUSIi3aYQImfihLRNamoqrKyskJKSAktLS02nQxo0Y8YMZGVlScempqYYN24cAEgPe7ewkD/ovWVL4OBBPpKKiKi4FdXvb06PEmmxtLQ0zJkzRxb74osv8N5770mLDVq2VMdzirSHD9VFHMAVokREJQmLNiItdeLECezZs0cW8/f3h4mJyf//Xb19x8OHwKxZ6mMhAF/f5yNsRERUcrBoI9JCwcHBsmNra2t89913sljOjQ1CyJ9ycPAgR9iIiEoiFm1EWuTRo0eYN2+eLPbVV1+hdu3aufqGhT0fXWvZUj3iJgRH2IiISioWbURa4ujRo9i/f78sFhgYCCMjozz7d+jwfD+2gweB6OjiyJKIiDSFRRuRFnh5OtTOzg4DBw58Zf+XFyFwdI2IqORj0UakQSkpKViwYIEsVq1aVyxfXgsVK8q36njx0VQ5I2wA718jIiotuLkukYYcPnw4V8E2fvx4LF9eS/aA9xwvPvg9IED90HeOsBERlR4s2oiKmRACwcHBOHTokBRzdHREUFAQDA0NERCg3iD34UP16FqOFwu1Dh3UI2zcNJeIqPTgExG0GJ+IUPI8fvwYc+fOlcV69OiB6tWry2I5Tznw8OD0JxGRruETEYh03Pnz5/H777/LYhMnToS+vn6uvi1bAhcuPF9oQERExKKNqIgJIbBy5UrcvXtXijVq1Ajt27d/5WsOHlQ/R/TgweLIkIiIdAGLNqIilJqaivnz58tigwcPho2NzWtfl7NClAsNiIgoBxciEBWRqKgoWcFmamqKSZMmwcbGBkql+r61FxcavIgLDYiI6GUcaSMqZEIILF++HA8ePJBin376KTw9PQGoC7Xu3dXTn198oR5NmzFDU9kSEZGu4OpRLcbVo7onr81yhw0bhnLlyknHOStDc1hYAI8eFVOCRERU5Lh6lEjLnTx5Ert375aOrays8N1330GhUMj65dyvVqkSsHcvMHx4cWdKRES6iEUb0TsSQmDRokVITk6WYm3atEGTJk3y7N+hg/pLqQTu3AGaNi2mRImISKdxIQLRO0hKSsLUqVNlBdvhw98hISHvgu1FLz6WioiI6E1YtBG9pWPHjmHx4sXScYUKFRAePhkHD1qje3dgwoTXrxDl80OJiKgguBBBi3EhgnZSqVSYN28e0tLSpFj79u3RqFEj2cpQCwv1n3wUFRFR6VJUv7850kZUAP/++y+mTZsmK9hGjhyJRo0aAVDfq9a6NaCnB7z33vORtDfty0ZERPQmXIhAlE9///03IiIipGN7e3t8++23UCgUUCqfP8Fg715ApQLOn3++lUfONh+hodwwl4iI3g6LNqI3UKlUmDVrFjIzM6WYj48P6tevLxVrSUlAbKz678OHA4sWybfy4GOpiIjoXfGeNi3Ge9o0LzExEcuXL5fFRo8eDQsLCyiVQOfOQHq6es81Jyd1UcaRNCKi0o2b6xIVs0OHDuHw4cPSsZOTE/z8/LBjhwKhoUB8vLpgA4AyZbjYgIiIihaLNqKXZGdnY8aMGXhxELpTp06oU6cOgOf7q5mYqNsMDQEh1IsMOMpGRERFhatHiV6QkJCA6dOnywq2AwfG4Nq1OtJxzv5qo0ap/6xe/fn9bEREREWFI21E/++PP/7AkSNHpONq1aph+fKeiIwEzpwB1q17/giqF0fUXlw5SkREVFRYtFGpl5WVhRkzZshinTt3xpUrrkhKUk+DPn786u06Xi7iiIiIigKLNirV7ty5g5UrV8piBw6MQ1CQKfr0UU97uroCZctyJI2IiDSLRRuVWnv37sXx48elYysrF2za1EUqzl7cW40jaUREpGncp02LcZ+2ovHs2TPMnDlTFuvWrRtq1qypoYyIiKgk4bNHiQpBfHx8roLtvff80bt3TT4XlIiItBqnR6nU2LFjB86cOSMdW1vXxcaNvvj1VyAmhs8FJSIi7caijUq8zMxMhISEyGI9e/ZEjx7VEBkJuLio91vjQgMiItJmLNqoRIuLi8NPP/0kiwUEBMDY2JgLDYiISKewaKMSJ2ez2y5dfsfDh+eleIMGDdCxY0fpmPurERGRLuFCBCoRlErA01P95+zZGfD2DpYVbDVr+skKNiIiIl3DkTbSeUol0L27+qkFP/zwD7y81snaZ8wYD3d3Q3TrpqEEiYiICgFH2kirvTiC9iqhoeqCrVu3TXB3f16wubu7o2HDILi7G3KRARER6TxurqvFuLmuumCLjFSv7jx6NO8+W7c+xYULYbLYsWN9sWdP5WLIkIiISI6b61KpFBDw+u04YmNjcxVs+/dPwKBBLNiIiKhk4UibFiutI205qz/ftBXH+vXrcfXqVenYxqYZBg/2LoYMiYiIXo0jbaRx+bm/rDCEhqqnREND825/8uQJgoODZQXb99/3xy+/sGAjIqKSi0Ub5dubiqnC8rop0cuXL2P27NmyWP36E1G1akUuNiAiohKN06NaTNumR/M7bVlU1q5dixs3bkjH1659iJ9+alX8iRAREb0Gp0f/X0ZGBho0aACFQoGzZ8/K2s6fP48PP/wQJiYmcHR0RFhYWK7Xb968Ga6urjAxMUG9evWwe/duWbsQApMnT4aDgwNMTU3h5eUlm4YDgKSkJHTv3h2WlpawtrZG37598fjx4wLnoms6dFCv4MxPwfaqqdS3mWLdsuUxgoODZQXbkSMD0akTCzYiIio9dK5oGzduHCpWrJgrnpqais8++wxVqlTB6dOnMXv2bEyZMgX/+9//pD5Hjx5F165d0bdvX0RFRcHHxwc+Pj64ePGi1CcsLAyLFi3CihUrcPz4cZibm8Pb2xvp6elSn+7du+PSpUvYv38/du7ciT///BPffvttgXIp6V41lZoT7949f4XbhQsXcPHiXOn42TMDzJs3Efv22fERVEREVLoIHbJ7927h6uoqLl26JACIqKgoqW3ZsmWibNmyIiMjQ4r5+/sLFxcX6fjrr78Wbdu2lZ2zadOmYsCAAUIIIVQqlbC3txezZ8+W2pOTk4WxsbHYsGGDEEKIy5cvCwDi5MmTUp89e/YIhUIh7ty5k+9c8iMlJUUAECkpKQV6nTbYvl0IDw/1ny/HLSyEANTtr6JSqcQPP/wgpkyZIn316HFIWFgIMX580eZORET0Lorq97fOjLTdv38f/fv3x88//wwzM7Nc7ZGRkWjRogWMjIykmLe3N2JjY/Hw4UOpj5eXl+x13t7eiIyMBADExcUhISFB1sfKygpNmzaV+kRGRsLa2hru7u5SHy8vL+jp6eH48eP5zqWke9VUaocOwLp1eS80yJk63bLlEaZOnYo7d+5IbUuWDMa1ax/h0SNgxoxi+ABERERaRieePSqEgJ+fHwYOHAh3d3fZvU05EhIS4OzsLIvZ2dlJbWXLlkVCQoIUe7FPQkKC1O/F172qj62trazdwMAA5cqVk/V5Uy55ycjIQEZGhnScmpqaZz9d16FD3vfFhYYCT59G4eLF5/OmpqamcHEZg5o19bg6lIiISjWNFm0BAQGYNWvWa/tER0dj3759ePToEQIDA4spM80ICQlBcHCwptPQCCEEOnZcgfT0RCnm5eWFDz74AADQsaOmMiMiItIOGp0eHT16NKKjo1/7Va1aNRw4cACRkZEwNjaGgYEBatSoAUD9QPDevXsDAOzt7XH//n3Z+XOO7e3tX9vnxfYXX/eqPomJibL2rKwsJCUlvfF9XnyPvAQGBiIlJUX6unXr1iv7aqv8rA59uU9KSgqmTp0qK9iGDh0qFWxERESk4ZE2Gxsb2NjYvLHfokWLMH36dOn47t278Pb2xsaNG9G0aVMAgIeHByZMmIBnz57B0NAQALB//364uLhI05EeHh6IiIjAiBEjpHPt378fHh4eAABnZ2fY29sjIiICDRo0AKCeojx+/DgGDRoknSM5ORmnT59G48aNAQAHDhyASqUqUC55MTY2hrGx8Ru/H9rsxVWjr1rd+eIK0oULT+HWrV1Sm6WlJUaMGAGFQlFMGRMREemIQl3WUEzi4uJyrR5NTk4WdnZ2omfPnuLixYvi119/FWZmZuL777+X+hw5ckQYGBiIOXPmiOjoaBEUFCQMDQ3FhQsXpD6hoaHC2tpabN++XZw/f1507NhRODs7i6dPn0p9WrduLRo2bCiOHz8u/v77b1GzZk3RtWvXAuWSH7q4evRVq0Zf7mNhoRLDhy+UrQ49duxY8SVKRERURIrq93eJKdqEEOLcuXOiefPmwtjYWFSqVEmEhobmeu2mTZtErVq1hJGRkahTp47YtWuXrF2lUolJkyYJOzs7YWxsLD755BMRGxsr6/Pff/+Jrl27CgsLC2FpaSm++eYb8ejRowLn8ia6WLTlR1JSkqxYmzJlikhKStJ0WkRERIWiqH5/8zFWWqy4H2NVHI+pOnbsGMLDw6Xj8uXLY8iQIZwOJSKiEqOofn/rxJYfVDzycz/a21KpVJg/f77scV/t2rWT7gskIiKi19OZzXWp6AUE5L3p7avk9zmi//33H6ZNmyYr2EaMGMGCjYiIqAA40kYA3m5qND8jc3///TciIiKkY3t7e3z77becDiUiIiogFm0E4O2mRgMCnhd6L1OpVAgLC5M94cHHxwf169cvpIyJiIhKFxZtBOD1BdirvOpxVImJiVi+fLksNmrUKJQpU+YdsyQiIiq9WLQRgFcXYAX1/feHkZBwSDp2dHTEN998w+lQIiKid8SijQpFdnY2pk+fCUAlxXx9fVG3bl3NJUVERFSCsGijd5aQkIDvv/9eFqtbdwzq1jXXUEZEREQlD7f8oFzyu5UHAPzxxx+ygu2//5zRsGEQfH1ZsBERERUmFm2l0JuKshcf6P6qPllZWQgODsaRI0ek2Ndff41Fi3oV2dMUiIiISjMWbaXQi9t75CUgALCwAB4/zrvPnTt3MGPGDFls3LhxcHNzK4JsiYiICOA9baXSm7b36NABWLcu7z579+7F8ePHpeNatWqha9euRZgtERERASzaSqX8bO+R054z0tamzTPMnDlT1qdr166oVatWEWRIREREL2PRRq+UM426YsUtREWtkrX5+/vDxMREQ5kRERGVPiza6JUCAgClciccHU9LsTp16qBTp04azIqIiKh0YtFGecrMzERUVAgcHZ/HevTogerVq2suKSIiolKMq0cp1xYgN27cQEhIiKxPQEAACzYiIiIN4kgbybYAUam24dy5c1Jb/fr14ePjo7nkiIiICACLNoL63rXZszPg5RWKF+o19O7dG1WrVtVYXkRERPQcizZCnTrX4OX1iywWGBgIIyMjDWVEREREL2PRVooplcCePZthb39ZijVu3Bjt2rXTYFZERESUFxZtpVR6ejqiombB3v55rE+fPnB8cbkoERERaQ0WbaXQlStXsGHDBlls/PjxMDQ01FBGRERE9CYs2kqhFwu2Zs2awdvbW4PZEBERUX6waCvF+vfvj4oVK2o6DSIiIsoHhRBCaDoJyltqaiqsrKyQkpICS0tLTadDRERE+VBUv7/5RAQiIiIiHcCijYiIiEgHsGgjIiIi0gEs2oiIiIh0AIs2IiIiIh3Aoo2IiIhIB7BoIyIiItIBLNqIiIiIdACLNiIiIiIdwKKNiIiISAewaCMiIiLSASzaiIiIiHQAizYiIiIiHcCijYiIiEgHGGg6AXo1IQQAIDU1VcOZEBERUX7l/N7O+T1eWFi0abFHjx4BABwdHTWcCRERERXUo0ePYGVlVWjnU4jCLgOp0KhUKty9exdlypSBQqHQdDrFKjU1FY6Ojrh16xYsLS01nQ69gNdGe/HaaC9eG+1W2NdHCIFHjx6hYsWK0NMrvDvRONKmxfT09FC5cmVNp6FRlpaW/AGnpXhttBevjfbitdFuhXl9CnOELQcXIhARERHpABZtRERERDqARRtpJWNjYwQFBcHY2FjTqdBLeG20F6+N9uK10W66cn24EIGIiIhIB3CkjYiIiEgHsGgjIiIi0gEs2oiIiIh0AIs2IiIiIh3Aoo0KXUZGBho0aACFQoGzZ8/K2s6fP48PP/wQJiYmcHR0RFhYWK7Xb968Ga6urjAxMUG9evWwe/duWbsQApMnT4aDgwNMTU3h5eWFq1evyvokJSWhe/fusLS0hLW1Nfr27YvHjx8XOJeSokOHDnBycoKJiQkcHBzQs2dP3L17V9Zn06ZNaNCgAczMzFClShXMnj0713kOHTqERo0awdjYGDVq1MCaNWty9Vm6dCmqVq0KExMTNG3aFCdOnJC1p6enY8iQIShfvjwsLCzg6+uL+/fvy/rEx8ejbdu2MDMzg62tLcaOHYusrKx3/0Zoofxcm/DwcDRr1gxlypSBjY0NfH19cePGDVkfXpui8abrM2XKFCgUilxf5ubmsvPw51rhy8+/HSEE5syZg1q1asHY2BiVKlXCjBkzZH106t+OICpkw4cPF23atBEARFRUlBRPSUkRdnZ2onv37uLixYtiw4YNwtTUVHz//fdSnyNHjgh9fX0RFhYmLl++LCZOnCgMDQ3FhQsXpD6hoaHCyspKbNu2TZw7d0506NBBODs7i6dPn0p9WrduLerXry+OHTsm/vrrL1GjRg3RtWvXAuVSksybN09ERkaKGzduiCNHjggPDw/h4eEhte/evVsYGBiI5cuXi2vXromdO3cKBwcHsXjxYqnP9evXhZmZmRg1apS4fPmyWLx4sdDX1xd79+6V+vz666/CyMhIrFq1Sly6dEn0799fWFtbi/v370t9Bg4cKBwdHUVERIQ4deqUaNasmfD09JTas7KyRN26dYWXl5eIiooSu3fvFhUqVBCBgYFF/F3SjDddm+vXrwtjY2MRGBgo/vnnH3H69GnRokUL0bBhQ1kfXpui8abr8+jRI3Hv3j3ZV+3atUXv3r2lPvy5VjTedG2EEGLYsGHCxcVFbN++XVy/fl2cOnVK7Nu3T2rXtX87LNqoUO3evVu4urqKS5cu5Srali1bJsqWLSsyMjKkmL+/v3BxcZGOv/76a9G2bVvZOZs2bSoGDBgghBBCpVIJe3t7MXv2bKk9OTlZGBsbiw0bNgghhLh8+bIAIE6ePCn12bNnj1AoFOLOnTv5zqUk2759u1AoFCIzM1MIIUTXrl1Fp06dZH0WLVokKleuLFQqlRBCiHHjxok6derI+nTu3Fl4e3tLx02aNBFDhgyRjrOzs0XFihVFSEiIEEJ9rQwNDcXmzZulPtHR0QKAiIyMFEKo/xvS09MTCQkJUp/ly5cLS0tL2fUqqV6+Nps3bxYGBgYiOztb6qNUKmV9eG2Kz8vX52Vnz54VAMSff/4pxfhzrXi8fG0uX74sDAwMRExMzCtfo2v/djg9SoXm/v376N+/P37++WeYmZnlao+MjESLFi1gZGQkxby9vREbG4uHDx9Kfby8vGSv8/b2RmRkJAAgLi4OCQkJsj5WVlZo2rSp1CcyMhLW1tZwd3eX+nh5eUFPTw/Hjx/Pdy4lVVJSEtatWwdPT08YGhoCUE9pm5iYyPqZmpri9u3buHnzJoA3X5vMzEycPn1a1kdPTw9eXl5Sn9OnT+PZs2eyPq6urnBycpJdv3r16sHOzk72Pqmpqbh06VJhfRu0Ul7XpnHjxtDT08Pq1auRnZ2NlJQU/Pzzz/Dy8pL68NoUj7yuz8tWrlyJWrVq4cMPP5Ri/LlW9PK6Njt27EC1atWwc+dOODs7o2rVqujXrx+SkpKk1+navx0WbVQohBDw8/PDwIEDZT9UXpSQkCD7DxaAdJyQkPDaPi+2v/i6V/WxtbWVtRsYGKBcuXJvfJ8X36Ok8ff3h7m5OcqXL4/4+Hhs375davP29sbWrVsREREBlUqFK1euYO7cuQCAe/fuAXj19yw1NRVPnz7Fv//+i+zs7DdeGyMjI1hbW7+2D6/N82vj7OyMffv2Yfz48TA2Noa1tTVu376NTZs2SX14bYrW667Pi9LT07Fu3Tr07dtXFufPtaLzumtz/fp13Lx5E5s3b8ZPP/2ENWvW4PTp0+jUqZPUR9f+7bBoo9cKCAjI8ybbF79iYmKwePFiPHr0CIGBgZpOudTI77XJMXbsWERFRWHfvn3Q19dHr169IP7/gSj9+/fH0KFD0a5dOxgZGaFZs2bo0qULAPX/VVLBFOa1SUhIQP/+/dG7d2+cPHkShw8fhpGRETp16iT1oYIpzOvzot9//x2PHj1C7969i/PjlCiFeW1UKhUyMjLw008/4cMPP8THH3+MH3/8EQcPHkRsbKymPuI7MdB0AqTdRo8eDT8/v9f2qVatGg4cOIDIyMhcz21zd3dH9+7dsXbtWtjb2+daTZNzbG9vL/2ZV58X23NiDg4Osj4NGjSQ+iQmJsrOkZWVhaSkpDe+z4vvoe3ye21yVKhQARUqVECtWrXg5uYGR0dHHDt2DB4eHlAoFJg1axZmzpyJhIQE2NjYICIiQnaOV33PLC0tYWpqCn19fejr67/x+mVmZiI5OVn2f6Uv93l5ZVZpvjZLly6FlZWVbBXgL7/8AkdHRxw/fhzNmjXjtSmgwrw+L1q5ciXatWuXa0SFP9fyrzCvjYODAwwMDFCrVi2pv5ubGwD1Sk4XFxfd+7eT77vfiF7j5s2b4sKFC9JXeHi4ACB+++03cevWLSHE85tkX7yBNzAwMNdChHbt2snO7eHhkeuG3Tlz5kjtKSkped6we+rUKalPeHh4njfsvi6XkuzmzZsCgDh48OAr+/Ts2VO2EmvcuHGibt26sj5du3bNdcPu0KFDpePs7GxRqVKlXDfs/vbbb1KfmJiYPG/YfXFl1vfffy8sLS1Fenr6231gHfLytRk1apRo0qSJrM/du3cFAHHkyBEhBK9NcXrVv53r168LhUIhduzYkes1/LlWPF6+Njm/h/755x+pT85CkdjYWCGE7v3bYdFGRSIuLi7X6tHk5GRhZ2cnevbsKS5evCh+/fVXYWZmlmvLDwMDAzFnzhwRHR0tgoKC8lwab21tLbZv3y7Onz8vOnbsmOfS+IYNG4rjx4+Lv//+W9SsWVO2ND4/uZQUx44dE4sXLxZRUVHixo0bIiIiQnh6eorq1atLPywePHggli9fLqKjo0VUVJQYPny4MDExEcePH5fOk7M0fuzYsSI6OlosXbo0z6XxxsbGYs2aNeLy5cvi22+/FdbW1rIVUwMHDhROTk7iwIED4tSpU7mW6ecsjf/ss8/E2bNnxd69e4WNjU2J3FYiP9cmIiJCKBQKERwcLK5cuSJOnz4tvL29RZUqVcSTJ0+EELw2RSU/1yfHxIkTRcWKFUVWVlau8/DnWuHLz7XJzs4WjRo1Ei1atBBnzpwRp06dEk2bNhWffvqpdB5d+7fDoo2KRF5FmxBCnDt3TjRv3lwYGxuLSpUqidDQ0Fyv3bRpk6hVq5YwMjISderUEbt27ZK1q1QqMWnSJGFnZyeMjY3FJ598Iv1fU47//vtPdO3aVVhYWAhLS0vxzTffiEePHhU4l5Lg/PnzomXLlqJcuXLC2NhYVK1aVQwcOFDcvn1b6vPgwQPRrFkzYW5uLszMzMQnn3wijh07lutcBw8eFA0aNBBGRkaiWrVqYvXq1bn6LF68WDg5OQkjIyPRpEmTXOd5+vSpGDx4sChbtqwwMzMTX3zxhbh3756sz40bN0SbNm2EqampqFChghg9erR49uxZ4XxDtEh+ro0QQmzYsEE0bNhQmJubCxsbG9GhQwcRHR0t68NrU/jye32ys7NF5cqVxfjx4195Lv5cK1z5vTZ37twRX375pbCwsBB2dnbCz89P/Pfff7I+uvRvRyEE72QlIiIi0nZcFkZERESkA1i0EREREekAFm1EREREOoBFGxEREZEOYNFGREREpANYtBERERHpABZtRERERDqARRsRURFQKBTYtm2bptOQOXToEBQKBZKTkzWdChG9BRZtRETvYMqUKdJDvYmIihKLNiIiIiIdwKKNiEo1lUqFkJAQODs7w9TUFPXr18dvv/0G4Pl0YkREBNzd3WFmZgZPT0/ExsYCANasWYPg4GCcO3cOCoUCCoUCa9askc7977//4osvvoCZmRlq1qwJpVKZr5xy3jc8PBwNGzaEqakpWrVqhcTEROzZswdubm6wtLREt27d8OTJE+l1GRkZGD58OGxtbWFiYoLmzZvj5MmThffNIiKNYtFGRKVaSEgIfvrpJ6xYsQKXLl3CyJEj0aNHDxw+fFjqM2HCBMydOxenTp2CgYEB+vTpAwDo3LkzRo8ejTp16uDevXu4d+8eOnfuLL0uODgYX3/9Nc6fP4/PP/8c3bt3R1JSUr5zmzJlCpYsWYKjR4/i1q1b+Prrr7FgwQKsX78eu3btwr59+7B48WKp/7hx47BlyxasXbsWZ86cQY0aNeDt7V2g9yQiLVagx8sTEZUg6enpwszMTBw9elQW79u3r+jatas4ePCgACD++OMPqW3Xrl0CgHj69KkQQoigoCBRv379XOcGICZOnCgdP378WAAQe/bseWNeeb1vSEiIACCuXbsmxQYMGCC8vb2l8xsaGop169ZJ7ZmZmaJixYoiLCxMdt6HDx++MQci0j4GGqwXiYg06p9//sGTJ0/w6aefyuKZmZlo2LChdPzee+9Jf3dwcAAAJCYmwsnJ6bXnf/F15ubmsLS0RGJiYr7ze/H1dnZ2MDMzQ7Vq1WSxEydOAACuXbuGZ8+e4YMPPpDaDQ0N0aRJE0RHR+f7PYlIe7FoI6JS6/HjxwCAXbt2oVKlSrI2Y2NjXLt2DYC6+MmhUCgAqO+Fe5MXX5fz2vy8Lq/XKxSKdz4fEek23tNGRKVW7dq1YWxsjPj4eNSoUUP25ejomK9zGBkZITs7u4gzfbPq1avDyMgIR44ckWLPnj3DyZMnUbt2bQ1mRkSFhSNtRFRqlSlTBmPGjMHIkSOhUqnQvHlzpKSk4MiRI7C0tESVKlXeeI6qVasiLi4OZ8+eReXKlVGmTBkYGxsXQ/Zy5ubmGDRoEMaOHYty5crByckJYWFhePLkCfr27Vvs+RBR4WPRRkSl2rRp02BjY4OQkBBcv34d1tbWaNSoEcaPH5+vqUdfX19s3boVLVu2RHJyMlavXg0/P7+iTzwPoaGhUKlU6NmzJx49egR3d3eEh4ejbNmyGsmHiAqXQgghNJ0EEREREb0e72kjIiIi0gEs2oiIitnAgQNhYWGR59fAgQM1nR4RaSlOjxIRFbPExESkpqbm2WZpaQlbW9tizoiIdAGLNiIiIiIdwOlRIiIiIh3Aoo2IiIhIB7BoIyIiItIBLNqIiIiIdACLNiIiIiIdwKKNiIiISAewaCMiIiLSASzaiIiIiHTA/wFaAXg1z3k2+wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -885,7 +3943,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkcklEQVR4nO3deVxU1fsH8M+wDfsqiyCIS4Jb7gtqKqbiiguYpamomaZmbilmv9wyyUrLNi0V/fa1NBGV3MgFdyz33MAlEEUWUxbZYeb+/pjvjAxbIAOXmfm8X695wT33zp1nnGwez3nOORJBEAQQERER6QEDsQMgIiIiqi1MfIiIiEhvMPEhIiIivcHEh4iIiPQGEx8iIiLSG0x8iIiISG8w8SEiIiK9wcSHiIiI9AYTHyIiItIbTHyISCtJJBIsXbpU7DBUgoKC4OnpKXYYRPQvmPgQkcZs2bIFEolE9TA1NUWzZs0wc+ZMpKSk1Ohrnz17FkuXLkV6erpG79u7d2+192Rvb49OnTph8+bNkMvlGnmNTz75BHv27NHIvYioYkZiB0BEumf58uVo1KgR8vLycPr0aXz//fc4cOAArl+/DnNzc428Rm5uLoyMnv8v7OzZs1i2bBmCgoJga2urkddQatCgAVatWgUAePz4Mf7zn/9g8uTJuH37NkJCQqp9/08++QSBgYEYPnx4te9FRBVj4kNEGjdw4EB07NgRAPDWW2/BwcEBa9aswd69e/HGG2+88H3lcjkKCgpgamoKU1NTTYX7r2xsbPDmm2+qjqdOnQovLy988803WLFiBYyNjWstFiKqHg51EVGN69OnDwAgLi4OAPD555+jW7ducHBwgJmZGTp06ICwsLBSz5NIJJg5cya2bduGli1bQiqV4tChQ6pzyhqfpUuX4v333wcANGrUSDUsFR8fj169eqFNmzZlxuXl5QU/P78qvx9zc3N07doV2dnZePz4cbnXZWdnY968eXB3d4dUKoWXlxc+//xzCIKg9h6zs7OxdetWVdxBQUFVjomIKoc9PkRU4+7duwcAcHBwAAB89dVX8Pf3x9ixY1FQUIDt27dj1KhR2LdvHwYPHqz23GPHjuHXX3/FzJkzUa9evTILiEeOHInbt2/jl19+wdq1a1GvXj0AgKOjI8aNG4cpU6bg+vXraNWqleo558+fx+3bt/Hhhx++0Hv6+++/YWhoWO6wmiAI8Pf3R1RUFCZPnoy2bdsiMjIS77//PhITE7F27VoAwE8//YS33noLnTt3xttvvw0AaNKkyQvFRESVIBARaUhoaKgAQDhy5Ijw+PFj4cGDB8L27dsFBwcHwczMTHj48KEgCIKQk5Oj9ryCggKhVatWQp8+fdTaAQgGBgbCjRs3Sr0WAGHJkiWq488++0wAIMTFxaldl56eLpiamgoLFy5Ua581a5ZgYWEhZGVlVfieevXqJXh7ewuPHz8WHj9+LNy6dUuYNWuWAEAYOnSo6roJEyYIDRs2VB3v2bNHACB8/PHHavcLDAwUJBKJcPfuXVWbhYWFMGHChArjICLN4FAXEWlc37594ejoCHd3d7z++uuwtLTE7t274ebmBgAwMzNTXZuWloaMjAy88soruHTpUql79erVCy1atHjhWGxsbDBs2DD88ssvqiEmmUyGHTt2YPjw4bCwsPjXe8TExMDR0RGOjo5o3rw5vv76awwePBibN28u9zkHDhyAoaEhZs2apdY+b948CIKAgwcPvvB7IqIXx6EuItK4b7/9Fs2aNYORkRGcnZ3h5eUFA4Pn/87at28fPv74Y1y5cgX5+fmqdolEUupejRo1qnY848ePx44dO3Dq1Cn07NkTR44cQUpKCsaNG1ep53t6euLHH39UTdF/6aWX4OTkVOFz7t+/D1dXV1hZWam1N2/eXHWeiGofEx8i0rjOnTurZnWVdOrUKfj7+6Nnz5747rvvUL9+fRgbGyM0NBQ///xzqeuL9w69KD8/Pzg7O+O///0vevbsif/+979wcXFB3759K/V8CwuLSl9LRHUbh7qIqFbt2rULpqamiIyMxKRJkzBw4ECNJBVl9RYpGRoaYsyYMQgLC0NaWhr27NmDN954A4aGhtV+3fI0bNgQjx49wrNnz9TaY2JiVOeVKoqdiDSLiQ8R1SpDQ0NIJBLIZDJVW3x8fLVXLlbW6pS3cvO4ceOQlpaGqVOnIisrS21dnpowaNAgyGQyfPPNN2rta9euhUQiwcCBA1VtFhYWGl9xmojKxqEuIqpVgwcPxpo1azBgwACMGTMGqamp+Pbbb9G0aVP89ddfL3zfDh06AAAWL16M119/HcbGxhg6dKgqIWrXrh1atWqFnTt3onnz5mjfvr1G3k95hg4dCl9fXyxevBjx8fFo06YNfv/9d+zduxezZ89Wm7LeoUMHHDlyBGvWrIGrqysaNWqELl261Gh8RPqKPT5EVKv69OmDTZs2ITk5GbNnz8Yvv/yCTz/9FCNGjKjWfTt16oQVK1bg6tWrCAoKwhtvvFFqccHx48cDQKWLmqvDwMAAERERmD17Nvbt24fZs2fj5s2b+Oyzz7BmzRq1a9esWYMOHTrgww8/xBtvvIHvv/++xuMj0lcSQSi2hCgRkQ776quvMGfOHMTHx8PDw0PscIhIBEx8iEgvCIKANm3awMHBAVFRUWKHQ0QiYY0PEem07OxsREREICoqCteuXcPevXvFDomIRMQeHyLSafHx8WjUqBFsbW0xffp0rFy5UuyQiEhETHyIiIhIb3BWFxEREekNJj5ERESkN1jcXIJcLsejR49gZWXFZeSJiIi0hCAIePbsGVxdXdU2RS6JiU8Jjx49gru7u9hhEBER0Qt48OABGjRoUO55Jj4lWFlZAVD8wVlbW4scDREREVVGZmYm3N3dVd/j5WHiU4JyeMva2pqJDxERkZb5tzIVFjcTERGR3mDiQ0RERHqDiQ8RERHpDdb4vACZTIbCwkKxw6BaYGxsDENDQ7HDICIiDWHiUwWCICA5ORnp6elih0K1yNbWFi4uLlzXiYhIBzDxqQJl0uPk5ARzc3N+Eeo4QRCQk5OD1NRUAED9+vVFjoiIiKqLiU8lyWQyVdLj4OAgdjhUS8zMzAAAqampcHJy4rAXEZGWY3FzJSlreszNzUWOhGqb8jNnXRcRkfZj4lNFHN7SP/zMiYh0BxMfIiIi0htMfIiIiEhvMPHRA0FBQZBIJJBIJDA2NoazszP69euHzZs3Qy6XV/o+W7Zsga2tbc0FSkREVMOY+OiJAQMGICkpCfHx8Th48CB8fX3x3nvvYciQISgqKhI7PCIi0gNZWVnIzs4WNQatSXxWrVqFTp06wcrKCk5OThg+fDhiY2PVrsnLy8OMGTPg4OAAS0tLBAQEICUlRaSI6xapVAoXFxe4ubmhffv2+OCDD7B3714cPHgQW7ZsAQCsWbMGrVu3hoWFBdzd3TF9+nRkZWUBAI4fP46JEyciIyND1Xu0dOlSAMBPP/2Ejh07wsrKCi4uLhgzZoxq7RsiIiJBEPDtt9/iiy++wPr16yEIgmixaE3ic+LECcyYMQPnzp3D4cOHUVhYiP79+6tljnPmzMFvv/2GnTt34sSJE3j06BFGjhxZYzEJgoCCggJRHpr4j6ZPnz5o06YNwsPDAQAGBgZYt24dbty4ga1bt+LYsWNYsGABAKBbt2748ssvYW1tjaSkJCQlJWH+/PkAFNO8V6xYgatXr2LPnj2Ij49HUFBQteMjIiLtl56ejuXLl+Off/4BAGRnZ4s6W1ZrFjA8dOiQ2vGWLVvg5OSEixcvomfPnsjIyMCmTZvw888/o0+fPgCA0NBQNG/eHOfOnUPXrl01HlNhYSFWrVql8ftWxqJFi2BiYlLt+3h7e+Ovv/4CAMyePVvV7unpiY8//hjTpk3Dd999BxMTE9jY2EAikcDFxUXtHpMmTVL93rhxY6xbtw6dOnVCVlYWLC0tqx0jERFpp/Pnz+PAgQOqYxsbG7z33nsiRqRFiU9JGRkZAAB7e3sAwMWLF1FYWIi+ffuqrvH29oaHhweio6PLTXzy8/ORn5+vOs7MzKzBqOseQRBUmfeRI0ewatUqxMTEIDMzE0VFRcjLy0NOTk6FCzdevHgRS5cuxdWrV5GWlqYqmE5ISECLFi1q5X0QEVHdIQgC1q1bp7a35aBBg9CpUyfxgvofrUx85HI5Zs+eje7du6NVq1YAFPtomZiYlJp15OzsjOTk5HLvtWrVKixbtuyF4jA2NsaiRYte6LnVZWxsrJH73Lp1C40aNUJ8fDyGDBmCd955BytXroS9vT1Onz6NyZMno6CgoNzEJzs7G35+fvDz88O2bdvg6OiIhIQE+Pn5oaCgQCMxEhGR9nj69Cm+/vprtbb33nuvzswK1srEZ8aMGbh+/TpOnz5d7XstWrQIc+fOVR1nZmbC3d29Us+VSCQaGW4Sy7Fjx3Dt2jXMmTMHFy9ehFwuxxdffAEDA0Xp16+//qp2vYmJCWQymVpbTEwMnjx5gpCQENWf24ULF2rnDRARUZ0SHR2N33//XXVcr149TJ8+vU6tgK91ic/MmTOxb98+nDx5Eg0aNFC1u7i4oKCgAOnp6WpZZUpKSqmalOKkUimkUmlNhlwn5OfnIzk5GTKZDCkpKTh06BBWrVqFIUOGYPz48bh+/ToKCwvx9ddfY+jQoThz5gzWr1+vdg9PT09kZWXh6NGjaNOmDczNzeHh4QETExN8/fXXmDZtGq5fv44VK1aI9C6JiEgMcrkca9asUZtwNHToULRv317EqMqmNbO6BEHAzJkzsXv3bhw7dgyNGjVSO9+hQwcYGxvj6NGjqrbY2FgkJCTAx8entsOtcw4dOoT69evD09MTAwYMQFRUFNatW4e9e/fC0NAQbdq0wZo1a/Dpp5+iVatW2LZtW6nC7W7dumHatGkYPXo0HB0dsXr1ajg6OmLLli3YuXMnWrRogZCQEHz++ecivUsiIqpt//zzD1asWFFqlnVZSU9EBNCtm+KnWCSCmJPpq2D69On4+eefsXfvXnh5eanabWxsYGZmBgB45513cODAAWzZsgXW1tZ49913AQBnz56t9OtkZmbCxsYGGRkZsLa2VrXn5eUhLi4OjRo1gqmpqYbeFWkDfvZERGU7deoUjh07pjquX78+pkyZUu7QVrduQHQ04OMDVOGruVLK+/4uSWuGur7//nsAQO/evdXaQ0NDVWvGrF27FgYGBggICEB+fj78/Pzw3Xff1XKkREREuk0ulyMkJASFhYWqthEjRuDll1+u8HnBwUBIiOKnWLSmx6e2sMeHSuJnT0T0XGpqqqozQmnevHmir9umcz0+REREJK6oqCicPHlSdezh4aHaCFtbMPEhIiKiCslkMqxcuVJtu6TAwEC0bNlSxKheDBMfIiIiKldSUhJ++OEHtbb58+fDwsJCpIiqR2umsxMREVHtOnz4sFrS07hxYyxZskSV9NSF6elVxR4fIiIiUlNUVISVK1eqtY0ePRre3t6IiFDMzPL1BdatA7KyFMf+/iIFW0VMfIiIiEjl4cOH2LRpk1rbggULVGvmhYQo1uK5dk2R9Fhaijs9vao41EVEREQAgIMHD6olPV5eXmjXbglefdVMNZwVHKxYgHDWLMXPbdu0p7cHYI8PaVBQUBDS09OxZ88eAIrFJtu2bYsvv/zyhe+piXsQEVHFCgsL8cknn6i1jRkzBi+99JJqtWXlcJbyoa3Y46MHlGssKHeTb9q0KZYvX46ioqIafd3w8PBKb1h6/PhxSCQSpKenv/A9iIio6hISEkolPQsXLsRLL70E4HkPjzYNZ1WEPT56YsCAAQgNDUV+fj4OHDiAGTNmwNjYGIsWLVK7rqCgACYmJhp5TXt7+zpxDyIiKltERAQuX76sOm7VqhUCAgLUrtH2Hp6S2OOjJ6RSKVxcXNCwYUO888476Nu3LyIiIhAUFIThw4dj5cqVcHV1VW0A++DBA7z22muwtbWFvb09hg0bhvj4eNX9ZDIZ5s6dC1tbWzg4OGDBggUouftJ7969MXv2bNVxfn4+Fi5cCHd3d0ilUjRt2hSbNm1CfHw8fH19AQB2dnaQSCSq/ddK3iMtLQ3jx4+HnZ0dzM3NMXDgQNy5c0d1fsuWLbC1tUVkZCSaN28OS0tLDBgwAElJSaprjh8/js6dO8PCwgK2trbo3r077t+/r6E/aSKiuq+goADLli1TS3qaNBlXKunRRUx89JSZmRkKCgoAAEePHkVsbCwOHz6Mffv2obCwEH5+frCyssKpU6dw5swZVQKhfM4XX3yBLVu2YPPmzTh9+jSePn2K3bt3V/ia48ePxy+//IJ169bh1q1b2LBhAywtLeHu7o5du3YBAGJjY5GUlISvvvqqzHsEBQXhwoULiIiIQHR0NARBwKBBg9Q2ysvJycHnn3+On376CSdPnkRCQgLmz58PQDFFc/jw4ejVqxf++usvREdH4+2339aq5daJiKojLi4Oq1atUmv75JNFWLmyMZo3B7y9tWtdnqriUJeeEQQBR48eRWRkJN599108fvwYFhYW2Lhxo2qI67///S/kcjk2btyoSghCQ0Nha2uL48ePo3///vjyyy+xaNEijBw5EgCwfv16REZGlvu6t2/fxq+//orDhw+jb9++ABQLYSkph7ScnJxga2tb5j3u3LmDiIgInDlzBt26dQMAbNu2De7u7tizZw9GjRoFQFGkt379ejRp0gQAMHPmTCxfvhyAYhO7jIwMDBkyRHW+efPmVf+DJCLSQuHh4bh27Zrq+PLltoiJGYYOHYCEBCAxUdGuTevyVBV7fERS26td7tu3D5aWljA1NcXAgQMxevRoLF26FADQunVrtbqeq1ev4u7du7CysoKlpSUsLS1hb2+PvLw83Lt3DxkZGUhKSkKXLl1UzzEyMkLHjh3Lff0rV67A0NAQvXr1euH3cOvWLRgZGam9roODA7y8vHDr1i1Vm7m5uSqpAYD69esjNTUVgCLBCgoKgp+fH4YOHYqvvvpKbRiMiEgX5efnY9myZWpJz5EjQUhNHYbVqxWFy0+eKNpNTXWnkLksTHxEolwAKiSkdl7P19cXV65cwZ07d5Cbm4utW7eqlhwvud9KVlYWOnTogCtXrqg9bt++jTFjxrzQ6ysXvqoNxsbGascSiUSt/ig0NBTR0dHo1q0bduzYgWbNmuHcuXO1Fh8RUW26e/cuQkp82Xz55Qfo2bOh6jgkBMjLUyxGuGOH7vb2AEx8RFPb0wMtLCzQtGlTeHh4wMio4hHO9u3b486dO3ByckLTpk3VHjY2NrCxsUH9+vXxxx9/qJ5TVFSEixcvlnvP1q1bQy6X48SJE2WeV/Y4yWSycu/RvHlzFBUVqb3ukydPEBsbixYtWlT4nkpq164dFi1ahLNnz6JVq1b4+eefq/R8IiJt8Ouvv2Lbtm2q43r1OiIycgmmTzfGunXP/wGu/E7StsUIXwQTH5H4+wNnz9bN/8DGjh2LevXqYdiwYTh16hTi4uJw/PhxzJo1Cw8fPgQAvPfeewgJCcGePXsQExOD6dOnl1qDpzhPT09MmDABkyZNwp49e1T3/PXXXwEADRs2hEQiwb59+/D48WNkZWWVusdLL72EYcOGYcqUKTh9+jSuXr2KN998E25ubhg2bFil3ltcXBwWLVqE6Oho3L9/H7///jvu3LnDOh8i0inh4blYtmyZWhnA5MmTMWPGYJw9C0RFqW83UZe/kzSNiQ+VYm5ujpMnT8LDwwMjR45E8+bNMXnyZOTl5cHa2hoAMG/ePIwbNw4TJkyAj48PrKysMGLEiArv+/333yMwMBDTp0+Ht7c3pkyZguzsbACAm5sbli1bhuDgYDg7O2PmzJll3iM0NBQdOnTAkCFD4OPjA0EQcODAgVLDWxW9t5iYGAQEBKBZs2Z4++23MWPGDEydOrUKf0JERHVXbGwsrl1brda2ePFiNGjQQHWsTz08JUmEkouv6LnMzEzY2NggIyND9SUPAHl5eYiLi0OjRo1gamoqYoRU2/jZE5G22LZtG+7evas6dnLygZtbf9Vwli4nOeV9f5fE6exERERaLjw8B9eufabW5uU1Ba+/7lpqry19x6EuIiIiLXbz5s1SSc+KFR9i3TpXALq311Z1sceHiIhIS23ZskVtyx1n51fg6toHnTsrEp2ICOjFMFdVMPEhIiLSMllZWfjiiy/U2ry9p2H0aGfVcUgIkJYGxMRwmKs4DnVVEWvB9Q8/cyKqS65du6aW9MhkRli+/EN89ZV60hMdDQgCh7lKYuJTScrp0jk5OSJHQrVN+ZlXdso8EZGmFN/eSBAE/PjjjwgPD1ed9/X1hUy2GCYmhkhIeL4NkrKuZ/Vq/Vmfp7I4nb2EiqbDJSUlIT09HU5OTjA3N+eO3jpOEATk5OQgNTUVtra2qF+/vtghEZGeadBAsXGovX0mZs1aq3auefPpmDvXEY8eKXp2AEWyc/asCIHWAZzOXgNcXFwAQLXhJekHW1tb1WdPRFSbUlOBtm2vYPjwvaq2ggIzrFgxHz16GKh2U5dIgGbNOKRVGUx8qkAikaB+/fpwcnJCYWGh2OFQLTA2NoahoaHYYRCRHhIEAb16XUCPHgdUbceP98OcOd1gYKBIcqZPB54+BebMAVauFDFYLcLE5wUYGhryy5CIiDSq+NTz/v3z8Ntvv6FHj5uq8xs2zET37g5QbrTu78/anRfBxIeIiEgkixcD69YBs2YpNg6Njga++y4RcXFhSE9Ph4GBAW7e7Ivt27sCkCA8HJDLOT29Opj4EBER1bKICGDBAuD2bUVh8rp1wH//K+CXX/6At/dhpKfLYWJii/HjA3HxohuuXAHi44G8vOc7qtOLYeJDRERUyxYsAGJjFb8bGACzZuUiN3cvmjdXNN682RxJSf5o2dIUISHAp58qruUqzNXHxIeIiKiWKVdDMTMDNm16iJSUMMTGZsDQ0BD16/dHZGQnBAdLVAsRhoRwPR5N4QKGREREtezTTwEfHwFffXUGd++GIiMjA3Z2dpg0aRIcHTsDUGRG3GBU89jjQ0REVMv69s1BVtYe3LlzBwBga9sS7u5DERgoxdOnimEw9vLUDCY+RERENaC8ndETEhIQFhaGZ8+eQSYzxIEDA3DxYgc4OEjw5Ang7c1enprExIeIiEiDlAlP8Z4bf3/lXlunkZgYBQMDAQ4ODti2LRAXLypWhn/69HnCw16emsPEh4iISAOUCU9aGhATo95zk52djd27dyMp6R4MDIA7d1rjyJHB6NNHijt3FElPQACwc6fY70L3MfEhIiKqpogIYOxYICsL8PJSJDy+vkB4OLBiRTxOn94FC4ssFBUZYf/+Qbh1qy3y8iSQyYB//hE7ev3CxIeIiKiaQkIUSY+lJbB6tWKoqnlzOZydT6FXrxMwMBDw+HE9XLgwCqamTpg7V7FSM+t4ah8THyIiomoKDgYWLlSswgwAWVlZ8PUNh7NzHADg8uW2OHlyILZsMWH9jsi4jg8REVEVREQA3bopfir5+wN2dopi5i+++BsrVqyHs3McCgqMER4+HHv3DkNGBpOeuoA9PkRERFVQfDVlZSITEQGkp8vh738c7dqdgkQCpKQ4YefOUfjnn3qQSICRI8WNmxTY40NERFQFwcGKAua0tOe9PmvXZqJLl/+gfXtF0nPxYnv8+ONbyMiohw8+UOyozhlbdQMTHyIioirw9wfs7RVT1kNCgLt376Jv3w3w9LwPQTDBsWMjcfjwUCxYYIyCAmDlSrEjpuKY+BAREVWgrJoeX1/A2lqGZs2OYNu2bSgqyoGLiwveffdtnDjRGrm5THjqKtb4EBERlWHxYmDdOsDGBkhMVKzTs22b4lxoaAYCA3fBw+MBAODy5Y4IC/ODkRG/Vus6fkJERERlWLdOsTZPfj5gYKD4PSQEcHSMxbhxe2FunguZTIr9+/0xYEALMOfRDvyYiIiIyjBggGLlZalUkfQYGsrQt+8RGBqeAwCYm7virbcCsXy5nciRUlWwxoeIiPRayRoe5fH164rZWNnZgK1tGiZODFUlPV26dMGcORNhZ8ekR9tIBEG5ziQBQGZmJmxsbJCRkQFra2uxwyEiohrWrZtiXR4fH+Ds2efHbm7Ao0eAl9ctDB++F6am+TA0NEVg4DB4e3uLHTaVUNnvbw51ERGR3oqIUKzH4+X1fN+s4GBFLc/Dh0UYMOAwunT5EwDQoEEDBAQEwNbWVryAqdqY+BARkd4KCVGsx2NqqthrS8nc/Cn8/cPg6JgEAHBy8kFQ0KswNDQUKVLSFA51lcChLiIi3RYRoUh4lD08r78O5OYqfvf2Bry9b6B58whIpQUoKDCDt/dwjBvXTLyAqVI41EVERFSG4nttnT2rWIU5MREwMipEhw6ReOmliwAACwt3zJkTyH8E6xgmPkREpFeUNTy+vopCZgBwcPgHo0eHwckpBQDQo0cP+Pr6wsCAk591DRMfIiLSC8qVmGfNUiQ/Y8cq1ufx8/sLnTrtg5FRIczNzTFixAg0bdpU7HCphjDxISIinRMRASxYoEhsLC2B1aufr8QcEgI0awbk5xdi5MiDePnlywAAT09PjBw5ElZWViJHTzWJiQ8REemckBAgNvb58ejRUG0pIZcDVlaPMWvWTlhZPQYA9OzZE7169eLQlh7gJ0xERDqh+ArMwcGKtXkcHBTn8vIUvT0A0KXLFQwd+iOsrB7DwsIC48aNYz2PHmGPDxERab2IiOfT0hcuBD79VJHoPH36/BoTkwIMGnQAbdtehVwONG7cGCNGjIClpaV4gVOtY+JDRERaLyTk+Vo8gqA4TkxUHEskQNOmKfDzC0O9ev9AIpGgd+/e6NGjB3t59BATHyIi0krFFyL09QWuXFGsybN6teL89OnAkycC5s+/DFPTgygqKoKVlRVGjhwJT09PMUMnETHxISIirVR8IUJA0ePj4QH4+yuO/fzysW/fPly/fh1FRUDTpk0xfPhwWFhYiBc0iY6JDxERaQ3lNHWJBBg5UtEWHAz88Qdw7Zqi5wcAkpKSEBYWhqdPn0IikaBPnz7o3r07JBKJeMFTnaCTg5vffvstPD09YWpqii5duuDPP/8UOyQiItIA5TT1mBggKkqx5YS/v+L3rCwgKkrA+fPnsWnTJjx9+hTW1tYICgpCjx49mPQQAB1MfHbs2IG5c+diyZIluHTpEtq0aQM/Pz+kpqaKHRoREVWTcpq6t/fzLSeU09dfeSUPo0eH4cCBA5DJZGjWrBmmTp0KDw8PscOmOkTndmfv0qULOnXqhG+++QYAIJfL4e7ujnfffRfByq14K8Dd2YmItEO3booaHx8fICzsEcLCwpCWlgYDAwP07dsXXbt2ZS+PHqns97dO9fgUFBTg4sWL6Nu3r6pN+RcgOjq6zOfk5+cjMzNT7UFERHXD4sWAlZXiZ8nj4GDAx0fApEnnsGnTJqSlpcHGxgYTJ06Ej48Pkx4qk04VN//zzz+QyWRwdnZWa3d2dkZMTEyZz1m1ahWWLVtWG+EREVElKaeqX76sWHV5zRpFHY/yeN06IDU1F7m5Ear/v3t7e8Pf3x9mZmYiR091mU71+LyIRYsWISMjQ/V48OCB2CEREek95VR1CwvAwAAwNlYcm5srNh19772H2LBhA2JiYmBoaIgBAwbgtddeY9JD/0qnEp969erB0NAQKSkpau0pKSlwcXEp8zlSqRTW1tZqDyIiqn1l7bWVna3YVLSwUHGNo6OAyMizkEpDkZGRATs7O0yaNAldunTh0BZVik4NdZmYmKBDhw44evQohg8fDkBR3Hz06FHMnDlT3OCIiKhCyl6ehQsBOzvFWj15eYoenlmzgNOnczB8+B4cPnwHANCyZUsMGTIEpqamIkdO2kSnEh8AmDt3LiZMmICOHTuic+fO+PLLL5GdnY2JEyeKHRoRERVTfMuJP/5Q1O+4uQHPninW6XFzU8zYCg4G2rZNQL16u5CZmaka2urQoQN7eajKdC7xGT16NB4/foyPPvoIycnJaNu2LQ4dOlSq4JmIiMShTHgSEhQbiS5YoPiZlwdkZCgSHkDR03PmjIDTp09jy5YoCIIAe3t7jBo1qtzyBaJ/o3Pr+FQX1/EhIqpZ3t6K1ZeNjRW1O25uiqTn6VMgIAAYN06RGM2bl43c3N24d+8eAKB169YYPHgwpFKpyO+A6qLKfn/rXI8PERHVXRERip4eAHByUqzJc/cuUFSkaEtMVGxB8fLL8di1axeysrJgZGSEgQMHol27dhzaompj4kNERLUmJESxi7qBgaJ+59Ch50mPRAIsXCjHiROncOLECQiCgHr16mHUqFFwcnISN3DSGUx8iIioxinrenx9FbuoZ2Upkp6sLMWQl6EhMHduFjIywnHlShwAoE2bNhg0aBBMTExEjp50CRMfIiKqURERwNixiiQHALZte54ERUUpZm21avU3wsPDEReXDWNjYwwaNAht27YVNW7STUx8iIioRhSfvZWVpRjK8vVV1PD4+yuukcvlOHHiBH766SQAwMnJCYGBgXB0dBQxctJlTHyIiEjjIiKAwEDFrC1DQ0WbIABbtwIrVyqOnz17hl27duH+/fsAgPbt22PAgAEwNjYWKWrSB0x8iIhI40JCnm8zYWio2HZCEBRT1gHg7t272L17N3JycmBiYoIhQ4agdevW4gVMeoOJDxERaUzxIuaEBODJE2DuXMW5deuAWbNkOHIkCmfOnAEAODs7Y9SoUXBwcBAxatInTHyIiOiFFE9ylEXKyv22zp0DXF2BHTue1/MsWJCBXbt24cyZBwCAjh07ws/PD0ZG/Cqi2sOVm0vgys1ERJXTrZsiybG0fD5jy8pK8bvym8XHBzh7Frh9+zb27NmD3NxcSKVSDB06FC1bthQveNI5lf3+NqjFmIiISIcEBysSm1mznrc9e6bo6TE1VWxFsWCBDJGRkfjll1+Qm5uL+vXr4+2332bSQ6Jhj08J7PEhIqo6BwdF4bKREbBrl2J4Kz09HWFhYUhMTAQAdO7cGf369ePQFtUI7tVFREQ1LiJCsbu6mZli89FPP1UkPTExMdi7dy/y8vJgamqKYcOGwdvbW+xwiZj4EBFR5SkLmt3cFFtO2NgoNhYFFMNegwYV4eDBw/jzzz8BAG5ubggMDIStra14QRMVw8SHiIgqbcECIDZWsQqzICg2GPXyUhzPmfMUmzeHISkpCQDg4+ODV199FYbKFQyJ6gAWNxMRUZkiIhQztyIinrdJJIqf9vaK2Vxz5wIxMUBY2A3cu/cDkpKSYGZmhjfeeAP9+/dn0kN1DoubS2BxMxGRQvHp6tu2KWp3lENdwcGK46KiIkRGRuLChQsAAHd3dwQEBMDGxkbk6EnfsLiZiIiqpHhSAyhWXpZIFOvyLFjw/NzZs4rzT548wc6dO5GSkgIA6NGjB3r37s1eHqrTmPgQERGA56suh4QojpVFy5aWigRIec7fH7h27Rr27duHgoICmJubY8SIEWjatKl4wRNVEmt8iIgIgKI3x80NuHxZ8dPNTbEQ4axZimnqPj7AggWFiIiIQHh4OAoKCtCwYUNMmzaNSQ9pDdb4lMAaHyLSZ8otJywtgdatFb08ym0nHj9+jLCwMKSmpgIAevbsiV69esHAgP+GJvGxxoeIiKps1izlLupAly7P63quXLmCAwcOoLCwEBYWFhg5ciQaN24sdrhEVcYenxLY40NE9FxBQQEOHDiAq1evAgAaNWqEkSNHwtLSUuTIiNRxk1IiIiqTcn2exYufr9NT1po9qamp+PHHH3H16lVIJBL07t0bb775JpMe0mrs8SmBPT5EpOuKr8+jrOdxc1OsyOzjA5w5I+Dy5cs4ePAgioqKYGVlhZEjR8LT01Ps0InKxRofIiIqU3CwonbH11dRz5OVpZiu7uMDvP9+Pnbv3o9r164BAJo0aYIRI0bAwsJC5KiJNINDXUREekI5nAUokp+oKEURs4+PYrp6eHgyHj78AdeuXYNEIsGrr76KsWPHMukhncIeHyIiPaFcoHDhQuDhQ0VPD6AY2rpw4QI2boyETCaDtbU1AgIC4OHhIW7ARDWAPT5ERDqkrCJlpeBgxU7q8fHPa3vefz8PYWFhOHDgAGQyGZo1a4apU6cy6SGdxR4fIiIdUnLbCWUtT1SUIvGxt1cUMVtaAj/++AgPHoQhLS0NBgYGePXVV+Hj4wOJcgt2Ih3ExIeISIcoC5eVP6OjgWvXFD08z9sFTJr0J+7c+R1yuRw2NjYIDAxEgwYNxA6fqMYx8SEi0gHFd1ZX7p4OKOp5nj1TTFcPDgb69ctFbm4EYmJiAADe3t7w9/eHmZmZSJET1S7W+BARaani9Twlh7giIhRJT3y8Ypd1e3ugffuH2LBhA2JiYmBgYIABAwbgtddeY9JDeoU9PkREWqp4slN8bZ5u3YC0NOB/nTqwtBQwcWI0QkOPQi6Xw87ODoGBgXB1dRX3DRCJgIkPEZGWKl7P4++veChXZTY1VQxv2dvnYOLEvXj06DYAoEWLFhg6dChMTU1Fjp5IHEx8iIi0lDLZiYgAvL0VBcy5uYpVmPPygJdfTkC/fruQmZkJQ0ND+Pn5oWPHjpy1RXqtyomPoaEhkpKS4OTkpNb+5MkTODk5QSaTaSw4IiL6dyEhiinqShKJgD59zqBLl2PIzBRgb2+PUaNGwcXFRbwgieqIKic+5e1pmp+fDxMTk2oHREREVRMcDCxYoOjxMTXNxquv7oGr610AQOvWrTF48GBIpVKRoySqGyqd+Kxbtw4AIJFIsHHjRlhaWqrOyWQynDx5Et7e3pqPkIiIKqQc8oqPj0d4eDiePXsGIyMjDBw4EO3atePQFlExlU581q5dC0DR47N+/XoYGhqqzpmYmMDT0xPr16/XfIRERKQSEQFMnw48fQrMmQOsXAnI5XKcOnUKJ06cgCAIqFevHgIDA+Hs7Cx2uER1jkQob+yqHL6+vggPD4ednV1NxSSqzMxM2NjYICMjA9bW1mKHQ0R6pvhChP7+pdsWLHhez2NpCSQlZSE8PBxxcXEAgDZt2mDQoEEsPSC9U9nv7yonPrqOiQ8RiSUiAhg7VlGr4+PzfAXm5s0Va/IoqwliYhQztz744G/Y2oYjOzsbxsbGGDRoENq2bSta/ERiquz3d5WLmydNmlTh+c2bN1f1lkREBEWvjnLX9ODg5+3Kf54KArB6NRASIseECSeQnHwS2dmAo6MjRo0aBUdHR3ECJ9IiVU580tLS1I4LCwtx/fp1pKeno0+fPhoLjIhI35RckBBQ9AIBit6eTz8FfH2f4enTXbh//z4AoF27dhg4cCCMjY1FippIu1Q58dm9e3epNrlcjnfeeQdNmjTRSFBERPqmvNqe4kNfLVrcxfr1u5GTkwMTExMMGTIErVu3FjdwIi2jsRqf2NhY9O7dG0lJSZq4nWhY40NEYlBuNaGs7Rk1CggLU5yzspJj9epjSEk5AwBwdnbGqFGj4ODgIGLERHVLjdX4lOfevXsoKirS1O2IiPRK8WGuiIjnSY+1dQb+7/92ISXlAQCgY8eO8PPzg5ERdxwiehFV/pszd+5ctWNBEJCUlIT9+/djwoQJGguMiEgX/dt0deVGowDw0ku3MXr0HmRn58LExAT+/v5o2bKleMET6YAXWsenOAMDAzg6OqJPnz6YNGmS1v8rhENdRFSTSg5pFW/z9gbs7ABfXxkSE4+iUaNoAED9+vURGBgIe3t7ESMnqttqbKgrKiqqWoEREemz4kNaJduePgVu3UpHly5haNQoEQDQuXNn9OvXT+v/UUlUV7zw36TU1FTE/m/5UC8vr1K7tRMRUWnKfbWK++MP4No1YNSoGLi67oWxcR5MTU3h7++P5s2bixMokY4yqOoTMjMzMW7cOLi6uqJXr17o1asX3Nzc8OabbyIjI6MmYiQi0mnffluEHj0OoWHDHTA2zkN6uhsaN57KpIeoBlQ58ZkyZQr++OMP7N+/H+np6UhPT8e+fftw4cIFTJ06tSZiJCLSORERitqenTvT8N57m9G16x8AgLg4H3z99USsXWsrboBEOqrKQ1379u1DZGQkevTooWrz8/PDjz/+iAEDBmg0OCIiXRUSAmRk3MTVqxEwNs6HmZkZhg0bhthYL9y+rV4DRESaU+XEx8HBATY2NqXabWxsdHbHdiIiTVBOW1+woAh9+0bC0PACAMDd3R0BAQGwsbGBl1fpGiAi0pwqD3V9+OGHmDt3LpKTk1VtycnJeP/99/F///d/Gg2OiEjbKYe0IiKA6dOB2NgnOHp0kyrp+fvv7pgwYUKZ/6AkIs2r8jo+7dq1w927d5Gfnw8PDw8AQEJCAqRSKV566SW1ay9duqS5SGsJ1/EhouooazFC5bo9+fnX4Oe3D1JpAYyMzPHHHyPw1ltN2cNDpAE1to7PsGHDIJFIqhUcEZEuKGsV5pAQRaITEqI4fvoU8PAoRJMmB9G06WUAgFzeEO++OxKLF/MfV0S1TWOblOoK9vgQUWWVtQpz8WQoJAS4c+cxRo0Kg7NzKgQB6NnzFfTu3RsGBlWuNCCiCtRYj0/jxo1x/vz5UrsCp6eno3379vj777+rHi0RkRYqaxXm4gsUPnlyFXfv7oeJSSGysizQps1I9OnTWJxgiQjACyQ+8fHxkMlkpdrz8/Px8OFDjQRFRKQNylqFGQB27y7Anj0H0bjxFZiYAPfvN0L9+iPx5puWtR8kEampdOITERGh+j0yMlJtBoJMJsPRo0fRqFEjzUZHRFTH/Nvu6l27puLs2Z1o3PgfyOUS/P13L2zd+gqHtojqiErX+Cj/0kokEpR8irGxMTw9PfHFF19gyJAhmo+yFrHGh4gqUv7u6gICAy+jbduDKCoqQm6uJc6eDcD8+Z6ctUVUCzRe4yOXywEAjRo1wvnz51GvXr3qR0lEpCWUvTq+vorj4nU977+fj4iI/fD0vIaiIqBJkyYYMWIELCwsxAmWiMpV5RqfuLi4moiDiKhOU05TB5739ADA9u3JOH8+DJ6eTyCXS3D3bh989FF3LvtBVEdVOfFZvnx5hec/+uijFw6mPPHx8VixYgWOHTuG5ORkuLq64s0338TixYthYmKiuu6vv/7CjBkzcP78eTg6OuLdd9/FggULNB4PEemfkjO4BEHAxYsXcfPmIVhby5CRYY0DBwKwerUHmPMQ1V1VTnx2796tdlxYWIi4uDgYGRmhSZMmNZL4xMTEQC6XY8OGDWjatCmuX7+OKVOmIDs7G59//jkAxdhe//790bdvX6xfvx7Xrl3DpEmTYGtri7ffflvjMRGRfik+gysvLw/79u3DjRs3YGgIJCa+hD/+GI7Vq81Zz0NUx2lkAcPMzEwEBQVhxIgRGDdunCbi+lefffYZvv/+e9W6Qd9//z0WL16M5ORkVS9QcHAw9uzZg5iYmErfl8XNRFSR7dsf4fLlMJibp0EuN0CDBq/irbd8OLRFJLLKfn9rZH6ltbU1li1bVqublGZkZMDe3l51HB0djZ49e6oNffn5+SE2NhZpaWm1FhcR6SZBEPDHH3/g5s3NMDdPQ0aGDTZvnojQ0G5Meoi0iMYWlsjIyEBGRoamblehu3fv4uuvv8bUqVNVbcnJyXB2dla7TnlcfCf5kvLz85GZman2ICL9U3wX9ZJyc3Px66+/4tChQzA0lCEmxgt79kyFu3sDtdldRFT3VbnGZ926dWrHgiAgKSkJP/30EwYOHFilewUHB+PTTz+t8Jpbt27B29tbdZyYmIgBAwZg1KhRmDJlSpVeryyrVq3CsmXLqn0fItJuxTcXLV6nk5iYiLCwMKSnp0MuN0BkZD/cuNEF27ZJWM9DpIWqnPisXbtW7djAwACOjo6YMGECFi1aVKV7zZs3D0FBQRVe07jx831tHj16BF9fX3Tr1g0//PCD2nUuLi5ISUlRa1Meu7i4lHv/RYsWYe7cuarjzMxMuLu7V/YtEJGO8PUFrl17vk6PIAg4d+4cjhw5ArlcDltbWzg5BeLwYTds21b2VhVEVPeJuo6Po6MjHB0dK3VtYmIifH190aFDB4SGhpZa/t3HxweLFy9GYWEhjI2NAQCHDx+Gl5cX7Ozsyr2vVCqFVCp98TdBRDohKgrIylL8zM3NxZ49e3D79m0AgK1tC0ydOhSmpqZ44w2RAyWianmhGp/09HRcuHABFy5cQHp6uoZDKi0xMRG9e/eGh4cHPv/8czx+/BjJyclqtTtjxoyBiYkJJk+ejBs3bmDHjh346quv1HpziIiKK17XExys2IZi5swHWL9+PW7fvg2ZzBD79g3C3LmBWLHCVOxwiUgDqjSdPT4+HjNmzEBkZKRqvy6JRIIBAwbgm2++gaenZ40EuWXLFkycOLHMc8XDL76AYb169fDuu+9i4cKFVXotTmcn0h/F9906c0bAxo1n8PDhMRgYCLC3t4ej4yiMHesCuRywtASePRM7YiIqT2W/vyud+Dx48ACdOnWCsbExpk+fjubNmwMAbt68ie+//x5FRUU4f/48GjRooJl3IBImPkT6Q7n/1rx52cjL24O7d+8CAJKSWuGrr4ZAKpVi8WJg3Tpg1ixg5UqRAyaicmk88Zk8eTLu3r2LyMhImJqqd/nm5uZiwIABeOmll7Bx48bqRS4yJj5EukmZ5AQHqxcm379/H7t27cKzZ88gCEb4/fcB8PVtj5UruTYPkTbReOLj5uaGHTt2oEePHmWeP3nyJF5//XU8evToxSKuI5j4EOmm4sNaZ88Ccrkcp0+fxvHjxyEIAqTSevjuu0A8eOAMLy+gCgu+E1EdoPGVm//5558Ka3gaN26Mp0+fVilIIqLaoixeDg4GsrKysG3bNkRFRUEQBLRp0wb790/BgweKRU+5EDOR7qp04lO/fn3cvHmz3PPXr1+vcL0cIqLaVtZqzM+exWH9+vX4+++/YWxsDA+PYVi9ejh69jSBlxfg7Q38y7qqRKTFKp34DB8+HPPnz8fjx49LnUtNTcXChQsxfPhwTcZGRFQlJROd4qsxh4TIIZVG4c6d/yA7OxuOjo6YMmUKfvyxLaKjFev3rF4NVLDsFxHpgErX+KSlpaFLly5ITk7Gm2++CW9vbwiCgFu3buHnn3+Gi4sLzp07p7ZxqDZijQ+R9ipZx/N8RtYz2NuHIysrHgDQrl07yOUDsXq1MXx9FUlPcPDzREn5fCLSHpX9/q70ys12dnb4448/8MEHH2D79u2qhQttbW0xZswYfPLJJ1qf9BCRdlMmL8qNQ6OiAGfnexCEcGRl5cDY2BhDhgzByy+/rEqSAPUkZ+FC4OlTRa8Rt6Ug0j1VWsBQSRAE1ZCXo6MjJDpUCcgeHyLdIJfL8cMPUUhJOQ0AcHZ2hr39KHz5pYMqMSprenvJXiMi0g4a7/EpTiKRwMnJ6YWDIyKqSZmZmdi1axdSUhIAAPXqdcDkyX7o1ctYVfNz9mzZPTole42ISLe8UOJDRFRX3b59G3v27EFubi6Kikywe7c/rK1bYsaMyiU1/v4c4iLSZS+0SSkRkViKz9wq/rtMJsPvv/+OX375Bbm5uahfvz5efnkqrK1bqhIdf//ye3qISD+8UI2PLmOND1HdVrwGB1D87uubjrFjd+Hhw4cAgM6dO6Nfv34wMiq/U7u8LSyISDtpfOVmIqK6QLkCs68vkJYG9OkTgz59NuDhw4eQSqV47bXXUFg4ED17GqktXFhS8TV+iEh/VKrHZ926dZW+4axZs6oVkNjY40OkHbp3l8Ha+jC6dv0DAODq6orAwEB8/rkdQkIAubzimVns8SHSLRrdpLRRo0aVelGJRIK///678lHWQUx8iOq+tLQ0bNwYhpwcxabIXbt2Rd++fWFoaAgrKyArCzAwAHbvZlJDpC80Op09Li5OY4EREVXHzZs3ERERgfz8fJiammL48OHw8vJSnZ81S7laM5MeIirthYubCwoKEBcXhyZNmlRYQKht2ONDVDcVFRUhMjISFy5cAAA0aNAAgYGBsLGxETkyIqoLaqy4OScnB5MnT4a5uTlatmyJhATFAmHvvvsuQlglSEQ14MmTJ9i0aZMq6enevTuCgoIqTHrK2pmdiKjKic+iRYtw9epVHD9+HKampqr2vn37YseOHRoNjojo+vXr+OGHH5CcnAxzc3OMGTNGVc9TEc7aIqKyVHmMas+ePdixYwe6du2qtkdXy5Ytce/ePY0GR0T6KSICWL26EK+/fghPnlwCAHh4eCAgIKDSQ9DceoKIylLlHp/Hjx+XuU9Xdna2Tm1WSkTi+frrf/DyyxtVSc8rr7yCCRMm4Phx60oPX3GVZiIqS5UTn44dO2L//v2qY2Wys3HjRvgol1IlInpBV69eRc+eP8DZORVGRhZ488030adPHxgYGKiGr8aOZe0OEb2YKic+n3zyCT744AO88847KCoqwldffYX+/fsjNDQUK1eurIkYiUhHFS9ALigowN69e7Fnzx7I5YXw9PTErFlT0aRJE9X1wcGApaVinZ6yandY0ExE/+aFprPfu3cPISEhuHr1KrKystC+fXssXLgQrVu3rokYaxWnsxPVHuW+W337pmLEiDA8fvwYEokEvXr1wiuvvAIDAwPVCsu+vkBU1POfZa24XHwfr/JWbCYi3aTRlZv1CRMfopr3PJkRcPv2FbRufQCCUARLS0sEBATA09NTdd3YsYoeHiVuQ0FEZdHoys2ZmZmVfmEmC0T0b0JCgIsXC9C69T60anUNggA0adIEI0aMgIWFhdp1xZMeA4OKZ2n5+zPhIaKKVSrxsbW1rfSMLZlMVq2AiEj3zZqVjEuXwmBh8QQSiQS+vr7o0aNHqf/PKKeku7kBhw6VvQ0Fe3mIqCoqlfhERUWpfo+Pj0dwcDCCgoJUs7iio6OxdetWrFq1qmaiJCKtp0hQBLz11kU8enQIFhYy5OVZoXXrQLzyikeZz6lMD07xhQqZ+BDRv6lyjc+rr76Kt956C2+88YZa+88//4wffvgBx48f12R8tY41PkQ145VX8uHi8htatboBAHj8+CWEhg5Hmzbm1SpEZo8PEQEarvEpLjo6GuvXry/V3rFjR7z11ltVvR0R6YGkpCQMGrQTBQVpAAzQr9+rePzYB5cuSaq9sjLreoioKqq8jo+7uzt+/PHHUu0bN26Eu7u7RoIiIt0gCAL+/PNPbNq0CQUFabCxscGkSUHo1q0bV3onIlFUucdn7dq1CAgIwMGDB9GlSxcAwJ9//ok7d+5g165dGg+QiLRTXl4eIiIicOvWLQCAl5cXhg0bBjMzMwCszSEicVS5x2fQoEG4c+cOhg4diqdPn+Lp06cYOnQobt++jUGDBtVEjESkZRITE7FhwwbcunULBgYG8PPzw+jRo1VJD6CoyfHx4SaiRFS7uIBhCSxuJnpxgiDg3LlzOHLkCORyOWxtbREYGAg3NzexQyMiHVdjxc0AkJ6ejk2bNqm6sFu2bIlJkybBxsbmxaIlIq0XHp6Lo0f3wMnpNgCgefPm8Pf3h6mpaalrS87E4swsIqotVR7qunDhApo0aYK1a9eqhrrWrFmDJk2a4NKlSzURIxHVcQ8ePMCff66Hk9NtyOWGGDhwIEaNGlVm0gOo1/eUdazETUeJSNOqnPjMmTMH/v7+iI+PR3h4OMLDwxEXF4chQ4Zg9uzZNRAiEdVVgiDgzJkzCA0NhZlZJrKz7dG8+WQkJ3dG9+6SchOWkvU95dX7lJcQERG9qCrX+JiZmeHy5cvw9vZWa7958yY6duyInJwcjQZY21jjQ1Q52dnZ2LNnD+7evQsAaNWqFYYMGQKpVKqxXdI5BEZElVVjNT7W1tZISEgolfg8ePAAVlZWVY+UiLTO/fv3sWvXLjx79gxGRkYYMGAA2rdvr1qbR7nHFhcnJKK6psqJz+jRozF58mR8/vnn6NatGwDgzJkzeP/990ttY0FEukUQBJw6dQrHjx+HIAhwcHDAqFGj4OzsrHYdExYiqquqnPh8/vnnkEgkGD9+PIqKigAAxsbGeOeddxDCgXginZWVlYXdu3fj77//BgAkJr6Ml18eDGdnk1LXcoiKiOqqF17HJycnB/fu3QMANGnSBObm5hoNTCys8SEqLS4uDuHh4cjKyoKRkREuXx6EXbvawsdHojaspUxyNFXjQ0RUWTW6jg8AmJubo3Xr1i/6dCLSAnK5HCdPnsSJEycAAKamjjhyZBQ6d3ZUzcIqufVERASQkACYmQFubookyNcXiIpiDxARia/Sic+kSZMqdd3mzZtfOBgiqjuePXuG8PBwxMfHAwDs7dtix45BOHPGGNnZ6j05xQuZQ0KAxETF74cOAVlZwLVrip/cl4uIxFbpxGfLli1o2LAh2rVrB+5yQaTb7t27h/DwcOTk5KCoyBgREUNgYfGyqofH11fRk6PswSmezAQHAwsWABIJMHKkoqfHzU2RBPn6iveeiIiAKtT4zJgxA7/88gsaNmyIiRMn4s0334S9vX1Nx1frWOND+kwulyMqKgqnT58GADg7O8PePhBfflmvWjU8rPkhoppW2e/vSq/c/O233yIpKQkLFizAb7/9Bnd3d7z22muIjIxkDxCRDsjMzMTWrVtVSU+HDh0wefJkvPZaPZw9q96r4+sLWFpWvgeHO7ETUV1RpS0rpFIp3njjDRw+fBg3b95Ey5YtMX36dHh6eiIrK6umYiSiGnbnzh2sX78eCQkJMDExQUBAAIYMGQJjY+My98uKilLU7ERFlb5XWdf7+6NU8kREJIYq79WleqKBASQSCQRBgEwm02RMRFRLZDIZDh8+jJ9//hm5ubmoX78+pk6dilatWqmuKWu/rIp6cLi/FhHVZVVKfPLz8/HLL7+gX79+aNasGa5du4ZvvvkGCQkJsLS0rKkYiagGpKenY8uWLTj7v6KbTp06YdKkSaVq95RJjrKgOSKi4h4cDmsRUV1W6eLm6dOnY/v27XB3d8ekSZMwduxY1KtXr6bjq3UsbiZ9EBMTg7179yIvLw9SqRT+/v5o0aJFhSsus0CZiOqyyn5/VzrxMTAwgIeHB9q1a6faiLAs4eHhVY+2DmHiQ7pMObT1xx9/AABcXV0RGBgIOzs7ABUnN9yGgojqMo2v3Dx+/PgKEx4iqtvS0tIQFhaGR48eAQC6du2Kvn37wtDQUHWNpnZVJyKqq154ry5dxR4f0jUREUBo6E106BABmSwfpqamGD58OLy8vKp0Hw51EVFdVuN7dRFR3bdnTxG2bPkd7dqdh0wGNGjQAAEBAbC1ta3yvdgbRES64IWnsxNR3fb06VOcOrUJ7dqdBwA4OXVDUFBQqaSn+Lo7Za3Bo8S1eIhIF3CoqwQOdZEuuH79On777TcUFBSgoMAM3t4jMG7cS2VeW3wIC+BwFhFpJw51EemhwsJCHDp0CJcuXQIAeHh4ICAgoML/CZQcwuJwFhHpMiY+RDrin3/+wc6dO5GamgoAeOWVV9C7d28YGDwf0S45Jb2sKeocyiIiXcahrhI41EXa6OrVq9i/fz8KCwthYWGBESNGoEmTJqWuKzkzizO1iEhXaHx3diKqewoKCrB3717s2bMHhYWF8PT0xNSpU1VJT8li5ZLbSXB7CSLSNxzqItJSqampCAsLw+PHjwEAvXr1Qs+ePdWGtopvGOrv/3wYS7mBaPE2IiJ9wB4fIi0jCAIuX76MH3/8EY8fP4alpSXGjx9fqp4HKLtHh7unE5E+Y48PkRYpKCjA/v378ddffwEAGjdujBEjRsDS0rLUteUVMvv6Ks5zeIuI9BETHyItkZKSgp07d+LJkyeQSCTw9fVFjx49yt1Dr+Qwl/IYYCEzEekvDnUR1XGCIODixYv48ccf8eTJE1hZWWHChAlIS3sF3btLylxlGah8IXNFqzUTEekarZvOnp+fjy5duuDq1au4fPky2rZtqzr3119/YcaMGTh//jwcHR3x7rvvYsGCBVW6P6ezU12Sn5+Pffv24fr16wCApk2bYsSIETA3N4e3NxAbC3h5ATExL/4anNJORLpAZ6ezL1iwAK6urqXaMzMz0b9/fzRs2BAXL17EZ599hqVLl+KHH34QIUqi6ktKSsIPP/yA69evQyKRoG/fvhgzZgzMzc0BAMoRroSE6vXWcEo7EekTrarxOXjwIH7//Xfs2rULBw8eVDu3bds2FBQUYPPmzTAxMUHLli1x5coVrFmzBm+//bZIERNVnSAIOH/+PH7//XfIZDLY2NggICAA7u7uatd9+ikwdiyQlfW8judFcEo7EekTrenxSUlJwZQpU/DTTz+p/sVbXHR0NHr27AkTExNVm5+fH2JjY5GWllbuffPz85GZman2IBJLXl4edu7ciYMHD0Imk8HLywtTp04tlfQAimRl2zb21hARVYVW9PgIgoCgoCBMmzYNHTt2RHx8fKlrkpOT0ahRI7U2Z2dn1Tk7O7sy771q1SosW7ZM4zETVVViYiLCwsKQnp4OAwMD9OvXD126dCl31hbA3hoioqoStccnODgYEomkwkdMTAy+/vprPHv2DIsWLdJ4DIsWLUJGRobq8eDBA42/BlFFBEHAuXPnsHnzZqSnp8PW1haTJk1C165dK0x6KoMztoiI1Ina4zNv3jwEBQVVeE3jxo1x7NgxREdHQyqVqp3r2LEjxo4di61bt8LFxQUpKSlq55XHLi4u5d5fKpWWui9RbcnNzcXevXsRGxsLAGjevDn8/f1hamqqkfuXXMuHiEjfiZr4ODo6wtHR8V+vW7duHT7++GPV8aNHj+Dn54cdO3agS5cuAAAfHx8sXrwYhYWFMDY2BgAcPnwYXl5e5Q5zEYnpwYMH2LVrFzIyMmBoaIj+/fujU6dOZfbylFyFubKCg58/j4iItHAdHwCIj49Ho0aN1NbxycjIgJeXF/r374+FCxfi+vXrmDRpEtauXVulWV1cx4dqmiAIOHv2LI4dOwa5XA47OzuMGjUK9evXL/c5XGuHiKhilf3+1ori5sqwsbHB77//jhkzZqBDhw6oV68ePvroI05lpzrlyZMnOHjwIO7duwcAsLVtiZ07h8LTU1phTw57boiINEMrEx9PT0+U1VH18ssv49SpUyJERPTvTp06hWPHjgEADA0NMXDgQLz7bntER0sgk5U9hFV8iIs9PURE1ac16/gQaSu5XI5PPvlElfQAwMSJE9GhQwcEB0sqXIeneHEyERFVHxMfohqUkpKCFStWoLCwUNU2b948uLm5AVD08pw9q/gZEQE0bw54ez+ffh4crNiLKy2NU9KJiDRBK4ubaxKLm0lToqKicPLkSdWxh4cHgoKCyp21pdx+AlAvYmZhMxHRv9O74maiukImk6ktvwAAgYGBaNmyZbnPCQlRJD1mZoCHh/rQFwubiYg0hz0+JbDHh6pDuaN6cfPnz4eFhQUARc/OwoXAs2eKc5aWwOrVit9fZJ0eIiJSqOz3NxOfEpj40Is6fPgwzhYbi2rcuDHGjRundo1y2Ko4DmEREVUfh7qIaklRURFWrlyp1jZ69Gh4e3uXujY4uHSPD4ewiIhqDxMfompITEzExo0b1doWLFgAMzOzMq/nbupEROLidHaiF3Tw4EG1pMfLywtLliwplfRwh3QiorqDiQ9RFRUWFmLZsmX4888/VW1jxozB66+/rjounuxwEUIiorqDQ11EVZCQkIDQ0FC1toULF8LU1FStrXiyw+noRER1B3t8iCopIiJCLelp1aoVlixZAlNT01LDWcHBUG1FUXx1ZiIiEhd7fIj+RUFBAVatWqXWdv78OLRr11h1XLyHR1nAzESHiKjuYeJDVIG4uDj85z//UWs7cmQRTp82wb17wIIFgEQCjBypOMfhLCKiuo2JD1E5wsPDce3aNdVx27ZtMWzYMLRrB8hkwNOnQGys4lxUFBchJCLSBkx8iErIz89HSIkpWEFBQWjYsCEiIp738gQEALt2KX5nTw8RkXZg4kNUzN27d7Ft2za1tg8++ADGxsYAFDU8xXt5YmJqO0IiIqoOJj5E//Prr7/i1q1bquOOHTti8ODBatcEBz/v8WEvDxGR9mHiQ3ovNzcXq5VbpP/P5MmT0aBBAwDPFyFUTk3nbC0iIu3FxIf0WmxsLLZv367WtnjxYhgZPf+rUXKqOhERaS8mPqS3tm3bhrt376qOfXx80L9//1LXceVlIiLdwcSH9E5OTg4+++wztbYpU6bA1dW1zOs5vEVEpDuY+JBeuXnzJnbu3KnW9uGHH8LQ0FCkiIiIqDZxry6qs0ruf1XZ6xcvLv08QRCwZcsWtaTn5MlXEBm5hEkPEZEeYeKjx6qaWNS24kXFVbl+3Tr152VlZWH58uW4f/++6lpv72nIze3Duh0iIj3DxEePVTWxqG3FdzivyvWzZgHe3ootJbZsuYYvvvhCdY1EYoTff/8QZmbO3DGdiEgPSQRBEMQOoi7JzMyEjY0NMjIyYG1tLXY4Nark+jS6pFs3Aa1abYSb2yNVm6+vL4KDeyI6WpEgcW8tIiLdUdnvb/b46DF/f2htr0dFw3SZmZnw81uulvQ0bz4dwcE94etbtV4kIiLSLZzVRVqpvEUFL1++jIhi2ZCZmRnmz5+PHj0MEB2taGNPDxGR/mLiQ1qp5KKCgiDg+++/x+PHj1XX9OvXD926dSvzeiIi0k+s8SlBn2p8dEVGRga+/PJLtbZ3330X9vb24gRERES1jjU+VKdpair9+fPn1ZKe9HQbREZ+xKSHiIjKxKEuEkV1N/4UBAHr1q1Denq6qq1Bg4GIjOzM4SwiIioXe3yoUjS92GFV1+gp7unTp1i+fLla0vPee+9h8uTOWjtLjYiIagdrfEpgjU/ZunVDnVj/5ty5c4iMjFQdOzg4YMaMGZBIJOIFRUREomOND2nUv/XQ1PT2F3K5HJ9//rla0jNkyBDMnDmTSQ8REVUae3xKYI/Pi6nJHqF//vkH3377rVrbnDlz+PkQEZFKZb+/WdxMGlFT6+ScPn0aR48eVR27uLjg7bffZi8PERG9ECY+VG2a2vOr+H0EQY4LFz6FkVGB6vzw4cPRpk0bDURMRET6ikNdJXCoq+o0NcylvE+/fqno3v17tXNz586FlZVVNSMlIiJdxaEuqjWaGuYKDgZ27jyOpk1PqNosLNwxb95EDm0REZFGMPGhavP3r/7aOTKZDFeurETTps87IAMCAtCqVatqRkdERPQcEx8SXXJyMjZs2KDWNn/+fFhYWIgUERER6SomPlTrihcxm5sfwZkzZ1TnGjdujHHjxokYHRER6TImPlSjSs74iogAxo4FcnOLcPnySrVrR48eDW9vb5EiJSIifcDEh2pU8c1IAUXSY2OTiPnzN6pdt2DBApiZmYkQIRER6RNuWUFqqrv1RMnnF9/qIiQE6NHjEKZMeZ70eHl5YcmSJUx6iIioVnAdnxL0fR2f6q7JU97zCwsL8cknn6hdO2bMGLz00kvVjJiIiIiblOqsmt4M9N82I/23GIo/X3ndzz8nlEp6Fi5cyKSHiIhqHXt8SqjrPT41uRmopmPo1g1wcPgNHTteUrW1bNkSgYGBtRAlERHpE67crKNqajNQTcdQUFAAP79Vam3jxo1D48aNazg6IiKi8jHx0TKaWCW5psXFxeE///mPWltwcDCkUqlIERERESkw8aEqKz5FvWQStnv3bvz111+q47Zt22LYsGG1HCEREVHZWNysBWq6oLmqyiqAzs/Px7Jly9SSnqCgICY9RERUp7C4uYS6WNxcFwqaK3L37l1s27ZNre2DDz6AsbGxSBEREZG+YXGzDqkLBc3l+fXXX3Hr1i3VcceOHTF48GARIyIiIiofEx8toImC5pJ7ZlVXbm4uVq9erdY2efJkNGjQoPo3JyIiqiFMfPRERQXJVRUbG4vt27ertS1evBhGRvzPiYiI6jZ+U+kJTQ2X/fzzz7hz547quGvXrvDz86tmdERERLWDiY+eqO5wWU5ODj777DO1tilTpsDV1bWakREREdUeJj70r27evImdO3eqtX344YcwNDQUKSIiIqIXw8SHKrR161bEx8erjnv06IFXX31VvICIiIiqgYkPlSkrKwtffPGFWtu0adPg7OwsUkRERETVx8SHSrl27RrCw8NVx0ZGRggODubQFhERaT0mPqQiCAI2bdqExMREVVvv3r3Rq1cvEaMiIiLSHK3aq2v//v3o0qULzMzMYGdnh+HDh6udT0hIwODBg2Fubg4nJye8//77KCoqEifYSqjKHlw1vV/Xs2fPsHz5crWkZ/r06Ux6iIhIp2hN4rNr1y6MGzcOEydOxNWrV3HmzBmMGTNGdV4mk2Hw4MEoKCjA2bNnsXXrVmzZsgUfffSRiFFXrPiigpq8tqpJ0uXLl7FmzRrVsZmZGf7v//4Pjo6OlbsBERGRltCKTUqLiorg6emJZcuWYfLkyWVec/DgQQwZMgSPHj1SFeCuX78eCxcuxOPHj2FiYlKp16rNTUqrso3E4sXAunXArFnAypUVX6vc1NTLC7C3L//+giBg/fr1SE1NVbX17dsX3bt3f4F3Q0REJJ7Kfn9rRY/PpUuXkJiYCAMDA7Rr1w7169fHwIEDcf36ddU10dHRaN26tdqsIz8/P2RmZuLGjRvl3js/Px+ZmZlqj9ri76/Ybb0yCwtGRQFZWYqf/yY4WLGTu0RSfi9RRkYGli9frpb0zJw5k0kPERHpNK1IfP7++28AwNKlS/Hhhx9i3759sLOzQ+/evfH06VMAQHJycqmp1srj5OTkcu+9atUq2NjYqB7u7u419C6qR5nMVGbLCWVC9emnZT/nwoUL+PLLL1XH1tbW+Oijj+Dg4KDZoImIiOoYUROf4OBgSCSSCh8xMTGQy+UAFBthBgQEoEOHDggNDYVEIim1onBVLVq0CBkZGarHgwcPNPHWNK4qvUPlPUcQBKxbtw779+9XXTNgwADMmTMHEolEwxETERHVPaJOZ583bx6CgoIqvKZx48ZISkoCALRo0ULVLpVK0bhxYyQkJAAAXFxc8Oeff6o9NyUlRXWuPFKpFFKp9EXC1yppaWlYt26dWtusWbNgZ2cnUkRERES1T9TEx9HRsVIzhzp06ACpVIrY2Fj06NEDAFBYWIj4+Hg0bNgQAODj44OVK1ciNTUVTk5OAIDDhw/D2tpaLWHSR+fOnUNkZKTq2MHBATNmzGAvDxER6R2tWMDQ2toa06ZNw5IlS+Du7o6GDRuqdgofNWoUAKB///5o0aIFxo0bh9WrVyM5ORkffvghZsyYofU9OlWZ/VWcXC7H2rVrkZWVpWobMmQIOnToUANREhER1X1akfgAwGeffQYjIyOMGzcOubm56NKlC44dO6YaqjE0NMS+ffvwzjvvwMfHBxYWFpgwYQKWL18ucuTVV3wNn8omPk+ePME333yj1jZ79mzY2NjUQIRERETaQSvW8alNtbmOT2VVtcfn9OnTOHr0qOrYxcUFb7/9Noe2iIhIZ1X2+1trenz0mb9/5RIeuVyO1atXIz8/X9U2bNgwtG3btuaCIyIi0iJasY6PLtPUHlypqalYsWKFWtIzd+5cJj1ERETFsMdHZC9Sv1PSiRMncPz4cdWxu7s7Jk6cyKEtIiKiEpj4iCw4+Hn9TlXJZDJ88sknqgUeASAgIACtWrXSYIRERES6g4mPyCpbv1NScnIyNmzYoNY2f/58WFhYaCgyIiIi3cPERwsdOXIEZ86cUR03atQI48ePFzEiIiIi7cDER4sUFRVh5cqVam2vvfYamjdvLlJERERE2oWJj5ZITEzExo0b1doWLFgAMzMzkSIiIiLSPpzOXkuqM2390KFDaklPs2bNsGTJEiY9REREVcQen1ryItPWCwsL8cknn6i1vfHGG2jWrFkNREhERKT7mPjUkqpOW3/w4AE2b96s1rZw4UKYmprWQHRERET6gYlPLanKtPV9+/bh4sWLquOWLVsiMDCwhiIjIiLSH0x86pCCggKsWrVKre3NN99EkyZNRIqIiIhItzDxqSPi4+OxdetWtbbg4GBIpVKRIiIiItI9THzqgD179uDq1auq4zZt2mD48OHiBURERKSjmPiIKD8/HyEhIWptEyZMgKenpzgBERER6TgmPiK5d+8e/vvf/6q1LVq0CCYmJiJFREREpPuY+Ihg586duHnzpuq4Q4cOGDJkiIgRERER6QcmPrUoLy8Pn376qVrbpEmT4O7uLlJERERE+oWJTy25c+cOfv75Z7W2Dz74AMbGxiJFREREpH+Y+NSS4klP165d4efnJ2I0RERE+omJTy3p1asXzp07h/Hjx8PV1VXscIiIiPSSRBAEQewg6pLMzEzY2NggIyMD1tbWYodDRERElVDZ72+DWoyJiIiISFRMfIiIiEhvMPEhIiIivcHEh4iIiPQGEx8iIiLSG0x8iIiISG8w8SEiIiK9wcSHiIiI9AYTHyIiItIbTHyIiIhIbzDxISIiIr3BxIeIiIj0BhMfIiIi0htMfIiIiEhvGIkdQF0jCAIAxfb2REREpB2U39vK7/HyMPEp4dmzZwAAd3d3kSMhIiKiqnr27BlsbGzKPS8R/i010jNyuRyPHj2ClZUVJBKJ2OHUqMzMTLi7u+PBgwewtrYWOxwqhp9N3cTPpW7i51J31eZnIwgCnj17BldXVxgYlF/Jwx6fEgwMDNCgQQOxw6hV1tbW/J9FHcXPpm7i51I38XOpu2rrs6mop0eJxc1ERESkN5j4EBERkd5g4qPHpFIplixZAqlUKnYoVAI/m7qJn0vdxM+l7qqLnw2Lm4mIiEhvsMeHiIiI9AYTHyIiItIbTHyIiIhIbzDxISIiIr3BxEeP7d+/H126dIGZmRns7OwwfPhwtfMJCQkYPHgwzM3N4eTkhPfffx9FRUXiBKtn8vPz0bZtW0gkEly5ckXt3F9//YVXXnkFpqamcHd3x+rVq8UJUo/Ex8dj8uTJaNSoEczMzNCkSRMsWbIEBQUFatfxsxHHt99+C09PT5iamqJLly74888/xQ5Jr6xatQqdOnWClZUVnJycMHz4cMTGxqpdk5eXhxkzZsDBwQGWlpYICAhASkqKKPEy8dFTu3btwrhx4zBx4kRcvXoVZ86cwZgxY1TnZTIZBg8ejIKCApw9exZbt27Fli1b8NFHH4kYtf5YsGABXF1dS7VnZmaif//+aNiwIS5evIjPPvsMS5cuxQ8//CBClPojJiYGcrkcGzZswI0bN7B27VqsX78eH3zwgeoafjbi2LFjB+bOnYslS5bg0qVLaNOmDfz8/JCamip2aHrjxIkTmDFjBs6dO4fDhw+jsLAQ/fv3R3Z2tuqaOXPm4LfffsPOnTtx4sQJPHr0CCNHjhQnYIH0TmFhoeDm5iZs3Lix3GsOHDggGBgYCMnJyaq277//XrC2thby8/NrI0y9deDAAcHb21u4ceOGAEC4fPmy6tx3330n2NnZqX0GCxcuFLy8vESIVL+tXr1aaNSokeqYn404OnfuLMyYMUN1LJPJBFdXV2HVqlUiRqXfUlNTBQDCiRMnBEEQhPT0dMHY2FjYuXOn6ppbt24JAITo6Ohaj489Pnro0qVLSExMhIGBAdq1a4f69etj4MCBuH79uuqa6OhotG7dGs7Ozqo2Pz8/ZGZm4saNG2KErRdSUlIwZcoU/PTTTzA3Ny91Pjo6Gj179oSJiYmqzc/PD7GxsUhLS6vNUPVeRkYG7O3tVcf8bGpfQUEBLl68iL59+6raDAwM0LdvX0RHR4sYmX7LyMgAANXfj4sXL6KwsFDtc/L29oaHh4conxMTHz30999/AwCWLl2KDz/8EPv27YOdnR169+6Np0+fAgCSk5PVkh4AquPk5OTaDVhPCIKAoKAgTJs2DR07dizzGn4udcPdu3fx9ddfY+rUqao2fja1759//oFMJivzz51/5uKQy+WYPXs2unfvjlatWgFQ/PdvYmICW1tbtWvF+pyY+OiQ4OBgSCSSCh/KWgUAWLx4MQICAtChQweEhoZCIpFg586dIr8L3VPZz+Xrr7/Gs2fPsGjRIrFD1huV/WyKS0xMxIABAzBq1ChMmTJFpMiJ6qYZM2bg+vXr2L59u9ihlMtI7ABIc+bNm4egoKAKr2ncuDGSkpIAAC1atFC1S6VSNG7cGAkJCQAAFxeXUjMjlBX4Li4uGoxa91X2czl27Biio6NL7WnTsWNHjB07Flu3boWLi0upmRD8XF5cZT8bpUePHsHX1xfdunUrVbTMz6b21atXD4aGhmX+ufPPvPbNnDkT+/btw8mTJ9GgQQNVu4uLCwoKCpCenq7W6yPa51TrVUUkuoyMDEEqlaoVNxcUFAhOTk7Chg0bBEF4XtyckpKiumbDhg2CtbW1kJeXV+sx64P79+8L165dUz0iIyMFAEJYWJjw4MEDQRCeF9AWFBSonrdo0SIW0NaChw8fCi+99JLw+uuvC0VFRaXO87MRR+fOnYWZM2eqjmUymeDm5sbi5lokl8uFGTNmCK6ursLt27dLnVcWN4eFhanaYmJiRCtuZuKjp9577z3Bzc1NiIyMFGJiYoTJkycLTk5OwtOnTwVBEISioiKhVatWQv/+/YUrV64Ihw4dEhwdHYVFixaJHLn+iIuLKzWrKz09XXB2dhbGjRsnXL9+Xdi+fbtgbm6uSlipZjx8+FBo2rSp8OqrrwoPHz4UkpKSVA8lfjbi2L59uyCVSoUtW7YIN2/eFN5++23B1tZWbUYq1ax33nlHsLGxEY4fP672dyMnJ0d1zbRp0wQPDw/h2LFjwoULFwQfHx/Bx8dHlHiZ+OipgoICYd68eYKTk5NgZWUl9O3bV7h+/braNfHx8cLAgQMFMzMzoV69esK8efOEwsJCkSLWP2UlPoIgCFevXhV69OghSKVSwc3NTQgJCREnQD0SGhoqACjzURw/G3F8/fXXgoeHh2BiYiJ07txZOHfunNgh6ZXy/m6EhoaqrsnNzRWmT58u2NnZCebm5sKIESPU/uFQmyT/C5qIiIhI53FWFxEREekNJj5ERESkN5j4EBERkd5g4kNERER6g4kPERER6Q0mPkRERKQ3mPgQERGR3mDiQ0RUQ44fPw6JRIL09HSxQyGi/2HiQ0Raa+nSpWjbtq3YYRCRFmHiQ0Q6r7CwUOwQiKiOYOJDRKKRy+VYtWoVGjVqBDMzM7Rp0wZhYWEAng8THT16FB07doS5uTm6deuG2NhYAMCWLVuwbNkyXL16FRKJBBKJBFu2bAEASCQSfP/99/D394eFhQVWrlxZYRzK14qMjES7du1gZmaGPn36IDU1FQcPHkTz5s1hbW2NMWPGICcnR/W8/Px8zJo1C05OTjA1NUWPHj1w/vz5mvnDIiLNEGWHMCIiQRA+/vhjwdvbWzh06JBw7949ITQ0VJBKpcLx48eFqKgoAYDQpUsX4fjx48KNGzeEV155RejWrZsgCIKQk5MjzJs3T2jZsmWp3aABCE5OTsLmzZuFe/fuCffv368wDuVrde3aVTh9+rRw6dIloWnTpkKvXr2E/v37C5cuXRJOnjwpODg4qG08OmvWLMHV1VU4cOCAcOPGDWHChAmCnZ2d8OTJE7X7pqWl1cwfIBFVGRMfIhJFXl6eYG5uLpw9e1atffLkycIbb7yhShqOHDmiOrd//34BgJCbmysIgiAsWbJEaNOmTal7AxBmz55d6VjKeq1Vq1YJAIR79+6p2qZOnSr4+fkJgiAIWVlZgrGxsbBt2zbV+YKCAsHV1VVYvXq12n2Z+BDVHUZi9TQRkX67e/cucnJy0K9fP7X2goICtGvXTnX88ssvq36vX78+ACA1NRUeHh4V3r9jx45Vjqn4azk7O8Pc3ByNGzdWa/vzzz8BAPfu3UNhYSG6d++uOm9sbIzOnTvj1q1bVX5tIqodTHyISBRZWVkAgP3798PNzU3tnFQqxb179wAokgkliUQCQFEb9G8sLCyqHFPJ1yp+rGyrzGsTUd3F4mYiEkWLFi0glUqRkJCApk2bqj3c3d0rdQ8TExPIZLIajrRsTZo0gYmJCc6cOaNqKywsxPnz59GiRQtRYiKif8ceHyIShZWVFebPn485c+ZALpejR48eyMjIwJkzZ2BtbY2GDRv+6z08PT0RFxeHK1euoEGDBrCysoJUKq2F6BU9Su+88w7ef/992Nvbw8PDA6tXr0ZOTg4mT55cKzEQUdUx8SEi0axYsQKOjo5YtWoV/v77b9ja2qJ9+/b44IMPKjWkFBAQgPDwcPj6+iI9PR2hoaEICgqq+cD/JyQkBHK5HOPGjcOzZ8/QsWNHREZGws7OrtZiIKKqkQiCIIgdBBEREVFtYI0PERER6Q0mPkSk86ZNmwZLS8syH9OmTRM7PCKqRRzqIiKdl5qaiszMzDLPWVtbw8nJqZYjIiKxMPEhIiIivcGhLiIiItIbTHyIiIhIbzDxISIiIr3BxIeIiIj0BhMfIiIi0htMfIiIiEhvMPEhIiIivcHEh4iIiPTG/wPG2TcaySCdxgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAX6FJREFUeJzt3Xd4VGXexvHvJKSSRkmooSOgKCIIBgvCIkWqRNdKERZFURZBBcRV0EUQXVQsoCBFBUUIJRAgdBAI0qSTUKSTkAiphLSZ8/4xLwNDM4Ekk2Tuz3XlgvPMmTO/ZIC5ec5TTIZhGIiIiIg4ARdHFyAiIiJSWBR8RERExGko+IiIiIjTUPARERERp6HgIyIiIk5DwUdERESchoKPiIiIOA0FHxEREXEaCj4iIiLiNBR8RKRYMplMjBw50tFl2PTu3ZsaNWo4ugwR+RsKPiKSb6ZPn47JZLJ9eXp6cscdd/Daa69x9uzZAn3tTZs2MXLkSJKSkvL1uo8++qjd91S2bFnuv/9+pk6disViyZfX+Oijj1iwYEG+XEtEbq6UowsQkZLngw8+oGbNmmRkZLBhwwYmTpzIkiVL2Lt3L97e3vnyGhcvXqRUqcv/hG3atIlRo0bRu3dvAgIC8uU1LqlatSpjxowBICEhgR9++IG+ffty8OBBxo4de9vX/+ijj3jyySfp1q3bbV9LRG5OwUdE8l2HDh1o2rQpAP/6178oV64c48ePZ+HChTz77LO3fF2LxUJWVhaenp54enrmV7l/y9/fnxdeeMF2/PLLL1OvXj2++uorPvzwQ9zc3AqtFhG5PbrVJSIFrnXr1gAcPXoUgE8//ZQWLVpQrlw5vLy8aNKkCXPnzr3meSaTiddee42ZM2dy11134eHhwbJly2yPXRrjM3LkSN566y0AatasabstdezYMVq2bEmjRo2uW1e9evVo165dnr8fb29vHnjgAS5cuEBCQsINz7tw4QJDhgwhODgYDw8P6tWrx6effophGHbf44ULF5gxY4at7t69e+e5JhHJHfX4iEiBO3LkCADlypUD4IsvvqBLly48//zzZGVl8csvv/DUU0+xePFiOnbsaPfc1atX8+uvv/Laa69Rvnz56w4g7t69OwcPHuTnn3/ms88+o3z58gAEBgbSo0cP+vXrx969e2nYsKHtOVu3buXgwYO8++67t/Q9/fnnn7i6ut7wtpphGHTp0oU1a9bQt29f7r33XiIjI3nrrbc4ffo0n332GQA//vgj//rXv2jWrBkvvfQSALVr176lmkQkFwwRkXwybdo0AzBWrlxpJCQkGCdPnjR++eUXo1y5coaXl5dx6tQpwzAMIz093e55WVlZRsOGDY3WrVvbtQOGi4uLsW/fvmteCzDef/992/Enn3xiAMbRo0ftzktKSjI8PT2NoUOH2rUPHDjQKF26tJGWlnbT76lly5ZG/fr1jYSEBCMhIcE4cOCAMXDgQAMwOnfubDuvV69eRvXq1W3HCxYsMADjv//9r931nnzyScNkMhmHDx+2tZUuXdro1avXTesQkfyhW10iku/atGlDYGAgwcHBPPPMM/j4+DB//nyqVKkCgJeXl+3cxMREkpOTefjhh9mxY8c112rZsiV33nnnLdfi7+9P165d+fnnn223mMxmM7Nnz6Zbt26ULl36b68RHR1NYGAggYGBNGjQgC+//JKOHTsyderUGz5nyZIluLq6MnDgQLv2IUOGYBgGS5cuveXvSURunW51iUi++/rrr7njjjsoVaoUFSpUoF69eri4XP5/1uLFi/nvf//Lzp07yczMtLWbTKZrrlWzZs3brqdnz57Mnj2b3377jUceeYSVK1dy9uxZevTokavn16hRg8mTJ9um6NetW5egoKCbPuf48eNUrlwZX19fu/YGDRrYHheRwqfgIyL5rlmzZrZZXVf77bff6NKlC4888gjffPMNlSpVws3NjWnTpjFr1qxrzr+yd+hWtWvXjgoVKvDTTz/xyCOP8NNPP1GxYkXatGmTq+eXLl061+eKSNGmW10iUqjCwsLw9PQkMjKSPn360KFDh3wJFdfrLbrE1dWV5557jrlz55KYmMiCBQt49tlncXV1ve3XvZHq1atz5swZUlNT7dqjo6Ntj19ys9pFJH8p+IhIoXJ1dcVkMmE2m21tx44du+2Viy+N1bnRys09evQgMTGRl19+mbS0NLt1eQrC448/jtls5quvvrJr/+yzzzCZTHTo0MHWVrp06XxfcVpErk+3ukSkUHXs2JHx48fTvn17nnvuOeLj4/n666+pU6cOu3fvvuXrNmnSBIARI0bwzDPP4ObmRufOnW2BqHHjxjRs2JA5c+bQoEED7rvvvnz5fm6kc+fOtGrVihEjRnDs2DEaNWrE8uXLWbhwIYMGDbKbst6kSRNWrlzJ+PHjqVy5MjVr1qR58+YFWp+Is1KPj4gUqtatW/P9998TFxfHoEGD+Pnnn/n444954oknbuu6999/Px9++CG7du2id+/ePPvss9csLtizZ0+AXA9qvh0uLi6Eh4czaNAgFi9ezKBBg9i/fz+ffPIJ48ePtzt3/PjxNGnShHfffZdnn32WiRMnFnh9Is7KZBhXLCEqIlKCffHFF7zxxhscO3aMatWqObocEXEABR8RcQqGYdCoUSPKlSvHmjVrHF2OiDiIxviISIl24cIFwsPDWbNmDXv27GHhwoWOLklEHEg9PiJSoh07doyaNWsSEBDAq6++yujRox1dkog4kIKPiIiIOA3N6hIRERGnoeAjIiIiTkODm69isVg4c+YMvr6+WkZeRESkmDAMg9TUVCpXrmy3KfLVFHyucubMGYKDgx1dhoiIiNyCkydPUrVq1Rs+ruBzFV9fX8D6g/Pz83NwNSIiIpIbKSkpBAcH2z7Hb0TB5yqXbm/5+fkp+IiIiBQzfzdMRYObRURExGko+IiIiIjTUPARERERp6ExPrfAbDaTnZ3t6DKkELi5ueHq6uroMkREJJ8o+OSBYRjExcWRlJTk6FKkEAUEBFCxYkWt6yQiUgIo+OTBpdATFBSEt7e3PghLOMMwSE9PJz4+HoBKlSo5uCIREbldCj65ZDabbaGnXLlyji5HComXlxcA8fHxBAUF6baXiEgxp8HNuXRpTI+3t7eDK5HCduk917guEZHiT8Enj3R7y/noPRcRKTkUfERERMRpKPiIiIiI01DwcQK9e/fGZDJhMplwc3OjQoUKPPbYY0ydOhWLxZLr60yfPp2AgICCK1RERKSAKfg4ifbt2xMbG8uxY8dYunQprVq14t///jedOnUiJyfH0eWJiIgTiIuLsy0R4ijFJviMGTOG+++/H19fX4KCgujWrRsxMTF252RkZDBgwADKlSuHj48PoaGhnD171kEVFy0eHh5UrFiRKlWqcN999/HOO++wcOFCli5dyvTp0wEYP348d999N6VLlyY4OJhXX32VtLQ0ANauXcuLL75IcnKyrfdo5MiRAPz44480bdoUX19fKlasyHPPPefwP9giIlJ0GIbBF198wbfffsvEiRMxDMNhtRSb4LNu3ToGDBjA5s2bWbFiBdnZ2bRt25YLFy7YznnjjTdYtGgRc+bMYd26dZw5c4bu3bsXWE2GYZCVleWQr/z4Q9O6dWsaNWrEvHnzAHBxcWHChAns27ePGTNmsHr1at5++20AWrRoweeff46fnx+xsbHExsby5ptvAtZp3h9++CG7du1iwYIFHDt2jN69e992fSIiUvzFx8fzwQcf2O164MjZssVmAcNly5bZHU+fPp2goCC2b9/OI488QnJyMt9//z2zZs2idevWAEybNo0GDRqwefNmHnjggXyvKTs7mzFjxuT7dXNj+PDhuLu73/Z16tevz+7duwEYNGiQrb1GjRr897//pX///nzzzTe4u7vj7++PyWSiYsWKdtfo06eP7fe1atViwoQJ3H///aSlpeHj43PbNYqISPG0YsUKNm3aZDsODAzklVdecWBFxSj4XC05ORmAsmXLArB9+3ays7Np06aN7Zz69etTrVo1oqKibhh8MjMzyczMtB2npKQUYNVFj2EYtuS9cuVKxowZQ3R0NCkpKeTk5JCRkUF6evpNF27cvn07I0eOZNeuXSQmJtoGTJ84cYI777yzUL4PEREpOrKysq7pGOjevTt33323gyq6rFgGH4vFwqBBg3jwwQdp2LAhYB0w5e7ufs2sowoVKhAXF3fDa40ZM4ZRo0bdUh1ubm4MHz78lp57u9zc3PLlOgcOHKBmzZocO3aMTp068corrzB69GjKli3Lhg0b6Nu3L1lZWTcMPhcuXKBdu3a0a9eOmTNnEhgYyIkTJ2jXrh1ZWVn5UqOIiBQfhw8fZubMmXZtb731VpHZ+aBYBp8BAwawd+9eNmzYcNvXGj58OIMHD7Ydp6SkEBwcnKvnmkymfLnd5CirV69mz549vPHGG2zfvh2LxcL//vc/XFysQ79+/fVXu/Pd3d0xm812bdHR0Zw7d46xY8fafm7btm0rnG9ARESKlB9//JE///zTdnzPPffwxBNPOLCiaxW74PPaa6+xePFi1q9fT9WqVW3tFStWJCsri6SkJLten7Nnz14zJuVKHh4eeHh4FGTJRUJmZiZxcXGYzWbOnj3LsmXLGDNmDJ06daJnz57s3buX7OxsvvzySzp37szGjRuZNGmS3TVq1KhBWloaq1atolGjRnh7e1OtWjXc3d358ssv6d+/P3v37uXDDz900HcpIiKOkJKSwmeffWbX1qdPn1x3JBSmYjOryzAMXnvtNebPn8/q1aupWbOm3eNNmjTBzc2NVatW2dpiYmI4ceIEISEhhV1ukbNs2TIqVapEjRo1aN++PWvWrGHChAksXLgQV1dXGjVqxPjx4/n4449p2LAhM2fOvOb+bIsWLejfvz9PP/00gYGBjBs3jsDAQKZPn86cOXO48847GTt2LJ9++qmDvksRESlsv//+u13ocXV15d13371u6AkPhxYtrL86islw5GT6PHj11VeZNWsWCxcupF69erZ2f39/vLy8AHjllVdYsmQJ06dPx8/Pj9dffx3AbkT530lJScHf35/k5GT8/Pxs7RkZGRw9epSaNWvi6emZT9+VFAd670VErmWxWPjkk0/IyMiwtT322GO0aNHihs9p0QKioiAkBPLw0ZwrN/r8vlqxudU1ceJEAB599FG79mnTptnWjPnss89wcXEhNDSUzMxM2rVrxzfffFPIlYqIiJRsZ86cYfLkyXZt//73v/92W6Nhw2DsWOuvjlJsenwKi3p85Gp670VELlu8eDHbt2+3HQcHB/Piiy86dFFCKIE9PiIiIuI4GRkZfPzxx3ZtTz/9NPXr13dQRbdGwUdERERu6sCBA9cscTJs2LBiOStawUdERESuyzAMpkyZwpkzZ2xt999/P48//jjh4fD222AywccfQ5cuDiw0DxR8RERE5BqJiYlMmDDBru2ll16iUqVKgHWQckwMtt8r+IiIiEixtGHDBrt18UqXLs3gwYNtK/uDdWbWpR4fR87SyisFHxEREQEgJyeH0aNH27V17NiRpk2b2o7Dwy9PSY+OLuwKb5+Cj4iIiHDixAmmTZtm1zZ48GB8fX3t2saOtS5CWJxub12p2GxZIUVf79696datm+340UcfZdCgQbd1zfy4hoiI3FxYWJhd6Klbty7vv//+NaEHrD09ISHF6/bWldTj4wR69+7NjBkzAHBzc6NatWr07NmTd955h1KlCu6PwLx583Bzc8vVuWvXrqVVq1YkJibarfyZl2uIiEjepKen88knn9i1vfDCC9SuXdt2fOWtrS5dLn8VV+rxcRLt27cnNjaWQ4cOMWTIEEaOHHnNH3aArKysfHvNsmXLXvd/C4V9DRERudauXbuu+RyYOvUdOnWqbbeJ6JW3tkoCBR8n4eHhQcWKFalevTqvvPIKbdq0ITw83HZ7avTo0VSuXNm2AezJkyf55z//SUBAAGXLlqVr164cO3bMdj2z2czgwYMJCAigXLlyvP3221y9+8nVt6kyMzMZOnQowcHBeHh4UKdOHb7//nuOHTtGq1atAChTpgwmk8m2/9rV10hMTKRnz56UKVMGb29vOnTowKFDh2yPT58+nYCAACIjI2nQoAE+Pj620HfJ2rVradasGaVLlyYgIIAHH3yQ48eP59NPWkSkaDMMgy+//JIFCxbY2v788yFGjnyfEyfciI62DznF/dbW1RR8nJSXl5etd2fVqlXExMSwYsUKFi9eTHZ2Nu3atcPX15fffvuNjRs32gLEpef873//Y/r06UydOpUNGzZw/vx55s+ff9PX7NmzJz///DMTJkzgwIEDfPvtt/j4+BAcHExYWBgAMTExxMbG8sUXX1z3Gr1792bbtm2Eh4cTFRWFYRg8/vjjZGdn285JT0/n008/5ccff2T9+vWcOHGCN998E7DOWOjWrRstW7Zk9+7dREVF8dJLLzl8jxkRkcKQkJDABx98wPnz521tr776KqGh/8DLy3rs5WUfcrp0se6kXpxvb11JY3ycjGEYrFq1isjISF5//XUSEhIoXbo0U6ZMwd3dHYCffvoJi8XClClTbIFg2rRpBAQEsHbtWtq2bcvnn3/O8OHD6d69OwCTJk0iMjLyhq978OBBfv31V1asWEGbNm0AqFWrlu3xsmXLAhAUFHTD3X0PHTpEeHg4GzdupEWLFgDMnDmT4OBgFixYwFNPPQVAdnY2kyZNst2jfu211/jggw8A6yZ2ycnJdOrUyfZ4gwYN8v6DFBEpZlatWsWGDRtsxx4e5QgPH0Djxia6dIFffrEfy1NSqcfHQcLDoUUL7O6jFqTFixfj4+ODp6cnHTp04Omnn2bkyJEA3H333bbQA9b7vocPH8bX1xcfHx98fHwoW7YsGRkZHDlyhOTkZGJjY2nevLntOaVKlbJb5+FqO3fuxNXVlZYtW97y93DgwAFKlSpl97rlypWjXr16HDhwwNbm7e1tNzCvUqVKxMfHA9aA1bt3b9q1a0fnzp354osv7G6DiYiUNNnZ2YwaNcou9FSv3o3Ro18jKsrE229bP4+gZPXs3Ih6fByksNdBaNWqFRMnTsTd3Z3KlSvbzeYqXbq03blpaWk0adKEmTNnXnOdwMDAW3p9r0t9qIXg6llgJpPJbvzRtGnTGDhwIMuWLWP27Nm8++67rFixggceeKDQahQRKQxHjhzhp59+smt76623aNPGm7Q08PGxrrxcnNflySv1+DhIYQ8WK126NHXq1KFatWp/O4X9vvvu49ChQwQFBVGnTh27L39/f/z9/alUqRK///677Tk5OTls3779hte8++67sVgsrFu37rqPX+pxMpvNN7xGgwYNyMnJsXvdc+fOERMTw5133nnT7+lqjRs3Zvjw4WzatImGDRsya9asPD1fRKSomzVrll3oadiwIY0bv0+bNt60amX9DJo507rBaEkavPx3FHwcpCgPFnv++ecpX748Xbt25bfffuPo0aOsXbuWgQMHcurUKQD+/e9/M3bsWBYsWEB0dDSvvvoqSUlJN7xmjRo16NWrF3369GHBggW2a/76668AVK9eHZPJxOLFi0lISCAtLe2aa9StW5euXbvSr18/NmzYwK5du3jhhReoUqUKXbt2zdX3dvToUYYPH05UVBTHjx9n+fLlHDp0SON8RKTESE1NZdSoUXYzXn///UXc3EJtdxsmTIBWrS7P3iqqn0cFQcFHruHt7c369eupVq0a3bt3p0GDBvTt25eMjAz8/PwAGDJkCD169KBXr16EhITg6+vLE088cdPrTpw4kSeffJJXX32V+vXr069fPy5cuABAlSpVGDVqFMOGDaNChQq89tpr173GtGnTaNKkCZ06dSIkJATDMFiyZEmuFzn09vYmOjqa0NBQ7rjjDl566SUGDBjAyy+/nIefkIhI0bRt2zbGjx9/RYuJzz4bwdKl1WwDl318IC3NGn5K0vo8uWUyrl58xcmlpKTg7+9PcnKy7UMeICMjg6NHj1KzZk08PT0dWKEUNr33IlLUWSwWxo8fb/vPJMDBg/9gx46HiI62hp2ZM629OpdWYm7VCtasKTmzuG70+X01DW4WEREpxmJjY/nuu+/s2iZPHsjp02WoV+/y+J1L4aa4bzlxuxR8REREiqklS5awdetW23GVKlWYOrUvp0+bcHGB0FAYPdqBBRZBGuMjIiJSzGRmZjJq1Ci70LNixT8JCvoXw4aZ8PEBi8V6K0vsqcdHRESkGImOjmb27Nl2bWPGDCUz05OhQ+HAAet4nkuDmcWegk8eaSy489F7LiJFgWEYTJs2jZMnT9ratm1rwuLFna44x/qrs4/juRkFn1y6NF06PT29UFchFsdLT08Hrl0RWkSksCQlJV2zeXNUVD8iIyvj4gLdu8Pp0+rhyQ0Fn1xydXUlICDAtueTt7e3dvQu4QzDID09nfj4eAICAnB1dXV0SSLihKKioli+fLntOCvLi2bN3qRxYxdSUkrOdPTCouCTBxUrVgSwhR9xDgEBAbb3XkSksFgsFn777TfWrl1ra1uypANbtjQjJMS5VlvOTwo+eWAymahUqRJBQUFkZ2c7uhwpBG5uburpEZFCl5yczPz58zl+/DgAGRkefP31q6Sm+uHioltat0PB5xa4urrqw1BERArEgQMHCA8PJyMjg5wcd8LDH2f37kYAuLnBW2+pp+d2KPiIiIgUAdnZ2URGRrJ9+3YAKleuzLBhoZw/XxaAd97RYoT5QcFHRETEwc6ePUtYWBgJCQkAbNnSgnvvbU12tvXugq+vQk9+UfARERFxEMMw2Lp1K8uXL8dsNuPj48O0ad3Yt68269drIcKCoOAjIiLiAOnp6YSHhxMTEwOAn19dFi7sSoMGpTl+HAYO1EKEBUHBR0REpJAdPXqU+fPnk5qaitnsys6dbdixozmnT5uoXx9SUx1dYcml4CMiIlJIzGYza9euZcOGDQAkJZXjl1+eJC6uIqX+/xNZu+QULAUfERGRQpCYmEhYWBinT58G4NSpxsya1Z70dHcATCYICdF4noKm4CMiIlLA9uzZQ0REBJmZmWRne7BiRWe2bLmLSzsfubpa1+fRzK2Cp+AjIiJSQLKysli6dCk7d+4EICEhmJ9+6k5ycgBw+bZWs2YKPYVFwUdERKQAnDlzhh9+CCMz8zwWi4n9+x9m8+aWJCe7ULYspKeDtzcEBen2VmFS8BEREclHhmEQFRXFypWrMAwLycl+zJvXnePHq1O//uVxPJqm7hgKPiIiIvkkLS2NBQsWcOTIEQD272/AokWduXjRC5MJPv5YgcfRFHxERETyweHDh1mwYAEXLlwgJ6cUS5e2Y/v2JoB1BHPlygo9RYGCj4iIyG3Iyclh1apVbN68GYCzZ4OYOzeUhIQgAFxcoG5dGDfOkVXKJQo+IiIit+jcuXPMnTuXuLg4AH7//X5WrHiMnBw3ADw9YfZs9fQUJQo+IiIieWQYBrt27WLJkiVkZ2djGF7MmdOVmJh6tinqbm4KPUWRgo+IiEgeZGRkEBERwd69ewGoUaMGw4Y9QVycHwD16kHZspq5VVQp+IiIiOTSyZMnmTdvHklJSVgsJuLjW/G//z3I3Xe7kJxsDTzjxinwFGUKPiIiIn/DYrGwYcMG1q5di2EYJCYGEBYWyunTVTEM2L3buiChFH0KPiIiIjeRkpLC/PnzOXbsGAAHDjRkwYKOZGZ6UrYsZGXBwIGOrVFyT8FHRETkBqKjo5k7Nxyz+SLZ2W7Urv04WVmNMJlMVKkC33yj21rFjYKPiIjIVbKzs1m+fDnbtm0D4MyZSoSFhVK+fDmio7WhaHGm4CMiInKF+Ph4wsLCiI+PB2DTphBWrfoHZrMrgYEOLk5um4KPiIgI1rV5tm/fTmRkJDk5OaSllWb+/G4cOVIHsC5G+PHHDi5SbpuCj4iIOL309HQWLVpEdHQ0AAkJdfjhh66kpvoAUL++NhgtKRR8RETEqR07dox58+aRmpqKi4sL27a1YdGiB3B1tW4uWqUKHDjg4CIl3yj4iIiIU7JYLHz33Vri4n7DZILz58vh6xvKwYOVMAyoUAGqVbOuwCwlh4KPiIg4naSkJMLCwjh79hQmE/zxx70sXdoBd3d3Zs6EsWO15URJpeAjIiJOZe/evSxevJjMzExcXDyYO7cTu3c3BODNN61hR4Gn5FLwERERp5CVlcXSpUvZuXMnAN7eVVm2rDu7d5cBwGTS+jzOQMFHRERKvNjYWMLCwjh37hwAFSo8zNChLUlJcaVcOUhMhO7dHVykFAoFHxERKbEMw+D3339n5cqVmM1m3Nx8WbasO9u21eDiRfDxgalTdWvLmSj4iIhIiXThwgUWLFjA4cOHAYiPr8e0aV24eNEbsIaemTMVepyNgo+IiJQ4R44c4Zdf5pOTc4Hs7FJERrZl27amgHVtHi1I6LxcHF1AQfj666+pUaMGnp6eNG/enC1btji6JBERKQRms5nly5fz008/kZNzgfj4QCZP7se2bfdzKfQ8+aR1QUKFHudU4np8Zs+ezeDBg5k0aRLNmzfn888/p127dsTExBAUFOTo8kREpICcO3eOsLAwYmNjAdi+vSlLl7YlJ8cNFxcwDAgNhTlzHFyoOJTJMAzD0UXkp+bNm3P//ffz1VdfAdaVOYODg3n99dcZlovlN1NSUvD39yc5ORk/P7+CLldERG6TYRjs3r2biIgIsrOz8fLyYvnyLqxaVR+wbi46e7Z6eEq63H5+l6gen6ysLLZv387w4cNtbS4uLrRp04aoqKjrPiczM5PMzEzbcUpKSoHXKSIi+SMzM5OIiAj27NkDQHx8dVq16s6pU9YPPoUeuVqJCj5//fUXZrOZChUq2LVXqFDBtuPu1caMGcOoUaMKozwREclHp06dIiwsjKSkJCwWE2vXPspvvz3E6tUujBunbSfk+kpU8LkVw4cPZ/DgwbbjlJQUgoODHViRiIjcjGEYbNy4kTVr1mCxWPD39+eHH0L544/g/39c207IjZWo4FO+fHlcXV05e/asXfvZs2epWLHidZ/j4eGBh4dHYZQnIiK3KTU1le++m09a2lEAYmPv4u67O5Ge7glYb22NG+fICqWoK1HT2d3d3WnSpAmrVq2ytVksFlatWkVISIgDKxMRkdsVExPDF19MJC3tKFlZbkREdOHbb0N55x1Pxo2DkBCN55G/V6J6fAAGDx5Mr169aNq0Kc2aNePzzz/nwoULvPjii44uTUREbkFOTg7Lly9n69atAMTGVmTJklAslvKAdXNR3dqS3Cpxwefpp58mISGB9957j7i4OO69916WLVt2zYBnEREp+hISEpg7dy7x8fEA/PXXA0yd+g+6di1Fjx6XBzCL5FaJW8fndmkdHxERxzMMgx07dhARsQzDyMEwSrNjRzdWrKhDRoZ1n63UVEdXKUWJU67jIyIixd/FixdZtGgRBw4cAODw4dosXtyNpCQfypaFUqVg4EAHFynFloKPiIgUGcePH2fevHmkpKRgNruwZs0/2LgxBBcX6z5bgYFwg2XZRHJFwUdERBzOYrEwefJ6YmPXYzIZJCaW5ddfQ4mNrQxAxYpQrZrG88jtU/ARERGHSkpKYsqUeVy4cBKTCfbsacSiRR0AD6pUsY7nGTdOs7Ykfyj4iIiIw+zbt49Fixb9/76J7qxY0YnY2LvJyoJ69XRbS/Kfgo+IiBS6rKwsvvtuGefO/QFAXFwVZs8O5R//KMN//qNp6lJwNJ39KprOLiJSsH75JY7t28Pw8fkLw4ANGx5izZpHsVhcNU1dbpmms4uISJFiGAZbtmzhwIEV+PiYuXDBl7CwJ/jzz5q2czRNXQqago+IiBS4CxcusHDhQg4dOoSLCxw+fAdr1nTl9Glv2zn168Po0Q4sUpyCgo+IiBSoP//8k/nz55OWloarqytbtrRl0aL7cXe3rs1TpYqmqkvhUfAREZECYTabWbNmDRs3bgQgMDCQcuVCGT26wv8fXw48mqouhUXBR0RE8t358+f5+OMwvL3PAGA2N2HEiHaULu1m22vrm28UeKTwKfiIiEi+2r17NwsXRuDtncXFi56Eh3fhwIEGAKSlQUiIennEcRR8REQkX2RmZvLtt0tITNwNwPHj1QgL645h+NvOMZlg0yZHVSii4CMiIvng9OnThIWFkZiYiMVi4rffWvL77w8zaJALYWEQE2MNPW+95ehKxdkp+IiIyC0zDINNmzaxcuVqwIJh+DNrVncOH64GwJo11n22Lq3ErNtb4mgKPiIicktSU1NZsGABf/75JwD79t1JXFwnXF29APD0vBx2FHikqFDwERGRPDt48CALFy4kPT0dNzc3Ll5sz6JFjSlXzkSvXtaeHvXwSFGk4CMiIrmWk5PDypUr+f333wGoUKECJ08+yUcflQfg9Glr6NEAZimqFHxERCRXEhISCAsL4+zZswBs3dqcrVvbkJBw+aPEZNIKzFK0KfiIiMhNGYbBH3/8wdKlS8nJycHb25uffurK7t132J3n5madtaXbW1KUKfiIiMgNzZt3kRUrFlOx4n4AatWqRbdu3UhK8uXgQShdGsqXt87cUuCR4kDBR0RErmvWrBNs3z6PihWTsVhcaNu2NUuWtKByZRMDB8LFi46uUCTvTIZhGI4uoihJSUnB39+f5ORk/Pz8HF2OiEihCg+HsWMt9Or1G7Gx6zCZDBITy+DjE8rq1VXYudMaeHx8IDXV0dWKXJbbz2+XQqxJRESKuM8/T6Z+/RnExa3FZDI4ffoeWrZ8mdWrqxAVBWXLWkPPwIGOrlTk1uhWl4iIALB//35at16E2ZyBi4s7WVkd+fnnewgMtM7U0urLUhLoVtdVdKtLRJxNdnY2kZGRbN++HYDKlSsTEBDKM8+UxWLRbS0pHnL7+a0eHxERJ3b27FnCwsJISEgA4MEHH6RVq1Y8/LArFgu4uOi2lpQsCj4iIk7IMAy2bt3K8uXLMZvN+Pj4UKHCE7z+ei0MA0JDrefp1paUNAo+IiJOJj09nYULF3Lw4EEA6tatS9euXXnssdJER1vP0bYTUlIp+IiIOJGjR48yb9480tLSsFhcCQ5+jGefbcaiRSbOn4cqVaxjerTthJRUCj4iIk7AbDazdu1aNmzYAMC5c+X59ddQypSpyNSpcP48xMRASIh6eqRkU/ARESnhEhMTCQsL4/Tp0wCcPHkfP/zQDldXd5KTIToa6te3hh719EhJp+AjIlKC7dmzh8WLF5OVlYWnpycVK3Zm8uQ7cXWFcuXg9Gnrra2PP9YgZnEOCj4iIiVQZmYmS5cuZdeuXQCULl2Nfv2606GDP//f8YOPz+VeHoUecRYKPiIiJcyZM2cICwvj/PnzGIaJdeseISvrEe64w8VuALN2VBdnpOAjIlICWDcXNXjxxSji4lZhsVjw8/OjQoXuzJ5dHcOAt9/WAGYRbVIqIlLMhYdDv35p1K49kzNnVmCxWGjQoAHVq/fnq6+soScmBkwmDWAWyXOPj6urK7GxsQQFBdm1nzt3jqCgIMxmc74VJyIif2/KlEP06rWA0qXTMYxSbN3ansmT7yM+3kR2tvXWlsbyiFjlOfjcaE/TzMxM3N3db7sgERHJnZycHFatWkWTJpsBsFiCmDHjSY4fD7Q7z9dXt7ZELsl18JkwYQIAJpOJKVOm4OPjY3vMbDazfv166tevn/8ViojINf766y/CwsKIi4sDoFmzZowe/RjHj1v/WffxAX//y1PVRcQq18Hns88+A6w9PpMmTcLV1dX2mLu7OzVq1GDSpEn5X6GIiNgsXGjw0087ueeepVgs2Xh5edG1a1diYupx7px1HM+ljvlTpxxbq0hRlOvgc/ToUQBatWrFvHnzKFOmTIEVJSIi18rIyGDp0sU0bLgPiwUslposXfoE9ev7MnasdQXmKlUgORkGDnR0tSJFU57H+KxZs6Yg6hARkeuwTlOH1147SXx8GJUqJWOxmFi9ujW7drUgNdWFzEzrwOWxYzWAWeTv5Dn49OnT56aPT5069ZaLERGRy8LD4YUXLDRuvIGYmLW4uBgEBAQQFBTKihVVef11WLPmcthR4BH5e3kOPomJiXbH2dnZ7N27l6SkJFq3bp1vhYmIOLvPPkshNHQeNWocB+Duu++mY8eOREZ6ANC8OYwe7cgKRYqfPAef+fPnX9NmsVh45ZVXqF27dr4UJSLi7N59N5rmzcPx8rqIi4s7Xbo8zj333MOiRSaefx7S0qy3ttTLI5I3+bJys4uLC4MHD7bN/BIRkbwLD4e77srmhRcicHObjZfXReLiKvHqqy/RqFEjTCYTY8daQ4+Pj1ZgFrkV+bZlxZEjR8jJycmvy4mIOJ2vvorn0UcnU7fuNgC2bGlB2bJ9GT++HL6+MGKENeyEhMDMmertEbkVeb7VNXjwYLtjwzCIjY0lIiKCXr165VthIiLOYuFCg1mzttGixXJMphzS0krj4fEEERHW4QO+vtZengkTIDVVgUfkduQ5+Pzxxx92xy4uLgQGBvK///3vb2d8iYiI1aVp6m++mc7KleHceWcMAH/+WYewsG5UrVqa1autPTwDB1pDj9bmEbl9JuNGm285qZSUFPz9/UlOTsbPz8/R5YhICdWiBcTGHuOZZ+bh6ZmKxeLCzp2PsWhRczw8TJhMcPGi9baW9tkS+Xu5/fzOc4/PJfHx8cTEWP+HUq9evWt2axcRkeszm8307LmOuLjfMJnAw6McCxeGcvJkJerVs245EROjAcwiBSHPg5tTUlLo0aMHlStXpmXLlrRs2ZIqVarwwgsvkJycXBA1ioiUCOHh0Lp1Ep99Np2zZ62hp3HjxkREvMTmzZU4fRrKlIFx4zSAWaSg5Dn49OvXj99//52IiAiSkpJISkpi8eLFbNu2jZdffrkgahQRKRGmT99L8+aTuHDhFB4eHjz55JN06dKFRx5xx9PTus/WpVWYN21S6BEpCHm+1bV48WIiIyN56KGHbG3t2rVj8uTJtG/fPl+LExEpCbKysli6dCmNGu0EICGhKv7+ofTrF8CwYdZtJzIyoFo1hR2Rgpbn4FOuXDn8/f2vaff399eO7SIiV/nll1h27AijdOlzABw58ggzZ7bE29vFtvrylRuMikjByvOtrnfffZfBgwcTFxdna4uLi+Ott97iP//5T74WJyJSHIWHQ4sWBlOmRHHgwBRKlz5HSoof2dm92Lq1FXXrujBwoHUcj25tiRSuPE9nb9y4MYcPHyYzM5Nq1aoBcOLECTw8PKhbt67duTt27Mi/SguJprOLyO169NE0qlZdSN26hwE4eLA+8+d3wTC8yMiA+vXhwAEHFylSwhTYdPauXbtiMpluqzgRkZLq8OHDPPbYAnJyLpCdXYqDB9vx/PNNOHrUxIkTcPq0dbq6iDhGnoPPyJEjC6AMEZHibcECMwsWrKJmzSgAPD2D2LgxFH//IF54wbrqcvPmGssj4mh5Dj61atVi69atlCtXzq49KSmJ++67jz///DPfihMRKQ5+/fUca9aEUbNmLAD3338/jz32GA0auPHEE2CxaJ8tkaIiz8Hn2LFjmM3ma9ozMzM5depUvhQlIlIcGIbBrl272LNnCRUrZnPxohelSnXhv/+tT06OtXfHYgEXF+2zJVJU5Dr4hIeH234fGRlpN6XdbDazatUqatasmb/V/b9jx47x4Ycfsnr1auLi4qhcuTIvvPACI0aMwN3d3Xbe7t27GTBgAFu3biUwMJDXX3+dt99+u0BqEhHnlpGRQUREBHv37qVUKTh/vgYPP/wE48f7ERV17TR19fSIFA25Dj7dunUDwGQy0atXL7vH3NzcqFGjBv/73//ytbhLoqOjsVgsfPvtt9SpU4e9e/fSr18/Lly4wKeffgpYR3O3bduWNm3aMGnSJPbs2UOfPn0ICAjgpZdeKpC6RMQ5nTp1irCwMJKSkrBYTFSp0or//OdBXFxccHe3DzsKPCJFS56ns9esWZOtW7dSvnz5gqopVz755BMmTpxoG1M0ceJERowYQVxcnK0XaNiwYSxYsIDo6OhcX1fT2UXkRhYutPDDDxtp2HANLi4G6ekBzJrVndKlgylbVj07Io6U28/vPC9gePToUYeHHoDk5GTKli1rO46KiuKRRx6xu/XVrl07YmJiSExMvOF1MjMzSUlJsfsSEbnEuhghzJ2bwqpVP3LPPatxcTGIjW3IAw+8jI9PMMePY7u9JSJFW54HN3/wwQc3ffy999675WJy6/Dhw3z55Ze221xgXT366jFGFSpUsD12o+00xowZw6hRowquWBEp1oYOBcOIYceOhZQrd5HsbDeWL3+c6tUb8cknJgzDus+Wj4+mqYsUB3kOPvPnz7c7zs7O5ujRo5QqVYratWvnKfgMGzaMjz/++KbnHDhwgPr169uOT58+Tfv27Xnqqafo169f3oq/juHDhzN48GDbcUpKCsHBwbd9XREp/rKzs7nvvhXcccdWACpVqsSvv4aydWs5DhyAtDTrKsxXbj0hIkVbnoPPH3/8cU1bSkoKvXv35oknnsjTtYYMGULv3r1vek6tWrVsvz9z5gytWrWiRYsWfPfdd3bnVaxYkbNnz9q1XTquWLHiDa/v4eGBh4dHnuoWkZIvISGBuXPncscd8QCYzSHMmNGaypVL4eMD7dtbV2FW4BEpXvIcfK7Hz8+PUaNG0blzZ3r06JHr5wUGBhIYGJirc0+fPk2rVq1o0qQJ06ZNw8XFfnhSSEgII0aMIDs7Gzc3NwBWrFhBvXr1tGu8iOSaYRhs376dyMhIcnJyKF26NN26daNnzzpERVlvaaWlWUPPpk2OrlZE8irPg5tvJDk5meTk5Py6nJ3Tp0/z6KOPUq1aNT799FMSEhKIi4uz2yH+ueeew93dnb59+7Jv3z5mz57NF198YXcbS0TkZubNu8iAAb8SERFBTk4OtWvXpn///tSpU4dhw6y3tK7cVV1Eip889/hMmDDB7tgwDGJjY/nxxx/p0KFDvhV2pRUrVnD48GEOHz5M1apVr3l9AH9/f5YvX86AAQNo0qQJ5cuX57333tMaPiKSK8eOHeP33+dToUIKZrMLHTq0IT7+Adq2NWlNHpES5JbW8bmSi4sLgYGBtG7dmuHDh+Pr65uvBRY2reMj4lwsFgvr1q3jt99+wzAMzp0rS3h4KBMmVGbsWOs09ZAQ3dYSKepy+/md5x6fo0eP3lZhIiJFRVJSEvPmzePkyZMA/PnnvSxY0IGUFPdrtpwQkZLhlgY3JyUlcfjwYQDq1KlDQEBAftYkIlLg9u3bx6JFi8jMzMTDw4OlSzuyfv3dlCplnaKu21siJVOegs+xY8cYMGAAkZGRtrE1JpOJ9u3b89VXX1GjRo2CqFFEJN9kZWWxbNky29Ic3t5VWbasO1FR1tmfOTnW8xR4REqmXAefkydP8sADD+Dm5saHH35IgwYNANi/fz8TJ04kJCSErVu3XjP4WESkqIiLi2Pu3LmcO3cOgAoVHmbo0JakpLhSpQqcOQOGYf0SkZIp14Ob+/bty+HDh4mMjMTT09PusYsXL9K+fXvq1q3LlClTCqTQwqLBzSIlj2EY/P7776xcuRKz2Yyvry8VKjxB//41SUuzrs0zc6b13Ct3VheR4iPfBzcvW7aM2bNnXxN6ALy8vPjwww955plnbq1aEZECcuHCBRYuXMihQ4cA8Pevx0svdaFJE2/S0sDT0xp6LgUdBR6Rki3Xweevv/666RieWrVqcf78+fyoSUQkXxw5coQFCxaQlpaG2ezKsmXtOHCgKbVqmWy3s6pXV9gRcSa5Xrm5UqVK7N+//4aP792796Z7YomIFBaz2cyKFSv46aefSEtLIzAwEIulH9u3309amomxY2HcOOv6POPGObpaESlMue7x6datG2+++SarVq26Zn+t+Ph4hg4dSrdu3fK7PhGRPDl//jxhYWGcOXMGgBMnmtCoUTt++skNi8U6nkdT1UWcV64HNycmJtK8eXPi4uJ44YUXqF+/PoZhcODAAWbNmkXFihXZvHkzZcuWLeiaC5QGN4sUX7t27WLJkiVkZWXh6urJnDld2L27AfXqWXt2NHBZpOTK7ed3nrasSExM5J133mH27NkkJSUBEBAQwD//+U8++uijYh96QMFHpDjKzMwkIiKCPXv2AODjU52IiCdYs8YfgCpV4NQpR1YoIgWtQILPJYZhkJCQAEBgYCAmk+nWKy1iFHxEipfTp08TFhZGYmIiFouJtWsfZevWhyhb1oWEBMjKgnr1IDra0ZWKSEEqsL26wLpac1BQ0C0XJyJyuwzDYOPGjaxZswaLxYK/vz9BQd0ZN64aGRlw+rQ18JQtq722ROSyWwo+IiKOlJqayvz5822bJt9111106tQJT09PPvzQ2rvj5WUd16PxPCJyJQUfESlWDh48yMKFC0lPT8fFxY3duztw77334ulpIjzcut1E/frw8ccKPSJyLQUfESkWcnJyWLFiBVu2bAHg4sWK/PxzKCdOlOf0aeja1TprKybGuj6PQo+IXI+Cj4gUeQkJCUydGkZGxlkAoqKas3p1G7KzS9nW5QHrr5emrIuIXE+ugs+ECRNyfcGBAwfecjEiIlcyDIMdO3awbNkycnJyuHDBm99+68bevXXp2tU6gPnKdXm0KKGI/J1cBZ/PPvssVxczmUwKPiKSLy5evMiiRYs4cOAAALGxtfj9926MGuVrF27Cw6FFCy1MKCK5k6vgc2nmhIhIYThx4gRhYWGkpKTg4uLC9u3/IDw8hMqVrftsweWQM3YsREVZf1XwEZG/k+tNSq+WlZVFTEwMOTk5+VmPiDgxi8XC2rVrmT59OikpKZQpU4Y+ffoQE9MCwzBx/vzlkHPJsGHWwcwa1yMiuZHnwc3p6em8/vrrzJgxA7BOLa1Vqxavv/46VapUYZj+9RGRW5CcnMy8efM4ceIEAKdPNyIrqwNt2niQmmqdot69O6xZYx9yNK5HRPIiz8Fn+PDh7Nq1i7Vr19K+fXtbe5s2bRg5cqSCj4jk2f79+1m0aBEZGRm4u7uzbVtH5s27Bx8fSEuznhMSAqNHO7ZOESn+8hx8FixYwOzZs3nggQfs9ui66667OHLkSL4WJyIlW3Z2NsuWLWPHjh0AVKlShe7du3PXXWWJjYVWrWDePOuihPo/lYjkhzwHn4SEhOvu03XhwoUStVmpiBSsuLg4ZswIIyPjLwAefPBBWrVqhaurq93tK/XyiEh+yvPg5qZNmxIREWE7vhR2pkyZQkhISP5VJiIlkmEY/P7770yZMoWMjL9ITfVh9eoevPdeGyIiXB1dnoiUcHnu8fnoo4/o0KED+/fvJycnhy+++IL9+/ezadMm1q1bVxA1ikgJceHCBcLDwzl48CAAFssdbN3ahfj40kRHa0q6iBS8PAefhx56iJ07dzJ27Fjuvvtuli9fzn333UdUVBR33313QdQoIiXAn3/+yfz580lLS8NsdiUysi27d9/P7NnWXmNtNSEihcFkGIbh6CKKkpSUFPz9/UlOTsbPz8/R5YgUe2azmTVr1rBx40YAPDzKs3BhKJs3VwSgXj2IjnZkhSJSEuT28ztXPT4pKSm5fmGFBRG55Pz588ybN4/Tp08DsG3bfSQmtmf4cDeeeQYuXoSbzYkID7/cE6RbYCKSH3IVfAICAnI9Y8tsNt9WQSJSMuzevZuIiAiysrLw9PSkUqXOREbeaQsxv/zy97e3tB2FiOS3XAWfNWvW2H5/7Ngxhg0bRu/evW2zuKKiopgxYwZjxowpmCpFpNjIzMxkyZIl7N69G4Bq1arRvXt3/P396dnz8nm5WXF52DCN/RGR/JXnMT7/+Mc/+Ne//sWzzz5r1z5r1iy+++471q5dm5/1FTqN8RG5dWfOnCEsLIzz589jMpl45JFHeOSRR3BxueVtAUVEciW3n995/tcoKiqKpk2bXtPetGlTtmzZktfLiUgJYBgGGzdu5Pvvv+f8+fO4ufmxeXNvUlIeVegRkSIlz/8iBQcHM3ny5Gvap0yZQnBwcL4UJSLFR2pqKj/99BMrV67EYrFgsdzJ2LH9Wbq0Gi++CC1aWAcpi4gUBXm+1bVkyRJCQ0OpU6cOzZs3B2DLli0cOnSIsLAwHn/88QIptLDoVpdI7h06dIgFCxaQnp6O2VyKiIgOHDzYmLQ062QIk8m6z1b9+lCmjGZniUjBKbBbXY8//jiHDh2ic+fOnD9/nvPnz9O5c2cOHjxY7EOPiOROTk4Oy5YtY9asWaSnp1OhQgUaNnwJD4/7GDjQRJUq4OUFoaHWXdUN4/LsLBERR9IChldRj4/Izf3111+EhYURFxcHQLNmzXjssccoVerGk0S1Ho+IFLR8XcDwaklJSXz//fccOHAAgLvuuos+ffrg7+9/a9WKSJFnGAZ//PEHy5YtIzs7m6wsb+rX70p29h088ohCjYgUD3nu8dm2bRvt2rXDy8uLZs2aAbB161YuXrxo27erOFOPj8i1MjIyWLRoEfv37wfg3LmaTJ/+BA0b+gLW21ghIbBp0/Wf36LF358jInI7CqzH54033qBLly5MnjzZ1rWdk5PDv/71LwYNGsT69etvvWoRKXJOnjxJWFgYycnJgAsHD7bi2LEHuXDBOpanR4+/X2RQCxGKSFGR5x4fLy8v/vjjD+rXr2/Xvn//fpo2bUp6enq+FljY1OMjYmWxWPjtt99Yt24dhmFQpkwZli4NZdmyKri4gMUCPj6QmuroSkVECnBWl5+fHydOnLim/eTJk/j6+ub1ciJSBCUnJ/PDDz+wdu1aDMPgzJl7OHv2ZY4erUL9+tC9uzX0DBx47XPDw7V2j4gUXXm+1fX000/Tt29fPv30U1q0aAHAxo0beeutt67ZxkJEip8DBw4QHh5ORkYG7u7urF//OMuWNcLLy7qbekgIzJlz4+drY1ERKcryHHw+/fRTTCYTPXv2JCcnBwA3NzdeeeUVxmqRDpFiKzs7m8jISLZv3w5A5cqVCQ0NZcaMsgCULQvVqv39OB2N5xGRouyW1/FJT0/nyJEjANSuXRtvb+98LcxRNMZHnNHZs2cJCwsjISEBgBYtWtC6dWtcXV1ta/C0agVr1mjauogUTbn9/NYChldR8BFnYhgGW7duZfny5ZjNZnx8fOjWrRu1a9e+5lxNSReRoizfp7P36dMnV+dNnTo1t5cUEQdKT08nPDycmJgYAOrWrcu+fV25997SDBwIo0fbn69bWCJSEuS6x8fFxYXq1avTuHFjbvaU+fPn51txjqAeH3EGR48eZf78+aSmpuLq6kqbNm1o3rw5fn4m0tI0TV1Eip987/F55ZVX+Pnnnzl69CgvvvgiL7zwAmXLls2XYkWkcJjNZtauXcuGDRsAKFeuHE8++SQVK1YErNPTJ0y4/jR1EZGSIE9jfDIzM5k3bx5Tp05l06ZNdOzYkb59+9K2bVtMJlNB1llo1OMjJc2lwclvvJFIcnIYp0+fBqBx48aYze155x13DAPGjdOgZREpvgp8cPPx48eZPn06P/zwAzk5Oezbtw8fH59bLrioUPCRkqZFC0hN3UPXrhG4uWXi4eFB586dueuuu2wDlkGDlkWkeCvQ3dnBOubHZDJhGAZms/lWLyMiBWj+/Czq1l1KrVo7AQgODsbPrzv9+gUwbJh1oPLQoWAYGrQsIs4hT8HnyltdGzZsoFOnTnz11Ve0b98eF5c8734hIgXozJkzREWFUavWeQzDRMuWD5OS0pIXXnAhLc16+2vTJt3eEhHnkuvg8+qrr/LLL78QHBxMnz59+PnnnylfvnxB1iYit8AwDKKioli1ahWlS1u4eNGPe+7pTqtW1WnRAtusLfXwiIgzytN09mrVqtG4ceObDmSeN29evhXnCBrjI8VZWloaCxYssK2q7u/fgPnzOzNkiBdw+baWBjKLSEmT72N8evbsWWJmbomURIcPH2bBggVcuHCBUqVK0a5dOwYObEJUlInsbOs50dHWQcwKPSLirHIdfKZPn16AZYjIrcrJyWHVqlVs3rwZgKCgIEJDQ9m8OYjERKhX7/JtLa28LCLO7pZndYmI4507d465c+cSFxcHwP33389jjz2Gm5sbY8de28Ojnh4RcXYKPiLFkGEY7Nq1iyVLlpCdnY2Xlxddu3alXr16tnO0t5aIyLUUfESKmYyMDCIiIti7dy8APj416NfviWsG83Xpoh4eEZGrKfiIFCMnT55k3rx5JCUlYbGYWL26Fdu3P0jdui4KOSIiuaDgI1IMWCwWNmzYwNq1azEMg4CAAObMCWXjxqqA9ZaWgo+IyN8rdsstZ2Zmcu+992Iymdi5c6fdY7t37+bhhx/G09OT4OBgxo0b55giRfJRSkoKP/74I2vWrMEwDBo2bMjLL7/M229XpX59+1lbIiJyc8Wux+ftt9+mcuXK7Nq1y649JSWFtm3b0qZNGyZNmsSePXvo06cPAQEBvPTSSw6qVuT2REdHEx4ezsWLF3Fzc+Pxxx+nUaNGmEwmjeEREbkFxSr4LF26lOXLlxMWFsbSpUvtHps5cyZZWVlMnToVd3d37rrrLnbu3Mn48eMVfKTYyc7OZvny5Wzbtg2ASpUqERoaSrly5RxcmYhI8VZsbnWdPXuWfv368eOPP+Lt7X3N41FRUTzyyCO4u7vb2tq1a0dMTAyJiYk3vG5mZiYpKSl2XyKOFB8fz5QpU2yhJyQkhKCgvnTuXI7w8Px/vfBwaNGCArm2iEhRUyyCj2EY9O7dm/79+9O0adPrnhMXF0eFChXs2i4dX1rc7XrGjBmDv7+/7Ss4ODj/ChfJA8Mw2LZtG5MnTyY+Pp7SpUvz/PPP07ZtW8aNcyUqyjqIOb+NHUuBXVtEpKhxaPAZNmwYJpPppl/R0dF8+eWXpKamMnz48HyvYfjw4SQnJ9u+Tp48me+vIfJ30tPT+fXXX4mIiCAnJ4c6derQv39/6tSpA1gHL4eEFMwg5oK8tohIUZPr3dkLQkJCAufOnbvpObVq1eKf//wnixYtstsk1Ww24+rqyvPPP8+MGTPo2bMnKSkpLFiwwHbOmjVraN26NefPn6dMmTK5qkm7s0thO3bsGPPmzSM1NRUXFxfatGnDAw88oE2BRUTyIN93Zy8IgYGBBAYG/u15EyZM4L///a/t+MyZM7Rr147Zs2fTvHlzwDoOYsSIEWRnZ+Pm5gbAihUrqFevXq5Dj0hhslgsTJ68jtjY9ZhMUK5cOcqXD2XIkEoMG6YZWyIiBaFYzOqqVq2a3bGPjw8AtWvXpmpV6wJuzz33HKNGjaJv374MHTqUvXv38sUXX/DZZ58Ver0ifycpKYl58+YRF3cSkwlOnbqXe+7pQM+e7qSlaUFCEZGCUiwGN+eGv78/y5cv5+jRozRp0oQhQ4bw3nvvaSq7FDl79+5l0qRJnDx5EhcXD3btCqVz56588ok19Pj45N94G83YEhGx59AxPkWRxvhIQblw4QKffvqp7bhq1ap0796dMmXKEB4Ob78NJhN8/PHl3p7w8Ms7rN9KD1CLFtYZWyEhsGlTPn0jIiJFUG4/v0tMj49IUfbHH3/YhZ6QkBB69+5tG382dizExECZMvYB53anmmvGloiIPQUfkQJkGAaff/454Vfca9qzpyUDB7YlIsLV1najgHK7waVLF2tPj8YLiYhY6VbXVXSrS/JLfHw8EydOtGv77bfXWLXKuu2Ebj+JiOSfYjGdXaSkWr58OVFRUbbjoKAg+vfvz6JFJk6fhtRUOH/eOoZHvTEiIoVHwUckH2VlZTFmzBi7tho1Qvn224ZUqYJtR/VLg441bV1EpHBpjI9IPjl06NA1oeftt9/m228bXjNAedgwqF//cq+PiIgUDgUfkdtkGAY//PADs2bNsrWVLXsvkZHvs2KF13UHKHfpYp3BFROjzUFFRAqTgo/IbUhJSeGDDz7g6NGjtra+ffvy889d7W5lXW9mVW5nbGkRQhGR/KNZXVfRrC7Jrd9//51ly5bZjs3mUtx33zC6dXO97YUHr6RFCEVE/p5mdYkUEIvFwrhx48jMzLS1RUe35ZdfQggJgW7dLg9izg/Dhl0OUSIicnsUfETy4MyZM0yePNmubd26fxMSElBgKyTnZ4gSEXF2Cj4iubRo0SJ27NhhO05IqMaMGb1JSzORkaHbUCIixYGCj8jfyMjI4OOPP7ZrmzfvGc6dq5fvu6mLiEjBUvARuYn9+/czZ84cu7YJE4Zx/rwH9etfnpWlW1EiIsWDgo/IdRiGweTJk4mNjbW1NWvWjA8/7MD589Zeno8/VuARESlutI6PyFXOnz/PBx98YBd6Nm16mezsDra1d2bOVOgRESmO1OMjcoX169ezZs0a27GPjw9hYW8QFeVCaur1FyIUEZHiQ8FHBMjJyWH06NF2bZ06daJJkybUrat1dERESgoFH3F6x48fZ/r06XZtgwcPxtfXF9A6OiIiJYmCjzi1uXPnsm/fPttx3bp1ee655xxYkYiIFCQFH3FKFy5c4NNPP7Vr69GjB7Vq1XJQRSIiUhgUfMTp7Nq1iwULFti1vfPOO7i5uTmmIBERKTQKPuI0DMPgyy+/JDEx0dZ25MjD/PBDawdWJSIihUnBR5xCQkIC33zzjV3bhg0DeP318g6qSEREHEHBR0q8lStXsnHjRttxQkJ5dux4lU2bTA6sSkREHEHBR0qk8HAYNy6bxx77yK49J+cJduy4R2vyiIg4KQUfKXHCw+Gdd47w1FM/2bV//PFb3HuvN5s2OagwERFxOAUfKXFWrPiJp546Yju+++67KVWqO/feq9WXRUScnYKPlBhhYans3Tue8leMV+7Tpw/BwcGAVl8WEREFHykhtm7dyt69S2zHJpOJESNG4Orq6sCqRESkqFHwkWIpPNy6cejQoRZiYj7l4sWLtsd27mzD/PkPOrA6EREpqhR8pFgaOxaOHYtl587v7NrXrx/Iv/9dxkFViYhIUafgI8XS889H8Ndf22zHVatWpU+fPphMWptHRERuTMFHipXMzEzGjh1r1/b0009Tv359B1UkIiLFiYujCxC5kfBwaNHC+ivAgQMHrgk9Q4cOVegREZFcU4+PFFljx0JUFIwdaxAf/z2nT5+2Pda0aVM6duzowOpERKQ4UvCRImvYMPj88yRatvyCKzIPL730EpUqVXJcYSIiUmwp+EiRVa7cRlq2XGk79vLy4s0338TFRXdoRUTk1ij4iENcWodn2LBrV1Q2m82MHj0awzBsbR06dKBZs2aFXKWIiJQ0Cj7iEJfH71wOPuHhMGnSCZo3n2Z37uDBg/H19XVAlSIiUtLonoE4xLBhEBJiv2loRMQ8u9Bz+HBtIiPfV+gREZF8ox4fcYguXS739KSnp/PJJ59QufLlx2vXfoHIyNraTV1ERPKVgo841O7du5k/f75d2/Dhw3F3d+eFFxxUlIiIlFgKPuIQhmHw9ddfc+7cOVvbgw8+SJs2bRxYlYiIlHQKPlLo/vrrL77++mu7tldffZXAwEAHVSQiIs5Cg5slX1y9vcSNrF692i70lClThvfee0+hR0RECoV6fOS2hYfD889DWpr99PQrZWdn89FHH9m1VavWlRdfvLdwihQREUE9PpJLN+vRGTvWGnp8fLhmFlZ4OHTq9Oc1oWfcuDeZPPnegitYRETkOhR8nFhub0+B/YKDV7u0Js/Mmdf29kRGzuL++3+0HR8/fheTJ79PcHBpTVUXEZFCZzKu3BdASElJwd/fn+TkZPz8/BxdToFq0cIaZkJCYNOmm597sy0mric1NZXx48fbtf3++4ssXVotV68nIiKSF7n9/NYYHyc2bNjlMPN3rlxw8GbCw+Gnn7Zx110Rdu0jRoxgyZJSJCXl7vVEREQKgnp8ruJMPT75zWKx8O674/HwuGBrO3iwNU8//XCuQpOIiMitUo+PFKq4uDi+/fZbPDwut61fP5DVq8tw9GjueotEREQKmoKP3LalS5eyZcsW23GlSpXo168fixaZuHhRt7ZERKToUPCRW5aZmcnYq6Z5PfXUU9x5551A7scFiYiIFBYFH8mz8HD4/vsY7rvvF7v2oUOH4unp6aCqRERE/p6Cj+SJYRisXj2N++47aWu777776Ny5swOrEhERyR0tYCh2braoYVJSEh988AFlylwOPf369VPoERGRYkPBR+zcaIXmTZs28cUXX9iOMzI8WL78XSpXrlzIFYqIiNw63eoSO1cvamg2mxkzZgxms9l2TpUq7Zk6tblma4mISLGjBQyvogUMLzt16hTff/+9Xdsbb7zh9D8XEREperSAodyWBQsWsGvXLttxzZo16dGjByaTyYFViYiI3B4FH7Fz8eJFxo0bZ9f23HPPUbduXQdVJCIikn+K1eDmiIgImjdvjpeXF2XKlKFbt252j584cYKOHTvi7e1NUFAQb731Fjk5OY4pthjau3fvNaFn+PDhCj0iIlJiFJsen7CwMPr168dHH31E69atycnJYe/evbbHzWYzHTt2pGLFimzatInY2Fh69uyJm5sbH330kQMrL/oMw2DSpEnEx8fb2kJCQmjbtq0DqxIREcl/xWJwc05ODjVq1GDUqFH07dv3uucsXbqUTp06cebMGSpUqADApEmTGDp0KAkJCbi7u+fqtZxtcPO5c+f46quv7NpeeeUVgoKCHFSRiIhI3uX287tY3OrasWMHp0+fxsXFhcaNG1OpUiU6dOhg1+MTFRXF3XffbQs9AO3atSMlJYV9+/Y5ouwib+3atXahx9/fn//85z8KPSIiUmIVi+Dz559/AjBy5EjeffddFi9eTJkyZXj00Uc5f/48AHFxcXahB7Adx8XF3fDamZmZpKSk2H0VZTdbWTm3z8vOzmbUqFGsW7fO9niXLl0YNGgQLi7F4o+EiIjILXHop9ywYcMwmUw3/YqOjsZisQAwYsQIQkNDadKkCdOmTcNkMjFnzpzbqmHMmDH4+/vbvoKDg/PjWyswN1pZObfP+/bbY9eMeXrzzTdp3LhxPlYpIiJSNDl0cPOQIUPo3bv3Tc+pVasWsbGxANx55522dg8PD2rVqsWJEycAqFixIlu2bLF77tmzZ22P3cjw4cMZPHiw7TglJaVIh5+rV1bOy/OWLZtNhQrRtrYGDRrwz3/+M58rFBERKbocGnwCAwMJDAz82/OaNGmCh4cHMTExPPTQQ4D1ds2xY8eoXr06YJ2FNHr0aOLj421jVFasWIGfn59dYLqah4cHHh4e+fDdFI4uXaxfeZGWlsYff/yPK+8E9urVixo1auRrbSIiIkVdsZjO7ufnR//+/Xn//fcJDg6mevXqfPLJJwA89dRTALRt25Y777yTHj16MG7cOOLi4nj33XcZMGBAsQo2+W3Hjh0sWrTIrm3EiBGUKlUs3noREZF8VWw+/T755BNKlSpFjx49uHjxIs2bN2f16tWUKVMGAFdXVxYvXswrr7xCSEgIpUuXplevXnzwwQcOrtwxLBYLX3zxhd1g7UcffZSWLVs6sCoRERHHKhbr+BSmoriOT3j45XE9ubnNdfbsWSZNmmTX9vrrr1O2bNkCqlBERMSxtElpCXLlTK6/Cz6RkZFs3rzZdlyhQgVefvllbS4qIiKCgk+xkJuZXFlZWYwZM8auLTQ0lIYNGxZwdSIiIsWHgk8x8HczuQ4dOsSsWbPs2latepvGjb1Q7hEREblMy/QWY4ZhMGPGDLvQc++99xIZ+T6//ebF22/f2irPIiIiJZV6fIqp5ORkPv/8c7u2vn37UrVqVUwm662xxMTcjw0SERFxBgo+xdDmzZuJjIy0Hbu5uTF06FBcXV2By7fGrpwNJiIiIgo+xYrZbGbcuHFkZWXZ2tq2bUtISMh1z7+VVZ5FRERKMgWfYuLnn09z8OAUu7ZBgwbh7+/voIpERESKHwWfYiA8PJyDB/+wHVevXp1evXppbR4REZE8UvApwi5evMi4cePs2tavf5ZVq+5wUEUiIiLFm4JPEbV//37mzJlj17Zy5TDeest5N1wVERG5XQo+RYxhGHz33XfExcXZ2po3b0779u15/30HFiYiIlICaAFDBwoPt19g8Pz583zwwQd2oad///60b9/eQRWKiIiULOrxcaArNx8NCFjPmjVrbI/5+voyaNAgXFyUTUVERPKLPlUdaNgwePDBHNq1G2UXejp16sTgwYNtoefqniERERG5NQo+DtSo0XEee2y0XduQIUNo0qSJXduVPUMiIiJy63Sry0HmzJnD/v37bcf16tXjmWeeue65w4Zp6wkREZH8oOBTyC5cuMCnn35q19azZ09q1qx5w+do6wkREZH8oeBTiHbu3MnChQvt2t555x3c3NwcVJGIiIhzUfApJPPmzWPPnj2240ceeYRWrVo5sCIRERHno+BTSI4cOWL7/YABAyhfvrwDqxEREXFOCj6F5NlnnyU+Pp7GjRvbbS4aHn554LLG8YiIiBQsk2EYhqOLKEpSUlLw9/cnOTkZPz+/An+9Fi2sU9VDQmDTpgJ/ORERkRIpt5/fWsfHwYYNs4YeTVUXEREpeLrV5WCaqi4iIlJ41OMjIiIiTkPBR0RERJyGgo+IiIg4DQUfERERcRoKPoUkPNw6dT083NGViIiIOC8Fn0Iydqx1vZ6xYx1diYiIiPNS8CkkWq9HRETE8bSOTyHRej0iIiKOpx4fERERcRoKPiIiIuI0FHxERETEaSj4iIiIiNNQ8BERERGnoeAjIiIiTkPBR0RERJyGgo+IiIg4DQUfERERcRoKPiIiIuI0FHxERETEaSj4iIiIiNNQ8BERERGnod3Zr2IYBgApKSkOrkRERERy69Ln9qXP8RtR8LlKamoqAMHBwQ6uRERERPIqNTUVf3//Gz5uMv4uGjkZi8XCmTNn8PX1xWQyObqcApWSkkJwcDAnT57Ez8/P0eXIFfTeFE16X4omvS9FV2G+N4ZhkJqaSuXKlXFxufFIHvX4XMXFxYWqVas6uoxC5efnp38siii9N0WT3peiSe9L0VVY783Nenou0eBmERERcRoKPiIiIuI0FHycmIeHB++//z4eHh6OLkWuovemaNL7UjTpfSm6iuJ7o8HNIiIi4jTU4yMiIiJOQ8FHREREnIaCj4iIiDgNBR8RERFxGgo+TiwiIoLmzZvj5eVFmTJl6Natm93jJ06coGPHjnh7exMUFMRbb71FTk6OY4p1MpmZmdx7772YTCZ27txp99ju3bt5+OGH8fT0JDg4mHHjxjmmSCdy7Ngx+vbtS82aNfHy8qJ27dq8//77ZGVl2Z2n98Yxvv76a2rUqIGnpyfNmzdny5Ytji7JqYwZM4b7778fX19fgoKC6NatGzExMXbnZGRkMGDAAMqVK4ePjw+hoaGcPXvWIfUq+DipsLAwevTowYsvvsiuXbvYuHEjzz33nO1xs9lMx44dycrKYtOmTcyYMYPp06fz3nvvObBq5/H2229TuXLla9pTUlJo27Yt1atXZ/v27XzyySeMHDmS7777zgFVOo/o6GgsFgvffvst+/bt47PPPmPSpEm88847tnP03jjG7NmzGTx4MO+//z47duygUaNGtGvXjvj4eEeX5jTWrVvHgAED2Lx5MytWrCA7O5u2bdty4cIF2zlvvPEGixYtYs6cOaxbt44zZ87QvXt3xxRsiNPJzs42qlSpYkyZMuWG5yxZssRwcXEx4uLibG0TJ040/Pz8jMzMzMIo02ktWbLEqF+/vrFv3z4DMP744w/bY998841RpkwZu/dg6NChRr169RxQqXMbN26cUbNmTdux3hvHaNasmTFgwADbsdlsNipXrmyMGTPGgVU5t/j4eAMw1q1bZxiGYSQlJRlubm7GnDlzbOccOHDAAIyoqKhCr089Pk5ox44dnD59GhcXFxo3bkylSpXo0KEDe/futZ0TFRXF3XffTYUKFWxt7dq1IyUlhX379jmibKdw9uxZ+vXrx48//oi3t/c1j0dFRfHII4/g7u5ua2vXrh0xMTEkJiYWZqlOLzk5mbJly9qO9d4UvqysLLZv306bNm1sbS4uLrRp04aoqCgHVubckpOTAWx/P7Zv3052drbd+1S/fn2qVavmkPdJwccJ/fnnnwCMHDmSd999l8WLF1OmTBkeffRRzp8/D0BcXJxd6AFsx3FxcYVbsJMwDIPevXvTv39/mjZtet1z9L4UDYcPH+bLL7/k5ZdftrXpvSl8f/31F2az+bo/d/3MHcNisTBo0CAefPBBGjZsCFj//Lu7uxMQEGB3rqPeJwWfEmTYsGGYTKabfl0aqwAwYsQIQkNDadKkCdOmTcNkMjFnzhwHfxclT27fly+//JLU1FSGDx/u6JKdRm7fmyudPn2a9u3b89RTT9GvXz8HVS5SNA0YMIC9e/fyyy+/OLqUGyrl6AIk/wwZMoTevXvf9JxatWoRGxsLwJ133mlr9/DwoFatWpw4cQKAihUrXjMz4tII/IoVK+Zj1SVfbt+X1atXExUVdc2eNk2bNuX5559nxowZVKxY8ZqZEHpfbl1u35tLzpw5Q6tWrWjRosU1g5b13hS+8uXL4+rqet2fu37mhe+1115j8eLFrF+/nqpVq9raK1asSFZWFklJSXa9Pg57nwp9VJE4XHJysuHh4WE3uDkrK8sICgoyvv32W8MwLg9uPnv2rO2cb7/91vDz8zMyMjIKvWZncPz4cWPPnj22r8jISAMw5s6da5w8edIwjMsDaLOysmzPGz58uAbQFoJTp04ZdevWNZ555hkjJyfnmsf13jhGs2bNjNdee812bDabjSpVqmhwcyGyWCzGgAEDjMqVKxsHDx685vFLg5vnzp1ra4uOjnbY4GYFHyf173//26hSpYoRGRlpREdHG3379jWCgoKM8+fPG4ZhGDk5OUbDhg2Ntm3bGjt37jSWLVtmBAYGGsOHD3dw5c7j6NGj18zqSkpKMipUqGD06NHD2Lt3r/HLL78Y3t7etsAqBePUqVNGnTp1jH/84x/GqVOnjNjYWNvXJXpvHOOXX34xPDw8jOnTpxv79+83XnrpJSMgIMBuRqoUrFdeecXw9/c31q5da/d3Iz093XZO//79jWrVqhmrV682tm3bZoSEhBghISEOqVfBx0llZWUZQ4YMMYKCggxfX1+jTZs2xt69e+3OOXbsmNGhQwfDy8vLKF++vDFkyBAjOzvbQRU7n+sFH8MwjF27dhkPPfSQ4eHhYVSpUsUYO3asYwp0ItOmTTOA635dSe+NY3z55ZdGtWrVDHd3d6NZs2bG5s2bHV2SU7nR341p06bZzrl48aLx6quvGmXKlDG8vb2NJ554wu4/DoXJ9P9Fi4iIiJR4mtUlIiIiTkPBR0RERJyGgo+IiIg4DQUfERERcRoKPiIiIuI0FHxERETEaSj4iIiIiNNQ8BERKSBr167FZDKRlJTk6FJE5P8p+IhIsTVy5EjuvfdeR5chIsWIgo+IlHjZ2dmOLkFEiggFHxFxGIvFwpgxY6hZsyZeXl40atSIuXPnApdvE61atYqmTZvi7e1NixYtiImJAWD69OmMGjWKXbt2YTKZMJlMTJ8+HQCTycTEiRPp0qULpUuXZvTo0Tet49JrRUZG0rhxY7y8vGjdujXx8fEsXbqUBg0a4Ofnx3PPPUd6errteZmZmQwcOJCgoCA8PT156KGH2Lp1a8H8sEQkfzhkhzAREcMw/vvf/xr169c3li1bZhw5csSYNm2a4eHhYaxdu9ZYs2aNARjNmzc31q5da+zbt894+OGHjRYtWhiGYRjp6enGkCFDjLvuuuua3aABIygoyJg6dapx5MgR4/jx4zet49JrPfDAA8aGDRuMHTt2GHXq1DFatmxptG3b1tixY4exfv16o1y5cnYbjw4cONCoXLmysWTJEmPfvn1Gr169jDJlyhjnzp2zu25iYmLB/ABFJM8UfETEITIyMgxvb29j06ZNdu19+/Y1nn32WVtoWLlype2xiIgIAzAuXrxoGIZhvP/++0ajRo2uuTZgDBo0KNe1XO+1xowZYwDGkSNHbG0vv/yy0a5dO8MwDCMtLc1wc3MzZs6caXs8KyvLqFy5sjFu3Di76yr4iBQdpRzV0yQizu3w4cOkp6fz2GOP2bVnZWXRuHFj2/E999xj+32lSpUAiI+Pp1q1aje9ftOmTfNc05WvVaFCBby9valVq5Zd25YtWwA4cuQI2dnZPPjgg7bH3dzcaNasGQcOHMjza4tI4VDwERGHSEtLAyAiIoIqVarYPebh4cGRI0cAa5i4xGQyAdaxQX+ndOnSea7p6te68vhSW25eW0SKLg1uFhGHuPPOO/Hw8ODEiRPUqVPH7is4ODhX13B3d8dsNhdwpddXu3Zt3N3d2bhxo60tOzubrVu3cueddzqkJhH5e+rxERGH8PX15c033+SNN97AYrHw0EMPkZyczMaNG/Hz86N69ep/e40aNWpw9OhRdu7cSdWqVfH19cXDw6MQqrf2KL3yyiu89dZblC1blmrVqjFu3DjS09Pp27dvodQgInmn4CMiDvPhhx8SGBjImDFj+PPPPwkICOC+++7jnXfeydUtpdDQUObNm0erVq1ISkpi2rRp9O7du+AL/39jx47FYrHQo0cPUlNTadq0KZGRkZQpU6bQahCRvDEZhmE4uggRERGRwqAxPiIiIuI0FHxEpMTr378/Pj4+1/3q37+/o8sTkUKkW10iUuLFx8eTkpJy3cf8/PwICgoq5IpExFEUfERERMRp6FaXiIiIOA0FHxEREXEaCj4iIiLiNBR8RERExGko+IiIiIjTUPARERERp6HgIyIiIk5DwUdEREScxv8Bp9VXoPlS5KgAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -897,12 +3955,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "13/13 [==============================] - 0s 4ms/step\n" + "\r", + "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 10ms/step" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step \n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzcUlEQVR4nO3deXwTZf4H8E9aaGmBBkpvaGkpZ6UtCKgVLCBIwXog+FsQV24UBF1g5XJFhfVHEXdX1FXwBwq6isuq4CoIyIKASEWuyqGwUgtFaTmEptKWFpr5/VEzJulMMkkmmUnzeb9e7NpkMnlm8sw833lOgyAIAoiIiIgCWJDWCSAiIiLSGgMiIiIiCngMiIiIiCjgMSAiIiKigMeAiIiIiAIeAyIiIiIKeAyIiIiIKOAxICIiIqKAx4CIiIiIAh4DIiLyG88++ywMBoOibQ0GA5599lmvpqdfv37o16+fbvdHRMoxICIil61evRoGg0H816hRI7Ru3Rpjx47FTz/9pHXydCc5OdnmfMXExOC2227D+vXrVdl/ZWUlnn32WezYsUOV/REFIgZEROS2hQsX4h//+AeWL1+OIUOG4J133kHfvn1x9epVr3zfU089haqqKq/s29u6deuGf/zjH/jHP/6BJ554AmfPnsWwYcOwfPlyj/ddWVmJBQsWMCAi8kAjrRNARP5ryJAh6NmzJwBg4sSJiIqKwvPPP4+PP/4Yv/vd71T/vkaNGqFRI/+8bbVu3Rq///3vxb9Hjx6N9u3b48UXX8TkyZM1TBkRAawhIiIV3XbbbQCAwsJCm9ePHz+O+++/H5GRkWjSpAl69uyJjz/+2Gaba9euYcGCBejQoQOaNGmCVq1aoU+fPti6dau4jVQfourqasyYMQPR0dFo3rw57rnnHvz444/10jZ27FgkJyfXe11qn6tWrcLtt9+OmJgYhIaGIi0tDcuWLXPpXDgTFxeHLl26oKioyOF258+fx4QJExAbG4smTZogMzMTb731lvj+qVOnEB0dDQBYsGCB2Czn7f5TRA2Nfz5qEZEunTp1CgDQsmVL8bVjx46hd+/eaN26NebOnYumTZviX//6F4YOHYoPP/wQ9913H4C6wCQvLw8TJ07ETTfdhPLycuzfvx8HDx7EHXfcIfudEydOxDvvvINRo0bh1ltvxfbt25Gbm+vRcSxbtgw33HAD7rnnHjRq1AiffPIJHn30UZjNZkydOtWjfVtcu3YNZ86cQatWrWS3qaqqQr9+/XDy5ElMmzYNKSkpeP/99zF27FiUlZXhD3/4A6Kjo7Fs2TJMmTIF9913H4YNGwYAyMjIUCWdRAFDICJy0apVqwQAwn/+8x/hwoULwpkzZ4QPPvhAiI6OFkJDQ4UzZ86I2w4YMEBIT08Xrl69Kr5mNpuFW2+9VejQoYP4WmZmppCbm+vwe5955hnB+rZVUFAgABAeffRRm+1GjRolABCeeeYZ8bUxY8YIbdu2dbpPQRCEysrKetvl5OQI7dq1s3mtb9++Qt++fR2mWRAEoW3btsKgQYOECxcuCBcuXBC++eYbYeTIkQIA4bHHHpPd39KlSwUAwjvvvCO+VlNTI2RlZQnNmjUTysvLBUEQhAsXLtQ7XiJyDZvMiMhtAwcORHR0NBITE3H//fejadOm+Pjjj9GmTRsAwKVLl7B9+3b87ne/wy+//IKLFy/i4sWL+Pnnn5GTk4Pvv/9eHJXWokULHDt2DN9//73i7//0008BAI8//rjN69OnT/fouMLCwsT/NplMuHjxIvr27YsffvgBJpPJrX1+9tlniI6ORnR0NDIzM/H+++/joYcewvPPPy/7mU8//RRxcXF44IEHxNcaN26Mxx9/HFeuXMHOnTvdSgsR1ccmMyJy26uvvoqOHTvCZDLhzTffxK5duxAaGiq+f/LkSQiCgPnz52P+/PmS+zh//jxat26NhQsX4t5770XHjh3RtWtXDB48GA899JDDpp/Tp08jKCgIqampNq936tTJo+P68ssv8cwzzyA/Px+VlZU275lMJhiNRpf3efPNN+O5556DwWBAeHg4unTpghYtWjj8zOnTp9GhQwcEBdk+u3bp0kV8n4jUwYCIiNx20003iaPMhg4dij59+mDUqFE4ceIEmjVrBrPZDAB44oknkJOTI7mP9u3bAwCys7NRWFiIf//73/jss8+wcuVKvPjii1i+fDkmTpzocVrlJnSsra21+buwsBADBgxA586d8be//Q2JiYkICQnBp59+ihdffFE8JldFRUVh4MCBbn2WiLyPARERqSI4OBh5eXno378//v73v2Pu3Llo164dgLpmHiXBQGRkJMaNG4dx48bhypUryM7OxrPPPisbELVt2xZmsxmFhYU2tUInTpyot23Lli1RVlZW73X7WpZPPvkE1dXV+Pjjj5GUlCS+/vnnnztNv9ratm2Lw4cPw2w229QSHT9+XHwfkA/2iEg59iEiItX069cPN910E5YuXYqrV68iJiYG/fr1w+uvv46SkpJ621+4cEH8759//tnmvWbNmqF9+/aorq6W/b4hQ4YAAF5++WWb15cuXVpv29TUVJhMJhw+fFh8raSkpN5s0cHBwQAAQRDE10wmE1atWiWbDm+58847UVpairVr14qvXb9+Ha+88gqaNWuGvn37AgDCw8MBQDLgIyJlWENERKqaNWsW/ud//gerV6/G5MmT8eqrr6JPnz5IT0/HpEmT0K5dO5w7dw75+fn48ccf8c033wAA0tLS0K9fP/To0QORkZHYv38/PvjgA0ybNk32u7p164YHHngAr732GkwmE2699VZs27YNJ0+erLftyJEjMWfOHNx33314/PHHUVlZiWXLlqFjx444ePCguN2gQYMQEhKCu+++G4888giuXLmCFStWICYmRjKo86aHH34Yr7/+OsaOHYsDBw4gOTkZH3zwAb788kssXboUzZs3B1DXCTwtLQ1r165Fx44dERkZia5du6Jr164+TS+RX9N6mBsR+R/LsPt9+/bVe6+2tlZITU0VUlNThevXrwuCIAiFhYXC6NGjhbi4OKFx48ZC69athbvuukv44IMPxM8999xzwk033SS0aNFCCAsLEzp37iz87//+r1BTUyNuIzVEvqqqSnj88ceFVq1aCU2bNhXuvvtu4cyZM5LD0D/77DOha9euQkhIiNCpUyfhnXfekdznxx9/LGRkZAhNmjQRkpOTheeff1548803BQBCUVGRuJ0rw+6dTSkgt79z584J48aNE6KiooSQkBAhPT1dWLVqVb3P7tmzR+jRo4cQEhLCIfhEbjAIglW9MBEREVEAYh8iIiIiCngMiIiIiCjgMSAiIiKigKdpQLRs2TJkZGQgIiICERERyMrKwqZNm8T3+/XrJ67cbPk3efJkm30UFxcjNzcX4eHhiImJwaxZs3D9+nWbbXbs2IEbb7wRoaGhaN++PVavXu2LwyMiIiI/oemw+zZt2mDx4sXo0KEDBEHAW2+9hXvvvReHDh3CDTfcAACYNGkSFi5cKH7GMt8GUDfDbG5uLuLi4rBnzx6UlJRg9OjRaNy4MRYtWgQAKCoqQm5uLiZPnox3330X27Ztw8SJExEfHy87cy4REREFFt2NMouMjMQLL7yACRMmoF+/fujWrZvkJGsAsGnTJtx11104e/YsYmNjAQDLly/HnDlzcOHCBYSEhGDOnDnYuHEjjh49Kn5u5MiRKCsrw+bNm31xSERERKRzupmYsba2Fu+//z4qKiqQlZUlvv7uu+/inXfeQVxcHO6++27Mnz9frCXKz89Henq6GAwBQE5ODqZMmYJjx46he/fuyM/Pr7dkQE5OjsurYZvNZpw9exbNmzfnNPlERER+QhAE/PLLL0hISKi3ULI1zQOiI0eOICsrC1evXkWzZs2wfv16pKWlAQBGjRqFtm3bIiEhAYcPH8acOXNw4sQJrFu3DgBQWlpqEwwBEP8uLS11uE15eTmqqqoQFhYmma7q6mqbJQN++uknMV1ERETkX86cOYM2bdrIvq95QNSpUycUFBTAZDLhgw8+wJgxY7Bz506kpaXh4YcfFrdLT09HfHw8BgwYgMLCQqSmpno1XXl5eViwYEG918+cOYOIiAivfjcRERGpo7y8HImJieJSN3I0D4hCQkLQvn17AECPHj2wb98+vPTSS3j99dfrbXvzzTcDAE6ePInU1FTExcXh66+/ttnm3LlzAIC4uDjx/y2vWW8TEREhWzsEAPPmzcPMmTPFvy0n1DIijoiIiPyHs+4uupuHyGw2y65uXVBQAACIj48HAGRlZeHIkSM4f/68uM3WrVsREREhNm9lZWVh27ZtNvvZunWrTT8lKaGhoWLwwyCIiIioYdO0hmjevHkYMmQIkpKS8Msvv2DNmjXYsWMHtmzZgsLCQqxZswZ33nknWrVqhcOHD2PGjBnIzs5GRkYGgLpVqdPS0vDQQw9hyZIlKC0txVNPPYWpU6ciNDQUADB58mT8/e9/x+zZszF+/Hhs374d//rXv7Bx40YtD52IiIh0RNOA6Pz58xg9ejRKSkpgNBqRkZGBLVu24I477sCZM2fwn//8B0uXLkVFRQUSExMxfPhwPPXUU+Lng4ODsWHDBkyZMgVZWVlo2rQpxowZYzNvUUpKCjZu3IgZM2bgpZdeQps2bbBy5UrOQUREREQi3c1DpFfl5eUwGo0wmUxsPiMiamBqa2tx7do1rZNBbmjcuDGCg4Nl31dafmveqZqIiEgrgiCgtLQUZWVlWieFPNCiRQvExcV5NE8gAyIiIgpYlmAoJiYG4eHhnHjXzwiCgMrKSnFwlWXQlTsYEBERUUCqra0Vg6FWrVppnRxyk2UKnfPnzyMmJsZh85kjuht2T0RE5AuWPkPWi4aTf7L8hp70A2NAREREAY3NZP5Pjd+QAREREREFPAZEREREBKCupuWjjz7SOhk2duzYAYPB4PWRgAyIGpASUxX2FF5EialK66QQEZGOPfvss+jWrZvWydAVjjJrINbuK8a8dUdgFoAgA5A3LB0jeiVpnSwiIiK/wBqiBqDEVCUGQwBgFoAn1x1lTRERUQNlNpuRl5eHlJQUhIWFITMzEx988AGA35qYtm3bhp49eyI8PBy33norTpw4AQBYvXo1FixYgG+++QYGgwEGgwGrV68W933x4kXcd999CA8PR4cOHfDxxx8rSpPle7ds2YLu3bsjLCwMt99+O86fP49NmzahS5cuiIiIwKhRo1BZWSl+rrq6Go8//jhiYmLQpEkT9OnTB/v27VPvZCnEgKgBKLpYIQZDFrWCgFMXK6U/QEREqvNlt4W8vDy8/fbbWL58OY4dO4YZM2bg97//PXbu3Clu86c//Ql//etfsX//fjRq1Ajjx48HAIwYMQJ//OMfccMNN6CkpAQlJSUYMWKE+LkFCxbgd7/7HQ4fPow777wTDz74IC5duqQ4bc8++yz+/ve/Y8+ePThz5gx+97vfYenSpVizZg02btyIzz77DK+88oq4/ezZs/Hhhx/irbfewsGDB9G+fXvk5OS49J1qYEDUAKRENUWQ3YjDYIMByVGcW4OIyBfW7itG78XbMWrFXvRevB1r9xV77buqq6uxaNEivPnmm8jJyUG7du0wduxY/P73v8frr78ubve///u/6Nu3L9LS0jB37lzs2bMHV69eRVhYGJo1a4ZGjRohLi4OcXFx4uSGADB27Fg88MADaN++PRYtWoQrV67g66+/Vpy+5557Dr1790b37t0xYcIE7Ny5E8uWLUP37t1x22234f7778fnn38OAKioqMCyZcvwwgsvYMiQIUhLS8OKFSsQFhaGN954Q72TpgADogYg3hiGvGHpCP51HoZggwGLhnVFvDHMySeJiMhTvu62cPLkSVRWVuKOO+5As2bNxH9vv/02CgsLxe0yMjLE/7YsaWFZ4sIR6881bdoUERERij4n9fnY2FiEh4ejXbt2Nq9Z9ldYWIhr166hd+/e4vuNGzfGTTfdhO+++07xd6qBnaobiBG9kpDdMRqnLlYiOSqcwRARkY846rbgjXvxlStXAAAbN25E69atbd4LDQ0Vg6LGjRuLr1smLjSbzU73b/05y2eVfE7q8waDweP9+QoDogYk3hjGQIiIyMcs3RasgyJvdltIS0tDaGgoiouL0bdv33rvW9cSyQkJCUFtba03kueS1NRUhISE4Msvv0Tbtm0B1C2/sW/fPkyfPt2naWFARERE5AFLt4Un1x1FrSB4vdtC8+bN8cQTT2DGjBkwm83o06cPTCYTvvzyS0RERIiBhSPJyckoKipCQUEB2rRpg+bNmyM0NNQr6XWkadOmmDJlCmbNmoXIyEgkJSVhyZIlqKysxIQJE3yaFgZEREREHvJ1t4U///nPiI6ORl5eHn744Qe0aNECN954I5588klFzVHDhw/HunXr0L9/f5SVlWHVqlUYO3asV9MsZ/HixTCbzXjooYfwyy+/oGfPntiyZQtatmzp03QYBEEQnG9G5eXlMBqNMJlMiIiI0Do5RETkoatXr6KoqAgpKSlo0qSJ1skhDzj6LZWW3xxlRkRERAGPARERERE5NXnyZJth/tb/Jk+erHXyPMY+REREROTUwoUL8cQTT0i+1xC6kjAgIiIiIqdiYmIQExOjdTK8hk1mREREFPAYEBERUUDT46zJ5Bo1fkM2mRERUUAKCQlBUFAQzp49i+joaISEhIhLXJB/EAQBNTU1uHDhAoKCghASEuL2vhgQERFRQAoKCkJKSgpKSkpw9uxZrZNDHggPD0dSUhKCgtxv+GJAREREASskJARJSUm4fv26Ltb2ItcFBwejUaNGHtfuMSAiIqKAZlmR3X5Vdgos7FRNREREAY8BEREREQU8BkREREQU8BgQERERUcBjQEREREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHA0zQgWrZsGTIyMhAREYGIiAhkZWVh06ZN4vtXr17F1KlT0apVKzRr1gzDhw/HuXPnbPZRXFyM3NxchIeHIyYmBrNmzcL169dtttmxYwduvPFGhIaGon379li9erUvDo+IiIj8hKYBUZs2bbB48WIcOHAA+/fvx+233457770Xx44dAwDMmDEDn3zyCd5//33s3LkTZ8+exbBhw8TP19bWIjc3FzU1NdizZw/eeustrF69Gk8//bS4TVFREXJzc9G/f38UFBRg+vTpmDhxIrZs2eLz4yUiIiJ9MgiCIGidCGuRkZF44YUXcP/99yM6Ohpr1qzB/fffDwA4fvw4unTpgvz8fNxyyy3YtGkT7rrrLpw9exaxsbEAgOXLl2POnDm4cOECQkJCMGfOHGzcuBFHjx4Vv2PkyJEoKyvD5s2bFaervLwcRqMRJpMJERER6h40EREReYXS8ls3fYhqa2vxz3/+ExUVFcjKysKBAwdw7do1DBw4UNymc+fOSEpKQn5+PgAgPz8f6enpYjAEADk5OSgvLxdrmfLz8232YdnGsg851dXVKC8vt/lHREREDZPmAdGRI0fQrFkzhIaGYvLkyVi/fj3S0tJQWlqKkJAQtGjRwmb72NhYlJaWAgBKS0ttgiHL+5b3HG1TXl6Oqqoq2XTl5eXBaDSK/xITEz09VCIiItIpzQOiTp06oaCgAHv37sWUKVMwZswYfPvtt1onC/PmzYPJZBL/nTlzRuskERERkZc00joBISEhaN++PQCgR48e2LdvH1566SWMGDECNTU1KCsrs6klOnfuHOLi4gAAcXFx+Prrr232ZxmFZr2N/ci0c+fOISIiAmFhYbLpCg0NRWhoqMfHR0RERPqneQ2RPbPZjOrqavTo0QONGzfGtm3bxPdOnDiB4uJiZGVlAQCysrJw5MgRnD9/Xtxm69atiIiIQFpamriN9T4s21j2QURERKRpDdG8efMwZMgQJCUl4ZdffsGaNWuwY8cObNmyBUajERMmTMDMmTMRGRmJiIgIPPbYY8jKysItt9wCABg0aBDS0tLw0EMPYcmSJSgtLcVTTz2FqVOnirU7kydPxt///nfMnj0b48ePx/bt2/Gvf/0LGzdu1PLQiYiISEc0DYjOnz+P0aNHo6SkBEajERkZGdiyZQvuuOMOAMCLL76IoKAgDB8+HNXV1cjJycFrr70mfj44OBgbNmzAlClTkJWVhaZNm2LMmDFYuHChuE1KSgo2btyIGTNm4KWXXkKbNm2wcuVK5OTk+Px4iYiISJ90Nw+RXnEeIiIiIv/jd/MQEREREWmFAREREREFPAZEREREFPAYEBEpUGKqwp7Ciygxyc9uTkRE/kvziRmJ9G7tvmLMW3cEZgEIMgB5w9IxoleS1skiIiIVsYaIyIESU5UYDAGAWQCeXHeUNUVERA0MAyIiB4ouVojBkEWtIODUxUptEkRERF7BgIjIgZSopggy2L4WbDAgOSpcmwQREZFXMCAiciDeGIa8YekINtRFRcEGAxYN64p4o/zCwERE5H/YqZrIiRG9kpDdMRqnLlYiOSqcwRARUQPEgIhIgXhjGAMhIqIGjE1mREREFPAYEBEREVHAY0BEREREAY8BEREREQU8BkREREQU8BgQERERUcBjQEREREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAY8BEZHGSkxV2FN4ESWmKq2TQkQUsBppnQCiQLZ2XzHmrTsCswAEGYC8YekY0StJ62QREQUc1hARaaTEVCUGQwBgFoAn1x1lTRERkQYYEBFppOhihRgMWdQKAk5drNQmQUREAYwBEZFGUqKaIshg+1qwwYDkqHBtEkREFMAYEBFpJN4Yhrxh6Qg21EVFwQYDFg3rinhjmMYpIyIKPOxUTaShEb2SkN0xGqcuViI5KpzBEBGRRhgQEWks3hjGQIiISGNsMiMiIqKAx4CIiIiIAh4DIiIiIgp4DIiIiIgo4DEgIiIiooCnaUCUl5eHXr16oXnz5oiJicHQoUNx4sQJm2369esHg8Fg82/y5Mk22xQXFyM3Nxfh4eGIiYnBrFmzcP36dZttduzYgRtvvBGhoaFo3749Vq9e7e3DIyIiIj+haUC0c+dOTJ06FV999RW2bt2Ka9euYdCgQaioqLDZbtKkSSgpKRH/LVmyRHyvtrYWubm5qKmpwZ49e/DWW29h9erVePrpp8VtioqKkJubi/79+6OgoADTp0/HxIkTsWXLFp8dKxEREemXQRAEwflmvnHhwgXExMRg586dyM7OBlBXQ9StWzcsXbpU8jObNm3CXXfdhbNnzyI2NhYAsHz5csyZMwcXLlxASEgI5syZg40bN+Lo0aPi50aOHImysjJs3rxZUdrKy8thNBphMpkQERHh2YESERGRTygtv3XVh8hkMgEAIiMjbV5/9913ERUVha5du2LevHmorPxt8cv8/Hykp6eLwRAA5OTkoLy8HMeOHRO3GThwoM0+c3JykJ+fL5uW6upqlJeX2/wjIiKihkk3M1WbzWZMnz4dvXv3RteuXcXXR40ahbZt2yIhIQGHDx/GnDlzcOLECaxbtw4AUFpaahMMARD/Li0tdbhNeXk5qqqqEBZWf5bgvLw8LFiwQNVjJCIiIn3STUA0depUHD16FLt377Z5/eGHHxb/Oz09HfHx8RgwYAAKCwuRmprqtfTMmzcPM2fOFP8uLy9HYmKi176PiIiItKOLJrNp06Zhw4YN+Pzzz9GmTRuH2958880AgJMnTwIA4uLicO7cOZttLH/HxcU53CYiIkKydggAQkNDERERYfOPiIiIGiZNAyJBEDBt2jSsX78e27dvR0pKitPPFBQUAADi4+MBAFlZWThy5AjOnz8vbrN161ZEREQgLS1N3Gbbtm02+9m6dSuysrJUOhIiIiLyZ5oGRFOnTsU777yDNWvWoHnz5igtLUVpaSmqqqoAAIWFhfjzn/+MAwcO4NSpU/j4448xevRoZGdnIyMjAwAwaNAgpKWl4aGHHsI333yDLVu24KmnnsLUqVMRGhoKAJg8eTJ++OEHzJ49G8ePH8drr72Gf/3rX5gxY4Zmx05ERET6oemwe4PBIPn6qlWrMHbsWJw5cwa///3vcfToUVRUVCAxMRH33XcfnnrqKZsmrNOnT2PKlCnYsWMHmjZtijFjxmDx4sVo1Oi3LlI7duzAjBkz8O2336JNmzaYP38+xo4dqzitHHZPRETkf5SW37qah0jPGBARERH5H7+ch4iIiIhICwyIiIiIKOAxICIiIqKAx4CIiIiIAh4DIiIiIgp4DIiIqJ4SUxX2FF5EialK66QQEfmEbtYyIyJ9WLuvGPPWHYFZAIIMQN6wdIzolaR1soiIvIo1REQkKjFVicEQAJgF4Ml1R1lTREQNHgMiIhIVXawQgyGLWkHAqYuV2iSIiMhHGBARkSglqimC7FbUCTYYkBwVrk2CiIh8hAEREYnijWHIG5aO4F/XGQw2GLBoWFfEG8M0ThkRkXexUzUR2RjRKwnZHaNx6mIlkqPCGQwRUUBgQERE9cQbwxgIEVFAYZMZERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAY8BEQWcElMV9hRe5AruREQk4kzVFFDW7ivGvHVHYBaAIAOQNywdI3olaZ0sIiLSGGuIKGCUmKrEYAgAzALw5LqjrCkiIiIGRBQ4ii5WiMGQRa0g4NTFSm0SREREusGAiAJGSlRTBBlsXws2GJAcFa5NgoiISDcYEFHAiDeGIW9YOoINdVFRsMGARcO6clV3IiJip2oKLCN6JSG7YzROXaxEclQ4gyEiIgLAgIgCULwxjIEQERHZYJMZERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAY8BEREREQU8BkREREQU8DQNiPLy8tCrVy80b94cMTExGDp0KE6cOGGzzdWrVzF16lS0atUKzZo1w/Dhw3Hu3DmbbYqLi5Gbm4vw8HDExMRg1qxZuH79us02O3bswI033ojQ0FC0b98eq1ev9vbhERERkZ/QNCDauXMnpk6diq+++gpbt27FtWvXMGjQIFRUVIjbzJgxA5988gnef/997Ny5E2fPnsWwYcPE92tra5Gbm4uamhrs2bMHb731FlavXo2nn35a3KaoqAi5ubno378/CgoKMH36dEycOBFbtmzx6fESERGRPhkEQRC0ToTFhQsXEBMTg507dyI7OxsmkwnR0dFYs2YN7r//fgDA8ePH0aVLF+Tn5+OWW27Bpk2bcNddd+Hs2bOIjY0FACxfvhxz5szBhQsXEBISgjlz5mDjxo04evSo+F0jR45EWVkZNm/erCht5eXlMBqNMJlMiIiIUP/giYiISHVKy29d9SEymUwAgMjISADAgQMHcO3aNQwcOFDcpnPnzkhKSkJ+fj4AID8/H+np6WIwBAA5OTkoLy/HsWPHxG2s92HZxrIPIiIiCmyNtE6AhdlsxvTp09G7d2907doVAFBaWoqQkBC0aNHCZtvY2FiUlpaK21gHQ5b3Le852qa8vBxVVVUICwurl57q6mpUV1eLf5eXl3t2gERERKRbuqkhmjp1Ko4ePYp//vOfWicFQF2Hb6PRKP5LTEzUOklERETkJboIiKZNm4YNGzbg888/R5s2bcTX4+LiUFNTg7KyMpvtz507h7i4OHEb+1Fnlr+dbRMRESFZOwQA8+bNg8lkEv+dOXPGo2MkIiIi/dI0IBIEAdOmTcP69euxfft2pKSk2Lzfo0cPNG7cGNu2bRNfO3HiBIqLi5GVlQUAyMrKwpEjR3D+/Hlxm61btyIiIgJpaWniNtb7sGxj2YeU0NBQRERE2PwjIiKihknxKDNX+tAoDR4effRRrFmzBv/+97/RqVMn8XWj0SjW3EyZMgWffvopVq9ejYiICDz22GMAgD179gCoG3bfrVs3JCQkYMmSJSgtLcVDDz2EiRMnYtGiRQDqht137doVU6dOxfjx47F9+3Y8/vjj2LhxI3JychSllaPMiIiI/I/S8ltxQBQUFASDweBwG0EQYDAYUFtbqyiRcvtbtWoVxo4dC6BuYsY//vGPeO+991BdXY2cnBy89tprYnMYAJw+fRpTpkzBjh070LRpU4wZMwaLFy9Go0a/9RnfsWMHZsyYgW+//RZt2rTB/Pnzxe9QggERERGR/1E9INq5c6fiL+/bt6/ibf0FAyIiIiL/o7T8VjzsviEGOURERESAB/MQlZWV4Y033sB3330HALjhhhswfvx4GI1G1RJHRERE5AtujTLbv38/UlNT8eKLL+LSpUu4dOkS/va3vyE1NRUHDx5UO41EREREXuXWWma33XYb2rdvjxUrVogdl69fv46JEyfihx9+wK5du1RPqNbYh4iIiMj/qN6p2lpYWBgOHTqEzp0727z+7bffomfPnqisrHQ9xTrHgIiIiMj/eHVx14iICBQXF9d7/cyZM2jevLk7uyQiklViqsKewosoMVVpnRQiaqDc6lQ9YsQITJgwAX/5y19w6623AgC+/PJLzJo1Cw888ICqCSSiwLZ2XzHmrTsCswAEGYC8YekY0StJ62QRUQPjVkD0l7/8BQaDAaNHj8b169cBAI0bN8aUKVOwePFiVRNIRIGrxFQlBkMAYBaAJ9cdRXbHaMQbpdchJCJyh1sBUUhICF566SXk5eWhsLAQAJCamorw8HBVE0dEga3oYoUYDFnUCgJOXaxkQEREqnJ7HiIACA8PR3p6ulppISKykRLVFEEG2ARFwQYDkqP48EVE6nIrILp69SpeeeUVfP755zh//jzMZrPN+5yLiIjUEG8MQ96wdDy57ihqBQHBBgMWDevK2iEiUp1bAdGECRPw2Wef4f7778dNN93kdNFXIiJ3jeiVhOyO0Th1sRLJUeEMhojIK9wKiDZs2IBPP/0UvXv3Vjs9RET1xBvDGAgRkVe5NQ9R69atOd8QERERNRhuBUR//etfMWfOHJw+fVrt9BCRBjjxIREFOreazHr27ImrV6+iXbt2CA8PR+PGjW3ev3TpkiqJIyLv48SHRERuBkQPPPAAfvrpJyxatAixsbHsVE3kpzjxIRFRHbcCoj179iA/Px+ZmZlqp4eIfIgTHxIR1XGrD1Hnzp1RVcW+BkT+zjLxoTVOfEhEgcitgGjx4sX44x//iB07duDnn39GeXm5zT8ikqa3zsuWiQ+Df2325sSHRBSoDIIgCM43sxUUVBdH2fcdEgQBBoMBtbW16qROR8rLy2E0GmEymRAREaF1csgP6bnzcompihMfElGDpLT8dqsP0eeff+52wogCkd47LwfKxIclpioUXaxASlTTgDheIlLOrYCob9++irZ79NFHsXDhQkRFRbnzNUQNBjsva0/PNXREpD23+hAp9c4777BPERHYeVlrcjV0eunLRUTa82pA5Eb3JKIGiZ2XteWoho6ICHCzyYyIXMdV27VjqaGzDopYQ0dE1rxaQ0REtuKNYchKbcVgyMdYQ0dEzrCGiIgCAmvoiMgRBkREpEveGCIfKNMLEJHrvBoQ/f73v+ckhkTkMg6RJyJfc2umagAoKyvD119/jfPnz8NsNtu8N3r0aFUSpyecqZrIN0pMVei9eHu9DtC75/Zn7Q4RucyrM1V/8sknePDBB3HlyhVERETYLOFhMBgaZEBERL7BSSyJSAtujTL74x//iPHjx+PKlSsoKyvD5cuXxX+XLl1SO41EFEA4iSURacGtgOinn37C448/jvBw3qCItFBiqsKewosNcqZlDpEnIi241WSWk5OD/fv3o127dmqnh4icCIQOxxwiT0S+pjgg+vjjj8X/zs3NxaxZs/Dtt98iPT0djRs3ttn2nnvuUS+FRCSSW5Mru2N0gwsaOESeiHxJcUA0dOjQeq8tXLiw3msGgwG1tbUeJYqIpLHDMRGRdygOiOyH1hOR73FNLiIi73CrU/Xbb7+N6urqeq/X1NTg7bff9jhRRCSNHY6JiLzDrYkZg4ODUVJSgpiYGJvXf/75Z8TExDTIJjNOzEh6UmKqYodjIiIFlJbfbtUQCYJgMxmjxY8//gij0ah4P7t27cLdd9+NhIQEGAwGfPTRRzbvjx07FgaDwebf4MGDbba5dOkSHnzwQURERKBFixaYMGECrly5YrPN4cOHcdttt6FJkyZITEzEkiVLlB+sH2rIQ7KpTrwxDFmprRgMERGpxKVh9927dxcDkwEDBqBRo98+Xltbi6KionoBiyMVFRXIzMzE+PHjMWzYMMltBg8ejFWrVol/h4aG2rz/4IMPoqSkBFu3bsW1a9cwbtw4PPzww1izZg2Aushw0KBBGDhwIJYvX44jR45g/PjxaNGiBR5++GFXDt8vBMKQbCIiIrW5FBBZRpoVFBQgJycHzZo1E98LCQlBcnIyhg8frnh/Q4YMwZAhQxxuExoairi4OMn3vvvuO2zevBn79u1Dz549AQCvvPIK7rzzTvzlL39BQkIC3n33XdTU1ODNN99ESEgIbrjhBhQUFOBvf/tbgwuIAmlINhERkZpcCoieeeYZAEBycjJGjBiBJk2aeCVR1nbs2IGYmBi0bNkSt99+O5577jm0atUKAJCfn48WLVqIwRAADBw4EEFBQdi7dy/uu+8+5OfnIzs7GyEhIeI2OTk5eP7553H58mW0bNlS8nurq6ttOo6Xl5d76QjVwyHZRERE7nFrpuoxY8YAqBtVJrXafVKSOk00gwcPxrBhw5CSkoLCwkI8+eSTGDJkCPLz8xEcHIzS0tJ6HbsbNWqEyMhIlJaWAgBKS0uRkpJis01sbKz4nlxAlJeXhwULFqhyHL7CIdlEDU+JqQpFFyuQEtWUDzZEXuRWQPT9999j/Pjx2LNnj83rls7Wao0yGzlypPjf6enpyMjIQGpqKnbs2IEBAwao8h1y5s2bh5kzZ4p/l5eXIzEx0avf6SnLkOwn1x1FrSBwSDaRn2OfQCLfcSsgGjt2LBo1aoQNGzYgPj5ecsSZN7Rr1w5RUVE4efIkBgwYgLi4OJw/f95mm+vXr+PSpUtiv6O4uDicO3fOZhvL33J9k4C6vkv2Hbj9AdeAImoY2CeQyLfcCogKCgpw4MABdO7cWe30OPTjjz/i559/Rnx8PAAgKysLZWVlOHDgAHr06AEA2L59O8xmM26++WZxmz/96U+4du2auOba1q1b0alTJ9nmMn/HNaCI/B/7BBL5llvzEKWlpeHixYsef/mVK1dQUFCAgoICAEBRUREKCgpQXFyMK1euYNasWfjqq69w6tQpbNu2Dffeey/at2+PnJwcAECXLl0wePBgTJo0CV9//TW+/PJLTJs2DSNHjkRCQgIAYNSoUQgJCcGECRNw7NgxrF27Fi+99JJNc1hDx3mJiPyPpU+gNfYJJPIet2aq3r59O5566iksWrRIcrV7pTM579ixA/3796/3+pgxY7Bs2TIMHToUhw4dQllZGRISEjBo0CD8+c9/FjtFA3UTM06bNg2ffPIJgoKCMHz4cLz88ss2UwIcPnwYU6dOxb59+xAVFYXHHnsMc+bMcemY/XWmavZBIPJfa/cV1+sTyOuXyDVKy2+3AqKgoN8qlqz7D6ndqVpP/DEgKjFVoffi7fVGne2e259V7kR+gsu0EHlGafntVh+izz//3O2Eke+wDwKR/2OfQCLfcKsPUd++fREUFIQVK1Zg7ty5aN++Pfr27Yvi4mIEBwernUZyE/sgEBERKeNWQPThhx8iJycHYWFhOHTokDijs8lkwqJFi1RNILnPMi9R8K/NmpyXiIiISJpbfYi6d++OGTNmYPTo0WjevDm++eYbtGvXDocOHcKQIUPEWaIbEn/sQ2TBPghERBSovNqH6MSJE8jOzq73utFoRFlZmTu7JC9iHwQiIiLH3Goyi4uLw8mTJ+u9vnv3brRr187jRBERERH5klsB0aRJk/CHP/wBe/fuhcFgwNmzZ/Huu+/iiSeewJQpU9ROIxEREZFXudVkNnfuXJjNZgwYMACVlZXIzs5GaGgonnjiCTz22GNqp5GIiIjIq9zqVG1RU1ODkydP4sqVK0hLS7OZHbqh8edO1URERIHKq52qLUJCQpCWlubJLoiIyAtKTFUouliBlKimHFRBpIBHAREREekP1zAkcp1bnarJO9xdlZ6r2RORRYmpSgyGAMAsAE+uO8r7A5ETrCHSCXef6JR8zlHVOavV9YG/A6mFaxgSuYcBkQ7IPdFld4x2eANT8jlHAROr1fWBvwOpybKGoXVQxDUMiZxjk5kOOHqi8+RzjqrOWa2uD/wdSG1cw5DIPawh0gF3n+icfc5RwCRAYLW6DrB5g7xhRK8kZHeM1uUahmweJr1iDZEOuPtE5+xzloDJmiVgcvQe+Q5/B/KWeGMYslJb6SroWLuvGL0Xb8eoFXvRe/F2rN1XrHWSiEQeTcwYSHwxMaO7q9I7+tzafcV4ct1R1AqCGDBZ9yGSe09vGvJTpT/9DkTuKjFVoffi7fVqtHfP7d/grmnSF6XlNwMihfx5pmpHAZO7QZgvBUKnY3/4HYg8safwIkat2Fvv9fcm3YKs1FYapIgChU9mqib/EG8Mky1kHb2nB+6OwPM3ev8diDzF0W+kd+xDRLrm7gg8ItIXjn4jvWMNEekanyqJGg49j34jYg0R6RqfKokaFj2OfiMCWENEDuhlZBefKomIyNsYEJEkvY3sYqdjIiLyJjaZUT3fnLmMuR9yOQkiIgocDIjIxtp9xRj62h7YT07FkV1ERNSQMSAikWXOH6mpOjmyi4iIGjIGRCSSmvMHqMskHNlFREQNGTtVk0hqzp8gA7D+0VuRmdjSJ2nQy8g2IiIKLKwhIpHUnD95w9J9FgxxJWwiItIKa4jIhlZz/kitWTZv3RF0jmvus4CMAhNrJYkIYEBEErSY80eq/5JZAIa+ugeLhze81e1JH/Q23xYRaYdNZjpWYqrCnsKLDWb+H0fHY+m/ZE8A50Ai75CqlWReIwpcrCHSqYb25OrseCz9l6wLKAvLHEhsziA1SdVKMq8RBS7WEOlQQ3tyVXo8I3olYf2jt8K+oohzIJE3SNVKMq8RBS4GRDrk6MnVH7lyPJmJLbF4OFe3J++TGlXJvEYUuNhkpkNS8wH585Orq8fD1e3JV5jXiMiCNUQ61NCeXN05nnhjGLJSW/ntMZP/YF4jIkDjgGjXrl24++67kZCQAIPBgI8++sjmfUEQ8PTTTyM+Ph5hYWEYOHAgvv/+e5ttLl26hAcffBARERFo0aIFJkyYgCtXrthsc/jwYdx2221o0qQJEhMTsWTJEm8fmsdG9ErC7rn98d6kW7B7bn+/7lANNLzjISKihkXTgKiiogKZmZl49dVXJd9fsmQJXn75ZSxfvhx79+5F06ZNkZOTg6tXr4rbPPjggzh27Bi2bt2KDRs2YNeuXXj44YfF98vLyzFo0CC0bdsWBw4cwAsvvIBnn30W//d//+f141PC0VD0hvbk2tCOh4iI3FdiqsKGw2fxyTc/6WLQkEEQpNY29z2DwYD169dj6NChAOpqhxISEvDHP/4RTzzxBADAZDIhNjYWq1evxsiRI/Hdd98hLS0N+/btQ8+ePQEAmzdvxp133okff/wRCQkJWLZsGf70pz+htLQUISEhAIC5c+fio48+wvHjxxWnr7y8HEajESaTCREREaocs5Kh9ZxFl4iIGpq1+4ox98MjsAQgBsBrk/AqLb9124eoqKgIpaWlGDhwoPia0WjEzTffjPz8fABAfn4+WrRoIQZDADBw4EAEBQVh79694jbZ2dliMAQAOTk5OHHiBC5fviz7/dXV1SgvL7f5pyYlQ9H1vrZXQ5s4koiI3Ke0TLCUf9a1MQKAeR8e0bQ80e0os9LSUgBAbGyszeuxsbHie6WlpYiJibF5v1GjRoiMjLTZJiUlpd4+LO+1bCm9TlZeXh4WLFjg+YHIcDYpnFzAlN0xWvx805BgVNTUalJ71NAmjiQiIve5UiZIlX8AYAY0nRhVtwGR1ubNm4eZM2eKf5eXlyMxMVG1/Tsbii4XMK36sggrvyiyec/XAYmjYI3NekREgcXVMkGq/APqmqy0nF5Gt01mcXFxAIBz587ZvH7u3Dnxvbi4OJw/f97m/evXr+PSpUs220jtw/o7pISGhiIiIsLmn5qcDUWXmkU3yACs2FVULxP5eiZrTyeOZFMbEZF/cXTfdrVMsJR/BqsyzgAgb3i6pg/Vuq0hSklJQVxcHLZt24Zu3boBqKul2bt3L6ZMmQIAyMrKQllZGQ4cOIAePXoAALZv3w6z2Yybb75Z3OZPf/oTrl27hsaNGwMAtm7dik6dOsk2l/mKo0nh4o1huK97a3x48Cfxtd7to/DF9xcl9+XLNZg8mTiSTW1EtjhwgrRgne8ASP63JT86u2+7UyZYyr+Dpy9DEIAeyS01z/+aBkRXrlzByZMnxb+LiopQUFCAyMhIJCUlYfr06XjuuefQoUMHpKSkYP78+UhISBBHonXp0gWDBw/GpEmTsHz5cly7dg3Tpk3DyJEjkZCQAAAYNWoUFixYgAkTJmDOnDk4evQoXnrpJbz44otaHHI98cYwyUxQYqrC+kM/2by2WyYYAuoyqa+qGi3R/ZPrjqJWEBRPHMmmNiJbfEDwHQaev7HOd5ZKGgG2/23Jj9kdo53et90tE+KNYcjN0M9voWlAtH//fvTv31/829JnZ8yYMVi9ejVmz56NiooKPPzwwygrK0OfPn2wefNmNGnSRPzMu+++i2nTpmHAgAEICgrC8OHD8fLLL4vvG41GfPbZZ5g6dSp69OiBqKgoPP300zZzFemRVBWko/kRBAHY9d8LPruZurPkQUNbXZw3WPIEHxB8h4Hnb+zznf1ILwtLflw6MlPRfbshLIOjaUDUr18/OJoGyWAwYOHChVi4cKHsNpGRkVizZo3D78nIyMAXX3zhdjq1INfpTI4A399M5Wq35DSkNdp4gyVPNbQHBL1i4GlLboSXlFpBQJDBoPi+7WqZoDe67VQd6Ow7XQcZfqvOlONKx2YtNJQ12pTMIUUNmxoDA6QGTvjrA4KeeToIRO9czYtS+U5OsMGAG9u2dPu+7W8DaHTbqZrqV0Hu+u8FsY02yFDXTGZ9nfvDzdTfq1UtU83zyT5wqVU76G6/C3JNQ6qZtudOXrTPdwYDgF/LEuv/ts6P1vft8JAgVNTUosRU5TCv+mMtum6W7tA7byzd4Y4SU5VkgGTJvHrPcP7M+gK3F2wwYPfc/izMGrgSUxV6L95er3D15Le3vqaZf7xj7b7iBnev9DQvWuc7AJL/bb8fpUGON64TTygtv1lD5Ges22j1UtsSCJ2L7ZvJrPHJPnB4o9+Pv/e78Ad6uVcqofR+6kpelNqnfb6T+2/rfSjti+Wv/eMYEPk5rW+m/lgt6g65jojzc7vgzox4XV/kpJ6G3PzS0Gl9r1TClfup0ryo1j3alSDHX68Tdqomt1j60sz9MDA6F8t1gNUyGPK3DosNQUMZGEDas79+XR2soSQvqjkAxJVBAP56nbCGiFzmqC+NVtWi3m6281UHWKXHESg1c3rkT80vpE9S129iZLjLzUzO8qKaTVeu3gP98TphQNSAeSNIcNSXBtCmWtRXwYG3L3BXOixyXhVt+UPzC+mT3PW77tEsl5qZrO/vWamtJLdRu+nK1Xugv10nbDJroNbuK0bvxdsxasVe9F68HWv3FauyX0eTemlRLerrOYHijWHISm3llZohpcfR0OdVIWrI5K7fyhqz4mYmpfd3bzRduXoP9KemfdYQNUDerEGQeuIIMgAvj+wuuzifJzVVzj7rr6MZ7AVCh0WihsSVxVGtObp+s1JbOa2BcfX+7s2abWf3Z39r2mdA1AB5M0iQa0e+KzNBcntPLghHn7VciE1Dgv0mOHB083AlyOGEfkTacmVxVPv7nbPr11kzkzv3d280Xdnfnyf0ScH4Pini9/hj0z4DIj/hSi2Lt2sQlD5xeHJBSH123odHkN0xGrv+e8HmQryve2t8dOis14IDNfpiOQsMG3KHxUCYp4oaDmf51dXFUaXud55cv3qoIZa6P6/4oggrvyjC4uF19zZ/rL1nQOQHXK1l8UUNgtQTh/2NxJMLQuqzZgCvbDuJf+4rtrkQPzp0FusezcKZS1WAAejRtqWHR/cbNap8lQaGDbHDor9VmVNgU5JfXV0cVe5+5+71q4caYrlzYL3IuB4CN1cxINI5d2tZnBWucu3fataAZHeMdvuCSIlqil+X1bFhHQxZ1AoCNh4uxcrdP6ha8KpV5etKYOgPQY5S/lhlTg2fo74/SvKrVEEvx1sBgNY1xI7OgeXelpXaSvPAzVUMiHTOk1oWucJVrv1b7RqQ3XP7u31BxBvDMOm2FPzfF0U2r1vSbH1KggAxGLL+fk8LXrWqfL35pKTn5ih/rDKnhs3RvW9CnxTJ/Hrw9GW0bPrbNWZfQ2PN8Ov/CELdNT57SCcUXawAIL0chie0fHiynAOpKVis721aB26uYkCkc2oXpo7av71RA+LJBTGuTwpW7i6qd+yzB3fCks0nxCBrQp/keoGTGgWvWufeW1Xcem+O8scqc2q4nN373thdVO9hy2AApq05VO+BcUSvJJRVXcPiTcch/Hr9TezTDuP6JAOoWxz18I9leH7Tca9dn1o/DFnu7au+LMLKXUUwQ3pYvz/VejMg0jm1C1Nn7d/eqAFRu618RK8k3NMtwWZ1ZqnAyVnBK3dDsX5drXOv9pOSPzRH6aGvA5GFs3ufWQAezk7BG1+cQq0gIOjXmh7B6n3LNQYAz/8aDFnee2N3Ecb1SRbz94Mrv3Lp+nQlwNHLw1C8MQxP3pmGcb1TcODUZdX7cPoaAyI/oGZhKtc3x0JPNSCA/LHbB1mufr/cDUXq9d1z+6ty7tV8UvKX5ii9VJlr/TRN2nPW9yfYYMC43ikY1zsFpy5W4uKVq3jsvQKbbSzXmADB4fXn6vXpSoCjx4ch+5G/equtVooBkZ9QqzD9y5YT9YIhS4AUBPi0BkRpIaXk2Ef0SkLnuObYd+oyeiW3RGai/FOK3A2lc1xz2b5QclPja8WfmqO0rjLXy9M0acv+wc2+v4/9XEAlpiqH15ij91y5Pl0NcPT2MKQ0/f7wUMKAyE+5k7m+OXMZHx78qd7r4rVlqPeWS1wp+NQupFzZn9wNZd+py7q60TjC5ihl9Pg0Tdqxf3ADIPsQ5+wacza5otLr09UAR28PQ0rS7y8PJQyI/JC7mevrU5ccvu+rwsJZIaU02LOerVquxqeiprbefo78ZKq3r2CDASkyN5TwEH0u+aeX5ig909vTdENlf816c7keT9k/uLk7fYmz608q+NpTeLHecbka4OjtYchZ+v3poYQBkZ/xJHPdlBzpdP++KCwcFVJK26Lth8/aNwPWCgKGvrqn3uiQElMVnt90vN7+Zg/uhMqaWsn0VtaY3TtQH9C6OUrv9PY07a8cBSn2D2j3dW+N9Yd+Eq/NuUM645G+qYq+R481CY6uMWfXn+V9R8flToCjp4chZ+n3p4cSBkR+xpPMlZnYEsNvbC3ZbGbhi8JCrpAKDwlS3BYtN3zWmtToELmRJj9XVOP5zfUDJS0LT39oc9c7vT1N+yNnawraX7PW9xcBQN6m44ABeCTbcVDkTzUJFkquUSXH5U6A487DkLfuKY7S708PJQyI/Iynmeuvv+uG0Vltsf/UZfRMbonjpb/4vLCQK6QqamoVBXtyQY3lvEiNJLHsR+r8BRmAFbuK6gVWnnQy95SnT8rWzYlSzYaBRElho2ZB0ZACWWeFudJlLJ7fdBz3ZCY4PB/+VJMAOF/c1ELpcalR2+tKTZ7atW9y6fenhxIGRH5GjcyVmfjbKKzMxJaaVL1KFVLORnUAdRf8pYqaes1kwQYD1j2ahcoaM8JDgnDfa3sk9yN1/sb3ScYKu4kdAeCVUd2Rm5Fg85ovCjtPn5Stb3wWeml+0IqjwkbNgkKPTT6Aa/nWeltnhbnSZSzMApwGNv5Uk6BkcVMLXx2XqzV5vqx901MTnyMMiPyQ2plLq34oUp0bHQV79v2GLEGRZTtLkFdiqsKEPil449fJGu33I9XZ8Q2JiR1vtJtgzFeFnSdPyvY3Pgu1boANqfYDULeg0LrQsaTB/vdxJd/abztncGenk67aX7ODbojFpqOlNvtVEgD4oiZBrfyrZHFTd0acucudmjxf1r75y32DAZGfaqidaeWCPal+Q0EG4JWR3dEjuaVs0PRwdt1Ea1JDaq1fc3bD8rSwc+WG4MkTpaMmDE9vgHIL+PrDjU6OmgWFs325Wktz4PRlCIKAnsmRipr55H4fpflWKo8v2XwCc4Z0xpJNJ2SvDalr9vVdheKyFa4EAK487LlayKr5QKNkcVNXRqR5yp2aPF/Vvum11lQKAyKdUnMYq17JHZNUsCd1wZsFoLT8qs3+7IOmN744hXG9U5ymxdkNy5OC01lVtv058OSJ0tGNWs018MwCMPfDIzBY9dvy1Y3O2bUgt5q51LZqFhRy0zkkR4W7XEsz98MjYpOwAcDcOzsjvbVRNviZM6SzGIAAvwU+S0dmKs63cnk8o3ULp7O121+zj2Sn4p7MBLcCACUPe64WsmrX3lmuUWeLm7p6XO5SsnySFv149FBr6goGRDrkaBir3iNspVy9ockV9M9t/A6LPv0OecPSkRgZ7tHTvqMblrsFZ4mpyqZws74hOJpiwN0nSvsbn3Va1V4DTwBs1nJSu8bMneYfR6uZS+UxRwWFqzU6ctM5AFA0T1aJqQr7T13C3HVHbPrHCQDyPq3btwHAo/1SsWxnoc3+rIMhi7r1uAyK862jPO5OYe6tAMDVQrbEVIUNh8+q3mSkdHFTX1AS8GjRj0frpjpXMSDSGWfDWPUeYTtjaQqQCxLkjkmuoLf+/LpHs7xWLezuE9abu+uPXqsVBBw4ddnpTd3dAsX6xhceEoTKGrMqa+A56zyrRo2Zo22cNf84W81cLo9JFRSuBuxyTZUZbVrIFgpDX9sjrpRu/dDjiADg1R2F9V63BIDWH7f0g1Oab7WqRXCVK4Ws1AADCzXuDfHG3xY31brDsJKAx9ddLfypozzAgEh3lAxj1XOE7Yijm5OSY7Jc8BsPl+C5jd/V+3xljdnmhh4EYEKfZNXSn90xGktHZiLo14JGSa3BG7uL6r0eBAAOpgYAHDfzKOGNG9/EPilY+UXdk3AQfq0hsno/yABFNWbOAkG5bZw1/zi7dqTymHUtkGW9Oneq+Z3d+KWCSevaNUdzgykRbDBg9uBOWLK5fl8fV2oG/GE0kNJCVm6AgWV7NYM9R9ebL2ft1lvfUn8Jsi0YEOmMkidxPUfYchzdnADlxxRvDENuRjwWffqd5A0xK7VVXTX27lNYufsH/N8XRVi5u8ina6VZyBXQE7NT0KNtS8mb+uGfyvDgyq901Txqf+wP92mHcX2Sseu/F+qadyw1MgLwccFZpLcxyt7AlTzdy23jrPlHyWrm1nlM7jd1p5rf2Y3fPlBXY+5zy7FavmtEryTc0026344rBaXeClV7SgtZuetvfm4X3JkRbxOAe6t/picdirXojOyNc+EPQbYFAyKdkbrYh3ZPwEeHzvpFhC3H0dO7q8ek5Ia4cvcPqnXkc7djoNwkkJZRb/bHMHtwJ8mOsVo2j0od+xu7izCuTzKyO0bbVBEJ+HVWYsjfwCXPCWxrluRqAOybf4IMwHirGkD7c2r4tQ1JgG0ec9Zsq6QGQqrgULruldQ8WfaCACwcegNahIXgu5Lyes1k1vNuWX+XN/vt6GlQh5JCVu53tA6GvBl0eNKhWIvOyN48F3oPsi0YEOmQ1MX+RE4nv4iw5cgFBy/bDZtXytENUe2OfO7uz1ngZn8MvuqA6ErhduD0Zdk0CRBkl02Ru4Fbzol1MCIA2PXfC4rWdrLuyLpiVxFWfFGEN6xqAB2tZg4A/7vx23pzTtkfV1Zqq3qB1+whnZwWos7Oq3WhoOShx3I+7spMQER443rD2C3zbnmbXodNOytknV1/3g46HF07zvbv687I/jYazFsYEOmU/cXuLxG2HLmb012ZCc4/7GCfrjwZutvM6Mn+nD3J2h+DtzsgujP8256zvjEWcjfw7I7RMBh+60MjwPW1nVZ+USTbKV/q2rEfyi7F+rhG9EpCWeU1LP41CHl+03G0CGss27G7rPIant983Ol5tQRN2R2j6w1ll3rosWx/T2aC28PY3WG99IsvC0q1a6I8fXByNz1Krh1HfN0Z2d9Gg3kLAyLyGV+1JavdkU/Jk6bSmgFfptueK0+Blm3tA4ggA2T7xtiTu4F7uraTqzdvuWOxT6v9b/r85uP1gq6XHugm+d2LN9Xf1v68OgtG7Y9Xq5oZm6kLrAJXC28VlN46XncfnNxNj9Jrx1mafdkZ2d9Gg3kLA6IApkW/AF/VdKkdfMntT+2buDeDRlcCCbk+X9P6t6/rOySR3sM/lTmc0di61sGTm6+rN29H/dfkmm3lzhWE+rVi9sPdLdva1zS4OneOFk0Y9aYukBmhpXZBqXT0oZr3K0dBhyfnXy6/vTyyu0s14r56gLScV2czkgcCBkQNnNxNpCEuw2BP7eDLfn/eKrS8FTS6EkjIjdh6eftJ/P3zkzaBnyW9WamtZJt1pCYbdXeggKtPz3LHYsn3UoWU3LnqkVy/Y7dU4Wc/BYGrtVpaNWHIFeaWkXHeKiidHa+3ao/kgg5Pzr+jvOMqbz9ASq1dl9GmhZh39xRebDDlgRIMiBowR50/6y3DsO6IOCJHi46TehvFooS/tbu7EkjYb2vNUeAndQOXym8fHTorOUpKKVeenu2PJQh1Ux9IrXEn9xm5eX0+/uYnvPf1mXqfn9innc2+Xa3V0qoJQ+57PfmtPPne5Khwr9eWSeVZT86/r5u73CW3dt3uuf1tZtEHgFE3JeKxAR10dwxqC9I6Ac48++yzMBgMNv86d+4svn/16lVMnToVrVq1QrNmzTB8+HCcO3fOZh/FxcXIzc1FeHg4YmJiMGvWLFy/ft3Xh+JTcjcRS+BhX5D/2hpQb1tfWLuvGL0Xb8eoFXvRe/F2rN1X7JPv9ZTlpmlNrUKrxFSFPYUXVf8NRvRKwu65/fHepFuwe25/h0GvZduncrvUe896Ekln5ALHyhozslJbedS3S+nnrY/7y3m348k705x+ztG5ijeGITkqHP+UCIYMAMbZTQhqKSSDDXUZxlkh6er2apH73szElh79Vvbs87ej43X04OEtnp5/V64zrcid14OnbWfRB4A1X5/BrXn+c292l1/UEN1www34z3/+I/7dqNFvyZ4xYwY2btyI999/H0ajEdOmTcOwYcPw5ZdfAgBqa2uRm5uLuLg47NmzByUlJRg9ejQaN26MRYsW+fxYfMXRTUTNZRg85c/DPb31JOjtzrSuVMPHGx1PhKmEXjpsKj1u+9pKuc/sP3VJsqP2AzcnSvZ7cbVPiFYT2nn7e+Xyt9z3apV/PD0Pvuov6S6582oWBMmyQQAw78Mjqtyb9doi4BcBUaNGjRAXF1fvdZPJhDfeeANr1qzB7bffDgBYtWoVunTpgq+++gq33HILPvvsM3z77bf4z3/+g9jYWHTr1g1//vOfMWfOHDz77LMICQnx9eH4hNwEeD9XVCM5KrxePwjrGiLAdwWWvzU72VO78HAWIKp5I1G6L08DP39pQgBcC0YNBoPk671To8R9WYb6GwAsHl63L1eOW+1C1ZXf3Bu/j7P8LfW9WuYfvQc1npA7rz2TIyUHCgB1/cg8vTfrdV4rwE8Cou+//x4JCQlo0qQJsrKykJeXh6SkJBw4cADXrl3DwIEDxW07d+6MpKQk5Ofn45ZbbkF+fj7S09MRGxsrbpOTk4MpU6bg2LFj6N69uxaH5HX2md2SwaetOSRmQut5UHb990K9CwPwfqc6vdQeeMKdm6ZcweQoQLRu1/f0RuLqTcnTwM8fpu93tbayR9uW9QoOgwG4sW1LlJiq6k0+OVfi6dqXT8ruTiipJlcegDypXSNl5M7r3CGdxVnnrdnPKu8qvbcI6D4guvnmm7F69Wp06tQJJSUlWLBgAW677TYcPXoUpaWlCAkJQYsWLWw+Exsbi9LSUgBAaWmpTTBked/ynpzq6mpUV1eLf5eXl6t0RL5jyewHTl3G4/88VC8T7p7bX1zQ0v7C2PXfC+i9eLvXo3h/qj1Qi6NgRC5ADA8JUu1G4u5NSUng56hw1fvTtqu1lfHGMCwenl7vt4w3huGTb36q94QtADhw6jLuyvTOlA2OyP3mZVXXxBmwvZkGV6dckDs3Ur+DXptf/IXUdflI31TAACz+9Lf5tQwA8oane3SO9d4ioPuAaMiQIeJ/Z2Rk4Oabb0bbtm3xr3/9C2Fh3juBeXl5WLBggdf27yvxxjBENnNtIjypm+e8dUcQHhKMnsmRDjOuOzcnf3v683T1amdNBlIBYkVNrWo3Em/dlPRcFa6EO7WVcnlXrjnN8rIn15g75H7zxZuOi3MNeetp3dGUC0EAJth1QHclYNdDrVdD9Uh2Ku7JTMDB05chCBCnDVDaaiD1G+i9RUD3AZG9Fi1aoGPHjjh58iTuuOMO1NTUoKyszKaW6Ny5c2Kfo7i4OHz99dc2+7CMQpPql2Qxb948zJw5U/y7vLwciYmJKh6J76gxkZ1ZAB57r8BhQedJgaj32gMLpcfoTpOYZTupQrbEVKXajcQbNyW9V4Ur4W5tpVTeddScBrh/jblLrk+ht5/WHU25sPFwKVbu/gH/90URVuwuwtwhnfFIdqrigF3rWq9AUDeowvUaTUc1fHpuEdD9sHt7V65cQWFhIeLj49GjRw80btwY27ZtE98/ceIEiouLkZWVBQDIysrCkSNHcP78eXGbrVu3IiIiAmlpabLfExoaioiICJt//srVIaRSw8kt5IbkOxrm31AoPUZH0wgoHapvP6RcyW+odKi+N4Z0e3NotLemIJCi1nBpS3Oa5bcOMgCLh6XXe1KW4uq1o+T8SP3mc4Z09tq0ERZy+eLMpSqs3P2D+J4gAHmfHsfrOwsVXyOOar0a8n1IC67c351tq+cpCXRfQ/TEE0/g7rvvRtu2bXH27Fk888wzCA4OxgMPPACj0YgJEyZg5syZiIyMREREBB577DFkZWXhlltuAQAMGjQIaWlpeOihh7BkyRKUlpbiqaeewtSpUxEaGqrx0fmOJxPZ2ZN6WtN727AalC4G6U6TmJJz5Og39GYnaSXND96qCteiGU6t2kpH59ida0yK3Eg2Z+kJDwlCRU2t15drkMsXkJn2Y/Gm47inW4Kia0SrWi+taNkM6OmyP/bb6rVFQPcB0Y8//ogHHngAP//8M6Kjo9GnTx989dVXiI6uW0/pxRdfRFBQEIYPH47q6mrk5OTgtddeEz8fHByMDRs2YMqUKcjKykLTpk0xZswYLFy4UKtD0owrmdBy8zx4+jKmrTnkdEi+3tuG1aDkGN1tElNK6jf0ZidppQGJWlXh1jd9AJLH1TmuOSpqanXfP8RZAebqNSa1fyUj2azFG8PqjVa0Xq5B7fMply96tG0puXCsAGDV7lN4MreL02tEat+zB3fC85uP6/4+5Gpwo3X/PGcziVsfiz+XBQZBkFq+j+yVl5fDaDTCZDL5dfOZO9buK653Q5PrQ6RkO3/m7BhLTFXi6DyLYIMBu+f291rhvafwIkat2Fvv9fcm3SKOInSHO8dSYqpyu3O8/U1/Qp8UrPiiqN52loJUz/1DXC3A3Ll2PvnmJzz2XkG91//+gPwiolrkT8v32ueL13cVIu9TiaHdBuDLubcrTo/9vq3PpSUfje8jv0yLr7maN7T6zexJ5VEAkscil5+1quVSWn7rvoaItKe0RsPfRou5w9kxatFp0FtPZO40g7pbFS5Vy/XG7iLJCeK8MSpK7QkvXa2xc+facTaSzZIW6+NSs2nblXMmObQ7OxWnL1Zgjd3yJ2ZB2eR/1t9vHfhbzuWqL4uwYlcRVnxRhDd2F+kieHYnb+ilO4J9HgVgE6hZH4tUfta6lksJBkSkiNKCTq9tw2pydozeCAydze/jjSDMl1XfcqOuHs5OwRtfnBKHaJvtPqfH6QLcLcBcvXacjWSTOq7sjtGq/KZqnbPHBnTAP/edUZQe62tAySSlK78oqrc+o9ajHt3JG3pqgrLOo3sKLzo8FuttlQSCepgqgQEROaWHjOpv1AwMlRQ+3gjCfFnbJXfTH9e7blV6S0fg+17bo6gfg1LemC7AVwWYZSSb1MSQcse1e25/j39TNc+Z0jxmfw1ILUZt/f16qVWx507e0OtQdVeOxdnvoZfaIwZE5JBeMqo/UiOQdKXw8UbtnK+aQZ3d9C3/L7WNJ0uaeKPg9GUBJvf7ODouT39Ttc+Zs/RIXQP2rKd4cGVGbF9zN2/osTuCK8firFO2XuYwY0BEsvSUUf2NWoGkHp50fdUMKjUsvMRUZfPdrvRjUJJmpU+5rga3vizApH4fZ8flyW/qjRowR+mRugbsBRsMOPxjGR5c+ZV4zVnPiK2XWhXA/bzh6+4ISvK80mNxFDw5a3rzJQZEJEsPhbE1bzfdqbV/NQNJPfUfcEStcxdvrD8s3D6YdKUfg5Lvc/aU625w640CzJXV6r1RS2X5/jmDO2PJZu/NX2RN6hqwFmwwYPaQTuLs1IDtjNiVNWbZAFsreu9r6UqeV3oscsGTnu5xDIjIhvUNV08Z1dtNd2ruX81AUq/9B5R0cLUvvJ39bdmvK8HkkZ9M9V5zNY86esrVUy2pNyffdOf75wzpjIzW3pm/yFq8MUx2Cob5uV1wZ0a87DVXWWNG8aUKNvu7wJt5Xip40tM9jgERiaRuuHrIqN4ulNTev9qBpN76D1jnE8sIb/sOrmWV18QJ8izNF+sP/ST7t6WQciWYLDFV4flN9eexmT24k1uBp9RnvF1LqrTGx34SRrMAzF3neBJGwPWaCLn0SF0jSzad8NlcOOP7pNiMGgPqrqk7M+IRbwzD+fKr9UbcBRsMCA8J0k1A62vu1tpq0TKgl3scAyICIB8U7J7bH7vn9tc0o3r7AlV7/9544tFLFbt9PpFqxRBXUf/1b7MAfHjwJ/F9qb8thZSnI1cAIKNNC9cPTIY3a0ldqfE5cPqy5HxMB09fFhff9GZ6tG4+t4yok7qmLOm2D4YWDeuKippaXTX7+4onNd5atQzo4R7HgIgAOL7hWS8y6i5P+ph4+wL1xv718sSjNiUdXB3195BjndfUGLmiFm/2xXGl5kJuQQG11hlwlh49NJ9LXVP26Qbq8t+6R7MQE9EEB05flqw50lsfPDV5WuOtpyYsX2NARAC0fRJ2Fix5+wL11v718MSjNql8YkDdhIBmQbqDqxLWeU2NkSuesM+P3ghuXa1x6ZkcWX8SRgA9kls6Tb8a6dFLIWl/TclN6LnxSAlWflEkNutazl1DLtwtv/ulihqXa8V8kef9AQMiAqC8cHH1ZuvsaUVp1a63L1B/vgH4cuJMuXxif+5ahDW22WZo9wSxz5C9IAPq5TVPR664S252Z7XPr6sPIJYmo3kfHoEZdau65w1Pr5ced5tKlKTHnXPt7bwpueK9AVixq8hm0dsgA/DKyO7okdxSMh2O+k75w6S09v36XKkVk8szDfGBzhku7qpQoCzu6mhxTiU3W/sbiKOFR5OjwnWxaKE/02riTCWLuNpv882Zyxj66h6bG3UQgBVjeiAspJHbhY6a0yXY50fr2i+1z687C7o6Ou+eLgKq9oKcvsqb9uke3ydZckSa3GLHcun0l0lpneVbR3lLLwvHehsXdyW3yD0VKGmXdnXtJG901PSXJzqlHB2PlkPClTw92m+TmdiyXsfYod0TMOntA24XOt6eLkGAdxaTBdyrcXF03j29ntRckNOXeVNqss43dhcpqn2TS2fnuOZ+MzpNLt++MrI7WjULdZi3tO4srzcMiEgRZxeOu2snqdlvyV+e6JRydjyuDlHXQ6BoPxu19dpkrhY6vpguwZ59nvf0nKrZLNE0JBgGg21Ha1evJ+v0eHJ+fV3Q2p9Hpf2d5NK579RlvwkU5Jo75ZoHlXy2IXc6d4QBESni7MJxZ+0kNTtq6mkCPTUoOR6lNzO9BYqWwsvTWaaVBOmuBCz2+TEIv9YQWW1jOb/eOqeeNk/ZB0OedCD2JKiR69tz8cpVn8wWrbT2Te4a6pXc0m8CBU/uo3rpLK8XDIhIEWcXjrtrJ6nVKbahVf0qOR4lNzMlgZVWtUeePp06+ry7AYt9ftz13wv1zi8ArwTfajVPAXV9s9Y9moXMxPqj0JTy5Pexz5uWmqvH3ivwWVCutFlX6hrKTGzpV4GC3H1UzfXIAgEDIlLM0YXj6VOKKyM/pDS0ql+lx+PsZuYssNKy9kiqRmZCn2S3P69WwGKdH6XOrzcWo1S7ecoMoLLG7FZaLDytPbCcu4OnL2PamkP1ZjNXs/bWk6Be7hryRqDgzYcP+/uoq+uRAXV5yfrvQMOAiFzi6KlLzRuIqwV1Q6v6deV4HP0mjgIrPTQzWvLMqt2nsHL3D/i/L4qwcneR2zU63ghY7M+vN4JvtZun1HoY8PSajjeGoWXTinqzbKtZe6tGUC93DanZx0uNdLqy1Isr17bemtW1EqR1AqhhiTeGiUNb9xReRImpyulnSkxVNtvKXczO9jWiVxJ2z+2P9ybdgnWPZiExMlzR9ytJkxasj2f33P5u3aAsgVWwoW7VMevAylEh7Gsrd//g8u9tYclz9s231tSsLXR0Tt3lSZqVpsfdPG1/fl3lzd/D3XuFr6mRzrX7itF78XaMWrEXvRdvx9p9xbLbunJt+8s59AXWEJHqXHnakNo2MTLc7afleGOY7Orr3ki/t6nxhCr3lC/X8TU8xLfPSf6wlpy1ElMVEiPDse7RLFTWmFVpTlGrecqTOcSccbe5x5u/h7/0HfQ0na7W+Hi6JqAez6EvMCBqAPQypNqSFqUXrty26x7NcrsJwNNmID00I3mDVGBlX1ABdcd732t7fBoE+tNaclKBhdRkf+5Qo3lKri+ep3na04DK02OTu8f5S99BT9PpatDiShDqadr0VP54ik1mfs6ValRfcKWqVm7byhqz200SnjYDeaMZSWlThdR23m66G9ErCesezYJ1i4avq8y90QRl2a8aCxNbeNK0oPR3VDvNgOd5Wq0mFVeOzfp8ObrHeSvvqM3TdLrT7Ki0yd2TtOmt/PEUa4j8mB5rM1x52nC0bVZqK7eeKL05lNsZqSclpU/WUtsB8EnTXUVNrVc7vSrhD0N/3W1a0LoJ1pu1E5b31awdsD5fgO26XFL3OFfzjlY1Gp7kcXebHZU2ubu7Tp3eyh9PMSDyY3ps+3V1dJSjbd3pP+NpfwV3Py+3bImSG4bUjWXeh0cAq0LMmzcbtZodPC1o1BzR4w3uzASth0LD02tCLn8c/rEMD678StVAT2pOJSXButK8Y78I6twhnfFI31SP0uwK+3QquWYs22R3jMbuuf299tDg6vWnx/LHUwyI/Jhe289dedrwRs2Ap/t054lTqtB76YFuim4YcvPI2JcE3rrZqNHpVetaEG9zdyZobxUargafatdOzB7SCc9vOq56oCd1vuy5e4+zv04FAHmbjgMG4JFs3wVFFjbBmeHX4MwuHXq+rvRa/niCAZEf8/ZoGk/T5kqtjCtpti8MpAoHT2sbXPm8XKEHQdlabZKjvQCbGiK5z6rFkwJTD7Ug3uTJTNDuFBrOgh13C0lPrgn7/CGX5w+cuozIZsoCNanjdLaeXJABbt/j5IKt5zcdxz2ZCarkVXfnCRIEIO/T44AAscZK79eVnssfdzEg8nP+0PdCTfaFwX3dW2P9oZ80fYJytLiikhuG3I0FgE9vNpYC09KhVWntQ0OsOrfmyUzQrhYazoIdXxaS9oW7fUBln+cNAB7/5yG3p9sY0StJPF/zPjwC+7MbBGD9o7e6vRxJSlRTm/5IFmYBquRVVwJVh8FZtwQAwIbDZ3V/XTW08ocBUQOg974XapEqDD48+JP4vlZPUI4KPaU3DLntfH2zcaf2oSFWnVvz9PiU5gElwY6vgk9n+cA+z1sWwvVkug3Ltvazl5uF35onPVmbLd4YhrlDOtc1k1lRI6+6Ot3IpYoayf2YAaz6sggrvyiSDJisZ5n3ZsdwJbXwFp7W8OsJAyLyG0r6F8gVDiWmKhw4fRmCIKBncqTqF6J9oQfAppZFyfdJbefLYNfd2oeGWHVuTY3jU/I7Kgl2fBF8Ks0H1nn+54pqTFtzyGHanR3nxsMlyM2IF8/Vk7ldMK5PsqoPBI/0TQUMEPs/Wf+WnhTUSgNV+07d9rezIAOwYldRvdeB39Lq6cSzznizFl7PfaIABkRkR8/Ru7P+BYB04bB2XzHmfnhEvMkYACwerv6FaLmR6/2il+OoX8hdmY7zgnXhGB4ShIqaWpSYqnSXh4Df8njTkGBU1NRK5nX768AXTQNKgh1fBJ+u1EJZN7N6Mt0GADy38Tss+vQ7m+vFWSDpzv3qkexU3JOZYPNbenrNKvntpDp1W6YWEn7dfnyfZKz4oqje/ufndsGdGfEAgN6Lt3utydSbtfB67xMFMCAiK3ovyKUKg6HdE/DRobOyhYPlIrS+9wqoG9burX4Xer7oHRUgcgXV4/88hIqa607zQrzR82VTvM1+jhugfjod9W/xdh8uJcGOt4MzpYW7dT7a9d8LNiPwDA46P9sfpzWp60Uuz8pNdaEkQLL+LdW4Zp39diWmKsk+QQKAV0d1R2TTUPH8vrG7qN65v/PXmjOlCxe7+2CrtBb+4OnLaNnUtf37Q19DBkQNlKsXhN4LcgupwuCJnE6yhYPcBW6GOh0p7en5olfaL8S+Q6uz/hCWfAZA13lIarQYYJtOQNtjUBrseDM4c1a42+ejOUM64/lNx20eOgwCxPMpxXKcGw+X4LmN39m8Z329yOVZqfvV3HVHAKEuyHAlGFfrmpX77aSCcItggwE3tm1p8z2Ozr2SYNWTB1sltfAGAzBtzSHZ8+zPy6wwIGpALBnxyE8msY1c6QWh54Lcnn1h4KhwOPKTSfL1IMArF6K7F70vOkkq7RfSNLSRov4g9jfeCX1SdJ2HHD39WtIpQND8GPQwSEKucJfKR9bzEVkoeeCIN4YhNyMeiz79TvJ6cZRnpX5L68omVwJZNQtq+99OLgi3fIerNYBKaqI8Ceid1cIH/ToxqeVw7PfvKBjzh76GDIh0yJ3CUe4pROkFoefo3d1gocRUheftRpRY5A1P98qF6M5F74umSlcC3h5tW7rcH8Is1FX123cU1WLGa7n9NQ0Jln36tU6nL64DPffVs5AKzCSnIJDoIKz0nDm6Xhw1DympyVAayCq5ZtVugrL0CXKnBtBRwHTg9GWPA3pHtfAXr1zFY+8VSO4fcF67qvdh+gyIdMadwtHRUwig7ILQa/TuSbAgdzN6dVR35GYkqJzS37hy0fuqqdKVgFdJXpArGB/OTsEbX5zSzYzXUiNmLE+7Fvbp9PZ1oPe+eo7I5aPZgzthyeYTbp0zuevFUZ61z6P2NRfW23qSBkD9JijrPkFSlARfUgGTZfCIPXcCerlaeEed55U+dOmhBlQOAyIdcbdwdNYRTukFobfo3dNgQe5mdGNb9+cyUcrRRW99w/NVU6WrAa+zvCB3bsf1TsG43im6mPFaan8fHTqLdY9mobLGjPCQIFTWmOul05vXgb/01ZMjl49G9ErCPd0S3D5nUteLszxr/zvt+u8F1adG8EYTlCcTc8qRGjwCeDaztxRnx6PXVgalGBDpiLuFo6PqY3cWN9XLjdnTYEHpzciXzRf1OqQO7uyzm4irBb2jvODs3LpzHtUODuX2V1ljRlZqK4ef9dZ1oEVfPbXzt1w+sq5FcGWmc3e+y8L6d/JGIKvG76XmxJyupBMAXh7ZHXdlqlsbbjmeA6cuA4a6JnZAv60MrmBApCPu9uORyoizB3dCRpsWuqjpcZca/Zqc3Yx82XwhdcNbsvkE5gzpjCWb3GtucJWaBb3aBZDa/dj02C/O12nyJH+7MzuxN64nV/Ks2oGsWr+XknR5Enw1DQmW7MfVI7mlVx745KbX0Fsrg6sMgiBIxJVkr7y8HEajESaTCREREarvXxwh9qOpXlu8KzcwuYzoD504pazdVyxZPe8OqenorSc5A+puIrvn9vfoHMmd6z2FFzFqxd5627836RYkR4X77U1ETWr+3t7Ynxp8lSZP8re7fRkdfR/vQY65+3tJDaixXg9R7nf0ZLCKN+6b3qS0/A6oGqJXX30VL7zwAkpLS5GZmYlXXnkFN910k9bJkpzXI6O167U7vnxq8xW1njikzkFiZLjqzReOzrWzTqJ6vZn4ktpPmK7uzxeFtq+eot2tcVCzL6Pl+/Q+Yacjvvq93GlykhpQE2QA1j2ahZiIJrKzWnvye/jTFC2uCtI6Ab6ydu1azJw5E8888wwOHjyIzMxM5OTk4Pz585qmS7IZZdMJ1S48uZtbianK4337SrwxDFmprdw+H3LnwDIM25rS6nBLPwnr8+jsXFtueMEGg/hd3mwek0qjP/D093Z3f2v3FaP34u0YtWIvei/ejrX7ilX5fk/S5AlLAG5NSf52VOC5833hIUEBfw9SakSvJOye2x/vTboFu+f2d2v+OLMAVNaYZX/Hg6cve/R7uJuv/EHABER/+9vfMGnSJIwbNw5paWlYvnw5wsPD8eabb2qaLndvPnrZvz9w1LnWnQBFruBUcq5dveG5y5eFe0PQEB4c7LkbgLtb4Ml9X0VNbcDfg1zhSvDl6LeSe88syE8+qjR9vnyw86WAaDKrqanBgQMHMG/ePPG1oKAgDBw4EPn5+ZKfqa6uRnV1tfh3eXm5V9Lm7U6WeuxY6muOzkFWaiuXm1TkmhOUnmtvN4/5+9BuLTTUZgB3mns8GS0k9X2uLPxKrnH2W0m91zM50uuDVfxVQAREFy9eRG1tLWJjY21ej42NxfHjMjMZ5+VhwYIFXk+bt4cqNoShkJ5SMkRc6flwVHBmpbbSxbluqIW7NzXkBwd3AnBPCjz77+M9yLsc/VZy76nxezTEfo8BMcrs7NmzaN26Nfbs2YOsrCzx9dmzZ2Pnzp3Yu7f+yB+pGqLExESvjjLzZrTt7f37AzXOgZIRFlqfa38cBaIHehyR1pBofV2QrUD6PTjKzEpUVBSCg4Nx7tw5m9fPnTuHuLg4yc+EhoYiNDTUF8kD4P1ouyFG865S4xwoedrV+lzzidw9DbUZQC+0vi7IFn+P+gIiIAoJCUGPHj2wbds2DB06FABgNpuxbds2TJs2TdvEkd/xh4LTH9KoRywkiAJXQAREADBz5kyMGTMGPXv2xE033YSlS5eioqIC48aN0zpp5If8oeD0hzQSEelFwAREI0aMwIULF/D000+jtLQU3bp1w+bNm+t1tCYiIqLAExCdqtXg7aU7iIiISH1Ky++AmZiRiIiISA4DIiIiIgp4DIiIiIgo4DEgIiIiooDHgIiIiIgCHgMiIiIiCngMiIiIiCjgMSAiIiKigMeAiIiIiAJewCzd4SnLhN7l5eUap4SIiIiUspTbzhbmYECk0C+//AIASExM1DglRERE5KpffvkFRqNR9n2uZaaQ2WzG2bNn0bx5cxgMBq2T43Pl5eVITEzEmTNnuJabB3gePcdzqA6eR3XwPKrDm+dREAT88ssvSEhIQFCQfE8h1hApFBQUhDZt2midDM1FRETwolcBz6PneA7VwfOoDp5HdXjrPDqqGbJgp2oiIiIKeAyIiIiIKOAxICJFQkND8cwzzyA0NFTrpPg1nkfP8Ryqg+dRHTyP6tDDeWSnaiIiIgp4rCEiIiKigMeAiIiIiAIeAyIiIiIKeAyIiIiIKOAxICLRrl27cPfddyMhIQEGgwEfffSRzfuCIODpp59GfHw8wsLCMHDgQHz//ffaJFbHnJ3HsWPHwmAw2PwbPHiwNonVsby8PPTq1QvNmzdHTEwMhg4dihMnTthsc/XqVUydOhWtWrVCs2bNMHz4cJw7d06jFOuTkvPYr1+/enly8uTJGqVYn5YtW4aMjAxx4sCsrCxs2rRJfJ950Tln51DrfMiAiEQVFRXIzMzEq6++Kvn+kiVL8PLLL2P58uXYu3cvmjZtipycHFy9etXHKdU3Z+cRAAYPHoySkhLx33vvvefDFPqHnTt3YurUqfjqq6+wdetWXLt2DYMGDUJFRYW4zYwZM/DJJ5/g/fffx86dO3H27FkMGzZMw1Trj5LzCACTJk2yyZNLlizRKMX61KZNGyxevBgHDhzA/v37cfvtt+Pee+/FsWPHADAvKuHsHAIa50OBSAIAYf369eLfZrNZiIuLE1544QXxtbKyMiE0NFR47733NEihf7A/j4IgCGPGjBHuvfdeTdLjz86fPy8AEHbu3CkIQl3+a9y4sfD++++L23z33XcCACE/P1+rZOqe/XkUBEHo27ev8Ic//EG7RPmpli1bCitXrmRe9IDlHAqC9vmQNUSkSFFREUpLSzFw4EDxNaPRiJtvvhn5+fkapsw/7dixAzExMejUqROmTJmCn3/+Wesk6Z7JZAIAREZGAgAOHDiAa9eu2eTJzp07IykpiXnSAfvzaPHuu+8iKioKXbt2xbx581BZWalF8vxCbW0t/vnPf6KiogJZWVnMi26wP4cWWuZDLu5KipSWlgIAYmNjbV6PjY0V3yNlBg8ejGHDhiElJQWFhYV48sknMWTIEOTn5yM4OFjr5OmS2WzG9OnT0bt3b3Tt2hVAXZ4MCQlBixYtbLZlnpQndR4BYNSoUWjbti0SEhJw+PBhzJkzBydOnMC6des0TK3+HDlyBFlZWbh69SqaNWuG9evXIy0tDQUFBcyLCsmdQ0D7fMiAiMjHRo4cKf53eno6MjIykJqaih07dmDAgAEapky/pk6diqNHj2L37t1aJ8WvyZ3Hhx9+WPzv9PR0xMfHY8CAASgsLERqaqqvk6lbnTp1QkFBAUwmEz744AOMGTMGO3fu1DpZfkXuHKalpWmeD9lkRorExcUBQL1RE+fOnRPfI/e0a9cOUVFROHnypNZJ0aVp06Zhw4YN+Pzzz9GmTRvx9bi4ONTU1KCsrMxme+ZJaXLnUcrNN98MAMyTdkJCQtC+fXv06NEDeXl5yMzMxEsvvcS86AK5cyjF1/mQAREpkpKSgri4OGzbtk18rby8HHv37rVp/yXX/fjjj/j5558RHx+vdVJ0RRAETJs2DevXr8f27duRkpJi836PHj3QuHFjmzx54sQJFBcXM09acXYepRQUFAAA86QTZrMZ1dXVzIsesJxDKb7Oh2wyI9GVK1dsIvGioiIUFBQgMjISSUlJmD59Op577jl06NABKSkpmD9/PhISEjB06FDtEq1Djs5jZGQkFixYgOHDhyMuLg6FhYWYPXs22rdvj5ycHA1TrT9Tp07FmjVr8O9//xvNmzcX+2IYjUaEhYXBaDRiwoQJmDlzJiIjIxEREYHHHnsMWVlZuOWWWzROvX44O4+FhYVYs2YN7rzzTrRq1QqHDx/GjBkzkJ2djYyMDI1Trx/z5s3DkCFDkJSUhF9++QVr1qzBjh07sGXLFuZFhRydQ13kQ83Gt5HufP755wKAev/GjBkjCELd0Pv58+cLsbGxQmhoqDBgwADhxIkT2iZahxydx8rKSmHQoEFCdHS00LhxY6Ft27bCpEmThNLSUq2TrTtS5xCAsGrVKnGbqqoq4dFHHxVatmwphIeHC/fdd59QUlKiXaJ1yNl5LC4uFrKzs4XIyEghNDRUaN++vTBr1izBZDJpm3CdGT9+vNC2bVshJCREiI6OFgYMGCB89tln4vvMi845Ood6yIcGQRAE34ReRERERPrEPkREREQU8BgQERERUcBjQEREREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBGR36upqdE6CfXoMU1EJI8BERHpTr9+/TBt2jRMmzYNRqMRUVFRmD9/PiwrDSUnJ+PPf/4zRo8ejYiICDz88MMAgN27d+O2225DWFgYEhMT8fjjj6OiokLc72uvvYYOHTqgSZMmiI2Nxf333y++98EHHyA9PR1hYWFo1aoVBg4cKH62X79+mD59uk0ahw4dirFjx4p/u5smItIHBkREpEtvvfUWGjVqhK+//hovvfQS/va3v2HlypXi+3/5y1+QmZmJQ4cOYf78+SgsLMTgwYMxfPhwHD58GGvXrsXu3bsxbdo0AMD+/fvx+OOPY+HChThx4gQ2b96M7OxsAEBJSQkeeOABjB8/Ht999x127NiBYcOGwdWlHl1NExHpBxd3JSLd6devH86fP49jx47BYDAAAObOnYuPP/4Y3377LZKTk9G9e3esX79e/MzEiRMRHByM119/XXxt9+7d6Nu3LyoqKvDpp59i3Lhx+PHHH9G8eXOb7zt48CB69OiBU6dOoW3btpLp6datG5YuXSq+NnToULRo0QKrV68GALfS1KRJE4/OExGphzVERKRLt9xyixgMAUBWVha+//571NbWAgB69uxps/0333yD1atXo1mzZuK/nJwcmM1mFBUV4Y477kDbtm3Rrl07PPTQQ3j33XdRWVkJAMjMzMSAAQOQnp6O//mf/8GKFStw+fJll9PsapqISD8YEBGRX2ratKnN31euXMEjjzyCgoIC8d8333yD77//HqmpqWjevDkOHjyI9957D/Hx8Xj66aeRmZmJsrIyBAcHY+vWrdi0aRPS0tLwyiuvoFOnTmLQEhQUVK/57Nq1ax6niYj0gwEREenS3r17bf7+6quv0KFDBwQHB0tuf+ONN+Lbb79F+/bt6/0LCQkBADRq1AgDBw7EkiVLcPjwYZw6dQrbt28HABgMBvTu3RsLFizAoUOHEBISIjZ/RUdHo6SkRPyu2tpaHD161OkxKEkTEekDAyIi0qXi4mLMnDkTJ06cwHvvvYdXXnkFf/jDH2S3nzNnDvbs2YNp06ahoKAA33//Pf7973+LHZg3bNiAl19+GQUFBTh9+jTefvttmM1mdOrUCXv37sWiRYuwf/9+FBcXY926dbhw4QK6dOkCALj99tuxceNGbNy4EcePH8eUKVNQVlbm9BicpYmI9KOR1gkgIpIyevRoVFVV4aabbkJwcDD+8Ic/iEPZpWRkZGDnzp3405/+hNtuuw2CICA1NRUjRowAALRo0QLr1q3Ds88+i6tXr6JDhw547733cMMNN+C7777Drl27sHTpUpSXl6Nt27b461//iiFDhgAAxo8fj2+++QajR49Go0aNMGPGDPTv39/pMThLExHpB0eZEZHuSI3qIiLyJjaZERERUcBjQEREREQBj01mREREFPBYQ0REREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAe//AZgQYx7jt1AvAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcStJREFUeJzt3XlcVXX+P/DXBQVBBURWFRQxFxKXXElFTRPJqVz6jmal5pbmMuqUS5Ol1ojZTFlW2s8mrSnNqbTMNSdDM8nUJLdkkjAsQEXjkoCgcH5/4D3d5Zx7z9045977ej4ePMp7zz3nc9bP+3xWnSAIAoiIiIh8mJ/aCSAiIiJSGwMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiLyGEuWLIFOp1O0rE6nw5IlS9yangEDBmDAgAGaXR8RKceAiIjstmHDBuh0OvGvXr16aN68OSZMmIBff/1V7eRpTqtWrUyOV1RUFPr164etW7e6ZP3l5eVYsmQJMjMzXbI+Il/EgIiIHLZs2TL8+9//xtq1a5Geno733nsP/fv3x/Xr192yvaeffhoVFRVuWbe7denSBf/+97/x73//G0888QQKCgowcuRIrF271ul1l5eXY+nSpQyIiJxQT+0EEJHnSk9PR/fu3QEAkydPRkREBF544QVs27YNf/7zn12+vXr16qFePc98bDVv3hwPP/yw+O9x48ahTZs2ePnllzFt2jQVU0ZEAEuIiMiF+vXrBwDIzc01+fzs2bN44IEHEB4ejgYNGqB79+7Ytm2byTI3btzA0qVLcdttt6FBgwZo2rQp+vbti71794rLSLUhqqysxNy5cxEZGYnGjRvjvvvuwy+//GKRtgkTJqBVq1YWn0utc/369bjrrrsQFRWFwMBAJCUlYc2aNXYdC1tiYmLQoUMH5OXlWV3u0qVLmDRpEqKjo9GgQQN07twZ77zzjvj9+fPnERkZCQBYunSpWC3n7vZTRN7GM1+1iEiTzp8/DwBo0qSJ+Nnp06fRp08fNG/eHAsXLkTDhg3xn//8B8OHD8fHH3+MESNGAKgNTDIyMjB58mT07NkTpaWlOHr0KL777jvcfffdstucPHky3nvvPYwdOxZ33nkn9u3bh2HDhjm1H2vWrMHtt9+O++67D/Xq1cNnn32Gxx9/HDU1NZgxY4ZT6za4ceMGLly4gKZNm8ouU1FRgQEDBuDcuXOYOXMmEhIS8OGHH2LChAkoKSnBX/7yF0RGRmLNmjWYPn06RowYgZEjRwIAOnXq5JJ0EvkMgYjITuvXrxcACP/973+Fy5cvCxcuXBA++ugjITIyUggMDBQuXLggLjto0CAhOTlZuH79uvhZTU2NcOeddwq33Xab+Fnnzp2FYcOGWd3us88+Kxg/trKzswUAwuOPP26y3NixYwUAwrPPPit+Nn78eKFly5Y21ykIglBeXm6xXFpamtC6dWuTz/r37y/079/fapoFQRBatmwpDBkyRLh8+bJw+fJl4fvvvxfGjBkjABBmzZolu75Vq1YJAIT33ntP/KyqqkpISUkRGjVqJJSWlgqCIAiXL1+22F8isg+rzIjIYYMHD0ZkZCTi4uLwwAMPoGHDhti2bRtatGgBALh69Sr27duHP//5z/j9999RXFyM4uJiXLlyBWlpafjxxx/FXmlhYWE4ffo0fvzxR8Xb37lzJwBg9uzZJp/PmTPHqf0KCgoS/1+v16O4uBj9+/fHTz/9BL1e79A6P//8c0RGRiIyMhKdO3fGhx9+iEceeQQvvPCC7G927tyJmJgYPPjgg+Jn9evXx+zZs3Ht2jXs37/fobQQkSVWmRGRw15//XW0bdsWer0eb7/9Ng4cOIDAwEDx+3PnzkEQBCxevBiLFy+WXMelS5fQvHlzLFu2DPfffz/atm2Ljh07YujQoXjkkUesVv38/PPP8PPzQ2Jiosnn7dq1c2q/vv76azz77LPIyspCeXm5yXd6vR6hoaF2r7NXr154/vnnodPpEBwcjA4dOiAsLMzqb37++Wfcdttt8PMzfXft0KGD+D0RuQYDIiJyWM+ePcVeZsOHD0ffvn0xduxY5OTkoFGjRqipqQEAPPHEE0hLS5NcR5s2bQAAqampyM3NxaefforPP/8cb731Fl5++WWsXbsWkydPdjqtcgM6VldXm/w7NzcXgwYNQvv27fHSSy8hLi4OAQEB2LlzJ15++WVxn+wVERGBwYMHO/RbInI/BkRE5BL+/v7IyMjAwIED8dprr2HhwoVo3bo1gNpqHiXBQHh4OB599FE8+uijuHbtGlJTU7FkyRLZgKhly5aoqalBbm6uSalQTk6OxbJNmjRBSUmJxefmpSyfffYZKisrsW3bNsTHx4uff/nllzbT72otW7bEiRMnUFNTY1JKdPbsWfF7QD7YIyLl2IaIiFxmwIAB6NmzJ1atWoXr168jKioKAwYMwJtvvonCwkKL5S9fviz+/5UrV0y+a9SoEdq0aYPKykrZ7aWnpwMAXn31VZPPV61aZbFsYmIi9Ho9Tpw4IX5WWFhoMVq0v78/AEAQBPEzvV6P9evXy6bDXe655x4UFRVh8+bN4mc3b97E6tWr0ahRI/Tv3x8AEBwcDACSAR8RKcMSIiJyqSeffBL/93//hw0bNmDatGl4/fXX0bdvXyQnJ2PKlClo3bo1Ll68iKysLPzyyy/4/vvvAQBJSUkYMGAAunXrhvDwcBw9ehQfffQRZs6cKbutLl264MEHH8Qbb7wBvV6PO++8E1988QXOnTtnseyYMWOwYMECjBgxArNnz0Z5eTnWrFmDtm3b4rvvvhOXGzJkCAICAnDvvffisccew7Vr17Bu3TpERUVJBnXuNHXqVLz55puYMGECjh07hlatWuGjjz7C119/jVWrVqFx48YAahuBJyUlYfPmzWjbti3Cw8PRsWNHdOzYsU7TS+TR1O7mRkSex9Dt/siRIxbfVVdXC4mJiUJiYqJw8+ZNQRAEITc3Vxg3bpwQExMj1K9fX2jevLnwpz/9Sfjoo4/E3z3//PNCz549hbCwMCEoKEho37698Pe//12oqqoSl5HqIl9RUSHMnj1baNq0qdCwYUPh3nvvFS5cuCDZDf3zzz8XOnbsKAQEBAjt2rUT3nvvPcl1btu2TejUqZPQoEEDoVWrVsILL7wgvP322wIAIS8vT1zOnm73toYUkFvfxYsXhUcffVSIiIgQAgIChOTkZGH9+vUWvz106JDQrVs3ISAggF3wiRygEwSjcmEiIiIiH8Q2REREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHP48CMCtXU1KCgoACNGzfmMPlEREQeQhAE/P7772jWrJnFRMnGGBApVFBQgLi4OLWTQURERA64cOECWrRoIfs9AyKFDEPkX7hwASEhISqnhoiIiJQoLS1FXFycmI/LUTUgWrNmDdasWYPz588DAG6//XY888wz4oSNAwYMwP79+01+89hjj2Ht2rXiv/Pz8zF9+nR8+eWXaNSoEcaPH4+MjAzUq/fHrmVmZmLevHk4ffo04uLi8PTTT2PChAl2pdVQTRYSEsKAiIiIyMPYau6iakDUokULrFixArfddhsEQcA777yD+++/H8ePH8ftt98OAJgyZQqWLVsm/sYwqzMAVFdXY9iwYYiJicGhQ4dQWFiIcePGoX79+li+fDkAIC8vD8OGDcO0adPw/vvv44svvsDkyZMRGxuLtLS0ut1hIiIi0iTNzWUWHh6OF198EZMmTcKAAQPQpUsXrFq1SnLZXbt24U9/+hMKCgoQHR0NAFi7di0WLFiAy5cvIyAgAAsWLMCOHTtw6tQp8XdjxoxBSUkJdu/erThdpaWlCA0NhV6vZwkRERGRh1Caf2um2311dTU++OADlJWVISUlRfz8/fffR0REBDp27IhFixahvLxc/C4rKwvJycliMAQAaWlpKC0txenTp8VlBg8ebLKttLQ0ZGVluXmPiIiIyFOo3qj65MmTSElJwfXr19GoUSNs3boVSUlJAICxY8eiZcuWaNasGU6cOIEFCxYgJycHW7ZsAQAUFRWZBEMAxH8XFRVZXaa0tBQVFRUICgqSTFdlZSUqKyvFf5eWlrpmh4mISHOqq6tx48YNtZNBDqhfvz78/f2dXo/qAVG7du2QnZ0NvV6Pjz76COPHj8f+/fuRlJSEqVOnisslJycjNjYWgwYNQm5uLhITE92aroyMDCxdutSt2yAiInUJgoCioiKUlJSonRRyQlhYGGJiYpwaJ1D1gCggIABt2rQBAHTr1g1HjhzBK6+8gjfffNNi2V69egEAzp07h8TERMTExODbb781WebixYsAgJiYGPG/hs+MlwkJCZEtHQKARYsWYd68eeK/Dd32iIjIexiCoaioKAQHB3PgXQ8jCALKy8tx6dIlAEBsbKzD61I9IDJXU1NjUlVlLDs7G8AfO5ySkoK///3vuHTpEqKiogAAe/fuRUhIiFjtlpKSgp07d5qsZ+/evSbtlKQEBgYiMDDQmV0hIiINq66uFoOhpk2bqp0ccpChcMMQCzhafaZqQLRo0SKkp6cjPj4ev//+OzZu3IjMzEzs2bMHubm52LhxI+655x40bdoUJ06cwNy5c5GamopOnToBAIYMGYKkpCQ88sgjWLlyJYqKivD0009jxowZYjAzbdo0vPbaa5g/fz4mTpyIffv24T//+Q927Nih5q4TEZHKDG2GjIdzIc9kOIc3btzwzIDo0qVLGDduHAoLCxEaGopOnTphz549uPvuu3HhwgX897//xapVq1BWVoa4uDiMGjUKTz/9tPh7f39/bN++HdOnT0dKSgoaNmyI8ePHm4xblJCQgB07dmDu3Ll45ZVX0KJFC7z11lscg4iIiADYHrCPtM8V51Bz4xBpFcchIiLyLtevX0deXh4SEhLQoEEDtZNDTrB2Lj1uHCIiIiJSl06nwyeffKJ2MkxkZmZCp9O5vScgAyIvUqivwKHcYhTqK9ROChERadiSJUvQpUsXtZOhKZrrZUaO2XwkH4u2nESNAPjpgIyRyRjdI17tZBEREXkElhB5gUJ9hRgMAUCNADy15RRLioiIvFRNTQ0yMjKQkJCAoKAgdO7cGR999BGAP6qYvvjiC3Tv3h3BwcG48847kZOTAwDYsGEDli5diu+//x46nQ46nQ4bNmwQ111cXIwRI0YgODgYt912G7Zt26YoTYbt7tmzB127dkVQUBDuuusuXLp0Cbt27UKHDh0QEhKCsWPHmkzDVVlZidmzZyMqKgoNGjRA3759ceTIEdcdLIUYEHmBvOIyMRgyqBYEnC8ul/4BERG5XF02W8jIyMC7776LtWvX4vTp05g7dy4efvhh7N+/X1zmb3/7G/75z3/i6NGjqFevHiZOnAgAGD16NP7617/i9ttvR2FhIQoLCzF69Gjxd0uXLsWf//xnnDhxAvfccw8eeughXL16VXHalixZgtdeew2HDh3ChQsX8Oc//xmrVq3Cxo0bsWPHDnz++edYvXq1uPz8+fPx8ccf45133sF3332HNm3aIC0tza5tugIDIi+QENEQfmY9Dv11OrSK4NgaRER1YfORfPRZsQ9j1x1GnxX7sPlIvtu2VVlZieXLl+Ptt99GWloaWrdujQkTJuDhhx82meXh73//O/r374+kpCQsXLgQhw4dwvXr1xEUFIRGjRqhXr16iImJQUxMjMnMDRMmTMCDDz6INm3aYPny5bh27ZrFrBDWPP/88+jTpw+6du2KSZMmYf/+/VizZg26du2Kfv364YEHHsCXX34JACgrK8OaNWvw4osvIj09HUlJSVi3bh2CgoLwr3/9y3UHTQEGRF4gNjQIGSOT4X9rHAZ/nQ7LR3ZEbKj81CREROQadd1s4dy5cygvL8fdd9+NRo0aiX/vvvsucnNzxeUMgxgDf8zwYJjiwhrj3zVs2BAhISGKfif1++joaAQHB6N169YmnxnWl5ubixs3bqBPnz7i9/Xr10fPnj3xww8/KN6mK7BRtZcY3SMeqW0jcb64HK0ighkMERHVEWvNFtzxLL527RoAYMeOHWjevLnJd4GBgWJQVL9+ffFzw8CFNTU1Ntdv/DvDb5X8Tur3Op3O6fXVFQZEXiQ2NIiBEBFRHTM0WzAOitzZbCEpKQmBgYHIz89H//79Lb43LiWSExAQgOrqanckzy6JiYkICAjA119/jZYtWwKonX7jyJEjmDNnTp2mhQERERGREwzNFp7acgrVguD2ZguNGzfGE088gblz56KmpgZ9+/aFXq/H119/jZCQEDGwsKZVq1bIy8tDdnY2WrRogcaNG6syoXnDhg0xffp0PPnkkwgPD0d8fDxWrlyJ8vJyTJo0qU7TwoCIiIjISXXdbOG5555DZGQkMjIy8NNPPyEsLAx33HEHnnrqKUXVUaNGjcKWLVswcOBAlJSUYP369ZgwYYJb0yxnxYoVqKmpwSOPPILff/8d3bt3x549e9CkSZM6TQfnMlOIc5kREXkXzmXmPTiXGREREZELMCAiIiIim6ZNm2bSzd/4b9q0aWonz2lsQ0REREQ2LVu2DE888YTkd97QlIQBEREREdkUFRWFqKgotZPhNqwyIyIiIp/HgIiIiHyaFkdNJvu44hyyyoyIiHxSQEAA/Pz8UFBQgMjISAQEBIhTXJBnEAQBVVVVuHz5Mvz8/BAQEODwuhgQERGRT/Lz80NCQgIKCwtRUFCgdnLICcHBwYiPj4efn+MVXwyIiIjIZwUEBCA+Ph43b97UxNxeZD9/f3/Uq1fP6dI9BkREROTTDDOym8/KTr6FjaqJiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnqRoQrVmzBp06dUJISAhCQkKQkpKCXbt2id9fv34dM2bMQNOmTdGoUSOMGjUKFy9eNFlHfn4+hg0bhuDgYERFReHJJ5/EzZs3TZbJzMzEHXfcgcDAQLRp0wYbNmyoi90jIiIiD6FqQNSiRQusWLECx44dw9GjR3HXXXfh/vvvx+nTpwEAc+fOxWeffYYPP/wQ+/fvR0FBAUaOHCn+vrq6GsOGDUNVVRUOHTqEd955Bxs2bMAzzzwjLpOXl4dhw4Zh4MCByM7Oxpw5czB58mTs2bOnzveXiIiItEknCIKgdiKMhYeH48UXX8QDDzyAyMhIbNy4EQ888AAA4OzZs+jQoQOysrLQu3dv7Nq1C3/6059QUFCA6OhoAMDatWuxYMECXL58GQEBAViwYAF27NiBU6dOidsYM2YMSkpKsHv3bsXpKi0tRWhoKPR6PUJCQly700REROQWSvNvzbQhqq6uxgcffICysjKkpKTg2LFjuHHjBgYPHiwu0759e8THxyMrKwsAkJWVheTkZDEYAoC0tDSUlpaKpUxZWVkm6zAsY1iHnMrKSpSWlpr8ERERkXdSPSA6efIkGjVqhMDAQEybNg1bt25FUlISioqKEBAQgLCwMJPlo6OjUVRUBAAoKioyCYYM3xu+s7ZMaWkpKioqZNOVkZGB0NBQ8S8uLs7ZXSUiIiKNUj0gateuHbKzs3H48GFMnz4d48ePx5kzZ9ROFhYtWgS9Xi/+XbhwQe0kERERkZvUUzsBAQEBaNOmDQCgW7duOHLkCF555RWMHj0aVVVVKCkpMSklunjxImJiYgAAMTEx+Pbbb03WZ+iFZryMec+0ixcvIiQkBEFBQbLpCgwMRGBgoNP7R0RERNqnegmRuZqaGlRWVqJbt26oX78+vvjiC/G7nJwc5OfnIyUlBQCQkpKCkydP4tKlS+Iye/fuRUhICJKSksRljNdhWMawDiIiIiJVS4gWLVqE9PR0xMfH4/fff8fGjRuRmZmJPXv2IDQ0FJMmTcK8efMQHh6OkJAQzJo1CykpKejduzcAYMiQIUhKSsIjjzyClStXoqioCE8//TRmzJghlu5MmzYNr732GubPn4+JEydi3759+M9//oMdO3aouetERESkIaoGRJcuXcK4ceNQWFiI0NBQdOrUCXv27MHdd98NAHj55Zfh5+eHUaNGobKyEmlpaXjjjTfE3/v7+2P79u2YPn06UlJS0LBhQ4wfPx7Lli0Tl0lISMCOHTswd+5cvPLKK2jRogXeeustpKWl1fn+EhERkTZpbhwireI4RERERJ7H48YhIiIiIlILAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiEiBQn0FDuUWo1BfoXZSiIjIDeqpnQAirdt8JB+LtpxEjQD46YCMkckY3SNe7WQREZELqVpClJGRgR49eqBx48aIiorC8OHDkZOTY7LMgAEDoNPpTP6mTZtmskx+fj6GDRuG4OBgREVF4cknn8TNmzdNlsnMzMQdd9yBwMBAtGnTBhs2bHD37pEXKNRXiMEQANQIwFNbTrGkiIjIy6gaEO3fvx8zZszAN998g7179+LGjRsYMmQIysrKTJabMmUKCgsLxb+VK1eK31VXV2PYsGGoqqrCoUOH8M4772DDhg145plnxGXy8vIwbNgwDBw4ENnZ2ZgzZw4mT56MPXv21Nm+kmfKKy4TgyGDakHA+eJydRJERERuoWqV2e7du03+vWHDBkRFReHYsWNITU0VPw8ODkZMTIzkOj7//HOcOXMG//3vfxEdHY0uXbrgueeew4IFC7BkyRIEBARg7dq1SEhIwD//+U8AQIcOHXDw4EG8/PLLSEtLc98OksdLiGgIPx1MgiJ/nQ6tIoLVSxQREbmcphpV6/V6AEB4eLjJ5++//z4iIiLQsWNHLFq0COXlf7ydZ2VlITk5GdHR0eJnaWlpKC0txenTp8VlBg8ebLLOtLQ0ZGVluWtXyEvEhgYhY2Qy/HU6ALXB0PKRHREbGqRyyoiIyJU006i6pqYGc+bMQZ8+fdCxY0fx87Fjx6Jly5Zo1qwZTpw4gQULFiAnJwdbtmwBABQVFZkEQwDEfxcVFVldprS0FBUVFQgKsszcKisrUVlZKf67tLTUNTtKHmd0j3ikto3E+eJytIoIZjBEROSFNBMQzZgxA6dOncLBgwdNPp86dar4/8nJyYiNjcWgQYOQm5uLxMREt6UnIyMDS5cuddv6ybPEhgYxECIi8mKaqDKbOXMmtm/fji+//BItWrSwumyvXr0AAOfOnQMAxMTE4OLFiybLGP5taHckt0xISIhk6RAALFq0CHq9Xvy7cOGC/TtGREREHkHVgEgQBMycORNbt27Fvn37kJCQYPM32dnZAIDY2FgAQEpKCk6ePIlLly6Jy+zduxchISFISkoSl/niiy9M1rN3716kpKTIbicwMBAhISEmf0REROSdVA2IZsyYgffeew8bN25E48aNUVRUhKKiIlRU1I7xkpubi+eeew7Hjh3D+fPnsW3bNowbNw6pqano1KkTAGDIkCFISkrCI488gu+//x579uzB008/jRkzZiAwMBAAMG3aNPz000+YP38+zp49izfeeAP/+c9/MHfuXNX2nYiIiLRDJwiCYHsxN238Vs8dc+vXr8eECRNw4cIFPPzwwzh16hTKysoQFxeHESNG4OmnnzYpsfn5558xffp0ZGZmomHDhhg/fjxWrFiBevX+aCKVmZmJuXPn4syZM2jRogUWL16MCRMmKE5raWkpQkNDodfrWVpERETkIZTm36oGRJ6EAREREZHnUZp/a6JRNREREZGaGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEZHKCvUVOJRbjEJ9hdpJISLyWfXUTgCRL9t8JB+LtpxEjQD46YCMkckY3SNe7WQREfkclhARqaRQXyEGQwBQIwBPbTnFkiIiIhUwICJSSV5xmRgMGVQLAs4Xl6uTICIiH8aAiEglCREN4acz/cxfp0OriGB1EkRE5MMYEBGpJDY0CBkjk+Gvq42K/HU6LB/ZEbGhQSqnjIjI97BRNZGKRveIR2rbSJwvLkeriGAGQ0REKmFARKSy2NAgBkJERCpjlRkRERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD5P1YAoIyMDPXr0QOPGjREVFYXhw4cjJyfHZJnr169jxowZaNq0KRo1aoRRo0bh4sWLJsvk5+dj2LBhCA4ORlRUFJ588kncvHnTZJnMzEzccccdCAwMRJs2bbBhwwZ37x4RERF5CFUDov3792PGjBn45ptvsHfvXty4cQNDhgxBWVmZuMzcuXPx2Wef4cMPP8T+/ftRUFCAkSNHit9XV1dj2LBhqKqqwqFDh/DOO+9gw4YNeOaZZ8Rl8vLyMGzYMAwcOBDZ2dmYM2cOJk+ejD179tTp/hIREZE26QRBENROhMHly5cRFRWF/fv3IzU1FXq9HpGRkdi4cSMeeOABAMDZs2fRoUMHZGVloXfv3ti1axf+9Kc/oaCgANHR0QCAtWvXYsGCBbh8+TICAgKwYMEC7NixA6dOnRK3NWbMGJSUlGD37t2K0lZaWorQ0FDo9XqEhIS4fuepzhTqK5BXXIaEiIaIDQ1SOzlERORGSvNvTbUh0uv1AIDw8HAAwLFjx3Djxg0MHjxYXKZ9+/aIj49HVlYWACArKwvJycliMAQAaWlpKC0txenTp8VljNdhWMawDimVlZUoLS01+SPPt/lIPvqs2Iex6w6jz4p92HwkX+0kERGRBtRTuqA9AYEjJSg1NTWYM2cO+vTpg44dOwIAioqKEBAQgLCwMJNlo6OjUVRUJC5jHAwZvjd8Z22Z0tJSVFRUICjIspQgIyMDS5cutXs/SLsK9RVYtOUkam6VidYIwFNbTiG1bSRLioiIfJzigCgsLAw6nc7qMoIgQKfTobq62u6EzJgxA6dOncLBgwft/q07LFq0CPPmzRP/XVpairi4OBVTRM7KKy4TgyGDakHA+eJyBkRERD5OcUD05Zdfui0RM2fOxPbt23HgwAG0aNFC/DwmJgZVVVUoKSkxKSW6ePEiYmJixGW+/fZbk/UZeqEZL2PeM+3ixYsICQmRLB0CgMDAQAQGBjq9b6QdCREN4aeDSVDkr9OhVUSweokiIiJNUBwQ9e/f3+UbFwQBs2bNwtatW5GZmYmEhAST77t164b69evjiy++wKhRowAAOTk5yM/PR0pKCgAgJSUFf//733Hp0iVERUUBAPbu3YuQkBAkJSWJy+zcudNk3Xv37hXXQb4hNjQIGSOT8dSWU6gWBPjrdFg+siNLh4iIyPFeZiUlJfjXv/6FH374AQBw++23Y+LEiQgNDVW8jscffxwbN27Ep59+inbt2omfh4aGiiU306dPx86dO7FhwwaEhIRg1qxZAIBDhw4BqO1236VLFzRr1gwrV65EUVERHnnkEUyePBnLly8HUNvtvmPHjpgxYwYmTpyIffv2Yfbs2dixYwfS0tIUpZW9zLxHob4C54vL0SoimMEQEZGXU5p/OxQQHT16FGlpaQgKCkLPnj0BAEeOHEFFRQU+//xz3HHHHYrWI9cmaf369ZgwYQKA2oEZ//rXv2LTpk2orKxEWloa3njjDbE6DAB+/vlnTJ8+HZmZmWjYsCHGjx+PFStWoF69PwrAMjMzMXfuXJw5cwYtWrTA4sWLxW0owYCIiIjI87g1IOrXrx/atGmDdevWiUHHzZs3MXnyZPz00084cOCA4ynXKAZEREREnsetAVFQUBCOHz+O9u3bm3x+5swZdO/eHeXl5fanWOMYEBEREXketw7MGBISgvx8ywHtLly4gMaNGzuySiIiIiLVOBQQjR49GpMmTcLmzZtx4cIFXLhwAR988AEmT56MBx980NVpJCIiInIrxd3ujf3jH/+ATqfDuHHjxFnl69evj+nTp2PFihUuTSARERGRuzk1uWt5eTlyc3MBAImJiQgO9t4B7tiGiIiIyPMozb8dKiEyCA4ORnJysjOrICIiIlKdQwHR9evXsXr1anz55Ze4dOkSampqTL7/7rvvXJI4IiIiorrgUEA0adIkfP7553jggQfQs2dPm5O+EhEREWmZQwHR9u3bsXPnTvTp08fV6SEiIiKqcw51u2/evDnHGyIiIiKv4VBA9M9//hMLFizAzz//7Or0EBEREdU5h6rMunfvjuvXr6N169YIDg5G/fr1Tb6/evWqSxJHREREVBccCogefPBB/Prrr1i+fDmio6PZqJqIiIg8mkMB0aFDh5CVlYXOnTu7Oj1EREREdc6hNkTt27dHRUWFq9NCREREpAqHAqIVK1bgr3/9KzIzM3HlyhWUlpaa/BERERF5EofmMvPzq42jzNsOCYIAnU6H6upq16ROQziXGfmSQn0F8orLkBDRELGhQWonh4jIYW6dy+zLL790OGFEpG2bj+Rj0ZaTqBEAPx2QMTIZo3vEq50sIiK3cigg6t+/v6LlHn/8cSxbtgwRERGObIaI6lihvkIMhgCgRgCe2nIKqW0jWVJERF7NoTZESr333ntsU0TkQfKKy8RgyKBaEHC+uFydBBER1RG3BkQONE8iIhUlRDSEn9mwYv46HVpFBKuTICKiOuLWgIiIPEtsaBAyRibD/1aHCX+dDstHdmR1GRF5PYfaEBGR9xrdIx6pbSNxvrgcrSKCGQwRkU9gQEREFmJDgxgIEZFPYZUZERER+Ty3BkQPP/wwBzEkIiIizXO4yqykpATffvstLl26hJqaGpPvxo0bBwBYs2aNc6kjIiIiqgMOBUSfffYZHnroIVy7dg0hISEmU3jodDoxICIiIiLyBA5Vmf31r3/FxIkTce3aNZSUlOC3334T/65everqNBIRERG5lUMB0a+//orZs2cjOJiDtREREZHncyggSktLw9GjR12dFiIiIiJVKG5DtG3bNvH/hw0bhieffBJnzpxBcnIy6tevb7Lsfffd57oUEhEREbmZTlA44Zifn7LCJJ1Oh+rqaqcSpUWlpaUIDQ2FXq/nUAJEREQeQmn+rbiEyLxrPREREZG3cKgN0bvvvovKykqLz6uqqvDuu+86nSgiIiKiuqS4ysyYv78/CgsLERUVZfL5lStXEBUVxSozIiIi0gSl+bdDJUSCIJgMxmjwyy+/IDQ01JFVEhEREanGrpGqu3btCp1OB51Oh0GDBqFevT9+Xl1djby8PAwdOtTliSQiIiJyJ7tKiIYPH477778fgiAgLS0N999/v/g3ZswYvPnmm3jvvfcUr+/AgQO499570axZM+h0OnzyyScm30+YMEEMwAx/5gHX1atX8dBDDyEkJARhYWGYNGkSrl27ZrLMiRMn0K9fPzRo0ABxcXFYuXKlPbtNREREXs6uEqJnn30WANCqVSuMHj0aDRo0cGrjZWVl6Ny5MyZOnIiRI0dKLjN06FCsX79e/HdgYKDJ9w899BAKCwuxd+9e3LhxA48++iimTp2KjRs3AqitOxwyZAgGDx6MtWvX4uTJk5g4cSLCwsIwdepUp9JPRERE3sGhyV3Hjx8PoLZXmdRs9/Hx8YrWk56ejvT0dKvLBAYGIiYmRvK7H374Abt378aRI0fQvXt3AMDq1atxzz334B//+AeaNWuG999/H1VVVXj77bcREBCA22+/HdnZ2XjppZcYEBEREREABxtV//jjj+jXrx+CgoLQsmVLJCQkICEhAa1atUJCQoJLE5iZmYmoqCi0a9cO06dPx5UrV8TvsrKyEBYWJgZDADB48GD4+fnh8OHD4jKpqakICAgQl0lLS0NOTg5+++03l6aViIiIPJNDJUQTJkxAvXr1sH37dsTGxkr2OHOFoUOHYuTIkUhISEBubi6eeuoppKenIysrC/7+/igqKrLo+l+vXj2Eh4ejqKgIAFBUVGQRpEVHR4vfNWnSRHLblZWVJmMtlZaWunLXiIiISEMcCoiys7Nx7NgxtG/f3tXpMTFmzBjx/5OTk9GpUyckJiYiMzMTgwYNcuu2MzIysHTpUrdug4iIiLTBoSqzpKQkFBcXuzotNrVu3RoRERE4d+4cACAmJgaXLl0yWebmzZu4evWq2O4oJiYGFy9eNFnG8G+5tkkAsGjRIuj1evHvwoULrtwVIiIi0hCHAqIXXngB8+fPR2ZmJq5cuYLS0lKTP3f55ZdfcOXKFcTGxgIAUlJSUFJSgmPHjonL7Nu3DzU1NejVq5e4zIEDB3Djxg1xmb1796Jdu3ay1WVAbWPukJAQkz8iIiLyTg5N3eHn90ccZdx+yDCCtdKpO65duyaW9nTt2hUvvfQSBg4ciPDwcISHh2Pp0qUYNWoUYmJikJubi/nz5+P333/HyZMnxe736enpuHjxItauXSt2u+/evbvY7V6v16Ndu3YYMmQIFixYgFOnTmHixIl4+eWX7eplxqk7iIiIPI/S/NuhgGj//v1Wv+/fv7+i9WRmZmLgwIEWn48fPx5r1qzB8OHDcfz4cZSUlKBZs2YYMmQInnvuObFRNFA7MOPMmTPx2Wefwc/PD6NGjcKrr76KRo0aicucOHECM2bMwJEjRxAREYFZs2ZhwYIFCve2FgMicoVCfQXyisuQENEQsaFBaieHiMjruTUgAoCvvvoKb775JnJzc/HRRx+hefPm+Pe//42EhAT07dvX4YRrFQMictbmI/lYtOUkagTATwdkjEzG6B7KxuwiIiLHuHVy148//hhpaWkICgrC8ePHxe7per0ey5cvdyzFRF6sUF8hBkMAUCMAT205hUJ9hboJIyIiAA4GRM8//zzWrl2LdevWoX79+uLnffr0wXfffeeyxBF5i7ziMjEYMqgWBJwvLlcnQUREZMKhgCgnJwepqakWn4eGhqKkpMTZNBF5nYSIhvAzG7/UX6dDq4hgdRJEREQmHAqIYmJixN5hxg4ePIjWrVs7nSiyT6G+Aodyi1n9omGxoUHIGJkM/1u9Mv11Oiwf2ZENq4mINMKhkaqnTJmCv/zlL3j77beh0+lQUFCArKwsPPHEE1i8eLGr00hWsKGu5xjdIx6pbSNxvrgcrSKCGQwREWmIQwHRwoULUVNTg0GDBqG8vBypqakIDAzEE088gVmzZrk6jSRDrqFuattIZrYaFRsaxHNDRKRBDgVEOp0Of/vb3/Dkk0/i3LlzuHbtGpKSkkzG/iH3s9ZQl5kuERGRcg4FRAYBAQFISkpyVVrIToaGusZBERvqEhER2c+hRtWkDWyoS0RE5BpOlRCR+thQl1yBU4oQka9jQOQFzBvqMnMje7CnIhERAyKvw8yN7MGeikREtdiGyItwviyyF6cUISKqxYDIizBzI3txShEioloMiLwIMzeyF3sqEhHVYhsiL2LI3J7acgrVgiBmbgBwKLeYjaxJEnsqEhExIPI65pnbgf9dRp8V+9jImqzilCJE5OtYZeaFYkODkJLYFADYyNpLFeorcCi3mOeSiMhFWELkxTjXmXfi0ApERK7HEiIvxkbW3odDKxARuQcDIi/GHkTeh0MrEBG5B6vMvBx7EHkXQ6mfcVDEUj8iIuexhMgHGBpZMxjyfCz1IyJyD5YQEXkYXyz144TFRORuDIiIPJAvjRvEXnVE2uONLykMiIhIs+R61aW2jfSahzCRp/HWlxS2ISJNMh94kAMR+ib2qiPSFm8e+oMlRKQ55m8fI7o2x9bjv3rd2wjZxl51RNrizQP+soSINEXq7ePj7371yrcRso296oi0xZsH/GUJEWmK1NuHOW95GyFlfLFXHZFWGV5SntpyCtWC4FUvKQyISFOkqkjMecvbCCnnS73qiLTOW19SWGXm47TWWFmqimTUHc1ZZUJEpCHeOOCvThAEGxUUBAClpaUIDQ2FXq9HSEiI2slxCS13nSzUV5i8fZj/m4iISAml+TerzHyA1ABaWh/fxbyKhFUmROSLvHEARK1iQOTl5EqBXNF1kjcqEZH7aLkU3xsxIPJi1kqBnB3fhTcqEZH7aL0U3xuxUbUXs1UKJDe+i62G1t48UikRkRZwlPa6xxIiL2arFEiq66SSkh9vHqmUtINVsuTLOEp73WMJkYa4ugu8klF+jbtOKi358eaRSkkbNh/JR58V+zB23WH0WbEPm4/kq50kojrFUdrrnqoB0YEDB3DvvfeiWbNm0Ol0+OSTT0y+FwQBzzzzDGJjYxEUFITBgwfjxx9/NFnm6tWreOihhxASEoKwsDBMmjQJ165dM1nmxIkT6NevHxo0aIC4uDisXLnS3btmN3dlAKN7xOPgwoHYNKU3Di4caLWdj9IiWnfeqFobF6mu+Op+S2GVLFEte57f5DxVq8zKysrQuXNnTJw4ESNHjrT4fuXKlXj11VfxzjvvICEhAYsXL0ZaWhrOnDmDBg0aAAAeeughFBYWYu/evbhx4wYeffRRTJ06FRs3bgRQO/7AkCFDMHjwYKxduxYnT57ExIkTERYWhqlTp9bp/spxd+M5pV3WpYpo/XRAcIBl3OyOkUp9taG2r+63HFbJEv2BQ47UHVVLiNLT0/H8889jxIgRFt8JgoBVq1bh6aefxv33349OnTrh3XffRUFBgViS9MMPP2D37t1466230KtXL/Tt2xerV6/GBx98gIKCAgDA+++/j6qqKrz99tu4/fbbMWbMGMyePRsvvfRSXe6qVVppPGde8gPUBkcj3jgkWWLlypFKfbVUwFf32xpWyRKRGjTbhigvLw9FRUUYPHiw+FloaCh69eqFrKwsAEBWVhbCwsLQvXt3cZnBgwfDz88Phw8fFpdJTU1FQECAuExaWhpycnLw22+/yW6/srISpaWlJn/uoqUMYHSPeGx5PAXGyamLTForQWFd89X9toZtJ4i0zVur+DXby6yoqAgAEB0dbfJ5dHS0+F1RURGioqJMvq9Xrx7Cw8NNlklISLBYh+G7Jk2aSG4/IyMDS5cudX5HFNDa7MFlVdUwn8/F3VUWvtqjwlf32xZvnTySyNN5cxW/ZkuI1LZo0SLo9Xrx78KFC27dnpYaz6lRYuWrpQK+ut9KuGPySG99syWqC95exa/ZEqKYmBgAwMWLFxEbGyt+fvHiRXTp0kVc5tKlSya/u3nzJq5evSr+PiYmBhcvXjRZxvBvwzJSAgMDERgY6PR+2EMrjefcVWJla1wZXy0V8NX9rmve/GZLJMeV43l5e4cHzQZECQkJiImJwRdffCEGQKWlpTh8+DCmT58OAEhJSUFJSQmOHTuGbt26AQD27duHmpoa9OrVS1zmb3/7G27cuIH69esDAPbu3Yt27drJVpeR6zNppZmRVoJCJVz5oPGk/fZEnAaBfJGrXwK8vYpf1Sqza9euITs7G9nZ2QBqG1JnZ2cjPz8fOp0Oc+bMwfPPP49t27bh5MmTGDduHJo1a4bhw4cDADp06IChQ4diypQp+Pbbb/H1119j5syZGDNmDJo1awYAGDt2LAICAjBp0iScPn0amzdvxiuvvIJ58+aptNeew1VVFt5YzMqBAz0LG6+Tr3HHc9fbq/hVLSE6evQoBg4cKP7bEKSMHz8eGzZswPz581FWVoapU6eipKQEffv2xe7du8UxiIDabvUzZ87EoEGD4Ofnh1GjRuHVV18Vvw8NDcXnn3+OGTNmoFu3boiIiMAzzzyjmTGIfIG3FbNqpbSBU1so5+1vtkTm3PXc9eYqflUDogEDBkAQzPsz/UGn02HZsmVYtmyZ7DLh4eHiIIxyOnXqhK+++srhdJJzvC0z0kKAx/Yw9tFaT04id3Pnc9dbq/jZy4zcztuKWdUeN8rTqiC10rNLSz05idzN2567dUGzjarJu3hLMauhmmrB0PZYuTtHldIGLZRQKaW1kixvfbMlkuItz926woCI6oynZ0bmmfuC9Pbo1DxM8YNGSZsfJct4ShWkVtpaEfkyT3/u1iVWmfkgrVRheBKpzH3lrhzFwZCSXmlKe655SlE4e3YRkSdhCZGP0VoVhico1Fdg+4kCh6uplJSU2Fua4glF4VoqyWKPPCKyhQGRD9FKFYYnZU7GAaQ5pZm7kjY/jrQL0npRuFZ6dvElgIiUYEDkQ7TQGNddmZM7gizzANKYPZm7kpISLZWmuJLaJVlaeQkgIu1jGyINc3VbH2/tLu6uUaOlAkgAWDysg13dtpW0+fGUdkGOcMckrUqxHRMRKcUSIo1yR0mK2lUY7iihcmcJgFypzT2dYu1et5KSEkdKUzyp+lEN3lryRkSux4BIg9yZyatZheGOzMldQZYhyHBlAKmkzY897YLYNsY2NV4CGKR6Jp43YkCkQe5u66NWY1x3ZE6uDrKkgoyDCwdqrjeXL7SNcVUGVZcvAQxSPRPPGwEMiDTJm4v5XZ05uTLIkgsyDi4ciJTEpk6l09W00EDenVydQdl6CXBF8OULQao34nkjAwZEGqR2Wx93c3UJlauCLE8KMrw5aK7rDMpVwZcnXT/0B543MmBApFFqd1f2NK4IsjwpyPDmoLkuMyhXBl/OXj9sw6IOT7rvyb0YEGmY1gfe8zaeFmR4a9BclxmUK4MvZ64ftmFRj6fd9+Q+OkEQJEZaIXOlpaUIDQ2FXq9HSEiI2skhNyrUV3hdkOFpNh/Jt8ig3BEgFOor0GfFPovg6+DCgU61JbJ36ARXp4Hsx/veeynNv1lCRGSGJXPqq6vSL3eUDhhfP0qqwbTehsVXqvJ43xMDIg/nKw8rKb68776grjIodwVfSqvBtNyGhVV55EtYZaaQFqvMfPlh5c37zkDP8ymtBjOc65O/6LFyd47bqwjtwao88hasMvNySnvHeGPm6oqeQXV5XOzZlqcHet54vTlCSTWY+blekN4enZqH1XkbFrlzpvWqPCJXY0DkoRx54Hpa5irH2Qd1XR4Xe7bl6QPE2XtcvTl4slUNJnWuV+7KqfPSF2vnTMtVeUTuwNnuPZStmevdNbO8Ftjad2ucOS6F+gocyi1WfAyVbMt4nZ48M7u9+7r5SD76rNiHsesOo8+Kfdh8JF+llLuHobG2v672QjVvrK2Fc23rnNnaByJvwxIiD2Wrd4w3F3fb2ndrJQ+OHhdHSpVsbcuiymRoe499I7dnXw2xrGFxTysJU8paY20tlL4ouRe8dawrX+HNpbDuwIDIg2n9getOcvtuK3Bx5Lg4WpVlbVuSVSa7c7AgvT1W7srxuAHi7NlXqV4c3hKsm5PrKaeFwQCV3guu6O3HjLnueWuTCXdilZmHiw0NQkpiU4uHjC8Ud5vvu5JqG0eOi6PVG9a2JbfOTs3DcHDhQGya0hsHFw70mAeYvftqzpuCdaVG94hX9VzX1TPC26tHtcibm0y4E0uIvJivFXcrrQ6z97g4U9omty1r6/TUAeLs2VcdAN2tz7wxWFdK7XPt7meErdJVlhy5hzc3mXAnBkReTu0Hbl2yJ3Cx57g402ZJbltaqDJxB3v21ZeCdVdxRwDhzmeEtYz5wP8us0rHTby9yYS7cGBGhbQ4MKMzvPXNzJ1zYEnNdeRsPb0vzZ/kS/vqDlpoE2Lvc0NucMctj6dgxBuHOOijG9XVfICeQGn+zYBIIW8KiLTwYHWnusp4OZIvuZK1YEML15qjzw2pjDkuPBhj1x22WHbTlN5ISWzqjuT7JL6E1OJI1STJ0wf/U6KuqglZT0+uYivYUPtac+a5IdVOqVBfYVGl4wcgOEC+n495wOitpdyupGaTCVsBvhbPHQMiH6P2g9WbsJ6eXEFJsKH2tebsc8M8YzZvVwYANQBGvHFIsuTJPGAc0bU5th7/VXOl3FrN6OuatQBfyzUU7HbvY5wZ5ZlM+cLQBnVNajRwe0cI9zRKhnVQ+1pzx3NjdI94bHk8BTqj9cqNcG4eMH783a+a61LO4QVqWevyr/XhAFhC5GO8tXeTWnxtaAN3knpzBKDZt0lXUVr6o+a1JvXcmJ/eDnnFZeL3jiirqoZ5K1bzkicl41ipXcqtxaYIapVWWQvwBQiarqFgQOSDmIm7li8NbSDH2YevVIayaMtJCELdTPGhZlWHvcM62JM+V+6X8XPjxC8leGHXWacDVSXBoNQy5pSMNu/O86u1pghqVkvZOqdabmbAgMhHMRMnV3HFw1cqQ5HKAN2RyWihTYOjU9FY44ohIcyDCMN/H3rrG5eUhigpsTZfxk8HDL09BntOX7T4jVSa6+L8qt3Gy5japVW2zqmWaygYEHkoNt7TNl85P656+EplKH46mJQQAa7PZNTOPIyZv6Q4kzZn98taEOHq0hAlJdaje8SjpPwGVtwqldp9uggL0tujU/Mw8TdSaU5tG1kn51dLTRG0UFpl7ZxquYaCAZEH0sIbLcnzpfPjqoevXIYCwK2ZjJL0a7Ethq10OPNbuWCqfUxjlFVVo2GAv8tLQ2yVWBfqK/DC7rMm1acrd+WI4zDJpXnVmM6KjoMrzrFWMnqtlFZZO6daraFgQORhtPRGS5Z87fy48uErl6G4M5NJiGgIHeRLobTcFsNdv5ULpoa/fggC/uj2/snxgjorDbEV4B09f1Xyez+dzuZxcOU51kJGr6XSKk+j+W73S5YsgU6nM/lr3769+P3169cxY8YMNG3aFI0aNcKoUaNw8eJFk3Xk5+dj2LBhCA4ORlRUFJ588kncvHmzrnfFJRydeZ3qhq+dH1d3B48NDUJKYlOLNiTmnxlzplv+gf9dNvm3DjBpj+LuLsLW0u7MsXX0t4X6Cly5VmnRxR4wbdz+yfECbHk8BZum9MbBhQMVBRDOnCdr3f43H8nH7A+yLX7jr9PhjpZNrB4HrXcDd9ToHvE4uHCgXeeHPKSE6Pbbb8d///tf8d/16v2R7Llz52LHjh348MMPERoaipkzZ2LkyJH4+uuvAQDV1dUYNmwYYmJicOjQIRQWFmLcuHGoX78+li9fXuf74iytFIeSNF88P45WFbiimsKZt3tDZmgcv+p0tSVSgPvbYihJuzPVMPb+1jg9OtQeC0Gw7BUE1B6H8qoaxdNsOHqejK8RuSrVhR+bnkOg9k3fEPhYOw5aaG/jLloorfI0HhEQ1atXDzExMRaf6/V6/Otf/8LGjRtx1113AQDWr1+PDh064JtvvkHv3r3x+eef48yZM/jvf/+L6OhodOnSBc899xwWLFiAJUuWICAgoK53xyksDtU2Xz0/9j58XVFN4Wz1pFzPNkNm6M7g1p60Sx1bpcGk0vNinh4BgJ8AvDa2K1o0CZKciFXqOEily9HzJHWNHFw40CSw2X6iwCIYAoC/prU1uZ7kjoOtc+wrnSOoluarzADgxx9/RLNmzdC6dWs89NBDyM+vHQH02LFjuHHjBgYPHiwu2759e8THxyMrKwsAkJWVheTkZERHR4vLpKWlobS0FKdPn67bHXERFodqG89PLbkqEldVUzhbPWlr9GV3jg7tTNrdMSKyZHAIILxhIDrHWa92spUuR/ZV7hoBYFJ9Kjc3+Yt7/qfouFg7xxx52vdovoSoV69e2LBhA9q1a4fCwkIsXboU/fr1w6lTp1BUVISAgACEhYWZ/CY6OhpFRUUAgKKiIpNgyPC94Ts5lZWVqKysFP9dWlrqoj1yDRaHapu3nx9bb8510W3b2RIcJaV57uo55Gja3dVo31Z6bB0Ha+lyZF+VXiPdW4VbNIo3cHbyWV/qHEG1NB8Qpaeni//fqVMn9OrVCy1btsR//vMfBAW578LMyMjA0qVL3bZ+W1hUS1plq7rLVmYiOeYQrM90LiU2NAgjujbHx9/9Kn42vGszl7ezcUdw62jVqrvavCgdIFFuG9bSlZLY1O59tSeImtwvAeu+yrP43NpxkRr921faFpE8zQdE5sLCwtC2bVucO3cOd999N6qqqlBSUmJSSnTx4kWxzVFMTAy+/fZbk3UYeqFJtUsyWLRoEebNmyf+u7S0FHFxcS7cE3mePI4NAznvpuTN2VZmYp75AtZnOreWlq3HfzX57JPjBXgirZ3dYyA5cq06e607UvrkznZNzpSGnfxFb/GZPSVM5pQEaOaNwM1LieSOi5Lnqy92jiAPaUNk7Nq1a8jNzUVsbCy6deuG+vXr44svvhC/z8nJQX5+PlJSUgAAKSkpOHnyJC5duiQus3fvXoSEhCApKUl2O4GBgQgJCTH5qwuOtK/Qymzgnl7n7s7jqJVz5Cwl7UGUzIyudKZzZ9PiLq661m0NKSC1vDtnvbc3PcAfgyaam5/ezqKEyZ51W2uLJ9UIXKf7I0OTOy5Kn6/uPs6ewlueW0ppvoToiSeewL333ouWLVuioKAAzz77LPz9/fHggw8iNDQUkyZNwrx58xAeHo6QkBDMmjULKSkp6N27NwBgyJAhSEpKwiOPPIKVK1eiqKgITz/9NGbMmIHAwECV987yLVPuIf/FDxfxcO9WFr858L/LmihN8vQ6d3eWynlyiZ85JW/OSquDlMx07mxa3EHta11paUtdldbKzUbfqXmY0+uWK72T2qZwq1dceMNA2eOy/mCe4qowrYw8rRZvem4ppfmA6JdffsGDDz6IK1euIDIyEn379sU333yDyMjasUJefvll+Pn5YdSoUaisrERaWhreeOMN8ff+/v7Yvn07pk+fjpSUFDRs2BDjx4/HsmXL1NolkdzcO1Ljfjz9yWkczy9Bz4Rwk4exMVc/mO15oHpynbs7Mzi1M097KDnfSoMdJZlJXTSKdgctXOu2qvnqMjNTIzCV2+YdLZtYDRCl2hr56SCbVm/vHCHHk55brqT5gOiDDz6w+n2DBg3w+uuv4/XXX5ddpmXLlti5c6erk+YUuQvu4MKByBiZLDnY2Mff/WrSgFSKqx7M9j5QPbnO3Z0ZnBYyTyXsOd9K35xtZSauCGjUeIvX+rVe15mZGoGpI9vMKy6T7I02uW9rTd2LWuApzy1X03xA5K2sXXCje8Tjl9/KsXpfrt3rdcWD2ZEHqlpv667gzgxO65kn4Pj5dsW5NQ5oggP8UFZVjUJ9RZ00inbG5L4JeOurPNRAe+1L1MjM1AhM7d2mXO/GR/u2cms6PZEnPLfcgQGRSmxdcIM7RNsdEBkPV+8MRx+onlrn7s5gTu1AUUk1mNpvg7GhQZppC2eLeUna1L6t8WjfVpq61tXKzJwJTB1t72TPNtW+F+0hN+J3XfXg9aRj5UoMiFRi64LrHNcEo+5obrOKzMBPB2x9/E50jmvidNrsfaBKjenhadwZzKkVKCqtBlP7bdBT2itIpfNfB/M0V8LgaZlZXbZ30tpLm1SQI3U8ANT5C4PWjlVd0AlyY5+TidLSUoSGhkKv17u0C36hvsLqBff9hd9w9PxvqF9Ph2c+PSO5DsMDz/wGceaNYvORfIsHqnm317ziMpz8RY8Xdp/V/Ju9rynUV6DPin0WQc7BhQMluyKvP5hnUQVUV+fxUG4xxq47bPH5pim9FU8eWhe2nyjAzI3HLT7XWjoNbD1btMCe69TbmIyjpAMWprfHfZ2bWRwPPwCQeGHxhWPkKkrzb5YQqcxWiUrnuCboHNcEhfoKLNl2xuJGWT22q2TPCmffuqy9HRiv25g73uwL9RU4ev4qdDoduhntpzcOAOnKfVJaDSZVBTSsU4xDbXkcpXYJlRKbj+Rj4ccnLT7XWjqNeUJprdrVtWqxGEdJADJ2nsV5mTnlzFuD+8IxUgMDIg8hVww+rFMzi2VdVQUh9UA1X7c5uRvVWmYv950hEzJsSgdgxSj54mPj9QBwOLiQC8LcydXVBkqCDKnrZN3Bn7Duq59qZzuvoxI/rVfxGI6T+SXvp3NNmz1fVaivwNWyKotRprUcZLqK3NhNH3x7weJ4yJUQefsxUgMDIg+iZILFvOIyXC2rqtNu5MakbtQ3D+Rixa6zECQye7lAoFBfYTH0gIDaQEgQ/nhgGIK9koobeGHXWXEYf8Py9mbqckGYO4MCd7WhsdUTSm5wOwOpdLirsac97RXqunRQ7pqfObANUttGun373sh82g1DEKC1YNhdEiIaQqeDxcCkAoCpqQn411fnTV4OAGj2hcGbMCDSCKUPeblicLkHjIE7u5Ebb8P8Rn1zfy4ydv0xrL9xJgtANhCQGzNEarvVgiAGXIDpftsTXFgLwgy/d0dmLFdt8N3Pv6FJQ/u3pbQnlLVzaZwOQyDt7saeSqp4lJSkubKkMK+4DA0D/CWP06v7zuG1L8/5ZLs5Z+4DqWk3/HTA6jFd0a1VE4v7DHD8HGqFVMeThentkbHTdMoTf50Oj/ZJwKN9EixeDuqigbM3NkWwBwMiDXC2ukRyXh9AfIi7uxv5/PR26NQ8zGIcmUJ9BVbsspzjyJDJFl+7LhkIHDv/GwQIkhM2+t16qzIvUlaaqRuTmjZFLgg7X1zutq7hUoGJTgfM3Hjc7lIue3pCmZ9LqWNrCKSl1mtederu3mFyaWgf01jsXWn+YgBYlhQqeeib35MjujbHJ8cLxMlo5fbZkaphT+Ps80rqBaBGAJo2CrQIvJ0p7dUKueP1WGoiIKC2ZBuWz2nza8TaC4Mrri1fnKrDHAMilbmiukSy6gO1b1xNG8nP62OcBntuJqnqDambKS48WDLA8NMBJ34twQsSwZIOwOwPjps8DMXvjEolTAKyoe3Enm5SpErH5KZNkQvCggP83NY13FZgYs+27G2kan4uD/zvsmTR/KHcYslMzJw7G3vKZaTDXz+EFaNqz5/5i4HxcuZVq9ZKmMzP9SfHC7Dl8RQcOf8bnt/xg8nyhn22FjBby2zUHnPGHq54Xllr3yb1cmeg1eEYrLF1vB7rn4j7ujQzeZbae+5dEch4ytAX7saASGWu6GUh94AxFD9b4+jNZPy2InczbXk8RbKqYfqARDFTMmYIgEyK0gEsG347mgQH4I6WtaUAecVl2PJ4CsqrasSHSFhwfTEj191amSBTOmZt2pQVo0ynTTEEYWVV1TbPkzPF/MaBSfG165i1KdvqtuQ40mPL+FzKteVJiGgoGSya84P8vFDGHMnw5ar4BNSev1ce7GKzpNC4alXuoS93T5ZX1WBYp1gs3/mDxfG1FjAD0lXD7WMaY/uJQvzr1oSjUtWQhu7Yj6UmKjpGcsfVVQGWK55X1hrRSwXezmxLbUqOl/H9Z+/zWEmpqavS6QsYEKlMaQZm7YHmaC8dV70VWMtATEo+ACxIb4/kFqF4/UvLUbhnDWqDV784Z/JZDYDEyMZISWwq+bAwjP8yukc82sc0xpHzv6FHqyaICmkgW99ua9qU1LaROHb+N+h0EIc0KNRXWD1PrijmNzwYbW3L1jqc7bElVTR/4H+XTf4tFxxNTk1waxCeMTJZspdj9a0iNWttoqSqVqsFATtOFGJYp1iT4M9iiodbE4DGhgZhRFfTAVOHd21mNWAWIEh+d//rh0w+qxGARR+fNOlRZOiODQF4rL/1oEjuuLqqBEGuPZUhIDyUW+xUKTNgu12bp/WusucFxZHnsa1SU6Xn2ROGvqgLDIhUpiQDU/JAc6SXzpVrlS55K7B2M6UkNrVIl1yGP6h9FF7bd05RUbr5w8Keh75ceo0f6n/qbDqcgbXz5OpifmeDGlePMCvV7Vx3KyIy/sxPBzzaJ0HRuhwNwg2B7/DXD1m0derWqonJcTNOo7Wq1ed3/IDlO38QrxnD8V94q0cjUBuYHPjfZaS2jcTW46ajx39yvADjUlpa7chgq/G6gdSYMwCwYtdZNAtrgO6twiWPk9xxbR/T2O7jbf7yZa09lb9Oh+Fdm2HEG4fE7xcMbY/mTYIgCIJsegHpwNv82jc/h57Wu8qee9mRUhpbpaZK7ytXvEh5AwZEGmAtA7MnA3Gkl445HZRVeZhv19rNZJ4uueU7xzWxqyjd8Hbfo1UT2cygrKpafLAbP+jNt2P+ULcn6LQ1FIEjQWZq20isGtMZfjqd5MCbtii5FpSSewuV6h7s6jZOUjrHNcGKUdLXifk5AmByvoyrVs33x/i+Sm0baRKYWKuWqxYEbD56weQzHUzHKDIvKa2R2Te/W9syv5wEALM2ZUOHW1VoZqVFcsf1yPnf7Dre5s+HBUPbmwSRxu2pyqtqEBzgJ943hu8zzNoGLpJIrzW2zqGnUfqC4mh1t7VSU3vuK1+cqsMcAyKNkMvAXFm3KxVcWZAIkpSw92aSW97eovTnd/wgWX1TLQhiKYLhrXbr8V9NAp6DCweKs6ybP9TtCTrtLea31Z6jrnp7KG1XcvIXvcVn1roHW+Oqonlr15tUAG78u/YxjfHh0V/w3uF8k3Ua31dSPQ7lquV0ADYeNguIdDAZo8g4vebXm4HhXJdU3LDojm0g4FbAoYNJuyK549qjVROnqmwMPaDMj0N5VQ1SEpvabPMDmfTaYu0ceiIlLyiOltJYKzV15OXW04+1M/zUTgBZZ3jQGXO0btdWSQZQWzVwvrjc7nUDtTdTSmJTu6qGpJaX+tzwsPDXWUZscrtk+LxGAD7+7leLgAcAUhKbWm3/oXQ/jNOmw60qJVgW828+ko8+K/Zh7LrDuDNjH97cb9qWSq5EsFBfIX5/KLdY/LejjNPRZ8U+bD6Sb7FMob4Cn33/K17YbZk5z09vJz48jc+VrfSZHytniubtvd4K9RX4+44zGPHGIYtgyJAWw33VMMDf4t3AuFrOkH4/nfT1VyNxHxnSaygJFdeB2tK2rxfeJXbHXpTe3urD+YVdZ02OsdxxNd+WvVU2NfjjWjY+DobjJPV8UpJea1x1jStZv9S23L19a0b3iMfBhQOxaUpvHFw4UPGLkKHU1BX3lS9jCZHGubJuV8lAfFpuSGd4y95xotCi6zPwx5u7kvYaxqUBrii1UFLML9XWyPzt2VqJoL3jIFnrcWSrGlZuvjqDTs3DLD5TWrKlRtG8+Qjk5ozvqzf33xpZXeZ74/R/9v2v2PjtBYv1GRphy7F1DB7rnwjogBU7z1oNuMxLv+wpdTUndx/MT2+HlbtyZKvDjZ9PcqTSK8XdpaO2Oj8Azg806myPPkdLaVjl5TwGRB7AVRe6VHA1vGszkwaSWn+riA0Nku36LNeuQYpxwOOqoNPwIJN7IMqV0L2w6yzu69zManBm7zhI1qZE2X6iwGo1rK356uR6QdqTvrosmpebi8xg8bAOuOdWL7N/7DmL18x6QPrpgC2Pp5h0Yzak/YMjlsEQUNubUq7xs/mIxXJpfmGXdDAEyAfscut0pMrGD8Ckvq1wX+dmuK9zM9nnj/Hz6cSvJZLVfUpeMNw9Fo6tzg9y0wKZt0U0Xp/5fa724Ib23FdaHetKTQyIPISrMhCp4OqJtHaqvFU4ekNaa5RtYG/g56qg09oDUW4sH+O3Z7l9UzIOkoFcxlJSfkN2AEvjDMta1apcsKjlcUxs7Y8hGHpzf65FMATUHr/yKstm0HLrHdszTrK9jD2ZpSPnQI4995nhPlh/8DzeOvgT/t9XeXjrYJ7NjN24+vS+zs3w2r5z2PRtPmoE5el19zVkq8mA1HfmbRGlhjIwNHS/r0sztw9u6KogxpHAzRcCKAZEPkiqwWJdvq3nFZfh5C96MXO2dUNK3Yi2AhhHAj+lx8HRqqjY0FvzF+2ynL/I+O1ZKu32jE0kl7GYVwMZr8c4w5IL3HSwLCkx0PI4JnJVxcaz1ctNMwPIDzYpN17RrEG3WSxrb+mH3LpfNZrvSwlHSyzeOviTwxl7bGgQ/j4iGTPvaqNKg3t71m9MauoawLTEyDDooVTV989Xy2V7whqPc2Vg7yCaFj0A09sjuXkoGgb4S5ZgybF1LSop+ZrUNwET+9oec8zTgigGRF5KixeiXLuUGqF2QLqGgfXQzayLubUHupIARjB6vLki8LOWHiVvuIa2IYaRuuXenqWCVqXVenKZqVRGIBXkxIYGYUq/BPy/r/JMlhUgXVJib/rqmlRV0OTU2h5yhvTJzWMHyFd/xYZaDtI4omtzxQ2WrZV+yB1P8/GxrHG0CkourXIZuxy5+03u2eTua8h8/TrAYkR74I9pgaTumRoB+H8HfpK8lzYdzpd8kTAf5wqwfxBNqXNpXjWpNOC1t52i+ZQ4NQKw7qs8vPVVntXBH9WuPnSEThCstIQjUWlpKUJDQ6HX6xESEqJ2cqzS4oVYqK9AnxX7bDZ2Nn8ImP/GX6fDwYUDVWmcaSs99qS3UF/hUPWc0t9tPpJvMQGvXAPdTVN6iyN+K91XZ9NXl4xHWTae7sV8Ganrc+bARDyR1l52vfacb/Nl/QBsnXGn1SkWnDmeh3KLMXbdYYvPpc63rbSKaXbyXlJyX7rzGirUV+Do+avi+F6AdOcHa8MjSAU9Jt/fCrLMGa4NAJLXzZbHUyy2Z/hNXnGZ5LmU24ate/TOjH2mA60C+GTGnZLbXzWms8VUQra2J3m964CvF96lynNBaf7NbvceQmlXUFvdttWipMs/YJpea28y1sgdg+8v/OZUd1pb6TG8gSrp+mpob+FIw20lvzPvvvtYaiIWpltm7NYa5zrSPd7R/XIX4+EFRrxxCPlXy6yWyBh3hV+U3l42GAJsXw/W1g/Udmkf8cYhySEPjH/n6PF0dMgOqbSKaXbieaL02eSua8hwLczalI1Zm47jwP8uS27L8FnnuCaY1Ndy5HUBwNhecbLb0QnA7EFtLD43XBuODKKpdHgDw/J2Dx2gA/Jlqvz8dDrZbcttT24w1/Vf50msRTtYZeYBnG2MqYXGrUq6/BuYPwTsbVMgdwyGv3EIghMlRkrSo6Wur+ZVFkqr6wy0tC+OsLfKyN79tff6FAfQu3UdKkmTM5ypgrI2xIWjzxM1n02OVh9O7JuAt77KsxiCYdZdt6Gk/AZ2niyy+E0NgLZRjWWvjUul1y1KkWwNoml+LuX463Q48WsJHnrrG8n8wtDL1KKdlAAx8DHf/h0tm8iOhu2v0+HEL6bbM0zdIlWS9taBPJOqaq1hCZHG2Vvi4+xAju4alEyqxGHRPe3x2oNdZdPraCmF3NuUeSZk7z4qTY/hDROAagO8yXksNRFfL7xL8cBvjrytqzGwndQ2bZXgSP3Gnv1Vcj2Yb6OsqtqiOsWeQUDt5ehAf8AfQ1y46nniykFm7eVoaXNsaJDkgIcAsPuUZTBkWMZ8AE/D7w787zJGGAXExt/ZGkTTcC7H9pQ+h35A7Xx9u85K5heGErK/75AeFsEQ+Ehtf3SPeHy98C5MTU0QgwZDVbz51C4Zu85i5sbjkmmsgeMD/9YFlhBpnKsaYypp3Gg8IJ072h7JvYGXVd2UTa8jpRRSjWilph9w5M3UkJ5j538DdEC3ltLtP7TYjsvAFY3L5aix33LbtFaC46p0Wrs+3zxw634ya6Bqq1TJ1R0inDnfzpQySR1jtRreO9ODTeocy01Z4geYBBHmg7VKtSMz7tSg5Hm36VvpKtbVY7uiScMAyfziu59/kx1bzBDY5BWXIbVtJA4uHIjvfv4NNbcm5wX+uCbNp+ux1hRC6mOt9DyVw4BI4xy5kZXcVOYPq6EdY0yKfx0tyrf1MJd6ONtKryMPdFtzRzlzY9oaMdrdA8xplRr7bWubUhkwAJemU+r6fHN/rsnwCoZtHFw40GpQ4M6A0tFAy5GXErnzcnDhQHEOwbqshnW2B5v5OZbrybn18TstemwaficVRNXAsuemteedXG9IPx1wR8smstVxNYIgGbgsHtYBN2sEsVRJat5HqXkgja9JW43MDS+kWup5KocBkcY5eiNbu6mkHlZSdeH2lqI48zB3R6mF8TqtHUN7Mgolmb5W23G5mxr7bWubSt/uXZlOuTGNDNuQCzDcGVCaDCSoqx1I0JnJVm2xdl5c1WDa3gDPlW3i5J7L1noMumKcJbm2mAvS24svalLVcd1bhUtuu3urJhYTWxsPIyH1b/Ox1aSG6DDehmEGAeMx1bQ2JIwBAyIP4OrGrUp7fBkPSGfrItZ6qYjcMbQ3iFOS6Wt5kEJ3UmO/lWxTydu9K9Np7S3eeLoY8/vCXQGlxZQVwq0xbIRbDe2dIPdcsHWM7c0UzZd39OXLlS9etp7LxsM9GAZOdLbKUKo5wIL09rivczOb1XFKR8C3xXyan+QWoZJDDRgGPu0c10Q8Ftu+LzApjdJSUwKAAZHHcMWNbHyDKunxZRiQTqothPlFrPVSEakHsCNBnNIMuC7bSmjljauu99vRbbo7ndbe4q1tw9FAzdb5tzqHXpdmDu+3rUFT5Y6xvcGM1AjNUg2H1Xj5knsuSw1Ca0j7qjGdxXGQlJRIKxmlX0l1nNIR8G2Raoenwx/jL5kPfGptQF4tvTQDDIh8hvlDZUTX5iZzexnP9WW4cR9LTZRtC2F+EWu5VETuAexIEKc0M3VVqZ6tzM78oTSlXwIeVTCkvivTYMwV+62kNNL4e0e26c4hBeTe4m1VUTkSqG0+ko+FH9dOXKsDJEcOTohoKPkGb+jx4+g5svUyIZcB2/MSIrW8cTBkYH7fqvmSIDc5co2hZA6OBYLWRulX+vw1/53UNWc+76PUPJCAaTs8AbXjLz0//HaEBtVH91bhkufbnJZemgEGRD5B6qHyyfECi7pd87m+bLWFsHVjaaEBXaG+QswwANMHsKNBnNLM1PDwMXQ9tvfhbOtNWmr2brnJOB3NIBypmnCmNNPW9uS+d2Sbcr9xRWbqaMBlz+/Mr20BwMKPT1oEF7Ght+bQk5jqITjAsZFXlL5MmB9je19C5Ab4M2/Ia3zfqt3DU0mTBEcCQWvLO/P8NVxzxj3LzPMC839LlUgJABZ/ctqkl3JceLDVY6GVl2YDBkQ+QO4hVF5VYzKEv9TDy1ZbCGN1NZCfPRnW2wfzLPbBuHGnow8RpRmwow9nRxtvSy3rzjS4kpJJJ92dHldmpsbXiD3XrNJr6+j5q5ITkR47/xv+1Nn094+lJgKG0pVbn9UItSNlu2uQUkd+Z36cJHtzobbEbeXuHIv71pFrxNWlSUoHobU3ELRVmmLt+WtrH231nFVSIgXA4sVzy+MpssdCKy/NxhgQ+QBXPrwA620hXNloUYo9GVahvgL/OmjZ+8G4sbg7gzh7Hs7mDyxHG2+bLws43sVcSRpcmZnY2p6726m5K+ByV4lFSfkNyc8lZtwAUNuAunfrcAx//ZBkiak9++hIiYThWlkw1DSYmT+0dgycbdkF4iB/xscpY2SyRUlYWHB9sft+cIAfyqqqrU73IzcxrZJSWHuvb/NjI8faM9jRZ7bU89fWPn5/4TcsNOqdpuSaiA0NwqS+CVgn07sM+OOl2/w6mT+0HTq1CNPk6PcMiHxAbGiQSUNEe7ruO9IWwl3szbDkSlAmp5q2sXFXEKc0A5d6YCkZwM9wfhZ9fNJi4EnDss4EEbYeyq7O6G1try56h7k64HJnkPXMp6ctPtfdGo9GTllVtWyJqb3psedlQqphdKfmYTjxa4lkmyDj45TaNtKkDZSAP8Y0yr9aZrreoe0lXxKkZpy3dW6cub7Nx0Err6rBiV9KJEu1pDgTcNrTccS4DZoxw2COTRqa9pIz3v5EGwGR4d5MSWzqcMlVXWNA5AM2H8kXHzo61A7v7siNrXZEf/T8VckM69j53xDeSFnXXz8d8GifhDpJr5IM3NoAdibBqA6Y2LeVxTYM52f9wfN46+BPkgGvo0GEtYeyOzJ6iwBcB8xPbyeuz93t1KydL0cf3O4MsswzMUOmbW29rg4qlbxMSF0rK3flYMvjKZLBkIHhOAmwHFRQavTlGgFYuTuntjptV45F6UyNACz6+CTaxzRG57gmNqfzcPb6Nj82KYlNcV+XZoqfpc4EnEo6jhj2Uerw63TAzI3HTb6zZ1BG83vTkZIrNTAg8nJSDW9X7s6xq7utu6vBlDDcPOZ0AGZ/cFy2J4aaDb2VbN/aA0sMdr7Ow7oDeVj3VR7+JdFgOjY0CE8N64BH+7ayeHg6ewzkHsruqr4a3SMeJeU3sOJWRvnCrrMIC6ov7q+9jY7tCWLkjpWt9hXW2BuAKEmzXMnnsvtvR1x4bfDmypIHZ9kzu7sx4+MkdQylRl+uFgR0ah5WO3/b4Z/x6r5ck+9rAAx/4xBW2CiFddf1be+z1NGAU0nHEavTbkh8bh4UyrUxXTysA+6RqJ5UmmY18xoGRF5O6+MDAfYP+mhgaCph7aZSu4TL1vZtZZiXSq9j3YE8RW0+5B6ezh4DqfU6UtKgJLMv1Ffghd1nre6vkkzC0bdPW/NP2fvgticAUZpmqWOv0/3Rw8fW8At1fU/IXStSs7sbf298nKSOodzoy60ignHgf5fx2pe5litGbWavZBqVuh5GxB2lkLY6jtiadsOccXssufMqFwwZ759W8yUGRF7OHW+ormQtEzCk5WpZleRDc/agNnjli3Mmnynp+lvXrG3fWoa5+Uh+bWNHs9848uBw9TGwt6TB/DxP6puAiRIZtiselM6+fRofK1dM86EkAFGaZrFhslG1kN+t9jWGZAqQH35Bah+luPI5IHetGGZ3N2lwm94OnZpbNriVO4ZK5qqTYmsaFXuvb6XBvtwyzlQf2XrGW9vHhentTcaZA2BxPZkzbo/lSLCv0wGPD0iUDIY/+/5XVZtm6ATBSjN4L/P666/jxRdfRFFRETp37ozVq1ejZ8+ein5bWlqK0NBQ6PV6hISEuDWdrg5KNh/Jt7hopW62uq7TLdRXWAw376/T4eDCgSbVFIaSIOML1TBHjvmkrX464JUxXcSBwTxFob7CYgwo82NjYDhGWtg/83TLLSO1L1IDCVq7JpTu76HcYoxdd9ji801TepsMM6GEK9KjhJI0WzRMHtoenVqEofjadczalC25XkfS6q7ngNy1Yu1zJc9B89/LHUtjSo+LkutbyfGSOnfJLUKRENEQAJy+xpQ+46W8eSDXosPNt3lXTeYwk2JIIwCbwb7U/T+wXSS+zLlssbw78h6l+bfPlBBt3rwZ8+bNw9q1a9GrVy+sWrUKaWlpyMnJQVRUlNrJE7njYeSON1QlDylH2kJINZY0VAMY3ijk3jANPVFmbcrWTCM9pczf2OXq9/0ATY3dYZxuuXMuty8CpKvDnG3j4sqGw3XV5kbJ+DxSDYgPLhyIVhHBNodfqKvSNWvkSqWcbXBr/nu5kbkNXDnemJLjJbWMoVTGUFpaF6WQch5LTcR9nZuZVBObt9eUOp5KJ+uVu/8zJYIhQN32RD4TEL300kuYMmUKHn30UQDA2rVrsWPHDrz99ttYuHChyqmrpcbDyEBJVYXSh5QzbSHkGksKAFaP6YqmjQJNbnjjUVaNe0VopZGeo+R6yG19/E6rM2qrxdo5VzJekpLqEaVcHcTURZsbW2lW0k7E2vALSmmhbYcrqjwlR+YGsHpsV0VziCml5HhZa7xcIwD/OphndeRtpZypFrdVTSwI1kcHt0YuQDW86EodGrXaEzk2bruHqaqqwrFjxzB48GDxMz8/PwwePBhZWVmSv6msrERpaanJn7vZ6iLpToZMy5itN9SntpxCob7C5DdKlwP+yAT8b40kZ95Y0jwt3Vo1kXwbiQ0NQpOGAbJtbTyR1LHJGJmsyWDI1jk37Iv5OQXkH6qxoUE23zytGd0jvran0ZTeOLhwoNMlhc6mRwlrabZ1f47uEY+vF92Fqf1ai8s5U7omt5264Irn4GOpiViU3l7M4Px1OmSMSsawTo5PZitFyfGSWsZYjQBMSU2weA6q9SInt08L09s7lEZDgGrOsE6pIEStKT18ooSouLgY1dXViI6ONvk8OjoaZ89aztUFABkZGVi6dGldJE+k5gSpzryh2qoesRbt29NY0trNp+XJZR2ldg85pZScc+MhBN46kIcauP/Br3ZjekdYq1aydU/EhsoPv2DP9tWek9BV9/Jj/RPtGvfHEUrPi7WRq/11Ojzap3Z2eC3c63L7NLpHvMPH03zqGPN1WhtHrS75RKPqgoICNG/eHIcOHUJKSor4+fz587F//34cPmzZAK+yshKVlZXiv0tLSxEXF+f2RtXONI5zBWsNHJU0/HNlI1QlDRqNqX3sfJW959ze80p/qKtjp/Y58rR7WWnngvPF5Tjxa4nYQ1DL++aOa8DaOt15zSltVO0TAVFVVRWCg4Px0UcfYfjw4eLn48ePR0lJCT799FOb66jrXmZazDDs6a2m1sNMq8fO23laBkba5833sjfvmxYxIDLTq1cv9OzZE6tXrwYA1NTUID4+HjNnzlTUqLouAyItU3oj84b3PTznRKRF7HZvZt68eRg/fjy6d++Onj17YtWqVSgrKxN7nZEySttleGL7DXIOzzkReTKfCYhGjx6Ny5cv45lnnkFRURG6dOmC3bt3WzS0JiIiIt/jM1VmzmKVGRERkedRmn/7xDhERERERNYwICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjn+czUHc4yDOhdWlqqckqIiIhIKUO+bWtiDgZECv3+++8AgLi4OJVTQkRERPb6/fffERoaKvs95zJTqKamBgUFBWjcuDF0Op3ayalzpaWliIuLw4ULFziXmxN4HJ3HY+gaPI6uwePoGu48joIg4Pfff0ezZs3g5yffUoglRAr5+fmhRYsWaidDdSEhIbzpXYDH0Xk8hq7B4+gaPI6u4a7jaK1kyICNqomIiMjnMSAiIiIin8eAiBQJDAzEs88+i8DAQLWT4tF4HJ3HY+gaPI6uwePoGlo4jmxUTURERD6PJURERETk8xgQERERkc9jQEREREQ+jwERERER+TwGRCQ6cOAA7r33XjRr1gw6nQ6ffPKJyfeCIOCZZ55BbGwsgoKCMHjwYPz444/qJFbDbB3HCRMmQKfTmfwNHTpUncRqWEZGBnr06IHGjRsjKioKw4cPR05Ojsky169fx4wZM9C0aVM0atQIo0aNwsWLF1VKsTYpOY4DBgywuCanTZumUoq1ac2aNejUqZM4cGBKSgp27dolfs9r0TZbx1Dt65ABEYnKysrQuXNnvP7665Lfr1y5Eq+++irWrl2Lw4cPo2HDhkhLS8P169frOKXaZus4AsDQoUNRWFgo/m3atKkOU+gZ9u/fjxkzZuCbb77B3r17cePGDQwZMgRlZWXiMnPnzsVnn32GDz/8EPv370dBQQFGjhypYqq1R8lxBIApU6aYXJMrV65UKcXa1KJFC6xYsQLHjh3D0aNHcdddd+H+++/H6dOnAfBaVMLWMQRUvg4FIgkAhK1bt4r/rqmpEWJiYoQXX3xR/KykpEQIDAwUNm3apEIKPYP5cRQEQRg/frxw//33q5IeT3bp0iUBgLB//35BEGqvv/r16wsffvihuMwPP/wgABCysrLUSqbmmR9HQRCE/v37C3/5y1/US5SHatKkifDWW2/xWnSC4RgKgvrXIUuISJG8vDwUFRVh8ODB4mehoaHo1asXsrKyVEyZZ8rMzERUVBTatWuH6dOn48qVK2onSfP0ej0AIDw8HABw7Ngx3Lhxw+SabN++PeLj43lNWmF+HA3ef/99REREoGPHjli0aBHKy8vVSJ5HqK6uxgcffICysjKkpKTwWnSA+TE0UPM65OSupEhRUREAIDo62uTz6Oho8TtSZujQoRg5ciQSEhKQm5uLp556Cunp6cjKyoK/v7/aydOkmpoazJkzB3369EHHjh0B1F6TAQEBCAsLM1mW16Q8qeMIAGPHjkXLli3RrFkznDhxAgsWLEBOTg62bNmiYmq15+TJk0hJScH169fRqFEjbN26FUlJScjOzua1qJDcMQTUvw4ZEBHVsTFjxoj/n5ycjE6dOiExMRGZmZkYNGiQiinTrhkzZuDUqVM4ePCg2knxaHLHcerUqeL/JycnIzY2FoMGDUJubi4SExPrOpma1a5dO2RnZ0Ov1+Ojjz7C+PHjsX//frWT5VHkjmFSUpLq1yGrzEiRmJgYALDoNXHx4kXxO3JM69atERERgXPnzqmdFE2aOXMmtm/fji+//BItWrQQP4+JiUFVVRVKSkpMluc1KU3uOErp1asXAPCaNBMQEIA2bdqgW7duyMjIQOfOnfHKK6/wWrSD3DGUUtfXIQMiUiQhIQExMTH44osvxM9KS0tx+PBhk/pfst8vv/yCK1euIDY2Vu2kaIogCJg5cya2bt2Kffv2ISEhweT7bt26oX79+ibXZE5ODvLz83lNGrF1HKVkZ2cDAK9JG2pqalBZWclr0QmGYyilrq9DVpmR6Nq1ayaReF5eHrKzsxEeHo74+HjMmTMHzz//PG677TYkJCRg8eLFaNasGYYPH65eojXI2nEMDw/H0qVLMWrUKMTExCA3Nxfz589HmzZtkJaWpmKqtWfGjBnYuHEjPv30UzRu3FhsixEaGoqgoCCEhoZi0qRJmDdvHsLDwxESEoJZs2YhJSUFvXv3Vjn12mHrOObm5mLjxo2455570LRpU5w4cQJz585FamoqOnXqpHLqtWPRokVIT09HfHw8fv/9d2zcuBGZmZnYs2cPr0WFrB1DTVyHqvVvI8358ssvBQAWf+PHjxcEobbr/eLFi4Xo6GghMDBQGDRokJCTk6NuojXI2nEsLy8XhgwZIkRGRgr169cXWrZsKUyZMkUoKipSO9maI3UMAQjr168Xl6moqBAef/xxoUmTJkJwcLAwYsQIobCwUL1Ea5Ct45ifny+kpqYK4eHhQmBgoNCmTRvhySefFPR6vboJ15iJEycKLVu2FAICAoTIyEhh0KBBwueffy5+z2vRNmvHUAvXoU4QBKFuQi8iIiIibWIbIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiMjjVVVVqZ0EC1pMExHJY0BERJozYMAAzJw5EzNnzkRoaCgiIiKwePFiGGYaatWqFZ577jmMGzcOISEhmDp1KgDg4MGD6NevH4KCghAXF4fZs2ejrKxMXO8bb7yB2267DQ0aNEB0dDQeeOAB8buPPvoIycnJCAoKQtOmTTF48GDxtwMGDMCcOXNM0jh8+HBMmDBB/LejaSIibWBARESa9M4776BevXr49ttv8corr+Cll17CW2+9JX7/j3/8A507d8bx48exePFi5ObmYujQoRg1ahROnDiBzZs34+DBg5g5cyYA4OjRo5g9ezaWLVuGnJwc7N69G6mpqQCAwsJCPPjgg5g4cSJ++OEHZGZmYuTIkbB3qkd700RE2sHJXYlIcwYMGIBLly7h9OnT0Ol0AICFCxdi27ZtOHPmDFq1aoWuXbti69at4m8mT54Mf39/vPnmm+JnBw8eRP/+/VFWVoadO3fi0UcfxS+//ILGjRubbO+7775Dt27dcP78ebRs2VIyPV26dMGqVavEz4YPH46wsDBs2LABABxKU4MGDZw6TkTkOiwhIiJN6t27txgMAUBKSgp+/PFHVFdXAwC6d+9usvz333+PDRs2oFGjRuJfWloaampqkJeXh7vvvhstW7ZE69at8cgjj+D9999HeXk5AKBz584YNGgQkpOT8X//939Yt24dfvvtN7vTbG+aiEg7GBARkUdq2LChyb+vXbuGxx57DNnZ2eLf999/jx9//BGJiYlo3LgxvvvuO2zatAmxsbF45pln0LlzZ5SUlMDf3x979+7Frl27kJSUhNWrV6Ndu3Zi0OLn52dRfXbjxg2n00RE2sGAiIg06fDhwyb//uabb3DbbbfB399fcvk77rgDZ86cQZs2bSz+AgICAAD16tXD4MGDsXLlSpw4cQLnz5/Hvn37AAA6nQ59+vTB0qVLcfz4cQQEBIjVX5GRkSgsLBS3VV1djVOnTtncByVpIiJtYEBERJqUn5+PefPmIScnB5s2bcLq1avxl7/8RXb5BQsW4NChQ5g5cyays7Px448/4tNPPxUbMG/fvh2vvvoqsrOz8fPPP+Pdd99FTU0N2rVrh8OHD2P58uU4evQo8vPzsWXLFly+fBkdOnQAANx1113YsWMHduzYgbNnz2L69OkoKSmxuQ+20kRE2lFP7QQQEUkZN24cKioq0LNnT/j7++Mvf/mL2JVdSqdOnbB//3787W9/Q79+/SAIAhITEzF69GgAQFhYGLZs2YIlS5bg+vXruO2227Bp0ybcfvvt+OGHH3DgwAGsWrUKpaWlaNmyJf75z38iPT0dADBx4kR8//33GDduHOrVq4e5c+di4MCBNvfBVpqISDvYy4yINEeqVxcRkTuxyoyIiIh8HgMiIiIi8nmsMiMiIiKfxxIiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5/x87/AowzC5koQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -912,7 +3979,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgtklEQVR4nO3deXgUVdo28LsTSEgCNAQCBExICJtIiMjiRJBFGCGDC4sjwoyyKC6AuHwOBN8XBQcNODMO4wYOOqDjiMwoqKPi8spmhMGwoyMIMZAgQYhCB5KQYLq+P2K1vVRVV1VXd1V17t915bqgl+rT1VWnnjrnOec4BEEQQERERGRTMWYXgIiIiCgUDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIKCIWLlwIh8Oh6rUOhwMLFy4Ma3mGDRuGYcOGWXZ7RKQegxmiRmb16tVwOByevyZNmqBTp06YOnUqvv32W7OLZzkZGRk++6tdu3a4+uqrsX79ekO2X11djYULF2Lz5s2GbI+oMWIwQ9RIPfbYY/j73/+OFStWIC8vD6+++iqGDh2KCxcuhOXz/vd//xc1NTVh2Xa4XX755fj73/+Ov//973jooYdw4sQJjB8/HitWrAh529XV1Vi0aBGDGaIQNDG7AERkjry8PPTv3x8AcMcdd6Bt27ZYunQp3nnnHdx8882Gf16TJk3QpIk9q5xOnTrht7/9ref/t912G7p27Yo///nPuPvuu00sGREBbJkhop9cffXVAIDi4mKfxw8ePIibbroJycnJaNasGfr374933nnH5zUXL17EokWL0K1bNzRr1gxt2rTB4MGD8fHHH3teI5UzU1tbiwceeAApKSlo0aIFbrjhBhw/fjygbFOnTkVGRkbA41LbXLVqFa655hq0a9cO8fHx6NWrF5YvX65pXwTToUMHXHrppSgpKVF83alTp3D77bejffv2aNasGXJycvDyyy97nj969ChSUlIAAIsWLfJ0ZYU7X4go2tjzNomIDHf06FEAQOvWrT2Pffnllxg0aBA6deqE/Px8JCUl4Z///CfGjh2LN998E+PGjQPQEFQUFBTgjjvuwMCBA1FZWYmdO3di9+7d+OUvfyn7mXfccQdeffVVTJ48GVdddRU2btyIMWPGhPQ9li9fjssuuww33HADmjRpgn//+9+YOXMm3G43Zs2aFdK2RRcvXkRZWRnatGkj+5qamhoMGzYMR44cwezZs5GZmYl//etfmDp1Ks6ePYv77rsPKSkpWL58Oe655x6MGzcO48ePBwD06dPHkHISNRoCETUqq1atEgAI//d//yecPn1aKCsrE9544w0hJSVFiI+PF8rKyjyvHTFihJCdnS1cuHDB85jb7RauuuoqoVu3bp7HcnJyhDFjxih+7qOPPip4Vzl79+4VAAgzZ870ed3kyZMFAMKjjz7qeWzKlClC586dg25TEAShuro64HWjRo0SunTp4vPY0KFDhaFDhyqWWRAEoXPnzsK1114rnD59Wjh9+rSwb98+4ZZbbhEACPfee6/s9pYtWyYAEF599VXPY3V1dUJubq7QvHlzobKyUhAEQTh9+nTA9yUibdjNRNRIjRw5EikpKUhLS8NNN92EpKQkvPPOO7jkkksAAD/88AM2btyIm2++GefOnUNFRQUqKirw/fffY9SoUTh8+LBn9FOrVq3w5Zdf4vDhw6o///333wcAzJkzx+fx+++/P6TvlZCQ4Pm3y+VCRUUFhg4dim+++QYul0vXNj/66COkpKQgJSUFOTk5+Ne//oVbb70VS5culX3P+++/jw4dOmDSpEmex5o2bYo5c+bg/Pnz2LJli66yEFEgdjMRNVLPPfccunfvDpfLhb/97W/YunUr4uPjPc8fOXIEgiBgwYIFWLBggeQ2Tp06hU6dOuGxxx7DjTfeiO7du6N3794YPXo0br31VsXukmPHjiEmJgZZWVk+j/fo0SOk7/XZZ5/h0Ucfxfbt21FdXe3znMvlgtPp1LzNK6+8EosXL4bD4UBiYiIuvfRStGrVSvE9x44dQ7du3RAT43vPeOmll3qeJyJjMJghaqQGDhzoGc00duxYDB48GJMnT8ahQ4fQvHlzuN1uAMBDDz2EUaNGSW6ja9euAIAhQ4aguLgYb7/9Nj766CO8+OKL+POf/4wVK1bgjjvuCLmscpPt1dfX+/y/uLgYI0aMQM+ePfHUU08hLS0NcXFxeP/99/HnP//Z8520atu2LUaOHKnrvUQUfgxmiAixsbEoKCjA8OHD8eyzzyI/Px9dunQB0NA1ouZCnpycjGnTpmHatGk4f/48hgwZgoULF8oGM507d4bb7UZxcbFPa8yhQ4cCXtu6dWucPXs24HH/1o1///vfqK2txTvvvIP09HTP45s2bQpafqN17twZ+/fvh9vt9mmdOXjwoOd5QD5QIyL1mDNDRAAapuMfOHAgli1bhgsXLqBdu3YYNmwYXnjhBZSXlwe8/vTp055/f//99z7PNW/eHF27dkVtba3s5+Xl5QEAnn76aZ/Hly1bFvDarKwsuFwu7N+/3/NYeXl5wCy8sbGxAABBEDyPuVwurFq1SrYc4fKrX/0KJ0+exNq1az2P/fjjj3jmmWfQvHlzDB06FACQmJgIAJLBGhGpw5YZIvL43e9+h1//+tdYvXo17r77bjz33HMYPHgwsrOzMWPGDHTp0gXfffcdtm/fjuPHj2Pfvn0AgF69emHYsGHo168fkpOTsXPnTrzxxhuYPXu27GddfvnlmDRpEp5//nm4XC5cddVV+OSTT3DkyJGA195yyy2YN28exo0bhzlz5qC6uhrLly9H9+7dsXv3bs/rrr32WsTFxeH666/HXXfdhfPnz2PlypVo166dZEAWTnfeeSdeeOEFTJ06Fbt27UJGRgbeeOMNfPbZZ1i2bBlatGgBoCFhuVevXli7di26d++O5ORk9O7dG717945oeYlszezhVEQUWeLQ7KKiooDn6uvrhaysLCErK0v48ccfBUEQhOLiYuG2224TOnToIDRt2lTo1KmTcN111wlvvPGG532LFy8WBg4cKLRq1UpISEgQevbsKTz++ONCXV2d5zVSw6hramqEOXPmCG3atBGSkpKE66+/XigrK5McqvzRRx8JvXv3FuLi4oQePXoIr776quQ233nnHaFPnz5Cs2bNhIyMDGHp0qXC3/72NwGAUFJS4nmdlqHZwYady23vu+++E6ZNmya0bdtWiIuLE7Kzs4VVq1YFvHfbtm1Cv379hLi4OA7TJtLBIQhe7bFERERENsOcGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLYW9ZPmud1unDhxAi1atOC04URERDYhCALOnTuHjh07BizYKvVi02zZskW47rrrhNTUVAGAsH79es9zdXV1wty5c4XevXsLiYmJQmpqqnDrrbcK3377rabPECfg4h//+Mc//vGPf/b7KysrC3qtN7VlpqqqCjk5OZg+fTrGjx/v81x1dTV2796NBQsWICcnB2fOnMF9992HG264ATt37lT9GeKU4WVlZWjZsqWh5SciIqLwqKysRFpamuc6rsQyMwA7HA6sX78eY8eOlX1NUVERBg4ciGPHjvmsiKuksrISTqcTLpeLwQwREZFNaLl+2ypnxuVyweFwoFWrVrKvqa2t9Vmpt7KyMgIlIyIiIrPYZjTThQsXMG/ePEyaNEkxQisoKIDT6fT8paWlRbCUREREFGm2CGYuXryIm2++GYIgYPny5YqvnT9/Plwul+evrKwsQqUkIiIiM1i+m0kMZI4dO4aNGzcG7TeLj49HfHx8hEpHRERWUl9fj4sXL5pdDFKhadOmiI2NNWRblg5mxEDm8OHD2LRpE9q0aWN2kYiIyIIEQcDJkydx9uxZs4tCGrRq1QodOnQIeR44U4OZ8+fP48iRI57/l5SUYO/evUhOTkZqaipuuukm7N69G++++y7q6+tx8uRJAEBycjLi4uLMKjYREVmMGMi0a9cOiYmJnCTV4gRBQHV1NU6dOgUASE1NDWl7pg7N3rx5M4YPHx7w+JQpU7Bw4UJkZmZKvm/Tpk0YNmyYqs/g0GwiouhWX1+Pr7/+Gu3atWMLvs18//33OHXqFLp37x7Q5WSbodnDhg2DUixlkSlwiIjIwsQcmcTERJNLQlqJv9nFixdDyp+xxWgmIiKiYNi1ZD9G/WYMZoiIiMjWGMwQERFRWGzevBkOhyPso8wYzFhEuasG24orUO6qMbsoRERkEwsXLsTll19udjFMZ+l5ZhqLtUWlmL/uANwCEOMACsZnY+IAdQtpEhERBXPx4kU0bdrU7GKEDVtmTFbuqvEEMgDgFoCH133BFhoiokbA7XajoKAAmZmZSEhIQE5ODt544w0AP3fRfPLJJ+jfvz8SExNx1VVX4dChQwCA1atXY9GiRdi3bx8cDgccDgdWr14NoCGxdvny5bjhhhuQlJSExx9/XLEc4md9+OGH6Nu3LxISEnDNNdfg1KlT2LBhAy699FK0bNkSkydPRnV1ted9tbW1mDNnDtq1a4dmzZph8ODBKCoqCs/OUsBgxmQlFVWeQEZULwg4WlEt/QYiIgqbSHf5FxQU4JVXXsGKFSvw5Zdf4oEHHsBvf/tbbNmyxfOa//mf/8Gf/vQn7Ny5E02aNMH06dMBABMnTsT/+3//D5dddhnKy8tRXl6OiRMnet63cOFCjBs3DgcOHPC8J5iFCxfi2WefxbZt21BWVoabb74Zy5Ytw2uvvYb33nsPH330EZ555hnP6+fOnYs333wTL7/8Mnbv3o2uXbti1KhR+OGHHwzaQ+qwm8lkmW2TEOOAT0AT63Agoy3nSyAiiqRId/nX1tbiiSeewP/93/8hNzcXANClSxcUFhbihRdewJ133gkAePzxxzF06FAAQH5+PsaMGYMLFy4gISEBzZs3R5MmTdChQ4eA7U+ePBnTpk3TVKbFixdj0KBBAIDbb78d8+fPR3FxMbp06QIAuOmmm7Bp0ybMmzcPVVVVWL58OVavXo28vDwAwMqVK/Hxxx/jpZdewu9+9zt9O0YHtsyYLNWZgILx2Yj9aax9rMOBJ8b3RqozweSSERE1HmZ0+R85cgTV1dX45S9/iebNm3v+XnnlFRQXF3te16dPH8+/xWn/xWUAlPTv319zmbw/q3379khMTPQEMuJj4mcXFxfj4sWLnuAHaFg8cuDAgfjqq680f3Yo2DJjARMHpGNI9xQcrahGRttEBjJERBGm1OUfrjr5/PnzAID33nsPnTp18nkuPj7eE9B4J+6Kk8y53e6g209KStJcJv/P8k8adjgcqj470hjMWESqM4FBDBGRSczo8u/Vqxfi4+NRWlrq6Uby5t06IycuLg719fXhKF5QWVlZiIuLw2effYbOnTsDaBg1VVRUhPvvvz+iZWEwQ0REjZ7Y5f/wui9QLwgR6fJv0aIFHnroITzwwANwu90YPHgwXC4XPvvsM7Rs2dITICjJyMhASUkJ9u7di0suuQQtWrRAfHx82MrsLSkpCffccw9+97vfITk5Genp6XjyySdRXV2N22+/PSJlEDGYISIigjld/r///e+RkpKCgoICfPPNN2jVqhWuuOIKPPzww6q6cyZMmIB169Zh+PDhOHv2LFatWoWpU6eGvdyiJUuWwO1249Zbb8W5c+fQv39/fPjhh2jdunXEygAADiHKl6bWsoQ4ERHZz4ULF1BSUoLMzEw0a9bM7OKQBkq/nZbrN0czERERka0xmCEiIopyd999t8/wb++/u+++2+zihYw5M0RERFHusccew0MPPST5XDSkYDCYISIiinLt2rVDu3btzC5G2LCbiYiIiGyNwQwREUUFK85MS8qM+s3YzURERLYWFxeHmJgYnDhxAikpKYiLi/NM+0/WJAgC6urqcPr0acTExCAuLi6k7TGYISIiW4uJiUFmZibKy8tx4sQJs4tDGiQmJiI9PR0xMaF1FDGYISIi24uLi0N6ejp+/PFH09YqIm1iY2PRpEkTQ1rRGMwQEVFUEFd59l/pmaIfE4CJiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjVTg5mtW7fi+uuvR8eOHeFwOPDWW2/5PC8IAh555BGkpqYiISEBI0eOxOHDh80pLBEREVmSqcFMVVUVcnJy8Nxzz0k+/+STT+Lpp5/GihUrsGPHDiQlJWHUqFG4cOFChEtKREREVtXEzA/Py8tDXl6e5HOCIGDZsmX43//9X9x4440AgFdeeQXt27fHW2+9hVtuuSWSRSUiIiKLsmzOTElJCU6ePImRI0d6HnM6nbjyyiuxfft22ffV1taisrLS54+IiIiil2WDmZMnTwIA2rdv7/N4+/btPc9JKSgogNPp9PylpaWFtZxERERkLssGM3rNnz8fLpfL81dWVmZ2kYiIiCiMLBvMdOjQAQDw3Xff+Tz+3XffeZ6TEh8fj5YtW/r8ERERUfSybDCTmZmJDh064JNPPvE8VllZiR07diA3N9fEkhEREZGVmDqa6fz58zhy5Ijn/yUlJdi7dy+Sk5ORnp6O+++/H4sXL0a3bt2QmZmJBQsWoGPHjhg7dqx5hSYiIiJLMTWY2blzJ4YPH+75/4MPPggAmDJlClavXo25c+eiqqoKd955J86ePYvBgwfjgw8+QLNmzcwqMhEREVmMQxAEwexChFNlZSWcTidcLhfzZ4iIiGxCy/XbsjkzRERERGowmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGYoqpW7arCtuALlrhqzi0JERGHSxOwCEIXL2qJSzF93AG4BiHEABeOzMXFAutnFIiIig7FlhqJSuavGE8gAgFsAHl73BVtoiIiiEIMZikolFVWeQEZULwg4WlFtToGIiChsGMxQVMpsm4QYh+9jsQ4HMtommlMgIiIKGwYzFJVSnQkoGJ+NWEdDRBPrcOCJ8b2R6kwwuWRERGQ0JgBT1Jo4IB1DuqfgaEU1MtomMpAhIopSDGYoqqU6ExjEEBFFOXYzERERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQyRTuWuGmwrrkC5q8bsohARNWpNzC4AkR2tLSrF/HUH4BaAGAdQMD4bEwekm10sIqJGiS0zRBqVu2o8gQwAuAXg4XVfsIWGiMgkDGaINCqpqPIEMqJ6QcDRimpzCkRE1MhZOpipr6/HggULkJmZiYSEBGRlZeH3v/89BEEI/maiMMlsm4QYh+9jsQ4HMtommlMgIqJGztI5M0uXLsXy5cvx8ssv47LLLsPOnTsxbdo0OJ1OzJkzx+ziUSOV6kxAwfhsPLzuC9QLAmIdDjwxvjdSnQlmF42IqFGydDCzbds23HjjjRgzZgwAICMjA2vWrMHnn39ucsmosZs4IB1DuqfgaEU1MtomMpAhIjKRpbuZrrrqKnzyySf4+uuvAQD79u1DYWEh8vLyZN9TW1uLyspKnz+icEh1JiA3qw0DGSIik1m6ZSY/Px+VlZXo2bMnYmNjUV9fj8cffxy/+c1vZN9TUFCARYsWRbCUREREZCZLt8z885//xD/+8Q+89tpr2L17N15++WX88Y9/xMsvvyz7nvnz58Plcnn+ysrKIlhiIiIiijSHYOGhQWlpacjPz8esWbM8jy1evBivvvoqDh48qGoblZWVcDqdcLlcaNmyZbiKSkRERAbScv22dMtMdXU1YmJ8ixgbGwu3221SiYiIiMhqLJ0zc/311+Pxxx9Heno6LrvsMuzZswdPPfUUpk+fbnbRiIiIyCIs3c107tw5LFiwAOvXr8epU6fQsWNHTJo0CY888gji4uJUbYPdTERERPaj5fpt6WDGCAxmiIiI7CdqcmaIiIiIgmEwQ0RERLbGYIaIiIhsjcEMERER2RqDGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIaIiIhsjcEMERER2RqDGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIYoypS7arCtuALlrhqzi0JEFBFNzC4AERlnbVEp5q87ALcAxDiAgvHZmDgg3exiERGFFVtmiKJEuavGE8gAgFsAHl73BVtoiCjqMZghihIlFVWeQEZULwg4WlFtToGIiCKEwQzZCvNB5GW2TUKMw/exWIcDGW0TzSkQEVGEMJgh21hbVIpBSzZi8sodGLRkI9YWlZpdJEtJdSagYHw2Yh0NEU2sw4EnxvdGqjPB5JIREYWXQxAEIfjL7KuyshJOpxMulwstW7Y0uzikU7mrBoOWbPTpRol1OFCYP5wXaz/lrhocrahGRttE7hsisi0t12+OZiJbUMoH4QXbV6ozgfuEiBoVdjORLTAfhIiI5DCYIVtgPggREclhNxPZxsQB6RjSPYX5IERE5IPBDNkK80GIiMif6mCmsrJS9UY5aoiIiIgiRXUw06pVKzgcDsXXCIIAh8OB+vr6kAtGREREpIbqYGbTpk3hLAcRERGRLqqDmaFDh4azHERERES66E4APnv2LF566SV89dVXAIDLLrsM06dPh9PpNKxwRERERMHommdm586dyMrKwp///Gf88MMP+OGHH/DUU08hKysLu3fvNrqMRERERLJ0rc109dVXo2vXrli5ciWaNGlo3Pnxxx9xxx134JtvvsHWrVsNL6heXJuJiIjIfrRcv3UFMwkJCdizZw969uzp8/h///tf9O/fH9XV1Vo3GTYMZoiIiOxHy/VbVzdTy5YtUVpaGvB4WVkZWrRooWeTRERERLroCmYmTpyI22+/HWvXrkVZWRnKysrw+uuv44477sCkSZOMLiMRERGRLF2jmf74xz/C4XDgtttuw48//ggAaNq0Ke655x4sWbLE0AISERERKdGVMyOqrq5GcXExACArKwuJiYmGFcwozJkhIiKyHy3X75AWmkxMTER2dnYomyAiIiIKia5g5sKFC3jmmWewadMmnDp1Cm632+d5zjVDREREkaIrmLn99tvx0Ucf4aabbsLAgQODLkBJREREFC66gpl3330X77//PgYNGmR0eYiIiIg00TU0u1OnTpxPhoiIiCxBVzDzpz/9CfPmzcOxY8eMLk+Ab7/9Fr/97W/Rpk0bJCQkIDs7Gzt37gz75xIREZE96Opm6t+/Py5cuIAuXbogMTERTZs29Xn+hx9+MKRwZ86cwaBBgzB8+HBs2LABKSkpOHz4MFq3bm3I9omIiMj+dAUzkyZNwrfffosnnngC7du3D1sC8NKlS5GWloZVq1Z5HsvMzAzLZxEREZE96Zo0LzExEdu3b0dOTk44yuTRq1cvjBo1CsePH8eWLVvQqVMnzJw5EzNmzFC9DU6aR0REZD9hX2iyZ8+eqKmp0VU4Lb755hssX74c3bp1w4cffoh77rkHc+bMwcsvvyz7ntraWlRWVvr8ERERUfTS1TLz0UcfYdGiRXj88ceRnZ0dkDNjVAtIXFwc+vfvj23btnkemzNnDoqKirB9+3bJ9yxcuBCLFi0KeJwtM0RERPahpWVGVzATE9PQoOOfKyMIAhwOB+rr67VuUlLnzp3xy1/+Ei+++KLnseXLl2Px4sX49ttvJd9TW1uL2tpaz/8rKyuRlpbGYIaIiMhGwr4206ZNm3QVTKtBgwbh0KFDPo99/fXX6Ny5s+x74uPjER8fH+6iERERkUXoCmaGDh2q6nUzZ87EY489hrZt2+r5GDzwwAO46qqr8MQTT+Dmm2/G559/jr/+9a/461//qmt7REREFH10dTOp1bJlS+zduxddunTRvY13330X8+fPx+HDh5GZmYkHH3yQo5mIiIiiXNi7mdQyIk667rrrcN111xlQGiIiIopGuoZmExEREVkFgxkiIiKyNQYzREREZGsMZoiIiMjWNAczP/74Ix577DEcP3486Gt/+9vfcgQRERERhZWuodktWrTAgQMHkJGREYYiGYtDs4mIiOwn7AtNXnPNNdiyZYuuwhEREREZSdc8M3l5ecjPz8eBAwfQr18/JCUl+Tx/ww03GFI4IiIiomBCWmhScoMGLjRpBHYzERER2U/YZwB2u926CkZERERkNF05M6+88gpqa2sDHq+rq8Mrr7wScqGIiIiI1NLVzRQbG4vy8nK0a9fO5/Hvv/8e7dq1YzcTERERhSTso5kEQYDD4Qh4/Pjx43A6nXo2SURERKSLppyZvn37wuFwwOFwYMSIEWjS5Oe319fXo6SkBKNHjza8kERERERyNAUzY8eOBQDs3bsXo0aNQvPmzT3PxcXFISMjAxMmTDC0gERERERKNAUzjz76KAAgIyMDEydORLNmzcJSKCIiIiK1dA3NnjJlCoCG0UunTp0KGKqdnp4eesmIiIiIVNAVzBw+fBjTp0/Htm3bfB4XE4OtNJqJiMxT7qpBSUUVMtsmIdWZYHZxiChK6Qpmpk6diiZNmuDdd99Famqq5MgmImrc1haVYv66A3ALQIwDKBifjYkD2GpLRMbTFczs3bsXu3btQs+ePY0uD5FlsZVBvXJXjSeQAQC3ADy87gsM6Z7CfUdEhtMVzPTq1QsVFRVGl4XIstjKoE1JRZUnkBHVCwKOVlQzmCEiw+maNG/p0qWYO3cuNm/ejO+//x6VlZU+f0TRRK6VodxVY27BLCyzbRJi/HqfYx0OZLRNNKdARBTVdLXMjBw5EgBwzTXX+OTLMAGYohFbGbRLdSagYHw2Hl73BeoFAbEOB54Y35v7i4jCQlcws2nTJqPLQWRZYiuDd0BjlVYGK+fxTByQjiHdU3C0ohoZbRMtVz4iih66upmGDh2KmJgYrFy5Evn5+ejatSuGDh2K0tJSxMbGGl1GIlOJrQyxP7VCWqWVYW1RKQYt2YjJK3dg0JKNWFtUamp5pKQ6E5Cb1cb0fUVE0U1XMPPmm29i1KhRSEhIwJ49e1BbWwsAcLlceOKJJwwtIJEVTByQjsL84Vgz4xcozB9uevIv83iIiH6mK5hZvHgxVqxYgZUrV6Jp06aexwcNGoTdu3cbVjgiK7FSK4NSHg8RUWOjK5g5dOgQhgwZEvC40+nE2bNnQy0TEQXB0UJERD/TFcx06NABR44cCXi8sLAQXbp0CblQRKTMqnk8RERm0DWaacaMGbjvvvvwt7/9DQ6HAydOnMD27dvx0EMPYcGCBUaXkYgkcLQQEVEDXcFMfn4+3G43RowYgerqagwZMgTx8fF46KGHcO+99xpdRiKSkepMYBBDRI2eQxAEIfjLpNXV1eHIkSM4f/48evXqhebNmxtZNkNUVlbC6XTC5XKhZcuWZheHiIiIVNBy/dbVMiOKi4tDr169QtkEERERUUh0JQATERERWQWDGSKyvHJXDbYVV3BSQCKSFFI3ExFRuK0tKvXMdhzjAArGZ5s+AzMRWQtbZogiiC0M2nDZBiJSgy0zFmLlFZApdGxh0E5p2QaeI0QkYjBjEbzQRTe5FoYh3VN4UVYgLtvgHdBw2QYi8sduJgtgU3r048KQ+nDZBiJSgy0zFsCm9OjHFgb9uGwDEQXDlhkL4ArI0Y8tDKFJdSYgN6sN9xcRSWLLjAWIF7qH132BekHghS5KNaYWBiazE1EkMZixiMZ0oWvMGsPCkExmJ6JIYzeThbApneyOyexEZAYGMwbhZGhEHLVFROZgN5MBwtmsztwDshOO2iIiM9iqZWbJkiVwOBy4//77zS6KRzib1dcWlWLQko2YvHIHBi3ZiLVFpSFv0wxstWo8OGqLiMxgm5aZoqIivPDCC+jTp4/ZRfERrjliomXGWCaDNj5MZieiSLNFy8z58+fxm9/8BitXrkTr1q3NLo6PcM0REw25B0wGbbyYzE5EkWSLYGbWrFkYM2YMRo4caXZRAoSrWT0aJtKLhoCMiIisz/LdTK+//jp2796NoqIiVa+vra1FbW2t5/+VlZXhKppHOJrVo2EiPSaDEhFRJFg6mCkrK8N9992Hjz/+GM2aNVP1noKCAixatCjMJQsUjsnQ7J57EA0BGRERWZ9DEAQh+MvM8dZbb2HcuHGIjY31PFZfXw+Hw4GYmBjU1tb6PAdIt8ykpaXB5XKhZcuWESs7/azcVWPbgIyIiMxRWVkJp9Op6vpt6ZaZESNG4MCBAz6PTZs2DT179sS8efMCAhkAiI+PR3x8fKSKSCo0hin8iYjIPJYOZlq0aIHevXv7PJaUlIQ2bdoEPE5EZCWc8JIociwdzBArRCI74vxKRJFlu2Bm8+bNZhchYlghEtlPtEx4SWQntphnpjFSM+Eclwkgsh7Or0QUebZrmWksgi2TwFYbImvi/EpEkceWGYtSmgGYywRYB1vHyB8X2ySKPLbMWJTShHPbiivCsrglacPWMZJj9wkvieyGwYyFyVWIbMY2H5M8KRjOr0QUOexmsjip1YfZjG0+JnkSEVkHW2Zsis3Y5mLrGBGRdbBlxsakWm0oMtg6RkRkHWyZCRPO3Bv92DpGRGQNDGbCgKNcGg8meRIRmY/dTAbjHDBERESRxWDGYFYY5cKJ3IiIqDFhN5PBzB7lwi4uIiJqbNgyYzAzR7mwi4uIiBojtsyEgVmjXIItTklERBSNGMyEiRmjXJLiYuEA4B3PcCI3IiKKduxmihJri0ox7vltAYEMJ3IjsherJvBbtVxEAFtmooJ/rgzQkPy7bmYuctJam1cwItLEqgn8Vi0XkYgtM1FAKlfGLQDVdW5zCkREmlk1gd+q5SLyxmAmCojDwb1FOleGTdBEobHCHFVSrFouIm8MZqKA2Yseri0qxaAlGzF55Q4MWrIRa4tKI/K5RNHECjclUqxaLiJvDkEQhOAvs6/Kyko4nU64XC60bNnS7OKEVbmrJuLDwctdNRi0ZGPAJIGF+cOZeEyk0dqiUjy87gvUC4LnpsQKuSlWLRdFNy3XbyYARxEzhoNzbhsi41h1JXarlotIxGCGVCl31aCkogqZbZN8KjKzl28gijZWXYndquUiApgzYxo7Jcwq5cSYna9DRETEnBkT2GnOBrU5MWbk6xARUfTScv1my0yE2W3OBrXDMlOdCcjNasNAhoiIIo7BTITZbc4GDsskIiKrYzATYXYLDpgTQ0REVsfRTBEmBgf+czZYOTjgsEwiIrIyBjMmsGNwwGGZRESNg9xUHFbGYMYkDA7MZceTlYgo3Ow02tYbgxlqdOx6shIRhZPcaNsh3VMsf9PHBGBqVOw2NJ6IKFTiJK37ys4oTtZqt9G23tgyQ6pFQ9eMVdaSioZ9SUTW590SLZJrkZZangYA9h8/i9ysNhEorX4MZkiVaOmascJaUtGyL4nIOqRukPxbokXe3UcAfN43L68nCt4/6PP6Jz84hBsu7xgw6/uuY2cgCAL6ZySbflPGYIaCsnM/qj+zh8bbaV+y9YjIHuRukKRaokX1goBVn5XgxU9LfN6X3ckp+Vrv1uu1RaXIf/MAxE07ACyZYO5NGYMZCsoqXTNGMXNovF32JVuPiOxB6QZJrtsIaDivV24t8QQk4vvWzcxVbL0WP897kwKA+W8eMPWmjAnAFJTdZi2W4r9KuVlrSdlhX9opSdpOq88ThUOwGyTvGdxFsQ4Hbh+cCf8Yp14QUF3nVpz1Xa61xw2YmijMlhkKKpxdM5HoyrBSK4PZ3VxqsPWIyNq8681geYDeLdGJcTGornN7nnupsCTgXP/7f47i+d/0k229lmvtiQFMvSlzCIIg06MWHbQsIU7Kyl01hnbNROJiVO6qwaAlGwNO9ML84aZemI3el0ay2j6TS2y0UhmJIkWq3gQQcIOkpi79wwcH8dzm4oDH3551FXLSWiuWIX/dAYjRQ7hyZrRcv9kyE2F2Tqo0ctbiSCXCRrKVQctva+UZoK3UeqQlsdGKrUdERpKrNwvzh6Mwf7jmG6RWSU0lH9959IxiMCO29uw+dgaCAPTLaG36ecdgJoLYLP6zSF2MIjUUO9p+WyusH6Y1sdFquUdERlOqN/XkAA7MSJZ8vH+GfCAjSnUmYEwf69w4MAHYYHIJiUYlVUZLwmOkEmH9E+DC0cpgp4RZLcxKkhZpSWy0Yu4RkZRQ6nCpejPGASTG6buU56S1xoQrOvk8NuGKTp5WGTtdb9gyYyClu3MjWiKi6e4/kl0Z4W5lYJdHeGhJbLRi7hGRP/86fN7onsi+xKk67cC/3gQazo9xz2/TfT34082X47bczth59Az6Z7T2BDJ2u94wAdggwRISQ01YNDLh0Up5O1ZOhFWLyajhs7aoVFdiI5HVSNUTIq3Bwr6yMxj73DafodVG1jlWqdOYAGyCYHfnobZEGHX37x9t3z44E9MHZ0puIxJBj5UTYdWyUsJstGHrC0ULpdl4tQ6AqKqrl5wjxqjWYDu2NjOYMYiahMQh3VOw7JYcuGouolViHPp1Dp5kpWX7wUjldqz8tAQrPy3BnVdnYppXUGO3Jkaz8aIbPpEMeL0DeACWacEk+0uKi1V8XkuwEO4EeDsm2Fs+mCkoKMC6detw8OBBJCQk4KqrrsLSpUvRo0cPs4vmI9jduZaVS/VsXw2lO4O/flqCFwtLUDA+G0O6p4Q8bNpKXVmREg2tTI2Z9zkq5lgKYDBPxqiqq1d8XkuwEO7WYDu2Nls+Z2b06NG45ZZbMGDAAPz44494+OGH8cUXX+C///0vkpKSgr4/0pPmeeeAAA0BRFJcLMY9v00ykNDaDxlKjolSn613eZbdkoN71+wNeG7NjF+oWgaerTrBNcZgz8qCnRtS5yl/Q/IW7HhQOsb05oOFO+fQ7JzGqMqZ+eCDD3z+v3r1arRr1w67du3CkCFDTCqVPPHu/IUtxViy4SAEAA4HIBcySjUtKp0Uodz9i9G21JLw3uWJcTh0NzGqmQzP//tZbSn5cGOwZywjggqlVktAetVg/obRS+sxpeZ4kGrtmJvXA306tdIdLIS7NdhOrc2WD2b8uVwuAEBysvRkP7W1taitrfX8v7KyMiLl8vbC1mIUbDjo+b9S25d/kBDuSlLM7Vj1WYnPiqne5bmic2vdTYzBEsf8v9+4vp2wbve3PkvJ5+cFH65oxbtiNWWK1MzHjYVR54vS6sKA9KrB3r/h/HUH0LNDC8VZU41mxXPAzsT9eeC4C0s/OKj6mNJyTuvJrePvrI6tghm32437778fgwYNQu/evSVfU1BQgEWLFkW4ZD8rd9VgiVcgo8Q/SIjUhS7VmYCHf9UL0wZlYlXhUbxY+A3cgm959Ca0Sl0UxAXIyl01yH/zgM+S82/u/tbn/QLgCQTlKhIr3hWrLZMdRwlYlZHni/9dswMAfmpRVbNqsFsAxj63LSzr00ix4jkQTkZf0P23J5XTCKhrWdZ6Tmtp7Whsv3MobBXMzJo1C1988QUKCwtlXzN//nw8+OCDnv9XVlYiLS0tLOWROsFKKqoUW2KAhtaHZyf3xRU/jWbaVlyBzLZJEb/QpToT8PCYSzFtcIZk0KKniVG8KHgHLQKArV+fRlJ8k4CWICVyFYnUXXFiXKxpXVRaLqp2HCVgVUafL/4BPABNqwYLiEwrW2Nr3dN7QZcLgPwTvWcOz8LyzcWKXe9yLcvigAmpczoxLsZTt+v5XUL5nRtja45tgpnZs2fj3XffxdatW3HJJZfIvi4+Ph7x8fFhL4/cCRasuRpoqPSSk+Kx9evTvrNB5vU05UJndL/okO4pPnlCYiX/6A2Xat6W/8VJ7q743jV7Tbtz0XJRteMoAasKR2Dofy7I3VnL5Z5FopWtMbXu6b2gy9XP/tsTADy3KXDVaG/iMaW0yKP/OT22b0fPoA+99ZLe39k/WJvhN+1GtLL82kyCIGD27NlYv349Nm7ciMzMTLOLpLgWj1jRiWvG+K+jAfwctftv48kNhzBvdE/LrzcTbL0OuZOwTVI8JHaH5GMi/4uT1NokIrPWRNK6ztTEAekozB+ONTN+gcL84Ww21sn/XIvk+TJxQDrWz7wq4PFI3HxEal0zK1C6oMtRqp+DJXr78z6mlMrifU6vm5mL9Xu+DXmtNj2/s1Sw9tdPSzBoyUasLSr1eZ1d1lxSy/ItM7NmzcJrr72Gt99+Gy1atMDJkycBAE6nEwkJ1lwAz7+5euvXpwPuxKvq6iW30eeSVrqWco+EclcNVhU2TLKnNP+G3B3zFZ1bY8mEbMx/8wDcaIikCyZko2eHFrjxuW0BnxfjAObm9Qi4U543uieWbjgIt0QZzbhD1dPaYqdRAlZm5mSFB0+egwPwSV6X+92NbPZvTK17Sq1vcvtUqX7ObJvk85t5iwHg/mn74iijxLgYVNXVo9xVE7QlUDyntxVXGNJypud3lgvWvFu0/HsEoiUPx/LBzPLlywEAw4YN83l81apVmDp1auQLBHXN294XK6kKt9xVI7sNK17opBLk5Jp8lU5CqX2xrbhC8jPdArB0w0G0SmjqOdnWFpU2jDQAJCslo+9Q1V6EOAOwebSeL0YEFuIdsPfx53A0dLH6C0cSZ6SON7NzL/zrEvEGR+qCPKR7imdeL7m6devXpyUDmViHA+tm5qK6zu3Zn1K/m5rgwsjuT62/s1KaQ70gYNfRM1Gbb2X5YMaKc/oZcSdu1N1VJCob/6ZLb3J3HEonof++UDoBvU82AAFNqA4H4BB876hKKqo8nxPseyntO60XISsGoeTLqMBCLndLas6ocF08tBxveuoJq4ykmTggHWerL2LJhobh0kvebxjt6D0qMn/dAUD4ecbmcX074a09J3zqVqCh/vAX4wCmD85Au5bNgo4sLcwfHrTl3OiWMy2/syef66fWb5/vCeDrU+eiNt/K8sGMVRlxZxTqNiJV2QTrZ97/7VnJmYHVnoT+J78/8WQTIASOIBEaRoYlJ8Vj//GzDd1PKvZHsH3X2EaMNAZG/qZq776tkKyrp56w0vEvTnfhPTrSn3e14RaAt/acCGhpker+EV+/8tMSvPTTci4TB6Qr/m65WW2C7gMzW2o9c4l5TbshtmI//cmRgNdHS76V5ROArSzVmaDqwA7HNpSS3IymlHQLNCQul7tqQkoqExPonp3UVzbpTS4h7orOrZHRNtEz0RWgvD/U7Ds9iYf+nxFtCXZ2F+pv6k1t8rHZybp66wkj91Wodh07o2lKB6ChrNV1bp+6NVg95r1vjPjdjLg+6CVOu/FZ/jV4dlLfhtGlEq+LpnwrBjM2FcnKxr/i9lcvCFj1WUPG/OSVOwIy57V8znU5HWUvEkoXEC37Q81rQ6nM1haVhrwvyHhGBxZqRqWZOeIK0F9PBNtXkQzW5VINxPLFOAJHREr9rgEjTSW26d1qZubvZpRUZwKSm8dJtkgtGHOpptGUVr9BYzeTjXj3e0tl5Yfzjk9sutx19AzmvL7H5+SIccBnaYRQm6SVmmjlntOSdKc2gVtPv7dRzfNmJ15Go3CMAlLTlWpml4PeZFSlfaXUbSV13IZ6LPfPSA6o6xwA1s+8ytONJDViVOqzvH+LxLiYgAWAvfdNtCT1yx0Dv+qTarv8KSWWXzU7VJFeNTtc1KxpFMmp1L0rjumDM7Dy05KA13mvsh2Ji7N/uZRWoVX7WqVVY6W+07biCkxeuSNgO2pXHBfLFsmKQ/weSXGxqKqrD/ob2T3QMnsl4EjTcl74899XUis/iyuKS40wAmDIsby2qDRgSgf/7ej5XUPZN3YS6jEg95uLx0S46gMt128GM2Fm1DBQuaXjRTEO4LP8ayJWOXtXHAACyhfjaLhzyklrHdGLs5YKLZSLmtIMo0onfjD7ys5g7HPbAlrcCvOHA4DhlYbUkHul38gOd2gUyKgATi5Yf3ZSX8kWW0EIbD1Wey74C1cQ2liCW73fU+kGrfSHqrDWB1qu3+xmCqNwDgP1JzUsNJz8m9f9RyO5BWDc89saJriTSMwN16gIpWZ//8BS71DqYF1Jersy1haVIt9v7hLg55ykFz8t0XwsKQXTckPu5X4jtV1odm+5iUZGDeOW67KAxNQKclM57D52Bq2TtB8f4Zr6INTt2uV41/s9k+JiJVMapGaxN3PEJ4OZMAn3MFB/Zg+vmzggHT07tPBpVRAnvfOf78CMeQ2MbFHQOgO0mu/pmYRN4jfWm5P0wtbihiGtMrkN7+4/IXtMSf1GaoYZs+XGerRcbJWOGUA+l6Zf59YBdZRUy4zDAcx+bY/iDOJWprTatlW+j5HBlfj9/AMZpVnszZqzhsFMmBg5v4RUBTK2b8eASaHMviuoqqsPaFVwAz6LTgKRD7yMnjND6wzQasi1vsUAuH1wZkBOUrBj6YUtxSjYcNDzf7fQkLvQs0MLHDx5TnYSRLnvAwT/3laam4QavLCl2DNHS7CLrdQxI/X7yQXrUkEOAJ/Ze72DG7sdH/6By7y8np55rYDwfh+1AYqRwZVUy22MA1g3Mxc5aa0VZ7E3A4OZMDF6RV+pCuShUT0s1dcr953n5vXAkxsOmRZ4GT1xWThGxUjtOzHvqF3LZnipsET1sSROMubPLQA3PrdNdm0a721LfZ9UZ4JPBe7/OitMEEc/e2GruuCk3FWDXcfO+LxWJPX7+V9Yxf8P6Z4iOTuuWG9VnL+Ae9fsDdj+rqNncF2OtY8PqUDdO5ARheN4VxugGH0zITfLdXVdQ1t7OOrBUDCYCZNIDAMNJecjHH28ct954oB03JDT0bTAK9TAUmp/GTlsU9z+vNE98eQHvkFfTlprANJ3vXKfWVJRpRisSD23YMyl6J/R2mfGVH9ri0o9FbgDwNzRPXwqVaMD+GhhRk6FXECr1C0oJcYBn99PalSluEK03IVWrKek7uQB4N41e7D/+FlMG5wpuX+skJOy69gZyQu7UdNjyH1HLQGK0TcTas5nKw1fZzATRmb+0HInR7j7eOW+c7iS99QINSlXbn8Z8Z2kmq77dGqlen4dKWpyrLwFm3NCvHPPf/OAz5TyT35wCDdc3tHnNw7HnZrU0HHA+JFdasuh5jPF1247UoHnNhfL5qCES0lFlWT+FQDZbkEp8/J6er6r1IX1zd3fel7rfaEVy+C9r8Tjw3/dIAHAXz8twYteywmI++/AcZdnAIFZOSlri0qR/2bgmk6xDgfmju4RcANi1MhIQFuAYvTNhNrz2cy63RuDmTAz44dWGjYciZwG/+9shTurUJJywzUBntT2n9xwSHboqtpjyb8S8udAQx6TVFeRP6U7d6lKNZQA3ns/AQ0V+YFvXQHN+eJsr0YkkRqRi6CUFOotkjkiagLaYKMk5+f1xF1DslS/Hgg+8m7igHQkxTfB7Nf2BLxX3D9nqy/6jID0fz6So+ekVkcHGr6Xp9X5cv2tzsHqGC0BSjhuJqzU8hIMg5koo3RyhCOnweiVp40U6lBsI/aXUXddWomV0O5jZ1B4pAJri8p8ghc1FVSwO3elSlVrd4H3fvIOVqR4Px5KgBDQKja6J7IvcWpq6vefKM4/KdRfKL+vlot2qjNBMnEc+HkKB6WAJ8YB3HB5R5/H1ARIakbeSY18EtULgs+iklLPR3L0nFwA9/QtfXFdTsP+CeWGNVgdECxA8b8BSEtODFhgM1RWaXkJhsFMBBh95yCXgJfZNknx5DC6GdLKK08bUckZkWtj1F2XHt4XWgeAO4dkYtqgn/MSgv0GSnfiWu/6grVseO8nlb1jHnoCBKnfRkyA9Q9spPIlxMRVNUmh3vxzUNTSczxPH5yJFz8tkc3pkOv2Eb+L/z5Ver343dSMvFPajv/IR39Gj54LVjfLnaP9Mlqr2n4wB467Ah5Tm5cidwMgHh9qZxyPFgxmwszoO4dgCXjzRveUvUAa2QyppiIxa3SLUUFUqPtL7vvvPnYGY/oEv+sKhVSA8NKnRzFtUKbqbciNsHr6lr7ol9Fa0wVD6fdQ032hRE8AqPSZ3oGN3MgvpYnilEaLeeegAOpudPaVnWmYTFHj8ZzqTMCSCcrH18QB6Sj9vhrPbS4O+H5S+1Spm0g8LuRG3nl/V/ECvarwKF4s/Obn4zRIIGPk6Dk1dXO4z9GlHwQmac/N6xE0L0XpBiDcN41WSBuQwmAmjIxumVCTgPfkB4cwL6+nZyh0jMP35DCqD1RNRRLp0S3iSfZDVZ1hQVQo+0uuWX72a3twvvZHTByQHrY+aSMCSbmKXGxe9ydXyQUri9aEZcdP0YIA/asZq/1MqafFfAm5ieJuGZCG1z8v82l1iEFDIOOdg6LmYiomn/qXQ82QaUD++PVOql6+pRj+pC6oIqnvLbZWyB0zUus2TRyQjofHXIoxfToELOHhvd25eT0kk+JDqV+01M2RPEcBoE+nVrrfKwrXTaMVJwkUMZgJI6NbJtQm4PXp1ApzR/fAkp+avJe8fxDfn6v1DH3Uk9PgL5wrT+vh3+Rq1JBJQH+fsac53S/vRIBvxRlqn7TU76a2og/2m6utyKUqOTFPKykuVjJw2H/8LHKz2gQcJ/7BytzRPdDnklZIjIvx5AIACOniEixJWol3voR/uQUBeO3zMsQ4gDsHd8GYPh0k8xekLqbipIbicHy55FMg8LfUMurO51yR6dZRuqAGO6/9jxnAd+02/8BBarJNALjvmq645cp02d83lPpFa90cjryRUIKxYMG4uNzAtuIKQ9MbrDwpJoOZMDKyZaLcVYMfqupUTXiWGBeDpR8c9BlG6z/00Z/WiFttRaL2YhhK06VUk6sD8Oz7ULvTQmlSnTggHYlxsZKThRlx5yT3u6n5fdT+5sEqcqlKbp7XUNYYBzD6sg54/4uTPu/zHtotdQEMdsyEeix5f+b+b896WjOV+OdLeCdai9P0i/vgpcISTBucIVkGuQnJxj63DUsmNASCcstNiC1D3q0sUheZnh1aBKyCHnCuSGxfTR0V7Lz2Pma2FVdIBg7v7S/HmD6pshfmZzYdQcfWCYr1kN5WEyvMiRRKMBbsBmBs344Y9/w2Q1tQrD4pJoOZMDKqZUJuqKfcsgZSa2YAoS8g6E9tRRLsYhhq06XUSSYAeOaWvmjTPF733buecknNidI/IzksFWew303p99HymwcLDoK1GLoF4AO/QAaQTgz1TzhVux/E8gWMLpIZoeT9GanOBORmtfFM7Ogd2Kjp0kp1JqB1UuBEhUoVvdwFXACQv+6A5zP9xeDn1ehFcheZsc9vC5jfRmnZDLfCd5SitrVC7rsufu8rPPH+VygYny2ZEKwlN0hrS3MkW42VhNKF5R1IuwUB6cmJqK5zIzEuxhPIANpbUOT2mxUCQCUMZsIs1P5WueGxDjT0a981JCtgWQO5mTYB/QsIyjGiiyTUpkulEQd6y6anXFJBp3ghCUfFqeZ3k/t91P7mUpP6ZXdy+gRravJPwrVGl9KQbp9EXgeQ75ez4k8qsJFrJfKv8LVW9HJdkIB8Eqz/rNAi2cBI4tiVK6fRw3m9KXXpiWUrzB+Opyf3DUgs9k6Y10LNjYhV5lAJpQ6VykVKS07UXZ8H6660QgAoh8FMBIRysMrdSQlomGDthpyOkne0ckMf9SwgqJWWrplwJqpKXXjEzwxWNqVySW1DLuj0rqyl1q0JhdF97v7DXv1n/XULQMH7vqMvvIM1uSG74ra91+jyT0zXQ8uQbkEsuwDcNVQ+oBEptRLJVfjBKnr/80JqpXk5C8ZcKjtLs//xL7ayeBOP3dysNpLl9A+QjCYGDu/tL8fi974KKNuuo2fQL0N6/hnvhHk1tNyISNXNSpNcWmkUj9z3XDczV1e9oGa/WSUAlMJgxuKU7nqVLvpSQx+VmsmNiri1ds0YFUjpnYtBrmxy5dr/7Vn85sX/BHw/pa4W7wuJkSe/2t9Nbl4iqbWgUp3yM9hK8Q7W1s+6ytO14S0GP8+WCgGexPSlGw6iVUJT3X35eoZ0L91w0GcJBq2UKnylil7uvMhJa+0zfNp/ZWkg+HITgO/x79/NIG5DPKfMuiClOhMwpk8qnnj/q4Dfbc7re34OioMkzAcTyg2S3O9kxVE8ct+zus6tqz5Xu99CbY0PFwYzFqe1lcX/vQ+PuRTTBmcErbiMqOD05mEYFUj5n2ShzMUgFSjMHd3DZ1K0YM33onD2K0slznqPYAg6L5HfWlBq1uvx5x2sLRnve2G+Y3AXTxKsOK+Gd0tPKKMhpPa5Az8v1SDFDXgST/V8ppoZW6WOdS25TVu/Pq07KVR8XbBzyqwLklx95h0U/+WWy0NKmNd7g6SUSG3FUTxK3zM3q03Q+jzUrlKrYTBjA1paWaSorbhCreD05mEUjM82vAtGrjzByuZtSPcU/GXS5YAA9Mtorfj9/JvvRZHoVxZ/N6np+b3XuHELEvMS+a0Fpae1Q+1dv9GjIeRapsTP//DLcqzedizgfd6Jp5GYFVrue+86egbX5QTmNum9sZCalM7IVd2N6l6Rm3hPPBZCTZhPdSY0HPsbDmpKapb7nYqOSs8AbfYonmAts0r1ud6uUitjMGMTalpZjKh0QtmGmope7u6nMH+44dNvq5mLQa6ClJs3Ren7+Tf1Hz9TA7cgoH9GsqHfS+o3ktqvYmWuRM1Eh+Ksv9+erfF0S4nEFquSiioAP1egUseO5LYBfF9Vi3JXja5jVu6ivfXr03hle2AgI/K/u1Z73Evlp8wdrZz7I3cc3rtmD6rqfvRZJVrvOmJKQ/RDEa7uFbmJ94yYqXxtUWlDEI+GVrq5eT1UlVmu/hogkctjhRaLcleNrrWY9HaVWh2DGYuSq1zlKjkjKp1Qt6GmEorkXAX+5XEAwE85CUoVpNz08YX5w1U334frIiC3Xcl5S6BtrRux/Eqz/oorBIsT2O3/9qyn6y3Y95T6PQQ0JHiGso+CdS8C0ksMiMfdO/tONCxuqPK3mjggHWdrLv6c+/PBQbRKbOqZJFAq0Xze6J6ekVUiAQ0T5XmvEq1nP0hOwPem7wR8ehg5fN9fsLoilNYp/3l0vAdK6ClTTlpry7VYSNUDam8G9XSV2oFDEDROf2kzlZWVcDqdcLlcaNmypdnFUUXrhbDcVeMzwybQcJHy7j4QXydX4ajdhhrlrhrZuU12Hv0B972+15DP0VMeQHkyNrnp4wFgzYxfIDerjez38/48o/al2u0CkHzOewSR3LxEUsdWsO8Yyvcsd9Vg19EzmPP6nrAcB9uKKzB55Y6Ax6WGht89tIvkukRK5ZD63t7z0UglmqclJ0qWCZCerVrLflD6vktCCKLltiueB6Jgi4gqBTlqjjMl/ttXW+Zg25Srv6zQYhFq/RKu+ikctFy/2TJjMXrmN1HT2hEsQDKyxUQqsg9YbkBFC4lR/MujdJFSM318sDuXcLU+acnZ8Q5UvOdMSXUmBMxLJJLq6tBbnmBdNcnNw9dCJ9dd4B/Yzc3rgSXvBy70F6wckpM0ev1fKtF83cxcydYhqZYzrftBaZ4ZoxOs1XYbD+meIrsek7dQWgH0dAWrIVcmtWWVGz1oVM5RqPVLqN14VsVgxmL0HKhq5gwJFiDJbcOI9T2kRhXFCMCzk/viis7KE9tFcm4HpeRXLXOihGtUgFw+S8X5Cyh31cg2zUsFc0rBptqujnDOcxMKucraP7DbefQH2YUklcqhdWFMcbjskgnZPq1+4kR+3iPkAH0XX7kRj0oLUnpPfCh38dbbbbzr6JmwjgBSyr0L54U6WH2kZvRgdif5GanVMOLcsXNujBwGMxaj50ANVumonSnWfxtGre8hl8+RnBSveBJpucAaEfRktk2SXftKzUq2onDd+QTknPx0V3/vmr0hJX3qnYU5lO8Zjn2kZjSPf06TlHl5PTV9b6m5Ybz5D5fddfQMHA54AvlWCU1D3g+eCfj85vlRWpBSpHRuBbvoydVXkAj2jMyNU6rTwnWhDlYfSZ1H/qMHxUknQ80RM2KSULvmxshhzowFrS0qlbyrDEapr1dtH6m4DbmJt7zfs6/sDD4/+gMGZiQrJhrq6aPV8h4jk21f2FIckKhpdO5QqMpdNQELG4ZSzlDzDPR+TzGHKsbhCNpCF4zWwNf/2AIauj/z83qqmiFY3I7U3DBSieZq1vQy4lh5YWuxp6XH/7PlvjcQWs6EVH01pHtKWPMypL5LDID1s64Ky2zGauojufNITqj7Q+qY0TpJqNVmNfbHnBmb03tnodTXq/YuWNyG3Eq34p3V//vnXp+7jglXdMKfbr5ctlxa78LVdrcZvSz9XUOzAAcCLgh6thWuO59Up/aFDZWEMsmYWBFqHVZvZACq9RhYVVgieUF/dnJfjOnTUfXnev++elb9ltuWXmuLSj3HrQMNQ8aD5cWJQmk1kaqvyl01uH1wJl76aV/HALh9cIaq7am5wPrXKUBDa++457eFZXZeNfWRnu5HqX0uLiUi/DStg9I+UKoLpXK3vM8JK85qHAoGMxZl9IVQa4CkdIHbV3bGJ5ABGppTb8vtLHtXZOTnewtHsu1dQ7ICkmatxsicE6luk2A5QqFUhEYHoHLHgNQCheWuGqz8tCRgGzE/dfuEQio3KVKkLmRPfnDIZ+mGUGapDhZgeH93/9aBId3aovBIBf76aQleLCxRPFa0HFdSXWtG5+aI1Jxvcl314uhBf1L73H80pQPAkgnqzi0tk4QafQ5aQYzZBaDISXUmqF4fSDwxYx0NjZXeLRSfH/1B8j07j56JyOd7EysZb0YkkmopqxnU7h+1Jg5Ix9zRPeDAzxPurS0qlXytXEVY7qpR9VnBFvHUSsx18jf7tT0B36GkIrBFC2hYdsGqv7Uaavap/zEjCnbsrC0qxaAlGzF55Q4MWrJR9rgApIOqrYcrVB0reo6rqrp62dFgRlJ7vomzhj87qS/WzczFhH6XYN3MXKyZ8QvMz+sZ8H6goXuq3FUjOZpSQMOcQWrOLam60Jt3vWj0OWgFbJkhWXKtKQNlZrTtn2FsX7Wa1pxwJdvagdL+0doXrmXdpFBbw0JtVVL73QSoG7UXA2Cayi4Qq1K7T/1nqQ42c6zWO3g1y2HIHSvhGslpVE6I/76rqqv3mbk6WL7KXUOzPJNOinlWYh5OwzpmmZL7zg2oOrcCBggAspOE2n0dJikMZkiRVHdXTlprTLiiU0DOjNbEO7V942KzqNwQcTsPMwy1spX6ffR0AWm5kIRaEYYSgEp9t7TkRNmRRGpG7ZkV/Bp5odWTF6eG1gBDTd6I3LFi9EjOcOSEpDoTfObPEYfX35DTUXW+ilw3z4uflkjOOxQD5akCvKnN3bLSeWAUBjOky59uvhy35XbGzqNn0D+jteZARktFo+a14Uq2DadwDD3X2xeu5UJiREUY7C5Xy3dbNzNXdS6ImvVsIjHCIxwX2nAE9VoDjGB5I8GCLD3HlVwCcjhyQqSWSyh4/yCOaVzUVm66ijsHd8HKwm98ApqCCdmayqw2d0vr8WL1kU8MZqKEGQdaTpr2IAbQvuZLtCWqAdq+l5YLXyiz8mq5kBhx4fS/yw02Fb7cd6uuc6tasVzNejZq5hIxYjHXcB3TRgf1egIMqWNDbtZpNe9VW07v10ZyFm4AWPN5maZFbeWCxGmDM9CmRRyWvH/Q00UVTmqPFzuMfGIwEwXscKB501LRRGphSnHOE4fDgX4hznmihpah596jG4Jd+ELpAtJ6IQn1wql1KnylqerFCenkckHUBBDBXmPUeRbJxVaNoCfAkGod0BuY6BHOWbiluoIEADMGd8FLhSWeCS3FtbrkFqSVChKBhuR7ted7JNjlhpLBjImsdpcXqdYdLRVNUlys5EJ8RiaqhTIcUi+1iYvv7juhaT6ZULuAjAhQ1B5DWqfCDzZVvVzZy101eHf/iaABRLARHkadZ1qOf6s07dutGzdcOSGpzgTk5/X0zOQrEltVpg3OUD3XkFSQGGx+LzPYJfhmMGMgLRWP3F2e1srLqAMtkq07wSoacR8c+Nblc5cCBB9GqmcUj/8q2QIaLlzhvPNQm7goJVhCoFkJ0VqPIT1T4Wv9bkr7Um3Tf0bbRFXnmdpjT+2FNpQ6IpJBkFGfZXSZw3Ue3DUkCxB+mlgTgXWSmnwV7+e9XxPuUUZ69rFdRj4xmDGI1mROqbu8s9UXsfSDg5oCCiMONDOaEeUqGqWLT4wDWDczVzZPR+8oHqmYwS1ID4cM11BPucRFKXcMyQx7F5BWeo4huYt6v86tFY9ptd9NaV9qafoXX6NUJq3HXrALbSh1RCRuTDw3HMddmuss/21ktk1StcK2HuE6D/yHWRv1GWoCXb11kJrjQmrb4WrlMhqDGQMYMRdDvSBgiY6+UiMONLOaEf0rmmAXcrcAVNf5rwss/V4to3ikFpeUWjnZqNY0b2oSF/3LNW1QpqbPiAS9x5DcRd2IylNuXy4Ycyl+1SdVddM/oHyehbJQp9zzeuuISNyYyN1waPks/3PJe6FOq+Zk+DM6UBLrkSHdU1CYP1wyUNIbqKo5LpS2bYfpLxjMhEhtf7w3yYm7QlhlNtQDzSrNiMEu5FJlEiuAH6rqdI/iWTIh2zdn5qcTWSnQ8twp11z0rIdjxB1lsCnnjbwjMrKVKZRjSOqiYETlKVcmuUBGqjxqVuIOx82A3joi3DcmwW441HyW1LmkZzuRYpWh+qEEqsGOCzXbtnreFIOZEGjpj/cmdZc3N6+H56KoZhtS29R7oIWzGVFLRaD1Qu4/46beRGHxIrXr6Bk4flqjx7+sinfKBt4FSx4bo3ugzyWtDL0jMrorIhzHkNQxreV4CrVMcvvI//1G3Qz4fzef9bIA3DMsC8s3Fyt+TihlUbNv1dxwJMbFyE5wqWYbWsocbkYviCq1f9UGKaEEqsGOC7sk+SphMKOT1v54f1J3ea0SmprWLxmOZkStFYGWC7nUGjAO/Hz3qmcUz3U5yt1RUtPgh6MCCHeTbri6IsJdbj0XFr1l0rKPjAjk5L7b2ZqLWPLTTc7yzcUY17eT4gR0esvi//nz8noiu5Mz4MIb7IZjbN+OGPf8Ns92bh+ciemDM4Nuw+EAHAIkE2r9RSq52cjzROnYVRtIhNr6qXRcWKV1PhQOQZBYztNinnvuOfzhD3/AyZMnkZOTg2eeeQYDBw5U9d7Kyko4nU64XC60bNnSsDJtK67A5JU7Ah5X6o+X431yAsrD+eyi3FXjWXdEFOtwoDB/eNDvVe6qCUiK9a+85Pb/s5P6ok3z+KDrzchVhkrPrS0q9akMrr2sPTZ8cdLnNWq/o5nk9t2aGb8ImETOLP6/QyjHkx569pH/cauW3HdbNzPXExj4P65mTSUtM7v6f75IKmj0Pw/m5vVAn06tkBgXE1BeQHqqA/9tPDG+t6qg84WtxZ7W0HCPujTqPAl27Co9D8DnPJDab1q+v9JxEeq2w0HL9dvyLTNr167Fgw8+iBUrVuDKK6/EsmXLMGrUKBw6dAjt2rUzrVx6++P96c0wt7pQmi29uxfk9o/c/u+XoTzhndL+DvZb+E/BP+75bQHbn5vXw/K/kVw+RmJcjHmF8iK3/pKa48moc0XvOkF6PlPuXCk6ekby8eo6d9CLqZayKHX7SLVGyLV2Sc2RAkgv+KmUaC3nhS3FKNjw8/wuRicK+x87RrVWBKsL5VpN5EZ4hdL66Z1b5f1/wB5JvkqsUXspeOqppzBjxgxMmzYNvXr1wooVK5CYmIi//e1vppZLPACDLQmvRM2S92uLSjFoyUZMXrkDg5ZsxNqiUkO/R7hILUdv1JBxcQ0frftfaXtqfgug4XfPzWqDqrp6yYq7T6dWqr+fWfz3HdDwfcc9v83040vud0iKiw16PBl5rhhxfqsld64MyGgd8jmk9/O9eU8cKBLPA6lukFC2IafcVYMlGw4GPC61XT2kjh2jjgE1deHEAekozB+ONTN+gcL84RjSPUWx7lO739R8T2+hbNtslg5m6urqsGvXLowcOdLzWExMDEaOHInt27dLvqe2thaVlZU+f+HifwBqbZILNuOo2gusFRlREQTbP1r3v9L2gn2WPyOCNTNNHJCOdTNz4f0VrHB8BVt/Se54Cse5Eur5rZbcuZKT1joiAZVUcOtNa16GVEAT6rkhNx+U1BQKWikdO0YcA2rrQu9AQmt9pIadrydqWLqbqaKiAvX19Wjfvr3P4+3bt8fBg4FROgAUFBRg0aJFkSgegNBGEUV7hnkkhoxr2f/Bthfq6sBWnEhKSVVdvaalEiJB6TfyXn/J/3gK17kSyvmthdy5Eqmmf+/P2X/8LJ784JCu41rczqrPSvDi1hJVCb1qyCUez8vrGfI+UdMNFOpnaP0dw5GQa/frSTCWDmb0mD9/Ph588EHP/ysrK5GWlmZiieQ1hgzzUCoCowOGYNszYnVgO7Hi8RXsN5I7nqz4XbSS+26RCqjEz8nNahPS7LapzgQ8/KtemDYo07Bzw/+4iEFDIHPXkKyQtgtE7tjR8juG42YpGs4RJZYezVRXV4fExES88cYbGDt2rOfxKVOm4OzZs3j77beDbiNco5mMZLcM80jTO0pEz/aM/iyrs+rxped3sOp3IeOE6/y06rFj9Pe16veUo+X6belgBgCuvPJKDBw4EM888wwAwO12Iz09HbNnz0Z+fn7Q99shmAmmsV1gKbKi6fiKpu9CkdVYjh07fc+oGpr94IMPYsqUKejfvz8GDhyIZcuWoaqqCtOmTTO7aBETqWZmapyi6fiKpu9CkdVYjp1o/Z6WD2YmTpyI06dP45FHHsHJkydx+eWX44MPPghICiYiIqLGyfLdTKGKhm4mIiKixkbL9dvS88wQERERBcNghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtmb55QxCJU5wXFlZaXJJiIiISC3xuq1moYKoD2bOnTsHAEhLSzO5JERERKTVuXPn4HQ6FV8T9Wszud1unDhxAi1atIDD4TC7OBFXWVmJtLQ0lJWVcW2qEHA/GoP70Rjcj8bgfjRGuPajIAg4d+4cOnbsiJgY5ayYqG+ZiYmJwSWXXGJ2MUzXsmVLnqwG4H40BvejMbgfjcH9aIxw7MdgLTIiJgATERGRrTGYISIiIltjMBPl4uPj8eijjyI+Pt7sotga96MxuB+Nwf1oDO5HY1hhP0Z9AjARERFFN7bMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwUyU2Lp1K66//np07NgRDocDb731ls/zgiDgkUceQWpqKhISEjBy5EgcPnzYnMJaWLD9OHXqVDgcDp+/0aNHm1NYiyooKMCAAQPQokULtGvXDmPHjsWhQ4d8XnPhwgXMmjULbdq0QfPmzTFhwgR89913JpXYmtTsx2HDhgUcj3fffbdJJbam5cuXo0+fPp4J3XJzc7FhwwbP8zwW1Qm2H80+FhnMRImqqirk5OTgueeek3z+ySefxNNPP40VK1Zgx44dSEpKwqhRo3DhwoUIl9Tagu1HABg9ejTKy8s9f2vWrIlgCa1vy5YtmDVrFv7zn//g448/xsWLF3HttdeiqqrK85oHHngA//73v/Gvf/0LW7ZswYkTJzB+/HgTS209avYjAMyYMcPneHzyySdNKrE1XXLJJViyZAl27dqFnTt34pprrsGNN96IL7/8EgCPRbWC7UfA5GNRoKgDQFi/fr3n/263W+jQoYPwhz/8wfPY2bNnhfj4eGHNmjUmlNAe/PejIAjClClThBtvvNGU8tjVqVOnBADCli1bBEFoOPaaNm0q/Otf//K85quvvhIACNu3bzermJbnvx8FQRCGDh0q3HfffeYVyqZat24tvPjiizwWQyTuR0Ew/1hky0wjUFJSgpMnT2LkyJGex5xOJ6688kps377dxJLZ0+bNm9GuXTv06NED99xzD77//nuzi2RpLpcLAJCcnAwA2LVrFy5evOhzPPbs2RPp6ek8HhX470fRP/7xD7Rt2xa9e/fG/PnzUV1dbUbxbKG+vh6vv/46qqqqkJuby2NRJ//9KDLzWIz6hSYJOHnyJACgffv2Po+3b9/e8xypM3r0aIwfPx6ZmZkoLi7Gww8/jLy8PGzfvh2xsbFmF89y3G437r//fgwaNAi9e/cG0HA8xsXFoVWrVj6v5fEoT2o/AsDkyZPRuXNndOzYEfv378e8efNw6NAhrFu3zsTSWs+BAweQm5uLCxcuoHnz5li/fj169eqFvXv38ljUQG4/AuYfiwxmiDS45ZZbPP/Ozs5Gnz59kJWVhc2bN2PEiBEmlsyaZs2ahS+++AKFhYVmF8XW5PbjnXfe6fl3dnY2UlNTMWLECBQXFyMrKyvSxbSsHj16YO/evXC5XHjjjTcwZcoUbNmyxexi2Y7cfuzVq5fpxyK7mRqBDh06AEBAhv53333neY706dKlC9q2bYsjR46YXRTLmT17Nt59911s2rQJl1xyiefxDh06oK6uDmfPnvV5PY9HaXL7UcqVV14JADwe/cTFxaFr167o168fCgoKkJOTg7/85S88FjWS249SIn0sMphpBDIzM9GhQwd88sknnscqKyuxY8cOn/5O0u748eP4/vvvkZqaanZRLEMQBMyePRvr16/Hxo0bkZmZ6fN8v3790LRpU5/j8dChQygtLeXx6CXYfpSyd+9eAODxGITb7UZtbS2PxRCJ+1FKpI9FdjNFifPnz/tEwCUlJdi7dy+Sk5ORnp6O+++/H4sXL0a3bt2QmZmJBQsWoGPHjhg7dqx5hbYgpf2YnJyMRYsWYcKECejQoQOKi4sxd+5cdO3aFaNGjTKx1NYya9YsvPbaa3j77bfRokULT+6B0+lEQkICnE4nbr/9djz44INITk5Gy5Ytce+99yI3Nxe/+MUvTC69dQTbj8XFxXjttdfwq1/9Cm3atMH+/fvxwAMPYMiQIejTp4/JpbeO+fPnIy8vD+np6Th37hxee+01bN68GR9++CGPRQ2U9qMljkXTxlGRoTZt2iQACPibMmWKIAgNw7MXLFggtG/fXoiPjxdGjBghHDp0yNxCW5DSfqyurhauvfZaISUlRWjatKnQuXNnYcaMGcLJkyfNLralSO0/AMKqVas8r6mpqRFmzpwptG7dWkhMTBTGjRsnlJeXm1doCwq2H0tLS4UhQ4YIycnJQnx8vNC1a1fhd7/7neByucwtuMVMnz5d6Ny5sxAXFyekpKQII0aMED766CPP8zwW1VHaj1Y4Fh2CIAiRCZuIiIiIjMecGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIaIiIhsjcEMERER2RqDGSIiIrI1BjNEZJq6ujqzixDAimUiImUMZojIMMOGDcPs2bMxe/ZsOJ1OtG3bFgsWLIC4akpGRgZ+//vf47bbbkPLli1x5513AgAKCwtx9dVXIyEhAWlpaZgzZw6qqqo8233++efRrVs3NGvWDO3bt8dNN93kee6NN95AdnY2EhIS0KZNG4wcOdLz3mHDhuH+++/3KePYsWMxdepUz//1lomIrIPBDBEZ6uWXX0aTJk3w+eef4y9/+QueeuopvPjii57n//jHPyInJwd79uzBggULUFxcjNGjR2PChAnYv38/1q5di8LCQsyePRsAsHPnTsyZMwePPfYYDh06hA8++ABDhgwBAJSXl2PSpEmYPn06vvrqK2zevBnjx4+H1iXntJaJiKyFC00SkWGGDRuGU6dO4csvv4TD4QAA5Ofn45133sF///tfZGRkoG/fvli/fr3nPXfccQdiY2PxwgsveB4rLCzE0KFDUVVVhffffx/Tpk3D8ePH0aJFC5/P2717N/r164ejR4+ic+fOkuW5/PLLsWzZMs9jY8eORatWrbB69WoA0FWmZs2ahbSfiMhYbJkhIkP94he/8AQyAJCbm4vDhw+jvr4eANC/f3+f1+/btw+rV69G8+bNPX+jRo2C2+1GSUkJfvnLX6Jz587o0qULbr31VvzjH/9AdXU1ACAnJwcjRoxAdnY2fv3rX2PlypU4c+aM5jJrLRMRWQuDGSKKqKSkJJ//nz9/HnfddRf27t3r+du3bx8OHz6MrKwstGjRArt378aaNWuQmpqKRx55BDk5OTh79ixiY2Px8ccfY8OGDejVqxeeeeYZ9OjRwxNwxMTEBHQ5Xbx4MeQyEZG1MJghIkPt2LHD5///+c9/0K1bN8TGxkq+/oorrsB///tfdO3aNeAvLi4OANCkSROMHDkSTz75JPbv34+jR49i48aNAACHw4FBgwZh0aJF2LNnD+Li4jxdRikpKSgvL/d8Vn19Pb744oug30FNmYjIOhjMEJGhSktL8eCDD+LQoUNYs2YNnnnmGdx3332yr583bx62bduG2bNnY+/evTh8+DDefvttT7Ltu+++i6effhp79+7FsWPH8Morr8DtdqNHjx7YsWMHnnjiCezcuROlpaVYt24dTp8+jUsvvRQAcM011+C9997De++9h4MHD+Kee+7B2bNng36HYGUiImtpYnYBiCi63HbbbaipqcHAgQMRGxuL++67zzPcWUqfPn2wZcsW/M///A+uvvpqCIKArKwsTJw4EQDQqlUrrFu3DgsXLsSFCxfQrVs3rFmzBpdddhm++uorbN26FcuWLUNlZSU6d+6MP/3pT8jLywMATJ8+Hfv27cNtt92GJk2a4IEHHsDw4cODfodgZSIia+FoJiIyjNToISKicGM3ExEREdkagxkiIiKyNXYzERERka2xZYaIiIhsjcEMERER2RqDGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIaIiIhs7f8D+wfn2xM8vM8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW5RJREFUeJzt3XlcVXX+P/DXAQUB4SoKgoqCuKAJZC5FmktaSk7l0ozpTObWpraOKfb9OWlTYc1M4+SY+tXSltH8ZlpNZcvklkvlvjRpSqCYmGJ6UUBQ7vn9ged6l7Pd9ZwLr+fjweOhl8M9n3vOuZ/zPp/l/RFEURRBREREZEJhRheAiIiISAkDFSIiIjItBipERERkWgxUiIiIyLQYqBAREZFpMVAhIiIi02KgQkRERKbFQIWIiIhMi4EKERERmRYDFSLy2ezZsyEIgq5tBUHA7NmzA1qe/v37o3///qZ9PyLSj4EKUR2yfPlyCIJg/2nQoAFatWqFcePG4eeffza6eKaTmprqdLwSExNxyy23YO3atX55/4qKCsyePRsbN270y/sR1UcMVIjqoOeeew5vv/02Fi1ahNzcXLzzzjvo168fLl26FJD9/b//9/9QWVkZkPcOtOuvvx5vv/023n77bUybNg0nT57EiBEjsGjRIp/fu6KiAnPmzGGgQuSDBkYXgIj8Lzc3Fz169AAATJo0Cc2bN8dLL72Ejz76CL/73e/8vr8GDRqgQYPQrE5atWqFP/zhD/b/jx07Fu3bt8ff//53PPzwwwaWjIgAtqgQ1Qu33HILAKCgoMDp9UOHDuGee+5BfHw8GjVqhB49euCjjz5y2uby5cuYM2cOOnTogEaNGqFZs2bo06cPvvzyS/s2cmNUqqqq8OSTTyIhIQGxsbG46667cOLECbeyjRs3DqmpqW6vy73nsmXLcOuttyIxMRGRkZHo0qULFi5c6NGx0JKUlITOnTujsLBQdbvTp09j4sSJaNGiBRo1aoTs7Gy8+eab9t8XFRUhISEBADBnzhx791Kgx+cQ1TWh+QhERB4pKioCADRt2tT+2vfff4/evXujVatWyMvLQ0xMDP7v//4Pw4YNw/vvv4/hw4cDqA0Y8vPzMWnSJPTq1QtlZWXYuXMndu/ejdtuu01xn5MmTcI777yDMWPG4Oabb8b69esxdOhQnz7HwoULcd111+Guu+5CgwYN8O9//xuTJ0+GzWbDlClTfHpvyeXLl1FcXIxmzZopblNZWYn+/fvj6NGjmDp1KtLS0vDee+9h3LhxOH/+PB5//HEkJCRg4cKFeOSRRzB8+HCMGDECAJCVleWXchLVGyIR1RnLli0TAYj/+c9/xDNnzojFxcXi6tWrxYSEBDEyMlIsLi62bztw4EAxMzNTvHTpkv01m80m3nzzzWKHDh3sr2VnZ4tDhw5V3e+zzz4rOlYne/fuFQGIkydPdtpuzJgxIgDx2Weftb92//33i23bttV8T1EUxYqKCrftBg8eLLZr187ptX79+on9+vVTLbMoimLbtm3F22+/XTxz5ox45swZcd++feK9994rAhAfffRRxfebN2+eCEB855137K9VV1eLOTk5YuPGjcWysjJRFEXxzJkzbp+XiDzDrh+iOmjQoEFISEhASkoK7rnnHsTExOCjjz5C69atAQC//vor1q9fj9/97ne4cOECSktLUVpairNnz2Lw4ME4cuSIfZZQkyZN8P333+PIkSO69//pp58CAB577DGn15944gmfPldUVJT931arFaWlpejXrx9++uknWK1Wr97ziy++QEJCAhISEpCdnY333nsP9913H1566SXFv/n000+RlJSE0aNH219r2LAhHnvsMVy8eBGbNm3yqixE5I5dP0R10IIFC9CxY0dYrVa88cYb2Lx5MyIjI+2/P3r0KERRxKxZszBr1izZ9zh9+jRatWqF5557DnfffTc6duyIrl27YsiQIbjvvvtUuzCOHTuGsLAwpKenO73eqVMnnz7X1q1b8eyzz2L79u2oqKhw+p3VaoXFYvH4PW+88UY8//zzEAQB0dHR6Ny5M5o0aaL6N8eOHUOHDh0QFub8rNe5c2f774nIPxioENVBvXr1ss/6GTZsGPr06YMxY8bg8OHDaNy4MWw2GwBg2rRpGDx4sOx7tG/fHgDQt29fFBQU4MMPP8QXX3yBpUuX4u9//zsWLVqESZMm+VxWpURxNTU1Tv8vKCjAwIEDkZGRgVdeeQUpKSmIiIjAp59+ir///e/2z+Sp5s2bY9CgQV79LREFHgMVojouPDwc+fn5GDBgAP75z38iLy8P7dq1A1DbXaHnJh0fH4/x48dj/PjxuHjxIvr27YvZs2crBipt27aFzWZDQUGBUyvK4cOH3bZt2rQpzp8/7/a6a6vEv//9b1RVVeGjjz5CmzZt7K9v2LBBs/z+1rZtW+zfvx82m82pVeXQoUP23wPKQRgR6ccxKkT1QP/+/dGrVy/MmzcPly5dQmJiIvr374/FixejpKTEbfszZ87Y/3327Fmn3zVu3Bjt27dHVVWV4v5yc3MBAK+++qrT6/PmzXPbNj09HVarFfv377e/VlJS4pYdNjw8HAAgiqL9NavVimXLlimWI1DuuOMOnDp1CqtWrbK/duXKFcyfPx+NGzdGv379AADR0dEAIBuIEZE+bFEhqieefvpp/Pa3v8Xy5cvx8MMPY8GCBejTpw8yMzPxwAMPoF27dvjll1+wfft2nDhxAvv27QMAdOnSBf3790f37t0RHx+PnTt3YvXq1Zg6darivq6//nqMHj0ar732GqxWK26++WZ89dVXOHr0qNu29957L2bMmIHhw4fjscceQ0VFBRYuXIiOHTti9+7d9u1uv/12RERE4M4778RDDz2EixcvYsmSJUhMTJQNtgLpwQcfxOLFizFu3Djs2rULqampWL16NbZu3Yp58+YhNjYWQO3g3y5dumDVqlXo2LEj4uPj0bVrV3Tt2jWo5SUKaUZPOyIi/5GmJ+/YscPtdzU1NWJ6erqYnp4uXrlyRRRFUSwoKBDHjh0rJiUliQ0bNhRbtWol/uY3vxFXr15t/7vnn39e7NWrl9ikSRMxKipKzMjIEF944QWxurravo3cVOLKykrxscceE5s1aybGxMSId955p1hcXCw7XfeLL74Qu3btKkZERIidOnUS33nnHdn3/Oijj8SsrCyxUaNGYmpqqvjSSy+Jb7zxhghALCwstG/nyfRkranXSu/3yy+/iOPHjxebN28uRkREiJmZmeKyZcvc/nbbtm1i9+7dxYiICE5VJvKCIIoO7ahEREREJsIxKkRERGRaDFSIiIjItBioEBERkWkxUCEiIiLTYqBCREREpsVAhYiIiEwrpBO+2Ww2nDx5ErGxsUxVTUREFCJEUcSFCxfQsmVLt8U9XYV0oHLy5EmkpKQYXQwiIiLyQnFxMVq3bq26TUgHKlKa6uLiYsTFxRlcGiIiItKjrKwMKSkp9vu4mpAOVKTunri4OAYqREREIUbPsA0OpiUiIiLTYqBCREREpsVAhYiIiEwrpMeoEBFR/VFTU4PLly8bXQzSKSIiQnPqsR4MVIiIyNREUcSpU6dw/vx5o4tCHggLC0NaWhoiIiJ8eh8GKkREZGpSkJKYmIjo6Ggm+AwBUkLWkpIStGnTxqdzxkCFiIhMq6amxh6kNGvWzOjikAcSEhJw8uRJXLlyBQ0bNvT6fTiYloiITEsakxIdHW1wSchTUpdPTU2NT+/DQIWIiEyP3T2hx1/njIEKERERmRYDFSIiIvLYxo0bIQhCwGdjMVAxUIm1EtsKSlFirTS6KEREZDKzZ8/G9ddfb3QxDMdZPwZZteM4Zq45AJsIhAlA/ohMjOrZxuhiERFRiLl8+bJPs2rMji0qBiixVtqDFACwicAzaw6yZYWIqA6x2WzIz89HWloaoqKikJ2djdWrVwO41m3y1VdfoUePHoiOjsbNN9+Mw4cPAwCWL1+OOXPmYN++fRAEAYIgYPny5QBqB6kuXLgQd911F2JiYvDCCy+olkPa1+eff45u3bohKioKt956K06fPo1169ahc+fOiIuLw5gxY1BRUWH/u6qqKjz22GNITExEo0aN0KdPH+zYsSMwB0sFA5UgcO3iKSwttwcpkhpRRFFphcxfExGRPwS7uz0/Px9vvfUWFi1ahO+//x5PPvkk/vCHP2DTpk32bf7nf/4Hf/vb37Bz5040aNAAEyZMAACMGjUKf/zjH3HdddehpKQEJSUlGDVqlP3vZs+ejeHDh+PAgQP2v9Eye/Zs/POf/8S2bdtQXFyM3/3ud5g3bx5WrFiBTz75BF988QXmz59v33769Ol4//338eabb2L37t1o3749Bg8ejF9//dVPR0gfdv0EmFwXT9+OCQgT4BSshAsCUpszTwARUSAEu7u9qqoKL774Iv7zn/8gJycHANCuXTts2bIFixcvxoMPPggAeOGFF9CvXz8AQF5eHoYOHYpLly4hKioKjRs3RoMGDZCUlOT2/mPGjMH48eM9KtPzzz+P3r17AwAmTpyImTNnoqCgAO3atQMA3HPPPdiwYQNmzJiB8vJyLFy4EMuXL0dubi4AYMmSJfjyyy/x+uuv4+mnn/buwHiBLSoBpNTFA9R+ScKvzjEPFwS8OKIrki1RRhWViKjOMqK7/ejRo6ioqMBtt92Gxo0b23/eeustFBQU2LfLysqy/zs5ORkAcPr0ac3379Gjh8dlctxXixYtEB0dbQ9SpNekfRcUFODy5cv2wAYAGjZsiF69euGHH37weN++YItKAKl18Yzq2QZ9OyagqLQCqc2jGaQQEQWIWl0cqLr34sWLAIBPPvkErVq1cvpdZGSkPVhxHAQrJUiz2Wya7x8TE+NxmVz35ToAVxAEXfsONgYqAZTWPEa1iyfZEsUAhYgowLTq4kDo0qULIiMjcfz4cXvXjiPHVhUlERERPqef91Z6ejoiIiKwdetWtG3bFkDt7KIdO3bgiSeeCGpZGKgEULIlCvkjMvHMmoOoEUWECcD03E4MToiIgsi1Lg5Gd3tsbCymTZuGJ598EjabDX369IHVasXWrVsRFxdnv/mrSU1NRWFhIfbu3YvWrVsjNjYWkZGRASuzo5iYGDzyyCN4+umnER8fjzZt2uDll19GRUUFJk6cGJQySBioBNionm1wvuIy5q47BJsIvLTuEJpENWTOFCKiIDKiu/3Pf/4zEhISkJ+fj59++glNmjTBDTfcgGeeeUZXF8vIkSOxZs0aDBgwAOfPn8eyZcswbty4gJdbMnfuXNhsNtx33324cOECevTogc8//xxNmzYNWhkAQBBFUdTezJzKyspgsVhgtVoRFxdndHFklVgr0Xvuercmxy15A9iyQkSk4dKlSygsLERaWhoaNWpkdHHIA2rnzpP7N2f9BBhzphAREXmPgUqASYO4HDFnChER+cvDDz/sNAXa8efhhx82ung+4xiVADNiEBcREdUfzz33HKZNmyb7O7MOi/AEA5UgYM4UIiIKlMTERCQmJhpdjIAxtOtn9uzZ9sWWpJ+MjAwjixQwyZYo5KQ3Y5BCRETkAcNbVK677jr85z//sf+/QQPDi0RERCZjxoyppM5fk4oNjwqUFlwiIiKKiIhAWFgYTp48iYSEBERERNhTzZN5iaKIM2fOyKbq95ThgcqRI0fQsmVLNGrUCDk5OcjPz0ebNkyGRkREQFhYGNLS0lBSUoKTJ08aXRzygCAIaN26NcLDw317HyMTvq1btw4XL15Ep06dUFJSgjlz5uDnn3/GwYMHERsb67Z9VVUVqqqq7P8vKytDSkqKqRO+ERGR70RRxJUrVwxb+4Y817BhQ8UgxZOEb6bKTHv+/Hm0bdsWr7zyiuxaArNnz8acOXPcXmegQkREFDpCNjNtkyZN0LFjRxw9elT29zNnzoTVarX/FBcXB7mEREREFEymClQuXryIgoICJCcny/4+MjIScXFxTj9ERERUdxkaqEybNg2bNm1CUVERtm3bhuHDhyM8PByjR482slhERERkEobO+jlx4gRGjx6Ns2fPIiEhAX369ME333yDhIQEI4tFREREJmFooPLuu+8auXsiIiIyOVONUSEiIiJyxECFiIiITIuBChEREZkWA5UQUmKtxLaCUpRYK40uChERUVAYvtYP6bNqx3HMXHMANhEIE4D8EZkY1ZNrIhERUd3GFpUQUGKttAcpAGATgWfWHGTLChER1XkMVEJAYWm5PUiR1IgiikorjCkQERFRkDBQCQFpzWMQJji/Fi4ISG0ebUyBiIiIgoSBSghItkQhf0QmwoXaaCVcEPDiiK5ItkQZXDIiIqLA4mDaEDGqZxv07ZiAotIKpDaPZpBCRET1AgOVEJJsiWKAQkRE9Qq7foiIiMi0GKgQERGRaTFQISIiItNioEJERESmxUCFiIiITIuBChEREZkWAxUiIiIyLQYqREREZFoMVIiIiMi0GKgQERGRaTFQISIiItNioEJERESmxUCFiIiITIuBChEREZkWAxUiIiIyLQYqREREZFoMVIiIiMi0GKgQERGRaTFQISIiItNioEJERESmxUCFiIiITIuBChEREZkWAxUiIiIyLQYqREREZFoMVIiIiMi0GKgQERGRaTFQISIiItNioEJERESmxUCFiIiITIuBChEREZkWAxUiIiIyLQYqREREZFoMVIiIiMi0GKgQERGRaTFQISIiItNioEJERESmxUCFiIiITIuBChEREZkWAxUiIiIyLQYqREREZFoMVIiIiMi0GKgQERGRaZkqUJk7dy4EQcATTzxhdFGIiIjIBEwTqOzYsQOLFy9GVlaW0UUhIiIikzBFoHLx4kX8/ve/x5IlS9C0aVOji0NEREQmYYpAZcqUKRg6dCgGDRpkdFGIiIjIRBoYXYB3330Xu3fvxo4dOzS3raqqQlVVlf3/ZWVlgSwaERERGczQFpXi4mI8/vjj+Ne//oVGjRppbp+fnw+LxWL/SUlJCUIpiYiIyCiCKIqiUTv/4IMPMHz4cISHh9tfq6mpgSAICAsLQ1VVldPv5FpUUlJSYLVaERcXF9SyExERkXfKyspgsVh03b8N7foZOHAgDhw44PTa+PHjkZGRgRkzZjgFKQAQGRmJyMjIYBaRiIiIDGRooBIbG4uuXbs6vRYTE4NmzZq5vU5ERET1jylm/RARERHJMXzWj6uNGzcaXQQiIiIyCbaoEBERkWkxUCEiIiLTYqBCREREpsVAhYiIiEyLgQoRERGZFgMVIiIiMi0GKkRERGRaDFSIiIjItBioEBERkWkxUCEiIiLTYqBCREREpsVAhYiIiEyLgQoRERGZFgMVIiIiMi0GKkRERGRaDFSIiIjItBioEBERkWkxUCEiIiLTYqBCIa3EWoltBaUosVYaXRQiIgqABkYXgMhbq3Ycx8w1B2ATgTAByB+RiVE92xhdLCIi8iO2qFBIKrFW2oMUALCJwDNrDrJlhYiojmGgQiGpsLTcHqRIakQRRaUVxhSIiIgCgoEKhaS05jEIE5xfCxcEpDaPNqZAREQUEAxUKCQlW6KQPyIT4UJttBIuCHhxRFckW6IMLhkREfkTB9NSyBrVsw36dkxAUWkFUptHM0ghIqqDGKhQSEu2RDFAISKqw9j1Q0RERKbFQIWIiIhMi4EKERERmRYDFSIiIjItBipERERkWgxUiIiIyLQYqBAREZFpMVAhIiIi02KgQkRERKbFQIWIiIhMi4EKERERmRYDFSIiIjItBipERERkWgxUiIiIyLQYqBAREZFpMVAhIiIi02KgQkRERKbFQIWIiIhMi4EKERERmRYDFSIiIjItBipkGiXWSmwrKEWJtdLoohARkUk0MLoARACwasdxzFxzADYRCBOA/BGZGNWzjdHFIiIig7FFhQxXYq20BykAYBOBZ9YcZMsKERExUCHjFZaW24MUSY0ooqi0wpgCERGRaTBQIcOlNY9BmOD8WrggILV5tDEFIiIi02CgQoZLtkQhf0QmwoXaaCVcEPDiiK5ItkQZXDIiIjIaB9OSKYzq2QZ9OyagqLQCqc2jGaQQEREAD1pUysrKdP/otXDhQmRlZSEuLg5xcXHIycnBunXrvPogFPqSLVHISW/GIIWIiOx0t6g0adIEgiCobiOKIgRBQE1Nja73bN26NebOnYsOHTpAFEW8+eabuPvuu7Fnzx5cd911eotGREREdZTuQGXDhg1+3/mdd97p9P8XXngBCxcuxDfffMNAhYiIiPQHKv369QtkOVBTU4P33nsP5eXlyMnJkd2mqqoKVVVV9v970s1EREREocfrwbTnz5/H66+/jh9++AEAcN1112HChAmwWCwevc+BAweQk5ODS5cuoXHjxli7di26dOkiu21+fj7mzJnjbZGJiIgoxAiiKIramznbuXMnBg8ejKioKPTq1QsAsGPHDlRWVuKLL77ADTfcoPu9qqurcfz4cVitVqxevRpLly7Fpk2bZIMVuRaVlJQUWK1WxMXFefoxiIiIyABlZWWwWCy67t9eBSq33HIL2rdvjyVLlqBBg9pGmStXrmDSpEn46aefsHnzZu9KDmDQoEFIT0/H4sWLNbf15IMSERGROXhy//aq62fnzp1OQQoANGjQANOnT0ePHj28eUs7m83m1GpiBiXWShSWliOteQynzhIREQWRV4FKXFwcjh8/joyMDKfXi4uLERsbq/t9Zs6cidzcXLRp0wYXLlzAihUrsHHjRnz++efeFCsguKovERGRcbwKVEaNGoWJEyfir3/9K26++WYAwNatW/H0009j9OjRut/n9OnTGDt2LEpKSmCxWJCVlYXPP/8ct912mzfF8julVX37dkxgywoREVEQeBWo/PWvf4UgCBg7diyuXLkCAGjYsCEeeeQRzJ07V/f7vP76697sPmjUVvVloEJERBR4XgUqERER+Mc//oH8/HwUFBQAANLT0xEdXbdWu5VW9XUMVriqLxERUfD4tHpydHQ0MjMzkZmZWeeCFICr+hIRERnNqxaVS5cuYf78+diwYQNOnz4Nm83m9Pvdu3f7pXBmwFV9iYiIjONVoDJx4kR88cUXuOeee9CrVy/NxQpDXbIligEKERGRAbwKVD7++GN8+umn6N27t7/LQ0RERGTn1RiVVq1aeZQvhYiIiMgbXgUqf/vb3zBjxgwcO3bM3+UhIiIisvOq66dHjx64dOkS2rVrh+joaDRs2NDp97/++qtfCkdERET1m1eByujRo/Hzzz/jxRdfRIsWLer8YFqqn7jGExGR8bwKVLZt24bt27cjOzvb3+UhMgWu8UREZA5ejVHJyMhAZWWlv8tCZApKazyVWHnNExEFm1eByty5c/HHP/4RGzduxNmzZ1FWVub0QxTK1NZ4IiKi4PKq62fIkCEAgIEDBzq9LooiBEFATU2N7yUjMgjXeCIiMg+vApUNGzb4uxxEpiGt8fTMmoOoEUWu8UREZCBBFEVRezPvTJ48Gc899xyaN28ekPcvKyuDxWKB1WpFXFxcQPZB9VeJtZJrPBERBYAn92+fVk/W8s4773DMCoWsZEsUctKbMUghIjJQQAOVADbW1Akl1kpsKyjlbBIiIiIFXo1RId9p5elgsjEiIiIGKoZQytPRt2MCki1RTDZGRER0VUC7fkieWp4OJhsjIiK6hoGKAaQ8HY6kPB1MNkZERHSNx4HKlStX8Nxzz+HEiROa2/7hD3/gtGEZUp6O8KuLOTrm6VALYoiIAoWD+8msvMqjEhsbiwMHDiA1NTUARdIv1POoKOXpWLXjuFuyMY5RIaJA4bg4CjZP7t9eDaa99dZbsWnTJsMDlVCXbImSndEzqmcb9O2YwGRjRBRwWoP7iYzmVaCSm5uLvLw8HDhwAN27d0dMTIzT7++66y6/FK4+UwpiiIj8SW1cHOsgMgOvApXJkycDAF555RW333FRQiKi0MFFOMnsvJr1Y7PZFH8YpBARhQ61wf1EZuBVi8pbb72FUaNGITIy0un16upqvPvuuxg7dqxfCkdERIHHcXFkZl7N+gkPD0dJSQkSExOdXj979iwSExOD1qoS6rN+iIiI6qOAr54siiIEQXB7/cSJE7BYLN68JREREZEbj7p+unXrBkEQIAgCBg4ciAYNrv15TU0NCgsLMWTIEL8XkoiIiOonjwKVYcOGAQD27t2LwYMHo3HjxvbfRUREIDU1FSNHjvRrAYmIiKj+8ihQefbZZwEAqampGDVqFBo1ahSQQhEREREBXs76uf/++wHUzvI5ffo0bDab0+/btGHqZSIiIvKdV4HKkSNHMGHCBGzbts3pdWmQLXOpEBERkT94FaiMGzcODRo0wMcff4zk5GTZGUBEREREvvIqUNm7dy927dqFjIwMf5eHiIiIyM6rPCpdunRBaWmpv8tCRERE5MSrQOWll17C9OnTsXHjRpw9exZlZWVOP0RERET+4FUK/bCwa/GN4/iUYA+mZQp9IiKi0OPJ/durMSobNmzwqmBUv5RYK1FYWo605jGmX+QslMpKRFSfeBWo9OvXD19//TUWL16MgoICrF69Gq1atcLbb7+NtLQ0f5eRQtCqHccxc80B2EQgTADyR2RiVE9z5tcJpbISEdU3Xo1Ref/99zF48GBERUVhz549qKqqAgBYrVa8+OKLfi0ghZ4Sa6X9xg8ANhF4Zs1BlFgrjS2YjFAqKxFRfeRVoPL8889j0aJFWLJkCRo2bGh/vXfv3ti9e7ffCkehqbC03H7jl9SIIopKK4wpkIpQKisRUX3kVaBy+PBh9O3b1+11i8WC8+fP+1omCnFpzWMQ5pIDMFwQkNo82pgCqQilshIR1UdeBSpJSUk4evSo2+tbtmxBu3btfC4UhbZkSxTyR2Qi/OqMsHBBwIsjuppykGoolZWIqD7yajDtAw88gMcffxxvvPEGBEHAyZMnsX37dkybNg2zZs3ydxkpBI3q2QZ9OyagqLQCqc2jTX3jD6WyEhHVN14FKnl5ebDZbBg4cCAqKirQt29fREZGYtq0aXj00Uf9XUYKUcmWqJC56YdSWYmI6hOvEr5JqqurcfToUVy8eBFdunRB48aN/Vk2TUz4FlqYq4SIiIAgJHyTREREoEuXLr68BdUTzFVCRETe8GowLZEnmKuEiIi8xUCFAo65SoiIyFsMVCjgmKuEiIi8ZWigkp+fj549eyI2NhaJiYkYNmwYDh8+bGSRKACYq4SIiLzl02BaX23atAlTpkxBz549ceXKFTzzzDO4/fbb8d///hcxMTFGFs0vOMvlGuYqISIib/g0Pdnfzpw5g8TERGzatEk2Rb8rM09P5iwXIiIieZ7cv001RsVqtQIA4uPjZX9fVVWFsrIypx8z4iwXIiIi/zBNoGKz2fDEE0+gd+/e6Nq1q+w2+fn5sFgs9p+UlJQgl1IfznIhIiLyD9MEKlOmTMHBgwfx7rvvKm4zc+ZMWK1W+09xcXEQS6gfZ7kQERH5hykClalTp+Ljjz/Ghg0b0Lp1a8XtIiMjERcX5/RjRpzlQkRE5B+GzvoRRRGPPvoo1q5di40bNyItLc3I4vgVZ7nUT5zpRUTkX4YGKlOmTMGKFSvw4YcfIjY2FqdOnQIAWCwWREWFfiXPFXnrF870IiLyP0OnJwuCIPv6smXLMG7cOM2/N/P0ZKpfSqyV6D13vdMg6nBBwJa8AQxWiYhcBG31ZF+ZKIVLyGDXgjmpzfTieSIi8p6hgQp5hl0L5iXN9HJtUeFMLyIi35hi1g9pYxI5c+NMLyKiwGCLSohg14L5caYXEZH/MVDxghHjRNi1EBo404uIyL/Y9eOhVTuOo/fc9Riz5Fv0nrseq3YcD8p+2bVARET1kalWT/ZUsKcnm2EKaom1kl0LREQU0kJmenKoMcM4EXYt1B+cik5ExEDFIxwnQsHCqehERLU4RsUDHCdCwcCp6ERE17BFxUOcgkqBZoYuRiIis2Cg4gWOE6FAYhcjEdE17PohMhl2MRIRXcMWFSITYhcjEVEtBioqOD2UjMQuRiIiBiqKOD3UGYM2IiIyAgMVGUrTQ/t2TKiXN2kGbUREZBQOppWhNj20vmFODyIiMhIDFRnS9FBH9XV6KIM2IiIyEgMVGZweeg2DNiIiMhLHqCjg9NBaUtD2zJqDqBHFehW0cQAxEZHxGKio4PTQWvUxaOMAYiIic2DXD+mSbIlCTnqzehGkcAAxEZF5MFAhcsEBxERE5sFAhcgFBxCTHiXWSmwrKGVLG1GAMVAhcsFZX6Rl1Y7j6D13PcYs+Ra9567Hqh3HjS4SUZ0liKIoam9mTmVlZbBYLLBarYiLizO6OFTHlFgr69UAYtKnxFqJ3nPXO3UPhgsCtuQN4HVCpJMn92/O+iFSwFlfJEdtDBOvFyL/Y9ePAZT6ttnnTWR+HMNEFFxsUQkypfwczNtBFBrqcxJEIiNwjEoQKfVtr5mcg+GvbWOfN1EI4RgmIu9xjIoJyKVfV+rb3lF0jn3eRCGGY5iIgoOBSgAodeNIfduuLSc9U5vKvs4+byIiqu84mNbP1NKvK+XnyE5pyrwdREREMtii4mdaUxeVFvirjwv/BRJXPiYiqhsYqPiZUveOYzeOUt82+7z9gzOoyKwYQBN5jl0/fsb068biysdkVky7T+QdtqgEALtxjMOsoWRGSgF0344JvC6JNDBQCRAju3Hqc/Oynq43omBjAE3kPXb9BEEwU+PX9+Zldr2RGTHtPpH3mJk2wII5sNPbVV3rYgsMs4aS2azacdwt7T4HedfN+oe0MTOtSQS7X9qb5uW6OkOGM6jIbDh2zV1drX/Iv9j1E0BqgUMgeNq8zBkyRMGVbIlCTnozBilg/UP6MVAJoGD3S3s6PiPYgRQRkYT1D+nFrp8AMmI5eE+al+vqDBn2eROZX12tf8j/OJg2CMw8sLOuDfBjnzdR6Khr9Q/p58n9m4EKmTqQ8oS3s56IyDh1pf4hz3DWjwmEUvdDXZkhUx+SaoXSdUWkR12pfyhwGKgEALsfjFHX+7x5XRFRfcRZP36mNeUumFlq65u6nJWWUzmJqL5ii4qfqXU/bP7xDJ+IA6yuJtWqD91aRERy2KLiZ0q5U6IjwvhEHCR1MakW14ohovqKgYqfKXU/lFfXMLlRCDO6y64ud2sREalh108AyHU/lFgr68RAz/o468Qsg1jrarcWEZEaQ1tUNm/ejDvvvBMtW7aEIAj44IMPjCyOX7l2P9SFJ+JVO46j99z1GLPkW/Seux6rdhw3ukgBZ7ZBrHWxW4uISI2hLSrl5eXIzs7GhAkTMGLECCOLEhSh/ESsdMPOSIpFeXVNnW1h4SBWIiJjGRqo5ObmIjc318giBF2oJjdSumEPW7ANIuruLKa6npuFQo+e7le9XbT1sSuXQk9IjVGpqqpCVVWV/f9lZWUGlqZ+kbthA4D0X6mFpW/HhDpV4RmxsCSREj3jpeS26dsxwS0g0XovfwZERL4IqUAlPz8fc+bMMboYTurLF9X1hi0XtNTVLpFQ7rIj8/K07lDqfnV8OJDbJu/9AxCufl8dAxe1rtwDP1vx0rpDHgdE0jZqn63EWoldx85BFEX0SI3n94k0hVSgMnPmTDz11FP2/5eVlSElJcWw8phlNkiwON6woyPCMPy1bfWmSyRUu+zIeHI3bW/qDj3jpeS2EQGILgHJvHuzVbtyHekNiKRt1BJbrtpxHHnvH7DvQwAwd2TdrjfJdyGVRyUyMhJxcXFOP0Yx22yQYJFmnWSnNA35WUxEgSY3U87bukNP0j+5bVzVtogKstu5BimOf+OY80kpaNp97JziZ5M+t+OfiQBmvn+gzteb5JuQClTMRO3ppr4Y1bMNtuQNwMoHbsKWvAF8KqJ6Sy4h4L7ic8h73/2mvevYOdm645P9JYo3bKlVZsaQDNWHA9c0CGGobbVwFC4IuKGt84OGVnCjJyAKFwTYRFGxXpSrMwHABtSrepM8Z2jXz8WLF3H06FH7/wsLC7F3717Ex8ejTRtz3/Q4G6QWu0SoPlAbcyHXjQMAeS6tB0DtTRtXt3O9aT//yQ948dMf3LqBXN9/Rm4Gslo1QXREGMqra1BirXQqk+uYqs0/npEdDK7VlSuRC4g2/3jG3p0EAIIAvDiiK3qkxqvWi3KfOwxAdEQYthWU1vmxfuQdQRRFpda+gNu4cSMGDBjg9vr999+P5cuXa/59WVkZLBYLrFarId1Aq3Ycd6sA2KpAFJqUghGtQaO95653uvmGAYDMDRmovWlPH9IJc9cdUuxmCRcEbMkbYM9o7fr+0nu89Jn8YFe5z1FirdQcDO5an00f0glZrZu4/Y3SZ94681YkW6JU68VVO47XBnBX/1YAMOKGVli75+d6M9aPanly/zY0UPGV0YEKoK8CICJzk2u1yGxlQUxEuOygcSmQ2FZQijFLvtW1jzAAM+7IsM+mUbPygZuQk95M8f0FOI8nkcrk6wrteuozpTJJZdZ6nxJrJXYfOwdRBFLio1SPL9Vdnty/Q2rWjxkFo+ujvkyBJjKC3ODW/E8PKW7vONNGrgtYrkUlTADWTr5ZdnFSV45dJbLvr5AaQGkgqye5jdTqM6keiokI1+z2VnufZEsUhmbV/m5bQWlA0hywzqxbOJjW5Orj+jqhzuiVlskzSoM8lTjelOXW8Mofmen+2ohMZKc0lR2EKuDaYFbX8SBy7z8jN8Pjgay+cqyHhr+2DcO7tfLLjD89M5l8Katancnvaehgi4oPAh2160nwZJayUq36llsnlCh9B5SyLitxvSkrJQSUe00p07FaQkG5928S1dDtPbQGsnpLrh76YM9JrJmcg4pqm0/d3r5kfpZLHKe3zuT3NLQwUPFSMC50fy2Ixy9lcPgzsDQzswe9niZYc71ZqhFQG4C4kuvqUOr+UAps1I6l63spvYeem76n50+pHqqottnHpPjCm8zPSonjCk5f1Kwz9xWfcxrQW1e/p3UJAxUvBOuG5I8p0PXl5mkG9WGlZTMGvY5jJz7ZX4IlXxc6LZQply5+5vsHEBPZAN3bNnWbqrv/xPnaAa8y+xIBv5xPf4xtk3sPrZu+p+evxFqJX8urZQfv+jMVg2NmXYlaCn65xHF57x+Qfe8wAfayugY4EscuMjMH4fUVAxUvBOuG5I8F8erDzdMs6npunUAEvb62zizeVKA41VctXbwNwNQVe5xu1tKNPye9Ge66viXmf3UUK75zHt8QCudTKQjy9Pw5BjUCrs00CkQWatd94eq+5IIppTFFSm1hk/q0c+oWktsuXBCw/8R5/H7pN6YKwqkWAxUvBPOG5OuCeHX95mkmdX2lZX8HvXqe7tUCmcWbC5C/Tnl2jlQ+KV28bFZU0XkxPmk/yZYovDgiE22bRdtbV+TOp9m7wRwt21Ko+/y5BjVS0DD/3m7ontpUd3eS3hWYXfclkQumlMYUCYB98UVJGIDxfVIBADuLfpW9BsIEYHpuJ6dp41pBXCid97qAgYoX/H1D0rrofWkmrus3T7Opyyst+zPo1fN0r5Voba5GkALU/l3rpupjUBwX43Pdz0P90nHX9S1lz6cZu8FcOXaLLfm60O33jt0ijn/z8f6T7q1QItCscaTu7iS9x0dr1pU09bppzLU6Mn9EplviuLkjazMCy9V1UlncPj9qp40Xn6vUHcSFwnmva5jwzQf+SPYWrIteq6z+fELg00Zo8OY8+Ssbs1LSsAVjuqFpTIR/E605jFXZVXQOj727R/XGqCfhWIm1Ejfnr3d6+hcEYFverX675vW2RuhJ7S8IgFxN/+At7fDM0M6yf+NK7rgoZc5dMzlHdyI3ufdwJFztc3INJB0Txzm28rjWdUrvHwYg/2pwIzduxZPP65hJmHWfPkz4FiS+DogL5kBXtbL6M1ji00Zo8PY8+avFSK51RgAwZcWe2n/L3Fi1Eq1JXF+Xvldb8gbgN9ktseHwaby/+2fFstWIInYVnUN8Y+XBnCu/O+52YxNFYPexc/ZkZr7Qc360WpyculNkjpMAILN1nH2tINe/caTUEqvUHbijSH7hRbkWCtdWX+Fq4cSrn+vq8kgA3OtIuWPtWtcptdjMH9MNN7Rtit5z17udyzDBfRq62uctKq3wOSswKWOgYiBP+vwDFan7O1cLZxiZn6/nyR8zVgBgUp80LP26EDa4p4RXaueNjgizl8Hx5hYmAJP7p6N3+wSUXryER1fudfo7x1kda/coBym4Whap1cX1hqPW4qBWbk/oOT9a2yjdnMNQO5BYaqV4dOVe+2dMiY+W/ZtZQzvjjqxk2XOu1B3YM7WpbEZd6fy5cg2AgdrZVWrnUm/LsFIZb2jbVPE4vXpvN/wmu6XuzxsdEeY+s2zNAdZ9fsLMtAbSm5UxkNlp1YIlI9+LAsfo8yRdz//7dSEgAL+/sY3ijA1XFdXXJg2P6tkGW/IGYOUDN2Fr3q2YNjgDOenN7InPHEnfK8Ub+NXtpQrRNQAosVaqtjgAtQFO99SmOj+JMj3nR2sbpbpl7ZSbsWBMN3tXCnDtM0qp8V3/RilIAeQz5744oiuyU5o6vS7tZ/hr2xTrL2nGlePsK7Vz6UqpnlQqo2PLnKsfTpV59HnllkawicCyre7jgshzbFExkJ6BroFupfDnAEnOMAoNRp4nuet55Xf6Am+5MiolWlP7Xsl9dinL6tnyKky92v0kkQIAEe4p6iXSeIdgfSe1tlE6BtkpTVFeXSObR6Si2ubVwHul7sBRPdsgIynWPlAZ8K71Tm8SO7l6UprN1bdjArbkDZBNsjdjSIbb7LEFGwoQF9UQD/VNt7+/1FIj93lLrJWyXZFLNxdifO80tqr4iIGKgmANilK66KV9BzoPij9nBQV6hpHjcQGYmMlbRs4Ek7uepdwZrjfP3K5J+OL7X7wqo1r2V6UbOADZG45jACDXnfGqwpRdPeTqGaUyArWDkB1nvqidQ6VjoBbk5KQ382oMkhQwSuvnSGVUCoo8qb/0jItSqieHvbbNPtZFacxIZmuL7H5fWncId2W3VBx74liOZEsUJvZJc5tZZYN/EgR6oy4N7GWgIiPYA0IdnwrdlpsfkhHwp19/TqkN1PRcTxJChQKjKxGjplEr3SSnD+mElz87bB9vMiM3Aw/1TfdpZp3SWBq1z64VAMj9rntqU3tGVU/KqFbPuJZx849n7LNNHLfVOofetDh5OwZJ7vP07Zjgl/pLq0xKg6v1pMlPax4jGyjbrg6O1tuiPeHqmCvH9wmD8ricQKprkxo4PdmF1vSzQFLa9/TcTnh53WHVKaFG3/gCSWv6YrDOj78EsxIx8rrYV3wO3xX9il6p8fYWC8B5inOYAEzsk4YJfdJwuuwSdhSdQ8/Upk7b+4Onx0EtQHL8nd6ZHq7796Se0bOtN+fZH+kVpPfZdewcHl2xx+0mvXXmrdj84xm/TGnX4nRdAbJLIKx84CbZ9YkWb3JPHhguCJh3b7bbYF7pfaQxT65rSrnm6wl2oGDkPcwTnJ7sAyNTzivtO6tVE9n+VUldi55d6UkIFSpLAgRzZlSwrwvHm+VfPz/sNAV45A2t8LffXQ/gWmvBsq2FWLK5EEu+LsTSq03mUivZjNwMZLay+CXA0joOSt0vajPvctKb+bRSr9wMG6XrWKtO8vY8+2P2ltosKBuAZVuK8MzQzrItP3qDK73bObYwRUeEyeZxUWrJeahfOiDAnp1Wa0VqpXT79nE5V7ucgODPfqyLy6YwUHFh5EBDtalvWgt01eUpwWo5MwDfzk+wWxyCVYkE+7pw7ZpzPVXv7/4ZY3PaOrWUODaTO25vE4H8T2ufbn0NsLSOg96bvLfBhtL+10zO0V3PqNVJwTrPct8TrVlQALB0y08Y3yfVLSjy5birXQuO+5kxJEN1+QNXD/VNx13Z7lmIXbvJtNLtl1fXqOYACrS6OKmB05NdqE1lM2Lfw7q1xPDXtilOTTZ6qmkwuB4XaU0PwLfzE8hp30r0Tkn3VaCuC2mwZIm10uk1pbVaHO0sOqdaPjmO04O9oXYclG7yrvtS2k5pOq/juVTavzTDRk89I1cvTB/SCYWl5dh1TDmxmr8ofU/0nEObCPux3lZQin3F5/Dx/pPIe98958i+4nP4976f8fH+k7LTwV2nirteh65lfumzQ/acMQ/3b4eU+GjZc+u4z2TLtSnS0u9T4qOxZnIOVj5wE7bkDUBmK4vHU8PlcsgofQal75ja53Vk5D0sUNiiIsPbgYb+eDpXa76Ue1ryJHoO5XEsSgmhoiPCUF5dY69k9DKqJSpYM24C8VTlNtD7avfMr+XVuoKOHg45RrRayRz58jSqdhz0tm5pBRtq59JfM2wcr//9P5+3P9ELcG/B8vQ8q9UL+4rPOaWXt4m16earr9iQ1dqi6xy+/U0RPjt4SnU7mwjcvWCb/f8CgEm3pMke92VbirB0y0+qXXmuWXkXbCjAgg0FTmOiNv94xumzCahdL0guuZ+0H2l8iydTw6XPN/y1bZrrIMm9DsCjViXH4Kqi2lYn1hzjYFoP6F1Xw5PmarX3VFrPxHFAWIm1Em9sKcTrV1dGVRqsVhfHsbh2NzxwSxrG99GXs0DPsQ0kfw1kVOOvdXkA9QHNjrOwlDiOUZErn2PadFe+DgRUOg5q69Q4rqSsZ30XtXPp7/PgtsYQrq0a7On7K83UKSwtx4ETVsz97JBitl0BwIgbWuGDPSftn+3261pg3cFTXn02V67p84GrXQAyQYLj9eHJOlBy+9yadysAqJ5z14G7M3Izase5ONhXfM4ph4z0HnLrIIUJtYsjyr3u+p1T+z74s54P9IMtB9MGgCfrauh9Ote60Wo9FS/eXIC562orEgHAg33TZJML1cVxLHLdDf/7dSGWbinU9eU0uh/Xk4GM3lYY3rQMKu1LrZlfRO31F+Zys8xIisXOonPooTCLR6mVbP+J8/apyv5ocfIkp4rU1er6PXcbp3C160V6H72tIb4Gpm9sKXRfYwjAowPao1NSLG5oq53PxXFFZdd6IW/NAaestWpE1C5HsHbyzfYn98LScr8FKjaxtk57/esi+3Gf2Ce1NqOxA9dWME9a6+T2qZTcz3E/o3q2wfnKy5h7tWXrpc8OAQKcBoAr5ZB59aujbu9tE4ElX/8k+7oruXFQhaXlqKy+4tb65W09b7YHWwYqOmjd6Jddbc1wpNVcredGq9ZN4DqdTgTw+tdFGN87zW1fdXEUuNKNU++XM9kShRm5GW6j/M12PHytMDwJiBwDX9d9aVX+IoD593ZDs8aRTjdjxwDF8Qbp2GLhWD5pjMBd17sPavSF0nHQ29Wq1PWi95z4Y4ZNibUSr28plP3dq+uP6iqL1qBnT9vXbWLtsgaOrZDeBgmuwgRgfO/ahy/pWjhddsktUAGcx3/Idb14sk+l5H6ODzIl1kq8tO6Q08we1wHgfTsmyB7jrw6dlt33J/tP6Tp2juXQWnvKm3rejA+2DFR00BqY6JqNEHC+4PW+J+B+UShlrp3rMuffsUyuF1OgWg+8zd3gj+ZEtRunni/nqh3Hnfr5pw/pZLqusGDO6Jj/1RGs+K7Y/po0wDEjKRbZKU01K/9wQVDNzipXoardWNVu7P5ukpb2ta2gVDWgl/YlTUsF3M9JILMnaw1e1bo+9A569oRrPafUSiV1D0lcX3e9oQtXrw3H1i8A9lYsV45rQAHKY3ocuXZZuu5TbfyR2rmQzsOayTnyGygQATzQp519/I0cx3LomXWldR9yJF27Zy9Wme7BloGKDloD8uSuk0l92qmeVK0bresy867N8HL7VLoo/T2A03VcjN6nSn82J0qfaeb7B9wSO2kFYXIV9sufHcZd17cM2s1Rj2C0hKnmwRCBYQu22QcYSpX/rqJz2FZQine/K9Y19VOpQvUm8PImJ4rec6cnoFc7J47J3xxvgq5jP1zL4Uv5XKldH2oLMkrH03VMiONxGNatJdbs/lnxxi6Re7iaNriTvdXKcYCn9Lp0jHcVnYMgQLELy5OHLqnezElvhruyW2LZ1kIs3VzodM1K17PcPtW67LTORY0oYkfROY+DwWaxEVg7+Wa3sS1hAjB1QHsM7JyI7JSmKLFW4uP9JzVbX7TuQ4B8fe7rAG1/Y6Cig9aN3m39DwDj+6Tqek+5G60A5WXmAeUvyYzcDMWL0l/95Kt2HHfqBwXcFwALVr4Xe+Iwh1kAem6acl9wtQreqP7aQI+j0fNEJsL5PLlmYn2wTzt7ngwlak+fngRe3uREkcYRaK33AugL6NVyHSm1VtjE2pkygkNAoDX7Q0/55AILtRl/v5ZXy96AHGeHuGaRnZ7bCVmtmjgFFlrBhFRW1y49uW1dX/9Ntnu94RjEefvQlWyJwjN3dHHqRpL+xnWfauVzfF2rhbFnalOPu8FeXncYW/IGYO7Ia+8tXD3Pr64/in9uOIohXZOw7uApzW46AcDQrCSntZdcKdXnggCEidCdgybQOOvHA0qj+30Z1V9irXS60cr1acqN8tYz6lzv/tWmJjqmQNdKZS+VXa7CDfQsGz2zaLT6c2fKHEOj01H7a8aIlOZcFEX0SI23d3XonR0hpQxXOhaAcjeH2nXjybFUKu8/R9cuCqh2bXqyP6VrSfquHPjZ6rakRUp8tEczTZRmf3haPj3p6V0H3QO131O15Tj8NT7Il5ZIrQkMwV6nSo5UDrkB4FIgqtQNJlfXA9fqxBJrJXYfO4epLksT6CEIwIhurbB2z89OkzWGZiXbHyYB95lNjhaM6Yb4mMiAHWPO+gkQx+ja8QvoS2tFsiUKzwztjPF9UrFsSxGWfP2T2zZyT52e7lOuwlCrCP74f3vdUqCP7N5a8+kb8D3fize0BivqaT2Q6/4xeiCy62BPb3LGuD41Sfkizlde1vX3WnlHlm2tTYGv1Cqg9PSpp/XL8ZpVakl8dOUe2ZwbcmpEEbuPnUPTGOWbp9y1JLdYaFbrJk7jxjx5epa6Bry5thzLp1UPyA26DxNqBz4rjSnS+i4B+gIQX1oitVrP9JQxGJy6l2QGgGt1g6ml+U+2RKFpjHw3v6tZQzujR2pTFP9aifOV1RBF4E8ffu+U+fl/vy60D0QWANzbK0V1LIyeGWTBwkDFC0pfQF9P6tItP3k89kTPPpVyJShVBKfLLjkFKUBtCvQ7MpNkK2O511wrXH+Pk/GUniyacjcJo6cxA5DtcvEkT8/MNc5NuyKudUVoCROAF0d0BQCcvVjl3s0pAEs2F6oGqYB7wKWViErpOzYjN8M+u8Lx87y+pVDxCdWRANifUPXm3pG7ab782WGnlg/X69sxL0zY1XK5drnIdQ34c2VhpUH3NhFo1jjSp+5frWvR165eIx8QlGanadHbveX4f2+6GuVcsYnITmmKQ6cu4E8ffq+5vQhgpcPgeUfS5AKzBCkAAxWPBWomhmqeChHY/OMZr5v85cr7j9HXK1YEB0+el32votIK5z5yAJP6puHGtHhMenOXZl+5P/NJeErPF16uzEYHWIBv15zSdSVC31TUV+/thvLqK/YmYgGw95mHCwIm9El1m/WmdEPRG1grfd6MpFi31OQSm1ibc0MaLKnG9SlTK/eO3pumUl4YpS6a7JSmAb22PB10r4fea9HXQMOoBwRPZ6f5SqtO1BoLI3n5s8O4qV28ZquxK8euQMd/v/TZITSJbmiamZAMVDwUqEhf7UYqwvtgSKm8EJXzBLiuSSGREnc5frE2/3gGD7zlHqSorVuiNRYmEOQCDsf+YrUyGxlgAb5dc2rXlRRwKAkDkBIf5dQ8LaJ2kN0/x3RD66ZROP5rhd9vKEqf1zHFultZr+bcGJqZ7LRyrUQAMLpXitMUbIlW4OfNTBPH/wPK11Agry1vBt1r0Xst+hpobP7xjNM5FK627AXyu+fP2Wlq+9CzUrfj9o7p8PefOG9faNGRUleiFmnzMTem1M7i8/MDuL8wUPFQoCJ9rcjZ22BIqbzdU5Wf5pItURh5Qyu3MSpSECFtI/fFDhOANZNzkBjXyGm0udK00Rmr92PzkVKn/bimWvcXtf5irZuEkX3iajNNXEf0K82SyFtzwD0oEZ1bR1ynn4oA3t1R7F5xA9h34jweXbnHrZUlTAAmaMx48+bzqnGcJptsicJcl5kxk67OTILC5wHUv1/+alXT2zXgL67ltg+67+v5oHuJ3LkJA3C2vMpp7JQvx0yuu1IQgb4dE7wutx7+mp2mxNMxO3LbP9QvHe0TYzDxzV1O23o7y0jy7rfFssHP7mPnMDTL+ECFs3684M+1O1wpjfT2ZaaJWnnVRs/vKz6nmgJdaRbGg7e0c1o0bLjD6HPHhbZmvH9AtrwfTrnZry0rRuRA8fc+Xc+h45oq0uBY4NriZQKAPIdZTCXWSnz1wy+Y9cH3TtdVGID5Y7rhhra1x1vPzBmlNVjuvTEFK78tVpz55e3nVfL4re3RUSFtvNoMPaXcO97OBjITpQcCf5bbbY0mKM/282bfRq3D5a/ZaXrfW+09lbafPqRT7arQMq9ntrbgwAmr0+yjYd1aYu3unzW7QwH5FlapbglEF5An928GKjq5VgCBrrT8HQwForxyXya5RcNcaUX9s4Z2xsRb2vnlZh+sHCiOZfV24Kvaezpec1uPnsE/NxQ4bSu1arge15l3XHuC1roB6JmuHAZg4i1pstmYXSs6pYpY73ktsVbik/0leP6TH9zLIdQuHufNdeGaEsDfDxtGCWa+nxJrJXYVnbPne5L4Y+q+kSkB5AJkf1wfngZfStu7DhgPE4BH+qdj4caCazPScjOcct98vP8kpq7Yo1o+KWeOXAbfQB17Tk/2M09m+fjrSdrffddazcvelFuueVdu0TBXWk/sPVKb+qXSDVYKetf1UwD1qdqevqfr5x+9pMBte6XBsS+tO4S7smunXGt1W+rpcpFaX153Wd8qDPIzv1ynAnua4GxoVjJe/PQHv46zSLZcSwlg9hYSvYK9PkuyJQrxjQMzXs/IAeyezk7Ty9MhA7JdbDLfTZsIvLahwKm+kZLGSWXu3ta9S0gQarvTHBO6jerZBi0tjfDoyr1O+zA6fT7AQEWTJxWAv59ogjUuwpdyy810WCqzSKMjtWmkI29ohcS4RoqLw2kdD8eAKxhTHPWsn+LpPtWuOaW1TpTYRDitVaN2A9AaJyVNswXcp1XKNUkLwrWpwFLuEcdt9JzXQIyzcHzvUA9QJEZM5w3kzBwjB7AH4rrwNPiSG1smPQi5tqhonXelfUvLB0CoDWYAoEdqvOHpGOQwUNGgtwIw44qTesiVe+aaA4iOCEeP1HgA2guruX6xtWbXTB/SqTZTpsN7CACW3t8dAzsnqS4Op1Yet6RcuRkB/9Lpyc+iZ+0hx7wNv5ZXK37+AyesHpXPdd9aNwDXxdykDKxSBTl1xR57MLslb4DT+zSJbqiY3t0mQnG2gtbN1OhZV6HAiOm8gW75qEuBJODZdVxirUR0RLjsk490npW6a/SmhlB6QDU6HYMcBioa9FYAu455l2XSaHI3WpsIPLpyr+ZAOSV6Ztc0iW7o9iUZ2DkJgPLMgi1Hz+D3SwvcvliAQlKudYcxY0iGW2prf54PubI6jhfR2qdc3gYB8ouCRUeE4aXP3BN4KQkTgFE9W7u9rnUDkH4vLebmOhZBCsK35A1w6l93PO+lFy+5NSHbID+ORc/NtK7dtPzNqO4SBpGe0XMdqy31IaI2q3CzxtdS2zeJaqjrvDvuW+3B2oznlIGKBj0VgJSi3JUZmsy0aOVvkXjaQuT6hXT9v9qXQa4LwgZggcMAUtfyKLV8ZbVu4vbk709qzapa+1TK2yCiNlAJcwl2yqtrPJp6aBOBFd8VY8V3xRjTKwU3t2+O7h6mxfZ0LIJ0nuVSyktPgK7r5JihIgwFWuPIjLrBMIj0H62lPqTUEnrrUiVaPQVmO6cMVHRQuxDk5vwD11KPm+lky9Eal+DI3y1Eal+GUT3bICMpVjZ5l1x51Fq+fPnS6RlkrHR9aO1TNRsx3J+c5G7+0rRgKQ+CXLp24FrA4s10Q2+6FZQCuFE92+CubPc1UUid3nFkZrvBkGfU6gRPE2mqMcPSIJ5goKKT0oWgdGG9em83/Ca7ZRBK5jvpRqu1UmewL+Ty6hrVzKmuC3j5u+nb0xkqnu5LrTVL7snJ9TNK3UMrvi1GmAA82KcdslIsqlMRRdSOQfJk7JS3x1YtgAvUzdSInDn+pJQHJRTHv5HnlLq9pdl2/nxINONYFCUMVLzkOABSKfNroPftz8o42RKFoVlRuFh1RXZhNSMuZK0buWt5/Nn07a+bg+O5ApwHAidbompnwrgMMtWTzl9u3MjrWwqxZnKO5hRjx5lAenl7bP0dlKhd+8HMIxIISuU3egVvCh6lAGJolv8fes04FkUJAxUvuFYow7u10rVmTCD27e/KWG1htWBfyHJf2um5nZySGcn9jT/K6Y+bw+LNBbWzm0TIDkwGahf/kgaZTumfjt7tExAdEYby6hqnlOSO1MaNVFTblFPmX+XtonRGdyuoXfuh3uqgVv5Qa6Yn3wQzgDD6O60XAxUPyVUoH+w5aV80KpAXljeVsbetL+LVDqBAXMielCkQX1o9+/f15rB4UwHy112boeM6MHnm+wecMviKIrBw40+IjWpon26oFoiqlS8nvZm9K2/r0bNY+d1x+/4d18UJJVrXfqi3OqiVPye9WUg109dHWnWKp/VwqAQQwcJAxUNKFUpFtS2g61Co7VupMvam9UXrqVXpy6b3i+hNmfR+afVUFvO/OmJfQVdrUKLSzUHPfuauU59GbAPcRrzWiKK9BQZQD0S1+pilrryhWS3x6MD22FV0DoIAv/ZzB5PWtR/qrQ5a5Q+lZvr6RqtOC/UuSTNgoOIhIytET/btbeuL0t+orV/j+kWc2CcNE/qkyQYzgWqe11NZ5L1/QHPKtWMQIndzcOzOUap0CkvLFQckq1FKQ68UiOq9eSVbovCb7NC+sWld+6E2ONCVnvLzKdt8tOo0T+s8f7fM1BUMVDzkjwrR24vNk3170xSu9De7j51T/LIBcPvdkq8LsfTrQrdpsIFqntdTWbgGKXL711rTybU7R+rCiYls4JSfRGkQsNrSAWoro2pNA64PFZaea98srQ7efr/NUn5S5nputeo0T+o8tswoY6DiBV8qFF8vNr371noClatMlf7GJoqKXzYR7r8Dam/Iz6w5iIykWJRX1yCteQzSmsfIZlz1tTVKT2WhFCCEoXZgqdJSAhlJschOaarYnWODc1p5KbCRW5+mZRP3Bb+A2tWi78hKRrLFOQ19qLUKBJqea9/owM3X77fR5Sdlcue2b8cEjxf6lKvz/N0yU9cwUPGSNxWKvy42PftWewJVazmQ+xuthaqUpsPWiKI9YZs0O8qRAP8kxdMKgOR+L5FW4ZVbX8gmAsMWbMPckZlIiY9W7c5xPZdyN1WlbK1SkALUz6dqT1ogzHwjr+83k7pM6dxuyRug2dI3qU8aln5d6LRSsev14M+WmbqIgUoQBfNiK7FWIiU+2m02klZlqnSjVPsy5o/IVF6bwmE/7+/+2el3ggB795HezyR3Q9v84xnn9wXcBpbOHZnp1v0z5sYU3HV9bX4CpcX+pJYhPflJ5FYtdR1joKfrzsw3Y3+rS83Z9f1mUpepnVulOtP12n6wTzuM75Mqey1otbwo/T46IgzbCkp9HrPij4kSgcRAJYiCNRBXrvKXZiTpqUzlbpRKLQSFpeXo2zEBW/NuxbKthVi6udCeyt11pVxXconHlL4USjc0uSUM5AIgx0Rp23+qnbK74ttivPtdMWbkZqgu9ueUn0RhrAug71zWxxYTJXWtBSLUZx6RMq1WW9c6U+7afn1LIcb3SZV9fz2z+ORWpR/+2jafg3y1hwWzPEgwUAmiYMxM2Fd8zulm6lr5+1KZOn4Z5S7gZ+7ogvG901BUWoHoiDD7l0iJ6361ghG5G5rS6s9KC+Z1T4VbRlfXZdJdhQE4W16FjKRYt9V/HT+L3nNZn1pM1Ji9BcKb3BehPPOIlGm12rry5trWeohx/L1r/So3pkXPtatWtwLuEyWMepBgoBJkgXyiXrXjeG1GUpfXXVfF9MesJbULWKm7aFi3looZfJXeMyMpFt8V/ar4pfc08FIKbJTGsEivT12xR3WbNZNzkJ0SuGUT6iJPz10wm6C9fZJki1ndo7fV1pG3D4RaDzHS7+XG1El1oloqCVdqAZXcRAmjHiRMEagsWLAAf/nLX3Dq1ClkZ2dj/vz56NWrl9HFCphAPFHbv0wKT/uOXxBfK1O1i1v6vWMekt3HzsEmiuiRGo9pgzvJ7lfpPYct2CYbHDiujOxJ4KVUgUwf0gkvf3b4Wqr+IZ3QqkmUU+uLUqOLCKCiWquji1x5cu6C2QTta5cUW8zqFk9abSWBbl1TG7PiybWrFVCZpSvT8EBl1apVeOqpp7Bo0SLceOONmDdvHgYPHozDhw8jMTHR6OKFDKVVnMMg30TpS2WqdHHvP3Eev1/6jdPNBICuG4xS7hGlIMXxM3kSeClVIKN6tsFd17d0eg+5pxY5HIfgPT3nLthjWczeJUXB5W3rSCBb15TqsfLqGo+uXa2AyixdmYYHKq+88goeeOABjB8/HgCwaNEifPLJJ3jjjTeQl5dncOlCh+zy4AKwdvLNfu+S2PzjGaeWG0EApud2chrrISVDc1zPRu0Gk2yJwozcDOR/qp563jHniOvf6/0CKVUgru+hVEE93L8dFm4oUJ1uSPppnbtgBw4cFEuOfGkdCWTrmicpENSuXbWAyixdmYYGKtXV1di1axdmzpxpfy0sLAyDBg3C9u3b3bavqqpCVVWV/f9lZWVBKWcoUPoy+TtIke2vFYFWTaLcm0cB2fVslG4wma0sqvt2zTniCz0ViFrryx9uamv4l7e+CHbgwEGx5MosN2xX3qZA0Hofvb8LFkMDldLSUtTU1KBFixZOr7do0QKHDrk/Wefn52POnDnBKl7ICcaXSba/FgBE9/7MMMCpRQVQv8Eodf9If2fEzUJv6wsFjhGBg1lvTGScUPnO18Vr1/CuH0/MnDkTTz31lP3/ZWVlSElJMbBE5hPoL5PS02331KayNxMAum8wcjek6bmdkNWqiaFfuFCpoOoyIypfnncKVXXt2jU0UGnevDnCw8Pxyy+/OL3+yy+/ICkpyW37yMhIREZGBqt4JEPt6VbpZuLJDaYuPg2Qf9S1ypeI9DE0UImIiED37t3x1VdfYdiwYQAAm82Gr776ClOnTjWyaKRCLZiQu5l4eoPhDYmIiCSGd/089dRTuP/++9GjRw/06tUL8+bNQ3l5uX0WEJkTgwkiIgoGwwOVUaNG4cyZM/jTn/6EU6dO4frrr8dnn33mNsCWiIiI6h9BFOVymYaGsrIyWCwWWK1WxMXFGV0cIiIi0sGT+3dYkMpERERE5DEGKkRERGRaDFSIiIjItBioEBERkWkxUCEiIiLTYqBCREREpsVAhYiIiEyLgQoRERGZFgMVIiIiMi3DU+j7QkqqW1ZWZnBJiIiISC/pvq0nOX5IByoXLlwAAKSkpBhcEiIiIvLUhQsXYLFYVLcJ6bV+bDYbTp48idjYWAiCYHRxgq6srAwpKSkoLi7mWkc+4HH0Dx5H/+Bx9A8eR/8I1HEURREXLlxAy5YtERamPgolpFtUwsLC0Lp1a6OLYbi4uDh+Ef2Ax9E/eBz9g8fRP3gc/SMQx1GrJUXCwbRERERkWgxUiIiIyLQYqISwyMhIPPvss4iMjDS6KCGNx9E/eBz9g8fRP3gc/cMMxzGkB9MSERFR3cYWFSIiIjItBipERERkWgxUiIiIyLQYqBAREZFpMVAJAZs3b8add96Jli1bQhAEfPDBB06/F0URf/rTn5CcnIyoqCgMGjQIR44cMaawJqZ1HMeNGwdBEJx+hgwZYkxhTSo/Px89e/ZEbGwsEhMTMWzYMBw+fNhpm0uXLmHKlClo1qwZGjdujJEjR+KXX34xqMTmpOc49u/f3+16fPjhhw0qsTktXLgQWVlZ9mRkOTk5WLdunf33vBb10TqORl+LDFRCQHl5ObKzs7FgwQLZ37/88st49dVXsWjRInz77beIiYnB4MGDcenSpSCX1Ny0jiMADBkyBCUlJfaflStXBrGE5rdp0yZMmTIF33zzDb788ktcvnwZt99+O8rLy+3bPPnkk/j3v/+N9957D5s2bcLJkycxYsQIA0ttPnqOIwA88MADTtfjyy+/bFCJzal169aYO3cudu3ahZ07d+LWW2/F3Xffje+//x4Ar0W9tI4jYPC1KFJIASCuXbvW/n+bzSYmJSWJf/nLX+yvnT9/XoyMjBRXrlxpQAlDg+txFEVRvP/++8W7777bkPKEqtOnT4sAxE2bNomiWHvtNWzYUHzvvffs2/zwww8iAHH79u1GFdP0XI+jKIpiv379xMcff9y4QoWopk2bikuXLuW16CPpOIqi8dciW1RCXGFhIU6dOoVBgwbZX7NYLLjxxhuxfft2A0sWmjZu3IjExER06tQJjzzyCM6ePWt0kUzNarUCAOLj4wEAu3btwuXLl52ux4yMDLRp04bXowrX4yj517/+hebNm6Nr166YOXMmKioqjCheSKipqcG7776L8vJy5OTk8Fr0kutxlBh5LYb0ooQEnDp1CgDQokULp9dbtGhh/x3pM2TIEIwYMQJpaWkoKCjAM888g9zcXGzfvh3h4eFGF890bDYbnnjiCfTu3Rtdu3YFUHs9RkREoEmTJk7b8npUJnccAWDMmDFo27YtWrZsif3792PGjBk4fPgw1qxZY2BpzefAgQPIycnBpUuX0LhxY6xduxZdunTB3r17eS16QOk4AsZfiwxUiK6699577f/OzMxEVlYW0tPTsXHjRgwcONDAkpnTlClTcPDgQWzZssXoooQ0peP44IMP2v+dmZmJ5ORkDBw4EAUFBUhPTw92MU2rU6dO2Lt3L6xWK1avXo37778fmzZtMrpYIUfpOHbp0sXwa5FdPyEuKSkJANxGsv/yyy/235F32rVrh+bNm+Po0aNGF8V0pk6dio8//hgbNmxA69at7a8nJSWhuroa58+fd9qe16M8peMo58YbbwQAXo8uIiIi0L59e3Tv3h35+fnIzs7GP/7xD16LHlI6jnKCfS0yUAlxaWlpSEpKwldffWV/raysDN9++61T/yJ57sSJEzh79iySk5ONLoppiKKIqVOnYu3atVi/fj3S0tKcft+9e3c0bNjQ6Xo8fPgwjh8/zuvRgdZxlLN3714A4PWowWazoaqqiteij6TjKCfY1yK7fkLAxYsXnSLXwsJC7N27F/Hx8WjTpg2eeOIJPP/88+jQoQPS0tIwa9YstGzZEsOGDTOu0Cakdhzj4+MxZ84cjBw5EklJSSgoKMD06dPRvn17DB482MBSm8uUKVOwYsUKfPjhh4iNjbX39VssFkRFRcFisWDixIl46qmnEB8fj7i4ODz66KPIycnBTTfdZHDpzUPrOBYUFGDFihW444470KxZM+zfvx9PPvkk+vbti6ysLINLbx4zZ85Ebm4u2rRpgwsXLmDFihXYuHEjPv/8c16LHlA7jqa4Fg2bb0S6bdiwQQTg9nP//feLolg7RXnWrFliixYtxMjISHHgwIHi4cOHjS20Cakdx4qKCvH2228XExISxIYNG4pt27YVH3jgAfHUqVNGF9tU5I4fAHHZsmX2bSorK8XJkyeLTZs2FaOjo8Xhw4eLJSUlxhXahLSO4/Hjx8W+ffuK8fHxYmRkpNi+fXvx6aefFq1Wq7EFN5kJEyaIbdu2FSMiIsSEhARx4MCB4hdffGH/Pa9FfdSOoxmuRUEURTE4IRERERGRZzhGhYiIiEyLgQoRERGZFgMVIiIiMi0GKkRERGRaDFSIiIjItBioEBERkWkxUCEiIiLTYqBCREREpsVAhYiIiEyLgQoRBUx1dbXRRXBjxjIRkTIGKkSkW//+/TF16lRMnToVFosFzZs3x6xZsyCtxJGamoo///nPGDt2LOLi4vDggw8CALZs2YJbbrkFUVFRSElJwWOPPYby8nL7+7722mvo0KEDGjVqhBYtWuCee+6x/2716tXIzMxEVFQUmjVrhkGDBtn/tn///njiiSecyjhs2DCMGzfO/n9vy0RE5sBAhYg88uabb6JBgwb47rvv8I9//AOvvPIKli5dav/9X//6V2RnZ2PPnj2YNWsWCgoKMGTIEIwcORL79+/HqlWrsGXLFkydOhUAsHPnTjz22GN47rnncPjwYXz22Wfo27cvAKCkpASjR4/GhAkT8MMPP2Djxo0YMWIEPF2izNMyEZF5cFFCItKtf//+OH36NL7//nsIggAAyMvLw0cffYT//ve/SE1NRbdu3bB27Vr730yaNAnh4eFYvHix/bUtW7agX79+KC8vx6efforx48fjxIkTiI2Nddrf7t270b17dxQVFaFt27ay5bn++usxb948+2vDhg1DkyZNsHz5cgDwqkyNGjXy6TgRkf+wRYWIPHLTTTfZgxQAyMnJwZEjR1BTUwMA6NGjh9P2+/btw/Lly9G4cWP7z+DBg2Gz2VBYWIjbbrsNbdu2Rbt27XDffffhX//6FyoqKgAA2dnZGDhwIDIzM/Hb3/4WS5Yswblz5zwus6dlIiLzYKBCRH4VExPj9P+LFy/ioYcewt69e+0/+/btw5EjR5Ceno7Y2Fjs3r0bK1euRHJyMv70pz8hOzsb58+fR3h4OL788kusW7cOXbp0wfz589GpUyd7MBEWFubWDXT58mWfy0RE5sFAhYg88u233zr9/5tvvkGHDh0QHh4uu/0NN9yA//73v2jfvr3bT0REBACgQYMGGDRoEF5++WXs378fRUVFWL9+PQBAEAT07t0bc+bMwZ49exAREWHvxklISEBJSYl9XzU1NTh48KDmZ9BTJiIyBwYqROSR48eP46mnnsLhw4excuVKzJ8/H48//rji9jNmzMC2bdswdepU7N27F0eOHMGHH35oH7j68ccf49VXX8XevXtx7NgxvPXWW7DZbOjUqRO+/fZbvPjii9i5cyeOHz+ONWvW4MyZM+jcuTMA4NZbb8Unn3yCTz75BIcOHcIjjzyC8+fPa34GrTIRkXk0MLoARBRaxo4di8rKSvTq1Qvh4eF4/PHH7VN+5WRlZWHTpk34n//5H9xyyy0QRRHp6ekYNWoUAKBJkyZYs2YNZs+ejUuXLqFDhw5YuXIlrrvuOvzwww/YvHkz5s2bh7KyMrRt2xZ/+9vfkJubCwCYMGEC9u3bh7Fjx6JBgwZ48sknMWDAAM3PoFUmIjIPzvohIt3kZtkQEQUSu36IiIjItBioEBERkWmx64eIiIhMiy0qREREZFoMVIiIiMi0GKgQERGRaTFQISIiItNioEJERESmxUCFiIiITIuBChEREZkWAxUiIiIyLQYqREREZFr/Hw9aXBCaSEEJAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -922,7 +3989,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6gUlEQVR4nO3de1wU5f4H8M+CgqACKncFQU2RBLxmeEFNj0h0Me2Xt7xbR1NLK0MrK7sI2TmnrFPa0dLOKcsu1ilNzeNdIUMTb6UlYViCSsqSgKDs8/uDdtrLzN6X3WU/79eLc3JmdvaZ2ZlnvvNcVUIIASIiIiIv5uPqBBARERG5GgMiIiIi8noMiIiIiMjrMSAiIiIir8eAiIiIiLweAyIiIiLyegyIiIiIyOsxICIiIiKvx4CIiIiIvB4DIiLyGM888wxUKpVF26pUKjzzzDNOTc/gwYMxePBgt90fEVmOARERWW3t2rVQqVTSX5MmTdC2bVtMmTIFv/76q6uT53bi4uL0zld4eDgGDhyITz/91CH7r6qqwjPPPINdu3Y5ZH9E3ogBERHZ7Nlnn8V//vMfrFy5EhkZGXj33XcxaNAgXL161Snf9+STT6K6utop+3a27t274z//+Q/+85//4NFHH8W5c+cwatQorFy50u59V1VVYcmSJQyIiOzQxNUJICLPlZGRgd69ewMAZsyYgdDQULz44ov4/PPPcc899zj8+5o0aYImTTwz22rbti3uvfde6d+TJk1Cp06d8PLLL2PmzJkuTBkRASwhIiIHGjhwIACgsLBQb/nJkydx9913o3Xr1mjWrBl69+6Nzz//XG+ba9euYcmSJbjhhhvQrFkztGnTBgMGDMC2bdukbeTaENXU1GD+/PkICwtDy5Ytcccdd+CXX34xStuUKVMQFxdntFxun2vWrMEtt9yC8PBw+Pv7IzExEStWrLDqXJgTGRmJrl27oqioyOR2Fy5cwPTp0xEREYFmzZohJSUF77zzjrT+zJkzCAsLAwAsWbJEqpZzdvsposbGM1+1iMgtnTlzBgDQqlUradmJEyfQv39/tG3bFgsXLkTz5s3x4YcfYuTIkfjkk09w1113AagPTLKzszFjxgzcdNNNqKiowMGDB/Htt9/iL3/5i+J3zpgxA++++y7Gjx+Pfv36YceOHcjMzLTrOFasWIEbb7wRd9xxB5o0aYIvvvgCDzzwADQaDWbPnm3XvrWuXbuGs2fPok2bNorbVFdXY/DgwTh9+jTmzJmD+Ph4fPTRR5gyZQrKy8vx0EMPISwsDCtWrMCsWbNw1113YdSoUQCA5ORkh6STyGsIIiIrrVmzRgAQ//vf/8TFixfF2bNnxccffyzCwsKEv7+/OHv2rLTt0KFDRVJSkrh69aq0TKPRiH79+okbbrhBWpaSkiIyMzNNfu/TTz8tdLOtgoICAUA88MADetuNHz9eABBPP/20tGzy5Mmiffv2ZvcphBBVVVVG26Wnp4sOHTroLRs0aJAYNGiQyTQLIUT79u3F8OHDxcWLF8XFixfFkSNHxNixYwUAMXfuXMX9vfLKKwKAePfdd6VltbW1IjU1VbRo0UJUVFQIIYS4ePGi0fESkXVYZUZENhs2bBjCwsIQExODu+++G82bN8fnn3+Odu3aAQAuXbqEHTt24J577sHvv/+OsrIylJWV4bfffkN6ejp+/PFHqVdaSEgITpw4gR9//NHi7//yyy8BAA8++KDe8nnz5tl1XAEBAdJ/q9VqlJWVYdCgQfjpp5+gVqtt2udXX32FsLAwhIWFISUlBR999BEmTpyIF198UfEzX375JSIjIzFu3DhpWdOmTfHggw/iypUr2L17t01pISJjrDIjIpu9/vrr6Ny5M9RqNd5++23s2bMH/v7+0vrTp09DCIHFixdj8eLFsvu4cOEC2rZti2effRZ33nknOnfujG7dumHEiBGYOHGiyaqfn3/+GT4+PujYsaPe8i5duth1XPv378fTTz+NvLw8VFVV6a1Tq9UIDg62ep99+/bF888/D5VKhcDAQHTt2hUhISEmP/Pzzz/jhhtugI+P/rtr165dpfVE5BgMiIjIZjfddJPUy2zkyJEYMGAAxo8fj1OnTqFFixbQaDQAgEcffRTp6emy++jUqRMAIC0tDYWFhfjvf/+Lr776CqtXr8bLL7+MlStXYsaMGXanVWlAx7q6Or1/FxYWYujQoUhISMA//vEPxMTEwM/PD19++SVefvll6ZisFRoaimHDhtn0WSJyPgZEROQQvr6+yM7OxpAhQ/DPf/4TCxcuRIcOHQDUV/NYEgy0bt0aU6dOxdSpU3HlyhWkpaXhmWeeUQyI2rdvD41Gg8LCQr1SoVOnThlt26pVK5SXlxstNyxl+eKLL1BTU4PPP/8csbGx0vKdO3eaTb+jtW/fHkePHoVGo9ErJTp58qS0HlAO9ojIcmxDREQOM3jwYNx000145ZVXcPXqVYSHh2Pw4MF48803UVJSYrT9xYsXpf/+7bff9Na1aNECnTp1Qk1NjeL3ZWRkAABeffVVveWvvPKK0bYdO3aEWq3G0aNHpWUlJSVGo0X7+voCAIQQ0jK1Wo01a9YopsNZbr31VpSWlmL9+vXSsuvXr+O1115DixYtMGjQIABAYGAgAMgGfERkGZYQEZFDLViwAP/3f/+HtWvXYubMmXj99dcxYMAAJCUl4b777kOHDh1w/vx55OXl4ZdffsGRI0cAAImJiRg8eDB69eqF1q1b4+DBg/j4448xZ84cxe/q3r07xo0bhzfeeANqtRr9+vXD9u3bcfr0aaNtx44di6ysLNx111148MEHUVVVhRUrVqBz58749ttvpe2GDx8OPz8/3H777fjrX/+KK1euYNWqVQgPD5cN6pzp/vvvx5tvvokpU6bg0KFDiIuLw8cff4z9+/fjlVdeQcuWLQHUNwJPTEzE+vXr0blzZ7Ru3RrdunVDt27dGjS9RB7N1d3ciMjzaLvd5+fnG62rq6sTHTt2FB07dhTXr18XQghRWFgoJk2aJCIjI0XTpk1F27ZtxW233SY+/vhj6XPPP/+8uOmmm0RISIgICAgQCQkJ4oUXXhC1tbXSNnJd5Kurq8WDDz4o2rRpI5o3by5uv/12cfbsWdlu6F999ZXo1q2b8PPzE126dBHvvvuu7D4///xzkZycLJo1aybi4uLEiy++KN5++20BQBQVFUnbWdPt3tyQAkr7O3/+vJg6daoIDQ0Vfn5+IikpSaxZs8bos7m5uaJXr17Cz8+PXfCJbKASQqdcmIiIiMgLsQ0REREReT0GREREROT1GBARERGR13NpQLRixQokJycjKCgIQUFBSE1NxebNm6X1gwcPlmZu1v7NnDlTbx/FxcXIzMxEYGAgwsPDsWDBAly/fl1vm127dqFnz57w9/dHp06dsHbt2oY4PCIiIvIQLu12365dO+Tk5OCGG26AEALvvPMO7rzzThw+fBg33ngjAOC+++7Ds88+K31GO94GUD/CbGZmJiIjI5Gbm4uSkhJMmjQJTZs2xdKlSwEARUVFyMzMxMyZM/Hee+9h+/btmDFjBqKiohRHziUiIiLv4na9zFq3bo2XXnoJ06dPx+DBg9G9e3fZQdYAYPPmzbjttttw7tw5REREAABWrlyJrKwsXLx4EX5+fsjKysKmTZtw/Phx6XNjx45FeXk5tmzZ0hCHRERERG7ObQZmrKurw0cffYTKykqkpqZKy9977z28++67iIyMxO23347FixdLpUR5eXlISkqSgiEASE9Px6xZs3DixAn06NEDeXl5RlMGpKenWz0btkajwblz59CyZUsOk09EROQhhBD4/fffER0dbTRRsi6XB0THjh1Damoqrl69ihYtWuDTTz9FYmIiAGD8+PFo3749oqOjcfToUWRlZeHUqVPYsGEDAKC0tFQvGAIg/bu0tNTkNhUVFaiurkZAQIBsumpqavSmDPj111+ldBEREZFnOXv2LNq1a6e43uUBUZcuXVBQUAC1Wo2PP/4YkydPxu7du5GYmIj7779f2i4pKQlRUVEYOnQoCgsL0bFjR6emKzs7G0uWLDFafvbsWQQFBTn1u4mIiMgxKioqEBMTI011o8TlAZGfnx86deoEAOjVqxfy8/OxfPlyvPnmm0bb9u3bFwBw+vRpdOzYEZGRkfjmm2/0tjl//jwAIDIyUvp/7TLdbYKCghRLhwBg0aJFePjhh6V/a0+otkccEREReQ5zzV3cbhwijUajOLt1QUEBACAqKgoAkJqaimPHjuHChQvSNtu2bUNQUJBUvZWamort27fr7Wfbtm167ZTk+Pv7S8EPgyAiIqLGzaUlRIsWLUJGRgZiY2Px+++/Y926ddi1axe2bt2KwsJCrFu3DrfeeivatGmDo0ePYv78+UhLS0NycjKA+lmpExMTMXHiRCxbtgylpaV48sknMXv2bPj7+wMAZs6ciX/+85947LHHMG3aNOzYsQMffvghNm3a5MpDJyIiIjfi0oDowoULmDRpEkpKShAcHIzk5GRs3boVf/nLX3D27Fn873//wyuvvILKykrExMRg9OjRePLJJ6XP+/r6YuPGjZg1axZSU1PRvHlzTJ48WW/covj4eGzatAnz58/H8uXL0a5dO6xevZpjEBEREZHE7cYhclcVFRUIDg6GWq1m9RkRUSNTV1eHa9euuToZZIOmTZvC19dXcb2lz2+XN6omIiJyFSEESktLUV5e7uqkkB1CQkIQGRlp1ziBDIiIiMhraYOh8PBwBAYGcuBdDyOEQFVVldS5StvpyhYMiIiIyCvV1dVJwVCbNm1cnRyykXYInQsXLiA8PNxk9ZkpbtftnoiIqCFo2wzpThpOnkn7G9rTDowBEREReTVWk3k+R/yGDIiIiIjI6zEgIiIiIgD1JS2fffaZq5OhZ9euXVCpVE7vCciAyMVK1NXILSxDibra1UkhIiIv8cwzz6B79+6uToZbYS8zF1qfX4xFG45BIwAfFZA9Kglj+sS6OllERERehyVELlKirpaCIQDQCODxDcdZUkRERGZpNBpkZ2cjPj4eAQEBSElJwccffwzgzyqm7du3o3fv3ggMDES/fv1w6tQpAMDatWuxZMkSHDlyBCqVCiqVCmvXrpX2XVZWhrvuuguBgYG44YYb8Pnnn1uUJu33bt26FT169EBAQABuueUWXLhwAZs3b0bXrl0RFBSE8ePHo6qqSvpcTU0NHnzwQYSHh6NZs2YYMGAA8vPzHXeyLMSAyEWKyiqlYEirTgicKauS/wAREbm1hmwCkZ2djX//+99YuXIlTpw4gfnz5+Pee+/F7t27pW2eeOIJ/P3vf8fBgwfRpEkTTJs2DQAwZswYPPLII7jxxhtRUlKCkpISjBkzRvrckiVLcM899+Do0aO49dZbMWHCBFy6dMnitD3zzDP45z//idzcXJw9exb33HMPXnnlFaxbtw6bNm3CV199hddee03a/rHHHsMnn3yCd955B99++y06deqE9PR0q77TERgQuUh8aHP4GPQS9FWpEBfK8TCIiDzN+vxi9M/ZgfGrDqB/zg6szy922nfV1NRg6dKlePvtt5Geno4OHTpgypQpuPfee/Hmm29K273wwgsYNGgQEhMTsXDhQuTm5uLq1asICAhAixYt0KRJE0RGRiIyMlIa3BAApkyZgnHjxqFTp05YunQprly5gm+++cbi9D3//PPo378/evTogenTp2P37t1YsWIFevTogYEDB+Luu+/Gzp07AQCVlZVYsWIFXnrpJWRkZCAxMRGrVq1CQEAA3nrrLcedNAswIHKRqOAAZI9Kgu8fYyf4qlRYOqobooIDzHySiIjcSUM3gTh9+jSqqqrwl7/8BS1atJD+/v3vf6OwsFDaLjk5Wfpv7ZQW2ikuTNH9XPPmzREUFGTR5+Q+HxERgcDAQHTo0EFvmXZ/hYWFuHbtGvr37y+tb9q0KW666SZ8//33Fn+nI7BRtQuN6ROLtM5hOFNWhbjQQAZDREQeyFQTCGfk61euXAEAbNq0CW3bttVb5+/vLwVFTZs2lZZrBy7UaDRm96/7Oe1nLfmc3OdVKpXd+2soDIhcLCo4gIEQEZEH0zaB0A2KnNkEIjExEf7+/iguLsagQYOM1uuWEinx8/NDXV2dM5JnlY4dO8LPzw/79+9H+/btAdRPv5Gfn4958+Y1aFoYEBEREdlB2wTi8Q3HUSeE05tAtGzZEo8++ijmz58PjUaDAQMGQK1WY//+/QgKCpICC1Pi4uJQVFSEgoICtGvXDi1btoS/v79T0mtK8+bNMWvWLCxYsACtW7dGbGwsli1bhqqqKkyfPr1B08KAiIiIyE4N3QTiueeeQ1hYGLKzs/HTTz8hJCQEPXv2xOOPP25RddTo0aOxYcMGDBkyBOXl5VizZg2mTJni1DQrycnJgUajwcSJE/H777+jd+/e2Lp1K1q1atWg6VAJIYT5zaiiogLBwcFQq9UICgpydXKIiMhOV69eRVFREeLj49GsWTNXJ4fsYOq3tPT5zV5mRERE5PUYEBEREZFZM2fO1Ovmr/s3c+ZMVyfPbmxDRERERGY9++yzePTRR2XXNYamJAyIiIiIyKzw8HCEh4e7OhlOwyozIiIi8noMiIiIyKu546jJZB1H/IasMiMiIq/k5+cHHx8fnDt3DmFhYfDz85OmuCDPIIRAbW0tLl68CB8fH/j5+dm8LwZERETklXx8fBAfH4+SkhKcO3fO1ckhOwQGBiI2NhY+PrZXfDEgIiIir+Xn54fY2Fhcv37dLeb2Iuv5+vqiSZMmdpfuMSAiIiKvpp2R3XBWdvIubFRNREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GREREROT1GBARERGR12NARERERF6PARERERF5PQZERERE5PUYEBEREZHXc2lAtGLFCiQnJyMoKAhBQUFITU3F5s2bpfVXr17F7Nmz0aZNG7Ro0QKjR4/G+fPn9fZRXFyMzMxMBAYGIjw8HAsWLMD169f1ttm1axd69uwJf39/dOrUCWvXrm2IwyMiIiIP4dKAqF27dsjJycGhQ4dw8OBB3HLLLbjzzjtx4sQJAMD8+fPxxRdf4KOPPsLu3btx7tw5jBo1Svp8XV0dMjMzUVtbi9zcXLzzzjtYu3YtnnrqKWmboqIiZGZmYsiQISgoKMC8efMwY8YMbN26tcGPl4iIiNyTSgghXJ0IXa1bt8ZLL72Eu+++G2FhYVi3bh3uvvtuAMDJkyfRtWtX5OXl4eabb8bmzZtx22234dy5c4iIiAAArFy5EllZWbh48SL8/PyQlZWFTZs24fjx49J3jB07FuXl5diyZYvF6aqoqEBwcDDUajWCgoIce9BERETkFJY+v92mDVFdXR0++OADVFZWIjU1FYcOHcK1a9cwbNgwaZuEhATExsYiLy8PAJCXl4ekpCQpGAKA9PR0VFRUSKVMeXl5evvQbqPdh5KamhpUVFTo/REREVHj5PKA6NixY2jRogX8/f0xc+ZMfPrpp0hMTERpaSn8/PwQEhKit31ERARKS0sBAKWlpXrBkHa9dp2pbSoqKlBdXa2YruzsbAQHB0t/MTEx9h4qERERuSmXB0RdunRBQUEBDhw4gFmzZmHy5Mn47rvvXJ0sLFq0CGq1Wvo7e/asq5NERERETtLE1Qnw8/NDp06dAAC9evVCfn4+li9fjjFjxqC2thbl5eV6pUTnz59HZGQkACAyMhLffPON3v60vdB0tzHsmXb+/HkEBQUhICBAMV3+/v7w9/e3+/iIiIjI/bm8hMiQRqNBTU0NevXqhaZNm2L79u3SulOnTqG4uBipqakAgNTUVBw7dgwXLlyQttm2bRuCgoKQmJgobaO7D+022n0QERERubSEaNGiRcjIyEBsbCx+//13rFu3Drt27cLWrVsRHByM6dOn4+GHH0br1q0RFBSEuXPnIjU1FTfffDMAYPjw4UhMTMTEiROxbNkylJaW4sknn8Ts2bOl0p2ZM2fin//8Jx577DFMmzYNO3bswIcffohNmza58tCJiIjIjbg0ILpw4QImTZqEkpISBAcHIzk5GVu3bsVf/vIXAMDLL78MHx8fjB49GjU1NUhPT8cbb7whfd7X1xcbN27ErFmzkJqaiubNm2Py5Ml49tlnpW3i4+OxadMmzJ8/H8uXL0e7du2wevVqpKenN/jxEhERkXtyu3GI3BXHISIiIvI8HjcOEREREZGrMCAiIiIir8eAiIiIiLweAyI3UaKuRm5hGUrUyqNnExERkXO4fGBGAtbnF2PRhmPQCMBHBWSPSsKYPrGuThYREZHXYAmRi5Woq6VgCAA0Anh8w3GWFBERETUgBkQuVlRWKQVDWnVC4ExZlWsSRERE5IUYELlYfGhz+Kj0l/mqVIgLDXRNgoiIiLwQAyIXiwoOQPaoJPiq6qMiX5UKS0d1Q1Sw8sSzRERE5FhsVO0GxvSJRVrnMJwpq0JcaCCDISIiogbGgMhNRAUHMBAiIiJyEVaZERERkddjQERERERejwEREREReT0GREREROT1GBARERGR12NARERERF6PARERERF5PQZERERE5PUYEBEREZHXY0BEREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GRG6iRF2N3MIylKirXZ0UIiIir9PE1QkgYH1+MRZtOAaNAHxUQPaoJIzpE+vqZBEREXkNlhC5WIm6WgqGAEAjgMc3HGdJERERUQNiQORiRWWVUjCkVScEzpRVuSZBREREXogBkYvFhzaHj0p/ma9KhbjQQNckiIiIyAsxIHKxqOAAZI9Kgq+qPiryVamwdFQ3RAUHuDhlRERE3oONqt3AmD6xSOschjNlVYgLDWQwRERE1MAYELmJqOAABkJEREQuwiozIiIi8noMiIiIiMjrMSAiIiIir8eAiIiIiLweAyIiIiLyei4NiLKzs9GnTx+0bNkS4eHhGDlyJE6dOqW3zeDBg6FSqfT+Zs6cqbdNcXExMjMzERgYiPDwcCxYsADXr1/X22bXrl3o2bMn/P390alTJ6xdu9bZh0dEREQewqUB0e7duzF79mx8/fXX2LZtG65du4bhw4ejsrJSb7v77rsPJSUl0t+yZcukdXV1dcjMzERtbS1yc3PxzjvvYO3atXjqqaekbYqKipCZmYkhQ4agoKAA8+bNw4wZM7B169YGO1YiIiJyXyohhDC/WcO4ePEiwsPDsXv3bqSlpQGoLyHq3r07XnnlFdnPbN68GbfddhvOnTuHiIgIAMDKlSuRlZWFixcvws/PD1lZWdi0aROOHz8ufW7s2LEoLy/Hli1bLEpbRUUFgoODoVarERQUZN+BEhERUYOw9PntVm2I1Go1AKB169Z6y9977z2EhoaiW7duWLRoEaqq/pz4NC8vD0lJSVIwBADp6emoqKjAiRMnpG2GDRumt8/09HTk5eUppqWmpgYVFRV6f0RERNQ4uc1I1RqNBvPmzUP//v3RrVs3afn48ePRvn17REdH4+jRo8jKysKpU6ewYcMGAEBpaaleMARA+ndpaanJbSoqKlBdXY2AAOMRorOzs7FkyRKHHiMRERG5J7cJiGbPno3jx49j3759esvvv/9+6b+TkpIQFRWFoUOHorCwEB07dnRaehYtWoSHH35Y+ndFRQViYmKc9n1ERETkOm5RZTZnzhxs3LgRO3fuRLt27Uxu27dvXwDA6dOnAQCRkZE4f/683jbaf0dGRprcJigoSLZ0CAD8/f0RFBSk90dERESNk0sDIiEE5syZg08//RQ7duxAfHy82c8UFBQAAKKiogAAqampOHbsGC5cuCBts23bNgQFBSExMVHaZvv27Xr72bZtG1JTUx10JEREROTJXBoQzZ49G++++y7WrVuHli1borS0FKWlpaiurgYAFBYW4rnnnsOhQ4dw5swZfP7555g0aRLS0tKQnJwMABg+fDgSExMxceJEHDlyBFu3bsWTTz6J2bNnw9/fHwAwc+ZM/PTTT3jsscdw8uRJvPHGG/jwww8xf/58lx07ERERuQ+XdrtXqVSyy9esWYMpU6bg7NmzuPfee3H8+HFUVlYiJiYGd911F5588km9Kqyff/4Zs2bNwq5du9C8eXNMnjwZOTk5aNLkzyZSu3btwvz58/Hdd9+hXbt2WLx4MaZMmWJxWtntnoiIyPNY+vx2q3GI3BkDIiIiIs/jkeMQEREREbkCAyIiIiLyegyIiIiIyOsxICIiIiKvx4CIiIiIvB4DIhcrUVcjt7AMJepqVyeFiIjIa7nNXGbeaH1+MRZtOAaNAHxUQPaoJIzpE+vqZBEREXkdlhC5SIm6WgqGAEAjgMc3HGdJERERkQswIHKRorJKKRjSqhMCZ8qqXJMgIiIiL8aAyEXiQ5vDx2DmEl+VCnGhga5JEBERkRdjQOQiUcEByB6VBN8/5nPzVamwdFQ3RAUHuDhlRERE3oeNql1oTJ9YpHUOw5myKsSFBjIYIiIichEGRC4WFRzAQIiIiMjFWGVGREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GREREROT1GBARERGR12NA5CFK1NXILSxDibra1UkhIiJqdDhStQdYn1+MRRuOQSMAHxWQPSoJY/rEujpZREREjQZLiNxcibpaCoYAQCOAxzccZ0kRERGRAzEgcnNFZZVSMKRVJwTOlFW5JkFERESNEAMiNxcf2hw+Kv1lvioV4kIDXZMgIiKiRogBkZuLCg5A9qgk+KrqoyJflQpLR3VDVHCAi1NGRETUeLBRtQcY0ycWaZ3DcKasCnGhgQyGiIiIHIwBkYeICg5gIEREROQkrDIjIiIir8eAiIiIiLweAyIiIiLyegyIiIiIyOsxICIiIiKvx4CIiIiIvB4DIiIiIvJ6DIiIiIjI6zEgIiIiIq/HgIiIiIi8nksDouzsbPTp0wctW7ZEeHg4Ro4ciVOnTultc/XqVcyePRtt2rRBixYtMHr0aJw/f15vm+LiYmRmZiIwMBDh4eFYsGABrl+/rrfNrl270LNnT/j7+6NTp05Yu3atsw+PiIiIPIRLA6Ldu3dj9uzZ+Prrr7Ft2zZcu3YNw4cPR2VlpbTN/Pnz8cUXX+Cjjz7C7t27ce7cOYwaNUpaX1dXh8zMTNTW1iI3NxfvvPMO1q5di6eeekrapqioCJmZmRgyZAgKCgowb948zJgxA1u3bm3Q4yUiIiL3pBJCCFcnQuvixYsIDw/H7t27kZaWBrVajbCwMKxbtw533303AODkyZPo2rUr8vLycPPNN2Pz5s247bbbcO7cOURERAAAVq5ciaysLFy8eBF+fn7IysrCpk2bcPz4cem7xo4di/LycmzZssWitFVUVCA4OBhqtRpBQUGOP3giIiJyOEuf327VhkitVgMAWrduDQA4dOgQrl27hmHDhknbJCQkIDY2Fnl5eQCAvLw8JCUlScEQAKSnp6OiogInTpyQttHdh3Yb7T6IiIjIuzVxdQK0NBoN5s2bh/79+6Nbt24AgNLSUvj5+SEkJERv24iICJSWlkrb6AZD2vXadaa2qaioQHV1NQICAozSU1NTg5qaGunfFRUV9h0gERERuS23KSGaPXs2jh8/jg8++MDVSQFQ3+A7ODhY+ouJiXF1koiIiMhJ3CIgmjNnDjZu3IidO3eiXbt20vLIyEjU1taivLxcb/vz588jMjJS2saw15n23+a2CQoKki0dAoBFixZBrVZLf2fPnrXrGImIiMh9uTQgEkJgzpw5+PTTT7Fjxw7Ex8frre/VqxeaNm2K7du3S8tOnTqF4uJipKamAgBSU1Nx7NgxXLhwQdpm27ZtCAoKQmJiorSN7j6022j3Icff3x9BQUF6f0RERNQ4WdzLzJo2NJYGDw888ADWrVuH//73v+jSpYu0PDg4WCq5mTVrFr788kusXbsWQUFBmDt3LgAgNzcXQH23++7duyM6OhrLli1DaWkpJk6ciBkzZmDp0qUA6rvdd+vWDbNnz8a0adOwY8cOPPjgg9i0aRPS09MtSit7mREREXkeS5/fFgdEPj4+UKlUJrcRQkClUqGurs6iRCrtb82aNZgyZQqA+oEZH3nkEbz//vuoqalBeno63njjDak6DAB+/vlnzJo1C7t27ULz5s0xefJk5OTkoEmTP9uM79q1C/Pnz8d3332Hdu3aYfHixdJ3WIIBERERkedxeEC0e/dui7980KBBFm/rKRgQEREReR5Ln98Wd7tvjEEOEREREWDHOETl5eV466238P333wMAbrzxRkybNg3BwcEOSxwRERFRQ7Cpl9nBgwfRsWNHvPzyy7h06RIuXbqEf/zjH+jYsSO+/fZbR6eRiIiIyKlsmsts4MCB6NSpE1atWiU1XL5+/TpmzJiBn376CXv27HF4Ql2NbYiIiIg8j8MbVesKCAjA4cOHkZCQoLf8u+++Q+/evVFVVWV9it0cAyIiIiLP49TJXYOCglBcXGy0/OzZs2jZsqUtuyQDJepq5BaWoURd7eqkEBERNXo2NaoeM2YMpk+fjr/97W/o168fAGD//v1YsGABxo0b59AEeqP1+cVYtOEYNALwUQHZo5Iwpk+sq5NFRETUaNkUEP3tb3+DSqXCpEmTcP36dQBA06ZNMWvWLOTk5Dg0gd6mRF0tBUMAoBHA4xuOI61zGKKC5eddIyIiIvvYFBD5+flh+fLlyM7ORmFhIQCgY8eOCAwMdGjivFFRWaUUDGnVCYEzZVUMiIiIiJzE5nGIACAwMBBJSUmOSgsBiA9tDh8V9IIiX5UKcaEMNomIiJzFpoDo6tWreO2117Bz505cuHABGo1Gbz3HIrJdVHAAskcl4fENx1EnBHxVKiwd1Y2lQ0RERE5kU0A0ffp0fPXVV7j77rtx0003mZ30lawzpk8s0jqH4UxZFeJCAxkMEREROZlNAdHGjRvx5Zdfon///o5OD/0hKjiAgRAREVEDsWkcorZt23K8ISIiImo0bAqI/v73vyMrKws///yzo9NDFuCgjURERI5lU5VZ7969cfXqVXTo0AGBgYFo2rSp3vpLly45JHFkjIM2EhEROZ5NAdG4cePw66+/YunSpYiIiGCj6gbCQRuJiIicw6aAKDc3F3l5eUhJSXF0esgEDtpIRETkHDa1IUpISEB1NduvNDTtoI26OGgjERGR/WwKiHJycvDII49g165d+O2331BRUaH3R86hHbTR948qSh8VMG1AnGsTRURE1AiohBDC/Gb6fHzq4yjDtkNCCKhUKtTV1TkmdW6koqICwcHBUKvVCAoKcmlaStTVWLO/CKv2FEGAjauJiIiUWPr8tqkN0c6dO21OGFmuRF2NorJKxIc2N2ojtHpvfTAEsHE1ERGRvWwKiAYNGmTRdg888ACeffZZhIaG2vI1Xs1U93o2riYiInIsm9oQWerdd99lmyIbKHWv1w7EyMbVREREjuXUgMiG5kkE0yVAgHHjal+VCktHdWPpEBERkY1sqjIj59KWAOkGRYYlQGP6xCKtcxjOlFUhLjSQwRAREZEdnFpCRLaxtAQoKjgAqR3bMBgiIiKyE0uI3BRLgIiIiBoOAyI3FhUcYBQImeqKT0RERLZxakB07733unwQw8aEM90TERE5h00jVQNAeXk5vvnmG1y4cAEajUZv3aRJkxySOHfi6pGqS9TV6J+zw6ih9b6FQ1hSREREpMCpI1V/8cUXmDBhAq5cuYKgoCC9KTxUKlWjDIhcjYMxEhEROY9NvcweeeQRTJs2DVeuXEF5eTkuX74s/V26dMnRaSRwMEYiIiJnsikg+vXXX/Hggw8iMJAP44ai1BUfAHILy6RRrImIiMh6NlWZpaen4+DBg+jQoYOj00MmGHbF3/PDRaldERtZExER2c7igOjzzz+X/jszMxMLFizAd999h6SkJDRt2lRv2zvuuMNxKSQ92q74SvOdccZ7IiIi61kcEI0cOdJo2bPPPmu0TKVSoa6uzq5EkXlsZE1EROQ4FgdEhl3rybUsme+MiIiILGNTo+p///vfqKmpMVpeW1uLf//733YniszjjPdERESOY9PAjL6+vigpKUF4eLje8t9++w3h4eGNssrM1QMzKilRV3O+MyIiIgWWPr9tKiESQugNxqj1yy+/IDg42OL97NmzB7fffjuio6OhUqnw2Wef6a2fMmUKVCqV3t+IESP0trl06RImTJiAoKAghISEYPr06bhy5YreNkePHsXAgQPRrFkzxMTEYNmyZZYfrJuzZcb7EnU1u+oTERHpsKrbfY8ePaTAZOjQoWjS5M+P19XVoaioyChgMaWyshIpKSmYNm0aRo0aJbvNiBEjsGbNGunf/v7+eusnTJiAkpISbNu2DdeuXcPUqVNx//33Y926dQDqI8Phw4dj2LBhWLlyJY4dO4Zp06YhJCQE999/vzWH3yhwPjQiIiJjVgVE2p5mBQUFSE9PR4sWLaR1fn5+iIuLw+jRoy3eX0ZGBjIyMkxu4+/vj8jISNl133//PbZs2YL8/Hz07t0bAPDaa6/h1ltvxd/+9jdER0fjvffeQ21tLd5++234+fnhxhtvREFBAf7xj394XUDErvpERETyrAqInn76aQBAXFwcxowZg2bNmjklUbp27dqF8PBwtGrVCrfccguef/55tGnTBgCQl5eHkJAQKRgCgGHDhsHHxwcHDhzAXXfdhby8PKSlpcHPz0/aJj09HS+++CIuX76MVq1ayX5vTU2NXsPxiooKJx1hw2FXfSIiInk2jVQ9efJkAPW9yuRmu4+NdUwVzIgRIzBq1CjEx8ejsLAQjz/+ODIyMpCXlwdfX1+UlpYaNexu0qQJWrdujdLSUgBAaWkp4uPj9baJiIiQ1ikFRNnZ2ViyZIlDjsMaJepqFJVVIj60ucODFHbVJyIikmdTQPTjjz9i2rRpyM3N1VuubWztqF5mY8eOlf47KSkJycnJ6NixI3bt2oWhQ4c65DuULFq0CA8//LD074qKCsTExDj1O53dvkfbVf/xDcdRJwS76hMREf3BpoBoypQpaNKkCTZu3IioqCjZHmfO0KFDB4SGhuL06dMYOnQoIiMjceHCBb1trl+/jkuXLkntjiIjI3H+/Hm9bbT/VmqbBNS3XTJswO1MDdW+x3A+NAZDRERENgZEBQUFOHToEBISEhydHpN++eUX/Pbbb4iKigIApKamory8HIcOHUKvXr0AADt27IBGo0Hfvn2lbZ544glcu3ZNmnNt27Zt6NKli2J1mSs0ZPse7XxoREREVM+mcYgSExNRVlZm95dfuXIFBQUFKCgoAAAUFRWhoKAAxcXFuHLlChYsWICvv/4aZ86cwfbt23HnnXeiU6dOSE9PBwB07doVI0aMwH333YdvvvkG+/fvx5w5czB27FhER0cDAMaPHw8/Pz9Mnz4dJ06cwPr167F8+XK96jB3oG3fo8uR7Xs49hAREZEym0aq3rFjB5588kksXbpUdrZ7S0dy3rVrF4YMGWK0fPLkyVixYgVGjhyJw4cPo7y8HNHR0Rg+fDiee+45qVE0UD8w45w5c/DFF1/Ax8cHo0ePxquvvqo3JMDRo0cxe/Zs5OfnIzQ0FHPnzkVWVpZVx9wQI1Wvzy82at/jiDZEHHuIiIi8laXPb5sCIh+fPwuWdNsPObpRtTtpqKk7HD0VR4m6Gv1zdhj1LNu3cAirzYiIqNGz9PltUxuinTt32pwwMs3R7Xs49hAREZF5NrUhGjRoEHx8fLBq1SosXLgQnTp1wqBBg1BcXAxfX19Hp5Hs4Oy2SURERI2BTQHRJ598gvT0dAQEBODw4cPSiM5qtRpLly51aALJPtqxh3z/qNrk2ENERETGbGpD1KNHD8yfPx+TJk1Cy5YtceTIEXTo0AGHDx9GRkaGNEp0Y9JQbYicxdFtk4iIiDyBU9sQnTp1CmlpaUbLg4ODUV5ebssuyck49hAREZEym6rMIiMjcfr0aaPl+/btQ4cOHexOFBEREVFDsikguu+++/DQQw/hwIEDUKlUOHfuHN577z08+uijmDVrlqPTSERERORUNlWZLVy4EBqNBkOHDkVVVRXS0tLg7++PRx99FHPnznV0GomIiIicyqZG1Vq1tbU4ffo0rly5gsTERL3RoRsbT29UTURE5I2c2qhay8/PD4mJifbsgixQoq5GUVkl4kObs2E0ERGRE9gVEJHzcR4yIiIi57OpUTU1jBJ1tRQMAYBGAI9vOO62M9aXqKuRW1jmtukjIiL34W7PDJYQuTFr5yFzRdVaiboaB89cQt5Pl/DBN8UsySIiIrPcsfaDAZEb085DZjhTvdw8ZK64uNbnF2PhJ8dg2CpfW5KV1jmMbZ6IiEiPUu2Hq58ZrDJzY5bOQ+aKqrUSdbVsMKSlLckiIiLSZar2w5VYQuRG5Kq8xvSJRVrnMJPzkFlbteYIRWWVisEQoFySRURE3s2a2o+GxIDITZiq8jI3D5krLq740OZQAbJBkY8KsiVZRERE2tqPxzccR50QirUfDc2ugRm9iTMHZixRV6N/zg6jgGbfwiGKF4hhadL6/GKji8sVbYjuT4vH1P7xLr+wiYjIvZWoq03WfjhKgwzMSI5hbZWXUmmSuao1R9N+56Ezl6FSAT3bt2IgREREFjFX+9HQGBC5AWuqvMy1zm/oiysqOAC3pbjPBU1ERGQL9jJzA5b2JgPct3U+ERGRJ2MJkZuwtMrLXVvnExEReTKWELmRqOAApHZsY7Lay5rSJCIiIrIMS4g8kCsaUFvLFdOIEBER2YoBkYdyt9b5utxxjhoiIiJTWGXWiLliJmFXTCNCRERkL5YQNVKuKqVxxTQiRERE9mIJUSPkylIabS84XewFR0RE7o4BUSPkyrGK2AuOiIg8EavMGiFXjlVUoq5GTOtAbHggFVW1GrftBUdERKSLJUSNkKtKadbnF6N/zg6MX3UAd72Ri+JLlQyGiIjII7CEqBFyRSmNuTnWiIiIlLjD2HUMiBoZud5lqR3bOP172buMiIhs4S5j17HKrBHxhN5lJepqbDx6Dl8c+ZVjExEReTl3GruOJUSNiCtLabTtlh7fcBx1Qsi2W1qfX4yFnxyDNokqADmjOYo1EZG3cqfaBQZEjYgre5cBpudY074F6F73AsCiT46xnRERkZdy9XNLF6vMGhF3GAMoKjgAqR3bGH2n3FsAAGiABhkfiYiI3I87PLe0WELUyJgqpXElubcAoD4i5yjWRETey12eWywhaoSUSmlcSfsWoNJpeK0CkD06ya3SSUREDc8dnlsuDYj27NmD22+/HdHR0VCpVPjss8/01gsh8NRTTyEqKgoBAQEYNmwYfvzxR71tLl26hAkTJiAoKAghISGYPn06rly5orfN0aNHMXDgQDRr1gwxMTFYtmyZsw+NZIzpE4vchbfg9fE98M9xPZC76BY2qCYiIrfg0oCosrISKSkpeP3112XXL1u2DK+++ipWrlyJAwcOoHnz5khPT8fVq1elbSZMmIATJ05g27Zt2LhxI/bs2YP7779fWl9RUYHhw4ejffv2OHToEF566SU888wz+Ne//uX043OVEnU1cgvL3LJbe1RwADKTo3FbSjRLhqjRcud70N3x3JGrqIQQMk1dG55KpcKnn36KkSNHAqgvHYqOjsYjjzyCRx99FACgVqsRERGBtWvXYuzYsfj++++RmJiI/Px89O7dGwCwZcsW3Hrrrfjll18QHR2NFStW4IknnkBpaSn8/PwAAAsXLsRnn32GkydPWpy+iooKBAcHQ61WIygoyLEH70DuMsAVkTeQG12X96DteO7IGSx9frttG6KioiKUlpZi2LBh0rLg4GD07dsXeXl5AIC8vDyEhIRIwRAADBs2DD4+Pjhw4IC0TVpamhQMAUB6ejpOnTqFy5cvK35/TU0NKioq9P7cnTsNcEXU2OnO3dc/ZwfW5xfzHrSSbmkQz13j42mlfW7by6y0tBQAEBERobc8IiJCWldaWorw8HC99U2aNEHr1q31tomPjzfah3Zdq1atZL8/OzsbS5Yssf9AGpA7DXBF5MnMzatUoq7WG2RU+/B+ZWwK70ELGZYGzRgQz3PXiHhiaZ/blhC52qJFi6BWq6W/s2fPujpJZlk6fQYRKZMr+TH09r4iGLY1qBMCPioV70ELyJUGrd5bxHPXSHhqaZ/bBkSRkZEAgPPnz+stP3/+vLQuMjISFy5c0Ft//fp1XLp0SW8buX3ofoccf39/BAUF6f25O3ca4MoenlbMSu7FnuvHkoy8RF2Nt/YVGX3WB0DP9q0a/B70xPtFrjRbA2DGgA4en3+R6doKd+a2VWbx8fGIjIzE9u3b0b17dwD1DaMOHDiAWbNmAQBSU1NRXl6OQ4cOoVevXgCAHTt2QKPRoG/fvtI2TzzxBK5du4amTZsCALZt24YuXbooVpd5Mt0BrgL9fFBZW4cSdbXHZCqeWMxK7sPe68eSamelUddnpMUjKjjA7kHmzFXX6VI6Xmv2Yc/327pfpekapg6Iw9QBcS4foI/s407TcVjDpQHRlStXcPr0aenfRUVFKCgoQOvWrREbG4t58+bh+eefxw033ID4+HgsXrwY0dHRUk+0rl27YsSIEbjvvvuwcuVKXLt2DXPmzMHYsWMRHR0NABg/fjyWLFmC6dOnIysrC8ePH8fy5cvx8ssvu+KQncYwE9vzw0WPCyyU3s451xlZwhHXjyUZudw2Pipgav8/2ypGBQfYdM1aE9ApHW959TW8uPmkTfe+s15I5PZrajJo3u+ezZLJvt2RS7vd79q1C0OGDDFaPnnyZKxduxZCCDz99NP417/+hfLycgwYMABvvPEGOnfuLG176dIlzJkzB1988QV8fHwwevRovPrqq2jRooW0zdGjRzF79mzk5+cjNDQUc+fORVZWllVpdedu94aZTVZGgpQhavmqVNi3cEiDXJC2vmEu3fQd/rXXuCri/ftuRmrHNo5MIjVCuYVlGL/qgNFya6+f9fnFRhm5YVBgyTbWKlFXo3/ODovvW6XjVakAYcO9b+33W8rUfgGwNKgRK1FXu8Xva+nz26UlRIMHD4apeEylUuHZZ5/Fs88+q7hN69atsW7dOpPfk5ycjL1799qcTncm95ZoGAwBDddbw9Y3zBJ1NVbJBEM+Ks51RpZxVDG9JVVezph7ydpeorIlVTCeL9DSe99ZvVRN7dfVUzWQc9laUuoqbtuomiwj2zhR1M8TpssHQKCfc39ue3oWFJVVGvXaAeobWXrSDUWu48hOBZbMq2S4jb2Nm63tJSp3vFkZCTb31HJWL1X2fiVP4baNqskySm/Fj43ogmVbTqHujxI4DYC73sh1alsie94wld52pw6Ic1ojT2p8XDVrtiUlo+auY1vaXcgdb0hgU5vabkQFB+CuHm3xybe/SstG9rB/ih1PbU9C3sdtpu5wd+7ehkiuPcORs5cx8o1cm9oT2MLeNghyxwHA4xqHk3ex5Lq3trG0vQGdLftwVhsie9JE5Age0YaIHEPprbiytg6G4a4z2xLZ+yZoeBwA9DJo9jojd2SuZFSpKjkhsiUqa+uMSowc0e7Cln3YUsJrTemto9uTsOSYHI0BUSMhl9m4YiwIe6ssdI8jt7CMQ/mT2zN3nykFGtrSW3cp+bQ2v3DlmGEcr4ycgY2qGzFXjVxtSYNUSxqgsjEmNTRbGkabu8/krmPgz67x7jKtgTX5hVyp16JPjuHIWeUJsx3FU6eFIPfHEqJGzpoSm4Yqgrb07c5UFRyLy8nR7Cl1MHWfGV7HPqjv5KDLXUo+Lc0vlKbeGPlGLnKcXFrDSazJWRgQeQFL6u4bqgja2tGE5TJoFpc3fg0d8DpilGtT95nhlDp3vZFrVDUV6OeD3MIylwf5luQXctVrQH2pl7Pb+XnqtBDk/lhlRg1aBG3LpH+6VXAsLm/8LJlt3tEO/XzZ6ZNRaq/jlBjjCWBH9ojGXW/kNugx20Nb6iX3AHH2JJ6NZRJrcj8sIaIGLYK29+2OxeWNW0POZ6cthTr2ixo5m08arXdmqcOYPrFIiGyJ/DOXER8aiPv+fcjhx+zsUjbtMRgO7eGjMj8IrL1pa6jxplg1710YEFGDFkHb2zWfxeWNW0MFvLrVrnJ8VHBqqYPu9xvOPQbYf8wNVa2cEtMKOTr3M1B/b5oaBNZRaXP2tBCsmncudww2GRBRg48ka+3bneGNw1FvG6+GCHgNS6HkjL0pxmkPP8PvVxoa9+iv5RZPSqt7jwBwWCmbdr/N/Xxlx0wCdEqKXs+Vpt9R+s6GLAG0h6ek05PoXqN7frjolsEmAyIC0PBTHlj6dqf0luaK6RnI+ewJeC1945QrhTL0wYGzmHvLDU6pptt49JzZ7weAZZtP4Y4U81NnGN4j0wfEO6SUTa4UTenhVVlbZzQXodx3ekqVt6ek01PolYj+scxc8OwKDIhI4m4zE1s7wi81DrYEvNZUbyj1kNKlARq0ms7Wrvhy98hb+4qgAvQCFN1StiNnL+ObM5dwU1xrpMS0smi/WkoPL0tL9jylyttT0ukJjEpEZbZxl2CTvczIbSmO8Pu6db1x7J2FnBqeJYN7alnb89Cwl5LcoIkNWU3nq1Jh1uCOMEyGNg2616/htSw7HpAA7kuLl+2F9ciHBbjz9Vy8sOkk7nw9F498WCCb3jX7ihQDRrleZJb2/PKUHmKekk5PYEmJrLsEmywhIrelONbJH/9vSVErG0Y2frZUbxiWQu354aLN7dIsqapTeigszuyK60Lgxc0njUp0lo7qptfWQreqQXstp3UOky3JmNo/HlP7x+uVsh05e1lvJnsA+OTbXzEptb1eSVGJuhqr9hYpHq/Sw8vSkj1PqfL2lHS6O7l8XIX6zgQa4V7BJgMicltGI/zKBEemHnxsGOkdlKo3zA10qFtFbOvDz7C32MKMBPw1raPFaewd18pokEYfFbDhgVSEBzXTm9xY99LXXsv7Fg4x2eZK9zi+OXNJ9hgOnrmsFxAVlVXKVmto02zq4WVptbs7VM9bEsi6Qzo9le75lbtG3THYZEBEbs2SEX611QqGmRsbRnoHuYbY2oEOrSkZtPbhJ9dbLPvLk4AA/jpIPyhSaixeWVsnW+VVVasxW9WgvZYtDeZuimstu7x3nH47IqU3+n+O74Ge7VtJ+3fHbtOWYsmxefb8vnLnd9/CIUbXqLtdNwyISJG7ZHi6Dyq5h4pSF042jPQepgJnU13A7bm+lQKWFzefxB3djXuHyQUuJepqk9eoqcbfuttZEsylxLTC6J5t9arNBt4QivCgZnrbKQVvPdu3QlFZJQAYVeUtzEgwCgLdFUuOzbMnYFQ6v/sWDrF4GAlXYUBEstz1DUr7UDl05jKgAmJaBZh8+GWNSMCLm09CA/eqqybH0wYFuYVlZksGHXF9x4c2lx1U0VQPNcPAxdwwA7rrVH90HROw/Vr++z3dMSm1PVbt/Qkbj5Zi749l6J+zw+j45dpYaavvfP44Zu1hCwDZm08CKshWF7oblhybZm/A6MnnlwERGXH3Nyi9t1MTo/zu+eEiXtxSHwypVMBjGV3cIqgj5zJXMnjk7GUs3HBMum5svb6jggOwMCOhvppMh7WlkKaqvAzXAdD7b1smgw0PaoYvj5VK/1YazkL7J5cfyHlx80mLxk1yNVPXh7uUiruSvQGNJ5fMMyAiI+4c4Vsyyq+2Qa3hdpYOdEeebc8PF/WuC5XONBzr84ux8JNjZgcRtPTB+Ne0joCA3aWQpqq85EqVLC3hsqZtnXakacP9WdJtGqh/ALpDHmGOUqmcu46e3NDsDWg8eTYBBkRkxJ0jfKXMWTuwnanGqu4S1JHzaANm3Z9eJYC0zmGy67R0r29rq9P+Oqgj7ugeLbVfqqytQ4m62q7rzFRAZmkJrtJxWDuchSUDWQLuk0dYQq7kTbdHnyOmO/HUUiZHBDSeOmQBAyIvYumN6s4RvlKwtuGBVFTVasw2VlXqiu3pmRjVkx2oEPUlFwJCPpjWKUGytbo4KjjAYSUM5gIyUyW42vXN/XxNHoc1w1lEBQdg+oB4k2MTOXsyXGfQLXlTane26WgJMpOjLB4gdM2+IqzaWyRb0uZJHBHQeOKQBQyIvIS1b73uGuErBWuGUxBY0xXbXRuQk/XMlW4arvMB8OkD/aTrx9bqYke1u7NkP0rHePSXckxY/bXU88tUtaClw1loTTMTEC2540apFE7uxcJciZerX0aUSsGe3/Q9ln75vdk8QW5aFndre2ktTwxo7MWAyAuYymQBKGZG7npD2DIirlJX7ITIlm7dgNxb2fqQtKbXllwwbWt1sVIgZU0Jg6n96AZkcsf4WEaX+nZM2jZzMvs2PA5zw1kYtltalJFQ35vMgArA4v+ewFP/PSF9t9ILhwrAfQPjMXVAvFVtoZzN8JzqMpcnmJqWhdX0noUBUSOnNLt2nRB4YdN32HS01COLdy0N1sx1xc4/c5ltjdyMvQ9Ja3ptyb0E2FJdbG8Jg6n9yAVkY/rEIiGyJfLPXEafuFaybeaAP0uKfP7oZan0QI9pHWhU7Wy4TVK7YMwZ0hFv7Co0mkpE9/+B+vQv2nAMoS38jCb2/NfeIqzeV4SsjAS9IK4hX0bkAm7ttbHpaAme3/S93vam8gRTjc49qV0VMSBq1EzNrg0AG48ad731xJIRS0oTlB40feJaGVejqMBMrIEY/naOqnqypteWIVuqi+0pYTC1H6WAzDBofOCPyWENb3WB+sBFI4CcL0+iovoa+ncKlc63YenNwowEo8HzDL8ra0QCktuF4LfKGsxZd1jxWDQCmP7OIcV1OV+eNNvbzxlMBdxRwQHITI7C0i+/t7iUUCkY9oHntasyxx2qN52JAVEjZaoYV4knloxYWppgqu1RVkaCXuYsRH3XbU8pLfNUcr9dTOtAtyixs6W62NYSBqX9fPvzZWiEQG+DKTdK1NV6QwdoBPDPnYWK+9MtwXl9ZyFe31koBTYvbtGvZjMcYFEuQF225RT2LRyCuNBAi3qfmUuXLme/jFgScEcFB+iVXlkyf5thI/UZAzpg6oA4j8pLzbEkr7UnYHKHYIsBUSOlVIw7sW8s/nOgWPYznla8a21pgtyb//r8YqM3VQHPLS1zZ7oZHgDZ327DA6luO+SDJWwpYZBjqsfa2/uKFCdftZRG/Dl2kiHdARZNtWlK7dhGcSRtSxmWajn7ZcSSNlrr84ulYEgF4LER5gd0dddOKI5iSV5rT1W3u7Ql82nwb6QGoS3G1eWrUuHu3u2MlgOWF++WqKuRW1iGEnW14xJrI3Pdj+VEBQcgtWMbveoZuQzc3H7IOuvzi9E/ZwfGrzqA/jk78Pa+ItnfrqpWg+xRSfBV1V+kum/ntl57pj7njOtZW2KgewyPjeiCorJKi75H7uGz6JNj2Hj0HI6cvYy39in39tJlLnOXC4a036e99pXyEW1wN6ZPLPYtHIL377sZuQtvwWez+8mnRQX0l5nHSq6K7/ENx52Wv5g7HqOBX1FfImZJenTzlsbGVKeBEnW1YsBk6/XuzGvAFJYQNVKmqogMi3fH9olFv05t0Kt9K5P7dJcoXsveASRtaQzpDsW6nkYuw3trX5FR6YD2nKd2bCNbkmfLtWfqc868nnVLDI7+Wi6VOFjyPUpjKc1Zd1i2nZAhHxXw6tge6BXXCp8XnJPtGQbUn++ZgzvgdYPqNsNJYy3pgaZb3XT/wHj8y6CLvkYA+wt/k01rQ1aRmjseV47S7855i7lOAzMGxNt83txpZgQGRI2YUjGuXmb9Szle3HIS674pNjsFgLt1T7d3AEnFxpAKg8zJNS5NahfslhmYO5F9wAvg/rR4vLX3jOxvp/uQtfXaMzfchLOv56jgAFyouKpXJWv4PXIPQVMjQ8sFQ6o//nRHar8tJRpA/SjaUEGvNxd0thvTJxZBAU1Ntpextjpo6oB4rJYpATTko4JRTzOgvmRLt8TG0UGCqeNx1Sj97vayachcp4HVe4tsPm/uNDMCA6JGTqlxqHaZdiA3wPRDwZ2ieF321N0bNYYEMCMtHlP7x8t2OzZ8gGrfvN0xA3MnShne1P7159rcb2frtWfqc3KjVpvap1xvOHMP6vX5xfWTyBosrxMC3/58GQVni/DWH4GD7jVk6uGjpT2f2gDG1D3w17SOuCPlz6lFDLvW665X+h2saWQu18hYLjh6dWwP3JYSjZCApnqNxAXq2xEBMAoS0jqH6bVDszVYMpUvOnqUfnPXiju+bMox1WlAA+D+AR3w1r4iq8+bM865rRgQeTFrHjTuFMUbsqVHkJalAZWp6jV3zcDchbkMz5Yxfiy59qwdtVppn4Zv73f1aItPD/9qtrfNog3HZCcfVgGYbdBd3fAa0l6Xh85cxoMfHDZKp9yYQabOo7l7xJ57SI4lI2H3iquvok/rHAaV6s+JmgXq20xB5/fRCGDhhmNSo23dMZAMfwN7S5Xk8gRr96nd/tgvaqknn9K14q4vm3JMdRqYOiAOUwfE2fRy6i6N0hkQebH40OZGbRJUqC+uNswA3CmKdzRLHgbmJrh01wzMXTiyJM/Sa8/c5yzZp9zb+yff/iqtVwqGTQXQSjVJciNS35YSgMra62anqnFHuveVte12NIDRidINLnVXaX+DhMiW2Hi0RLbUzZ60W1udpTT+m9K14s4vm3LsfcExtV9X558MiEiPAPD5kXOyjUDTOofhlbEp8FGp0LN9K5dfvA3JXDWGO2dg7qIhSvKs+Zwl+zQV2GjJBcNyDzlzY/YoXUPu8vZsD2vb7fgAECrIlrDJqRMCd76eq7fMESW31lZnmRv/Te5a8cSXTVuuSXduNK7FgMiLFZVVyr6tZn/5Z68UbQZQXnXNbNFvY2fYc2jZ5lMek4G5I2szSFsDKlOfM7dPcyWDgHIgM31AvFRa4atSYdqAOMUJUs3NFu8Ob8/2sqbdzsge0digUxJnK3tLbq2tzjIXQLsq6HVGMGLNNenujca1GBB5MbkqMzl1QiBns3JPGW+izQRSO7Yx2xCVjFnTtsIdKD2sPzt8TjEYNpwO4/4/GuoDkAIkXeNvisHcoTd49TUk1+bIXL6kbXdkKmD1AfBbZQ1K1NU2nV9rq7NMBdCWjHhtLo22BDauDkY8pdE44AEDMz7zzDNQqVR6fwkJCdL6q1evYvbs2WjTpg1atGiB0aNH4/z583r7KC4uRmZmJgIDAxEeHo4FCxbg+vXrDX0obicqOAD3DYw3u52Pyjho4sCFjXsgNmfQHZwxW2ZST3cY7FOXdtDGtM5h0uCD+xYOwd/v6a73b92Hi9zAfm/tPQPAeMBGHxWw6NYELB2VzGsIf95PShPV6hqaEIbPHuiH9++7GZ8+0E92sFnty96cdYfRP2cH1ufLj9BvLk1KA4Vauv2iWxNkrxVrGQ5uasnxuMOgh7YMoOsqHlFCdOONN+J///uf9O8mTf5M9vz587Fp0yZ89NFHCA4Oxpw5czBq1Cjs378fAFBXV4fMzExERkYiNzcXJSUlmDRpEpo2bYqlS5c2+LG4G7kxQ1QqQCX+HNfksYwusuOYOKLNjCfUK5P9bGlb4Urm3qqV3ubNVbE0hvZAzmZJNeX2kxex4+RF5Iyu/10Mh88Y2zcGH3xzVi8QWLThGAL9fNE7rrVTe0A54ze2tJTFMD91hx5sntRo3CMCoiZNmiAyMtJouVqtxltvvYV169bhlltuAQCsWbMGXbt2xddff42bb74ZX331Fb777jv873//Q0REBLp3747nnnsOWVlZeOaZZ+Dn59fQh+MycsGHUoM+wxs6JKCpwxv9uboolxqOrW0rXEFp6oyEyJYID2pmMoC3JPNvDO2BnEmbJ5mbnFrgz6BAd5gCbZ/8dQfO6m2vEcDc9wtsymus/c0c/RtbOgeb3LhNrg5GPKnRuEcERD/++COio6PRrFkzpKamIjs7G7GxsTh06BCuXbuGYcOGSdsmJCQgNjYWeXl5uPnmm5GXl4ekpCRERERI26Snp2PWrFk4ceIEevTo4YpDanCmgg+lNxpre+RYQ+mhY6r3hiNLklgy1bDsaVvR0JS6gd/5eq5UDaP0UPWkzN+dafObNfuLsGqP8mS2ulUva/YVYdXeImmcIqX2kQ3VhsWReYy5QFupBGnfwiFucT16Ssmo2wdEffv2xdq1a9GlSxeUlJRgyZIlGDhwII4fP47S0lL4+fkhJCRE7zMREREoLS0FAJSWluoFQ9r12nVKampqUFNTI/27oqLCQUfU8CwpbrXkjcaRbz1KD501+87g8cyuesttKUkylRmxZKrhyQUKj2V0QXLbkAbLIC19QFkydYaph6qnZP7uLio4AI/fmoip/eOxZt8ZrNr7k2yAs//0RUxYXaj3e2mDIqXf0dnVRo7OY8wF2qZKkNzlevSEklG3D4gyMjKk/05OTkbfvn3Rvn17fPjhhwgIcN7Jzc7OxpIlS5y2/4bkDvXIhpR6uK3e9xOmDoiT0mVLDwVTmZFsydQG5ZIpR/GGEilzx+jKjNmaB5RUZfPJMcUZ4QHT95AnZP6eIio4AI9ndkVyTDDmGIzwDQCv7yyUDZQEgHE3xRhVnQHOrTaytb2POVaP5aQCAv3q+03xerSM2/cyMxQSEoLOnTvj9OnTiIyMRG1tLcrLy/W2OX/+vNTmKDIy0qjXmfbfcu2StBYtWgS1Wi39nT1rfFN5Cu3NosvVbTaUerhpBPR6H1jbQ8FcrwqliUbX7JcfH8YRbOkd4mksPUZX9MxTCoJN9bQZ0ycWn87uB5VM7yUtV99D3qZX+1ayvclMdUiTC4bMjflkL0vyLFvzBKX7x7B3G1B/nd/1Rq7d+Y22t6W79QJ1Bo8LiK5cuYLCwkJERUWhV69eaNq0KbZv3y6tP3XqFIqLi5GamgoASE1NxbFjx3DhwgVpm23btiEoKAiJiYmK3+Pv74+goCC9P09lbdfRhjJ1QLzZQM3aYM5cZiS3PwBYvafIKTe80sP4iyO/NpoMxhVde63JpG0NglNiWiFH575RAVKA5C73kDcxzMdMxKomvTq2h0OqyJWuQXN5lrPulzF9YrHhgVS982Lvvr3hZU6X21eZPfroo7j99tvRvn17nDt3Dk8//TR8fX0xbtw4BAcHY/r06Xj44YfRunVrBAUFYe7cuUhNTcXNN98MABg+fDgSExMxceJELFu2DKWlpXjyyScxe/Zs+Pv7u/joGo6l1RUNWbVjSQNUaxupmmt8GBUcgOkD4o1GDNYAZqsQbTk3Sg9jW3u7uKOGrpI1VyVq+BsptQlavacIU/vHIypYefJOw/sGgMvbYngz3d8jt/AiXttRaNXndSeVtYepa9Ce9j7WXFNy12xlbZ3imHHWXq+eNKCio7h9QPTLL79g3Lhx+O233xAWFoYBAwbg66+/RlhYGADg5Zdfho+PD0aPHo2amhqkp6fjjTfekD7v6+uLjRs3YtasWUhNTUXz5s0xefJkPPvss646JJcxV4/s6IaAlgQQlgRq1rQ9sSSAmjYgHqv36vdcMVf9Yeu5MdVAt7FkMI4cZ8TcNWMqk97zw0XZ38hcEKz0OS3D+8aTf6vGQPt7BPr5mA2ItKV62ulT7C3VK1FX4+CZS2YDBWvb+1h7vyjlR468F20N3Dy5vaRKCEunz/NuFRUVCA4Ohlqt9ujqMyUl6mr0z9lhdCPtWzjEpova1T25StTVJgOo9fnFRkGTUvrsPTe63yXn/ftuRmrHNpYdmBPZk5FZcz5N7cPcNZNbWIbxqw4Yffb5kTfiqf+eUPyN3txTqDdHn3b9hgdScdcbuQ677qlhPfJhAT7RmfOsZ2wIjpxVmxxTzVZKs9hrWXMf23O/mMuPHHEvWvI9Ssfljj14LX1+u30JETUMR1Z7uENRq6nSsBJ1NWJaB2LDA6moqtWYzSjtPTdpncPwytgUqKuvYfFnJ/RKprQ9QVz9VmVvRmZvDzJLrxmlErcnPzthtE/dtmMvbj5ptP6xEV1kp4lwdQ9Mstzf7+mOSantcfDMZfSOa4WUmFayL0OOHjfNkLWlMPbcLw01Grq1zRXcId+3FwMiAuDYag9XdvM3F1jIPfjNvdXZc24Mv29Uz7bSxKBA/T5Hvp4LwPSAf46gdG4clZHZ07XX0mtG6hJvZhRj4M/fSGmU7OR29WMguXokX7JPSkx9IKTljC7mpkZat7UqztZ0NuRo6NYEV+44vIu1PK6XGTmHI3uiuaqbv7keEbb27rD13Mh932eHz+Ffk3rq9QQRMB7wz5E9tErU1Xhh03eK58YdJl889ovaaJnSNTOmTyyWj+0uux/tdaf7G5m6Ht21Bya5F+24abp8ALw+vofdk7Zaq6GvWUuHynDH4V2sxRIikriqqNURLCnlsKeRoFwVm7nSKKXvKyqrMjl2iiPfqtbnF2PhJ8f0vs/w3Lh68sUSdTVe3CJTpZXRRfEc9I5rLZtmuWpQc9eju4zkS65hSXX1nh8u6v1bBSB7dBIyk6MbIIXG3PGadUW+72gMiEiPK4paHcGSYMeWB79SFZslbW6Uvq9PXCuTs3k7KhjRBolyX6N7bsxlZM5u36RYpdU2RPEzhmn2ATB9QBzCg5pJwWpuYZmUZnPXozOqWcj9WXIfy91HKlV920BXcsdr1h0DNWswICKbWPKQlLthTX3OngevpcHO9AHxeGtfkUXdcJVKnRIiWyour6ytk9KvFGikxLTSW64CABUgdNIEQO+Bbgtz7R50z41uRhbo54PK2jqUqKvNdkl3BFtLqKQJQPedwep9P+Ffe4uwel8R7urRFp8e/lW2+72nZdDkPJa2nVMaS8yT2sY0JE++zxgQkdVs7ZFk6nP29nIyV8qhu38VgPvT4qVB+ZQolTrln7ksu3zkG7kQBulXemMyNeDfnh8uSt1d7QlClHpkKU1dEBUcoBcAaZsDGLZvcnSvEWuK2uWC5tX7ftJ7qOl2w/bEni7kPLrXj6VV6K6uUnYX2nPX3M8XlbV10v974nhDShgQkVVs7ZFk6nMAHNLLSSn4MPxuAeCtvWcwtb/xXGq6rK3yEjrpX7ThGBIiWyIlppXiG5Ph8qjgABw5exkLNxxT3Jc15KqVZpgIBOXOkyFn9RqxpKhdLmiOaR1otreZp/V0IecwvH6yMhIsCnQaQ9sYwP5xxpR6drrTeEP2YkBEVrG1YbKpzwkIh3XXlAs+bE2zpVVePoDRrOja7vQ5oy3PKOQaQNu6Ly17u80acuabsamidrlA8fENx7HhgVST7bEA73ybJ31yL2TLNp9C1ogELNtyymyg4+ltY+wpgTc3BlNjKoVlQERWsbX42NznnFkkbU+Rt1zVVm5hGdI6h2HfwiFSmxvD0Y6B+hIWSzMKUw2grd2XIUvr9OXOk6OnPjBH7i1WKVCsEwJVtRrZaTm0PPVtnhxL6aUouV2IdB9bMi2QJ15H9o4zZsmLUmMpheU4RGTE1Ezito6BYepzzh5Xw979a8fh0Lbt0Y7l8/a+IsSFBkolRoZjcACWj+djTabjLFHBAcgakSBlCr4qFXJGJ2H/wlvw/n03Y9/CIUjrHGbxLPPWkhtHylSgqA1qpw2Id5sxYsg9mRuLypJxdpzJVJ5rL3vHGZM7d4YaSyksS4hIjyVFq7YWH5v6nKOLpA1LGmzZv+4+AON2Tqv2FmH13iKpKishsiVGvp5r1aSxWqYmgbV2X7Zan1+MF7echAb1pUKPZXTRm8HbmfMUKb3FvjI2RbHdgm5QmzPauGrTVWPEkPtx5NASjh6Gwpr7ypbvtrdRuOG5M+SrUuGxEV1QVFYpbe+pOLmrhRr75K6A4yd4dRVHPLgN9zFjQDz+ZaJaxhETKxp+dmSPaGmaDx8AMwbGIzM5yik9O8z99s6+NpQmbX19fA/Mff+w3vf6APh0dj+jRubmJvQlkrtGrMkvHP1SYM19JffdaZ3DLAqQHDHhq/bcBfr5oKpWI/3/0V/L8eLmk04L6ByBk7uS1RrDXDSOmJdLbh+r9xYpluA4amJFuc8+mt5Fb5wdbVDmyBKaEnU1Nh49Z/K3t/TasDXDU3qL7dm+lWLDdkOe2saDGo7hNWJNfuGMyUutua8Mv3vhhmOAsGwOREeUwCuNKzdh9dcWnRNnljA7CgMikjSG8TYcEdTJDsQG4P4BHfTGvNFy5MSKcp+V+05td/xAP1/0jmtt8/eZ6k6re1yWXBv2ZHimqjTSOofhlbEp8PkjQGLQQ45iTX5hri2OI18EDPNcue/WrduxJDhzxguDPQGdO/ZMY6Nqkji7cXNDcMQEg0r7mDogDvsX3oL70+L1Gh478xyZamytEcDc9wtkJ7K1hKnutIbHZe7asHXiXN20aOeL0zbgHtMnFm/uKUS/nB2Y+34B5r5/2GhOKSJ7WJNfKG179Ndyk5NKG9JtQG1pnmtJw+aGnpAZsPz8ucME0pZgCRHp8fTxNhwxiJq5fTx+ayKm9o9vkHNkSWNrW9+2lIKtxZldcWtylNG+TF0b9pTMKc0X9+buQmRv/nPSV3d9qyTPZU1+IbftYyO6SO1nAPPXqFIpqrk812iQ1T+m+rGlA4ecEnU1Dp65BJVKhV5WlMJaev48pfaBAREZcYe2GPY0vnNEUOcuk4Ga6+GhpRR8GPaU0z2nSpmUXDCkmx7tfnT/bWuGZ2q+uBydYMjccRLZypr8wnBba14EzFUbmbumDb97zw8XHTJ6tuE4XyrU99q0tMG2LQGdu9Y+MCAip7M2uHFE4ztHBCzuEBgCxhOv/nK5GnPWHTb7dmg4fxtg3ADT2kxK6bexNcMzNV+cXPjno4LbvVWS57PmXjfc1tIXAUe0b9T9bke8+JWoq40GPRUAFn5yTPpvS/JgWwI6d8hbDTEgIqeyNrjxlMZ39rI2SNTNcFJiWuFKzXW9qUMeG9HFZCNG3QxP95xak0mZ+21syfCsnS8uKyOhUV0H5FkM71trXgQcWW2km47Ujm2kdknWlqgXlVXKvngo5ReN5SVTCQMiMsmeqiu5B6i5iUobQ9d/cxxRAjamTyzKq68h54/2Cy9uOYmQwKYY0ydWsRu9Lt1zamkmZclvY22Gp/RAkZsvLisjAX9N62jxvokcSem+tfRFwFHVRobpuKtHW3x6+Feb8pP40OZQQX4iZ12NLQ9WwoCIFNn74Jbtvi5MT1TqKY3vbGVPCZhhe6AXN580muy0vOpa/WjTZnI4W86pLb+NJQG10gPFE4rYyTtY0v7HkuvT3DVt7n6RS8cn3/4qrbe2NCcqOAA5o5OM2hABjmuw7UkYEJEsR1RdKfWQElDel6c0vrOVtY0wtZnjnh8uGo2cLbefnM0nZd/2VH/8jxDmhwqQy5S1yyydHRywLqBWeqC4exE7eQdHllwrXdPm7hdLSn7l0mUuyNIGaYfOXIZKBfRs38phDbY9DQMikuWoBoDZo5Jkx7qpEwKHzlxG6xbGN2pjLhmwtJTFMHPU7WKrNHK2Uvd8bTd6AGbPqVymDEBvWVZGApLbhpjcj1J1qb0DSRK5grNLrs29gJoaQNWQjwoou3IVJepqoxcp3SDLMFC6LcU78mBTOJeZhbxhLjNdjpy76sjZy0aTnqpQP4GoOw/jbg1r2lqZm1dI7tzLuX9gB7y1r+jPMVEy9MdEAf78zQDzI+nKfa8PAMg8CMxdB0pzkwGN4/cm7+OI+cAMafONS5W1mLPusNH69++7GXGhgYr5geGch6o/GgQJKFd97Vs4RC9QUgFYmJGAvw5yTfu8hpjfjHOZkV0cWXWVEtNKbzZyH9TfpI2lJ5lhqcr0AfGYNiDe6jYzWqZGp9bSjpw9dUCc3n5CApoa/Wam3hLNfa8GMGpxaUlJoakBJT399ybv5OhSE8NhMQwbN2tLoCwZQPXR9C749ufLesNxyGUhdULg258vG/VAzd58ElDB4k4Ljgpi3G1+MwZEpMiRGUBa5zAsH9ddenUxfBvy1F4MckXdq/YWYfXeIsWG44DptjFywYRKBahEfYAiN62GNi3a6S+qajVScb7u26WpYETue5VKiMxVFZgbUNJTf2/ybubatFkaKMgNi6HCn9Xehve4qQFUtd+pEcJsbzEfFXCytEI2wHpx80nckRKtt0+543BUEOOOQ6wwICJFznoLyMpIaNCeZM4sklV6ezPVcNwcpdI5U8Gp0vQXuYVlFrcFU/pe/HEs1pYUagNqwzdXwHt6rZD3sCZQkJ2sFcBrY3ugTQt/vXvcVGm94XcaljLpNk1Q/dEW8bUdhbJp0oj6Nobm2h0ZtQ38xPRQKkrccYgVBkQky5lvAcs2n7Kqt5I97D0Oc8GUqaohW29u3ZKeXy5XQyOE1BDZ0q642ukvLlXWKhbFyx2bUqmgrSWFUcEByEwO0BtI0pt6rZB3sLa0Q6mRdq84+XnE5O5Lue9UqQAfg5JkpZcSQ74qFQL9fEweh1K1+sg3cpFjZd7qjkOsMCAiI44sylR6C0huF4J9C4c4tReDvcdhSTBlqiedNTe3Njg59qtaahit2yjSVMNHpXOsbciu2z7BknZFcoGXvd3fvbXXCnkHa0s7bGmjaXgPypYyCeCf43ugdXP9UqZWzeVHpNbmCz4qYOmobqisrTN5HIpDqSjkraZeKN1xiBUGRGRE6eY+dOayXtdMSzT385WKarW0gYKzx5ixp0jWmmBK+7Bfs78Iq/cUybbzMUWpS60w+G+lho+mxnvS/r+Pqr44vldcfbG2pe2KlJjK6JTWcUwhaoxK1NX47UqN1aUd9r4kKJWw9NSZrV57Lzb385Vtl6g7sGvhhStIiGxp8jikF8BPjtV3uNBhmLda8kLpbi9KDIjIiNID9sEPDqOy9rriOBaGtDeEYTDUUG8B9hTJ2vLG9/itiZjaP96qm9sw8DJHqeGjUialpRFAmxb+iAoOsKpdkRxTGZ279RohciajnmIWDn6qZc9Lgqk2f7mFZXqlzdopPrTd830MXlIB4F97i7BqXxEGdArF/tNlso27gfogJiGyJUa+kau3D93xjwBY/ELpTi9KDIjIiNJbgO5Fba4rt9yD3gfAhgdSrW58Z+9x2FIk29zPV7HtjbnvtObmtqSLvS5TDR9fHd9DdiwToD6j1qa9uZ+v7DaBfj5mv99UyRlgeSZI5OkMZ4oXqG+/88/xPfRKabTb2tKxw9JRprUvYXt+uCg7ZpFGAJ8dPif1QC27chVz3y8w2p8QwN4fywAA96fFY2p/+eFDUmJaIUcnb9UGgnPfLzA5kr679yxlQESyxvSJRXP/JrLd4w+duWz2wafU+K6qVqkMwzlsKZKVSrZ0ljmrZMvU5Ipyy001fNzwQKpiA2/dHVXW1smmxZLfxlTJmYDwyEyQyBZv7ysyuj81AFo399e73s2NU6YU9Fha2qp9CTNX2lwnBKpqNUjt2AYl6mrlvOIPb+09g6n94xXXK/Ui1Qj5kfRd3WDaEuZfCclr9WrfCj4q/WW+KpXRuDTAnw8+LW11leFnXXFDRAUHILVjG5ursHxU9SVbSlU/Jepq5BaWSUXFSsuU0jbuphjZda+N64FFtyZI51EblCk1fKyq1SB7VJLsTS0A6feR+218dEqQTJH9LICq2mtSOwpdnpAJElmrRF2Nt/YVGS33gf59pDROWb/sHVifX4z1+cXon7MD41cdQP+c+mVKn3t8w3GUqKsV8xZzpc1ybYFMBQCGebqcqOAAtGruJxsYzhjQof55gYZtKmEPlhCRIqUqJ22gZCr6t7a6qiGGb7eEbMmWUC49sWTuL1PtaNbnF+OD/LNGy7VdcG8LjsYdKdFG3W2Vzn9qxzay9ftymeFCnfZdQgB7frhotr2P3ICLGgDT3zkEwLZ2FESeRin4mJGmX8VkapyyRZ8c03u51C1pVyqJXbPvDFbv+0k2bzE1BIhSW6C0zmF6+zT8jDUvSYb5kdxI+u6OARGZpFTlZEmwY2l1lTs1xLWmIbbSIGVKmZxcbyy5Im4fwGgkasPeWrrn30cFTBsQJ603rN+X+33SOofpVaMJWN7eR6lRpXY/Su0oiBoL2VHdVTCqYjI5hQ2gOC2O0qjxuoGLYd4i9xL62IguSG6nPBFzVHAAHs/siqkD4mzuJWvu5deT8gAGRGSWXENhS4Mdc42M3W34dmtKtuyd+0vp7fG18T2QmRxtMp26Xf1X7SnCqr1FeGtfkRRMWjJfmuFXWzO0wtnL1UbBkJZcOwqixsTSfMLUOGXaOR3lOm7I7X/6gDj8a69+NZ1h3mJrN3Zbe8lqWfu97lIjYIgBEdnMEd0l7R2+3Rk3lqU3t71zf5kaR8RSq/cW6TVmNHxjtCbtgPHQCrqkwSN/USNn80nFNLHdEHkDS/MJpXHKRvaIxoZvf5W2U0G/ZNhw/wCwel+R2bzF3q78jvhsQ8yF5gwMiMil7BkryJk3liUZg6lxQPSKrTO6oKisUvqcbkZhy7AA2szmtys1NgeTlgytoNTjxRS2GyJvIpdPyAUDhiUwgX4+uOuNXP15x1SQhq9Q2r+rRna25sXTVL7sbjUChrwqIHr99dfx0ksvobS0FCkpKXjttddw0003uTpZXs2eoMAdbixzc38d/aVcdioO3YzCmqJmc5M5AsDRX8uR2rGNRWlXGlpBN6iyZPDI5+68EZ3CW3pM40kiZzD3kqYNcOQGR9WOMWbq/rG1SsyeknRrXjzN5cvuOKGrLq8JiNavX4+HH34YK1euRN++ffHKK68gPT0dp06dQnh4uKuT59Vsucnd6caSe0vU/nvC6q+ldOomV656yxzZyRxltlu2+ZQ0mrXcPnQzRkt6DFrSnXdYYoRbZGhErmLNS5qpknFzwYu11Vr2lKRb++JpLl92xwlddXnNOET/+Mc/cN9992Hq1KlITEzEypUrERgYiLffftvVSSNYN1YQ4F7jHCkxF0hYMs6Huf3J7V5pv3JjnmhL6EyNFyJ3rrVYRUZUz1QwYEjpvtOONG04LpGtTI1n5OhjAszny5bkN67kFSVEtbW1OHToEBYtWiQt8/HxwbBhw5CXlyf7mZqaGtTU1Ej/rqiocHo6yXK2VrU1JFNdbgHrAzilrr5CmJ9ixNSbnrkSOtnuvBldkNxWuTsvkbextvRDrtG0vZMuG7K3JN3aY7IkX3a3CV11eUVAVFZWhrq6OkREROgtj4iIwMmT8r1lsrOzsWTJkoZIHtnInW8swDhzUAGAHYMWWtqIW26/5jJGc8Xw7n6uiVzNlpc03fvO3kmX5dhbRWXLMVmSVziih7IzeEVAZItFixbh4Ycflv5dUVGBmBj5KRbIddz1xtKSewu0J6gw14hbab+OqLt393NN5Gr2vDg4o32NI0rSbTkmT80rvCIgCg0Nha+vL86fP6+3/Pz584iMjJT9jL+/P/z9/RsiedTIGWYO9mYUSo24zb2JunsVI1FjYGsw4Kx71BGlu54a4FjLKwIiPz8/9OrVC9u3b8fIkSMBABqNBtu3b8ecOXNcmziiBsJqLyL35qx71FsCGnt5RUAEAA8//DAmT56M3r1746abbsIrr7yCyspKTJ061dVJI2owzBiJ3BvvUdfxmoBozJgxuHjxIp566imUlpaie/fu2LJli1FDayIiIvI+KiGUpmgkXRUVFQgODoZarUZQUJCrk0NEREQWsPT57TUDMxIREREpYUBEREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GREREROT1GBARERGR1/OaqTvspR3Qu6KiwsUpISIiIktpn9vmJuZgQGSh33//HQAQExPj4pQQERGRtX7//XcEBwcrrudcZhbSaDQ4d+4cWrZsCZVKZfN+KioqEBMTg7Nnz3rtnGg8B/V4HngOAJ4DgOdAi+fBOedACIHff/8d0dHR8PFRbinEEiIL+fj4oF27dg7bX1BQkNde8Fo8B/V4HngOAJ4DgOdAi+fB8efAVMmQFhtVExERkddjQERERERejwFRA/P398fTTz8Nf39/VyfFZXgO6vE88BwAPAcAz4EWz4NrzwEbVRMREZHXYwkREREReT0GREREROT1GBARERGR12NARERERF6PAZEDrFixAsnJydJAUqmpqdi8ebO0/urVq5g9ezbatGmDFi1aYPTo0Th//rzePoqLi5GZmYnAwECEh4djwYIFuH79ekMfisPk5ORApVJh3rx50rLGfh6eeeYZqFQqvb+EhARpfWM/fl2//vor7r33XrRp0wYBAQFISkrCwYMHpfVCCDz11FOIiopCQEAAhg0bhh9//FFvH5cuXcKECRMQFBSEkJAQTJ8+HVeuXGnoQ7FJXFyc0bWgUqkwe/ZsAN5xLdTV1WHx4sWIj49HQEAAOnbsiOeee05vPqnGfh0A9dNFzJs3D+3bt0dAQAD69euH/Px8aX1jPAd79uzB7bffjujoaKhUKnz22Wd66x11zEePHsXAgQPRrFkzxMTEYNmyZfYlXJDdPv/8c7Fp0ybxww8/iFOnTonHH39cNG3aVBw/flwIIcTMmTNFTEyM2L59uzh48KC4+eabRb9+/aTPX79+XXTr1k0MGzZMHD58WHz55ZciNDRULFq0yFWHZJdvvvlGxMXFieTkZPHQQw9Jyxv7eXj66afFjTfeKEpKSqS/ixcvSusb+/FrXbp0SbRv315MmTJFHDhwQPz0009i69at4vTp09I2OTk5Ijg4WHz22WfiyJEj4o477hDx8fGiurpa2mbEiBEiJSVFfP3112Lv3r2iU6dOYty4ca44JKtduHBB7zrYtm2bACB27twphPCOa+GFF14Qbdq0ERs3bhRFRUXio48+Ei1atBDLly+Xtmns14EQQtxzzz0iMTFR7N69W/z444/i6aefFkFBQeKXX34RQjTOc/Dll1+KJ554QmzYsEEAEJ9++qneekccs1qtFhEREWLChAni+PHj4v333xcBAQHizTfftDndDIicpFWrVmL16tWivLxcNG3aVHz00UfSuu+//14AEHl5eUKI+ovHx8dHlJaWStusWLFCBAUFiZqamgZPuz1+//13ccMNN4ht27aJQYMGSQGRN5yHp59+WqSkpMiu84bj18rKyhIDBgxQXK/RaERkZKR46aWXpGXl5eXC399fvP/++0IIIb777jsBQOTn50vbbN68WahUKvHrr786L/FO8tBDD4mOHTsKjUbjNddCZmammDZtmt6yUaNGiQkTJgghvOM6qKqqEr6+vmLjxo16y3v27CmeeOIJrzgHhgGRo475jTfeEK1atdK7H7KyskSXLl1sTiurzBysrq4OH3zwASorK5GamopDhw7h2rVrGDZsmLRNQkICYmNjkZeXBwDIy8tDUlISIiIipG3S09NRUVGBEydONPgx2GP27NnIzMzUO14AXnMefvzxR0RHR6NDhw6YMGECiouLAXjP8QPA559/jt69e+P//u//EB4ejh49emDVqlXS+qKiIpSWluqdi+DgYPTt21fvXISEhKB3797SNsOGDYOPjw8OHDjQcAfjALW1tXj33Xcxbdo0qFQqr7kW+vXrh+3bt+OHH34AABw5cgT79u1DRkYGAO+4Dq5fv466ujo0a9ZMb3lAQAD27dvnFefAkKOOOS8vD2lpafDz85O2SU9Px6lTp3D58mWb0sbJXR3k2LFjSE1NxdWrV9GiRQt8+umnSExMREFBAfz8/BASEqK3fUREBEpLSwEApaWlehmfdr12naf44IMP8O233+rVj2uVlpY2+vPQt29frF27Fl26dEFJSQmWLFmCgQMH4vjx415x/Fo//fQTVqxYgYcffhiPP/448vPz8eCDD8LPzw+TJ0+WjkXuWHXPRXh4uN76Jk2aoHXr1h51LgDgs88+Q3l5OaZMmQLAO+4FAFi4cCEqKiqQkJAAX19f1NXV4YUXXsCECRMAwCuug5YtWyI1NRXPPfccunbtioiICLz//vvIy8tDp06dvOIcGHLUMZeWliI+Pt5oH9p1rVq1sjptDIgcpEuXLigoKIBarcbHH3+MyZMnY/fu3a5OVoM5e/YsHnroIWzbts3obchbaN98ASA5ORl9+/ZF+/bt8eGHHyIgIMCFKWtYGo0GvXv3xtKlSwEAPXr0wPHjx7Fy5UpMnjzZxalreG+99RYyMjIQHR3t6qQ0qA8//BDvvfce1q1bhxtvvBEFBQWYN28eoqOjveo6+M9//oNp06ahbdu28PX1Rc+ePTFu3DgcOnTI1UkjA6wycxA/Pz906tQJvXr1QnZ2NlJSUrB8+XJERkaitrYW5eXletufP38ekZGRAIDIyEijHibaf2u3cXeHDh3ChQsX0LNnTzRp0gRNmjTB7t278eqrr6JJkyaIiIjwivOgKyQkBJ07d8bp06e95joAgKioKCQmJuot69q1q1R9qD0WuWPVPRcXLlzQW3/9+nVcunTJo87Fzz//jP/973+YMWOGtMxbroUFCxZg4cKFGDt2LJKSkjBx4kTMnz8f2dnZALznOujYsSN2796NK1eu4OzZs/jmm29w7do1dOjQwWvOgS5HHbMz7hEGRE6i0WhQU1ODXr16oWnTpti+fbu07tSpUyguLkZqaioAIDU1FceOHdO7ALZt24agoCCjB4u7Gjp0KI4dO4aCggLpr3fv3pgwYYL0395wHnRduXIFhYWFiIqK8prrAAD69++PU6dO6S374Ycf0L59ewBAfHw8IiMj9c5FRUUFDhw4oHcuysvL9d6id+zYAY1Gg759+zbAUTjGmjVrEB4ejszMTGmZt1wLVVVV8PHRf8T4+vpCo9EA8K7rAACaN2+OqKgoXL58GVu3bsWdd97pdecAcNzvnpqaij179uDatWvSNtu2bUOXLl1sqi4DwG73jrBw4UKxe/duUVRUJI4ePSoWLlwoVCqV+Oqrr4QQ9V1sY2NjxY4dO8TBgwdFamqqSE1NlT6v7WI7fPhwUVBQILZs2SLCwsI8qoutHN1eZkI0/vPwyCOPiF27domioiKxf/9+MWzYMBEaGiouXLgghGj8x6/1zTffiCZNmogXXnhB/Pjjj+K9994TgYGB4t1335W2ycnJESEhIeK///2vOHr0qLjzzjtlu9326NFDHDhwQOzbt0/ccMMNbt3V2FBdXZ2IjY0VWVlZRuu84VqYPHmyaNu2rdTtfsOGDSI0NFQ89thj0jbecB1s2bJFbN68Wfz000/iq6++EikpKaJv376itrZWCNE4z8Hvv/8uDh8+LA4fPiwAiH/84x/i8OHD4ueffxZCOOaYy8vLRUREhJg4caI4fvy4+OCDD0RgYCC73bvatGnTRPv27YWfn58ICwsTQ4cOlYIhIYSorq4WDzzwgGjVqpUIDAwUd911lygpKdHbx5kzZ0RGRoYICAgQoaGh4pFHHhHXrl1r6ENxKMOAqLGfhzFjxoioqCjh5+cn2rZtK8aMGaM39k5jP35dX3zxhejWrZvw9/cXCQkJ4l//+pfeeo1GIxYvXiwiIiKEv7+/GDp0qDh16pTeNr/99psYN26caNGihQgKChJTp04Vv//+e0Mehl22bt0qABgdlxDecS1UVFSIhx56SMTGxopmzZqJDh06iCeeeEKvm7Q3XAfr168XHTp0EH5+fiIyMlLMnj1blJeXS+sb4znYuXOnAGD0N3nyZCGE4475yJEjYsCAAcLf31+0bdtW5OTk2JVulRA6w4YSEREReSG2ISIiIiKvx4CIiIiIvB4DIiIiIvJ6DIiIiIjI6zEgIiIiIq/HgIiIiIi8HgMiIiIi8noMiIiIiMjrMSAiIqcZPHgw5s2b5+pkON0zzzyD7t27uzoZRGQHBkRERApqa2sb9PuEELh+/XqDficR1WNAREROMWXKFOzevRvLly+HSqWCSqXCmTNncPz4cWRkZKBFixaIiIjAxIkTUVZWJn1u8ODBmDt3LubNm4dWrVohIiICq1atQmVlJaZOnYqWLVuiU6dO2Lx5s/SZXbt2QaVSYdOmTUhOTkazZs1w88034/jx43pp2rdvHwYOHIiAgADExMTgwQcfRGVlpbQ+Li4Ozz33HCZNmoSgoCDcf//9AICsrCx07twZgYGB6NChAxYvXizNsr127VosWbIER44ckY5z7dq1OHPmDFQqFQoKCqT9l5eXQ6VSYdeuXXrp3rx5M3r16gV/f3/s27cPGo0G2dnZiI+PR0BAAFJSUvDxxx87+iciIh0MiIjIKZYvX47U1FTcd999KCkpQUlJCVq2bIlbbrkFPXr0wMGDB7FlyxacP38e99xzj95n33nnHYSGhuKbb77B3LlzMWvWLPzf//0f+vXrh2+//RbDhw/HxIkTUVVVpfe5BQsW4O9//zvy8/MRFhaG22+/XQpcCgsLMWLECIwePRpHjx7F+vXrsW/fPsyZM0dvH3/729+QkpKCw4cPY/HixQCAli1bYu3atfjuu++wfPlyrFq1Ci+//DIAYMyYMXjkkUdw4403Ssc5ZswYq87VwoULkZOTg++//x7JycnIzs7Gv//9b6xcuRInTpzA/Pnzce+992L37t1W7ZeIrGDX1LBERCYMGjRIPPTQQ9K/n3vuOTF8+HC9bc6ePas3K/ygQYPEgAEDpPXXr18XzZs3FxMnTpSWlZSUCAAiLy9PCPHn7NoffPCBtM1vv/0mAgICxPr164UQQkyfPl3cf//9et+9d+9e4ePjI6qrq4UQQrRv316MHDnS7HG99NJLolevXtK/n376aZGSkqK3TVFRkQAgDh8+LC27fPmyACB27typl+7PPvtM2ubq1asiMDBQ5Obm6u1v+vTpYty4cWbTRkS2aeLKYIyIvMuRI0ewc+dOtGjRwmhdYWEhOnfuDABITk6Wlvv6+qJNmzZISkqSlkVERAAALly4oLeP1NRU6b9bt26NLl264Pvvv5e+++jRo3jvvfekbYQQ0Gg0KCoqQteuXQEAvXv3Nkrb+vXr8eqrr6KwsBBXrlzB9evXERQUZPXxK9H9ztOnT6Oqqgp/+ctf9Lapra1Fjx49HPadRKSPARERNZgrV67g9ttvx4svvmi0LioqSvrvpk2b6q1TqVR6y1QqFQBAo9FY9d1//etf8eCDDxqti42Nlf67efPmeuvy8vIwYcIELFmyBOnp6QgODsYHH3yAv//97ya/z8envkWCEEJapq2+M6T7nVeuXAEAbNq0CW3bttXbzt/f3+R3EpHtGBARkdP4+fmhrq5O+nfPnj3xySefIC4uDk2aOD77+frrr6Xg5vLly/jhhx+kkp+ePXviu+++Q6dOnazaZ25uLtq3b48nnnhCWvbzzz/rbWN4nAAQFhYGACgpKZFKdnQbWCtJTEyEv78/iouLMWjQIKvSSkS2Y6NqInKauLg4HDhwAGfOnEFZWRlmz56NS5cuYdy4ccjPz0dhYSG2bt2KqVOnGgUUtnj22Wexfft2HD9+HFOmTEFoaChGjhwJoL6nWG5uLubMmYOCggL8+OOP+O9//2vUqNrQDTfcgOLiYnzwwQcoLCzEq6++ik8//dToOIuKilBQUICysjLU1NQgICAAN998s9RYevfu3XjyySfNHkPLli3x6KOPYv78+XjnnXdQWFiIb7/9Fq+99hreeecdm88NEZnGgIiInObRRx+Fr68vEhMTERYWhtraWuzfvx91dXUYPnw4kpKSMG/ePISEhEhVTPbIycnBQw89hF69eqG0tBRffPEF/Pz8ANS3S9q9ezd++OEHDBw4ED169MBTTz2F6Ohok/u84447MH/+fMyZMwfdu3dHbm6u1PtMa/To0RgxYgSGDBmCsLAwvP/++wCAt99+G9evX0evXr0wb948PP/88xYdx3PPPYfFixcjOzsbXbt2xYgRI7Bp0ybEx8fbcFaIyBIqoVvBTUTkgXbt2oUhQ4bg8uXLCAkJcXVyiMgDsYSIiIiIvB4DIiIiIvJ6rDIjIiIir8cSIiIiIvJ6DIiIiIjI6zEgIiIiIq/HgIiIiIi8HgMiIiIi8noMiIiIiMjrMSAiIiIir8eAiIiIiLweAyIiIiLyev8PBcjMfq1Q8SEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAd4tJREFUeJzt3XlcVFX/B/DPBQVBBVR2BUFNkcQ9FXfTRKLFtF9umWuWqaUtopWlLUL2PE/bU9pjpT1PmbZoWW6Zawa5Ja5JSiiUoJIyKCAoc35/4NxmubMyw8wwn/frxauce+fec+/cufc753zPOZIQQoCIiIjIg3k5uwBEREREzsaAiIiIiDweAyIiIiLyeAyIiIiIyOMxICIiIiKPx4CIiIiIPB4DIiIiIvJ4DIiIiIjI4zEgIiIiIo/HgIiI3MbChQshSZJF60qShIULFzq0PAMHDsTAgQNddntEZDkGRERktZUrV0KSJPmvXr16aN68OSZOnIg///zT2cVzOTExMTrnKzQ0FP369cO6devssv2ysjIsXLgQO3futMv2iDwRAyIistlLL72E//3vf1i2bBmSk5PxySefYMCAAbh27ZpD9vf888+jvLzcIdt2tM6dO+N///sf/ve//+Hpp5/GuXPnMGLECCxbtqzG2y4rK8OiRYsYEBHVQD1nF4CI3FdycjK6d+8OAJg6dSqCg4Px2muvYf369XjggQfsvr969eqhXj33vG01b94cDz74oPzvhx56CG3atMEbb7yBRx991IklIyKANUREZEf9+vUDAOTk5Oi8fvLkSdx///1o2rQpGjRogO7du2P9+vU661y/fh2LFi3CLbfcggYNGqBZs2bo27cvtm7dKq+jlENUUVGBOXPmICQkBI0bN8Y999yDP/74w6BsEydORExMjMHrSttcsWIFbr/9doSGhsLX1xfx8fFYunSpVefCnPDwcLRv3x65ubkm17tw4QKmTJmCsLAwNGjQAJ06dcLHH38sLz9z5gxCQkIAAIsWLZKb5RydP0VU17jnTy0icklnzpwBADRp0kR+7fjx4+jTpw+aN2+OefPmoWHDhvj8888xfPhwfPXVV7jvvvsAVAcmaWlpmDp1Knr06IGSkhIcOHAAv/zyC+644w6j+5w6dSo++eQTjB07Fr1798b27duRkpJSo+NYunQpbr31Vtxzzz2oV68evv32Wzz22GNQq9WYMWNGjbatcf36deTn56NZs2ZG1ykvL8fAgQNx+vRpzJw5E7Gxsfjiiy8wceJEFBcX44knnkBISAiWLl2K6dOn47777sOIESMAAB07drRLOYk8hiAistKKFSsEAPHDDz+Iixcvivz8fPHll1+KkJAQ4evrK/Lz8+V1Bw8eLBISEsS1a9fk19Rqtejdu7e45ZZb5Nc6deokUlJSTO73xRdfFNq3raysLAFAPPbYYzrrjR07VgAQL774ovzahAkTRMuWLc1uUwghysrKDNZLSkoSrVq10nltwIABYsCAASbLLIQQLVu2FEOHDhUXL14UFy9eFIcPHxajR48WAMSsWbOMbu/NN98UAMQnn3wiv1ZZWSkSExNFo0aNRElJiRBCiIsXLxocLxFZh01mRGSzIUOGICQkBFFRUbj//vvRsGFDrF+/Hi1atAAAXLp0Cdu3b8cDDzyAK1euoKioCEVFRfjrr7+QlJSEU6dOyb3SgoKCcPz4cZw6dcri/W/cuBEA8Pjjj+u8Pnv27Bodl5+fn/z/KpUKRUVFGDBgAH7//XeoVCqbtvn9998jJCQEISEh6NSpE7744guMHz8er732mtH3bNy4EeHh4RgzZoz8Wv369fH444/j6tWr2LVrl01lISJDbDIjIpu9++67aNu2LVQqFT766CPs3r0bvr6+8vLTp09DCIEFCxZgwYIFitu4cOECmjdvjpdeegn33nsv2rZtiw4dOmDYsGEYP368yaafs2fPwsvLC61bt9Z5vV27djU6rp9++gkvvvgiMjMzUVZWprNMpVIhMDDQ6m327NkTr7zyCiRJgr+/P9q3b4+goCCT7zl79ixuueUWeHnp/nZt3769vJyI7IMBERHZrEePHnIvs+HDh6Nv374YO3YssrOz0ahRI6jVagDA008/jaSkJMVttGnTBgDQv39/5OTk4JtvvsH333+PDz74AG+88QaWLVuGqVOn1risxgZ0rKqq0vl3Tk4OBg8ejLi4OPzrX/9CVFQUfHx8sHHjRrzxxhvyMVkrODgYQ4YMsem9ROR4DIiIyC68vb2RlpaGQYMG4d///jfmzZuHVq1aAahu5rEkGGjatCkmTZqESZMm4erVq+jfvz8WLlxoNCBq2bIl1Go1cnJydGqFsrOzDdZt0qQJiouLDV7Xr2X59ttvUVFRgfXr1yM6Olp+fceOHWbLb28tW7bEkSNHoFardWqJTp48KS8HjAd7RGQ55hARkd0MHDgQPXr0wJtvvolr164hNDQUAwcOxPvvv4+CggKD9S9evCj//19//aWzrFGjRmjTpg0qKiqM7i85ORkA8Pbbb+u8/uabbxqs27p1a6hUKhw5ckR+raCgwGC0aG9vbwCAEEJ+TaVSYcWKFUbL4Sh33nknCgsLsWbNGvm1Gzdu4J133kGjRo0wYMAAAIC/vz8AKAZ8RGQZ1hARkV0988wz+L//+z+sXLkSjz76KN5991307dsXCQkJePjhh9GqVSucP38emZmZ+OOPP3D48GEAQHx8PAYOHIhu3bqhadOmOHDgAL788kvMnDnT6L46d+6MMWPG4L333oNKpULv3r2xbds2nD592mDd0aNHIzU1Fffddx8ef/xxlJWVYenSpWjbti1++eUXeb2hQ4fCx8cHd999Nx555BFcvXoVy5cvR2hoqGJQ50jTpk3D+++/j4kTJ+LgwYOIiYnBl19+iZ9++glvvvkmGjduDKA6CTw+Ph5r1qxB27Zt0bRpU3To0AEdOnSo1fISuTVnd3MjIvej6Xa/f/9+g2VVVVWidevWonXr1uLGjRtCCCFycnLEQw89JMLDw0X9+vVF8+bNxV133SW+/PJL+X2vvPKK6NGjhwgKChJ+fn4iLi5OvPrqq6KyslJeR6mLfHl5uXj88cdFs2bNRMOGDcXdd98t8vPzFbuhf//996JDhw7Cx8dHtGvXTnzyySeK21y/fr3o2LGjaNCggYiJiRGvvfaa+OijjwQAkZubK69nTbd7c0MKGNve+fPnxaRJk0RwcLDw8fERCQkJYsWKFQbvzcjIEN26dRM+Pj7sgk9kA0kIrXphIiIiIg/EHCIiIiLyeAyIiIiIyOMxICIiIiKPx4CIiIiIPB4DIiIiIvJ4DIiIiIjI43FgRgup1WqcO3cOjRs35jD5REREbkIIgStXriAyMtJgomRtDIgsdO7cOURFRTm7GERERGSD/Px8tGjRwuhyBkQW0gyRn5+fj4CAACeXhoiIiCxRUlKCqKgo+TlujFMDoqVLl2Lp0qU4c+YMAODWW2/FCy+8IE/YOHDgQOzatUvnPY888giWLVsm/zsvLw/Tp0/Hjh070KhRI0yYMAFpaWmoV+/vQ9u5cyeefPJJHD9+HFFRUXj++ecxceJEq8qqaSYLCAhgQERERORmzKW7ODUgatGiBdLT03HLLbdACIGPP/4Y9957Lw4dOoRbb70VAPDwww/jpZdekt+jmdUZAKqqqpCSkoLw8HBkZGSgoKAADz30EOrXr4/FixcDAHJzc5GSkoJHH30Un376KbZt24apU6ciIiICSUlJtXvARERE5JJcbi6zpk2b4vXXX8eUKVMwcOBAdO7cGW+++abiups2bcJdd92Fc+fOISwsDACwbNkypKam4uLFi/Dx8UFqaio2bNiAY8eOye8bPXo0iouLsXnzZovLVVJSgsDAQKhUKtYQERERuQlLn98u0+2+qqoKq1evRmlpKRITE+XXP/30UwQHB6NDhw6YP38+ysrK5GWZmZlISEiQgyEASEpKQklJCY4fPy6vM2TIEJ19JSUlITMz08FHRERERO7C6UnVR48eRWJiIq5du4ZGjRph3bp1iI+PBwCMHTsWLVu2RGRkJI4cOYLU1FRkZ2dj7dq1AIDCwkKdYAiA/O/CwkKT65SUlKC8vBx+fn6K5aqoqEBFRYX875KSEvscMBERuZyqqipcv37d2cUgG9SvXx/e3t413o7TA6J27dohKysLKpUKX375JSZMmIBdu3YhPj4e06ZNk9dLSEhAREQEBg8ejJycHLRu3dqh5UpLS8OiRYscug8iInIuIQQKCwtRXFzs7KJQDQQFBSE8PLxG4wQ6PSDy8fFBmzZtAADdunXD/v378dZbb+H99983WLdnz54AgNOnT6N169YIDw/Hvn37dNY5f/48ACA8PFz+r+Y17XUCAgKM1g4BwPz58/Hkk0/K/9Z02yMiorpDEwyFhobC39+fA++6GSEEysrKcOHCBQBARESEzdtyekCkT61W6zRVacvKygLw9wEnJibi1VdfxYULFxAaGgoA2Lp1KwICAuRmt8TERGzcuFFnO1u3btXJU1Li6+sLX1/fmhwKERG5sKqqKjkYatasmbOLQzbSVG5oYgFbm8+cGhDNnz8fycnJiI6OxpUrV7Bq1Srs3LkTW7ZsQU5ODlatWoU777wTzZo1w5EjRzBnzhz0798fHTt2BAAMHToU8fHxGD9+PJYsWYLCwkI8//zzmDFjhhzMPProo/j3v/+NuXPnYvLkydi+fTs+//xzbNiwwZmHTkRETqbJGdIezoXck+YzvH79unsGRBcuXMBDDz2EgoICBAYGomPHjtiyZQvuuOMO5Ofn44cffsCbb76J0tJSREVFYeTIkXj++efl93t7e+O7777D9OnTkZiYiIYNG2LChAk64xbFxsZiw4YNmDNnDt566y20aNECH3zwAccgIiIiAOYH7CPXZ4/P0OXGIXJVHIeIiKhuuXbtGnJzcxEbG4sGDRo4uzhUA6Y+S7cbh4iIiIicS5IkfP31184uho6dO3dCkiSH9wRkQORkBapyZOQUoUBV7uyiEBGRh1i4cCE6d+7s7GK4FJfrZeZJ1uzPw/y1R6EWgJcEpI1IwKjbop1dLCIiIo/DGiInKVCVy8EQAKgF8OzaY6wpIiIis9RqNdLS0hAbGws/Pz906tQJX375JYC/m5i2bduG7t27w9/fH71790Z2djYAYOXKlVi0aBEOHz4MSZIgSRJWrlwpb7uoqAj33Xcf/P39ccstt2D9+vUWlUmz3y1btqBLly7w8/PD7bffjgsXLmDTpk1o3749AgICMHbsWJ1puCoqKvD4448jNDQUDRo0QN++fbF//377nSwLMSByktyiUjkY0qgSAmeKypTfQERELq02UyDS0tLw3//+F8uWLcPx48cxZ84cPPjgg9i1a5e8znPPPYd//vOfOHDgAOrVq4fJkycDAEaNGoWnnnoKt956KwoKClBQUIBRo0bJ71u0aBEeeOABHDlyBHfeeSfGjRuHS5cuWVy2hQsX4t///jcyMjKQn5+PBx54AG+++SZWrVqFDRs24Pvvv8c777wjrz937lx89dVX+Pjjj/HLL7+gTZs2SEpKsmqf9sCAyEligxvCS6+XoLckISaY42EQEbmbNfvz0Cd9O8Yu34s+6duxZn+ew/ZVUVGBxYsX46OPPkJSUhJatWqFiRMn4sEHH9SZ5eHVV1/FgAEDEB8fj3nz5iEjIwPXrl2Dn58fGjVqhHr16iE8PBzh4eE6MzdMnDgRY8aMQZs2bbB48WJcvXrVYFYIU1555RX06dMHXbp0wZQpU7Br1y4sXboUXbp0Qb9+/XD//fdjx44dAIDS0lIsXboUr7/+OpKTkxEfH4/ly5fDz88PH374of1OmgUYEDlJRKAf0kYkwPvm2AnekoTFIzogItD4dCJEROR6ajsF4vTp0ygrK8Mdd9yBRo0ayX///e9/kZOTI6+nGcQY+HuGB80UF6Zov69hw4YICAiw6H1K7w8LC4O/vz9atWql85pmezk5Obh+/Tr69OkjL69fvz569OiBX3/91eJ92gOTqp1o1G3R6N82BGeKyhAT7M9giIjIDZlKgXDEff3q1asAgA0bNqB58+Y6y3x9feWgqH79+vLrmoEL1Wq12e1rv0/zXkvep/R+SZJqvL3awoDIySIC/RgIERG5MU0KhHZQ5MgUiPj4ePj6+iIvLw8DBgwwWK5dS2SMj48PqqqqHFE8q7Ru3Ro+Pj746aef0LJlSwDV02/s378fs2fPrtWyMCAiIiKqAU0KxLNrj6FKCIenQDRu3BhPP/005syZA7Vajb59+0KlUuGnn35CQECAHFiYEhMTg9zcXGRlZaFFixZo3LixUyY0b9iwIaZPn45nnnkGTZs2RXR0NJYsWYKysjJMmTKlVsvCgIiIiKiGajsF4uWXX0ZISAjS0tLw+++/IygoCF27dsWzzz5rUXPUyJEjsXbtWgwaNAjFxcVYsWIFJk6c6NAyG5Oeng61Wo3x48fjypUr6N69O7Zs2YImTZrUajk4l5mFOJcZEVHdwrnM6g7OZUZERERkBwyIiIiIyKxHH31Up5u/9t+jjz7q7OLVGHOIiIiIyKyXXnoJTz/9tOKyupBKwoCIiIiIzAoNDUVoaKizi+EwbDIjIiIij8eAiIiIPJorjppM1rHHZ8gmMyIi8kg+Pj7w8vLCuXPnEBISAh8fH3mKC3IPQghUVlbi4sWL8PLygo+Pj83bYkBEREQeycvLC7GxsSgoKMC5c+ecXRyqAX9/f0RHR8PLy/aGLwZERETksXx8fBAdHY0bN264xNxeZD1vb2/Uq1evxrV7DIiIiMijaWZk15+VnTwLk6qJiIjI4zEgIiIiIo/HgIiIiIg8HgMiIiIi8ngMiIiIiMjjMSAiIiIij8eAiIiIiDweAyIiIiLyeAyIiIiIyOMxICIiIiKPx4CIiIiIPB4DIiIiIvJ4DIiIiIjI4zEgIiIiIo/HgIiIiIg8HgMiIiIi8ngMiIiIiMjjOTUgWrp0KTp27IiAgAAEBAQgMTERmzZtkpdfu3YNM2bMQLNmzdCoUSOMHDkS58+f19lGXl4eUlJS4O/vj9DQUDzzzDO4ceOGzjo7d+5E165d4evrizZt2mDlypW1cXhERETkJpwaELVo0QLp6ek4ePAgDhw4gNtvvx333nsvjh8/DgCYM2cOvv32W3zxxRfYtWsXzp07hxEjRsjvr6qqQkpKCiorK5GRkYGPP/4YK1euxAsvvCCvk5ubi5SUFAwaNAhZWVmYPXs2pk6dii1bttT68RIREZFrkoQQwtmF0Na0aVO8/vrruP/++xESEoJVq1bh/vvvBwCcPHkS7du3R2ZmJnr16oVNmzbhrrvuwrlz5xAWFgYAWLZsGVJTU3Hx4kX4+PggNTUVGzZswLFjx+R9jB49GsXFxdi8ebPF5SopKUFgYCBUKhUCAgLse9BERETkEJY+v10mh6iqqgqrV69GaWkpEhMTcfDgQVy/fh1DhgyR14mLi0N0dDQyMzMBAJmZmUhISJCDIQBISkpCSUmJXMuUmZmpsw3NOpptGFNRUYGSkhKdPyIiIqqbnB4QHT16FI0aNYKvry8effRRrFu3DvHx8SgsLISPjw+CgoJ01g8LC0NhYSEAoLCwUCcY0izXLDO1TklJCcrLy42WKy0tDYGBgfJfVFRUTQ+ViIiIXJTTA6J27dohKysLe/fuxfTp0zFhwgScOHHC2cXC/PnzoVKp5L/8/HxnF4mIiIgcpJ6zC+Dj44M2bdoAALp164b9+/fjrbfewqhRo1BZWYni4mKdWqLz588jPDwcABAeHo59+/bpbE/TC017Hf2eaefPn0dAQAD8/PyMlsvX1xe+vr41Pj4iIiJyfU6vIdKnVqtRUVGBbt26oX79+ti2bZu8LDs7G3l5eUhMTAQAJCYm4ujRo7hw4YK8ztatWxEQEID4+Hh5He1taNbRbIOIiIjIqTVE8+fPR3JyMqKjo3HlyhWsWrUKO3fuxJYtWxAYGIgpU6bgySefRNOmTREQEIBZs2YhMTERvXr1AgAMHToU8fHxGD9+PJYsWYLCwkI8//zzmDFjhly78+ijj+Lf//435s6di8mTJ2P79u34/PPPsWHDBmceOhEREbkQpwZEFy5cwEMPPYSCggIEBgaiY8eO2LJlC+644w4AwBtvvAEvLy+MHDkSFRUVSEpKwnvvvSe/39vbG9999x2mT5+OxMRENGzYEBMmTMBLL70krxMbG4sNGzZgzpw5eOutt9CiRQt88MEHSEpKqvXjJSIiItfkcuMQuSqOQ0REROR+3G4cIiIiIiJnYUBEREREHo8BEREREXk8BkRERETk8RgQERERkcdjQEREREQejwEREREReTwGREREROTxGBARERGRx2NARERERB6PARERERF5PAZERERE5PEYEBEREZHHY0BEREREHo8BEREREXk8BkRERETk8RgQERERkcdjQEREREQejwEREREReTwGREREROTxGBARERGRx2NARERERB6PARERERF5PAZERERE5PEYEBEREZHHY0BEREREHo8BEREREXk8BkRERETk8RgQERERkcdjQEREREQejwEREREReTwGREREROTxGBARERGRx2NARERERB6PARERERF5PAZERERE5PEYELmIAlU5MnKKUKAqd3ZRiIiIPE49ZxeAgDX78zB/7VGoBeAlAWkjEjDqtmhnF4uIiMhjOLWGKC0tDbfddhsaN26M0NBQDB8+HNnZ2TrrDBw4EJIk6fw9+uijOuvk5eUhJSUF/v7+CA0NxTPPPIMbN27orLNz50507doVvr6+aNOmDVauXOnow7NIgapcDoYAQC2AZ9ceY00RERFRLXJqQLRr1y7MmDEDP//8M7Zu3Yrr169j6NChKC0t1Vnv4YcfRkFBgfy3ZMkSeVlVVRVSUlJQWVmJjIwMfPzxx1i5ciVeeOEFeZ3c3FykpKRg0KBByMrKwuzZszF16lRs2bKl1o7VmNyiUjkY0qgSAmeKypxTICIiIg/k1CazzZs36/x75cqVCA0NxcGDB9G/f3/5dX9/f4SHhytu4/vvv8eJEyfwww8/ICwsDJ07d8bLL7+M1NRULFy4ED4+Pli2bBliY2Pxz3/+EwDQvn177NmzB2+88QaSkpIcd4AWiA1uCC8JOkGRtyQhJtjfeYUiIiLyMC6VVK1SqQAATZs21Xn9008/RXBwMDp06ID58+ejrOzv2pPMzEwkJCQgLCxMfi0pKQklJSU4fvy4vM6QIUN0tpmUlITMzExHHYrFIgL9kDYiAd6SBKA6GFo8ogMiAv2cXDIiIiLP4TJJ1Wq1GrNnz0afPn3QoUMH+fWxY8eiZcuWiIyMxJEjR5Camors7GysXbsWAFBYWKgTDAGQ/11YWGhynZKSEpSXl8PPzzD4qKioQEVFhfzvkpIS+xyoglG3RaN/2xCcKSpDTLA/gyEiIqJa5jIB0YwZM3Ds2DHs2bNH5/Vp06bJ/5+QkICIiAgMHjwYOTk5aN26tcPKk5aWhkWLFjls+/oiAv0YCBERETmJSzSZzZw5E9999x127NiBFi1amFy3Z8+eAIDTp08DAMLDw3H+/HmddTT/1uQdGVsnICBAsXYIAObPnw+VSiX/5efnW39gRERE5BacGhAJITBz5kysW7cO27dvR2xsrNn3ZGVlAQAiIiIAAImJiTh69CguXLggr7N161YEBAQgPj5eXmfbtm0629m6dSsSExON7sfX1xcBAQE6f0RERFQ3OTUgmjFjBj755BOsWrUKjRs3RmFhIQoLC1FeXj0GT05ODl5++WUcPHgQZ86cwfr16/HQQw+hf//+6NixIwBg6NChiI+Px/jx43H48GFs2bIFzz//PGbMmAFfX18AwKOPPorff/8dc+fOxcmTJ/Hee+/h888/x5w5c5x27EREROQ6JCGEML+ag3Z+s2eVvhUrVmDixInIz8/Hgw8+iGPHjqG0tBRRUVG477778Pzzz+vU2Jw9exbTp0/Hzp070bBhQ0yYMAHp6emoV+/vFKmdO3dizpw5OHHiBFq0aIEFCxZg4sSJFpe1pKQEgYGBUKlUrC0iIiJyE5Y+v50aELkTBkRERETux9Lnt0skVRMRERE5EwMiIiIi8ngMiIiIiMjjMSAiIiIij8eAiIiIiDweAyIiIiLyeAyIiIiIyOMxICIiIiKPx4CIiIiIPB4DIiIiIvJ4DIiIiIjI4zEgIiIiIo/HgIiIiIg8HgMiIiIi8ngMiIiIiMjjMSAiIiIij8eAiIiIiDweAyIiIiLyeAyIiIiIyOMxIHIRBapyZOQUoUBV7uyiEBEReZx6zi4AAWv252H+2qNQC8BLAtJGJGDUbdHOLhYREZHHYA2RkxWoyuVgCADUAnh27THWFBEREdUiBkROlltUKgdDGlVC4ExRmXMKRERE5IEYEDlZbHBDeEm6r3lLEmKC/Z1TICIiIg/EgMjJIgL9kDYiAd5SdVTkLUlYPKIDIgL9nFwyIiIiz8Gkahcw6rZo9G8bgjNFZYgJ9mcwREREVMsYELmIiEA/BkJEREROwiYzIiIi8ngMiIiIiMjjMSAiIiIij8eAiIiIiDweAyIiIiLyeAyIiIiIyOMxICIiIiKPx4CIiIiIPB4DIiIiIvJ4DIiIiIjI4zEgIiIiIo/HgIiIiIg8nlMDorS0NNx2221o3LgxQkNDMXz4cGRnZ+usc+3aNcyYMQPNmjVDo0aNMHLkSJw/f15nnby8PKSkpMDf3x+hoaF45plncOPGDZ11du7cia5du8LX1xdt2rTBypUrHX14RERE5CacGhDt2rULM2bMwM8//4ytW7fi+vXrGDp0KEpLS+V15syZg2+//RZffPEFdu3ahXPnzmHEiBHy8qqqKqSkpKCyshIZGRn4+OOPsXLlSrzwwgvyOrm5uUhJScGgQYOQlZWF2bNnY+rUqdiyZUutHi8RERG5JkkIIZxdCI2LFy8iNDQUu3btQv/+/aFSqRASEoJVq1bh/vvvBwCcPHkS7du3R2ZmJnr16oVNmzbhrrvuwrlz5xAWFgYAWLZsGVJTU3Hx4kX4+PggNTUVGzZswLFjx+R9jR49GsXFxdi8ebNFZSspKUFgYCBUKhUCAgLsf/BmFKjKkVtUitjghogI9Kv1/RMREbkjS5/fLpVDpFKpAABNmzYFABw8eBDXr1/HkCFD5HXi4uIQHR2NzMxMAEBmZiYSEhLkYAgAkpKSUFJSguPHj8vraG9Ds45mG0oqKipQUlKi8+csa/bnoU/6doxdvhd90rdjzf48p5WFiIioLqpn6YrWBAS21KCo1WrMnj0bffr0QYcOHQAAhYWF8PHxQVBQkM66YWFhKCwslNfRDoY0yzXLTK1TUlKC8vJy+PkZ1rikpaVh0aJFVh+HvRWoyjF/7VGob9bjqQXw7Npj6N82hDVFREREdmJxQBQUFARJkkyuI4SAJEmoqqqyuiAzZszAsWPHsGfPHqvf6wjz58/Hk08+Kf+7pKQEUVFRtV6O3KJSORjSqBICZ4rKGBARERHZicUB0Y4dOxxWiJkzZ+K7777D7t270aJFC/n18PBwVFZWori4WKeW6Pz58wgPD5fX2bdvn872NL3QtNfR75l2/vx5BAQEKNYOAYCvry98fX1rfGw1FRvcEF4SdIIib0lCTLC/8wpFRERUx1gcEA0YMMDuOxdCYNasWVi3bh127tyJ2NhYneXdunVD/fr1sW3bNowcORIAkJ2djby8PCQmJgIAEhMT8eqrr+LChQsIDQ0FAGzduhUBAQGIj4+X19m4caPOtrdu3Spvw5VFBPohbUQCnl17DFVCwFuSsHhEB9YOERER2ZHNvcyKi4vx4Ycf4tdffwUA3HrrrZg8eTICAwMt3sZjjz2GVatW4ZtvvkG7du3k1wMDA+Wam+nTp2Pjxo1YuXIlAgICMGvWLABARkYGgOpu9507d0ZkZCSWLFmCwsJCjB8/HlOnTsXixYsBVHe779ChA2bMmIHJkydj+/btePzxx7FhwwYkJSVZVFZX6GV2pqgMMcH+DIaIiIgsZOnz26aA6MCBA0hKSoKfnx969OgBANi/fz/Ky8vx/fffo2vXrhZtx1hO0ooVKzBx4kQA1QMzPvXUU/jss89QUVGBpKQkvPfee3JzGACcPXsW06dPx86dO9GwYUNMmDAB6enpqFfv7wqwnTt3Ys6cOThx4gRatGiBBQsWyPuwhLMDIiIiIrKeQwOifv36oU2bNli+fLkcdNy4cQNTp07F77//jt27d9techfFgIiIiMj9ODQg8vPzw6FDhxAXF6fz+okTJ9C9e3eUlZVZX2IXx4CIiIjI/Th0YMaAgADk5RkODpifn4/GjRvbskkiIiIip7EpIBo1ahSmTJmCNWvWID8/H/n5+Vi9ejWmTp2KMWPG2LuMRERERA5lcbd7bf/4xz8gSRIeeugheVb5+vXrY/r06UhPT7drAYmIiIgcrUaTu5aVlSEnJwcA0Lp1a/j7193BAplDRERE5H4sfX7bVEOk4e/vj4SEhJpsgoiIiMjpbAqIrl27hnfeeQc7duzAhQsXoFardZb/8ssvdikcERERUW2wKSCaMmUKvv/+e9x///3o0aOH2UlfiYiIiFyZTQHRd999h40bN6JPnz72Lg8RERFRrbOp233z5s053hARERHVGTYFRP/85z+RmpqKs2fP2rs8RERERLXOpiaz7t2749q1a2jVqhX8/f1Rv359neWXLl2yS+GIiIiIaoNNAdGYMWPw559/YvHixQgLC2NSNREREbk1mwKijIwMZGZmolOnTvYuDxEREVGtsymHKC4uDuXl5fYuCxEREZFT2BQQpaen46mnnsLOnTvx119/oaSkROePiIiIyJ3YNJeZl1d1HKWfOySEgCRJqKqqsk/pXIij5jIrUJUjt6gUscENERHoZ7ftEhERkYPnMtuxY4fNBaO/rdmfh/lrj0ItAC8JSBuRgFG3RTu7WERERB7HpoBowIABFq332GOP4aWXXkJwcLAtu6nTClTlcjAEAGoBPLv2GPq3DWFNERERUS2zKYfIUp988glziozILSqVgyGNKiFwpqjMOQUiIiLyYA4NiGxIT/IYscEN4aU3fJO3JCEm2N85BSIiIvJgDg2IyLiIQD+kjUiA983EdG9JwuIRHdhcRkRE5AQ25RCRfYy6LRr924bgTFEZYoL9GQwRERE5CQMiJ4sI9GMgRERE5GRsMiMiIiKP59CA6MEHH7TrIIZEREREjmBzk1lxcTH27duHCxcuQK1W6yx76KGHAABLly6tWemIiIiIaoFNAdG3336LcePG4erVqwgICNCZwkOSJDkgIiIiInIHNjWZPfXUU5g8eTKuXr2K4uJiXL58Wf67dOmSvctIRERE5FA2BUR//vknHn/8cfj7cxBBIiIicn82BURJSUk4cOCAvctCRERE5BQW5xCtX79e/v+UlBQ888wzOHHiBBISElC/fn2dde+55x77lZCIiIjIwSRh4YRjXl6WVSZJkoSqqqoaFcoVlZSUIDAwECqVikMJEBERuQlLn98W1xDpd60nIiIiqitsyiH673//i4qKCoPXKysr8d///rfGhSIiIiKqTRY3mWnz9vZGQUEBQkNDdV7/66+/EBoayiYzIiIicgmWPr9tqiESQugMxqjxxx9/IDAw0JZNEhERETmNVSNVd+nSBZIkQZIkDB48GPXq/f32qqoq5ObmYtiwYXYvJBEREZEjWVVDNHz4cNx7770QQiApKQn33nuv/Dd69Gi8//77+OSTTyze3u7du3H33XcjMjISkiTh66+/1lk+ceJEOQDT/OkHXJcuXcK4ceMQEBCAoKAgTJkyBVevXtVZ58iRI+jXrx8aNGiAqKgoLFmyxJrDJiIiojrOqhqiF198EQAQExODUaNGoUGDBjXaeWlpKTp16oTJkydjxIgRiusMGzYMK1askP/t6+urs3zcuHEoKCjA1q1bcf36dUyaNAnTpk3DqlWrAFS3HQ4dOhRDhgzBsmXLcPToUUyePBlBQUGYNm1ajcpPREREdYNNk7tOmDABQHWvMqXZ7qOjoy3aTnJyMpKTk02u4+vri/DwcMVlv/76KzZv3oz9+/eje/fuAIB33nkHd955J/7xj38gMjISn376KSorK/HRRx/Bx8cHt956K7KysvCvf/2LAREREREBsDGp+tSpU+jXrx/8/PzQsmVLxMbGIjY2FjExMYiNjbVrAXfu3InQ0FC0a9cO06dPx19//SUvy8zMRFBQkBwMAcCQIUPg5eWFvXv3yuv0798fPj4+8jpJSUnIzs7G5cuX7VpWIiIick821RBNnDgR9erVw3fffYeIiAjFHmf2MGzYMIwYMQKxsbHIycnBs88+i+TkZGRmZsLb2xuFhYUGXf/r1auHpk2borCwEABQWFhoEKSFhYXJy5o0aaK474qKCp2xlkpKSux5aERERORCbAqIsrKycPDgQcTFxdm7PDpGjx4t/39CQgI6duyI1q1bY+fOnRg8eLBD952WloZFixY5dB9ERETkGmxqMouPj0dRUZG9y2JWq1atEBwcjNOnTwMAwsPDceHCBZ11bty4gUuXLsl5R+Hh4Th//rzOOpp/G8tNAoD58+dDpVLJf/n5+fY8FCIiInIhNgVEr732GubOnYudO3fir7/+QklJic6fo/zxxx/466+/EBERAQBITExEcXExDh48KK+zfft2qNVq9OzZU15n9+7duH79urzO1q1b0a5dO6PNZUB1MndAQIDOHxEREdVNNk3d4eX1dxylnT+kGcHa0qk7rl69Ktf2dOnSBf/6178waNAgNG3aFE2bNsWiRYswcuRIhIeHIycnB3PnzsWVK1dw9OhRuft9cnIyzp8/j2XLlsnd7rt37y53u1epVGjXrh2GDh2K1NRUHDt2DJMnT8Ybb7xhVS8zTt1BRETkfix9ftsUEO3atcvk8gEDBli0nZ07d2LQoEEGr0+YMAFLly7F8OHDcejQIRQXFyMyMhJDhw7Fyy+/LCdFA9UDM86cORPffvstvLy8MHLkSLz99tto1KiRvM6RI0cwY8YM7N+/H8HBwZg1axZSU1MtPNpqrhgQFajKkVtUitjghogI9HN2cYiIiFyOQwMiAPjxxx/x/vvvIycnB19++SWaN2+O//3vf4iNjUXfvn1tLrircrWAaM3+PMxfexRqAXhJQNqIBIy6zbLxn4iIiDyFQyd3/eqrr5CUlAQ/Pz8cOnRI7p6uUqmwePFi20pMFitQlcvBEACoBfDs2mMoUJU7t2BERERuyqaA6JVXXsGyZcuwfPly1K9fX369T58++OWXX+xWOFKWW1QqB0MaVULgTFGZcwpERETk5mwKiLKzs9G/f3+D1wMDA1FcXFzTMpEZscEN4aU3Fqa3JCEm2N85BSIiInJzNgVE4eHhcu8wbXv27EGrVq1qXCgyLSLQD2kjEuB9s4eftyRh8YgOTKwmIiK3UaAqR0ZOkcuke9g0UvXDDz+MJ554Ah999BEkScK5c+eQmZmJp59+GgsWLLB3GUnBqNui0b9tCM4UlSEm2J/BEBERuQ1X7BhkU0A0b948qNVqDB48GGVlZejfvz98fX3x9NNPY9asWfYuIxkREejHQIiIiNyKsY5B/duGOPWZZlNAJEkSnnvuOTzzzDM4ffo0rl69ivj4eJ2xf4iIiIj0meoY5HYBkYaPjw/i4+PtVRYiIiKq4zQdg7SDIlfoGGRTUjURERGRLVy1Y1CNaojIOThlBxERuTNX7BjEgMjN2CMznwEVERE5m6t1DGJA5EbskZnvil0diYiInI05RG6kplN2cA40IiIiZQyI3EhNp+zgHGhERETKGBC5kZpm5nMONCIiImXMIXIztmbmaxKpU4fFYcnmbFQJ4TJdHYmIiJyNAZEbsjYzXz+ROjU5Dh2bB7lMV0ciIiJnY5OZmzM3W7BSIvWSTdkMhoiIiLSwhsiNWdKF3lXnjCEiInIlrCFyU5Z2oWciNRERkXkMiNyUpV3oXXXOGCIiIlfCJjM3Zc1swa44ZwwREZErYQ2Rm7K25ici0A+JrZsxGCIiIlLAGiIXZckErKz5ISIisg8GRC7ImglYXW22YCIiIlMs+cHvDAyIXIw9ZrQnIiJyRdb84K9tzCFyMZb2HjM3ICMREZErMTVcjCs801hD5GIs6T3myhE2ERGREmM/+Ff8lIsPfsx1+jONNUQuxlzvMUsHZCQiInIlSgMFe0nA8t25LvFMYw2RCzLVe4xTcRARkTvS/OB/du0xVAkBb0nC5L4xWP5jrs56znqmMSByUcZ6j1kzICMREZEr0f/BDwAf7sl1iWcam8zcjKtNxeEKiXBEROQ+tAcKdqVnmiSEEOZXo5KSEgQGBkKlUiEgIMDZxUGBqtzpAzIyuZuIiOzBkc80S5/fbDJzU84ekFEpuXv+V0c5XhIREVlMe5DGxNbNnFoWNpmRTZSSu9UAVuw544ziEBGRizGXUrFmfx76pG/H2OV70Sd9O9bsz6vlEupiQEQ2iQ1uCEnh9Q/2/M58IiIiD2cu2HHFIWQYENVhjkx4jgj0w8P9Yg1eVwsYjKpNRESew5Jgx9JZGWoTAyI3Y2mQUxtVkZP6xhoMssUhAIiIPJslwY7SII3Ofn4wIHIjlgY5tVUVqd9d0gvAlL4xdt0HERG5F0uCHVfqbq/h1IBo9+7duPvuuxEZGQlJkvD111/rLBdC4IUXXkBERAT8/PwwZMgQnDp1SmedS5cuYdy4cQgICEBQUBCmTJmCq1ev6qxz5MgR9OvXDw0aNEBUVBSWLFni6EOzO0uCHE3t0cGzl2utKnLUbdHYM28QpvVrBUjAf37MRe/07Xh/d47d90VERK7P0mBH8/z47OFe2DNvkNOHbXFqt/vS0lJ06tQJkydPxogRIwyWL1myBG+//TY+/vhjxMbGYsGCBUhKSsKJEyfQoEEDAMC4ceNQUFCArVu34vr165g0aRKmTZuGVatWAagef2Do0KEYMmQIli1bhqNHj2Ly5MkICgrCtGnTavV4a8LclB3aYwJJqP7TXt3RVZEf7PldLp8QQNrGkzhbVIpZg29hN3wiIg9jagoqbc4eQkabywzMKEkS1q1bh+HDhwOorh2KjIzEU089haeffhoAoFKpEBYWhpUrV2L06NH49ddfER8fj/3796N79+4AgM2bN+POO+/EH3/8gcjISCxduhTPPfccCgsL4ePjAwCYN28evv76a5w8edLi8jl7YMYCVTn6pG83GN58z7xBAGCwTAIg3ZziQxOdOyr6zsgpwtjlexWXccBGIiJyJkuf3y6bQ5Sbm4vCwkIMGTJEfi0wMBA9e/ZEZmYmACAzMxNBQUFyMAQAQ4YMgZeXF/bu3Suv079/fzkYAoCkpCRkZ2fj8uXLRvdfUVGBkpISnT9nMlUFqVR7JAC8PbpLrVRFxgY3hKTUBx+u0ZWSiIgcqy5M4+SyI1UXFhYCAMLCwnReDwsLk5cVFhYiNDRUZ3m9evXQtGlTnXViY2MNtqFZ1qRJE8X9p6WlYdGiRTU/EDsyVgVpbMLXbjFNaqUqMiLQD/OS45C2UbnGzVkzFxMRkePVlWmcXLaGyNnmz58PlUol/+Xn59d6GZQibu1J8bRfc3a2/iP9W2N+cpziYI3O7kpJRESO4YoDLNrKZWuIwsPDAQDnz59HRESE/Pr58+fRuXNneZ0LFy7ovO/GjRu4dOmS/P7w8HCcP39eZx3NvzXrKPH19YWvr2+Nj8NW1kbcliawOdIjA1rjns6RWLHnjJxkrR+cac9bwxojIiL3ZqzDz4YjBUjpGOFW93mXDYhiY2MRHh6Obdu2yQFQSUkJ9u7di+nTpwMAEhMTUVxcjIMHD6Jbt24AgO3bt0OtVqNnz57yOs899xyuX7+O+vXrAwC2bt2Kdu3aGW0uczZjEbe5iVNdIVs/ItAPk/rGIKFFALwkCV1b/t1sV1eqVYmIqJpSygYAvLLhVyze+Ktb3eed2mR29epVZGVlISsrC0B1InVWVhby8vIgSRJmz56NV155BevXr8fRo0fx0EMPITIyUu6J1r59ewwbNgwPP/ww9u3bh59++gkzZ87E6NGjERkZCQAYO3YsfHx8MGXKFBw/fhxr1qzBW2+9hSeffNJJR22eKw5pbinN4JGzPsvCrM8OYfdvFwHUrWpVIiKqpp+yoc3d7vNOrSE6cOAABg0aJP9bE6RMmDABK1euxNy5c1FaWopp06ahuLgYffv2xebNm+UxiADg008/xcyZMzF48GB4eXlh5MiRePvtt+XlgYGB+P777zFjxgx069YNwcHBeOGFF1x6DCJjSdKunodjqmbLWJD3y9nLSOnoPlWqRESkS5OyseFIAV7Z8KvOMnfqVOMy4xC5utoeh2jN/jw8u/YYqoRw+DhC9mJsPKLPHu6FmGB/g7GSgOrxktJHuk+VKhERKTM1Xp4zAyK3H4fI07nakOaWMDV/jaZaVX+5gPkq1bowvgURUV3nCj2ea8Jlk6rJNZKkraH5MujXbGmOYdRt0fD38casz7J03meqSpWJ2ERE7sMVejzbigER2ZW5L0P3mKYW50cVqMox76uj8pxsagHMW3sU/duGAAC77xMRuSBLfsy74hAsDIjI7kx9GczVImk7ePYy9BPchADe2XYKq/fns9aIiMhBHBmwuGrNPwMiqnWWVqkay/dfte/vUcM1PdniwhujtLLKpX5tEBG5I0cELJoAq6GPt03j7NUGBkTkFKZqkTRfnOim/pAAnVoi/X8D1TlIw9/LgHCxXxtERO7G1oGBTdEOsIzdw12haz57mZHMFXpzaQZ2HLt8L+57LwMjujaXL1IvAPPujDPoqQZUN6UB7jcQGBGRK7H3wMD6AZZSvb+rjLPHGiICULttusbappV+mXx96BzWzeiNskq13LwW5FdfzkHyAqDW276r/NogInI39h4YWCnAAiDvw5W65jMgIodUkRpjKvAy9sukrFKNxNbN5Ne0c5D8fbxw33sZJr+8rtibgYjIFVnT8cUSxgKstY8l6vzQdQUMiMhkFak9L1RzgZc1v0y0c5BMfXn1A7DU5DgkNA9kcEREZIQ9xhIqUJXjwJlLkCQJqcPisGRzts49ulOU602uzoCIam3uNHOBl62/TIx9eZUCsLSNJwEw+ZqIyJSaDAy8Zn+ezhhyEqrzPzs2DzIaYLlCTT4DIrJ7FakxlgRetv4yUfryGmu7Bgxrp1zhy0hE5O70B9QFqhOpX9t0Ej/Nu92lZyRgQEQAame4dUsDL3tNWaIUgGnT1E7t/u2iS3wZiYjcXW5RqWJPMrWAYhpGbeawmsOAiGS1MXdabc5zox+A6fOWJPj7eLnMl5GIyN3FBjdUHGvIS4JiGkZt5bBaggER1branLRWOwA78kexQWLfhiMFLvNlJCJydxGBfkgfmaCbQ3Sz5l3pnlpbOayWYEBEdZ4mAEts3Qz3dI6Ua6cAYN5XRw3WN/ZLhoiIzNP8ED145jIkCejasold5rd0NAZE5FS1ncysXTuVkVOk2NY9tW8r1g4REdVARKAf7upkmC+kdL+vzVQKUxgQkdMo9Szo3zak1gIkpapaLwCT+sY4dL9ERO6oJj9gzfUkq81UCmMkYWxKcdJRUlKCwMBAqFQqBAQEOLs4TmOvGp0CVTn6pG83yN/RBCi11dtrzf48g6pa9jAjItJVk67xSvd7b0nCnnmDaiUIsvT5zRoispg9x4owNkaQsd5etgZi5t5nbVUtxysiIndT0/uWpV3jje3HlXqSmcKAiCxi77EijHXN1FbTcYIsDeAsrao1mAZkWBwSWnAaECJyXfb4IWtJQGNqP67Uk8wUL2cXgNyDqS+ELSIC/fBwv1iT65gaJ6hAVW7yvcYCOFPvK1CVIyOnSHEdxWlANp3E2OV70Sd9O9bszzNZHiKi2mbLfVCJJqDR5iUBRVevoUBVbnY/EYF+SB0WJwccrjTDvTYGRB7OVBCgTekLUdMIf1LfWINtam978YgOKK2ssikQszaAW7M/D33StxsNcCyZBsTamwwRkSNZcx809SzQdI33lqpv2JIECAHM+iwLfdK3Y8WeXJP7WbM/D69tPgn1zffOTW7nkrmabDLzYNZUpTpirAilbc5NbqczAWCBqtymqtaGPt7yl9bc+yxpDrR0GhBX+8VDRJ7L0qYqS54FmnzLX85exsxVh+R0B7UAPvgx1+h+9O+vQgBLNmXjnk6RLne/ZEDkoWzJCXLEWBHmtmlLIKb5cusHQ8beZ0n7uCXTgLhaezgReTZL7p/WPAsiAv3QpKHhXGVqANP6tsKHe3IN9pORU+QWCdUAAyKPZWvWvyPGijC3TWsCMf0vN1DdLrz2sUR0impisG5uUSka+nhb9CtKZxqQP4uxZFO200dWJSIyxdz909pngbFap0l9YzCpb4zBftwloRpgQOSxzF2kjupebut2LQ3ElL7cagBllWqd1/SriO/r0hxfHzpnNsDRmQakU6TTR1YlIjLH1P3T2oDFXK2TPWr5nYUBkYcydZHac7whbea2a2mwZGo9S77cSlXEXx86h7WPJaKsUm1xgOMKI6sSEdWELQGLtekTrjI1hzkcqdpCdXWk6gJVuc5F6qgRRc1t19IgzJL1zI0+nZFThLHL9xps+7OHeyGxdTObj9EUDuhIRK5M/1lQl3CkarKIfi2Ho0YUNdf909JRUM2tV6AqR1RTf5O1Pdb0QNNma1DjqBo3IiJt2nmRpZVVVt2rWOPNgIj0OCoBztR2LQ3CzK2nFHjo1/hY2wNN/33WBjX2HuGbiEiJ9j1Kw9YfYJ5ao82BGUmH/gBc9kqAM7VdSwd9NLWeJSOymuqBZuqGUZPRXo0FcRuOFHAgRyKyC6V7G2DboLHmBqm1pCyWDPbrilhDRAYclQBnbLuWJvWZWs+SsS4s7YGmrybNiMYGdHxlw69YvPFXNp8RUY2ZGklfOzXBXK1PTWu03T09gAGRi3GVqkpz7cn27j5vaRBmbD1LmvpszR2qSTPi7t8uwli3BbWozp2KC2+M0IAGLvG5E5H7MTWSvrck4cgfxRj3wc9mA5Wa/PirC+kBDIhciLtE144qp6VJfUrrmatlsjV3SGNK31h8eHO+Hs37gOoea8aCGM0NwlQ3TrUA7n03AxIAAdf+3InINRkbSV8zHdJrm05aFKhY++NP+4exozrk1CYGRC7CXaJrVymnUg2Vsdoja0av1qcd/EkApvWPxaQ+sdj920V5GAFjQYypamx92vMCueLnTkSuTfv+5+/jJfeytSZQMTa/ZG5RqbxcQ/+HcWpynNuMSG0MAyIX4S7RdU2rVO3RLGSqhkpTe6RJ7DP2y8WS3CGDSQkBfPjjGaQkRFgUFCr92pJuVgWZipNc8XMnItdnrJbdmkBFZ4qiP4rl2iXte63SD+PXNp7E9IGtsWzX7y4/IrUxDIhchD27uzsyD8nWclrbzGbsGCypobLXLxdjwd/+M5ctCgqNNePFhTfG8HczjAZF7variohcly0jUWuWafKOAN17rbEfme/tysG85Dh0bB7klgM8uny3+4ULF0KSJJ2/uLg4efm1a9cwY8YMNGvWDI0aNcLIkSNx/vx5nW3k5eUhJSUF/v7+CA0NxTPPPIMbN27U9qGYZK/u7jXtMumIclrbbd3UMZgb4FFpX0s2ZSN1WJzV59ZYN//bYpqYHCZAu9vpqNuisWfeIHz2cC/smTcIo26LRqeoJkgf+fc5lHCz5gjVX8gpfWNwoeQaMnKKcDj/stt2YSUi16B0HzLH1L1W6d4IVHdYWbIp2y2DIcBNaohuvfVW/PDDD/K/69X7u9hz5szBhg0b8MUXXyAwMBAzZ87EiBEj8NNPPwEAqqqqkJKSgvDwcGRkZKCgoAAPPfQQ6tevj8WLF9f6sZhS0+7utZXfY205jX2xDp65jKaNdGuBzB2DuRoqY/vq2CIIe+YNsurcGvtl1SmqidXzwOnvT/8cAsCKPWfwwZ7f8Z8fc/GfH3N11meyNRHVhLUjURvruXbkz2Iktm6G1OQ4pG88aVDT7c5N/m4RENWrVw/h4eEGr6tUKnz44YdYtWoVbr/9dgDAihUr0L59e/z888/o1asXvv/+e5w4cQI//PADwsLC0LlzZ7z88stITU3FwoUL4ePjU9uHY1JNhk+vzTwka8oZG9xQ7kWlIQF4fPUhg8DB3DGYq/41FTBZe25NTQOiFBRaG5Bql6dAVY4P9vxuNAmbydZE5Gj6qQqpw+KQtumkzjpLNmXjSvl1vLszR7HZ352b/N0iIDp16hQiIyPRoEEDJCYmIi0tDdHR0Th48CCuX7+OIUOGyOvGxcUhOjoamZmZ6NWrFzIzM5GQkICwsDB5naSkJEyfPh3Hjx9Hly5dnHFIDuGoaTdqavdvF3X+ralpVQocLDkGUzVUtrSXK7FkGhB7zgNnSY80d/7lRUSuTemel9Ai0GC9KiHw7x05ittwx0RqbS4fEPXs2RMrV65Eu3btUFBQgEWLFqFfv344duwYCgsL4ePjg6CgIJ33hIWFobCwEABQWFioEwxplmuWGVNRUYGKigr53yUlJXY6IsexVzBgT0pj8UgK1bCah31i62YWj1pt7eCN1pbZ2qbHmgSkpgZW096Wv4+XybGPiIisZeyet/axRLP3JY0FKe1xZ8cIt74vuXxAlJycLP9/x44d0bNnT7Rs2RKff/45/Pwcd+LT0tKwaNEih23fURw17YatDp417JGlGdNH+2XtwMHaY1DqkeaMpseaBKTGBlbT8ALQu00zuXcac4qIqKY0987TF64o3vPKKtVIG5GAeXqD2urzkuD2wRDgBgGRvqCgILRt2xanT5/GHXfcgcrKShQXF+vUEp0/f17OOQoPD8e+fft0tqHphaaUl6Qxf/58PPnkk/K/S0pKEBUVZccjcZyaBAP2tGZ/HuZ9ddTgdW9Jwtxh7bBkc7bRwMHSY3DEqNk1qempSUCqNLCav48XNhwpxPI9v+PHU0XyupppP/x9vNE9pqlLfN5EVLtqMsSK9r1TieaeFxPsb3rgNFQPbVIX7kFuFxBdvXoVOTk5GD9+PLp164b69etj27ZtGDlyJAAgOzsbeXl5SExMBAAkJibi1VdfxYULFxAaGgoA2Lp1KwICAhAfH290P76+vvD19XX8ATmYs+ZGMzZthZcELB7RAaNui8Y9nSNrVJPlqF51ttb0aJ9r/Xwja/atP+7SB3t+V/x1phbArM+yWFtEVEeYu19rL9/920Wbfwwqjd6vzQvQmTjbVDw0Y2BrPNK/tUX7dXUuHxA9/fTTuPvuu9GyZUucO3cOL774Iry9vTFmzBgEBgZiypQpePLJJ9G0aVMEBARg1qxZSExMRK9evQAAQ4cORXx8PMaPH48lS5agsLAQzz//PGbMmOE2AY+tQY0z50YzliT89uguuKtTJICa12Q5sledtTU9jjrXliRbsweaLnv8CLB0G6YGEOVkvWQNc/cQ/eVC2D7lz4qb8zIa887YLkjpWH2fNpbfqBn0tq4EQ4AbBER//PEHxowZg7/++gshISHo27cvfv75Z4SEhAAA3njjDXh5eWHkyJGoqKhAUlIS3nvvPfn93t7e+O677zB9+nQkJiaiYcOGmDBhAl566SVnHZJVbH3Q2qv2xNYbu7Fmp24xpucOs0ZNmrYsOS5LAzZHjv9kSbI1wB5oGvYITC3dxvu7cpC+6aRBTpe7TNJMrsPcPURpuT5rplBarjfOmTZvSULXln/fp/VrzL0ATL05p2Ndu9+4fEC0evVqk8sbNGiAd999F++++67RdVq2bImNGzfau2gOV5MHrT1qT2pyY6+NHm+27sPeDyxH1lQZ3IwkYEyPaKzam2c0Kd1T2SMwtXQb7+/O0RmfRbNeXHhjl5j8mNyLuXuIJTXFlt4DcotKTU4bpHQPdbXOOo7i8gGRJ6vJg7amYxLZ4+FSG18iW3qk2fuB5ejxn5SOsWOLQKOBoKc219gjMLVkGwWqcqTrDVanWc/See5M8dTPz5OZu4cYmyhaEtVziFnzg1NxWwD+PbYLurZsYvQ+4iqddRyJAZELq8mDVqn2ZO6wdsgtKpWXm2KvWo/a+BKZ24f2F9sRtTm1VRumvT1jgaAnN9fYIzC1ZBu5RaWKSe5egDzPna1l8OTPz5OZu4cYu583b+IHCKBbTBOL7zdKtc6pyXFyzhDgudchAyIXVtMHrfZD88ifxXht00mLL3BXHfXaWvpf7NRhts18b07/tiF4c3QneN1sf6+NX1JKPdI8ubnGHoGpJdswlteVmhxncp47ffq/wD398/N05mq7a3I/V9pXcdl1pN/cxmubTiLIrz5G3Rbt0dchAyIXV9NmJ8364z742aoL3BVHvbaW0hd7yeZspCbHYckm42MgWUs/6JrSNxaT+9Z+wqGp2i/NcndphrG12cgeo5Qbm79Ow9gvbE1vG0vKoPQLPKqpf63NRUiuyVxtt633c30FqnK8tvmkTi+1+V8dRVx4Y5RWVnnsdciAyA04q3t6/7YheGtMZ6urZF2FsePu2Nz6me+NUQq6lv+Yiw9+zEX6yJpVM1sbFBir1TvyR7F8A3WH6u+aVtfb+n2xZP46DXNBj6kyWDNNgj17TVLd4KhcOTWA4e9lYJ6DatHdAQMiD2BL81ddaEM2ddy2PjQ1D56GPt4orazCpdJKxd4fAqZ/tZl7gNly/hXzDJLbyVXrgOtXfzurut6W/dpyDRWoyvHdkXOKD7QNRwt0cpMkCQ7tNckgyj0p3de8JKDo6jUUqMotyqds6OOt2OwrHFSL7i4YEHmIqX1j8cGPuRb1SKgrbcj2bvZTGupeguG8bBrGfrWZe4DV5Pzr11w4ckgAR6jN8jo62V6fuakSlu/O1Z0EWVTX0pqidK3MX3sUFTeqcEd8uNGyK+XWJbQIdGhwxADMPudA/74m3Ryk0dyo9fqf+X1dmmPdL39CrbeevWvR3QkDojpO/0swrW8rTOobY/ICt/Th4A43OHt1/Tc21L1AdUCk9GtLqRbOVLADVJ97pVonax7OmpqLAlU5LpVWmpxI19XUVjK/QUCQ7NhmAnNTJQCGQbUawMEzl3FXJ+u+q2oBvPDNCbz4zQm52Va7ZiDvUpnBNagZU8mW2mBLRuuuyTQT7sbY+bDkh5Cl91PNfe2Xs5cxc9UhkyNWF6jKcfDsZcz76qjOel8fOoflE7ph6n8P6tRM1rQW3Z0xIKrDlB6+H+7JxaS+MSbfZ8lDyVWa1Ow54rQppgZGEwDeGd0FR/4sxge7TdfCGQs2V/xUnXekFsq1TtY+nLU/H+3taZfLFQPamtTqWTPdhkGy/aZspA6LMznhcE32bW5gPS8AUAiqH199CKWVNxS/WwWqcvx1tcLoSOYC1YmyxeXXdZpNTTFWG1mgKseBM5cgSRK63RzFOLeoFEf/VCn2drJlmglXvB6tZey+aK7W19Ym8iYNDQdZ1P7xZKpWskoI+PvUR7qbd56xJwZEddjBs7YNEmfuoeSIJjVbboa1GZSZmkJDMyXJXZ0iMalPrMnaKGPt/9rNJfq1TrY8nLU/H3FzW++M7iInx7tKQKvEllo9a47HaLJ9C9uaCSzZt7nrZ/GIDgCqAxjtJgxj3y1jAa8+NVA9vYgFwZCGfs/Eo3+qkL7xpG5znsL+NGVVGq3b2D7q0vhZpu6L5nqA2no/NfXj1VytpGa9xNbNPGIUakswIKqj1uzPw7yvjhq8bmlNg6mHkr3zLWy5GdZ2npN+kKihNOCltcHm5L4xBnMLaWqdmjXyhb+PF0orq8wmTGoYa0Zp1sjXbca7saZWz9rjsWeyvaX7Npbw3rF5kM73q6FvPcxcdUhnH0ojZesHvJKR8kmAVcEQUP0d1O6ZqMTYJquEQNrGX83WRnkB8n3IkmZkTScGV649MnVfNHXN1eR+auy6Mtb0rr1v/YEfXfW81iYGRHWQ5gaj/13wsrDXioaxL4k98zxsfTg7I1lYO0j09/FCWaXapgHS9INNoLopU/98dotpYlPuhbnPx90Src2x9ng0DxFNbYwXrPte2LpvS2q+urU0HOkaAPacuggBYTQBXACY1j8Wy3/MlQMgCcCwDuHYdKxQsezGapXG9IjGa5sta2JT8nPuZbPrCAC7f7uIUbdFK868XiUEVuw5gw/2/G5Qm+qscb7MMRdom6p1r8n9VGfAxj/+vh8p1Rx6ScDbWjXFpMvL2QUg+zOWr/D26C52qYbWfLm9perfpTVpdzZXlWyM5uajrTaShSMC/ZDYuhk6RTVBTLC/Ypf2AlW5xdvRBJ1K5xNQrko3t31zn4/SudPututubL4WJL3/ailQlSMjp8js+bB239qfu7HlqclxBq+/uzMHY5fvRZ/07Tj6p0rx80toHoivH+uNd8d2wb/HdMHXM3pjy3HlYMhbkjDvZiK5NglAu/BGNgdDlhKovpYP51/GfxRmXpcAg2AI+Hucr95p2/H+rhyLPqPaYu57N+q2aOyZNwifPdwLe+YNku/F9rifRgT6Vd+PtAJZzanTfMbekoS0EQm4q1MkgyEjWENUBxn7pdItpond9mGv3lu21jbZu0u9LexZ06I09UdGTpHN2zf1+djabddVmWo20CzXdjj/MuatPSrXpNQkwdXS69CaHLmE5oFGl2kSwKcPaI2lO3OgBox+fkrXDwAsSGmPOztGICLQD0H+9XWagQWAhetPmCyfvVQJgf/s/l1xWUpCBL47WmD0vQKGPeM0uTrObFazdcBOe9xPjdUcaprePT0/yBIMiOqg2goW7NHuXJOy2isos5W9mg6NPYAt3b6xh62pz8eabrvuwFizgX5Ao8mtM9YzB7A+wdXcdWgqwFL67EwlYGvK+t6uHDl3SDtHSLu8R/9UGbzXW5LkYEhT9rjwxhj+bobONWAvmgoopU16ScDGo4Y1WBKAh/vHYuOxAot7xs1bexQQf+dTzUuOwyMDWtte8Bqw9b5Y0/upqR/C7vRddiYGRHWU0k3a1m6tju4OW5PAxpnJgPYIPM3lUJnbfk1651jSbdedaMprbJ4nAIq5dUDNE1yNXYfGPt+48Mb47kiBnDum/dkZS+DXpnlZaWmVEDh45jJeu1mDom3usHa4UHIN3x05hx4xTdEpqglKK6sUt2Msx8gUzQPZSwKm3hzzbPdvFxU7Iyh1JgCqgyH9SXLN0V5FU3t05dp1jOvVEgfPXoYQAt1jmrrdNW0NxZrSYcZrSskQA6I6TPsmbeuDs7a6w7prL4ea1lKZewCb2r4tCen6wW1tDYRYW0ydTwGhWOOg39nAnufDWHnufTdD5zX9z05/ZnPNNApegMHIwvq8JUlxTCMA+Ol0kdzUBAAjuzbH00ntFI95bnI7eb+W8JKAdY/1NpgUV6kzgrHOBF4SMKlPrOL7/rP7d2xQqFEy5t87cvDvHTk6r03rF4tJLpiQbS/61421HT48HZOqPYCxB6e5ZERb3+dpzCXKatNP1rUkKdfY9q1NSF+zPw990rfLyblr9udZldBpaaKxM5k6n4rJ5Kh+iFub4FqTpGtj9D87zef+SP/WcjLu8gndjHax1y7vn5cNy+UlAbtPFem89tUvf+JCyTXFY36kf2usfSzRYH8SgOGdI3Vfu/nADQ1oAKFQr6TdGcFUZ4K0EQkGzb6a9z1/V7zJY7fEf37Mla/9uqzo6jWDDh/zvzqKw/nmewB6MtYQeQBbmwHslTRcF0agtQdjtW22NrsZyzU58mexwSztpmqTLKnlUprqIqF5zee+sve1Ya6ZUWlZpyjdzgbmmputGQrBIIEdxpuhjNVEafZ99A8VXtt80uj7n7i9DUb3rC5Hn/TtBssHxYVi268XDF4/cOYypvRrpXgNKDWniZvnKDU5DgfPXIYkAV1bVg8R0Sd9e42GoDDXLJk+8u9z6QXgzo7h+O6I5bVGgPvmyVnC1MjUmtns01lTZBQDIg9ga7OIPZpT6sIItPZgKiDp3zYEb43pDAhYlQAZEeiH1GFxOk0gQHUvpHv0utYaC25/OXsZTRpWP+j1gyhTZU/baP3cV/rBj6OuDVMPWUsfwMaam/WThJUGEYwNbqjz/5p9bvv1PJ7/+rji/rwkYFSPKBw4c0kn18XchLDa3tlxGpFN/BDV1F9x/YFtQxQDou43e59qjllT+xUb3NDs2DrdYqqP88Q5lcFcWZYGHdY0lyuN4bXxaKHVieDumidnikXz5dXhYNAeGBC5EEfVpNia/FvTpGF3GBG5thidw0xr8DlbgoKEFoZdtJVu9koPNkmC3MPM1L5NzcNl6WeqVMOkNIaTNflPpph6yFrzAFYaFVqf/ueoHTRJAB7uF4tmjXyRrpDkDAAdmwfgyJ8lWLU3D6v25kECkD6yuhu5pcEQ8Pc5nD6wlcEyb0nCkPgwZOUX46tf/pRfH9m1uU4NmXYvPE05jN0DzAVrpoIOW+512u/RDt6tSb7WsFeenCvVfpubL0+jLgaD9sKAyEU4uibF1uTfmiQN17URkWtCcQ4z6A4+Z0vAaGktnn5wa+mEm8b2oa1KCPxw4jxahzZSfDAoBcZKk42aujYc/f0w9mCz5CGj/zlqry4AxYEHNSQAR8+V6LwmUJ3v8fbYLib3rdT8ViUE3t2ZY7Du3GHtEBHoh38+0BkPJbbEgTOX0T2miU4wVKAq16nlEQDmfXUUGfNvN5jjzZLaCGNBhy2fpan3GBtCAqj+bF4afitOnLuC1fvzoBY1G0i2psfhSIo/em7+V/ucuHOnCUdjUrULqK3kZWuSf+3xPmeNJu2KlBJIp/aLtSopWkPTpHE4/zJyi0qROizOoqRo7ZFy3xrd2eRYPKbKrmTBN8d1krW1GZtbTX9rpnJoHPn90E42752+He/v/jugULqGJeiO/ju6R5RNY/d4SdW1R0oVG2oAEDCakG1spGkvKM9d1rFFkPz/naKaYEq/Vga5UwfOXFLMFzp45rLBPcBcoGhsOhRN0GXNZ2nJ5189hISP4YSzAFqHNMbiEQn4ad7tBqNE28oVO5wo3WPSRyYgfaR9ZhXwBKwhcgF1tSbFHuP0OIsjqsKV8h8+UJjDzFTAqNRMoWmC0p8oVOkYtPNE9GsYTO1bceBDhfWUapqM1WLNHdYOSzZnm702HPn9MGgS0+RHCeCRAa2NXsP6XZutpendFhrQwOAa0CzvFtPEYN/6E8JqjzStOaf685BZ+iNEMhLwKr1sqtZQ0/1eP+ACgI/25Fo97pWln7+52lJ7Du1hroens5rRjNXoczZ7yzAgcgF1bSwYbc4eTdoWjqwK178pWxMwGmumUIvqROo98wZZPO7U7t8u6mxDgvkJTjVlT2zdDP4+3ljwjXKCcJUQ2HCkACk3R0Q2FlSMui0a93SONHtt2Pr9sCSoNVbT8dqmk7inc6TBmED+Pl4orawCUD1bu6kZ4Y3R792WNiJBZyoRCUDayASDfSudI6Xl+kGSpT9CurVsYhAka3qQ6dP/TI0dm7YCVTk+3GPYfOgFmPwsbW0WtvTYLf3xo72eYhO4VN3DU3NN1GbTrjalwM+ewWBdJglhRSaaByspKUFgYCBUKhUCAgLsvv01+/MUHxhUuwpU5XLXYQ1vSdIJNhyxT2NdvIG/f23mFpVi7PK9Rrfz2cO9kNi6mdljUFruJQE/zbvdomM0Nv2FPqVpKmwNjK39flga1BaoytE7fbtiM5PmfBrb5tS+sSbzg/TNHNQafdqEKB5/gaocv5y9DCGs62lojK3n2tofA5r9aA+4aGx/3x7+E7M+yzJ4fVr/WDx7Z7zitnOLStHQx1tnVG9zn781x27p8er0NJSqpwYJ8quvE8gChnldttw7jAU9xsrqSondrsrS5zdriFyEO9ak1EXOaL60pIu3lwSkDosz2kyh/YvZ3DEYy+mx5Bg1tVSW/IrSbz6rya9Ua74f1vRujAj0w7zkOHkYAQ39GgilbX7wY67JZHMNL1Q3aZqaWysi0A8pHe3bs9SWc23tfcjS/Wiua33aI1Mrra+fIDytfywm9dEdaVo/ILC0TJZeJ8aaVWcMam2Q1W5tc6Cp49YPevTLOv+ro8i7VFY9ya+LJHa7OwZELoTVms5nrCrc38fx/Q9MdfFWC2DJ5mykJscZTKeg3zRgromhJk20xpqYXr73VlTcUOOVDb/qvG7PYNLS74e1Qe0j/asfbJq8KP3zWaAqx3dHzhkGkQCm9W2FD/fkyoMu4mbvPaV8H3dh7/uQsaZeL8BgZGpT6wsAH/54RieAsrV529hnqnSdGLvm39uRY/aHgbnvlX5tsLEATfFHDIB3taYm8eRhTeyFARGRFqXcCLUA7nsvw+G/vsz13KkSAh2bB8ldoI01U5jLpahJsruxYGpIfBgAYPHGXw2GFvirtELufWNp1X5NmgGsCfg0+7mnc6RBPlOBqhwf7ck1mG9Le5uT+sZgUt8YnUR51vLqMnZdvzO2C1I6Rlq8PqAbsNg6zpmp8ZOUagYvlVYqbkfA9AS4mp52AOSBLk01gU3ta7zXqbmhL/TX57VnGwZERHpG3RaNuPDGGP5uhk0j79rK3E1Pe4Rgc01GUU39sfaxRJRVquVE4AJVufw+W5toIwKrR8c2VpuiNE3FzFWHDJr/TAWXNU1q1w/4vCRgct8Yq/ZjLk9KKcjU3j/9zViAqpSsbWx97ff5+3ghI6cIl0orrW7eNjV+kv5nqt98rf8WCcCYHlH4bF++4nXyztguuFpxQ3E6E0ubYLW/82kjEjD/q6MmJ/etK51xnIUBEZECpTmcaiOXSCeguHkXFvi7CSa3qFReV4n+Q/6+Ls2x7tCfig99a5pG9OfTUqM6uXRucjudYEUTaB08cxmPrz5ktPnPWHBpTV6HUg2S5vX+bUOwZ94grPgpF8t352L5j7n44MdcPHxztnPAsHli/tqjiAtvjNCABibzpBaktMedN3vQkXmmaiSNDQ1hrAfb8C6RuO+9DMVxrDRMNW8bq33S/0yVmq/1gyIBYNW+fPl7qs1bktCiiZ9cVsCyJjDtJlj9AE3zQ+3edzMUj82dhjVxVQyISEeBqhwHzlyCJEno1rLmvV3clbOGQlAaq0hn7B8TtSZKwYT2NA3aD32lbtHa2zE255g2IZTnTYsI9EPTRuab/5SCS0vyf4zV7BhMDzIsDh/8+Pe4NwLVo0Z/sCdXsXlCLYDh72YoDpip4S1JDIZsoFQjacno09pNw/4+XjoBhrHLq6zSeB2Kse+1/meqdB0a258Quh0gNIFJaWWV0Wv56J8qg+0oNcHqX2cnC6/oBGYSgHl3Go5BRrZhQERyEJSZ8xdW7cuXX9fMZeSJvRZqkmdjj33r70d7vBtjtSYHz142m2Ogeegb+1yVggr9gf60GQtsLG3+02cuEDVWgxQX3lh5ehAj58BYDzEB4MM9uYpNJF6S+bGayDjt69qSmkD970FGTpHZ69vcjxZLv9fG5v4zNkiN0FpHU2taoCpXvMZ+On0R75mYXkVTTn2H8y9Xd/PXek2SYPCDhGzHgMhDaTeBpG86qfjrR6C6RkFzk7I20dXdx8dwlaEQLK01mfeVYbdmJQKWdS82FVRoGHsAmWv+038IaV8rph5Yxs7F/jOGwaCmWc/Y1BjT+rbSmYNMXiaqu3d/+OOZ6hwkAFMVunuT7WwZ3sKSINuSgNXS7/WUvrE6CfWWjNinqTXtFdsUpZVVmD6gtcHccu/d7Cavr0UTw3LI9+k/VUjfaHiftnS4DLIMAyIPZG6Wam2aL9zu3y5alejqahMf2soeXZBrGhhaWmuiVKOhnUOkzdLuxaaCCnMPIKXmv4NnLgNS9ajI2jd7/eZA/clEzZ2L22KaKE8PktwOr21UDuqaNfLBusd66yTPa943qU91AOTsYLiuMnVNG/u+yInFRrrwr30s0WRTsDZT32ulscCsUSWEfE0pvd9YkvbMVYdwteKGTmK/rRPokm04uWsdoZnw09zkgpbMUq1NMwaPNRMZuuLEh86iPXGo0sSnltA8CIxN0GgsUfTt0V3wzwc6Y91jvS2aSNVYXsO85L8nj9WQUF3Fby7IjQj8e1LQ3b9dxOOrD2HmqkPonbYdvdOqz0vaxpM618r8mzVdShMKGzsXoQENMLVvrHxD8wIwpW8M7ukUiXUzeiuW7bVNJxEa0MDo5JfaZSf7MvY57v7tosnvy6jbovHW6M4G21PDdO6QpUyNBaZtQUp7fDOjN94d20Ux6BF6/9VmbGJeTc1tgarcovs0m3DtjzVEdYA1tTHmxrrRJt3clqnkQKUvY12drNZato6TosRUNb+xX9vdYqp/LXeKaoL0kabzJgpU5YqTlA69NQyP9G+NXrFNdWpSBKoHitTM92XtuTB1CaoBvLPtNBaPSFBM8tc/F5qHqOb6798mGHtOF8kJ1FP6Go6ErNnPmaIyl2ka9TRKNYjaU8oY+750j2nqsA4PltwftZOwO0U1wdWKGwY94vRpyquptUxoHoiF98TjhW9O6KynuU8KCNPBEIxPoEu2Y0Dk5hSHdF97FP4+3uge09TqZNfqsTWi0adNM7Ro4ofSyio09PG26gZUlyertYa9A0Nj1fyWJIqae+gbexBsOVaIAlW5RcMQmOqhaE0gDgCr9uXhclklNh8r1O1RkxyHhBaBiA1uiMTWzf5ONNW6/nefKpK3oxYmkqTx96Si9mgaJetpn3elpGml74u9OjwoNc0ZS6aWRHUAral51CaPW/ZehtGmZc2YYPq9RfWvS+1r0tRYTMYm0KWaYUDk5ozNSzXrsyzF2iKlm8n0ga3gJUkIDfDF4PZhcpdYTRdXTS7K14fOWXQDcmYPLVdSm4GhsYBHf2oAYaRuJja4oWLQoMbfeT9KE1dqjkV/IEP9HoqWjrSrbdOxQp1/CwBpN2uxNNfk2l/+NDt9giZJevmPuYozypNrsOb7YmutnsF4Wgq16lP7xuKDH3PlACh1WBzu6RyJFXvO4IM9v8s1j9rvKa2sUgyGNKNVd4qqzpnT7y2qP4aRALD7t4sYdVu0wT107rB26NiC3esdyaNmu3/33Xfx+uuvo7CwEJ06dcI777yDHj16WPReR892byulmcu1GZttWTMj9JE/ig1uDP3bhijOlq75lWPpF7Ims5u7O+0b75LN2RbP0m5PpiaK1Z+FfsWeXMWZ2yVU37T1t6F9LAWqcvRO266Y1P3TvNt1esIp9TrzAkz2ZKspzXcAgF1nlCf7075G7P19MTdlx9xh7eR7oXac4iVVT86rqdnRfo/m3qp0H/aSgIX3xOOO+HBEBPohI6cIY5fvNdi30g8N7e166j3UnjjbvZ41a9bgySefxLJly9CzZ0+8+eabSEpKQnZ2NkJDQ51dPJsZG9VVw1gTjebfSuPbvDm6k2LVdVmlGomtm1lVNk/8EhuM5ZPsuIHTTI3YbGqiWE1uhnbvQX2S1vqabXhJwDuju+gEFLlFpYq1NPpdgo0NOhkT7I/1h88ZzDhvD/q1k/acUZ7sz1H5XOaSlKuEkGsfAcPvi34wpHmP5vpWGmZCCOCFb05g4foT8g9NpYmjzW3XE++hzuIxvcz+9a9/4eGHH8akSZMQHx+PZcuWwd/fHx999JGzi1Zjo26Lxp55gxR7PJhqojGW4+IlSQY9IDwxB8gWSjldSzZlOyQYMtWDzZKJYn85e9nkQ+LxwW0Uxz1p1sjXIKlbqaeNlwSDa0a755b2/9/TKdJgG7Z0eda2IKU99swb5JbDPXgyR/TuszaHTZ9SF3z9e6L2fVhT+6l577NrjwGATs86SSEYUtou1R6PCIgqKytx8OBBDBkyRH7Ny8sLQ4YMQWZmpuJ7KioqUFJSovPnyiIC/ZDSMdJoF2IlmjZ7bZpJF0118ybjTCVS25O5oQ2UPltt3pIEtTDek8VbknB7XKhFgXFEoB/SRyboPDA0PRQtvWaUapkEgFeG32o02BrZtbnBcADa5eQUG6Rh7vtgjv7wE8buiRGBfmjS0MdoBwT9oEkfu9I7l0c0mRUVFaGqqgphYWE6r4eFheHkSeVq+rS0NCxatKg2imdX1lQ5m0p+Zldk29RWIrW5HmwGVfgAcLMaX/M5K3VfBnQTQS1Njtee1FWSgK5WzoNn7LwNbh+G+t5ef89cD91Ro59OaledC/dnMZZsyvboJH4yTuleNze5HbwlCa9s+FXxPZrcHu1cpns6R5q9J5q7B1QHTcrNzG+P7oK7OkXW7GDJZh6RVH3u3Dk0b94cGRkZSExMlF+fO3cudu3ahb17DRPdKioqUFFRIf+7pKQEUVFRLpdUbQ9M3LMvRyaGaiglcSol0Gt/tgAMPmftsnpJwNS+rTCpb4zRbTjy+jB13iwpA69jMkf/GjGWDL3usd4IDWhg8/Vk7h5g6feX7MPSpGqPCIgqKyvh7++PL7/8EsOHD5dfnzBhAoqLi/HNN9+Y3Yar9jIj11QbD2d7BV6uFEi4UlnIMzjqB4y5a7k2fjhRNQZEenr27IkePXrgnXfeAQCo1WpER0dj5syZmDdvntn3MyAiV8QAgqjmnPU94ve3drDbvZ4nn3wSEyZMQPfu3dGjRw+8+eabKC0txaRJk5xdNCKbsVsuUc0563vE769r8ZiAaNSoUbh48SJeeOEFFBYWonPnzti8ebNBojURERF5Ho9pMqspNpkRERG5H0uf3x4xDhERERGRKQyIiIiIyOMxICIiIiKPx4CIiIiIPB4DIiIiIvJ4DIiIiIjI4zEgIiIiIo/HgIiIiIg8HgMiIiIi8ngeM3VHTWkG9C4pKXFySYiIiMhSmue2uYk5GBBZ6MqVKwCAqKgoJ5eEiIiIrHXlyhUEBgYaXc65zCykVqtx7tw5NG7cGJIk2bydkpISREVFIT8/32PnROM5qMbzwHMA8BwAPAcaPA+OOQdCCFy5cgWRkZHw8jKeKcQaIgt5eXmhRYsWdtteQECAx17wGjwH1XgeeA4AngOA50CD58H+58BUzZAGk6qJiIjI4zEgIiIiIo/HgKiW+fr64sUXX4Svr6+zi+I0PAfVeB54DgCeA4DnQIPnwbnngEnVRERE5PFYQ0REREQejwEREREReTwGREREROTxGBARERGRx2NAZAdLly5Fx44d5YGkEhMTsWnTJnn5tWvXMGPGDDRr1gyNGjXCyJEjcf78eZ1t5OXlISUlBf7+/ggNDcUzzzyDGzdu1Pah2E16ejokScLs2bPl1+r6eVi4cCEkSdL5i4uLk5fX9ePX9ueff+LBBx9Es2bN4Ofnh4SEBBw4cEBeLoTACy+8gIiICPj5+WHIkCE4deqUzjYuXbqEcePGISAgAEFBQZgyZQquXr1a24dik5iYGINrQZIkzJgxA4BnXAtVVVVYsGABYmNj4efnh9atW+Pll1/WmU+qrl8HQPV0EbNnz0bLli3h5+eH3r17Y//+/fLyungOdu/ejbvvvhuRkZGQJAlff/21znJ7HfORI0fQr18/NGjQAFFRUViyZEnNCi6oxtavXy82bNggfvvtN5GdnS2effZZUb9+fXHs2DEhhBCPPvqoiIqKEtu2bRMHDhwQvXr1Er1795bff+PGDdGhQwcxZMgQcejQIbFx40YRHBws5s+f76xDqpF9+/aJmJgY0bFjR/HEE0/Ir9f18/Diiy+KW2+9VRQUFMh/Fy9elJfX9ePXuHTpkmjZsqWYOHGi2Lt3r/j999/Fli1bxOnTp+V10tPTRWBgoPj666/F4cOHxT333CNiY2NFeXm5vM6wYcNEp06dxM8//yx+/PFH0aZNGzFmzBhnHJLVLly4oHMdbN26VQAQO3bsEEJ4xrXw6quvimbNmonvvvtO5Obmii+++EI0atRIvPXWW/I6df06EEKIBx54QMTHx4tdu3aJU6dOiRdffFEEBASIP/74QwhRN8/Bxo0bxXPPPSfWrl0rAIh169bpLLfHMatUKhEWFibGjRsnjh07Jj777DPh5+cn3n//fZvLzYDIQZo0aSI++OADUVxcLOrXry+++OILedmvv/4qAIjMzEwhRPXF4+XlJQoLC+V1li5dKgICAkRFRUWtl70mrly5Im655RaxdetWMWDAADkg8oTz8OKLL4pOnTopLvOE49dITU0Vffv2NbpcrVaL8PBw8frrr8uvFRcXC19fX/HZZ58JIYQ4ceKEACD2798vr7Np0yYhSZL4888/HVd4B3niiSdE69athVqt9phrISUlRUyePFnntREjRohx48YJITzjOigrKxPe3t7iu+++03m9a9eu4rnnnvOIc6AfENnrmN977z3RpEkTne9DamqqaNeunc1lZZOZnVVVVWH16tUoLS1FYmIiDh48iOvXr2PIkCHyOnFxcYiOjkZmZiYAIDMzEwkJCQgLC5PXSUpKQklJCY4fP17rx1ATM2bMQEpKis7xAvCY83Dq1ClERkaiVatWGDduHPLy8gB4zvEDwPr169G9e3f83//9H0JDQ9GlSxcsX75cXp6bm4vCwkKdcxEYGIiePXvqnIugoCB0795dXmfIkCHw8vLC3r17a+9g7KCyshKffPIJJk+eDEmSPOZa6N27N7Zt24bffvsNAHD48GHs2bMHycnJADzjOrhx4waqqqrQoEEDndf9/PywZ88ejzgH+ux1zJmZmejfvz98fHzkdZKSkpCdnY3Lly/bVDZO7monR48eRWJiIq5du4ZGjRph3bp1iI+PR1ZWFnx8fBAUFKSzflhYGAoLCwEAhYWFOjc+zXLNMnexevVq/PLLLzrt4xqFhYV1/jz07NkTK1euRLt27VBQUIBFixahX79+OHbsmEccv8bvv/+OpUuX4sknn8Szzz6L/fv34/HHH4ePjw8mTJggH4vSsWqfi9DQUJ3l9erVQ9OmTd3qXADA119/jeLiYkycOBGAZ3wXAGDevHkoKSlBXFwcvL29UVVVhVdffRXjxo0DAI+4Dho3bozExES8/PLLaN++PcLCwvDZZ58hMzMTbdq08YhzoM9ex1xYWIjY2FiDbWiWNWnSxOqyMSCyk3bt2iErKwsqlQpffvklJkyYgF27djm7WLUmPz8fTzzxBLZu3Wrwa8hTaH75AkDHjh3Rs2dPtGzZEp9//jn8/PycWLLapVar0b17dyxevBgA0KVLFxw7dgzLli3DhAkTnFy62vfhhx8iOTkZkZGRzi5Krfr888/x6aefYtWqVbj11luRlZWF2bNnIzIy0qOug//973+YPHkymjdvDm9vb3Tt2hVjxozBwYMHnV000sMmMzvx8fFBmzZt0K1bN6SlpaFTp0546623EB4ejsrKShQXF+usf/78eYSHhwMAwsPDDXqYaP6tWcfVHTx4EBcuXEDXrl1Rr1491KtXD7t27cLbb7+NevXqISwszCPOg7agoCC0bdsWp0+f9pjrAAAiIiIQHx+v81r79u3l5kPNsSgdq/a5uHDhgs7yGzdu4NKlS251Ls6ePYsffvgBU6dOlV/zlGvhmWeewbx58zB69GgkJCRg/PjxmDNnDtLS0gB4znXQunVr7Nq1C1evXkV+fj727duH69evo1WrVh5zDrTZ65gd8R1hQOQgarUaFRUV6NatG+rXr49t27bJy7Kzs5GXl4fExEQAQGJiIo4ePapzAWzduhUBAQEGDxZXNXjwYBw9ehRZWVnyX/fu3TFu3Dj5/z3hPGi7evUqcnJyEBER4THXAQD06dMH2dnZOq/99ttvaNmyJQAgNjYW4eHhOueipKQEe/fu1TkXxcXFOr+it2/fDrVajZ49e9bCUdjHihUrEBoaipSUFPk1T7kWysrK4OWl+4jx9vaGWq0G4FnXAQA0bNgQERERuHz5MrZs2YJ7773X484BYL/PPTExEbt378b169fldbZu3Yp27drZ1FwGgN3u7WHevHli165dIjc3Vxw5ckTMmzdPSJIkvv/+eyFEdRfb6OhosX37dnHgwAGRmJgoEhMT5fdrutgOHTpUZGVlic2bN4uQkBC36mKrRLuXmRB1/zw89dRTYufOnSI3N1f89NNPYsiQISI4OFhcuHBBCFH3j19j3759ol69euLVV18Vp06dEp9++qnw9/cXn3zyibxOenq6CAoKEt988404cuSIuPfeexW73Xbp0kXs3btX7NmzR9xyyy0u3dVYX1VVlYiOjhapqakGyzzhWpgwYYJo3ry53O1+7dq1Ijg4WMydO1dexxOug82bN4tNmzaJ33//XXz//feiU6dOomfPnqKyslIIUTfPwZUrV8ShQ4fEoUOHBADxr3/9Sxw6dEicPXtWCGGfYy4uLhZhYWFi/Pjx4tixY2L16tXC39+f3e6dbfLkyaJly5bCx8dHhISEiMGDB8vBkBBClJeXi8cee0w0adJE+Pv7i/vuu08UFBTobOPMmTMiOTlZ+Pn5ieDgYPHUU0+J69ev1/ah2JV+QFTXz8OoUaNERESE8PHxEc2bNxejRo3SGXunrh+/tm+//VZ06NBB+Pr6iri4OPGf//xHZ7larRYLFiwQYWFhwtfXVwwePFhkZ2frrPPXX3+JMWPGiEaNGomAgAAxadIkceXKldo8jBrZsmWLAGBwXEJ4xrVQUlIinnjiCREdHS0aNGggWrVqJZ577jmdbtKecB2sWbNGtGrVSvj4+Ijw8HAxY8YMUVxcLC+vi+dgx44dAoDB34QJE4QQ9jvmw4cPi759+wpfX1/RvHlzkZ6eXqNyS0JoDRtKRERE5IGYQ0REREQejwEREREReTwGREREROTxGBARERGRx2NARERERB6PARERERF5PAZERERE5PEYEBEREZHHY0BERA4zcOBAzJ4929nFcLiFCxeic+fOzi4GEdUAAyIiIiMqKytrdX9CCNy4caNW90lE1RgQEZFDTJw4Ebt27cJbb70FSZIgSRLOnDmDY8eOITk5GY0aNUJYWBjGjx+PoqIi+X0DBw7ErFmzMHv2bDRp0gRhYWFYvnw5SktLMWnSJDRu3Bht2rTBpk2b5Pfs3LkTkiRhw4YN6NixIxo0aIBevXrh2LFjOmXas2cP+vXrBz8/P0RFReHxxx9HaWmpvDwmJgYvv/wyHnroIQQEBGDatGkAgNTUVLRt2xb+/v5o1aoVFixYIM+yvXLlSixatAiHDx+Wj3PlypU4c+YMJElCVlaWvP3i4mJIkoSdO3fqlHvTpk3o1q0bfH19sWfPHqjVaqSlpSE2NhZ+fn7o1KkTvvzyS3t/RESkhQERETnEW2+9hcTERDz88MMoKChAQUEBGjdujNtvvx1dunTBgQMHsHnzZpw/fx4PPPCAzns//vhjBAcHY9++fZg1axamT5+O//u//0Pv3r3xyy+/YOjQoRg/fjzKysp03vfMM8/gn//8J/bv34+QkBDcfffdcuCSk5ODYcOGYeTIkThy5AjWrFmDPXv2YObMmTrb+Mc//oFOnTrh0KFDWLBgAQCgcePGWLlyJU6cOIG33noLy5cvxxtvvAEAGDVqFJ566inceuut8nGOGjXKqnM1b948pKen49dff0XHjh2RlpaG//73v1i2bBmOHz+OOXPm4MEHH8SuXbus2i4RWaFGU8MSEZkwYMAA8cQTT8j/fvnll8XQoUN11snPz9eZFX7AgAGib9++8vIbN26Ihg0bivHjx8uvFRQUCAAiMzNTCPH37NqrV6+W1/nrr7+En5+fWLNmjRBCiClTpohp06bp7PvHH38UXl5eory8XAghRMuWLcXw4cPNHtfrr78uunXrJv/7xRdfFJ06ddJZJzc3VwAQhw4dkl+7fPmyACB27NihU+6vv/5aXufatWvC399fZGRk6GxvypQpYsyYMWbLRkS2qefMYIyIPMvhw4exY8cONGrUyGBZTk4O2rZtCwDo2LGj/Lq3tzeaNWuGhIQE+bWwsDAAwIULF3S2kZiYKP9/06ZN0a5dO/z666/yvo8cOYJPP/1UXkcIAbVajdzcXLRv3x4A0L17d4OyrVmzBm+//TZycnJw9epV3LhxAwEBAVYfvzHa+zx9+jTKyspwxx136KxTWVmJLl262G2fRKSLARER1ZqrV6/i7rvvxmuvvWawLCIiQv7/+vXr6yyTJEnnNUmSAABqtdqqfT/yyCN4/PHHDZZFR0fL/9+wYUOdZZmZmRg3bhwWLVqEpKQkBAYGYvXq1fjnP/9pcn9eXtUZCUII+TVN850+7X1evXoVALBhwwY0b95cZz1fX1+T+yQi2zEgIiKH8fHxQVVVlfzvrl274quvvkJMTAzq1bP/7efnn3+Wg5vLly/jt99+k2t+unbtihMnTqBNmzZWbTMjIwMtW7bEc889J7929uxZnXX0jxMAQkJCAAAFBQVyzY52grUx8fHx8PX1RV5eHgYMGGBVWYnIdkyqJiKHiYmJwd69e3HmzBkUFRVhxowZuHTpEsaMGYP9+/cjJycHW7ZswaRJkwwCClu89NJL2LZtG44dO4aJEyciODgYw4cPB1DdUywjIwMzZ85EVlYWTp06hW+++cYgqVrfLbfcgry8PKxevRo5OTl4++23sW7dOoPjzM3NRVZWFoqKilBRUQE/Pz/06tVLTpbetWsXnn/+ebPH0LhxYzz99NOYM2cOPv74Y+Tk5OCXX37BO++8g48//tjmc0NEpjEgIiKHefrpp+Ht7Y34+HiEhISgsrISP/30E6qqqjB06FAkJCRg9uzZCAoKkpuYaiI9PR1PPPEEunXrhsLCQnz77bfw8fEBUJ2XtGvXLvz222/o168funTpghdeeAGRkZEmt3nPPfdgzpw5mDlzJjp37oyMjAy595nGyJEjMWzYMAwaNAghISH47LPPAAAfffQRbty4gW7dumH27Nl45ZVXLDqOl19+GQsWLEBaWhrat2+PYcOGYcOGDYiNjbXhrBCRJSSh3cBNROSGdu7ciUGDBuHy5csICgpydnGIyA2xhoiIiIg8HgMiIiIi8nhsMiMiIiKPxxoiIiIi8ngMiIiIiMjjMSAiIiIij8eAiIiIiDweAyIiIiLyeAyIiIiIyOMxICIiIiKPx4CIiIiIPB4DIiIiIvJ4/w8sFxzgN1ESVAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -932,13 +3999,26 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmYUlEQVR4nO3deXwU5f0H8M9sIGETkuVIAgETEoIQkBCRywAGECqkKCJYEY9yqhUU0SoELQIqBmzrWQUEBa0VaBXUCnhULmP4QbhB5YoBIgQhQjZAQgLZ5/dHnGWPmb2vST7v1yutzM7OPDM788x3nlMSQggQERERaZQu2AkgIiIi8gaDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIKiNmzZ0OSJJfWlSQJs2fP9mt6+vfvj/79+4fs9ojIdQxmiOqZZcuWQZIk81+DBg3QunVrjB07FidOnAh28kJOcnKy1fmKj4/HTTfdhNWrV/tk+xUVFZg9ezY2btzok+0R1UcMZojqqeeeew7//Oc/sXDhQmRnZ+ODDz5Av379cOnSJb/s7y9/+QsqKyv9sm1/u/766/HPf/4T//znP/Hkk0/i5MmTGDFiBBYuXOj1tisqKjBnzhwGM0ReaBDsBBBRcGRnZ6N79+4AgIkTJyI2Nhbz58/HZ599hrvuusvn+2vQoAEaNNBmltO6dWvcd9995n//8Y9/RLt27fDKK6/gT3/6UxBTRkQAS2aI6Dc33XQTAKCwsNBq+YEDB3DnnXeiWbNmaNSoEbp3747PPvvMap3Lly9jzpw5uPbaa9GoUSM0b94cffv2xddff21eR6nNTFVVFR5//HHExcUhOjoaw4YNw88//2yXtrFjxyI5OdluudI2ly5diptvvhnx8fGIiIhAp06dsGDBArfOhTMtW7ZEx44dUVRU5HC906dPY8KECWjRogUaNWqEjIwMvPfee+bPjx49iri4OADAnDlzzFVZ/m4vRFTXaPM1iYh87ujRowCApk2bmpd9//336NOnD1q3bo2cnBxERUXh3//+N4YPH46PP/4Yd9xxB4DaoCI3NxcTJ05Ez549UV5eju3bt2Pnzp343e9+p7rPiRMn4oMPPsA999yD3r17Y/369Rg6dKhXx7FgwQJcd911GDZsGBo0aID//ve/mDRpEkwmEyZPnuzVtmWXL19GcXExmjdvrrpOZWUl+vfvjyNHjuCRRx5BSkoK/vOf/2Ds2LEoKyvDY489hri4OCxYsAAPP/ww7rjjDowYMQIA0KVLF5+kk6jeEERUryxdulQAEP/73//EmTNnRHFxsfjoo49EXFyciIiIEMXFxeZ1Bw4cKNLT08WlS5fMy0wmk+jdu7e49tprzcsyMjLE0KFDHe531qxZwjLL2b17twAgJk2aZLXePffcIwCIWbNmmZeNGTNGtGnTxuk2hRCioqLCbr3BgweLtm3bWi3r16+f6Nevn8M0CyFEmzZtxC233CLOnDkjzpw5I/bs2SPuvvtuAUA8+uijqtt79dVXBQDxwQcfmJdVV1eLzMxM0bhxY1FeXi6EEOLMmTN2x0tE7mE1E1E9NWjQIMTFxSExMRF33nknoqKi8Nlnn+Gaa64BAJw9exbr16/HXXfdhfPnz6O0tBSlpaX49ddfMXjwYBw+fNjc+6lJkyb4/vvvcfjwYZf3v3btWgDAlClTrJZPnTrVq+PS6/Xm/zYajSgtLUW/fv3w008/wWg0erTNr776CnFxcYiLi0NGRgb+85//4P7778f8+fNVv7N27Vq0bNkSo0ePNi9r2LAhpkyZggsXLmDTpk0epYWI7LGaiaieevPNN9G+fXsYjUa8++672Lx5MyIiIsyfHzlyBEIIzJw5EzNnzlTcxunTp9G6dWs899xzuP3229G+fXt07twZQ4YMwf333++wuuTYsWPQ6XRITU21Wt6hQwevjuu7777DrFmzsGXLFlRUVFh9ZjQaYTAY3N5mr1698MILL0CSJERGRqJjx45o0qSJw+8cO3YM1157LXQ663fGjh07mj8nIt9gMENUT/Xs2dPcm2n48OHo27cv7rnnHhw8eBCNGzeGyWQCADz55JMYPHiw4jbatWsHAMjKykJhYSE+/fRTfPXVV1iyZAleeeUVLFy4EBMnTvQ6rWqD7dXU1Fj9u7CwEAMHDkRaWhpefvllJCYmIjw8HGvXrsUrr7xiPiZ3xcbGYtCgQR59l4j8j8EMESEsLAy5ubkYMGAA/vGPfyAnJwdt27YFUFs14sqDvFmzZhg3bhzGjRuHCxcuICsrC7Nnz1YNZtq0aQOTyYTCwkKr0piDBw/ardu0aVOUlZXZLbct3fjvf/+LqqoqfPbZZ0hKSjIv37Bhg9P0+1qbNm2wd+9emEwmq9KZAwcOmD8H1AM1InId28wQEYDa4fh79uyJV199FZcuXUJ8fDz69++PRYsWoaSkxG79M2fOmP/7119/tfqscePGaNeuHaqqqlT3l52dDQB4/fXXrZa/+uqrduumpqbCaDRi79695mUlJSV2o/CGhYUBAIQQ5mVGoxFLly5VTYe//P73v8epU6ewcuVK87IrV67gjTfeQOPGjdGvXz8AQGRkJAAoBmtE5BqWzBCR2VNPPYU//OEPWLZsGf70pz/hzTffRN++fZGeno4HHngAbdu2xS+//IItW7bg559/xp49ewAAnTp1Qv/+/dGtWzc0a9YM27dvx0cffYRHHnlEdV/XX389Ro8ejbfeegtGoxG9e/fGN998gyNHjtite/fdd2P69Om44447MGXKFFRUVGDBggVo3749du7caV7vlltuQXh4OG677TY89NBDuHDhAhYvXoz4+HjFgMyfHnzwQSxatAhjx47Fjh07kJycjI8++gjfffcdXn31VURHRwOobbDcqVMnrFy5Eu3bt0ezZs3QuXNndO7cOaDpJdK0YHenIqLAkrtmFxQU2H1WU1MjUlNTRWpqqrhy5YoQQojCwkLxxz/+UbRs2VI0bNhQtG7dWtx6663io48+Mn/vhRdeED179hRNmjQRer1epKWliblz54rq6mrzOkrdqCsrK8WUKVNE8+bNRVRUlLjttttEcXGxYlflr776SnTu3FmEh4eLDh06iA8++EBxm5999pno0qWLaNSokUhOThbz588X7777rgAgioqKzOu50zXbWbdzte398ssvYty4cSI2NlaEh4eL9PR0sXTpUrvv5ufni27duonw8HB20ybygCSERXksERERkcawzQwRERFpGoMZIiIi0jQGM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNq/OD5plMJpw8eRLR0dEcNpyIiEgjhBA4f/48WrVqZTdhq9LKQbNp0yZx6623ioSEBAFArF692vxZdXW1mDZtmujcubOIjIwUCQkJ4v777xcnTpxwax/yAFz84x//+Mc//vFPe3/FxcVOn/VBLZm5ePEiMjIyMH78eIwYMcLqs4qKCuzcuRMzZ85ERkYGzp07h8ceewzDhg3D9u3bXd6HPGR4cXExYmJifJp+IiIi8o/y8nIkJiaan+OOhMwIwJIkYfXq1Rg+fLjqOgUFBejZsyeOHTtmNSOuI+Xl5TAYDDAajQxmiIiINMKd57em2swYjUZIkoQmTZqorlNVVWU1U295eXkAUkZERETBopneTJcuXcL06dMxevRohxFabm4uDAaD+S8xMTGAqSQiIqJA00Qwc/nyZdx1110QQmDBggUO150xYwaMRqP5r7i4OECpJCIiomAI+WomOZA5duwY1q9f77TeLCIiAhEREQFKHRERhZKamhpcvnw52MkgFzRs2BBhYWE+2VZIBzNyIHP48GFs2LABzZs3D3aSiIgoBAkhcOrUKZSVlQU7KeSGJk2aoGXLll6PAxfUYObChQs4cuSI+d9FRUXYvXs3mjVrhoSEBNx5553YuXMnPv/8c9TU1ODUqVMAgGbNmiE8PDxYySYiohAjBzLx8fGIjIzkIKkhTgiBiooKnD59GgCQkJDg1faC2jV748aNGDBggN3yMWPGYPbs2UhJSVH83oYNG9C/f3+X9sGu2UREdVtNTQ0OHTqE+Ph4luBrzK+//orTp0+jffv2dlVOmuma3b9/fziKpUJkCBwiIgphchuZyMjIIKeE3CX/ZpcvX/aq/YwmejMRERE5w6ol7fHVb8ZghoiIiDSNwQwRERH5xcaNGyFJkt97mTGY8UKJsRL5haUoMVYGOylERFQPzZ49G9dff32wkxF0IT3OTChbWXAcM1btg0kAOgnIHZGOUT1cm/ySiIgokC5fvoyGDRsGOxl+w5IZD5QYK82BDACYBPD0qv0soSEiIreYTCbk5uYiJSUFer0eGRkZ+OijjwBcraL55ptv0L17d0RGRqJ37944ePAgAGDZsmWYM2cO9uzZA0mSIEkSli1bBqC2Ye2CBQswbNgwREVFYe7cuQ7TIe/ryy+/RNeuXaHX63HzzTfj9OnTWLduHTp27IiYmBjcc889qKioMH+vqqoKU6ZMQXx8PBo1aoS+ffuioKDAPyfLAQYzHigqvWgOZGQ1QuBoaYXyF4iISBMC3XwgNzcX77//PhYuXIjvv/8ejz/+OO677z5s2rTJvM4zzzyDv//979i+fTsaNGiA8ePHAwBGjRqFP//5z7juuutQUlKCkpISjBo1yvy92bNn44477sC+ffvM33Fm9uzZ+Mc//oH8/HwUFxfjrrvuwquvvooPP/wQa9aswVdffYU33njDvP60adPw8ccf47333sPOnTvRrl07DB48GGfPnvXRGXINq5k8kBIbBZ0Eq4AmTJKQHMsxDoiItCrQzQeqqqrw4osv4n//+x8yMzMBAG3btkVeXh4WLVqEBx98EAAwd+5c9OvXDwCQk5ODoUOH4tKlS9Dr9WjcuDEaNGiAli1b2m3/nnvuwbhx49xK0wsvvIA+ffoAACZMmIAZM2agsLAQbdu2BQDceeed2LBhA6ZPn46LFy9iwYIFWLZsGbKzswEAixcvxtdff4133nkHTz31lGcnxgMsmfFAgkGP3BHpCPutf3yYJOHFEZ2RYNAHOWVEROSJYDQfOHLkCCoqKvC73/0OjRs3Nv+9//77KCwsNK/XpUsX83/Lw/7L0wA40r17d7fTZLmvFi1aIDIy0hzIyMvkfRcWFuLy5cvm4AeonTyyZ8+e+PHHH93etzdYMuOhUT2SkNU+DkdLK5AcG8lAhohIwxw1H/BX/n7hwgUAwJo1a9C6dWurzyIiIswBjWXDXXmQOZPJ5HT7UVFRbqfJdl+2jYYlSXJp34HGYMYLCQY9gxgiojogGM0HOnXqhIiICBw/ftxcjWTJsnRGTXh4OGpqavyRPKdSU1MRHh6O7777Dm3atAFQ22uqoKAAU6dODWhaGMwQEVG9JzcfeHrVftQIEZDmA9HR0XjyySfx+OOPw2QyoW/fvjAajfjuu+8QExNjDhAcSU5ORlFREXbv3o1rrrkG0dHRiIiI8FuaLUVFReHhhx/GU089hWbNmiEpKQkvvfQSKioqMGHChICkQcZghoiICMFpPvD8888jLi4Oubm5+Omnn9CkSRPccMMNePrpp12qzhk5ciRWrVqFAQMGoKysDEuXLsXYsWP9nm7ZvHnzYDKZcP/99+P8+fPo3r07vvzySzRt2jRgaQAASdTxqandmUKciIi059KlSygqKkJKSgoaNWoU7OSQGxz9du48v9mbiYiIiDSNwQwREVEd96c//cmq+7fl35/+9KdgJ89rbDNDRERUxz333HN48sknFT+rC00wGMwQERHVcfHx8YiPjw92MvyG1UxERESkaQxmiIioTgjFkWnJMV/9ZqxmIiIiTQsPD4dOp8PJkycRFxeH8PBw87D/FJqEEKiursaZM2eg0+kQHh7u1fYYzBARkabpdDqkpKSgpKQEJ0+eDHZyyA2RkZFISkqCTuddRRGDGSIi0rzw8HAkJSXhypUrQZuriNwTFhaGBg0a+KQUjcEMERHVCfIsz7YzPVPdxwbAREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk1jMENERESaxmCGiIiINI3BDBEREWkagxkiIiLSNAYzREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk1jMENERESaxmCGiIiINI3BDBEREWkagxkiIiLSNAYzREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk1jMENERESaxmCGiIiINI3BDBEREWlaUIOZzZs347bbbkOrVq0gSRI++eQTq8+FEHj22WeRkJAAvV6PQYMG4fDhw8FJLBEREYWkoAYzFy9eREZGBt58803Fz1966SW8/vrrWLhwIbZu3YqoqCgMHjwYly5dCnBKiYiIKFQ1CObOs7OzkZ2drfiZEAKvvvoq/vKXv+D2228HALz//vto0aIFPvnkE9x9992BTCoRERGFqJBtM1NUVIRTp05h0KBB5mUGgwG9evXCli1bVL9XVVWF8vJyqz8iIiKqu0I2mDl16hQAoEWLFlbLW7RoYf5MSW5uLgwGg/kvMTHRr+kkIiKi4ArZYMZTM2bMgNFoNP8VFxcHO0lERETkRyEbzLRs2RIA8Msvv1gt/+WXX8yfKYmIiEBMTIzVHxEREdVdIRvMpKSkoGXLlvjmm2/My8rLy7F161ZkZmYGMWVEREQUSoLam+nChQs4cuSI+d9FRUXYvXs3mjVrhqSkJEydOhUvvPACrr32WqSkpGDmzJlo1aoVhg8fHrxEExERUUgJajCzfft2DBgwwPzvJ554AgAwZswYLFu2DNOmTcPFixfx4IMPoqysDH379sUXX3yBRo0aBSvJREREFGIkIYQIdiL8qby8HAaDAUajke1niIiINMKd53fItpkhIiIicgWDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYMZLJcZK5BeWosRYGeykEBER1UsNgp0ALVtZcBwzVu2DSQA6CcgdkY5RPZKCnSwiIqJ6hSUzHioxVpoDGQAwCeDpVftZQkNERBRgDGY8VFR60RzIyGqEwNHSiuAkiIiIqJ5iMOOhlNgo6CTrZWGShOTYyOAkiIiIqJ5iMOOhBIMeuSPSESbVRjRhkoQXR3RGgkEf5JQRERHVL2wA7IVRPZKQ1T4OR0srkBwbyUCGiIgoCBjMeCnBoGcQQ0REFESsZiIiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZHygxViK/sBQlxspgJ4WIiKjeaRDsBGjdyoLjmLFqH0wC0ElA7oh0jOqRFOxkERER1RssmfFCibHSHMgAgEkAT6/azxIaIiKiAGIw44Wi0ovmQEZWIwSOllYEJ0FERET1UEgHMzU1NZg5cyZSUlKg1+uRmpqK559/HkII518OgJTYKOgk62VhkoTk2MjgJIiIiKgeCuk2M/Pnz8eCBQvw3nvv4brrrsP27dsxbtw4GAwGTJkyJdjJQ4JBj9wR6Xh61X7UCIEwScKLIzojwaAPdtKIiIjqjZAOZvLz83H77bdj6NChAIDk5GQsX74c27ZtC3LKrhrVIwlZ7eNwtLQCybGRDGSIiIgCLKSrmXr37o1vvvkGhw4dAgDs2bMHeXl5yM7OVv1OVVUVysvLrf78LcGgR2ZqcwYyREREQRDSJTM5OTkoLy9HWloawsLCUFNTg7lz5+Lee+9V/U5ubi7mzJkTwFQSERFRMIV0ycy///1v/Otf/8KHH36InTt34r333sPf/vY3vPfee6rfmTFjBoxGo/mvuLg4gCkmIiKiQJNEqHQNUpCYmIicnBxMnjzZvOyFF17ABx98gAMHDri0jfLychgMBhiNRsTExPgrqURERORD7jy/Q7pkpqKiAjqddRLDwsJgMpmClCIiIiIKNSHdZua2227D3LlzkZSUhOuuuw67du3Cyy+/jPHjxwc7aURERBQiQrqa6fz585g5cyZWr16N06dPo1WrVhg9ejSeffZZhIeHu7QNVjMRERFpjzvP75AOZnyBwQwREZH21Jk2M0RERETOMJghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMw44USYyXyC0tRYqwMdlKIiIjqrQbBToBWrSw4jhmr9sEkAJ0E5I5Ix6geScFOFhERUb3DkhkPlBgrzYEMAJgE8PSq/SyhISIiCgIGMx4oKr1oDmRkNULgaGlFcBJERERUjzGY8UBKbBR0kvWyMElCcmyk4vpsW0NEROQ/DGY8kGDQI3dEOsKk2ogmTJLw4ojOSDDo7dZdWXAcfeatxz2Lt6LPvPVYWXA80MklIiKq0yQhhHC+mnaVl5fDYDDAaDQiJibGp9suMVbiaGkFkmMjFQOZEmMl+sxbb1UlFSZJyMsZoLg+ERER1XLn+c3eTF5IMOgdBiWO2tYwmCEiIvINVjP5kbtta4iIiMh9DGb8yJ22NUREROQZVjP52ageSchqH+ewbQ0RERF5jsFMADhrW0NERESeczmYKS8vd3mjvu41RERERKTG5WCmSZMmkCTJ4TpCCEiShJqaGq8TRkREROQKl4OZDRs2+DMdRERERB5xOZjp16+fP9NBRERE5BGPGwCXlZXhnXfewY8//ggAuO666zB+/HgYDAafJY6IiIjIGY/Gmdm+fTtSU1Pxyiuv4OzZszh79ixefvllpKamYufOnb5OIxEREZEqj+Zmuummm9CuXTssXrwYDRrUFu5cuXIFEydOxE8//YTNmzf7PKGe8ufcTEREROQf7jy/PQpm9Ho9du3ahbS0NKvlP/zwA7p3746Kigp3N+k3DGaIiIi0x53nt0fVTDExMTh+/Ljd8uLiYkRHR3uySSIiIiKPeBTMjBo1ChMmTMDKlStRXFyM4uJirFixAhMnTsTo0aN9nUYiIiIiVR71Zvrb3/4GSZLwxz/+EVeuXAEANGzYEA8//DDmzZvn0wQSEREROeJRmxlZRUUFCgsLAQCpqamIjIz0WcJ8hW1miIiItMed57dXE01GRkYiPT3dm00QERERecWjYObSpUt44403sGHDBpw+fRomk8nqc441Q0RERIHiUTAzYcIEfPXVV7jzzjvRs2dPpxNQEhEREfmLR8HM559/jrVr16JPnz6+Tg8RERGRWzzqmt26dWuOJ0NEREQhwaNg5u9//zumT5+OY8eO+To9dk6cOIH77rsPzZs3h16vR3p6OrZv3+73/RIREZE2eFTN1L17d1y6dAlt27ZFZGQkGjZsaPX52bNnfZK4c+fOoU+fPhgwYADWrVuHuLg4HD58GE2bNvXJ9omIiEj7PApmRo8ejRMnTuDFF19EixYt/NYAeP78+UhMTMTSpUvNy1JSUvyyLyIiItImjwbNi4yMxJYtW5CRkeGPNJl16tQJgwcPxs8//4xNmzahdevWmDRpEh544AGXt8FB84iIiLTH7xNNpqWlobKy0qPEueOnn37CggULcO211+LLL7/Eww8/jClTpuC9995T/U5VVRXKy8ut/oiIiKju8qhk5quvvsKcOXMwd+5cpKen27WZ8VUJSHh4OLp37478/HzzsilTpqCgoABbtmxR/M7s2bMxZ84cu+UsmSEiItIOd0pmPApmdLraAh3btjJCCEiShJqaGnc3qahNmzb43e9+hyVLlpiXLViwAC+88AJOnDih+J2qqipUVVWZ/11eXo7ExEQGM0RERBri97mZNmzY4FHC3NWnTx8cPHjQatmhQ4fQpk0b1e9EREQgIiLC30kjIiKiEOFRMNOvXz+X1ps0aRKee+45xMbGerIbPP744+jduzdefPFF3HXXXdi2bRvefvttvP322x5tj4iIiOoej6qZXBUTE4Pdu3ejbdu2Hm/j888/x4wZM3D48GGkpKTgiSeeYG8mIiKiOs7v1Uyu8kWcdOutt+LWW2/1QWqIiIioLvKoazYRERFRqGAwQ0RERJrGYIaIiIg0jcEMERERaZrbwcyVK1fw3HPP4eeff3a67n333cceRERERORXHnXNjo6Oxr59+5CcnOyHJPkWu2YTERFpj98nmrz55puxadMmjxJHRERE5EsejTOTnZ2NnJwc7Nu3D926dUNUVJTV58OGDfNJ4oiIiIic8WqiScUN+nCiSV9gNRMREZH2+H0EYJPJ5FHCiIiIiHzNozYz77//PqqqquyWV1dX4/333/c6UURERESu8qiaKSwsDCUlJYiPj7da/uuvvyI+Pp7VTEREROQVv/dmEkJAkiS75T///DMMBoMnmyQiIiLyiFttZrp27QpJkiBJEgYOHIgGDa5+vaamBkVFRRgyZIjPE0lERESkxq1gZvjw4QCA3bt3Y/DgwWjcuLH5s/DwcCQnJ2PkyJE+TSARERGRI24FM7NmzQIAJCcnY9SoUWjUqJFfEkVERETkKo+6Zo8ZMwZAbe+l06dP23XVTkpK8j5lRERERC7wKJg5fPgwxo8fj/z8fKvlcsPgUOrNFGglxkoUlV5ESmwUEgz6YCeHiIiozvMomBk7diwaNGiAzz//HAkJCYo9m+qjlQXHMWPVPpgEoJOA3BHpGNWDpVRERET+5FEws3v3buzYsQNpaWm+To9mlRgrzYEMAJgE8PSq/chqH2dXQsPSGyIiIt/xKJjp1KkTSktLfZ0WTSsqvWgOZGQ1QuBoaYVVwMLSGyIiIt/yaNC8+fPnY9q0adi4cSN+/fVXlJeXW/3VRymxUdDZ1LaFSRKSYyPN/1YrvSkxVgYwpURERHWLRyUzgwYNAgDcfPPNVu1l6nMD4ASDHrkj0vH0qv2oEQJhkoQXR3S2KpVxtfSGiIiIXOdRMLNhwwZfp6NOGNUjCVnt43C0tALJsZF2AUpKbBQkAJbxjG3pDREREbnHo2qmfv36QafTYfHixcjJyUG7du3Qr18/HD9+HGFhYb5Oo6YkGPTITG2uWNKy+dAZq39LgF3pDREREbnHo2Dm448/xuDBg6HX67Fr1y5UVVUBAIxGI1588UWfJrCukNvLWJbKSBKQ1T4uaGkiIiKqCzwKZl544QUsXLgQixcvRsOGDc3L+/Tpg507d/oscXWJUnsZkwCOllYEJ0FERER1hEfBzMGDB5GVlWW33GAwoKyszNs01Umu9HYiIiIi93kUzLRs2RJHjhyxW56Xl4e2bdt6nai6SO7tFPZb7y+l3k5ERETkPo96Mz3wwAN47LHH8O6770KSJJw8eRJbtmzBk08+iZkzZ/o6jXWGs95ORERE5D6PgpmcnByYTCYMHDgQFRUVyMrKQkREBJ588kk8+uijvk5jnZJg0DOIISIi8iFJCCGcr6asuroaR44cwYULF9CpUyc0btzYl2nzifLychgMBhiNRsTExAQ7OUREROQCd57fHpXMyMLDw9GpUydvNkFERETkFY8aABMRERGFCgYzflBirER+YSknkCQiIgoAr6qZyN7KguPmmbF1EpA7Ih2jeiQFO1lERER1FktmfEieskAe6dckgKdX7VctoWEJDhERkfdYMuNDSlMW1AiBo6UVdt2xPS3BKTFWoqj0IlJio9jFm4iICAxmfEqessAyoFGaskCtBCerfZzDAIVVWERERPZYzeRDrk5Z4KgER427VVhERET1BUtmfMyVKQtcLcGx5E4VFhERUX3Ckhk/SDDokZnaXDXI8GTSSc66TUREpIwlMwFk2XjX3Ukn5QDo6VX7USMEZ90mIiL6DYOZAFFrvOtOMMJZt4mIiOyxmikAfNl411kVFhERUX3DYCYAPOm9FGgcwI+IiLSK1UwB4EnvJUv+HiiP49cQEZGWaapkZt68eZAkCVOnTg12Utxi23tJJwHj+ya79N2VBcfRZ9563LN4K/rMW4+VBcd9mjaOX0NERFqnmWCmoKAAixYtQpcuXYKdFI+M6pGEvJwBeDArBUIAi78tchqcBCLQ0EIVGBERkSOaCGYuXLiAe++9F4sXL0bTpk2DnRyvLPm2CHLs4Cw4CUSgwfFriIhI6zQRzEyePBlDhw7FoEGDgp0Ur7gbnAQi0PBkAD8iIqJQEvINgFesWIGdO3eioKDApfWrqqpQVVVl/nd5ebm/kuY2dxsCB2qgPI5fQ0REWhbSwUxxcTEee+wxfP3112jUqJFL38nNzcWcOXP8nDLPeBKcBCrQSDDoGcQQEZEmSUII4Xy14Pjkk09wxx13ICwszLyspqYGkiRBp9OhqqrK6jNAuWQmMTERRqMRMTExAUu7IyXGSpaCEBEROVBeXg6DweDS8zukS2YGDhyIffv2WS0bN24c0tLSMH36dLtABgAiIiIQERERqCR6hKUgREREvhPSwUx0dDQ6d+5stSwqKgrNmze3Wx4K/D24HREREdkL6WBGS7Q6ii4DMCIi0jrNBTMbN24MdhLsqA1ul9U+LqQDBK0GYERERJY0Mc5MqNPiKLp7is8hh9MYEBFRHcBgxge0NoruyoLjGP5mPmz7sYV6AEZERKSEwYwP+GIU3RJjJfILS/1eMiJXiSn1xw/lAIyIiEiN5trMhCpvBrcLZNsVpSoxoHa/nMaAiIi0iMGMD3kyfkygGw8rTamgA7B6Um9kJGp7Ek8iIqqfWM0UZIFuPKxUJZY7Mp2BDBERaRZLZoLM3cknfYETSxIRUV3Ckpkg80XjYU/3m5nanIEMERFpHktmQoCWSko4YjAREYUaBjMhQguTT3LEYCIiCkWsZiKXqPW64ojBREQUbAxmyI7SAH5anLKBiIjqB1YzkRW1qqRg9LoiIiJyBUtmyMxRVVKwel0RERE5w5IZMnNUlZRg0Guq1xUREdUfDGZCULC6P7tSlaSFXldERFS/sJrJR5QazXoyE/bKguPoM2897lm8FX3mrcfKguP+SK4iViUREZEWSUIIhTmU647y8nIYDAYYjUbExMT4ZR9KjWYBuD0mS4mxEn3mrbcrGcnLGRDQgKLEWMmqJCIiCip3nt+sZvKSUqPZGav2QQhAjklcnQnbWZuVQGFVEhERaQmrmbykFICYLAIZmStjsshtViwFsvuzJ9ViREREwcZgxktKAYhOAmwWuRSUBLPNSjDb6hAREXmDbWZ8YGXBcTy9aj9qhDAHIADslrk6j1Gg26yESlsdIiIiGdvMBJja+CuejskS6DYrodJWh4iIyBMMZnxEKQDRSkNaV8aXCdbYN0RERM6wzQw5bavjansaNiAmIqJgYJsZMlNqq+Nqexq1CSqJiIg84c7zmyUzZJZg0CMztblVkOKoPY3M0QSVRERE/sZghhxyZewbVwIeIiIif2EwQw65MvZNsAf7IyKi+o29mcgpta7nMjngsR1Xh72eiIgoEBjMkEucdTN3FvAQhTIOPUCkbQxmyIo3mbpWxtUhssSeeETax2CGzJipU32j1hPP2Qz3RBRa2ACYALB7NWmXN4M1ujr0gL8Gg+RAk0S+wZIZAuDe/ExqVVFsd0CB5m1porOpPPxZWsmSUCLfYclMCAnmW5qr3avVpjZwdcoDIl9RKk2csWqfW/ePo6EH/Fla6WjbWi6t0XLaSdtYMhMigv2W5kr3arUMOK1ltGq7AwAsrSG/UCpNNAlg6XdFePr3nVzejlpPPH/OJq+27aV5R7Ek7ydNltYEOw+j+o3BTAgIlUaIzrpXq2XABUfPKWfM3xVhybdFzNzIL5SqiABgyeYijOuT4ta9o9QTz5XZ5D2ltG0dYA5kAG01Rg6VPIzqL1YzhYBQmg5AaX4mmVpVVI/kpnbLdRKweHMRGxSTR1yprkgw6DGhb4rdchPgk3vHldGvfbntiTelhEw+4ArL3yiU8jCqn1gyEwLU3jD3nihDZmpzl7YRiMa3alVRGYlN7Zb3adccmw+XWn3fV0X0VLe5U10xvm8KlnxbBMtbx5dTafhzMEjbbQPAkrwij0uCAtkA3/Y3mj4kzW+lWESukIQQwvlq2uXOFOLBtGhTIXLXHbBaFiZJyMsZ4DRjCnRddYmxUjFzl5dHhusw/M182F5YOgn4Ludml3tHUf1TYqxEn3nr7R6Kju6DlQXH7QJsrVZnenosgcwD1H6jadkd8NK6g3Xid6DQ4M7zmyUzISL9GoPdMldKMoJRV6020q+8PL+w1C6QAYCJfdsiwaDHnuJz2Hb0LHomN8OBU+fZaJDMPGl0W5em0vDkWAKdB6j9Rl1aN0FezoA68TuQ9jCYCRGeNjb0Z48LT6k1bhzXNxl//vdufLzzhOL32GiQPL0P6tJUGu4eS6DzAEe/UV36HUhb2AA4RHja2NDV8WECSelYckem43T5JdVARsZGg9rm7Tgj/mx06y/BHlvF33mA7fFp8Teiuo9tZkKMWnsUR0K1zYDtsUz+1w6s2XfK4XdcbSdEoceX7TY8uQ+CIVTGVrHMA3QSMD07DQ9lpfpku2rHp5XfiLTLnec3g5k6ItQzlhJjJXrnrldsS2Npxu99kwlTYHnScNcfaXC3Ibk3jc9D4ZgtLdpUiHnrDkDAN4FVqB0f1T9sAFwPhXpddVHpRaeBDAB0ad3E30khPwh0uw3bIMSTEhJPS1Xkff96oSpk2quVGCsx/4sD5nvMF+3PQrE9HpEaBjPkMXfeatXG0rHkrJ6fXbhDlzej5br7u9qNcZKdhvnrDtjN0ZTWMhoZiU0Vt7Gn+BxyVu2DsPiOKw9/231LgN/GuHGHPwIPf46ATORrId8AODc3Fz169EB0dDTi4+MxfPhwHDx4MNjJqvfcnVhSqdHgyBtau9yIkBNZhjZPG4W6+7sqdUO2DGRkJgEMfzNfcXsrC47XjoPk5oi1SvsGrmaiwWwI649GwGzoS1oS8m1mhgwZgrvvvhs9evTAlStX8PTTT2P//v344YcfEBUV5fT79aXNTCB5U5du27bHUVsf+Y09KjwMd7yVz7p7DXCn7ZYn11F+YSnuWbzVbrltCYna9pT26e2+7+mViNu6tA56ezV3OwK4WiIW6u3xqO6qU21mvvjiC6t/L1u2DPHx8dixYweysrKClKr6zZsibdu2PWptfSyL8yUJqm/RckDE6qfQIVxqHaV+Ha3ZW4KhXRJU5wdTqtqZNqQD5n9hX0Jje10q7ROoDYYclTqUGCtx9mK1YtC0fGsxBqbFo6j0IgAE7Rp0Z8A9d9oLhXp7PCJAA8GMLaPRCABo1qyZ4udVVVWoqqoy/7u8vDwg6dICXz30o8LDFJdHhtvXWnraw8SyOF+p7FAuQl+0+bceHBxBOOjcbVCr1o7qhTU/Yu7aH5Fj0724xFiJd/OKrNaVg5BRPZJwY9tmdtNo2Fa1qO1TAEhrGe30uCSFzwWACe/tMKfngZtSMK6ve7N22/L0XnUl8Aj2DNd8+SB/CPk2M5ZMJhOmTp2KPn36oHPnzorr5ObmwmAwmP8SExMDnEr3BGrALV+2OblYXaO4vKLa5JN9qr0927ZN+Gz3SeSuPWDXiJMzcwee2gPS2azXlm0yLAkB5K49gEWbCgHUXku9c9djsc2kkpIEZLWPAwBkJDbFvJGO23iozbQNAMPfsm9jYxdYOzwLtZ+//W0R+sxbj0WbCl26t23zAH+3D1MrEdtx9JxP96OEbd/IXzRVMjN58mTs378feXl5quvMmDEDTzzxhPnf5eXlIRvQBGrALV+/ibnSy8Gbfaptf9WkTFRUm8z76Z273u677DoaGLZv155WPcpVI2v2luCFNT/afT5v3QFERoRh1qffKwYSJgGrfWS1j8Nro68HBNAtuanivpVm2gZqA6gZH+9DbONw6MMbICU2ymG1lKPAxiRgnjhW7nGV3tpgVxrhSs8sX5eaqJVOTVmxCxerr/h1gspglgiRb4VaCZtmSmYeeeQRfP7559iwYQOuueYa1fUiIiIQExNj9ReKPHmTtf2+qyU6jh40nnCll4M3+1TbfkZiU2SmNjc/PJUeJjoJ7DrqJ/I1t2hTod3btTe9aRIMegztkgCFAhoIADM/+V61S7/lPuS3/kc+3IUpK3Zh86EzqvubNzJdMfMzobbKSD62fSeMise1ZEw3xfQqMf1WymRbGuFqzyxfT/Eh31+2x+/vkk1f50MUPKFYwhbyJTNCCDz66KNYvXo1Nm7ciJQU5SJirXH2Juso6vVF2wRvu206a2zo7T492T5Q+2YbCm8JdY3lNWdJfgDm5QxA7oh0u940rv4WCQY9crLTkLv2gMtp0klXG+26+9Y/qkcS0lpGY/hb9l20LY/tpXUHMX1IGl764qDVcQ3s2BLzLI7XVZbpUsoD5HY5/h67ZlSPJERFNMAjH+6yWh6sCSr9IdRKDuqKUC1hC/lgZvLkyfjwww/x6aefIjo6GqdO1c7tYzAYoNdr9wJ1dGM7mw/F3QtJfhPz9EEjs80cHDU29NU+1XrG2G5fB9/NR0PWSoyVyPl4n2q1ivwAVAtAXX2oPJSVCsilEw7SowMwMSsFQ9MTcLG6xrx9d6u5MhKbYt6IdMz4eJ/q/mqEQJdrmiAvZ4DdcVkeb2S4Dmv2nsKSvJ8cDgxpmS61PGDakA52wZO759IV3do0tZ/d3o8lm77KE1wRKnNm1UWhOjJ0yI8zI6mU5S5duhRjx451+v1QHmdGaVyIrPZxduNgSADyZ9yMBINedayL5Q/ciMzU5g735814Ed4M/e7uPuVeK+/kFTndH8fA8L+5a37A4m+LHK7z6eTeiqPtenLdlBgrsePoOUxZscv6QQvgjXu64oY2TbH50BmHbU0A18ci2lN8TrWExt3xjOTrce+JMry07qBiqY3lNtXGhlG6rj3tueeslNdyJGQJwLyR/n3w+/ue5ZxS/hXI81unxpkJ8VjLK0pvsvmFpYrdRqd/tBfvT+jltKjWUcbl6XgRzkqDfLnPlQXH7UoBHJU+cQwM7zn6/UqMlXgnz3EgA9j3ZJO/60lxdIJBj1sz9LhYfcXuQT+0SyvF7apVB7lybcglNLZVRjoJmJbdwaOu0ZmpzTEso1VtYPNzmWq61EqzbK/rRZsKzQ2K5WN2NGWD/JvuO2HEvLW1czYpBSpZ7eOs6rQEnP9G3pYO+fueDdWSg7oikCVs7gj5YKaus72xlQYFA4DNh0uxp/gcMhKbql5I/ipadZQ52L4he7NP+SGlFL4yM/IPZ9eMWm8eS2rtHrx9qKg96NW2q1Yd5ArLfeUdPoO3NhaaG+Q20Tf06Jq2Cmyub6WaLmcP9xJjJeats29LJE/ZYBugqLVvEgByPt5nFagoNaR39BtpofqGc0r5nzsDNAaKZnoz1RcJBj1+n95S8bPtv40DMapHEvJyBmD5AzciL2eAuVjam95Rjqj1VIkM1/l0n44enMyMfM+Va0bpt5fg2nxEvpgvSA4GbAN+te0qre/OvpJjI7FgU6Hd7NPe9jL0Jl2OZpyXS1Lk/dn+pkrrL9963Ly+O7+RP/MYX3KltyV5z5tr2h8YzISgB7PaKi7vnny1ONn2QvJnt0e1zOFidY1P96mUsQLWvVZkgRpsUCs8OR+uXDNKv/28ken4bsbNVsG0En89VPz5sPLmPvJXd1W1+0Ipfa6UpL2+/og5fe6cSy11rVZ64aO6jdVMISgjsSlG3tAaH+88YV6WdW0s4mMaqX7H30WrSsWKJcZKn+1Troe3bPcg91oZ18d6aHgtFHUHkqfnw9VrxlG7Dmf8VRztr+16eh+52z7InXYntm0UbFmmT23IAlsmUVvllNYy2uVzqbXqG7anq19CvjeTt0K5N5Mze4rPYfHmIqzZVwIB5w8qV2fN9WX3Tndn6lXbhm3PlC6tm6jOpK3Ukn7VpExcrK5xeEyWs3A7WzfUqP1m3vYs8MXvV9d4ck7c6WXobc9ApQbFtm1m5PTLBTpqmbxlo2BX8gVeLxRI7jy/GcyEME8eVM66PfqjVMObrpbuHqPaQ0OeWVvtmJQaRWqlVMfRb+ZNV31ZXe/e7ulkp+6cE1evY2+CcXfSt6f4HAqOnkOP5KaIj2mEncfOYbLNAHky267tzu6Lun69kHv8OThhneqaXZ950hvEsg2N5b8B/43c6E1xrrvHGBUeZg5cLNlONml5TGqNIkNl5EpHnP1mvij6r8vF8Z4G7/I5kdsiOcuoXe2uqna9y7N9W6bR0yEP1I55T3EZ3lYYL0iebsHy347ui1C4Xji6b2iwHEojEGMUOcJgJoR58qBylHl72lXWnxmHO8coH5tlIKMD7EZvtT0mR40iQ73Lt7PfzNlDNJCZfqg9YJQCwRkf70NURAN0a6M8CaUldwMhV9qeqA29YNt7qqzyslslJfJ5B6Aa/I7rm2I367iaUL4v2GYuNNiODK7U9T+QGMyEMHcHJ/LHW7y/Mw5Xj1GpdEUHYPGYbnjg/R0Oj8lRo8hQbsAIuBbsqT1EA5nph+IDRnHuIwCPfLjLpQDBMqN2Z8A/R5/bTn6pFNjUCGEe6M7Zvm3P+8S+KarBb2Zqc8wbme5wagpZqN4X/pwXKNSC8VC3/ehZxaB8x9FzuDUj8OePXbNDnDtdDJ11nXS3S2ugxpVw5RjVHkyR4Q1dOqaJfVPsLnYtjD/h6m9m21U/kGOC+Htf7nY7l9ePCg9T7dLsLI3v5tmXYLjaDVktvUqDQkoSoJREV/atdN6XfFukOiZUfmEpstrHIX/GzZhyczvV9IfyfeGv7uGhOAt0qFObasjV2eR9jSUzGuBqHbU3b/FKAlkt5ewYldrKyMeWmdpc9Zhs31wf7NsWQ7u0REW1STMNGD3phhzIId3d3Zc714e7JT6269/RtTU+2XVSsUuzWhrVpnDQwfkkjO5W85oE8GBWCpZ8W+SwO7VSSYlagP9g37Z4J6/IXNI5vGsr3PFWPkyiNnDKyU7D6F5J+MeGI3YN4l+/uyu6JTuvggsWR3mcpyUre4rPeVQKV5c5O5clxkqI33rL2QbnN7Sxn14jEBjM1CGuVtn4IjhSu9j9Ud2g1lZm2pCr8+YoHZPSm+s7eUUY1zdZc5mUu40uAzkmiCftnuTrY0LfFIzvm6KaYbo7dovt+p/sOolVkzJRfLbSbuJKd6ZhAIC7eyVix7FzEOIsuic3M68r3wPO2ujsO2G026ZOAtJbGzB7WCc8++kP9juF+hxRaud9XN9kjOubbJ7NWw5kgNoHT+66A8Bv96ZtXnFrRivFNIQKtTzO02lVzBNt2iwP5TZD/qaUh2e1jzNf65bnWsLVqlJ53WCdMwYzdYwvBxNLMOhxR1frwfuGd22lmnH4oj7bNkhS7YkEYP4XB9AkUn3eHF+UTmitHt0yvYGaDC7BoLfq2utquyeTABZ/W4Ql3xYp9oJw9/dTW7+i2oRbM1opTlyplMZfL1TZBQkSgA+3FuPDrcVWyywz8cRmkaptdNRK3k0CeHT5bugk5fYz0m/rzFt7AEdLL2LKwGutAnhHv3GCQXniWqB2zqnvcm72eC6rYLLN4wBYdXd3Nd8xV/tpsC2dvyjdozmr9gHi6rUuBKwa/eoA/OO32eyDeQ0xmKmDfNV1ssRYidW7TlgtW73rBFbtPKFYJOtt8KD0RqD0gJA5y7S8LZ0IxUatjizaVIh56w5YPWDlh1VkuA4Xq2tQYqz0eYazsuC4OZCRUFti5mq7J6A2Q1TqZaTWcHvvz2WKY+gora8DEBle21rKWaBv+XtLsB67SOmBZ3sPrJqUqdrQ3FmDW5Oo3Z9O1AZAut++Y/nQWL6tGMu3FWO+ReCX1T4Os2/vhDPlVRjYMd5uBm213lMmAXOjYC32crPM45QCNlfyHbXrUQf76VMc0doLjyNK58Ty2lc6XyYAzaIign7sbABMikqMlfh870nFOn61IllvJhZUK9Vx1IjTct9K5BID+fvulE5oZVI92aLNhchdZ98DBgCOn72IO97K90vjRtvzJAC89MVBxfPkaI4huQTDMn3y72dLbfu2jaXl7d7xVj4WbSpEfmEpACg+wJWOQxLAm/d0xWt3X+80GJFLgGz37w4hgDfu6YrlD9yI1+/pqrrPGR/vQ4mxEisLjqN37nrM/OR7vL7+CIa/ma/4297dM9FumSclD+40xJbzj6dX7fV7w1ql60onXQ1i3f3e6sm9XX5pqWsNh53NA6YkVEqxGMxoRCAnVpRv0LlrDth9JheHW7KcsdjTCQAdVRE4ekA4upEclRg4O59amlSvxFiJeevsf6saIbDz2Dm/BmXunCf5+nCUWdqmL721wW4dy+3b/o6jeiRh1aRMqx4VJlHbTsTRA0etMW2zqAh0T27mNIOXr0O5Z94/RndVnm38t2Vq99ENbZoiM7U5urVpql41hdrur7ZdrAVqx5iRz4V8Hy/fVmzev7wfd4L6/MJSLNpc6PJDWw6yHvlwFz7cVuz3FwLFIFbUBrGO0qmUX+WOSLcr3VLjyxeeUJk4V+lc2pJwNXAIpZ5vrGbSgEBWd6i1UQGuXrgAVOvpPW2z46hKyLK30t4TZXhp3UGn7UDUSgyGXa/e5sfV9ASSK0XYRaUXFatBdABMQvi1V5O750m+PpZ+V4Qlm4vsBjy0TZ+j7avdFxeraxTPB6BeNeloP3IGn2PTvkKuhlJqq3Jrhl6xjY7lvbH50BmH7V1ystNqG+va0AGApFx1JVcfAbC7jyU4b9tgeb1Z3idK5zCtZbTdFAxK3c8t+ath7ageSUhrGW0eSdkynY7aznjTxtBXPQZDpTpb/u3TWkbj1bszcPj0Bbz+zRG79R64qa25gXkotbViMBPivGlU60ldrlo98syhHfH7Lgnm7TjKADxps+NKY0Z5LJVhGa2c3khqGc2Oo8olFbbnc/OhM3YPrmnZHRSnifAXVzM5tbYl07PTzKUK/grK5N/NMp3O3tQSDHo8/ftOGNcnBTuOnnPYy0itETqgPtKts5mjlR44zq4/+aG389g5CAF0S659e3d0HTqbbdzZg/ShfqmABKsB9CQAuSPTzSU3toeok2q7jzsqaVL7bWyvN8uGnkrnUGkKBkejbQPWv22JsRLbj56FJEkujcjszMXqGo96JXnaxtDdQF4pP/bnIIDuUJq7zrKnkkwHmHuDhkoQI2MwE+I8jf49jfbVblDLQAbwz/wsrr4lubJvteOAwkPO9nwqvV0KcfWh4qxLsS+4ksmp9VySJw58KCsVgHIXXF+nWw783Jm2NsGgR7fk2gENl3xbW0qjNB2DbSP0T3adxIC0eNXfMTO1udUx21J74Di7/hIMegztYr/M2TF68yB9KCsVwzJaWQVR8vq2o/lKNl1j3X3Q2l5vziiVgDgKJCUAE/omA7Ce00f+zJV5fRy9oAW6NNVZAGxJLT8O5HhQatRK4wWuVo2aRG0gMz07LeSCGBmDmRDnyQ3qTbTvzg3qD74IkuQMb/qQNLz0hXWVVLc2TZ2eT0e9bgDrLsU52WlIv8bg854MzjI5pcxRrZutK0Gipz0ybAM/AeVrTWn7SgMa2o4BpHYeIBw/rC2P2dWqSSA0JlG0pRREAVePccfRc+bByixLf9y5j52VqDhjG0jaVsllXRuLvCOlePvbIsX5oeT2Po7yKGcvaMHIu1y9t9wpRdRJQOmFSx73PHTnXlbr6CETAEb3SMLyguMwCefDYQQTg5kQ58kN6m2078uxagLNNsObnp2GLq2bWB2Hs/PprJpCJgBzmwZf13U76pacHBupmDnm5QxQ7LIMeDbLsitcudYWbf6ty7jF9rPaxykOaDi0S0urjFgtmO+W3NTp7+hu1aQWye1zlLhzH6t14XaVXL1luV+5NCmxmd5u4D4lcnsfdwMCy/Wz2sfh1bszoPutMXUgfmtnAbCje8S2FFFuhyWPPeRunuLKvSwHO/tOGM0dJNToAKwoOG4OTINVDeYKBjMa4G5w4Yvi1lB8Q3VGKcN7ad1B5OUMcKmkwlG1jaP2A/K+fHmTJxj0mNQ/Ff/YUGi1/KUvDqJ1U71Hwao/6uydXWuLNhVaNWKVt//a6OsVj0GpHYZa0OLOfaHF69kXXD3uBIMeD9yUgre/LXJpu7aBj0kAn+0+WdvOB9alSWoD99lyVCLhStDs64a0vho/xtk9Yhn8PfLhLo+nVXB2L5cYK/FuXhHeyXM8dYZMnrjU9poI1dGRGcxohDuZcbCrioLFnRIp2/PprNpGrWeHK/vyxMqC43jTJpCR9+GsikVte/6os3d0rTnqMq50DIByOwxHQUt9DVL8YVzfFCyxedCFSRKmDelgHowRqG2bk5OdZtUwGbg6TYLcVksWFR7m0v5NDkoknAUEvm5I68vAyJX8OMGgR9Ooi15Nq+DoXv5sz0nkrrW/F9XoAKye1BvxMY0Ur4lQGFfGFoOZOiqrfRxeG309YNNosC7ztERKLSO0rLZxpUuxuz0ZnKVHKW5ytYrFleNTq7N3N7NSCzaKSu0zZ6D24SAfg6MA0TIjZ9Dif2oP3VE9kjDs+lZWbXPUftv56w5gWEYru5IAdygFIs4CAl82pPVHDyNXShG9vRfVvp93+Aze3Gj/YqRGPrfyeDtaeTFmMKNBzh6MoTJuQaB5WiLlakaYYLjapdi2YakOV3tq2HL391AdZt2i27MrVWWuZPS2dfaeZFZq16OjLuPyMUSGh+HR5bsVtxuqb4B1maPu5LZtcxxNk7D50Bm7Qf0s6QDFFwKZ0v3nKCDwVU8mtQaxvih1dRaQe1uirvT9adkdXCqRUWtfCGinDSWDGY1x9mBUe6tQGuCqLvLkxnM3I7RtWLo07yiW5P2Et78twpK8IkwfUtvDKSo8DMfPVrj9e6jNMbR6Um+r0UldqSob1SMJUeFhdg8etZ4/7mZWjq7HBIP1BJRy107LagilcXAA18arIf9wpRQswaA8qF+YJCEyXOdw4LyBafHonxaHWZ9+r1oqp3T/OXqJ80XVutJYK47S4w/eBg6WPdwgAecqqp1+RylvsaWFklFJCHdGhtCe8vJyGAwGGI1GxMTEBDs5XikxVlrNDgv8Voxo0cA1v7AU9yzeavddy0nz6ktJjTtWFhxXLF53Ruk3cYWz38Pd9KhdG9OyO9j1WHDn+Bxxdj1a9mKSUNvOQm4gqnasOgATs1Iwro//xvAh31m0udButvTEZpGKeZAt6bf/sX0CKV0rrpZulhgrrQIBV6t3Hd3HvrpfPOVuQ2TbCVMdZU2uju8TLO48v1kyoyFq1QVr9pZg6G+D2qkV7Wuha10wefpG5On4HJa/x4xV+xAZHobuyc3M+3U3PWrXhhxMyHQSsGpSpkvzzzjLRB02ONx90uqtXeDqdBK229JKMTbZkwf1sw0gXB3aQOlJKwDMW3d1PBNHpc3Hz1ZYjSBsWYLgTvWuqyOfB5q7VdRK07jUFwxmNEQtUHlhzY94ce2Pil1ZleqmQ7VrnRJfdY90hSdFqa6OSSNT+j3UenG4kx61qinbdJkEUFHtqLVCLVcyUbXquchwnWovJrXrTgvF2KTM9rezrfLxhMDVgGXb0bOKQfPtb+ab/21bwuBuI15XRz73FVfyNU8aIrv7ciWf57rwcstZszVEziSUZjSVL/QSY6V55t7lD9yI1ZN7283eKz9wQmGWVkfkWX9dmanXGX/NSuvoN7GkA/DmPV0Vfw+ZSQAzPt6HPcXnnKbX9nPbdIRJEqZnpyn+9p707pqxqjZdjo5dLo5XmiMHsB5Yjeo2yzxoRnaa0/tDiRywzF3jvAGrgPWM4e7Oeq92LfvjAe9qvubKMdjmAymxUVA71bemJyjOxO7ovGgJS2Y0Ri6SX7O3BC+s+dHqM7WurLYN44Z3bWUekTNU29D4snukO6NielICZFlN8t2RM3hrY6FiG5WhXWonSHT01moCcPub+ea6bqX0qh2PUnVNk8iGPundZRLA8Dfz7erXlfapVs0QyvO6kO9ZNZS/vpV9D0AXBqNUolYSKvekUqtudxbIB6K60518zdkxqOUDOdlpdj2YwiQJz9zaEQ9kpWD4W/lWVc91pdcgS2Y0KMGgx9Au9lG2own05LekVZMysXrXCbubybYEwF8lGa5y981KjSulDL4oAUow6HH87EW7QEaebTurfZz5fI7qkYRVkzIxZWA71e3Jm7D9fdQyQ8sSmszU5lZtb+TfPi9ngFuTjSqlSelasd2n7VuuDsAMm15MVL/I18hDWanm6/G7nJsxb6TzUk1bD/dPVSxhsCz5U7oG1YZOUEqnv4Jud/I1R6VFjvKBh7JSMSM7zfxwt/xeRmJTzHOxBCrYzwB3sWRGozYfOmO3zJUJ9JSGFvf3sOCe8NW4Ec5KGZTmCPKkBEh15lkB5K49YH5T0knA4Ota4ov9p8yz0jp7M7X8fTwZHMzd9ihyJqp0PK62t2KjXlJjeT3aXicAFEudLS3c+FPtCMQ2oxJbzhhuuW3boRNcyc8cldR6U4rrbr5mOdWBSQh0T24GwPnYWA/1SzWXhnkybkwoPAPcxWBGg9RGiC2rvKy4risT9/lrWHBP+WLcCEC9ga5cyqA2R5C7DaRdbXhnEsC6/aes0iFZ/LcSy9/HF0GeK5nxqB5JSGsZbZ4ryZN9sVEvucL2OhnaJQEvrv3R4cjQXa5pgvwZNyvOGG5rSd5PbuVnjh7k3j7k3c3XbOdTspyo1Vk+IG+zqPSi1b/l//Zlw+NQwGomDVJ7cM5fd8CqSFCp+sRZQzd3q3c8LYp05XueVJHYko9XqdrEco4gS56UAKlVzbhCAHjgprbm30QCzI34bH8fbxsqulOllpHY1KoaIJSHMqe6w1mjevn+TDDocWtGKwztYt/dX+ZJfqZWfeOsitdVruZrKwuOo3fueiz+tshunwCc5gOeVp+7c85CqSqKJTMalBIb5XAocUd1qs4m7nPnzd/TtxR3vueLt3tHpQyJzfSY0DfF/Obj6QPbm+6oOgDj+iZjXN9kq+J2tWJgtaJnZ1yZVde2xIbVRRQMltfd3p/L8NIXBz0qoXW3JNPRg1xA+KQUF3Cerzman03ep6N705vSFVfPWahVRTGY0aAEg/pQ4vIF56xOVe1mcrUY1NObJVhFmHIpg1qvLgnA0PSWeDCrrUsDyimxzFwiw3UoPluJKSt2Oa1+suzlY1sUrMZyFm9XMxJH14Sj7bG6iIJBqTeUuwG1bX6mk4C7elyDHcfOoVubq/eYHMhHhYc5fJD7oh2fK5bazFRtyXKfavemNxNvuvIMCMWqKAYzGvVQv1RAgt1Q4vKF5E3bClfexj29WXw5u60jzkoZIsN15kAGqC3lWrPvFNbuO+XV8N6WmUtGYlNcrL5izhRsS9MkADm/t+7l46/BtADHg9yFWsZEZMmbgDqrfRxm394JGw+cxjcHzmD5tmIs31ZsHmgPgFUgf0fX1vhk10nFB7m/Z5AuMVZi+9GzWPxtkeLnanOWuds20hlnz4BA5ePuYDCjYUpDicu8bUDrLPPw9GbxVS8lR5xNfqjWqwvw/YiYllVCj3y4y+ozCcCwjFYupduSpxmJ3VsqgGlDOqD4XGXIZUxEvrCy4Ljq7N0CwPSP95nnSQNq86VPdp3EqkmZqKg2BXQGaUcTXQK1g949c2tHu32q5RveBl6OngGByMfdxWBG4xxdcP688TwNlnzVS0mNq6UWjqYh8PWDPMGgR9Ooi/ZtnADsPHYOTaNqi7d9NZiWI6N6JKGs8jLm/VaiZ9m91VKwMyYibzlqd2LJtolbjRCoqDYhM7W54vr+qHYtMVaqBl1Abbs6pUDG07aR3vJ3Pu4JBjN1nD/bO3h6s/jzJnO11EK+GZXehPzxIFcKQCQJeOTDXarjzdQIYQ52UmKjAMBclOxpRrKn+JzV5JNKmadaUTaRlng6Cazt/e9q1a+rs3PLbXMuVteY1383r8jh0Axq96OnbSN9IdQ6BzCYqUMCOSmjzNObxV83mTulFuZBtb4rwpLNRTD9tu607A6KYzMAnp9jpYaIlkO5K2VktsGOvJ5clJyXM8DljKTEWImleUV4W6Uu3tLrd3fFrRbVX0Ra5O4ksIB9IO9K1a+r1cNq1Ui3X98Kn+0+abe+BOAf93RVHEPHUYNlT+ZA8yZfC3YQI5OE8HBaU40oLy+HwWCA0WhETExMsJPjN6HWTS5Y5If2km+vBicvjujs0oifcjfQ+V8csDuPaoNXuXuO5f2UXriER5fvtvtczpiczVsTJknIyxngUkbirC7e0+0ShbqVBceRs2qfuSRSAjD8+lZYrRA8AMA/Rl8N5EuMlegzb73di5Hl/eHKOmrrOfNgVgqe/n0nq20UlV7Evp+NVnnUkOtaYt1vI4rLx+hOJ4ZQfna48/xmyUwdEIrd5ILB9qZ8sG9bjOub7FbR8L1L/s/uPJZVXsa8tdZtS5ydY7U3HflNpsRYad+7SQJWT+qNimqTarAjc7Vdj9o0C+Z9/vb/AhwUj+oeywb4QgDdkmuHXVAKZnTS1c8B16qsXa3WdrfKSycB4/qkmP+t9kJiEsBaixHFAfc6MdSlZweDmTogFLvJBZrSTflOXhHGqUwup/Q2ktgsUvE8qjWStRwV0zJw8fhNRwDxMY3MwY6jInJX2/U4ykR1AFZP7o34mEYhU+9N5GsJBj2Gdrl6XecXliquN7FvW/PnKbFRLk398uuFKtV1LKuClNZTY/tS4eyFRImr+X9denYwmKkD/NlNLhjtcDzhzk2p9jayalKmff0z1DMgnQT8d88JLN9WbG7LMn1ImrkI2HLbtm86RaX2vZsEYNVwz7KNjfRbMY6A/QzAjn4jtXYDOgC5I9PNAwSG8m9L5EtK94QOQPPocHNVkPwSotbQXq2kRF7HchBKmQTHE8vqpNr2at2Sm1oFMp/vPel2Q2ZX8/9Q7GLtKQYzdYC/usmFcl2qLXduSrXAp6LaZHcepw3pYBWcyCTUtmn5cFuxeZlJ/DaIoc3+lIIqR+mVg5Os9nFWjXwB2M0AfEfX1li964Tqb6TU8Hiik+o3orpMKb+cNqSDeQBS4OpLSF7OALuG9molJRKAadkdkNU+TrF9jKN4RJ71+1aVcafcoYPrvRFDsYu1pzQRzLz55pv461//ilOnTiEjIwNvvPEGevbsGexkhRRfd5PTWl2qOzelo0AiM7W53XlsEtnQaqC5u3smmktjbJkAq0G4gNrMJTLcek5XtfQ6mlagxFhpNwPwxztPXN23ym8Ual0oiYLN9p5wVLIrjzdTVHoRp8svYdvRs6oDbs5fdwAXLl12KQDRScCcYdehWVS4XY8lR1VLlqU70m//I37LLzx5UbEdGf1idQ1KjJWayydCPphZuXIlnnjiCSxcuBC9evXCq6++isGDB+PgwYOIj48PdvJCjnA6RJRrtFiX6upD21ngY9ndsMRYicRmkVYjghaVXrQqkbEkd+1+ad1B84STJgB3vJVvV2pim14AVm90tsGJK40I1X6jUOpCSRQKbO8JtRccd0pITAJ4Y32hS/s3CaBdfLTi4Hxq9/rAtHh8c+C0+d8CgE5c7cItf1c+PlclGPQuzfcWys0OQj6Yefnll/HAAw9g3LhxAICFCxdizZo1ePfdd5GTkxPk1IUOX1cJabUu1dWHtiuBj9I5lTMetcZ807I74KGsVNyY0gzD38q3GiZdqdTEMr1KUyxYBieujJuhhd+IKNSoveAA8KiqxxWO7lXFdj0SrAIZmQlAs6gIjyaflblSEh/qzQ50zlcJnurqauzYsQODBg0yL9PpdBg0aBC2bNmi+J2qqiqUl5db/dV1ahdiibHS423KN3eYVNt5V8t1qWoSDLUz8qp1rVY7pwkGPSb0TbH7DgB0ad0EAHCxukZxmHS595MSOQOzZDtDru1vMvKG1nX6NyIKlFE9kpCXMwDLH7gReTkDMKpHksejCMseG9hOcbmzUbaV7nW1PEcnQXWyWFefAY5K4gH/PGN8LaRLZkpLS1FTU4MWLVpYLW/RogUOHDig+J3c3FzMmTMnEMkLGf6qEqrPbS2cndPxfVOw5FvrIcgtAw9PSrZcafej9Js8ObhDvfyNiHzNtmTXk1GEZWGShLt7JqFVE71Vm7uJWSkY1yfF6b2qVA0tD9ppaXp2Gi5W13j1DHCWX2mh2UFIBzOemDFjBp544gnzv8vLy5GYmBjEFPmfP6uE6mtbC2fnNMGgx7yRjtvdeNJLwJUA0vY3qa+/EZG/2d7HSuTxmg6cOq94v3vzUmh7b9vOej89Ow0PZaUqjkvlzjPAWX6lhWYHIT2dQXV1NSIjI/HRRx9h+PDh5uVjxoxBWVkZPv30U6fbqE/TGdheiKFUn6lFrpxTeXoCtUzK2edEFPrk+zgyXIc1+0qs5nKzzBcCcb+r7cMXzwBH6Q/GM8ad53dIBzMA0KtXL/Ts2RNvvPEGAMBkMiEpKQmPPPKISw2A60swA/DB6Q88p0RkK1TzBX+nK9DHXafmZnriiScwZswYdO/eHT179sSrr76Kixcvmns30VWsbvA9nlMishWq+YK/0xWqxw1oIJgZNWoUzpw5g2effRanTp3C9ddfjy+++MKuUTARERHVTyFfzeSt+lTNREREVFe48/wO6XFmiIiIiJxhMENERESaxmCGiIiINI3BDBEREWkagxkiIiLSNAYzREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk0L+ekMvCUPcFxeXh7klBAREZGr5Oe2KxMV1Plg5vz58wCAxMTEIKeEiIiI3HX+/HkYDAaH69T5uZlMJhNOnjyJ6OhoSJLk1bbKy8uRmJiI4uLiejvPE88BzwHAcyDjeeA5AHgOAP+cAyEEzp8/j1atWkGnc9wqps6XzOh0OlxzzTU+3WZMTEy9vWBlPAc8BwDPgYzngecA4DkAfH8OnJXIyNgAmIiIiDSNwQwRERFpGoMZN0RERGDWrFmIiIgIdlKChueA5wDgOZDxPPAcADwHQPDPQZ1vAExERER1G0tmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJpWr4OZBQsWoEuXLuZBfjIzM7Fu3Trz55cuXcLkyZPRvHlzNG7cGCNHjsQvv/xitY3jx49j6NChiIyMRHx8PJ566ilcuXIl0IfiM/PmzYMkSZg6dap5WX04D7Nnz4YkSVZ/aWlp5s/rwzkAgBMnTuC+++5D8+bNodfrkZ6eju3bt5s/F0Lg2WefRUJCAvR6PQYNGoTDhw9bbePs2bO49957ERMTgyZNmmDChAm4cOFCoA/FY8nJyXbXgiRJmDx5MoD6cS3U1NRg5syZSElJgV6vR2pqKp5//nmrOXLqw7Vw/vx5TJ06FW3atIFer0fv3r1RUFBg/ryunYPNmzfjtttuQ6tWrSBJEj755BOrz311vHv37sVNN92ERo0aITExES+99JL3iRf12GeffSbWrFkjDh06JA4ePCiefvpp0bBhQ7F//34hhBB/+tOfRGJiovjmm2/E9u3bxY033ih69+5t/v6VK1dE586dxaBBg8SuXbvE2rVrRWxsrJgxY0awDskr27ZtE8nJyaJLly7iscceMy+vD+dh1qxZ4rrrrhMlJSXmvzNnzpg/rw/n4OzZs6JNmzZi7NixYuvWreKnn34SX375pThy5Ih5nXnz5gmDwSA++eQTsWfPHjFs2DCRkpIiKisrzesMGTJEZGRkiP/7v/8T3377rWjXrp0YPXp0MA7JI6dPn7a6Dr7++msBQGzYsEEIUT+uhblz54rmzZuLzz//XBQVFYn//Oc/onHjxuK1114zr1MfroW77rpLdOrUSWzatEkcPnxYzJo1S8TExIiff/5ZCFH3zsHatWvFM888I1atWiUAiNWrV1t97ovjNRqNokWLFuLee+8V+/fvF8uXLxd6vV4sWrTIq7TX62BGSdOmTcWSJUtEWVmZaNiwofjPf/5j/uzHH38UAMSWLVuEELU/vE6nE6dOnTKvs2DBAhETEyOqqqoCnnZvnD9/Xlx77bXi66+/Fv369TMHM/XlPMyaNUtkZGQoflZfzsH06dNF3759VT83mUyiZcuW4q9//at5WVlZmYiIiBDLly8XQgjxww8/CACioKDAvM66deuEJEnixIkT/ku8Hz322GMiNTVVmEymenMtDB06VIwfP95q2YgRI8S9994rhKgf10JFRYUICwsTn3/+udXyG264QTzzzDN1/hzYBjO+Ot633npLNG3a1OpemD59uujQoYNX6a3X1UyWampqsGLFCly8eBGZmZnYsWMHLl++jEGDBpnXSUtLQ1JSErZs2QIA2LJlC9LT09GiRQvzOoMHD0Z5eTm+//77gB+DNyZPnoyhQ4daHS+AenUeDh8+jFatWqFt27a49957cfz4cQD15xx89tln6N69O/7whz8gPj4eXbt2xeLFi82fFxUV4dSpU1bnwWAwoFevXlbnoUmTJujevbt5nUGDBkGn02Hr1q2BOxgfqa6uxgcffIDx48dDkqR6cy307t0b33zzDQ4dOgQA2LNnD/Ly8pCdnQ2gflwLV65cQU1NDRo1amS1XK/XIy8vr16cA0u+Ot4tW7YgKysL4eHh5nUGDx6MgwcP4ty5cx6nr85PNOnMvn37kJmZiUuXLqFx48ZYvXo1OnXqhN27dyM8PBxNmjSxWr9FixY4deoUAODUqVNWGZb8ufyZVqxYsQI7d+60qguWnTp1ql6ch169emHZsmXo0KEDSkpKMGfOHNx0003Yv39/vTkHP/30ExYsWIAnnngCTz/9NAoKCjBlyhSEh4djzJgx5uNQOk7L8xAfH2/1eYMGDdCsWTPNnAdLn3zyCcrKyjB27FgA9ed+yMnJQXl5OdLS0hAWFoaamhrMnTsX9957LwDUi2shOjoamZmZeP7559GxY0e0aNECy5cvx5YtW9CuXbt6cQ4s+ep4T506hZSUFLttyJ81bdrUo/TV+2CmQ4cO2L17N4xGIz766COMGTMGmzZtCnayAqa4uBiPPfYYvv76a7s3kPpEfuMEgC5duqBXr15o06YN/v3vf0Ov1wcxZYFjMpnQvXt3vPjiiwCArl27Yv/+/Vi4cCHGjBkT5NQFxzvvvIPs7Gy0atUq2EkJqH//+9/417/+hQ8//BDXXXcddu/ejalTp6JVq1b16lr45z//ifHjx6N169YICwvDDTfcgNGjR2PHjh3BThrZqPfVTOHh4WjXrh26deuG3NxcZGRk4LXXXkPLli1RXV2NsrIyq/V/+eUXtGzZEgDQsmVLu14M8r/ldULdjh07cPr0adxwww1o0KABGjRogE2bNuH1119HgwYN0KJFi3pxHmw1adIE7du3x5EjR+rNtZCQkIBOnTpZLevYsaO5uk0+DqXjtDwPp0+ftvr8ypUrOHv2rGbOg+zYsWP43//+h4kTJ5qX1Zdr4amnnkJOTg7uvvtupKen4/7778fjjz+O3NxcAPXnWkhNTcWmTZtw4cIFFBcXY9u2bbh8+TLatm1bb86BzFfH66/7o94HM7ZMJhOqqqrQrVs3NGzYEN988435s4MHD+L48ePIzMwEAGRmZmLfvn1WP97XX3+NmJgYu4dCqBo4cCD27duH3bt3m/+6d++Oe++91/zf9eE82Lpw4QIKCwuRkJBQb66FPn364ODBg1bLDh06hDZt2gAAUlJS0LJlS6vzUF5ejq1bt1qdh7KyMqs31/Xr18NkMqFXr14BOArfWbp0KeLj4zF06FDzsvpyLVRUVECns348hIWFwWQyAah/10JUVBQSEhJw7tw5fPnll7j99tvr3Tnw1fFmZmZi8+bNuHz5snmdr7/+Gh06dPC4iglA/e6anZOTIzZt2iSKiorE3r17RU5OjpAkSXz11VdCiNoumElJSWL9+vVi+/btIjMzU2RmZpq/L3fBvOWWW8Tu3bvFF198IeLi4jTVBVOJZW8mIerHefjzn/8sNm7cKIqKisR3330nBg0aJGJjY8Xp06eFEPXjHGzbtk00aNBAzJ07Vxw+fFj861//EpGRkeKDDz4wrzNv3jzRpEkT8emnn4q9e/eK22+/XbFrZteuXcXWrVtFXl6euPbaa0O2K6qampoakZSUJKZPn273WX24FsaMGSNat25t7pq9atUqERsbK6ZNm2Zepz5cC1988YVYt26d+Omnn8RXX30lMjIyRK9evUR1dbUQou6dg/Pnz4tdu3aJXbt2CQDi5ZdfFrt27RLHjh0TQvjmeMvKykSLFi3E/fffL/bv3y9WrFghIiMj2TXbG+PHjxdt2rQR4eHhIi4uTgwcONAcyAghRGVlpZg0aZJo2rSpiIyMFHfccYcoKSmx2sbRo0dFdna20Ov1IjY2Vvz5z38Wly9fDvSh+JRtMFMfzsOoUaNEQkKCCA8PF61btxajRo2yGl+lPpwDIYT473//Kzp37iwiIiJEWlqaePvtt60+N5lMYubMmaJFixYiIiJCDBw4UBw8eNBqnV9//VWMHj1aNG7cWMTExIhx48aJ8+fPB/IwvPbll18KAHbHJkT9uBbKy8vFY489JpKSkkSjRo1E27ZtxTPPPGPVnbY+XAsrV64Ubdu2FeHh4aJly5Zi8uTJoqyszPx5XTsHGzZsEADs/saMGSOE8N3x7tmzR/Tt21dERESI1q1bi3nz5nmddkkIiyEdiYiIiDSGbWaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRpDGaISFH//v0xderUYCfD72bPno3rr78+2MkgIi8wmCGiOqm6ujqg+xNC4MqVKwHdJxHVYjBDRHbGjh2LTZs24bXXXoMkSZAkCUePHsX+/fuRnZ2Nxo0bo0WLFrj//vtRWlpq/l7//v3x6KOPYurUqWjatClatGiBxYsX4+LFixg3bhyio6PRrl07rFu3zvydjRs3QpIkrFmzBl26dEGjRo1w4403Yv/+/VZpysvLw0033QS9Xo/ExERMmTIFFy9eNH+enJyM559/Hn/84x8RExODBx98EAAwffp0tG/fHpGRkWjbti1mzpxpnrF32bJlmDNnDvbs2WM+zmXLluHo0aOQJAm7d+82b7+srAySJGHjxo1W6V63bh26deuGiIgI5OXlwWQyITc3FykpKdDr9cjIyMBHH33k65+IiCwwmCEiO6+99hoyMzPxwAMPoKSkBCUlJYiOjsbNN9+Mrl27Yvv27fjiiy/wyy+/4K677rL67nvvvYfY2Fhs27YNjz76KB5++GH84Q9/QO/evbFz507ccsstuP/++1FRUWH1vaeeegp///vfUVBQgLi4ONx2223moKOwsBBDhgzByJEjsXfvXqxcuRJ5eXl45JFHrLbxt7/9DRkZGdi1axdmzpwJAIiOjsayZcvwww8/4LXXXsPixYvxyiuvAABGjRqFP//5z7juuuvMxzlq1Ci3zlVOTg7mzZuHH3/8EV26dEFubi7ef/99LFy4EN9//z0ef/xx3Hfffdi0aZNb2yUiN3g9VSUR1Um2s6c///zz4pZbbrFap7i42Gp26X79+om+ffuaP79y5YqIiooS999/v3lZSUmJACC2bNkihLg6U++KFSvM6/z6669Cr9eLlStXCiGEmDBhgnjwwQet9v3tt98KnU4nKisrhRBCtGnTRgwfPtzpcf31r38V3bp1M/971qxZIiMjw2qdoqIiAUDs2rXLvOzcuXMCgNiwYYNVuj/55BPzOpcuXRKRkZEiPz/fansTJkwQo0ePdpo2IvJMg2AGUkSkHXv27MGGDRvQuHFju88KCwvRvn17AECXLl3My8PCwtC8eXOkp6ebl7Vo0QIAcPr0aattZGZmmv+7WbNm6NChA3788Ufzvvfu3Yt//etf5nWEEDCZTCgqKkLHjh0BAN27d7dL28qVK/H666+jsLAQFy5cwJUrVxATE+P28aux3OeRI0dQUVGB3/3ud1brVFdXo2vXrj7bJxFZYzBDRC65cOECbrvtNsyfP9/us4SEBPN/N2zY0OozSZKslkmSBAAwmUxu7fuhhx7ClClT7D5LSkoy/3dUVJTVZ1u2bMG9996LOXPmYPDgwTAYDFixYgX+/ve/O9yfTldbAy+EMC+Tq7xsWe7zwoULAIA1a9agdevWVutFREQ43CcReY7BDBEpCg8PR01NjfnfN9xwAz7++GMkJyejQQPfZx3/93//Zw5Mzp07h0OHDplLXG644Qb88MMPaNeunVvbzM/PR5s2bfDMM8+Ylx07dsxqHdvjBIC4uDgAQElJiblExbIxsJpOnTohIiICx48fR79+/dxKKxF5jg2AiUhRcnIytm7diqNHj6K0tBSTJ0/G2bNnMXr0aBQUFKCwsBBffvklxo0bZxcMeOK5557DN998g/3792Ps2LGIjY3F8OHDAdT2SMrPz8cjjzyC3bt34/Dhw/j000/tGgDbuvbaa3H8+HGsWLEChYWFeP3117F69Wq74ywqKsLu3btRWlqKqqoq6PV63HjjjeaGvZs2bcJf/vIXp8cQHR2NJ598Eo8//jjee+89FBYWYufOnXjjjTfw3nvveXxuiMgxBjNEpOjJJ59EWFgYOnXqhLi4OFRXV+O7775DTU0NbrnlFqSnp2Pq1Klo0qSJuVrGG/PmzcNjjz2Gbt264dSpU/jvf/+L8PBwALXtcDZt2oRDhw7hpptuQteuXfHss8+iVatWDrc5bNgwPP7443jkkUdw/fXXIz8/39zLSTZy5EgMGTIEAwYMQFxcHJYvXw4AePfdd3HlyhV069YNU6dOxQsvvODScTz//POYOXMmcnNz0bFjRwwZMgRr1qxBSkqKB2eFiFwhCctKYSKiANu4cSMGDBiAc+fOoUmTJsFODhFpEEtmiIiISNMYzBAREZGmsZqJiIiINI0lM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRp/w8ekd4YKrY9/QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYr1JREFUeJzt3Xd8FHX+P/DXJCEhCclSEiCEhIQghBIi/QJIEU7I8RUR70RABcSOIp4IQX8cYEv0mvWQw4LlFE6KeiKiJxCkyIUOFkoMTRYhQjZAQiDZz++PuOuWmd3ZOrPZ1/PxyEPZnZ39TNmZ93zK+yMJIQSIiIiIdChC6wIQERERKWGgQkRERLrFQIWIiIh0i4EKERER6RYDFSIiItItBipERESkWwxUiIiISLcYqBAREZFuMVAhIiIi3WKgQkQ+mz9/PiRJUrWsJEmYP39+QMszZMgQDBkyRLfrIyL1GKgQNSBLliyBJEnWv6ioKKSmpmLy5Mn48ccftS6e7mRkZNjtr5YtW+Kaa67BqlWr/LL+qqoqzJ8/Hxs2bPDL+ojCEQMVogboiSeewDvvvINXX30V+fn5ePfddzF48GBcunQpIN/3//7f/0N1dXVA1h1oV199Nd555x288847mDlzJk6ePImxY8fi1Vdf9XndVVVVWLBgAQMVIh9EaV0AIvK//Px89O7dGwBw5513IikpCc8++yw+/vhj3HzzzX7/vqioKERFheblJDU1Fbfeeqv137fffjs6dOiAv//977j33ns1LBkRAaxRIQoL11xzDQCgtLTU7vXvv/8ev//979G8eXM0btwYvXv3xscff2y3zJUrV7BgwQJcddVVaNy4MVq0aIGBAwfiiy++sC4j10elpqYGDz/8MJKTk5GQkIDRo0fjxIkTTmWbPHkyMjIynF6XW+ebb76Ja6+9Fi1btkRMTAy6dOmChQsXerQv3GndujU6d+6MsrIyl8udPn0aU6dORatWrdC4cWPk5ubirbfesr5/5MgRJCcnAwAWLFhgbV4KdP8cooYmNB+BiMgjR44cAQA0a9bM+to333yDAQMGIDU1FQUFBYiPj8e///1vjBkzBitWrMCNN94IoD5gKCwsxJ133om+ffuisrIS27dvx86dO/Hb3/5W8TvvvPNOvPvuu5gwYQL69++PdevWYdSoUT5tx8KFC9G1a1eMHj0aUVFR+M9//oP7778fZrMZ06ZN82ndFleuXMHx48fRokULxWWqq6sxZMgQHD58GA888AAyMzPxwQcfYPLkyaioqMBDDz2E5ORkLFy4EPfddx9uvPFGjB07FgDQvXt3v5STKGwIImow3nzzTQFA/Pe//xVnzpwRx48fF8uXLxfJyckiJiZGHD9+3LrssGHDRE5Ojrh06ZL1NbPZLPr37y+uuuoq62u5ubli1KhRLr933rx5wvZysnv3bgFA3H///XbLTZgwQQAQ8+bNs742adIk0a5dO7frFEKIqqoqp+VGjBgh2rdvb/fa4MGDxeDBg12WWQgh2rVrJ6677jpx5swZcebMGbFnzx5xyy23CADiwQcfVFzf888/LwCId9991/ra5cuXRV5enmjSpImorKwUQghx5swZp+0lIs+w6YeoARo+fDiSk5ORlpaG3//+94iPj8fHH3+Mtm3bAgDOnj2LdevW4eabb8b58+dRXl6O8vJy/PzzzxgxYgQOHTpkHSXUtGlTfPPNNzh06JDq7//0008BANOnT7d7fcaMGT5tV2xsrPX/TSYTysvLMXjwYPzwww8wmUxerfPzzz9HcnIykpOTkZubiw8++AC33XYbnn32WcXPfPrpp2jdujXGjx9vfa1Ro0aYPn06Lly4gOLiYq/KQkTO2PRD1AC98sor6NixI0wmE9544w1s3LgRMTEx1vcPHz4MIQTmzp2LuXPnyq7j9OnTSE1NxRNPPIEbbrgBHTt2RLdu3TBy5EjcdtttLpswjh49ioiICGRlZdm93qlTJ5+2a/PmzZg3bx62bt2Kqqoqu/dMJhMMBoPH6+zXrx+eeuopSJKEuLg4dO7cGU2bNnX5maNHj+Kqq65CRIT9s17nzp2t7xORfzBQIWqA+vbtax31M2bMGAwcOBATJkzAgQMH0KRJE5jNZgDAzJkzMWLECNl1dOjQAQAwaNAglJaW4qOPPsLnn3+O1157DX//+9/x6quv4s477/S5rEqJ4urq6uz+XVpaimHDhiE7Oxt/+9vfkJaWhujoaHz66af4+9//bt0mTyUlJWH48OFefZaIAo+BClEDFxkZicLCQgwdOhQvv/wyCgoK0L59ewD1zRVqbtLNmzfHlClTMGXKFFy4cAGDBg3C/PnzFQOVdu3awWw2o7S01K4W5cCBA07LNmvWDBUVFU6vO9ZK/Oc//0FNTQ0+/vhjpKenW19fv3692/L7W7t27bB3716YzWa7WpXvv//e+j6gHIQRkXrso0IUBoYMGYK+ffvi+eefx6VLl9CyZUsMGTIEixYtgtFodFr+zJkz1v//+eef7d5r0qQJOnTogJqaGsXvy8/PBwC8+OKLdq8///zzTstmZWXBZDJh79691teMRqNTdtjIyEgAgBDC+prJZMKbb76pWI5A+d3vfodTp05h2bJl1tdqa2vx0ksvoUmTJhg8eDAAIC4uDgBkAzEiUoc1KkRh4tFHH8Uf/vAHLFmyBPfeey9eeeUVDBw4EDk5ObjrrrvQvn17/PTTT9i6dStOnDiBPXv2AAC6dOmCIUOGoFevXmjevDm2b9+O5cuX44EHHlD8rquvvhrjx4/HP/7xD5hMJvTv3x9ffvklDh8+7LTsLbfcgtmzZ+PGG2/E9OnTUVVVhYULF6Jjx47YuXOndbnrrrsO0dHRuP7663HPPffgwoULWLx4MVq2bCkbbAXS3XffjUWLFmHy5MnYsWMHMjIysHz5cmzevBnPP/88EhISANR3/u3SpQuWLVuGjh07onnz5ujWrRu6desW1PIShTSthx0Rkf9YhieXlJQ4vVdXVyeysrJEVlaWqK2tFUIIUVpaKm6//XbRunVr0ahRI5Gamir+7//+Tyxfvtz6uaeeekr07dtXNG3aVMTGxors7Gzx9NNPi8uXL1uXkRtKXF1dLaZPny5atGgh4uPjxfXXXy+OHz8uO1z3888/F926dRPR0dGiU6dO4t1335Vd58cffyy6d+8uGjduLDIyMsSzzz4r3njjDQFAlJWVWZfzZHiyu6HXSuv76aefxJQpU0RSUpKIjo4WOTk54s0333T67JYtW0SvXr1EdHQ0hyoTeUESwqYelYiIiEhH2EeFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRboV0wjez2YyTJ08iISGBqaqJiIhChBAC58+fR5s2bZwm93QU0oHKyZMnkZaWpnUxiIiIyAvHjx9H27ZtXS4T0oGKJU318ePHkZiYqHFpiIiISI3KykqkpaVZ7+OuhHSgYmnuSUxMZKBCREQUYtR022BnWiIiItItBipERESkWwxUiIiISLdCuo8KERGFj7q6Oly5ckXrYpBK0dHRboceq8FAhYiIdE0IgVOnTqGiokLropAHIiIikJmZiejoaJ/Ww0CFiIh0zRKktGzZEnFxcUzwGQIsCVmNRiPS09N9OmYMVIiISLfq6uqsQUqLFi20Lg55IDk5GSdPnkRtbS0aNWrk9XrYmZaIiHTL0iclLi5O45KQpyxNPnV1dT6th4EKERHpHpt7Qo+/jhkDFSIiItItBipERETksQ0bNkCSpICPxmKgojGjqRpbSsthNFVrXRQiItKR+fPn4+qrr9a6GJrjqB8NLSs5hjkr98EsgAgJKBybg3F90rUuFhERhZArV674NKpG71ijohGjqdoapACAWQCPrdzPmhUiogbCbDajsLAQmZmZiI2NRW5uLpYvXw7g12aTL7/8Er1790ZcXBz69++PAwcOAACWLFmCBQsWYM+ePZAkCZIkYcmSJQDqO6kuXLgQo0ePRnx8PJ5++mmX5bB819q1a9GjRw/Exsbi2muvxenTp7FmzRp07twZiYmJmDBhAqqqqqyfq6mpwfTp09GyZUs0btwYAwcORElJSWB2lgsMVBQEukmmrPyiNUixqBMCR8qr5D9AREQ+CXZTe2FhId5++228+uqr+Oabb/Dwww/j1ltvRXFxsXWZxx9/HH/961+xfft2REVF4Y477gAAjBs3Do888gi6du0Ko9EIo9GIcePGWT83f/583Hjjjdi3b5/1M+7Mnz8fL7/8MrZs2YLjx4/j5ptvxvPPP4/33nsPq1evxueff46XXnrJuvysWbOwYsUKvPXWW9i5cyc6dOiAESNG4OzZs37aQ+qw6UdGMJpkMpPiESHBLliJlCRkJDFXABGRvwW7qb2mpgbPPPMM/vvf/yIvLw8A0L59e2zatAmLFi3C3XffDQB4+umnMXjwYABAQUEBRo0ahUuXLiE2NhZNmjRBVFQUWrdu7bT+CRMmYMqUKR6V6amnnsKAAQMAAFOnTsWcOXNQWlqK9u3bAwB+//vfY/369Zg9ezYuXryIhQsXYsmSJcjPzwcALF68GF988QVef/11PProo97tGC+wRsVBsJpkUgyxKBybg8hfxplHShKeGdsNKYZYv34PEVG406Kp/fDhw6iqqsJvf/tbNGnSxPr39ttvo7S01Lpc9+7drf+fkpICADh9+rTb9ffu3dvjMtl+V6tWrRAXF2cNUiyvWb67tLQUV65csQY2ANCoUSP07dsX3333ncff7QvWqDhw1STj7yBiXJ90DOqYjCPlVchIimOQQkQUAMG8rltcuHABALB69WqkpqbavRcTE2MNVmw7wVoSpJnNZrfrj4+P97hMjt/l2AFXkiRV3x1sDFQcBLtJJsUQywCFiCiAtGhq79KlC2JiYnDs2DFr044t21oVJdHR0T6nn/dWVlYWoqOjsXnzZrRr1w5A/eiikpISzJgxI6hlYaDiwNIk89jK/agTIqhNMkZTNcrKLyIzKZ7BCxGRn2hxXU9ISMDMmTPx8MMPw2w2Y+DAgTCZTNi8eTMSExOtN39XMjIyUFZWht27d6Nt27ZISEhATExMwMpsKz4+Hvfddx8effRRNG/eHOnp6XjuuedQVVWFqVOnBqUMFgxUZGjRJMOcKkREgaPFdf3JJ59EcnIyCgsL8cMPP6Bp06bo2bMnHnvsMVVNLDfddBNWrlyJoUOHoqKiAm+++SYmT54c8HJbFBUVwWw247bbbsP58+fRu3dvrF27Fs2aNQtaGQBAEkII94vpU2VlJQwGA0wmExITE7UujteMpmoMKFrnVC25qWAoa1aIKKxdunQJZWVlyMzMROPGjbUuDnnA1bHz5P7NUT86wJwqRERE8hio6IClo5ct5lQhIiI17r33Xrsh0LZ/9957r9bF8xn7qOiAlh14iYgotD3xxBOYOXOm7Huh3C3CgoGKTjCnChEReaNly5Zo2bKl1sUIGE2bfubPn2+dbMnyl52drWWRNJViiEVeVgsGKURERL/QvEala9eu+O9//2v9d1SU5kUiIiKd0WPGVHLNX4OKNY8KlCZcIiIiio6ORkREBE6ePInk5GRER0dbU82TfgkhcObMGdlU/Z7SPFA5dOgQ2rRpg8aNGyMvLw+FhYVIT2eiMyIiAiIiIpCZmQmj0YiTJ09qXRzygCRJaNu2LSIjI31bj5YJ39asWYMLFy6gU6dOMBqNWLBgAX788Ufs378fCQkJTsvX1NSgpqbG+u/KykqkpaWFfMI3IiJyTQiB2tpazea+Ic81atRIMUjxJOGbrjLTVlRUoF27dvjb3/4mO5fA/PnzsWDBAqfXGagQERGFjpDNTNu0aVN07NgRhw8fln1/zpw5MJlM1r/jx48HuYREREQUTLoKVC5cuIDS0lKkpKTIvh8TE4PExES7PyIiImq4NA1UZs6cieLiYhw5cgRbtmzBjTfeiMjISIwfP17LYhEREZFOaDrq58SJExg/fjx+/vlnJCcnY+DAgfj666+RnJysZbGIiIhIJzQNVJYuXarl1xMREZHO6aqPChEREZEtBipERESkWwxUiIiISLcYqASZ0VSNLaXlMJqqtS4KERGR7mk+1084WVZyDHNW7oNZABESUDg2B+P6cF4jIiIiJaxRCRKjqdoapACAWQCPrdzPmhUiIiIXGKgESVn5RWuQYlEnBI6UV2lTICIiohDAQCVIMpPiESHZvxYpSchIitOmQERERCGAgUqQpBhiUTg2B5FSfbQSKUl4Zmw3pBhiNS4ZERGRfrEzbRCN65OOQR2TcaS8ChlJcQxSiIiI3GCgEmQphlgGKERERCqx6YeIiIh0i4EKERER6RYDFSIiItItBipERESkWwxUiIiISLcYqBAREZFuMVAhIiIi3WKgQkRERLrFQIWIiIh0i4EKERER6RYDFSIiItItBipERESkWwxUiIiISLcYqBAREZFuMVAhIiIi3WKgQkRERLrFQIWIiIh0i4EKERER6RYDFSIiItItBipERESkWwxUiIiISLcYqBAREZFuMVAhIiIi3WKgQkRERLrFQIWIiIh0i4EKERER6RYDFSIiItItBipERESkWwxUiIiISLcYqBAREZFuMVAhIiIi3WKgQkRERLrFQIWIiIh0i4EKERER6RYDFSIiItItBipERESkWwxUiIiISLcYqBAREZFuMVAhIiIi3WKgQkRERLrFQIWIiIh0i4EKERER6ZauApWioiJIkoQZM2ZoXRQiIiLSAd0EKiUlJVi0aBG6d++udVGIiIhIJ3QRqFy4cAETJ07E4sWL0axZM62LQ0RERDqhi0Bl2rRpGDVqFIYPH651UYiIiEhHorQuwNKlS7Fz506UlJS4XbampgY1NTXWf1dWVgayaERERKQxTWtUjh8/joceegj/+te/0LhxY7fLFxYWwmAwWP/S0tKCUEoiIiLSiiSEEFp9+Ycffogbb7wRkZGR1tfq6uogSRIiIiJQU1Nj955cjUpaWhpMJhMSExODWnYiIiLyTmVlJQwGg6r7t6ZNP8OGDcO+ffvsXpsyZQqys7Mxe/ZsuyAFAGJiYhATExPMIhIREZGGNA1UEhIS0K1bN7vX4uPj0aJFC6fXiYiIKPzoYtQPERERkRzNR/042rBhg9ZFICIiIp1gjQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREusVAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW4xUCEiIiLdYqBCREREusVAhYiIiHSLgQoRERHpFgMVIiIi0i0GKm4YTdXYUloOo6la66IQERGFnSitC6Bny0qOYc7KfTALIEICCsfmYFyfdK2LRUREFDZYo6LAaKq2BikAYBbAYyv3s2aFiIgoiBioKCgrv2gNUizqhMCR8iptCkRERBSGGKgoyEyKR4Rk/1qkJCEjKU6bAhEREYUhBioKUgyxKBybg0ipPlqJlCQ8M7YbUgyxGpeMiIgofLAzrQvj+qRjUMdkHCmvQkZSHIMUIiKiIGOg4kaKIZYBChERkUbY9ENERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt1ioEJERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt1ioEJERES6xUCFiIiIdIuBChEREekWAxUiIiLSLQYqPjKaqrGltBxGU7XWRSEiImpworQuQChbVnIMc1bug1kAERJQODYH4/qka10sIiKiBoM1Kl4ymqqtQQoAmAXw2Mr9rFkhIiLyIwYqXiorv2gNUizqhMCR8iptCkRERNQAMVDxUmZSPCIk+9ciJQkZSXHaFIiIiKgBYqDipRRDLArH5iBSqo9WIiUJz4zthhRDrMYlIyIiajjYmdYH4/qkY1DHZBwpr0JGUhyDFCIiIj9TXaNSWVmp+k+thQsXonv37khMTERiYiLy8vKwZs0arzZEKymGWORltWCQQkREFACqa1SaNm0KSZJcLiOEgCRJqKurU7XOtm3boqioCFdddRWEEHjrrbdwww03YNeuXejatavaohEREVEDpTpQWb9+vd+//Prrr7f799NPP42FCxfi66+/ZqBCRERE6gOVwYMHB7IcqKurwwcffICLFy8iLy9PdpmamhrU1NRY/+1JMxMRERGFHq8701ZUVOD111/Hd999BwDo2rUr7rjjDhgMBo/Ws2/fPuTl5eHSpUto0qQJVq1ahS5dusguW1hYiAULFnhbZCIiIgoxkhBCuF/M3vbt2zFixAjExsaib9++AICSkhJUV1fj888/R8+ePVWv6/Llyzh27BhMJhOWL1+O1157DcXFxbLBilyNSlpaGkwmExITEz3dDCIiItJAZWUlDAaDqvu3V4HKNddcgw4dOmDx4sWIiqqvlKmtrcWdd96JH374ARs3bvSu5ACGDx+OrKwsLFq0yO2ynmwoERER6YMn92+vmn62b99uF6QAQFRUFGbNmoXevXt7s0ors9lsV2tCvjOaqlFWfhGZSfEcRk1ERCHFq0AlMTERx44dQ3Z2tt3rx48fR0JCgur1zJkzB/n5+UhPT8f58+fx3nvvYcOGDVi7dq03xSIZnOGZiIhCmVeByrhx4zB16lT85S9/Qf/+/QEAmzdvxqOPPorx48erXs/p06dx++23w2g0wmAwoHv37li7di1++9vfelMscqA0w/OgjsmsWSEiopDgVaDyl7/8BZIk4fbbb0dtbS0AoFGjRrjvvvtQVFSkej2vv/66N19PKrma4ZmBChERhQKvApXo6Gi88MILKCwsRGlpKQAgKysLcXGcOVhPLDM82wYrnOGZiIhCiU+zJ8fFxSEnJwc5OTkMUnSIMzwTEVGo86pG5dKlS3jppZewfv16nD59Gmaz2e79nTt3+qVw5DvO8ExERKHMq0Bl6tSp+Pzzz/H73/8effv2dTtZIWkrxRDLAIWIiEKSV4HKJ598gk8//RQDBgzwd3mIiIiIrLzqo5KamupRvhQiIiIib3gVqPz1r3/F7NmzcfToUX+Xh4iIiMjKq6af3r1749KlS2jfvj3i4uLQqFEju/fPnj3rl8IRERFRePMqUBk/fjx+/PFHPPPMM2jVqlWD7kzLeXKIiIi041WgsmXLFmzduhW5ubn+Lo+ucJ4cIiIibXnVRyU7OxvV1dX+LouuKM2TYzQ17O0mIiLSE68ClaKiIjzyyCPYsGEDfv75Z1RWVtr9NQSu5skhIiKi4PCq6WfkyJEAgGHDhtm9LoSAJEmoq6vzvWQa4zw5RERE2vMqUFm/fr2/y6E7lnlyHlu5H3VCcJ4cIiIiDUhCCOF+Me/cf//9eOKJJ5CUlBSQ9VdWVsJgMMBkMiExMTEg32E0VXOeHCIiIj/y5P7t0+zJ7rz77rsh32clxRCLvKwWDFKIiIg0ENBAJYCVNaSC0VSNLaXlHKlEREQhy6s+KqRvRlM13thUhtc3lTEHDBERhTQGKg3MspJjKFixD7Z1WZYcMIM6JrMJi4iIQkpAm34ouCxJ6uQa3JgDhoiIQhEDlQZELkmdBXPAEBFRKPI4UKmtrcUTTzyBEydOuF321ltvDdiw4WAKlU6pliR1jiIkMAcMERGFJK/yqCQkJGDfvn3IyMgIQJHUC0YelVCbmHBZyTFrkroIAHcOysSUAZkMUoiISDc8uX971Zn22muvRXFxseaBSqApTUyo506p4/qkY1DHZCapIyKiBsGrQCU/Px8FBQXYt28fevXqhfj4eLv3R48e7ZfCac3VxIR6DgBSDLG6Lh8REZFaXgUq999/PwDgb3/7m9N7DWVSQoATExIREWnNq1E/ZrNZ8a+hBCnArxMTRkr1PVQ5MSEREVFweVWj8vbbb2PcuHGIiYmxe/3y5ctYunQpbr/9dr8UTg/Y54OIiEg7Xo36iYyMhNFoRMuWLe1e//nnn9GyZcug1aoEY9QPERER+VfAZ08WQkCSnBN2nDhxAgaDwZtVEhERETnxqOmnR48ekCQJkiRh2LBhiIr69eN1dXUoKyvDyJEj/V5IIiIiCk8eBSpjxowBAOzevRsjRoxAkyZNrO9FR0cjIyMDN910k18LSEREROHLo0Bl3rx5AICMjAyMGzcOjRs3DkihiIiIiAAvR/1MmjQJQP0on9OnT8NsNtu9n56u3xTzREREFDq8ClQOHTqEO+64A1u2bLF73dLJtiHlUiEiIiLteBWoTJ48GVFRUfjkk0+QkpIiOwKIiIiIyFdeBSq7d+/Gjh07kJ2d7e/yEBEREVl5lUelS5cuKC8v93dZiIiIiOx4Fag8++yzmDVrFjZs2ICff/4ZlZWVdn9ERERE/uBVCv2IiF/jG9v+KcHuTMsU+kRERKHHk/u3V31U1q9f71XBwoXRVI2y8ovITIr3yySG/l4fERFRqPAqUBk8eDC++uorLFq0CKWlpVi+fDlSU1PxzjvvIDMz099lDCnLSo5hzsp9MAsgQgIKx+ZgXB/v88r4e31EREShxKs+KitWrMCIESMQGxuLXbt2oaamBgBgMpnwzDPP+LWAocRoqrYGFQBgFsBjK/fDaKrWxfqIiIhCjVeBylNPPYVXX30VixcvRqNGjayvDxgwADt37vRb4UJNWflFa1BhUScEjpRX6WJ9REREocarQOXAgQMYNGiQ0+sGgwEVFRW+lilkZSbFI8Ih912kJCEjKU4X6yMiIgo1XgUqrVu3xuHDh51e37RpE9q3b+9zoUJViiEWhWNzEPnLSKhIScIzY7t53QHW3+sjIiIKNV51pr3rrrvw0EMP4Y033oAkSTh58iS2bt2KmTNnYu7cuf4uY0gZ1ycdgzom40h5FTKS4nwOKvy9PiIiolDiVaBSUFAAs9mMYcOGoaqqCoMGDUJMTAxmzpyJBx980N9lDDkphli/BhT+Xh8REVGo8Crhm8Xly5dx+PBhXLhwAV26dEGTJk38WTa3GmrCN+ZNISKihizgCd8soqOj0aVLF19WQQ6YN4WIiOhXXnWmpcBg3hQiIiJ7DFR0hHlTiIiI7DFQ0RHmTSEiIrKnaaBSWFiIPn36ICEhAS1btsSYMWNw4MABLYukKeZNISIisudTZ1pfFRcXY9q0aejTpw9qa2vx2GOP4brrrsO3336L+Ph4LYumGeZNISIiLelt5KlPw5P97cyZM2jZsiWKi4tlU/Q7aqjDk4mIiLQQrJGnnty/ddVHxWQyAQCaN28u+35NTQ0qKyvt/oiIiMh3eh15qptAxWw2Y8aMGRgwYAC6desmu0xhYSEMBoP1Ly0tLcilJCIiapj0OvJUN4HKtGnTsH//fixdulRxmTlz5sBkMln/jh8/HsQSEhERNVx6HXmqi0DlgQcewCeffIL169ejbdu2isvFxMQgMTHR7o+IiIh8p9eRp5qO+hFC4MEHH8SqVauwYcMGZGZmalkcv9Jbr2kiIiJ39DjyVNNAZdq0aXjvvffw0UcfISEhAadOnQIAGAwGxMZqv3O8xfl6iIgoVKUYYnURoFhoOjxZkiTZ1998801MnjzZ7ef1ODzZaKrGgKJ1dh2SIiUJmwqG6urAExERaSVosyf7SkcpXPzGVa9pPQQqbJIiIqJQommg0hBZek071qho3WsaYJMUERGFHl2M+mlI9NprWq+JfIiIiFxhjUoA6LHXtN6bpIiIiOQwUAkQvfWaVtMkxf4rRESkN2z6CRPumqSWlRzDgKJ1mLB4GwYUrcOykmNaFpeIiAiAzmZP9pQehyfrndFU7dQkxSHVREQUTCEzPLmhCYWmE7kmKfZfISIivWKg4iehPPRXz0OqiYgovLGPih+E+tBfvQ6pJiIiYo2KHzSEphM9DqkmIiJioOIHDaXpRG9DqomIiNj04wdsOiEiIgoM1qj4CZtOiIiI/I+Bih+x6YSISJ9CIX0EyWOgEib4IyWicBXK6SOIgUpY4I+UiMKVUvqIQR2T+dAWItiZtoEL9RwvRES+cJU+gkIDA5UGjj9SIgpnlvQRtkIxfUQ4Y6DSwPFHSkThjOkjQh/7qASBlh1ZLT/Sx1buR50Q/JESUdhh+ojQxkAlwPTQkZU/UiIKd0wfEbrY9BNAeurImmKIRV5WC/5QiYgopDBQCSB2ZCUiIvINAxWVjKZqbCkt96g2hB1ZiYiIfMNARYVlJccwoGgdJizehgFF67Cs5Jiqz7G3ORERkW8kIYRwv5g+VVZWwmAwwGQyITExMSDfYTRVY0DROrsmnEhJwqaCoaoDDqOpmh1ZiYiIfuHJ/Zujftxw1c9EbdDB3uZERETeYdOPG+xnQkREgeBp30dv+ko2BKxRcYMJ04iIyN88zbGlh5xcWmEfFZXYz4SIiPzB076P/ugrqTee3L/Z9KMSE6YREYUnfze5eJpjK9xzcrHph4iISEEgmlwsfR8da0iU+j56unxDwxoVIiIiGYGaBsXTHFvhnpOLNSohRMtZmImIwo0/0lMo8XSy2HCeXJaBipeCHTSEc49vIiItBLrJxdMcW+Gak4tNP17wNqW+t/Q0CzMRUbgI9yYXvWCNioeUgoZBHZMDdvIGsvqRiIiUhXOTi14wUPGQFkFDuPf4JiLSUkNrcgm1/o5s+vGQFin1Wf1IRBQ44ZSaPthdF/yBmWm9sKzkmFNKfaWOrf6MXAOVHTfUomsiIn8Jp4EKespwy9mTA0xtm6W/fwCBqH4Mpx8pEZEtLfocailU+zuy6cdL7lLqh8JInVAoIxFRoIRbanotui74AwOVAAmFH0AolJGIKFBC9cbtrVDt78imnwDR40gdx74oeiwjEVGwWG7cjn0O9X7j9kUoDrdmoBIgevsBKPVF0VMZiYiCLRRv3L4KteHWHPUTYIEaqeNpGVz19NZDGYmIKHxw1I8f+GvIrh4iV3c9vdWUkUOYiYhICwxUZDS0Ibu+9kVpaPuDiIhCB0f9OGiIQ3Z96endEPcHETVs4ZRpNhywRsVBqCbEccfbDmMNdX8QUcPEGuCGhzUqDhryuHp3SerkNOT9QUQNC2uAGyYGKg5CNSFOoKo6Q3V/EFH4YRLLholNPzJCbVx9oKs6Q21/EFF4YhJL/9PDiE9Na1Q2btyI66+/Hm3atIEkSfjwww+1LI4db5pJtBCsqs5Q2R9EFL5YA+xfy0qOYUDROkxYvA0DitZhWckxTcqhaY3KxYsXkZubizvuuANjx47Vsih+E+zok51diYh+xRpg/9DTzNKaBir5+fnIz8/Xsgh+pUVvc1Z1kq/BsavP66Hal8hTeki0Ger09BAcUn1UampqUFNTY/13ZWWlhqWxp1X0qbc5hci/3AUK3gbHlvXuO2HCs599L/v5YAXeDIaI9EdPD8EhFagUFhZiwYIFWhdDlpbRJ6s6GyZ3gYJccDxn5T5kt05AblozVeu1ZRtcA3Be94p9qgNvtcHHouJSFK35HgLqgyEGNoHB/Uq29PQQHFKBypw5c/DHP/7R+u/KykqkpaVpWKJfaR19sqqzYVFTQycXHJsFMOaVLSi6Sf6G77heR5bgWkA4rxvAm5uO4LFRna3rkruxqa2JWbSxFIVrvrcru7taSCbzCgzuV5Kjl4fgkMqjEhMTg8TERLs/vWBvc/InNfkg5JLxAYCA8sgvufXasgTXmUnxkFk1Xtv0A4ymasXRAGpHoRlN1SiyCVKUttHxM0zm5X/cr+SKHkZ8hlSgonfj+qRjU8FQvH/Xb7CpYCifSBoQfyXUU7seNRmBLcGxXLCidMNXCm4s67cE1ymGWNx1TabTMmYB7Dx6TvHGphRgrd5rtNvmsvKLEDIBUwRg3UbHfaW07h1HzslvEKnCJGmkd5o2/Vy4cAGHDx+2/rusrAy7d+9G8+bNkZ4emjd5NsGENrnmDH9Vi3uyHrXtw+P6pCO7dQLGvLIFtvcapWZHufXOyu+E7qlNnap2pwzMxGubypyaM83CuVnIcmOTawIFgKdWf4dnPv3Ous1Ky83Oz0aKIVZ2Xw3qmCz7melLd+Hi5VrVx8Roqsb2I2chSRJ6tWsW9r9XrZutidyRhJB7rgmODRs2YOjQoU6vT5o0CUuWLHH7+crKShgMBphMJl01A5H+qQ1IBnVMxoCidU4X8U0FQz26wRlN1V6tx2iqVtU+vKzkmFNQM65PumI/El/WW1F1xa5vieO22H7GkdJyEVJ9kHLPoCyX+2rjwTOYs2IfzC7W68qykmMoWLHPGtRJgGJ/nnCidP4QBYon929Na1SGDBkCDeMkClNKAYlcc8YL46+WrT3YefQcmsWrHyHh7agwtTV0cp3eXNXgeLteABhQtM5puVn5nazrs3xm9V4jnlr9neI2K3XUc7WvxvVJR3xMFB54b5fiepUYTdV2QQpQ359nzkr1o5kaKr10miSSE1Kjfoh8JTukd8U+zL+hi+zNEb/c5G3fkyTggfd2eTSkNhjV67bBhz/z+tiud0tpuWxn3O6pTZ0+M6p7Cp759DuX2ywXMLnbV73aNfN4XxpN1fhk70nIPRaZBfyaRiBUh/k2tGbrUD0O5IydaclOoGZh1ktZZIf0Apj30bdOo1wiJQm9MprZjeaKkADUxy/1n1U5QiLYo8IC1UFSTSdfC2+3OcUQi9kjs60XJ8fPebpeywilp1c7jzIC6o+pvwJGvcyNEu54HBoW1qiQlZa5FByffgJVFqVOnAL1NSURoj5wsb352VaLl1+4hAff3233WbWJ/TypXvf1aTBQNTieJoHypklhWcmx+my5qD8ms/I7OR17tet1lzdG+uXc8nQf2x4foD4wjI+ODFp2atYWKNPDHDU8Pv7FQMVPQv3E1PLH7RiUzB6ZbU3r7u+yWG60ch0yhQBentADzeNjnG5+lmpxo6nabQDg6lxQU73ujyAtkFklPQ0+PGlScDwPhQCeW3MAo3PbeLUvlfLGTL+2Azq1TkBPN6N+3HW6tlQuCdT/v+NXKQWxvlwvmJzNNa3nqOHx8T8GKn7QEE5MrX7ccgHSs2u+dwoi/HnBtw7p/ccWu1wekZLk9sblLgBwdS44llWu7P4MGP3ZQdKxrIHqz+DNeejqHFCqWRrfL92rgNGx07Vjx1xHcrVYSutVM2RaD7UFeqflcGsen8BgoOKjhnJiBurH7S6QUOozIklwCiLUXPDVBoi5ac1Q5GWNg1IA4Opc2HjwjF1Zb+yRilW7fnQqu78DRn8EFP4KxNUElZ6eh+7K5m3NktKxlBsF5shSfrnvkltvwcp9due645Bp2/2mdW1BKAhkbaI7PD6BwUDFRw3lxAzEj1vNDU7pxjQrvxOeW3OgPscGgFkjO7m94NtOqKeUO8T2dV9qHOQCAFeZUx3LumLnj9ZlbMuut+Rb/grElWoRHI+TJ+eh2rKpOc6O54bSsZQbBWYrAsDi23shLrqR7HfJrdcxQ4PtkGnHAHf2yGxdnR96pdVwa739fhsKBio+akgnpr+bCtTcRORuTLNGdkJOqgH3DWmPVzaU1jcHffY9msY1sgY6SjeSNzeX4bWvypyCI6WgyZ9NGErnAlzc2GzLfqS8CnlZLbyuAQhEHyl/BOJKtQiW0VOOQaza89CTstnmaLH9N6AcRMkdS8soMMvxkRxHgQG46+0dKBybg4ykOGwpLbc7JvtOmFTtM7OQn6rguc8OYHZ+9q9BvASM69MWO46eQ6920OzhSI999LQYbq1lbU5DxkDFRw3txLTtNGp7kVXqT7Hj6DkIIdA7o7ndNntyE7G9Me39saK+j4pjc5BDoCMXFERIwOKNZU5Dh7NbJ3hVK+DpxVfpXJDL++HINrj1NGBU2zTjzc3EH4G4u1oEueOh5ibjrmy22+tYM2HZR0oB9aaCoYq/a8fjc7rykl1/J6VAbFDHZDz7mfwQaUf12yU/VUH31KbYVDAUb24uwz83luG9/x3He/87DgCYk5+NewZnqfoOf2kIffT8SYvaHD0Giv7EQMUPGlpWR8dRDSO7tcbab07ZXYgAuExFrnQTiYuOcHrKBH59Epz42teKN3TbQEcuKLhjYAYWf1Xm9JmSI+c8rhXw9uKrdC44lnVMjzb4cNdJp5ug7QUnL6uF2+9TW3Pl7fb4IxBXGhJuy5vmUldlc9xeIZxz31ianpTODVe/a9tASm6CRblATKl/y8R+6Xhv27Fff0u/HJ/eGc1dBmKLN5Y5ratwzfeABNwzKDjBSkPpo+dvwazNCYdAkYGKn2hRzRgITsNDAazZf8r6vlnUt5/bXvgty81Z8WsqcrmbyJgebXDjP7Yo/qCUhpJaOD7JD+qYjOdvyUXEL6N1AOB1mUn0+mR4lsnU14uv3Lkgd9ObOaKTYsp7CUCBiqdjV7MVj+qeYg1+fNkeXwNxx3PBMXAAvG8ulSub3PY6cjWJom1ZXDUZWagNxJT6t7y37RgK8rOR2jQWkgS7kWdKgdiW0nLZUUZA/ag52+HcgXza9lcfvYZeIxAo4RIoMlAhO+6CBUD5gmyGfSpy25tIXHSENUixrMPxB+Xqgq92GLDchT03rZlHtQKB6iDtGMDY/lsuQFTzdKxmtuK05nE+b4+vgbhjQLHx4Bm/NZc6lk3NOWwJRtzVGKl5WlUbiFn6tzgmoBOo73siN6miUpCYmRQvm7cFsJ8SYFFxKYrWfO/RdA+e8EfTYDjUCARKQxnM4Q4DFbLj6gJoIXchBupHPDheoCw3Ebk5Yhx/UEoda7u3bap6GLDShd2TWgEtOkgr3Vwdn44dOe4zW5b9svL+PF10+LYNKALZXCp3/CQJkIRz1mFXZfHkaVVtIDauTzrioiM9ym4sFySmGGJRdFMOZq/Y57S8pYn1sVX78N62X1PHq3na9le/LF86WjfEGoFAaUiDOVxhoBKG3GVOLcjPrn+al2G5EAH2+R8kAIU3KaciV/ODMpqqkdY8Divvz0PVZbPiDczdU4TS07/aWgEtOkgrBYi2T8dK3M1WXHXZrMsO34FqLlU6foM6JmPHkXOAVD+xobuyePq0qjYQc9f3RC3Ld7z05WEsLTkGs4C1iXXMK1tkHzYcy++qw/HskdnIaWsI6DD/cKkRCBRPr1Vqkk7qEQMVjQX7RFGqZrUtxz2DswAJ1tE3lrwm3VPtazYGdUzGzqPnIATQK8P/GV2VOpMG4yki2B2klQJEtduVYnA9W3FeVosG1eHbHbnj52kTg6/nmauA2V9D0FMMsXhmbA4eHNbBrolVqUbUttbTXYdjy7kYyGH+4VIjEEhqr1WOx04p6aQeSUI49lcPHZWVlTAYDDCZTEhMTNS6OB4LRNusq8DHaKrGgKJ1TheFWfmdrEGJY/BiufhdvFznUzBlKVd8dKRTbYlSueTa7C2WlRxzutAH40emtH/9FXAu2lhqFyB6ul1a7Re9U3uO2Z6nFy/XYd8JE5777EBA9qfl96UmCZ3S8GpHW0rLMWHxNsXvtAxfltsfrkRKElben2fXz8zyuqvfqRq252yEBMzOz7b2ywqVJ369U3O8HY9loPe9J/dv1qhoJBBts+4CH6Vq1qI139vlgLAth9oLpKflsq0t8ab6V4sh4Ur7158B5z2DsjA6t43X2xWKQ+WDcTNSc47ZHkcLy43TsTbRH+V2VQuhNPEhYJ8fyPEBQqlztWU7Rue2wZbScvx8oUZ1kAJ4P8xfjXF90lFRdQVFvwToz675Hk1jGwGAqmzG5J6aDua2x1JvHZwZqGjE322zagIf2SRpcL6oWcoBwOdgyttyqan+DVQfBzlK2+FtMjlXfN2uYO4XXwXrgqgmOZxjkAL8kg12jfOInECWW24EmKM6Iaz9UBybYOxGIAG4c1AmpgzIxMaDZ6xP1RGS/GzPSpSG+UdIzh3ovdneZz/73i4Qm7Nin11GZ7Nw7hNX8Lts5KQ696EhZ2qG0Ft+D3uOn7PLkaWHDs4RmnwrWU8cW760zboKfCwsF7FISbJ+3+z8bMVyqFmnP8oFAFMHZlrLoZfOnhZGUzU+2XtSdjtcPWUGkyWTsNFUHdTvdcVdmZSCv0Bsg9y5b3uOuXridDyevpRbzXFS8/QLONewWNY5rk86NhUMxft3/Qab51yLx37XBYDzQwekX2trHE3ol+a0ryzD/CWbDwkBbDx4xn1hXVCamNTxNdtOCgJA4affY8LibRhQtA7LSo5BDTXnpJa/I6OpGv/Z8yM+2XsSRlO1tTx7jp+ze91TKYZYzB6ZrXi8JQBTB2bg490n67MsO7yvxTXNFmtUNOLvkSVqayXkmgaaxjVSLIenNR2O1eHuyuVYxX33L09/WgQpclX5cs0BFq6SySll4A0EvVXTqi1TsEd8uGoWc5fDx/ac97bcao+Tu6dfuZoQuaH+tmVRmsbgqTFdMfejb5xmKn/w2qvw4LVXOe2rQR2T7b5cwPenbTVP+66ofeK3u9ZIwLQhWejfIcn6Gw3278jxerOs5JhdTQYgf6wtWcCVmsGUrmO2tVZy/umQ1duW1h2cGagEidzJ48/+BJ4EPo4XMaVyuFqnu5u6pU08J9WA2SOznTokWtbhWMX9+ldHMGVApsf70hvuOisO6pjsMkhRSibnLgOvP+kxD4XaMmkx4kPtSBzb8jj+jrwptyfHSaksFo4TIar5fqUyD+vcChdr6uo7cCtsr21W3rLyi26DJKOpGtuPnIUkSejVzvVoQNvtnbNiH8wul1TmLlB0utYI4OX1pXh5fal1KPazn33vl9+RmuuT47Xy/iFZeHl9qdNycoGFQP30JZb/V+ovZ8luPfrqNorXMVffYxEBaF7DzUAlCFxF6t72J/Bn4OPqh6V2mKfjTd0s6qtmAeUOid48mbp76lEbxKiZC0Zpbpa5ozrjd7+kp3fcR2oy8DqOLPEl4NJjHgq1ZfJ3raI3bM8Xx+MoNzrNsqyactsu7+lxcpUbxyzqax5f/+qI7PcrDWOWK/PGg2fqb9CoD4Bm5Xey/p48mVXatoZUaQ4wd9eZ+JgoPPDeLrWHzo67KTHkmm5t96clULOl9nfk6egsuaBVLkhxxXZTlPrLCdQPMf/OWKm47RGAy+AwQgJW3d8fuWnNXCwVeAxUAizYo3s8DXzUpgi3vQjKbY/STd2yjFyHRE+fTN3tS09mEVYzF4zc3CyRkmQXpDjuI3cZeJVGlnhb66J1Hgq5m48nZdJylJKrnCBqlt1UMFSx3E61iyOzFZsIP9l7UnYG8hSDcm6cKQPqm0gdv9/Vb8BxXwOwG7Iqfvmdjs5tA0C+I72rWaWNpmqnpgvxy3oqqq/IpkCwJTfLuFIWbODXZhFXAa6rpltblkDNsQnM3e9Izegsx2u92j5InlDqLwcAH+4+6fRahAS8eEsPpDWPdRpybuvOge01D1IAdqYNOH90SLXlzw6I3qxLaXssN3UlctvsroOj2u8+Ul7l0baouVBEAMAvNxhX5XPsfOeqk7SrkSXeHkNP96E/LSs5hgFF6zBh8Tb0L1yHZ1Z/C6Op2uMypRhikZfVIug1KWrPF6VlAciWW2755z47gNn59ueSJYPsA+/twoPv70b/QudOoa72peN+U7NNKYZYa0f57UfOKv6e3M0qbemsu6lgqDXgkGsWspTDMvTY1b6W29bCsTkouunX1yIk4O5r2mPrnGuxZc61TmWw/T0q/d7kREoSCvJd/9YdyTVdyzWLrd5rtNtWuWuEJyQ4d4KOlCRkqnw4kVAfKP5fbhtr07VceSIATBmY4X1B/Yg1KgHm7ydeVxcXTy/03jQbKG2P0oRrtsv4+kQtl2ZeAtyOUHJcp7u5YCzf8cB7u1zm0fBkYkSl2hZ3ZVVDi1oJuYv0P78qw2ubyqz7Qc/5XDw5Xzz9nSgt3z21qbUWRi6DrID9DOQWavelp7li5IYo2/5O3V23hMNtOTMpXrZcEuxrKuTK5W5blbbf1e9x6sBM1UGKJZGfYw4jo6kaO46ek63xUlszYjtBqO0QcndBlGMNjeW1D6f1x/enzjv1i7vr7R3uC/OLQR2Trf9v2edvbi7DaxvL7PoqAQjaoABXGKgEmFLbMOD5CWD5ITryNvCRu/G7W5e7fgXC4eYvhPuT3tt+OvVf8uu2qA0IlbbBMhfM9KW77J+GZZqt1E6MaMnqazRVezSyxFM+7UMHavr5KF2kHau7/VGmQCSE8+R88fRhw9XyrpoIAecZyC3U7EtXgTwgf85KEhAh5CdrVPqdKwXoGw+ecf7+XzqK/mNDqepmFbltdbf9ctv2+qYyxVEzL0/ogbbNYp36Idl+j6v+Npb9rXa0kuPvYlyfdGS3TpCdk2na0CwM7JCsOLllbloztExsjOdvyUWEJKFtM9fNN44EnM+xFEMsHvtdF7vmRMe8O1qOJmSgEgRyM6t6egIoVWN62yPbaKrGG5vK7F6TVKxLaeJAufZpSdRfEHq2a+aXk16ualkIWAOC/G6t8em+U9ae8K62RenJrXkTdU/PaiZGlOtYNzs/29rJ2Nas/E66uKn7YwitPzvzBmrIqCcdeR2XjUB9zglf1q2YQRb2CdR8DtJsqvSVhii/PKEHmsfHOHUcVvqdOwYEc1buQ01tHeZ//K3d7zNCAu4bnIWFMkHKrJGd7EYT+WrHUef+GWYBjMppjdX7TtlvM4Dm8TEu+15YttNVjVeKoT43idIEro7qhMDOo+fQLL7+eOamNUPRTTbnlWQ/fQCgbjDDnQo1R3NHdcaxs1V4a+tRu9flJoO1PceUjrOWowkZqASJ5eDuOOpd1j+lJ9iXJvTAqO5tPCqL3Hh9oP7pZ1DHZMWLo6tU+G9sKnOe+Rf1FwTA9wy3gPKT6jtbj+DT/Q4XIxVPF3JPaWqfnj3NdGrZ5udvyZUtS/fUpu4L7IYvN3VLFbfac9NafS0zpNTTXDuulvP2vLH9DgCy3+dJ85S1enzTEby26QenZi6l5ZXWbdl/rmYg9/R4ugrkUwzKOY16OgwhdvU7l03OJoA/ffStU3nMAnhlg/1olggA9w1pbx0K7G3w6TjSxjJc11akJOHuQe2tDy+2r7urvVSsMYR9bUROW4PqMktSfXOy5UFKbROp7XVK7jfx2ldlsse1Vgi887VzkOJuMthxfdJ1N5qQgUqQuOp9ruYEUHoCO3HOsw6Yck8KFmaB+nbKr8qcTlxXNw2gvprVkeXp0F8nvdyT6r1D2uMVhfwDc1bsQ3xMFNKaxaoeBqz2SdvdckrbHCFJARml48tN3dtz0/HmbRbuOyF6cvP1R2I123Z+ue/ztHnKsp2A+33sbt2W/Sc3A7m735tc4OUueFZzbrs7j3xOzob64EVpbjE1HM8hubJYalQday3UdjZXW+MVHx2pqsyO/XS8bSJVyuJ798D2eH1TmXUbZ438daJZaxkk4J+398Swzq0BuD7WWo8mdMRAJQjc9T5XOgEcnzzlmg2e++wARl/dxqcT3SJCAhZvLJN9onZ10xAQsuu8c9CvGWb9ddI7PoF8std56J2FGbDLy6D26U3tk7anmU4tT6/e5g5xVRPh7U3d23PTIsUQi8dGdcaUgRlu95enwZQ3fahczZPja/V1IJ4yUwyxGNVdfYdcpQcJy7rcnVvuzm01TZquktG5ozS32Oq9RoySGfbvSE1qAQB44oauisOy1RwrT2q81JArpjfnjtJ1ZcrADLvfoFIz351v7bD2s3F1rPOyWmie48gWAxUPedNm7Co4UDoB5J48c1Kdqxk9Pdldza46dWAmFjukUbas312ELZf/wJJh1pP+AK7Y7ntLVXTfjOaqP+/Jjcq2rdZVp2fHalnbjJxK2+zNhXNRcWn9LNeQD7i8fQLy5tyUo+ap0NMbveMcMmr6ULkbieFLYBHMp0zZCURdPEhYtsfTpgQ13+u4jbY1QZamDGsZATw4rANe+PKw07ojUN8HwzYDrIXjyBglakfaNI2Ntvu3pzVngGc1XkD9+TlzREf8Ze1BVZM9ejPVhtK1FIA1iaTlv3LXeQH1tSZ6GrnHQMUD3vYBULrovHhLD7uT30K2w9qKfVg1rb/PF0q5joGW2VWB+iYcufW7CzZ8fZJzR2nf56Y1w009U7Fi54+q1uPJjcqT4600QsB2OKpl9I/loqm2n8WWw+V2mSstN6js1gl2TVreBIOenpvesM3Eq/b8lWuitPShcsVd04QvgYW/Am5vv+uOgRmKDxK2ZfDmpuzqe2fl13d8PV15ye58G9U9FhdqamVHz7207rDTOWXJcGo7t5gtNQ8SapqeJNQHFRa+dEj2pMZLAOiZ3tyuqUmJL1NtDOqYjBfGXw38Ejx9vOck+hets2taipCAG3ukYtWuH32qNfHlXPInSQgv6u90orKyEgaDASaTCYmJiQH9LqOp2i6LI1B/sjkOW1WyrOSY0wmhdFJuKS3HhMXbnF6/+5r2yGoZ73Y9an6YRlO1bNDgrpxKn3P3ntz3q714qNn3e46fw/Yj55CRFIfqy2a7Ica21B4zT4630VSN/oXrnJ6iIiRgc8G1qtJqO1KTUdMy/NuxL5HjMXC3rz05Nz3lGOzd2CMVH+466fa7lH4D79/1G2ttmhzLaDZLwC390nYkAKfv8/YG5u434M+h1LbfBcCna5A337v3RIVTDYjjOSy3P9RcR+SmBwDcH2PHdY/p0Qardv4IM+prbQpthhD7a8oNuf3j6lgYTdVOqQ4s+04pI6yaY+m4PSO7tnYaSGC7vn/e3hN3vrXDqfnU9ns8uW77kyf3b9aoqORr+7SrGgXHH4tc2zxQ35Fvc8G1HqXuVropKkXKakYrKG2v2ujbm9EM7vZ9blozu+GGFy/XOj3V2D4dWsrry3faLisXT5gFsPPoOY87uarNqKnUIdEx8HS3rwNVxStXM/jhrpNOQ17leNPMojQTNwCPUs27o3SeB2IoteN3BbNGBwAmvva1c+dNmfPNsQxqriNK0wO4q/GSW/fMEZ1kA3RPptywTKLqaqSYbfldHYsUQyz+LzcWFy/X2vVzEaL+2nTxcp2q64vj6DXH7VEKUizri4tu5LYzsV5qTVxhoKKSP9qn5U4IpYvbXddkOk27bRawVtnJnVj+GvseyBPXmzJ6s+/lJpjbe6LC7Xwj3nynUmBZ/3nnjsZys83aXhS9mQtE6SKnZl8HIqEaoBzsVV02u3xiBjxvZpHrRPvaxjJMGZDpdD4HIkeEmnX6Yz8Hs9+Aq/NQzUOau+uIL01ptutW2q/upi9RmkTV3UgxCzXHYlDHZLsLg6WPyMr789xeX9TmS1FiWV9eVgvd9DXxFgMVlQLRPu3q4jZlYCZeU+gvokRvY9/leFNGb/e948XM9unQ3c3Jk+9MMcSi6KYc+z4qv1zgemc0d3lBUjtDrUWE9GumT3fnhjcp1d3VAnhys/U1uPfkpqw0bPPNTUfw2KjObpf19Xfibp3+rG0J1hNwIDMpWwSq75pS+S3ldhWE2b5se50AnGtZ3AVMcrWtdULg+NlqTB2YaW2idLy+qM2XokSuhkcv9wBvMFDxgL+fZvw1PMybzopa8fbm5eu+V3tzsr3YeJMQbMeRc5Ak2CXRcjXbrNoZameN7ITubX+dbyiteZzbc8PbpHSOnXQtPL3Z+iO4d3eBtT33lZpLpwzMsFtHIEbvuFqn3rJ8quV4/Czkbqq+1BR5exN1t1/dnX9qb/p1QtjlCpI795V+G7LzigHWviu2TZTuaoPk8qWM6dHG2uerPpleFgZelRyyNSdKGKh4yJ+RqT+Gh6nprKinE9Zf1b2eMJqqcfbiZbc5OZQuNmq/09Iu7UjpOLqbodbVsVc7DNWbpHSW+UfUJvxTE8D5K7h3zEhqe7wGXpWErw6V2y1vaS51bJP3d+2oq3XKzeujp5pOV4GGXBOqv/r6+ErNw4fS+acUhMmJgHOivzkr9yEuOhK9f0mP4Oq34ZiPRQB2///6V0esfaks1OZLUeqf09AwUNGQq4ubXM4QR750VtRSMNvZHTtYWoIVNVWt/nzqlQuy1GQS9aUPAOB5UjoAsnk6fGku8Vdw73hTFMK+rJsPlVtHQlko1ZQE4hxUWqfesnzaUhNoKB0/X38zvtbEqN2vSuW3PV57T1Tguc8OoE4Iu5Filr4hcv0FH3x/t2LfEdvfhmM/FUdKQ8zdddZ1t30NCQMVjamZdErpKcWXzopaC8aPS66DZYQEvCSTI0SL/j2BeLJX+h41NS5yQYvahH+BpiYjqVzVuKv9GYhzUG6dwTrOnvI10PDlN+OPmhh/Ni3mZbXA6KvbWIOWol8mGjQLoFFkhGIzkVLfEdvfhtKoQLllbekp4ZrWGKhoSK7WxJN+A1rfPPROaQK1Fk1iPK7dCBStL0aOVftyuR3UJPwLNDUjoZSqxvVA6+Msx9fgfN+PJqfX1Pxm/Fl76c/9avnsxNe+tgssXtlQit/ltMba/T/JNhO5C5DddUoOdjAdihioaMTTWSvl+g0A9dWOr31VBjM8S3muV/4cKutJ8KHljVjri5Ht97vaB2puCq6Ony/HVrZTogRIArLnvt5+A4EaAu4LX4Jzo6kaz6753un1WSM7ud0+f9deumqa8td0J5/tP4VV9/fHiXPVTtMGuAuQ5a4tjp3jyTUGKhrwdNZKwLnfQEX1FbucIHcPbO80uiHU+LtjnqfBhx6feoPNl4R/ro6fr8dW6ViGwvHSssOpK74E50o39O5tmzq9JpfQMlAziCt1tPZkuhO50WNmAVRdNmNU9zay0wa4C5B5bfENU+hrwF16cNsU0UpVhnKdBj1Npa2npzxfpyhQWqdl6KqeOxeHOstkjA8t3e10/Fben4djZ6tk3/Pm2GqV7ttbgTivHdfv62/Ym32qdruUgjQ10zZ4sm2OneYB5xF+avf5ouJSFDrUFukl7XxDwhT6OufJsGS5fgNKU6V7UnWqt6c8f1cHy22fvzsYq51TSc3FVk9BoydczUlk22Qp9543x1bLZjJ/NSX4q5O2UrJAuTK6Krs3+1RNbYzs5Kor9yG7dYLbGgZPrk9yneYdebLP7xmcBUiw1liHatr5hoSBigbU/Mhd9RuYNbKT00RhnlSd6jEBlT+rgz3dPm9uQIs2lqJozfdOkwLaUnux1VvQqJaaOYmU3oqQEFKdvv05c7q/mjkcz/GClfvshtXa1l4E4vxyDDaA+tpiy+9o+5Gzsp3Zx7yyBUU3Keco8vT3q7ajtSf7/J5BWRid24a1JjrBQEUjSk8UcjdNuWVtp0r3tOOnXlLtO26rvzqzerJ93lzEHauG5S6knsyzo7eg0ZFtE5rtyDNXNwh3WT+FADYePBOSAZknxyhQnbTl9r1tU7DtaMFg5AeSSzy5atePsp8R8DzwcHV9Usr+Kv3ymrf7nLUm+sFARUOOPwRXN03HZX3pnKWHYc1K26o2eHNF7fZ5cwMymqqtORZsOV5I1V5s9RI0KpFr2nE1J1EEgJcm9EDbZs7T2NuSu1lZ+rpUVF1B07hG6J3RXBf7IJAzp3vL1ZBX2zKWHDkX8PNL7ne0Yqd8kKKmDJ5en0K5ozWpw0DFQ4HqS+DNTdPbiD8YQ3HdDVN1N0eHhTc1Hmq3z5sbkFLyJsemDLUXWz0EjUqUmnYsx0tuTqJnxnbDqO5tANg3WbpKJmd5Ired1BGofyq2NBFoKVAzp/vC8Rx3zNQL1AeNMVERbqeO8JU3s317E3i42n+uUuVT6GOg4oFA9iUI9pN1IIfLudtPnkwQ6G21tZrt8/QGpDRnEADMzs+2+46NB8/YVcVLEmQvtimGWMwemV3fcQ/y1dRKTS+e8GdOCUDdnERqk8kZTdVOQQpQv4/nrNgX1GYwuf0UjMDeXRnkOO77jQfPWMtoOUfnfvSNy6kj/EFN7Y6rnDdqtk1NedlU03AxUFEp0H0JtHiyVvPD9vQGp2Y/yeUqkNtWX4M3d9vnyQ1Iac6gCNQHKfcMynLaB3a1AwLWqeId1/vsZ/VBiiQBs/I7Kc7KauE4WaC74+PPjqAWauckctUp3HbSPqV7nBnOkwoGiqv95G1g7+nvx5sZqh37su04cs46Oy/geuoIf5D7HdnO6uttUwwDD7JgoKKSP2s89PDUpoY3Nzg1+2njwTN270uQr20IRvCmNtuq3JxBT4zuiuFdWgGwH+2gNEW7uxojIYDn1hzA6Nw2SDHEum16cUz6J3d8/NkR1MLbc9PVpH1ytVRAfSBoqXUJ5PBtNfvJ0xunp78ffzwMpRhi0byJ+qkj/EXu2MrN6svAg7zBQEUlf900fXlqC2auDW8vmu72k2xtgyRf2xCs4M3dDUhpzqA/ffQNdh+vwKpdPzrlslBzrrgL6tw1vViGR1vKI3d8/NkRNC46wufEeXL7OsUQi6KbcmT7qBTelGOXZVQCUJCfXZ/rwo/83fTqze/HX2XQqt+T47FljQj5iy4ClVdeeQV//vOfcerUKeTm5uKll15C3759tS6WHX/cNH15agt2rg1vL5ru9pPSTV9pvXpIPe1qWgPb0Q3uOpl6WmPkqulFbdI/PXYElWPbbFFRfRlNY6PRK6MZANhlQBVA/dBwCXbNbUrUBvfx0ZEumyM9fUjw5vfjrwBDj7WzRL7QPFBZtmwZ/vjHP+LVV19Fv3798Pzzz2PEiBE4cOAAWrZsqXXx7Ph60/T25q9Frg1fLpqu9pM369X6ycxy4XeX3AxQ18nUcb2u5g1RanpRm/QvlG5aKYZY/F+ufbm2lJbL7vNn13xvbSJT4mnCPbsRM7/0F0oxOOcIUfOQ4O157q9jpYcAn8hfNJ/rp1+/fujTpw9efvllAIDZbEZaWhoefPBBFBQUuPxsqM314+28H+7mBgoUNfNx6Gm9gbbn+DnFlPAW3s655K6PjFzTiyf7MVTnJjGaqtG/cJ3sPnd1/qv9rcktZxEhoX5ElkxAqOYYe3ueh+qxIvJEyMz1c/nyZezYsQNz5syxvhYREYHhw4dj69atTsvX1NSgpqbG+u/KysqglNNfvH1i0qrNOVBPZaH6tJeb1gxFN7kf3eDp9qgZneRrs5jWtVLeSjHEoiA/W3aSOFfnvy8J9yzMAtZh4+7WI8fb8zxUjxVRoGgaqJSXl6Ourg6tWrWye71Vq1b4/nvn7J+FhYVYsGBBsIoXEN7mB9Cq+j5QF81QvRirHd0QLKG6Hz2hZpI4R74k3LNlGTbuOFO52oeEcDg+RIGmadPPyZMnkZqaii1btiAvL8/6+qxZs1BcXIxt2+ybO+RqVNLS0kKm6cdXrBKmcObp+a+26cV2OUeRkoRZ+Z3w3JoDIddUSaRnIdP0k5SUhMjISPz00092r//0009o3bq10/IxMTGIiYkJVvF0h09nFM48Pf/V1l7aLrf3RAWe+8w5KOFMukTa0TRQiY6ORq9evfDll19izJgxAOo703755Zd44IEHtCwaETUAaoMby3J5WS0w+mrnoIQPCUTa0Xx48h//+EdMmjQJvXv3Rt++ffH888/j4sWLmDJlitZFI6IwxKCESF80D1TGjRuHM2fO4E9/+hNOnTqFq6++Gp999plTB1siIiIKP5rnUfFFqOVRISIiIs/u3xFBKhMRERGRxxioEBERkW4xUCEiIiLdYqBCREREusVAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItzRPoe8LS1LdyspKjUtCREREalnu22qS44d0oHL+/HkAQFpamsYlISIiIk+dP38eBoPB5TIhPdeP2WzGyZMnkZCQAEmSfFpXZWUl0tLScPz48bCdN4j7gPvAgvuB+wDgPgC4Dyz8vR+EEDh//jzatGmDiAjXvVBCukYlIiICbdu29es6ExMTw/pkBLgPAO4DC+4H7gOA+wDgPrDw535wV5Niwc60REREpFsMVIiIiEi3GKj8IiYmBvPmzUNMTIzWRdEM9wH3gQX3A/cBwH0AcB9YaLkfQrozLRERETVsrFEhIiIi3WKgQkRERLrFQIWIiIh0i4EKERER6VaDDlQWLlyI7t27WxPU5OXlYc2aNdb3L126hGnTpqFFixZo0qQJbrrpJvz000926zh27BhGjRqFuLg4tGzZEo8++ihqa2uDvSl+U1RUBEmSMGPGDOtrDX0/zJ8/H5Ik2f1lZ2db32/o22/x448/4tZbb0WLFi0QGxuLnJwcbN++3fq+EAJ/+tOfkJKSgtjYWAwfPhyHDh2yW8fZs2cxceJEJCYmomnTppg6dSouXLgQ7E3xWkZGhtO5IEkSpk2bBiA8zoW6ujrMnTsXmZmZiI2NRVZWFp588km7OVfC4Vw4f/48ZsyYgXbt2iE2Nhb9+/dHSUmJ9f2GuA82btyI66+/Hm3atIEkSfjwww/t3vfXNu/duxfXXHMNGjdujLS0NDz33HO+FVw0YB9//LFYvXq1OHjwoDhw4IB47LHHRKNGjcT+/fuFEELce++9Ii0tTXz55Zdi+/bt4je/+Y3o37+/9fO1tbWiW7duYvjw4WLXrl3i008/FUlJSWLOnDlabZJP/ve//4mMjAzRvXt38dBDD1lfb+j7Yd68eaJr167CaDRa/86cOWN9v6FvvxBCnD17VrRr105MnjxZbNu2Tfzwww9i7dq14vDhw9ZlioqKhMFgEB9++KHYs2ePGD16tMjMzBTV1dXWZUaOHClyc3PF119/Lb766ivRoUMHMX78eC02ySunT5+2Ow+++OILAUCsX79eCBEe58LTTz8tWrRoIT755BNRVlYmPvjgA9GkSRPxwgsvWJcJh3Ph5ptvFl26dBHFxcXi0KFDYt68eSIxMVGcOHFCCNEw98Gnn34qHn/8cbFy5UoBQKxatcrufX9ss8lkEq1atRITJ04U+/fvF++//76IjY0VixYt8rrcDTpQkdOsWTPx2muviYqKCtGoUSPxwQcfWN/77rvvBACxdetWIUT9QY2IiBCnTp2yLrNw4UKRmJgoampqgl52X5w/f15cddVV4osvvhCDBw+2BirhsB/mzZsncnNzZd8Lh+0XQojZs2eLgQMHKr5vNptF69atxZ///GfraxUVFSImJka8//77Qgghvv32WwFAlJSUWJdZs2aNkCRJ/Pjjj4ErfAA99NBDIisrS5jN5rA5F0aNGiXuuOMOu9fGjh0rJk6cKIQIj3OhqqpKREZGik8++cTu9Z49e4rHH388LPaBY6Dir23+xz/+IZo1a2b3e5g9e7bo1KmT12Vt0E0/turq6rB06VJcvHgReXl52LFjB65cuYLhw4dbl8nOzkZ6ejq2bt0KANi6dStycnLQqlUr6zIjRoxAZWUlvvnmm6Bvgy+mTZuGUaNG2W0vgLDZD4cOHUKbNm3Qvn17TJw4EceOHQMQPtv/8ccfo3fv3vjDH/6Ali1bokePHli8eLH1/bKyMpw6dcpuPxgMBvTr189uPzRt2hS9e/e2LjN8+HBERERg27ZtwdsYP7l8+TLeffdd3HHHHZAkKWzOhf79++PLL7/EwYMHAQB79uzBpk2bkJ+fDyA8zoXa2lrU1dWhcePGdq/HxsZi06ZNYbEPHPlrm7du3YpBgwYhOjrausyIESNw4MABnDt3zquyhfSkhGrs27cPeXl5uHTpEpo0aYJVq1ahS5cu2L17N6Kjo9G0aVO75Vu1aoVTp04BAE6dOmV3QbK8b3kvVCxduhQ7d+60a3+1OHXqVIPfD/369cOSJUvQqVMnGI1GLFiwANdccw32798fFtsPAD/88AMWLlyIP/7xj3jsscdQUlKC6dOnIzo6GpMmTbJuh9x22u6Hli1b2r0fFRWF5s2bh8x+sPXhhx+ioqICkydPBhAevwUAKCgoQGVlJbKzsxEZGYm6ujo8/fTTmDhxIgCExbmQkJCAvLw8PPnkk+jcuTNatWqF999/H1u3bkWHDh3CYh848tc2nzp1CpmZmU7rsLzXrFkzj8vW4AOVTp06Yffu3TCZTFi+fDkmTZqE4uJirYsVNMePH8dDDz2EL774wunpIVxYnhQBoHv37ujXrx/atWuHf//734iNjdWwZMFjNpvRu3dvPPPMMwCAHj16YP/+/Xj11VcxadIkjUunjddffx35+flo06aN1kUJqn//+9/417/+hffeew9du3bF7t27MWPGDLRp0yaszoV33nkHd9xxB1JTUxEZGYmePXti/Pjx2LFjh9ZFIwcNvuknOjoaHTp0QK9evVBYWIjc3Fy88MILaN26NS5fvoyKigq75X/66Se0bt0aANC6dWunHv+Wf1uW0bsdO3bg9OnT6NmzJ6KiohAVFYXi4mK8+OKLiIqKQqtWrcJiP9hq2rQpOnbsiMOHD4fNeZCSkoIuXbrYvda5c2drE5hlO+S203Y/nD592u792tpanD17NmT2g8XRo0fx3//+F3feeaf1tXA5Fx599FEUFBTglltuQU5ODm677TY8/PDDKCwsBBA+50JWVhaKi4tx4cIFHD9+HP/73/9w5coVtG/fPmz2gS1/bXMgfiMNPlBxZDabUVNTg169eqFRo0b48ssvre8dOHAAx44dQ15eHgAgLy8P+/btszswX3zxBRITE50u+no1bNgw7Nu3D7t377b+9e7dGxMnTrT+fzjsB1sXLlxAaWkpUlJSwuY8GDBgAA4cOGD32sGDB9GuXTsAQGZmJlq3bm23HyorK7Ft2za7/VBRUWH3xLlu3TqYzWb069cvCFvhP2+++SZatmyJUaNGWV8Ll3OhqqoKERH2l/7IyEiYzWYA4XcuxMfHIyUlBefOncPatWtxww03hN0+APx33PPy8rBx40ZcuXLFuswXX3yBTp06edXsA6BhD08uKCgQxcXFoqysTOzdu1cUFBQISZLE559/LoSoH4qYnp4u1q1bJ7Zv3y7y8vJEXl6e9fOWoYjXXXed2L17t/jss89EcnJySA1FlGM76keIhr8fHnnkEbFhwwZRVlYmNm/eLIYPHy6SkpLE6dOnhRANf/uFqB+aHhUVJZ5++mlx6NAh8a9//UvExcWJd99917pMUVGRaNq0qfjoo4/E3r17xQ033CA7NLFHjx5i27ZtYtOmTeKqq67S9XBMOXV1dSI9PV3Mnj3b6b1wOBcmTZokUlNTrcOTV65cKZKSksSsWbOsy4TDufDZZ5+JNWvWiB9++EF8/vnnIjc3V/Tr109cvnxZCNEw98H58+fFrl27xK5duwQA8be//U3s2rVLHD16VAjhn22uqKgQrVq1ErfddpvYv3+/WLp0qYiLi+PwZCV33HGHaNeunYiOjhbJycli2LBh1iBFCCGqq6vF/fffL5o1aybi4uLEjTfeKIxGo906jhw5IvLz80VsbKxISkoSjzzyiLhy5UqwN8WvHAOVhr4fxo0bJ1JSUkR0dLRITU0V48aNs8sf0tC33+I///mP6Natm4iJiRHZ2dnin//8p937ZrNZzJ07V7Rq1UrExMSIYcOGiQMHDtgt8/PPP4vx48eLJk2aiMTERDFlyhRx/vz5YG6Gz9auXSsAOG2bEOFxLlRWVoqHHnpIpKeni8aNG4v27duLxx9/3G44aTicC8uWLRPt27cX0dHRonXr1mLatGmioqLC+n5D3Afr168XAJz+Jk2aJITw3zbv2bNHDBw4UMTExIjU1FRRVFTkU7klIWzSERIRERHpSNj1USEiIqLQwUCFiIiIdIuBChEREekWAxUiIiLSLQYqREREpFsMVIiIiEi3GKgQERGRbjFQISIiIt1ioEIUhoYMGYIZM2ZoXYyAmz9/Pq6++mqti0FEPmCgQkQh5/Lly0H9PiEEamtrg/qdRFSPgQpRmJk8eTKKi4vxwgsvQJIkSJKEI0eOYP/+/cjPz0eTJk3QqlUr3HbbbSgvL7d+bsiQIXjwwQcxY8YMNGvWDK1atcLixYtx8eJFTJkyBQkJCejQoQPWrFlj/cyGDRsgSRJWr16N7t27o3HjxvjNb36D/fv325Vp06ZNuOaaaxAbG4u0tDRMnz4dFy9etL6fkZGBJ598ErfffjsSExNx9913AwBmz56Njh07Ii4uDu3bt8fcuXOts7YuWbIECxYswJ49e6zbuWTJEhw5cgSSJGH37t3W9VdUVECSJGzYsMGu3GvWrEGvXr0QExODTZs2wWw2o7CwEJmZmYiNjUVubi6WL1/u70NERDYYqBCFmRdeeAF5eXm46667YDQaYTQakZCQgGuvvRY9evTA9u3b8dlnn+Gnn37CzTffbPfZt956C0lJSfjf//6HBx98EPfddx/+8Ic/oH///ti5cyeuu+463HbbbaiqqrL73KOPPoq//vWvKCkpQXJyMq6//nprQFFaWoqRI0fipptuwt69e7Fs2TJs2rQJDzzwgN06/vKXvyA3Nxe7du3C3LlzAQAJCQlYsmQJvv32W7zwwgtYvHgx/v73vwMAxo0bh0ceeQRdu3a1bue4ceM82lcFBQUoKirCd999h+7du6OwsBBvv/02Xn31VXzzzTd4+OGHceutt6K4uNij9RKRB3ya0pCIQpLjDNpPPvmkuO666+yWOX78uN0sw4MHDxYDBw60vl9bWyvi4+PFbbfdZn3NaDQKAGLr1q1CiF9na126dKl1mZ9//lnExsaKZcuWCSGEmDp1qrj77rvtvvurr74SERER1unl27VrJ8aMGeN2u/785z+LXr16Wf89b948kZuba7dMWVmZACB27dplfe3cuXMCgFi/fr1duT/88EPrMpcuXRJxcXFiy5YtduubOnWq3TT3RORfUVoGSUSkD3v27MH69evRpEkTp/dKS0vRsWNHAED37t2tr0dGRqJFixbIycmxvtaqVSsAwOnTp+3WkZeXZ/3/5s2bo1OnTvjuu++s3713717861//si4jhIDZbEZZWRk6d+4MAOjdu7dT2ZYtW4YXX3wRpaWluHDhAmpra5GYmOjx9iux/c7Dhw+jqqoKv/3tb+2WuXz5Mnr06OG37yQiewxUiAgXLlzA9ddfj2effdbpvZSUFOv/N2rUyO49SZLsXpMkCQBgNps9+u577rkH06dPd3ovPT3d+v/x8fF2723duhUTJ07EggULMGLECBgMBixduhR//etfXX5fRER9i7cQwvqapRnKke13XrhwAQCwevVqpKam2i0XExPj8juJyHsMVIjCUHR0NOrq6qz/7tmzJ1asWIGMjAxERfn/svD1119bg45z587h4MGD1pqSnj174ttvv0WHDh08WueWLVvQrl07PP7449bXjh49areM43YCQHJyMgDAaDRaa0JsO9Yq6dKlC2JiYnDs2DEMHjzYo7ISkffYmZYoDGVkZGDbtm04cuQIysvLMW3aNJw9exbjx49HSUkJSktLsXbtWkyZMsXpRu+NJ554Al9++SX279+PyZMnIykpCWPGjAFQP3Jny5YteOCBB7B7924cOnQIH330kVNnWkdXXXUVjh07hqVLl6K0tBQvvvgiVq1a5bSdZWVl2L17N8rLy1FTU4PY2Fj85je/sXaSLS4uxv/7f//P7TYkJCRg5syZePjhh/HWW2+htLQUO3fuxEsvvYS33nrL631DRK4xUCEKQzNnzkRkZCS6dOmC5ORkXL58GZs3b0ZdXR2uu+465OTkYMaMGWjatKm1qcQXRUVFeOihh9CrVy+cOnUK//nPfxAdHQ2gvt9LcXExDh48iGuuuQY9evTAn/70J7Rp08blOkePHo2HH34YDzzwAK6++mps2bLFOhrI4qabbsLIkSMxdOhQJCcn4/333wcAvPHGG6itrUWvXr0wY8YMPPXUU6q248knn8TcuXNRWFiIzp07Y+TIkVi9ejUyMzO92CtEpIYkbBtqiYj8aMOGDRg6dCjOnTuHpk2bal0cIgpBrFEhIiIi3WKgQkRERLrFph8iIiLSLdaoEBERkW4xUCEiIiLdYqBCREREusVAhYiIiHSLgQoRERHpFgMVIiIi0i0GKkRERKRbDFSIiIhItxioEBERkW79f4BHJPGNkiY1AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[
,\n", + "
,\n", + "
,\n", + "
]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -958,19 +4038,28 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "4/4 [==============================] - 0s 5ms/step\n" + "\r", + "\u001b[1m1/4\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 10ms/step" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABosUlEQVR4nO3deVzU1f4/8NfMCAgIQyyyuADill4zl1SszIWCQs2r3tTKvUy/YrnkdsutrrlUrrjUzdK6WmnaIpZlLnVNpFLRTOUqP3AJkRhkwA105vz+oPnIsA4w8Pl8Zl7Px2MeOvM5M3Pm4zjznvc55300QggBIiIiIqpTWrk7QEREROSMGIQRERERyYBBGBEREZEMGIQRERERyYBBGBEREZEMGIQRERERyYBBGBEREZEMGIQRERERyYBBGBEREZEMGIQREVGFNm7cCI1Gg/T0dLm7QuRQGIQRkex++eUXxMXFoW3btvD09ETTpk3x1FNP4X//+1+ptj179oRGo4FGo4FWq4W3tzdatWqF4cOHY8+ePVV63p07d+KRRx5Bw4YN4eHhgWbNmuGpp57C7t277fXSSnnjjTfwxRdflLr90KFDmD9/PnJzc2vtuUuaP3++dC41Gg08PDzQpk0bvPrqq8jLy7PLc2zZsgUrVqywy2MRORoGYUQkuyVLlmD79u3o06cPVq5ciXHjxuHHH39Ex44dcfLkyVLtGzdujI8++ggffvgh3nzzTfTv3x+HDh3CY489hiFDhuD27duVPudbb72F/v37Q6PRYPbs2Vi+fDkGDRqEs2fP4pNPPqmNlwmg4iBswYIFdRqEWaxbtw4fffQRli1bhtatW2PhwoWIiYmBPbYWZhBGVL56cneAiGjq1KnYsmULXF1dpduGDBmCdu3aYfHixfjPf/5j1V6v1+PZZ5+1um3x4sV48cUXsXbtWoSFhWHJkiXlPt+dO3fw+uuv49FHH8V3331X6nhWVlYNX5Fy3LhxAx4eHhW2GTx4MPz9/QEA48ePx6BBg7Bjxw4cPnwYkZGRddFNIqfETBgRya579+5WARgAtGjRAm3btsXp06dtegydTodVq1ahTZs2iI+Ph9FoLLdtdnY28vLy8OCDD5Z5vGHDhlbXb926hfnz56Nly5aoX78+goODMXDgQKSmpkpt3nrrLXTv3h1+fn5wd3dHp06d8Nlnn1k9jkajwfXr17Fp0yZpCHDUqFGYP38+pk+fDgAIDw+XjhWfg/Wf//wHnTp1gru7O3x9fTF06FBcvHjR6vF79uyJv/3tbzhy5Ah69OgBDw8P/POf/7Tp/BXXu3dvAEBaWlqF7dauXYu2bdvCzc0NISEhmDhxolUmr2fPnti1axfOnz8vvaawsLAq94fIUTETRkSKJITAlStX0LZtW5vvo9PpMGzYMMyZMwcHDx5EbGxsme0aNmwId3d37Ny5E5MmTYKvr2+5j2kymdC3b1/s3bsXQ4cOxUsvvYT8/Hzs2bMHJ0+eREREBABg5cqV6N+/P5555hkUFhbik08+wT/+8Q8kJCRI/fjoo4/w3HPPoUuXLhg3bhwAICIiAp6envjf//6Hjz/+GMuXL5eyUgEBAQCAhQsXYs6cOXjqqafw3HPP4c8//8Tq1avRo0cPHDt2DD4+PlJ/DQYDHn/8cQwdOhTPPvssAgMDbT5/Fpbg0s/Pr9w28+fPx4IFCxAVFYUJEyYgJSUF69atwy+//IKffvoJLi4ueOWVV2A0GnHp0iUsX74cANCgQYMq94fIYQkiIgX66KOPBACxYcMGq9sfeeQR0bZt23Lv9/nnnwsAYuXKlRU+/ty5cwUA4enpKR5//HGxcOFCceTIkVLt3n//fQFALFu2rNQxs9ks/f3GjRtWxwoLC8Xf/vY30bt3b6vbPT09xciRI0s91ptvvikAiLS0NKvb09PThU6nEwsXLrS6/bfffhP16tWzuv2RRx4RAMT69evLfd3FzZs3TwAQKSkp4s8//xRpaWninXfeEW5ubiIwMFBcv35dCCHEBx98YNW3rKws4erqKh577DFhMpmkx4uPjxcAxPvvvy/dFhsbK0JDQ23qD5Gz4XAkESnOmTNnMHHiRERGRmLkyJFVuq8l05Kfn19huwULFmDLli3o0KEDvv32W7zyyivo1KkTOnbsaDUEun37dvj7+2PSpEmlHkOj0Uh/d3d3l/5+9epVGI1GPPzwwzh69GiV+l/Sjh07YDab8dRTTyE7O1u6BAUFoUWLFti/f79Vezc3N4wePbpKz9GqVSsEBAQgPDwcL7zwApo3b45du3aVO5fs+++/R2FhISZPngyt9u7XyPPPPw9vb2/s2rWr6i+UyAlxOJKIFCUzMxOxsbHQ6/X47LPPoNPpqnT/a9euAQC8vLwqbTts2DAMGzYMeXl5SEpKwsaNG7Flyxb069cPJ0+eRP369ZGamopWrVqhXr2KPy4TEhLwr3/9C8nJySgoKJBuLx6oVcfZs2chhECLFi3KPO7i4mJ1vVGjRqXm11Vm+/bt8Pb2houLCxo3biwNsZbn/PnzAIqCt+JcXV3RrFkz6TgRVYxBGBEphtFoxOOPP47c3Fz897//RUhISJUfw1LSonnz5jbfx9vbG48++igeffRRuLi4YNOmTUhKSsIjjzxi0/3/+9//on///ujRowfWrl2L4OBguLi44IMPPsCWLVuq/BqKM5vN0Gg0+Oabb8oMSEvOsSqekbNVjx49pHloRFR3GIQRkSLcunUL/fr1w//+9z98//33aNOmTZUfw2QyYcuWLfDw8MBDDz1UrX507twZmzZtwuXLlwEUTZxPSkrC7du3S2WdLLZv34769evj22+/hZubm3T7Bx98UKpteZmx8m6PiIiAEALh4eFo2bJlVV9OrQgNDQUApKSkoFmzZtLthYWFSEtLQ1RUlHRbTTOBRI6Mc8KISHYmkwlDhgxBYmIitm3bVq3aVCaTCS+++CJOnz6NF198Ed7e3uW2vXHjBhITE8s89s033wC4O9Q2aNAgZGdnIz4+vlRb8VcxU51OB41GA5PJJB1LT08vsyirp6dnmQVZPT09AaDUsYEDB0Kn02HBggWliqcKIWAwGMp+kbUoKioKrq6uWLVqlVWfNmzYAKPRaLUq1dPTs8JyIUTOjJkwIpLdtGnT8NVXX6Ffv37IyckpVZy1ZGFWo9Eotblx4wbOnTuHHTt2IDU1FUOHDsXrr79e4fPduHED3bt3R7du3RATE4MmTZogNzcXX3zxBf773/9iwIAB6NChAwBgxIgR+PDDDzF16lT8/PPPePjhh3H9+nV8//33+L//+z88+eSTiI2NxbJlyxATE4Onn34aWVlZWLNmDZo3b44TJ05YPXenTp3w/fffY9myZQgJCUF4eDi6du2KTp06AQBeeeUVDB06FC4uLujXrx8iIiLwr3/9C7Nnz0Z6ejoGDBgALy8vpKWl4fPPP8e4cePw8ssv1+j8V1VAQABmz56NBQsWICYmBv3790dKSgrWrl2LBx54wOrfq1OnTvj0008xdepUPPDAA2jQoAH69etXp/0lUiw5l2YSEQlxt7RCeZeK2jZo0EC0aNFCPPvss+K7776z6flu374t/v3vf4sBAwaI0NBQ4ebmJjw8PESHDh3Em2++KQoKCqza37hxQ7zyyisiPDxcuLi4iKCgIDF48GCRmpoqtdmwYYNo0aKFcHNzE61btxYffPCBVAKiuDNnzogePXoId3d3AcCqXMXrr78uGjVqJLRabalyFdu3bxcPPfSQ8PT0FJ6enqJ169Zi4sSJIiUlxercVFS+oyRL//78888K25UsUWERHx8vWrduLVxcXERgYKCYMGGCuHr1qlWba9euiaefflr4+PgIACxXQVSMRgg7bA5GRERERFXCOWFEREREMmAQRkRERCQDBmFEREREMmAQRkRERCQDBmFEREREMmAQRkRERCQDFmtVMLPZjIyMDHh5eXHrDyIiIpUQQiA/Px8hISHQasvPdzEIU7CMjAw0adJE7m4QERFRNVy8eBGNGzcu9ziDMAXz8vICUPSPWNE+eERERKQceXl5aNKkifQ9Xh4GYQpmGYL09vZmEEZERKQylU0l4sR8IiIiIhkwCCMiIiKSAYMwIiIiIhlwThgREZGDMZlMuH37ttzdcFguLi7Q6XQ1fhwGYURERA5CCIHMzEzk5ubK3RWH5+Pjg6CgoBrV8WQQRkRE5CAsAVjDhg3h4eHBQt+1QAiBGzduICsrCwAQHBxc7cdiEEZEROQATCaTFID5+fnJ3R2H5u7uDgDIyspCw4YNqz00qZqJ+f3790fTpk1Rv359BAcHY/jw4cjIyLBqI4TAW2+9hZYtW8LNzQ2NGjXCwoULrdocOHAAHTt2hJubG5o3b46NGzeWeq41a9YgLCwM9evXR9euXfHzzz9bHb916xYmTpwIPz8/NGjQAIMGDcKVK1es2ly4cAGxsbHw8PBAw4YNMX36dNy5c8c+J4OIiKgEyxwwDw8PmXviHCznuSZz71QThPXq1Qtbt25FSkoKtm/fjtTUVAwePNiqzUsvvYT33nsPb731Fs6cOYOvvvoKXbp0kY6npaUhNjYWvXr1QnJyMiZPnoznnnsO3377rdTm008/xdSpUzFv3jwcPXoU7du3R3R0tJR2BIApU6Zg586d2LZtG3744QdkZGRg4MCB0nGTyYTY2FgUFhbi0KFD2LRpEzZu3Ii5c+fW4hkiIiKqvEAo2YddzrNQqS+//FJoNBpRWFgohBDi1KlTol69euLMmTPl3mfGjBmibdu2VrcNGTJEREdHS9e7dOkiJk6cKF03mUwiJCRELFq0SAghRG5urnBxcRHbtm2T2pw+fVoAEImJiUIIIb7++muh1WpFZmam1GbdunXC29tbFBQU2PwajUajACCMRqPN9yEiIiGys7NFRkZGuZfs7Gy5u2h3N2/eFKdOnRI3b96UuytOoaLzbev3tyrnhOXk5GDz5s3o3r07XFxcAAA7d+5Es2bNkJCQgJiYGAghEBUVhaVLl8LX1xcAkJiYiKioKKvHio6OxuTJkwEAhYWFOHLkCGbPni0d12q1iIqKQmJiIgDgyJEjuH37ttXjtG7dGk2bNkViYiK6deuGxMREtGvXDoGBgVbPM2HCBPz+++/o0KFDma+roKAABQUF0vW8vLwanCUiIudkMBgQHx9fabu4uDjOnSJZqWY4EgBmzpwJT09P+Pn54cKFC/jyyy+lY//v//0/nD9/Htu2bcOHH36IjRs34siRI1ZDlpmZmVaBEQAEBgYiLy8PN2/eRHZ2NkwmU5ltMjMzpcdwdXWFj49PhW3KegzLsfIsWrQIer1eujRp0sTGM0NERBaFhYV2bUe1b9SoUdBoNNBoNHBxcUFgYCAeffRRvP/++zCbzTY/zsaNG0t9PyuZrEHYrFmzpJNe3uXMmTNS++nTp+PYsWP47rvvoNPpMGLECAghAABmsxkFBQX48MMP8fDDD6Nnz57YsGED9u/fj5SUFLleYpXMnj0bRqNRuly8eFHuLhERUS0xGAy4fPlyuReDweBU/YmJicHly5eRnp6Ob775Br169cJLL72Evn37OuzCNlmHI6dNm4ZRo0ZV2KZZs2bS3/39/eHv74+WLVvi3nvvRZMmTXD48GFERkYiODgY9erVQ8uWLaX29957L4CilYqtWrVCUFBQqVWMV65cgbe3N9zd3aHT6aDT6cpsExQUBAAICgpCYWEhcnNzraLtkm1Krqi0PKalTVnc3Nzg5uZW4fkgIiL1U9qQqRL64+bmJn1HNmrUCB07dkS3bt3Qp08fbNy4Ec899xyWLVuGDz74AP/v//0/+Pr6ol+/fli6dCkaNGiAAwcOYPTo0QDuTpqfN28e5s+fj48++ggrV65ESkoKPD090bt3b6xYsQINGzaslddiK1kzYQEBAWjdunWFF1dX1zLva0lPWuZQPfjgg7hz5w5SU1OlNv/73/8AAKGhoQCAyMhI7N271+px9uzZg8jISACAq6srOnXqZNXGbDZj7969UptOnTrBxcXFqk1KSgouXLggtYmMjMRvv/1mtaJyz5498Pb2Rps2bapxpoiIHEddZ1yMRi+kpYXBaPSy6+PWhNKGTJXWH4vevXujffv22LFjB4CiedqrVq3C77//jk2bNmHfvn2YMWMGAKB79+5YsWIFvL29pffSyy+/DKCojMTrr7+O48eP44svvkB6enqlSaC6oIqJ+UlJSfjll1/w0EMP4Z577kFqairmzJmDiIgIKfCJiopCx44dMWbMGKxYsQJmsxkTJ07Eo48+KmXHxo8fj/j4eMyYMQNjxozBvn37sHXrVuzatUt6rqlTp2LkyJHo3LkzunTpghUrVuD69etSdK3X6zF27FhMnToVvr6+8Pb2xqRJkxAZGYlu3boBAB577DG0adMGw4cPx9KlS5GZmYlXX30VEydOZKbLRgaDocL/7K6urpxQS6RCdZ1xOXq0A3bu7AshtNBozOjXLwEdOx6r8eNS3WndujVOnDgBANJCOgAICwvDv/71L4wfPx5r166Fq6sr9Ho9NBpNqVGnMWPGSH9v1qwZVq1ahQceeADXrl1DgwYN6uR1lEUVQZiHhwd27NiBefPm4fr16wgODkZMTAxeffVVKajRarXYuXMnJk2ahB49esDT0xOPP/443n77belxwsPDsWvXLkyZMgUrV65E48aN8d577yE6OlpqM2TIEPz555+YO3cuMjMzcf/992P37t1WE+2XL18OrVaLQYMGoaCgANHR0Vi7dq10XKfTISEhARMmTEBkZCQ8PT0xcuRIvPbaa3VwttRPCWlxIqoddZlxMRq9pAAMAITQYufOvoiIOAe9Pr/Gj29PRqMXcnL84OtrUFzf5CaEkIYXv//+eyxatAhnzpxBXl4e7ty5g1u3buHGjRsVFqk9cuQI5s+fj+PHj+Pq1avSaNqFCxdkHaFSRRDWrl077Nu3r9J2ISEh2L59e4VtevbsiWPHKv4VFBcXh7i4uHKP169fH2vWrMGaNWvKbRMaGoqvv/664g5TmZSaFicidcnJ8ZMCMAshtMjJ8VVUoMNsXcVOnz6N8PBwpKeno2/fvpgwYQIWLlwIX19fHDx4EGPHjkVhYWG5Qdj169cRHR2N6OhobN68GQEBAbhw4QKio6Nl/x5RRRBGRESOqTYyQJa5xL6+Bmg0ZqtATKMxw9c3x6qdnNSUrZPDvn378Ntvv2HKlCk4cuQIzGYz3n77bWi1Redr69atVu1dXV1hMpmsbjtz5gwMBgMWL14slX769ddf6+YFVIJBGBERyaK2MkB+fn6Ii4tDYWEhGjXKw8yZephMGuh0AkuW5OHpp4cpZl6pWrJ1daGgoACZmZkwmUy4cuUKdu/ejUWLFqFv374YMWIETp48idu3b2P16tXo168ffvrpJ6xfv97qMcLCwnDt2jXs3bsX7du3h4eHB5o2bQpXV1esXr0a48ePx8mTJ/H666/L9CqtqapYKxEROYbyMkD2WsHo5+eH4OBgTJvmg/R0DfbvB9LTNZg2zQfBwcGKCMCAu9m64opn65zJ7t27ERwcjLCwMMTExGD//v1YtWoVvvzyS+h0OrRv3x7Lli3DkiVL8Le//Q2bN2/GokWLrB6je/fuGD9+PIYMGYKAgAAsXboUAQEB2LhxI7Zt24Y2bdpg8eLFeOutt2R6ldaYCSMiojpXlxmgxo2LLkpiGQrV6/PRr19CqYyg5RzU1ZCprc9TW/3ZuHEjNm7cWGm7KVOmYMqUKVa3DR8+3Or6unXrsG7dOqvbhg0bhmHDhlndZin2LicGYUREVCl7l42pbL6Woys+ZAoAc+f+ifT0eggLu4OQkAcAPFCnQ6Yl+1MWpQzhOhIGYUREVCF7lo1RWgZITsXPVXAw0KmTjJ0BGGDJgEEYKU7JD9/yVk85w4c0kRLYs2yM0jJARHJiEEaKU/xDessWd7z2mh5mswZarcDSpUY8/fRNfkgTyaimZSWUlgEikguDMFIkPz8/XLoEzJgB/FXYGGazBjNn+mDIEB8w/iKSBwuLEtkPS1SQYp09ezcAszCZgHPn5OkPkbOxbLSdnZ0NoPbLShA5G2bCSLFatAC0WutATKcDmjeXr09EzqKsyfgsLEpkX8yEkWI1bgy8+25R4AUU/fnOO8qr90PkiMqaZM/CokT2xSCMFG3sWCA9HX9Vuy66TkR1zzIZPyrqeykQK1lWgoiqhsORpHhKrHYtJ3sXzSSqTMnJ+FFR3yMkJAO+vjksG0OqcODAAfTq1QtXr16Fj4+PTfcJCwvD5MmTMXny5FrrF4MwIhWxZ9FMIluUNRn/+++jMHnyCuj1+Rg4cCD8/f0Z/FONjBo1Cps2bcILL7xQalPuiRMnYu3atRg5cqRNWxupCYMwIhlVNatlz6KZRLaobDK+v78/goODZeodOZImTZrgk08+wfLly+Hu7g4AuHXrFrZs2YKmTZvK3LvawSCMSCbMapEaOPsej1R3OnbsiNTUVOzYsQPPPPMMAGDHjh1o2rQpwsPDpXYFBQWYPn06PvnkE+Tl5aFz585Yvnw5HnjgAanN119/jcmTJ+PixYvo1q0bRo4cWer5Dh48iNmzZ+PXX3+Fv78//v73v2PRokXw9PSs/Rf7F07MJ5IJs1qkBpY9HjkZ37lculS0IOrSpbp93jFjxuCDDz6Qrr///vsYPXq0VZsZM2Zg+/bt2LRpE44ePYrmzZsjOjoaOTlFPwwuXryIgQMHol+/fkhOTsZzzz2HWbNmWT1GamoqYmJiMGjQIJw4cQKffvopDh48iLi4uNp/kcUwE0akYjXdPoaoPMUn2XfseAwREeeQk+PLyfhOYMMGYNy4ohqNWm1RqaC6Wpn+7LPPYvbs2Th//jwA4KeffsInn3yCAwcOAACuX7+OdevWYePGjXj88ccBAP/+97+xZ88ebNiwAdOnT8e6desQERGBt99+GwDQqlUr/Pbbb1iyZIn0PIsWLcIzzzwjTbpv0aIFVq1ahUceeQTr1q1D/fr16+T1MggjUiluH0O1qeRG22XhZHzHc+nS3QAMKPrzhReA6Oi6WaUeEBCA2NhYbNy4EUIIxMbGwt/fXzqempqK27dv48EHH5Ruc3FxQZcuXXD69GkAwOnTp9G1a1erx42MjLS6fvz4cZw4cQKbN2+WbhNCwGw2Iy0tDffee29tvLxSGIQRKURVslrlbR8TEXFONRkxltpQPp5/51PRdnF1VSpozJgx0rDgmjVrauU5rl27hhdeeAEvvvhiqWN1uQiAQRiRAlQ1q6X27WO4KIFImZSwXVxMTAwKCwuh0WgQHR1tdSwiIgKurq746aefEBoaCgC4ffs2fvnlF2lo8d5778VXX31ldb/Dhw9bXe/YsSNOnTqF5jLvg8eJ+SQrywbB5V0MBoPcXax1VdkU2TL/prLtY5Q+T4eLEoiUSQnbxel0Opw+fRqnTp2CztKRv3h6emLChAmYPn06du/ejVOnTuH555/HjRs3MPaviWvjx4/H2bNnMX36dKSkpGDLli2l6ovNnDkThw4dQlxcHJKTk3H27Fl8+eWXnJhPzoPZkCJVyWoVn6fTqFEeZs7Uw2TSQKcTWLIkD08/PUyVw3hcYECkHGPHFs0BO3euKAMmx44l3t7e5R5bvHgxzGYzhg8fjvz8fHTu3Bnffvst7rnnHgBFw4nbt2/HlClTsHr1anTp0gVvvPEGxowZIz3Gfffdhx9++AGvvPIKHn74YQghEBERgSFDhtT6ayuOQRjJxtmzISWzWuXVYSqZ1bIEWNOmAUOGWD4oNWjc2AeAT1103a64wIBIeep6u7jKKuF/8cUX0t/r16+PVatWYdWqVeW279u3L/r27Wt1W8lSFw888AC+++67ch8jPT29wj7ZA4MwIpnYI6ul9n01HWGBARFRdTEII8VwxiEpR8tqVZXaFxgQEdUEgzBSBA5JqT+rVR3cEoeInBlXR5LsqrI6kBwLt8QhImfGTBjJjkNSzodb4hDVHiFErT5+YSFw6xZQvz7gzP9F7XGeGYSR7DgkpU41qXjPLXGI7M/FxQUAcOPGDbi7u9fKc/z5J/DXto4AgNBQICCgVp5K8W7cuAHg7nmvDgZhJBtLlsMyJFVyTpglI8JsSN2oSlBljxpvDLCI7Eun08HHxwdZWVkAAA8PD2g0Grs89p07d1BYKHD+fD0Adx/z/HkBne4OXF01qFfPOUIKIQRu3LiBrKws+Pj4lCooWxXOccZIkUpmQ+bO/RPp6fUQFnYHISEPAHiA2ZA6UtWgqmSwVt7KVket8WZRPHDNyNAiLa0ewsPvICSkaI4b379U14KCggBACsTswWQyIT8/H3fu1MP16w1KHb958xrq1bsDLy+vGgUkauPj4yOd7+piEEayKv4FFRwMdOokY2ecWE2CKmdd2Vo8cK3oHDj6jg+kLBqNBsHBwWjYsCFu375tl8fMysrC7t27ce2aJzZtGllq6sjIkZvQoMF1PPXUU2jYsKFdnlPpXFxc7BJwMggjIitVCaqcudiqJSCt7Bw4ejaQlEmn09ktK+Xi4oLr169Do7mO++77vtTng0aThevXi9rVr1/fLs/pLBiEEZGkqkEVV7byHJBzqWg1M1UdgzAiklQ1oODKVp4Dcj56fT6DLzthsVYiklgCiuIqCihsLbZqMBhw+fJlXL58GUeOXMFnnxlw5MgV6TaDwVA7L6gOsOAsEVUXM2FEJKmsXEhZKhuecIYJ7ByiIaLqYBBGRFZsCShK1m4rb3jC1dVV1RPYKypBkZ2dbdWWQzREVFUMwojsrCaV5OVSlaAKqFrF+8uXLwNQ3wR2WzN4RI7O1oLZLKxddQzCiOyoZNHT8uptKW3orTrbCFW1/2qbwG5rBq8y/GIiteM2Y7WHQRiRHRX/kKooe6LEobfa/gCtznwzJagsgzdw4ED4+/uXeV9+MZGj4Pu4djAII6oFzlzEtCJqnMBeWQbP398fwcHBcnWPiFSMJSqIakFF2RNnp9fnIzz8vCoCMIAlKIio9jATRtWixsnndUlt85+oYmrM4BGR8jEIoypT6+TzuqTW+U+1wVFWVrEEBRHZG4MwqjI1Tz6vS8yeFOHKKiKisjEIo2rj5PPKMXtSRI0BlqNk8IhIuRiEUbUpofhmRRXNgbrPsPCL23Ewg0dEtY1BGFWb3JPPlbgnIb+4HQv/nYioNjEIo2qTe/K5UvcktOWL+9Il4OxZoEULoHHjOugUEREpDoMwqhElTD5XwrCoLSxDp1u2uGPGDD3MZg20WoGlS414+umbzJARETkZBmFUY3JPPpd7WNQWlqFTo9ELK1ZMhhAaAIDZrMH06d7444/3odfnO3VZj8owe0hEjoYV86nKlDb5XA0VzS1DopVV0nf2sh4lGQwGXL58GW+/nYvQUIHevYHQUIG3387F5cuXYTAY5O4iUZVcugTs31/0JxEzYVRlSpx8roRhUVvYkrVjxqcIs4fkaDZsAMaNA8xmQKsF3n0XGDtW7l6RnBiEUbUo8UtP7mFRW1S2mOHdd0147TXB+WKwLXsox8ILouq4dOluAAYU/fnCC0B0tHP/2HJ2DMKI6lh5WbuijE8IMz4lqGHOH1FFDAYDDh8GzGbr/78mE5CUZIC7uzJ/2NoLs/vl45wwUi2lzU2rCr0+H+Hh560yd5wvVjY1zPkjKo9lWP3QoU3Se9hCozHjp582IT4+3mHnN27YAISG4q/5nEXX6S5mwki1is9NK6taPqCuwqjM+JRPLXP+iEqy/HiqbCqCo/zIKp71AjgEWxkGYaRajlZ3S+7it0qnhjl/RBVR44+Jqgwlllx4MHXq3QDMwmQCzp1jEGbBIIxUSW0r52wdElXjhzQR2U5NPyaqspqzrIUHy5YJaLVFn8sWOp2Al1cWDIZ6ivhslhuDMFIlta2cq6isR3Z2Nnbs2CFdV9OHNBE5pqqu5jx7tnTWy2zWoHv3n5CYGCll92NjE5CQUPf7+ioVgzBSNTXNo3L2D5uqUvPCCyK1KyuoKm8o0WAwwNv7DrTahlZZL43GjK5dk9C1a1KZ2X2l/EiWE4MwUjXOo3JcSiwKTOQsWrTAX0OJd2/T6YDmza3bWaaGAEDfvh3K/SzmZ3LZGISR6ql9HhUzPuVjgEVU9wwGA3S6Qixd6o6ZM/UwmTTQ6QSWLDFCp7sJg+Huj5/iP5LU/lksBwZh5BDUPI+KGR8ix6W2H1nFM1sA8OKLXlJQde1aPt59t+j28uZzqfmzWA6qCcL69++P5ORkZGVl4Z577kFUVBSWLFmCkJAQAMD8+fOxYMGCUvfz8PDA9evXpevbtm3DnDlzkJ6ejhYtWmDJkiV44oknpONCCMybNw///ve/kZubiwcffBDr1q1DC0vREwA5OTmYNGkSdu7cCa1Wi0GDBmHlypVo0KCB1ObEiROYOHEifvnlFwQEBGDSpEmYMWNGbZwacgAMsIgck9p+ZJXsZ3lBFedz2YdqKub36tULW7duRUpKCrZv347U1FQMHjxYOv7yyy/j8uXLVpc2bdrgH//4h9Tm0KFDGDZsGMaOHYtjx45hwIABGDBgAE6ePCm1Wbp0KVatWoX169cjKSkJnp6eiI6Oxq1bt6Q2zzzzDH7//Xfs2bMHCQkJ+PHHHzFu3DjpeF5eHh577DGEhobiyJEjePPNNzF//ny8a/kJQURETsPPzw/BwcHlXpQSgFHdU00mbMqUKdLfQ0NDMWvWLAwYMAC3b9+Gi4sLGjRoYJWJOn78OE6dOoX169dLt61cuRIxMTGYPn06AOD111/Hnj17EB8fj/Xr10MIgRUrVuDVV1/Fk08+CQD48MMPERgYiC+++AJDhw7F6dOnsXv3bvzyyy/o3LkzAGD16tV44okn8NZbbyEkJASbN29GYWEh3n//fbi6uqJt27ZITk7GsmXLrII1qj61pfiJiIhKUk0QVlxOTg42b96M7t27w8XFpcw27733Hlq2bImHH35Yui0xMRFTp061ahcdHY0vvvgCAJCWlobMzExERUVJx/V6Pbp27YrExEQMHToUiYmJ8PHxkQIwAIiKioJWq0VSUhL+/ve/IzExET169LAKAKKjo7FkyRJcvXoV99xzT5l9LigoQEFBgXQ9Ly/P9pPiZNSW4iciImv8kayyIGzmzJmIj4/HjRs30K1bNyQkJJTZ7tatW9i8eTNmzZpldXtmZiYCAwOtbgsMDERmZqZ03HJbRW0aNmxodbxevXrw9fW1ahMeHl7qMSzHygvCFi1aVOa8NiobAywi5anKNjfkPAYOHAh/f3/pOn8kF5F1TtisWbOg0WgqvJw5c0ZqP336dBw7dgzfffcddDodRowYASFEqcf9/PPPkZ+fj5EjR9bly6mx2bNnw2g0SpeLFy/K3SUiIptt2ACEhgK9exf9uWGD3D2y3aVLwP79RX+S7WzNZoWEhHAeXBlkzYRNmzYNo0aNqrBNs2bNpL/7+/vD398fLVu2xL333osmTZrg8OHDiIyMtLrPe++9h759+5bKaAUFBeHKlStWt125cgVBQUHSccttwcHBVm3uv/9+qU1WVpbVY9y5cwc5OTlWj1PW8xR/jrK4ubnBzc2t3ONEREpV1W1ulKQqeySSNU4NqRlZg7CAgAAEBARU677mv/6nF59DBRTN69q/fz+++uqrUveJjIzE3r17MXnyZOm2PXv2SEFceHg4goKCsHfvXinoysvLQ1JSEiZMmCA9Rm5uLo4cOYJOnToBAPbt2wez2YyuXbtKbV555RVp0YDleVq1alXuUCQRkVoZDAYcPgyYzdZftCYTkJRkwNWrWmRn36PIIUo1B4+1oTqLnhhg1YBQgcOHD4vVq1eLY8eOifT0dLF3717RvXt3ERERIW7dumXV9tVXXxUhISHizp07pR7np59+EvXq1RNvvfWWOH36tJg3b55wcXERv/32m9Rm8eLFwsfHR3z55ZfixIkT4sknnxTh4eHi5s2bUpuYmBjRoUMHkZSUJA4ePChatGghhg0bJh3Pzc0VgYGBYvjw4eLkyZPik08+ER4eHuKdd96p0us2Go0CgDAajVW6HxFRXcnOzhbz588XU6a8LTQakwCEdNFoTOLRR7+VbtdqhXjvPbl7bG3fPmHVZ8tl/365eyaf7OxskZGRUe4lOztb7i4qnq3f36oIwk6cOCF69eolfH19hZubmwgLCxPjx48Xly5dsmpnMplE48aNxT//+c9yH2vr1q2iZcuWwtXVVbRt21bs2rXL6rjZbBZz5swRgYGBws3NTfTp00ekpKRYtTEYDGLYsGGiQYMGwtvbW4wePVrk5+dbtTl+/Lh46KGHhJubm2jUqJFYvHhxlV83gzAiUrqMjAwxf/58MX/+fNG//5dSwFUyALNcdDohLl6Uu9dFsrOzxa+/Zgqt1lyij2bx66+ZpYKNixeLgjal9J+Uy9bvb40QZcxsJ0XIy8uDXq+H0WiEt7e33N0hIirl8uXLVoWojca729zk5Phh06bSC6Q++8yAnj3lHcYqvj3P0aOlN57u2PEYgLvb83DeGFWFrd/fqipRQUREylZymxuNxgwhtFbXf/ppE06ezC93/8G6YOvG04WFhZw3RrVGNdsWERGRuuj1+ejXLwEaTVH0YskyWYIcJe0/qNfnIzz8fJn7JJ49ezcAszCZgHPn6qhz5LCYCSMih8biofKqKMukBkXDSVpotQ1hNmuk23U6AS+vLBgM9Rx+dSD/D9UeZsKIyGGpuXioI6koy6R0n376KRIS1qNv351WGb3Y2J1ISFiP+Ph4GAwGmXtZe/h/qHYxE0ZEDsdgMCA9/Q7GjbubvSiaxyNw//1ZCAtz/OwF2Vdl88YcEefC1T4GYUTkUCyr3tLSwmA2W6/MM5k0WL36G4SHn5d1UrgjcaZNmEsuOqgLcg4FVjQXjkGYfTAIIyKHYslK+PoaylyZ5+ubY9WOaqasbWuys7OxY8cOGXvlGOQui9GiRdHzFg/EdDqgefO664Oj45wwInJIla3MI/vx8/Oz2pzZ399f7i5VSukZvPKGAutqg3GDwQCd7jKWLs2FTldUTlSnE1iyJBc63WWHngdXl5gJIyKHpfaVeWpVnf0H65otG0/n5uZi69atddiru+QcCixeyBYAXnzxbgHea9fyYanNyyH9mmMQRkQOTY55PM7OlgDH1dVV9i9wuZ+/PAaDAd7ed2Qri1Hy3628/0Mc0q85BmFERGR3Sg1wlK54FqpvX+vtlGJjE5CQYL2dEqkbgzAiIqIyyDGsWpXtlEj9GIQRERGVQQnDqhxOd2wMwkiVuI0GlUcNk8JJPTjkR7WJQRipjty1c0jZlJC9IPvjDy9yRAzCSFW4jQbZggGWY+EPL3JULNZKqlJR7RyLS5eA/fvrrqghEdUeuYuWqlVNPgc5pF93mAkjValsGw3+YiZ74hCYvAwGAw4fBsxm68ymyQQkJRng7s6sZ1lq+jnIIf26w0wYqUZl22j89ttV/mImu9mwAQgNBXr3Lvpzwwa5e+RcLPWyDh3aJG09ZaHRmPHTT5sQHx/vcNvn1DQLZa/MYcmtqEpeGIDZBzNhpAq2bKORlhYGs3mk1f3qapsPciyceyg/SxbGsgdo8aKlxfcAdbR6WTXNQsm53RFVHYMwUgVbttHw9TVAqxUltvm4O1RJZAsOgSmPs+0BWpP3V2VTNkhZOBxJDkOvz8fcuX+UOVTpaEMWVDucdQhMDfT6fISHn3f4AKwmKpuywfet8jATRg5mQ5lDlQD3WqPKOesQGKmfLVM2AH4OKg2DMHI45W3zwS9OqgpnGwIjdbNlykZZ7UheDMKIyOnYWnqC+/YRUW3inDAiciosPUFESsEgjIicBquvqwertpMz4HAkqQI/aKmmbCk9QcrBqu3kDBiEkSpU9IGcnZ2NHTt2yNArspXc2/9YVo4ZjV7QaCZDiLuDAJbSEydP5mPIkCF13zkqFwMscnQMwkg1+IGsTkrYz9PW0hNCCJsej5lZIrIHBmGkepw7olxK3P6notITPj4+HAIjVeLnoDoxCCPV49yR2lOTYUQlb/9jKT1hNHohLS0Mvr4GKRjj+4TUiJ+DFZN7SkR5GISRQ6jOB4tS/1MqRU2GEW2dgyVn9e6jRzuUGpYkUjNnDbAqo4QpEeVhiQpySqwVVbGalnIoOQfLsg+jUrb/MRq9pAAMAITQYufOvsjI4EcikSNRelkaZsLI6ShxnpKS2HsYUYnb/+Tk+Fll54CiQOz48esICzMwo0DkIM6evftZb2EyAefOKePznj/7yOlU9J/S2VmGEQ8d2iRlrywsw4jx8fEwGAxVely9Ph/h4ecVEYABgK+voczXd/LkF9V6fUSkTC1aFA1BFqfTAc2by9OfkhiEkVMxGAzw9r4Crda6FIFOJ+DldcXpv3yVPoxYXSVXhDna6yOisjVuXDQHTKcruq7TAe+8o4wsGMDhSHIiliwPAPTtaz0pOzY2AQkJxwBA1sniSqLEYcTqsqwcy8jIkAr7OtLrI6LSDAYDCgsL8cQTQFKSFunp9RAWdgchIWZcvqyM1aIMwshpFM9uVPQFzCzIXZZSDo7Az8+v1L+tI70+Irqr+I/u4k6etL4u949uBmFOzNlLNPALmIjIMdn6Y1ruH92cE+akWKKBahOrdxMRVY6ZMCfEEg1U21i9m4iocgzCnJDS66aQY2CARURUMQ5HOiGl100h+Tj6MKKjvz4iUhdmwpyMwWCATleIpUvdMXOmHiaTBjqdwJIlRuh0N2EwcIjImTn6MKKjvz4iUhcGYU6k5JLdF1/0kko0XLuWj3ffLbpd7iW7tYVZENs44r99cY7++ki9nH3FujNiEOZEbK2RJPeS3drCLAgRKdWGDXcXTGm1RVXex46Vu1fqpZYf3QzCyKkwwCIipeGKdftTy49uBmFEJBsOv5CzMxgMOHwYMJutgwGTCUhKMsDdnT8eq0sN542rI4nI7i5dAvbvL/qzPCwYTM7OMk/30KFN0mbyFhqNGT/9tAnx8fEwGAwy9ZBqG4MwIrIrW4Kr8oZfKgraiByNZahMr89Hv34JUiCm0ZjRr1+CNGfXUefpEocjiciObJnbwuEXotI6djyGiIhz0op17mvrHBiEEZFd2BJcAUB8fDyMRi9oNJMhxN1kvGX45eTJfIctk0JUkfJWrJPj4nCkE1HLkl1SH1vntmRlZQHg8AsREcBMmFNRy5JdUp+Sc1t27uwLIbSlgqs7d+5I9+HwS93hKlQiZWIQ5mQYYFFtq0pwxeGX2scioETKZXMQlpeXZ/ODent7V6szROQYGFzJz2AwID39DsaNawizWQPAslBC4P77sxAWVo8/yohkZnMQ5uPjA41GU2EbIQQ0Gg1MJlONO0ZERNVjmaOXlhYGs3mk1TGTSYPVq79BePh5LoCQmTPN0+WQeNlsDsL2799fm/0gIiI7sczR8/U1QKMxl1qF6uubY9WO5OEs83Q5JF4+m4OwRx55pDb7QUREdlbZQgmSn9oDrMpwX8yKVXtifm5uLjZs2IDTp08DANq2bYsxY8ZAr9fbrXNE5FhcXFxsaucIwy9KwVWoJKezZ+8GYBYmE3DuHIMwoJpB2K+//oro6Gi4u7ujS5cuAIBly5Zh4cKF+O6779CxY0e7dpKIlM3WoCkgIMAphl+UhgslSA4GgwHe3neg1d5dHAIAOp2Al1cWDAYuDqlWEDZlyhT0798f//73v1GvXtFD3LlzB8899xwmT56MH3/80a6dJCJ5VTap1lnmtsiBE5pJjSyLQwCgb98OVkPisbEJSEg4BgBOvzik2pmw4gEYANSrVw8zZsxA586d7dY5IpKfrZNqnfmD1N4MBgMKCwuxZYs7ZszQw2zWQKsVWLrUiKefvsmAlhSv+A+yiobEnX1xSLWCMG9vb1y4cAGtW7e2uv3ixYvw8vKyS8eISF6sMyUPSwbBaPTCihWTIYTl3Gswfbo3/vjjfej13F+T1IVD4mWr1t6RQ4YMwdixY/Hpp5/i4sWLuHjxIj755BM899xzGDZsmL37SER1zBIIrF6922ouB3C3zlR8fDwMBoNMPXRclsxATo6fVWkJABBCi5wcX6t2ZXGm+lNEalatIOytt97CwIEDMWLECISFhSEsLAyjRo3C4MGDsWTJEnv3EQDQv39/NG3aFPXr10dwcDCGDx+OjIwMqzbffvstunXrBi8vLwQEBGDQoEFIT0+3anPgwAF07NgRbm5uaN68OTZu3FjqudasWYOwsDDUr18fXbt2xc8//2x1/NatW5g4cSL8/PzQoEEDDBo0CFeuXLFqc+HCBcTGxsLDwwMNGzbE9OnTrfbNI1KyknWmimOdqbpR2bmviGWO3rhx48q9MJNGJL9qBWGurq5YuXIlrl69iuTkZCQnJyMnJwfLly+Hm5ubvfsIAOjVqxe2bt2KlJQUbN++HampqRg8eLB0PC0tDU8++SR69+6N5ORkfPvtt8jOzsbAgQOt2sTGxqJXr15ITk7G5MmT8dxzz+Hbb7+V2nz66aeYOnUq5s2bh6NHj6J9+/aIjo5GVlaW1GbKlCnYuXMntm3bhh9++AEZGRlWz2MymRAbG4vCwkIcOnQImzZtwsaNGzF37txaOTeO6NIlYP/+oj9JPpY6U5ZggHWm6k5Nz72fnx+Cg4PLvTAAI5KfRggh5O5EdXz11VcYMGAACgoK4OLigs8++wzDhg1DQUEBtNqi2HLnzp148sknpTYzZ87Erl27cPLkSelxhg4ditzcXOzevRsA0LVrVzzwwAPSqg6z2YwmTZpg0qRJmDVrFoxGIwICArBlyxYpCDxz5gzuvfdeJCYmolu3bvjmm2/Qt29fZGRkIDAwEACwfv16zJw5E3/++afNQwB5eXnQ6/UwGo1OtR8nqyvL7/Lly3j33Xel60ajV5mTaseNG4fg4GA5uuiweO7JEZR8H5fHUd/Htn5/VysTduvWLbz55pt44okn0LlzZ3Ts2NHqUttycnKwefNmdO/eXSr+2KlTJ2i1WnzwwQcwmUwwGo346KOPEBUVJbVJTExEVFSU1WNFR0cjMTERQNHQypEjR6zaaLVaREVFSW2OHDmC27dvW7Vp3bo1mjZtKrVJTExEu3btpADM8jx5eXn4/fffa+GMOI7yqiszI1YzNc0s6vX5CA8/zwyYDHjuiRxXtVZHjh07Ft999x0GDx6MLl26VLqxt73MnDkT8fHxuHHjBrp164aEhATpWHh4OL777js89dRTeOGFF2AymRAZGYmvv/5aapOZmWkVGAFAYGAg8vLycPPmTVy9ehUmk6nMNmfOnJEew9XVFT4+PqXaZGZmVvg8lmPlKSgoQEFBgXQ9Ly+vslPicFhd2f6YWSSiusbFIbapVhCWkJCAr7/+Gg8++GCNnnzWrFmVTuQ/ffq0VApj+vTpGDt2LM6fP48FCxZgxIgRSEhIgEajQWZmJp5//nmMHDkSw4YNQ35+PubOnYvBgwdjz549dRYo1sSiRYuwYMECubshG1ZXti+WmCAiubCAs22qFYQ1atTILvXApk2bhlGjRlXYplmzZtLf/f394e/vj5YtW+Lee+9FkyZNcPjwYURGRmLNmjXQ6/VYunSp1P4///kPmjRpgqSkJHTr1g1BQUGlVjFeuXIF3t7ecHd3h06ng06nK7NNUFAQACAoKAiFhYXIzc21yoaVbFNyRaXlMS1tyjJ79mxMnTpVup6Xl4cmTZpUeH4cBasr25flfKalhcFsHml1zFJiIjz8PM9nJeSoVs8MAjkKfrZUrlpB2Ntvv42ZM2di/fr1CA0NrfaTBwQEICAgoFr3Nf81ZmUZvrtx44Y0Id9Cp9NZtS05PAkAe/bsQWRkJICiD7VOnTph7969GDBggHTfvXv3Ii4uDkDR3DMXFxfs3bsXgwYNAgCkpKTgwoUL0uNERkZi4cKFyMrKQsOGDaXn8fb2Rps2bcp9TW5ubrW2ulTpWF3ZvkqWmCheb8qWEhPOHAjIXa2eGQQi51GtIKxz5864desWmjVrBg8PD2niu0VOTuV1bKoiKSkJv/zyCx566CHcc889SE1NxZw5cxARESEFPrGxsVi+fDlee+01aTjyn//8J0JDQ9GhQwcAwPjx4xEfH48ZM2ZgzJgx2LdvH7Zu3Ypdu3ZJzzV16lSMHDkSnTt3RpcuXbBixQpcv34do0ePBgDo9XqMHTsWU6dOha+vL7y9vTFp0iRERkaiW7duAIDHHnsMbdq0wfDhw7F06VJkZmbi1VdfxcSJE502yKoqVle2D0uZg+KZRVvKHDhrIKCUavWOdl6JqGzVCsKGDRuGP/74A2+88QYCAwNrfb6Vh4cHduzYgXnz5uH69esIDg5GTEwMXn31VSmo6d27N7Zs2YKlS5di6dKl8PDwQGRkJHbv3g13d3cARZP3d+3ahSlTpmDlypVo3Lgx3nvvPURHR0vPNWTIEPz555+YO3cuMjMzcf/992P37t1WE+2XL18OrVaLQYMGoaCgANHR0Vi7dq10XKfTISEhARMmTEBkZCQ8PT0xcuRIvPbaa7V6nojKUlFmsSLOGAjYUq1er89nRpaomrghvbVqBWGHDh1CYmIi2rdvb+/+lKldu3bYt29fpe2GDh2KoUOHVtimZ8+eOHbsWIVt4uLipOHHstSvXx9r1qzBmjVrym0TGhpaauiTyF6q+kHGzGLVVDaMS0RVx5XapVWrTljr1q1x8+ZNe/eFiGywYQMQGgr07l3054YNcvfI8XCnACL7Yg3IslUrE7Z48WJMmzYNCxcuRLt27UrNCXOm6u5EdYUlJ+pWdYdxiciawWDA4cOA2Wz9+WQyAUlJBri7O+f0B6CaQVhMTAwAoE+fPla3CyGg0WhgMplq3jMikrDkhDw4jEtUM8UXu2g0k0sN8f/00yacPFn7i12UqlpB2P79++3dD3JyzlISobqTUqtacsJZzicRKZvlM6myldrOutilWkHYI488YlO7//u//8Nrr70Gf3//6jwNORFnKIlgj0mptpaccIbzSUTqwiH+0qoVhNnqP//5D15++WUGYWQTRw0I7D2Xy9YPMkc9n7WJGUSi2sUhfmu1GoQJIWrz4YkUr7bmcvGDrHYwg0hEdalWgzAiZ1fT7YOo7tk7wLJsgwQAGRlapKXVQ3j4HYSEFK3VZ1BH5LwYhBHVgepuH0TqVnxj+qNHO5T69+/YkRvTEzkzBmFEdYSTUp2PJQNmNHpJARhQtAXSzp19ERFxjtsgETkxBmFEdai6c7k4YVzdKtuLkshR8bOrYrUahD377LOsnk9kB5wwrlzF53yVlJ2dDYB7UZIy1cVm2vzsqli1g7Dc3Fz8/PPPyMrKgtmyGdRfRowYAQBYt25dzXpHRBJn/ZBSsuJzvoCiYcecHD/4+hqsMlycE0hKYfnRsGWLO2bM0MNs1kCrFVi61Iinn75ZKwERP7vKV60gbOfOnXjmmWdw7do1eHt7Q6PRSMc0Go0UhBER1aaKslBA7f/CLv7cFU28BzgnkORXfAuhFSsmQwhL3UINpk/3xh9/vA+93nm3EJJDtYKwadOmYcyYMXjjjTfg4eFh7z4ROQzOh6g9tmah6uILpbKJ9xas70ZysvxoqGyOoqMvFKmLYVhbVSsI++OPP/Diiy8yACOqBOdD1B5bs1B18YXCifekJs48R9Ee28fZk7byJqVFR0fj119/tXdfiBySn58fgoODy70wAKuZ8rJQRqNXnfXB8qVWXFW+1JgJpbpkmaNoec9qNGZERibK3Kvad+nS3QAMsGwfV3S7XGzOhH311VfS32NjYzF9+nScOnUK7dq1g4uLi1Xb/v3726+HREQVUEIWqrKJ9wMHDix3D11mQkkOljmKSUldcehQJA4dehCJiZHo1y8B2dnZDve+NBgMOHwYMJutX5PJBCQlGeDuLs8CApuDsAEDBpS67bXXXit1m0ajgclkqlGniEj96mrSvFKGViqaeO/v74/g4OA67Q+RLRITI2EZFLs7l3GFQ03QL74gQaOZXOqz4qefNuHkSXler81BWMkyFERE5Sk5ab489vjQU1L5B068JzVxlgn6ltdR2WeFHK+3WhPzP/zwQwwZMgRubm5WtxcWFuKTTz5hiQoiJ1fyw6y8lYv2+tCTq/wDV7+Smikli1yXlFYqplpB2OjRoxETE4OGDRta3Z6fn4/Ro0czCCMiSWX1s+xFjiwUV7+SEhQf+s/I0CItrR7Cw+8gJKRoBMvyHiz5Y0BJWeS6pKSMdbWCMCGEVYFWi0uXLkGv19e4U0TkGGytn1UdSslCMcAiORUf+q/oB49l6D8uLg4ZGRnYsWMHAOVlhpxNlYKwDh06QKPRQKPRoE+fPqhX7+7dTSYT0tLSEBMTY/dOEpE61ebKRWahiO4O6Vf2g8fSzs/Pr9T/GSVlhpxNlYIwywrJ5ORkREdHo0GDBtIxV1dXhIWFYdCgQXbtIBGpV23POWGApWxybyvlTJRQqoWqrkpB2Lx58wAAYWFhGDJkCOrXr18rnSIix+Csc06oblfIykkpgaYzTrJ3BNWaEzZy5EgARWnQrKysUuUrmjZtWvOeEZFDqKs5J0r5MqQitq58VXMZBCXtX1qVHzxKmU9ZV5T8eqsVhJ09exZjxozBoUOHrG63TNhnsVYi51bWKqyafBlUxlmyLmpWXoCiZkravxSw/QePs82nVPLrrVYQNmrUKNSrVw8JCQkIDg4uc6UkETmvuv7Qq+u6ZFQ1dVWmRC61uQq4qmydZO8oAZatlPp6qxWEJScn48iRI2jdurW9+0NEDkKuDz1H/8JXGyUFKLWFk+KpurSVNymtTZs2yM7OtndfiIhqpLwvfKPRS+aeOa+KAhRHYZkUX1xdTYpX8nwnqly1MmFLlizBjBkz8MYbb6Bdu3ZwcXGxOu7t7W2XzhERVQUzEsrjDKv25FwFrOT5TlS5agVhUVFRAIDevXtbzQfjxHwikpMzfOGrjbOUKZGz8jwDLPWqVhC2f/9+e/eDiKjGnOULXw2KD39VFKA40jAZK89TVVUrCHvkkUfw3//+F++88w5SU1Px2WefoVGjRvjoo48QHh5u7z4SEdmMe+EpgzMMk3E+FtVUtYKw7du3Y/jw4XjmmWdw7NgxFBQUAACMRiPeeOMNfP3113btJBFRReq6LhnZRs0Bli2cIdCk2qURQoiq3qlDhw6YMmUKRowYAS8vLxw/fhzNmjXDsWPH8PjjjyMzM7M2+up08vLyoNfrYTQaudiBqBKsmE9ESmHr93e1MmEpKSno0aNHqdv1ej1yc3Or85BERDXCAIuI1KZaQVhQUBDOnTuHsLAwq9sPHjyIZs2a2aNf5KSYzSAiImdRrSDs+eefx0svvYT3338fGo0GGRkZSExMxMsvv4w5c+bYu4/kJJS0GS4REVFtq1YQNmvWLJjNZvTp0wc3btxAjx494ObmhpdffhmTJk2ydx/JSShtM1wiorrAEQDnVa0gTKPR4JVXXsH06dNx7tw5XLt2DW3atEGDBg3s3T9yQs6w1xwREVB6BKA8HAFwTNUKwixcXV3Rpk0be/WFCAC3niEi51EyA1beNAyOADimGgVhRLWhsq1nSm4ez1Q9ETmCiqZhkGNiEOYk1DTnoLKtZ3bs2FHqPkzVE5GacRqGc2IQ5gTUOOegqlvPMFVPRGrGaRjOiUGYE1DrnIOytp4pr+9ERGpW2TQMckwMwpyMkuccVLavn5L7TkRUE5VNwyDHxCDMiSh9zkFZm+FmZ2djx44diu87EVFNVXUaBqkfgzAnooY5B+XNSVND34mIqqrkCEBZ0zDKakeOgUGYE1HznAM1952IqDxljQCUpKTV62RfDMKciJrnHKi570REFWGA5bwYhDkZtc05KJ6Cr6jvTNUTEZHaMAhzAmqec8BUPREROSqNEELI3QkqW15eHvR6PYxGI7y9vWv0WGqqmE9ERKRmtn5/MxPmJBhgERERKYu28iZEREREZG8MwoiIiIhkwCCMiIiISAacE0ZENcaFH0REVccgjIhqxGAwID4+vtJ2cXFxDMSIiIrhcCQR1UhFGbDqtCMichbMhBERESkUh/orV/wcZWRokZZWD+HhdxASYgag7HPEIIyIiEiBONRfueLn6OjRDqX2F+7Y8RgA5Z4jBmEk4S8uIiLl4FB/5Syv3Wj0kgIwABBCi507+yIi4hz0+nzFniMGYQSAv7hIefijgMia0eiFnBw/+Poaytz/15nl5PhJAZiFEFrk5Pgq+lwxCCMA/MVF9mOPLwr+KCCyVtFQGwG+vgZoNGarQEyjMcPXN0fGXlVONasj+/fvj6ZNm6J+/foIDg7G8OHDkZGRYdVm69atuP/+++Hh4YHQ0FC8+eabpR7nwIED6NixI9zc3NC8eXNs3LixVJs1a9YgLCwM9evXR9euXfHzzz9bHb916xYmTpwIPz8/NGjQAIMGDcKVK1es2ly4cAGxsbHw8PBAw4YNMX36dNy5c6fmJ4JIwY4e7YAVKyZj06aRWLFiMo4e7VCtx+GPAqK7yhtqMxq9ZO6Zcuj1+ejXLwEaTdFkfEugquQsGKCiIKxXr17YunUrUlJSsH37dqSmpmLw4MHS8W+++QbPPPMMxo8fj5MnT2Lt2rVYvny51a/ptLQ0xMbGolevXkhOTsbkyZPx3HPP4dtvv5XafPrpp5g6dSrmzZuHo0ePon379oiOjkZWVpbUZsqUKdi5cye2bduGH374ARkZGRg4cKB03GQyITY2FoWFhTh06BA2bdqEjRs3Yu7cubV8lojqnqurK4DKvygs7YioaioaaqO7OnY8hsmTV2DkyI2YPHmFKjKFqgnCpkyZgm7duiE0NBTdu3fHrFmzcPjwYdy+fRsA8NFHH2HAgAEYP348mjVrhtjYWMyePRtLliyBEAIAsH79eoSHh+Ptt9/Gvffei7i4OAwePBjLly+XnmfZsmV4/vnnMXr0aLRp0wbr16+Hh4cH3n//fQCA0WjEhg0bsGzZMvTu3RudOnXCBx98gEOHDuHw4cMAgO+++w6nTp3Cf/7zH9x///14/PHH8frrr2PNmjX85U4Ox8/PD3FxcejefWSZXxQPPjiSw4ZENWAZaitODUNtctDr8xEefl7xGTAL1QRhxeXk5GDz5s3o3r07XFxcAAAFBQWoX7++VTt3d3dcunQJ58+fBwAkJiYiKirKqk10dDQSExMBFA1tHDlyxKqNVqtFVFSU1ObIkSO4ffu2VZvWrVujadOmUpvExES0a9cOgYGBVs+Tl5eH33//vdzXVVBQgLy8PKsLkRr4+fmhWzc/aEt8ouh0QNeufgzAiGpArUNtVDlVTcyfOXMm4uPjcePGDXTr1g0JCQnSsejoaEyZMgWjRo1Cr169cO7cObz99tsAgMuXLyMsLAyZmZlWgREABAYGIi8vDzdv3sTVq1dhMpnKbHPmzBkAQGZmJlxdXeHj41OqTWZmptSmrMewHCvPokWLsGDBgiqckdrDVThUVY0bA+++C7zwAmAyFQVg77xTdLvacaUmyaH4EH7HjscQEXEOOTm+8PXNsfpcduahfltfu1LPkaxB2KxZs7BkyZIK25w+fRqtW7cGAEyfPh1jx47F+fPnsWDBAowYMQIJCQnQaDR4/vnnkZqair59++L27dvw9vbGSy+9hPnz50Nb8ue5Qs2ePRtTp06Vrufl5aFJkyZ13g+uwqHqGjsWiI4Gzp0Dmje3XwAm548CrtQkuViG+vkDoHxqP0eyBmHTpk3DqFGjKmzTrFkz6e/+/v7w9/dHy5Ytce+996JJkyY4fPgwIiMjodFosGTJErzxxhvIzMxEQEAA9u7da/UYQUFBpVYxXrlyBd7e3nB3d4dOp4NOpyuzTVBQkPQYhYWFyM3NtcqGlWxTckWl5TEtbcri5uYGNze3Cs9HbalscrWl4J1Sf02QcjRubN/sl9w/CrhSk+Sk1OBBSdR8jmQNwgICAhAQEFCt+5rNRWPjBQUFVrfrdDo0atQIAPDxxx8jMjJSeo7IyEh8/fXXVu337NmDyMhIAEWBSKdOnbB3714MGDBAep69e/ciLi4OANCpUye4uLhg7969GDRoEAAgJSUFFy5ckB4nMjISCxcuRFZWFho2bCg9j7e3N9q0aVOt11vbLL8m9u8Hli8ve3J1z57qfrOTevBHgWPhcC5R2VQxJywpKQm//PILHnroIdxzzz1ITU3FnDlzEBERIQU+2dnZ+Oyzz9CzZ0/cunULH3zwgVRCwmL8+PGIj4/HjBkzMGbMGOzbtw9bt27Frl27pDZTp07FyJEj0blzZ3Tp0gUrVqzA9evXMXr0aACAXq/H2LFjMXXqVPj6+sLb2xuTJk1CZGQkunXrBgB47LHH0KZNGwwfPhxLly5FZmYmXn31VUycOFG2TJctiiZXA1otYC62EOfu5Gr5+kbORY0/CrKzs6W/M6i4i8O51cPA1TmoIgjz8PDAjh07MG/ePFy/fh3BwcGIiYnBq6++ahXUbNq0CS+//DKEEIiMjMSBAwfQpUsX6Xh4eDh27dqFKVOmYOXKlWjcuDHee+89REdHS22GDBmCP//8E3PnzkVmZibuv/9+7N6922qi/fLly6HVajFo0CAUFBQgOjoaa9eulY7rdDokJCRgwoQJiIyMhKenJ0aOHInXXnutls9UzTny5GpSF7X9KNixY4fVdQYVRTicW3UMXJ2HRliKaJHi5OXlQa/Xw2g0wtvbu06f+9Il+0+uJqqODRtK/ygYO7bunv/y5ct49913q3y/cePGITg4uBZ6pC62nj+er7t4ztTP1u9vVWTCqO7Ze3I11YwzD03U1orL6mL5FiKyFwZhRArHoQnl/CiQe6UmOScG/o6LQRiRwnFOjbxsXalJVBsY+Ds2dVQxJSKSSWV7Y3IT5aoxGr2QlhYmbexO5Ssv8Oe5cxzMhBERVaK8lZrcRLlqmNWpmpwcv3IDf2ZfHQMzYURENrCUb9HpihaUW4IIAMzsVKCy4VzLeWPh3dJ8fQ3Spt0WDPwdCzNhREQ2GjsW6NIlF2+//SV8fXOQmtocK1ZMLjOz4wxBha2rdtVWeFdulveOXp+Pfv0SSmUPLVkwZ3iPOTrWCVMwOeuEkXKwZpDyGAwGpKffQZcuDWE2a6TbdTqBpKQshIXVc/igoqqrdi9dAkJDSxfeTU9XxspXpSke4GZkaJGeXg9hYXcQElJ0Ah25LI0jYJ0wIgfF5ery8/Pzw4kT1gEFAJhMGuTnByqumn9tqOqqXe7GUTXFA6zgYKBTJxk7Q7WGQRiRwhUfcqhoYjOHJupWixZlb6nUvLl8fVI6pRXeJZIbgzAihbPMqUlPv4PXXmsIIYqGv4TQYteufpg7t6tTDH8pDTM71aOUwrtESsAgjEgFOPylTMzsKIszb+9F6sQgjEglOPylTMzsKAO39yI1Yp0wIpW4W6eq6DqHv0hJ5K6Ez+29SI2YCSNSEQ5/kRKxEj5R9TAII1IZDn+REti6sTlX7RKVj0EYERFVmdIr4bOeHqkBgzAiIqqW8jY21+mArl39ZFu1y+FRUgsGYUREKqSUcgxKq5dW2fAokZIwCCMiUhmllWNQ0oKRnBw/KQCzEEKLnBxfBmGkOAzCiIhURonlGOReMGJZAODra4BGY7YKxDQaM3x9c6zaESkBgzAiIlKFyoZgn332WXh4eKBRozzMnKmHyaSBTiewZEkenn56GCvmk+IwCCMiIsWryhDstGk+GDLEMjyqQePGPgB8aruLqqWU+YXOiEEYEREpXlWHYOUeHlULpc0vdDbctoiISOXk3jKI1KtkcFvee4nbPdUOZsKIiFSMNbHIXvheqnvMhBERqVR5NbGcISPG7J99OfN7SU7MhBERqYylzEJlNbEctRwDMzb2x/pq8mAQRkSkMpZ9G9PT7+CjjwTMZo10TKcTmDTpcYSF1XPIidSsiF87KquvRrWDw5FERCrk5+eHTp0C8e67Guh0RbcVbRmkQadOgQ4ZgAEVZ2yo+vT6fPTrlwCNpmgTUEuGkYFt7WImjIhIxZS0ZVBtYkX82tex4zFERJxDTo4vfH1zGIDVAQZhRFRlLO6oLM5QE8syBFtYWMiK+HZUMmjV6/PLDL4Y3NYOjRBCyN0JKlteXh70ej2MRiO8vb3l7g4RABZ3JGW4dMnxs391hT+q7M/W729mwoioSpS4eTQ5H2fI/tUVBljyYRBGRJUq/ks5Oztb5t4QETkGBmFEVCFbhx+JiKhqWKKCiCrEYUUiotrBIIyIaoTbxxARVQ+HI4mo2rh9DBFR9TETRkTVwg1/iYhqhpkwIqoSo9ELOTl+uH7dwyk3jyYishcGYURks+LDj4AZgADgPJtHExHZE4MwIrJJyeHHotkMZmg0AkJoodMJafNoInthNXdyZAzCiKhClmHFnBy/UsOPgBaDBm2Fp+cNTJv2JNq1u6fuO0gOi1tkkaNjEEZEFbJsnJyefgcffSRgNlsPP86a9chfw48MwMi+SmbALPMRfX0NVptMs5YdqRWDMCKqlJ+fH/z8gHffBV54ATCZAJ0OHH6kOsNyKOSIGIQRkc3GjgWio4Fz54DmzbmBMtWN8sqhREScs8qIEakNgzByWJzQWzsaN2bwRXWrrPmIxcuhEFXHpUvA2bNAixbyfaYxCCOHxAm9RI7D19cAjcZsFYhpNGb4+ubI2CtSsw0bgHHjALMZ0GqLplqMHVv3/WDFfHJItk7U5YReIuXT6/PRr18CNBozAEhzwpgFo6oyGAw4cuQKxo0TMBe9nWA2Ay+8IHDkyBUYDIY67Q8zYeQUyltVRUTq0LHjMUREnENOji98fXP4/5iqzDJCkpYWBrN5pNUxk0mD1au/QXj4+TodIWEQRg6Pq6pqjxLmVJDjKrn1lV6fX2bwxS2yyBaWkY/KhrfrcoSEQRg5NK6qsj/LgoctW9wxY4YeZrMGWq3A0qVGPP30TS54ILux1KjjAhuyJ8vwdskf53J8JzAII4fGVVX2ZUnnG41eWLFiMoQoKtxqNmswfbo3/vjjfej1+VzwQHbD9xHVBqUMbzMII4fGVVX2ZclIVBbccsEDESldecPbdYmrI8mhcVVV7bAEt8UxuCUiqhpmwsghFZ+oW1HamRN6q0dJcyqIiNSKQRg5JE7orX1KmVNBRKRWDMLIYTHAqn1KmFNBRGQLW0c+6nKEhEEYEREROTwljpAwCCMiIiKnoLQREq6OJCKbKTGdT0SkVsyEEZHNlJjOJyJSKwZhRFQlDLCIiOyDw5FEREREMmAQRkRERCQDBmFEREREMlBdEFZQUID7778fGo0GycnJVsdOnDiBhx9+GPXr10eTJk2wdOnSUvfftm0bWrdujfr166Ndu3b4+uuvrY4LITB37lwEBwfD3d0dUVFROHv2rFWbnJwcPPPMM/D29oaPjw/Gjh2La9euVbkvRERE5LxUF4TNmDEDISEhpW7Py8vDY489htDQUBw5cgRvvvkm5s+fj3fffVdqc+jQIQwbNgxjx47FsWPHMGDAAAwYMAAnT56U2ixduhSrVq3C+vXrkZSUBE9PT0RHR+PWrVtSm2eeeQa///479uzZg4SEBPz4448YN25clfpCRERETk6oyNdffy1at24tfv/9dwFAHDt2TDq2du1acc8994iCggLptpkzZ4pWrVpJ15966ikRGxtr9Zhdu3YVL7zwghBCCLPZLIKCgsSbb74pHc/NzRVubm7i448/FkIIcerUKQFA/PLLL1Kbb775Rmg0GvHHH3/Y3BdbGI1GAUAYjcYq3Y+IiIjkY+v3t2oyYVeuXMHzzz+Pjz76CB4eHqWOJyYmokePHlZFIqOjo5GSkoKrV69KbaKioqzuFx0djcTERABAWloaMjMzrdro9Xp07dpVapOYmAgfHx907txZahMVFQWtVoukpCSb+1KWgoIC5OXlWV2IiIjIMakiCBNCYNSoURg/frxV8FNcZmYmAgMDrW6zXM/MzKywTfHjxe9XXpuGDRtaHa9Xrx58fX0rfZ7iz1GWRYsWQa/XS5cmTZqU25aIiIjUTdYgbNasWdBoNBVezpw5g9WrVyM/Px+zZ8+Ws7u1bvbs2TAajdLl4sWLcneJiIiIaomsFfOnTZuGUaNGVdimWbNm2LdvHxITE+Hm5mZ1rHPnznjmmWewadMmBAUF4cqVK1bHLdeDgoKkP8tqU/y45bbg4GCrNvfff7/UJisry+ox7ty5g5ycnEqfp/hzlMXNza3UayQiIiLHJGsmLCAgAK1bt67w4urqilWrVuH48eNITk5GcnKyVFbi008/xcKFCwEAkZGR+PHHH3H79m3p8ffs2YNWrVrhnnvukdrs3bvXqg979uxBZGQkACA8PBxBQUFWbfLy8pCUlCS1iYyMRG5uLo4cOSK12bdvH8xmM7p27WpzX4iInNWlS8D+/UV/Ejm1ulknYF9paWmlVkfm5uaKwMBAMXz4cHHy5EnxySefCA8PD/HOO+9IbX766SdRr1498dZbb4nTp0+LefPmCRcXF/Hbb79JbRYvXix8fHzEl19+KU6cOCGefPJJER4eLm7evCm1iYmJER06dBBJSUni4MGDokWLFmLYsGFV6ostuDqSiBzNe+8JodUKART9+d57cveIyP5s/f52mCBMCCGOHz8uHnroIeHm5iYaNWokFi9eXOq+W7duFS1bthSurq6ibdu2YteuXVbHzWazmDNnjggMDBRubm6iT58+IiUlxaqNwWAQw4YNEw0aNBDe3t5i9OjRIj8/v8p9qQyDMCJyJBcv3g3ALBedruh2Ikdi6/e3Rggh5MzEUfny8vKg1+thNBrh7e0td3eISEUuXQLOngVatAAaN5a7N0X27wd69y779p4967w7RLXG1u9vVZSoICIi223YAISGFgU8oaFF15WgRQtAW+JbR6cDmjeXpz9EcmMQRkTkQC5dAsaNA8zmoutmM/DCC8qYBN+4MfDuu0WBF1D055Qp8vaJSE4MwoiIHMjZs3cDMAuTCTh3Tp7+WBgMBly+fBlPPHEZSUlXMH78NZjNAm+9BYSGCqxceU3eDhLJQNY6YUREZF+WIb/igZjcQ34GgwHx8fHSdaPRC++8MxlCaAAAZrMGU6Z4oHfvq2jXjmV8yHkwE0ZE5EDKGvJ75x15J+cXFhZaXc/J8UPJrYuF0OJ//yuRwiNycMyEERE5mLFjgejooiHI5s2VszrSwtfXAI3GbBWIaTRmhIXdkbFXRHWPmTAiIgfUuHFR2QelBWAAoNfno1+/BGg0RZkvjcaMfv0SEBLCTBg5F2bCiIgchMFgKDX0V5yrqyv8/PzqsEfl69jxGCIiziEnxxe+vjnQ6/MBPCB3txRNibXfqGYYhBEROYCSk9/LExcXp5hATK/P/yv4KpKdna2oQFFJNmy4W3pEqy2a9zd2rNy9opricCQRkQOoKANWnXZy2LFjB+Lj42EwGOTuiqJUVvuNG6KrF4MwIiJSFCUHinKoqPabUndHINswCCMiolrl6uoqdxdUrbztnjw9lbs7AtmGQRgREdUqPz8/xMXFYeDAgXJ3RZXKq/127Zoyd0cg23FiPhER1To/Pz8OM1aDZcXrE08ASUlapKfXQ1jYHYSEmJGRoYVW2xBms0ZqL/fuCFQ1DMKIiIgUqLwVrydP3v17374dsGtXP5hMGkXsjkBVwyCMiIhIgWzJHHbseAxz53ZFfn6gIndHoIoxCCMicgC2Tn7nJHnH4+qahVatiiaHXb5suY311tSAQRgRkQOwTH5XcsV8Boq1Y8eOHWXerqTCvFQ2BmFERA5C6V+4aggUHQkXQigfgzAiIqozDLCI7mKdMCIiIiIZMAgjIiIikgGDMCIiIgXiAgXHxzlhREREClTeQobs7OxyV0SSujAIIyIiUiguZHBsHI4kIiJSEdZbcxzMhBEREakI6605DgZhREREKsMAyzFwOJKIiIhIBgzCiIiIiGTAIIyIiIhIBgzCiIiIiGTAIIyIiIhIBgzCiIiIiGTAIIyIiIhIBgzCiIiIiGTAIIyIiIhIBqyYr2BCCABAXl6ezD0hIiIiW1m+ty3f4+VhEKZg+fn5AIAmTZrI3BMiIiKqqvz8fOj1+nKPa0RlYRrJxmw2IyMjA15eXtBoNHJ3p87k5eWhSZMmuHjxIry9veXujqrxXNoHz6P98FzaD8+lfdTGeRRCID8/HyEhIdBqy5/5xUyYgmm1WjRu3FjubsjG29ubHyx2wnNpHzyP9sNzaT88l/Zh7/NYUQbMghPziYiIiGTAIIyIiIhIBgzCSHHc3Nwwb948uLm5yd0V1eO5tA+eR/vhubQfnkv7kPM8cmI+ERERkQyYCSMiIiKSAYMwIiIiIhkwCCMiIiKSAYMwIiIiIhkwCCPZ/Pjjj+jXrx9CQkKg0WjwxRdfWB0XQmDu3LkIDg6Gu7s7oqKicPbsWXk6q3CVnctRo0ZBo9FYXWJiYuTprIItWrQIDzzwALy8vNCwYUMMGDAAKSkpVm1u3bqFiRMnws/PDw0aNMCgQYNw5coVmXqsTLacx549e5Z6T44fP16mHivXunXrcN9990mFRCMjI/HNN99Ix/l+tF1l51KO9ySDMJLN9evX0b59e6xZs6bM40uXLsWqVauwfv16JCUlwdPTE9HR0bh161Yd91T5KjuXABATE4PLly9Ll48//rgOe6gOP/zwAyZOnIjDhw9jz549uH37Nh577DFcv35dajNlyhTs3LkT27Ztww8//ICMjAwMHDhQxl4rjy3nEQCef/55q/fk0qVLZeqxcjVu3BiLFy/GkSNH8Ouvv6J379548skn8fvvvwPg+7EqKjuXgAzvSUGkAADE559/Ll03m80iKChIvPnmm9Jtubm5ws3NTXz88ccy9FA9Sp5LIYQYOXKkePLJJ2Xpj5plZWUJAOKHH34QQhS9B11cXMS2bdukNqdPnxYARGJiolzdVLyS51EIIR555BHx0ksvydcpFbvnnnvEe++9x/ejHVjOpRDyvCeZCSNFSktLQ2ZmJqKioqTb9Ho9unbtisTERBl7pl4HDhxAw4YN0apVK0yYMAEGg0HuLime0WgEAPj6+gIAjhw5gtu3b1u9L1u3bo2mTZvyfVmBkufRYvPmzfD398ff/vY3zJ49Gzdu3JCje6phMpnwySef4Pr164iMjOT7sQZKnkuLun5PcgNvUqTMzEwAQGBgoNXtgYGB0jGyXUxMDAYOHIjw8HCkpqbin//8Jx5//HEkJiZCp9PJ3T1FMpvNmDx5Mh588EH87W9/A1D0vnR1dYWPj49VW74vy1fWeQSAp59+GqGhoQgJCcGJEycwc+ZMpKSkYMeOHTL2Vpl+++03REZG4tatW2jQoAE+//xztGnTBsnJyXw/VlF55xKQ5z3JIIzICQwdOlT6e7t27XDfffchIiICBw4cQJ8+fWTsmXJNnDgRJ0+exMGDB+XuiqqVdx7HjRsn/b1du3YIDg5Gnz59kJqaioiIiLrupqK1atUKycnJMBqN+OyzzzBy5Ej88MMPcndLlco7l23atJHlPcnhSFKkoKAgACi1yufKlSvSMaq+Zs2awd/fH+fOnZO7K4oUFxeHhIQE7N+/H40bN5ZuDwoKQmFhIXJzc63a831ZtvLOY1m6du0KAHxPlsHV1RXNmzdHp06dsGjRIrRv3x4rV67k+7EayjuXZamL9ySDMFKk8PBwBAUFYe/evdJteXl5SEpKshq/p+q5dOkSDAYDgoOD5e6KogghEBcXh88//xz79u1DeHi41fFOnTrBxcXF6n2ZkpKCCxcu8H1ZTGXnsSzJyckAwPekDcxmMwoKCvh+tAPLuSxLXbwnORxJsrl27ZrVL4y0tDQkJyfD19cXTZs2xeTJk/Gvf/0LLVq0QHh4OObMmYOQkBAMGDBAvk4rVEXn0tfXFwsWLMCgQYMQFBSE1NRUzJgxA82bN0d0dLSMvVaeiRMnYsuWLfjyyy/h5eUlzavR6/Vwd3eHXq/H2LFjMXXqVPj6+sLb2xuTJk1CZGQkunXrJnPvlaOy85iamootW7bgiSeegJ+fH06cOIEpU6agR48euO+++2TuvbLMnj0bjz/+OJo2bYr8/Hxs2bIFBw4cwLfffsv3YxVVdC5le0/W6VpMomL2798vAJS6jBw5UghRVKZizpw5IjAwULi5uYk+ffqIlJQUeTutUBWdyxs3bojHHntMBAQECBcXFxEaGiqef/55kZmZKXe3FaescwhAfPDBB1Kbmzdviv/7v/8T99xzj/Dw8BB///vfxeXLl+XrtAJVdh4vXLggevToIXx9fYWbm5to3ry5mD59ujAajfJ2XIHGjBkjQkNDhaurqwgICBB9+vQR3333nXSc70fbVXQu5XpPaoQQovZCPCIiIiIqC+eEEREREcmAQRgRERGRDBiEEREREcmAQRgRERGRDBiEEREREcmAQRgRERGRDBiEEREREcmAQRgRERGRDBiEEREREcmAQRgRUTUUFhbK3YVSlNgnIiofgzAiIgA9e/ZEXFwc4uLioNfr4e/vjzlz5sCys1tYWBhef/11jBgxAt7e3hg3bhwA4ODBg3j44Yfh7u6OJk2a4MUXX8T169elx127di1atGiB+vXrIzAwEIMHD5aOffbZZ2jXrh3c3d3h5+eHqKgo6b49e/bE5MmTrfo4YMAAjBo1Srpe3T4RkTIwCCMi+sumTZtQr149/Pzzz1i5ciWWLVuG9957Tzr+1ltvoX379jh27BjmzJmD1NRUxMTEYNCgQThx4gQ+/fRTHDx4EHFxcQCAX3/9FS+++CJee+01pKSkYPfu3ejRowcA4PLlyxg2bBjGjBmD06dP48CBAxg4cCCqup1vVftERMrBDbyJiFCUecrKysLvv/8OjUYDAJg1axa++uornDp1CmFhYejQoQM+//xz6T7PPfccdDod3nnnHem2gwcP4pFHHsH169fx9ddfY/To0bh06RK8vLysnu/o0aPo1KkT0tPTERoaWmZ/7r//fqxYsUK6bcCAAfDx8cHGjRsBoFp9ql+/fo3OExHZDzNhRER/6datmxSAAUBkZCTOnj0Lk8kEAOjcubNV++PHj2Pjxo1o0KCBdImOjobZbEZaWhoeffRRhIaGolmzZhg+fDg2b96MGzduAADat2+PPn36oF27dvjHP/6Bf//737h69WqV+1zVPhGRcjAIIyKykaenp9X1a9eu4YUXXkBycrJ0OX78OM6ePYuIiAh4eXnh6NGj+PjjjxEcHIy5c+eiffv2yM3NhU6nw549e/DNN9+gTZs2WL16NVq1aiUFSlqtttTQ5O3bt2vcJyJSDgZhRER/SUpKsrp++PBhtGjRAjqdrsz2HTt2xKlTp9C8efNSF1dXVwBAvXr1EBUVhaVLl+LEiRNIT0/Hvn37AAAajQYPPvggFixYgGPHjsHV1VUaWgwICMDly5el5zKZTDh58mSlr8GWPhGRMjAIIyL6y4ULFzB16lSkpKTg448/xurVq/HSSy+V237mzJk4dOgQ4uLikJycjLNnz+LLL7+UJsEnJCRg1apVSE5Oxvnz5/Hhhx/CbDajVatWSEpKwhtvvIFff/0VFy5cwI4dO/Dnn3/i3nvvBQD07t0bu3btwq5du3DmzBlMmDABubm5lb6GyvpERMpRT+4OEBEpxYgRI3Dz5k106dIFOp0OL730klT2oSz33XcffvjhB7zyyit4+OGHIYRAREQEhgwZAgDw8fHBjh07MH/+fNy6dQstWrTAxx9/jLZt2+L06dP48ccfsWLFCuTl5SE0NBRvv/02Hn/8cQDAmDFjcPz4cYwYMQL16tXDlClT0KtXr0pfQ2V9IiLl4OpIIiKUvRqRiKg2cTiSiIiISAYMwoiIiIhkwOFIIiIiIhkwE0ZEREQkAwZhRERERDJgEEZEREQkAwZhRERERDJgEEZEREQkAwZhRERERDJgEEZEREQkAwZhRERERDJgEEZEREQkg/8PWOYDR7Ixe24AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYvBJREFUeJzt3XlcVOXiBvBnGNmFQRZZXABxN3PBVKxcSfCi5lVvauZuplcsl9xurpW55pZbi1umlSYtopnmUtdEMhTNjWv8UPMqGhADggIy5/cHd04MyzDADOecmef7+fAJ5rwz885xmnnOu6oEQRBARERERDXKTuoKEBEREdkihjAiIiIiCTCEEREREUmAIYyIiIhIAgxhRERERBJgCCMiIiKSAEMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiMmrHjh1QqVS4ceOG1FUhsioMYUQkubNnzyI6OhqtWrWCq6srGjZsiBdeeAH/+c9/SpXt3r07VCoVVCoV7Ozs4O7ujmbNmmHEiBE4evRopZ73wIED6NatG+rWrQsXFxc0atQIL7zwAg4fPmyul1bKO++8g6+++qrU7adPn8aiRYuQmZlpsecuadGiReK5VKlUcHFxQcuWLTFv3jxkZWWZ5Tn27NmDtWvXmuWxiKwNQxgRSW758uXYv38/evXqhXXr1mHChAn48ccf0b59e1y6dKlU+fr162PXrl34+OOPsXLlSvTv3x+nT59G7969MWTIEBQUFFT4nKtWrUL//v2hUqkwd+5crFmzBoMGDcL169fx2WefWeJlAjAewhYvXlyjIUxv8+bN2LVrF1avXo3mzZtjyZIliIyMhDm2FmYIIypfLakrQEQ0ffp07NmzBw4ODuJtQ4YMQevWrbFs2TJ88sknBuU1Gg1eeuklg9uWLVuGV199FZs2bUJQUBCWL19e7vM9fvwYb731Fp577jkcOXKk1PH79+9X8xXJR25uLlxcXIyWGTx4MLy9vQEAEydOxKBBgxATE4MzZ84gLCysJqpJZJPYEkZEkuvSpYtBAAOAJk2aoFWrVrh69apJj6FWq7F+/Xq0bNkSGzZsgFarLbdsWloasrKy8PTTT5d5vG7dugZ/P3r0CIsWLULTpk3h5OQEf39/DBw4EMnJyWKZVatWoUuXLvDy8oKzszNCQ0PxxRdfGDyOSqVCTk4Odu7cKXYBjh49GosWLcLMmTMBAMHBweKx4mOwPvnkE4SGhsLZ2Rmenp4YOnQofv/9d4PH7969O5544gkkJCSga9eucHFxwb/+9S+Tzl9xPXv2BACkpKQYLbdp0ya0atUKjo6OCAgIwOTJkw1a8rp3746DBw/i5s2b4msKCgqqdH2IrBVbwohIlgRBwL1799CqVSuT76NWqzFs2DDMnz8fp06dQlRUVJnl6tatC2dnZxw4cABTpkyBp6dnuY9ZWFiIvn374tixYxg6dChee+01ZGdn4+jRo7h06RJCQkIAAOvWrUP//v0xfPhw5Ofn47PPPsM//vEPxMbGivXYtWsXxo8fj44dO2LChAkAgJCQELi6uuI///kPPv30U6xZs0ZslfLx8QEALFmyBPPnz8cLL7yA8ePH448//sB7772Hrl274vz58/Dw8BDrm56ejj59+mDo0KF46aWX4Ovra/L509OHSy8vr3LLLFq0CIsXL0Z4eDgmTZqEpKQkbN68GWfPnsVPP/0Ee3t7vPHGG9Bqtbh9+zbWrFkDAKhdu3al60NktQQiIhnatWuXAEDYunWrwe3dunUTWrVqVe79vvzySwGAsG7dOqOPv2DBAgGA4OrqKvTp00dYsmSJkJCQUKrctm3bBADC6tWrSx3T6XTi77m5uQbH8vPzhSeeeELo2bOnwe2urq7CqFGjSj3WypUrBQBCSkqKwe03btwQ1Gq1sGTJEoPbf/31V6FWrVoGt3fr1k0AIGzZsqXc113cwoULBQBCUlKS8McffwgpKSnC+++/Lzg6Ogq+vr5CTk6OIAiCsH37doO63b9/X3BwcBB69+4tFBYWio+3YcMGAYCwbds28baoqCghMDDQpPoQ2Rp2RxKR7Fy7dg2TJ09GWFgYRo0aVan76ltasrOzjZZbvHgx9uzZg3bt2uG7777DG2+8gdDQULRv396gC3T//v3w9vbGlClTSj2GSqUSf3d2dhZ///PPP6HVavHss8/i3Llzlap/STExMdDpdHjhhReQlpYm/vj5+aFJkyY4ceKEQXlHR0eMGTOmUs/RrFkz+Pj4IDg4GK+88goaN26MgwcPljuW7Pvvv0d+fj6mTp0KO7u/vkZefvlluLu74+DBg5V/oUQ2iN2RRCQrqampiIqKgkajwRdffAG1Wl2p+z948AAA4ObmVmHZYcOGYdiwYcjKykJ8fDx27NiBPXv2oF+/frh06RKcnJyQnJyMZs2aoVYt4x+XsbGxePvtt5GYmIi8vDzx9uJBrSquX78OQRDQpEmTMo/b29sb/F2vXr1S4+sqsn//fri7u8Pe3h7169cXu1jLc/PmTQBF4a04BwcHNGrUSDxORMYxhBGRbGi1WvTp0weZmZn497//jYCAgEo/hn5Ji8aNG5t8H3d3dzz33HN47rnnYG9vj507dyI+Ph7dunUz6f7//ve/0b9/f3Tt2hWbNm2Cv78/7O3tsX37duzZs6fSr6E4nU4HlUqFb7/9tsxAWnKMVfEWOVN17dpVHIdGRDWHIYyIZOHRo0fo168f/vOf/+D7779Hy5YtK/0YhYWF2LNnD1xcXPDMM89UqR4dOnTAzp07cffuXQBFA+fj4+NRUFBQqtVJb//+/XBycsJ3330HR0dH8fbt27eXKltey1h5t4eEhEAQBAQHB6Np06aVfTkWERgYCABISkpCo0aNxNvz8/ORkpKC8PBw8bbqtgQSWTOOCSMiyRUWFmLIkCGIi4vDvn37qrQ2VWFhIV599VVcvXoVr776Ktzd3cstm5ubi7i4uDKPffvttwD+6mobNGgQ0tLSsGHDhlJlhf8tZqpWq6FSqVBYWCgeu3HjRpmLsrq6upa5IKurqysAlDo2cOBAqNVqLF68uNTiqYIgID09vewXaUHh4eFwcHDA+vXrDeq0detWaLVag1mprq6uRpcLIbJlbAkjIsnNmDED33zzDfr164eMjIxSi7OWXJhVq9WKZXJzc/Hbb78hJiYGycnJGDp0KN566y2jz5ebm4suXbqgc+fOiIyMRIMGDZCZmYmvvvoK//73vzFgwAC0a9cOADBy5Eh8/PHHmD59On7++Wc8++yzyMnJwffff49//vOfeP755xEVFYXVq1cjMjISL774Iu7fv4+NGzeicePGuHjxosFzh4aG4vvvv8fq1asREBCA4OBgdOrUCaGhoQCAN954A0OHDoW9vT369euHkJAQvP3225g7dy5u3LiBAQMGwM3NDSkpKfjyyy8xYcIEvP7669U6/5Xl4+ODuXPnYvHixYiMjET//v2RlJSETZs24amnnjL49woNDcXnn3+O6dOn46mnnkLt2rXRr1+/Gq0vkWxJOTWTiEgQ/lpaobwfY2Vr164tNGnSRHjppZeEI0eOmPR8BQUFwocffigMGDBACAwMFBwdHQUXFxehXbt2wsqVK4W8vDyD8rm5ucIbb7whBAcHC/b29oKfn58wePBgITk5WSyzdetWoUmTJoKjo6PQvHlzYfv27eISEMVdu3ZN6Nq1q+Ds7CwAMFiu4q233hLq1asn2NnZlVquYv/+/cIzzzwjuLq6Cq6urkLz5s2FyZMnC0lJSQbnxtjyHSXp6/fHH38YLVdyiQq9DRs2CM2bNxfs7e0FX19fYdKkScKff/5pUObBgwfCiy++KHh4eAgAuFwFUTEqQTDD5mBEREREVCkcE0ZEREQkAYYwIiIiIgkwhBERERFJgCGMiIiISAIMYUREREQSYAgjIiIikgAXa5UxnU6HO3fuwM3NjVt/EBERKYQgCMjOzkZAQADs7Mpv72IIk7E7d+6gQYMGUleDiIiIquD3339H/fr1yz3OECZjbm5uAIr+EY3tg0dERETykZWVhQYNGojf4+VhCJMxfReku7s7QxgREZHCVDSUiAPziYiIiCTAEEZEREQkAYYwIiIiIglwTBgREZGVKSwsREFBgdTVsFr29vZQq9XVfhyGMCIiIishCAJSU1ORmZkpdVWsnoeHB/z8/Kq1jidDGBERkZXQB7C6devCxcWFC31bgCAIyM3Nxf379wEA/v7+VX4shjAiIiIrUFhYKAYwLy8vqatj1ZydnQEA9+/fR926davcNamYgfn9+/dHw4YN4eTkBH9/f4wYMQJ37twxKCMIAlatWoWmTZvC0dER9erVw5IlSwzKnDx5Eu3bt4ejoyMaN26MHTt2lHqujRs3IigoCE5OTujUqRN+/vlng+OPHj3C5MmT4eXlhdq1a2PQoEG4d++eQZlbt24hKioKLi4uqFu3LmbOnInHjx+b52QQERGVoB8D5uLiInFNbIP+PFdn7J1iQliPHj2wd+9eJCUlYf/+/UhOTsbgwYMNyrz22mv46KOPsGrVKly7dg3ffPMNOnbsKB5PSUlBVFQUevTogcTEREydOhXjx4/Hd999J5b5/PPPMX36dCxcuBDnzp1DmzZtEBERITY7AsC0adNw4MAB7Nu3Dz/88APu3LmDgQMHiscLCwsRFRWF/Px8nD59Gjt37sSOHTuwYMECC54hIiKiihcIJfMwy3kWFOrrr78WVCqVkJ+fLwiCIFy5ckWoVauWcO3atXLvM2vWLKFVq1YGtw0ZMkSIiIgQ/+7YsaMwefJk8e/CwkIhICBAWLp0qSAIgpCZmSnY29sL+/btE8tcvXpVACDExcUJgiAIhw4dEuzs7ITU1FSxzObNmwV3d3chLy/P5Neo1WoFAIJWqzX5PkREJAhpaWnCnTt3yv1JS0uTuopm9/DhQ+HKlSvCw4cPpa6KTTB2vk39/lbkmLCMjAzs3r0bXbp0gb29PQDgwIEDaNSoEWJjYxEZGQlBEBAeHo4VK1bA09MTABAXF4fw8HCDx4qIiMDUqVMBAPn5+UhISMDcuXPF43Z2dggPD0dcXBwAICEhAQUFBQaP07x5czRs2BBxcXHo3Lkz4uLi0Lp1a/j6+ho8z6RJk3D58mW0a9euzNeVl5eHvLw88e+srKxqnCUiItuUnp6ODRs2VFguOjqaY6dIUorpjgSA2bNnw9XVFV5eXrh16xa+/vpr8dj//d//4ebNm9i3bx8+/vhj7NixAwkJCQZdlqmpqQbBCAB8fX2RlZWFhw8fIi0tDYWFhWWWSU1NFR/DwcEBHh4eRsuU9Rj6Y+VZunQpNBqN+NOgQQMTzwwREenl5+ebtRxZ3ujRo6FSqaBSqWBvbw9fX18899xz2LZtG3Q6ncmPs2PHjlLfz3ImaQibM2eOeNLL+7l27ZpYfubMmTh//jyOHDkCtVqNkSNHQhAEAIBOp0NeXh4+/vhjPPvss+jevTu2bt2KEydOICkpSaqXWClz586FVqsVf37//Xepq0RERBaSnp6Ou3fvlvuTnp5uU/WJjIzE3bt3cePGDXz77bfo0aMHXnvtNfTt29dqJ7ZJ2h05Y8YMjB492miZRo0aib97e3vD29sbTZs2RYsWLdCgQQOcOXMGYWFh8Pf3R61atdC0aVOxfIsWLQAUzVRs1qwZ/Pz8Ss1ivHfvHtzd3eHs7Ay1Wg21Wl1mGT8/PwCAn58f8vPzkZmZaZC2S5YpOaNS/5j6MmVxdHSEo6Oj0fNBRETKJ7cuUznUx9HRUfyOrFevHtq3b4/OnTujV69e2LFjB8aPH4/Vq1dj+/bt+L//+z94enqiX79+WLFiBWrXro2TJ09izJgxAP4aNL9w4UIsWrQIu3btwrp165CUlARXV1f07NkTa9euRd26dS3yWkwlaUuYj48PmjdvbvTHwcGhzPvqmyf1Y6iefvppPH78GMnJyWKZ//znPwCAwMBAAEBYWBiOHTtm8DhHjx5FWFgYAMDBwQGhoaEGZXQ6HY4dOyaWCQ0Nhb29vUGZpKQk3Lp1SywTFhaGX3/91WBG5dGjR+Hu7o6WLVtW4UwREVkPqVtc5EBuXaZyq49ez5490aZNG8TExAAoGqe9fv16XL58GTt37sTx48cxa9YsAECXLl2wdu1auLu7i++l119/HUDRMhJvvfUWLly4gK+++go3btyosBGoJihiYH58fDzOnj2LZ555BnXq1EFycjLmz5+PkJAQMfiEh4ejffv2GDt2LNauXQudTofJkyfjueeeE1vHJk6ciA0bNmDWrFkYO3Ysjh8/jr179+LgwYPic02fPh2jRo1Chw4d0LFjR6xduxY5OTliutZoNBg3bhymT58OT09PuLu7Y8qUKQgLC0Pnzp0BAL1790bLli0xYsQIrFixAqmpqZg3bx4mT57Mli4TpaenG/2f3cHBgQNqiRRIDi0upCzNmzfHxYsXAUCcSAcAQUFBePvttzFx4kRs2rQJDg4O0Gg0UKlUpXqdxo4dK/7eqFEjrF+/Hk899RQePHiA2rVr18jrKIsiQpiLiwtiYmKwcOFC5OTkwN/fH5GRkZg3b54Yauzs7HDgwAFMmTIFXbt2haurK/r06YN3331XfJzg4GAcPHgQ06ZNw7p161C/fn189NFHiIiIEMsMGTIEf/zxBxYsWIDU1FS0bdsWhw8fNhhov2bNGtjZ2WHQoEHIy8tDREQENm3aJB5Xq9WIjY3FpEmTEBYWBldXV4waNQpvvvlmDZwt5eOHNJH1kmuLC8mXIAhi9+L333+PpUuX4tq1a8jKysLjx4/x6NEj5ObmGl2kNiEhAYsWLcKFCxfw559/ir1pt27dkrSHShEhrHXr1jh+/HiF5QICArB//36jZbp3747z588bLRMdHY3o6Ohyjzs5OWHjxo3YuHFjuWUCAwNx6NAh4xWmMvFDmoiI9K5evYrg4GDcuHEDffv2xaRJk7BkyRJ4enri1KlTGDduHPLz88sNYTk5OYiIiEBERAR2794NHx8f3Lp1CxEREZJ/jygihBEREZmq5FhirdYNGRle8PRMh0aTXW45kp/jx4/j119/xbRp05CQkACdTod3330XdnZFQ9r37t1rUN7BwQGFhYUGt127dg3p6elYtmyZuPTTL7/8UjMvoAIMYUREZFW8vLwQHR2N/Px87NnjjDff1ECnU8HOTsCKFVq8+OJDjiuVoby8PKSmpqKwsBD37t3D4cOHsXTpUvTt2xcjR47EpUuXUFBQgPfeew/9+vXDTz/9hC1bthg8RlBQEB48eIBjx46hTZs2cHFxQcOGDeHg4ID33nsPEydOxKVLl/DWW29J9CoNKWqxViIiIlN4eXmhsNAfs2Z5QKcrGk+k06kwe7YHCgv9GcBk6PDhw/D390dQUBAiIyNx4sQJrF+/Hl9//TXUajXatGmD1atXY/ny5XjiiSewe/duLF261OAxunTpgokTJ2LIkCHw8fHBihUr4OPjgx07dmDfvn1o2bIlli1bhlWrVkn0Kg2xJYyIiKzS9etAycXWCwuB334D6teXpk56cusyNfV5LFWfHTt2YMeOHRWWmzZtGqZNm2Zw24gRIwz+3rx5MzZv3mxw27BhwzBs2DCD2/SLvUuJIYyIiCpkqWVjygsf5tCkCWBnZxjE1GqgcWOzPk2VyK3LtHh9ysMuXPNjCCMiIqPMuWxM8ZaUc+fa4cCBvhAEO6hUOvTrF4v27c+XKldV9esDH3wAvPJKUQuYWg28/770rWB6Xl5euH0bmDXrr6Co7zIdMsQDNZ13GLBqHkMYyY7UzeJEZMicy8boW1xu3HiMN9+sC0EoGq8lCHY4eLAfFizohKCgWmYLBOPGARERRV2QjRvLJ4DpybnLlCyPIYxkp2Sz+J07dkhJqYXg4McICCj6tGKzOJFyeXl54eLFssKHCtnZvmZvAapfX76BRs5dpmR5nB1JsuTl5QV/f38cOuSPjh198Y9/eKFjR18cOuQPf3/ObCJSOn34KM4Ww4e+y1StLvpbbl2mZFkMYSRbt28DEyYUHytRNLbj9m1p60VkK/QbbaelpZn9sRk+/jJuHHDjBnDiRNF/x42TukZUU9gdSbLFsRJE0jE2GN9cMxrlPl6rJsm5y5QshyGMZItjJYikU94ge2MzGquC4YNsGbsjSbbYXUEkL1qtmxjAgKIZjQcO9IVW6yZxzYiUiSGMZI1jJUrTj9Mp7yc9PV3qKpKVysjwEgOYniDYISPDEwCXjSH5OnnyJFQqFTIzM02+T1BQENauXWuxOgHsjiQFYHfFX8y5aCZRZWi1bsjJcYFKpTMIYnZ2AqZM6WPWtb3I9owePRo7d+7EK6+8UmpT7smTJ2PTpk0YNWqUSVsbKQlDGJGEKrsVjDkXzSQyVfFxYIBODGIqlQ4rVmQhNNRX6iqSFWjQoAE+++wzrFmzBs7OzgCAR48eYc+ePWjYsKHEtbMMhjAiibBVi5Sg5DgwwA6CoMPgwXvRoMFtvPjiMAAeEtaQrEX79u2RnJyMmJgYDB8+HAAQExODhg0bIjg4WCyXl5eHmTNn4rPPPkNWVhY6dOiANWvW4KmnnhLLHDp0CFOnTsXvv/+Ozp07Y9SoUaWe79SpU5g7dy5++eUXeHt74+9//zuWLl0KV1dXy7/Y/+GYMCKJsFWLlKCscWCAHVxdc82+4TbJx+3bRWNxa3pdxrFjx2L79u3i39u2bcOYMWMMysyaNQv79+/Hzp07ce7cOTRu3BgRERHIyMgAAPz+++8YOHAg+vXrh8TERIwfPx5z5swxeIzk5GRERkZi0KBBuHjxIj7//HOcOnUK0dHRln+RxTCEESmYVuuGlJQgzk4js9MPsvf0TIdKZbhgn0qlg6dnhkE5sh5btwKBgUDPnkX/3bq15p77pZdewqlTp3Dz5k3cvHkTP/30E1566SXxeE5ODjZv3oyVK1eiT58+aNmyJT788EM4Oztj6/8qunnzZoSEhODdd99Fs2bNMHz4cIwePdrgeZYuXYrhw4dj6tSpaNKkCbp06YL169fj448/xqNHj2rs9bI7kkihzL1eE1FxxfdwrVcvC7Nna1BYqIJaLWD58iy8+OIw7uFqhcrbqSQiomYmSPn4+CAqKgo7duyAIAiIioqCt7e3eDw5ORkFBQV4+umnxdvs7e3RsWNHXL16FQBw9epVdOrUyeBxw8LCDP6+cOECLl68iN27d4u3CYIAnU6HlJQUtGjRwhIvrxSGMCIFKm+9ppCQ3xTTRVTZSQlU8/Tnf8YMYMgQ/cr2KtSv7wGOA7NOctipZOzYsWK34MaNGy3yHA8ePMArr7yCV199tdSxmpwEwBBGJBOV2QrG2HpNSghhnJSgPFwqxjbIYaeSyMhI5OfnQ6VSISIiwuBYSEgIHBwc8NNPPyEwMBAAUFBQgLNnz2Lq1KkAgBYtWuCbb74xuN+ZM2cM/m7fvj2uXLmCxhJvwcIQRpJia0gRU7sWS47TKR7ElDROh5MSiORJv1PJK68UtYBJsVOJWq0WuxbV+i1T/sfV1RWTJk3CzJkz4enpiYYNG2LFihXIzc3FuP+t5j1x4kS8++67mDlzJsaPH4+EhIRS64vNnj0bnTt3RnR0NMaPHw9XV1dcuXIFR48eNekC0VwYwkgybA0pUpmuRY7TISJLk8PG6u7u7uUeW7ZsGXQ6HUaMGIHs7Gx06NAB3333HerUqQOgqDtx//79mDZtGt577z107NgR77zzDsaOHSs+xpNPPokffvgBb7zxBp599lkIgoCQkBAMGTLE4q+tOIYwkoytt4boW6sq6los2apljeN0KtMVS0SWV9PdzxWthP/VV1+Jvzs5OWH9+vVYv359ueX79u2Lvn37GtxWcqmLp556CkeOHCn3MW7cuGG0TubAEEYkEX2r1o0bj7FrlwCdTiUeU6tN2wrGGsbpcJYnEdkqrhNGJCEvLy+Ehvrigw9U0A99KBqDoUJoqK/VdyuW1xXLdc+IyBawJYxIBuQwBkMKSp/lSURUHQxhJBu2Pi7IGroWK6uiWZ5ERNaMIYxkgeOCbIt+soFGk41+/WJL/dvrQ7jcl9ogkiNBEKSugk0wx3lmCCPJWcPq77aoOmu8FV9qAwAWLPgDN27UQlDQYwQEPAXgKS61QVRJ9vb2AIDc3Fw4OztLXBvrl5ubC+Cv814VDGEkmaou0UCWUZlQZY413orf7u8PhIZWssJEZECtVsPDwwP3798HALi4uEClUlVwL9M8fvwYupL7GRVjZ2eHWrVsI1IIgoDc3Fzcv38fHh4epRaUrQzbOGMkS+ZYooHMo7KhytbXeNPjjg8kN35+fgAgBjFzKCwsRHZ2xb0Sbm5u1QokSuPh4SGe76piCCNJeXl5wcurrG0yipZooJpR3VBli5MquOMDyZFKpYK/vz/q1q2LgoICszzm/fv3cfjw4QrLvfDCC6hbt65ZnlPu7O3tzRI4GcJIFmx1iQa5qkyostVJFSUDaXnnzNpbA0me1Gq12Vql7O3tkZOTY1I5JycnszynrWAII9mwxSUa5KgyoYqTKorYahAlourhivlEJKrsCvbGJlXYCq76T7ZGq3VDSkoQ3+NmwJYwIhJVdgV7UxdbteYB7Fz1n2wJW33NiyGMiESVXcG+osVWgdID2MsbO6XUAexc9Z9sBYcfmB9DGBGJTAlVgOFK9u3bn0dIyG/IyPCEp2eGQVkHBweDFjBjV9FyHMBurAUvLS0NgOnnjEjp2OprfgxhRGamxK63yoQqoPSK9+U9ppeXF+7evQtAeVfRpi5BARg/Z0RKp///vqJWXy6sXXkMYURmpNS1oyoTqorfpzKUdhVt6hIUehpNdpm384uJlK7450O9elmYPVuDwkIV1GoBy5dn4cUXh8ny4lIJGMKIzEjJa0dZ+gNUyWOnjHWjDhw4EN7e3mXej19MZC307+MZM4AhQ/RrOqpQv74HAA8pq6ZoDGFEFsJZRIaUOnaqom5Ub29v+Pv7S1xLoprDNR3NhyGMyAKUNv6ppihx7JTSulGJSDkYwqhKlDj4vCbxi7t85Y2dkisld6MSkbwxhFGlKXXweU3iF/dfTB2YLtcB7ErtRiUi+WMIo0ozdVC5HAef1xR+cf+lKjMv5UaJ3ahEJH8MYVRtFU3dt1X84v6LnANWeUq2zHEJCiIyN4YwqhapZwDKbWwav7ithzW04BGRvDGEUZVJPQNQjmPT+MVtXfjvRESWxBBGVSb1DEC5LozKL24iIjIFQxhVmZxmAErdLWoKuXWdEhGRtBjCqMrkMgNQ6m5RU5TsOi2v1c6Wl/UgIrI1DGFUacUHlRubAVhTg8+l7hY1RfEWMGOtdra8rEdZ2HpIRNaMIYwqTW6Dz+XULVoRJbTayQVbD4nI2jGEUZXI6UtPLt2ipqio1S4tLa3M+9liiw9bD4nI2jGEkVVQysKoFbXaxcTEsMWnBLYektKxW53KwxBGiqXEhVErarVji09pShjzR1QedquTMQxhpFhyG5tmqvJa7djiUzYljfkjKond6mSMXcVFiORJyU38Gk02goNvGoQrYy0+tkzfeqhS6QBA1mP+iMpT3kWWVusmcc1ISmwJI0VSWhO/KV2ibPEpn1LG/BGVx9a61ZV8kVyTGMJIkZTWxG+s6zQtLQ0xMTGKmuUphfLG/BEpgS1dZMlxX1+5YggjRVPSOCpTPmzY4vMXUydUyGniBVF5rPkiq2SrV8mlduSyr68cMYSRolljEz9bfIoodeIFUXmUcpFVma7Eilq9lLCvr5QYwkjRrKGJny0+5WPAImsj94usynYllgxrxVu9ACimp0IqDGGkaNbQxM8WHyLrpbSLLGOhqqKuxJKtXmFhcVbXU2Fuiglh/fv3R2JiIu7fv486deogPDwcy5cvR0BAAABg0aJFWLx4can7ubi4ICcnR/x73759mD9/Pm7cuIEmTZpg+fLl+Nvf/iYeFwQBCxcuxIcffojMzEw8/fTT2Lx5M5o0aSKWycjIwJQpU3DgwAHY2dlh0KBBWLduHWrXri2WuXjxIiZPnoyzZ8/Cx8cHU6ZMwaxZsyxxamyeUpr4jWHAIrJOSr7IqkxXYlnjc0+fDlN8T4WlKWadsB49emDv3r1ISkrC/v37kZycjMGDB4vHX3/9ddy9e9fgp2XLlvjHP/4hljl9+jSGDRuGcePG4fz58xgwYAAGDBiAS5cuiWVWrFiB9evXY8uWLYiPj4erqysiIiLw6NEjsczw4cNx+fJlHD16FLGxsfjxxx8xYcIE8XhWVhZ69+6NwMBAJCQkYOXKlVi0aBE++OADC58l21XWultERHLg5eUFf3//cn/kGMAqu65ZWeNzATuEhcVxjT8jFNMSNm3aNPH3wMBAzJkzBwMGDEBBQQHs7e1Ru3Ztg5aoCxcu4MqVK9iyZYt427p16xAZGYmZM2cCAN566y0cPXoUGzZswJYtWyAIAtauXYt58+bh+eefBwB8/PHH8PX1xVdffYWhQ4fi6tWrOHz4MM6ePYsOHToAAN577z387W9/w6pVqxAQEIDdu3cjPz8f27Ztg4ODA1q1aoXExESsXr3aIKxR1SmtiZ+ISEkqO+mpvPG5nTrFo1OneEX3VFiSYkJYcRkZGdi9eze6dOkCe3v7Mst89NFHaNq0KZ599lnxtri4OEyfPt2gXEREBL766isAQEpKClJTUxEeHi4e12g06NSpE+Li4jB06FDExcXBw8NDDGAAEB4eDjs7O8THx+Pvf/874uLi0LVrV4MAEBERgeXLl+PPP/9EnTp1yqxzXl4e8vLyxL+zsrJMPyk2RslN/EREclfZSU8Vjc+V+76+UlFUCJs9ezY2bNiA3NxcdO7cGbGxsWWWe/ToEXbv3o05c+YY3J6amgpfX1+D23x9fZGamioe199mrEzdunUNjteqVQuenp4GZYKDg0s9hv5YeSFs6dKlZY5ro7IxYBERWUZVJj0ZG587cOBAeHt7i3/zIrmIpGPC5syZA5VKZfTn2rVrYvmZM2fi/PnzOHLkCNRqNUaOHAlBEEo97pdffons7GyMGjWqJl9Otc2dOxdarVb8+f3336WuEhER2aj27c9j6tS1GDVqB6ZOXVvmoPySrVnljc8NCAiQ/Tg4KUjaEjZjxgyMHj3aaJlGjRqJv3t7e8Pb2xtNmzZFixYt0KBBA5w5cwZhYWEG9/noo4/Qt2/fUi1afn5+uHfvnsFt9+7dg5+fn3hcf5u/v79BmbZt24pl7t+/b/AYjx8/RkZGhsHjlPU8xZ+jLI6OjnB0dCz3OBERkSWVFaqMdSVyaEj1SBrCfHx84OPjU6X76nRFsy2Kj6ECisZ1nThxAt98802p+4SFheHYsWOYOnWqeNvRo0fFEBccHAw/Pz8cO3ZMDF1ZWVmIj4/HpEmTxMfIzMxEQkICQkNDAQDHjx+HTqdDp06dxDJvvPGGOGlA/zzNmjUrtyuSiEipiq+wfueOHVJSaiE4+DECAoo+p/klrBxVCVX8t606lVBWf57MxMfH4+zZs3jmmWdQp04dJCcnY/78+bh37x4uX75s0Ho0f/58bNu2Dbdu3YJarTZ4nNOnT6Nbt25YtmwZoqKi8Nlnn+Gdd97BuXPn8MQTTwAAli9fjmXLlmHnzp0IDg7G/PnzcfHiRVy5cgVOTk4AgD59+uDevXvYsmULCgoKMGbMGHTo0AF79uwBAGi1WjRr1gy9e/fG7NmzcenSJYwdOxZr1qyp1OzIrKwsaDQaaLVauLu7V/c0EhGZXfEV1o2tK8XNmsmWmPr9rYiB+S4uLoiJicHChQuRk5MDf39/REZGYt68eQYBTKfTYceOHRg9enSpAAYAXbp0wZ49ezBv3jz861//QpMmTfDVV1+JAQwAZs2ahZycHEyYMAGZmZl45plncPjwYTGAAcDu3bsRHR2NXr16iYu1rl+/Xjyu0Whw5MgRTJ48GaGhofD29saCBQu4PAURWR19i0l560qFhPwGADhxAujcGahfX7KqlsIWPJKaIlrCbBVbwohI7u7evYsPPvgAKSlB2Lmz9GSoLl1+QlxcGATBDnZ2Alas0OLFFx9KHnDYgkeWZFUtYUREJG9lrSsF6MQABgA6nQozZ7rjv//dBo0mW9KAY0oLnkaTbXRsFFF1KWbbIiIiki/9ulLFt6jp0qX8DZyBsjeBrmnGVoYnsjS2hBERkVmUXKwTgEFLGCC/DZwrWhleq9WKt3PcGJkbQxgREZlNyXWlKrvqek2raGX4zz//HADHjZFlMIQRkdXhrDf5MLaVjVxUVEeOGyNLYQgjIqvCWW81y5RNmMtbdV1OjNXR2Lgxub8ukjeGMCKyKpz1VrPKWmE9LS0NMTExEtbKvCoaN0ZUVQxhRGSV2HpRc5TYomhKC55eRePGrFHxLv2ysEvfPBjCiMgqsfVCOqYGnMoEIXMzZY/EzMxM7N27F4AyxraZS/EufaCoVTkjwwuenukGr5td+tXHEEZEVskWWy/koiqbQEuhss9fU2PbpJ5YUvzfzdi4SnbpVx9DGBFZLVtqvZAbqQOWUslpYklF4yqp+rhiPhFZNY0mG8HBN/mlQZUmRbdqRRNLtFo3g3KWxN0ELI8tYURERGWQsltVDhNLOK7S8hjCiMiqKGFQOCmHVN2qcghAHFdpeQxhRGRVlDIonMgYuQQgjqu0LIYwIrI6DFhkDeQSgJSw44FSMYQRERHJlBQBiF36NYchjBTp9m3g+nWgSROgfn2pa0NEliD1elm2il36NYchjBRD/4G8Z48zZs3SQKdTwc5OwIoVWrz44kN+KBBZETmtl1WT5NIKZU3nVM4YwkgR9B/IWq0b1q6dCkFQAQB0OhVmznTHf/+7DRpNttV9IJO02OIqHVvdiJ2tULaFIYwUQf+BVNHaOfn5+fzipGphi6u8yGG9rJrG95ftYAgjRalo7ZwPPijEm28K/OKkKmGLq/zIYb0speAYOuVhCCNFMbZ2TtEXZwC/OKnKKtPiSjVDLutlyZ2tjqFTOoYwUpzy1s7hFyeZC1tf5EUu62XJma2OoVM6buBNilTWpsz6L87i+MVJVaFvfdG/n9j6Ij1uxG4abrqtLGwJI6vBbgsyJ7a+kBKxFVdZGMLIqvCLk0xh6gxabtciHbmsl6U0vBhVFoYwUoTKfNDyi5PKYsrSEyQfXC+r6ngxqhwMYaQIxj6Q09LSEBMTI0GtSClMXXpiyJAhEteUimPAqjpejCoDQxgpBj+QqapMXXpCEASTHo+tZkRkDgxhpHgcOyJ/ctnFoKJByx4eHuwCI0Xi56AyMYSR4nHsiDzJcfsfUwYt831CSsTPQWViCCOrwA8WeZHz9j8ctEzWip+DysPFWonI7EwZg1W8XE3TL/wJACkpQdBq3SSpBxHZNraEEZEBc24CLOeFI8vaXy8tLY1dNkRUYxjCiEhk7k2A5bpwZPn7663lZu9EVGMYwsimmLOVxxpZYhNgOYzBKjkjjJu9E5EcMISRzTB3K481qyikVJbUC0fqZ47duXMHMTExsu4mJSLzUMJFN0MY2QxLtPJYK2sMKV5eXuK/rVy7SYnIPJRy0c0QRjbH3K081sgWQoocukmJyDKUctHNEEY2xxpbeSyhOiFFKat3S91NSkSWJfeLboYwsjm20MpjLlUNKVy9m4jkQO4X3QxhZJPYFWV5DFhEJDW5X3QzhNkwuWyqLBV2RZWmlG7EqrL210dEpcn5opshzMbIcVNlkg9r70a09tdHRGWT60U3Q5gNkfOmyjWBrSCmscZ/++Ks/fURkXIwhNkQUzZVlsOUXUthKwgRkW1QykU3Q5gNkvtsEUtiwCIisn5KuehmCLNBcp8tQkRkK4pvrVMWOQQFpVLCeWMIs1Fyni1CRGQLim+tAxSt7p6R4QVPz3SDz2RrHadLDGE2Ta6zRYiIbEHxFjBj+xta6zhdYggjohpWvPvlzh07pKTUQnDwYwQE6ACw+4VsT0X7G5L1YggjIrMwJVwBELtfjF35s/uFbInc9zcky2EIsyFKmbJLylN8bIuxcPXCCy8AqPjKn90vZEtseca6rWMIsyFKmbJLyqN/T1UUrh4/fgyAV/5ExXHGuu1iCLMxDFhkSaaGK175ExnijHXbZHIIy8rKMvlB3d3dq1QZIlI2U8MVr/wtj+tPKQ9nrNsek0OYh4cHVCqV0TKCIEClUqGwsLDaFSMi5alMuOKVv+Vw/Sll4DhdMjmEnThxwpL1ICIrUZlwxSt/y+D6U8rAcbpkcgjr1q2bJetBRFaE4UoeuP6U/DFg2bYqD8zPzMzE1q1bcfXqVQBAq1atMHbsWGg0GrNVjoisi729vUnl2P1iHpyFSiRvVQphv/zyCyIiIuDs7IyOHTsCAFavXo0lS5bgyJEjaN++vVkrSUTyZmpo8vHxYfdLDeIsVJISJ4dUrEohbNq0aejfvz8+/PBD1KpV9BCPHz/G+PHjMXXqVPz4449mrSQRyRvHtsgTZ6GSVDg5xDRVbgkrHsAAoFatWpg1axY6dOhgtsoRkXLY8gepuZmzBYGzUEkKnBximiqFMHd3d9y6dQvNmzc3uP3333+Hm5ubWSpGRNLiRtvSsEQLAidKkFQ4OcS4KoWwIUOGYNy4cVi1ahW6dOkCAPjpp58wc+ZMDBs2zKwVJKKaZ+pekLbelWAJ5mhB4PpTJBecHGKcXcVFSlu1ahUGDhyIkSNHIigoCEFBQRg9ejQGDx6M5cuXm7uOAID+/fujYcOGcHJygr+/P0aMGIE7d+4YlPnuu+/QuXNnuLm5wcfHB4MGDcKNGzcMypw8eRLt27eHo6MjGjdujB07dpR6ro0bNyIoKAhOTk7o1KkTfv75Z4Pjjx49wuTJk+Hl5YXatWtj0KBBuHfvnkGZW7duISoqCi4uLqhbty5mzpwp7ptHJHcV7QWp1boZlCPzq+jcG6MfozdhwoRyfxigqSboJ4cUx8khf6lSCHNwcMC6devw559/IjExEYmJicjIyMCaNWvg6Oho7joCAHr06IG9e/ciKSkJ+/fvR3JyMgYPHiweT0lJwfPPP4+ePXsiMTER3333HdLS0jBw4ECDMlFRUejRowcSExMxdepUjB8/Ht99951Y5vPPP8f06dOxcOFCnDt3Dm3atEFERATu378vlpk2bRoOHDiAffv24YcffsCdO3cMnqewsBBRUVHIz8/H6dOnsXPnTuzYsQMLFiywyLkhshRjV7FkWdU9915eXvD39y/3hwGMaoJ+cog+iHFyiKFqbeDt4uKC1q1bm6suRk2bNk38PTAwEHPmzMGAAQNQUFAAe3t7JCQkoLCwEG+//Tbs7Io+uF5//XU8//zzYpktW7YgODgY7777LgCgRYsWOHXqFNasWYOIiAgARUttvPzyyxgzZgwAYMuWLTh48CC2bduGOXPmQKvVYuvWrdizZw969uwJANi+fTtatGiBM2fOoHPnzjhy5AiuXLmC77//Hr6+vmjbti3eeustzJ49G4sWLWIXACkGlziQDs89WQtODilflVrCHj16hJUrV+Jvf/sbOnTogPbt2xv8WFpGRgZ2796NLl26iIs/hoaGws7ODtu3b0dhYSG0Wi127dqF8PBwsUxcXBzCw8MNHisiIgJxcXEAirpWEhISDMrY2dkhPDxcLJOQkICCggKDMs2bN0fDhg3FMnFxcWjdujV8fX0NnicrKwuXL1+2wBkhsgxexUqH556siUaTjeDgm3z/llCllrBx48bhyJEjGDx4MDp27Fjhxt7mMnv2bGzYsAG5ubno3LkzYmNjxWPBwcE4cuQIXnjhBbzyyisoLCxEWFgYDh06JJZJTU01CEYA4Ovri6ysLDx8+BB//vknCgsLyyxz7do18TEcHBzg4eFRqkxqaqrR59EfK09eXh7y8vLEv7Oysio6JVbr9m3g+nWgSROgfn2pa2PbeBUrHZ57UipODjFNlUJYbGwsDh06hKeffrpaTz5nzpwKB/JfvXpVXApj5syZGDduHG7evInFixdj5MiRiI2NhUqlQmpqKl5++WWMGjUKw4YNQ3Z2NhYsWIDBgwfj6NGjNRYUq2Pp0qVYvHix1NWQjH5JhD17nDFrlgY6nQp2dgJWrNDixRcfckmESjLnWlNc4kA6PPekRFzA2TRVCmH16tUzy3pgM2bMwOjRo42WadSokfi7t7c3vL290bRpU7Ro0QINGjTAmTNnEBYWho0bN0Kj0WDFihVi+U8++QQNGjRAfHw8OnfuDD8/v1KzGO/duwd3d3c4OztDrVZDrVaXWcbPzw8A4Ofnh/z8fGRmZhq0hpUsU3JGpf4x9WXKMnfuXEyfPl38OysrCw0aNDB6fqyFfkkErdYNa9dOhSAUhWadToWZM93x3/9ug0aTzRldJuJq1crFFgSyFvxsqViVQti7776L2bNnY8uWLQgMDKzyk/v4+MDHx6dK99XpisZJ6LvvcnNzxQH5emq12qBsye5JADh69CjCwsIAFH2ohYaG4tixYxgwYIB432PHjiE6OhpA0dgze3t7HDt2DIMGDQIAJCUl4datW+LjhIWFYcmSJbh//z7q1q0rPo+7uztatmxZ7mtydHS02OxSudNfLVW0pgyXRDBNddeasuUgIPV+d2xBILIdVQphHTp0wKNHj9CoUSO4uLiIA9/1MjLMO3snPj4eZ8+exTPPPIM6deogOTkZ8+fPR0hIiBh8oqKisGbNGrz55ptid+S//vUvBAYGol27dgCAiRMnYsOGDZg1axbGjh2L48ePY+/evTh48KD4XNOnT8eoUaPQoUMHdOzYEWvXrkVOTo44W1Kj0WDcuHGYPn06PD094e7ujilTpiAsLAydO3cGAPTu3RstW7bEiBEjsGLFCqSmpmLevHmYPHmyzYYsU3FGmHlVdbVqWw0CJVsQy2PpFkRrO69EVLYqhbBhw4bhv//9L9555x34+vpafLyVi4sLYmJisHDhQuTk5MDf3x+RkZGYN2+eGGp69uyJPXv2YMWKFVixYgVcXFwQFhaGw4cPw9nZGUDR4P2DBw9i2rRpWLduHerXr4+PPvpIXJ4CKNoN4I8//sCCBQuQmpqKtm3b4vDhwwYD7desWQM7OzsMGjQIeXl5iIiIwKZNm8TjarUasbGxmDRpEsLCwuDq6opRo0bhzTfftOh5sgbccNi8qrNatS0GgZKhs7xuXLbIEpE5VCmEnT59GnFxcWjTpo2561Om1q1b4/jx4xWWGzp0KIYOHWq0TPfu3XH+/HmjZaKjo8Xux7I4OTlh48aN2LhxY7llAgMDS3V9kmk4I8x82LJYdca6cYmIzKFK64Q1b94cDx8+NHddiERcU8Y8uNZU1VRnyyAiIlNVqSVs2bJlmDFjBpYsWYLWrVuXGhPm7u5ulsoR0V+qOmCcLYuVx02HicxH6skuclalEBYZGQkA6NWrl8HtgiBApVKhsLCw+jUjIlF1l5zgWlOVw25cIvPgcjnGVSmEnThxwtz1IBtny0simKKyS07wfFYPJ4gQmUd1l8uxdlUKYd26dTOp3D//+U+8+eab8Pb2rsrTkA2x1SURKsvUJSd4PquP3bhE5lPV5XKsXZVCmKk++eQTvP766wxhZBJrDQTmHA9RmbFK1no+Lalky2B53bhsQSSqHI6zLJtFQ5ggCJZ8eCLZM/d4CI5VsixLtCByUDIRP7vKY9EQRmTrzD0egmOVLM+cgUguK/ATSY2fXWVjCCOqAeYcD8GxSsphari21UHJZFv42VUaQxhRDTD3eAguOaFM5XVHE9kKfnYZYggjqgHVHQ/BJSeUj9sgkS3iZ5dxFg1hL730ElfPJ0L1x0NwyQn5MjbwPi0tDQCn55Pt4meXcVUOYZmZmfj5559x//596HQ6g2MjR44EAGzevLl6tSOyItUdD2GrH1JyZurAe07PJ7mQYrYuP7vKV6UQduDAAQwfPhwPHjyAu7s7VCqVeEylUokhjIgMcTyEeUm9/IOpA+o5PZ/kgLN15adKIWzGjBkYO3Ys3nnnHbi4uJi7TkRWg+MhLEeOXyjlDbzn9HySg5IXDeW9Xzlbt+ZUKYT997//xauvvsoARlQBjoewHLkt/1DRwHtj3dEM4VTTOFFEHqoUwiIiIvDLL7+gUaNG5q4PkdVhwKoZUi7/UNHA+4EDB5a7fRtDONW0it6vaWlpfF/WEJND2DfffCP+HhUVhZkzZ+LKlSto3bo17O3tDcr279/ffDUkIqqA1Ff1FQ289/b2hr+/f43Vh8iYit6vMTExAKxrbJjU40fLY3IIGzBgQKnb3nzzzVK3qVQqFBYWVqtSRKR8NfWhJ4flHzjwnpTE1PertYwNM/cevuZkcggruQwFEVF5anLQvByWf+DAe1KSst6vYWFxUlfLYsy9h685VWlM2Mcff4whQ4bA0dHR4Pb8/Hx89tlnXKKCyMbV5KB5KVuhig+o58B7UhL9+zU+vhNOnw7D6dNPIy4uzKoH6Muh1bykKoWwMWPGIDIyEnXr1jW4PTs7G2PGjGEII6IaI2UrFGe/khyY2vVf1sVAXFwYAPmEEkuSQ6t5SVUKYYIgGCzQqnf79m1oNJpqV4qIrIslZi7KpRWKAYukVNmu/+joaNy5cwcxMTGyDCWWJMexm5UKYe3atYNKpYJKpUKvXr1Qq9Zfdy8sLERKSgoiIyPNXkkiUi5LzVxkKxRR5bv+vby8xN/lGEosSY5jNysVwvQzJBMTExEREYHatWuLxxwcHBAUFIRBgwaZtYJEpFyWHoPBgCVvcl0WwJpVptVZjqHE0qq7h6+5VSqELVy4EAAQFBSEIUOGwMnJySKVIiLrYGvdHfQXOW4rZQlyCpqmtjrLpStfKnLaw7dKY8JGjRoFoKh58/79+6WWr2jYsGH1a0ZEileT3R1y+jIk+W0rZQlyCpqVaXW2ta58Oe/hW6UQdv36dYwdOxanT582uF0/YJ+LtRLZNv2HWUXdHeb60JPTlyHZDjkFzcq2OtvS/wdyDp1VCmGjR49GrVq1EBsbC39//zJnShKR7Sr5obdgwR+4caMWgoIeIyDgKQBPmfVDT05fhlQ2Kff2tAW2Nsi+suQaOqsUwhITE5GQkIDmzZubuz5EZCWKf+j5+wOhoRJWhiQl9d6eNUXKoGmLg+ytQZVCWMuWLZGWlmbuuhARmQVbXeRDjquUW4JUQdPWB9krXZVC2PLlyzFr1iy88847aN26Nezt7Q2Ou7u7m6VyRESVZSutLkphCzNkpQyach7vRBWrUggLDw8HAPTs2dNgPBgH5hORlGyl1UVJbGGsktRBkwFLuaoUwk6cOGHuehARVZvUX4b0l5qeISslWwiaZBlVCmHdunXDv//9b7z//vtITk7GF198gXr16mHXrl0IDg42dx2JiEzCL0P5qOkZslKwpaBJllGlELZ//36MGDECw4cPx/nz55GXlwcA0Gq1eOedd3Do0CGzVpKIyBh+GcqTtc+QtYWgSZalEgRBqOyd2rVrh2nTpmHkyJFwc3PDhQsX0KhRI5w/fx59+vRBamqqJepqc7KysqDRaKDVajnZgagCxVfMv3PHrtiXYdGOHvwyJKKaYur3d5VawpKSktC1a9dSt2s0GmRmZlblIYmIqsXaW12IyPpUKYT5+fnht99+Q1BQkMHtp06dQqNGjcxRL7JR3P+PiIhsRZVC2Msvv4zXXnsN27Ztg0qlwp07dxAXF4fXX38d8+fPN3cdyUZw/z8iIrIlVQphc+bMgU6nQ69evZCbm4uuXbvC0dERr7/+OqZMmWLuOpKNKNkCVt6q59z/j4isCXsAbFeVQphKpcIbb7yBmTNn4rfffsODBw/QsmVL1K5d29z1IxvFVc+JyBawB8C2VSmE6Tk4OKBly5bmqgsRAK56TkS2w9SWffYAWKdqhTAiS6ho1fOSm8ezqZ6IiJSIIcxGKGnMQUWrnsfExJS6D5vqicgalDcWlqwTQ5gNUNqYg4pWPS8Lm+qJSOk4Ftb2MITZACXOOmzf/jxCQn5DRoYnPD0zxHryKpGIrBHHwtomhjAbI+crrZL7+mk02QYfPnKuOxFRdVQ0FpasE0OYDZH7lVbJzXABIC0tDTExMbKvOxFRdVQ0Fpask13FRchaGLvSkgsvLy/4+/uLP97e3gCUUXciosrS9wDox8KqVEUbzpccC1uyp4CsA1vCbIiSr7SUXHciovKU7AFYsOAP3LhRC0FBjxEQ8BSAp2Q1e53MiyHMhlRl1qFcKLnuRETGFA9Y/v5AaKiElaEaxRBmY8qbdShXxZvgjdWdTfVERKQ0DGE2oKJZh+WVk4OyBuuXxKZ6IiJSIpUgCILUlaCyZWVlQaPRQKvVwt3dvVqPpaQV84mIiJTM1O9vtoTZCAYsIiIieeESFUREREQSYAgjIiIikgBDGBEREZEEOCaMiKqNEz+IiCqPIYyIqiU9PR0bNmyosFx0dDSDGBFRMQxhRFQtxlrAqlKOiKgylNwSzxBGREQkU0oOGDVB6S3xDGFEREQypPSAUROU3hLPEEYiXnGRnPD9SLZO6QFDClqtGzIyvODpmS77vZEBhjD6H15xkZzw/UhElXXuXDscONAXgmAHlUqHfv1i0b79eamrZRTXCSMAvOIi89Fq3ZCSEgSt1q3Kj8H3IxFVhlbrJgYwABAEOxw40Ldan0M1QTEhrH///mjYsCGcnJzg7++PESNG4M6dOwZl9u7di7Zt28LFxQWBgYFYuXJlqcc5efIk2rdvD0dHRzRu3Bg7duwoVWbjxo0ICgqCk5MTOnXqhJ9//tng+KNHjzB58mR4eXmhdu3aGDRoEO7du2dQ5tatW4iKioKLiwvq1q2LmTNn4vHjx9U/EUQydu5cO6xdOxU7d47C2rVTce5cO6mrRGQ1zHGBY60yMrzEAKYnCHbIyPCUqEamUUwI69GjB/bu3YukpCTs378fycnJGDx4sHj822+/xfDhwzFx4kRcunQJmzZtwpo1awy6NFJSUhAVFYUePXogMTERU6dOxfjx4/Hdd9+JZT7//HNMnz4dCxcuxLlz59CmTRtERETg/v37Yplp06bhwIED2LdvH3744QfcuXMHAwcOFI8XFhYiKioK+fn5OH36NHbu3IkdO3ZgwYIFFj5LRDXPwcEBQMVXovpyRFR5vMAxztMzHSqVzuA2lUoHT88MiWpkGsWEsGnTpqFz584IDAxEly5dMGfOHJw5cwYFBQUAgF27dmHAgAGYOHEiGjVqhKioKMydOxfLly+HIAgAgC1btiA4OBjvvvsuWrRogejoaAwePBhr1qwRn2f16tV4+eWXMWbMGLRs2RJbtmyBi4sLtm3bBgDQarXYunUrVq9ejZ49eyI0NBTbt2/H6dOncebMGQDAkSNHcOXKFXzyySdo27Yt+vTpg7feegsbN25k9wlZHS8vL0RHR6NLl1FlXok+/fQojt0iqgaldrXVJI0mG/36xYpBTD8mTO6D8xUTworLyMjA7t270aVLF9jb2wMA8vLy4OTkZFDO2dkZt2/fxs2bNwEAcXFxCA8PNygTERGBuLg4AEXjSxISEgzK2NnZITw8XCyTkJCAgoICgzLNmzdHw4YNxTJxcXFo3bo1fH19DZ4nKysLly9fLvd15eXlISsry+BHKmz2psrw8vJC585esCvxiaJWA506eTGAEVWDUrvaakLxFvb27c9j6tS1GDVqB6ZOXWswKF+uLfGKmh05e/ZsbNiwAbm5uejcuTNiY2PFYxEREZg2bRpGjx6NHj164LfffsO7774LALh79y6CgoKQmppqEIwAwNfXF1lZWXj48CH+/PNPFBYWllnm2rVrAIDU1FQ4ODjAw8OjVJnU1FSxTFmPoT9WnqVLl2Lx4sWVOCOWocQZJiS9+vWBDz4AXnkFKCwsCmDvv190u9JxuQySgj446Lvaigex4l1tcg0YNUHfEq/U/z8lDWFz5szB8uXLjZa5evUqmjdvDgCYOXMmxo0bh5s3b2Lx4sUYOXIkYmNjoVKp8PLLLyM5ORl9+/ZFQUEB3N3d8dprr2HRokWwK3l5LlNz587F9OnTxb+zsrLQoEGDGq1Dec3eISG/yb5Zl6Q3bhwQEQH89hvQuLH5ApiUa/9wuQySSvGAUa9eFmbP1qCwUAW1WsDy5Vl48cVhsg4YNUXJr1/SEDZjxgyMHj3aaJlGjRqJv3t7e8Pb2xtNmzZFixYt0KBBA5w5cwZhYWFQqVRYvnw53nnnHaSmpsLHxwfHjh0zeAw/P79Ssxjv3bsHd3d3ODs7Q61WQ61Wl1nGz89PfIz8/HxkZmYatIaVLFNyRqX+MfVlyuLo6AhHR0ej58NS9FdSxpq9NZpsm77iItPUr1/98FX8fWasZbYm3o9cLoOkpA8YM2YAQ4boL3BUqF/fA4CHlFUjM5A0hPn4+MDHx6dK99Xpigbf5eXlGdyuVqtRr149AMCnn36KsLAw8TnCwsJw6NAhg/JHjx5FWFgYgKIP9NDQUBw7dgwDBgwQn+fYsWOIjo4GAISGhsLe3h7Hjh3DoEGDAABJSUm4deuW+DhhYWFYsmQJ7t+/j7p164rP4+7ujpYtW1bp9Vqa/orrxo3H2LVLgE6nEo+p1QKmTOmDoKBair7iIOUo/n588826EISi96Mg2OHgwX5YsKAT348Kwu5c8zDHBQ7JiyLGhMXHx+Ps2bN45plnUKdOHSQnJ2P+/PkICQkRg09aWhq++OILdO/eHY8ePcL27dvFJST0Jk6ciA0bNmDWrFkYO3Ysjh8/jr179+LgwYNimenTp2PUqFHo0KEDOnbsiLVr1yInJwdjxowBAGg0GowbNw7Tp0+Hp6cn3N3dMWXKFISFhaFz584AgN69e6Nly5YYMWIEVqxYgdTUVMybNw+TJ0+WrKXLFF5eXvDyKmtcjwqhob4VPwCRGXl5eeHiRUBnOOschYUqZGf7Qm7f2WlpaeLvDBV/YXdu1TC42gZFhDAXFxfExMRg4cKFyMnJgb+/PyIjIzFv3jyDULNz5068/vrrEAQBYWFhOHnyJDp27CgeDw4OxsGDBzFt2jSsW7cO9evXx0cffYSIiAixzJAhQ/DHH39gwYIFSE1NRdu2bXH48GGDgfZr1qyBnZ0dBg0ahLy8PERERGDTpk3icbVajdjYWEyaNAlhYWFwdXXFqFGj8Oabb1r4TJmHpcb1EFVWkyaAnZ1hEFOri96XchMTE2PwN0NFEXbnVh6Dq+1QRAhr3bo1jh8/brSMt7e3uESEMd27d8f588Zn+kVHR4vdj2VxcnLCxo0bsXHjxnLLBAYGlur6VBI2e5McKHnGJUMFVRWDq+1QRAgjsnW23DXBllkislYMYUQyx64JebXMSrlcBhFZF4YwIplj14S0TF0ug8hSGPytF0MYEZERxpbL4ELGZGkM/tZNGUvJExFJyMvLC1lZvgbr5wHcv68quC+t6bhxt/VjSxgRkQnKWi5DpdLB3j4fKSlB7Coqh5x2P1CainYwIeVjCCMiMsFfy2UIKCxUQaXS4cknL2Lr1vE2GypMnbXL3Q8qhxt32w6GMCIiExUtl6FCQoIW9vb56Nevjc2GisrO2lXS7gdS48bdtoMhjEhhOFNKWkXLZWhw4oRth4rKztpV0u4HcsCNu20DQxiRzHFMjTwxVFSOknc/kJqc1skj82III5I5jqmRJ4aKyrP07ge2vLMEKRNDGJECcEyNPHFLpcqzVKsOd5YgJWIII1IIdn/JE7uK5IE7S5AScbFWIoXQd3+p1UV/s/uLiEjZ2BJGpCDs/iK54qxdospjCCNSGHZ/kRxw1i5R9TGEERFRpXHWLlH1cUwYERFVSXkbm/81a5cBjMgYtoQRESmQXNbEkuusXY5RIyVgCCMiUhg5rYkll0VrOUaNlEglCIIgdSWobFlZWdBoNNBqtXB3d5e6OkQkE3fv3sUHH3xQYbkJEybA39+/BmoE3L4t/azd9PR03LjxGB071jXoIlWrBcTH3+cYNaoxpn5/syWMiIiqrSZm7ZrSBVs0Rs3wdu4sQXLFEEZERLJnahfswIGvws6ujuzGqMmZXMYX2iKGMCIikj1Ttxvy9n4kizFqSiGn8YW2iCGMiIisCneWMB333JQWQxgREVkd7ixBSsDFWomIFE6rdUNKShC0Wjepq0IKx/dSzWJLGBGRwnBNLLIEY+8lsgyGMCIiheG+jVwR39y0WjcxgAFF76UDB/oiJOQ3nl8LYggjIlIgLy8vXLwIm1wTiy025peR4SUGMD1BsENGhidDmAVxTBgRkULp920szlrXxNJ3rZbXYqMfw8Qu2Krx9EyHSmWY6FUqHTw9MySqkW1gSxgRVRoXd5QHuezbWBP0XbAnTgBr1pRusXn66VHo3h1831WSPrRqNNno1y+2VAujvhWM4dYyuHekjHHvSJIjLu4oP3LYt7Gm3L4NBAai1Ir4N25Y/2u3lOIXVXfu2OHGjVoICnqMgICik8yLqsrj3pFEZBFc3FF+bGlNLFtq/aspxQOWvz8QGiphZWwMQxgRVaj4lXJaWprEtSFbxxXxyVowhBGRUaZ2PxLVJFtq/SPrxdmRRGQUuxWJiCyDIYyIiIhIAgxhRFQt3GuOiKhqOCaMiKqMK5cTEVUdW8KIqEq4cjkRUfWwJYyIKkW/cXJOjkuZe81x5XIiItMwhBGRyYp3PwI6AAIAlXhcrQY6dfKy6s2jqWZxiyyyZgxhRGRUeRsnF41m0EGlEiAIdlCrBbz/voprN5HZcIsssnYMYURklLGNkwE7bNnyJ3x97RAaqmEAI7PiFllk7RjCiKhCXl5e6NwZsLMrvXHy3/5Wh+GLiKgKODuSiEyi3zhZrS76mxsnExFVD1vCyGpxQK/5ceNkkpJ+Zq6nZzo0mmypq0NUbQxhZJU4oNdyuHEySYELA5M1Yggjq8QBvUTWo7yFgUNCfmOLGFWK3HpIGMLIJrAbg0i5MjK8ylwYOCPDk/8/k8nk2EPCEEZWj90YRMqkX6PO0zMdKpXOIIipVDp4emYYlCMypmQLWHkX5zXZQ8IQRlaN3RjmJ7fmfLJe+jXq8vPzUa9eFmbP1qCwUAW1WsDy5Vl48cVhfL9Rlcjl4pwhjKwauzHMq2RzfnlXkpzwQOaifx/NmAEMGaKfmatC/foeADykrBoplJwuzhnCyKpV1I1BlVO8BczYlSQnPJAlcGYumYOcLs65WCtZNY0mG/36xUKlKlrmXR8W2ApWPeVdSWq1bhLXjIjIOP3FeXFSXZyzJYysUvGBuu3bn0dIyG/IyPCEp2eGQQDjgN6qkdOVJBFRZegvzku25Evx2cUQRlap+IDe8nBAb9Wxm5eIlMzYxXlNYggjq8WAZTlyupIkIjJFyZ4PjSa7zM+smuwhYQgjoiqRy5UkEZEp5NhDwhBGRFVW3pUkEZEcya2HhLMjichkpjbTc8IDEVHF2BJGRCaTY3M+EZFSMYQRUaUwYBERmQe7I4mIiIgkwBBGREREJAGGMCIiIiIJKC6E5eXloW3btlCpVEhMTDQ4dvHiRTz77LNwcnJCgwYNsGLFilL337dvH5o3bw4nJye0bt0ahw4dMjguCAIWLFgAf39/ODs7Izw8HNevXzcok5GRgeHDh8Pd3R0eHh4YN24cHjx4UOm6EBERke1SXAibNWsWAgICSt2elZWF3r17IzAwEAkJCVi5ciUWLVqEDz74QCxz+vRpDBs2DOPGjcP58+cxYMAADBgwAJcuXRLLrFixAuvXr8eWLVsQHx8PV1dXRERE4NGjR2KZ4cOH4/Llyzh69ChiY2Px448/YsKECZWqCxEREdk4QUEOHTokNG/eXLh8+bIAQDh//rx4bNOmTUKdOnWEvLw88bbZs2cLzZo1E/9+4YUXhKioKIPH7NSpk/DKK68IgiAIOp1O8PPzE1auXCkez8zMFBwdHYVPP/1UEARBuHLligBAOHv2rFjm22+/FVQqlfDf//7X5LqYQqvVCgAErVZbqfsRERGRdEz9/lZMS9i9e/fw8ssvY9euXXBxcSl1PC4uDl27djVYJDIiIgJJSUn4888/xTLh4eEG94uIiEBcXBwAICUlBampqQZlNBoNOnXqJJaJi4uDh4cHOnToIJYJDw+HnZ0d4uPjTa5LWfLy8pCVlWXwQ0RERNZJESFMEASMHj0aEydONAg/xaWmpsLX19fgNv3fqampRssUP178fuWVqVu3rsHxWrVqwdPTs8LnKf4cZVm6dCk0Go3406BBg3LLEhERkbJJGsLmzJkDlUpl9OfatWt47733kJ2djblz50pZXYubO3cutFqt+PP7779LXSUiIiKyEElXzJ8xYwZGjx5ttEyjRo1w/PhxxMXFwdHR0eBYhw4dMHz4cOzcuRN+fn64d++ewXH9335+fuJ/yypT/Lj+Nn9/f4Mybdu2Fcvcv3/f4DEeP36MjIyMCp+n+HOUxdHRsdRrJCIiIuskaUuYj48PmjdvbvTHwcEB69evx4ULF5CYmIjExERxWYnPP/8cS5YsAQCEhYXhxx9/REFBgfj4R48eRbNmzVCnTh2xzLFjxwzqcPToUYSFhQEAgoOD4efnZ1AmKysL8fHxYpmwsDBkZmYiISFBLHP8+HHodDp06tTJ5LoQERGRjauZeQLmlZKSUmp2ZGZmpuDr6yuMGDFCuHTpkvDZZ58JLi4uwvvvvy+W+emnn4RatWoJq1atEq5evSosXLhQsLe3F3799VexzLJlywQPDw/h66+/Fi5evCg8//zzQnBwsPDw4UOxTGRkpNCuXTshPj5eOHXqlNCkSRNh2LBhlaqLKTg7koiISHlM/f62mhAmCIJw4cIF4ZlnnhEcHR2FevXqCcuWLSt137179wpNmzYVHBwchFatWgkHDx40OK7T6YT58+cLvr6+gqOjo9CrVy8hKSnJoEx6erowbNgwoXbt2oK7u7swZswYITs7u9J1qQhDGBERkfKY+v2tEgRBkLIljsqXlZUFjUYDrVYLd3d3qatDREREJjD1+1sRS1QQERERWRuGMCIiIiIJSLpEBRER2Yb09HTk5+cDAO7csUNKSi0EBz9GQIAOAODg4AAvLy8pq0hU4xjCiIjIotLT07FhwwYAwLlz7XDgQF8Igh1UKh369YtF+/bnAQDR0dEMYmRT2B1JRGSFbt8GTpwo+q/U9C1gWq2bGMAAQBDscOBAX2i1bgbliGwFQxgRkZXZuhUIDAR69iz679atUteoSEaGlxjA9ATBDhkZnhLViEhaDGFERFbk9m1gwgRAVzTUCjod8Mor8mgR8/RMh0qlM7hNpdLB0zNDohoRSYshjIjISqSnp+PMmXQxgOkVFgLx8elIT0+XpmL/o9Fko1+/WDGI6ceEaTTZktaLSCocmE9EZAX0g9+1WjeoVFMNuv1UKh1++mknLl3Klnzwe/v25xES8hsyMjxhb5+PggJHaLVu0GiykZaWxlmSZFMYwoiIrIB+ULu+tankDER9a5McBr9rNNlITm5cqo5ADADOkiTbwRBGRGRlirc2eXpmyK67r7xZkiEhv0GjyZZFUCSqCQxhRERWSKPJlk34cnBwMPjb2CxJudSZqCZwYD4REVmUl5cXoqOjMXDgQACcJUmkx5YwIiKyOC8vL5PHrdFfim/3VBZOZFA2hjAiIqpxch+3JgfFt3syhhMZlIshjIiIJCGncWtyVLIFTKt1Q0aGFzw90w3OGycyKBdDGBGRFSg5+L265UhejG18npaWVqo8uymVgSGMiMgK6Ae/y3n8EINi1VS0pEdMTEyZ92M3pfwxhBERWQm5f+EqISjKUUVLerCbUrkYwoiIqMYwYFWefkmPkltReXpmGO2mJPnjOmFEREQyVt7G5wDK7KbUat0kqytVDlvCiIiIZK6sJT1SUoK484DCMYQRERHJUMkJCiWX9DDWTUnKwBBGREQkQ+VNZEhLS0NMTAx3HrACDGFEREQyVdFEBu48oGwMYURERApSUTdleeVIfhjCiIiIFITrrVkPhjAiIiKFYcCyDlwnjIiIiEgCDGFEREREEmAIIyIiIpIAQxgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgCGMiIiISAJcMV/GBEEAAGRlZUlcEyIiIjKV/ntb/z1eHoYwGcvOLtqQtUGDBhLXhIiIiCorOzsbGo2m3OMqoaKYRpLR6XS4c+cO3NzcoFKppK5OjcnKykKDBg3w+++/w93dXerqKBrPpXnwPJoPz6X58FyahyXOoyAIyM7ORkBAAOzsyh/5xZYwGbOzs0P9+vWlroZk3N3d+cFiJjyX5sHzaD48l+bDc2ke5j6PxlrA9Dgwn4iIiEgCDGFEREREEmAII9lxdHTEwoUL4ejoKHVVFI/n0jx4Hs2H59J8eC7NQ8rzyIH5RERERBJgSxgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhJFkfvzxR/Tr1w8BAQFQqVT46quvDI4LgoAFCxbA398fzs7OCA8Px/Xr16WprMxVdC5Hjx4NlUpl8BMZGSlNZWVs6dKleOqpp+Dm5oa6detiwIABSEpKMijz6NEjTJ48GV5eXqhduzYGDRqEe/fuSVRjeTLlPHbv3r3Ue3LixIkS1Vi+Nm/ejCeffFJcSDQsLAzffvuteJzvR9NVdC6leE8yhJFkcnJy0KZNG2zcuLHM4ytWrMD69euxZcsWxMfHw9XVFREREXj06FEN11T+KjqXABAZGYm7d++KP59++mkN1lAZfvjhB0yePBlnzpzB0aNHUVBQgN69eyMnJ0csM23aNBw4cAD79u3DDz/8gDt37mDgwIES1lp+TDmPAPDyyy8bvCdXrFghUY3lq379+li2bBkSEhLwyy+/oGfPnnj++edx+fJlAHw/VkZF5xKQ4D0pEMkAAOHLL78U/9bpdIKfn5+wcuVK8bbMzEzB0dFR+PTTTyWooXKUPJeCIAijRo0Snn/+eUnqo2T3798XAAg//PCDIAhF70F7e3th3759YpmrV68KAIS4uDipqil7Jc+jIAhCt27dhNdee026SilYnTp1hI8++ojvRzPQn0tBkOY9yZYwkqWUlBSkpqYiPDxcvE2j0aBTp06Ii4uTsGbKdfLkSdStWxfNmjXDpEmTkJ6eLnWVZE+r1QIAPD09AQAJCQkoKCgweF82b94cDRs25PvSiJLnUW/37t3w9vbGE088gblz5yI3N1eK6ilGYWEhPvvsM+Tk5CAsLIzvx2ooeS71avo9yQ28SZZSU1MBAL6+vga3+/r6isfIdJGRkRg4cCCCg4ORnJyMf/3rX+jTpw/i4uKgVqulrp4s6XQ6TJ06FU8//TSeeOIJAEXvSwcHB3h4eBiU5fuyfGWdRwB48cUXERgYiICAAFy8eBGzZ89GUlISYmJiJKytPP36668ICwvDo0ePULt2bXz55Zdo2bIlEhMT+X6spPLOJSDNe5IhjMgGDB06VPy9devWePLJJxESEoKTJ0+iV69eEtZMviZPnoxLly7h1KlTUldF0co7jxMmTBB/b926Nfz9/dGrVy8kJycjJCSkpqspa82aNUNiYiK0Wi2++OILjBo1Cj/88IPU1VKk8s5ly5YtJXlPsjuSZMnPzw8ASs3yuXfvnniMqq5Ro0bw9vbGb7/9JnVVZCk6OhqxsbE4ceIE6tevL97u5+eH/Px8ZGZmGpTn+7Js5Z3HsnTq1AkA+J4sg4ODAxo3bozQ0FAsXboUbdq0wbp16/h+rILyzmVZauI9yRBGshQcHAw/Pz8cO3ZMvC0rKwvx8fEG/fdUNbdv30Z6ejr8/f2lroqsCIKA6OhofPnllzh+/DiCg4MNjoeGhsLe3t7gfZmUlIRbt27xfVlMReexLImJiQDA96QJdDod8vLy+H40A/25LEtNvCfZHUmSefDggcEVRkpKChITE+Hp6YmGDRti6tSpePvtt9GkSRMEBwdj/vz5CAgIwIABA6SrtEwZO5eenp5YvHgxBg0aBD8/PyQnJ2PWrFlo3LgxIiIiJKy1/EyePBl79uzB119/DTc3N3FcjUajgbOzMzQaDcaNG4fp06fD09MT7u7umDJlCsLCwtC5c2eJay8fFZ3H5ORk7NmzB3/729/g5eWFixcvYtq0aejatSuefPJJiWsvL3PnzkWfPn3QsGFDZGdnY8+ePTh58iS+++47vh8rydi5lOw9WaNzMYmKOXHihACg1M+oUaMEQShapmL+/PmCr6+v4OjoKPTq1UtISkqSttIyZexc5ubmCr179xZ8fHwEe3t7ITAwUHj55ZeF1NRUqastO2WdQwDC9u3bxTIPHz4U/vnPfwp16tQRXFxchL///e/C3bt3pau0DFV0Hm/duiV07dpV8PT0FBwdHYXGjRsLM2fOFLRarbQVl6GxY8cKgYGBgoODg+Dj4yP06tVLOHLkiHic70fTGTuXUr0nVYIgCJaLeERERERUFo4JIyIiIpIAQxgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgCGMiIiISAIMYUREREQSYAgjIiIikgBDGBFRFeTn50tdhVLkWCciKh9DGBERgO7duyM6OhrR0dHQaDTw9vbG/Pnzod/ZLSgoCG+99RZGjhwJd3d3TJgwAQBw6tQpPPvss3B2dkaDBg3w6quvIicnR3zcTZs2oUmTJnBycoKvry8GDx4sHvviiy/QunVrODs7w8vLC+Hh4eJ9u3fvjqlTpxrUccCAARg9erT4d1XrRETywBBGRPQ/O3fuRK1atfDzzz9j3bp1WL16NT766CPx+KpVq9CmTRucP38e8+fPR3JyMiIjIzFo0CBcvHgRn3/+OU6dOoXo6GgAwC+//IJXX30Vb775JpKSknD48GF07doVAHD37l0MGzYMY8eOxdWrV3Hy5EkMHDgQld3Ot7J1IiL54AbeREQoanm6f/8+Ll++DJVKBQCYM2cOvvnmG1y5cgVBQUFo164dvvzyS/E+48ePh1qtxvvvvy/edurUKXTr1g05OTk4dOgQxowZg9u3b8PNzc3g+c6dO4fQ0FDcuHEDgYGBZdanbdu2WLt2rXjbgAED4OHhgR07dgBAlerk5ORUrfNERObDljAiov/p3LmzGMAAICwsDNevX0dhYSEAoEOHDgblL1y4gB07dqB27driT0REBHQ6HVJSUvDcc88hMDAQjRo1wogRI7B7927k5uYCANq0aYNevXqhdevW+Mc//oEPP/wQf/75Z6XrXNk6EZF8MIQREZnI1dXV4O8HDx7glVdeQWJiovhz4cIFXL9+HSEhIXBzc8O5c+fw6aefwt/fHwsWLECbNm2QmZkJtVqNo0eP4ttvv0XLli3x3nvvoVmzZmJQsrOzK9U1WVBQUO06EZF8MIQREf1PfHy8wd9nzpxBkyZNoFaryyzfvn17XLlyBY0bNy714+DgAACoVasWwsPDsWLFCly8eBE3btzA8ePHAQAqlQpPP/00Fi9ejPPnz8PBwUHsWvTx8cHdu3fF5yosLMSlS5cqfA2m1ImI5IEhjIjof27duoXp06cjKSkJn376Kd577z289tpr5ZafPXs2Tp8+jejoaCQmJuL69ev4+uuvxUHwsbGxWL9+PRITE3Hz5k18/PHH0Ol0aNasGeLj4/HOO+/gl19+wa1btxATE4M//vgDLVq0AAD07NkTBw8exMGDB3Ht2jVMmjQJmZmZFb6GiupERPJRS+oKEBHJxciRI/Hw4UN07NgRarUar732mrjsQ1mefPJJ/PDDD3jjjTfw7LPPQhAEhISEYMiQIQAADw8PxMTEYNGiRXj06BGaNGmCTz/9FK1atcLVq1fx448/Yu3atcjKykJgYCDeffdd9OnTBwAwduxYXLhwASNHjkStWrUwbdo09OjRo8LXUFGdiEg+ODuSiAhlz0YkIrIkdkcSERERSYAhjIiIiEgC7I4kIiIikgBbwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgRERGRBBjCiIiIiCTw//RburKQoe+wAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -980,7 +4069,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABt7klEQVR4nO3deVxU1f8/8NcddhAGWWQRFMR9SUUTsaw0Evso5k/9aGamSVl9RUXNLXOpPubSpmZmloWV5t4ibpFbqUTmGqakhAsBKoMMuIEw5/fHNNcZZoABgQHm9Xw85gHce+bOufdD8v6c8z7vIwkhBIiIiIioRiks3QEiIiIia8QgjIiIiMgCGIQRERERWQCDMCIiIiILYBBGREREZAEMwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiMoUFxcHSZJw4cIFS3eFqF5hEEZEFnfkyBHExMSgXbt2cHFxQZMmTTB06FD89ddfRm0fe+wxSJIESZKgUCjg5uaGVq1aYeTIkUhISKjQ527btg2PPvooGjVqBGdnZzRr1gxDhw7Frl27qurWjLz99tv47rvvjI4fPnwY8+bNQ25ubrV9dknz5s2Tn6UkSXB2dkbbtm3x+uuvIy8vr0o+Y926dViyZEmVXIuovmEQRkQWt2jRImzZsgWPP/44li5dirFjx+Lnn39GaGgokpOTjdoHBATgq6++wpdffol33nkHAwYMwOHDh9GnTx8MGzYMd+/eLfcz3333XQwYMACSJGHmzJn44IMPMHjwYJw7dw7r16+vjtsEUHYQ9sYbb9RoEKbz8ccf46uvvsL777+P1q1bY/78+ejbty+qYmthBmFEpbO1dAeIiCZPnox169bB3t5ePjZs2DB06NABCxcuxNdff23QXqlU4tlnnzU4tnDhQkyYMAErVqxAUFAQFi1aVOrnFRUV4a233sITTzyBH3/80ej81atX7/OOao9bt27B2dm5zDZDhgyBl5cXAODll1/G4MGDsXXrVvz6668IDw+viW4SWSWOhBGRxfXo0cMgAAOAFi1aoF27djhz5oxZ17CxscGyZcvQtm1bLF++HGq1utS22dnZyMvLw0MPPWTyfKNGjQx+vnPnDubNm4eWLVvC0dERfn5+GDRoEFJTU+U27777Lnr06AFPT084OTmhS5cu2Lx5s8F1JEnCzZs3sWbNGnkKcPTo0Zg3bx6mTp0KAAgODpbP6edgff311+jSpQucnJzg4eGBp59+GpcvXza4/mOPPYb27dvj6NGjeOSRR+Ds7IzXXnvNrOenr3fv3gCAtLS0MtutWLEC7dq1g4ODA/z9/TFu3DiDkbzHHnsM27dvx8WLF+V7CgoKqnB/iOorjoQRUa0khMCVK1fQrl07s99jY2OD4cOHY/bs2Th48CD69etnsl2jRo3g5OSEbdu2Yfz48fDw8Cj1msXFxejfvz/27NmDp59+GhMnTkR+fj4SEhKQnJyMkJAQAMDSpUsxYMAAjBgxAoWFhVi/fj3++9//Ij4+Xu7HV199hRdeeAHdunXD2LFjAQAhISFwcXHBX3/9hW+++QYffPCBPCrl7e0NAJg/fz5mz56NoUOH4oUXXsC1a9fw4Ycf4pFHHsHx48fh7u4u91elUuHJJ5/E008/jWeffRY+Pj5mPz8dXXDp6elZapt58+bhjTfeQEREBF555RWkpKTg448/xpEjR3Do0CHY2dlh1qxZUKvVSE9PxwcffAAAaNCgQYX7Q1RvCSKiWuirr74SAMTq1asNjj/66KOiXbt2pb7v22+/FQDE0qVLy7z+nDlzBADh4uIinnzySTF//nxx9OhRo3aff/65ACDef/99o3MajUb+/tatWwbnCgsLRfv27UXv3r0Njru4uIhRo0YZXeudd94RAERaWprB8QsXLggbGxsxf/58g+N//PGHsLW1NTj+6KOPCgBi5cqVpd63vrlz5woAIiUlRVy7dk2kpaWJTz75RDg4OAgfHx9x8+ZNIYQQX3zxhUHfrl69Kuzt7UWfPn1EcXGxfL3ly5cLAOLzzz+Xj/Xr1080bdrUrP4QWRtORxJRrXP27FmMGzcO4eHhGDVqVIXeqxtpyc/PL7PdG2+8gXXr1qFz587YvXs3Zs2ahS5duiA0NNRgCnTLli3w8vLC+PHjja4hSZL8vZOTk/z99evXoVar0bNnTxw7dqxC/S9p69at0Gg0GDp0KLKzs+WXr68vWrRogX379hm0d3BwwPPPP1+hz2jVqhW8vb0RHByMl156Cc2bN8f27dtLzSX76aefUFhYiNjYWCgU9/6MvPjii3Bzc8P27dsrfqNEVojTkURUq2RlZaFfv35QKpXYvHkzbGxsKvT+GzduAABcXV3LbTt8+HAMHz4ceXl5SEpKQlxcHNatW4eoqCgkJyfD0dERqampaNWqFWxty/7nMj4+Hv/73/9w4sQJFBQUyMf1A7XKOHfuHIQQaNGihcnzdnZ2Bj83btzYKL+uPFu2bIGbmxvs7OwQEBAgT7GW5uLFiwC0wZs+e3t7NGvWTD5PRGVjEEZEtYZarcaTTz6J3Nxc/PLLL/D396/wNXQlLZo3b272e9zc3PDEE0/giSeegJ2dHdasWYOkpCQ8+uijZr3/l19+wYABA/DII49gxYoV8PPzg52dHb744gusW7euwvegT6PRQJIk7Ny502RAWjLHSn9EzlyPPPKInIdGRDWHQRgR1Qp37txBVFQU/vrrL/z0009o27Ztha9RXFyMdevWwdnZGQ8//HCl+tG1a1esWbMGmZmZALSJ80lJSbh7967RqJPOli1b4OjoiN27d8PBwUE+/sUXXxi1LW1krLTjISEhEEIgODgYLVu2rOjtVIumTZsCAFJSUtCsWTP5eGFhIdLS0hARESEfu9+RQKL6jDlhRGRxxcXFGDZsGBITE7Fp06ZK1aYqLi7GhAkTcObMGUyYMAFubm6ltr116xYSExNNntu5cyeAe1NtgwcPRnZ2NpYvX27UVvxbzNTGxgaSJKG4uFg+d+HCBZNFWV1cXEwWZHVxcQEAo3ODBg2CjY0N3njjDaPiqUIIqFQq0zdZjSIiImBvb49ly5YZ9Gn16tVQq9UGq1JdXFzKLBdCZM04EkZEFjdlyhT88MMPiIqKQk5OjlFx1pKFWdVqtdzm1q1bOH/+PLZu3YrU1FQ8/fTTeOutt8r8vFu3bqFHjx7o3r07+vbti8DAQOTm5uK7777DL7/8goEDB6Jz584AgOeeew5ffvklJk+ejN9++w09e/bEzZs38dNPP+H//u//8NRTT6Ffv354//330bdvXzzzzDO4evUqPvroIzRv3hynTp0y+OwuXbrgp59+wvvvvw9/f38EBwcjLCwMXbp0AQDMmjULTz/9NOzs7BAVFYWQkBD873//w8yZM3HhwgUMHDgQrq6uSEtLw7fffouxY8fi1Vdfva/nX1He3t6YOXMm3njjDfTt2xcDBgxASkoKVqxYgQcffNDgf68uXbpgw4YNmDx5Mh588EE0aNAAUVFRNdpfolrLkksziYiEuFdaobRXWW0bNGggWrRoIZ599lnx448/mvV5d+/eFZ9++qkYOHCgaNq0qXBwcBDOzs6ic+fO4p133hEFBQUG7W/duiVmzZolgoODhZ2dnfD19RVDhgwRqampcpvVq1eLFi1aCAcHB9G6dWvxxRdfyCUg9J09e1Y88sgjwsnJSQAwKFfx1ltvicaNGwuFQmFUrmLLli3i4YcfFi4uLsLFxUW0bt1ajBs3TqSkpBg8m7LKd5Sk69+1a9fKbFeyRIXO8uXLRevWrYWdnZ3w8fERr7zyirh+/bpBmxs3bohnnnlGuLu7CwAsV0GkRxKiCjYHIyIiIqIKYU4YERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2Cx1lpMo9EgIyMDrq6u3PqDiIiojhBCID8/H/7+/lAoSh/vYhBWi2VkZCAwMNDS3SAiIqJKuHz5MgICAko9zyCsFnN1dQWg/R+xrH3wiIiIqPbIy8tDYGCg/He8NAzCajHdFKSbmxuDMCIiojqmvFQiJuYTERERWQCDMCIiIiILYBBGREREZAHMCavjNBoNCgsLLd2Nes3e3r7MJcZERESVwSCsDissLERaWho0Go2lu1KvKRQKBAcHw97e3tJdISKieoRBWB0lhEBmZiZsbGwQGBjIkZpqoiuYm5mZiSZNmrBoLhERVRkGYXVUUVERbt26BX9/fzg7O1u6O/Wat7c3MjIyUFRUBDs7O0t3h4iI6ok6M3wyYMAANGnSBI6OjvDz88PIkSORkZFh0EYIgXfffRctW7aEg4MDGjdujPnz5xu02b9/P0JDQ+Hg4IDmzZsjLi7O6LM++ugjBAUFwdHREWFhYfjtt98Mzt+5cwfjxo2Dp6cnGjRogMGDB+PKlSsGbS5duoR+/frB2dkZjRo1wtSpU1FUVFQ1DwNAcXExAHCKrAbonrHumRMREVWFOhOE9erVCxs3bkRKSgq2bNmC1NRUDBkyxKDNxIkT8dlnn+Hdd9/F2bNn8cMPP6Bbt27y+bS0NPTr1w+9evXCiRMnEBsbixdeeAG7d++W22zYsAGTJ0/G3LlzcezYMXTs2BGRkZG4evWq3GbSpEnYtm0bNm3ahAMHDiAjIwODBg2SzxcXF6Nfv34oLCzE4cOHsWbNGsTFxWHOnDlV/lw4PVb9+IyJiKhaiDrq+++/F5IkicLCQiGEEH/++aewtbUVZ8+eLfU906ZNE+3atTM4NmzYMBEZGSn/3K1bNzFu3Dj55+LiYuHv7y8WLFgghBAiNzdX2NnZiU2bNsltzpw5IwCIxMREIYQQO3bsEAqFQmRlZcltPv74Y+Hm5iYKCgrMvke1Wi0ACLVabXTu9u3b4s8//xS3b982+3pUOXzWRET1Q3Z2tsjIyCj1lZ2dXSWfU9bfb311MicsJycHa9euRY8ePeQcnW3btqFZs2aIj49H3759IYRAREQEFi9eDA8PDwBAYmIiIiIiDK4VGRmJ2NhYANrVhkePHsXMmTPl8wqFAhEREUhMTAQAHD16FHfv3jW4TuvWrdGkSRMkJiaie/fuSExMRIcOHeDj42PwOa+88gpOnz6Nzp07m7yvgoICFBQUyD/n5eXdx1MiIiIiHZVKheXLl5fbLiYmBp6enjXQozo0HQkA06dPh4uLCzw9PXHp0iV8//338rm///4bFy9exKZNm/Dll18iLi4OR48eNZiyzMrKMgiMAMDHxwd5eXm4ffs2srOzUVxcbLJNVlaWfA17e3u4u7uX2cbUNXTnSrNgwQIolUr5FRgYaOaTqTtGjx4NSZIgSRLs7Ozg4+ODJ554Ap9//nmFSm3ExcUZ/W9ARERUGnNratZk7U2LBmEzZsyQ/yCX9jp79qzcfurUqTh+/Dh+/PFH2NjY4LnnnoMQAoC2lEBBQQG+/PJL9OzZE4899hhWr16Nffv2ISUlxVK3WCEzZ86EWq2WX5cvX662z1KpVMjMzCz1pVKpqu2z+/bti8zMTFy4cAE7d+5Er169MHHiRPTv379KFy8QEZF10/9bl52dbenuGLHodOSUKVMwevToMts0a9ZM/t7LywteXl5o2bIl2rRpg8DAQPz6668IDw+Hn58fbG1t0bJlS7l9mzZtAGhXKrZq1Qq+vr5GqxivXLkCNzc3ODk5wcbGBjY2Nibb+Pr6AgB8fX1RWFiI3Nxcg5GYkm1KrqjUXVPXxhQHBwc4ODiU+TyqgqWHZB0cHOTn0LhxY4SGhqJ79+54/PHHERcXhxdeeAHvv/8+vvjiC/z999/w8PBAVFQUFi9ejAYNGmD//v14/vnnAdxLmp87dy7mzZuHr776CkuXLkVKSgpcXFzQu3dvLFmyBI0aNary+yAiotrL3L91lmTRkTBvb2+0bt26zFdpJRh0U1e6HKqHHnoIRUVFSE1Nldv89ddfAICmTZsCAMLDw7Fnzx6D6yQkJCA8PByAthRBly5dDNpoNBrs2bNHbtOlSxfY2dkZtElJScGlS5fkNuHh4fjjjz8MVlQmJCTAzc0Nbdu2rcSTqlq1cUi2d+/e6NixI7Zu3QpAm4u3bNkynD59GmvWrMHevXsxbdo0AECPHj2wZMkSuLm5yf8P59VXXwUA3L17F2+99RZOnjyJ7777DhcuXCg30CciovpBf+SrZBmrktRqV6SlBUGtdq2h3hmrE4n5SUlJOHLkCB5++GE0bNgQqampmD17NkJCQuTAJyIiAqGhoRgzZgyWLFkCjUaDcePG4YknnpBHx15++WUsX74c06ZNw5gxY7B3715s3LgR27dvlz9r8uTJGDVqFLp27Ypu3bphyZIluHnzpjzyolQqER0djcmTJ8PDwwNubm4YP348wsPD0b17dwBAnz590LZtW4wcORKLFy9GVlYWXn/9dYwbN65GRrrqqtatW+PUqVMAIC+WAICgoCD873//w8svv4wVK1bA3t4eSqUSkiQZjSyOGTNG/r5Zs2ZYtmwZHnzwQdy4cQMNGjSokfsgIqKao1KpUFhYCLVajQ0bNpj1nmPHOmPbtv4QQgFJ0iAqKh6hoceruafG6kQQ5uzsjK1bt2Lu3Lm4efMm/Pz80LdvX7z++utyUKNQKLBt2zaMHz8ejzzyCFxcXPDkk0/ivffek68THByM7du3Y9KkSVi6dCkCAgLw2WefITIyUm4zbNgwXLt2DXPmzEFWVhY6deqEXbt2GSTaf/DBB1AoFBg8eDAKCgoQGRmJFStWyOdtbGwQHx+PV155BeHh4XBxccGoUaPw5ptv1sDTqruEEPL04k8//YQFCxbg7NmzyMvLQ1FREe7cuYNbt26VuUPA0aNHMW/ePJw8eRLXr1+XR0wvXbpUK0YhiYio6lRkylGtdkVOjifs7ArkAAwAhFBg27b+CAk5D6Uyvzq7a6ROBGEdOnTA3r17y23n7++PLVu2lNnmsccew/HjZUe7MTExiImJKfW8o6MjPvroI3z00UeltmnatCl27NhRdofJwJkzZxAcHIwLFy6gf//+eOWVVzB//nx4eHjg4MGDiI6ORmFhYalB2M2bNxEZGYnIyEisXbsW3t7euHTpEiIjI2t0apWIiGqGuf+26498ARqUzMYSQoGcHA8GYWSd9u7diz/++AOTJk3C0aNHodFo8N5778kbk2/cuNGgvb29vdE2QmfPnoVKpcLChQvl8h6///57zdwAERHVKqWNfGkDMAHg3m4okqSBh0cOgJrdDpBBGNW4goICZGVlobi4GFeuXMGuXbuwYMEC9O/fH8899xySk5Nx9+5dfPjhh4iKisKhQ4ewcuVKg2sEBQXhxo0b2LNnDzp27AhnZ2c0adIE9vb2+PDDD/Hyyy8jOTkZb731loXukoiILKVkzte9AExHko8rFAKLF+fhmWeGw97evsYKtQJ1rFgr1Q+7du2Cn58fgoKC0LdvX+zbtw/Lli3D999/DxsbG3Ts2BHvv/8+Fi1ahPbt22Pt2rVYsGCBwTV69OiBl19+GcOGDYO3tzcWL14Mb29vxMXFYdOmTWjbti0WLlyId99910J3SURElqBWuxrlfGlHvu6RJA2ioz/DqFFx+O23q5gyxR1+fn41GoABgCR01U6p1snLy4NSqYRarYabm5vBuTt37iAtLQ3BwcFwdHSs0HUtXSesrrmfZ01ERNUnMzMTq1atMjiWlhaENWtGmWitzQUruRqyOv7WlfX3Wx+nI62Qp6cnYmJiykxorOkhWSIiopJ05SdKo1arjY55eKiMpiB1I19379pjxIgwtG//IIAHLf63jkGYlWKARUREtVllK94rlfmIioo3qgMWEJAJAAgNjao1fwMZhBEREVGtU5nSQroVkSEh5xEbuwQ5OR7w8MjBiy8+CXd3y498lcQgjIiIiGo9XYDl4aEyqOc1dOhQuLu7Y906J7z5phIajfTvikc1pk69XesCL30MwoiIiKhWK2ubIXd3dxQX+2HaNODfTVKg0UiYPt0dw4a5o5bGXwAYhBEREZGFlJV4n52dDcB0yYmS2wydO3cvANMpLgbOnwcCAqqv//eLQRgRERHVOHMT73NyPI2KrZbcZqhFC0ChMAzEbGyA5s2rtMtVjsVaiYiIqMaZm3ivKzmhT3+bIUA72rVqlTbwArRfP/mkdo+CAQzCiIiIqBZQq12RlhYEtdrV4Liu5IQuENPlhJXcbDs6GrhwAdi3T/s1OrqGOn4fOB1J9cr+/fvRq1cvXL9+He7u7ma9JygoCLGxsYiNja3WvhERWRtzcr6AshPvASA09DhCQs7LJSf0AzD9DbcDAmr/6Jc+BmFUo0aPHo01a9bgpZdeMtqUe9y4cVixYgVGjRqFuLg4y3SQiIiqhLk5X+Ul3g8aNAheXl4m31uby0+Yg0EY1bjAwECsX78eH3zwAZycnABo92dct24dmjRpYuHeERFRZemPfOmPdJWlvMR7Ly8v+Pn5VXlfawPmhFGNCw0NRWBgILZu3Sof27p1K5o0aYLOnTvLxwoKCjBhwgQ0atQIjo6OePjhh3HkyBGDa+3YsQMtW7aEk5MTevXqhQsXLhh93sGDB9GzZ084OTkhMDAQEyZMwM2bN6vt/oiIrJFu5GvVqlVYtWqVwb/xZTEn8b6+YhBGSE/XJjKmp9fcZ44ZMwZffPGF/PPnn3+O559/3qDNtGnTsGXLFqxZswbHjh1D8+bNERkZiZwc7X+Yly9fxqBBgxAVFYUTJ07ghRdewIwZMwyukZqair59+2Lw4ME4deoUNmzYgIMHDyImJqb6b5KIyIpUZpshwPzE+/qI05FWbvVqYOxYbW0VhUK7xLcmVpQ8++yzmDlzJi5evAgAOHToENavX4/9+/cDAG7evImPP/4YcXFxePLJJwEAn376KRISErB69WpMnToVH3/8MUJCQvDee+8BAFq1aoU//vgDixYtkj9nwYIFGDFihJx036JFCyxbtgyPPvooPv74Yzg6Olb/zRIRUanbDgHmJ97XNwzCrFh6+r0ADNB+feklIDKy+leXeHt7o1+/foiLi4MQAv369TNIvExNTcXdu3fx0EMPycfs7OzQrVs3nDlzBgBw5swZhIWFGVw3PDzc4OeTJ0/i1KlTWLt2rXxMCAGNRoO0tDS0adOmOm6PiIj0lLX6sT4n3peHQZgVs/Q2D2PGjJGnBT/66KNq+YwbN27gpZdewoQJE4zOcREAEVHlmCo9UTIRXzfyZWdXUObqx/qceF8eBmFWzNLbPPTt2xeFhYWQJAmRkZEG50JCQmBvb49Dhw6hadOmAIC7d+/iyJEj8tRimzZt8MMPPxi879dffzX4OTQ0FH/++Sea1/a9K4iI6ghzSk+UHPkqb9sha8XEfCtm6W0ebGxscObMGfz555+w0XXiXy4uLnjllVcwdepU7Nq1C3/++SdefPFF3Lp1C9H/Jq29/PLLOHfuHKZOnYqUlBSsW7fOqL7Y9OnTcfjwYcTExODEiRM4d+4cvv/+eybmExFVgEqlQmZmJjIzM5GRkVFmW1N1vwBh0EZ/9WN9zvkqD0fCrFx0tDYH7Px57QhYTVcadnNzK/XcwoULodFoMHLkSOTn56Nr167YvXs3GjZsCEA7nbhlyxZMmjQJH374Ibp164a3334bY8aMka/xwAMP4MCBA5g1axZ69uwJIQRCQkIwbNiwar83IqL6oLyRr5IJ96bqfgESAA0ABRQKgcWL8/DMM8Prfc5XeSQhhCi/GVlCXl4elEol1Gq1UbBy584dpKWlITg4mCv8qhmfNRFZs8zMTKxatcrkOVMJ9yEh57FkSaxBICZJGkRHf4a7d+0xZcpT6NChYU113yLK+vutj9ORREREVGGlbTcEAFFR8VAotGM8NjYC77yThzffjMJ770XV+wCsIjgdSURERGbTTT/evOlcasJ9aOhxzJkThvx8HzRvLiEgwB2AuyW6W6sxCCMiIiKzlJx+1OV56egn3Pv7a2CllSfMxulIIiIiKpep6UdJArSBmHVtN1RVOBJWx3FdRfXjMyYia5Geri3k3aKF8Wp5U6sehVBgyJCNcHG5ZVXbDVUVBmF1lK6uVmFhIZycnCzcm/pNVxW6ZC0zIqK6rGTV+3XrnDBtmhIajQSFQuD9929i4sQG8nkPD5VR4VVJ0iAwMB1KZb7B9kPWXnrCXAzC6ihbW1s4Ozvj2rVrsLOzg0LBmeXqoNFocO3aNTg7O8PWlv+5EFHdp1KpcO3aNWzYsEE+pla7/ltWQgIAaDQSJk1yRseO5xEYqD2mVOYjKireqCSFbvTL39+fgVcF8a9KHSVJEvz8/JCWloaLFy9aujv1mkKhQJMmTSBpkx+IiOqskoVXdSsdr10zPdUYF3cQwcEX8eyzz8LZ2RkAMGfONVy4YIugoCL4+z8I4EGOfFUSg7A6zN7eHi1atDDaRJWqlr29PUcaiaheuHr1qvz9sWOd8cMP/aFdo2ec+6q/0tHZ2VneZNvPD+jSpSZ6W/8xCKvjFAoFq7gTEZFZioqKAGhHwO4FYIB2WyF9XOlYExiEERERWZnLlwNRVpWqIUM2o337MzXXISvFORYiIiKS6VY8UvXjSBgREVE9ol96IiNDgbQ0WwQHF8HfX4Pr168DAAIDL0ObB2Y4DcmCqzWLQRgREVE9ob/6seQWQ1FR8QgNPQ5AW25iwIBtehXwNejRIxFhYUkMwGoQgzAiIqI6Tjf6lZ2dDbXaFZcvBxok3guhwLZt/REScl4OskJDjyMk5DxycjyMqt1TzWAQRkREVAfpAi+1Wi0XXtWOfsUa1fwCtIFYTo6HQbClVOabFXxxC6LqwSCMiIiojjFVdPXy5UCDDbZL0q/7VZ6hQ4fC3d0dALcgqk4MwoiIiOoY/SLd+rlfpSmZcK+/z2NJDLpqDoMwIiKiOkqtdi139Gvw4M3yJts6Xl5ecgV8shwGYURERHVUTo7xno86utEvFl2tvRiEERER1SL6db5M0U+S9/BQQZI0JQIxDYYMMR79otqHQRgREVEtYSrhPifHEx4eKoOAaujQoQC0qxujouKN6oGVN/rF1Y61A4MwIiKiWqK0hPuSxVZ1G3ED5tf70iXjM/G+9mAQRkREVMuUTLg3VWxVnzn1vvz9/Rl81TIMwoiIiCzA1B6PSmUuANMJ9/rFVu3s7Mz6DF29L45+1U4MwoiIiGpY6Xs8NkRUVGeEhJw3SrjXL7aqVCoRExNTbgI/A6/ajUEYERFRDdNuN2Rc5V437Rgbu8Rkwr3+lCMDrLqPQRgREVEN0U1BrlpVjCVLyt7jkRts138MwoiIiGqAbgoyPd0Pq1e/YNYej+ZusE11E4MwIiKiaqZSqZCRkYFDh8KRkBABoOwq9+UFXqzzVT8wCCMiIqpGf/xxHe+9F4+//w7CL788AUAy0cp0lXtTG20z4b7+YBBGRERUxXS5X+vWOWHaNHdoNKMACJgKwMqqcs+Ntus3BmFERERVSKVSYf78Nbh8ORCbNw/GvcDL9AhYdPRnCAjIrMEeUm3BIIyIiKgKxcXZlLry0ZDAE0/8VGYAxtyv+o1BGBERUSWlpwPnzgEtWgABAcCRI8DUqUoIYWrUC9BNSUqSBhERP+GhhxKNWnCPR+vBIIyIiKgCDPO9lNBoJEiSwH/+cxs7djiVGoDpAi9//4wy634xD8x6MAgjIiIyk67Wl1rt+u+UozbgEkLC9u1OKC3xfvBg45WPpeEUpPVgEEZERGQm3V6NpjbYrujKx5IGDRoEf39/TkFaEQZhREREFeThoTLaYNtYxVY+MgCzPuUt3SAiIqISlMp8RET8BG2ivT7tz5KkwYAB8WYHYEOHDmUAZoU4EkZERFQJupWNum2IzE28N8Xd3b16Okm1GoMwIiKiSnrooUS0b5+MnByPCgde+piMb53qzHTkgAED0KRJEzg6OsLPzw8jR45ERkaGfH7evHmQJMno5eLiYnCdTZs2oXXr1nB0dESHDh2wY8cOg/NCCMyZMwd+fn5wcnJCREQEzp07Z9AmJycHI0aMgJubG9zd3REdHY0bN24YtDl16hR69uwJR0dHBAYGYvHixVX8RIiIqDZQKvMRHHzRrABs0KBBGDt2rMErJiaGU5FWqs4EYb169cLGjRuRkpKCLVu2IDU1FUOGDJHPv/rqq8jMzDR4tW3bFv/973/lNocPH8bw4cMRHR2N48ePY+DAgRg4cCCSk5PlNosXL8ayZcuwcuVKJCUlwcXFBZGRkbhz547cZsSIETh9+jQSEhIQHx+Pn3/+GWPHjpXP5+XloU+fPmjatCmOHj2Kd955B/PmzcOqVauq+SkREVFtpqsBpv9iAGa9JCFEyazCOuGHH37AwIEDUVBQADs7O6PzJ0+eRKdOnfDzzz+jZ8+eAIBhw4bh5s2biI+Pl9t1794dnTp1wsqVKyGEgL+/P6ZMmYJXX30VAKBWq+Hj44O4uDg8/fTTOHPmDNq2bYsjR46ga9euAIBdu3bhP//5D9LT0+Hv74+PP/4Ys2bNQlZWljzEPGPGDHz33Xc4e/as2feYl5cHpVIJtVoNNze3Sj8rIiKqGro6YZU1duxYFmK1Aub+/a4zI2H6cnJysHbtWvTo0cNkAAYAn332GVq2bCkHYACQmJiIiIgIg3aRkZFITNQmV6alpSErK8ugjVKpRFhYmNwmMTER7u7ucgAGABEREVAoFEhKSpLbPPLIIwZz/JGRkUhJScH169dLva+CggLk5eUZvIiIqPbw9PTEsGHDKv1+5n6RvjoVhE2fPh0uLi7w9PTEpUuX8P3335tsd+fOHaxduxbR0dEGx7OysuDj42NwzMfHB1lZWfJ53bGy2jRq1MjgvK2tLTw8PAzamLqG/meYsmDBAiiVSvkVGBhYalsiIrp/6enAvn3ar+ZSKpUV/pxBgwYx94uMWDQImzFjhslkev2X/vTd1KlTcfz4cfz444+wsbHBc889B1Ozqd9++y3y8/MxatSomryd+zZz5kyo1Wr5dfnyZUt3iYioXkpPB6ZOBZo0AXr3Bpo2BVavrr7PYyFWMsWiJSqmTJmC0aNHl9mmWbNm8vdeXl7w8vJCy5Yt0aZNGwQGBuLXX39FeHi4wXs+++wz9O/f32g0ytfXF1euXDE4duXKFfj6+srndcf05+yvXLmCTp06yW2uXr1qcI2ioiLk5OQYXMfU5+h/hikODg5wcHAo9TwREd2/1auBsWMBjebeMY0GeOklIDISCAioms8ZNGgQvLy8YG9vzwCMTLJoEObt7Q1vb+9KvVfz7389BQUFBsfT0tKwb98+/PDDD0bvCQ8Px549exAbGysfS0hIkIO44OBg+Pr6Ys+ePXLQlZeXh6SkJLzyyivyNXJzc3H06FF06dIFALB3715oNBqEhYXJbWbNmoW7d+/KOWsJCQlo1aoVGjZsWKn7JSKi+5eeDrz4opA33tZXXAwkJang5IQygyZz87o4+kXlEnXAr7/+Kj788ENx/PhxceHCBbFnzx7Ro0cPERISIu7cuWPQ9vXXXxf+/v6iqKjI6DqHDh0Stra24t133xVnzpwRc+fOFXZ2duKPP/6Q2yxcuFC4u7uL77//Xpw6dUo89dRTIjg4WNy+fVtu07dvX9G5c2eRlJQkDh48KFq0aCGGDx8un8/NzRU+Pj5i5MiRIjk5Waxfv144OzuLTz75pEL3rVarBQChVqsr9D4iIjJt3LibAhAmX5JULCZNek/MmzdPZGdnl3md7OxskZGRUeqrvPdT/Wbu3+86EYSdOnVK9OrVS3h4eAgHBwcRFBQkXn75ZZGenm7Qrri4WAQEBIjXXnut1Gtt3LhRtGzZUtjb24t27dqJ7du3G5zXaDRi9uzZwsfHRzg4OIjHH39cpKSkGLRRqVRi+PDhokGDBsLNzU08//zzIj8/36DNyZMnxcMPPywcHBxE48aNxcKFCyt83wzCiIjuz+XLQuzdq/166lSOUCg0pQRhxWLAgO/FvHnzxLx580RGRoalu051mLl/v+tsnTBrwDphRESVp5/7pVAIdO9+GIcPP2TUrl27P9CnT4JBxXvW86L7Ua/rhBEREZUlPd0w+V6jkZCYGA5AY9BOkjRGARhRTWEQRkRE9c65c4arHwFACAV69EiEJGlPSJIGUVHxDMDIYiy6OpKIiOh+pacDhw9rv+/RA3ByUsHNrQgKRSNoNPdWQUqSBmFhSQgLS0JOjgc8PHIYgJFFMQgjIqI6a/Vq4MUXtan1ACBJAlFRhxAaehz9+3fGtm39IYTCaNSLwRfVBgzCiIiozlGpVLhwoQgvvtjIoOaXEBK2beuPkJDzCA09jpCQ8xz1olqLQRgREdUpKpUK8+evwenT7SBEpNF5IRTIyfGAUpkvvyqKG21TTWAQRkREdUpcnA2WLImFEAoAAoBh9XtJ0sDDI6dS1x40aBAr3VON4epIIiKqM9LTgWnTlP8GYIA2ALtX7vJ+VzwyAKOaxJEwIiKqM7SlJ0ru+yjhkUf2oVGjawgMTK90APbss88yAKMaxSCMiIjqBJWq9NITXbocr1DwNWjQIHh5eck/29vbMwCjGscgjIiIaj2VSoXly5cDQJmlJ8zl5eXFbYnI4hiEERFRrVdYWCh/XxWlJ7j6kWoDBmFERFTnmFt6ouS0I8CpR6o9GIQREVG1SU/XJtO3aAEEBNT853PakWozlqggIqJqsXo10LQp0Lu39uvq1cZt0tOBffu0X4msDYMwIiKqcunpwNixgEaj/VmjAV56yTDYMidII6rPOB1JRERVQn/qUVvPy/B8cTFw/rz2+8OHTQdpkZFVO23JBHyqzRiEERHRfVu9+l5QpVAACxdqv+oHYjY2wJEjwOOPCxMFV7VBWlKSCk5OqHTivH4iPhPwqbbjdCQREd0XU1OPM2cKvPaaGpJ0b0uh4mKB6dNNB2CAtujqoUNrsHz5cqhUKoNz5o5o+fv7w8/PD35+fgzAqNbjSBgREd0X01OPEs6e3Q0hhuDeBtsShCj57n/PlCi6ql8XDNCOjMXExBgd18eRL6prGIQREdF9adHCeOpRkjTQBl/lTbhoMGTIZrP2fGSARfUNpyOJiKjSVCoVbGwysXhxLmxstMNculGtwMDL/wZj+jTyMUnSYMCAeLRvf6bSm24T1WUcCSMiokrR388RACZMcDXaSigqKt5on8f73XKIqL5gEEZERJVSMj/L1FZCpe3zyOCLiEEYERFVQno68Ouv9lCrXcsNqMzd55HI2jAIIyKiCrlXE8wTkhSLqKh4hIYet3S3iOocJuYTEZHZStYEE0KBbdv6Q612rdLPYaV7sgYcCSMiIrOoVCr8+qt2BEyfEArk5Hjc95Sjrto9632RtWAQRkREJunvBenkpF0JqVa7QpJiIcS9iRRJ0sDDI+e+P8/Lywt+fn73fR2iuoLTkUREZGT1aqBpU6B3b+3XuDgbANok+6ioeINaX/qV7onIfBwJIyIiA6b2gpw+XYkJE7QrIUsrO1Ga//znP9ixY0e5n8s8MLI2DMKIiKycbtqxQQPgn3/UOHNGQKNxN2hTXCwZ5H2VVnZCl9elo8vvatasGfd9JCqBQRgRkRXQz+8KCLh3/F65CQAQAJT/fjVkbt5XaXldDLCIjDEnjIioniuZ37V6tfZ4yWlH7Ybb+l///Yl5X0TVgiNhRET1mKn8rpdeArp1u46UFI1RuQlTBg/ejPbtz1RzT4msD4MwIqJ67Nw5/ZEureJi4L33voeHR45RuYmSJEmDwMD0au4lkXXidCQRUT2lUqng5nYFCoVhjpdCIeRVjfrlJu7lgmm/VmYakisciczHkTAionpIpdIWVwWA/v07Y9u2/hBCAUnSoH//e4GVfrkJO7tC3L1rL38trfxEyRWQOlzhSFQxDMKIiOoh/XIQ5dX1Kq3cRGlY2Z6oajAIIyKqA0orMWGuigZaRFT9mBNGRFTLlVZiwlKY90VUNTgSRkRUi5VWYiIysnIjYvdj0KBB8Pf3Z94XURXhSBgRUS1WWomJ8+drvi9eXl4MwIiqEIMwIqJarEULQFHiX2obG6B5c8v0h4iqDoMwIqJaSqVSwcYmE4sX58LGRlu7y8ZGYNGiXNjYZEKlUt33ZzzxxBPo1avXfV+HiCqOOWFERLWQfp0vAJgwwVUuMXHjRj5WrdIej4mJgaenp9HqSXOT51u1aoXCwkLs27evOm6DiMrAIIyIqBbSr/MFlF5iorCwEKtX30veVyiAVauA6GhPxMTEGF1Hn664qrkjalwVSVS1GIQREdVhGRmKMlZPmpdE7+lpfsBGRFWHQRgRUS2lVrsiJ8cTHh6qUgutnjhx0+TqyaQkFZycYHbgxACLqOYxCCMiqmXS04H5813xySex8n6PUVHxCA09btT29OnvIEnadjqSpMGhQ2uQnJwv54wRUe3D1ZFERLXI6tVAkybAypUN5MBKCAW2besPtdrVqL1SmY+oqHhIknY4TBew6UbOyppiJCLL4kgYEVEtoa2OLyCEZHROCAVycjxMTkuWt0E3EdVODMKIiGoBlUqFPXtuQqNpYvK8JGng4ZFT6vu5QTdR3cMgjIjIwnQ1wdRqV6P8LsB4ipGI6gcGYUREFqaftxUenojExPB/AzENevRIRFhYkkEANmjQIADA1q1ba7qrRFSFGIQREdUCx451xrZt/fWCr0NGwZeOl5dXzXeQiKqc2UFYXl6e2Rd1c3OrVGeIiKyNSqVCcnKuXgAGAAokJoYjLCzJon0joupldhDm7u4OSTJesaNPCAFJklBcXHzfHSMiqu90uWDJyW0hRBuDc2WthgTM30KIWw0R1V5mB2Hc3JWIqGoVFhbK05AllbcaklsNEdV9Zgdhjz76aHX2g4jI6mRkKEpMQ+qYtxqSARZR3VbpxPzc3FysXr0aZ86cAQC0a9cOY8aMgVKprLLOERHVZ2lptiYCMGDIkM1o3/5Mqe/jFCNR/VCpbYt+//13hISE4IMPPkBOTg5ycnLw/vvvIyQkBMeOHavqPhIR1TsqlQpK5VV5uyEdSdIgMDDd5HuGDh3KvSCJ6hFJCCEq+qaePXuiefPm+PTTT2Frqx1MKyoqwgsvvIC///4bP//8c5V31Brl5eVBqVRCrVZzxSlRLZaeDpw7B7RoAQQElH9cl5APGJamKG2j7kGDBsHf35/BF1EdYe7f70pNR/7+++8GARgA2NraYtq0aejatWtlLklEVCetXg2MHQtoNIBCAbz//g0MHZqPdeucMG2aEhqNBIVCYPFiNZ555jbs7e0NkunN2ffRy8uLARhRPVSpIMzNzQ2XLl1C69atDY5fvnwZrq6uVdIxIqLaTKVS4cKFIowd2wgajbZ8j0YDTJrkjOTkdVi9+gV5I26NRsLUqW7455/PoVTmY+jQoQbX4r6PRNapUkHYsGHDEB0djXfffRc9evQAABw6dAhTp07F8OHDq7SDRES1jW46MS0tCBrNKINzQihw6VITo4R7/bpfRUVFFfo8JuIT1U+VSsx/9913MWjQIDz33HMICgpCUFAQRo8ejSFDhmDRokVV3UcAwIABA9CkSRM4OjrCz88PI0eOREZGhkGb3bt3o3v37nB1dYW3tzcGDx6MCxcuGLTZv38/QkND4eDggObNmyMuLs7osz766CMEBQXB0dERYWFh+O233wzO37lzB+PGjYOnpycaNGiAwYMH48qVKwZtLl26hH79+sHZ2RmNGjXC1KlTK/wPLxHVTrrpRA8PlcnE+iZNLpk8XlbdL1MGDRrERHyieqxSQZi9vT2WLl2K69ev48SJEzhx4gRycnLwwQcfwMHBoar7CADo1asXNm7ciJSUFGzZsgWpqakYMmSIfD4tLQ1PPfUUevfujRMnTmD37t3Izs6WN7rVtenXrx969eqFEydOIDY2Fi+88AJ2794tt9mwYQMmT56MuXPn4tixY+jYsSMiIyNx9epVuc2kSZOwbds2bNq0CQcOHEBGRobB5xQXF6Nfv34oLCzE4cOHsWbNGsTFxWHOnDnV8myIqPLS04F9+7RfK0qpzEdUVLwccOkS6wMCMk0er+iUI3PBiOq3Sq2OrA1++OEHDBw4EAUFBbCzs8PmzZsxfPhwFBQUQKHQxpbbtm3DU089JbeZPn06tm/fjuTkZPk6Tz/9NHJzc7Fr1y4AQFhYGB588EF55ZJGo0FgYCDGjx+PGTNmQK1Ww9vbG+vWrZODwLNnz6JNmzZITExE9+7dsXPnTvTv3x8ZGRnw8fEBAKxcuRLTp0/HtWvXzJ5a4OpIoupVMql+1SogOrr892VmZmLVqlXyz2q1q8nE+tKODxo0CFu3bi33c8aOHQs/P7+K3RQRWZy5f78rNRJ2584dvPPOO/jPf/6Drl27IjQ01OBV3XJycrB27Vr06NEDdnZ2AIAuXbpAoVDgiy++QHFxMdRqNb766itERETIbRITExEREWFwrcjISCQmJgLQTjEcPXrUoI1CoUBERITc5ujRo7h7965Bm9atW6NJkyZym8TERHTo0EEOwHSfk5eXh9OnT1fDEyGiikpPvxeAAdqvL72kPV7R0TGlMh/BwReNRrpKO05EBFQyMT86Oho//vgjhgwZgm7dupW7sXdVmT59OpYvX45bt26he/fuiI+Pl88FBwfjxx9/xNChQ/HSSy+huLgY4eHh2LFjh9wmKyvLIDACAB8fH+Tl5eH27du4fv06iouLTbY5e/asfA17e3u4u7sbtcnKyirzc3TnSlNQUICCggL557y8vPIeCRFV0rlz9wIwneJiYOlS4P33Kz46VhG6/2NYHibkE9VvlQrC4uPjsWPHDjz00EP39eEzZswoN5H/zJkzcimMqVOnIjo6GhcvXsQbb7yB5557DvHx8ZAkCVlZWXjxxRcxatQoDB8+HPn5+ZgzZw6GDBmChISEGgsU78eCBQvwxhtvWLobRPWeSqWCm1sRFIp75SUAQKEQeO896JWWAF56SaBTp6sICrKtsvwspVLJzbeJqHJBWOPGjaukHtiUKVMwevToMts0a9ZM/t7LywteXl5o2bIl2rRpg8DAQPz6668IDw/HRx99BKVSicWLF8vtv/76awQGBiIpKQndu3eHr6+v0SrGK1euwM3NDU5OTrCxsYGNjY3JNr6+vgAAX19fFBYWIjc312A0rGSbkisqddfUtTFl5syZmDx5svxzXl4eAgMDy3w+RFQx+tXq+/c3rFbfvXsiDh82/D+XxcUSPvxwJ4KDL1bZSkUGWEQEVDIIe++99zB9+nSsXLkSTZs2rfSHe3t7w9vbu1Lv1fw7j6Cbvrt165ackK9jY2Nj0Lbk9CQAJCQkIDw8HID2H8YuXbpgz549GDhwoPzePXv2ICYmBoA298zOzg579uzB4MGDAQApKSm4dOmSfJ3w8HDMnz8fV69eRaNGjeTPcXNzQ9u2bUu9JwcHh2pbXUpEWmVVqweAxMTwEjW+BDIy/BEcfBHXrl2Dp6en2dOEQ4cONUpdYABGRDqVWh157do1DB06FD///DOcnZ2N8htycipWC6c8SUlJOHLkCB5++GE0bNgQqampmD17Nq5cuYLTp0/DwcEBe/fuRUREBObNmydPR7722ms4e/Yszpw5AycnJ6SlpaF9+/YYN24cxowZg71792LChAnYvn07IiMjAWhLVIwaNQqffPIJunXrhiVLlmDjxo04e/asnNf1yiuvYMeOHYiLi4ObmxvGjx8PADh8+DAAbYmKTp06wd/fH4sXL0ZWVhZGjhyJF154AW+//bbZ983VkURVr+TKxpIOHQpHQsITAO5NU0qSBrGxS6BU5sujYSqVitOJRGRSte4dOXz4cPzzzz94++234ePjU+35Vs7Ozti6dSvmzp2Lmzdvws/PD3379sXrr78ujxz17t0b69atw+LFi7F48WI4OzsjPDwcu3btgpOTEwBt8v727dsxadIkLF26FAEBAfjss8/kAAzQ7gZw7do1zJkzB1lZWejUqRN27dplkGj/wQcfQKFQYPDgwSgoKEBkZCRWrFghn7exsUF8fDxeeeUVhIeHw8XFBaNGjcKbb75Zrc+JiO6fv38m9AMwQFvt/vLlACiVZ+TAiwEWEd2vSo2EOTs7IzExER07dqyOPtG/OBJGVHXS07UrIt3criA+fmWp7dRqVyxZEmu07ZCu4OrKlQ+ydhcRlala64S1bt0at2/frnTniIhq0urVQNOmQO/eQLdujXDsWOdS2+qq4AOG9SuEUGDbtv7IyKjUP5tEREYq9a/JwoULMWXKFOzfvx8qlQp5eXkGLyKi2kClUuHo0SsYO1boFWWVsG1bf6jVpa/wDg09jiFDthgdF0KBkydvQqVSVVeXiciKVConrG/fvgCAxx9/3OC4EAKSJKG4uPj+e0ZEdB90pSjS0oKg0YwyOCeEAjk5HmVWsg8MvAxJ0hhMS0qSBsnJ3+Hy5XxurE1E961SQdi+ffuquh9ERPdFl/PVogUQEHCvFIWHh8pkMKUrSVEa3bSkfh0x/U24y1oZSURkjkoFYY8++qhZ7f7v//4Pb775Jry8vCrzMUREZjG1Efd//qM9V14wNWjQIHh5eSEtLQ0JCQkG1y1ZR4x7QBJRVapUEGaur7/+Gq+++iqDMCKqFiqVChcuFGHs2HvbD+m2Gtq5M1duV1Yw5eXlBT8/P9jb2xsFYYA2iGPwRUTVoVqDsEpUvyAiMktZOV/FxRLWrk1CcPC9Y+UFU56enoiJiUFGRga2bt1aXd0mIpJVaxBGRFRdzMn5UqtdkZPjCQ8PlVmjWZ6ensz1IqIawyCMiOq00nK+UlObGx0LDT1u6e4SEckYhBFRnWdqI279qve6QqshIeeZ30VEtQaDMCKqF/RzvtLSgoy2HSqtNpi9vX2ZP5fG3HZERKWp1iDs2Wef5Z6HRFSlVCoVCgsLkZ2dXWobDw8VtNsOma4NpitLYW9vb1RwVZegX1ZumKn3ERFVVKWDsNzcXPz222+4evUqNBrDPdaee+45AMDHH398f70jItKjWxGpU1rifWpqcwCS3jsNa4PpylKUhgEWEdWESgVh27Ztw4gRI3Djxg24ublBku79YydJkhyEERHdD92ol47+6NexY51NJt6r1a7Ytq0/9IMwSQJCQs7XZNeJiMpVqSBsypQpGDNmDN5++204OztXdZ+IiMoY9dJuvK0LwIB7iff29gXyz/rM2SuSiKimVSoI++effzBhwgQGYERUbfRHwEqOeoWHJ5oMtDZv/i8kSYOy8sGIiGoLRflNjEVGRuL333+v6r4QERnRTS/qj3odPhz+b7BlTBuoAdpADEZ7RQJc2UhEtYPZI2E//PCD/H2/fv0wdepU/Pnnn+jQoQPs7OwM2g4YMKDqekhEVi0nx9No1AtQoFmzcyYS8LWEUGDIkI1wcblltFfk0KFDmXhPRLWC2UHYwIEDjY69+eabRsckSUJxcfF9dYqI6reSCfcl6Y9UlbYtUWpqCEwFYLrzgYHpJnPA3N3dK91vIqKqZHYQVrIMBRFRZZRMuC/NsGHDAJjelig8PBGHDz9k8n2mph+JiGqjSiXmf/nllxg2bBgcHBwMjhcWFmL9+vUsUUFEpSo5AlZara+7d+/K35valigxMbzENKUGQ4ZsLnUEjIiotqlUYv7zzz8PtVptdDw/Px/PP//8fXeKiKzDsWOdsWRJLNasGYUlS2Jx7Fhn+Vx+/r1A6l6gliNvTxQVFS8n50uSBgMGxKN9+zPlBmBMyiei2qJSI2FCCIMCrTrp6elQKpX33Skiqv9MrXrU32Q7ISEBQOlFWUuOjpUWfOm2KAK43RAR1S4VCsI6d+4MSZIgSRIef/xx2Nree3txcTHS0tLQt2/fKu8kEdU/plY9liyqWl6gpr9pd2nK26KIiMhSKhSE6VZInjhxApGRkWjQoIF8zt7eHkFBQRg8eHCVdpCI6pfc3FwApa961C+qak6gRkRUV1UoCJs7dy4AICgoCMOGDYOjo2O1dIqI6ieVSoWNGzcCML3qseSqRnMCNSKiuqpSOWGjRo0CoF3ldPXqVaPyFU2aNLn/nhFRnVNe/S/dKJiOLq/r8uUAABICAy8bnDcnUCsPE/GJqLaqVBB27tw5jBkzBocPHzY4rkvYZ7FWIutjbv0vfWq1K5KSwnD4cDgAw8R7nbIS8Pv06WOQFgEAtra2ckFWJuITUW1WqSBs9OjRsLW1RXx8PPz8/EyulCQi62Ju/S8d/VWPOiUT73VKS8APCgpi0j0R1VmVCsJOnDiBo0ePonXr1lXdHyKqB0orK6FTctWjPibeE5G1qFSx1rZt2yI7O7uq+0JE9UBpZSXUale5jelNubUqknjPfC8iqssqNRK2aNEiTJs2DW+//TY6dOgAOzs7g/Nubm5V0jkiqnvMKSthatWjlmHivX6h1ZKY70VEdV2lgrCIiAgAQO/evQ3ywZiYT0TmlJUobVPusLAkg2lIFlolovqsUkHYvn37qrofRFRPmFtWwtxth4iI6qtKBWGPPvoofvnlF3zyySdITU3F5s2b0bhxY3z11VcIDg6u6j4SUR1TVoA1bNgwCCGwcePGcrcdYs4XEdVnlQrCtmzZgpEjR2LEiBE4fvw4CgoKAABqtRpvv/02duzYUaWdJKLar2TAVFqA5e3tDU9PT8TExJRZ2JU5X0RU30lCCFHRN3Xu3BmTJk3Cc889B1dXV5w8eRLNmjXD8ePH8eSTTyIrK6s6+mp18vLyoFQqoVarudiB6oTyKuYzsCIia2Du3+9KjYSlpKTgkUceMTquVCqNtiUhIuvBAIuIyHyVCsJ8fX1x/vx5BAUFGRw/ePAgmjVrVhX9IqJK4mgUEVHdUKkg7MUXX8TEiRPx+eefQ5IkZGRkIDExEa+++ipmz55d1X0kIjOV3L+xtK2DYmJiGIgREVlYpYKwGTNmQKPR4PHHH8etW7fwyCOPwMHBAa+++irGjx9f1X0kIjPpj4CVtXVQWSNlpnB0jYio6lUqCJMkCbNmzcLUqVNx/vx53LhxA23btkWDBg2qun9EVAmlbR1UcmNsc5QcXSsNR9eIiCqmUkGYjr29Pdq2bVtVfSGiKmLO1kHmKjkCVtoUZ0VH14iIrN19BWFEVPPKmhrMzs4GYN7WQZVR1hQnERFVDIMwolqotEBLrVZjw4YN5b7f3K2DKqIqpziJiIhBGFGtY24OVnmqem/GqpziJCIiBmFEtY65OVjlnQNK3zqoMqpripOIyFoxCCOqxcrKwbqf/KzKbIxdHVOcRETWjEEYUS1VVg4WgDLzswYNGgQvLy+T172fml5VPcVJRGTNGIQR1VJl5WABUpn5WV5eXvDz86uSfpQcNSttirMyo2tERNaMQRhRLVVeDlZN5Wd5enoiJiaGFfOJiKoYgzCiWqq8HKyazM9igEVEVPUYhBHVYmXlYJV1jlODRES1H4MwolrG3BysoUOHwt3d3eT7OXJFRFT7MQgjqmWYg0VEZB0YhBHVQgywiIjqP0X5TYiIiIioqjEIIyIiIrIABmFEREREFsCcMCILUqlUTMAnIrJSDMKILESlUmH58uXltouJiWEgRkRUD3E6kshCyhoBq0w7IiKqWzgSRlTHlJzCzM3NRVFREQAgK8sWGRkuaN/eAf7+GgCc0iQiqq0YhBHVIWVNYR471tloL8nQ0OMAOKVJRFQbMQgjMqG2JsyX1ie12lUOwABACAW2beuPkJDzUCrzOaVJRFQLMQgjKqE6EuZNBXXZ2dmV6p8+tdoVOTmeuHnTWQ7AdIRQICfHw+S+k0REZHkMwohKqOqEeXODOl1A5eGhMitwKjn9CGigv9ZGkjTw8Mgxq49ERFTz6szqyAEDBqBJkyZwdHSEn58fRo4ciYyMDIM2GzduRKdOneDs7IymTZvinXfeMbrO/v37ERoaCgcHBzRv3hxxcXFGbT766CMEBQXB0dERYWFh+O233wzO37lzB+PGjYOnpycaNGiAwYMH48qVKwZtLl26hH79+sHZ2RmNGjXC1KlT5eRpsi7mBGvHjnXGkiWxWLNmFJYsicWxY53LbG9q+lGSAG0gBjknjKNgRES1V50Jwnr16oWNGzciJSUFW7ZsQWpqKoYMGSKf37lzJ0aMGIGXX34ZycnJWLFiBT744AODEYi0tDT069cPvXr1wokTJxAbG4sXXngBu3fvltts2LABkydPxty5c3Hs2DF07NgRkZGRuHr1qtxm0qRJ2LZtGzZt2oQDBw4gIyMDgwYNks8XFxejX79+KCwsxOHDh7FmzRrExcVhzpw51fyUqC4qLZ9LrXYFoM0/Kyknx9Pk9OOQIZsxalQcYmOXyEn5RERUO0lCCGHpTlTGDz/8gIEDB6KgoAB2dnZ45plncPfuXWzatElu8+GHH2Lx4sW4dOkSJEnC9OnTsX37diQnJ8ttnn76aeTm5mLXrl0AgLCwMDz44INy8KbRaBAYGIjx48djxowZUKvV8Pb2xrp16+Qg8OzZs2jTpg0SExPRvXt37Ny5E/3790dGRgZ8fHwAACtXrsT06dNx7do1k39UTcnLy4NSqYRarYabm1uVPDcqX2ZmJlatWlVuu7Fjx8LPz+++r5eWFoQ1a0YZHd+8WYXHHoNB3pnuWmq1K5YsiTUIxCRJg9jYJSZHv8ztKxER3T9z/37XmZEwfTk5OVi7di169OgBOzs7AEBBQQEcHR0N2jk5OSE9PR0XL14EACQmJiIiIsKgTWRkJBITEwFop42OHj1q0EahUCAiIkJuc/ToUdy9e9egTevWrdGkSRO5TWJiIjp06CAHYLrPycvLw+nTp0u9r4KCAuTl5Rm8qP7z8FD9m9N1j40NEBbmWWriv1KZj6ioePl9nH4kIqp76lQQNn36dLi4uMDT0xOXLl3C999/L5+LjIzE1q1bsWfPHmg0Gvz111947733AGhHDwAgKyvLIDACAB8fH+Tl5eH27dvIzs5GcXGxyTZZWVnyNezt7eHu7l5mG1PX0J0rzYIFC6BUKuVXYGCguY+GqpFa7Yq0tCB5erA8KpUKmZmZ8qu8VZC6gMrGRjsobWMDfPIJEBBg3FZ/FDU09DhiY5eYNf1o7ugrERHVHIuujpwxYwYWLVpUZpszZ86gdevWAICpU6ciOjoaFy9exBtvvIHnnnsO8fHxkCQJL774IlJTU9G/f3/cvXsXbm5umDhxIubNmweFom7EmjNnzsTkyZPln/Py8hiIWVhZBVBNMWclpKlVkKGhxzFnThjy833QvLnpAAzQTk3GxMSUWjEfAOzs7KBUKuWfWTGfiKh2smgQNmXKFIwePbrMNs2aNZO/9/LygpeXF1q2bIk2bdogMDAQv/76K8LDwyFJEhYtWoS3334bWVlZ8Pb2xp49ewyu4evra7SK8cqVK3Bzc4OTkxNsbGxgY2Njso2vr698jcLCQuTm5hqMhpVsU3JFpe6aujamODg4wMHBocznQdVPN2pUXgFUU6NL5a2ELCuo8/fXwJy0rZIBFXO9iIjqJosOEXl7e6N169ZlvkqbRtFotLkwBQUFBsdtbGzQuHFj2Nvb45tvvkF4eDi8vb0BAOHh4XJgppOQkIDw8HAA2j++Xbp0MWij0WiwZ88euU2XLl1gZ2dn0CYlJQWXLl2S24SHh+OPP/4wWFGZkJAANzc3tG3btlLPimqObrSpR49RJlcgPvTQqEptA1SZVZBERFR/1YlirUlJSThy5AgefvhhNGzYEKmpqZg9ezZCQkLkwCc7OxubN2/GY489hjt37uCLL76QS0jovPzyy1i+fDmmTZuGMWPGYO/evdi4cSO2b98ut5k8eTJGjRqFrl27olu3bliyZAlu3ryJ559/HgCgVCoRHR2NyZMnw8PDA25ubhg/fjzCw8PRvXt3AECfPn3Qtm1bjBw5EosXL0ZWVhZef/11jBs3jiNddYSnpye6dwcUCkCjlzN/L2Fe+3PJSvhl5X+VVlaiWbM+iIiwRWFhITIzMzl9SERkJepEEObs7IytW7di7ty5uHnzJvz8/NC3b1+8/vrrBkHNmjVr8Oqrr0IIgfDwcOzfvx/dunWTzwcHB2P79u2YNGkSli5dioCAAHz22WeIjIyU2wwbNgzXrl3DnDlzkJWVhU6dOmHXrl0GifYffPABFAoFBg8ejIKCAkRGRmLFihXyeRsbG8THx+OVV15BeHg4XFxcMGrUKLz55pvV/KSoKgUEAKtWAS+9BBQXGyfMm1sJX0e3CrJkWYm///4RGzYYrmrkhttERPVfna0TZg1YJ6x2SE8Hzp+HUcK8ufXE9Jmb6M+6XkREdZe5f7/rxEgYUXUytbm2Picnezz2WOVGpUquhAwNPY6QkPPIyfGAh0cO63oREVkxBmFk1cydUqzM9GBpo15KZb4cfFV0024iIqo/GISRVTNnc+2KtNMpr7wFUPEaZEREVL/UjSqmRHVMaSsh//yzLdRq13LLVRARUf3HkTCiamBqJSQgsHt3X/z4Yx+EhyeaDNJycjw4LUlEZCU4EkZURfT3mCy5wTYgAEja74QCiYnhAAw37ZYkDTw8cmq0z0REZDkcCSMyU8lVlLm5ufL3peV3hYSch739M1i0yHC7KiEU6NHjEBITww3eoxsFY/V8IqL6j0EYkRlyc3OxceNGk+dM5Xdt3x6FOXPCEBRki9u3PfHOOyUr7wssW9YcwDVcuGCLoKAi+Ps/COBBVswnIrISDMKI9JRWMqKoqKjU95hKwi8ulpCf7yNvb2RceV9Cly7aXRi6dKn6+yAiotqPQRhZNf1pv7JKRtjZ2ZV6DVNJ+DY22gr7OtHRQGSk6cr7RERknbhtUS3GbYtqhkqlwoULRejWrRE0Gkk+bmMjkJR0FUFB2s21y9qiSD+A0+0xGR1dE70nIqLahtsWEZnJ09MTp04Z5mwB96YUARWys7PLvIYuCf+hh0YhLMyTI11ERFQuBmFEAFq0ABSKksnzgKfndbO2NQIApTIfPXoUgvtuExGROVgnjAjaHK1Vq7SBFwB5StHL647J9vo1wYiIiCqDI2FE/zKVPJ+ZadyOez4SEVFVYBBGpCcgoOyVi+VtzM0iq0REZC4GYUQVcPlyoMk9H9u3H4innlKyyCoREZmNQRiRmXTTkCVJkgYdO7owACMiogphEEZWo+TejyWVtV1QyWnIe7Q5Ydoth4iIiMzHIIysgkqlMqvURExMjMlAzNTWRAAwZMhmtG9/BgCDMCIiqhiWqCCrUNYIWFntdIn2uq2J9EmSBoGB6QbtiIiIzMWRMCI92dnZBtOSnp6eiImJQWFhIRo3zsP06UoUF0uwsRFYtCgPzzwzvMxpTCIiotIwCCPSs3XrVgDA0KFD4e7uDkA7yuXn54cpU4Bhw3R1xCQEBLgDcLdUV4mIqI5jEEZkwsaNGw1+1uWKlVdHjIiIyFzMCSOrVNq2Q6UdNzenjIiIyFwcCSOrU9q2Q9yOiIiIahJHwsiqmNp26Icf+iMlpbnJ7Yi4QTcREVUXBmFkFXQlJEzX+1Lgm2+Gm9yOKCfHo4Z6SERE1oZBGFkFXamJESO6GdX70lIAEAZHJEkDD4+cGukfERFZHwZhZDU8PT3Rvr07oqLiAZgKxCQ5QNPlhCmV+TXaRyIish5MzCerYm9vj9DQ42jUKAurV79gMAUpSRpER3+Gu3ft4eGRwwCMiIiqFYMwqjXuZ4Ntc+lXwG/dOg/Tpimh0UjyyFdAQGapn01ERFSVJCGEKL8ZWUJeXh6USiXUajXc3Nws3Z1qdb8bbFdWejpw9KgaAQF34O9vaoqyaoI/IiKyHub+/eZIGNUKld1g+35pK+ArASir9LpERETlYRBGFqWbgszOzrZ0V4iIiGoUgzCyGHOnIImIiOojlqggi+F+jEREZM0YhFGtVNpG2kRERPUFpyOp1uFG2kREZA04Eka1iqkNtrmRNhER1UcMwqjWUKtdcfp0uzI30mbRVCIiqi84HUm1gv4UpHYjbUk+p1AIjB//JIKCbFk0lYiI6g0GYWRxJacgtQGYNhCTJA3mzMmAv78NCgsLkZlpuK0Qq9kTEVFdxSCMLEY3tZiT42k0BQlIiIzchbZt/wSQj1WrSr9OVW9lREREVBOYE0YWo9tMe/z4vlAoDLcwtbERmDKlKZTKfPlYaWUrWG+MiIjqIo6EkUV5enrC0xNYtQp46SWguBiwsQE++URC+/buOHxY245lK4iIqL7hSBjVCtHRwIULwL592q/R0ffOsWwFERHVRxwJo3LpNtkuTVUlxwcEaF8lmcoZ05Wt0J+uJCIiqksYhFGZzN1kuzqT4zMy/FCybIUkaeDhkVMtn0dERFQTOB1JZTI36b06kuPVajXUalf89FME9AMwQCAi4ieOghERUZ3GIIwqpKY21lapVNiwYUOp5Sv8/TOq9fOJiIiqG6cjyWwVWaGYng6cOwe0aGE6z6s8upE1Dw8VJEljEIiVnIrkVkZERFQXcSSMzGLOCkWVSoXMzEy8914umjYV6N0baNpU4L33cpGZmQmVSlXhz1Uq8xEVFQ9J0gCAHPzppiKHDh3KQq1ERFQncSSMzFLeCsXc3Fxs3LgRarUrliyJhRDaHC6NRsLUqW7455/PoVTmVyqBPzT0OEJCziMnxwMeHjkGuWDu7u73fW9ERESWwCCMzFLetGBRURGA8oO1yibwK5X5TMQnIqJ6hdORZJbypgV1dMGaPpaTICIiMsaRMCqTftJ7WdOCdnZ2AO4FayUT+DmKRUREZIhBGJVJt8l2eRXz9c+XFawRERGRFoMwKpc5ifSZmZkGP99vDpe5ZSdYnoKIiOoqBmFUK5k7AsfyFEREVFcxCKNaiwEWERHVZ1wdSVWC04dEREQVw5EwqhKcPiQiIqoYBmFUZRhgERERmY/TkUREREQWwCCMiIiIyAIYhBERERFZQJ0LwgoKCtCpUydIkoQTJ04YnDt16hR69uwJR0dHBAYGYvHixUbv37RpE1q3bg1HR0d06NABO3bsMDgvhMCcOXPg5+cHJycnRERE4Ny5cwZtcnJyMGLECLi5ucHd3R3R0dG4ceNGhftCRERE1qvOBWHTpk2Dv7+/0fG8vDz06dMHTZs2xdGjR/HOO+9g3rx5WLVqldzm8OHDGD58OKKjo3H8+HEMHDgQAwcORHJystxm8eLFWLZsGVauXImkpCS4uLggMjISd+7ckduMGDECp0+fRkJCAuLj4/Hzzz9j7NixFeoLERERWTlRh+zYsUO0bt1anD59WgAQx48fl8+tWLFCNGzYUBQUFMjHpk+fLlq1aiX/PHToUNGvXz+Da4aFhYmXXnpJCCGERqMRvr6+4p133pHP5+bmCgcHB/HNN98IIYT4888/BQBx5MgRuc3OnTuFJEnin3/+Mbsv5lCr1QKAUKvVFXofERERWY65f7/rzEjYlStX8OKLL+Krr76Cs7Oz0fnExEQ88sgjBsVAIyMjkZKSguvXr8ttIiIiDN4XGRmJxMREAEBaWhqysrIM2iiVSoSFhcltEhMT4e7ujq5du8ptIiIioFAokJSUZHZfTCkoKEBeXp7Bi4iIiOqnOhGECSEwevRovPzyywbBj76srCz4+PgYHNP9nJWVVWYb/fP67yutTaNGjQzO29rawsPDo9zP0f8MUxYsWAClUim/AgMDS21LREREdZtFg7AZM2ZAkqQyX2fPnsWHH36I/Px8zJw505LdrXYzZ86EWq2WX5cvX7Z0l4iIiKiaWLRi/pQpUzB69Ogy2zRr1gx79+5FYmIiHBwcDM517doVI0aMwJo1a+Dr64srV64YnNf97OvrK3811Ub/vO6Yn5+fQZtOnTrJba5evWpwjaKiIuTk5JT7OfqfYYqDg4PRPRIREVH9ZNGRMG9vb7Ru3brMl729PZYtW4aTJ0/ixIkTOHHihFxWYsOGDZg/fz4AIDw8HD///DPu3r0rXz8hIQGtWrVCw4YN5TZ79uwx6ENCQgLCw8MBAMHBwfD19TVok5eXh6SkJLlNeHg4cnNzcfToUbnN3r17odFoEBYWZnZf6pL0dGDfPu1XIiIiqiI1s06gaqWlpRmtjszNzRU+Pj5i5MiRIjk5Waxfv144OzuLTz75RG5z6NAhYWtrK959911x5swZMXfuXGFnZyf++OMPuc3ChQuFu7u7+P7778WpU6fEU089JYKDg8Xt27flNn379hWdO3cWSUlJ4uDBg6JFixZi+PDhFeqLOWrD6sjPPhNCoRAC0H797DOLdYWIiKhOMPfvd70JwoQQ4uTJk+Lhhx8WDg4OonHjxmLhwoVG7924caNo2bKlsLe3F+3atRPbt283OK/RaMTs2bOFj4+PcHBwEI8//rhISUkxaKNSqcTw4cNFgwYNhJubm3j++edFfn5+hftSHksHYZcv3wvAdC8bG+1xIiIiMs3cv9+SEEJYciSOSpeXlwelUgm1Wg03N7ca+cz0dODcOaBFC+3X3r2N2+zbBzz2WI10h4iIqM4x9+93nShRQTVj9WqgaVNt4NW0KfD774CixG+IjQ3QvLll+kdERFSfMAgjANoRsBdfBDQa7c8aDTBzJrBokTbwArRfP/kECAiwXD+JiIjqC4uWqKDaY+lSbdaXvuJiIDhYhaSkIly4YIugoCL4+2uQmQnY29vD09PTMp0lIiKqBxiEEdLTgfffN3VGg0OH1iA5OR8AoLfPOQAgJiaGgRgREVElcTqScO7cvWlIfT16JEKpzC/1fYWFhdXYKyIiovqNQRihRQvjBHxJ0iAsLMkyHSIiIrICDMIIAQHAqlX6CfgCUVHxZY6CERER0f1hTpiVS08Hfv9djU6d7iApCbhwwRZubldx+PBxS3eNiIioXmMQZsVWrwbGjhXQaJSQJFdERcUjNJTBFxERUU3gdKQVSk8HNm4EXnxRQKORAABCKLBtW3+o1a4W7h0REZF1YBBmZXRV8YcNA4SQDM4JoUBOjoeFekZERGRdGIRZkfR0YOxY0+UoAO2KSA+PHLOvZ29vX0U9IyIisj7MCbMipdUDA7QBWFkrIgcNGgQvLy/5Z1bMJyIiuj8MwqyIrh6YfiAmSRoMHrwZgYHpZZak8PLygp+fXw30koiIyDpwOtKKBAQA779/A5KkjcJ0o1/t259hTTAiIqIaxpEwKzN0aD4uXlyFnBwPeHjkMPgiIiKyEAZhVkKlUqGwsBDZ2dlQKvMrHHwxCZ+IiKhqMQizAiqVCsuXL6/0+5999lkm4RMREVUxBmFWoLCwsMLv0a2G5CpIIiKi6sEgjEziakgiIqLqxdWRRERERBbAIIyIiIjIAhiEkUlcDUlERFS9mBNGMibjExER1RwGYSRjMj4REVHN4XSkFTB3apFTkERERDWHI2FWwNPTEzExMWXWC+MUJBERUc1iEGYlGGARERHVLpyOJCIiIrIABmFEREREFsAgjIiIiMgCGIQRERERWQCDMCIiIiILYBBGREREZAEMwoiIiIgsgEEYERERkQUwCCMiIiKyAFbMr8WEEACAvLw8C/eEiIiIzKX7u637O14aBmG1WH5+PgAgMDDQwj0hIiKiisrPz4dSqSz1vCTKC9PIYjQaDTIyMuDq6gpJksx6T15eHgIDA3H58mW4ublVcw9rLz4HLT4HPgMdPgctPgc+A53qfA5CCOTn58Pf3x8KRemZXxwJq8UUCgUCAgIq9V43Nzer/o9Lh89Bi8+Bz0CHz0GLz4HPQKe6nkNZI2A6TMwnIiIisgAGYUREREQWwCCsnnFwcMDcuXPh4OBg6a5YFJ+DFp8Dn4EOn4MWnwOfgU5teA5MzCciIiKyAI6EEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBWB3w8ccf44EHHpALyoWHh2Pnzp3y+Tt37mDcuHHw9PREgwYNMHjwYFy5csXgGpcuXUK/fv3g7OyMRo0aYerUqSgqKqrpW6kyCxcuhCRJiI2NlY9Zy3OYN28eJEkyeLVu3Vo+by3P4Z9//sGzzz4LT09PODk5oUOHDvj999/l80IIzJkzB35+fnByckJERATOnTtncI2cnByMGDECbm5ucHd3R3R0NG7cuFHTt1JpQUFBRr8LkiRh3LhxAKznd6G4uBizZ89GcHAwnJycEBISgrfeestg3z5r+H3Iz89HbGwsmjZtCicnJ/To0QNHjhyRz9fHZ/Dzzz8jKioK/v7+kCQJ3333ncH5qrrnU6dOoWfPnnB0dERgYCAWL15cNTcgqNb74YcfxPbt28Vff/0lUlJSxGuvvSbs7OxEcnKyEEKIl19+WQQGBoo9e/aI33//XXTv3l306NFDfn9RUZFo3769iIiIEMePHxc7duwQXl5eYubMmZa6pfvy22+/iaCgIPHAAw+IiRMnyset5TnMnTtXtGvXTmRmZsqva9euyeet4Tnk5OSIpk2bitGjR4ukpCTx999/i927d4vz58/LbRYuXCiUSqX47rvvxMmTJ8WAAQNEcHCwuH37ttymb9++omPHjuLXX38Vv/zyi2jevLkYPny4JW6pUq5evWrwe5CQkCAAiH379gkhrON3QQgh5s+fLzw9PUV8fLxIS0sTmzZtEg0aNBBLly6V21jD78PQoUNF27ZtxYEDB8S5c+fE3LlzhZubm0hPTxdC1M9nsGPHDjFr1iyxdetWAUB8++23Buer4p7VarXw8fERI0aMEMnJyeKbb74RTk5O4pNPPrnv/jMIq6MaNmwoPvvsM5Gbmyvs7OzEpk2b5HNnzpwRAERiYqIQQvtLqlAoRFZWltzm448/Fm5ubqKgoKDG+34/8vPzRYsWLURCQoJ49NFH5SDMmp7D3LlzRceOHU2es5bnMH36dPHwww+Xel6j0QhfX1/xzjvvyMdyc3OFg4OD+Oabb4QQQvz5558CgDhy5IjcZufOnUKSJPHPP/9UX+er0cSJE0VISIjQaDRW87sghBD9+vUTY8aMMTg2aNAgMWLECCGEdfw+3Lp1S9jY2Ij4+HiD46GhoWLWrFlW8QxKBmFVdc8rVqwQDRs2NPhvYvr06aJVq1b33WdOR9YxxcXFWL9+PW7evInw8HAcPXoUd+/eRUREhNymdevWaNKkCRITEwEAiYmJ6NChA3x8fOQ2kZGRyMvLw+nTp2v8Hu7HuHHj0K9fP4P7BWB1z+HcuXPw9/dHs2bNMGLECFy6dAmA9TyHH374AV27dsV///tfNGrUCJ07d8ann34qn09LS0NWVpbBc1AqlQgLCzN4Du7u7ujatavcJiIiAgqFAklJSTV3M1WksLAQX3/9NcaMGQNJkqzmdwEAevTogT179uCvv/4CAJw8eRIHDx7Ek08+CcA6fh+KiopQXFwMR0dHg+NOTk44ePCgVTyDkqrqnhMTE/HII4/A3t5ebhMZGYmUlBRcv379vvrIDbzriD/++APh4eG4c+cOGjRogG+//RZt27bFiRMnYG9vD3d3d4P2Pj4+yMrKAgBkZWUZ/COrO687V1esX78ex44dM8hx0MnKyrKa5xAWFoa4uDi0atUKmZmZeOONN9CzZ08kJydbzXP4+++/8fHHH2Py5Ml47bXXcOTIEUyYMAH29vYYNWqUfB+m7lP/OTRq1MjgvK2tLTw8POrMc9D33XffITc3F6NHjwZgXf9NzJgxA3l5eWjdujVsbGxQXFyM+fPnY8SIEQBgFb8Prq6uCA8Px1tvvYU2bdrAx8cH33zzDRITE9G8eXOreAYlVdU9Z2VlITg42OgaunMNGzasdB8ZhNURrVq1wokTJ6BWq7F582aMGjUKBw4csHS3aszly5cxceJEJCQkGP0/PWuj+3/3APDAAw8gLCwMTZs2xcaNG+Hk5GTBntUcjUaDrl274u233wYAdO7cGcnJyVi5ciVGjRpl4d5ZxurVq/Hkk0/C39/f0l2pcRs3bsTatWuxbt06tGvXDidOnEBsbCz8/f2t6vfhq6++wpgxY9C4cWPY2NggNDQUw4cPx9GjRy3dNSoFpyPrCHt7ezRv3hxdunTBggUL0LFjRyxduhS+vr4oLCxEbm6uQfsrV67A19cXAODr62u0Ikr3s65NbXf06FFcvXoVoaGhsLW1ha2tLQ4cOIBly5bB1tYWPj4+VvEcTHF3d0fLli1x/vx5q/l98PPzQ9u2bQ2OtWnTRp6W1d2HqfvUfw5Xr141OF9UVIScnJw68xx0Ll68iJ9++gkvvPCCfMxafhcAYOrUqZgxYwaefvppdOjQASNHjsSkSZOwYMECANbz+xASEoIDBw7gxo0buHz5Mn777TfcvXsXzZo1s5pnoK+q7rk6/zthEFZHaTQaFBQUoEuXLrCzs8OePXvkcykpKbh06RLCw8MBAOHh4fjjjz8MftESEhLg5uZm9Iestnr88cfxxx9/4MSJE/Kra9euGDFihPy9NTwHU27cuIHU1FT4+flZze/DQw89hJSUFINjf/31F5o2bQoACA4Ohq+vr8FzyMvLQ1JSksFzyM3NNRgl2Lt3LzQaDcLCwmrgLqrOF198gUaNGqFfv37yMWv5XQCAW7duQaEw/HNmY2MDjUYDwPp+H1xcXODn54fr169j9+7deOqpp6zuGQBV9797eHg4fv75Z9y9e1duk5CQgFatWt3XVCQAlqioC2bMmCEOHDgg0tLSxKlTp8SMGTOEJEnixx9/FEJol6E3adJE7N27V/z+++8iPDxchIeHy+/XLUPv06ePOHHihNi1a5fw9vauc8vQS9JfHSmE9TyHKVOmiP3794u0tDRx6NAhERERIby8vMTVq1eFENbxHH777Tdha2sr5s+fL86dOyfWrl0rnJ2dxddffy23WbhwoXB3dxfff/+9OHXqlHjqqadMLk3v3LmzSEpKEgcPHhQtWrSo1cvxTSkuLhZNmjQR06dPNzpnDb8LQggxatQo0bhxY7lExdatW4WXl5eYNm2a3MYafh927doldu7cKf7++2/x448/io4dO4qwsDBRWFgohKifzyA/P18cP35cHD9+XAAQ77//vjh+/Li4ePGiEKJq7jk3N1f4+PiIkSNHiuTkZLF+/Xrh7OzMEhXWYsyYMaJp06bC3t5eeHt7i8cff1wOwIQQ4vbt2+L//u//RMOGDYWzs7P4f//v/4nMzEyDa1y4cEE8+eSTwsnJSXh5eYkpU6aIu3fv1vStVKmSQZi1PIdhw4YJPz8/YW9vLxo3biyGDRtmUB/LWp7Dtm3bRPv27YWDg4No3bq1WLVqlcF5jUYjZs+eLXx8fISDg4N4/PHHRUpKikEblUolhg8fLho0aCDc3NzE888/L/Lz82vyNu7b7t27BQCjexPCen4X8vLyxMSJE0WTJk2Eo6OjaNasmZg1a5ZBSQFr+H3YsGGDaNasmbC3txe+vr5i3LhxIjc3Vz5fH5/Bvn37BACj16hRo4QQVXfPJ0+eFA8//LBwcHAQjRs3FgsXLqyS/ktC6JUUJiIiIqIawZwwIiIiIgtgEEZERERkAQzCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsAgjIiIiMgCGIQRERERWQCDMCKqVx577DHExsZauhvVbt68eejUqZOlu0FE94FBGBFRLVJYWFijnyeEQFFRUY1+JhFpMQgjonpj9OjROHDgAJYuXQpJkiBJEi5cuIDk5GQ8+eSTaNCgAXx8fDBy5EhkZ2fL73vssccwfvx4xMbGomHDhvDx8cGnn36Kmzdv4vnnn4erqyuaN2+OnTt3yu/Zv38/JEnC9u3b8cADD8DR0RHdu3dHcnKyQZ8OHjyInj17wsnJCYGBgZgwYQJu3rwpnw8KCsJbb72F5557Dm5ubhg7diwAYPr06WjZsiWcnZ3RrFkzzJ49G3fv3gUAxMXF4Y033sDJkyfl+4yLi8OFCxcgSRJOnDghXz83NxeSJGH//v0G/d65cye6dOkCBwcHHDx4EBqNBgsWLEBwcDCcnJzQsWNHbN68uar/JyIiPQzCiKjeWLp0KcLDw/Hiiy8iMzMTmZmZcHV1Re/evdG5c2f8/vvv2LVrF65cuYKhQ4cavHfNmjXw8vLCb7/9hvHjx+OVV17Bf//7X/To0QPHjh1Dnz59MHLkSNy6dcvgfVOnTsV7772HI0eOwNvbG1FRUXKwlJqair59+2Lw4ME4deoUNmzYgIMHDyImJsbgGu+++y46duyI48ePY/bs2QAAV1dXxMXF4c8//8TSpUvx6aef4oMPPgAADBs2DFOmTEG7du3k+xw2bFiFntWMGTOwcOFCnDlzBg888AAWLFiAL7/8EitXrsTp06cxadIkPPvsszhw4ECFrktEFVAl24ATEdUSjz76qJg4caL881tvvSX69Olj0Oby5csCgEhJSZHf8/DDD8vni4qKhIuLixg5cqR8LDMzUwAQiYmJQggh9u3bJwCI9evXy21UKpVwcnISGzZsEEIIER0dLcaOHWvw2b/88otQKBTi9u3bQgghmjZtKgYOHFjufb3zzjuiS5cu8s9z584VHTt2NGiTlpYmAIjjx4/Lx65fvy4AiH379hn0+7vvvpPb3LlzRzg7O4vDhw8bXC86OloMHz683L4RUeXYWjIAJCKqbidPnsS+ffvQoEEDo3Opqalo2bIlAOCBBx6Qj9vY2MDT0xMdOnSQj/n4+AAArl69anCN8PBw+XsPDw+0atUKZ86ckT/71KlTWLt2rdxGCAGNRoO0tDS0adMGANC1a1ejvm3YsAHLli1Damoqbty4gaKiIri5uVX4/kuj/5nnz5/HrVu38MQTTxi0KSwsROfOnavsM4nIEIMwIqrXbty4gaioKCxatMjonJ+fn/y9nZ2dwTlJkgyOSZIEANBoNBX67JdeegkTJkwwOtekSRP5excXF4NziYmJGDFiBN544w1ERkZCqVRi/fr1eO+998r8PIVCm2EihJCP6aZGS9L/zBs3bgAAtm/fjsaNGxu0c3BwKPMziajyGIQRUb1ib2+P4uJi+efQ0FBs2bIFQUFBsLWt+n/yfv31Vzmgun79Ov766y95hCs0NBR//vknmjdvXqFrHj58GE2bNsWsWbPkYxcvXjRoU/I+AcDb2xsAkJmZKY9g6Sfpl6Zt27ZwcHDApUuX8Oijj1aor0RUeUzMJ6J6JSgoCElJSbhw4QKys7Mxbtw45OTkYPjw4Thy5AhSU1Oxe/duPP/880ZBTGW8+eab2LNnD5KTkzF69Gh4eXlh4MCBALQrHA8fPoyYmBicOHEC586dw/fff2+UmF9SixYtcOnSJaxfvx6pqalYtmwZvv32W6P7TEtLw4kTJ5CdnY2CggI4OTmhe/fucsL9gQMH8Prrr5d7D66urnj11VcxadIkrFmzBqmpqTh27Bg+/PBDrFmzptLPhojKxiCMiOqVV199FTY2Nmjbti28vb1RWFiIQ4cOobi4GH369EGHDh0QGxsLd3d3efrufixcuBATJ05Ely5dkJWVhW3btsHe3h6ANs/swIED+Ouvv9CzZ0907twZc+bMgb+/f5nXHDBgACZNmoSYmBh06tQJhw8flldN6gwePBh9+/ZFr1694O3tjW+++QYA8Pnnn6OoqAhdunRBbGws/ve//5l1H2+99RZmz56NBQsWoE2bNujbty+2b9+O4ODgSjwVIjKHJPSTB4iIyCz79+9Hr169cP36dbi7u1u6O0RUB3EkjIiIiMgCGIQRERERWQCnI4mIiIgsgCNhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjIiIisgAGYUREREQW8P8B6JPQbxtY+lcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbM9JREFUeJzt3XlcVNX/P/DXBdmFQRZZFAVxxcwEE8c0s0j0g5o/9SOZmWtmXzFRc+ljbvUxzRaXzPpYllaae6W4hWaWSWSuuZESbgEqIANubHN+f9BcZ2BmGHBgGOb1fDx4BPeeuXPuDZ2357zP+0hCCAEiIiIiqlF2lu4AERERkS1iEEZERERkAQzCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsAgjIiIiMgCGIQRERERWQCDMCIiIiILYBBGRERGrV69GpIk4eLFi5buClGdwiCMiCzu8OHDiIuLQ9u2beHm5oYmTZpg8ODB+PPPP8u1feKJJyBJEiRJgp2dHTw8PNCqVSsMGzYMiYmJlXrf7du3o3v37mjYsCFcXV3RrFkzDB48GLt37zbXrZXz1ltv4dtvvy13/NChQ5g7dy5yc3Or7b3Lmjt3rvwsJUmCq6srwsLC8PrrryMvL88s77Fu3TosWbLELNciqmsYhBGRxb399tvYsmULnnrqKSxduhRjx47FTz/9hPDwcJw6dapc+8aNG+PLL7/EF198gXfeeQf9+vXDoUOH0LNnT8TGxqKoqKjC93z33XfRr18/SJKE1157DYsXL8bAgQNx/vx5rF+/vjpuE4DxIGzevHk1GoRpfPTRR/jyyy/x/vvvo3Xr1pg/fz569eoFc2wtzCCMyLB6lu4AEdHkyZOxbt06ODo6ysdiY2PRrl07LFy4EF999ZVOe4VCgeeff17n2MKFC/HKK69gxYoVCA4Oxttvv23w/YqLi/Hmm2/i6aefxvfff1/u/PXr1x/wjmqPO3fuwNXV1WibQYMGwcfHBwAwbtw4DBw4EFu3bsWvv/4KpVJZE90kskkcCSMii+vSpYtOAAYALVq0QNu2bXH27FmTrmFvb49ly5YhLCwMy5cvh0qlMtg2KysLeXl5eOyxx/Seb9iwoc7P9+7dw9y5c9GyZUs4OzsjICAAAwYMQGpqqtzm3XffRZcuXeDt7Q0XFxdERERg8+bNOteRJAm3b9/GmjVr5CnAESNGYO7cuZg6dSoAICQkRD6nnYP11VdfISIiAi4uLvDy8sKzzz6LK1eu6Fz/iSeewEMPPYQjR47g8ccfh6urK/7zn/+Y9Py0PfnkkwCAtLQ0o+1WrFiBtm3bwsnJCYGBgRg/frzOSN4TTzyBHTt24NKlS/I9BQcHV7o/RHUVR8KIqFYSQuDatWto27atya+xt7fHkCFDMGvWLBw8eBAxMTF62zVs2BAuLi7Yvn07JkyYAC8vL4PXLCkpQZ8+fbBv3z48++yzmDhxIvLz85GYmIhTp04hNDQUALB06VL069cPQ4cORWFhIdavX49///vfSEhIkPvx5ZdfYsyYMejUqRPGjh0LAAgNDYWbmxv+/PNPfP3111i8eLE8KuXr6wsAmD9/PmbNmoXBgwdjzJgxuHHjBj744AM8/vjjOHbsGDw9PeX+Zmdno3fv3nj22Wfx/PPPw8/Pz+Tnp6EJLr29vQ22mTt3LubNm4eoqCi8/PLLSElJwUcffYTDhw/jl19+gYODA2bOnAmVSoWrV69i8eLFAID69etXuj9EdZYgIqqFvvzySwFArFq1Sud49+7dRdu2bQ2+7ptvvhEAxNKlS41ef/bs2QKAcHNzE7179xbz588XR44cKdfus88+EwDE+++/X+6cWq2Wv79z547OucLCQvHQQw+JJ598Uue4m5ubGD58eLlrvfPOOwKASEtL0zl+8eJFYW9vL+bPn69z/I8//hD16tXTOd69e3cBQHz88ccG71vbnDlzBACRkpIibty4IdLS0sT//vc/4eTkJPz8/MTt27eFEEJ8/vnnOn27fv26cHR0FD179hQlJSXy9ZYvXy4AiM8++0w+FhMTI5o2bWpSf4hsDacjiajWOXfuHMaPHw+lUonhw4dX6rWakZb8/Hyj7ebNm4d169ahQ4cO2LNnD2bOnImIiAiEh4frTIFu2bIFPj4+mDBhQrlrSJIkf+/i4iJ/f/PmTahUKnTr1g1Hjx6tVP/L2rp1K9RqNQYPHoysrCz5y9/fHy1atMD+/ft12js5OWHkyJGVeo9WrVrB19cXISEheOmll9C8eXPs2LHDYC7Z3r17UVhYiPj4eNjZ3f8YefHFF+Hh4YEdO3ZU/kaJbBCnI4moVsnMzERMTAwUCgU2b94Me3v7Sr3+1q1bAAB3d/cK2w4ZMgRDhgxBXl4ekpOTsXr1aqxbtw59+/bFqVOn4OzsjNTUVLRq1Qr16hn/6zIhIQH//e9/cfz4cRQUFMjHtQO1qjh//jyEEGjRooXe8w4ODjo/N2rUqFx+XUW2bNkCDw8PODg4oHHjxvIUqyGXLl0CUBq8aXN0dESzZs3k80RkHIMwIqo1VCoVevfujdzcXPz8888IDAys9DU0JS2aN29u8ms8PDzw9NNP4+mnn4aDgwPWrFmD5ORkdO/e3aTX//zzz+jXrx8ef/xxrFixAgEBAXBwcMDnn3+OdevWVfoetKnVakiShF27dukNSMvmWGmPyJnq8ccfl/PQiKjmMAgjolrh3r176Nu3L/7880/s3bsXYWFhlb5GSUkJ1q1bB1dXV3Tt2rVK/ejYsSPWrFmDjIwMAKWJ88nJySgqKio36qSxZcsWODs7Y8+ePXBycpKPf/755+XaGhoZM3Q8NDQUQgiEhISgZcuWlb2datG0aVMAQEpKCpo1ayYfLywsRFpaGqKiouRjDzoSSFSXMSeMiCyupKQEsbGxSEpKwqZNm6pUm6qkpASvvPIKzp49i1deeQUeHh4G2965cwdJSUl6z+3atQvA/am2gQMHIisrC8uXLy/XVvxTzNTe3h6SJKGkpEQ+d/HiRb1FWd3c3PQWZHVzcwOAcucGDBgAe3t7zJs3r1zxVCEEsrOz9d9kNYqKioKjoyOWLVum06dVq1ZBpVLprEp1c3MzWi6EyJZxJIyILG7KlCnYtm0b+vbti5ycnHLFWcsWZlWpVHKbO3fu4MKFC9i6dStSU1Px7LPP4s033zT6fnfu3EGXLl3QuXNn9OrVC0FBQcjNzcW3336Ln3/+Gf3790eHDh0AAC+88AK++OILTJ48Gb/99hu6deuG27dvY+/evfi///s/PPPMM4iJicH777+PXr164bnnnsP169fx4Ycfonnz5jh58qTOe0dERGDv3r14//33ERgYiJCQEERGRiIiIgIAMHPmTDz77LNwcHBA3759ERoaiv/+97947bXXcPHiRfTv3x/u7u5IS0vDN998g7Fjx+LVV199oOdfWb6+vnjttdcwb9489OrVC/369UNKSgpWrFiBRx99VOf/V0REBDZs2IDJkyfj0UcfRf369dG3b98a7S9RrWXJpZlERELcL61g6MtY2/r164sWLVqI559/Xnz//fcmvV9RUZH45JNPRP/+/UXTpk2Fk5OTcHV1FR06dBDvvPOOKCgo0Gl/584dMXPmTBESEiIcHByEv7+/GDRokEhNTZXbrFq1SrRo0UI4OTmJ1q1bi88//1wuAaHt3Llz4vHHHxcuLi4CgE65ijfffFM0atRI2NnZlStXsWXLFtG1a1fh5uYm3NzcROvWrcX48eNFSkqKzrMxVr6jLE3/bty4YbRd2RIVGsuXLxetW7cWDg4Ows/PT7z88svi5s2bOm1u3bolnnvuOeHp6SkAsFwFkRZJCDNsDkZERERElcKcMCIiIiILYBBGREREZAEMwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAYq21mFqtRnp6Otzd3bn1BxERkZUQQiA/Px+BgYGwszM83sUgrBZLT09HUFCQpbtBREREVXDlyhU0btzY4HkGYbWYu7s7gNL/icb2wSMiIqLaIy8vD0FBQfLnuCEMwmoxzRSkh4cHgzAiIiIrU1EqERPziYiIiCyAQRgRERGRBTAIIyIiIrIA5oRZObVajcLCQkt3o05zdHQ0usSYiIioKhiEWbHCwkKkpaVBrVZbuit1mp2dHUJCQuDo6GjprhARUR3CIMxKCSGQkZEBe3t7BAUFcaSmmmgK5mZkZKBJkyYsmktERGbDIMxKFRcX486dOwgMDISrq6ulu1On+fr6Ij09HcXFxXBwcLB0d4iIqI6wmuGTfv36oUmTJnB2dkZAQACGDRuG9PR0nTZCCLz77rto2bIlnJyc0KhRI8yfP1+nzY8//ojw8HA4OTmhefPmWL16dbn3+vDDDxEcHAxnZ2dERkbit99+0zl/7949jB8/Ht7e3qhfvz4GDhyIa9eu6bS5fPkyYmJi4OrqioYNG2Lq1KkoLi42z8MAUFJSAgCcIqsBmmeseeZERETmYDVBWI8ePbBx40akpKRgy5YtSE1NxaBBg3TaTJw4EZ9++ineffddnDt3Dtu2bUOnTp3k82lpaYiJiUGPHj1w/PhxxMfHY8yYMdizZ4/cZsOGDZg8eTLmzJmDo0ePon379oiOjsb169flNpMmTcL27duxadMmHDhwAOnp6RgwYIB8vqSkBDExMSgsLMShQ4ewZs0arF69GrNnzzb7c+H0WPXjMyYiomohrNR3330nJEkShYWFQgghzpw5I+rVqyfOnTtn8DXTpk0Tbdu21TkWGxsroqOj5Z87deokxo8fL/9cUlIiAgMDxYIFC4QQQuTm5goHBwexadMmuc3Zs2cFAJGUlCSEEGLnzp3Czs5OZGZmym0++ugj4eHhIQoKCky+R5VKJQAIlUpV7tzdu3fFmTNnxN27d02+HlUNnzURUd2QlZUl0tPTDX5lZWWZ5X2MfX5rs8qcsJycHKxduxZdunSRc3S2b9+OZs2aISEhAb169YIQAlFRUVi0aBG8vLwAAElJSYiKitK5VnR0NOLj4wGUrjY8cuQIXnvtNfm8nZ0doqKikJSUBAA4cuQIioqKdK7TunVrNGnSBElJSejcuTOSkpLQrl07+Pn56bzPyy+/jNOnT6NDhw5676ugoAAFBQXyz3l5eQ/wlIiIiEgjOzsby5cvr7BdXFwcvL29a6BHVjQdCQDTp0+Hm5sbvL29cfnyZXz33Xfyub/++guXLl3Cpk2b8MUXX2D16tU4cuSIzpRlZmamTmAEAH5+fsjLy8Pdu3eRlZWFkpISvW0yMzPlazg6OsLT09NoG33X0JwzZMGCBVAoFPJXUFCQiU/GeowYMQKSJEGSJDg4OMDPzw9PP/00Pvvss0qV2li9enW5/wdERESGmFpTsyZrb1o0CJsxY4b8gWzo69y5c3L7qVOn4tixY/j+++9hb2+PF154AUIIAKWlBAoKCvDFF1+gW7dueOKJJ7Bq1Srs378fKSkplrrFSnnttdegUqnkrytXrlTbe2VnZyMjI8PgV3Z2drW9d69evZCRkYGLFy9i165d6NGjByZOnIg+ffqYdfECERHZNu3PuqysLEt3pxyLTkdOmTIFI0aMMNqmWbNm8vc+Pj7w8fFBy5Yt0aZNGwQFBeHXX3+FUqlEQEAA6tWrh5YtW8rt27RpA6B0pWKrVq3g7+9fbhXjtWvX4OHhARcXF9jb28Pe3l5vG39/fwCAv78/CgsLkZubqzMSU7ZN2RWVmmtq2ujj5OQEJycno8/DHCw9JOvk5CQ/h0aNGiE8PBydO3fGU089hdWrV2PMmDF4//338fnnn+Ovv/6Cl5cX+vbti0WLFqF+/fr48ccfMXLkSAD3k+bnzJmDuXPn4ssvv8TSpUuRkpICNzc3PPnkk1iyZAkaNmxo9vsgIqLay9TPOkuy6EiYr68vWrdubfTLUAkGzdSVJofqscceQ3FxMVJTU+U2f/75JwCgadOmAAClUol9+/bpXCcxMRFKpRJAaSmCiIgInTZqtRr79u2T20RERMDBwUGnTUpKCi5fviy3USqV+OOPP3RWVCYmJsLDwwNhYWFVeFLmVRuHZJ988km0b98eW7duBVCai7ds2TKcPn0aa9aswQ8//IBp06YBALp06YIlS5bAw8ND/hfOq6++CgAoKirCm2++iRMnTuDbb7/FxYsXKwz0iYiobtAe+Spbxqo2sorE/OTkZBw+fBhdu3ZFgwYNkJqailmzZiE0NFQOfKKiohAeHo5Ro0ZhyZIlUKvVGD9+PJ5++ml5dGzcuHFYvnw5pk2bhlGjRuGHH37Axo0bsWPHDvm9Jk+ejOHDh6Njx47o1KkTlixZgtu3b8sjLwqFAqNHj8bkyZPh5eUFDw8PTJgwAUqlEp07dwYA9OzZE2FhYRg2bBgWLVqEzMxMvP766xg/fnyNjHRZq9atW+PkyZMAIC+WAIDg4GD897//xbhx47BixQo4OjpCoVBAkqRyI4ujRo2Sv2/WrBmWLVuGRx99FLdu3UL9+vVr5D6IiKjmZGdno7CwECqVChs2bLB0dyrFKoIwV1dXbN26FXPmzMHt27cREBCAXr164fXXX5eDGjs7O2zfvh0TJkzA448/Djc3N/Tu3RvvvfeefJ2QkBDs2LEDkyZNwtKlS9G4cWN8+umniI6OltvExsbixo0bmD17NjIzM/HII49g9+7dOon2ixcvhp2dHQYOHIiCggJER0djxYoV8nl7e3skJCTg5ZdfhlKphJubG4YPH4433nijBp6W9RJCyNOLe/fuxYIFC3Du3Dnk5eWhuLgY9+7dw507d4zuEHDkyBHMnTsXJ06cwM2bN+UR08uXL9eKUUgiIjIfa5hyNMYqgrB27drhhx9+qLBdYGAgtmzZYrTNE088gWPHjhltExcXh7i4OIPnnZ2d8eGHH+LDDz802KZp06bYuXOn8Q6TjrNnzyIkJAQXL15Enz598PLLL2P+/Pnw8vLCwYMHMXr0aBQWFhoMwm7fvo3o6GhER0dj7dq18PX1xeXLlxEdHV2jU6tERFQzrP3vdqsIwqju++GHH/DHH39g0qRJOHLkCNRqNd577z15Y/KNGzfqtHd0dCy3jdC5c+eQnZ2NhQsXyuU9fv/995q5ASIisioqlTtycrzh5ZUNhSJfPl6T2wEyCKMaV1BQgMzMTJSUlODatWvYvXs3FixYgD59+uCFF17AqVOnUFRUhA8++AB9+/bFL7/8go8//ljnGsHBwbh16xb27duH9u3bw9XVFU2aNIGjoyM++OADjBs3DqdOncKbb75pobskIqLa6ujRDti+vQ+EsIOdncCiRSo899xdODo61lihVsDKirVS3bB7924EBAQgODgYvXr1wv79+7Fs2TJ89913sLe3R/v27fH+++/j7bffxkMPPYS1a9diwYIFOtfo0qULxo0bh9jYWPj6+mLRokXw9fXF6tWrsWnTJoSFhWHhwoV49913LXSXRERUG6lU7nIABgBqtYTp0z1RUhJQowEYAEhCU+2Uap28vDwoFAqoVCp4eHjonLt37x7S0tIQEhICZ2fnSl3X0nXCrM2DPGsiIqo+GRkZWLlypUltNdOPt2+7YvPmf5c7v38/8MQT5umXsc9vbZyOtEHe3t6Ii4szmtBY00OyREREZWnKTxiiUqmMnLuf85Wa2lwe/ZIkAUkSEEKS29rbA82bm7XrJmEQZqMYYBERUW32IOUntHO+JEmN0jm/0ulHISRIUmngVVJS+t///Q9o3Nh8fTcVgzAiIiKqdapafqJszpfmv9qEAL7+GvD1LR0Bs0QABjAIIyIiIis2ePBgeS/n9HQ7bN/urDfw0mZvDyiVlgu+NBiEERERkdXy9PREQEAAVq0Cxo4F/tkoRcc/JSehVlt2+rEsBmFERERkEcYS77Oysky+ztWrhgMwTdAVHQ1cuGDZ6ceyGIQRERFRjats4r2hCvcAcP68/gBs8WJg0KD7QVdtCb40GIQRERFRjatM4n3Z1Y59+yYgPPz+PtAtWpROOWoHYvb2ugFYbcSK+URERFRr6VvtuH17H6hU7nKbxo2BlStLAy+gduV9GcMgjOqUH3/8EZIkITc31+TXBAcHY8mSJdXWJyIiW5WdnY2MjAy9X6bmfOXkeJdb7SiEHXJyvADc33B79Gjg4sXSyvcXL5b+XNtxOpJq1IgRI7BmzRq89NJL5TblHj9+PFasWIHhw4dj9erVlukgERGZhblyvoYO7YQvvxRQq7Ur3AtMmNAbwcH1dIqPN25c+0e/tDEIoxoXFBSE9evXY/HixXBxcQFQuj/junXr0KRJEwv3joiIqkp7tWNlVjcay/l66CFPrFwp4aWXtCvcS4iI8KuWe6hJnI6kGhceHo6goCBs3bpVPrZ161Y0adIEHTp0kI8VFBTglVdeQcOGDeHs7IyuXbvi8OHDOtfauXMnWrZsCRcXF/To0QMXL14s934HDx5Et27d4OLigqCgILzyyiu4fft2td0fEZEt0ox8rVy5EitXrtT5O94YU3K+rHGq0RQMwghXr5b+Yl+9WnPvOWrUKHz++efyz5999hlGjhyp02batGnYsmUL1qxZg6NHj6J58+aIjo5GTk4OAODKlSsYMGAA+vbti+PHj2PMmDGYMWOGzjVSU1PRq1cvDBw4ECdPnsSGDRtw8OBBxMXFVf9NEhHZkKpuM1RRzpdG48bAE09Y13RjRRiE2bhVq4CmTYEnnyz976pVNfO+zz//PA4ePIhLly7h0qVL+OWXX/D888/L52/fvo2PPvoI77zzDnr37o2wsDB88skncHFxwap/OvnRRx8hNDQU7733Hlq1aoWhQ4dixIgROu+zYMECDB06FPHx8WjRogW6dOmCZcuW4YsvvsC9e/dq5maJiAgqlTvS0oJ1RrgAwMsrG5KkW+RLktTw8ir9B7cm8b4uYk6YDStbYVitBl56qbSqcHX/S8PX1xcxMTFYvXo1hBCIiYmBj4+PfD41NRVFRUV47LHH5GMODg7o1KkTzp49CwA4e/YsIiMjda6rVCp1fj5x4gROnjyJtWvXyseEEFCr1UhLS0ObNm2q4/aIiEiLsZyvkSOfRqNGeZg+XYGSEgn29gJvv52H554bAkdHR53E+7qGQZgN01dhuKSkdFuHmhjuHTVqlDwt+OGHH1bLe9y6dQsvvfQSXnnllXLnuAiAiKhq9G03ZCgR31DOV2joBSgU+fDx8cGUKZ6IjdVsKyShcWNPAJ7VexO1AIMwG2aownDz5jXz/r169UJhYSEkSUJ0dLTOudDQUDg6OuKXX35B06ZNAQBFRUU4fPgw4uPjAQBt2rTBtm3bdF7366+/6vwcHh6OM2fOoHlN3RQRUR1naukJTcmJ27ddDeZ8aZeisLbyEubAIMyGaSoM6y77rbk/BPb29vLUor2mzPE/3Nzc8PLLL2Pq1Knw8vJCkyZNsGjRIty5cwej/1kWM27cOLz33nuYOnUqxowZgyNHjpSrLzZ9+nR07twZcXFxGDNmDNzc3HDmzBkkJiZWqn4NEZEtq2zpibLTj4Aa2mnotpLzVREGYTZu9GjL7izv4eFh8NzChQuhVqsxbNgw5Ofno2PHjtizZw8aNGgAoHQ6ccuWLZg0aRI++OADdOrUCW+99RZGjRolX+Phhx/GgQMHMHPmTHTr1g1CCISGhiI2Nrba742IqC6oStHVstOPkqSGEKWBmJ2dwKJFtpHzVRFJCCEs3QnSLy8vDwqFAiqVqlywcu/ePaSlpSEkJATOzs4W6qFt4LMmIluWkZGBlStXGjxfttJ9Wlow1qwZXq7doEEb4eZ2B1OmPIN27RpUZ5ctztjntzaOhBEREVGV6Fv1GBp64Z+Rr/vTj/b2AjNmdP9nm6G6HYBVBuuEERERUaUZWvUIAH37JsDevnSiTXubIVueetSHI2FERERUacYq3YeHH8Ps2ZHIz/ezSL6xtWAQRkRERCbT5IA5OBSUm3bUXvUYGKhGQIClemkdGIRZOa6rqH58xkREpcrmgD388EmcPPmwTk6YpvaXLZeeMBWDMCulqatVWFgIFxcXC/embtPUxilby4yIyJrpq3qvrWz5CH05YCdPPozRoz9FUZEjhg6NxEMPPQrgUZsvPWEqBmFWql69enB1dcWNGzfg4OAAOzuusagOarUaN27cgKurK+rV4x8XIrJ+2dnZuHHjBjZs2FBh29jYWDg4OAAwnANWVOSIkJBLCA/vy8CrklgnrBarqM5IYWEh0tLSoC67ASSZlZ2dHUJCQji0TkRWr7KFVzWef/555ObWR6dODaFWS/Jxe3uB5OTr/5SeYACmwTphNsDR0REtWrQwOpxMD87R0ZEjjURUJ1y/fl3v8bIFV8tydXVFaKifnq3uSktPUNUwCLNydnZ2rOJOREQmKS4u1vn56tUAHDrUBWfPhukk14eHH9P7ektvdVfXMAgjIiKyQd988wxOnGgP4P70oqbgamjoBb0jYkBp4MXgyzw4x0JERGRjrl4NKBeAaQhhhytXGGXVBI6EERER1SHGSk/cvHkTAHD5clPoC8A0Nm8ehMJCw9OSZB4MwoiIiOqIsqsfDSXcN2lyCYCA4UCs4mlJenAMwoiIiKycZvQrKytLPla2ur12wn3jxhlo3/6E1pRk+YBMsw8kg7DqwyCMiIjICmkCL5VKVa7wqr7q9mVHtv7f//sOjz76G65caQIvr2ysXz/E4D6QrJNYPRiEERERWRljRVdVKnecPt1Wb3X7siNbjRtnoHHjDABA374JcuBmZyewaFEenntuCLcgqkYMwoiIiKxM2cR7Te5XenoA9u6N+icA051i1B7ZGjBgAHx8fMpdd/bsG7h61RkREQo0buwJwLPa7oEYhBEREVk17dwv3cDrfq6XJidMMwrm4+ODgICActcKCAAiImqo48QgjIiIyFqVzf0qv9pRQnT0boSFnWGCfS3EIIyIiKgWMVbnC9BNks/J8S6X+6VNktQMwGoxBmFERES1hLGEe22DBw8GAHh5ZUOS1GUCMf1TkNq42rF2YBBGRERUSxgbAdOm2YhbocjXWdUoSWpERe1FYGA6vLxydAIwTTI+VzvWHgzCiIiIailDFe+1hYcfQ2joBeTkeJULvLQFBgYy+KplGIQRERFZgL7cL1Mr3js4OOi8TqHI1xt8DR48GJ6enhz9qqUYhBEREdWwinK/Kqp4r1AoEBcXV2ECPwOv2o1BGBERUQ0zVGxVM+2ob9Vj2Yr3DLCsH4MwIiKiGmLqRtuhoRfKrXrUrnhPdQODMCIiohpQdgpSpXLHlStBeqcd4+OXlFv1aKjcBFkvBmFERETVLDs7G+np6fLPulsN6dJMOxpb9cg6X3UDgzAiIqJqVHYE7OrVAIMBGKA77Thy5NPlNtpmwn3dwSCMiIjIzLTLT5TN/9q2rQ8AwwGYKRttU93AIIyIiMiM9OV+5eQEw8GhANu3GwrA1Bg0aDOCgq4y78uGMAgjIiIyI+3yE2VXPuqbgtSMfj300Nly55j7VbcxCCMiIqoG+gquajbXvk+N0aM/RePGGfIR7vFoOxiEERERVYK+7Ya0qVQqANBbcFU3ABN4+um9OgEYwDwwW8IgjIiIyET68730b7Dt5ZVtcAqylITAwPRyRzkFaTsYhBEREZnIWL6X9gbbQOmm2toFV8tORZatgD9gwAAEBgZyCtKGMAgjIiKqpIo22NaMkIWGXkB8/BLk5HghPT0Qe/dGGayAzwDM9jAIIyIiqiRjG2ynpjbXO0IWEnIJDz10Sm8F/MGDBzMAs0GGJqqJiIjIAE2+lzZJUqOw0EHvCJlK5Q6gdIoyJORSufwxT0/PGuk31S4MwoiIiCpJk++lCcQkSY02bc7i66+HGBwhM4bJ+LbJaoKwfv36oUmTJnB2dkZAQACGDRumsxnq3LlzIUlSuS83Nzed62zatAmtW7eGs7Mz2rVrh507d+qcF0Jg9uzZCAgIgIuLC6KionD+/HmdNjk5ORg6dCg8PDzg6emJ0aNH49atWzptTp48iW7dusHZ2RlBQUFYtGiRmZ8IERFZUnj4MURF7QVQugLyzJkw6PtY1U7AHzBgAMaOHavzFRcXx6lIG2U1QViPHj2wceNGpKSkYMuWLUhNTcWgQYPk86+++ioyMjJ0vsLCwvDvf/9bbnPo0CEMGTIEo0ePxrFjx9C/f3/0798fp06dktssWrQIy5Ytw8cff4zk5GS4ubkhOjoa9+7dk9sMHToUp0+fRmJiIhISEvDTTz9h7Nix8vm8vDz07NkTTZs2xZEjR/DOO+9g7ty5WLlyZTU/JSIiqikqlTv27o3C/Y9SqVwbQ3tBan8xALNdkhBCWLoTVbFt2zb0798fBQUFcHBwKHf+xIkTeOSRR/DTTz+hW7duAIDY2Fjcvn0bCQkJcrvOnTvjkUcewccffwwhBAIDAzFlyhS8+uqrAEqL7vn5+WH16tV49tlncfbsWYSFheHw4cPo2LEjAGD37t3417/+hatXryIwMBAfffQRZs6ciczMTHmIecaMGfj2229x7tw5k+8xLy8PCoUCKpUKHh4eVX5WRERkHtp1wtLSgrFmzXAjrdUYM0a3Gv7YsWNZiNUGmPr5bTUjYdpycnKwdu1adOnSRW8ABgCffvopWrZsKQdgAJCUlISoqCiddtHR0UhKSgIApKWlITMzU6eNQqFAZGSk3CYpKQmenp5yAAYAUVFRsLOzQ3Jystzm8ccf15njj46ORkpKCm7evGnwvgoKCpCXl6fzRUREtYe3tzdiY2MB6E/OL60FVjoC1q9fQrlq+Mz9Im1WFYRNnz4dbm5u8Pb2xuXLl/Hdd9/pbXfv3j2sXbsWo0eP1jmemZkJPz8/nWN+fn7IzMyUz2uOGWvTsGFDnfP16tWDl5eXTht919B+D30WLFgAhUIhfwUFBRlsS0RElqFQKP75b/nk/KefTsTw4asRH79Ep3DrgAEDmPtF5Vg0CJsxY4beZHrtL+3pu6lTp+LYsWP4/vvvYW9vjxdeeAH6ZlO/+eYb5OfnY/hwY8PEtc9rr70GlUolf125csXSXSIiIiPCw48hPn6JHHg99liS3hIULMRK+li0WOuUKVMwYsQIo22aNWsmf+/j4wMfHx+0bNkSbdq0QVBQEH799VcolUqd13z66afo06dPudEof39/XLt2TefYtWvX4O/vL5/XHNOes7927RoeeeQRuc3169d1rlFcXIycnByd6+h7H+330MfJyQlOTk4GzxMRkeWVnVJUKPLLBV1AaQFWT09PODo6MgAjvSwahPn6+sLX17dKr1WrS4d/CwoKdI6npaVh//792LZtW7nXKJVK7Nu3D/Hx8fKxxMREOYgLCQmBv78/9u3bJwddeXl5SE5OxssvvyxfIzc3F0eOHEFERAQA4IcffoBarUZkZKTcZubMmSgqKpJz1hITE9GqVSs0aNCgSvdLRETmkZ2dLe8BmZ5uh7S0eggJKUZgYOnnSkVBk7e3N+Li4nT2kSyLgReZwipWRyYnJ+Pw4cPo2rUrGjRogNTUVMyaNQvXrl3D6dOndUaPZs2ahc8++wyXL1+Gvb29znUOHTqE7t27Y+HChYiJicH69evx1ltv4ejRo3jooYcAAG+//TYWLlyINWvWICQkBLNmzcLJkydx5swZODs7AwB69+6Na9eu4eOPP0ZRURFGjhyJjh07Yt26dQBKV1S2atUKPXv2xPTp03Hq1CmMGjUKixcv1illURGujiQiMi/t1Y3GNuBm/hY9CJM/v4UVOHnypOjRo4fw8vISTk5OIjg4WIwbN05cvXpVp11JSYlo3Lix+M9//mPwWhs3bhQtW7YUjo6Oom3btmLHjh0659VqtZg1a5bw8/MTTk5O4qmnnhIpKSk6bbKzs8WQIUNE/fr1hYeHhxg5cqTIz8/XaXPixAnRtWtX4eTkJBo1aiQWLlxY6ftWqVQCgFCpVJV+LRER6crKyhInT54Ukya9J/71r20CKBGAkL8kqURMmvSemDt3rkhPT7d0d8mKmfr5bRUjYbaKI2FEROaRmpqKr776CkePdsC2bX2hr7AqAAwfvhohIZdYz4seSJ2uE0ZERGSq7OxsfPXVV1Cp3LF9ex8YCsC0txciqgkMwoiIqE7TJNDn5HiX21z7Pt3thYhqgkVXRxIREZlb2dWPx4/fhUrlLle4Lx+Ild9eiKgmMAgjIqI6Q//qRz9IUjz69k1A374J8orIUvq3FyKqCQzCiIjI6hiq9eXoWFpMW5P/pQm2hLDD9u19EB+/BPHxS3DlSmMAQFDQVU5BksUwCCMiIqtivNZXMsLD9ed/CWGHnByvf7YVOmv0PbjRNtUEBmFERGRVNCNghka7QkMv6M3/MmX144ABA7jPI9UYro4kIiKrZGy0S6HIR9++CZCk0q2INBXxK5p6ZABGNYkjYUREZJX0r3a8P9oVHn4MoaEXkJPjBS+vnAoDsOeff54BGNUoBmFERGQVNMn4WVlZUKnckZPjjaiovUhMjML9iR0JqanN5T0gFYp8vcHXgAED4OPjI//MDbfJEhiEERFRrVc+GT9eTsbXJcl5YcZGvnx8fLgtEVkcc8KIiKjWM5aMX/ajTJMXZgxXP1JtwJEwIiKyGsa3HiqlvQqy7LQjwKlHqj0YhBERkdUwVHpCCACwK7cKktOOVJsxCCMiIquhKT2hW6A1oVKrIIlqCwZhRERkVQyVnmDwRdaGQRgREVkdQ6UnymICPtVmDMKIiKjaXL0KnD8PtGgBNC7dM9vg5tuBgaXlJh4kcV47EZ8J+FTbMQgjIiKz0gRZ69a5YNo0BdRqCXZ2AosWqfCvf2Vg48aNAPRtvp0gF1mNi4vTCaBMHdHitkNkTRiEERGR2WiKqqpU7liyJB5CSAAAtVrC1Kke+Pvvz6BQGN98W6HIl0fKNLy9vREXF1fuuDaOfJG1YRBGRERmcfUq8OuvkLcU0re5dnJyJHr23Fvh5tv6MMCiuoZBGBERVVn5qUdvSFI8oqL26tlcGzh0SImwsNO4fdtVb70vTZFVIlvAIIyIiKrE0NSjEHbYuzcK4eFHcOTIo2VeZYdVq8b8E3yp5UCsbJFVIlvAIIyIiKpEk59laGoxJCQNR45EQHdvR6HV1g5CqDFo0EYEBV1lAEY2hxt4ExHRA9FsJaRNktQICrqKfv0StM6pAUhlXm0HN7c7DMDIJnEkjIiIHoihrYQUinyd6vYODoVaU5GlmAdGtoxBGBERVVrpSkhHqFTu5YKtsvs3ale3NxSslcVK92QLJCFK956n2icvLw8KhQIqlQoeHh6W7g4R2Th9RVjLFlk1RWkJi/LBmqbaPet9kbUz9fObI2FERFQhYyshtYusmsLQvo8+Pj4ICAgwa7+JajMm5hMRUYUqWgmZk+NliW4RWTUGYUREpNfVq8D+/aX/1TC0EtJYcv2//vUvk96PeWBkazgdSUREMkObb8+eXQLA+EpI4H5el4Ymv6tZs2bc95GoDAZhREQEwPjm2/PmBSI+vuKVkIbyuhhgEZXHIIyIiAAAFy8WIy0tGLdvu1a4ubah5HoiMh2DMCIiG6SZdlSpVLhyRWDtWh988UVDCDEcpZXtBbSr27OoKpH5MQgjIrIxmmlHADh6tAO2besD3XVams21BTfXJqpGDMKIiOoozWgXAKSn2yEtrR5CQorh6HgdQGnR1O3bywZgGnYYOHAj3NzulMv7MoYrHIlMxyCMiKgOKjvapbuaMRnh4fprfmlIkhqenrlo3Dij3LmyKyA1uMKRqHIYhBER1UGaETDNaJcm2NKucK+p+VU+ECudhly1aozeLYlY2Z7IPFislYioDjNW4V5T8+t+8VX1P1+6WxKpVO412mciW8GRMCKiOkzfaJf2Skftml+3b7th8+Z/67y+bGkKgHlfRObCIIyIqA6rqMK9po1CkQ+Vyt1owDZgwAAEBgYy74vITBiEERHVccYq3GurKGDz8fFhAEZkRgzCiIiswNWrwPnzQIsWQOPGlX+9qRXuTQ3YiOjBMQgjIqqlDG2mvWiRCs89d9csJSGefvppFBcXY//+/fIxbklEVDMYhBER1ULGNtOeOtUDf//9GRSKfMTFxekNxExNnm/VqhUKCwt1gjAiqhkMwoiIaiFNna+KSkxo2pXl7e2NuLg4g+eB+8VVs7OzTeoTV0USmReDMCKiWqyiEhPGmDpVWZmAjYjMh0EYEVEtVtGKxaysLIOvrUzgxACLqOYxCCMiquWMrVjcunUrgNLtiXJyvOHlla1z3lDOGBFZHoMwIiIrYGzFYvkNuu/v92hsipGILIt7RxIR1SLZ2dnIyMhAVlYWVCp3pKUFG9270dAG3dzvkaj240gYEVEtkJ2djRs3bmDDhg1QqdyRnByJpKR4vaNb2ipaPUlEtReDMCIiC9PUBANKpxa3besD7YkKzehWaOiFcoHVg6yeJCLL4nQkEZGFafK2NFOL+v5q1oxuAaUbaQ8YMADA/dWTkqQGAL0bdBNR7cSRMCKiWkLf1KKG9uiWj4+Pzjnu90hknUwOwvLy8ky+qIeHR5U6Q0Rka7Kzs+VaX/qmFgHTRre43yOR9TE5CPP09IQkSUbbCCEgSRJKSkoeuGNERHWddi6YhlKZhKQk5T+BmBpduiQhMjK5XIBl6hZC3GqIqPYyOQjj5q5EROalXcNLu9ZXafD1i97gS4NbDRFZP5ODsO7du1dnP4iIbFbZWl+AHZKSlIiMTDb6OgZYRNatyon5ubm5WLVqFc6ePQsAaNu2LUaNGgWFQmG2zhER2YLK1vriFCNR3VClEhW///47QkNDsXjxYuTk5CAnJwfvv/8+QkNDcfToUXP3kYioztGXkK9NX62vwYMHcy9IojpEEkKIyr6oW7duaN68OT755BPUq1c6mFZcXIwxY8bgr7/+wk8//WT2jtqivLw8KBQKqFQqrjglqkPKJuRrKuQfOqQEUL5C/oABAxAYGMjgi8hKmPr5XaXpyN9//10nAAOAevXqYdq0aejYsWNVLklEVCdkZ2dXmCxvKCFfktRQKssn5Pv4+DAAI6qDqhSEeXh44PLly2jdurXO8StXrsDdnZvGElHdpx1spafbIS2tHnx8buLAgbVyG5XKHTk53vDyytYJqgYPHiyfL7v5tikJ+URUN1QpCIuNjcXo0aPx7rvvokuXLgCAX375BVOnTsWQIUPM2kEiotqm7F6P90eyGqBv3w4IDz9WboRLe3qxuLgYgOkJ+UzEJ6qbqpSY/+6772LAgAF44YUXEBwcjODgYIwYMQKDBg3C22+/be4+AgD69euHJk2awNnZGQEBARg2bBjS09N12uzZswedO3eGu7s7fH19MXDgQFy8eFGnzY8//ojw8HA4OTmhefPmWL16dbn3+vDDDxEcHAxnZ2dERkbit99+0zl/7949jB8/Ht7e3qhfvz4GDhyIa9eu6bS5fPkyYmJi4OrqioYNG2Lq1KnyX7xEZN3K7vWoPZK1fXsfXL0aoPe4SqU7U1BRQv6AAQOYiE9Uh1UpCHN0dMTSpUtx8+ZNHD9+HMePH0dOTg4WL14MJycnc/cRANCjRw9s3LgRKSkp2LJlC1JTUzFo0CD5fFpaGp555hk8+eSTOH78OPbs2YOsrCx5k1tNm5iYGPTo0QPHjx9HfHw8xowZgz179shtNmzYgMmTJ2POnDk4evQo2rdvj+joaFy/fl1uM2nSJGzfvh2bNm3CgQMHkJ6ervM+JSUliImJQWFhIQ4dOoQ1a9Zg9erVmD17drU8GyKyDEMjWZcvNzE4wqWtos23mQtGVLdVaXVkbbBt2zb0798fBQUFcHBwwObNmzFkyBAUFBTAzq70L7/t27fjmWeekdtMnz4dO3bswKlTp+TrPPvss8jNzcXu3bsBAJGRkXj00UflqQa1Wo2goCBMmDABM2bMgEqlgq+vL9atWycHgefOnUObNm2QlJSEzp07Y9euXejTpw/S09Ph5+cHAPj4448xffp03Lhxw+SpBa6OJKqdMjIysHLlSqhU7liyJF4n4JIkNUaP/hSrVo0pdzw+fgkUinwMGDAAW7dulc+V5o6V33x77NixCAgIqJmbIiKzMfXzu0ojYffu3cM777yDf/3rX+jYsSPCw8N1vqpbTk4O1q5diy5dusDBwQEAEBERATs7O3z++ecoKSmBSqXCl19+iaioKLlNUlISoqKidK4VHR2NpKQkAKVTDEeOHNFpY2dnh6ioKLnNkSNHUFRUpNOmdevWaNKkidwmKSkJ7dq1kwMwzfvk5eXh9OnT1fBEiMgSDI1kNW6cYXSES991QkIucQNuIhtTpcT80aNH4/vvv8egQYPQqVOnCjf2Npfp06dj+fLluHPnDjp37oyEhAT5XEhICL7//nsMHjwYL730EkpKSqBUKrFz5065TWZmpk5gBAB+fn7Iy8vD3bt3cfPmTZSUlOhtc+7cOfkajo6O8PT0LNcmMzPT6PtozhlSUFCAgoIC+ee8vLyKHgkRPaCrV4Hz54EWLYDGjSv/+vDwYwgNvVBuJMvQcQDyPwwrwoR8orqtSkFYQkICdu7ciccee+yB3nzGjBkVJvKfPXtWLoUxdepUjB49GpcuXcK8efPwwgsvICEhAZIkITMzEy+++CKGDx+OIUOGID8/H7Nnz8agQYOQmJhYY4Hig1iwYAHmzZtn6W4Q1Xma8hLr1rlg2jQF1GoJdnYCs2f/jQEDbsLBwaHcFmzGNsNWKPL1jmIZPq7g5ttEVLUgrFGjRmapBzZlyhSMGDHCaJtmzZrJ3/v4+MDHxwctW7ZEmzZtEBQUhF9//RVKpRIffvghFAoFFi1aJLf/6quvEBQUhOTkZHTu3Bn+/v7lVjFeu3YNHh4ecHFxgb29Pezt7fW28ff3BwD4+/ujsLAQubm5OqNhZduUXVGpuaamjT6vvfYaJk+eLP+cl5eHoKAgo8+HiCpHU17ifj5X6T/Q1GoJ8+YFQqXaCAB663uZa6UiAywiAqoYhL333nuYPn06Pv74YzRt2rTKb+7r6wtfX98qvVatLs210Ezf3blzR07I17C3t9dpW3Z6EgASExOhVCoBlP7FGBERgX379qF///7ya/ft24e4uDgApblnDg4O2LdvHwYOHAgASElJweXLl+XrKJVKzJ8/H9evX0fDhg3l9/Hw8EBYWJjBe3Jycqq21aVEVEoz+mRoZWNyciSSkpR663vduHED3t7eJk8TDh48uFzqAgMwItKoUhDWsWNH3Lt3D82aNYOrq2u5/IacnBwDr6ya5ORkHD58GF27dkWDBg2QmpqKWbNmITQ0VA58YmJisHjxYrzxxhvydOR//vMfNG3aFB06dAAAjBs3DsuXL8e0adMwatQo/PDDD9i4cSN27Nghv9fkyZMxfPhwdOzYEZ06dcKSJUtw+/ZtjBw5EkDpNMLo0aMxefJkeHl5wcPDAxMmTIBSqUTnzp0BAD179kRYWBiGDRuGRYsWITMzE6+//jrGjx/PIIuoltDU6Cq7glGzfyNwv75XaOgFKBT52LBhgzwaxulEInpQVQrChgwZgr///htvvfUW/Pz8qj3fytXVFVu3bsWcOXNw+/ZtBAQEoFevXnj99dfloObJJ5/EunXrsGjRIixatAiurq5QKpXYvXs3XFxcAJQm7+/YsQOTJk3C0qVL0bhxY3z66aeIjo6W3ys2NhY3btzA7NmzkZmZiUceeQS7d+/WSbRfvHgx7OzsMHDgQBQUFCA6OhorVqyQz9vb2yMhIQEvv/wylEol3NzcMHz4cLzxxhvV+pyIyHSalY26+zYm4dAh3VzXshXsNYEXAywielBVqhPm6uqKpKQktG/fvjr6RP9gnTAi89PU+NLQrtEFoFzdL0Dg6acT8dhjpSVoWLuLiCpSrXXCWrdujbt371a5c0REtYV2jS6FIh9RUXsBaP/bVMLevVHlthwiInpQVZqOXLhwIaZMmYL58+ejXbt25XLCOGpDRLWBphSFtqysLKOvCQzMAKCbYqE9JZmVlcV8LyIyiyoFYb169QIAPPXUUzrHhRCQJAklJSUP3jMiogegKUWhUTrtqCk7Yfh1+hL2ATUcHEqDOc12Q9xYm4geVJWCsP3795u7H0REZqU9Anb0aAedBHztshNllU3YL52atMOqVWN0XmdsZSQRkSmqFIR1797dpHb/93//hzfeeAM+Pj5VeRsiogemUrlrBVTly04MGDAAPj4+SEtLQ2JiIoDSLYcaNszU2YS77OuIiB5UlRLzTfXVV19x/0MiqjbZ2dnIyMjQ+6XJ/TJUlDUnxwtA6U4cAQEBaNWqlU6boiIno68jInpQVRoJM1UVql8QEZnEeM7X/ZEqQ0VZNSUpNDQFWNPT07F161aTX0dEVFXVGoQREVUXU3O+9BVl7ds3Qe+Uore3t3zdyryOiKgqGIQRkVWrKOcLKM3xCg29IBdlNTWQqurriIhMwSCMiKxaRTlf2lOUVQmiqvo6IqKKMAgjIqtmKHcrPT0QX3zxQoVlKRwdHY3+bIip7YiIDKnWIOz5559n9XwiMitNFXzN6kd9uVtRUXuxd29UhWUp9FW+1yToG6sDxor5RGQOVQ7CcnNz8dtvv+H69etQq9U651544QUAwEcfffRgvSMi0lJ2RaRG2dwtY1OUCkW+XJbCEAZYRFQTqhSEbd++HUOHDsWtW7fg4eEBSbq/z5okSXIQRkT0IMru/Whs38eyuVssL0FEtV2VgrApU6Zg1KhReOutt+Dq6mruPhERGRz10maoNphCkY+oqL1ITIwCwPISRFQ7VSkI+/vvv/HKK68wACOialPR3ozGaoMdPdoBe/feD8CiovbqJOUzqZ6IaoMqbVsUHR2N33//3dx9ISIySKVyR1paMFQqd4O1wQyd27s3CiqVOwBg8ODBzPkiolrB5JGwbdu2yd/HxMRg6tSpOHPmDNq1awcHBwedtv369TNfD4nI5pUd9VIqk4zUBpOMJuV7enrWXMeJiIwwOQjr379/uWNvvPFGuWOSJKGkpOSBOkVEdVvZhPuytKcL9Y1sHTqk1Jt4f/u2Gzw9bzIpn4isgslBWNkyFEREVWFKwj0AxMbGAtBfER+wg1L5C5KSlP+cExAC2Lz535AkNR5++CROnnyYez4SUa1WpcT8L774ArGxsXByctI5XlhYiPXr17NEBREZVFHCvUZRUREAwxXx3dxuQwjtV9wfKTt58mGMHv0pioocuecjEdVaVUrMHzlyJFQqVbnj+fn5GDly5AN3iogoP780cNJUxJek0tF47Yr49/8Kk3ReK4QdioocERJyqVwAxpWRRFRbVGkkTAihU6BV4+rVq1AoFA/cKSKyHYZqfSUmJsrfm1IRX5t2DphmiyKA2w0RUe1SqSCsQ4cOkCQJkiThqaeeQr16919eUlKCtLQ09OrVy+ydJKK6yVitr7IqqogPCABSuRywirYoIiKylEoFYZoVksePH0d0dDTq168vn3N0dERwcDAGDhxo1g4SUd2Sm5sLQP+qR+1NtrWVHS0ztGl3YGA6c8CIyGpUKgibM2cOACA4OBixsbFwdnaulk4RUd2UnZ2NjRs3AtC/6lG7npeGodGyslOUDLyIyNpUKSds+PDhAEpXOV2/fr1c+YomTZo8eM+IyOpUVP9LMwoGGF71qF3Pq6LRsrJTlPowEZ+IaqsqBWHnz5/HqFGjcOjQIZ3jmoR9Fmslsj2m1v/S0DelWLaeV0WjZbGxsUYXAzERn4hqsyoFYSNGjEC9evWQkJCAgIAAvSslici2mFr/S1to6AUMHLgFgEBQ0NVyo1oVjZYpFAom3ROR1apSEHb8+HEcOXIErVu3Nnd/iMhG6NsPMjIyWScQM2W0jIjIWlUpCAsLC0NWVpa5+0JEdYih+l+ac+X3g3wMhw4p0a+fbpkKYwn4zPciImtWpSDs7bffxrRp0/DWW2+hXbt2cHBw0Dnv4eFhls4RkXWqqP6X4WKruon32oVWy2K+FxFZuyoFYVFRUQCAJ598UicfjIn5RGRK/S99uV4a2on3LLRKRHVZlYKw/fv3m7sfRFRHmFL/q2yul7ayZSqIiOqqKgVh3bt3x88//4z//e9/SE1NxebNm9GoUSN8+eWXCAkJMXcficiKVLSiMTY2FkIIABsRGnoBycmROHRICaB84j1zvoioLqtSELZlyxYMGzYMQ4cOxbFjx1BQUAAAUKlUeOutt7Bz506zdpKIaj9NwFTRikZfX194e3sjLi5OLmuRnn4DFy/WQ3BwMQIDHwXwKHO+iKjOk0TpP0krpUOHDpg0aRJeeOEFuLu748SJE2jWrBmOHTuG3r17IzMzszr6anPy8vKgUCigUqm42IGsgnbF/PR0O63AqnRXDQZWRGQLTP38rtJIWEpKCh5//PFyxxUKhc62JERkW7QDrIAAICLCgp0hIqrlqhSE+fv748KFCwgODtY5fvDgQTRr1swc/SKiKqpo/0aORhER1Q5VCsJefPFFTJw4EZ999hkkSUJ6ejqSkpLw6quvYtasWebuIxGZyNT9G+Pi4hiIERFZWJWCsBkzZkCtVuOpp57CnTt38Pjjj8PJyQmvvvoqJkyYYO4+EpGJyo6AGapaX9l9Hjm6RkRkflUKwiRJwsyZMzF16lRcuHABt27dQlhYGOrXr2/u/hFRFVVUtd5UHF0jIqoeVQrCNBwdHREWFmauvhCRmZhStd5Upo6aVXZ0jYjI1j1QEEZENc/Y1GBWVhYA06rWExGRZTEII6qFDAVaKpUKGzZsqPD1FVWtfxCG8syIiKhyGIQR1TKm5mAZU1HV+qoyV54ZERExCCOqdUxd4VjRufDwYwgNvYCcHC94eeU8cABmzjwzIiJiEEZUqxkbeTJlVEqhyNcbIFVlY2zmmRERmReDMKJaytjIEwCjo1IDBgyAj4+P3utWtaZXdeaZERHZIgZhRLWUsZEnQDI6KuXj44OAgACz9EMzalZRnllVRteIiGwZgzCiWqqikaeaGpXy9vZGXFycnKs2e/YNXLxYD8HBxQgMfBTAo6yYT0RUBQzCiGqpikaeqmP1oyHaAVZAABARUS1vQ0RkUxiEEdVixlY4GjvHqUEiotqPQRhRLVM2gDK0wnHw4MHw9PTU+3pODRIR1X4MwohqmbI5WPow0CIisn4MwohqIQZYRER1n13FTYiIiIjI3BiEEREREVkAgzAiIiIiC2BOGJEFZWdnMwGfiMhGMQgjspDs7GwsX768wnZxcXEMxIiI6iAGYUQWYmwErDLtOJpGRGSdGIQRWRntoCs3NxcbN26s8DUcTSMiqn0YhBFZEVOnMMsyddSNiIhqDoMwIj3MPcWn73pZWVmV7ldFwZRK5Y6cHG94eWVX22beRERkHgzCiMowd8J8VUevKuvo0Q7Yvr0PhLCDJKnRt28CwsOPVfv7EhFR1bBOGFEZ5kqYr2w7lcodaWnBUKncTWpf9rWaAAwAhLDD9u19qnQtIiKqGVYThPXr1w9NmjSBs7MzAgICMGzYMKSnp+u02bhxIx555BG4urqiadOmeOedd8pd58cff0R4eDicnJzQvHlzrF69ulybDz/8EMHBwXB2dkZkZCR+++03nfP37t3D+PHj4e3tjfr162PgwIG4du2aTpvLly8jJiYGrq6uaNiwIaZOnYri4uIHfxBUJx092gFLlsRjzZrhWLIkHkePdjDpdZrA7cqVIDkA0xDCDjk5XtXRXSIiMgOrCcJ69OiBjRs3IiUlBVu2bEFqaioGDRokn9+1axeGDh2KcePG4dSpU1ixYgUWL16sMw2UlpaGmJgY9OjRA8ePH0d8fDzGjBmDPXv2yG02bNiAyZMnY86cOTh69Cjat2+P6OhoXL9+XW4zadIkbN++HZs2bcKBAweQnp6OAQMGyOdLSkoQExODwsJCHDp0CGvWrMHq1asxe/bsan5KZI0qGsVydHTU+zrtwG3LloEA1DrnJUkNL6+cau07ERFVnSSEEJbuRFVs27YN/fv3R0FBARwcHPDcc8+hqKgImzZtktt88MEHWLRoES5fvgxJkjB9+nTs2LEDp06dkts8++yzyM3Nxe7duwEAkZGRePTRR+XgTa1WIygoCBMmTMCMGTOgUqng6+uLdevWyUHguXPn0KZNGyQlJaFz587YtWsX+vTpg/T0dPj5+QEAPv74Y0yfPh03btww+KFaVl5eHhQKBVQqFTw8PMzy3KhiGRkZWLlyZYXtxo4di4CAgAe+XlpaMNasGV7u+ObN2XjiCejknWmupVK5Y8mSeJ3RL0lSo/RPc/mcMFP7SkRED87Uz2+rGQnTlpOTg7Vr16JLly5wcHAAABQUFMDZ2VmnnYuLC65evYpLly4BAJKSkhAVFaXTJjo6GklJSQBKc3eOHDmi08bOzg5RUVFymyNHjqCoqEinTevWrdGkSRO5TVJSEtq1aycHYJr3ycvLw+nTpw3eV0FBAfLy8nS+yPIeJFfLFF5e2ZAk3VEse3sgMtLbYOJ/To633unHQYM2Y/jw1YiPX6KTlG9q4E9ERDXHqlZHTp8+HcuXL8edO3fQuXNnJCQkyOeio6MxadIkjBgxAj169MCFCxfw3nvvASgdPQgODkZmZqZOYAQAfn5+yMvLw927d3Hz5k2UlJTobXPu3DkAQGZmJhwdHeHp6VmuTWZmptxG3zU05wxZsGAB5s2bV4knQtWtKisOy5ajqKgUhUKRj759E7BjR1+UlEiwtwf+9z+gcePybTXBlCZwKzsSFhR0FQpFPmJjY6FQKOTXsFArEVHtY9EgbMaMGXj77beNtjl79ixat24NAJg6dSpGjx6NS5cuYd68eXjhhReQkJAASZLw4osvIjU1FX369EFRURE8PDwwceJEzJ07F3Z21jHg99prr2Hy5Mnyz3l5eQgKCrJgj2yboVyt0NALBmtwmVKOQl8tr/DwY5g9OxL5+X5o3lx/AAaUTk3GxcWhsLAQjRrlYfp0xT+Bm8Dbb+fhueeGMOgiIrISFg3CpkyZghEjRhht06xZM/l7Hx8f+Pj4oGXLlmjTpg2CgoLw66+/QqlUQpIkvP3223jrrbeQmZkJX19f7Nu3T+ca/v7+5VYxXrt2DR4eHnBxcYG9vT3s7e31tvH395evUVhYiNzcXJ3RsLJtyq6o1FxT00YfJycnODk5GX0eVP00o02GpvxycrygUOTrneKrqByFsZG14OB6MCV20gRYU6YAsbHAhQtA8+YSGjf2BOBZ8QWIiKhWsGgQ5uvrC19f3yq9Vq0uzaEpKCjQOW5vb49GjRoBAL7++msolUr5PZRKJXbu3KnTPjExEUqlEkDph29ERAT27duH/v37y++zb98+xMXFAQAiIiLg4OCAffv2YeDAgQCAlJQUXL58Wb6OUqnE/Pnzcf36dTRs2FB+Hw8PD4SFhVXpfqnmaEabLl4sxpdfCqjVknzO3l5gwoTe/wRMlRtt0jeylpDQF7NnR1bpekDpiJmhUTMiIqrdrCInLDk5GYcPH0bXrl3RoEEDpKamYtasWQgNDZUDn6ysLGzevBlPPPEE7t27h88//1wuIaExbtw4LF++HNOmTcOoUaPwww8/YOPGjdixY4fcZvLkyRg+fDg6duyITp06YcmSJbh9+zZGjhwJAFAoFBg9ejQmT54MLy8veHh4YMKECVAqlejcuTMAoGfPnggLC8OwYcOwaNEiZGZm4vXXX8f48eM50mUlvL294e0NrFwJvPQSUFKCf3K1JERE3M/3q0z+l76RNbVawunTBQgMVCMjIwMAc7iIiGyFVQRhrq6u2Lp1K+bMmYPbt28jICAAvXr1wuuvv64T1KxZswavvvoqhBBQKpX48ccf0alTJ/l8SEgIduzYgUmTJmHp0qVo3LgxPv30U0RHR8ttYmNjcePGDcyePRuZmZl45JFHsHv3bp1E+8WLF8POzg4DBw5EQUEBoqOjsWLFCvm8vb09EhIS8PLLL0OpVMLNzQ3Dhw/HG2+8Uc1Pisxt9GggOloz5ac76lTZ7YgMJdMfP74ZaWm6OWambolERETWy2rrhNkC1gmr3UytJ6bN1NWWrOtFRGS9TP38toqRMKLqVHZKsSxzTg+Ghx9DaOgF5OR4wcsrx+AqSyIiqvsYhJFNM3VKsarTg/rKUSgU+Qy+iIiIQRjZtopKSlS2nTZTph71BWlERGQbGIQRVQNTCr1WpRo/ERHVHdZRSp7Iyhgq9HrmTBhUKneDQVp17U9JRES1D0fCiMxEe2pRXzkKQGDPnl74/vueUCqTjFbjJyKiuo9BGJGJyq6izM3Nlb/XN7XYt2+C1miXAFBaeV8IOyQlKQGooT0YLUlqeHnlAIDeLZGIiKhuYRBGZILc3Fxs3LhR7zl9U4s7dvRFcvJ1/Pe/Kuzd2wCTJ0s6rxHCDuPG3cInn7hxA24iIhvFIIxIi6HVisXFxQZfoy//q6REQn6+H554AmjQAHj1VeCf7U4BlG6BNHNmfcycyQ24iYhsFYMwsmna037GVis6ODgYvIa+/C97+9JtjoDSrY7K70F5fwskbsBNRGSbuG1RLcZti2pGdnY2Ll4sRqdODaFW3582tLcXSE6+Dk/PW7hz5w62bt1q8BraAZwmyBo9WrfN1av696AkIqK6hdsWEZnI29sbJ0/qThcCpVOKV686IyHh4wqvodmO6LHHhiMy0ltvkNW4MYMvIiK6j3XCiAC0aAHYlfnTYG8PNG58z+RrKBT56NKlkIEWERGZhEEYEe7nbdnbl/6smVIMDFQbfyEREVEVcTqS6B+jRwPR0bp5WxkZ+ttyz0ciInpQDMKItJiSt2VsFSWLrBIRkakYhBFVgqE9H+PiWiA8vCGLrBIRkcmYE0ZUCYY25s7LYwBGRESVw5Ewshll934sy5TtghwcCqBvz8fgYMMV9YmIiPRhEEY2ITs7G8uXL6+wXVxcnE4gpq+ifmkAVrohtyYnLDj4MfN3moiI6jQGYWQTjI2AGWvn7e2NuLg4XLxYjDfeaAghNBX1JdjZCWzfno3IyMc4FUlERJXGnDAiLVlZWcjOztY55u3tjbw8P50tjQBArZbg6urLAIyIiKqEI2FEWjT7Qw4ePBienp4ASqckW7Twhp2d7tZG2pt0ExERVRaDMCI9Nm7cqPNzXFwcVq70xksvASUl9yvqc4siIiKqKgZhRCYoLCzUW1GfiIioqhiEEVWCKRX1iYiITMHEfLJJKpU70tKCoVK5m3SciIjI3DgSRjZBX72vsns/GtsTkoiIyNw4EkY2QVPvq0uXweX2fty2rQ9SUprr3ROSI2JERFRdGISRzfD29oZK1bDc3o+AHb7+eojePSFzcrxqroNERGRTGISRTWnVqnSqsTzNVkT3SZIaXl45NdIvIiKyPcwJo1rDHBtsV6RduwZYvPgWJk92K1cBX7MXpHZOmEKRL783ERGROTEIo1qhqhtsV8XEifXRpQvQuXPZCvgC27Zl4+5dOwQHFyMw8FEAj5ol+CMiIiqLQRjVClXdYLuqHn0UWLkSZSrgS/jXv3zNcn0iIqKKMAgji9JMQWZlZdX4e7MCPhERWRKDMLIYU6cgqxMr4BMRkaVwdSRZjLmmFomIiKwRgzAiIiIiC2AQRrUS93AkIqK6jjlhVOtwD0ciIrIFHAmjWkWlcje6hyOLphIRUV3BkTCqNVQqd5w+3VbvHo6PPTYcTzwBFk0lIqI6g0EY1QraU5Clezje31LIzk4gOLgYhYVqZGRk6LyO1eyJiMhaMQgji9FMLZadgiwNwEoDMUlSo0+fBCQkGM4JM8dWRkRERDWNQRhZjLe3N+Li4rB/P7B4cdn0RAlTp6ajuHi9vIm2Iaw3RkRE1oiJ+WRR3t7e6NzZG3ZlfhPt7YHYWPsKAzAiIiJrxSCMLK5x49LNtO3tS38u3UwbCAxUW7ZjRERE1YjTkVQhzSbbhpgjOV7fZtplcvChUrkjJ8cbXl7ZHCEjIiKrxyCMjDJ1k21zJMcb20ybBVyJiKiu4XQkGWVq0nt1JMerVKp//mu8gCsREZE1YhBGlVJTezpmZ2djw4YNAICcHG+9BVxzcryqtQ9ERETVidORZLKanBLUHlnz8soGoIb2vxkkSQ0vrxwA3MqIiIisE4MwMomhKcHQ0Atyknx1JfCnpjaHdgV9oDQAVCjyMXjwYBZqJSIiq8QgjExibEpQochHbm4uNm7cKJ8ztJKxsgn8muBPOwiTJCA09AIAwNPTs2o3REREZGEMwsgkXl7ZkCS1TiCmPSVYXFwsHzc2bVnZBP6Kgj8iIiJrxcR8MolCkY++fRMgSaUFVDXBVdlAyNwrGTXBnzbt4I+IiMhacSSMjNJOeg8PP4bQ0AvIyfGCl1eOTgDm4OAAwPwjV5rgr+zIGkfBiIjI2jEII6M0m2xXlHCvOV/RtGVVGAv+iIiIrBWDMKqQKYn0Gf/sMWSukauyZScUiny912B5CiIislYMwsjszDFyZeoIHMtTEBGRtWIQRtXC0MhVZTDAIiKiuoyrI8ksTJ0W5PQhERFRKY6EkVlw+pCIiKhyGISR2TDAIiIiMh2nI4mIiIgsgEEYERERkQUwCCMiIiKyAKsLwgoKCvDII49AkiQcP35c59zJkyfRrVs3ODs7IygoCIsWLSr3+k2bNqF169ZwdnZGu3btsHPnTp3zQgjMnj0bAQEBcHFxQVRUFM6fP6/TJicnB0OHDoWHhwc8PT0xevRo3Lp1q9J9ISIiIttldUHYtGnTEBgYWO54Xl4eevbsiaZNm+LIkSN45513MHfuXKxcuVJuc+jQIQwZMgSjR4/GsWPH0L9/f/Tv3x+nTp2S2yxatAjLli3Dxx9/jOTkZLi5uSE6Ohr37t2T2wwdOhSnT59GYmIiEhIS8NNPP2Hs2LGV6gsRERHZOGFFdu7cKVq3bi1Onz4tAIhjx47J51asWCEaNGggCgoK5GPTp08XrVq1kn8ePHiwiImJ0blmZGSkeOmll4QQQqjVauHv7y/eeecd+Xxubq5wcnISX3/9tRBCiDNnzggA4vDhw3KbXbt2CUmSxN9//21yX0yhUqkEAKFSqSr1OiIiIrIcUz+/rWYk7Nq1a3jxxRfx5ZdfwtXVtdz5pKQkPP744zrFQKOjo5GSkoKbN2/KbaKionReFx0djaSkJABAWloaMjMzddooFApERkbKbZKSkuDp6YmOHTvKbaKiomBnZ4fk5GST+6JPQUEB8vLydL6IiIiobrKKIEwIgREjRmDcuHE6wY+2zMxM+Pn56RzT/JyZmWm0jfZ57dcZatOwYUOd8/Xq1YOXl1eF76P9HvosWLAACoVC/goKCjLYloiIiKybRYOwGTNmQJIko1/nzp3DBx98gPz8fLz22muW7G61e+2116BSqeSvK1euWLpLREREVE0sWjF/ypQpGDFihNE2zZo1ww8//ICkpCQ4OTnpnOvYsSOGDh2KNWvWwN/fH9euXdM5r/nZ399f/q++NtrnNccCAgJ02jzyyCNym+vXr+tco7i4GDk5ORW+j/Z76OPk5FTuHomIiKhusuhImK+vL1q3bm30y9HREcuWLcOJEydw/PhxHD9+XC4rsWHDBsyfPx8AoFQq8dNPP6GoqEi+fmJiIlq1aoUGDRrIbfbt26fTh8TERCiVSgBASEgI/P39ddrk5eUhOTlZbqNUKpGbm4sjR47IbX744Qeo1WpERkaa3BciIiKycTWzTsC80tLSyq2OzM3NFX5+fmLYsGHi1KlTYv369cLV1VX873//k9v88ssvol69euLdd98VZ8+eFXPmzBEODg7ijz/+kNssXLhQeHp6iu+++06cPHlSPPPMMyIkJETcvXtXbtOrVy/RoUMHkZycLA4ePChatGghhgwZUqm+mIKrI4mIiKyPqZ/fdSYIE0KIEydOiK5duwonJyfRqFEjsXDhwnKv3bhxo2jZsqVwdHQUbdu2FTt27NA5r1arxaxZs4Sfn59wcnISTz31lEhJSdFpk52dLYYMGSLq168vPDw8xMiRI0V+fn6l+1IRBmFERETWx9TPb0kIISw5EkeG5eXlQaFQQKVSwcPDw9LdISIiIhOY+vltFSUqiIiIiOoaBmFEREREFmDREhVUe2VnZ6OwsBAAkJ5uh7S0eggJKUZgoBoA4OjoCG9vb0t2kYiIyKoxCKNysrOzsXz5cgDA0aMdsH17HwhhB0lSo2/fBISHHwMAxMXFMRAjIiKqIk5Hko6rV4H9+wGVyh0qlbscgAGAEHbYvr0PVCp3AJBHyoiIiKjyOBJGslWrgLFjAbXaG5IUD6UyCWX3eBfCDjk5XlAo8i3USyIiorqBI2EEoHQErDQAK/1ZCDscOqSEJKl12kmSGl5eORboIRERUd3CIIyQnZ2NX3/NlgOw++ygVCbJgZgmJ4yjYERERA+O05E2LjU1FV999dU/eV7x0I7LJUmNyMhkREYmIyfHC15eOQzAiIiIzIRBmA3Lzs7GV199BQBITW0OQNI6qzvqxeCLiIjIvDgdacM0qxs1qyC1gzBJAkJDL1ioZ0RERHUfgzBCTo63wVWQxjg6OlZnt4iIiOo0TkcSvLyyIUlqnUCs7CrIAQMGwMfHR/6ZFfOJiIgeDIMwG6TZkigrKwtAab5X374J5Srja+eB+fj4ICAgwFJdJiIiqnMYhNkY7S2JtIWHH0No6AWugiQiIqohDMJsTNmthlQqd+TkeMPLKxsKRT6DLyIiohrCIMxGlJ2CBIxvzl0Wk/CJiIjMi0GYDdA3BWloc+7Q0AvlRsOef/55JuETERGZGYMwG6BvCvL06bZGN+fWrIbkKkgiIqLqwSDMxmhPQQICugVa75el4GpIIiKi6sVirTak7BRkaQAmSr/j5txEREQ1iiNhNkRfZXxAQnT0boSFnWEARkREVIM4EmZDNJXxtUmSWm8AxtWQRERE1YsjYTakosr4TMYnIiKqOQzCbIyxyvhMxiciIqo5DMJsQNmpRUOV8TkFSUREVHMYhNkAb29vxMXFlasXpo1TkERERDWLQZiNYIBFRERUu3B1JBEREZEFMAgjIiIisgAGYUREREQWwCCMiIiIyAIYhBERERFZAIMwIiIiIgtgEEZERERkAQzCiIiIiCyAQRgRERGRBbBifi0mhAAA5OXlWbgnREREZCrN57bmc9wQBmG1WH5+6SbbQUFBFu4JERERVVZ+fj4UCoXB85KoKEwji1Gr1UhPT4e7uzskSTLpNXl5eQgKCsKVK1fg4eFRzT2svfgcSvE58Blo8DmU4nPgM9CozucghEB+fj4CAwNhZ2c484sjYbWYnZ0dGjduXKXXenh42PQfLg0+h1J8DnwGGnwOpfgc+Aw0qus5GBsB02BiPhEREZEFMAgjIiIisgAGYXWMk5MT5syZAycnJ0t3xaL4HErxOfAZaPA5lOJz4DPQqA3PgYn5RERERBbAkTAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAizAh999BEefvhhuaCcUqnErl275PP37t3D+PHj4e3tjfr162PgwIG4du2azjUuX76MmJgYuLq6omHDhpg6dSqKi4tr+lbMZuHChZAkCfHx8fIxW3kOc+fOhSRJOl+tW7eWz9vKc/j777/x/PPPw9vbGy4uLmjXrh1+//13+bwQArNnz0ZAQABcXFwQFRWF8+fP61wjJycHQ4cOhYeHBzw9PTF69GjcunWrpm+lyoKDg8v9LkiShPHjxwOwnd+FkpISzJo1CyEhIXBxcUFoaCjefPNNnX37bOH3IT8/H/Hx8WjatClcXFzQpUsXHD58WD5fF5/BTz/9hL59+yIwMBCSJOHbb7/VOW+uez558iS6desGZ2dnBAUFYdGiRea5AUG13rZt28SOHTvEn3/+KVJSUsR//vMf4eDgIE6dOiWEEGLcuHEiKChI7Nu3T/z++++ic+fOokuXLvLri4uLxUMPPSSioqLEsWPHxM6dO4WPj4947bXXLHVLD+S3334TwcHB4uGHHxYTJ06Uj9vKc5gzZ45o27atyMjIkL9u3Lghn7eF55CTkyOaNm0qRowYIZKTk8Vff/0l9uzZIy5cuCC3WbhwoVAoFOLbb78VJ06cEP369RMhISHi7t27cptevXqJ9u3bi19//VX8/PPPonnz5mLIkCGWuKUquX79us7vQWJiogAg9u/fL4Swjd8FIYSYP3++8Pb2FgkJCSItLU1s2rRJ1K9fXyxdulRuYwu/D4MHDxZhYWHiwIED4vz582LOnDnCw8NDXL16VQhRN5/Bzp07xcyZM8XWrVsFAPHNN9/onDfHPatUKuHn5yeGDh0qTp06Jb7++mvh4uIi/ve//z1w/xmEWakGDRqITz/9VOTm5goHBwexadMm+dzZs2cFAJGUlCSEKP0ltbOzE5mZmXKbjz76SHh4eIiCgoIa7/uDyM/PFy1atBCJiYmie/fuchBmS89hzpw5on379nrP2cpzmD59uujatavB82q1Wvj7+4t33nlHPpabmyucnJzE119/LYQQ4syZMwKAOHz4sNxm165dQpIk8ffff1df56vRxIkTRWhoqFCr1TbzuyCEEDExMWLUqFE6xwYMGCCGDh0qhLCN34c7d+4Ie3t7kZCQoHM8PDxczJw50yaeQdkgzFz3vGLFCtGgQQOdPxPTp08XrVq1euA+czrSypSUlGD9+vW4ffs2lEoljhw5gqKiIkRFRcltWrdujSZNmiApKQkAkJSUhHbt2sHPz09uEx0djby8PJw+fbrG7+FBjB8/HjExMTr3C8DmnsP58+cRGBiIZs2aYejQobh8+TIA23kO27ZtQ8eOHfHvf/8bDRs2RIcOHfDJJ5/I59PS0pCZmanzHBQKBSIjI3Weg6enJzp27Ci3iYqKgp2dHZKTk2vuZsyksLAQX331FUaNGgVJkmzmdwEAunTpgn379uHPP/8EAJw4cQIHDx5E7969AdjG70NxcTFKSkrg7Oysc9zFxQUHDx60iWdQlrnuOSkpCY8//jgcHR3lNtHR0UhJScHNmzcfqI/cwNtK/PHHH1Aqlbh37x7q16+Pb775BmFhYTh+/DgcHR3h6emp097Pzw+ZmZkAgMzMTJ2/ZDXnNeesxfr163H06FGdHAeNzMxMm3kOkZGRWL16NVq1aoWMjAzMmzcP3bp1w6lTp2zmOfz111/46KOPMHnyZPznP//B4cOH8corr8DR0RHDhw+X70PffWo/h4YNG+qcr1evHry8vKzmOWj79ttvkZubixEjRgCwrT8TM2bMQF5eHlq3bg17e3uUlJRg/vz5GDp0KADYxO+Du7s7lEol3nzzTbRp0wZ+fn74+uuvkZSUhObNm9vEMyjLXPecmZmJkJCQctfQnGvQoEGV+8ggzEq0atUKx48fh0qlwubNmzF8+HAcOHDA0t2qMVeuXMHEiRORmJhY7l96tkbzr3sAePjhhxEZGYmmTZti48aNcHFxsWDPao5arUbHjh3x1ltvAQA6dOiAU6dO4eOPP8bw4cMt3DvLWLVqFXr37o3AwEBLd6XGbdy4EWvXrsW6devQtm1bHD9+HPHx8QgMDLSp34cvv/wSo0aNQqNGjWBvb4/w8HAMGTIER44csXTXyABOR1oJR0dHNG/eHBEREViwYAHat2+PpUuXwt/fH4WFhcjNzdVpf+3aNfj7+wMA/P39y62I0vysaVPbHTlyBNevX0d4eDjq1auHevXq4cCBA1i2bBnq1asHPz8/m3gO+nh6eqJly5a4cOGCzfw+BAQEICwsTOdYmzZt5GlZzX3ou0/t53D9+nWd88XFxcjJybGa56Bx6dIl7N27F2PGjJGP2crvAgBMnToVM2bMwLPPPot27dph2LBhmDRpEhYsWADAdn4fQkNDceDAAdy6dQtXrlzBb7/9hqKiIjRr1sxmnoE2c91zdf45YRBmpdRqNQoKChAREQEHBwfs27dPPpeSkoLLly9DqVQCAJRKJf744w+dX7TExER4eHiU+yCrrZ566in88ccfOH78uPzVsWNHDB06VP7eFp6DPrdu3UJqaioCAgJs5vfhscceQ0pKis6xP//8E02bNgUAhISEwN/fX+c55OXlITk5Wec55Obm6owS/PDDD1Cr1YiMjKyBuzCfzz//HA0bNkRMTIx8zFZ+FwDgzp07sLPT/Tizt7eHWq0GYHu/D25ubggICMDNmzexZ88ePPPMMzb3DADz/X9XKpX46aefUFRUJLdJTExEq1atHmgqEgBLVFiDGTNmiAMHDoi0tDRx8uRJMWPGDCFJkvj++++FEKXL0Js0aSJ++OEH8fvvvwulUimUSqX8es0y9J49e4rjx4+L3bt3C19fX6tbhl6W9upIIWznOUyZMkX8+OOPIi0tTfzyyy8iKipK+Pj4iOvXrwshbOM5/Pbbb6JevXpi/vz54vz582Lt2rXC1dVVfPXVV3KbhQsXCk9PT/Hdd9+JkydPimeeeUbv0vQOHTqI5ORkcfDgQdGiRYtavRxfn5KSEtGkSRMxffr0cuds4XdBCCGGDx8uGjVqJJeo2Lp1q/Dx8RHTpk2T29jC78Pu3bvFrl27xF9//SW+//570b59exEZGSkKCwuFEHXzGeTn54tjx46JY8eOCQDi/fffF8eOHROXLl0SQpjnnnNzc4Wfn58YNmyYOHXqlFi/fr1wdXVliQpbMWrUKNG0aVPh6OgofH19xVNPPSUHYEIIcffuXfF///d/okGDBsLV1VX8v//3/0RGRobONS5evCh69+4tXFxchI+Pj5gyZYooKiqq6Vsxq7JBmK08h9jYWBEQECAcHR1Fo0aNRGxsrE59LFt5Dtu3bxcPPfSQcHJyEq1btxYrV67UOa9Wq8WsWbOEn5+fcHJyEk899ZRISUnRaZOdnS2GDBki6tevLzw8PMTIkSNFfn5+Td7GA9uzZ48AUO7ehLCd34W8vDwxceJE0aRJE+Hs7CyaNWsmZs6cqVNSwBZ+HzZs2CCaNWsmHB0dhb+/vxg/frzIzc2Vz9fFZ7B//34BoNzX8OHDhRDmu+cTJ06Irl27CicnJ9GoUSOxcOFCs/RfEkKrpDARERER1QjmhBERERFZAIMwIiIiIgtgEEZERERkAQzCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsAgjIiIiMgCGIQRUZ3yxBNPID4+3tLdqHZz587FI488YuluENEDYBBGRFSLFBYW1uj7CSFQXFxco+9JRKUYhBFRnTFixAgcOHAAS5cuhSRJkCQJFy9exKlTp9C7d2/Ur18ffn5+GDZsGLKysuTXPfHEE5gwYQLi4+PRoEED+Pn54ZNPPsHt27cxcuRIuLu7o3nz5ti1a5f8mh9//BGSJGHHjh14+OGH4ezsjM6dO+PUqVM6fTp48CC6desGFxcXBAUF4ZVXXsHt27fl88HBwXjzzTfxwgsvwMPDA2PHjgUATJ8+HS1btoSrqyuaNWuGWbNmoaioCACwevVqzJs3DydOnJDvc/Xq1bh48SIkScLx48fl6+fm5kKSJPz44486/d61axciIiLg5OSEgwcPQq1WY8GCBQgJCYGLiwvat2+PzZs3m/t/ERFpYRBGRHXG0qVLoVQq8eKLLyIjIwMZGRlwd3fHk08+iQ4dOuD333/H7t27ce3aNQwePFjntWvWrIGPjw9+++03TJgwAS+//DL+/e9/o0uXLjh69Ch69uyJYcOG4c6dOzqvmzp1Kt577z0cPnwYvr6+6Nu3rxwspaamolevXhg4cCBOnjyJDRs24ODBg4iLi9O5xrvvvov27dvj2LFjmDVrFgDA3d0dq1evxpkzZ7B06VJ88sknWLx4MQAgNjYWU6ZMQdu2beX7jI2NrdSzmjFjBhYuXIizZ8/i4YcfxoIFC/DFF1/g448/xunTpzFp0iQ8//zzOHDgQKWuS0SVYJZtwImIaonu3buLiRMnyj+/+eabomfPnjptrly5IgCIlJQU+TVdu3aVzxcXFws3NzcxbNgw+VhGRoYAIJKSkoQQQuzfv18AEOvXr5fbZGdnCxcXF7FhwwYhhBCjR48WY8eO1Xnvn3/+WdjZ2Ym7d+8KIYRo2rSp6N+/f4X39c4774iIiAj55zlz5oj27dvrtElLSxMAxLFjx+RjN2/eFADE/v37dfr97bffym3u3bsnXF1dxaFDh3SuN3r0aDFkyJAK+0ZEVVPPkgEgEVF1O3HiBPbv34/69euXO5eamoqWLVsCAB5++GH5uL29Pby9vdGuXTv5mJ+fHwDg+vXrOtdQKpXy915eXmjVqhXOnj0rv/fJkyexdu1auY0QAmq1GmlpaWjTpg0AoGPHjuX6tmHDBixbtgypqam4desWiouL4eHhUen7N0T7PS9cuIA7d+7g6aef1mlTWFiIDh06mO09iUgXgzAiqtNu3bqFvn374u233y53LiAgQP7ewcFB55wkSTrHJEkCAKjV6kq990svvYRXXnml3LkmTZrI37u5uemcS0pKwtChQzFv3jxER0dDoVBg/fr1eO+994y+n51daYaJEEI+ppkaLUv7PW/dugUA2LFjBxo1aqTTzsnJyeh7ElHVMQgjojrF0dERJSUl8s/h4eHYsmULgoODUa+e+f/K+/XXX+WA6ubNm/jzzz/lEa7w8HCcOXMGzZs3r9Q1Dx06hKZNm2LmzJnysUuXLum0KXufAODr6wsAyMjIkEewtJP0DQkLC4OTkxMuX76M7t27V6qvRFR1TMwnojolODgYycnJuHjxIrKysjB+/Hjk5ORgyJAhOHz4MFJTU7Fnzx6MHDmyXBBTFW+88Qb27duHU6dOYcSIEfDx8UH//v0BlK5wPHToEOLi4nD8+HGcP38e3333XbnE/LJatGiBy5cvY/369UhNTcWyZcvwzTfflLvPtLQ0HD9+HFlZWSgoKICLiws6d+4sJ9wfOHAAr7/+eoX34O7ujldffRWTJk3CmjVrkJqaiqNHj+KDDz7AmjVrqvxsiMg4BmFEVKe8+uqrsLe3R1hYGHx9fVFYWIhffvkFJSUl6NmzJ9q1a4f4+Hh4enrK03cPYuHChZg4cSIiIiKQmZmJ7du3w9HREUBpntmBAwfw559/olu3bujQoQNmz56NwMBAo9fs168fJk2ahLi4ODzyyCM4dOiQvGpSY+DAgejVqxd69OgBX19ffP311wCAzz77DMXFxYiIiEB8fDz++9//mnQfb775JmbNmoUFCxagTZs26NWrF3bs2IGQkJAqPBUiMoUktJMHiIjIJD/++CN69OiBmzdvwtPT09LdISIrxJEwIiIiIgtgEEZERERkAZyOJCIiIrIAjoQRERERWQCDMCIiIiILYBBGREREZAEMwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVnA/wdp/T+CYcUtRwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -990,7 +4079,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYbUlEQVR4nO3deXgTdeI/8HeSHpTSpjb0tNCWtoIgIlREYAUEpCDU5QeuKKIgxYJLRcTlWr4ieHHJ7QVuOWTFk+oKLC6oiAIVlYLYFRDYFiyUK7VpodJCMr8/YkLTNmmSJpmZzPv1PDwlk0n6yTSZeedzqgRBEEBERESkAGqxC0BERETkKww+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERBK0bt06qFQqFBcXi10UIr/C4EOkUN9//z1ycnLQoUMHhIaGonXr1njggQfwyy+/1Nu3T58+UKlUUKlUUKvVCA8PR9u2bfHII49gx44dLv3ezZs3o3fv3oiOjkbz5s3Rpk0bPPDAA/jss8889dLqefnll/HJJ5/U2753717MmTMH5eXlXvvddc2ZM8d6LFUqFZo3b4727dvj//7v/1BRUeGR37Fx40YsW7bMI89F5G8YfIgUasGCBdi0aRP69euH5cuXIzs7G19//TW6dOmCwsLCevsnJCRgw4YNePvtt7Fo0SLcd9992Lt3LwYMGIARI0bg6tWrjf7OV155Bffddx9UKhVmzpyJpUuXYvjw4Th27Bjee+89b7xMAI6Dz9y5c30afCzeeOMNbNiwAUuWLEG7du3w0ksvYeDAgfDE8okMPkT2BYhdACISx5QpU7Bx40YEBQVZt40YMQIdO3bE/Pnz8c9//tNmf61Wi1GjRtlsmz9/PiZNmoTXX38dSUlJWLBggd3fd+3aNbzwwgu45557sH379nr3nz9/vomvSDqqqqrQvHlzh/vcf//9aNmyJQBgwoQJGD58OPLy8vDtt9+ie/fuvigmkSKxxodIoXr06GETegAgLS0NHTp0wOHDh516Do1GgxUrVqB9+/Z49dVXYTAY7O578eJFVFRUoGfPng3eHx0dbXP7ypUrmDNnDm666SY0a9YMcXFxGDZsGE6cOGHd55VXXkGPHj2g0+kQEhKC9PR0fPTRRzbPo1KpcPnyZaxfv97avDRmzBjMmTMHU6dOBQAkJydb76vdp+af//wn0tPTERISgsjISDz44IP49ddfbZ6/T58+uOWWW7B//3706tULzZs3x9///nenjl9tffv2BQAUFRU53O/1119Hhw4dEBwcjPj4eEycONGmxqpPnz7YunUrTp48aX1NSUlJLpeHyF+xxoeIrARBwLlz59ChQwenH6PRaPDQQw/h2Wefxe7duzF48OAG94uOjkZISAg2b96MJ598EpGRkXaf02g0YsiQIfjiiy/w4IMP4qmnnkJlZSV27NiBwsJCpKSkAACWL1+O++67Dw8//DBqamrw3nvv4S9/+Qu2bNliLceGDRswbtw43HHHHcjOzgYApKSkIDQ0FL/88gveffddLF261Fr7EhUVBQB46aWX8Oyzz+KBBx7AuHHjcOHCBaxcuRK9evXCgQMHEBERYS2vXq/HoEGD8OCDD2LUqFGIiYlx+vhZWAKdTqezu8+cOXMwd+5c9O/fH0888QSOHj2KN954A99//z327NmDwMBAzJo1CwaDASUlJVi6dCkAoEWLFi6Xh8hvCUREf9iwYYMAQMjNzbXZ3rt3b6FDhw52H/fxxx8LAITly5c7fP7Zs2cLAITQ0FBh0KBBwksvvSTs37+/3n5r1qwRAAhLliypd5/JZLL+v6qqyua+mpoa4ZZbbhH69u1rsz00NFQYPXp0vedatGiRAEAoKiqy2V5cXCxoNBrhpZdestn+008/CQEBATbbe/fuLQAQ3nzzTbuvu7bnnntOACAcPXpUuHDhglBUVCSsWrVKCA4OFmJiYoTLly8LgiAIa9eutSnb+fPnhaCgIGHAgAGC0Wi0Pt+rr74qABDWrFlj3TZ48GAhMTHRqfIQKQ2buogIAHDkyBFMnDgR3bt3x+jRo116rKVGobKy0uF+c+fOxcaNG9G5c2f85z//waxZs5Ceno4uXbrYNK9t2rQJLVu2xJNPPlnvOVQqlfX/ISEh1v//9ttvMBgMuOuuu1BQUOBS+evKy8uDyWTCAw88gIsXL1r/xcbGIi0tDTt37rTZPzg4GI899phLv6Nt27aIiopCcnIyxo8fj9TUVGzdutVu36DPP/8cNTU1mDx5MtTq66fuxx9/HOHh4di6davrL5RIgdjURUQ4e/YsBg8eDK1Wi48++ggajcalx1+6dAkAEBYW1ui+Dz30EB566CFUVFRg3759WLduHTZu3IjMzEwUFhaiWbNmOHHiBNq2bYuAAMenqC1btuDFF1/EwYMHUV1dbd1eOxy549ixYxAEAWlpaQ3eHxgYaHP7xhtvrNdfqjGbNm1CeHg4AgMDkZCQYG2+s+fkyZMAzIGptqCgILRp08Z6PxE5xuBDpHAGgwGDBg1CeXk5vvnmG8THx7v8HJbh76mpqU4/Jjw8HPfccw/uueceBAYGYv369di3bx969+7t1OO/+eYb3HfffejVqxdef/11xMXFITAwEGvXrsXGjRtdfg21mUwmqFQqbNu2rcEQWLfPTO2aJ2f16tXL2q+IiHyHwYdIwa5cuYLMzEz88ssv+Pzzz9G+fXuXn8NoNGLjxo1o3rw5/vSnP7lVjttvvx3r169HaWkpAHPn43379uHq1av1alcsNm3ahGbNmuE///kPgoODrdvXrl1bb197NUD2tqekpEAQBCQnJ+Omm25y9eV4RWJiIgDg6NGjaNOmjXV7TU0NioqK0L9/f+u2ptZ4Efkz9vEhUiij0YgRI0YgPz8fH374oVtzxxiNRkyaNAmHDx/GpEmTEB4ebnffqqoq5OfnN3jftm3bAFxvxhk+fDguXryIV199td6+wh8T/Gk0GqhUKhiNRut9xcXFDU5UGBoa2uAkhaGhoQBQ775hw4ZBo9Fg7ty59SYUFAQBer2+4RfpRf3790dQUBBWrFhhU6bc3FwYDAab0XShoaEOpxYgUjLW+BAp1DPPPINPP/0UmZmZKCsrqzdhYd3JCg0Gg3WfqqoqHD9+HHl5eThx4gQefPBBvPDCCw5/X1VVFXr06IE777wTAwcORKtWrVBeXo5PPvkE33zzDYYOHYrOnTsDAB599FG8/fbbmDJlCr777jvcdddduHz5Mj7//HP89a9/xZ///GcMHjwYS5YswcCBAzFy5EicP38er732GlJTU3Ho0CGb352eno7PP/8cS5YsQXx8PJKTk9GtWzekp6cDAGbNmoUHH3wQgYGByMzMREpKCl588UXMnDkTxcXFGDp0KMLCwlBUVISPP/4Y2dnZ+Nvf/tak4++qqKgozJw5E3PnzsXAgQNx33334ejRo3j99dfRtWtXm79Xeno63n//fUyZMgVdu3ZFixYtkJmZ6dPyEkmWmEPKiEg8lmHY9v452rdFixZCWlqaMGrUKGH79u1O/b6rV68Kb731ljB06FAhMTFRCA4OFpo3by507txZWLRokVBdXW2zf1VVlTBr1iwhOTlZCAwMFGJjY4X7779fOHHihHWf3NxcIS0tTQgODhbatWsnrF271jpcvLYjR44IvXr1EkJCQgQANkPbX3jhBeHGG28U1Gp1vaHtmzZtEv70pz8JoaGhQmhoqNCuXTth4sSJwtGjR22OjaOh/nVZynfhwgWH+9Udzm7x6quvCu3atRMCAwOFmJgY4YknnhB+++03m30uXbokjBw5UoiIiBAAcGg7US0qQfDAwjBEREREMsA+PkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGAw+REREpBicwLAOk8mEM2fOICwsjNO+ExERyYQgCKisrER8fDzUavv1Ogw+dZw5cwatWrUSuxhERETkhl9//RUJCQl272fwqSMsLAyA+cA5WneIiIiIpKOiogKtWrWyXsftYfCpw9K8FR4ezuBDREQkM411U2HnZiIiIlIMBh8iIiJSDAYfIiIiUgz28SEiIvIAo9GIq1evil0MvxUYGAiNRtPk55FN8Jk3bx7y8vJw5MgRhISEoEePHliwYAHatm1r3efKlSt45pln8N5776G6uhoZGRl4/fXXERMTI2LJiYjInwmCgLNnz6K8vFzsovi9iIgIxMbGNmmePdkEn127dmHixIno2rUrrl27hr///e8YMGAAfv75Z4SGhgIAnn76aWzduhUffvghtFotcnJyMGzYMOzZs0fk0hMRkb+yhJ7o6Gg0b96ck996gSAIqKqqwvnz5wEAcXFxbj+XShAEwVMF86ULFy4gOjoau3btQq9evWAwGBAVFYWNGzfi/vvvBwAcOXIEN998M/Lz83HnnXc69bwVFRXQarUwGAwczk5ERA4ZjUb88ssviI6Ohk6nE7s4fk+v1+P8+fO46aab6jV7OXv9lm3nZoPBAACIjIwEAOzfvx9Xr15F//79rfu0a9cOrVu3Rn5+vihlJCIi/2bp09O8eXORS6IMluPclL5Usmnqqs1kMmHy5Mno2bMnbrnlFgDmqsagoCBERETY7BsTE4OzZ8/afa7q6mpUV1dbb1dUVHilzERE5L/YvOUbnjjOsgw+EydORGFhIXbv3t3k55o3bx7mzp3rgVLJn16vR01Njd37g4KCWJVLRESyJrvgk5OTgy1btuDrr7+2WYQsNjYWNTU1KC8vt6n1OXfuHGJjY+0+38yZMzFlyhTrbctaH0qj1+vx6quvNrpfTk4Oww8REcmWbPr4CIKAnJwcfPzxx/jyyy+RnJxsc396ejoCAwPxxRdfWLcdPXoUp06dQvfu3e0+b3BwsHVdLiWvz+Wopsed/YiISNrGjBkDlUoFlUqFwMBAxMTE4J577sGaNWtgMpmcfp5169bV62YiZbKp8Zk4cSI2btyIf/3rXwgLC7P229FqtQgJCYFWq0VWVhamTJmCyMhIhIeH48knn0T37t2dHtFFRETkS2J3MRg4cCDWrl0Lo9GIc+fO4bPPPsNTTz2Fjz76CJ9++ikCAmQTE5wmm1f0xhtvAAD69Oljs33t2rUYM2YMAGDp0qVQq9UYPny4zQSGREREUiOFLgbBwcHW7iA33ngjunTpgjvvvBP9+vXDunXrMG7cOCxZsgRr167F//73P0RGRiIzMxMLFy5EixYt8NVXX+Gxxx4DcL3j8XPPPYc5c+Zgw4YNWL58OY4ePYrQ0FD07dsXy5YtQ3R0tFdei7Nk1dTV0D9L6AGAZs2a4bXXXkNZWRkuX76MvLw8h/17iIiIxCLVLgZ9+/ZFp06dkJeXBwBQq9VYsWIF/vvf/2L9+vX48ssvMW3aNABAjx49sGzZMoSHh6O0tBSlpaX429/+BsA85PyFF17Ajz/+iE8++QTFxcU212yxyKbGh4iIiHyjXbt2OHToEABg8uTJ1u1JSUl48cUXMWHCBLz++usICgqCVquFSqWqV9EwduxY6//btGmDFStWoGvXrrh06RJatGjhk9fRENnU+JBvGQxhKCpKgsEQJnZRiIjIxwRBsDZdff755+jXrx9uvPFGhIWF4ZFHHoFer0dVVZXD59i/fz8yMzPRunVrhIWFoXfv3gCAU6dOeb38jjD4UD0FBZ2xbNlkrF8/GsuWTUZBQWexi0RERD50+PBhJCcno7i4GEOGDMGtt96KTZs2Yf/+/XjttdcAOG6Cu3z5MjIyMhAeHo533nkH33//PT7++ONGH+cLbOoiAOaRA4C5pmfz5iEQBHMmFgQ1Nm8egpSU49BqK637ERGRf/ryyy/x008/4emnn8b+/fthMpmwePFiqNXm68IHH3xgs39QUBCMRqPNtiNHjkCv12P+/PnWufF++OEH37yARrDGhwAAOp0OOTk56NFjtDX0WAiCGj17jubkhUREfqa6uhpnz57F6dOnUVBQgJdffhl//vOfMWTIEDz66KNITU3F1atXsXLlSvzvf//Dhg0b8Oabb9o8R1JSEi5duoQvvvgCFy9eRFVVFVq3bo2goCDr4z799FO88MILIr1KWww+ZKXT6XDnnTqo67wrNBqgWzcdQw8RkZ/57LPPEBcXh6SkJAwcOBA7d+7EihUr8K9//QsajQadOnXCkiVLsGDBAtxyyy145513MG/ePJvn6NGjByZMmIARI0YgKioKCxcuRFRUFNatW4cPP/wQ7du3x/z58/HKK6+I9CptqQRBEMQuhJQ4u6y9nDU2YdYHH4ThmWdawGg0h55Vq4CsLB8WkIhIJq5cuYKioiIkJyejWbNmLj1WCvP4yI2j4+3s9Zt9fBTG2Q/agQOToNffgNRUoNaSaERE5CGWLgZcHNq3GHwUxtne9C1bXkHHjl4uDBGRwjHU+B77+BAREZFiMPgoHCcqJCIiJWFTl4IVFHS2ztmjUpmQmbkFXbocELtYREREXsMaH4WyN1Eha36IiMifMfgoVFmZrsGJCsvKIkUqERERkfexqUuhIiP1UKlMNuFHpTIhMrJMxFL5RmPzGDU0fNSdxxARkfQw+MiIJy6+lrW2tNpKZGZuqdfHR6uttNnP37gzYRgnGSMi8h8MPjJR9+JrMIShrEyHyEi9NawAjV98606YNXv2BRQXByAp6Rri47sC6OrXtRfOzmNUez93HkNEpHRfffUV7r77bvz222+IiIhw6jFJSUmYPHkyJk+e7LVysY+PTNS+qBYUdMayZZOxfv1oLFs2GQUFnRvczx6dToe4uDjExcUhPT0Gw4frkJ4eY93mr6GHiIiuGzNmDFQqFSZMmFDvvokTJ0KlUmHMmDG+L5iXMfjIDEdjeZY78xhx7iMi8hetWrXCe++9h99//9267cqVK9i4cSNat24tYsm8h8FHZjgay3Mc1Zx58jFERFLVpUsXtGrVCnl5edZteXl5aN26NTp3vn5+q66uxqRJkxAdHY1mzZrhT3/6E77//nub5/r3v/+Nm266CSEhIbj77rtRXFxc7/ft3r0bd911F0JCQtCqVStMmjQJly9f9trrawiDj8xYRmPVppTRWJ7kTs0Za9uIyJtKSoCdO80/fWns2LFYu3at9faaNWvw2GOP2ewzbdo0bNq0CevXr0dBQQFSU1ORkZGBsjLztefXX3/FsGHDkJmZiYMHD2LcuHGYMWOGzXOcOHECAwcOxPDhw3Ho0CG8//772L17N3Jycrz/Imth8JEZy2gsS/ipOxqLnONOzRlr24jIW3JzgcREoG9f88/cXN/97lGjRmH37t04efIkTp48iT179mDUqFHW+y9fvow33ngDixYtwqBBg9C+fXu89dZbCAkJQe4fBX3jjTeQkpKCxYsXo23btnj44Yfr9Q+aN28eHn74YUyePBlpaWno0aMHVqxYgbfffhtXrlzx2evlqC4Z6tLlAFJSjqOsLBKRkWUMPW5wZx4jJc99RETeU1ICZGcDpj8q800mYPx4ICMDSEjw/u+PiorC4MGDsW7dOgiCgMGDB6Nly5bW+0+cOIGrV6+iZ8+e1m2BgYG44447cPjwYQDA4cOH0a1bN5vn7d69u83tH3/8EYcOHcI777xj3SYIAkwmE4qKinDzzTd74+XVw+AjU1ptJQOPG9yZx0jpcx8ROYsTfbrn2LHrocfCaASOH/dN8AHMzV2WJqfXXnvNK7/j0qVLGD9+PCZNmlTvPl92pGbwkQlnL6q+uPjWPrmdOaNGUVEAkpOvIT7eZC2DVE9u7sxj5E9zH/HCpFze/ttzok/3paUBarVt+NFogNRU35Vh4MCBqKmpgUqlQkZGhs19KSkpCAoKwp49e5CYmAgAuHr1Kr7//nvrfDs333wzPv30U5vHffvttza3u3Tpgp9//hmpvnxhDWDwkYm6F9+G+OKiVfvk5mh1d1+f3Fw5qdcuV1wckJ7e+PO78xip4YVJuXzxt+dEn+5LSABWrzY3bxmN5tCzapXvansAQKPRWJutNBqNzX2hoaF44oknMHXqVERGRqJ169ZYuHAhqqqqkJWVBQCYMGECFi9ejKlTp2LcuHHYv38/1q1bZ/M806dPx5133omcnByMGzcOoaGh+Pnnn7Fjxw6n3p+ewuAjI1K4GFlOWvZGOKWkHIdWW+nTk5unZrX2d7wwyY+namn4t5e+rCxzn57jx801Pb4MPRbh4eF275s/fz5MJhMeeeQRVFZW4vbbb8d//vMf3HDDDQDMTVWbNm3C008/jZUrV+KOO+7Ayy+/jLFjx1qf49Zbb8WuXbswa9Ys3HXXXRAEASkpKRgxYoTXX1ttDD7kFkcjnHzd96jurNb2aqGkeFJn0xPZwxo65UlI8G3gqVsjU9cnn3xi/X+zZs2wYsUKrFixwu7+Q4YMwZAhQ2y21R0W37VrV2zfvt3uczQ094+nMfiQW6Q4wqmxWiipcXfBVE8FJXs1YyQNrKXxDn7ZIAYfcotWW4n+/T/H55/3b3CEkxikVAvljLonX3tBxLKfJ2sAHNWMkbgsF+aLFy+KXRS/w1o0Ahh8yE0FBZ2toQcwoX//z0W/cEqxFspZzgQRV4OSPXKrGVMSZy/MTeWL2j4p1iiyFo0ABh9yUXl5eb0LJ6DG55/3xy23FIp6gmtsnh2pcieINKXGRm41Y0riiwuuL2r7WKNIUsbgQ07T6/X44IMPUFaWJNkLpxxntXY1iDS1xkbONWNK5okaFG/W9lnmEGvsd/jrRJ+CIIhdBEXwxHFm8CGnWb6NOnPhFPPkZm9W68LCcuzZEyS5yRZdDSLOBqW6nTgNBgMAzkAtR02tQbH8TRt77zTlb2+Za2znTmDp0vq/o2fP0ejTRxrTclh4IkwGBgYCAKqqqhASEuLJ4lEDqqqqAFw/7u5g8CGXNXbhHDFihE9Pbs6crAsKOmPu3LaSmGyxLleb6JwJSo31FbHUjHXqNBy33NJMdjNQK4XBEIZff23V5FoaSygpLr6GDRsEmEwq630ajYAnnxyEpKSAJv/tdTod7ryz4VmIu3XTQUpvLU81x2k0GkREROD8+fMAgObNm0OlUjXyKHKVIAioqqrC+fPnERERUW+SRVcw+JBbHDUpabVan5bF3qzWFy9eRF5enqQmW7THlSY6Z4KSMx2htdpKDBgQhLi4GO+8KGqS2hfmutyppdHpzMGj/gzBKqSne+49IIVZiBvj6Sa/2NhYALCGH/KeiIgI6/F2F4MPuU1KC6U6+qbqTNNQSYl5ocC0NN+doOtesOwdz4YubK4EJX/raKqEeVjqDyCwpVa7X0vjixmCpTALsSOe7uCvUqkQFxeH6OhoXL161VPFpDoCAwObVNNjweBDfq+xpqHVq414/nlz9b9aLWDhQgNGjvzd6xdQV9dfcyUoObu0iNwoZR6Whi7MFiqVCQsXVjSplsYXMwT7ehZiZ1g+Q42dE9zt66TRaDxyYSbvYvAhv+eoachgCMOyZfEQBHObvMmkwtSp4Th9eg202kqvX0BdeW5XglJpaSkA/xu67qm5jKTK0YUZMOH++z9Cq1YlGDNmtDgFlLnan6Ebb6zA9OlaGI0qaDQCFiyowMiRD/lFjSE5xuBDimCvaaixYCC1C6irJ2Q5Dl131JRVezZjf2vCA5y5MN/FC3MTWY7dM88AI0ZYmuNUSEiIABAhZtHIRxh8yGnOVv9KdTh0Q01DcgwGrpDbpI7ONmX5WxNebbww+44Um+PI+xh8yGmu9kmRA7kFA3fIaVJHZ5uy/K0Jzx5emIk8j8GHXCKnUONszZOcgoGzmjJiTCocNWX5e00dEXkPgw/5LUc1VJY5fiykNDTfE+ReO9dYU5YSauqIyDsYfMivSfXC7gtyfu3ONGX5Y00dEXkfgw8R2ag9qurMGTWKigJ8vr6Zs01ZcmzCIyJxMfiQIsl9hJq31B5V5aiPjbfnN2qsKWvYsGFo2bJlg4+VchMeEYmPwYcUSe59YLzF2RmffTG/kaOmrJYtWyIuLs7rZSAi/8PgQ04TYz0rb1JaqHGFWMPF/WE0GhFJG4MPOSU3F8jOBkwmQK02r76clSV2qchbxBouzpo4oob52xdPMTH4UKNKSq6HHsD8c/x48+rL/AD6JzGHizPUENniF0/PYvChRh07dj30WBiN5qn0LcGH30b8D4eLE4lLr9ejuPgasrOjYTJZFlIGxo8XcNtt55GUFMAvCm5QN74LKV1amvlbRm0aDZCaav5/bi6QmAj07Wv+mZvr+zKSd2i1lUhOPsnQQ+RjlhGWK1d+Zg09FkajCitXbsOrr74KvV4vUgnli8GHHNLr9dBoSrFwYTk0GgEA/lgpuhwaTSl++um3BpvBSkpELDQRkcxZ+rlZ+tvVVru/nS9GWPobNnWRXXVXyp40Kcza7HHpUiVWrwaKipJgMo22eVzdZjCSD85vRCQtXJ7F8xh8yK663yQaGlocGamHWi3YVMXWbgYjeeGoKiLpYX87z2Lw8TF/6wSs1VZi9uzTeOGFG2E0qv5oBjNAo/kdej0vkHLEvxmR9PjbQspiYvDxIf8dkpjbYDMY4P2lDYiIiFzBzs0+Ym8uHH/pBGxv9A873hERkZQw+PiIo7lwiIiIyDcYfHyksblwiIjIO0pKgJ075VXDzhGW3sM+Pj6SkGDu0zN+vLmmR6MBVq3yjw7ORHX5Wyd+ki+59q3kCEvvYfDxAb1ej5qaGtx7L7BvnxrFxQFISrqG+HgTSkul++blNwlyh1wvNORf/GG5B6mXT64YfLys7iSAFoWFtrelOPrJ0TeOixcvIi8vz+XnZE2Af+OCtiQFlvNuwxOsmpd7SE4+KcnzLnkfg4+XOTuqSaqjnzx5UmBNgH/T6/X49lvAZLJ9zxiNwL59eoSE8Bss+Ubd5R4E4XoHS6Us98AvmfaxczO5xdWOd/4+nF/pLN+w9+5d3+C6Qnv2rOeCil4kx867vmBZ7sHynpTLcg+u/j3r7s+Fox1jjQ+5xdWOd46G8/PbiPxZ3geNrSvkz9+wxcKaVMfkttyDq3/PuvvPnw/MmMHmZkcYfMhtrjRbWIbz1w4/HM7vn+R2oZGrxjrvBgUF4eLFG9jUAfks9+BqH7mG9q8deiz4JdOWXzZ1vfbaa0hKSkKzZs3QrVs3fPfdd2IXSfEsw/k1GvNtDuf3b/Zm8ibPsDQtrlz5mc0CwYC58+6kScfRqZOWTR0y4+pEtw3tb6n5qY1fMm35XfB5//33MWXKFDz33HMoKChAp06dkJGRgfPnz4tdNMXS6/UoLS3FvfeWYt++c/joIz327TuHe+8tRWlpKft9ELmobuddWybk53e3dui11ALt339Ocp819k2y5epEtw3vL+DvfzdAoxGstxcsKIdGw3Othd81dS1ZsgSPP/44HnvsMQDAm2++ia1bt2LNmjWYMWOGyKVTHjkP5yeSuob6VHXvno+9e3va7CfFIdzsm2RLr9dDo6nBwoUhmD5dC6NR9UdoMUCj+R16ve18bw3tr1KZMHjwFgQEHODC0Q74VfCpqanB/v37MXPmTOs2tVqN/v37Iz8/v8HHVFdXo7q62nq7oqLCo2VS+rTjch/OTyR1dftUAbCp8QGkN4Tb2/M9ye28W/cLYmOhxdH+luZle/2apPD3F5tfBZ+LFy/CaDQiJibGZntMTAyOHDnS4GPmzZuHuXPneq1MnHaciLyt7kXO0cg6sbk635M789HI7bxbt5yNhRZn96eG+VXwccfMmTMxZcoU6+2Kigq0atXKo79DKh8uIm/x5DdsTrzWdFIdWWepqTAYwqBSTa5XK7Vnz3oUFlZaazaa0hzG8y7Z41fBp2XLltBoNDh37pzN9nPnziE2NrbBxwQHByM4ONgXxSNyiqcu/L4MEJ76hs1+H54jxVoAV+Z74vIn5C1+FXyCgoKQnp6OL774AkOHDgUAmEwmfPHFF8jJyRG3cERO8NSFX4wA0dRv2LzQKYujWimDwYDCwiAuf0Je4XfD2adMmYK33noL69evx+HDh/HEE0/g8uXL1lFeRFLlqWU9pLo8iKOhy+Z+H/oG5zDZt0/PYbh1SKVTblPZm+/p/fff5/In5DV+VeMDACNGjMCFCxcwe/ZsnD17Frfddhs+++yzeh2eiaTGU8t6SHF5EEc1UK72+6CGmxYvXryIvLw8EUvlWWIufyKFfmYGQxjKynSIjNRLrslS7vwu+ADmIX9s2pIGuQ0rFYter0d4+DWo1dE2M/FqNALCws5Drw9w6qLvqefxpMaasLjOl3vq/h398bMmRidtKfQzKyjoXO9z0KXLAY88t5z+/t7il8GHpENuw0rFUHtOjiFDbE94gwdvwZYt5hNeYzUennoeT3Jm6HJtUh2NJAfe+KxJoebDl520xepnVjuMGAxh1s8uAAiCGps3D0FKynHrfs6GlwceeAARERE2v0fJ51oLBh/yOn7QHKt9oXJ04W+sxsNTz+MpzjZhjRgxwuZxUhyNJBee/KxJoebD18RqJq4dWvfsCcLSpbbdbwVBjd69s6DTaevtbw9Djn0MPkQS46kLv9gBwl4TFmBeVsHi6tWrIpWQ7PFWzYfUm1ksa1/VDj++WuDTElLuvLPhMqSnaxvcn1zH4ENEXmepgdq3rxvy87tj796eyM/vjszMLRg2TOzSUW2uzqzsCmdqKsrLy/HBBx+49fxN4epaWd6SkGCuXRs/3nzMNRpg1SpO6eBJDD5E5DO115Cy9F3IyTkqcqnIwhcj7KRYU+HqWlneLEdNTQ3uvRfYt0+N4uIAJCVdQ3y8CaWlbL7yFAYfIvKJsjKdzYUUMIefn3/maC2pkMIIOzFGp7m6VpY31A1fFoWFtrc5rUPTMfiQlRRGcJD/iozUQ6Uy1atFOHnyC2i1Dh74B6n3D/E3Yo2wk3PH3aacQ50NVZzWoekYfAiAMkdwkG81VoswbNgwtGzZssHHSvVC5+/E6iAvx781z6HyweBDXCNJZJ6q2pfDBHaOahFatmyJuLg40cpG5C6eQ+WFwYckucSBkniqal9qTQT2ApbYw+yJPI3nUHlh8CFR564gM0+EEXP/Al2j/Qt81ZfLEsTOnDnjV2tIEdXFc6i8+N3q7OQ6y7wRGo35NueNkJ/cXCAxEejb1/wzN7dp+3mKTqez22+HyB+Y5/8pxcKF5dBoBAD4Y/6fcmg0pVxFXoJY46NwnDdC/pztX8B+CNQYOfQT8wZ3X7dU5v8h1zD4KBjnjfAPzvYvYD8EaozU+on5iruv25Pz/yg1dIqBwUfBOG+E/On1eoSHX4NaHQ2TSWXdrtEICAs7D70+ADqdzun9vIEndHnxt1DjLLFft1JDpxgYfIhkqnaN3ZAhnW3mxxk8eAu2bDkAABg1ahT++c9/Nrqft2r2eEIncg4/A77B4EMkU7WDhKP5caqqqpzaz5s1ezyhE5FUMPgQ+Qln58fhPDpEpGQczk4kUSUlwM6d5p9ERHIj1XMYgw+RBPl6vh0iIk+S8jmMwYdIYuzNtyO1b01ESscRiw2T+jmMfXwUjB9a6dHr9fj2W8Bksu0MbDQC+/bpERLCjsJEUsERiw2T+pxhDD4Kxg+td7m6JpZleLrBEAaVajIE4XqFrEplwp4961FYWMkJJYkkhJ/F+qS+dhmbuhROp9MhLi7O7j9+qN3jTvu2JYBqtZXIzNwClcp81lCpTMjM3GIdiWXZz9mauObNmzu1H2v2iMgTpL7+o0oQBEHsQkhJRUUFtFotDAYDwsPDxS4OyVBJiTns1P22U1zs+INfWlqK1ZbFfQAYDGENzreTnZ2NuLg4ANfXWrPHUmPn7H7kOa7W+BH5m5ISc/NWaqpvPgPOXr/Z1EXkQZ7so+PMfDvOPhdDjW/l5l7v3KlWm7/9ZmWJXSpqCAOq9yQkSPOYsqmL/J6n5pJo7HksfXT27l1vbaaysPTRefXVV6HX65tWEJI0qY9ooeukPOSavIfBh/yap05szjyPq310yP+Ya/z0DY5o2bdPz9ArIQyo3qHX61FaWmr3nxQ+A2zqIr9l78SWkeFa9as7z+NoTSzyTxyVJy9SH3ItR7UXTnZE7M8Aa3zIbzk6sTmrKd/gtdpKJCefZOiRIXeaR1njJx96vR7h4eegVtuO7dFoBISFnZNErYQcOfveFvszwBof8kvmE9s1qNXRMJlU1u3mE9t56PUBjX7j8PU3eE4oKQ2e6JjMGj/pql0rMWRIZ2zePASCoIZKZcLgwVuwZcsBAOLXSpD3MPiQ3/HUia3uN/jaz+ONb/CcUFJcer0excXXkJ19PSybmzUF3HbbeSQlNR6Wa3NmVB75Xu3Pl6OAKnatBHkPgw/5HW+c2Hz1DZ6hRhyWsFxUlASTabTNfUajCitXbkNy8knWAvghBlTlYfAhv+epExtPkP7LEoIjI/VQqUz1mjUjI8ts9iMi+WLnZiIPYR8dz/DUvEvuaKxjMhHJH2t8iDyEfXSaTgozHrNjMpF/Y/Ah8iCGGvd4umNxU7nTrMkaP5IaXy/HIZfPAIMPEYnKXzoWs8aPpESM2lO5fAYYfIjskMu3F7nzp47FYp/QqXFK+Fx7atZ6d8jhM8DgQ37HUyc2uXx78ReNzZdE5AlK+FxzOQ7HGHzI73jyxCbnk58cidWxWAm1AHSdv3+u09LMzVu1w49GA6SmilcmKWHwIb/k7yc2fybGfElKqAUg5UhIMPfpGT/eXNOj0QCrVrG2x4LBh4gIDMvkH/R6PWpqanDvvcC+fWoUFwcgKeka4uNNKC1lgAcYfIiIiPxC7XUKaysstL0t9RGS3saZm4mIiPyAsyMf5TBC0psYfIhIVOxYTES+xKYuIhKVNzoWW/o5AMCZM2oUFQUgOdncz8Gd5yMi/8HgQ0Ru89SU+J4MIbX7ORQUdK43L1CXLgcAsJ8DkVKxqYuIXKLX61FaWorFi8uRmCigb18gMVHA4sXlKC0thV6vF7V8lpoegyHMGnoAQBDU2Lx5CAyGMJv9iEhZWOPjRbWr2xvC6naSG0ttisEQhmXLJkMQLAuKqjB1ajhOn14DrbbS67Upjj5bFy9eBACUlelslr8AzOGnrCySs0ETKRiDj5fYG1ZYF6vbyZO83bfF8tyNhQpv1qbU/WwZDGEoK9MhMlJvE2gaW/uLSCnsfUaUisHHSziskHzNl31bxAwVtT8zjl4n1/4ipWlo5GNDnxGlj5Bk8CE2yfmJxvq2pKQc91htjBRCRWOvExBv7S8iMdQdIXnmjBrPPx9tbZIWBDW2bs3E77+rxCym6Bh8FM7ZZgM2ycmHr/q2iB0qnH2dYqz9RSSW2ufpI0caWqVdpfhV2hl8fESqbazONhuwSU4+fNkMJWaoYB8eIse4SnvDOJzdBwoKOmPZsslYv340li2bjIKCzmIXqZ7Ghv6SfFiaoVQq89nOX/u2NPV1Kr2fA/k/yyrtGo35NldpN2ONj5c50w9BCjj017+I3QzlK45e57Bhw9CyZcsGH8d+a+TvuEq7fQw+XiaXQMFmA//jjWYoKa6rZe91tmzZEnFxcT4rB5FUcJV2xxh8vMRy4m8sUEilur2xUTqWSeEslPxtQcm8sa6Wq6QYvoikhNOpOMbg4yW1LxA33liB6dO1MBpV0GgELFhQgZEjH5JceHDUbJCXl1dvf6V+W5AqXwUCsf/mUghfRCRfTgefiooKp580PDzcrcL4G8uJ95lngBEjgOPHgdRUFRISIgBEiFk0u1xpHlHqtwWpEiMQiDUHFEMNyZWnFvYl9zkdfCIiIqBSOZ70SBAEqFQqGI3GJhfM3yQkSPNN7sy3f6kOxaf6fBkIOAcUkWtyc4HsbPPwcrXaPOIqK0vsUimP08Fn586d3iwHiaShWoKLFy9am7Ycze1DysY5oIicV1JyPfQA5p/jxwMZGdL8UuzPnA4+vXv39mY5SET2vo3LZSg+iYvvEyLH9Ho9vv0WMJlsz7VGI7Bvnx4hIWy+9SW3OzeXl5cjNzcXhw8fBgB06NABY8eOhVar9VjhSFxyGYpP4uL7hMg+S5OwwRAGlWpyvRG+n322CYWFpWwS9iG3Zm7+4YcfkJKSgqVLl6KsrAxlZWVYsmQJUlJSUFBQ4OkykkgsQ/Fr49w+VBffJ0T2WZp66840DggQBDVyc8ehoKCzR5uEpTjlQ0kJsHOn+afY3Krxefrpp3HffffhrbfeQkCA+SmuXbuGcePGYfLkyfj66689WkgShxRW4Cbp4/uEyDlduhxAdPRZ/OMf42Cpd7A0Dc+efQGemm9TalM+SK1Tt1vB54cffrAJPQAQEBCAadOm4fbbb/dY4SyKi4vxwgsv4Msvv8TZs2cRHx+PUaNGYdasWTaJ9dChQ5g4cSK+//57REVF4cknn8S0adM8Xh5/V/uYOprbhxPEkYVSlsiQA7GmGCDnXL0ajLqNLYKgxo8/XkZSkt5jfxup/I2l2KnbreATHh6OU6dOoV27djbbf/31V4SFeX5RyyNHjsBkMmHVqlVITU1FYWEhHn/8cVy+fBmvvPIKAPM8QwMGDED//v3x5ptv4qeffsLYsWMRERGB7Oxsj5fJn0nt2wLJg5grtZOZvaUK6mJ/Es9yZW4ee7P5FxZ+gl9/rfS7v82xY7arwwPmTt3Hj8ss+IwYMQJZWVl45ZVX0KNHDwDAnj17MHXqVDz00EMeLSAADBw4EAMHDrTebtOmDY4ePYo33njDGnzeeecd1NTUYM2aNQgKCkKHDh1w8OBBLFmyhMHHDf70wSPvkGI/AqWr+2XF3txKnGLAc1xtxmmsadjf/jZpaebjUjv8aDRAaqp4ZXIr+LzyyitQqVR49NFHce3aNQBAYGAgnnjiCcyfP9+jBbTHYDAgMjLSejs/Px+9evWyOclmZGRgwYIF+O2333DDDTc0+DzV1dWorq623nZlhmoiJWPNoLRxDi7v0uv1KC6+huzsaJhM5sl9zc04Am677TySkgLsvveV1DSckGAOg+PHm2t6NBpg1Spx5y5yK/gEBQVh+fLlmDdvHk6cOAEASElJQfPmzT1aOHuOHz+OlStXWmt7AODs2bNITk622S8mJsZ6n73gM2/ePMydO9d7hSXyYww10sS5lbzL0qRYVJQEk2m0zX1GoworV25DcvJJ5OTk2H0OJTQNW/qb3XsvsG+fGsXFAUhKuob4eBNKS8X7YtSkRUqbN2+Ojh07uv34GTNmYMGCBQ73OXz4sE1fotOnT2PgwIH4y1/+gscff9zt320xc+ZMTJkyxXq7oqICrVq1avLzEhGJxd/nVqrdgfvMGTWKigKQnGy+oALev6Bafre9/jqWqRxqamoU29Rrr79ZYaHtbTH6NLkVfK5cuYKVK1di586dOH/+PEx1ei45O5fPM888gzFjxjjcp02bNtb/nzlzBnfffTd69OiB1atX2+wXGxuLc+fO2Wyz3I6NjbX7/MHBwQgODnaqvEREctDYBVnOal9QHTXn+eKC6sxUDpYm4TNnzliXAlICZ/sqidGnya3gk5WVhe3bt+P+++/HHXfc0ejipfZERUUhKirKqX1Pnz6Nu+++G+np6Vi7di3UattvM927d8esWbNw9epVBAYGAgB27NiBtm3b2m3mkgIOPSUiT/PnuZUs58vGmvN8dUF1pr+OTqfzu07LcuZW8NmyZQv+/e9/o2fPnp4uT4NOnz6NPn36IDExEa+88gouXLhgvc9SmzNy5EjMnTsXWVlZmD59OgoLC7F8+XIsXbrUJ2V0B4eeEpG3+HsHWik15ymhv44/cSv43HjjjV6Zr8eeHTt24Pjx4zh+/DgS6nQFFwQBAKDVarF9+3ZMnDgR6enpaNmyJWbPni3poexSrgokIvmp25/E3gXZH/qdyK05j9M/SIdbwWfx4sWYPn063nzzTSQmJnq6TPWMGTOm0b5AAHDrrbfim2++8Xp5iIikSElTDMitOU9Jfxupcyv43H777bhy5QratGmD5s2bW/vUWJSVSTNxExH5OyVdOOXWnKekv42UuRV8HnroIZw+fRovv/wyYmJi3O7cTERE1BRi9K9hs5W8uRV89u7di/z8fHTq1MnT5SEiIpI0Nls1Tsrh0K3g065dO/z++++eLgsREZFDUrmgKjnUOEPK4dCt4DN//nw888wzeOmll9CxY8d6fXzCw8M9UjgiIqLapHxBJVtS/Ru4FXwsK6X369fPZrsgCFCpVDAajU0vmQJI5ZsLEZGcSPWCSvLgVvDZuXOnp8uhSHW/uYix5gwREZGSuBV8evfu7dR+f/3rX/H888+jZcuW7vwaRbCEmtxcIDsbMJkAtRpYvRrIyhK5cERERH5G3fgu7vvnP/+JiooKb/4Kv1BScj30AOaf48ebtxMREZHnuFXj4yzLchLk2LFj10OPhdEIHD8O1Fmhg4iIPIALRCuXV4MPOSctzdy8VTv8aDRAaqp4ZSIi8ld1F4g2GMJQVqZDZKTeZjJELhDtnxh8JCAhwdynZ/x4c02PRgOsWsXaHnKM31iJ3FP7c1NQ0Lneel9duhyotx/5DwYficjKAjIyzM1bqakMPeRY3W+s9vAbK5F9BkOYNfQAgCCosXnzEKSkHJf8ul/kPgYfCUlIYOAh5zj7TZTfWInsKyvTWUOPhSCoUVYWyeDjx1we1XXt2jU8//zzKHFiyNGoUaM4izMREUlSZKQeKpXtyBKVyoTIyDKRSkS+4HLwCQgIwKJFi3Dt2rVG933jjTc4hw8REUmSVluJzMwt1vBj6ePD2h7/5lZTV9++fbFr1y4kJSV5uDhERES+06XLAaSkHEdZWSQiI8sYehTAreAzaNAgzJgxAz/99BPS09MRGhpqc/99993nkcIRERF5m1ZbycCjIG4Fn7/+9a8AgCVLltS7j4uUEhGRlHGBaGVzK/iY6k4zTESisjcBm6s4NxApQd0FohvC97r/civ4vP322xgxYgSCg4NtttfU1OC9997Do48+6pHCEVHDan8TdTQBmyvfWDk3ECkJ38PKpRLcWFBLo9GgtLQU0dHRNtv1ej2io6Nl3dRVUVEBrVYLg8HAofgkaXq9HsXF13DHHdEwmVTW7RqNgH37ziMpKcClk3tpaSlWr17d6H7Z2dmIi4tzq8xERN7i7PXbrdXZBUGASqWqt72kpARardadpyQiF+l0OlRUxNiEHgAwGlWorIzhN1oioga41NTVuXNnqFQqqFQq9OvXDwEB1x9uNBpRVFSEgQMHeryQRNQwLnBLROQal4LP0KFDAQAHDx5ERkYGWrRoYb0vKCgISUlJGD58uEcLSET2cYFbIiLXuBR8nnvuOQBAUlISRowYgWbNmnmlUETkPC5wS0TkPLdGdY0ePRqAeRTX+fPn6w1vb926ddNLRkRO4wK3RETOcSv4HDt2DGPHjsXevXtttls6Pct5VBcRERH5L7eCz5gxYxAQEIAtW7YgLi6uwRFeRHKntMn86s75Y29SRM5mS0Ry5tY8PqGhodi/fz/atWvnjTKJivP4EKDcyfwsYW/jxhBMm6aFyaSCWi1g4UIDRo783adhT2nBk4iaxtnrt1s1Pu3bt8fFixfdLhyR1Dm64Lqzn1zodDqUlADTpl0fIm8yqTB9egRGjIiAr3KGUoMnSQNDt39zK/gsWLAA06ZNw8svv4yOHTsiMDDQ5n7WlBDJ17FjtvMCAeah8seP+64DtVKDJ4mPodv/uRV8+vfvDwDo27evTf8edm4mkj9OikhKxtDt/9wKPjt37vR0OYhIIjgpIhH5M7eCT+/evfHNN99g1apVOHHiBD766CPceOON2LBhA5KTkz1dRiLyMblMili7ryH7XZA32BvdqHS1+0GdOaNGUVEAkpOvIT7eXFUs5c+jW8Fn06ZNeOSRR/Dwww/jwIEDqK6uBgAYDAa8/PLL+Pe//+3RQhKR78lhUsS8vDyb2+x3QZ5UUNAZmzcPgSCooVKZkJm5BV26HBC7WKKr3Q/K0TGS6ufRrdXZX3zxRbz55pt46623bDo29+zZEwUFBR4rHBGRK9jvgjzFYAizXtABQBDU2Lx5CAyGMJFLJj7L56yxYyTVz6Nbwefo0aPo1atXve1arRbl5eVNLROR6JydpI+T+RH5p7IynfWCbiEIapSVRYpUIumR6zFyq6krNjYWx48fR1JSks323bt3o02bNp4oF5GodDodcnJyOJeHSBgoSWyRkXqoVCabC7tKZUJkZJmIpZIWuR4jt4LP448/jqeeegpr1qyBSqXCmTNnkJ+fj7/97W949tlnPV1GIlHUDjUlJeb5bdLSpN/vxR/UDZ6FheV4553v2MHUBZyEzz2W0K3VViIzc0u9/iuW9x/DeePHSKrcCj4zZsyAyWRCv379UFVVhV69eiE4OBh/+9vf8OSTT3q6jESiys0FsrPN89qo1eah3llZYpfK/1kuyubjHwuT6WZ2MHUSJ+FzX93QPXv2BRQXByAp6Rri47sC6MrQWEuXLgeQknIcZWWRiIwsk3zoAdwMPiqVCrNmzcLUqVNx/PhxXLp0Ce3bt0eLFi08XT4iUZWUXA89gPnn+PHmod6s+fG+68ffPFGqpfNkSspxWZxgxcJJ+JqmdqiJiwPS00UsjAxotZWy+jy6FXwsgoKC0L59e0+VhUhypLB8g5I1dPwtnSfldKIlIulwa1QXkVJYlm+ojcs3+E5Dx99R50n2uyDyPrmPem1SjQ+Rv+PyDeKqf/wFLFhQgZEjH6q3L/tdUFOxQ7hz5D7qlcGHqBFyWb7BX9kefxUSEiJQUhLBUXbkUewQ7ho5HwMGHyInyGH5Bn9W+/hzlB15AzuEKwf7+BCRbNgbZVdSIm65iEg+GHyISDYcjbKj6+p2KjUYwlBUlFRvnSmpdj4l8iY2dRGRbFhGedUOPxxlV1/tzqcbN4bg+ee1MJlUUKsFLFxowMiRv0u68ymRNzH4EJFscJSd8yOPdDodSkqAadNqNw2qMH16BEaMiAAzj2MGQxjKynRcJsUPMfgQkawoeZSdqyOPOAGnewoKOtdbf4rLpPgPBh8ikh2ljrJzdeQRmwZdZzCEWUMPwGVS/BE7NxMR+SlL06BGY76txKZBZ1k6epeV6ayhx8KyTErt/Ui+WONDROTHlNw06ApLh/Di4mvYsEGwLowLmGcMf/LJQUhKCmCHcD/A4ENE5OeU2jToKnOn8IY60KuQnh4jdvHIQxh8iIiIamEtmX9j8CEiIrf568KerCXzXww+RETkFi7sSXLEUV1ERDLh7IgiX4084sKeJEes8SEikonaS1EAwJkzahQVBSA5+Rri482T9ci1aYnIVxh8iIicJIX+LJbnz829vlK9Wm0eiZSV5dVfTeQXGHyIiJwgpf4sJSXXQw9g/jl+vHkkEjvkEjnGPj5ERE6QUn8WR2twEZFjDD5ERDJjWYOrNq7BReQcBh8iIpmR6hpcBkMYioqSYDCEiVsQIgfYx4eISIakMLtw7WHzBQWdrauaq1QmZGZuQZcuB+rtRyQ22dX4VFdX47bbboNKpcLBgwdt7jt06BDuuusuNGvWDK1atcLChQvFKSQRkQ8kJAB9+ohX02MZXj9kyARs2ZJpXdVcENTYujUTQ4ZM4OSFJDmyCz7Tpk1DfHx8ve0VFRUYMGAAEhMTsX//fixatAhz5szB6tWrRSglEZEy6HQ6VFTE2KxmDgBGowqVlTEMPSQ5smrq2rZtG7Zv345NmzZh27ZtNve98847qKmpwZo1axAUFIQOHTrg4MGDWLJkCbKzs0UqMRGRvDkzd1Famg5qte1IM3a2JqmSTfA5d+4cHn/8cXzyySdo3rx5vfvz8/PRq1cvm7bkjIwMLFiwAL/99htuuOGGBp+3uroa1dXV1tsVFRWeLzwRyZ7UlovwBVfmLlq9Wofx483D6qXS2ZqoIbIIPoIgYMyYMZgwYQJuv/12FBcX19vn7NmzSE5OttkWExNjvc9e8Jk3bx7mzp3r8TITkX+pu1xEQ/xtuQhX5i6SQmdrImeIGnxmzJiBBQsWONzn8OHD2L59OyorKzFz5kyPl2HmzJmYMmWK9XZFRQVatWrl8d9D1FRSWC5B6Wof35IS80SCaWm8yFskJPBYkPSJGnyeeeYZjBkzxuE+bdq0wZdffon8/HwEBwfb3Hf77bfj4Ycfxvr16xEbG4tz587Z3G+5HRsba/f5g4OD6z0vkdRIabkE4jpZRHImavCJiopCVFRUo/utWLECL774ovX2mTNnkJGRgffffx/dunUDAHTv3h2zZs3C1atXERgYCADYsWMH2rZta7eZi0gupLRcgtJxnSzyBNbgikcWfXxat25tc7tFixYAgJSUFCT8caYZOXIk5s6di6ysLEyfPh2FhYVYvnw5li5d6vPyEnlC7RPjxYsXRS4NWThaJ4vBh5zBGlxxySL4OEOr1WL79u2YOHEi0tPT0bJlS8yePZtD2UmWnD0xku9Z1sni0G1yF2twxSXL4JOUlARBEOptv/XWW/HNN9+IUCIiz+IJT7os62Qpcei2wRCGsjIdIiP10GorxS4OkVtkGXyIiMSklKHbXIvLNxgofYvBh4jIDUoYum2Zu6i4+Bqefz4agmBelsKyFtfs2d2QlBTAfihN4ChQknfIbq0uIiLyHa7F5T0GQ5g19ADmQLl58xAYDGEil8y/MfgQyZDBEIaioqR6J0g2OZA3WDp018YO3U1XVqazhh4LQVCjrCxSpBIpA5u6iGSmdtW4Wi1g4UIDRo78nfN+kNcouUO3N0VG6qFSmWzCj0plQmRkmYil8n+s8SGSAUsNT0lJnE3VuMmkwvTpETAa4xh6yKuysoDiYmDnTvNPzlTtPkvNrFZbiczMLVCpzHMjWPr4WDo4swbXO1jjQyRB9kbTACbU/b7CyfPIV5TQodsX6i54O3v2BRQXByAp6Rri47sC6MoaXC9SCQ1NiKNgFRUV0Gq1MBgMCA8PF7s4pGB6vR7Fxddwxx3RdTqWCgCu39ZozN/AeUEiIiVz9vrNGh/yKK4/4zk6nQ6HDtVfHgFQWWcOZl8LIiLXMPiQx3D9Gc+ztzxCfj5w+bJ/T55HROQN7NxMHsP1ZzzPMppGozHfttTwdO0K9OnD0ENE5CrW+BBJnFKWRyAi8gUGH/Iarj/jORxNQ0TkGQw+5BVcf4aIiKSIfXzI47j+DBERSRWDD3kc158hIiKpYvAhj7OsP1Mb158hIiIpYB8f8pi668/U7ePD9WeI5IETkZI/45IVdXDJiqapfcI8c0Zda/0Zcw0QT5hE0saJSEmuuGQFiaL2iTAuDkhPF7EwROQyTkRK/o59fIiIiEgxGHyIZKakBNi50/yTiIhcw+BDJAN6vR6lpaVYvLgciYkC+vYFEhMFLF5cjtLSUuj1erGLSEQkC+zjQyRxls6mBkMYli2bDEFQAQBMJhWmTg3H6dNroNVWsrMpeQWXniF/w+BDJHGWTqSOJobUaivZ2ZQ8jkvPkD9iUxeRTHBiSPIlLj1D/orBh0gmLBNDWsJP3YkhiTzBMsFoY0vPcCJSkis2dRHJSJcuB5CSchxlZZGIjCxj6CGP0+l0yMnJQXHxNWzYIMBkUlnv02gEPPnkICQlBbA/GckWgw+RzGi1lQw85FU6nQ46HbB6NTB+PGA0AhoNsGqVCunpMWIXj6hJGHyIiKhBWVlARgZw/DiQmgokJIhdIqKmY/AhIiK7EhIYeMi/sHMzkcQ524mUnU2JSOqkMPM8a3yIJM7S2dTRPD1c9Z6IpC43F8jOBkwmQK029yHLyvJ9ORh8iGSAoYaI5Eqv16O4+Bqys6OtowRNJmD8eAG33Xbe56MEGXyIiIjIKyxL7hQVJcFkGm1zn9GowsqV25CcfNKnS+6wjw8RERF5haWJvrGZ53255A6DDxEREXmVlGaeZ1MXEREReZ1UZp5n8CEiIiKfkMLM82zqIiIiIsVg8CEiIiLFYPAhIiIixWDwISIiIq+Q4pI77NxMREREXiHFJXcYfIiIiMhrpLbkDpu6iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIgUoKQE2LnT/JNIyRh8iIj8XG4ukJgI9O1r/pmbK3aJiMTD4ENE5MdKSoDsbMBkMt82mYDx41nzQ8rF4ENE5CFSbE46dux66LEwGoHjx8UpD5HYZBV8tm7dim7duiEkJAQ33HADhg4danP/qVOnMHjwYDRv3hzR0dGYOnUqrl27Jk5hiUhRpNqclJYGqOuc6TUaIDVVnPIQiU02wWfTpk145JFH8Nhjj+HHH3/Enj17MHLkSOv9RqMRgwcPRk1NDfbu3Yv169dj3bp1mD17toilJiIlkHJzUkICsHq1OewA5p+rVpm3EymRShAEQexCNObatWtISkrC3LlzkZWV1eA+27Ztw5AhQ3DmzBnExMQAAN58801Mnz4dFy5cQFBQkFO/q6KiAlqtFgaDAeHh4R57DUTkv3buNNf0NLS9Tx+fF6dBJSXm5q3UVIYe8k/OXr9lUeNTUFCA06dPQ61Wo3PnzoiLi8OgQYNQWFho3Sc/Px8dO3a0hh4AyMjIQEVFBf773//afe7q6mpUVFTY/CMicoVUm5P0ej1KS0tRWloKjaYUbduaf1q26fV6cQtIJIIAsQvgjP/9738AgDlz5mDJkiVISkrC4sWL0adPH/zyyy+IjIzE2bNnbUIPAOvts2fP2n3uefPmYe7cud4rPBH5PUtz0vjx5o7DUmhO0uv1ePXVV+ttNxjCUFamQ2SkHlptJXJycqDT6UQoIZE4RK3xmTFjBlQqlcN/R44cgemPhvNZs2Zh+PDhSE9Px9q1a6FSqfDhhx82qQwzZ86EwWCw/vv111898dKISGGysoDiYnPzVnGx+baYampq6m0rKOiMZcsmY/360Vi2bDIKCjo3uB+RPxO1xueZZ57BmDFjHO7Tpk0blJaWAgDat29v3R4cHIw2bdrg1KlTAIDY2Fh89913No89d+6c9T57goODERwc7E7xiYhsJCRIt/+MwRCGzZuHQBDM33cFQY3Nm4dg9uwLiIsTuXBEPiRq8ImKikJUVFSj+6WnpyM4OBhHjx7Fn/70JwDA1atXUVxcjMTERABA9+7d8dJLL+H8+fOIjo4GAOzYsQPh4eE2gYmISInKynTW0GMhCGoUFwcgPV2kQhGJQBZ9fMLDwzFhwgQ899xzaNWqFRITE7Fo0SIAwF/+8hcAwIABA9C+fXs88sgjWLhwIc6ePYv/+7//w8SJE1mjQ0SKFxmph0plsgk/KpUJSUmc64yURRajugBg0aJFePDBB/HII4+ga9euOHnyJL788kvccMMNAACNRoMtW7ZAo9Gge/fuGDVqFB599FE8//zzIpeciEh8Wm0lMjO3QKUy95lUqUzIzNyC+HhTI48k8i+ymMfHlziPDxG5Qq/XO+wgHBQUJMqoqdLSUqxevbredvOorkhERpZBq61EdnY24tjJh/yAs9dvWTR1ERFJkb0h43VJaci4VlsJrbZS7GIQiUY2TV1ERFLj7FBwMYaMOztbvbP7EfkL1vgQEfkhnU6HnJwc1NTUoLy8vMEFmwMDA1FTUwO9Xi+ZGikib2PwISLyUzqdDnq9Hh988EGj+0qpOY7Im9jURUTkx6TcHCcHJSXm2bhLSsQuCXkKgw8REVEDcnOBxESgb1/zz9xcsUtEnsDgQ0REVEdJCZCdDfyxVCRMJvMitKz5kT8GHyIiojqOHbseeiyMRuD4cXHKQ57D4ENE5CYOGfdfaWmAus4VUqMBUlPN/2ffH/niqC4iIjfVHjJuj1gzN1PTJCQAq1ebm7eMRnPoWbXKvD0393ozmFpt3i8rS+wSk7MYfIiImoChxn9lZQEZGebmrdRUc+ix1/cnI8N8P0kfgw8RkR9jc1zTJCTYBhpHfX8YfOSBwYeIyI+xOc51jhaeDQ9XQ62Ohsmksm6r3feHpI/Bh4jIzzHUOM+ZhWeHDOmMrVszYTSqbPr+kDww+BAREf3BmRmsu3Q5gNmzu6GyMsba94fkg8GHiIjIRfHxJsTFiV0Kcgfn8SEiIiLFYI0PERGRiy5evFhvGzuJywODDxERkYvy8vIa3J6Tk8PwI3Fs6iIiIvIQZzpHk7gYfIiIiEgxGHyIiIj+wBms/R/7+BAREf3B3kzXFy9etNuvh+SFwYeIiKgWdk72b2zqIiIiIsVg8CEiIiLFYPAhIiJqhLOdntk5WvrYx4eIiKgR9jo918aZm+WBwYeIiMgJDDX+gU1dREREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGJy5uQ5BEAAAFRUVIpeEiIiInGW5bluu4/Yw+NRRWVkJAGjVqpXIJSEiIiJXVVZWQqvV2r1fJTQWjRTGZDLhzJkzCAsLg0qlErs4PlNRUYFWrVrh119/RXh4uNjFkTUeS8/gcfQcHkvP4bH0DG8cR0EQUFlZifj4eKjV9nvysManDrVajYSEBLGLIZrw8HB+mD2Ex9IzeBw9h8fSc3gsPcPTx9FRTY8FOzcTERGRYjD4EBERkWIw+BAAIDg4GM899xyCg4PFLors8Vh6Bo+j5/BYeg6PpWeIeRzZuZmIiIgUgzU+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPgrz9ddfIzMzE/Hx8VCpVPjkk09s7hcEAbNnz0ZcXBxCQkLQv39/HDt2TJzCSlxjx3LMmDFQqVQ2/wYOHChOYSVs3rx56Nq1K8LCwhAdHY2hQ4fi6NGjNvtcuXIFEydOhE6nQ4sWLTB8+HCcO3dOpBJLkzPHsU+fPvXekxMmTBCpxNL1xhtv4NZbb7VOrte9e3ds27bNej/fj85r7FiK8Z5k8FGYy5cvo1OnTnjttdcavH/hwoVYsWIF3nzzTezbtw+hoaHIyMjAlStXfFxS6WvsWALAwIEDUVpaav337rvv+rCE8rBr1y5MnDgR3377LXbs2IGrV69iwIABuHz5snWfp59+Gps3b8aHH36IXbt24cyZMxg2bJiIpZYeZ44jADz++OM278mFCxeKVGLpSkhIwPz587F//3788MMP6Nu3L/785z/jv//9LwC+H13R2LEERHhPCqRYAISPP/7YettkMgmxsbHCokWLrNvKy8uF4OBg4d133xWhhPJR91gKgiCMHj1a+POf/yxKeeTs/PnzAgBh165dgiCY34OBgYHChx9+aN3n8OHDAgAhPz9frGJKXt3jKAiC0Lt3b+Gpp54Sr1AydsMNNwj/+Mc/+H70AMuxFARx3pOs8SGroqIinD17Fv3797du02q16NatG/Lz80UsmXx99dVXiI6ORtu2bfHEE09Ar9eLXSTJMxgMAIDIyEgAwP79+3H16lWb92W7du3QunVrvi8dqHscLd555x20bNkSt9xyC2bOnImqqioxiicbRqMR7733Hi5fvozu3bvz/dgEdY+lha/fk1yklKzOnj0LAIiJibHZHhMTY72PnDdw4EAMGzYMycnJOHHiBP7+979j0KBByM/Ph0ajEbt4kmQymTB58mT07NkTt9xyCwDz+zIoKAgRERE2+/J9aV9DxxEARo4cicTERMTHx+PQoUOYPn06jh49iry8PBFLK00//fQTunfvjitXrqBFixb4+OOP0b59exw8eJDvRxfZO5aAOO9JBh8iL3nwwQet/+/YsSNuvfVWpKSk4KuvvkK/fv1ELJl0TZw4EYWFhdi9e7fYRZE1e8cxOzvb+v+OHTsiLi4O/fr1w4kTJ5CSkuLrYkpa27ZtcfDgQRgMBnz00UcYPXo0du3aJXaxZMnesWzfvr0o70k2dZFVbGwsANQbnXDu3DnrfeS+Nm3aoGXLljh+/LjYRZGknJwcbNmyBTt37kRCQoJ1e2xsLGpqalBeXm6zP9+XDbN3HBvSrVs3AOB7sgFBQUFITU1Feno65s2bh06dOmH58uV8P7rB3rFsiC/ekww+ZJWcnIzY2Fh88cUX1m0VFRXYt2+fTXssuaekpAR6vR5xcXFiF0VSBEFATk4OPv74Y3z55ZdITk62uT89PR2BgYE278ujR4/i1KlTfF/W0thxbMjBgwcBgO9JJ5hMJlRXV/P96AGWY9kQX7wn2dSlMJcuXbJJ0kVFRTh48CAiIyPRunVrTJ48GS+++CLS0tKQnJyMZ599FvHx8Rg6dKh4hZYoR8cyMjISc+fOxfDhwxEbG4sTJ05g2rRpSE1NRUZGhoillp6JEydi48aN+Ne//oWwsDBrPwmtVouQkBBotVpkZWVhypQpiIyMRHh4OJ588kl0794dd955p8ill47GjuOJEyewceNG3HvvvdDpdDh06BCefvpp9OrVC7feeqvIpZeWmTNnYtCgQWjdujUqKyuxceNGfPXVV/jPf/7D96OLHB1L0d6TPh1DRqLbuXOnAKDev9GjRwuCYB7S/uyzzwoxMTFCcHCw0K9fP+Ho0aPiFlqiHB3LqqoqYcCAAUJUVJQQGBgoJCYmCo8//rhw9uxZsYstOQ0dQwDC2rVrrfv8/vvvwl//+lfhhhtuEJo3by78v//3/4TS0lLxCi1BjR3HU6dOCb169RIiIyOF4OBgITU1VZg6dapgMBjELbgEjR07VkhMTBSCgoKEqKgooV+/fsL27dut9/P96DxHx1Ks96RKEATBe7GKiIiISDrYx4eIiIgUg8GHiIiIFIPBh4iIiBSDwYeIiIgUg8GHiIiIFIPBh4iIiBSDwYeIiIgUg8GHiIiIFIPBh4iIiBSDwYeIZKOmpkbsItQjxTIRkX0MPkQkmj59+iAnJwc5OTnQarVo2bIlnn32WVhW0klKSsILL7yARx99FOHh4cjOzgYA7N69G3fddRdCQkLQqlUrTJo0CZcvX7Y+7+uvv460tDQ0a9YMMTExuP/++633ffTRR+jYsSNCQkKg0+nQv39/62P79OmDyZMn25Rx6NChGDNmjPW2u2UiImlg8CEiUa1fvx4BAQH47rvvsHz5cixZsgT/+Mc/rPe/8sor6NSpEw4cOIBnn30WJ06cwMCBAzF8+HAcOnQI77//Pnbv3o2cnBwAwA8//IBJkybh+eefx9GjR/HZZ5+hV69eAIDS0lI89NBDGDt2LA4fPoyvvvoKw4YNg6tLFrpaJiKSDi5SSkSi6dOnD86fP4///ve/UKlUAIAZM2bg008/xc8//4ykpCR07twZH3/8sfUx48aNg0ajwapVq6zbdu/ejd69e+Py5cv497//jcceewwlJSUICwuz+X0FBQVIT09HcXExEhMTGyzPbbfdhmXLllm3DR06FBEREVi3bh0AuFWmZs2aNek4EZHnsMaHiER15513WkMPAHTv3h3Hjh2D0WgEANx+++02+//4449Yt24dWrRoYf2XkZEBk8mEoqIi3HPPPUhMTESbNm3wyCOP4J133kFVVRUAoFOnTujXrx86duyIv/zlL3jrrbfw22+/uVxmV8tERNLB4ENEkhYaGmpz+9KlSxg/fjwOHjxo/ffjjz/i2LFjSElJQVhYGAoKCvDuu+8iLi4Os2fPRqdOnVBeXg6NRoMdO3Zg27ZtaN++PVauXIm2bdtaw4lara7X7HX16tUml4mIpIPBh4hEtW/fPpvb3377LdLS0qDRaBrcv0uXLvj555+Rmppa719QUBAAICAgAP3798fChQtx6NAhFBcX48svvwQAqFQq9OzZE3PnzsWBAwcQFBRkbbaKiopCaWmp9XcZjUYUFhY2+hqcKRMRSQODDxGJ6tSpU5gyZQqOHj2Kd999FytXrsRTTz1ld//p06dj7969yMnJwcGDB3Hs2DH861//snYk3rJlC1asWIGDBw/i5MmTePvtt2EymdC2bVvs27cPL7/8Mn744QecOnUKeXl5uHDhAm6++WYAQN++fbF161Zs3boVR44cwRNPPIHy8vJGX0NjZSIi6QgQuwBEpGyPPvoofv/9d9xxxx3QaDR46qmnrEPEG3Lrrbdi165dmDVrFu666y4IgoCUlBSMGDECABAREYG8vDzMmTMHV65cQVpaGt5991106NABhw8fxtdff41ly5ahoqICiYmJWLx4MQYNGgQAGDt2LH788Uc8+uijCAgIwNNPP42777670dfQWJmISDo4qouIRNPQKCoiIm9iUxcREREpBoMPERERKQabuoiIiEgxWONDREREisHgQ0RERIrB4ENERESKweBDREREisHgQ0RERIrB4ENERESKweBDREREisHgQ0RERIrB4ENERESK8f8BKTkfuivYzxoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUCBJREFUeJzt3XlYVPXiP/D3sAoIgyyyiAKCV9PUFDf0pqYm+FXLn1a2mLtmgWZaLtebya1c0lwrra5blmUltmiWlmaZ5C3XLCX1QmqKCuSAkoDM+f3BnYmB2Tkz55w579fz8CgzZ4bPnDlzzns+q0YQBAFEREREKuAldQGIiIiI3IXBh4iIiFSDwYeIiIhUg8GHiIiIVIPBh4iIiFSDwYeIiIhUg8GHiIiIVIPBh4iIiFSDwYeIiIhUg8GHiEiGNmzYAI1Gg/z8fKmLQuRRGHyIVOqHH35AZmYm2rRpg6CgIDRr1gwPPPAAfv311zrb9u7dGxqNBhqNBl5eXggJCUHLli3x6KOPYvfu3Q793U8//RS9evVC48aNERgYiObNm+OBBx7A559/LtZLq2P+/Pn46KOP6tx+4MABzJs3D9euXXPZ365t3rx5xn2p0WgQGBiI1q1b45///CdKSkpE+RubN2/G8uXLRXkuIk/D4EOkUosWLcLWrVvRt29frFixAhMnTsQ333yDjh074sSJE3W2j4uLw6ZNm/DWW29h8eLFuOeee3DgwAH0798fw4cPR2Vlpc2/uWTJEtxzzz3QaDSYPXs2li1bhmHDhuH06dN47733XPEyAVgPPllZWW4NPgarV6/Gpk2bsHTpUrRq1Qovvvgi0tPTIcbyiQw+RJb5SF0AIpLGtGnTsHnzZvj5+RlvGz58ONq2bYuFCxfi7bffNtleq9VixIgRJrctXLgQU6ZMwWuvvYaEhAQsWrTI4t+7desWnn/+edx9993YtWtXnfuvXLlSz1ckH2VlZQgMDLS6zX333YeIiAgAwKRJkzBs2DBkZ2fj+++/R2pqqjuKSaRKrPEhUqnu3bubhB4AaNGiBdq0aYOTJ0/a9Rze3t5YuXIlWrdujVdeeQU6nc7itoWFhSgpKUGPHj3M3t+4cWOT32/evIl58+bhb3/7Gxo0aICYmBgMHToUZ8+eNW6zZMkSdO/eHeHh4QgICEBKSgo+/PBDk+fRaDS4ceMGNm7caGxeGj16NObNm4dnnnkGAJCYmGi8r2afmrfffhspKSkICAhAWFgYHnzwQZw/f97k+Xv37o3bb78dhw4dQs+ePREYGIh//OMfdu2/mvr06QMAyMvLs7rda6+9hjZt2sDf3x+xsbHIyMgwqbHq3bs3duzYgd9++834mhISEhwuD5GnYo0PERkJgoDLly+jTZs2dj/G29sbDz30EJ599lns378fAwcONLtd48aNERAQgE8//RSTJ09GWFiYxeesqqrCoEGD8NVXX+HBBx/Ek08+idLSUuzevRsnTpxAUlISAGDFihW455578Mgjj6CiogLvvfce7r//fmzfvt1Yjk2bNmH8+PHo0qULJk6cCABISkpCUFAQfv31V7z77rtYtmyZsfYlMjISAPDiiy/i2WefxQMPPIDx48fj6tWrWLVqFXr27IkjR44gNDTUWN6ioiIMGDAADz74IEaMGIGoqCi795+BIdCFh4db3GbevHnIyspCv3798PjjjyM3NxerV6/GDz/8gO+++w6+vr6YM2cOdDodLly4gGXLlgEAGjZs6HB5iDyWQET0P5s2bRIACGvXrjW5vVevXkKbNm0sPm7btm0CAGHFihVWn3/u3LkCACEoKEgYMGCA8OKLLwqHDh2qs926desEAMLSpUvr3KfX643/LysrM7mvoqJCuP3224U+ffqY3B4UFCSMGjWqznMtXrxYACDk5eWZ3J6fny94e3sLL774osntP/30k+Dj42Nye69evQQAwpo1ayy+7pqee+45AYCQm5srXL16VcjLyxNef/11wd/fX4iKihJu3LghCIIgrF+/3qRsV65cEfz8/IT+/fsLVVVVxud75ZVXBADCunXrjLcNHDhQiI+Pt6s8RGrDpi4iAgCcOnUKGRkZSE1NxahRoxx6rKFGobS01Op2WVlZ2Lx5Mzp06IAvvvgCc+bMQUpKCjp27GjSvLZ161ZERERg8uTJdZ5Do9EY/x8QEGD8/x9//AGdToc777wThw8fdqj8tWVnZ0Ov1+OBBx5AYWGh8Sc6OhotWrTA3r17Tbb39/fHmDFjHPobLVu2RGRkJBITE/HYY48hOTkZO3bssNg36Msvv0RFRQWmTp0KL6+/Tt0TJkxASEgIduzY4fgLJVIhNnUREQoKCjBw4EBotVp8+OGH8Pb2dujx169fBwAEBwfb3Pahhx7CQw89hJKSEhw8eBAbNmzA5s2bMXjwYJw4cQINGjTA2bNn0bJlS/j4WD9Fbd++HS+88AKOHj2K8vJy4+01w5EzTp8+DUEQ0KJFC7P3+/r6mvzepEmTOv2lbNm6dStCQkLg6+uLuLg4Y/OdJb/99huA6sBUk5+fH5o3b268n4isY/AhUjmdTocBAwbg2rVr+PbbbxEbG+vwcxiGvycnJ9v9mJCQENx99924++674evri40bN+LgwYPo1auXXY//9ttvcc8996Bnz5547bXXEBMTA19fX6xfvx6bN292+DXUpNfrodFosHPnTrMhsHafmZo1T/bq2bOnsV8REbkPgw+Rit28eRODBw/Gr7/+ii+//BKtW7d2+DmqqqqwefNmBAYG4u9//7tT5ejUqRM2btyIS5cuAajufHzw4EFUVlbWqV0x2Lp1Kxo0aIAvvvgC/v7+xtvXr19fZ1tLNUCWbk9KSoIgCEhMTMTf/vY3R1+OS8THxwMAcnNz0bx5c+PtFRUVyMvLQ79+/Yy31bfGi8iTsY8PkUpVVVVh+PDhyMnJwQcffODU3DFVVVWYMmUKTp48iSlTpiAkJMTitmVlZcjJyTF7386dOwH81YwzbNgwFBYW4pVXXqmzrfC/Cf68vb2h0WhQVVVlvC8/P9/sRIVBQUFmJykMCgoCgDr3DR06FN7e3sjKyqozoaAgCCgqKjL/Il2oX79+8PPzw8qVK03KtHbtWuh0OpPRdEFBQVanFiBSM9b4EKnU9OnT8cknn2Dw4MEoLi6uM2Fh7ckKdTqdcZuysjKcOXMG2dnZOHv2LB588EE8//zzVv9eWVkZunfvjm7duiE9PR1NmzbFtWvX8NFHH+Hbb7/FkCFD0KFDBwDAyJEj8dZbb2HatGn4z3/+gzvvvBM3btzAl19+iSeeeAL33nsvBg4ciKVLlyI9PR0PP/wwrly5gldffRXJyck4fvy4yd9OSUnBl19+iaVLlyI2NhaJiYno2rUrUlJSAABz5szBgw8+CF9fXwwePBhJSUl44YUXMHv2bOTn52PIkCEIDg5GXl4etm3bhokTJ+Lpp5+u1/53VGRkJGbPno2srCykp6fjnnvuQW5uLl577TV07tzZ5P1KSUnBli1bMG3aNHTu3BkNGzbE4MGD3VpeItmSckgZEUnHMAzb0o+1bRs2bCi0aNFCGDFihLBr1y67/l5lZaXw5ptvCkOGDBHi4+MFf39/ITAwUOjQoYOwePFioby83GT7srIyYc6cOUJiYqLg6+srREdHC/fdd59w9uxZ4zZr164VWrRoIfj7+wutWrUS1q9fbxwuXtOpU6eEnj17CgEBAQIAk6Htzz//vNCkSRPBy8urztD2rVu3Cn//+9+FoKAgISgoSGjVqpWQkZEh5Obmmuwba0P9azOU7+rVq1a3qz2c3eCVV14RWrVqJfj6+gpRUVHC448/Lvzxxx8m21y/fl14+OGHhdDQUAEAh7YT1aARBBEWhiEiIiJSAPbxISIiItVg8CEiIiLVYPAhIiIi1WDwISIiItVg8CEiIiLVYPAhIiIi1eAEhrXo9XpcvHgRwcHBnPadiIhIIQRBQGlpKWJjY+HlZbleh8GnlosXL6Jp06ZSF4OIiIiccP78ecTFxVm8n8GnluDgYADVO87aukNEREQkHyUlJWjatKnxOm4Jg08thuatkJAQBh8iIiKFsdVNhZ2biYiISDUYfIiIiEg1GHyIiIhINdjHh4iISARVVVWorKyUuhgey9fXF97e3vV+HgYfIiKiehAEAQUFBbh27ZrURfF4oaGhiI6Ortc8e4oJPgsWLEB2djZOnTqFgIAAdO/eHYsWLULLli2N29y8eRPTp0/He++9h/LycqSlpeG1115DVFSUhCUnIiJPZgg9jRs3RmBgICe/dQFBEFBWVoYrV64AAGJiYpx+LsUEn3379iEjIwOdO3fGrVu38I9//AP9+/fHL7/8gqCgIADAU089hR07duCDDz6AVqtFZmYmhg4diu+++07i0hMRkSeqqqoyhp7w8HCpi+PRAgICAABXrlxB48aNnW720giCIIhZMHe5evUqGjdujH379qFnz57Q6XSIjIzE5s2bcd999wEATp06hdtuuw05OTno1q2bXc9bUlICrVYLnU7HeXyIiMiqmzdvIi8vDwkJCcYLM7nOn3/+ifz8fCQmJqJBgwYm99l7/VbsqC6dTgcACAsLAwAcOnQIlZWV6Nevn3GbVq1aoVmzZsjJybH4POXl5SgpKTH5ISIicgSbt9xDjP2smKaumvR6PaZOnYoePXrg9ttvB1Ddxurn54fQ0FCTbaOiolBQUGDxuRYsWICsrCxXFlcxioqKUFFRYfF+Pz8/VuUSEZGiKTL4ZGRk4MSJE9i/f3+9n2v27NmYNm2a8XfDWh9qU1RUhFdeecXmdpmZmQw/RESkWIpr6srMzMT27duxd+9ek9VXo6OjUVFRUWc44eXLlxEdHW3x+fz9/Y3rcql5fS5rNT3ObEdERPI2evRoaDQaaDQa+Pr6IioqCnfffTfWrVsHvV5v9/Ns2LChTmuLnCkm+AiCgMzMTGzbtg179uxBYmKiyf0pKSnw9fXFV199ZbwtNzcX586dQ2pqqruLS0REZFNRUREuXbpk8aeoqMilfz89PR2XLl1Cfn4+du7cibvuugtPPvkkBg0ahFu3brn0b0tFMU1dGRkZ2Lx5Mz7++GMEBwcb++1otVoEBARAq9Vi3LhxmDZtGsLCwhASEoLJkycjNTXV7hFdRERE7iKHLgb+/v7GVpEmTZqgY8eO6NatG/r27YsNGzZg/PjxWLp0KdavX4///ve/CAsLw+DBg/HSSy+hYcOG+PrrrzFmzBgAf3U8fu655zBv3jxs2rQJK1asQG5uLoKCgtCnTx8sX74cjRs3dslrsZdianxWr14NnU6H3r17IyYmxvizZcsW4zbLli3DoEGDMGzYMPTs2RPR0dHIzs6WsNRERETmybWLQZ8+fdC+fXvj9dPLywsrV67Ezz//jI0bN2LPnj2YMWMGAKB79+5Yvnw5QkJCjLVUTz/9NACgsrISzz//PI4dO4aPPvoI+fn5GD16tFtfizmKqfGxZ7qhBg0a4NVXX8Wrr77qhhIRERF5platWuH48eMAgKlTpxpvT0hIwAsvvIBJkybhtddeg5+fH7RaLTQaTZ3+tGPHjjX+v3nz5li5ciU6d+6M69evo2HDhm55HeYopsaH3EunC0ZeXgJ0umCpi0JERG4mCIKx6erLL79E37590aRJEwQHB+PRRx9FUVERysrKrD7HoUOHMHjwYDRr1gzBwcHo1asXAODcuXMuL781DD5Ux+HDHbB8+VRs3DgKy5dPxeHDHaQuEhERudHJkyeRmJiI/Px8DBo0CO3atcPWrVtx6NAhY6uKtSa4GzduIC0tDSEhIXjnnXfwww8/YNu2bTYf5w6Kaeoi1/Lz8wNQXdPz6aeDIAjVmVgQvPDpp4OQlHQGWm2pcTsiIvJMe/bswU8//YSnnnoKhw4dgl6vx8svvwwvr+rrwvvvv2+yvZ+fH6qqqkxuO3XqFIqKirBw4ULj3Hg//vije16ADazxIQBAeHg4MjMz0b37KGPoMRAEL/ToMYqTFxIReZjy8nIUFBTg999/x+HDhzF//nzce++9GDRoEEaOHInk5GRUVlZi1apV+O9//4tNmzZhzZo1Js+RkJCA69ev46uvvkJhYSHKysrQrFkz+Pn5GR/3ySef4Pnnn5foVZpi8CGj8PBwdOsWDq9aR4W3N9C1azhDDxGRh/n8888RExODhIQEpKenY+/evVi5ciU+/vhjeHt7o3379li6dCkWLVqE22+/He+88w4WLFhg8hzdu3fHpEmTMHz4cERGRuKll15CZGQkNmzYgA8++ACtW7fGwoULsWTJEolepSnFrs7uKmpYnd3Wmlzvvx+M6dMboqqqOvS8/jowbpwbC0hEpBCG1dnNrRZuixzm8VEaa/vb3us3+/iojL0ftCNHpqCoqBGSk4EaK4MQEZFIDF0MuDi0ezH4qIy9vekjIm6ibVsXF4aISOUYatyPfXyIiIhINRh8iIiISDUYfIiIiEg1GHxUjktTEBGRmrBzs4odPtzBOEuzRqPH4MHb0bHjEamL5XK2hvNzFAURkedi8FEQMS/Ytpam8FTOzpvBsERE5BkYfBRCrImuDGttFReHm12aorg4zKPX5LJ3OH/N7TjJGBGR52AfH4Vw5oJtjmHCrMmT0+HlZTppt7e3gMmTB/ACXotY+56ISE2+/vpraDQaXLt2ze7HJCQkYPny5S4rE8Dgo0rh4eFISYnCG29o4O1dfVv10hQapKREqSr0ONO5mx3CicgTjB49GhqNBpMmTapzX0ZGBjQaDUaPHu3+grkYm7pUbNw4IC0NOHMGqlyawpnO3WrtEE5Enqlp06Z47733sGzZMgQEBACoXg9r8+bNaNasmcSlcw3W+KhcXBzQu7f6Qo+lzt3WanGceQwRkZx17NgRTZs2RXZ2tvG27OxsNGvWDB06dDDeVl5ejilTpqBx48Zo0KAB/v73v+OHH34wea7PPvsMf/vb3xAQEIC77roL+fn5df7e/v37ceeddyIgIABNmzbFlClTcOPGDZe9PnMYfEiVrHXuFvMxRET2unAB2Lu3+l93Gjt2LNavX2/8fd26dRgzZozJNjNmzMDWrVuxceNGHD58GMnJyUhLS0NxcTEA4Pz58xg6dCgGDx6Mo0ePYvz48Zg1a5bJc5w9exbp6ekYNmwYjh8/ji1btmD//v3IzMx0/YusgcFHodjPpH7Cwoqg0ehNbtNo9AgLKxb1MURE9li7FoiPB/r0qf537Vr3/e0RI0Zg//79+O233/Dbb7/hu+++w4gRI4z337hxA6tXr8bixYsxYMAAtG7dGm+++SYCAgKw9n8FXb16NZKSkvDyyy+jZcuWeOSRR+r0D1qwYAEeeeQRTJ06FS1atED37t2xcuVKvPXWW7h586bbXi/7+CgQ+5k4zzBMX6stxeDB2+vsR8McRuaG89t6DBGRMy5cACZOBPT/+16l1wOPPVbdB9Md3RAiIyMxcOBAbNiwAYIgYODAgYiIiDDef/bsWVRWVqJHjx7G23x9fdGlSxecPHkSAHDy5El07drV5HlTU1NNfj927BiOHz+Od955x3ibIAjQ6/XIy8vDbbfd5oqXVweDj0IYLsS2Jh701Pl3xGIYzm8Yej537lXk5/sgIeEWYmM7A+hcZzLCmvu0Y8cjSEo6g+LiMISFFZuEHiXse07EqF7ueO95fDnn9Om/Qo9BVVX1wBN39b8cO3asscnp1VdfdcnfuH79Oh577DFMmTKlzn3u7EjN4KMQhgv23r3AsmV1+5n06DEKvXvDLScVOZ7cHClTzbLFxAApKdafu3ZYsvX8csWJGNXLHe89jy/ntWgBeHmZhh9v7+rRtu6Snp6OiooKaDQapKWlmdyXlJQEPz8/fPfdd4iPjwcAVFZW4ocffsDUqVMBALfddhs++eQTk8d9//33Jr937NgRv/zyC5Ld+cLMYPBRkPDwcHTrZv4D0rVrONxxLpHjyc0dZfKEEzUnYlQesb5kuOO95/HlvLg44I03qpu3qqoM86q5d7Stt7e3sdnK2zDB2/8EBQXh8ccfxzPPPIOwsDA0a9YML730EsrKyjBu3DgAwKRJk/Dyyy/jmWeewfjx43Ho0CFs2LDB5HlmzpyJbt26ITMzE+PHj0dQUBB++eUX7N69265zuFgYfBRG6g+IHE9uciyTveRYe0byIMcvGeQ6cphXLSQkxOJ9CxcuhF6vx6OPPorS0lJ06tQJX3zxBRo1agSguqlq69ateOqpp7Bq1Sp06dIF8+fPx9ixY43P0a5dO+zbtw9z5szBnXfeCUEQkJSUhOHDh7v8tdXE4KNAcviAGOh0wSguDkdYWBE7+TrImQub2AvV8r2TL1cGene893I9vuT8ZSMuzr3n89o1MrV99NFHxv83aNAAK1euxMqVKy1uP2jQIAwaNMjkttrD4jt37oxdu3ZZfA5zc/+IjcFHodz9ATFHrqPL5HrCrc3RC5uYNQByfe/orwtzYWGhS57fHe+9XI8v1qIRwOBDTrI1ukwqcj3h2sNWYBOrBkCu7x1ZvzCLEejd8d7L+fhScrM4iYfBhxxiWGXX2izGUp3c5HzCtcWZwObshVCO7x1Vs3TBFSvQu+O95/FFcsfgQ3YrKirC+++/D+CvWYxrnuCknsVYqSdcZwJbfS6EcnzvyDIxA7073nslHV9KaRYncXHJCrJbzW+jhlmMDUs4yGEWY1tLShQWFuLSpUsmP0VFRVIU1YSja4DZu1hqUVGRyWvV6XQAbL93SpiIUS10umD8/HObeq8RV3vGcle89+74G2I6fLgDli+fio0bR2H58qk4fLiD7QdZIQiCSCUja8TYz6zxIafJZRZje5ehqLn6cE1Sd2R09BuyPTVbtjpxGt679u2H4fbbG1ictZqkU7NWDxAAaIz3OVqD4syM5Y5yx98Qi5i1aL6+vgCAsrIyBAQEiF5WMlVWVgbgr/3uDAYfcpqlauLhw4e79eRm6YQbEnIFBw7Ybv6RuiOjo2uA2ROUar8mc++VVluK/v39EBMT5YJXRfVR+8JcHXqqw4+zNSiOzljuDHf8DTGI2Szu7e2N0NBQXLlyBQAQGBgIjUZj41HkKEEQUFZWhitXriA0NLTOJIuOYPAhp1jrY6LVat1eHnMn3EuXKnDgwF/bWApqloYNu/rbqbNrgDkalJQ80s0cOc/DIhZzF2ZAg7S0z9G69S8YM+ZuRETIpwZFacTuhxQdHQ0AxvBDrhMaGmrc385i8CGHKXH0lLWLv6UmMMC1zWCOrgHmSFAyPKcS3ytr1DIPi6ULc+vWv0CrLUVERARiYmIkLKEy2dss7mhTvUajQUxMDBo3bozKykrRy03VfH1961XTY8DgQw5T2uip+lz8Xd0M5sjF2ZGgdOnSJQDKe69s8fR5WFx1YaZqru6H5O3tLcqFmVyLwYccpqThqoB9F3+lDGt19ISstPcKsN6UVbtZUinvm72U1EFYqZTSD4lch8GH7KbUb6O2Lv6e1gemJkf7A0nN3qYswHPfN16YiVyLwYfsptRvo9Yu/p7WB8Yca/2B5MbeJio1vG9E5BoMPuQQJX0btaczsKf1gTEwNxLM3OuRW+1cbZaasjz1fSMi12PwIY9lrTNwYWEhsrOzFdkHxh6OjhiTI2tNWZ76vhGR6zH4kEezdWFXWh8YRzgbauQwT46tpixPft+IyLUYfEiVnJ080NPJZZ4ce5qy+L4RkTMYfEiVPKEpyBXkMk+OraasoUOHIiIiwuxj1fi+EZH9GHxItXhxtE2qeXJsNWVx5mIichaDDxGZJcU8OWyCJCJXY/AhojqkmieHTZBE5GoMPkRUh5Tz5DDUEFWTwwhLT8TgQ0R1cJ4cImnJZYSlJ2LwIav4jUOdOE8OkbTkMsLSEzH4kEX8xqE+7FxMRJ6OwYcs4jcO9WHnYiJ5kmpqCU/E4EN2s/TBKywsNLs9L5DKxPeMSF6kmFrCkzH4kF2sffCys7MtPo7NYEREzpNqaglP5mV7E1I7Sx88nS7Y5mPZDEZE5DxrU0uQcxh8yCZ7Png6XTDy8hLsCkNERGQfw9QSNXFqifphUxfZZGtOF7Y/ExGJyzBy0tbUEhxh6TgGH7LJ2geP7c9EROKrPcJy7tyryM/3QULCLcTGdgbQmQNInMTg4wZKnQTQnjldpFzagIjIEqWed2uqWb6YGCAlRcLCeBAGHxdT8iSA1uZ0KSwsRHZ2Npc2ICLZUfJ5l1yPwcfFlD4JoK2TApc2IANP+IZNnkHp511yLQYfcgqXNqCa+A2biJSCwcfNPGXacS5tQDXxGzbJmaecd0kcHhl8Xn31VSxevBgFBQVo3749Vq1ahS5dukhdLI8b9s1QQ5bwQuN6bFq0j6edd6n+PC74bNmyBdOmTcOaNWvQtWtXLF++HGlpacjNzUXjxo0lKxeHfZNa8ELjemxatA/Pu2SOxwWfpUuXYsKECRgzZgwAYM2aNdixYwfWrVuHWbNmSVYuNQ/75jdT9eCFxj3sbTK8ePGiybZq+6wp6bzr6HnS3PY6nQ6VlZUAAB8fH4SGhlp9DrXyqOBTUVGBQ4cOYfbs2cbbvLy80K9fP+Tk5EhYMtuzH3sqfjNVFyVdaNTA3ALCavqsKeW86+h50t7trT2HmnlU8CksLERVVRWioqJMbo+KisKpU6fMPqa8vBzl5eXG30tKSkQtk9qnHa/7jcR83w92evUMSrnQeBpH+lRJ/VlzRw2w0s67jg4OqM97KPX7LwceFXycsWDBAmRlZbns+Tnt+F/Y98PzcV4n91PS58pdNcA875I1HhV8IiIi4O3tjcuXL5vcfvnyZURHR5t9zOzZszFt2jTj7yUlJWjatKmo5eK04+z74ek4r5M0rH2uAMhuZJ07pz1Q03nXXI0fR1Za5lHBx8/PDykpKfjqq68wZMgQAIBer8dXX32FzMxMs4/x9/eHv7+/G0upTuz74dk4r5M0LH2uDh7sipycVEXUAlFdjoQWczV+ABRTCygFjwo+ADBt2jSMGjUKnTp1QpcuXbB8+XLcuHHDOMqLpMG+H56vPqGGI/+cY+5zBeiNoQdQZu2qTqezer8nHw+ONF2aq/H75JNB0Gig6Pff1Twu+AwfPhxXr17F3LlzUVBQgDvuuAOff/55nQ7P5F7s+0GWcOSf46x13k1NzcGBAz1Mtpdr7aqlmo0tW7bYfKwnHg+OdgkwV+MHeEEQTG+R6/svFY8LPkD1B8JS0xZJx1rfDxKHEmtOuNyF48x13j127AZOnPgIAExqfAB51q7Wt1O2Jx4PjnYJsFTjV7PGB5Dn+y8ljww+JB+1O7NqtaVmP8Bq7/QqRmBhzYm61O68m5BQhPPnqz9bch/CzcEOpgzvia0uAYbtbA3XB+r28ZHT+y81Bh9yKXZ6tU2swCLHmhN7Al1tHI3iHCUN4XakZkMNx0PN965JkxLMnKlFVZUG3t4CFi0qwcMPP2Ty3ll6r8PD/0B4eCIAYOrUsyguDpPl+y81Bh9yOX7QrHPVJI9SXzDsDXTDhw83/l9Jc9LIkdyHcNtbs2GgpuPB8N5Nnw4MHw6cOQMkJ2sQFxcKINTi9kDN95rnWnsw+BDJiFgnejlcMOwNaoa1hdj84fnsqdm4du0a3n//fbcfD3LqHxcXV/1DrsHgQyQTYp3o5RogbNVAca4neXB1ALC3ZsOdx4Nc+sfJKXx5MgYfIpkQ60QvxwBhrQbqjz/+AMC5nuTA3QHAWs2GO48HOfSPk0v4UoPaEwAQkUQMJ/qanDnRi/U8YrFUA6XTBQMA9u7dC+CvESqGsnM0ivvJIQDUHrGkluNBDvteLVjjQyQTYk3yKLfJIu2tgRo6dCgmToyQ9Wgkcj0ljU4jZWLwIZKR+kzyKNeFQu1tsoiIiEBMTIwsRyORe0k9Ok3qEZFyKYOnYvAhkphYkzzKdc6k2jVQQPWyCiR/arz4ymFEpBzK4MkYfIgkJmZgkVP1v7kaKMOq4QcO9EBOTipP6DKmxouvHEZEyqEMno7Bh0gG5BRYxGIIdBcvXkR2djYAKH7VcLVQ68XXmRGRYg9Bl+OoTE/D4KNynDeCXCk8PNx4fPGErhxqe68cXSvLwBVD0Dmtg+sx+KhY7Q+tpfZ8zhtBYuAJXf6cDQBK5+haWQZiDkG3tfCopw7jlwKDj4rV/DBaa8/nvBHyZW+NnZQ1ezyhK4ezAcATOLpWliv+PofxuweDD6m2PV/p7K1mHzFiBN5++22b27mqZo8ndGWROgDIgVRrZUk9jF8tGHxIde35nsLemriysjJRn88ZPKErExfLdIwah/8rEYMPse+Fh7D3pMuTM5H41Dj8X6kYfEh2SxyQ4+w96fLkTCQ+dhdQFgYfAlC/pRJIWvaedHlyJnINdhdQFgYfMrK0VALJm70nXZ6cicSl1uH/Ssfgo2L2fhj5oXUfZ4ad29tHi325iMSl5uH/Ssbgo2JyXdRSrZydBdbePlrsy0UkPg7/Vx4GH5VjqJEPR2eBNbcIqLk+WoGBgXZtx5o9ovrh8H9lYPAhkilbw84dqbFjzR4RUTUGHyIRibU0hL3Dzu0NKww1RETVGHyIRCLWSs0cdq5cUq6JRiQHSvgMMPgQiaT2h91SU5Wtvjwcdq5MYgVfIqVSymeAwYfIBeozQzKHnSuTo53TiTyNUj4DDD5EVjhTbVvfpioOOydyLSU0x5DrMPiQRxLjxOZsta2zTVX2Dk/nsHPX4MVQHZTSHOMJ5LogMoMPeZzaJzZLHz5bJzZn++w421TFYefSccXFUK4nfbVTSnOM0sl5QWQGH/I4NU9Y1j58jpzYHPkQ16epiqFGGmJfDOV80idyNbmPTGXwIY8l1ofPmefhavfqJfeTPpGryX1kqpftTYiUydqHzxXPU7vvjVZbisTE3+p80NlHx7OJddyRe+h0wcjLS4BOFyx1UTyGobm/JjmNTGWND3kssYaF2/s87KPjPLl1LHamf44h0No6Xhh85YNNkuIyHNu2mvul/gww+JDHEmtYuCPPw1DjOLmNsnH2Ylgz+DZpUoKZM7WoqtLA21vAokUlePjhhxh8ZYRNkuKr/eVv7tyryM/3QULCLcTGdgbQWRafAQYf8mhi9bVhnx3XkdMom/peDA0n9OnTgeHDgTNngORkDeLiQgGEuq7g5DC590NRqpqhJiYGSEmRsDAWMPiQx9NqS506kZnrs2PueaSutiXxiHkxjIur/iF5YZMkMfiQx7H3hGVrO/bZkYYU89/wYqgebJIkBh/yOGIGFp783Euqzqa8GKoLmyTVjcGHPBIvUMojdWdTXgzVydOaJOU2QlKOGHyISBbk1NnU0y6GpA5yGyEpV5zAkIhkQe6TnhHJnZxGSMoZgw8RSar2pGeG8CO3Sc+IyDOwqYuIJOWKSc/Yz4GILGHwISLJiTnpGfs5EFWTYmoIJWDwISKHyL02hf0ciLgOmTUMPi4k9wsEkaPkUpti7bNVWFjosr9LpARSTw0hdww+LlL7AmGpypHV7SQmV4dtOdSm2Bu+iNRKTlNDyBGDj4vUPPFbq3JkdTuJRYraGCn6EDj6mWE/B1ILLr1iHwYfF1NClWPNWoKLF72Ql+eDxMRbiI2tHlbMJjllcHdtjBL6ECihjERi4dIr9mHwcTG5VznWrCWwdpFgk5zyuLKmQwmBXgllJBIbl16xjcHHxWxVOUrN8O3f1kWCTXLK4uqaDjkFeksBT05lJJICl14xj8HHxQyz0da+CMntxMuLhOdwR02HXAK9tYDHfg6kZhxVbBmDjxt07HgESUlnUFwchrCwYlkGCblcyKj+3BFi5RDobQW8MWPuZj8HUiW5TDshVww+bqLVlsoy8BjI4UJG4nBliK1ZS2It0LujNsVWwIuIiMD06aHs50CqI4dpJ+SMwcdF7D3xy6m63dKFTKcLxmef/Yk77rjMkV4K4MoQW3tdLXNcfWw4OmSX/RyIqCYGHxeRwwXCGbVrpjjSSzncVRtT8z0314+goqICly5dMv4tsY8RDtklovpg8HEhpZ94OdJLWdwdtqXsR8Ahu0T24ySephh8VM7at3+O9FIed4ZtufQjYFMWkWWcxLMuBh+VM1dLUFhYiOzsbI70IiJSME7iaR6DD1msJeBIL3IEq9OJzJNqTh3W2ptnd/ApKSmx+0lDQkKcKgzJjxLmICLpsTqdyDwp+sJxsVLr7A4+oaGh0Gg0VrcRBAEajQZVVVX1LhjJh9znICJpsTqdyDIp+sJx5KN1dgefvXv3urIcVuXn5+P555/Hnj17UFBQgNjYWIwYMQJz5swxSazHjx9HRkYGfvjhB0RGRmLy5MmYMWOGZOUmUgNWp8sLlyoggCMfrbE7+PTq1cuV5bDq1KlT0Ov1eP3115GcnIwTJ05gwoQJuHHjBpYsWQKguimuf//+6NevH9asWYOffvoJY8eORWhoKCZOnChZ2ZVIiZMvknTYCV4+uFSBchUWFroslHLkoymnOzdfu3YNa9euxcmTJwEAbdq0wdixY6HVakUrnEF6ejrS09ONvzdv3hy5ublYvXq1Mfi88847qKiowLp16+Dn54c2bdrg6NGjWLp0KYOPg5Q6+SK5lyH42uoEz4DsPnKZYoAsszQIIDs7GwBDqTs4FXx+/PFHpKWlISAgAF26dAEALF26FC+++CJ27dqFjh07ilpIc3Q6HcLCwoy/5+TkoGfPniYn2bS0NCxatAh//PEHGjVqZPZ5ysvLUV5ebvzdkU7cnowfPLKldkCeO/cq8vN9kJBwC7GxnQF0ZkAmj+VMk6I9gwAYSl3PqeDz1FNP4Z577sGbb74JH5/qp7h16xbGjx+PqVOn4ptvvhG1kLWdOXMGq1atMtb2AEBBQQESExNNtouKijLeZyn4LFiwAFlZWa4rLJEHq3lij4kBUlIkLAyRmzjSpGigxkEAcu1v5nSNT83QAwA+Pj6YMWMGOnXqZPfzzJo1C4sWLbK6zcmTJ9GqVSvj77///jvS09Nx//33Y8KECY4XvpbZs2dj2rRpxt9LSkrQtGnTej8vERG5htQXVGeaFC0NAjh/Pg5a7UlRyycHcu5v5lTwCQkJwblz50wCCQCcP38ewcHBdj/P9OnTMXr0aKvbNG/e3Pj/ixcv4q677kL37t3xxhtvmGwXHR2Ny5cvm9xm+D06Otri8/v7+8Pf39/uMhMRKYUnTiop5wuqOdbm1AGADz+8DxUVnjfvlZz7mzkVfIYPH45x48ZhyZIl6N69OwDgu+++wzPPPIOHHnrI7ueJjIxEZGSkXdv+/vvvuOuuu5CSkoL169fDy8v04ElNTcWcOXNQWVkJX19fAMDu3bvRsmVLi81cciD1Nxci8kyeOqmknC+o5hj6wl28eBFnz243ae6q5vlNXoC8QrhTwWfJkiXQaDQYOXIkbt26BQDw9fXF448/joULF4paQKA69PTu3Rvx8fFYsmQJrl69arzPUJvz8MMPIysrC+PGjcPMmTNx4sQJrFixAsuWLRO9PGJR2jcXIlIGNfYnkZKti3p4eDgqKirQsWM2/PzK8eGH95vc7+nzXskthDsVfPz8/LBixQosWLAAZ8+eBQAkJSUhMDBQ1MIZ7N69G2fOnMGZM2cQV2syAkEQAABarRa7du1CRkYGUlJSEBERgblz58p6KLvSvrkQkbwZmlVsTSrJKQbE4+hFvWnT86qa90qOIbxei5QGBgaibdu2YpXFotGjR9vsCwQA7dq1w7fffuvy8hARyZGhWSU//xY2bRKg1/+1zJC3t4DJkwcgIcHHo2qQpWxCceSirtZ5r+Q4s7tTwefmzZtYtWoV9u7diytXrkCv15vcf/jwYVEKpzZyagMlImUKDw9HeDjwxhvAY48BVVWAtzfw+usapKRESV08UUndhOLIRV2t817JcWZ3p4LPuHHjsGvXLtx3333o0qWLzcVLyTapP8BE5FnGjQPS0gxrNHnekgVSNqE4u/q5Gue9slXDJQWngs/27dvx2WefoUePHmKXR5Xk2AZKRMrnyWs0SdmEwtXPbasZ+jp2PIKkpDMoLg5DWFixyfsjRdOeU8GnSZMmDs3XQ9bJsQ2UiEiOnK1tERtXP7dOzms+OhV8Xn75ZcycORNr1qxBfHy82GVSHTm2gRIRyZEca1s8uWatPuRa4+VU8OnUqRNu3ryJ5s2bIzAw0DhhoEFxMS/Y9lBrL38iovpgbQvVh0YwTITjgH79+uHcuXMYN24coqKi6nRuHjVqlGgFdLeSkhJotVrodDqEhIS4/O/VnLn54kWvGr38q0fKqb2dmIiIyB72Xr+dCj6BgYHIyclB+/bt61VIOXJ38CEiIqL6s/f67VRTV6tWrfDnn386XTgiIiIpcZ1E9XIq+CxcuBDTp0/Hiy++iLZt29bp48OaEiIikiuuk6huTgWf9PR0AEDfvn1NbhcEARqNBlVVVfUvGRERkQtwnUR1cyr47N27V+xyEJGDWFVPROQ4p4JPr1697NruiSeewL/+9S9EREQ482eIyAJW1RMROcfL9ibOe/vtt1FSUuLKP0GkSqyqJxKPTheMvLwE6HRckUANnKrxsZcTI+WJyAk6XTCKi8MRFlbEZU6IHMAFotXHpcGHiFyPJ24i53CBaHVyaVMXEbmWpRM3q+yJbLO2QDR5LgYfIgXjiZvIcbVXeK/JnSu8kzTY1EWkYIYTd83wU/PETUR1yXGFd3Ifh4PPrVu3MH/+fIwdOxZxcXFWtx0xYgRncSZyIa22FIMHb6/Tx8fZ/gmcG4jUgiu8q5fDwcfHxweLFy/GyJEjbW67evVqpwpFRNbVrILv2PEIkpLOoLg4DGFhxSahx5Gqes4NRGoVF1f9Q+rgVFNXnz59sG/fPiQkJIhcHCKyR82qekscrZ3h3EBEpAZOBZ8BAwZg1qxZ+Omnn5CSkoKgoCCT+++55x5RCkdElrm61oVzAxGRJ3Iq+DzxxBMAgKVLl9a5j4uUEikf5wYiIk/l1HB2vV5v8Yehh0jZODcQEXkyp4LPW2+9hfLy8jq3V1RU4K233qp3oYhIOpwbiIg8mVPBZ8yYMdDpdHVuLy0txZgxY+pdKCKSjq1J3YiIlMypPj6CIECj0dS5/cKFC9BqtfUuFJEcqHVOG7HnBiIikhOHgk+HDh2g0Wig0WjQt29f+Pj89fCqqirk5eUhPT1d9EISuZsa57RxxdxA9aHW4ElEruVQ8BkyZAgA4OjRo0hLS0PDhg2N9/n5+SEhIQHDhg0TtYBEUlDjnDaumBvIWWoMniQfDN2ezaHg89xzzwEAEhISMHz4cDRo0MAlhSIiacjlZK7G4EnywNDt+Zzq4zNq1CgA1SedK1euQK837QjZrFmz+peMSEY4mR+ROjB0ez6ngs/p06cxduxYHDhwwOR2Q6dnzuVDnoST+REReQ6ngs/o0aPh4+OD7du3IyYmxuwILyJPYGkyv6SkM6z5cSNLNW6FhYXG/7PfBZH7KLkflFPB5+jRozh06BBatWoldnmIZMXaZH4MPu5hrcYtOzvbZFv2uyCxsZm7rtr9oCztI7l+Hp0KPq1btzb5pkXkqQyT+dUMP5zMz30crXFjvwsSE5u5zav5ObO2j+T6eXRq5uZFixZhxowZ+Prrr1FUVISSkhKTHyKlM8xVY5jMzzCTce3J/Nw1p41acfkMkgrXrLNNqfvIqRqffv36AQD69Olj0r+HnZvJU9Se02bu3KvIz/dBQsItxMZ2BtBZ1m3YSmcIlKxxI6mwmds2pe4jp4LP3r17xS4HkezUDDUxMUBKioSFUZmawbNJkxLMmKGFXq8x1rgBQF5eAvtdWKHkzqdSsjd0s7ZXuV9MnAo+vXr1wrfffovXX38dZ8+exYcffogmTZpg06ZNSExMFLuMRKRChovy9OlA796XsWrVToSFFePs2WQsXz6V/S6s4CR8zqsdumfO1KKqSgNvbwGLFpXg4YcfYmj8H6Wu6+dU8Nm6dSseffRRPPLIIzhy5AjKy8sBADqdDvPnz8dnn30maiGJSN1iY/VITPyN0wvYiZPw1U/N0D18OHDmDJCcrEFcXCiAUCmLJjvW1vWTK6c6N7/wwgtYs2YN3nzzTfj6+hpv79GjBw4fPixa4YiIamJnZ3K3uDigd+/qf8k8rbYUiYm/KSL0AE4Gn9zcXPTs2bPO7VqtFteuXatvmYiITNTud1ET+10QuZe9nzO5fh6dauqKjo7GmTNnkJCQYHL7/v370bx5czHKRURkxH4X9cNJ+OzDDuH2qT3q1Rw57yungs+ECRPw5JNPYt26ddBoNLh48SJycnLw9NNP49lnnxW7jERE7HfhJE7CZx92CHeMkveBU8Fn1qxZ0Ov16Nu3L8rKytCzZ0/4+/vj6aefxuTJk8UuIxGRibg49rmwBzuD248dwtXDqeCj0WgwZ84cPPPMMzhz5gyuX7+O1q1bo2HDhmKXj4iInKTUCeaIXMmp4GPg5+eH1q1bi1UWIiISASfhqz/2i/Jc9Qo+RETkXvZ2wGVncOexX5RnY/AhIlIIZzrgsjO4Y9gvyvMx+BARKYSzHXDZGdx+7Bfl+ZyawJCIiMgT2Zokk5SPwYeIiFTP0NHbsPCmIfzUXniTHcKVj01dREQKxZFH4qk9G/HcuVeRn++DhIRbiI3tDKAzO4R7CAYfIiIF4sgj8dUMNTExQEqKhIUhl2HwISJSGDmNPOL6VqQ0DD5ERAojl5FHXN+KlIidm4mIFKL2jMw1STEjM9e3IiVijQ8RkUJwRmai+mPwISKykxz6s3BGZqL6YfAhIrKDHPuzyG1GZg6vJyVg8CEisgP7s1jH4fWkFOzcTERE9WJpeL1OFyxxyYjqYvAhIqJ6sTa8nkhuGHyIiJyg0wUjLy9B1bUachteT2QPxfXxKS8vR9euXXHs2DEcOXIEd9xxh/G+48ePIyMjAz/88AMiIyMxefJkzJgxQ7rCEpFHYn+WahxeT0qkuOAzY8YMxMbG4tixYya3l5SUoH///ujXrx/WrFmDn376CWPHjkVoaCgmTpwoUWmJyNPIabkId7BnCH9MTAyH15NiKCr47Ny5E7t27cLWrVuxc+dOk/veeecdVFRUYN26dfDz80ObNm1w9OhRLF26lMGHiEQjl+Ui3MHRIfxyG15PZI5i+vhcvnwZEyZMwKZNmxAYGFjn/pycHPTs2dOkLTktLQ25ubn4448/LD5veXk5SkpKTH6IiGpTY38WDuEnT6SIGh9BEDB69GhMmjQJnTp1Qn5+fp1tCgoKkJiYaHJbVFSU8b5GjRqZfe4FCxYgKytL9DITiU0OswarGfuzEHkGSYPPrFmzsGjRIqvbnDx5Ert27UJpaSlmz54tehlmz56NadOmGX8vKSlB06ZNRf87RPUhx1mD1YjLRRApn6TBZ/r06Rg9erTVbZo3b449e/YgJycH/v7+Jvd16tQJjzzyCDZu3Ijo6GhcvnzZ5H7D79HR0Raf39/fv87zEskNmxzkR439WbgkBXkCSYNPZGQkIiMjbW63cuVKvPDCC8bfL168iLS0NGzZsgVdu3YFAKSmpmLOnDmorKyEr68vAGD37t1o2bKlxWYuIiKyD4fwi4tN19JRRB+fZs2amfzesGFDAEBSUhLi/veV6+GHH0ZWVhbGjRuHmTNn4sSJE1ixYgWWLVvm9vISiaHmibGwsFDi0pCaqW0Iv6ux6Vpaigg+9tBqtdi1axcyMjKQkpKCiIgIzJ07l0PZSZHsPTESuYOahvC7Q+2aHktNiGy6dg1FBp+EhAQIglDn9nbt2uHbb7+VoERE4rJ1wmNfC3KH2kP4a4YfTx3C725sQnQ/RQYfIjXjiZLchUP4XYtNiNJg8CFSEJ4oyd04hN912IQoDQYfIgUwNG3duBFo9UTJJgdyJTUO4XclW02I5BoMPkQyV7NpC9ADEABojPd7ewuYPHkAEhJ82ORApCBabSkGD95ep+matT2uxeBDJGO1m7aql9fTQ6MRIAhe8PYW8PrrGqSkRElZTCJyUseOR5CUdAbFxWEICytm6HEDBh8iGTPXBwDwwrBh7yMoqAyTJw9g6CFSmNpN0lptqdnAw6Zr12DwIZIhW8OImza9AK22FAkJ/AgTKU3N0XKWcLSc6/CsSSRDHEZM5Nn42ZWORjA3E6CKlZSUQKvVQqfTISQkROriKA7Xn3GNCxcMw4g5qoaIyBx7r9+s8SHRcP0Z1+EwYiIicdTuNUnkNHvXleH6M0REJBUGHyIiIlINBh8iIiJSDQYfIiIiUg0GHyIiIlINBh8iIiJSDQ5nJyIiE5yPizwZgw+Jxt51Zbj+DJF8cT4u8nQMPiQarj9DpHycj4s8HYMPiapmqLlwATh9GmjRgrMOExGRPLBzM7nE2rVAfDzQp0/1v2vXSl0iInKGTheMvLwE6HTBUheFSBSs8SHRXbgATJwI6PXVv+v1wGOPAWlprPlxFjubkhQOH+6ATz8dBEHwgkajx+DB29Gx4xGpi0VULww+JLrTp/8KPQZVVdWrizP4OK52Z1OdLhjFxeEICyuCVltqvJ2dTUlMOl2wMfQAgCB44dNPByEp6YzJcUekNAw+JLoWLQAvL9Pw4+0NJCdLVyYlq1nTY+0bODubkpiKi8ONocdAELxQXBzG4EOKxj4+JLq4OOCNN6rDDlD97+uvs7anvix9A2ffC3KFsLAiaDSmVbcajR5hYcUSlYhIHAw+5BLjxgH5+cDevdX/jhsndYmUz9o3cCKxGObZ0mpLMXjwdmP4MdQwGmp7OB8XKRWbushl4uJYyyMmwzfwmuGH38BJbLXn45o79yry832QkHALsbGdAXRmZ3pSNAYfIoUwfAOv3ceH/S1IbDVDTUwMkJIiYWGIRMbgQ6QgHTseQVLSGRQXhyEsrJihh4jIQQw+RAqj1ZYy8BAROYmdm4lkjou/EpGnuHChetDLhQvSlYE1PkQyx8VficgTrF3716z+Xl7V055IMeKXwYdIARhqiEipioqKkJ9/CxMnNoZerwFgWMpIwB13XEFCgo9bz3EMPkREROQShiV38vISoNePMrmvqkqDVat2IjHxN7cuucM+PkREROQShiZ6WzOBu3PJHQYfIiIicilbM4G7E5u6iIiIyOXkMg8Zgw8RERG5hRzmIWNTFxEREakGgw8RERGpBoMPERERqQaDDxEREbmEHJfcYedmIiIicgk5LrnD4ENEREQuI7cld9jURURERKrB4ENERESqweBDREREqsHgQ0RERKrB4ENERESqweBDREREqsHgQ0RERKrB4ENERESqweBDREREqsHgQ0RERKrB4ENERESqweBDREREqsHgQ0RERKrB4ENERESqweBDREREqsHgQ0RERKrB4ENERESqweBDREREqsHgQ0RERKrB4ENERESqweBDREREqqGo4LNjxw507doVAQEBaNSoEYYMGWJy/7lz5zBw4EAEBgaicePGeOaZZ3Dr1i1pCktERESy4yN1Aey1detWTJgwAfPnz0efPn1w69YtnDhxwnh/VVUVBg4ciOjoaBw4cACXLl3CyJEj4evri/nz50tYciIiIpILjSAIgtSFsOXWrVtISEhAVlYWxo0bZ3abnTt3YtCgQbh48SKioqIAAGvWrMHMmTNx9epV+Pn52fW3SkpKoNVqodPpEBISItprICIiItex9/qtiKauw4cP4/fff4eXlxc6dOiAmJgYDBgwwKTGJycnB23btjWGHgBIS0tDSUkJfv75Z4vPXV5ejpKSEpMfIiJPUFRUhEuXLln8KSoqkrqIRG6niKau//73vwCAefPmYenSpUhISMDLL7+M3r1749dff0VYWBgKCgpMQg8A4+8FBQUWn3vBggXIyspyXeGJiCRQVFSEV155xeZ2mZmZCA8Pd0OJiORB0hqfWbNmQaPRWP05deoU9Ho9AGDOnDkYNmwYUlJSsH79emg0GnzwwQf1KsPs2bOh0+mMP+fPnxfjpRERSaqiokLU7Yg8haQ1PtOnT8fo0aOtbtO8eXNcunQJANC6dWvj7f7+/mjevDnOnTsHAIiOjsZ//vMfk8devnzZeJ8l/v7+8Pf3d6b4REREpDCSBp/IyEhERkba3C4lJQX+/v7Izc3F3//+dwBAZWUl8vPzER8fDwBITU3Fiy++iCtXrqBx48YAgN27dyMkJMQkMBERqZFOF4zi4nCEhRVBqy2VujhEklFEH5+QkBBMmjQJzz33HJo2bYr4+HgsXrwYAHD//fcDAPr374/WrVvj0UcfxUsvvYSCggL885//REZGBmt0iEjVDh/ugE8/HQRB8IJGo8fgwdvRseMRqYtFJAlFBB8AWLx4MXx8fPDoo4/izz//RNeuXbFnzx40atQIAODt7Y3t27fj8ccfR2pqKoKCgjBq1Cj861//krjkROTJioqKrPaT8fPzk7TzsE4XbAw9ACAIXvj000FISjrDmh9SJcUEH19fXyxZsgRLliyxuE18fDw+++wzN5aKiNRMCSOniovDjaHHQBC8UFwcxuBDqqSIeXyIiORICSOnwsKKoNHoTW7TaPQICyuWqERE0mLwISLyQIbZ6rXaUgwevN0Yfgx9fAy1PTqdjhMZkqoopqmLiEju5DRyKjw8HJmZmbhy5QqA95GUdAbFxWEICys2KduWLVsAcCJDUg8GHyIiEchx5FR4eLixmU2rLbUaxjiRIakFm7qIiOrJ0sgpnS5Y4pIRUW0MPkRE9WRt5BQRyQuDDxFRPXHkFJFyMPgQETnJ3pFThu2ISHrs3ExE5CTDyClDx+C5c68iP98HCQm3EBvbGUBnyWdurk1OI8+IpMDgQ0RUDzVDTUwMkJIiYWFskOPIMyJ3Y1MXEZEHMzSz2Rp5xuY4UguNIAiC1IWQk5KSEmi1Wuh0OoSEhEhdHCKieisqKsLevcD999dtcvvwwyL07g1ZNcdJTe4Lz5J59l6/2dRFROThwsPD0a0b4OUF6GsMPvP2Brp2DQev4X9RwsKzVD9s6iIiUoG4OOCNN6rDDlD97+uvV99Of1HCwrNUP6zxISJSiXHjgLQ04MwZIDmZoYfUicGHiEhF4uIYeEjdGHyIiIgcVFhYWOc2dnpWBgYfIiIiB2VnZ5u9nZ2e5Y+dm4mIiETCTs/yx+BDREREqsHgQ0RE9D+cwdrzsY8PERHR/9ReeNagsLDQYr8eUhYGHyIiohpqdk6+cAE4fRoICWEDiafgO0lERGTG2rVAfDzQpw/QpUtjHD7cQeoikQgYfIiIiGq5cAGYOPGvtc30eo3JavakXAw+REREtZw+bbqgKwAIgheKi8OsPo6do+WPfXyIiIhqadHC3Gr2AiZPHoDYWL3Zx3DmZmVg8CEiIqrFsJr9Y48BVVWG1ew1SEmJkrpoVE8MPkRERGZYW83eMNqrRQsu+qo07ONDRERkQVwc0Lu3abipOdorPr76d1IOBh8iIiI71R3tVd0cduGCtOUi+zH4EBER2cncaK+qqurmMFIGBh8iIiI7GUZ71eTtXd0HiJSBwYeIiMhOhtFe3t7Vv1eP9mIHZyXhqC4iIiIHWBvtRfLH4ENEROSguDgGHqViUxcRERGpBoMPERERqQaDDxEREakGgw8RERGpBoMPERERqQaDDxEREakGgw8RERGpBoMPERERqQaDDxEREakGgw8RERGpBoMPERERqQbX6qpFEAQAQElJicQlISIiInsZrtuG67glDD61lJaWAgCaNm0qcUmIiIjIUaWlpdBqtRbv1wi2opHK6PV6XLx4EcHBwdBoNFIXx21KSkrQtGlTnD9/HiEhIVIXR9G4L8XB/Sge7kvxcF+KwxX7URAElJaWIjY2Fl5elnvysManFi8vL8TFxUldDMmEhITwwywS7ktxcD+Kh/tSPNyX4hB7P1qr6TFg52YiIiJSDQYfIiIiUg0GHwIA+Pv747nnnoO/v7/URVE87ktxcD+Kh/tSPNyX4pByP7JzMxEREakGa3yIiIhINRh8iIiISDUYfIiIiEg1GHyIiIhINRh8VOabb77B4MGDERsbC41Gg48++sjkfkEQMHfuXMTExCAgIAD9+vXD6dOnpSmszNnal6NHj4ZGozH5SU9Pl6awMrZgwQJ07twZwcHBaNy4MYYMGYLc3FyTbW7evImMjAyEh4ejYcOGGDZsGC5fvixRieXJnv3Yu3fvOsfkpEmTJCqxfK1evRrt2rUzTq6XmpqKnTt3Gu/n8Wg/W/tSimOSwUdlbty4gfbt2+PVV181e/9LL72ElStXYs2aNTh48CCCgoKQlpaGmzdvurmk8mdrXwJAeno6Ll26ZPx599133VhCZdi3bx8yMjLw/fffY/fu3aisrET//v1x48YN4zZPPfUUPv30U3zwwQfYt28fLl68iKFDh0pYavmxZz8CwIQJE0yOyZdeekmiEstXXFwcFi5ciEOHDuHHH39Enz59cO+99+Lnn38GwOPREbb2JSDBMSmQagEQtm3bZvxdr9cL0dHRwuLFi423Xbt2TfD39xfeffddCUqoHLX3pSAIwqhRo4R7771XkvIo2ZUrVwQAwr59+wRBqD4GfX19hQ8++MC4zcmTJwUAQk5OjlTFlL3a+1EQBKFXr17Ck08+KV2hFKxRo0bCv//9bx6PIjDsS0GQ5phkjQ8Z5eXloaCgAP369TPeptVq0bVrV+Tk5EhYMuX6+uuv0bhxY7Rs2RKPP/44ioqKpC6S7Ol0OgBAWFgYAODQoUOorKw0OS5btWqFZs2a8bi0ovZ+NHjnnXcQERGB22+/HbNnz0ZZWZkUxVOMqqoqvPfee7hx4wZSU1N5PNZD7X1p4O5jkouUklFBQQEAICoqyuT2qKgo431kv/T0dAwdOhSJiYk4e/Ys/vGPf2DAgAHIycmBt7e31MWTJb1ej6lTp6JHjx64/fbbAVQfl35+fggNDTXZlselZeb2IwA8/PDDiI+PR2xsLI4fP46ZM2ciNzcX2dnZEpZWnn766Sekpqbi5s2baNiwIbZt24bWrVvj6NGjPB4dZGlfAtIckww+RC7y4IMPGv/ftm1btGvXDklJSfj666/Rt29fCUsmXxkZGThx4gT2798vdVEUzdJ+nDhxovH/bdu2RUxMDPr27YuzZ88iKSnJ3cWUtZYtW+Lo0aPQ6XT48MMPMWrUKOzbt0/qYimSpX3ZunVrSY5JNnWRUXR0NADUGZ1w+fJl433kvObNmyMiIgJnzpyRuiiylJmZie3bt2Pv3r2Ii4sz3h4dHY2Kigpcu3bNZHsel+ZZ2o/mdO3aFQB4TJrh5+eH5ORkpKSkYMGCBWjfvj1WrFjB49EJlvalOe44Jhl8yCgxMRHR0dH46quvjLeVlJTg4MGDJu2x5JwLFy6gqKgIMTExUhdFVgRBQGZmJrZt24Y9e/YgMTHR5P6UlBT4+vqaHJe5ubk4d+4cj8sabO1Hc44ePQoAPCbtoNfrUV5ezuNRBIZ9aY47jkk2danM9evXTZJ0Xl4ejh49irCwMDRr1gxTp07FCy+8gBYtWiAxMRHPPvssYmNjMWTIEOkKLVPW9mVYWBiysrIwbNgwREdH4+zZs5gxYwaSk5ORlpYmYanlJyMjA5s3b8bHH3+M4OBgYz8JrVaLgIAAaLVajBs3DtOmTUNYWBhCQkIwefJkpKamolu3bhKXXj5s7cezZ89i8+bN+L//+z+Eh4fj+PHjeOqpp9CzZ0+0a9dO4tLLy+zZszFgwAA0a9YMpaWl2Lx5M77++mt88cUXPB4dZG1fSnZMunUMGUlu7969AoA6P6NGjRIEoXpI+7PPPitERUUJ/v7+Qt++fYXc3FxpCy1T1vZlWVmZ0L9/fyEyMlLw9fUV4uPjhQkTJggFBQVSF1t2zO1DAML69euN2/z555/CE088ITRq1EgIDAwU/t//+3/CpUuXpCu0DNnaj+fOnRN69uwphIWFCf7+/kJycrLwzDPPCDqdTtqCy9DYsWOF+Ph4wc/PT4iMjBT69u0r7Nq1y3g/j0f7WduXUh2TGkEQBNfFKiIiIiL5YB8fIiIiUg0GHyIiIlINBh8iIiJSDQYfIiIiUg0GHyIiIlINBh8iIiJSDQYfIiIiUg0GHyIiIlINBh8iIiJSDQYfIlKMiooKqYtQhxzLRESWMfgQkWR69+6NzMxMZGZmQqvVIiIiAs8++ywMK+kkJCTg+eefx8iRIxESEoKJEycCAPbv348777wTAQEBaNq0KaZMmYIbN24Yn/e1115DixYt0KBBA0RFReG+++4z3vfhhx+ibdu2CAgIQHh4OPr162d8bO/evTF16lSTMg4ZMgSjR482/u5smYhIHhh8iEhSGzduhI+PD/7zn/9gxYoVWLp0Kf79738b71+yZAnat2+PI0eO4Nlnn8XZs2eRnp6OYcOG4fjx49iyZQv279+PzMxMAMCPP/6IKVOm4F//+hdyc3Px+eefo2fPngCAS5cu4aGHHsLYsWNx8uRJfP311xg6dCgcXbLQ0TIRkXxwkVIikkzv3r1x5coV/Pzzz9BoNACAWbNm4ZNPPsEvv/yChIQEdOjQAdu2bTM+Zvz48fD29sbrr79uvG3//v3o1asXbty4gc8++wxjxozBhQsXEBwcbPL3Dh8+jJSUFOTn5yM+Pt5see644w4sX77ceNuQIUMQGhqKDRs2AIBTZWrQoEG99hMRiYc1PkQkqW7duhlDDwCkpqbi9OnTqKqqAgB06tTJZPtjx45hw4YNaNiwofEnLS0Ner0eeXl5uPvuuxEfH4/mzZvj0UcfxTvvvIOysjIAQPv27dG3b1+0bdsW999/P95880388ccfDpfZ0TIRkXww+BCRrAUFBZn8fv36dTz22GM4evSo8efYsWM4ffo0kpKSEBwcjMOHD+Pdd99FTEwM5s6di/bt2+PatWvw9vbG7t27sXPnTrRu3RqrVq1Cy5YtjeHEy8urTrNXZWVlvctERPLB4ENEkjp48KDJ799//z1atGgBb29vs9t37NgRv/zyC5KTk+v8+Pn5AQB8fHzQr18/vPTSSzh+/Djy8/OxZ88eAIBGo0GPHj2QlZWFI0eOwM/Pz9hsFRkZiUuXLhn/VlVVFU6cOGHzNdhTJiKSBwYfIpLUuXPnMG3aNOTm5uLdd9/FqlWr8OSTT1rcfubMmThw4AAyMzNx9OhRnD59Gh9//LGxI/H27duxcuVKHD16FL/99hveeust6PV6tGzZEgcPHsT8+fPx448/4ty5c8jOzsbVq1dx2223AQD69OmDHTt2YMeOHTh16hQef/xxXLt2zeZrsFUmIpIPH6kLQETqNnLkSPz555/o0qULvL298eSTTxqHiJvTrl077Nu3D3PmzMGdd94JQRCQlJSE4cOHAwBCQ0ORnZ2NefPm4ebNm2jRogXeffddtGnTBidPnsQ333yD5cuXo6SkBPHx8Xj55ZcxYMAAAMDYsWNx7NgxjBw5Ej4+Pnjqqadw11132XwNtspERPLBUV1EJBlzo6iIiFyJTV1ERESkGgw+REREpBps6iIiIiLVYI0PERERqQaDDxEREakGgw8RERGpBoMPERERqQaDDxEREakGgw8RERGpBoMPERERqQaDDxEREakGgw8RERGpxv8HNHb6HLweKYwAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1000,7 +4089,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABg+klEQVR4nO3dfVzT5f4/8Ndn40ZAGHIPooBgmqYmWIaVllnqUTv9tCQz06S0jmikeXc8mWalZpqaZdrX1CzTSuukZmlllkpm3sbJTAxUErwZMlBTYLt+f6zNbWxjjN2y1/Px4KH7fD7brn2i9uq63td1SUIIASIiIiIfIHN3A4iIiIhchcGHiIiIfAaDDxEREfkMBh8iIiLyGQw+RERE5DMYfIiIiMhnMPgQERGRz2DwISIiIp/B4ENEREQ+g8GHiMgDrVq1CpIkoaioyN1NIWpUGHyIfNS+ffuQk5OD9u3bIyQkBC1btsTgwYPx+++/17r2rrvugiRJkCQJMpkMYWFhaNOmDYYNG4bt27fX6303bdqEHj16ICYmBsHBwWjVqhUGDx6ML7/80lEfrZZXXnkFn332Wa3je/bswYwZM1BeXu609zY1Y8YM/b2UJAnBwcFo164d/vOf/6CiosIh77F27VosXLjQIa9F1Ngw+BD5qLlz52LDhg245557sGjRIowaNQrff/890tPTkZ+fX+v6xMRErFmzBu+99x7mzZuH+++/H3v27MF9992HrKwsVFdX1/mer732Gu6//35IkoSpU6fi9ddfx6BBg3D8+HGsW7fOGR8TgPXgM3PmTJcGH52lS5dizZo1WLBgAdq2bYuXX34Zffr0gSO2T2TwIbLMz90NICL3GD9+PNauXYuAgAD9saysLHTo0AFz5szB+++/b3S9QqHAo48+anRszpw5GDduHN566y0kJydj7ty5Ft+vpqYGs2bNwr333ott27bVOn/u3LkGfiLPceXKFQQHB1u95sEHH0RUVBQA4KmnnsKgQYOwceNG/Pjjj8jMzHRFM4l8Ent8iHxUt27djEIPALRu3Rrt27fH0aNHbXoNuVyOxYsXo127dliyZAlUKpXFay9cuICKigrcfvvtZs/HxMQYPb569SpmzJiBG264AU2aNEF8fDwGDhyIEydO6K957bXX0K1bN0RGRiIoKAgZGRn45JNPjF5HkiRcvnwZq1ev1g8vjRgxAjNmzMDEiRMBACkpKfpzhjU177//PjIyMhAUFISIiAg8/PDDOH36tNHr33XXXbjpppuwf/9+dO/eHcHBwfj3v/9t0/0z1LNnTwBAYWGh1eveeusttG/fHoGBgUhISMCYMWOMeqzuuusubNmyBSdPntR/puTk5Hq3h6ixYo8PEekJIXD27Fm0b9/e5ufI5XIMGTIEzz//PHbt2oV+/fqZvS4mJgZBQUHYtGkTxo4di4iICIuvqVar0b9/f3zzzTd4+OGH8cwzz6CyshLbt29Hfn4+UlNTAQCLFi3C/fffj6FDh6Kqqgrr1q3DQw89hM2bN+vbsWbNGjzxxBO49dZbMWrUKABAamoqQkJC8Pvvv+PDDz/E66+/ru99iY6OBgC8/PLLeP755zF48GA88cQTOH/+PN544w10794dBw8eRHh4uL69SqUSffv2xcMPP4xHH30UsbGxNt8/HV2gi4yMtHjNjBkzMHPmTPTq1QtPP/00jh07hqVLl2Lfvn3YvXs3/P39MW3aNKhUKhQXF+P1118HADRt2rTe7SFqtAQR0d/WrFkjAIgVK1YYHe/Ro4do3769xed9+umnAoBYtGiR1defPn26ACBCQkJE3759xcsvvyz2799f67p3331XABALFiyodU6j0ej/fuXKFaNzVVVV4qabbhI9e/Y0Oh4SEiKGDx9e67XmzZsnAIjCwkKj40VFRUIul4uXX37Z6Pgvv/wi/Pz8jI736NFDABBvv/22xc9t6IUXXhAAxLFjx8T58+dFYWGhWLZsmQgMDBSxsbHi8uXLQgghVq5cadS2c+fOiYCAAHHfffcJtVqtf70lS5YIAOLdd9/VH+vXr59ISkqyqT1EvoZDXUQEAPjtt98wZswYZGZmYvjw4fV6rq5HobKy0up1M2fOxNq1a9G5c2d89dVXmDZtGjIyMpCenm40vLZhwwZERUVh7NixtV5DkiT934OCgvR/v3jxIlQqFe68804cOHCgXu03tXHjRmg0GgwePBgXLlzQ/8TFxaF169bYsWOH0fWBgYF4/PHH6/Uebdq0QXR0NFJSUjB69GikpaVhy5YtFmuDvv76a1RVVSE3Nxcy2fX/dD/55JMICwvDli1b6v9BiXwQh7qICKWlpejXrx8UCgU++eQTyOXyej3/0qVLAIDQ0NA6rx0yZAiGDBmCiooK7N27F6tWrcLatWsxYMAA5Ofno0mTJjhx4gTatGkDPz/r/4navHkzXnrpJRw6dAjXrl3THzcMR/Y4fvw4hBBo3bq12fP+/v5Gj5s3b16rXqouGzZsQFhYGPz9/ZGYmKgfvrPk5MmTALSByVBAQABatWqlP09E1jH4EPk4lUqFvn37ory8HD/88AMSEhLq/Rq66e9paWk2PycsLAz33nsv7r33Xvj7+2P16tXYu3cvevToYdPzf/jhB9x///3o3r073nrrLcTHx8Pf3x8rV67E2rVr6/0ZDGk0GkiShK1bt5oNgaY1M4Y9T7bq3r27vq6IiFyHwYfIh129ehUDBgzA77//jq+//hrt2rWr92uo1WqsXbsWwcHBuOOOO+xqR5cuXbB69WqUlJQA0BYf7927F9XV1bV6V3Q2bNiAJk2a4KuvvkJgYKD++MqVK2tda6kHyNLx1NRUCCGQkpKCG264ob4fxymSkpIAAMeOHUOrVq30x6uqqlBYWIhevXrpjzW0x4uoMWOND5GPUqvVyMrKQl5eHj7++GO71o5Rq9UYN24cjh49inHjxiEsLMzitVeuXEFeXp7Zc1u3bgVwfRhn0KBBuHDhApYsWVLrWvH3An9yuRySJEGtVuvPFRUVmV2oMCQkxOwihSEhIQBQ69zAgQMhl8sxc+bMWgsKCiGgVCrNf0gn6tWrFwICArB48WKjNq1YsQIqlcpoNl1ISIjVpQWIfBl7fIh81IQJE/D5559jwIABKCsrq7VgoelihSqVSn/NlStXUFBQgI0bN+LEiRN4+OGHMWvWLKvvd+XKFXTr1g233XYb+vTpgxYtWqC8vByfffYZfvjhBzzwwAPo3LkzAOCxxx7De++9h/Hjx+Onn37CnXfeicuXL+Prr7/Gv/71L/zzn/9Ev379sGDBAvTp0wePPPIIzp07hzfffBNpaWk4cuSI0XtnZGTg66+/xoIFC5CQkICUlBR07doVGRkZAIBp06bh4Ycfhr+/PwYMGIDU1FS89NJLmDp1KoqKivDAAw8gNDQUhYWF+PTTTzFq1Cg899xzDbr/9RUdHY2pU6di5syZ6NOnD+6//34cO3YMb731Fm655Rajf14ZGRlYv349xo8fj1tuuQVNmzbFgAEDXNpeIo/lzillROQ+umnYln6sXdu0aVPRunVr8eijj4pt27bZ9H7V1dXinXfeEQ888IBISkoSgYGBIjg4WHTu3FnMmzdPXLt2zej6K1euiGnTpomUlBTh7+8v4uLixIMPPihOnDihv2bFihWidevWIjAwULRt21asXLlSP13c0G+//Sa6d+8ugoKCBACjqe2zZs0SzZs3FzKZrNbU9g0bNog77rhDhISEiJCQENG2bVsxZswYcezYMaN7Y22qvyld+86fP2/1OtPp7DpLliwRbdu2Ff7+/iI2NlY8/fTT4uLFi0bXXLp0STzyyCMiPDxcAODUdiIDkhAO2BiGiIiIyAuwxoeIiIh8BoMPERER+QwGHyIiIvIZDD5ERETkMxh8iIiIyGcw+BAREZHP4AKGJjQaDc6cOYPQ0FAu+05EROQlhBCorKxEQkICZDLL/ToMPibOnDmDFi1auLsZREREZIfTp08jMTHR4nkGHxOhoaEAtDfO2r5DRERE5DkqKirQokUL/fe4JQw+JnTDW2FhYQw+REREXqauMhUWNxMREZHPYPAhIiIin8HgQ0RERD6DNT520Gg0qKqqcnczGrWAgACr0xGJiIjs4TXBZ/bs2di4cSN+++03BAUFoVu3bpg7dy7atGmjv+bq1auYMGEC1q1bh2vXrqF379546623EBsb67B2VFVVobCwEBqNxmGvSbXJZDKkpKQgICDA3U0hIqJGRBJCCHc3whZ9+vTBww8/jFtuuQU1NTX497//jfz8fPz6668ICQkBADz99NPYsmULVq1aBYVCgZycHMhkMuzevdvm96moqIBCoYBKpao1q0sIgVOnTqG6urrOBZLIfrpFJP39/dGyZUsuJElERHWy9v1tyGuCj6nz588jJiYGO3fuRPfu3aFSqRAdHY21a9fiwQcfBAD89ttvuPHGG5GXl4fbbrvNpte1duOqq6tRUFCAhIQEKBQKh38muk6lUuHMmTNIS0uDv7+/u5tDREQeztbg47VdFiqVCgAQEREBANi/fz+qq6vRq1cv/TVt27ZFy5YtkZeX55D3VKvVAMDhFxfQ3WPdPSciInIEr6nxMaTRaJCbm4vbb78dN910EwCgtLQUAQEBCA8PN7o2NjYWpaWlFl/r2rVruHbtmv5xRUVFne/PoRfn4z0mIiJn8MrgM2bMGOTn52PXrl0Nfq3Zs2dj5syZDmgVERGRb1AqlVZnNwcEBCAyMtKFLbKd1wWfnJwcbN68Gd9//73RJmRxcXGoqqpCeXm5Ua/P2bNnERcXZ/H1pk6divHjx+sf6/b6ICIiotqUSiWWLFlS53U5OTkeGX68psZHCIGcnBx8+umn+Pbbb5GSkmJ0PiMjA/7+/vjmm2/0x44dO4ZTp04hMzPT4usGBgbq9+VqrPtzjRgxApIkQZIk+Pv7IzY2Fvfeey/efffdek3LX7VqVa2hRCIi8i22rmPnqevdeU2Pz5gxY7B27Vr897//RWhoqL5uR6FQICgoCAqFAtnZ2Rg/fjwiIiIQFhaGsWPHIjMz0+YZXc7mzq7BPn36YOXKlVCr1Th79iy+/PJLPPPMM/jkk0/w+eefw8/Pa34ViIiI7OY133ZLly4FANx1111Gx1euXIkRI0YAAF5//XXIZDIMGjTIaAFDT+DursHAwED9kF/z5s2Rnp6O2267Dffccw9WrVqFJ554AgsWLMDKlSvxxx9/ICIiAgMGDMCrr76Kpk2b4rvvvsPjjz8O4Hrh8QsvvIAZM2ZgzZo1WLRoEY4dO4aQkBD07NkTCxcuRExMjMM/BxERUUN41VCXuR9d6AGAJk2a4M0330RZWRkuX76MjRs3Wq3vcSVP7Brs2bMnOnXqhI0bNwLQrpa8ePFi/O9//8Pq1avx7bffYtKkSQCAbt26YeHChQgLC0NJSQlKSkrw3HPPAdCubzRr1iwcPnwYn332GYqKioz+uRAREXkKr+nxIedo27Ytjhw5AgDIzc3VH09OTsZLL72Ep556Cm+99RYCAgKgUCggSVKtMDly5Ej931u1aoXFixfjlltuwaVLl9C0aVOXfA4iIiJbeE2PDzmHEEI/dPX111/jnnvuQfPmzREaGophw4ZBqVTiypUrVl9j//79GDBgAFq2bInQ0FD06NEDAHDq1Cmnt5+IiNxLpQpFYWEyVKpQdzfFJgw+Pu7o0aNISUlBUVER+vfvj44dO2LDhg3Yv38/3nzzTQDWh98uX76M3r17IywsDB988AH27duHTz/9tM7nERGR9ztwoDMWLszF6tXDsXBhLg4c6OzuJtWJQ10+7Ntvv8Uvv/yCZ599Fvv374dGo8H8+fP1m69+9NFHRtcHBATU2kLit99+g1KpxJw5c/TrH/3888+u+QBERORyui2FVKpQbNrUH0JovzOEkGHTpv5ITS2AQlHpsds7scfHR1y7dg2lpaX4888/ceDAAbzyyiv45z//if79++Oxxx5DWloaqqur8cYbb+CPP/7AmjVr8Pbbbxu9RnJyMi5duoRvvvkGFy5cwJUrV9CyZUsEBATon/f5559j1qxZbvqURETkbJGRkcjJyUG3bsP1oUdHCBluv324xy5eCDD4+Iwvv/wS8fHxSE5ORp8+fbBjxw4sXrwY//3vfyGXy9GpUycsWLAAc+fOxU033YQPPvgAs2fPNnqNbt264amnnkJWVhaio6Px6quvIjo6GqtWrcLHH3+Mdu3aYc6cOXjttdfc9CmJiMgVIiMjcdttkZCZpAi5HOjaNdJjQw8ASEII4e5GeBJr29pfvXoVhYWFSElJQZMmTer1uu5ex8fbNOReExE1Bt6wH9aKFcDo0YBarQ09y5YB2dnuaYu1729DrPFxEV3XoKf/EhMRkft5y/8sZ2cDvXsDBQVAWhpgsIWmx2LwcSGGGiIisoUnLnprSWKidwQeHdb4EBERkc9g8CEiIvJw3rZIoCfjUBcREZEHO3Cgs369HEnSYMCAzUhPP+juZnkt9vgQERF5KEuLBLLnx34MPkRERB6qrCzS7CKBZWURbmqR9+NQFxERkYeKiFBCkjRG4UeSNIiIKNM/Nl3vp7y8HDU1NfrH/v7+UCgU+se+vnQKgw8REfk8T1ssULfPlUJRiQEDNteq8VEoKgEAV65cwfLly+v9+u5e/8edGHyowb777jvcfffduHjxIsLDw216TnJyMnJzc5Gbm+vUthER1cV0sUCVKhRlZZGIiFDqAwbg2rBguujt9OnnUVTkh+TkGiQk3ALgFgQEBNi9jo8nrP/jLqzx8QEjRoyAJEl46qmnap0bM2YMJEnCiBEjXN8wIiIPYBgCDhzojIULc7F69XAsXJiLAwc6m73OFSIjIxEfH4/4+HhkZMRi0KBIZGTE6o/5ao9NQzH4+IgWLVpg3bp1+Ouvv/THrl69irVr16Jly5ZubBkRkWdoDDOoTNf74fo/tTH4+Ij09HS0aNECGzdu1B/buHEjWrZsic6dr/8fzbVr1zBu3DjExMSgSZMmuOOOO7Bv3z6j1/riiy9www03ICgoCHfffTeKiopqvd+uXbtw5513IigoCC1atMC4ceNw+fJlp30+IqKG8vYZVKa9VZ9++k+LvVe+jMHHTYqLgR07tH+6ysiRI7Fy5Ur943fffRePP/640TWTJk3Chg0bsHr1ahw4cABpaWno3bs3ysq0MwhOnz6NgQMHYsCAATh06BCeeOIJTJkyxeg1Tpw4gT59+mDQoEE4cuQI1q9fj127diEnJ8f5H5KIyE66GVSGTGdQeSpzvVWHD3fy6t4rZ2HwcYMVK4CkJKBnT+2fK1a45n0fffRR7Nq1CydPnsTJkyexe/duPProo/rzly9fxtKlSzFv3jz07dsX7dq1wzvvvIOgoCCs+LuRS5cuRWpqKubPn482bdpg6NChteqDZs+ejaFDhyI3NxetW7dGt27dsHjxYrz33nu4evWqaz4sEVE96WZQ6cKP6QwqT2autwqQjB55U++VM3FWl4sVFwOjRgGav/+nQqMBRo8Gevd2/u620dHR6NevH1atWgUhBPr164eoqCj9+RMnTqC6uhq33367/pi/vz9uvfVWHD16FABw9OhRdO3a1eh1MzMzjR4fPnwYR44cwQcffKA/JoSARqNBYWEhbrzxRmd8PCKiBktPP4jU1AKUlUUgIqLMK0IPYH69H0DAMPx4S++VszH4uNjx49dDj45aDRQUOD/4ANrhLt2Q05tvvumU97h06RJGjx6NcePG1TrHQmoi8nQKRaXXBB5r6/107HgER450NLv+j+55ruBpayQx+LhY69aATGYcfuRyIC3NNe/fp08fVFVVQZIk9O7d2+hcamoqAgICsHv3biQlJQEAqqursW/fPv16OzfeeCM+//xzo+f9+OOPRo/T09Px66+/Is1VH4qIyEaGX8JnzshQWOiHyMhLNj3XlWHBHEsBIisrC9XV1Rg82A/Tp59Hfv5VJCRcQVycHKWlx1BSEoL27QON1v9xZNCwFmzKy8vx0Ucf1fkarlwjicHHxRITgeXLtcNbarU29Cxb5preHgCQy+X6YSu5XG50LiQkBE8//TQmTpyIiIgItGzZEq+++iquXLmC7OxsAMBTTz2F+fPnY+LEiXjiiSewf/9+rFq1yuh1Jk+ejNtuuw05OTl44oknEBISgl9//RXbt283WiSMiMiVDBcqNN7xvBkGDOis3/E8KyvLaIsH4HqvhLt6L0wXWbQkJycHGRlJ+scdOji8KUZsbVddXLlGEoOPG2Rna2t6Cgq0PT2uCj06YWFhFs/NmTMHGo0Gw4YNQ2VlJbp06YKvvvoKzZo1A6AdqtqwYQOeffZZvPHGG7j11lvxyiuvYOTIkfrX6NixI3bu3Ilp06bhzjvvhBACqampyMrKcvpnIyKyRPflamm9ntTUgr+HuRSIj4+v9Xx3rvBsazBwRICoT7jzxhWgGXzcJDHRdYHHtEfG1Geffab/e5MmTbB48WIsXrzY4vX9+/dH//79jY6ZTou/5ZZbsG3bNouvYW7tHyIiV7C2Xo+12h7TFZ5N98/S9RiZCwOeVudiSX16ljyhvfZg8CEiIp9iy47n1tTVY2TK1jAxePBgxMTE2BQoLPU2NZQre5bchcGHiIi8SnGxdoZs69b29ZzXteN5XerbY2QaEiyFFl0RcF29KdZ6m2xhrffpwoULNr+Ot2LwISIir7FixfW10GQy7WSRv+de1EtD1utpSI+RYWgBNOjWLQ9du+41en9rvSn17W0y5ahiZGvts9YT5ayeqvpg8CEiIo+nVCpRVFSDUaNioNFoF+XTLgArcPPN55Cc7FfvmhN71+uxt8fINLQAMuzZczvy8jJt7rWxtz5Jx5lDVHX1RDW0p8pRGHzsIIRwdxMaPd5jItLR9VIUFiZDoxludE6tlvDGG1uRknLSpQW39vQYmd9Won69Ng2tT6ovW3to6uqJquu8K9dIYvCpB926N1VVVQgKCnJzaxo33f+VmK41RES+R/ffg7q+9C31ZuhqWlQqlU1f5LZ+CVvqMTKtk9E9Nr+thFZdvTbWVmh21orMtvTQ6N7PUk/U6dOJKCv7C5cvB5s9f/vtw3HXXeDKzZ7Kz88PwcHBOH/+PPz9/SGTcY9XZ9BoNDh//jyCg4Ph58dfUSLSsmeIqfaihblmv8gHDx6M8PBwq9PKbQ0VGzdutNr+zz/vD9M9wuvqtYmMjEROTo4+3E2ffh5FRX5ITq5p0IrMloKgrbVEunYVFdVgzRqhH4bUfaZPPnnw78+qgeneYXI50LVrJFw9K57fKvUgSRLi4+NRWFiIkydPurs5jZpMJkPLli0hSVLdFxORz6jvEJOtixaGh4ebXbTQkGn40Llw4YJR2LHWq6Rr/969XZGXl1mvGiHDUBMfD2RkWL28TtZ6dOqqJTIMgZGR2vCi3ZVAQK2W/u7ZAq4HPG34kSQBIWSQywWWLZNcvoAvwOBTbwEBAWjdurVXr2HgDQICAtijRkRm2VKUrJvyHham/e9IQ4uCderqUbFleEihqMR9932Nrl33um0X+LqC4NCht9bqwZHLBcaO7WuxkDw7G7j55nN4442tuHw5BJ988pDJFTIMGvQRQkKuYOzYvsjIiHXmR7SIwccOMpkMTZo0cXcziIjIQHl5OQBg7dogTJqkgEYjQSaLQf/+nZGaWuD0ouD6TjW3FOBcUehbVxC86aZwLF8umewrKdUZVpKT/ZCSchIqVajZ+92iRTEUikokJ7svfjD4EBFRo/DRRx9BpQrFwoW5EEI35V3Cpk39kZu7sEGLFtrC1l4lS0NhAwcOREJCglMLfXWhqq5C8YCAALv2lTQcDmzevAKTJyugVkuQywXmzq3AI48Mcfv2HAw+RETUaFgLHw1ZtNAc3Wwxa7O2THuVrA2FRUVFOT0Q1DeY2LOvpO65EyYAWVm64CQhMTEcQLhDP489GHyIiMij1Wfop67wYe+ihabMrYBc16yzhq667CiuDCau3JDbVgw+RETk0SzNpjKkUqmwfv36Bu/DZStL+2+lphYgN3eh2V4lRxVYO5InBhNnY/AhIiKPV58hIHuGtBpSUGzrVgyuXnWZzGPwISKiRsfSkNbAgQMRFRVldKwhxbZ1DV8NHDgQgHZRQ1f1RpF1DD5EROQzoqKi6lyosD7qGr4yDVmOLrCm+mPwISKiRk9Xg5OfX64/5ohp1bYMX5kOo7lz/R5i8CEiokbAWmgwrMF57z3jGpyG7uhuy/CVLcXZ7l7bxpcw+BARkdczDRe6/bPqqsFxxPZDtgxfMdR4DgYfIqJGRrdPVevWvjVV2Vy4cNYUcg5feS8GHyKiRmTFCmDUKECjAWQy7Y7Z2dnubpX7OGsKuSOHr3w1qLoLgw8RUSNRXHw99ADaP0eP1u635KtfqM6cQu6I4SsGVddj8CEi8mKGvQXHj18PPTpqtXZLAl8NPoBnTiFXKpUoKqrBqFEx0Gh0G6oCo0cL3HzzOSQn+7EuyEkYfIiIvJRpb8GcOdo/DcOPXK7dWdvXOWqPLkfQ7fNVWJgMjWa40Tm1WsIbb2xFSsrJBs84I/NkdV9CRESextyw1tSpAv/+twpyuQCAv3fcLodcXgKlUunG1pIhXV2Qrv7IkGH9kSNmnFFt7PEhIvJC5oe1JJw+/SnGjSvTD+tculSJ5cu1532pB8HW2VTunHXFLSzcg8GHiMgLtW5de1hL11tgaVjHl3oQvGXRQE+sP2rsGHyIiCzw1GnGSqUScnkVXn01CJMnK6BWS+wtMMPdocZWnlR/5AsYfIiIzPDUaca6wlidceNC2VtAVA8sbiYiMmFpPZziYve2C6g9XKVQVCIl5SRDD5GNGHyIiExYWw+HiLwbgw8RkQld4bAhrofjvYqLgR07PKPHDvCOGWeNGWt8iIhMJCZqa3pGj9b29MjlwLJlnlXg7G6eWvhtyhNrtbxlxlljxeBDRGRAqVSiqqoK//gHsHevDEVFfkhOrkFCggYlJd79heSoHgRPDBOmPH1LCG/9HWoMGHyIiP5mOmNKJz/f+LGtCwG6s1dk4MCBiIqK0j92VGDzho1QuSUEWcPgQ0T0N1sX+LPlOnf3ikRFRSE+Pt6hr6lUKvHjj4BGYxwW1Gpg714lgoLc25OhC5phYTUArm8JIcT1gi1uCUEsbiYicjBnTod3V2Gsrhdlz57VZveX2r17NZYsWWLTnmCOKDY2fI3iYmDiRCApCejZE7j11hgcONBZvyWErr1c5JEA9vgQETmctenwDR0OcldhrO796tpfqq5eFEf0hBm+hiQBQhif12gkbNrUH6mpBdwSgmph8CEicjBz+2g5cjq8u+tS7AkTv/xyEXv2CDz9dDMIYX+xsWlvmmno0RFChrKyCP12EAw8pNMoh7refPNNJCcno0mTJujatSt++ukndzeJiHyIbjq8XK593Binw9dnxehFiy6hUycFnnoqQh96dHTFxrYOk5nrTTPHsJaHyFCj6/FZv349xo8fj7fffhtdu3bFwoUL0bt3bxw7dgwxMTHubh4RNXKNeTp8femmlI8fH1Mr8OjUt9jYXG+aKZlMoH9/1vKQeY0u+CxYsABPPvkkHn/8cQDA22+/jS1btuDdd9/FlClT3Nw6ImrMHD0d3ptZm1KuU99iY8Nd6SdNUvy9Po/m7zofGQANunXLQ9euexl6yKJGFXyqqqqwf/9+TJ06VX9MJpOhV69eyMvLM/uca9eu4dq1a/rHFRUVTm8nEXmmhs6YcuR0eG+n+4zmppRraZCd/X9ITCyx6fVMQ+Uzz1zflR6AXcXL3BLCNzWq4HPhwgWo1WrExsYaHY+NjcVvv/1m9jmzZ8/GzJkzXdE8IvJw3ErAMYqLgR9/DIBKFQqFohKZmXnYs+d2k6tkqK62PXiY25XeMORYCzymizkC/OfoyxpV8LHH1KlTMX78eP3jiooKtGjRwo0tIiJ3aixfho5eNdrW3pGPPgrF+PHaRQ4lKRcDBmxG1657sWdPJgzn07iy+NgZizmS92pUwScqKgpyuRxnz541On727FnExcWZfU5gYCACAwNd0TwiIj1LwcQRgcUZq0bb0ht24UIT3HxzU4Op5jJs2tQfubkLcf/9ltf+IXKlRhV8AgICkJGRgW+++QYPPPAAAECj0eCbb75BTk6OextHRPS3tWuDMGlS7WDiiMDizL20rPWGKZVKHDumqTXbSreeDhcSJE/RqIIPAIwfPx7Dhw9Hly5dcOutt2LhwoW4fPmyfpYXEZE7qVShePFFRa1g0rFj3YGlrt4gd+2lpSs8VqlCIUm5FvfGqmshQRYbkys0uuCTlZWF8+fPY/r06SgtLcXNN9+ML7/8slbBMxGRO5SVRf49Dfs6tRrYtcv6Nhd19QbVFT52716N/PzKBk2lNw1eppuC1rWdhSUDBw5EQkJCo6mvIs/W6IIPoF0jg0NbRORqtvRYREQoIZMJo/AjkwnExhZAJkszOi6XC4SGnsMvvwRg1KhmVnuDHLWXliWmwWvYMGDNGt3jGPTv3xnp6QftGtKKiopyauhhTxIZapTBh4jIHawVAJeXl+Ojjz6CQlGJ/v03GQWT/v034/jxg+jfv7PR8X79NmPz5oNmFwG0NnxVV/iobwG1ubqh1auvnzfcFNRZe2PZE14GDx6MmJgY9iSREQYfIiIHsuVL1lIwsXTc3CKApsNXpiyFD0uF1dbYsj+W4aagzmAaKlUqFaqrq42u8fPzQ3h4OACu00OWMfgQEbmBLpioVKEoLExGRITSYm+Jo4avLBVW1zXjy5b9sRqyLo+tvTmGQYbr8pC9GHyIiNzkwIHOtcJMevpBs9c6Yjq4pcJqazO+DPfHmjxZAbVaglwuMHDgX9i4MUj/uF8/24qYuYIyuRuDDxGRG6hUofrQA1xf7E9XJ2NOQ2tnbBkyMwwhpvtjjRsXahS8EhO1jx944CYcPmw+sBniCsrkCUx3jSMiIhcoK4ustXGnrk7GWXRDZpKkHbOqa8jM3P5YKSkn9dfrHh8+vMWm9+fsKvIE7PEhIpdz9D5S3shS74uz6mRUqlCUlUUiNbUAubkLnbqCMoe0yJMx+BCRSzljHylvZO9if5ZYm0q/fLkaCxcm2FRL5Agc0iJPxuBDRC7jzH2kPJ25HhlH719lrkeluBh48UUBIbRFzbbUEhE1ZqzxISKXMbcejG5bhsZO1yMzcOBAo+OmdTM6AwcOxODBg216bWvDXNp7bjyTy9m1RESejD0+ROQy5taDkcuBtDT3tUlHV3fUtClw6ZJz6o8iIyNtXnNHN1xkafhKp67aGe09N94ioyG1RETejsGHiFwmMVFb0zN6tLanRy4Hli1z/zCXYd2RjqfUHzWkIFi3Bs/06WrMnJngkFoiIm/H4ENELqFUKlFVVYV//APYu1eGoiI/JCfXICFBg5IS9836Ma070vH2+iPTNXhyc0PrrCUyHTLj9HNqjBh8iMjpTL+EdfLzjR+bLqDnCtb2odLVH3lj8DG3Bo+5wKObem4ueJrOFNNttFoXBibyZAw+ROR0tta12HqdoyiVSoSF1UAmi6lVAAxoa2NCQ89BqfRzWCCzNRS4KjzUNfXcdH+shtYcEbkbgw8R+STDXqj+/TsbbB8hAEiQJA3699+MzZu16904qjfK2no7Op4cHjy1XUS2YvAhIp9kGDwM19Px969CdXVArVoYR/ZGMTwQuQ+DDxERGr4BKBF5By5gSEReqbgY2LFD+2dj0Ng+D5GnYvAhIq+zYgWQlAT07Kn9c8UKd7eoYRrb5yHyZAw+RORVLO335a09Jc76PJ42e4zIU7DGh4iczlFfwkqlEj/+CGg0xsXBajWwd68SQUHeVzhsbf+yhqwf5O2zx4ichcGHiJzOli/hCxea4MiRZhb3yNJNP1epQiFJuX9PPdeSJA12716N/PxKtyyC2BDO3L/Mm+4DkatwqIuIXCIyMhLx8fFmf774Ih4339zMao2LLjQpFJUYMGAzJEmbFEz3nrJ12nl9h3icNSSk279MLtc+9pT9y4gaK0kIIdzdCE9SUVEBhUIBlUqFsLAwdzeHqNErLtaGHdMej6Ii4y//kpISLF++XP9YpTK/99SoUaOsrkRsSKlUoqioBvn515CQcBlxcTVG5/38/BAeHu6SIaHiYu3wVloaQw+RPWz9/uZQFxG5TUNqdhyx7s5nn0XqC4vt2Y29uFhbo2NpeK4+EhMZeIhcgUNdRGS3utaesXZeV7OzZ89q/bCVjq5mZ8mSJVAqlU5oecNnU3EKOpF3YvAhIrvU9cVf13lH1+zUh7anSWl2NtXevco6w5ajpqArlUqUlJRY/HFW6CPyZRzqIqJ6s/TF37u3drimrvOmDPfKMq3ZcTRHzA5zxBR0w01SrfG2WWpEno49PkRUb9a++O3tTVEoKpGScrLBoefMGZnV4beG9jQplUqEhZ2FTGY8L0QuFwgNPWtzL42tPVnO6PEi8mXs8SGietF+8ddAJouBRiPpj8vlAkIUYMmStTb1ptSXLdPJDxzojBdfjLG5WLm+PU2GvTT9+3fGpk39IYQMkqRBv36bsXnzQQDspSHyZAw+RGSzur74v/9e+8Wv600xPN/Quh1riyCqVCqcPi3w4ott9WFMO7wmcPPN55Cc7OeQ2WGG720tNLGXhshzMfgQkc1s/eK35bw9zIUXpVKJ9evXo7AwGRrNjUbn1GoJb7yxFSkpJ53SC+OIKfVE5FoMPkRkt7q++F0RDHRhLCJCCUnS1Bpei4goM7qOiHwbi5uJyC3M1eyoVKEoLEyGShVq9Tpz6ipWJiIC2ONDRG5iWrOzdm0QXnxRAY1Ggkwm8OqrKowYoa7X8JQrp8UTkXdijw8RuU1kZCQCAgJw5owMkyYpDAqTJUyerEBRUU29F/Gra1q8rgfJXO+SueucxdbXd3Y7iHwNe3yIyG10s8S0hcnDjc45qzA5MjIS4eET8OKLIUa9S4888pf+GldsSmptlpor20Hkaxh8iMjldL0Y7ihMLi4Gxo9varCqtITJk8ORlRVe56rLju6lYaghcj0GHyKyma1f6FlZWVAoFBZfw/QLv651fxypIdtNsJeGyPsx+BCRzZz5xW9vYXJ9e2Fat9au6mwYfuRyIC3NtnYy1BB5NwYfIqoXZ37x27PuT33DWGKidiuL0aO1PT1yObBsme2bixKRd2PwISKvZ2sYUyqVqKqqwj/+AezdK0NRkR+Sk2uQkKBBSQmHqYh8AYMPEfkEw33GDOXnGz/mBqNEjRvX8SEin2DrzDBubUHUuDH4EJHbcBE/InI1DnURUYPpamcA4MwZGQoL/ZCSoq2dASzXznB6OBG5GoMPEVlUXKxd96Z1a8uzngxrZw4c6FxrLZ709IMALNfOMNQQkStxqIuIjCiVSpSUlGD+/HIkJQn07AkkJQnMn1+OkpKSWntn6XprVKpQfegBACFk2LSpv34vLNbOEJEnYI8P0d8Mh2vM8YUhF13vjUoVioULcyHE9U1DJ04Mw59/vguFohKDBw9GeHg4AODChQsAgLKySKMtJwBt+Ckri+Au6UTkMRh8iGB5qrMpb57qbEsdju68tRADAHPn/oSICKVRoKlrv636sGWIjYjIHgw+RGj8U51trcPJysoCYDnEnDmTgPfee8zscx2139aKFcCoUdotJWQy7SrL2dkNvwecQUZEAIMPkUN4+jBZXXU4qakFUCgqUV1dDcB8iOnV62t8/XUvi88F7N9vS6e4+HroAbR/jh4N9O7d8J4fziAjIoDBh6jBTIfJVKpQlJVF1hoK8oRhsvrU4ZiGGFufa89+WzoN2TndFu6+/0Tkfgw+RGZYCi/mGPYgWBtG8oRhsvrW4ZiGGEfV8FjS0J3TiYjqwunsRCYOHOiMhQtzsXr1cCxcmIsDBzrb9Ly6pnN7At0QliRpk0V96nAa8lzAttoZ3c7pcrn2MXdOJyJHY48PkYG6amCs8Zbp3A2pw7H23IEDByIqKsrs82ypneHO6UTkCgw+RAYaEl4cOZ3b2SzV4fj51f2fBEvPjYqKQnx8vF3t4c7pROQqDD5EuD4MU1d4KS8vr/Vc3QJ+jprO7U7h4eG1Zj6pVCqsX7++zuc2ZBp4Y19OgIg8B4MPEYynOjdvXoHJkxVQqyXI5QIzZpyFWq0NLx999JHV12nodG5nqc8aNqY9KvHx8ZwGTkSNhs3Bp6KiwuYXDQsLs6sxRO6k++KeMAHIytJOoU5LkyCXawtubdWQ6dz2sHUNoYaEF1tDDVdcJiJPZ3PwCQ8PhyRJVq8RQkCSJKjV6gY3jMidEhOvf3GXlBifq89Ud0POWBHYk9YQctaKy0REjmRz8NmxY4cz20HkFayt09PQWU328JQ1hJy54jIRkSPZHHx69OjhzHYQeby6pro3ZFaTs9vmTEqlEj/+CGg0xsFOrQb27lUiKIgrJhOR57C7uLm8vBwrVqzA0aNHAQDt27fHyJEjoVAoHNY4Ik/iyev0uLJthnU8QUHaoTaVKhSSlFtrNtzu3auRn1/JaehE5DHsWrn5559/RmpqKl5//XWUlZWhrKwMCxYsQGpqKg4cOODoNhJ5BN1Ud0Oesk6Pq9q2YgWQlAT07Kn9c+FCPxQWJgOA1VWd6xpq487pROQqdvX4PPvss7j//vvxzjvv6Bc8q6mpwRNPPIHc3Fx8//33Dm0kkSfw5HV6XNE2c3U8L70UBmC4/v1ycxfaNZWfO6cTkavYFXx+/vlno9ADaFd8nTRpErp06eKwxukUFRVh1qxZ+Pbbb1FaWoqEhAQ8+uijmDZtmtH/AR45cgRjxozBvn37EB0djbFjx2LSpEkObw/5FsPfMWvr9Li7N8Ja21QqldXn1hUqLNXxANqZnrqaotzchUhJOWlX+xlqiMgV7Ao+YWFhOHXqFNq2bWt0/PTp0wgNdfyGjL/99hs0Gg2WLVuGtLQ05Ofn48knn8Tly5fx2muvAdCuM3TfffehV69eePvtt/HLL79g5MiRCA8Px6hRoxzeJvId3tQbYWkNIVtWXjatw9HV8kRFXcTGjebreAx5Sr0TEZE1dgWfrKwsZGdn47XXXkO3bt0AALt378bEiRMxZMgQhzYQAPr06YM+ffroH7dq1QrHjh3D0qVL9cHngw8+QFVVFd59910EBASgffv2OHToEBYsWMDgQw3mCaHGHHt6mSyt9WMY7IzX5AlH//6dkZ5+0Gg4DRDQ9fgAnlPvRERkjV3B57XXXoMkSXjsscdQU1MDAPD398fTTz+NOXPmOLSBlqhUKkREROgf5+XloXv37kZfBL1798bcuXNx8eJFNGvWzOzrXLt2DdeuXdM/rs8K1UTuZktvVHl5uX6rDWtr/QDaIa2iohqMGhUDjUYbajQaST813nA47cyZBHz9dS+Pq3ciIrLGruATEBCARYsWYfbs2Thx4gQAIDU1FcHBwQ5tnCUFBQV444039L09AFBaWoqUlBSj62JjY/XnLAWf2bNnY+bMmc5rLJGT2dobVddaP7qAVFiYDI1muNFzDYexdD8pKSdx0035HrcvGRGRNXZNZ9cJDg5Ghw4d0KFDB7tCz5QpUyBJktWf3377zeg5f/75J/r06YOHHnoITz75ZEOaDwCYOnUqVCqV/uf06dMNfk0iT2RprZ/Tp7VLK58/fx5A/abG6wJQXaHH3YXfREQ6dvX4XL16FW+88QZ27NiBc+fOQaMx/o+krWv5TJgwASNGjLB6TatWrfR/P3PmDO6++25069YNy012jYyLi8PZs2eNjukex8XFWXz9wMBABAYG2tReIm+mCzSm4eeTTx5EVdVmANptaRwxNd5w+w5PKfwmIgLsDD7Z2dnYtm0bHnzwQdx66611bl5qSXR0NKKjo2269s8//8Tdd9+NjIwMrFy5EjKZ8X+8MzMzMW3aNFRXV8Pf3x8AsH37drRp08biMBd5Flt3GSf7mAaa62pvb2Ftarwt3Ll9BxGRNXYFn82bN+OLL77A7bff7uj2mPXnn3/irrvuQlJSEl577TV9lzxwvTfnkUcewcyZM5GdnY3JkycjPz8fixYtwuuvv+6SNlLDmO4ybgm3PmiY9PSDCAi4hk8+ecjouLmp6JamxhMReTO7gk/z5s2dsl6PJdu3b0dBQQEKCgqQaLLVsxACAKBQKLBt2zaMGTMGGRkZiIqKwvTp0zmV3UvYunu4s3cZb4xM62tatDhda8iLU9GJyFfYVdw8f/58TJ48GSdP2rdCa32NGDECQgizP4Y6duyIH374AVevXkVxcTEmT57skvYReTLdlPeBAwcCuD7kZWlfLSKixsyuHp8uXbrg6tWraNWqFYKDg/U1NTplZfw/RyJPEhkZadRb1tAaHiIib2VX8BkyZAj+/PNPvPLKK4iNjbW7uJmI3Ic1PETki+wKPnv27EFeXh46derk6PYQkZsZTkU3deXKFbz//vt1vgbX7SEiT2VX8Gnbti3++usvR7eFiJzI1jCSkJBgdeact2zYSkRkjl3BZ86cOZgwYQJefvlldOjQoVaNT1hYmEMaR0SO46hd5hlqiMib2RV8dDul33PPPUbHhRCQJAlqtbrhLSOfYmtvBIdQGoahhYh8nV3BZ8eOHY5uB/k4096IM2dkKCz0Q0pKDRIStNOuOYRCREQNZVfw6dGjh03X/etf/8KLL75osVCSyJAu1KxYAYwaBWg0gEwGLF8OZGe7uXFERNQoNGh39rq8//77qKiocOZbUCNTXHw99ADaP0eP1h4nIiJqKLt6fGxlurIyUV2OH78eenTUaqCgADDZraTR46atRESO59TgQ1RfrVtrh7cMw49cDqSlua9N7mC6aatKFYqyskhERCiNFh3kpq1ERPXD4EMeJTFRW9MzerS2p0cuB5Ytc2xvjzf0pBi278CBzti0qT+EkOn31UpPP1jrOiIiqhuDD3mc7Gygd2/t8FZamuNDj2FPiiWe0pOiUoXqQw8ACCHDpk39kZpawO0miIjswOBDHikx0Tk1Pbb2kHhKT0pZWaQ+9OgIIUNZWQSDDxGRHeo9q6umpgYvvvgiim2YZvPoo49yFWeiBoiIUEKSjKu9JUmDiIgyN7WIiMi71Tv4+Pn5Yd68eaipqanz2qVLl3INH6IGUCgqMWDAZn340dX4sLeHiMg+dg119ezZEzt37kRycrKDm0NEptLTDyI1tQBlZRGIiChj6CEiagC7gk/fvn0xZcoU/PLLL8jIyEBISIjR+fvvv98hjSMiLYWikoGHiMgB7Ao+//rXvwAACxYsqHWOm5QSNRw3bSUicg67go/GdGldIg9kbr2eCxcuGD22tDCgu5lu2mqOJ6w3RETkbewKPu+99x6ysrIQGBhodLyqqgrr1q3DY4895pDGEdnLlvV6rC0M6Ak9KQw1RESOJwk7NtSSy+UoKSlBTEyM0XGlUomYmBivHuqqqKiAQqGASqXiVHwvVlJSguXLl1s8r1KFYuHCXKM1cuRygb17zyE52Y+hg4jIy9j6/W1Xj48QApIk1TpeXFwMhUJhz0sSuZS5hQHVagmVlbFg5iEiarzqFXw6d+4MSZIgSRLuuece+Pldf7parUZhYSH69Onj8EYSOZpuYUDjHh/f2wyViMjX1Cv4PPDAAwCAQ4cOoXfv3mjatKn+XEBAAJKTkzFo0CCHNpDIGXQLA27ZMgBqteSUzVCJiMjz1Cv4vPDCCwCA5ORkZGVloUmTJk5pFJErpKcfxPTpXVFZGevwzVCJiMgz2VXjM3z4cADaWVznzp2rNb29ZcuWDW8ZkQskJGgQH+/uVhARkavYFXyOHz+OkSNHYs+ePUbHdUXP3jyri4iIiBovu4LPiBEj4Ofnh82bNyM+Pt7sDC8ia8wtLmiooYvzma7DY2mhQk9Yr4eIiFzHruBz6NAh7N+/H23btnV0e8gH2LK4IADk5OTYHH7MBamsrCxUV1dj48ZmWLSoOTQaCTKZwKuvqvDII39x5WMiIh9kV/Bp165draX/iWxlrafHnuusBanrCxVqeyU1GgmTJ4cjKyu8Xuv1OLuHioiIXMOu4DN37lxMmjQJr7zyCjp06AB/f3+j81zxmFzJWiAxv1AhUFBg+ywuZ/RQERGRe9gVfHr16gUA6Nmzp1F9D4ubydM4YqFCR/dQERGR+9gVfHbs2OHodhA5hW6hQt1mpFyokIjIt9kVfHr06IEffvgBy5Ytw4kTJ/DJJ5+gefPmWLNmDVJSUhzdRiIjpvU2ddWbpacfRGpqAW6/fTi6do1scOgxnSGme5yfX66/hjU/RESeya7gs2HDBgwbNgxDhw7FwYMHce3aNQCASqXCK6+8gi+++MKhjSTSsbXexpRCUYlu3aoavFjhgQOd9b1HkqRBx45HcORIRwghw3vvaTBgwGakpx8EwJofIiJPJKv7ktpeeuklvP3223jnnXeMCptvv/12HDhwwGGNIzLlzjoalSpUH3oAQAgZDh/uZPR406b+UKlC3d5WIiIyz67gc+zYMXTv3r3WcYVCgfLy8oa2iRo5WxcN9LTFBc3NEAOMF+8UQoaysgjXNYqIiOrFrqGuuLg4FBQUIDk52ej4rl270KpVK0e0ixqxyMhI5OTkuHxdnIYGKXMzxAABw/AjSRpERJQ16H2IiMh57Ao+Tz75JJ555hm8++67kCQJZ86cQV5eHp577jk8//zzjm4jNUKGoaa4GDh+HGjd2jGzrVSqULRseQ/atw9AXFwNAMDf3x9VVVUoKSmpd6jSBSbTGWKmNT6SpK3xMdwSg4iIPItdwWfKlCnQaDS45557cOXKFXTv3h2BgYF47rnnMHbsWEe3kRqxFSuAUaMAjQaQyYDly4HsbPtfz7T42LDY2FB9Co9Ne6hyco7hgw/2IiKiDApFJXr2/BZlZRH6x0RE5LnsCj6SJGHatGmYOHEiCgoKcOnSJbRr1w5NmzZ1dPuoESsuvh56AO2fo0cDvXvb1/Njrvh406b+SE0tqBVI6lt4bBqSUlJO6v+uUFQy8BAReQm7go9OQEAA2rVr56i2kI85fvx66NGp73YShswVH+uKjRlMiIgIsHNWF5EjtG6tHd4yVNd2EtYKlHXFx4acUWzsrbPSiIiogT0+RA2RmKit6Rk9WtvTY8t2EnXNCFMozmDmzIQ6i41NV3uuT8Gzu2alERFRw0lCCOHuRniSiooKKBQKqFQq7jLvIsXF2uGttLT6D3GZzggrKSnBvHkf2lVszJWWiYi8l63f3+zxIbdLTLSvpsfcjLB//MP+YmOutExE1Pixxoe8kqUZYWfO8FeaiIgs47cEeSVLM8KKi5sYHVOpQlFYmKzfP4uIiHwbh7rIK+lmhBmGH7kcyMhQ4I47tIXHa9cG4cUXFdBoJKuLGRIRke9g8CGPplQqzdbeyOXAq68GYfJkBdRqyWRGWCSKi4FJk64HI8PFDAHtmj8REUqu70NE5GMYfMhjKZVKLFmyxOo148aFokePbGRkKIwKpM0NhQkhw969XZGXl1nnlhZERNQ4scaHPJYts6wUikrceuuVWrPCzC2OKEka7NmTWWtLC9b/EBH5DgYfapR0iyPK5drHkqRBZmYeTH/ldVtaAFxpmYjIF3Coixqt7GzthqcFBUBkpApVVWm49VYBjUbSXyOXC4wd2xfJyX5cvJCIyAcw+FCjdn1xxGYAzG2RISEjI9atbSQiItdh8CGfYtgLZM8WGURE5N0YfMgjKZXKWhuJOoq9W2QQEZH3Y/Ahj2PLNHYiIiJ7cFYXeZz6bhbK2VhERGQr9viQ11CpQo1WXB44cCASEhI4G4uIiGzG4ENOZWnLCZ2AgACbgsuBA52xaVN/oxWXR42KYughIqJ6YfAhp7G1VicnJ8dqgFGpQvWhB7i+4vL06ecRH++w5hIRkQ9gjQ85ja21OnVdV1YWqQ89OkLIUFTE3E5ERPXD4EMeLyJCCUky3nFUkjRITq5xU4uIiMhbMfiQV9Dus6UNP7oan4QEjfUnERERmeBYAXkcw+nppkXNmZm70bXrXigUlQgIuN2NrSQiIm/kdT0+165dw8033wxJknDo0CGjc0eOHMGdd96JJk2aoEWLFnj11Vfd00hqkMjISOTk5KB//6ewefMAo6LmvXu7YejQoXUWRBMREZnjdcFn0qRJSEhIqHW8oqIC9913H5KSkrB//37MmzcPM2bMwPLly93QSmqoyMhIVFTEGu2kDgBqtYTKyliGHiIisotXBZ+tW7di27ZteO2112qd++CDD1BVVYV3330X7du3x8MPP4xx48ZhwYIFbmgp1ceFCxegVCprHW/dGpCZ/IbK5drNRYmIiOzhNcHn7NmzePLJJ7FmzRoEBwfXOp+Xl4fu3bsb1Yf07t0bx44dw8WLFy2+7rVr11BRUWH0Q45h61YSGzduxJIlS2qFn8REYPlybdgBtH8uW8YNRomIyH5eEXyEEBgxYgSeeuopdOnSxew1paWliI2NNTqme1xaWmrxtWfPng2FQqH/adGiheMa7uN0tToDBw606Xpz6/lkZwNFRcCOHdo/s7Md20YiIvItbp3VNWXKFMydO9fqNUePHsW2bdtQWVmJqVOnOrwNU6dOxfjx4/WPKyoqfCr8OGpLCUsiIyP1r2+615atEhPZy0NERI7h1uAzYcIEjBgxwuo1rVq1wrfffou8vDwEBgYanevSpQuGDh2K1atXIy4uDmfPnjU6r3scFxdn8fUDAwNrva6vcNSWErYwt9dWevrBBr0mERFRfbk1+ERHRyM6OrrO6xYvXoyXXnpJ//jMmTPo3bs31q9fj65duwIAMjMzMW3aNFRXV8Pf3x8AsH37drRp0wbNmjVzzgfwco7aUqIuZ87IzO61lZpaYNTzc+HCBf3fG9rTREREZI5XLGDYsmVLo8dNmzYFAKSmpiLx7zGQRx55BDNnzkR2djYmT56M/Px8LFq0CK+//rrL2+vpdMNbhkHDmQoL/czutVVWFmEUfDZu3Gh0DdfqISIiR/OK4GMLhUKBbdu2YcyYMcjIyEBUVBSmT5+OUaNGubtpHsXW4S1HSkmpgSRpjMKPJGkQEVFm9XkN7WkiIiIy5ZXBJzk5GUKIWsc7duyIH374wQ0t8h7uCBMJCdqanuvDXZq/994iIiJyLa8MPuRdAgICkJ5+EKmpBdi7tyvy8jKxZ8/tyMvLxIABm5GaWmDXbC8iIqL6YvAhp9Ot51NUVINFi2IghHYbCiFk+Pzz/pAkcLYXERG5hFcsYEjez9LeW4Cs1mwvlSrU9Q0kIiKfwOBDeipVKAoLk2sFD1u3nqiLub23TOlmexERETkDh7oIQO0FBl944QxGjZI7dD0d3d5bo0cLqNUSAA0A6e8fLVtmexEREdmLwcfHqVShOH26Ra0FBmfNao7sbAmOXkYnOxu49dZyzJ//X0RElOHEibRaKzrrCpwd1dNERESkw+DjYwzDhGEvjym1WkJBgXP2yOrQoRnmzx+gn1o/ffp5FBX5ITm5BgkJtwC4hSs3ExGRU0jC3II4PqyiogIKhQIqlQphYWHubo5TKJVKFBXV4NZbY8wUG2vJ5drd0Lk5KBEReQNbv7/Z4+OhnLlremRkJI4cATQa8+flcmDZMoYeIiJqfBh8PJArdk3XzbAyDD8yGbBuHZCZydBDRESNE6ezeyBX7Jqum2Ell2sfy+Xaxw89xNBDRESNF3t8fFh2NtC7N1BQAKSlMfAQEVHjx+DjBVSqUKftZZWYyMBDRES+g8HHw5kuLMi9rIiIiOzHGh8PplKF1lpYkHtZERER2Y/Bx4OVlUXWWlyQe1kRERHZj8HHg0VEKCFJxovtcC8rIiIi+7HGxwPptpVQKCoxYMBml+9l5czFE4mIiNyJW1aY8JQtKwzDx5kzMoO9rLQ9QM4KH65YPJGIiMjRuGWFlzMMFfHxQEaGa97XFYsnEhERuQtrfIiIiMhnMPg0IsXFwI4d2j+JiIioNgYfL6dUKlFSUoL588uRlCTQsyeQlCQwf345SkpKoFQq3d1EIiIij8EaHy+mK0RWqUKxcGEuhJAAABqNhIkTw/Dnn+9CoahsUCGyM7fLICIicjUGHy+mKzC2ttChQlFpdyEyt8sgIqLGhkNdjYAzFjrkdhlERNQYMfg0ArqFDnXhx3Shw/rQLYpY13YZzlo8kYiIyJk41NVIpKcfRGpqAcrKIhARUWZ3PU5kZCRycnJQVFSDNWsENBpJf04uFxg7ti+Sk/24eCEREXklBp9GRKGodEgBcmRkJCIjgeXLgdGjAbUakMuBZcskZGTEOqClRERE7sHgQxZlZwO9ewMFBUBaGpCY6O4WERERNQyDD1mVmMjAQ0REjQeLm72YrQXG9hYicyVoIiJqbNjj48V0hcjW1umxdxf3FSuAUaMAjQaQybT1PtnZDWktERGR+zH4eDlHz65SKpUoKqrBqFEx+hldGg0werTAzTef44wuIiLyagw+pKfbAqOwMBkazXCjc2q1hDfe2IqUlJMN2gKDiIjInVjjQ3q6IbO6VoK2dwsMIiIid2PwoVocuRI0ERGRJ+FQF5nlqJWgiYiIPAmDD1nkqJWgiYiIPAWHuoiIiMhnMPgQERGRz2DwISIiIp/B4EN6zt4Cg4iIyN1Y3Ex6ztwCg4iIyBMw+JARhhoiImrMONRFREREPoPBh4iIiHwGgw8RERH5DAYfIiIi8hkMPkREROQzGHyIiIjIZzD4EBERkc9g8CEiIiKfweBDREREPoPBh4iIiHwGgw8RERH5DAYfIiIi8hkMPkREROQzGHyIiIjIZzD4EBERkc9g8CEiIiKfweBDREREPoPBh4iIiHwGg4+HKi4GduzQ/klERESOweDjgVasAJKSgJ49tX+uWOHuFhERETUODD4eprgYGDUK0Gi0jzUaYPRo9vwQERE5AoOPBzAc1jp+/Hro0VGrgYIC97SNiIioMfGq4LNlyxZ07doVQUFBaNasGR544AGj86dOnUK/fv0QHByMmJgYTJw4ETU1Ne5prI1Mh7V+/hmQmfxTkcuBtDT3tI+IiKgx8XN3A2y1YcMGPPnkk3jllVfQs2dP1NTUID8/X39erVajX79+iIuLw549e1BSUoLHHnsM/v7+eOWVV9zYcsvMDWtNnQrMnQtMmaLt6ZHLgWXLgMRE97aViIioMZCEEMLdjahLTU0NkpOTMXPmTGRnZ5u9ZuvWrejfvz/OnDmD2NhYAMDbb7+NyZMn4/z58wgICLDpvSoqKqBQKKBSqRAWFuawz2DOjh3anh5zx9PStMNbaWkMPURERHWx9fvbK4a6Dhw4gD///BMymQydO3dGfHw8+vbta9Tjk5eXhw4dOuhDDwD07t0bFRUV+N///mfxta9du4aKigqjH1dp3drcsJZAaOhZyOUlaNOmBHJ5CUpKtD9KpdJlbSMiImqMvGKo648//gAAzJgxAwsWLEBycjLmz5+Pu+66C7///jsiIiJQWlpqFHoA6B+XlpZafO3Zs2dj5syZzmu8FYmJwJw52mEtjQaQJA369duMzZsPWnxOTk4OIiMjXdhKIiKixsOtPT5TpkyBJElWf3777Tdo/i6CmTZtGgYNGoSMjAysXLkSkiTh448/blAbpk6dCpVKpf85ffq0Iz6aTVasMAw9Ar16fY30dMuhBwCqqqpc1DoiIqLGx609PhMmTMCIESOsXtOqVSuUlJQAANq1a6c/HhgYiFatWuHUqVMAgLi4OPz0009Gzz179qz+nCWBgYEIDAy0p/kNYlrYLISEr7/uhZtuyodCUeny9hAREfkCtwaf6OhoREdH13ldRkYGAgMDcezYMdxxxx0AgOrqahQVFSEpKQkAkJmZiZdffhnnzp1DTEwMAGD79u0ICwszCkyewtx6PULIUFYWweBDRETkJF5R4xMWFoannnoKL7zwAlq0aIGkpCTMmzcPAPDQQw8BAO677z60a9cOw4YNw6uvvorS0lL85z//wZgxY9zSo1MXXWGzYfiRJA0iIsrc1ygiIqJGziuCDwDMmzcPfn5+GDZsGP766y907doV3377LZo1awYAkMvl2Lx5M55++mlkZmYiJCQEw4cPx4svvujmlpuXmAgsX67djkK7Xo9Av36b2dtDRETkRF6xjo8ruWodH6VSiaqqKpw5I0NRkR/Cws5hz56P6nzeqFGjEB8f77R2EREReSNbv7+9psenMVEqlViyZIm7m0FERORzvGIBw8amIVPSbV2BmoiIiGpjj48bqFQqm64bOHAgoqKi9I8DAgK4eCEREVEDMPi4mFKpxPr16226NioqivU8REREDsShLherqqqCShWKwsJkqFSh7m4OERGRT2GPj4utXRuEhQtzIYQMkqTBgAGb69ymgoiIiByDPT4uVFwMTJqkgBDa2y6EDJs29WfPDxERkYsw+LiQdpsKyeiYbpsKIiIicj4GHxcpLgbOn9fuwm7I2jYVnLpORETkWKzxcYEVK67vxC5JAKABcL3Gx9w2FYMHD+bUdSIiIgdj8HGy4uLroQcAhJAgSQKDBn2EFi2KLe7NFR4e7rpGEhER+QgOdTmZtq7H+JgQMoSEXLG6ISmHuYiIiByPPT5O1ro1IJMZhx+ZTGDo0K6Ii8vQH/Pz89P38nCFZiIiIudg8HGyxERgwYJLePbZYP3aPf37b8aePbXX7snJyWHgISIiciIGHxcYPLgSJ08uR1lZBCIiyiwOcTVk81IiIiKqG4OPiygUlVZreoiIiMj5WNxMREREPoM9Pk6kVCpRVVWFCxcuuLspREREBAYfp1EqlViyZIm7m0FEREQGONTlJCxUJiIi8jwMPkREROQzGHw8CFdrJiIici7W+LjZwIEDERUVxdWaiYiIXIDBx82ioqIQHx/v7mYQERH5BA51ERERkc9g8CEiIiKfweDjJLYWKrOgmYiIyHVY4+MkkZGRyMnJsbqeDwuaiYiIXIvBx4kYaoiIiDwLh7qIiIjIZzD4EBERkc9g8CEiIiKfweBDREREPoPBh4iIiHwGgw8RERH5DAYfIiIi8hkMPkREROQzGHyIiIjIZ3DlZhNCCABARUWFm1tCREREttJ9b+u+xy1h8DFRWVkJAGjRooWbW0JERET1VVlZCYVCYfG8JOqKRj5Go9HgzJkzCA0NhSRJNj2noqICLVq0wOnTpxEWFubkFnou3gct3gfeAx3eBy3eB94DHWfeByEEKisrkZCQAJnMciUPe3xMyGQyJCYm2vXcsLAwn/6F1uF90OJ94D3Q4X3Q4n3gPdBx1n2w1tOjw+JmIiIi8hkMPkREROQzGHwcIDAwEC+88AICAwPd3RS34n3Q4n3gPdDhfdDifeA90PGE+8DiZiIiIvIZ7PEhIiIin8HgQ0RERD6DwYeIiIh8BoMPERER+QwGHwuWLl2Kjh076hdZyszMxNatW/Xnr169ijFjxiAyMhJNmzbFoEGDcPbsWaPXOHXqFPr164fg4GDExMRg4sSJqKmpcfVHcZg5c+ZAkiTk5ubqj/nKfZgxYwYkSTL6adu2rf68r9yHP//8E48++igiIyMRFBSEDh064Oeff9afF0Jg+vTpiI+PR1BQEHr16oXjx48bvUZZWRmGDh2KsLAwhIeHIzs7G5cuXXL1R7FbcnJyrd8FSZIwZswYAL7zu6BWq/H8888jJSUFQUFBSE1NxaxZs4z2SfKF34fKykrk5uYiKSkJQUFB6NatG/bt26c/3xjvwffff48BAwYgISEBkiThs88+MzrvqM985MgR3HnnnWjSpAlatGiBV1991TEfQJBZn3/+udiyZYv4/fffxbFjx8S///1v4e/vL/Lz84UQQjz11FOiRYsW4ptvvhE///yzuO2220S3bt30z6+pqRE33XST6NWrlzh48KD44osvRFRUlJg6daq7PlKD/PTTTyI5OVl07NhRPPPMM/rjvnIfXnjhBdG+fXtRUlKi/zl//rz+vC/ch7KyMpGUlCRGjBgh9u7dK/744w/x1VdfiYKCAv01c+bMEQqFQnz22Wfi8OHD4v777xcpKSnir7/+0l/Tp08f0alTJ/Hjjz+KH374QaSlpYkhQ4a44yPZ5dy5c0a/B9u3bxcAxI4dO4QQvvG7IIQQL7/8soiMjBSbN28WhYWF4uOPPxZNmzYVixYt0l/jC78PgwcPFu3atRM7d+4Ux48fFy+88IIICwsTxcXFQojGeQ+++OILMW3aNLFx40YBQHz66adG5x3xmVUqlYiNjRVDhw4V+fn54sMPPxRBQUFi2bJlDW4/g089NGvWTPzf//2fKC8vF/7+/uLjjz/Wnzt69KgAIPLy8oQQ2l8MmUwmSktL9dcsXbpUhIWFiWvXrrm87Q1RWVkpWrduLbZv3y569OihDz6+dB9eeOEF0alTJ7PnfOU+TJ48Wdxxxx0Wz2s0GhEXFyfmzZunP1ZeXi4CAwPFhx9+KIQQ4tdffxUAxL59+/TXbN26VUiSJP7880/nNd6JnnnmGZGamio0Go3P/C4IIUS/fv3EyJEjjY4NHDhQDB06VAjhG78PV65cEXK5XGzevNnoeHp6upg2bZpP3APT4OOoz/zWW2+JZs2aGf07MXnyZNGmTZsGt5lDXTZQq9VYt24dLl++jMzMTOzfvx/V1dXo1auX/pq2bduiZcuWyMvLAwDk5eWhQ4cOiI2N1V/Tu3dvVFRU4H//+5/LP0NDjBkzBv369TP6vAB87j4cP34cCQkJaNWqFYYOHYpTp04B8J378Pnnn6NLly546KGHEBMTg86dO+Odd97Rny8sLERpaanRfVAoFOjatavRfQgPD0eXLl301/Tq1QsymQx79+513YdxkKqqKrz//vsYOXIkJEnymd8FAOjWrRu++eYb/P777wCAw4cPY9euXejbty8A3/h9qKmpgVqtRpMmTYyOBwUFYdeuXT5xD0w56jPn5eWhe/fuCAgI0F/Tu3dvHDt2DBcvXmxQG7lJqRW//PILMjMzcfXqVTRt2hSffvop2rVrh0OHDiEgIADh4eFG18fGxqK0tBQAUFpaavQfNt153TlvsW7dOhw4cMBozFqntLTUZ+5D165dsWrVKrRp0wYlJSWYOXMm7rzzTuTn5/vMffjjjz+wdOlSjB8/Hv/+97+xb98+jBs3DgEBARg+fLj+c5j7nIb3ISYmxui8n58fIiIivOY+GPrss89QXl6OESNGAPCtfyemTJmCiooKtG3bFnK5HGq1Gi+//DKGDh0KAD7x+xAaGorMzEzMmjULN954I2JjY/Hhhx8iLy8PaWlpPnEPTDnqM5eWliIlJaXWa+jONWvWzO42MvhY0aZNGxw6dAgqlQqffPIJhg8fjp07d7q7WS5z+vRpPPPMM9i+fXut/6PxNbr/iwWAjh07omvXrkhKSsJHH32EoKAgN7bMdTQaDbp06YJXXnkFANC5c2fk5+fj7bffxvDhw93cOvdYsWIF+vbti4SEBHc3xeU++ugjfPDBB1i7di3at2+PQ4cOITc3FwkJCT71+7BmzRqMHDkSzZs3h1wuR3p6OoYMGYL9+/e7u2lkAYe6rAgICEBaWhoyMjIwe/ZsdOrUCYsWLUJcXByqqqpQXl5udP3Zs2cRFxcHAIiLi6s1k0P3WHeNp9u/fz/OnTuH9PR0+Pn5wc/PDzt37sTixYvh5+eH2NhYn7gP5oSHh+OGG25AQUGBz/w+xMfHo127dkbHbrzxRv2Qn+5zmPuchvfh3LlzRudrampQVlbmNfdB5+TJk/j666/xxBNP6I/5yu8CAEycOBFTpkzBww8/jA4dOmDYsGF49tlnMXv2bAC+8/uQmpqKnTt34tKlSzh9+jR++uknVFdXo1WrVj5zDww56jM7898TBp960Gg0uHbtGjIyMuDv749vvvlGf+7YsWM4deoUMjMzAQCZmZn45ZdfjP7hbt++HWFhYbW+PDzVPffcg19++QWHDh3S/3Tp0gVDhw7V/90X7oM5ly5dwokTJxAfH+8zvw+33347jh07ZnTs999/R1JSEgAgJSUFcXFxRvehoqICe/fuNboP5eXlRv83/O2330Kj0aBr164u+BSOs3LlSsTExKBfv376Y77yuwAAV65cgUxm/BUil8uh0WgA+N7vQ0hICOLj43Hx4kV89dVX+Oc//+lz9wBw3D/3zMxMfP/996iurtZfs337drRp06ZBw1wAOJ3dkilTpoidO3eKwsJCceTIETFlyhQhSZLYtm2bEEI7ZbVly5bi22+/FT///LPIzMwUmZmZ+ufrpqzed9994tChQ+LLL78U0dHRXjdl1ZThrC4hfOc+TJgwQXz33XeisLBQ7N69W/Tq1UtERUWJc+fOCSF84z789NNPws/PT7z88svi+PHj4oMPPhDBwcHi/fff118zZ84cER4eLv773/+KI0eOiH/+859mp7F27txZ7N27V+zatUu0bt3ao6fumqNWq0XLli3F5MmTa53zhd8FIYQYPny4aN68uX46+8aNG0VUVJSYNGmS/hpf+H348ssvxdatW8Uff/whtm3bJjp16iS6du0qqqqqhBCN8x5UVlaKgwcPioMHDwoAYsGCBeLgwYPi5MmTQgjHfOby8nIRGxsrhg0bJvLz88W6detEcHAwp7M708iRI0VSUpIICAgQ0dHR4p577tGHHiGE+Ouvv8S//vUv0axZMxEcHCz+3//7f6KkpMToNYqKikTfvn1FUFCQiIqKEhMmTBDV1dWu/igOZRp8fOU+ZGVlifj4eBEQECCaN28usrKyjNav8ZX7sGnTJnHTTTeJwMBA0bZtW7F8+XKj8xqNRjz//PMiNjZWBAYGinvuuUccO3bM6BqlUimGDBkimjZtKsLCwsTjjz8uKisrXfkxGuyrr74SAGp9NiF853ehoqJCPPPMM6Jly5aiSZMmolWrVmLatGlG04994fdh/fr1olWrViIgIEDExcWJMWPGiPLycv35xngPduzYIQDU+hk+fLgQwnGf+fDhw+KOO+4QgYGBonnz5mLOnDkOab8khMEym0RERESNGGt8iIiIyGcw+BAREZHPYPAhIiIin8HgQ0RERD6DwYeIiIh8BoMPERER+QwGHyIiIvIZDD5ERETkMxh8iKjB7rrrLuTm5rq7GU43Y8YM3Hzzze5uBhE1AIMPEfm8qqoql76fEAI1NTUufU8i0mLwIaIGGTFiBHbu3IlFixZBkiRIkoSioiLk5+ejb9++aNq0KWJjYzFs2DBcuHBB/7y77roLY8eORW5uLpo1a4bY2Fi88847uHz5Mh5//HGEhoYiLS0NW7du1T/nu+++gyRJ2LJlCzp27IgmTZrgtttuQ35+vlGbdu3ahTvvvBNBQUFo0aIFxo0bh8uXL+vPJycnY9asWXjssccQFhaGUaNGAQAmT56MG264AcHBwWjVqhWef/55/e7Qq1atwsyZM3H48GH951y1ahWKioogSRIOHTqkf/3y8nJIkoTvvvvOqN1bt25FRkYGAgMDsWvXLmg0GsyePRspKSkICgpCp06d8Mknnzj6HxERGWDwIaIGWbRoETIzM/Hkk0+ipKQEJSUlCA0NRc+ePdG5c2f8/PPP+PLLL3H27FkMHjzY6LmrV69GVFQUfvrpJ4wdOxZPP/00HnroIXTr1g0HDhzAfffdh2HDhuHKlStGz5s4cSLmz5+Pffv2ITo6GgMGDNAHlBMnTqBPnz4YNGgQjhw5gvXr12PXrl3Iyckxeo3XXnsNnTp1wsGDB/H8888DAEJDQ7Fq1Sr8+uuvWLRoEd555x28/vrrAICsrCxMmDAB7du313/OrKyset2rKVOmYM6cOTh69Cg6duyI2bNn47333sPbb7+N//3vf3j22Wfx6KOPYufOnfV6XSKqB4dsdUpEPq1Hjx7imWee0T+eNWuWuO+++4yuOX36tNGO5j169BB33HGH/nxNTY0ICQkRw4YN0x8rKSkRAEReXp4Q4vqu0OvWrdNfo1QqRVBQkFi/fr0QQojs7GwxatQoo/f+4YcfhEwmE3/99ZcQQoikpCTxwAMP1Pm55s2bJzIyMvSPX3jhBdGpUyejawoLCwUAcfDgQf2xixcvCgBix44dRu3+7LPP9NdcvXpVBAcHiz179hi9XnZ2thgyZEidbSMi+/i5M3QRUeN0+PBh7NixA02bNq117sSJE7jhhhsAAB07dtQfl8vliIyMRIcOHfTHYmNjAQDnzp0zeo3MzEz93yMiItCmTRscPXpU/95HjhzBBx98oL9GCAGNRoPCwkLceOONAIAuXbrUatv69euxePFinDhxApcuXUJNTQ3CwsLq/fktMXzPgoICXLlyBffee6/RNVVVVejcubPD3pOIjDH4EJHDXbp0CQMGDMDcuXNrnYuPj9f/3d/f3+icJElGxyRJAgBoNJp6vffo0aMxbty4Wudatmyp/3tISIjRuby8PAwdOhQzZ85E7969oVAosG7dOsyfP9/q+8lk2ooBIYT+mG7YzZThe166dAkAsGXLFjRv3tzousDAQKvvSUT2Y/AhogYLCAiAWq3WP05PT8eGDRuQnJwMPz/H/2fmxx9/1IeYixcv4vfff9f35KSnp+PXX39FWlpavV5zz549SEpKwrRp0/THTp48aXSN6ecEgOjoaABASUmJvqfGsNDZknbt2iEwMBCnTp1Cjx496tVWIrIfi5uJqMGSk5Oxd+9eFBUV4cKFCxgzZgzKysowZMgQ7Nu3DydOnMBXX32Fxx9/vFZwsMeLL76Ib775Bvn5+RgxYgSioqLwwAMPANDOzNqzZw9ycnJw6NAhHD9+HP/9739rFTebat26NU6dOoV169bhxIkTWLx4MT799NNan7OwsBCHDh3ChQsXcO3aNQQFBeG2227TFy3v3LkT//nPf+r8DKGhoXjuuefw7LPPYvXq1Thx4gQOHDiAN954A6tXr7b73hCRdQw+RNRgzz33HORyOdq1a4fo6GhUVVVh9+7dUKvVuO+++9ChQwfk5uYiPDxcPzTUEHPmzMEzzzyDjIwMlJaWYtOmTQgICACgrRvauXMnfv/9d9x5553o3Lkzpk+fjoSEBKuvef/99+PZZ59FTk4Obr75ZuzZs0c/20tn0KBB6NOnD+6++25ER0fjww8/BAC8++67qKmpQUZGBnJzc/HSSy/Z9DlmzZqF559/HrNnz8aNN96IPn36YMuWLUhJSbHjrhCRLSRhODBNROTBvvvuO9x99924ePEiwsPD3d0cIvJC7PEhIiIin8HgQ0RERD6DQ11ERETkM9jjQ0RERD6DwYeIiIh8BoMPERER+QwGHyIiIvIZDD5ERETkMxh8iIiIyGcw+BAREZHPYPAhIiIin8HgQ0RERD7j/wNMvoG13BwBoAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWh1JREFUeJzt3Xlc1NX+P/DXsAwCwiCLLIKAaJprgmZYqbn7ULz99CaZmmtWV1TS3K43l2umppnaotXXLcu00rqlWS6ZN5PM3C1TMXBJUAEZUJNtzu8P7kzMMPs+fF7Px4NHMJ/PfObMR3JenvM+58iEEAJEREREEuDl6gYQEREROQuDDxEREUkGgw8RERFJBoMPERERSQaDDxEREUkGgw8RERFJBoMPERERSQaDDxEREUkGgw8RERFJBoMPEZEb2rBhA2QyGXJzc13dFKI6hcGHSKKOHDmCjIwMtGrVCoGBgWjcuDGGDBmC8+fP1zq3W7dukMlkkMlk8PLyQnBwMJo3b44RI0Zgz549Fr3ul19+ia5du6Jhw4YICAhAkyZNMGTIEHz99df2emu1vPLKK/j8889rPX7o0CHMmzcPxcXFDnttXfPmzdPcS5lMhoCAALRs2RL/+te/UFJSYpfX2Lx5M1asWGGXaxHVNQw+RBK1ZMkSbNu2DT169MDKlSsxfvx4/Pe//0VycjLOnDlT6/zY2Fhs2rQJ77//PpYuXYqBAwfi0KFD6N27N9LT01FRUWHyNZctW4aBAwdCJpNh1qxZeP311zF48GBcuHABW7ZsccTbBGA8+MyfP9+pwUdt9erV2LRpE5YvX44WLVpg4cKF6Nu3L+yxfSKDD5FhPq5uABG5xpQpU7B582bI5XLNY+np6WjTpg0WL16MDz74QOt8hUKB4cOHaz22ePFiTJo0CW+//TYSEhKwZMkSg69XWVmJBQsWoFevXti9e3et4zdu3LDxHbmPu3fvIiAgwOg5f//73xEeHg4AeO655zB48GBs374dP/74I1JTU53RTCJJYo8PkUR17txZK/QAQLNmzdCqVSucPXvWrGt4e3tj1apVaNmyJd58800olUqD5xYUFKCkpAQPP/yw3uMNGzbU+vnevXuYN28e7rvvPtSrVw/R0dEYNGgQLl68qDln2bJl6Ny5M8LCwuDv74+UlBR8+umnWteRyWS4c+cONm7cqBleGjVqFObNm4dp06YBABITEzXHatbUfPDBB0hJSYG/vz9CQ0Px5JNP4sqVK1rX79atG1q3bo2jR4+iS5cuCAgIwD//+U+z7l9N3bt3BwDk5OQYPe/tt99Gq1at4Ofnh5iYGEyYMEGrx6pbt27YuXMnLl26pHlPCQkJFreHqK5ijw8RaQghcP36dbRq1crs53h7e2Po0KF46aWXcPDgQfTv31/veQ0bNoS/vz++/PJLTJw4EaGhoQavWVVVhQEDBmDfvn148sknMXnyZJSWlmLPnj04c+YMkpKSAAArV67EwIEDMWzYMJSXl2PLli144oknsGPHDk07Nm3ahHHjxuHBBx/E+PHjAQBJSUkIDAzE+fPn8dFHH+H111/X9L5EREQAABYuXIiXXnoJQ4YMwbhx43Dz5k288cYb6NKlC44fP46QkBBNewsLC9GvXz88+eSTGD58OCIjI82+f2rqQBcWFmbwnHnz5mH+/Pno2bMnnn/+eZw7dw6rV6/GkSNH8MMPP8DX1xezZ8+GUqnE1atX8frrrwMA6tevb3F7iOosQUT0P5s2bRIAxNq1a7Ue79q1q2jVqpXB53322WcCgFi5cqXR68+ZM0cAEIGBgaJfv35i4cKF4ujRo7XOW7dunQAgli9fXuuYSqXSfH/37l2tY+Xl5aJ169aie/fuWo8HBgaKkSNH1rrW0qVLBQCRk5Oj9Xhubq7w9vYWCxcu1Hr89OnTwsfHR+vxrl27CgBizZo1Bt93TXPnzhUAxLlz58TNmzdFTk6OeOedd4Sfn5+IjIwUd+7cEUIIsX79eq223bhxQ8jlctG7d29RVVWlud6bb74pAIh169ZpHuvfv7+Ij483qz1EUsOhLiICAPz222+YMGECUlNTMXLkSIueq+5RKC0tNXre/PnzsXnzZrRv3x7ffPMNZs+ejZSUFCQnJ2sNr23btg3h4eGYOHFirWvIZDLN9/7+/prvb926BaVSiUcffRTHjh2zqP26tm/fDpVKhSFDhqCgoEDzFRUVhWbNmmH//v1a5/v5+WH06NEWvUbz5s0RERGBxMREPPvss2jatCl27txpsDZo7969KC8vR2ZmJry8/vqr+5lnnkFwcDB27txp+RslkiAOdRER8vPz0b9/fygUCnz66afw9va26Pm3b98GAAQFBZk8d+jQoRg6dChKSkpw+PBhbNiwAZs3b0ZaWhrOnDmDevXq4eLFi2jevDl8fIz/FbVjxw68/PLLOHHiBMrKyjSP1wxH1rhw4QKEEGjWrJne476+vlo/N2rUqFa9lCnbtm1DcHAwfH19ERsbqxm+M+TSpUsAqgNTTXK5HE2aNNEcJyLjGHyIJE6pVKJfv34oLi7G999/j5iYGIuvoZ7+3rRpU7OfExwcjF69eqFXr17w9fXFxo0bcfjwYXTt2tWs53///fcYOHAgunTpgrfffhvR0dHw9fXF+vXrsXnzZovfQ00qlQoymQy7du3SGwJ1a2Zq9jyZq0uXLpq6IiJyHgYfIgm7d+8e0tLScP78eezduxctW7a0+BpVVVXYvHkzAgIC8Mgjj1jVjg4dOmDjxo3Iy8sDUF18fPjwYVRUVNTqXVHbtm0b6tWrh2+++QZ+fn6ax9evX1/rXEM9QIYeT0pKghACiYmJuO+++yx9Ow4RHx8PADh37hyaNGmieby8vBw5OTno2bOn5jFbe7yI6jLW+BBJVFVVFdLT05GVlYVPPvnEqrVjqqqqMGnSJJw9exaTJk1CcHCwwXPv3r2LrKwsvcd27doF4K9hnMGDB6OgoABvvvlmrXPF/xb48/b2hkwmQ1VVleZYbm6u3oUKAwMD9S5SGBgYCAC1jg0aNAje3t6YP39+rQUFhRAoLCzU/yYdqGfPnpDL5Vi1apVWm9auXQulUqk1my4wMNDo0gJEUsYeHyKJmjp1Kr744gukpaWhqKio1oKFuosVKpVKzTl3795FdnY2tm/fjosXL+LJJ5/EggULjL7e3bt30blzZzz00EPo27cv4uLiUFxcjM8//xzff/89Hn/8cbRv3x4A8PTTT+P999/HlClT8NNPP+HRRx/FnTt3sHfvXvzjH//A3/72N/Tv3x/Lly9H37598dRTT+HGjRt466230LRpU5w6dUrrtVNSUrB3714sX74cMTExSExMRKdOnZCSkgIAmD17Np588kn4+voiLS0NSUlJePnllzFr1izk5ubi8ccfR1BQEHJycvDZZ59h/PjxePHFF226/5aKiIjArFmzMH/+fPTt2xcDBw7EuXPn8Pbbb6Njx45af14pKSnYunUrpkyZgo4dO6J+/fpIS0tzanuJ3JYrp5QRkeuop2Eb+jJ2bv369UWzZs3E8OHDxe7du816vYqKCvHee++Jxx9/XMTHxws/Pz8REBAg2rdvL5YuXSrKysq0zr97966YPXu2SExMFL6+viIqKkr8/e9/FxcvXtScs3btWtGsWTPh5+cnWrRoIdavX6+ZLl7Tb7/9Jrp06SL8/f0FAK2p7QsWLBCNGjUSXl5etaa2b9u2TTzyyCMiMDBQBAYGihYtWogJEyaIc+fOad0bY1P9danbd/PmTaPn6U5nV3vzzTdFixYthK+vr4iMjBTPP/+8uHXrltY5t2/fFk899ZQICQkRADi1nagGmRB22BiGiIiIyAOwxoeIiIgkg8GHiIiIJIPBh4iIiCSDwYeIiIgkg8GHiIiIJIPBh4iIiCSDCxjqUKlUuHbtGoKCgrjsOxERkYcQQqC0tBQxMTHw8jLcr8Pgo+PatWuIi4tzdTOIiIjICleuXEFsbKzB4ww+OoKCggBU3zhj+w4RERGR+ygpKUFcXJzmc9wQBh8d6uGt4OBgBh8iIiIPY6pMhcXNREREJBkMPkRERCQZDD5EREQkGazxsYJKpUJ5ebmrm1GnyeVyo9MRiYiIrMHgY6Hy8nLk5ORApVK5uil1mpeXFxITEyGXy13dFCIiqkM8JvgsWrQI27dvx2+//QZ/f3907twZS5YsQfPmzTXn3Lt3D1OnTsWWLVtQVlaGPn364O2330ZkZKRd2iCEQF5eHry9vREXF8ceCQdRLyKZl5eHxo0bcyFJIiKyG48JPgcOHMCECRPQsWNHVFZW4p///Cd69+6NX3/9FYGBgQCAF154ATt37sQnn3wChUKBjIwMDBo0CD/88INd2lBZWYm7d+8iJiYGAQEBdrkm6RcREYFr166hsrISvr6+rm4OERHVER4TfL7++mutnzds2ICGDRvi6NGj6NKlC5RKJdauXYvNmzeje/fuAID169fj/vvvx48//oiHHnrI5jZUVVUBAIdfnEB9j6uqqhh8iIjIbjx2rEapVAIAQkNDAQBHjx5FRUUFevbsqTmnRYsWaNy4MbKysgxep6ysDCUlJVpfpnDoxfF4j4mIyBE8psenJpVKhczMTDz88MNo3bo1ACA/Px9yuRwhISFa50ZGRiI/P9/gtRYtWoT58+c7srlERER1SmFhodHZzXK5HGFhYU5skfk8MvhMmDABZ86cwcGDB22+1qxZszBlyhTNz+q9PoiIiKi2wsJCvPnmmybPy8jIcMvw43FDXRkZGdixYwf279+vtftqVFQUysvLUVxcrHX+9evXERUVZfB6fn5+mn256ur+XKNGjYJMJoNMJoOvry8iIyPRq1cvrFu3zqJp+Rs2bKjVo0ZERNJi7jp27rrenccEHyEEMjIy8Nlnn+Hbb79FYmKi1vGUlBT4+vpi3759msfOnTuHy5cvIzU11dnN1auwsBB5eXkGvwoLCx322n379kVeXh5yc3Oxa9cuPPbYY5g8eTIGDBiAyspKh70uERGRO/GYoa4JEyZg8+bN+M9//oOgoCBN3Y5CoYC/vz8UCgXGjh2LKVOmIDQ0FMHBwZg4cSJSU1PtMqPLVq7uGvTz89P0fDVq1AjJycl46KGH0KNHD2zYsAHjxo3D8uXLsX79evz+++8IDQ1FWloaXn31VdSvXx/fffcdRo8eDeCvwuO5c+di3rx52LRpE1auXIlz584hMDAQ3bt3x4oVK9CwYUO7vw8iIiJbeEyPz+rVq6FUKtGtWzdER0drvrZu3ao55/XXX8eAAQMwePBgdOnSBVFRUdi+fbsLW/0Xd+wa7N69O9q1a6e5R15eXli1ahV++eUXbNy4Ed9++y2mT58OAOjcuTNWrFiB4OBgTQ/Viy++CACoqKjAggULcPLkSXz++efIzc3FqFGjnPY+iIiIzOUxPT5CCJPn1KtXD2+99RbeeustJ7SobmjRogVOnToFAMjMzNQ8npCQgJdffhnPPfcc3n77bcjlcigUCshkslo1U2PGjNF836RJE6xatQodO3bE7du3Ub9+fae8DyIiInN4TI8POYYQQjN0tXfvXvTo0QONGjVCUFAQRowYgcLCQty9e9foNY4ePYq0tDQ0btwYQUFB6Nq1KwDg8uXLDm8/ERG5llIZhJycBCiVQa5uilkYfCTu7NmzSExMRG5uLgYMGIC2bdti27ZtOHr0qKbnzNjw2507d9CnTx8EBwfjww8/xJEjR/DZZ5+ZfB4REXm+Y8faY8WKTGzcOBIrVmTi2LH2rm6SSR4z1EX29+233+L06dN44YUXcPToUahUKrz22muazVc//vhjrfPlcrlm2w613377DYWFhVi8eLFm/aOff/7ZOW+AiIicTr2lkFIZhC+/HAAhqj8zhPDCl18OQFJSNhSKUrfd3ok9PhJRVlaG/Px8/PHHHzh27BheeeUV/O1vf8OAAQPw9NNPo2nTpqioqMAbb7yB33//HZs2bcKaNWu0rpGQkIDbt29j3759KCgowN27d9G4cWPI5XLN87744gssWLDARe+SiIgcLSwsDBkZGejceaQm9KgJ4YWHHx7ptosXAgw+kvH1118jOjoaCQkJ6Nu3L/bv349Vq1bhP//5D7y9vdGuXTssX74cS5YsQevWrfHhhx9i0aJFWtfo3LkznnvuOaSnpyMiIgKvvvoqIiIisGHDBnzyySdo2bIlFi9ejGXLlrnoXRIRkTOEhYXhoYfC4KWTIry9gU6dwtw29ACATJgzXUpCSkpKoFAooFQqa63ifO/ePeTk5CAxMRH16tWz6LquXsfH09hyr4mI6gJP2A9r7Vrg2WeBqqrq0PPOO8DYsa5pi7HP75pY4+Mk6q5Bd/8lJiIi1/OUfyyPHQv06QNkZwNNmwI1dpJyWww+TsRQQ0RE5nDHRW8NiY31jMCjxhofIiIikgwGHyIiIpIMBh8iIiKSDAYfIiIiN+dp20K4MxY3ExERubFjx9prVkiWyVRIS9uB5OTjmuOeMO3dnTD4EBGR5LlreDC1LURxcXGt7YX0SU9Ph0KhAMAgxOBDRESS5o5r5qj3uSoqCtO7LURRUSgUilLIZDKzrrd161atn129/o8rscaHbPbdd99BJpOhuLjY7OckJCRgxYoVDmsTEZG53HHNHPWitxMn9oWXl/YGC97eAhMn9kNGRoamF8dS7rD+j6sw+EjAqFGjIJPJ8Nxzz9U6NmHCBMhkMowaNcr5DSMiIoPCwsKQkhKJd9+Vwdu7+rHqbSFkSEmJ1Ntjo1sEzaLo2jjUJRFxcXHYsmULXn/9dfj7+wOo3g9r8+bNaNy4sYtbR0REhpi7LYRuEXTbtqdw6lRbg0XRUsUeH4lITk5GXFwctm/frnls+/btaNy4Mdq3b695rKysDJMmTULDhg1Rr149PPLIIzhy5IjWtb766ivcd9998Pf3x2OPPYbc3Nxar3fw4EE8+uij8Pf3R1xcHCZNmoQ7d+447P0REdVlsbFAt26GQ4++IuiTJ9vVKopmzw+Dj8tcvQrs31/9X2cZM2YM1q9fr/l53bp1GD16tNY506dPx7Zt27Bx40YcO3YMTZs2RZ8+fVBUVAQAuHLlCgYNGoS0tDScOHEC48aNw8yZM7WucfHiRfTt2xeDBw/GqVOnsHXrVhw8eBAZGRmOf5NERBKkrwga0C58VhdFSx2DjwusXQvExwPdu1f/d+1a57zu8OHDcfDgQVy6dAmXLl3CDz/8gOHDh2uO37lzB6tXr8bSpUvRr18/tGzZEu+99x78/f2x9n+NXL16NZKSkvDaa6+hefPmGDZsWK36oEWLFmHYsGHIzMxEs2bN0LlzZ6xatQrvv/8+7t2755w3S0RkJU+siwkNLYRMptJ5VLsoWiZTITS0yHmNclOs8XGyq1eB8eMB1f9+P1Uq4Nlnq8dvHb27bUREBPr3748NGzZACIH+/fsjPDxcc/zixYuoqKjAww8/rHnM19cXDz74IM6ePQsAOHv2LDp16qR13dTUVK2fT548iVOnTuHDDz/UPCaEgEqlQk5ODu6//35HvD0iIpuZWizQ3ainvSsUpUhL22GyxkehKHVxi12PwcfJLlz4K/SoVVVVF605OvgA1cNd6iGnt956yyGvcfv2bTz77LOYNGlSrWMspCYid6MOD6YWC1Sf5yqGFllMT09HRUUFhgzxQWbmRWzc+ANCQ4ugUJSie/dvUVQUqvlZzZ7vxdTij3fv3kVAQIDB485eUJHBx8maNQO8vLTDj7d3daW+M/Tt2xfl5eWQyWTo06eP1rGkpCTI5XL88MMPiI+PBwBUVFTgyJEjyMzMBADcf//9+OKLL7Se9+OPP2r9nJycjF9//RVNnfWmiIjMZOhDesiQITh0yE/vYoEPPzwS3bpVTy931QrPliyy+NpraU5ro7ntMsWZCyoy+DhZbCzw7rvVw1tVVeo1GZzT2wMA3t7emmErb/XCEP8TGBiI559/HtOmTUNoaCgaN26MV199FXfv3sXYsWMBAM899xxee+01TJs2DePGjcPRo0exYcMGrevMmDEDDz30EDIyMjBu3DgEBgbi119/xZ49e+zyPwgRkTVMfUgrlUGQyTK1wo+3N9CpUxjCwly7wrMliyxGR0fb9FqWhDt7LYTozAUVGXxcwNw1GRwlODjY4LHFixdDpVJhxIgRKC0tRYcOHfDNN9+gQYMGAKqHqrZt24YXXngBb7zxBh588EG88sorGDNmjOYabdu2xYEDBzB79mw8+uijEEIgKSkJ6enpDn9vRESGmPpwVdfJ7NyZhqoqWa1/mNqywrO77gWmyx2377A3Bh8XiY11XuDR7ZHR9fnnn2u+r1evHlatWoVVq1YZPH/AgAEYMGCA1mO60+I7duyI3bt3G7yGvrV/iIicSakMQlFRGEJDCzX1L8nJxzFnTieUlkba7R+m5oaJIUOGoGHDhmYFCn1ttwdbt+8w1S5HtdsSDD5ERCQ5xmZvxcSoYM5okbkf4uaGCfUu66Z6U2ydeWas96mgoMDs61jaLneZMcfgQ0REkmJq9pY5bPkQNxWYjAUlW9tuaTGyueHOVLvscc/thcGHiIjcnj1rZPStcqxe1dicD2FbPsRrBiZAhc6ds9Cp02GzP/xtbbslRcSWhDtT7bK13fbE4ENERG7N3gW36lWOa34QW7KqsbUf4rqBCfDCoUMPIysr1eweI1vbbi5Lw52hdvn6liMnJwG+vmVOabc5uGWFFYQQpk8im/AeE5GarQW3hYWFyMvL09SvqGdvqbd4sHRVY33bQ9T8EC8oKEBeXp7mS/26+vfTMm8DUd0Vmg213dKFCQ1tz2Es3JnbrrZtT2Ht2nHYuHEk1q4dh7ZtT9mt3bZgj48F1OvelJeXw9/f38WtqdvUf4HprjVERGQJQ71FycnHkZSUbdGqxsa2h6j5Ib59+3a9z9fXK6JmqscoLCwMGRkZmr8b58y5idxcHyQkVCImpiOAjhZPiTc2lGVuz5JuuzIyzuHDDw/D17cca9eO0+oxOnWqLcaO/T9UVMgxbFgntG5tXbttxeBjAR8fHwQEBODmzZvw9fWFlxc7zBxBpVLh5s2bCAgIgI8Pf0WJSJslU6KN9RYpFKWa5w8aNAjh4eFGP4QNhY/g4Bs4dOivYSpD7VMHpi++GADdARdzhn1qtis6GkhJMXq6UaaGskyFu5rhUPd+JSZeQk5Ogt4eo4oKORITL6F16z42L7RoLX6qWEAmkyE6Oho5OTm4dOmSq5tTp3l5eaFx48aQyWSubgoRuRFjvRTFxcW1ztednm0olISHh5v1QawvfOTllePQIdPtA/7qaTp8uBOyslJdtoGoqTqlQYMGYfz4cKt7lpxVi2QNBh8LyeVyNGvWzKnLa0uRXC5njxoRaTHVS6FeB8cQR68jY25BsEJRit6996JTp8MO30DUEFPBRB0ELe1ZMnc40JUbvjL4WMHLywv16tVzdTOIiCTFlinRzlhHxtL21RxqA6qH22JiYhxa7+LoYOKIWiR7Y/AhIiKPYMnwie6QliPWkVGvLaQeTjO3fcaG2xwdCJwRTOxZi+QIDD5EROTWzO2lUNM3pJWUlG3XmhN9s8XMaZ87bNvg7sHE0Rh8iIjIrZnTS6FUKrF161aDQ1qZmSvMCk3mMlTnaWyavDtt2yBlDD5EROT2zO2lMDakZc3aPebSHb7SF2TcadsGKWPwISKiOsNUnc3o0b0QHh6u9Rxba1qMDV8NGjQIQPWihu48xVtKOF+YiIjqDEu2o5DL5YiOjrYp9BgavlJvAREeHq4JWrZulUH2wR4fIiLyeDWHqowNaeluJ2HuxqaGmDN8ZW7bXLm2jZQw+BARkcfTLYAuKCgwuGdWTbYuRmvO8JVu2/Rx9do2UsLgQ0REdYKx4GDJ/l6WMHeKPUON+2DwISKiOs0Ra+dw+MpzMfgQEVGd5ai1czh85bkYfIiIqM5y5No5toQa9XYXhjA0OQ6DDxER1VnuuHaOvu0u9LF1xhnpx+BDRFQHsAdBP3OLj53J3Jlkts44I/0YfIiIPBx7EGpj8TEZwuBDROTh2INQmycVHztqqj3px+BDRORhdIe1CgoKtI7zg7SaO4QaUxwx1Z6MY/AhIvIgpoa1+EHqORw11Z6M4yalREQexNjQjakNM8m9GJtqT47D4ENE5MGUyiDk5CRohrf4Qeo51FPta3L1VHsp4FAXEZGH0h3W6tlzr9utWUO1qWeSmZpqzxlnjsHgQ0TkgfQNa+3d2xM9e+7F3r093WbNGqpNd8bZnDk3kZvrg4SESsTEdATQ0W1mnNVFDD5ERDV4ykKAhoa1YmKuITNzheTXrHH3P8earx0dDaSkuKwpksPgQ0T0P560EKCxrRgUilKMHt0L4eHhmmOu/qB3Jk/6cyTnY/AhIvofT1oI0FR9SHh4OKKjo+36mu7ei6LmSX+O5HwMPkREHsRVWzGwF4XqCgYfIiID3HEFZFdtxeDJvSju+OdIrlMng89bb72FpUuXIj8/H+3atcMbb7yBBx980NXNIiIP4s4rILtDj4qlYcJVw2Tu/OdIrlHngs/WrVsxZcoUrFmzBp06dcKKFSvQp08fnDt3Dg0bNnR184jIA3ArAeMsDROuGibjnyPpU+eCz/Lly/HMM89g9OjRAIA1a9Zg586dWLduHWbOnOni1hGRJzC2ArKpD0xPKQC2liVhQn0vdDdRNcTUMFnNe6tUKlFRUYHbt2+joqICAODj44OgoCDcunULgG1/jlR31angU15ejqNHj2LWrFmax7y8vNCzZ09kZWW5sGVE5EmMTRU3RgoFwOaGCXPvhbmsuZ61f45Ut9WpvboKCgpQVVWFyMhIrccjIyORn5+v9zllZWUoKSnR+iIiadLdSkC9j5K5Wwno9ljU3EfL2HmexNz9pUxtpqrvvhhjzT2z9s+R6rY61eNjjUWLFmH+/PmubgYRuQF7biVQV4tqTa0fZIqz70ty8nFkZDRDSUlDbglBAOpY8AkPD4e3tzeuX7+u9fj169cRFRWl9zmzZs3ClClTND+XlJQgLi7Ooe0kIvdlj60E6mJRra3rBymVQbhyJQ5ffDEA6sEGe90X9QwzX98yVFT41Zpp1rp1CKKjGXKoWp0KPnK5HCkpKdi3bx8ef/xxAIBKpcK+ffuQkZGh9zl+fn7w8/NzYiuJqK6ri0W1tqwfVLOXR5e190Uddq5di9ZsygoIALI61cNG9lengg8ATJkyBSNHjkSHDh3w4IMPYsWKFbhz545mlhcRkaO5qqjW0TPKjD1X/dp5eXkAoJnJpdv7pcua+6IdpKrDzv+uBqBu9LCR49S54JOeno6bN29izpw5yM/PxwMPPICvv/66VsEzEZGj2FoHYw1Xzigz9tr6er/UrCk2rh2kZHrP8/QeNnKcOhd8gOr/sQ0NbREROYOxOhhd9uipceWWEsauqa/3CxBISfkZXbp8D4WiFIMGDUJMTIxZgcxYkKqJ09bJkDoZfIiIXEG3x0KhKNUbeJRKpdb3W7duNXltT137R6EoRc+ee7FnTy/UHJI6diwFXbp8D6B6Yoqp96a+t4aCVPW1tWt8OG2d9GHwISKyE2MFwMXFxfj4448BwKygo+vatWt6r2uoN8iVG3PqvnZMTB50h6QsHYqqeW8bNSrB9OkKqFQyeHkJPPtsDpo3L0VgIODlFYS4uDLExjZDSAinrVNtDD5ERHZk7oesoWBi6PHt27cbvJbu0L4r1xDS99pJSdlGi73N7ZFR39upU4H0dCA7G2jaVIbY2Cb2fyNUZzH4EBE5maFgYm1gqdkTZO81hMypPzL12pmZK5CWtgM7dqRBpZLB21tgyZISPPXUUKt7ZGJjq7+ILMXgQ0TkRIbCQcOG+SYDiznDV6bWEDK0Yai+AGLuTLFevXqZfO3k5OOYM6cTSksj/9dLEwIgxOS1ieyNwYeIyIkMhYPLlxsbDSzm9gaZWkPI1JBZzfBj7gywPXv2mPXaMTEqREebdUkih6lTm5QSEbk7Q5t8Nm582eDmn4Z6iWpu8mnuBqvG2DrVnZuCkidgjw8RkRMZWtwwNjbP4KKHOTkJJrfAMLbBqlyeiO3bnVPczE1Byd0x+BAROZmhxQ0NPW7uFhiGNljNy9PuSbKWbo2RoZojbgpK7ozBh4jICQwtbqhUBiEnJ0ETHtRfgwYNAlBdk2PvLTCsWeNHt8aobdtTOHWqrUumzBPZgsGHiMgJ1ENR165d0xQYGytYDg8P1wpLxrbAsKR2xpop8/pqjE6ebAduCkqeiMGHiMhJwsLCNDU45qy3Y2wlaDVjtTPqNXgM7ZRubmDRvz+WbSsxE7kKgw8ROYU9NuKsS0ytt6Nm7T3RtwaPua+pZt7+WNW4KSh5CgYfInI43Q9hQzUmnroRpzXMLVi2lr6Qaeo1dYfMDO2PZajGh9PWyRMw+BCRw9X8EDZWY2LrOjKWUvdCKZVKVFRU1Dru4+ODkJAQu/ZG6a63Y6hg2RHhQd9rzp17DePHG946Qnd/rKNHlYiNvYeYmEhcu/bXlHlOWydPweBDRE5j732kbGHudgxq9uqNMrbejjPCg26R9PjxQxFt5nLK1ftjKQAoAGhPmSfyFAw+ROQ0ltaYOJKlvUv27I0ytN6OI+kOL7IImaSKwYeInMbRdS22UAcDX98yVFT4WbTGjbuzdtd3orqIwYeInMbeC/HZS81goJ6tVFcCgjsNLxK5AwYfInIqYwvxuYJuMKhri/K50/AikTtg8CEip3OnGhP9i/NV8+SAYGwNHmNT2InqOgYfInI4cz9cTZ3niEUQ9S/OV81d6o+sobsGz4wZClRVyeDtLbBkSQmeesrwFHaiuozBh4gcztatFwDzp59bOu1ct+5It8bHE3t71HTX4MnOBpo2lSE2NgRAiCubRuQyDD5E5BS29iyYO53c3PMMbQDq61uOigq5TRuBuqPqNXhc3Qoi12PwISKPZGjbC3PV7IVy5srNRORaDD5E5DLW1uzYa10a9bXNXbmYiDwfgw8RuYS1NTv2WJfGXXaKd5d2EEkJgw8RuYTuB76hoSvd82xdl8ZRRdKWcpd2EEkNgw8RuZwlQ1e2bnth7yJpa7lLO4ikhsGHiOzK0uEbS4euXL3tBYeniDwbgw8RWcTYB39xcTE+/vhjk9fIyMjQfG/u0JWh6ee6086Li4trvZ69wogjh6dsnaVGROZh8CEis+l+8Jv6sDanbsfcoStDiyAqlUps3bpV87Oh4GUojFgSOBw1PMXd04mch8GHiMxW8wPd1Ie1uR/mlgxd2dJroy+MuEPg4O7pRM7F4ENEFjP1YW3ph7krdmx3l8DB3dOJnEv/lsREREYY+7A25zhQewsIhaIUiYmXan3YO2qrCHPaaIpSGYScnAQolUFWt0M91FeTJ2+OSuTu2ONDRBYzVZdjTt2Oumbn5s2bereLAKq3jLCUqZoddZAy1UZTgcvWYTL19U0N9Xn6HmFE7obBh4gsZurD2pK6nZqFyYaYO0vKnDBSs0i6UaMSzJihQFWVDN7eAkuWlOCpp4aanAVmj2Ey3WLtOXNuIjfXBwkJlYiJ6QigI6fGEzkAgw8RWcVUXY45dTv2nCVlSRhRh4mpU4H0dCA7G2jaVIbY2BAAISZfy151OTVDTXQ0kJJi9lOJyEoMPkRkNYWi1OgHvaHjjhi+sTaMxMZWf5nDXsNkROQ6DD5EZDZzP9DT09OhUCgMXsPQ8I01i/g5M4zYY5iMiFyLwYeIzGZoEcGarP3gt7ZY2NlhxNZhMiJyLQYfIrKII3ozbC0WNjeM2HufLUuGyYjIPTD4EJHL2XMRP0NhxJH7bBGR5+AChkTkcs5YxM9R+2wRkWdh8CEil9FdxE8dfriIHxE5Coe6iMhm1tbOcBE/InI2Bh8isomttTOuWsTPmqnzROT5GHyISIulvTeeWDtj6z5bROS5GHyI/sfeU509kbm9N0OGDEFISAgAoKCgwMGtsi977LNFRJ6LwYcItT/wDQ2DePJUZ3OCnbm9Mh9//LG9muV09pw6T0Seh8GHCNrDMMaGQdxpuMYS5vbkpKena/1sTR2Mu9bOcJ8tIgIYfIi0WDsMUrM35do1L+Tk+CAxsRIxMdXTs109TGZuYKuoqNB8b00djDvXznCfLSICGHyItFgzDFKzN8XYB787DZOZ6pWxJgB6Qu0M99kiIgYfohpMDYPoo+5NMfXB7y7DZOb0yhgLgOrjuqHJ02pnuM8WkTQx+BDVoF5BWDcYmPPB7Qkf/Ob2yhgKgNeuxeD995/WG5psrZ3hrDoicgYGHyIdycnHkZSUjaKiUISGFpkdWqzpLXI2c8OZvgDYs+de7N3b02BoGj26l9W1M9xAlIichcGHSA+FotTiXhpbeoucxVQ48/H5668E3QBoKjSFh4dj6tQQq2pnPHERRCLyTAw+RDB/CnNxcXGtWVs1F/CztrfIWUyFs5CQEK29swBAqVRi69atAGDWUBZrZ4jInTH4EKH2Zpk11fzgnznzgsnCYGt6i2xhTm1MzWBnLJzpG5KKjo7mNHAiqjMYfIj+x9QHtztO17akNsZQsFMzFl6cPQ3cXRdBJCLPx+BDZCZbZ205YkVgS2pjoqOj7fKajh7KcudFEInI8zH4EJnJVGHwoEGDEB4erve5HAoyjzv2qhFR3cLgQ2QmU4XB4eHhdutVsZYrhojsuf6OJ6yFRESezezgU1JSYvZFg4ODrWoMkbtz51lbrhgistf6O9xAlIicxezgExISAplMZvQcIQRkMhmqqqpsbhiRu3L2rC1zuGqIyF7r73ADUSJyFrODz/79+x3ZDqNyc3OxYMECfPvtt8jPz0dMTAyGDx+O2bNna/0L8NSpU5gwYQKOHDmCiIgITJw4EdOnT3dZu4mcxdQQkVKpNPp8dwgV3ECUiJzB7ODTtWtXR7bDqN9++w0qlQrvvPMOmjZtijNnzuCZZ57BnTt3sGzZMgDVQ3G9e/dGz549sWbNGpw+fRpjxoxBSEgIxo8f77K2k+czd3jFlcMwpoaI1OsQGWNsOMpQHU/NxRvtiYsgEpGjWF3cXFxcjLVr1+Ls2bMAgFatWmHMmDFQKBR2a5xa37590bdvX83PTZo0wblz57B69WpN8Pnwww9RXl6OdevWQS6Xo1WrVjhx4gSWL1/O4EM2Mba4oZqrekzUYcse22UYen/m1vEAXH+HiNyfVcHn559/Rp8+feDv748HH3wQALB8+XIsXLgQu3fvRnJysl0bqY9SqURoaKjm56ysLHTp0kXrX919+vTBkiVLcOvWLTRo0EDvdcrKylBWVqb52ZIibpIOVw8DGaIbyubMuYncXB8kJFQiJqYjgI4oLi7Gxx9/bNb19PXsmNurw/V3iMgTWBV8XnjhBQwcOBDvvfeeZlPDyspKjBs3DpmZmfjvf/9r10bqys7OxhtvvKHp7QGA/Px8JCYmap0XGRmpOWYo+CxatAjz5893XGOJHKxmKIuOBlJSrLuOJQFJF9ffISJP4WX6lNp+/vlnzJgxQ2snZx8fH0yfPh0///yz2deZOXMmZDKZ0a/ffvtN6zl//PEH+vbtiyeeeALPPPOMNc3XMmvWLCiVSs3XlStXbL4mkSe6efOmWecplUHIyUmAUhmkecxYcTURkTuxqscnODgYly9fRosWLbQev3LlCoKCggw8q7apU6di1KhRRs9p0qSJ5vtr167hscceQ+fOnfHuu+9qnRcVFYXr169rPab+OSoqyuD1/fz84OfnZ3abiTydoTocc2ZuGhrO4vo7ROQprAo+6enpGDt2LJYtW4bOnTsDAH744QdMmzYNQ4cONfs6ERERiIiIMOvcP/74A4899hhSUlKwfv16eHlp/+syNTUVs2fPRkVFBXx9fQEAe/bsQfPmzQ0Oc5F7secKwKSfLXU4+oazvvhiAOTyMsTFXdEqrvbyEnj1Va6/Q0Tux6rgs2zZMshkMjz99NOorKwEAPj6+uL555/H4sWL7dpAoDr0dOvWDfHx8Vi2bJlWl7y6N+epp57C/PnzMXbsWMyYMQNnzpzBypUr8frrr9u9PWR/9loBmAyztA5Ht2dI33AW4IVPP31CE6IyM1egqCgUEyf2Q0pKJLj+DhG5G6uCj1wux8qVK7Fo0SJcvHgRAJCUlISAgAC7Nk5tz549yM7ORnZ2NmJ1FvcQQgAAFAoFdu/ejQkTJiAlJQXh4eGYM2cOp7J7CHutAEy1qYeZLNkHS1/PUFJSdq3hrJrX+fLLAcjMXIHExEuIiVE57g0REdnAquJmtYCAALRp0wZt2rRxWOgBgFGjRkEIoferprZt2+L777/HvXv3cPXqVcyYMcNhbSLyFOop78OGPQiZTDuQyGQq+Ppqh0lDPUMAkJa2o9Y11FjMTESewKoen3v37uGNN97A/v37cePGDahU2n8RHjt2zC6NI+niQnj2FRYWhtaty7XqcAABIbywdu04rVofYz1D6k1ar1yJxbZtfzdYzExE5K6sCj5jx47F7t278fe//x0PPvigyc1LiSzBhfAcJzn5OBo2zMf//d84qDt8dWt9TM3Qqt6k9SzKy21bKZqIyBWsCj47duzAV199hYcfftje7SGJ40J4jldR4QfdUe6atT6jR/cyuEP63bt38cEHHwCApvenqCgUoaFFWn8+nL5ORO7KquDTqFEji9brITKXJQW4ZBl1GDHVoxMTE4OpU0MM7pDurvuWERGZw6rg89prr2HGjBlYs2YN4uPj7d0mkjBTH8pkvZr7ehnq0akZWgztkM5QQ0SezKrg06FDB9y7dw9NmjRBQECAZsFAtaIifkiRZczdZZxDKLZRh5apU2GwR4eIqC6TCd054Wbo2bMnLl++jLFjxyIyMrJWcfPIkSPt1kBnKykpgUKhgFKpRHBwsKubIyk1V26+ds2rxi7j1bMGOYRCRESGmPv5bVXwCQgIQFZWFtq1a2dTI90Rgw8REZHnMffz26qhrhYtWuDPP/+0unFEZBr3LiMisj+rgs/ixYsxdepULFy4EG3atKlV48OeEiLbcO8yIiLHsCr49O3bFwDQo0cPrceFEJDJZKiqqrK9ZUQSxr3LiIgcw6rgs3//fnu3g8hpOIRERCRdVgWfrl27mnXeP/7xD/z73/9GeHi4NS9DZHccQiIikjabdmc35YMPPkBJSYkjX4LIIp46hKRUBiEnJwFKJVdMJyKyhVU9PuayYqY8kVN5wi7w3LSViMh+HBp8iNyZJwQKbtpKRGRfDh3qInJXhgKFuw0lGdu0lYiILMfgQ5Lk7oFCdyf1mmpu2sq9y4iILMOhLpIkd98F3tKd1ImIyDwWB5/Kykq88sorGDNmDGJjY42eO3z4cK7iTC6jb72egoICAKZ3gXcH3EmdiMj+rNqkNCgoCKdPn0ZCQoIDmuRa3KS0bjB3vZ7qWV2hCA0t0go9XMeHiMizOHST0u7du+PAgQN1MvhQ3WDuOjyjR/eqtcAmh5CIiOouq4JPv379MHPmTJw+fRopKSkIDAzUOj5w4EC7NI7IXgyt1xMeHo7o6GgXtoyIiJzJquDzj3/8AwCwfPnyWse4SSm5G09Yr4eIiJzDqunsKpXK4BdDD7kTT1mvh4iInMOq4PP++++jrKys1uPl5eV4//33bW4Ukb24+3o9RETkXFYFn9GjR0OpVNZ6vLS0FKNHj7a5UUT2YmoBQCIikharanyEEJDJZLUev3r1KhQKhc2NorpP3xo7NdlrZpUnrNdDRETOY1Hwad++PWQyGWQyGXr06AEfn7+eXlVVhZycHPTt29fujaS6xdw1dixZS0c3SNXskUxOPo6kpGy96/VwywciImmxKPg8/vjjAIATJ06gT58+qF+/vuaYXC5HQkICBg8ebNcGUt1j7ho75p5nTpBSKErxzDP9EBISonnMkl4lZ/VQERGRY1kUfObOnQsASEhIQHp6OurVq+eQRhFZwtyAFBISYtWaPY7ooSIiItewqsZn5MiRAKo/cG7cuAGVSrt4tHHjxra3jCTD0OKC7sLePVREROQ6VgWfCxcuYMyYMTh06JDW4+qiZ67lQ+bi4oJERORMVgWfUaNGwcfHBzt27EB0dLTeGV5EphhaXDApKdtoz49uvY16x/Wa13VFD1LNdrDmh4jIPVkVfE6cOIGjR4+iRYsW9m4PSYixxQUNBRZT9TbO6EHSDVbqn9ev38Md3omI3JxVwadly5a1/pVNZCn14oI1w4+pxQWN1dFY24NkCd1g1bbtKZw61VZv0GLNDxGR+7Fq5eYlS5Zg+vTp+O6771BYWIiSkhKtLyJj1GvnqBcXVK+srLu4oKVr7Dh6ewp9werkyXbcB4yIyINY1ePTs2dPAED37t216ntY3EzmCAsLQ0ZGhqZHZM6cm8jN9UFCQiViYjoC6GhVjYypHiRbFyvUF6wA7fo2U0N1RETkWlYFn/3799u7HSQxNUNNdDSQkmLddXTrbWpuT+HlJTBnzjUMGtQLvr6+KC8vR15ensWhSh2Y9AUrQKBm+OE+YERE7s2q4NO1a1d8//33eOedd3Dx4kV8+umnaNSoETZt2oTExER7t5FIL0OFzDW3pwBKsX177edaUnhcs4eqUaMSTJ+ugEolM1jjw94eIiL3ZVXw2bZtG0aMGIFhw4bh+PHjKCsrA1C9P9Irr7yCr776yq6NJNJlqpDZVPiwtPBYHZKmTgW6dbuON97Ypdn3q3v3b/XuA0ZERO7HquLml19+GWvWrMF7770HX19fzeMPP/wwjh07ZrfGERni6EJmY2JiVEhMvKQJOQpFqdbPRETkvqwKPufOnUOXLl1qPa5QKFBcXGxrm4gM0q23qclZ9TXmFklz53ciIvdj1VBXVFQUsrOzkZCQoPX4wYMH0aRJE3u0i0gv3XqbGTMUqKqSwdtbYMmSEvTu3QvbaxT1GFrFWXcdKksKnnVnpenDlZuJiNyTVcHnmWeeweTJk7Fu3TrIZDJcu3YNWVlZePHFF/HSSy/Zu41EWmrW26SnA9nZQNOmMsTGhiAv70/NecZWcd6up+LZ0oJnIiLyPFYFn5kzZ0KlUqFHjx64e/cuunTpAj8/P7z44ouYOHGivdtIZFBsbPWXLmtWceZKy0REdZ9VwUcmk2H27NmYNm0asrOzcfv2bbRs2RL169e3d/uIrGLNPmBERFT3WRV81ORyOVq2bGmvthDZzNhig+riZ1ft3k5ERK5nU/AhcrTCwkKLiogNFT+ra3wuXmzq8N3biYjIfTH4kNsqLCzEm2++afI83aJk3eLnw4cL8cMPGwEAK1ZkOnT3diIicm9WreND5AzmFhsbOy82FujcuRwKRalLFz0kIiL3wOBDkuHKRQ+JiMg9MPhQnacueFbv3q4OP7qbinKlZSKiuo81PuQxrJ2NpbvS8pw5N5Gb64OEhErExHQE0JErLRMRSQSDD3kEY6swm6NmqImOBlJSHNFKIiJydxzqIrdUWFio2U/L0CrMSmWQK5tIREQeiD0+5HZ0p7FzFWYiIrIX9viQ29Gdnm5qNhaLkomIyFzs8SG3p56NpVvjM3p0L8TExLAomYiIzMbgQw5l6ZYThiQnH0dSUjaKikIRGloEhaIU4eEdGXqIiMgiDD7kMNZuOaGr5jT2xMRL9mwiERFJDIMPOYw9tpywdRo7ERFRTSxuJrfFaexERGRvDD7ktripKBER2RuDDzmNUhmEnJwEkz026unpnMZORET25nE1PmVlZejUqRNOnjyJ48eP44EHHtAcO3XqFCZMmIAjR44gIiICEydOxPTp013XWNKwpFan5t5ajRqVYMYMBaqqZPD2FliypARPPTWUe2sREZFVPC74TJ8+HTExMTh58qTW4yUlJejduzd69uyJNWvW4PTp0xgzZgxCQkIwfvx4F7WWAMO1OklJ2VAoSlFQUFAryKi/nzoVSE8HsrOBpk1liI0NARDi/DdBRER1gkcFn127dmH37t3Ytm0bdu3apXXsww8/RHl5OdatWwe5XI5WrVrhxIkTWL58OYOPi5nacmL79u0ADE9rj42t/iIiIrKVx9T4XL9+Hc888ww2bdqEgICAWsezsrLQpUsXrbqPPn364Ny5c7h165bB65aVlaGkpETri+zD3FodNXOnvxMREVnLI3p8hBAYNWoUnnvuOXTo0AG5ubm1zsnPz0diYqLWY5GRkZpjDRo00HvtRYsWYf78+XZvs6ew18rK+qhrda5du4aLF2tvOcENRomIyNlcGnxmzpyJJUuWGD3n7Nmz2L17N0pLSzFr1iy7t2HWrFmYMmWK5ueSkhLExcXZ/XXckb1WVjYmLCwM5eXlSE7eXmvLCSIiImdzafCZOnUqRo0aZfScJk2a4Ntvv0VWVhb8/Py0jnXo0AHDhg3Dxo0bERUVhevXr2sdV/8cFRVl8Pp+fn61risV9lhZ2RIKRSkUilLNtPbQ0EIGICIiciqXBp+IiAhERESYPG/VqlV4+eWXNT9fu3YNffr0wdatW9GpUycAQGpqKmbPno2Kigr4+voCAPbs2YPmzZsbHOYi5zM2rb2goEBzHqerExGRI3hEjU/jxo21fq5fvz4AICkpCbH/m+7z1FNPYf78+Rg7dixmzJiBM2fOYOXKlXj99ded3l53p67rqRk0nMHUtHb17C41W4bYiIiI9PGI4GMOhUKB3bt3Y8KECUhJSUF4eDjmzJnDqew6zK3rcQRD09qvXIlFUdGftYa+OMuLiIjszSODT0JCAoQQtR5v27Ytvv/+exe0yHMYCxNKZRCKisLsXnujO61dO/yosG3b37n7OhEROYVHBh+yP0u2lLCU7hYU06croFLJAKgAyCCEDEDtoS8iIiJ785gFDMlxDNXemNpM1BJhYWGIjo7G1Kkh+OmnGxg5cgP+/vdtAGRa53H3dSIiciQGH4lTKoPwyy+tDG4pAdh/F/SYGBUSEy8hLu6KWSs6ExER2QuHuiSs5vAWIFCz98XLS2DixH5ISPBx2MwqhaIUaWlc0ZmIiJyHwUeidIe3qkNPdfiRyVR49dUSpKREOrwdycnHuaIzERE5DYOPROmbWg7I0KfP12jZ8lc89dRQACEOeW3doTP1is6mziMiIrIVg4/EGJtaLpOp0LLlr1AoSh0aOmrO8jLWTi5eSERE9sbgIzG6U8tnzFCgqkoGb2+BJUtK8NRTQ50SOhhqiIjIFWRC30qAElZSUgKFQgGlUong4GCXtUO9rYQh9gonV68C2dlA06bA/3b/ICIi8jjmfn6zx8cNmbuthD32soqNZeAhIiLp4Do+bsjcPaq4lxUREZFlGHyIiIhIMhh8iIiISDIYfIiIiEgyGHyIiIhIMhh8iIiISDI4nZ1qcdYaQkRERM7G4OOGzN0uwhHbSjhzDSEiIiJnY/BxQ67cy4prCBERUV3G4OOmaoaaq1eBCxeAZs24yjIREZEtWNzs5tauBeLjge7dq/+7dq1zX1+pDEJOTgKUyiDnvjAREZEDsMfHjV29CowfD6hU1T+rVMCzzwJ9+vzV8+PIQuRjx9rjyy8HQAgvyGQqpKXtQHLycauuRURE5A4YfNzYhQt/hR61qqrq3dRjY2sXIiuVQSgqCkNoaCEUilLN49YUIiuVQZrQAwBCeOHLLwcgKSlb69pERESehMHHjTVrBnh5aYcfb2+gadPq72v29BjrnbGmELmoKEwTetSE8EJRUSiDDxEReSzW+Lix2Fjg3Xerww5Q/d933qld4Gyod8aWupzQ0ELIZNrdTTKZCqGhRVZfk4iIyNUYfNzc2LFAbi6wf3/1f8eOrX2Osd4ZS6nXBlIoSpGWtkMTftS9SOreHkesIURERORoHOryALGxxqexq3tnaoYfa3tndNcQmjPnJnJzfZCQUImYmI4AOnLlZiIi8lgMPnWAundGt8bH2lqcmqEmOhpISbFXS4mIiFyLwaeOSE4+jqSkbBQVhSI0tIgFyERERHow+NQhCkUpAw8REZERLG72YI7ezPTq1eqi6qtXrXo6ERGR22GPjwdz5Gama9f+tWq0l1f1tHp9M8qIiIg8CYOPh7P37KrCwkLk5lZi/PiGUKlkANRbZQg88MANJCT4cEYXERF5LAYf0lBvgZGTkwCVaqTWsaoqGd54YxcSEy9ZtQUGERGRO2CND2moh8xMrdpszRYYRERE7oDBh2oxtWozERGRp+JQF+nFdYGIiKguYvAhg7guEBER1TUc6iIiIiLJYPAhIiIiyWDwISIiIslg8CENR2+BQURE5GosbiYNR26BQURE5A4YfEgLQw0REdVlHOoiIiIiyWDwISIiIslg8CEiIiLJYPAhIiIiyWDwISIiIslg8CEiIiLJYPAhIiIiyWDwISIiIslg8CEiIiLJYPAhIiIiyWDwISIiIslg8CEiIiLJYPAhIiIiyWDwISIiIslg8CEiIiLJYPAhIiIiyWDwISIiIslg8CEiIiLJYPAhIiIiyWDwISIiIslg8CEiIiLJ8Kjgs3PnTnTq1An+/v5o0KABHn/8ca3jly9fRv/+/REQEICGDRti2rRpqKysdE1jiYiIyO34uLoB5tq2bRueeeYZvPLKK+jevTsqKytx5swZzfGqqir0798fUVFROHToEPLy8vD000/D19cXr7zyigtbTkRERO5CJoQQrm6EKZWVlUhISMD8+fMxduxYvefs2rULAwYMwLVr1xAZGQkAWLNmDWbMmIGbN29CLpeb9VolJSVQKBRQKpUIDg6223sgIiIixzH389sjhrqOHTuGP/74A15eXmjfvj2io6PRr18/rR6frKwstGnTRhN6AKBPnz4oKSnBL7/8YvDaZWVlKCkp0fpylcLCQuTl5Rn8KiwsdFnbiIiI6gKPGOr6/fffAQDz5s3D8uXLkZCQgNdeew3dunXD+fPnERoaivz8fK3QA0Dzc35+vsFrL1q0CPPnz3dc481UWFiIN9980+R5GRkZCAsLc0KLiIiI6h6X9vjMnDkTMpnM6Ndvv/0GlUoFAJg9ezYGDx6MlJQUrF+/HjKZDJ988olNbZg1axaUSqXm68qVK/Z4axYrLy+363lERERUm0t7fKZOnYpRo0YZPadJkybIy8sDALRs2VLzuJ+fH5o0aYLLly8DAKKiovDTTz9pPff69euaY4b4+fnBz8/PmuYTERGRh3Fp8ImIiEBERITJ81JSUuDn54dz587hkUceAQBUVFQgNzcX8fHxAIDU1FQsXLgQN27cQMOGDQEAe/bsQXBwsFZg8hRKZRCKisIQGloIhaLU1c0hIiKqEzyixic4OBjPPfcc5s6di7i4OMTHx2Pp0qUAgCeeeAIA0Lt3b7Rs2RIjRozAq6++ivz8fPzrX//ChAkTPK5H59ix9vjyywEQwgsymQppaTuQnHzc1c0iIiLyeB4RfABg6dKl8PHxwYgRI/Dnn3+iU6dO+Pbbb9GgQQMAgLe3N3bs2IHnn38eqampCAwMxMiRI/Hvf//bxS3Xr7CwUKtep6CgAEB1T4869ACAEF748ssBSErKZs8PERGRjTwm+Pj6+mLZsmVYtmyZwXPi4+Px1VdfObFV1jE2g6uoKEwTetSE8EJRUSiDDxERkY08Yh2fusbYzKzQ0ELIZCqtx2QyFUJDixzdLCIiojqPwccFlEqlwWMKRSnS0nZowo+6xkfd22PuCtRERERUm8cMddUVhYWF2Lp1q9ZjujO4kpOPIykpG61bP4527QIRE9MRQEfI5XIuXkhERGQDBh8n0x3mMjSDS6EoRb9+/oiOjjRwJSIiIrIUh7pcyNAMLqUyyMUtIyIiqpsYfFzI2AwuIiIisj8GHxfiDC4iIiLnYvBxIc7gIiIici4WN7tYUlI2Bg/eBkAgLu6qJvQMGTKEM7iIiIjsjMHHhYztyRUSEuLaxhEREdVBHOpyMvXwlakZXRzmIiIisj/2+DhJzU1J09PT8cMPcr0zuh5+eCS6dQOHuYiIiByAwccJ9G1KqlQGQSbL1Ao/3t4CnTqFgZmHiIjIMTjU5QT6NiXVN6NryRIlYmOd3ToiIiLpYI+PC6n35CoqCkVoaBGeemoogBBXN4uIiKjOYvBxMYWiVDOFnYiIiByLwceB1AXNBQUFrm4KERERgcHHYfQVNBMREZFrsbjZQfQVNBMREZFrMfgQERGRZDD4uBGu1kxERORYrPFxsUGDBiE8PBxyuZyrNRMRETkYg48LKJVBKCoKQ2hoIcLDwxEdHe3qJhEREUkCg4+T6e7I3qhRCaZOdXWriIiIpIE1Pk6kb0f2GTMUuHrVxQ0jIiKSCAYfB9FXqFxUFFZrR/aqKhmys53VKiIiImnjUJeDhIWFISMjQ2s9n2vXvLBpk4BKJdM85u0NNG3qihYSERFJD4OPA+nO0oqOBt59F3j2WaCqqjr0vPMOuCM7ERGRkzD4OMnVq8CFC0CfPkBuLpCdXd3Tw9BDRETkPKzxcYK1a4H4eKB79+r/fvMN0K0bQw8REZGzMfg42NWrwPjxgEpV/bNKVT3UxZlcREREzsfg42AXLvwVetSqqsCZXERERC7A4ONgzZoBXjp3mTO5iIiIXIPBx8FiY6tncnl7V//MmVxERESuw1ldTjB2bPVsLs7kIiIici0GHyeJjWXgISIicjUOdREREZFkMPgQERGRZDD4EBERkWQw+BAREZFkMPgQERGRZDD4EBERkWQw+BAREZFkMPgQERGRZDD4EBERkWQw+BAREZFkMPgQERGRZHCvLh1CCABASUmJi1tCRERE5lJ/bqs/xw1h8NFRWloKAIiLi3NxS4iIiMhSpaWlUCgUBo/LhKloJDEqlQrXrl1DUFAQZDKZWc8pKSlBXFwcrly5guDgYAe30H3xPlTjfeA9UON9qMb7wHug5sj7IIRAaWkpYmJi4OVluJKHPT46vLy8EBsba9Vzg4ODJf0Lrcb7UI33gfdAjfehGu8D74Gao+6DsZ4eNRY3ExERkWQw+BAREZFkMPjYgZ+fH+bOnQs/Pz9XN8WleB+q8T7wHqjxPlTjfeA9UHOH+8DiZiIiIpIM9vgQERGRZDD4EBERkWQw+BAREZFkMPgQERGRZDD4GLB69Wq0bdtWs8hSamoqdu3apTl+7949TJgwAWFhYahfvz4GDx6M69eva13j8uXL6N+/PwICAtCwYUNMmzYNlZWVzn4rdrN48WLIZDJkZmZqHpPKfZg3bx5kMpnWV4sWLTTHpXIf/vjjDwwfPhxhYWHw9/dHmzZt8PPPP2uOCyEwZ84cREdHw9/fHz179sSFCxe0rlFUVIRhw4YhODgYISEhGDt2LG7fvu3st2K1hISEWr8LMpkMEyZMACCd34Wqqiq89NJLSExMhL+/P5KSkrBgwQKtfZKk8PtQWlqKzMxMxMfHw9/fH507d8aRI0c0x+viPfjvf/+LtLQ0xMTEQCaT4fPPP9c6bq/3fOrUKTz66KOoV68e4uLi8Oqrr9rnDQjS64svvhA7d+4U58+fF+fOnRP//Oc/ha+vrzhz5owQQojnnntOxMXFiX379omff/5ZPPTQQ6Jz586a51dWVorWrVuLnj17iuPHj4uvvvpKhIeHi1mzZrnqLdnkp59+EgkJCaJt27Zi8uTJmselch/mzp0rWrVqJfLy8jRfN2/e1ByXwn0oKioS8fHxYtSoUeLw4cPi999/F998843Izs7WnLN48WKhUCjE559/Lk6ePCkGDhwoEhMTxZ9//qk5p2/fvqJdu3bixx9/FN9//71o2rSpGDp0qCveklVu3Lih9XuwZ88eAUDs379fCCGN3wUhhFi4cKEICwsTO3bsEDk5OeKTTz4R9evXFytXrtScI4XfhyFDhoiWLVuKAwcOiAsXLoi5c+eK4OBgcfXqVSFE3bwHX331lZg9e7bYvn27ACA+++wzreP2eM9KpVJERkaKYcOGiTNnzoiPPvpI+Pv7i3feecfm9jP4WKBBgwbi//7v/0RxcbHw9fUVn3zyiebY2bNnBQCRlZUlhKj+xfDy8hL5+fmac1avXi2Cg4NFWVmZ09tui9LSUtGsWTOxZ88e0bVrV03wkdJ9mDt3rmjXrp3eY1K5DzNmzBCPPPKIweMqlUpERUWJpUuXah4rLi4Wfn5+4qOPPhJCCPHrr78KAOLIkSOac3bt2iVkMpn4448/HNd4B5o8ebJISkoSKpVKMr8LQgjRv39/MWbMGK3HBg0aJIYNGyaEkMbvw927d4W3t7fYsWOH1uPJycli9uzZkrgHusHHXu/57bffFg0aNND6f2LGjBmiefPmNreZQ11mqKqqwpYtW3Dnzh2kpqbi6NGjqKioQM+ePTXntGjRAo0bN0ZWVhYAICsrC23atEFkZKTmnD59+qCkpAS//PKL09+DLSZMmID+/ftrvV8AkrsPFy5cQExMDJo0aYJhw4bh8uXLAKRzH7744gt06NABTzzxBBo2bIj27dvjvffe0xzPyclBfn6+1n1QKBTo1KmT1n0ICQlBhw4dNOf07NkTXl5eOHz4sPPejJ2Ul5fjgw8+wJgxYyCTySTzuwAAnTt3xr59+3D+/HkAwMmTJ3Hw4EH069cPgDR+HyorK1FVVYV69eppPe7v74+DBw9K4h7ostd7zsrKQpcuXSCXyzXn9OnTB+fOncOtW7dsaiM3KTXi9OnTSE1Nxb1791C/fn189tlnaNmyJU6cOAG5XI6QkBCt8yMjI5Gfnw8AyM/P1/qLTX1cfcxTbNmyBceOHdMas1bLz8+XzH3o1KkTNmzYgObNmyMvLw/z58/Ho48+ijNnzkjmPvz+++9YvXo1pkyZgn/+8584cuQIJk2aBLlcjpEjR2reh773WfM+NGzYUOu4j48PQkNDPeY+1PT555+juLgYo0aNAiCt/ydmzpyJkpIStGjRAt7e3qiqqsLChQsxbNgwAJDE70NQUBBSU1OxYMEC3H///YiMjMRHH32ErKwsNG3aVBL3QJe93nN+fj4SExNrXUN9rEGDBla3kcHHiObNm+PEiRNQKpX49NNPMXLkSBw4cMDVzXKaK1euYPLkydizZ0+tf9FIjfpfsQDQtm1bdOrUCfHx8fj444/h7+/vwpY5j0qlQocOHfDKK68AANq3b48zZ85gzZo1GDlypItb5xpr165Fv379EBMT4+qmON3HH3+MDz/8EJs3b0arVq1w4sQJZGZmIiYmRlK/D5s2bcKYMWPQqFEjeHt7Izk5GUOHDsXRo0dd3TQygENdRsjlcjRt2hQpKSlYtGgR2rVrh5UrVyIqKgrl5eUoLi7WOv/69euIiooCAERFRdWayaH+WX2Ouzt69Chu3LiB5ORk+Pj4wMfHBwcOHMCqVavg4+ODyMhISdwHfUJCQnDfffchOztbMr8P0dHRaNmypdZj999/v2bIT/0+9L3Pmvfhxo0bWscrKytRVFTkMfdB7dKlS9i7dy/GjRuneUwqvwsAMG3aNMycORNPPvkk2rRpgxEjRuCFF17AokWLAEjn9yEpKQkHDhzA7du3ceXKFfz000+oqKhAkyZNJHMParLXe3bk/ycMPhZQqVQoKytDSkoKfH19sW/fPs2xc+fO4fLly0hNTQUApKam4vTp01p/uHv27EFwcHCtDw931aNHD5w+fRonTpzQfHXo0AHDhg3TfC+F+6DP7du3cfHiRURHR0vm9+Hhhx/GuXPntB47f/484uPjAQCJiYmIiorSug8lJSU4fPiw1n0oLi7W+tfwt99+C5VKhU6dOjnhXdjP+vXr0bBhQ/Tv31/zmFR+FwDg7t278PLS/gjx9vaGSqUCIL3fh8DAQERHR+PWrVv45ptv8Le//U1y9wCw3597amoq/vvf/6KiokJzzp49e9C8eXObhrkAcDq7ITNnzhQHDhwQOTk54tSpU2LmzJlCJpOJ3bt3CyGqp6w2btxYfPvtt+Lnn38WqampIjU1VfN89ZTV3r17ixMnToivv/5aREREeNyUVV01Z3UJIZ37MHXqVPHdd9+JnJwc8cMPP4iePXuK8PBwcePGDSGENO7DTz/9JHx8fMTChQvFhQsXxIcffigCAgLEBx98oDln8eLFIiQkRPznP/8Rp06dEn/729/0TmNt3769OHz4sDh48KBo1qyZW0/d1aeqqko0btxYzJgxo9YxKfwuCCHEyJEjRaNGjTTT2bdv3y7Cw8PF9OnTNedI4ffh66+/Frt27RK///672L17t2jXrp3o1KmTKC8vF0LUzXtQWloqjh8/Lo4fPy4AiOXLl4vjx4+LS5cuCSHs856Li4tFZGSkGDFihDhz5ozYsmWLCAgI4HR2RxozZoyIj48XcrlcREREiB49emhCjxBC/Pnnn+If//iHaNCggQgICBD/7//9P5GXl6d1jdzcXNGvXz/h7+8vwsPDxdSpU0VFRYWz34pd6QYfqdyH9PR0ER0dLeRyuWjUqJFIT0/XWr9GKvfhyy+/FK1btxZ+fn6iRYsW4t1339U6rlKpxEsvvSQiIyOFn5+f6NGjhzh37pzWOYWFhWLo0KGifv36Ijg4WIwePVqUlpY6823Y7JtvvhEAar03IaTzu1BSUiImT54sGjduLOrVqyeaNGkiZs+erTX9WAq/D1u3bhVNmjQRcrlcREVFiQkTJoji4mLN8bp4D/bv3y8A1PoaOXKkEMJ+7/nkyZPikUceEX5+fqJRo0Zi8eLFdmm/TIgay2wSERER1WGs8SEiIiLJYPAhIiIiyWDwISIiIslg8CEiIiLJYPAhIiIiyWDwISIiIslg8CEiIiLJYPAhIiIiyWDwISKbdevWDZmZma5uhsPNmzcPDzzwgKubQUQ2YPAhIskrLy936usJIVBZWenU1ySiagw+RGSTUaNG4cCBA1i5ciVkMhlkMhlyc3Nx5swZ9OvXD/Xr10dkZCRGjBiBgoICzfO6deuGiRMnIjMzEw0aNEBkZCTee+893LlzB6NHj0ZQUBCaNm2KXbt2aZ7z3XffQSaTYefOnWjbti3q1auHhx56CGfOnNFq08GDB/Hoo4/C398fcXFxmDRpEu7cuaM5npCQgAULFuDpp59GcHAwxo8fDwCYMWMG7rvvPgQEBKBJkyZ46aWXNLtDb9iwAfPnz8fJkyc173PDhg3Izc2FTCbDiRMnNNcvLi6GTCbDd999p9XuXbt2ISUlBX5+fjh48CBUKhUWLVqExMRE+Pv7o127dvj000/t/UdERDUw+BCRTVauXInU1FQ888wzyMvLQ15eHoKCgtC9e3e0b98eP//8M77++mtcv34dQ4YM0Xruxo0bER4ejp9++gkTJ07E888/jyeeeAKdO3fGsWPH0Lt3b4wYMQJ3797Vet60adPw2muv4ciRI4iIiEBaWpomoFy8eBF9+/bF4MGDcerUKWzduhUHDx5ERkaG1jWWLVuGdu3a4fjx43jppZcAAEFBQdiwYQN+/fVXrFy5Eu+99x5ef/11AEB6ejqmTp2KVq1aad5nenq6Rfdq5syZWLx4Mc6ePYu2bdti0aJFeP/997FmzRr88ssveOGFFzB8+HAcOHDAousSkQXsstUpEUla165dxeTJkzU/L1iwQPTu3VvrnCtXrmjtaN61a1fxyCOPaI5XVlaKwMBAMWLECM1jeXl5AoDIysoSQvy1K/SWLVs05xQWFgp/f3+xdetWIYQQY8eOFePHj9d67e+//154eXmJP//8UwghRHx8vHj88cdNvq+lS5eKlJQUzc9z584V7dq10zonJydHABDHjx/XPHbr1i0BQOzfv1+r3Z9//rnmnHv37omAgABx6NAhreuNHTtWDB061GTbiMg6Pq4MXURUN508eRL79+9H/fr1ax27ePEi7rvvPgBA27ZtNY97e3sjLCwMbdq00TwWGRkJALhx44bWNVJTUzXfh4aGonnz5jh79qzmtU+dOoUPP/xQc44QAiqVCjk5Obj//vsBAB06dKjVtq1bt2LVqlW4ePEibt++jcrKSgQHB1v8/g2p+ZrZ2dm4e/cuevXqpXVOeXk52rdvb7fXJCJtDD5EZHe3b99GWloalixZUutYdHS05ntfX1+tYzKZTOsxmUwGAFCpVBa99rPPPotJkybVOta4cWPN94GBgVrHsrKyMGzYMMyfPx99+vSBQqHAli1b8Nprrxl9PS+v6ooBIYTmMfWwm66ar3n79m0AwM6dO9GoUSOt8/z8/Iy+JhFZj8GHiGwml8tRVVWl+Tk5ORnbtm1DQkICfHzs/9fMjz/+qAkxt27dwvnz5zU9OcnJyfj111/RtGlTi6556NAhxMfHY/bs2ZrHLl26pHWO7vsEgIiICABAXl6epqemZqGzIS1btoSfnx8uX76Mrl27WtRWIrIei5uJyGYJCQk4fPgwcnNzUVBQgAkTJqCoqAhDhw7FkSNHcPHiRXzzzTcYPXp0reBgjX//+9/Yt28fzpw5g1GjRiE8PByPP/44gOqZWYcOHUJGRgZOnDiBCxcu4D//+U+t4mZdzZo1w+XLl7FlyxZcvHgRq1atwmeffVbrfebk5ODEiRMoKChAWVkZ/P398dBDD2mKlg8cOIB//etfJt9DUFAQXnzxRbzwwgvYuHEjLl68iGPHjuGNN97Axo0brb43RGQcgw8R2ezFF1+Et7c3WrZsiYiICJSXl+OHH35AVVUVevfujTZt2iAzMxMhISGaoSFbLF68GJMnT0ZKSgry8/Px5ZdfQi6XA6iuGzpw4ADOnz+PRx99FO3bt8ecOXMQExNj9JoDBw7ECy+8gIyMDDzwwAM4dOiQZraX2uDBg9G3b1889thjiIiIwEcffQQAWLduHSorK5GSkoLMzEy8/PLLZr2PBQsW4KWXXsKiRYtw//33o2/fvti5cycSExOtuCtEZA6ZqDkwTUTkxr777js89thjuHXrFkJCQlzdHCLyQOzxISIiIslg8CEiIiLJ4FAXERERSQZ7fIiIiEgyGHyIiIhIMhh8iIiISDIYfIiIiEgyGHyIiIhIMhh8iIiISDIYfIiIiEgyGHyIiIhIMhh8iIiISDL+P3olo/ByhWa4AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1012,12 +4101,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "4/4 [==============================] - 0s 4ms/step\n" + "\r", + "\u001b[1m1/4\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 11ms/step" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step \n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAHHCAYAAAAGU9SoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf+ElEQVR4nO3dfVzN5+M/8Nfp/oYKpUKR23IzoqnTsJnmsCw2PsMM0WyMmftiSLYRwzY34/v52MTmfjZyG8vNbspdwtyUjRIjMSpF99fvj369dZwTxTmdczqv5+NxHpzrfZ33uU7v6bx2Xe/rumRCCAEiIiIi0nsmum4AEREREVUOgxsRERGRgWBwIyIiIjIQDG5EREREBoLBjYiIiMhAMLgRERERGQgGNyIiIiIDweBGREREZCAY3IiIiIgMBIMbEdFzkslkmDNnjq6bIQkODkaTJk103Qwi0gIGNyKqkaKioiCTyaSHlZUVWrZsiXHjxuHWrVtafe+4uDjMmTMHmZmZGj3vK6+8ovSZ6tatixdffBHfffcdSkpKNPIe8+bNw/bt2zVyLiLSPDNdN4CISJvmzp0LDw8P5OXl4ffff8fKlSuxZ88enDt3DjY2Nhp5j4cPH8LM7NGv07i4OERERCA4OBgODg4aeY8yjRo1wvz58wEAt2/fxrp16xASEoJLly4hMjLyuc8/b948DBgwAP369XvucxGR5jG4EVGN1rt3b/j4+AAA3nvvPdSrVw9LlizBjh07MHjw4Gc+b0lJCQoKCmBlZQUrKytNNfep7O3t8e6770rPP/jgA7Rq1QrLly/Hp59+CnNz82prCxFVPw6VEpFRefXVVwEAKSkpAIBFixbB398f9erVg7W1NTp16oQff/xR5XUymQzjxo3D+vXr0aZNG1haWmLfvn3SsbJ73ObMmYOpU6cCADw8PKRhzdTUVLz88sto37692na1atUKCoWiyp/HxsYGfn5+yM3Nxe3btyusl5ubi8mTJ8PNzQ2WlpZo1aoVFi1aBCGE0mfMzc3F2rVrpXYHBwdXuU1EpD3scSMio3L58mUAQL169QAAX3/9NYKCgjBkyBAUFBRg06ZN+M9//oNdu3YhMDBQ6bUHDx7Eli1bMG7cODg6OqqdAPDWW2/h0qVL2LhxI7788ks4OjoCAJycnDB06FCMGjUK586dQ9u2baXXnDhxApcuXcLMmTOf6TNduXIFpqamFQ7LCiEQFBSEQ4cOISQkBB06dEBMTAymTp2Kf/75B19++SUA4Pvvv8d7772Hzp074/333wcANGvW7JnaRERaIoiIaqA1a9YIAOKXX34Rt2/fFteuXRObNm0S9erVE9bW1uL69etCCCEePHig9LqCggLRtm1b8eqrryqVAxAmJibi/PnzKu8FQISHh0vPv/jiCwFApKSkKNXLzMwUVlZWIjQ0VKl8/PjxwtbWVuTk5DzxM7388svC09NT3L59W9y+fVtcvHhRjB8/XgAQb7zxhlRv+PDhonHjxtLz7du3CwDis88+UzrfgAEDhEwmE3///bdUZmtrK4YPH/7EdhCR7nColIhqtICAADg5OcHNzQ2DBg1CrVq18PPPP6Nhw4YAAGtra6nuvXv3kJWVha5du+LUqVMq53r55ZfRunXrZ26Lvb09+vbti40bN0pDlMXFxdi8eTP69esHW1vbp54jKSkJTk5OcHJygpeXF5YtW4bAwEB89913Fb5mz549MDU1xfjx45XKJ0+eDCEE9u7d+8yfiYiqF4dKiahGW7FiBVq2bAkzMzM4OzujVatWMDF59P+su3btwmeffYbTp08jPz9fKpfJZCrn8vDweO72DBs2DJs3b8Zvv/2Gbt264ZdffsGtW7cwdOjQSr2+SZMm+N///ictcdKiRQvUr1//ia+5evUqGjRogNq1ayuVe3l5SceJyDAwuBFRjda5c2dpVunjfvvtNwQFBaFbt2745ptv4OrqCnNzc6xZswYbNmxQqV++d+5ZKRQKODs744cffkC3bt3www8/wMXFBQEBAZV6va2tbaXrElHNw6FSIjJa27Ztg5WVFWJiYjBy5Ej07t1bI6FIXW9dGVNTU7zzzjv48ccfce/ePWzfvh2DBw+Gqanpc79vRRo3bowbN27g/v37SuVJSUnS8TJPajsR6R6DGxEZLVNTU8hkMhQXF0tlqampz71zQNm9ahXtnDB06FDcu3cPH3zwAXJycpTWZdOG119/HcXFxVi+fLlS+ZdffgmZTIbevXtLZba2thrf8YGINIdDpURktAIDA7FkyRL06tUL77zzDjIyMrBixQo0b94cZ8+efebzdurUCQDwySefYNCgQTA3N8cbb7whBTpvb2+0bdsWW7duhZeXFzp27KiRz1ORN954A927d8cnn3yC1NRUtG/fHvv378eOHTswYcIEpSU/OnXqhF9++QVLlixBgwYN4OHhAV9fX622j4gqjz1uRGS0Xn31VXz77bdIT0/HhAkTsHHjRixYsABvvvnmc533xRdfxKeffoozZ84gODgYgwcPVlkcd9iwYQBQ6UkJz8PExATR0dGYMGECdu3ahQkTJuDChQv44osvsGTJEqW6S5YsQadOnTBz5kwMHjwYK1eu1Hr7iKjyZEKUWzabiIiqxddff42JEyciNTUV7u7uum4OERkIBjciomomhED79u1Rr149HDp0SNfNISIDwnvciIiqSW5uLqKjo3Ho0CH8+eef2LFjh66bREQGhj1uRETVJDU1FR4eHnBwcMCHH36Izz//XNdNIiIDw+BGREREZCA4q5SIiIjIQDC4ERERERkITk7QYyUlJbhx4wZq167NbWiIiIgMhBAC9+/fR4MGDWBiotk+MgY3PXbjxg24ubnpuhlERET0DK5du4ZGjRpp9JwMbnqsdu3aAEovvJ2dnY5bQ0RERJWRnZ0NNzc36Xtckxjc9FjZ8KidnR2DGxERkYHRxm1OnJxAREREZCAY3IiIiIgMBIMbERERkYHgPW4Grri4GIWFhbpuBlUDc3NzmJqa6roZRESkQwxuBkoIgfT0dGRmZuq6KVSNHBwc4OLiwnX9iIiMFIObgSoLbfXr14eNjQ2/yGs4IQQePHiAjIwMAICrq6uOW0RERLrA4GaAiouLpdBWr149XTeHqom1tTUAICMjA/Xr1+ewKRGRETKYyQlBQUFwd3eHlZUVXF1dMXToUNy4cUOpjhACixYtQsuWLWFpaYmGDRvi888/V6pz+PBhdOzYEZaWlmjevDmioqJU3mvFihVo0qQJrKys4Ovri+PHjysdz8vLw9ixY1GvXj3UqlUL/fv3x61bt5TqpKWlITAwEDY2Nqhfvz6mTp2KoqIijfwsyu5ps7Gx0cj5yHCUXXPe10hEZJwMJrh1794dW7ZsQXJyMrZt24bLly9jwIABSnU+/vhjrF69GosWLUJSUhKio6PRuXNn6XhKSgoCAwPRvXt3nD59GhMmTMB7772HmJgYqc7mzZsxadIkhIeH49SpU2jfvj0UCoU0RAUAEydOxM6dO7F161YcOXIEN27cwFtvvSUdLy4uRmBgIAoKChAXF4e1a9ciKioKs2fP1ujPhMOjxofXnIjIyAkDtWPHDiGTyURBQYEQQogLFy4IMzMzkZSUVOFrpk2bJtq0aaNUNnDgQKFQKKTnnTt3FmPHjpWeFxcXiwYNGoj58+cLIYTIzMwU5ubmYuvWrVKdixcvCgAiPj5eCCHEnj17hImJiUhPT5fqrFy5UtjZ2Yn8/PxKf8asrCwBQGRlZSmVP3z4UFy4cEE8fPiw0ueimoHXnohI/1X0/a0JBtPjVt7du3exfv16+Pv7w9zcHACwc+dONG3aFLt27YKHhweaNGmC9957D3fv3pVeFx8fj4CAAKVzKRQKxMfHAwAKCgqQkJCgVMfExAQBAQFSnYSEBBQWFirV8fT0hLu7u1QnPj4e7dq1g7Ozs9L7ZGdn4/z58xV+rvz8fGRnZys9iIiIiMoYVHALDQ2Fra0t6tWrh7S0NOzYsUM6duXKFVy9ehVbt27FunXrEBUVhYSEBKXh1PT0dKUwBQDOzs7Izs7Gw4cPcefOHRQXF6utk56eLp3DwsICDg4OT6yj7hxlxyoyf/582NvbSw83N7dK/mQMR3BwMGQyGWQyGczNzeHs7IzXXnsN3333HUpKSip9nqioKJVrQEREVNPpNLiFhYVJX+IVPZKSkqT6U6dORWJiIvbv3w9TU1MMGzYMQggAQElJCfLz87Fu3Tp07doVr7zyCr799lscOnQIycnJuvqIVTJ9+nRkZWVJj2vXrum6SVrRq1cv3Lx5E6mpqdi7dy+6d++Ojz/+GH369NHYBA4iIqInycnJQW5urq6bUWU6DW6TJ0/GxYsXn/ho2rSpVN/R0REtW7bEa6+9hk2bNmHPnj04evQogNJ1rczMzNCyZUupvpeXF4DSGZ4A4OLiojL789atW7Czs4O1tTUcHR1hamqqto6Li4t0joKCApWFbx+vo+4cZccqYmlpCTs7O6VHTWRpaQkXFxc0bNgQHTt2xIwZM7Bjxw7s3btXmuW7ZMkStGvXDra2tnBzc8OHH36InJwcAKUzg0eMGIGsrCwp4M+ZMwcA8P3338PHxwe1a9eGi4sL3nnnHaWJJUREZNyEEFixYgUWL16MVatWSR1AhkKnwc3JyQmenp5PfFhYWKh9bdmwWn5+PgDgpZdeQlFRES5fvizVuXTpEgCgcePGAAC5XI7Y2Fil8xw4cAByuRwAYGFhgU6dOinVKSkpQWxsrFSnU6dOMDc3V6qTnJyMtLQ0qY5cLseff/6pFBgOHDgAOzs7tG7d+hl+Uk8nhEBBQYFOHpr4j/7VV19F+/bt8dNPPwEovbdw6dKlOH/+PNauXYuDBw9i2rRpAAB/f3989dVXsLOzw82bN3Hz5k1MmTIFQOkyGZ9++inOnDmD7du3IzU1FcHBwc/dPiIiMnyZmZmYO3cu7ty5AwDIzc01uNn6BrEA77Fjx3DixAl06dIFderUweXLlzFr1iw0a9ZMCksBAQHo2LEjRo4cia+++golJSUYO3YsXnvtNakXbvTo0Vi+fDmmTZuGkSNH4uDBg9iyZQt2794tvdekSZMwfPhw+Pj4oHPnzvjqq6+Qm5uLESNGAADs7e0REhKCSZMmoW7durCzs8NHH30EuVwOPz8/AEDPnj3RunVrDB06FAsXLkR6ejpmzpyJsWPHwtLSUis/o8LCQsyfP18r536a6dOnVxiwq8LT0xNnz54FAEyYMEEqb9KkCT777DOMHj0a33zzDSwsLGBvbw+ZTKbSgzly5Ejp702bNsXSpUvx4osvIicnB7Vq1XruNhIRkWE6ceIE9uzZIz23t7fHxx9/rMMWPRuDmJxgY2ODn376CT169ECrVq0QEhKCF154AUeOHJGCkImJCXbu3AlHR0d069YNgYGB8PLywqZNm6TzeHh4YPfu3Thw4ADat2+PxYsXY/Xq1VAoFFKdgQMHYtGiRZg9ezY6dOiA06dPY9++fUqTDb788kv06dMH/fv3R7du3eDi4iL1FAGAqakpdu3aBVNTU8jlcrz77rsYNmwY5s6dWw0/LcMlhJD+z+eXX35Bjx490LBhQ9SuXRtDhw7Fv//+iwcPHjzxHAkJCXjjjTfg7u6O2rVr4+WXXwbwaLiciIiMS0lJCSIiIpRC2+uvv46mTSfgpZdkiI7WYeOegUwY2uCuEcnOzoa9vT2ysrKU7nfLy8tDSkoKPDw8YGVlBaA09OhqNX1zc/NKdzUHBwcjMzMT27dvVzn2wgsvwN3dHcuXL4enpyfGjBmDgQMHom7duvj9998REhKCe/fuwcHBAVFRUZgwYYLSvYa5ublo3LgxFAoFRo8eDScnJ6SlpUGhUCAxMREdOnTQzAfWIXXXnoiI1EtKSsLmzZuVyj7++GM4ODjA3x+IjwfkciAuTrPvW9H3tyYYxFApPZ1MJtPIcKWuHDx4EH/++ScmTpyIhIQElJSUYPHixTAxKe0U3rJli1J9CwsLFBcXK5UlJSXh33//RWRkpLSUysmTJ6vnAxARkV6JiIhQKYuJmQ1vbxmCgoCwMCAysvRPQ2IQQ6VUs+Tn5yM9PR3//PMPTp06hXnz5qFv377o06cPhg0bhubNm6OwsBDLli3DlStX8P3332PVqlVK52jSpAlycnIQGxuLO3fu4MGDB3B3d4eFhYX0uujoaHz66ac6+pRERKQLhYWFKqHNyckJMTHhiI+XITKytCwoqLSnLShIB418DgxuVO327dsHV1dXNGnSBL169cKhQ4ewdOlS7NixA6ampmjfvj2WLFmCBQsWoG3btli/fr3KxAt/f3+MHj0aAwcOhJOTExYuXAgnJydERUVh69ataN26NSIjI7Fo0SIdfUoiIqpu0dHRmDdvnlLZ2bNvolGjDxEWVjosamg9bI/jPW56rCr3uJFx4LUnIlKvoqHR+HiZVu5jexLe40ZERESkRl5eHhYsWKBSHh4eDm9vw7yP7UkY3IiIiMggbd68WWlrTADo27evtIpAUJDh3cP2NAxuREREZHDUDY3Onj3b4HZCqCoGNyIiIjIY9+/fx5IlS1TKw8PDddCa6sfgRkRERAYhMjJS2qO8zNtvvw0vLy+VutHRj+5vq0nDpVwOhIiIiPReRESESmjz9g5XG9qA0tAWHw9p3baagsGNiIiI9Na9e/fU3s82Z074E0NZTVm37XEcKiUiIiK9pC6w9e/fH1eutH1qKKuJM0oBBjciIiLSQ+pCW9kEhLZta2YoqwwOlVKNFBwcjH79+knPX3nlFUyYMOG5zqmJcxAR0ZNlZGQ8MbQZO/a4UbUKDg7G2rVrAQDm5uZwd3fHsGHDMGPGDJiZae8/x59++gnm5uaVqnv48GF0794d9+7dg4ODwzOdg4iIqk5dYGvWbAjefbe5DlqjnxjcqNr16tULa9asQX5+Pvbs2YOxY8fC3Nwc06dPV6pXUFAACwsLjbxn3bp19eIcRESkXkUTEORy4N13ddAgPcWhUqp2lpaWcHFxQePGjTFmzBgEBAQgOjpaGt78/PPP0aBBA7Rq1QoAcO3aNbz99ttwcHBA3bp10bdvX6SmpkrnKy4uxqRJk+Dg4IB69eph2rRpEEIovefjw5z5+fkIDQ2Fm5sbLC0t0bx5c3z77bdITU1F9+7dAQB16tSBTCZDcHCw2nPcu3cPw4YNQ506dWBjY4PevXvjr7/+ko5HRUXBwcEBMTEx8PLyQq1atdCrVy/cvHlTqnP48GF07twZtra2cHBwwEsvvYSrV69q6CdNRKT/0tLS1IY2b+/wGjkr9Hmxx410ztraGv/++y8AIDY2FnZ2djhw4AAAoLCwEAqFAnK5HL/99hvMzMzw2WefoVevXjh79iwsLCywePFiREVF4bvvvoOXlxcWL16Mn3/+Ga+++mqF7zls2DDEx8dj6dKlaN++PVJSUnDnzh24ublh27Zt6N+/P5KTk2FnZwdra2u15wgODsZff/2F6Oho2NnZITQ0FK+//jouXLggDak+ePAAixYtwvfffw8TExO8++67mDJlCtavX4+ioiL069cPo0aNwsaNG1FQUIDjx4/X+O1aiIjKqAtsI0aMgLu7OwDjnYDwJAxupDNCCMTGxiImJgYfffQRbt++DVtbW6xevVoaIv3hhx9QUlKC1atXS4FmzZo1cHBwwOHDh9GzZ0989dVXmD59Ot566y0AwKpVqxATE1Ph+166dAlbtmzBgQMHEBAQAABo2rSpdLxsSLR+/fpK97iVVxbY/vjjD/j7+wMA1q9fDzc3N2zfvh3/+c9/AJQGz1WrVqFZs2YAgHHjxmHu3LkAgOzsbGRlZaFPnz7S8YoWkiQiqmk4AeHZcKiUEB0N+PuX/lkddu3ahVq1asHKygq9e/fGwIEDMWfOHABAu3btlO5rO3PmDP7++2/Url0btWrVQq1atVC3bl3k5eXh8uXLyMrKws2bN+Hr6yu9xszMDD4+PhW+/+nTp2FqaoqXX375mT/DxYsXYWZmpvS+9erVQ6tWrXDx4kWpzMbGRgplAODq6oqMjAwApQExODgYCoUCb7zxBr7++mulYVQioprozJkzDG3PgT1upLQtSHV0S3fv3h0rV66EhYUFGjRooDSb1NbWVqluTk4OOnXqhPXr16ucx8nJ6Znev6KhT214fBaqTCZTuv9uzZo1GD9+PPbt24fNmzdj5syZOHDgAPz8/KqtjURE1UVdYGvZciSWLXODtzeHRiuDPW5U7duC2Nraonnz5nB3d3/qEiAdO3bEX3/9hfr166N58+ZKD3t7e9jb28PV1RXHjh2TXlNUVISEhIQKz9muXTuUlJTgyJEjao+X9fgVFxdXeA4vLy8UFRUpve+///6L5ORktG7d+omf6XHe3t6YPn064uLi0LZtW2zYsKFKryciMgQV9bItW+ZWI/cU1RYGN0JQEBAXp5//pzNkyBA4Ojqib9+++O2335CSkoLDhw9j/PjxuH79OgDg448/RmRkJLZv346kpCR8+OGHyMzMrPCcTZo0wfDhwzFy5Ehs375dOueWLVsAAI0bN4ZMJsOuXbtw+/Zt5OTkqJyjRYsW6Nu3L0aNGoXff/8dZ86cwbvvvouGDRuib9++lfpsKSkpmD59OuLj43H16lXs378ff/31F+9zI6IaJT4+Xm1oi4kJR3R0zd1TVFsY3Eiv2djY4Ndff4W7uzveeusteHl5ISQkBHl5ebCzswMATJ48GUOHDsXw4cMhl8tRu3ZtvPnmm08878qVKzFgwAB8+OGH8PT0xKhRo5CbmwsAaNiwISIiIhAWFgZnZ2eMGzdO7TnWrFmDTp06oU+fPpDL5RBCYM+ePZVepNfGxgZJSUno378/WrZsiffffx9jx47FBx98UIWfEBGR/oqIiMD+/fuVykaNGoWYmHClW3T0tfNAH8nE4wtekd7Izs6Gvb09srKypJACAHl5eUhJSYGHhwesrKx02EKqbrz2RGQonjQBITq6NLSFhdXMwFbR97cmcHICERERacyWLVuUZteXKT9rNCioZga26sDgRkRERBqhrpftm2/GoFmz+uBqH5rB4EZERETPraJtq5o148QDTWJwIyIiome2evVq/PPPPyrlMTHh8PYunXhAmsPgZsA4r8T48JoTkT5R18v20UcfoU+futW6sLsx4XIgBqj8BuZkXMqueWWXHCEi0gYhRIWzRuvWrcu12bSIPW4GyNTUFA4ODtKelzY2NtIG7FQzCSHw4MEDZGRkwMHBAaamprpuEhEZiceX7li0aJG07mV5nDVaPRjcDJSLiwsASOGNjIODg4N07YmIqkP5/awTE1V72SZNmoTatWvroGXGicHNQMlkMri6uqJ+/fooLCzUdXOoGpibm7OnjYiqXVgYsGBBMXr2/EzlWDjX+Kh2DG4GztTUlF/mRESkFdHRpb1sPXuqHmNo0w0GNyIiIlJL3dBobGwofv2VW+7pCoMbERERKcnPz0dkZKRKeUxMOGeK6hiDGxEREUnULfMBlO6CwNFR3WNwIyIiIgDqQ9uMGTO4dqQeYXAjIiIyctu25eDcucUq5ZyAoH8Y3IiIiIxYRUOjDG36icGNiIjIyJTthqBQqIa2WbNmwcSEO2LqKwY3IiIiI7N06R0oFCtUytnLpv8Y3IiIiIxIREQEunZVLWdoMwwMbkREREZC3f1ss2fPhkwm00Fr6FkwuBEREdVwKSkpWLdunUq5t3c4mNkMC4MbERFRDcZZozULgxsREVENpS60MbAZNgY3IiKiGub06dPYsWOHSjlDm+FjcCMiIqpB1PWymZqaYubMmTpoDWkagxsREVENoS60eXuHIyhIB40hrWBwIyIiMmDR0cCWLUfQosVhlWMcGq15GNyIiIgMWGJiBFq0UC6rU6cOxo8fr5sGkVYxuBERERmQsn1Gw8JKQ9vj2MtWszG4ERERGZDISKBhwx+RmHhe5RhDW83H4EZERKTnyveyKRSqvWzu7u4YMWKEDlpG1c1E1w0gIiIiZdHRgL9/6Z9AaWiLj694aJShzXjIhBBC140g9bKzs2Fvb4+srCzY2dnpujlERFRN/P1Lg5qnJ1CnDtCz51LIZPdU6nFoVD9p8/ubPW5ERER6JiwMkMsBIUqHRh8PbW3btmVoM1IMbkRERDr0+LAoAAQFAXFxwODB6odG+/fvX40tJH3CyQlERETVrPxkg7L71yIjIe1woG4HBIBDo8TgRkREVO3Kh7WwMCA0FLh7tzTQqZuA4O/vj9dee00HLSV9w6FSIiKialI2LNq9e+k9bGFhpb1sdeoAyckVzxplaKMy7HEjIiKqJmU9bUDpPWxlFIoIKBSq9Tk0So9jcCMiIqomZfe0hYU9KlN3P1uvXr3g6+tbjS0jQ8HgRkREVE2Cgh5NQADUhzb2stGTMLgRERFVM84apWdlMJMTgoKC4O7uDisrK7i6umLo0KG4ceOGdHzOnDmQyWQqD1tbW6XzbN26FZ6enrCyskK7du2wZ88epeNCCMyePRuurq6wtrZGQEAA/vrrL6U6d+/exZAhQ2BnZwcHBweEhIQgJydHqc7Zs2fRtWtXWFlZwc3NDQsXLtTwT4SIiAyRutD2n//8h6GNKsVgglv37t2xZcsWJCcnY9u2bbh8+TIGDBggHZ8yZQpu3ryp9GjdujX+85//SHXi4uIwePBghISEIDExEf369UO/fv1w7tw5qc7ChQuxdOlSrFq1CseOHYOtrS0UCgXy8vKkOkOGDMH58+dx4MAB7Nq1C7/++ivef/996Xh2djZ69uyJxo0bIyEhAV988QXmzJmD//73v1r+KRERkb4SQlQ4NNq6dWsdtIgMkcHuVRodHY1+/fohPz8f5ubmKsfPnDmDDh064Ndff0XXrl0BAAMHDkRubi527dol1fPz80OHDh2watUqCCHQoEEDTJ48GVOmTAEAZGVlwdnZGVFRURg0aBAuXryI1q1b48SJE/Dx8QEA7Nu3D6+//jquX7+OBg0aYOXKlfjkk0+Qnp4OCwsLAEBYWBi2b9+OpKSkSn9G7lVKRFQzcGjUuHCv0sfcvXsX69evh7+/v9rQBgCrV69Gy5YtpdAGAPHx8QgICFCqp1AoEP//52anpKQgPT1dqY69vT18fX2lOvHx8XBwcJBCGwAEBATAxMQEx44dk+p069ZNCm1l75OcnIx791Q3CS6Tn5+P7OxspQcRERk2daFtxIgRDG30TAwquIWGhsLW1hb16tVDWloaduzYobZeXl4e1q9fj5CQEKXy9PR0ODs7K5U5OzsjPT1dOl5W9qQ69evXVzpuZmaGunXrKtVRd47y76HO/PnzYW9vLz3c3NwqrEtERPqtsLCwwqFRd3d3HbSIagKdBrewsDC1EwrKP8oPLU6dOhWJiYnYv38/TE1NMWzYMKgb6f35559x//59DB8+vDo/znObPn06srKypMe1a9d03SQiInoGERERmDdvnko5e9noeel0OZDJkycjODj4iXWaNm0q/d3R0RGOjo5o2bIlvLy84ObmhqNHj0Iulyu9ZvXq1ejTp49Kr5eLiwtu3bqlVHbr1i24uLhIx8vKXF1dlep06NBBqpORkaF0jqKiIty9e1fpPOrep/x7qGNpaQlLS8sKjxMRkf4ov1H809ZmGzt2LBwdHauxdVRT6TS4OTk5wcnJ6ZleW1JSAqD0vrDyUlJScOjQIURHR6u8Ri6XIzY2FhMmTJDKDhw4IAU/Dw8PuLi4IDY2Vgpq2dnZOHbsGMaMGSOdIzMzEwkJCejUqRMA4ODBgygpKZFWuZbL5fjkk09QWFgo3YN34MABtGrVCnXq1Hmmz0tERPqhLLDdvVu6v2hkZGlwy8nJweLFi1Xqs5eNNMkgZpUeO3YMJ06cQJcuXVCnTh1cvnwZs2bNwq1bt3D+/HmlXqpZs2bhu+++Q1paGkxNTZXOExcXh5dffhmRkZEIDAzEpk2bMG/ePJw6dQpt27YFACxYsACRkZFYu3YtPDw8MGvWLJw9exYXLlyAlZUVAKB37964desWVq1ahcLCQowYMQI+Pj7YsGEDgNKZqK1atULPnj0RGhqKc+fOYeTIkfjyyy+Vlg15Gs4qJSLSL9HRwJAhQE4O4OlZujl8WJj6zeEBhjZjpc3vb4PYOcHGxgY//fQTwsPDkZubC1dXV/Tq1QszZ85UCm0lJSWIiopCcHCwSmgDAH9/f2zYsAEzZ87EjBkz0KJFC2zfvl0KbQAwbdo05Obm4v3330dmZia6dOmCffv2SaENANavX49x48ahR48eMDExQf/+/bF06VLpuL29Pfbv34+xY8eiU6dOcHR0xOzZs6sU2oiISP9ERpaGtlq1gAULSnva1A2NTpkyRWUBeCJNMIgeN2PFHjciIv1S/r42ufw2vvnmG5U67GUjruNGRERUzaKjAX//0j/LBAUBcXGlQ6MMbaQLBjFUSkREVN0iI4H4+EeTD8qoGxr95JNPYGbGr1TSPva4ERERqVE6HFr6JwBcuXKlwgV1GdqouvC/NCIiIjWCgh71tHGvUdIX7HEjIiKjVv5eNnX3takLbbNnz2ZoI51gjxsRERm18veyAY/+3qjRKezcuVOlPgMb6RKDGxERGbWwsEdLfAClf1coIqAmszG0kc4xuBERkdF5fJ/R8rNG1e2CwMBG+oLBjYiIjI66pT727t2L48ePq9RlaCN9wuBGRERG5/HhUc4aJUPB4EZEREbnaUt9MLCRvmJwIyIio7R27VqkpqaqlDO0kT5jcCMiIqPDoVEyVAxuRERkVDg0SoaMwY2IiIzCokWLkJubq1LO0EaGhFteERGRwVO3VVV5ERERDG1UI7DHjYiIDF7ZumxDhgDr1ysvqMuhUapJGNyIiMjghYWVhracnEeL6nICAtVEHColIiKD88knQO3apX8CpUFt/XpALi8NcepCm62tLUMbGTyZEELouhGkXnZ2Nuzt7ZGVlQU7OztdN4eISG/Url3au2ZiAvz8M4dGSb9o8/ubPW5ERGRwxo8vDW0lJaVDo0BpYGNoo5qOPW56jD1uREQVi45+tN9oYqJqYGvevDmGDBmig5aRsdPm9zcnJxARkUEq22+UvWxkTBjciIjIIHHWKBkjBjciIjI46kJbly5d0KNHDx20hqj6MLgREZFB4dAoGTMGNyIi0jvlJx6ULfXBoVEiBjciItJDZVtYPWkXhL59+6JDhw7V3zgiHWJwIyIivRMWVhraQkMFIiLmqhxnLxsZKy7AS0REOhUdDfj7l/5ZJigIUCgicPo0QxtReexxIyIinXp8WBRQPzQ6bNgweHh4VHPriPQLe9yIiEinwsIebQ5fWFhY4axRhjYibnml17jlFREZE84apZqCm8wTEZFBevz+tehowNMT8PJSvqdNXWgbM2YMQxvRY9jjpsfY40ZEhs7fv/T+tVq1gPXrH93PBpQOjx44kItFixapvI6BjQwZe9yIiMgghYWVhracnEcL6rZqVdrrplBEMLQRVRFnlRIRkdYEBT3qaSvbBaGiBXUnT56MWrVq6aCVRIaDwY2IiLSqLKwBwJ07d7BixQqVOuxlI6ocBjciIqoWnDVK9PwY3IiISOvUhbYZM2bA3NxcB60hMlxVnpxgamqKjIwMlfJ///0XpqamGmkUERHpP3VbVT3uypUrFS6oy9BGVHVV7nGraPWQ/Px8WFhYPHeDiIjIMKjbqqo8Do0SaV6lg9vSpUsBADKZDKtXr1aa+VNcXIxff/0Vnp6emm8hERHppbCwR7NFH6cutM2aNQsmJlyFiuh5VHoB3rI94q5evYpGjRopDYtaWFigSZMmmDt3Lnx9fbXTUiPEBXiJyNCcOnUKO3fuVClnLxsZE21+f1e6xy0lJQUA0L17d/z000+oU6eORhtCRESGjUOjRNpX5XvcDh06pI12EBGRAatoAgIRaVaVg9vIkSOfePy777575sYQEZFh+eWXX/DHH3+olDO0EWlHlYPbvXv3lJ4XFhbi3LlzyMzMxKuvvqqxhhERkX6IjlbesqoMh0aJql+Vg9vPP/+sUlZSUoIxY8agWbNmGmkUERHpD3XLfnBolEg3Kj2r9GmSk5Pxyiuv4ObNm5o4HYGzSolIP5TvccvP34oLFy6o1GFoI3pEm9/fGltQ5/LlyygqKtLU6YiISIfK74oQFATExQGJiREMbUQ6VuWh0kmTJik9F0Lg5s2b2L17N4YPH66xhhERkW5ERwNDhgA5OY+GRzk0SqQfqhzcEhMTlZ6bmJjAyckJixcvfuqMUyIi0n+RkaWhrVYt4I03liIi4p5KHYY2It3gOm5ERKSkbCsrhSICBQWqxxnaiHSnysGtTEZGBpKTkwEArVq1Qv369TXWKCIi0p2goNL72R7HwEake1UObtnZ2Rg7diw2btyIkpISAICpqSkGDhyIFStWwN7eXuONJCKi6sG12Yj0W5VnlY4aNQrHjh3D7t27kZmZiczMTOzatQsnT57EBx98oI02EhGRFpSfOQqoD202NjYMbUR6pMrruNna2iImJgZdunRRKv/tt9/Qq1cv5ObmarSBxozruBGRNvn7ly6sK5eX3s/2OAY2omejze/vKg+V1qtXT+1wqL29PerUqaORRhERkfaFham/lw1gaCPSV1UeKp05cyYmTZqE9PR0qSw9PR1Tp07FrFmzNNo4IiJ6Po8Ph5anLrS1aNGCoY1Ij1V5qNTb2xt///038vPz4e7uDgBIS0uDpaUlWrRooVT31KlTmmupEeJQKRE9r/LDoXFxj8q5oC6R9ujVUGnfvn0hk8k02ggiItKOsjXZwsJKn3PWKJFh09gm86R57HEjIk1SF9p8fX3Rq1cvHbSGqObSq03mmzZtin///VelPDMzE02bNtVIo4iISLMqGhplaCMyLFUeKk1NTUVxcbFKeX5+Pq5fv66RRhER0bOLjgamTQNkMmDQIA6NEtUklQ5u0eWmJMXExCgtCVJcXIzY2Fh4eHhotnVERFRlkZFAcjIwZ45qaAsMDISPj48OWkVEmlDpodJ+/fqhX79+kMlkGD58uPS8X79+GDRoEA4cOIDFixdrraFBQUFwd3eHlZUVXF1dMXToUNy4cUOpTkxMDPz8/FC7dm04OTmhf//+SE1NVapz+PBhdOzYEZaWlmjevDmioqJU3mvFihVo0qQJrKys4Ovri+PHjysdz8vLw9ixY1GvXj3UqlUL/fv3x61bt5TqpKWlITAwEDY2Nqhfvz6mTp2KoqIijfwsiIieJDRUqA1t4eHhDG1EBq7Swa2kpAQlJSVwd3dHRkaG9LykpAT5+flITk5Gnz59tNbQ7t27Y8uWLUhOTsa2bdtw+fJlDBgwQDqekpKCvn374tVXX8Xp06cRExODO3fu4K233lKqExgYiO7du+P06dOYMGEC3nvvPcTExEh1Nm/ejEmTJiE8PBynTp1C+/btoVAokJGRIdWZOHEidu7cia1bt+LIkSO4ceOG0vsUFxcjMDAQBQUFiIuLw9q1axEVFYXZs2dr7edDRASU3st2+vRclXIOjRLVDAY7qzQ6Ohr9+vVDfn4+zM3N8eOPP2Lw4MHIz8+HiUlpHt25cyf69u0r1QkNDcXu3btx7tw56TyDBg1CZmYm9u3bB6B0htWLL76I5cuXAygNrG5ubvjoo48QFhaGrKwsODk5YcOGDVJwTEpKgpeXF+Lj4+Hn54e9e/eiT58+uHHjBpydnQEAq1atQmhoKG7fvg0LC4tKfUbOKiWiqlA3AWHQoEFo1aqVDlpDZLz0ah23uXNV/0+uvOroVbp79y7Wr18Pf39/mJubAwA6deoEExMTrFmzBsHBwcjJycH333+PgIAAqU58fDwCAgKUzqVQKDBhwgQAQEFBARISEjB9+nTpuImJCQICAhAfHw8ASEhIQGFhodJ5PD094e7uLgW3+Ph4tGvXTgptZe8zZswYnD9/Ht7e3lr5uRBRzRYd/WhNtqCgR+VFRUX4/PPPVeqzl42o5qlycPv555+VnhcWFiIlJQVmZmZo1qyZVoNbaGgoli9fjgcPHsDPzw+7du2Sjnl4eGD//v14++238cEHH6C4uBhyuRx79uyR6qSnpyuFKQBwdnZGdnY2Hj58iHv37qG4uFhtnaSkJOkcFhYWcHBwUKlTtg1YRe9Tdqwi+fn5yM/Pl55nZ2c/7UdCREYkMrJ0F4TIyEfBjQvqEhmXKq/jlpiYqPQ4d+4cbt68iR49emDixIlVOldYWBhkMtkTH2WBCQCmTp2KxMRE7N+/H6amphg2bBjKRnrT09MxatQoDB8+HCdOnMCRI0dgYWGBAQMGwFBGg+fPnw97e3vp4ebmpusmEZEe6d4dqFWr9E9AfWgbNWoUQxtRDVblHjd17OzsEBERgTfeeANDhw6t9OsmT56M4ODgJ9Ypv6ivo6MjHB0d0bJlS3h5ecHNzQ1Hjx6FXC7HihUrYG9vj4ULF0r1f/jhB7i5ueHYsWPw8/ODi4uLyuzPW7duwc7ODtbW1jA1NYWpqanaOi4uLgAAFxcXFBQUIDMzU6nX7fE6j89ELTtnWR11pk+fjkmTJknPs7OzGd6ISHLoEJCTA/z++wNERHyhcpyBjajm00hwA4CsrCxkZWVV6TVOTk5wcnJ6pvcrKSkBAGlo8cGDB9KkhDKmpqZKdR8fOgWAAwcOQC6XAwAsLCzQqVMnxMbGol+/ftJrY2NjMW7cOACl99KZm5sjNjYW/fv3BwAkJycjLS1NOo9cLsfnn3+OjIwM1K9fX3ofOzs7tG7dusLPZGlpCUtLy2f6eRBRzRcWBiQmcmiUyJhVObgtXbpU6bkQAjdv3sT333+P3r17a6xh5R07dgwnTpxAly5dUKdOHVy+fBmzZs1Cs2bNpLAUGBiIL7/8EnPnzsXgwYNx//59zJgxA40bN5YmA4wePRrLly/HtGnTMHLkSBw8eBBbtmzB7t27pfeaNGkShg8fDh8fH3Tu3BlfffUVcnNzMWLECACAvb09QkJCMGnSJNStWxd2dnb46KOPIJfL4efnBwDo2bMnWrdujaFDh2LhwoVIT0/HzJkzMXbsWAYzIqqS8hMS1IW2CRMmKC2ITkQ1W5WXA3l8dwQTExM4OTnh1VdfxfTp01G7dm2NNhAA/vzzT3z88cc4c+YMcnNz4erqil69emHmzJlo2LChVG/Tpk1YuHAhLl26BBsbG8jlcixYsACenp5SncOHD2PixIm4cOECGjVqhFmzZqkM1y5fvhxffPEF0tPT0aFDByxduhS+vr7S8by8PEyePBkbN25Efn4+FAoFvvnmG6Vh0KtXr2LMmDE4fPgwbG1tMXz4cERGRsLMrPJZmcuBEJG/P/DXX3cwbtwKlWPsZSPST9r8/jbYddyMAYMbEXHWKJHh0at13AAgMzMTf//9NwCgefPmKktjEBFR1ahbo01daAsLC+MtF0RGrErLgaSmpiIwMBCOjo7w9fWFr68vHB0d0adPH5U9QYmIqPJCQ0vXaAsNLd2eT11oCw8PZ2gjMnKV7nG7du0a/Pz8YG5ujk8//RReXl4AgAsXLmDlypWQy+U4ceIEGjVqpLXGEhHVVGU3rQwaFIF161SPc2iUiIAq3OMWEhKCv//+GzExMbCyslI69vDhQ/Tq1QstWrTA6tWrtdJQY8R73IiMR3S0+lmjs2bNUlnqiIj0m17c47Zv3z5s3rxZJbQBgLW1NT799FMMGjRIo40jIjIGp0+fRmLiDpVy9rIR0eMqHdzu3LmDJk2aVHi8adOmuHv3ribaRERUoz1tbTaAoY2I1Kt0cHN1dZXWPlPn3LlzT9zOiYiISpVtFq8utDGwEdGTVPrGiX79+mHKlCm4ffu2yrGMjAyEhoZK20QREVHFhg37BXPmMLQRUdVVenLCvXv34Ovri/T0dLz77rvw9PSEEAIXL17Ehg0b4OLigqNHj6Ju3brabrPR4OQEopqHC+oS1Xx6MTmhTp06OHbsGGbMmIFNmzYhMzMTAODg4IB33nkH8+bNY2gjIqpARbNGGdiIqCqeacsrIYQ0ZOrk5ASZTKbxhhF73Ihqiu+++w7Xrl1TKWdoI6qZ9KLHrTyZTIb69etrtCFERDURh0aJSJOeKbgREdHTVbRtFRHRs2JwIyLSgPJrs509+xmKi4tV6jC0EdHzYnAjItKAJ63NBjC0EZFmMLgREWlARbsgMLARkSZVKrgtXbq00iccP378MzeGiEjflR8SDQoqLeMEBCKqLpVaDsTDw6NyJ5PJcOXKleduFJXiciBE+sffv3RIVC4H4uIY2ohIlc6XA0lJSdHomxIRGaqwMCA0FLh7l7NGiaj6PfM9bgUFBUhJSUGzZs1gZsZb5YjIOAQFcQICEelOpTeZL/PgwQOEhITAxsYGbdq0QVpaGgDgo48+QmRkpMYbSESkT9T1sllZWTG0EVG1qHJwmz59Os6cOYPDhw/DyspKKg8ICMDmzZs12jgiIn0RHV3x0GhoaKgOWkRExqjKY5zbt2/H5s2b4efnp7RHaZs2bXD58mWNNo6ISB9wAgIR6YsqB7fbt2+r3ac0NzeXm80TUY0SHa3+frY2bdpgwIABOmgRERm7Kg+V+vj4YPfu3dLzsrC2evVqyOVyzbWMiEjHKlpQl6GNiHSlyj1u8+bNQ+/evXHhwgUUFRXh66+/xoULFxAXF4cjR45oo41ERNWKQ6NEpK+q3OPWpUsXnD59GkVFRWjXrh3279+P+vXrIz4+Hp06ddJGG4mIqo260PbKK68wtBGRXqjUzgmkG9w5gaj6CCEwd+5clXIGNiKqKp3vnJCdnV3pEzJgEJGh4dAoERmKSgU3BweHSs8YLS4ufq4GERFVJ3Wh7c0338QLL7ygg9YQET1ZpYLboUOHpL+npqYiLCwMwcHB0izS+Ph4rF27FvPnz9dOK4mINKy4uBifffaZSrm3dziY2YhIX1X5HrcePXrgvffew+DBg5XKN2zYgP/+9784fPiwJttn1HiPG5F2cGiUiLRJm9/fVZ5VGh8fDx8fH5VyHx8fHD9+XCONIiLSFnWhLT7+PXh7M7QRkf6rcnBzc3PD//73P5Xy1atXw83NTSONIiLStIcPH1a41+i+fQ0RFKSDRhERVVGVF+D98ssv0b9/f+zduxe+vr4AgOPHj+Ovv/7Ctm3bNN5AIqLnxaFRIqopnmkdt+vXr+Obb75BUlISAMDLywujR49mj5uG8R43ouenLrR9/PHHcHBwqP7GEJFR0Ob3Nxfg1WMMbkTP7u7du1i2bJlKOXvZiEjbdL4A7+MyMzPx7bff4uLFiwCANm3aYOTIkbC3t9do44iIngWHRomopqpyj9vJkyehUChgbW2Nzp07AwBOnDiBhw8fYv/+/ejYsaNWGmqM2ONGVHXqQltoaCisrKx00BoiMkZ6NVTatWtXNG/eHP/73/9gZlbaYVdUVIT33nsPV65cwa+//qrRBhozBjeiyrt27Rq+++47lXL2shFRddOr4GZtbY3ExER4enoqlV+4cAE+Pj548OCBRhtozBjciCqHQ6NEpE/06h43Ozs7pKWlqQS3a9euoXbt2hprGBFRZagLbTNnzoSpqakOWkNEpF1VDm4DBw5ESEgIFi1aBH9/fwDAH3/8galTp6psg0VEpC0XLlzA1q1bVcrZy0ZENVmVg9uiRYsgk8kwbNgwFBUVAQDMzc0xZswYREZGaryBRESP49AoERmrZ17H7cGDB7h8+TIAoFmzZrCxsdFow4j3uBGpoy60zZ49GzKZTAetISJSpVf3uJWxsbFBu3btNNkWIqIK/f7774iNjVUpZy8bERmTSge3kSNHVqqeuun4RETPo6KhUW9vhjYiMi6VDm5RUVFo3LgxvL29wV2yiKi6qAtt7GUjImNV6eA2ZswYbNy4ESkpKRgxYgTeffdd1K1bV5ttIyIjtmvXLiQkJKiUM7QRkTEzqWzFFStW4ObNm5g2bRp27twJNzc3vP3224iJiWEPHBFpVEREhNrQFhPD0EZExu2ZZ5VevXoVUVFRWLduHYqKinD+/HnUqlVL0+0zapxVSsZI3dDoxo3hkMmABQuAoCAdNIqIqAr0clapiYkJZDIZhBAoLi7WZJuIyAitWbMGaWlpKuXh4eHg6CgRUalKD5UCQH5+PjZu3IjXXnsNLVu2xJ9//only5cjLS2NvW1E9MwiIiIqDG1ERPRIpXvcPvzwQ2zatAlubm4YOXIkNm7cCEdHR222jYiMAGeNEhFVXqXvcTMxMYG7uzu8vb2fuEL5Tz/9pLHGGTve40Y12bx581BYWKhSztBGRIZOL+5xGzZsGLeUISKNUNfLZmFhgenTp+ugNUREhqNKC/ASET0vDo0SET27Z55VSkRUFRVtW8XQRkRUeQxuRKR16kKbu7s7RowYoYPWEBEZLgY3ItIqDo0SEWkOgxsRaQWHRomINI/BjYg0Tl1o8/HxQWBgoA5aQ0RUczC4EZFGcWiUiEh7GNyISCM4NEpEpH0MbkT0XKKjgcRE1dDWs2dPyOVyHbSIiKjmYnAjomcmhEBi4lyVcvayERFpB4MbET0TDo0SEVU/E103oLKCgoLg7u4OKysruLq6YujQobhx44ZSnS1btqBDhw6wsbFB48aN8cUXX6ic5/Dhw+jYsSMsLS3RvHlztVt5rVixAk2aNIGVlRV8fX1x/PhxpeN5eXkYO3Ys6tWrh1q1aqF///64deuWUp20tDQEBgbCxsYG9evXx9SpU1FUVPT8PwgiPaAutDVtOpihjYhIywwmuHXv3h1btmxBcnIytm3bhsuXL2PAgAHS8b1792LIkCEYPXo0zp07h2+++QZffvklli9fLtVJSUlBYGAgunfvjtOnT2PChAl47733EBMTI9XZvHkzJk2ahPDwcJw6dQrt27eHQqFARkaGVGfixInYuXMntm7diiNHjuDGjRt46623pOPFxcUIDAxEQUEB4uLisHbtWkRFRWH27Nla/ikRaVdJSYna0DZnTjhWrmyJ6GjA37/0vjciItI8mRBC6LoRzyI6Ohr9+vVDfn4+zM3N8c4776CwsBBbt26V6ixbtgwLFy5EWloaZDIZQkNDsXv3bpw7d06qM2jQIGRmZmLfvn0AAF9fX7z44otS4CspKYGbmxs++ugjhIWFISsrC05OTtiwYYMUHJOSkuDl5YX4+Hj4+flh79696NOnD27cuAFnZ2cAwKpVqxAaGorbt2/DwsKiUp8xOzsb9vb2yMrKgp2dnUZ+bkTPqqKhUW/vcERGAmFhQGQkEB8PyOVAXFw1N5CISE9o8/vbYHrcyrt79y7Wr18Pf39/mJubAwDy8/NhZWWlVM/a2hrXr1/H1atXAQDx8fEICAhQqqNQKBAfHw8AKCgoQEJCglIdExMTBAQESHUSEhJQWFioVMfT0xPu7u5Snfj4eLRr104KbWXvk52djfPnz1f4ufLz85Gdna30INIH6kLbBx98gPDwcAQFlYa0oKDS8CaXl/5JRESaZ1DBLTQ0FLa2tqhXrx7S0tKwY8cO6ZhCocBPP/2E2NhYlJSU4NKlS1i8eDEA4ObNmwCA9PR0pTAFAM7OzsjOzsbDhw9x584dFBcXq62Tnp4uncPCwgIODg5PrKPuHGXHKjJ//nzY29tLDzc3t8r+aIi0oqCgoMIFdV1cXFTKy4c4IiLSPJ0Gt7CwMMhksic+kpKSpPpTp05FYmIi9u/fD1NTUwwbNgxlI72jRo3CuHHj0KdPH1hYWMDPzw+DBg0CUNprZgimT5+OrKws6XHt2jVdN4mMWEREBObPn69SzgkIRES6o9PlQCZPnozg4OAn1mnatKn0d0dHRzg6OqJly5bw8vKCm5sbjh49CrlcDplMhgULFmDevHlIT0+Hk5MTYmNjlc7h4uKiMvvz1q1bsLOzg7W1NUxNTWFqaqq2TlnvgouLCwoKCpCZmanU6/Z4ncdnopadU10vRRlLS0tYWlo+8edBVB3U9bJNnDhRulcjOhrSfW3sXSMiqj467YpycnKCp6fnEx8V3chfUlICoPS+sPJMTU3RsGFDWFhYYOPGjZDL5XBycgIAyOVyKcyVOXDggLS6u4WFBTp16qRUp6SkBLGxsVKdTp06wdzcXKlOcnIy0tLSpDpyuRx//vmn0kzUAwcOwM7ODq1bt36mnxVRdcjJyalwaLR8aBsypHQSQmRkdbeQiMi4GcQCvMeOHcOJEyfQpUsX1KlTB5cvX8asWbPQrFkzKSzduXMHP/74I1555RXk5eVhzZo10nIdZUaPHo3ly5dj2rRpGDlyJA4ePIgtW7Zg9+7dUp1JkyZh+PDh8PHxQefOnfHVV18hNzcXI0aMAADY29sjJCQEkyZNQt26dWFnZ4ePPvoIcrkcfn5+AEq3+mndujWGDh2KhQsXIj09HTNnzsTYsWPZo0Z6q7IL6kZGAjk5QK1anIRARFTthAE4e/as6N69u6hbt66wtLQUTZo0EaNHjxbXr1+X6ty+fVv4+fkJW1tbYWNjI3r06CGOHj2qcq5Dhw6JDh06CAsLC9G0aVOxZs0alTrLli0T7u7uwsLCQnTu3FnlPA8fPhQffvihqFOnjrCxsRFvvvmmuHnzplKd1NRU0bt3b2FtbS0cHR3F5MmTRWFhYZU+d1ZWlgAgsrKyqvQ6oqqaM2eOyiMvL09t3R07hJDLS/8kIiJV2vz+Nth13IwB13Ejbbt9+za++eYblXJOQCAienba/P42iKFSItI87jVKRGR4GNyIjJC60DZz5kyYmprqoDVERFRZhrHAGRFpxLVr1yqcNVoW2rjfKBGR/mKPG5GRqGhoNCYmHN7ej9ZjK9tvNDKSa7QREekb9rgRGQF1oW327NnYuDEc8fHAtGmPyrnfKBGR/mKPG1ENdunSJWzcuFGlvGwCgkwGpT+B0l429rQREeknBjeiGqoys0YXLHi0dRUREek/BjeiGqiiCQjlcb9RIiLDw3vciGqQhISESoU2QHkSAhERGQb2uBHVEFVdUDcsjMOkRESGhsGNqAaobC/b48OjHCIlIjIsDG5EBuy3337DwYMHVcor6mXjGm1ERIaNwY3IQKnrZXN0dMTYsWMrfA2HR4mIDBuDG5EBquzQ6OM4PEpEZNgY3IgMyM6dO3Hq1CmV8sqENiIiMnxcDoTIQERERKiEtnbt2iE8PJwbwxMRGQn2uBEZgKcNjXLSARGRcWBwI9Jj69atQ0pKikr540OjnHRARGQcGNyI9JS6XrauXbsiJ+dV+Psrb1XFSQdERMaBwY1IDz1paNTfn8OiRETGisGNSI8sWbIE9+/fVykvPzTKYVEiIuPF4EakJ9T1svXp0wedOnVSKuOwKBGR8WJwI9IDz7qgLhERGRcGNyId+vTTT1FSUqJSztBGRETqMLgR6Yi6XrYhQ4agefPmOmgNEREZAgY3omomhMDcuXNVytnLRkRET8PgRlSNPvvsMxQXF6uUl21bVTZblJMPiIhIHQY3omqibmg0Lu4DxMS4AOC2VURE9HTcZJ5Iy4QQakPbpk3huHrVRdoYPiwMkMu5PhsREVVMJoQQum4EqZednQ17e3tkZWXBzs5O182hZ6AusAGlQ6NlOyDI5UBcXDU3jIiItEab398cKiXSEnWhbcKECbC3twfAHRCIiKjqGNyINKyoqAiff/65Svnjs0a5AwIREVUVgxuRBj1paJSIiOh5MbgRaYi60DZt2jRYW1vroDVERFQTMbgRPaf8/HxERkaqlLOXjYiINI3Bjeg5cGiUiIiqE4Mb0TNSF9pmzJgBc3NzHbSGiIiMAYMbURXl5uZi0aJFKuXsZSMiIm1jcCOqAg6NEhGRLnHLK6JKUhfaZs2aBW/v0l0QyrauIiIi0hYGN6KnyMzMVBvawsPDYWJiorQ5PBERkTZxqJToCdQFNkvLeoiOHgdv79KdD7h1FRERVRduMq/HuMm8bqkLbbNnz8ZLL8m4OTwREVVIm9/fHColekxGRkaFQ6MymQxhYaWhjT1sRERU3ThUSlSOusDm4eGBYcOGSc+5OTwREekKgxvR/1dRLxsREZG+YHAjo3fjxg3873//UylnaCMiIn3D4EZGTV0vW/v27dGvX7/qbwwREdFTMLiR0VIX2ry9w3n/GhER6S3OKqUaLzoaSjsbXLlypcL72RjaiIhIn7HHjWq88jsbJCaqBraAgAC89NJLOmgZERFR1TC4UY1XtrOBQsFZo0REZNgY3KjG8/L6CwrFBpVyb2+GNiIiMiwMblQjRUdX3Mt2+vQAbN/eBnI5F9IlIiLDwuBGNdKThkajo4Fbt7hlFRERGR4GN6pxLl++DIXiB5XysvvZuGUVEREZKgY3qlHULfMxYsQIuLu766A1REREmsXgRjUG9xolIqKajsGNDF5SUhI2b96sUs7QRkRENQ2DGxk0db1sY8eOhaOjow5aQ0REpF0MbmSwODRKRETGhsGNDM6ZM2ewfft2lXKGNiIiqukY3MigqOtlmzBhAuzt7XXQGiIiourF4EYGg0OjRERk7BjcSO8dPXoUMTExSmW1atXC5MmTddQiIiIi3WBwI72mrpdtypQpsLW11UFriIiIdIvBjfSSEAJz585VKefQKBERGTMTXTegqvLz89GhQwfIZDKcPn1a6djZs2fRtWtXWFlZwc3NDQsXLlR5/datW+Hp6QkrKyu0a9cOe/bsUTouhMDs2bPh6uoKa2trBAQE4K+//lKqc/fuXQwZMgR2dnZwcHBASEgIcnJyqtwWUu/w4cMqoc3FxYWhjYiIjJ7BBbdp06ahQYMGKuXZ2dno2bMnGjdujISEBHzxxReYM2cO/vvf/0p14uLiMHjwYISEhCAxMRH9+vVDv379cO7cOanOwoULsXTpUqxatQrHjh2Dra0tFAoF8vLypDpDhgzB+fPnceDAAezatQu//vor3n///Sq1hdSLiIjAkSNHlMpCQ0PxwQcf6KhFRERE+kMmhBC6bkRl7d27F5MmTcK2bdvQpk0bJCYmokOHDgCAlStX4pNPPkF6ejosLCwAAGFhYdi+fTuSkpIAAAMHDkRubi527dolndPPzw8dOnTAqlWrIIRAgwYNMHnyZEyZMgUAkJWVBWdnZ0RFRWHQoEG4ePEiWrdujRMnTsDHxwcAsG/fPrz++uu4fv06GjRoUKm2VEZ2djbs7e2RlZUFOzu75/756bOSkhJ8+umnKuXsZSMiIkOjze9vg+lxu3XrFkaNGoXvv/8eNjY2Ksfj4+PRrVs3KSgBgEKhQHJyMu7duyfVCQgIUHqdQqFAfHw8ACAlJQXp6elKdezt7eHr6yvViY+Ph4ODgxTaACAgIAAmJiY4duxYpduiTn5+PrKzs5UexmDv3r0qoa1Zs2YMbURERI8xiMkJQggEBwdj9OjR8PHxQWpqqkqd9PR0eHh4KJU5OztLx+rUqYP09HSprHyd9PR0qV7511VUp379+krHzczMULduXaU6T2uLOvPnz1c7i7ImU/d5Z8yYAXNzcx20hoiISL/ptMctLCwMMpnsiY+kpCQsW7YM9+/fx/Tp03XZXK2bPn06srKypMe1a9d03SStKS4urnBBXYY2IiIi9XTa4zZ58mQEBwc/sU7Tpk1x8OBBxMfHw9LSUumYj48PhgwZgrVr18LFxQW3bt1SOl723MXFRfpTXZ3yx8vKXF1dleqU3Uvn4uKCjIwMpXMUFRXh7t27T32f8u+hjqWlpcpnrIm2bdumNCEEAF544QW8+eabOmoRERGRYdBpcHNycoKTk9NT6y1duhSfffaZ9PzGjRtQKBTYvHkzfH19AQByuRyffPIJCgsLpR6bAwcOoFWrVtLQpFwuR2xsLCZMmCCd68CBA5DL5QAADw8PuLi4IDY2Vgpq2dnZOHbsGMaMGSOdIzMzEwkJCejUqRMA4ODBgygpKalSW4yVul62mTNnwtTUVAetISIiMiwGMTnB3d0dbdu2lR4tW7YEUHoDe6NGjQAA77zzDiwsLBASEoLz589j8+bN+PrrrzFp0iTpPB9//DH27duHxYsXIykpCXPmzMHJkycxbtw4AIBMJsOECRPw2WefITo6Gn/++SeGDRuGBg0aoF+/fgAALy8v9OrVC6NGjcLx48fxxx9/YNy4cRg0aJC0TEll2mJsCgsLKxwaZWgjIiKqHIOYnFAZ9vb22L9/P8aOHYtOnTrB0dERs2fPVlpfzd/fHxs2bMDMmTMxY8YMtGjRAtu3b0fbtm2lOtOmTUNubi7ef/99ZGZmokuXLti3bx+srKykOuvXr8e4cePQo0cPmJiYoH///li6dGmV2lJTREcDkZFAWBgQFKS+zrp165CSkqJU5ufnB4VCUQ0tJCIiqjkMah03Y2MI67j5+wPx8YBcDsTFqR5X18s2e/ZsyGSyamgdERFR9eM6bqRT0dGlAS06WvVYWFhpaAsLUy7Py8urcGiUoY2IiOjZsMdNj+lLj9vTetUet3LlSpWZt6+88gpefvllLbWQiIhIf2jz+7vG3ONG2hMW9ug+tqfh0CgREZH2cKiUKlQ2RAqU9rRVNPkAAHJycjg0SkREpGXscaMKRUaWDpFGRj45tH3xxRd48OCBUlnv3r3RuXNnLbeQiIjIuDC4UYUqM0RaUS8bERERaR6DG1UoKKjinrb79+9jyZIlKuUMbURERNrD4EZVtmrVKpW9WN9880288MILOmoRERGRceDkBHriOm2Pi4iIUAlt4eHhDG1ERETVgMGNlCYhVOTevXu8n42IiEjHOFRKT52EsGTJEty/f1+pLDg4GI0bN66G1hEREVEZ9rgZoceHRoOCKl6nLSIiQiW0hYeHM7QRERHpAIObEarM0Ghubi6HRomIiPQMh0qN0NOGRg8fPowjR44olY0dOxaOjo7V0DoiIiKqCIObEXrS+mzsZSMiItJfDG4EQP2Cuq+88gpefvllHbWIiIiIHsfgRjhw4ADi4uKUyqZMmQJbW1sdtYiIiIjUYXAzclu3bsWFCxeUyjg0SkREpJ8Y3IxUXl4eFixYoFTWs2dPyOVyHbWIiIiInobBzQhdunQJGzduVCqbMWMGzM3NddQiIiIiqgwGNyNUPrT5+flBoVDosDVERERUWQxuRmzUqFFo0KCBrptBRERElSQTQghdN4LUy87Ohr29PbKysmBnZ6fr5hAREVElaPP7m1teERERERkIBjciIiIiA8HgRkRERGQgGNyIiIiIDASDGxEREZGBYHAjIiIiMhAMbkREREQGgsGNiIiIyEAwuBEREREZCAY3IiIiIgPB4EZERERkIBjciIiIiAwEgxsRERGRgWBwIyIiIjIQZrpuAFVMCAEAyM7O1nFLiIiIqLLKvrfLvsc1icFNj92/fx8A4ObmpuOWEBERUVXdv38f9vb2Gj2nTGgjDpJGlJSU4MaNG6hduzZkMpmum6N12dnZcHNzw7Vr12BnZ6fr5tBjeH30G6+PfuP10W+avj5CCNy/fx8NGjSAiYlm70pjj5seMzExQaNGjXTdjGpnZ2fHX2x6jNdHv/H66DdeH/2myeuj6Z62MpycQERERGQgGNyIiIiIDASDG+kNS0tLhIeHw9LSUtdNITV4ffQbr49+4/XRb4Z0fTg5gYiIiMhAsMeNiIiIyEAwuBEREREZCAY3IiIiIgPB4EZERERkIBjcSCPy8/PRoUMHyGQynD59WunY2bNn0bVrV1hZWcHNzQ0LFy5Uef3WrVvh6ekJKysrtGvXDnv27FE6LoTA7Nmz4erqCmtrawQEBOCvv/5SqnP37l0MGTIEdnZ2cHBwQEhICHJycqrclpokKCgI7u7usLKygqurK4YOHYobN24o1dmyZQs6dOgAGxsbNG7cGF988YXKeQ4fPoyOHTvC0tISzZs3R1RUlEqdFStWoEmTJrCysoKvry+OHz+udDwvLw9jx45FvXr1UKtWLfTv3x+3bt1SqpOWlobAwEDY2Nigfv36mDp1KoqKip7/B6GnKnN9YmJi4Ofnh9q1a8PJyQn9+/dHamqqUh1eH+152jWaM2cOZDKZysPW1lbpPPwdpx2V+TckhMCiRYvQsmVLWFpaomHDhvj888+V6hjUvyFBpAHjx48XvXv3FgBEYmKiVJ6VlSWcnZ3FkCFDxLlz58TGjRuFtbW1+L//+z+pzh9//CFMTU3FwoULxYULF8TMmTOFubm5+PPPP6U6kZGRwt7eXmzfvl2cOXNGBAUFCQ8PD/Hw4UOpTq9evUT79u3F0aNHxW+//SaaN28uBg8eXKW21DRLliwR8fHxIjU1Vfzxxx9CLpcLuVwuHd+zZ48wMzMTK1euFJcvXxa7du0Srq6uYtmyZVKdK1euCBsbGzFp0iRx4cIFsWzZMmFqair27dsn1dm0aZOwsLAQ3333nTh//rwYNWqUcHBwELdu3ZLqjB49Wri5uYnY2Fhx8uRJ4efnJ/z9/aXjRUVFom3btiIgIEAkJiaKPXv2CEdHRzF9+nQt/5R052nX58qVK8LS0lJMnz5d/P333yIhIUF069ZNeHt7K9Xh9dGep12j+/fvi5s3byo9WrduLYYPHy7V4e847Xna9RFCiI8++ki0atVK7NixQ1y5ckWcPHlS7N+/XzpuaP+GGNzoue3Zs0d4enqK8+fPqwS3b775RtSpU0fk5+dLZaGhoaJVq1bS87ffflsEBgYqndPX11d88MEHQgghSkpKhIuLi/jiiy+k45mZmcLS0lJs3LhRCCHEhQsXBABx4sQJqc7evXuFTCYT//zzT6XbUtPt2LFDyGQyUVBQIIQQYvDgwWLAgAFKdZYuXSoaNWokSkpKhBBCTJs2TbRp00apzsCBA4VCoZCed+7cWYwdO1Z6XlxcLBo0aCDmz58vhCi9Xubm5mLr1q1SnYsXLwoAIj4+XghR+t+RiYmJSE9Pl+qsXLlS2NnZKV2zmuzx67N161ZhZmYmiouLpTrR0dFKdXh9qtfj1+hxp0+fFgDEr7/+KpXxd1z1efz6XLhwQZiZmYmkpKQKX2No/4Y4VErP5datWxg1ahS+//572NjYqByPj49Ht27dYGFhIZUpFAokJyfj3r17Up2AgACl1ykUCsTHxwMAUlJSkJ6erlTH3t4evr6+Up34+Hg4ODjAx8dHqhMQEAATExMcO3as0m2pye7evYv169fD398f5ubmAEqHuK2srJTqWVtb4/r167h69SqAp1+fgoICJCQkKNUxMTFBQECAVCchIQGFhYVKdTw9PeHu7q50Ddu1awdnZ2el98nOzsb58+c19WPQW+quT6dOnWBiYoI1a9aguLgYWVlZ+P777xEQECDV4fWpPuqu0eNWr16Nli1bomvXrlIZf8dVD3XXZ+fOnWjatCl27doFDw8PNGnSBO+99x7u3r0rvc7Q/g0xuNEzE0IgODgYo0ePVvplUl56errSf6QApOfp6elPrFP+ePnXVVSnfv36SsfNzMxQt27dp75P+feoiUJDQ2Fra4t69eohLS0NO3bskI4pFAr89NNPiI2NRUlJCS5duoTFixcDAG7evAmg4p9bdnY2Hj58iDt37qC4uPip18fCwgIODg5PrMPro3x9PDw8sH//fsyYMQOWlpZwcHDA9evXsWXLFqkOr4/2PekalZeXl4f169cjJCREqZy/47TrSdfnypUruHr1KrZu3Yp169YhKioKCQkJGDBggFTH0P4NMbiRirCwMLU325Z/JCUlYdmyZbh//z6mT5+u6yYblcpenzJTp05FYmIi9u/fD1NTUwwbNgzi/2+YMmrUKIwbNw59+vSBhYUF/Pz8MGjQIACl/0dJVafJ65Oeno5Ro0Zh+PDhOHHiBI4cOQILCwsMGDBAqkNVp8lrVN7PP/+M+/fvY/jw4dX5cWocTV6fkpIS5OfnY926dejatSteeeUVfPvttzh06BCSk5N19RGfi5muG0D6Z/LkyQgODn5inaZNm+LgwYOIj49X2dvNx8cHQ4YMwdq1a+Hi4qIyq6bsuYuLi/Snujrlj5eVubq6KtXp0KGDVCcjI0PpHEVFRbh79+5T36f8exiCyl6fMo6OjnB0dETLli3h5eUFNzc3HD16FHK5HDKZDAsWLMC8efOQnp4OJycnxMbGKp2jop+bnZ0drK2tYWpqClNT06dew4KCAmRmZir9H+njdR6fpWXs12fFihWwt7dXmhn4ww8/wM3NDceOHYOfnx+vzzPQ5DUqb/Xq1ejTp49Krwp/x1WNJq+Pq6srzMzM0LJlS6m+l5cXgNIZnq1atTK8f0OVvhuO6DFXr14Vf/75p/SIiYkRAMSPP/4orl27JoR4dLNs+Rt5p0+frjI5oU+fPkrnlsvlKjfuLlq0SDqelZWl9sbdkydPSnViYmLU3rj7pLbUdFevXhUAxKFDhyqsM3ToUKVZWdOmTRNt27ZVqjN48GCVG3fHjRsnPS8uLhYNGzZUuXH3xx9/lOokJSWpvXG3/Cyt//u//xN2dnYiLy/v2T6wgXn8+kyaNEl07txZqc6NGzcEAPHHH38IIXh9qltF/4auXLkiZDKZ2Llzp8pr+Duu+jx+fcq+l/7++2+pTtkEkuTkZCGE4f0bYnAjjUlJSVGZVZqZmSmcnZ3F0KFDxblz58SmTZuEjY2NynIgZmZmYtGiReLixYsiPDxc7VR5BwcHsWPHDnH27FnRt29ftVPlvb29xbFjx8Tvv/8uWrRooTRVvjJtqUmOHj0qli1bJhITE0VqaqqIjY0V/v7+olmzZtIvidu3b4uVK1eKixcvisTERDF+/HhhZWUljh07Jp2nbKr81KlTxcWLF8WKFSvUTpW3tLQUUVFR4sKFC+L9998XDg4OSrOnRo8eLdzd3cXBgwfFyZMnVabtl02V79mzpzh9+rTYt2+fcHJyqrHLTVTm+sTGxgqZTCYiIiLEpUuXREJCglAoFKJx48biwYMHQgheH22qzDUqM3PmTNGgQQNRVFSkch7+jtOOylyf4uJi0bFjR9GtWzdx6tQpcfLkSeHr6ytee+016TyG9m+IwY00Rl1wE0KIM2fOiC5dughLS0vRsGFDERkZqfLaLVu2iJYtWwoLCwvRpk0bsXv3bqXjJSUlYtasWcLZ2VlYWlqKHj16SP+3VObff/8VgwcPFrVq1RJ2dnZixIgR4v79+1VuS01x9uxZ0b17d1G3bl1haWkpmjRpIkaPHi2uX78u1bl9+7bw8/MTtra2wsbGRvTo0UMcPXpU5VyHDh0SHTp0EBYWFqJp06ZizZo1KnWWLVsm3N3dhYWFhejcubPKeR4+fCg+/PBDUadOHWFjYyPefPNNcfPmTaU6qamponfv3sLa2lo4OjqKyZMni8LCQs38QPRMZa6PEEJs3LhReHt7C1tbW+Hk5CSCgoLExYsXlerw+mhHZa9RcXGxaNSokZgxY0aF5+LvOM2r7PX5559/xFtvvSVq1aolnJ2dRXBwsPj333+V6hjSvyGZELzDlYiIiMgQcNoYERERkYFgcCMiIiIyEAxuRERERAaCwY2IiIjIQDC4ERERERkIBjciIiIiA8HgRkRERGQgGNyIiLRAJpNh+/btum6GksOHD0MmkyEzM1PXTSGiZ8TgRkT0HObMmSNtBE5EpG0MbkREREQGgsGNiIxaSUkJ5s+fDw8PD1hbW6N9+/b48ccfATwaWoyNjYWPjw9sbGzg7++P5ORkAEBUVBQiIiJw5swZyGQyyGQyREVFSee+c+cO3nzzTdjY2KBFixaIjo6uVJvK3jcmJgbe3t6wtrbGq6++ioyMDOzduxdeXl6ws7PDO++8gwcPHkivy8/Px/jx41G/fn1YWVmhS5cuOHHihOZ+WESkcwxuRGTU5s+fj3Xr1mHVqlU4f/48Jk6ciHfffRdHjhyR6nzyySdYvHgxTp48CTMzM4wcORIAMHDgQEyePBlt2rTBzZs3cfPmTQwcOFB6XUREBN5++22cPXsWr7/+OoYMGYK7d+9Wum1z5szB8uXLERcXh2vXruHtt9/GV199hQ0bNmD37t3Yv38/li1bJtWfNm0atm3bhrVr1+LUqVNo3rw5FApFld6TiPRclbakJyKqQfLy8oSNjY2Ii4tTKg8JCRGDBw8Whw4dEgDEL7/8Ih3bvXu3ACAePnwohBAiPDxctG/fXuXcAMTMmTOl5zk5OQKA2Lt371Pbpe5958+fLwCIy5cvS2UffPCBUCgU0vnNzc3F+vXrpeMFBQWiQYMGYuHChUrnvXfv3lPbQET6yUyHmZGISKf+/vtvPHjwAK+99ppSeUFBAby9vaXnL7zwgvR3V1dXAEBGRgbc3d2feP7yr7O1tYWdnR0yMjIq3b7yr3d2doaNjQ2aNm2qVHb8+HEAwOXLl1FYWIiXXnpJOm5ubo7OnTvj4sWLlX5PItJvDG5EZLRycnIAALt370bDhg2VjllaWuLy5csASgNQGZlMBqD03rinKf+6stdW5nXqXi+TyZ77fERk+HiPGxEZrdatW8PS0hJpaWlo3ry50sPNza1S57CwsEBxcbGWW/p0zZo1g4WFBf744w+prLCwECdOnEDr1q112DIi0iT2uBGR0apduzamTJmCiRMnoqSkBF26dEFWVhb++OMP2NnZoXHjxk89R5MmTZCSkoLTp0+jUaNGqF27NiwtLauh9cpsbW0xZswYTJ06FXXr1oW7uzsWLlyIBw8eICQkpNrbQ0TaweBGREbt008/hZOTE+bPn48rV67AwcEBHTt2xIwZMyo1DNm/f3/89NNP6N69OzIzM7FmzRoEBwdrv+FqREZGoqSkBEOHDsX9+/fh4+ODmJgY1KlTRyftISLNkwkhhK4bQURERERPx3vciIiIiAwEgxsRUTUbPXo0atWqpfYxevRoXTePiPQYh0qJiKpZRkYGsrOz1R6zs7ND/fr1q7lFRGQoGNyIiIiIDASHSomIiIgMBIMbERERkYFgcCMiIiIyEAxuRERERAaCwY2IiIjIQDC4ERERERkIBjciIiIiA8HgRkRERGQg/h8Bu7sJt+ciGQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAHHCAYAAAAGU9SoAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXftJREFUeJzt3Xl8zNf+P/DXZF9IQmRDQqwJ9SWoZHJ1oamhUXJxi2oIQamldrFGKFKlanfvVaKtvZRYQ2PpIlI09iRaQigRRRJC1jm/P/LL5xoziSQmmZnM6/l4zKPN+Zz5zDv5lLx6zuecj0wIIUBEREREes9E1wUQERERUdkwuBEREREZCAY3IiIiIgPB4EZERERkIBjciIiIiAwEgxsRERGRgWBwIyIiIjIQDG5EREREBoLBjYiIiMhAMLgREb0imUyGOXPm6LoMSUhICBo2bKjrMoioEjC4EVG1FBUVBZlMJr2srKzQrFkzjB49Gvfu3avUzz558iTmzJmDjIwMrZ737bffVvmeateujddffx3r16+HUqnUymcsWLAAu3fv1sq5iEj7zHRdABFRZZo7dy48PT2Rk5ODX375BWvWrMGBAwdw6dIl2NjYaOUznj17BjOz//11evLkSURERCAkJAQODg5a+Yxi9evXx8KFCwEA9+/fxzfffIPQ0FBcvXoVkZGRr3z+BQsWoE+fPggKCnrlcxGR9jG4EVG11q1bN7Rv3x4AMHToUDg6OuLLL7/Enj170L9//wqfV6lUIi8vD1ZWVrCystJWuS9lb2+Pjz76SPr6448/RvPmzbFy5UrMmzcP5ubmVVYLEVU9TpUSkVHp3LkzACAlJQUAsHjxYvj7+8PR0RHW1tZo164dvv/+e7X3yWQyjB49Gps2bULLli1haWmJQ4cOSceK73GbM2cOJk+eDADw9PSUpjVv3LiBt956C61bt9ZYV/PmzaFQKMr9/djY2MDPzw/Z2dm4f/9+if2ys7MxceJEuLu7w9LSEs2bN8fixYshhFD5HrOzs7Fx40ap7pCQkHLXRESVhyNuRGRUrl27BgBwdHQEACxbtgw9evTAgAEDkJeXh61bt+Jf//oX9u3bh8DAQJX3Hj16FNu3b8fo0aNRp04djQsAevXqhatXr2LLli1YunQp6tSpAwBwcnJCcHAwhg0bhkuXLuG1116T3nP69GlcvXoVM2fOrND3dP36dZiampY4LSuEQI8ePXDs2DGEhoaiTZs2iImJweTJk/HXX39h6dKlAIBvv/0WQ4cORYcOHTB8+HAAQOPGjStUExFVEkFEVA1t2LBBABA//vijuH//vrh165bYunWrcHR0FNbW1uL27dtCCCGePn2q8r68vDzx2muvic6dO6u0AxAmJibi8uXLap8FQISHh0tff/HFFwKASElJUemXkZEhrKysxNSpU1Xax44dK2xtbcWTJ09K/Z7eeust4eXlJe7fvy/u378vEhMTxdixYwUA8f7770v9Bg0aJBo0aCB9vXv3bgFAfPbZZyrn69Onj5DJZOLPP/+U2mxtbcWgQYNKrYOIdIdTpURUrQUEBMDJyQnu7u7o168fatSogR9++AH16tUDAFhbW0t9Hz16hMzMTLzxxhv4/fff1c711ltvoUWLFhWuxd7eHj179sSWLVukKcrCwkJs27YNQUFBsLW1fek5kpKS4OTkBCcnJ3h7e2PFihUIDAzE+vXrS3zPgQMHYGpqirFjx6q0T5w4EUIIHDx4sMLfExFVLU6VElG1tmrVKjRr1gxmZmZwcXFB8+bNYWLyv/9n3bdvHz777DOcO3cOubm5UrtMJlM7l6en5yvXM3DgQGzbtg0///wz3nzzTfz444+4d+8egoODy/T+hg0b4r///a+0xUnTpk3h7Oxc6ntu3ryJunXrombNmirt3t7e0nEiMgwMbkRUrXXo0EFaVfqin3/+GT169MCbb76J1atXw83NDebm5tiwYQM2b96s1v/50bmKUigUcHFxwXfffYc333wT3333HVxdXREQEFCm99va2pa5LxFVP5wqJSKjtXPnTlhZWSEmJgZDhgxBt27dtBKKNI3WFTM1NcWHH36I77//Ho8ePcLu3bvRv39/mJqavvLnlqRBgwa4c+cOHj9+rNKelJQkHS9WWu1EpHsMbkRktExNTSGTyVBYWCi13bhx45WfHFB8r1pJT04IDg7Go0eP8PHHH+PJkycq+7JVhvfeew+FhYVYuXKlSvvSpUshk8nQrVs3qc3W1lbrT3wgIu3hVCkRGa3AwEB8+eWX6Nq1Kz788EOkp6dj1apVaNKkCS5cuFDh87Zr1w4AMGPGDPTr1w/m5uZ4//33pUDn4+OD1157DTt27IC3tzfatm2rle+nJO+//z46deqEGTNm4MaNG2jdujUOHz6MPXv2YNy4cSpbfrRr1w4//vgjvvzyS9StWxeenp7w9fWt1PqIqOw44kZERqtz5874+uuvkZaWhnHjxmHLli34/PPP8c9//vOVzvv6669j3rx5OH/+PEJCQtC/f3+1zXEHDhwIAGVelPAqTExMEB0djXHjxmHfvn0YN24crly5gi+++AJffvmlSt8vv/wS7dq1w8yZM9G/f3+sWbOm0usjorKTCfHcttlERFQlli1bhvHjx+PGjRvw8PDQdTlEZCAY3IiIqpgQAq1bt4ajoyOOHTum63KIyIDwHjcioiqSnZ2N6OhoHDt2DBcvXsSePXt0XRIRGRiOuBERVZEbN27A09MTDg4O+OSTTzB//nxdl0REBobBjYiIiMhAcFUpERERkYFgcCMiIiIyEFycoMeUSiXu3LmDmjVr8jE0REREBkIIgcePH6Nu3bowMdHuGBmDmx67c+cO3N3ddV0GERERVcCtW7dQv359rZ6TwU2P1axZE0DRhbezs9NxNURERFQWWVlZcHd3l36PaxODmx4rnh61s7NjcCMiIjIwlXGbExcnEBERERkIBjciIiIiA8HgRkRERGQgeI+bgSssLER+fr6uy6AqYG5uDlNTU12XQUREOsTgZqCEEEhLS0NGRoauS6Eq5ODgAFdXV+7rR0RkpBjcDFRxaHN2doaNjQ1/kVdzQgg8ffoU6enpAAA3NzcdV0RERLrA4GaACgsLpdDm6Oio63KoilhbWwMA0tPT4ezszGlTIiIjZDCLE3r06AEPDw9YWVnBzc0NwcHBuHPnjkofIQQWL16MZs2awdLSEvXq1cP8+fNV+hw/fhxt27aFpaUlmjRpgqioKLXPWrVqFRo2bAgrKyv4+vrit99+Uzmek5ODUaNGwdHRETVq1EDv3r1x7949lT6pqakIDAyEjY0NnJ2dMXnyZBQUFGjlZ1F8T5uNjY1WzkeGo/ia875GIiLjZDDBrVOnTti+fTuSk5Oxc+dOXLt2DX369FHp8+mnn2LdunVYvHgxkpKSEB0djQ4dOkjHU1JSEBgYiE6dOuHcuXMYN24chg4dipiYGKnPtm3bMGHCBISHh+P3339H69atoVAopCkqABg/fjz27t2LHTt24MSJE7hz5w569eolHS8sLERgYCDy8vJw8uRJbNy4EVFRUZg9e7ZWfyacHjU+vOZEREZOGKg9e/YImUwm8vLyhBBCXLlyRZiZmYmkpKQS3zNlyhTRsmVLlba+ffsKhUIhfd2hQwcxatQo6evCwkJRt25dsXDhQiGEEBkZGcLc3Fzs2LFD6pOYmCgAiLi4OCGEEAcOHBAmJiYiLS1N6rNmzRphZ2cncnNzy/w9ZmZmCgAiMzNTpf3Zs2fiypUr4tmzZ2U+F1UPvPZERPqvpN/f2mAwI27Pe/jwITZt2gR/f3+Ym5sDAPbu3YtGjRph37598PT0RMOGDTF06FA8fPhQel9cXBwCAgJUzqVQKBAXFwcAyMvLw9mzZ1X6mJiYICAgQOpz9uxZ5Ofnq/Tx8vKCh4eH1CcuLg6tWrWCi4uLyudkZWXh8uXLJX5fubm5yMrKUnkRERERFTOo4DZ16lTY2trC0dERqamp2LNnj3Ts+vXruHnzJnbs2IFvvvkGUVFROHv2rMp0alpamkqYAgAXFxdkZWXh2bNn+Pvvv1FYWKixT1pamnQOCwsLODg4lNpH0zmKj5Vk4cKFsLe3l17u7u5l/MkYjpCQEMhkMshkMpibm8PFxQXvvvsu1q9fD6VSWebzREVFqV0DIiKi6k6nwS0sLEz6JV7SKykpSeo/efJkJCQk4PDhwzA1NcXAgQMhhAAAKJVK5Obm4ptvvsEbb7yBt99+G19//TWOHTuG5ORkXX2L5TJt2jRkZmZKr1u3bum6pErRtWtX3L17Fzdu3MDBgwfRqVMnfPrpp+jevbvWFnAQERGV5smTJ8jOztZ1GeWm0+A2ceJEJCYmlvpq1KiR1L9OnTpo1qwZ3n33XWzduhUHDhzAqVOnABTta2VmZoZmzZpJ/b29vQEUrfAEAFdXV7XVn/fu3YOdnR2sra1Rp04dmJqaauzj6uoqnSMvL09t49sX+2g6R/GxklhaWsLOzk7lVR1ZWlrC1dUV9erVQ9u2bTF9+nTs2bMHBw8elFb5fvnll2jVqhVsbW3h7u6OTz75BE+ePAFQtDJ48ODByMzMlAL+nDlzAADffvst2rdvj5o1a8LV1RUffvihysISIiIybkIIrFq1CkuWLMHatWulASBDodPg5uTkBC8vr1JfFhYWGt9bPK2Wm5sLAPjHP/6BgoICXLt2Tepz9epVAECDBg0AAHK5HLGxsSrnOXLkCORyOQDAwsIC7dq1U+mjVCoRGxsr9WnXrh3Mzc1V+iQnJyM1NVXqI5fLcfHiRZXAcOTIEdjZ2aFFixYV+Em9nBACeXl5Onlp4z/6zp07o3Xr1ti1axeAonsLly9fjsuXL2Pjxo04evQopkyZAgDw9/fHV199BTs7O9y9exd3797FpEmTABRtkzFv3jycP38eu3fvxo0bNxASEvLK9RERkeHLyMjA3Llz8ffffwMAsrOzDW61vkFswBsfH4/Tp0+jY8eOqFWrFq5du4ZZs2ahcePGUlgKCAhA27ZtMWTIEHz11VdQKpUYNWoU3n33XWkUbsSIEVi5ciWmTJmCIUOG4OjRo9i+fTv2798vfdaECRMwaNAgtG/fHh06dMBXX32F7OxsDB48GABgb2+P0NBQTJgwAbVr14adnR3GjBkDuVwOPz8/AECXLl3QokULBAcHY9GiRUhLS8PMmTMxatQoWFpaVsrPKD8/HwsXLqyUc7/MtGnTSgzY5eHl5YULFy4AAMaNGye1N2zYEJ999hlGjBiB1atXw8LCAvb29pDJZGojmEOGDJH+vVGjRli+fDlef/11PHnyBDVq1HjlGomIyDCdPn0aBw4ckL62t7fHp59+qsOKKsYggpuNjQ127dqF8PBwZGdnw83NDV27dsXMmTOlIGRiYoK9e/dizJgxePPNN2Fra4tu3bphyZIl0nk8PT2xf/9+jB8/HsuWLUP9+vWxbt06KBQKqU/fvn1x//59zJ49G2lpaWjTpg0OHTqksthg6dKlMDExQe/evZGbmwuFQoHVq1dLx01NTbFv3z6MHDkScrkctra2GDRoEObOnVsFPy3DJYSQ/s/nxx9/xMKFC5GUlISsrCwUFBQgJycHT58+LXXj4bNnz2LOnDk4f/48Hj16JI3MpqamVtpoJxER6S+lUol58+aptL333nt4/fXXdVTRq5EJQ5vcNSJZWVmwt7dHZmamyv1uOTk5SElJgaenJ6ysrAAUhR5d7aZvbm5e5qHmkJAQZGRkYPfu3WrH/u///g8eHh5YuXIlvLy8MHLkSPTt2xe1a9fGL7/8gtDQUDx69AgODg6IiorCuHHjVO41zM7ORoMGDaBQKDBixAg4OTkhNTUVCoUCCQkJaNOmjXa+YR3SdO2JiEizxMREbN++XaXt008/rfRdCUr6/a0NBjHiRi8nk8m0Ml2pK0ePHsXFixcxfvx4nD17FkqlEkuWLIGJSdFtmC/+wbOwsEBhYaFKW1JSEh48eIDIyEhpK5UzZ85UzTdARER6JSIiQq1t9uzZBndP24sY3KjK5ebmIi0tDYWFhbh37x4OHTqEhQsXonv37hg4cCAuXbqE/Px8rFixAu+//z5+/fVXrF27VuUcDRs2xJMnTxAbG4vWrVvDxsYGHh4esLCwwIoVKzBixAhcunRJbXiciIiqt/z8fCxYsEClzcnJCZ988omOKtIug9qAl6qHQ4cOwc3NDQ0bNkTXrl1x7NgxLF++HHv27IGpqSlat26NL7/8Ep9//jlee+01bNq0SW3hhb+/P0aMGIG+ffvCyckJixYtgpOTE6KiorBjxw60aNECkZGRWLx4sY6+SyIiqmp79uxRC229evXSGNqiowF//6J/GhLe46bHynOPGxkHXnsiIs3KOzXq7w/ExQFyOXDypHZrqcx73DjiRkRERAYrJydHY2gLDw8v9X62sLCi0BYWVpnVaR/vcSMiIiKDtGXLFmmz/WJBQUFo3bq1Wt/oaCAysiio9ejxv5eh4YgbERERGZyIiAi10DZ79myV0Pb8fWyRkUVTo5GRVV2pdjG4ERERkcHIysoq89To82HNUKdGX8SpUiIiIjIIn332mdoenn379oWXl5fG/mFh6tOjho7BjYiIiPReSaNsJXnxnrbqglOlREREpLcePHhQ7tAGVJ972l7EETciIiLSS5oC2wcffABvb++Xvvf5adLqhCNuREREpHdKGmXz9vYu01MPevQo2li3Ok2TAgxuVE2FhIQgKChI+vrtt9/GuHHjXumc2jgHERGVLi0t7aVTo9V1GrQsOFVKVSokJAQbN24EAJibm8PDwwMDBw7E9OnTYWZWef857tq1C+bm5mXqe/z4cXTq1AmPHj2Cg4NDhc5BRETlpymwBQcHo1GjRipt1XUatCwY3KjKde3aFRs2bEBubi4OHDiAUaNGwdzcHNOmTVPpl5eXBwsLC618Zu3atfXiHEREpFl5FiBUl609KoJTpVTlLC0t4erqigYNGmDkyJEICAhAdHS0NL05f/581K1bF82bNwcA3Lp1Cx988AEcHBxQu3Zt9OzZEzdu3JDOV1hYiAkTJsDBwQGOjo6YMmUKhBAqn/niNGdubi6mTp0Kd3d3WFpaokmTJvj6669x48YNdOrUCQBQq1YtyGQyhISEaDzHo0ePMHDgQNSqVQs2Njbo1q0b/vjjD+l4VFQUHBwcEBMTA29vb9SoUQNdu3bF3bt3pT7Hjx9Hhw4dYGtrCwcHB/zjH//AzZs3tfSTJiLSfykpKRpDm49P+EvvYzNGDG6kc9bW1sjLywMAxMbGIjk5GUeOHMG+ffuQn58PhUKBmjVr4ueff8avv/4qBaDi9yxZsgRRUVFYv349fvnlFzx8+BA//PBDqZ85cOBAbNmyBcuXL0diYiL+/e9/o0aNGnB3d8fOnTsBAMnJybh79y6WLVum8RwhISE4c+YMoqOjERcXByEE3nvvPeTn50t9nj59isWLF+Pbb7/FTz/9hNTUVEyaNAkAUFBQgKCgILz11lu4cOEC4uLiMHz48FIfikxEVJ1ERETgm2++UWkbOnQowsPDjfo+ttJwqpR0RgiB2NhYxMTEYMyYMbh//z5sbW2xbt06aYr0u+++g1KpxLp166RAs2HDBjg4OOD48ePo0qULvvrqK0ybNg29evUCAKxduxYxMTElfu7Vq1exfft2HDlyBAEBAQCgcv9E8ZSos7Ozyj1uz/vjjz8QHR2NX3/9Ff7+/gCATZs2wd3dHbt378a//vUvAEB+fj7Wrl2Lxo0bAwBGjx6NuXPnAih6bEtmZia6d+8uHS/LEnciourgZVOjxnwfW2k44kZlWlatTfv27UONGjVgZWWFbt26oW/fvpgzZw4AoFWrVir3tZ0/fx5//vknatasiRo1aqBGjRqoXbs2cnJycO3aNWRmZuLu3bvw9fWV3mNmZob27duX+Pnnzp2Dqakp3nrrrQp/D4mJiTAzM1P5XEdHRzRv3hyJiYlSm42NjRTKAMDNzQ3p6ekAigJiSEgIFAoF3n//fSxbtkxlGpWIqDo6c+ZMme5nq67bebwqjriRynB0VfwB6dSpE9asWQMLCwvUrVtXZTWpra2tSt8nT56gXbt22LRpk9p5nJycKvT51tbWFXpfRby4ClUmk6ncf7dhwwaMHTsWhw4dwrZt2zBz5kwcOXIEfn5+VVYjEVFV0RTYmjcfjuXL3eDjw5BWFhxxI4SFAXJ51Q1H29raokmTJvDw8HjpFiBt27bFH3/8AWdnZzRp0kTlZW9vD3t7e7i5uSE+Pl56T0FBAc6ePVviOVu1agWlUokTJ05oPF484vfig4yf5+3tjYKCApXPffDgAZKTk9GiRYtSv6cX+fj4YNq0aTh58iRee+01bN68uVzvJyIyBCWNsi1f7sZ72cqBwY30ejh6wIABqFOnDnr27Imff/4ZKSkpOH78OMaOHYvbt28DAD799FNERkZi9+7dSEpKwieffIKMjIwSz9mwYUMMGjQIQ4YMwe7du6Vzbt++HQDQoEEDyGQy7Nu3D/fv38eTJ0/UztG0aVP07NkTw4YNwy+//ILz58/jo48+Qr169dCzZ88yfW8pKSmYNm0a4uLicPPmTRw+fBh//PEH73MjomrlxIkTpU6NVvXggaFjcCO9ZmNjg59++gkeHh7o1asXvL29ERoaipycHNjZ2QEAJk6ciODgYAwaNAhyuRw1a9bEP//5z1LPu2bNGvTp0weffPIJvLy8MGzYMGRnZwMA6tWrh4iICISFhcHFxQWjR4/WeI4NGzagXbt26N69O+RyOYQQOHDgQJk36bWxsUFSUhJ69+6NZs2aYfjw4Rg1ahQ+/vjjcvyEiIj0V0REBI4fP67SNnLkSJWtPvR58EAfycSLG16R3sjKyoK9vT0yMzOlkAIAOTk5SElJgaenJ6ysrHRYIVU1XnsiMhSljbL5+xfdWy2XF4W26qak39/awMUJREREpDUbN25U2SS9GLf60A4GNyIiItIKTaNsP/88BmPHqj4y0JgfWfWqGNyIiIjolQghpM3FnxcTE464OODpUwY1bWFwIyIiogr76quvkJmZqdYeHh4OHx9OiWobg5sB47oS48NrTkT6RNPU6Pjx46Ub8jklqn3cDsQAFW838fTpUx1XQlWt+JqXdcsRIqLKoFQqS1w1amdnV+WPUjQmHHEzQKampnBwcJCeeWljYyM9gJ2qJyEEnj59ivT0dDg4OMDU1FTXJRGRkdIU2ADVVaNV/ShFY8LgZqBcXV0BQApvZBwcHByka09EVNU0hbYpU6aoPQOa231UHm7Aq8fKsoFfYWEh8vPzq7gy0gVzc3OOtBGRTuTn52PBggVq7c+PstH/cANeKpGpqSl/mRMRUaUpy9QoVR0GNyIiItJIU2hr3Xo6goK4QEpXuKqUiIiIVGRnZ2sMbXPmhGPRIoY2XeKIGxEREUlKmhrdsiUccjkXHOgagxsREREB0Bza1q2bhQcPTDB+PDB/vg6KIhWcKiUiIjJyDx8+LHFDXXd3Ezx7Bhw7poPCSA1H3IiIiIzYy1aNck82/cLgRkREZKQ0hbbZs2erPI2HzxvVLwxuRERERmbLltu4evVrtXYfn3DwCYr6jcGNiIjIiGgaZZPJZJg9e7YOqqHyYnAjIiIyEiUtQCDDwVWlRERE1dzFixc1hraYGIY2Q8MRNyIiompM89SoGQ4dmsGVogaIwY2IiKiaKm1qlLe0GSYGNyIiomrm+PHjOHHihFo772czfAxuRERE1YimUba6deti2LBhOqiGtI3BjYiIqJrQFNp8fMK5gW41wuBGRERk4H744QdcuHBBrX3OnHDI5XzyQXXC4EZERGTANI2yNW/eHDY2/SCX8xmj1Q2DGxERkYF62Ya6HGmrfhjciIiIDMzKlSvx4MEDtXauGq3+GNyIiIgMiKZRttTU9ujZM1AH1VBVY3AjIiIyEHzWKDG4ERER6TlNgQ1gaDNGDG5ERER6KjoaSEhQD22dO3fGG2+8oYOKSNcY3IiIiPSUptDGUTbjxuBGRESkZzg1SiVhcCMiItIjmkJbz5490aZNm6ovhvQOgxsREZEeEEJg7ty5au0cZaPnMbgRERHpGKdGqawY3IiIiHRIU2j76KOP0LhxYx1UQ/qOwY2IiEgHCgsL8dlnn6m1c5SNSsPgRkREVMU4NUoVZaLrAsqqR48e8PDwgJWVFdzc3BAcHIw7d+5Ix+fMmQOZTKb2srW1VTnPjh074OXlBSsrK7Rq1QoHDhxQOS6EwOzZs+Hm5gZra2sEBATgjz/+UOnz8OFDDBgwAHZ2dnBwcEBoaCiePHmi0ufChQt44403YGVlBXd3dyxatEjLPxEiIjJEmkLbyZMfw8eHoY1ezmCCW6dOnbB9+3YkJydj586duHbtGvr06SMdnzRpEu7evavyatGiBf71r39JfU6ePIn+/fsjNDQUCQkJCAoKQlBQEC5duiT1WbRoEZYvX461a9ciPj4etra2UCgUyMnJkfoMGDAAly9fxpEjR7Bv3z789NNPGD58uHQ8KysLXbp0QYMGDXD27Fl88cUXmDNnDv7zn/9U8k+JiIj0VU5OTonPGo2JcUWPHjooigyOTAghdF1ERURHRyMoKAi5ubkwNzdXO37+/Hm0adMGP/30k/RYkL59+yI7Oxv79u2T+vn5+aFNmzZYu3YthBCoW7cuJk6ciEmTJgEAMjMz4eLigqioKPTr1w+JiYlo0aIFTp8+jfbt2wMADh06hPfeew+3b99G3bp1sWbNGsyYMQNpaWmwsLAAAISFhWH37t1ISkoq8/eYlZUFe3t7ZGZmws7OrsI/KyIi0q2SpkZ9fMIZ2Kqhyvz9bTAjbs97+PAhNm3aBH9/f42hDQDWrVuHZs2aqTzLLS4uDgEBASr9FAoF4uLiAAApKSlIS0tT6WNvbw9fX1+pT1xcHBwcHKTQBgABAQEwMTFBfHy81OfNN9+UQlvx5yQnJ+PRo0clfl+5ubnIyspSeRERkWHTFNpathyP8HCGNio/gwpuU6dOha2tLRwdHZGamoo9e/Zo7JeTk4NNmzYhNDRUpT0tLQ0uLi4qbS4uLkhLS5OOF7eV1sfZ2VnluJmZGWrXrq3SR9M5nv8MTRYuXAh7e3vp5e7uXmJfIiLSb48ePSpxarRPH86iUMXoNLiFhYVpXFDw/Ov5qcXJkycjISEBhw8fhqmpKQYOHAhNM70//PADHj9+jEGDBlXlt/PKpk2bhszMTOl169YtXZdEREQVEBERgeXLl6u1c9UovSqdbgcyceJEhISElNqnUaNG0r/XqVMHderUQbNmzeDt7Q13d3ecOnUKcrlc5T3r1q1D9+7d1Ua9XF1dce/ePZW2e/fuwdXVVTpe3Obm5qbSp/gZca6urkhPT1c5R0FBAR4+fKhyHk2f8/xnaGJpaQlLS8sSjxMRkf7TNMoWFhbGv99JK3Qa3JycnODk5FSh9yqVSgBF94U9LyUlBceOHUN0dLTae+RyOWJjYzFu3Dip7ciRI1Lw8/T0hKurK2JjY6WglpWVhfj4eIwcOVI6R0ZGBs6ePYt27doBAI4ePQqlUglfX1+pz4wZM5Cfny/dg3fkyBE0b94ctWrVqtD3S0RE+u3WrVtYv369WjtH2UibDGID3vj4eJw+fRodO3ZErVq1cO3aNcyaNQuNGzdWG21bv3493Nzc0K1bN7XzfPrpp3jrrbewZMkSBAYGYuvWrThz5oy0TYdMJsO4cePw2WefoWnTpvD09MSsWbNQt25dBAUFAQC8vb3RtWtXDBs2DGvXrkV+fj5Gjx6Nfv36oW7dugCADz/8EBEREQgNDcXUqVNx6dIlLFu2DEuXLq3cHxQREekEN9SlqmIQwc3Gxga7du1CeHg4srOz4ebmhq5du2LmzJkqQ89KpRJRUVEICQmBqamp2nn8/f2xefNmzJw5E9OnT0fTpk2xe/duvPbaa1KfKVOmIDs7G8OHD0dGRgY6duyIQ4cOwcrKSuqzadMmjB49Gu+88w5MTEzQu3dvlXsZ7O3tcfjwYYwaNQrt2rVDnTp1MHv2bJW93oiIyLBFRwORkYBCoR7aZs2aBRMTg1r/RwbCYPdxMwbcx42ISH/16nUJrVvvVGvnKBtV5u9vgxhxIyIi0gfR0cDUqUC/fhFo3Vr9OEMbVTYGNyIiojKKjCwKbS9iYKOqwuBGRERUBj/99BMUimNq7QxtVJUY3IiIiF6Cq0ZJXzC4ERERaVDaqlEGNtIVBjciIiINDhzYCYXiklo7QxvpEoMbERHR//f8KNtzTz6UMLSRrjG4ERER/X+cGiV9x+BGREQEYNGiRVAonqm1M7SRPmFwIyIioxYdDSQkcNUoGQYGNyIiMmqaQhsDG+krBjciIjI6HGUjQ8XgRkRERkdTaDM1NcXMmTN1UA1R2TG4ERGRUdH0FASOspGhYHAjIiKjwMdWUXXA4EZERNWeptDWqFEjBAcH66AaoopjcCMiomqNU6NUnTC4ERFRtcSpUaqOGNyIiKja0RTa5HI5unTpooNqiLSHwY2IiAxedDQwdSogBNC/P6dGqfpicCMiIoMXGQn068epUar+GNyIiMggRUcXBbawMEChUA9t3bt3R7t27XRQGVHlYXAjIiKDEx0NDBgAZGcrkZAwT+04R9moumJwIyIigzNlCjBpEqdGyfgwuBERkcHRtABh0KBBaNiwYdUXQ1SFGNyIiMhg5OfnY8GCBWrtHGUjY8HgRkREBoEb6hIxuBERkQHQFNpGjx4NR0dHHVRDpDsMbkREpHeKt/qYOPExLl36Uu04R9nIWDG4ERGR3omMLNqb7dIl9WMMbWTMGNyIiEjvaNpQd/LkybCxsdFBNUT6g8GNiIj0xt27d/Gf//xHrZ2jbERFGNyIiEiniu9n0zTKBjC0ET2PwY2IiHSqpNA2Y8YMmJnx1xTR8/gngoiIdObq1atQKLaotXOUjUgzBjciIqoy0dFFzxmVyYB+/Tg1SlReDG5ERFRlIiOB5GRgzhz10DZ79mzIZDIdVEVkOEx0XQAREVVv0dGAv3/RP4cMidcY2sLDwxnaiMqAI25ERFSpIiOBuDggIYFTo0SvisGNiIgqTXQ08PCh5qlRBjai8iv3VKmpqSnS09PV2h88eABTU1OtFEVERNXD3r170L8/QxuRtpR7xE0IobE9NzcXFhYWr1wQERFVDxEREahfX72doY2o4soc3JYvXw4AkMlkWLduHWrUqCEdKywsxE8//QQvLy/tV0hERAYnIoKjbESVoczBbenSpQCKRtzWrl2rMi1qYWGBhg0bYu3atdqvkIiIDMbatWtx7949tXaGNiLtKHNwS0lJAQB06tQJu3btQq1atSqtKCIiMjyaRtkAhjYibSr3PW7Hjh2rjDqIiMjAFD8cPixM81YfDGxE2lfu4DZkyJBSj69fv77CxRARkeEofjh8QoL6MYY2ospR7uD26NEjla/z8/Nx6dIlZGRkoHPnzlorjIiI9JtCwalRoqpW7uD2ww8/qLUplUqMHDkSjRs31kpRRESk37hqlEg3ZKKkjdnKKTk5GW+//Tbu3r2rjdMRgKysLNjb2yMzMxN2dna6LoeIiAsQiMqgMn9/a+2RV9euXUNBQYG2TkdERHpGU2hzc3PD8OHDdVANkXEqd3CbMGGCytdCCNy9exf79+/HoEGDtFYYERHph+horhol0hflDm4JLywfMjExgZOTE5YsWfLSFadERGRYODVKpF+4jxsREakpaZStbdu2eP/993VQEREBr3CPW3p6OpKTkwEAzZs3h7Ozs9aKIiIi3eHUKJH+Kndwy8rKwqhRo7BlyxYolUoAgKmpKfr27YtVq1bB3t5e60USEVHV4NQokX4zKe8bhg0bhvj4eOzfvx8ZGRnIyMjAvn37cObMGXz88ceVUSMREVUBTaGtS5cuDG1EeqTc+7jZ2toiJiYGHTt2VGn/+eef0bVrV2RnZ2u1QGPGfdyIqCoIITB37ly1dgY2oorRq33cHB0dNU6H2tvbo1atWlopioiIKl9J97IBDG1E+qrcU6UzZ87EhAkTkJaWJrWlpaVh8uTJmDVrllaLIyKiyqMptPXv35+hjUiPlXuq1MfHB3/++Sdyc3Ph4eEBAEhNTYWlpSWaNm2q0vf333/XXqVGiFOlRFQZCgoKMH/+fLV2BjYi7dCrqdKePXtCJpNptQgiIqoaXDVKZNi09pB50j6OuBGRNmkKbcOHD4ebm5sOqiGqvirz93e573Fr1KgRHjx4oNaekZGBRo0aaaUoIiLSjuho4K23nmoMbeHh4QxtRAam3FOlN27cQGFhoVp7bm4ubt++rZWiiIhIOxISItC5s3o7p0aJDFOZg1t0dLT07zExMSpbghQWFiI2Nhaenp7arY6IiCpM0yjb+PHjeesFkQEr81RpUFAQgoKCIJPJMGjQIOnroKAg9OvXD0eOHMGSJUsqrdAePXrAw8MDVlZWcHNzQ3BwMO7cuaPSJyYmBn5+fqhZsyacnJzQu3dv3LhxQ6XP8ePH0bZtW1haWqJJkyaIiopS+6xVq1ahYcOGsLKygq+vL3777TeV4zk5ORg1ahQcHR1Ro0YN9O7dG/fu3VPpk5qaisDAQNjY2MDZ2RmTJ09GQUGBVn4WRESl2b797xKnRhnaiAxbmYObUqmEUqmEh4cH0tPTpa+VSiVyc3ORnJyM7t27V1qhnTp1wvbt25GcnIydO3fi2rVr6NOnj3Q8JSUFPXv2ROfOnXHu3DnExMTg77//Rq9evVT6BAYGolOnTjh37hzGjRuHoUOHIiYmRuqzbds2TJgwAeHh4fj999/RunVrKBQKpKenS33Gjx+PvXv3YseOHThx4gTu3Lmj8jmFhYUIDAxEXl4eTp48iY0bNyIqKgqzZ8+utJ8PERFQNMqWmLhKrZ1To0TVg8GuKo2OjkZQUBByc3Nhbm6O77//Hv3790dubi5MTIry6N69e9GzZ0+pz9SpU7F//35cunRJOk+/fv2QkZGBQ4cOAQB8fX3x+uuvY+XKlQCKAqu7uzvGjBmDsLAwZGZmwsnJCZs3b5aCY1JSEry9vREXFwc/Pz8cPHgQ3bt3x507d+Di4gIAWLt2LaZOnYr79+/DwsKiTN8jV5USUXloGmX7v/8Lwz//aamDaoiMl17t46bpeXbPq4pRpYcPH2LTpk3w9/eHubk5AKBdu3YwMTHBhg0bEBISgidPnuDbb79FQECA1CcuLg4BAQEq51IoFBg3bhwAIC8vD2fPnsW0adOk4yYmJggICEBcXBwA4OzZs8jPz1c5j5eXFzw8PKTgFhcXh1atWkmhrfhzRo4cicuXL8PHx0fj95Wbm4vc3Fzp66ysrFf4KRGRsbh27Rq+++47tXaOshFVP+UObj/88IPK1/n5+UhJSYGZmRkaN25cqcFt6tSpWLlyJZ4+fQo/Pz/s27dPOubp6YnDhw/jgw8+wMcff4zCwkLI5XIcOHBA6pOWlqYSpgDAxcUFWVlZePbsGR49eoTCwkKNfZKSkqRzWFhYwMHBQa1P8WPASvqc4mMlWbhwYYmbYxIRacINdYmMS7n3cUtISFB5Xbp0CXfv3sU777yD8ePHl+tcYWFhkMlkpb6KAxMATJ48GQkJCTh8+DBMTU0xcOBAFM/0pqWlYdiwYRg0aBBOnz6NEydOwMLCAn369IGhzAZPmzYNmZmZ0uvWrVu6LomI9Jim0DZr1iyGNqJqrNwjbprY2dkhIiIC77//PoKDg8v8vokTJyIkJKTUPs9v6lunTh3UqVMHzZo1g7e3N9zd3XHq1CnI5XKsWrUK9vb2WLRokdT/u+++g7u7O+Lj4+Hn5wdXV1e11Z/37t2DnZ0drK2tYWpqClNTU419XF1dAQCurq7Iy8tDRkaGyqjbi31eXIlafM7iPppYWlrC0pL3ohCRZtHRQGQkMHToGdy6tV/tOAMbUfWnleAGQBolKg8nJyc4OTlV6POUSiUASPeEPX36VFqUUMzU1FSl74tTpwBw5MgRyOVyAICFhQXatWuH2NhYBAUFSe+NjY3F6NGjARTdS2dubo7Y2Fj07t0bAJCcnIzU1FTpPHK5HPPnz0d6ejqcnZ2lz7Gzs0OLFi0q9P0SEUVGAgpFBDQNxjO0ERmHcge35cuXq3wthMDdu3fx7bffolu3blor7Hnx8fE4ffo0OnbsiFq1auHatWuYNWsWGjduLIWlwMBALF26FHPnzkX//v3x+PFjTJ8+HQ0aNJAWA4wYMQIrV67ElClTMGTIEBw9ehTbt2/H/v3/+z/XCRMmYNCgQWjfvj06dOiAr776CtnZ2Rg8eDAAwN7eHqGhoZgwYQJq164NOzs7jBkzBnK5HH5+fgCALl26oEWLFggODsaiRYuQlpaGmTNnYtSoURxRI6IKUyg0781GRMaj3NuBvPh0BBMTEzg5OaFz586YNm0aatasqdUCAeDixYv49NNPcf78eWRnZ8PNzQ1du3bFzJkzUa9ePanf1q1bsWjRIly9ehU2NjaQy+X4/PPP4eXlJfU5fvw4xo8fjytXrqB+/fqYNWuW2nTtypUr8cUXXyAtLQ1t2rTB8uXL4evrKx3PycnBxIkTsWXLFuTm5kKhUGD16tUq06A3b97EyJEjcfz4cdja2mLQoEGIjIyEmVnZszK3AyEiADh48KDa7RcAQxuRvqrM398Gu4+bMWBwIyKuGiUyPHq1jxsAZGRk4M8//wQANGnSRG1rDCIienUlPbaKiIxXuYLbjRs3MGrUKMTExEhbbMhkMnTt2hUrV65Ew4YNK6NGIiKjEhUVhZs3b6q1M7QRUZmD261bt+Dn5wdzc3PMmzcP3t7eAIArV65gzZo1kMvlOH36NOrXr19pxRIRVXclTY36+DC0EVE57nELDQ3Fn3/+iZiYGFhZWakce/bsGbp27YqmTZti3bp1lVKoMeI9bkTGhVOjRNWDXtzjdujQIWzbtk0ttAGAtbU15s2bh379+mm1OCIiY/DZZ5+hsLBQrZ2hjYheVObg9vfff5d6D1ujRo3w8OFDbdRERGQ0uGqUiMqjzMHNzc1N2vtMk0uXLpX6OCciIlKlKbTl5YVj/nwdFENEBqHMwS0oKAiTJk1CbGys2mOq0tPTMXXqVOkxUUREVDKOshFRRZV5ccKjR4/g6+uLtLQ0fPTRR/Dy8oIQAomJidi8eTNcXV1x6tQp1K5du7JrNhpcnEBU/WgKbebm5pg+fboOqiGiyqAXixNq1aqF+Ph4TJ8+HVu3bkVGRgYAwMHBAR9++CEWLFjA0EZEVAquGiWiV1WhR14JIXD//n0AgJOTE2QymdYLI464EVUXpe3N1qNHFRdDRJVOL0bcnieTyeDs7KzVQoiIqiNNoa1+/foIDQ3VQTVEZOgqFNyIiOjlNIW2mJhwnDypg2KIqFpgcCMi0rKSpkZjYsIRFlbFxRBRtcLgRkSkRZpCW9u2bfH++++D6xCI6FUxuBERaQlXjRJRZStTcFu+fHmZTzh27NgKF0NEZIi4oS4RVZUybQfi6elZtpPJZLh+/forF0VFuB0Ikf7TFNr27XsP5uavcxECkZHS+XYgKSkpWv1QIiJDp1QqMW/ePLX2vLxwmJuDixCIqFJU+B63vLw8pKSkoHHjxjAz461yRGQ8Sls1ylE2IqpMJuV9w9OnTxEaGgobGxu0bNkSqampAIAxY8YgMjJS6wUSEekTTaGtUaP+3OqDiKpEuYPbtGnTcP78eRw/fhxWVlZSe0BAALZt26bV4oiI9EVOTk6Jq0aDg5vh5Enw8VVEVOnKPce5e/dubNu2DX5+firPKG3ZsiWuXbum1eKIiPRBaVOjXDhKRFWp3MHt/v37Gp9Tmp2dzYfNE1G1oym0eXt/gq++cuLUKBFVuXJPlbZv3x779++Xvi4Oa+vWrYNcLtdeZUREOpSRkVHis0Y/+MCJU6NEpBPlHnFbsGABunXrhitXrqCgoADLli3DlStXcPLkSZw4caIyaiQiqlJ81igR6atyj7h17NgR586dQ0FBAVq1aoXDhw/D2dkZcXFxaNeuXWXUSERUZTSFtqNHJyM8PJyjbESkcxXagK1x48b473//q+1aiIh05tatW1i/fr1aO0fZiEiflCm4ZWVllfmEfDQTERma0p41ylWjRKRPyhTcHBwcyrxitLCw8JUKIiKqSppC24wZM/hEGCLSS2X6m+nYsWPSv9+4cQNhYWEICQmRVpHGxcVh48aNWLhwYeVUSUSkZZcvX8b333+v1u7jEw5mNiLSVzIhhCjPG9555x0MHToU/fv3V2nfvHkz/vOf/+D48eParM+oZWVlwd7eHpmZmZyCJtKikqZG58wJh1wOPm+UiF5JZf7+Lvf/V8bFxWHt2rVq7e3bt8fQoUO1UhQRUWXRFNq2bJmNJ09k8PICFyIQkV4r93Yg7u7uGleUrlu3Du7u7lopiohI237++ecSN9RNTpbBwwNITOR2H0Sk38o94rZ06VL07t0bBw8ehK+vLwDgt99+wx9//IGdO3dqvUAioldV2qpRHx8gMpIjbURkGMp9jxsA3L59G6tXr0ZSUhIAwNvbGyNGjOCIm5bxHjeiV6cptIVzjw8iqkSV+fu7QsGNqgaDG1HF7dq1CxcvXlRrZ2gjosqmV4sTgKKHL3/99ddITEwEALRs2RJDhgyBvb29VosjIqqI0qZGiYgMWblH3M6cOQOFQgFra2t06NABAHD69Gk8e/YMhw8fRtu2bSulUGPEETei8uPUKBHpml5Nlb7xxhto0qQJ/vvf/0o7ixcUFGDo0KG4fv06fvrpJ60WaMwY3IjKbuXKlXjw4IFaO0MbEVU1vQpu1tbWSEhIgJeXl0r7lStX0L59ezx9+lSrBRozBjeisuHUKBHpE726x83Ozg6pqalqwe3WrVuoWbOm1gojIioLTo0SkTEpd3Dr27cvQkNDsXjxYvj7+wMAfv31V0yePFntMVhERJWFo2xEZIzKHdwWL14MmUyGgQMHoqCgAABgbm6OkSNHIjIyUusFEhG9iKGNiIxVhfdxe/r0Ka5duwYAaNy4MWxsbLRaGPEeNyJNSnpsVVgYH1dFRPpBrxYnUNVhcCP6H46yEZGh0IvFCUOGDClTv/Xr11e4GCIiTTSFtkePPNC582AdVENEpDtlDm5RUVFo0KABfHx8wEE6IqoqJU2NxsUBv/3G6VEiMi5lDm4jR47Eli1bkJKSgsGDB+Ojjz5C7dq1K7M2IjJipU2N+vgAkZFAWFgVF0VEpGPlusctNzcXu3btwvr163Hy5EkEBgYiNDQUXbp0gUwmq8w6jRLvcSNjpSm0/fbb63j06D2cPKmDgoiIyqEyf3+blKezpaUl+vfvjyNHjuDKlSto2bIlPvnkEzRs2BBPnjzRamFEZJw0hbYtW8Jx/fp7HGEjIqNX7n3cipmYmEAmk0EIgcLCQm3WRERGqLSpUS4cJSIqUq4Rt9zcXGzZsgXvvvsumjVrhosXL2LlypVITU1FjRo1KqtGIqrmNIW2wMBAbvVBRPSCMo+4ffLJJ9i6dSvc3d0xZMgQbNmyBXXq1KnM2oiomhNCYO7cuWrtDGxERJqVeXGCiYkJPDw84OPjU+pChF27dmmtOGPHxQlUnXFDXSKqrvRiA96BAwdy5SgRaYWm0DZgwAA0adJEB9UQERmOcm3AS0T0KgoKCjB//ny1do6yERGVTYVXlRIRlQenRomIXh2DGxFVOk2hbcSIEXBxcdFBNUREhovBjYgqzdOnT/HFF1+otXOUjYioYhjciKhScGqUiEj7GNyISOs0hbaJEydyo24iolfE4EZEWvP3339j1apVau0cZSMi0g4GNyLSCk6NEhFVPgY3InplmkLb9OnTYW5uroNqiIiqLwY3IqqwW7duYf369WrtHGUjIqocDG5EVCGcGiUiqnomui6grHr06AEPDw9YWVnBzc0NwcHBuHPnjkqf7du3o02bNrCxsUGDBg007h91/PhxtG3bFpaWlmjSpInGR3mtWrUKDRs2hJWVFXx9ffHbb7+pHM/JycGoUaPg6OiIGjVqoHfv3rh3755Kn9TUVAQGBsLGxgbOzs6YPHkyCgoKXv0HQaQHNIW2mJjZDG1ERJXMYIJbp06dsH37diQnJ2Pnzp24du0a+vTpIx0/ePAgBgwYgBEjRuDSpUtYvXo1li5dipUrV0p9UlJSEBgYiE6dOuHcuXMYN24chg4dipiYGKnPtm3bMGHCBISHh+P3339H69atoVAokJ6eLvUZP3489u7dix07duDEiRO4c+cOevXqJR0vLCxEYGAg8vLycPLkSWzcuBFRUVGYPXt2Jf+UiCpXYmJiCaEtHGFhMkRHA/7+QHS0DoojIjICMiGE0HURFREdHY2goCDk5ubC3NwcH374IfLz87Fjxw6pz4oVK7Bo0SKkpqZCJpNh6tSp2L9/Py5duiT16devHzIyMnDo0CEAgK+vL15//XUp8CmVSri7u2PMmDEICwtDZmYmnJycsHnzZik4JiUlwdvbG3FxcfDz88PBgwfRvXt33LlzR3qkz9q1azF16lTcv38fFhYWZfoes7KyYG9vj8zMTNjZ2Wnl50ZUUSVNjfr4hCMyEggLAyIjgbg4QC4HTp6s4gKJiPREZf7+NpgRt+c9fPgQmzZtgr+/v7RqLTc3F1ZWVir9rK2tcfv2bdy8eRMAEBcXh4CAAJU+CoUCcXFxAIC8vDycPXtWpY+JiQkCAgKkPmfPnkV+fr5KHy8vL3h4eEh94uLi0KpVK5XnMCoUCmRlZeHy5cslfl+5ubnIyspSeRHpA02hLTw8HOHh4VJYKw5vcnnRP4mISPsMKrhNnToVtra2cHR0RGpqKvbs2SMdUygU2LVrF2JjY6FUKnH16lUsWbIEAHD37l0AQFpamtpDrV1cXJCVlYVnz57h77//RmFhocY+aWlp0jksLCzg4OBQah9N5yg+VpKFCxfC3t5eerm7u5f1R0NUKU6dOqUxtPn4hEtTos+HtR49ikbaevTQQbFEREZAp8EtLCwMMpms1FdSUpLUf/LkyUhISMDhw4dhamqKgQMHonimd9iwYRg9ejS6d+8OCwsL+Pn5oV+/fgCKRs0MwbRp05CZmSm9bt26peuSyIhFRESo3P9Z7MVRNoY1IqKqo9PtQCZOnIiQkJBS+zRq1Ej69zp16qBOnTpo1qwZvL294e7ujlOnTkEul0Mmk+Hzzz/HggULkJaWBicnJ8TGxqqcw9XVVW31571792BnZwdra2uYmprC1NRUYx9XV1fpHHl5ecjIyFAZdXuxz4srUYvPWdxHE0tLS1haWpb68yCqCiVNjRYrvp+NU6JERFVLp8HNyckJTk5OFXqvUqkEUHRf2PNMTU1Rr149AMCWLVsgl8ulz5DL5Thw4IBK/yNHjkAulwMALCws0K5dO8TGxiIoKEj6nNjYWIwePRoA0K5dO5ibmyM2Nha9e/cGACQnJyM1NVU6j1wux/z585Geng5nZ2fpc+zs7NCiRYsKfb9EVeHAgQM4ffq0WvvzoS06+n+hjaNsRERVyyA24I2Pj8fp06fRsWNH1KpVC9euXcOsWbPQuHFjKSz9/fff+P777/H2228jJycHGzZskLbrKDZixAisXLkSU6ZMwZAhQ3D06FFs374d+/fvl/pMmDABgwYNQvv27dGhQwd89dVXyM7OxuDBgwEA9vb2CA0NxYQJE1C7dm3Y2dlhzJgxkMvl8PPzAwB06dIFLVq0QHBwMBYtWoS0tDTMnDkTo0aN4oga6a2ybqj74jQpERFVHYMIbjY2Nti1axfCw8ORnZ0NNzc3dO3aFTNnzlQJQhs3bsSkSZMghIBcLsfx48fRoUMH6binpyf279+P8ePHY9myZahfvz7WrVsHhUIh9enbty/u37+P2bNnIy0tDW3atMGhQ4dUFhssXboUJiYm6N27N3Jzc6FQKLB69WrpuKmpKfbt24eRI0dCLpfD1tYWgwYNwty5cyv5J0VUMS+bGn0ep0mJiHTHYPdxMwbcx40q28aNG3Hjxg21dj4BgYio4irz97dBjLgRkfZpGmWrVasWxo4dq4NqiIioLBjciIxQeaZGiYhIfzC4ERmRtWvXqm13AzC0EREZCsPYmZaIXllERIRaaPPx8VELbXxQPBGR/mJwIzICJU+N9lALac9v90FERPqFU6VE1djChQuRl5en1l48yjZlCpCcXPTP4j3ZuN0HEZH+YnAjqqY0jbIpFAppo2gAkMlU/wkUBThurEtEpJ8Y3IiqobKsGo2OBoQAvLyAzz+vqsqIiOhVMLgRVSNlfWwVUDQdmpwMyOUcYSMiMhQMbkTVhKbQ9q9//QstWrTQ2J/3shERGR4GNyIDJ4TQ+BxcTaNs0dH/C2u8l42IyPAwuBEZsPJMjQKqW30wtBERGR4GNyIDpSm0DRkyBO7u7iW+h9OjRESGjcGNyMAolUrMmzdPrb0sj63i9CgRkWFjcCMyIOWdGiUiouqFwY3IQGgKbWPGjEHt2rV1UA0REekCn1VKpOfy8/NL3FC3OLTxwfBERMaBI25EeqysU6NcLUpEZBwY3Ij0lKbQNmnSJNja2qq1c7UoEZFxYHAj0jNPnz7FF198odZe2gIErhYlIjIOvMeNSI9ERES8NLTxfjYiIuPFETciPaFpanT69OkwNzdXaeP9bERExosjbkQ6lpGRUeKq0RdDG1B0H5tczvvZiIiMEUfciHSoIhvq8n42IiLjxeBGpCOaQtusWbNgYsKBcCIi0ozBjaiK3b9/H6tXr1Zr52OriIjoZRjciKoQnzVKRESvgsGNqIpoCm2zZ8+GTCbTQTVERGSIeDMNUSVLTU3VGNpiYsKxd+//Qhv3ZyMiopeRCSGErosgzbKysmBvb4/MzEzY2dnpuhyqAE2BzdHREZs3j0ZcXNG2HidPFrX7+0OtjYiIDE9l/v7mVClRJSlpbzYA8PAApk4FHj4sGmHr0YPPGyUiopfjiJse44ibYUpKSsK2bdvU2l9cgMARNiKi6okjbkQGQtMoW9OmTfHhhx+qtXOEjYiIyovBjUhLSpsa1YRPQCAiovJicCN6RWfOnMH+/fvV2rk3GxERaRuDG9Er0DTK9vrrr+O9997TQTVERFTdMbgRVVB5p0aJiIheFYMbUTn98ssviI2NVWtnaCMiosrG4EZUDppG2bp27QpfX18dVENERMaGwY2ojDg1SkREusZnlRK9xNGjR0sNbXzGKBERVRWOuBGVQlNg69evH5o3by59HRlZ9ASEyEjuy0ZERJWLI25EJShplC05ubnKCFtYWNFjq/gEBCIiqmx8Vqke47NKdWP37t04f/68Wnvx1CifMUpERKXhs0qJqoimUbYhQ4bA3d1d+prPGCUiIl1hcCP6/8q6apTPGCUiIl1hcCOjt2PHDly5ckWtnVt9EBGRvmFwI6OmaZTtk08+gZOTkw6qISIiKh2DGxklIQTmzp2r1s5RNiIi0mcMbmR0vv76a9y+fVutPSYmHD4+vH+NiIj0F4MbGRVNU6MTJkyAQlGTm+gSEZHe4wa8ZBSUSmWJq0Zr1qzJTXSJiMggcMSNqr1169bhr7/+Umv38fnf/Wzc4oOIiAwBgxtVa5pG2X78MQy//GIJuZxhjYiIDAuDG1VLBQUFmD9/vlp7eHjRAoTCQk6LEhGR4WFwo2pn+/btSExMVGl79MgdnTsPAcBpUSIiMlwMblStaJoanTFjBszM+J86EREZPv42o2ohPz8fCxYsUGv38QkHMxsREVUX/JVGBu+bb75BSkqKSpuvry+6du2qo4qIiIgqB4MbGTRNU6OzZ8+GTCbTQTVERESVi8GNDFJOTg4+//xztXY+a5SIiKozBjcyOGvWrEF6erpK29tvv4233npLRxURERFVDQY3MiicGiUiImPG4EYG4cmTJ1iyZIlaO6dGiYjImDC4kd5btGgRnj17ptLWrVs3dOjQQUcVERER6QaDG+k1TVOjHGUjIiJjxeBGeikjIwPLli1Ta2doIyIiY2ai6wLKKzc3F23atIFMJsO5c+dUjl24cAFvvPEGrKys4O7ujkWLFqm9f8eOHfDy8oKVlRVatWqFAwcOqBwXQmD27Nlwc3ODtbU1AgIC8Mcff6j0efjwIQYMGAA7Ozs4ODggNDQUT548KXctpFlERIRaaOvVqxdDGxERGT2DC25TpkxB3bp11dqzsrLQpUsXNGjQAGfPnsUXX3yBOXPm4D//+Y/U5+TJk+jfvz9CQ0ORkJCAoKAgBAUF4dKlS1KfRYsWYfny5Vi7di3i4+Nha2sLhUKBnJwcqc+AAQNw+fJlHDlyBPv27cNPP/2E4cOHl6sW0qykqdFWrVrpoBoiIiL9IhNCCF0XUVYHDx7EhAkTsHPnTrRs2RIJCQlo06YNgKK9vWbMmIG0tDRYWFgAAMLCwrB7924kJSUBAPr27Yvs7Gzs27dPOqefnx/atGmDtWvXQgiBunXrYuLEiZg0aRIAIDMzEy4uLoiKikK/fv2QmJiIFi1a4PTp02jfvj0A4NChQ3jvvfdw+/Zt1K1bt0y1lEVWVhbs7e2RmZkJOzu7V/756bP09HSsWbNGrZ2jbEREZGgq8/e3wYy43bt3D8OGDcO3334LGxsbteNxcXF48803paAEAAqFAsnJyXj06JHUJyAgQOV9CoUCcXFxAICUlBSkpaWp9LG3t4evr6/UJy4uDg4ODlJoA4CAgACYmJggPj6+zLVokpubi6ysLJWXMYiIiFALbR9++CFDGxER0QsMIrgJIRASEoIRI0aoBKbnpaWlwcXFRaWt+Ou0tLRS+zx//Pn3ldTH2dlZ5biZmRlq16790s95/jM0WbhwIezt7aWXu7t7iX2ri5KmRps2baqDaoiIiPSbToNbWFgYZDJZqa+kpCSsWLECjx8/xrRp03RZbqWbNm0aMjMzpdetW7d0XVKl+euvv7jVBxERUTnpdDuQiRMnIiQkpNQ+jRo1wtGjRxEXFwdLS0uVY+3bt8eAAQOwceNGuLq64t69eyrHi792dXWV/qmpz/PHi9vc3NxU+hTfS+fq6qr2nMyCggI8fPjwpZ/z/GdoYmlpqfY9VkeaAtvgwYPh4eGhg2qIiIgMh06Dm5OTE5ycnF7ab/ny5fjss8+kr+/cuQOFQoFt27bB19cXACCXyzFjxgzk5+fD3NwcAHDkyBE0b94ctWrVkvrExsZi3Lhx0rmOHDkCuVwOAPD09ISrqytiY2OloJaVlYX4+HiMHDlSOkdGRgbOnj2Ldu3aAQCOHj0KpVJZrlqMFUfZiIiIKs6gVpUWu3HjBjw9PVVWlWZmZqJ58+bo0qULpk6dikuXLmHIkCFYunSptFXHyZMn8dZbbyEyMhKBgYHYunUrFixYgN9//x2vvfYaAODzzz9HZGQkNm7cCE9PT8yaNQsXLlzAlStXYGVlBaDocUv37t3D2rVrkZ+fj8GDB6N9+/bYvHlzmWspi+q0qvT69ev49ttv1doZ2oiIqLqpzN/f1ebJCfb29jh8+DBGjRqFdu3aoU6dOpg9e7ZKUPL398fmzZsxc+ZMTJ8+HU2bNsXu3bul0AYU7ROXnZ2N4cOHIyMjAx07dsShQ4ek0AYAmzZtwujRo/HOO+/AxMQEvXv3xvLly8tVizHRNMr28ccflzptTEREROoMcsTNWFSHETdOjRIRkbHhiBsZnMTERGzfvl2tnaGNiIio4hjcSOs0jbKNHj0ajo6OOqiGiIio+mBwI63i1CgREVHlYXCjVxIdDURGAsOG/Y7U1L0qx0xNTTFz5kwdVUZERFT9MLjRK4mMBBSKCKSmqraPHz/eYBdUEBER6SsGN6owIQQUirlq7ZwaJSIiqhwG8ZB50q3oaMDfv+ifxc6fP4+5c1VDm4ODA0MbERFRJeKIG71UZCQQF1f0zx49NC9AmDx5MmxsbHRQHRERkfHgiBu9VFgYIJcDU6eKEleNMrQRERFVPo640Uv16AG4uv6GgwcPqrS3adMGPXv21FFVRERExofBjUpUvNWHQqE+yjZ9+nSYm5vroCoiIiLjxeBGJYqMVEKhmKfWzgUIREREusHgRhrdvHkTCkWUSptcLkeXLl10UxARERExuJG61atX4/79+yptM2fOhKmpqY4qIiIiIoDBjZ6jVCoxb57q1GjNmjUxYcIEHVVEREREz2NwIwDAn3/+iU2bNqm0hYSEoEGDBjqqiIiIiF7E4EZYtmwZMjIyVNpmz54NmUymm4KIiIhIIwY3I6ZUKrF48WI8e/ZMavPw8MDgwYN1WBURERGVhMHNSN2/fx+rV69WaYuLG4rw8Ho6qoiIiIhehsHNCMXHx+PQoUPS1zY29fDDD6EIC+PUKBERkT5jcDNCMTFHpH/v1asXWrVqhcmTdVgQERERlQmDmxG6ePE9WFom4vbtnggPr6HrcoiIiKiMTHRdAFW94OC2uH59ACZMYGgjIiIyJBxxM0I9ehS9iIiIyLBwxI2IiIjIQDC4ERERERkIBjciIiIiA8HgRkRERGQgGNyIiIiIDASDGxEREZGBYHAjIiIiMhAMbkREREQGgsGNiIiIyEAwuBEREREZCAY3IiIiIgPB4EZERERkIBjciIiIiAyEma4LoJIJIQAAWVlZOq6EiIiIyqr493bx73FtYnDTY48fPwYAuLu767gSIiIiKq/Hjx/D3t5eq+eUicqIg6QVSqUSd+7cQc2aNSGTyXRdTqXLysqCu7s7bt26BTs7O12XQy/g9dFvvD76jddHv2n7+ggh8PjxY9StWxcmJtq9K40jbnrMxMQE9evX13UZVc7Ozo5/sekxXh/9xuuj33h99Js2r4+2R9qKcXECERERkYFgcCMiIiIyEAxupDcsLS0RHh4OS0tLXZdCGvD66DdeH/3G66PfDOn6cHECERERkYHgiBsRERGRgWBwIyIiIjIQDG5EREREBoLBjYiIiMhAMLiRVuTm5qJNmzaQyWQ4d+6cyrELFy7gjTfegJWVFdzd3bFo0SK19+/YsQNeXl6wsrJCq1atcODAAZXjQgjMnj0bbm5usLa2RkBAAP744w+VPg8fPsSAAQNgZ2cHBwcHhIaG4smTJ+WupTrp0aMHPDw8YGVlBTc3NwQHB+POnTsqfbZv3442bdrAxsYGDRo0wBdffKF2nuPHj6Nt27awtLREkyZNEBUVpdZn1apVaNiwIaysrODr64vffvtN5XhOTg5GjRoFR0dH1KhRA71798a9e/dU+qSmpiIwMBA2NjZwdnbG5MmTUVBQ8Oo/CD1VlusTExMDPz8/1KxZE05OTujduzdu3Lih0ofXp/K87BrNmTMHMplM7WVra6tyHv4dVznK8mdICIHFixejWbNmsLS0RL169TB//nyVPgb1Z0gQacHYsWNFt27dBACRkJAgtWdmZgoXFxcxYMAAcenSJbFlyxZhbW0t/v3vf0t9fv31V2FqaioWLVokrly5ImbOnCnMzc3FxYsXpT6RkZHC3t5e7N69W5w/f1706NFDeHp6imfPnkl9unbtKlq3bi1OnTolfv75Z9GkSRPRv3//ctVS3Xz55ZciLi5O3LhxQ/z6669CLpcLuVwuHT9w4IAwMzMTa9asEdeuXRP79u0Tbm5uYsWKFVKf69evCxsbGzFhwgRx5coVsWLFCmFqaioOHTok9dm6dauwsLAQ69evF5cvXxbDhg0TDg4O4t69e1KfESNGCHd3dxEbGyvOnDkj/Pz8hL+/v3S8oKBAvPbaayIgIEAkJCSIAwcOiDp16ohp06ZV8k9Jd152fa5fvy4sLS3FtGnTxJ9//inOnj0r3nzzTeHj46PSh9en8rzsGj1+/FjcvXtX5dWiRQsxaNAgqQ//jqs8L7s+QggxZswY0bx5c7Fnzx5x/fp1cebMGXH48GHpuKH9GWJwo1d24MAB4eXlJS5fvqwW3FavXi1q1aolcnNzpbapU6eK5s2bS19/8MEHIjAwUOWcvr6+4uOPPxZCCKFUKoWrq6v44osvpOMZGRnC0tJSbNmyRQghxJUrVwQAcfr0aanPwYMHhUwmE3/99VeZa6nu9uzZI2QymcjLyxNCCNG/f3/Rp08flT7Lly8X9evXF0qlUgghxJQpU0TLli1V+vTt21coFArp6w4dOohRo0ZJXxcWFoq6deuKhQsXCiGKrpe5ubnYsWOH1CcxMVEAEHFxcUKIov+OTExMRFpamtRnzZo1ws7OTuWaVWcvXp8dO3YIMzMzUVhYKPWJjo5W6cPrU7VevEYvOnfunAAgfvrpJ6mNf8dVnRevz5UrV4SZmZlISkoq8T2G9meIU6X0Su7du4dhw4bh22+/hY2NjdrxuLg4vPnmm7CwsJDaFAoFkpOT8ejRI6lPQECAyvsUCgXi4uIAACkpKUhLS1PpY29vD19fX6lPXFwcHBwc0L59e6lPQEAATExMEB8fX+ZaqrOHDx9i06ZN8Pf3h7m5OYCiKW4rKyuVftbW1rh9+zZu3rwJ4OXXJy8vD2fPnlXpY2JigoCAAKnP2bNnkZ+fr9LHy8sLHh4eKtewVatWcHFxUfmcrKwsXL58WVs/Br2l6fq0a9cOJiYm2LBhAwoLC5GZmYlvv/0WAQEBUh9en6qj6Rq9aN26dWjWrBneeOMNqY1/x1UNTddn7969aNSoEfbt2wdPT080bNgQQ4cOxcOHD6X3GdqfIQY3qjAhBEJCQjBixAiVv0yel5aWpvIfKQDp67S0tFL7PH/8+feV1MfZ2VnluJmZGWrXrv3Sz3n+M6qjqVOnwtbWFo6OjkhNTcWePXukYwqFArt27UJsbCyUSiWuXr2KJUuWAADu3r0LoOSfW1ZWFp49e4a///4bhYWFL70+FhYWcHBwKLUPr4/q9fH09MThw4cxffp0WFpawsHBAbdv38b27dulPrw+la+0a/S8nJwcbNq0CaGhoSrt/DuucpV2fa5fv46bN29ix44d+OabbxAVFYWzZ8+iT58+Uh9D+zPE4EZqwsLCNN5s+/wrKSkJK1aswOPHjzFt2jRdl2xUynp9ik2ePBkJCQk4fPgwTE1NMXDgQIj//8CUYcOGYfTo0ejevTssLCzg5+eHfv36ASj6P0oqP21en7S0NAwbNgyDBg3C6dOnceLECVhYWKBPnz5SHyo/bV6j5/3www94/PgxBg0aVJXfTrWjzeujVCqRm5uLb775Bm+88QbefvttfP311zh27BiSk5N19S2+EjNdF0D6Z+LEiQgJCSm1T6NGjXD06FHExcWpPdutffv2GDBgADZu3AhXV1e1VTXFX7u6ukr/1NTn+ePFbW5ubip92rRpI/VJT09XOUdBQQEePnz40s95/jMMQVmvT7E6deqgTp06aNasGby9veHu7o5Tp05BLpdDJpPh888/x4IFC5CWlgYnJyfExsaqnKOkn5udnR2sra1hamoKU1PTl17DvLw8ZGRkqPwf6Yt9XlylZezXZ9WqVbC3t1dZGfjdd9/B3d0d8fHx8PPz4/WpAG1eo+etW7cO3bt3VxtV4d9x5aPN6+Pm5gYzMzM0a9ZM6u/t7Q2gaIVn8+bNDe/PUJnvhiN6wc2bN8XFixelV0xMjAAgvv/+e3Hr1i0hxP9uln3+Rt5p06apLU7o3r27yrnlcrnajbuLFy+WjmdmZmq8cffMmTNSn5iYGI037pZWS3V38+ZNAUAcO3asxD7BwcEqq7KmTJkiXnvtNZU+/fv3V7txd/To0dLXhYWFol69emo37n7//fdSn6SkJI037j6/Suvf//63sLOzEzk5ORX7hg3Mi9dnwoQJokOHDip97ty5IwCIX3/9VQjB61PVSvozdP36dSGTycTevXvV3sO/46rOi9en+PfSn3/+KfUpXkCSnJwshDC8P0MMbqQ1KSkpaqtKMzIyhIuLiwgODhaXLl0SW7duFTY2NmrbgZiZmYnFixeLxMREER4ernGpvIODg9izZ4+4cOGC6Nmzp8al8j4+PiI+Pl788ssvomnTpipL5ctSS3Vy6tQpsWLFCpGQkCBu3LghYmNjhb+/v2jcuLH0l8T9+/fFmjVrRGJiokhISBBjx44VVlZWIj4+XjpP8VL5yZMni8TERLFq1SqNS+UtLS1FVFSUuHLlihg+fLhwcHBQWT01YsQI4eHhIY4ePSrOnDmjtmy/eKl8ly5dxLlz58ShQ4eEk5NTtd1uoizXJzY2VshkMhERESGuXr0qzp49KxQKhWjQoIF4+vSpEILXpzKV5RoVmzlzpqhbt64oKChQOw//jqscZbk+hYWFom3btuLNN98Uv//+uzhz5ozw9fUV7777rnQeQ/szxOBGWqMpuAkhxPnz50XHjh2FpaWlqFevnoiMjFR77/bt20WzZs2EhYWFaNmypdi/f7/KcaVSKWbNmiVcXFyEpaWleOedd6T/Wyr24MED0b9/f1GjRg1hZ2cnBg8eLB4/flzuWqqLCxcuiE6dOonatWsLS0tL0bBhQzFixAhx+/Ztqc/9+/eFn5+fsLW1FTY2NuKdd94Rp06dUjvXsWPHRJs2bYSFhYVo1KiR2LBhg1qfFStWCA8PD2FhYSE6dOigdp5nz56JTz75RNSqVUvY2NiIf/7zn+Lu3bsqfW7cuCG6desmrK2tRZ06dcTEiRNFfn6+dn4geqYs10cIIbZs2SJ8fHyEra2tcHJyEj169BCJiYkqfXh9KkdZr1FhYaGoX7++mD59eonn4t9x2lfW6/PXX3+JXr16iRo1aggXFxcREhIiHjx4oNLHkP4MyYTgHa5EREREhoDLxoiIiIgMBIMbERERkYFgcCMiIiIyEAxuRERERAaCwY2IiIjIQDC4ERERERkIBjciIiIiA8HgRkRUCWQyGXbv3q3rMlQcP34cMpkMGRkZui6FiCqIwY2I6BXMmTNHehA4EVFlY3AjIiIiMhAMbkRk1JRKJRYuXAhPT09YW1ujdevW+P777wH8b2oxNjYW7du3h42NDfz9/ZGcnAwAiIqKQkREBM6fPw+ZTAaZTIaoqCjp3H///Tf++c9/wsbGBk2bNkV0dHSZair+3JiYGPj4+MDa2hqdO3dGeno6Dh48CG9vb9jZ2eHDDz/E06dPpffl5uZi7NixcHZ2hpWVFTp27IjTp09r74dFRDrH4EZERm3hwoX45ptvsHbtWly+fBnjx4/HRx99hBMnTkh9ZsyYgSVLluDMmTMwMzPDkCFDAAB9+/bFxIkT0bJlS9y9exd3795F3759pfdFRETggw8+wIULF/Dee+9hwIABePjwYZlrmzNnDlauXImTJ0/i1q1b+OCDD/DVV19h8+bN2L9/Pw4fPowVK1ZI/adMmYKdO3di48aN+P3339GkSRMoFIpyfSYR6blyPZKeiKgaycnJETY2NuLkyZMq7aGhoaJ///7i2LFjAoD48ccfpWP79+8XAMSzZ8+EEEKEh4eL1q1bq50bgJg5c6b09ZMnTwQAcfDgwZfWpelzFy5cKACIa9euSW0ff/yxUCgU0vnNzc3Fpk2bpON5eXmibt26YtGiRSrnffTo0UtrICL9ZKbDzEhEpFN//vknnj59infffVelPS8vDz4+PtLX//d//yf9u5ubGwAgPT0dHh4epZ7/+ffZ2trCzs4O6enpZa7v+fe7uLjAxsYGjRo1Umn77bffAADXrl1Dfn4+/vGPf0jHzc3N0aFDByQmJpb5M4lIvzG4EZHRevLkCQBg//79qFevnsoxS0tLXLt2DUBRAComk8kAFN0b9zLPv6/4vWV5n6b3y2SyVz4fERk+3uNGREarRYsWsLS0RGpqKpo0aaLycnd3L9M5LCwsUFhYWMmVvlzjxo1hYWGBX3/9VWrLz8/H6dOn0aJFCx1WRkTaxBE3IjJaNWvWxKRJkzB+/HgolUp07NgRmZmZ+PXXX2FnZ4cGDRq89BwNGzZESkoKzp07h/r166NmzZqwtLSsgupV2draYuTIkZg8eTJq164NDw8PLFq0CE+fPkVoaGiV10NElYPBjYiM2rx58+Dk5ISFCxfi+vXrcHBwQNu2bTF9+vQyTUP27t0bu3btQqdOnZCRkYENGzYgJCSk8gvXIDIyEkqlEsHBwXj8+DHat2+PmJgY1KpVSyf1EJH2yYQQQtdFEBEREdHL8R43IiIiIgPB4EZEVMVGjBiBGjVqaHyNGDFC1+URkR7jVCkRURVLT09HVlaWxmN2dnZwdnau4oqIyFAwuBEREREZCE6VEhERERkIBjciIiIiA8HgRkRERGQgGNyIiIiIDASDGxEREZGBYHAjIiIiMhAMbkREREQGgsGNiIiIyED8P+dYgUxOgy3UAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1027,7 +4125,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLyUlEQVR4nO3deVzU1f7H8feALKIsLiBq4Fou2TXSNLgt6s9EK8m2X6tKmWVqZtoCZiJZiWZ202vavaV2y9QsM35qmZXaIvdmapYLmqZpJWqp4Mr6/f3BZXScQQcY+M7yej4e88A53+9854Nzu/P2nPM9x2IYhiEAAAAf4Gd2AQAAADWF4AMAAHwGwQcAAPgMgg8AAPAZBB8AAOAzCD4AAMBnEHwAAIDPIPgAAACfQfABAAA+g+ADwCNZLBaNHz/e7DKskpOT1bx5c7PLAHABBB8ALjN37lxZLBbrIzg4WJdccomGDx+uAwcOVOt7r127VuPHj9fRo0ddet1u3brZ/E7169fXlVdeqdmzZ6ukpMQl7/Hiiy9qyZIlLrkWgPOrZXYBALzPc889pxYtWuj06dP6+uuvNXPmTC1fvlybN29WSEiIS97j1KlTqlXrzP+FrV27Vunp6UpOTlZERIRL3qPMRRddpIkTJ0qSDh06pH/9618aNGiQduzYoYyMjCpf/8UXX9Ttt9+ufv36VflaAM6P4APA5fr06aPOnTtLkh588EE1aNBAU6dO1UcffaS777670tctKSlRQUGBgoODFRwc7KpyLyg8PFz33Xef9fnDDz+sNm3a6O9//7smTJiggICAGqsFQNUw1AWg2vXo0UOStHv3bknSlClTlJCQoAYNGqh27drq1KmT3n//fbvXWSwWDR8+XPPmzdOll16qoKAgffLJJ9ZjZXN8xo8fryeffFKS1KJFC+uw1J49e3TdddepY8eODutq06aNEhMTK/z7hISE6KqrrtKJEyd06NChcs87ceKERo8erZiYGAUFBalNmzaaMmWKDMOw+R1PnDiht956y1p3cnJyhWsC4Bx6fABUu127dkmSGjRoIEl69dVXlZSUpHvvvVcFBQVasGCB7rjjDi1dulQ33nijzWu/+OILvffeexo+fLgaNmzocALxrbfeqh07dmj+/Pl65ZVX1LBhQ0lSZGSk+vfvr8GDB2vz5s3q0KGD9TXr1q3Tjh07NHbs2Er9Tj///LP8/f3LHVYzDENJSUlatWqVBg0apMsvv1wrVqzQk08+qd9++02vvPKKJOntt9/Wgw8+qC5duuihhx6SJLVq1apSNQFwggEALjJnzhxDkvHZZ58Zhw4dMvbt22csWLDAaNCggVG7dm3j119/NQzDME6ePGnzuoKCAqNDhw5Gjx49bNolGX5+fsaWLVvs3kuSkZaWZn3+0ksvGZKM3bt325x39OhRIzg42Hj66adt2keMGGHUqVPHOH78+Hl/p+uuu85o27atcejQIePQoUPGtm3bjBEjRhiSjL59+1rPGzhwoNGsWTPr8yVLlhiSjOeff97merfffrthsViMnTt3Wtvq1KljDBw48Lx1AHANhroAuFzPnj0VGRmpmJgY3XXXXapbt64+/PBDNW3aVJJUu3Zt67lHjhxRbm6urrnmGm3YsMHuWtddd53at29f6VrCw8N18803a/78+dYhpuLiYi1cuFD9+vVTnTp1LniN7OxsRUZGKjIyUu3atdP06dN14403avbs2eW+Zvny5fL399eIESNs2kePHi3DMPTxxx9X+ncCUHkMdQFwuRkzZuiSSy5RrVq11KhRI7Vp00Z+fmf+nbV06VI9//zz+v7775Wfn29tt1gsdtdq0aJFlesZMGCAFi5cqK+++krXXnutPvvsMx04cED9+/d36vXNmzfXP//5T+st+hdffLGioqLO+5pffvlFTZo0UWhoqE17u3btrMcB1DyCDwCX69Kli/WurnN99dVXSkpK0rXXXqvXXntNjRs3VkBAgObMmaN3333X7vyze4cqKzExUY0aNdI777yja6+9Vu+8846io6PVs2dPp15fp04dp88F4N4Y6gJQoz744AMFBwdrxYoVeuCBB9SnTx+XhApHvUVl/P39dc899+j999/XkSNHtGTJEt19993y9/ev8vuWp1mzZvr999917Ngxm/bs7Gzr8TLnqx2AaxF8ANQof39/WSwWFRcXW9v27NlT5ZWLy+bqlLdyc//+/XXkyBE9/PDDOn78uM26PNXhhhtuUHFxsf7+97/btL/yyiuyWCzq06ePta1OnTouX3EagGMMdQGoUTfeeKOmTp2q3r1765577tHBgwc1Y8YMtW7dWj/88EOlr9upUydJ0jPPPKO77rpLAQEB6tu3rzUQxcXFqUOHDlq0aJHatWunK664wiW/T3n69u2r7t2765lnntGePXvUsWNHffrpp/roo480cuRIm1vWO3XqpM8++0xTp05VkyZN1KJFC3Xt2rVa6wN8FT0+AGpUjx499OabbyonJ0cjR47U/PnzNWnSJN1yyy1Vuu6VV16pCRMmaNOmTUpOTtbdd99tt7jggAEDJMnpSc1V4efnp8zMTI0cOVJLly7VyJEjtXXrVr300kuaOnWqzblTp05Vp06dNHbsWN19992aOXNmtdcH+CqLYZy1hCgAeLFXX31Vjz/+uPbs2aPY2FizywFgAoIPAJ9gGIY6duyoBg0aaNWqVWaXA8AkzPEB4NVOnDihzMxMrVq1Sj/++KM++ugjs0sCYCJ6fAB4tT179qhFixaKiIjQ0KFD9cILL5hdEgATEXwAAIDP4K4uAADgMwg+AADAZzC5+RwlJSX6/fffFRoayjLyAAB4CMMwdOzYMTVp0sRmU+RzEXzO8fvvvysmJsbsMgAAQCXs27dPF110UbnHCT7nCA0NlVT6FxcWFmZyNQAAwBl5eXmKiYmxfo+Xh+BzjrLhrbCwMIIPAAAe5kLTVJjcDAAAfAbBBwAA+AyCDwAA8BnM8amE4uJiFRYWml0GakBAQID8/f3NLgMA4CIeE3wmTpyoxYsXKzs7W7Vr11ZCQoImTZqkNm3aWM85ffq0Ro8erQULFig/P1+JiYl67bXX1KhRI5fUYBiGcnJydPToUZdcD54hIiJC0dHRrOsEAF7AY4LPmjVrNGzYMF155ZUqKirSmDFj1KtXL23dulV16tSRJD3++ONatmyZFi1apPDwcA0fPly33nqrvvnmG5fUUBZ6oqKiFBISwhehlzMMQydPntTBgwclSY0bNza5IgBAVXnsJqWHDh1SVFSU1qxZo2uvvVa5ubmKjIzUu+++q9tvv12SlJ2drXbt2ikrK0tXXXWVU9fNy8tTeHi4cnNzbW5nLy4u1o4dOxQVFaUGDRpUy+8E9/Tnn3/q4MGDuuSSSxj2AgA3Vd7397k8dnJzbm6uJKl+/fqSpPXr16uwsFA9e/a0ntO2bVvFxsYqKyuryu9XNqcnJCSkyteCZyn7zJnXBQCez2OGus5WUlKikSNH6q9//as6dOggqXQYKjAwUBERETbnNmrUSDk5OeVeKz8/X/n5+dbneXl5531vhrd8D585AHgPj+zxGTZsmDZv3qwFCxZU+VoTJ05UeHi49cE+XQAAeC+PCz7Dhw/X0qVLtWrVKptNyKKjo1VQUGB3x9WBAwcUHR1d7vVSU1OVm5trfezbt6+6SgcAACbzmOBjGIaGDx+uDz/8UF988YVatGhhc7xTp04KCAjQ559/bm3bvn279u7dq/j4+HKvGxQUZN2Xy1v350pOTpbFYpHFYlFAQIAaNWqk66+/XrNnz1ZJSYnT15k7d67dUCIAAJ7EY+b4DBs2TO+++64++ugjhYaGWufthIeHq3bt2goPD9egQYM0atQo1a9fX2FhYXr00UcVHx/v9B1d3qx3796aM2eOiouLdeDAAX3yySd67LHH9P777yszM1O1annM/xQAAB7q+PHjslgs1mVozOAxPT4zZ85Ubm6uunXrpsaNG1sfCxcutJ7zyiuv6KabbtJtt92ma6+9VtHR0Vq8eLGJVbuPoKAgRUdHq2nTprriiis0ZswYffTRR/r44481d+5cSdLUqVN12WWXqU6dOoqJidHQoUN1/PhxSdLq1at1//33Kzc319p7NH78eEnS22+/rc6dOys0NFTR0dG65557rGvfAABgGIZmzJihl19+WbNmzZKZK+l4zD/znflLCg4O1owZMzRjxowaqKi0JrNucQ4ICKjy3UY9evRQx44dtXjxYj344IPy8/PTtGnT1KJFC/38888aOnSonnrqKb322mtKSEjQ3/72N40bN07bt2+XJNWtW1dS6W3eEyZMUJs2bXTw4EGNGjVKycnJWr58eZV/TwCAZzt69KheffVV6/MTJ06YeresxwQfd1RYWKiJEyea8t6pqakKDAys8nXatm2rH374QZI0cuRIa3vz5s31/PPPa8iQIXrttdcUGBio8PBwWSwWu8niDzzwgPXPLVu21LRp03TllVfq+PHj1nAEAPA969ats/lHcHh4uB577DETKyL4+DzDMKzJ+7PPPtPEiROVnZ2tvLw8FRUV6fTp0zp58uR5F25cv369xo8fr02bNunIkSPWCdN79+5V+/bta+T3AAC4D8MwNG3aNJs7rW+44QZdeeWV5hX1XwSfKggICFBqaqpp7+0K27ZtU4sWLbRnzx7ddNNNeuSRR/TCCy+ofv36+vrrrzVo0CAVFBSUG3xOnDihxMREJSYmat68eYqMjNTevXuVmJiogoICl9QIAPAchw8f1vTp023aHnvsMbe5K5jgUwUWi8Ulw01m+eKLL/Tjjz/q8ccf1/r161VSUqKXX35Zfn6lc97fe+89m/MDAwNVXFxs05adna0///xTGRkZ1sUfv/vuu5r5BQAAbiUrK0uffvqp9XnDhg01dOhQ68hCZqaUkSGlpEhJSebUSPDxEfn5+crJybG5nX3ixIm66aabNGDAAG3evFmFhYWaPn26+vbtq2+++UazZs2yuUbz5s11/Phxff755+rYsaNCQkIUGxurwMBATZ8+XUOGDNHmzZs1YcIEk35LAIAZSkpKNHXqVJ04ccLa1rdvX11xxRU252VkSFlZpT/NCj4eczs7quaTTz5R48aN1bx5c/Xu3VurVq3StGnT9NFHH8nf318dO3bU1KlTNWnSJHXo0EHz5s2zm7idkJCgIUOG6M4771RkZKQmT56syMhIzZ07V4sWLVL79u2VkZGhKVOmmPRbAgBq2h9//KEJEybYhJ7HH3/cLvRIpT098fGlP81iMcy8md4Nlbet/enTp7V79261aNFCwcHBJlaImsZnDwCOffXVV/riiy+szxs3bqzBgwebcrt6ed/f52KoCwAAVEhJSYkyMjJs1rK75ZZb9Je//MXEqpxD8AEAAE47ePCgZs6cadM2evRoj1m3jeADAACcsnTpUq1fv976PDY21roRtqcg+AAAgPMqLCzUiy++aNN2++2369JLLzWposoj+AAAgHJt3LhRmZmZNm0dOjyhSy81b4f1qiD4AAAAh9LT0+3axo9PU3y8dNttJhTkAgQfAABgIz8/XxkZGTZtl19+uSyWm01fh6eqCD4AAMDq22+/1ccff2zT9uijj6p+/fqSzFtx2VUIPgAAQJLjoa20tDQTKqk+bFkBl0lOTla/fv2sz7t166aRI0dW6ZquuAYA4PxOnTplF3q6dOnidaFHosfHJyQnJ+utt96SJAUEBCg2NlYDBgzQmDFjVKtW9f1PYPHixQoICHDq3NWrV6t79+46cuSIIiIiKnUNAEDFLV68WD/++KNN28iRIxUeHm5SRdWL4OMjevfurTlz5ig/P1/Lly/XsGHDFBAQoNTUVJvzCgoKFBgY6JL3LBsPNvsaAADHfGFo61wMdfmIoKAgRUdHq1mzZnrkkUfUs2dPZWZmWoenXnjhBTVp0kRt2rSRJO3bt0//+7//q4iICNWvX18333yz9uzZY71ecXGxRo0apYiICDVo0EBPPfWUzt3v9txhqvz8fD399NOKiYlRUFCQWrdurTfffFN79uxR9+7dJUn16tWTxWJRcnKyw2scOXJEAwYMUL169RQSEqI+ffrop59+sh6fO3euIiIitGLFCrVr105169ZV7969tX//fus5q1evVpcuXVSnTh1FRETor3/9q3755RcX/U0DgPv79ddf7UJPp06dvD70SAQfn1W7dm0VFBRIkj7//HNt375dK1eu1NKlS1VYWKjExESFhobqq6++0jfffGMNEGWvefnllzV37lzNnj1bX3/9tQ4fPqwPP/zwvO85YMAAzZ8/X9OmTdO2bdv0+uuvq27duoqJidEHH3wgSdq+fbv279+vV1991eE1kpOT9d133ykzM1NZWVkyDEM33HCDzUZ5J0+e1JQpU/T222/ryy+/1N69e/XEE09IkoqKitSvXz9dd911+uGHH5SVlaWHHnrIo5ZbB4CqSE9P15tvvmnTNnv2w8rKusmkimoWQ10+xjAMff7551qxYoUeffRRHTp0SHXq1NEbb7xhHeJ65513VFJSojfeeMMaCObMmaOIiAitXr1avXr10t/+9jelpqbq1ltvlSTNmjVLK1asKPd9d+zYoffee08rV65Uz549JUktW7a0Hi8b0oqKirKZ43O2n376SZmZmfrmm2+UkJAgSZo3b55iYmK0ZMkS3XHHHZJKl1afNWuWWrVqJUkaPny4nnvuOUlSXl6ecnNzddNNN1mPt2vXruJ/kQDggRwNbU2Zkqbjx6Vp06QXXjChqBpGj49JMjOlhITSnzVh6dKlqlu3roKDg9WnTx/deeedGj9+vCTpsssus5nXs2nTJu3cuVOhoaGqW7eu6tatq/r16+v06dPatWuXcnNztX//fnXt2tX6mlq1aqlz587lvv/3338vf39/XXfddZX+HbZt26ZatWrZvG+DBg3Upk0bbdu2zdoWEhJiDTWS1LhxYx08eFBSacBKTk5WYmKi+vbtq1dffdVmGAwAvNHPP/9c7nyeESOkunWlESNMKMwE9PiYJCNDysoq/VkTi0F1795dM2fOVGBgoJo0aWJzN1edOrb7rRw/flydOnXSvHnz7K4TGRlZqfevXbt2pV5XGefeBWaxWGzmH82ZM0cjRozQJ598ooULF2rs2LFauXKlrrrqqhqrEQBqiqPA8/DDDys6OlpSaS+PL/T0lKHHxyQpKarRZb/r1Kmj1q1bKzY29oK3sF9xxRX66aefFBUVpdatW9s8wsPDFR4ersaNG+s///mP9TVFRUVav359ude87LLLVFJSojVr1jg8XtbjVFxcXO412rVrp6KiIpv3/fPPP7V9+3a1b9/+vL/TueLi4pSamqq1a9eqQ4cOevfddyv0egDwBOX18pSFHl9E8DFJUpK0dq17Lv197733qmHDhrr55pv11Vdfaffu3Vq9erVGjBihX3/9VZL02GOPKSMjQ0uWLFF2draGDh2qo0ePlnvN5s2ba+DAgXrggQe0ZMkS6zXfe+89SVKzZs1ksVi0dOlSHTp0SMePH7e7xsUXX6ybb75ZgwcP1tdff61NmzbpvvvuU9OmTXXzzTc79bvt3r1bqampysrK0i+//KJPP/1UP/30E/N8AHiVbdu2+eSt6s4g+MBOSEiIvvzyS8XGxurWW29Vu3btNGjQIJ0+fVphYWGSpNGjR6t///4aOHCg4uPjFRoaqltuueW81505c6Zuv/12DR06VG3bttXgwYN14sQJSVLTpk2Vnp6ulJQUNWrUSMOHD3d4jTlz5qhTp0666aabFB8fL8MwtHz5cqcXOQwJCVF2drZuu+02XXLJJXrooYc0bNgwPfzwwxX4GwIA91M2dzQ9Pd36j8oyw4cPJ/T8l8U4d/EVH5eXl6fw8HDl5uZav+Ql6fTp09q9e7datGih4OBgEytETeOzB+AJEhKkxETf7eUp7/v7XExuBgDAw/3tbwuVmJht0+bn56dnn33WpIrcF8EHAAAP5mguz+OPP37eXg9fRvABAMADGYZhXZz1bHFxaSLzlI/JzQAAuLlzF71NT093GHrGj09TRkYNF+dhCD4VxFxw38NnDsBsZy9662hoa9iwYYqLS1PTptL330vPPFPzNXoKgo+Tym6XPnnypMmVoKaVfebO3jIPAK5Wuuit4fCurbi4NDVs2FBJSVJurnTqVOm+W3CMOT5O8vf3V0REhHXPp5CQEHb09nKGYejkyZM6ePCgIiIi5O/vb3ZJAHzUxo3pSky0by8oODO0lZRUut/WtGm+s+9WZbCOzznOtw6AYRjKyck57wrF8D4RERGKjo4m6AKoUZmZpUNbjnp52rd/VK+8Ul9HjkjZ2aVbIK1da0KRboR1fKqBxWJR48aNFRUVpcLCQrPLQQ0ICAigpweAKSZPLlJiov3uoXFxabr3Xun4calNm5rd99EbEHwqwd/fny9DAIBLlfXwpKSUDm1df739OWlpaUpIKA09detKkye7556P7ozgAwCAGyi7c2vjRvuhrQ4dRuu22+pKKg1GZQGJ0FNxzPE5h7NjhAAAuNLixSf1448v2bX7yl5bVcUcHwAAPISjtXkkQk91IPgAAGAiR6Hns89S9NVXQSZU4/0IPgAAmODw4cOaPn26XfuKFWncpVWNCD4AANSw8w1tMbpVvQg+AADUIEehZ+zYsSyTUkMIPgAA1IBff/1Vb775pl17XFyayDw1h+ADAEA1464t90HwAQCgmmRmOl6QcNy4cez/ZxKCDwAA1WDr1q3auHGRXTu9POYi+AAA4GIMbbkvgg8AABVw9maijvbKchR6CDzug+ADAEAFlG0mmpFx5nlKitSw4VqtXLnS7nxCj3sh+AAAUAFn745+vh3VJUKPOyL4AABQDkfDWklJtkNcjkIPgcd9+ZldAAAA7urcYa2zLVu2jNDjgejxAQCgHGcPa52Nu7Y8F8EHAIBynDusJXHXlqcj+AAA4IR//etf2r17t107ocezMMcHAODTMjOlhITSn+VJT0+3Cz3169cn9HggenwAAD7t7AnMLEjo/Qg+AACfVt4E5hdeeEFFRUV25xN6PBvBBwDg05ydwNymTRvdddddNVQVqgtzfAAAPsvR/J7yhrYIPd6BHh8AgM8pW5H5yBEpO7v0z2w74RsIPgAAn1M2oblNGyk+XkpMtA89Xbp0UZ8+fUyoDtWJoS4AgFc6323qKSmlgWfyZMehJy0tjdDjpSyGYRhmF+FO8vLyFB4ertzcXIWFhZldDgCgktq1Kx3GattW2rbN/jjbTngXZ7+/6fEBAHidZ56Rtm8v/bNh2Pf+OAo9vXv3JvT4AK8MPjNmzFDz5s0VHBysrl276ttvvzW7JABADZo2rTTw+PmVDmedvUhheXdtde3a1YRKUdO8LvgsXLhQo0aNUlpamjZs2KCOHTsqMTFRBw8eNLs0AEANGTFCCg6WGjcufZ6SIo0fn17ufB74Dq+b49O1a1ddeeWV+vvf/y5JKikpUUxMjB599FGlnLsspwPM8QEA75CQUNrLU95dW7feeqsuu+wyEypDdfDJOT4FBQVav369evbsaW3z8/NTz549lZWV5fA1+fn5ysvLs3kAADzPufN4Su/cKim3l4fQ45u8Kvj88ccfKi4uVqNGjWzaGzVqpJycHIevmThxosLDw62PmJiYmigVAOBiZ8/jkUoXJExMnGB3HkNbvs2rgk9lpKamKjc31/rYt2+f2SUBACqhbG2elBTHE5jvv/9+Qg+8K/g0bNhQ/v7+OnDggE37gQMHFB0d7fA1QUFBCgsLs3kAANzfuUNbSUnS6tUFDreeSEtLU2xsbA1XCHfkVcEnMDBQnTp10ueff25tKykp0eeff674+HgTKwMAuFJmpnTvvbZDW+np6Zo4caLdufTy4Gxet1fXqFGjNHDgQHXu3FldunTR3/72N504cUL333+/2aUBAKrgmWdK1+cZMUJatUo6flyqW7f8oa2hQ4cqMjLShErhzrwu+Nx55506dOiQxo0bp5ycHF1++eX65JNP7CY8AwA8y7RppWFn2jRp3rzSnp7Ro49p48apdufSy4PyeN06PlXFOj4A4F4yM0tDTtOm0ieflPb4vPACe23BlrPf317X4wMA8GyZmdJTT0kWizRp0pnb1OPjpWPHSs9xFHqeeOIJ1alTp4arhach+AAA3EpGxpkNRjMySufwlP08cOCAZs2aZfcaenngLK+6qwsA4Pm6dy/dZ6tp09Kwk5QkrV1buiAhoQdVRY8PAMCtrFolnT4txcaWhh7J8dDWmDFjFBAQUMPVwdMRfAAAbqFsEnP37qXPU1KknTt3at68eXbn0suDyiL4AADcQtkkZql0aCs9PV0bN9qfR+hBVRB8AABu4exJzI6GtsaNGyeLxWJCZfAmBB8AgFtISpKaNl2vpUuX2h2jlweuwl1dAIBql5kptW0rtWt3ZlPRc6WnpxN6UO3o8QEAVLtz1+Ypu1urjKOhLQIPqgPBBwBQ7VJSzqzGnJJypn3lypVau3at3fmEHlQXgg8AoNolJTnXyyMRelC9CD4AgGqRmSk9/bRkGNLkybbBh6EtmIXgAwCoFhkZUnb2mT8nJUnz58/Xjh077M4l9KCmEHwAANUiJeVMj095a/NIhB7ULIIPAKBanD2vh6EtuAuCDwCg2kyaNEmnT5+2ayf0wCwEHwBAtWBoC+6I4AMAcDmGtuCuCD4AAJehlwfujr26AAB2MjOlhATH+2qVd8xR6AkNDSX0wK1YDMMwzC7CneTl5Sk8PFy5ubkKCwszuxwAMEVCgpSVJcXHS+fuKOHoGENbMJuz398MdQEA7KSklC46ePa+Wo6OMbQFT8NQFwDATlLSmd6cc4e1yo5t3Ggfei6++GJCD9waPT4AgHJlZJQOa5VtOVGGoS14KoIPAKBc5w55MbQFT8dQFwDA7k6tsudS6bBWUpLj0JOQkEDogUfhrq5zcFcXAF9UdqdW3brSvHlnhrjK7txiaAvujru6AABOycyUDh+WgoOl48fPDG1lZEiJielyNLpF6IGnIvgAgI/LyJC2b5fatpXq1SsNPUlJju/auuGGG3TllVeaUCXgGgQfAPBhmZnSkSNSmzbSpEmlgccwDKWnP2d3Lr088AYEHwDwYRkZUnZ26Vye8iYwS4QeeA+CDwD4sAutwnzfffepVatWJlQGVA9uZwcAH5aUJK1ZU+hwPk9aWhqhB16HHh8A8GEMbcHXEHwAwEc5Cj1DhgxRo0aNTKgGqBkMdQGADzh7Zebjx4+XuyAhoQfejuADAB7u3O0mHClbiXnjxnS9/PLLdscZ2oKvYMuKc7BlBQBPU7bdRNn2Eo5kZjpekHDUqFEKDQ2t5gqB6ufs9zc9PgDg4VJSSkNP2Q7q5zp48GC5d20ReuBrmNwMAB4uKan04Qh3bQG2CD4A4KUchZ7U1FQFBgaaUA3gHio81OXv76+DBw/atf/555/y9/d3SVEAgMrbuXNnuXdtEXrg6yrc41PeXOj8/Hz+gwIAkzG0BZyf08Fn2rRpkiSLxaI33nhDdevWtR4rLi7Wl19+qbZt27q+QgCAUxyFnmeffVZ+ftzHApRxOvi88sorkkp7fGbNmmUzrBUYGKjmzZtr1qxZrq8QAHBe3333nZYtW2bXTi8PYM/p4LN7925JUvfu3bV48WLVq1ev2ooCADiHoS2gYio8x2fVqlXVUQcAoILKm8AMoHwVDj4PPPDAeY/Pnj270sUAAM4vM1P66KPlio1dZ3eM0ANcWIWDz5EjR2yeFxYWavPmzTp69Kh69OjhssIAAGdkZpbut5WYmK7YWPvjhB7AORUOPh9++KFdW0lJiR555BG1atXKJUUBAGyVhZ5zEXiAinHZJqXbt29Xt27dtH//fldczjRsUgrAXZT18tx880ydPm2/cCyhBzijxjcp3bVrl4qKilx1OQDwepmZpTurZ2Y6Pv7006W9PIQewHUqPNQ1atQom+eGYWj//v1atmyZBg4c6LLCAMDbZWRIWVmlPx1tMnrXXQxtAa5W4eCzceNGm+d+fn6KjIzUyy+/fME7vgAAZ6SklIaelBTb9gkTJqikpMTufEIPUHWs4wMAJklKsu/pKW9Bwrg4Qg/gChUOPmUOHjyo7du3S5LatGmjqKgolxUFAL7IUehZsSJNWVlSfLzj4TAAFVPh4JOXl6dhw4Zp/vz51q5Yf39/3XnnnZoxY4bCw8NdXiQAeLPzbTsRF+d4OAxA5VT4rq7BgwfrP//5j5YtW6ajR4/q6NGjWrp0qb777js9/PDD1VEjAHitC+21lZQkrV1Lbw/gKhVex6dOnTpasWKFrr76apv2r776Sr1799aJEydcWmBNYx0fADWFvbYA13H2+7vCQ10NGjRwOJwVHh7Oju0A4AR2VAfMU+GhrrFjx2rUqFHKycmxtuXk5OjJJ5/Us88+69LiAMDbOAo9jRs3JvQANaTCQ11xcXHauXOn8vPzFfvfnfL27t2roKAgXXzxxTbnbtiwwXWV1hCGugBUVdlWEykptnNzGNoCqk+1DXXdfPPNslgsVSoOALzZuSsyM7QFuA+XbVLqLejxAVBVZ/f4bNxoH3o2bIjToUNJWrvWhOIAL1Vtm5S2bNlSf/75p1370aNH1bJly4peDgC8Ttkt6I5CT0FBmg4dSmJdHsAkFR7q2rNnj4qLi+3a8/Pz9euvv7qkKADwFI7m8zC0Bbgvp3t8MjMzlZmZKUlasWKF9XlmZqY+/PBDTZgwQS1atKiWIvfs2aNBgwapRYsWql27tlq1aqW0tDQVFBTYnPfDDz/ommuuUXBwsGJiYjR58uRqqQeAb8rMlBISSn+WOXs+j+Q49PTu3ZvQA7gJp3t8+vXrJ0myWCwaOHCgzbGAgAA1b95cL7/8skuLK5Odna2SkhK9/vrrat26tTZv3qzBgwfrxIkTmjJliqTSsb1evXqpZ8+emjVrln788Uc98MADioiI0EMPPVQtdQHwLedOWpbO7LD+9NOG0tOfs3sNgQdwLxWe3NyiRQutW7dODRs2rK6anPLSSy9p5syZ+vnnnyVJM2fO1DPPPKOcnBwFBgZKklJSUrRkyRJlZ2c7fV0mNwMoT0VuU5cIPUBNqrbb2Xfv3l2lwlwlNzdX9evXtz7PysrStddeaw09kpSYmKhJkybpyJEj5a4qnZ+fr/z8fOvzvLy86isagEcrCztlw1rl3ap+5513qm3btjVYGQBnVTj4PPecfVfu2caNG1fpYpy1c+dOTZ8+3TrMJZWuHn3uHKNGjRpZj5UXfCZOnFjuv9YA4Fxlw12TJxdp48YX7I7TywO4twoHnw8//NDmeWFhoXbv3q1atWqpVatWFQo+KSkpmjRp0nnP2bZtm82/nH777Tf17t1bd9xxhwYPHlyx4h1ITU3VqFGjrM/z8vIUExNT5esC8E7lrc0jEXoAT1Dh4LNx40a7try8PCUnJ+uWW26p0LVGjx6t5OTk855z9tpAv//+u7p3766EhAT94x//sDkvOjpaBw4csGkrex4dHV3u9YOCghQUFFShugH4Lkeh56GHHlLjxo1NqAZARVU4+DgSFham9PR09e3bV/3793f6dZGRkYqMjHTq3N9++03du3dXp06dNGfOHPn52d6JHx8fr2eeeUaFhYUKCAiQJK1cuVJt2rRh13gAVbZ48Un9+ONLdu308gCepcIrN5cnNzdXubm5rrqcjd9++03dunVTbGyspkyZokOHDiknJ8dmh/h77rlHgYGBGjRokLZs2aKFCxfq1VdftRnGAoDKSE9PJ/QAXqLCPT7Tpk2zeW4Yhvbv36+3335bffr0cVlhZ1u5cqV27typnTt36qKLLrJ7f0kKDw/Xp59+qmHDhqlTp05q2LChxo0bxxo+AKrE0c0Pjz/+OMtdAB6qUuv4nM3Pz0+RkZHq0aOHUlNTFRoa6tICaxrr+ACQpMOHD2v69Ol27fTyAO7J69fxAYDqwoKEgPeq1OTmo0ePaufOnZKk1q1bKyIiwpU1AYBpHIWe1NRUm8VRAXiuCk1u3rNnj2688UY1bNhQXbt2VdeuXdWwYUPddNNN2rNnTzWVCADV79dff3UYetLS0gg9gBdxusdn3759uuqqqxQQEKAJEyaoXbt2kqStW7dq5syZio+P17p16+wmHwOAu2NoC/AdTk9uHjRokHbu3KkVK1YoODjY5tipU6fUu3dvXXzxxXrjjTeqpdCawuRmwLc4Cj3PPvus3VphANybyyc3f/LJJ1q4cKFd6JGk2rVra8KECbrrrrsqVy0A1LBt27bpvffes2unlwfwbk4Hnz/++EPNmzcv93jLli11+PBhV9QEANWKoS3AdzkdfBo3bqytW7eWO4dn8+bN590TCwDcQXkTmAH4BqcHsfv166cnnnhChw4dsjt28OBBPf300+rXr58rawMAl1m7dm2FQ09mppSQUPoTgHdwenLzkSNH1LVrV+Xk5Oi+++5T27ZtZRiGtm3bpnfffVfR0dH697//rfr161d3zdWKyc2A96ns0FZCgpSVJcXHS2vXVkdlAFzF5ZOb69Wrp//85z8aM2aMFixYoKNHj0qSIiIidM899+jFF1/0+NADwPtUZWgrJUXKyCj9CcA7VHivLql0Y9CyIa/IyEhZLBaXF2YWenwA7/B///d/2rBhg10783kA71Rte3VJksViUVRUVKWLA4DqxF1bAMpTqeADAO6Ku7YAnA/BB4BXmD17tvbt22fXHhdH6AFwBsEHgMdjaAuAswg+ADwaQ1sAKsKp4DNt2jSnLzhixIhKFwMAznrppZd08uRJu3ZCD4Dzcep29hYtWjh3MYtFP//8c5WLMhO3swPuz1EvT/369fXoo4+aUA0Ad+DS29l3797tssIAoCoY2gJQFZWe41NQUKDdu3erVatWqlWLqUIAqhcTmAG4gtOblJY5efKkBg0apJCQEF166aXau3evJOnRRx9VRkaGywsEAEehp127djahhw1FATijwsEnNTVVmzZt0urVqxUcHGxt79mzpxYuXOjS4gCgvKGt//3f/7Vpy8go3VCUf38BOJ8Kj1EtWbJECxcu1FVXXWWzR9ell16qXbt2ubQ4AL6rokNbbCgKwBkVDj6HDh1yuE/XiRMnvGqzUgDmcRR6rrnmGvXo0aPc1yQllT4A4HwqPNTVuXNnLVu2zPq8LOy88cYbio+Pd11lAHxSeUNb5ws9AOCsCvf4vPjii+rTp4+2bt2qoqIivfrqq9q6davWrl2rNWvWVEeNAHwAd20BqAkV7vG5+uqr9f3336uoqEiXXXaZPv30U0VFRSkrK0udOnWqjhoBeDlHoefmm28m9ABwOadWbvYlrNwM1BzDMPTcc8/ZtRN4AFSUS1duzsvLc/qNCQsAnMHQFgAzOBV8IiIinL5jq7i4uEoFAfB+jkJP//791bJlS5u2zMwzt6hzxxYAV3Aq+Kxatcr65z179iglJUXJycnWu7iysrL01ltvaeLEidVTJQCvUFxcrOeff96uvbxenrMXJST4AHCFCs/x+Z//+R89+OCDuvvuu23a3333Xf3jH//Q6tWrXVlfjWOOD1A9KjO0RY8PAGc5+/1d4eATEhKiTZs26eKLL7Zp37Fjhy6//HKdPHmychW7CYIP4HqOQs8jjzzicDFUAKgMZ7+/K3w7e0xMjP75z3/atb/xxhuKiYmp6OUAeLH8/PxyFyQk9AAwQ4UXMHzllVd022236eOPP1bXrl0lSd9++61++uknffDBBy4vEIBn4q4tAO6owj0+N9xwg3766Sf17dtXhw8f1uHDh9W3b1/t2LFDN9xwQ3XUCMBDZGZKCQmOQ8+qVaMVF0foAWAuFjA8B3N8gMrr1u2Yunefate+YkWasrKk+Hhp7VoTCgPg9Vy6gOG5jh49qjfffFPbtm2TJF166aV64IEHFB4eXrlqAXi89PR0de9u356Wlqa4uDN3ZwGAmSrc4/Pdd98pMTFRtWvXVpcuXSRJ69at06lTp/Tpp5/qiiuuqJZCawo9PkDFORraSk1NVWBgoAnVAPBF1XY7+zXXXKPWrVvrn//8p2rVKu0wKioq0oMPPqiff/5ZX375ZdUqNxnBB3DeH3/8oRkzZti1M4EZQE2rtuBTu3Ztbdy4UW3btrVp37p1qzp37sw6PoCPqOhdW5mZ0lNPSRaLNGkSCxICcK1qm+MTFhamvXv32gWfffv2KTQ0tOKVAvA4jkLPs88+Kz+/8m8UzciQtm8/82eCDwAzVPh29jvvvFODBg3SwoULtW/fPu3bt08LFixwuI0FAO+yd+/echckPF/okUonNrdpI7VtyyRnAOapcI/PlClTZLFYNGDAABUVFUmSAgIC9MgjjygjI8PlBQJwD1VdkDApiV4eAOar9Do+J0+e1K5duyRJrVq1UkhIiEsLMwtzfAB7jkLPuHHjZLFYTKgGAOxV6zo+UulmpZdddlllXw7AA2zdulWLFi2ya+euLQCeyung88ADDzh13uzZsytdDAD3UZmhrczMMwsVMqwFwB05HXzmzp2rZs2aKS4uTuxyAXi38iYwX0hGhpSVxV1bANyX08HnkUce0fz587V7927df//9uu+++1S/fv3qrA1ADVu3bp2WL19u135u6CmvZyclha0pALi3Ck1uzs/P1+LFizV79mytXbtWN954owYNGqRevXp5zSRHJjfDVznq5fH399fYsWPt2hMSxKajANxKta3cXOaXX37R3Llz9a9//UtFRUXasmWL6tatW+mC3QXBB76ookNbzOUB4G6c/f6u8AKG1hf6+cliscgwDBUXF1f2MgBM9Nlnn5UbejIzS3t2MjPtX5eUVNrTQ+gB4GkqFHzy8/M1f/58XX/99brkkkv0448/6u9//7v27t3rFb09gC9JT0/XN998Y9PWqFEja0/P2ROVAcBbOD25eejQoVqwYIFiYmL0wAMPaP78+WrYsGF11gagmjgztMVEZQDeyOk5Pn5+foqNjVVcXNx5JzIvXrzYZcWZgTk+8GYfffSRvv/+e7t2FiQE4OlcvnLzgAEDvObOLcAXOerlufzyy3XzzTebUA0AmKNCCxgC8EyVXZAQALxNpffqAuD+5syZo71799q1E3oA+CqCD+ClHPXydOvWTdddd50J1QCAeyD4AF6IoS0AcIzgA3iRKVOm6MSJE3bthB4AKFXplZsBuJf09HS70JOUlFRu6DnfyswA4K0IPoAXKG9oKy4urtzXsDIzAF/EUBfgwRwFHsm5oS1WZgbgiwg+gIdyFHruvvtuXXLJJU69PimJTUYB+B6CD+BhDMPQc889Z9fOBGYAuDCPm+OTn5+vyy+/XBaLxW7PoR9++EHXXHONgoODFRMTo8mTJ5tTJFBN0tPTnQo9TFwGAMc8Lvg89dRTatKkiV17Xl6eevXqpWbNmmn9+vV66aWXNH78eP3jH/8woUrA9RwNbT388MMOe3qYuAwAjnlU8Pn444/16aefasqUKXbH5s2bp4KCAs2ePVuXXnqp7rrrLo0YMUJTp041oVLAdUpKSsq9ays6Otrha1JSpPh4Ji4DwLk8Zo7PgQMHNHjwYC1ZskQhISF2x7OysnTttdcqMDDQ2paYmKhJkybpyJEjqlevnsPr5ufnKz8/3/o8Ly/P9cUDlVTZu7aYuAwAjnlEj49hGEpOTtaQIUPUuXNnh+fk5OSoUaNGNm1lz3Nycsq99sSJExUeHm59xMTEuK5woAochZ7HHnuMScwAUAWmBp+UlBRZLJbzPrKzszV9+nQdO3ZMqampLq8hNTVVubm51se+fftc/h5ARRQVFZU7tBUREVHzBQGAFzF1qGv06NFKTk4+7zktW7bUF198oaysLAUFBdkc69y5s+6991699dZbio6O1oEDB2yOlz0vbx6EJAUFBdldFzBLVRYkBABcmKnBJzIyUpGRkRc8b9q0aXr++eetz3///XclJiZq4cKF6tq1qyQpPj5ezzzzjAoLCxUQECBJWrlypdq0aVPu/B7AnTgKPU8++aTDOW1lMjPPrL7MnB4AuDCPmOMTGxurDh06WB9lK9O2atVKF110kSTpnnvuUWBgoAYNGqQtW7Zo4cKFevXVVzVq1CgzSwcu6PTp0+UObZ0v9Ejctg4AFeUxd3VdSHh4uD799FMNGzZMnTp1UsOGDTVu3Dg99NBDZpcGlKuqQ1vstwUAFWMxDMMwuwh3kpeXp/DwcOXm5iosLMzscuDFHIWeMWPGWIdqAQDOc/b722t6fABPcfz4cb388st27UxgBoDq5xFzfABvkZ6e7lToYa8tAKgeBB+ghjga2lqx4lnFxbHXFgDUFIIPUM2OHj1aTuhJU1aWn8Nww15bAFA9mOMDVCNHgScyMlJDhw5VXFz5d2Sx1xYAVA+CD1BNHIWecePGyWKxSLINNyxECAA1g6EuwMUOHDhQ7oKEZaHnXMzpAYCaQfABXCg9PV2zZs2yaWvdurXNXVuO7thiTg8A1AwWMDwHCxiissrr5TlXQkJp7058vLR2bU1UBgDez9nvb3p8gCrau3ev06FHoncHAMzE5GagChwFnri4OCWdZ4Yyd2wBgHkIPkAlVaSXBwDgHgg+QAXt2rVL77zzjl07oQcA3B/BB6gAR7081157rbp3725CNQCAimJyM+Ck8radIPQAgOegxwe4gM2bN+uDDz6wa1+xIo07swDAwxB8gPNw1MvTr18/dezYUUzpAQDPQ/ABysFdWwDgfQg+wDm+/fZbffzxx3bthB4A8HwEH+Asjnp57r77bl1yySUmVAMAcDWCD/BfDG0BgPcj+MDnZWVl6dNPP7VrJ/QAgPch+MCnOerluf/++xUbG2tCNQCA6kbwgU/JzJQyMkp3Rt+4kaEtAPA1BB/4lIwMKSTkM23c+I3dMUIPAHg/gg98SmKifS/PsGHDtHZtQyUklPYEJSWZUBgAoEawVxd8gmEY5d611bBhQ2VkSFlZpT1CAADvRY8PvN5nn32mb745/9BWSsqZuT8AAO9F8IFXc9TLM3r0aNWtW9emLSmJIS4A8AUEH3glwzD03HPP2bUzgRkAfBvBB17no48+0vfff2/TFhgYqNTUVHMKAgC4DYIPvIqjoa2nn35awcHBJlQDAHA3BB94hZKSEk2YMMGunaEtAMDZuJ0dHiczU0pIKP0pSe+++65d6GnYsCGhBwBghx4feJyz19xxtO3EmDFjFBAQYEJlAAB3R48PPE5KivTXvxY5XIU5LS2N0AMAKBc9PvA4Bw++oeuv/82mrXnz5ho4cKBJFQEAPAXBBx7F0V1bY8eOlb+/vwnVAAA8DcEHHqGgoEATJ060a2cCMwCgIgg+cHtz587VL7/8YtMWHx+vXr16mVQRAMBTEXzg1hwNbY0bN04Wi8WEagAAno7gA7d06tQpTZ482a6doS0AQFUQfOB2ZsyYoT/++MOmrUePHrrmmmtMqggA4C0IPnArDG0BAKoTwQdu4fjx43r55Zft2hnaAgC4EsEHpps0aZJOnz5t03bDDTfoyiuvNKkiAIC3IvjAVI6GtujlAQBUF4IPTHHkyBFNmzbNrp3QAwCoTgQf1DhHvTy33nqrLrvsMhOqAQD4EoIPahRDWwAAMxF8UCMOHTqk1157za6d0AMAqEkEH1Q7R70899xzjy6++GITqgEA+DKCD6oVQ1sAAHdC8EG1+O233/TGG2/YtRN6AABmIvjA5Rz18iQnJ6tZs2YmVAMAwBkEH7gUQ1sAAHdG8IFL7N69W//617/s2gk9AAB3QvBBlTnq5XnooYfUuHFjE6oBAKB8BB9UCUNbAABPQvBBpWRnZ2vhwoV27YQeAIA7I/igwhz18gwbNkwNGzY0oRoAAJxH8EGFMLQFAPBkBB84ZdOmTVqyZIldO6EHAOBJCD64IEe9PCNHjlR4eLgJ1QAAUHkEH5wXQ1sAAG/iZ3YBqFmZmVJCQunP8/nPf/5jF3pCQ0MJPQAAj0aPj4/JyJCyskp/JiU5PsdRL88TTzyhOnXqVHN1AABUL4/q8Vm2bJm6du2q2rVrq169eurXr5/N8b179+rGG29USEiIoqKi9OSTT6qoqMicYt1USooUH1/681yGYZQ7tEXoAQB4A4/p8fnggw80ePBgvfjii+rRo4eKioq0efNm6/Hi4mLdeOONio6O1tq1a7V//34NGDBAAQEBevHFF02svOZkZpb25KSklN+bk5Tk+Njq1au1Zs0am7bGjRvroYceqoZKAQAwh8UwDMPsIi6kqKhIzZs3V3p6ugYNGuTwnI8//lg33XSTfv/9dzVq1EiSNGvWLD399NM6dOiQAgMDnXqvvLw8hYeHKzc3V2FhYS77HWpCQkLpMFZ8vLR2rfOvc9TL8/TTTys4ONiF1QEAUH2c/f72iKGuDRs26LfffpOfn5/i4uLUuHFj9enTx6bHJysrS5dddpk19EhSYmKi8vLytGXLlnKvnZ+fr7y8PJuHpzrfMJYjJSUl5Q5tEXoAAN7II4a6fv75Z0nS+PHjNXXqVDVv3lwvv/yyunXrph07dqh+/frKycmxCT2SrM9zcnLKvfbEiRMdfvl7ovKGsRz5+OOP9e2339q0tWrVSvfdd181VAYAgHswtccnJSVFFovlvI/s7GyVlJRIkp555hnddttt6tSpk+bMmSOLxaJFixZVqYbU1FTl5uZaH/v27XPFr+bW0tPT7ULPmDFjCD0AAK9nao/P6NGjlZycfN5zWrZsqf3790uS2rdvb20PCgpSy5YttXfvXklSdHS03Zf5gQMHrMfKExQUpKCgoMqUbypnJjKfq7i4WM8//7xdO2vzAAB8hanBJzIyUpGRkRc8r1OnTgoKCtL27dt19dVXS5IKCwu1Z88eNWvWTJIUHx+vF154QQcPHlRUVJQkaeXKlQoLC7MJTN7CmfV4zvb555/r66+/tmn7y1/+oltuuaWaKgQAwP14xByfsLAwDRkyRGlpaYqJiVGzZs300ksvSZLuuOMOSVKvXr3Uvn179e/fX5MnT1ZOTo7Gjh2rYcOGeWSPzoWkpJzp8bkQR3OYxo4dK39//2qoDAAA9+URwUeSXnrpJdWqVUv9+/fXqVOn1LVrV33xxReqV6+eJMnf319Lly7VI488ovj4eNWpU0cDBw7Uc889Z3Ll1cOZicxFRUV64YUX7NoZ2gIA+CqPWMenJnnyOj5nW7Zsmb777jubtl69eik+Pt6kigAAqD7Ofn97TI8PnOdoaGvcuHGyWCwmVAMAgPsg+HiR/Px8ZWRk2LUztAUAQCmCj5dwdNdW3759dcUVV5hUEQAA7ofg4wUY2gIAwDkEHw/G0BYAABVD8PFQK1as0L///W+btgEDBqhFixYmVQQAgPvziN3ZvV1mppSQUPrTGenp6XahJy0tjdADAMAFEHzcwNnbT5xPfn6+3XyewMBAhrYAAHASQ11uwJntJ9atW6fly5fbtA0fPlwNGjSo5uoAAPAeBB83cKHtJxzdtUUvDwAAFcdQVw2p6DweSTp16pRd6OncuTOhBwCASqLHp4acPY/nQpuLStLatWu1cuVKm7bHHntMERER1VMgAAA+gOBTQ5yZx1OGoS0AAKoHwaeGXGgejySdOHFCU6ZMsWlLSEjQ9ddfX42VAQDgOwg+bmL16tVas2aNTduoUaMUGhpqUkUAAHgfgo8bYGgLAICaQfAxkaO9trp166brrrvOpIoAAPBuBB+T7Nq1S++8845N2xNPPKE6deqYVBEAAN6P4GOCRYsWaevWrdbnnTp10k033WRiRQAA+AaCTw06ffq0Jk2aZNP2wAMPKCYmxqSKAADwLQSfGrJjxw7Nnz/fpm3MmDEKCAgwqSIAAHwPwaeGnB16rrrqKiUmJppYDQAAvongU8MGDx6sJk2amF0GAAA+yWIYhmF2Ee4kLy9P4eHhys3NVVhYmNnlAAAAJzj7/c3u7AAAwGcQfAAAgM8g+AAAAJ9B8AEAAD6D4AMAAHwGwQcAAPgMgg8AAPAZBB8AAOAzCD4AAMBnEHwAAIDPIPgAAACfQfABAAA+g+ADAAB8BsEHAAD4jFpmF+BuDMOQVLq9PQAA8Axl39tl3+PlIfic49ixY5KkmJgYkysBAAAVdezYMYWHh5d73GJcKBr5mJKSEv3+++8KDQ2VxWIxu5xql5eXp5iYGO3bt09hYWFmlwMH+IzcH5+R++Mzcn9V/YwMw9CxY8fUpEkT+fmVP5OHHp9z+Pn56aKLLjK7jBoXFhbG/xm4OT4j98dn5P74jNxfVT6j8/X0lGFyMwAA8BkEHwAA4DMIPj4uKChIaWlpCgoKMrsUlIPPyP3xGbk/PiP3V1OfEZObAQCAz6DHBwAA+AyCDwAA8BkEHwAA4DMIPgAAwGcQfHzcsmXL1LVrV9WuXVv16tVTv379bI7v3btXN954o0JCQhQVFaUnn3xSRUVF5hTrw/Lz83X55ZfLYrHo+++/tzn2ww8/6JprrlFwcLBiYmI0efJkc4r0QXv27NGgQYPUokUL1a5dW61atVJaWpoKCgpszuMzMt+MGTPUvHlzBQcHq2vXrvr222/NLsknTZw4UVdeeaVCQ0MVFRWlfv36afv27TbnnD59WsOGDVODBg1Ut25d3XbbbTpw4IDLaiD4+LAPPvhA/fv31/33369Nmzbpm2++0T333GM9XlxcrBtvvFEFBQVau3at3nrrLc2dO1fjxo0zsWrf9NRTT6lJkyZ27Xl5eerVq5eaNWum9evX66WXXtL48eP1j3/8w4QqfU92drZKSkr0+uuva8uWLXrllVc0a9YsjRkzxnoOn5H5Fi5cqFGjRiktLU0bNmxQx44dlZiYqIMHD5pdms9Zs2aNhg0bpn//+99auXKlCgsL1atXL504ccJ6zuOPP67/+7//06JFi7RmzRr9/vvvuvXWW11XhAGfVFhYaDRt2tR44403yj1n+fLlhp+fn5GTk2NtmzlzphEWFmbk5+fXRJkwSj+Htm3bGlu2bDEkGRs3brQee+2114x69erZfB5PP/200aZNGxMqhWEYxuTJk40WLVpYn/MZma9Lly7GsGHDrM+Li4uNJk2aGBMnTjSxKhiGYRw8eNCQZKxZs8YwDMM4evSoERAQYCxatMh6zrZt2wxJRlZWlkvekx4fH7Vhwwb99ttv8vPzU1xcnBo3bqw+ffpo8+bN1nOysrJ02WWXqVGjRta2xMRE5eXlacuWLWaU7XMOHDigwYMH6+2331ZISIjd8aysLF177bUKDAy0tiUmJmr79u06cuRITZaK/8rNzVX9+vWtz/mMzFVQUKD169erZ8+e1jY/Pz/17NlTWVlZJlYGqfS/F0nW/2bWr1+vwsJCm8+rbdu2io2NddnnRfDxUT///LMkafz48Ro7dqyWLl2qevXqqVu3bjp8+LAkKScnxyb0SLI+z8nJqdmCfZBhGEpOTtaQIUPUuXNnh+fwGbmXnTt3avr06Xr44YetbXxG5vrjjz9UXFzs8DPg799cJSUlGjlypP7617+qQ4cOkkr/mwgMDFRERITNua78vAg+XiYlJUUWi+W8j7J5CZL0zDPP6LbbblOnTp00Z84cWSwWLVq0yOTfwrs5+xlNnz5dx44dU2pqqtkl+xxnP6Oz/fbbb+rdu7fuuOMODR482KTKAc8xbNgwbd68WQsWLKjR961Vo++Gajd69GglJyef95yWLVtq//79kqT27dtb24OCgtSyZUvt3btXkhQdHW1350PZzPro6GgXVu1bnP2MvvjiC2VlZdntW9O5c2fde++9euuttxQdHW13twOfUdU5+xmV+f3339W9e3clJCTYTVrmMzJXw4YN5e/v7/Az4O/fPMOHD9fSpUv15Zdf6qKLLrK2R0dHq6CgQEePHrXp9XHp5+WSmULwOLm5uUZQUJDN5OaCggIjKirKeP311w3DODO5+cCBA9ZzXn/9dSMsLMw4ffp0jdfsa3755Rfjxx9/tD5WrFhhSDLef/99Y9++fYZhnJk4W1BQYH1damoqE2dr0K+//mpcfPHFxl133WUUFRXZHeczMl+XLl2M4cOHW58XFxcbTZs2ZXKzCUpKSoxhw4YZTZo0MXbs2GF3vGxy8/vvv29ty87OdunkZoKPD3vssceMpk2bGitWrDCys7ONQYMGGVFRUcbhw4cNwzCMoqIio0OHDkavXr2M77//3vjkk0+MyMhIIzU11eTKfdPu3bvt7uo6evSo0ahRI6N///7G5s2bjQULFhghISHW8Irq9euvvxqtW7c2/ud//sf49ddfjf3791sfZfiMzLdgwQIjKCjImDt3rrF161bjoYceMiIiImzuWEXNeOSRR4zw8HBj9erVNv+9nDx50nrOkCFDjNjYWOOLL74wvvvuOyM+Pt6Ij493WQ0EHx9WUFBgjB492oiKijJCQ0ONnj17Gps3b7Y5Z8+ePUafPn2M2rVrGw0bNjRGjx5tFBYWmlSxb3MUfAzDMDZt2mRcffXVRlBQkNG0aVMjIyPDnAJ90Jw5cwxJDh9n4zMy3/Tp043Y2FgjMDDQ6NKli/Hvf//b7JJ8Unn/vcyZM8d6zqlTp4yhQ4ca9erVM0JCQoxbbrnF5h8TVWX5byEAAABej7u6AACAzyD4AAAAn0HwAQAAPoPgAwAAfAbBBwAA+AyCDwAA8BkEHwAA4DMIPgBQTVavXi2LxaKjR4+aXQqA/yL4APBY48eP1+WXX252GQA8CMEHgNcrLCw0uwQAboLgA8A0JSUlmjhxolq0aKHatWurY8eOev/99yWdGSb6/PPP1blzZ4WEhCghIUHbt2+XJM2dO1fp6enatGmTLBaLLBaL5s6dK0myWCyaOXOmkpKSVKdOHb3wwgvnraPsvVasWKG4uDjVrl1bPXr00MGDB/Xxxx+rXbt2CgsL0z333KOTJ09aX5efn68RI0YoKipKwcHBuvrqq7Vu3brq+csC4Bou2/ULACro+eefN9q2bWt88sknxq5du4w5c+YYQUFBxurVq41Vq1YZkoyuXbsaq1evNrZs2WJcc801RkJCgmEYhnHy5Elj9OjRxqWXXmq3w7MkIyoqypg9e7axa9cu45dffjlvHWXvddVVVxlff/21sWHDBqN169bGddddZ/Tq1cvYsGGD8eWXXxoNGjSw2WB0xIgRRpMmTYzly5cbW7ZsMQYOHGjUq1fP+PPPP22ue+TIker5CwRQYQQfAKY4ffq0ERISYqxdu9amfdCgQcbdd99tDQ2fffaZ9diyZcsMScapU6cMwzCMtLQ0o2PHjnbXlmSMHDnS6VocvdfEiRMNScauXbusbQ8//LCRmJhoGIZhHD9+3AgICDDmzZtnPV5QUGA0adLEmDx5ss11CT6A+6hlVk8TAN+2c+dOnTx5Utdff71Ne0FBgeLi4qzP//KXv1j/3LhxY0nSwYMHFRsbe97rd+7cucI1nf1ejRo1UkhIiFq2bGnT9u2330qSdu3apcLCQv31r3+1Hg8ICFCXLl20bdu2Cr83gJpB8AFgiuPHj0uSli1bpqZNm9ocCwoK0q5duySVhokyFotFUuncoAupU6dOhWs6973Ofl7W5sx7A3BfTG4GYIr27dsrKChIe/fuVevWrW0eMTExTl0jMDBQxcXF1VypY61atVJgYKC++eYba1thYaHWrVun9u3bm1ITgAujxweAKUJDQ/XEE0/o8ccfV0lJia6++mrl5ubqm2++UVhYmJo1a3bBazRv3ly7d+/W999/r4suukihoaEKCgqqgepLe5QeeeQRPfnkk6pfv75iY2M1efJknTx5UoMGDaqRGgBUHMEHgGkmTJigyMhITZw4UT///LMiIiJ0xRVXaMyYMU4NKd12221avHixunfvrqNHj2rOnDlKTk6u/sL/KyMjQyUlJerfv7+OHTumzp07a8WKFapXr16N1QCgYiyGYRhmFwEAAFATmOMDAAB8BsEHgNcbMmSI6tat6/AxZMgQs8sDUIMY6gLg9Q4ePKi8vDyHx8LCwhQVFVXDFQEwC8EHAAD4DIa6AACAzyD4AAAAn0HwAQAAPoPgAwAAfAbBBwAA+AyCDwAA8BkEHwAA4DMIPgAAwGf8PyZ6NzE4vB44AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASgtJREFUeJzt3X98zfX///H72ewntvmxGZrfNaQ3i2gqpbe38Uno908sUoq3imLibVvK5ke8I9GPtx/vEvohSTTyox+sd0KKjMgiDIUNYz9f3z/2deo4Z7PN2Xnt7Nyul8u5cJ6v13mdx5x07p7P5+v5tBiGYQgAAMADeJldAAAAgKsQfAAAgMcg+AAAAI9B8AEAAB6D4AMAADwGwQcAAHgMgg8AAPAYBB8AAOAxCD4AAMBjEHwAuCWLxaKEhASzy7CKjY1VkyZNzC4DwCUQfAA4zfz582WxWKwPf39/XXXVVRo2bJiOHj1aoe+9adMmJSQk6NSpU0697i233GLzM9WuXVvXXXed5s6dq8LCQqe8x8SJE7Vs2TKnXAtAyaqZXQCAqueFF15Q06ZNdf78eX399deaPXu2Vq5cqR07digwMNAp73Hu3DlVq/bn/8I2bdqkxMRExcbGKiQkxCnvccEVV1yhpKQkSdLx48f13//+V4MGDdKePXuUnJx82defOHGi7r77bvXt2/eyrwWgZAQfAE7Xs2dPdejQQZL06KOPqk6dOpo2bZo+/vhjPfDAA+W+bmFhoXJzc+Xv7y9/f39nlXtJwcHBevjhh63PH3/8cUVGRurVV1/VhAkT5OPj47JaAFwehroAVLhbb71VkrR//35J0tSpU9W5c2fVqVNHAQEBat++vT744AO711ksFg0bNkwLFy7U1VdfLT8/P3322WfWYxfm+CQkJOi5556TJDVt2tQ6LJWenq6bb75Zbdu2dVhXZGSkYmJiyvzzBAYG6vrrr9fZs2d1/PjxYs87e/asRo4cqYiICPn5+SkyMlJTp06VYRg2P+PZs2e1YMECa92xsbFlrglA6dDjA6DC7du3T5JUp04dSdIrr7yi3r1766GHHlJubq4WL16se+65RytWrNBtt91m89p169bpvffe07Bhw1S3bl2HE4jvvPNO7dmzR4sWLdL06dNVt25dSVJoaKj69eunwYMHa8eOHWrTpo31NZs3b9aePXs0bty4cv1Mv/zyi7y9vYsdVjMMQ71799b69es1aNAgtWvXTikpKXruued06NAhTZ8+XZL09ttv69FHH1XHjh312GOPSZKaN29erpoAlIIBAE4yb948Q5Lx+eefG8ePHzcOHjxoLF682KhTp44REBBg/Pbbb4ZhGEZ2drbN63Jzc402bdoYt956q027JMPLy8vYuXOn3XtJMuLj463Pp0yZYkgy9u/fb3PeqVOnDH9/f2P06NE27cOHDzeqV69unDlzpsSf6eabbzZatmxpHD9+3Dh+/Lixa9cuY/jw4YYk4/bbb7eeN2DAAKNx48bW58uWLTMkGS+++KLN9e6++27DYrEYe/futbZVr17dGDBgQIl1AHAOhroAOF23bt0UGhqqiIgI3X///apRo4Y++ugjNWzYUJIUEBBgPffkyZPKzMzUTTfdpK1bt9pd6+abb1br1q3LXUtwcLD69OmjRYsWWYeYCgoKtGTJEvXt21fVq1e/5DXS0tIUGhqq0NBQtWrVSjNnztRtt92muXPnFvualStXytvbW8OHD7dpHzlypAzD0KpVq8r9MwEoP4a6ADjdrFmzdNVVV6latWqqV6+eIiMj5eX157+zVqxYoRdffFHff/+9cnJyrO0Wi8XuWk2bNr3sevr3768lS5boq6++UpcuXfT555/r6NGj6tevX6le36RJE7355pvWW/SvvPJKhYWFlfiaX3/9VQ0aNFDNmjVt2lu1amU9DsD1CD4AnK5jx47Wu7ou9tVXX6l3797q0qWLXnvtNdWvX18+Pj6aN2+e3n33Xbvz/9o7VF4xMTGqV6+e3nnnHXXp0kXvvPOOwsPD1a1bt1K9vnr16qU+F0DlxlAXAJf68MMP5e/vr5SUFA0cOFA9e/Z0Sqhw1Ft0gbe3tx588EF98MEHOnnypJYtW6YHHnhA3t7el/2+xWncuLEOHz6s06dP27SnpaVZj19QUu0AnIvgA8ClvL29ZbFYVFBQYG1LT0+/7JWLL8zVKW7l5n79+unkyZN6/PHHdebMGZt1eSrC//3f/6mgoECvvvqqTfv06dNlsVjUs2dPa1v16tWdvuI0AMcY6gLgUrfddpumTZumHj166MEHH9SxY8c0a9YstWjRQj/88EO5r9u+fXtJ0tixY3X//ffLx8dHt99+uzUQRUVFqU2bNnr//ffVqlUrXXvttU75eYpz++23q2vXrho7dqzS09PVtm1brV69Wh9//LGefvppm1vW27dvr88//1zTpk1TgwYN1LRpU3Xq1KlC6wM8FT0+AFzq1ltv1X/+8x9lZGTo6aef1qJFizRp0iTdcccdl3Xd6667ThMmTND27dsVGxurBx54wG5xwf79+0tSqSc1Xw4vLy8tX75cTz/9tFasWKGnn35aP/30k6ZMmaJp06bZnDtt2jS1b99e48aN0wMPPKDZs2dXeH2Ap7IYxl+WEAWAKuyVV17RM888o/T0dDVq1MjscgCYgOADwCMYhqG2bduqTp06Wr9+vdnlADAJc3wAVGlnz57V8uXLtX79ev3444/6+OOPzS4JgIno8QFQpaWnp6tp06YKCQnRk08+qZdeesnskgCYiOADAAA8Bnd1AQAAj0HwAQAAHoPJzRcpLCzU4cOHVbNmTZaRBwDATRiGodOnT6tBgwY2myJfjOBzkcOHDysiIsLsMgAAQDkcPHhQV1xxRbHHCT4XqVmzpqSiP7igoCCTqwEAAKWRlZWliIgI6/d4cQg+F7kwvBUUFETwAQDAzVxqmgqTmwEAgMcg+AAAAI9B8AEAAB6DOT7lUFBQoLy8PLPLgAv4+PjI29vb7DIAAE5C8CkDwzCUkZGhU6dOmV0KXCgkJETh4eGs6wQAVYDbBJ+kpCQtXbpUaWlpCggIUOfOnTVp0iRFRkZazzl//rxGjhypxYsXKycnRzExMXrttddUr149p9RwIfSEhYUpMDCQL8IqzjAMZWdn69ixY5Kk+vXrm1wRAOByuU3w+eKLLzR06FBdd911ys/P1/PPP6/u3bvrp59+UvXq1SVJzzzzjD799FO9//77Cg4O1rBhw3TnnXdq48aNl/3+BQUF1tBTp06dy74e3ENAQIAk6dixYwoLC2PYCwDcnNvuzn78+HGFhYXpiy++UJcuXZSZmanQ0FC9++67uvvuuyVJaWlpatWqlVJTU3X99deX6rpZWVkKDg5WZmamzTo+58+f1/79+9WkSRPrlyE8w7lz55Senq6mTZvK39/f7HIAAA4U9/19Mbe9qyszM1OSVLt2bUnSli1blJeXp27dulnPadmypRo1aqTU1NRir5OTk6OsrCybR0kY3vI8fOYAUHW4ZfApLCzU008/rRtuuEFt2rSRVDT/xtfXVyEhITbn1qtXTxkZGcVeKykpScHBwdYH+3QBAFB1uWXwGTp0qHbs2KHFixdf9rXGjBmjzMxM6+PgwYNOqBAAAFRGbhd8hg0bphUrVmj9+vU2u6+Gh4crNzfX7lbzo0ePKjw8vNjr+fn5Wfflqqr7c8XGxspischiscjHx0f16tXTP/7xD82dO1eFhYWlvs78+fPtetQAAHAnbhN8DMPQsGHD9NFHH2ndunVq2rSpzfH27dvLx8dHa9eutbbt3r1bBw4cUHR0tKvLrXR69OihI0eOKD09XatWrVLXrl311FNPqVevXsrPzze7PACABzh9+rTOnj1rag1uE3yGDh2qd955R++++65q1qypjIwMZWRk6Ny5c5Kk4OBgDRo0SCNGjND69eu1ZcsWPfLII4qOji71HV1VmZ+fn8LDw9WwYUNde+21ev755/Xxxx9r1apVmj9/viRp2rRpuuaaa1S9enVFREToySef1JkzZyRJGzZs0COPPKLMzExr71FCQoIk6e2331aHDh1Us2ZNhYeH68EHH7SufQMAgGEYeuWVVzRt2jTNmTNHZt5Q7jbBZ/bs2crMzNQtt9yi+vXrWx9LliyxnjN9+nT16tVLd911l7p06aLw8HAtXbq0wmoyDEO5ubmmPJzxH82tt96qtm3bWv+MvLy8NGPGDO3cuVMLFizQunXrNGrUKElS586d9e9//1tBQUE6cuSIjhw5omeffVaSlJeXpwkTJmj79u1atmyZ0tPTFRsbe9n1AQDc37Fjx/TCCy9Yp6KcO3fO1Ltl3WYBw9J80fv7+2vWrFmaNWuWCyoq+sJPSkpyyXtdbMyYMfL19b3s67Rs2VI//PCDJOnpp5+2tjdp0kQvvviihgwZotdee02+vr4KDg6WxWKxmzM1cOBA6++bNWumGTNm6LrrrtOZM2dUo0aNy64RAOCeUlJS9M0331ifh4WFaciQISZW5EbBBxXDMAxr8v7888+VlJSktLQ0ZWVlKT8/X+fPn1d2drYCAwOLvcaWLVuUkJCg7du36+TJk9YJ0wcOHFDr1q1d8nMAACqPnJwcJScn27Tddddd1iVozETwuQw+Pj4aM2aMae/tDLt27VLTpk2Vnp6uXr166YknntBLL72k2rVr6+uvv9agQYOUm5tbbPA5e/asYmJiFBMTo4ULFyo0NFQHDhxQTEyMcnNznVIjAMB97NmzR4sWLbJpGzVqVKXZ9YDgcxksFotThpvMsm7dOv3444965plntGXLFhUWFurll1+Wl1fR1K/33nvP5nxfX18VFBTYtKWlpemPP/5QcnKydfHH7777zjU/AACg0jAMQ/Pnz9eBAwesbe3atVOfPn2sz5cvl5KTpbg4qXdvM6ok+HiMnJwcZWRkqKCgQEePHtVnn32mpKQk9erVS/3799eOHTuUl5enmTNn6vbbb9fGjRs1Z84cm2s0adJEZ86c0dq1a9W2bVsFBgaqUaNG8vX11cyZMzVkyBDt2LFDEyZMMOmnBACY4dSpU3rllVds2h599FE1bNjQpi05WUpNLfrVrODjNnd14fJ89tlnql+/vpo0aaIePXpo/fr1mjFjhj7++GN5e3urbdu2mjZtmiZNmqQ2bdpo4cKFdhO3O3furCFDhui+++5TaGioJk+erNDQUM2fP1/vv/++WrdureTkZE2dOtWknxIA4GqbNm2yCT1+fn4aN26cXeiRinp6oqOLfjWL2+7OXlEutTs7O3R7Hj57ALBXUFCgiRMn2uwA0KNHD3Xq1MmUekq7OztDXQAAoEwOHDigefPm2bQ988wzbrHtE8EHAACU2tKlS/Xjjz9anzdv3lwPP/ywiRWVDcEHAABc0u+//263QPDDDz+s5s2bm1RR+RB8AABAif773/9q//79Nm3PP/+809aUcyWCDwAAcKiwsNBuiRJ/f3+NHj3apIouH8EHAADY2blzpz744AObtvvuu08tW7Y0qSLnYB0fAABgIzEx0S70/Otf/9KePS3VuXPRCszuiuADAAAkSWfOnFFiYqJN21VXXaX4+Hh5eXnZrLzsrhjqAgAAWrlypTZv3mzT9s9//lO1a9e2Po+L+3OvLXdFjw+cJjY2Vn379rU+v+WWW/T0009f1jWdcQ0AQPEMw1BiYqJd6ImPj7cJPVLR/lqbNpm3z5Yz0OPjAWJjY7VgwQJJko+Pjxo1aqT+/fvr+eefV7VqFfefwNKlS0t9q+OGDRvUtWtXnTx5UiEhIeW6BgCgbDZu3KjPP//cpq1nz57q2LGjSRVVPIKPh+jRo4fmzZunnJwcrVy5UkOHDpWPj4/GjBljc15ubq58fX2d8p4X/0vBrGsAAOxdPJdHct+1ecqCoS4P4efnp/DwcDVu3FhPPPGEunXrpuXLl1uHp1566SU1aNBAkZGRkqSDBw/q3nvvVUhIiGrXrq0+ffooPT3der2CggKNGDFCISEhqlOnjkaNGqWL97u9eJgqJydHo0ePVkREhPz8/NSiRQv95z//UXp6urp27SpJqlWrliwWi2JjYx1e4+TJk+rfv79q1aqlwMBA9ezZUz///LP1+Pz58xUSEqKUlBS1atVKNWrUUI8ePXTkyBHrORs2bFDHjh1VvXp1hYSE6IYbbtCvv/7qpD9pAKjcsrKyHIae3Nz4Kh96JIKPxwoICFBubq4kae3atdq9e7fWrFmjFStWKC8vTzExMapZs6a++uorbdy40RogLrzm5Zdf1vz58zV37lx9/fXXOnHihD766KMS37N///5atGiRZsyYoV27dun1119XjRo1FBERoQ8//FCStHv3bh05ckSvvPKKw2vExsbqu+++0/Lly5WamirDMPR///d/ysvLs56TnZ2tqVOn6u2339aXX36pAwcO6Nlnn5Uk5efnq2/fvrr55pv1ww8/KDU1VY899pgsFstl/5kCQGWXmJio6dOn27Slpt6khIR4zZhhUlEuxlCXhzEMQ2vXrlVKSor++c9/6vjx46pevbreeust6xDXO++8o8LCQr311lvWQDBv3jyFhIRow4YN6t69u/79739rzJgxuvPOOyVJc+bMUUpKSrHvu2fPHr333ntas2aNunXrJklq1qyZ9fiFIa2wsDCbOT5/9fPPP2v58uXauHGjOnfuLElauHChIiIitGzZMt1zzz2SpLy8PM2ZM8e6f8ywYcP0wgsvSCr6l05mZqZ69eplPd6qVauy/0ECgJtx1Mszfvx4jRtn0caN0vDhJhRlAnp8TLJ8uVy6CNSKFStUo0YN+fv7q2fPnrrvvvuUkJAgSbrmmmts5vVs375de/fuVc2aNVWjRg3VqFFDtWvX1vnz57Vv3z5lZmbqyJEj6tSpk/U11apVU4cOHYp9/++//17e3t66+eaby/0z7Nq1S9WqVbN53zp16igyMlK7du2ytgUGBtpsmle/fn0dO3ZMUlHAio2NVUxMjG6//Xa98sorNsNgAFDVfP/99w5DT3x8vD75xKL166WFC6WXXjKhOBPQ42OSvy4C5YrbArt27arZs2fL19dXDRo0sLmbq3r16jbnnjlzRu3bt9fChQvtrhMaGlqu9w8ICCjX68rj4jFqi8ViM/9o3rx5Gj58uD777DMtWbJE48aN05o1a3T99de7rEYAcAVHgWfw4MFq0KCBJNd/F1UG9PiYJC5Oio523SJQ1atXV4sWLdSoUaNL3sJ+7bXX6ueff1ZYWJhatGhh8wgODlZwcLDq16+v//3vf9bX5Ofna8uWLcVe85prrlFhYaG++OILh8cv9DgVFBQUe41WrVopPz/f5n3/+OMP7d69W61bty7xZ7pYVFSUxowZo02bNqlNmzZ69913y/R6AKjM8vPzi+3luRB6JNd/F1UGBB+TVOZFoB566CHVrVtXffr00VdffaX9+/drw4YNGj58uH777TdJ0lNPPaXk5GQtW7ZMaWlpevLJJ3Xq1Klir9mkSRMNGDBAAwcO1LJly6zXfO+99yRJjRs3lsVi0YoVK3T8+HGdOXPG7hpXXnml+vTpo8GDB+vrr7/W9u3b9fDDD6thw4bq06dPqX62/fv3a8yYMUpNTdWvv/6q1atX6+eff2aeD4AqY86cOXrponGrBg0aKD4+3u7cyvxdVFEIPrATGBioL7/8Uo0aNdKdd96pVq1aadCgQTp//ryCgoIkSSNHjlS/fv00YMAARUdHq2bNmrrjjjtKvO7s2bN1991368knn1TLli01ePBgnT17VpLUsGFDJSYmKi4uTvXq1dOwYcMcXmPevHlq3769evXqpejoaBmGoZUrV5b6FszAwEClpaXprrvu0lVXXaXHHntMQ4cO1eOPP16GPyEAqJwSExN19OhRm7axY8dq8ODBJlVU+ViMixdf8XBZWVkKDg5WZmam9Uteks6fP6/9+/eradOm8vf3N7FCuBqfPYDKbtu2bVru4G4ZR708VVVx398XY3IzAABuzNFcnr59+6pt27YmVFP5EXwAAHBDhmFY1yj7q8TEeOXmSuQexwg+AAC4GUe9PJKUkFA0tDVjhuesy1NWBB8AANyIo9CTl/eYPvigvurUkc6e9ZxVmMuD4FNGzAX3PHzmACqD9PR0LViwwK49ISFe0dFSWpoJRbkhgk8pXbhdOjs726WrEMN82dnZkuxXhAYAVyluaGvixHi1bOlZCxBeLoJPKXl7eyskJMS651NgYCA7eldxhmEoOztbx44dU0hIiLy9vc0uCYAHchR6kpPH6/x5iyIjpb9sVYhSIPiUQXh4uCRZww88Q0hIiPWzBwBXKa6XJyUlXufPSzVqSJMnu7ioKoDgUwYWi0X169dXWFiY8vLyzC4HLuDj40NPDwCXcxR6Nm9urxMneikurmhT0bg4z9pqwlkIPuXg7e3NlyEAwOmys7M1ZcoUu/ZFi+JVu/afYYfAU34EHwAAKoHihramTo3XwoWEHWch+AAAYDJHoadNm2f18svVCT1ORvABAMAkS5cu1Y8//mjXHhUVr969pbvuMqGoKo7gAwCACUradiI6ml6eikLwAQDAhYrbXDQqKl6jR0uRkSxIWJEIPgAAuEhxvTzx8UWbi9LLU/G8zC4AAABP4Cj0fPjhnUpJiTehGs9Fjw8AABVo9+7dWrx4sV17VFS8UlIY1nI1gg8AABWEoa3Kh+ADAEAFcBR6xo8fzwbXJiP4AADgRJfq5YG5mNwMAICTOAo9hw/XZwJzJUKPDwAAl6m4zUWZwFz5EHwAALgMTGB2LwQfAADKyVHoeeqppxQSEuL6YlAqBB8AAMpo8eLF2r17t107E5grP4IPAABlwF1b7o27ugAAKCVHoSclJV5RUYQed0GPDwAAl1BcL09KSrxSU6XkZCYxuwuCDwAAJXAUej75pJd8fdsrLq4o9HC7uvsg+AAA4MCuXbv03nvv2bX/dW2e3r3p6XE3BB8AAC7C2jxVF8EHAIC/cDyBebw2bWJz0aqA4AMAgEqewMwcnqqD4AMA8HiOQk9QUJCeeeYZsTxP1ULwAQB4rOI2F2UxwqqL4AMA8EiswOyZquTKzbNmzVKTJk3k7++vTp066dtvvzW7JABAJeIo9LRu/U9CjweocsFnyZIlGjFihOLj47V161a1bdtWMTExOnbsmNmlAQBMNnfuXIehJyEhXtOn1zahIrhalQs+06ZN0+DBg/XII4+odevWmjNnjgIDAzV37lyzSwMAmCgxMVEHDx60a09IiFeNGqy+7Cmq1Byf3NxcbdmyRWPGjLG2eXl5qVu3bkpNTXX4mpycHOXk5FifZ2VlVXidAADXKq6XJzJSio7+cxVmVH1VKvj8/vvvKigoUL169Wza69Wrp7S0NIevSUpKKnaCGwDAvRX3//eoqHgCj4eqUsGnPMaMGaMRI0ZYn2dlZSkiIsLEigAAzuAo9Nxyyy26+eabJRF4PFWVCj5169aVt7e3jh49atN+9OhRhYeHO3yNn5+f/Pz8XFEeAMAFfvzxRy1dutSuPSUlXlFRJhSESqVKTW729fVV+/bttXbtWmtbYWGh1q5dq+joaBMrAwC4QmJiYrGhJzVVSk42oShUKlWqx0eSRowYoQEDBqhDhw7q2LGj/v3vf+vs2bN65JFHzC4NAFCBHA1tvfDCv1S/vpdee60o9HDnFqpc8Lnvvvt0/PhxjR8/XhkZGWrXrp0+++wzuwnPAICqobgJzAkJRYsR1qhRNJ+HOT2QqmDwkaRhw4Zp2LBhZpcBAKhgxYWe3Nx4+ftLdepIkye7uChUalUy+AAAqrbiNhdNSYm33qL+0ksmFIZKj+ADAHArxfXy/HUCM8NaKA7BBwDgNhyFnscee0z169dXVBQTmHFpBB8AQKX3n//8R7/99ptd++LFRWvzXJi8TE8PLoXgAwCo1C511xZDWygLgg8AoNJyFHqmTo3XwoVSZKRksTC0hbIh+AAAKp3ienmmTo3X8OEMa6H8CD4AgErFUej57rv2+uOPXjp92oSCUKUQfAAAlcKuXbv03nvv2bVHRcUrJYUhLTgHwQcAYLrihrbi44smMDOsBWch+AAATOUo9EyePE61anlbb1UHnIXgAwAwRXG9PMnJ8Tp/XsrO5lZ1OJ+X2QUAADxPSWvz1Kkj+ftLDRsyrwfOR48PAMBlzp8/r0mTJtm1x8fHa/lyKTpa1k1GgYpA8AEAuERpJjATeFDRCD4AgArnKPQ8+uijatiwoQnVwJMRfAAAFWbu3Lk6ePCgXfuFXh7A1Qg+AIAKcamhLcAM3NUFAHA6R6GnaAXmoknMgFno8QEAOE1xvTwpKUXbTqSmsjYPzEXwAQA4haPQs3VrO61b10cLFxY9T05mbR6Yi+ADALgse/bs0aJFi+zaL2wuunDhnz089PTAbAQfAEC5sbko3A3BBwBQLo5Cz9ixY1WtGl8tqLz4rxMAUCbcpg53xu3sAIBSI/TA3dHjAwC4pJycHCUnJ9u1E3jgbgg+AIASlbQ2D7kH7obgAwAolqPQ06LFAM2a1YT1eOCWCD4AADuLFi3Snj177NovDG099JCrKwKcg+ADALDBBGZUZdzVBQCwchR6UlLiFRVF6EHVQI8PAKDYXp6oKCYwo2oh+ACAh3MUeg4caKW5c+9VZCTbTqBqIfgAgIf6+eef9e6779q1R0XFa/Hiot9bLC4uCqhgBB8A8EClmcCcnCxuWUeVQ/ABAA/jKPS0bfu8Jk/2UVRU0dDWhQdQ1RB8AMBDlLQC8+LFUlpaUS8PgQdVGbezA4AHKCn0pKZKhiFFRzO0haqPHh8AqMJyc3OVlJRk135hLk9U1J9zeejpgScg+ABAFVWaCczM5YGnYagLAKogR6Fny5aHWIEZHo8eHwCoQt599139/PPPdu0X5vL8/js9PPBsBB8AqCJKGtr661wewJMRfACgCnAUepjLA9grc/Dx9vbWkSNHFBYWZtP+xx9/KCwsTAUFBU4rDgBQstJMYAbwpzIHH8MwHLbn5OTI19f3sgsCAJSOo9DTuHFjxcbGur4YwE2UOvjMmDFDkmSxWPTWW2+pRo0a1mMFBQX68ssv1bJlS+dXCACwsW/fPr3zzjt27fTyAJdW6uAzffp0SUU9PnPmzJG3t7f1mK+vr5o0aaI5c+Y4v0IAgFVJKzBf2GcLQPFKHXz2798vSeratauWLl2qWrVqVVhRAAB7jkJPXFycunb1U2oq+2wBpVHmOT7r16+viDoAAMW41ATmuDhuVQdKq8zBZ+DAgSUenzt3brmLAQDYYtsJwLnKHHxOnjxp8zwvL087duzQqVOndOuttzqtMADwZHl5eZo4caJde25uvNavF/N5gHIqc/D56KOP7NoKCwv1xBNPqHnz5k4pCgA81fLl0rZtjnt5EhLiVaOGdOYM83mA8nLKys1eXl4aMWKEbrnlFo0aNcoZlwQAj+Qo9DRpcrdq1bpa0dFS167S+vXM5wHKy2lbVuzbt0/5+fnOuhwAeJT33ntPu3btsmtPSIhXZKSUlkYPD+AMZQ4+I0aMsHluGIaOHDmiTz/9VAMGDHBaYQDgKYqbwLx4cdEEZovFldUAVVuZg8+2bdtsnnt5eSk0NFQvv/zyJe/4AgDYKmlzUXZUB5zPYhS3+ZaHysrKUnBwsDIzMxUUFGR2OQCqKDYXBZyrtN/f5Z7jc+zYMe3evVuSFBkZabdbOwDAXnF3bTVo0ECDBw82oSLAs5Q5+GRlZWno0KFatGiRCgsLJUne3t667777NGvWLAUHBzu9SACoCg4cOKBt2+bZtUdFxTNxGXARr7K+YPDgwfrf//6nTz/9VKdOndKpU6e0YsUKfffdd3r88ccrokYAcHuJiYmaN88+9CQkxCs52YSCAA9V5h6fFStWKCUlRTfeeKO1LSYmRm+++aZ69Ojh1OIAoCpwNJ9n9OjRWr3aX9HRTF4GXKnMwadOnToOh7OCg4PZsR0A/uJSE5jZYwtwvTIPdY0bN04jRoxQRkaGtS0jI0PPPfec/vWvfzm1OABwV8WFnqgo7toCzFTm4DN79mx98803atSokVq0aKEWLVqoUaNG2rRpk15//XVde+211oezpKena9CgQWratKkCAgLUvHlzxcfHKzc31+a8H374QTfddJP8/f0VERGhyZMnO60GACiNgoICh6EnJSWe+TxAJVDmoa4+ffrI4uJlRNPS0lRYWKjXX39dLVq00I4dOzR48GCdPXtWU6dOlVR0t1n37t3VrVs3zZkzRz/++KMGDhyokJAQPfbYYy6tF4BnKmloi8UIgcrBbRcwnDJlimbPnq1ffvlFUlFP1NixY5WRkSFfX19JUlxcnJYtW6a0tLRSX5cFDAGUh6PQc88996h169YmVAN4ntJ+f5d5qKtZs2b6448/7NpPnTqlZs2alfVy5ZaZmanatWtbn6empqpLly7W0CMV3W22e/dunTx5stjr5OTkKCsry+YBAKW1bNmyYredIPQAlU+Zg096eroKCgrs2nNycvTbb785pahL2bt3r2bOnGmzblBGRobq1atnc96F53+diH2xpKQkBQcHWx8REREVUzSAKicxMVHbt2+3a4+KilfnzkWrNAOoXEo9x2f5X/4Gp6Sk2NzSXlBQoLVr16pp06ZlevO4uDhNmjSpxHN27dqlli1bWp8fOnRIPXr00D333OOU5d3HjBljs+N8VlYW4QfAJZW0uWjnzlJqatGcHm5XByqXUgefvn37SpIsFosGDBhgc8zHx0dNmjTRyy+/XKY3HzlypGJjY0s856/DZ4cPH1bXrl3VuXNnvfHGGzbnhYeH6+jRozZtF56Hh4cXe30/Pz/5+fmVqW4Anqs0m4vGxTGRGaisSh18LuzL1bRpU23evFl169a97DcPDQ1VaGhoqc49dOiQunbtqvbt22vevHny8rIdpYuOjtbYsWOVl5cnHx8fSdKaNWsUGRnJwooAnMJR6AkIqK9lyx5TVNSfvTssTAhUXm5xV9ehQ4d0yy23qHHjxlqwYIG8vb2txy705mRmZioyMlLdu3fX6NGjtWPHDg0cOFDTp08v0+3s3NUF4GIZGRl6/fXX7drj4+PVsqW0e7cUGSmV4QZSAE5W2u/vMq/j88ILL5R4fPz48WW95CWtWbNGe/fu1d69e3XFFVfYHLuQ24KDg7V69WoNHTpU7du3V926dTV+/HjW8AFwWS41tHVhWTMXL28GoJzK3OMTFRVl8zwvL0/79+9XtWrV1Lx5c23dutWpBboaPT4ALnAUeiZNGiVv7wAtXFg0nLV8+Z/zeRjeAsxTYT0+27Ztc/hmsbGxuuOOO8p6OQCodEraZ8vbWzpz5s87tpjPA7iXMq/j40hQUJASExPZpBSA2ysp9CQnS8OHS9HR3LEFuKsy9/gUJzMzU5mZmc66HAC4VGFhoSZMmGDXnpISb709PTW1qG3TJhcXB8Bpyhx8ZsyYYfPcMAwdOXJEb7/9tnr27Om0wgDAVYrr5UlJibcuRMjaPEDVUObJzRevzuzl5aXQ0FDdeuutGjNmjGrWrOnUAl2Nyc2AZ3EUeu677z61bNmSicuAGynt97dbrOPjSgQfwDOsX79eX375pV37X1dgBuA+KuyuLqloJ/a9e/dKklq0aKGQkJByFQkAZijNthMAqqYyBZ/09HQNHTpUKSkp1oUDLRaLevTooVdffVVNmjSpiBoBwGlK2lwUQNVX6uBz8OBBXX/99fLx8dGECRPUqlUrSdJPP/2k2bNnKzo6Wps3b7ZbWRkAKgN6eQBIZZjjM2jQIO3du1cpKSny9/e3OXbu3Dn16NFDV155pd56660KKdRVmOMDVD2OQk+jRo30yCOPmFANgIrg9Dk+n332mZYsWWIXeiQpICBAEyZM0P3331++agGgAhw/flyvvfaaXTu9PIDnKnXw+f3330ucw9OsWTOdOHHCGTUBwGVjaAuAI6UOPvXr19dPP/1U7ByeHTt2KDw83GmFAUB5OQo9zz33nAIDA02oBkBlUurg07dvXz377LNau3atQkNDbY4dO3ZMo0ePVt++fZ1dHwCU2gsvvCBH0xbp5QFwQaknN588eVKdOnVSRkaGHn74YbVs2VKGYWjXrl169913FR4erm+++Ua1a9eu6JorFJObAffE0Bbg2Zw+ublWrVr63//+p+eff16LFy/WqVOnJEkhISF68MEHNXHiRLcPPQDcj2EYeuGFF+zaL+ymHhXFdhMA/lSuLSsMw9Dx48clSaGhobJYLE4vzCz0+ADuo6Rens6di3ZTj45mN3XAE5T2+9urPBe3WCwKCwtTWFhYlQo9ANyHo9Dz3nv3KCWlaGgrLq4o9LCbOoC/KtdeXQBgltTUVK1evdquPSoqXikpfwad3r0Z4gJgj+ADwG1cagIzQQfApRB8ALgFNhcF4AwEHwCVGrepA3CmUgWfGTNmlPqCw4cPL3cxAPBXjkJP48aNFRsb6/piAFQJpbqdvWnTpqW7mMWiX3755bKLMhO3swPmO3nypMN/cNHLA6A4Tl3AcP/+/U4rDABKwtAWgIpUrnV8JCk3N1e7d+9Wfn6+M+sB4MEchZ7Jk5+1rs0DAJerzMEnOztbgwYNUmBgoK6++modOHBAkvTPf/5TycnJTi8QQNU3c+ZMh6EnKipebdtWZxFCAE5T5uAzZswYbd++XRs2bJC/v7+1vVu3blqyZIlTiwNQ9SUmJurEiRN27fHx8erdu2i7CdbnAeAsZb6dfdmyZVqyZImuv/56m+0qrr76au3bt8+pxQGouorbXJS5PAAqUpmDz/HjxxUWFmbXfvbsWfbtAlAqTGAGYJYyD3V16NBBn376qfX5hbDz1ltvKTo62nmVAaiSHIWeu+++m9ADwCXK3OMzceJE9ezZUz/99JPy8/P1yiuv6KefftKmTZv0xRdfVESNAKqAbdu2afny5XbtBB4ArlTmHp8bb7xR33//vfLz83XNNddo9erVCgsLU2pqqtq3b18RNQJwc4mJiYQeAJVCqVZu9iSs3Aw4l6OhrXbtxqtPH+YEAnAep67cnJWVVeo3JiwAkIqfwJyQEK/oaKlPHxcXBAAqZfAJCQkp9R1bBQUFl1UQAPfnKPT89lukVq26Xy1bigUJAZimVMFn/fr11t+np6crLi5OsbGx1ru4UlNTtWDBAiUlJVVMlQDcwocfntaOHdPs2lNS4pWaWvT76GgWJARgnjLP8fn73/+uRx99VA888IBN+7vvvqs33nhDGzZscGZ9LsccH6B8SlqbZ/lyadQoyWKRJk0i+ABwvtJ+f5c5+AQGBmr79u268sorbdr37Nmjdu3aKTs7u3wVVxIEH6DsHIWeZ599VtWrVzehGgCeqLTf32W+nT0iIkJvvvmmXftbb72liIiIsl4OgBtbsmSJw9ATHx9P6AFQKZV5AcPp06frrrvu0qpVq9SpUydJ0rfffquff/5ZH374odMLBFA5FTe0lZISr6gohrMAVE7lWsfnt99+02uvvaa0tDRJUqtWrTRkyJAq0ePDUBdQspI2F+3cWUpNLZrAvGmTCcUB8FgVNsenqiP4AMW71Oaiy5dLyclFt6vT4wPAlZy6gOHFTp06pf/85z/atWuXJOnqq6/WwIEDFRwcXL5qAVR6jkLP/fffr8jISOvz3r0JPAAqtzL3+Hz33XeKiYlRQECAOnbsKEnavHmzzp07p9WrV+vaa6+tkEJdhR4fwFZaWpqWLFli184+WwAqkwob6rrpppvUokULvfnmm6pWrajDKD8/X48++qh++eUXffnll5dXuckIPsCfihvaioqKZ0gLQKVSYcEnICBA27ZtU8uWLW3af/rpJ3Xo0IF1fIAqwlHoGT9+vCwWC5OYAVQ6FTbHJygoSAcOHLALPgcPHlTNmjXLXimASuVSE5ilop6eCz0+AOBOyhx87rvvPg0aNEhTp05V586dJUkbN27Uc889Z7eNBQD34ij0hIS00lNP3WvTxiRmAO6qzMFn6tSpslgs6t+/v/Lz8yVJPj4+euKJJ5ScnOz0AgFUvOzsbE2ZMsWuPSEhXtHR0lNPmVAUAFSAcq/jk52drX379kmSmjdvrsDAQKcWZhbm+MDTMIEZQFVQoev4SEWblV5zzTXlfTmASuBSm4sSeABUNaUOPgMHDizVeXPnzi13MQBcY9WqVfr222/t2lmbB0BVV+rgM3/+fDVu3FhRUVFilwvAfZXmri0AqKpKHXyeeOIJLVq0SPv379cjjzyihx9+WLVr167I2gA4UUmbiwKAp/Aq7YmzZs3SkSNHNGrUKH3yySeKiIjQvffeq5SUFHqAgEouMTHRYehJSYnX8uUmFAQAJin3XV2//vqr5s+fr//+97/Kz8/Xzp07VaNGDWfX53Lc1YWqxtHQ1oMPPqgBA65k9WUAVUaF39Xl5eUli8UiwzBUUFBQ3ssAqCDp6elasGCBXfuFoS1WXwbgicoUfHJycrR06VLNnTtXX3/9tXr16qVXX31VPXr0kJdXqUfNAFSw0kxgZvVlAJ6o1MHnySef1OLFixUREaGBAwdq0aJFqlu3bkXWBqAcStpcFAA8Xann+Hh5ealRo0aKiooq8X+gS5cudVpxZmCOD9zViy++6HDYmbu2AHgCp8/x6d+/P/9iBCopR708hw61U69efUyoBgAqrzItYAigcjl//rwmTZpk156SEq/UVGnHDubxAMBflfuuLgDmKmkCc1QUd2wBgCMEH8ANOQo9I0eOtK6lxR1bAOCY292DnpOTo3bt2slisej777+3OfbDDz/opptukr+/vyIiIjR58mRzigQqyIYNGxyGnvj4+CqxgCgAVDS3Cz6jRo1SgwYN7NqzsrLUvXt3NW7cWFu2bNGUKVOUkJCgN954w4QqAedLTEzUF198YdfOthMAUHpuNdS1atUqrV69Wh9++KFWrVplc2zhwoXKzc3V3Llz5evrq6uvvlrff/+9pk2bpscee8ykigHnKK6Xp3NnKTW1aD4PQ1sAcGluE3yOHj2qwYMHa9myZQoMDLQ7npqaqi5dusjX19faFhMTo0mTJunkyZOqVauWw+vm5OQoJyfH+jwrK8v5xQPldKkVmNl2AgDKxi2Cj2EYio2N1ZAhQ9ShQwelp6fbnZORkaGmTZvatNWrV896rLjgk5SUVOyXC2Cm4jYXvfLKK63PmcQMAGVj6hyfuLg4WSyWEh9paWmaOXOmTp8+rTFjxji9hjFjxigzM9P6OHjwoNPfAyiLw4cPFzu09dfQAwAoO1N7fEaOHKnY2NgSz2nWrJnWrVun1NRU+fn52Rzr0KGDHnroIS1YsEDh4eE6evSozfELz8PDw4u9vp+fn911AbOUZnNRAED5mRp8QkNDFRoaesnzZsyYoRdffNH6/PDhw4qJidGSJUvUqVMnSVJ0dLTGjh2rvLw8+fj4SJLWrFmjyMjIYoe5gMqEzUUBoOK5xRyfRo0a2Ty/sF5J8+bNdcUVV0gqmvuQmJioQYMGafTo0dqxY4deeeUVTZ8+3eX1AmXx3//+V/v377drT0kpWoGZOTwA4Dxut45PcYKDg7V69Wrt379f7du318iRIzV+/HhuZUellpiYaBd6OnXqZN1rKznZpMIAoIpyix6fizVp0kSGYdi1/+1vf9NXX31lQkVA2eTl5WnixIl27Rfm8uTmcps6AFQEtww+gDsrzQRmblMHgIpRZYa6AHfgKPS0afOsoqKKVmFm6wkAqFj0+AAu8NNPP+n999+3a7/Qy8PWEwDgGgQfoII56uVp3ry5Hn74Yetztp4AANcg+AAVyFHoiYqKV3KyFBT0Z+8Oc3oAwDUIPkAFmDx5ss6dO2fXzo7qAGAugg/gZI56eR599FE1bNhQEsNaAGAmgg/gJCdOnNDMmTPt2i/eZ4thLQAwD8EHcAI2FwUA90DwAS4Tm4sCgPsg+ADltHLlSm3evNmunV4eAKi8CD5AOTjq5YmJidH1119vQjUAgNIi+ABlkJ+fr5deesmunV4eAHAPBB+glJjADADuj+ADlIKj0DNq1CgFBASYUA0AoLwIPkAJ9u7dq4ULF9q108sDAO6J4AMUw1EvT+vWrXXPPfeYUA0AwBkIPoADjkIPvTwA4P4IPsBfvPHGGzpy5IhdO6EHAKoGgg/w/znq5Rk8eLAaNGhgQjUAgIpA8IHHO336tKZNm2bXTi8PAFQ9XmYXAJgpMTGxXKFn+XKpc+eiXwEA7oMeH3gsR0Nb7dqNV58+l95cNDlZSk0t+rV374qoDgBQEQg+8DjffPONUlJS7NoTEuIVHS316XPpa8TFFYWeuLgKKBAAUGEIPvAojnp57rjjDqWn/03R0aUPMr1709MDAO6I4AOPUFhYqAkTJti1X5jL87e/EWQAwBMQfFDlzZw5UydOnLBr564tAPA8BB9UaY6GtkaPHi1/f38TqgEAmI3ggyrp8OHDevPNN+3a6eUBAM9G8EGV46iX58Ybb9Tf//53E6oBAFQmBB9UKWwuCgAoCcEHVcLKlSu1efNmu3ZCDwDgrwg+cDvLl/+5eGDv3o57eZ588kmFhoaaUB0AoDIj+MDtXNgu4uWXs7Vt2xS74/TyAACKQ/CB24mLk7Zts+/ladiwoR599FETKgIAuAuCD9yOo9Azfvx4WSyX3lwUAODZCD5wG3v27NGiRYvs2hnaAgCUFsEHbsHRBOZ77rlHrVu3NqEaAIC7IvigUrvU5qIAAJQFwQeV1qJFi7Rnzx6btoCAAI0aNcqkigAA7o7gg0rJ0dBWXFyc/Pz8TKgGAFBVEHxQqfz++++aNWuWXTtDWwAAZyD4oNJw1Mvzj3/8Q507dzahGgBAVUTwQaXA5qIAAFcg+MBUX3/9tdauXWvXTugBAFQEgg9M46iXZ9iwYapTp44J1QAAPAHBBy53/vx5TZo0ya6dXh4AQEUj+MClkpKSlJuba9PWqlUr3XvvvSZVBADwJAQfuIyjoa1//etf8vLyMqEaAIAnIvigwv38889699137doZ2gIAuBrBBxXKUS/PQw89pBYtWphQDQDA0xF8UCHYXBQAUBkRfOB0S5YsUVpamk2bn5+f4uLiTKoIAIAiBB84laOhrdGjR8vf39+EagAAsEXwgVP88ccfevXVV+3aGdoCAFQmBB9cNke9PN26ddMNN9xgQjUAABSP4IPLwuaiAAB3QvBBuWzatElr1qyxayf0AAAqM4IPysxRL8/QoUNVt25dE6oBAKD0CD4otZycHCUnJ9u108sDAHAXBB+UyuTJk3Xu3DmbtsjISN1///0mVQQAQNkRfHBJbC4KAKgqCD4o1r59+/TOO+/YtTO0BQBwVwQfOOSol+eBBx7QVVddZUI1AAA4B8EHNgzD0AsvvGDXTi8PAKAqcKtJGp9++qk6deqkgIAA1apVS3379rU5fuDAAd12220KDAxUWFiYnnvuOeXn55tTrBv64IMP7EKPt7c3oQcAUGW4TY/Phx9+qMGDB2vixIm69dZblZ+frx07dliPFxQU6LbbblN4eLg2bdqkI0eOqH///vLx8dHEiRNNrNw9OBraGjVqlAICAkyoBgCAimExDMMwu4hLyc/PV5MmTZSYmKhBgwY5PGfVqlXq1auXDh8+rHr16kmS5syZo9GjR+v48ePy9fUt1XtlZWUpODhYmZmZCgoKctrPUFmdOHFCM2fOtGunlwcA4E5K+/3tFkNdW7du1aFDh+Tl5aWoqCjVr19fPXv2tOnxSU1N1TXXXGMNPZIUExOjrKws7dy5s9hr5+TkKCsry+bhKRITE+1CT9euXQk9AIAqyy2Czy+//CJJSkhI0Lhx47RixQrVqlVLt9xyi06cOCFJysjIsAk9kqzPMzIyir12UlKSgoODrY+IiIgK+ikql+I2F+3SpYsJ1QAA4BqmBp+4uDhZLJYSH2lpaSosLJQkjR07VnfddZfat2+vefPmyWKx6P3337+sGsaMGaPMzEzr4+DBg8740Sqtb775hh3VAQAey9TJzSNHjlRsbGyJ5zRr1kxHjhyRJLVu3dra7ufnp2bNmunAgQOSpPDwcH377bc2rz169Kj1WHH8/Pzk5+dXnvLdjqPA8+STTyo0NNSEagAAcD1Tg09oaGipvnTbt28vPz8/7d69WzfeeKMkKS8vT+np6WrcuLEkKTo6Wi+99JKOHTumsLAwSdKaNWsUFBRkE5g8UV5ensM72+jlAQB4Gre4nT0oKEhDhgxRfHy8IiIi1LhxY02ZMkWSdM8990iSunfvrtatW6tfv36aPHmyMjIyNG7cOA0dOtRjenQceeedd7Rv3z6btpYtW+q+++4zqSIAAMzjFsFHkqZMmaJq1aqpX79+OnfunDp16qR169apVq1akooW2luxYoWeeOIJRUdHq3r16howYIDDVYg9haOhrXbt/qVJk7wUECD17m1CUQAAmMgt1vFxpaqwjs+hQ4f01ltv2bXHx8erc2cpNVWKjpY2bTKhOAAAKkBpv7/dpscHpeOol2fAgAFq0qSJJCkuTkpOLvoVAABPQ/CpIkq7uWjv3gxxAQA8F8GnCti6das++eQTm7YGDRpo8ODBJlUEAEDlRPBxc46GtkaPHi1/f38TqgEAoHJziy0rYO/s2bMOQ09KSrxWryb0AADgCD0+buirr77SunXrbNruv/9+PfJIpFJTiyYvM48HAAB7BB83U9I+W9yxBQBAyQg+buLYsWOaPXu2TVt0dLS6d+9ufc4dWwAAlIzg4wbmzZtn3Yz1glGjRikgIMCkigAAcE8En0qsoKBAL774ol07m4sCAFA+BJ9K6ocfftBHH31k0/bAAw/oqquukiQtX/7nfB6GtwAAKB2CTyXkaALz+PHjZbFYrM+Tk8UdXAAAlBHBpxI5ffq0pk2bZtPWqlUr3XvvvXbncgcXAABlR/CpJJYvX65t27bZtA0fPly1atVyeD53cAEAUHYEH5OVdnNRAABw+Qg+Jjp16pReeeUVm7bbbrtNHTp0MKkiAACqNoKPSTZu3KjPP//cpm3s2LGqVo2PBACAisK3rIvl5+dr4sSJMgzD2tazZ0917NjRxKoAAPAMBB8XOnDggObNm2fTNmLECNWsWdOkigAA8CwEHxf59NNP9d1331mft2jRQg899JCJFQEA4HkIPi7y19DTr18/NWvWzMRqAADwTAQfF4mKitKhQ4f06KOPysfHx+xyAADwSAQfF+nNaoMAAJjOy+wCAAAAXIXgUwksXy517lz0KwAAqDgEn0rgrzutAwCAikPwqQTi4qToaHZaBwCgojG5uRJgp3UAAFyDHh8AAOAxCD4AAMBjEHxchDu3AAAwH8HHRbhzCwAA8xF8XIQ7twAAMB93dbkId24BAGA+enwAAIDHIPgAAACPQfABAAAeg+ADAAA8BsEHAAB4DIIPAADwGAQfAADgMQg+AADAYxB8AACAxyD4AAAAj0HwAQAAHoPgAwAAPAbBBwAAeAx2Z7+IYRiSpKysLJMrAQAApXXhe/vC93hxCD4XOX36tCQpIiLC5EoAAEBZnT59WsHBwcUetxiXikYeprCwUIcPH1bNmjVlsVjMLqfCZWVlKSIiQgcPHlRQUJDZ5cABPqPKj8+o8uMzqvwu9zMyDEOnT59WgwYN5OVV/Eweenwu4uXlpSuuuMLsMlwuKCiI/xlUcnxGlR+fUeXHZ1T5Xc5nVFJPzwVMbgYAAB6D4AMAADwGwcfD+fn5KT4+Xn5+fmaXgmLwGVV+fEaVH59R5eeqz4jJzQAAwGPQ4wMAADwGwQcAAHgMgg8AAPAYBB8AAOAxCD4e7tNPP1WnTp0UEBCgWrVqqW/fvjbHDxw4oNtuu02BgYEKCwvTc889p/z8fHOK9WA5OTlq166dLBaLvv/+e5tjP/zwg2666Sb5+/srIiJCkydPNqdID5Senq5BgwapadOmCggIUPPmzRUfH6/c3Fyb8/iMzDdr1iw1adJE/v7+6tSpk7799luzS/JISUlJuu6661SzZk2FhYWpb9++2r17t80558+f19ChQ1WnTh3VqFFDd911l44ePeq0Ggg+HuzDDz9Uv3799Mgjj2j79u3auHGjHnzwQevxgoIC3XbbbcrNzdWmTZu0YMECzZ8/X+PHjzexas80atQoNWjQwK49KytL3bt3V+PGjbVlyxZNmTJFCQkJeuONN0yo0vOkpaWpsLBQr7/+unbu3Knp06drzpw5ev75563n8BmZb8mSJRoxYoTi4+O1detWtW3bVjExMTp27JjZpXmcL774QkOHDtU333yjNWvWKC8vT927d9fZs2et5zzzzDP65JNP9P777+uLL77Q4cOHdeeddzqvCAMeKS8vz2jYsKHx1ltvFXvOypUrDS8vLyMjI8PaNnv2bCMoKMjIyclxRZkwij6Hli1bGjt37jQkGdu2bbMee+2114xatWrZfB6jR482IiMjTagUhmEYkydPNpo2bWp9zmdkvo4dOxpDhw61Pi8oKDAaNGhgJCUlmVgVDMMwjh07ZkgyvvjiC8MwDOPUqVOGj4+P8f7771vP2bVrlyHJSE1Ndcp70uPjobZu3apDhw7Jy8tLUVFRql+/vnr27KkdO3ZYz0lNTdU111yjevXqWdtiYmKUlZWlnTt3mlG2xzl69KgGDx6st99+W4GBgXbHU1NT1aVLF/n6+lrbYmJitHv3bp08edKVpeL/y8zMVO3ata3P+YzMlZubqy1btqhbt27WNi8vL3Xr1k2pqakmVgap6O+LJOvfmS1btigvL8/m82rZsqUaNWrktM+L4OOhfvnlF0lSQkKCxo0bpxUrVqhWrVq65ZZbdOLECUlSRkaGTeiRZH2ekZHh2oI9kGEYio2N1ZAhQ9ShQweH5/AZVS579+7VzJkz9fjjj1vb+IzM9fvvv6ugoMDhZ8Cfv7kKCwv19NNP64YbblCbNm0kFf2d8PX1VUhIiM25zvy8CD5VTFxcnCwWS4mPC/MSJGns2LG666671L59e82bN08Wi0Xvv/++yT9F1Vbaz2jmzJk6ffq0xowZY3bJHqe0n9FfHTp0SD169NA999yjwYMHm1Q54D6GDh2qHTt2aPHixS5932oufTdUuJEjRyo2NrbEc5o1a6YjR45Iklq3bm1t9/PzU7NmzXTgwAFJUnh4uN2dDxdm1oeHhzuxas9S2s9o3bp1Sk1Ntdu3pkOHDnrooYe0YMEChYeH293twGd0+Ur7GV1w+PBhde3aVZ07d7abtMxnZK66devK29vb4WfAn795hg0bphUrVujLL7/UFVdcYW0PDw9Xbm6uTp06ZdPr49TPyykzheB2MjMzDT8/P5vJzbm5uUZYWJjx+uuvG4bx5+Tmo0ePWs95/fXXjaCgIOP8+fMur9nT/Prrr8aPP/5ofaSkpBiSjA8++MA4ePCgYRh/TpzNzc21vm7MmDFMnHWh3377zbjyyiuN+++/38jPz7c7zmdkvo4dOxrDhg2zPi8oKDAaNmzI5GYTFBYWGkOHDjUaNGhg7Nmzx+74hcnNH3zwgbUtLS3NqZObCT4e7KmnnjIaNmxopKSkGGlpacagQYOMsLAw48SJE4ZhGEZ+fr7Rpk0bo3v37sb3339vfPbZZ0ZoaKgxZswYkyv3TPv377e7q+vUqVNGvXr1jH79+hk7duwwFi9ebAQGBlrDKyrWb7/9ZrRo0cL4+9//bvz222/GkSNHrI8L+IzMt3jxYsPPz8+YP3++8dNPPxmPPfaYERISYnPHKlzjiSeeMIKDg40NGzbY/H3Jzs62njNkyBCjUaNGxrp164zvvvvOiI6ONqKjo51WA8HHg+Xm5hojR440wsLCjJo1axrdunUzduzYYXNOenq60bNnTyMgIMCoW7euMXLkSCMvL8+kij2bo+BjGIaxfft248YbbzT8/PyMhg0bGsnJyeYU6IHmzZtnSHL4+Cs+I/PNnDnTaNSokeHr62t07NjR+Oabb8wuySMV9/dl3rx51nPOnTtnPPnkk0atWrWMwMBA44477rD5x8Tlsvz/QgAAAKo87uoCAAAeg+ADAAA8BsEHAAB4DIIPAADwGAQfAADgMQg+AADAYxB8AACAxyD4AEAF2bBhgywWi06dOmV2KQD+P4IPALeVkJCgdu3amV0GADdC8AFQ5eXl5ZldAoBKguADwDSFhYVKSkpS06ZNFRAQoLZt2+qDDz6Q9Ocw0dq1a9WhQwcFBgaqc+fO2r17tyRp/vz5SkxM1Pbt22WxWGSxWDR//nxJksVi0ezZs9W7d29Vr15dL730Uol1XHivlJQURUVFKSAgQLfeequOHTumVatWqVWrVgoKCtKDDz6o7Oxs6+tycnI0fPhwhYWFyd/fXzfeeKM2b95cMX9YAJzDabt+AUAZvfjii0bLli2Nzz77zNi3b58xb948w8/Pz9iwYYOxfv16Q5LRqVMnY8OGDcbOnTuNm266yejcubNhGIaRnZ1tjBw50rj66qvtdniWZISFhRlz58419u3bZ/z6668l1nHhva6//nrj66+/NrZu3Wq0aNHCuPnmm43u3bsbW7duNb788kujTp06NhuMDh8+3GjQoIGxcuVKY+fOncaAAQOMWrVqGX/88YfNdU+ePFkxf4AAyozgA8AU58+fNwIDA41NmzbZtA8aNMh44IEHrKHh888/tx779NNPDUnGuXPnDMMwjPj4eKNt27Z215ZkPP3006WuxdF7JSUlGZKMffv2Wdsef/xxIyYmxjAMwzhz5ozh4+NjLFy40Ho8NzfXaNCggTF58mSb6xJ8gMqjmlk9TQA82969e5Wdna1//OMfNu25ubmKioqyPv/b3/5m/X39+vUlSceOHVOjRo1KvH6HDh3KXNNf36tevXoKDAxUs2bNbNq+/fZbSdK+ffuUl5enG264wXrcx8dHHTt21K5du8r83gBcg+ADwBRnzpyRJH366adq2LChzTE/Pz/t27dPUlGYuMBisUgqmht0KdWrVy9zTRe/11+fX2grzXsDqLyY3AzAFK1bt5afn58OHDigFi1a2DwiIiJKdQ1fX18VFBRUcKWONW/eXL6+vtq4caO1LS8vT5s3b1br1q1NqQnApdHjA8AUNWvW1LPPPqtnnnlGhYWFuvHGG5WZmamNGzcqKChIjRs3vuQ1mjRpov379+v777/XFVdcoZo1a8rPz88F1Rf1KD3xxBN67rnnVLt2bTVq1EiTJ09Wdna2Bg0a5JIaAJQdwQeAaSZMmKDQ0FAlJSXpl19+UUhIiK699lo9//zzpRpSuuuuu7R06VJ17dpVp06d0rx58xQbG1vxhf9/ycnJKiwsVL9+/XT69Gl16NBBKSkpqlWrlstqAFA2FsMwDLOLAAAAcAXm+AAAAI9B8AFQ5Q0ZMkQ1atRw+BgyZIjZ5QFwIYa6AFR5x44dU1ZWlsNjQUFBCgsLc3FFAMxC8AEAAB6DoS4AAOAxCD4AAMBjEHwAAIDHIPgAAACPQfABAAAeg+ADAAA8BsEHAAB4DIIPAADwGP8PJLL/ZqwEQG8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1039,12 +4137,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "4/4 [==============================] - 0s 5ms/step\n" + "\r", + "\u001b[1m1/4\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 11ms/step" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOD0lEQVR4nO3de1xUZf4H8M9wlYsMch0wUMQrimaiRhhqsuKtMnXzlve0DDS1TG3T1EzQWjOttNxNbVNza7XMynLFy6qEiOEtZZVFseSiGTMiCMic3x/+ODlyG4aZOWfmfN6v17xecM4zM88cDme+53m+z/OoBEEQQERERKRgDlJXgIiIiEhqDIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIyGYsXrwYKpXKqLIqlQqLFy+2aH369OmDPn36yPb1iMh4DIiIqME2bdoElUolPpycnNC8eXNMnDgRv/76q9TVk52WLVsaHK+AgAA8+uij2Llzp1lev6SkBIsXL8aBAwfM8npESsSAiIhMtnTpUvzjH//A+vXrMXDgQHz66afo3bs3bt++bZH3e+2111BaWmqR17a0Bx98EP/4xz/wj3/8Ay+//DKuXr2KYcOGYf369Y1+7ZKSEixZsoQBEVEjOEldASKyXQMHDkRUVBQA4Nlnn4Wfnx9WrFiBXbt24emnnzb7+zk5OcHJyTYvW82bN8czzzwj/j5+/Hi0bt0a77zzDp5//nkJa0ZEAFuIiMiMHn30UQBAdna2wfbz589jxIgR8PHxQZMmTRAVFYVdu3YZlKmoqMCSJUvQpk0bNGnSBL6+vujVqxf27t0rlqkph6isrAyzZ8+Gv78/mjZtiieeeAK//PJLtbpNnDgRLVu2rLa9ptfcuHEjHnvsMQQEBMDV1RURERFYt25dg45FfTQaDTp06ICcnJw6yxUWFmLKlCkIDAxEkyZN0KVLF2zevFncf+nSJfj7+wMAlixZInbLWTp/isje2OatFhHJ0qVLlwAAzZo1E7edPXsWMTExaN68OebPnw8PDw/885//xNChQ/Gvf/0LTz31FIC7gUlSUhKeffZZ9OjRAzqdDsePH8eJEyfwpz/9qdb3fPbZZ/Hpp59izJgxeOSRR5CSkoLBgwc36nOsW7cOHTt2xBNPPAEnJyd8/fXXeOGFF6DX65GQkNCo165SUVGBK1euwNfXt9YypaWl6NOnDy5evIjExESEhYXh888/x8SJE1FUVIQXX3wR/v7+WLduHaZPn46nnnoKw4YNAwB07tzZLPUkUgyBiKiBNm7cKAAQ/v3vfwvXrl0Trly5InzxxReCv7+/4OrqKly5ckUs269fPyEyMlK4ffu2uE2v1wuPPPKI0KZNG3Fbly5dhMGDB9f5vq+//rpw72UrMzNTACC88MILBuXGjBkjABBef/11cduECROEFi1a1PuagiAIJSUl1crFx8cLrVq1MtjWu3dvoXfv3nXWWRAEoUWLFkL//v2Fa9euCdeuXRNOnjwpjBo1SgAgzJgxo9bXW716tQBA+PTTT8Vt5eXlQnR0tODp6SnodDpBEATh2rVr1T4vETUMu8yIyGRxcXHw9/dHSEgIRowYAQ8PD+zatQsPPPAAAODGjRtISUnB008/jZs3b+L69eu4fv06fvvtN8THx+PChQviqDRvb2+cPXsWFy5cMPr9v/32WwDAzJkzDbbPmjWrUZ/Lzc1N/Fmr1eL69evo3bs3/ve//0Gr1Zr0mj/88AP8/f3h7++PLl264PPPP8e4ceOwYsWKWp/z7bffQqPRYPTo0eI2Z2dnzJw5E8XFxTh48KBJdSGi6thlRkQme//999G2bVtotVp8/PHHOHToEFxdXcX9Fy9ehCAIWLhwIRYuXFjjaxQWFqJ58+ZYunQpnnzySbRt2xadOnXCgAEDMG7cuDq7fi5fvgwHBweEh4cbbG/Xrl2jPteRI0fw+uuvIzU1FSUlJQb7tFot1Gp1g1+zZ8+eWLZsGVQqFdzd3dGhQwd4e3vX+ZzLly+jTZs2cHAwvHft0KGDuJ+IzIMBERGZrEePHuIos6FDh6JXr14YM2YMsrKy4OnpCb1eDwB4+eWXER8fX+NrtG7dGgAQGxuL7OxsfPXVV/jhhx/wt7/9De+88w7Wr1+PZ599ttF1rW1Cx8rKSoPfs7Oz0a9fP7Rv3x6rVq1CSEgIXFxc8O233+Kdd94RP1ND+fn5IS4uzqTnEpHlMSAiIrNwdHREUlIS+vbti/feew/z589Hq1atANzt5jEmGPDx8cGkSZMwadIkFBcXIzY2FosXL641IGrRogX0ej2ys7MNWoWysrKqlW3WrBmKioqqbb+/leXrr79GWVkZdu3ahdDQUHH7/v37662/ubVo0QKnTp2CXq83aCU6f/68uB+oPdgjIuMxh4iIzKZPnz7o0aMHVq9ejdu3byMgIAB9+vTBhx9+iLy8vGrlr127Jv7822+/Gezz9PRE69atUVZWVuv7DRw4EACwZs0ag+2rV6+uVjY8PBxarRanTp0St+Xl5VWbLdrR0REAIAiCuE2r1WLjxo211sNSBg0ahPz8fGzfvl3cdufOHaxduxaenp7o3bs3AMDd3R0Aagz4iMg4bCEiIrOaO3cu/vznP2PTpk14/vnn8f7776NXr16IjIzE1KlT0apVKxQUFCA1NRW//PILTp48CQCIiIhAnz590K1bN/j4+OD48eP44osvkJiYWOt7Pfjggxg9ejQ++OADaLVaPPLII9i3bx8uXrxYreyoUaMwb948PPXUU5g5cyZKSkqwbt06tG3bFidOnBDL9e/fHy4uLnj88cfx3HPPobi4GBs2bEBAQECNQZ0lTZs2DR9++CEmTpyIjIwMtGzZEl988QWOHDmC1atXo2nTpgDuJoFHRERg+/btaNu2LXx8fNCpUyd06tTJqvUlsmlSD3MjIttTNew+PT292r7KykohPDxcCA8PF+7cuSMIgiBkZ2cL48ePFzQajeDs7Cw0b95cGDJkiPDFF1+Iz1u2bJnQo0cPwdvbW3BzcxPat28vvPnmm0J5eblYpqYh8qWlpcLMmTMFX19fwcPDQ3j88ceFK1eu1DgM/YcffhA6deokuLi4CO3atRM+/fTTGl9z165dQufOnYUmTZoILVu2FFasWCF8/PHHAgAhJydHLNeQYff1TSlQ2+sVFBQIkyZNEvz8/AQXFxchMjJS2LhxY7XnHj16VOjWrZvg4uLCIfhEJlAJwj3twkREREQKxBwiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseJGY2k1+tx9epVNG3alNPkExER2QhBEHDz5k0EBwdXWyj5XgyIjHT16lWEhIRIXQ0iIiIywZUrV/DAAw/Uup8BkZGqpsi/cuUKvLy8JK4NERERGUOn0yEkJET8Hq8NAyIjVXWTeXl5MSAiIiKyMfWluzCpmoiIiBSPAREREREpHgMiIiIiUjzmEBERkeJVVlaioqJC6mqQCZydneHo6Njo15E0IDp06BDeeustZGRkIC8vDzt37sTQoUNrLPv888/jww8/xDvvvINZs2aJ22/cuIEZM2bg66+/hoODA4YPH453330Xnp6eYplTp04hISEB6enp8Pf3x4wZM/DKK69Y+NMREZHcCYKA/Px8FBUVSV0VagRvb29oNJpGzRMoaUB069YtdOnSBZMnT8awYcNqLbdz5078+OOPCA4OrrZv7NixyMvLw969e1FRUYFJkyZh2rRp2Lp1K4C7w+369++PuLg4rF+/HqdPn8bkyZPh7e2NadOmWeyzERGR/FUFQwEBAXB3d+fEuzZGEASUlJSgsLAQABAUFGTya0kaEA0cOBADBw6ss8yvv/6KGTNm4Pvvv8fgwYMN9p07dw579uxBeno6oqKiAABr167FoEGD8PbbbyM4OBhbtmxBeXk5Pv74Y7i4uKBjx47IzMzEqlWrGBARESlYZWWlGAz5+vpKXR0ykZubGwCgsLAQAQEBJnefyTqpWq/XY9y4cZg7dy46duxYbX9qaiq8vb3FYAgA4uLi4ODggLS0NLFMbGwsXFxcxDLx8fHIysrC77//Xut7l5WVQafTGTyIiMh+VOUMubu7S1wTaqyqv2Fj8sBkHRCtWLECTk5OmDlzZo378/PzERAQYLDNyckJPj4+yM/PF8sEBgYalKn6vapMTZKSkqBWq8UHl+0gIrJP7Cazfeb4G8o2IMrIyMC7776LTZs2SXKyLliwAFqtVnxcuXLF6nUgIiIi65BtQPSf//wHhYWFCA0NhZOTE5ycnHD58mW89NJLaNmyJQBAo9GIiVRV7ty5gxs3bkCj0YhlCgoKDMpU/V5Vpiaurq7iMh1croOIiJRApVLhyy+/lLoaBg4cOACVSmXxkYCyDYjGjRuHU6dOITMzU3wEBwdj7ty5+P777wEA0dHRKCoqQkZGhvi8lJQU6PV69OzZUyxz6NAhg37FvXv3ol27dmjWrJl1PxQRKVKethRHs68jT1sqdVWIAACLFy/Ggw8+KHU1ZEXSUWbFxcW4ePGi+HtOTg4yMzPh4+OD0NDQaln/zs7O0Gg0aNeuHQCgQ4cOGDBgAKZOnYr169ejoqICiYmJGDVqlDhEf8yYMViyZAmmTJmCefPm4cyZM3j33XfxzjvvWO+DEpFibU/PxYIdp6EXAAcVkDQsEiO7h0pdLSK6j6QtRMePH0fXrl3RtWtXAMCcOXPQtWtXLFq0yOjX2LJlC9q3b49+/fph0KBB6NWrFz766CNxv1qtxg8//ICcnBx069YNL730EhYtWsQh90RkcXnaUjEYAgC9ALy64wxbiqjR9Ho9kpKSEBYWBjc3N3Tp0gVffPEFgD+6mPbt24eoqCi4u7vjkUceQVZWFgBg06ZNWLJkCU6ePAmVSgWVSoVNmzaJr339+nU89dRTcHd3R5s2bbBr1y6j6lT1vt9//z26du0KNzc3PPbYYygsLMR3332HDh06wMvLC2PGjEFJSYn4vLKyMsycORMBAQFo0qQJevXqhfT0dPMdLCNJ2kLUp08fCIJgdPlLly5V2+bj4yNOwlibzp074z//+U9Dq0dE1Cg512+JwVCVSkHApeslCFK7SVMpspg8bSlyrt9CmJ+Hxf++SUlJ+PTTT7F+/Xq0adMGhw4dwjPPPAN/f3+xzF/+8hf89a9/hb+/P55//nlMnjwZR44cwciRI3HmzBns2bMH//73vwHcbTyosmTJEqxcuRJvvfUW1q5di7Fjx+Ly5cvw8fExqm6LFy/Ge++9B3d3dzz99NN4+umn4erqiq1bt6K4uBhPPfUU1q5di3nz5gEAXnnlFfzrX//C5s2b0aJFC6xcuRLx8fG4ePGi0e9pDrLNISIisnVhfh5wuG+QrKNKhZZ+nPfG3mxPz0VMcgrGbEhDTHIKtqfnWuy9ysrKsHz5cnz88ceIj49Hq1atMHHiRDzzzDP48MMPxXJvvvkmevfujYiICMyfPx9Hjx7F7du34ebmBk9PTzg5OUGj0UCj0YiTGwLAxIkTMXr0aLRu3RrLly9HcXExjh07ZnT9li1bhpiYGHTt2hVTpkzBwYMHsW7dOnTt2hWPPvooRowYgf379wO4u2LFunXr8NZbb2HgwIGIiIjAhg0b4Obmhr///e/mO2hGYEBERGQhQWo3JA2LhOP/Tx3iqFJh+bBObB2yM9buGr148SJKSkrwpz/9CZ6enuLjk08+QXZ2tliuc+fO4s9VS1rcPzK7Jvc+z8PDA15eXkY9r6bnBwYGwt3dHa1atTLYVvV62dnZqKioQExMjLjf2dkZPXr0wLlz54x+T3PgavdERBY0snsoYtv649L1ErT0c2cwZIes3TVaXFwMAPjmm2/QvHlzg32urq5iUOTs7Cxur5rPT6/X1/v69z6v6rnGPK+m56tUqka/nrUwICIisrAgtRsDITtW1TV6b1Bkya7RiIgIuLq6Ijc3F7179662/95Wotq4uLigsrLSEtVrkPDwcLi4uODIkSNo0aIFgLvLb6Snp2PWrFlWrQsDIiIiokao6hp9dccZVAqCxbtGmzZtipdffhmzZ8+GXq9Hr169oNVqceTIEXh5eYmBRV1atmwpTnXzwAMPoGnTpnB1dbVIfevi4eGB6dOnY+7cueKUOytXrkRJSQmmTJli1bowICIiImoka3eNvvHGG/D390dSUhL+97//wdvbGw899BBeffVVo7qjhg8fjh07dqBv374oKirCxo0bMXHiRIvWuTbJycniYu43b95EVFQUvv/+e6tPnqwSGjLuXcF0Oh3UajW0Wi2X8SAisgO3b99GTk4OwsLC0KRJE6mrQ41Q19/S2O9vjjIjIiIixWNARERERPV6/vnnDYb53/t4/vnnpa5eozGHiIiIiOq1dOlSvPzyyzXus4dUEgZEREREVK+AgAAEBARIXQ2LYZcZERERKR4DIiIiUjQ5zppMDWOOvyG7zIiISJFcXFzg4OCAq1evwt/fHy4uLuISF2QbBEFAeXk5rl27BgcHB7i4uJj8WgyIiIhIkRwcHBAWFoa8vDxcvXpV6upQI7i7uyM0NBQODqZ3fDEgIiIixXJxcUFoaCju3Lkji7W9qOEcHR3h5OTU6NY9BkRERKRoVSuy378qOykLk6qJiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBRP0oDo0KFDePzxxxEcHAyVSoUvv/xS3FdRUYF58+YhMjISHh4eCA4Oxvjx43H16lWD17hx4wbGjh0LLy8veHt7Y8qUKSguLjYoc+rUKTz66KNo0qQJQkJCsHLlSmt8PCIim5GnLcXR7OvI05ZKXRUiSUgaEN26dQtdunTB+++/X21fSUkJTpw4gYULF+LEiRPYsWMHsrKy8MQTTxiUGzt2LM6ePYu9e/di9+7dOHToEKZNmybu1+l06N+/P1q0aIGMjAy89dZbWLx4MT766COLfz4iIluwPT0XMckpGLMhDTHJKdienit1lYisTiUIgiB1JQBApVJh586dGDp0aK1l0tPT0aNHD1y+fBmhoaE4d+4cIiIikJ6ejqioKADAnj17MGjQIPzyyy8IDg7GunXr8Je//AX5+flwcXEBAMyfPx9ffvklzp8/b3T9dDod1Go1tFotvLy8GvVZiYjkIk9bipjkFOjv+SZwVKlweH5fBKndpKsYkZkY+/1tUzlEWq0WKpUK3t7eAIDU1FR4e3uLwRAAxMXFwcHBAWlpaWKZ2NhYMRgCgPj4eGRlZeH333+v9b3Kysqg0+kMHkRE9ibn+i2DYAgAKgUBl66XSFMhIonYTEB0+/ZtzJs3D6NHjxYjvPz8fAQEBBiUc3Jygo+PD/Lz88UygYGBBmWqfq8qU5OkpCSo1WrxERISYs6PQ0QkC2F+HnBQGW5zVKnQ0s9dmgoRScQmAqKKigo8/fTTEAQB69ats8p7LliwAFqtVnxcuXLFKu9LRGRNQWo3JA2LhKPqblTkqFJh+bBO7C4jxXGSugL1qQqGLl++jJSUFIP+P41Gg8LCQoPyd+7cwY0bN6DRaMQyBQUFBmWqfq8qUxNXV1e4urqa62MQEcnWyO6hiG3rj0vXS9DSz53BECmSrFuIqoKhCxcu4N///jd8fX0N9kdHR6OoqAgZGRnitpSUFOj1evTs2VMsc+jQIVRUVIhl9u7di3bt2qFZs2bW+SBERDIXpHZDdLgvgyFSLEkDouLiYmRmZiIzMxMAkJOTg8zMTOTm5qKiogIjRozA8ePHsWXLFlRWViI/Px/5+fkoLy8HAHTo0AEDBgzA1KlTcezYMRw5cgSJiYkYNWoUgoODAQBjxoyBi4sLpkyZgrNnz2L79u149913MWfOHKk+NhEREcmMpMPuDxw4gL59+1bbPmHCBCxevBhhYWE1Pm///v3o06cPgLsTMyYmJuLrr7+Gg4MDhg8fjjVr1sDT01Msf+rUKSQkJCA9PR1+fn6YMWMG5s2b16C6ctg9ERGR7TH2+1s28xDJHQMiIiIi22OX8xARERERWQIDIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIykzxtKY5mX0eetlTqqlADOUldASIiInuwPT0XC3achl4AHFRA0rBIjOweKnW1yEhsISIiImqkPG2pGAwBgF4AXt1xhi1FNoQBERERUSPlXL8lBkNVKgUBl66XSFMhajAGRERERI0U5ucBB5XhNkeVCi393KWpEDUYAyIiIqJGClK7IWlYJBxVd6MiR5UKy4d1QpDaTeKakbGYVE1ERGQGI7uHIratPy5dL0FLP3cGQzaGAREREVED5WlLkXP9FsL8PAwCnyC1GwMhG8WAiIiIqAE4vN4+MYeIiIjISBxeb78YEBERKRhnVm4YDq+3X+wyIyJSKHb9NFzV8Pp7gyIOr7cPbCEiIlIgdv2YhsPr7RdbiIiIFKiurh9+udeNw+vtEwMiIiIFYtdP43B4vf1hlxkRkQKx64fIEFuIiIgUil0/RH9gQEREpGDs+iG6i11mREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIGoQLQRIRkT3isHsyGheCJCIieyVpC9GhQ4fw+OOPIzg4GCqVCl9++aXBfkEQsGjRIgQFBcHNzQ1xcXG4cOGCQZkbN25g7Nix8PLygre3N6ZMmYLi4mKDMqdOncKjjz6KJk2aICQkBCtXrrT0R7M7XAiSiIjsmaQB0a1bt9ClSxe8//77Ne5fuXIl1qxZg/Xr1yMtLQ0eHh6Ij4/H7du3xTJjx47F2bNnsXfvXuzevRuHDh3CtGnTxP06nQ79+/dHixYtkJGRgbfeeguLFy/GRx99ZPHP1xBy74qqayFIIiIiWydpl9nAgQMxcODAGvcJgoDVq1fjtddew5NPPgkA+OSTTxAYGIgvv/wSo0aNwrlz57Bnzx6kp6cjKioKALB27VoMGjQIb7/9NoKDg7FlyxaUl5fj448/houLCzp27IjMzEysWrXKIHCSki10RXEhSCIiaqw8bSlyrt9CmJ+H7GZIl21SdU5ODvLz8xEXFyduU6vV6NmzJ1JTUwEAqamp8Pb2FoMhAIiLi4ODgwPS0tLEMrGxsXBxcRHLxMfHIysrC7///ruVPk3tbKUrigtBEhFRY2xPz0VMcgrGbEhDTHIKtqfnSl0lA7JNqs7PzwcABAYGGmwPDAwU9+Xn5yMgIMBgv5OTE3x8fAzKhIWFVXuNqn3NmjWr8f3LyspQVlYm/q7T6RrxaWpXV1eU3IINLgRJRESmqO3mP7atv2y+S2TbQiS1pKQkqNVq8RESEmKR96nqirqXnLuigtRuiA73lc0JTERE8mcLeaiyDYg0Gg0AoKCgwGB7QUGBuE+j0aCwsNBg/507d3Djxg2DMjW9xr3vUZMFCxZAq9WKjytXrjTuA9WCXVFERGTvbOHmX7YBUVhYGDQaDfbt2ydu0+l0SEtLQ3R0NAAgOjoaRUVFyMjIEMukpKRAr9ejZ8+eYplDhw6hoqJCLLN37160a9eu1u4yAHB1dYWXl5fBw1JGdg/F4fl9sW3qwzg8v6/sEqqJiIgawxZu/lWCIAj1F7OM4uJiXLx4EQDQtWtXrFq1Cn379oWPjw9CQ0OxYsUKJCcnY/PmzQgLC8PChQtx6tQp/Pzzz2jSpAmAuyPVCgoKsH79elRUVGDSpEmIiorC1q1bAQBarRbt2rVD//79MW/ePJw5cwaTJ0/GO++806BRZjqdDmq1Glqt1qLBERERkb3K05ZaPQ/V6O9vQUL79+8XAFR7TJgwQRAEQdDr9cLChQuFwMBAwdXVVejXr5+QlZVl8Bq//fabMHr0aMHT01Pw8vISJk2aJNy8edOgzMmTJ4VevXoJrq6uQvPmzYXk5OQG11Wr1QoABK1Wa/LnJSIiIusy9vtb0hYiW8IWIiIiIttj7Pe3bHOIiIiIiKyFAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERDYiT1uKo9nXkactlboqdsdJ6goQERFR/ban52LBjtPQC4CDCkgaFomR3UOlrpbdYAsRUSPwbo2IrCFPWyoGQwCgF4BXd5zhtceM2EJEZCLerRGRteRcvyUGQ1UqBQGXrpcgSO0mTaXsDFuIiEzAuzUisqYwPw84qAy3OapUaOnnLk2F7BADIiIT1HW3RkRkbkFqNyQNi4Sj6m5U5KhSYfmwTmwdMiN2mRGZoOpu7d6giHdrRGRJI7uHIratPy5dL0FLP3cGQ2bGFiIiE/BujYikEKR2Q3S4L681FsAWIiIT8W6NiMh+MCAiaoQgtRsDISIiO8AuMyIiIlI8BkREREQWxAlcbQO7zIiIiCyEE7jaDrYQERERWQAncLUtDIiIiIgsgBO42hYGRCQL7GMnInvD5TZsCwMiktz29FzEJKdgzIY0xCSnYHt6rtRVIiJqNKkncK3pRpM3n7VTCYIg1F+MdDod1Go1tFotvLy8pK6O3cjTliImOaXaEhiH5/fl/D5EZBfytKVWn8C1pmRuAIpM8Db2+5ujzEhSdfWxMyAiIntg7Qlca0rmXvCv08A96y9WJXjHtvXntfb/scuMJMU+diKyFbbS3VTTjaYeYIJ3PYwOiHQ6ndEPc6msrMTChQsRFhYGNzc3hIeH44033sC9vXyCIGDRokUICgqCm5sb4uLicOHCBYPXuXHjBsaOHQsvLy94e3tjypQpKC4uNls9yXRS97ETERnDlnIda7rRdAB481kPo7vMvL29oVKp6iwjCAJUKhUqKysbXTEAWLFiBdatW4fNmzejY8eOOH78OCZNmgS1Wo2ZM2cCAFauXIk1a9Zg8+bNCAsLw8KFCxEfH4+ff/4ZTZo0AQCMHTsWeXl52Lt3LyoqKjBp0iRMmzYNW7duNUs9qXZ52lLkXL+FMD+PWoMcLpJKRHJW23xC1u5uMuZ6Cvxxo/nqjjOoFATxRhNAtW283v7B6KTqgwcPGv2ivXv3NrlC9xoyZAgCAwPx97//Xdw2fPhwuLm54dNPP4UgCAgODsZLL72El19+GQCg1WoRGBiITZs2YdSoUTh37hwiIiKQnp6OqKgoAMCePXswaNAg/PLLLwgODjaqLkyqrl1t/6ScoZWI7MHR7OsYsyGt2vZtUx9GdLivVepgyvW0pmRuKRK8pWb2pGpzBTkN8cgjj+Cjjz7Cf//7X7Rt2xYnT57E4cOHsWrVKgBATk4O8vPzERcXJz5HrVajZ8+eSE1NxahRo5Camgpvb28xGAKAuLg4ODg4IC0tDU899VSN711WVoaysjLxd3N2BdqT2v5J5XJHRUTUWFVdUPePhrVWd5Op19OakrmtneBtS0weZVZUVIS///3vOHfuHACgY8eOmDx5MtRqtdkqN3/+fOh0OrRv3x6Ojo6orKzEm2++ibFjxwIA8vPzAQCBgYEGzwsMDBT35efnIyAgwGC/k5MTfHx8xDI1SUpKwpIlS8z2WexRXf+kHD1GRPaiti4oa13LeD21DpMCouPHjyM+Ph5ubm7o0aMHAGDVqlV488038cMPP+Chhx4yS+X++c9/YsuWLdi6dSs6duyIzMxMzJo1C8HBwZgwYYJZ3qM2CxYswJw5c8TfdTodQkJCLPqetqauf1Kp76iIiMxJylxHXk+tw6Rh97Nnz8YTTzyBS5cuYceOHdixYwdycnIwZMgQzJo1y2yVmzt3LubPn49Ro0YhMjIS48aNw+zZs5GUlAQA0Gg0AICCggKD5xUUFIj7NBoNCgsLDfbfuXMHN27cEMvUxNXVFV5eXgYPMlTXkHmOHiMiexOkdkN0uK/Vr2O8nlqHyS1EGzZsgJPTH093cnLCK6+8YpCr01glJSVwcDCM2RwdHaHX6wEAYWFh0Gg02LdvHx588EEAd1ty0tLSMH36dABAdHQ0ioqKkJGRgW7dugEAUlJSoNfr0bNnT7PVVYnqa0bm6DEiIvPg9dTyTAqIvLy8kJubi/bt2xtsv3LlCpo2bWqWigHA448/jjfffBOhoaHo2LEjfvrpJ6xatQqTJ08GAKhUKsyaNQvLli1DmzZtxGH3wcHBGDp0KACgQ4cOGDBgAKZOnYr169ejoqICiYmJGDVqlNEjzKh29f2TMoGPiMg8eD21LJMCopEjR2LKlCl4++238cgjjwAAjhw5grlz52L06NFmq9zatWuxcOFCvPDCCygsLERwcDCee+45LFq0SCzzyiuv4NatW5g2bRqKiorQq1cv7NmzR5yDCAC2bNmCxMRE9OvXDw4ODhg+fDjWrFljtnoqHf9JiYjI1pm0uGt5eTnmzp2L9evX486dOwAAZ2dnTJ8+HcnJyXB1dTV7RaWm5HmIjJ0MjIiISG6M/f5u1Gr3JSUlyM7OBgCEh4fD3d1+M96VGhBxckUiIrJlVlnt3t3dHZGRkY15CZIxTq5IRGR/2OpfM5MCotu3b2Pt2rXYv38/CgsLxVFfVU6cOGGWypG0OBkYEZF9Yat/7UwKiKZMmYIffvgBI0aMQI8ePepd9JVsEycDIyKyH2z1r5tJAdHu3bvx7bffIiYmxtz1IRmRerp6IiIyH7b6182kgKh58+ZmnW+I5IuTgRGR3DAHxjRs9a+bSUt3/PWvf8W8efNw+fJlc9eHZEiq6eqJiO63PT0XMckpGLMhDTHJKdienit1lWwGlwCpm0ktRFFRUbh9+zZatWoFd3d3ODs7G+y/ceOGWSpHRGQsthrYP+bANB5b/WtnUkA0evRo/Prrr1i+fDkCAwOZVE1EkuLIGWVgDox5cHWBmpkUEB09ehSpqano0qWLuetDRNQgbDVQDubAkCWZlEPUvn17lJaWmrsuREQNVlerAdkX5sCQJZnUQpScnIyXXnoJb775JiIjI6vlEClpaQsikhZbDZSFOTBkKSatZebgcLdh6f7cIUEQoFKpUFlZaZ7ayYhS1zIjsgXb03OrzZfFHCLbxQR5MieLrmW2f/9+kytGRGQuVV+csW39cXh+X7Ya2AEmyJNUTAqIevfubVS5F154AUuXLoWfn58pb0NEVCt+cdofJsiTlExKqjbWp59+Cp1OZ8m3ICIFqu2LM0/LwR6WlqctxdHs6xY51kyQJymZ1EJkLBPSk4iI6sX5aKRh6VY5JsiTlCzaQkREZAlVX5z34henZVmjVY7D6klKFm0hIiKyhKovzvtHlvGL03Ks1Sonl2H1HOmmPAyIiGwEL9CG5PLFqRTW7M6SemkJJuwrE7vMiGwAV/iuWZDaDdHhvgyGrEAp3VlM2Fcui7YQPfPMM5zE0AzYMqBschuKzPNRuZTQKseEfeUyOSAqKirCsWPHUFhYCL1eb7Bv/PjxAIB169Y1rnbEpluS1QWa5yNJ3Z1laRzpplwmBURff/01xo4di+LiYnh5eRks4aFSqcSAiBpHbi0DJA25XKB5PpISMGFfuUwKiF566SVMnjwZy5cvh7s7o2ZLkVPLAEnH3BdoU7u8eD6SUiiha5CqMykg+vXXXzFz5kwGQxYml5YBkp65LtCN6fLi+Uj2pq6bA3vvGqTqTBplFh8fj+PHj5u7LnQfpYzqIOM0dkRVY0fP8Hy0D5ZcesOWcOQm3c/oFqJdu3aJPw8ePBhz587Fzz//jMjISDg7OxuUfeKJJ8xXQ4Vj0y2Zizm6vHg+2jYmxd/FfDiqidEB0dChQ6ttW7p0abVtKpUKlZWVjaoUGWLTLZmDubq8eD7aJgYBf2A+HNXE6C4zvV5v1IPBEJE82XqXF7t6Gocryf+Ba+FRTUxKqv7kk08wcuRIuLq6GmwvLy/HZ599xmH3RDIlxy4vY0a9savHNPceWybF/4FD66kmKkEQhPqLGXJ0dEReXh4CAgIMtv/2228ICAiwy1YinU4HtVoNrVbL2beJzMSYQCdPW4qY5JRqX+SH5/flF1gdajq2AKoFAUoOLPO0pbK6OSDLMPb726QWIkEQDCZjrPLLL79ArVab8pJEpDDG5rQw36Phaju2h+f3xeH5fRkE/D/mw9G9GhQQde3aFSqVCiqVCv369YOT0x9Pr6ysRE5ODgYMGGD2ShKR/TE20GFXT8PVdWy5GC5RzRoUEFWNNMvMzER8fDw8PT3FfS4uLmjZsiWGDx9u1goSkX2qKdBxAODuYjjWg/keDccgkqjhTMoh2rx5M0aOHIkmTZpYok6yxBwiIvPbnp4rBjpV6solYleP8e49tswXIiUz9vvbpICoSnl5eY2r3YeG2t8/HQMiosaraUTZySu/Y+gHRyEwadrsGEQSWTip+sKFC5g8eTKOHj1qsL0q2doeR5kRUePUNqLsVnkl7r8tY9K0eTBpmGpj6iLP9syktcwmTpwIBwcH7N69GxkZGThx4gROnDiBn376CSdOnDBrBX/99Vc888wz8PX1hZubGyIjIw3WURMEAYsWLUJQUBDc3NwQFxeHCxcuGLzGjRs3MHbsWHh5ecHb2xtTpkxBcXGxWetJRLWrax01TpJHZF1cx61mJrUQZWZmIiMjA+3btzd3fQz8/vvviImJQd++ffHdd9/B398fFy5cQLNmzcQyK1euxJo1a7B582aEhYVh4cKFiI+Px88//yzmOI0dOxZ5eXnYu3cvKioqMGnSJEybNg1bt261aP2J6K76Rj0xaZrIOriES+1MCogiIiJw/fp1c9elmhUrViAkJAQbN24Ut4WFhYk/C4KA1atX47XXXsOTTz4J4O4s2oGBgfjyyy8xatQonDt3Dnv27EF6ejqioqIAAGvXrsWgQYPw9ttvIzg42OKfg0gqcmkWr2/Ukxxn0CayR5zXq3YmdZmtWLECr7zyCg4cOIDffvsNOp3O4GEuu3btQlRUFP785z8jICAAXbt2xYYNG8T9OTk5yM/PR1xcnLhNrVajZ8+eSE1NBQCkpqbC29tbDIYAIC4uDg4ODkhLS6v1vcvKyiz2uYis4d5m8UeSUvDhwWzJ6mLMOmpBajfOkWMmXPeNasMu6tqZ1EJUFYA89thjBjNWmzup+n//+x/WrVuHOXPm4NVXX0V6ejpmzpwJFxcXTJgwAfn5+QCAwMBAg+cFBgaK+/Lz86stMeLk5AQfHx+xTE2SkpKwZMkSs3wOImu7v1lcAJD03XlABTwXGy5JnZTSCiR1qxzXfaO6cF6v2pkUEO3fv9/c9aiRXq9HVFQUli9fDuDuTNlnzpzB+vXrMWHCBIu+94IFCzBnzhzxd51Oh5CQEIu+J5G51NQsDgArvjuPJ7oES3bxs/dRT1IHI8wPIWPI6eZE6huIe5nUZda7d284ODhgw4YNmD9/Plq3bo3evXsjNzcXjo6OZqtcUFAQIiIiDLZ16NABubl3M+I1Gg0AoKCgwKBMQUGBuE+j0aCwsNBg/507d3Djxg2xTE1cXV3h5eVl8CCyFWF+Hqi+2uDdL8hL10tqfA67WRqnrpF01lJXfgjRveTQRX1/t/7yb36W9PpjUkD0r3/9C/Hx8XBzc8NPP/2EsrIyAIBWqxVbc8whJiYGWVlZBtv++9//okWLFgDuJlhrNBrs27dP3K/T6ZCWlobo6GgAQHR0NIqKipCRkSGWSUlJgV6vR8+ePc1WVyI5CVK7Yf7A6qNAa8sV4DDcxpNDMML8ELIVNXXrf/SfHEmvPyYFRMuWLcP69euxYcMGODs7i9tjYmLMOg/R7Nmz8eOPP2L58uW4ePEitm7dio8++ggJCQkAAJVKhVmzZmHZsmXYtWsXTp8+jfHjxyM4OFhcd61Dhw4YMGAApk6dimPHjuHIkSNITEzEqFGjOMKM7NpzvcOxYFB78QuytlwBObRs2AM5BCPGJK8TyUFt3fpSXn9MyiHKyspCbGxste1qtRpFRUWNrZOoe/fu2LlzJxYsWIClS5ciLCwMq1evxtixY8Uyr7zyCm7duoVp06ahqKgIvXr1wp49ewzWWduyZQsSExPRr18/ODg4YPjw4VizZo3Z6kkkV8/FhuOJLsF15gpwGK55yCVZVU75IUS1qWkqjipSXX9MCog0Gg0uXryIli1bGmw/fPgwWrVqZY56iYYMGYIhQ4bUul+lUmHp0qVYunRprWV8fHw4CSMpVn2JzFwZ3XzkEowYk7wup2RWUp6qG4gF/zoN/X37pLr+mNRlNnXqVLz44otIS0uDSqXC1atXsWXLFrz88suYPn26uetIRBbEbhbzkkOyan2YM0ZyMLJ7KI4seAzTHm1Vb9e+NZi02r0gCFi+fDmSkpJQUnI3YdDV1RUvv/wy3njjDbNXUg642j3ZO66Mrgx52lLEJKdUaxE8PL8v/+4kGUtef4z9/jYpIKpSXl6Oixcvori4GBEREfD09DT1pWSPARER2YOj2dcxZkP1Wfq3TX0Y0eG+EtSIyLKM/f42KYeoiouLS7V5goiISL6YM0ZUM5NyiIiIyDYxZ4yoZo1qISIiItsjl9FwRHLCgIiISIHsfV05ooZilxkREREpHgMiIjvCBVqJiEzDLjMiG1PbDMPb03PFNckcVEDSsEiM7B4qYU2JiGwHAyIiG1Jb0FPbAq2xbf2ZJ0JEZAR2mRHZiLpWpa9rgVYiIqofAyIiG1FX0FM12d69ONkeEZHxGBAR2Yi6gh5OtkdE1DjMISKyEVVBz6s7zqBSEKoFPZxsj4jIdAyIiGxIfUEPJ9sjIjINAyIiG8Ogh4jI/JhDRGRlnDyRiMyF1xPzYQsRkRVx8kQiMhdeT8yLLUREVlLXPEKkHLyjJ3Pg9cT82EJEZCV1zSPEnCBl4B09mQuvJ+bHFiIiK+HkicrGO3oyJ15PzI8BEZGVcPJEZePyKmROvJ6YH7vMiKyIkycqV9Ud/b1BEe/oqTF4PTEvthARWVmQ2g3R4b68eCkM7+jJEng9MR+2EBERWYkS7+jztKXIuX4LYX4eivi8ZLsYEJFi8UJNUlDSTOMcVUe2hAERKZI5L9QMrIiqq21UXWxbf/6fkCwxICLFMeeFmnfARDXjPDlka5hUTYpjruHPcphXhrMek1xxnhyyNQyISHHMdaGWel6Z7em5iElOwZgNaYhJTsH29FyrvC+RMTiqjmwNu8xIcaou1K/uOINKQTD5Qi3lvDLMzyBboMRRdWS7GBCRIpnjQm2uwMoUzM8gW6GkUXVk2xgQkWKZ40It1R0wZz0mIjIv5hARNZIUM8UyP4OIyLzYQkRmx3l5rIP5GdbHc5vIfjEgIrPivDzWxfwM6+G5TWTf2GVGZiOHeXmILIHnNpH9Y0BEZiP1vDxkPUqbEJLnNpH9s6mAKDk5GSqVCrNmzRK33b59GwkJCfD19YWnpyeGDx+OgoICg+fl5uZi8ODBcHd3R0BAAObOnYs7d+5Yufb2jzPTKoMSJ4TkuU1k/2wmIEpPT8eHH36Izp07G2yfPXs2vv76a3z++ec4ePAgrl69imHDhon7KysrMXjwYJSXl+Po0aPYvHkzNm3ahEWLFln7I9g9jnyyf0rtOuK5TWT/VIIgCPUXk1ZxcTEeeughfPDBB1i2bBkefPBBrF69GlqtFv7+/ti6dStGjBgBADh//jw6dOiA1NRUPPzww/juu+8wZMgQXL16FYGBgQCA9evXY968ebh27RpcXFyMqoNOp4NarYZWq4WXl5fFPqs9yNOWcuSTnTqafR1jNqRV275t6sOIDveVoEbWxXObyPYY+/1tEy1ECQkJGDx4MOLi4gy2Z2RkoKKiwmB7+/btERoaitTUVABAamoqIiMjxWAIAOLj46HT6XD27Nla37OsrAw6nc7gQcaRYl4esg6ldx3x3CayX7IPiD777DOcOHECSUlJ1fbl5+fDxcUF3t7eBtsDAwORn58vlrk3GKraX7WvNklJSVCr1eIjJCSkkZ+EyPax64hqorQke7JPsp6H6MqVK3jxxRexd+9eNGnSxKrvvWDBAsyZM0f8XafTMSgiAieEJEOcn8k8OOmn9GQdEGVkZKCwsBAPPfSQuK2yshKHDh3Ce++9h++//x7l5eUoKioyaCUqKCiARqMBAGg0Ghw7dszgdatGoVWVqYmrqytcXV3N+GnIFvEiVTNOCElA7Un2sW39eX40AINKeZB1l1m/fv1w+vRpZGZmio+oqCiMHTtW/NnZ2Rn79u0Tn5OVlYXc3FxER0cDAKKjo3H69GkUFhaKZfbu3QsvLy9ERERY/TOR7VDi8HKihjBlfiZ2rxlS6shNOZJ1C1HTpk3RqVMng20eHh7w9fUVt0+ZMgVz5syBj48PvLy8MGPGDERHR+Phhx8GAPTv3x8REREYN24cVq5cifz8fLz22mtISEhgCxDVine+RPWrSrK/NyiqK8meLSHV1RVU8lpjXbJuITLGO++8gyFDhmD48OGIjY2FRqPBjh07xP2Ojo7YvXs3HB0dER0djWeeeQbjx4/H0qVLJaw1yZ0tzkzMO2+ytoYk2bMlpGZKH7kpJzYxD5EcKG0eIqXnzuRpSxGTnFLtzvfw/L6yPB688yYpGTM/k9LnsKrL9vRcvLrjDCoFQQwq+f9rPsZ+f8u6y4ykwS/XP+58779I1RUMSRVEsnuPpGZMkn1Du9eUhCM35YEBERngl+sfGnKRkjKIZA4C2QJTbjKUhCM3pceAiAzwy9WQMRcpqYNI3nmTrWBLCMmZzSdVk3kxwa/hpE7A5uzRZEu4/AnJFVuIyACbtRtODi00vPMmsg9KH9AiJQZEVA2/XBtGLkEkcxCIbBsHtEiLw+6NpLRh90pnyl2aMUOPyXS8cyZ7ZmtTfdgSDrsnMpGpd2lsobEc3jmTveOAFukxqZroHpxNV374NyEl4IAW6TEgIsW7d8kLqUeMUXX8m5AScLSo9NhlRop2f1fMvAHtJR8xRobkMIpPKZinJS0OaJEWW4hIsWrqilm5JwvzBrbnXZqM8M7ZOran5yImOQVjNqQhJjkF29Nzpa6SInGeJumwhYgUq7aumM7NvXF4fl/epckI75wtS+rZ1onkgAERKVZdXTEcMSY//JtYDkc4EbHLjBSMXTFEd3GEExFbiEjh2BVDJJ/Z1omkxICIFI9dMUS8OSBiQERERAB4c0DKxhwiIiIiI907kSvZF7YQERERGYFr6tk3thARERHVg2vq2T8GRERERPXgmnr2jwERERFRPThXk/1jQERERFQPTuRq/5hUTUREZATO1WTfGBARkc3J05Yi5/othPl58EuJrIpzNdkvBkREZFM49JmILIE5RERkMzj0mYgshQEREdkMDn0mW8EZrW0Pu8yIyGZUDX2+Nyji0GeSG3br2ia2EJFF8O6ILIFDn0nu2K1ru9hCRGbHuyOyJA59Jjmrq1uX56q8sYWIzIp3R2QNQWo3RIf78guGZIczWtsuBkRkVkx6JSJb1tjufnbr2i52mZFZMemViGxVQ7r765oclN26toktRGRWvDsiIlvUkO7+7em5iElOwZgNaYhJTsH29NxqZdita3vYQkRmx7sjIrI1xiZD1xY4xbb157XOxjEgIovgej9EZEuM7e7nKDL7Jfsus6SkJHTv3h1NmzZFQEAAhg4diqysLIMyt2/fRkJCAnx9feHp6Ynhw4ejoKDAoExubi4GDx4Md3d3BAQEYO7cubhz5441Pwr9P85RRERyY2x3P0eR2S/ZtxAdPHgQCQkJ6N69O+7cuYNXX30V/fv3x88//wwPDw8AwOzZs/HNN9/g888/h1qtRmJiIoYNG4YjR44AACorKzF48GBoNBocPXoUeXl5GD9+PJydnbF8+XIpP57icI4iIpIrY7r7qwKnV3ecQaUgME/SjqgEQRDqLyYf165dQ0BAAA4ePIjY2FhotVr4+/tj69atGDFiBADg/Pnz6NChA1JTU/Hwww/ju+++w5AhQ3D16lUEBgYCANavX4958+bh2rVrcHFxqfd9dTod1Go1tFotvLy8LPoZ7VWethQxySnVmqQPz+/LiwmRieoa7USWk6ctZZ6kjTD2+1v2XWb302q1AAAfHx8AQEZGBioqKhAXFyeWad++PUJDQ5GamgoASE1NRWRkpBgMAUB8fDx0Oh3Onj1b4/uUlZVBp9MZPKhxOEcRkXkZM9qJLIOjyOyPTQVEer0es2bNQkxMDDp16gQAyM/Ph4uLC7y9vQ3KBgYGIj8/XyxzbzBUtb9qX02SkpKgVqvFR0hIiJk/jfKw753kxNZz2TgrPJF52VRAlJCQgDNnzuCzzz6z+HstWLAAWq1WfFy5csXi72nvOEcRyYU9tKywxZXIvGSfVF0lMTERu3fvxqFDh/DAAw+I2zUaDcrLy1FUVGTQSlRQUACNRiOWOXbsmMHrVY1CqypzP1dXV7i6upr5UxDnKCKp2cs8MpwVnsi8ZN9CJAgCEhMTsXPnTqSkpCAsLMxgf7du3eDs7Ix9+/aJ27KyspCbm4vo6GgAQHR0NE6fPo3CwkKxzN69e+Hl5YWIiAjrfBASse+dpGQvLStscSUyL9m3ECUkJGDr1q346quv0LRpUzHnR61Ww83NDWq1GlOmTMGcOXPg4+MDLy8vzJgxA9HR0Xj44YcBAP3790dERATGjRuHlStXIj8/H6+99hoSEhLYCkSkMPbUssIWVyLzkf2we5VKVeP2jRs3YuLEiQDuTsz40ksvYdu2bSgrK0N8fDw++OADg+6wy5cvY/r06Thw4AA8PDwwYcIEJCcnw8nJuJiQw+6JbIMxw9C3p+dWm0eG82ER2Sdjv79lHxDJBQMiskf2NodNQ1crZ8sKkf0z9vtb9l1mRGQZ9jZreEOTpbneHhHdS/ZJ1URkfvY4h429JEsTkTQYEBEpkD0GD5z4k4gagwERkQLZY/DAYehE1BjMISJSIHtdsZvD0InIVAyIiBTKksGDlKPXmCxNJA+2NoqVARGRglkieLC30WtE1HC2eB1gDhERmY2cRq/Z+mr2RLZKTteBhmALERGZTV2j16zZZG6Ld6dE9kIu14GGYgsRKQZbDCxPDqPXbPXulMheyOE6YAoGRKQI29NzEZOcgjEb0hCTnILt6blSV8kuyWHouz3OsURkS+RwHTAFu8zsjK1l9VtDQ5d0oMaReui7Pa1mT2SrpL4OmIIBkR1h3kTNbLU/25ZJOfTdXudYIrI1tjYFBgMiOyFFK4ittEaxxUB5bPHulIikxYDITli7FcSWWqPYYtAwthLo1sfW7k4bwl7+RkRywoDITlizFcQWc3LYYvCHur5MbSnQVSr+jYgsg6PM7IQ1s/ptdRRPkNoN0eG+ig6G6hptx+Hq8se/EZHlsIXIjlirFYQ5ObapvpY9Jp/LH/9GRJbDFiI7Y41WEFudY0Lp6mvZs9XJ1JSEfyPjcBJWMgVbiMgkzMmxPfW17DH5XP74N6ofc6zIVCpBEIT6i5FOp4NarYZWq4WXl5fU1SEyyfb03Gpfpvd/WeRpSxnoyhz/RjXL05YiJjmlWtB/eH5fHicFM/b7my1ERApiTMuePQ9Xtxf8G9WMOVbUGAyIiBSGX6ZkrzjggxqDSdVERGQXOOCDGoMtRERkUZxVmayJAz7IVAyIiMhiOOKHpMBuYTIFu8yIyCI4qzIR2RIGRERkEba6xAuRXHCCSetilxmRzNlqDg5H/BCZjt3N1scWIiIZq2sx1trI5a6SI37I1kn1v8TuZmmwhYhIpupbjLUmcrur5IgfslVS/i9xgklpsIWIjCKXVgclaWgOjlzvKq2x4DCROUn9v8RFfKXBgIjqZUq3DTVeQy+KTGImMg+p/5fY3SwNdplRnUzptiHzaOjK5kxiJjIPOfwvsbvZ+hgQUZ3Yly2thlwUGxpAkXLZ6shFa5HL/xInmLQuBkRUJzncKSldQy6KvKuk+pgrWdjegyr+LykPAyKJyf2iIpc7JTIe7yqpNubqApfbaEZL4f+SsjAgkpCtXFR4p0RkH8zRBc68QrJXihpl9v7776Nly5Zo0qQJevbsiWPHjklWF6mHdTYUh04T2T5zDOeWegQWkaUoJiDavn075syZg9dffx0nTpxAly5dEB8fj8LCQknqw4sKEVmbOYZzc44cslcqQRCE+ovZvp49e6J79+547733AAB6vR4hISGYMWMG5s+fX+/zdTod1Go1tFotvLy8Gl2fPG0pYpJTqiUrH57fl60wRGRRedrSRnWBb0/PrZZXKMfufiLA+O9vReQQlZeXIyMjAwsWLBC3OTg4IC4uDqmpqZLUicnKRCSVxiYLM6+Q7JEiAqLr16+jsrISgYGBBtsDAwNx/vz5Gp9TVlaGsrIy8XedTmf2evGiQkS2iiOwyN4oJoeooZKSkqBWq8VHSEiIRd6HycpERETSU0RA5OfnB0dHRxQUFBhsLygogEajqfE5CxYsgFarFR9XrlyxRlWJiIhIAooIiFxcXNCtWzfs27dP3KbX67Fv3z5ER0fX+BxXV1d4eXkZPIiIiMg+KSKHCADmzJmDCRMmICoqCj169MDq1atx69YtTJo0SeqqERERkcQUExCNHDkS165dw6JFi5Cfn48HH3wQe/bsqZZoTURERMqjmHmIGsvc8xARERGR5Rn7/a2IHCIiIiKiujAgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPMXMQ9RYVbMTWGKRVyIiIrKMqu/t+mYZYkBkpJs3bwKAxRZ5JSIiIsu5efMm1Gp1rfs5MaOR9Ho9rl69iqZNm0KlUkldHavR6XQICQnBlStXOCFlI/FYmgePo/nwWJoHj6P5WOJYCoKAmzdvIjg4GA4OtWcKsYXISA4ODnjggQekroZkuMCt+fBYmgePo/nwWJoHj6P5mPtY1tUyVIVJ1URERKR4DIiIiIhI8RgQUZ1cXV3x+uuvw9XVVeqq2DweS/PgcTQfHkvz4HE0HymPJZOqiYiISPHYQkRERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEBAA4dOgQHn/8cQQHB0OlUuHLL7802C8IAhYtWoSgoCC4ubkhLi4OFy5ckKayMlbfcZw4cSJUKpXBY8CAAdJUVuaSkpLQvXt3NG3aFAEBARg6dCiysrIMyty+fRsJCQnw9fWFp6cnhg8fjoKCAolqLE/GHMc+ffpUOy+ff/55iWosX+vWrUPnzp3FSQOjo6Px3Xffift5PhqnvuMo1fnIgIgAALdu3UKXLl3w/vvv17h/5cqVWLNmDdavX4+0tDR4eHggPj4et2/ftnJN5a2+4wgAAwYMQF5envjYtm2bFWtoOw4ePIiEhAT8+OOP2Lt3LyoqKtC/f3/cunVLLDN79mx8/fXX+Pzzz3Hw4EFcvXoVw4YNk7DW8mPMcQSAqVOnGpyXK1eulKjG8vXAAw8gOTkZGRkZOH78OB577DE8+eSTOHv2LACej8aq7zgCEp2PAtF9AAg7d+4Uf9fr9YJGoxHeeustcVtRUZHg6uoqbNu2TYIa2ob7j6MgCMKECROEJ598UpL62LrCwkIBgHDw4EFBEO6eg87OzsLnn38uljl37pwAQEhNTZWqmrJ3/3EUBEHo3bu38OKLL0pXKRvWrFkz4W9/+xvPx0aqOo6CIN35yBYiqldOTg7y8/MRFxcnblOr1ejZsydSU1MlrJltOnDgAAICAtCuXTtMnz4dv/32m9RVsglarRYA4OPjAwDIyMhARUWFwXnZvn17hIaG8rysw/3HscqWLVvg5+eHTp06YcGCBSgpKZGiejajsrISn332GW7duoXo6Giejya6/zhWkeJ85OKuVK/8/HwAQGBgoMH2wMBAcR8ZZ8CAARg2bBjCwsKQnZ2NV199FQMHDkRqaiocHR2lrp5s6fV6zJo1CzExMejUqROAu+eli4sLvL29DcryvKxdTccRAMaMGYMWLVogODgYp06dwrx585CVlYUdO3ZIWFt5On36NKKjo3H79m14enpi586diIiIQGZmJs/HBqjtOALSnY8MiIisaNSoUeLPkZGR6Ny5M8LDw3HgwAH069dPwprJW0JCAs6cOYPDhw9LXRWbVttxnDZtmvhzZGQkgoKC0K9fP2RnZyM8PNza1ZS1du3aITMzE1qtFl988QUmTJiAgwcPSl0tm1PbcYyIiJDsfGSXGdVLo9EAQLXREgUFBeI+Mk2rVq3g5+eHixcvSl0V2UpMTMTu3buxf/9+PPDAA+J2jUaD8vJyFBUVGZTneVmz2o5jTXr27AkAPC9r4OLigtatW6Nbt25ISkpCly5d8O677/J8bKDajmNNrHU+MiCieoWFhUGj0WDfvn3iNp1Oh7S0NIM+X2q4X375Bb/99huCgoKkrorsCIKAxMRE7Ny5EykpKQgLCzPY361bNzg7Oxucl1lZWcjNzeV5eY/6jmNNMjMzAYDnpRH0ej3Kysp4PjZS1XGsibXOR3aZEQCguLjYIPrOyclBZmYmfHx8EBoailmzZmHZsmVo06YNwsLCsHDhQgQHB2Po0KHSVVqG6jqOPj4+WLJkCYYPHw6NRoPs7Gy88soraN26NeLj4yWstTwlJCRg69at+Oqrr9C0aVMxD0OtVsPNzQ1qtRpTpkzBnDlz4OPjAy8vL8yYMQPR0dF4+OGHJa69fNR3HLOzs7F161YMGjQIvr6+OHXqFGbPno3Y2Fh07txZ4trLy4IFCzBw4ECEhobi5s2b2Lp1Kw4cOIDvv/+e52MD1HUcJT0frT6ujWRp//79AoBqjwkTJgiCcHfo/cKFC4XAwEDB1dVV6Nevn5CVlSVtpWWoruNYUlIi9O/fX/D39xecnZ2FFi1aCFOnThXy8/OlrrYs1XQcAQgbN24Uy5SWlgovvPCC0KxZM8Hd3V146qmnhLy8POkqLUP1Hcfc3FwhNjZW8PHxEVxdXYXWrVsLc+fOFbRarbQVl6HJkycLLVq0EFxcXAR/f3+hX79+wg8//CDu5/lonLqOo5Tno0oQBMGyIRcRERGRvDGHiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPARER2bzy8nKpq1CNHOtERLVjQEREstOnTx8kJiYiMTERarUafn5+WLhwIapWGmrZsiXeeOMNjB8/Hl5eXpg2bRoA4PDhw3j00Ufh5uaGkJAQzJw5E7du3RJf94MPPkCbNm3QpEkTBAYGYsSIEeK+L774ApGRkXBzc4Ovry/i4uLE5/bp0wezZs0yqOPQoUMxceJE8XdT60RE8sCAiIhkafPmzXBycsKxY8fw7rvvYtWqVfjb3/4m7n/77bfRpUsX/PTTT1i4cCGys7MxYMAADB8+HKdOncL27dtx+PBhJCYmAgCOHz+OmTNnYunSpcjKysKePXsQGxsLAMjLy8Po0aMxefJknDt3DgcOHMCwYcPQ0KUeG1onIpIPLu5KRLLTp08fFBYW4uzZs1CpVACA+fPnY9euXfj555/RsmVLdO3aFTt37hSf8+yzz8LR0REffvihuO3w4cPo3bs3bt26hW+//RaTJk3CL7/8gqZNmxq834kTJ9CtWzdcunQJLVq0qLE+Dz74IFavXi1uGzp0KLy9vbFp0yYAMKlOTZo0adRxIiLzYQsREcnSww8/LAZDABAdHY0LFy6gsrISABAVFWVQ/uTJk9i0aRM8PT3FR3x8PPR6PXJycvCnP/0JLVq0QKtWrTBu3Dhs2bIFJSUlAIAuXbqgX79+iIyMxJ///Gds2LABv//+e4Pr3NA6EZF8MCAiIpvk4eFh8HtxcTGee+45ZGZmio+TJ0/iwoULCA8PR9OmTXHixAls27YNQUFBWLRoEbp06YKioiI4Ojpi7969+O677xAREYG1a9eiXbt2YtDi4OBQrfusoqKi0XUiIvlgQEREspSWlmbw+48//og2bdrA0dGxxvIPPfQQfv75Z7Ru3braw8XFBQDg5OSEuLg4rFy5EqdOncKlS5eQkpICAFCpVIiJicGSJUvw008/wcXFRez+8vf3R15envhelZWVOHPmTL2fwZg6EZE8MCAiIlnKzc3FnDlzkJWVhW3btmHt2rV48cUXay0/b948HD16FImJicjMzMSFCxfw1VdfiQnMu3fvxpo1a5CZmYnLly/jk08+gV6vR7t27ZCWlobly5fj+PHjyM3NxY4dO3Dt2jV06NABAPDYY4/hm2++wTfffIPz589j+vTpKCoqqvcz1FcnIpIPJ6krQERUk/Hjx6O0tBQ9evSAo6MjXnzxRXEoe006d+6MgwcP4i9/+QseffRRCIKA8PBwjBw5EgDg7e2NHTt2YPHixbh9+zbatGmDbdu2oWPHjjh37hwOHTqE1atXQ6fToUWLFvjrX/+KgQMHAgAmT56MkydPYvz48XBycsLs2bPRt2/fej9DfXUiIvngKDMikp2aRnUREVkSu8yIiIhI8RgQERERkeKxy4yIiIgUjy1EREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHj/BxuX9VtXNomyAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR71JREFUeJzt3Xl8VNX9//H3JCEhCSRhyQYCCYtAZHFhMYIskhqQ2iJYQVEBEauCCLiBLSguBLEq4gKWWtCilmqhRapWfqxfJGIAg4JKEbGJkhCQZgIkBEju7w+aKUO2yWQmc2fu6/l4zOOR3Htn5tyZO/d+7jmfc47NMAxDAAAAFhbk6wIAAAD4GgERAACwPAIiAABgeQREAADA8giIAACA5REQAQAAyyMgAgAAlkdABAAALI+ACAAAWB4BEQC/8fjjj8tms7m0rc1m0+OPP+7V8gwaNEiDBg0y7esBcB0BEYA6W758uWw2m+MREhKi1q1ba/z48frxxx99XTzTSUpKcvq84uLidPXVV2v16tUeef3i4mI9/vjj2rRpk0deD7AiAiIAbnviiSf0pz/9SUuWLNGwYcO0YsUKDRw4UKdOnfLK+/32t79VSUmJV17b2y699FL96U9/0p/+9Cc9+OCDOnTokEaOHKklS5bU+7WLi4s1d+5cAiKgHkJ8XQAA/mvYsGHq1auXJOnOO+9Uy5Yt9cwzz2jNmjW66aabPP5+ISEhCgnxz9NW69atdeuttzr+v/3229WxY0e98MILuvvuu31YMgASNUQAPOjqq6+WJB04cMBp+TfffKMbb7xRzZs3V+PGjdWrVy+tWbPGaZszZ85o7ty56tSpkxo3bqwWLVqof//+WrdunWObqnKISktLNX36dMXGxqpp06b6xS9+oR9++KFS2caPH6+kpKRKy6t6zWXLlumaa65RXFycwsLClJKSosWLF9fps6hNQkKCunbtqoMHD9a4XUFBgSZOnKj4+Hg1btxYPXv21BtvvOFY//333ys2NlaSNHfuXEeznLfzp4BA45+3WgBM6fvvv5ckNWvWzLFs79696tevn1q3bq2ZM2cqMjJSf/nLXzRixAj99a9/1Q033CDpXGCSkZGhO++8U3369FFRUZF27NihXbt26Wc/+1m173nnnXdqxYoVuuWWW3TVVVdpw4YNGj58eL32Y/Hixbrkkkv0i1/8QiEhIXr//fd17733qry8XJMnT67Xa1c4c+aMcnNz1aJFi2q3KSkp0aBBg/Ttt99qypQpSk5O1rvvvqvx48ersLBQ999/v2JjY7V48WLdc889uuGGGzRy5EhJUo8ePTxSTsAyDACoo2XLlhmSjP/3//6fceTIESM3N9d47733jNjYWCMsLMzIzc11bDtkyBCje/fuxqlTpxzLysvLjauuusro1KmTY1nPnj2N4cOH1/i+jz32mHH+aSs7O9uQZNx7771O291yyy2GJOOxxx5zLBs3bpzRrl27Wl/TMAyjuLi40nbp6elG+/btnZYNHDjQGDhwYI1lNgzDaNeunXHttdcaR44cMY4cOWLs3r3bGDNmjCHJuO+++6p9vYULFxqSjBUrVjiWnT592khNTTWaNGliFBUVGYZhGEeOHKm0vwDqhiYzAG5LS0tTbGys2rRpoxtvvFGRkZFas2aNLrroIknSsWPHtGHDBt100006fvy4jh49qqNHj+qnn35Senq69u/f7+iVFhMTo71792r//v0uv/8HH3wgSZo6darT8mnTptVrv8LDwx1/2+12HT16VAMHDtR3330nu93u1mt+/PHHio2NVWxsrHr27Kl3331Xt912m5555plqn/PBBx8oISFBN998s2NZo0aNNHXqVJ04cUKbN292qywAKqPJDIDbXnnlFV188cWy2+364x//qC1btigsLMyx/ttvv5VhGJo9e7Zmz55d5WsUFBSodevWeuKJJ/TLX/5SF198sbp166ahQ4fqtttuq7Hp59///reCgoLUoUMHp+WdO3eu13598skneuyxx5SZmani4mKndXa7XdHR0XV+zb59++qpp56SzWZTRESEunbtqpiYmBqf8+9//1udOnVSUJDzvWvXrl0d6wF4BgERALf16dPH0ctsxIgR6t+/v2655Rbt27dPTZo0UXl5uSTpwQcfVHp6epWv0bFjR0nSgAEDdODAAf3973/Xxx9/rD/84Q964YUXtGTJEt155531Lmt1AzqWlZU5/X/gwAENGTJEXbp00fPPP682bdooNDRUH3zwgV544QXHPtVVy5YtlZaW5tZzAXgfAREAjwgODlZGRoYGDx6sl19+WTNnzlT79u0lnWvmcSUYaN68uSZMmKAJEyboxIkTGjBggB5//PFqA6J27dqpvLxcBw4ccKoV2rdvX6VtmzVrpsLCwkrLL6xlef/991VaWqo1a9aobdu2juUbN26stfye1q5dO33xxRcqLy93qiX65ptvHOul6oM9AK4jhwiAxwwaNEh9+vTRwoULderUKcXFxWnQoEF67bXXlJeXV2n7I0eOOP7+6aefnNY1adJEHTt2VGlpabXvN2zYMEnSokWLnJYvXLiw0rYdOnSQ3W7XF1984ViWl5dXabTo4OBgSZJhGI5ldrtdy5Ytq7Yc3nLdddcpPz9fK1eudCw7e/asXnrpJTVp0kQDBw6UJEVEREhSlQEfANdQQwTAox566CH96le/0vLly3X33XfrlVdeUf/+/dW9e3dNmjRJ7du31+HDh5WZmakffvhBu3fvliSlpKRo0KBBuuKKK9S8eXPt2LFD7733nqZMmVLte1166aW6+eab9eqrr8put+uqq67S+vXr9e2331badsyYMXrkkUd0ww03aOrUqSouLtbixYt18cUXa9euXY7trr32WoWGhur666/Xr3/9a504cUJLly5VXFxclUGdN91111167bXXNH78eO3cuVNJSUl677339Mknn2jhwoVq2rSppHNJ4CkpKVq5cqUuvvhiNW/eXN26dVO3bt0atLyAX/N1NzcA/qei231WVlaldWVlZUaHDh2MDh06GGfPnjUMwzAOHDhg3H777UZCQoLRqFEjo3Xr1sbPf/5z47333nM876mnnjL69OljxMTEGOHh4UaXLl2Mp59+2jh9+rRjm6q6yJeUlBhTp041WrRoYURGRhrXX3+9kZubW2U39I8//tjo1q2bERoaanTu3NlYsWJFla+5Zs0ao0ePHkbjxo2NpKQk45lnnjH++Mc/GpKMgwcPOrarS7f72oYUqO71Dh8+bEyYMMFo2bKlERoaanTv3t1YtmxZpedu27bNuOKKK4zQ0FC64ANusBnGefXCAAAAFkQOEQAAsDwCIgAAYHkERAAAwPIIiAAAgOUREAEAAMsjIAIAAJbHwIwuKi8v16FDh9S0aVOGyQcAwE8YhqHjx4+rVatWlSZKPh8BkYsOHTqkNm3a+LoYAADADbm5ubrooouqXU9A5KKKIfJzc3MVFRXl49IAAABXFBUVqU2bNo7reHUIiFxU0UwWFRVFQAQAgJ+pLd2FpGoAAGB5BEQAAMDyCIgAAIDlkUMEALC8srIynTlzxtfFgBsaNWqk4ODger8OAREAwLIMw1B+fr4KCwt9XRTUQ0xMjBISEuo1TiABEQDAsiqCobi4OEVERDDwrp8xDEPFxcUqKCiQJCUmJrr9WgREAABLKisrcwRDLVq08HVx4Kbw8HBJUkFBgeLi4txuPiOpGgBgSRU5QxERET4uCeqr4jusTx4YAREAwNJoJvN/nvgOCYgAAIDlERABAABJ52pa/va3v/m6GE42bdokm83m9Z6ABESokzx7ibYdOKo8e4mviwIAcNPjjz+uSy+91NfFMBV6mcFlK7NyNGvVlyo3pCCblDGyu0b3buvrYgEAUG/UEMElefYSRzAkSeWG9OiqPdQUAYAPlJeXKyMjQ8nJyQoPD1fPnj313nvvSfpfE9P69evVq1cvRURE6KqrrtK+ffskScuXL9fcuXO1e/du2Ww22Ww2LV++3PHaR48e1Q033KCIiAh16tRJa9ascalMFe/7z3/+U5dddpnCw8N1zTXXqKCgQB9++KG6du2qqKgo3XLLLSouLnY8r7S0VFOnTlVcXJwaN26s/v37Kysry3MflosIiOCSg0dPOoKhCmWGoe+PFlf9BACwmIZMKcjIyNCbb76pJUuWaO/evZo+fbpuvfVWbd682bHNb37zGz333HPasWOHQkJCdMcdd0iSRo8erQceeECXXHKJ8vLylJeXp9GjRzueN3fuXN1000364osvdN1112ns2LE6duyYy2V7/PHH9fLLL2vbtm3Kzc3VTTfdpIULF+rtt9/WP/7xD3388cd66aWXHNs//PDD+utf/6o33nhDu3btUseOHZWenl6n9/QEAiK4JLllpIIu6NUYbLMpqSXjdwDAyqwc9Zu/Qbcs3a5+8zdoZVaO196rtLRU8+bN0x//+Eelp6erffv2Gj9+vG699Va99tprju2efvppDRw4UCkpKZo5c6a2bdumU6dOKTw8XE2aNFFISIgSEhKUkJDgGNxQksaPH6+bb75ZHTt21Lx583TixAl99tlnLpfvqaeeUr9+/XTZZZdp4sSJ2rx5sxYvXqzLLrtMV199tW688UZt3LhRknTy5EktXrxYzz77rIYNG6aUlBQtXbpU4eHhev311z33obmAgAguSYwOV8bI7gr+71gPwTab5o3spsTo8FqeCQCBraFTCr799lsVFxfrZz/7mZo0aeJ4vPnmmzpw4IBjux49ejj+rpjSomKKi5qc/7zIyEhFRUW59Lyqnh8fH6+IiAi1b9/eaVnF6x04cEBnzpxRv379HOsbNWqkPn366Ouvv3b5PT2BpGq4bHTvthpwcay+P1qspJYRBEMAoJpTCrxxnjxx4oQk6R//+Idat27ttC4sLMwRFDVq1MixvGLgwvLy8lpf//znVTzXledV9XybzVbv12soBESok8TocAIhADhPRUrB+UGRN1MKUlJSFBYWppycHA0cOLDS+vNriaoTGhqqsrIybxSvTjp06KDQ0FB98sknateunaRz029kZWVp2rRpDVoWAiIAAOqhIqXg0VV7VGYYXk8paNq0qR588EFNnz5d5eXl6t+/v+x2uz755BNFRUU5AouaJCUl6eDBg8rOztZFF12kpk2bKiwszCvlrUlkZKTuuecePfTQQ2revLnatm2rBQsWqLi4WBMnTmzQshAQAQBQTw2dUvDkk08qNjZWGRkZ+u677xQTE6PLL79cjz76qEvNUaNGjdKqVas0ePBgFRYWatmyZRo/frxXy1yd+fPnq7y8XLfddpuOHz+uXr166Z///KeaNWvWoOWwGYZh1L4ZioqKFB0dLbvdrqioKF8XBwBQT6dOndLBgweVnJysxo0b+7o4qIeavktXr9/0MgMAAJZHQAQAAGp19913O3XzP/9x9913+7p49UYOEQAAqNUTTzyhBx98sMp1gZBKQkAEAABqFRcXp7i4OF8Xw2toMgMAAJZHQAQAsDQzjpqMuvHEd0iTGQDAkkJDQxUUFKRDhw4pNjZWoaGhjiku4B8Mw9Dp06d15MgRBQUFKTQ01O3XIiACAFhSUFCQkpOTlZeXp0OHDvm6OKiHiIgItW3bVkFB7jd8ERABACwrNDRUbdu21dmzZ00xtxfqLjg4WCEhIfWu3SMgAgBYWsWM7BfOyg5rIakaAABYHgERAACwPAIiAABgeQREAADA8giIAACA5REQAQAAyyMgAgAAlufTgGjLli26/vrr1apVK9lsNv3tb39zWm8YhubMmaPExESFh4crLS1N+/fvd9rm2LFjGjt2rKKiohQTE6OJEyfqxIkTTtt88cUXuvrqq9W4cWO1adNGCxYs8PauAQAAP+LTgOjkyZPq2bOnXnnllSrXL1iwQIsWLdKSJUu0fft2RUZGKj09XadOnXJsM3bsWO3du1fr1q3T2rVrtWXLFt11112O9UVFRbr22mvVrl077dy5U88++6wef/xx/f73v/f6/gEAAD9hmIQkY/Xq1Y7/y8vLjYSEBOPZZ591LCssLDTCwsKMd955xzAMw/jqq68MSUZWVpZjmw8//NCw2WzGjz/+aBiGYbz66qtGs2bNjNLSUsc2jzzyiNG5c+c6lc9utxuSDLvd7s7uAQAAH3D1+m3aHKKDBw8qPz9faWlpjmXR0dHq27evMjMzJUmZmZmKiYlRr169HNukpaUpKChI27dvd2wzYMAApxlw09PTtW/fPv3nP/+p9v1LS0tVVFTk9AAAAIHJtAFRfn6+JCk+Pt5peXx8vGNdfn6+4uLinNaHhISoefPmTttU9Rrnv0dVMjIyFB0d7Xi0adOmfjsEAABMy7QBka/NmjVLdrvd8cjNzfV1kQAAgJeYNiBKSEiQJB0+fNhp+eHDhx3rEhISVFBQ4LT+7NmzOnbsmNM2Vb3G+e9RlbCwMEVFRTk9AABAYDJtQJScnKyEhAStX7/esayoqEjbt29XamqqJCk1NVWFhYXauXOnY5sNGzaovLxcffv2dWyzZcsWnTlzxrHNunXr1LlzZzVr1qyB9gYAAJiZTwOiEydOKDs7W9nZ2ZLOJVJnZ2crJydHNptN06ZN01NPPaU1a9boyy+/1O23365WrVppxIgRkqSuXbtq6NChmjRpkj777DN98sknmjJlisaMGaNWrVpJkm655RaFhoZq4sSJ2rt3r1auXKkXX3xRM2bM8NFeAwAA02mgXm9V2rhxoyGp0mPcuHGGYZzrej979mwjPj7eCAsLM4YMGWLs27fP6TV++ukn4+abbzaaNGliREVFGRMmTDCOHz/utM3u3buN/v37G2FhYUbr1q2N+fPn17msdLsHAMD/uHr9thmGYfgwHvMbRUVFio6Olt1uJ58IAAA/4er127Q5RAAAAA2FgAgAAFgeAREAALA8AiIAAGB5BEQAAMDyCIgAAIDlERABAADLIyACAACWR0AEAAAsj4AIAID/yrOXaNuBo8qzl/i6KGhgIb4uAAAAZrAyK0ezVn2pckMKskkZI7trdO+2vi4WGgg1RAAAy8uzlziCIUkqN6RHV+2hpshCCIgAAJZ38OhJRzBUocww9P3RYt8UCA2OgAgAYHnJLSMVZHNeFmyzKallhG8KhAZHQAQAsLzE6HBljOyuYNu5qCjYZtO8kd2UGB3u45KhoZBUDQCApNG922rAxbH6/mixklpGEAxZDAERAAD/lRgdTiBkUTSZAQAaDOP8wKyoIQIANAjG+YGZUUMEAPA6xvmB2REQAQC8jnF+YHYERAAAr2OcH5gdAREAwOsY5wdmR1I1AKBBMM4PzIyACADQYBjnB2ZFkxkAALA8AiIAAGB5BEQAAMDyCIgAAIDlERAB9cC8TAAQGOhlBriJeZkAIHBQQwS4gXmZACCwEBABbmBeJgAILAREgBuYlwkAAgsBEeAG5mUCgMBCUjXgJuZlAoDAQUAE1APzMgFAYKDJDAAAWB4BEQAAsDwCIgABgVHDAdQHOUQA/B6jhgOoL2qIAPg1Rg0H4AkERAD8GqOGA/AEAiIAfo1RwwF4AgERAL/GqOEAPIGkagB+j1HDAdQXARGAgMCo4QDqgyYzAH6LsYcAeAo1RAD8EmMPAfAkaogA+B3GHgLgaaYOiMrKyjR79mwlJycrPDxcHTp00JNPPinD+N+gI4ZhaM6cOUpMTFR4eLjS0tK0f/9+p9c5duyYxo4dq6ioKMXExGjixIk6ceJEQ+8OAA9h7CEAnmbqgOiZZ57R4sWL9fLLL+vrr7/WM888owULFuill15ybLNgwQItWrRIS5Ys0fbt2xUZGan09HSdOnXKsc3YsWO1d+9erVu3TmvXrtWWLVt01113+WKXAHgAYw8B8DSbcX51i8n8/Oc/V3x8vF5//XXHslGjRik8PFwrVqyQYRhq1aqVHnjgAT344IOSJLvdrvj4eC1fvlxjxozR119/rZSUFGVlZalXr16SpI8++kjXXXedfvjhB7Vq1cqlshQVFSk6Olp2u11RUVGe31kAdbIyK0ePrtqjMsNwjD1EDhGAC7l6/TZ1DdFVV12l9evX61//+pckaffu3dq6dauGDRsmSTp48KDy8/OVlpbmeE50dLT69u2rzMxMSVJmZqZiYmIcwZAkpaWlKSgoSNu3b2/AvQHgSaN7t9XWmYP1zqQrtXXmYIIhAPVi6l5mM2fOVFFRkbp06aLg4GCVlZXp6aef1tixYyVJ+fn5kqT4+Hin58XHxzvW5efnKy4uzml9SEiImjdv7timKqWlpSotLXX8X1RU5JF9AuA5jD0EwFNMXUP0l7/8RW+99Zbefvtt7dq1S2+88YZ+97vf6Y033vD6e2dkZCg6OtrxaNOmjdffEwAA+IapA6KHHnpIM2fO1JgxY9S9e3fddtttmj59ujIyMiRJCQkJkqTDhw87Pe/w4cOOdQkJCSooKHBaf/bsWR07dsyxTVVmzZolu93ueOTm5npy1wAEKAaLBPyTqQOi4uJiBQU5FzE4OFjl5eWSpOTkZCUkJGj9+vWO9UVFRdq+fbtSU1MlSampqSosLNTOnTsd22zYsEHl5eXq27dvte8dFhamqKgopwcA1GRlVo76zd+gW5ZuV7/5G7QyK8fXRQLgIlPnEF1//fV6+umn1bZtW11yySX6/PPP9fzzz+uOO+6QJNlsNk2bNk1PPfWUOnXqpOTkZM2ePVutWrXSiBEjJEldu3bV0KFDNWnSJC1ZskRnzpzRlClTNGbMGJd7mAFAbaobLHLAxbHkOQF+wNQB0UsvvaTZs2fr3nvvVUFBgVq1aqVf//rXmjNnjmObhx9+WCdPntRdd92lwsJC9e/fXx999JEaN27s2Oatt97SlClTNGTIEAUFBWnUqFFatGiRL3YJQICqabBIAiLA/Ew9DpGZMA4RgJrk2UvUb/4Gp6Ao2GbT1pmDCYgAHwqIcYgAwF8kRocrY2R3BdvODaFdMVgkwRDgH0zdZAYA/mR077YacHGsvj9arKSWEQRDgB8hIAJQJ3n2Eh08elLJLSO54FfBDINF8h0BdUdABMBlK7NyHD2pgmxSxsjuTJlhMnxHgHvIIQLgkuq6lTMAoXnwHQHuIyAC4JKaupXDHPiOAPcREAFwSXLLSAXZnJcF22xKahnhmwKhEr4jwH0ERABcQrdy86vvd8Q8bLAyBmZ0EQMzAufk2UvoVm5y7nxHJGMjULl6/aaXGYA6MUO3ctSsrt8R87ABNJkBgOWRjA0QEAGA5ZGMDRAQAYDlkTAPkEMEABDzsAEERAAASSTMw9poMgMAAJZHQAQAFsQgjIAzmswAwGIYhBGojBoiALCQ6gZhpKYIVkdABAAWwiCMQNUIiADAQhiEEagaAREAWAiDMAJVI6kaACyGQRiBygiIAMCCGIQRcEaTGQAAsDwCIgAAYHkEREAAYzRiAHANOURAgGI0YgBwHTVEQABiNGIAqBsCIiAAMRoxANQNTWZAAMmzl+jg0ZOKDA1WkE1OQRGjEQNA9QiIgABxYc7QDZe11t8+P6Qyw2A0YvhMRZCe3DKS4w+mRkAEBICqcob+9vkhrbo3VcWnyxmNGD5BYj/8CTlEQACoLmeo+HS5Uju0IBhCgyOxH/6GgAgIAMxgDrMhsR/+hoAICADMYA6zIUiHvyGHCAgQzGAOM6kI0h9dtYfEfvgFAiIggDCDOcyEIB3+hIAIAOA1BOnwF+QQAQDqhUmEEQioIQIAuI2xhhAoXA6IioqKXH7RqKgotwoDAPAf1Y01NODiWJrJ4HdcDohiYmJks9lq3MYwDNlsNpWVldW7YAAAc6tprCECIvgblwOijRs3erMcAAA/UzHWEJMIIxC4HBANHDjQm+UAAPgZxhpCIHE7qbqwsFCvv/66vv76a0nSJZdcojvuuEPR0dEeKxwAwNwYawiBwmYYhlH7Zs527Nih9PR0hYeHq0+fPpKkrKwslZSU6OOPP9bll1/u8YL6WlFRkaKjo2W320kaBwDAT7h6/XYrILr66qvVsWNHLV26VCEh5yqZzp49qzvvvFPfffedtmzZ4n7JTYqACAAA/+PVgCg8PFyff/65unTp4rT8q6++Uq9evVRcHHizGRMQAXBXnr1EB4+eVHLLSJqUgAbm6vXbrRyiqKgo5eTkVAqIcnNz1bRpU3deEgACEgMXAv7Brak7Ro8erYkTJ2rlypXKzc1Vbm6u/vznP+vOO+/UzTff7OkyAoBfqm7gQqa4AMzHrYDod7/7nUaOHKnbb79dSUlJSkpK0vjx43XjjTfqmWee8WgBf/zxR916661q0aKFwsPD1b17d+3YscOx3jAMzZkzR4mJiQoPD1daWpr279/v9BrHjh3T2LFjFRUVpZiYGE2cOFEnTpzwaDkB4EI1DVwIwFzcCohCQ0P14osv6j//+Y+ys7OVnZ2tY8eO6YUXXlBYWJjHCvef//xH/fr1U6NGjfThhx/qq6++0nPPPadmzZo5tlmwYIEWLVqkJUuWaPv27YqMjFR6erpOnTrl2Gbs2LHau3ev1q1bp7Vr12rLli266667PFZOAKhKxcCF52PgQsCc3EqqbigzZ87UJ598ov/7v/+rcr1hGGrVqpUeeOABPfjgg5Iku92u+Ph4LV++XGPGjNHXX3+tlJQUZWVlqVevXpKkjz76SNddd51++OEHtWrVyqWykFQNMyJZ1/xWZuVUGriQHCKg4Xg1qfrUqVN66aWXtHHjRhUUFKi8vNxp/a5du9x52UrWrFmj9PR0/epXv9LmzZvVunVr3XvvvZo0aZIk6eDBg8rPz1daWprjOdHR0erbt68yMzM1ZswYZWZmKiYmxhEMSVJaWpqCgoK0fft23XDDDVW+d2lpqUpLSx3/12VyW6AhkKzrHxi4EPAPbgVEEydO1Mcff6wbb7xRffr0qXXSV3d99913Wrx4sWbMmKFHH31UWVlZmjp1qkJDQzVu3Djl5+dLkuLj452eFx8f71iXn5+vuLg4p/UhISFq3ry5Y5uqZGRkaO7cuR7eI8AzmGXcvyRGh/O9ACbnVkC0du1affDBB+rXr5+ny+OkvLxcvXr10rx58yRJl112mfbs2aMlS5Zo3LhxXn3vWbNmacaMGY7/i4qK1KZNG6++J+AqZhkHAM9yK6m6devWDTLeUGJiolJSUpyWde3aVTk5OZKkhIQESdLhw4edtjl8+LBjXUJCggoKCpzWnz17VseOHXNsU5WwsDBFRUU5PQCzIFkXADzLrYDoueee0yOPPKJ///vfni6Pk379+mnfvn1Oy/71r3+pXbt2kqTk5GQlJCRo/fr1jvVFRUXavn27UlNTJUmpqakqLCzUzp07Hdts2LBB5eXl6tu3r1fLD3hLxSzjwf9trmaWcQCoH7eazHr16qVTp06pffv2ioiIUKNGjZzWHzt2zCOFmz59uq666irNmzdPN910kz777DP9/ve/1+9//3tJks1m07Rp0/TUU0+pU6dOSk5O1uzZs9WqVSuNGDFC0rkapaFDh2rSpElasmSJzpw5oylTpmjMmDEu9zADzIhkXQDwHLcCoptvvlk//vij5s2bp/j4eK8lVffu3VurV6/WrFmz9MQTTyg5OVkLFy7U2LFjHds8/PDDOnnypO666y4VFhaqf//++uijj9S4cWPHNm+99ZamTJmiIUOGKCgoSKNGjdKiRYu8UmagIZGsCwCe4dY4RBEREcrMzFTPnj29USZTYhwiAAD8j6vXb7dyiLp06aKSEubiAQAAgcGtgGj+/Pl64IEHtGnTJv30008qKipyegAAAPgTt5rMgoLOxVEX5g4ZhiGbzaaysjLPlM5EaDIDAMD/eHXqjo0bN7pdMAAAALNxKyAaOHCgS9vde++9euKJJ9SyZUt33gYAAKBBuJVD5KoVK1aQUwQAAEzPqwGRG+lJAAAADc6rAREAwLvy7CXaduCo8uwMhQLUh1s5RAAA31uZlaNZq75UuSEF2aSMkd01undbXxcL8EvUEAGAH8qzlziCIUkqN6RHV+2hpghwEwERqkQ1PGBuB4+edARDFcoMQ98fLfZNgQA/59Ums1tvvZVBDP0Q1fCA+SW3jFSQTU5BUbDNpqSWEb4rFODH3BqpWpIKCwv12WefqaCgQOXl5U7rbr/9do8UzkysMlJ1nr1E/eZvqHSS3TpzMLOqAyazMitHj67aozLDULDNpnkju3HzAlzAqyNVv//++xo7dqxOnDihqKgopyk8bDZbQAZEVlFTNTwBEWAuo3u31YCLY/X90WIltYzgNwrUg1sB0QMPPKA77rhD8+bNU0QE1bOBhGp4wL8kRocTCAEe4FZS9Y8//qipU6cSDAWgxOhwZYzsruD/1vpVVMNzwgUABDK3aojS09O1Y8cOtW/f3tPlgQlQDQ8AsBqXA6I1a9Y4/h4+fLgeeughffXVV+revbsaNWrktO0vfvELz5UQPkE1PADASlzuZRYU5Frrms1mU1lZWb0KZUa+7GWWZy/RwaMnldwykiAFAIA68Hgvswu71qNhMCYQAADe51ZS9ZtvvqnS0tJKy0+fPq0333yz3oXCOQzNDwBAw3ArIJowYYLsdnul5cePH9eECRPqXSicw9D8AAA0DLcCIsMwnAZjrPDDDz8oOjq63oXCORVjAp2PMYEAAPC8OnW7v+yyy2Sz2WSz2TRkyBCFhPzv6WVlZTp48KCGDh3q8UJaVcWYQBcOzU9iNQAAnlWngGjEiBGSpOzsbKWnp6tJkyaOdaGhoUpKStKoUaM8WkCrY0wgADAPev0GrjoFRI899pgkKSkpSaNHj1bjxo29Uig4Y0wgAPA9ev0GNrdnu5fO9Sqrarb7tm0D7wCxymz3AIDK8uwl6jd/Q6V5HrfOHMwNq8l5dbb7/fv364477tC2bducllckWwfiwIwAAOuqqdcvAVFgcCsgGj9+vEJCQrR27VolJiZW2eMMAIBAUdHr98IaInr9Bg63AqLs7Gzt3LlTXbp08XR5AAAwHXr9Bj63AqKUlBQdPXrU02UBAMC06PUb2NwamPGZZ57Rww8/rE2bNumnn35SUVGR0wMAgECUGB2u1A4tCIYCkFu9zM6f+f78/KFATqqmlxlqw/gkAGA+Xu1ltnHjRrcLBgQixicBAP/mVpPZwIEDFRQUpKVLl2rmzJnq2LGjBg4cqJycHAUHB3u6jICp5dlLHMGQdK4XyqOr9ijPXuLbggEAXOZWQPTXv/5V6enpCg8P1+eff67S0lJJkt1u17x58zxaQMDsahqfBADgH9wKiJ566iktWbJES5cuVaNGjRzL+/Xrp127dnmscIA/qBif5HyMTwIA/sWtgGjfvn0aMGBApeXR0dEqLCysb5kAv1IxPknwfzsYMD4JAPgft5KqExIS9O233yopKclp+datW9W+fXtPlMty6KFkLnX9PhifBAD8m1sB0aRJk3T//ffrj3/8o2w2mw4dOqTMzEw9+OCDmj17tqfLGPDooWQu7n4fidHhBEIA4KfcCohmzpyp8vJyDRkyRMXFxRowYIDCwsL04IMP6r777vN0GQNadT2UBlwcy8XVB/g+4A+oUQY8z62AyGaz6Te/+Y0eeughffvttzpx4oRSUlLUpEkTT5cv4DGDsrnwfcDsqFEGvMOtgKhCaGioUlJSPFUWS2IGZXPh+4CZUYMJeI9bvczgOfRQMhe+D5gZY14B3lOvGiJ4Bj2UzIXvA2ZFDaZ5kMcVeAiITIIeSubC9wEzqqjBfHTVHpUZBjWYPkIeV2Bya7Z7K2K2ewBmkWcvoQbTR/LsJeo3f0OlWrqtMwfzXZiUV2e7BwD4DjWYvkNP1MBFUjUAAC5i7sLARUAEAICL6IkauPwqIJo/f75sNpumTZvmWHbq1ClNnjxZLVq0UJMmTTRq1CgdPnzY6Xk5OTkaPny4IiIiFBcXp4ceekhnz55t4NIDAALB6N5ttXXmYL0z6UptnTmYhOoA4TcBUVZWll577TX16NHDafn06dP1/vvv691339XmzZt16NAhjRw50rG+rKxMw4cP1+nTp7Vt2za98cYbWr58uebMmdPQuwAACBCJ0eFK7dCCmqEA4hcB0YkTJzR27FgtXbpUzZo1cyy32+16/fXX9fzzz+uaa67RFVdcoWXLlmnbtm369NNPJUkff/yxvvrqK61YsUKXXnqphg0bpieffFKvvPKKTp8+7atdAgAAJuIXAdHkyZM1fPhwpaWlOS3fuXOnzpw547S8S5cuatu2rTIzMyVJmZmZ6t69u+Lj4x3bpKenq6ioSHv37q32PUtLS1VUVOT0AAAAgcn03e7//Oc/a9euXcrKyqq0Lj8/X6GhoYqJiXFaHh8fr/z8fMc25wdDFesr1lUnIyNDc+fOrWfpAQCAPzB1DVFubq7uv/9+vfXWW2rcuHGDvvesWbNkt9sdj9zc3AZ9fwAA0HBMHRDt3LlTBQUFuvzyyxUSEqKQkBBt3rxZixYtUkhIiOLj43X69GkVFhY6Pe/w4cNKSEiQJCUkJFTqdVbxf8U2VQkLC1NUVJTTAwBwTp69RNsOHFWevcTXRQE8wtQB0ZAhQ/Tll18qOzvb8ejVq5fGjh3r+LtRo0Zav3694zn79u1TTk6OUlNTJUmpqan68ssvVVBQ4Nhm3bp1ioqKUkpKSoPvEwD4u5VZOeo3f4NuWbpd/eZv0MqsHF8XCag3U+cQNW3aVN26dXNaFhkZqRYtWjiWT5w4UTNmzFDz5s0VFRWl++67T6mpqbryyislSddee61SUlJ02223acGCBcrPz9dvf/tbTZ48WWFhYQ2+TwDgz/LsJY6JTSWp3JAeXbVHAy6OpQs6/JqpAyJXvPDCCwoKCtKoUaNUWlqq9PR0vfrqq471wcHBWrt2re655x6lpqYqMjJS48aN0xNPPOHDUgOAf2IuLwQqZrt3EbPde1eevUQHj55UcstITqqAiTHbO/yNq9dvU+cQwRrIRwD8B3N5IVBRQ+Qiaoi8g7tNwD/l2Uv0/dFiJbWM4LcKU3P1+u33OUQwt9qawshHAPxTYnQ4v1EEFAIieM3KrBxHb5Qgm5QxsnulWaGTW0YqyKZKNURJLSMauLQAYC7kVjYscojgFdV1zb1wEDfyEQCgMnIrGx41RPCKujSFje7dVgMujiUfAQDEWE++QkCEequqWreuTWHkIwDAOeRW+gZNZqiX6qp1aQpDVZj/CqhdxQ3l+aq7oeQ35Tl0u3cR3e4rc6XLPF1zUcGVJPuakGAKK1mZlaNHV+1RmWE4bigv/L3U9zdlFXS7h9e5Uq1LUxik+udEcOKH1dSWW0mekefRZAa31aVaF9ZWU/BcG1d7LKJ+aHoxn8TocKV2aFHnMdzgHgIiuI08oYblqQuWLy589QmeOfF7H128/Q83pJ5HkxnqhS7zDcNTTUa+anqqCJ4vzIlIjA6vNTeIwTu9i6YX/1TTbwruISBCvZEn5F2eumD5+sJXVfDsSoDGid+76OLtv7gh9SwCIsDkPHXBMsOF7/zguS4BGid+76EGzr9xQ+o55BABJuepXAGz5RzUNTeopgRTuI9cQOAcaohQK8Z/8S1PNRmZremJmgnzoAYOYGBGl1l1YEbGfzEPTw1yaabBMl0ZfA4A6sPV6zcBkYusGBC5MhI1UF9mCtAABB5Xr9/kEKFajP+ChlCRGySJgQEB+Aw5RKgWOR5oKDTNAvA1aohQLXqfoCEwNQcAM6CGCDWi9wm8zQzjIwEAARFqxcBfqA+m5ggsVhqGw0r7CgIiAF7E1ByBxUq5XlbaV5xDt3sXWbHbPVAfdR22ge735malYTistK9WQLd7AD7F1By+l2cvqTSUwYXLqtqmKlYahsNK+4r/ockMgFeQG+RbVTX5SHJadsNlrbX68x9dahay0vdppX3F/1BDBMArGLbBd6oaymDWX7+stOyvu350ebgDK32fVtpX/A81RAC8hmEbfKOqJp9ySaolY7S24Q6s9H1aaV9xDgERAK9i2IaGV1WTT5AkXbDsQq40C1np+7TSvoImMwAIOFU1+WSM6q5Hhnap9jk0C8HqqCECgABUVZPPtgNHq9x29vCuuq5HIsEQLI2ACAAC1IVNPtX1niIYAmgyAwDLoPcUUD1qiADAQug9BVSNgAgALIbeU0BlNJkBAADLIyACAPgVV+dfA+qCJjMATvLsJTp49KSSW0bSrAKfqOkYrGqOturmXwPqgoAICHCuBjh59hIt23pQS//voAxxsYFv1BTwVDVH26Or9mjAxbGmDt65yfAPBERAAHP1bvr87Sr4y8UGgaO2gKeqOdpqm3/N16jR8h/kEAEBqrqLy4V5Fxdud76Kiw3QEGoKeKT/DSx5PlfmX/OUuuYuufobhDkQEAEBqraLS03bVWjIiw1QW8Djy4ElV2blqN/8Dbpl6Xb1m79BK7Nyan2Oq79BmANNZkCAqm6ahgsDnKq2k87dLTGKMRpSRcDz6Ko9KjOMKgMeXwws6W7ukqu/QZgDAREQoFy5uFS1XZBNurN/e03on0QwhAbnSsDT0ANLupu75OpvEOZgMwyjmspynK+oqEjR0dGy2+2KiorydXEAl+XZS1y6m3Z1O8Bq8uwl6jd/Q6Wanq0zB7v0W+G39T++6HHn6vWbGiIgwLl6N810DkDV6lvTw2/rHLP3uKOGyEXUEAGAtVHT47761rLVBzVEAAB4EDU97vOHMaRM3+0+IyNDvXv3VtOmTRUXF6cRI0Zo3759TtucOnVKkydPVosWLdSkSRONGjVKhw8fdtomJydHw4cPV0REhOLi4vTQQw/p7NmzDbkr+C/mIQIAa/H1GFKuMH1AtHnzZk2ePFmffvqp1q1bpzNnzujaa6/VyZMnHdtMnz5d77//vt59911t3rxZhw4d0siRIx3ry8rKNHz4cJ0+fVrbtm3TG2+8oeXLl2vOnDm+2CVLc2csD5gPQS3MjOPTfHw5hpSr/C6H6MiRI4qLi9PmzZs1YMAA2e12xcbG6u2339aNN94oSfrmm2/UtWtXZWZm6sorr9SHH36on//85zp06JDi4+MlSUuWLNEjjzyiI0eOKDQ0tNb3JYeo/nzZhgzPMXtiJKyN49PcfJGH5er12/Q1RBey2+2SpObNm0uSdu7cqTNnzigtLc2xTZcuXdS2bVtlZmZKkjIzM9W9e3dHMCRJ6enpKioq0t69exuw9NbGqK3+j6kIYGaePD6pZfKOxOhwpXZoYcqbYL9Kqi4vL9e0adPUr18/devWTZKUn5+v0NBQxcTEOG0bHx+v/Px8xzbnB0MV6yvWVaW0tFSlpaWO/4uKijy1GwGjruNJMGqr//OHxEhYl6eOT2qZrMmvaogmT56sPXv26M9//rPX3ysjI0PR0dGOR5s2bbz+nv7EnVwgf2hDRs38ITES1uWJ45NaUOvym4BoypQpWrt2rTZu3KiLLrrIsTwhIUGnT59WYWGh0/aHDx9WQkKCY5sLe51V/F+xzYVmzZolu93ueOTm5npwb7ynIap563PCGN27rbbOHKx3Jl2prTMHc9flZwhqYWaeOD7N3rRPU573mL7JzDAM3XfffVq9erU2bdqk5ORkp/VXXHGFGjVqpPXr12vUqFGSpH379iknJ0epqamSpNTUVD399NMqKChQXFycJGndunWKiopSSkpKle8bFhamsLAwL+6Z5zVUNW99q6UZy8O/+WJyTcBV9T0+zdy0T1Oed5m+hmjy5MlasWKF3n77bTVt2lT5+fnKz89XScm56Dg6OloTJ07UjBkztHHjRu3cuVMTJkxQamqqrrzySknStddeq5SUFN12223avXu3/vnPf+q3v/2tJk+e7HdBT3UaspqXZhOYOTESqM/xadZaUJryvM/0NUSLFy+WJA0aNMhp+bJlyzR+/HhJ0gsvvKCgoCCNGjVKpaWlSk9P16uvvurYNjg4WGvXrtU999yj1NRURUZGaty4cXriiScaaje8riGTXZnBGUAgM2MtKB0avM/vxiHyFbOPQ+SLMX6Y1wcAGoYnz/G+mHHelwJ2HCJUzRfVvDSb+CeSMgH/46lzPLMFVI8aIheZvYaoArU2ga8+d3ckZQL+rT7neKvOFsBs9xZFD67AVp+AprqkzAEXx3LMAH6iPud48pBqRpMZ4Cfq28vE7OOrAPAuegjXjIAI8BP1DWg4GQLWZtYhBcyCJjPAT9R3wDiGSzAHq/XwgbmYcUgBsyAgAmpgpouXJwIaToa+RVI7zIBc06rRy8xF/tLLDJ5j1osXPQn9k1V7+AC+xjhEQD2YeZh8xn9yjdnGWyKpHTA3msyAKtA91b+ZsXbPzJOGAqCGCKgSPbLqx5e1M2at3aOHD2Bu1BABVaBHlvt8XTtj5to9ktoB8yIgAqrhrYuXmXqueZoZRsM2e9MUPXxgFf52riMgAmrg6YuXr2tPvM0MtTPU7gG+54/nOgIioIGYofbE28xSO0PTFOA7/nquI6kaaCDe7nZthm7mZkocZngCwDf8dYgJaoiABuLN2hMzVU9TOwNYm1lqiuuKGiKggXir9sSM3cypnQGsy0w1xXVBDRHQgLxRe2KGRGYAOJ8/1hQTEMHj/K2rZUPzdM81f62eBhDY/G2ICZrM4FErs3LUb/4G3bJ0u/rN36CVWTm+LlLA89fqaQC+Y4ZOGGbDbPcuYrb72vnbbN6BVpOVZy/R90eLFREapJOnywJmvwB/ZObzi5k6YTQEV6/fNJnBY/wpl+X8E4JN0qSrkzWhf7Jb5fT2ic/V10+MDteWfx2x1ImuoZn5IgfzMHPAYbYxgsz0myIggktcOWj9JZflwhOCIen3/3dQf9h6sM4nLm+f+Ory+mY70ZldXU/EZr7IwTzM/js0042r2X5T5BChVq7mBflLLktVJwSp7t3Vvd3dva6v76+DoflCXXPdzDi0AczJ7L/DihvX8/nixtWMvykCItSorgft6N5ttXXmYL0z6UptnTnYlHfQVZ0QKtTlxOXtE19dX98sJzqzc+dEbPaLHMzD7L9Ds9y4mvE3RUCEGrlz0Jp9UL6KE0JVB39dTlzePvHV9fXNcqIzO3eOabNf5GAe/vA7NMONqxl/U+QQoUb+khdUVxWDhi3b+r3+sPU7lRt1P3F5e1Z1d17fHwdDa2juHNPe/q7hG95K6PWH36Gvxwgy42+KbvcusnK3+5VZOZUOWjM2hbmroru6uyeu+j7f169vRe4e03wXgcNsCb1W1RC/KVev3wRELrJyQCRxIUDg4Zi2Ln8bMw31wzhE8ChfV68CnsYxbV1m6noO8yCpGgBgKWZM6IXvERDBMpi7B4DkHz3BqsI5zLtoMoMlkEAJ4Hz+0BPsfJzDvI8aIgQ8M46IivrhThmeYPYx0ypwDmsY1BAh4JFAGVi4U4bVcA5rGNQQIeCRQBk4uFOGFXEOaxgERAh4/ppAicrMOP8R4G2cwxoGTWawBH9LoETVAnUqGaA2nMO8jxoiWIa/JFCietwpI9DV1GGAc5h3UUMEwK9wp4xARYcB36KGCIDfqelOmS758Ed0GPA9aogABAzusOGv6Frve9QQ+Vig3s0G6n7BvLjDhj+ja73vUUPkQ4F6Nxuo+wVz4w4b/qyiw8Cjq/aozDA80mEgz16ig0dPKrllJL8BFxAQ+Uh1d7MDLo716wM3UPcLvlfbyZ0u+fB3nuwwwI1p3dFk5iOBOsBcoO4XfGtlVo76zd+gW5ZuV7/5G7QyK6fSNnTJRyDwRNd6mo/dQw2RjwTq3Wyg7hd8py61jnTJh6+520zlyeYtmo/dQ0DkI95oLzaDQN0v+E5dT+6J0eEcb/AJd5upPN285Y83pmbIdyIg8qFAvZsN1P2Cb/jjyR2B78ILuLv5k97Iu/S3G1Oz5DsREPlYoN7NBup+oeH528kdga+qC3ib5hFuNVN5q3nLX25MzdQRx1JJ1a+88oqSkpLUuHFj9e3bV5999pmviwT4lL+MFzW6d1ttnTlY70y6UltnDqa3DHymugt4ZGiwW+MIeXP8IX+Y+8xMHXEsExCtXLlSM2bM0GOPPaZdu3apZ8+eSk9PV0FBga+LBviEKz23zMQfTu4IfNVdwItPl7vVy7Ghe0ea7SbITANS2gzDMGrfzP/17dtXvXv31ssvvyxJKi8vV5s2bXTfffdp5syZtT6/qKhI0dHRstvtioqK8nZxAa/Ks5eo3/wNlfJyts4cTMAB1KC2306evcStZip3n1cXZsnVqapcFzaJe7Jcrl6/LZFDdPr0ae3cuVOzZs1yLAsKClJaWpoyMzOrfE5paalKS0sd/xcVFXm9nEBDoVsu4J7actrczZ/0dt6lmXJ1LmSWfCdLBERHjx5VWVmZ4uPjnZbHx8frm2++qfI5GRkZmjt3bkMUD2hw9NwC3GeWC3hdmP0myAwdcSyTQ1RXs2bNkt1udzxyc3N9XSTAYxjVGagff8tpM1OujllZooaoZcuWCg4O1uHDh52WHz58WAkJCVU+JywsTGFhYQ1RPMAn/PEuF4B7GL6idpYIiEJDQ3XFFVdo/fr1GjFihKRzSdXr16/XlClTfFs4wIfMUE0NoGFwE1QzSwREkjRjxgyNGzdOvXr1Up8+fbRw4UKdPHlSEyZM8HXRAABoENwEVc8yAdHo0aN15MgRzZkzR/n5+br00kv10UcfVUq0BgAA1mOZcYjqi3GIAADwP65ev+llBgAALI+ACAAAWB4BEQAAsDwCIgAAYHkERAAAwPIIiAAAgOUREAEAAMsjIAIAAJZHQAQAACzPMlN31FfFgN5FRUU+LgkAAHBVxXW7tok5CIhcdPz4cUlSmzZtfFwSAABQV8ePH1d0dHS165nLzEXl5eU6dOiQmjZtKpvN5uviNJiioiK1adNGubm5zOFWT3yWnsHn6Dl8lp7B5+g53vgsDcPQ8ePH1apVKwUFVZ8pRA2Ri4KCgnTRRRf5uhg+ExUVxQ/dQ/gsPYPP0XP4LD2Dz9FzPP1Z1lQzVIGkagAAYHkERAAAwPIIiFCjsLAwPfbYYwoLC/N1Ufwen6Vn8Dl6Dp+lZ/A5eo4vP0uSqgEAgOVRQwQAACyPgAgAAFgeAREAALA8AiIAAGB5BESQJG3ZskXXX3+9WrVqJZvNpr/97W9O6w3D0Jw5c5SYmKjw8HClpaVp//79vimsidX2OY4fP142m83pMXToUN8U1uQyMjLUu3dvNW3aVHFxcRoxYoT27dvntM2pU6c0efJktWjRQk2aNNGoUaN0+PBhH5XYnFz5HAcNGlTpuLz77rt9VGLzWrx4sXr06OEYNDA1NVUffvihYz3Ho2tq+xx9dTwSEEGSdPLkSfXs2VOvvPJKlesXLFigRYsWacmSJdq+fbsiIyOVnp6uU6dONXBJza22z1GShg4dqry8PMfjnXfeacAS+o/Nmzdr8uTJ+vTTT7Vu3TqdOXNG1157rU6ePOnYZvr06Xr//ff17rvvavPmzTp06JBGjhzpw1KbjyufoyRNmjTJ6bhcsGCBj0psXhdddJHmz5+vnTt3aseOHbrmmmv0y1/+Unv37pXE8eiq2j5HyUfHowFcQJKxevVqx//l5eVGQkKC8eyzzzqWFRYWGmFhYcY777zjgxL6hws/R8MwjHHjxhm//OUvfVIef1dQUGBIMjZv3mwYxrljsFGjRsa7777r2Obrr782JBmZmZm+KqbpXfg5GoZhDBw40Lj//vt9Vyg/1qxZM+MPf/gDx2M9VXyOhuG745EaItTq4MGDys/PV1pammNZdHS0+vbtq8zMTB+WzD9t2rRJcXFx6ty5s+655x799NNPvi6SX7Db7ZKk5s2bS5J27typM2fOOB2XXbp0Udu2bTkua3Dh51jhrbfeUsuWLdWtWzfNmjVLxcXFviie3ygrK9Of//xnnTx5UqmpqRyPbrrwc6zgi+ORyV1Rq/z8fElSfHy80/L4+HjHOrhm6NChGjlypJKTk3XgwAE9+uijGjZsmDIzMxUcHOzr4plWeXm5pk2bpn79+qlbt26Szh2XoaGhiomJcdqW47J6VX2OknTLLbeoXbt2atWqlb744gs98sgj2rdvn1atWuXD0prTl19+qdTUVJ06dUpNmjTR6tWrlZKSouzsbI7HOqjuc5R8dzwSEAENaMyYMY6/u3fvrh49eqhDhw7atGmThgwZ4sOSmdvkyZO1Z88ebd261ddF8WvVfY533XWX4+/u3bsrMTFRQ4YM0YEDB9ShQ4eGLqapde7cWdnZ2bLb7Xrvvfc0btw4bd682dfF8jvVfY4pKSk+Ox5pMkOtEhISJKlSb4nDhw871sE97du3V8uWLfXtt9/6uiimNWXKFK1du1YbN27URRdd5FiekJCg06dPq7Cw0Gl7jsuqVfc5VqVv376SxHFZhdDQUHXs2FFXXHGFMjIy1LNnT7344oscj3VU3edYlYY6HgmIUKvk5GQlJCRo/fr1jmVFRUXavn27U5sv6u6HH37QTz/9pMTERF8XxXQMw9CUKVO0evVqbdiwQcnJyU7rr7jiCjVq1MjpuNy3b59ycnI4Ls9T2+dYlezsbEniuHRBeXm5SktLOR7rqeJzrEpDHY80mUGSdOLECafo++DBg8rOzlbz5s3Vtm1bTZs2TU899ZQ6deqk5ORkzZ49W61atdKIESN8V2gTqulzbN68uebOnatRo0YpISFBBw4c0MMPP6yOHTsqPT3dh6U2p8mTJ+vtt9/W3//+dzVt2tSRhxEdHa3w8HBFR0dr4sSJmjFjhpo3b66oqCjdd999Sk1N1ZVXXunj0ptHbZ/jgQMH9Pbbb+u6665TixYt9MUXX2j69OkaMGCAevTo4ePSm8usWbM0bNgwtW3bVsePH9fbb7+tTZs26Z///CfHYx3U9Dn69Hhs8H5tMKWNGzcakio9xo0bZxjGua73s2fPNuLj442wsDBjyJAhxr59+3xbaBOq6XMsLi42rr32WiM2NtZo1KiR0a5dO2PSpElGfn6+r4ttSlV9jpKMZcuWObYpKSkx7r33XqNZs2ZGRESEccMNNxh5eXm+K7QJ1fY55uTkGAMGDDCaN29uhIWFGR07djQeeughw263+7bgJnTHHXcY7dq1M0JDQ43Y2FhjyJAhxscff+xYz/Hompo+R18ejzbDMAzvhlwAAADmRg4RAACwPAIiAABgeQREAADA8giIAACA5REQAQAAyyMgAgAAlkdABAAALI+ACAAAWB4BEQAAsDwCIgB+7/Tp074uQiVmLBOA6hEQATCdQYMGacqUKZoyZYqio6PVsmVLzZ49WxUzDSUlJenJJ5/U7bffrqioKN11112SpK1bt+rqq69WeHi42rRpo6lTp+rkyZOO13311VfVqVMnNW7cWPHx8brxxhsd69577z11795d4eHhatGihdLS0hzPHTRokKZNm+ZUxhEjRmj8+PGO/90tEwBzICACYEpvvPGGQkJC9Nlnn+nFF1/U888/rz/84Q+O9b/73e/Us2dPff7555o9e7YOHDigoUOHatSoUfriiy+0cuVKbd26VVOmTJEk7dixQ1OnTtUTTzyhffv26aOPPtKAAQMkSXl5ebr55pt1xx136Ouvv9amTZs0cuRI1XWqx7qWCYB5MLkrANMZNGiQCgoKtHfvXtlsNknSzJkztWbNGn311VdKSkrSZZddptWrVzuec+eddyo4OFivvfaaY9nWrVs1cOBAnTx5Uh988IEmTJigH374QU2bNnV6v127dumKK67Q999/r3bt2lVZnksvvVQLFy50LBsxYoRiYmK0fPlySXKrTI0bN67X5wTAc6ghAmBKV155pSMYkqTU1FTt379fZWVlkqRevXo5bb97924tX75cTZo0cTzS09NVXl6ugwcP6mc/+5natWun9u3b67bbbtNbb72l4uJiSVLPnj01ZMgQde/eXb/61a+0dOlS/ec//6lzmetaJgDmQUAEwC9FRkY6/X/ixAn9+te/VnZ2tuOxe/du7d+/Xx06dFDTpk21a9cuvfPOO0pMTNScOXPUs2dPFRYWKjg4WOvWrdOHH36olJQUvfTSS+rcubMjaAkKCqrUfHbmzJl6lwmAeRAQATCl7du3O/3/6aefqlOnTgoODq5y+8svv1xfffWVOnbsWOkRGhoqSQoJCVFaWpoWLFigL774Qt9//702bNggSbLZbOrXr5/mzp2rzz//XKGhoY7mr9jYWOXl5Tneq6ysTHv27Kl1H1wpEwBzICACYEo5OTmaMWOG9u3bp3feeUcvvfSS7r///mq3f+SRR7Rt2zZNmTJF2dnZ2r9/v/7+9787EpjXrl2rRYsWKTs7W//+97/15ptvqry8XJ07d9b27ds1b9487dixQzk5OVq1apWOHDmirl27SpKuueYa/eMf/9A//vEPffPNN7rnnntUWFhY6z7UViYA5hHi6wIAQFVuv/12lZSUqE+fPgoODtb999/v6MpelR49emjz5s36zW9+o6uvvlqGYahDhw4aPXq0JCkmJkarVq3S448/rlOnTqlTp0565513dMkll+jrr7/Wli1btHDhQhUVFaldu3Z67rnnNGzYMEnSHXfcod27d+v2229XSEiIpk+frsGDB9e6D7WVCYB50MsMgOlU1asLALyJJjMAAGB5BEQAAMDyaDIDAACWRw0RAACwPAIiAABgeQREAADA8giIAACA5REQAQAAyyMgAgAAlkdABAAALI+ACAAAWB4BEQAAsLz/D1RPl89teIyEAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1054,7 +4161,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABELElEQVR4nO3deXRU9f3/8dckkBCWDFs2IRB2RCAgi4QoBEED9adGtEX4VnYsCApSF7AugNag1harFixWqAtKsaBWcaFsHgQpi1GhypEUSJSExZYJhBAgub8/aKaErDOZmXvnzvNxzpwDd+7MvOfmztz3vD+bwzAMQwAAADYRZnYAAAAAvkRyAwAAbIXkBgAA2ArJDQAAsBWSGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgPAFPPmzZPD4ajVvg6HQ/PmzfNrPGlpaUpLS7Ps8wGoPZIbIMQtX75cDofDfatXr55atWql8ePH64cffjA7PMtJSkoqd7xiY2N1zTXXaM2aNT55/tOnT2vevHnatGmTT54PCEUkNwAkSQsWLNBrr72mJUuWaMSIEXr99dc1ePBgnTlzxi+v9/DDD6uoqMgvz+1vvXr10muvvabXXntN9913nw4fPqyRI0dqyZIldX7u06dPa/78+SQ3QB3UMzsAANYwYsQI9e3bV5I0efJktWzZUk899ZTee+89/exnP/P569WrV0/16gXnV1CrVq3085//3P3/sWPHqmPHjvrd736nqVOnmhgZAInKDYAqXHPNNZKk7Ozsctu//fZb3XbbbWrevLkaNGigvn376r333iu3z7lz5zR//nx16tRJDRo0UIsWLXT11Vdr3bp17n0q63NTXFyse++9VzExMWrSpIluuukmff/99xViGz9+vJKSkipsr+w5ly1bpmuvvVaxsbGKjIxUt27dtHjxYo+ORU3i4+N1+eWX68CBA9Xud/ToUU2aNElxcXFq0KCBkpOT9ec//9l9/8GDBxUTEyNJmj9/vrvpy9/9jQC7Cc6fTQD87uDBg5KkZs2aubft3btXqampatWqlebMmaNGjRrpL3/5izIyMvTXv/5Vt9xyi6QLSUZmZqYmT56s/v37q6CgQDt37tTu3bt13XXXVfmakydP1uuvv64xY8Zo4MCB2rBhg2644YY6vY/Fixfriiuu0E033aR69erpb3/7m+666y6VlpZq+vTpdXruMufOnVNubq5atGhR5T5FRUVKS0vT/v37NWPGDLVr106rVq3S+PHjdeLECc2cOVMxMTFavHixpk2bpltuuUUjR46UJPXs2dMncQIhwwAQ0pYtW2ZIMv7+978bx44dM3Jzc423337biImJMSIjI43c3Fz3vkOHDjV69OhhnDlzxr2ttLTUGDhwoNGpUyf3tuTkZOOGG26o9nUfe+wx4+KvoKysLEOScdddd5Xbb8yYMYYk47HHHnNvGzdunNG2bdsan9MwDOP06dMV9ktPTzfat29fbtvgwYONwYMHVxuzYRhG27Ztjeuvv944duyYcezYMePLL780br/9dkOScffdd1f5fIsWLTIkGa+//rp729mzZ42UlBSjcePGRkFBgWEYhnHs2LEK7xeAZ2iWAiBJGjZsmGJiYpSYmKjbbrtNjRo10nvvvafWrVtLkv79739rw4YN+tnPfqaTJ0/q+PHjOn78uH788Uelp6fru+++c4+uatq0qfbu3avvvvuu1q+/du1aSdI999xTbvusWbPq9L6ioqLc/3a5XDp+/LgGDx6sf/3rX3K5XF495yeffKKYmBjFxMQoOTlZq1at0h133KGnnnqqysesXbtW8fHxGj16tHtb/fr1dc899+jUqVPavHmzV7EAqIhmKQCSpBdffFGdO3eWy+XSK6+8ok8//VSRkZHu+/fv3y/DMPTII4/okUceqfQ5jh49qlatWmnBggW6+eab1blzZ3Xv3l3Dhw/XHXfcUW3zyqFDhxQWFqYOHTqU296lS5c6va/PPvtMjz32mLZt26bTp0+Xu8/lcsnpdHr8nFdddZWeeOIJORwONWzYUJdffrmaNm1a7WMOHTqkTp06KSys/G/Kyy+/3H0/AN8guQEgSerfv797tFRGRoauvvpqjRkzRvv27VPjxo1VWloqSbrvvvuUnp5e6XN07NhRkjRo0CBlZ2fr3Xff1SeffKKXX35Zv/vd77RkyRJNnjy5zrFWNflfSUlJuf9nZ2dr6NCh6tq1q377298qMTFRERERWrt2rX73u9+535OnWrZsqWHDhnn1WAD+R3IDoILw8HBlZmZqyJAheuGFFzRnzhy1b99e0oWmlNpc2Js3b64JEyZowoQJOnXqlAYNGqR58+ZVmdy0bdtWpaWlys7OLlet2bdvX4V9mzVrphMnTlTYfmn1429/+5uKi4v13nvvqU2bNu7tGzdurDF+X2vbtq2++uorlZaWlqvefPvtt+77paoTNwC1R58bAJVKS0tT//79tWjRIp05c0axsbFKS0vTSy+9pLy8vAr7Hzt2zP3vH3/8sdx9jRs3VseOHVVcXFzl640YMUKS9Pvf/77c9kWLFlXYt0OHDnK5XPrqq6/c2/Ly8irMEhweHi5JMgzDvc3lcmnZsmVVxuEvP/nJT5Sfn6+VK1e6t50/f17PP/+8GjdurMGDB0uSGjZsKEmVJm8AaofKDYAq3X///frpT3+q5cuXa+rUqXrxxRd19dVXq0ePHpoyZYrat2+vI0eOaNu2bfr+++/15ZdfSpK6deumtLQ09enTR82bN9fOnTv19ttva8aMGVW+Vq9evTR69Gj94Q9/kMvl0sCBA7V+/Xrt37+/wr633367HnzwQd1yyy265557dPr0aS1evFidO3fW7t273ftdf/31ioiI0I033qhf/OIXOnXqlJYuXarY2NhKEzR/uvPOO/XSSy9p/Pjx2rVrl5KSkvT222/rs88+06JFi9SkSRNJFzpAd+vWTStXrlTnzp3VvHlzde/eXd27dw9ovEBQM3u4FgBzlQ0F37FjR4X7SkpKjA4dOhgdOnQwzp8/bxiGYWRnZxtjx4414uPjjfr16xutWrUy/t//+3/G22+/7X7cE088YfTv399o2rSpERUVZXTt2tX49a9/bZw9e9a9T2XDtouKiox77rnHaNGihdGoUSPjxhtvNHJzcysdGv3JJ58Y3bt3NyIiIowuXboYr7/+eqXP+d577xk9e/Y0GjRoYCQlJRlPPfWU8corrxiSjAMHDrj382QoeE3D3Kt6viNHjhgTJkwwWrZsaURERBg9evQwli1bVuGxW7duNfr06WNEREQwLBzwgsMwLqrXAgAABDn63AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGArITeJX2lpqQ4fPqwmTZowzTkAAEHCMAydPHlSl112WYUFaC8VcsnN4cOHlZiYaHYYAADAC7m5uWrdunW1+4RcclM2xXlubq6io6NNjgYAANRGQUGBEhMT3dfx6oRcclPWFBUdHU1yAwBAkKlNlxI6FAMAAFshuQEAALZCcgMAAGwl5PrcAABCR0lJic6dO2d2GKiliIiIGod51wbJDQDAdgzDUH5+vk6cOGF2KPBAWFiY2rVrp4iIiDo9D8kNAMB2yhKb2NhYNWzYkElbg0DZJLt5eXlq06ZNnf5mJDcAAFspKSlxJzYtWrQwOxx4ICYmRocPH9b58+dVv359r5+HDsUAAFsp62PTsGFDkyOBp8qao0pKSur0PCQ3AABboikq+Pjqb0ZyAwAAbIXkBgAABMSmTZvkcDj8PoqN5AYAPJDnKtLW7OPKcxWZHQpQwbx589SrVy+zwzAdo6UAoJZW7sjR3NVfq9SQwhxS5sgeGtWvjdlhAR47d+5cnUYjWR2VGwCohTxXkTuxkaRSQ3po9R4qOPCp0tJSZWZmql27doqKilJycrLefvttSf9r0lm/fr369u2rhg0bauDAgdq3b58kafny5Zo/f76+/PJLORwOORwOLV++XNKFjrqLFy/WTTfdpEaNGunXv/51tXGUvdbHH3+s3r17KyoqStdee62OHj2qDz/8UJdffrmio6M1ZswYnT592v244uJi3XPPPYqNjVWDBg109dVXa8eOHf45WNUguQGAWjhwvNCd2JQpMQwdPH668gfANgLZFJmZmalXX31VS5Ys0d69e3Xvvffq5z//uTZv3uze51e/+pWeffZZ7dy5U/Xq1dPEiRMlSaNGjdIvf/lLXXHFFcrLy1NeXp5GjRrlfty8efN0yy236Ouvv3Y/pibz5s3TCy+8oK1btyo3N1c/+9nPtGjRIq1YsUIffPCBPvnkEz3//PPu/R944AH99a9/1Z///Gft3r1bHTt2VHp6uv7973/76AjVDs1SAFAL7Vo2UphD5RKccIdDSS2ZS8XOAtkUWVxcrCeffFJ///vflZKSIklq3769tmzZopdeekl33nmnJOnXv/61Bg8eLEmaM2eObrjhBp05c0ZRUVFq3Lix6tWrp/j4+ArPP2bMGE2YMMGjmJ544gmlpqZKkiZNmqS5c+cqOztb7du3lyTddttt2rhxox588EEVFhZq8eLFWr58uUaMGCFJWrp0qdatW6c//elPuv/++707MF6gcgMAtZDgjFLmyB4K/+88HOEOh54c2V0JziiTI4O/BLopcv/+/Tp9+rSuu+46NW7c2H179dVXlZ2d7d6vZ8+e7n8nJCRIko4ePVrj8/ft29fjmC5+rbi4ODVs2NCd2JRtK3vt7OxsnTt3zp0MSVL9+vXVv39/ffPNNx6/dl1QuQGAWhrVr40GdY7RweOnldSyIYmNzVXXFOmPv/2pU6ckSR988IFatWpV7r7IyEh3gnNxR+CySe9KS0trfP5GjRp5HNOlr3VpJ2SHw1Gr1w40khsA8ECCM4qkJkQEuimyW7duioyMVE5OjrvZ6WIXV2+qEhERUeelC7zVoUMHRURE6LPPPlPbtm0lXRiVtWPHDs2aNSugsZDcAABQibKmyIdW71GJYfi9KbJJkya67777dO+996q0tFRXX321XC6XPvvsM0VHR7sThuokJSXpwIEDysrKUuvWrdWkSRNFRkb6Jd5LNWrUSNOmTdP999+v5s2bq02bNnr66ad1+vRpTZo0KSAxlCG5AQCgCoFuinz88ccVExOjzMxM/etf/1LTpk115ZVX6qGHHqpV88+tt96q1atXa8iQITpx4oSWLVum8ePH+zXmiy1cuFClpaW64447dPLkSfXt21cff/yxmjVrFrAYJMlhGIZR8272UVBQIKfTKZfLpejoaLPDAQD42JkzZ3TgwAG1a9dODRo0MDsceKC6v50n129GSwEAAFshuQEAIMRMnTq13HDzi29Tp041O7w6o88NAAAhZsGCBbrvvvsqvc8OXTZIbgAACDGxsbGKjY01Owy/oVkKAADYCskNAMCWrDhzLqrnqwHcNEsBAGwlIiJCYWFhOnz4sGJiYhQREeFepgDWZRiGjh07VukyD54iuQEA2EpYWJjatWunvLw8HT582Oxw4AGHw6HWrVsrPDy8Ts9DcgMAsJ2IiAi1adNG58+fN22tJXiufv36dU5sJJIbAIBNlTVv1LWJA8GHDsUAAMBWSG4AAICtkNwAAABbIbkBAAC2QnIDAABsheQGAADYCskNAACwFZIbAABgKyQ3AADAVkxNbhYvXqyePXsqOjpa0dHRSklJ0YcffljtY1atWqWuXbuqQYMG6tGjh9auXRugaAEAQDAwNblp3bq1Fi5cqF27dmnnzp269tprdfPNN2vv3r2V7r9161aNHj1akyZN0hdffKGMjAxlZGRoz549AY4cAABYlcMwDMPsIC7WvHlzPfPMM5o0aVKF+0aNGqXCwkK9//777m0DBgxQr169tGTJklo9f0FBgZxOp1wul6Kjo30WNwAA8B9Prt+W6XNTUlKit956S4WFhUpJSal0n23btmnYsGHltqWnp2vbtm1VPm9xcbEKCgrK3QAAgH2Zntx8/fXXaty4sSIjIzV16lStWbNG3bp1q3Tf/Px8xcXFldsWFxen/Pz8Kp8/MzNTTqfTfUtMTPRp/AAAwFpMT266dOmirKwsbd++XdOmTdO4ceP0z3/+02fPP3fuXLlcLvctNzfXZ88NAACsp57ZAURERKhjx46SpD59+mjHjh167rnn9NJLL1XYNz4+XkeOHCm37ciRI4qPj6/y+SMjIxUZGenboAEAgGWZXrm5VGlpqYqLiyu9LyUlRevXry+3bd26dVX20QEAAKHH1MrN3LlzNWLECLVp00YnT57UihUrtGnTJn388ceSpLFjx6pVq1bKzMyUJM2cOVODBw/Ws88+qxtuuEFvvfWWdu7cqT/+8Y9mvg0AAGAhpiY3R48e1dixY5WXlyen06mePXvq448/1nXXXSdJysnJUVjY/4pLAwcO1IoVK/Twww/roYceUqdOnfTOO++oe/fuZr0FAABgMZab58bfmOcGAIDgE5Tz3AAAAPgCyQ0AALAVkhsAAGArJDcAAMBWSG4AAICtkNwAAABbIbkBAAC2QnIDAABsheQGAADYCskNAACVyHMVaWv2ceW5iswOBR4ydW0pAACsaOWOHM1d/bVKDSnMIWWO7KFR/dqYHRZqicoNAAAXyXMVuRMbSSo1pIdW76GCE0RIbgAAuMiB44XuxKZMiWHo4PHT5gQEj5HcAABwkXYtGynMUX5buMOhpJYNzQkIHiO5AQDgIgnOKGWO7KFwx4UMJ9zh0JMjuyvBGWVyZNZi5Q7XdCgGAJvJcxXpwPFCtWvZiAuyl0b1a6NBnWN08PhpJbVsyHG8hNU7XJPcAICNWP2iE0wSnFEkNZWoqsP1oM4xljleNEsBgE0wygeBEAwdrkluAMAmguGig+AXDB2uSW4AwCaC4aKD4BcMHa7pcwMANlF20Xlo9R6VGIYlLzqwB6t3uCa5AQAbsfpFB/Zh5Q7XJDcAYDNWvugAgUCfGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AIGTluYq0Nfs4i4vaDJP4AQBC0sodOe5V1MMcUubIHhrVr43ZYcEHqNwAAEJOnqvIndhIUqkhPbR6DxUcmyC5AQCEnAPHC92JTZkSw9DB46fNCQg+RXIDAAg57Vo2Upij/LZwh0NJLRuaExB8iuQGABByEpxRyhzZQ+GOCxlOuMOhJ0d2Z8FRm6BDMQAgJI3q10aDOsfo4PHTSmrZkMTGRkhuAAAhK8EZRVJjQzRLAQAAWyG5AQAAtmJqcpOZmal+/fqpSZMmio2NVUZGhvbt21ftY5YvXy6Hw1Hu1qBBgwBFDAAArM7U5Gbz5s2aPn26Pv/8c61bt07nzp3T9ddfr8LCwmofFx0drby8PPft0KFDAYoYAABYnakdij/66KNy/1++fLliY2O1a9cuDRo0qMrHORwOxcfH+zs8AAAQhCzV58blckmSmjdvXu1+p06dUtu2bZWYmKibb75Ze/furXLf4uJiFRQUlLsBAAD7skxyU1paqlmzZik1NVXdu3evcr8uXbrolVde0bvvvqvXX39dpaWlGjhwoL7//vtK98/MzJTT6XTfEhMT/fUWAACABTgMwzBq3s3/pk2bpg8//FBbtmxR69ata/24c+fO6fLLL9fo0aP1+OOPV7i/uLhYxcXF7v8XFBQoMTFRLpdL0dHRPokdAAD4V0FBgZxOZ62u35aYxG/GjBl6//339emnn3qU2EhS/fr11bt3b+3fv7/S+yMjIxUZGemLMAEAQBAwtVnKMAzNmDFDa9as0YYNG9SuXTuPn6OkpERff/21EhIS/BAhAAAINqZWbqZPn64VK1bo3XffVZMmTZSfny9Jcjqdioq6MB322LFj1apVK2VmZkqSFixYoAEDBqhjx446ceKEnnnmGR06dEiTJ0827X0AAADrMDW5Wbx4sSQpLS2t3PZly5Zp/PjxkqScnByFhf2vwPSf//xHU6ZMUX5+vpo1a6Y+ffpo69at6tatW6DCBgAAFmaZDsWB4kmHJAAAYA2eXL8tMxQcAADAF0huAACArZDcAAAAWyG5AQAAtkJyAwAAbIXkBgAA2ArJDQAAsBWSGwAAYCskNwAAwFZIboD/ynMVaWv2ceW5iswOBQBQB6auLQVYxcodOZq7+muVGlKYQ8oc2UOj+rUxOywAgBeo3CDk5bmK3ImNJJUa0kOr91DBAYAgRXKDkHfgeKE7sSlTYhg6ePy0OQEBAOqE5AYhr13LRgpzlN8W7nAoqWVDcwICANQJyQ1CXoIzSpkjeyjccSHDCXc49OTI7kpwRpkcGQDAG3QoBiSN6tdGgzrH6ODx00pq2ZDEBgCCGMkN8F8JziiSGgCwAZqlAAAIUszPVTkqNwAABCHm56oalRsAsAl+xYcO5ueqHpUbALABfsWHlurm56LvIJUbAAh6/IoPPczPVT2SmwCjbAwEj2D5vDLLduhhfq7q0SwVQJSNgeARTJ/Xsl/xFyc4/Iq3P+bnqhqVmwChbAwEj2D7vPIrPnQlOKOU0qEFf+tLULkJEDp/AbWX5yrSgeOFateykSmfj2D8vPIrHvgfkpsAoWwM1I4VmoOC9fPKLNvABTRLBQhlY6BmVmkO4vMKBDcqNwFE2RionpWag/i8AsGL5CbAKBsDVbNacxCfVyA40SwFwDJoDgLgC1RuAFgKzUEA6orkBoDl0BwEoC5olgIAALZCcgMAAGyF5AYAANSZlRaapc8NAACoEyvMLH4xKjcAAMBrVplZ/GIkN/A5K5UmgWDH5wlWV93M4mahWQo+ZbXSJIKH2SuBWxGfJwQDq80sLplcucnMzFS/fv3UpEkTxcbGKiMjQ/v27avxcatWrVLXrl3VoEED9ejRQ2vXrg1AtKiJFUuTCA4rd+QodeEGjVm6XakLN2jljhyzQzIdnycECyvOLG5qcrN582ZNnz5dn3/+udatW6dz587p+uuvV2FhYZWP2bp1q0aPHq1Jkybpiy++UEZGhjIyMrRnz54ARo7KWLE0CevjIl45Pk8IJqP6tdGWOUP05pQB2jJniOkVRlObpT766KNy/1++fLliY2O1a9cuDRo0qNLHPPfccxo+fLjuv/9+SdLjjz+udevW6YUXXtCSJUv8HjOqZsXSJKzPSiuBWwmfJ/uzW1OslWYWt1SHYpfLJUlq3rx5lfts27ZNw4YNK7ctPT1d27Zt82tsduHPzolWLE3C+sou4hfjIs7nye5oivUvy3QoLi0t1axZs5Samqru3btXuV9+fr7i4uLKbYuLi1N+fn6l+xcXF6u4uNj9/4KCAt8EHIQC0TmRRQ/hqbKL+EOr96jEMLiIX4TPkz1V1RQ7qHOMV39ju1WAfMEyyc306dO1Z88ebdmyxafPm5mZqfnz5/v0OYORrz9M1bFSaRLBgYt41fg82Y8vm2IZUVc5SzRLzZgxQ++//742btyo1q1bV7tvfHy8jhw5Um7bkSNHFB8fX+n+c+fOlcvlct9yc3N9FncwoXMirC7BGaWUDi24kMP2fNUUS2f8qpma3BiGoRkzZmjNmjXasGGD2rVrV+NjUlJStH79+nLb1q1bp5SUlEr3j4yMVHR0dLlbKKJfAwBYg6/6U/GjtWqmNktNnz5dK1as0LvvvqsmTZq4+804nU5FRV34I48dO1atWrVSZmamJGnmzJkaPHiwnn32Wd1www166623tHPnTv3xj3807X1cyortn/RrAIC689X3uy+aYhlRVzWHYRhGzbv56cUdjkq3L1u2TOPHj5ckpaWlKSkpScuXL3ffv2rVKj388MM6ePCgOnXqpKefflo/+clPavWaBQUFcjqdcrlcfqniWL39M89VRL8GAPCCFb/fV+7IqfCj1eyY/MWT67epyY0Z/Jnc5LmKlLpwQ4UsesucISQSABDErPz9Hio/Wj25fte6WcqTIdSh2q+FycgAwJ6s/P3OiLqKap3cNG3atMpmpDKGYcjhcKikpKTOgQUj2j8BwJ74fg8utU5uNm7c6M84bIFOuwBgT3y/Bxf63PhBqLR/AkCo4fvdPH7pc3OpEydO6E9/+pO++eYbSdIVV1yhiRMnyul0evuUtmHH9k8rDm8HgECz4/e7HXlVudm5c6fS09MVFRWl/v37S5J27NihoqIiffLJJ7ryyit9HqivBKJyYzdWHP4IAAgtfh8Kfs0116hjx45aunSp6tW7UPw5f/68Jk+erH/961/69NNPvYs8AEhuPGPl4Y8AgNDh92apnTt3lktsJKlevXp64IEH1LdvX2+eEhZl5eGPAABUxqu1paKjo5WTk1Nhe25urpo0aVLnoGCePFeRtmYfdy+8xppUAIBg41VyM2rUKE2aNEkrV65Ubm6ucnNz9dZbb2ny5MkaPXq0r2NEgKzckaPUhRs0Zul2pS7coJU7cny2wBsAAIHiVbPUb37zGzkcDo0dO1bnz5+XJNWvX1/Tpk3TwoULfRogAiPPVeTuNCxdmKjqodV7NKhzjE8WeIPnGKEGAN7xKrmJiIjQc889p8zMTGVnZ0uSOnTooIYNaaoIVjX1rWH4Y2AxQg0AvOf1PDeS1LBhQ/Xo0cNXscBETC1uHdVV0UgwAaBmXiU3Z86c0fPPP6+NGzfq6NGjKi0tLXf/7t27fRIcAoepxa2DEWrwFE2YQHleJTeTJk3SJ598ottuu039+/evcUFNBAf61lhDIKtoXBSDH02YNeM8Dz1eTeLndDq1du1apaam+iMmv2ISPwSDlTtyKlTRfH3B4qIY/Jhks2ac5/bh90n8WrVqxXw2gB/5u4pGvx57oAmzepznocureW6effZZPfjggzp06JCv4wHwXwnOKKV0aOGXL+HqLooIHoGeZPPSST6tzu7nebD9PQLJq8pN3759debMGbVv314NGzZU/fr1y93/73//2yfBAfAPRsfZQyAHAgRj846dz/Ng/HsEklfJzejRo/XDDz/oySefVFxcHB2KgSDD6Dj78HUTZmWdb4O1eccu5/mlf5Ng/XsEklfJzdatW7Vt2zYlJyf7Oh4AAcLoOPvw1SSbVVUDgrlvT7Cf55X9TRKbNwzav0egeNXnpmvXrioqoo0PCHb+7NeD4FJVNSDPVRT0C+hWdp4HQ3+Vqv4mjSLCg/rvEQheJTcLFy7UL3/5S23atEk//vijCgoKyt0AAMGlpuqMnRbQrWyRYCuq6m9y+myprf4e/uBVs9Tw4cMlSUOHDi233TAMORwOlZSU1D0yAEDA1NT5Ntibd8oEU3+V6v4mKR1a2OLv4S9eJTcbN270dRwAABPVpvOtHRbQDab+QzX9Tezw9/AXr5KbwYMH12q/u+66SwsWLFDLli29eRkAQADZpTpTnWAbHh4KfxN/8KrPTW29/vrr9MEBgCBi907mwdh/yO5/E3/wqnJTW14sWwUAgF9RDbE/vyY3AABYkZn9VVil3P9IbgAACBCWTQgMv/a5AQAAF1Q3USJ8i+QGMEEwzI4KwLfsvkq5lXic3Jw/f14LFizQ999/X+O+P//5zxUdHe1VYIBdBcvsqAB8K9iXsQgmHic39erV0zPPPKPz58/XuO/ixYuZ4wa4CGVpIHQF4zD0YOVVh+Jrr71WmzdvVlJSko/DAeytprI0IygAe2MYemB4ldyMGDFCc+bM0ddff60+ffqoUaNG5e6/6aabfBIcYDdVzY761fcn9H8vf84ICiAEsGyC/zkML2baCwurujXL6gtnFhQUyOl0yuVy0R8Ipli5I6fcWjEPjOiipz78tkLCs2XOEL4AAeC/PLl+e1W5KS0t9SowABXL0sG0kB8ABAOvhoK/+uqrKi4urrD97NmzevXVV+scFGB3F68VwwgKAPAtr5KbCRMmyOVyVdh+8uRJTZgwoc5BAaGEERQA4FteNUsZhiGHw1Fh+/fffy+n01nnoIBQwwgKAPAdj5Kb3r17y+FwyOFwaOjQoapX738PLykp0YEDBzR8+PBaP9+nn36qZ555Rrt27VJeXp7WrFmjjIyMKvfftGmThgwZUmF7Xl6e4uPjPXkrgOXUZgQFC+4BQM08Sm7KEo+srCylp6ercePG7vsiIiKUlJSkW2+9tdbPV1hYqOTkZE2cOFEjR46s9eP27dtXrqd0bGxsrR8LBCsW3AOA2vEouXnsscckSUlJSRo1apQaNGhQpxcfMWKERowY4fHjYmNj1bRp0zq9NhBMqprZeFDnGCo4AHAJr/rcjBs3TtKF0VFHjx6tMDS8TRv//prs1auXiouL1b17d82bN0+pqalV7ltcXFxuZFdBQYFfYwP8oarh4rsP/UfNGtFMBQAX8yq5+e677zRx4kRt3bq13Payjsb+msQvISFBS5YsUd++fVVcXKyXX35ZaWlp2r59u6688spKH5OZman58+f7JR6grmrbh6aymY0dDmnGii9kiGYqALiYVzMUp6amql69epozZ44SEhIqjJxKTk72PBCHo8YOxZUZPHiw2rRpo9dee63S+yur3CQmJjJDMXyiLh18Pe1Dc/HMxmEOyTCkiz+8zGoMwM78PkNxVlaWdu3apa5du3oVoC/1799fW7ZsqfL+yMhIRUZGBjAimMGMUUR16eDrTR+aQZ1jtOj2ZIU5HCo1DN39Zla5+y+e1ZhRVQBCmVfJTbdu3XT8+HFfx+KVrKwsJSQkmB0GTGTGKKK6dvD1dMmFS9/jg8O7VroAZ1LLhoyqAhDyvJqh+KmnntIDDzygTZs26ccff1RBQUG5W22dOnVKWVlZysrKkiQdOHBAWVlZysnJkSTNnTtXY8eOde+/aNEivfvuu9q/f7/27NmjWbNmacOGDZo+fbo3bwM2UFWSkecq8uvrVpec1IYnSy5U9h6f/mifHhzRtcKsxpJMOR4AYCVeVW6GDRsmSbr22mvL9bfxtEPxzp07y03KN3v2bEkXRmMtX75ceXl57kRHujA665e//KV++OEHNWzYUD179tTf//73Sif2Q2jw9aKTdeng68l6UGVLLly8OnhVSy5U9R57tmqqLXOGlJvVeGv2cRbhBBDyvEpuNm7c6JMXT0tLU3X9mZcvX17u/w888IAeeOABn7w27KGuScbFPGnO8SQ5qUptl1yo7j1eOquxL48HAAQrr5qlBg8erLCwMC1dulRz5sxRx44dNXjwYOXk5Cg8PNzXMQJV8tWik940b43q10Zb5gzRm1MGaMucIV71a7l4dfDq9qnte2QRTgDwsnLz17/+VXfccYf+7//+T1988YV7qLXL5dKTTz6ptWvX+jRIoDq+WHTS2+at2qwH5QuevEcW4QQQ6ryq3DzxxBNasmSJli5dqvr167u3p6amavfu3T4LDqit2lRAquNJB1+zePIe63o8ACCYeZXc7Nu3T4MGDaqw3el06sSJE3WNCQg4mnMAc+S5irQ1+zgj+uBTXjVLxcfHa//+/UpKSiq3fcuWLWrfvr0v4gICjuYcILCYkwn+4lXlZsqUKZo5c6a2b98uh8Ohw4cP64033tB9992nadOm+TpG+Am/mCqiOQcIDLPmqEJo8KpyM2fOHJWWlmro0KE6ffq0Bg0apMjISN133326++67fR0j/IBfTADMXKbD13NUWQnLn5jPq4Uzy5w9e1b79+/XqVOn1K1bNzVu3NiXsfmFJwtv2VWeq0ipCzdUmAuFRRfhK3y5W5/ZP3Ds+j1k9nG1M0+u3141S5WJiIhQt27d1L9//6BIbHBBXZcOAKqzckeOUhdu0Jil25W6cINW7sip+UEIKCs0CdmxE78Vjisu8KpZCsGNWWzhL1/m/kdzVn8t45Iv99ouKIrAsEqTkN068VvluKKOlRsEJzv+YoL5Vu7IUcaLW3VpQzdVQeux0rxOdurEb6XjGuqo3IQou/1igrnKyvGVdeDjy916fLE2GiriuFoHyU0IC9TSAbC/ysrx0oUOlXy5WxM/cPyD42oNJDcA6qyyflxhktbcNVDJic1MiwvV4weOf3BczUefGwB1Vlk/rsxbe5DYADAFlRsAPkE5HpVhziOYgeQGgM9QjsfFmNAOZqFZCkDAsa6Z/TGhHee5majcAAgofs2HhlCf0I7z3FxUbgAEDL/mQ0coT2jHeW4+khsAAcO6ZqEjlGdC5zw3H81SAAKGdc1CS6iOoOM8Nx+VGwABE8q/5kOVndaOqi3Oc/M5DOPSZe7sraCgQE6nUy6XS9HR0WaHA4SkPFdRyP2aR+jhPPctT67fNEsBCDi7zIfDBHWojl3O82BEcgMAXmCoL2Bd9LkBAA8x1BewNpIbAPAQQ30vYAZeWBXNUgDgIYb60iwHa6NyAwAeCvWhvjTLweqo3ACAF0J1gjqJdaNgfSQ3AOClUB3qS7McrI5mKQCwIX929g31ZjlYH5UbAF5hAjvrCkRnX6s1y3E+4mIkNwA8ZoeRMna9GFbV2XdQ5xifv0+rNMvZ4XyEb9EsBcAjdhgps3JHjlIXbtCYpduVunCDVu7IMTsknwm1OXjscD7ajRXmP6JyA8AjwT5SJpCVDTOEWmffYD8f7cYqVTQqNwA8UnbxvFgwXTztVNmo7BdyqHX2Dfbz0U6sVEWjcgPAI2UXz4dW71GJYQTdxdMulY3qfiFbrbOvPwX7+WgnVqqikdwA8FgwXzztcDGsTdOaVTr7BkIwn492YqUfDqY2S3366ae68cYbddlll8nhcOidd96p8TGbNm3SlVdeqcjISHXs2FHLly/3e5wAKkpwRimlQ4ugvJCM6tdGW+YM0ZtTBmjLnCFBN7LGTk1rvhLM56NdWKlJ1NTKTWFhoZKTkzVx4kSNHDmyxv0PHDigG264QVOnTtUbb7yh9evXa/LkyUpISFB6enoAIgZgF8Fc2bDSL2TgYlapojkMwzBq3s3/HA6H1qxZo4yMjCr3efDBB/XBBx9oz5497m233367Tpw4oY8++qhWr1NQUCCn0ymXy6Xo6Oi6hg0AAXHpvDwrd+RUaFoLtgoU4AlPrt9B1edm27ZtGjZsWLlt6enpmjVrVpWPKS4uVnFxsfv/BQUF/goPAPyiqs7DVviFDFhRUA0Fz8/PV1xcXLltcXFxKigoUFFR5UPNMjMz5XQ63bfExMRAhGobVpiMCQhl1Q2vpZ8JULmgSm68MXfuXLlcLvctNzfX7JCChp1ncQWCBZ2HAc8FVXITHx+vI0eOlNt25MgRRUdHKyqq8l8ukZGRio6OLndDzaw0GRPshWqgZ5ikznycs8EnqPrcpKSkaO3ateW2rVu3TikpKSZFZF9WmowJ9mGVqdmDiR3m5bGq2iyeyjkbnExNbk6dOqX9+/e7/3/gwAFlZWWpefPmatOmjebOnasffvhBr776qiRp6tSpeuGFF/TAAw9o4sSJ2rBhg/7yl7/ogw8+MOst2BZDTeFrdl/TyZ/oPOx7tUlaOGeDl6nNUjt37lTv3r3Vu3dvSdLs2bPVu3dvPfroo5KkvLw85eT8r59Hu3bt9MEHH2jdunVKTk7Ws88+q5dffpk5bvzASpMxwR7oO1I3dB72ndo2u3POBi9TKzdpaWmqbpqdymYfTktL0xdffOHHqFCGX4vwJaqBsIraNrtzzgavoOpQjMDj1yJ8hWogrKK2nbQ5Z4OXZWYoDhRmKAbMlecqohpYhdp0cIVveDLDM+esNXhy/Sa5AQALYFRO4JG0BBdPrt80SwGAycycVyqU53Ch2d2+gmqeGwCwI7PmlaJaBLuicgMAJjNjFmJmIYedkdwAgMnMGJXDHC7WE8pNhL5GsxQAWECg55ViDhdroYnQt6jcAIBFBLKDK3O4WAdNhL5H5QYAQhSzkFsDCxX7HskNAISwBGcUF1CT0UToezRLAQBgIpoIfY/KDQAAJqOJ0LdIbhAyWLcHgJXRROg7JDcICQyzBIDQQZ8b2B7DLIHQxKR4oYvKDWyPYZZA6KFaG9qo3MD2zFi3B4B5qNaC5Aa2xzBLWBXNJv7BulmgWQohgWGWsBqaTfyHSfFA5QYhI5Dr9gDVodnEv6jWgsoNAAQYndz9j2ptaCO5ga0wUR+CAc0mgcGkeKGLZinYxsodOUpduEFjlm5X6sINWrkjx+yQvEZHU3uj2QTwL4dhGEbNu9lHQUGBnE6nXC6XoqOjzQ4HPpLnKlLqwg0VfglvmTMk6C4YdDQNHXmuIppNgFry5PpN5Qa2YJehn3Q0DS10cgf8g+QGtmCXifrskqQBgJlIbmALdunDYJckDUB59KMLLEZLwTbsMPSzLEl7aPUelRhG0CZpgcYoOVgZ/egCjw7FqBEXjsCjo2ntceGAldlpsIPZPLl+U7lBtbhwmIP5OWqnqg7YgzrHcPxgCUzYaA763KBKoTxyh/bx4EAHbFgd/ejMQXKDKoXqhcNOkwHaHRcOWJ1dBjsEG5qlUKVQnCKeZo7gQgdsBAM7DHYItr6XJDeoUiheOGgfr8jqX2p2uHDAXIE4x4O5H10w9r0kuUG1Qu3CEYrVquoEy5daMF84YK5gOcfNEqzVbPrcoEahNEU87eP/E8odyhEaOMdrFqx9L6ncAJcItWpVVWiig91xjtcsWKvZVG58iOHD9hFK1aqqzltGIsHuOMdrFqzVbCo3PkK7LcxQ146Q1Z23odihHKGFc7x2grGabYnlF1588UU988wzys/PV3Jysp5//nn179+/0n2XL1+uCRMmlNsWGRmpM2fO1Oq1/LH8AtNrwwx1Tahre96yFATsjnM8OHhy/Ta9WWrlypWaPXu2HnvsMe3evVvJyclKT0/X0aNHq3xMdHS08vLy3LdDhw4FMOKKgrXDFYKXLzpC1va8NbuJjuZe+JvZ5zh8z/Tk5re//a2mTJmiCRMmqFu3blqyZIkaNmyoV155pcrHOBwOxcfHu29xcXEBjLgi2m2tzY4XR18k1MFw3jJbNABvmJrcnD17Vrt27dKwYcPc28LCwjRs2DBt27atysedOnVKbdu2VWJiom6++Wbt3bs3EOFWKVg7XIUCu14cfZGYWP28ZZguAG+Z2qH4+PHjKikpqVB5iYuL07ffflvpY7p06aJXXnlFPXv2lMvl0m9+8xsNHDhQe/fuVevWrSvsX1xcrOLiYvf/CwoKfPsm/isYO1zZXbBOPlUbvuoIaeXzlmG6ALwVdKOlUlJSlJKS4v7/wIEDdfnll+ull17S448/XmH/zMxMzZ8/PyCxMUuqtdj94uirxMSq522wzq8B37L68h+wJlObpVq2bKnw8HAdOXKk3PYjR44oPj6+Vs9Rv3599e7dW/v376/0/rlz58rlcrlvubm5dY4bwSEY+pTUlZ07Qlq92Qz+Z9dmZfifqclNRESE+vTpo/Xr17u3lZaWav369eWqM9UpKSnR119/rYSEhErvj4yMVHR0dLkbQgMXx+A3ql8bbZkzRG9OGaAtc4Ywd1QIoc8V6sL0ZqnZs2dr3Lhx6tu3r/r3769FixapsLDQPZfN2LFj1apVK2VmZkqSFixYoAEDBqhjx446ceKEnnnmGR06dEiTJ082823AoqzcpyQQ7FDSt2qzGfzL7s3K8C/Tk5tRo0bp2LFjevTRR5Wfn69evXrpo48+cncyzsnJUVjY/wpM//nPfzRlyhTl5+erWbNm6tOnj7Zu3apu3bqZ9RZgcaF6cWTWbAQz+lyhLiwxQ3Eg+WOGYsBqmDUbdrByR06FEYEk6KHLk+u36ZUb+J8dmibgGUr6sINQb1aG90hubI6midBESR92EarNyqgb05dfgP8w2iB0MVIMQCijcmNjNE2ENkr6AEIVyY2N0TQBSvoAQhHNUjZG0wQAIBRRubE5miYAAKGG5CYE0DQBAAglNEshKOW5irQ1+zgjvwAAFVC5QdBh7h4AQHWo3KBOAl1BYe4eAEBNqNzAa2ZUUJi7BwBQEyo3FmblfiVmVVDK5u65GHP3AAAuRnJjUSt35Ch14QaNWbpdqQs3aOWOHLNDKqe6Coo/MXcPAKAmNEtZUFVVkUGdYyxzETdz9mPm7gEAVIfKjQWZVRXxhNkVlARnlFI6tCCxAQBUQOXGgoJlTSgqKAAAK6JyY0H+ror4sqMyFRQAgNVQubEof1VFmAAPAGB3VG4szNdVESbAAwCEApKbEBIMHZUBAKgrkpsQwgR4AIBQQHITQswevg0AQCDQoTjEMHwbAGB3JDchKMEZRVIDALAtmqUAAICtkNwAAABbIbkBAAC2QnIDAABsheQGgGX5ch00AKGD0VIALIl10AB4i8oNJPELGdbCOmi1x2e3djhOoYXKDfiFbGF5riIdOF6odi0bhdTcRNWtgxZKx6EmfHZrh+MUeqjchDh+IVvXyh05Sl24QWOWblfqwg1auSPH7JD8orJf1KyDVjM+u7XDcQpNJDchjpXCrcnTL+RgLblXlcCxDlrN+OzWDscpNNEsFeLKfiFf/OHnF7L5PGmWCWTJ3ZfNZFUlcIM6xyjBGcU6aDXgs1s7HKfQROUmxPEL2Zpq2ywTyJK7r5vJavOLOsEZpZQOLTgfK8Fnt3Y4TqGJyg34hWxBZV/ID63eoxLDqPILOVAdb2uqsniDX9R1x2e3djhOoYfkBpJYKdyKavOFHKgEwR9JVG0TOFSPz27tcJxCC8kNEECe9lmp6Qs5UAmCv5IoflED8AeSGyBA/NXxNxAJgj+TKH5RA/A1S3QofvHFF5WUlKQGDRroqquu0j/+8Y9q91+1apW6du2qBg0aqEePHlq7dm2AIgW84++Ov4HoeDuqXxttmTNEb04ZoC1zhjAJGgDLMj25WblypWbPnq3HHntMu3fvVnJystLT03X06NFK99+6datGjx6tSZMm6YsvvlBGRoYyMjK0Z8+eAEcO1J5d5tpg9BKAYOAwDMOoeTf/ueqqq9SvXz+98MILkqTS0lIlJibq7rvv1pw5cyrsP2rUKBUWFur99993bxswYIB69eqlJUuW1Ph6BQUFcjqdcrlcio6O9t0bAaqR5ypS6sINFfqsbJkzhEQBAGrBk+u3qZWbs2fPateuXRo2bJh7W1hYmIYNG6Zt27ZV+pht27aV21+S0tPTq9y/uLhYBQUF5W5AoDHXBgAEjqkdio8fP66SkhLFxcWV2x4XF6dvv/220sfk5+dXun9+fn6l+2dmZmr+/Pm+CRioA0YGAUBgmN7nxt/mzp0rl8vlvuXm5podEkIYfVYAwP9Mrdy0bNlS4eHhOnLkSLntR44cUXx8fKWPiY+P92j/yMhIRUZG+iZgAABgeaZWbiIiItSnTx+tX7/eva20tFTr169XSkpKpY9JSUkpt78krVu3rsr9AQBAaDF9Er/Zs2dr3Lhx6tu3r/r3769FixapsLBQEyZMkCSNHTtWrVq1UmZmpiRp5syZGjx4sJ599lndcMMNeuutt7Rz50798Y9/NPNtAAAAizA9uRk1apSOHTumRx99VPn5+erVq5c++ugjd6fhnJwchYX9r8A0cOBArVixQg8//LAeeughderUSe+88466d+9u1lsAAAAWYvo8N4HGPDcAAASfoJnnBgAAwNdIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANiK6fPcBFrZyHdWBwcAIHiUXbdrM4NNyCU3J0+elCQlJiaaHAkAAPDUyZMn5XQ6q90n5CbxKy0t1eHDh9WkSRM5HA6zwwmogoICJSYmKjc3lwkM64hj6RscR9/hWPoGx9F3fH0sDcPQyZMnddlll5VbuaAyIVe5CQsLU+vWrc0Ow1TR0dF8aH2EY+kbHEff4Vj6BsfRd3x5LGuq2JShQzEAALAVkhsAAGArJDchJDIyUo899pgiIyPNDiXocSx9g+PoOxxL3+A4+o6ZxzLkOhQDAAB7o3IDAABsheQGAADYCskNAACwFZIbAABgKyQ3NvTpp5/qxhtv1GWXXSaHw6F33nmn3P2GYejRRx9VQkKCoqKiNGzYMH333XfmBGthNR3H8ePHy+FwlLsNHz7cnGAtLDMzU/369VOTJk0UGxurjIwM7du3r9w+Z86c0fTp09WiRQs1btxYt956q44cOWJSxNZVm2OZlpZW4bycOnWqSRFb1+LFi9WzZ0/3BHMpKSn68MMP3fdzTtZOTcfRrPOR5MaGCgsLlZycrBdffLHS+59++mn9/ve/15IlS7R9+3Y1atRI6enpOnPmTIAjtbaajqMkDR8+XHl5ee7bm2++GcAIg8PmzZs1ffp0ff7551q3bp3OnTun66+/XoWFhe597r33Xv3tb3/TqlWrtHnzZh0+fFgjR440MWprqs2xlKQpU6aUOy+ffvppkyK2rtatW2vhwoXatWuXdu7cqWuvvVY333yz9u7dK4lzsrZqOo6SSeejAVuTZKxZs8b9/9LSUiM+Pt545pln3NtOnDhhREZGGm+++aYJEQaHS4+jYRjGuHHjjJtvvtmUeILZ0aNHDUnG5s2bDcO4cP7Vr1/fWLVqlXufb775xpBkbNu2zawwg8Klx9IwDGPw4MHGzJkzzQsqiDVr1sx4+eWXOSfrqOw4GoZ55yOVmxBz4MAB5efna9iwYe5tTqdTV111lbZt22ZiZMFp06ZNio2NVZcuXTRt2jT9+OOPZodkeS6XS5LUvHlzSdKuXbt07ty5cudk165d1aZNG87JGlx6LMu88cYbatmypbp37665c+fq9OnTZoQXNEpKSvTWW2+psLBQKSkpnJNeuvQ4ljHjfAy5hTNDXX5+viQpLi6u3Pa4uDj3faid4cOHa+TIkWrXrp2ys7P10EMPacSIEdq2bZvCw8PNDs+SSktLNWvWLKWmpqp79+6SLpyTERERatq0abl9OSerV9mxlKQxY8aobdu2uuyyy/TVV1/pwQcf1L59+7R69WoTo7Wmr7/+WikpKTpz5owaN26sNWvWqFu3bsrKyuKc9EBVx1Ey73wkuQG8dPvtt7v/3aNHD/Xs2VMdOnTQpk2bNHToUBMjs67p06drz5492rJli9mhBL2qjuWdd97p/nePHj2UkJCgoUOHKjs7Wx06dAh0mJbWpUsXZWVlyeVy6e2339a4ceO0efNms8MKOlUdx27dupl2PtIsFWLi4+MlqUKv/yNHjrjvg3fat2+vli1bav/+/WaHYkkzZszQ+++/r40bN6p169bu7fHx8Tp79qxOnDhRbn/OyapVdSwrc9VVV0kS52UlIiIi1LFjR/Xp00eZmZlKTk7Wc889xznpoaqOY2UCdT6S3ISYdu3aKT4+XuvXr3dvKygo0Pbt28u1kcJz33//vX788UclJCSYHYqlGIahGTNmaM2aNdqwYYPatWtX7v4+ffqofv365c7Jffv2KScnh3PyEjUdy8pkZWVJEudlLZSWlqq4uJhzso7KjmNlAnU+0ixlQ6dOnSqXFR84cEBZWVlq3ry52rRpo1mzZumJJ55Qp06d1K5dOz3yyCO67LLLlJGRYV7QFlTdcWzevLnmz5+vW2+9VfHx8crOztYDDzygjh07Kj093cSorWf69OlasWKF3n33XTVp0sTdZ8HpdCoqKkpOp1OTJk3S7Nmz1bx5c0VHR+vuu+9WSkqKBgwYYHL01lLTsczOztaKFSv0k5/8RC1atNBXX32le++9V4MGDVLPnj1Njt5a5s6dqxEjRqhNmzY6efKkVqxYoU2bNunjjz/mnPRAdcfR1PMx4OOz4HcbN240JFW4jRs3zjCMC8PBH3nkESMuLs6IjIw0hg4dauzbt8/coC2ouuN4+vRp4/rrrzdiYmKM+vXrG23btjWmTJli5Ofnmx225VR2DCUZy5Ytc+9TVFRk3HXXXUazZs2Mhg0bGrfccouRl5dnXtAWVdOxzMnJMQYNGmQ0b97ciIyMNDp27Gjcf//9hsvlMjdwC5o4caLRtm1bIyIiwoiJiTGGDh1qfPLJJ+77OSdrp7rjaOb56DAMw/Bv+gQAABA49LkBAAC2QnIDAABsheQGAADYCskNAACwFZIbAABgKyQ3AADAVkhuAACArZDcAAAAWyG5AQAAtkJyA8BSzp49a3YIFVgxJgBVI7kB4FdpaWmaMWOGZsyYIafTqZYtW+qRRx5R2covSUlJevzxxzV27FhFR0frzjvvlCRt2bJF11xzjaKiopSYmKh77rlHhYWF7uf9wx/+oE6dOqlBgwaKi4vTbbfd5r7v7bffVo8ePRQVFaUWLVpo2LBh7sempaVp1qxZ5WLMyMjQ+PHj3f/3NiYA1kByA8Dv/vznP6tevXr6xz/+oeeee06//e1v9fLLL7vv/81vfqPk5GR98cUXeuSRR5Sdna3hw4fr1ltv1VdffaWVK1dqy5YtmjFjhiRp586duueee7RgwQLt27dPH330kQYNGiRJysvL0+jRozVx4kR988032rRpk0aOHClPl9HzNCYA1sHCmQD8Ki0tTUePHtXevXvlcDgkSXPmzNF7772nf/7zn0pKSlLv3r21Zs0a92MmT56s8PBwvfTSS+5tW7Zs0eDBg1VYWKi1a9dqwoQJ+v7779WkSZNyr7d792716dNHBw8eVNu2bSuNp1evXlq0aJF7W0ZGhpo2barly5dLklcxNWjQoE7HCYDvULkB4HcDBgxwJzaSlJKSou+++04lJSWSpL59+5bb/8svv9Ty5cvVuHFj9y09PV2lpaU6cOCArrvuOrVt21bt27fXHXfcoTfeeEOnT5+WJCUnJ2vo0KHq0aOHfvrTn2rp0qX6z3/+43HMnsYEwDpIbgCYrlGjRuX+f+rUKf3iF79QVlaW+/bll1/qu+++U4cOHdSkSRPt3r1bb775phISEvToo48qOTlZJ06cUHh4uNatW6cPP/xQ3bp10/PPP68uXbq4E5CwsLAKTVTnzp2rc0wArIPkBoDfbd++vdz/P//8c3Xq1Enh4eGV7n/llVfqn//8pzp27FjhFhERIUmqV6+ehg0bpqefflpfffWVDh48qA0bNkiSHA6HUlNTNX/+fH3xxReKiIhwNzHFxMQoLy/P/VolJSXas2dPje+hNjEBsAaSGwB+l5OTo9mzZ2vfvn1688039fzzz2vmzJlV7v/ggw9q69atmjFjhrKysvTdd9/p3XffdXfeff/99/X73/9eWVlZOnTokF599VWVlpaqS5cu2r59u5588knt3LlTOTk5Wr16tY4dO6bLL79cknTttdfqgw8+0AcffKBvv/1W06ZN04kTJ2p8DzXFBMA66pkdAAD7Gzt2rIqKitS/f3+Fh4dr5syZ7uHVlenZs6c2b96sX/3qV7rmmmtkGIY6dOigUaNGSZKaNm2q1atXa968eTpz5ow6deqkN998U1dccYW++eYbffrpp1q0aJEKCgrUtm1bPfvssxoxYoQkaeLEifryyy81duxY1atXT/fee6+GDBlS43uoKSYA1sFoKQB+VdnoJADwJ5qlAACArZDcAAAAW6FZCgAA2AqVGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGAr/x+FoOgGs8heLQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQbpJREFUeJzt3XtclHX+///ngIKggCcQUhA8ZJmKrodESzQtsz4VWbtmt81DaltppW4Hbbcyt40OnzZbK21ry61WczOttrPr8Wdan9QobYtvsiqa4KFyUEA05vr94TIJDDAzzHBdc83jfrvNrbjmPTOvuebtzOt6Hx2GYRgCAACwiQizAwAAAAgkkhsAAGArJDcAAMBWSG4AAICtkNwAAABbIbkBAAC2QnIDAABsheQGAADYCskNAACwFZIbAKaYN2+eHA6HV2UdDofmzZsX1HiGDx+u4cOHW/b5AHiP5AYIc0uWLJHD4XDfmjVrpo4dO2rSpEn67rvvzA7PctLT06udr6SkJF144YVatWpVQJ6/rKxM8+bN0/r16wPyfEA4IrkBIEmaP3++XnnlFS1evFhjxozRq6++quzsbJ04cSIor/f73/9e5eXlQXnuYOvbt69eeeUVvfLKK7rzzjt14MABjR07VosXL270c5eVlenBBx8kuQEaoZnZAQCwhjFjxmjAgAGSpKlTp6p9+/Z69NFH9fbbb+tXv/pVwF+vWbNmatYsNL+COnbsqF//+tfuvydMmKBu3brpySef1M0332xiZAAkWm4A1OHCCy+UJBUUFFQ7/s033+jaa69V27Zt1aJFCw0YMEBvv/12tTKnTp3Sgw8+qO7du6tFixZq166dLrjgAq1evdpdxtOYm4qKCs2aNUuJiYmKi4vTlVdeqf3799eKbdKkSUpPT6913NNzvvTSS7rooouUlJSk6Oho9ezZU4sWLfLpXDQkOTlZ5557rnbv3l1vuUOHDmnKlCnq0KGDWrRooczMTP3tb39z379nzx4lJiZKkh588EF311ewxxsBdhOal00Agm7Pnj2SpDZt2riPffXVVxo6dKg6duyoOXPmqGXLlvrHP/6hnJwcvfHGG7r66qslnU4ycnNzNXXqVA0aNEglJSXaunWrtm/frosvvrjO15w6dapeffVVXX/99RoyZIjWrl2ryy+/vFHvY9GiRTrvvPN05ZVXqlmzZvrnP/+pW2+9VS6XS9OnT2/Uc1c5deqU9u3bp3bt2tVZpry8XMOHD9euXbs0Y8YMZWRk6PXXX9ekSZN09OhR3XHHHUpMTNSiRYt0yy236Oqrr9bYsWMlSX369AlInEDYMACEtZdeesmQZPzrX/8yDh8+bOzbt89YsWKFkZiYaERHRxv79u1zlx05cqTRu3dv48SJE+5jLpfLGDJkiNG9e3f3sczMTOPyyy+v93UfeOAB48yvoLy8PEOSceutt1Yrd/311xuSjAceeMB9bOLEiUbnzp0bfE7DMIyysrJa5UaPHm106dKl2rHs7GwjOzu73pgNwzA6d+5sXHLJJcbhw4eNw4cPG1988YVx3XXXGZKM2267rc7nW7BggSHJePXVV93HTp48aWRlZRmtWrUySkpKDMMwjMOHD9d6vwB8Q7cUAEnSqFGjlJiYqNTUVF177bVq2bKl3n77bXXq1EmS9MMPP2jt2rX61a9+pWPHjunIkSM6cuSIvv/+e40ePVrffvute3ZV69at9dVXX+nbb7/1+vXfe+89SdLtt99e7fjMmTMb9b5iYmLc/+90OnXkyBFlZ2frP//5j5xOp1/P+dFHHykxMVGJiYnKzMzU66+/rhtuuEGPPvponY957733lJycrPHjx7uPNW/eXLfffruOHz+uDRs2+BULgNrolgIgSXrmmWd09tlny+l06sUXX9TGjRsVHR3tvn/Xrl0yDEP33Xef7rvvPo/PcejQIXXs2FHz58/XVVddpbPPPlu9evXSpZdeqhtuuKHe7pW9e/cqIiJCXbt2rXa8R48ejXpfH3/8sR544AFt2bJFZWVl1e5zOp1KSEjw+TnPP/98PfTQQ3I4HIqNjdW5556r1q1b1/uYvXv3qnv37oqIqH5Nee6557rvBxAYJDcAJEmDBg1yz5bKycnRBRdcoOuvv175+flq1aqVXC6XJOnOO+/U6NGjPT5Ht27dJEnDhg1TQUGB3nrrLX300Ud64YUX9OSTT2rx4sWaOnVqo2Ota/G/ysrKan8XFBRo5MiROuecc/SnP/1JqampioqK0nvvvacnn3zS/Z581b59e40aNcqvxwIIPpIbALVERkYqNzdXI0aM0NNPP605c+aoS5cukk53pXjzw962bVtNnjxZkydP1vHjxzVs2DDNmzevzuSmc+fOcrlcKigoqNZak5+fX6tsmzZtdPTo0VrHa7Z+/POf/1RFRYXefvttpaWluY+vW7euwfgDrXPnzvryyy/lcrmqtd5888037vuluhM3AN5jzA0Aj4YPH65BgwZpwYIFOnHihJKSkjR8+HA999xzKioqqlX+8OHD7v///vvvq93XqlUrdevWTRUVFXW+3pgxYyRJf/7zn6sdX7BgQa2yXbt2ldPp1Jdffuk+VlRUVGuV4MjISEmSYRjuY06nUy+99FKdcQTLZZddpuLiYi1fvtx97KefftLChQvVqlUrZWdnS5JiY2MlyWPyBsA7tNwAqNNdd92lX/7yl1qyZIluvvlmPfPMM7rgggvUu3dvTZs2TV26dNHBgwe1ZcsW7d+/X1988YUkqWfPnho+fLj69++vtm3bauvWrVqxYoVmzJhR52v17dtX48eP17PPPiun06khQ4ZozZo12rVrV62y1113ne655x5dffXVuv3221VWVqZFixbp7LPP1vbt293lLrnkEkVFRemKK67Qb37zGx0/flzPP/+8kpKSPCZowXTTTTfpueee06RJk7Rt2zalp6drxYoV+vjjj7VgwQLFxcVJOj0AumfPnlq+fLnOPvtstW3bVr169VKvXr2aNF4gpJk9XQuAuaqmgn/22We17qusrDS6du1qdO3a1fjpp58MwzCMgoICY8KECUZycrLRvHlzo2PHjsb//M//GCtWrHA/7qGHHjIGDRpktG7d2oiJiTHOOecc449//KNx8uRJdxlP07bLy8uN22+/3WjXrp3RsmVL44orrjD27dvncWr0Rx99ZPTq1cuIiooyevToYbz66qsen/Ptt982+vTpY7Ro0cJIT083Hn30UePFF180JBm7d+92l/NlKnhD09zrer6DBw8akydPNtq3b29ERUUZvXv3Nl566aVaj928ebPRv39/IyoqimnhgB8chnFGey0AAECIY8wNAACwFZIbAABgKyQ3AADAVkhuAACArZDcAAAAWyG5AQAAthJ2i/i5XC4dOHBAcXFxLHMOAECIMAxDx44d01lnnVVrA9qawi65OXDggFJTU80OAwAA+GHfvn3q1KlTvWXCLrmpWuJ83759io+PNzkaAADgjZKSEqWmprp/x+sTdslNVVdUfHw8yQ0AACHGmyElDCgGAAC2QnIDAABsheQGAADYStiNufFWZWWlTp06ZXYY8FLz5s0VGRlpdhgAAAsguanBMAwVFxfr6NGjZocCH7Vu3VrJycmsXwQAYY7kpoaqxCYpKUmxsbH8UIYAwzBUVlamQ4cOSZJSUlJMjggAYCaSmzNUVla6E5t27dqZHQ58EBMTI0k6dOiQkpKS6KICgDDGgOIzVI2xiY2NNTkS+KPqc2OsFACEN5IbD+iKCk18bgAAieQGAADYDMkNQsb69evlcDiYyQYAqBfJDdzmzZunvn37mh0GAFhCkbNcmwuOqMhZbnYo8BGzpeCzU6dOqXnz5maHAQBBs/yzQs1duUMuQ4pwSLlje2vcwDSzw4KXaLmxEZfLpdzcXGVkZCgmJkaZmZlasWKFpJ+7dNasWaMBAwYoNjZWQ4YMUX5+viRpyZIlevDBB/XFF1/I4XDI4XBoyZIlkk4P1F20aJGuvPJKtWzZUn/84x/rjaPqtT788EP169dPMTExuuiii3To0CG9//77OvfccxUfH6/rr79eZWVl7sdVVFTo9ttvV1JSklq0aKELLrhAn332WXBOFgDUochZ7k5sJMllSPeu3EkLTgghuQmipm7SzM3N1csvv6zFixfrq6++0qxZs/TrX/9aGzZscJf53e9+pyeeeEJbt25Vs2bNdOONN0qSxo0bp9/+9rc677zzVFRUpKKiIo0bN879uHnz5unqq6/Wjh073I9pyLx58/T0009r8+bN2rdvn371q19pwYIFWrp0qd5991199NFHWrhwobv83XffrTfeeEN/+9vftH37dnXr1k2jR4/WDz/8EKAzBAAN232k1J3YVKk0DO05Uub5AbAcuqWCpKmbNCsqKvTwww/rX//6l7KysiRJXbp00aZNm/Tcc8/ppptukiT98Y9/VHZ2tiRpzpw5uvzyy3XixAnFxMSoVatWatasmZKTk2s9//XXX6/Jkyf7FNNDDz2koUOHSpKmTJmiuXPnqqCgQF26dJEkXXvttVq3bp3uuecelZaWatGiRVqyZInGjBkjSXr++ee1evVq/fWvf9Vdd93l34kBAB9ltG+pCIeqJTiRDofS27MGWqig5SYIzGjS3LVrl8rKynTxxRerVatW7tvLL7+sgoICd7k+ffq4/79qm4KqbQvqM2DAAJ9jOvO1OnTooNjYWHdiU3Ws6rULCgp06tQpdzIknd4Mc9CgQfr66699fm0A8FdKQoxyx/ZW5H/Xzop0OPTw2F5KSYgxOTJ4i5abIKivSTNY/ziOHz8uSXr33XfVsWPHavdFR0e7E5wzBwJXLXrncrkafP6WLVv6HFPN16o5CNnhcHj12gDQ1MYNTNOwsxO150iZ0tvHktiEGJKbIDCjSbNnz56Kjo5WYWGhu9vpTGe23tQlKipKlZWVwQivQV27dlVUVJQ+/vhjde7cWdLpWVmfffaZZs6caUpMAMJbSkIMSU2IIrkJgqomzXtX7lSlYTRJk2ZcXJzuvPNOzZo1Sy6XSxdccIGcTqc+/vhjxcfHuxOG+qSnp2v37t3Ky8tTp06dFBcXp+jo6KDFfKaWLVvqlltu0V133aW2bdsqLS1Njz32mMrKyjRlypQmiQEAYA8kN0FiRpPmH/7wByUmJio3N1f/+c9/1Lp1a/3iF7/Qvffe61X3zzXXXKOVK1dqxIgROnr0qF566SVNmjQp6HFXeeSRR+RyuXTDDTfo2LFjGjBggD788EO1adOmyWIAAIQ+h2EYRsPF7KOkpEQJCQlyOp2Kj4+vdt+JEye0e/duZWRkqEWLFiZFCH/x+QGAfdX3+10Ts6UAAICtkNzAZzfffHO16eZn3m6++WazwwMAhDnG3MBn8+fP15133unxvoaaCgEACDaSG/gsKSlJSUlJZocBAIBHdEsBAABbIbnxgFVzQxOfGwBAoluqmqioKEVEROjAgQNKTExUVFSUe4sCWJdhGDp58qQOHz6siIgIRUVFmR0SAMBEJDdniIiIUEZGhoqKinTgwAGzw4GPYmNjlZaWpogIGiQBIJyR3NQQFRWltLQ0/fTTT6btswTfRUZGqlmzZrS0AQBIbjyp2sG65i7WAADA+mi/BwAAtkJyAwAAbMXU5CY3N1cDBw5UXFyckpKSlJOTo/z8/Hofs2TJEjkcjmo3NkkEAABVTE1uNmzYoOnTp+uTTz7R6tWrderUKV1yySUqLS2t93Hx8fEqKipy3/bu3dtEEQMAAKszdUDxBx98UO3vJUuWKCkpSdu2bdOwYcPqfJzD4VBycnKwwwMAACHIUmNunE6nJKlt27b1ljt+/Lg6d+6s1NRUXXXVVfrqq6+aIjwAABACLJPcuFwuzZw5U0OHDlWvXr3qLNejRw+9+OKLeuutt/Tqq6/K5XJpyJAh2r9/v8fyFRUVKikpqXYDAAD25TAMwzA7CEm65ZZb9P7772vTpk3q1KmT1487deqUzj33XI0fP15/+MMfat0/b948Pfjgg7WOO51OxcfHNypmAADQNEpKSpSQkODV77clWm5mzJihd955R+vWrfMpsZGk5s2bq1+/ftq1a5fH++fOnSun0+m+7du3LxAhAwAAizJ1QLFhGLrtttu0atUqrV+/XhkZGT4/R2VlpXbs2KHLLrvM4/3R0dGKjo5ubKgAACBEmJrcTJ8+XUuXLtVbb72luLg4FRcXS5ISEhIUExMjSZowYYI6duyo3NxcSdL8+fM1ePBgdevWTUePHtXjjz+uvXv3aurUqaa9DwAAYB2mJjeLFi2SJA0fPrza8ZdeekmTJk2SJBUWFlbb5fnHH3/UtGnTVFxcrDZt2qh///7avHmzevbs2VRhAwAAC7PMgOKm4suAJAAAYA0hN6AYAAAgUEhu0ChFznJtLjiiIme52aEAACDJ5DE3CG3LPyvU3JU75DKkCIeUO7a3xg1MMzssAECYo+UGfilylrsTG0lyGdK9K3fSggMAMB3JDfyy+0ipO7GpUmkY2nOkzJyAAAD4L5Ib+CWjfUtFOKofi3Q4lN4+1pyAAAD4L5Ib+CUlIUa5Y3sr0nE6w4l0OPTw2F5KSYgxOTIAQLhjQDH8Nm5gmoadnag9R8qU3j6WxAYAYAkkN2iUlIQYkhoAgKXQLQUAAGyF5AYAANgKyQ0AIGyxyro9MeYGABCWWGXdvmi5AQCEHVZZtzeSGwBA2GGVdXsjuQEAhB1WWbc3khsAQNhhlXV7Y0AxACAsscq6fZHcAADCFqus2xPdUgAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGArJDcAAMBWSG4AAICtkNwAAABbIbkBAAC2QnIDAABsheQGAADYCskNAACwFZIbAABgKyQ3AADAVkhuAACArZDcAAAAWyG5AQAAtkJyAwAAbIXkBgAA2ArJDQAAsBWSGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGArJDcAAMBWTE1ucnNzNXDgQMXFxSkpKUk5OTnKz89v8HGvv/66zjnnHLVo0UK9e/fWe++91wTRAgCAUGBqcrNhwwZNnz5dn3zyiVavXq1Tp07pkksuUWlpaZ2P2bx5s8aPH68pU6bo888/V05OjnJycrRz584mjBwAAFiVwzAMw+wgqhw+fFhJSUnasGGDhg0b5rHMuHHjVFpaqnfeecd9bPDgwerbt68WL17c4GuUlJQoISFBTqdT8fHxAYsdAAAEjy+/35Yac+N0OiVJbdu2rbPMli1bNGrUqGrHRo8erS1btngsX1FRoZKSkmo3AABgX5ZJblwul2bOnKmhQ4eqV69edZYrLi5Whw4dqh3r0KGDiouLPZbPzc1VQkKC+5aamhrQuAEAgLVYJrmZPn26du7cqddeey2gzzt37lw5nU73bd++fQF9fgAAYC3NzA5AkmbMmKF33nlHGzduVKdOneotm5ycrIMHD1Y7dvDgQSUnJ3ssHx0drejo6IDFCgAArM3UlhvDMDRjxgytWrVKa9euVUZGRoOPycrK0po1a6odW716tbKysoIVJgAACCGmttxMnz5dS5cu1VtvvaW4uDj3uJmEhATFxMRIkiZMmKCOHTsqNzdXknTHHXcoOztbTzzxhC6//HK99tpr2rp1q/7yl7+Y9j4AAIB1mNpys2jRIjmdTg0fPlwpKSnu2/Lly91lCgsLVVRU5P57yJAhWrp0qf7yl78oMzNTK1as0JtvvlnvIGQAABA+LLXOTVNgnRsAAEJPyK5zAwAA0FgkNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGArJDcAAMBWSG4AAICtkNwAAABbIbkBAAC2QnIDAABsheQGAADYCskNAACwFZIbAABgKyQ3AADAVkhuAACArZDcAAAAWyG5AQAAtkJyAwAAbIXkBgAA2ArJDQAAsBWSGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGArJDcAAMBWSG4AAICtkNwAAABbIbkBAAC2QnIDAABsheQGAADYCskNAACwFZIbAABgKyQ3AADAVkhuAACArZDcAAAAWyG5AQAAtkJyAwAAbKWZtwVLSkq8ftL4+Hi/ggEAAGgsr5Ob1q1by+Fw1FvGMAw5HA5VVlY2OjAAAAB/eJ3crFu3LphxAAAABITXyU12dnYw4wAAAAgIr5Obmo4ePaq//vWv+vrrryVJ5513nm688UYlJCQELDgAAABf+TVbauvWreratauefPJJ/fDDD/rhhx/0pz/9SV27dtX27du9fp6NGzfqiiuu0FlnnSWHw6E333yz3vLr16+Xw+GodSsuLvbnbQAAABvyq+Vm1qxZuvLKK/X888+rWbPTT/HTTz9p6tSpmjlzpjZu3OjV85SWliozM1M33nijxo4d6/Xr5+fnV5uRlZSU5NsbAAAAtuVXcrN169ZqiY0kNWvWTHfffbcGDBjg9fOMGTNGY8aM8fn1k5KS1Lp1a58fBwAA7M+vbqn4+HgVFhbWOr5v3z7FxcU1OqiG9O3bVykpKbr44ov18ccf11u2oqJCJSUl1W4AAMC+/Epuxo0bpylTpmj58uXat2+f9u3bp9dee01Tp07V+PHjAx2jW0pKihYvXqw33nhDb7zxhlJTUzV8+PB6x/nk5uYqISHBfUtNTQ1afAAAwHwOwzAMXx908uRJ3XXXXVq8eLF++uknSVLz5s11yy236JFHHlF0dLTvgTgcWrVqlXJycnx6XHZ2ttLS0vTKK694vL+iokIVFRXuv0tKSpSamiqn08lKygAAhIiSkhIlJCR49fvt15ibqKgoPfXUU8rNzVVBQYEkqWvXroqNjfXn6Rpl0KBB2rRpU533R0dH+5VsAQCA0OT3OjeSFBsbq969ewcqFr/k5eUpJSXF1BgAAIB1+JXcnDhxQgsXLtS6det06NAhuVyuavd7u9bN8ePHtWvXLvffu3fvVl5entq2bau0tDTNnTtX3333nV5++WVJ0oIFC5SRkaHzzjtPJ06c0AsvvKC1a9fqo48+8udtAAAAG/IruZkyZYo++ugjXXvttRo0aFCDG2rWZevWrRoxYoT779mzZ0uSJk6cqCVLlqioqKjarKyTJ0/qt7/9rb777jvFxsaqT58++te//lXtOQAAQHjza0BxQkKC3nvvPQ0dOjQYMQWVLwOSAACANfjy++3XVPCOHTs2yXo2AAAAvvIruXniiSd0zz33aO/evYGOBwAAoFH8GnMzYMAAnThxQl26dFFsbKyaN29e7f4ffvghIMEBAAD4yq/kZvz48fruu+/08MMPq0OHDn4PKAYAAAg0v5KbzZs3a8uWLcrMzAx0PAAAAI3i15ibc845R+Xl5YGOBQAAoNH8Sm4eeeQR/fa3v9X69ev1/fffs+s2AACwDL/WuYmIOJ0T1RxrYxiGHA6HKisrAxNdELDODQAAoSfoG2euW7fOr8AAAACCza/kJjs726tyt956q+bPn6/27dv78zIAAAA+82vMjbdeffVVxuAAAIAmFdTkxo/hPAAAAI0S1OQGAACgqZHcAAAAWyG5AQAAtkJyE8aKnOXaXHBERU5WmwYA2IfPyc1PP/2k+fPna//+/Q2W/fWvf81CeRa1/LNCDX1kra5//lMNfWStln9WaHZIAAAEhF8rFMfFxWnHjh1KT08PQkjBxQrFp1tshj6yVq4zPvlIh0Ob5oxQSkKMeYEBAFAHX36//eqWuuiii7Rhwwa/goP5dh8prZbYSFKlYWjPkTJzAgIAIID8WqF4zJgxmjNnjnbs2KH+/furZcuW1e6/8sorAxIcgiOjfUtFOFSr5Sa9fax5QQEAECCN2jjT4xOycWZIWP5Zoe5duVOVhqFIh0MPj+2lcQPTzA4LQAAUOcu1+0ipMtq3pKsZthH0jTNdLpdfgcE6xg1M07CzE7XnSJnS28fyBQjYxPLPCjV35Q65DCnCIeWO7c2FC8KOX2NuXn75ZVVUVNQ6fvLkSb388suNDgpNIyUhRlld25HYADZR5Cx3JzbS6a7ne1fuZLkHhB2/kpvJkyfL6XTWOn7s2DFNnjy50UEBAHzHZAHgNL+SG8Mw5HA4ah3fv3+/EhISGh0UAMB3VZMFzsRkAYQjn8bc9OvXTw6HQw6HQyNHjlSzZj8/vLKyUrt379all14a8CABAA1LSYhR7tjetSYL0PWMcONTcpOTkyNJysvL0+jRo9WqVSv3fVFRUUpPT9c111wT0AABAN5jsgDgY3LzwAMPSJLS09M1btw4tWjRIihBAQD8l5IQQ1KDsObXVPCJEydKOj076tChQ7WmhqelMe0QAACYw6/k5ttvv9WNN96ozZs3VzteNdDYyov4AQAAe/MruZk0aZKaNWumd955RykpKR5nTgEAAJjBr+QmLy9P27Zt0znnnBPoeAAAABrFr3VuevbsqSNHjgQ6FgAAgEbzK7l59NFHdffdd2v9+vX6/vvvVVJSUu0GAABglkbvCn7meJtQGFDMruAAAISeoO8Kvm7dOr8CAwAACDa/uqWys7MVERGh559/XnPmzFG3bt2UnZ2twsJCRUZGBjpGAAAAr/mV3LzxxhsaPXq0YmJi9Pnnn6uiokKS5HQ69fDDDwc0QAAAAF/4ldw89NBDWrx4sZ5//nk1b97cfXzo0KHavn17wIIDAADwlV/JTX5+voYNG1breEJCgo4ePdrYmAAAAPzmV3KTnJysXbt21Tq+adMmdenSpdFBAQAA+Muv5GbatGm644479Omnn8rhcOjAgQP6+9//rjvvvFO33HJLoGMEAADwml9TwefMmSOXy6WRI0eqrKxMw4YNU3R0tO68807ddtttgY4xbBU5y7X7SKky2rdUSkKM2eEAABAS/FrEr8rJkye1a9cuHT9+XD179lSrVq0CGVtQhMoifss/K9TclTvkMqQIh5Q7trfGDUwzOywAAEwR9EX8qkRFRalnz56NeQp4UOQsdyc2kuQypHtX7tSwsxNpwQEAoAF+jblBcO0+UupObKpUGob2HCkzJyAAAEIIyY0FZbRvqQhH9WORDofS28eaExAAACGE5MaCUhJilDu2tyL/uylppMOhh8f2oksKAAAvNGrMDYJn3MA0DTs7UXuOlCm9fWyjEhtmXQEAwgnJjYWlJMQ0Ohlh1hUAINzQLWVjdc26KnKWmxsYAABBZGpys3HjRl1xxRU666yz5HA49Oabbzb4mPXr1+sXv/iFoqOj1a1bNy1ZsiTocYYqZl0BAMKRqclNaWmpMjMz9cwzz3hVfvfu3br88ss1YsQI5eXlaebMmZo6dao+/PDDIEcamph1BQAIR6aOuRkzZozGjBnjdfnFixcrIyNDTzzxhCTp3HPP1aZNm/Tkk09q9OjRwQozZFXNurp35U5VGgazrgAAYSGkBhRv2bJFo0aNqnZs9OjRmjlzZp2PqaioUEVFhfvvkpKSYIVnSYGcdQUAQCgIqQHFxcXF6tChQ7VjHTp0UElJicrLPQ+Szc3NVUJCgvuWmpraFKFaSkpCjLK6tiOxAQCEhZBKbvwxd+5cOZ1O923fvn1mhwQAAIIopLqlkpOTdfDgwWrHDh48qPj4eMXEeG6ViI6OVnR0dFOEBwBNjkU6gdpCKrnJysrSe++9V+3Y6tWrlZWVZVJEAGAeFukEPDO1W+r48ePKy8tTXl6epNNTvfPy8lRYWCjpdJfShAkT3OVvvvlm/ec//9Hdd9+tb775Rs8++6z+8Y9/aNasWWaEDwCmYZFOoG6mJjdbt25Vv3791K9fP0nS7Nmz1a9fP91///2SpKKiIneiI0kZGRl69913tXr1amVmZuqJJ57QCy+8wDRwAGGHRTqBujkMwzAaLmYfJSUlSkhIkNPpVHx8vNnhAIBfipzlGvrI2moJTqTDoU1zRjD2Brbky++37WdLAYAdVS3SGek4vQw5i3QCPwupAcUAgJ+FwyKdzAaDP0huACCEpSTE2PZHn9lg8BfdUgAAy2E2GBqD5AYAYDnMBkNjkNwAACwno31LRTiqH4t0OJTePtacgBBSSG4AAJbDbDA0BgOKAQCWFKjZYMy4Cj8kN4BF8YUMNH42GDOuwhPJDWBBfCEDjVfXjKthZydywWBzjLkBLIYpsEBgMOMqfNFyA1hEVTfUD6Un6/xC5moTntCF6VnVjKua+28x48r+SG4ACzizG8qh07cz8xu+kFEXujDrVjXj6t6VO1VpGMy4aiJWSLZJbgCT1eyGMnQ6uam64uQLGXVhTEnDwmH/LSuxSrJNcgOYzNO4AEPSwuv6qV2raL6QLczsK9T6xpRQZ35m5/23rMRKyTbJDWCyusYF9E9vwxeyhTXVFWp9CRRjSmAlVkq2mS0FmIyVWENPU81oW/5ZoYY+slbXP/+phj6yVss/K6x2P3UHVmKlLTNouQEsgHEBoaUprlC9beKn7gSf2d2PocJKA7hJbgCLYFxA6GiK7iBfEijqTsP8TVCsMkA2VFgl2aZbCgB81BTdQf408Rc5y7W54AgLPtbQUPdeXVhQ0z8pCTHK6trO1ISblhsAYcmbK/n6ygT7CtXXJn5aGDxrzAweKw2QhW9IbgCEHW8SAW/KBLs7yNsEykpTcK2mMQkKs9FCF91SAMKKN10NVuqO8KaJnz2U6taYGTz+dj/SPWg+Wm4AhBVvruRDrTvC3xaGcJgF1NgZPL52P9I9aA0kNwDCijeJQKh1R/jzAx5OP8KNHR/lbfcj3YPWQbcUgJDnSzeAN10Nobg43riBado0Z4SWTRusTXNG1JuoWKnbrak0xQyeulr8tu/9MWivCc9ouQEQ0vxpgfDmSt4q63X4wtsWhlDrdrMSX7fDkKQZSz/X8YqfbNsyZkW03ACwHG9bYhrTAuHNlbwV1usIBistkx9KvN0Oo+a5NWT/ljGrIbkBYCm+LLjGLCH/hGK3W6D5OqPJ20R63MA0PXVd31qPp142LbqlAFiGrwMyQ23gr5X40+0WjNlVZszY8qcr05euvAHpbamXJqPlBoBl+NoSQwtE4/jS7ebvFgZN/ZwN8bcr05euPOql+Wi5AWAJRc5y/VB6Ug6dHqNQJULS96UVKnKW22bgb6gJxhRns6ZN+zuY2tfp9tRLc5HcADDdmd0EDsmd4FT9d8bSz+vtPmBX7OBqzOyqurqdzJqx1ZiuTF8TFuqleeiWAmCqmlfwhiSHQ/rDVefJ4fi5FScc1mKxKn9nV9XX7WTWjK3GdhnZdQad3ZDcADCVpyt4lyFV/ORiJpRF+JMQNDS2xcxxKb4seIjQRLcUAFPV1U0wML0NM04sxNcuGW+6ncwcl0KXkb3RcgPAVHVdwWemtmHGicX40iXjbbcT3TwIBodhGEbDxeyjpKRECQkJcjqdio+PNzscAP9V5Cz3eAVf13EERyDXnVn+WWGt2UVN2QUUDrueh8N7rOLL7zfJDQBAUnB2CjcrOQ2HXc/D4T2eyZffb7qlACBE+bqFQEPP5evidt68vhndTqGy63ljPr9QeY9mYUAxAISgQF+1+7rujJVbDUJh1/PGnr9QeI9mouUGQJMKZGtDuArGVbsv685YsdXgzHrl6xo6TV0nA3H+2Nm9fiQ3AJqMGXsJ2cWZP8DB2A3dl3VnrLYbe816tfH/Hfb6vZhRJwNx/mp+XhEO6e4xPWi1+S+6pcJQOI2uh3WYtZeQHdTswrjn0nOCsgaQt+vOWGk39rrq1aY5I7Rpzoh634tZdTJQ52/cwDQdLTulR97/Ri5DevT9b9Q6prllugfNRMtNmOHKGWax2tV+qPD0A/zYB/m6Z8w5QVkDyJsBwFba9bqhsSf1vRez6mSgzl+Rs1yPfvANW5R4QMtNGOHKGWay0tV+KKnrB7hPx9b1tkwEu4XWKrteN6ZemVUni5zlSm0bq5W3ZqnspMvv88eg4rrRchNGuHKGmax0tR9K6hs4WlfLRFO10FphdeHG1Csz6uSZn83Vz25W4Q+lfr8eg4rrxiJ+YaTIWa6hj6ytdZWyac4ISWIcDpoEKw77zpeVfuv7d27n892YetVUdTIYn43Zq0A3JV9+v+mWCiNVVyk1/yFs/H+HLbteBeyHDQt950sXULh2VTSmXjVVnQzGZ2OV7kGrIbkJMzX/IUiqdiXBOBzAmrz9AWZsk3UF67PhgqE2xtyEoTP7yRmHA9gLY5usy9/PhoUvfWeJlptnnnlGjz/+uIqLi5WZmamFCxdq0KBBHssuWbJEkydPrnYsOjpaJ06caIpQvRJK68h4cyURSu8HAF0VVlbfZ+Ppu9bK21xYmenJzfLlyzV79mwtXrxY559/vhYsWKDRo0crPz9fSUlJHh8THx+v/Px8998Oh8NjOTOEWkWsaxwO/7CA0EZXRcPMunDz9Nl4+q4ddnZivct3cOFZN9NnS51//vkaOHCgnn76aUmSy+VSamqqbrvtNs2ZM6dW+SVLlmjmzJk6evSoX68XzNlS3oyEt2pl9DRbIFxnXQBmser3gx1Z6cKtru/ap8b31Yyln9cqv2zaYBX+UGqZ+JuKL7/fpo65OXnypLZt26ZRo0a5j0VERGjUqFHasmVLnY87fvy4OnfurNTUVF111VX66quvmiLcBjU0fsXKqwN7Wq+C8ThA07Hy94PdWG3jz7q+a/XfxOVMkQ6HYqMiLBW/FZma3Bw5ckSVlZXq0KFDteMdOnRQcXGxx8f06NFDL774ot566y29+uqrcrlcGjJkiPbv3++xfEVFhUpKSqrdgqW+BZWs9o/JGywQBdQWjMGdofj9EMqsduFW13dt//Q2Hgcgl56stFT8VhRys6WysrI0YcIE9e3bV9nZ2Vq5cqUSExP13HPPeSyfm5urhIQE9y01NTVosdU3Et5q/5i8EW6zLpiRgIYEunWlqs5t2/tjyH0/hDKrXbjV9107bmCaNs0ZoWXTBmvTnBEaNzDNcvFbkakDitu3b6/IyEgdPHiw2vGDBw8qOTnZq+do3ry5+vXrp127dnm8f+7cuZo9e7b775KSkqAmOHWNhA/VtSfCZdaFlfrfYU2B3pvtzDrn0OnbmflNKHw/hKqGJlKYob7v2poDkK0Yv9WYmtxERUWpf//+WrNmjXJyciSdHlC8Zs0azZgxw6vnqKys1I4dO3TZZZd5vD86OlrR0dGBCtkrnkbCh3JltPusCzYUhTcCubpszTpn6HRyU3UBFErfD6HKihduvnzXWjF+KzF9Kvjs2bM1ceJEDRgwQIMGDdKCBQtUWlrqXstmwoQJ6tixo3JzcyVJ8+fP1+DBg9WtWzcdPXpUjz/+uPbu3aupU6ea+Ta8QmU0R0MzUMJ1uXp/eDubx46zfgLZ+uqpzhmSFl7XT+1aRfP90ERC/cIt1OMPJtOTm3Hjxunw4cO6//77VVxcrL59++qDDz5wDzIuLCxURMTPQ4N+/PFHTZs2TcXFxWrTpo369++vzZs3q2fPnma9BZ9QGZuWN91Nodpl2FSqEpUd+5169INvGuy6s2sXXyBbX+uqc/3T2/D9AASA6evcNLVw3hXcH6F8Be7LOj3htLPumRr6fM9MVGrydC69PeehXq8C0foarnUO8Be7giMgQv0K3JfupnDsMmzo8605LqQmT+fSm3Me6vUqUK2v4VjngKYSclPB0TTssO6Gr9Mlz1zI0O7Twr35fD0lKmfydC5bRkWq5m4oZ5azQ70KJE+LZwJoPJIbeBSK6/LU5O86PeGwUqw3n6+n5LCKp3O5/LNCXf3sZhlG3eXsUK8AnGbli0C6peCRXQbZ+tr0Hy7Twr35fD0NoL17TA/16dja427GNbuwIiStvDVLmaltfHpdANZn9e5lWm7gkZ1WJ/al6T9cWha8/Xxrro76m2FdPZ5LT+fNJanspMuv1wVgXaHQvUzLDeoUjgMew6llwdvP15sBtL6ct3CsV4CdhMLaYLTcoF7hNuAx3FoWAvX5+nrewq1eWZmVx03AmkJhbyvWuQE8CNRaJuGG8xZarD5uAtZlxjpNvvx+k9wAQBjyZZFLwJOmvphhET8AQL1CYdwErM3K2wkx5gYAwlAojJsA/EVyAwBhKNwGzyO80C0FAGGKafmwK5IbAJYVyruHhworj5sA/EVyg5DEj179muL8BPs1mKYMwF8kNwg5/OjVrynOTyBfw1OSFC57fAEIDgYUI6SEwp4mZmqK8xPI16hrB/Zw2eMLQHCQ3CCk8KNXv7rOz/a9Pwb9NXz9DOpLkpimDKAxSG4QUvjRq5+n8yNJM5Z+7m4VCcZr+PMZNLSIHNOUAfiL5AYhhR+9+lWdn5rJh6HAdU8F6jNoKEkaNzBNm+aM0LJpg7VpzgjGVQHwGntLISSxQWP9/vnFd7ptWV6t48umDVZW13YBeY1AfAZmbL4HIDSxtxRsL1zX5qg5s6iu6dgD0tsqwqFamyIGsvsuEJ8Bi8gBCAaSGyBE1Jx+fXW/jlr1+Xcep2NXdR3VbBWxYvIQrokqgOChWyqAWFgODfG1jlSVbxkVqauf3VxrAO6ZIh0ObZozotrz0n0HwC7oljIBC8uhIb7WkTPLe+PMmUZVaBUBEI6YLRUAobSwXJGzXJsLjlgyNjvztY7ULO8Nh6TYKN//SVMnANgNLTcB0NB6HVYRDq1LVu0a9LWOeCrfEENSzjOb9cg13n+u4VAnAIQfWm4CIBQWlvO25SCUr+LrWsrfCnytI3Utxlelrrt8Wc8mlFocAcAXJDcBEAoLy3mzZL6Vk4OGWP2H2tc6UrO8w/FzQhPpcGjOmHPqTH683QqBrSwA2BXdUgFi9fU6qloC6lr3JNR3Yd6290fLdw36WkdqlpdU7bGtY5t7HJfjbathQ3UCAEIVLTcBlJIQo6yu7SzzY3qmhloOQvkqfvlnhbpt6ee1jtf8obZCl5uvdeTM8jUfO25gmj6ec5FuGpbh/ofsS6thKLQ4AoA/aLkJI/W1HITqVXxVi1PNsbcRDlX7obbqwNnGDoBOSYjRvZf11OShGX61Glq9xRGANXjzXWWlCR0kN2GmrnVPQmlF2zPVNavoz9f10/9kniXJml1uRc5yvbRpt57//3bLUOMTrsasZ8NaOADq483FodUuIElu4BaKV/F1tTj1T2/j/ttqU/U9Lc5XM+Gy0hUQgPDlzcWhFS8gSW5QTahdxXvT4mSlLrf6FuerSrg2/r/DlroCAhC+vLk4tNoFpERyAy9ZuSWhoRYnK3W51bc4X6TDodioCMtdAQEIX95cHFrpArIKyQ0aZLW+VE8aanGySpebpy8B6fS0xYfH9lLpyUrLXQEBCF/eXBxa6QKyCruCo15FznINfWRtrYy85u7T8N7yzwrdXwIRDmnqBV00+YJ091gbzjcAqylyljd4cehNmcZgV3AEjBX7UkNdfa1IVrwCAgBvxmNaacwmyQ3qZcW+VDuo70vAKl1oABCqWKEY9WIVW3NYebVrALA6Wm7QIFoSAAChhOQGXrFSXyoAAPWhWwoAANgKyQ0AALAVkhsAAGArJDfAGYqc5dpccERFzvKglAcABB8DioH/8nWbiVDYlgIAwhEtN4Bq79ZdtWFlXS0yvpYHADQdkhtA9W8zEYjyAICmQ3ID6OdtJs5U3zYTvpYHADQdkhsEXCgOsvV1mwm2pQAA63IYhmE0XCy4nnnmGT3++OMqLi5WZmamFi5cqEGDBtVZ/vXXX9d9992nPXv2qHv37nr00Ud12WWXefVavmyZDt+F+iDbIme5T9tM+FoeAOAfX36/TW+5Wb58uWbPnq0HHnhA27dvV2ZmpkaPHq1Dhw55LL9582aNHz9eU6ZM0eeff66cnBzl5ORo586dTRw5arLDIFtfN6xkg0sA3gjFFu1QZnrLzfnnn6+BAwfq6aefliS5XC6lpqbqtttu05w5c2qVHzdunEpLS/XOO++4jw0ePFh9+/bV4sWLG3w9Wm6CZ3PBEV3//Ke1ji+bNlhZXduZEBEAmC/UW7StImRabk6ePKlt27Zp1KhR7mMREREaNWqUtmzZ4vExW7ZsqVZekkaPHl1n+YqKCpWUlFS7ITgYZAsA1dmhRTsUmZrcHDlyRJWVlerQoUO14x06dFBxcbHHxxQXF/tUPjc3VwkJCe5bampqYIJHLQyyBYDqWDbCHLZfoXju3LmaPXu2+++SkhISnCAaNzBNw85OZJAtAOjnFu0zExxatIPP1OSmffv2ioyM1MGDB6sdP3jwoJKTkz0+Jjk52afy0dHRio6ODkzA8EpKQgxJDQDo5xbte1fuVKVh0KLdREztloqKilL//v21Zs0a9zGXy6U1a9YoKyvL42OysrKqlZek1atX11keAAAzjRuYpk1zRmjZtMHaNGcEg4mbgOndUrNnz9bEiRM1YMAADRo0SAsWLFBpaakmT54sSZowYYI6duyo3NxcSdIdd9yh7OxsPfHEE7r88sv12muvaevWrfrLX/5i5tsAAKBOtGg3LdOTm3Hjxunw4cO6//77VVxcrL59++qDDz5wDxouLCxURMTPDUxDhgzR0qVL9fvf/1733nuvunfvrjfffFO9evUy6y0AAAALMX2dm6bGOjcAAISekFnnBgAAINBIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGArJDcAAMBWTN9+oalVLchcUlJiciQAAMBbVb/b3mysEHbJzbFjxyRJqampJkcCAAB8dezYMSUkJNRbJuz2lnK5XDpw4IDi4uLkcDjMDqdJlZSUKDU1Vfv27WNfrUbiXAYG5zFwOJeBwXkMnECfS8MwdOzYMZ111lnVNtT2JOxabiIiItSpUyezwzBVfHw8/2gDhHMZGJzHwOFcBgbnMXACeS4barGpwoBiAABgKyQ3AADAVkhuwkh0dLQeeOABRUdHmx1KyONcBgbnMXA4l4HBeQwcM89l2A0oBgAA9kbLDQAAsBWSGwAAYCskNwAAwFZIbgAAgK2Q3NjQxo0bdcUVV+iss86Sw+HQm2++We1+wzB0//33KyUlRTExMRo1apS+/fZbc4K1sIbO46RJk+RwOKrdLr30UnOCtbDc3FwNHDhQcXFxSkpKUk5OjvLz86uVOXHihKZPn6527dqpVatWuuaaa3Tw4EGTIrYub87l8OHDa9XLm2++2aSIrWvRokXq06ePe4G5rKwsvf/+++77qZPeaeg8mlUfSW5sqLS0VJmZmXrmmWc83v/YY4/pz3/+sxYvXqxPP/1ULVu21OjRo3XixIkmjtTaGjqPknTppZeqqKjIfVu2bFkTRhgaNmzYoOnTp+uTTz7R6tWrderUKV1yySUqLS11l5k1a5b++c9/6vXXX9eGDRt04MABjR071sSorcmbcylJ06ZNq1YvH3vsMZMitq5OnTrpkUce0bZt27R161ZddNFFuuqqq/TVV19Jok56q6HzKJlUHw3YmiRj1apV7r9dLpeRnJxsPP744+5jR48eNaKjo41ly5aZEGFoqHkeDcMwJk6caFx11VWmxBPKDh06ZEgyNmzYYBjG6frXvHlz4/XXX3eX+frrrw1JxpYtW8wKMyTUPJeGYRjZ2dnGHXfcYV5QIaxNmzbGCy+8QJ1spKrzaBjm1UdabsLM7t27VVxcrFGjRrmPJSQk6Pzzz9eWLVtMjCw0rV+/XklJSerRo4duueUWff/992aHZHlOp1OS1LZtW0nStm3bdOrUqWp18pxzzlFaWhp1sgE1z2WVv//972rfvr169eqluXPnqqyszIzwQkZlZaVee+01lZaWKisrizrpp5rnsYoZ9THsNs4Md8XFxZKkDh06VDveoUMH933wzqWXXqqxY8cqIyNDBQUFuvfeezVmzBht2bJFkZGRZodnSS6XSzNnztTQoUPVq1cvSafrZFRUlFq3bl2tLHWyfp7OpSRdf/316ty5s8466yx9+eWXuueee5Sfn6+VK1eaGK017dixQ1lZWTpx4oRatWqlVatWqWfPnsrLy6NO+qCu8yiZVx9JbgA/XXfdde7/7927t/r06aOuXbtq/fr1GjlypImRWdf06dO1c+dObdq0yexQQl5d5/Kmm25y/3/v3r2VkpKikSNHqqCgQF27dm3qMC2tR48eysvLk9Pp1IoVKzRx4kRt2LDB7LBCTl3nsWfPnqbVR7qlwkxycrIk1Rr1f/DgQfd98E+XLl3Uvn177dq1y+xQLGnGjBl65513tG7dOnXq1Ml9PDk5WSdPntTRo0erladO1q2uc+nJ+eefL0nUSw+ioqLUrVs39e/fX7m5ucrMzNRTTz1FnfRRXefRk6aqjyQ3YSYjI0PJyclas2aN+1hJSYk+/fTTan2k8N3+/fv1/fffKyUlxexQLMUwDM2YMUOrVq3S2rVrlZGRUe3+/v37q3nz5tXqZH5+vgoLC6mTNTR0Lj3Jy8uTJOqlF1wulyoqKqiTjVR1Hj1pqvpIt5QNHT9+vFpWvHv3buXl5alt27ZKS0vTzJkz9dBDD6l79+7KyMjQfffdp7POOks5OTnmBW1B9Z3Htm3b6sEHH9Q111yj5ORkFRQU6O6771a3bt00evRoE6O2nunTp2vp0qV66623FBcX5x6zkJCQoJiYGCUkJGjKlCmaPXu22rZtq/j4eN12223KysrS4MGDTY7eWho6lwUFBVq6dKkuu+wytWvXTl9++aVmzZqlYcOGqU+fPiZHby1z587VmDFjlJaWpmPHjmnp0qVav369PvzwQ+qkD+o7j6bWxyafn4WgW7dunSGp1m3ixImGYZyeDn7fffcZHTp0MKKjo42RI0ca+fn55gZtQfWdx7KyMuOSSy4xEhMTjebNmxudO3c2pk2bZhQXF5sdtuV4OoeSjJdeesldpry83Lj11luNNm3aGLGxscbVV19tFBUVmRe0RTV0LgsLC41hw4YZbdu2NaKjo41u3boZd911l+F0Os0N3IJuvPFGo3PnzkZUVJSRmJhojBw50vjoo4/c91MnvVPfeTSzPjoMwzCCmz4BAAA0HcbcAAAAWyG5AQAAtkJyAwAAbIXkBgAA2ArJDQAAsBWSGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQFgKSdPnjQ7hFqsGBOAupHcAAiq4cOHa8aMGZoxY4YSEhLUvn173Xfffara+SU9PV1/+MMfNGHCBMXHx+umm26SJG3atEkXXnihYmJilJqaqttvv12lpaXu53322WfVvXt3tWjRQh06dNC1117rvm/FihXq3bu3YmJi1K5dO40aNcr92OHDh2vmzJnVYszJydGkSZPcf/sbEwBrILkBEHR/+9vf1KxZM/3f//2fnnrqKf3pT3/SCy+84L7/f//3f5WZmanPP/9c9913nwoKCnTppZfqmmuu0Zdffqnly5dr06ZNmjFjhiRp69atuv322zV//nzl5+frgw8+0LBhwyRJRUVFGj9+vG688UZ9/fXXWr9+vcaOHStft9HzNSYA1sHGmQCCavjw4Tp06JC++uorORwOSdKcOXP09ttv69///rfS09PVr18/rVq1yv2YqVOnKjIyUs8995z72KZNm5Sdna3S0lK99957mjx5svbv36+4uLhqr7d9+3b1799fe/bsUefOnT3G07dvXy1YsMB9LCcnR61bt9aSJUskya+YWrRo0ajzBCBwaLkBEHSDBw92JzaSlJWVpW+//VaVlZWSpAEDBlQr/8UXX2jJkiVq1aqV+zZ69Gi5XC7t3r1bF198sTp37qwuXbrohhtu0N///neVlZVJkjIzMzVy5Ej17t1bv/zlL/X888/rxx9/9DlmX2MCYB0kNwBM17Jly2p/Hz9+XL/5zW+Ul5fnvn3xxRf69ttv1bVrV8XFxWn79u1atmyZUlJSdP/99yszM1NHjx5VZGSkVq9erffff189e/bUwoUL1aNHD3cCEhERUauL6tSpU42OCYB1kNwACLpPP/202t+ffPKJunfvrsjISI/lf/GLX+jf//63unXrVusWFRUlSWrWrJlGjRqlxx57TF9++aX27NmjtWvXSpIcDoeGDh2qBx98UJ9//rmioqLcXUyJiYkqKipyv1ZlZaV27tzZ4HvwJiYA1kByAyDoCgsLNXv2bOXn52vZsmVauHCh7rjjjjrL33PPPdq8ebNmzJihvLw8ffvtt3rrrbfcg3ffeecd/fnPf1ZeXp727t2rl19+WS6XSz169NCnn36qhx9+WFu3blVhYaFWrlypw4cP69xzz5UkXXTRRXr33Xf17rvv6ptvvtEtt9yio0ePNvgeGooJgHU0MzsAAPY3YcIElZeXa9CgQYqMjNQdd9zhnl7tSZ8+fbRhwwb97ne/04UXXijDMNS1a1eNGzdOktS6dWutXLlS8+bN04kTJ9S9e3ctW7ZM5513nr7++mtt3LhRCxYsUElJiTp37qwnnnhCY8aMkSTdeOON+uKLLzRhwgQ1a9ZMs2bN0ogRIxp8Dw3FBMA6mC0FIKg8zU4CgGCiWwoAANgKyQ0AALAVuqUAAICt0HIDAABsheQGAADYCskNAACwFZIbAABgKyQ3AADAVkhuAACArZDcAAAAWyG5AQAAtkJyAwAAbOX/BzTrkRu6XULIAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1064,7 +4171,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVMUlEQVR4nO3deVhU5eIH8O+wDILIILKJgeAuiqaSirgmVzRbTLu5kLmlt3K3TKxcS0HrlsstLe8t7abFrateW9S84nJVLiKKW0ZKKJYskjIjgmzz/v7wx7mOgAzDDHNmzvfzPPM8cs47M+85Dsz3vNtRCSEEiIiIiBTMwdoVICIiIrI2BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiKyGUuXLoVKpTKqrEqlwtKlSy1an4EDB2LgwIGyfT0iMh4DERHV2ebNm6FSqaSHk5MTWrRogYkTJ+K3336zdvVkJzg42OB8+fr6ol+/ftixY4dZXr+oqAhLly7FwYMHzfJ6RErEQEREJlu+fDn+/ve/Y+PGjRg2bBg+//xzDBgwAHfu3LHI+7355psoLi62yGtb2sMPP4y///3v+Pvf/45XX30V165dw8iRI7Fx48Z6v3ZRURGWLVvGQERUD07WrgAR2a5hw4YhPDwcAPDCCy/A29sbq1atwq5du/Dss8+a/f2cnJzg5GSbf7ZatGiB5557Tvr5+eefR5s2bfD+++/jxRdftGLNiAhgCxERmVG/fv0AABkZGQbbf/rpJzzzzDPw8vJCo0aNEB4ejl27dhmUKSsrw7Jly9C2bVs0atQIzZo1Q9++fbFv3z6pTHVjiEpKSjB37lz4+PigSZMmePLJJ/Hrr79WqdvEiRMRHBxcZXt1r/npp5/i0Ucfha+vL1xcXBAaGooNGzbU6VzUxt/fHx07dkRmZuYDy+Xl5WHKlCnw8/NDo0aN0LVrV2zZskXaf/nyZfj4+AAAli1bJnXLWXr8FJG9sc1LLSKSpcuXLwMAmjZtKm07f/48IiMj0aJFC8TGxqJx48b4xz/+gREjRuCf//wnnn76aQB3g0lcXBxeeOEF9OzZEzqdDidOnMDJkyfxhz/8ocb3fOGFF/D5559j3Lhx6NOnDxITEzF8+PB6HceGDRvQqVMnPPnkk3BycsI333yDl19+GXq9HtOnT6/Xa1cqKyvD1atX0axZsxrLFBcXY+DAgbh06RJmzJiBkJAQfPXVV5g4cSIKCgowe/Zs+Pj4YMOGDXjppZfw9NNPY+TIkQCALl26mKWeRIohiIjq6NNPPxUAxL///W9x/fp1cfXqVfH1118LHx8f4eLiIq5evSqVHTx4sAgLCxN37tyRtun1etGnTx/Rtm1baVvXrl3F8OHDH/i+S5YsEff+2UpLSxMAxMsvv2xQbty4cQKAWLJkibRtwoQJomXLlrW+phBCFBUVVSkXHR0tWrVqZbBtwIABYsCAAQ+ssxBCtGzZUgwZMkRcv35dXL9+XZw+fVqMGTNGABAzZ86s8fXWrFkjAIjPP/9c2lZaWioiIiKEu7u70Ol0Qgghrl+/XuV4iahu2GVGRCaLioqCj48PAgMD8cwzz6Bx48bYtWsXHnroIQDAjRs3kJiYiGeffRa3bt1Cfn4+8vPz8fvvvyM6OhoXL16UZqV5enri/PnzuHjxotHv//333wMAZs2aZbB9zpw59TouV1dX6d9arRb5+fkYMGAAfvnlF2i1WpNe84cffoCPjw98fHzQtWtXfPXVVxg/fjxWrVpV43O+//57+Pv7Y+zYsdI2Z2dnzJo1C4WFhTh06JBJdSGiqthlRkQm++CDD9CuXTtotVp88sknOHz4MFxcXKT9ly5dghACixYtwqJFi6p9jby8PLRo0QLLly/HU089hXbt2qFz584YOnQoxo8f/8CunytXrsDBwQGtW7c22N6+fft6HdfRo0exZMkSJCUloaioyGCfVquFRqOp82v26tULb7/9NlQqFdzc3NCxY0d4eno+8DlXrlxB27Zt4eBgeO3asWNHaT8RmQcDERGZrGfPntIssxEjRqBv374YN24c0tPT4e7uDr1eDwB49dVXER0dXe1rtGnTBgDQv39/ZGRk4F//+hd++OEH/PWvf8X777+PjRs34oUXXqh3XWta0LGiosLg54yMDAwePBgdOnTAe++9h8DAQKjVanz//fd4//33pWOqK29vb0RFRZn0XCKyPAYiIjILR0dHxMXFYdCgQfjLX/6C2NhYtGrVCsDdbh5jwoCXlxcmTZqESZMmobCwEP3798fSpUtrDEQtW7aEXq9HRkaGQatQenp6lbJNmzZFQUFBle33t7J88803KCkpwa5duxAUFCRtP3DgQK31N7eWLVvizJkz0Ov1Bq1EP/30k7QfqDnsEZHxOIaIiMxm4MCB6NmzJ9asWYM7d+7A19cXAwcOxEcffYTs7Owq5a9fvy79+/fffzfY5+7ujjZt2qCkpKTG9xs2bBgAYN26dQbb16xZU6Vs69atodVqcebMGWlbdnZ2ldWiHR0dAQBCCGmbVqvFp59+WmM9LOWxxx5DTk4OEhISpG3l5eVYv3493N3dMWDAAACAm5sbAFQb+IjIOGwhIiKzmj9/Pv74xz9i8+bNePHFF/HBBx+gb9++CAsLw9SpU9GqVSvk5uYiKSkJv/76K06fPg0ACA0NxcCBA9GjRw94eXnhxIkT+PrrrzFjxowa3+vhhx/G2LFj8eGHH0Kr1aJPnz7Yv38/Ll26VKXsmDFjsGDBAjz99NOYNWsWioqKsGHDBrRr1w4nT56Uyg0ZMgRqtRpPPPEE/vSnP6GwsBCbNm2Cr69vtaHOkqZNm4aPPvoIEydORGpqKoKDg/H111/j6NGjWLNmDZo0aQLg7iDw0NBQJCQkoF27dvDy8kLnzp3RuXPnBq0vkU2z9jQ3IrI9ldPuU1JSquyrqKgQrVu3Fq1btxbl5eVCCCEyMjLE888/L/z9/YWzs7No0aKFePzxx8XXX38tPe/tt98WPXv2FJ6ensLV1VV06NBBrFixQpSWlkplqpsiX1xcLGbNmiWaNWsmGjduLJ544glx9erVaqeh//DDD6Jz585CrVaL9u3bi88//7za19y1a5fo0qWLaNSokQgODharVq0Sn3zyiQAgMjMzpXJ1mXZf25ICNb1ebm6umDRpkvD29hZqtVqEhYWJTz/9tMpzjx07Jnr06CHUajWn4BOZQCXEPe3CRERERArEMURERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4XJjRSHq9HteuXUOTJk24TD4REZGNEELg1q1bCAgIqHKj5HsxEBnp2rVrCAwMtHY1iIiIyARXr17FQw89VON+BiIjVS6Rf/XqVXh4eFi5NkRERGQMnU6HwMBA6Xu8JgxERqrsJvPw8GAgIiIisjG1DXfhoGoiIiJSPAYiIiIiUjwGIiIiIlI8jiEiIiLFq6ioQFlZmbWrQSZwdnaGo6NjvV/HqoHo8OHDeOedd5Camors7Gzs2LEDI0aMqLbsiy++iI8++gjvv/8+5syZI22/ceMGZs6ciW+++QYODg4YNWoU1q5dC3d3d6nMmTNnMH36dKSkpMDHxwczZ87Ea6+9ZuGjIyIiuRNCICcnBwUFBdauCtWDp6cn/P3967VOoFUD0e3bt9G1a1dMnjwZI0eOrLHcjh078N///hcBAQFV9sXExCA7Oxv79u1DWVkZJk2ahGnTpmHbtm0A7k63GzJkCKKiorBx40acPXsWkydPhqenJ6ZNm2axYyMiIvmrDEO+vr5wc3Pjwrs2RgiBoqIi5OXlAQCaN29u8mtZNRANGzYMw4YNe2CZ3377DTNnzsTevXsxfPhwg30XLlzAnj17kJKSgvDwcADA+vXr8dhjj+Hdd99FQEAAtm7ditLSUnzyySdQq9Xo1KkT0tLS8N577zEQEREpWEVFhRSGmjVrZu3qkIlcXV0BAHl5efD19TW5+0zWg6r1ej3Gjx+P+fPno1OnTlX2JyUlwdPTUwpDABAVFQUHBwckJydLZfr37w+1Wi2ViY6ORnp6Om7evFnje5eUlECn0xk8iIjIflSOGXJzc7NyTai+Kv8P6zMOTNaBaNWqVXBycsKsWbOq3Z+TkwNfX1+DbU5OTvDy8kJOTo5Uxs/Pz6BM5c+VZaoTFxcHjUYjPXjbDiIi+8RuMttnjv9D2Qai1NRUrF27Fps3b7bKh3XhwoXQarXS4+rVqw1eByIiImoYsg1E//nPf5CXl4egoCA4OTnByckJV65cwSuvvILg4GAAgL+/vzSQqlJ5eTlu3LgBf39/qUxubq5BmcqfK8tUx8XFRbpNB2/XQURESqBSqbBz505rV8PAwYMHoVKpLD4TULaBaPz48Thz5gzS0tKkR0BAAObPn4+9e/cCACIiIlBQUIDU1FTpeYmJidDr9ejVq5dU5vDhwwb9ivv27UP79u3RtGnThj2oOsjWFuNYRj6ytcXWrgoREdmZpUuX4uGHH7Z2NWTFqrPMCgsLcenSJennzMxMpKWlwcvLC0FBQVVG/Ts7O8Pf3x/t27cHAHTs2BFDhw7F1KlTsXHjRpSVlWHGjBkYM2aMNEV/3LhxWLZsGaZMmYIFCxbg3LlzWLt2Ld5///2GO9A6SkjJwsLtZ6EXgIMKiBsZhtGPBFm7WkRERHbLqi1EJ06cQLdu3dCtWzcAwLx589CtWzcsXrzY6NfYunUrOnTogMGDB+Oxxx5D37598fHHH0v7NRoNfvjhB2RmZqJHjx545ZVXsHjxYtlOuc/WFkthCAD0Anh9+zm2FBERkUSv1yMuLg4hISFwdXVF165d8fXXXwP4XxfT/v37ER4eDjc3N/Tp0wfp6ekAgM2bN2PZsmU4ffo0VCoVVCoVNm/eLL12fn4+nn76abi5uaFt27bYtWuXUXWqfN+9e/eiW7ducHV1xaOPPoq8vDzs3r0bHTt2hIeHB8aNG4eioiLpeSUlJZg1axZ8fX3RqFEj9O3bFykpKeY7WUayagvRwIEDIYQwuvzly5erbPPy8pIWYaxJly5d8J///Keu1bOKzPzbUhiqVCEELucXobnG1TqVIiKiWmVri5GZfxsh3o0t/vc6Li4On3/+OTZu3Ii2bdvi8OHDeO655+Dj4yOVeeONN/DnP/8ZPj4+ePHFFzF58mQcPXoUo0ePxrlz57Bnzx78+9//BnC38aDSsmXLsHr1arzzzjtYv349YmJicOXKFXh5eRlVt6VLl+Ivf/kL3Nzc8Oyzz+LZZ5+Fi4sLtm3bhsLCQjz99NNYv349FixYAAB47bXX8M9//hNbtmxBy5YtsXr1akRHR+PSpUtGv6c5yHYMkVKFeDeGw32T6hxVKgR7c50MIiK5SkjJQmR8IsZtSkZkfCISUrIs9l4lJSVYuXIlPvnkE0RHR6NVq1aYOHEinnvuOXz00UdSuRUrVmDAgAEIDQ1FbGwsjh07hjt37sDV1RXu7u5wcnKCv78//P39pcUNAWDixIkYO3Ys2rRpg5UrV6KwsBDHjx83un5vv/02IiMj0a1bN0yZMgWHDh3Chg0b0K1bN/Tr1w/PPPMMDhw4AODuHSs2bNiAd955B8OGDUNoaCg2bdoEV1dX/O1vfzPfSTMCA5HMNNe4Im5kGBz/f6kBR5UKK0d2ZusQEZFMNfRQh0uXLqGoqAh/+MMf4O7uLj0+++wzZGRkSOW6dOki/bvylhb3z8yuzr3Pa9y4MTw8PIx6XnXP9/Pzg5ubG1q1amWwrfL1MjIyUFZWhsjISGm/s7MzevbsiQsXLhj9nubAu93L0OhHgtC/nQ8u5xch2NuNYYiISMYaeqhDYWEhAOC7775DixYtDPa5uLhIocjZ2VnaXrmen16vr/X1731e5XONeV51z1epVPV+vYbCQCRTzTWuDEJERDagcqjDvaHIkkMdQkND4eLigqysLAwYMKDK/ntbiWqiVqtRUVFhierVSevWraFWq3H06FG0bNkSwN3bb6SkpGDOnDkNWhcGIiIionqoHOrw+vZzqBDC4kMdmjRpgldffRVz586FXq9H3759odVqcfToUXh4eEjB4kGCg4OlpW4eeughNGnSBC4uLhap74M0btwYL730EubPny8tubN69WoUFRVhypQpDVoXBiIiIqJ6auihDm+99RZ8fHwQFxeHX375BZ6enujevTtef/11o7qjRo0ahe3bt2PQoEEoKCjAp59+iokTJ1q0zjWJj4+XbuZ+69YthIeHY+/evQ2+eLJK1GXeu4LpdDpoNBpotVrexoOIyA7cuXMHmZmZCAkJQaNGjaxdHaqHB/1fGvv9zVlmREREpHgMRERERFSrF1980WCa/72PF1980drVqzeOISIiIqJaLV++HK+++mq1++xhKAkDEREREdXK19cXvr6+1q6GxbDLjIiIiBSPgYiIiBRNjqsmU92Y4/+QXWZERKRIarUaDg4OuHbtGnx8fKBWq6VbXJBtEEKgtLQU169fh4ODA9RqtcmvxUBERESK5ODggJCQEGRnZ+PatWvWrg7Vg5ubG4KCguDgYHrHFwMREREpllqtRlBQEMrLy2Vxby+qO0dHRzg5OdW7dY+BiIiIFK3yjuz335WdlIWDqomIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPGsGogOHz6MJ554AgEBAVCpVNi5c6e0r6ysDAsWLEBYWBgaN26MgIAAPP/887h27ZrBa9y4cQMxMTHw8PCAp6cnpkyZgsLCQoMyZ86cQb9+/dCoUSMEBgZi9erVDXF49ZKtLcaxjHxka4utXRUiIiK7Z9VAdPv2bXTt2hUffPBBlX1FRUU4efIkFi1ahJMnT2L79u1IT0/Hk08+aVAuJiYG58+fx759+/Dtt9/i8OHDmDZtmrRfp9NhyJAhaNmyJVJTU/HOO+9g6dKl+Pjjjy1+fKZKSMlCZHwixm1KRmR8IhJSsqxdJSIiIrumEkIIa1cCAFQqFXbs2IERI0bUWCYlJQU9e/bElStXEBQUhAsXLiA0NBQpKSkIDw8HAOzZswePPfYYfv31VwQEBGDDhg144403kJOTA7VaDQCIjY3Fzp078dNPPxldP51OB41GA61WCw8Pj3od64Nka4sRGZ8I/T3/K44qFY7EDkJzjavF3peIiMgeGfv9bVNjiLRaLVQqFTw9PQEASUlJ8PT0lMIQAERFRcHBwQHJyclSmf79+0thCACio6ORnp6Omzdv1vheJSUl0Ol0Bo+GkJl/2yAMAUCFELicX9Qg709ERKRENhOI7ty5gwULFmDs2LFSwsvJyYGvr69BOScnJ3h5eSEnJ0cq4+fnZ1Cm8ufKMtWJi4uDRqORHoGBgeY8nBqFeDeGg8pwm6NKhWBvtwZ5fyIiIiWyiUBUVlaGZ599FkIIbNiwoUHec+HChdBqtdLj6tWrDfK+zTWuiBsZBkfV3VTkqFJh5cjO7C4jIiKyICdrV6A2lWHoypUrSExMNOj/8/f3R15enkH58vJy3LhxA/7+/lKZ3NxcgzKVP1eWqY6LiwtcXFzMdRh1MvqRIPRv54PL+UUI9nZjGCIiIrIwWbcQVYahixcv4t///jeaNWtmsD8iIgIFBQVITU2VtiUmJkKv16NXr15SmcOHD6OsrEwqs2/fPrRv3x5NmzZtmAMxQXONKyJaN2MYIiIiagBWDUSFhYVIS0tDWloaACAzMxNpaWnIyspCWVkZnnnmGZw4cQJbt25FRUUFcnJykJOTg9LSUgBAx44dMXToUEydOhXHjx/H0aNHMWPGDIwZMwYBAQEAgHHjxkGtVmPKlCk4f/48EhISsHbtWsybN89ah01EREQyY9Vp9wcPHsSgQYOqbJ8wYQKWLl2KkJCQap934MABDBw4EMDdhRlnzJiBb775Bg4ODhg1ahTWrVsHd3d3qfyZM2cwffp0pKSkwNvbGzNnzsSCBQvqVNeGmnZPRERE5mPs97ds1iGSOwYiIiIi22OX6xARERERWQIDERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DkZVla4txLCMf2dpia1eFiIhIsZysXQElS0jJwsLtZ6EXgIMKiBsZhtGPBFm7WkRERIrDFiIrydYWS2EIAPQCeH37ObYUERERWQEDkZVk5t+WwlClCiFwOb/IOhUiIiJSMAYiKwnxbgwHleE2R5UKwd5u1qkQERGRgjEQWUlzjSviRobBUXU3FTmqVFg5sjOaa1ytXDMiIiLl4aBqKxr9SBD6t/PB5fwiBHu7MQwRERFZCQORlTXXuEpBKFtbjMz82wjxbsxwRERE1IAYiGSCU/CJiIish2OIZIBT8ImIiKyLgUgG6jIFnytbExERmR+7zGSgcgr+vaGouin47FYjIiKyDLYQyYAxU/DZrUZERGQ5bCGSidqm4D+oW40z0oiIiOqHgUhG7p2Cfz9ju9WIiIio7thlZiO4sjUREZHlsIXIhnBlayIiIstgILIxD+pWIyIiItOwy4yIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiMzKFm9Ezmn3REREZDa2eiNyq7YQHT58GE888QQCAgKgUqmwc+dOg/1CCCxevBjNmzeHq6sroqKicPHiRYMyN27cQExMDDw8PODp6YkpU6agsLDQoMyZM2fQr18/NGrUCIGBgVi9erWlD42IiEhxbPlG5FYNRLdv30bXrl3xwQcfVLt/9erVWLduHTZu3Ijk5GQ0btwY0dHRuHPnjlQmJiYG58+fx759+/Dtt9/i8OHDmDZtmrRfp9NhyJAhaNmyJVJTU/HOO+9g6dKl+Pjjjy1+fERkn2yxO4CoITzoRuRyZ9Uus2HDhmHYsGHV7hNCYM2aNXjzzTfx1FNPAQA+++wz+Pn5YefOnRgzZgwuXLiAPXv2ICUlBeHh4QCA9evX47HHHsO7776LgIAAbN26FaWlpfjkk0+gVqvRqVMnpKWl4b333jMITkRExmjo7oBsbTEy828jxLsxV6kn2bPlG5HLdlB1ZmYmcnJyEBUVJW3TaDTo1asXkpKSAABJSUnw9PSUwhAAREVFwcHBAcnJyVKZ/v37Q61WS2Wio6ORnp6OmzdvNtDREJE9aOjugISULETGJ2LcpmRExiciISXLIu9DZC62fCNy2Q6qzsnJAQD4+fkZbPfz85P25eTkwNfX12C/k5MTvLy8DMqEhIRUeY3KfU2bNq32/UtKSlBSUiL9rNPp6nE0RGQPHtQdYO4/+DWFr/7tfGziy4WUy1ZvRC7bFiJri4uLg0ajkR6BgYHWrhIRWVlld8C9LNUdYMtjMYiaa1wR0bqZzYQhQMaByN/fHwCQm5trsD03N1fa5+/vj7y8PIP95eXluHHjhkGZ6l7j3veozsKFC6HVaqXH1atX63dARGTzGrI7oCHDFxHJOBCFhITA398f+/fvl7bpdDokJycjIiICABAREYGCggKkpqZKZRITE6HX69GrVy+pzOHDh1FWViaV2bdvH9q3b19jdxkAuLi4wMPDw+BBRDT6kSAciR2EL6b2xpHYQRYbUG3LYzGIbJFKCCFqL2YZhYWFuHTpEgCgW7dueO+99zBo0CB4eXkhKCgIq1atQnx8PLZs2YKQkBAsWrQIZ86cwY8//ohGjRoBuDtTLTc3Fxs3bkRZWRkmTZqE8PBwbNu2DQCg1WrRvn17DBkyBAsWLMC5c+cwefJkvP/++3WaZabT6aDRaKDVahmOiKjBZGuLbW4sBpGcGP39LazowIEDAkCVx4QJE4QQQuj1erFo0SLh5+cnXFxcxODBg0V6errBa/z+++9i7Nixwt3dXXh4eIhJkyaJW7duGZQ5ffq06Nu3r3BxcREtWrQQ8fHxda6rVqsVAIRWqzX5eImIiKhhGfv9bdUWIlvCFiIiIiLbY+z3t2zHEBERERE1FAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIyq2xtMY5l5CNbW2ztqhAZzcnaFSAiIvuRkJKFhdvPQi8ABxUQNzIMox8Jsna1iGrFFiKSLV5lEtmWbG2xFIYAQC+A17ef4+8w2QS2EJEs8SqTyPZk5t+WwlClCiFwOb8IzTWu1qkUkZHYQkSyw6tMItsU4t0YDirDbY4qFYK93axTIaI6YCAi2XnQVSYRyVdzjSviRobBUXU3FTmqVFg5sjNbh8gmsMuMZKfyKvPeUMSrTCLbMPqRIPRv54PL+UUI9nZjGCKbwRYikh1eZRLZtuYaV0S0bsbfWbIpbCEiWeJVJhERNSQGIpKt5hpXBiEiImoQ7DIjIiIixWMgIiJSMC6ASnQXu8yIiBSKC6AS/Q9biIiIFIgLoBIZYiAiIlIgLoBKZIiBiIiogclh3A5vs0FkiGOIiIgakFzG7VQugPr69nOoEMIuF0DN1hYjM/82Gqsdcbu0AiHeje3q+Mi8VEIIUXsx0ul00Gg00Gq18PDwsHZ1iMgGZWuLERmfWOW2NEdiB1ntizpbW2yXC6DeGzwrceC4Mhn7/c0uMyKiBiLHcTv2eJuN+weMV+LAcXoQBiIiogZir+N25DAm6l7VBc9K1g6gJF9GByKdTmf0w1wqKiqwaNEihISEwNXVFa1bt8Zbb72Fe3v5hBBYvHgxmjdvDldXV0RFReHixYsGr3Pjxg3ExMTAw8MDnp6emDJlCgoLC81WTyIiY9jjjYsTUrIQGZ+IcZuSERmfiISULGtXqdrgWckeAihZhtGDqj09PaFS1fAJ+39CCKhUKlRUVNS7YgCwatUqbNiwAVu2bEGnTp1w4sQJTJo0CRqNBrNmzQIArF69GuvWrcOWLVsQEhKCRYsWITo6Gj/++CMaNWoEAIiJiUF2djb27duHsrIyTJo0CdOmTcO2bdvMUk8iImM11I2LKwcUW3IgcU1rGfVv52PVMVGZ+bexYFgHrN6djop7LqDtIYCS5RgdiA4cOGDJelTr2LFjeOqppzB8+HAAQHBwML744gscP34cwN0AtmbNGrz55pt46qmnAACfffYZ/Pz8sHPnTowZMwYXLlzAnj17kJKSgvDwcADA+vXr8dhjj+Hdd99FQEBAgx8XESmbpW9cXNNMNnOHpAeNibJG6Lj/uBcM7YAuD3nCTe2AolK93Q0cJ/MyOhANGDDAkvWoVp8+ffDxxx/j559/Rrt27XD69GkcOXIE7733HgAgMzMTOTk5iIqKkp6j0WjQq1cvJCUlYcyYMUhKSoKnp6cUhgAgKioKDg4OSE5OxtNPP13te5eUlKCkpET62ZxdgUREllJTq01BcRlW7f7JrNP9K7um7p81Z40uqeqOe/WedKvO4CPbYvI6RAUFBfjb3/6GCxcuAAA6deqEyZMnQ6PRmK1ysbGx0Ol06NChAxwdHVFRUYEVK1YgJiYGAJCTkwMA8PPzM3ien5+ftC8nJwe+vr4G+52cnODl5SWVqU5cXByWLVtmtmMhImoINbXaxO/+CcLMXVtyWstIbq1VZHtMCkQnTpxAdHQ0XF1d0bNnTwDAe++9hxUrVuCHH35A9+7dzVK5f/zjH9i6dSu2bduGTp06IS0tDXPmzEFAQAAmTJhglveoycKFCzFv3jzpZ51Oh8DAQIu+JxFRfVXXauMAWCwsNNSYqNrIqbWKbJNJ0+7nzp2LJ598EpcvX8b27duxfft2ZGZm4vHHH8ecOXPMVrn58+cjNjYWY8aMQVhYGMaPH4+5c+ciLi4OAODv7w8AyM3NNXhebm6utM/f3x95eXkG+8vLy3Hjxg2pTHVcXFzg4eFh8CAikrvqZrItGNbBotP95bCWkT3O4KOGZXIL0aZNm+Dk9L+nOzk54bXXXjMYq1NfRUVFcHAwzGyOjo7Q6/UAgJCQEPj7+2P//v14+OGHAdxtyUlOTsZLL70EAIiIiEBBQQFSU1PRo0cPAEBiYiL0ej169epltroSEclFda02nm7OsujasiS5tFaRbTIpEHl4eCArKwsdOnQw2H716lU0adLELBUDgCeeeAIrVqxAUFAQOnXqhFOnTuG9997D5MmTAQAqlQpz5szB22+/jbZt20rT7gMCAjBixAgAQMeOHTF06FBMnToVGzduRFlZGWbMmIExY8ZwhhkR2a37Z7IpJSxYegYf2S+TAtHo0aMxZcoUvPvuu+jTpw8A4OjRo5g/fz7Gjh1rtsqtX78eixYtwssvv4y8vDwEBATgT3/6ExYvXiyVee2113D79m1MmzYNBQUF6Nu3L/bs2SOtQQQAW7duxYwZMzB48GA4ODhg1KhRWLdundnqSURkCxgWiGpm0s1dS0tLMX/+fGzcuBHl5eUAAGdnZ7z00kuIj4+Hi4uL2Stqbby5K5HlNcRigkSkLMZ+f9frbvdFRUXIyMgAALRu3RpubvY7mp+BiMiyalpMkIioPoz9/jZ5HSIAcHNzQ1hYWH1egohIVreAYCsVkTKZFIju3LmD9evX48CBA8jLy5NmfVU6efKkWSpHRMogl0X12EpFpFwmBaIpU6bghx9+wDPPPIOePXvWetNXIqIHkcOienJqpSKihmdSIPr222/x/fffIzIy0tz1ISIFksMtIOTSSkVE1mFSIGrRooVZ1xsiIrL2OjlyaKWydxyfRXJm0q07/vznP2PBggW4cuWKuetDRApmzVtA8NYPlpWQkoXI+ESM25SMyPhEJKRkWbtKRAZMaiEKDw/HnTt30KpVK7i5ucHZ2dlg/40bN8xSOSJT8UqUTGHtVip7xfFZZAtMCkRjx47Fb7/9hpUrV8LPz4+DqklWOFOI6oOrOZsfx2eRLTApEB07dgxJSUno2rWruetDVC+8EiWSH47PIltg0hiiDh06oLi42Nx1Iaq3B12JEpF1cHwW2QKTWoji4+PxyiuvYMWKFQgLC6syhoi3tiBr4ZUokTxxfBbJnUn3MnNwuNuwdP/YISEEVCoVKioqzFM7GeG9zGxHQkpWlfVsOIaISL44CYIsyaL3Mjtw4IDJFSOytJquRPlHl0h+OAmC5KJed7uvzcsvv4zly5fD29vbUm/RYNhCZNv4R5dIfrK1xYiMT6zSxX0kdhAvWshsjP3+NmlQtbE+//xz6HQ6S74FUa1qmnmWreXEAKJ7ZWuLcSwjv8F+NzgJguTEpC4zY1mw8YnIaFwDhah21mhF5SQIkhOLthARyUHlH9178Y8u0f9YqxWV0/FJTizaQkQkB3K4kzopi60N4LdmKyqn45NcMBCRIvCPLjWU+nY9WSNMWbvrirdLITlglxkphjXvpE7KUN+uJ2vdEZ5dV0QWbiF67rnnOEWdzMrcV8+21rVB8lafridr34ePraikdCYHooKCAhw/fhx5eXnQ6/UG+55//nkAwIYNG+pXO6J7mHsWDNcmInOrT9eTHGZDsuuKlMykQPTNN98gJiYGhYWF8PDwMLiFh0qlkgIRkbmY++rZ2lfjZJ/qM4Df2uN4iJTOpED0yiuvYPLkyVi5ciXc3PjLSpZn7qtnOVyNk30yteuptjDF7l0iyzIpEP3222+YNWsWwxA1GHNfPfNqnCzJ1K6nmsIUu3ctgyGT7mXSLLPo6GicOHHC3HUhqpG5Z8FwVg3J1f2zIe351jMNfauQe1lrRh/Jl9EtRLt27ZL+PXz4cMyfPx8//vgjwsLC4OzsbFD2ySefNF8Nif6fuWfBcFYN2QJ77d61ZqsXxxBSdYwORCNGjKiybfny5VW2qVQqVFRU1KtSRDUx9ywYzqohubPH7l1rBxJ7DZlUP0Z3men1eqMeDENEROZj7u5da3ZTVbL2Xe55f0OqjkljiD777DOUlJRU2V5aWorPPvus3pUiIqL/Gf1IEI7EDsIXU3vjSOygKl1LxoYcuYybqSmQuKkdGiSscQwhVUclhBC1FzPk6OiI7Oxs+Pr6Gmz//fff4evra5etRDqdDhqNBlqtlqtvE5FsGDsWJ1tbjMj4xCpdb0diB1klCCSkZBksMTCiWwB2nPqtQccUZWuLOYZQAYz9/jZp2r0QwmAxxkq//vorNBqNKS9JRER1VJexOHIbN3PvpAY3tQOe/vBYg48p4hhCuledAlG3bt2gUqmgUqkwePBgODn97+kVFRXIzMzE0KFDzV5JIiKqqi4hR46DsysDybGMfFmFNVKmOgWiyplmaWlpiI6Ohru7u7RPrVYjODgYo0aNMmsFiYiUyJhFA+sScupzWxFLk2NYI+UxaQzRli1bMHr0aDRq1MgSdZIljiEiooZSlzV67h+Ls3Jk5weOvZHruJm6HgeRsYz9/jYpEFUqLS2t9m73QUH29yFmICKihmDK4Gc5hZz63A5DTsdB9sOig6ovXryIyZMn49ixYwbbKwdb2+MsMyKyPiXce8qUwc9yGRxc39Wn5XIcpEwmrUM0ceJEODg44Ntvv0VqaipOnjyJkydP4tSpUzh58qRZK/jbb7/hueeeQ7NmzeDq6oqwsDCD+6gJIbB48WI0b94crq6uiIqKwsWLFw1e48aNG4iJiYGHhwc8PT0xZcoUFBYWmrWeRGRZcllDx9JsddFAe77nGimDSS1EaWlpSE1NRYcOHcxdHwM3b95EZGQkBg0ahN27d8PHxwcXL15E06ZNpTKrV6/GunXrsGXLFoSEhGDRokWIjo7Gjz/+KI1xiomJQXZ2Nvbt24eysjJMmjQJ06ZNw7Zt2yxafyIyD2vf6qEhyXnw84PIbVo/UV2ZFIhCQ0ORn59v7rpUsWrVKgQGBuLTTz+VtoWEhEj/FkJgzZo1ePPNN/HUU08BuLuKtp+fH3bu3IkxY8bgwoUL2LNnD1JSUhAeHg4AWL9+PR577DG8++67CAgIsPhxkG1RQreMrVHal60t3niYM8XI1pnUZbZq1Sq89tprOHjwIH7//XfodDqDh7ns2rUL4eHh+OMf/whfX19069YNmzZtkvZnZmYiJycHUVFR0jaNRoNevXohKSkJAJCUlARPT08pDAFAVFQUHBwckJycXON7l5SUWOy4yHzMfV8mpXTL2BprdiNZ695fzTWuiGjdzCbCEMDbYZDtM6mFqDKAPProowYrVpt7UPUvv/yCDRs2YN68eXj99deRkpKCWbNmQa1WY8KECcjJyQEA+Pn5GTzPz89P2peTk1PlFiNOTk7w8vKSylQnLi4Oy5YtM8tx0IOZ2iJT3wGc1dVDKd0ytsZa3Ujm/ozZO1ts2SKqZFIgOnDggLnrUS29Xo/w8HCsXLkSwN2Vss+dO4eNGzdiwoQJFn3vhQsXYt68edLPOp0OgYGBFn1PJTL1C8cS4UVp3TKWYqkux4b+smVANg1nipGtMqnLbMCAAXBwcMCmTZsQGxuLNm3aYMCAAcjKyoKjo6PZKte8eXOEhoYabOvYsSOysu52Y/j7+wMAcnNzDcrk5uZK+/z9/ZGXl2ewv7y8HDdu3JDKVMfFxQUeHh4GD7rLXF0I9ZmV8qDwYipbnd0jJ5bucmzIbqSaPmOpl29a/L2JqOGZFIj++c9/Ijo6Gq6urjh16hRKSkoAAFqtVmrNMYfIyEikp6cbbPv555/RsmVLAHcHWPv7+2P//v3Sfp1Oh+TkZERERAAAIiIiUFBQgNTUVKlMYmIi9Ho9evXqZba6KoU5v/DqE2osEV44BqJ+7G3adXWfMQCY9eUpji0jskMmBaK3334bGzduxKZNm+Ds7Cxtj4yMNOs6RHPnzsV///tfrFy5EpcuXcK2bdvw8ccfY/r06QAAlUqFOXPm4O2338auXbtw9uxZPP/88wgICJDuu9axY0cMHToUU6dOxfHjx3H06FHMmDEDY8aM4QyzOjL3F159Qo2lwsvoR4JwJHYQvpjaG0diB3G8SB1YotXOmio/Y/f/kbT1oEdE1TNpDFF6ejr69+9fZbtGo0FBQUF96yR55JFHsGPHDixcuBDLly9HSEgI1qxZg5iYGKnMa6+9htu3b2PatGkoKChA3759sWfPHoP7rG3duhUzZszA4MGD4eDggFGjRmHdunVmq6dSmHuMTX0HylpqTAnHQJjGHqddj34kCI1dnDBj2ymD7RxbRmR/TApE/v7+uHTpEoKDgw22HzlyBK1atTJHvSSPP/44Hn/88Rr3q1QqLF++HMuXL6+xjJeXFxdhNANLfOHVN9SYGl641pD52eqCgrXp0bKp3QU9IqrKpEA0depUzJ49G5988glUKhWuXbuGpKQkvPrqq1i0aJG560gyYakvvIZukeFUasuxx2nX9hr0iMiQSXe7F0Jg5cqViIuLQ1HR3fEBLi4uePXVV/HWW2+ZvZJywLvd/48t35HalDuJEwG2/bknUjJjv79NCkSVSktLcenSJRQWFiI0NBTu7u6mvpTsMRDZh2MZ+Ri3qeoK5V9M7Y2I1s2sUCMiIrIkY7+/Teoyq6RWq6usE0QkZ/Y48JeIiOrPpGn3RLaKaw0REVF16tVCRGSL7HHgLxER1Q8DESkS1xoiIqJ7scuMiIiIFI+BiGplrpu5EhERyRW7zOiBuIgh2RquQk5EpmAgohrVdDPX/u18+EVDssQAT0SmYpcZ1cje7l5O9q2mAM+uXiIyBgMR1ahyEcN7cRFDkisGeCKqDwYiqhEXMSRbwgBPRPXBMUT0QFzEkGwF70pPRPXBQES14iKGZCsY4InIVAxERGRXGOCJyBQcQ0REssaFQUmp+NlvWGwhIiLZ4rpCpFT87Dc8thARkSxZe10hXp2TtVj7s69UbCEiIll60LpClh4jxKtzsiZrfvaVjC1ERCRL1lpXiFfnZG1cU8s6GIiISJastTAoV7wma+OiuNbBLjMiki1rrCtUeXV+byji1Tk1NK6p1fDYQkREstZc44qI1s0a7AuBV+ckFw392Vc6thCRzcrWFiMz/zZCvBvzDwaZFa/OiZSHgYhsEmcByZs9hFWueE2kLAxEZHNqmgXUv50Pv8BkoLawag9hiYjsDwMR2Ryu0SFftYVVtuwRkVxxUDVVS86r9HKNDvl6UFjl+j5EJGcMRFRFQkoWIuMTMW5TMiLjE5GQkmXtKhngLCD5elBY5fo+RCRn7DIjA7YyPoezgOSpMqy+vv0cKoSoEla5vg8RyRUDERmwpfE5nAUkTzWF1drCEhGRNTEQkQGu0kvmUFNYZcseEckVxxCRAY7PIUvj6rtEJEdsIaIqeBVP9ojrH9k//h9TfTAQUbU4PofsCdc/sn/8P6b6YpcZEdk1rn9k//h/TObAQEREdo3rH9k/U/+P5bwALTU8mwpE8fHxUKlUmDNnjrTtzp07mD59Opo1awZ3d3eMGjUKubm5Bs/LysrC8OHD4ebmBl9fX8yfPx/l5eUNXHsisgaubG7/TPk/lvsCtNTwbCYQpaSk4KOPPkKXLl0Mts+dOxfffPMNvvrqKxw6dAjXrl3DyJEjpf0VFRUYPnw4SktLcezYMWzZsgWbN2/G4sWLG/oQiMgKOHPS/tX1/5hdbFQdlRBC1F7MugoLC9G9e3d8+OGHePvtt/Hwww9jzZo10Gq18PHxwbZt2/DMM88AAH766Sd07NgRSUlJ6N27N3bv3o3HH38c165dg5+fHwBg48aNWLBgAa5fvw61Wm1UHXQ6HTQaDbRaLTw8PCx2rERkGdnaYs6ctHPG/h8fy8jHuE3JVbZ/MbU3Ilo3s2QVyQqM/f62iRai6dOnY/jw4YiKijLYnpqairKyMoPtHTp0QFBQEJKSkgAASUlJCAsLk8IQAERHR0On0+H8+fM1vmdJSQl0Op3Bg4hsF9c/sn/G/h+zG5WqI/tA9OWXX+LkyZOIi4ursi8nJwdqtRqenp4G2/38/JCTkyOVuTcMVe6v3FeTuLg4aDQa6REYGFjPI6HacIAjETUEdqNSdWS9DtHVq1cxe/Zs7Nu3D40aNWrQ9164cCHmzZsn/azT6RiKLIhriNgvLpZHcsQFaOl+sg5EqampyMvLQ/fu3aVtFRUVOHz4MP7yl79g7969KC0tRUFBgUErUW5uLvz9/QEA/v7+OH78uMHrVs5CqyxTHRcXF7i4uJjxaKgmNQ1w7N/Oh3+kbByDLsnN/QGdf2Ookqy7zAYPHoyzZ88iLS1NeoSHhyMmJkb6t7OzM/bv3y89Jz09HVlZWYiIiAAARERE4OzZs8jLy5PK7Nu3Dx4eHggNDW3wY6KquE6MfeJMHpIbTrWXLzkMmZB1C1GTJk3QuXNng22NGzdGs2bNpO1TpkzBvHnz4OXlBQ8PD8ycORMRERHo3bs3AGDIkCEIDQ3F+PHjsXr1auTk5ODNN9/E9OnT2QIkE5UDHO8NRRzgaPseFHR5VU4NjS3R8iWXlmRZtxAZ4/3338fjjz+OUaNGoX///vD398f27dul/Y6Ojvj222/h6OiIiIgIPPfcc3j++eexfPlyK9a6YckheT8IBzjaJ87kITlhS7Q8yakl2SbWIZIDW12HSC7J2xhcJ8b+JKRk4fXt51AhhBR05fr5I/uWrS1GZHxilZboI7GDbPrvja1PWmiINaGM/f6WdZcZ1Y+tNRFzgKP94UwekovKluj7A7otfybrc8ErlyAlpyETDER2jGM4SA4YdEku7Cmg1+eCV049B3IKqgxEdkxOyZuISA7sJaCbesErx54DuQRVmx9UTTXjYGUiIvtk6qQFuQ4ul8OtddhCZOfkkrzJ/sllTAKREpja1cSeg5oxECmAvTQRk3zJaUwCkVKYcsErpzE7csNp90ay1Wn3RJbWENOZ2fpEVD/3/w4paZkTTrsnogZh6dmMbH0iqp+afofsPQjVFQdVE1G9WHJFajmtYktki/g7ZDwGIiKqF0vOZpTrjBiyP3K/xZGp+DtkPHaZEVG9WWo2I2fEUEOw525ZufwO2cI4QLYQEZFZWGIdEa6lRZZm711KcvgdSkjJQmR8IsZtSkZkfCISUrIa7L3rgi1ERCRrXEuLLEkJtziy5u+QHFfGrgkDERHJHtfSIkuRS5eSpVnrd8iWAie7zIiISLHk0KVkzyw5C9Xc2EJERESKxm5Zy7GllbEZiIiISPHYLWs5thI4GYiIiIjIomwhcHIMERHsd1E2IiIyDluISPHseVE2IiIyDluISNHsfVE2IiIyDgMRKRrv80NERAADESmcLa2RQURElsNARIrGRdmIiAjgoGoim1kjg4iILIeBiAi2sUYGEdmebG0xMvNvI8S7Mf/GyBwDERERkQVwSQ/bwjFEREREZsYlPWwPAxER1QlX9SaqHZf0sD3sMiMio7ELgMg4lUt63BuKuKSHvLGFiIiMwi4AUgpztIJySQ/bwxYiIjLKg7oA+Eee7IU5W0G5pIdtYQsRERmFq3qTvbNEK2hzjSsiWjdjGLIBDEREZBR2AZC940DohiHXiRnsMiMyEyUswMYuALJnHAhteXKemMEWIiIzSEjJQmR8IsZtSkZkfCISUrKsXSWLYRcA2Su2glqW3CdmsIWIqJ5q+iXv386Hf0iJbAxbQS1H7hMzGIiI6knuv+REVDe8t6FlyL1LUvZdZnFxcXjkkUfQpEkT+Pr6YsSIEUhPTzcoc+fOHUyfPh3NmjWDu7s7Ro0ahdzcXIMyWVlZGD58ONzc3ODr64v58+ejvLy8IQ/F7OQ6ME1pOPuKiKh2cu+SlH0L0aFDhzB9+nQ88sgjKC8vx+uvv44hQ4bgxx9/ROPGjQEAc+fOxXfffYevvvoKGo0GM2bMwMiRI3H06FEAQEVFBYYPHw5/f38cO3YM2dnZeP755+Hs7IyVK1da8/BMJueBaUpT+Uv++vZzqBBCdr/kRERyIecuSZUQQtReTD6uX78OX19fHDp0CP3794dWq4WPjw+2bduGZ555BgDw008/oWPHjkhKSkLv3r2xe/duPP7447h27Rr8/PwAABs3bsSCBQtw/fp1qNXqWt9Xp9NBo9FAq9XCw8PDosdYm2xtMSLjE6s0Ox6JHSSrD5fSZGuLZflLTkRkbrY0q9bY72/Zd5ndT6vVAgC8vLwAAKmpqSgrK0NUVJRUpkOHDggKCkJSUhIAICkpCWFhYVIYAoDo6GjodDqcP3++2vcpKSmBTqczeMgF18qQJ86+IiIlsNdZtTYViPR6PebMmYPIyEh07twZAJCTkwO1Wg1PT0+Dsn5+fsjJyZHK3BuGKvdX7qtOXFwcNBqN9AgMDDTz0ZiOY1bI1nC8G5F9kPvU+fqwqUA0ffp0nDt3Dl9++aXF32vhwoXQarXS4+rVqxZ/T2PJfWAa0b3s9WqSSInsuYdC9oOqK82YMQPffvstDh8+jIceekja7u/vj9LSUhQUFBi0EuXm5sLf318qc/z4cYPXq5yFVlnmfi4uLnBxcTHzUZiPnAemEVXiGk1E9kXuU+frQ/YtREIIzJgxAzt27EBiYiJCQkIM9vfo0QPOzs7Yv3+/tC09PR1ZWVmIiIgAAERERODs2bPIy8uTyuzbtw8eHh4IDQ1tmAOxAI5ZIbmz56tJIiWy5x4K2bcQTZ8+Hdu2bcO//vUvNGnSRBrzo9Fo4OrqCo1GgylTpmDevHnw8vKCh4cHZs6ciYiICPTu3RsAMGTIEISGhmL8+PFYvXo1cnJy8Oabb2L69OmybgUisnX2fDVJpFT22kMh+2n3KpWq2u2ffvopJk6cCODuwoyvvPIKvvjiC5SUlCA6OhoffvihQXfYlStX8NJLL+HgwYNo3LgxJkyYgPj4eDg5GZcJ5TTtnsiWJKRkVVmjiWtmEVVlS1PZbYmx39+yD0RywUBEZDqu0UT04MDDxXYtx9jvb9l3mRGR7eO9oUjpHhR4OPlAHmQ/qJqIiMiW1bZ2DycfyAMDERERkQXVFni42K48MBARERFZUG2Bx56nstsSjiEiIiKyoMrAc/9sy3sDj71OZbclDEREFmLPU2jt+diILMGYwMPJB9bFQERkAfY8hdaej43Ikhh45I1jiIjMzJ7vBv2gY+Md7YnIlrGFiMjMHjSjxNavDms6tk+PXMZfj/zCViMisllsISIyM3ueQlvdsTkAUhgC7KtFjMgUbC21TQxERGZmz1Noqzu2F/qFcFE5ov+XkJKFyPhEjNuUjMj4RCSkZFm7SmQkdpkRWYA9T6G9/9gA4K9HMnlHe7J7tc2u5C04bBsDEZGF2POMkvuPrbY1VohsnTGzK+15/KASMBARmYmS1+ax5xYxImNbfirH2LG11DYxEBGZAdfmse8WMVI2Y1t+jFmR2tLMdWGmxAs8BiKierKncQNK/CNIVJu6tPxYs7XUXBdmSr3A4ywzonqq7U7WtoKzY4iqV9eZo801roho3azBW4bMsSCsPS8sWxu2EBHVkz2MG7CnVi4iS5D7ODlzDehW8sBwthAR1ZM9rDtkL61cRJZkjZYfY5lrQVh7Xli2NmwhIjIDuV891qa6Vi4AOPNrASJaN7NOpYjIaOYa0C2HgeHWohJCiNqLkU6ng0ajgVarhYeHh7WrQ2R2Hx3OQNz3Pxlsc1SpcCR2kCL+GBLZg2xtsVkuzMz1OnJg7Pc3W4iICAAQ1kJTZZtSxg4Q2QtzLX+hxGU0OIaIiAAoe+wAEREDEREBsI/B4UREpmKXGZECGLvgoq0PDiciMhUDEZGdq+uqs0ocO0BExC4zIjum5FVniYjqgoGIZCtbW4xjGfn88q4HLrhIRGQcdpmRLCn15oLmZg+3FSFSAt5Y2foYiEh2eF8t49X2R1TJq84S2Yr7LwAXDO2AsIc0DEcNjIGIZEfJNxesC2Nb0ThzjEi+qrsAjNt9d8V4to43LI4hItmx1wUCzTkmqq6DpeV8U0oiJavuArASJ0E0LAYikh17XCAwISULkfGJGLcpGZHxiUhIyarX63GwNJF9qO4C8F78vW447DIjWbKnbh5LjIniYGki+3D/OL/78fe64TAQkWzZywKBlhgTZYnB0pzlQmQd914AnvmtAKt3p3MShBUwEJFJ+OVpPEu15pizFY3LHBBZV+UFYETrZniya4BdtI7bGgYiqjMlf3maEgQtOfXdHK1oXOaASF7spXXc1jAQUZ0o+cuzPkFQzmOiuMwBEZHCZpl98MEHCA4ORqNGjdCrVy8cP37c2lWyOUqd3WSOe4LJdeq7vS5zQERUF4oJRAkJCZg3bx6WLFmCkydPomvXroiOjkZeXp61q2ZTlPrlac9B0B6XOSAiqiuVENXM87NDvXr1wiOPPIK//OUvAAC9Xo/AwEDMnDkTsbGxtT5fp9NBo9FAq9XCw8PD0tWVtYSUrCrjYex9DFG2thiR8YlVBkYfiR1kN8EhW1ssyy49IqL6MPb7WxFjiEpLS5GamoqFCxdK2xwcHBAVFYWkpCQr1sw2yXk8jKUo4Z5gHMhJREqmiECUn5+PiooK+Pn5GWz38/PDTz/9VO1zSkpKUFJSIv2s0+ksWkdbo8QvTyUGQSIipVDMGKK6iouLg0ajkR6BgYHWrhLJgFwHRhMRUf0oIhB5e3vD0dERubm5Bttzc3Ph7+9f7XMWLlwIrVYrPa5evdoQVSUiIiIrUEQgUqvV6NGjB/bv3y9t0+v12L9/PyIiIqp9jouLCzw8PAweREREZJ8UMYYIAObNm4cJEyYgPDwcPXv2xJo1a3D79m1MmjTJ2lUjIiIiK1NMIBo9ejSuX7+OxYsXIycnBw8//DD27NlTZaA1ERERKY9i1iGqL65DREREZHuM/f5WxBgiIiIiogdhICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixVPMOkT1Vbk6AW/ySkREZDsqv7drW2WIgchIt27dAgDe5JWIiMgG3bp1CxqNpsb9XJjRSHq9HteuXUOTJk2gUqmMeo5Op0NgYCCuXr2q6MUceR54DirxPNzF83AXzwPPQSVLngchBG7duoWAgAA4ONQ8UogtREZycHDAQw89ZNJzeXPYu3geeA4q8TzcxfNwF88Dz0ElS52HB7UMVeKgaiIiIlI8BiIiIiJSPAYiC3JxccGSJUvg4uJi7apYFc8Dz0Elnoe7eB7u4nngOagkh/PAQdVERESkeGwhIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjIKqjDRs2oEuXLtLiUREREdi9e7e0/86dO5g+fTqaNWsGd3d3jBo1Crm5uQavkZWVheHDh8PNzQ2+vr6YP38+ysvLG/pQzCY+Ph4qlQpz5syRtinhPCxduhQqlcrg0aFDB2m/Es5Bpd9++w3PPfccmjVrBldXV4SFheHEiRPSfiEEFi9ejObNm8PV1RVRUVG4ePGiwWvcuHEDMTEx8PDwgKenJ6ZMmYLCwsKGPhSTBQcHV/k8qFQqTJ8+HYAyPg8VFRVYtGgRQkJC4OrqitatW+Ott94yuIeUEj4LwN3bRMyZMwctW7aEq6sr+vTpg5SUFGm/PZ6Hw4cP44knnkBAQABUKhV27txpsN9cx3zmzBn069cPjRo1QmBgIFavXm2eAxBUJ7t27RLfffed+Pnnn0V6erp4/fXXhbOzszh37pwQQogXX3xRBAYGiv3794sTJ06I3r17iz59+kjPLy8vF507dxZRUVHi1KlT4vvvvxfe3t5i4cKF1jqkejl+/LgIDg4WXbp0EbNnz5a2K+E8LFmyRHTq1ElkZ2dLj+vXr0v7lXAOhBDixo0bomXLlmLixIkiOTlZ/PLLL2Lv3r3i0qVLUpn4+Hih0WjEzp07xenTp8WTTz4pQkJCRHFxsVRm6NChomvXruK///2v+M9//iPatGkjxo4da41DMkleXp7BZ2Hfvn0CgDhw4IAQQhmfhxUrVohmzZqJb7/9VmRmZoqvvvpKuLu7i7Vr10pllPBZEEKIZ599VoSGhopDhw6JixcviiVLlggPDw/x66+/CiHs8zx8//334o033hDbt28XAMSOHTsM9pvjmLVarfDz8xMxMTHi3Llz4osvvhCurq7io48+qnf9GYjMoGnTpuKvf/2rKCgoEM7OzuKrr76S9l24cEEAEElJSUKIux8YBwcHkZOTI5XZsGGD8PDwECUlJQ1e9/q4deuWaNu2rdi3b58YMGCAFIiUch6WLFkiunbtWu0+pZwDIYRYsGCB6Nu3b4379Xq98Pf3F++88460raCgQLi4uIgvvvhCCCHEjz/+KACIlJQUqczu3buFSqUSv/32m+Uqb0GzZ88WrVu3Fnq9XjGfh+HDh4vJkycbbBs5cqSIiYkRQijns1BUVCQcHR3Ft99+a7C9e/fu4o033lDEebg/EJnrmD/88EPRtGlTg9+JBQsWiPbt29e7zuwyq4eKigp8+eWXuH37NiIiIpCamoqysjJERUVJZTp06ICgoCAkJSUBAJKSkhAWFgY/Pz+pTHR0NHQ6Hc6fP9/gx1Af06dPx/Dhww2OF4CizsPFixcREBCAVq1aISYmBllZWQCUdQ527dqF8PBw/PGPf4Svry+6deuGTZs2SfszMzORk5NjcC40Gg169eplcC48PT0RHh4ulYmKioKDgwOSk5Mb7mDMpLS0FJ9//jkmT54MlUqlmM9Dnz59sH//fvz8888AgNOnT+PIkSMYNmwYAOV8FsrLy1FRUYFGjRoZbHd1dcWRI0cUcx7uZa5jTkpKQv/+/aFWq6Uy0dHRSE9Px82bN+tVR97c1QRnz55FREQE7ty5A3d3d+zYsQOhoaFIS0uDWq2Gp6enQXk/Pz/k5OQAAHJycgz+4FXur9xnK7788kucPHnSoE+8Uk5OjiLOQ69evbB582a0b98e2dnZWLZsGfr164dz584p5hwAwC+//IINGzZg3rx5eP3115GSkoJZs2ZBrVZjwoQJ0rFUd6z3ngtfX1+D/U5OTvDy8rKpc1Fp586dKCgowMSJEwEo53ciNjYWOp0OHTp0gKOjIyoqKrBixQrExMQAgGI+C02aNEFERATeeustdOzYEX5+fvjiiy+QlJSENm3aKOY83Mtcx5yTk4OQkJAqr1G5r2nTpibXkYHIBO3bt0daWhq0Wi2+/vprTJgwAYcOHbJ2tRrM1atXMXv2bOzbt6/KFZCSVF71AkCXLl3Qq1cvtGzZEv/4xz/g6upqxZo1LL1ej/DwcKxcuRIA0K1bN5w7dw4bN27EhAkTrFw76/jb3/6GYcOGISAgwNpVaVD/+Mc/sHXrVmzbtg2dOnVCWloa5syZg4CAAMV9Fv7+979j8uTJaNGiBRwdHdG9e3eMHTsWqamp1q4a1YBdZiZQq9Vo06YNevTogbi4OHTt2hVr166Fv78/SktLUVBQYFA+NzcX/v7+AAB/f/8qM0sqf64sI3epqanIy8tD9+7d4eTkBCcnJxw6dAjr1q2Dk5MT/Pz8FHEe7ufp6Yl27drh0qVLivksAEDz5s0RGhpqsK1jx45S92HlsVR3rPeei7y8PIP95eXluHHjhk2dCwC4cuUK/v3vf+OFF16Qtinl8zB//nzExsZizJgxCAsLw/jx4zF37lzExcUBUNZnoXXr1jh06BAKCwtx9epVHD9+HGVlZWjVqpWizkMlcx2zJX9PGIjMQK/Xo6SkBD169ICzszP2798v7UtPT0dWVhYiIiIAABERETh79qzBf/q+ffvg4eFR5UtFrgYPHoyzZ88iLS1NeoSHhyMmJkb6txLOw/0KCwuRkZGB5s2bK+azAACRkZFIT0832Pbzzz+jZcuWAICQkBD4+/sbnAudTofk5GSDc1FQUGBw9ZyYmAi9Xo9evXo1wFGYz6effgpfX18MHz5c2qaUz0NRUREcHAy/VhwdHaHX6wEo77MAAI0bN0bz5s1x8+ZN7N27F0899ZQiz4O5jjkiIgKHDx9GWVmZVGbfvn1o3759vbrLAHDafV3FxsaKQ4cOiczMTHHmzBkRGxsrVCqV+OGHH4QQd6fWBgUFicTERHHixAkREREhIiIipOdXTq0dMmSISEtLE3v27BE+Pj42NbW2OvfOMhNCGefhlVdeEQcPHhSZmZni6NGjIioqSnh7e4u8vDwhhDLOgRB3l15wcnISK1asEBcvXhRbt24Vbm5u4vPPP5fKxMfHC09PT/Gvf/1LnDlzRjz11FPVTrft1q2bSE5OFkeOHBFt27aV9RTj6lRUVIigoCCxYMGCKvuU8HmYMGGCaNGihTTtfvv27cLb21u89tprUhmlfBb27Nkjdu/eLX755Rfxww8/iK5du4pevXqJ0tJSIYR9nodbt26JU6dOiVOnTgkA4r333hOnTp0SV65cEUKY55gLCgqEn5+fGD9+vDh37pz48ssvhZubG6fdW8PkyZNFy5YthVqtFj4+PmLw4MFSGBJCiOLiYvHyyy+Lpk2bCjc3N/H000+L7Oxsg9e4fPmyGDZsmHB1dRXe3t7ilVdeEWVlZQ19KGZ1fyBSwnkYPXq0aN68uVCr1aJFixZi9OjRBmvvKOEcVPrmm29E586dhYuLi+jQoYP4+OOPDfbr9XqxaNEi4efnJ1xcXMTgwYNFenq6QZnff/9djB07Vri7uwsPDw8xadIkcevWrYY8jHrbu3evAFDl2IRQxudBp9OJ2bNni6CgINGoUSPRqlUr8cYbbxhMkVbKZyEhIUG0atVKqNVq4e/vL6ZPny4KCgqk/fZ4Hg4cOCAAVHlMmDBBCGG+Yz59+rTo27evcHFxES1atBDx8fFmqb9KiHuWECUiIiJSII4hIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIosZOHAg5syZY+1qWNzSpUvx8MMPW7saRFQPDERERDUoLS1t0PcTQqC8vLxB35OI7mIgIiKLmDhxIg4dOoS1a9dCpVJBpVLh8uXLOHfuHIYNGwZ3d3f4+flh/PjxyM/Pl543cOBAzJw5E3PmzEHTpk3h5+eHTZs24fbt25g0aRKaNGmCNm3aYPfu3dJzDh48CJVKhe+++w5dunRBo0aN0Lt3b5w7d86gTkeOHEG/fv3g6uqKwMBAzJo1C7dv35b2BwcH46233sLzzz8PDw8PTJs2DQCwYMECtGvXDm5ubmjVqhUWLVok3W178+bNWLZsGU6fPi0d5+bNm3H58mWoVCqkpaVJr19QUACVSoWDBw8a1Hv37t3o0aMHXFxccOTIEej1esTFxSEkJASurq7o2rUrvv76a3P/FxHRPRiIiMgi1q5di4iICEydOhXZ2dnIzs5GkyZN8Oijj6Jbt244ceIE9uzZg9zcXDz77LMGz92yZQu8vb1x/PhxzJw5Ey+99BL++Mc/ok+fPjh58iSGDBmC8ePHo6ioyOB58+fPx5///GekpKTAx8cHTzzxhBRcMjIyMHToUIwaNQpnzpxBQkICjhw5ghkzZhi8xrvvvouuXbvi1KlTWLRoEQCgSZMm2Lx5M3788UesXbsWmzZtwvvvvw8AGD16NF555RV06tRJOs7Ro0fX6VzFxsYiPj4eFy5cQJcuXRAXF4fPPvsMGzduxPnz5zF37lw899xzOHToUJ1el4jqwCy3iCUiqsaAAQPE7NmzpZ/feustMWTIEIMyV69eNbhD/IABA0Tfvn2l/eXl5aJx48Zi/Pjx0rbs7GwBQCQlJQkh/neX7S+//FIq8/vvvwtXV1eRkJAghBBiypQpYtq0aQbv/Z///Ec4ODiI4uJiIYQQLVu2FCNGjKj1uN555x3Ro0cP6eclS5aIrl27GpTJzMwUAMSpU6ekbTdv3hQAxIEDBwzqvXPnTqnMnTt3hJubmzh27JjB602ZMkWMHTu21roRkWmcrBnGiEhZTp8+jQMHDsDd3b3KvoyMDLRr1w4A0KVLF2m7o6MjmjVrhrCwMGmbn58fACAvL8/gNSIiIqR/e3l5oX379rhw4YL03mfOnMHWrVulMkII6PV6ZGZmomPHjgCA8PDwKnVLSEjAunXrkJGRgcLCQpSXl8PDw6POx1+Te9/z0qVLKCoqwh/+8AeDMqWlpejWrZvZ3pOIDDEQEVGDKSwsxBNPPIFVq1ZV2de8eXPp387Ozgb7VCqVwTaVSgUA0Ov1dXrvP/3pT5g1a1aVfUFBQdK/GzdubLAvKSkJMTExWLZsGaKjo6HRaPDll1/iz3/+8wPfz8Hh7ogEIYS0rbL77n73vmdhYSEA4LvvvkOLFi0Myrm4uDzwPYnIdAxERGQxarUaFRUV0s/du3fHP//5TwQHB8PJyfx/fv773/9K4ebmzZv4+eefpZaf7t2748cff0SbNm3q9JrHjh1Dy5Yt8cYbb0jbrly5YlDm/uMEAB8fHwBAdna21LJz7wDrmoSGhsLFxQVZWVkYMGBAnepKRKbjoGoispjg4GAkJyfj8uXLyM/Px/Tp03Hjxg2MHTsWKSkpyMjIwN69ezFp0qQqgcIUy5cvx/79+3Hu3DlMnDgR3t7eGDFiBIC7M8WOHTuGGTNmIC0tDRcvXsS//vWvKoOq79e2bVtkZWXhyy+/REZGBtatW4cdO3ZUOc7MzEykpaUhPz8fJSUlcHV1Re/evaXB0ocOHcKbb75Z6zE0adIEr776KubOnYstW7YgIyMDJ0+exPr167FlyxaTzw0RPRgDERFZzKuvvgpHR0eEhobCx8cHpaWlOHr0KCoqKjBkyBCEhYVhzpw58PT0lLqY6iM+Ph6zZ89Gjx49kJOTg2+++QZqtRrA3XFJhw4dws8//4x+/fqhW7duWLx4MQICAh74mk8++STmzp2LGTNm4OGHH8axY8ek2WeVRo0ahaFDh2LQoEHw8fHBF198AQD45JNPUF5ejh49emDOnDl4++23jTqOt956C4sWLUJcXBw6duyIoUOH4rvvvkNISIgJZ4WIjKES93ZwExHZoIMHD2LQoEG4efMmPD09rV0dIrJBbCEiIiIixWMgIiIiIsVjlxkREREpHluIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8f4PaXCA11XIDegAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAT25JREFUeJzt3XlcVOX+B/DPAAIDCKjsJoK7JJpKGuKaXNG8dU0rNTK39Faau4l23RfQbpstWt5Sy0parGuWpj8XvCohLrjnQhikLJIyiCAI8/z+8HIuI4vDrGfmfN6vF6+XnPPMnOccD3O+8yzfRyWEECAiIiJSMAdrV4CIiIjI2hgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQEZHNWLRoEVQqlV5lVSoVFi1aZNb69O3bF3379pXt+xGR/hgQEVG9bdiwASqVSvpxcnJC06ZNMWbMGFy5csXa1ZOdkJAQnevl5+eHXr164bvvvjPJ+xcXF2PRokXYt2+fSd6PSIkYEBGRwZYsWYLPPvsMa9euxaBBg7Bp0yb06dMHt2/fNsvx/vGPf6CkpMQs721uDz30ED777DN89tlnmDVrFq5evYqhQ4di7dq1Rr93cXExFi9ezICIyAhO1q4AEdmuQYMGISIiAgDwwgsvwMfHBytXrsTWrVvxzDPPmPx4Tk5OcHKyzY+tpk2b4rnnnpN+f/7559GqVSu89dZbePHFF61YMyIC2EJERCbUq1cvAEB6errO9l9//RVPPfUUGjduDFdXV0RERGDr1q06Ze7cuYPFixejdevWcHV1RZMmTdCzZ0/s2rVLKlPTGKLS0lJMnz4dvr6+aNiwIZ544gn88ccf1eo2ZswYhISEVNte03uuX78ejz76KPz8/ODi4oKwsDCsWbOmXtfifgICAtC+fXtkZGTUWS4vLw/jx4+Hv78/XF1d0alTJ2zcuFHaf/nyZfj6+gIAFi9eLHXLmXv8FJG9sc2vWkQkS5cvXwYANGrUSNp25swZREVFoWnTpoiLi4O7uzu++uorDBkyBN9++y2efPJJAHcDk/j4eLzwwgvo1q0bCgsLceTIERw7dgx/+ctfaj3mCy+8gE2bNuHZZ59Fjx49sGfPHgwePNio81izZg0efPBBPPHEE3BycsIPP/yAl19+GVqtFpMmTTLqvSvduXMHWVlZaNKkSa1lSkpK0LdvX1y6dAmTJ09GaGgovv76a4wZMwYFBQWYOnUqfH19sWbNGrz00kt48sknMXToUABAx44dTVJPIsUQRET1tH79egFA/N///Z+4du2ayMrKEt98843w9fUVLi4uIisrSyrbv39/ER4eLm7fvi1t02q1okePHqJ169bStk6dOonBgwfXedyFCxeKqh9baWlpAoB4+eWXdco9++yzAoBYuHChtG306NGiefPm931PIYQoLi6uVi4mJka0aNFCZ1ufPn1Enz596qyzEEI0b95cDBgwQFy7dk1cu3ZNnDhxQowYMUIAEK+88kqt7/f2228LAGLTpk3StrKyMhEZGSk8PDxEYWGhEEKIa9euVTtfIqofdpkRkcGio6Ph6+uLZs2a4amnnoK7uzu2bt2KBx54AABw/fp17NmzB8888wxu3ryJ/Px85Ofn488//0RMTAwuXrwozUrz9vbGmTNncPHiRb2P/9NPPwEApkyZorN92rRpRp2XWq2W/q3RaJCfn48+ffrgt99+g0ajMeg9d+7cCV9fX/j6+qJTp074+uuvMWrUKKxcubLW1/z0008ICAjAyJEjpW0NGjTAlClTUFRUhKSkJIPqQkTVscuMiAz2/vvvo02bNtBoNPjkk0+wf/9+uLi4SPsvXboEIQTmz5+P+fPn1/geeXl5aNq0KZYsWYK//e1vaNOmDTp06ICBAwdi1KhRdXb9/P7773BwcEDLli11trdt29ao8zp48CAWLlyI5ORkFBcX6+zTaDTw8vKq93t2794dy5Ytg0qlgpubG9q3bw9vb+86X/P777+jdevWcHDQ/e7avn17aT8RmQYDIiIyWLdu3aRZZkOGDEHPnj3x7LPP4vz58/Dw8IBWqwUAzJo1CzExMTW+R6tWrQAAvXv3Rnp6Ov79739j586d+Ne//oW33noLa9euxQsvvGB0XWtL6FhRUaHze3p6Ovr374927drhzTffRLNmzeDs7IyffvoJb731lnRO9eXj44Po6GiDXktE5seAiIhMwtHREfHx8ejXrx/ee+89xMXFoUWLFgDudvPoEww0btwYY8eOxdixY1FUVITevXtj0aJFtQZEzZs3h1arRXp6uk6r0Pnz56uVbdSoEQoKCqptv7eV5YcffkBpaSm2bt2K4OBgafvevXvvW39Ta968OU6ePAmtVqvTSvTrr79K+4Hagz0i0h/HEBGRyfTt2xfdunXD22+/jdu3b8PPzw99+/bFhx9+iOzs7Grlr127Jv37zz//1Nnn4eGBVq1aobS0tNbjDRo0CACwevVqne1vv/12tbItW7aERqPByZMnpW3Z2dnVskU7OjoCAIQQ0jaNRoP169fXWg9zeeyxx5CTk4PExERpW3l5Od599114eHigT58+AAA3NzcAqDHgIyL9sIWIiExq9uzZePrpp7Fhwwa8+OKLeP/999GzZ0+Eh4djwoQJaNGiBXJzc5GcnIw//vgDJ06cAACEhYWhb9++6Nq1Kxo3bowjR47gm2++weTJk2s91kMPPYSRI0figw8+gEajQY8ePbB7925cunSpWtkRI0Zgzpw5ePLJJzFlyhQUFxdjzZo1aNOmDY4dOyaVGzBgAJydnfH444/j73//O4qKirBu3Tr4+fnVGNSZ08SJE/Hhhx9izJgxOHr0KEJCQvDNN9/g4MGDePvtt9GwYUMAdweBh4WFITExEW3atEHjxo3RoUMHdOjQwaL1JbJp1p7mRkS2p3LafWpqarV9FRUVomXLlqJly5aivLxcCCFEenq6eP7550VAQIBo0KCBaNq0qfjrX/8qvvnmG+l1y5YtE926dRPe3t5CrVaLdu3aieXLl4uysjKpTE1T5EtKSsSUKVNEkyZNhLu7u3j88cdFVlZWjdPQd+7cKTp06CCcnZ1F27ZtxaZNm2p8z61bt4qOHTsKV1dXERISIlauXCk++eQTAUBkZGRI5eoz7f5+KQVqe7/c3FwxduxY4ePjI5ydnUV4eLhYv359tdceOnRIdO3aVTg7O3MKPpEBVEJUaRcmIiIiUiCOISIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4TMyoJ61Wi6tXr6Jhw4ZMk09ERGQjhBC4efMmgoKCqi2UXBUDIj1dvXoVzZo1s3Y1iIiIyABZWVl44IEHat3PgEhPlSnys7Ky4OnpaeXaEBERkT4KCwvRrFkz6TleGwZEeqrsJvP09GRAREREZGPuN9yFg6qJiIhI8RgQERERkeIxICIiIiLF4xgiE6qoqMCdO3esXQ0yQIMGDeDo6GjtahARkZUwIDIBIQRycnJQUFBg7aqQEby9vREQEMA8U0RECsSAyAQqgyE/Pz+4ubnxgWpjhBAoLi5GXl4eACAwMNDKNSIiIktjQGSkiooKKRhq0qSJtatDBlKr1QCAvLw8+Pn5sfuMiEhhOKjaSJVjhtzc3KxcEzJW5f8hx4ERESkPAyITYTeZ7eP/IRGRcjEgIiIiIsVjQERmoVKp8P3331u7Gjr27dsHlUrF2YBERFQNAyIyyqJFi/DQQw9ZuxpERCQj2ZoSHErPR7amxNpV0RtnmREREZHJJKZmYu6WU9AKwEEFxA8Nx/CHg61drftiC5HCabVaxMfHIzQ0FGq1Gp06dcI333wD4H9dTLt370ZERATc3NzQo0cPnD9/HgCwYcMGLF68GCdOnIBKpYJKpcKGDRuk987Pz8eTTz4JNzc3tG7dGlu3btWrTpXH/fnnn9G5c2eo1Wo8+uijyMvLw/bt29G+fXt4enri2WefRXFxsfS60tJSTJkyBX5+fnB1dUXPnj2RmppquotFRER1ytaUSMEQAGgFMG/LaZtoKWJAJDOWbmaMj4/Hp59+irVr1+LMmTOYPn06nnvuOSQlJUllXnvtNbzxxhs4cuQInJycMG7cOADA8OHDMXPmTDz44IPIzs5GdnY2hg8fLr1u8eLFeOaZZ3Dy5Ek89thjiI2NxfXr1/Wu26JFi/Dee+/h0KFDyMrKwjPPPIO3334bX3zxBX788Ufs3LkT7777rlT+1VdfxbfffouNGzfi2LFjaNWqFWJiYup1TCIiMlxG/i0pGKpUIQQu5xfX/AIZYUAkI4mpmYhK2INn16UgKmEPElMzzXq80tJSrFixAp988gliYmLQokULjBkzBs899xw+/PBDqdzy5cvRp08fhIWFIS4uDocOHcLt27ehVqvh4eEBJycnBAQEICAgQEpwCABjxozByJEj0apVK6xYsQJFRUU4fPiw3vVbtmwZoqKi0LlzZ4wfPx5JSUlYs2YNOnfujF69euGpp57C3r17AQC3bt3CmjVr8Prrr2PQoEEICwvDunXroFar8fHHH5vuohERUa1CfdzhcE8GE0eVCiE+8s/Vx4BIJqzRzHjp0iUUFxfjL3/5Czw8PKSfTz/9FOnp6VK5jh07Sv+uXNaicpmLulR9nbu7Ozw9PfV6XU2v9/f3h5ubG1q0aKGzrfL90tPTcefOHURFRUn7GzRogG7duuHcuXN6H5OIiAwX6KVG/NBwOP43r5ujSoUVQzsg0Et9n1daHwdVy0RdzYzmupGKiooAAD/++COaNm2qs8/FxUUKiho0aCBtr0xeqNVq7/v+VV9X+Vp9XlfT61UqldHvR0RE5jf84WD0buOLy/nFCPFxs4lgCGBAJBuVzYxVgyJzNzOGhYXBxcUFmZmZ6NOnT7X9VVuJauPs7IyKigpzVK9eWrZsCWdnZxw8eBDNmzcHcHcJjtTUVEybNs26lSMiUphAL7XNBEKVGBDJRGUz47wtp1EhhEWaGRs2bIhZs2Zh+vTp0Gq16NmzJzQaDQ4ePAhPT08psKhLSEgIMjIykJaWhgceeAANGzaEi4uL2epcG3d3d7z00kuYPXs2GjdujODgYKxatQrFxcUYP368xetDRES2hQGRjFijmXHp0qXw9fVFfHw8fvvtN3h7e6NLly6YN2+eXt1Rw4YNw5YtW9CvXz8UFBRg/fr1GDNmjNnrXZOEhARotVqMGjUKN2/eREREBH7++Wc0atTIKvUhIiLboRJCiPsXo8LCQnh5eUGj0cDT01Pafvv2bWRkZCA0NBSurq5WrCEZi/+XRET2p7bn9704y4yIiIgUjwERWdyLL76oM82/6s+LL75o7eoREZECcQwRWdySJUswa9asGvfV1ZxJRERkLgyIyOL8/Pzg5+dn7WoQERFJ2GVGREREiseAyESYMdn28f+QiEi52GVmJGdnZzg4OODq1avw9fWFs7OztLwF2QYhBMrKynDt2jU4ODjA2dnZ2lUiIiILY0BkJAcHB4SGhiI7OxtXr161dnXICG5ubggODoaDAxtOiYiUhgGRCTg7OyM4OBjl5eWyWNeL6s/R0RFOTk5s3SMiUigGRCZSuRr7vSuyExERkfyxb4CIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixbNqQLR//348/vjjCAoKgkqlwvfff6+zXwiBBQsWIDAwEGq1GtHR0bh48aJOmevXryM2Nhaenp7w9vbG+PHjUVRUpFPm5MmT6NWrF1xdXdGsWTOsWrXK3KdGRERENsSqAdGtW7fQqVMnvP/++zXuX7VqFVavXo21a9ciJSUF7u7uiImJwe3bt6UysbGxOHPmDHbt2oVt27Zh//79mDhxorS/sLAQAwYMQPPmzXH06FG8/vrrWLRoET766COznx8RERHZCCETAMR3330n/a7VakVAQIB4/fXXpW0FBQXCxcVFfPnll0IIIc6ePSsAiNTUVKnM9u3bhUqlEleuXBFCCPHBBx+IRo0aidLSUqnMnDlzRNu2betVP41GIwAIjUZjyOkRERGRFej7/JbtGKKMjAzk5OQgOjpa2ubl5YXu3bsjOTkZAJCcnAxvb29ERERIZaKjo+Hg4ICUlBSpTO/evXVWMI+JicH58+dx48aNWo9fWlqKwsJCnR8iIiKyT7INiHJycgAA/v7+Otv9/f2lfTk5OfDz89PZ7+TkhMaNG+uUqek9qh6jJvHx8fDy8pJ+mjVrZtwJERERkWzJNiCytrlz50Kj0Ug/WVlZ1q4SERERmYlsA6KAgAAAQG5urs723NxcaV9AQADy8vJ09peXl+P69es6ZWp6j6rHqImLiws8PT11foiIiMg+yTYgCg0NRUBAAHbv3i1tKywsREpKCiIjIwEAkZGRKCgowNGjR6Uye/bsgVarRffu3aUy+/fvx507d6Qyu3btQtu2bdGoUSMLnQ0RERHJmVUDoqKiIqSlpSEtLQ3A3YHUaWlpyMzMhEqlwrRp07Bs2TJs3boVp06dwvPPP4+goCAMGTIEANC+fXsMHDgQEyZMwOHDh3Hw4EFMnjwZI0aMQFBQEADg2WefhbOzM8aPH48zZ84gMTER77zzDmbMmGGlsyYiIiLZsdCstxrt3btXAKj2M3r0aCHE3an38+fPF/7+/sLFxUX0799fnD9/Xuc9/vzzTzFy5Ejh4eEhPD09xdixY8XNmzd1ypw4cUL07NlTuLi4iKZNm4qEhIR615XT7omIiGyPvs9vlRBCWDEesxmFhYXw8vKCRqPheCIiIiIboe/zW7ZjiIiIiIgshQERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERWUy2pgSH0vORrSmxdlV0OFm7AkRERKQMiamZmLvlFLQCcFAB8UPDMfzhYGtXCwBbiIiIiMgCsjUlUjAEAFoBzNtyWjYtRQyIiIiIyOwy8m9JwVClCiFwOb/YOhW6BwMiIiIiMrtQH3c4qHS3OapUCPFxs06F7sGAiIiIiMwu0EuN+KHhcFTdjYocVSqsGNoBgV5qK9fsLg6qJiIiIosY/nAwerfxxeX8YoT4uMkmGAIYEBEREZEFBXqpZRUIVWKXGREREVmVHHITsYWIiIiIrEYuuYnYQkRERERWIafcRAyIiIiIyCrklJuIARERERFZhZxyEzEgIiIiIquQU24iDqomIiIiq5FLbiIGRERERGRVcshNxC4zIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICLZksPaNkREpAycZUayJJe1bYiISBnYQkSyI6e1bYiISBkYEJHsyGltGyIiUgYGRCQ7clrbhoiIlIEBEcmOnNa2ISIiZeCgapIluaxtQ0REysCAiGRLDmvbEBGRMrDLjIiIiBSPAREREREpHgMiskvMck1ERPXBMURkd5jlmoiI6ostRGRXmOWaiIgMwYCI7AqzXBMRkSEYEJFdYZZrIiIyBAMisivMck1ERIbgoGqyO8xyTURE9cWAiOwSs1wTEVF9sMuMFIO5iYiIqDZsISJFYG4iIiKqC1uIyO4xNxEREd2PrAOiiooKzJ8/H6GhoVCr1WjZsiWWLl0KIf6XaEYIgQULFiAwMBBqtRrR0dG4ePGizvtcv34dsbGx8PT0hLe3N8aPH4+ioiJLnw5ZCXMTERHR/cg6IFq5ciXWrFmD9957D+fOncPKlSuxatUqvPvuu1KZVatWYfXq1Vi7di1SUlLg7u6OmJgY3L59WyoTGxuLM2fOYNeuXdi2bRv279+PiRMnWuOUyAqYm4iIiO5HJao2t8jMX//6V/j7++Pjjz+Wtg0bNgxqtRqbNm2CEAJBQUGYOXMmZs2aBQDQaDTw9/fHhg0bMGLECJw7dw5hYWFITU1FREQEAGDHjh147LHH8McffyAoKEivuhQWFsLLywsajQaenp6mP1kyq8TUTMzbchoVQki5iTiGiIjI/un7/JZ1C1GPHj2we/duXLhwAQBw4sQJHDhwAIMGDQIAZGRkICcnB9HR0dJrvLy80L17dyQnJwMAkpOT4e3tLQVDABAdHQ0HBwekpKRY8GzImoY/HIwDcf3w5YRHcCCuH4MhIiLSIetZZnFxcSgsLES7du3g6OiIiooKLF++HLGxsQCAnJwcAIC/v7/O6/z9/aV9OTk58PPz09nv5OSExo0bS2VqUlpaitLSUun3wsJCk5wTWQ9zExERUW1k3UL01Vdf4fPPP8cXX3yBY8eOYePGjfjnP/+JjRs3mv3Y8fHx8PLykn6aNWtm9mMSERGRdcg6IJo9ezbi4uIwYsQIhIeHY9SoUZg+fTri4+MBAAEBAQCA3Nxcndfl5uZK+wICApCXl6ezv7y8HNevX5fK1GTu3LnQaDTST1ZWlilPjapgwkQiIrI2WQdExcXFcHDQraKjoyO0Wi0AIDQ0FAEBAdi9e7e0v7CwECkpKYiMjAQAREZGoqCgAEePHpXK7NmzB1qtFt27d6/12C4uLvD09NT5IdNLTM1EVMIePLsuBVEJe5CYmmntKhERkQLJegzR448/juXLlyM4OBgPPvggjh8/jjfffBPjxo0DAKhUKkybNg3Lli1D69atERoaivnz5yMoKAhDhgwBALRv3x4DBw7EhAkTsHbtWty5cweTJ0/GiBEj9J5hRuZRW8LE3m18OdaHiIgsStYB0bvvvov58+fj5ZdfRl5eHoKCgvD3v/8dCxYskMq8+uqruHXrFiZOnIiCggL07NkTO3bsgKurq1Tm888/x+TJk9G/f384ODhg2LBhWL16tTVOiaqoK2EiAyIiIrIkWechkhPmITK9bE0JohL26ARFjioVDsT1Y0BEREQmYRd5iMi+BXqpET80HI6qu2mkKxMmMhgiIiJLk3WXGdm/4Q8Ho3cbX1zOL0aIjxuDISIisgoGRGR1xiRMzNaUICP/FkJ93A16D2NfT0RE9oEBEdmsxNRMaZaagwqIHxperyU5jH09ERHZD44hIptU25R9fZM7Gvt6IiKyLwyIyCbVNWXfEq8nIiL7woCIbFKojzscVLrbHFUqhPi4WeT1RERkXxgQkU0ydso+p/wTEVmOLaxZycSMemJiRnnK1pQYNWXf2NcTEVHdrD2BRd/nN2eZkU0zZsq+KV5PRES1s6U1K9llRkRERGZhSxNYGBARERGRWdjSBBYGRERERGQWtjSBhWOIiIiIyGxsZc1KBkRERERkVrYwgYVdZkRERKR4DIhIkWwhSRgREVkOu8xIcaydJIyIiOSHLUSkKFzlnoiIasKAiBTFlpKEERGR5TAgIkWxpSRhRERkOQyISFFsKUkYERFZDgdVk+LYSpIwIiKyHAZEpEi2kCSMiIgsh11mREREpHgMiIiIiEjxGBAR3YNZrImIlIdjiIiqYBZrIiJlYgsR0X8xizURkXIxICL6L2axJiJSLgZEdF9KGVPDLNZERMrFgIjqlJiaiaiEPXh2XQqiEvYgMTXT2lWSmDpQYxZrIiLlUgkhxP2LUWFhIby8vKDRaODp6Wnt6lhEtqYEUQl7dLqRHFUqHIjrZ/UgwZyDn7M1JcxiTURkJ/R9frOFiGol1zE15h78HOilRmTLJgyGiIgUhAER1UquY2rkGqgREZHtYkBEtZLrmBq5BmpERGS7mJiR6iTHleErA7V5W06jQgjZBGpERGS7GBDRfclxZXg5BmpERGS7GBCRzZJjoEZERLaJY4hINpSSAJKIiOSHLUQkC1xUlYiIrEnvgKiwsFDvN1VK4kIyjdryCvVu48suMSIisgi9AyJvb2+oVKo6ywghoFKpUFFRYXTFSDnqyivEgIiIiCxB74Bo79695qwHKVhlXqF7lwhhXiEiIrIUvQOiPn36mLMepGDMK0RERNZm8KDqgoICfPzxxzh37hwA4MEHH8S4cePg5eVlssqRcjCvEBERWZNBq90fOXIEMTExUKvV6NatGwAgNTUVJSUl2LlzJ7p06WLyilqbEle7JyIisnX6Pr8NCoh69eqFVq1aYd26dXByutvIVF5ejhdeeAG//fYb9u/fb3jNZYoBERERke0xa0CkVqtx/PhxtGvXTmf72bNnERERgeJi+1t13NIBUbamBBn5txDq487uIyIiIgPp+/w2aAyRp6cnMjMzqwVEWVlZaNiwoSFvSVUwSSEREZFlGbR0x/DhwzF+/HgkJiYiKysLWVlZ2Lx5M1544QWMHDnS1HVUlNqSFHI5CyIiIvMxKCD65z//iaFDh+L5559HSEgIQkJCMGbMGDz11FNYuXKlSSt45coVPPfcc2jSpAnUajXCw8Nx5MgRab8QAgsWLEBgYCDUajWio6Nx8eJFnfe4fv06YmNj4enpCW9vb4wfPx5FRUUmraep1JWkkIiIiMzDoIDI2dkZ77zzDm7cuIG0tDSkpaXh+vXreOutt+Di4mKyyt24cQNRUVFo0KABtm/fjrNnz+KNN95Ao0aNpDKrVq3C6tWrsXbtWqSkpMDd3R0xMTG4ffu2VCY2NhZnzpzBrl27sG3bNuzfvx8TJ040WT1NqTJJYVVMUkhERGReBg2qtpS4uDgcPHgQ//nPf2rcL4RAUFAQZs6ciVmzZgEANBoN/P39sWHDBowYMQLnzp1DWFgYUlNTERERAQDYsWMHHnvsMfzxxx8ICgrSqy6WHFSdmJpZLUmhpccQcVA3ERHZA7MOqr59+zbeffdd7N27F3l5edBqtTr7jx07ZsjbVrN161bExMTg6aefRlJSEpo2bYqXX34ZEyZMAABkZGQgJycH0dHR0mu8vLzQvXt3JCcnY8SIEUhOToa3t7cUDAFAdHQ0HBwckJKSgieffLLGY5eWlqK0tFT6vT6L2xrL2kkKOaibiIiUxqCAaPz48di5cyeeeuopdOvW7b6Lvhrqt99+w5o1azBjxgzMmzcPqampmDJlCpydnTF69Gjk5OQAAPz9/XVe5+/vL+3LycmBn5+fzn4nJyc0btxYKlOT+Ph4LF682MRnpL9AL7VVWma48jwRESmRQQHRtm3b8NNPPyEqKsrU9dGh1WoRERGBFStWAAA6d+6M06dPY+3atRg9erRZjz137lzMmDFD+r2wsBDNmjUz6zHlgCvPExGREhk0qLpp06YWyTcUGBiIsLAwnW3t27dHZmYmACAgIAAAkJubq1MmNzdX2hcQEIC8vDyd/eXl5bh+/bpUpiYuLi7w9PTU+VECDuomIiIlMiggeuONNzBnzhz8/vvvpq6PjqioKJw/f15n24ULF9C8eXMAQGhoKAICArB7925pf2FhIVJSUhAZGQkAiIyMREFBAY4ePSqV2bNnD7RaLbp3727W+tuiypXnHf/bDcqV54mISAkM6jKLiIjA7du30aJFC7i5uaFBgwY6+69fv26Syk2fPh09evTAihUr8Mwzz+Dw4cP46KOP8NFHHwEAVCoVpk2bhmXLlqF169YIDQ3F/PnzERQUhCFDhgC426I0cOBATJgwAWvXrsWdO3cwefJkjBgxQu8ZZkpj7UHdRERElmZQQDRy5EhcuXIFK1asgL+/v9kGVT/88MP47rvvMHfuXCxZsgShoaF4++23ERsbK5V59dVXcevWLUycOBEFBQXo2bMnduzYAVdXV6nM559/jsmTJ6N///5wcHDAsGHDsHr1arPU2V5Ya1A3ERGRNRiUh8jNzQ3Jycno1KmTOeokS1ztnoiIyPbo+/w2aAxRu3btUFLCtbWIiIjIPhgUECUkJGDmzJnYt28f/vzzTxQWFur8EBEREdkSg7rMHBzuxlH3jh0SQkClUqGiosI0tZMRdpkRERHZHrMu3bF3716DK0ZEREQkNwYFRH369NGr3Msvv4wlS5bAx8fHkMMQERERWYRBY4j0tWnTJo4pIiIiItkza0BkwPAkIiIiIosza0BERERE9idbU4JD6fnI1thPCh6DxhARERGRMiWmZmLullPQCsBBBcQPDcfwh4OtXS2jsYWIiIiI9JKtKZGCIQDQCmDeltN20VLEgIiIiMhGWbrrKiP/lhQMVaoQApfziy1yfHMya5fZc889xySGREREZmCNrqtQH3c4qKATFDmqVAjxcTPrcS3BoEzVAFBQUIDDhw8jLy8PWq1WZ9/zzz9vksrJCTNVExGRXGRrShCVsKdaYHIgrh8CvdRmPXZiaibmbTmNCiHgqFJhxdAOsh5DZNZM1T/88ANiY2NRVFQET09PnSU8VCqVXQZEREREclFX15W5A6LhDwejdxtfXM4vRoiPm9mPZykGBUQzZ87EuHHjsGLFCri52X4zGRERkS2xdtdVoJfabgKhSgYNqr5y5QqmTJnCYIiIiMgKAr3UiB8aDsf/9tBUdl3ZW5BiSQa1EMXExODIkSNo0aKFqetDREREerDXritr0Tsg2rp1q/TvwYMHY/bs2Th79izCw8PRoEEDnbJPPPGE6WpIRERENbLHritr0XuWmYODfr1rKpUKFRUVRlVKjjjLTB6yNSXIyL+FUB93fggQEdF9mXyW2b1T64kszV7TxRMRkfUZNKj6008/RWlpabXtZWVl+PTTT42uFNG97DldPBERWZ9BAdHYsWOh0Wiqbb958ybGjh1rdKWI7mXP6eKJiMj6DAqIhBA6yRgr/fHHH/Dy8jK6UkT3qsy5UZW9pIsnIiLrq9e0+86dO0OlUkGlUqF///5wcvrfyysqKpCRkYGBAweavJJElTk37k0Xz4HVRERkCvUKiIYMGQIASEtLQ0xMDDw8PKR9zs7OCAkJwbBhw0xaQaJK5sy5wdlrRETKVq+AaOHChQCAkJAQDB8+HK6urmapFFFtzJFzg7PXiIjI4NXugbuzympa7T442P4eJsxDZJ+suWI0ERGZn1lXu7948SLGjRuHQ4cO6WyvHGxtj4kZyT5Zc8VoIiKSD4MCojFjxsDJyQnbtm1DYGBgjTPOiGyBtVeMJiIieTAoIEpLS8PRo0fRrl07U9eHyKI4e42IiAADA6KwsDDk5+ebui5EVsEVo4mIyKDEjCtXrsSrr76Kffv24c8//0RhYaHOD5GtCfRSI7JlEwZDREQKZdAss6or31cdP2TPg6o5y4yIiOyFknKvmXWW2d69ew2uGBEREVkPc6/VzKAusz59+sDBwQHr1q1DXFwcWrVqhT59+iAzMxOOjo6mriMRERGZQLamRAqGgLszbOdtOY1sTYl1KyYDBgVE3377LWJiYqBWq3H8+HGUlpYCADQaDVasWGHSChIREZFp1JV7TekMCoiWLVuGtWvXYt26dWjQoIG0PSoqCseOHTNZ5YiIiMh0KnOvVcXca3cZFBCdP38evXv3rrbdy8sLBQUFxtaJiIiIzKAy95rjfydEMffa/xg0qDogIACXLl1CSEiIzvYDBw6gRYsWpqgXEZFsKWmGDtmHqvcsc6/VzKCAaMKECZg6dSo++eQTqFQqXL16FcnJyZg1axbmz59v6joSEckGZ+iQrantnmUgpMuggCguLg5arRb9+/dHcXExevfuDRcXF8yaNQuvvPKKqetIRCQLtc3Q6d3Glw8XkiVD71kltoIaFBCpVCq89tprmD17Ni5duoSioiKEhYXBw8PD1PUjIpKNumboKOWhQbbFkHtWqa2gBgVElZydnREWFmaquhARyVrlDJ2qDxjO0CE5q+89q+RWUINmmRERKRFn6JCtqe89q+Q8RUa1EBHR/yixz12JOEOHbE197lklt4IyICIyAaX2uStVoJeagRDZFH3v2coWpXlbTqNCCEW1ghq02r0ScbV7qk22pgRRCXuqfaM6ENdPER8iRGR/sjUldtMKatbV7onofzjziIjsjRJbQTmomshIXBuIiMj2MSAiMhJnHhER2T6bCogSEhKgUqkwbdo0advt27cxadIkNGnSBB4eHhg2bBhyc3N1XpeZmYnBgwfDzc0Nfn5+mD17NsrLyy1ce7Jnwx8OxoG4fvhywiM4ENePA6qJiGyMzQREqamp+PDDD9GxY0ed7dOnT8cPP/yAr7/+GklJSbh69SqGDh0q7a+oqMDgwYNRVlaGQ4cOYePGjdiwYQMWLFhg6VMgOxfopUZkyyZsGSIiskE2ERAVFRUhNjYW69atQ6NGjaTtGo0GH3/8Md588008+uij6Nq1K9avX49Dhw7hl19+AQDs3LkTZ8+exaZNm/DQQw9h0KBBWLp0Kd5//32UlZVZ65SIiIhIRmwiIJo0aRIGDx6M6Ohone1Hjx7FnTt3dLa3a9cOwcHBSE5OBgAkJycjPDwc/v7+UpmYmBgUFhbizJkztR6ztLQUhYWFOj9ERERkn2Q/7X7z5s04duwYUlNTq+3LycmBs7MzvL29dbb7+/sjJydHKlM1GKrcX7mvNvHx8Vi8eLGRtSciIiJbIOsWoqysLEydOhWff/45XF1dLXrsuXPnQqPRSD9ZWVkWPT4RERFZjqwDoqNHjyIvLw9dunSBk5MTnJyckJSUhNWrV8PJyQn+/v4oKytDQUGBzutyc3MREBAAAAgICKg266zy98oyNXFxcYGnp6fOD/1PtqYEh9Lzka0psXZViIiIjCbrgKh///44deoU0tLSpJ+IiAjExsZK/27QoAF2794tveb8+fPIzMxEZGQkACAyMhKnTp1CXl6eVGbXrl3w9PREWFiYxc/JHiSmZiIqYQ+eXZeCqIQ9SEzNtHaViIiIjCLrMUQNGzZEhw4ddLa5u7ujSZMm0vbx48djxowZaNy4MTw9PfHKK68gMjISjzzyCABgwIABCAsLw6hRo7Bq1Srk5OTgH//4ByZNmgQXFxeLn5Oty9aUSIuYAndXRJ635TR6t/HldHMiIrJZsg6I9PHWW2/BwcEBw4YNQ2lpKWJiYvDBBx9I+x0dHbFt2za89NJLiIyMhLu7O0aPHo0lS5ZYsda2i+t2ERGRPeJq93riavd3cWV3IuNla0qQkX8LoT7u/LshMjN9n9+yHkNE8sN1u4iMwzF4RPLEFiI9sYVIV7amBJfzixHi48ZgiEhPbGElsjx9n982P4aIrCPQS80PcKJ6suQYPHbLEdUPAyKSLX6gk70J9XGHgwrVWohCfNxMepzE1ExpNqiDCogfGo7hDweb9BhE9oZjiEiWOM6C7JElxuDVlhqDSVSJ6sYWIpId5joiezb84WD0buNrtjF4TI1BZBgGRCQ7/EAne2fOMXh1dcuxG5qoduwyI9mp/ECvyhzjLIjsUW3dcvsvXLNINzTXOTQdXkvL4rR7PXHavWUlpmZi3pbTqBBC+kDnoFAi/VVNjQGg2nR/BxVwMO5Rk7YUcTC36fBamg6n3ZNNM/c4CyJ7V7Vb7lB6frVuaK0A1h/MwLzHTLPINcf+mQ6vpXWwy0ym2FR69wM9smUTfgAQGammbmgA+Nf+DJN9xtQ19o/qh9fSOhgQyRCnnBMpV21fhoz5khTopcb4nqHVtmsBkz1kOfbPdHgtrYMBkcwwhwiRctX2Zeh+X5L0CZbG9QzFvY1EpnzIcp1D0+G1tA6OIZIZTjknUqbavgy1C2hY53gSfQffBnqpkTAsvNpkBVN+rnDsn+nwWloeAyKZsVRqfyKSl9q+DKVevlHneJL6DL61xEOW6xyaDq+lZbHLTGbYVEqkTLWNG3k4pFGt40kMGXzLyQpENWMLkQyxqZSUSsmZlCu/DN3bpdWpWaMat1deH7YoE5kGEzPqiYkZicyLiejuqppQsWpQWNt2JjElqpu+z28GRHpiQERkPtmakmqZlB1VKhyI66e4liJD1BYsEREzVRORDeHsyurq033IwbdExmNARERWx9mVuth9SGR5nGVGRFbH2ZX/w+SsRNbBFiIikgXOrryL3YdE1sGAiMiG6TvOxFams3MsjHW7D23lPiEyBwZERDZK33EmHI9iW2rLR2TuAIX3CSkdp93ridPuSU70nabO6ey2y5JT6XmfkD3T9/nNQdU2Rp9Vrcn+6btkgyFLO5A8WHKJDWvdJ/d+nvHzjayJXWY2hE3aVEnfcSaczk76sMZ9cu/n2ZOdm+K741f4+UZWwxYiG8GpuFSVvtPUOZ2d9GHp+6Smz7Nvj13h5xtZFVuIbASn4tK99J2mrm85zjBSNkumPajp8+xe/HwjS2NAZCPY9UE10Xea+v3KsTuWAMulPajp8+xe/HwjS2OXmY1g1weZC7tjydJq+jwb1qUpP9/IqthCZEOYyZfMgd2xZA01fZ7NimnLzzeyGgZENoaZfMnU2B1L1nLv5xk/38ia2GVGpHDsjiUiYgsREYHdsUREDIiICAC7K4hI2dhlRkRERIrHgIiIiCyCa5WRnLHLjIiIzK6u5J/Mkm46vJaGY0BERFSHygeMu7MjbpVV2N2DxhIP0NqSf/Zu44v9F64xS7qJMOO8cRgQERHVouoDppI9PWgs9QCtLfnnsd9v1Boo2VPQaQl1BZ28lvrhGCIiohrc+4CpZC9Lm5hyyZb7jQ2qTP5ZlaNKBa0QtWZJp/qpK+M86YcBERFRDepakd0eHjSmeoAmpmYiKmEPnl2XgqiEPUhMzaxWprbknxEhjWsMlJglvf5qCzp5LfXHLjMiohrUtSK7PTxoTLFkS326aWpL/hk/NBzztpxGhRDMkm6EyqCT19JwDIiIiGpw7wOmkr08aEzxAK3vwsA1Jf9klnTT4bU0DgMiIqJaVH3AuDk7oLhMa/EHjTlngRn7ADXVwsDMkm46vJaGY0BERFQHaz5gLDELzJjzYzcN2ROVEKKWYYNUVWFhIby8vKDRaODp6Wnt6hCRncvWlCAqYU+11pcDcf1kF3Bka0rYTUOype/zmy1EREQyVN/xOdbEbhqyB7Kfdh8fH4+HH34YDRs2hJ+fH4YMGYLz58/rlLl9+zYmTZqEJk2awMPDA8OGDUNubq5OmczMTAwePBhubm7w8/PD7NmzUV5ebslTMTmuC0RkvziNmsiyZB8QJSUlYdKkSfjll1+wa9cu3LlzBwMGDMCtW7ekMtOnT8cPP/yAr7/+GklJSbh69SqGDh0q7a+oqMDgwYNRVlaGQ4cOYePGjdiwYQMWLFhgjVMyCX1yfxAZgoG2PNSWu4ctMabDe52qsrkxRNeuXYOfnx+SkpLQu3dvaDQa+Pr64osvvsBTTz0FAPj111/Rvn17JCcn45FHHsH27dvx17/+FVevXoW/vz8AYO3atZgzZw6uXbsGZ2fn+x5XTmOIbGlsAdkWroUkPxyfYx6815VD3+e37FuI7qXRaAAAjRs3BgAcPXoUd+7cQXR0tFSmXbt2CA4ORnJyMgAgOTkZ4eHhUjAEADExMSgsLMSZM2csWHvTYIp2MgdTLuWgdKZseQj0UiOyZRMGQybEe51qYlODqrVaLaZNm4aoqCh06NABAJCTkwNnZ2d4e3vrlPX390dOTo5UpmowVLm/cl9NSktLUVpaKv1eWFhoqtMwmqlyf5BpWWLVcHOypUG8csaWB/njvU41sakWokmTJuH06dPYvHmz2Y8VHx8PLy8v6adZs2ZmP6a+OLZAfuxhTBcH8RqPLQ+2gfc61cRmAqLJkydj27Zt2Lt3Lx544AFpe0BAAMrKylBQUKBTPjc3FwEBAVKZe2edVf5eWeZec+fOhUajkX6ysrJMeDbGG/5wMA7E9cOXEx7Bgbh+/AZqRfbyEGSgbTx2Z98l98HKht7rcj8vMo7su8yEEHjllVfw3XffYd++fQgNDdXZ37VrVzRo0AC7d+/GsGHDAADnz59HZmYmIiMjAQCRkZFYvnw58vLy4OfnBwDYtWsXPD09ERYWVuNxXVxc4OLiYsYzMx5zf8iDPTW/cy0k47A723a6DOt7r9vKeZHhZN9CNGnSJGzatAlffPEFGjZsiJycHOTk5KCk5G6E7uXlhfHjx2PGjBnYu3cvjh49irFjxyIyMhKPPPIIAGDAgAEICwvDqFGjcOLECfz888/4xz/+gUmTJsk+6CH5s7fmdw7iNZzSW9lsrbVU33vd1s6LDCP7FqI1a9YAAPr27auzff369RgzZgwA4K233oKDgwOGDRuG0tJSxMTE4IMPPpDKOjo6Ytu2bXjppZcQGRkJd3d3jB49GkuWLLHUaZAd43pOVJWSW9nsqbW0Kns9L9Jlc3mIrEVOeYhInpgvxj7Y+mxBa7LXHGn2el5KYbd5iIjkyh66mpQ+aNQeZgtak712GdrreZEuthDpiS1EZO/sZdCooS08bAUwHXttLbXX87J3XO2eiPRW26DR3m18beqD35igjuNETMdeZ8Da63nRXewyIyK7yJ9j7Ewge5stSET1w4CIiOwiGDA2qOM4ESJlY5cZEdlF6gBTJEWsOmXezdkBt8oqkK0psanrQESGYUBERABsP3+OqYK6QC819l+4ZhcDzKk6plWg2nCWmZ44y4zINhg7E4izzeyXvcykpPphHiIisii55DAyNh+UPQwwp+q4/AbdD7vMiMho9vTNmwu02iemVaD7YQsREdVb1dYge/vmzdlm9skeZlKSebGFiIjq5d7WoBd6htrdN29bH2BO1dnDTEoyLwZERGZij7NZamoN+td/MszaxWSt68isxPaHgS7VhQERkRnY05iaqmoah6EFMLFnC3x8IMPk37zt9TqS9TDQpdowICIyMXtZF6wmtQ04HtszBGN7hpj0m7c9X0cikh8OqlYAuUyHVgp7nrZd14BjY6e738ueryMRyQ9biOwcuxwsz96nbVtqHIa9X0cikhe2ENkxe5sObSuUMG3b1K1BtR3D3q8jEckHW4jsGBORWQ9ns5gGryMRWQoDIjvGLgfr4mwW0+B1JH3ZY6oLshx2mdkxdjmQveEEAapNYmomohL24Nl1KYhK2IPE1ExrV4lsDFe715Mtr3Zv7OrfRFXp8y3cHN/UOUGAapOtKUFUwp5qreEH4vrZ5GceW7pMS9/nN7vMFIBdDmQq+gQlHyalI2H7rxCouYwhH/amyEnEh4z9MsV4SWvfH5XHP3VFg5Xbf2XgbwUMiIgsxNofuMbSJyj5cH864rf/Kr2msky7gIa4VVaBU39osHJH/T/sjX3gsXXJvhk7XtLa90fV41fFZKSWxYCIyAKs/YFrCvcLSrI1JUioEgxVLTPkg0O4t3O+Ph/2xjzwmPHa/hmzcKu17497j38vzgy2HAZERGZm7Q9cU7lfUJKRf6ta0FOptu36ftgb88Bj+gllMDRFg7Xvj5qOXxVnBlsOAyIiM7P2B66p3C8oqSlgup/6fNgb+sBj+gnlMGS8pLXvj7r+bjgz2LIYEBGZmbU/cE2prqDk3oDJQQW83LclPtiXbrIPe0MeeMa0LpF9qxzXN2dgO6zacd4q90dN9+erA9ui4wPenBlsYZx2rydbnnZP1peYmlntgWxrY4j0dW+ah3vP/dVBbdGxqeU/7Jl+gqq6d1zfnEHtrHJfVuL9aT76Pr8ZEOmJAREZS8kfeEo+d5Ife8tbRHVjHiIimVFyPiglnzvJj72M6yPT4tIdRESkKJXj+qqy1XF9ZDoMiIiIyG7os96dudd55Jp7toldZkREZBfqkwDV0DQOpqwDyQsDIiIisnmGJEA19di2muow99tTcHdxQtfmjTg+SebYZUZERDavroHS1qyDFsDkL44jKmEPElMzLVYXqj8GREREZPPkMFC6pjpUqmyx4rgi+WJARERENs/cA6UNqcO9LN1iRfXDMURERGQXzDVQ2pA6HL18A1M2H7eLJXuUggEREZlE5bpQoT7uHDxKViOHJKCBXmr8tZMat8rKuYaeDWFARERG41Rjourk0GJF+uMYIiIySm3TnTl4lOhua1FkyyZ6BUNM6GhdbCEiIqNwXSgi47GV1frYQkRUD/wGV50cpjsTmZKl/87ZyioPbCEi0hO/wdWscqoxB4+S3Bgy0N8af+dsZZUHBkREejBkWQAlMffgUc5go/oyJLCx1t95ZSsrp+hbF7vMiPQgh2UB5K4+g0frIzE1E1EJe/DsuhQuf0B6MbQLylp/53JIKklsIbI6fvO1DfwGZzhj7nG2zJEhDO2CsubfOafoWx8DIiuy1TEpSgziOE7GMMbe4xxbQYYwNLCx9t+5HJJKKhkDIiup6Zvv3C2n4ObsiIiQxrL9o7DVIM4U+A2ufkzRusOWOTKEMYEN/86ViwGRldT0zVcrgFe+TJNtoMHuC36Dqw9TtO5Y+xs72S5jAhv+nSuTogZVv//++wgJCYGrqyu6d++Ow4cPW60uNeVuqSTXHBQcWEz1Yar8RMMfDsaBuH74csIjOBDXT3ZfFEi+zDXQ31DMYyZvigmIEhMTMWPGDCxcuBDHjh1Dp06dEBMTg7y8PKvU595ZBfeSY6DBBHxUH6acOSO3BxvZFjkEIpwtKX8qIYS4fzHb1717dzz88MN47733AABarRbNmjXDK6+8gri4uPu+vrCwEF5eXtBoNPD09DRZvbI1JTj2+w1M/uI4qv5HOKpUOBDXT3YPgMTUzGrdF/zGTnXJ1pRwPAZZjRzGPWZrShCVsKfaWDg5fsbbI32f34oYQ1RWVoajR49i7ty50jYHBwdER0cjOTm5xteUlpaitLRU+r2wsNAsdQv0UmNwRzWKSsttYpwEBxxSfXE8BlmLXMY9crakbVBEQJSfn4+Kigr4+/vrbPf398evv/5a42vi4+OxePFiS1QPgG0FGnzAEZEtkEsgwtmStkExY4jqa+7cudBoNNJPVlaW2Y/JcRJERKYjl3GPzERtGxTRQuTj4wNHR0fk5ubqbM/NzUVAQECNr3FxcYGLi4slqkdERGYgp7QNttQLoFSKCIicnZ3RtWtX7N69G0OGDAFwd1D17t27MXnyZOtWjoiIzEZOgQiHG8ibIgIiAJgxYwZGjx6NiIgIdOvWDW+//TZu3bqFsWPHWrtqRERkRgxESB+KCYiGDx+Oa9euYcGCBcjJycFDDz2EHTt2VBtoTURERMqjmDxExjJXHiIiIiIyH32f35xlRkRERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIqnmKU7jFWZ0LuwsNDKNSEiIiJ9VT6377cwBwMiPd28eRMA0KxZMyvXhIiIiOrr5s2b8PLyqnU/1zLTk1arxdWrV9GwYUOoVCq9XlNYWIhmzZohKytL0euf8TrwGlTidbiL1+EuXgdeg0rmvA5CCNy8eRNBQUFwcKh9pBBbiPTk4OCABx54wKDXenp6KvpGr8TrwGtQidfhLl6Hu3gdeA0qmes61NUyVImDqomIiEjxGBARERGR4jEgMiMXFxcsXLgQLi4u1q6KVfE68BpU4nW4i9fhLl4HXoNKcrgOHFRNREREiscWIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSCqpzVr1qBjx45S8qjIyEhs375d2n/79m1MmjQJTZo0gYeHB4YNG4bc3Fyd98jMzMTgwYPh5uYGPz8/zJ49G+Xl5ZY+FZNJSEiASqXCtGnTpG1KuA6LFi2CSqXS+WnXrp20XwnXoNKVK1fw3HPPoUmTJlCr1QgPD8eRI0ek/UIILFiwAIGBgVCr1YiOjsbFixd13uP69euIjY2Fp6cnvL29MX78eBQVFVn6VAwWEhJS7X5QqVSYNGkSAGXcDxUVFZg/fz5CQ0OhVqvRsmVLLF26VGcNKSXcC8DdZSKmTZuG5s2bQ61Wo0ePHkhNTZX22+N12L9/Px5//HEEBQVBpVLh+++/19lvqnM+efIkevXqBVdXVzRr1gyrVq0yzQkIqpetW7eKH3/8UVy4cEGcP39ezJs3TzRo0ECcPn1aCCHEiy++KJo1ayZ2794tjhw5Ih555BHRo0cP6fXl5eWiQ4cOIjo6Whw/flz89NNPwsfHR8ydO9dap2SUw4cPi5CQENGxY0cxdepUabsSrsPChQvFgw8+KLKzs6Wfa9euSfuVcA2EEOL69euiefPmYsyYMSIlJUX89ttv4ueffxaXLl2SyiQkJAgvLy/x/fffixMnTognnnhChIaGipKSEqnMwIEDRadOncQvv/wi/vOf/4hWrVqJkSNHWuOUDJKXl6dzL+zatUsAEHv37hVCKON+WL58uWjSpInYtm2byMjIEF9//bXw8PAQ77zzjlRGCfeCEEI888wzIiwsTCQlJYmLFy+KhQsXCk9PT/HHH38IIezzOvz000/itddeE1u2bBEAxHfffaez3xTnrNFohL+/v4iNjRWnT58WX375pVCr1eLDDz80uv4MiEygUaNG4l//+pcoKCgQDRo0EF9//bW079y5cwKASE5OFkLcvWEcHBxETk6OVGbNmjXC09NTlJaWWrzuxrh586Zo3bq12LVrl+jTp48UECnlOixcuFB06tSpxn1KuQZCCDFnzhzRs2fPWvdrtVoREBAgXn/9dWlbQUGBcHFxEV9++aUQQoizZ88KACI1NVUqs337dqFSqcSVK1fMV3kzmjp1qmjZsqXQarWKuR8GDx4sxo0bp7Nt6NChIjY2VgihnHuhuLhYODo6im3btuls79Kli3jttdcUcR3uDYhMdc4ffPCBaNSokc7fxJw5c0Tbtm2NrjO7zIxQUVGBzZs349atW4iMjMTRo0dx584dREdHS2XatWuH4OBgJCcnAwCSk5MRHh4Of39/qUxMTAwKCwtx5swZi5+DMSZNmoTBgwfrnC8ARV2HixcvIigoCC1atEBsbCwyMzMBKOsabN26FREREXj66afh5+eHzp07Y926ddL+jIwM5OTk6FwLLy8vdO/eXedaeHt7IyIiQioTHR0NBwcHpKSkWO5kTKSsrAybNm3CuHHjoFKpFHM/9OjRA7t378aFCxcAACdOnMCBAwcwaNAgAMq5F8rLy1FRUQFXV1ed7Wq1GgcOHFDMdajKVOecnJyM3r17w9nZWSoTExOD8+fP48aNG0bVkYu7GuDUqVOIjIzE7du34eHhge+++w5hYWFIS0uDs7MzvL29dcr7+/sjJycHAJCTk6PzgVe5v3Kfrdi8eTOOHTum0ydeKScnRxHXoXv37tiwYQPatm2L7OxsLF68GL169cLp06cVcw0A4LfffsOaNWswY8YMzJs3D6mpqZgyZQqcnZ0xevRo6VxqOteq18LPz09nv5OTExo3bmxT16LS999/j4KCAowZMwaAcv4m4uLiUFhYiHbt2sHR0REVFRVYvnw5YmNjAUAx90LDhg0RGRmJpUuXon379vD398eXX36J5ORktGrVSjHXoSpTnXNOTg5CQ0OrvUflvkaNGhlcRwZEBmjbti3S0tKg0WjwzTffYPTo0UhKSrJ2tSwmKysLU6dOxa5du6p9A1KSym+9ANCxY0d0794dzZs3x1dffQW1Wm3FmlmWVqtFREQEVqxYAQDo3LkzTp8+jbVr12L06NFWrp11fPzxxxg0aBCCgoKsXRWL+uqrr/D555/jiy++wIMPPoi0tDRMmzYNQUFBirsXPvvsM4wbNw5NmzaFo6MjunTpgpEjR+Lo0aPWrhrVgl1mBnB2dkarVq3QtWtXxMfHo1OnTnjnnXcQEBCAsrIyFBQU6JTPzc1FQEAAACAgIKDazJLK3yvLyN3Ro0eRl5eHLl26wMnJCU5OTkhKSsLq1avh5OQEf39/RVyHe3l7e6NNmza4dOmSYu4FAAgMDERYWJjOtvbt20vdh5XnUtO5Vr0WeXl5OvvLy8tx/fp1m7oWAPD777/j//7v//DCCy9I25RyP8yePRtxcXEYMWIEwsPDMWrUKEyfPh3x8fEAlHUvtGzZEklJSSgqKkJWVhYOHz6MO3fuoEWLFoq6DpVMdc7m/DthQGQCWq0WpaWl6Nq1Kxo0aIDdu3dL+86fP4/MzExERkYCACIjI3Hq1Cmd//Rdu3bB09Oz2kNFrvr3749Tp04hLS1N+omIiEBsbKz0byVch3sVFRUhPT0dgYGBirkXACAqKgrnz5/X2XbhwgU0b94cABAaGoqAgACda1FYWIiUlBSda1FQUKDz7XnPnj3QarXo3r27Bc7CdNavXw8/Pz8MHjxY2qaU+6G4uBgODrqPFUdHR2i1WgDKuxcAwN3dHYGBgbhx4wZ+/vln/O1vf1PkdTDVOUdGRmL//v24c+eOVGbXrl1o27atUd1lADjtvr7i4uJEUlKSyMjIECdPnhRxcXFCpVKJnTt3CiHuTq0NDg4We/bsEUeOHBGRkZEiMjJSen3l1NoBAwaItLQ0sWPHDuHr62tTU2trUnWWmRDKuA4zZ84U+/btExkZGeLgwYMiOjpa+Pj4iLy8PCGEMq6BEHdTLzg5OYnly5eLixcvis8//1y4ubmJTZs2SWUSEhKEt7e3+Pe//y1Onjwp/va3v9U43bZz584iJSVFHDhwQLRu3VrWU4xrUlFRIYKDg8WcOXOq7VPC/TB69GjRtGlTadr9li1bhI+Pj3j11VelMkq5F3bs2CG2b98ufvvtN7Fz507RqVMn0b17d1FWViaEsM/rcPPmTXH8+HFx/PhxAUC8+eab4vjx4+L3338XQpjmnAsKCoS/v78YNWqUOH36tNi8ebNwc3PjtHtrGDdunGjevLlwdnYWvr6+on///lIwJIQQJSUl4uWXXxaNGjUSbm5u4sknnxTZ2dk673H58mUxaNAgoVarhY+Pj5g5c6a4c+eOpU/FpO4NiJRwHYYPHy4CAwOFs7OzaNq0qRg+fLhO7h0lXINKP/zwg+jQoYNwcXER7dq1Ex999JHOfq1WK+bPny/8/f2Fi4uL6N+/vzh//rxOmT///FOMHDlSeHh4CE9PTzF27Fhx8+ZNS56G0X7++WcBoNq5CaGM+6GwsFBMnTpVBAcHC1dXV9GiRQvx2muv6UyRVsq9kJiYKFq0aCGcnZ1FQECAmDRpkigoKJD22+N12Lt3rwBQ7Wf06NFCCNOd84kTJ0TPnj2Fi4uLaNq0qUhISDBJ/VVCVEkhSkRERKRAHENEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BERGbTt29fTJs2zdrVMLtFixbhoYcesnY1iMgIDIiIiGpRVlZm0eMJIVBeXm7RYxLRXQyIiMgsxowZg6SkJLzzzjtQqVRQqVS4fPkyTp8+jUGDBsHDwwP+/v4YNWoU8vPzpdf17dsXr7zyCqZNm4ZGjRrB398f69atw61btzB27Fg0bNgQrVq1wvbt26XX7Nu3DyqVCj/++CM6duwIV1dXPPLIIzh9+rROnQ4cOIBevXpBrVajWbNmmDJlCm7duiXtDwkJwdKlS/H888/D09MTEydOBADMmTMHbdq0gZubG1q0aIH58+dLq21v2LABixcvxokTJ6Tz3LBhAy5fvgyVSoW0tDTp/QsKCqBSqbBv3z6dem/fvh1du3aFi4sLDhw4AK1Wi/j4eISGhkKtVqNTp0745ptvTP1fRERVMCAiIrN45513EBkZiQkTJiA7OxvZ2dlo2LAhHn30UXTu3BlHjhzBjh07kJubi2eeeUbntRs3boSPjw8OHz6MV155BS+99BKefvpp9OjRA8eOHcOAAQMwatQoFBcX67xu9uzZeOONN5CamgpfX188/vjjUuCSnp6OgQMHYtiwYTh58iQSExNx4MABTJ48Wec9/vnPf6JTp044fvw45s+fDwBo2LAhNmzYgLNnz+Kdd97BunXr8NZbbwEAhg8fjpkzZ+LBBx+UznP48OH1ulZxcXFISEjAuXPn0LFjR8THx+PTTz/F2rVrcebMGUyfPh3PPfcckpKS6vW+RFQPJlkiloioBn369BFTp06Vfl+6dKkYMGCATpmsrCydFeL79OkjevbsKe0vLy8X7u7uYtSoUdK27OxsAUAkJycLIf63yvbmzZulMn/++adQq9UiMTFRCCHE+PHjxcSJE3WO/Z///Ec4ODiIkpISIYQQzZs3F0OGDLnveb3++uuia9eu0u8LFy4UnTp10imTkZEhAIjjx49L227cuCEAiL179+rU+/vvv5fK3L59W7i5uYlDhw7pvN/48ePFyJEj71s3IjKMkzWDMSJSlhMnTmDv3r3w8PCoti89PR1t2rQBAHTs2FHa7ujoiCZNmiA8PFza5u/vDwDIy8vTeY/IyEjp340bN0bbtm1x7tw56dgnT57E559/LpURQkCr1SIjIwPt27cHAERERFSrW2JiIlavXo309HQUFRWhvLwcnp6e9T7/2lQ95qVLl1BcXIy//OUvOmXKysrQuXNnkx2TiHQxICIiiykqKsLjjz+OlStXVtsXGBgo/btBgwY6+1Qqlc42lUoFANBqtfU69t///ndMmTKl2r7g4GDp3+7u7jr7kpOTERsbi8WLFyMmJgZeXl7YvHkz3njjjTqP5+Bwd0SCEELaVtl9d6+qxywqKgIA/Pjjj2jatKlOORcXlzqPSUSGY0BERGbj7OyMiooK6fcuXbrg22+/RUhICJycTP/x88svv0jBzY0bN3DhwgWp5adLly44e/YsWrVqVa/3PHToEJo3b47XXntN2vb777/rlLn3PAHA19cXAJCdnS217FQdYF2bsLAwuLi4IDMzE3369KlXXYnIcBxUTURmExISgpSUFFy+fBn5+fmYNGkSrl+/jpEjRyI1NRXp6en4+eefMXbs2GoBhSGWLFmC3bt34/Tp0xgzZgx8fHwwZMgQAHdnih06dAiTJ09GWloaLl68iH//+9/VBlXfq3Xr1sjMzMTmzZuRnp6O1atX47vvvqt2nhkZGUhLS0N+fj5KS0uhVqvxyCOPSIOlk5KS8I9//OO+59CwYUPMmjUL06dPx8aNG5Geno5jx47h3XffxcaNGw2+NkRUNwZERGQ2s2bNgqOjI8LCwuDr64uysjIcPHgQFRUVGDBgAMLDwzFt2jR4e3tLXUzGSEhIwNSpU9G1a1fk5OTghx9+gLOzM4C745KSkpJw4cIF9OrVC507d8aCBQsQFBRU53s+8cQTmD59OiZPnoyHHnoIhw4dkmafVRo2bBgGDhyIfv36wdfXF19++SUA4JNPPkF5eTm6du2KadOmYdmyZXqdx9KlSzF//nzEx8ejffv2GDhwIH788UeEhoYacFWISB8qUbWDm4jIBu3btw/9+vXDjRs34O3tbe3qEJENYgsRERERKR4DIiIiIlI8dpkRERGR4rGFiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBTv/wECCaOfLvuj6AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1074,13 +4181,26 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABL0klEQVR4nO3deVxUZf8//tcAMoDAuLCKILhLKi64ICaaJnr7rcy6IzV37WNpamWJtrhVUN7eacutZXdSWUmWtrnnehNkoKJiZUoolKCSMcgiCnP9/vDHxMiwzDAz58yZ1/PxmMdDz7nmzHXODDPvc72vRSWEECAiIiJSCCepK0BERERkSQxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuiEgSy5Ytg0qlalRZlUqFZcuWWbU+Q4cOxdChQ2V7PCJqPAY3RA4uKSkJKpVK/3BxcUFQUBCmTp2KP/74Q+rqyU5oaKjB9fLz88Odd96Jbdu2WeT4ZWVlWLZsGQ4ePGiR4xE5IgY3RAQAWLFiBT766COsX78eo0ePxqZNmxATE4Pr169b5fWef/55lJeXW+XY1tarVy989NFH+Oijj7Bw4UJcvHgR48aNw/r165t87LKyMixfvpzBDVETuEhdASKSh9GjRyMyMhIAMHPmTPj4+ODVV1/F119/jYceesjir+fi4gIXF/v8CgoKCsIjjzyi///kyZPRsWNHvP7665g9e7aENSMigC03RFSHO++8EwCQnZ1tsP2XX37Bgw8+iFatWsHNzQ2RkZH4+uuvDcrcvHkTy5cvR6dOneDm5obWrVtj8ODB2Lt3r76MsT43FRUVePLJJ+Hr6wsvLy/ce++9+P3332vVberUqQgNDa213dgxN27ciLvuugt+fn5Qq9UIDw/HunXrTLoWDQkICEC3bt2Qk5NTb7nLly9jxowZ8Pf3h5ubGyIiIvDBBx/o958/fx6+vr4AgOXLl+tTX9bub0SkNPZ520REVnf+/HkAQMuWLfXbTp8+jejoaAQFBSE+Ph7NmzfHZ599hrFjx+KLL77A/fffD+BWkJGQkICZM2eif//+KC4uRkZGBo4dO4a77767ztecOXMmNm3ahAkTJmDQoEHYv38/xowZ06TzWLduHe644w7ce++9cHFxwTfffIPHH38cOp0Oc+bMadKxq928eRN5eXlo3bp1nWXKy8sxdOhQnDt3DnPnzkVYWBi2bNmCqVOnoqioCPPnz4evry/WrVuHxx57DPfffz/GjRsHAOjZs6dF6knkMAQRObSNGzcKAOK7774TV65cEXl5eeLzzz8Xvr6+Qq1Wi7y8PH3Z4cOHix49eojr16/rt+l0OjFo0CDRqVMn/baIiAgxZsyYel936dKlouZXUGZmpgAgHn/8cYNyEyZMEADE0qVL9dumTJki2rVr1+AxhRCirKysVrnY2FjRvn17g20xMTEiJiam3joLIUS7du3EyJEjxZUrV8SVK1fEiRMnxMMPPywAiCeeeKLO461Zs0YAEJs2bdJvu3HjhoiKihKenp6iuLhYCCHElStXap0vEZmGaSkiAgCMGDECvr6+CA4OxoMPPojmzZvj66+/Rtu2bQEAV69exf79+/HQQw/h2rVrKCwsRGFhIf7880/Exsbi7Nmz+tFVLVq0wOnTp3H27NlGv/6OHTsAAPPmzTPYvmDBgiadl7u7u/7fWq0WhYWFiImJwW+//QatVmvWMffs2QNfX1/4+voiIiICW7ZswaRJk/Dqq6/W+ZwdO3YgICAA48eP129r1qwZ5s2bh5KSEhw6dMisuhBRbUxLEREA4O2330bnzp2h1Wrx/vvv4/Dhw1Cr1fr9586dgxACL7zwAl544QWjx7h8+TKCgoKwYsUK3HfffejcuTO6d++OUaNGYdKkSfWmVy5cuAAnJyd06NDBYHuXLl2adF7ff/89li5dirS0NJSVlRns02q10Gg0Jh9zwIABeOmll6BSqeDh4YFu3bqhRYsW9T7nwoUL6NSpE5ycDO8pu3Xrpt9PRJbB4IaIAAD9+/fXj5YaO3YsBg8ejAkTJuDMmTPw9PSETqcDACxcuBCxsbFGj9GxY0cAwJAhQ5CdnY2vvvoKe/bswXvvvYfXX38d69evx8yZM5tc17om/6uqqjL4f3Z2NoYPH46uXbvi3//+N4KDg+Hq6oodO3bg9ddf15+TqXx8fDBixAiznktE1sfghohqcXZ2RkJCAoYNG4a33noL8fHxaN++PYBbqZTG/LC3atUK06ZNw7Rp01BSUoIhQ4Zg2bJldQY37dq1g06nQ3Z2tkFrzZkzZ2qVbdmyJYqKimptv73145tvvkFFRQW+/vprhISE6LcfOHCgwfpbWrt27XDy5EnodDqD1ptffvlFvx+oO3AjosZjnxsiMmro0KHo378/1qxZg+vXr8PPzw9Dhw7FO++8g/z8/Frlr1y5ov/3n3/+abDP09MTHTt2REVFRZ2vN3r0aADAG2+8YbB9zZo1tcp26NABWq0WJ0+e1G/Lz8+vNUuws7MzAEAIod+m1WqxcePGOuthLf/4xz9QUFCA5ORk/bbKykq8+eab8PT0RExMDADAw8MDAIwGb0TUOGy5IaI6PfPMM/jnP/+JpKQkzJ49G2+//TYGDx6MHj16YNasWWjfvj0uXbqEtLQ0/P777zhx4gQAIDw8HEOHDkXfvn3RqlUrZGRk4PPPP8fcuXPrfK1evXph/Pjx+M9//gOtVotBgwZh3759OHfuXK2yDz/8MBYtWoT7778f8+bNQ1lZGdatW4fOnTvj2LFj+nIjR46Eq6sr7rnnHvzf//0fSkpKsGHDBvj5+RkN0Kzp0UcfxTvvvIOpU6fi6NGjCA0Nxeeff47vv/8ea9asgZeXF4BbHaDDw8ORnJyMzp07o1WrVujevTu6d+9u0/oS2TWph2sRkbSqh4Knp6fX2ldVVSU6dOggOnToICorK4UQQmRnZ4vJkyeLgIAA0axZMxEUFCT+3//7f+Lzzz/XP++ll14S/fv3Fy1atBDu7u6ia9eu4uWXXxY3btzQlzE2bLu8vFzMmzdPtG7dWjRv3lzcc889Ii8vz+jQ6D179oju3bsLV1dX0aVLF7Fp0yajx/z6669Fz549hZubmwgNDRWvvvqqeP/99wUAkZOToy9nylDwhoa513W8S5cuiWnTpgkfHx/h6uoqevToITZu3FjruampqaJv377C1dWVw8KJzKASokZ7LREREZGdY58bIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBDREREiuJwk/jpdDpcvHgRXl5enOaciIjITgghcO3aNbRp06bWArS3c7jg5uLFiwgODpa6GkRERGSGvLw8tG3btt4yDhfcVE9xnpeXB29vb4lrQ0RERI1RXFyM4OBg/e94fRwuuKlORXl7ezO4ISIisjON6VLCDsVERESkKAxuiIiISFEY3BAREZGiOFyfGyIichxVVVW4efOm1NWgRnJ1dW1wmHdjMLghIiLFEUKgoKAARUVFUleFTODk5ISwsDC4uro26TgMboiISHGqAxs/Pz94eHhw0lY7UD3Jbn5+PkJCQpr0njG4ISIiRamqqtIHNq1bt5a6OmQCX19fXLx4EZWVlWjWrJnZx2GHYiIiUpTqPjYeHh4S14RMVZ2OqqqqatJxGNwQEZEiMRVlfyz1njG4ISIiIkVhcENEREQ2cfDgQahUKquPYmNwYwP52nKkZhciX1sudVWIiEjBli1bhl69ekldDclxtJSVJafnYvHWU9AJwEkFJIzrgbh+IVJXi4iIHNjNmzebNBpJ7thyY0X52nJ9YAMAOgEs2ZrFFhwiIjJKp9MhISEBYWFhcHd3R0REBD7//HMAf6d09u3bh8jISHh4eGDQoEE4c+YMACApKQnLly/HiRMnoFKpoFKpkJSUBOBWR91169bh3nvvRfPmzfHyyy/XW4/q19q9ezd69+4Nd3d33HXXXbh8+TJ27tyJbt26wdvbGxMmTEBZWZn+eRUVFZg3bx78/Pzg5uaGwYMHIz093ToXqx4Mbqwop7BUH9hUqxIC5wvLjD+BiIhkx5ZdCxISEvDhhx9i/fr1OH36NJ588kk88sgjOHTokL7Mc889h9WrVyMjIwMuLi6YPn06ACAuLg5PP/007rjjDuTn5yM/Px9xcXH65y1btgz3338/Tp06pX9OQ5YtW4a33noLqampyMvLw0MPPYQ1a9bgk08+wfbt27Fnzx68+eab+vLPPvssvvjiC3zwwQc4duwYOnbsiNjYWFy9etVCV6hxmJayojCf5nBSwSDAcVapEOrDuReIiOyBLbsWVFRU4JVXXsF3332HqKgoAED79u2RkpKCd955B48++igA4OWXX0ZMTAwAID4+HmPGjMH169fh7u4OT09PuLi4ICAgoNbxJ0yYgGnTpplUp5deegnR0dEAgBkzZmDx4sXIzs5G+/btAQAPPvggDhw4gEWLFqG0tBTr1q1DUlISRo8eDQDYsGED9u7di//+97945plnzLswZmDLjRUFatyRMK4HnP//cfvOKhVeGdcdgRp3iWtGREQNsXXXgnPnzqGsrAx33303PD099Y8PP/wQ2dnZ+nI9e/bU/zswMBAAcPny5QaPHxkZaXKdar6Wv78/PDw89IFN9bbq187OzsbNmzf1wRAANGvWDP3798fPP/9s8ms3BVturCyuXwiGdPbF+cIyhPp4MLAhIrIT9XUtsMZ3eUlJCQBg+/btCAoKMtinVqv1AU7NjsDVk97pdLoGj9+8eXOT63T7a93eCVmlUjXqtW2NwY0NBGrcGdQQEdkZW3ctCA8Ph1qtRm5urj7tVFPN1pu6uLq6NnnpAnN16NABrq6u+P7779GuXTsAt0ZlpaenY8GCBTatC4MbIiIiI6q7FizZmoUqIazetcDLywsLFy7Ek08+CZ1Oh8GDB0Or1eL777+Ht7e3PmCoT2hoKHJycpCZmYm2bdvCy8sLarXaKvW9XfPmzfHYY4/hmWeeQatWrRASEoLXXnsNZWVlmDFjhk3qUI3BDRERUR1s3bVg5cqV8PX1RUJCAn777Te0aNECffr0wZIlSxqV/nnggQewdetWDBs2DEVFRdi4cSOmTp1q1TrXlJiYCJ1Oh0mTJuHatWuIjIzE7t270bJlS5vVAQBUQgjRcDHlKC4uhkajgVarhbe3t9TVISIiC7t+/TpycnIQFhYGNzc3qatDJqjvvTPl95ujpYiIiEhRGNwQERE5mNmzZxsMN6/5mD17ttTVazL2uSEiInIwK1aswMKFC43uU0KXDQY3REREDsbPzw9+fn5SV8NqmJYiIiIiRWFwQ0REiiTHmXOpfpYawM20FBERKYqrqyucnJxw8eJF+Pr6wtXVVb9MAcmXEAJXrlwxusyDqRjcEBGRojg5OSEsLAz5+fm4ePGi1NUhE6hUKrRt2xbOzs5NOg6DGyIiUhxXV1eEhISgsrJSsrWWyHTNmjVrcmADMLghIiKFqk5vNDXFQfaHHYqJiIhIURjcEBERkaIwuCEiIiJFYXBDREREisLghoiIiBSFwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIUSQNbtatW4eePXvC29sb3t7eiIqKws6dO+t9zpYtW9C1a1e4ubmhR48e2LFjh41qS0RERPZA0uCmbdu2SExMxNGjR5GRkYG77roL9913H06fPm20fGpqKsaPH48ZM2bg+PHjGDt2LMaOHYusrCwb15yIiIjkSiWEEFJXoqZWrVph1apVmDFjRq19cXFxKC0txbfffqvfNnDgQPTq1Qvr169v1PGLi4uh0Wig1Wrh7e1tsXoTERGR9Zjy+y2bPjdVVVXYvHkzSktLERUVZbRMWloaRowYYbAtNjYWaWlpdR63oqICxcXFBg8iIiJSLsmDm1OnTsHT0xNqtRqzZ8/Gtm3bEB4ebrRsQUEB/P39Dbb5+/ujoKCgzuMnJCRAo9HoH8HBwRatPxEREcmL5MFNly5dkJmZiSNHjuCxxx7DlClT8NNPP1ns+IsXL4ZWq9U/8vLyLHZsIiIikh8XqSvg6uqKjh07AgD69u2L9PR0rF27Fu+8806tsgEBAbh06ZLBtkuXLiEgIKDO46vVaqjVastWmoiIiGRL8pab2+l0OlRUVBjdFxUVhX379hls27t3b519dIiIiMjxSNpys3jxYowePRohISG4du0aPvnkExw8eBC7d+8GAEyePBlBQUFISEgAAMyfPx8xMTFYvXo1xowZg82bNyMjIwPvvvuulKdBREREMiJpcHP58mVMnjwZ+fn50Gg06NmzJ3bv3o27774bAJCbmwsnp78blwYNGoRPPvkEzz//PJYsWYJOnTrhyy+/RPfu3aU6BSIiIpIZ2c1zY22c54aIiMj+2OU8N0RERESWwOCGiIiIFIXBDRERESkKgxsiIiJSFAY3REREpCgMboiIiEhRGNwQERGRojC4ISIiIkVhcENERESKwuDGgvK15UjNLkS+tlzqqhARETksSdeWUpLk9Fws3noKOgE4qYCEcT0Q1y9E6moRERE5HLbcWEC+tlwf2ACATgBLtmaxBYeIiEgCDG4sIKewVB/YVKsSAucLy6SpEBERkQNjcGMBYT7N4aQy3OasUiHUx0OaChERETkwBjcWEKhxR8K4HnBW3YpwnFUqvDKuOwI17hLXjIjkhIMOiGyDHYotJK5fCIZ09sX5wjKE+ngYBDb52nLkFJYizKc5Ax4iB8VBB0S2w+DGggI17rWCF36hEVFdgw6GdPblDQ+RFTAtZUUcRUVEAAcdENkagxsr4hcaEQEcdEBkawxurIhfaEQEcNABka2xz40VVX+hLdmahSoh+IVG5MDqG3RARJbF4MbK+IVGRNWMDTogIstjcGMD/EIjIiKyHfa5ISIiIkVhcENERESKwuCGiIiIFIXBDRERESkKgxsiIiJSFAY3REREpCgMboiIiEhRGNxYSb62HKnZhVwkk4iIyMY4iZ8VJKfn6lcDd1IBCeN6IK5fiNTVIiIicghsubGwfG25PrABAJ0AlmzNYgsOERGRjTC4sbCcwlJ9YFOtSgicLyyTpkJEREQOhsGNhYX5NIeTynCbs0qFUB8PaSpERETkYBjcWFigxh0J43rAWXUrwnFWqfDKuO5cOJOIiMhG2KHYCuL6hWBIZ1+cLyxDqI8HAxsiIiIbYnBjJYEadwY1REREEmBaioiIiBSFwQ0REREpiqTBTUJCAvr16wcvLy/4+flh7NixOHPmTL3PSUpKgkqlMni4ubnZqMZEREQkd5IGN4cOHcKcOXPwww8/YO/evbh58yZGjhyJ0tLSep/n7e2N/Px8/ePChQs2qjERERHJnaQdinft2mXw/6SkJPj5+eHo0aMYMmRInc9TqVQICAiwdvWIiIjIDsmqz41WqwUAtGrVqt5yJSUlaNeuHYKDg3Hffffh9OnTdZatqKhAcXGxwYOIiIiUSzbBjU6nw4IFCxAdHY3u3bvXWa5Lly54//338dVXX2HTpk3Q6XQYNGgQfv/9d6PlExISoNFo9I/g4GBrnQIRERHJgEoIIRouZn2PPfYYdu7ciZSUFLRt27bRz7t58ya6deuG8ePHY+XKlbX2V1RUoKKiQv//4uJiBAcHQ6vVwtvb2yJ1JyIiIusqLi6GRqNp1O+3LCbxmzt3Lr799lscPnzYpMAGAJo1a4bevXvj3LlzRver1Wqo1WpLVJOIiIjsgKRpKSEE5s6di23btmH//v0ICwsz+RhVVVU4deoUAgMDrVBDIiIisjeSttzMmTMHn3zyCb766it4eXmhoKAAAKDRaODufmvpgsmTJyMoKAgJCQkAgBUrVmDgwIHo2LEjioqKsGrVKly4cAEzZ86U7DyIiIhIPiQNbtatWwcAGDp0qMH2jRs3YurUqQCA3NxcODn93cD0119/YdasWSgoKEDLli3Rt29fpKamIjw83FbVJiIiIhmTTYdiWzGlQxIRERHJgym/37IZCk5ERERkCQxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuyCbyteVIzS5EvrZc6qoQEZHCSbq2FDmG5PRcLN56CjoBOKmAhHE9ENcvROpqERGRQrHlhqwqX1uuD2wAQCeAJVuz2IJDRERWw+CGrCqnsFQf2FSrEgLnC8ukqRARESkegxuyqjCf5nBSGW5zVqkQ6uMhTYWIiEjxGNyQVQVq3JEwrgecVbciHGeVCq+M645AjbvENSMiIqVih2Kyurh+IRjS2RfnC8sQ6uPBwIaIiKyKwQ3ZRKDGnUENERHZBNNSRKRYnF+JyDGx5YaIFInzKxE5LrbcSIh3lUTWwfmViBwbW24kwrtKIuupb34l9v0iUj623EiAd5VE1sX5lYgcG4MbCSh51l5TUm1My5G1cH4lIsfGtJQEqu8qawY4SrirNCXVxrQcWRvnVyJyXGy5kYAS7ypNSbUxLUe2EqhxR1SH1nb9t0VEpmPLjUSUdldpSgdOUzt75mvLkVNYijCf5nZ/nYiIyPoY3EhISbP2mpJqM6Us01dERGQqpqXIIkxJtTW2LNNXRERkDrbckMWYkmprTFnOVUJEROZgcEMWZUqqraGySh1VRkRE1sW0FMmWEkeVERGR9bHlhmRNaaPKiIjI+hjckOwpaVQZERFZH9NSREREpCgMboiIiEhRGNwQUZ24uCkR2SP2uSEiozg7NBHZK7bcEFEtnB2aiOwZgxuSDaZA5KO+2aHJED+3RPLDtBTJgqkpEK4Ubl2cHbpxmLojkidJW24SEhLQr18/eHl5wc/PD2PHjsWZM2cafN6WLVvQtWtXuLm5oUePHtixY4cNakvWYmoKJDk9F9GJ+zFhwxFEJ+5HcnquDWvrGDg7dMOYuiOSL0mDm0OHDmHOnDn44YcfsHfvXty8eRMjR45EaWlpnc9JTU3F+PHjMWPGDBw/fhxjx47F2LFjkZWVZcOakyWZkgLhD4rtxPULQUr8MHw6ayBS4oexReI2TN0RyZekaaldu3YZ/D8pKQl+fn44evQohgwZYvQ5a9euxahRo/DMM88AAFauXIm9e/firbfewvr1661eZ7I8U1IgXCnctjg7dN0cJXXHFDDZI1l1KNZqtQCAVq1a1VkmLS0NI0aMMNgWGxuLtLQ0q9aNrMeUFEj1D0pNSvxBUQKld7R1hNQdU8Bkr2TToVin02HBggWIjo5G9+7d6yxXUFAAf39/g23+/v4oKCgwWr6iogIVFRX6/xcXF1umwmRRjV0gs/oHZcnWLFQJocgfFCVoTEdbJbQIKHlh17pSwEM6+yrqPEmZZBPczJkzB1lZWUhJSbHocRMSErB8+XKLHpOso7EpECX/oChBY34UlTTKSKmpO6aAyZ7JIi01d+5cfPvttzhw4ADatm1bb9mAgABcunTJYNulS5cQEBBgtPzixYuh1Wr1j7y8PIvVm6QTqHFHVIfW/JKVoYY62rJTuH1gCpjsmaTBjRACc+fOxbZt27B//36EhYU1+JyoqCjs27fPYNvevXsRFRVltLxarYa3t7fBg4isp6EfRY4ysg+O0KeIlEvStNScOXPwySef4KuvvoKXl5e+34xGo4G7+60/oMmTJyMoKAgJCQkAgPnz5yMmJgarV6/GmDFjsHnzZmRkZODdd9+V7DyI6G8N9YuS2ygjJfT9AaxzHkwBk71SCSFEw8Ws9OIqldHtGzduxNSpUwEAQ4cORWhoKJKSkvT7t2zZgueffx7nz59Hp06d8Nprr+Ef//hHo16zuLgYGo0GWq2WrThEVpSvLa/zRzE5PbdW8CNFnxul9P1RynkQ1ceU329JgxspMLghkof6gh9bvX504v5aLUgp8cPsqoVCKedB1BBTfr8bnZYyZQg1gwYiaojUo4yUMhpIKedBZEmNDm5atGhRZxqpmhACKpUKVVVVTa4YEZE1ya3vj7mUch5EltTo4ObAgQPWrAcRkU0pZUJIpZwHkSWxzw0ROTSp+/5YilLOg6guVulzc7uioiL897//xc8//wwAuOOOOzB9+nRoNBpzD0lEZHNS9/1pjMYM87aH8yCyFbNabjIyMhAbGwt3d3f0798fAJCeno7y8nLs2bMHffr0sXhFLYUtN0RkTzjMm+gWqw8Fv/POO9GxY0ds2LABLi63Gn8qKysxc+ZM/Pbbbzh8+LB5NbcBBjdEZC84zJvob1ZPS2VkZBgENgDg4uKCZ599FpGRkeYckoiIbsNh3kTmMWttKW9vb+Tm5tbanpeXBy8vryZXioiI6l6ny8PVCanZhVxslKgOZgU3cXFxmDFjBpKTk5GXl4e8vDxs3rwZM2fOxPjx4y1dRyIih2Rs8cqxvdvg/v+kYsKGI4hO3I/k9No3mkSOzqy01L/+9S+oVCpMnjwZlZWVAIBmzZrhscceQ2JiokUrSJallEUCiRxFzcUrPVydcP9/UvWpKp0AlmzNwpDOvvx7JqrBrODG1dUVa9euRUJCArKzswEAHTp0gIcHZ8SUM466ILJP1cO8U7ML2QeHqBHMnucGADw8PNCjRw9L1YWsKF9brg9sAN7xEdkjLrVA1DhmBTfXr1/Hm2++iQMHDuDy5cvQ6XQG+48dO2aRypHlKHnUBVNt5Ci41AJR45gV3MyYMQN79uzBgw8+iP79+ze4oCZJT6l3fDVTbSoAs+4Mw7TBYfyyJ4uRW/Bcsw8Ol1ogMs6sSfw0Gg127NiB6Ohoa9TJqhx5Er/k9Nxad3z23OfG2ARnAPsTkeWwnxqRfFh9Er+goCDOZ2OHlHbHZyzVBrA/EVkG+6kR2S+z5rlZvXo1Fi1ahAsXLli6PmRlgRp3RHVoLasv53xtuVkTkhmb4KxadX8iInPV10+NpGPu9wU5FrNabiIjI3H9+nW0b98eHh4eaNasmcH+q1evWqRypHxNafav7ly5+ItT0N22Twn9iUhaSu2nZs+YJqTGMiu4GT9+PP744w+88sor8Pf3Z4diqqUxnTAt0exfnWrbmHIe76X8Bp0AR5CQRXBkknzka8uRcf4q04TUaGYFN6mpqUhLS0NERISl60MK0Ni7K0sNTw/UuGPJmG6YNjhUMf2JSB6U1k/NHtX8PrmdUqazIMszK7jp2rUrysuZ76TaTGmNsXSzf/UsrkSW5GifKzkNfb/9++R2TBNSXczqUJyYmIinn34aBw8exJ9//oni4mKDBzkuUzphGlsUkM3+RNJJTs9FdOJ+2SzKWdeISIDfF1Q/s1puRo0aBQAYPny4wXYhBFQqFaqqqppeM7JLprbGsNmfSB7kOPTd2PeJE4A3J/RGn3Yt+X1BdTIruDlw4ICl60EKYU4nTEdr9ieSIzku0VLX98mYnm0kqQ/ZD7OCm5iYmEaVe/zxx7FixQr4+PiY8zJkp9gaQ2R/5Dr0nd8nZA6z+tw01qZNm9gHx0HJcbJAIqqbnPvA8fuETGVWy01jmbFsFRERSYStJKQUVg1uiIjIvsipD5ychqWTfWFwQ0REssOlFqgprNrnhoiIyFR1DUvnYpnUWAxuiIisgKtXm48rslNTmRzcVFZWYsWKFfj9998bLPvII4/A29vbrIoREdkruc30a2+qh6XXJIdh6WQ/TA5uXFxcsGrVKlRWVjZYdt26dZzjhogcClMqTSfnYelkH8zqUHzXXXfh0KFDCA0NtXB1yBo44oDIduQ406894rB0agqzgpvRo0cjPj4ep06dQt++fdG8eXOD/ffee69FKkdNxxEHRLYl15l+7ZGchqWTfVEJM2bac3KqO5sl94Uzi4uLodFooNVqFd8fKF9bjujE/bW+ZFPih/ELg8iKktNza62HxJsKoqYx5ffbrJYbnU5nVsXIttg8TiQNplSIpGXWUPAPP/wQFRUVtbbfuHEDH374YZMrRZbBEQdE0uF6SETSMSu4mTZtGrRaba3t165dw7Rp05pcKbIMjjggIiJHZFZaSggBlUpVa/vvv/8OjUbT5EqR5bB5nIiIHI1JwU3v3r2hUqmgUqkwfPhwuLj8/fSqqirk5ORg1KhRjT7e4cOHsWrVKhw9ehT5+fnYtm0bxo4dW2f5gwcPYtiwYbW25+fnIyAgwJRTcSgccUB0C6dFIHIMJgU31YFHZmYmYmNj4enpqd/n6uqK0NBQPPDAA40+XmlpKSIiIjB9+nSMGzeu0c87c+aMQU9pPz+/Rj+XiBwTp0UgchwmBTdLly4FAISGhiIuLg5ubm5NevHRo0dj9OjRJj/Pz88PLVq0aNJrE5HjqGvW4CGdfdmCQ6RAZvW5mTJlCoBbo6MuX75ca2h4SIh174Z69eqFiooKdO/eHcuWLUN0dHSdZSsqKgxGdhUXF1u1bkQkP3KbFoHpMSLrMiu4OXv2LKZPn47U1FSD7dUdja01iV9gYCDWr1+PyMhIVFRU4L333sPQoUNx5MgR9OnTx+hzEhISsHz5cqvUh4isy1JBgJxmDWZ6jMj6zJqhODo6Gi4uLoiPj0dgYGCtkVMRERGmV0SlarBDsTExMTEICQnBRx99ZHS/sZab4OBgh5ihmEhuTAlWLB0EyGHWYM4aTmQ+q89QnJmZiaNHj6Jr165mVdCS+vfvj5SUlDr3q9VqqNVqG9aI5ITN/01nqWtoSrBijT4yNadF8HB1QumNKuRry236uZBbeoxIqcwKbsLDw1FYWGjpupglMzMTgYGBUleDZIjN/01nqWtoarBirSAgUOOOw79ekexzIaf0GJGSmTVD8auvvopnn30WBw8exJ9//oni4mKDR2OVlJQgMzMTmZmZAICcnBxkZmYiNzcXALB48WJMnjxZX37NmjX46quvcO7cOWRlZWHBggXYv38/5syZY85pkILV9WOary2XtmJ2xJLXsL5gxRhrLR0i9eeCs4YT2YZZLTcjRowAANx1110G/W1M7VCckZFhMCnfU089BeDWaKykpCTk5+frAx3g1uisp59+Gn/88Qc8PDzQs2dPfPfdd0Yn9iPHxub/pmvMNWxsysrUFovqIOD2PjJNfe/k8LngrOFE1mdWcHPgwAGLvPjQoUNRX3/mpKQkg/8/++yzePbZZy3y2qRsbP5vuoauoSkpK3OCFWsEAXL5XHDWcCLrMistFRMTAycnJ2zYsAHx8fHo2LEjYmJikJubC2dnZ0vXkchkbP5vuvquoTnpnbh+IUiJH4ZPZw1ESvywRvVzsfTK2vxcEDkGs1puvvjiC0yaNAkTJ07E8ePH9UOttVotXnnlFezYscOilSQyB5v/m66ua2huekcOLRb8XBApn1ktNy+99BLWr1+PDRs2oFmzZvrt0dHROHbsmMUqR9RUlr7zd0TGrqG1OvzaCj8XRMpmVnBz5swZDBkypNZ2jUaDoqKiptaJiGSO6R3K15YjNbuQIxBJlsxKSwUEBODcuXMIDQ012J6SkoL27dtbol5EJHNM7zguziFFcmdWy82sWbMwf/58HDlyBCqVChcvXsTHH3+MhQsX4rHHHrN0HYlIppjecTxSzxVEtmePrXRmtdzEx8dDp9Nh+PDhKCsrw5AhQ6BWq7Fw4UI88cQTlq4jEckEl7OwH9Z6r+QwVxDZjr220pm1cGa1Gzdu4Ny5cygpKUF4eDg8PT0tWTerMGXhLSL6m71+ycmBrYNCa75XXPzTccjtvTbl99ustFQ1V1dXhIeHo3///nYR2BCReZiKMF9yei6iE/djwoYjiE7cj+T03Iaf1ATWfq/YmdxxmLpsipyYlZYiIsfCVIR5TF0w1BItPLZ4r9iZ3DHIZUZvczC4IaIG2fOXnJRMCTQslUqy1XslhwkZybqstcabLTQpLUVEjoGpCPM0drJDS6aS+F6RJZmzbIocsOWGiBqFqQjTNfbO19KpJL5XZEn22ErH4IaIGs0ev+Sk1phAwxqpJL5X5MiYliIisrKGJjtkKonIsthyQ0QkA0pJJXGiR5IDBjdERDJh76kkTvRIcsG0FBHVYo9ryTgiOb1PnOiR5IQtN0RkgHff9kFu7xMneiQ5YcsNEenx7ts+yPF9auycPkS2wOCGiPTseS0ZRyLH94kjvkhOmJYiIj0us2Af5Po+KWXEF9k/ttwQkR7vvu2DnN+nhub0IbIFlRBCNFxMOYqLi6HRaKDVauHt7S11dYhkKV9bzrtvO8D3iRyJKb/fTEsRUS32Pt/K7ZQ6sZzS3iciS2FwQ0SKJrch00RkfexzQ0SKJcch00RkfQxuiEix5Dhkmkjp5DBzNtNSRKRYch0yTaRUckkDs+WGiBRLzkOmiZRGTmlgttwQkaJxYjki25DT+mIMbohI8Thkmsj65JQGZlqKiIiIGq2uDsNySgOz5YaIiIyyp8kP7amu9qyhDsNySQMzuCEiu8MfMuuTy6iXxrCnutqzujoMD+nsa/B3KIc0MNNSDk4O8xEQmSI5PRfRifsxYcMRRCfuR3J6rtRVUhw5jXppiD3V1d7Z07xRbLlxYLzbIXvT2DtHaho5jXppiD3V1d7JqcNwQ9hy46B4t0P2yJ7uHO1Z9Y9YTQ39iEnVCmxOXck8cuow3BC23Dgo3u2QPbKnO0d7Vv0jtmRrFqqEaPBHTMpWYFPrSk0jlw7DDWFw46D4I0H2iD9kttPYHzE5pArt5QdXKeTQYbghkqalDh8+jHvuuQdt2rSBSqXCl19+2eBzDh48iD59+kCtVqNjx45ISkqyej2VyJ6aF4lqiusXgpT4Yfh01kCkxA9jPzErCtS4I6pD63q/F+SSKmxMXclxSNpyU1paioiICEyfPh3jxo1rsHxOTg7GjBmD2bNn4+OPP8a+ffswc+ZMBAYGIjY21gY1Vhbe7ZC9soc7R0fBVmCSI5UQQjRczPpUKhW2bduGsWPH1llm0aJF2L59O7KysvTbHn74YRQVFWHXrl2Nep3i4mJoNBpotVp4e3s3tdpERA4vOT23VqpwSGdfzkVEFmXK77dd9blJS0vDiBEjDLbFxsZiwYIFdT6noqICFRUV+v8XFxdbq3pERA7p9lbgw79eQXTifk4zQZKxq6HgBQUF8Pf3N9jm7++P4uJilJcbH36YkJAAjUajfwQHB9uiqkREDqW6zwsAi0wzwQlGqSnsKrgxx+LFi6HVavWPvLw8qatERKRYluhgzFmoqansKrgJCAjApUuXDLZdunQJ3t7ecHc3ntNVq9Xw9vY2eBCRdHfGvCNXtqZOqscJRskS7KrPTVRUFHbs2GGwbe/evYiKipKoRiRHXFSxYVJNusYlP5SvqXMRcYJRsgRJg5uSkhKcO3dO//+cnBxkZmaiVatWCAkJweLFi/HHH3/gww8/BADMnj0bb731Fp599llMnz4d+/fvx2effYbt27dLdQokM/zxbJhUk67JYbI3so2mTDPBoeVkCZKmpTIyMtC7d2/07t0bAPDUU0+hd+/eePHFFwEA+fn5yM39O9caFhaG7du3Y+/evYiIiMDq1avx3nvvcY4bAsDm7MaSatI1uUz2RrZh7qR6nGCULEHSlpuhQ4eivml2jM0+PHToUBw/ftyKtSJ7xebsxpHqzph35NRYnGCUmsquOhQT1YerAzeOVHfGvCMnU3A5BWoK2cxQbCucoVjZjM2Uyj43xuVryyW5M5bqdYnIOHsZhGHK7zeDG1Ic/ngSETWOPQ3CMOX3m2kpB6fEOUfYnE1E1DAlD8Kwq3luyLLsKWInIiLLUvIgDLbcOCglR+xERNQwJQ/CYHDjoDjnCBGRbcg1/a/kEYxMSzkozjlCRGR9ck//K3VOIbbcOCglR+xERHJgL+l/JQ7CYMuNA1NqxE5EJAdK7rArdwxuHFygxp1/ZEREVsD0v3SYliIiIrICpv+lw5YbIiIiK2H6XxoMboiIyC7Zy5pITP/bHoMbIiKyO3IfYk3SYp8bIiKyK/YyxNoRyHWCQrbcEBGRXeEQa3mQc+sZW26IiMiuKHlNJHsh99YzBjdERGRXOMTaNNZIHcl9fUKmpYiIyO5wiHXjWCt1JPcJCtlyQ0REdkmJayJZkjVTR3JvPWPLDRERkQJZu+O1nFvPGNwQEZFi2MvEfrZgi9SRXCcoZFrKzsh1TgEiIqklp+ciOnE/Jmw4gujE/UhOz5W6SpKSe+rImlRCCNFwMeUoLi6GRqOBVquFt7e31NUxiZznFCAiklK+thzRiftrtVKkxA9ziB/z+uRry2WZOjKVKb/fbLmxE3KfU4CISEpyH5osJUfseM3gxk7wD5eIqG6c2I9qYnBjJ+z9D5d9hYjImhy5fwnVxtFSdqL6D3fJ1ixUCWFXf7jsK6QsHI1CciXnoclkW+xQbGfsrWMYO/kpCwNVsjcMxpXDlN9vttzYGbnOKVAXrt6rHHV1ah/S2ZfvJckSg3HHxT43ZFX23leI/sZO7WRPHGmEKfs01sbghqyKnfyUg4Eq2RNHCcY5caFxTEuR1Smhkx/z9vbdqZ0cj9xXrbYEporrxuCGbMLe+grVDGYO/3pF0Xl7UwI3JQSq5BgcIRhnn8a6Mbghus3tnRCFAKq/P5R2Z2ROh0t7C1TJcSk9GHeE1ilzsc8NUQ3GmnlvnytBKXl7R+pwSY5LyUsPsE9j3dhyQ1SDsWbe2ynlzohN2kT2T+mtU+ZicEMOy1hfE2PNvCoVoBKADsq6M2KTNimJI3f6Z6q4NgY35JDq6mtSVydEe7wzaujL3hE6XJJj4GR9dDtZLL/w9ttvY9WqVSgoKEBERATefPNN9O/f32jZpKQkTJs2zWCbWq3G9evXG/Va9r78AjVdY5aEsLdlLm5nype9vZ8rOTYu8eI4TPn9lrxDcXJyMp566iksXboUx44dQ0REBGJjY3H58uU6n+Pt7Y38/Hz948KFCzasMdm7xkzuZc+dEE3tKGzsXDnjKdkLR5msj0wjeXDz73//G7NmzcK0adMQHh6O9evXw8PDA++//36dz1GpVAgICNA//P39bVhjsndKn2m3qV/2nPGU7InS/56N4c1HwyQNbm7cuIGjR49ixIgR+m1OTk4YMWIE0tLS6nxeSUkJ2rVrh+DgYNx33304ffq0LapLCqH04ZNN+bLn8HCyN0r/e74dbz4aR9IOxYWFhaiqqqrV8uLv749ffvnF6HO6dOmC999/Hz179oRWq8W//vUvDBo0CKdPn0bbtm1rla+oqEBFRYX+/8XFxZY9CbJLSh4+2ZSOwhweTvZIyX/PNXG5hcazu9FSUVFRiIqK0v9/0KBB6NatG9555x2sXLmyVvmEhAQsX77cllUkO6Hk4ZPVX/bHLvwFnRCIDG3VqOdxeDjZKyX/PVfjzUfjSZqW8vHxgbOzMy5dumSw/dKlSwgICGjUMZo1a4bevXvj3LlzRvcvXrwYWq1W/8jLy2tyvYnsweFfr+CJT4/jiU8zG9187WhN/ET2xBH7F5lL0uDG1dUVffv2xb59+/TbdDod9u3bZ9A6U5+qqiqcOnUKgYGBRver1Wp4e3sbPIiUril9Z+L6hSAlfhg+nTUQKfHDOF8IkUzw5qPxJE9LPfXUU5gyZQoiIyPRv39/rFmzBqWlpfq5bCZPnoygoCAkJCQAAFasWIGBAweiY8eOKCoqwqpVq3DhwgXMnDlTytMgkpWmNl87QhM/kdwZm4jTUfoXNZXkwU1cXByuXLmCF198EQUFBejVqxd27dql72Scm5sLJ6e/G5j++usvzJo1CwUFBWjZsiX69u2L1NRUhIeHS3UKRLLDvjNE9q2+iTh589EwWcxQbEucoZgcRXJ6bq0RU0wxEckfZ102zpTfb8lbbojIOth8TWQ/aqagOCqq6RjcECkYm6+J5O/2FNSi0V2ZVm4iyZdfICIiclTGRja+tvMMFo3qylFRTcCWGyIiIonUlYLq2bYFUuKHMa1sJgY3REREEqlvZCPTyuZjWoqIiEginJjPOthyQ0REJCGObLQ8BjdEREQSYwrKspiWIiIiMiJfW47U7MJGrclG8sKWGyIiotvUt/wByR9bbmSAdwdERPJhbO6ZJVuz+B1tR9hyIzHeHRARyQuXP7B/bLmREO8OiIikUV+LefXcMzVx+QP7wuBGQvXdHRARkXUkp+ciOnE/Jmw4gujE/UhOzzXYz7ln7B/TUhKqb2ZKIiKyvLpazId09jUIXjj3jH1jy42EeHdARGRbprSYB2rcEdWhNb+T7RBbbiTGuwMiItthi7ljYMuNDPDuwP5w+D6RfWKLuWNgyw2RiTh8n8i+scVc+dhyQ2QCDt8nUga2mCsbgxsiE3D4PhGR/DG4ITIBJ/ciIpI/BjdEJmBnRCIi+WOHYiITsTMiEZG8MbghMkOgxp1BDRGRTDEtRURERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdEREQWxvXnpMXRUkRERBbE9eekx5YbIiOkuOuy5GvyrpFIGlx/Th7YckN0Gynuuiz5mrxrJJJOfevPcW4s22HLDVENUtx1WfI1eddIZD2NaRE1tv4cAJz8o8h6FaNaGNwQ1SDFqt+WfE2uWk5kHcnpuYhO3I8JG44gOnE/3jmcbTTQCdS4Y9GorrWe/9rOM7zJsCGmpYhqqL7rqhkgWHvVb1NfM19bjpzCUoT5NK/VzC1F/YmUzliLaMKOXwAYT/32aKupdQympmyLLTdENUix6rcpr3n73WNyeq7k9SdSOmMtotWMpX6NpaZ4k2FbKiFEHW+ZMhUXF0Oj0UCr1cLb21vq6pBM5WvLbb7qd0Ovma8tR3Ti/lqtMinxw2qVl6L+REpl7G/vdp/OGoioDq31/09Oz8WSrVmoEkJ/k8GO/U1jyu8301JERkix6ndDr2nKKAyuWk5kOdUtotXByu2MtcrE9QvBkM6+vMmQCIMbIjvB/jRE0qkZrJz8vQiv7Tpj0CpTM3ip2S+uZmsO2Q6DGyI7cfvdI/vTENlWdYtoVIfWuLdXG6OtMpxnSh5k0aH47bffRmhoKNzc3DBgwAD8+OOP9ZbfsmULunbtCjc3N/To0QM7duywUU2JpBXXLwQp8cPw6ayBSIkfxi9NIolUBzm3t9hwnil5kDy4SU5OxlNPPYWlS5fi2LFjiIiIQGxsLC5fvmy0fGpqKsaPH48ZM2bg+PHjGDt2LMaOHYusrCwb15xIGsa+VIlIepxnSj4kHy01YMAA9OvXD2+99RYAQKfTITg4GE888QTi4+NrlY+Li0NpaSm+/fZb/baBAweiV69eWL9+fYOvx9FSRERkDaaMaCTTmfL7LWnLzY0bN3D06FGMGDFCv83JyQkjRoxAWlqa0eekpaUZlAeA2NjYOstXVFSguLjY4EFERGRpnGdKPiTtUFxYWIiqqir4+/sbbPf398cvv/xi9DkFBQVGyxcUFBgtn5CQgOXLl1umwkRERPXgEHB5kLzPjbUtXrwYWq1W/8jLy5O6SkREpGDsFyc9SVtufHx84OzsjEuXLhlsv3TpEgICAow+JyAgwKTyarUaarXaMhUmIiIi2ZO05cbV1RV9+/bFvn379Nt0Oh327duHqKgoo8+JiooyKA8Ae/furbM8ERERORbJJ/F76qmnMGXKFERGRqJ///5Ys2YNSktLMW3aNADA5MmTERQUhISEBADA/PnzERMTg9WrV2PMmDHYvHkzMjIy8O6770p5GkRERCQTkgc3cXFxuHLlCl588UUUFBSgV69e2LVrl77TcG5uLpyc/m5gGjRoED755BM8//zzWLJkCTp16oQvv/wS3bt3l+oUiIiISEYkn+fG1jjPDRERkf2xm3luiIiIiCyNwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaJIPs+NrVWPfOfq4ERERPaj+ne7MTPYOFxwc+3aNQBAcHCwxDUhIiIiU127dg0ajabeMg43iZ9Op8PFixfh5eUFlUrV6OcVFxcjODgYeXl5Dj35H68Dr0E1XodbeB14DarxOtxiresghMC1a9fQpk0bg5ULjHG4lhsnJye0bdvW7Od7e3s79Ie2Gq8Dr0E1XodbeB14DarxOtxijevQUItNNXYoJiIiIkVhcENERESKwuCmkdRqNZYuXQq1Wi11VSTF68BrUI3X4RZeB16DarwOt8jhOjhch2IiIiJSNrbcEBERkaIwuCEiIiJFYXBDREREisLghoiIiBTFoYObdevWoWfPnvqJhqKiorBz5079/uvXr2POnDlo3bo1PD098cADD+DSpUsGx8jNzcWYMWPg4eEBPz8/PPPMM6isrLT1qVhMYmIiVCoVFixYoN/mCNdh2bJlUKlUBo+uXbvq9zvCNaj2xx9/4JFHHkHr1q3h7u6OHj16ICMjQ79fCIEXX3wRgYGBcHd3x4gRI3D27FmDY1y9ehUTJ06Et7c3WrRogRkzZqCkpMTWp2K20NDQWp8HlUqFOXPmAHCMz0NVVRVeeOEFhIWFwd3dHR06dMDKlSsN1vVxhM8CcGu6/wULFqBdu3Zwd3fHoEGDkJ6ert+vxOtw+PBh3HPPPWjTpg1UKhW+/PJLg/2WOueTJ0/izjvvhJubG4KDg/Haa69Z5gSEA/v666/F9u3bxa+//irOnDkjlixZIpo1ayaysrKEEELMnj1bBAcHi3379omMjAwxcOBAMWjQIP3zKysrRffu3cWIESPE8ePHxY4dO4SPj49YvHixVKfUJD/++KMIDQ0VPXv2FPPnz9dvd4TrsHTpUnHHHXeI/Px8/ePKlSv6/Y5wDYQQ4urVq6Jdu3Zi6tSp4siRI+K3334Tu3fvFufOndOXSUxMFBqNRnz55ZfixIkT4t577xVhYWGivLxcX2bUqFEiIiJC/PDDD+J///uf6Nixoxg/frwUp2SWy5cvG3wW9u7dKwCIAwcOCCEc4/Pw8ssvi9atW4tvv/1W5OTkiC1btghPT0+xdu1afRlH+CwIIcRDDz0kwsPDxaFDh8TZs2fF0qVLhbe3t/j999+FEMq8Djt27BDPPfec2Lp1qwAgtm3bZrDfEues1WqFv7+/mDhxosjKyhKffvqpcHd3F++8806T6+/QwY0xLVu2FO+9954oKioSzZo1E1u2bNHv+/nnnwUAkZaWJoS49eY7OTmJgoICfZl169YJb29vUVFRYfO6N8W1a9dEp06dxN69e0VMTIw+uHGU67B06VIRERFhdJ+jXAMhhFi0aJEYPHhwnft1Op0ICAgQq1at0m8rKioSarVafPrpp0IIIX766ScBQKSnp+vL7Ny5U6hUKvHHH39Yr/JWNH/+fNGhQweh0+kc5vMwZswYMX36dINt48aNExMnThRCOM5noaysTDg7O4tvv/3WYHufPn3Ec8895xDX4fbgxlLn/J///Ee0bNnS4G9i0aJFokuXLk2us0OnpWqqqqrC5s2bUVpaiqioKBw9ehQ3b97EiBEj9GW6du2KkJAQpKWlAQDS0tLQo0cP+Pv768vExsaiuLgYp0+ftvk5NMWcOXMwZswYg/MF4FDX4ezZs2jTpg3at2+PiRMnIjc3F4BjXYOvv/4akZGR+Oc//wk/Pz/07t0bGzZs0O/PyclBQUGBwbXQaDQYMGCAwbVo0aIFIiMj9WVGjBgBJycnHDlyxHYnYyE3btzApk2bMH36dKhUKof5PAwaNAj79u3Dr7/+CgA4ceIEUlJSMHr0aACO81morKxEVVUV3NzcDLa7u7sjJSXFYa5DTZY657S0NAwZMgSurq76MrGxsThz5gz++uuvJtXR4RbOvN2pU6cQFRWF69evw9PTE9u2bUN4eDgyMzPh6uqKFi1aGJT39/dHQUEBAKCgoMDgy6t6f/U+e7F582YcO3bMIIdcraCgwCGuw4ABA5CUlIQuXbogPz8fy5cvx5133omsrCyHuQYA8Ntvv2HdunV46qmnsGTJEqSnp2PevHlwdXXFlClT9Odi7FxrXgs/Pz+D/S4uLmjVqpVdXYtqX375JYqKijB16lQAjvM3ER8fj+LiYnTt2hXOzs6oqqrCyy+/jIkTJwKAw3wWvLy8EBUVhZUrV6Jbt27w9/fHp59+irS0NHTs2NFhrkNNljrngoIChIWF1TpG9b6WLVuaXUeHD266dOmCzMxMaLVafP7555gyZQoOHTokdbVsJi8vD/Pnz8fevXtr3Zk4kuq7UQDo2bMnBgwYgHbt2uGzzz6Du7u7hDWzLZ1Oh8jISLzyyisAgN69eyMrKwvr16/HlClTJK6dNP773/9i9OjRaNOmjdRVsanPPvsMH3/8MT755BPccccdyMzMxIIFC9CmTRuH+yx89NFHmD59OoKCguDs7Iw+ffpg/PjxOHr0qNRVozo4fFrK1dUVHTt2RN++fZGQkICIiAisXbsWAQEBuHHjBoqKigzKX7p0CQEBAQCAgICAWiMkqv9fXUbujh49isuXL6NPnz5wcXGBi4sLDh06hDfeeAMuLi7w9/d3iOtwuxYtWqBz5844d+6cw3wWACAwMBDh4eEG27p166ZP0VWfi7FzrXktLl++bLC/srISV69etatrAQAXLlzAd999h5kzZ+q3Ocrn4ZlnnkF8fDwefvhh9OjRA5MmTcKTTz6JhIQEAI71WejQoQMOHTqEkpIS5OXl4ccff8TNmzfRvn17h7oO1Sx1ztb8O3H44OZ2Op0OFRUV6Nu3L5o1a4Z9+/bp9505cwa5ubmIiooCAERFReHUqVMGb+DevXvh7e1d6wdCroYPH45Tp04hMzNT/4iMjMTEiRP1/3aE63C7kpISZGdnIzAw0GE+CwAQHR2NM2fOGGz79ddf0a5dOwBAWFgYAgICDK5FcXExjhw5YnAtioqKDO5q9+/fD51OhwEDBtjgLCxn48aN8PPzw5gxY/TbHOXzUFZWBicnw58IZ2dn6HQ6AI73WQCA5s2bIzAwEH/99Rd2796N++67zyGvg6XOOSoqCocPH8bNmzf1Zfbu3YsuXbo0KSUFwLGHgsfHx4tDhw6JnJwccfLkSREfHy9UKpXYs2ePEOLWcM+QkBCxf/9+kZGRIaKiokRUVJT++dXDPUeOHCkyMzPFrl27hK+vr10N9zSm5mgpIRzjOjz99NPi4MGDIicnR3z//fdixIgRwsfHR1y+fFkI4RjXQIhb0wG4uLiIl19+WZw9e1Z8/PHHwsPDQ2zatElfJjExUbRo0UJ89dVX4uTJk+K+++4zOgS0d+/e4siRIyIlJUV06tRJ1sNejamqqhIhISFi0aJFtfY5wudhypQpIigoSD8UfOvWrcLHx0c8++yz+jKO8lnYtWuX2Llzp/jtt9/Enj17REREhBgwYIC4ceOGEEKZ1+HatWvi+PHj4vjx4wKA+Pe//y2OHz8uLly4IISwzDkXFRUJf39/MWnSJJGVlSU2b94sPDw8OBS8qaZPny7atWsnXF1dha+vrxg+fLg+sBFCiPLycvH444+Lli1bCg8PD3H//feL/Px8g2OcP39ejB49Wri7uwsfHx/x9NNPi5s3b9r6VCzq9uDGEa5DXFycCAwMFK6uriIoKEjExcUZzO3iCNeg2jfffCO6d+8u1Gq16Nq1q3j33XcN9ut0OvHCCy8If39/oVarxfDhw8WZM2cMyvz5559i/PjxwtPTU3h7e4tp06aJa9eu2fI0mmz37t0CQK1zE8IxPg/FxcVi/vz5IiQkRLi5uYn27duL5557zmDYrqN8FpKTk0X79u2Fq6urCAgIEHPmzBFFRUX6/Uq8DgcOHBAAaj2mTJkihLDcOZ84cUIMHjxYqNVqERQUJBITEy1Sf5UQNaabJCIiIrJz7HNDREREisLghoiIiBSFwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBDRI0ydOhQLFiwQOpqWN2yZcvQq1cvqatBRE3A4IaIHMKNGzds+npCCFRWVtr0NYnoFgY3RNSgqVOn4tChQ1i7di1UKhVUKhXOnz+PrKwsjB49Gp6envD398ekSZNQWFiof97QoUPxxBNPYMGCBWjZsiX8/f2xYcMGlJaWYtq0afDy8kLHjh2xc+dO/XMOHjwIlUqF7du3o2fPnnBzc8PAgQORlZVlUKeUlBTceeedcHd3R3BwMObNm4fS0lL9/tDQUKxcuRKTJ0+Gt7c3Hn30UQDAokWL0LlzZ3h4eKB9+/Z44YUX9KsSJyUlYfny5Thx4oT+PJOSknD+/HmoVCpkZmbqj19UVASVSoWDBw8a1Hvnzp3o27cv1Go1UlJSoNPpkJCQgLCwMLi7uyMiIgKff/65pd8iIqqBwQ0RNWjt2rWIiorCrFmzkJ+fj/z8fHh5eeGuu+5C7969kZGRgV27duHSpUt46KGHDJ77wQcfwMfHBz/++COeeOIJPPbYY/jnP/+JQYMG4dixYxg5ciQmTZqEsrIyg+c988wzWL16NdLT0+Hr64t77rlHH4RkZ2dj1KhReOCBB3Dy5EkkJycjJSUFc+fONTjGv/71L0REROD48eN44YUXAABeXl5ISkrCTz/9hLVr12LDhg14/fXXAQBxcXF4+umncccdd+jPMy4uzqRrFR8fj8TERPz888/o2bMnEhIS8OGHH2L9+vU4ffo0nnzySTzyyCM4dOiQScclIhNYZPlNIlK821eLX7lypRg5cqRBmby8PIOVtGNiYsTgwYP1+ysrK0Xz5s3FpEmT9Nvy8/MFAJGWliaE+Hs14s2bN+vL/Pnnn8Ld3V0kJycLIYSYMWOGePTRRw1e+3//+59wcnIS5eXlQggh2rVrJ8aOHdvgea1atUr07dtX//+lS5eKiIgIgzI5OTkCgDh+/Lh+219//SUAiAMHDhjU+8svv9SXuX79uvDw8BCpqakGx5sxY4YYP358g3UjIvO4SBlYEZH9OnHiBA4cOABPT89a+7Kzs9G5c2cAQM+ePfXbnZ2d0bp1a/To0UO/zd/fHwBw+fJlg2NERUXp/92qVSt06dIFP//8s/61T548iY8//lhfRggBnU6HnJwcdOvWDQAQGRlZq27Jycl44403kJ2djZKSElRWVsLb29vk869Lzdc8d+4cysrKcPfddxuUuXHjBnr37m2x1yQiQwxuiMgsJSUluOeee/Dqq6/W2hcYGKj/d7NmzQz2qVQqg20qlQoAoNPpTHrt//u//8O8efNq7QsJCdH/u3nz5gb70tLSMHHiRCxfvhyxsbHQaDTYvHkzVq9eXe/rOTndyuALIfTbqlNkt6v5miUlJQCA7du3IygoyKCcWq2u9zWJyHwMboioUVxdXVFVVaX/f58+ffDFF18gNDQULi6W/yr54Ycf9IHKX3/9hV9//VXfItOnTx/89NNP6Nixo0nHTE1NRbt27fDcc8/pt124cMGgzO3nCQC+vr4AgPz8fH2LS83OxXUJDw+HWq1Gbm4uYmJiTKorEZmPHYqJqFFCQ0Nx5MgRnD9/HoWFhZgzZw6uXr2K8ePHIz09HdnZ2di9ezemTZtWKzgwx4oVK7Bv3z5kZWVh6tSp8PHxwdixYwHcGvGUmpqKuXPnIjMzE2fPnsVXX31Vq0Px7Tp16oTc3Fxs3rwZ2dnZeOONN7Bt27Za55mTk4PMzEwUFhaioqIC7u7uGDhwoL6j8KFDh/D88883eA5eXl5YuHAhnnzySXzwwQfIzs7GsWPH8Oabb+KDDz4w+9oQUf0Y3BBRoyxcuBDOzs4IDw+Hr68vbty4ge+//x5VVVUYOXIkevTogQULFqBFixb6NE5TJCYmYv78+ejbty8KCgrwzTffwNXVFcCtfjyHDh3Cr7/+ijvvvBO9e/fGiy++iDZt2tR7zHvvvRdPPvkk5s6di169eiE1NVU/iqraAw88gFGjRmHYsGHw9fXFp59+CgB4//33UVlZib59+2LBggV46aWXGnUeK1euxAsvvICEhAR069YNo0aNwvbt2xEWFmbGVSGixlCJmklkIiKJHTx4EMOGDcNff/2FFi1aSF0dIrJDbLkhIiIiRWFwQ0RERIrCtBQREREpCltuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuiIiISFH+P6mFqBfr0aimAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASSNJREFUeJzt3Xl4VOXB/vF7EkhIIAlLVjCQALIJBGQNIItSEXlV1NYUFxZBXxWUxS1oFVyD9WfFqgXFKipVqIpL3SmbjVALQhSsRYmBRElYxCSsATLP7w/eTDNknclMZubM93NduS4458zMc86cmbnPsx2bMcYIAADAIkJ8XQAAAABPItwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdwA8In58+fLZrPVa1ubzab58+d7tTwjR47UyJEj/fb5ANQf4QYIckuXLpXNZnP8NWnSRO3atdPkyZP1008/+bp4ficlJcXpeMXHx+u8887T22+/7ZHnP3r0qObPn69169Z55PmAYES4ASBJevDBB/Xqq69q8eLFGjt2rJYtW6YRI0bo+PHjXnm93/3udzp27JhXntvb+vTpo1dffVWvvvqq7rjjDu3Zs0dXXHGFFi9e3ODnPnr0qB544AHCDdAATXxdAAD+YezYserfv78kadq0aYqNjdVjjz2m9957T1dddZXHX69JkyZq0iQwv4LatWuna6+91vH/iRMnqnPnznryySd10003+bBkACRqbgDU4LzzzpMk5ebmOi3/z3/+o1//+tdq3bq1mjVrpv79++u9995z2ubkyZN64IEHdPbZZ6tZs2Zq06aNhg0bplWrVjm2qa7PTVlZmWbPnq24uDhFRUXp0ksv1Y8//lilbJMnT1ZKSkqV5dU950svvaTzzz9f8fHxCg8PV48ePbRo0SKXjkVdEhMT1b17d+Xl5dW63b59+zR16lQlJCSoWbNmSktL08svv+xYv2vXLsXFxUmSHnjgAUfTl7f7GwFWE5iXTQC8bteuXZKkVq1aOZZ98803Gjp0qNq1a6fMzEw1b95cf/3rXzV+/Hi99dZbuvzyyyWdDhlZWVmaNm2aBg4cqNLSUm3evFlbtmzRr371qxpfc9q0aVq2bJmuvvpqDRkyRGvWrNG4ceMatB+LFi3SOeeco0svvVRNmjTR3/72N91yyy2y2+2aPn16g567wsmTJ1VQUKA2bdrUuM2xY8c0cuRI7dy5UzNmzFBqaqreeOMNTZ48WcXFxZo5c6bi4uK0aNEi3Xzzzbr88st1xRVXSJJ69+7tkXICQcMACGovvfSSkWT+/ve/m/3795uCggLz5ptvmri4OBMeHm4KCgoc215wwQWmV69e5vjx445ldrvdDBkyxJx99tmOZWlpaWbcuHG1vu68efNM5a+gnJwcI8nccsstTttdffXVRpKZN2+eY9mkSZNMhw4d6nxOY4w5evRole3GjBljOnbs6LRsxIgRZsSIEbWW2RhjOnToYC688EKzf/9+s3//fvPVV1+Z3/72t0aSufXWW2t8voULFxpJZtmyZY5lJ06cMOnp6aZFixamtLTUGGPM/v37q+wvANfQLAVAkjR69GjFxcUpOTlZv/71r9W8eXO99957OuussyRJBw8e1Jo1a3TVVVfp0KFDOnDggA4cOKCff/5ZY8aM0ffff+8YXdWyZUt98803+v777+v9+h9++KEk6bbbbnNaPmvWrAbtV0REhOPfJSUlOnDggEaMGKEffvhBJSUlbj3np59+qri4OMXFxSktLU1vvPGGrrvuOj322GM1PubDDz9UYmKiJkyY4FjWtGlT3XbbbTp8+LDWr1/vVlkAVEWzFABJ0rPPPqsuXbqopKREL774oj777DOFh4c71u/cuVPGGN1333267777qn2Offv2qV27dnrwwQd12WWXqUuXLurZs6cuuugiXXfddbU2r+zevVshISHq1KmT0/KuXbs2aL8+//xzzZs3Txs3btTRo0ed1pWUlCgmJsbl5xw0aJAefvhh2Ww2RUZGqnv37mrZsmWtj9m9e7fOPvtshYQ4X1N2797dsR6AZxBuAEiSBg4c6BgtNX78eA0bNkxXX321duzYoRYtWshut0uS7rjjDo0ZM6ba5+jcubMkafjw4crNzdW7776rTz/9VC+88IKefPJJLV68WNOmTWtwWWua/K+8vNzp/7m5ubrgggvUrVs3/eEPf1BycrLCwsL04Ycf6sknn3Tsk6tiY2M1evRotx4LwPsINwCqCA0NVVZWlkaNGqVnnnlGmZmZ6tixo6TTTSn1+WFv3bq1pkyZoilTpujw4cMaPny45s+fX2O46dChg+x2u3Jzc51qa3bs2FFl21atWqm4uLjK8jNrP/72t7+prKxM7733ntq3b+9Yvnbt2jrL72kdOnTQ119/Lbvd7lR785///MexXqo5uAGoP/rcAKjWyJEjNXDgQC1cuFDHjx9XfHy8Ro4cqeeee06FhYVVtt+/f7/j3z///LPTuhYtWqhz584qKyur8fXGjh0rSfrjH//otHzhwoVVtu3UqZNKSkr09ddfO5YVFhZWmSU4NDRUkmSMcSwrKSnRSy+9VGM5vOXiiy9WUVGRVqxY4Vh26tQpPf3002rRooVGjBghSYqMjJSkasMbgPqh5gZAje6880795je/0dKlS3XTTTfp2Wef1bBhw9SrVy/dcMMN6tixo/bu3auNGzfqxx9/1FdffSVJ6tGjh0aOHKl+/fqpdevW2rx5s958803NmDGjxtfq06ePJkyYoD/96U8qKSnRkCFDtHr1au3cubPKtr/97W9199136/LLL9dtt92mo0ePatGiRerSpYu2bNni2O7CCy9UWFiYLrnkEv3v//6vDh8+rCVLlig+Pr7agOZNN954o5577jlNnjxZX375pVJSUvTmm2/q888/18KFCxUVFSXpdAfoHj16aMWKFerSpYtat26tnj17qmfPno1aXiCg+Xq4FgDfqhgKvmnTpirrysvLTadOnUynTp3MqVOnjDHG5ObmmokTJ5rExETTtGlT065dO/M///M/5s0333Q87uGHHzYDBw40LVu2NBEREaZbt27mkUceMSdOnHBsU92w7WPHjpnbbrvNtGnTxjRv3txccsklpqCgoNqh0Z9++qnp2bOnCQsLM127djXLli2r9jnfe+8907t3b9OsWTOTkpJiHnvsMfPiiy8aSSYvL8+xnStDwesa5l7T8+3du9dMmTLFxMbGmrCwMNOrVy/z0ksvVXnshg0bTL9+/UxYWBjDwgE32IypVF8LAAAQ4OhzAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALCXoJvGz2+3as2ePoqKimOYcAIAAYYzRoUOH1LZt2yo3oD1T0IWbPXv2KDk52dfFAAAAbigoKNBZZ51V6zZBF24qpjgvKChQdHS0j0sDAADqo7S0VMnJyY7f8doEXbipaIqKjo4m3AAAEGDq06WEDsUAAMBSCDcAAMBSCDcAAMBSgq7PDQAgeJSXl+vkyZO+LgbqKSwsrM5h3vVBuAEAWI4xRkVFRSouLvZ1UeCCkJAQpaamKiwsrEHPQ7gBAFhORbCJj49XZGQkk7YGgIpJdgsLC9W+ffsGvWeEGwCApZSXlzuCTZs2bXxdHLggLi5Oe/bs0alTp9S0aVO3n4cOxQAAS6noYxMZGenjksBVFc1R5eXlDXoewg0AwJJoigo8nnrPCDcAAMBSCDcAAKBRrFu3Tjabzeuj2Ag3HlRYckwbcg+osOSYr4sCAAhC8+fPV58+fXxdDJ9jtJSHrNiUr7krt8lupBCblHVFL2UMaO/rYgEAUMXJkycbNBrJ31Fz4wGFJcccwUaS7Ea6Z+V2anAAAC6x2+3KyspSamqqIiIilJaWpjfffFPSf5t0Vq9erf79+ysyMlJDhgzRjh07JElLly7VAw88oK+++ko2m002m01Lly6VdLqj7qJFi3TppZeqefPmeuSRR2otR8VrffLJJ+rbt68iIiJ0/vnna9++ffroo4/UvXt3RUdH6+qrr9bRo0cdjysrK9Ntt92m+Ph4NWvWTMOGDdOmTZu8c7BqQbjxgLwDRxzBpkK5Mdp14Gj1DwAABIzG7HKQlZWlV155RYsXL9Y333yj2bNn69prr9X69esd29x777164okntHnzZjVp0kTXX3+9JCkjI0O33367zjnnHBUWFqqwsFAZGRmOx82fP1+XX365tm3b5nhMXebPn69nnnlGGzZsUEFBga666iotXLhQr732mj744AN9+umnevrppx3b33XXXXrrrbf08ssva8uWLercubPGjBmjgwcPeugI1Q/NUh6QGttcITY5BZxQm00pscyxAACBrDG7HJSVlenRRx/V3//+d6Wnp0uSOnbsqOzsbD333HO68cYbJUmPPPKIRowYIUnKzMzUuHHjdPz4cUVERKhFixZq0qSJEhMTqzz/1VdfrSlTprhUpocfflhDhw6VJE2dOlVz585Vbm6uOnbsKEn69a9/rbVr1+ruu+/WkSNHtGjRIi1dulRjx46VJC1ZskSrVq3Sn//8Z915553uHRg3UHPjAUkxEcq6opdC/298fqjNpkev6KmkmAgflwwA4K7G7nKwc+dOHT16VL/61a/UokULx98rr7yi3Nxcx3a9e/d2/DspKUmStG/fvjqfv3///i6XqfJrJSQkKDIy0hFsKpZVvHZubq5OnjzpCEOS1LRpUw0cOFDffvuty6/dENTceEjGgPYa3iVOuw4cVUpsJMEGAAJcbV0OvPEdf/jwYUnSBx98oHbt2jmtCw8PdwScyh2BKya9s9vtdT5/8+bNXS7Tma91Zidkm81Wr9dubIQbD0qKiSDUAIBFNHaXgx49eig8PFz5+fmOZqfKKtfe1CQsLKzBty5wV6dOnRQWFqbPP/9cHTp0kHR6VNamTZs0a9asRi0L4QYAgGpUdDm4Z+V2lRvj9S4HUVFRuuOOOzR79mzZ7XYNGzZMJSUl+vzzzxUdHe0IDLVJSUlRXl6ecnJydNZZZykqKkrh4eFeKe+Zmjdvrptvvll33nmnWrdurfbt2+v3v/+9jh49qqlTpzZKGSoQbgAAqEFjdzl46KGHFBcXp6ysLP3www9q2bKlzj33XN1zzz31av658sortXLlSo0aNUrFxcV66aWXNHnyZK+WubIFCxbIbrfruuuu06FDh9S/f3998sknatWqVaOVQZJsxhhT92bWUVpaqpiYGJWUlCg6OtrXxQEAeNjx48eVl5en1NRUNWvWzNfFgQtqe+9c+f1mtBQAALAUwg0AAEHmpptuchpuXvnvpptu8nXxGow+NwAABJkHH3xQd9xxR7XrrNBlg3ADAECQiY+PV3x8vK+L4TU0SwEAAEsh3AAALMkfZ85F7Tw1gJtmKQCApYSFhSkkJER79uxRXFycwsLCHLcpgP8yxmj//v3V3ubBVYQbAIClhISEKDU1VYWFhdqzZ4+viwMX2Gw2nXXWWQoNDW3Q8xBuAACWExYWpvbt2+vUqVM+u9cSXNe0adMGBxuJcAMAsKiK5o2GNnEg8NChGAAAWArhBgAAWIpPw01WVpYGDBigqKgoxcfHa/z48dqxY0etj1m6dKlsNpvTHzdGAwAAFXwabtavX6/p06frn//8p1atWqWTJ0/qwgsv1JEjR2p9XHR0tAoLCx1/u3fvbqQSAwAAf+fTDsUff/yx0/+XLl2q+Ph4ffnllxo+fHiNj7PZbEpMTPR28QAAQADyqz43JSUlkqTWrVvXut3hw4fVoUMHJScn67LLLtM333zTGMUDAAABwG/Cjd1u16xZszR06FD17Nmzxu26du2qF198Ue+++66WLVsmu92uIUOG6Mcff6x2+7KyMpWWljr9AQAA67IZT93IoYFuvvlmffTRR8rOztZZZ51V78edPHlS3bt314QJE/TQQw9VWT9//nw98MADVZaXlJRY4rbuAAAEg9LSUsXExNTr99svam5mzJih999/X2vXrnUp2EinZzPs27evdu7cWe36uXPnqqSkxPFXUFDgiSIDAAA/5dMOxcYY3XrrrXr77be1bt06paamuvwc5eXl2rZtmy6++OJq14eHhys8PLyhRQUAAAHCp+Fm+vTpeu211/Tuu+8qKipKRUVFkqSYmBhFRERIkiZOnKh27dopKytLkvTggw9q8ODB6ty5s4qLi/X4449r9+7dmjZtms/2AwAA+A+fhptFixZJkkaOHOm0/KWXXtLkyZMlSfn5+QoJ+W/r2S+//KIbbrhBRUVFatWqlfr166cNGzaoR48ejVVsAADgx/ymQ3FjcaVDEgAA8A8B16EYAADAUwg3fqCw5Jg25B5QYckxXxcFAICA59M+N5BWbMrX3JXbZDdSiE3KuqKXMga093WxAAAIWNTc+FBhyTFHsJEku5HuWbmdGhwAABqAcONDeQeOOIJNhXJjtOvAUd8UCAAACyDc+FBqbHOF2JyXhdpsSomN9E2BAACwAMKNDyXFRCjril4KtZ1OOKE2mx69oqeSYiJ8XDIAAAIXHYp9LGNAew3vEqddB44qJTaSYAMAQAMRbvxAUkwEoQYAAA+hWQoAAFgK4QYAAFgK4cZLmHUYAADfoM+NFzDrMAAAvkPNjYcx6zAAAL5FuPEwZh0GAMC3CDcexqzDAAD4FuHGw5h1GAAA36JDsRcw6zAAAL5DuPESZh0GAMA3aJYCAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACWQrgBAACW4tNwk5WVpQEDBigqKkrx8fEaP368duzYUefj3njjDXXr1k3NmjVTr1699OGHHzZCaQEAQCDwabhZv369pk+frn/+859atWqVTp48qQsvvFBHjhyp8TEbNmzQhAkTNHXqVG3dulXjx4/X+PHjtX379kYsOQAA8Fc2Y4zxdSEq7N+/X/Hx8Vq/fr2GDx9e7TYZGRk6cuSI3n//fceywYMHq0+fPlq8eHGdr1FaWqqYmBiVlJQoOjraY2UHAADe48rvt1/1uSkpKZEktW7dusZtNm7cqNGjRzstGzNmjDZu3Fjt9mVlZSotLXX6AwAA1uU34cZut2vWrFkaOnSoevbsWeN2RUVFSkhIcFqWkJCgoqKiarfPyspSTEyM4y85Odmj5QYAAP7Fb8LN9OnTtX37di1fvtyjzzt37lyVlJQ4/goKCjz6/AAAwL808XUBJGnGjBl6//339dlnn+mss86qddvExETt3bvXadnevXuVmJhY7fbh4eEKDw/3WFkBAIB/82nNjTFGM2bM0Ntvv601a9YoNTW1zsekp6dr9erVTstWrVql9PR0bxUTAAAEEJ/W3EyfPl2vvfaa3n33XUVFRTn6zcTExCgiIkKSNHHiRLVr105ZWVmSpJkzZ2rEiBF64oknNG7cOC1fvlybN2/W888/77P9AAAA/sOnNTeLFi1SSUmJRo4cqaSkJMffihUrHNvk5+ersLDQ8f8hQ4botdde0/PPP6+0tDS9+eabeuedd2rthAwAAIKHX81z0xiY5wYAgMATsPPcAAAANBThBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWEqT+m5YWlpa7yeNjo52qzAAAAANVe9w07JlS9lstlq3McbIZrOpvLy8wQUDAABwR73Dzdq1a71ZDgAAAI+od7gZMWKEN8sBAADgEfUON2cqLi7Wn//8Z3377beSpHPOOUfXX3+9YmJiPFY4AAAAV7k1Wmrz5s3q1KmTnnzySR08eFAHDx7UH/7wB3Xq1Elbtmyp9/N89tlnuuSSS9S2bVvZbDa98847tW6/bt062Wy2Kn9FRUXu7AYAALAgt2puZs+erUsvvVRLlixRkyann+LUqVOaNm2aZs2apc8++6xez3PkyBGlpaXp+uuv1xVXXFHv19+xY4fTiKz4+HjXdgAAAFiWW+Fm8+bNTsFGkpo0aaK77rpL/fv3r/fzjB07VmPHjnX59ePj49WyZUuXHwcAAKzPrWap6Oho5efnV1leUFCgqKioBheqLn369FFSUpJ+9atf6fPPP69127KyMpWWljr9AQAA63Ir3GRkZGjq1KlasWKFCgoKVFBQoOXLl2vatGmaMGGCp8vokJSUpMWLF+utt97SW2+9peTkZI0cObLWfj5ZWVmKiYlx/CUnJ3utfAAAwPdsxhjj6oNOnDihO++8U4sXL9apU6ckSU2bNtXNN9+sBQsWKDw83PWC2Gx6++23NX78eJceN2LECLVv316vvvpqtevLyspUVlbm+H9paamSk5NVUlLCTMoAAASI0tJSxcTE1Ov3260+N2FhYXrqqaeUlZWl3NxcSVKnTp0UGRnpztM1yMCBA5WdnV3j+vDwcLfCFgAACExuz3MjSZGRkerVq5enyuKWnJwcJSUl+bQMAADAf7gVbo4fP66nn35aa9eu1b59+2S3253W13eum8OHD2vnzp2O/+fl5SknJ0etW7dW+/btNXfuXP3000965ZVXJEkLFy5UamqqzjnnHB0/flwvvPCC1qxZo08//dSd3QAAABbkVriZOnWqPv30U/3617/WwIED67yhZk02b96sUaNGOf4/Z84cSdKkSZO0dOlSFRYWOo3KOnHihG6//Xb99NNPioyMVO/evfX3v//d6TkAAEBwc6tDcUxMjD788EMNHTrUG2XyKlc6JAEAAP/gyu+3W0PB27Vr1yjz2QAAALjKrXDzxBNP6O6779bu3bs9XR4AAIAGcavPTf/+/XX8+HF17NhRkZGRatq0qdP6gwcPeqRwAAAArnIr3EyYMEE//fSTHn30USUkJLjdoRgAAMDT3Ao3GzZs0MaNG5WWlubp8gAAADSIW31uunXrpmPHjnm6LAAAAA3mVrhZsGCBbr/9dq1bt04///wzd90GAAB+w615bkJCTmeiM/vaGGNks9lUXl7umdJ5AfPcAAAQeLx+48y1a9e6VTAAAABvcyvcjBgxol7b3XLLLXrwwQcVGxvrzssAAAC4zK0+N/W1bNky+uAAAIBG5dVw40Z3HgAAgAbxargBAABobIQbAABgKYQbAABgKYQbAABQo8KSY9qQe0CFJYFzZwKXw82pU6f04IMP6scff6xz22uvvZaJ8gAACFArNuVr6II1unrJFxq6YI1WbMr3dZHqxa0ZiqOiorRt2zalpKR4oUjexQzFAADUrbDkmIYuWCN7pZQQarMpO3OUkmIiGr08rvx+u9Usdf7552v9+vVuFQ4AAPi/vANHnIKNJJUbo10HjvqmQC5wa4bisWPHKjMzU9u2bVO/fv3UvHlzp/WXXnqpRwoHAAB8IzW2uUJsqlJzkxIb6btC1VODbpxZ7RNy48wqCkuOKe/AEaXGNvdJVR4AAO5YsSlf96zcrnJjFGqz6dEreipjQHuflMXrN8602+1uFSwYrdiUr7krt8lupBCblHVFL5+dGAAAuCJjQHsN7xKnXQeOKiU2MmAu0N3qc/PKK6+orKysyvITJ07olVdeaXChrKKw5Jgj2Einq/buWbk9oIbTAQCCW1JMhNI7tQmYYCO5GW6mTJmikpKSKssPHTqkKVOmNLhQVhHInbEAAAhUboUbY4xsNluV5T/++KNiYmIaXCirqOiMVVmgdMYCACBQudTnpm/fvrLZbLLZbLrgggvUpMl/H15eXq68vDxddNFFHi9koEqKiVDWFb2qdMYKpKo9AAACjUvhZvz48ZKknJwcjRkzRi1atHCsCwsLU0pKiq688kqPFjDQBWpnLAAAApVL4WbevHmSpJSUFGVkZKhZs2ZeKZTVJMVEEGoAAGgkbg0FnzRpkqTTo6P27dtXZWh4+/YMdQYAAL7hVrj5/vvvdf3112vDhg1Oyys6GvvzJH4AAMDa3Ao3kydPVpMmTfT+++8rKSmp2pFTAAAAvuBWuMnJydGXX36pbt26ebo8AAAADeLWPDc9evTQgQMHPF0WAACABnMr3Dz22GO66667tG7dOv38888qLS11+gMAAPCVBt8VvHJ/m0DoUOyLu4IDAICG8fpdwdeuXetWwQAAALzNrWapESNGKCQkREuWLFFmZqY6d+6sESNGKD8/X6GhoZ4uIwAAQL25FW7eeustjRkzRhEREdq6davKysokSSUlJXr00Uc9WkAAAABXuBVuHn74YS1evFhLlixR06ZNHcuHDh2qLVu2eKxwAAAArnIr3OzYsUPDhw+vsjwmJkbFxcUNLRMAAIDb3Ao3iYmJ2rlzZ5Xl2dnZ6tixY4MLBQAA4C63ws0NN9ygmTNn6osvvpDNZtOePXv0l7/8RXfccYduvvlmT5cRAACg3twaCp6ZmSm73a4LLrhAR48e1fDhwxUeHq477rhDt956q6fLCACARxWWHFPegSNKjW2upJgIXxcHHubWJH4VTpw4oZ07d+rw4cPq0aOHWrRo4cmyeQWT+AFAcFuxKV9zV26T3UghNinril7KGNDe18VCHbw+iV+FsLAw9ejRoyFPAQBAoyksOeYINpJkN9I9K7dreJc4anAsxK0+NwAABKK8A0ccwaZCuTHadeCobwoEryDcAACCRmpsc4XYnJeF2mxKiY30TYHgFYQbAEDQSIqJUNYVvRT6fzd9DrXZ9OgVPWmSspgG9bkBACDQZAxor+Fd4rTrwFGlxEb6RbBh9JZnEW4AAEEnKSbCb0IEo7c8j2YpAAB8pKbRW4Ulx3xbsADn03Dz2Wef6ZJLLlHbtm1ls9n0zjvv1PmYdevW6dxzz1V4eLg6d+6spUuXer2cAAB4A6O3vMOn4ebIkSNKS0vTs88+W6/t8/LyNG7cOI0aNUo5OTmaNWuWpk2bpk8++cTLJQUAwPMYveUdPu1zM3bsWI0dO7be2y9evFipqal64oknJEndu3dXdna2nnzySY0ZM8ZbxQQAwCsqRm/ds3K7yo1h9JaHBFSH4o0bN2r06NFOy8aMGaNZs2bV+JiysjKVlZU5/l9aWuqt4gEA4DJ/HL0V6AKqQ3FRUZESEhKcliUkJKi0tFTHjlXf+SorK0sxMTGOv+Tk5MYoKgAA9ZYUE6H0Tm0INh4SUOHGHXPnzlVJSYnjr6CgwNdFAgAAXhRQzVKJiYnau3ev07K9e/cqOjpaERHVp93w8HCFh4c3RvEAv8GEYACCWUCFm/T0dH344YdOy1atWqX09HQflQjwP0wIBiDY+bRZ6vDhw8rJyVFOTo6k00O9c3JylJ+fL+l0k9LEiRMd299000364YcfdNddd+k///mP/vSnP+mvf/2rZs+e7YviA36HCcEAwMfhZvPmzerbt6/69u0rSZozZ4769u2r+++/X5JUWFjoCDqSlJqaqg8++ECrVq1SWlqannjiCb3wwgsMAwf+DxOCAYBkM8aYujezjtLSUsXExKikpETR0dG+Lg7gUYUlxzR0wRqngBNqsyk7cxR9bwAENFd+vy0/WgoIJhUTgoXaTk95yoRgAIJRQHUoBlC3yhOCRYaF6MiJchWWHCPgAAgahBvAgpJiIvTZd/sZNQUgKNEsBVgQo6YABDPCDWBBjJoCEMwIN4AFpcY2V4jNeVmozaaU2EjfFAgAGhHhBrAgRk0BCGZ0KAYsqvKoqZTYSIKNm7hPFxB4CDdBhi/q4JIUE8H73ADcpwsITISbIMIXNVB/NY04G94ljsAI+Dn63AQJhgYDrmHEGRC4CDdBoLDkmN7/eo9lv6gLS45pQ+4Bgho8ihFnQOCiWcriKjdFnSnUZlNkWIg25B4I2D44NLXBWypGnN2zcrvKjWHEGRBAuCu4hVV3h+gKoTabxvdtq7e3/hSwwYA7YKMxFJYcY8QZ4Ae4KzgkVd9nQJLuG9ddK29JdwQbKTD74NAnAvXVkKbLpJgIpXdqQ7ABAgjNUhZW0WfgzJqNi3sn1RoMfPUl7uow9Zr2jz4RqIymSyD4UHNjYbXNUutvnSVXbMrX0AVrdPWSLzR0wRqt2JRf52OYhRd1YZQgEJyoubG4mmap9afOkg2ZT4RZeN0XDBM6+mMNJQDvI9wEgZpmqfWXYNDQHyCrzMLbmGEjWJpqaLoEghPNUj7kD/Oz+ENnSX9rIvMFd5rl3BVMTTU0XQLBiZobH7HqlbM7tQ/+1ETmC409zb8VmmpcOc/8pYYSQOMh3PiAVe9Z05DAFsw/QI0dNgK9qcad88wqTZcA6odmKR+w4vwsnmjq8IcmMl9o7Ga5hjTV+LopNZia1AC4j5obHwj0K+fqWKGpw1d80SznTk2ZPzSlcp7VXzCMhgNqQrjxASv2MbFiYGtMvmiWc6Wpxl+aUjnP6scfgijgS4QbH7FaHxMrBrbG5k/9Qs686veXGhPOs7r5SxAFfIlw40P+9GPmCVYLbMGquqv+4V3iqtSYSNLXPxYrvVObRi0f51n1KgLpwSMn/CKIAr7EXcHh9+g70Hhqu9P6e1/tUdaH/3Hanruw+4fKgbSib3rlL3beJ1iBK7/f1NzAr9F3oHHV1vzUq11Mle2pEfC9M5uhjE4HnIqaNleb7riYgBUQbuBzNX2Z0neg8dXVYZfOvP6nukBqJD39275q0yLcpaY7Vy4mCEHwZ8xzA5+q7bYDVpwPyN/VNgcOtzLwTzXNk9QvpZVL80a5ModQY94uBHAHNTfwmbpqZmqrReCq0XsyBrRXt8Qobdr1iwaktFJaciundXTm9S+eGkFW3xFx1KgiEBBu4DN1fZnW9KX92Xf76YfjRXU1TVhtlJ8VeCJ01ncOobo+t1x4wB8QbuAz9fkyPfNLW5LTaB6uGj2Lq/LA1dDQWd8aoNo+twwAgL+gzw18pr59OCrfc4p+ON7F8Q1uGQPaKztzlF6/YbCyM0dVG0xq+txK4r5f8BvU3MCnXK1OZ/p97+L4oj41QNV9bjfkHmDyQPgNam7gc67cDZwRO97F8UV9nfm5bey72wO1YYZieIW3OxUWlhxjxI4XWeX40rm1ca3YlF+lzw59bqytMT9jrvx+E27gcXQqhD/gPPQNqwRj1K2xP2Ou/H7TLAWPcmUiMMBbOA89p7DkmDbkHqjz2FVsJ8mlyQMRmGr7jNX3nPEmOhTDo+o7ERjgTZyHnlHfK3NqyYJPTZ+xl7J36YXsH3x+LlBzA4+ySqdCf7jysKrGOLZWOQ99qb61X/5SS8ZntnFV9xkLkRzBRvJtjSnhBh5lhdE23DfHeyof2yFZa/ToB//2yhefFc5DX6vvnEc1bbdl9y+NFjb4zDa+6j5j085L9Zt5suhQDK8I1E6FhSXHnGZAlk5/aLMzR1W5vw6jcFxT3bGVvFt1HajnoT9w5bNw5nY2myRz+u7k3m6aqG854R2VP2OSvPpe0KEYPufK3DX+pD5Xq1wluqe6Yyt5t+o6UM9Df+DKDOKVtwupFGwk7zdNMKu2b1X+jPlTjSkdioFK6pqhl3svua+6Y1uBzr7+qb4ziFfe7sDh47r19Ryn9e6+v/WpIWVW7cZX2/viiZu4egLhBqikrpsHMgrHfRXHdu5b22Q/Yx0/Rv6rvjfkrNiusOSYR8JGfUdg1feGn/CM+rwvDb2JqycQboAzZAxor26JUdq06xcNSGmltORWjnVcJTZMxVVd5eGi/BhZiyfChqs1pP5SW2B1gVRzTbgBzlDblQlXiQ2XFBOhe8Z115RhKfwYWVRDw4Y7NaT+UFtgdYFUc024ASqpz5UJV4mewY+RtTXk/aWG1D8F0vvCaCmgkvqOvGAUDuA9VUZgSZo6LMWnZUJgzR/lF+Hm2WefVUpKipo1a6ZBgwbpX//6V43bLl26VDabzemvWbNmjVhaWBkz2wYfZrb1TxkD2is7c5RuPK+jZJOe/0eeW1Mv+MP76w9l8JSK9+X1GwYrO3OU395mw+fNUitWrNCcOXO0ePFiDRo0SAsXLtSYMWO0Y8cOxcfHV/uY6Oho7dixw/F/m81W7XYITg2ZYI8+NcGFeyL5vzOn85/71jY1D2+ifh1a1fm59If31x/K4GmB0KTs8xmKBw0apAEDBuiZZ56RJNntdiUnJ+vWW29VZmZmle2XLl2qWbNmqbi42K3XY4Zi/+GNWX499UXCzLbWx8y2/m9D7gFdveSLatfV9fn2h/fXH8pQH4Ey43rAzFB84sQJffnllxo9erRjWUhIiEaPHq2NGzfW+LjDhw+rQ4cOSk5O1mWXXaZvvvmmMYoLD/LGLL+evIEffWqsj5lt/V91zcQV6vp8+8P76w9lqItVZ1z3abg5cOCAysvLlZCQ4LQ8ISFBRUVF1T6ma9euevHFF/Xuu+9q2bJlstvtGjJkiH788cdqty8rK1NpaanTX2OzUnurJ3jrLsKB8EUC/0H/Kv93ZgfWM9X2+faH99cfylAbf7mjuzf4RYdiV6Snp2vixInq06ePRowYoZUrVyouLk7PPfdctdtnZWUpJibG8ZecnNyo5bVqKnZV5YDnrRDi718k8C+BNPIjmFV0YH1mQl+XPt/+8P76Qxmkmi+wrXxB6NMOxbGxsQoNDdXevXudlu/du1eJiYn1eo6mTZuqb9++2rlzZ7Xr586dqzlz5jj+X1pa2mgBJ5Bmc/SmM/vB3H1RN6/MlUBnYLiKOYsCQ1JMhP4nLUJHTpxy6fPtD++vr8tQWz/EQJq3xlU+DTdhYWHq16+fVq9erfHjx0s63aF49erVmjFjRr2eo7y8XNu2bdPFF19c7frw8HCFh4d7qsguCaTZHL2luoD3+4936O6x3fT7j3Z4PIT4+osEgScQRn7gNHc+3/7w/vqqDHVdYFv5gtDnQ8HnzJmjSZMmqX///ho4cKAWLlyoI0eOaMqUKZKkiRMnql27dsrKypIkPfjggxo8eLA6d+6s4uJiPf7449q9e7emTZvmy92olpVTcX3VFPB6t2up7MxRXgkh/vBl5k2BMrIB/8V75jlW/3zXR33Pp/pcYFv1gtDn4SYjI0P79+/X/fffr6KiIvXp00cff/yxo5Nxfn6+QkL+2zXol19+0Q033KCioiK1atVK/fr104YNG9SjRw9f7UKNrJyK66u2gMeXlOu8MWcGP7zeZcV5TuA7rpxP9b3AtuJ3sc/nuWlsvpjnJtjnTFmxKb9KwPPGl7vVf6S9MWcGP7ze5e15Tqx8zlt539zlzvnUWN+/jcGV32+f19wEAyumYlc0RrVnMPxIe7oPFx3evc+b/e6sfM5bed8awp3zyarNTnUJuKHgCEzenBTPynM1VObpoe5WHgbqL1x9z+o7J5aVz3kr71tD1XQ+RYaF1HreBOOkpIQbBLxg+ZH29JwZzAvkfVXubm2Trq/h7tauzIll5XPeyvvWUNV9B4zv21aX/2lD0M+ldiaapRDwgmlUmiermOnw3jgq3rOXPs/Tks/ytOQfefpzdp5TU4urTYRWPuetvG+eUPk7IDIsRJf/aQNNy9Wg5gYBz19mAW0snqxirpj99fUbBis7cxT9GrzohX/kqeL3+symFldrK6x8zlt53zyl4jvgyIlyarlqQM0NLCFYO815QrB3eG8MdXUEdae2wsrnvJX3zZOo5aoZNTdBzko39QzGTnMIDHX1b3K3tsLK57yV981TqOWqGfPcBDGGWwKNpz7zjQT7nFhwT7CcN678fhNugpS3JxcDUFWw/AgB3sAkfqgTN/UEGh/9m4DGQZ+bIMUcJwAAqyLcBCk6ogEArIpmqSDGcEsAgBURboIcfQAAwPO4q7lvEW4ABB1+eOon2I+Tu/vPNBu+R7gBEFT44amfYD9O1e3/8C5xdYYdV+8TBu8g3AAIGvzw1E+wH6fq9j/zrW2y/d+tDmoLe0yz4R8YLQUgaLh6g8pgFezHqbr9N1KVsFfdbWs8Oc2GlW6P09gINwCCBvM71U+wH6fq9v9MNYU9T02zsWJTvoYuWKOrl3yhoQvWaMWmfJceH+wINwCCBvM71U+wH6cz9z9E0plZp7awlzGgvbIzR+n1GwYrO3OUy32VamoWpAan/uhzAyCoML9T/QT7cTpz/z/7bn+VG5/WdkwaMs0G/XYajnADIGhUHtqb3qmNX5TDn3+sgn0erMr735hhr6JZ7MwbGwdLs6AnEG4ABAV/GdrsL+WA6xor7FU0i7lSUwRnNmOMqXsz63DllukIfLVdIQfK1TMarrDkmIYuWFPlSjg7c1Sjvvf+Ug54V8V3S/OwUB05Ue72d0xhybGgbRasjiu/39TcwLJqu0IOhqtnwtt/+UsfBn8pB7yn8ndLBXe/Y4K9WbAhGC0FS6pttEEwjETwh2Gk/jRHh78MbfaXclhRY59v1b3emd8tFaz4HePvqLmBJdV2hWxkLH317A+zy/pbzZi/9GHwl3JYTeXzzSbphvNSNWVYqteOa03nd3XfOxWs9B0TCAg3sKS6RhtYeSSCr5s+/CFcVcdfhjZ7ohw0Of7XmeebkfT8P/L0QnaeV0J1bed3dd87Faz0HRMIaJaCJdU2CZnVJyjzddOHP0/dnxQTofRObXz+XjekHP7Q5OhPaqot8VZTUF0XD5W/WypY7TsmEFBzA8uq7QrZX67ivcHTTR+u1hIwR4f3+GutmC/VVlvijRrLus7vyt8tkWEhOnrCbrnvmEBAuIGl1TbawMojETwV3tzpO0O/Eu/xdZOjv6kI3ndf1E2PffQf2c9Y741QXZ/z28rfLYGCcAPUQyD2cWjoF2xhyTFlvrVNFb+lrtQSeCpcBeJx9yZqxf7rzOB998Xd9POhE3oh+wfZjXebgqxc82sVhBugDv428qexvJidpzNr+l2pJWhouAr04+6NYEat2GnVNc/9/qMdys4cpSnDUholdFA7498INwGGK9nGFax9HApLjunP2XlVlodIjVJLEOjH3ZvBjFqD2pvn/KHDOHyPcBNAAv1KNhAFax+HmkagTBvuvblD6nr9QDnujRHMgr3WgOY51IWh4AEiGGbV9Ue+HlbtK9Xtd4hNmjI01WevHyjH3RtD4f1ptmd/YPXpHNBw1NwEiEC+kg1kwdrHwdf77evXbwhP1ypQY1s9mudQG+4KHiC4m7BvBevdeX29375+fXet2JRfJZi5E0j43AP/xV3BLSiQr2StIFj7OPh6v339+u7yVK0CNbaAewg3AYRqWCBweCKY0XEWcA8digOMv9wbB4D30XEWcA81NwDgx6ixBVxHuAEAPxeofY8AX6FZCgAAWArhBgAAWArhBgAAWArhBoDbXL0tALcRANAY6FAMwC2u3haA2wgAaCzU3ABwmas3cuXGrwAaE+EGgMtcvfO1N+6UDQA1IdwAcFnFbQEqq+22AK5uDwANQbgB4DJXbwtg5dsI0Eka8D82Y4ypezPvevbZZ/X444+rqKhIaWlpevrppzVw4MAat3/jjTd03333adeuXTr77LP12GOP6eKLL67Xa7lyy3QAtSssOebSbQFc3d7f0UkaaDyu/H77vOZmxYoVmjNnjubNm6ctW7YoLS1NY8aM0b59+6rdfsOGDZowYYKmTp2qrVu3avz48Ro/fry2b9/eyCWHK7i6tSZXb+RqpRu/0kka8F8+r7kZNGiQBgwYoGeeeUaSZLfblZycrFtvvVWZmZlVts/IyNCRI0f0/vvvO5YNHjxYffr00eLFi+t8PWpuGh9Xt7CiDbkHdPWSL6osf/2GwUrv1MYHJQKsLWBqbk6cOKEvv/xSo0ePdiwLCQnR6NGjtXHjxmofs3HjRqftJWnMmDE1bl9WVqbS0lKnPzQerm5hVXSSBvyXT8PNgQMHVF5eroSEBKflCQkJKioqqvYxRUVFLm2flZWlmJgYx19ycrJnCo96YQgwrMrKnaSBQGf5GYrnzp2rOXPmOP5fWlpKwGlEFVe3lQMOV7ewiowB7TW8S5ylOkkDVuDTcBMbG6vQ0FDt3bvXafnevXuVmJhY7WMSExNd2j48PFzh4eGeKTBcVnF1e8/K7So3hqtbWE5STATnM+BnfNosFRYWpn79+mn16tWOZXa7XatXr1Z6enq1j0lPT3faXpJWrVpV4/bwvYwB7ZWdOUqv3zBY2Zmj6EwMAPAqnzdLzZkzR5MmTVL//v01cOBALVy4UEeOHNGUKVMkSRMnTlS7du2UlZUlSZo5c6ZGjBihJ554QuPGjdPy5cu1efNmPf/8877cDdSBq1sAQGPxebjJyMjQ/v37df/996uoqEh9+vTRxx9/7Og0nJ+fr5CQ/1YwDRkyRK+99pp+97vf6Z577tHZZ5+td955Rz179vTVLgAAAD/i83luGhvz3AAAEHgCZp4bAAAATyPcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAAS/H57RcaW8WEzKWlpT4uCQAAqK+K3+363Fgh6MLNoUOHJEnJyck+LgkAAHDVoUOHFBMTU+s2QXdvKbvdrj179igqKko2m63ejystLVVycrIKCgqC+p5UHAeOQQWOw2kcB45BBY7Dad46DsYYHTp0SG3btnW6oXZ1gq7mJiQkRGeddZbbj4+Ojg7qk7YCx4FjUIHjcBrHgWNQgeNwmjeOQ101NhXoUAwAACyFcAMAACyFcFNP4eHhmjdvnsLDw31dFJ/iOHAMKnAcTuM4cAwqcBxO84fjEHQdigEAgLVRcwMAACyFcAMAACyFcAMAACyFcAMAACwlqMPNokWL1Lt3b8dEQ+np6froo48c648fP67p06erTZs2atGiha688krt3bvX6Tny8/M1btw4RUZGKj4+XnfeeadOnTrV2LviMQsWLJDNZtOsWbMcy4LhOMyfP182m83pr1u3bo71wXAMKvz000+69tpr1aZNG0VERKhXr17avHmzY70xRvfff7+SkpIUERGh0aNH6/vvv3d6joMHD+qaa65RdHS0WrZsqalTp+rw4cONvStuS0lJqXI+2Gw2TZ8+XVJwnA/l5eW67777lJqaqoiICHXq1EkPPfSQ0319guFckE5P9z9r1ix16NBBERERGjJkiDZt2uRYb8Xj8Nlnn+mSSy5R27ZtZbPZ9M477zit99Q+f/311zrvvPPUrFkzJScn6/e//71ndsAEsffee8988MEH5rvvvjM7duww99xzj2natKnZvn27McaYm266ySQnJ5vVq1ebzZs3m8GDB5shQ4Y4Hn/q1CnTs2dPM3r0aLN161bz4YcfmtjYWDN37lxf7VKD/Otf/zIpKSmmd+/eZubMmY7lwXAc5s2bZ8455xxTWFjo+Nu/f79jfTAcA2OMOXjwoOnQoYOZPHmy+eKLL8wPP/xgPvnkE7Nz507HNgsWLDAxMTHmnXfeMV999ZW59NJLTWpqqjl27Jhjm4suusikpaWZf/7zn+Yf//iH6dy5s5kwYYIvdskt+/btczoXVq1aZSSZtWvXGmOC43x45JFHTJs2bcz7779v8vLyzBtvvGFatGhhnnrqKcc2wXAuGGPMVVddZXr06GHWr19vvv/+ezNv3jwTHR1tfvzxR2OMNY/Dhx9+aO69916zcuVKI8m8/fbbTus9sc8lJSUmISHBXHPNNWb79u3m9ddfNxEREea5555rcPmDOtxUp1WrVuaFF14wxcXFpmnTpuaNN95wrPv222+NJLNx40ZjzOk3PyQkxBQVFTm2WbRokYmOjjZlZWWNXvaGOHTokDn77LPNqlWrzIgRIxzhJliOw7x580xaWlq164LlGBhjzN13322GDRtW43q73W4SExPN448/7lhWXFxswsPDzeuvv26MMebf//63kWQ2bdrk2Oajjz4yNpvN/PTTT94rvBfNnDnTdOrUydjt9qA5H8aNG2euv/56p2VXXHGFueaaa4wxwXMuHD161ISGhpr333/fafm5555r7r333qA4DmeGG0/t85/+9CfTqlUrp8/E3Xffbbp27drgMgd1s1Rl5eXlWr58uY4cOaL09HR9+eWXOnnypEaPHu3Yplu3bmrfvr02btwoSdq4caN69eqlhIQExzZjxoxRaWmpvvnmm0bfh4aYPn26xo0b57S/koLqOHz//fdq27atOnbsqGuuuUb5+fmSgusYvPfee+rfv79+85vfKD4+Xn379tWSJUsc6/Py8lRUVOR0LGJiYjRo0CCnY9GyZUv179/fsc3o0aMVEhKiL774ovF2xkNOnDihZcuW6frrr5fNZgua82HIkCFavXq1vvvuO0nSV199pezsbI0dO1ZS8JwLp06dUnl5uZo1a+a0PCIiQtnZ2UFzHCrz1D5v3LhRw4cPV1hYmGObMWPGaMeOHfrll18aVMagu3HmmbZt26b09HQdP35cLVq00Ntvv60ePXooJydHYWFhatmypdP2CQkJKioqkiQVFRU5fXlVrK9YFyiWL1+uLVu2OLUhVygqKgqK4zBo0CAtXbpUXbt2VWFhoR544AGdd9552r59e9AcA0n64YcftGjRIs2ZM0f33HOPNm3apNtuu01hYWGaNGmSY1+q29fKxyI+Pt5pfZMmTdS6deuAOhYV3nnnHRUXF2vy5MmSguczkZmZqdLSUnXr1k2hoaEqLy/XI488omuuuUaSguZciIqKUnp6uh566CF1795dCQkJev3117Vx40Z17tw5aI5DZZ7a56KiIqWmplZ5jop1rVq1cruMQR9uunbtqpycHJWUlOjNN9/UpEmTtH79el8Xq9EUFBRo5syZWrVqVZUrk2BScTUqSb1799agQYPUoUMH/fWvf1VERIQPS9a47Ha7+vfvr0cffVSS1LdvX23fvl2LFy/WpEmTfFw63/jzn/+ssWPHqm3btr4uSqP661//qr/85S967bXXdM455ygnJ0ezZs1S27Ztg+5cePXVV3X99derXbt2Cg0N1bnnnqsJEyboyy+/9HXRUIOgb5YKCwtT586d1a9fP2VlZSktLU1PPfWUEhMTdeLECRUXFzttv3fvXiUmJkqSEhMTq4yQqPh/xTb+7ssvv9S+fft07rnnqkmTJmrSpInWr1+vP/7xj2rSpIkSEhKC4jicqWXLlurSpYt27twZNOeCJCUlJalHjx5Oy7p37+5ooqvYl+r2tfKx2Ldvn9P6U6dO6eDBgwF1LCRp9+7d+vvf/65p06Y5lgXL+XDnnXcqMzNTv/3tb9WrVy9dd911mj17trKysiQF17nQqVMnrV+/XocPH1ZBQYH+9a9/6eTJk+rYsWNQHYcKntpnb35Ogj7cnMlut6usrEz9+vVT06ZNtXr1ase6HTt2KD8/X+np6ZKk9PR0bdu2zekNXLVqlaKjo6v8QPirCy64QNu2bVNOTo7jr3///rrmmmsc/w6G43Cmw4cPKzc3V0lJSUFzLkjS0KFDtWPHDqdl3333nTp06CBJSk1NVWJiotOxKC0t1RdffOF0LIqLi52uatesWSO73a5BgwY1wl54zksvvaT4+HiNGzfOsSxYzoejR48qJMT5JyI0NFR2u11S8J0LktS8eXMlJSXpl19+0SeffKLLLrssKI+Dp/Y5PT1dn332mU6ePOnYZtWqVeratWuDmqQkBfdQ8MzMTLN+/XqTl5dnvv76a5OZmWlsNpv59NNPjTGnh3u2b9/erFmzxmzevNmkp6eb9PR0x+MrhnteeOGFJicnx3z88ccmLi4uoIZ7VqfyaCljguM43H777WbdunUmLy/PfP7552b06NEmNjbW7Nu3zxgTHMfAmNPTATRp0sQ88sgj5vvvvzd/+ctfTGRkpFm2bJljmwULFpiWLVuad99913z99dfmsssuq3YIaN++fc0XX3xhsrOzzdlnn+3Xw16rU15ebtq3b2/uvvvuKuuC4XyYNGmSadeunWMo+MqVK01sbKy56667HNsEy7nw8ccfm48++sj88MMP5tNPPzVpaWlm0KBB5sSJE8YYax6HQ4cOma1bt5qtW7caSeYPf/iD2bp1q9m9e7cxxjP7XFxcbBISEsx1111ntm/fbpYvX24iIyMZCt5Q119/venQoYMJCwszcXFx5oILLnAEG2OMOXbsmLnllltMq1atTGRkpLn88stNYWGh03Ps2rXLjB071kRERJjY2Fhz++23m5MnTzb2rnjUmeEmGI5DRkaGSUpKMmFhYaZdu3YmIyPDaW6XYDgGFf72t7+Znj17mvDwcNOtWzfz/PPPO6232+3mvvvuMwkJCSY8PNxccMEFZseOHU7b/Pzzz2bChAmmRYsWJjo62kyZMsUcOnSoMXejwT755BMjqcq+GRMc50NpaamZOXOmad++vWnWrJnp2LGjuffee52G7QbLubBixQrTsWNHExYWZhITE8306dNNcXGxY70Vj8PatWuNpCp/kyZNMsZ4bp+/+uorM2zYMBMeHm7atWtnFixY4JHy24ypNN0kAABAgKPPDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDYB6GTlypGbNmuXrYnjd/Pnz1adPH18XA0ADEG4ABIUTJ0406usZY3Tq1KlGfU0ApxFuANRp8uTJWr9+vZ566inZbDbZbDbt2rVL27dv19ixY9WiRQslJCTouuuu04EDBxyPGzlypG699VbNmjVLrVq1UkJCgpYsWaIjR45oypQpioqKUufOnfXRRx85HrNu3TrZbDZ98MEH6t27t5o1a6bBgwdr+/btTmXKzs7Weeedp4iICCUnJ+u2227TkSNHHOtTUlL00EMPaeLEiYqOjtaNN94oSbr77rvVpUsXRUZGqmPHjrrvvvscdyVeunSpHnjgAX311VeO/Vy6dKl27dolm82mnJwcx/MXFxfLZrNp3bp1TuX+6KOP1K9fP4WHhys7O1t2u11ZWVlKTU1VRESE0tLS9Oabb3r6LQJQCeEGQJ2eeuoppaen64YbblBhYaEKCwsVFRWl888/X3379tXmzZv18ccfa+/evbrqqqucHvvyyy8rNjZW//rXv3Trrbfq5ptv1m9+8xsNGTJEW7Zs0YUXXqjrrrtOR48edXrcnXfeqSeeeEKbNm1SXFycLrnkEkcIyc3N1UUXXaQrr7xSX3/9tVasWKHs7GzNmDHD6Tn+3//7f0pLS9PWrVt13333SZKioqK0dOlS/fvf/9ZTTz2lJUuW6Mknn5QkZWRk6Pbbb9c555zj2M+MjAyXjlVmZqYWLFigb7/9Vr1791ZWVpZeeeUVLV68WN98841mz56ta6+9VuvXr3fpeQG4wCO33wRgeWfeLf6hhx4yF154odM2BQUFTnfSHjFihBk2bJhj/alTp0zz5s3Ndddd51hWWFhoJJmNGzcaY/57N+Lly5c7tvn5559NRESEWbFihTHGmKlTp5obb7zR6bX/8Y9/mJCQEHPs2DFjjDEdOnQw48ePr3O/Hn/8cdOvXz/H/+fNm2fS0tKctsnLyzOSzNatWx3LfvnlFyPJrF271qnc77zzjmOb48ePm8jISLNhwwan55s6daqZMGFCnWUD4J4mvgxWAALXV199pbVr16pFixZV1uXm5qpLly6SpN69ezuWh4aGqk2bNurVq5djWUJCgiRp3759Ts+Rnp7u+Hfr1q3VtWtXffvtt47X/vrrr/WXv/zFsY0xRna7XXl5eerevbskqX///lXKtmLFCv3xj39Ubm6uDh8+rFOnTik6Otrl/a9J5dfcuXOnjh49ql/96ldO25w4cUJ9+/b12GsCcEa4AeCWw4cP65JLLtFjjz1WZV1SUpLj302bNnVaZ7PZnJbZbDZJkt1ud+m1//d//1e33XZblXXt27d3/Lt58+ZO6zZu3KhrrrlGDzzwgMaMGaOYmBgtX75cTzzxRK2vFxJyugXfGONYVtFEdqbKr3n48GFJ0gcffKB27do5bRceHl7rawJwH+EGQL2EhYWpvLzc8f9zzz1Xb731llJSUtSkiee/Sv75z386gsovv/yi7777zlEjc+655+rf//63Onfu7NJzbtiwQR06dNC9997rWLZ7926nbc7cT0mKi4uTJBUWFjpqXCp3Lq5Jjx49FB4ervz8fI0YMcKlsgJwHx2KAdRLSkqKvvjiC+3atUsHDhzQ9OnTdfDgQU2YMEGbNm1Sbm6uPvnkE02ZMqVKOHDHgw8+qNWrV2v79u2aPHmyYmNjNX78eEmnRzxt2LBBM2bMUE5Ojr7//nu9++67VToUn+nss89Wfn6+li9frtzcXP3xj3/U22+/XWU/8/LylJOTowMHDqisrEwREREaPHiwo6Pw+vXr9bvf/a7OfYiKitIdd9yh2bNn6+WXX1Zubq62bNmip59+Wi+//LLbxwZA7Qg3AOrljjvuUGhoqHr06KG4uDidOHFCn3/+ucrLy3XhhReqV69emjVrllq2bOloxmmIBQsWaObMmerXr5+Kior0t7/9TWFhYZJO9+NZv369vvvuO5133nnq27ev7r//frVt27bW57z00ks1e/ZszZgxQ3369NGGDRsco6gqXHnllbrooos0atQoxcXF6fXXX5ckvfjiizp16pT69eunWbNm6eGHH67Xfjz00EO67777lJWVpe7du+uiiy7SBx98oNTUVDeOCoD6sJnKjcgA4GPr1q3TqFGj9Msvv6hly5a+Lg6AAETNDQAAsBTCDQAAsBSapQAAgKVQcwMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACzl/wOSSBegwW6KtwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[
,\n", + "
,\n", + "
,\n", + "
]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -1114,9 +4234,8 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" - }, - "orig_nbformat": 4 + "version": "3.11.11" + } }, "nbformat": 4, "nbformat_minor": 3 diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training_test.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training_test.ipynb index c7a365e5..fac17676 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training_test.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training_test.ipynb @@ -1,1123 +1,1148 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with OMLT Surrogate Object - Training Surrogate (Part 1)\n", - "\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "\n", - "## 1. Introduction\n", - "This notebook illustrates the use of KerasSurrogate API leveraging TensorFlow Keras and OMLT package to produce an ML surrogate based on supercritical CO2 data from simulation using REFPROP package.\n", - "\n", - "There are several reasons to build surrogate models for complex processes, even when higher fidelity models already exist (e.g., reduce model size, improve convergence reliability, replace models with externally compiled code and make them fully-equation oriented).\n", - "\n", - "In this example, we intend to make a surrogate for the physical properties of S-CO2 to be embedded in the property package. This property package will be used to get the physical properties of S-CO2 in the flowsheet simulation. To learn more about property package, see the [IDAES-PSE](https://github.com/IDAES/idaes-pse) Github Page or IDAES [Read-the-docs](https://idaes-pse.readthedocs.io/en/latest/). \n", - "\n", - "### 1.1 Need for ML Surrogates\n", - "\n", - "The properties predicted by the surrogate are enthalpy and entropy of the S-CO2 based on the \n", - "pressure and temperature of the system. The analytical equation of getting the enthalpy and entropy from pressure and temperature are in the differential form and would make the problem a DAE system. To counter this problem and keep the problem algebraic, we will use the ML surrogates and relate enthalpy and entropy with the pressure and temperature as an algebraic equation.\n", - "\n", - "### 1.2 Supercritical CO2 cycle process\n", - "\n", - "The following flowsheet will be used to optimize the design for the cooling of the fusion reactor using supercritical CO2 cycle. We shall focus on training the surrogate for this notebook and move to constructing the flowsheet and the properties package in the subsequent notebooks. The take away from this flowsheet is that, 3 variables can be measured in any given unit which are flow, pressure and temperature and other properties can be calculated using them. Thus, surrogate should have pressure and temperature as the inputs.\n", - "\n", - "In this example, we will train a tanh model from our data and then demonstrate that we can solve an optimization problem with that surrogate model. " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", - "text/plain": [ - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"CO2_flowsheet.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Training and Validating Surrogate\n", - "\n", - "First, let's import the required Python and IDAES modules:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: DEPRECATED: pyomo.core.expr.current is deprecated. Please import\n", - "expression symbols from pyomo.core.expr (deprecated in 6.6.2) (called from\n", - ":241)\n" - ] - } - ], - "source": [ - "# Import statements\n", - "import os\n", - "import numpy as np\n", - "import pandas as pd\n", - "import random as rn\n", - "import tensorflow as tf\n", - "import tensorflow.keras as keras\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", - "from idaes.core.surrogate.sampling.scaling import OffsetScaler\n", - "from idaes.core.surrogate.keras_surrogate import KerasSurrogate\n", - "from idaes.core.surrogate.plotting.sm_plotter import (\n", - " surrogate_scatter2D,\n", - " surrogate_parity,\n", - " surrogate_residual,\n", - ")\n", - "\n", - "# fix environment variables to ensure consist neural network training\n", - "os.environ[\"PYTHONHASHSEED\"] = \"0\"\n", - "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"\"\n", - "np.random.seed(46)\n", - "rn.seed(1342)\n", - "tf.random.set_seed(62)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.1 Importing Training and Validation Datasets\n", - "\n", - "In this section, we read the dataset from the CSV file located in this directory. 500 data points were simulated for S-CO2 physical properties using REFPROP package. This example is trained on the entire dataset because neural network can overfit on smaller dataset. The data is separated using an 80/20 split into training and validation data using the IDAES split_training_validation() method.\n", - "\n", - "We rename the column headers because they contained \".\", which may cause errors while reading the column names in subsequent code, thus as a good practice we change them to the variable names to be used in the property package. Further, the input variables are **pressure**, **temperature** , while the output variables are **enth_mol**, **entr_mol**, hence we create two new dataframes for the input and output variables. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Import training data\n", - "np.set_printoptions(precision=6, suppress=True)\n", - "\n", - "csv_data = pd.read_csv(datafile_path(\"500_Points_DataSet.csv\"))\n", - "csv_data.columns.values[0:6] = [\n", - " \"pressure\",\n", - " \"temperature\",\n", - " \"enth_mol\",\n", - " \"entr_mol\",\n", - " \"CO2_enthalpy\",\n", - " \"CO2_entropy\",\n", - "]\n", - "data = csv_data.sample(n=500)\n", - "\n", - "# Creating input_data and output_data from data\n", - "input_data = data.iloc[:, :2]\n", - "output_data = data.iloc[:, 2:4]\n", - "\n", - "# Define labels, and split training and validation data\n", - "input_labels = input_data.columns\n", - "output_labels = output_data.columns\n", - "\n", - "n_data = data[input_labels[0]].size\n", - "data_training, data_validation = split_training_validation(data, 0.8, seed=n_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.2 Training Surrogate with TensorFlow Keras\n", - "TensorFlow Keras provides an interface to pass regression settings, build neural networks and train surrogate models. Keras enables the usage of two API formats: Sequential and Functional. While the Functional API offers more versatility, including multiple input and output layers in a single neural network, the Sequential API is more stable and user-friendly. Further, the Sequential API integrates cleanly with existing IDAES surrogate tools and will be utilized in this example.\n", - "\n", - "In the code below, we build the neural network structure based on our training data structure and desired regression settings. Offline, neural network models were trained for the list of settings below, and the options bolded and italicized were determined to have the minimum mean squared error for the dataset:\n", - "\n", - "* Activation function: sigmoid, **tanh**\n", - "* Optimizer: **Adam**\n", - "* Number of hidden layers: 3, **4**, 5, 6\n", - "* Number of neurons per layer: **20**, 40, 60\n", - "\n", - "Important thing to note here is that we do not use ReLU activation function for the training as the flowsheet we intend to solve with this surrogate model is a NLP problem and using ReLU activation function will make it an MINLP. Another thing to note here is the network is smaller (4,20) in order to avoid overfitting. \n", - "\n", - "Typically, Sequential Keras models are built vertically; the dataset is scaled and normalized. The network is defined for the input layer, hidden layers, and output layer for the passed activation functions and network/layer sizes. Then, the model is compiled using the passed optimizer and trained using a desired number of epochs. Keras internally validates while training and updates each epoch's model weight (coefficient) values.\n", - "\n", - "Finally, after training the model, we save the results and model expressions to a folder that contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/250\n", - "13/13 - 3s - loss: 0.4963 - mae: 0.5592 - mse: 0.4963 - val_loss: 0.1685 - val_mae: 0.3349 - val_mse: 0.1685 - 3s/epoch - 249ms/step\n", - "Epoch 2/250\n", - "13/13 - 0s - loss: 0.1216 - mae: 0.2839 - mse: 0.1216 - val_loss: 0.0809 - val_mae: 0.2245 - val_mse: 0.0809 - 237ms/epoch - 18ms/step\n", - "Epoch 3/250\n", - "13/13 - 0s - loss: 0.0665 - mae: 0.2043 - mse: 0.0665 - val_loss: 0.0359 - val_mae: 0.1503 - val_mse: 0.0359 - 262ms/epoch - 20ms/step\n", - "Epoch 4/250\n", - "13/13 - 0s - loss: 0.0294 - mae: 0.1329 - mse: 0.0294 - val_loss: 0.0221 - val_mae: 0.1119 - val_mse: 0.0221 - 283ms/epoch - 22ms/step\n", - "Epoch 5/250\n", - "13/13 - 0s - loss: 0.0170 - mae: 0.0964 - mse: 0.0170 - val_loss: 0.0115 - val_mae: 0.0792 - val_mse: 0.0115 - 351ms/epoch - 27ms/step\n", - "Epoch 6/250\n", - "13/13 - 0s - loss: 0.0097 - mae: 0.0734 - mse: 0.0097 - val_loss: 0.0067 - val_mae: 0.0636 - val_mse: 0.0067 - 364ms/epoch - 28ms/step\n", - "Epoch 7/250\n", - "13/13 - 0s - loss: 0.0061 - mae: 0.0610 - mse: 0.0061 - val_loss: 0.0048 - val_mae: 0.0550 - val_mse: 0.0048 - 245ms/epoch - 19ms/step\n", - "Epoch 8/250\n", - "13/13 - 0s - loss: 0.0042 - mae: 0.0521 - mse: 0.0042 - val_loss: 0.0034 - val_mae: 0.0464 - val_mse: 0.0034 - 203ms/epoch - 16ms/step\n", - "Epoch 9/250\n", - "13/13 - 0s - loss: 0.0032 - mae: 0.0458 - mse: 0.0032 - val_loss: 0.0027 - val_mae: 0.0418 - val_mse: 0.0027 - 300ms/epoch - 23ms/step\n", - "Epoch 10/250\n", - "13/13 - 0s - loss: 0.0028 - mae: 0.0420 - mse: 0.0028 - val_loss: 0.0024 - val_mae: 0.0379 - val_mse: 0.0024 - 255ms/epoch - 20ms/step\n", - "Epoch 11/250\n", - "13/13 - 0s - loss: 0.0024 - mae: 0.0384 - mse: 0.0024 - val_loss: 0.0021 - val_mae: 0.0358 - val_mse: 0.0021 - 247ms/epoch - 19ms/step\n", - "Epoch 12/250\n", - "13/13 - 0s - loss: 0.0022 - mae: 0.0358 - mse: 0.0022 - val_loss: 0.0018 - val_mae: 0.0330 - val_mse: 0.0018 - 321ms/epoch - 25ms/step\n", - "Epoch 13/250\n", - "13/13 - 0s - loss: 0.0020 - mae: 0.0338 - mse: 0.0020 - val_loss: 0.0017 - val_mae: 0.0315 - val_mse: 0.0017 - 219ms/epoch - 17ms/step\n", - "Epoch 14/250\n", - "13/13 - 0s - loss: 0.0018 - mae: 0.0323 - mse: 0.0018 - val_loss: 0.0015 - val_mae: 0.0302 - val_mse: 0.0015 - 272ms/epoch - 21ms/step\n", - "Epoch 15/250\n", - "13/13 - 0s - loss: 0.0017 - mae: 0.0311 - mse: 0.0017 - val_loss: 0.0015 - val_mae: 0.0296 - val_mse: 0.0015 - 299ms/epoch - 23ms/step\n", - "Epoch 16/250\n", - "13/13 - 0s - loss: 0.0016 - mae: 0.0303 - mse: 0.0016 - val_loss: 0.0014 - val_mae: 0.0289 - val_mse: 0.0014 - 271ms/epoch - 21ms/step\n", - "Epoch 17/250\n", - "13/13 - 0s - loss: 0.0016 - mae: 0.0293 - mse: 0.0016 - val_loss: 0.0014 - val_mae: 0.0281 - val_mse: 0.0014 - 248ms/epoch - 19ms/step\n", - "Epoch 18/250\n", - "13/13 - 0s - loss: 0.0015 - mae: 0.0287 - mse: 0.0015 - val_loss: 0.0013 - val_mae: 0.0275 - val_mse: 0.0013 - 256ms/epoch - 20ms/step\n", - "Epoch 19/250\n", - "13/13 - 0s - loss: 0.0015 - mae: 0.0285 - mse: 0.0015 - val_loss: 0.0014 - val_mae: 0.0285 - val_mse: 0.0014 - 153ms/epoch - 12ms/step\n", - "Epoch 20/250\n", - "13/13 - 0s - loss: 0.0015 - mae: 0.0282 - mse: 0.0015 - val_loss: 0.0012 - val_mae: 0.0269 - val_mse: 0.0012 - 239ms/epoch - 18ms/step\n", - "Epoch 21/250\n", - "13/13 - 0s - loss: 0.0015 - mae: 0.0278 - mse: 0.0015 - val_loss: 0.0012 - val_mae: 0.0266 - val_mse: 0.0012 - 263ms/epoch - 20ms/step\n", - "Epoch 22/250\n", - "13/13 - 0s - loss: 0.0015 - mae: 0.0279 - mse: 0.0015 - val_loss: 0.0012 - val_mae: 0.0266 - val_mse: 0.0012 - 243ms/epoch - 19ms/step\n", - "Epoch 23/250\n", - "13/13 - 0s - loss: 0.0014 - mae: 0.0274 - mse: 0.0014 - val_loss: 0.0012 - val_mae: 0.0265 - val_mse: 0.0012 - 138ms/epoch - 11ms/step\n", - "Epoch 24/250\n", - "13/13 - 0s - loss: 0.0014 - mae: 0.0264 - mse: 0.0014 - val_loss: 0.0012 - val_mae: 0.0259 - val_mse: 0.0012 - 189ms/epoch - 15ms/step\n", - "Epoch 25/250\n", - "13/13 - 0s - loss: 0.0014 - mae: 0.0268 - mse: 0.0014 - val_loss: 0.0012 - val_mae: 0.0258 - val_mse: 0.0012 - 280ms/epoch - 22ms/step\n", - "Epoch 26/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0268 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0258 - val_mse: 0.0011 - 222ms/epoch - 17ms/step\n", - "Epoch 27/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0265 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0247 - val_mse: 0.0011 - 286ms/epoch - 22ms/step\n", - "Epoch 28/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0259 - mse: 0.0013 - val_loss: 0.0012 - val_mae: 0.0259 - val_mse: 0.0012 - 116ms/epoch - 9ms/step\n", - "Epoch 29/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0259 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0252 - val_mse: 0.0011 - 157ms/epoch - 12ms/step\n", - "Epoch 30/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0256 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0248 - val_mse: 0.0011 - 267ms/epoch - 21ms/step\n", - "Epoch 31/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0254 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0245 - val_mse: 0.0011 - 264ms/epoch - 20ms/step\n", - "Epoch 32/250\n", - "13/13 - 0s - loss: 0.0012 - mae: 0.0254 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0243 - val_mse: 0.0010 - 269ms/epoch - 21ms/step\n", - "Epoch 33/250\n", - "13/13 - 0s - loss: 0.0012 - mae: 0.0248 - mse: 0.0012 - val_loss: 0.0012 - val_mae: 0.0251 - val_mse: 0.0012 - 353ms/epoch - 27ms/step\n", - "Epoch 34/250\n", - "13/13 - 1s - loss: 0.0012 - mae: 0.0256 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0248 - val_mse: 0.0010 - 537ms/epoch - 41ms/step\n", - "Epoch 35/250\n", - "13/13 - 0s - loss: 0.0012 - mae: 0.0254 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0243 - val_mse: 0.0010 - 330ms/epoch - 25ms/step\n", - "Epoch 36/250\n", - "13/13 - 0s - loss: 0.0012 - mae: 0.0245 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0234 - val_mse: 0.0010 - 289ms/epoch - 22ms/step\n", - "Epoch 37/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0244 - mse: 0.0011 - val_loss: 0.0010 - val_mae: 0.0239 - val_mse: 0.0010 - 155ms/epoch - 12ms/step\n", - "Epoch 38/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0243 - mse: 0.0011 - val_loss: 9.9094e-04 - val_mae: 0.0235 - val_mse: 9.9094e-04 - 289ms/epoch - 22ms/step\n", - "Epoch 39/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0243 - mse: 0.0011 - val_loss: 0.0010 - val_mae: 0.0238 - val_mse: 0.0010 - 118ms/epoch - 9ms/step\n", - "Epoch 40/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0241 - mse: 0.0011 - val_loss: 9.7491e-04 - val_mae: 0.0239 - val_mse: 9.7491e-04 - 299ms/epoch - 23ms/step\n", - "Epoch 41/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0241 - mse: 0.0011 - val_loss: 9.9821e-04 - val_mae: 0.0227 - val_mse: 9.9821e-04 - 151ms/epoch - 12ms/step\n", - "Epoch 42/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0240 - mse: 0.0011 - val_loss: 0.0010 - val_mae: 0.0235 - val_mse: 0.0010 - 192ms/epoch - 15ms/step\n", - "Epoch 43/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0238 - mse: 0.0011 - val_loss: 9.4863e-04 - val_mae: 0.0232 - val_mse: 9.4863e-04 - 237ms/epoch - 18ms/step\n", - "Epoch 44/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0236 - mse: 0.0011 - val_loss: 9.8018e-04 - val_mae: 0.0230 - val_mse: 9.8018e-04 - 154ms/epoch - 12ms/step\n", - "Epoch 45/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0239 - mse: 0.0011 - val_loss: 9.5093e-04 - val_mae: 0.0233 - val_mse: 9.5093e-04 - 158ms/epoch - 12ms/step\n", - "Epoch 46/250\n", - "13/13 - 0s - loss: 0.0010 - mae: 0.0230 - mse: 0.0010 - val_loss: 9.4785e-04 - val_mae: 0.0223 - val_mse: 9.4785e-04 - 218ms/epoch - 17ms/step\n", - "Epoch 47/250\n", - "13/13 - 0s - loss: 0.0010 - mae: 0.0231 - mse: 0.0010 - val_loss: 9.7827e-04 - val_mae: 0.0230 - val_mse: 9.7827e-04 - 116ms/epoch - 9ms/step\n", - "Epoch 48/250\n", - "13/13 - 0s - loss: 0.0010 - mae: 0.0232 - mse: 0.0010 - val_loss: 9.0671e-04 - val_mae: 0.0225 - val_mse: 9.0671e-04 - 288ms/epoch - 22ms/step\n", - "Epoch 49/250\n", - "13/13 - 0s - loss: 0.0010 - mae: 0.0230 - mse: 0.0010 - val_loss: 9.2521e-04 - val_mae: 0.0218 - val_mse: 9.2521e-04 - 140ms/epoch - 11ms/step\n", - "Epoch 50/250\n", - "13/13 - 0s - loss: 0.0010 - mae: 0.0231 - mse: 0.0010 - val_loss: 9.7818e-04 - val_mae: 0.0231 - val_mse: 9.7818e-04 - 149ms/epoch - 11ms/step\n", - "Epoch 51/250\n", - "13/13 - 0s - loss: 9.9977e-04 - mae: 0.0232 - mse: 9.9977e-04 - val_loss: 9.4350e-04 - val_mae: 0.0221 - val_mse: 9.4350e-04 - 146ms/epoch - 11ms/step\n", - "Epoch 52/250\n", - "13/13 - 0s - loss: 9.8599e-04 - mae: 0.0229 - mse: 9.8599e-04 - val_loss: 9.0638e-04 - val_mae: 0.0230 - val_mse: 9.0638e-04 - 265ms/epoch - 20ms/step\n", - "Epoch 53/250\n", - "13/13 - 0s - loss: 9.8295e-04 - mae: 0.0228 - mse: 9.8295e-04 - val_loss: 9.0667e-04 - val_mae: 0.0215 - val_mse: 9.0667e-04 - 179ms/epoch - 14ms/step\n", - "Epoch 54/250\n", - "13/13 - 0s - loss: 9.7266e-04 - mae: 0.0225 - mse: 9.7266e-04 - val_loss: 9.0391e-04 - val_mae: 0.0224 - val_mse: 9.0391e-04 - 287ms/epoch - 22ms/step\n", - "Epoch 55/250\n", - "13/13 - 0s - loss: 9.5234e-04 - mae: 0.0225 - mse: 9.5234e-04 - val_loss: 8.7426e-04 - val_mae: 0.0219 - val_mse: 8.7426e-04 - 284ms/epoch - 22ms/step\n", - "Epoch 56/250\n", - "13/13 - 0s - loss: 9.4315e-04 - mae: 0.0221 - mse: 9.4315e-04 - val_loss: 8.6742e-04 - val_mae: 0.0224 - val_mse: 8.6742e-04 - 297ms/epoch - 23ms/step\n", - "Epoch 57/250\n", - "13/13 - 0s - loss: 9.9226e-04 - mae: 0.0230 - mse: 9.9226e-04 - val_loss: 8.7793e-04 - val_mae: 0.0225 - val_mse: 8.7793e-04 - 206ms/epoch - 16ms/step\n", - "Epoch 58/250\n", - "13/13 - 0s - loss: 9.4137e-04 - mae: 0.0226 - mse: 9.4137e-04 - val_loss: 8.7477e-04 - val_mae: 0.0225 - val_mse: 8.7477e-04 - 160ms/epoch - 12ms/step\n", - "Epoch 59/250\n", - "13/13 - 0s - loss: 9.2474e-04 - mae: 0.0219 - mse: 9.2474e-04 - val_loss: 8.5320e-04 - val_mae: 0.0212 - val_mse: 8.5320e-04 - 274ms/epoch - 21ms/step\n", - "Epoch 60/250\n", - "13/13 - 0s - loss: 9.1133e-04 - mae: 0.0217 - mse: 9.1133e-04 - val_loss: 8.6082e-04 - val_mae: 0.0217 - val_mse: 8.6082e-04 - 160ms/epoch - 12ms/step\n", - "Epoch 61/250\n", - "13/13 - 0s - loss: 9.1801e-04 - mae: 0.0217 - mse: 9.1801e-04 - val_loss: 8.5403e-04 - val_mae: 0.0223 - val_mse: 8.5403e-04 - 143ms/epoch - 11ms/step\n", - "Epoch 62/250\n", - "13/13 - 0s - loss: 9.1987e-04 - mae: 0.0221 - mse: 9.1987e-04 - val_loss: 8.5714e-04 - val_mae: 0.0219 - val_mse: 8.5714e-04 - 128ms/epoch - 10ms/step\n", - "Epoch 63/250\n", - "13/13 - 0s - loss: 9.0862e-04 - mae: 0.0222 - mse: 9.0862e-04 - val_loss: 8.6160e-04 - val_mae: 0.0225 - val_mse: 8.6160e-04 - 154ms/epoch - 12ms/step\n", - "Epoch 64/250\n", - "13/13 - 0s - loss: 8.9349e-04 - mae: 0.0220 - mse: 8.9349e-04 - val_loss: 8.2851e-04 - val_mae: 0.0214 - val_mse: 8.2851e-04 - 284ms/epoch - 22ms/step\n", - "Epoch 65/250\n", - "13/13 - 0s - loss: 8.7848e-04 - mae: 0.0216 - mse: 8.7848e-04 - val_loss: 8.5189e-04 - val_mae: 0.0218 - val_mse: 8.5189e-04 - 168ms/epoch - 13ms/step\n", - "Epoch 66/250\n", - "13/13 - 0s - loss: 8.9773e-04 - mae: 0.0219 - mse: 8.9773e-04 - val_loss: 8.5650e-04 - val_mae: 0.0211 - val_mse: 8.5650e-04 - 113ms/epoch - 9ms/step\n", - "Epoch 67/250\n", - "13/13 - 0s - loss: 8.7443e-04 - mae: 0.0217 - mse: 8.7443e-04 - val_loss: 8.2545e-04 - val_mae: 0.0214 - val_mse: 8.2545e-04 - 264ms/epoch - 20ms/step\n", - "Epoch 68/250\n", - "13/13 - 0s - loss: 8.9141e-04 - mae: 0.0217 - mse: 8.9141e-04 - val_loss: 8.4471e-04 - val_mae: 0.0219 - val_mse: 8.4471e-04 - 189ms/epoch - 15ms/step\n", - "Epoch 69/250\n", - "13/13 - 0s - loss: 8.9507e-04 - mae: 0.0224 - mse: 8.9507e-04 - val_loss: 8.7916e-04 - val_mae: 0.0217 - val_mse: 8.7916e-04 - 175ms/epoch - 13ms/step\n", - "Epoch 70/250\n", - "13/13 - 0s - loss: 8.5737e-04 - mae: 0.0216 - mse: 8.5737e-04 - val_loss: 8.8807e-04 - val_mae: 0.0215 - val_mse: 8.8807e-04 - 322ms/epoch - 25ms/step\n", - "Epoch 71/250\n", - "13/13 - 0s - loss: 8.5560e-04 - mae: 0.0214 - mse: 8.5560e-04 - val_loss: 8.3750e-04 - val_mae: 0.0213 - val_mse: 8.3750e-04 - 207ms/epoch - 16ms/step\n", - "Epoch 72/250\n", - "13/13 - 0s - loss: 8.5576e-04 - mae: 0.0218 - mse: 8.5576e-04 - val_loss: 8.1156e-04 - val_mae: 0.0210 - val_mse: 8.1156e-04 - 257ms/epoch - 20ms/step\n", - "Epoch 73/250\n", - "13/13 - 0s - loss: 8.4688e-04 - mae: 0.0216 - mse: 8.4688e-04 - val_loss: 8.0221e-04 - val_mae: 0.0210 - val_mse: 8.0221e-04 - 233ms/epoch - 18ms/step\n", - "Epoch 74/250\n", - "13/13 - 0s - loss: 8.3636e-04 - mae: 0.0211 - mse: 8.3636e-04 - val_loss: 7.9384e-04 - val_mae: 0.0208 - val_mse: 7.9384e-04 - 250ms/epoch - 19ms/step\n", - "Epoch 75/250\n", - "13/13 - 0s - loss: 8.4758e-04 - mae: 0.0222 - mse: 8.4758e-04 - val_loss: 8.2932e-04 - val_mae: 0.0212 - val_mse: 8.2932e-04 - 119ms/epoch - 9ms/step\n", - "Epoch 76/250\n", - "13/13 - 0s - loss: 8.4142e-04 - mae: 0.0213 - mse: 8.4142e-04 - val_loss: 8.0552e-04 - val_mae: 0.0209 - val_mse: 8.0552e-04 - 150ms/epoch - 12ms/step\n", - "Epoch 77/250\n", - "13/13 - 0s - loss: 8.5035e-04 - mae: 0.0215 - mse: 8.5035e-04 - val_loss: 8.6014e-04 - val_mae: 0.0215 - val_mse: 8.6014e-04 - 126ms/epoch - 10ms/step\n", - "Epoch 78/250\n", - "13/13 - 0s - loss: 8.9015e-04 - mae: 0.0228 - mse: 8.9015e-04 - val_loss: 9.2548e-04 - val_mae: 0.0225 - val_mse: 9.2548e-04 - 242ms/epoch - 19ms/step\n", - "Epoch 79/250\n", - "13/13 - 0s - loss: 8.1577e-04 - mae: 0.0212 - mse: 8.1577e-04 - val_loss: 8.4703e-04 - val_mae: 0.0211 - val_mse: 8.4703e-04 - 165ms/epoch - 13ms/step\n", - "Epoch 80/250\n", - "13/13 - 0s - loss: 8.0555e-04 - mae: 0.0211 - mse: 8.0555e-04 - val_loss: 8.5652e-04 - val_mae: 0.0214 - val_mse: 8.5652e-04 - 131ms/epoch - 10ms/step\n", - "Epoch 81/250\n", - "13/13 - 0s - loss: 8.3478e-04 - mae: 0.0219 - mse: 8.3478e-04 - val_loss: 9.1057e-04 - val_mae: 0.0222 - val_mse: 9.1057e-04 - 166ms/epoch - 13ms/step\n", - "Epoch 82/250\n", - "13/13 - 0s - loss: 8.2593e-04 - mae: 0.0217 - mse: 8.2593e-04 - val_loss: 8.1172e-04 - val_mae: 0.0209 - val_mse: 8.1172e-04 - 143ms/epoch - 11ms/step\n", - "Epoch 83/250\n", - "13/13 - 0s - loss: 8.2887e-04 - mae: 0.0213 - mse: 8.2887e-04 - val_loss: 8.2033e-04 - val_mae: 0.0211 - val_mse: 8.2033e-04 - 115ms/epoch - 9ms/step\n", - "Epoch 84/250\n", - "13/13 - 0s - loss: 8.1454e-04 - mae: 0.0219 - mse: 8.1454e-04 - val_loss: 8.1589e-04 - val_mae: 0.0211 - val_mse: 8.1589e-04 - 148ms/epoch - 11ms/step\n", - "Epoch 85/250\n", - "13/13 - 0s - loss: 8.0777e-04 - mae: 0.0212 - mse: 8.0777e-04 - val_loss: 7.8637e-04 - val_mae: 0.0208 - val_mse: 7.8637e-04 - 282ms/epoch - 22ms/step\n", - "Epoch 86/250\n", - "13/13 - 0s - loss: 7.8107e-04 - mae: 0.0213 - mse: 7.8107e-04 - val_loss: 7.8138e-04 - val_mae: 0.0212 - val_mse: 7.8138e-04 - 246ms/epoch - 19ms/step\n", - "Epoch 87/250\n", - "13/13 - 0s - loss: 7.9729e-04 - mae: 0.0210 - mse: 7.9729e-04 - val_loss: 7.3667e-04 - val_mae: 0.0204 - val_mse: 7.3667e-04 - 237ms/epoch - 18ms/step\n", - "Epoch 88/250\n", - "13/13 - 0s - loss: 7.5931e-04 - mae: 0.0205 - mse: 7.5931e-04 - val_loss: 7.5522e-04 - val_mae: 0.0210 - val_mse: 7.5522e-04 - 208ms/epoch - 16ms/step\n", - "Epoch 89/250\n", - "13/13 - 0s - loss: 7.6036e-04 - mae: 0.0211 - mse: 7.6036e-04 - val_loss: 7.5503e-04 - val_mae: 0.0207 - val_mse: 7.5503e-04 - 193ms/epoch - 15ms/step\n", - "Epoch 90/250\n", - "13/13 - 0s - loss: 7.6322e-04 - mae: 0.0204 - mse: 7.6322e-04 - val_loss: 7.7629e-04 - val_mae: 0.0203 - val_mse: 7.7629e-04 - 168ms/epoch - 13ms/step\n", - "Epoch 91/250\n", - "13/13 - 0s - loss: 7.5436e-04 - mae: 0.0208 - mse: 7.5436e-04 - val_loss: 7.4549e-04 - val_mae: 0.0210 - val_mse: 7.4549e-04 - 156ms/epoch - 12ms/step\n", - "Epoch 92/250\n", - "13/13 - 0s - loss: 7.8479e-04 - mae: 0.0208 - mse: 7.8479e-04 - val_loss: 8.0607e-04 - val_mae: 0.0208 - val_mse: 8.0607e-04 - 137ms/epoch - 11ms/step\n", - "Epoch 93/250\n", - "13/13 - 0s - loss: 7.7194e-04 - mae: 0.0211 - mse: 7.7194e-04 - val_loss: 7.7994e-04 - val_mae: 0.0206 - val_mse: 7.7994e-04 - 174ms/epoch - 13ms/step\n", - "Epoch 94/250\n", - "13/13 - 0s - loss: 7.4802e-04 - mae: 0.0205 - mse: 7.4802e-04 - val_loss: 7.2386e-04 - val_mae: 0.0201 - val_mse: 7.2386e-04 - 303ms/epoch - 23ms/step\n", - "Epoch 95/250\n", - "13/13 - 0s - loss: 7.2616e-04 - mae: 0.0203 - mse: 7.2616e-04 - val_loss: 7.2728e-04 - val_mae: 0.0204 - val_mse: 7.2728e-04 - 129ms/epoch - 10ms/step\n", - "Epoch 96/250\n", - "13/13 - 0s - loss: 7.2310e-04 - mae: 0.0204 - mse: 7.2310e-04 - val_loss: 7.1349e-04 - val_mae: 0.0206 - val_mse: 7.1349e-04 - 218ms/epoch - 17ms/step\n", - "Epoch 97/250\n", - "13/13 - 0s - loss: 7.0905e-04 - mae: 0.0201 - mse: 7.0905e-04 - val_loss: 7.6242e-04 - val_mae: 0.0205 - val_mse: 7.6242e-04 - 128ms/epoch - 10ms/step\n", - "Epoch 98/250\n", - "13/13 - 0s - loss: 7.1839e-04 - mae: 0.0200 - mse: 7.1839e-04 - val_loss: 7.7098e-04 - val_mae: 0.0202 - val_mse: 7.7098e-04 - 147ms/epoch - 11ms/step\n", - "Epoch 99/250\n", - "13/13 - 0s - loss: 7.3924e-04 - mae: 0.0208 - mse: 7.3924e-04 - val_loss: 7.8554e-04 - val_mae: 0.0206 - val_mse: 7.8554e-04 - 130ms/epoch - 10ms/step\n", - "Epoch 100/250\n", - "13/13 - 0s - loss: 7.5556e-04 - mae: 0.0209 - mse: 7.5556e-04 - val_loss: 8.6021e-04 - val_mae: 0.0215 - val_mse: 8.6021e-04 - 174ms/epoch - 13ms/step\n", - "Epoch 101/250\n", - "13/13 - 0s - loss: 7.9288e-04 - mae: 0.0213 - mse: 7.9288e-04 - val_loss: 7.2968e-04 - val_mae: 0.0203 - val_mse: 7.2968e-04 - 125ms/epoch - 10ms/step\n", - "Epoch 102/250\n", - "13/13 - 0s - loss: 7.1861e-04 - mae: 0.0204 - mse: 7.1861e-04 - val_loss: 7.0941e-04 - val_mae: 0.0207 - val_mse: 7.0941e-04 - 260ms/epoch - 20ms/step\n", - "Epoch 103/250\n", - "13/13 - 0s - loss: 7.5092e-04 - mae: 0.0208 - mse: 7.5092e-04 - val_loss: 6.8788e-04 - val_mae: 0.0198 - val_mse: 6.8788e-04 - 275ms/epoch - 21ms/step\n", - "Epoch 104/250\n", - "13/13 - 0s - loss: 7.0460e-04 - mae: 0.0200 - mse: 7.0460e-04 - val_loss: 7.2570e-04 - val_mae: 0.0200 - val_mse: 7.2570e-04 - 125ms/epoch - 10ms/step\n", - "Epoch 105/250\n", - "13/13 - 0s - loss: 6.9255e-04 - mae: 0.0202 - mse: 6.9255e-04 - val_loss: 6.7411e-04 - val_mae: 0.0199 - val_mse: 6.7411e-04 - 275ms/epoch - 21ms/step\n", - "Epoch 106/250\n", - "13/13 - 0s - loss: 6.8175e-04 - mae: 0.0196 - mse: 6.8175e-04 - val_loss: 6.7593e-04 - val_mae: 0.0196 - val_mse: 6.7593e-04 - 157ms/epoch - 12ms/step\n", - "Epoch 107/250\n", - "13/13 - 0s - loss: 6.7018e-04 - mae: 0.0196 - mse: 6.7018e-04 - val_loss: 6.8702e-04 - val_mae: 0.0196 - val_mse: 6.8702e-04 - 183ms/epoch - 14ms/step\n", - "Epoch 108/250\n", - "13/13 - 0s - loss: 6.7955e-04 - mae: 0.0198 - mse: 6.7955e-04 - val_loss: 7.6778e-04 - val_mae: 0.0204 - val_mse: 7.6778e-04 - 192ms/epoch - 15ms/step\n", - "Epoch 109/250\n", - "13/13 - 1s - loss: 6.8953e-04 - mae: 0.0198 - mse: 6.8953e-04 - val_loss: 6.7251e-04 - val_mae: 0.0195 - val_mse: 6.7251e-04 - 516ms/epoch - 40ms/step\n", - "Epoch 110/250\n", - "13/13 - 0s - loss: 6.6819e-04 - mae: 0.0197 - mse: 6.6819e-04 - val_loss: 6.8310e-04 - val_mae: 0.0197 - val_mse: 6.8310e-04 - 146ms/epoch - 11ms/step\n", - "Epoch 111/250\n", - "13/13 - 0s - loss: 6.7136e-04 - mae: 0.0197 - mse: 6.7136e-04 - val_loss: 6.5858e-04 - val_mae: 0.0199 - val_mse: 6.5858e-04 - 208ms/epoch - 16ms/step\n", - "Epoch 112/250\n", - "13/13 - 0s - loss: 6.5784e-04 - mae: 0.0195 - mse: 6.5784e-04 - val_loss: 6.5838e-04 - val_mae: 0.0196 - val_mse: 6.5838e-04 - 215ms/epoch - 17ms/step\n", - "Epoch 113/250\n", - "13/13 - 0s - loss: 6.6861e-04 - mae: 0.0198 - mse: 6.6861e-04 - val_loss: 6.9871e-04 - val_mae: 0.0196 - val_mse: 6.9871e-04 - 149ms/epoch - 11ms/step\n", - "Epoch 114/250\n", - "13/13 - 0s - loss: 6.6345e-04 - mae: 0.0196 - mse: 6.6345e-04 - val_loss: 6.8190e-04 - val_mae: 0.0196 - val_mse: 6.8190e-04 - 141ms/epoch - 11ms/step\n", - "Epoch 115/250\n", - "13/13 - 0s - loss: 6.4121e-04 - mae: 0.0193 - mse: 6.4121e-04 - val_loss: 6.6493e-04 - val_mae: 0.0196 - val_mse: 6.6493e-04 - 166ms/epoch - 13ms/step\n", - "Epoch 116/250\n", - "13/13 - 0s - loss: 6.5036e-04 - mae: 0.0194 - mse: 6.5036e-04 - val_loss: 6.5858e-04 - val_mae: 0.0191 - val_mse: 6.5858e-04 - 107ms/epoch - 8ms/step\n", - "Epoch 117/250\n", - "13/13 - 0s - loss: 6.4983e-04 - mae: 0.0194 - mse: 6.4983e-04 - val_loss: 7.0443e-04 - val_mae: 0.0198 - val_mse: 7.0443e-04 - 109ms/epoch - 8ms/step\n", - "Epoch 118/250\n", - "13/13 - 0s - loss: 6.4994e-04 - mae: 0.0195 - mse: 6.4994e-04 - val_loss: 6.3181e-04 - val_mae: 0.0193 - val_mse: 6.3181e-04 - 296ms/epoch - 23ms/step\n", - "Epoch 119/250\n", - "13/13 - 0s - loss: 6.6252e-04 - mae: 0.0199 - mse: 6.6252e-04 - val_loss: 6.3527e-04 - val_mae: 0.0191 - val_mse: 6.3527e-04 - 165ms/epoch - 13ms/step\n", - "Epoch 120/250\n", - "13/13 - 0s - loss: 6.4578e-04 - mae: 0.0193 - mse: 6.4578e-04 - val_loss: 6.3127e-04 - val_mae: 0.0189 - val_mse: 6.3127e-04 - 190ms/epoch - 15ms/step\n", - "Epoch 121/250\n", - "13/13 - 0s - loss: 6.1375e-04 - mae: 0.0191 - mse: 6.1375e-04 - val_loss: 6.5351e-04 - val_mae: 0.0192 - val_mse: 6.5351e-04 - 125ms/epoch - 10ms/step\n", - "Epoch 122/250\n", - "13/13 - 0s - loss: 6.4650e-04 - mae: 0.0196 - mse: 6.4650e-04 - val_loss: 8.0733e-04 - val_mae: 0.0210 - val_mse: 8.0733e-04 - 142ms/epoch - 11ms/step\n", - "Epoch 123/250\n", - "13/13 - 0s - loss: 6.5887e-04 - mae: 0.0198 - mse: 6.5887e-04 - val_loss: 6.2666e-04 - val_mae: 0.0191 - val_mse: 6.2666e-04 - 278ms/epoch - 21ms/step\n", - "Epoch 124/250\n", - "13/13 - 0s - loss: 6.1387e-04 - mae: 0.0189 - mse: 6.1387e-04 - val_loss: 6.1020e-04 - val_mae: 0.0188 - val_mse: 6.1020e-04 - 246ms/epoch - 19ms/step\n", - "Epoch 125/250\n", - "13/13 - 0s - loss: 6.1348e-04 - mae: 0.0191 - mse: 6.1348e-04 - val_loss: 6.1093e-04 - val_mae: 0.0193 - val_mse: 6.1093e-04 - 135ms/epoch - 10ms/step\n", - "Epoch 126/250\n", - "13/13 - 0s - loss: 6.1374e-04 - mae: 0.0189 - mse: 6.1374e-04 - val_loss: 6.1062e-04 - val_mae: 0.0188 - val_mse: 6.1062e-04 - 174ms/epoch - 13ms/step\n", - "Epoch 127/250\n", - "13/13 - 0s - loss: 6.1279e-04 - mae: 0.0190 - mse: 6.1279e-04 - val_loss: 6.4391e-04 - val_mae: 0.0190 - val_mse: 6.4391e-04 - 142ms/epoch - 11ms/step\n", - "Epoch 128/250\n", - "13/13 - 0s - loss: 6.0951e-04 - mae: 0.0189 - mse: 6.0951e-04 - val_loss: 5.9592e-04 - val_mae: 0.0188 - val_mse: 5.9592e-04 - 249ms/epoch - 19ms/step\n", - "Epoch 129/250\n", - "13/13 - 0s - loss: 6.2194e-04 - mae: 0.0192 - mse: 6.2194e-04 - val_loss: 5.9344e-04 - val_mae: 0.0188 - val_mse: 5.9344e-04 - 279ms/epoch - 21ms/step\n", - "Epoch 130/250\n", - "13/13 - 0s - loss: 6.1795e-04 - mae: 0.0191 - mse: 6.1795e-04 - val_loss: 5.8880e-04 - val_mae: 0.0188 - val_mse: 5.8880e-04 - 356ms/epoch - 27ms/step\n", - "Epoch 131/250\n", - "13/13 - 0s - loss: 6.6297e-04 - mae: 0.0199 - mse: 6.6297e-04 - val_loss: 7.2306e-04 - val_mae: 0.0197 - val_mse: 7.2306e-04 - 151ms/epoch - 12ms/step\n", - "Epoch 132/250\n", - "13/13 - 0s - loss: 5.8788e-04 - mae: 0.0189 - mse: 5.8788e-04 - val_loss: 6.0686e-04 - val_mae: 0.0189 - val_mse: 6.0686e-04 - 102ms/epoch - 8ms/step\n", - "Epoch 133/250\n", - "13/13 - 0s - loss: 5.7425e-04 - mae: 0.0184 - mse: 5.7425e-04 - val_loss: 5.7895e-04 - val_mae: 0.0183 - val_mse: 5.7895e-04 - 239ms/epoch - 18ms/step\n", - "Epoch 134/250\n", - "13/13 - 0s - loss: 5.8783e-04 - mae: 0.0186 - mse: 5.8783e-04 - val_loss: 5.7846e-04 - val_mae: 0.0188 - val_mse: 5.7846e-04 - 285ms/epoch - 22ms/step\n", - "Epoch 135/250\n", - "13/13 - 0s - loss: 5.8541e-04 - mae: 0.0188 - mse: 5.8541e-04 - val_loss: 6.7887e-04 - val_mae: 0.0191 - val_mse: 6.7887e-04 - 178ms/epoch - 14ms/step\n", - "Epoch 136/250\n", - "13/13 - 0s - loss: 5.9158e-04 - mae: 0.0185 - mse: 5.9158e-04 - val_loss: 5.9231e-04 - val_mae: 0.0188 - val_mse: 5.9231e-04 - 113ms/epoch - 9ms/step\n", - "Epoch 137/250\n", - "13/13 - 0s - loss: 5.9616e-04 - mae: 0.0192 - mse: 5.9616e-04 - val_loss: 7.0218e-04 - val_mae: 0.0212 - val_mse: 7.0218e-04 - 138ms/epoch - 11ms/step\n", - "Epoch 138/250\n", - "13/13 - 0s - loss: 6.2132e-04 - mae: 0.0190 - mse: 6.2132e-04 - val_loss: 6.3436e-04 - val_mae: 0.0186 - val_mse: 6.3436e-04 - 144ms/epoch - 11ms/step\n", - "Epoch 139/250\n", - "13/13 - 0s - loss: 5.8416e-04 - mae: 0.0189 - mse: 5.8416e-04 - val_loss: 5.7793e-04 - val_mae: 0.0184 - val_mse: 5.7793e-04 - 279ms/epoch - 21ms/step\n", - "Epoch 140/250\n", - "13/13 - 0s - loss: 6.5695e-04 - mae: 0.0195 - mse: 6.5695e-04 - val_loss: 5.8062e-04 - val_mae: 0.0189 - val_mse: 5.8062e-04 - 174ms/epoch - 13ms/step\n", - "Epoch 141/250\n", - "13/13 - 0s - loss: 6.4168e-04 - mae: 0.0200 - mse: 6.4168e-04 - val_loss: 6.9879e-04 - val_mae: 0.0196 - val_mse: 6.9879e-04 - 118ms/epoch - 9ms/step\n", - "Epoch 142/250\n", - "13/13 - 0s - loss: 6.5517e-04 - mae: 0.0198 - mse: 6.5517e-04 - val_loss: 6.3928e-04 - val_mae: 0.0193 - val_mse: 6.3928e-04 - 120ms/epoch - 9ms/step\n", - "Epoch 143/250\n", - "13/13 - 0s - loss: 5.8456e-04 - mae: 0.0190 - mse: 5.8456e-04 - val_loss: 5.4596e-04 - val_mae: 0.0181 - val_mse: 5.4596e-04 - 304ms/epoch - 23ms/step\n", - "Epoch 144/250\n", - "13/13 - 0s - loss: 5.9458e-04 - mae: 0.0186 - mse: 5.9458e-04 - val_loss: 5.8598e-04 - val_mae: 0.0181 - val_mse: 5.8598e-04 - 178ms/epoch - 14ms/step\n", - "Epoch 145/250\n", - "13/13 - 0s - loss: 5.6787e-04 - mae: 0.0186 - mse: 5.6787e-04 - val_loss: 5.6263e-04 - val_mae: 0.0186 - val_mse: 5.6263e-04 - 131ms/epoch - 10ms/step\n", - "Epoch 146/250\n", - "13/13 - 0s - loss: 5.3545e-04 - mae: 0.0178 - mse: 5.3545e-04 - val_loss: 5.3802e-04 - val_mae: 0.0179 - val_mse: 5.3802e-04 - 396ms/epoch - 30ms/step\n", - "Epoch 147/250\n", - "13/13 - 0s - loss: 5.2310e-04 - mae: 0.0177 - mse: 5.2310e-04 - val_loss: 5.4103e-04 - val_mae: 0.0179 - val_mse: 5.4103e-04 - 151ms/epoch - 12ms/step\n", - "Epoch 148/250\n", - "13/13 - 0s - loss: 5.2826e-04 - mae: 0.0176 - mse: 5.2826e-04 - val_loss: 5.9310e-04 - val_mae: 0.0181 - val_mse: 5.9310e-04 - 155ms/epoch - 12ms/step\n", - "Epoch 149/250\n", - "13/13 - 0s - loss: 5.3295e-04 - mae: 0.0179 - mse: 5.3295e-04 - val_loss: 5.4002e-04 - val_mae: 0.0176 - val_mse: 5.4002e-04 - 120ms/epoch - 9ms/step\n", - "Epoch 150/250\n", - "13/13 - 0s - loss: 5.1491e-04 - mae: 0.0174 - mse: 5.1491e-04 - val_loss: 5.9602e-04 - val_mae: 0.0179 - val_mse: 5.9602e-04 - 137ms/epoch - 11ms/step\n", - "Epoch 151/250\n", - "13/13 - 0s - loss: 5.2334e-04 - mae: 0.0179 - mse: 5.2334e-04 - val_loss: 5.2811e-04 - val_mae: 0.0178 - val_mse: 5.2811e-04 - 315ms/epoch - 24ms/step\n", - "Epoch 152/250\n", - "13/13 - 0s - loss: 5.2768e-04 - mae: 0.0178 - mse: 5.2768e-04 - val_loss: 5.5139e-04 - val_mae: 0.0184 - val_mse: 5.5139e-04 - 198ms/epoch - 15ms/step\n", - "Epoch 153/250\n", - "13/13 - 0s - loss: 5.2962e-04 - mae: 0.0179 - mse: 5.2962e-04 - val_loss: 5.7462e-04 - val_mae: 0.0178 - val_mse: 5.7462e-04 - 129ms/epoch - 10ms/step\n", - "Epoch 154/250\n", - "13/13 - 0s - loss: 5.0260e-04 - mae: 0.0173 - mse: 5.0260e-04 - val_loss: 5.3387e-04 - val_mae: 0.0181 - val_mse: 5.3387e-04 - 131ms/epoch - 10ms/step\n", - "Epoch 155/250\n", - "13/13 - 0s - loss: 5.0501e-04 - mae: 0.0175 - mse: 5.0501e-04 - val_loss: 5.0751e-04 - val_mae: 0.0172 - val_mse: 5.0751e-04 - 267ms/epoch - 21ms/step\n", - "Epoch 156/250\n", - "13/13 - 0s - loss: 5.0518e-04 - mae: 0.0173 - mse: 5.0518e-04 - val_loss: 5.5553e-04 - val_mae: 0.0174 - val_mse: 5.5553e-04 - 182ms/epoch - 14ms/step\n", - "Epoch 157/250\n", - "13/13 - 0s - loss: 5.0064e-04 - mae: 0.0172 - mse: 5.0064e-04 - val_loss: 5.1205e-04 - val_mae: 0.0172 - val_mse: 5.1205e-04 - 160ms/epoch - 12ms/step\n", - "Epoch 158/250\n", - "13/13 - 0s - loss: 4.9541e-04 - mae: 0.0172 - mse: 4.9541e-04 - val_loss: 5.0799e-04 - val_mae: 0.0172 - val_mse: 5.0799e-04 - 131ms/epoch - 10ms/step\n", - "Epoch 159/250\n", - "13/13 - 0s - loss: 5.4153e-04 - mae: 0.0182 - mse: 5.4153e-04 - val_loss: 5.2077e-04 - val_mae: 0.0171 - val_mse: 5.2077e-04 - 172ms/epoch - 13ms/step\n", - "Epoch 160/250\n", - "13/13 - 0s - loss: 4.8280e-04 - mae: 0.0170 - mse: 4.8280e-04 - val_loss: 5.1410e-04 - val_mae: 0.0168 - val_mse: 5.1410e-04 - 164ms/epoch - 13ms/step\n", - "Epoch 161/250\n", - "13/13 - 0s - loss: 4.8993e-04 - mae: 0.0171 - mse: 4.8993e-04 - val_loss: 5.1744e-04 - val_mae: 0.0171 - val_mse: 5.1744e-04 - 169ms/epoch - 13ms/step\n", - "Epoch 162/250\n", - "13/13 - 0s - loss: 4.8044e-04 - mae: 0.0169 - mse: 4.8044e-04 - val_loss: 5.1099e-04 - val_mae: 0.0168 - val_mse: 5.1099e-04 - 188ms/epoch - 14ms/step\n", - "Epoch 163/250\n", - "13/13 - 0s - loss: 4.9657e-04 - mae: 0.0171 - mse: 4.9657e-04 - val_loss: 4.9877e-04 - val_mae: 0.0171 - val_mse: 4.9877e-04 - 258ms/epoch - 20ms/step\n", - "Epoch 164/250\n", - "13/13 - 0s - loss: 4.8858e-04 - mae: 0.0170 - mse: 4.8858e-04 - val_loss: 5.0099e-04 - val_mae: 0.0169 - val_mse: 5.0099e-04 - 150ms/epoch - 12ms/step\n", - "Epoch 165/250\n", - "13/13 - 0s - loss: 4.7747e-04 - mae: 0.0170 - mse: 4.7747e-04 - val_loss: 5.8449e-04 - val_mae: 0.0174 - val_mse: 5.8449e-04 - 158ms/epoch - 12ms/step\n", - "Epoch 166/250\n", - "13/13 - 0s - loss: 4.9897e-04 - mae: 0.0171 - mse: 4.9897e-04 - val_loss: 4.9512e-04 - val_mae: 0.0173 - val_mse: 4.9512e-04 - 265ms/epoch - 20ms/step\n", - "Epoch 167/250\n", - "13/13 - 0s - loss: 4.8695e-04 - mae: 0.0173 - mse: 4.8695e-04 - val_loss: 5.0306e-04 - val_mae: 0.0165 - val_mse: 5.0306e-04 - 151ms/epoch - 12ms/step\n", - "Epoch 168/250\n", - "13/13 - 0s - loss: 4.7948e-04 - mae: 0.0171 - mse: 4.7948e-04 - val_loss: 6.8895e-04 - val_mae: 0.0193 - val_mse: 6.8895e-04 - 128ms/epoch - 10ms/step\n", - "Epoch 169/250\n", - "13/13 - 0s - loss: 4.8055e-04 - mae: 0.0168 - mse: 4.8055e-04 - val_loss: 4.9053e-04 - val_mae: 0.0171 - val_mse: 4.9053e-04 - 234ms/epoch - 18ms/step\n", - "Epoch 170/250\n", - "13/13 - 0s - loss: 4.5980e-04 - mae: 0.0168 - mse: 4.5980e-04 - val_loss: 5.2267e-04 - val_mae: 0.0170 - val_mse: 5.2267e-04 - 167ms/epoch - 13ms/step\n", - "Epoch 171/250\n", - "13/13 - 0s - loss: 4.6495e-04 - mae: 0.0168 - mse: 4.6495e-04 - val_loss: 4.6718e-04 - val_mae: 0.0165 - val_mse: 4.6718e-04 - 243ms/epoch - 19ms/step\n", - "Epoch 172/250\n", - "13/13 - 0s - loss: 4.6046e-04 - mae: 0.0168 - mse: 4.6046e-04 - val_loss: 4.6731e-04 - val_mae: 0.0166 - val_mse: 4.6731e-04 - 148ms/epoch - 11ms/step\n", - "Epoch 173/250\n", - "13/13 - 0s - loss: 4.6993e-04 - mae: 0.0168 - mse: 4.6993e-04 - val_loss: 4.8190e-04 - val_mae: 0.0167 - val_mse: 4.8190e-04 - 143ms/epoch - 11ms/step\n", - "Epoch 174/250\n", - "13/13 - 0s - loss: 4.8411e-04 - mae: 0.0172 - mse: 4.8411e-04 - val_loss: 5.0800e-04 - val_mae: 0.0164 - val_mse: 5.0800e-04 - 131ms/epoch - 10ms/step\n", - "Epoch 175/250\n", - "13/13 - 0s - loss: 4.5295e-04 - mae: 0.0164 - mse: 4.5295e-04 - val_loss: 6.2583e-04 - val_mae: 0.0182 - val_mse: 6.2583e-04 - 136ms/epoch - 10ms/step\n", - "Epoch 176/250\n", - "13/13 - 0s - loss: 5.3742e-04 - mae: 0.0183 - mse: 5.3742e-04 - val_loss: 5.6727e-04 - val_mae: 0.0187 - val_mse: 5.6727e-04 - 141ms/epoch - 11ms/step\n", - "Epoch 177/250\n", - "13/13 - 0s - loss: 5.3634e-04 - mae: 0.0182 - mse: 5.3634e-04 - val_loss: 4.6197e-04 - val_mae: 0.0157 - val_mse: 4.6197e-04 - 316ms/epoch - 24ms/step\n", - "Epoch 178/250\n", - "13/13 - 0s - loss: 4.8847e-04 - mae: 0.0169 - mse: 4.8847e-04 - val_loss: 4.6646e-04 - val_mae: 0.0160 - val_mse: 4.6646e-04 - 214ms/epoch - 16ms/step\n", - "Epoch 179/250\n", - "13/13 - 0s - loss: 4.3622e-04 - mae: 0.0160 - mse: 4.3622e-04 - val_loss: 5.3203e-04 - val_mae: 0.0164 - val_mse: 5.3203e-04 - 181ms/epoch - 14ms/step\n", - "Epoch 180/250\n", - "13/13 - 0s - loss: 4.7108e-04 - mae: 0.0165 - mse: 4.7108e-04 - val_loss: 4.6548e-04 - val_mae: 0.0161 - val_mse: 4.6548e-04 - 144ms/epoch - 11ms/step\n", - "Epoch 181/250\n", - "13/13 - 0s - loss: 4.3932e-04 - mae: 0.0164 - mse: 4.3932e-04 - val_loss: 4.4195e-04 - val_mae: 0.0157 - val_mse: 4.4195e-04 - 302ms/epoch - 23ms/step\n", - "Epoch 182/250\n", - "13/13 - 0s - loss: 4.3340e-04 - mae: 0.0159 - mse: 4.3340e-04 - val_loss: 4.5463e-04 - val_mae: 0.0158 - val_mse: 4.5463e-04 - 216ms/epoch - 17ms/step\n", - "Epoch 183/250\n", - "13/13 - 0s - loss: 4.2639e-04 - mae: 0.0162 - mse: 4.2639e-04 - val_loss: 4.3874e-04 - val_mae: 0.0156 - val_mse: 4.3874e-04 - 296ms/epoch - 23ms/step\n", - "Epoch 184/250\n", - "13/13 - 0s - loss: 4.4119e-04 - mae: 0.0159 - mse: 4.4119e-04 - val_loss: 4.7791e-04 - val_mae: 0.0169 - val_mse: 4.7791e-04 - 195ms/epoch - 15ms/step\n", - "Epoch 185/250\n", - "13/13 - 0s - loss: 4.4805e-04 - mae: 0.0164 - mse: 4.4805e-04 - val_loss: 4.6275e-04 - val_mae: 0.0163 - val_mse: 4.6275e-04 - 119ms/epoch - 9ms/step\n", - "Epoch 186/250\n", - "13/13 - 0s - loss: 4.4495e-04 - mae: 0.0163 - mse: 4.4495e-04 - val_loss: 4.4746e-04 - val_mae: 0.0155 - val_mse: 4.4746e-04 - 115ms/epoch - 9ms/step\n", - "Epoch 187/250\n", - "13/13 - 0s - loss: 4.7030e-04 - mae: 0.0167 - mse: 4.7030e-04 - val_loss: 5.6234e-04 - val_mae: 0.0169 - val_mse: 5.6234e-04 - 147ms/epoch - 11ms/step\n", - "Epoch 188/250\n", - "13/13 - 0s - loss: 4.4920e-04 - mae: 0.0160 - mse: 4.4920e-04 - val_loss: 4.2347e-04 - val_mae: 0.0154 - val_mse: 4.2347e-04 - 451ms/epoch - 35ms/step\n", - "Epoch 189/250\n", - "13/13 - 0s - loss: 4.1850e-04 - mae: 0.0159 - mse: 4.1850e-04 - val_loss: 4.5828e-04 - val_mae: 0.0156 - val_mse: 4.5828e-04 - 110ms/epoch - 8ms/step\n", - "Epoch 190/250\n", - "13/13 - 0s - loss: 4.2816e-04 - mae: 0.0159 - mse: 4.2816e-04 - val_loss: 4.2983e-04 - val_mae: 0.0155 - val_mse: 4.2983e-04 - 121ms/epoch - 9ms/step\n", - "Epoch 191/250\n", - "13/13 - 0s - loss: 4.1442e-04 - mae: 0.0156 - mse: 4.1442e-04 - val_loss: 4.5135e-04 - val_mae: 0.0154 - val_mse: 4.5135e-04 - 173ms/epoch - 13ms/step\n", - "Epoch 192/250\n", - "13/13 - 0s - loss: 4.1126e-04 - mae: 0.0159 - mse: 4.1126e-04 - val_loss: 4.2590e-04 - val_mae: 0.0151 - val_mse: 4.2590e-04 - 149ms/epoch - 11ms/step\n", - "Epoch 193/250\n", - "13/13 - 0s - loss: 4.1197e-04 - mae: 0.0155 - mse: 4.1197e-04 - val_loss: 4.2111e-04 - val_mae: 0.0151 - val_mse: 4.2111e-04 - 243ms/epoch - 19ms/step\n", - "Epoch 194/250\n", - "13/13 - 0s - loss: 4.0958e-04 - mae: 0.0157 - mse: 4.0958e-04 - val_loss: 4.1117e-04 - val_mae: 0.0149 - val_mse: 4.1117e-04 - 272ms/epoch - 21ms/step\n", - "Epoch 195/250\n", - "13/13 - 0s - loss: 3.9243e-04 - mae: 0.0153 - mse: 3.9243e-04 - val_loss: 4.1405e-04 - val_mae: 0.0150 - val_mse: 4.1405e-04 - 136ms/epoch - 10ms/step\n", - "Epoch 196/250\n", - "13/13 - 0s - loss: 4.0300e-04 - mae: 0.0153 - mse: 4.0300e-04 - val_loss: 4.3989e-04 - val_mae: 0.0150 - val_mse: 4.3989e-04 - 151ms/epoch - 12ms/step\n", - "Epoch 197/250\n", - "13/13 - 0s - loss: 4.0142e-04 - mae: 0.0154 - mse: 4.0142e-04 - val_loss: 4.3665e-04 - val_mae: 0.0151 - val_mse: 4.3665e-04 - 160ms/epoch - 12ms/step\n", - "Epoch 198/250\n", - "13/13 - 0s - loss: 3.9936e-04 - mae: 0.0153 - mse: 3.9936e-04 - val_loss: 4.2897e-04 - val_mae: 0.0149 - val_mse: 4.2897e-04 - 114ms/epoch - 9ms/step\n", - "Epoch 199/250\n", - "13/13 - 0s - loss: 4.0143e-04 - mae: 0.0153 - mse: 4.0143e-04 - val_loss: 4.0877e-04 - val_mae: 0.0148 - val_mse: 4.0877e-04 - 209ms/epoch - 16ms/step\n", - "Epoch 200/250\n", - "13/13 - 0s - loss: 3.9668e-04 - mae: 0.0152 - mse: 3.9668e-04 - val_loss: 4.3571e-04 - val_mae: 0.0150 - val_mse: 4.3571e-04 - 198ms/epoch - 15ms/step\n", - "Epoch 201/250\n", - "13/13 - 0s - loss: 3.9516e-04 - mae: 0.0154 - mse: 3.9516e-04 - val_loss: 5.1984e-04 - val_mae: 0.0161 - val_mse: 5.1984e-04 - 147ms/epoch - 11ms/step\n", - "Epoch 202/250\n", - "13/13 - 0s - loss: 4.5166e-04 - mae: 0.0161 - mse: 4.5166e-04 - val_loss: 5.4696e-04 - val_mae: 0.0182 - val_mse: 5.4696e-04 - 128ms/epoch - 10ms/step\n", - "Epoch 203/250\n", - "13/13 - 0s - loss: 4.5904e-04 - mae: 0.0166 - mse: 4.5904e-04 - val_loss: 4.1240e-04 - val_mae: 0.0150 - val_mse: 4.1240e-04 - 137ms/epoch - 11ms/step\n", - "Epoch 204/250\n", - "13/13 - 0s - loss: 3.9851e-04 - mae: 0.0150 - mse: 3.9851e-04 - val_loss: 4.5210e-04 - val_mae: 0.0154 - val_mse: 4.5210e-04 - 141ms/epoch - 11ms/step\n", - "Epoch 205/250\n", - "13/13 - 0s - loss: 3.8760e-04 - mae: 0.0151 - mse: 3.8760e-04 - val_loss: 4.0982e-04 - val_mae: 0.0149 - val_mse: 4.0982e-04 - 121ms/epoch - 9ms/step\n", - "Epoch 206/250\n", - "13/13 - 0s - loss: 4.1937e-04 - mae: 0.0156 - mse: 4.1937e-04 - val_loss: 3.8857e-04 - val_mae: 0.0145 - val_mse: 3.8857e-04 - 294ms/epoch - 23ms/step\n", - "Epoch 207/250\n", - "13/13 - 0s - loss: 3.7173e-04 - mae: 0.0146 - mse: 3.7173e-04 - val_loss: 3.9353e-04 - val_mae: 0.0147 - val_mse: 3.9353e-04 - 146ms/epoch - 11ms/step\n", - "Epoch 208/250\n", - "13/13 - 0s - loss: 3.9673e-04 - mae: 0.0153 - mse: 3.9673e-04 - val_loss: 3.9003e-04 - val_mae: 0.0145 - val_mse: 3.9003e-04 - 115ms/epoch - 9ms/step\n", - "Epoch 209/250\n", - "13/13 - 0s - loss: 4.2359e-04 - mae: 0.0155 - mse: 4.2359e-04 - val_loss: 3.9027e-04 - val_mae: 0.0146 - val_mse: 3.9027e-04 - 150ms/epoch - 12ms/step\n", - "Epoch 210/250\n", - "13/13 - 0s - loss: 3.9302e-04 - mae: 0.0154 - mse: 3.9302e-04 - val_loss: 4.1320e-04 - val_mae: 0.0152 - val_mse: 4.1320e-04 - 167ms/epoch - 13ms/step\n", - "Epoch 211/250\n", - "13/13 - 0s - loss: 3.6641e-04 - mae: 0.0147 - mse: 3.6641e-04 - val_loss: 3.9564e-04 - val_mae: 0.0141 - val_mse: 3.9564e-04 - 167ms/epoch - 13ms/step\n", - "Epoch 212/250\n", - "13/13 - 0s - loss: 3.6259e-04 - mae: 0.0143 - mse: 3.6259e-04 - val_loss: 3.8787e-04 - val_mae: 0.0146 - val_mse: 3.8787e-04 - 309ms/epoch - 24ms/step\n", - "Epoch 213/250\n", - "13/13 - 0s - loss: 4.0665e-04 - mae: 0.0156 - mse: 4.0665e-04 - val_loss: 5.0910e-04 - val_mae: 0.0160 - val_mse: 5.0910e-04 - 158ms/epoch - 12ms/step\n", - "Epoch 214/250\n", - "13/13 - 0s - loss: 4.5758e-04 - mae: 0.0169 - mse: 4.5758e-04 - val_loss: 4.1241e-04 - val_mae: 0.0141 - val_mse: 4.1241e-04 - 125ms/epoch - 10ms/step\n", - "Epoch 215/250\n", - "13/13 - 0s - loss: 4.0666e-04 - mae: 0.0155 - mse: 4.0666e-04 - val_loss: 4.6639e-04 - val_mae: 0.0151 - val_mse: 4.6639e-04 - 177ms/epoch - 14ms/step\n", - "Epoch 216/250\n", - "13/13 - 0s - loss: 3.6615e-04 - mae: 0.0145 - mse: 3.6615e-04 - val_loss: 3.8294e-04 - val_mae: 0.0138 - val_mse: 3.8294e-04 - 253ms/epoch - 19ms/step\n", - "Epoch 217/250\n", - "13/13 - 0s - loss: 3.8135e-04 - mae: 0.0149 - mse: 3.8135e-04 - val_loss: 5.1259e-04 - val_mae: 0.0162 - val_mse: 5.1259e-04 - 136ms/epoch - 10ms/step\n", - "Epoch 218/250\n", - "13/13 - 0s - loss: 3.5877e-04 - mae: 0.0144 - mse: 3.5877e-04 - val_loss: 3.7918e-04 - val_mae: 0.0142 - val_mse: 3.7918e-04 - 254ms/epoch - 20ms/step\n", - "Epoch 219/250\n", - "13/13 - 0s - loss: 4.1097e-04 - mae: 0.0155 - mse: 4.1097e-04 - val_loss: 3.7973e-04 - val_mae: 0.0144 - val_mse: 3.7973e-04 - 167ms/epoch - 13ms/step\n", - "Epoch 220/250\n", - "13/13 - 0s - loss: 3.7840e-04 - mae: 0.0149 - mse: 3.7840e-04 - val_loss: 4.7988e-04 - val_mae: 0.0153 - val_mse: 4.7988e-04 - 157ms/epoch - 12ms/step\n", - "Epoch 221/250\n", - "13/13 - 0s - loss: 3.5545e-04 - mae: 0.0143 - mse: 3.5545e-04 - val_loss: 3.7230e-04 - val_mae: 0.0136 - val_mse: 3.7230e-04 - 218ms/epoch - 17ms/step\n", - "Epoch 222/250\n", - "13/13 - 0s - loss: 3.4610e-04 - mae: 0.0141 - mse: 3.4610e-04 - val_loss: 4.1371e-04 - val_mae: 0.0142 - val_mse: 4.1371e-04 - 141ms/epoch - 11ms/step\n", - "Epoch 223/250\n", - "13/13 - 0s - loss: 3.7775e-04 - mae: 0.0149 - mse: 3.7775e-04 - val_loss: 3.8045e-04 - val_mae: 0.0142 - val_mse: 3.8045e-04 - 176ms/epoch - 14ms/step\n", - "Epoch 224/250\n", - "13/13 - 0s - loss: 3.5911e-04 - mae: 0.0145 - mse: 3.5911e-04 - val_loss: 3.5609e-04 - val_mae: 0.0134 - val_mse: 3.5609e-04 - 421ms/epoch - 32ms/step\n", - "Epoch 225/250\n", - "13/13 - 0s - loss: 3.5933e-04 - mae: 0.0144 - mse: 3.5933e-04 - val_loss: 3.5900e-04 - val_mae: 0.0134 - val_mse: 3.5900e-04 - 159ms/epoch - 12ms/step\n", - "Epoch 226/250\n", - "13/13 - 0s - loss: 3.6466e-04 - mae: 0.0144 - mse: 3.6466e-04 - val_loss: 3.5378e-04 - val_mae: 0.0135 - val_mse: 3.5378e-04 - 307ms/epoch - 24ms/step\n", - "Epoch 227/250\n", - "13/13 - 0s - loss: 3.5876e-04 - mae: 0.0144 - mse: 3.5876e-04 - val_loss: 3.6523e-04 - val_mae: 0.0133 - val_mse: 3.6523e-04 - 193ms/epoch - 15ms/step\n", - "Epoch 228/250\n", - "13/13 - 0s - loss: 3.4559e-04 - mae: 0.0142 - mse: 3.4559e-04 - val_loss: 3.5907e-04 - val_mae: 0.0139 - val_mse: 3.5907e-04 - 133ms/epoch - 10ms/step\n", - "Epoch 229/250\n", - "13/13 - 0s - loss: 3.4162e-04 - mae: 0.0142 - mse: 3.4162e-04 - val_loss: 4.2194e-04 - val_mae: 0.0141 - val_mse: 4.2194e-04 - 107ms/epoch - 8ms/step\n", - "Epoch 230/250\n", - "13/13 - 0s - loss: 3.6967e-04 - mae: 0.0146 - mse: 3.6967e-04 - val_loss: 3.7720e-04 - val_mae: 0.0138 - val_mse: 3.7720e-04 - 165ms/epoch - 13ms/step\n", - "Epoch 231/250\n", - "13/13 - 0s - loss: 3.3735e-04 - mae: 0.0136 - mse: 3.3735e-04 - val_loss: 3.3976e-04 - val_mae: 0.0129 - val_mse: 3.3976e-04 - 276ms/epoch - 21ms/step\n", - "Epoch 232/250\n", - "13/13 - 0s - loss: 3.3844e-04 - mae: 0.0141 - mse: 3.3844e-04 - val_loss: 3.8716e-04 - val_mae: 0.0135 - val_mse: 3.8716e-04 - 134ms/epoch - 10ms/step\n", - "Epoch 233/250\n", - "13/13 - 0s - loss: 3.6741e-04 - mae: 0.0145 - mse: 3.6741e-04 - val_loss: 3.8668e-04 - val_mae: 0.0136 - val_mse: 3.8668e-04 - 146ms/epoch - 11ms/step\n", - "Epoch 234/250\n", - "13/13 - 0s - loss: 3.4129e-04 - mae: 0.0139 - mse: 3.4129e-04 - val_loss: 3.4933e-04 - val_mae: 0.0133 - val_mse: 3.4933e-04 - 165ms/epoch - 13ms/step\n", - "Epoch 235/250\n", - "13/13 - 0s - loss: 3.2338e-04 - mae: 0.0137 - mse: 3.2338e-04 - val_loss: 3.4566e-04 - val_mae: 0.0133 - val_mse: 3.4566e-04 - 153ms/epoch - 12ms/step\n", - "Epoch 236/250\n", - "13/13 - 0s - loss: 3.1652e-04 - mae: 0.0134 - mse: 3.1652e-04 - val_loss: 3.9728e-04 - val_mae: 0.0136 - val_mse: 3.9728e-04 - 187ms/epoch - 14ms/step\n", - "Epoch 237/250\n", - "13/13 - 0s - loss: 3.2047e-04 - mae: 0.0136 - mse: 3.2047e-04 - val_loss: 3.3756e-04 - val_mae: 0.0130 - val_mse: 3.3756e-04 - 209ms/epoch - 16ms/step\n", - "Epoch 238/250\n", - "13/13 - 0s - loss: 3.3167e-04 - mae: 0.0138 - mse: 3.3167e-04 - val_loss: 3.3191e-04 - val_mae: 0.0126 - val_mse: 3.3191e-04 - 175ms/epoch - 13ms/step\n", - "Epoch 239/250\n", - "13/13 - 0s - loss: 3.2033e-04 - mae: 0.0134 - mse: 3.2033e-04 - val_loss: 3.2969e-04 - val_mae: 0.0128 - val_mse: 3.2969e-04 - 234ms/epoch - 18ms/step\n", - "Epoch 240/250\n", - "13/13 - 0s - loss: 3.5224e-04 - mae: 0.0141 - mse: 3.5224e-04 - val_loss: 3.9061e-04 - val_mae: 0.0148 - val_mse: 3.9061e-04 - 130ms/epoch - 10ms/step\n", - "Epoch 241/250\n", - "13/13 - 0s - loss: 3.9777e-04 - mae: 0.0153 - mse: 3.9777e-04 - val_loss: 3.7065e-04 - val_mae: 0.0137 - val_mse: 3.7065e-04 - 122ms/epoch - 9ms/step\n", - "Epoch 242/250\n", - "13/13 - 0s - loss: 3.2502e-04 - mae: 0.0138 - mse: 3.2502e-04 - val_loss: 3.3236e-04 - val_mae: 0.0124 - val_mse: 3.3236e-04 - 128ms/epoch - 10ms/step\n", - "Epoch 243/250\n", - "13/13 - 0s - loss: 3.0734e-04 - mae: 0.0133 - mse: 3.0734e-04 - val_loss: 3.2635e-04 - val_mae: 0.0126 - val_mse: 3.2635e-04 - 321ms/epoch - 25ms/step\n", - "Epoch 244/250\n", - "13/13 - 0s - loss: 3.2928e-04 - mae: 0.0137 - mse: 3.2928e-04 - val_loss: 3.2871e-04 - val_mae: 0.0125 - val_mse: 3.2871e-04 - 167ms/epoch - 13ms/step\n", - "Epoch 245/250\n", - "13/13 - 0s - loss: 2.9711e-04 - mae: 0.0131 - mse: 2.9711e-04 - val_loss: 3.2920e-04 - val_mae: 0.0121 - val_mse: 3.2920e-04 - 129ms/epoch - 10ms/step\n", - "Epoch 246/250\n", - "13/13 - 0s - loss: 3.2661e-04 - mae: 0.0134 - mse: 3.2661e-04 - val_loss: 3.6936e-04 - val_mae: 0.0134 - val_mse: 3.6936e-04 - 191ms/epoch - 15ms/step\n", - "Epoch 247/250\n", - "13/13 - 0s - loss: 2.9618e-04 - mae: 0.0128 - mse: 2.9618e-04 - val_loss: 3.3549e-04 - val_mae: 0.0123 - val_mse: 3.3549e-04 - 119ms/epoch - 9ms/step\n", - "Epoch 248/250\n", - "13/13 - 0s - loss: 2.9979e-04 - mae: 0.0130 - mse: 2.9979e-04 - val_loss: 3.8099e-04 - val_mae: 0.0135 - val_mse: 3.8099e-04 - 122ms/epoch - 9ms/step\n", - "Epoch 249/250\n", - "13/13 - 0s - loss: 3.0599e-04 - mae: 0.0131 - mse: 3.0599e-04 - val_loss: 3.2729e-04 - val_mae: 0.0122 - val_mse: 3.2729e-04 - 150ms/epoch - 12ms/step\n", - "Epoch 250/250\n", - "13/13 - 0s - loss: 3.1256e-04 - mae: 0.0134 - mse: 3.1256e-04 - val_loss: 3.3855e-04 - val_mae: 0.0134 - val_mse: 3.3855e-04 - 127ms/epoch - 10ms/step\n" - ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTK0lEQVR4nO3deVxUVeM/8M/MIMMmmyCgILjvYoES+uCSPIKaSWihoiL6ZLmlD9q3bAG1eqj0l1halqW0uRZqi0tKUqaY5r7loz6YG4u4sKkgw/n9MXJjHJBBLnNZPu/X675kzj333jO3iflw7jn3qoQQAkRERET1hFrpBhARERHJieGGiIiI6hWGGyIiIqpXGG6IiIioXmG4ISIionqF4YaIiIjqFYYbIiIiqlcYboiIiKheYbghIiKieoXhhughjR8/Hj4+Pg+17dy5c6FSqeRtEClGpVJh7ty50uvExESoVCqcP3++0m19fHwwfvx4WdtTnc8mUX3AcEP1jkqlMmlJSUlRuqmKGD9+PFQqFezt7XH79m2j9WfOnJHO0cKFCw3WnT9/HtHR0WjdujWsrKzg7u6OPn36IC4uzqBev379KjzvHTp0qNH39yAvvPACVCoVzp49W2GdV199FSqVCkePHjVjy6ruypUrmDt3Lg4fPqx0UyTnz5+X/ju/+eab5daJjIyESqWCnZ2dQXlJSQm++OILBAQEwNnZGY0bN0a7du0wbtw47N27V6qXkpLywP+v16xZU6PvkeoGC6UbQCS3L7/80uD1F198ge3btxuVd+zYsVrHWb58OUpKSh5q29deew0vv/xytY5fHRYWFrh16xa+//57PPPMMwbrvv76a1hZWeHOnTsG5WfPnkWPHj1gbW2NCRMmwMfHB+np6Th48CDeeecdzJs3z6C+p6cn4uPjjY7t4OAg/xsyUWRkJD744AOsWrUKsbGx5dZZvXo1unbtim7duj30ccaOHYuRI0dCq9U+9D4qc+XKFcybNw8+Pj7o3r27wbrqfDblYGVlhdWrV+O1114zKC8oKMCmTZtgZWVltM0LL7yApUuXYtiwYYiMjISFhQVOnz6NLVu2oFWrVnjssceM6vfo0cNoP4GBgfK+GaqTGG6o3hkzZozB671792L79u1G5fe7desWbGxsTD5Oo0aNHqp9gD5cWFgo97+fVqtF7969sXr1aqNws2rVKgwZMgTffvutQfmiRYuQn5+Pw4cPw9vb22BdVlaW0TEcHBwqPefmFhAQgDZt2mD16tXlhpvU1FSkpaXh7bffrtZxNBoNNBpNtfZRHdX5bMph8ODBSEpKwpEjR+Dr6yuVb9q0CUVFRQgNDcXPP/8slWdmZuLDDz/Es88+i08++cRgXwkJCbh69arRMYKCgjBixIiaexNUp/GyFDVI/fr1Q5cuXXDgwAH06dMHNjY2eOWVVwDofwEPGTIEzZo1g1arRevWrfHGG29Ap9MZ7OP+cQ2lXfILFy7EJ598gtatW0Or1aJHjx7Yv3+/wbbljblRqVSYNm0aNm7ciC5dukCr1aJz587YunWrUftTUlLg7+8PKysrtG7dGh9//HGVx/GMHj0aW7Zswc2bN6Wy/fv348yZMxg9erRR/XPnzsHT09Mo2ABA06ZNTT7ug2RmZsLCwsKoFwgATp8+DZVKhSVLlgAA7t69i3nz5qFt27awsrJCkyZN8I9//APbt29/4DEiIyPx559/4uDBg0brVq1aBZVKhVGjRqGoqAixsbHw8/ODg4MDbG1tERQUhJ07d1b6PsobcyOEwJtvvglPT0/Y2Nigf//+OHHihNG2169fx+zZs9G1a1fY2dnB3t4egwYNwpEjR6Q6KSkpUq9FdHS0dEkmMTERQPljbgoKCjBr1ix4eXlBq9Wiffv2WLhwIYQQBvWq8jmsSGBgIFq2bIlVq1YZlH/99dcIDQ2Fs7OzQXlaWhqEEOjdu7fRvlQqlWyfL2o4GG6owbp27RoGDRqE7t27IyEhAf379weg/2Kys7NDTEwMFi9eDD8/P8TGxpp8GWnVqlVYsGABnnvuObz55ps4f/48wsPDcffu3Uq3/e233zBlyhSMHDkS7777Lu7cuYPhw4fj2rVrUp1Dhw4hNDQU165dw7x58zBx4kTMnz8fGzdurNL7Dw8Ph0qlQlJSkkHbO3TogEcffdSovre3Ny5evGjwF/eD6HQ6ZGdnGy0FBQUVbuPm5oa+ffti3bp1RuvWrl0LjUaDp59+GoA+IM6bNw/9+/fHkiVL8Oqrr6JFixblhpayIiMjpfd6f3vXrVuHoKAgtGjRArm5ufj000/Rr18/vPPOO5g7dy6uXr2KkJCQhxrnEhsbi9dffx2+vr5YsGABWrVqhYEDBxqdj//973/YuHEjnnjiCbz33nt48cUXcezYMfTt2xdXrlwBoL+kOn/+fADApEmT8OWXX+LLL79Enz59yj22EAJPPvkkFi1ahNDQULz33nto3749XnzxRcTExBjVN+VzWJlRo0ZhzZo1UnjKzs7GTz/9VG5wLg3M69evx61bt0zaf15eXrmfr/vDGjVQgqiemzp1qrj/o963b18BQCxbtsyo/q1bt4zKnnvuOWFjYyPu3LkjlUVFRQlvb2/pdVpamgAgmjRpIq5fvy6Vb9q0SQAQ33//vVQWFxdn1CYAwtLSUpw9e1YqO3LkiAAgPvjgA6ls6NChwsbGRly+fFkqO3PmjLCwsDDaZ3mioqKEra2tEEKIESNGiAEDBgghhNDpdMLd3V3MmzdPei8LFiyQtjt+/LiwtrYWAET37t3FjBkzxMaNG0VBQYHRMUrPb3nLc88998D2ffzxxwKAOHbsmEF5p06dxOOPPy699vX1FUOGDKn0/ZanR48ewtPTU+h0Oqls69atAoD4+OOPhRBCFBcXi8LCQoPtbty4Idzc3MSECRMMygGIuLg46fXKlSsFAJGWliaEECIrK0tYWlqKIUOGiJKSEqneK6+8IgCIqKgoqezOnTsG7RJC/9nSarVi/vz5Utn+/fsFALFy5Uqj93f/Z3Pjxo0CgHjzzTcN6o0YMUKoVCqDz5ypn8PylP3cHD9+XAAQu3btEkIIsXTpUmFnZycKCgoMPoOlxo0bJwAIJycn8dRTT4mFCxeKU6dOGR1j586dFX62AIj09PQHtpEaBvbcUIOl1WoRHR1tVG5tbS39XPrXYVBQEG7duoU///yz0v1GRETAyclJeh0UFARA/xd5ZYKDg9G6dWvpdbdu3WBvby9tq9PpsGPHDoSFhaFZs2ZSvTZt2mDQoEGV7v9+o0ePRkpKCjIyMvDzzz8jIyOj3L+sAaBz5844fPgwxowZg/Pnz2Px4sUICwuDm5sbli9fblTfx8cH27dvN1pmzpz5wDaFh4fDwsICa9eulcqOHz+OkydPIiIiQipzdHTEiRMncObMmSq/7zFjxuDSpUv49ddfpbJVq1bB0tJS6hnSaDSwtLQEoJ/Jc/36dRQXF8Pf37/S3qH77dixA0VFRZg+fbrBpcPyzoVWq4Varf/VrNPpcO3aNdjZ2aF9+/ZVPm6pzZs3Q6PR4IUXXjAonzVrFoQQ2LJli0F5ZZ9DU3Tu3BndunXD6tWrAejP77Bhwyoc17Zy5UosWbIELVu2xIYNGzB79mx07NgRAwYMwOXLl43qx8bGlvv5uv+SFzVMDDfUYDVv3lz68irrxIkTeOqpp+Dg4AB7e3u4urpKA2NzcnIq3W+LFi0MXpcGnRs3blR529LtS7fNysrC7du30aZNG6N65ZVVZvDgwWjcuDHWrl2Lr7/+Gj169Hjgftq1a4cvv/wS2dnZOHr0KP7zn//AwsICkyZNwo4dOwzq2traIjg42GipbCq4i4sLBgwYYHBpau3atbCwsEB4eLhUNn/+fNy8eRPt2rVD165d8eKLL5o8fXvkyJHQaDTSpak7d+5gw4YNGDRokEEw/fzzz9GtWzdpTI+rqyt+/PFHkz4HZf31118AgLZt2xqUu7q6GhwP0AepRYsWoW3bttBqtXBxcYGrqyuOHj1a5eOWPX6zZs3QuHFjg/LSGYOl7StV2efQVKNHj8b69etx9uxZ7Nmzp8LgDABqtRpTp07FgQMHkJ2djU2bNmHQoEH4+eefMXLkSKP6Xbt2LffzVd7/09TwMNxQg1W2h6bUzZs30bdvXxw5cgTz58/H999/j+3bt+Odd94BAJOm11Y0S0aYMBagOts+DK1Wi/DwcHz++efYsGHDA798ytJoNOjatSvmzJmDDRs2ANAPFpXLyJEj8d///lca27Ju3ToMGDAALi4uUp0+ffrg3LlzWLFiBbp06YJPP/0Ujz76KD799NNK99+0aVP885//xLfffou7d+/i+++/R15enjQeBwC++uorjB8/Hq1bt8Znn32GrVu3Yvv27Xj88cdrdJr1f/7zH8TExKBPnz746quvsG3bNmzfvh2dO3c22/RuuT6Ho0aNQnZ2Np599lk0adIEAwcONGm7Jk2a4Mknn8TmzZvRt29f/Pbbb0YBjOhBOBWcqIyUlBRcu3YNSUlJBoMz09LSFGzV35o2bQorK6tyb0L3oBvTPcjo0aOxYsUKqNXqcv9Croy/vz8AID09/aGOX56wsDA899xz0qWp//73v5gzZ45RPWdnZ0RHRyM6Ohr5+fno06cP5s6di3/961+VHiMyMhJbt27Fli1bsGrVKtjb22Po0KHS+m+++QatWrVCUlKSwaWk+29YaIrSAbNnzpxBq1atpPKrV68a9YZ888036N+/Pz777DOD8ps3bxqEu6rMjPP29saOHTuQl5dn0HtTepm1vBlwcmjRogV69+6NlJQUTJ48+aFuf+Dv749ffvkF6enpNdZOqn/Yc0NURulfrGX/Qi0qKsKHH36oVJMMaDQaBAcHY+PGjdLMGUAfbO4fN2Gq/v3744033sCSJUvg7u5eYb1du3aVO+Nr8+bNAID27ds/1PHL4+joiJCQEKxbtw5r1qyBpaUlwsLCDOrcP3PHzs4Obdq0QWFhoUnHCAsLg42NDT788ENs2bIF4eHhBjeXK++z8PvvvyM1NbXK7yc4OBiNGjXCBx98YLC/hIQEo7oajcaoh2T9+vVG405sbW0BwGAqf0UGDx4MnU4nTaMvtWjRIqhUqocar2WqN998E3FxcZg+fXqFdTIyMnDy5Emj8qKiIiQnJ0OtVj/UZVdquNhzQ1RGr1694OTkhKioKOlW/V9++WWtml46d+5c/PTTT+jduzcmT54sfWl16dLloaYoq9VqozvJluedd97BgQMHEB4eLt299+DBg/jiiy/g7OxsNDg2JycHX331Vbn7MuXmfhERERgzZgw+/PBDhISEwNHR0WB9p06d0K9fP/j5+cHZ2Rl//PEHvvnmG0ybNq3SfQP6MBQWFiaNuyl7SQoAnnjiCSQlJeGpp57CkCFDkJaWhmXLlqFTp07Iz8836RilXF1dMXv2bMTHx+OJJ57A4MGDcejQIWzZssWgN6b0uPPnz0d0dDR69eqFY8eO4euvvzbo8QGA1q1bw9HREcuWLUPjxo1ha2uLgIAAtGzZ0uj4Q4cORf/+/fHqq6/i/Pnz8PX1xU8//YRNmzZh5syZBoOH5da3b1/07dv3gXUuXbqEnj174vHHH8eAAQPg7u6OrKwsrF69GkeOHMHMmTONztOuXbuM7qIN6Ac/V+fu0lQ/MNwQldGkSRP88MMPmDVrFl577TU4OTlhzJgxGDBgAEJCQpRuHgDAz88PW7ZswezZs/H666/Dy8sL8+fPx6lTp0yazfWwXnnlFaxatQq//PILvv76a9y6dQseHh4YOXIkXn/9daMv1UuXLmHs2LHl7suUcPPkk0/C2toaeXl5BrOkSr3wwgv47rvv8NNPP6GwsBDe3t5488038eKLL5r8niIjI7Fq1Sp4eHjg8ccfN1g3fvx4ZGRk4OOPP8a2bdvQqVMnfPXVV1i/fv1DPZfszTffhJWVFZYtW4adO3ciICAAP/30E4YMGWJQ75VXXkFBQQFWrVqFtWvX4tFHH8WPP/5odJ+lRo0a4fPPP8ecOXPw/PPPo7i4GCtXriw33KjVanz33XeIjY3F2rVrsXLlSvj4+GDBggWYNWtWld+L3Nq3b4+EhARs3rwZH374ITIzM2FlZYUuXbpg+fLlmDhxotE277//frn7iouLY7ghqERt+pOUiB5aWFjYQ0+NJiKqTzjmhqgOuv9p3mfOnMHmzZvRr18/ZRpERFSLsOeGqA7y8PDA+PHj0apVK/z111/46KOPUFhYiEOHDhndS4WIqKHhmBuiOig0NBSrV69GRkYGtFotAgMD8Z///IfBhogI7LkhIiKieoZjboiIiKheYbghIiKieqXBjbkpKSnBlStX0Lhx4yrdvpyIiIiUI4RAXl4emjVrBrX6wX0zDS7cXLlyBV5eXko3g4iIiB7CxYsX4enp+cA6DS7clD407uLFi7C3t1e4NURERGSK3NxceHl5GTz8tSINLtyUXoqyt7dnuCEiIqpjTBlSwgHFREREVK8w3BAREVG9wnBDRERE9UqDG3NDRETVV1JSgqKiIqWbQfWMpaVlpdO8TcFwQ0REVVJUVIS0tDSUlJQo3RSqZ9RqNVq2bAlLS8tq7YfhhoiITCaEQHp6OjQaDby8vGT5K5sI+Psmu+np6WjRokW1brTLcENERCYrLi7GrVu30KxZM9jY2CjdHKpnXF1dceXKFRQXF6NRo0YPvZ9aEbmXLl0KHx8fWFlZISAgAPv27auwbmJiIlQqlcFiZWVlxtYSETVcOp0OAKp92YCoPKWfq9LP2cNSPNysXbsWMTExiIuLw8GDB+Hr64uQkBBkZWVVuI29vT3S09Ol5a+//jJji4mIiM/mo5og1+dK8XDz3nvv4dlnn0V0dDQ6deqEZcuWwcbGBitWrKhwG5VKBXd3d2lxc3MzY4vLp9MBKSnA6tX6f6sZOomIiOghKRpuioqKcODAAQQHB0tlarUawcHBSE1NrXC7/Px8eHt7w8vLC8OGDcOJEycqrFtYWIjc3FyDRW5JSYCPD9C/PzB6tP5fHx99ORER1U8+Pj5ISEgwuX5KSgpUKhVu3rxZY20iPUXDTXZ2NnQ6nVHPi5ubGzIyMsrdpn379lixYgU2bdqEr776CiUlJejVqxcuXbpUbv34+Hg4ODhIi9xPBE9KAkaMAO4//OXL+nIGHCIiY+bs7b5/nOb9y9y5cx9qv/v378ekSZNMrt+rVy+kp6fDwcHhoY5nqtIQ5eTkhDt37his279/v/S+y1q+fDl8fX1hZ2cHR0dHPPLII4iPj5fWz507t9xz16FDhxp9Lw+rzs2WCgwMRGBgoPS6V69e6NixIz7++GO88cYbRvXnzJmDmJgY6XXpU0XloNMBM2YAQhivEwJQqYCZM4FhwwCNRpZDEhHVeUlJ+t+dZf8o9PQEFi8GwsPlP156err089q1axEbG4vTp09LZXZ2dtLPQgjodDpYWFT+9ejq6lqldlhaWsLd3b1K21RH48aNsWHDBowaNUoq++yzz9CiRQtcuHBBKluxYgVmzpyJ999/H3379kVhYSGOHj2K48ePG+yvc+fO2LFjh0GZKedJCYr23Li4uECj0SAzM9OgPDMz0+QPQKNGjfDII4/g7Nmz5a7XarXSE8DlfhL4rl3GPTZlCQFcvKivR0REyvR2lx2j6eDgYDBu888//0Tjxo2xZcsW+Pn5QavV4rfffsO5c+cwbNgwuLm5wc7ODj169DD6Yr//spRKpcKnn36Kp556CjY2Nmjbti2+++47af39l6USExPh6OiIbdu2oWPHjrCzs0NoaKhBGCsuLsYLL7wAR0dHNGnSBC+99BKioqIQFhZW6fuOiooyGL96+/ZtrFmzBlFRUQb1vvvuOzzzzDOYOHEi2rRpg86dO2PUqFF46623DOpZWFgYnEt3d3e4uLhU2g4lKBpuLC0t4efnh+TkZKmspKQEycnJBr0zD6LT6XDs2DF4eHjUVDMrVObzJ0s9IqK6RgigoMC0JTcXeOGFinu7AX2PTm6uafsrbz8P6+WXX8bbb7+NU6dOoVu3bsjPz8fgwYORnJyMQ4cOITQ0FEOHDjXo8SjPvHnz8Mwzz+Do0aMYPHgwIiMjcf369Qrr37p1CwsXLsSXX36JX3/9FRcuXMDs2bOl9e+88w6+/vprrFy5Ert370Zubi42btxo0nsaO3Ysdu3aJbX522+/hY+PDx599FGDeu7u7ti7d2/9mnksFLZmzRqh1WpFYmKiOHnypJg0aZJwdHQUGRkZQgghxo4dK15++WWp/rx588S2bdvEuXPnxIEDB8TIkSOFlZWVOHHihEnHy8nJEQBETk5Otdu+c6cQ+v+9Hrzs3FntQxER1Qq3b98WJ0+eFLdv3xZCCJGfb9rvwZpY8vOr3v6VK1cKBwcH6fXOnTsFALFx48ZKt+3cubP44IMPpNfe3t5i0aJF0msA4rXXXpNe5+fnCwBiy5YtBse6ceOG1BYA4uzZs9I2S5cuFW5ubtJrNzc3sWDBAul1cXGxaNGihRg2bFiF7Sx7nLCwMDFv3jwhhBD9+/cXixcvFhs2bBBlv/6vXLkiHnvsMQFAtGvXTkRFRYm1a9cKnU4n1YmLixNqtVrY2toaLM8991yl560q7v98lVWV72/FL5ZFRETg6tWriI2NRUZGBrp3746tW7dKg4wvXLhgcHvvGzdu4Nlnn0VGRgacnJzg5+eHPXv2oFOnTmZve1CQ/jrx5cvl/wWhUunXBwWZvWlERFQF/v7+Bq/z8/Mxd+5c/Pjjj0hPT0dxcTFu375dac9Nt27dpJ9tbW1hb2//wPu22djYoHXr1tJrDw8PqX5OTg4yMzPRs2dPab1Go4Gfn5/Jz/WaMGECZsyYgTFjxiA1NRXr16/HrvvGSnh4eCA1NRXHjx/Hr7/+ij179iAqKgqffvoptm7dKn0Ht2/f3uAyGwBZh3rISfFwAwDTpk3DtGnTyl2XkpJi8HrRokVYtGiRGVpVOY1GPwBuxAjjdaUD0RMSOJiYiOovGxsgP9+0ur/+CgweXHm9zZuBPn1MO7ZcbG1tDV7Pnj0b27dvx8KFC9GmTRtYW1tjxIgRlT4J/f5HBqhUqgcGkfLqCxmvtw0aNAiTJk3CxIkTMXToUDRp0qTCul26dEGXLl0wZcoUPP/88wgKCsIvv/yC/v37A9APJWnTpo1sbatJit/Er64LDwe++Qa4/z6Cnp768poY+U9EVFuoVICtrWnLwIH6340V3YRWpQK8vPT1TNlfTd4keffu3Rg/fjyeeuopdO3aFe7u7jh//nzNHbAcDg4OcHNzw/79+6UynU6HgwcPmrwPCwsLjBs3DikpKZgwYYLJ25VeDSkoKDC9wbVIrei5qevCw4GWLYFHHwXs7YFNm/SXothjQ0T0t7K93SqV4eX82tbb3bZtWyQlJWHo0KFQqVR4/fXXTb4UJKfp06cjPj4ebdq0QYcOHfDBBx/gxo0bVXpMwRtvvIEXX3yxwl6byZMno1mzZnj88cfh6emJ9PR0vPnmm3B1dTWY3FNcXGx0DzqVSlUrnhJwP/bcyKR0qr9WC/TrVzv+5yQiqm1Ke7ubNzcsr2293e+99x6cnJzQq1cvDB06FCEhIUazjMzhpZdewqhRozBu3DgEBgbCzs4OISEhVXpgtKWlJVxcXCoMRMHBwdi7dy+efvpptGvXDsOHD4eVlRWSk5MNAtGJEyfg4eFhsHh7e1f7PdYElZDz4l4dkJubCwcHB+Tk5Mg6EOrECaBLF8DFBbh6VbbdEhHVKnfu3EFaWhpatmxZpS/Y++l0+nuApacDHh7s7TZVSUkJOnbsiGeeeabcG9fWdQ/6fFXl+5uXpWRSOqFLgV5LIqI6R6PR93LTg/3111/46aefpDsHL1myBGlpaRg9erTSTavVeFlKJgw3REQkN7VajcTERPTo0QO9e/fGsWPHsGPHDnTs2FHpptVq7LmRCcMNERHJzcvLC7t371a6GXUOe25kUjpOi+GGiIhIWQw3MintuWlYw7OJiIhqH4YbmfCyFBERUe3AcCMThhsiIqLageFGJgw3REREtQPDjUwYboiIiGoHhhuZcLYUEVH91q9fP8ycOVN67ePjg4SEhAduo1KpsHHjxmofW679NBQMNzLhbCkioirQ6YCUFGD1av2/Ol2NHWro0KEIDQ0td92uXbugUqlw9OjRKu93//79mDRpUnWbZ2Du3Lno3r27UXl6ejoGDRok67Hul5iYCJVKVe4NAtevXw+VSgUfHx+pTKfT4e2330aHDh1gbW0NZ2dnBAQE4NNPP5XqjB8/HiqVymip6L+HXHgTP5moy8REIf7uySEiovskJQEzZgCXLv1d5umpf2R4DTw5c+LEiRg+fDguXboET09Pg3UrV66Ev78/unXrVuX9urq6ytXESrm7u5vlOLa2tsjKykJqaqrBE8E/++wztGjRwqDuvHnz8PHHH2PJkiXw9/dHbm4u/vjjD9y4ccOgXmhoKFauXGlQptVqa+5NgD03sikbbnhpioioAklJwIgRhsEGAC5f1pcnJcl+yCeeeAKurq5ITEw0KM/Pz8f69esxceJEXLt2DaNGjULz5s1hY2ODrl27YvXq1Q/c7/2Xpc6cOYM+ffrAysoKnTp1wvbt2422eemll9CuXTvY2NigVatWeP3113H37l0A+p6TefPm4ciRI1IPR2mb778sdezYMTz++OOwtrZGkyZNMGnSJOTn50vrx48fj7CwMCxcuBAeHh5o0qQJpk6dKh2rIhYWFhg9ejRWrFghlV26dAkpKSlGz7P67rvvMGXKFDz99NNo2bIlfH19MXHiRMyePdugnlarhbu7u8Hi5OT0wHZUF8ONTBhuiKhBEgIoKDBtyc0FXnih/Ov3pWUzZujrmbI/E8cBWFhYYNy4cUhMTIQos8369euh0+kwatQo3LlzB35+fvjxxx9x/PhxTJo0CWPHjsW+fftMOkZJSQnCw8NhaWmJ33//HcuWLcNLL71kVK9x48ZITEzEyZMnsXjxYixfvhyLFi0CAERERGDWrFno3Lkz0tPTkZ6ejoiICKN9FBQUICQkBE5OTti/fz/Wr1+PHTt2YNq0aQb1du7ciXPnzmHnzp34/PPPkZiYaBTwyjNhwgSsW7cOt27dAqAPXaGhoXBzczOo5+7ujp9//hlXr1416RyZlWhgcnJyBACRk5Mj635v3hRC/3+aEHfuyLprIqJa4/bt2+LkyZPi9u3b+oL8/L9/+Zl7yc83ud2nTp0SAMTOnTulsqCgIDFmzJgKtxkyZIiYNWuW9Lpv375ixowZ0mtvb2+xaNEiIYQQ27ZtExYWFuLy5cvS+i1btggAYsOGDRUeY8GCBcLPz096HRcXJ3x9fY3qld3PJ598IpycnER+mff/448/CrVaLTIyMoQQQkRFRQlvb29RXFws1Xn66adFREREhW1ZuXKlcHBwEEII0b17d/H555+LkpIS0bp1a7Fp0yaxaNEi4e3tLdU/ceKE6Nixo1Cr1aJr167iueeeE5s3bzbYZ1RUlNBoNMLW1tZgeeutt8ptg9Hnq4yqfH+z50YmZcfYsOeGiKh26dChA3r16iVdbjl79ix27dqFiRMnAtAPjn3jjTfQtWtXODs7w87ODtu2bcOFCxdM2v+pU6fg5eWFZs2aSWVlx6yUWrt2LXr37g13d3fY2dnhtddeM/kYZY/l6+sLW1tbqax3794oKSnB6dOnpbLOnTtDo9FIrz08PJCVlWXSMSZMmICVK1fil19+QUFBAQYPHmxUp1OnTjh+/Dj27t2LCRMmICsrC0OHDsW//vUvg3r9+/fH4cOHDZbnn3++Su+5qhhuZHL/gGIiogbBxgbIzzdt2bzZtH1u3mza/mxsqtTUiRMn4ttvv0VeXh5WrlyJ1q1bo2/fvgCABQsWYPHixXjppZewc+dOHD58GCEhISgqKqrqGalQamoqIiMjMXjwYPzwww84dOgQXn31VVmPUVajRo0MXqtUKpSY+Nd3ZGQk9u7di7lz52Ls2LGwsCh//pFarUaPHj0wc+ZMJCUlITExEZ999hnS0tKkOra2tmjTpo3B4uzs/PBvzAScLSUTjrkhogZJpQLK9CA80MCB+llRly+X/1egSqVfP3AgUKbHQS7PPPMMZsyYgVWrVuGLL77A5MmTobrX7b57924MGzYMY8aMAaAfQ/Pf//4XnTp1MmnfHTt2xMWLF5Geng4PDw8AwN69ew3q7NmzB97e3nj11Velsr/++sugjqWlJXSVTIvv2LEjEhMTUVBQIPXe7N69G2q1Gu3btzepvZVxdnbGk08+iXXr1mHZsmUmb1d6vgoKCmRpx8Niz41MGG6IiCqh0einewPG98sofZ2QUCPBBgDs7OwQERGBOXPmID09HePHj5fWtW3bFtu3b8eePXtw6tQpPPfcc8jMzDR538HBwWjXrh2ioqJw5MgR7Nq1yyDElB7jwoULWLNmDc6dO4f3338fGzZsMKjj4+ODtLQ0HD58GNnZ2SgsLDQ6VmRkJKysrBAVFYXjx49j586dmD59OsaOHWs06Lc6EhMTkZ2djQ4dOpS7fsSIEVi0aBF+//13/PXXX0hJScHUqVPRrl07g20KCwuRkZFhsGRnZ8vWzvIw3MiE4YaIyATh4cA33wDNmxuWe3rqy2vgPjdlTZw4ETdu3EBISIjB+JjXXnsNjz76KEJCQtCvXz+4u7sjLCzM5P2q1Wps2LABt2/fRs+ePfGvf/0Lb731lkGdJ598Ev/+978xbdo0dO/eHXv27MHrr79uUGf48OEIDQ1F//794erqWu50dBsbG2zbtg3Xr19Hjx49MGLECAwYMABLliyp2smoROk084qEhITg+++/x9ChQ6Vg16FDB/z0008Gl7G2bt0KDw8Pg+Uf//iHrG29n0qIhjVCJDc3Fw4ODsjJyYG9vb1s+y0uBkovb167BtTw5UQiIkXcuXMHaWlpaNmyJaysrB5+RzodsGsXkJ4OeHgAQUE11mNDdceDPl9V+f7mmBuZlO1hbVhxkYjoIWg0QL9+SreC6ilelpIJL0sRERHVDgw3MuF9boiIiGoHhhsZlfbeMNwQEREph+FGRgw3RNRQNLC5KGQmcn2uGG5kxHBDRPVd6e38a+quutSwlX6uNNWcOcfZUjIqHXfDP2iIqL6ysLCAjY0Nrl69ikaNGkGt5t/IJI+SkhJcvXoVNjY2FT7uwVQMNzJizw0R1XcqlQoeHh5IS0szenQAUXWp1Wq0aNFCeizGw2K4kRHDDRE1BJaWlmjbti0vTZHsLC0tZekNZLiREcMNETUUarW6encoJqpBvFgqI4YbIiIi5THcyIjhhoiISHkMNzLibCkiIiLlMdzIiD03REREymO4kRHDDRERkfIYbmTEcENERKQ8hhsZMdwQEREpj+FGRhxQTEREpDyGGxmx54aIiEh5DDcyYrghIiJSHsONjBhuiIiIlMdwIyOGGyIiIuUx3MiI4YaIiEh5DDcy4mwpIiIi5THcyIg9N0RERMpjuJERww0REZHyGG5kxHBDRESkPIYbGTHcEBERKY/hRkYMN0RERMpjuJERZ0sREREpj+FGRuy5ISIiUh7DjYwYboiIiJRXK8LN0qVL4ePjAysrKwQEBGDfvn0mbbdmzRqoVCqEhYXVbANNxHBDRESkPMXDzdq1axETE4O4uDgcPHgQvr6+CAkJQVZW1gO3O3/+PGbPno2goCAztbRyDDdERETKUzzcvPfee3j22WcRHR2NTp06YdmyZbCxscGKFSsq3Ean0yEyMhLz5s1Dq1atzNjaB2O4ISIiUp6i4aaoqAgHDhxAcHCwVKZWqxEcHIzU1NQKt5s/fz6aNm2KiRMnVnqMwsJC5ObmGiw1hbOliIiIlKdouMnOzoZOp4Obm5tBuZubGzIyMsrd5rfffsNnn32G5cuXm3SM+Ph4ODg4SIuXl1e1210R9twQEREpT/HLUlWRl5eHsWPHYvny5XBxcTFpmzlz5iAnJ0daLl68WGPtY7ghIiJSnoWSB3dxcYFGo0FmZqZBeWZmJtzd3Y3qnzt3DufPn8fQoUOlspJ7ScLCwgKnT59G69atDbbRarXQarU10HpjDDdERETKU7TnxtLSEn5+fkhOTpbKSkpKkJycjMDAQKP6HTp0wLFjx3D48GFpefLJJ9G/f38cPny4Ri85mYLhhoiISHmK9twAQExMDKKiouDv74+ePXsiISEBBQUFiI6OBgCMGzcOzZs3R3x8PKysrNClSxeD7R0dHQHAqFwJpeGGA4qJiIiUo3i4iYiIwNWrVxEbG4uMjAx0794dW7dulQYZX7hwAWp13RgaVDpbij03REREylEJ0bD6GXJzc+Hg4ICcnBzY29vLuu/Bg4EtW4CVK4Hx42XdNRERUYNWle/vutElUkdwzA0REZHyGG5kxHBDRESkPIYbGTHcEBERKY/hRkZ8/AIREZHyGG5kxJ4bIiIi5THcyIjhhoiISHkMNzJiuCEiIlIew42MGG6IiIiUx3AjI4YbIiIi5THcyIizpYiIiJTHcCMj9twQEREpj+FGRgw3REREymO4kRHDDRERkfIYbmTEcENERKQ8hhsZlYYbDigmIiJSDsONjEpnS7HnhoiISDkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYwYboiIiJTHcCMjzpYiIiJSHsONjDhbioiISHkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYwYboiIiJTHcCMjzpYiIiJSHsONjDhbioiISHkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYwYboiIiJTHcCMjzpYiIiJSHsONjDhbioiISHkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYw4oJiIiEh5DDcy4oBiIiIi5THcyIiXpYiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYw4W4qIiEh5DDcy4mwpIiIi5THcyIiXpYiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYw4W4qIiEh5DDcy4mwpIiIi5THcyIiXpYiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MuKAYiIiIuUx3MiIPTdERETKY7iREWdLERERKa9WhJulS5fCx8cHVlZWCAgIwL59+yqsm5SUBH9/fzg6OsLW1hbdu3fHl19+acbWVow9N0RERMpTPNysXbsWMTExiIuLw8GDB+Hr64uQkBBkZWWVW9/Z2RmvvvoqUlNTcfToUURHRyM6Ohrbtm0zc8uNMdwQEREpTyWEssNfAwIC0KNHDyxZsgQAUFJSAi8vL0yfPh0vv/yySft49NFHMWTIELzxxhuV1s3NzYWDgwNycnJgb29frbbfb+tWYNAg4JFHgIMHZd01ERFRg1aV729Fe26Kiopw4MABBAcHS2VqtRrBwcFITU2tdHshBJKTk3H69Gn06dOn3DqFhYXIzc01WGoKZ0sREREpT9Fwk52dDZ1OBzc3N4NyNzc3ZGRkVLhdTk4O7OzsYGlpiSFDhuCDDz7AP//5z3LrxsfHw8HBQVq8vLxkfQ9l8bIUERGR8hQfc/MwGjdujMOHD2P//v146623EBMTg5SUlHLrzpkzBzk5OdJy8eLFGmsXZ0sREREpz0LJg7u4uECj0SAzM9OgPDMzE+7u7hVup1ar0aZNGwBA9+7dcerUKcTHx6Nfv35GdbVaLbRaraztrrhd+n8ZboiIiJSjaM+NpaUl/Pz8kJycLJWVlJQgOTkZgYGBJu+npKQEhYWFNdHEKmG4ISIiUp6iPTcAEBMTg6ioKPj7+6Nnz55ISEhAQUEBoqOjAQDjxo1D8+bNER8fD0A/hsbf3x+tW7dGYWEhNm/ejC+//BIfffSRkm8DAMMNERFRbaB4uImIiMDVq1cRGxuLjIwMdO/eHVu3bpUGGV+4cAFq9d8dTAUFBZgyZQouXboEa2trdOjQAV999RUiIiKUegsSzpYiIiJSnuL3uTG3mrzPTWoq0KsX0Lo1cPasrLsmIiJq0OrMfW7qG86WIiIiUh7DjYw45oaIiEh5DDcyYrghIiJSHsONjBhuiIiIlMdwIyPOliIiIlIew42MOKCYiIhIeQw3MuJlKSIiIuUx3MiI4YaIiEh5DDcyYrghIiJSHsONjDigmIiISHkMNzJizw0REZHyGG5kxNlSREREymO4kRF7boiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MuJsKSIiIuUx3MiIPTdERETKq1K4effdd3H79m3p9e7du1FYWCi9zsvLw5QpU+RrXR3D2VJERETKUwlh+kUUjUaD9PR0NG3aFABgb2+Pw4cPo1WrVgCAzMxMNGvWDDqdrmZaK4Pc3Fw4ODggJycH9vb2su47MxNwd9f/zEtTRERE8qnK93eVem7uz0FVyEUNgrrM2eSpISIiUgbH3MiobLjhpSkiIiJlMNzIiD03REREyrOo6gaffvop7OzsAADFxcVITEyEi4sLAP2A4oaMPTdERETKq9KAYh8fH6hKpwQ9QFpaWrUaVZNqckBxbi7g4KD/+fZtwMpK1t0TERE1WFX5/q5Sz8358+er0656jz03REREyuOYGxkx3BARESmvSuEmNTUVP/zwg0HZF198gZYtW6Jp06aYNGmSwU39GhoOKCYiIlJelcLN/PnzceLECen1sWPHMHHiRAQHB+Pll1/G999/j/j4eNkbWVew54aIiEh5VQo3hw8fxoABA6TXa9asQUBAAJYvX46YmBi8//77WLduneyNrCsYboiIiJRXpXBz48YNuLm5Sa9/+eUXDBo0SHrdo0cPXLx4Ub7W1TFlJ5Ix3BARESmjSuHGzc1NmuZdVFSEgwcP4rHHHpPW5+XloVGjRvK2sA5hzw0REZHyqhRuBg8ejJdffhm7du3CnDlzYGNjg6CgIGn90aNH0bp1a9kbWVew54aIiEh5VbrPzRtvvIHw8HD07dsXdnZ2SExMhKWlpbR+xYoVGDhwoOyNrEvUan2w4WwpIiIiZVQp3Li4uODXX39FTk4O7OzsoNFoDNavX78ejRs3lrWBdU1puGHPDRERkTKqFG4mTJhgUr0VK1Y8VGPqg9JxNww3REREyqhSuElMTIS3tzceeeQRVOGRVA1K6bgbhhsiIiJlVCncTJ48GatXr0ZaWhqio6MxZswYODs711Tb6iT23BARESmrSrOlli5divT0dPzf//0fvv/+e3h5eeGZZ57Btm3b2JNzD8MNERGRsqr84EytVotRo0Zh+/btOHnyJDp37owpU6bAx8cH+fn5NdHGOqU03DDrERERKaNaTwVXq9VQqVQQQkCn08nVpjqNPTdERETKqnK4KSwsxOrVq/HPf/4T7dq1w7Fjx7BkyRJcuHABdnZ2NdHGOoUDiomIiJRVpQHFU6ZMwZo1a+Dl5YUJEyZg9erVcHFxqam21UnsuSEiIlKWSlRhJLBarUaLFi3wyCOPQFX2WQP3SUpKkqVxNSE3NxcODg7IycmBvb297Pt3dQWys4Hjx4HOnWXfPRERUYNUle/vKvXcjBs37oGhhjigmIiISGlVvokfPRgvSxERESmrWrOlyBjDDRERkbIYbmTG2VJERETKYriRGXtuiIiIlMVwIzOGGyIiImUx3MiMs6WIiIiUxXAjM/bcEBERKYvhRmYMN0RERMpiuJEZZ0sREREpi+FGZuy5ISIiUhbDjcwYboiIiJTFcCMzzpYiIiJSVq0IN0uXLoWPjw+srKwQEBCAffv2VVh3+fLlCAoKgpOTE5ycnBAcHPzA+ubGnhsiIiJlKR5u1q5di5iYGMTFxeHgwYPw9fVFSEgIsrKyyq2fkpKCUaNGYefOnUhNTYWXlxcGDhyIy5cvm7nl5WO4ISIiUpZKCGUvoAQEBKBHjx5YsmQJAKCkpAReXl6YPn06Xn755Uq31+l0cHJywpIlSzBu3LhK6+fm5sLBwQE5OTmwt7evdvvv9+ijwKFDwJYtQGio7LsnIiJqkKry/a1oz01RUREOHDiA4OBgqUytViM4OBipqakm7ePWrVu4e/cunJ2da6qZVcKeGyIiImVZKHnw7Oxs6HQ6uLm5GZS7ubnhzz//NGkfL730Epo1a2YQkMoqLCxEYWGh9Do3N/fhG2wChhsiIiJlKT7mpjrefvttrFmzBhs2bICVlVW5deLj4+Hg4CAtXl5eNdomzpYiIiJSlqLhxsXFBRqNBpmZmQblmZmZcHd3f+C2CxcuxNtvv42ffvoJ3bp1q7DenDlzkJOTIy0XL16Upe0VYc8NERGRshQNN5aWlvDz80NycrJUVlJSguTkZAQGBla43bvvvos33ngDW7duhb+//wOPodVqYW9vb7DUJIYbIiIiZSk65gYAYmJiEBUVBX9/f/Ts2RMJCQkoKChAdHQ0AGDcuHFo3rw54uPjAQDvvPMOYmNjsWrVKvj4+CAjIwMAYGdnBzs7O8XeRyk+W4qIiEhZioebiIgIXL16FbGxscjIyED37t2xdetWaZDxhQsXoFb/3cH00UcfoaioCCNGjDDYT1xcHObOnWvOppeLPTdERETKUjzcAMC0adMwbdq0ctelpKQYvD5//nzNN6gaOKCYiIhIWXV6tlRtxJ4bIiIiZTHcyIzhhoiISFkMNzJjuCEiIlIWw43MOFuKiIhIWQw3MmPPDRERkbIYbmTG2VJERETKYriRGXtuiIiIlMVwIzOGGyIiImUx3MiMA4qJiIiUxXAjM/bcEBERKatWPH6hXtDpgF27EHQpHdfgAVEcBECjdKuIiIgaHIYbOSQlATNmAJcuYSaAmQDyYj2B5ouB8HBl20ZERNTA8LJUdSUlASNGAJcuGRTb3bysL09KUqhhREREDRPDTXXodPoem3JuaqPCvbKZM/X1iIiIyCwYbqpj1y6jHhsDQgAXL+rrERERkVkw3FRHerq89YiIiKjaGG6qw8ND3npERERUbQw31REUBHh6/n3nvvupVICXl74eERERmQXDTXVoNMDixfqf7ws4AvdeJyTo6xEREZFZMNxUV3g48M03Rpeech089eW8zw0REZFZMdzIITwcOH5cejkQ2/DBv9MYbIiIiBTAcCMXW1vpx33oCR0fvUBERKQIhhu5NGokjbuxwp3y7utHREREZsBwIxeVCrCyAqAPN3wqOBERkTIYbuR0L9xoUchwQ0REpBCGGzmx54aIiEhxDDdy0moBMNwQEREpieFGTuy5ISIiUhzDjZzKhBvOliIiIlIGw42c2HNDRESkOIYbOXG2FBERkeIYbuTEAcVERESKY7iREy9LERERKY7hRk4MN0RERIpjuJETZ0sREREpjuFGThxQTEREpDiGGznxshQREZHiGG7kxNlSREREimO4kRN7boiIiBTHcCMnDigmIiJSHMONnNhzQ0REpDiGGzlxthQREZHiGG7kVGZA8f/+B6SkADqdsk0iIiJqaBhuZLTv2N+XpfbsAfr3B3x8gKQkZdtFRETUkDDcyCQpCXgn4e9wU+ryZWDECAYcIiIic2G4kYFOB8yYAdyGcbgpnTU1cyYvUREREZkDw40Mdu0CLl0C7pQTbgB9wLl4UV+PiIiIahbDjQzS0/X/loYbLQofWI+IiIhqDsONDDw89P8W4u/ZUg+qR0RERDWH4UYGQUGApydQWMFlKZUK8PLS1yMiIqKaxXAjA40GWLy4/DE3KpX+34QEfT0iIiKqWQw3MgkPB97/xDjceHoC33yjX09EREQ1j+FGRoPD9eGmEYph1UiHnTuBtDQGGyIiInNiuJHTvccvAIDqbiGCgngpioiIyNwYbuR078GZgP7SVEGBgm0hIiJqoBhu5GRhAXGvq8YKd5Cfr3B7iIiIGiCGG5mprP4eVMxwQ0REZH6Kh5ulS5fCx8cHVlZWCAgIwL59+yqse+LECQwfPhw+Pj5QqVRISEgwX0NNVSbc5OUp3BYiIqIGSNFws3btWsTExCAuLg4HDx6Er68vQkJCkJWVVW79W7duoVWrVnj77bfh7u5u5taayOrvRzCw54aIiMj8FA037733Hp599llER0ejU6dOWLZsGWxsbLBixYpy6/fo0QMLFizAyJEjoS0zM6lW0f79CAb23BAREZmfYuGmqKgIBw4cQHBw8N+NUasRHByM1NRU2Y5TWFiI3Nxcg6VGccwNERGRohQLN9nZ2dDpdHBzczMod3NzQ0ZGhmzHiY+Ph4ODg7R4eXnJtu9yMdwQEREpSvEBxTVtzpw5yMnJkZaLFy/W7AE5oJiIiEhRFkod2MXFBRqNBpmZmQblmZmZsg4W1mq15h2fw54bIiIiRSnWc2NpaQk/Pz8kJydLZSUlJUhOTkZgYKBSzaq+e0FKi0L23BARESlAsZ4bAIiJiUFUVBT8/f3Rs2dPJCQkoKCgANHR0QCAcePGoXnz5oiPjwegH4R88uRJ6efLly/j8OHDsLOzQ5s2bRR7HwbYc0NERKQoRcNNREQErl69itjYWGRkZKB79+7YunWrNMj4woULUKv/7ly6cuUKHnnkEen1woULsXDhQvTt2xcpKSnmbn75yoSb6ww3REREZqdouAGAadOmYdq0aeWuuz+w+Pj4QAhhhlZVAwcUExERKarez5YyO16WIiIiUhTDjdwsLQEAj+AQ2l5OAXQ6ZdtDRETUwDDcyCkpCbj36Ihh+A4fnuoP+Pjoy4mIiMgsGG7kkpQEjBgBo4E2ly/ryxlwiIiIzILhRg46HTBjBlDeYOfSspkzeYmKiIjIDBhu5LBrF3DpUsXrhQAuXtTXIyIiohrFcCOH9HR56xEREdFDY7iRg4eHvPWIiIjooTHcyCEoCPD0BFSq8terVICXl74eERER1SiGGzloNMDixeWuEqWBJyFBX4+IiIhqFMONXMLDgW++Ae49F6tUUVNPfXl4uEINIyIialgYbuQUHg7s2wcA0EGFfvgZS2elQTeMwYaIiMhcGG5ktum3JgAADQT+QA/M+j8Nb1JMRERkRgw3MkpKAp6KtEEx9GNrHJADgDcpJiIiMieGG5lINymGCjlwAPB3uOFNiomIiMyH4UYmZW9SfH+4AXiTYiIiInNhuJFJ2ZsPl4YbR9x8YD0iIiKSH8ONTMrefPgmHAEY9tyUV4+IiIjkx3Ajk7I3KS7vshRvUkxERGQeDDcyKXuT4vvDDW9STEREZD4MNzIqvUmxzs4w3HjyJsVERERmY6F0A+qb8HCg5IAD8B99uGnaFEhLY48NERGRubDnpgaonR0B6GdL3brFYENERGRODDc1weHvy1L5+UBRkcLtISIiakAYbmqCg+GYm+vXlWwMERFRw8JwUxPuhRtnjT7cXLumZGOIiIgaFoabmnAv3Diq2HNDRERkbgw3NcHREQBgL9hzQ0REZG4MNzXhXs+NnS4HKpSw54aIiMiMGG5qwr1wo4aAHfLZc0NERGRGDDc1wcoKaNQIgH7GFHtuiIiIzIfhpiaoVAbTwdlzQ0REZD4MNzVBpwMsLQEA/bATN6/pFG4QERFRw8FwI7ekJMDHB7hyBQCwBC9gyY8++nIiIiKqcQw3ckpKAkaMAC5dMih2KbysL2fAISIiqnEMN3LR6YAZMwAhjFapca9s5kx9PSIiIqoxDDdy2bXLqMfGgBDAxYv6ekRERFRjGG7kkp5uUrV9m0yrR0RERA+H4UYuHh4mVXspwYNDb4iIiGoQw41cgoIAT08Ilarc1SVQ4QK8sAtBHHpDRERUgxhu5KLRAIsXA0IfZMoquffvTCRABw2H3hAREdUghhs5hYfjt5nf4DKaGxTfgi3iMBebMEwqM3GIDhEREVURw43MdMPC4YPzeB3zcAtWAAA7FOANxOE8fPAU9ANuTByiQ0RERFXEcCOzoCBgQpNNmIe5sMYdg3XNcRnfYASebZKEoCCFGkhERFTPMdzITAMdFmMGAIH7hxaX3swvATOhAUcUExER1QSGG7nt2gWba5cqPLFqCNhc44hiIiKimsJwIzfezI+IiEhRDDdy4838iIiIFMVwI7dKb+YHXIAnb+ZHRERUQxhu5PaAm/kB+hNug9t4Ept4Mz8iIqIawHBTE+7dzO86nMtd7Yzr+AYj8BSSeDM/IiIimTHc1BDdE8NwG9b3Jn8bKjsl/OxpXpciIiKSE8NNDQnCLnjhUjkXpvTUEGiBi0ietwvr15u1aURERPUaw00N0WSZdr1pCpZgdIQOa9fWcIOIiIgaCAulG1BvmTgl/Bl8i8HCHstH/gv/fvsp+M0MQvYNDVxdgebN9ZOvNJoabisREVE9ohJClDcspN7Kzc2Fg4MDcnJyYG9vX3MH0ukAHx+ISxVfmirPNThhI4ZhJx6HC67htnUT9O10FR7aaxAAVE2c0cijKXRZ16Bp2kT69276VeBa9evIvb9qHbO5OzI0zVHo1wvaA3vgVnwZxVcy9XVUamR36YeiwH7IvqFBkybAtWtAkybAVf1uAADOzkDTpn+vu3YNBsER0M9YS0/X51GzhEmdToGDEhHVbVX5/ma4qUlJSRDDh1cp3JAxHVTQlDs0G8iFLdbjaSkMZqMJXHEVTaAPSdfhjKtoKq0rW8dNrU9AmSV/17lt3QR9u1xDi0dqJui5/Hc32qZth1VRnvQe7tg44WznYbj5yOOKhMs6F3p5LngueC5q/bmw8HCFbbvm6DolCBpLef54q9L3t6gFlixZIry9vYVWqxU9e/YUv//++wPrr1u3TrRv315otVrRpUsX8eOPP5p8rJycHAFA5OTkVLfZJtHNmCkEwIULFy5cuDS45bLGU6S++K0s36dV+f5WfEDx2rVrERMTg7i4OBw8eBC+vr4ICQlBVlZWufX37NmDUaNGYeLEiTh06BDCwsIQFhaG48ePm7nlplGHDVO6CURERIpw111CzwUjsPf/zPu8IcUvSwUEBKBHjx5YsmQJAKCkpAReXl6YPn06Xn75ZaP6ERERKCgowA8//CCVPfbYY+jevTuWLVtW6fHMelkKeOixN0RERPVBCVRI13jC/VZatS5RVeX7W9Gem6KiIhw4cADBwcFSmVqtRnBwMFJTU8vdJjU11aA+AISEhFRYv7CwELm5uQaLWd17HIMKqGDUCBERUf2lhkBz3UUc+9B8zxtSNNxkZ2dDp9PBzc3NoNzNzQ0ZGRnlbpORkVGl+vHx8XBwcJAWLy8veRpfFeHhwLffQuVc/uMYiIiI6rtb58z3vCHFx9zUtDlz5iAnJ0daLl68qExDwsOBrCwgIoI9OERE1ODYtDbt/m9yUDTcuLi4QKPRIDMz06A8MzMT7u7u5W7j7u5epfparRb29vYGi2I0GmDNGqjWr4dwcVWuHURERGZSAhUua7zQdUqQ2Y6paLixtLSEn58fkpOTpbKSkhIkJycjMDCw3G0CAwMN6gPA9u3bK6xfK40YAVVGOrBzJ0q++ArpodEotOUlKyIiql9K7v17MSZBtvvdmELxxy/ExMQgKioK/v7+6NmzJxISElBQUIDo6GgAwLhx49C8eXPEx8cDAGbMmIG+ffvi//2//4chQ4ZgzZo1+OOPP/DJJ58o+TaqTqMB+vWDGoDH2Mi/71p7+TJw9SpKnJrgf/uvIbO4CYqu1O+bQpVX17XoMtqd+h7aguvSKbtj44QznYYCeflGN8Kri0qgkp4QT0RUH6VrvHAxJgGPvRtu1uMqHm4iIiJw9epVxMbGIiMjA927d8fWrVulQcMXLlyAWv13B1OvXr2watUqvPbaa3jllVfQtm1bbNy4EV26dFHqLcjjXtgppQbQJgpoo1iDaoH7HlNgFRSErqWPKbgvDFbl+QslTk1wZs9VpJ+4BiGAZl2d0TqgKc4f0IfJ4swaDnr3Hh1xNyBIeqxESebVWn/H0YZwzNraLp4LnovacsyHuUNxczP22JRS/D435mb2+9wQERFRtdWZ+9wQERERyY3hhoiIiOoVhhsiIiKqVxhuiIiIqF5huCEiIqJ6heGGiIiI6hWGGyIiIqpXGG6IiIioXmG4ISIionpF8ccvmFvpDZlzc3MVbgkRERGZqvR725QHKzS4cJOXp3/YopeXl8ItISIioqrKy8uDg4PDA+s0uGdLlZSU4MqVK2jcuDFUKpUs+8zNzYWXlxcuXrzI51XVMJ5r8+B5Nh+ea/PgeTafmjrXQgjk5eWhWbNmBg/ULk+D67lRq9Xw9PSskX3b29vzfxoz4bk2D55n8+G5Ng+eZ/OpiXNdWY9NKQ4oJiIionqF4YaIiIjqFYYbGWi1WsTFxUGr1SrdlHqP59o8eJ7Nh+faPHiezac2nOsGN6CYiIiI6jf23BAREVG9wnBDRERE9QrDDREREdUrDDdERERUrzDcyGDp0qXw8fGBlZUVAgICsG/fPqWbVKfNnTsXKpXKYOnQoYO0/s6dO5g6dSqaNGkCOzs7DB8+HJmZmQq2uG749ddfMXToUDRr1gwqlQobN240WC+EQGxsLDw8PGBtbY3g4GCcOXPGoM7169cRGRkJe3t7ODo6YuLEicjPzzfju6gbKjvX48ePN/qMh4aGGtThua5cfHw8evTogcaNG6Np06YICwvD6dOnDeqY8vviwoULGDJkCGxsbNC0aVO8+OKLKC4uNudbqfVMOdf9+vUz+lw///zzBnXMda4Zbqpp7dq1iImJQVxcHA4ePAhfX1+EhIQgKytL6abVaZ07d0Z6erq0/Pbbb9K6f//73/j++++xfv16/PLLL7hy5QrCw8MVbG3dUFBQAF9fXyxdurTc9e+++y7ef/99LFu2DL///jtsbW0REhKCO3fuSHUiIyNx4sQJbN++HT/88AN+/fVXTJo0yVxvoc6o7FwDQGhoqMFnfPXq1Qbrea4r98svv2Dq1KnYu3cvtm/fjrt372LgwIEoKCiQ6lT2+0Kn02HIkCEoKirCnj178PnnnyMxMRGxsbFKvKVay5RzDQDPPvuswef63XffldaZ9VwLqpaePXuKqVOnSq91Op1o1qyZiI+PV7BVdVtcXJzw9fUtd93NmzdFo0aNxPr166WyU6dOCQAiNTXVTC2s+wCIDRs2SK9LSkqEu7u7WLBggVR28+ZNodVqxerVq4UQQpw8eVIAEPv375fqbNmyRahUKnH58mWztb2uuf9cCyFEVFSUGDZsWIXb8Fw/nKysLAFA/PLLL0II035fbN68WajVapGRkSHV+eijj4S9vb0oLCw07xuoQ+4/10II0bdvXzFjxowKtzHnuWbPTTUUFRXhwIEDCA4OlsrUajWCg4ORmpqqYMvqvjNnzqBZs2Zo1aoVIiMjceHCBQDAgQMHcPfuXYNz3qFDB7Ro0YLnvBrS0tKQkZFhcF4dHBwQEBAgndfU1FQ4OjrC399fqhMcHAy1Wo3ff//d7G2u61JSUtC0aVO0b98ekydPxrVr16R1PNcPJycnBwDg7OwMwLTfF6mpqejatSvc3NykOiEhIcjNzcWJEyfM2Pq65f5zXerrr7+Gi4sLunTpgjlz5uDWrVvSOnOe6wb34Ew5ZWdnQ6fTGfyHAgA3Nzf8+eefCrWq7gsICEBiYiLat2+P9PR0zJs3D0FBQTh+/DgyMjJgaWkJR0dHg23c3NyQkZGhTIPrgdJzV95nuXRdRkYGmjZtarDewsICzs7OPPdVFBoaivDwcLRs2RLnzp3DK6+8gkGDBiE1NRUajYbn+iGUlJRg5syZ6N27N7p06QIAJv2+yMjIKPdzX7qOjJV3rgFg9OjR8Pb2RrNmzXD06FG89NJLOH36NJKSkgCY91wz3FCtM2jQIOnnbt26ISAgAN7e3li3bh2sra0VbBmRPEaOHCn93LVrV3Tr1g2tW7dGSkoKBgwYoGDL6q6pU6fi+PHjBuPzqGZUdK7Ljgnr2rUrPDw8MGDAAJw7dw6tW7c2axt5WaoaXFxcoNFojEbeZ2Zmwt3dXaFW1T+Ojo5o164dzp49C3d3dxQVFeHmzZsGdXjOq6f03D3os+zu7m40UL64uBjXr1/nua+mVq1awcXFBWfPngXAc11V06ZNww8//ICdO3fC09NTKjfl94W7u3u5n/vSdWSoonNdnoCAAAAw+Fyb61wz3FSDpaUl/Pz8kJycLJWVlJQgOTkZgYGBCrasfsnPz8e5c+fg4eEBPz8/NGrUyOCcnz59GhcuXOA5r4aWLVvC3d3d4Lzm5ubi999/l85rYGAgbt68iQMHDkh1fv75Z5SUlEi/xOjhXLp0CdeuXYOHhwcAnmtTCSEwbdo0bNiwAT///DNatmxpsN6U3xeBgYE4duyYQZjcvn077O3t0alTJ/O8kTqgsnNdnsOHDwOAwefabOda1uHJDdCaNWuEVqsViYmJ4uTJk2LSpEnC0dHRYDQ4Vc2sWbNESkqKSEtLE7t37xbBwcHCxcVFZGVlCSGEeP7550WLFi3Ezz//LP744w8RGBgoAgMDFW517ZeXlycOHTokDh06JACI9957Txw6dEj89ddfQggh3n77beHo6Cg2bdokjh49KoYNGyZatmwpbt++Le0jNDRUPPLII+L3338Xv/32m2jbtq0YNWqUUm+p1nrQuc7LyxOzZ88WqampIi0tTezYsUM8+uijom3btuLOnTvSPniuKzd58mTh4OAgUlJSRHp6urTcunVLqlPZ74vi4mLRpUsXMXDgQHH48GGxdetW4erqKubMmaPEW6q1KjvXZ8+eFfPnzxd//PGHSEtLE5s2bRKtWrUSffr0kfZhznPNcCODDz74QLRo0UJYWlqKnj17ir179yrdpDotIiJCeHh4CEtLS9G8eXMREREhzp49K62/ffu2mDJlinBychI2NjbiqaeeEunp6Qq2uG7YuXOnAGC0REVFCSH008Fff/114ebmJrRarRgwYIA4ffq0wT6uXbsmRo0aJezs7IS9vb2Ijo4WeXl5Cryb2u1B5/rWrVti4MCBwtXVVTRq1Eh4e3uLZ5991ugPIp7rypV3jgGIlStXSnVM+X1x/vx5MWjQIGFtbS1cXFzErFmzxN27d838bmq3ys71hQsXRJ8+fYSzs7PQarWiTZs24sUXXxQ5OTkG+zHXuVbdazQRERFRvcAxN0RERFSvMNwQERFRvcJwQ0RERPUKww0RERHVKww3REREVK8w3BAREVG9wnBDRERE9QrDDRE1SCqVChs3blS6GURUAxhuiMjsxo8fD5VKZbSEhoYq3TQiqgcslG4AETVMoaGhWLlypUGZVqtVqDVEVJ+w54aIFKHVauHu7m6wODk5AdBfMvroo48waNAgWFtbo1WrVvjmm28Mtj927Bgef/xxWFtbo0mTJpg0aRLy8/MN6qxYsQKdO3eGVquFh4cHpk2bZrA+OzsbTz31FGxsbNC2bVt899130robN24gMjISrq6usLa2Rtu2bY3CGBHVTgw3RFQrvf766xg+fDiOHDmCyMhIjBw5EqdOnQIAFBQUICQkBE5OTti/fz/Wr1+PHTt2GISXjz76CFOnTsWkSZNw7NgxfPfdd2jTpo3BMebNm4dnnnkGR48exeDBgxEZGYnr169Lxz958iS2bNmCU6dO4aOPPoKLi4v5TgARPTzZH8VJRFSJqKgoodFohK2trcHy1ltvCSH0TyB+/vnnDbYJCAgQkydPFkII8cknnwgnJyeRn58vrf/xxx+FWq2Wnq7drFkz8eqrr1bYBgDitddek17n5+cLAGLLli1CCCGGDh0qoqOj5XnDRGRWHHNDRIro378/PvroI4MyZ2dn6efAwECDdYGBgTh8+DAA4NSpU/D19YWtra20vnfv3igpKcHp06ehUqlw5coVDBgw4IFt6Natm/Szra0t7O3tkZWVBQCYPHkyhg8fjoMHD2LgwIEICwtDr169Huq9EpF5MdwQkSJsbW2NLhPJxdra2qR6jRo1MnitUqlQUlICABg0aBD++usvbN68Gdu3b8eAAQMwdepULFy4UPb2EpG8OOaGiGqlvXv3Gr3u2LEjAKBjx444cuQICgoKpPW7d++GWq1G+/bt0bhxY/j4+CA5OblabXB1dUVUVBS++uorJCQk4JNPPqnW/ojIPNhzQ0SKKCwsREZGhkGZhYWFNGh3/fr18Pf3xz/+8Q98/fXX2LdvHz777DMAQGRkJOLi4hAVFYW5c+fi6tWrmD59OsaOHQs3NzcAwNy5c/H888+jadOmGDRoEPLy8rB7925Mnz7dpPbFxsbCz88PnTt3RmFhIX744QcpXBFR7cZwQ0SK2Lp1Kzw8PAzK2rdvjz///BOAfibTmjVrMGXKFHh4eGD16tXo1KkTAMDGxgbbtm3DjBkz0KNHD9jY2GD48OF47733pH1FRUXhzp07WLRoEWbPng0XFxeMGDHC5PZZWlpizpw5OH/+PKytrREUFIQ1a9bI8M6JqKaphBBC6UYQEZWlUqmwYcMGhIWFKd0UIqqDOOaGiIiI6hWGGyIiIqpXOOaGiGodXi0noupgzw0RERHVKww3REREVK8w3BAREVG9wnBDRERE9QrDDREREdUrDDdERERUrzDcEBERUb3CcENERET1CsMNERER1Sv/H/3nbZyJcUQcAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "# selected settings for regression (best fit from options above)\n", - "activation, optimizer, n_hidden_layers, n_nodes_per_layer = \"tanh\", \"Adam\", 4, 20\n", - "loss, metrics = \"mse\", [\"mae\", \"mse\"]\n", - "\n", - "# Create data objects for training using scalar normalization\n", - "n_inputs = len(input_labels)\n", - "n_outputs = len(output_labels)\n", - "x = input_data\n", - "y = output_data\n", - "\n", - "input_scaler = None\n", - "output_scaler = None\n", - "input_scaler = OffsetScaler.create_normalizing_scaler(x)\n", - "output_scaler = OffsetScaler.create_normalizing_scaler(y)\n", - "x = input_scaler.scale(x)\n", - "y = output_scaler.scale(y)\n", - "x = x.to_numpy()\n", - "y = y.to_numpy()\n", - "\n", - "# Create Keras Sequential object and build neural network\n", - "model = tf.keras.Sequential()\n", - "model.add(\n", - " tf.keras.layers.Dense(\n", - " units=n_nodes_per_layer, input_dim=n_inputs, activation=activation\n", - " )\n", - ")\n", - "for i in range(1, n_hidden_layers):\n", - " model.add(tf.keras.layers.Dense(units=n_nodes_per_layer, activation=activation))\n", - "model.add(tf.keras.layers.Dense(units=n_outputs, activation=keras.activations.linear))\n", - "\n", - "# Train surrogate (calls optimizer on neural network and solves for weights)\n", - "model.compile(loss=loss, optimizer=optimizer, metrics=metrics)\n", - "mcp_save = tf.keras.callbacks.ModelCheckpoint(\n", - " \".mdl_co2.keras\", save_best_only=True, monitor=\"val_loss\", mode=\"min\"\n", - ")\n", - "history = model.fit(\n", - " x=x, y=y, validation_split=0.2, verbose=2, epochs=250, callbacks=[mcp_save]\n", - ")\n", - "\n", - "# Get the training and validation MSE from the history\n", - "train_mse = history.history[\"mse\"]\n", - "val_mse = history.history[\"val_mse\"]\n", - "\n", - "# Generate a plot of training MSE vs validation MSE\n", - "epochs = range(1, len(train_mse) + 1)\n", - "plt.plot(epochs, train_mse, \"bo-\", label=\"Training MSE\")\n", - "plt.plot(epochs, val_mse, \"ro-\", label=\"Validation MSE\")\n", - "plt.title(\"Training MSE vs Validation MSE\")\n", - "plt.xlabel(\"Epochs\")\n", - "plt.ylabel(\"MSE\")\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: keras_surrogate\\assets\n" - ] - } - ], - "source": [ - "# Adding input bounds and variables along with scalers and output variable to kerasSurrogate\n", - "xmin, xmax = [7, 306], [40, 1000]\n", - "input_bounds = {input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))}\n", - "\n", - "keras_surrogate = KerasSurrogate(\n", - " model,\n", - " input_labels=list(input_labels),\n", - " output_labels=list(output_labels),\n", - " input_bounds=input_bounds,\n", - " input_scaler=input_scaler,\n", - " output_scaler=output_scaler,\n", - ")\n", - "keras_surrogate.save_to_folder(\n", - " keras_folder_name=\"sco2_keras_surr\", keras_model_name=\"sco2_keras_model\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.3 Visualizing Surrogates\n", - "\n", - "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "13/13 [==============================] - 1s 3ms/step\n" - ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChQElEQVR4nO2deXgT1f7/30m6UKBNIWVppdBSkEURBbQUFBGqRQHlC0pxA2QTLqAFZFNAwAXhKjuKXhEQqYKC/qQoCojeq5SqKCKKXOUWBNsCDTQta5fM7484IUmzTCaznJl8Xs/TB5JMJme2c97nsx0Dx3EcCIIgCIIgCEUxqt0AgiAIgiCIcIREGEEQBEEQhAqQCCMIgiAIglABEmEEQRAEQRAqQCKMIAiCIAhCBUiEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYQRAE4Zd169bBYDDg2LFjajeFIHQFiTCCIFTnu+++w4QJE3DdddehXr16aN68OQYPHoz//ve/tbbt2bMnDAYDDAYDjEYj4uLi0KZNGzz66KPYuXNnUL+7bds23H777WjcuDHq1q2Lli1bYvDgwdixY4dUh1aLF198ER999FGt9/fu3Yu5c+eirKxMtt/2ZO7cuc5zaTAYULduXbRv3x6zZs1CeXm5JL+Rm5uLpUuXSrIvgtAbJMIIglCdhQsXYsuWLejduzeWLVuGMWPG4N///jc6deqEQ4cO1dq+WbNm2LBhA95++23885//xL333ou9e/firrvuQnZ2NqqqqgL+5ssvv4x7770XBoMBM2fOxJIlSzBo0CD8/vvveO+99+Q4TAD+Rdi8efMUFWE8r732GjZs2IDFixejbdu2eOGFF9CnTx9IsbQwiTCC8E2E2g0gCIKYPHkycnNzERUV5XwvOzsbHTp0wEsvvYR33nnHbXuz2YxHHnnE7b2XXnoJTzzxBF599VWkpKRg4cKFPn+vuroazz33HO688058/vnntT4/ffp0iEfEDhcvXkTdunX9bnP//fcjISEBADB27FgMGjQIW7duxb59+5CRkaFEMwkiLCFLGEEQqtOtWzc3AQYArVu3xnXXXYfDhw8L2ofJZMLy5cvRvn17rFy5Ejabzee2paWlKC8vR/fu3b1+3rhxY7fXly9fxty5c3HttdeiTp06SExMxMCBA3H06FHnNi+//DK6desGi8WCmJgYdO7cGR988IHbfgwGAy5cuID169c7XYDDhw/H3LlzMXXqVABAamqq8zPXGKx33nkHnTt3RkxMDBo2bIghQ4bgxIkTbvvv2bMnrr/+euzfvx89evRA3bp18fTTTws6f6706tULAFBYWOh3u1dffRXXXXcdoqOjkZSUhPHjx7tZ8nr27Int27fj+PHjzmNKSUkJuj0EoVfIEkYQBJNwHIdTp07huuuuE/wdk8mEBx98ELNnz8bXX3+Nvn37et2ucePGiImJwbZt2zBx4kQ0bNjQ5z5ramrQr18/7N69G0OGDMGTTz6JiooK7Ny5E4cOHUJaWhoAYNmyZbj33nvx8MMPo7KyEu+99x4eeOAB5OXlOduxYcMGjBo1CrfccgvGjBkDAEhLS0O9evXw3//+F++++y6WLFnitEo1atQIAPDCCy9g9uzZGDx4MEaNGoUzZ85gxYoV6NGjB3788UfEx8c722u1WnH33XdjyJAheOSRR9CkSRPB54+HF5cWi8XnNnPnzsW8efOQmZmJcePG4ciRI3jttdfw3Xff4ZtvvkFkZCSeeeYZ2Gw2nDx5EkuWLAEA1K9fP+j2EIRu4QiCIBhkw4YNHABuzZo1bu/ffvvt3HXXXefzex9++CEHgFu2bJnf/c+ZM4cDwNWrV4+7++67uRdeeIHbv39/re3eeustDgC3ePHiWp/Z7Xbn/y9evOj2WWVlJXf99ddzvXr1cnu/Xr163LBhw2rt65///CcHgCssLHR7/9ixY5zJZOJeeOEFt/d//vlnLiIiwu3922+/nQPArV692udxu/Lss89yALgjR45wZ86c4QoLC7nXX3+di46O5po0acJduHCB4ziOW7t2rVvbTp8+zUVFRXF33XUXV1NT49zfypUrOQDcW2+95Xyvb9++XIsWLQS1hyDCDXJHEgTBHL/99hvGjx+PjIwMDBs2LKjv8paWiooKv9vNmzcPubm5uOmmm/DZZ5/hmWeeQefOndGpUyc3F+iWLVuQkJCAiRMn1tqHwWBw/j8mJsb5/3PnzsFms+G2227DDz/8EFT7Pdm6dSvsdjsGDx6M0tJS51/Tpk3RunVr7Nmzx2376OhoPPbYY0H9Rps2bdCoUSOkpqbi8ccfR6tWrbB9+3afsWS7du1CZWUlcnJyYDReHUZGjx6NuLg4bN++PfgDJYgwhNyRBEEwRUlJCfr27Quz2YwPPvgAJpMpqO+fP38eABAbGxtw2wcffBAPPvggysvLUVBQgHXr1iE3Nxf9+/fHoUOHUKdOHRw9ehRt2rRBRIT/7jIvLw/PP/88Dhw4gCtXrjjfdxVqYvj999/BcRxat27t9fPIyEi319dcc02t+LpAbNmyBXFxcYiMjESzZs2cLlZfHD9+HIBDvLkSFRWFli1bOj8nCMI/JMIIgmAGm82Gu+++G2VlZfjPf/6DpKSkoPfBl7Ro1aqV4O/ExcXhzjvvxJ133onIyEisX78eBQUFuP322wV9/z//+Q/uvfde9OjRA6+++ioSExMRGRmJtWvXIjc3N+hjcMVut8NgMODTTz/1Kkg9Y6xcLXJC6dGjhzMOjSAI5SARRhAEE1y+fBn9+/fHf//7X+zatQvt27cPeh81NTXIzc1F3bp1ceutt4pqR5cuXbB+/XoUFxcDcATOFxQUoKqqqpbViWfLli2oU6cOPvvsM0RHRzvfX7t2ba1tfVnGfL2flpYGjuOQmpqKa6+9NtjDkYUWLVoAAI4cOYKWLVs636+srERhYSEyMzOd74VqCSQIPUMxYQRBqE5NTQ2ys7ORn5+P999/X1RtqpqaGjzxxBM4fPgwnnjiCcTFxfnc9uLFi8jPz/f62aeffgrgqqtt0KBBKC0txcqVK2tty/1dzNRkMsFgMKCmpsb52bFjx7wWZa1Xr57Xgqz16tUDgFqfDRw4ECaTCfPmzatVPJXjOFitVu8HKSOZmZmIiorC8uXL3dq0Zs0a2Gw2t6zUevXq+S0XQhDhDFnCCIJQnSlTpuDjjz9G//79cfbs2VrFWT0Ls9psNuc2Fy9exB9//IGtW7fi6NGjGDJkCJ577jm/v3fx4kV069YNXbt2RZ8+fZCcnIyysjJ89NFH+M9//oMBAwbgpptuAgAMHToUb7/9NiZPnoxvv/0Wt912Gy5cuIBdu3bhH//4B+677z707dsXixcvRp8+ffDQQw/h9OnTWLVqFVq1aoWDBw+6/Xbnzp2xa9cuLF68GElJSUhNTUV6ejo6d+4MAHjmmWcwZMgQREZGon///khLS8Pzzz+PmTNn4tixYxgwYABiY2NRWFiIDz/8EGPGjMFTTz0V0vkPlkaNGmHmzJmYN28e+vTpg3vvvRdHjhzBq6++iptvvtntenXu3BmbNm3C5MmTcfPNN6N+/fro37+/ou0lCGZRMzWTIAiC466WVvD152/b+vXrc61bt+YeeeQR7vPPPxf0e1VVVdy//vUvbsCAAVyLFi246Ohorm7dutxNN93E/fOf/+SuXLnitv3Fixe5Z555hktNTeUiIyO5pk2bcvfffz939OhR5zZr1qzhWrduzUVHR3Nt27bl1q5d6ywB4cpvv/3G9ejRg4uJieEAuJWreO6557hrrrmGMxqNtcpVbNmyhbv11lu5evXqcfXq1ePatm3LjR8/njty5IjbufFXvsMTvn1nzpzxu51niQqelStXcm3btuUiIyO5Jk2acOPGjePOnTvnts358+e5hx56iIuPj+cAULkKgnDBwHESLA5GEARBEARBBAXFhBEEQRAEQagAiTCCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVIBEGEEQBEEQhAqQCCMIgiAIglABKtbKMHa7HUVFRYiNjaWlPwiCIAhCI3Ach4qKCiQlJcFo9G3vIhHGMEVFRUhOTla7GQRBEARBiODEiRNo1qyZz89JhDFMbGwsAMdF9LcOHkEQBEEQ7FBeXo7k5GTnOO4LEmEMw7sg4+LiSIQRBEEQhMYIFEpEgfkEQRAEQRAqQCKMIAiCIAhCBUiEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYQRAEQRCECpAIIwiCIAiCUAHNiLB7770XzZs3R506dZCYmIhHH30URUVFbttwHIeXX34Z1157LaKjo3HNNdfghRdecNvmyy+/RKdOnRAdHY1WrVph3bp1tX5r1apVSElJQZ06dZCeno5vv/3W7fPLly9j/PjxsFgsqF+/PgYNGoRTp065bfPnn3+ib9++qFu3Lho3boypU6eiurpampNBEARBEITm0YwIu+OOO7B582YcOXIEW7ZswdGjR3H//fe7bfPkk0/izTffxMsvv4zffvsNH3/8MW655Rbn54WFhejbty/uuOMOHDhwADk5ORg1ahQ+++wz5zabNm3C5MmT8eyzz+KHH35Ax44dkZWVhdOnTzu3mTRpErZt24b3338fX331FYqKijBw4EDn5zU1Nejbty8qKyuxd+9erF+/HuvWrcOcOXNkPEOEGKxWK4qLi33+Wa1WtZtIEARB6BQDx3Gc2o0Qw8cff4wBAwbgypUriIyMxOHDh3HDDTfg0KFDaNOmjdfvTJ8+Hdu3b8ehQ4ec7w0ZMgRlZWXYsWMHACA9PR0333wzVq5cCQCw2+1ITk7GxIkTMWPGDNhsNjRq1Ai5ublOEfjbb7+hXbt2yM/PR9euXfHpp5+iX79+KCoqQpMmTQAAq1evxvTp03HmzBlERUUJOsby8nKYzWbYbDZmli2yWq2orKz0+XlUVBQsFouCLRKP1Wp1Xmd/TJgwQTPHRASPnu5pgiDYQOj4rcm1I8+ePYuNGzeiW7duiIyMBABs27YNLVu2RF5eHvr06QOO45CZmYlFixahYcOGAID8/HxkZma67SsrKws5OTkAgMrKSuzfvx8zZ850fm40GpGZmYn8/HwAwP79+1FVVeW2n7Zt26J58+ZOEZafn48OHTo4BRj/O+PGjcMvv/yCm266yetxXblyBVeuXHG+Li8vD+EsSY/eRIu/gVfMdoT20Ns9TRCEttCUCJs+fTpWrlyJixcvomvXrsjLy3N+9r///Q/Hjx/H+++/j7fffhs1NTWYNGkS7r//fnzxxRcAgJKSEjdhBABNmjRBeXk5Ll26hHPnzqGmpsbrNr/99ptzH1FRUYiPj6+1TUlJid/f4T/zxYIFCzBv3rwgzoiykGjRBmTZEQ7d0wThgPoNdVBVhM2YMQMLFy70u83hw4fRtm1bAMDUqVMxcuRIHD9+HPPmzcPQoUORl5cHg8EAu92OK1eu4O2338a1114LAFizZg06d+6MI0eO+HRRssTMmTMxefJk5+vy8nIkJyer2CJCa5BlhyCIYKF+Qz1UFWFTpkzB8OHD/W7TsmVL5/8TEhKQkJCAa6+9Fu3atUNycjL27duHjIwMJCYmIiIiwinAAKBdu3YAHJmKbdq0QdOmTWtlMZ46dQpxcXGIiYmByWSCyWTyuk3Tpk0BAE2bNkVlZSXKysrcrGGe23hmVPL75LfxRnR0NKKjo/2eD4LwB1l2CIIIFuo31ENVEdaoUSM0atRI1HftdjsAOGOounfvjurqahw9ehRpaWkAgP/+978AgBYtWgAAMjIy8Mknn7jtZ+fOncjIyADgMLd27twZu3fvxoABA5y/s3v3bkyYMAEA0LlzZ0RGRmL37t0YNGgQAODIkSP4888/nfvJyMjACy+8gNOnT6Nx48bO34mLi0P79u1FHS+hf8gdIA10HrUJXTd2sNlicfasBQ0bWmE2V6jaFr3fF5qICSsoKMB3332HW2+9FQ0aNMDRo0cxe/ZspKWlOYVPZmYmOnXqhBEjRmDp0qWw2+0YP3487rzzTqd1bOzYsVi5ciWmTZuGESNG4IsvvsDmzZuxfft2529NnjwZw4YNQ5cuXXDLLbdg6dKluHDhAh577DEAgNlsxsiRIzF58mQ0bNgQcXFxmDhxIjIyMtC1a1cAwF133YX27dvj0UcfxaJFi1BSUoJZs2Zh/PjxZOkSgd4fQoDcAVJB51Gb0HVjhx9+uAnbtvUDxxlhMNjRv38eOnX6UZW2hMN9oQkRVrduXWzduhXPPvssLly4gMTERPTp0wezZs1yihqj0Yht27Zh4sSJ6NGjB+rVq4e7774br7zyinM/qamp2L59OyZNmoRly5ahWbNmePPNN5GVleXcJjs7G2fOnMGcOXNQUlKCG2+8ETt27HALtF+yZAmMRiMGDRqEK1euICsrC6+++qrzc5PJhLy8PIwbNw4ZGRmoV68ehg0bhvnz5ytwtvSFnh9CV3FZWloq6DvkDvBPqG4VliwA4QS5w9jAZot1CjAA4Dgjtm3rh7S0P1R5Hjyvt6/nU8v3hSZEWIcOHZwZjv5ISkrCli1b/G7Ts2dP/Pijf1U/YcIEp/vRG3Xq1MGqVauwatUqn9u0aNGiluuTCB45O2eh9dqEbhcMQsUloRwsWQAI/cKyZf/sWYtTgPFwnBFnzzZUfVKi1+dTEyKMYAM1RYscWCwWTJgwwdkhFhUZUVgYgdTUaiQlOWIO5eoQ5Zi5Wa1WwRY1wnG+bDYbgMAWAK3c03pBrxZJ1i37DRtaYTDY3YSYwWBHw4ZnFW+LK6xZ6KSERBghGE/R4g2txWfxbV2zBhgzBrDbAaMReOMNYORIlRsXBL46d70OZqFSVlaGzZs3O1/7sgB07DgI/frV19Q9rXX0avEA2He7ms0V6N8/r9b5F9J3yGnhY9lCFyokwoig0ONgdPLkVQEGOP59/HEgKwto1kzdtgnFW+fnbzALF8uOLxFaXV3ttp0vC8D119dR9J5n2VWlBHq2eHiDlUmSa3/QqdOPSEv7A2fPNkTDhmfd2uWr35DbwseqhU4KSIQRojl5Evj9d6B1a+2IFW/8/vtVAcZTUwP88Qd7x1VaWipoIPY1mE2Y0BqdOjXW9UDOE4xFxZcFICnpZsXay7qrSgn0bPHwhCWLX6heDrkC6MvKygCEZqFjHRJhhCi07r5zpXVrxzG4CjGTCWjVSr02+erEtm7dCiDwQOxrMCsvDw8BFsiicu7cuVrf8W4BUE6Ese6qkgvXWEY9WzxcYdHiJ1W/IJW4tFqtbiEDaWl/YNCgLQA4JCef1IUAA0iEESLQg/vOlWbNHCLy8ccdFjCTCXj99avHorSLSEgnFmgg9jWYpaRU+/mWduGvER9oH8iismfPHq/7MZsrdNO5awFP618gi4de3Oh6tfhJKS5d+7hAfaKW7wsSYUTQKOm+83y4fFmIQn0IR450iMg//nBYwFwFmBIuIv64IiOvSNKJseBekwIhAhhArWsUrEWFldgc1pB7AuJt394skgMHDkRSUpJurLh6tfjJIS4DCbvs7GxN3xckwoigUdJ95xqrkJsbg/nzzbDbDTAaOSxaZMNDD12SzBLVrFltESmXi8hVNLrO8gA7gNA7MZstFg0anMPIkW+iqipKFfdaqAgVwIMHD671XjAxJCzF5riitjBUI0bN9ZhTU487309ISND0QOuJXmOc5BCXgYSd2WwWvW8WIBFGBE0g9x2PVLNoi8WCkyeBadNcXaAGTJ8ej+zseGixb+bF5bFj1Zg/vzE4zvD3J0YAHACDc1t/nRh/jl3rg3kTFa4DmlYQKmw9Mx15/GV58bAYmwOwIQyVjlGTMpaI1QzTULMQWUcOcalXqyEPiTBCFL7cdzxSz6K1lMEoFIvFgoMHax8XYHB2Ov46MW/nmIqOuuMZ4+VpXQo0y1bjfLEqDOW0zEl1zKxnmOqx1qInQiY/waBXqyEPiTBCNN7cdzxSz6JZzGCUAm/HZTDYnW7EyMhKVFVFw2aLrdXpeDt3vkRF9+7D0LOnPuu8eeJLLHiztKSl/eF1lj18+K3o0KG/KueLxaBtuS1zUh2zFjJM9fgMek5WfCW4iJ3USC3sWIJEGKEJhLpAtUbt4+LQt28emjUrFjXweTPdm0wc0tMtmnTbuiLEEuPrnPmytOTkLPU6y27T5mbFB0t+gArkflHaOqeEZU4ul5PacXVywZrLVQkLn14zl0mEEZohkAtUCeTo1F2Py2Ipw9atvkWDq1vRW4fnzXS/cGE5mjWLl6StoSJ28BAiSP2dM3+WFrXrg/G4DmTXXFOO6dPNqKkxwGTisHBhOR566EFVXFVKWObkcDnJab1TUwR5ulx99UlKu1yl/i29rVXsCxJhhKbw5wKVGzk79avH1QBJSROwZw+wZIl/t2JxcbHb53xnnJb2B3JyljpFxUMPPQggXpJ2hoLYeB2hlhh/YsGXpSUyshKFhSm1svHUgj/uKVOA7Gx+wmH4W0THq9ImOQOj5QpUl8N6xwsvz3VHlRZBQutnKelydRWlRUVGFBZGIDW1GklJjjgLMaI0HOLnABJhBOEXvvNXMuDdYrGga1fvMXC+3IosZNMFQmy8TiBLTGRkJAD/YsFsrsD8+SV49tlE2O2OxIcbbjiINWtGMXvO1JxwuCJnYLRcA63U1jtf1qeiokTs2pWpighiJYHD9dz464fEiFKtCywhkAgjCD/wg4QQy5SUBBMDx0pnLDVCY6QaNWok2I13992nsGLFp4iMrHQKMEA/50xKlCqnIMdAG+iecS3p4oovwefL+uRaTsbbPSSn25KVBA7++AL1Q3pbbksqSIQRkuDZ2Xh2cloOkBVjmZICoTFwrHTGwRLonhATIxXIjZeUZEdq6nEUFqZo8pwpiZbdQYGsd1u3bhXlRvQUGq71/AD3e+jEiRP49NNP3b4rpduStfpZWu2H1IZEGBEygWJ9/JmotRJUqVZ2pj+XFKvZdEIQ6j4VEyMlxI3H2gDGKiwKLH8Itd6JjaXyJjRccb2HXAXYN99kSO62ZK1+Fj1T4iARRoSMv07Em4l6+/b+mDMnHSkpEZrq5FnIznSF1Wy6QIh1n0oRI8UP0movFM1aiQG94Gm98xZEf+JEMj7+uB/45cGCcUV7Exq8S9KXCPrmmwzs3Hkn/LktxcJS/SyzuQKZmbtqiU2ygvmHRBghK95mjjU1BlRUNNFk3SpWgqV5WMymC0Qgt4WnK1tKQeI5SM+ZcwbHjkUgJaX678XNb5ZdALFe1V3r+Dpn7rFc7vi6/zzvBW/iPTNzF5KSiryKIJstFjt3ZsKf2zJU1K6fVVZWBsBxfnkBBjjOC0uJLqxCIoyQFe/FQ7Vf6Z5FWBKI3iw9/OAWyG2xdevWWvuTUpC47icxEejcWZLdCsbzvPiKFaJAZumoHcvljmu5krVrd9aK2XIlGOvT2bMW8BY3z98T66ZjqX6W1WrF5s2bvZxfI3btysT11x8iS1gASIQRsuI5c9RLpXs1Yd2VFcjSIyaWRa+CRAulRfSAv1iuQOVKfBVFFiIufLkvMzN3iRYnLCVM8G1gJSj/5EnHOsOtW2tnjCERRkiO58yenzl27z4M6ekWzTwcQlFSFGnBlSVEMHXq9CMmTGiNEyeicejQR86OWstZtMGi19IiLOLL+jpo0AeIjy8LWK5EqFUpOzsbZrMZNpsNmzZtqjXhAOy4885d6N49P6TjYc1NLSQoXy7LHN//5ubGYNo0M+x2A4xGDosW2fDQQ5ec/S+rAo1EGCEpvmb2ZnMFunWrRGKiNL/DijVIaVGkhQWKPfElrK6/Ph7XXw+cOOF4L9ysQqxYD8IBX9bX668/LKhcSSjWJ5aC5+UikHU7Oztblv6Y739ttlgsXZoDjnPE3tntBkydGoe//noLZnMF4uOnYPLk+rDbHaWG3njDkWjFAiTCCMlQambPkjVIbVHEuuVIqLAKR6uQ2in9rExklMKXGBJ6HeRafJrFEjJi8Cc2zWazLL8pxB0KAPPn13PWeLTbgccf53DjjaeZyNAnEUaEDN+JBJrZS9XZqC18WIF1y1EwwiocrUJq1nlidRFoufEmhuS4DkL7ukceeYTp8xusC0+tTE1/QvrsWQvsdvfs1JoaA1as+BSpqcdVv8dJhBEhw5vqjx2rxoYNnNsNbzJxmDjxbiZmHEqglGVKC5ajYISVGlYhFixBarmqWFwEWg6EiiGprwNLwfNiWbMGGDMGTLrwPAkkpP31LWrf4yTCCEmwWBzL99SuKm9A585NZP1tVlxySlqmtGA5CkZYKW0VUtOl7SkMfFkPlHBTySHmXcVtUZERhYURSE2tRlKSwx+kpPjwJ4ZKS0vdyqFIbcVhWWD5w2q14tixaowZ09g5oVbShSc2gN6XkGZtZQFPSIQRkqJ0VXlWXHJKW6bUjicSgpDOT6lFoj1Rs1aXnFaSYK17Uot5V3Hr79mUWtyKEX4s1dtiBf76FRamwG4f5vaZNxee1OcwVOubLyHNcnIEiTBCcpQqGsqSS05pyxTLs7tghJVQQQIAxcXFfrcRO6irIeTlzBTj8RfnxSO1mOevY6BnU0pxK1b46cFlKDX8uQh0X/DbSXUOlbC+qb2ygC9IhBGCYSGGxhWWXHJyWaY8zzm/RAigrOUoGILtmIV00HK5DlkS8qEiJs5LLjGv5LMZivALJ4EVDMHcF6Gew2Ctb3qDRBghCJbKQvCw4JKTc0FoIefcbK7AmDH3uKWAszB7l/L35XQdsiTkpSJYYSmHq0aNZ1OP11JNlHLhBWt9c0UPrmISYYQgWCoLIafwCRY5F4QWKj7MZjMSpaqCyzhSuw5ZEPJSI0aMSO2qUcNdrsdrqTZKuPAcMXwpaNjQGvQ9E0ziBauQCCM0h5zCR2x7ePwtCB2KO1cq8cGaSzkY5HAdshxbJxYpl5AJZSKjdDC0Hq+l3nEE4jeG3T7Meb1ycpYGdc/46q+0knhBIowQhdplIYQKH1YIxZ0rlfhg0aUcDHK5m1jOnBKDEDEiRUC1t4xEs7msVluUPJ96u5Z65uRJPhPSEYjP92s5OUuRmno85P1rJfGCRBgRNP6sMqWlpUzc2KwRSlyTVOJDzbIMUuDLwnPhQj3YbLEoLS0FIKxjZalWlxwIESOhPKO+MxIboH//m1RduYHVLDjiKlarFfv2AXa7+z0odQyfFsYhEmFEUASyyvA+eFatKSwQrGtRjlgXVuqrBYM3Cw/HAR988AAMBjuOHs1Dp07C7j+tzJJDQU4xIjQj0RdaFbeBEFtolBWUcOG5LrptMOSEfQwfiTAiKIRaZVi1psiJv3gr3kojZtCSOtZFy2UZeAvPiRPN8MEH9wMQX4dKKoHFSoV4NWJgAvUHAwcOREJCQq3fl/J8qB37w1//3NwYTJtmht1ugNHIYdEiGx566JKmxLwSkxN+3xTD54BEGBEUvqwykZHhJ7pcERpvJda1KGWsi9ZS+b25Ds+evQRegPGocQxqVYj3hhrWvUBW2oSEBNkzd9W0arpadZYuzQHH8YVGDZg6NQ5//fUWzOYKTXkGlGxnMP2aXq2nJMLCDLHZcb7KQgAcOM6INWtGacKlJRdC462CcS3KFbektVR+10GWTztn5RjUqBDvD6UHelasGWoJHP66BprYKHX9tegO9dWvuVpRtWRNDBYSYWFEKNlx/EBYVFQEYCsaNy7Bm2+Ogi93UDjjzyISbCVqOWb4rAycweB5jKwdg9asi1Kip4xEsSKGhUlBqOsusoYSVlQWIBEWRoSaHWexWJyfVVVFgwV3kJJIFfMVzKAl1+xPDwMnS8fAwiCsJnrISAxFxEg5KQhWCCqx7mIoaNE6pyQkwsKUULPjQh10tFY0VOjiyEItImqURNBjWQZWBn/WLHOEcKQSMVJMCoIVgiysu+hPZHk7nnvukaUZmoVEWBgiRXZcoEHHX80mLRYNFbo4ciBx6i1bjEdu4alEADMrmYJqwJJlTm7UzkiUCqlFjNhJgVghGMq6i1LgTzReLcYKl+MBCgqMvncYhpAIC0NCiV9x7VQ9Bx0AzjXAXNfs8uzAtFw0NJCADSRO1Y5zkFMAKZEpyPrgz4plTm70UmdNbREDSCME1bDE+hJZWVlATIz3Yqw1NcAvv1wRtH/WBbxUkAgLQ0JxJXrLVDObK/wOuv46MK0VDRUiYMPJIuKKEpmCehn8tY7DBWXRTZyPmu5kqYSgkv2Or4r3NTXA7t3HcezYOp/FWA8c+ABmMzB48GDEx8d73X84PcMkwsKQUDscqdY2VLpoqBSuMqECVg/xVt7wdw55F7TcmYIsdc6sW+bkQG9ZeDxiRIyU118KIaiEJTZQxfufftoCsznw8cTHx4dF9mMgSISFKSwU/1QyrV8qV1mgjkXNmC+5EXoOwylTkDXLnJyZaKxn4UlBsCJG6uuvBSt6MBXvtXA8akMiLIxgrfinkoO1lK4yfx2L2jFfciL0HIZLpuBVwWNR1SWnxLI5LGThyYWvmFShSH28WoorFCKypD4evZW8IBEWRrBW/FONwVoq65uWOkqpCee4ONbWCVRq2RwWAtjlIDc35u/zpo2YVBZRsi/UoyucRFiYwVrxT6UHa7HWt3CM/fFFqHFxWoXFdQKVXjZHT1bOkyeBadPMzuuotVU/Tp4Evv++Lmy22KCy2rWKv2xMLVvESIQRkiF00FWzaKjYQYS12B810dNAHAysrRPoipKufT1YOX1l9/myigfbF8ntMrtqETLDaJzktMR6UlRkxIkTdXDpkln6RijM779fFWA8NTXAH3+QCCPCFLHWISGC5uLFi6isrERxcbHkRT/FDiLhILCEEspArPVZOYuJB0oLYy1bOQNl9/HXkS+hEGxfE6zLLNh+tLZFyIDp0+ORnR3vJkb05rpr3dpxHK5CzGQCWrVSr01SQCKMEE0o1iF/nZrVasUbb7wBQL6in1oeRPyhZNCqr3Oo5wxRgF1LoB4sVEogNLsv2BIKYrNHg+lH/dXnKiiwIibGsT8tuO6CmYxZrVaYTJVYtCgG06ebUVNjgMnEYeFCG0ymS7BatduvkAgjQkKOG1+Jop96grVgcT1niPKwKnj0OrmQC6muY6jZo0Kez0AWvG++WY9Dhxwxib//bhHkuhMzaRMqnrKzs2E2e3eDBtMneS5z98QTsc7rdf58Bf6er2syMxcgEUaoiK/Cn1FR0hf91GtgvZLB4no9h2IhwaMPpLiOSmSPCrXgnTlzBnFx1TAar1rkAMBk4hAbexpWq8MiJ9ZdqXR8rOfv+LpeWp2UkwgjVMF/4c8CdOokbeyNXgPrlQwW1+s5JAJDAtxBIMuRUq5qfxa8TZs2AQD69XPvV/v2zUNeniOUY+DAJzBmTAPR7kp6xqWDRBihCkJdjlJ2aHruOJQKFtfzOVQTsbF8SokjEuDCA92VclUHsuD5a8eRI3ZdZhpqERJhhKoEsuCwGnvDGqwGiyuFEgkJcgmeULLYlBRHehZYgQg20J0VV7WvdpjNp2E0NvTrriSUgUQYoSpCLDisdGisE66CValUfKkFTyhrMbqLThow5URIRqLW2Lt3s193pVaD3LUIiTBCVcLdgiMUoZaecBKsaiwoLdX+Qsmm01v9J6UJxqIpNCNx8ODBcjVXNvxN2rQa5K5FSIQRquOrMwi0sK5r8UI9LejKI6T0hNaQ6lppfUFpMdl0SolOvT5PPMFYNIuLiwEEnixWV1cr0napCadJG6uQCCOYwLMzcM2YdBUePHwnqVergNDSE8HOwNUcYKW8VnpZUFqoJVgp0anX58kTMefIn+UoMjJS0D5CmThpcdIlBXrPzCURRsiKmEHfM2PSsSyHGT17XnHO9q1WK/bvP6WoK0pJhJaeMBgM3r5ei6ioKNUGWDktOHpwZwuJ5fMnOgEORUVJSE09Llp0quHa1SK+A93NsidICLHglZWVYfPmzaJ/g0X0nplLIoyQDX+Dvr9Zizfh4Trbf+SRR/DOO+9o1hUVDIEsPUI6/4sXL/49wHKKD7BKWHD0kJAg1C1kNlcgM3MXdu68EwAvwA3YtSsT119/SNRva921ywpKnJtAv8GSNUhKq7ue7zsSYYTkCJ1Ve4qH0tJSbN26NaDwuHjxIoDQXVFaiH0RYukRsg6nkAH20iWL5OdDKbdhOMW2JCUV46oAc8BbR8vKyoJeMkovrl0isNWI72PlJlzc2lJgDLwJG9x7771o3rw56tSpg8TERDz66KMoKipyfj537lwYDIZaf/Xq1XPbz/vvv4+2bduiTp066NChAz755BO3zzmOw5w5c5CYmIiYmBhkZmbi999/d9vm7NmzePjhhxEXF4f4+HiMHDkS58+fd9vm4MGDuO2221CnTh0kJydj0aJFEp8RNuFn1StW7HCrQQM4Bv2XXvoKU6bk4eefz8FisaCmJhG//ZaImppE56LPvPAwGBxFeXy5mIRu5401a4AWLYBevRz/rlkjxdHLQ6dOPyInZymGDVuHnJylzgXMheA5wLriOsCuW2eS9XyEcq0Id7xdS94luXnzZlitVlH7pWukDywWCxITE73+8X2snPiqqXbypOw/rUk0Ywm744478PTTTyMxMRF//fUXnnrqKdx///3Yu3cvAOCpp57C2LFj3b7Tu3dv3Hzzzc7Xe/fuxYMPPogFCxagX79+yM3NxYABA/DDDz/g+uuvBwAsWrQIy5cvx/r165GamorZs2cjKysLv/76K+rUqQMAePjhh1FcXIydO3eiqqoKjz32GMaMGYPc3FwAQHl5Oe666y5kZmZi9erV+PnnnzFixAjEx8djzJgxSpwu1Qg0q/7gg/sBGLFhA4dHHwU2bLg6W1q06GrBHaEupmBdUVqNfQnV0uPPomazxWL+fLNHpyn9+RDjNtSCtVIO+MzgoiIjPA1bgVySZ86cCWvXLuEbJYLcf//9qgDjoWr8vtGMCJs0aZLz/y1atMCMGTMwYMAAVFVVITIyEvXr10f9+vWd2/z000/49ddfsXr1aud7y5YtQ58+fTB16lQAwHPPPYedO3di5cqVWL16NTiOw9KlSzFr1izcd999AIC3334bTZo0wUcffYQhQ4bg8OHD2LFjB7777jt06dIFALBixQrcc889ePnll5GUlISNGzeisrISb731FqKionDdddfhwIEDWLx4se5FGI+3QZ/jAN74arcbsH49B34QsduBadPMePLJWGfHH0ycjJDtwj32xdcAe/asxavVUo7zEYyY1LNLw98g55oZvGEDhzfeAO65x30bfy7JTZs2hXTNwsm1Gwi9ZeYpEeTeurXjeXUVYiYT0KqV6F3qGs2IMFfOnj2LjRs3olu3bj5Tg998801ce+21uO2225zv5efnY/LkyW7bZWVl4aOPPgIAFBYWoqSkBJmZmc7PzWYz0tPTkZ+fjyFDhiA/Px/x8fFOAQYAmZmZMBqNKCgowP/93/8hPz8fPXr0cHsws7KysHDhQpw7dw4NGjTw2uYrV67gypUrztfl5eXCTwqDuA76Fy7UwwcfPOCxhfsgYrcbnFl/ckCxL94HWNbOhxBrpdYHR2+DYVlZGU6eBObPb+tWkuTxxzl8+mmZW9081q6ZXtFjZp6cbbVarTCZKrFoUQymTzejpsYAk4nDwoU2mEyXYLVq61wpgaZE2PTp07Fy5UpcvHgRXbt2RV5entftLl++jI0bN2LGjBlu75eUlKBJkyZu7zVp0gQlJSXOz/n3/G3TuHFjt88jIiLQsGFDt21SU1Nr7YP/zJcIW7BgAebNm+f94DUKP+g7Kk7XTq13FWJyLDjtq02slzVQUmSwdD6CsVZqfXB0bZvVasXmzZv/Pu52btvV1Bgwd+5Z5OfnuF0fVq6Z3mH5HmIJ/tnleeKJWKfV/fz5CrzxhuN9tT0NrIU4qCrCZsyYgYULF/rd5vDhw2jbti0AYOrUqRg5ciSOHz+OefPmYejQocjLy6tVK+nDDz9ERUUFhg0b5m2XzDJz5kw3S115eTmSk5NVbJF0eBvob7jhIA4evEGVQYT12BelZ+CsnI9grJXBZgGyjP86YHbk52c43+M4I7Zt64ecnKXIyVmq+jUjCKC29dWXW1tNKy2LIQ6qirApU6Zg+PDhfrdp2bKl8/8JCQlISEjAtddei3bt2iE5ORn79u1DRkaG23fefPNN9OvXr5ZFq2nTpjh16pTbe6dOnULTpk2dn/PvuXbwp06dwo033ujc5vTp0277qK6uxtmzZ9324+13XH/DG9HR0YiOjvb5udJIPWPwNtD36vVF0INI3bp1BW0XyErEeuyL0rNFOc6HWIseS9Y5V+SeRXs77oyMfOzd291tOz7+KzX1eMjnROuuXYIQgq+szawsdS1iqoqwRo0aoVGjRqK+a//7TLrGUAGOuK49e/bg448/rvWdjIwM7N69Gzk5Oc73du7c6RRxqampaNq0KXbv3u0UXeXl5SgoKMC4ceOc+ygrK8P+/fvRuXNnAMAXX3wBu92O9PR05zbPPPOMM2mA/502bdr4dEWyhlwzBs+B3tfAP3DgQK/p1Lz1R+uuKKVQe+AM5VqxYp3jUWoW7XncANwsYYB41703EUnPExEOsJq1qYmYsIKCAnz33Xe49dZb0aBBAxw9ehSzZ89GWlpaLSvYW2+9hcTERNx999219vPkk0/i9ttvxyuvvIK+ffvivffew/fff483/nZWGwwG5OTk4Pnnn0fr1q2dJSqSkpIwYMAAAEC7du3Qp08fjB49GqtXr0ZVVRUmTJiAIUOGICkpCQDw0EMPYd68eRg5ciSmT5+OQ4cOYdmyZViyZIm8J0oCQi3hINWgn5CQ4NfdRAOCMPwNsEoVbgzlWrFgrVSjrInncUthFfQnItV+nliL0yG0g9B7h9WsTU2IsLp162Lr1q149tlnceHCBSQmJqJPnz6YNWuWm/vObrdj3bp1GD58OEwmU639dOvWDbm5uZg1axaefvpptG7dGh999JGzRhgATJs2DRcuXMCYMWNQVlaGW2+9FTt27HDWCAOAjRs3YsKECejduzeMRiMGDRqE5cuXOz83m834/PPPMX78eHTu3BkJCQmYM2cO8+UppCjh4DnoKzXQE75Re4DVMqyUNQnVKsiqKwZgM05HC5BwDe7eadbM8fnjjzssYCYT8Prr6p87TYiwDh064Isvvgi4ndFoxIkTJ/xu88ADD+CBBzxLJVzFYDBg/vz5mD9/vs9tGjZs6CzM6osbbrgB//nPf/w3mDGkKuHA6qBPsS/uaPl8FBUZ8dtv8g9ALJU1CcYq6HrNrFYr9u0D7Hb357KmBigosCImRr1nlmVxyDIkXIO7d6xWKyorK3HPPUBBgRHHjkUgJaUaSUl2FBer627XhAgjlIWFoGg5Bn6KfXFHq+fjhx9uwvz5jRUdgFh4JnzhGT/pes14S56jRExOLRH5zTfrcehQRUiWPLEWGZbFIcvoRbiGaskTGuPlWTqD55DHevdqlc4gEUZ4RaqgaKFiKjs7G2az2fkduR4GMfvVs9mftUEu0P1is8X+LYRcY7OUGYDkTBQIZdLhL36SF9iBRKRYS54/i4y/50YJcahXWA0wD8ayLoUlT2iMl9B7W63SGSTCCJ9IERStVWsLD5n9lcXf/VJWVoa9e6M9amgpazmRK1HA23FLHU8ptYj0Z5H57DP/z43c4lDPsBpgLrSvv3TJErIlT0+V+UmEEbJjsVhqzYpdX7P6rOjF7K81vHWefEV5PVtOPJ+TpCTpY/akEpH+XInbt5/FP/7RwCOT1Pdzw1opEpZhXXwI+e09e0Kz5GmlMr9QSIQRsuNpTXr0UWDDBratSyzFq+jZHSqUcLCc1La6KmtFFnqfBXIl7tq1G3a7e/JToOeGhVIkrKMX8RGqJU8LlfmDgUQYISverEnr11/9nBXrkusAFBPDTrwKuUNrozfLif86ZNVISZHfupGbG4Np04TdZ4EEcXLyCa+ZpK7PDRE8lZWVbou4a1F8sG7JUwMSYYQTT7eG5wPvazt/eAsi9URJ65K32b6n0Fm0yFFjTm2rC7lDfaOU5UTuMh4s1CGz2WIxf75Z1H3mSxDr1VqpJrm5MVi61H0R906dfgxqH2pa1fViyZMaEmGEE9fAytzcmL87ZgOMRg6LFtnw0EOXgnJ/WK1WxMVVw2i8OsN3wAG4+lop65I3q1JWVm2hM326GU88EQuzuUI1qwtL7tBwRu7EEhbqkJ09a/F4PoO7z7wJYr1ZK9Xm5Elg2jSzMyuYX8Q9Le0PwedWbCarVOjNjSgVxsCbEOGExWJBTU0ipk2Ld3GNGDB9ejxqahKDEmArV65EXt5q9Ou3DQaDQ+UYDHZ07PiT2+vMzF2yz5K9W5U4bN9+zkuQqAFnzzZ0vjabKyRZKFko/Lnbu3e98zzx8IJ15cqVsFqtirQn3LFYLEhMTPT5J4UY5q2urs+FFHXIhFjoeAHoihT3mdLPjZ5xeBTchTK/iLsQfFnVT550iLMWLYBevRz/rlkjdevVhfWi1GQJI2ohRR0aVzHlbVbcuPFp7NyZCY4zYteuTMTEXA7atB4M3o/JgF27dsJguF+SxZGlIhyC0InayGE9ErJ2qBr3GesDI2s4gtk5NyEWTD/lq0/Pz9d/yAPrZZJIhBFu+HIhmkwcYmNPw2oVt1ixq+nZZovFrl2Z4A2xrqZ1OfB1TAaDHcnJJ5mthA6QWyfckCPWTcjzqvR9JmRgLC2tg4MHG4R1VjBwNZh9zpwazJuXJKqf8pWRyHFsFn6VGpZDN0iEEU5cAyf79bvJTZj07ZuHvDyHpSrUuK2zZy21Cm7ypvWysjKf1b/F4O+Y+E6MdaFD6ftkORFLMLE+St9n/voQIVnB4VC6xTOYPScnNuh+yl9GYlraFS8TbvULv/pDb30BiTDCSSAXorftxOAvCHnz5s2SBucLPSYSOmzDukuBReQqbyL34CYkK1hvpVt8CUqhweyueC7e7i8jMS/PMTnNy+sPu10b5SL01heQCCN8IpcwUTPWScpj0spMSy9opVNlATnLm/gaBMvKyrB58+aA3/f33AjJCpZi2RuWkEJQ8ou4e4oPISLOc3KqhXIRLLZJLCTCCFVg3QXIw3dunsgx0+Jnw3FxlLQcLsjhWlGivIm37ycmJoZkoRC6qHdKymOw25u7fVerpVukEsv+FnEXQrDlIsS4gvXmRpQKEmGEamjBBRhq5yYU99lwY/Trd5Os2aJEcMgVfyS1a0WokJGran0oAkhoVvBPP32g+koWUiFFJrrSiLXc8ff6sWPVKCyMQGpqNZKS3A9eS25EqSARRshCuM1mQqH2bNggqBAjnWNlkDv+SMpBJ5jyJixbJgLFb3o7NgAoLEzBsWPV0MI4LiQTnTVCtdx99JFFV7F8UsDeVSZ0gbcZPl+XSEsoMQB5mw1znBHduw9Dt27eLSThOGNUA60sHeXNlR3I5c96gLM/S7nnsR092sq5pM+GDRzzg7vQTPTs7Gw1m1mLUCx3WnmWlIZEGCEbWhIJ3mK/lBiA/M2GU1KqSWypiFaWjvLnyg7k8meh/WLhj81mi3WKGMBhSWZ9cBeatV1VVaVG83ziq96YkJIWWnS9KgGJMMIJy+4JsQhta1JSkuIDklJ12YjgCSa2Ss1rI9aVrSe81R3U2uDuSyxHRAgbopXok/3VGxNS0iIUAadnSIQRTuR2T6gh8lh2uShVl40InmCXjnIN3AeUKSLqy1LHFz4OFxHmre5gqCt8SI3n/bFvXxRsttiA1yg+Pj6k/kuqvjRQvbFAJS1CFXB6hkQY4YacD4JagkjM/tSoxq2FbNFwJFBslas70PC3R5nj5A08DmSpU3PtU6XxJpRZsiR7vz8sMBhy0L9/XsAs6FDaLlVNN6FFY7317aEKOL1DIoxQFC08ZHqrxk2Ejq9Bp6jI6OYO5Lirn8kZeCzUUicGtZYDCsVqw6ol2dNd7Hp/uK6ZK+fkS46absEQioALB0iEEYQLlMEjHrkGb5bXCDxw4EKtYGNXlAjiF1P42JfgUXMCEshSHsh6wx/32bMWt9dq4i0Y3RU1XcdamBCHAyTCCMIFyuARh1yDN+tWyV9++aiWO9AVpYL4fVkXgsn6ZWEC4u/8eFpvPEve/PDDTbUsgmoWPPaV+eyKVK5jlicqQrDZYvHNN1Ho2lWb7Q8FWh+FIP7G0WmegtHIub3vCPI9BavVqlLL2MbX4H3yJJv7lRLeHWgwOBrp+Pfq/5VaE9UX/IoPrn++Aqf37bN6nYAUFFiZufctFovzOFzFpWeZCt7VZ7PFqtJOPg4qL281+vXb5rw/ALvbvRLIdSzERbtmDdCiBdCrl+PfNWukOALl+OGHm7B0aQ4eeMCiyfaHClnCCAJULkIsctXS0kqNLqC2OxAA82uiuqKVchz+8Famgnf12Ww2RZYec8Vf5rOjvbXvD0+rpZCYLBasl6FQu8abttovBSTCiIBo3dQtBDXKRWi9Lptcg3eg/e7YsQXbtkVjypR70aFDA0mPiSfYc+7pDtSC+OLxF+SfkZFfazsW8Vamgnf1bdq0SXUBKeT+ELNOrdbDJ/RQ4y1USIQRfmE9JkculCgXwXINMyEEW0tLiv3ecMNBrFkzSvblaQJdGy0uwSUEfgJSUJCOvXszsHdvd+TnZzjXZmQVqe9BLSBk7Ump+g65Jozea7xdLeAaDgYAEmGET7Ru6tYCrAqsYBGToRfsfiMjK50CDJB/eRqWr43cVtT8/AzwIcN8fNWcOWegsFfPL57HFso9qLXBXunwiVAmjP7uQU/xbDIBr7/uuAbhYgAgEUb4ROumbqkJ5wweIchlPeT3W1iY4tV1wVqMmBLIaUX1FV/1008XkJJiZeY8WywWDB482K1shZh7UIuDvRrhE2Kvu7+CsdXV1Rg4EJg06X+wWhsgJaUaSUl27N9vxJgxVy18ejYAkAgjfEJrfV2FT39fssSomY5aDCxbBHzF/WghcNwVqc6xXMfq7TwDHN577w+cOJHP1HmOj48P6ft6sfazvtqG5/1itVq91nw7dMjxb2FhCuz2YW6f6dUAQCUqCK841voqxqJFZTCZHCUbHGt9lcFkKlY9Zf3kSWDPHmXKFfjK4GGpVIIUsJ7q7q0cRDBxP1LeM2LcfFFRUcyfY8BxnjMzdwFwLdViwK5dmbDZYnUVX+XP2q8mSvZvahDoHuInAq7o1QBAljCiFqyv9SW3+8Bmi8XZsxY0bGiF2VwRFhk8WrEIiI37kfqe8XSx8K4VVyIjI2E2mwE4BNilSxZNnGMASEoqBuBeYFTNkg9yIGdgu1iRDmjTPSo1/IQrL68/7HZ9L/ZNIoyoBctrfcklFvgO0FvV7bS0P7xk8EifgaQmWor/C9b1Itc943rdA4mSq8VQ2at75k0wsF7yIVTkDmz3FOk2mw1VVVVu20RERDjdqXz8npB79eRJYN++KNhssUy7IEPFc8LFggFADkiEhSEsx/0EQi6xYLFYMHDgE5g/Px4c55gV81lhOTlLa6W/8x21zRaLHj1GoksXs+bOJY9Yi4BcGXpS1kVjoegr68VQecFQVFTkLLuhlZIPYu9BJQLbgxHpPIH6t6tWMgsMhhzVl2aSG5YMAHJBIizM0LqpW85kgdLSBrU6QN4F462j1kOwfigWAbky9Dz3K7YmFyviR656alJisVhq/b5cZUekRKp7kIXA9kCToZ9/jsKYMVf7KH6SmJb2h+ptJ8RDIiyM0Ercjy8cyQKVWLQoBtOnm1FTI12sgK8O0HWBXdeOWi/LbYRqEZBLvEixXxbFjxaEjSssiJNA6MEtJWQy5C1jkJ8k+rpGrK62QVyFRFgYoaW4H0/kTBbw1wH6WmBXr8H6Whh0xaC2+PFM9tDjOSbEI2Qy1LChFUYj5zZJNBo5PPxwOpKTuzqTQIqKjCgsjECbNkZYLNIu66XlUBZWIREWRgh15Tke4hTngMECciYLCLUGueJ9uQ19BeuzglSxZ2qIn5MngRdeiMXrr+e4CXsW43jIasIO3u5Vs7kC/fptc5sk9uuXh717r4YMfPSRRbZwEylDWeheuwqJsDBBqCvP8aA1ht0+zOuA4Tqj1ytCBmtvLi45lgsJZ67OurW5xuayZecxaVI9cFx953ssx/F4q0BPsIW/SeKxY9WyhZtIHcriK5ZPr2uy+oNEWBgg1JU3cOATfwd+umcH8gOGZ/mGFi0u4skn1TgiNlBquZBwpPas26KppIeffz6HSZPMzkxbVwLF8UhNMC6kUCvQE/Lja5JYWBghW7iJHKEsrE2a1IIq5ocB3lx5qanHaz3IR47YvWYHdu8+DP36jUVeXn+n+43jjJgypb5uKzoLxde59IXeK2FLga9Zt1bOmdVqxbffnqsVM8jjmuwhN8FW6Jd7YXBW0ONxms2nYTRybu85QiROhbTCiSNp6ZQs+/ZEj9clEGQJI5ykplZ7jRlLT7doOqifFbReHkQJWKjrFQr+ymIAtZdackXq+mgO95TnIsgcbrzxNFJSvMctyrkwOEvo8Tj37t0seeFZuYvaeuLruvDJBqmp1T7vXa1CIoxwEhV1GosWRXuNGUtIqAOjsYEs9bm0wsCBAwFAVMwCq+VBWJp5Sl3XS41j81UWA7CjW7d8pKcXuAmwgQMHIiEhQdIBnz+P3hdBNmDFik+Rmnrc53lkZYCTOxOPleOUEqlDJJQoauuJ53XR++SVRBjhhBcX3mLGbLZYDBs2DOvXN9T9Wl6+SEhIEP1dVi2JLFkEpK7rpfaxCcm0TUhIELUOoz+Bwh+vv6WHXLdjEb0PvJ5IORGQMwtY6QxjVievUkIijKiF54PmGpDvmNHvRXp6gaJreclp1Qhm32IGLjkXCpYCFgW0VHW91D42OQYtoQIlkJhlFb0NvEIsev4mDOGYMcjD6uRVSkiEEX7xrAwPGJGfn4H09AK37eSeVctp1Qhm38XFxUHtW+mYCj1BRU3dERPnpXaR2mDRekygJ8FY9Hwdl56C0INFzmXqWIFEGOEXb5XhlU6x57l0ySJbjIjQjj1Yi5waMRVax7O6PBFcnJcnWhGzrKz1KRVSWfS8TRJdA9Wjok7r0lImdpk6rVX1JxEWBoQykwoUV6IUrMSIhGqR08qAqBaetehYrS4vFUKfTT3EeQWCxbU+xSK1Rc91W8++cNGiaMnazQpil6ljZZwIBhJhYUAg4eAv5oCFuBLWYkSknIXzVp+iIiNExGdrBiGz06Iio5vrm+Xq8qEycOBAJCUlBX0vsfA8KoHW3KiuyGnR89YXTp9uxhNPxCpyjpSyUotZpo61cUIoJMLChFCEg9odol6DM12tPhs2cJqYtYlByOzUarXiwIEL4Lgmbu+r5foWi1DLlhgBxqP286gUWrUay2XR821dMwh6RkJNWvJnpWYhbk2r4wSJMEIQanaIYoIzWY8L8Ex4sNsNmpi1BYPQQPJAlgNP1zcLHb4vlCqL4e95LC2tg8LClIDWCpbPo16QSjALfUays7NhNptrfT/UpKVjx6oxf35j5zJcHGfE9u39MWdOOjPFU7UaxE8ijGC6MxYTnKmFuABvCQ9amLUJJZhAcqGWA7EuPKVRs325uTGYNi0edvswGI0cFi2y4aGHLtXaTmvV4LWMFBNYoc+I2WwWVXfOHxaLBQcPerMyGVBR0QQs3EZig/hZgEQY4XX2HmxtGjmEnJjgTKXjAsRa3LwFWLNSN0wKxAaS+7McJCQkaP68yInNFov5880u974B06eb0bPnFWasFUToKO2OZr3OodggflYgEUYAcJ+9nzwJHDkSBZstcLCnnNYJMcGZSsYFeLO4ZWW5izJf4tTbjFaPdcPEBJJrNRZIbc6etbgNkoCwZYrkhvXQAC2i1DOihTqHYsYJlhAswsrLywXvNC4uTlRjCPW5KiwsMBhyApYIYMk6oeSMzZvFbcwYgOMcf1fdoO5WRlcLY7jUDQuXQHI5EWJpZrF8RTChASytY0o4oDqH8iNYhMXHx8NgMPjdhuM4GAwG1NTUhNwwQnk8hYWWSgQoOWPzlaXkaoFzd4P6/r1wsfqEy3HKhZBlbVgqXyGmur/cSQ1kkQsdpZ5juZeSYwnBImzPnj1ytoNgAG+uPK2UCFBqxuYvS8kTPQXaE+ojRHywYHUMJinDmxCTAyWTdciiFzpyLiXHGoJF2O233y5nOwgG8JbiG6g6PqsdiVwztmPHqp3p/55WB44DAH0G2hPaQW2rI0vV/cVY5EJFqTIleidczo/owPyysjKsWbMGhw8fBgBcd911GDFihNcaJQT7eEvxNRo5zJlThIED70RkZGSta8tCR2KzxeKbb6KQmlot+285ZtONYbcPc7p6cnKWOq0OR4+2YjJwlXXIcqBNArn31HaPhmKRCxWp90fPSG34+y8urrY3Qkvrz4oSYd9//z2ysrIQExODW265BQCwePFivPDCC/j888/RqVMnSRtJyIu/FF+gAnylCtaEBF/BeckSI4xGDv363STbOoNX4+WuFivctq0fcnKWIjX1OAAKXHUlmEGDLAfawWq1orKy8u96ZGbY7Qa3emSe111N9yhLFrlQoWfEHXf3cmO3vl9r68+KEmGTJk3Cvffei3/961+IiHDsorq6GqNGjUJOTg7+/e9/S9pIQl5YTfH1N5B7qzgvVxKBr0B8b/FyaruCWCHYQYP1wYOCut3jIZcuzXFWT7fbDZg6NQ5//fUWzOYKZGdnu31P7WdCbYucVATzjOj5fq2dmX617wfgc/1ZVq2Eoi1hrgIMACIiIjBt2jR06dJFssYR4Y2/gfybb6KwZIm7GVqOJIJgl9QJRDi5FVgXVoEQYvVh4RiVuqf459Dbag+uz15VVVVIvyMHLCQsKIWUSQgs9le+Esi6dx8GjoPXceH220fCYmEzVEqUCIuLi8Off/6Jtm3bur1/4sQJxMbGStIwggC8D+RWqxWpqdUwGjm3emBiRFEghC4XIhRyK2gDoVYfFlz0St9Tgdx7rKK2RU5u5EhCYK2/8lcLMiWlGlFRUV7Xj+zcmU0BBogUYdnZ2Rg5ciRefvlldOvWDQDwzTffYOrUqXjwwQclbSBBuOKvHpgQURTKjE2q2bTagzYRGKFWH1biiZS8p/Tg3nMN3NYDciYhsNJfCa0FOW/eaMydm6iZ9SNFibCXX34ZBoMBQ4cORXW1IystMjIS48aNw0svvSRpA3nuvfdeHDhwAKdPn0aDBg2QmZmJhQsXIikpybnNZ599hmeffRa//PIL6tSpgx49euCVV15BSkqKc5svv/wSkydPxi+//ILk5GTMmjULw4cPd/utVatW4Z///CdKSkrQsWNHrFixwpmAAACXL1/GlClT8N577+HKlSvIysrCq6++iiZNmji3+fPPPzFu3Djs2bMH9evXx7Bhw7BgwQI3F64ekTsWQWg9sIEDByIhIcHtu1LM2PQ+m2YJFuJatGr1kRt/z57QPk4tl7tn4LbZXIQxY4qD6h9YuDdd0VMSgi+E9v01Nf/S1PqRohRBVFQUli1bhgULFuDo0aMAgLS0NNStW1fSxrlyxx134Omnn0ZiYiL++usvPPXUU7j//vuxd+9eAEBhYSHuu+8+TJ48GRs3boTNZsOkSZMwcOBA/PDDD85t+vbti7Fjx2Ljxo3YvXs3Ro0ahcTERGRlZQEANm3ahMmTJ2P16tVIT0/H0qVLkZWVhSNHjqBx48YAHIkJ27dvx/vvvw+z2YwJEyZg4MCB+OabbwAANTU16Nu3L5o2bYq9e/eiuLgYQ4cORWRkJF588UXZzpHaKFkQkceXKEpISEBiYqK8P+4DLaVHswZrcVhqWn1YG+g98fXsxcfHM+XCcsUzoYfjjJg3Lwk229KA7mXW7k1vSHG/sn7f8fibELOSXCaEkMwydevWRYcOHaRqi18mTZrk/H+LFi0wY8YMDBgwAFVVVYiMjMT+/ftRU1OD559/Hkaj4wF76qmncN999zm3Wb16NVJTU/HKK68AANq1a4evv/4aS5YscYqwxYsXY/To0XjssccAAKtXr8b27dvx1ltvYcaMGbDZbFizZg1yc3PRq1cvAMDatWvRrl077Nu3D127dsXnn3+OX3/9Fbt27UKTJk1w44034rnnnsP06dMxd+5cXQRde+JtLcWry/ao2zYl8ZUercdrDkjbYbMQh+Wt9pCSQd1aGOiFwEIbvT1zYt3LLNybQgnlflVjIh0KepjwihJhly9fxooVK7Bnzx6cPn0ado9UBd7yJBdnz57Fxo0b0a1bN0RGRgIAOnfuDKPRiLVr12L48OE4f/48NmzYgMzMTOc2+fn5yMzMdNtXVlYWcnJyADhU8v79+zFz5kzn50ajEZmZmcjPzwcA7N+/H1VVVW77adu2LZo3b478/Hx07doV+fn56NChg5t7MisrC+PGjcMvv/yCm266yetxXblyBVeuXHG+DmbR9FCQIgPGW8ZKOC3bM3DgQFRWNsb8+Y2dHTTHGbF9e388//xtsFgaqNxC6ZG6w1YrDsu78HGvPaSEG1pLA70WcA0q59fXFOte1lqMoJj7VWsTaa3VA/OFKBE2cuRIfP7557j//vtxyy23BFzYWyqmT5+OlStX4uLFi+jatSvy8vKcn6WmpuLzzz/H4MGD8fjjj6OmpgYZGRn45JNPnNuUlJS4CSMAaNKkCcrLy3Hp0iWcO3cONTU1Xrf57bffnPuIiopCfHx8rW1KSkr8/g7/mS8WLFiAefPmCTwb0hFqBoy/jJVwWbYnMjISR45EuB0/4AiK/e9/7UhKsurmHMi9FIyScVj+hI/Si9ezNNDzwhQAioqMKCyMQELCBUHfZcnq63kfhuqu02uMoK9aiDU1QEGBFTExbFg3eby5lZV+XqVClAjLy8vDJ598gu7du4f04zNmzMDChQv9bnP48GFnKYypU6di5MiROH78OObNm4ehQ4ciLy8PBoMBJSUlGD16NIYNG4YHH3wQFRUVmDNnDu6//37s3LlTMaEYCjNnzsTkyZOdr8vLy5GcnKzIb4t9wIRmrGh19i50QNm0aZPPWmLffLMehw7pw4KhxFIwSsZhCRU+SqL2QO/6TLtbGxqgf/+r1sHBgwfXmoxqwV0airtOD5mhngSqhchi/8XS8xoqokTYNddcI0k9sClTptTKTPSkZcuWzv8nJCQgISEB1157Ldq1a4fk5GTs27cPGRkZWLVqFcxmMxYtWuTc/p133kFycjIKCgrQtWtXNG3aFKdOnXLb/6lTpxAXF4eYmBiYTCaYTCav2zRt2hQA0LRpU1RWVqKsrMytA/Lc5ttvv621D/4zX0RHRyM6Otrv+WANoRkrrJjpg0WIlbCsrAybN28O2EFr9Ry4olQWllRxWEJj1sQKHzmsPmoP9Py1C2RtiI+PVy35JVRCcS/rrfCr0FqILPVfak9UpESUCHvllVcwffp0rF69Gi1atBD9440aNUKjRo1EfZePQ+NjqC5evOgMyOcxmUxu23q6JwFg586dyMjIAODoUDt37ozdu3djwIABzu/u3r0bEyZMAOCIPYuMjMTu3bsxaNAgAMCRI0fw559/OveTkZGBF154AadPn3ZmVO7cuRNxcXFo3769qOPVCnLHzoQavyYmkDyY2Z/eOmhfKCEUxN5LvoLbx4y5gFGjLnh1lwY6HrlKnviChftIT9YGqfF3b6qRXShVZXsW7jtfuLZd7YmKlIgSYV26dMHly5fRsmVL1K1b1xn4znP2rLRqtKCgAN999x1uvfVWNGjQAEePHsXs2bORlpbmFD59+/bFkiVLMH/+fKc78umnn0aLFi2cgfBjx47FypUrMW3aNIwYMQJffPEFNm/ejO3btzt/a/LkyRg2bBi6dOmCW265BUuXLsWFCxec2ZJmsxkjR47E5MmT0bBhQ8TFxWHixInIyMhA165dAQB33XUX2rdvj0cffRSLFi1CSUkJZs2ahfHjx2vO0sUaocSvKZX5Ey61xFjssP3FeK1eXR+rV9fFvffmYeHCa2tNAP0djxolT9S+j/RkbVCKN96owfz5nOJZrVJWtlf7vvOFxWLB4MGDsXnzZgDi+h+W4hV5RImwBx98EH/99RdefPFFNGnSRPZ4q7p162Lr1q149tlnceHCBSQmJqJPnz6YNWuWU9T06tULubm5WLRoERYtWoS6desiIyMDO3bsQExMDABH8P727dsxadIkLFu2DM2aNcObb77pLE8BOFYDOHPmDObMmYOSkhLceOON2LFjh1ug/ZIlS2A0GjFo0CC3Yq08JpMJeXl5GDduHDIyMlCvXj0MGzYM8+fPl/U8hQvBdmYnTwJ79wKjRwMc53iP9cwfVgg0q2etw/YX4+WAd6k56kINHjzY7VPWjkdN9GRtUGINRIfwT1Itq5WVeC058YxB9PW8Km25DgVRImzv3r3Iz89Hx44dpW6PVzp06IAvvvgi4HZDhgzBkCFD/G7Ts2dP/Pij/zTWCRMmON2P3qhTpw5WrVqFVatW+dymRYsWtVyfhPI4rF9craxFgN3MH7XxV6vqrrtKZftdKQdKb1YcHleXGr/iB+EdFq2dYgjVUiTknmMhq5VwoGax7mARJcLatm2LS5cuSd0WgpAUR90b7wIMYDfzR00C16raCbNMa+FK7VJxteK4wqpLTQlrDY+3EhSpqdVISrKjtNRdaPuyNpSWltb6Lt8+Fp+lUNrk794MtQYZEd6IEmEvvfQSpkyZghdeeAEdOnSoFRMWFxcnSeMIQiy+6t7wsJz5oyZql2yQcvDmrTgFBenYuzcDQG2Xmmff5QslYkmkFKH+8F2CIriCl7NmFWLbtuu8flePk5pAx6Mn9y2hHKJEWJ8+fQAAvXv3dnuf4zgYDAbU1NSE3jJCEyg5exdKoLo3gwZ9gOTkk5J1jiyeg1AJdVbPyrGazRW4665dSE8v8OpS49d+ZWWdQyV+R2gJCn8E+m64Tmq06L7VY/+lJUSJsD179kjdDkKjKDV7D4ZAdW+uv/6wpL/H4jkIFTElG3hYPFZ/AfestVUpAlk7vV1j3vVG5St8o7XkDj32X1pClAi7/fbbBW33j3/8A/Pnz/fZWRP6gOWHU6mZKcvnQCyslWwgpCWQtdPfNab4J32hlf4rGKudGvXaxCBKhAnlnXfewVNPPUUijFAVrc1MWUJr545cJsIJJYaJ4p+8Y7PF4uxZCxo2tDJ3LrQiSvwh1Gr30UcWRWpCSoGsIozjizIRBEEoAN9Jnz592lnU0R/hLtpCsRSzGv/kL/MTkN61dvHiRQCBkxzUuNf8lZtRooisHARqryMr3iHAAPZrQsoqwgiCIJTGYrFQnEsQhGLtZM1SKjTzU6rsTavVinfeeSdgosIjjzyi+L0WuNyMMkVklcRXVjzLNSFJhBEEyCLCo6dMKdY6W0J+hGZ+SpW9KbSkS926dSX5PTnappdM1kBZ8azWhCQRRoQtfPYXWUTcXTg9ejyE//3PhObNr6BpU0dF+cjISJj/rtJK50vbhCK0tSLSlc7eZDlRgeW2eUNs7FqgrHhWa0KSCCN0h9ABICkpicQElHfhEOoSiqtWLTev6yRByG8qLTxYTlRguW2eOJaZCz2gntV4RW/IKsIeeeQRqp5PKA7FAwWH0i4cQn1CXcJHSVwnCYDvDETX9X7VEB4sD/wstw1wXONjx6oxZkxj5zJzdrtj2bnExFKkpxuDvu9Yi1f0hWgRVlZWhm+//RanT5+GnU9D+JuhQ4cCAF577bXQWkcQIiGBFTxUgFMegrXiEO64njt/llrPc6yG8GB54Ge1bbzILixMgd0+zO0zu92Afv0s6N8/D2+91V2Xz4koEbZt2zY8/PDDOH/+POLi4mAwXF0g2WAwOEUYQRDaQWuxI1ogGCuOHgcYKRGzzFKwwkPp8hbEVfHsrf8Brl7nH344gk6d9DfBFiXCpkyZghEjRuDFF19UJeuDIJRCDwUOhaKl2BEe1q1MYq04UsH6+QkGuS21FBupLnz/8/HH/QDUvs4bNxZg797jujv/okTYX3/9hSeeeIIEGKFL9FjgUCi8C+fEiWYADEhOPuH8rKysjKmlilizMnkTPKWlpc62iV0sO5T2uJ4fX2hlUBNiqQ0le1NMbCTL2aIst80XnTr9iMaNS7BmzSif11lvsamiRFhWVha+//57tGzZUur2EISqhGOBQ0+OHm3l1QqwefNmpo5bbSuTK/4FoTrxdp7H7UukamVQE2KplSIpJ5hrxXISEMtt80ezZsWiLPJaFJ1AECLs448/dv6/b9++mDp1Kn799Vd06NABkZGRbtvee++90rWQIBREywUOpXA9aTFDUg0rkyeBBGFa2h+qxtsFWlJHKwgJtg9VVAQbG8maiHGF5bb5Q0xShVZFp2ARNmDAgFrvzZ8/v9Z7BoMBNTU1ITWKINQmUEdss9mc77MQwBuKa851ZqjFDEmW2uxLEObkLFUt3k4pkapU/JncWX5ajI3UI/x1ttliUViYImhRdNYElhAEizDPMhQEoWcCdcSbNm0CwE4AbyiuOYvFguzsbGzatEmTGZIstdmfIFSrVpMSIlXO+DM13Eys19UKF7z1ZaWlpUxatMQiKibs7bffRnZ2NqKjo93er6ysxHvvvUclKoiQYSErMVBHzKLrTqzVg1+SSItWAJbaHEgQqlGrSQmRGkr8mRALmhpuJlbraukNX+LZd1+2VFdxuaJE2GOPPYY+ffqgcePGbu9XVFTgscceIxFGiILFrER/HTFLbjAp26RFKwArbRYrCOUMFlZapAYTfxaMBY2lzFxCOvhYrqKiImzdutX5vhbjcsUgSoRxHOdWoJXn5MmTzhk1QQSDFrMSWXKDSd0mLVoBWGmzP0HILxrvihKTC6VEarCWWJYyOLWaXecNrdWH89YWFvtXOQhKhN10000wGAwwGAzo3bs3IiKufr2mpgaFhYXo06eP5I0k9I+aWYmuHdahQ2WCg0BZcoOx3Ca5YHnQ9CUIExISFLPoeB63rzZJeX5CscSqncGp1ew6T5Ssnydl2IinRSxc+rKgRBifIXngwAFkZWWhfv36zs+ioqKQkpKCQYMGSdpAIrxQevbjvUp2O8GDACtusFDbFIqgUWvWzdKgyaIgVOP8iH1+WSgzAmgzu84TuevnyRk2YrFY3NrFYv8qNUGJsGeffRYAkJKSguzsbNSpU0eWRhHhi9KzH6FVsl3dSGVlZdi8ebNbm1nrHIJtk9gBW+2q7KwMmiwJQlfUiKEU8/yyGF+pdeQQtnKHjZw8CezbFwWbLdbZRhb7VykRFRM2bJhjpfPKykqcPn26VvmK5s2bh94yImxRY/YTzCBQXV0taJ/8kjWuyDUQS2GJEdMulmJ61MabQHU97srKShQXFztfa8G1JQYxz2+4xP8oiRzCVo6wkdqWNQsMhhzNFhQOFlEi7Pfff8eIESOwd+9et/f5gH0q1kqEitDZj+tAF0rR1ECDwNq1O72KC3/4+o4cViEWLDFqx/SwhNoWQqUJNf5MjAVNa8HnSiOnsJVq374sa2q5o9VAlAgbPnw4IiIikJeXh8TERK+ZkgQhN97jucQVTfU3CPjbt6ubsrS01JlircZahmoOOKzE9LCC0GusFwuhFJOAYCxo4SZyxSBnaIdU+xZqWfOGFrJUhSBKhB04cAD79+9H27ZtpW4PQQhGaDyX0IHO2yAQaN/est30tkyMECimxz++3LR6Qsy9JtaCRm5wYcgZ2hHqvl3jvwJZ1jxLu+jJyilKhLVv395rvAtBiCWUmCYpBYDnICBm3ywtE5Odne2zdp+UHRnF9PgmWDctS+JabqSwoOnJDS7HtZczsD3YffuL//JnWQultAsLq6/4Q5QIW7hwIaZNm4YXX3wRHTp0QGRkpNvncXFxkjSOCB9C6YxZi30I9B0p1j4Tagng17j0hVTumnCp6RMswVpFw9HNFspx6MkNLtW1Z7FcChA4/isnZylycpZKYrVjcfUVX4gSYZmZmQCAXr16ucWDUWA+EQpiH4pQBECgjkjMvj2/A9iRkZHv/JyPG5NqIBViCVDCXRMONX2CJViraLjFkoWKntzgUrlY+QntmTNnUFVV5XUb10LrSiEk/is19XjI101rq6+IuhJ79uyRuh0EERJiBYAvC5xrkL2YffPfKShIR35+Bvbu7Y78/AzJA/SFWALkdNeoUZVdS4RqpfU1EEthTdUDenWDS/HMulrBpaqaL4WVTe5rpubqK2IQJcJuv/12/Oc//8Hrr7+Oo0eP4oMPPsA111yDDRs2IDU1Veo2EoQgxMY+COmExO47Pz9DVldJoI5GbncNC6UxWCYUK62/gVhqa6pW0aMbXIpnVq6q+VI870pdM60IdFEibMuWLXj00Ufx8MMP48cff8SVK1cAADabDS+++CI++eQTSRtJEEojZsbn+R0lXCWBOhol2hDOIsAXrveCP0uqr/tM6EDMymxeTfTmBpfymZVjEibF8x7sNRNjSdeKQBclwp5//nmsXr0aQ4cOxXvvved8v3v37nj++eclaxxB+EPOAFQxMz7PBWiVmIkF6mi0MhvUG6FaDHwNxCdONIPZfFjStmoROdzgrGSlSvnMshwzx//+2bMWt9d33nmnm0ctlPMeSOyxkDkpSoQdOXIEPXr0qPW+2WxGWVlZqG0iCEHI4QoLtSN2XYBWqZkY39GcONEMgAHJySecnwVqg5JLK4UboZxDbwMxAGzZcj8qK6+6k/jrF27XTOpnn6WsVCn7DZYnYb7cpDt37pT0PPsS6G+8UYP58znVMydFibCmTZvijz/+QEpKitv7X3/9NVq2bClFuwhCEFI+LFJ1xK4TEblcJZ4z/KNHW/mM+/DXBj62yBM9xhqFKrCVtJTwA/HHH/cDcHUA9XQnuV4/PV4zf0h5rKxlpUrVb4Qq6OS656UqsC0WR+ZkEhOZk6JE2OjRo/Hkk0/irbfegsFgQFFREfLz8/HUU09h9uzZUreRkAm5HjBWzPrBIkVHbLVasXnzZrf35CiWaLFYMHjwYGzevFlQ3EewbdBbrFGoAlspS4lnLFlU1BV88MEDbtv4cifp7ZqpiRorHMiVaSxW0Hne86FmWLq2W203KUuZk6JE2IwZM2C329G7d29cvHgRPXr0QHR0NJ566ilMnDhR6jYSMiDXoMKSWT9UxHTEwTy8oZZtiI+PBxC4Q/G1viUQHsvpAKELbKUsJZ5xhcnJJ5h1J+kVtSrwy5lpLGYiKHWGpcViQXZ2NjZt2iSrm1RIv8qSm1aUCDMYDHjmmWcwdepU/PHHHzh//jzat2+P+vXrS90+QibkWntNL2u6SdUR+zr+7OxsWCwWSayGgToUX0t+6Gm5Fz0RKK4wM3NXrWBmQhrUrsAv1cRUyqQlKc8Jv4SanPGy/sQsPwllKXMypLK5UVFRaN++vVRtIVRCrsFYq4O8VJ2Ov+M3m82SWQ3FdChqDzZqE6oF0Nf3bTab6DXuXPFV4qKoKAm7dmVq7pnSCmq7yaRCSquaXOdEztIiQo6LldImyq9dQDCFXIOxlgd5KTodIccvpYsr2A5FL4ONGEKdHPj7/qZNmyRxtbsOoq4u5LffHirqmdJqnKbSsOSmChWprqec50TOxcW18PsAibCwR67BWMuDvBSdjhLHH0ogr54Gm2AIdXIgpbgOhOcgKvae0lOcptyw5KZiBTFlbnhI3AeGRFiYI9dgrOVBXoqOWMzxB+siC8XlEK6DTajiWM3JhdhnirXyCywS6goHekdMmRseV3EvZ4FtrUIiLMyRazDW4iAvZUcc7PGLdZEFO8sM98Em1MmB9yKqwr8vxi3IX4tA95Rer5kS0BqogQnkuhOShKX2eWZRBJIII2QLUGQl8FEoUnQQwYgc/neUjJ9TuxNUi1CFjOf33YuoGnD0aKuAolmsW9Dzms2ZcwbHjkUgJaUaSUk3A7g5qGvGQlkSFmPU9HbPh0owQiSYSaSa55nF/o9EWJgiV2FAufYrBUp0/EIfcuBqLIXSLq5wHGyECJmLFy+isrISxcXFXvdx991349NPP0Va2h8wGACO4z8xCBLNobgFXa9ZYiLQubOgXdWChYxlilHTBoH6Mj5hRKlJpGv/XVRkRGFhBFJTq5GUZAcgvP9m7Z4iERamyDUjUHum4UtolZWV1apk7w2pMtv84TkIaTl+Tkv4EzJWqxVvvPGGoP1oNemElYxlilHTDmqWsHDFtc/0N5HQonAnERbGyHWzqvUQCJ1h+0OJjt/zNyjWR32Cue5aFc1aFY8E24TyPAj1TggN3dCicCcRRugGLT6APN7ixwYOHIikpCTNzez0jlSiWenYLDnFI4sxXoQyiE3CCmZtSh49TiRIhBGEyrh2Pqmpx53vJyQk0MDFGNnZ2c6lV0IJkFcyNkvu7MpQY7xYSBTQC2qJYTFJWELXpiwqKnJup1UrtD9IhBFhCSsdPwuB0kRtfN0fZrPZuSyR2AB5pWOzPOM0J036H/73PyOSk6+gadNUAKmIiIhwJiUEO1CHEuNF9790KJ3wIFUSlq/noXHjElRVRWPt2p3O/Wqx9FEgSIQRusXXQMpKx89KoDThjtz3hxouFX7QtVqt+OorRwLCiRO+t1ciwJnuf2lROuFBqiQsX8/DmjWjvD6DWit9FAgSYYQu8TWQstTx6zG+QevIeX/wFoFALhU5EzFYykyk+19elLD2SyHUvRdA5vw+gyys+SgVJMII1ZE6jsHfQMpSx6/H+AatI+f94Wo5uOaackyfbkZNjQEmE4eFC8vx0EMP6iKAPdDgH6wYpaD/4GHF2i8ETxcjYMfVQsgO9CzOSYQRqiJHHIO/gVRNKwQPLUOjLEIGcaWsVPw9PGUKkJ0N/PEH0KqVAc2axQOID2nfLCBk8A9GjFJh1+BhydovFFcXY2RkpdMVySN0cqrFPpNEGKEqUrpHhAykZnMF5s8/hblzm6pmhZB6GZpwRKh1JJhBXGkrVbNmjj+9EMzgL1SMsuQ+1QosWfuDwdXF6G9yOnDgQCQkJNT6vlb7TBJhhG4IZoY9fLi6VgiplqEJR4IRVsEM4nzWo16tVN6QMm5I7OCvNzGqNqyFOfiaMNlsNp/f8Rd8n5CQ4HxW9QCJMEJXCJ1hh1vHr6e4GiWsI+Fwf0gVN8RCwgFxFZbKOAidMA0ePBjV1dXYunWr8z09Bd/7g0RYmKOnwdmTcBhIhUBxNYQnUsYNKZlwoHZ9P5b7S1eR68+SpKQY9jxXvq5ffHy84HbpTcyTCAtjWByc1e5k9QjF1RA8/AAWyHUY7ECnRMKB2hl/LPaXrkhVt0suAl0/1tsvFyTCwhjWBme1O1lC/4S7yOcHumPHqrFhAwe73eD8zGTiMHHi3UhJiQhpoJPDAs1Cxh9r/aU3WBUoQq8fq+2XExJhREBKS0t9fialm0HtTpbQJkKFFYl8BxaLBRYL8MYbwOOPAzU1gMkEvP66AZ07N1G7eV7RasYfS6jpSqXr5xvNiLB7770XBw4cwOnTp9GgQQNkZmZi4cKFSEpKcm6zefNmvPjii/jvf/+LRo0aYcKECZg6darbfr788ktMnjwZv/zyC5KTkzFr1iwMHz7cbZtVq1bhn//8J0pKStCxY0esWLECt9xyi/Pzy5cvY8qUKXjvvfdw5coVZGVl4dVXX0WTJlc7sD///BPjxo3Dnj17UL9+fQwbNgwLFixARIRmTrkT12BJb4RifpfLPcIKLMeQ6AGhwopEfm1GjgSysnjXIZvxk2oG/Xs+u56TUS1ZVY8ePYp33nkn4HZyuVJZy9hkCc0ogjvuuANPP/00EhMT8ddff+Gpp57C/fffj7179wIAPv30Uzz88MNYsWIF7rrrLhw+fBijR49GTEwMJkyYAAAoLCxE3759MXbsWGzcuBG7d+/GqFGjkJiYiKysLADApk2bMHnyZKxevRrp6elYunQpsrKycOTIETRu3BgAMGnSJGzfvh3vv/8+zGYzJkyYgIEDB+Kbb74BANTU1KBv375o2rQp9u7di+LiYgwdOhSRkZF48cUXVTh78uJPZAgRIXK7R9SC9RgSrSNEWOld5IcK68kraq0yEOjZ1ZJV1Wq1ChJggHyuVJYyNllDMyJs0qRJzv+3aNECM2bMwIABA1BVVYXIyEhs2LABAwYMwNixYwEALVu2xMyZM7Fw4UKMHz8eBoMBq1evRmpqKl555RUAQLt27fD1119jyZIlThG2ePFijB49Go899hgAYPXq1di+fTveeustzJgxAzabDWvWrEFubi569eoFAFi7di3atWuHffv2oWvXrvj888/x66+/YteuXWjSpAluvPFGPPfcc5g+fTrmzp0bNh1+MCKkc+cmmnKPCIHVGBItzeC9EYywUiIGipAXNVYZ8PdMas2q6r1GV2h9gBgLv94W3pYKzYgwV86ePYuNGzeiW7duiIyMBABcuXIFdevWddsuJiYGJ0+exPHjx5GSkoL8/HxkZma6bZOVlYWcnBwAjpt1//79mDlzpvNzo9GIzMxM5OfnAwD279+Pqqoqt/20bdsWzZs3R35+Prp27Yr8/Hx06NDBzT2ZlZWFcePG4ZdffsFNN90k6fmQCqkH52BFiBbcI1pHSzN4XwQrrFiLgSIXtXhCtdxJce61Ht8Uah8QzOTa0+Dgq/ZXuBgmvKEpETZ9+nSsXLkSFy9eRNeuXZGXl+f8LCsrC5MmTcLw4cNxxx134I8//nBavIqLi5GSkoKSkhI3YQQATZo0QXl5OS5duoRz586hpqbG6za//fYbAKCkpARRUVGIj4+vtU1JSYlzG2/74D/zxZUrV3DlyhXn6/LyciGnRRJYGZxZd49oEb6DCzSD99cRsiYcxAgrFkQ+uajVI5hz7w8txzfZbLH4+ON+4BfIFmPFE1r7i1+FIhzLTgSDqiJsxowZWLhwod9tDh8+jLZt2wIApk6dipEjR+L48eOYN28ehg4diry8PBgMBowePRpHjx5Fv379UFVVhbi4ODz55JOYO3cujEaj399ghQULFmDevHmK/Z7QwTkQpaWlYf8gsQxvOdqzB1iypPYMvnv3YejZ03d6OMvCIVhhpbbIZ9VFHQ6Ecu49hYa/+CabzcZsf1hQkA5egPGEYsUTumA74RtVRdiUKVNqZSZ60rJlS+f/ExISkJCQgGuvvRbt2rVDcnIy9u3bh4yMDBgMBixcuBAvvvgiSkpK0KhRI+zevdttH02bNsWpU6fc9n/q1CnExcUhJiYGJpMJJpPJ6zZNmzZ17qOyshJlZWVu1jDPbb799tta++A/88XMmTMxefJk5+vy8nIkJyf7PT+hEGhwvv76AThxYoPzPV8zHj57kmbv7GKxWNC1K2A0Anb71fdNJiA93WFV8gXrwkFtYaU1WLNqso4voeErvmnTpk0A2OsPbbZY5OdnePlEnBVPa7FxrKKqCGvUqBEaNWok6rv2v0cSV/cdAJhMJlxzzTUAgHfffRcZGRnO38jIyMAnn3zitv3OnTuRkeG4MaOiotC5c2fs3r0bAwYMcP7O7t27nSbqzp07IzIyErt378agQYMAAEeOHMGff/7p3E9GRgZeeOEFnD592plRuXPnTsTFxaF9+/Y+jyk6OhrR0dGizodY/A3OHTvWw4kTjtdCZjw0e2ebZs28ue9IwIQTLFs1WSSQ0PAnNljrD73FsgFAt275okST1mPjWEETMWEFBQX47rvvcOutt6JBgwY4evQoZs+ejbS0NKfwKS0txQcffICePXvi8uXLWLt2Ld5//3189dVXzv2MHTsWK1euxLRp0zBixAh88cUX2Lx5M7Zv3+7cZvLkyRg2bBi6dOmCW265BUuXLsWFCxec2ZJmsxkjR47E5MmT0bBhQ8TFxWHixInIyMhA165dAQB33XUX2rdvj0cffRSLFi1CSUkJZs2ahfHjxysusoQQE2PFokUmj/RvG+rVOweAZjxSwUJWIgtxUYR6sG7VVBIhz6NSQkMJ66SvWLb09AK33wl1f1qIjWMJTYiwunXrYuvWrXj22Wdx4cIFJCYmok+fPpg1a5abqFm/fj2eeuopcByHjIwMfPnll25FVlNTU7F9+3ZMmjQJy5YtQ7NmzfDmm286y1MAQHZ2Ns6cOYM5c+agpKQEN954I3bs2OEWaL9kyRIYjUYMGjTIrVgrj8lkQl5eHsaNG4eMjAzUq1cPw4YNw/z582U+U8HjOjN+4olYp3n9/PkK/G1Vl6wjYkGEKIlrh+bPkqh0ZhC57/QBuRXFE8iyL7RIrBTIbZ3kjyVQLNsjjzwS1P6p9pc0aEKEdejQAV988YXfbRISEpxlJPzRs2dP/Pij/6y/CRMm+M2QqVOnDlatWoVVq1b53KZFixa1XJ8s4tqJ+zKvi+2I1BYhag9SrqUU5s9vDI5zlFLgOCO2b++POXPSqUZVmCN2YkJuRfEIsez7KxI7e3YRgAq3/YUyuZTbOum5MPacOWdw7FgEUlKqkZR0M4CbRfeFVPsrdDQhwgh1ETvjUVOEsDJIWSwWHDzoHm8HADU1BlRUNPEbEC83aovUcCeUsjDkVhSPUMu+ryKxJpMJb7zh2IaV0j6BcH2OExOBzp3F70srtb+00r+RCCMEIXbGo5YIYWmQat3ae+JDq1a+vyN3BxJKzaRwcytLiRQ124jgsVqtsNlsAMStQ+nqwi8udvwrV6ws68+Xp2XNG0oIHH99ZFlZGTZv3ux87eucsmApJhFGCCZQNpAvxIgQPRFsVqISVrxgRKrabmU9EWrNNqlhfcCXAs/nyZdlf/Tou9G4cWPB516OoH0tWtbUQGgfCfg/pyxYikmEhSGuM4jS0tKgv++r4/Y1CFNphOCyElmy4gEU2yY1odRskxKtDPih4u058WbZj4+/2es97GlxKSsrAyDOouYPykIXjtCq/Vo4pyTCwoxgZhCuZGdnw2w2Izc3BvPnm2G3G2A0cli0yIaHHroU0PxMpRG0nZXIcmwbSwh1I6s1MSF36FWEWPb99ZeeFjVHaZ9yPPTQg6LccVR3Sxz+JhNaOKckwsIMsdYTs9mMmppETJt2dSC22w2YPj0e2dnxggZhpUSI1WoVZeEj/BPubuVABOtGVmNiwpo7lHUC9Ze8Ra1792FIT7egWbN4APGifovqbgVPoMmEFs4piTBCEFFRUT4sIY5BJJQBRMogdLGWPiIw5Fb2jxg3slQTk2Biu1hxh+oFs7kC3bpVIjFRXF8mtI5XOFgngyWQpUsLtcxIhBFeGThwIBISEgBc7TjksIRIHYTOQqClniG3MhuEmiwRzoJarmQEsX2ZnHW89I4QSxfrtcxIhBFu8B1UZWVjJCY2cfssUMctZhaoVBB6sMkE4UYwA5OWY9v0ghTJEnoU1N76INfQBDmTEULpy6Ss4xVOCLV0ic3sVwISYYQT1w5qwwYOb7zh6Khd8dVxs1Ic1RveOt7nn09FUlJS2M4u9Vh2QivFGaVCimQJPQnqQH2QFJly4VDSQ2uEYulioX8jEUYAqN1B2e0GPP64Q3B5dtLeOm6hs8CioiK3beUOoPfV8c6Zc4bZAdmzY5DDiqe3shMsTwLkhJIlrhKoDwoUPxToeQrWiqYVwabFyYvQqv18Vr+vfbBwXCTCCADeOygpgu492bp1q3Q7E4CvjvfYsQhmTf6uMSJiS4II/R29lJ1grbaaUoRzbFeweIsfMpk4TJx4t9uEw1sdxWCtaP4Em7+Jp9LCQKuTF1aq9ksBibAww9dsz3sHpf0Ztb/AzeJidh9gi8WCkycRUkkQIZAlRT6UsoToMbZLDvj4oe3b+/+9GDfw+usGdO58NfbVlygRYkXjBUEgwRZoIqqk4NHy5EULAksIJMLCDH8ziGuuKcf06WaXDkr7HbqvwM1///tH/Pvf/r+r9uzv99/lKQniCllSpEPNODs9xXZJhTcR3KnTj5gzJx0VFU28ClZfYkOIFa3470UlQy0Qqqbg0YoLVU+QCAtDfAmLKVOA7Gxtz6i9DXBiAzfVnv0pZaUKZEnRYsyIGugtzk7L+BPBSUl2JCYGtz9v1fE9rWg8WigQ6o1wWcaKNUiEhTknTzosLq1bX51Nsyi+hFoPPC19RUVGFBZGIDW1GklJDjVjs9mwadMm2doqFUpaqXxdd63GjKiFnuLstIpc6wW6TuYmTry7lgATWnTVtZ2sWJ20sMaiXiERFsasWQOMGeMYMIxGeC1JoSSuBWJdCdbSwm/L2vGJQe14Hy3HjKgFxdmpi5TrBXoKJf6Pn9C5EqjoamlpqjMejDWrkxbWWNQrJMLClJMnrwoUwPGvr5IUQpAiziUhIQE1NYluljmx+Ds+kynkpioKq9ZJllHTykBxdt6R263N90GB3IFC+yoxQklI0VUWrU5adaHqARJhYYrUQd/+Av5LS0sFlabIzY1xZgOGarnyd3xt2ojbp5pQXJZ/WCs+q7YFkzWUcGu79kHuSUYcFi4sx0MPPSj4OZFTKLFoddLCGot6hURYmCKHy8RX5yZk4LPZYv+uh+V4HaplTk8uIYrLCgyLQfFkwbyKUm5t/vq6JxkZ0KxZPIB4wfuRUyixZHVy7Zv9JTDx29FkUHpIhIUpcrtM3AP+AxfWKyioiyVLDG7vhWKZ83d8f2eSawaKyxIGBcUTrogRwVK7NL3tO5DVScmldIIpekqTQXkgERbGyOUy8R4Q7/+h7NJFesuVr+MT2smxsK4YERx6soASyiOlS9PfvoHagfvAzapYkoT+nqdQ8xV3Ge6TwWAhERbmSO0yERLw71kWg2+HHJY5b8cnpIwFmdW1CQXFE6EilUvT374B34H7WoC17E4tQyKMEI23+IB9+6Jgt7uLF1e3or+yEUoGM+upjIWcKLGYuNSEa1B8oHidixcvom7duj4/V3LiwVKNLH9QXF9tWMzu1DIkwghR+IoPsNliYTDkeF2DUoiVTMlOT+oyHXpEqcXEpSbcBk+h8TqBUCKeR+tWlHAPTmcxu1PLkAgjROGrE/K1vEezZsCePfKvhRgMSqzNqAeUWkycEI9UcThyx/MItaKwKnQoOJ2t7E49QCKMkBxfy3uwFjTNWntYhgQrEQq8uzqQFSUqKoppoUOZylRTTGpIhBGywC/vERV1GsXFjtHbZAIWL47FlCn1mQia1koQNwtxWSRYiVBwreO2YQMHu/1qORqTicPEiXc767gVC6who2ehwzr+aooRwUEijJAVb5Xyf/zxCVitDZgImtZCEDcLcVlaEawEu1gsFlgs3u4jQ63FsLWCVhIMpMBzksdPtANtR/iHRBihOAkJl9Ghg9qtuIoWgrhZiMvSgmAlHAQSB4E+lzMmK9j7iFWho/UEg2AJprArIRwSYQQRBGoGDEsdlyXmWLQgWMOdQOIg0OdKxGQJvY+UEjrBPgvhWqaBBJb0kAgjCIGoHTAsZVyW2sdCyEMgcSBEPLASfK6U0AnmWeDRQ5kGVjNQww0SYYQowtHvr/bgJGVcltrHQkiL0OxDIdmJrFxzpYSOmGdB62UaaBLGDiTCCFF4iw8oLS31GojvC5qJBQ/FZRHeEJJ9GB9/HmVl9SXLTpSLsrIyAGwKHRYX4RYDrQPJDiTCCNGEIpBoJhY8vGg1mYA2bRzvuY6XJFrDm8DZh44MxGCzE5UMjLdardi8eTOAwELn4sWLfgWj2OfB3/Gyugh3KIRbggFrkAgjVEHP7rDS0lIA0ooiEq1XIQuqfwJZS4Oxpio9QHteV1/1qO655x688847AfcX7PMg5Hj1sgg3EL4JBixBIoyQhJMnge+/rwubLTbgw8tS3IkcuLpkpRJFehatwUBiVBiBsg+FZCeyMED7skrVqVNH0PeDeR5YOF6l0UOCgdYhEUaEzJo1/ELYZhiNk5wFRL3BWynUjjtRCq2IIlZrMXlCYlQ51B6g/VmlKircf1+K+1ft41UDFuPuwg0SYURInDzJCzDHa9cCohQ0rg0oJoRwhQ8qDzRAyxl8HsgqtXPnTue2Ut2/4ShIaB1I9SERRoREOC3sLHQNRy3AH0ugwU6OgVbKmC4tXwNWcQ0+v+aackyfbkZNjQEmE4eFC8vx0EMPyh53J9QqJYULUS8Zj2KhdSDVhUQYERL+CoiePOkQaa1b60OQuQ5Ob7xRg6VLk1SzHoUqPvhj2bMHWLKk9mDXvfsw9OwpfYVsKWO6yIInH/y5nzIFyM7mg/gNaNYsHkC87L8v1CpVUJAesgtRjxmPgRC6DqTNZkNRkRGFhRFITa1GUpLd+X09nQ81IRFGhISvAqKffXbVTWk0OrYZOVLt1oYOv4bj/PkcOM5Ra0npAF6pxIfFYkHXrt5FdHq6RZb1KIXGahUVFTnb6I1wDKJWCzWWqhLiJrPZYrF3b0at74pxIeop41EI/taBLCsrc5YJmT79vz77mnBPfpEKEmFEyHimvANAixaucWIOkZaVdbUzF2raZ9EF4HDBGtze4zgjfv21Pdq3/1VWESC1+JCyCr+U8Bmmvjr6cAyiDgdcn/dAbrKzZy0AjPAkIyOf7gEBBBJQgfoaNZNf9ORlIRFGSILrbHnPnsBxYv5mYjysmrwdLljOQ4hx+OyzPvj887tkcYsJXZZGjGhVswp/ILeqr/sjHIOowwEh/QJvqfF2DwB2pKcXOF+xOInTCqxNdPhY0tzcGEybZobdboDRyDmz8VkdLwJBIoyQHKELTbs+MFqa2TRrBixefAGTJtX9u5PiAHh3TUo1CAhZloZfdkYMaricXN2qgB3duuUjPb3Abwcf7kHU4YDQezjQPZCdna3JQZkVWJro8LGkNlssli7NcYaC2O0GTJ0ah7/+egtmc4UmXaQkwgjJCdbFdbXOmHbix558sj569TqHrVuNmDvX7PaZXIHtgZel0Q6erg7AiL17uyM/P8OvJTEcg6jDHc9sWn5FCsC/y9Jsdn8uieBgqXwFf/0DWee0WB+QRBghC0JdXLXrjNWOH2OVDh0aoEEDYP585QLbAX0s4u2tMwWExbiFWxB1OCMkm9ZXZh9ZQ0OHtfIVLFnnpIJEGCEbQlxcWq8zplZguxruQynxHs/jIJwC7GkdTP94nhtfMYQDBw5EQkKC83W4nzcp8SVy1YAl65xUkAgjVEVo/BjL6MEypRSeMV0ff9wPnhluWp/ZCsXTyuNLYGgxzkUO/JVmSUhIQGJiosotJJSANetcqJAII1SF1RIJwaJ1y5RS8DFdjjpgW5GW9gcKCtKRn5+hm5mtUFytPP4EhhbjXKSG6sIphxbKB7FknQsVEmGE6pAlKbxwteqYzRW4665dSE8v8DqzDYe4HhIYgWGtXIKe0XL5IC1CIoxgArIkhRfU0V+FBEZg9BiQzTLh8NyxAokwgiD8IlcNt3Dv6MvKygCQwBCCHgOyw5lg+xQtuEjFQiKMIHSKFOJJizXctIDVanWuz3f0aCtw3NXPSGB4R28B2eGKmD5Fz5ZzEmEEoUNCFU9WqxXHjlVjzJjGzur8jhpuHG688bTf6vxaWv1ALfjBhI8Hc80Q5TggLe0PlVrGFp6WDaoJpm1CqQupRYElBBJhBKEzQi2Ay5dOKCxMgd0+zO2zmhoDVqz4FKmpx72WTiDLWXB4L1pL8WA8eraAhBtWqxX79gF2u/u1qqkBCgqsiInRr9DyB4kwgvCBFi06UnR0/IAXKFbJc2DU8uoHaiEkHkwvVh6xz1M4Dsx6w3XtR4Mhp9b9/s0363HokDbXfgyV2uWqCYLAmjVAixZAr16Of9esUbtFgeE7ur1718NgcF+GgO/oVq5cCavVKmh/fDA0vy9/sUoO8Wf1uvpBQYFV8G+GG4HOsdYXobZarSguLsYrr5ShRQvu7+eJwyuvlKG4uJjuizCBn7AFut+lrol38iSwZ4/jX1YhSxhBeKBVi45nR+crkyyYjk5IMDTNckNDr4tQu94XS5fmgOP42EIDpk6Nw19/vQWzme6LcEOpBAuthEaQCCMID7S+niUgrKMT6h4KVJ1aDvEXbuipAjgPf70D1UHjt9Oi+58Qh9z3u5Ym0iTCCMIDPaxnCfjv6OSaJVIZAX0jRigJiXtj1WpBwlB7aC0BgGLCCMIDfj1Lk8nxWqvrWfqiqMjodZYoVdyE2VyB1NTjJMD8oMXik2LjJAPFAcl9P4pF7rhQLcQraQ2p42KVgCxhRMjocbYox3qWap0nmy0WZ89a0LChFWZzBQoLI0S5Wz33Q4hHa6UXQnXv+LOQHjhwwWdChxpWi1Bq5AmFVcuf1tFiaASJMCIk9NyZSLmepVrn6YcfbqrVEfXrV+3X3erN+uJtPyxZabRIsAO5WiJeKveOL/f4L798xExCRyg18oTuX26BRzjQSmgEiTCNY7fbVVP1JSXACy8AyclX33vxRaB3b6BpU1WaFDLnzp1DVVWV87XBYIDJZILB4OgwxVgn1AoS5aux84MbxxmxbVs/zJlzBm+84WhDTU1td6unlaaoyIj58xs7s9s4zojt2/vj0iWDfI0n3FBLxCuR+cqS1UJsjTwhyC3wWEYt97sWEl5IhGmYyspKFBYWwu5py1eIy5eBV1+t/f65c8ClS8q3J1RqampQUVH7gb106RK+++47XL58GQCC7iSVyrb07MB8ZaWdPFknoLvV9fh++81b+w2ayhZljWCsWmpmeinl3mHNaiHHguFyCjzW0Zr7XUk0J8KuXLmC9PR0/PTTT/jxxx9x4403Oj87ePAgxo8fj++++w6NGjXCxIkTMW3aNLfvv//++5g9ezaOHTuG1q1bY+HChbjnnnucn3Mch2effRb/+te/UFZWhu7du+O1115D69atnducPXsWEydOxLZt22A0GjFo0CAsW7YM9evXD6otocBxHIqLi2EymZCcnAyjUfkci8pKh5jwJC0N0KKnqrKyEmVlZW7vcRyHc+fOoU2bNvjpp5+c2wWDUtmW3ixYGzZwTrcHABiNHJo1u4zi4oswmYA2bRzvFxc7/vXWEQZqvxaDzNUkWKuWHCJejGszWKEU7PVmzWohlzCUQ+BpgXAUWELQnAibNm0akpKSnAMiT3l5Oe666y5kZmZi9erV+PnnnzFixAjEx8djzJgxAIC9e/fiwQcfxIIFC9CvXz/k5uZiwIAB+OGHH3D99dcDABYtWoTly5dj/fr1SE1NxezZs5GVlYVff/0VderUAQA8/PDDKC4uxs6dO1FVVYXHHnsMY8aMQW5uruC2hEp1dTUuXryIpKQk1K1bV5J9BkudOo6soePHr77XogUQF6dKc0LGaDQiIqL2I2E2m9GoUSNERUWJmqXy2Za+3H9S4trRJSZ6/i6Hvn23IS/vR7/78LT0BWq/2FmuHhM6AiHGqiW1iA/FtRmMUAp0X5SWlmLr1q1Cm60KcglD1ix/hHpoSoR9+umn+Pzzz7FlyxZ8+umnbp9t3LgRlZWVeOuttxAVFYXrrrsOBw4cwOLFi53CZ9myZejTpw+mTp0KAHjuueewc+dOrFy5EqtXrwbHcVi6dClmzZqF++67DwDw9ttvo0mTJvjoo48wZMgQHD58GDt27MB3332HLl26AABWrFiBe+65By+//DKSkpIEtSVUav42QaltXWjUCDCbgStXgOhobVrAAmE0GmE0GhEZGSnaVSBHtmWwvxsbezqgAAO8W/qCcV8KQc8JHf4I1qpltVphMlVi0aIYTJ9uRk2NASYTh4ULbTCZLsFqDc6Fo7Rrk6wfvmHN8keog2ZE2KlTpzB69Gh89NFHXi0/+fn56NGjh5soycrKwsKFC3Hu3Dk0aNAA+fn5mDx5stv3srKy8NFHHwEACgsLUVJSgszMTOfnZrMZ6enpyM/Px5AhQ5Cfn4/4+HinAAOAzMxMGI1GFBQU4P/+7/8EtUUq+IBxNYmK0qf44pHqHEuZbSnmd4uLQ4sdlKr9WqpmLTXBWLX4QG6eJ56IdVpOzp+vwBtvON4PJkZRD6tBEIQvtBgaoQkRxnEchg8fjrFjx6JLly44duxYrW1KSkqQmprq9l6TJk2cnzVo0AAlJSXO91y3KSkpcW7n+j1f2zRu3Njt84iICDRs2NBtm0Bt8caVK1dw5coV5+vy8nKv2xGElglnIRCMa9rTIunLchKMdVYvq0EQhDe0mACgasX8GTNmwGAw+P377bffsGLFClRUVGDmzJlqNld2FixYALPZ7PxLdq39oBOGDx/uvLaRkZFo0qQJ7rzzTrz11ltBZXmuW7cO8fHx8jWUAfRaUZsXAq6EkxAYORI4dsxxbY8dU84N63BtFmPRojKYTBwA/O3aLIPJVKx4FXEWrRYstokIDovFgsTERJ9/LAkwQGVL2JQpUzB8+HC/27Rs2RJffPEF8vPzER0d7fZZly5d8PDDD2P9+vVo2rQpTp065fY5/7rp30WrfG3j+jn/XmJiots2fBZm06ZNcfr0abd9VFdX4+zZswF/x/U3vDFz5kw3d2l5ebkuhVifPn2wdu1a1NTU4NSpU9ixYweefPJJfPDBB/j444+9BseHG6zETFmtVslnlUomKohBroQB13MpNDNVyt8W49qUU5SwaLWQs00k8AhvqDraNWrUCI0aNQq43fLly/H88887XxcVFSErKwubNm1Ceno6ACAjIwPPPPMMqqqqEBkZCQDYuXMn2rRp43T/ZWRkYPfu3cjJyXHua+fOncjIyAAApKamomnTpti9e7dTdJWXl6OgoADjxo1z7qOsrAz79+9H586dAQBffPEF7HZ7UG3xRnR0dC2hKRdyDK5CiY6OdorRa665Bp06dULXrl3Ru3dvrFu3DqNGjcLixYuxdu1a/O9//0PDhg3Rv39/LFq0CPXr18eXX36Jxx57DMDVeK1nn30Wc+fOxYYNG7Bs2TIcOXIE9erVQ69evbB06dJaLmRvCC3zIXcnKUXMlLfrW1paGlQ7PAduX4gpLqlWokIg5BK/cp5LIYh1bcotlFizSgDytYlF0RmusJSZrQmTQ/Pmzd1e8/W40tLS0OzvM/jQQw9h3rx5GDlyJKZPn45Dhw5h2bJlWLJkifN7Tz75JG6//Xa88sor6Nu3L9577z18//33eOPvaaDBYEBOTg6ef/55tG7d2lmiIikpCQMGDAAAtGvXDn369MHo0aOxevVqVFVVYcKECRgyZAiSkpIEt0VN1B4QvNGrVy907NgRW7duxahRo2A0GrF8+XKkpqbif//7H/7xj39g2rRpePXVV9GtWzcsXboUc+bMwZEjRwBcvSeqqqrw3HPPoU2bNjh9+jQmT56M4cOH45NPPgnYhoiICDRu3LiWW/Ty5csoLy/H4MGDUa9ePdnPSagxU0Kur5B1IIXGGonNGFUrUcEXciYMyH0u5YREgXTQuVQfVrwMPJoQYUIwm834/PPPMX78eHTu3BkJCQmYM2eOW0mIbt26ITc3F7NmzcLTTz+N1q1b46OPPnLWCAMcdcguXLiAMWPGoKysDLfeeit27NjhrBEGOMphTJgwAb1793YWa12+fHlQbVETVgeEtm3b4uDBgwDgZq1MSUnB888/j7Fjx+LVV19FVFQUzGYzDAZDLffuiBEjnP9v2bIlli9fjptvvhnnz593K6brC2+uULvdDpPJhMaNG7vdB3IRavB0oOvmbR3ITp2ulq4IV3dIOCcMEPLAksWFYDMzW5MiLCUlBRzH1Xr/hhtuwH/+8x+/333ggQfwwAMP+PzcYDBg/vz5mD9/vs9tGjZs6CzM6gshbSHc4TjO6V7ctWsXFixYgN9++w3l5eWorq7G5cuXcfHiRb/Faffv34+5c+fip59+wrlz55xWrT///BPt27dX5DhCRc6YKW/rSW7f3h9z5qQjKcke1u4QyhwkpIQ1iwvB5kRL1exIgnDl8OHDSE1NxbFjx9CvXz/ccMMN2LJlC/bv349Vq1YB8G/luXDhArKyshAXF4eNGzfiu+++w4cffhjwe3JitVpRXFzs889XRppcGXTe1pOsqTGgoqIJk5lDSsKLX5PJ8VrthAEK5NYuviwuest01hosZmZr0hJG6I8vvvgCP//8MyZNmoT9+/fDbrfjlVdecQbLb9682W37qKgo56oBPL/99husViteeuklZ1bp999/r8wBeCHU2Ds5Yqa8LR6sdifEEq4JA/XqAefPOwbOUK7DyZPAvn1RsNlig6qQToHc2oVFiwvBZmY2iTBCca5cuYKSkhK3EhX8ep5Dhw7FoUOHUFVVhRUrVqB///745ptvsHr1ard9pKSk4Pz589i9ezc6duyIunXronnz5oiKisKKFSswduxYHDp0CM8995xKR8lm7J3n4sFKd0JqZuUKpVkz4LPPpHElXXVJWWAw5NSKvwuE2ueCEAe5ttmD73vuuQcoKDDi2LEIpKRUIynJjuJi9foeEmGE4uzYsQOJiYmIiIhAgwYN0LFjRyxfvhzDhg2D0WhEx44dsXjxYixcuBAzZ85Ejx49sGDBAgwdOtS5j27dumHs2LHIzs6G1Wp1lqhYt24dnn76aSxfvhydOnXCyy+/jHvvvVfFo2UPfvHg7t2HIT3doqgAE5K12aPHSHTpYlZtdipV8K7nfjjOiG3b+iEt7Q/F1wwk16ZySL3eJxE6vvqeQ4fcXytZEYCHRBihKOvWrcO6desCbjdp0iRMmjTJ7b1HH33U7fVrr72G1157ze29Bx98EA8++KDbe96SOMIds7kC3bpVwqUmcS2kHriFZm0uWWJUNZBZKleSt/1wnBFnzzb0KcLkEkFKuTbDPRtQjvU+idBh0SvBQyIsDKFZsb6R6voqGZPkmbWpdOq4q5s0Ls4Io7Ex7ParC7ebTBxatQpuIXfvLikOEyfejaSk2kt0ye0OkXvQp2xAedb7JPQNibAwhAJ+9Y2U11epe8B71qYygczeXBX9+rnXUuvbNw8xMd0BCD8f3oOADejcuYnER6A+LNZfIggtQCIsTCGBpW+0dn3VzNr0Jlb5uDnelWQ2V6Cy8uag983q8kyBCNatSNmABCEOqhNGiKK6uhqVlZU+/6qrq9VuIqEh+KxNg8ExkrOQOm42VyA19XjIQfTNmgE9e2pHjKxZA7RoAfTq5fh3zZrA32Gx/hJBaAGyhBFBU11djdOnTwfcrnHjxl6XAQoXKPYuONTK2iSuItatyGL9JYLQAuE7QhKi8VzgOtTt9ArF3gWPkKxNQj5CcSuy7HoN96xNgl1IhBGEjJDAugpZBtkn1CKjcqzyECqUtUmw3PeQCCMIQhHIMsg+YtyKLK+CoHTWJsuDfTjDct9DIowgCMXQssAqLS0V3FGzLEwCEYxbMdT1UeVG6axNlgf7cIfVc04ijNAVX375Je644w6cO3cO8fHxgr6TkpKCnJwc5OTkyNo2gk2EWiW2bt0KILCgYF2YCEGoW5HlSuSAOms4snpNCTahEhWEogwfPhwGgwFjx46t9dn48eNhMBgwfPhw5RvGCFarFcXFxT7/rFYrk/vWMrz1YuDAgYK2DyQoWBcm4QTvXjWZHK8pa5NgDbKEEYqTnJyM9957D0uWLEFMTAwA4PLly8jNzUXz5s1Vbp16yGlB0YN1Rk4sFkvYiyItu1D9wXLWJkGQCCOCxuhZlTHI7Tp16oSjR49i69atePjhhwE4XD3NmzdHamqqc7srV65g6tSpeO+991BeXo4uXbpgyZIluPnmq5XLP/nkE+Tk5ODEiRPo2rUrhg0bVuv3vv76a8ycORPff/89EhIS8H//939YsGAB6tWrF8xhy46cFhSyzhD+0LtIZzFrkyAAckcSIoiIiEDjxo2RkJDg8y9QodYRI0Zg7dq1ztdvvfUWHnvsMbdtpk2bhi1btmD9+vX44Ycf0KpVK2RlZeHs2bMAgBMnTmDgwIHo378/Dhw4gFGjRmHGjBlu+zh69Cj69OmDQYMG4eDBg9i0aRO+/vprTJgwQcIzQhDaRo8indzvhBYgSxghqpBhqJXwH3nkEcycORPHjx8HAHzzzTd477338OWXXwIALly4gNdeew3r1q3D3XffDQD417/+hZ07d2LNmjWYOnUqXnvtNaSlpeGVV14BALRp0wY///wzFi5c6PydBQsW4OGHH3YG3bdu3RrLly/H7bffjtdeew116tQJ6TiI0NGrG4xQD71b9gj9QCIszFGrkGGjRo3Qt29frFu3DhzHoW/fvkhISHB+fvToUVRVVaF79+7O9yIjI3HLLbfg8OHDAIDDhw8jPT3dbb8ZGRlur3/66SccPHgQGzdudL7HcRzsdjsKCwvRrl07OQ6PEAgNloQc6NGyR+gTEmFhjNKFDD0ZMWKE0y24atUqWX7j/PnzePzxx/HEE0/U+iyckwBYgQZLbUPFSQkiNEiEhTFKFzL0pE+fPqisrITBYEBWVpbbZ2lpaYiKisI333yDFi1aAACqqqrw3XffOV2L7dq1w8cff+z2vX379rm97tSpE3799Ve0krMwEKELpBIU4SRMqDgpQYQGibAwRo1Chq6YTCana9HEF/L5m3r16mHcuHGYOnUqGjZsiObNm2PRokW4ePEiRv7tLx07dixeeeUVTJ06FaNGjcL+/fuxbt06t/1Mnz4dXbt2xYQJEzBq1CjUq1cPv/76K3bu3CnIDUaED1IJinATJno5DoJQAxJhYYyYdeKkJi4uzudnL730Eux2Ox599FFUVFSgS5cu+Oyzz9CgQQMADnfili1bMGnSJKxYsQK33HILXnzxRYwYMcK5jxtuuAFfffUVnnnmGdx2223gOA5paWnIzs6W/diCRU4LSjhZZ0JBKkFBwoQgCCEYOI7j1G4E4Z3y8nKYzWbYbLZaYuXy5csoLCxEampqyBl+J09SIUN/SHmuAyFnpiCLWYjFxcV44403Am43ZswYJCYmKtCi8ERvCRJ0XxFq42/8doUsYQQVMmQIOQc4LQyehDqEmwuVIFiBRBhBEAShK4FF7ndCK5AIIwhCNWiwJOSALHuEViARRhCEatBgScgF3TOEFiARRhCEqtBgSRBEuEILeGscSm6VHzrHBEEQhByQCNMofHFTWs5Ffvhz7FlQliAIgiBCgdyRGiUiIgJ169bFmTNnEBkZCaOR9LQc2O12nDlzBnXr1kVEBD0uBEEQhHTQqKJRDAYDEhMTUVhYiOPHj6vdHF1jNBrRvHlzGAwGtZtCEARB6AgSYRomKioKrVu3JpekzERFRZGlkSAIgpAcEmEax2g0yr6UDkEQBEEQ0kPTe4IgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgGLCGIYvElpeXq5ySwiCIAiCEAo/bgcq9k0ijGEqKioAAMnJySq3hCAIgiCIYKmoqIDZbPb5uYGjNVmYxW63o6ioCLGxsWFZo6q8vBzJyck4ceIE4uLi1G6OZqHzKA10HkOHzqE00HmUBjnPI8dxqKioQFJSkt8SR2QJYxij0YhmzZqp3QzViYuLo45GAug8SgOdx9ChcygNdB6lQa7z6M8CxkOB+QRBEARBECpAIowgCIIgCEIFSIQRzBIdHY1nn30W0dHRajdF09B5lAY6j6FD51Aa6DxKAwvnkQLzCYIgCIIgVIAsYQRBEARBECpAIowgCIIgCEIFSIQRBEEQBEGoAIkwgiAIgiAIFSARRqjOv//9b/Tv3x9JSUkwGAz46KOP3D7nOA5z5sxBYmIiYmJikJmZid9//12dxjJKoHM4fPhwGAwGt78+ffqo01iGWbBgAW6++WbExsaicePGGDBgAI4cOeK2zeXLlzF+/HhYLBbUr18fgwYNwqlTp1RqMZsIOY89e/asdU+OHTtWpRazyWuvvYYbbrjBWUw0IyMDn376qfNzuheFEeg8qnkvkggjVOfChQvo2LEjVq1a5fXzRYsWYfny5Vi9ejUKCgpQr149ZGVl4fLlywq3lF0CnUMA6NOnD4qLi51/7777roIt1AZfffUVxo8fj3379mHnzp2oqqrCXXfdhQsXLji3mTRpErZt24b3338fX331FYqKijBw4EAVW80eQs4jAIwePdrtnly0aJFKLWaTZs2a4aWXXsL+/fvx/fffo1evXrjvvvvwyy+/AKB7USiBziOg4r3IEQRDAOA+/PBD52u73c41bdqU++c//+l8r6ysjIuOjubeffddFVrIPp7nkOM4btiwYdx9992nSnu0zOnTpzkA3FdffcVxnOPei4yM5N5//33nNocPH+YAcPn5+Wo1k3k8zyPHcdztt9/OPfnkk+o1SqM0aNCAe/PNN+leDBH+PHKcuvciWcIIpiksLERJSQkyMzOd75nNZqSnpyM/P1/FlmmPL7/8Eo0bN0abNm0wbtw4WK1WtZvEPDabDQDQsGFDAMD+/ftRVVXldj+2bdsWzZs3p/vRD57nkWfjxo1ISEjA9ddfj5kzZ+LixYtqNE8T1NTU4L333sOFCxeQkZFB96JIPM8jj1r3Ii3gTTBNSUkJAKBJkyZu7zdp0sT5GRGYPn36YODAgUhNTcXRo0fx9NNP4+6770Z+fj5MJpPazWMSu92OnJwcdO/eHddffz0Ax/0YFRWF+Ph4t23pfvSNt/MIAA899BBatGiBpKQkHDx4ENOnT8eRI0ewdetWFVvLHj///DMyMjJw+fJl1K9fHx9++CHat2+PAwcO0L0YBL7OI6DuvUgijCDCgCFDhjj/36FDB9xwww1IS0vDl19+id69e6vYMnYZP348Dh06hK+//lrtpmgaX+dxzJgxzv936NABiYmJ6N27N44ePYq0tDSlm8ksbdq0wYEDB2Cz2fDBBx9g2LBh+Oqrr9RulubwdR7bt2+v6r1I7kiCaZo2bQoAtTJ+Tp065fyMCJ6WLVsiISEBf/zxh9pNYZIJEyYgLy8Pe/bsQbNmzZzvN23aFJWVlSgrK3Pbnu5H7/g6j95IT08HALonPYiKikKrVq3QuXNnLFiwAB07dsSyZcvoXgwSX+fRG0reiyTCCKZJTU1F06ZNsXv3bud75eXlKCgocPPnE8Fx8uRJWK1WJCYmqt0UpuA4DhMmTMCHH36IL774AqmpqW6fd+7cGZGRkW7345EjR/Dnn3/S/ehCoPPojQMHDgAA3ZMBsNvtuHLlCt2LIcKfR28oeS+SO5JQnfPnz7vNOAoLC3HgwAE0bNgQzZs3R05ODp5//nm0bt0aqampmD17NpKSkjBgwAD1Gs0Y/s5hw4YNMW/ePAwaNAhNmzbF0aNHMW3aNLRq1QpZWVkqtpo9xo8fj9zcXPy///f/EBsb64ytMZvNiImJgdlsxsiRIzF58mQ0bNgQcXFxmDhxIjIyMtC1a1eVW88Ogc7j0aNHkZubi3vuuQcWiwUHDx7EpEmT0KNHD9xwww0qt54dZs6cibvvvhvNmzdHRUUFcnNz8eWXX+Kzzz6jezEI/J1H1e9FVXIyCcKFPXv2cABq/Q0bNozjOEeZitmzZ3NNmjThoqOjud69e3NHjhxRt9GM4e8cXrx4kbvrrru4Ro0acZGRkVyLFi240aNHcyUlJWo3mzm8nUMA3Nq1a53bXLp0ifvHP/7BNWjQgKtbty73f//3f1xxcbF6jWaQQOfxzz//5Hr06ME1bNiQi46O5lq1asVNnTqVs9ls6jacMUaMGMG1aNGCi4qK4ho1asT17t2b+/zzz52f070oDH/nUe170cBxHCe/1CMIgiAIgiBcoZgwgiAIgiAIFSARRhAEQRAEoQIkwgiCIAiCIFSARBhBEARBEIQKkAgjCIIgCIJQARJhBEEQBEEQKkAijCAIgiAIQgVIhBEEQRAEQagAiTCCIAiCIAgVIBFGEAQhgsrKSrWbUAsW20QQhG9IhBEEQQDo2bMnJkyYgAkTJsBsNiMhIQGzZ88Gv7JbSkoKnnvuOQwdOhRxcXEYM2YMAODrr7/GbbfdhpiYGCQnJ+OJJ57AhQsXnPt99dVX0bp1a9SpUwdNmjTB/fff7/zsgw8+QIcOHRATEwOLxYLMzEznd3v27ImcnBy3Ng4YMADDhw93vhbbJoIg2IBEGEEQxN+sX78eERER+Pbbb7Fs2TIsXrwYb775pvPzl19+GR07dsSPP/6I2bNn4+jRo+jTpw8GDRqEgwcPYtOmTfj6668xYcIEAMD333+PJ554AvPnz8eRI0ewY8cO9OjRAwBQXFyMBx98ECNGjMDhw4fx5ZdfYuDAgQh2Od9g20QQBDvQAt4EQRBwWJ5Onz6NX375BQaDAQAwY8YMfPzxx/j111+RkpKCm266CR9++KHzO6NGjYLJZMLrr7/ufO/rr7/G7bffjgsXLuCTTz7BY489hpMnTyI2Ntbt93744Qd07twZx44dQ4sWLby258Ybb8TSpUud7w0YMADx8fFYt24dAIhqU506dUI6TwRBSAdZwgiCIP6ma9euTgEGABkZGfj9999RU1MDAOjSpYvb9j/99BPWrVuH+vXrO/+ysrJgt9tRWFiIO++8Ey1atEDLli3x6KOPYuPGjbh48SIAoGPHjujduzc6dOiABx54AP/6179w7ty5oNscbJsIgmAHEmEEQRACqVevntvr8+fP4/HHH8eBAwecfz/99BN+//13pKWlITY2Fj/88APeffddJCYmYs6cOejYsSPKyspgMpmwc+dOfPrpp2jfvj1WrFiBNm3aOIWS0Wis5ZqsqqoKuU0EQbADiTCCIIi/KSgocHu9b98+tG7dGiaTyev2nTp1wq+//opWrVrV+ouKigIAREREIDMzE4sWLcLBgwdx7NgxfPHFFwAAg8GA7t27Y968efjxxx8RFRXldC02atQIxcXFzt+qqanBoUOHAh6DkDYRBMEGJMIIgiD+5s8//8TkyZNx5MgRvPvuu1ixYgWefPJJn9tPnz4de/fuxYQJE3DgwAH8/vvv+H//7/85g+Dz8vKwfPlyHDhwAMePH8fbb78Nu92ONm3aoKCgAC+++CK+//57/Pnnn9i6dSvOnDmDdu3aAQB69eqF7du3Y/v27fjtt98wbtw4lJWVBTyGQG0iCIIdItRuAEEQBCsMHToUly5dwi233AKTyYQnn3zSWfbBGzfccAO++uorPPPMM7jtttvAcRzS0tKQnZ0NAIiPj8fWrVsxd+5cXL58Ga1bt8a7776L6667DocPH8a///1vLF26FOXl5WjRogVeeeUV3H333QCAESNG4KeffsLQoUMRERGBSZMm4Y477gh4DIHaRBAEO1B2JEEQBLxnIxIEQcgJuSMJgiAIgiBUgEQYQRAEQRCECpA7kiAIgiAIQgXIEkYQBEEQBKECJMIIgiAIgiBUgEQYQRAEQRCECpAIIwiCIAiCUAESYQRBEARBECpAIowgCIIgCEIFSIQRBEEQBEGoAIkwgiAIgiAIFSARRhAEQRAEoQL/H6+AZe06G5giAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with OMLT Surrogate Object - Training Surrogate (Part 1)\n", + "\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "\n", + "## 1. Introduction\n", + "This notebook illustrates the use of KerasSurrogate API leveraging TensorFlow Keras and OMLT package to produce an ML surrogate based on supercritical CO2 data from simulation using REFPROP package.\n", + "\n", + "There are several reasons to build surrogate models for complex processes, even when higher fidelity models already exist (e.g., reduce model size, improve convergence reliability, replace models with externally compiled code and make them fully-equation oriented).\n", + "\n", + "In this example, we intend to make a surrogate for the physical properties of S-CO2 to be embedded in the property package. This property package will be used to get the physical properties of S-CO2 in the flowsheet simulation. To learn more about property package, see the [IDAES-PSE](https://github.com/IDAES/idaes-pse) Github Page or IDAES [Read-the-docs](https://idaes-pse.readthedocs.io/en/latest/). \n", + "\n", + "### 1.1 Need for ML Surrogates\n", + "\n", + "The properties predicted by the surrogate are enthalpy and entropy of the S-CO2 based on the \n", + "pressure and temperature of the system. The analytical equation of getting the enthalpy and entropy from pressure and temperature are in the differential form and would make the problem a DAE system. To counter this problem and keep the problem algebraic, we will use the ML surrogates and relate enthalpy and entropy with the pressure and temperature as an algebraic equation.\n", + "\n", + "### 1.2 Supercritical CO2 cycle process\n", + "\n", + "The following flowsheet will be used to optimize the design for the cooling of the fusion reactor using supercritical CO2 cycle. We shall focus on training the surrogate for this notebook and move to constructing the flowsheet and the properties package in the subsequent notebooks. The take away from this flowsheet is that, 3 variables can be measured in any given unit which are flow, pressure and temperature and other properties can be calculated using them. Thus, surrogate should have pressure and temperature as the inputs.\n", + "\n", + "In this example, we will train a tanh model from our data and then demonstrate that we can solve an optimization problem with that surrogate model. " ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHjklEQVR4nO3deVhUZf8G8PsMAgLCIDsoCuKKO1g4uGWh6M8lX/EVfbU0MatXK7RcyrQ9zRa1rKy0tNLS1MolTTBbFCLXzDXlxYUAl0EG3ACZ5/fHNIdZYdgclvtzXVzKnGfOnJlIb5/ne76PJIQQICIiIqI7SmHvCyAiIiJqiBjCiIiIiOyAIYyIiIjIDhjCiIiIiOyAIYyIiIjIDhjCiIiIiOyAIYyIiIjIDhjCiIiIiOyAIYyIiIjIDhjCiIioTKtWrYIkSTh79qy9L4WoXmEIIyK727dvH6ZNm4aOHTvCzc0NLVq0wOjRo/HXX3+Zjb3nnnsgSRIkSYJCoYCHhwfatWuHBx54AElJSRV63S1btqBfv37w8/ODq6srWrVqhdGjR2PHjh3V9dbMvPbaa/j222/NHk9JScELL7yAvLy8GnttUy+88IL8WUqSBFdXV4SHh+O5555Dfn5+tbzG2rVrsWTJkmo5F1F9wxBGRHb3+uuvY+PGjbjvvvuwdOlSTJkyBb/88gsiIiJw9OhRs/HNmzfH559/js8++wxvvPEGhg8fjpSUFAwcOBDx8fEoLi4u9zXffPNNDB8+HJIk4ZlnnsHixYsRFxeH06dP46uvvqqJtwmg7BD24osv3tEQpvfBBx/g888/x9tvv4327dvj1VdfxaBBg1AdWwszhBFZ18jeF0BENGPGDKxduxZOTk7yY/Hx8ejcuTMWLlyIL774wmi8UqnE+PHjjR5buHAhnnjiCbz//vsICQnB66+/bvX1bt++jZdffhkDBgzAzp07zY5funSpiu+o9rhx4wZcXV3LHDNq1Cj4+PgAAB599FHExcVh06ZN+O2336BSqe7EZRI1SJwJIyK7i46ONgpgANCmTRt07NgRJ06csOkcDg4OeOeddxAeHo5ly5ZBo9FYHXvlyhXk5+ejV69eFo/7+fkZfX/r1i288MILaNu2LRo3bozAwECMHDkS6enp8pg333wT0dHR8Pb2houLCyIjI7Fhwwaj80iShOvXr2P16tXyEuDEiRPxwgsvYObMmQCA0NBQ+ZhhDdYXX3yByMhIuLi4wMvLC2PGjMGFCxeMzn/PPfegU6dOOHDgAPr27QtXV1c8++yzNn1+hu69914AQEZGRpnj3n//fXTs2BHOzs4ICgrC1KlTjWby7rnnHmzbtg3nzp2T31NISEiFr4eovuJMGBHVSkIIXLx4ER07drT5OQ4ODhg7dizmzZuHPXv2YMiQIRbH+fn5wcXFBVu2bMHjjz8OLy8vq+csKSnB0KFDsWvXLowZMwZPPvkkCgoKkJSUhKNHjyIsLAwAsHTpUgwfPhzjxo1DUVERvvrqK/z73//G1q1b5ev4/PPPMXnyZNx9992YMmUKACAsLAxubm7466+/8OWXX2Lx4sXyrJSvry8A4NVXX8W8efMwevRoTJ48GZcvX8a7776Lvn374tChQ/D09JSvV61WY/DgwRgzZgzGjx8Pf39/mz8/PX249Pb2tjrmhRdewIsvvoiYmBg89thjOHXqFD744APs27cPe/fuhaOjI+bOnQuNRoPMzEwsXrwYANCkSZMKXw9RvSWIiGqhzz//XAAQK1euNHq8X79+omPHjlaf98033wgAYunSpWWef/78+QKAcHNzE4MHDxavvvqqOHDggNm4Tz75RAAQb7/9ttkxrVYr//7GjRtGx4qKikSnTp3Evffea/S4m5ubmDBhgtm53njjDQFAZGRkGD1+9uxZ4eDgIF599VWjx//880/RqFEjo8f79esnAIjly5dbfd+Gnn/+eQFAnDp1Sly+fFlkZGSIDz/8UDg7Owt/f39x/fp1IYQQn376qdG1Xbp0STg5OYmBAweKkpIS+XzLli0TAMQnn3wiPzZkyBDRsmVLm66HqKHhciQR1TonT57E1KlToVKpMGHChAo9Vz/TUlBQUOa4F198EWvXrkX37t3xww8/YO7cuYiMjERERITREujGjRvh4+ODxx9/3OwckiTJv3dxcZF/f/XqVWg0GvTp0wcHDx6s0PWb2rRpE7RaLUaPHo0rV67IXwEBAWjTpg12795tNN7Z2RkPPfRQhV6jXbt28PX1RWhoKB555BG0bt0a27Zts1pLlpycjKKiIiQmJkKhKP1r5OGHH4aHhwe2bdtW8TdK1ABxOZKIapWcnBwMGTIESqUSGzZsgIODQ4Wef+3aNQCAu7t7uWPHjh2LsWPHIj8/H2lpaVi1ahXWrl2LYcOG4ejRo2jcuDHS09PRrl07NGpU9h+XW7duxSuvvILDhw+jsLBQftwwqFXG6dOnIYRAmzZtLB53dHQ0+r5Zs2Zm9XXl2bhxIzw8PODo6IjmzZvLS6zWnDt3DoAuvBlycnJCq1at5ONEVDaGMCKqNTQaDQYPHoy8vDz8+uuvCAoKqvA59C0tWrdubfNzPDw8MGDAAAwYMACOjo5YvXo10tLS0K9fP5ue/+uvv2L48OHo27cv3n//fQQGBsLR0RGffvop1q5dW+H3YEir1UKSJGzfvt1iIDWtsTKckbNV37595To0IrpzGMKIqFa4desWhg0bhr/++gvJyckIDw+v8DlKSkqwdu1auLq6onfv3pW6jh49emD16tXIzs4GoCucT0tLQ3Fxsdmsk97GjRvRuHFj/PDDD3B2dpYf//TTT83GWpsZs/Z4WFgYhBAIDQ1F27ZtK/p2akTLli0BAKdOnUKrVq3kx4uKipCRkYGYmBj5sarOBBLVZ6wJIyK7KykpQXx8PFJTU/H1119XqjdVSUkJnnjiCZw4cQJPPPEEPDw8rI69ceMGUlNTLR7bvn07gNKltri4OFy5cgXLli0zGyv+aWbq4OAASZJQUlIiHzt79qzFpqxubm4WG7K6ubkBgNmxkSNHwsHBAS+++KJZ81QhBNRqteU3WYNiYmLg5OSEd955x+iaVq5cCY1GY3RXqpubW5ntQogaMs6EEZHdPfXUU9i8eTOGDRuG3Nxcs+aspo1ZNRqNPObGjRs4c+YMNm3ahPT0dIwZMwYvv/xyma9348YNREdHo2fPnhg0aBCCg4ORl5eHb7/9Fr/++itGjBiB7t27AwAefPBBfPbZZ5gxYwZ+//139OnTB9evX0dycjL++9//4v7778eQIUPw9ttvY9CgQfjPf/6DS5cu4b333kPr1q1x5MgRo9eOjIxEcnIy3n77bQQFBSE0NBRRUVGIjIwEAMydOxdjxoyBo6Mjhg0bhrCwMLzyyit45plncPbsWYwYMQLu7u7IyMjAN998gylTpuDpp5+u0udfUb6+vnjmmWfw4osvYtCgQRg+fDhOnTqF999/H3fddZfRf6/IyEisW7cOM2bMwF133YUmTZpg2LBhd/R6iWote96aSUQkRGlrBWtfZY1t0qSJaNOmjRg/frzYuXOnTa9XXFwsPv74YzFixAjRsmVL4ezsLFxdXUX37t3FG2+8IQoLC43G37hxQ8ydO1eEhoYKR0dHERAQIEaNGiXS09PlMStXrhRt2rQRzs7Oon379uLTTz+VW0AYOnnypOjbt69wcXERAIzaVbz88suiWbNmQqFQmLWr2Lhxo+jdu7dwc3MTbm5uon379mLq1Kni1KlTRp9NWe07TOmv7/Lly2WOM21Robds2TLRvn174ejoKPz9/cVjjz0mrl69ajTm2rVr4j//+Y/w9PQUANiugsiAJEQ1bA5GRERERBXCmjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDNmutxbRaLbKysuDu7s6tP4iIiOoIIQQKCgoQFBQEhcL6fBdDWC2WlZWF4OBge18GERERVcKFCxfQvHlzq8cZwmoxd3d3ALr/iGXtg0dERES1R35+PoKDg+W/x61hCKvF9EuQHh4eDGFERER1THmlRCzMJyIiIrIDhjAiIiIiO2AIIyIiIrID1oTVcVqtFkVFRfa+jHrNycmpzFuMiYiIKoMhrA4rKipCRkYGtFqtvS+lXlMoFAgNDYWTk5O9L4WIiOoRhrA6SgiB7OxsODg4IDg4mDM1NUTfMDc7OxstWrRg01wiIqo2DGF11O3bt3Hjxg0EBQXB1dXV3pdTr/n6+iIrKwu3b9+Go6OjvS+HiIjqCU6f1FElJSUAwCWyO0D/Ges/cyIioupQZ0LY8OHD0aJFCzRu3BiBgYF44IEHkJWVZTRGCIE333wTbdu2hbOzM5o1a4ZXX33VaMxPP/2EiIgIODs7o3Xr1li1apXZa7333nsICQlB48aNERUVhd9//93o+K1btzB16lR4e3ujSZMmiIuLw8WLF43GnD9/HkOGDIGrqyv8/Pwwc+ZM3L59u3o+DANcHqt5/IyJiKgm1JkQ1r9/f6xfvx6nTp3Cxo0bkZ6ejlGjRhmNefLJJ7FixQq8+eabOHnyJDZv3oy7775bPp6RkYEhQ4agf//+OHz4MBITEzF58mT88MMP8ph169ZhxowZeP7553Hw4EF07doVsbGxuHTpkjxm+vTp2LJlC77++mv8/PPPyMrKwsiRI+XjJSUlGDJkCIqKipCSkoLVq1dj1apVmD9/fg1+QkRERFQWtVqN7Oxsq19qtfqOXo8khBB39BWryebNmzFixAgUFhbC0dERJ06cQJcuXXD06FG0a9fO4nNmz56Nbdu24ejRo/JjY8aMQV5eHnbs2AEAiIqKwl133YVly5YB0BVmBwcH4/HHH8ecOXOg0Wjg6+uLtWvXyiHw5MmT6NChA1JTU9GzZ09s374dQ4cORVZWFvz9/QEAy5cvx+zZs3H58mWblxDz8/OhVCqh0WjMti26desWMjIyEBoaisaNG1fsw6MK4WdNRFR3qdVqFBUVIS8vD+vXry93/LRp0+Dt7V2l1yzr729DdWYmzFBubi7WrFmD6OhouVB6y5YtaNWqFbZu3YrQ0FCEhIRg8uTJyM3NlZ+XmpqKmJgYo3PFxsYiNTUVgK7lw4EDB4zGKBQKxMTEyGMOHDiA4uJiozHt27dHixYt5DGpqano3LmzHMD0r5Ofn49jx45ZfV+FhYXIz883+qpvJk6cCEmSIEkSHB0d4e/vjwEDBuCTTz6pUKuNVatWwdPTs+YulIiI6jy1Wo1ly5bho48+simAAcDly5dr+KpK1akQNnv2bLi5ucHb2xvnz5/Hd999Jx/73//+h3PnzuHrr7/GZ599hlWrVuHAgQNGS5Y5OTlGwQgA/P39kZ+fj5s3b+LKlSsoKSmxOCYnJ0c+h5OTk1kAMB1j6Rz6Y9YsWLAASqVS/goODrbxk6k4e07JDho0CNnZ2Th79iy2b9+O/v3748knn8TQoUNrpG6OiIgaJsNSIlsVFxfXwJVYZtcQNmfOHHlWxNrXyZMn5fEzZ87EoUOHsHPnTjg4OODBBx+EfjVVq9WisLAQn332Gfr06YN77rkHK1euxO7du3Hq1Cl7vcUKeeaZZ6DRaOSvCxcu1MjrGP7LwNrXsmXLaiyIOTs7IyAgAM2aNUNERASeffZZfPfdd9i+fbt8o8Tbb7+Nzp07w83NDcHBwfjvf/+La9euAdDdXPHQQw9Bo9HIPycvvPACAODzzz9Hjx494O7ujoCAAPznP/+p1P+ERERUt6nVaptnv+zFrn3CnnrqKUycOLHMMa1atZJ/7+PjAx8fH7Rt2xYdOnRAcHAwfvvtN6hUKgQGBqJRo0Zo27atPL5Dhw4AdHcqtmvXDgEBAWZ3MV68eBEeHh5wcXGBg4MDHBwcLI4JCAgAAAQEBMhry4azYaZjTO+o1J9TP8YSZ2dnODs7l/l5VAdbtzm6k9sh3XvvvejatSs2bdqEyZMnQ6FQ4J133kFoaCj+97//4b///S9mzZqF999/H9HR0ViyZAnmz58vB+wmTZoA0P0L5uWXX0a7du1w6dIlzJgxAxMnTsT3339/x94LERHZX13Y0s+uIczX1xe+vr6Veq6+fqiwsBAA0KtXL9y+fRvp6ekICwsDAPz1118AgJYtWwIAVCqV2V/GSUlJUKlUAHT9oCIjI7Fr1y6MGDFCfp1du3Zh2rRpAIDIyEg4Ojpi165diIuLAwCcOnUK58+fl8+jUqnw6quv4tKlS/Dz85Nfx8PDA+Hh4ZV6vw1B+/btceTIEQBAYmKi/HhISAheeeUVPProo3j//ffh5OQEpVIJSZLMQu2kSZPk37dq1QrvvPMO7rrrLly7dk0OakREVD+lp6fj4sWLuH37ttXaLo3GHbm53vDyUkOpLLjDV2isTnTMT0tLw759+9C7d280bdoU6enpmDdvHsLCwuTgExMTg4iICEyaNAlLliyBVqvF1KlTMWDAAHl27NFHH8WyZcswa9YsTJo0CT/++CPWr1+Pbdu2ya81Y8YMTJgwAT169MDdd9+NJUuW4Pr163jooYcAAEqlEgkJCZgxYwa8vLzg4eGBxx9/HCqVCj179gQADBw4EOHh4XjggQewaNEi5OTk4LnnnsPUqVPvyExXXSWEkHtyJScnY8GCBTh58iTy8/Nx+/Zt3Lp1Czdu3Chzh4ADBw7ghRdewB9//IGrV6/KYf38+fMMwERE9ZD+7scLFy5g+/btZY49eLA7tmwZCiEUkCQthg3bioiIQ3foSs3ViRDm6uqKTZs24fnnn8f169cRGBiIQYMG4bnnnpNDjUKhwJYtW/D444+jb9++cHNzw+DBg/HWW2/J5wkNDcW2bdswffp0LF26FM2bN8eKFSsQGxsrj4mPj8fly5cxf/585OTkoFu3btixY4dRof3ixYuhUCgQFxeHwsJCxMbG4v3335ePOzg4YOvWrXjsscegUqng5uaGCRMm4KWXXroDn1bddeLECYSGhuLs2bMYOnQoHnvsMbz66qvw8vLCnj17kJCQgKKiIqsh7Pr164iNjUVsbCzWrFkDX19fnD9/HrGxsXViWpqIiComPT0dX3zxRbnjNBp3XLgQjM2bh0JfDi+EAps3D4WfXw6aN8+u4Su1rE6EsM6dO+PHH38sd1xQUBA2btxY5ph77rkHhw6VnXqnTZsmLz9a0rhxY7z33nt47733rI5p2bIl65Aq4Mcff8Sff/6J6dOn48CBA9BqtXjrrbfkjclNiyudnJzMthE6efIk1Go1Fi5cKN9Zun///jvzBoiI6I5Sq9U2BTDD2S9zCqxcOdloRqxRozsXjepUiwqqHwoLC5GTk4O///4bBw8exGuvvYb7778fQ4cOxYMPPojWrVujuLgY7777Lv73v//h888/x/Lly43OERISgmvXrmHXrl24cuUKbty4gRYtWsDJyUl+3ubNm/Hyyy/b6V0SEVFNUKvVOHnyZJl9N/UyMwOxebO1AKYjhAJbtgyFRuMOAHIt953AEEZ33I4dOxAYGIiQkBAMGjQIu3fvxjvvvIPvvvsODg4O6Nq1K95++228/vrr6NSpE9asWYMFCxYYnSM6OhqPPvoo4uPj4evri0WLFsHX1xerVq3C119/jfDwcCxcuBBvvvmmnd4lERFVN32LpXXr1mH37t1ljj14sDtWrpwMW6KOEAp06jSiWrrlV0Sd3baoIaipbYv0P8TludM/jLUVty0iIrI/tVqNrKwsbNq0yeoY/Z2Pjo6FWLHCWgDTxx7J6LGdOzUYMMCzWq7V1m2L6kRNGFUvb29vTJs2rcxidScnJwYwIiKyK/2djxqNBuvWrbM6TqNxR1paFFJSVNAFLy2sz4BJFh9zdPSs8vVWFENYA8WARUREtVl5qzb6Wa+srEAkJ8eY1H1VrNrKwQFo3bqSF1oFDGFERERUa6jValy+fBlnz561Osb4jkcBy7Nb5dE9z8EB+PBDoHnzyl1vVTCEERERUa1gS98vjcbdpOWELQHMUlCTsHgxMGqUfQIYwLsjiYiIqBawpe+XRuOOY8c6ltlywjIJkkkGc3CwbwADOBNGREREdqIvvM/Ly8O5c+fKHFuVJUgHB4GFCyXMmQOUlMCuS5CGGMKIiIjojrO1XRKgb7o6DKXBq2IB7MMPJSQkAGPGAGfO6Irw7R3AAIYwIiIisoPLly/bNG7vXhWSkmJQ0eJ7SdLi44+vITbWQw5czZvXjvClxxBGREREd9zVq1etHtNvuH3qVBv8+WdXVLT4XpIEFi++gYQE641SawOGMKpXfvrpJ/Tv3x9Xr16Fp6enTc8JCQlBYmIiEhMTa/TaiIgaMsP6r7y8POzcuVM+pu/55eWlRnp6a5Olx7Log5cWffr8Cn//ixg8eDAGDnRH8+ZNauidVB+GMLqjJk6ciNWrV+ORRx4x25R76tSpeP/99zFhwgSsWrXKPhdIRETVzlL9l362KyMjBAcPRhoU3NtWdN+37260bXsaxcVOmDixN9q1awsnp07w9navkfdQExjC6I4LDg7GV199hcWLF8PFxQWAbn/GtWvXokWLFna+OiIiqm6m2+QdPNjdymyXZOExS7SIjDyEUaN6ol27dnV2Fxj2CaM7LiIiAsHBwUabsG7atAktWrRA9+7d5ccKCwvxxBNPwM/PD40bN0bv3r2xb98+o3N9//33aNu2LVxcXNC/f3+LHZb37NmDPn36wMXFBcHBwXjiiSdw/fr1Gnt/RERUKj09HadPn5a/12jcK7DcaIkWw4dvhVJZUKcDGMAQRgAyM4Hdu3W/3imTJk3Cp59+Kn//ySef4KGHHjIaM2vWLGzcuBGrV6/GwYMH0bp1a8TGxiI3NxcAcOHCBYwcORLDhg3D4cOHMXnyZMyZM8foHOnp6Rg0aBDi4uJw5MgRrFu3Dnv27MG0adNq/k0SETUgarUa2dnZRl+7d+/GF198gd27dwPQtZrYteteVC6AafHSSyexf/9lLF9+F6ZNm1anAxjA5cgGb+VKYMoUQKsFFArgo4+AhISaf93x48fjmWeekZvz7d27F1999RV++uknAMD169fxwQcfYNWqVRg8eDAA4OOPP0ZSUhJWrlyJmTNn4oMPPkBYWBjeeustAEC7du3w559/4vXXX5dfZ8GCBRg3bpxcdN+mTRu888476NevHz744AM0bty45t8sEVE9Z0vPr/XrR+H48XBULIDp6sMkSYthw7biv//tVeeDlyGGsAYsM7M0gAG6Xx95BIiNrfk+Kr6+vhgyZAhWrVoFIQSGDBkCHx8f+Xh6ejqKi4vRq1cv+TFHR0fcfffdOHHiBADgxIkTiIqKMjqvSqUy+v6PP/7AkSNHsGbNGvkxIQS0Wi0yMjLQoUOHmnh7REQNimnNF1BaeA8A5883LyeAWSrG12LAgGTcf38zhIc7oUuX+hXAAIawBu306dIApldSousmfCea2U2aNEleFnzvvfdq5DWuXbuGRx55BE888YTZMd4EQERUdWq1GkePHjV6zLzwvrw7Hs2PjRq1AS+91Lle/2OZIawBa9NGtwRpGMQcHHTbOdwJgwYNQlFRESRJQmxsrNGxsLAwODk5Ye/evWjZsiUAoLi4GPv27ZOXFjt06IDNmzcbPe+3334z+j4iIgLHjx9H6zv1poiIGgi1Wo3Lly9j3bp1Ro/rthgaCuNgVVYA0/8lVFqmLklaBAdnws/vvuq63FqJIawBa95cVwP2yCP22dDUwcFBXlp0cHAwOubm5obHHnsMM2fOhJeXF1q0aIFFixbhxo0bSPinaO3RRx/FW2+9hZkzZ2Ly5Mk4cOCAWX+x2bNno2fPnpg2bRomT54MNzc3HD9+HElJSTbvWUZERMbS09PxxRdfyN/rm61mZQUiKWkAyq/7Mq71AiBvzi1JWrz0Ug4ee2xCvVt+NMUQ1sAlJOhqwOy1oamHh/UtJRYuXAitVosHHngABQUF6NGjB3744Qc0bdoUgG45cePGjZg+fTreffdd3H333XjttdcwadIk+RxdunTBzz//jLlz56JPnz4QQiAsLAzx8fE1/t6IiOoTw47369evB6ALX2lpUUhJUUE3k1XWsmNpd/u7705Dhw6n4OWVC6WyAAAQFnYGubleGDOmBwYN6lTzb6gWkIQQwt4XQZbl5+dDqVRCo9GYhZVbt24hIyMDoaGhvMOvhvGzJqKGzNqy48GD3eXZq/LpiuyDgrKMgpdejx490KJFC7i6uiIsLKwar94+yvr72xBnwoiIiMgia60nNBr3CgQwgbFjv0S7dmesjmjfvn29CF8VxRBGREREFhm2ntDXfTk6FuL8+ZY2BjAAkODkVGz16PDhwxtkAAMYwoiIiMiEvv7rypUrAEyXHvW1XbZttC1JWnh55Ro9Nnr0aHh6esLJyaneF9+XhSGMiIiIZIZLkLqGq+EmS4+Sya+WGN/9aFgDNnr06Hrd+6siGMLqON5XUfP4GRNRQ6FWq3Hq1CkAFS281xOIjNyP7t0PobjYyWIRvp+fXzVecd3GEFZH6ftqFRUVwcXFxc5XU7/payJMe5kREdUH+qVHjUYj3wGp0bibdLwvnyRpEROTjF69UuXHOnXqhMDAQHh5eUGpVDb45UdTDGF1VKNGjeDq6orLly/D0dERCkVF/qVCttJqtbh8+TJcXV3RqBH/dyGiuk+tVuPSpUu4ffs2CgoKkJSUZDbml1/6wNYAJklaxMVtQHBwptmsV3R0NAIDA6vjsusl/q1SR0mShMDAQGRkZODcuXP2vpx6TaFQoEWLFpAk2/9FSERUG1lrOaGn33T7wIEeNp1PX/PVqdMJi8ednJwqdZ0NBUNYHebk5IQ2bdpY3L2eqo+TkxNnGomoXrDWcqK42BlZWYFITo4ppwastOt9dHQqoqLSzGa/AGDkyJEICgri0mM5GMLqOIVCwS7uRERkleHy49WrVwFUtuWEQJ8+v6BVqwyLBfeGGMBswxBGRERUT1laftQV3Q+Fbq9HoPyWE1pERh5A376/Wgxe/fv3h6+vLzw9PQGAxfcVwBBGRERUj+jvdgQgN1vVy8wMxI4dg1AawMqixahRlgvuDbVp04bF95XEEEZERFRPlFV4v27dKJw4EY6KNFm1VnBviMX3lccQRkREVA+o1WpkZWWZPa7RuCM5+T4bAhgQGbkfnTodK7fmKyoqCi1btoSfnx+XHquAIYyIiKiOszYDtnevCklJA2DrHo/W6r5M3XXXXQxf1YAhjIiIqI4xrPsCjGu/9L2+Tp1qiz//7ILK7vE4cOBANGnSBI6OjlAqlfLjLLyvPgxhREREdYi1WS+Nxh1paVFISVHB1sL7Pn1+NWs5MXDgQLRt25ZB6w5gCCMiIqpDLl++bPR9ZmYgfv65L06fbgfbthoS6Nz5D8TE/Ghx6TEkJIQB7A5hCCMiIqrlrG2yvWnTv3DuXAhsDV+RkfttrvuimscQRkREVIulp6fjiy++MHpMV3AfA9uWHQFAiwEDktGrV2q1Xx9VHkMYERFRLaVWq40CmL7dRPkF93oC0dEpVvd4tIR9v+4chjAiIqJayvAOSNvbTehqvtq1+6vcbvcAMGDAAISGhgLgnY93GkMYERFRLaKv/8rLy8OxYxpkZITgxIl2+P33KNgSwAYMSKrQsmO7du0YvOyEIYyIiKiWMGw/cfBgd2zZMhRC9IS+n5d1Zd/xCOi63Ddr1gwA5N5fnPmyL4YwIiKiWuLs2dvIyAhBUVEjbN48DKXBy1oAKz986XXt2pUbbdcyDGFERES1wMqVwJQpftBqJ6D8mS+AdzzWfQxhREREdpaZCTz8sIAQ5c18ARWZ/TLEux5rH4YwIiIiO8nMBE6f1s2ClQawslR89is+Ph6+vr6s/aqFGMKIiIjuAMNNt7OyFFixwg0ffuj2T/gqv/C+Mt3ux48fj7CwsCpdN9UchjAiIqIaZnjXo+V+X2UHsIq2nQAYwOoChjAiIqIadunSJWg07vjllz44cKAHbCm6/7//2wZX15s2NVw1xOXHuoMhjIiIqBqZLjv++ectrF17AcnJiRDClr0eBQYMSMbddx+06fVGjhwJHx8fAOx4X9cwhBEREVUTy81WFQBaoLwlR93xihfeBwUFMXjVUQxhRERE1UQ/A6bRuBsEMKCsZquRkfvRvfshFBc7wcsr16alx9GjR8PT05MzX3UcQxgREVE10mjcsXPnQBuWHivXbJUF9/UHQxgREVE1efttCYsXJwIoO4B17PgnBg5MqlDBPaArumcAqz8YwoiIiKogMxPYv1+DH34owvLl/rDlzsfKBDAA8PX1rdQ1Uu3EEEZERFQB+/YBO3ZcQ2TkTaSmOuGVVzwAKFF2w1XdMUnSYtiwrRUOYCNHjmQBfj3EEEZERGSjiROB1asFgCYA3P55tOz9HiVJi5iYZAQFZdlceG+KAax+YggjIiIqQ2Ym8NNPf+Pq1SKsXh2C8kJXqcptNQQAPXr0QNOmTeHl5cXGq/UYQxgREZEVK1cCU6YIaLXNUP7+jqX0s18VvfNRr2fPngxeDQBDGBERkQm1Wo20NC0eftjnnw22AdsCmBajRm2o0FZDhh3vAXa9b0hs2T+hVhg+fDhatGiBxo0bIzAwEA888ACysrLk4y+88AIkSTL7cnNzMzrP119/jfbt26Nx48bo3Lkzvv/+e6PjQgjMnz8fgYGBcHFxQUxMDE6fPm00Jjc3F+PGjYOHhwc8PT2RkJCAa9euGY05cuQI+vTpg8aNGyM4OBiLFi2q5k+EiIiqU2YmsHs3kJSUh+HDT2LIEG+DAGYLLYYP34pOnU5UaPnRx8cHgYGB8hcDWMNRZ0JY//79sX79epw6dQobN25Eeno6Ro0aJR9/+umnkZ2dbfQVHh6Of//73/KYlJQUjB07FgkJCTh06BBGjBiBESNG4OjRo/KYRYsW4Z133sHy5cuRlpYGNzc3xMbG4tatW/KYcePG4dixY0hKSsLWrVvxyy+/YMqUKfLx/Px8DBw4EC1btsSBAwfwxhtv4IUXXsBHH31Uw58SERFVxsqVQMuWwL33AgMHKpGS0gu2/xWpRWTkPkyfvgQREYcq/NpOTk4Vfg7VD5IQQtj7Iipj8+bNGDFiBAoLC+Ho6Gh2/I8//kC3bt3wyy+/oE+fPgB0Te6uX7+OrVu3yuN69uyJbt26Yfny5RBCICgoCE899RSefvppAIBGo4G/vz9WrVqFMWPG4MSJEwgPD8e+ffvQo0cPAMCOHTvwf//3f8jMzERQUBA++OADzJ07Fzk5OfL/XHPmzMG3336LkydP2vwe8/PzoVQqodFo4OHhUenPioiIrMvMBFq2FNBqKzLrBURFpSA4OLNCS4+m2P2+frL17+86WROWm5uLNWvWIDo62mIAA4AVK1agbdu2cgADgNTUVMyYMcNoXGxsLL799lsAQEZGBnJychATEyMfVyqViIqKQmpqKsaMGYPU1FR4enrKAQwAYmJioFAokJaWhn/9619ITU1F3759jf51Exsbi9dffx1Xr15F06ZNLV5zYWEhCgsL5e/z8/Nt/1CIiKjC1Go1kpOvQattWaHnSZIW0dG/VSh8DRgwAF5eXlAqlQBY+0V1aDkSAGbPng03Nzd4e3vj/Pnz+O677yyOu3XrFtasWYOEhASjx3NycuDv72/0mL+/P3JycuTj+sfKGuPn52d0vFGjRvDy8jIaY+kchq9hyYIFC6BUKuWv4OBgq2OJiKhq1Go1li1bhr17fwCgtfl5lWm4On78eERHR6N9+/as/SKZXUPYnDlzLBbTG34ZLt/NnDkThw4dws6dO+Hg4IAHH3wQllZTv/nmGxQUFGDChAl38u1U2TPPPAONRiN/Xbhwwd6XRERUbxUVFeHgwe5YuXIydH8dlledo8WoUeuRmGhb7dfIkSMxZcoUTJs2jUuOZJFdlyOfeuopTJw4scwxrVq1kn/v4+MDHx8ftG3bFh06dEBwcDB+++03qFQqo+esWLECQ4cONZuNCggIwMWLF40eu3jxIgICAuTj+scCAwONxnTr1k0ec+nSJaNz3L59G7m5uUbnsfQ6hq9hibOzM5ydna0eJyKiisvMBE6fBtq0AZo3L3380KFG2LJlKITQz0dYrwnTz3516nTC5tdll3sqj11DmK+vb6U3I9VqdVPHhjVUgK6ua/fu3di8ebPZc1QqFXbt2oXExET5saSkJDnEhYaGIiAgALt27ZJDV35+PtLS0vDYY4/J58jLy8OBAwcQGRkJAPjxxx+h1WoRFRUlj5k7dy6Ki4vlmrWkpCS0a9fOaj0YERFVP12zVUCrBRQK4KOPgIQE4M03gZkzfWDLZtsV7fs1cOBAtG3blgGMylUn7o5MS0vDvn370Lt3bzRt2hTp6emYN28eLl68iGPHjhnNHs2bNw+ffPIJzp8/DwcHB6PzpKSkoF+/fli4cCGGDBmCr776Cq+99hoOHjyITp06AQBef/11LFy4EKtXr0ZoaCjmzZuHI0eO4Pjx42jcuDEAYPDgwbh48SKWL1+O4uJiPPTQQ+jRowfWrl0LQHdHZbt27TBw4EDMnj0bR48exaRJk7B48WKjVhbl4d2RRESVo1arcfbsbdx9t5/RXY8KhUC/fnnYvdsTlgOYFpIECKGQZ78q2nZi2rRpDGANXL26O9LV1RWbNm3C888/j+vXryMwMBCDBg3Cc889ZxTAtFotVq1ahYkTJ5oFMACIjo7G2rVr8dxzz+HZZ59FmzZt8O2338oBDABmzZqF69evY8qUKcjLy0Pv3r2xY8cOOYABwJo1azBt2jTcd999UCgUiIuLwzvvvCMfVyqV2LlzJ6ZOnYrIyEj4+Phg/vz5FQpgRERUOfqC+4yMEGi1xrXBWq2E3bstr0joQ1dY2Bnk5nrZvNl2//790aZNGwC845Eqpk7MhDVUnAkjIqq47OxsfPTRR8jMDMTKlZMNar7KosXkySvQvHl2hV8vPj4e7du3r/iFUr1Vr2bCiIiIKuLgwe7YvHkoSu96LKv2S2DAgORKBTAAct8vooqqU33CiIiIDOn3e8zMLH0sK0thEMCA8gJYnz6/oFev1EpfA7cdosriTBgREdVJlu58HDFCjYULG8G2OQYtBgxItjmARUVFoVmzZnB0dGTXe6oWDGFERFQnZGYCKSm634eGlgYwQPfrlCkCmzal4Pvvh5RxFi0iIw8gNDSjwns+3nXXXQxcVK0YwoiIqNZbuRJ4+GGg9FYy8zovrVbC998PK+MsFSu+HzlyJHx8fABwxotqBkMYERHVapmZpgEMKL/Jqikthg/fWqHiex8fH6PdU4iqG0MYERHVGoZbDAG6369efRNCuFTyjLrlx759f63Q0iPRncAQRkREtYJhob30z0SXbvarcVlPs0iStIiLq9h2Q0R3GkMYERHZXWamcaF91ZYeBWJikiu02bYlbD1BNY0hjIiI7G7p0tIAVjUVazthaPDgwQgODgbAQny6MxjCiIjIrv788yreessT5TVVLfu4FtHRqYiKSqvU8uPo0aPRoUOHCj+PqCoYwoiIyG7S09Px1lt7IMQEC0f1wcv011KSpIVKVfnwpefn51fp5xJVFkMYERHZhVqtxhdffAEvL3dIktZko21Lwcvw+6rNfOmNHj0afn5+XHoku2AIIyIiuygqKgIAKJUFGDZsK7ZsGfpPEDMNXoYkxMbuQHj48UqHrwEDBiA0NJR1X2R33MCbiIjuCEubbeuFhZ1BXNxGREWloKzaL0nSVimAAUC7du0QGBjIAEZ2x5kwIiKqcaabbS9cCISGOkGjccfRo52QlBQD3byAKOMsutYTFQlgAwcOREhIiPw9Z7+oNmEIIyKiGmXaA0yrBWbNAgBvAInQzXxZqvsyVLnWE23btmXoolqLIYyIiGrU6dNl9QCzVBWjK7zXHatcAf7IkSMRFBTEAEa1GkMYERHVGLVaDQ+P21Ao/KDV2tr5XovJk1eguNgJXl65lar/8vHxYQCjWo8hjIiIaoRarcayZcsAAEOHdje4+7EsAgMGJKN58+wqvTa3HKK6gCGMiIiqXWYm8NtvQGZmILKygnDtWhPcc8+P2L07xupzJEmLmJjKbTmkFx8fD19fX86CUZ3AEEZERBWWmamr9WrTBmje3PhY6Z2Q3gAeRmmRvUBprZehqjdeZdNVqosYwoiIqEJM20189BGQkKA7ZnonpPFdjvrf64JYVbccGj16NDw9Pdl2guoshjAiIrKZpXYTU6YARUVA795XsWiRE7RatzLOIKFv358QGnqu0kX3ADB+/HiEhYVV6rlEtQVDGBER2cxSuwmtFvjvfwFAibK63esItG17utKF92w9QfUJty0iIiKb6NpNXIRCYa2rvQJlhzCBrl3/qNKdjwxgVJ9wJoyIiMpVuXYTAKBF//67UFLSqFIzYCNHjoSPjw8AbjlE9Q9DGBFRA1fWnY56RUVF0GjckZvrjbCwMxgz5kt8+eV/UN7yY2TkAfTrl1Lpa/Px8UFgYGCln09UmzGEERE1YGXd6Who7VoXLFmS+M/sl0Dp/o6W9nnU06Jv31+rdH1sukr1GWvCiIgaKEt3Oj7yiO5x03GzZikNlh8llP71odvnsXPnw9AFMj0thg/fWum7HwHdHZBcfqT6jDNhREQNlKU7HUtKgDNnSpcl1Wo1fvtN33jVGgUiIg4jJuZHXLige2JwcGa5AaxDhw4ICAgAADRq1Aju7u5o1KgRe39Rg8EQRkTUQO3fb/6YQgG0bq2b/dq/X4NfflmNo0c7ARiAspYd9T2/lMoTNr9+hw4d0Llz58pcOlG9wBBGRNRAGBbgX716FXPmeMI0WGm1Ao8+ehPbt7tAq1UCSPxnjLUApttwuyrLjkQNFUMYEVEDYFyAL9Cz53Fotb0sjJSwbZsLSkNXWaXDAn36/FLpDbddXV0r9Tyi+oIhjIionsvMBB5+GBD/1M1rtRJSUqJheTNtoPyu9wCgxYAByRUKYAMGDIC7uzsAXQDjtkPU0DGEERHVA9Z6fWVm6tpOCLMm9xIiI/fjwIFIVORG+cpuuj148GDcfffdNo8naggYwoiI6jhrvb4MH7ckNDQDffv+il9+6YMDB3qg/BkwLRISVlRq26Hg4OAKP4eovmOfMCKiOsxar699+8oOYIBWbiMxbNj3GDAgCbrlScskSdf3q7L7PrLpKpE5zoQREdVh1np97dlTdgCLjDyAU6fawtX1JoKDL6BXr1S0bHkWK1dONtoTUpK0iIvbYFPfL2tGjx7Nnl9EFjCEERHVIaa1X23a6JYgDQOXg4NAu3ZXoFD4QKstXWKUJC06dTqCP//sigMH7jI4q26WKyLiEIYN2ypvzi1JWgwbthWdOtne+8sSPz+/Kj2fqL6ShDAv16TaIT8/H0qlEhqNBh4eHva+HCKyszfeAGbP1hXZKxTA229fw+jRBVi71gWzZytRUiJBoRAYOnQLwsLOIC0tCqmpKoP9Hsva61GL6dOXQKks+Gejbi+5AautBgwYgNDQUKPH2PmeGiJb//7mTBgRUR3w5pvArFml32u1wPTprjh37iMolQV44onS4JSe3tpgs20tjFtRWCu+VyA31+ufrvcFlVp6DA0NRWBgYIWfR9RQsTCfiKiWy8zUzYCZEkIh79WoVBYgNPQcAMjLiToK2PZHvW7roapg8T1RxXAmjIiolrNUfK+3ceMoFBXp6rkAIDfX26iw3jLTJUldTVhFZr969OgBLy8vNGnSBI0aNYKfnx+XHYkqiCGMiKiW8/G5CoXC06jIXk8IBbZsGYqwsDNQKgvg5aWG9U74OpGR+xEamoEbN1z+uTuy4nc+RkREcOmRqIoYwoiIaglLXe/T09OxadMXGDq0u8kyYyn9smRu7k1kZQWirKarkqRF376/VnnDbS49ElUdQxgRUS1gqev9iBFqfPHFFwCAiIhDCAs7gwsXmmPDhlEwnOmSJK3BY9bufoTccqKyAWzkyJHw8fHhHY9E1YQhjIjIzqx1ve/W7bbRON1diydQVGTcy0vXaKi8ux8rv+WQXlBQEMMXUTViCCMisrOUFMtd78+eLf0jWte7yxteXmp5Viw31wvnzzfH7t0x5bxCxbYc0s94GeLsF1H1YwgjIrIj/TKkKQcHICTkNo4eBQ4e7G7WxT4i4hB+/PFe/PFHV6vnliQtVKpUREWlVWgJ0sfHh0X3RHcAQxgRkZ3oliGF2V2PCoXA669rkJubi6NHw40K8vV3Q0rS7X8CWM0tPxJRzWIIIyKyk/37NdBqlWaPd+++H7/8ko2ZM4dCiA5mx4VQ4Lvv/oXyCvArG8B45yPRncEQRkR0h5i2oAgOvgXAHaY9vQ4ejMSBAzB7vJS1OyAF/u//tqJdu9M2LT/26tUL/v7+8veOjo7w9fVl7RfRHcIQRkR0B5i2oHj77Wu4995LiI4+g5SUXkZjy+54b60Rq0DXrn/g7rsPlnstI0eO5J2ORLUA944kIqphllpQTJ/uik8/TUJUVBokyfjWSN335vsUSZIWY8d+aTYe0GLs2LX417++s+l6fHx8GMCIagGGMCKiKsrMBHbv1v1qiaUWFEIokJvrBaWyAMOGbZWDlSRpEROTjI4dj5udRwgFnJyKzcYPH74V7dqdqdb3REQ1z+blyPz8fJtP6uHhUamLISKqayx1uk9IKD2+dOk1TJ/uBvMaLgFHxyIAMOr7lZUVhOTkmH+WJI1rvyRJCy+vXISGnpPHe3nlVnkLIiKyD5tDmKenJyTJ+n5kACCEgCRJKCkpqfKFERHVdtY63cfG6grv//zzKqZPV0IIS392SiguLr0LUaksQEFBE4MAphujD2KmWw7puudXLnzx7kei2sHmELZ79+6avA4iojrn9GnLne7PnNGFsIMHCyBEU4vP1c9q6R082B2bNw+FeZWIhNjYHQgPP17p0BUfHw+lUtcKg53viWoPm0NYv379avI6iIjqnDZtdEuQhkHMwQFo3RpQq9Vwc8uCJDU3u9vRdFZLo3HHli2WAphubGUCWP/+/dGmTRuGLqJarNItKvLy8rBy5UqcOHECANCxY0dMmjRJ/tcWEVF9plarcfHibUyZ4oYPP3STlxy1WoFVq7JRUvIxAGDYsEsGHe+1iI7WbSNUUNAEP/7YD02aXIOr602LbSlMw1pF+Pn5cesholpOEkKIij5p//79iI2NhYuLC+6++24AwL59+3Dz5k3s3LkTERER1X6hDVF+fj6USiU0Gg1vdiCqRdRqNSZN2msQrswL6BMTlxjNdBkW0X/zzf0mWw7pp9IMg5gWkydXftuhKVOmMIQR2Ymtf39XaiZs+vTpGD58OD7++GM0aqQ7xe3btzF58mQkJibil19+qdxVExHVAWfP3jbaz9H0zkd9+wkAyM31hpeXGqGh5wAAmZmBFvZ81M2S6RuxVnXbIYDF90R1QaVC2P79+40CGAA0atQIs2bNQo8ePart4oiIaqOMjEZldrWXJC2ysoLw2WcPQojSUBURcQgpKdGwvOWQAqNGrYeb240qtZ2Ij4/n1kNEdUSlQpiHhwfOnz+P9u3bGz1+4cIFuLu7V8uFERHVRmq1GkrlJUhSU5MgVtpKIiYm2ajVhBAKbNkyFH5+OThxItzKmbUIDs4sM3wNHDgQTZo0QaNGjeDp6Wl2nEX4RHVLpUJYfHw8EhIS8OabbyI6OhoAsHfvXsycORNjx46t1gskIqot1Go1li1bBgAYNqy7vCSpD15BQVnw8spFbq632UyZEAqcP9/Cygyarut9ebNfISEhrPMiqkcqtW3Rm2++iZEjR+LBBx9ESEgIQkJCMHHiRIwaNQqvv/56dV8jAGD48OFo0aIFGjdujMDAQDzwwAPIysoyGvPDDz+gZ8+ecHd3h6+vL+Li4nD27FmjMT/99BMiIiLg7OyM1q1bY9WqVWav9d577yEkJASNGzdGVFQUfv/9d6Pjt27dwtSpU+Ht7Y0mTZogLi4OFy9eNBpz/vx5DBkyBK6urvDz88PMmTNx+/btavksiKj6lbf1EAAUFRXJv4+IOITExCUYNWo94uI2olOnowgNPQelsgBeXmoL+zsK3LzpYnHfx8mTVyAi4lC518g6L6L6pVIhzMnJCUuXLsXVq1dx+PBhHD58GLm5uVi8eDGcnZ2r+xoB6HrerF+/HqdOncLGjRuRnp6OUaNGycczMjJw//33495778Xhw4fxww8/4MqVKxg5cqTRmCFDhqB///44fPgwEhMTMXnyZPzwww/ymHXr1mHGjBl4/vnncfDgQXTt2hWxsbG4dOmSPGb69OnYsmULvv76a/z888/Iysoyep2SkhIMGTIERUVFSElJwerVq7Fq1SrMnz+/Rj4bIqqalSuBli2Be+/V/bpype7x8oJZenprbNw4Chs2/BuLFydi584YaDS6kowWLc5Bt0SpJ2HPnj6IiUk22/exvAL8kSNHYtq0aVxqJKpnKtWiojbYvHkzRowYgcLCQjg6OmLDhg0YO3YsCgsLoVDosuWWLVtw//33y2Nmz56Nbdu24ejRo/J5xowZg7y8POzYsQMAEBUVhbvuuktectBqtQgODsbjjz+OOXPmQKPRwNfXF2vXrpVD4MmTJ9GhQwekpqaiZ8+e2L59O4YOHYqsrCz4+/sDAJYvX47Zs2fj8uXLNv9rli0qiGpeZqYueJk2XF2wAJgzx3hPyG7dLuLdd3fAy0uNgoImWLFiMsz/LSv++bL8b9wJE1b9s2Rp+76PDGBEdUuNtqi4desW3n33XezevRuXLl2C1mTfjoMHD1bmtDbLzc3FmjVrEB0dDUdHRwBAZGQkFAoFPv30U0ycOBHXrl3D559/jpiYGHlMamoqYmJijM4VGxuLxMREALqlhgMHDuCZZ56RjysUCsTExCA1NRUAcODAARQXFxudp3379mjRooUcwlJTU9G5c2c5gOlf57HHHsOxY8fQvXt3i++rsLAQhYWF8vcV2TSdiCrH2tZDs2cD+n+iarXAww8DkuQHrXYCyg5aEizf/QgAWjl4lRW+Ro4cCR8fHwAstieqzyoVwhISErBz506MGjUKd999d7kbe1eX2bNnY9myZbhx4wZ69uyJrVu3ysdCQ0Oxc+dOjB49Go888ghKSkqgUqnw/fffy2NycnKMghEA+Pv7Iz8/Hzdv3sTVq1dRUlJicczJkyflczg5OZndmeTv74+cnJwyX0d/zJoFCxbgxRdftPHTIKKqUqvV8PC4DYXCD1pt6Z9jCoUw+h7QBbLSjbjLClrWCAwYkGzTzJePjw8L8IkagEqFsK1bt+L7779Hr169qvTic+bMKbeQ/8SJE3IrjJkzZyIhIQHnzp3Diy++iAcffBBbt26FJEnIycnBww8/jAkTJmDs2LEoKCjA/PnzMWrUKCQlJd2xoFgVzzzzDGbMmCF/n5+fj+DgYDteEVH9ZXin49Chxnc63nefcYuJqtLfPdmrV2q1nI+I6odKhbBmzZpVSz+wp556ChMnTixzTKtWreTf+/j4wMfHB23btkWHDh0QHByM3377DSqVCu+99x6USiUWLVokj//iiy8QHByMtLQ09OzZEwEBAWZ3MV68eBEeHh5wcXGBg4MDHBwcLI4JCAgAAAQEBKCoqAh5eXlGs2GmY0zvqNSfUz/GEmdn5xq7sYGIjJne6RgWdsaoTsvF5ZbRno/lz34JC8cFIiP3o2/fXyvdfJWI6q9K/TPvrbfewuzZs3Hu3Lkqvbivry/at29f5pe1InZ9HZq+hurGjRtyQb6eg4OD0ViVSoVdu3YZjUlKSoJKpQKgq72IjIw0GqPVarFr1y55TGRkJBwdHY3GnDp1CufPn5fHqFQq/Pnnn0Z3VCYlJcHDwwPh4dYaNRLRnaC/4zEry/jPC6WyQG4xAQBhYWcQEXEApbVfwqC9hKX7mSR07Pgn9PtASpIWAwYkYdiw7yscwNiKgqhhqNRMWI8ePXDr1i20atUKrq6ucuG7Xm5ubrVcnF5aWhr27duH3r17o2nTpkhPT8e8efMQFhYmB58hQ4Zg8eLFeOmll+TlyGeffRYtW7aUC+EfffRRLFu2DLNmzcKkSZPw448/Yv369di2bZv8WjNmzMCECRPQo0cP3H333ViyZAmuX7+Ohx56CACgVCqRkJCAGTNmwMvLCx4eHnj88cehUqnQs2dPALqu1uHh4XjggQewaNEi5OTk4LnnnsPUqVM500VkRytXAlOm6O949MPQod0t9uc6eLA7Nm8eCuN/pyogROn+jpY27R44MAkDByZV6M5HU+PHj2chPlEDUakQNnbsWPz999947bXX4O/vX+P1Vq6urti0aROef/55XL9+HYGBgRg0aBCee+45OdTce++9WLt2LRYtWoRFixbB1dUVKpUKO3bsgIuLCwBd8f62bdswffp0LF26FM2bN8eKFSsQGxsrv1Z8fDwuX76M+fPnIycnB926dcOOHTuMCu0XL14MhUKBuLg4FBYWIjY2Fu+//7583MHBAVu3bsVjjz0GlUoFNzc3TJgwAS+99FKNfk5EZCwzU3f3Y5s2uu/1AQwAtFoJmzcPhZNTIYKDL8iBSaNxx5YtpgFMz/AxCYZbFQ0bVtrx3pbwNXr0aLMbfHgnJFHDUqk+Ya6urkhNTUXXrl1r4proH+wTRlR5xrNeAlOmXMfy5U0sjjXcYDsjIwSrV0+w+XViY3cgPPx4hWa9xo8fj7CwMJvHE1HdUqN9wtq3b4+bN29W+uKIiGpSZqb5rNeHH7qidCnRmH6D7bCwM3B0LISlIntJ0v7TN0xh9FhFAtjIkSMRFBTE2S4iAlDJwvyFCxfiqaeewk8//QS1Wo38/HyjLyIie1Gr1fjtN7VZA1YhFIiOTrWwd2Pp8bS0qH+64BsGMC2io/ciMXEJhg/farTlkOESpC18fHwYwIhIVqmZsEGDBgEA7rvvPqPHhRCQJAklJSVVvzIiogrS9/7SaNwhSYlGfb4kSYuoqDRERaXhwoXm2LhxlNnxlBQVLP3bNCoqDUplgcVWFhXBux6JyFClQtju3bur+zqIiKpM3/tLqSzAsGFbjRqwGhfOn0BRkfFxlSoVKSmWGlArkJvrZVR0X5m7HkePHs1ZMCIyUqkQ1q9fP5vG/fe//8VLL70k74FGRHSnlDdrZXq8oKCJxZkwSdLt91hVfn5+VT4HEdUvlQphtvriiy/w9NNPM4QRkV2UN2ulVBagoKAJdu4ciGPHwmHa/6sidV+Gm26bYusJIrKkRkNYJbpfEBHdERqNOzZvHob09NYwLsTX9f0aPHgb2rU7bfPSI+96JKKKqtEQRkRUG1nuiF9KCAV8fdVmAWzgwIEICQkxG8+ZLiKqDIYwImpQyu6Ir2OtDiwkJASBgYE1eHVE1JAwhBFRnaNWq+U7IbOyFMjIaITQ0NtwcrpS5vM0GnccO9bRqDWFOet1YGwxQUTViSGMiOoUfS8wQLesaNyGIg0REZafZzjWUkd8QCAs7AyGD99iFMD69+8PX19f+Pn5ccmRiKpVjYaw8ePHc89DIqpW+hkw/bKiflbLcOshw824c3O9UVTUyKQGrHTzbUCLjh2PQaVKRfPm2Wav16ZNGy5BElGNqHQIy8vLw++//45Lly5Ba7I/yIMPPggA+OCDD6p2dUREVuTmepstKwpR2li1/JkvqVKbbxMRVZdKhbAtW7Zg3LhxuHbtGjw8PCBJpX+4SZIkhzAiopri5aX+Z1Nt462HHB2LcPRouIWZL2MV3XybiKi6VSqEPfXUU5g0aRJee+01uLq6Vvc1EVEDk5kJnD4NtGkDNG9e+rhhAb5eRkYGAPOtiQBACGDFiodhKXQZq/jm20RE1a1SIezvv//GE088wQBGRJWmD1hr17pg1iwltFoJCoXAiy/m4P77r+DmzZv46qs9yM31hpeXGgDk3yuVunOEhZ2BcU/osu561JEkLRISVlis/yIiupMqFcJiY2Oxf/9+tGrVqrqvh4gaAP0djhqNO5YsSYQQupkrrVbC/Pn+yM39EunprbFlS6JBTZeALmRpER2diqioNFy4EAxbgpe+Jky/DVFFAhjbUhBRTbE5hG3evFn+/ZAhQzBz5kwcP34cnTt3hqOjo9HY4cOHV98VElG9o19itFZcf+FCc6NlRt3yon6JUYGUlF5ISYmGLlxZJ0laxMVtgKdnHoqLnSxu5A1Y3/eRnfCJqCbZHMJGjBhh9thLL71k9pgkSSgpKanSRRFR/WNY33X0aB4yMkLg6FhoVlwPaAFI5TRUBYyDWelzJQkGfcO2olOnE+Vem4+PD9tQENEdZ3MIM21DQURkK8sNVjtAkrTo0uUI/vijCwzvZNRolBbCWflGjdqA4OBM5OZ6WZ31IiKqLSr2J9w/PvvsMxQWFpo9XlRUhM8++6zKF0VEdVtmJrB7t+5XoOwGq3/80QWS0YSWhOTkGMTEJEOSdP/40/1a3j8EBTw986BUFiA09FyFAhjrvojIHioVwh566CFoNBqzxwsKCvDQQw9V+aKIqO5Rq9XIzs7GW2/loWVLgXvvBVq2FHjrrTxcuaLb09FSDRigsFgXFhSUhcTEJZgwYdU/gUw+auUKJBQXVyxMjRw5EtOmTWPdFxHZRaXujhRCGDVo1cvMzIRSf+84ETUYZd3tOHOmB/7+OwlKpeUGq4Z1XHqSpIWXVy4A4Pp1NyQlxcC48ap+Vszyc2wVFBTEAEZEdlOhENa9e3dIkgRJknDfffehUaPSp5eUlCAjIwODBg2q9oskotrt0qVLAMrfSsi0waq+eB6A2WO6FhVDrdSFKRAdvRepqSqj5+iXIAcMGICmTZvi9u3bAABHR0ezfyDyzkcisrcKhTD9HZKHDx9GbGwsmjRpIh9zcnJCSEgI4uLiqvUCiah2U6vVWL9+PQAgKysQpvs0ms5QRUQcQljYGbPiecPHAPwzo2a5YkKStIiKSkNUVJrFIvzQ0FDe7UhEtV6FQtjzzz8PAAgJCUF8fDwaN25cIxdFRHWHYdF9cnIMjNtGCMTEJJsVyetnxaw9dvRoeBl3Rhqfk3dAElFdVamasAkTJgDQ/eF76dIls/YVLVq0qPqVEVGtpO/3pdFoUFxcjKtXrwKwVnQvQanU9QTTbTdUfmDSt7CwTkJQUFbl3wARUS1RqRB2+vRpTJo0CSkpKUaP6wv22ayVqH7RB6+8vDx8/PF2s/0cHR0Dcf26K3QF88ZF9xs3jjKq24qIOGT1dUxbWFhSmQJ8IqLaqFIhbOLEiWjUqBG2bt2KwMBAi3dKElH9YN5o1dJ+jvo6MIHSIKbvfK/780EIBbZsGYqwsDNWZ8Qsz6aVMi3At4Z9v4ioLqhUCDt8+DAOHDiA9u3bV/f1EFEtY63RqvG2QaW/SpJAXNx6ABI2bPi30bmEUODYsXB07HgcgH4WrRDFxc7w8lJbbGEhSVoMHrwNrq43ERycaRTALO35yLseiaiuqFQICw8Pl5svElHDUN4slZ4QCri53YCXV66FnmACO3cOws6dsTCdRdPPcllqYWFtCZN7PhJRXVapEPb6669j1qxZeO2119C5c2c4OjoaHffw8KiWiyMi+9HXgen/wWW50ao5fc2WaU8w49YV5rNo+uXKxMQlSExcYtP+j1x2JKK6TBJCWNsDxCqFwnCpoLQejIX51Ss/Px9KpRIajYbBlu4owzowQLcUmZvrjaysQCQnx1gIVcazWYYzVxqNO44dC8fOnbY1cp4wYRVCQ8+VOy4+Pp4lEURUK9n693elZsJ2795d6QsjotpPXwcGlLaM0C8Ptm59GqdPt4VxQ1aBuLivjWq29MHNy0uNjh2PIylpoM2zaLbw9fWt+BsjIqpFKhXC+vXrh19//RUffvgh0tPTsWHDBjRr1gyff/45QkNDq/saichOTIvxhVCYBTD9425uN+QAZhrchg3bipiYZCQlDTB7rsFZLDZ2NaQvxGfxPRHVB+VX2VqwceNGxMbGwsXFBYcOHUJhYSEAQKPR4LXXXqvWCySiO0OtViM7OxvZ2dlyHZi1BqymDGewLAW3LVuGwtGxyOJzdbQYMCAJvXqllnmNQUFBCAwMZAAjonqhUjNhr7zyCpYvX44HH3wQX331lfx4r1698Morr1TbxRHRnWFaA6ZnuRjfeG9I/QwWAGRkhOD6dVeLm3ir1V4WX7tv392IjDxkNgNm2n6Cs19EVN9UKoSdOnUKffv2NXtcqVQiLy+vqtdERDVAf7ejKY1Gg0uXLpk8VlrPZdoyokuXIzhypMs/QUuLAQOS4eJyS95wW5K0MO+cD6SlqWBpc29LAQxg+wkiqv8qFcICAgJw5swZhISEGD2+Z88etGrVqjqui4iqkbWZLkss1XOZtoy4994f5e8ByAEMgEk3fcMZMwmAFpIkjM7NDbiJqKGqVAh7+OGH8eSTT+KTTz6BJEnIyspCamoqnn76acybN6+6r5GIrDCc3crLy8Pt27eNjjs6OkKpVNrcXNlaPVdi4hKjthFKZYEcnjIyQmyqG9NRIC5uvdzMlT3AiKghq1QImzNnDrRaLe677z7cuHEDffv2hbOzM55++mk8/vjj1X2NRGRBRWa3TBkuNxoGoQsXgi3Wc+XmelkNTNbrxvQd8UtJktZs6yFLxo8fz/ovIqr3KhXCJEnC3LlzMXPmTJw5cwbXrl1DeHg4mjRpUt3XR0RWmNZ3GQYrABZDFmC+3BgTk4xevVJx8GB3bN481Ox1TO98ND2vUlmA3r1/xa+/9oX5XpKltWHlLT/Gx8dDqVSyAJ+IGoxKhTA9JycnhIeHV9e1EFElGQYrw1ko0w72lpYbk5IG4NYtZ+zZ0wfmXWu06N37V+TmeuPo0U5yt3zT87q43IL5EqSEvn1/gp/fZQAoc/NtBi8iaoiqFMKIyP5Mg5Xhvoz6mq6wsDNQKgus9v369VdLAQwAFPj117749dd+MCy0Nz1vixbnYKl1Rdu2p9G8ebbF6+bdj0TU0FWqWSsR1R6Wg1UpfU0XUFq/ZU5h5XHAfInR/LzNm2eja9c/oAtiACDQtesfVgMYERFxJoyozrNcGF9KX9Olr+cyr9+CXBtWujl3+Uz3efzXv77DXXf9jgsXWiA4+DwDGBFRORjCiOo4pbLArKGqEIBhTVh6emuj4+Hhx3H8eAejMbqlRQ1u3GiM7duHWAlj+iVHy0X2zZtn2xy+2IKCiBo6hjCieiAi4hDCws4YNVAtq5nqiRMdMHnyChQXO8HLKxfp6a2NOt536HACJ050MCj01wUv/eyZZK0NmBX6Ox/1WIhPRMQQRlSrWdpqSKPRoLi4GAUFxrNQhg1U9d8DlpupCqFAcbETQkPPWbxj8vjxcOiDV+fORxAcfOGf2THLhfmm+zwaYuAiIrKMIYyoFlKr1bh06RLWr19fqedHR0cjJSUFgOWaMcN6Lmt3TOoo8Oef3fDnn11geh+PYRNX3ulIRFRxDGFEtUxVOuHrBQQEyL+3VDNmWM9VXmG/juGypI5pYT4REVUMQxhRLWO6/FgdTGvGlMoCo+73hiHNvN+XniSHNW6+TURUdQxhRHWYtT0gLTGsGTPusK9FdHQqEhJW4PjxjkhJibb4fEnSIiGhtJifAYyIqGoYwojqCNPAZboHpOE2QlevXrX6XAAmHfYVSEnphZQU1T/fG3e918+ADRu21Wr7CbabICKqOIYwolpOo3FHWlrUPyFJYbGxqundirt375afbxrWVKpUK/Vflh6TEBu7A+Hhx7nvIxFRNWMII6rFjJcNdXSbbsegrLsV9Sy1n0hJUdlQiK+jb+xquvTIuyGJiKqOIYyoBlnq82WorFkk8425DSnKbDuhZ7n9hAIREftw4EAkyto+lsX3REQ1iyGMqIbY2mpi2rRpFoNYWRtzmy5JWgtM1tpP6AKY5bb3kqRFXNwGBAdnWg1grAEjIqo6hjCiGmJrqwnTcfqAY71/V2kRfqdOR5Gb64URIzrhjz8OmZ3btEdYKevhbtiwrejU6YTZMX0dGGvAiIiqR/lFIUR0R3l7e2P8+PFygJIkLQBdQIqO3ovp05fId0EqlQUIDT2HsDBns/NoNO7IyAhBWNgZxMVttOGVdS0o9Oc2FRQUhMDAQAYwIqJqwpkwIju7cuWK0fdOTk5wdXUFYLnJqi1M74iMiUm2MKumhSTBaDnTtAUFZ7+IiGoOQxiRjapSZF+WTZs2mT02evRo+femG3NbYtgXzNIdkcnJMejd+1fs2dPHKHSVF/CCgoIYvoiIaghDGJENqlpkD1Ssu/3t27crdH2GfcHS0qLM6siEUODXX/tgwIBkBAVlwcsrF//+twpNmoSanatRo0bw9PTk7BcRUQ1jCCOyQWWL7PXK6m5fEeUFOY3G3aDzvSndjFhi4hIolQUICQlhry8iIjtiCCMqg34J0rRuqyIsLQ8adre39RxpaVFITVWVGeRyc71R1v02lhq6EhGRfdSZuyOHDx+OFi1aoHHjxggMDMQDDzyArKwsozHr169Ht27d4OrqipYtW+KNN94wO89PP/2EiIgIODs7o3Xr1li1apXZmPfeew8hISFo3LgxoqKi8Pvvvxsdv3XrFqZOnQpvb280adIEcXFxuHjxotGY8+fPY8iQIXB1dYWfnx9mzpxZ4SUmsi/9EuRHH31ksW7LkitXriA7OxvZ2dnQaDQALPf70ochWxw82B2LFyciJaWXWZDTaNwBlN4J6ehYKN9NaYmlhq5ERGQfdWYmrH///nj22WcRGBiIv//+G08//TRGjRqFlJQUAMD27dsxbtw4vPvuuxg4cCBOnDiBhx9+GC4uLpg2bRoAICMjA0OGDMGjjz6KNWvWYNeuXZg8eTICAwMRGxsLAFi3bh1mzJiB5cuXIyoqCkuWLEFsbCxOnToFPz8/AMD06dOxbds2fP3111AqlZg2bRpGjhyJvXv3AgBKSkowZMgQBAQEICUlBdnZ2XjwwQfh6OiI1157zQ6fHlXGpUuXKvwcS2HNUr8vW8OQfhbN0r+X9EEuPb210VJnly5HcORIF/l7IQB9h312wCciqj0kIXR/RNc1mzdvxogRI1BYWAhHR0f85z//QXFxMb7++mt5zLvvvotFixbh/PnzkCQJs2fPxrZt23D06FF5zJgxY5CXl4cdO3YAAKKionDXXXfJRdharRbBwcF4/PHHMWfOHGg0Gvj6+mLt2rUYNWoUAODkyZPo0KEDUlNT0bNnT2zfvh1Dhw5FVlYW/P39AQDLly/H7NmzcfnyZZu7jefn50OpVEKj0cDDw6NaPjeyja2F+LY6eLA7tm0bhpISyWgp0VqNV3x8PNatW4eMjBCsXj3B4jklSdfXa+XKyWYBLyFhBYqLneSgZ+kOyClTprAmjIioBtj693edWY40lJubizVr1iA6OhqOjo4AgMLCQjRu3NhonIuLCzIzM3Hu3DkAQGpqKmJiYozGxMbGIjU1FYCuqPrAgQNGYxQKBWJiYuQxBw4cQHFxsdGY9u3bo0WLFvKY1NRUdO7cWQ5g+tfJz8/HsWPHqutjoBpUXiG+fvlPvxxYnoiIQ0hLu4QNG9RITNQ1Wz14sDuWLEnE6tUTsGRJIg4e7C6PLy4uxujRozF0aDuLy4v6IHf8eEeLS53FxU4IDT0nt7fQ/94Qtx4iIrKvOrMcCQCzZ8/GsmXLcOPGDfTs2RNbt26Vj8XGxmL69OmYOHEi+vfvjzNnzuCtt94CAGRnZyMkJAQ5OTlGwQgA/P39kZ+fj5s3b+Lq1asoKSmxOObkyZMAgJycHDg5OcHT09NsTE5OjjzG0jn0x6wpLCxEYWGh/H1+fr4tHwvdYZW909HVNRfdujnh6NGCcov1DZc1hw27ZDBWi+joVISHH0NWVpDFOyENlzr1zVZNsf0EEZH92XUmbM6cOZAkqcwvffgBgJkzZ+LQoUPYuXMnHBwc8OCDD0K/mvrwww9j2rRpGDp0KJycnNCzZ0+MGTMGgG42qy5YsGABlEql/BUcHGzvS6q31Gq1XEBv6SsvL8/i86yFJ1tmxNavX4/i4mIAFSvWj4g4hMTEJZgwYRUmT14BAFixYjK+/95yrZhKlSrPeum3GjL9YgAjIrI/u86EPfXUU5g4cWKZY1q1aiX/3sfHBz4+Pmjbti06dOiA4OBg/Pbbb1CpVJAkCa+//jpee+015OTkwNfXF7t27TI6R0BAgNldjBcvXoSHhwdcXFzg4OAABwcHi2MCAgLkcxQVFSEvL89oNsx0jOkdlfpz6sdY8swzz2DGjBny9/n5+QxiNaCy9V4ajTuOHbO8/Gdr2wd9sX9Fi/WVygKkp7fG5s2Wg1cpLaKi0gDo6soYtoiIai+7hjBfX1/4+vpW6rlara5OxnD5DgAcHBzQrFkzAMCXX34JlUolv4ZKpcL3339vND4pKQkqlW5Jx8nJCZGRkdi1axdGjBghv86uXbvkOywjIyPh6OiIXbt2IS4uDgBw6tQpnD9/Xj6PSqXCq6++ikuXLsl3VCYlJcHDwwPh4eFW35OzszOcnc03YqbqZWvjVUOGS5CAACDJxxQKYXPbB31ne/3m3KbLmtaCXFl3SZbSYvjw0nMolUqbromIiOyjTtSEpaWlYd++fejduzeaNm2K9PR0zJs3D2FhYXLwuXLlCjZs2IB77rkHt27dwqeffoqvv/4aP//8s3yeRx99FMuWLcOsWbMwadIk/Pjjj1i/fj22bdsmj5kxYwYmTJiAHj164O6778aSJUtw/fp1PPTQQwB0f7ElJCRgxowZ8PLygoeHBx5//HGoVCr07NkTADBw4ECEh4fjgQcewKJFi5CTk4PnnnsOU6dOZci6wyzt91jRxqumS5C6AKYLYpKkxYsv5qCkpMBovC3bE9myObf+XNevu5rNwBnS3xFpuAE3C++JiGq3OhHCXF1dsWnTJjz//PO4fv06AgMDMWjQIDz33HNGoWb16tV4+umnIYSASqXCTz/9hLvvvls+Hhoaim3btmH69OlYunQpmjdvjhUrVsg9wgDdEs7ly5cxf/585OTkoFu3btixY4dRof3ixYuhUCgQFxeHwsJCxMbG4v3335ePOzg4YOvWrXjsscegUqng5uaGCRMm4KWXXqrhT4oMVVebCUv1W4CE2NgdmDOnNTp3bgr9y1S0aL+szblNzwVoYWkmTP86+gAWHx8PX19fLkUSEdVydbZPWEPAPmFVk52djY8++qjK59m7V4WkpAEwXIKUJC0SE5dg7twJ8Pb2xsmTJ/HRR99jyZJEszov/V6NllibNcvMDLTY/0vfeBXQIjLyAEJDMxAcnCk/Nz4+Hu3bt6/yeyYiosqz9e/vOjETRmQvERHD8dJL3WAYwACBxMQcTJnyf/IjSqWyzDseLYUwa7NmBw92t1iAL4QCo0ath5vbDavLl5WtsSQiojuPIYyoDBs3HoFW293kUQm5uTuxbp2uCbD+po2K3PFordWFm1uB1TsgJUkrz3rFx8ebFd6z9xcRUd3CEEZUBluCVVFREZycnMzueAQAIYD09NZmdWEXLgRbnDX78sv/wHjWrfQ1hw3bioceGoCgoCCGLSKieoAhjOocS3c8GqrojFBZdzPa2krC29sb06ZNw9mzt7Fli2GIMu6ED8BgudGUceuLUqV3PgYF9WIAIyKqJxjCqE6x9Y5H/RJheWy5m7G8VhKGLS8uXHCFEMZByrAuzHq/L8t3PgJAdHQqmjfPxujRoxnAiIjqEYYwqlNsbbR6+fJleYsga8rbv9FQWa0kDPd51GjcoVBMh1ZrfCelfvnScrsLwPIMmO65+g74pvuVEhFR3VY3NlUkqqB169YZhSNLKrJ/o62UygLMmpX+T18vXYiKiUlGbq43NBp3ucbMmBbWliHL6qJPRER1G2fCqMGq6P6NtmrceA0SE92Rm+uFrKwgJCfHyMudMTHJUKlSkZKiAlD6mH6M4XWYdsAnIqL6hSGM6gy1Wl3hLYcMmRbgm9/NqAtEFW2saon++GefPWi03Klv+ipJWqhUexEVlQalsgAuLrfMatMYwIiI6jeGMKoTqroFkaUC/Ndfb4spU5To0qUAr77qASEUSE6OgYvLLbPi/IpuRwRY3+4I0AWy1FSVXO9lyz6S3AuSiKh+YQijOuHSpUuVfq61Avz58y+jSRN/vPYaoN+8S3/Mzy8HxcXO8PJSA4DNBfyGLC13GjLtpm+t+J97QRIR1U8MYVTrqdVqrF+/vtLPt1aAf/ZsI+TnA1qTOnkhFFixYjL0NVsqVWqFtiPSS09vjbJ2ZpUkLf71r85o2zbK6p2P7IJPRFR/MYRRrWdrWwprrBXgh4Tchr8/oFCYBjEB/Y3D+mVD0z5ekqSFo2MRMjJCLNaIWe8HVvr8YcO2ondvNl8lImqo2KKC6j19Ab5h24hhw7YiKEiL5s2Bjz4CHByEfMy0XYQQCkRHpxo9v0uXI1i5cjJWr56AJUsScfCgbn9JjcYdGRkhOHWqrdVlSECLL75IxyefMIARETVknAmjBsFS4btG0xZOTk5ISPBGt26X8O672+HoWISVKyebzZpFRaUhKioNXbvGwdGxCOPHdzGrEbt5s7FBqwnL65D6ANi//10MYEREDRxDGNVptrSNMBwTGnpOfnzdunUAdFscBQVp5WNl7RU5cKAT9u5tYrFGLCkpBqWTy6bNV7WIjk6VW1I4OfWq8nsnIqK6jSGM6ixb2kbYMsa05qy8dhGhobct3PVYWkdmyahRG9Cp0wmMHDkSQUFBnAUjIiLWhFHdZK3tRGZmIDIyQqDRuFsdo9G42/gq5lsJ5eXlIShIa1Rjpgtglvd+BHRLkMHBmQAAHx8fBjAiIgLAmTCqo6y1ndDXc1W0tYRhI9SyZs/Wr1+P+Ph4REQcgp9fjtzKwhrT5UwiIiI9hjCq9Sx1irfcCFUYzXqlpKhs3hvS29sb8fHx+Oij78ttzKpvHFtc7IyyWlDExW1AcHCmUQBj13siItJjCKNaz9vbG9OmTTOq3dq79xzS0lKRmqqS9300D0QKqFR75THlzUoplUqrM2yGs2e7d+8GYL0jvv51OnU6AUDX8V6pVLLxKhERGWEIozrBMLysXAlMmRIArVaC7q7DvQgPP1Zma4my9mQ0ZK2xq+HsmeHdlsZ3Ugo8+OAVjBt3Bc2bt4Gn510MXkREZBVDGNUpmZnAlCn4J4ABgK6jfXj4MahUqVZnvWytydI3drXWosJSvVhi4hLk5nrh8ccHIzLSH4BvDbxzIiKqbxjCqMao1eoytxyqzCzR0qVl7/WonxnT9+MyZK2nWEZGBq5cuYKbN28CKG1RceFCcwASgoMvyM+3VC+WmLgEoaHnEBRkcmFERERlYAijGqFWq7Fs2bJyx02bNs3mIJaZCbz1lqUjhj26dDNjUVFpAIDRo0fD09MT7713E0uWhFi84zEpKcnsjOnprc1mvJo2vVqpjbyJiIgsYZ8wqhG2brpdkc25T58GhMXdgMz3eszN9QIAeHp6oqQkEAsWhNrcL8zajJejY6FBb7B/XtnK3ZZERETlYQijOqNNG0Bh9hOrLTcYnT5tWEOmYxjUTFm7Q7K42MniRuCcBSMiosrgciRVK30d2JUrV6r93M2bAx99BDzyCFBSUhqCAGDz5qHQ14QZBiMnJ6d/wpswCmJlzWCVdYdkaOi5Mrc0IiIishVDGFUbW+vAqiIhAYiNBc6cAby9NfDxuQtr17pg61YJWi2gUEjo27cv/vMf4/YQ8+f/jRdfDCqzX5i11hMKhcDQocZ3WloKX2zESkREFcEQRtWmIvVdVdG8ue4LaIrMTGDWrNI7JrVaCbNne2LgQAEfn1vIzs4GAPTv/z9oNOvlGayCgiZISekJb+8rcHK6jaysQCQnx1htPRES0gtFRXdZvSb2AyMioopiCCO7srRsqZ9RsqW9ha7ey/hYSQnw1lvfITT0nNHjSqVuFuubb+7HH390ha6gX5j8arn1BAMWERFVN4YwsqtNmzZV+rnTpk1DmzbeUCiMg5iDg7Ba75WZGWgQwGDhVx22niAioprGuyOpzioqKpKL9R0cdI85OACvv66xGp7On28J08BlCVtPEBFRTWMIoypTq9XIzs6ukTsibZGQAJw9C+zerfv1//4v2+rYFi3OQbf0aInucdPCfRbcExFRTeByJFXJnbgj0hb6Yv309HSsX7/e6JjhXY/u7tcQFnYG6emtYTgjJklaxMQkIygoC15euXj44cHcgJuIiGoUQxhVyZ26I9KSK1euGIUktVqNL774wmiM4YbbgBa64KUvxC8lBNCp01EolQWIj49H+/bt78h7ICKihovLkXRHaDTuyMgIsbpVUGVs2rQJy5Ytg1qtBmAeCE23H9L9uFsuxAdKO+grlcpqu0YiIiJrOBNGNc5wNsp082xbGC4nWiq4LyoqglqtNqtJ++WXPmbbD1nDQnwiIrrTGMKoRlnbDDss7IxN7R9sCXB5eXlmdWB796pw4ECPcs6u6w3GPSCJiMgeGMKoRlnbDFvfg6usWS5LAW7z5qHw88tB8+ald0Devn3b6HmZmYFIShoAy60oSoOXYSE+AxgREd1pDGFUYzQad1y/7gpdQbz5Ztims1y6UJQtBzJLAQ5QYOXKyVaXNA8e7P7PZt6WApgWkyevQHGxU5nBiy0piIjoTmAIoxphfFeigD6I6Zf+AJjNculnr/RjwsLOQJK0FmfSLC1p6mfOLN9vIjBgQLI8gzZy5Ej4+PiYjWJLCiIiulMYwqhKLM0amd+VKEGSBOLi1iM4OBMAcOxYRwuzXOZ7Nw4btvWfmS3rS5p6lmfOAECgT59f0KtXqvxIUFAQwxYREdkVQxhVibe3N6ZNm2bUHmLvXicsXmwemtzcbiA9vbXJDJnlLYSEUOD48XCEhx/H5MkrsHLlZKOAZXg3Y0GBLohlZQVaOaeEVq0y5O/Gjx/PAEZERHbHPmFUZd7e3ggMDERgYCBKSgKh1XpDMslBkqSFo2OR2QxZadNU062EBH74YRCWLEnEpUsBGDZsKyRJK5/L8G7GpKQkaDTuSE6OgaVQZxjY4uPjERYWVi3vm4iIqCo4E0bVZuVKYMoUQKsFJEn3JYRuU+233rqBZs3isGKF+RJkbOwOaLUKJCfHmAQ046XJxMQlaNnyPoSHOyEgIBRAKAoKCpCUlGR1KdI0sLERKxER1RYMYVQtMjNLAxhQGr6+/BJQqYDmzZsgM7MJFIrSMQDg4CAQHn4cAJCUFGPx3Pr6r9DQc8jL+xYpKeZjvLzUFor4tUhIWGHUzoKIiKi24HIkVYvTp43DFQCUlAC+vrqNtQHdrx99pAtngO7X11/XyO0orP04Gi4nWtv+SKksMFuyHD58KwMYERHVWpwJo2rRpg0szHIBrVsbj0tIAGJjgTNndMccHG7io4+szWQBQOlyYnnd8yMiDiEs7Axyc73YgJWIiGo9zoRRtbA0y/Xhh6WzYKZj77nH+JjpTJa+UF9f4G9t+yNLM2KhoefYiJWIiGo9zoRRtTGd5bIUwEwZhqKIiEPw88sxakehD1txcRvL3P6oPCNHjmRvMCIiqlUYwqhaNW9uW/jS0/cZy8rKwqZNm1Bc7GwxbAHCbLnSsFasPD4+PgxgRERUq3A5kmpcZiawe7fuV0NqtRrZ2dkoKipCTk4jZGSEwNGx0GBJUkf3vYSYmGSrvcLKw2VIIiKqbTgTRtUuM1N3t2SbNsAPP5S2rlAodHVjCQm6ALZs2TIAhvtMdoAkadGlyxEcOdJFLsAXAtiw4d8Gm3xnmRXeW9sLEuB+kEREVDsxhFG1Mm7YqiuuF0JXXa/VAo88ItCt2yW4uV0FYLng/siRLkhIWIG8PE9s2DAK+glbIXQNXRMTl5jNgLHei4iI6hqGMKo25g1bzbcQKimR8O672xEaeg6A5U23hVCguNgJbm43YWnj7k6dRkClKoSnpycAznQREVHdxJowspm12i5At7z4229qs4atpkyL6fX9wSyNsXbs6NFvsX79ejg5OSEwMJABjIiI6iSGMLLJypVAy5bAvffqfl25svSYvr4rJWW1WWgypVKlGi0lpqe3hjDau1sLlSoVgOUu+IbF+EVFRdXy3oiIiOyBy5FULtNlRl1tl64nWPPmpWFIH5pKa7wE9Btx//NMREWlyd/p68GM/y0gISWlF1JTVXJHfHbBJyKi+oghjMplbV/IM2d0v//tNydoNO5QKguMQlNWVhCSk2OMthnShyiNxh3HjnW0sE2RLrTpm7SGhZ2BUlnA8EVERPUOQxiVy9q+kPv3A/fdB2i13pCkRHnmSh+aQkPPoVOno0azWBqNO9LSopCSooJuBsx0tqxURTriExER1TUMYVQu/b6QjzyimwFzcAAWLABmzza8E9J45krPcBbLcAPuUhJKg5hxIKtIR3wiIqK6hoX5DVRZdzpaGpOQAJw9C6xfD6xdCzRpYr5EqZ+5ssS0H5gxXQDr0+eXSnfEJyIiqms4E9YAGTZUNexiX94YwLhA35ThzJVG447cXG94eamhVBZY7Adm8my0apWBHj0OsAifiIgaBIawBqa8Ox2tjZkyRfzze8v1W4YzV4bLjvrHw8LOmG3Abfp8ffDifpBERNQQMIQ1MGXd6agPYZbGWAtfeoMHb0PTpleRmRlotg3Rli1DkZi4xKR9hSGBmJjkMsOX6d6Q7JJPRER1XZ2rCSssLES3bt0gSRIOHz5sdOzIkSPo06cPGjdujODgYCxatMjs+V9//TXat2+Pxo0bo3Pnzvj++++NjgshMH/+fAQGBsLFxQUxMTE4ffq00Zjc3FyMGzcOHh4e8PT0REJCAq5du1bha7EH/Z2OhhwcgNatyx4DaK02YpUkgR07hmL16glYufJhi9sQ5eZ6ISLiEBITlyA6ei8A/bm0GDAgCb16pZZ53T4+PggMDJS/GMCIiKiuq3MhbNasWQgKCjJ7PD8/HwMHDkTLli1x4MABvPHGG3jhhRfwkb6YCUBKSgrGjh2LhIQEHDp0CCNGjMCIESNw9OhRecyiRYvwzjvvYPny5UhLS4ObmxtiY2Nx69Ytecy4ceNw7NgxJCUlYevWrfjll18wZcqUCl2LvejvdHRw0H3v4AB8+GHpLJjxGN0SpCRpMWBA8j+d7PXhSd/mXgshSmfKLO0XaVgrplQWYODAZEyfvgQTJqzC9OlLyg1gRERE9ZEkhPGmMbXZ9u3bMWPGDGzcuBEdO3bEoUOH0K1bNwDABx98gLlz5yInJ0euFZozZw6+/fZbnDx5EgAQHx+P69evY+vWrfI5e/bsiW7dumH58uUQQiAoKAhPPfUUnn76aQCARqOBv78/Vq1ahTFjxuDEiRMIDw/Hvn370KNHDwDAjh078H//93/IzMxEUFCQTddii/z8fCiVSmg0Gnh4eFT58zOUmalbgmzd2jiAGTpw4CLefXe7WdNVlSoV4eHHUFzshOvX3bBhw7+tvo5CITB06BZERByq0vVOmTIFgYGBVToHERHRnWDr3991Zibs4sWLePjhh/H555/D1dXV7Hhqair69u1rVKwdGxuLU6dO4erVq/KYmJgYo+fFxsYiNVU3E5ORkYGcnByjMUqlElFRUfKY1NRUeHp6ygEMAGJiYqBQKJCWlmbztdhb8+bAPfdYD2AAEBSkm8HSBzBAt7SYmqqCu/s1hIaeQ3DwhTL3ixw58usqBzCARfhERFT/1InCfCEEJk6ciEcffRQ9evTA2bNnzcbk5OQgNDTU6DF/f3/5WNOmTZGTkyM/ZjgmJydHHmf4PGtj/Pz8jI43atQIXl5eRmPKuxZLCgsLUVhYKH+fn59vcdydZKm1hGEne/P9IktJkhbBwWU0IrOCRfhERNQQ2HUmbM6cOZAkqcyvkydP4t1330VBQQGeeeYZe15ujVuwYAGUSqX8FRwcXKOvZ0vDVi8vtdlMl2kne0sF91VpthoUFMQifCIiqvfsOhP21FNPYeLEiWWOadWqFX788UekpqbC2dnZ6FiPHj0wbtw4rF69GgEBAbh48aLRcf33AQEB8q+Wxhge1z9mWH908eJFufYsICAAly5dMjrH7du3kZubW+7rGL6GJc888wxmzJghf5+fn19jQcyWhq2ArpA+JibZ6kbchuMGDkxGVFRalZqtjh8/nqGLiIgaBLuGMF9fX/j6+pY77p133sErr7wif5+VlYXY2FisW7cOUVFRAACVSoW5c+eiuLgYjo6OAICkpCS0a9dOXv5TqVTYtWsXEhMT5XMlJSVBpVIBAEJDQxEQEIBdu3bJoSs/Px9paWl47LHH5HPk5eXhwIEDiIyMBAD8+OOP0Gq1FboWS5ydnc2CZk2wpWEroFsGPHiwu0FNmBYxMckWa7wMO+SHhp6z+tr9+/c3+wwcHR2hVCq57EhERA1KnagJa9GihdH3TZo0AQCEhYWh+T+p4T//+Q9efPFFJCQkYPbs2Th69CiWLl2KxYsXy8978skn0a9fP7z11lsYMmQIvvrqK+zfv19uHSFJEhITE/HKK6+gTZs2CA0Nxbx58xAUFIQRI0YAADp06IBBgwbh4YcfxvLly1FcXIxp06ZhzJgxcusMW67Fnmxp2AoAN296Y+vWYQZtJxRITo5Bp05HjWa5LHXIt1aM36ZNG97lSEREhDoSwmyhVCqxc+dOTJ06FZGRkfDx8cH8+fON+ndFR0dj7dq1eO655/Dss8+iTZs2+Pbbb9GpUyd5zKxZs3D9+nVMmTIFeXl56N27N3bs2IHGjRvLY9asWYNp06bhvvvug0KhQFxcHN55550KXYs9tWkDSBJg2JxEoTBu2Arow5px3y/DonyNxh0XLgRj8+ah0JcX6jvkh4Wd4d6PREREZahTfcIamprqE5aZCbRoYRzCJAk4f954JiwzE2jZUhgFMUnSIjFxCdLTW1vZgkhnwoRVFpcl2e+LiIjqu3rXJ4yqz+nTxgEM0H1/5gygVquRnZ2N7OxsODhkY/78v+W7I/VLjQDKDGCmd08aYr8vIiIinXqzHEm20+8NaVgX5uAAFBfn4dFHfwQABAdfkJcTExPdje54zMgIKTOAWbp7cuTIkQgKCmLhPRER0T8Ywhog/d6QjzyiK8h3cADGjwdiY5UQQr8FkcDw4brthvRNWfX0vcMMg5gkaREXtwHBwZkWa8F8fHwYwIiIiAxwObIByswEWrUCUlN1zVpTU4HPPjPdfFvCli1DodG4mz1f3yXfdJmyU6cTVovxuQxJRERkjDNhDYylJq2tWpnXiAG6Ox0vXGgOpfKE2bGIiEMICztTbmPWgQMHom3btpwFIyIiMsGZsAbEWpPWJk10d0dasmHDKBw82N3iMaWyAKGh58psRRESEsIARkREZAFDWANirUnr9evAxx8DkmSpW4nC6rIkERERVR5DWAOivyvSkIMD4OamW5LcuvUK+vbdbfY8fYNWIiIiqj4MYQ2Ii4saixblwcFBN+Pl4CAwcuQN9OwpcO+9wLBhPnB2LpYL7vXK6vtFRERElcPC/AZCrVZj2bJlAIAnntD1/XJ0LMLKlZPluyK1WgnJyTGIiUmWN+221veLiIiIqoYhrIEoKiqSf6/v+2Wp6aoQCowZ0xqdOi0p985HIiIiqjyGsAYsKysQgABQemukg4NA165uuHChoFrCF/uDERERWcYQ1kBpNO5ITo6BYQADBJ54IhtOTuoqnTs+Ph5KpRJOTk5sT0FERGQFQ1gDlZvrbWH/Rwm5uTuxadM5m84xcuRI+Pj4GD3G4EVERGQbhrAGytr+jxW5C5IbchMREVUeQ1gDpd//ccuWoRW6C1I/+8UZLyIioqphCGvAbN3/0ZCPjw8CAwPvwNURERHVbwxhDYS1uxT17SqIiIjozmLH/AbC29sbAwcOtPdlEBER0T8YwhoItVqN4uJie18GERER/YPLkQ2A4ZZFREREVDtwJqwBMNyyqKrYAZ+IiKh6cCaMbBIfHw9fX1+2pSAiIqomDGFkVf/+/eHr6ws/Pz+GLyIiomrGEEZWtWnThj3BiIiIaghrwsgq1n8RERHVHIYwsig+Pp5LkERERDWIIYws8vX1tfclEBER1WusCWsAbF1WHD16NDw9Pbk5NxER0R3AENYAeHt7Y9q0aWX2C2PwIiIiurMYwhoIBiwiIqLahTVhRERERHbAEEZERERkBwxhRERERHbAEEZERERkBwxhRERERHbAEEZERERkBwxhRERERHbAEEZERERkBwxhRERERHbAjvm1mBACAJCfn2/nKyEiIiJb6f/e1v89bg1DWC1WUFAAAAgODrbzlRAREVFFFRQUQKlUWj0uifJiGtmNVqtFVlYW3N3dIUlSpc+Tn5+P4OBgXLhwAR4eHtV4hXUHPwMdfg78DAB+BgA/Az1+DjXzGQghUFBQgKCgICgU1iu/OBNWiykUCjRv3rzazufh4dFg/yfT42egw8+BnwHAzwDgZ6DHz6H6P4OyZsD0WJhPREREZAcMYURERER2wBDWADg7O+P555+Hs7OzvS/FbvgZ6PBz4GcA8DMA+Bno8XOw72fAwnwiIiIiO+BMGBEREZEdMIQRERER2QFDGBEREZEdMIQRERER2QFDWB31wQcfoEuXLnJzOZVKhe3bt8vHb926halTp8Lb2xtNmjRBXFwcLl68aHSO8+fPY8iQIXB1dYWfnx9mzpyJ27dv3+m3Um0WLlwISZKQmJgoP9YQPocXXngBkiQZfbVv314+3hA+AwD4+++/MX78eHh7e8PFxQWdO3fG/v375eNCCMyfPx+BgYFwcXFBTEwMTp8+bXSO3NxcjBs3Dh4eHvD09ERCQgKuXbt2p99KpYSEhJj9HEiShKlTpwJoGD8HJSUlmDdvHkJDQ+Hi4oKwsDC8/PLLRvv31fefA0C3VU5iYiJatmwJFxcXREdHY9++ffLx+vgZ/PLLLxg2bBiCgoIgSRK+/fZbo+PV9Z6PHDmCPn36oHHjxggODsaiRYuqduGC6qTNmzeLbdu2ib/++kucOnVKPPvss8LR0VEcPXpUCCHEo48+KoKDg8WuXbvE/v37Rc+ePUV0dLT8/Nu3b4tOnTqJmJgYcejQIfH9998LHx8f8cwzz9jrLVXJ77//LkJCQkSXLl3Ek08+KT/eED6H559/XnTs2FFkZ2fLX5cvX5aPN4TPIDc3V7Rs2VJMnDhRpKWlif/973/ihx9+EGfOnJHHLFy4UCiVSvHtt9+KP/74QwwfPlyEhoaKmzdvymMGDRokunbtKn777Tfx66+/itatW4uxY8fa4y1V2KVLl4x+BpKSkgQAsXv3biFEw/g5ePXVV4W3t7fYunWryMjIEF9//bVo0qSJWLp0qTymvv8cCCHE6NGjRXh4uPj555/F6dOnxfPPPy88PDxEZmamEKJ+fgbff/+9mDt3rti0aZMAIL755huj49XxnjUajfD39xfjxo0TR48eFV9++aVwcXERH374YaWvmyGsHmnatKlYsWKFyMvLE46OjuLrr7+Wj504cUIAEKmpqUII3Q+sQqEQOTk58pgPPvhAeHh4iMLCwjt+7VVRUFAg2rRpI5KSkkS/fv3kENZQPofnn39edO3a1eKxhvIZzJ49W/Tu3dvqca1WKwICAsQbb7whP5aXlyecnZ3Fl19+KYQQ4vjx4wKA2Ldvnzxm+/btQpIk8ffff9fcxdeQJ598UoSFhQmtVttgfg6GDBkiJk2aZPTYyJEjxbhx44QQDePn4MaNG8LBwUFs3brV6PGIiAgxd+7cBvEZmIaw6nrP77//vmjatKnR/w+zZ88W7dq1q/S1cjmyHigpKcFXX32F69evQ6VS4cCBAyguLkZMTIw8pn379mjRogVSU1MBAKmpqejcuTP8/f3lMbGxscjPz8exY8fu+HuoiqlTp2LIkCFG7xdAg/ocTp8+jaCgILRq1Qrjxo3D+fPnATScz2Dz5s3o0aMH/v3vf8PPzw/du3fHxx9/LB/PyMhATk6O0eegVCoRFRVl9Dl4enqiR48e8piYmBgoFAqkpaXduTdTDYqKivDFF19g0qRJkCSpwfwcREdHY9euXfjrr78AAH/88Qf27NmDwYMHA2gYPwe3b99GSUkJGjdubPS4i4sL9uzZ0yA+A1PV9Z5TU1PRt29fODk5yWNiY2Nx6tQpXL16tVLXxg2867A///wTKpUKt27dQpMmTfDNN98gPDwchw8fhpOTEzw9PY3G+/v7IycnBwCQk5Nj9Iet/rj+WF3x1Vdf4eDBg0b1Dno5OTkN4nOIiorCqlWr0K5dO2RnZ+PFF19Enz59cPTo0QbzGfzvf//DBx98gBkzZuDZZ5/Fvn378MQTT8DJyQkTJkyQ34el92n4Ofj5+Rkdb9SoEby8vOrM56D37bffIi8vDxMnTgTQcP5fmDNnDvLz89G+fXs4ODigpKQEr776KsaNGwcADeLnwN3dHSqVCi+//DI6dOgAf39/fPnll0hNTUXr1q0bxGdgqrrec05ODkJDQ83OoT/WtGnTCl8bQ1gd1q5dOxw+fBgajQYbNmzAhAkT8PPPP9v7su6YCxcu4Mknn0RSUpLZv/oaEv2/8gGgS5cuiIqKQsuWLbF+/Xq4uLjY8cruHK1Wix49euC1114DAHTv3h1Hjx7F8uXLMWHCBDtf3Z23cuVKDB48GEFBQfa+lDtq/fr1WLNmDdauXYuOHTvi8OHDSExMRFBQUIP6Ofj8888xadIkNGvWDA4ODoiIiMDYsWNx4MABe18ameByZB3m5OSE1q1bIzIyEgsWLEDXrl2xdOlSBAQEoKioCHl5eUbjL168iICAAABAQECA2Z1R+u/1Y2q7AwcO4NKlS4iIiECjRo3QqFEj/Pzzz3jnnXfQqFEj+Pv7N4jPwZSnpyfatm2LM2fONJifhcDAQISHhxs91qFDB3lZVv8+LL1Pw8/h0qVLRsdv376N3NzcOvM5AMC5c+eQnJyMyZMny481lJ+DmTNnYs6cORgzZgw6d+6MBx54ANOnT8eCBQsANJyfg7CwMPz888+4du0aLly4gN9//x3FxcVo1apVg/kMDFXXe66J/0cYwuoRrVaLwsJCREZGwtHREbt27ZKPnTp1CufPn4dKpQIAqFQq/Pnnn0Y/dElJSfDw8DD7y6y2uu+++/Dnn3/i8OHD8lePHj0wbtw4+fcN4XMwde3aNaSnpyMwMLDB/Cz06tULp06dMnrsr7/+QsuWLQEAoaGhCAgIMPoc8vPzkZaWZvQ55OXlGc0W/Pjjj9BqtYiKiroD76J6fPrpp/Dz88OQIUPkxxrKz8GNGzegUBj/tebg4ACtVgugYf0cAICbmxsCAwNx9epV/PDDD7j//vsb3GcAVN9/d5VKhV9++QXFxcXymKSkJLRr165SS5EA2KKirpozZ474+eefRUZGhjhy5IiYM2eOkCRJ7Ny5Uwihux29RYsW4scffxT79+8XKpVKqFQq+fn629EHDhwoDh8+LHbs2CF8fX3r1O3olhjeHSlEw/gcnnrqKfHTTz+JjIwMsXfvXhETEyN8fHzEpUuXhBAN4zP4/fffRaNGjcSrr74qTp8+LdasWSNcXV3FF198IY9ZuHCh8PT0FN999504cuSIuP/++y3eot69e3eRlpYm9uzZI9q0aVOrb8s3VVJSIlq0aCFmz55tdqwh/BxMmDBBNGvWTG5RsWnTJuHj4yNmzZolj2kIPwc7duwQ27dvF//73//Ezp07RdeuXUVUVJQoKioSQtTPz6CgoEAcOnRIHDp0SAAQb7/9tjh06JA4d+6cEKJ63nNeXp7w9/cXDzzwgDh69Kj46quvhKurK1tUNESTJk0SLVu2FE5OTsLX11fcd999cgATQoibN2+K//73v6Jp06bC1dVV/Otf/xLZ2dlG5zh79qwYPHiwcHFxET4+PuKpp54SxcXFd/qtVCvTENYQPof4+HgRGBgonJycRLNmzUR8fLxRf6yG8BkIIcSWLVtEp06dhLOzs2jfvr346KOPjI5rtVoxb9484e/vL5ydncV9990nTp06ZTRGrVaLsWPHiiZNmggPDw/x0EMPiYKCgjv5Nqrkhx9+EADM3pcQDePnID8/Xzz55JOiRYsWonHjxqJVq1Zi7ty5Ri0FGsLPwbp160SrVq2Ek5OTCAgIEFOnThV5eXny8fr4GezevVsAMPuaMGGCEKL63vMff/whevfuLZydnUWzZs3EwoULq3TdkhAGrYSJiIiI6I5gTRgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgR1Sv33HMPEhMT7X0ZNe6FF15At27d7H0ZRFQFDGFERLVIUVHRHX09IQRu3759R1+TiHQYwoio3pg4cSJ+/vlnLF26FJIkQZIknD17FkePHsXgwYPRpEkT+Pv744EHHsCVK1fk591zzz14/PHHkZiYiKZNm8Lf3x8ff/wxrl+/joceegju7u5o3bo1tm/fLj/np59+giRJ2LZtG7p06YLGjRujZ8+eOHr0qNE17dmzB3369IGLiwuCg4PxxBNP4Pr16/LxkJAQvPzyy3jwwQfh4eGBKVOmAABmz56Ntm3bwtXVFa1atcK8efNQXFwMAFi1ahVefPFF/PHHH/L7XLVqFc6ePQtJknD48GH5/Hl5eZAkCT/99JPRdW/fvh2RkZFwdnbGnj17oNVqsWDBAoSGhsLFxQVdu3bFhg0bqvs/EREZYAgjonpj6dKlUKlUePjhh5GdnY3s7Gy4u7vj3nvvRffu3bF//37s2LEDFy9exOjRo42eu3r1avj4+OD333/H448/jsceewz//ve/ER0djYMHD2LgwIF44IEHcOPGDaPnzZw5E2+99Rb27dsHX19fDBs2TA5L6enpGDRoEOLi4nDkyBGsW7cOe/bswbRp04zO8eabb6Jr1644dOgQ5s2bBwBwd3fHqlWrcPz4cSxduhQff/wxFi9eDACIj4/HU089hY4dO8rvMz4+vkKf1Zw5c7Bw4UKcOHECXbp0wYIFC/DZZ59h+fLlOHbsGKZPn47x48fj559/rtB5iagCqrT9NxFRLdOvXz/x5JNPyt+//PLLYuDAgUZjLly4IACIU6dOyc/p3bu3fPz27dvCzc1NPPDAA/Jj2dnZAoBITU0VQgixe/duAUB89dVX8hi1Wi1cXFzEunXrhBBCJCQkiClTphi99q+//ioUCoW4efOmEEKIli1bihEjRpT7vt544w0RGRkpf//888+Lrl27Go3JyMgQAMShQ4fkx65evSoAiN27dxtd97fffiuPuXXrlnB1dRUpKSlG50tISBBjx44t99qIqHIa2TMAEhHVtD/++AO7d+9GkyZNzI6lp6ejbdu2AIAuXbrIjzs4OMDb2xudO3eWH/P39wcAXLp0yegcKpVK/r2XlxfatWuHEydOyK995MgRrFmzRh4jhIBWq0VGRgY6dOgAAOjRo4fZta1btw7vvPMO0tPTce3aNdy+fRseHh4Vfv/WGL7mmTNncOPGDQwYMMBoTFFREbp3715tr0lExhjCiKheu3btGoYNG4bXX3/d7FhgYKD8e0dHR6NjkiQZPSZJEgBAq9VW6LUfeeQRPPHEE2bHWrRoIf/ezc3N6FhqairGjRuHF198EbGxsVAqlfjqq6/w1ltvlfl6CoWuwkQIIT+mXxo1Zfia165dAwBs27YNzZo1Mxrn7Oxc5msSUeUxhBFRveLk5ISSkhL5+4iICGzcuBEhISFo1Kj6/8j77bff5EB19epV/PXXX/IMV0REBI4fP47WrVtX6JwpKSlo2bIl5s6dKz927tw5ozGm7xMAfH19AQDZ2dnyDJZhkb414eHhcHZ2xvnz59GvX78KXSsRVR4L84moXgkJCUFaWhrOnj2LK1euYOrUqcjNzcXYsWOxb98+pKen44cffsBDDz1kFmIq46WXXsKuXbtw9OhRTJw4ET4+PhgxYgQA3R2OKSkpmDZtGg4fPozTp0/ju+++MyvMN9WmTRucP38eX331FdLT0/HOO+/gm2++MXufGRkZOHz4MK5cuYLCwkK4uLigZ8+ecsH9zz//jOeee67c9+Du7o6nn34a06dPx+rVq5Geno6DBw/i3XffxerVqyv92RBR2RjCiKheefrpp+Hg4IDw8HD4+vqiqKgIe/fuRUlJCQYOHIjOnTsjMTERnp6e8vJdVSxcuBBPPvkkIiMjkZOTgy1btsDJyQmArs7s559/xl9//YU+ffqge/fumD9/PoKCgso85/DhwzF9+nRMmzYN3bp1Q0pKinzXpF5cXBwGDRqE/v37w9fXF19++SUA4JNPPsHt27cRGRmJxMREvPLKKza9j5dffhnz5s3DggUL0KFDBwwaNAjbtm1DaGhoJT4VIrKFJAyLB4iIyCY//fQT+vfvj6tXr8LT09Pel0NEdRBnwoiIiIjsgCGMiIiIyA64HElERERkB5wJIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrKD/wcnjf4SfQ+W4gAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"CO2_flowsheet.png\"))" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUCUlEQVR4nO2deXxU1d3/PzOTxQSSCSQsCVvCUiyCVKKGQEWKyCJg/YFNKi6gKGpBRaggj48ouCCobFq3FsGqKFTQKqgFKloFpJVFRJEKD1FigsBgJoEACZn7+2O4kzuTu6/nznzfrxcvzcydO2fuPfecz/lux8NxHAeCIAiCIIgEwOt0AwiCIAiCIOyChA9BEARBEAkDCR+CIAiCIBIGEj4EQRAEQSQMJHwIgiAIgkgYSPgQBEEQBJEwkPAhCIIgCCJhIOFDEARBEETCQMKHIAiCIIiEgYQPQRAEgyxfvhwejwdlZWVON4Ug4goSPgSRoPznP//B5MmTccEFF6BZs2bo2LEjSkpK8N///rfJsQMHDoTH44HH44HX60VmZia6d++OG2+8ERs2bND0ve+99x4uv/xytG7dGunp6ejcuTNKSkrw4YcfmvXTmvD444/jnXfeafL6li1b8PDDD6Oqqsqy747l4YcfjlxLj8eD9PR09OjRA//7v/+L6upqU75jxYoVWLRokSnnIoh4g4QPQSQo8+bNw+rVq3HFFVdg8eLFmDhxIv71r3+hT58+2LNnT5Pj27dvj1dffRV//etf8eSTT+Lqq6/Gli1bMGTIEJSWlqK+vl7xO5966ilcffXV8Hg8mDlzJhYuXIgxY8bgu+++w5tvvmnFzwQgL3xmz55tq/Dhef755/Hqq69iwYIFOP/88/HYY49h2LBhMGP7RBI+BCFNktMNIAjCGaZOnYoVK1YgJSUl8lppaSl69eqFJ554Aq+99lrU8X6/HzfccEPUa0888QTuvvtuPPfcc8jPz8e8efMkv+/s2bN45JFHcOWVV2L9+vVN3j9y5IjBX8QOtbW1SE9Plz3m2muvRU5ODgDgjjvuwJgxY7BmzRp8/vnnKC4utqOZBJGQkMWHIBKUfv36RYkeAOjWrRsuuOAC7N27V9U5fD4flixZgh49euDZZ59FMBiUPPbYsWOorq5G//79Rd9v3bp11N+nT5/Gww8/jF/84hc477zzkJubi9GjR+PAgQORY5566in069cP2dnZSEtLQ2FhId56662o83g8Hpw8eRKvvPJKxL00fvx4PPzww7jvvvsAAAUFBZH3hDE1r732GgoLC5GWloaWLVvi97//PQ4dOhR1/oEDB6Jnz57Yvn07BgwYgPT0dPzP//yPqusnZNCgQQCAgwcPyh733HPP4YILLkBqairy8vIwadKkKIvVwIEDsW7dOnz//feR35Sfn6+5PQQRr5DFhyCICBzH4aeffsIFF1yg+jM+nw/XXXcdHnzwQXz22WcYMWKE6HGtW7dGWloa3nvvPdx1111o2bKl5DkbGhowcuRI/POf/8Tvf/973HPPPaipqcGGDRuwZ88edOnSBQCwePFiXH311bj++utRV1eHN998E7/73e+wdu3aSDteffVV3Hrrrbj00ksxceJEAECXLl3QrFkz/Pe//8Ubb7yBhQsXRqwvrVq1AgA89thjePDBB1FSUoJbb70VR48exTPPPIMBAwZg586dyMrKirQ3EAhg+PDh+P3vf48bbrgBbdq0UX39eHhBl52dLXnMww8/jNmzZ2Pw4MG48847sW/fPjz//PP4z3/+g82bNyM5ORkPPPAAgsEgysvLsXDhQgBA8+bNNbeHIOIWjiAI4hyvvvoqB4BbunRp1OuXX345d8EFF0h+7u233+YAcIsXL5Y9/6xZszgAXLNmzbjhw4dzjz32GLd9+/Ymx7388sscAG7BggVN3guFQpH/r62tjXqvrq6O69mzJzdo0KCo15s1a8aNGzeuybmefPJJDgB38ODBqNfLyso4n8/HPfbYY1Gvf/XVV1xSUlLU65dffjkHgHvhhRckf7eQhx56iAPA7du3jzt69Ch38OBB7sUXX+RSU1O5Nm3acCdPnuQ4juOWLVsW1bYjR45wKSkp3JAhQ7iGhobI+Z599lkOAPfyyy9HXhsxYgTXqVMnVe0hiESDXF0EQQAAvv32W0yaNAnFxcUYN26cps/yFoWamhrZ42bPno0VK1bgoosuwj/+8Q888MADKCwsRJ8+faLca6tXr0ZOTg7uuuuuJufweDyR/09LS4v8/88//4xgMIjLLrsMO3bs0NT+WNasWYNQKISSkhIcO3Ys8q9t27bo1q0bNm3aFHV8amoqbr75Zk3f0b17d7Rq1QoFBQW4/fbb0bVrV6xbt04yNmjjxo2oq6vDlClT4PU2Dt233XYbMjMzsW7dOu0/lCASEHJ1EQSBw4cPY8SIEfD7/Xjrrbfg8/k0ff7EiRMAgIyMDMVjr7vuOlx33XWorq7Gtm3bsHz5cqxYsQKjRo3Cnj17cN555+HAgQPo3r07kpLkh6i1a9fi0Ucfxa5du3DmzJnI60JxpIfvvvsOHMehW7duou8nJydH/d2uXbsm8VJKrF69GpmZmUhOTkb79u0j7jspvv/+ewBhwSQkJSUFnTt3jrxPEIQ8JHwIIsEJBoMYPnw4qqqq8OmnnyIvL0/zOfj0965du6r+TGZmJq688kpceeWVSE5OxiuvvIJt27bh8ssvV/X5Tz/9FFdffTUGDBiA5557Drm5uUhOTsayZcuwYsUKzb9BSCgUgsfjwQcffCAqAmNjZoSWJ7UMGDAgEldEEIR9kPAhiATm9OnTGDVqFP773/9i48aN6NGjh+ZzNDQ0YMWKFUhPT8evf/1rXe24+OKL8corr6CyshJAOPh427ZtqK+vb2Jd4Vm9ejXOO+88/OMf/0Bqamrk9WXLljU5VsoCJPV6ly5dwHEcCgoK8Itf/ELrz7GETp06AQD27duHzp07R16vq6vDwYMHMXjw4MhrRi1eBBHPUIwPQSQoDQ0NKC0txdatW/G3v/1NV+2YhoYG3H333di7dy/uvvtuZGZmSh5bW1uLrVu3ir73wQcfAGh044wZMwbHjh3Ds88+2+RY7lyBP5/PB4/Hg4aGhsh7ZWVlooUKmzVrJlqksFmzZgDQ5L3Ro0fD5/Nh9uzZTQoKchyHQCAg/iMtZPDgwUhJScGSJUui2rR06VIEg8GobLpmzZrJlhYgiESGLD4EkaBMmzYN7777LkaNGoXjx483KVgYW6wwGAxGjqmtrcX+/fuxZs0aHDhwAL///e/xyCOPyH5fbW0t+vXrh759+2LYsGHo0KEDqqqq8M477+DTTz/FNddcg4suuggAcNNNN+Gvf/0rpk6din//+9+47LLLcPLkSWzcuBF/+MMf8Nvf/hYjRozAggULMGzYMIwdOxZHjhzBn/70J3Tt2hW7d++O+u7CwkJs3LgRCxYsQF5eHgoKClBUVITCwkIAwAMPPIDf//73SE5OxqhRo9ClSxc8+uijmDlzJsrKynDNNdcgIyMDBw8exNtvv42JEyfij3/8o6Hrr5VWrVph5syZmD17NoYNG4arr74a+/btw3PPPYdLLrkk6n4VFhZi5cqVmDp1Ki655BI0b94co0aNsrW9BMEsTqaUEQThHHwattQ/uWObN2/OdevWjbvhhhu49evXq/q++vp67s9//jN3zTXXcJ06deJSU1O59PR07qKLLuKefPJJ7syZM1HH19bWcg888ABXUFDAJScnc23btuWuvfZa7sCBA5Fjli5dynXr1o1LTU3lzj//fG7ZsmWRdHEh3377LTdgwAAuLS2NAxCV2v7II49w7dq147xeb5PU9tWrV3O//vWvuWbNmnHNmjXjzj//fG7SpEncvn37oq6NXKp/LHz7jh49KntcbDo7z7PPPsudf/75XHJyMtemTRvuzjvv5H7++eeoY06cOMGNHTuWy8rK4gBQajtBCPBwnAkbwxAEQRAEQbgAivEhCIIgCCJhIOFDEARBEETCQMKHIAiCIIiEgYQPQRAEQRAJAwkfgiAIgiASBhI+BEEQBEEkDFTAMIZQKISKigpkZGRQ2XeCIAiCcAkcx6GmpgZ5eXnweqXtOiR8YqioqECHDh2cbgZBEARBEDo4dOgQ2rdvL/k+CZ8YMjIyAIQvnNy+QwRBEARBsEN1dTU6dOgQmcelIOETA+/eyszMJOFDEARBEC5DKUyFgpsJgiAIgkgYSPgQBEEQBJEwkPAhCIIgCCJhoBgfgiAIgjCBhoYG1NfXO92MuCU5ORk+n8/weUj4EARBEIQBOI7D4cOHUVVV5XRT4p6srCy0bdvWUJ09Ej4EQRAEYQBe9LRu3Rrp6elU/NYCOI5DbW0tjhw5AgDIzc3VfS4SPgRBEAShk4aGhojoyc7Odro5cU1aWhoA4MiRI2jdurVutxcFNxMEQRCETviYnvT0dIdbkhjw19lILBUJH4IgCIIwCLm37MGM60yuLhcQCARQV1cn+X5KSgqZWAmCIAhCBSR8GCcQCODZZ59VPG7y5MkkfgiCIAhCAXJ1MY6cpUfPcQRBEAQBAOPHj4fH44HH40FycjLatGmDK6+8Ei+//DJCoZDq8yxfvhxZWVnWNdRkyOJDEARBEA7hdCjDsGHDsGzZMjQ0NOCnn37Chx9+iHvuuQdvvfUW3n33XSQlxZ9McM0vmjt3LtasWYNvv/0WaWlp6NevH+bNm4fu3btHjjl9+jSmTZuGN998E2fOnMHQoUPx3HPPoU2bNg62nCAIgiCawkIoQ2pqKtq2bQsAaNeuHfr06YO+ffviiiuuwPLly3HrrbdiwYIFWLZsGf7v//4PLVu2xKhRozB//nw0b94cH3/8MW6++WYAjYHHDz30EB5++GG8+uqrWLx4Mfbt24dmzZph0KBBWLRoEVq3bm3Jb1GLa1xdn3zyCSZNmoTPP/8cGzZsQH19PYYMGYKTJ09Gjrn33nvx3nvv4W9/+xs++eQTVFRUYPTo0Q62miAIgiDEYTWUYdCgQejduzfWrFkDAPB6vViyZAm+/vprvPLKK/joo48wffp0AEC/fv2waNEiZGZmorKyEpWVlfjjH/8IIJxy/sgjj+DLL7/EO++8g7KyMowfP97W3yKGayw+H374YdTfy5cvR+vWrbF9+3YMGDAAwWAQS5cuxYoVKzBo0CAAwLJly/DLX/4Sn3/+Ofr27etEswmCIAjCdZx//vnYvXs3AGDKlCmR1/Pz8/Hoo4/ijjvuwHPPPYeUlBT4/X54PJ6I5Yjnlltuifx/586dsWTJElxyySU4ceIEmjdvbsvvEMM1Fp9YgsEgAKBly5YAgO3bt6O+vh6DBw+OHHP++eejY8eO2Lp1q+R5zpw5g+rq6qh/BEEQBJHIcBwXcV1t3LgRV1xxBdq1a4eMjAzceOONCAQCqK2tlT3H9u3bMWrUKHTs2BEZGRm4/PLLAQA//PCD5e2Xw5XCJxQKYcqUKejfvz969uwJILxXSkpKSpPI8jZt2uDw4cOS55o7dy78fn/kX4cOHaxsOkEQBEEwz969e1FQUICysjKMHDkSF154IVavXo3t27fjT3/6EwB5F9zJkycxdOhQZGZm4vXXX8d//vMfvP3224qfswPXuLqETJo0CXv27MFnn31m+FwzZ87E1KlTI39XV1czJX5SUlKi/g4GM3D8eDZatgzA76+RPM4oTmcaEARBEM7w0Ucf4auvvsK9996L7du3IxQK4emnn4bXG7aVrFq1Kur4lJQUNDQ0RL327bffIhAI4IknnojMqV988YU9P0AB1wmfyZMnY+3atfjXv/6F9u3bR15v27Yt6urqUFVVFWX1+emnn5r4HYWkpqYiNTXVyiYbIjs7G5MnT0ZdXR1WrEjDnDl+hEIeeL0c5s8PYuzYU6aLEKszDUhUEQRBsMGZM2dw+PDhqHT2uXPnYuTIkbjpppuwZ88e1NfX45lnnsGoUaOwefNmvPDCC1HnyM/Px4kTJ/DPf/4TvXv3Rnp6Ojp27IiUlBQ888wzuOOOO7Bnzx488sgjDv3KaFwjfDiOw1133YW3334bH3/8MQoKCqLeLywsRHJyMv75z39izJgxAIB9+/bhhx9+QHFxsRNNNo3s7GyUlwPTpwN8TalQyIMZM7JQWpoFoUYwQ1RYmWnAQvomQRAEEebDDz9Ebm4ukpKS0KJFC/Tu3RtLlizBuHHj4PV60bt3byxYsADz5s3DzJkzMWDAAMydOxc33XRT5Bz9+vXDHXfcgdLSUgQCgUg6+/Lly/E///M/WLJkCfr06YOnnnoKV199tYO/NoxrhM+kSZOwYsUK/P3vf0dGRkYkbsfv9yMtLQ1+vx8TJkzA1KlT0bJlS2RmZuKuu+5CcXFxXGR0ffddo+jhaWgA9u8HeMOXG0QFq+mbBEEQdqM2RMHsUAae5cuXY/ny5YrH3Xvvvbj33nujXrvxxhuj/n7++efx/PPPR7123XXX4brrrot6jeM4fY01EdcIH/6CDhw4MOr1ZcuWReoCLFy4EF6vF2PGjIkqYBgPdOsGeL3R4sfnA7p2bfybRAVBEIR7EIYySEGuf/NxjfBRoxLPO+88/OlPf4pEnMcT7dsDL70E3H572NLj8wFPP30CPl8NKivDxxw7dszZRhIEQRCaIFFjP64RPgQwYQIwdGjYvZWd/TPWrFmCl15yulUEQRAE4R5I+LiM9u3D/yorT9v2nVIp9ARBEAThNkj4xDFmCJYdOy7Ce++NBMd54fGEMGrUWvTps5OpNhIEQRCEWkj4xClGBAufQRAMZkTOAQAc58V7741Ely774ffXGM40sFpUqYFqChEEQSQWJHziBKHlBICsYFGCzzTYtAlYuDB6VxOO86J//3EYOFBfUJ5aUVVbW4tKPmpb4jxGiycGg0GsXLlS8TNq0v9JQBEEQbgDEj6MIzWhCjO4Yi0nxcVbI4KCh+O8OH68pWpLTXZ2Nvr2FU+hLyrKht45XI2o+tWvqvDaa68pnktrPSK1dY5iUUr/d0P9JIIgCCIMCR8b0GsNUDOhillOtmwphscTihI/Ph+Hu+4ajvz8JNWTr1gK/YsvNhZM1IuSqPL5rKlHZFX9IqqfRBAE4R5I+FiMEWuAmony+PHsJtYdwIvi4s3YurUYHOc9J1g8KCxso6XpAKJT6Lt2NS56eORElYyHyxGOHTsmK06pfhJBEERTPv74Y/zmN7/Bzz//HLWHphz5+fmYMmUKpkyZYlm7YmdMwmTMtAYEgxk4eDAfwWBG5LWWLQPweKL3svB4Qigq2oYpUxbhnXeCKCsLCxi9tG8PDBwIpKUFUFlZKfkvEAhoOu+ECUBZGbBpEwy30UrWrFmDZ599tsnv40XtmjVrHGoZQRCEfsaPHw+Px4M77rijyXuTJk2Cx+OJ7IwQT5DFx2b0pm9LZUD5/TUYNWpt5D2fj8O8edUYO/a6c1YKvynttiqOha9LJIddKe9K3xMrTsl1RRCE2+nQoQPefPNNLFy4EGlpaQCA06dPY8WKFejYsaPDrbMGEj42ojd9WykDqk+fnejSZT/69x+HoqJstG+fBSDL1LY7FcdiZcq7UOgcONDV8dR6giAIu+nTpw8OHDiANWvW4PrrrwcQtnJ37NgRBQUFkePOnDmD++67D2+++Saqq6tx8cUXY+HChbjkkksix7z//vuYMmUKDh06hL59+2LcuHFNvu+zzz7DzJkz8cUXXyAnJwf/7//9P8ydOxfNmjWz/seeg1xdNiElXoRuKynE4ng4zotDhxpNJX5/Dfr1qzMtBkcJMbebFd+h95opsWPHRVi0aApeeWUcFi6cgnffHaX6ewKBsMtPKrbHjmtDEET8UV4edv2Xl9v7vbfccguWLVsW+fvll1/GzTffHHXM9OnTsXr1arzyyivYsWMHunbtiqFDh+L48eMAgEOHDmH06NEYNWoUdu3ahVtvvRX3339/1DkOHDiAYcOGYcyYMdi9ezdWrlyJzz77DJMnT7b+Rwogi49NSIkXPsVcDj6OJ/bzb711Lerq7LdM2FV40Mg1kyNWUInpf15Y+v17o15XcvmxUJTRDVDdI4KIZulSYOLEcKar1xtO/rAr7vGGG27AzJkz8f333wMANm/ejDfffBMff/wxAODkyZN4/vnnsXz5cgwfPhwA8Oc//xkbNmzA0qVLcd999+H5559Hly5d8PTTTwMAunfvjq+++grz5s2LfM/cuXNx/fXXRwKXu3XrhiVLluDyyy/H888/j/POO8+W30vCxybExIvHE0LLlscVPxsbx9NItMuLt0BYOWkoud3MgK8zpHTNtFaO5o8Xz4RripiwlJusy8tzLa10zTJahAzVPSKIaMrLG0UPEP7v7beHM2rtsOK3atUKI0aMwPLly8FxHEaMGIGcnJzI+wcOHEB9fT369+8feS05ORmXXnop9u4NLw737t2LoqKiqPMWFxdH/f3ll19i9+7deP311yOvcRyHUCiEgwcP4pe//KUVP68JJHxsIla88NYAObEgnCj79NmJlJQzeOut30Udw3FefP11D1xwwTdR2UVWTRpWWWGE8EUO6+rq0K5dNWbM8KOhwRMVuF1bW4u6ujrJ6s5i4o8/b1nZWbz6KodQyCN4NwSPB7LCUo4dOy7Cu++ORKz1iOO86NnzGvz2t/64ncS1Chmqe0QQ0Xz3XXRNMyBc5mP/fnuEDxB2d/Eupz/96U+WfMeJEydw++234+67727ynp2B1CR8LCZWvHTpsh/Hj7dEy5bHoyZTMWsAP1FXVFRgzZo16NDhkIjLi8P69cOwYcOQKLeKVZOGEcuVFniRMG0aUFrK1xHyoH37LAQCDXjppZcUzyEm/rKzw1Wno2sIcRgxYq2ksFQSdbwVTMxl5vGE0Lt3s7gVPQAVcCQIo3TrJl7QtWtX+9owbNgw1NXVwePxYOjQoVHvdenSBSkpKdi8eTM6deoEAKivr8d//vOfiNvql7/8Jd59992oz33++edRf/fp0wfffPMNutr5w0Qg4WMxQuuFFHKuKeEKuanLiwMQtlqocTmZEVehx3JllNiUdzMmWmFhxuzsKqxZsxPBYIaiay32nMFgBr7++gJR1xl/bfLz+zd5L1Ghgo8E0RSrquRrwefzRdxWPp8v6r1mzZrhzjvvxH333YeWLVuiY8eOmD9/PmprazHhXCDSHXfcgaeffhr33Xcfbr31Vmzfvh3Lly+POs+MGTPQt29fTJ48GbfeeiuaNWuGb775Bhs2bNC1nZBeSPjYgNHVvpjV6Ouve2D9+mFRx8lZJ2LdEVI1a6RcZEYsV1ajt85Po6Bqgbw8da41qT3ShCIUADweDmvXBlBU1N911h6rAo+rqqqwatUqI00jiLjFqir5WsjMzJR874knnkAoFMKNN96ImpoaXHzxxfjHP/6BFi1aAAi7qlavXo17770XzzzzDC699FI8/vjjuOWWWyLnuPDCC/HJJ5/ggQcewGWXXQaO49ClSxeUlpZa/tuEkPBxAUKr0bFjx7BmzRpccME32LBhiGqXk3Aik8s8kprwjFqurMKsLCqtrrWmmWEe8OLH4wnhySercdVVrYz9OAfQEq8DoIkYlOPo0aOG2kYQ8Y6agq5mEmuRieWdd96J/P95552HJUuWYMmSJZLHjxw5EiNHjox6LTYt/pJLLsH69eslz1FWVibbJjMg4eMSYgWFXpeTkaws1iwXVmWYqXGtiWeGeTB06Ifo0eMbjB17HcwuIqkXLRYctW7Eo0ePYuXKlZrasWnTJtHX7arMTRAEAZDwcTVyLicp7MjKsgunfkswmIGTJ9MBhCAMaPZ4QujR4xumUtetSh2vr6+XfE+LkKG6RwRB2A0JH5fj99domuTtysqyAyd+S9O4nrD48XhCeOihCkyceB1TxffszrjSImSULHZ2iUcqpkgQiQUJH5ehdjKQOs6JrCyrUPNb9ExqsZ/hY1jE4no8Hg5jxqxChw7lmDjxOuTm5pr3AzUi9luNZlBpsd5odT1KWezsrHtExRQJIvEg4eMyzAgy5l1k4b2+POjQ4VDkPX6irKjw4uDBJBQUnEVeXkjVeZUoLw8X6urWzVgAn9oMs0OHDuGDDz6I/K0mk01uIpSaqJs1q3VcOKqdwKWuAX/fpbLW1FhvxNL65VyPyclnRC12dtY9SvQaRGTtMg+O45xuQkJgxnUm4eNCzBiIpHYjX7NmjeyEp3Xlyw+sK1akYfp0P0IhD7xeDvPnBzF27CnFgVU4MAvFWElJCaqqqrB+/fqIu4/fHJSf1IWiR20mm1idHl4osOwmVDMxy10DYdVvQJv1Rj6tP4Tk5Lqo+yL1Gb5NeXmXgLAesnaZQ3JyMgCgtrYWaWlpDrcm/qmtrQXQeN31QMInQRBaSeQmNQCyE56WlS8/sAaDGVi0aAo4LjwhhkIe3HdfJn788WX4/TWSA6twYG46aW+Lsj7ITep6s7/EzulWN6FZbqhY641SWv+FF+7G0qW3Rl2vLl32i3wmhAkT/oL27SuRkkIFH+0g0a1dZuHz+ZCVlYUjR44AANLT0+HxeBQ+RWiF4zjU1tbiyJEjyMrKalJkUQskfOIQMZdSdnY2SkpKsGrVKtlJDfCYlinFD5hKk6jUwMq/rjRpK72vJ/tL6pxTpizClCmLNBVvdMKdEOvS0noNlKxbSUnhoUMurb9Dhx8ioof/vvfeG4nhw98X+YwXxcWD43pPM7WQ+8l9tG3bFgAi4oewjqysrMj11gsJH8YwGgezdGnjLr9eb7gM+rmK4sjKygIgP6nV1DQ33Z1j1EWkNGkrva/n++XOWVDwPW6++cqo3YulJiMn3AlilqouXfZLXgOxuB+/vwYPPVSBRx5p16SKtVDgSV3bHj2+kbyG778/okmbWdnTzOmaQnb1F9o6xFw8Hg9yc3PRunVr2VIPhDGSk5MNWXp4SPgwhJxoUSIQCKCs7CwmTmwd2XU8FAJuv51Dbu4x1NWloEOHxkmouHgrtm4tjpochXE/sXEXRiYBo5lkSsJF6X093690zpycHFUZXHIxQ8LvN8udIGepErsGUrFeADBxog8TJniiqlgLizLyQfZi23yMGHEVKit9ePVVLtIfw0THAIVhI7aHhZpCdrif1IorQjs+n8+UiZmwFhI+jFBe3ih6AF60hPduUbL88APZwYP5CIXGRb3X0ODBiBHZALzwejPRq9dvsXv3hecmxhD69duMoqJtAHAuDkc87kKsvVosU3qKLfIoCRc1wkbr91uR9m/HxCpnqerTZycmT+6GQ4dSsWfPOwCi73lTF2IQfj/QvXv4PJUx3SAlJQW5ubmi23wAWTj/fH7jRQ4NDeH+JLaD/bXXvoWePfcCsFb4yKX7W1UFnEWkRJPT1i4rYdV9yGq74h0SPgwQCATw+edAKBTdwRsagG3bAkhLk8/k4h8cMStFeIUd/jsU8uDLL3ujccXtxdatxSgq2iYRq+FFfX3TuBW9limtxRaFKAkXNcJG6/cbEWux2DWxKlmqevbMQs+ewKFDNTh4MF/WRahmSwre5SK1x9CECcCll1bh6af/juTkuqiYH75tHTqUAwhvYmrVQK9k5VByl7JSidsqWLB2WQWr2WustisRIOHjMMLMJ49nSpNJYfPmV7Bnj3TmkxAxK4VY4KkQfnBXGwezZ08VJk5s28Sd9qtfHUF+fpKlD6iScNErrISTWuwEJ3VOrROh1dtr8O1RslSlpKTICmWt8VxqXC69erXA00+PwtGjR3HkiHTb+J3brRjoldopdi18Pg533TXc8n4thx1WGDNEOcuWC1az11htVyJAwsdh+E6tNGGp7fxCK4XYCluszgpvzVDj2nn99X8jFPpl1GsNDR4888wHKCj4nsnVSWlpKfx+v+h7sQOyVbvQW10DKLbds2YdRVlZEvLzz56Lnbkk0u5AIABAmzvP6AScnZ2Nuro6VVY0JwZ6/lqsWzfqXKwS8OKLHhQWtrG9LTx2WWEOHepgyNpFlgvCbZDwYQizXCtCK0XsxHbhhbsjMT6xE53c9//mN7/Bpk2bFCdw4aRldHsNtZ8vKSmJZKyJnUPrYGvF4GzHViHCdufmAoWF0scpiaSqqqqIBUZuAuZjZLRcZ6mCk3YiJuT69NmJWbOKUFPTBl27Gqsubkb77HCN8vc2Fo8nhOuvL0KfPqMU76vbLBesxjKx1C6WLXhmQMKHScwrfiUmZgYN+khSXEm5dlq0aBF5X+0ELmY9id0KQ+4Bssr64hRmxgwZRa1IUpqAhRWftazonYwpkfvuvLwQHNxuLYLVrlFArPgkT/ia9Ox5iWueLbWwGsukt11WCJREsOCR8GEIqx7KWDFjJMgY0DaBCx8MPUHRbn2weMyIGVIa3Gpra5Geni7bBr3XUWoC/uabHujR4xtdKflOZlA5nb2l5l4Cyq5RM4KtxRMajGfZKe0HF4tc/xRer6qqKpw9ezbq/eTk5IgbW6mfO33vzW6XVQLF7hIcTkDChxGseChjO6yZplQt4kmuxpAdQdFWILWHWOyGrkatVrGDm9I9VLMRqxakMgX/8Y9hWL9+iC5xboc1w87vVrvqVjtR3XDDDUhPTxetj8QXkDTyvPCiSUpc8Vl2esSVlv3ghIj1Tz31huT6uZP9Tg697bJKoFRVVUX+n1ULmVFI+DCCkYdSbICK7bBisT12dGClGkMsB0VLIb+HWNMNXY38LuGgpTQIqd2IVQuxrk1hcLxece7kZq9mf7eWVbfae5Ceni5bH8koQjFuprgysngTuzZ6+mxdXV0TIcpbmozee6viXszok2YJlEAgEIntY9VCZgYkfBjBSOePtSrs2VOF2bO7R3VYYf0ePR2Y35tJK2pTp1k0m0oVaVS7h5iZv8nofmVaEYpp3rX5zTc98I9/DIs6Ts+K2YxAb62TkJZ0fy0YCexVY4GVqo8Ui9brwf+/meJKzeJNjRtMSkAIP8t/X+x5Dh06hA8++EC0fUbuvRVuJbP6pJnPvrAPbdtWxKSFzAxI+DgM79NX6vz8cVIIH7bNm1NU1+8RduDRo0dH7T/FI6z9ohc7sprMgJ9AVqxIw/TpfoRCHni9HObPD2Ls2FNRg5CdpnOj+5VpRSimjx07hjVr1qBHj2+wfv0Q3StTMTGlZbNXHj2TkJZ0fyOodSeb6UIwOimrFVdKSC1ukpPrcPBgPioqcrFx42BVbrDJkydH/S28XmGrY7gwa+x5YkVP7P3g+13Pntegd+9mqu+9FW4ls/qkFeNQMJiBLVuKm7xul2XWakj4OIwwKFVuMpALXhUSCASQnX0cHk8L2fo9AIeKijwUFHwfeSUvL0821kQNcpMWS1lNYgiLSYa3cuDjkTy4775M/Pjjy/D7a1BSUgLAXpeN0f3K9BDbF4yKV7Oy9PROQmoz2fSiVsyYbZ1zOp1cznJx4YW7BbXEmrpJW7c+jPr6VNl71zT7zNPkPGLXbvPmYlGh5ffXYPjwNOTm6qvRZKZoNdIn+VgcK57948ezIba9THHxVubGbT2Q8GEMIxlXwpXfqFHRD+cvf7kX33zTA43ix4ONGwejZ889mDjxKrRq1Up2wjFr0jKaUWYl/G9TWkHxmSV2WrGUvsuuthgVr2bHcbESfKlFzFhtKbSrHozQvVZaWor6+nqMHg3ceOO/sXbttyIFVJtanfn35e6dVPaZ8Dyx127z5mJs2HAljMajxcJK3IswFsfvr8HgwRubiDwj7RFPaghF9nV0OyR84gihKImdoI4fz8Y331wQdXzjgOFXNSG5JfjYKFpWUGqEgNYNXaUwY78yPVi1jYdRWJmEAG1ixsgKXW6jVcA+IajkXisogOhecNFwqu6d+CTcSOy1CwYzsGHDYKhx72uFlcyw2KQHXvQAIQwevNHwPVezkHLz/nUkfOKY2AnKqUwaPZglFvSg1XoiJQSOHTsmGyukR0gqWcyssKixWkiSlUkI0CZm9Frn5Esb2CsE1bgbpTdN9gAIIdaVInXvxK4XxwHCGB/hZ6TcNGaMd05mJArh3VxN3YDeiCVfb8A+j9xCqrS01NULYRI+CYLcYFtVVYVcC8vVSpneY7M0ePTu/m4mZlhPli3bIBsrNHnyZJw6lS0r8MxaVRk9j5ODXGzNpF27TiEYzGBmEgK0r5D1BHcrlTZo0eJnR4SglJVJ7JoMHrwReXkVovsIxt47uesFQPLZlBJcgwdvNKV+mdNJGkI3l1LmlVGBIrWQktr70C2Q8EkgpAbbVatWWVZHZ9UqPlA4elCMHSw7darFPfeELT286AH4QofA0KHOWH7EHvrk5GRVn1eySCxf7sP06fICT421xcrKzU4jXjOpDTyeKRg1aq3jk5AWMWOW5UzKsjNhwl9sF4JKVia5a6J072Kvl1Ll5mAwiJUrVzYRJ0AIV165Ef37bzXlNzudpCEsp6GUeaVVoOjZX9FJ67xeSPgkGFKTuRUZH+XlwNSpzc+ZpcOD4rp1o3D77cWYMycnYgnhOC+mTWuOMWPCDxAvengaGsJ1Rlh5qPx+v+wExqd/y1kkgsEMzJnjjxF44pWsjYqW8nJg0yZ3DUw8SjWTpkxZhClTFjk2CWkVM2YIUClBXV+fYrsQVBL3sSUy+GcDUCcgorOe1Fullc6t1QJqdZyb2krwQqzIvNLan5Ws86yKIhI+DiP1oMS6h9wYSCYuYjzYt6+VqLjZvj2I9u1Pw+tt3NoCAHw+DhkZRxAIsLO1hZp2yJnFw5Wso4MvzaxkraYekZ7z6xmgzUBugi0o+N72YGsnd6+WE9QFBd/rro9kdlsAICcnJ0qwWCkg1J77hhtu0HxvrIxz01oJnsfMzKtogaL8G9RsQ/TOO9mOhyxIQcLHYcQeqBUr0s5ZA8KT1YIFJ5Gd3dzBVmonEAggM/NsExHj9XJo02Y/vN6uTV7/5JOl8PtrMHJk9MM/YsRarF0r/vCbiR4zrxJSK08rK1mrrUek9VrqHaDNQOl6xVoWrBQeavdPs6qvKsWZ3HzzlU0KkVp1PbTGvFghIBonbWuD8K3qT3orwZsVb6Q1plLNNkQtWx7H4sX3Mrs3IwkfBhB2gvJyROI+gPBkxbuBlEyFrFiFhBNDrIgZOXItvvtup+jr/AMrZ6a2cmsLq1Z1YitPK4Mk1dYj0notndiqg0fpesVaFqxE7f5pZlwHoWVpz54qHDyYj5YtA7LPiJ3XAtAe82LGpCdt0fRh7Fh3xrXpyVI04tLTu3m0mm2Ijh/PttSibRQSPoxhJMZFbOIuKyvD+vXrLWipNHL1hNSIG8C5Qof8w2iHb9rqIEm9WU9Kv92pNHKng0pjsTp9XNzC9ssmmVNOYNRlZcRlapVF02n0Pq9S114uo+urr37G00+vxcmT6QiFfhf1nlqBorQYYXlvRhI+NqF2Iu3WLWxuFIofnw/o2lXd97D4oEunRLJZxdnOdHorr4Eeq5Ka3+5kGrmZ18uouLVaAKq1sMVih+XXiHXUqMvUKoum05htBZbK6Ao/41kIhcbB4wkhtqaSFoEitRhhIe1fDhI+NqBlIm3fPvz+7beHLT0+H/Dii2xFxMczZqTTs+JyBNRbSdSYvXlYH9TkMDPo2y4BqCVzyk4Xj97vMctlaub1NyKCzbQOq3le9cYiij3jjQUhw+JHz7MstRhhzUIrhISPxWiZSPlB+aqrgG3bvIKdekOorNQ3qFkRsBuvBAIBfP45EApFX+OGBmDbtgDS0tQN9nKrYWE6r10oWUnUBCsWFHyP0tLSyOt2DWpm9l+zXSR2CUCtmVNuwajFzOj1NyKCrcqa5H+X3G/QY22Te8Y5zotrr12FZs1qTX+WWbXqk/CxGLUxO1J73+zZE/23Vr81q9sNsIZwUvR4pjSZZDZvfgV79qifFN10PdUEKwJAfX191OfsGNTM7L96XCRisSh+f1XkfTsEoJstbFIEgxk4eTLdsMVG7/U3IoJZiDFSqvgeW7tL6Rnv0KHc1f1JKyR8LEZtzE5Z2dlIxoZcB9Tjt3bLJGzXrtJCeDN1Zqa6HdeNxg2wbIFjdYK1OzWeRzoWpQUGDy6OVAK2QwCy7DZQCy8iX3qpIVLNHQhF7oXe/qbn+huJEzI7xkjrmKAUOiH2/lVXhd9j9Rm3GxI+FhIIBODz1WH+/DTMmOFHQ4MHPh+HefOC8PlOIRAIr1TDHbV1JNjMqh2VWUbtrtJmCoLoAaI1Ro68CH367LR0krHDAmdEXMn99mPHzlMlzll3m6od/OViUTZsuBIAZLdB0HId1MSJsOo2UENTK0njppocF8K1164ybHXQs3AyEidkVoyRljFBKXRC6v1t2xrbaHR8Y/35VgMJH4uIdV3dfXdGpKOdOFGDl14Kvz569N2YOLFFVLBZbMaG1GaerKL1wRCbWNatG4VZs4oi6a38ec1a/TcdIDxR193KScZqC5xRcSX223fsuAhz5nRFKNQtKpZBy3n1YkVpAbHBn3/OKiq8EIbMiK3sAQ82bGjcBbukpARZWVmRd9VcB6U4kWAwaM6PZQA5KwngRbNmtYaeN7GFkxq0WkDKy4HPP09BMJhhqvVEzTOjFIN45kwVdu7MEn3/yy9PRr1mZHyTG1/4/dKUcFo8kfCxCLEqm2Idbd++UJMYIKG5NPaBbteuGtOmWdlyadROQHIPBr/RoHBzwc2bU7BwYfRg2NDgQU1NG1gVsykWe2VHLRq7MFN8NArTxliGGTOyUFqaZXm2oZWlBYTPpPA5e/VVDvPnV2HIkGMApLYGAAAvtm0rwpAhG+HxeDQFGKuNE1GD05OIFvRYSWLHndjfK5Uddu+9/4eUlIDis6DWAtLYF7Mjm+RqEdBGUBuDKPX+nj3vQM+G6vy1jr0HUtc0NzfXFTGlJHwcpqDgbJMYIOFGlrEP9IwZfpSW2p/ernUCknswYunb11jtIj2IxV7ZVYvGbYit0rVmumlFb1VZPcQ+Z43iYwOA8CT2619/ik8/HQAguhrt1q3FKCrahpUrV2oKZlUbJxJrSYqFhUlEC1qsJCkpKRLjTnhhdeTIEaxatUryGi5f/pnqKsFyFhCpNPBYCzHQVECbJdT5/qJ0/YxaocRKI5g19rMECR+HycsLnavbw6GhwdNkI8umE47H9p3KzahtI4XaOCgzEftOr5eL2jaDaERqla41000tatPrzfpeqYlz27YibN1aHJlAOnUqw/ffFzQ5zkjBPCULSFZWlitT1eWQs7DwE29tbe05scFJCl9eEFq5711VVRVWrVolmQYutBCLCWixcdKo61bJQmUkhie2NIKVY7+TkPBxmGPHjuGqq4APPqjC669vi+qoyclnmjzQPh+Hrl09UqezBCPbaMihNg7KzIlV7jsTVfQouUqsznSLRW16vdbvlfqdUrtc86IHCE9yP/zQCXJVbvWQqFk2UhaWnJwcpKSk4KWXXlIUviUlJZFzWXUNz54NZ3uqcdGpsYya5bpVitHRG8MT+4xYNfY7DQkfhxEWsysQLCaFJlOAAxC2Bj39dC3at7d3p3aj22hIIZy4pDIygsEMbNoUdoeZ8aCpjb2Swk3xFGqRiskSFlt0Ip3a7Akt9nfyv0/se4qLt2LLlv5Rn+c4L/r12xxlBVLTHqUVfjykqpuJWuHLixJA+zVU+xwnJycDUNcXlSyjjYks4fecsJ4IXVmxiLlNrRr7nYaED4PEmkzDoofDm29+j8suOw+VlTW2+vat3kZDKpWdf33hQq/le2bFIjZAuC2eQgtqKxXbPSmbLQqkfmfs9wCIsvgA4UmsqGgbioq2qW6P2hW+m1PVrUKr8NVyDdVmPqrZcFlte8USWey2nmip8u1EGIJdkPBhEPGYAw/ef/8T7N37feQ1O3YftmIbDSFSGRmtWx+O8Zfbuzpy6zYA8YjVokBobSwoaHy+lIJI5VAKzk5Pr7Ls97CIltpSWsSGEdSMW5WVlVF/K/VFufb6/Ufg9baM9AcgHLqQkXEEgYB5wfpm4EQYgp3EpfD505/+hCeffBKHDx9G79698cwzz+DSSy+1tQ1GXCJqUz6t3n3Yqm00hEgFlv7wQ0dRf7nbfcsEW8gVzjS6HYJSjEoioaW2lFaxwRpS7d2yZRVGjozubyNGrMXatfK70TuB2pAAq+cgq4g74bNy5UpMnToVL7zwAoqKirBo0SIMHToU+/btQ+vWrW1rh9KDLrdZJSsBj2o7tZHOLyXyOnb8QSSwO+xbtqKgHZFYBAIB7NlTJbs7OGBsOwQzKvtKLaDMeAbsfo5YmdSdRE5MK4lCNShVr47HGEU9xJ3wWbBgAW677TbcfPPNAIAXXngB69atw8svv4z777/f1rZoedBjO2yiBDxKibz27SujXud9yytXQlDl1t64HyI+EFpkOO6XUe8ZKWIZO6koLWBKS0tx8mQLHDyYhIKCs1FVyvnziY0hZmQGWVkY0i74wGMlWJvs9YhpNRaz5ct9WLy4VZMK4DzxHKOolbgSPnV1ddi+fTtmzpwZec3r9WLw4MHYulV8T50zZ87gzJkzkb+rq6stb2csUuZ2t5l4tVJVVQVAehUU+/qPPyKmym181JQwgpWrdqc2VLX6e82wyMQGv0tNKnILmHXr2mL69CzV4kNNUUelXbvtLAxpNX6/n5l97+xA7neUlwP/+7/RW/DYVV3djcSV8Dl27BgaGhrQpk2bqNfbtGmDb7/9VvQzc+fOxezZs+1onihSwb1Cc7uTWLVjeiAQwKpVqyJ/S4k84eviBR21xf2wvDu6Vqxetduxoarc95aVndVsDdGCEZdyXl6e6u8X69vBYAbmzPGrTm1WEzf0888tsXbtKElrqN2FIfWi5RllYd87vsihk8RrvR2riCvho4eZM2di6tSpkb+rq6vRoUMHy7+Xf7iVStY7yYoVaZGdlM3eNd6sKrdaa0o4NZmbjdUVVRstSdmODJzvvJNtiytGTRXhWMzoH8ePZ0dl9wDy24AoWamSk+ti9lNrasWxqjCk2bD2jCp9DwuLpHitt2MVcSV8cnJy4PP58NNPP0W9/tNPP6Ft27ain0lNTUVqaqodzYtCuKp99VUuahBkYc+o8vJwLA0/kLJgiYpdoeutJ8SaqNHqrlLapdno/llOx3/YXSZfroqwnpIGFRVeHDyYL2sl1bsNiJSVqr4+VXR7G6EVR+kcTi+0hLD2jPKIPatGElnMwupaa0ZhLSElroRPSkoKCgsL8c9//hPXXHMNACAUCuGf//xn1IPPCtnZ2cjOju6wWgYhK1caYdNp9IqUBUsUv0Lv2fMa9O7dzLR6Qk6hVWSo3aVZr7vC6b15rBZ1VhO+n60RCo2TtZIa2QZEakdwLVacREmeMBO5Z9XJPmlFrTWluYUPgTh27DzFHeidXkiJEVfCBwCmTp2KcePG4eKLL8all16KRYsW4eTJk5EsL5aI7bBffnkSe/a8ozgIjR49WlOMgR7CplN1lii7Tb1+fw0OHXoVhw5Fvy412bO22uDRIzLU7tKs113hZKyAVlEnvK982528x433U52V1Ij4iLVS6bHixHvyhJkYWRBYGVdoVa01OSvWihVp5+LTPHj1VXkh4/RCSoq4Ez6lpaU4evQoZs2ahcOHD+NXv/oVPvzwwyYBz04j1WH9fuXP5uTkWL7CCJtOPZFd48Pp5NUYO/a6qOOEqwmnBYbYQ8riaoPHqMgwe9UeCASQmXkWXm9rxFaXra09hnfeScHFF/stu7daRJ3wvnrONZXj7L3Hwv6eliZuqeI4L3r2vAbFxWeQlZXVxO1hpvgwoz8EgxnYvDnFtL3x4gUjz6qVMUtaa61pGaOlFpHTp6sXMqwGXced8AHC6pZF15YQIwGEVltY5Eyn/PfHPhQsCgxWVxs8ZgQkmjVxCoV4bHXZnj13Y+TIC8FxXni9HF56yWP5vZWbxCsqvFH3leMaP6fmHpuxAo/u7xxGjtyMLl32i1qq9ux5B4cOhS1VUhtEmoWR/qBmbzynFzdOUF4OHD1q7FllwT1rxhitVciwGnQdl8InnlBbL8Qs9JhOWRUYrK42APY2AJTaHyk5uQ5Ll94q2DPNY9u9lZrEd+062eS+ClGKBzK6Am/a3z14772RmDJlkSXuRzuILash9gyzuLixmvBvDrv8PR4OHk9430QtzyoLYjF2saB3jNYqZFgNuibhwzh2b5apZ5sKPQJD7aq7pKQEZ8+e1ZUVwepqww0bAPKiQ6p2kpOBxl9//U4Ty4oQNUHeetstFXzNB/5bFTRshpVX7hxiZTWE9/nUqWwmFzdWEha4jXGO4QzXEK699m/o0KFc1bMqJxbtFEQHDyaZsgjUI2QmTAj3k/37w2MvC/2FhA9hGD0Cw8imhWpgzaIixE0bAOpNu7YSsRigsLvLWiuLUvA1H/hvRdCw1POiJVVa7BzBYBArV65UvM/5+TcjFOoYdT6nBbBRlISHWGYr4EWzZrVN7q9YP5OzhP/jH/ZazwoKzpq2CFQrZPiQCf67uncPv84P505m4pLwiQPsNqXGBkDqNWfq7fRK1aSVLCpPPhn+/LRpV6NXrxa62pAoGM0es6pvxlpWAFiemq02+FoOKatLbJ8WO07sedEaryT1zCn9pi+/fEtU7H344Wq8916q654lNW47LZmtYkhZwrdutT80IC8vZNjlpEXISIVMxOKUVZuEj8ux2+8eGwC5YMEJlJTUmFpDQs33y1WTlrOoCD//6quc6+IUnNhyQ6/7xuq+KZbSbRd6r4mY1UWYHuz1cliw4CSys5vrPl8sap9Bud8kJowuvHB3JP7LTc+SmphE3mI8a1YDZs/O01XoUcoSznH2xx4eO3bM0BitVcjoCZmwExI+LsbuoGKxAMh7703H99+/FDUYGK0hEQs/iUvta9a69WHU16cqFtNq2n77AnXNwqly/lrdN3r6Jgul/7Wg16UlvDdN04M9mDatOcaMUd8nzbzXcr+JlaB3oyjFJMZO8lOmZGgWuHKu9i5dzoiUjNDndlL7zMS6Q7WO0awLGa2Q8HEIM1budmct6d1XzOjDwE/2mzYBCxc2/f6lS28DxzUW07rqKvXtZyXLSwtWmobN2JRWb/VlK0v/s5BZE4sbq1SzHPSuFqWYRLUxeFIoudrXrg2XjFi3btQ5QaTO7WTldhluESxmQcLHIcxYududtaS0uaFVhB/4bHTq1PT3Any2RaNVYds28WwfMzY5jVdSUlJUuRGVMLqlhhUTJitp2MJFjNJ1+vDD1dizp9LxndKlEHuWAGeD3mMRq+ydk/MzcnJOyyY9GEWNcOrTZycmT+6G6urWqtxORrfLMGNBE0+Q8HEQIwODVVlLchamWD9/uHCbtZsbxj7wN94IvPZaeHUpJoIaGoCyMvFuLdZ+FrK8WODUqWysXTvK8Ka0Vm+poRWz6pdoQWxX99gJTeo6ARw4zou//OVWXHnlRkycyOZKnG/3u++OBMCLHw8OHOiKPn12Om5BkKrs7fH4MWrUp+jTZ6dkGYnS0lJb2rhlyyoAym4noyENZixo4g0SPi7EyjowcimvgL2bG4o98K+9xuHdd4/h1Ckv0tJCGDUqp4mvPD//bJPBhCe2/U7UzXEiQFkJKzalNbuv6LkeX311WlQcW+mS0Vp7q0+fnWjd+jD+8pdb0SgivNiw4Uo891w1HnnE9CaaQrhStbByticilp0kdtwQVvaOFfRifbK+vl7zd5r5rMaKRiMhDRUVXtG4SK0LmniDhI8LsboOjNJkYNfmhuIPvAerVq1DQcH3AKK3V+AtOCkpR2TP63TdHKcClKWQ2qNLjRtTacA3s6/EXreqqiqcPXs26pjk5GT4/X4Eg0G89NL7WLfu3wA6oFFQ6K9DZKVgra9PjWpjGA8efzwTJSU/W5YqbmTClov5cxKxcUOIUUHPw1v2rH5WjYQ0HDyYpCsuM94h4UMwi9gDHzsZi1lwdMa/2oodokZNQK8w1qRv3yJs3Vos6poqKSlBVlZW1GedKEAm/D4pq0p5ObB4cQZefHFKxH0EhGC0wKGVgrVly0CkjUJCIQ+efvrvePDBy9ClSxfN51VC6TdVVVVh1apVou/JxfwFg0FbK84LERs3hJgVl1hX1xrfftsmEkNkFUa2fSgoOOtIXCaLVm0hJHwIJhHGME2f7j+3V454HQ0pqwK/IjOSDeRW1Ab01tXVRcUAACH067cZRUXboq5pVlaWYxOZFpYuBW67DeA4YR2c8D5LY8asQocO5YZWulYJPb+/BldeuREbNlwJoKnV7bXXXrPMFSt3ztzc3ChhJHyW5OK4Vq5cqdheKzLtxMeNsK+L46THEK3s2HER5sxpbXnAvNyG0Wpq8OTlhXQX2xSip1AmS1btWEj4EJajVdXHxjDdc4/2OhqA/fucsYKWYMjYGADAi61bi1FUtM3WNhslEAigrOwsJk5sHQnQFsJx4lsNsET//lsBABs3DmZqk1O5yUkujkuuvVZk2smNG4D6yt5JSfLTYmM9sOhsUrMD5vVsGB1LSkqK5D0SZnopjdF6hAzLySIkfAjTUJPNogajdTQSHS3BkPEQA8BPEAcP5iMUGid6jB3mfTPo338revbcY0vygFnYUdxSDUrjhto2ZmVlyU7ymzenNKknJny+zHLfGC0ayFuL+I2ehaxZ0wKLF7eLVAu/4AKPovBkWchohYQPYRpSFhY7isdRnYowUoHKPh+HjIwjCASSovbT8fuPwONpYVoMgBO+fX7gF68tA9PcG1pQ6vNKZSNY7cNm3De7C6/qQW6S79tXPtjYjA1ljSK3xUQwmIFFi6YILFbRVbdZLPZpNiR8CEuxo3gc1akIIxzshNluHk8II0asxdq14WsyefJkAIgcO2pU0+und+J10rfftCZOCP36bW0Sr2Q1avo8f50qKipcFX+WnZ2NkpISyYBnJbQIc7vhF09yW9+orZ9mxoayRpB7/uQq2Nu9a7xTkPBxIXavqvV8X3k5sGULH2gafs0KX7jU/l3CWiKsZxiYhXCw0xJ7YXa9HSdN4lbWmVKzEtbixtGymSNLxGb3qUWLMLerD/HueeFGsfzWN8IJv7wc+OKLIP71r1cifUpr/TRWAn6lKtg3a2b/rvFOQcLHhdj9AGn9PuGKNxazTdpqaomwMuDYjRaXCcvuFa1o+S1qxa4aK44b996yE73C3EpycnLQ0JAbs1Fs9ITfeO/98HimRCzKeuqBsXD/Yy2jfHr8iRPsuyDNgoSPS3GyfoocsSveWMzeG0uulkhtbW3kNRYGHDfjdmuYEK2F59RYcfTuURZP11UrrIhtuZgjILYKdHxUPuaFZ//+41BUlB2J7bFz70cnEd/NkSB0Ilc1NewLr4LPV4lAIGDK9/GrF48n/KXCGJXXXnvNtO9JVEaPHs3EhpNmwgfhq/lNYStOQHLbC75/xe69JdYfhcfxZGdn44YbblDVblZEUry5jvmCh0L4CV9sPGOhOrUZ+P01+MUvKuDzVaKyshI+XyUWLDgBny/8vpZCiW6DLD6EqYQHEa7J1gdjxryFDh3KVfnCtQ6YrJjN45GcnJy4Ej1a0GLFEaI1zqhLly7MuGLVxDGx6jrWI7Rqa2uRnl4pGayck3MevN4WstXjgeisUrPgf49SxqoRgSkWWL9z590IBFqga9f4FD0ACR/CRPiMh1mzGjB7dl5UllDPnnubHC81cKoZWGNL6bNiNifsR+vAr/Z4IzvNa+2PLIhLLRmYLLQ3lthxIxgMNtlwNCkpKRKcXVtbi9deey3ynlSw8uzZt+Hhh3PR0CBe+Tk2q7Rdu2pMm2bO78nKmoY5c5pF6u3Mnx/E2LGnIsdYITBzck6jVy9TT8kcJHwIU4itGzFlir5qyzwsDqwEmwgnPLHJDmic8PROFEpWnIoKLw4ezHdtHSmrigrajZq93HgqKyuj/pYSqw0Nf44SRcJjxLJKZ8zwo7TU+HUrLwemTm0uuCcezJiRhdLSLMVzG7ECHTt2TPR88TQmk/AhTIGqLduHlDvCitgLt8Rp8IOylVuUSPXpFSv4faHGubKOFGWjKSN178Vr4nhMyYQyUuhRzGqutoCi1DHxFOtHwocgXIScO0Jr7IXYsWHLRRIKCs4iP9+5YnJuIRjMiNR/AdyX9aM3G00PdgZF21V9WLwmDoeuXZvuF6cVsV3mtWRZmf3sxlO8JAkfgnAJatwRWga72GPtqLKtBTeUzj9+PDsqkB9w115nRuKYtGJXULSd/fiaay6G31+BOXMa972KreKsl/btw22//fawpcfuLKt43gaIhA9BuAAr3RHCnc35STwsqjj86ldHHLH8sCbCpJCrIyWGXa5DPaLRyqrXPFb3IytjlcSEwKZNmwBsitoJXk3mqlomTAi3ff9+2JplJbYNUDxBwodwJfFWS0QOK90RcjubNzR48MwzH6Cg4Hvb/PssijA5lCwlfLFEwL4AUSOi0e2xeVZtgKq0H6CeKs5y8DurA2FLT/fu4df5eGwr+5LUNkCzZh2V3MPMbZDwIRzDiChhtZaIGcSu1q10R8jtbC60XNjh32dNhKntn3KWEr5Yol3ES3aWHqzaAFVuP0ArRKLczupCtD4Havuz1DZAZWVJKCxU/XVMQ8KHsBWt2wXI4UZRo4TYav2qqxrft8odoSSqrIQXepmZZwGwIcIAeXEdmyFjl6VEzoWVyNlZejZANSoErIrjiu1vUrE2Wp8Dqf4c25elnr/8/LOS53ZDPJ4QEj6EKagdRPLy8uJ28DWCnIvngw+qoo61apK1I8Yjlmih1xojR16EPn12OibCYmGpr8q5sOzMztKCXROing1Q5YRtMBjEypUrAWiP4zITJRebVtTce6lFUF7eJaLHuyUeTwgJH8IU4tn1ZDVKLp7XX9+GggJ72mKGqFIz2YkLPU/EheCECGMZJReWndlZanFyQlTbj6XGo9zcXEyePBlHjx5FfX19k8ytP/5xP9LTre2TdrnYxBatYs9fSkr/Jse51bVKwoeIYHR1RqJGH2rjbNxA7GQ3dSpwzz3R/UlO6AldCE4E2rJoslfjwhKiRTRalSTg1gkxFt7qAyAqc8tq0QPY52Izsmi1Kpjcakj4EADYMleyOPnYgZNxNkaRctU99RTw9NMcFi48iXvuaQ6APaHHZ9A0VmCO3hdJbNC3K6tQrQurtLQ06nNaLB5mW2rjJdbI6Wr0dj4f/P0QZpMJqaurQ2VlZZO+YLTIolOQ8ElwWEsfZkmAOYEbXTxyFhwA4DgP7r03Hb1770evXi0ir7Mg9ITCYtGiKeC4Rrfbffdl4scfX4bf3zQ2xi7XrloXltj+ZGox8/lmNdbIKYwIX7ufDz3ZZE4XWdQLCZ8EhqX0YdYEmJPoXVnqGWTNsFzIWXB4OM6L5cs/Q0HB9ygpKYm87rTQ49uu5FYQEzh290enr5UaWIw1shphrSYhZghfO++52nsSe5xTRRaNQMIngWGlhgtLAswp1JSHlxpgAf2DrJmWi9jJToiwP509e7bJ57QM6FYUpWTF7aaEmwoMxk7aACI72McTZtdqqq2tjfpb6p7HHuck7du7Q/DwkPAhHHc56BFg8RQHtGJF2jk3i3zKqlXF8MwUk/xkt21bEbZsKQagvz+JCT2rMgOdfgZiaaxt1NR65ib4STs2Lbtdu2pMm2be97BQyd2sMSk9Pd3U48wkGMzA5s0p6NsXSEsTjwfiYTmLl4QPAYANM7raySde4oB499706a0jsSVu291bDL+/BkOGbERR0TZD/cnuqsdOPwPiQdaNtY3kSEpSN5Q7sYWLWFr2jBl+lJZqEwhywsLpchrxMibJwYvXhQu98Ho5jBy5OapfilmtWbXSk/AhIrBgRpebfILBICoqvHERB6Q2pVuI2/YdY6E/acWpNssFWasRwllZWczW0RKLn2po8GjK8FIjLJx69sNjkvtT9+WIFa+x/VKq0CKrsVwkfAjHqajwRnz/cvVbVq5cGTdxQGrde2Zu8cEKycnJqo5zm9AzgtogazlY7R9SfVxthpdTNYHU9r9Dh85zZS0bLcj1SwCShRZZhYQP4SjhlVxrhELjVJVkdzoQ22yU3Ht2u3vswO/3M2udcBq9QdYsi0QjGV5O1gRS6z47dcpvuJaN0I3n8xlotEXI9UslUcQiJHwIQ+gN6BNLX1cT38JaEKoQvdeCd+8dOtQegAcdOhyyrI1WoGfSZUXUOBUUK9VXlPq3nQHfepC6Tnrip1ioCaR03kAgAJ+vEvPnp2HGDD8aGjzw+TjMmxeEz3cKgYDyvYl1482fnyZ7vFXI9fHYfunzcRgxorFfuiEjUggJnwRG76Cvp9Jt7Oe1xrcIcToIVYjRa8Fz4EBXUR95VVUV8xYffmV85MgRrFq1SvF4lqwTdgbFyvWVIUOORY6T6985OTloaMhlNqNReD2N7mDPek2g2IJ/d9/duKXFiRM1eOml8OtywkzMjTdjhh93351h+7im5ll49NEgAoEWyMg4EtnxnuXFqBQkfBIYPYO+3kq3QszYsoCFwFkzrgUgvxnhqlWrXBG3lJ2d7XhmjV7saI9yX9kAv7/xeKn+/dJLDZgzh9MtsO3AinYoLXacKG+hdksLuedBfK8rj6qYLisWEEr3Ljc3fK0//zwJwWCjOGNpMaoGEj42I7UXCo/dA5jW7zJS6TYWpZVCv34lCAZbo6DgLNLTj6uyJtiJWdfCjGvJCqxMvqxhRvByWDTl6RbYbkdKWIQtaO5MJZfa62ratN8iJ+e05OfsnCeEc1ajtTIbHs+UqJhMFhajaiHhYyN69kJhFbMq3UqtFHbsuAhz5pwfWdnOmqV/LyKrMXot3FI1mDCOkXsdTwLZLILBDMyZ43dtKrnUXlfCPe2cRDhnxVor1cRkslRdWoi7y4K6DL17obAIb63xeMIjjhG/rt9fg4KC7yOf5V0/jbV6PJg9Ow/BYIbiufbsqcJbbwWwfftPqKysRGVlJQIBa0vk67kWQjO1mdeSYBsj95oXTUISXSAfP54dGSd4+Iwvq597owQCAVRWVuKqqyqxbdtPeOutALZt+wlXXWXPuKUG4VykJ3vrtddeY+J3xEIWHwdRsz8Ty1jl19XrDtix4yLMnt1ddOsHq61oWq9FdnY2SktLsXLlSl2fdxKh6TtcgykJBQVnkZcXnpRZijdhEbl7LZa1xQcJuy2I1I6MOaM1gpxCyvq/Z0/03yy1X6+1ksWFPAkfh5CqdKkXp2KHrPDrqi3qBzROCnIBwna5AbReC78wmlXH551AOGDL9WGnB2zWYulikbrXSnWb3CSQ7Qh2ZzXjSwk3Wv/dJrzlIOHjAEqTtFbiKXYI0FfUz0jQKKEefiBmQWhKEfs8SFlW3fI8xOIGgcxj5PqqtQS5SQy6nXi51iR8HMDsSTp2kpEa6FlZPagZ0LQ+YBQgbC+sCE0xy86xY401ceSsUqw8D/GGWanlchYjozWCzICFHeGdwE3CWwoSPg5g5SRttgstFjMedqkBzchgFmslAkIoLt4adW6z3RtGr4WbB04WhKa8Zcd8y6oR3Hyv1WBWIc9Y1HzGqVhJt9atIjQIn+rqatUnzczM1NWYRMEqX6kdA71ZD7uVRc62bSvC1q3F2LKlP7ZuLcaoUWsBhAWVme4No9fCyOedjmFhwd8v/P1igr9Fi5+ZsEoBxu4166LJrEKeerB6oaeE0u8pLwc2bWKzynYio1r4ZGVlwePxyB7DcRw8Hg8aGhoMNyweEQ5Mcq4cvQOYXe4H1lcwW7cWWxZ7Yrbg0HMtWYlhYcXfLyX4J0z4iyNWKSv6iNOWBTn3lZlFTdUSDAaZsuiJEbsHl5sKK/JonYvckqmsWvhs2rTJynYkBFYPYCy4H4xgxsrWSvHHiuBQsnTYGcPCgr9f6p7X16fYbpWyqo84sdjQ6r6ya/wJBAJYuXIljh/PZ8aiF4vYHlxuKqzIk52djZKSElVV86XGIhbdt6qFz+WXX25lOxKGeHc/6EG4Qi4pKcHZs2ej3k9OTo6kfscOtrEPlZWDr1rBUVFRISk6zFyZs77itQu5e15Q8L2tVimWRKkRtLiveOwaf7Ts9efUpCu+Bxewf39Y+LDuvhSSlZWleEwwmIG1a0dFVXVet24UHn30MmRns1GFWoju4OaqqiosXboUe/fuBQBccMEFuOWWW5rUJiHshRX3g1qMrpB5K1pFRYVtRd6UBAcfoG21RciJzCoWB2yle+6EVcrtolSv+8rO8UfpvpeUlDhmKcvMPAuvt3VUVWmfj0NGxhEEAklMuC/NRLyCtgeBAHuiB9ApfL744gsMHToUaWlpuPTSSwEACxYswGOPPYb169ejT58+pjaSkCd2kpEa6FlYPcRixgo5Ozs76n2rB181gsOO1b4Trk1WB2w999zK54GVdH+j6OljRoSm1lR4ufuuxlJhNsKF3MiR0WPAiBFrsXYtGwU+YzFagqBlywC8Xi5G6AFdu5rYSBPRJXzuvfdeXH311fjzn/+MpKTwKc6ePYtbb70VU6ZMwb/+9S9TG0nIw+pkpAWjK+Sqqqqov61c5StNBnat9p1ybbLaj6Tuudg2EFY/D26Pt+Oxo48ZTYVnIc6MR+0CjCVXpxlB2H5/DebPD2LGjKyozVZZjWfSbfERih4ASEpKwvTp03HxxReb1jhCPaxORmoxskIOBAKqgu/MQmkysHO17zbXppmotdjk5eXZ/nzYJUrtKGtgZR9zMhXeDlgSZWKIBWFPnAhceCFwySXh19Q+Z+PHN6C0NBzH1LUru6IH0Cl8MjMz8cMPP+D888+Pev3QoUPIyFDeQZsgYjGyQlZbuRowz73BTwaHDrUH4EGHDoci79m92md9cLUK1i2dVotSO7MM5fqYkbgvJ1LhiUbEgrBDIaBv30bLj9JzVlVVBY/Hg7q6Ovh8lejePfx6ZWX4vyx6G3QJn9LSUkyYMAFPPfUU+vXrBwDYvHkz7rvvPlx33XWmNpBIDMxaIcvF1pSWlpr6AB440FX0u6xe7bMYYOwUsfcz1gJSV1eHSn4Ehv2DsJWilJUMMjMEaLy4Bt1Gt25h95aY+BGm30vdO7XWdtYsdrqEz1NPPQWPx4ObbropknqcnJyMO++8E0888YSpDSQSB6MrZKXYGj7jUK97QCgklL5L7rcI95JS+k4xWLd0OAULm/U6IUr1xJQpPQPBYFBTG8ywKKldLJDwN4dAIACfrw7z5zfGVgkRpt9L4cZd5gGdwiclJQWLFy/G3LlzceDAAQBAly5dkJ6ebmrjeMrKyvDII4/go48+wuHDh5GXl4cbbrgBDzzwQFTn3r17NyZNmoT//Oc/aNWqFe666y5Mnz7dkjYR1mBkhawmtsbI5Cgs5qXmu6R+i3A/MqXvlCLRRI0aWNis1wlRqjWmTK2LTA1migu1Cx8S/saJ7QO33JKLpUtvbWJxy84OAmAzJd0IhjYpTU9PR69evcxqiyTffvstQqEQXnzxRXTt2hV79uzBbbfdhpMnT+Kpp54CEN5LbMiQIRg8eDBeeOEFfPXVV7jllluQlZWFiRMnWt5GQh9mrt7UmMuNrlD4FFkrTPOsrYrcjJN7ONk94Wrti2pdZCUlJbIp4VaIC7ULHxI1xogda9q3rxS1uAEFCARCcXe9dQmf06dP45lnnsGmTZtw5MgRhGIchDt27DClcTzDhg3DsGHDIn937twZ+/btw/PPPx8RPq+//jrq6urw8ssvIyUlBRdccAF27dqFBQsWkPCxGDmzOR/4JlXYMiUlxbTVm57YGr2rXaXvEqZQx+4675b9bNyK24sHakVvTJnSdcrKykJubq4dPyFucLMbTmhxS06uQ319KpYt2+/qrDopdAmfCRMmYP369bj22mtx6aWXKm5eagXBYBAtW7aM/L1161YMGDAgqkMNHToU8+bNw88//4wWLeLPXMcCal1HckyePNm0AVZLnJBRq4Dcd+Xk5Ij+Jqd3k04E9JQTcHq3e6PoiY+LlyKLLOF2N5zfXyOatBFv1mhdwmft2rV4//330b9/f7Pbo4r9+/fjmWeeiVh7AODw4cMoKCiIOq5NmzaR96SEz5kzZ3DmzJnI39XV1Ra0OH4x44Eweg4tlav579JrFTBSJTvRLBFOodX1w0JQtBlojY9jIZPKzRYSKVjuI0pIjVGzZh1FPBn/dAmfdu3amVKv5/7778e8efNkj9m7d29UvaAff/wRw4YNw+9+9zvcdttthtswd+5czJ492/B5tOD21SVraFll8anNele7RlZ0tMK2B62uH7XCu6KiAgA7E5tR0cDCpsZut5BIYXQLCKeQGqPKypJQWOhQoyxAl/B5+umnMWPGDLzwwgvo1KmT7i+fNm0axo8fL3tM586dI/9fUVGB3/zmN+jXrx9eeumlqOPatm2Ln376Keo1/u+2bdtKnn/mzJmYOnVq5O/q6mp06NBB7U/QDCurS6vEl1z8ipWxLWraGggEIqnkRla7eu8LCytsu3FK5BspjSDVT/k4LVYsP2aIBq3XyYr7ycK1NAOjW2+oxUpRJTVGZWYeQSDQ9F651WKnS/hcfPHFOH36NDp37oz09HQkJydHvX/8uLqBvFWrVmjVqpWqY3/88Uf85je/QWFhIZYtWwavN1qVFhcX44EHHkB9fX2kPRs2bED37t1l43tSU1ORmpqqqg1mwELdA6vEl1z8itOxLbG/2YnVLgsrbDuxW+SbsVmvmn7KUryDGddNrYvMzkrRbsOurTfM2FdLDqkxasuWndiypem9davFTpfwue666/Djjz/i8ccfR5s2bSwPbv7xxx8xcOBAdOrUCU899RSOHj0aeY+35owdOxazZ8/GhAkTMGPGDOzZsweLFy/GwoULLW2bG7FCfMnFrwBwPLZF7LfIrXbNXKEIz2XXd7KAGf1Mi4XB6CCcKDFYelfprFSKZhE7tt4Q21dLWF1ZC3J9QOvmqqyJGjXoEj5btmzB1q1b0bt3b7PbI8qGDRuwf/9+7N+/H+1j7jDHcQAAv9+P9evXY9KkSSgsLEROTg5mzZrl2lR2seq+PCwqaLkHHvAwG9sSu9odPXq06ZtaunVV5DR6LEZGrqFUHz50qD38/r26z8saJBCtwyp3diAQwOefA6FQ9D1paAC2bQsgLU1b3+f7QEVFBZYt29DEchfv+//pEj7nn38+Tp06ZXZbJBk/frxiLBAAXHjhhfj000+tb5ANSFX35WHNnKz0wLMW2yJlps/JybHkurJ0r9yC3W5hsT4MAKtXX4u6ukaLBr8ocbNYtUIgsrCQcRor3NlCN5rHM6XJOLp58yvYs0e7Gy07OxuvvZZ6zjWXWOU1dAmfJ554AtOmTcNjjz2GXr16NYnxyczMNKVxhDSsmJN5k6nSAy/3nt0uHqfjjRIV1gs38n343XdHAmicXGItGsJFCWsLEDtIxCB9LRjdczAWfqxXGmO1zgnl5cDUqc1xzmmSUJY7XcKHr6J8xRVXRL3OcRw8Hg8aGhqMt4xwBbFm81mzjqKsLAn5+WeRl3cJqqq6wePxYOJEf5P3gEtsXzWTmd4ZzBCbUsIpGAwaKoAZG4OVknIGb731u6hjpCwarCxA7CTegvSFcWQVFV4cPJiEgoKzyMsLB9PoGaOschUZFVV8RlhOzs/Yty/UxHWWKJY7XcJn06ZNZreDcBCjK3HhoJCbi6h6D8IJKfY9JyAzvf2YITblhNPKlSsNWV6E8Q5r1qxBhw6HyKKhgNlWDacQxpHJ9TGWLHt6RZUwI8zj8WPw4I3weAZb0s9Zr2OkS/hcfvnlqo77wx/+gDlz5kT2LCLYy9xJNLcPmentx6jYVCOcjFpehJOamEVj8OCNOH48O/I+ER8BsGoruevpX2ILSqPWSb3EZoRxnBcbNw7G4MEbsXHjYFMtd1an3JuBod3ZlXjttdfwxz/+kYSPgFjXUKxpNXZDSz0opQDX1tYCUH7YWRNpRlAbixRPv9lp+GupJDaVrrldVjrhs3ns2DF06bIIx4+3REVFXpPJIZ4XB1JYUayOlSr2RvtY7G+WWlAatU7qQSojjOO8yMurwJQpi1Rb7pTurZkp91ZiqfDhU82JaPhOL6aMr7rK2LnVpgDfcMMN2LkzCwsXNn3Y+/cfh4ED4ysTSSkWyYl4o3hHeM3btavGjBl+NDR44PNxmDevGmPHXofa2lrU1dVFthIRYkaVbT1t5uEngb/+9SZdbjpWJnWzMLssAytV7AHjfSw7OxslJSVYtWqVJdYjvShlhPFiR6wvjx49Ospooebefvddo+jhaWgA9u9PIOFDSCOljLdt88p/UAG1D1V6ejr69s2G1xvdUX0+oKgoGy4aj1UjF4tEWAN/zadNA0pLwwNg164etG+fhUCgocnWM2LEWumAsOtJrbXHiADRawlgaVI3EzPbGntPpGIN7RAKZgRsZ2VlAWArjlBtRpgYOTk5mtxygUAAmZln4fW2RijUWNTY5+OQkXEEgUASM32dhI9DSCnj8vLzVH0+GAwaXjG2bx+2Mt1+e/i7fT7gxRfZUuZE/NC+fXTf0jKh9emzE6dOnRdxOW3cOBhpaacVXU5GBYheSwALW9O4CRZiDc0K2DbbQmmWi9HKgHThczZyZPS9HDFiLdauZStInISPQ3TrBlFrS2GhH7/+9WQcOXIEq1atkvz8ypUrARjvSBMmhP2v4ZU4iR6CTYLBjIjoAdS7nPQKEIoJsw+WSkyYEbBtdrq/mS5Gvg1mB+oL26a05QULGV8kfBwiLS2A+fN9MXEPQfh8pyDs30qp5masGGNX4gTBGna7DygmzD5Ycg2ZhdnWFbP6mV2WNSkBGd653vmML83C5+zZs3j88cdxyy23NNk3K5YbbriBqjiLIDQL3n13RuThOHGiBsKQBxbMvwTBAkYzw/RgZkwY61WrncTJEhNWZKrx6LUeWVFQEdBuWTP7mQoGMzBnjp+JjC/NwicpKQlPPvkkbrrpJsVjn3/+eV2NineEVhqph4Ml8y9B2IGUOCgtLYXf75fMDGPd8kILGHmcrATN2gbCVhZUVLKslZSURAK0rfjNx49nRwU9A85lfOlydQ0aNAiffPIJ8vPzTW4OwROP5t9EI97Sma1EbpD3+/3Izc0VzQwDsjR9j92WF5YWMCz3RycrQZv1m82wHllZUFHJspaVlWVpccWWLQPwejkmMr50CZ/hw4fj/vvvx1dffYXCwkI0a9Ys6v2rr77alMYlMnrNv1aabt0CCwN8vKYzW4EWcWAkHs0JywsrCxgW+2PsGCRl/XbLWGWm9cisfiO8dk7vseb312DkyPeYyPjSJXz+8Ic/AAAWLFjQ5D3apNQc9HZS1ky3dsPKAB+P6cxaBKWaY/lBWWmQN2Pis9vyYlbVarNgsT/G41hlVlvNinvKzs5GaWlpJAvY6T3WlDK+7EKX8AnFFqAhLEFvJxU+fCykDtoJiwN8PKBFUAJQfezkyZNRVnYWr77a1AR+113DkZ9vzARup7gSoqZqtdFJnQXLplFYb59TmGmd8fv9Tc5ttuDR8vywsMebLuHz17/+FaWlpUhNTY16va6uDm+++aaqwOdEQzhI8aX41aDUSeQ6nBs2iyPcgRWCsq6uDrm5ucjOFiuk6UFhYRu9zY3ACxArxZXcdwPhqtVDhvyM//43dC4dPrxwFG7VoVWksGLZJKzDaeuMFuSsd2bsP2k2uoTPzTffjGHDhqF169ZRr9fU1ODmm28m4ROD2kEqFj6bRQq5wdItm8URBGBtIc3s7GxLxZUSgUAAa9aEn/89e6SP0yJSyLKZGEgtfPnFs5np7kZxk8DWJXw4joPH42nyenl5uexEnajoHXxatWqluzO5ZbM4guCxupCmU1XKWRQpVFfI3axZs8b0dPdEQpPwueiii+DxeODxeHDFFVcgKanx4w0NDTh48CCGDRtmeiMTBeFuuEZVu9SWGF27Gm0loQeaaNiAqpRTXSGWURsroyXdnTJ9m6JJ+FxzzTUAgF27dmHo0KFo3rx55L2UlBTk5+djzJgxpjYwkZDbDVdrkLJTG5DGQ8Cl2dBEQ7ACS3WFiKYoZbrx8TJa0t3Nyp6Lp0QZTcLnoYceAgDk5+ejtLQU552nbidxwhh6g5TtNu1TwGUj/OpJaaJJpFUWYR1KFkWnstsI7agZG7Wmu+sdb/mFbHiPLT9CIQ+8Xg7z5wcxduwpVYKJRYuTrhifcePGAQj7pI8cOdIkvb1jx47GW0YAMB6kbKdpn4VYhtiHR2pCsPoh41dZmzYBCxc2nWj69x+HgQPdFRAoRIvrjtx80Zh9PdRYFLVmt5HlVj1OXCuz0t3lrDj8QjYYzMCiRVPAceE+Ewp5cN99mfjxx5fh99coLmRZrNekS/h89913uOWWW7Bly5ao1/mgZypgaB4UpKwN4UO2YkXauU3xtK9SzGpL377isVZFReFMIzlYmnyEQlFuoo0VlFqOTQTMdntqcV2pzW4jy616nLxWetPd1Vpx+LFHyUqoZiHLWj/RJXzGjx+PpKQkrF27Frm5uaIZXoR6+BVgRYUXsSE+FKSsnezsbJSXA9OnCy1lHsyYkYXS0ixFwWEmemOtWJt8hBaDOXNaR1Z/HOfFunWjMGtWUZTFQMuxiYKZ8TVGXFdKLnAWLLduwelrpbUYoBYrDo9ZVaRZQpfw2bVrF7Zv347zzz/f7PbEJXIrW+EK8NVXuSbxO04FKbsdlixlemKtnB5QxcjOzsbu3WLX1YOamjZRglLLsfGOFfE1RgszUnabNbDu1lWy4hw61B7Hj5/Cjh1H0LbtWQDO7/FlBbqET48ePTRVH050pHycFRXeqBVxKOQRjd+Rmzj1ukNYcqNYAWuWsniZaLRcV9bugVNYVT3a6cKMRDR2ZG+aFSgsZsUBQli9+lpwnBd//Svf/vA7bqoirQZdwmfevHmYPn06Hn/8cfTq1QvJyclR72dmZprSuHhCbFD79lv1VgmxiVOvO8QKN0ogEGBKDJOlzBq0XFe6B41YKVKcKsxINGJXmQCzAoVjrThACIAnyi0d234W9tgyC13CZ/DgwQCAQYMGRcX3UHCzNoyuiPW6Q8x2o+jdksNqaEKwBi3Xle5BNFZdDystiqy7b1hAS10do5hliRdacU6ebIa33vpd1PtWtZ8FdAmfTZs2md2OhCReVsRa40zszObRMiHEu/vPTLRcVxbcfCzdWxauh1pYKL7J0r2Twq0BwLwVJxjMcGX79aJL+Fx++eX49NNP8eKLL+LAgQN466230K5dO7z66qsoKCgwu41xjR0r4lgXlFMuqdGjRyMvL8/xQUoMu7Ko3DCIxxusZci5BRaqPLvl3rk9ANhI+91YlkKX8Fm9ejVuvPFGXH/99di5cyfOnDkDAAgGg3j88cfx/vvvm9rIeMfqFeCaNWusO7kGcnJymJ1Y7Mii0jKIE+bBYoYcy7BU5Zn1eye8BnIBwHaLA6kFltyiV679wn0khbh1oaZL+Dz66KN44YUXcNNNN+HNN9+MvN6/f388+uijpjWOcDcUGxCNlkGcxTLvRGJgVRZaPMJiVeLYBZaWcVgqgFluH0k3okv47Nu3DwMGDGjyut/vR1VVldE2xT3xtNmbFGKxAYR6YgfUigovDh5MQkHBWeTlhaPh3braItjHqVT5WEsFS5miUrD2DAqvn1yM1ujRowGw4xGwE13Cp23btti/fz/y8/OjXv/ss8/QuXNnM9oVt+jdcNRNSMUGzJp1tEllakIafkBNhD5DsImdWXlqXMFkRVaPUoxWTk5OwlqWdQmf2267Dffccw9efvlleDweVFRUYOvWrfjjH/+IBx980Ow2xg1GNxyNxerOqPf8UrEBZWVJKCw0o2WJg9l9hnAGNwe1G41BVPvblVzBLGSYacXJ+64mxZ5FV50d6BI+999/P0KhEK644grU1tZiwIABSE1NxR//+EfcddddZrcxbjB7GwW5Tnvs2DFVJkwzgtZiBZJUaucvfuGN/SihAEtbbxD6cEtmkhWYFdDPQoaZVg4cOIDXXntN8Tir7rvaFPt463Nq0CV8PB4PHnjgAdx3333Yv38/Tpw4gR49eqB58+Zmty+usKKEv9FOa0bQmpgAa9euGjNm+NHQ4IHPx+Hpp2uRlxdCZWWl5HnicWVhFNr2gS30rOBZz0yyErN+u50FAs0gEAioEj2AtRuYujnF3kp0CR+elJQU9OjRw6y2xD3xUrBQjNjBfto0oLSUjw3wIC3tDNOrXlZ93fHcZ+zCrHubyJYbp1GyXgSDQaYWTmJixon4pHjbY8ssDAkfQjt2BQuyMJELYwMqK9le9drh69Z7T2jbB2OYlSGXyJYbJ4gVCnLWi5UrVwJgV3SaEZ+kN14onvbYMgsSPg5gR8l6LRO52en1bk3XFw4aVvwGIxOwm7Y5YBHKkHMXUkJByXrBougMBjPw7rsjAeiPT9JibWRh0cs6JHziGDUrH7MngniYWKz8DTQBOwdlyLkDpUBmt1kvtm0rAi96eLTGJ2mxNubm5iZkppYWSPjEEVqtFGZPBHLn8/m0n88J7JgcaQI2F7UuAMqQcx65OBe1W2W4iWAwA1u3Fou8Y2wDUKV4oUQWNWog4RMn6LEgmD0RyJ2ve3ft53MCOyZHmoDNQ4sLoFu3bMqQcxClOBe5rTK8Xs70ncLtqLEjJuIAoF+/rbpFnBvrGbEGCZ84QK8FwexU6XhIvbbjN8TDdWIFLS4ApzLkYmMppFbr8Rhzwf8mJfcVf5zUVhnz5gVx4oR51h67MvSkstGKirZF/tZy391Yz4hFSPi4DLFVyuefpyAUin441VgQzJ4I5M4nU76HKeyYHOMpRd1tFYmdyJATBrWvWJGGOXP8CIU88Ho5zJ8fxNixp5i7TmbA943S0lJs3pwi6r7q338cBg5s6pqJvU8+3ym89FLj+0ZTw63O0OPFjFI22g033KDpvseTG9BJSPi4CKlVSjCYAY9nStQDEWtBkIr/MXsikDqfmzIN7Jgc4yFF3a11bfRmyBnpw3z25PTpQsusBzNmZKG0NAsMXR5TENshPHaM4qu5Z2e3ED1HdDmMxtfd4OqJzeCcNesoysqSkJ9/Fnl5lwC4RJfYVVuNmZCHhI+LkFp9xK4qfD4OL77oiQwaSvE/ZqdKi53PbXvC2JE+LvcdbrCkJFpdG6P1gBIptiv2nktZPnJyLlF1Pq0uMxYQ9oPcXJiyTyFVYzYHEj5xgrDGxV13DUdhYRsAbGUQOT1RuwW3WlISASPlCBI9tku8Do+48BET/iUlJdiyJVWTy0wtrO/6LhR0cvWMWBJ+LEPCJ47ga1zwq08gsVaZZuOU1SXRLCluQ+9iIp5iu/Sipg6PnPCXcusXFWXrdhe60XUmBgtWYLdAwifOSfRVpl7I6kJIYWQxEQ+xXVYjN7k3desbE49uypJywzjjBhc9QMInLjl27Fjk/30+YMGCDEyb1pypVSbr21qQ1cUdOBE0b3QxQduPGIN39fTvPw5FRdlISwvI7gUoN9lSlpQ25IRNVVUVVq1aFflbyn3IwmKRhE8csmbNmiav7dx5NwKBFkysMmm7BsIsnHABkMsqGrHJULj4sgK/vwb9+tUhJUWfZZYXwkpZUhQz04haKzgg7z5kYbFIwidByMk5jV69nG4FW8HWRHxg9eayYpDLKozaydCq4GG9llmhYG7XrhozZvjR0OCBz8dh3rxqjB17HTNuGVaIvYZS99QN7kMSPi4iHlYfFGwdP7BWm8luSyK5rNQJD7nVv5NjGi9qpk0DSkt5EetB+/ZZALIca5cbkLunbnAfkvBxEWJm/WPHjom6tliFgq3jB5YyTciSyCZiq/9160Zh1qwi5OcnMWNRIRGrHiWLjhuKLJLwcRmsDBR6ofgIZVizpMjhhJtJDLIksonY6r+hwYOamjaq089Zr7GTaChZdNxQZJGED2E7FB8hD0uWFLU4HbBOlkQ2EVv9i90XYYB0VVVV5HUlNxkLgbKJhhqLjlyRRRYg4UM4AuumZaetLiyJGiVYcDORJZFN+NX/unWjzgUPN70vcnsQKrnJKlXufiyXZebEIsIt9W7EUGvRUVOs0ilI+BCECCxZXVivecSKm4ksiWzSp89OzJpVhJqaNqL3ReoZ0+Mmk3KLKcVB2llbJh6Koxqx6LDgoifh43KctkzEMywMOk67kNTAkpuJdUtiopKXF0JurrbPqHGTCcc1I1tP2Okyc2tx1Ng5RMqiU1paCr/fL3kOFsZVEj4uhyXLRDzjhNWFBReSGsjNlLjEToZSFhc9C6+m21NwePFFT1S/4se/srKzmDOnNTjOA6DRLTZ5cjds2bJK4hsILcTTXEPCJw7Q0tHc7Ft2CqesLqy4kNRAbiY2sfp5F06GK1akYc4cP0IhD7xeDvPnBzF27ClD3yF0qdx113AUFrYRbcPu3WLPigfV1a11fS8hTrzMDSR8Egi3+padFGtOWl1YciGpgdxMbGHX856dnY3ycmD6dOFz4sGMGVkoLc3SvWs6D+9SycsLSR4j9azk55/Fnj3Gvt9qKF3ffkj4uBit7hc3+padFmtOWl3IhUQYwc7n3WnrpNSzIieWWMBIXBKhH6/yIQSLLF0KdOoEDBoU/u/SpU63yBqcFmv8SlKInVaXCROAsjJg06bwf1kLbCYIwNznJBjMwMGD+QgGMzR9Ts2zovfcViBVAZmFtsU7rrP4nDlzBkVFRfjyyy+xc+dO/OpXv4q8t3v3bkyaNAn/+c9/0KpVK9x1112YPn26c421CLcEvcYDLFhdyIXELhQzF8bIc6I2M0tNgLTcs8KadcUNe1rFK64TPtOnT0deXh6+/PLLqNerq6sxZMgQDB48GC+88AK++uor3HLLLcjKysLEiRMdaq01OG1WTjTMDNyliTJ+UOuGLSkpQVZWluh78XS/9T4nSplZRvb14sWS0v5Sdpb74L9LqQIylSCxDlcJnw8++ADr16/H6tWr8cEHH0S99/rrr6Ourg4vv/wyUlJScMEFF2DXrl1YsGBB3AkftwW9xgNmWF2cjlcizEWte3XVKvl06ni633qfE7nMLC37eomdd/Lkydi0CVi4sKl1pX//cRg40N5sJWEmXLt21Zgxw3+uqjWHefOqMXbsdXEliFnENcLnp59+wm233YZ33nkH6enpTd7funUrBgwYEKWShw4dinnz5uHnn39GixYtRM975swZnDlzJvJ3dXW1+Y03GTmzMutVfhMZp+OVCDah+x3GqgVddnY2+vYVP3dRUbbhrDO9bQKAadOA0lLeSuZB+/ZZALKijiUrsfm4QvhwHIfx48fjjjvuwMUXX4yysrImxxw+fBgFBQVRr7Vp0ybynpTwmTt3LmbPnm16m61GzKzshiq/VsHvxUODAEG4Eyvj6ViI1ZNrm1Q7yEpsDY4Kn/vvvx/z5s2TPWbv3r1Yv349ampqMHPmTNPbMHPmTEydOjXyd3V1NTp06GD691iB8IFRE/Acz9tbCPfiMXMQoNUW4Va0VlVmoa9bWQjTjUU2yUpsDY4Kn2nTpmH8+PGyx3Tu3BkfffQRtm7ditTU1Kj3Lr74Ylx//fV45ZVX0LZtW/z0009R7/N/t23bVvL8qampTc7rRtQEPLux5LgeEWbWIECrLcLNaKmqzFJfF7OAmCXKKEOSABwWPq1atUKrVq0Uj1uyZAkeffTRyN8VFRUYOnQoVq5ciaKiIgBAcXExHnjgAdTX1yM5ORkAsGHDBnTv3l3SzRVPqPWPu22CFg7ex44dU9xl2UxotUW4HbVVlVnu6yyJMqehKs/m4IoYn44dO0b93bx5cwBAly5d0P6cfB87dixmz56NCRMmYMaMGdizZw8WL16MhQsX2t5eJ2DZh20U4WBGDz5BaMPt5S9YFmV2wlodIjfjCuGjBr/fj/Xr12PSpEkoLCxETk4OZs2aFXep7HK40YethRUr0rBo0RR68AkmMDsWzqoYGyp/4X6U6hAR2nCl8MnPzwfHcU1ev/DCC/Hpp5860CJ20OLDdlPqe9hc748qbua2Bz+eg8sTkdiYuYoKLw4eTEJBwVnk5YUQDAaxcuVKxfOkpKRY6s6JZ2twokBVns3FlcKHMI7bUt/D5npP1Gtue/CVJkqAveByHhYyfliE/83iz1Ou6vtdWVmp6vv0unPi3Roc7yhVeSa0QcInAXHjXl9hcz0XJX7c+ODLT5QON04CCi6VR/55Yud+U0aT++Ctv35/DUaNWtskxodf9JGVWBskfBIQNwY7tm8PLFhwEvfemx558AcP3ojjx8MTi1hdErMxK7DabcKTgkvlUXqe3Ha/7UKvFTGREhxircSzZh1FWVkS8vPPIi/vEgCXJKy11QgkfBIQtwY73nNPcwwa9DP++98Qdu1KwuOPXylZl8QMzNw1WogbhSchjdLz5Ib7rbXYoVG0WBGFJGJmk3A8y80FCgsdbEycQMInAXFzsGOvXi3QogVQUiJfl8QMrNo12q3CkxBH6Xlyy/0uLS1FfX091qxpgcWL20UWFbNm/YiSkhq0bt3atEWFFisiizusE+6GhE+C4uZgRztX0FbsGu2E8KTgZGuRe55YX2gIrS/BYMa5khFhkR8KeTB7dh6CwUV44IFxjrSPxR3WCXdDwieBcWuwo90raCu+z07hScHJ9iD3PGm933bGsQgFsVzadF1dnWMCmsUd1vVACxA2IOFDuA67V9BWfZ9dwlOtW6GiogKA8so5kYJLzUTuflsVT6YVubRptXWJrBLQrFvOlKAFCDuQ8CFcid2uOje7BtXC74MmN/AmYnCpHVgVT6YVubTp+vp6VeewMrvPzc8hZUeyAwkfwrXY7apzq2tQK7EDLwWX2oMV8WR66NNnJ7p02Y/jx1uiZcvjEateTY111j0tVsREeQ4J6yDhQxCELBRcah+sZID5/TVNBMiGDRss+a5EtSKSy9g5SPgQRIKhZ8CNl+BS1mEhjsWOCTnRrYiJKvZYgYQPQSQQRgZcFiblRMDJOBa7JuREtiLSTuvOQ8KHIBIEsQH33XdHonXrw2jfXt0mmW4OLnUTdsaxqLW+xGLUMpSoVkTaad15vMqHEAThZviJTWzABbxYuvRW7NhxkerztW8PDBxIoide4K0v/fqNE52Q+/cfh5KSkqjXd+y4CIsWTcErr4zDokVTNPUfIbwV0ecL/50IVkS+ZIAQN2647GZI+BBEnMNPbNdff2mTARdoXNkHgxkOtI5ggbD1JRvemBmBt75kZWVFXpOyDPH9R2tczoQJQFkZsGlT+L9271pvF7E7rfPPIu20bj/k6iKIBCA7Oxt9+gCjRq3Fu++OROyaR2hqp4E3MZGL4aoUeELlXDUTJ16lKy4nEVLUaad1diDhQxAJQnZ2Nl5+uT+2bQtg5MicSJE8APD5ONx113BbiuQR7KImhquiIhcAB6Cx//CuGr/fb1tb3QjttM4GJHwIIoHIzs7GVVcBf/5z7Mreg8LCNk43j2AAMeuLMAB648bBEIoegMPgwRvJWmgQ2sfLPjwcx3FON4Ilqqur4ff7EQwGkZmZ6XRzCMIyyssTMzuLJhh9BAIBbNoE/O53Ta/NW28F4jb93A5oHy9zUDt/k8WHIBKURIiriIUmGHVIicOCAi+8Xg6hkNBNGt/p53YQe62lSgXQPl7mQMKHYIrycuC778Kl+904KZvVfrdfB1ahjSKVURKHI0c2FjlMhPRzu6GqztZD6ewEMyxdCnTqBAwaFP7v0qVOt0gbZrXf7deBcDdKoq9Pn52YMmUR3norENfp506gVCqAMAcSPi6lvDxc96K83OmWmEN5OTBxYmMF11AoHHzrlt9nVvvdfh3cRjCYgYMH82li0YjfX4N+/erI0mMycqUCnCae5hxydbmQpUsbJ0evN1x7w+2rru++iy5bD4Qzjvbvd4cZ3Yz2BwIBfP45EApFB0s0NADbtgWQlkbBo2ZCLgWCNfiqzkLx42RVZz7Wa8WKNEyf7kco5IHXy2H+/CDGjj3l2kQAsvi4jHi1CHTrBtGqsV27OtMerRhtPx9XsWXLK6Ll7DdvfgXPPvssAoGA6OfjaTVmB+RSUA9ZxexDqaqznfBj0pNPvoH77suMBLSHQh7cd18mnnzyDdkxiWXI4uMy3G4ZkcLNO38HAgH4fHWYPz8NM2b40dDggc/HYd68IHy+UwgElFdFfFwFP/DFWiL4gU8s/iIeLYBWUVVVBYA2ilQLWcXsp0+fnejSZT+OH295riikM/2RH2uUnhU3JgKQ8HEZvGUhdjdjt1hG5HDjzt+xGTB3350RGbBOnKjBSy+FX9eSHq1l4JOyAA4d6o7rZyeBQACrVq0CwJ5LgUW07tZO6Ce28KPfXyN6jZ0oEBmPzwoJH5fhZsuIGtxWWyZ2tSM1YGldFUmdJ5Z4tQBagfAe+P01GDx4IzZuHCxqWaMKxGQVs5PYfbzEcCqeRskK7UZI+LgQN1pGiDBm1ucJBALIzDwLr7d1TEE5DhkZRxAI0L5bUuzYcVFE9AAhDB68MeLCKS0tTejrxos+pZU+iUNzYbnPseJ+MwsSPi7FbZYRwtxYHKGLTVhQzuMJYcSItVi7NjyJJ3oFYjFiXTiAFxs3DkbPnnvOWdoSe6NNofWhXbvqmLi1aowde51rs3kI/ai1QrsBEj4EYQMVFV5TY3GEJnG51ZgbAw+thlw4yvCiZto0oLSUty570L59FoAsJ5tGEIYh4UPENaxs/XDwYJKlsTjxtBqzmngM1rQSsi4T8QbV8SHiFie3foitfVJQcFa2zo/aeAmKqzAOS7VSCIJV4nlMIosP4ThSO0Hz6IkncDLNW6z2ycSJIdlsPJazOuKReAvWJAiziecxiYQP4ShKO0HzaA3StSvNO3a1I1X75NFHg4rZeG4cQNwEy7VSCIJF4nVMIuFDOIra4FutQbp2FXqMXRVt3pyChQubBs4GAi0AaI+XYCVGKR6I5xWsECssqIT7obGkERI+RFxiZ6FH4STSt695gou2ojCfeJ/wYy2owWAGjh/PRsuWgSjrFpU5SAzidZNRo5DwIeIWJwo9miW4lGKU4jnwkNCP0NIjt88WlTmIf3gRHAxmYNGiKeC46E1Gf/zxZfj9NQkpgkn4EHGNE6m4ZggupRilRHHbEPqgfbaIeN5k1CgkfAjCAowKLjUxSiRqCCmoSCPBQ3WrmkLChyAsRk+wabxvRktYC012BE88bjJqFBI+BGEhRtL1aTNaAtCXjaM02R07dgxAeCuVgweTUFBwFnl5YfMiuUjjDzvrVrkhe4yED+Eo8R6kazRdn7YLSEzMyMaRm+zWrFkjG/yciAGv8Y4d29q4JROVhA/hKBSkay9uWI2xhBPXy8xsHKnJTin42e6AV6E7mKxQ7sTJavlaIeFDOA4NaPbgltUYKzh1vYxk46i1jLIU/Cx0B5MVyr3YVS3fDEj4EISAeLWIuGk1xgIsXC89AcpKFtRjx45hzZo1TAU/8221wwoVr8+3GHaGEQQCAWRmnoXX2xqhkCfyus/HISPjCAKBJKZEKwkfgjhHPFtE3LQaswotkx4L10tvNo6aCYbFTB+rrFCJWr3YrjACocVu5Mhoi92IEWuxdi17FjsSPgQBNlb4VmLX3mWsolXUsnK9rMzGYW2HeiusUIlevdiO3yQUVnJ9iqVCiV7lQwgi/pFb4ccDfF0gny/8dyLVBZISteXl4scHAgH4fJWYP78KPh8HIGyynzevCj5fJQKBgO52bNok/b1S+P01KCj43hJhYuW59bRl1Ki18HjCN8oMK5SaeCnhcYRxWOpTUpDFhyBg3QqfpXT9RK0LpMVtFVt36e67MyKr1xMnavDSS+HXtVoI4tmNaiZWWaFYimkinIeED0HAnErJUhWaS0pKcPbsWSQnJ8Pv9zd5P9bPrqfSs1oSsS6QFlEbe92l0sG1WAhYcqOyJMSlsKLeDIsxTYRzkPAhiHMYsYioqdAcDGZgwIAJuPhiv+S5jVR6JsRxevsPrYHSVoqTRK6bxVpME+EcJHwIQoBei4iSBYCvT7JwoVfW1WG00jMhjpNuPq1uVKvFCWuixk4rlB3Viwn2IeFDEBYTW58k3jLGzMCq+ipCt6HPB3TvHn69sjL8X6utG+FA6TrMn5+GGTP8aGjwnAuUDsLnO4VAQPz7WRMnVpLIVijCGUj4EITFiGWUJFoNHTmsCvx12m1oVaB0PJLov9/NuCFuLBYSPkTcYWVwsB7EMkoSqYaOHFYG/jrtNrQiUJrQhhsnZbfhRosdCR8irnB6lS9GbEZJItXQUYKFCslE/OLGSdmNuO36kfAh4gqnV/lS8Bkl/fuPQ1FRNk3q52ClQjIPWQjiD7dNyoT1kPAhCJvw+2vQr18dcnOdbgk7OJ1qHgtZCAgi/iHhQxAmYJalIBEtDqxVlCZRQxDxDQkfgjABsywFVlgcWAv2FiMRK0oTBOEMJHwIwiTMEg9mihAWg70JgiCchHZnJ4g4Rk0QdzCYoWvXcCvQu4O5GE67DZ3+foIgxCGLD0EkMGq30rADswsZOh2o7PT3EwQhjquEz7p16zBnzhzs3r0b5513Hi6//HK88847kfd/+OEH3Hnnndi0aROaN2+OcePGYe7cuUhKctXPlMQNsRpOQ6ts9bC0lYbZhQwbt8BwtnRAoj+PTmDV9ieEMVi6L65RBKtXr8Ztt92Gxx9/HIMGDcLZs2exZ8+eyPsNDQ0YMWIE2rZtiy1btqCyshI33XQTkpOT8fjjjzvYcnOgWA110CpbPSxtpWFmIUOrtsAg2IfuPZuwdl88HMdxzn29Os6ePYv8/HzMnj0bEySu1gcffICRI0eioqICbdq0AQC88MILmDFjBo4ePap6hV9dXQ2/349gMIjMzEzTfoNRKisr8RK/uY8MEydORC4ViiHOIddvgsEMLFo0pclWGmVlzlh8OnVqWshQa1vMOg/hPujes4md90Xt/O2K4OYdO3bgxx9/hNfrxUUXXYTc3FwMHz48yuKzdetW9OrVKyJ6AGDo0KGorq7G119/LXnuM2fOoLq6OuofQSQC/FYaHk94RLK7eGAgEEBlZSUqKyvh81Vi/vwq+HzcubZwePrpE5rbImc5IuIbuvdswuJ9cYWr6//+7/8AAA8//DAWLFiA/Px8PP300xg4cCD++9//omXLljh8+HCU6AEQ+fvw4cOS5547dy5mz55tXeMJgmGc2kpDynUr3MG8qqoGgYA21y1rW2AQ9kH3nk1YvC+OWnzuv/9+eDwe2X/ffvstQueu2AMPPIAxY8agsLAQy5Ytg8fjwd/+9jdDbZg5cyaCwWDk36FDh8z4aQTBBGpcvH5/DQYOtNcdIBWD5ffXoKDg+8gu5lr3VOO3wPD5wn87vQUGYQ+BQEDUajhvXhV8vkoEAgGHW5i4sPhMOmrxmTZtGsaPHy97TOfOnVFZWQkA6NGjR+T11NRUdO7cGT/88AMAoG3btvj3v/8d9dmffvop8p4UqampSE1N1dN8gmCeRAz2Zm0LDKthKVvGCWKth0Kr4YkTNeBD3BI98cNJWHsmHRU+rVq1QqtWrRSPKywsRGpqKvbt24df//rXAID6+nqUlZWhU6dOAIDi4mI89thjOHLkCFq3bg0A2LBhAzIzM6MEE0EkGok42CfKFhisZcs4Qayo9/trIhZDueMI6xGWYPH5gO7dw6+fs2U4tuhyRYxPZmYm7rjjDjz00EPo0KEDOnXqhCeffBIA8Lvf/Q4AMGTIEPTo0QM33ngj5s+fj8OHD+N///d/MWnSJLLoEAQRd5hd+4ggzITlEiyuED4A8OSTTyIpKQk33ngjTp06haKiInz00Udo0aIFAMDn82Ht2rW48847UVxcjGbNmmHcuHGYM2eOwy03ByrMRxCEEDNrHxGE2ai1sDlhiXON8ElOTsZTTz2Fp556SvKYTp064f3337exVfaRiLEaBJFIaI3VYTFbhiDcgGuED5GYsRoEkQjoidXhs2Vuvz1s6WEhW4Yg3IArChgSBBFfkOu2EalYHTU71E+YEK6Au2lT+L+JFthMEHogiw9BELZDrttGjMbqJEoGG0GYBQkfIuGhXe+dga5pGIrVMQZZDwmtkPAhEhqWUy4TBbOEp1sFLMXqGIOsh4RWSPgQCY3VKZdunYztwizh6XYBq7WyLfWraBLpt7oFli1xJHwIwiLcPhnbgVnCk+WaIWpRG6vjln6V6FtpJDosW+JI+BCERcTDZEywhxv6FW2lQQDsWuIonZ0gCIIwDSPp+QRhByR8CIIgCNOQS88nCBYg4UMQBEGYBp+eL4TS8wmWoBgfgiAIh4jH7CxKzydYh4QPkdCwnHJpJfE44boNt2Rn6UFrej5B2AkJHyKhYTnl0ipYmnDNEp5uFLBuyM4yAm2lQbAKCR8i4bFqcmd1MmZpwjVLeCaSgGW1XxGEWyDhQxAWkUiTsRHM+v2Jch2pXxGEMUj4EISF0ORDWAGr/Ypixwg3QMKHIAiCMAxLsWMEIQfV8SEIgiAMw1LsGEHIQcKHIAiCIIiEgYQPQRCEA1B2FkE4A8X4EESCQRMuG1B2FkE4AwkfgkgwaMJlB7rGBGE/JHwIIgGhCZcgiESFYnwIgiAIgkgYSPgQBEEQhqHYMcItkKuLIAiCMAzFjhFugYQPQRAEYQokagg3QK4ugiAIgiASBhI+BEEQBEEkDCR8CIIgCIJIGEj4EARBEASRMJDwIQiCIAgiYSDhQxAEQRBEwkDChyAIgiCIhIGED0EQBEEQCQMJH4IgCIIgEgaq3BwDx3EAgOrqaodbQhAEQRCEWvh5m5/HpSDhE0NNTQ0AoEOHDg63hCAIgiAIrdTU1MDv90u+7+GUpFGCEQqFUFFRgYyMDHg8HqebYzvV1dXo0KEDDh06hMzMTKeb41roOpoDXUfj0DU0B7qO5mDldeQ4DjU1NcjLy4PXKx3JQxafGLxeL9q3b+90MxwnMzOTHm4ToOtoDnQdjUPX0BzoOpqDVddRztLDQ8HNBEEQBEEkDCR8CIIgCIJIGEj4EFGkpqbioYceQmpqqtNNcTV0Hc2BrqNx6BqaA11Hc2DhOlJwM0EQBEEQCQNZfAiCIAiCSBhI+BAEQRAEkTCQ8CEIgiAIImEg4UMQBEEQRMJAwidB+de//oVRo0YhLy8PHo8H77zzTtT7HMdh1qxZyM3NRVpaGgYPHozvvvvOmcYyitI1HD9+PDweT9S/YcOGOdNYhpk7dy4uueQSZGRkoHXr1rjmmmuwb9++qGNOnz6NSZMmITs7G82bN8eYMWPw008/OdRiNlFzHQcOHNikT95xxx0OtZhNnn/+eVx44YWRAnvFxcX44IMPIu9TX1SH0nV0si+S8ElQTp48id69e+NPf/qT6Pvz58/HkiVL8MILL2Dbtm1o1qwZhg4ditOnT9vcUnZRuoYAMGzYMFRWVkb+vfHGGza20B188sknmDRpEj7//HNs2LAB9fX1GDJkCE6ePBk55t5778V7772Hv/3tb/jkk09QUVGB0aNHO9hq9lBzHQHgtttui+qT8+fPd6jFbNK+fXs88cQT2L59O7744gsMGjQIv/3tb/H1118DoL6oFqXrCDjYFzki4QHAvf3225G/Q6EQ17ZtW+7JJ5+MvFZVVcWlpqZyb7zxhgMtZJ/Ya8hxHDdu3Djut7/9rSPtcTNHjhzhAHCffPIJx3HhvpecnMz97W9/ixyzd+9eDgC3detWp5rJPLHXkeM47vLLL+fuuece5xrlUlq0aMH95S9/ob5oEP46cpyzfZEsPkQTDh48iMOHD2Pw4MGR1/x+P4qKirB161YHW+Y+Pv74Y7Ru3Rrdu3fHnXfeiUAg4HSTmCcYDAIAWrZsCQDYvn076uvro/rj+eefj44dO1J/lCH2OvK8/vrryMnJQc+ePTFz5kzU1tY60TxX0NDQgDfffBMnT55EcXEx9UWdxF5HHqf6Im1SSjTh8OHDAIA2bdpEvd6mTZvIe4Qyw4YNw+jRo1FQUIADBw7gf/7nfzB8+HBs3boVPp/P6eYxSSgUwpQpU9C/f3/07NkTQLg/pqSkICsrK+pY6o/SiF1HABg7diw6deqEvLw87N69GzNmzMC+ffuwZs0aB1vLHl999RWKi4tx+vRpNG/eHG+//TZ69OiBXbt2UV/UgNR1BJztiyR8CMIifv/730f+v1evXrjwwgvRpUsXfPzxx7jiiiscbBm7TJo0CXv27MFnn33mdFNcjdR1nDhxYuT/e/XqhdzcXFxxxRU4cOAAunTpYnczmaV79+7YtWsXgsEg3nrrLYwbNw6ffPKJ081yHVLXsUePHo72RXJ1EU1o27YtADTJVPjpp58i7xHa6dy5M3JycrB//36nm8IkkydPxtq1a7Fp0ya0b98+8nrbtm1RV1eHqqqqqOOpP4ojdR3FKCoqAgDqkzGkpKSga9euKCwsxNy5c9G7d28sXryY+qJGpK6jGHb2RRI+RBMKCgrQtm1b/POf/4y8Vl1djW3btkX5ZwltlJeXIxAIIDc31+mmMAXHcZg8eTLefvttfPTRRygoKIh6v7CwEMnJyVH9cd++ffjhhx+oPwpQuo5i7Nq1CwCoTyoQCoVw5swZ6osG4a+jGHb2RXJ1JSgnTpyIUtYHDx7Erl270LJlS3Ts2BFTpkzBo48+im7duqGgoAAPPvgg8vLycM011zjXaMaQu4YtW7bE7NmzMWbMGLRt2xYHDhzA9OnT0bVrVwwdOtTBVrPHpEmTsGLFCvz9739HRkZGJFbC7/cjLS0Nfr8fEyZMwNSpU9GyZUtkZmbirrvuQnFxMfr27etw69lB6ToeOHAAK1aswFVXXYXs7Gzs3r0b9957LwYMGIALL7zQ4dazw8yZMzF8+HB07NgRNTU1WLFiBT7++GP84x//oL6oAbnr6HhfdCSXjHCcTZs2cQCa/Bs3bhzHceGU9gcffJBr06YNl5qayl1xxRXcvn37nG00Y8hdw9raWm7IkCFcq1atuOTkZK5Tp07cbbfdxh0+fNjpZjOH2DUEwC1btixyzKlTp7g//OEPXIsWLbj09HTu//2//8dVVlY612gGUbqOP/zwAzdgwACuZcuWXGpqKte1a1fuvvvu44LBoLMNZ4xbbrmF69SpE5eSksK1atWKu+KKK7j169dH3qe+qA656+h0X/RwHMdZL68IgiAIgiCch2J8CIIgCIJIGEj4EARBEASRMJDwIQiCIAgiYSDhQxAEQRBEwkDChyAIgiCIhIGED0EQBEEQCQMJH4IgCIIgEgYSPgRBEARBJAwkfAiCIAiCSBhI+BAE4Rrq6uqcbkITWGwTQRDSkPAhCMIxBg4ciMmTJ2Py5Mnw+/3IycnBgw8+CH4nnfz8fDzyyCO46aabkJmZiYkTJwIAPvvsM1x22WVIS0tDhw4dcPfdd+PkyZOR8z733HPo1q0bzjvvPLRp0wbXXntt5L233noLvXr1QlpaGrKzszF48ODIZwcOHIgpU6ZEtfGaa67B+PHjI3/rbRNBEGxAwocgCEd55ZVXkJSUhH//+99YvHgxFixYgL/85S+R95966in07t0bO3fuxIMPPogDBw5g2LBhGDNmDHbv3o2VK1fis88+w+TJkwEAX3zxBe6++27MmTMH+/btw4cffogBAwYAACorK3Hdddfhlltuwd69e/Hxxx9j9OjR0LplodY2EQTBDrRJKUEQjjFw4EAcOXIEX3/9NTweDwDg/vvvx7vvvotvvvkG+fn5uOiii/D2229HPnPrrbfC5/PhxRdfjLz22Wef4fLLL8fJkyfx/vvv4+abb0Z5eTkyMjKivm/Hjh0oLCxEWVkZOnXqJNqeX/3qV1i0aFHktWuuuQZZWVlYvnw5AOhq03nnnWfoOhEEYR5k8SEIwlH69u0bET0AUFxcjO+++w4NDQ0AgIsvvjjq+C+//BLLly9H8+bNI/+GDh2KUCiEgwcP4sorr0SnTp3QuXNn3HjjjXj99ddRW1sLAOjduzeuuOIK9OrVC7/73e/w5z//GT///LPmNmttE0EQ7EDChyAIpmnWrFnU3ydOnMDtt9+OXbt2Rf59+eWX+O6779ClSxdkZGRgx44deOONN5Cbm4tZs2ahd+/eqKqqgs/nw4YNG/DBBx+gR48eeOaZZ9C9e/eIOPF6vU3cXvX19YbbRBAEO5DwIQjCUbZt2xb19+eff45u3brB5/OJHt+nTx9888036Nq1a5N/KSkpAICkpCQMHjwY8+fPx+7du1FWVoaPPvoIAODxeNC/f3/Mnj0bO3fuREpKSsRt1apVK1RWVka+q6GhAXv27FH8DWraRBAEG5DwIQjCUX744QdMnToV+/btwxtvvIFnnnkG99xzj+TxM2bMwJYtWzB58mTs2rUL3333Hf7+979HAonXrl2LJUuWYNeuXfj+++/x17/+FaFQCN27d8e2bdvw+OOP44svvsAPP/yANWvW4OjRo/jlL38JABg0aBDWrVuHdevW4dtvv8Wdd96Jqqoqxd+g1CaCINghyekGEASR2Nx00004deoULr30Uvh8Ptxzzz2RFHExLrzwQnzyySd44IEHcNlll4HjOHTp0gWlpaUAgKysLKxZswYPP/wwTp8+jW7duuGNN97ABRdcgL179+Jf//oXFi1ahOrqanTq1AlPP/00hg8fDgC45ZZb8OWXX+Kmm25CUlIS7r33XvzmN79R/A1KbSIIgh0oq4sgCMcQy6IiCIKwEnJ1EQRBEASRMJDwIQiCIAgiYSBXF0EQBEEQCQNZfAiCIAiCSBhI+BAEQRAEkTCQ8CEIgiAIImEg4UMQBEEQRMJAwocgCIIgiISBhA9BEARBEAkDCR+CIAiCIBIGEj4EQRAEQSQMJHwIgiAIgkgY/j8koO3uKDDgCwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Training and Validating Surrogate\n", + "\n", + "First, let's import the required Python and IDAES modules:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVjklEQVR4nO3deXwTdf4/8NekFy20KbQUWlpoKQhySovWgnJoOZRj/YHS9QStorugVhHQ5SuKruKJoK4HisKqrLDAuoCrUhQvWqtyiBVEwBaoLUJTmpZDemR+f4SZziQzySRNz7yejwcPaTKZTEY0b96f9+f9FkRRFEFERETkB0zNfQFERERETYWBDxEREfkNBj5ERETkNxj4EBERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RUQu0cuVKCIKAoqKi5r4UojaFgQ+Rn/ruu+8we/Zs9O/fH+3bt0f37t0xbdo0/PLLL07Hjho1CoIgQBAEmEwmREREoE+fPrj55puRk5Pj0ftu2rQJI0eORExMDMLCwtCzZ09MmzYNH3/8sa8+mpMnn3wSH3zwgdPjubm5ePTRR1FRUdFo7+3o0Ucfle+lIAgICwtDv3798H//93+orKz0yXusXr0aS5cu9cm5iNoaBj5Efurpp5/G+vXrceWVV2LZsmWYOXMmvvzyS6SkpKCgoMDp+Pj4eLzzzjv45z//iWeffRaTJ09Gbm4uxo4di8zMTNTU1Lh9z+eeew6TJ0+GIAh46KGH8MILL2Dq1Kk4cOAA3n///cb4mABcBz6LFi1q0sBH8uqrr+Kdd97BkiVL0LdvXzzxxBMYP348fDE+kYEPkb7A5r4AImoe999/P1avXo3g4GD5sczMTAwcOBBPPfUU3n33XdXxZrMZN910k+qxp556Cvfccw9eeeUVJCYm4umnn9Z9v9raWjz++OMYM2YMtmzZ4vT88ePHG/iJWo4zZ84gLCzM5THXXnstoqOjAQB33XUXpk6dig0bNuCbb75Benp6U1wmkV9ixofITw0bNkwV9ABA79690b9/f+zbt8/QOQICAvDiiy+iX79+ePnll2G1WnWPLSsrQ2VlJYYPH675fExMjOrnP/74A48++iguuOACtGvXDrGxsZgyZQoOHTokH/Pcc89h2LBhiIqKQmhoKFJTU7Fu3TrVeQRBwOnTp7Fq1Sp5eWnGjBl49NFHMXfuXABAUlKS/Jyypubdd99FamoqQkND0alTJ/z5z3/G0aNHVecfNWoUBgwYgB07dmDEiBEICwvD3/72N0P3T+mKK64AABQWFro87pVXXkH//v0REhKCuLg4zJo1S5WxGjVqFD788EMcPnxY/kyJiYkeXw9RW8WMDxHJRFHE77//jv79+xt+TUBAAK6//no8/PDD+PrrrzFhwgTN42JiYhAaGopNmzbh7rvvRqdOnXTPWVdXh4kTJ+LTTz/Fn//8Z9x7772oqqpCTk4OCgoKkJycDABYtmwZJk+ejBtvvBHV1dV4//33cd1112Hz5s3ydbzzzju4/fbbcckll2DmzJkAgOTkZLRv3x6//PIL/vWvf+GFF16Qsy+dO3cGADzxxBN4+OGHMW3aNNx+++04ceIEXnrpJYwYMQK7du1CZGSkfL0WiwVXXXUV/vznP+Omm25Cly5dDN8/iRTQRUVF6R7z6KOPYtGiRcjIyMBf/vIX7N+/H6+++iq+++47bN++HUFBQViwYAGsViuKi4vxwgsvAAA6dOjg8fUQtVkiEdF577zzjghAXLFiherxkSNHiv3799d93X/+8x8RgLhs2TKX51+4cKEIQGzfvr141VVXiU888YS4Y8cOp+PeeustEYC4ZMkSp+dsNpv8+zNnzqieq66uFgcMGCBeccUVqsfbt28vTp8+3elczz77rAhALCwsVD1eVFQkBgQEiE888YTq8R9//FEMDAxUPT5y5EgRgPjaa6/pfm6lRx55RAQg7t+/Xzxx4oRYWFgovv7662JISIjYpUsX8fTp06IoiuLbb7+turbjx4+LwcHB4tixY8W6ujr5fC+//LIIQHzrrbfkxyZMmCD26NHD0PUQ+RsudRERAODnn3/GrFmzkJ6ejunTp3v0WimjUFVV5fK4RYsWYfXq1RgyZAg++eQTLFiwAKmpqUhJSVEtr61fvx7R0dG4++67nc4hCIL8+9DQUPn3J0+ehNVqxeWXX46dO3d6dP2ONmzYAJvNhmnTpqGsrEz+1bVrV/Tu3Rvbtm1THR8SEoJbb73Vo/fo06cPOnfujKSkJNx5553o1asXPvzwQ93aoK1bt6K6uhrZ2dkwmer/133HHXcgIiICH374oecflMgPcamLiHDs2DFMmDABZrMZ69atQ0BAgEevP3XqFAAgPDzc7bHXX389rr/+elRWViI/Px8rV67E6tWrMWnSJBQUFKBdu3Y4dOgQ+vTpg8BA1/+L2rx5M/7+979j9+7dOHfunPy4MjjyxoEDByCKInr37q35fFBQkOrnbt26OdVLubN+/XpEREQgKCgI8fHx8vKdnsOHDwOwB0xKwcHB6Nmzp/w8EbnGwIfIz1mtVlx11VWoqKjAV199hbi4OI/PIW1/79Wrl+HXREREYMyYMRgzZgyCgoKwatUq5OfnY+TIkYZe/9VXX2Hy5MkYMWIEXnnlFcTGxiIoKAhvv/02Vq9e7fFnULLZbBAEAR999JFmEOhYM6PMPBk1YsQIua6IiJoOAx8iP/bHH39g0qRJ+OWXX7B161b069fP43PU1dVh9erVCAsLw2WXXebVdQwdOhSrVq1CaWkpAHvxcX5+PmpqapyyK5L169ejXbt2+OSTTxASEiI//vbbbzsdq5cB0ns8OTkZoigiKSkJF1xwgacfp1H06NEDALB//3707NlTfry6uhqFhYXIyMiQH2toxouoLWOND5GfqqurQ2ZmJvLy8vDvf//bq94xdXV1uOeee7Bv3z7cc889iIiI0D32zJkzyMvL03zuo48+AlC/jDN16lSUlZXh5ZdfdjpWPN/gLyAgAIIgoK6uTn6uqKhIs1Fh+/btNZsUtm/fHgCcnpsyZQoCAgKwaNEip4aCoijCYrFof8hGlJGRgeDgYLz44ouqa1qxYgWsVqtqN1379u1dthYg8mfM+BD5qTlz5mDjxo2YNGkSysvLnRoWOjYrtFqt8jFnzpzBwYMHsWHDBhw6dAh//vOf8fjjj7t8vzNnzmDYsGG49NJLMX78eCQkJKCiogIffPABvvrqK1xzzTUYMmQIAOCWW27BP//5T9x///349ttvcfnll+P06dPYunUr/vrXv+JPf/oTJkyYgCVLlmD8+PG44YYbcPz4cfzjH/9Ar169sGfPHtV7p6amYuvWrViyZAni4uKQlJSEtLQ0pKamAgAWLFiAP//5zwgKCsKkSZOQnJyMv//973jooYdQVFSEa665BuHh4SgsLMR//vMfzJw5Ew888ECD7r+nOnfujIceegiLFi3C+PHjMXnyZOzfvx+vvPIKLr74YtW/r9TUVKxZswb3338/Lr74YnTo0AGTJk1q0uslarGac0sZETUfaRu23i9Xx3bo0EHs3bu3eNNNN4lbtmwx9H41NTXiG2+8IV5zzTVijx49xJCQEDEsLEwcMmSI+Oyzz4rnzp1THX/mzBlxwYIFYlJSkhgUFCR27dpVvPbaa8VDhw7Jx6xYsULs3bu3GBISIvbt21d8++235e3iSj///LM4YsQIMTQ0VASg2tr++OOPi926dRNNJpPT1vb169eLl112mdi+fXuxffv2Yt++fcVZs2aJ+/fvV90bV1v9HUnXd+LECZfHOW5nl7z88sti3759xaCgILFLly7iX/7yF/HkyZOqY06dOiXecMMNYmRkpAiAW9uJFARR9MFgGCIiIqJWgDU+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNBj5ERETkNxj4EBERkd9gA0MHNpsNJSUlCA8PZ9t3IiKiVkIURVRVVSEuLg4mk35eh4GPg5KSEiQkJDT3ZRAREZEXjh49ivj4eN3nGfg4CA8PB2C/ca7mDhEREVHLUVlZiYSEBPl7XA8DHwfS8lZERAQDHyIiolbGXZkKi5uJiIjIbzDwISIiIr/BwIeIiIj8Bmt8vGCz2VBdXd3cl9GmBQcHu9yOSERE5A0GPh6qrq5GYWEhbDZbc19Km2YymZCUlITg4ODmvhQiImpDGPh4QBRFlJaWIiAgAAkJCcxINBKpiWRpaSm6d+/ORpJEROQzDHw8UFtbizNnziAuLg5hYWHNfTltWufOnVFSUoLa2loEBQU19+UQEVEbwZSFB+rq6gCAyy9NQLrH0j0nIiLyBQY+XuDSS+PjPSYiosbApS4iIiLyKYvF4nL3c3BwMKKioprwiuox8CEiIiKfsVgsePnll90eN3v27GYJfrjU5QdmzJgBQRAgCAKCgoLQpUsXjBkzBm+99ZZH2/JXrlyJyMjIxrtQIiJq9Yz2uWuufnjM+DSh5kz9jR8/Hm+//Tbq6urw+++/4+OPP8a9996LdevWYePGjQgM5B8FIiJq+1rNt93ixYuxYcMG/PzzzwgNDcWwYcPw9NNPo0+fPvIxf/zxB+bMmYP3338f586dw7hx4/DKK6+gS5cuzXjlds2d+gsJCUHXrl0BAN26dUNKSgouvfRSXHnllVi5ciVuv/12LFmyBG+//TZ+/fVXdOrUCZMmTcIzzzyDDh064PPPP8ett94KoL7w+JFHHsGjjz6Kd955B8uWLcP+/fvRvn17XHHFFVi6dCliYmJ8/jmIiIgaotUsdX3xxReYNWsWvvnmG+Tk5KCmpgZjx47F6dOn5WPuu+8+bNq0Cf/+97/xxRdfoKSkBFOmTGnGq67XElN/V1xxBQYPHowNGzYAsHdLfvHFF/HTTz9h1apV+OyzzzBv3jwAwLBhw7B06VJERESgtLQUpaWleOCBBwAANTU1ePzxx/HDDz/ggw8+QFFREWbMmNFkn4OIiMioVpPx+fjjj1U/r1y5EjExMdixYwdGjBgBq9WKFStWYPXq1bjiiisAAG+//TYuvPBCfPPNN7j00kub47JbvL59+2LPnj0AgOzsbPnxxMRE/P3vf8ddd92FV155BcHBwTCbzRAEQc4cSW677Tb59z179sSLL76Iiy++GKdOnUKHDh2a5HMQEREZ0WoyPo6sVisAoFOnTgCAHTt2oKamBhkZGfIxffv2Rffu3ZGXl6d7nnPnzqGyslL1y5+IoigvXW3duhVXXnklunXrhvDwcNx8882wWCw4c+aMy3Ps2LEDkyZNQvfu3REeHo6RI0cCAI4cOdLo109EROSJVhn42Gw2ZGdnY/jw4RgwYAAA4NixYwgODnbaddSlSxccO3ZM91yLFy+G2WyWfyUkJDTmpbc4+/btQ1JSEoqKijBx4kQMGjQI69evx44dO/CPf/wDgOvlt9OnT2PcuHGIiIjAe++9h++++w7/+c9/3L6OiIioObSapS6lWbNmoaCgAF9//XWDz/XQQw/h/vvvl3+urKz0m+Dns88+w48//oj77rsPO3bsgM1mw/PPPy8PX127dq3q+ODgYKcREj///DMsFgueeuop+b59//33TfMBiIioWbjapSytyNT/HI7y8ih06mSB2VwlP95c459aXeAze/ZsbN68GV9++SXi4+Plx7t27Yrq6mpUVFSosj6///67U02KUkhICEJCQhrzkluEc+fO4dixY6rt7IsXL8bEiRNxyy23oKCgADU1NXjppZcwadIkbN++Ha+99prqHImJiTh16hQ+/fRTDB48GGFhYejevTuCg4Px0ksv4a677kJBQQEef/zxZvqURETU2IzuUp42bRr+979YPPaYGTabAJNJxMKFv2HKlJMICgpCdXU1SktLm7yLc6sJfERRxN13343//Oc/+Pzzz5GUlKR6PjU1FUFBQfj0008xdepUAMD+/ftx5MgRpKenN8cltygff/wxYmNjERgYiI4dO2Lw4MF48cUXMX36dJhMJgwePBhLlizB008/jYceeggjRozA4sWLccstt8jnGDZsGO666y5kZmbCYrHI29lXrlyJv/3tb3jxxReRkpKC5557DpMnT27GT0tERHoa2lPOaBnDmTOdMG+ePegBAJtNwKJFcbBa16oyP0DTdnFuNYHPrFmzsHr1avz3v/9FeHi4XLdjNpsRGhoKs9mMrKws3H///ejUqRMiIiJw9913Iz09vUXs6DKa0muM1N/KlSuxcuVKt8fdd999uO+++1SP3XzzzaqfX331Vbz66quqx66//npcf/31qsdEUfTuYomIqNE0ZU+5wsJAOeiRiKIJ5eWdnAKfpqwJbTWBj/RlO2rUKNXjb7/9ttwz5oUXXoDJZMLUqVNVDQxbgqioKMyePbvFDm0jIqK2ryl7yiUl1cJkElXBjyDY0KlTeYPP3RCtJvAxkkFo164d/vGPf8i7kVoaBjVERORLLXkKelycDc88Y8XcuREQRRMEwYZJkzY7ZXuaWqsJfIiIiKhec49CMuKGG87it9/eQnl5J3TqVN7sQQ/AwIeIiKhVaimjkPS2q0vM5qoWEfBIGPgQERH5KXdBizs7dw7Bpk0TVUtZKSm7Gu39fIGBDxERkR/yNGiRSLuPrdZw+fWAfcfWpk0TkZx8EGZzFaxWK2pqahr8fr7GwIeIiKgN8CSb4i5oKSsrUx3vWCSdmZmJ7duD5ddLlNvV16xZY/j9mrKLMwMfIiKiRtbYu6+MZlOkAKO8PMpl0LJhwwan186ePRsA5IJqqzUcgpCtOo/ednW99xs+fDpGjWraXc8MfIiIiAzwNnhp7N1X7rIpSlJPuaKiWrzzjmc9dhw/u9lchUmTNjsFXFrZpk6dLBAEmyr4CQgA0tKi0NQbzhj4UIN9/vnnGD16NE6ePKmak+ZKYmIisrOzkZ2d3ajXRkTkCw0JXhp795W77I2jqCh7sLF8OXDnnUBdHQz12Dlw4IDTYykpu5CcfNDtdnXHICkgQMTrrwtQjNxsMgx8/MCMGTOwatUq3HnnnU6DR2fNmoVXXnkF06dPNzTWgojIHxkNSkpKSpyOdayXMVKLYyS7JC1baWVTlNkbvfqZrCxg3DggP9+C7dtXua0L2rZtm+bjRrerK4Oku+++CqmpXdy+pjEw8PETCQkJeP/99/HCCy8gNDQUAPDHH39g9erV6N69ezNfHRFR66IXvGjVxigZqcXxJLskjULq1q0S8+ebUVcnICBAxNNPV+KGG653WzsUHw8EBFSjoKD+MzRky7nRnj5xcTaPzutLJveHUFuQkpKChIQE1X+UGzZsQPfu3TFkyBD5sXPnzuGee+5BTEwM2rVrh8suuwzfffed6lz/+9//cMEFFyA0NBSjR49GUVGR0/t9/fXXuPzyyxEaGoqEhATcc889OH36dKN9PiKiprJz5xAsXZqNVaumY+nSbOzcOcT9i6Bfi2O1hquO82RpLCoqCrGxsZgzJxJFRQK2bQOKigTMmROJ2NhYj2uGPP1sVms4CgsTYbWGe31fmhoDn2ZSXAxs22b/Z1O57bbb8Pbbb8s/v/XWW7j11ltVx8ybNw/r16/HqlWrsHPnTvTq1Qvjxo1Debk9ZXr06FFMmTIFkyZNwu7du3H77bfjwQcfVJ3j0KFDGD9+PKZOnYo9e/ZgzZo1+Prrr+UdAURErZWR4EUZDCi5qsVx955a53MUHw+MGgXDdTMWiwWlpaXyUpzRwEyiDHReeCEbGzdOcnptcXGsoWtvSlzqagYrVgAzZwI2G2Ay2QvMsrIa/31vuukmPPTQQzh8+DAAYPv27Xj//ffx+eefAwBOnz6NV199FStXrsRVV10FAHjjjTeQk5ODFStWYO7cuXj11VeRnJyM559/HgDQp08f/Pjjj3j66afl91m8eDFuvPFGuXC5d+/eePHFFzFy5Ei8+uqraNeuXeN/WCKiRuCukNjVUpa7WhwtjdX0T2s5Te+z7d3bD/367VUtXTkGSVp5FFE0YcWK2zWvXVn31NSDVBn4NLHi4vqgB7D/88477QVmjV3d3rlzZ0yYMAErV66EKIqYMGECoqOj5ecPHTqEmpoaDB8+XH4sKCgIl1xyCfbt2wcA2LdvH9LS0lTnTU9PV/38ww8/YM+ePXjvvffkx0RRhM1mQ2FhIS688MLG+HhERD7jWFwsfVG7Cl7cbSv3ZPs34Nk2dU9pLadpfTZAxCefjMeWLWPlwMVqDcdPP/V3CpKcibrX7lgL1ZSDVBn4NLEDB+qDHkldHXDwYOMHPoB9uUtacvrHP/7RKO9x6tQp3HnnnbjnnnucnmMhNRG1dI7ZkPqC3XCXwUthYaLbbeWutn877r5yl10qKyvzabbE8bMBIgBBft9Nmybi7Nl22Lo1w+l5OxsEAeefs8ExC+Rqi31jD1JVYuDTxHr3ti9vKYOfgACgV6+mef/x48ejuroagiBg3LhxqueSk5MRHByM7du3o0ePHgCAmpoafPfdd/Ky1YUXXoiNGzeqXvfNN9+ofk5JScHevXvRq6k+FBGRDym/hPWWmrSCF3dLWVOmTFFl2ZW0Ahh355OyJr7Mlkifbe/efvjkk/Gq50TRpAh6AHvQYw9+pHsj3ZegoGp5mUvr2psTi5ubWHy8vaYnIMD+c0AA8PrrTZPtsb9fAPbt24e9e/ciQLqI89q3b4+//OUvmDt3Lj7++GPs3bsXd9xxB86cOYOs80VId911Fw4cOIC5c+di//79WL16tVP/n/nz5yM3NxezZ8/G7t27ceDAAfz3v/9lcTMRtSquin3N5irMnHkB5s69HlOmTAFQnzERBPvfbB2XsqKjoxEbG6v5SytwcXc+iS+yJcoCarO5Cv367ZXft57jMhgACBg37mNkZy9FSsoumM1VSEo6jPj4UkPX3hyY8WkGUtOogwftmZ6m7lwZERGh+9xTTz0Fm82Gm2++GVVVVRg6dCg++eQTdOzYEYB9qWr9+vW477778NJLL+GSSy7Bk08+idtuu00+x6BBg/DFF19gwYIFuPzyyyGKIpKTk5GZmdnon42IyFfcLTXl5ORg9uzZiIuLk5/3ZClLj/I45fmCgqpRUxMiBycSqf7I22UvvazWpEmbsXnzJNhsAkwmEVdeudUh42MPaBwLn43ci+YkiKIoNvdFtCSVlZUwm82wWq1OAcIff/yBwsJCJCUlcWdSI+O9JqLmUlpaiuXLl8NqDcfSpdlOxb5jxuRg+PA8AMDMmTMRGxvr8yGkFosFJSUl8nKW0d1dRpe9XH1GQbAhO3spzOaq8/VNnXDllT3w669fNtouM+k+NoSr728lZnyIiIg0mM1VyMjYipycMagv4hWwdWsGBgwoUGUwfL0jKSoqSg6kPNnd5Rh86QVkUpbIXVZL+vXrr/Y2KA3N4jSkK7SvMPAhIiLSERdXCvXOJde7kxqDJ/11lIyMvvCmt5Cr2VyuApvGyhZ5ioEPERGRDm8Cg6a4Bq3+Oo6MFD172lvIFVeBjbusldH6J19g4ENERKSg/BL2NjDQWmKyWq2oqakBAAQGBiIyMtLpfV3t7nLVX0cKICoqKjyulTFSQO2Ou8Bm0KCpmlmr4cOnY9Qo3y8VusLAxwusB298vMdE5K3iYnuz2N69gdDQ+gCkpMSEwsJAJCXVytPBtYKNs2ejkJh4K374YR3M5iqXdS1Wq9Xp/SsqKrB27VrFMcbrWpTFyVq7u/T660hLb2vXrsW0adMQExPjdG5X12E2V+HQoV6K4MWGYcPykJaWr3nNjufSW44bMOAaDBtWjZqaCM0edmlpUWjCmAcAAx+PSH1vqqurERoa2sxX07ZJ/6Ny7DVERKRFyrCsXh2KefPM8hbsiRO3IyVll8tlGKnHmPr13SEI2fJxyroW5Zf+mjVr5GtQBwP2x/TeVy8IUWaJoqKiMHv2bFRXV6OsrAwbNmxAv357sWXLWJdLb1LQNW3aNPkxd/U1WrO3cnOHIzc33SkA0jpXcvJBzSXBgoIPcPSo/XVLlszBnDkdUFfX9D3slBj4eCAwMBBhYWE4ceIEgoKCYDKx/2NjsNlsOHHiBMLCwhAYyD+iROSaVMRbvzXbvgxkswnYtGkiYmKOuVyGOX78ONauXev0eq3dU3oBhF4woPW+yrEP7op8HbNRniy91dbWAjC2K0wrY2NnD4Dy8tJdfqbs7KVur2vatCpMndqh2XrYSfit4gFBEBAbG4vCwkJ5wjk1DpPJhO7du0MQBPcHE1Gbo1yucvcFKWVJ9JZbjh7t7nLLthQguNvarRdA6AVWU6eu1zyfsgmg0cGjWsteR4/GAxCQkHDU5f1x9bmk54OCzmkUUKuPd/WZyss7GdrqHh/ffAGPhIGPh4KDg9G7d+8mHajmj4KDg5lRI2rFPAlcHK1YAcycaa8HMZnsY37GjXN/Pr0dWAkJRwztzHK3g0svgDhyRDuwAkSNYMI5uDCyPT4qKgqZmZny0pon9Th6n6ukJA7//OctcoZm0KA9+OGHQdCbZiWKJhw/Hg3HAaQmkyjfI1db3VsKBj5eMJlM7CZMRKRDK3A5P+7PiRQgdegA/PabFcHB1Zg5Mxo2m7RcBdxxh32zgygKLs+ntwwkzY1ytzzkbhlJL4Do3l07sEpIKHY632WXfYWvv77cq+3x5vOFQ3r1ONJylLRsFhQUpPu5MjK2OmWe9uwZhNtvfxN79/ZHbm46nAMgEV9+ORr2XWX24EcQbFi4sARAyw52lBj4EBGRzxQX1wc9gP2fd95pz9g4ZmqUAZL9y9QM+xeqY8PA+p/t5xNx0UXHkZgY6FQDo7fcYrTjsKvjvAmsUlJ24ezZdsjJsQcZX399OQYN2oM9ewZpBldG5m7p1eM4LpvV1NTgpptuQlhYGABg4cIT+OGH0ygo+EA3e1VTE4yxY7ciLS0f+flpyMtLd9pCb5/GLmLq1LVISCjG6NFDsW1b/Xn0CrelzybxdrZYQzHwISIin7BYLPjmG8BmU3+Z1dUB+fkWhIbWF+s6Bkj1X6qOX7LO6uoEvPTSR0hKOizvyFLSW24xugzj6jhPAyurNRxbt2ZAyp5ImZWsrDdRUxPsFFxJs7kA+64sZa8faeu8dkNDyOeXls2kc0lb5GNjgcREi7zLytWyntlcJQdAP/3UD1u2OG+hb9/+DMzmKmxTRD2udo8pP5vE6GwxX2LgQ0REDabcWSUIzkMvt29fhYKCKjlQ0QqQ6gmKL2UpA6QMhEQEBdnrLJuj3tKTwMpVZiUpyfUmGWUvIMf3mTRpMzZunAjH5SitZTO9LfLdulWqtv4/8MBBhIUpexTZMzd6S3mO7+PJTDGta2sqDHyIiKjBpC8wd3Uyyq3jjgGSRBBsckbk9On2WLfuOscjUFNj3+VktVrl2hdvSbUwjcHIyAtPGhxOmzbt/G7XNUhOPqhajjLaVVrKsMyYYcFvv70gZ6mUQY8ycwPYkJx8CL/+muzyfdztimspGPgQEZFPuaqTkbaO641hUNbNADgfIOkHDjU1NYbnPGVmZjoFSb6cEaVcmiosLEROTo7bQNDTBoeRkZGIjY3F7NmzUVJSArN5A9LS8r0aN1FdXa2ZpdIqnj50qDfsu8e2O+0ek65Va0u89O+qJUxllzDwISLycw3Zeq7HSD2N84yoYKcvbyMN+5TLN3rcFdK6e/2ZM2fkImF357dYLMjJydH8nI71P942OIyKilJl2ZTb2xs6+dxVM8O8vHSkpeXLjzgGblqF2768Nl9g4ENE5Mc82XreGJQBkl72w8iOrIYWyCqDFmUApBwseubMGafholoBlfNwUu1sh97SkKsGh8qdUVKxs7vamqKiIhQWFsrZNsA+iUD5s/I6XTUzdNfQUVm4HRRUjYqKjli3biqUxd1GGjY2JgY+RER+ysjW8+JiIDfX/vthwxqv6667L29vGuMpgxgjA0qlAm3lNSkDFr0AxtXOJFe7nLR3Z7lucKi1M8pdbc2WLVvc3iutzI1WM0PlMuPRowm6hdsnT3ZyWC7TvrbmwMCHiMhPHTignpYN2LeeHzxoD3BWrADuuAMQ7f0DIQjAG280TkbI14WxyiDG3YBSKWhRZmqMLOFI59BbIjMSzLlrLAi4b3BopIDaFb3MjdTMUFk8nZGxFeXlUSgoGHB+m76aINgQFFStG/R4em2NgYEPEZEfslgsiIiohckUI3dJBoCAABHh4cfx44/BuOOOjnLQA9gDIL1mhA3l6Ze3lH0pK9Puoi8FI+6CD62gRes1P/wwGNKWer3lGinDJC1HGQnmtJbxQkP/cArUAKCwMFGzONhdHZQyUwXYMzUAkJBwFGZzlaFmhuXlnVBSEqcIyrR6Ldnft6YmxGXQo7w2XxaXG8XAh4jIzyizIVdema4qpJ0wYTM2b96FwsJEiOJ0p9cqM0JKRr/A9LaOezJ1XJmNeecdEc88U4EbbjirWW/jTSZJu7jXsZu0+hyOy2SA+2BuypQpAOyN/ZRBSseOJ1UNDg8d6nV+arx+cbBzobi9QPzQoV6Kfj+OPZHsM7769fvJbTNDAPJcL637AQDXXrsOAwbs092JN3XqOiQkFOPWW8cgOvpidm4mIqKmIWU5du4covgbvH0ZQ11/IqrGRQD2gZSieBAWSyfVl5bRnVWuGClidszG2GwC5s6NwG+/vQWzucqp3sabZSDt2ht1hsPxHHoFzcqlK8dgLjo6WvUarSW5Tp3KDTUFlN6vpCRW9X72jF39tnS1+hlfrsZoAK52etXfj4SEYgD6QeyAAfvkzx0bG6t7rsbGwIeIyA9p9WrZujUDAwYUKOpPNqm6AwuCDRMnbsaXX+7Cl186F/Ua/du7FCBVVFTgxIkTqpEHekXMo0ePxrZt29xmcBwDEE8ySa5e4y4wUHIMYDIytiIursTljDCt5bWNGydixIgv3Was1M0G6wM0V4GK4/mUu7FuvDENAwZcDOBiWK1WrFmzxmUwqHU/jM5Gaw4MfIiI/JAn9SdHj9rXtRISilVfYN6OG5ACpNjYWERGRqoCHz0dO3aE1RqO06fDIE0Gl7jL4HjzJaz1miuu+MztObQCmK1bM5CdvdTpNRUVFee7MOtlVEz48stRcJVtcg5g9WecuaIcozFgwDinjIxeIbargE4viG2Ouh4lBj5ERH7I6BKQ/ctrn+qx+mUVE5pqxeLdd0PkOhd7IGAPfoyOafBmO7zja4ycw1VAKT0vFSgrZ3G5GjxqD2a0syvulqCMMrLTymgAqdUhW9JcdT1KDHyIiPxMRUWF7hIQUL97CFB/UQPOhcWN1fDQcSfS0qW9VFkNQRAxdepapyyUN6TdWBUVFV6NVggODpazX3oBZUlJnFwcrFWg7DzCw5GAceM+Rr9+e1XX5Tpgcj3lXnl9RoJH6Tq1jpsyZQqio6NbRGDjDgMfIiI/YrFY5EyD49/glbuH7F+aIpRZleTkg06FxQ3d3q617OFYI5OenqeZRWnf/ozul7XR5ZQzZ85g+fLlivfV3j01ZswYhIeH63ZuLi21zxYz0ptHr0A5Ofmgqn2AkiDY5KBH2g329ts5TgXUzqRlQa0p9zZce+06l8Gj0fsYFxfX4gMeCQMfIiI/olX8qzV+QPklKX1RT5263unLVW97u1HK3WAVFRUoLgYee6yvvJtMFE3IzU3XzKIEBenXGBndZWa0309SUpLhnUiOAaW7eqoxY8YgJ8cexDjvvAKkHXf1W+dDsWZNV7z2WjakwDQlZQd27LjY4XUCrr3232jf/owc2OrttHK8LxJfzEFraRj4EBE1g8YYDNoQ7mpFpCyQYwAiNTy0WAK9/vKLioqSM1GFhYmw2S50OMKE9PTtcgdhQIQomrBixe1O08wLCirkVwUHB7sNVqRMjbvgpKKiwuW5HDMjjktCruqpwsPDAbjaRm8vkA4N/QMAsGhRT9UxomjCzp2p0Cr6VmZzXNXouFqqak1BjREMfIiImlhzDwbV4rpWpP5L1HEZR2p4CLieWeWOuxqZtLR89Ov3E95883Y4DrxUTjP/5z/1R1J4+vmVwcnatWtdnksrM1JWVqa5HKVXU2M2V52fkSV1iVZvTbffd0ArKySKJgwbtl01XkLvPbSWtZq7t05TYuBDRNSEjAwGbQ5atSnSl6zyS9RV1sDb7e3urkN6b62lIFE0IScnA3rTv41ek1ZxsSgCBQUDEBdXik6dLCgpKUF1dbXu0o7jhPcNGzqqOi672/5ttYZjz55BqK/Dce4WrUcKDqXxEp72zmnuLeZNiYEPEVETcjcYtDk5BjUAVF+iyh1PSUmHff7+0vmTkw8iO3up0xe4XlbG05EUepyLi03IyRkDaRv5oUObkZJin44ubdl2nPouNfyzWsMVheL1/Xyyst48H8DVj4I4e/YsAGPdkbUzPursjqtdV1paW41OQzHwISLykjd1Or1725e3lMFPQADQq1fjXKOntHrXAK4nnPvC6tWhbudRGZ1mDrgufNajXVysPZh0zZo1Lu+JXs2QtFSnPD4iIgKA61EZynYDjjve0tLy3QZ5/rSU5Q4DHyIiL3hbpxMfbz/2zjvtmZ6AAOD115s/2+OKux1PDWGxWFBUVIt582JUO7n0zu9umrlUDCwVPpeVlRnOaLirc1JmkqzWcNU4D+maY2KOIT6+1GWhsnT85s2TcN99/QDUAjDeHdmbURD+tJTlDgMfIiIPeVunI9V+XH01kJ9vQlFRIBIT7UskpaVNs+TgzRegNxPOjZAmmtt3cqknwbs6v2NWKiVlF2JijmHFits1grOlmsNLJcr74Vznoz8qIj8/DVr1Rm++eTsmT7ZncpxrptTH22wCVq78WrVsaKQ7srsO0o7LWv62lOUOAx8iIg95U6cjfck7KihQ/9yQnVFGOO4+Kisrw4YNG1y+xpsJ50a428ll9PxWaziOHOnh0fBSSVRUFDIzM+W6nI4dT8rDOktK4px2YgFAQUE/5OYO07ma+myVMogJCqpWBWauPqM34zWUuKzlGgMfIiI3HGt5vKnTMbq7yNVx3tQUab3G08DKmwnnjXV+x5ESepPJAWPBk8ViQU1NjWa9zvDheRgwoECns7U+ZcClDGIa8x6ScQx8iIhccKzlWbLkFKZNq8Izz4Ri/nwz6uoEBASIePppKwICzsJiaZxlBW9qinzZL8jIEkxwcLDXjRldnX/YsGHIzc11CHJsSE3dgZ07Ux26TWsP89Ty448n8fzzmxEUdA6bNmktkx100dlan17A5c2UeG+wnsc1Bj5ERDqKi4E77oC8xdlmA+67LwyHDy+H2VyFe+4Jl7/ETp2qwvmRTz5frvKmpsjoazz5knQ1oDIuLg4ffBDlNtBSBkYBAdrnt1rDVYNS33uvBEFBsQ6Bh0ljRAOgN8zTkT0ojDxfW6TueAw41xi5n4JubFp8Q5exXMnMzETnzp1Zz+MGAx8iIh3LltUHPRK9ZQwl5XKV9EUfEeE+U6DHm5oio69xrPmpqKhAba19l9HJkyexbds2t9cXHR2Ns2ej3AZajhmoZ54JdTqXY1ZHmhnmareVknKYp+OEd8C+tJWfb8Mdd0TLu8jsQY/rZTLXO75suP12e11QY2Zypk2bphqQqsQCZuMY+BARaSguBpYs0XrGeNGt+os+BhMnDvGq9403NUWevEb5haksii0tLTUU+FRUVOCnn4Jhs6m/eOvqgPx8C86dq0BFRQfMnBkDm80eXNhswLx5Ztx7b7gcpBw9mqDaIq7MwmjV8DhSZlsca3a6davEjBkW3Hbb9vOPO57H9TKZ3o4v6dj4+FLNaxo9erShe+gqqAEY2PgSAx8iIg1aGRMAGDYsz9Df6J2XmgSvet9YLBYEBFR7VFPkzWsaYu3atbBawyEI2U67lrZvX4WCgirNLes2m4Dy8k6qqeGuCdBalgJsuPbadfJATq2+Q3PnmhEbe9DN+9jPn5X1pmYg47hLy0iGp2PHjm4+k11kZCR3YjURBj5E5Nf0inGjo0/CZIqUMxQAYDKJSEvLN3RercDJ0943jlvgjdQUefMaX3C3M0tvy3pQULVHRcNZWW9i797+TsM4BwzYJx+n3XdIwBNP/GHgfUyoqdGve/K0RicoKMjQcSxIbjoMfIjIb+nterJYLNiw4WVMnKheLpk40fj2Y62lJqluxHFLtpLyC9Bxa7uRmiJvXqPH0y9jV7uWzOYqzQnlNTUhLoIRGwQBquPj40sRH1/qchinvabHOTO0b19/jcc93wLvic6dOztNbXfEZaymxcCHiPySq11Pp06dANCw7cfx8cDNNwOrVtU/lplZjW7dbsO8eWbYbAJMJhHPPGPFDTfYh1S2tC9Ax8JnLdJQToleoLVz5xDFTC37KIaUlF3nl8icM0FTp9qXrgDoBlKudk4NG5aH3NzhqsdF0YRhw7arskUXXrgPe/deCCM7sowYO3YsEhMTAbS8f59kx8CHiPyS3q6nHTus2L3b/Re5KxUVFSgpMeGdd2KgzCasXRuCtWtDFAW+AubPj0RmZmSLndXl7ovbPp08UTN7JXHugWOfVD5gQIHuEply6cqbQCQtLV8OcCSCYENaWr5TtsiegfNNb53ExETW6rRwbTLw+cc//oFnn30Wx44dw+DBg/HSSy/hkksuae7LIqIWRG/XU3z8H9i9u2HnXrt2rW4xryN329JbMvtSYQxstukuJ7a7m/XVGI393NUcGckeTZkyBYGBgVi7dm2Dr4dajjYX+KxZswb3338/XnvtNaSlpWHp0qUYN24c9u/fj5iYmOa+PCJqAVztegoOPm74PI7DIAH70s/y5f/D6dNhcK4nqa9Zkbjblt4SSRPVldvTld2OAahqmLRqbhxrafSCD1f1UO40NKCKjo72uM6JRcotX5sLfJYsWYI77rgDt956KwDgtddew4cffoi33noLDz74YDNfHRH5irejEdztenIzr1NFaxjk6tWhinlOIhw7+gKQsxBNMerC19xNVM/PT3PacWWnzHYZq6XRmp8lZZS0+t441hsBDe+UrKxzUjZ3VAoKCoLZbGZNTyvRpgKf6upq7NixAw899JD8mMlkQkZGBvLy8jRfc+7cOZw7d07+ubKystGvk4gapiEzqIzuevJGcbG9KV99czwBgiBi6tS1co8ZAKoshDdbzBuSBWko6f6VlMRCa0dUbm46pMyOlAWyd79WHgc5M6RHqxfPhx9OwsKFaUhMDGzSAEN6L9butA1tKvApKytDXV0dunTponq8S5cu+PnnnzVfs3jxYixatKgpLo+IfMCbuVVaGiN4sBdMq+t4RNGE9u3PGKopcQzKtJZNtLIgyuNcLbUoP3NDlmSs1nBs3ZoBdRZHPB/gONfyODLSz0irLqiuTkBVVRfoxTxcZiIj2lTg442HHnoI999/v/xzZWUlEhISmvGKiMgVb+ZWOXK1hOIJxy9ae8G0qAp+GtIXxnE7eUmJCY89FiNnlETRhM2bJ+HsWUH3NZLVq0Px2GP12+j79xe8mtReUVGhM7BTgNY4CftWdcBVfY9WrZR9V5z6Xrqrh4qKisK0adNYjEwueT81rwWKjo5GQEAAfv/9d9Xjv//+O7p27ar5mpCQEERERKh+EVHLJe3GUvKkQLikxOS0hLJp00RYreEeXce0adOcllvi44GFC3+DINgjM3d9YaQp5K7eOyoqCrGxsQgODkZhYaBTRslmE/DEE6dgsVicXiP9qquLxbx5kapt9Hfeac+eKRUXA9u2OT8usVgsWLt2rdyF2R1BsCE9PQ9jxmx1uicA5M8u1Uopf6WmdsHy5YI8wT0gAHj9dffBrat5V0RAG8v4BAcHIzU1FZ9++imuueYaAIDNZsOnn36K2bNnN+/FEZFPxMfba3ruvNOe6TH6hSgpLAx0ubXaKMddohaLBdXV1Rg9+ldYrWvd7iTSyjrpkQqKteZhAcBrr4UhNHQ5FiyYrjm365tvoDtANDTUHigZqZuSskhaW8Wdl7nsj9mbCNqQmroDSUmFSEgoxqFDveQCcGmA6Jw5zvfy6quB/HwTiooCkZhYi7g4G0pLm64xIJfO2qY2FfgAwP3334/p06dj6NChuOSSS7B06VKcPn1a3uVFRK2XL74Qk5JqNTsFOy5H6S2/FBYGok8fE6Ki6odPOu4UM5tdN93TKtzdtGkiFi48Aa36WWXAkZ7u3JEYsAduRUW12LMH6NABOHXKPm9swwbtgEk5QHTKlHswc2ZHj+qmHLeKKweNOgdCJuzYcTF27kxVja2QPvv8+WZkZtrfy/FeSgoK1D/rFYIbDVZuuukmhIWF6T7PHVptV5sLfDIzM3HixAksXLgQx44dw0UXXYSPP/7YqeCZiFoXb78QHbe9x8XZXDa2kzhuVXeVETEy90pJr6FfUVEgUlPVxxYXA998EwyrNRxmcxXS0vJVO6cAexBTUhKHSy6JUdU/mUyRmDhxCFJSdmnOyZI+87ffnoTNpp4iXlcHrFhhxZQpNgwcqD1hXFmkLQVCR4/G4/jxGHz55Sin40XRhJycDDhWWdTVCXKNltF7qXeckTEbDGr8W5sLfAD7//i4tEXUtnjzhegYrCxZcgpjx1YYamynzBz4aieZRG9SeWKiukdM/fVHQRCy5SLsyZPVgVt9UONc/7Np00ScPdtOc06W5KefPtBYQhPx6KNmLFpkwwsvnMK993aQn9HbEafM+jhuda9ncvrsvm7iyKCGXGmTgQ8RkVawct99YcjO/kheitIKeDIzM9G5c2fVl6cvdpIp6Y1TCAvrDYvF3qPG8fqVnZEdAzftXVb1r1MuLTnOydK6HmXQIoomzJnTHlOnAr//bsKWLRlyxkm5I855HpcAreBHHajZmzi+/rrQKkd2UOvEwIeI2iStYMVIEbPZbHbKGOjN9WpIlkIr67R2rT0Lc9NNN2HXrkingmTl9TsGbo5ZlHrOj2vdh5SUXYiJOYY337wdWktRs2adwaZNMRDFLqrzSMGY3hb3/v1/xN69/Z1aBwwYUIDy8k6YM+dPuktpRI2BgQ8RtUlawYo3PXVczfWSRk0YNXr0aGzbtk3+WS/r9O677+oWJGtdv17GxjG74u48FRUdod3lRMTGjdqFwFIQpbd8N3ZsDsaOzVEFeKNHj0bHjh0RGBiIyMg/UFpaCoC7qKhpMPAhombjzbwtox2XpW3v9TU+IiZOVBcxuzuXu7le0qiJzMxMQ9fesaNzZkPvGtxNF3eUnHwQU6euByAiMrICNTXBcqARGvqH6jzp6c4jfHbuHIKNGydqnFmvVsdOCqI8mYauDP4cGb2XRN5i4ENEzcKbeVtGOy5L294rKkIBmKH1xW3kXEbnetXU1Lj9vN58HqPTxY2eJz8/Dbm56cjNHY68vHSn+hznbI/jdHk1QRAxf/6vGDmyHwBg6NA6JCcv9XoaOuD9vSQyioEPETU5b3ZJ6XVcTk4+qPqCraiowNq1a1FcHIsVK26XdzpJO5yk4Zh65/JGYKCx/5UGBQXJv9fr5eP4edwNUTV6HgDIy3MeIKpfnwNcffWH+OijCU7PSVmjtLR8tGtXhfz8+ufc9TByx+i95LIYeYuBDxE1OW92SR092s5Qka4gCIplG+3jAUH3XN6IjIzE7NmzUVRUi8LCQCQl2ZsqKgUHB6sySHq9fH76qR/6999rOHjQO4/jfXH1ft27H9Gsz+nT5wACA5W1QzYMG2YPeBprKrx0L9mHhxoLAx8ianLe7JIaOtTsNADUZBKRnv4nDB1ajbg4G4KDg1FUVKuzbKMu6jXSvdkTH3wQ5XbpTiriBbR7+QAitmwZj5ycsZpLb1r1QJ06WeC4JCUINlRXByE391J0734Y8fGlLt9PEGwYNGgP9uwZ5FSfY3S5zZcY1FBjYuBDRE3KyC4prXlTjq8RBBGiCNx1V0eYTCKWL7dPG9+2zaK5bONYbKtXiHvmzBmPP1NJicnjpTt3vXM2bZqImJhjqKkJQadOFqeREHPnHkRY2L9w6FAvqGuYbOjWrRj/+tcNkHrpDB78A/7f//uvy/fbs2cQsrLeVBVFK6+1KQIeoqbAwIeImozRXVLKsRNarzl6NB7r1l0LKcthnzYuYtw4QXMWF2BDVtabiI+vz7joZTLeffdd3TlQeuxT09WPaS3dOdalSNfw00/9sGXLeNVzomg6X6PkPPtKFE147rneuO222PPZrfrARxCA4uIExWMCfvhhMC6++FtFr5474FjwLYom1NQEIynpsOHPTdQa6ZfrExH5mNYuqaSkw07ZBOVxWq9p3/4stJrs7dhhRXX1r5g0aTMEwR6JCIINkydvVgU9nry/EWbzcZhMouqxgAAR4eG/w2KxALAXdO/ZE4WRI290uob+/ffK11tPVBUsO35em03AkSPdNet2nHexCTh6tDsAoKYmRON5AGjYUh9Ra8GMDxG1Olr1KiaTiC++WHG+LgVe16VYreHYvj0Yl14KnDzZDoWFiW57BuXmrsXEieot5RMmbMZ779l3TCUlXYvHHmt/vv4nWR4cKnFe9nK9jRywB3R6Rcn2nWzK4EZEQsIR3XsHiBgzZmuLWM7ibi1qbAx8iKjV0WqW98ADBxEW1rC6FKkfzgsvmCAIANARojgdJpOIZ56x4oYbzqqOLysrw4YNGwA4L50dOtQLS5dmK+pp7JTb6h1HRkivDwqqlpe56onnf9XXJMXHl2LQoD344YfBkOp5Bg3aAwCqxwYP/kHOeGndu4yMrRg+3LmpYWObNm0aIiMj5Z+5W4uaAgMfImqVHAMNZdDjDed+OPXP2WwC5s+PRGZmpMsO01KwpT2ws57ezDBlsKY9gkJEevp2eTu51RqOH34YBGU9z549g5CdvRQXX/wtjh7tjoSEI07LfM2xUyszMxNms1n+mUEONRcGPkTUavlyt5GrCeeAZ9PY3Z3LyNZ5raGhomhCXl460tLsHQPz89Og16soKemwZl2TxJf37uqrr0aHDh1U2RslBjnUkjDwIaJGJ83kiohwv59CWWNjdH6XL2jXvtSzFysfh8US6PZLXKu3jnJwqKuZW0r2QmT9Rov2TsyOmq5IecqUKYiLi2NQQ60KAx8ialTqmVwxToW9SsoaG6kJ4NVXN811ahUYCwJUxcqbN9uv2912d63eOmPGbEVcXImhpSWpUWFQ0DnNQuSSkjhodZ8GgGHD8pqsSJlBD7VGDHyIyKeUE9cBx5lc2oW9gHONjdQEcNeudk127Y61LwA062Ck7e4lJSanXV/1Az/VvXUGDChwO3OrvDwKJSWx2Lo1Qw64+vbdh337+kFZx7N1awayst7U3NElLYM1xJQpUxAUFISamhoEBgZqLmFx+YpaKwY+ROQzjhPX77/feSaXKJowfPh0DBum7pWzfXswXnjBsTcPYLF0lGc3KXdRNZRUbOt4TsfaF71gxf5ZY2CzTVdNRDc6O0tJOV3dsaPyvn0XQq/ZoF736YaKjo5GbGxsg89D1BIx8CEin9CauP7CCzi/XFR/XEAAkJYWBeX3qsViQVJSrdMsLqmuBgj02RfxtGnTEBMT06BsRf2ICvWIieTkg5q1Qq6KmUeMuAGPPdZLniLv3FzQpHu+pKTDTb47i6i1Y+BDRD6hN3H9rrtO4Y032uvO5FKOpNBqAqisqzFqypQpiI6OdnrcV8szu3ef1sxkSbupPMnEWCydVMGeI6nPjnL5S3k+ztEi8gwDHyLyCa2J64JgQ2joctxzD3RncinHQ7jqL1NdXW24q29jF93+9NMHEIRshyUtG06fbg+rNVz3c1it4Th6NAEAkJBw9PzIjFqn++a4AywlZRcGDChosswOuydTW8bAh4gaTHt6unNmwpHWTCxXGYyoqCinYMlRUxTdao+YELBu3XWqYEX5OXbuHIKNGyehfinLPkMsM/MkFi2qw8KFXVWdlB13gHmT2Rk9ejQ6duwIADh58iS2bdvm9jXTpk1j0TK1aQx8iKhBXE1cb4zMRFN8KUs7rFzN6JKyOkePxmP9+mvlGh1lvY+rnV6ACRs3TkRy8lKYzVXIzvb9fevdu7dcG2WxWAwFPjExMT55b6KWioEPETWI1vR0XwY89du8TWiMjUaOyzrKHVbK7I0Ws7kK5eVn3e7i0u/kXH9cY9fqtJRsGVFzY+BDRC2WMgh55x0Ry5cDWVnqXkEN7e4sBQQnTpzA0aMiHnusryp7s3nzJNx6axz69u2Ampoap+30Wk0GHXdx6XeFbtwuy45BHYMaIsde6ERELYRzQ0MBd94JPPss0KMHcMUV9n+uWKF+XXExsG2b/Z+eWLNmDd5771unHVY2m4APPijAmjVrEBQUpHpu584hiinq9j37gmBDerp60rlUEyQI9RXMgiBi8mTf9N3RwlodIm3M+BBRi6S1PFRXB8yfL8oZGXt3ZxEXXXQciYmB+OCDKFUDRSlD5E51dTWs1nCcPh3mMntTU1MDoH531saNE1H/90cBgA2iCOTmDkdeXrpqmUxZEwQACQnFjbq0pTcwlMjfMfAhomalt3VarxGgczAk4KWXPkKnTuVYtuw+OWPjGBS5yn6sXh2KpUuz5R1a0vto9eBRd1l2VP+YVpGzvY5nn7tbQkSNiIEPETUp5Y4pqZhWWXQrjZBw3DLu2MhPImVkysujnJappKAoKemw7mDR4mJg3jyzonOyCaJow7XXrnXKypSVtXMR9DhzN6qiMbEXD5E2Bj5E1CSmTJmCLVsS8NhjZthsAkwmEf37C8jK0i+61Roaevp0e+TmpkMa5aDMyLhapqqurnYqirZYLPjmG8Bmc3x/E9q3P+MUsPzyi97uLOm97a/Vev/GotWlmruziPQx8CGiBjGaWSgra4d588yKpSjB0FKUtM3bcZt5evp2pKXlq5aRXI2KWL06FPPm1df/LFlyChUVL6O4OBaCcLvLXVmAtMTVUeMKRVx77b+RkFCMQ4d6NcrQUFc4UJTIMwx8iKhB3PWHsVqtWLNmDVatyoXN1lv1nN5SlGMDQccdXqJoQl5eOtLS8lXnczUqwp5psh9nswFz5rTHFVekK5bO1GMilAFL/ftrzdQS5SUxVyM33HHM3Ej3zR0uaRF5hoEPURvhy942njKyrOJuarm0FPXEE+F4/fVsVdakY8eTmk0Cjx6NR3n5WVWHZa1GgHr1Pzk5GXDclZWV9Sbi40udXq9f16Ou4/G2EaFj5iY2NpYNB4kaAQMfojZgxQp4vI27qQMld0tRK1aIWLhQhCh2kF8j7YzKynpTM2hat+5aKGt99DosG90hBphQU+OcQdFvQKhfxzN69GgEBQVhy5Ytrm6LSwxqiHyPgQ9RK2axWFBUVIuZM2M82sbtTaDkC66WopYu7aq5lCSK9mDEMWhSFhJrbR1X8nSHmNKUKVMAAIcOKYeS6i+LSYzMxSKipsfAh6iVkoaDFhYmwmabrnpOr3bG20DJl/SWolztlurUqRxJSYfloOn06fZYt+461XHuto5rBV2hoX+4LUYOCgpCTU2N6vVBQdWoqQlutEGsRNR4GPgQtVJS7YeR2hnAu0BJj6+XyfSWkhyDESloslrDXX5mvenqjkGXkWJkZYFxYw4SZZEyUdNg4EPUyrmrnZEUFdWisDDR7VBNV8W0QOMskzl+BsCGYcPyVNvVJVJQo1yqUn7mnTuHYPPmSXKvoIkTNyElZZf8uqCgc6ipCZGDosaeii7R6rcjYZEyUdNh4EPUBrjLXNiDlRjYbNMhCDYMGrQHe/YM8qjfTGMvkxnJvjj28snI2Iq4uBL5eKs1/Pz8rPpeQZs2TcTZs+10t63rFUT7GvvtELUMDHyI2gi9zEVBQQVmzuwqByuiaMKePYOQlfWm4TqVhiyTebKE4yr7otXLZ+vWDGRnL5Vfk5+fBmXnZOVx9Rmu+vvgqiB6ypQpCAwMxNq1aw1fPxG1fAx8iNoAvZoWAHjvvW9hs12oekzaKZWUdNjQ+T2tJ1Jy1eBQmstlhFYBtLKg2WoNR15eusYrtbehO77ekd6yFBG1bgx8iFo5x+Ufx+Ubd8GKJ4zWEznyRf2Ku89x9GiCZoCTmroDO3em6gQ/jT9Li4haFgY+RK2A1i6qiooKzeUfx+UbV8GKVqaopMSEn3/W37HVkLEMelxlrCSuPsfOnUPO1/aoCYINI0Z8hU6dTiInZwykZS47EWPGbNV9v+DgYLeF3p7gri2iloGBD1ELZbFYUF1dfX64Zv1E82eeseLqq0uxdu1alJcnulz+kWgFK1qZIgB47LGY8zu27O91ww1nUVFRoXoPX+yEslgssFqtqusAbBgzZiuGD8/TfI3W55CCP8faHmVgJJ1PGlEhFUYPH56HzMxMmM1m1WulXValperRFe7o7dziri2iloOBD1ELJBUT2zsaZ8sdjW02AXPnRuC3396C2ezZMpYyWNHKFG3cOBGCAJ338u12b+Xn27QpW3H9pvOZGWD48DxcddVVCA8PxxtvfKTKCCmvR6/54dSp6zBgwD755+HD8zBgQIFTpspsNuvutvI0S8OdW0QtHwMfIg9JmRg9vvjbvXR+vYLevXv7oV+/vV7X3GgHC6bzYyDU7+WqG7K3XH0+QMDWrRkYMKAAH330EQIC7jgf/GnXMJWUxELaoi6fQbAhIaHY6X21MlVlZWW6/86kwuySkhLDRdhE1LIx8CHygJSpcMdI92MjtDsai/jkk/HYsmWsHAR4WnOjfV7b+YxPw4ugjerUyQLABq0t6OXlnQAAy5bFylkoxxomqzUcW7dmwLF2JyNDv3bHkRTQ6P078+TfI+t4iFo+Bj5EHjBa7Oqroljnjsb1mQ1peSom5hji40s9ysroZYoAeJw9UvL0i99srsKYMVudCo+lgKu8PEruPyRRZqH0MkZxcSUeXQfg+t+Zqy35EtbxELUODHyIGsDIbqSGkjI6e/f2wyefjHd41oQVK273qgOxXqZI+RgAFBYmolMnC667Lh0dOnRAYGAgIiMjnc7n7Re/VHisNX4CgMsaJl9u1XeHQQ1R28DAh8hLrvrnlJWVAfBdFsBsrkK/fnuxZctYzZofvQ7EjjuWHBsGatW8SI85fr5DhzYjJWULAGDatGlOwU91dTUsFovXwY924bHrGiZva5yIyH8x8CHygrv+Ocrgwlf1PtKXvL1fjfst7PbX6O9YcsXd51u7dq1utsvbz6u3Rd5dDVNj9BUioraLgQ+RF4zstpL4sgleSsouxMQcw4oVtxta3vG22NbdeAhX2S5Xn1dqxBgRoT1CQo+7vkFNNWGdiFo/Bj5EXjC628pT0lZ5qSuzVkYlPr7U5fKO1ERPa5nNaCCkt+srKKjaULdorc+kbMQoCDFIT89AWlo+AxYialKGA5/KykrDJ42IiPDqYohaC3e7rVwFAnqUW+XtGRX93jVGlneqq6tVnYelQEhrd5LVakVNTQ1OnjyJbdu26Xw+eyF1enqeoW7Rys/k2IhRFAXk5g5Hbm46Jk/2LkgkIvKG4cAnMjISgiC4PEYURQiCgLq6ugZfGFFLpMyYuNpt5U3jPykYMZpR0Vve2bBhg8f1N1IdUGlpKbZt2yZ/PsdlNVE0nZ+Aru69o1xqU876Cghw1agQAOxb8q++Oh4jR4bJhdieTG33FfbgIfIPhgMf6X+GRP5MmTGRvpy1dls1ZEu1q/oa6XlX2+e9rb/RUlMTonkt/fv/iL17+2sOC1XO+lq40P6XIO2lM4kJd911ESZP3oy33hreLNvGb7rpJm5XJ/IThgOfkSNHNuZ1ELUajl+Q7rZUS1vbtWjV4ej1pikpicM//3mL7vIXYDxbZJReLdNPPw0EYMOwYdvlOp36966f9bVoURyys8Nd7kizs19nUdEJREX5Nvty0003ISwsTPd5Nh4k8i9eFzdXVFRgxYoV2LfPPgSwf//+uO2225ymHBP5A1c1N9KSjdHlJ61AKiNjq9zgD3AOaEaPHo1t27a53Y3ljmPA4aqWCbAve6Wl5QNwvxNMWjp78807oB4xUX9sUVEgUlPdd0o2uhQ2bdo0JCcnuz2OiPyHV4HP999/j3HjxiE0NBSXXHIJAGDJkiV44oknsGXLFqSkpPj0IolaIq0gwVfLT46BVH5+msugomPHjgAa3slYayinkVomADh9OgxatT9BQdVy9+f4+FJMnrxJlZVSHhsVdRJAlHwtDaXVYZqI/JtXgc99992HyZMn44033kBgoP0UtbW1uP3225GdnY0vv/zSpxdJ1BIZzUq4W34qLCyUj1eSAimrNRy5uelO59cKaHzRyTgqKsrpM+l1jnZcgrNnhOzBjyDYMGjQHrk4WhnwJScfRH5+2vnPVf9cVFSS4eskIvKG1xkfZdADAIGBgZg3bx6GDh3qs4sjaumMZCXcLQHl5OS4fb1WXUx6ep5XnY7dsVgssFqtTo8bWYIDBAiCiKlT1yIoqAb/+tf18rU7Bnxjx25FWlq+w3UaC3yM1gBxpxYROfIq8ImIiMCRI0fQt29f1eNHjx5FeHi4Ty6MqK0wuvykVwOk10xQqq3R4m0nY2UvIa1rcgyq9IK6kpJu57e9u643crzOkydPGpr3xWnpROQtrwKfzMxMZGVl4bnnnsOwYcMAANu3b8fcuXNx/fXX+/QCiVo75wJhQBSBQ4d6yXU+rmqAjCxfKbOvrlRUVADQDwqUgYTeNTkGK1pBnbSE5chdvdG2bduwbds2Q/O+GNQQkTe8Cnyee+45CIKAW265BbW1tQCAoKAg/OUvf8FTTz3l0wskam2kEQ3Kmp3k5IMQReVR9cs+ANxuQXe3fBUTEyNnQKxWK9asWaN5bWvXrpV/rwwuHK/ZkyaKjkFZenoecnOHa7y78XojX843IyJS8irwCQ4OxrJly7B48WIcOnQIAJCcnOyyV0ZDFBUV4fHHH8dnn32GY8eOIS4uDjfddBMWLFigWsPfs2cPZs2ahe+++w6dO3fG3XffjXnz5jXKNRFpcVwqkmjV6dTviBIMbUHXW77KzMx0mf3QW0KTggut5a2ffurv8pqk7fOAc1AGAHl56U5ZoKysNxEfXwoioubUoCGlYWFhGDhwoK+uRdfPP/8Mm82G119/Hb169UJBQQHuuOMOnD59Gs899xwA+yyxsWPHIiMjA6+99hp+/PFH3HbbbYiMjMTMmTMb/RqJAP1Mhbs6n4ZsQe/cubPuc66W0LSuWXm8umeP+pqk7fMSx6BMa2mOQQ8RtQReBT5//PEHXnrpJWzbtg3Hjx+HzWZTPb9z506fXJxk/PjxGD++vn9Iz549sX//frz66qty4PPee++huroab731FoKDg9G/f3/s3r0bS5YsYeBDhigno0tLuEpBQUEwm80eFc0qsy16dTpWazjS0/PkLInetHUtrq7F0y7Ojsfbgx578ON4vd9+2x5Wa7juslVDd5YRETUWrwKfrKwsbNmyBddeey0uueQSt8NLG4PVakWnTp3kn/Py8jBixAjV0te4cePw9NNP4+TJk05/QyVS0lui0mOk+FYr25KdvVQVDKgzLOoREJLo6Gh5iKjetSuzNlKdjqddnLUHiQoYN+5j9Ou31+l6BSFbM4Mk8XZnGRFRY/Iq8Nm8eTP+97//YfhwrQLGxnfw4EG89NJLcrYHAI4dO4akJHUPkC5dusjP6QU+586dw7lz5+SfKysrG+GKqaXztJjW3fF62Zbs7KVISjqseYzjCAiJq140rgI2T7s46x0vBT2+ngNGRNQctKYFutWtWzef9Ot58MEHIQiCy18///yz6jW//fYbxo8fj+uuuw533HFHg69h8eLFMJvN8q+EhIQGn5N8x2KxoLS0VPeXxWJp7kvU5G7CupFjpkyZoplZUt6TkpIS3WuQdlwJgn0p2l0XZ63j09Pz3F7v8OHTMXPmTEyZMkX3WoiIWgqvMj7PP/885s+fj9deew09evTw+s3nzJmDGTNmuDymZ8+e8u9LSkowevRoDBs2DMuXL1cd17VrV/z++++qx6Sfu3btqnv+hx56CPfff7/8c2VlJYOfFsLo8pNjcOC49OPISI2OVJsTFHQONTUhTjuiHMdLOJ7TSLbFyDHV1dWqhn7u7om7hoNan0HZpVk6/ssvL8eOHanIzR2OvLx0TJq0GVOmtMc774iw2eqXtgMCRCQm1iI4OFi3Dskb7LhMRI3Fq8Bn6NCh+OOPP9CzZ0+EhYUhKChI9Xx5ufHdKK52pCj99ttvGD16NFJTU/H222/DZFL/zTM9PR0LFixATU2NfD05OTno06ePy/qekJAQhISEGLoGalpGl5+Ux3kbLClp7Wxy3BGlNRl89uzZ8u+NNB10d4zyPaTrdXVPjDQcVAZGetPNCwoGYMeOoZB2dNUvaS3FxImnVe8xYcJmbN5svyeZmZm616ZFr2ibHZeJqDF5Ffhcf/31+O233/Dkk0+iS5cujV7c/Ntvv2HUqFHo0aMHnnvuOZw4cUJ+Tsrm3HDDDVi0aBGysrIwf/58FBQUYNmyZXjhhRca9dqoZfEmWFLS3tlkrJ6lurpalakwsrPJ6O4nV0taWtetdb1GtrZbreHIycmAchu7dL7y8k4ur7empsblNTqKi4tjgENETc6rwCc3Nxd5eXkYPHiwr69HU05ODg4ePIiDBw8iPj5e9Zx4vh2u2WzGli1bMGvWLKSmpiI6OhoLFy7kVvZWSKvzcVPR3tlk52pHlMToDCkA8mfcsGGD2+JgKTszbdo01eNSBuf06TCXO7jcBUbTpk3D/v2n8eqrFrgbNdHQ3VpTpkxh0ENEzcarwKdv3744e/asr69F14wZM9zWAgHAoEGD8NVXXzX+BVGj8XRbua9pDwS1k7789TohSxrzC12Z7XTM4AA2KIMWZbDibmv7+vVmLFzYR7NxISAiI2Or22DH6LwwBj1E1Jy8CnyeeuopzJkzB0888QQGDhzoVOMTERHhk4sj/9NcM5qkLIzzQFF1jc+hQ73cLhc1hLugShoToZXBsQds9uDHsV7IVSG11RqOZctiIYpSsFPfuBCwYcyYrRg+vH53l57IyEhOTCeiFs+rwEfqonzllVeqHhdFEYIgoK6uruFXRtSElEtUFRUVmD17P44eDUG7dnU4ceIMDh/+FACwdGl2g/vYKHedKZfzHDM46el5Ts0MJXoZnGuvXYv27c9o1gspu0MD9VvVy8ujVDu17NSNC41iUENELZ1XgY/0t06ils5dBkVJ+tKOjY3FhRfWP15aWorly6tQWJjoUSdkLXpLeVoZnNzc4cjNTcfkyc5ZJb0MTkJCMczmKowZMwY5OTkAHHep2dCjRyEOH06Ut6pnZGx12biQiKgt8SrwGTlypKHj/vrXv+Kxxx7zaX8PIkd6PV+M7GLyhKedkLXoLQPpF1Xbs0rBweeQkHBUDkTcbYWXxrlodYc+fDgRyt1qW7dmICNjK7ZuzdDdek9E1FY0aDq7O++++y4eeOABBj5kWEVFhe5zyuzNrbeOQXR0tFPNiBQEudvF5EmDPL36H8cAoSFN91wVVYuiCevWXecUvM2ZEykvySUknEPXrkkAkhAUFISqKvs16c3fcjx/XFyJ0xwxT7HpIBG1Bo0a+EhbzYmMsFgsWLt2reZzjtmbbt0qMWdOpNNxUq3Otm3ACy9oj1cYNcqzWhTHLeoLF55AUVEgEhNrERd3MYCL5QDMXddovcDOuajamWPwplxyPnpU+/2Cgs7BeZeWmpS1MrJNfcyYMU4z8QAWLRNR69GogQ+RJ4w2FRRFE+bPNyMzE3Bo6wTAHqhceilgMgE2W/3jAQFAWloUvPl+Vn6px8YCqanOx3izFV+ZxZKaA+bnpyE3Nx1a/XS0aopc1THV1ITAVdBjdKu6JCkpyeWkeCKilo6BDzUZb7MhWss1dXUCDh7UDnwA++PLlwN33gnU1dmDntdf1z/eFzzdiq9XgzR27FakpeXj6NF4rFt3LfR687g6h0R7Cc3zreoSLmcRUWvHwIeaREMaE2p9eQcEAL16uX5dVhYwbhxw8KD92MYMejzlrgbJ/msfqqv1a4r0zhETcwwVFfb5dAkJR53qkjIytiIursRwLY80U4vLWUTUFjDwIZ/Tyux4O35CWsZR7joKCBDx+uuCoUAmPr5lBTwSd52UJSkpuzB7dm9UVsbINUVlZUnYsGGD7jnefPN21GeJREyevKlBhcvR0dFc3iKiNsPjwKe2thZPPvkkbrvtNqe5WY5uuukmdnH2M74cOeG4jCNlKu6++yqkpnbxyXs0F72t8adPt4fVGq4KTgYMiERsrHOmRX8ZS/mzgE2bJiI7eymSkg57da1c3iKitsTjwCcwMBDPPvssbrnlFrfHvvrqq15dFLVevho5obWMs3VrBrKzlyIuzubm1S2Dq6Jjra3xogjNbevO57XK5xg0aA9++GEw1GMm1Dxpsigta0m4vEVEbY1XS11XXHEFvvjiCyQmJvr4cojsXC0FecNdYbWvv+D1io61dnE5FjG7G4VRU1MDwB5Y7dkzCPXBjnbw40mTRS5rEVFb51Xgc9VVV+HBBx/Ejz/+iNTUVLRv3171/OTJk31yceS/XHVJlpZejAYzRpffZs+e7ZPgR6/o+OzZdk7dkVNSdqG8/Cwct667ytJIU9D1mxPWT2n3tAszl7WIqK3zKvD561//CgBYsmSJ03McUkoNkZmZCbPZDADo1q0S8+ebUVcnICBAxNNPV2LGjOkeBzNGl9+qq6vlYMpqtcqZFaXAwEBERkZqZoikoEEvWyUFPdLPUlbH3SgMx2AkMjISgH5wmJX1Jioq7MdIs7uMyMzM5LIWEbV5XgU+NlvrqLGg1sdsNstLLZmZQEICIAhAerqA+PhI+ThPghmjrFYr1qxZY/h4xwyR1OG5qKgW77wjOkw8dx5HIWV1kpIOq+p9pCDvhhuud7kEpzdCIz6+FPHxpYY/h6Rz584ev4aIqLXxKvD55z//iczMTISEhKger66uxvvvv2+o8Jlal6aqkZGyGytWADNn2jsvm0z2ZoRZWQ0+vUtaGR5XpPvheG/CwiowcWK+0440ZcYHUGd1pHqf4cOnIy0t6nyQF+n2GqTXGd2q7li8LGERMxH5C68Cn1tvvRXjx49HTEyM6vGqqirceuutDHzaGE+WlYzS+gKWvnyLi+uDHsD+zzvvtDcjbGk9efTuTUoKnAKS0NA/dJsRAvYMzrBh1YiNVQdTJSUmFBYGIimpFnFxNqeeSEZmbElYvExE/s6rwEcURQiC87bZ4uJiuT6D2g5PlpWMFsfGxcXpZhgOHFDP2ALsYydcjahoLq7ujWNAoszOBAVVo6YmxKlnD6AOptyNpCAiIs94FPgMGTIEgiBAEARceeWV8u4SAKirq0NhYSHGjx/v84uk1sNxkrkWd8sqvXtrDxh1N6LCKFf9dRqb2VyFQ4d6uQxmpHvnbqwFERF5zqPA55prrgEA7N69G+PGjUOHDh3k54KDg5GYmIipU6f69AKp9XEV1EhLODt2/K5avpEEBwcjPj6q0QaMNncGxUgwY1/aSsTp02Eux1oolwsLCwuRk5PTZJ+DiKi18ijweeSRRwAAiYmJyMzMRLt27RrloqhtkpZw3AUfs2fPRlZWlM8GjErLb+6CDmUG05eUGSZ3M7pWrAAeeSQGNtt02PvxqBsSKguilfU6wcHBhgIf9ukhIn/n1f/pp0+fDsCekj9+/LjT9vbu3bs3/MqozbH3x3Gf8ZCWelwNGHX8AtdbvpKW1WbPno1t24AXXnAOOoYPn45Ro5zrdaRzBgWdQ01NiObSWEVFhcvr0Jo35th7x2QSERRUjYKCfli3rgvqAx0TABsEQdQtiJb4YomRiMgfeBX4HDhwALfddhtyc3NVj0tFz2xgSHqMTiV3R/qiP378ONauDceyZd1gswkwmUQsXPgbpkw5iaCgINXxl16qXTuUlhaFqCh7RkqiDFikrItjdurMmTNYu3at5mu0trBLTQyVjwuCDQMH7sGKFbdrdGEGABOmTl2L9u3PuN2uzqCGiMg9rwKfGTNmIDAwEJs3b0ZsbKzmDi8iACgutu/S6t3bHmS461LsqTfe+AhLl2ZDFO1/Bm02AYsWxcFqXSsHCVKjwfh4uKwdUjYgfOyxGPmcUgZGFE3YvHkSFi5MQ2JioCq7ojdUVSvIi4srQXb2Unl3l37QY783nnRfJiIi17wKfHbv3o0dO3agb9++vr4eaoGM1oU4HufYhPCZZ0J1uw1788VeXV1tKIOkDFCysuCydigqKgp79jhvp5fYbAKqqrogKgooLa3vjqx3Hcq5WYA9kAkKqpaX0I4c6eEy6PH23hARkTavAp9+/fo5NVGjtknahZWZmanqbHzq1CnU1NQgMDAQ4eHhCAy0Z0CkYKCsrB1mzuyoakI4f74Z99wT7nG3YVe8ySC5qh0CtLfTS/S21etdR0bGVnz66RjYbPalskGDlMtaUuGycwHz1Knr3GZ6WKhMROQ5rwKfp59+GvPmzcOTTz6JgQMHqmopACAiIsInF0fNy2jHZi2FhYnndybVq6sT5EyMJ92GXfFlBkniuCQmcbWtXu86UlJ2Ye7cBLz3Xr7GspZyKU1dRzRgwD6n91BuX2ehMhGRd7wKfDIyMgAAV1xxhaq+h8XNbYsnAz4d+bqWxxVfZpAkyiWx9u2B06fdb6tPTj6IqVPXAxBV2ZquXWuRlHQYhYWJustagIBx4z5Gv357da+f4yaIiBrOq8Bn27Ztvr4OamMakomxWq3y741mNtxlkLwZsqq1JKY8j3K510hjRK1gUCIINpdBDxER+YZXgc/IkSPx1Vdf4fXXX8ehQ4ewbt06dOvWDe+88w6SkpJ8fY3UTBx71HhKKxOTmZkpz3OrqKhQbQeXrFmzRvWz8jWA58s8eu/jSNr9pUdv6c/oaAnHYNBxectd0MOaHiKihvMq8Fm/fj1uvvlm3Hjjjdi1axfOnTsHwP439SeffBL/+9//fHqR1PQsFouhYMEdx0yM2Wz2eLnGMRACPJsEX1tba+g4d0t7es+721l29uxZ+XHnQaXBLpfnpLoe1vQQEfmGXsGBS3//+9/x2muv4Y033lAVNg8fPhw7d+702cVR82lIfY9R0kwqqzXc49d6Mgnesfje16QlLCVBsOH06fawWsPx0UcfqZ4zm6uQlHQY8fGlSEo67DLTExcXh9jYWAY9REQ+4lXGZ//+/RgxYoTT42azucHLI9Ty+WK6ub3Hj30mlbfDQh3HNNgDKfXg0+DgYK+COK2aIL0WDlr1TKIIrFt3nVefjVkeIqLG41Xg07VrVxw8eBCJiYmqx7/++mv07NnTF9dFLZQvppsXF0uNDes7ImvVxBghBQaOzRKXL7fvzALUjQaNMLqNXxkASktYR4/GY926ayElU735bHFxcQx4iIgaiVeBzx133IF7770Xb731FgRBQElJCfLy8vDAAw/g4Ycf9vU1UgthtIjXnQMHnJsDejOvS1IfSNl/ttnsPXjGjQNCQy2Gm21Kxxk5Xi8ALC8/C8cVZOVncyzUdsQsDxFR4/Iq8HnwwQdhs9lw5ZVX4syZMxgxYgRCQkLwwAMP4O677/b1NVILoVfEO3z4dPTvf0KzCNlRcHCwZmfkhvT40Qqk6uqAHTus2L3beAPGDRs2GDrOVQDorn+RN8XdRETkO14FPoIgYMGCBZg7dy4OHjyIU6dOoV+/fujQoYOvr49aEK0vdZNJRGJiLcxmMzIzMyGKIiIjIzVfr8xm2Dsji6irM76dW49WIBUQICIsrMSr87njahdXUtJhn3eSJiIi3/Eq8JEEBwejX79+vroWauG0ingnTtyMzZvVNT7u+uEA9vqbSy6pwPPP/7fB3Zbj44ElS07hvvvC5OuaMGEzcnM9qz0yyl1WpzE6SRMRkW80KPChtktvq7iRL3Wju6gGDuyI55+fpDreaLNBx+ubNq0Khw8vNxRseLorzfH4Q4d6QRTrn9fK6vhqFhkREfkWAx/S5LhVHLAX/W7YsMHpS10rkCguttfe9O7ter6VMjNUXAwcOxaLKVPuQXT0HwD0t6hrZZSMBBue7kpzPP6yy77CV19dDmUBsyja53QZwe7LRETNi4EP6TKyu0grkFi9OhTz5mlvLdej3o7eEcuX2x/X26LuDU93pWkd/9VXI1A/VV1Sv2tLOUHdEXdsERE1PwY+ZJjUaVnK7GgFBhs3TsTmzYLm1nK9zI/ednSbDfKSkv0xERdddFzO/EiMZlHcjZaQSBms06fDNAaKOgY96voeTlAnImrZGPiQIVqdljt2PKkRGJg0t5YfPKgf+OhtR3dUVyfgpZc+QlLSYafnMjMz3X4Gd0XJgHMGC7DB9WQX7toiImpNvJrVRf5Fr9NyUNA5pxlVgA0mk6h6JCAA6NVL//zSdnTH1wgOyRVXvX5qamqMfBSkp+fJ1+xYlKyVwbJfg+NnrL+e229/U1UjxBoeIqKWjRmfNkZrxpSSN3Umep2Wa2qCNXvWjBgxAvPnR6Kuzh7AvP66frbHYrEgIKAazzwTivnzzairExAQIOLpp60AgHnzzLDZGt7rR53JETFs2HakpeWrznf0aILmUtiIEZ/jyy9HOZ0zPT0P8fH2cRiZmZno3Lkza3iIiFo4Bj5tiNEZU0b67Ci56rSclHTYaXv7jBnDkZlpX97q1ct10KO83nvuCZfPc+qUPSC5995wQ1vUAwP1/yg7Z3IE5OWlIy0tXz5m584h2LhxotNrBcGGCy74BV99NcIhKLLJr8/MzETfvn1135+IiFoOBj5tiNH+OZ5OK//kEzj0rRHx7LOVuOGG652OlZZ6AgJK0aeP/THHGaFS1snxOrS2oxvthxMZGSlvvy8rK8Pbb+fIW+zdFTVLgZHjyq+UZYqPL3XZjdnV7C0iImpZGPiQS1J9jzrwEZCZGYnY2Ein4z3JOvlaVFQULBYLNmzoiKVLs+UgJSNjq8uiZq0lLgBYtOgX2Gz2+h1XjRtZ10NE1How8CGXtOp7bDYgP99em+PIarUaOq+nWScjLBYLnnhilRz0APbMztatGcjI2IqtWzOcMjZS7Y8jQbDh6qs7IjFxts9rpoiIqPkw8CGX9Op7tm9fhYKClrWFu7q6WndZKy6uBNnZS1UZG8fan3r2wKh9+wsQFcXaHSKitoTb2dsAi8WC0tJSlJWV+fzc8fH2jskBAfafldkSqzUchYWJsFrDff6+njpz5gzKysrkXj1K0rKW2VyFpKTD8jKVVpAEANdeuw4pKbuwZs0aWCyWJrl+IiJqGsz4tHJGa2oaIivL3nk5P9+C7dtXqZaIjM68aohp06YhMjJS9VhFRQVqa2sBAGfPnsW7774LADCb4bIQWUmroSEgwmqtf6/GWJIjIqLmw8CnlWuqL+b4eCAgoBoFBdqjKlzNvGqoyMhIeQxEcTHw/fdWfPnlv3Tfy7EQGYBq1IbEbK46P3RUOX9LwNatGRgwoIDdmImI2iAGPn6oobuQjM688tV1SMfVDzI1QxCyXWaZpG3wrjJTO3cOwddfXw7H+VvefBYiImodGPj4CWlquC92IRmZeWVEVFSU3HtHj3S9joNMjWSZXGWmAOgUNnv3WYiIqHVg4OMnfDk13GyuMlxHo0fK4iiDsOJi+/b53r2duz3rjc1wlZnRG0FRXt4JgKAZ9HDoKBFR28bAh7ziqqGfVjGyklbWqX4Zy759fvlye1G1xL6tXpQHpQKuMzOuRlBIr9HKWmVlvSnP3yIioraHgQ8Z5liTozdOIiYmxqPlNMdlLJsNuPNO+04yKfMTGmrBxInbDWWZ9EZQmEwiFi06hro6+2u0slYMeoiI2jYGPmSYJzU5ElfLVxKtZay6OvuQU+k11dXVLrNMSnojKF59tQKTJglYvtz+s5HzcRwFEVHbwsCnlfN0Z1RDeZLJcbd8JdHqDh0QYJ/s7sjd0FJXS1zp6cazVpmZmejcuTPHURARtTGCKCrHT1JlZSXMZjOsVisiIiKa+3IMsVgszTJPylU2p7gY6NHDOZgpKtLO/KxYYV/eqquzH/f66+ogqbS0FMulVI0DqzUc5eVRCAo6hxUrbnfK9phMIpYsOY177+0AoPnuFxERNR6j39/M+LRSzf3l7S6bY2T5SmKxWHD11dXIzzehqCgQiYm1iIuzobS0/rPocezTo7fENXNmR/lnBjVERP6LgU8rZHRMxezZs+UveV8GSkaKkY0uX2l9loIC5/fMzMx0ekyrTw8gQtmQUBBsSE3l2AkiIrJj4NMKGR1TUVRUiz17gOjok9iwwbNAyRUj2RxpuKnj8pVjtsfoZ6mpqXF6THvIqAAp+JF2asXFXWzoPYiIqO3jdPY2aufOIbjkkhhccQVw0UWR2LlziNvXGA1CpGyOklY2JyvLXtOzbZv9n1qFzd6yWsNx+nQYAJvGs4Lck6exBqcSEVHr1OoCn3PnzuGiiy6CIAjYvXu36rk9e/bg8ssvR7t27ZCQkIBnnnmmeS6ymUlLQFKzP5tNwKZNE2G1hvvk/FI2JyDA/rNeNgew99/p06cUAQGlKC11/lVRUWHoPQMD65OTO3cOwdKl2Vi37jo4ztmSiKIJNTXcik5ERGqtbqlr3rx5iIuLww8//KB6vLKyEmPHjkVGRgZee+01/Pjjj7jtttsQGRmJmTNnNtPVNg9vh4harVaX51XWAWVl2Wt6Dh60Z3q0gh6jtUhGREZGYvbs2fjxx5NYtKin4vNpBz7KDs3sxUNERJJWFfh89NFH2LJlC9avX4+PPvpI9dx7772H6upqvPXWWwgODkb//v2xe/duLFmyxO8CH2+HiK5Zs8btuZV1QPHx+k0JAeDEiRPGLtigqKgoiGIU3DVgMJlEPPNMJW644XpuTSciIpVWs9T1+++/44477sA777yDsLAwp+fz8vIwYsQI1d/ux40bh/379+PkyZO65z137hwqKytVv1ozqadNRsZWBATYI4SAANFngzeN1gEB2gXJ3iorK0NpaSkiIn6HyaQd+QQEAGvXAocPC5gzJxKxsbEMeoiISKVVZHxEUcSMGTNw1113YejQoSgqKnI65tixY0hKSlI91qVLF/m5jh07Or0GABYvXoxFixb5/Jqbg2NPmzlzjuPSSwMREXEcubmtu8h3w4YN8u8nThyi2MZu38El1Rldd12zXSIREbUCzRr4PPjgg3j66addHrNv3z5s2bIFVVVVeOihh3x+DQ899BDuv/9++efKykokJCT4/H18SatmRaunzfPPd0Z29lKfZHqaipSx6tTJonvdyhlb06ZNQFhYZ906IyIiIqVmDXzmzJmDGTNmuDymZ8+e+Oyzz5CXl4eQkBDVc0OHDsWNN96IVatWoWvXrvj9999Vz0s/d+3aVff8ISEhTudt6bSGhW7fHowXXvC8oLkl+eOPG7FsWTJsNgEmk4iJEzfpbkeXZmwNGVKL2NgmvlAiImq1mjXw6dy5Mzp37uz2uBdffBF///vf5Z9LSkowbtw4rFmzBmlpaQCA9PR0LFiwADU1NQgKCgIA5OTkoE+fPrrLXK2ZY+3KpZc6d0o2UtDcUlit4Vi6tCdEUb0FPzn5IMzmKkOZICIiIndaRY1P9+7dVT936GAfNpmcnIz48+sbN9xwAxYtWoSsrCzMnz8fBQUFWLZsGV544YUmv97m4NwpWcSECdoFzS0xiHC1Bf/QoV6q2qVJkzazMSEREXmlVQQ+RpjNZmzZsgWzZs1CamoqoqOjsXDhQr/ayq7srRMefhybNzsHB44F0L4MIhzngVVVGQ+q9LbgBwVVO9UuKTNBREREnmiVgU9iYiJEjWYugwYNwldffdUMV9S8iovt87N6967vrVNa6jzKQasA2tMgQq8ZoJFmha4yTWZzFSZN2ixfn73GZzNqakK8asZIRESkpVUGPlRvxYr6Sekmk325S28mlicdnfv3HwerNQbdu59D1661AOxjI6qrq2GxWJxqjNz199m5cwg2bpwIe+soGyZPds40KXdr3XhjGnJzd8FqDfeqGSMREZEWBj6tWHFxfdAD2P9555325S5pjpaS0Y7OO3cOwaJFl7hcDjM6yR2wZ3rqgx4AMGHjRu1Mk7RbKz4+Tf5ZmQmSrkd6HcdREBGRJxj4tGIHDqh3cQH2wuaDB4GBA9UBgbKj89atGXIQkZGxFeXl9gBG2j1lZDnMkw7OR48mwLlJuAlHj8YDKNZc/pJmc0nvs3DhCRQVBSIxsRZxcRcDuJjjKIiIyGMMfFqx3r2dt7AHBNiHhip7/axeHYrHHjPL/XEyMnIQF1eCkpI4VRA0adJmdOx4sslqavbvvwDr11+rm1lSBjWxsUBqqk/fnoiI/FCrmdVFzqQt7NKyljS2QepgHBUVhbq6WMybFwmbrb4/zmefjcG0aRPw6adjVJmdDz+chLFjh0EQ1GkkIzU1FRUVus8lJByFfbSE2o8/DnbKLFmt4QC4hEVERI2DgU8rl5UFFBUB27bZ/+lY2Ky9HCZg//7OcjCkfPyPPwIwadJmOfhxrKnRYrFYsHbtWt3nzeYqTJ68CYDjTjP1+4uiCcOHT/eofoiIiMgTXOpqA6Qt7Fr0lsMuuwwwmURV8CMINhQUfICUlCp5d1WnTuVul7hOnDjh9Jjj1vWUlF0IDj6Hdev0p4gGBABpaVFgzENERI2FGZ82Tm85rGdPCxYu/E03s2M2VyEp6TAAoLAwUV6CcmSxWLBmzRrVYzt3DsHSpdlYtWo6li7Nxs6dQwDYl7wcl9GkJbCAAFG1TEdERNQYmPHxA8qOzr16AaGh9c0Gs7PDdTM7Rro8O+7ucrcrzHFrekbGVsTFleDuu69CamqXRrwLREREDHz8hnI5rLS0PliR+uY4chfABAcHw2KxoKysTPU6vSaJP/3UD/3771U1KVQGW3Fxzp2miYiIfI2BD2nSC2CGD5+OUaPsP2uNqNBqkgiI2LJlPHJyxp7P8JS2qAGpRETkPxj4kExZkKwVwCiLj0tLSzXPYTZXqZok2mt47AXUomhCTs4YAAKnrBMRUbNg4EMAtOt5lPU4jj2CXJ2nPuixwbl+vj4I4pR1IiJqatzVRSgujsXGjdr1PNnZS7FunUWzR5AjaSZXfZZIyvhokzpCExERNRVmfPyclOlxjIGloCQp6TBGjYKh3jr5+WlO55GWtRyXvQBOWScioqbHwMePOe7cUhIEG268MQ0pKZMMdVG2WsORl5eu8YwNWVlvoqYmWHM2GKesExFRU2Lg44ekIENr55adVHg83PDoiKNHEzTPNX26BQ8+eCXCwsIAACUlnLJORETNh4GPH5ImtxcV1eKdd9RjK0wmEZs2WZCWZjzo2blzCDZunOj0uCDYcPfdNiQnJ8uPcco6ERE1JxY3+6moqCikpnbB8uWCapzF8uUCrr66s9ugR8oaSctljn+UpKWsyMhTjXH5REREXhFEUdTfduOHKisrYTabYbVaERER0dyX0+gsFguKimoVy0/qDsqulqEOHTqExx//GqtWTXd67tpr12LAgH0AwGnrRETU6Ix+f3Opy49ZLBZV9+WCAu3jpk2bhsjISNVjwcHBCAsL0+nUbENCQrH8k+M8LyIioubCwKeFKy4GDhwAevd23TzQ8TgjrzMakKxdu1bz8czMTHnwqL3GRwp+BBw61ItdmYmIqMVhjU8LtmIF0KMHcMUV9n+uWGHsuBkzjL2uoWpqagAAyckHIQjKZwRs2jQRVmt447wxERGRlxj4NKHiYmDbNvs/jRw7cyZgO19yY7MBd97p/Fqt41atcv86LVZrOAoLEz0OWLS2srMrMxERtURc6moiK1bUBygmE7B8uesREAcO1Acvkro64OBB9dKV1nGO6uqA/HwLQkOhW2SsNavL3VLVyZMnXW5lZ1dmIiJqaZjxaQJGszdKvXvbAySlgACgVy/3xznOxxIEG7ZvX4WXX34ZFovF6b0cOzhLs7qkzI9eJuiDD753uZWdw0eJiKilYcanCRjN3ijFx9uzQnfeaT9Wazq6xWJBQEA1nnkmFPPmmc83IrTBcR6WMgg5fvy4XNRcVlYGQLuDs7RUdehQL91MkF7n56lT18lb2YmIiFoSBj5NQMrKKIMfreyNo6wsYNw4e4DUq5dz0KPcin7vveE4ejQe69dfC1GsD3xE0V58LNHaoaW1JV0QbAgKqtbMBCUnH4TZXKX7OuVWdoBzuIiIqOXgUlcTkLI3yg7JjtkbV68dNcr5WMet6GZzFdq3P6uRgdEvMpaWsABg0qTNEAR7ZCZldmpqQlwWLUtb2R1fJ2WXpkyZwuaFRETUojDj00RcZW88VVwMfPNNMKzWcFUdjV4GRqvIWKuYOTt7KcrLO+H//b+B2L17F6zWcLfnS0nZheTkgygv74ROncpV1xMdHc2gh4iIWhRmfJqQXvbGE1LPnuuui8LSpdnYuXOI/Jy7DIxEr5gZAJKSDuOSS+Iwe/ZszJ17PZ59thIBAfZi6YAAEc8+W4lbbx2jOp/ZXIWkpMMsZiYiohaPGZ9WxHF3mGPNDeA6AyNxVcwsHS9laubMATIzpUyVgPj4SJSWnm3ET0lERNR4GPi0MK5GTWjtDnMMWAB7BsZV9sWTJTHAfh0NyVIRERG1FFzqakH0RlRIHZ87dHDu2eNNo0CjS2J6jO7S4m4uIiJqaZjxaSG0mxyKKCqqxJNPRsBmE2AyiZg69Sw2bAhFXZ3gccAyduxYbNmyBYCxJTE9UVFRmD17tsshp8HBwSxsJiKiFoeBTwuh3eRQwBNPhMt9eWw2AevWtUNW1hsYNWoCduxY41HA0rFjR9XPektiRjI1DGqIiKg1YuDTQmg1OQRsmkXIFRWRuOIKE8aPn47q6mqUlZVhw4YNbt9DFEVkZmbKU9UdBQYGIiYmBlFRUS5rjYiIiForBj4tRP2IClFexsrI2IqtWzOcgp91667FpZdWYs6cSI/eQ9m12WoNR3l5FDp1sqiyPpmZmVi5MkAegWEyiXjmGStuuOEsl6+IiKjVE0RRFN0f5j8qKythNpthtVoRERHR5O+/Y8fveOmlj+S6G2WjQaWAABFFRQLi453HV7jjahK71RqOpUuznXZ8ZWcvhdlcxU7MRETUIhn9/mbGp4WJi7MhKemw/HNKyi4EB5/DunXXqY6rqxPkIadGio2tVivWrFmj27xQ6gXkrsePq/cgIiJq6Rj4tAIJCUed+u4EBIjo1at+GKnRLIy7wMbTHj9EREStCfv4tAJafXcefvg3BASUorTU/stisRg6lxTYKCkDm4b2+CEiImrJmPFpJRz77gBVWL5cfYxW/Y3FYkFRUS127z6L4uJY1NSEqIqmpSLq8nL768zmqgb1+CEiImrJGPi0MK566LgbRaGsv7FYLDh+/DgefPDA+ZqeLgDuAFC/YywurgQlJXGqIEgqdHb3XkRERK0RA58WRlmoXFJiQmFhIMzm48jNXev2tSUlJvz8MxAdfRIbNrx8vpBZuUPLXhMkiibk5GTg9tvfVG2X1xp6SkRE1JYw8GmBoqKisGJF/QgLk6kTJk4cIm8517Jz5xA89ljM+eMjMXHiEHTseNKpkLmeCXl56W6ntBMREbUlLG5uYtLA0eJi18eo53YJ2LRpIqzWcM3jpS3qNpugOj4o6JxTIbPS3r39AegXOmvh4FEiImrNmPFpQuosjr1Tc1aW83Fac7u0MjFS9+XTp8M0Mzc1NcGYNGmzZgNE6Zhhw7bLmR/HHVyZmZkwm83y8ezcTERErR0DnyaiPX0dGDfOeRaW1twux0yMY/dle+bGufdOUtJhxMQcw5tv3g7HBJ8g2JCWlo+0tHzNHVxmsxmxsbE+ugNERETNj0tdTUR7+jpw8KDzsdLcroAA+88BAaIqE6PVfdm+W8s+fcRkUh9fUxMCrX/V6el58u6tpKTDrOshIqI2jxmfJqKVxQkIAHr10j4+K8ueDTp4EIiKqsCGDfWFzVrdlwEBomjDsGG5SEvLVwUxWt2YAXu2h4iIyJ8w49NEnLM4wOuvOy9zSSwWCwICStGlyz4AxRgzZgxGjx6N0aNHY+LEPjCZtGbL2ndqOdLqxjx5MrsxExGR/2HGpwllZQGDBgFffw1cdhlw8cXaxxmZtj5x4nHNomW97ejsxkxERMTAp0kZ3dVlZAJ6SsouzaJlV9vR2Y2ZiIj8HZe6mojeri69fj5WazgKCxN1e/cAQHx8KSZP5kBRIiIio5jxaSKudnU51vmsXh2KpUuzneZnaWnMJSw2KyQioraGgU8TcbWry2KxyMtbJSUmzJsXA1Gsn6vlbn5WQ5ewpk2bhsjISNVjbFZIRERtEQOfJiLt6rrzTnumR9rVFRqqLmQuLEyEzTZd9dqGzs+aMmUKoqOjNZ9jgENERP6EgU8TUvbm6dXLHgyVlqoLmbV67ribn+VOXFwcgxsiIiIw8Gly8fH6vXuA+p47ynEU3hYsT5kyhUEPERGRAgOfFshXBcvR0dEMeoiIiBQY+LRQjgXLQ4cOBQB8//33zXVJRERErR4Dn1aCAQ8REVHDsYFhEykuBrZtc25YWFJictuo0Fvsw0NERKTGjE8T0BtVYX88BjbbdLeNCpWmTJmCwMBA1NbWOj0XFBQEs9nMbepEREQaWlXG58MPP0RaWhpCQ0PRsWNHXHPNNarnjxw5ggkTJiAsLAwxMTGYO3euZnDQlH788SRmzhQdRlWI+N//Tpx/vL5R4caNE91mfqzWcOzfH4fw8AvRseNAlJUNRMeOAzFwoP1X3759ERsby6CHiIhIQ6vJ+Kxfvx533HEHnnzySVxxxRWora1FQUGB/HxdXR0mTJiArl27Ijc3F6WlpbjlllsQFBSEJ598slmu2WKx4PnnNzs1JKyrE/Diiztgs413eIUJ+flpGDt2q+b5du4cgk2bJuKFF0wQ7PESRNH1wFMiIiKq1yoyPrW1tbj33nvx7LPP4q677sIFF1yAfv36Ydq0afIxW7Zswd69e/Huu+/ioosuwlVXXYXHH38c//jHPwxNO28M1dXVckNCJUGwISHhCACb02vy8tI1sz5Wa7jc2wewBzyiaH/O3cBTIiIismsVgc/OnTvx22+/wWQyYciQIYiNjcVVV12lyvjk5eVh4MCB6NKli/zYuHHjUFlZiZ9++kn33OfOnUNlZaXqly9JDQkdJ6jHx5di2LA8p+Ol8RSOysujVN2cHUkDT4mIiEhfq1jq+vXXXwEAjz76KJYsWYLExEQ8//zzGDVqFH755Rd06tQJx44dUwU9AOSfjx07pnvuxYsXY9GiRY138dBvSJiWlo+8vHRD4ym0RlkoSQNPiYiISF+zZnwefPBBCILg8tfPP/8M2/nK4AULFmDq1KlITU3F22+/DUEQ8O9//7tB1/DQQw/BarXKv44ePeqLj+bEbK5CUtJhVVNCKRsUEGBfs3I1nsI5cyRCEOyvCwgQ8frrrkdhEBERUTNnfObMmYMZM2a4PKZnz54oLS0FAPTr109+PCQkBD179sSRI0cAAF27dsW3336reu3vv/8uP6cnJCQEISEh3ly+T6Sk7MLChWkoKgrExx+vR01NCKzWcM3gxzFzBED+/TXXTAfAnVxERESuNGvg07lzZ3Tu3NntcampqQgJCcH+/ftx2WWXAQBqampQVFSEHj16AADS09PxxBNP4Pjx44iJiQEA5OTkICIiQhUwtURxcTZ8/nkAVqy4XTWYVKunj+MoC+n3JSUlqK6uZv8eIiIiF1pFjU9ERATuuusuPPLII0hISECPHj3w7LPPAgCuu+46AMDYsWPRr18/3HzzzXjmmWdw7Ngx/N///R9mzZrVrBkdI0pKTJg3zwxRrO/ps2nTRCQnHzQ8oHTDhg3y72fPns3gh4iISEOrCHwA4Nlnn0VgYCBuvvlmnD17Fmlpafjss8/QsWNHAEBAQAA2b96Mv/zlL0hPT0f79u0xffp0PPbYY812zUZHRhw92k5uZCiRdnd5M5m9ubbvExERtXSCKErdYAgAKisrYTabYbVaERER0eDzWSwWzUDEPqMrEH36mNCxY0f06CGqgh9BsCE7e6lXgc/MmTMRGxvboOsmIiJqTYx+f7eajE9rpbXkpDW765lnrJg7N0JV4+NN0ENERET6GPg0seLi+qAHqO+6vGuXiN9+W+rU64eIiIh8h4FPEztwoD7okdTVARZLRyxYMN1pWaysrExVuExERETeY+DTBJR1PhERJphMMap6noAAEb16CZrLYkYLpImIiMg9Bj6NzGKx4OWXX1Y9NnHiEHngqCDYMGHCZhw5Eo2TJ+3DSQMDAxETE4OoqChERUVh9uzZqK6uZvaHiIiogRj4NDKtHV1as7tycpxfm5mZic6dO8uZIKPZH2aJiIiItDHwaWQVFRVOj1mt4Sgvj0KnThaXRcxr1qwBUN+QUJn90cPOzURERPoY+DSy2tpa1c87d6qXufRGUygpAx0GNURERN5r1uns/sZqDZeDHqB+NIXVGt7MV0ZEROQfGPg0ofLyKDnokUijKYiIiKjxMfBpQp06WSAI6iY+gmBDp07lzXRFRERE/oWBTxMym6swadJmOfjhaAoiIqKmxeLmRmSxWHDq1CnVY1pb2YmIiKhpMPBpJFqNCyVmcxUDHiIiombApa5G4qrXjqfYkJCIiMg3mPFpYaZMmYLo6Gj5ZzYkJCIi8h0GPi1MdHQ0YmNjm/syiIiI2iQudREREZHfYOBDREREfoOBDxEREfkNBj4tDHdwERERNR4GPo3EmwAmMzOTO7iIiIgaEXd1NZKoqCjMnj0b1dXVKCsrw4YNG9y+xmw2N8GVERER+S8GPo2I2RsiIqKWhUtdRERE5DcY+DQBo/U+LGwmIiJqXFzqagLKeh89HE1BRETU+Bj4NBEGNURERM2PS11ERETkNxj4EBERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DfYudmBKIoAgMrKyma+EiIiIjJK+t6Wvsf1MPBxUFVVBQBISEho5ishIiIiT1VVVcFsNus+L4juQiM/Y7PZUFJSgvDwcAiC4PV5KisrkZCQgKNHjyIiIsKHV9h68B7Y8T7wHgC8BwDvgYT3oXHugSiKqKqqQlxcHEwm/UoeZnwcmEwmxMfH++x8ERERfvsHW8J7YMf7wHsA8B4AvAcS3gff3wNXmR4Ji5uJiIjIbzDwISIiIr/BwKeRhISE4JFHHkFISEhzX0qz4T2w433gPQB4DwDeAwnvQ/PeAxY3ExERkd9gxoeIiIj8BgMfIiIi8hsMfIiIiMhvMPAhIiIiv8HAxwOvvvoqBg0aJDdcSk9Px0cffSQ//8cff2DWrFmIiopChw4dMHXqVPz++++qcxw5cgQTJkxAWFgYYmJiMHfuXNTW1jb1R/GZp556CoIgIDs7W37MH+7Do48+CkEQVL/69u0rP+8P9wAAfvvtN9x0002IiopCaGgoBg4ciO+//15+XhRFLFy4ELGxsQgNDUVGRgYOHDigOkd5eTluvPFGREREIDIyEllZWTh16lRTfxSvJCYmOv05EAQBs2bNAuAffw7q6urw8MMPIykpCaGhoUhOTsbjjz+umpfU1v8cAPYxCdnZ2ejRowdCQ0MxbNgwfPfdd/LzbfEefPnll5g0aRLi4uIgCAI++OAD1fO++sx79uzB5Zdfjnbt2iEhIQHPPPNMwy5cJMM2btwofvjhh+Ivv/wi7t+/X/zb3/4mBgUFiQUFBaIoiuJdd90lJiQkiJ9++qn4/fffi5deeqk4bNgw+fW1tbXigAEDxIyMDHHXrl3i//73PzE6Olp86KGHmusjNci3334rJiYmioMGDRLvvfde+XF/uA+PPPKI2L9/f7G0tFT+deLECfl5f7gH5eXlYo8ePcQZM2aI+fn54q+//ip+8skn4sGDB+VjnnrqKdFsNosffPCB+MMPP4iTJ08Wk5KSxLNnz8rHjB8/Xhw8eLD4zTffiF999ZXYq1cv8frrr2+Oj+Sx48ePq/4M5OTkiADEbdu2iaLoH38OnnjiCTEqKkrcvHmzWFhYKP773/8WO3ToIC5btkw+pq3/ORBFUZw2bZrYr18/8YsvvhAPHDggPvLII2JERIRYXFwsimLbvAf/+9//xAULFogbNmwQAYj/+c9/VM/74jNbrVaxS5cu4o033igWFBSI//rXv8TQ0FDx9ddf9/q6Gfg0UMeOHcU333xTrKioEIOCgsR///vf8nP79u0TAYh5eXmiKNr/kJhMJvHYsWPyMa+++qoYEREhnjt3rsmvvSGqqqrE3r17izk5OeLIkSPlwMdf7sMjjzwiDh48WPM5f7kH8+fPFy+77DLd5202m9i1a1fx2WeflR+rqKgQQ0JCxH/961+iKIri3r17RQDid999Jx/z0UcfiYIgiL/99lvjXXwjuffee8Xk5GTRZrP5zZ+DCRMmiLfddpvqsSlTpog33nijKIr+8efgzJkzYkBAgLh582bV4ykpKeKCBQv84h44Bj6++syvvPKK2LFjR9V/D/Pnzxf79Onj9bVyqctLdXV1eP/993H69Gmkp6djx44dqKmpQUZGhnxM37590b17d+Tl5QEA8vLyMHDgQHTp0kU+Zty4caisrMRPP/3U5J+hIWbNmoUJEyaoPi8Av7oPBw4cQFxcHHr27Ikbb7wRR44cAeA/92Djxo0YOnQorrvuOsTExGDIkCF444035OcLCwtx7Ngx1X0wm81IS0tT3YfIyEgMHTpUPiYjIwMmkwn5+flN92F8oLq6Gu+++y5uu+02CILgN38Ohg0bhk8//RS//PILAOCHH37A119/jauuugqAf/w5qK2tRV1dHdq1a6d6PDQ0FF9//bVf3ANHvvrMeXl5GDFiBIKDg+Vjxo0bh/379+PkyZNeXRuHlHroxx9/RHp6Ov744w906NAB//nPf9CvXz/s3r0bwcHBiIyMVB3fpUsXHDt2DABw7Ngx1f/gpOel51qL999/Hzt37lStX0uOHTvmF/chLS0NK1euRJ8+fVBaWopFixbh8ssvR0FBgd/cg19//RWvvvoq7r//fvztb3/Dd999h3vuuQfBwcGYPn26/Dm0PqfyPsTExKieDwwMRKdOnVrNfZB88MEHqKiowIwZMwD4z38LDz74ICorK9G3b18EBASgrq4OTzzxBG688UYA8Is/B+Hh4UhPT8fjjz+OCy+8EF26dMG//vUv5OXloVevXn5xDxz56jMfO3YMSUlJTueQnuvYsaPH18bAx0N9+vTB7t27YbVasW7dOkyfPh1ffPFFc19Wkzl69Cjuvfde5OTkOP3txp9If5sFgEGDBiEtLQ09evTA2rVrERoa2oxX1nRsNhuGDh2KJ598EgAwZMgQFBQU4LXXXsP06dOb+eqa3ooVK3DVVVchLi6uuS+lSa1duxbvvfceVq9ejf79+2P37t3Izs5GXFycX/05eOedd3DbbbehW7duCAgIQEpKCq6//nrs2LGjuS+NHHCpy0PBwcHo1asXUlNTsXjxYgwePBjLli1D165dUV1djYqKCtXxv//+O7p27QoA6Nq1q9OODuln6ZiWbseOHTh+/DhSUlIQGBiIwMBAfPHFF3jxxRcRGBiILl26+MV9cBQZGYkLLrgABw8e9Js/C7GxsejXr5/qsQsvvFBe8pM+h9bnVN6H48ePq56vra1FeXl5q7kPAHD48GFs3boVt99+u/yYv/w5mDt3Lh588EH8+c9/xsCBA3HzzTfjvvvuw+LFiwH4z5+D5ORkfPHFFzh16hSOHj2Kb7/9FjU1NejZs6ff3AMlX33mxvhvhIFPA9lsNpw7dw6pqakICgrCp59+Kj+3f/9+HDlyBOnp6QCA9PR0/Pjjj6p/0Tk5OYiIiHD6AmmprrzySvz444/YvXu3/Gvo0KG48cYb5d/7w31wdOrUKRw6dAixsbF+82dh+PDh2L9/v+qxX375BT169AAAJCUloWvXrqr7UFlZifz8fNV9qKioUP2t+LPPPoPNZkNaWloTfArfePvttxETE4MJEybIj/nLn4MzZ87AZFJ/lQQEBMBmswHwrz8HANC+fXvExsbi5MmT+OSTT/CnP/3J7+4B4Lt/7+np6fjyyy9RU1MjH5OTk4M+ffp4tcwFgNvZPfHggw+KX3zxhVhYWCju2bNHfPDBB0VBEMQtW7aIomjfutq9e3fxs88+E7///nsxPT1dTE9Pl18vbV0dO3asuHv3bvHjjz8WO3fu3Kq2rmpR7uoSRf+4D3PmzBE///xzsbCwUNy+fbuYkZEhRkdHi8ePHxdF0T/uwbfffisGBgaKTzzxhHjgwAHxvffeE8PCwsR3331XPuapp54SIyMjxf/+97/inj17xD/96U+a21mHDBki5ufni19//bXYu3fvFr2F11FdXZ3YvXt3cf78+U7P+cOfg+nTp4vdunWTt7Nv2LBBjI6OFufNmycf4w9/Dj7++GPxo48+En/99Vdxy5Yt4uDBg8W0tDSxurpaFMW2eQ+qqqrEXbt2ibt27RIBiEuWLBF37dolHj58WBRF33zmiooKsUuXLuLNN98sFhQUiO+//74YFhbG7exN5bbbbhN79OghBgcHi507dxavvPJKOegRRVE8e/as+Ne//lXs2LGjGBYWJv6///f/xNLSUtU5ioqKxKuuukoMDQ0Vo6OjxTlz5og1NTVN/VF8yjHw8Yf7kJmZKcbGxorBwcFit27dxMzMTFX/Gn+4B6Ioips2bRIHDBgghoSEiH379hWXL1+uet5ms4kPP/yw2KVLFzEkJES88sorxf3796uOsVgs4vXXXy926NBBjIiIEG+99VaxqqqqKT9Gg3zyySciAKfPJYr+8eegsrJSvPfee8Xu3buL7dq1E3v27CkuWLBAtf3YH/4crFmzRuzZs6cYHBwsdu3aVZw1a5ZYUVEhP98W78G2bdtEAE6/pk+fLoqi7z7zDz/8IF522WViSEiI2K1bN/Gpp55q0HULoqhor0lERETUhrHGh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AYDHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIGmzUqFHIzs5u7stodI8++iguuuii5r4MImoABj5E5Peqq6ub9P1EUURtbW2TvicR2THwIaIGmTFjBr744gssW7YMgiBAEAQUFRWhoKAAV111FTp06IAuXbrg5ptvRllZmfy6UaNG4e6770Z2djY6duyILl264I033sDp06dx6623Ijw8HL169cJHH30kv+bzzz+HIAj48MMPMWjQILRr1w6XXnopCgoKVNf09ddf4/LLL0doaCgSEhJwzz334PTp0/LziYmJePzxx3HLLbcgIiICM2fOBADMnz8fF1xwAcLCwtCzZ088/PDD8lTolStXYtGiRfjhhx/kz7ly5UoUFRVBEATs3r1bPn9FRQUEQcDnn3+uuu6PPvoIqampCAkJwddffw2bzYbFixcjKSkJoaGhGDx4MNatW+frf0VEpMDAh4gaZNmyZUhPT8cdd9yB0tJSlJaWIjw8HFdccQWGDBmC77//Hh9//DF+//13TJs2TfXaVatWITo6Gt9++y3uvvtu/OUvf8F1112HYcOGYefOnRg7dixuvvlmnDlzRvW6uXPn4vnnn8d3332Hzp07Y9KkSXKAcujQIYwfPx5Tp07Fnj17sGbNGnz99deYPXu26hzPPfccBg8ejF27duHhhx8GAISHh2PlypXYu3cvli1bhjfeeAMvvPACACAzMxNz5sxB//795c+ZmZnp0b168MEH8dRTT2Hfvn0YNGgQFi9ejH/+85947bXX8NNPP+G+++7DTTfdhC+++MKj8xKRBxo04pSISBTFkSNHivfee6/88+OPPy6OHTtWdczRo0dVU8xHjhwpXnbZZfLztbW1Yvv27cWbb75Zfqy0tFQEIObl5YmiWD8N+v3335ePsVgsYmhoqLhmzRpRFEUxKytLnDlzpuq9v/rqK9FkMolnz54VRVEUe/ToIV5zzTVuP9ezzz4rpqamyj8/8sgj4uDBg1XHFBYWigDEXbt2yY+dPHlSBCBu27ZNdd0ffPCBfMwff/whhoWFibm5uarzZWVliddff73bayMi7wQ2Z9BFRG3TDz/8gG3btqFDhw5Ozx06dAgXXHABAGDQoEHy4wEBAYiKisLAgQPlx7p06QIAOH78uOoc6enp8u87deqEPn36YN++ffJ779mzB++99558jCiKsNlsKCwsxIUXXggAGDp0qNO1rVmzBi+++CIOHTqEU6dOoba2FhERER5/fj3K9zx48CDOnDmDMWPGqI6prq7GkCFDfPaeRKTGwIeIfO7UqVOYNGkSnn76aafnYmNj5d8HBQWpnhMEQfWYIAgAAJvN5tF733nnnbjnnnucnuvevbv8+/bt26uey8vLw4033ohFixZh3LhxMJvNeP/99/H888+7fD+TyV4xIIqi/Ji07OZI+Z6nTp0CAHz44Yfo1q2b6riQkBCX70lE3mPgQ0QNFhwcjLq6OvnnlJQUrF+/HomJiQgM9P3/Zr755hs5iDl58iR++eUXOZOTkpKCvXv3olevXh6dMzc3Fz169MCCBQvkxw4fPqw6xvFzAkDnzp0BAKWlpXKmRlnorKdfv34ICQnBkSNHMHLkSI+ulYi8x+JmImqwxMRE5Ofno6ioCGVlZZg1axbKy8tx/fXX47vvvsOhQ4fwySef4NZbb3UKHLzx2GOP4dNPP0VBQQFmzJiB6OhoXHPNNQDsO7Nyc3Mxe/Zs7N69GwcOHMB///tfp+JmR71798aRI0fw/vvv49ChQ3jxxRfxn//8x+lzFhYWYvfu3SgrK8O5c+cQGhqKSy+9VC5a/uKLL/B///d/bj9DeHg4HnjgAdx3331YtWoVDh06hJ07d+Kll17CqlWrvL43ROQaAx8iarAHHngAAQEB6NevHzp37ozq6mps374ddXV1GDt2LAYOHIjs7GxERkbKS0MN8dRTT+Hee+9Famoqjh07hk2bNiE4OBiAvW7oiy++wC+//ILLL78cQ4YMwcKFCxEXF+fynJMnT8Z9992H2bNn46KLLkJubq6820sydepUjB8/HqNHj0bnzp3xr3/9CwDw1ltvoba2FqmpqcjOzsbf//53Q5/j8ccfx8MPP4zFixfjwgsvxPjx4/Hhhx8iKSnJi7tCREYIonJhmoioBfv8888xevRonDx5EpGRkc19OUTUCjHjQ0RERH6DgQ8RERH5DS51ERERkd9gxoeIiIj8BgMfIiIi8hsMfIiIiMhvMPAhIiIiv8HAh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/Mb/ByivaIjw4Gq5AAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: DEPRECATED: pyomo.core.expr.current is deprecated. Please import\n", + "expression symbols from pyomo.core.expr (deprecated in 6.6.2) (called from\n", + ":241)\n" + ] + } + ], + "source": [ + "# Import statements\n", + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "import random as rn\n", + "import tensorflow as tf\n", + "import tensorflow.keras as keras\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", + "from idaes.core.surrogate.sampling.scaling import OffsetScaler\n", + "from idaes.core.surrogate.keras_surrogate import KerasSurrogate\n", + "from idaes.core.surrogate.plotting.sm_plotter import (\n", + " surrogate_scatter2D,\n", + " surrogate_parity,\n", + " surrogate_residual,\n", + ")\n", + "\n", + "# fix environment variables to ensure consist neural network training\n", + "os.environ[\"PYTHONHASHSEED\"] = \"0\"\n", + "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"\"\n", + "np.random.seed(46)\n", + "rn.seed(1342)\n", + "tf.random.set_seed(62)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "13/13 [==============================] - 0s 3ms/step\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzzUlEQVR4nO3deVxU1fsH8M+wbwKKKKiguAEuP9dESCuMRFPR1FIzlVzKPVcWN0RTkdxyr6+5VOZWppMbGi6VorngLmiK4oZoCIjKOuf3xzQXrqCCAjMDn/frNS+55z5z5xkmnadz7jlHIYQQICIiIiKdZqDtBIiIiIjo5Vi0EREREekBFm1EREREeoBFGxEREZEeYNFGREREpAdYtBERERHpARZtRERERHqARRsRERGRHmDRRkRERKQHWLQREb0mhUKB6dOnazsNib+/P2rVqqXtNIiomLFoI6Iyae3atVAoFNLDzMwM9evXx8iRI3Hv3r0Sfe0jR45g+vTpSE5OLtbrvvPOO7L3VKlSJbzxxhtYvXo1VCpVsbzG7NmzsW3btmK5FhEVLyNtJ0BEVJJmzJgBFxcXpKen46+//sKKFSuwa9cunD9/HhYWFsXyGk+fPoWRUe4/p0eOHEFoaCj8/f1ha2tbLK+hUaNGDcyZMwcAcP/+fXz//fcYNGgQLl++jLCwsNe+/uzZs9GzZ09069btta9FRMWLRRsRlWkdO3ZEy5YtAQCDBw+GnZ0dFixYgO3bt6NPnz6vfF2VSoXMzEyYmZnBzMysuNJ9KRsbG3zyySfS8eeffw5XV1csXboUM2fOhLGxcanlQkSli8OjRFSutGvXDgAQFxcHAJg3bx68vLxgZ2cHc3NztGjRAj///HO+5ykUCowcORLr169Hw4YNYWpqij179kjnNPe0TZ8+HRMnTgQAuLi4SEOZ169fx9tvv40mTZoUmJerqyt8fX2L/H4sLCzQunVrPH78GPfv339u3OPHjzF+/Hg4OTnB1NQUrq6umDdvHoQQsvf4+PFjrFu3Tsrb39+/yDkRUclgTxsRlStXr14FANjZ2QEAvv76a/j5+aFv377IzMzExo0b8eGHH2LHjh3o1KmT7Ln79+/H5s2bMXLkSFSuXLnAm/27d++Oy5cvY8OGDVi4cCEqV64MALC3t0e/fv0wZMgQnD9/Ho0aNZKec/z4cVy+fBlTpkx5pfd07do1GBoaPncoVggBPz8/HDhwAIMGDULTpk0RERGBiRMn4vbt21i4cCEA4IcffsDgwYPRqlUrfPbZZwCAOnXqvFJORFQCBBFRGbRmzRoBQPz+++/i/v374ubNm2Ljxo3Czs5OmJubi1u3bgkhhHjy5InseZmZmaJRo0aiXbt2snYAwsDAQFy4cCHfawEQISEh0vFXX30lAIi4uDhZXHJysjAzMxOBgYGy9tGjRwtLS0uRlpb2wvf09ttvCzc3N3H//n1x//59cenSJTF69GgBQHTp0kWKGzBggKhZs6Z0vG3bNgFAfPnll7Lr9ezZUygUCvHPP/9IbZaWlmLAgAEvzIOItIPDo0RUpvn4+MDe3h5OTk7o3bs3rKys8Ouvv6J69eoAAHNzcyn24cOHSElJQdu2bXHq1Kl813r77bfRoEGDV87FxsYGXbt2xYYNG6RhyZycHGzatAndunWDpaXlS68RExMDe3t72Nvbw93dHUuWLEGnTp2wevXq5z5n165dMDQ0xOjRo2Xt48ePhxACu3fvfuX3RESlh8OjRFSmLVu2DPXr14eRkRGqVq0KV1dXGBjk/v/qjh078OWXX+L06dPIyMiQ2hUKRb5rubi4vHY+/fv3x6ZNm/Dnn3/irbfewu+//4579+6hX79+hXp+rVq18L///U9axqRevXqoUqXKC59z48YNVKtWDRUqVJC1u7u7S+eJSPexaCOiMq1Vq1bS7NFn/fnnn/Dz88Nbb72F5cuXw9HREcbGxlizZg1++umnfPF5e+Vela+vL6pWrYoff/wRb731Fn788Uc4ODjAx8enUM+3tLQsdCwRlS0cHiWicuuXX36BmZkZIiIiMHDgQHTs2LFYCqKCeuk0DA0N8fHHH+Pnn3/Gw4cPsW3bNvTp0weGhoav/brPU7NmTdy5cwePHj2StcfExEjnNV6UOxFpF4s2Iiq3DA0NoVAokJOTI7Vdv379tXcE0Nyb9rwdEfr164eHDx/i888/R1pammzdtZLw/vvvIycnB0uXLpW1L1y4EAqFAh07dpTaLC0ti30nByIqHhweJaJyq1OnTliwYAE6dOiAjz/+GImJiVi2bBnq1q2Ls2fPvvJ1W7RoAQCYPHkyevfuDWNjY3Tp0kUq5po1a4ZGjRphy5YtcHd3R/PmzYvl/TxPly5d4O3tjcmTJ+P69eto0qQJ9u7di+3bt2PMmDGyZT1atGiB33//HQsWLEC1atXg4uICDw+PEs2PiAqHPW1EVG61a9cO3333HRISEjBmzBhs2LABc+fOxQcffPBa133jjTcwc+ZMnDlzBv7+/ujTp0++hW/79+8PAIWegPA6DAwMoFQqMWbMGOzYsQNjxozBxYsX8dVXX2HBggWy2AULFqBFixaYMmUK+vTpgxUrVpR4fkRUOAoh8iyHTUREpeLrr7/G2LFjcf36dTg7O2s7HSLSAyzaiIhKmRACTZo0gZ2dHQ4cOKDtdIhIT/CeNiKiUvL48WMolUocOHAA586dw/bt27WdEhHpEfa0ERGVkuvXr8PFxQW2trYYPnw4Zs2ape2UiEiPsGgjIiIi0gOcPUpERESkB1i0EREREekBTkTQYSqVCnfu3EGFChW4tQwREZGeEELg0aNHqFatGgwMiq9/jEWbDrtz5w6cnJy0nQYRERG9gps3b6JGjRrFdj0WbTqsQoUKANQfurW1tZazISIiosJITU2Fk5OT9D1eXFi06TDNkKi1tTWLNiIiIj1T3Lc2cSICERERkR5g0UZERESkB1i0EREREekB3tOm53JycpCVlaXtNKgUGBsbw9DQUNtpEBGRlrBo01NCCCQkJCA5OVnbqVApsrW1hYODA9ftIyIqh1i06SlNwValShVYWFjwS7yME0LgyZMnSExMBAA4OjpqOSMiIiptLNr0UE5OjlSw2dnZaTsdKiXm5uYAgMTERFSpUoVDpURE5QwnIughzT1sFhYWWs6ESpvmM+d9jERE5Y/eFG1+fn5wdnaGmZkZHB0d0a9fP9y5c0cWI4TAvHnzUL9+fZiamqJ69eqYNWuWLObgwYNo3rw5TE1NUbduXaxduzbfay1btgy1atWCmZkZPDw88Pfff8vOp6enY8SIEbCzs4OVlRV69OiBe/fuyWLi4+PRqVMnWFhYoEqVKpg4cSKys7OL55fxHw6Jlj/8zImIyi+9Kdq8vb2xefNmxMbG4pdffsHVq1fRs2dPWcwXX3yBVatWYd68eYiJiYFSqUSrVq2k83FxcejUqRO8vb1x+vRpjBkzBoMHD0ZERIQUs2nTJowbNw4hISE4deoUmjRpAl9fX+leIgAYO3YsfvvtN2zZsgWHDh3CnTt30L17d+l8Tk4OOnXqhMzMTBw5cgTr1q3D2rVrMW3atBL8DREREVGZJvTU9u3bhUKhEJmZmUIIIS5evCiMjIxETEzMc58TEBAgGjZsKGvr1auX8PX1lY5btWolRowYIR3n5OSIatWqiTlz5gghhEhOThbGxsZiy5YtUsylS5cEABEVFSWEEGLXrl3CwMBAJCQkSDErVqwQ1tbWIiMjo9DvMSUlRQAQKSkpsvanT5+KixcviqdPnxb6WlQ28LMnItJ9z/v+fl1609OWV1JSEtavXw8vLy8YGxsDAH777TfUrl0bO3bsgIuLC2rVqoXBgwcjKSlJel5UVBR8fHxk1/L19UVUVBQAIDMzEydPnpTFGBgYwMfHR4o5efIksrKyZDFubm5wdnaWYqKiotC4cWNUrVpV9jqpqam4cOHCc99XRkYGUlNTZY+yxt/fHwqFAgqFAsbGxqhatSree+89rF69GiqVqtDXWbt2LWxtbUsuUSIiIh2jV0VbYGAgLC0tYWdnh/j4eGzfvl06d+3aNdy4cQNbtmzB999/j7Vr1+LkyZOyIdSEhARZIQUAVatWRWpqKp4+fYoHDx4gJyenwJiEhATpGiYmJvkKhmdjCrqG5tzzzJkzBzY2NtLDycmpkL8Z/dKhQwfcvXsX169fx+7du+Ht7Y0vvvgCnTt3Lvb7/oiIiAqSlpaGx48fazuNItFq0RYUFCT1ujzvERMTI8VPnDgR0dHR2Lt3LwwNDdG/f38IIQAAKpUKGRkZ+P7779G2bVu88847+O6773DgwAHExsZq6y0WSXBwMFJSUqTHzZs3tZ1SiTA1NYWDgwOqV6+O5s2bY9KkSdi+fTt2794tTQxZsGABGjduDEtLSzg5OWH48OFIS0sDoJ5M8umnnyIlJUX672T69OkAgB9++AEtW7ZEhQoV4ODggI8//lh2PyIREZVvQggsW7YM8+fPx8qVK6U6Qh9odZ228ePHw9/f/4UxtWvXln6uXLkyKleujPr168Pd3R1OTk44evQoPD094ejoCCMjI9SvX1+Kd3d3B6Ceyenq6goHB4d8szzv3bsHa2trmJubw9DQEIaGhgXGODg4AAAcHByQmZmJ5ORkWW/bszHPzjjVXFMTUxBTU1OYmpq+8PfxPEIIrS0DYWxs/NqzGtu1a4cmTZpg69atGDx4MAwMDLB48WK4uLjg2rVrGD58OAICArB8+XJ4eXlh0aJFmDZtmlSQW1lZAVAvhTFz5ky4uroiMTER48aNg7+/P3bt2vXa75OIiPRbcnIyvv76a+n48ePHejUrX6tFm729Pezt7V/puZr7nzIyMgAAb775JrKzs3H16lXUqVMHAHD58mUAQM2aNQEAnp6e+b689+3bB09PTwCAiYkJWrRogcjISHTr1k16ncjISIwcORIA0KJFCxgbGyMyMhI9evQAAMTGxiI+Pl66jqenJ2bNmiUtgqp5HWtrazRo0OCV3u/LZGVlYc6cOSVy7ZcJDg6GiYnJa1/Hzc0NZ8+eBQCMGTNGaq9Vqxa+/PJLDB06FMuXL4eJiQlsbGygUCjyFcEDBw6Ufq5duzYWL16MN954A2lpaVJhR0RE5c/x48dlNYCNjQ2++OILLWZUdHqxI8KxY8dw/PhxtGnTBhUrVsTVq1cxdepU1KlTRyqUfHx80Lx5cwwcOBCLFi2CSqXCiBEj8N5770m9b0OHDsXSpUsREBCAgQMHYv/+/di8eTN27twpvda4ceMwYMAAtGzZEq1atcKiRYvw+PFjfPrppwDUH/KgQYMwbtw4VKpUCdbW1hg1ahQ8PT3RunVrAED79u3RoEED9OvXD+Hh4UhISMCUKVMwYsSIV+5JKw+EENL/8fz++++YM2cOYmJikJqaiuzsbKSnp+PJkycvXFT45MmTmD59Os6cOYOHDx9KxX18fHyJFcxERKS7hBBYvHixbK/u999/H2+88Yb2knpFelG0WVhYYOvWrQgJCcHjx4/h6OiIDh06YMqUKVIRZGBggN9++w2jRo3CW2+9BUtLS3Ts2BHz58+XruPi4oKdO3di7Nix+Prrr1GjRg2sWrUKvr6+UkyvXr1w//59TJs2DQkJCWjatCn27Nkjm1iwcOFCGBgYoEePHsjIyICvry+WL18unTc0NMSOHTswbNgweHp6wtLSEgMGDMCMGTNK7HdkbGyM4ODgErv+y167OFy6dAkuLi64fv06OnfujGHDhmHWrFmoVKkS/vrrLwwaNAiZmZnPLdoeP34MX19f+Pr6Yv369bC3t0d8fDx8fX2RmZlZLDkSEZH+SEpKwpIlS2RtDRp8gTfesNVOQq9JL4q2xo0bY//+/S+Nq1atGn755ZcXxrzzzjuIjo5+YczIkSOl4dCCmJmZYdmyZVi2bNlzY2rWrFmq91EpFIpiGaLUlv379+PcuXMYO3YsTp48CZVKhfnz58PAQD1XZvPmzbJ4ExMT5OTkyNpiYmLw77//IiwsTJp5e+LEidJ5A0REpFOioqKwd+9e6TgtrTLmzRsOT08FPvxQi4m9Br1a8oPKhoyMDCQkJOD27ds4deoUZs+eja5du6Jz587o378/6tati6ysLCxZsgTXrl3DDz/8gJUrV8quUatWLaSlpSEyMhIPHjzAkydP4OzsDBMTE+l5SqUSM2fO1NK7JCIibVCpVJg3b56sYOvSpQvath0BT08FvL0BLy9AqdRikq+IRRuVuj179sDR0RG1atVChw4dcODAASxevBjbt2+HoaEhmjRpggULFmDu3Llo1KgR1q9fn2+ShZeXF4YOHYpevXrB3t4e4eHhsLe3x9q1a7FlyxY0aNAAYWFhmDdvnpbeJRERlbYHDx5g5syZsvXXDh4ci+bNm8PPDzhyBDhwAIiKAsLCtJjoK1IIfVqgpJxJTU2FjY0NUlJSYG1tLbWnp6cjLi4OLi4uMDMz02KGVNr42RMRFezPP/+U3UqlUjliwYIhGD1agVmzcuOUSnXB5u2tLuCCggA/v+LN5Xnf36+LPW1ERESkt1QqFWbPni0r2D744APs2/cZ0tIUOHBA3aZUqodFAf3tcWPRRkRERHopMTERM2fOlC0u36jRePzf//0fvL0BKyt1jxqgLs7yFmlBQYCnp/pPfcGijYiIiPTOgQMHsGLFCuk4KckZ06dPw/z5Vv+dB9LSIPW0aYo0zUQEQN3jVtxDoyWJRRsRERHpjZycHISGzsAff/whtZ0+3RPvvvspPD0VUs/Zsz1tZWEigl6s00ZERER09+5dfPvtt7K2X3+dgPR0SwDqokzj2Z42jaAgdcGmT8OiGizaiIiISOft27cPR/JUZQ8e1MZ77/VDRARw5kxuz5lmZujDh4Cra/7izM9Pv4ZE82LRRkRERDorOzsbs/Ku2QEgK6sXTp50w3vvqQu0c+fUf2omG5w7p+5l8/TU3wKtICzaiIiISCfdunUL3333naxt7twAGBqaIy0tt3dNMwyqGfrMuwZbWcKijYiIiHTO7t278ffff0vH9+654v793jA0BDp0AG7fzi3KNPeo6fPQZ2GwaKMyyd/fH8nJydi2bRsA4J133kHTpk2xaNGiV75mcVyDiIheLCsrC7Nnz5a1HTz4MQ4erAczMyA9HdizB1i/PrdAK8uFWl5c8oNKlb+/PxQKBRQKBUxMTFC3bl3MmDED2dnZJfq6W7duLfTm8QcPHoRCoUBycvIrX4OIiIouPj4+X8H2f/8XiKNH6wEA7OzUy3jkHRotT9jTRqWuQ4cOWLNmDTIyMrBr1y6MGDECxsbGCA4OlsVlZmbCxMSkWF6zUqVKOnENIiLKT6kEfvtNiRo1oqW2u3cb4f33eyAsTN27Zm6uLtgGDCib96sVBnvaqNSZmprCwcEBNWvWxLBhw+Dj4wOlUgl/f39069YNs2bNQrVq1eDq6goAuHnzJj766CPY2tqiUqVK6Nq1K65fvy5dLycnB+PGjYOtrS3s7OwQEBAAIYTsNd955x2MGTNGOs7IyEBgYCCcnJxgamqKunXr4rvvvsP169fh/d9KjBUrVoRCoYC/v3+B13j48CH69++PihUrwsLCAh07dsSVK1ek82vXroWtrS0iIiLg7u4OKysrdOjQAXfv3pViDh48iFatWsHS0hK2trZ48803cePGjWL6TRMR6TalEmjUKBPR0aGygu348X6ws+shTSrw9AScnYHYWHXBpm87GRQXFm2kdebm5sjMzAQAREZGIjY2Fvv27cOOHTuQlZUFX19fVKhQAX/++ScOHz4sFT+a58yfPx9r167F6tWr8ddffyEpKQm//vrrC1+zf//+2LBhAxYvXoxLly7hm2++gZWVFZycnPDLL78AAGJjY3H37l18/fXXBV7D398fJ06cgFKpRFRUFIQQeP/992V74D158gTz5s3DDz/8gD/++APx8fGYMGECAPU09m7duuHtt9/G2bNnERUVhc8++wwKheK1f6dERPpg/vw4fPjhHFnb778HY+fO2li8WL18h6ZICw/Xv71CixuHR0lrhBCIjIxEREQERo0ahfv378PS0hKrVq2ShkV//PFHqFQqrFq1Sipm1qxZA1tbWxw8eBDt27fHokWLEBwcjO7duwMAVq5ciYiIiOe+7uXLl7F582bs27cPPj4+AIDatWtL5zXDoFWqVIGtrW2B17hy5QqUSiUOHz4Mr/82sVu/fj2cnJywbds2fPjhhwDUN9SuXLkSderUAQCMHDkSM2bMAACkpqYiJSUFnTt3ls67u7sX/RdJRKSHtm7dinbtzknHlSo1xahRXdGsGZCTA1Svrp5wkHcbqvLYu5YXe9oISqV681ylsnReb8eOHbCysoKZmRk6duyIXr16Yfr06QCAxo0by+5jO3PmDP755x9UqFABVlZWsLKyQqVKlZCeno6rV68iJSUFd+/ehYeHh/QcIyMjtGzZ8rmvf/r0aRgaGuLtt99+5fdw6dIlGBkZyV7Xzs4Orq6uuHTpktRmYWEhFWQA4OjoiMTERADq4tDf3x++vr7o0qULvv76a9nQKRFRWaNUAi4uGQgNDcW5c7kF2++/+6Nmza4AcvcIvX274G2oyjMWbSStIF1aM3G8vb1x+vRpXLlyBU+fPsW6detgaaneN07zp0ZaWhpatGiB06dPyx6XL1/Gxx9//Eqvb25u/trvobCMjY1lxwqFQna/3Zo1axAVFQUvLy9s2rQJ9evXx9GjR0stPyKi0rRq1T/w95d/2ezbNwl//VUz33dQUBCHQ5/Foo1K/S+GpaUl6tatC2dnZxgZvXiEvnnz5rhy5QqqVKmCunXryh42NjawsbGBo6Mjjh07Jj0nOzsbJ0+efO41GzduDJVKhUOHDhV4XtPTl5OT89xruLu7Izs7W/a6//77L2JjY9GgQYMXvqdnNWvWDMHBwThy5AgaNWqEn376qUjPJyLSZUol4O4ODB68GS1arJfac3JaIiQkBAEBxgV+B2l63Mr7kGheLNpIp/9i9O3bF5UrV0bXrl3x559/Ii4uDgcPHsTo0aNx69YtAMAXX3yBsLAwbNu2DTExMRg+fHi+NdbyqlWrFgYMGICBAwdi27Zt0jU3b94MAKhZsyYUCgV27NiB+/fvIy0tLd816tWrh65du2LIkCH466+/cObMGXzyySeoXr06unbtWqj3FhcXh+DgYERFReHGjRvYu3cvrly5wvvaiKhMmTfvKXr3DoWTU+6tI4MGDcKMGZ0A6PZ3kK5h0UY6zcLCAn/88QecnZ3RvXt3uLu7Y9CgQUhPT4e1tTUAYPz48ejXrx8GDBgAT09PVKhQAR988MELr7tixQr07NkTw4cPh5ubG4YMGYLHjx8DAKpXr47Q0FAEBQWhatWqGDlyZIHXWLNmDVq0aIHOnTvD09MTQgjs2rUr35Doi95bTEwMevTogfr16+Ozzz7DiBEj8PnnnxfhN0REpJuUSqBr11i8+264rH3y5MmoUaOGlrLSbwrx7IJWpDNSU1NhY2ODlJQUqUABgPT0dMTFxcHFxQVmZmZazJBKGz97ItJlSmXuPqD7969BxYrx0rm4OE+sXdtei9mVnud9f78u9rQRERHRK8u7AkFYGHDhQgqio0NlBdsPPwxB9+7tS321grKG67QRERHRK8u7AoG//yHcvXtQdn7v3ilYsMAQfn7qgk0Ty3vYio5FGxEREb2yoCB1EebrG4q8S03Gxzvh8OGBiInJH8tlPF4NizYiIiIqkrz3rmVkJMHXd4ns/M6d/XD8eG24ucmfx10NXg+LNj3GOSTlDz9zItIFmiHRX375HbVrH5admzlzCurVM+TCuCWARZse0iwp8eTJk1Jd3Z+078mTJwDy77RARFTS8vauVa8uMH36DNl5laoONm36BPXqAXPnsketJLBo00OGhoawtbWV9rC0sLCQNlOnskkIgSdPniAxMRG2trYwNDTUdkpEVM5oetdGjXqAgQOXyc75+/ujT5+aiI1V77DDgq1ksGjTUw4ODgAgFW5UPtja2kqfPRFRafL2Bmxtd8PD429Z+5QpU2BoaMhJBqWAi+vqsMIszpeTk4OsrKxSzoy0wdjYmD1sRKQV27cLnD4tHw51d3fHRx99pKWMdFtJLa7LnjY9Z2hoyC9yIiIqMffu3cPp0ytlbYMGDeJWVFrAHRGIiIiowN0KlEolVq6UF2xTp05lwaYl7GkjIiIi2c4GXboIzJghHw6Ni/s/rF37gZayI4BFGxEREUE9gSAgAHjy5A5mzPif7NzKlZ/D1paToLSNw6NERETl1LNDos2a/YwPPpAXbE2bToOLiwPmztVCgiTD2aM6rKRmnxAREQG5G7h7eanQvv1M2bkrV1rgxx87aykz/cbZo0RERFSsvL2Bf/+9ifbtV8va//prOEaNstdSVvQ8LNqIiIjKIaUSuHlzAz7++LKsfdq0adxlR0fxnjYiIqIy7tl713JychAdHYo6dXILtsOHPREREcKCTYexp42IiKgMUyqBvn2BtDT1ch6NG8fh+++/l8W4u49ERIQdt6DScSzaiIiIyhilUl2geXsDixerCzYrK6BHj3X4/vvrsljNcCh3pNJ9LNqIiIjKkLw9a+fOqf+0tMzGhAmzkJaWG3f16lv4/ntv7SVKRcaijYiIqAwJC1MXamZmgI0N0LDhP+jYcb0s5tChLzBmjK12EqRXxqKNiIioDAkKUhduDx8Cbdv+D9Wr35GdDwkJ0VJm9Lo4e5SIiKgM0MwQBYBDh7LQu3eorGBzdHyXBZueY08bERFRGaDZ8D0oKAbR0Ztk5xo2HIuePbmzjr5j0UZERKSnlEogMBAQAujRA2jRYikqV/5XFsPetbKDRRsREZEeyLuMx4EDufeuxcQAJiYZMDEJQ+XKufEdOnSAh4eH9hKmYseijYiISA9ohj81y3iEhakLt2XLzsPL6xdZ7Pjx42FlZaWlTKmksGgjIiLScZMnA9HRQPXqwIABuT1tV67Mh5dX7uJrBgYGmDp1qhYzpZLEoo2IiEhHaYZEo6OB9HQgJQWYNQtIT0/H3LlzZbGdO3dGixYttJQplQYWbURERDpKMyRavbq6YOvQAejZ8zQaN94ui5s4cSIsLCy0lCWVFhZtREREOiooKHd26PLlwPHjc2BklCmdNzc3R0BAgBYzpNLExXWJiIh0hGaBXKVSfeznB1SsCNy8+QTR0aGygq1bt24s2MoZ9rQRERHpCM1waFhY7vG77x6Hr+8uWVxgYCDMzMy0kCFpE4s2IiIiHaBUAklJgJtb7hpsvr6hshgbGxuMGTNGOwmS1rFoIyIi0jKlEujbV73+mqcn4O39CNHRC2QxH374IRo0aKClDEkXsGgjIiLSorwFm5UVMHBgFBYs2CuLCQ4OhomJiZYyJF3Boo2IiEgLNGuwJSXlFmwTJoTi9u3cmCpVqmDYsGHaS5J0Cos2IiIiLQgMVO8bWr064O2dgrffXiQ737t3b7i6umonOdJJLNqIiIhK0ZtvAkeOAJrJnx4ef+D//u+ALGbSpEkwNjbWQnaky1i0ERERlQKlEggIAGJj1cfp6cD06fLZoTVq1MCgQYO0kB3pAxZtREREJSzvZAMAqFjxIb74YrEs5pNPPkGdOnW0kB3pC73ZEcHPzw/Ozs4wMzODo6Mj+vXrhzt37kjnp0+fDoVCke9haWkpu86WLVvg5uYGMzMzNG7cGLt2yRcsFEJg2rRpcHR0hLm5OXx8fHDlyhVZTFJSEvr27Qtra2vY2tpi0KBBSNP8TfzP2bNn0bZtW5iZmcHJyQnh4eHF/BshIiJdlHdXA83PgYHqgs3MDPjww8h8BdvkyZNZsNFL6U3R5u3tjc2bNyM2Nha//PILrl69ip49e0rnJ0yYgLt378oeDRo0wIcffijFHDlyBH369MGgQYMQHR2Nbt26oVu3bjh//rwUEx4ejsWLF2PlypU4duwYLC0t4evri/T0dCmmb9++uHDhAvbt24cdO3bgjz/+wGeffSadT01NRfv27VGzZk2cPHkSX331FaZPn45vv/22hH9LRESkbZpdDYYPB7p1U//86BHg6SkQFBSKhg3/kmJr166NkJAQGBlx4IteTiGEENpO4lUolUp069YNGRkZBd6seebMGTRt2hR//PEH2rZtCwDo1asXHj9+jB07dkhxrVu3RtOmTbFy5UoIIVCtWjWMHz8eEyZMAACkpKSgatWqWLt2LXr37o1Lly6hQYMGOH78OFq2bAkA2LNnD95//33cunUL1apVw4oVKzB58mQkJCRI6+oEBQVh27ZtiImJKfR7TE1NhY2NDVJSUmBtbf3KvysiIio9kycDixcDGRlAVpa67Y03HqBTp2WyOH9/f9SsWVMLGVJJK6nvb73pacsrKSkJ69evh5eX13Nn16xatQr169eXCjYAiIqKgo+PjyzO19cXUVFRAIC4uDgkJCTIYmxsbODh4SHFREVFwdbWVirYAMDHxwcGBgY4duyYFPPWW2/JFkL09fVFbGwsHj58+Nz3lZGRgdTUVNmDiIj0y7p16qFQU1P1cGiPHnvyFWxTpkxhwUZFpldFW2BgICwtLWFnZ4f4+Hhs3769wLj09HSsX78+3wychIQEVK1aVdZWtWpVJCQkSOc1bS+KqVKliuy8kZERKlWqJIsp6Bp5X6Mgc+bMgY2NjfRwcnJ6biwREemmpCT1nzk56uHQxo2PSefc3NwQEhICQ0NDLWVH+kyrRVtQUFCBkwfyPvIOJ06cOBHR0dHYu3cvDA0N0b9/fxQ0uvvrr7/i0aNHGDBgQGm+ndcWHByMlJQU6XHz5k1tp0RERIWQd/LB2LFArVqJCAycIYsZNGgQevXqpaUMqSzQ6p2P48ePh7+//wtjateuLf1cuXJlVK5cGfXr14e7uzucnJxw9OhReHp6yp6zatUqdO7cOV9vl4ODA+7duydru3fvHhwcHKTzmjZHR0dZTNOmTaWYxMRE2TWys7ORlJQku05Br5P3NQpiamoKU1PT554nIiLt0Ww7FRQE+PnJz2kmH4SFAcHBv8HE5JTs/NSpU2FgoFeDW6SDtPpfkL29Pdzc3F74eN4GuSqVCoD6PrC84uLicODAgQIXJ/T09ERkZKSsbd++fVLR5+LiAgcHB1lMamoqjh07JsV4enoiOTkZJ0+elGL2798PlUoFDw8PKeaPP/5AluYO1P9ex9XVFRUrViz074eIiHRH3sIsb88aoC7kPD0FfH1DcepUbsHWuHFjhISEsGCjYqEXs0ePHTuG48ePo02bNqhYsSKuXr2KqVOn4t69e7hw4YKsd2rq1KlYvXo14uPj890zcOTIEbz99tsICwtDp06dsHHjRsyePRunTp1Co0aNAABz585FWFgY1q1bBxcXF0ydOhVnz57FxYsXYfbfniMdO3bEvXv3sHLlSmRlZeHTTz9Fy5Yt8dNPPwFQzzh1dXVF+/btERgYiPPnz2PgwIFYuHChbGmQl+HsUSIi3ZG3p02zb6ibG3DpEnD37t18yzp99tlnslEbKj9K6vtbLxaGsbCwwNatWxESEoLHjx/D0dERHTp0wJQpU2QFm0qlwtq1a+Hv71/gTZ5eXl746aefMGXKFEyaNAn16tXDtm3bpIINAAICAvD48WN89tlnSE5ORps2bbBnzx6pYAOA9evXY+TIkXj33XdhYGCAHj16YPHi3IUSbWxssHfvXowYMQItWrRA5cqVMW3atCIVbEREpFs0Q6JhYep11wBACGDr1q04d+6cLHbatGlQKBSlnCGVdXrR01ZesaeNiEh78vasAeqfk5LUe4e6ugJ2diq0bz9T9pwWLVqgc+fOWsiWdEm57mkjIiIqTXn3Cg0LU7dFRamHQz09gVGjbuLy5dWy5wwbNizfklBExYlFGxER0TPCwtQFm0IBxMcDmhWkgoKAx4834PLly7J4DodSaeB0FiIiIshnhAYFAVZW6nvWbt8GDhwA/vwzB9HRobKCrXXr1ggJCWHBRqWC97TpMN7TRkRUery81EOgBgbqos3DQz1LVAhg6tTr+OefdbL4kSNHws7OTkvZki7jPW1EREQlRKlUD4MCgEql3vD90SP1jNHvv/8e//wTJ4vncChpA4s2IiIq1z78EPj559xjAwNg9Gj1bjezZs2SxbZt2xbt2rUr5QyJ1Fi0ERFRuaRZ0uPo0dw2Nzdg7lygQYN/MGvWeln8F198AVtb29JNkigPFm1ERFSuaIq1hw/VuxpUqgQkJwPduwNbtqj3r46Ovi17TkhIiHaSJcqDRRsREZUbkycDc+aoJxdUr65ec02zAXxWVhZCQ2fL4tu1a4e2bdtqKVsiORZtRERU5imV6pmgsbHqgg0AKlQAjhxR/xwbG4uNGzfKnjN27FjO3CedwqKNiIjKvLAw9VAooF4wt1o19b1rALBs2TI8ePBAFs/hUNJFLNqIiKjMCwrKXXMtPFw9HJqRkYHQ0DBZnK+vL1q3bq2lLIlejEUbERGVSZoJB97e6h0N5s5VF2sAcP78efzyyy+y+PHjx8PKykoLmRIVDos2IiIqUzTFWny8eguq06eBp0/VbX5+wMKFC5GamirFKxQKTJs2TXsJExUSizYiIipTwsLU21GZmamPK1UCnJ2BCRPSERo6VxbbqVMntGzZUgtZEhUdizYiIipTgoLkw6JBQYCz82ls375dFjdx4kRYWFhoKUuiomPRRkREeuvZ+9Y0a65p7l0DgLCwMERHZ0jHpqamCAoK0kK2RK+HRRsREeklpRLo2xdISwOio4H0dCAgILdge/LkCb766ivZc7p164YmTZpoIVui18eijYiI9FJYmLpgMzAALCzURZtCoT534sQJ7Ny5UxYfGBgIM82NbkR6iEUbERHppaAgoFcvdbFmbp67JVVoaKgsztraGmPHjtVSlkTFh0UbERHpJT8/oFYt9U4HFSoAe/emYf78+bKYnj17omHDhtpJkKiYGWg7ASIiosJSKgEvL/WfgHrBXE9PYPz4qHwFW3BwMAs2KlPY00ZERDpNqVRPMEhLA/79Vz0cqlko188PiI4Oxe3bufH29vYYPny49hImKiEs2oiISGflnSGqYWWlvnctNTUVCxculMX37t0brq6upZwlUelg0UZERDorMFBdsJmYAPb26oItPByoWPFPLFy4XxY7adIkGBsbaylTopLHoo2IiHTShx+qJxkAgItL7s/Pzg6tXr06Bg8eXMrZEZU+Fm1ERKR1Be1ssHVr7vnwcODhw4dYvHix7HmffPIJ6tSpU8rZEmkHizYiItI6zSbv586ph0PDwoDu3dWFW/fugJXVfixe/KfsOZMnT4aREb/GqPzgkh9ERKQVeZfvCApSL90xenTuIrlbtgDZ2QKNGoXizz9zCzYXFxeEhISwYKNyh//FExGRVmh61zTDoufOqf88ckR9/t9//8XSpUtlzxkwYABq1apV+skS6QAWbUREVOqUSuDhQ8DVVd2rplnWY/FiYNYsICIiAkePHpU9Z8qUKTA0NNRSxkTapxBCCG0nQQVLTU2FjY0NUlJSYG1tre10iIiKjbu7ejaomxtw6RIwebK6YBs9WsDEZIYs1tXVFb1799ZSpkRFV1Lf37ynjYiISo3mPrbERPXxo0fqP2fNAq5eTcxXsA0aNIgFG9F/ODxKRESlQqkEevVSb0OlWQO3QgX1n7/99htOnToli586dSoMDNi3QKTBoo2IiEqUUqne2eDqVSArS91WpQrg7AwEBgqEhsp71xo1aoQePXpoIVMi3caijYiISkxBe4eamQHLlwNvvHEX3377rSz+s88+g6OjYylnSaQfWLQREVGJyFuwmZsDlSqph0PnzgWys7fi22/PyeKnTZsGhUKhpWyJdB+LNiIiKjaaoVAhAIVCXbBZWQHr1wN+foBKpcLMmTNlz2nevDm6dOmipYyJ9AeLNiIiKjZhYbkbu7u65u5u4OcH3Lp1C999950sftiwYahSpYoWMiXSPyzaiIio2Hh7A6dPq4dCw8PVxRoAbNq0CTGaau4/HA4lKpoiF22Ghoa4e/duvv8z+vfff1GlShXk5OQUW3JERKT7nh0SffpUPTPUzw/IycnBl19+KYv38PBAhw4dtJQtkf4qctH2vA0UMjIyYGJi8toJERGRflAq1cOhSUlAbKy6rXr13CHR69evY926dbLnjBw5EnZ2dlrIlkj/FbpoW7x4MQBAoVBg1apVsLKyks7l5OTgjz/+gJubW/FnSEREOuXZYs3cHDAxATIz1bNDjxwBvv/+e6xbFyd7HodDiV5PofcedXFxAQDcuHEDNWrUkG3aa2Jiglq1amHGjBnw8PAomUzLIe49SkS6yMsLiIpS7xt644Z6OLR6dfWQaEBANs6cmSWLb9OmDd59910tZUtU+krq+7vQPW1xcer/Y/L29sbWrVtRsWLFYkuCiIj0h7c3cO4c0L078Msv6t42Kyvghx+u4scff5TFjh49mt8XRMWkyJu6HThwgH8BiYjKEc0m70ql+vjAAfX6awcOqGeIenoCgwZ9l69gCwkJ4fcFUTEq8kSEgQMHvvD86tWrXzkZIiLSPWFh6uHQgAD1z97e6vagIKBjxyxER8/Gkye58d7e3njrrbe0kyxRGVbkou3hw4ey46ysLJw/fx7Jyclo165dsSVGRETapZlwoCnS4uPVQ6EPHwKXLgGxsbGYPXuj7DljxoyBjY2NFrIlKvuKXLT9+uuv+dpUKhWGDRuGOnXqFEtSRESkfZoetqQk9WK5GkIAy5cvx/3792XxISEhpZwhUflS6NmjLxMbG4t33nkHd+/eLY7LETh7lIi0S9PT9vChemsqNzegcuVM+PjMkcW1b98enp6eWsqSSPdoffboy1y9ehXZ2dnFdTkiIiplmp0NHj1SH1tZqScaAOri7fPPL+D69Z9lzxk/frxs3U4iKjlFLtrGjRsnOxZC4O7du9i5cycGDBhQbIkREVHpyrvZe962I0eAa9cW4fr1FNk5DocSla4iF23R0dGyYwMDA9jb22P+/PkvnVlKRES6afJkIDpavaNBejpgbQ1UrgxMnJiO0NC5sthOnTqhZcuWWsqUqPwqctF24MCBksiDiIi0aPFidbGWmQmoVED9+sCKFWewbds2WdzEiRNhYWGhnSSJyrkiL66rkZiYiD///BN//vknEhMTizMnIiIqBXkXze3QATAwAFq3Vi+W+/77c2UFm4mJCUJCQliwEWlRkXvaUlNTMWLECGzYsAEqlQoAYGhoiF69emHZsmVcn4eISE9olvQIC1Mfq1SAkdETtGv3FXJycuO6du2Kpk2baiVHIspV5J62IUOG4NixY9i5cyeSk5ORnJyMHTt24MSJE/j8889LIkciIipGmh42b291r1pQkPrx4Ycn0a7dV7LYwMBAFmxEOqLI67RZWloiIiICbdq0kbX/+eef6NChAx4/flysCZZnXKeNiIqDZr21oCD1cd++6r1DrayA9esBPz9gxowZyPt1UKFChXyrBRBR4ejMOm12dnYFDoHa2NhwY2AiIh307DBoWpr6/rW0NGDBgjRER8+Xxffo0QONGjXSQqZE9CJFHh6dMmUKxo0bh4SEBKktISEBEydOxNSpU4s1OSIien1BQephUG9v9ZZUbm7qtl69jsLbe/4zsUEs2Ih0VJGHR5s1a4Z//vkHGRkZcHZ2BgDEx8fD1NQU9erVk8WeOnWq+DIthzg8SkTFyctL3ePm6Qn4+obKzlWuXBkjRozQUmZEZYvODI927doVCoWi2BIgIqLipdmOSgj1NlR+fur2oCBg4cJUvPPOQll8r1694ObmpoVMiagoim3DeCp+7GkjoqLQFGvXr6sXygUAV1egUiV1wVax4p/Yv3+/7DmTJk2CsbFx6SdLVIbpTE9b7dq1cfz4cdjZ2cnak5OT0bx5c1y7dq3YkiMiosLLu3eomRlQsyagUKiHRKOj5cOh1apVw5AhQ7SQJRG9qiIXbdevX0dO3lUX/5ORkYFbt24VS1JERFR0QUHA8OFAYiJgZ6ceGs3ISMbFi1/L4vr27Yu6detqKUsielWFLtqUSqX0c0REhGzZj5ycHERGRsLFxaV4syMiokLz81P3tt2+rX78/PMB1Knzhyxm8uTJMDIq8v+vE5EOKPSSH926dUO3bt2gUCgwYMAA6bhbt27o3bs39u3bh/nz57/8Qq/Iz88Pzs7OMDMzg6OjI/r164c7d+7IYiIiItC6dWtUqFAB9vb26NGjB65fvy6LOXjwIJo3bw5TU1PUrVsXa9euzfday5YtQ61atWBmZgYPDw/8/fffsvPp6ekYMWIE7OzsYGVlhR49euDevXuymPj4eHTq1AkWFhaoUqUKJk6ciOzs7GL5XRARPU9QEODmJjB9eqisYKtVqxZCQkJYsBHpsUIXbSqVCiqVCs7OzkhMTJSOVSoVMjIyEBsbi86dO5dYot7e3ti8eTNiY2Pxyy+/4OrVq+jZs6d0Pi4uDl27dkW7du1w+vRpRERE4MGDB+jevbssplOnTvD29sbp06cxZswYDB48GBEREVLMpk2bMG7cOISEhODUqVNo0qQJfH19kZiYKMWMHTsWv/32G7Zs2YJDhw7hzp07stfJyclBp06dkJmZiSNHjmDdunVYu3Ytpk2bVmK/HyIqn5RKwN1dvfaaUgm8+ea/6N17hixmwIABGDBggJYyJKJiI/TU9u3bhUKhEJmZmUIIIbZs2SKMjIxETk6OFKNUKmUxAQEBomHDhrLr9OrVS/j6+krHrVq1EiNGjJCOc3JyRLVq1cScOXOEEEIkJycLY2NjsWXLFinm0qVLAoCIiooSQgixa9cuYWBgIBISEqSYFStWCGtra5GRkVHo95iSkiIAiJSUlEI/h4jKtu3bhfD0VP8phBBubkKoF/cQwt9/j5g+fbrskZ2drd2Eicqhkvr+LnI/+YwZM154vjR6k5KSkrB+/Xp4eXlJU9VbtGgBAwMDrFmzBv7+/khLS8MPP/wAHx8fKSYqKgo+Pj6ya/n6+mLMmDEAgMzMTJw8eRLBwcHSeQMDA/j4+CAqKgoAcPLkSWRlZcmu4+bmBmdnZ0RFRaF169aIiopC48aNUbVqVdnrDBs2DBcuXECzZs0KfF8ZGRnIyMiQjlNTU1/jt0REZZFmS6oPPgC6d1cv7wEITJ8u/7e5fv366NOnjzZSJKISUuSi7ddff5UdZ2VlIS4uDkZGRqhTp06JFm2BgYFYunQpnjx5gtatW2PHjh3SORcXF+zduxcfffQRPv/8c+Tk5MDT0xO7du2SYhISEmSFFABUrVoVqampePr0KR4+fIicnJwCY2L+m0efkJAAExMT2Nra5ovRbO31vNfRnHueOXPmIDQ09Lnniaj80mz67u2tLtpUKuDnnwF7+0QEBa2QxQ4cOBBOTk5aypSISkqR9x6Njo6WPc6fP4+7d+/i3XffxdixY4t0raCgICgUihc+NMUSAEycOBHR0dHYu3cvDA0N0b9/f4j/1gZOSEjAkCFDMGDAABw/fhyHDh2CiYkJevbsKcXouuDgYKSkpEiPmzdvajslItIRmh62rVtz27p02YERI+QF29SpU1mwEZVRxTKNyNraGqGhoejSpQv69etX6OeNHz8e/v7+L4ypXbu29HPlypVRuXJl1K9fH+7u7nBycsLRo0fh6emJZcuWwcbGBuHh4VL8jz/+CCcnJxw7dgytW7eGg4NDvlme9+7dg7W1NczNzWFoaAhDQ8MCYxwcHAAADg4OyMzMRHJysqy37dmYZ2ecaq6piSmIqakpTE1NX/j7IKLyKShIXbglJQEKhUBIiHw4tFGjRujRo4eWsiOi0lBsc781vUNFYW9vD3t7+1d6PZVKBQDSPWBPnjyBgYG849DQ0FAW++xwKQDs27cPnp6eAAATExO0aNECkZGR6Natm/TcyMhIjBw5EoD63jljY2NERkZK/0DGxsYiPj5euo6npydmzZqFxMREVKlSRXoda2trNGjQ4JXeLxGVb35+6sfGjXcRG/ut7NyQIUNQrVo1LWVGRKWlyEXb4sWLZcdCCNy9exc//PADOnbsWGyJ5XXs2DEcP34cbdq0QcWKFXH16lVMnToVderUkQqlTp06YeHChZgxYwb69OmDR48eYdKkSahZs6Z04//QoUOxdOlSBAQEYODAgdi/fz82b96MnTt3Sq81btw4DBgwAC1btkSrVq2waNEiPH78GJ9++ikAwMbGBoMGDcK4ceNQqVIlWFtbY9SoUfD09ETr1q0BAO3bt0eDBg3Qr18/hIeHIyEhAVOmTMGIESPYk0ZERaa5n61371/x8OFZ2blp06ZBoVBoKTMiKk1F3jD+2V0PDAwMYG9vj3bt2iE4OBgVKlQo1gQB4Ny5c/jiiy9w5swZPH78GI6OjujQoQOmTJmC6tWrS3EbN25EeHg4Ll++DAsLC3h6emLu3Llwc3OTYg4ePIixY8fi4sWLqFGjBqZOnZpviHbp0qX46quvkJCQgKZNm2Lx4sXw8PCQzqenp2P8+PHYsGEDMjIy4Ovri+XLl8uGPm/cuIFhw4bh4MGDsLS0xIABAxAWFlakhS25YTxR+aRUAgEBQFoaUKECoFCo0KvXTFlMs2bN4Ofnp6UMiehFSur7u8hFG5UeFm1E5ZOXl3rSAQBUr34bQ4askp0fOnRovhnqRKQ7Sur7+5XuaUtOTsY///wDAKhbt26+5S+IiKjwNMOfQUHq44cPgerVAR+fTXBxiZHFcjiUqPwqUtF2/fp1jBgxAhEREdIyGgqFAh06dMDSpUtRq1atksiRiKhM0yznERamPr58OQfTpn0pi2nVqlWJ3TdMRPqh0MOjN2/exBtvvAFjY2MMHz4c7u7uAICLFy9ixYoVyM7OxvHjx1GjRo0STbg84fAoUfmgVAKBgcCjR4CDww106bJWdn7EiBGoXLmydpIjoiLT+j1tgwYNwj///IOIiAiYmZnJzj19+hQdOnRAvXr1sGrVqudcgYqKRRtR+eHlBdSt+wPq1Lkma+dwKJH+0fo9bXv27MGmTZvyFWwAYG5ujpkzZ6J3797FlhgRUXmRnZ0NX99ZsrY2bdrg3Xff1VJGRKSLCl20PXjw4IX3rNWuXRtJSUnFkRMRUblx9epV/Pjjj7K20aNHo2LFilrKiIh0VaH3HnV0dMTFixefe/78+fMv3KKJiKg8UyrVQ6BKZW7bd999l69gCwkJYcFGRAUqdE9bt27dMGHCBERGRubbeioxMRGBgYHS1k9ERCQXEADExgK9egEbNmThzJnZsvPvvPMO3n77bS1lR0T6oNBFW0hICHbt2oU6dergk08+gZubG4QQuHTpEn766Sc4ODhg2rRpJZkrEZHe0swlcHa+jDNnNsjOjRkzBjY2NlrIioj0SaGLtooVK+LYsWOYNGkSNm7ciOTkZACAra0tPv74Y8yePRuVKlUqqTyJiPTa3LlARMQKVKmSKGsPCQnRUkZEpG9eaRsrIQTu378PALC3t+d09BLCJT+I9Jtmp4OJEzNx9uwc2bn33nsPXl5eWsqMiEqS1pf8yEuhUKBKlSrFlgQRUVmRd0uqsDAgJeUizp7dIosZN24cKlSooKUMiUhfvVLRRkREBcu7JVWXLl8jMzNZdp7DoUT0qli0EREVA00Pm7c38OhROnx95yIzM/f8+++/jzfeeEN7CRKR3mPRRkRUDDQ9bI6OZ9Gz56+ycxMnToSFhYWWMiOisoJFGxHRa1IqgYcPgaCgcJiZPZXaDQyMMXXqJC1mRkRlSaGKtsWLFxf6gqNHj37lZIiI9IlmSPTx46fo3Ttcds7Pzw/NmjXTUmZEVBYVaskPFxeXwl1MocC1a9deOylS45IfRLrNzQ2wtDwFP7/fZO2NGwege3dzLWVFRNqm1SU/4uLiiu0FiYjKio8+mglDQ5V0bGVlhfHjx2sxIyIqy175nrbMzEzExcWhTp06MDLirXFEVD4olcCCBY/h7T0Phoa57UeOdEdERGPtJUZEZZ5BUZ/w5MkTDBo0CBYWFmjYsCHi4+MBAKNGjUJYWFixJ0hEpG1KJeDurh4OXbXqGLy958nOb9kShBEjWLARUckqctEWHByMM2fO4ODBgzAzM5PafXx8sGnTpmJNjohIF4SFATExQJ8+oWjRYo/Ubmdnh5CQEJw/bwo/Py0mSETlQpHHNbdt24ZNmzahdevWsj1HGzZsiKtXrxZrckRE2pS7YG4qfH0Xys599NFHcHd311JmRFQeFblou3//foH7jj5+/JgbxxNRmRIWBhgY/AUTk0hZe3BwMExMTLSUFRGVV0UeHm3ZsiV27twpHWsKtVWrVsHT07P4MiMi0hKlEvDyAnx9Q/Hee7kFW0qKI5o1C2HBRkRaUeSettmzZ6Njx464ePEisrOz8fXXX+PixYs4cuQIDh06VBI5EhGVCqUSCAwEkpKSMXz417JzH3/8MerVq6elzIiIXqGnrU2bNjh9+jSys7PRuHFj7N27F1WqVEFUVBRatGhREjkSEZWKsDDAweFAvoKtSZPJLNiISOsKtSMCaQd3RCAqeZrJBoGBAqdPz5Cdq1mzJvz9/bWTGBHpLa3uiJCamlroC7K4ICJ9EhYGxMYm4fTpJbL2/v37F3oLPyKi0lCoos3W1rbQM0NzcnJeKyEiotIyeTJgbb0Xo0dHydqnTJkCw7zbHRAR6YBCFW0HDhyQfr5+/TqCgoLg7+8vzRaNiorCunXrMGfOnJLJkoiomAkhYGIyA3knvScm1oOv78dgvUZEuqjI97S9++67GDx4MPr06SNr/+mnn/Dtt9/i4MGDxZlfucZ72oiKl+b+tS++uI+YmOWyc1lZn+LLL521lBkRlSUl9f1d5NmjUVFRaNmyZb72li1b4u+//y6WpIiIipNm3bXAQKBSpZ35CrYZM6Zi/34WbESk24pctDk5OeF///tfvvZVq1bBycmpWJIiIipOYWHA0aMCvXuH4o03Tkjtd+82RGZmCDw8DBAUpMUEiYgKociL6y5cuBA9evTA7t274eHhAQD4+++/ceXKFfzyyy/FniAR0etQKgEhEhAS8o2sPSpqCPbsqaalrIiIiq7IPW3vv/8+rly5gi5duiApKQlJSUno0qULLl++jPfff78kciQiemU7dmxDhw7ygm3jxmkYPpwFGxHpFy6uq8M4EYHo1alUKsycOVPWdupUUyiVXeHpCRw5oqXEiKjM0+rius9KTk7Gd999h0uXLgEAGjZsiIEDB8LGxqbYEiMiKgrNzNCgIKBFi9tYtWqV7PzQoUNx7FhV3L8P3r9GRHqpyD1tJ06cgK+vL8zNzdGqVSsAwPHjx/H06VPs3bsXzZs3L5FEyyP2tBEVnrs7EBMDDBq0GU5Ol2Tnmjadhq5dC7dAOBHR6yqp7+8iF21t27ZF3bp18b///Q9GRuqOuuzsbAwePBjXrl3DH3/8UWzJlXcs2ogKz91dhd695cOhN268gTVr3udwKBGVKp0ZHj1x4oSsYAMAIyMjBAQEFLh+GxFRSbtx4wZ6914ra/vrrxEYNaoyYmI4HEpEZUORizZra2vEx8fDzc1N1n7z5k1UqFCh2BIjIiqMBQt+xKNHV2Vt8+ZNw/r1Cvj5AX5+WkqMiKiYFblo69WrFwYNGoR58+bBy8sLAHD48GFMnDgx39ZWREQlZdu2HJw586Ws7f79N3HqlA/Wr2exRkRlT5GLtnnz5kGhUKB///7Izs4GABgbG2PYsGEICwsr9gSJiJ517do1nDnzg6zt669HIT29Ep480VJSREQl7JXXaXvy5AmuXlUPSdSpUwcWFhbFmhhxIgJRQVavXo2bN2/K2qZPnwZAgerVgVu3tJMXEZGGzkxE0LCwsEDjxo2LLREiohfJzs7GrFmzZG3vvPMOOnd+GwBgYAAsX17QM4mIyoZCF20DBw4sVNzq1atfORkiooJcvnwZGzZskLU1bDgGb79tg9GjgcWLgdGjeR8bEZVthR4eNTAwQM2aNdGsWTO86Cm//vprsSVX3nF4lAhYuXIl7t27J2ubPj2Ea68Rkc7S+vDosGHDsGHDBsTFxeHTTz/FJ598gkqVKhVbIkREeWVmZmLOnDmytmrVfLBgwZtwdeXaa0RU/hgUNnDZsmW4e/cuAgIC8Ntvv8HJyQkfffQRIiIiXtjzRkRUVJcuXcpXsDVqNA7jxr2JmBigUiUOhRJR+fPKs0dv3LiBtWvX4vvvv0d2djYuXLgAKyur4s6vXOPwKJU3SiVw+PBiWFg8lLU3axaCsDAgKgqwsgLXYSMinab14dFnGRgYQKFQQAiBnJycYkuIiMqnjIwMREeHIe/qQR07dkSrVq2k47Aw9bAoCzYiKo+KVLRlZGRg69atWL16Nf766y907twZS5cuRYcOHWBgUOiRViIimbNnz+abxDRhwgRYWlpKx9ySiojKu0IXbcOHD8fGjRvh5OSEgQMHYsOGDahcuXJJ5kZE5cCsWV8hOzt3GwMjIyM0bjwZ773HXjUioryKtOSHs7MzmjVrBoVC8dy4rVu3Flty5R3vaaOy7OnTpwgPD5e1ZWf7YdGiZrCxAW7fBpf1ICK9pPV72vr37//CYo2IqLDWrDmF+PjfZG2ZmQGYM8ccQgAZGeqCjct6EBHlKnTRtnbt2hJMg4jKiy+//FI2ecnS0hL1609A376Apt+/ShX2sBERPeuVZ48SERXF48ePMW/ePFlbdnZ3TJjQGF5eQFoaYGYG1KoFzJ2rnRyJiHQZizYiKnF///03du/eLWubMycILi6miIwEvL3VbZx4QET0fCzaiKhEhYaGyo4rVqyIWrVGo3lzIClJvWAuwOFQIqKXYdFGRCXi0aNHWLBggazto48+wpUr7tIiuQBkPxMR0fO98jZWVPK45Afpq8OHD+P333+XtQUHB8PExAReXureNS7nQURlldaX/CAiKoxnh0MdHBzw+eefS8dBQexdIyJ6FSzaiKhYpKSkYNGiRbK22rU/xooV9eDomDvBgNtRERG9GhZtRPTaDh48iEOHDsna9u2bjAcPjBAbCwQEsFAjInpderPLu5+fH5ydnWFmZgZHR0f069cPd+7ckcVs3rwZTZs2hYWFBWrWrImvvvoq33UOHjyI5s2bw9TUFHXr1i1w0eBly5ahVq1aMDMzg4eHB/7++2/Z+fT0dIwYMQJ2dnawsrJCjx49cO/ePVlMfHw8OnXqBAsLC1SpUgUTJ05Ednb26/8iiHSIEAKhoaGygs3S0hkRESEICDBCWpq6TfMnERG9Or0p2ry9vbF582bExsbil19+wdWrV9GzZ0/p/O7du9G3b18MHToU58+fx/Lly7Fw4UIsXbpUiomLi0OnTp3g7e2N06dPY8yYMRg8eDAiIiKkmE2bNmHcuHEICQnBqVOn0KRJE/j6+iIxMVGKGTt2LH777Tds2bIFhw4dwp07d9C9e3fpfE5ODjp16oTMzEwcOXIE69atw9q1azFt2rQS/i0RlZ6kpCTMmDFD1tavXz9MmPCpdN+aRoUKpZwcEVEZpLezR5VKJbp164aMjAwYGxvj448/RlZWFrZs2SLFLFmyBOHh4YiPj4dCoUBgYCB27tyJ8+fPSzG9e/dGcnIy9uzZAwDw8PDAG2+8IRV7KpUKTk5OGDVqFIKCgpCSkgJ7e3v89NNPUtEYExMDd3d3REVFoXXr1ti9ezc6d+6MO3fuoGrVqgCAlStXIjAwEPfv34eJiUmh3iNnj5Ku2rdvH448M/Vz794pCAw0hJ8fpBmirq5ApUpcNJeIypeS+v7Wm562vJKSkrB+/Xp4eXnB2NgYAJCRkQEzMzNZnLm5OW7duoUbN24AAKKiouDj4yOL8fX1RdR/q3tmZmbi5MmTshgDAwP4+PhIMSdPnkRWVpYsxs3NDc7OzlJMVFQUGjduLBVsmtdJTU3FhQsXiuvXQFTqNMOheQu2unXrIiIiBEeOGEq9a0FB6iU9wsPVy3qwYCMien16VbQFBgbC0tISdnZ2iI+Px/bt26Vzvr6+2Lp1KyIjI6FSqXD58mXMnz8fAHD37l0AQEJCgqyQAoCqVasiNTUVT58+xYMHD5CTk1NgTEJCgnQNExMT2NravjCmoGtozj1PRkYGUlNTZQ8iXXH//v18w6H16n2Kvn37IigIcHNT73CgVKqLNBZrRETFS6tFW1BQEBQKxQsfMTExUvzEiRMRHR2NvXv3wtDQEP3794dmdHfIkCEYOXIkOnfuDBMTE7Ru3Rq9e/cGoO4t0wdz5syBjY2N9HByctJ2SkQAgF27dmH58uWythkzpmLpUmfp+NYtIDZWfi8bEREVH60u+TF+/Hj4+/u/MKZ27drSz5UrV0blypVRv359uLu7w8nJCUePHoWnpycUCgXmzp2L2bNnIyEhAfb29oiMjJRdw8HBId8sz3v37sHa2hrm5uYwNDSEoaFhgTEODg7SNTIzM5GcnCzrbXs25tkZp5pramIKEhwcjHHjxknHqampLNxIq4QQ+XrXLlxogHPnPoSHh3wrqrQ0wMqKi+YSEZUUrRZt9vb2sLe3f6XnqlQqAOohxbwMDQ1RvXp1AMCGDRvg6ekpvYanpyd27doli9+3bx88PT0BACYmJmjRogUiIyPRrVs36XUiIyMxcuRIAECLFi1gbGyMyMhI9OjRAwAQGxuL+Ph46Tqenp6YNWsWEhMTUaVKFel1rK2t0aBBg+e+J1NTU5iamr7S74OouCUkJOCbb76RtUVEDMbDh9UhhHxyQd5dDjgkSkRUMvRi9uixY8dw/PhxtGnTBhUrVsTVq1cxdepU3Lt3DxcuXICpqSkePHiAn3/+Ge+88w7S09OxZs0afPvttzh06BBatWoFQL3kR6NGjTBixAgMHDgQ+/fvx+jRo7Fz5074+voCUC/5MWDAAHzzzTdo1aoVFi1ahM2bNyMmJka6L23YsGHYtWsX1q5dC2tra4waNQoApJuzc3Jy0LRpU1SrVg3h4eFISEhAv379MHjwYMyePbvQ75uzR0lbtm/fjtOnT8vaIiKmIijIAGFh6pmhVlbA+vUs0oiInlVi399CD5w9e1Z4e3uLSpUqCVNTU1GrVi0xdOhQcevWLSnm/v37onXr1sLS0lJYWFiId999Vxw9ejTftQ4cOCCaNm0qTExMRO3atcWaNWvyxSxZskQ4OzsLExMT0apVq3zXefr0qRg+fLioWLGisLCwEB988IG4e/euLOb69euiY8eOwtzcXFSuXFmMHz9eZGVlFel9p6SkCAAiJSWlSM8jelU5OTli+vTpsse2bdtkMZMmCWFgIAQghKenlhIlItJhJfX9rRc9beUVe9qoNN2+fRurVq2StX3++ef4+28H2dCnZg029rQRERWspL6/WbTpMBZtVFq2bNmCixcvytqmTZsGhUIhFWlubkDFioC3N3DgAO9fIyJ6npL6/uaG8UTlmEqlwsyZM2VtLVu2RE5OJ7z5prpAS0pSF2xCqIs3QL0GGxERlS4WbUTlVHx8PNasWSNrGz58OOzt7aXetXPn1Et5eHrKZ4gSEVHpY9FGVA4tXPgTUlOvyNoiIqahWTMF/PzUhVlAgLpgq149dyiUw6FERNqjH1sFEFGx2LYtB6GhobKCzcvLCxERIYiKUiAwUD3RAFBv9H77tvpPFmtERNrHnjaiciIuLg5nznwva2vQYBTee68Snj5VD30mJamHRfv2BUaPVsdwOJSISDewaCMqB9asWYP4+HhZm2Z2KJA79KlUqgu2tDT1DFFOOCAi0h0cHiUqw7KzsxEaGior2N5++22EhIRAoVBAqVQPhyqV6nN+fuq11zQTD4iISHewaCMqo65cuYJZs2bJ2r744gukpr4jFWqaLanCwnJj/PzUPWy8j42ISLewaCMqg7755hv89NNPsraQkBDY2trKCrWgIMDVFXj4MLe3jYiIdBOLNqIyJDMzE6GhoUhISJDaqlXzQUREiFSUBQWpF8uNjwcCA9VtMTHy3jYiItI9LNqIyohLly5hzpw5srZx48ZhzZo3ZUOgfn7q7ahu31YXawoF72EjItIHnD1KVAYsWbIESUlJsraIiBA0aybfyUBzH5tmeyqFApg7l/evERHpAxZtRHosIyMDYc+Ma3bo0AFjx3pIvWt5JxVotqcC1L1sRESkPzg8SqSnzp07l69gmzBhAjw8PBAUpB7y9PaWL+mhaedQKBGR/lEIIYS2k6CCpaamwsbGBikpKbC2ttZ2OqRD5s2bh8ePH0vHKpUhsrOn4MCB3H1CgdyeNU9PLpRLRFRaSur7m8OjRHrk6dOnCA8Pl7WdP98FP//cHFZW6p0MwsJyi7a897MREZF+Y9FGpCeio6OhfGYxtf37A9Cmjbk0FKrpaQPkkw7yzhwlIiL9xKKNSA/MmjUL2dnZ0rG5uTnWrAlATAyQmAhcupT/OZpFdM+dy98DR0RE+odFG5EOe/z4MebNmydr++CDD/B///d/WL1afSxEbq+appdN08MG5O+BIyIi/cSijUhH/f3339i9e7esLTAwEGZmZgCA8PDcQu3ZPUQ1y3pw8gERUdnBoo1IB4WGhsqObW1t8cUXX8ja/Pzkw53P9rSxZ42IqGxh0UakQx49eoQFCxbI2j788EM0aNDghc/TFG+aYo09bEREZQ+LNiIdceTIEezbt0/WFhwcDBMTk0I9P+8QKSccEBGVPdwRgUgHhIaGygq2hISqiIgIkRVsSmXu7gaanydPzm3jbgdERGUbd0TQYdwRoexLSUnBokWLZG21a/fBrFn1823mnnd3A0D9s2ZBXe54QESkO7gjAlEZc+jQIRw8eFDWNmnSJBgbG2PFivxDnc/ubqBZ1oPLeRARlQ/sadNh7Gkrm4QQmDFjhqzNyckJAwcOlI7zrrvG+9OIiPQLe9qIyoC0tDTMnz9f1vbJJ5+gTp06srZnl/MgIiLiRASiUnL27Nl8BduUKVPyFWyAfNIBERERwKKNqMQJIfC///0Pv/76q9RmZ9ccEREh2LnTsMDnPLvDAREREYs2ohKUmpqKGTNm4M6dO1Kbu/twBAd3QVQU8MEH6mU7nsXlO4iI6FmciKDDOBFBv0VHR0OZZ3zT3NwcEyZMQJs2BtLeoIB62Y5Hj7SQIBERlQhORCDSE0IIrFixAvfv35fa3nvvPXh5eQHIXbqjenVgzx5g9GhtZUpERPqERRtRMSposdxRo0ahUqVK0jFnhhIR0atg0UZUTI4fP45du3ZJxzY2Nvjiiy+gUCi0mBUREZUVnIhA9JqEEPj6669lBVtkZEfcvz8Gb76p4LIdRERULNjTRvQakpKSsGTJElnbt99+gTt3bBEdrd4XNO9WVERERK+KPW1Er+jo0aOygi0trTKaNp2GFSts4empnmDwomU7uIAuEREVBXvaiIpIpVJhwYIFePz4sdR27FgX7N7dHIcP5xZpHh7ArFnPv07eBXTZE0dERC/DnjaiInjw4AFmzpwpK9gWLBiLuLjmUq9aYXcz4AK6RERUFCzaiArpr7/+wrJly6RjlcoBGzdOg6OjNebOBY4cUfeYeXurF8z19s59bkFDoX5+uc8hIiJ6GQ6PEr2AUgnMnatChw5zoVJlSu1bt3bDtWtNkJamLtDyOnBAPQHhwIHcNg6FEhHR62JPG9ELLF2aiPbtZ8oKtkaNxsPSsglGj1YXbJoZohoFDXtyKJSIiF4X9x7VYdx7tHQpleriKyhI3Rt28OBBHDp0SDrv7OwMf39/abFcpRIICAAUCmDuXPagERGRGvceJSphmiHMuXNzcPr0LOT9/5nTp3uiWbOGyLu5QVgYEBur7kFjwUZERCWNw6NE/wkKAtq3T0D79l/KCratWydg27aG+WaDaoY8vb253hoREZU8Fm1E/7Gw+B1eXt9Ixw8e1Mb06SHIzLQs8H40zezPAwcKt8QHERHR6+DwKJV727Zl48wZ+Sq4vXr1wuXLbjh5Mvcet+fRrM3GSQZERFSSOBFBh3EiQsm7ffs2Vq1aJWsLCAiAubm5ljIiIiJ9x4kIRMVs+fI9uH//mHRsY+OKMWN6azEjIiKi52PRRuVOVlYWZs+eLWv7+OOPUa9ePS1lRERE9HIs2qhciY+Px5o1a2Rt//d/gahXz0xLGRERERUOizYqN3777TecOnVKOm7UqBF69OihxYyIiIgKj0UblSnP7lIAAF99lQkfnzmyuH79+qF27dpayJCIiOjVsGijMkGzBdXDh+pdCgD1caVKcfDx+V4WGxQUBFNTUy1kSURE9OpYtJHeUyqBvn3VG7e7uqofCgXQu/evePjwrBTXtGlTdO3aVYuZEhERvToWbaT3wsLUBZuVFRAeDvj6ZiAsLAwPH+bG+Pv7o2bNmtpLkoiI6DVxGyvSaUpl/n09n23z9lYXbKNHAw0a/IOwZ/aTmjRpEgs2IiLSe9wRQYdxRwR1cRYVpd6Y/ciRgts0x0OHboaDwyXpuS1btkSnTp20lDkREZVXJfX9zZ420jl5e9KCgpBvs/Zn2yZMeIrp00NlBdugQYNYsBERUZnCe9pI54SFqXvOwsLUPWmazdonTwYWL1YPg2p63WJjY3Hu3EbZ8ydPngwjI/6nTUREZQt72kjnPNuTpul5W7BAPeFg8WJ1+08//YSNG3MLttatWyMkJIQFGxERlUm8p02H6do9bZq10IKCcnu/SoO7OxATA9jZARkZwOjRT2Bi8pUsZsiQIahWrVrpJUVERPQcvKeNtC7vsOXLFDTrU9Pu7g64ueU/9zya/62oXBk4duxivoJtypQpLNiIiKjMY9FGhVbQpIDneV6BFxam7jWLjc1/7nmFXni4+nWHDFmHLVu2SO1t27ZFSEgIDA0NX/EdERER6Q+9K9oyMjLQtGlTKBQKnD59Wnbu7NmzaNu2LczMzODk5ITw8PB8z9+yZQvc3NxgZmaGxo0bY9euXbLzQghMmzYNjo6OMDc3h4+PD65cuSKLSUpKQt++fWFtbQ1bW1sMGjQIaWlpRc5F3/j5yScGvMjzCrygIHUvm6tr/nPPK/TatUuDr28o0tKuS21Dhw5Fu3btXu2NEBER6SG9K9oCAgIKHApLTU1F+/btUbNmTZw8eRJfffUVpk+fjm+//VaKOXLkCPr06YNBgwYhOjoa3bp1Q7du3XD+/HkpJjw8HIsXL8bKlStx7NgxWFpawtfXF+np6VJM3759ceHCBezbtw87duzAH3/8gc8++6xIuZR1zyvw/PzUG7lXqpT/OQUVeufOncP8+fOlYyMjI0yZMgVVq1YtocyJiIh0lNAju3btEm5ubuLChQsCgIiOjpbOLV++XFSsWFFkZGRIbYGBgcLV1VU6/uijj0SnTp1k1/Tw8BCff/65EEIIlUolHBwcxFdffSWdT05OFqampmLDhg1CCCEuXrwoAIjjx49LMbt37xYKhULcvn270LkURkpKigAgUlJSivQ8XefpKQQghJWVENu3FxyjUqnE//73PzF9+nTpcfDgwdJNlIiI6BWU1Pe33vS03bt3D0OGDMEPP/wACwuLfOejoqLw1ltvwcTERGrz9fVFbGwsHv63CWVUVBR8fHxkz/P19UVUVBQAIC4uDgkJCbIYGxsbeHh4SDFRUVGwtbVFy5YtpRgfHx8YGBjg2LFjhc6lrHrefWl5BQWpt51KSyt4UsOjR48wY8YM3L59W2obPnw43n777RLImIiISD/oRdEmhIC/vz+GDh0qK5bySkhIyDdkpjlOSEh4YUze83mf97yYKlWqyM4bGRmhUqVKL32dvK9RkIyMDKSmpsoe+qYwM0z9/ID16wu+5y06OhoLFiyQjs3NzTF16lTY29uXUMZERET6QatFW1BQEBQKxQsfMTExWLJkCR49eoTg4GBtplvi5syZAxsbG+nh5OSk7ZSKrLAzTJ+9500IgRUrVkCZp4vOx8cHAQEBMDDQi/+3ICIiKlFaXTp+/Pjx8Pf3f2FM7dq1sX//fkRFRcHU1FR2rmXLlujbty/WrVsHBwcH3Lt3T3Zec+zg4CD9WVBM3vOaNkdHR1lM06ZNpZjExETZNbKzs5GUlPTS18n7GgUJDg7GuHHjpOPU1FS9K9z8/Iq+8G5KSgoWLVokaxs5ciTs7OyKLzEiIiI9p9UuDHt7e7i5ub3wYWJigsWLF+PMmTM4ffo0Tp8+LS3TsWnTJsyaNQsA4OnpiT/++ANZWVnS9fft2wdXV1dUrFhRiomMjJTlsG/fPnh6egIAXFxc4ODgIItJTU3FsWPHpBhPT08kJyfj5MmTUsz+/fuhUqng4eFR6FwKYmpqCmtra9mjNBXmfrTiduLECVnBZm1tjWnTprFgIyIielaxTmsoJXFxcflmjyYnJ4uqVauKfv36ifPnz4uNGzcKCwsL8c0330gxhw8fFkZGRmLevHni0qVLIiQkRBgbG4tz585JMWFhYcLW1lZs375dnD17VnTt2lW4uLiIp0+fSjEdOnQQzZo1E8eOHRN//fWXqFevnujTp0+RcimM0p49qpnV6elZuPjt29Wxz5sB+iIqlUp8/fXXstmhR48eLfqFiIiIdExJfX+XmaJNCCHOnDkj2rRpI0xNTUX16tVFWFhYvudu3rxZ1K9fX5iYmIiGDRuKnTt3ys6rVCoxdepUUbVqVWFqaireffddERsbK4v5999/RZ8+fYSVlZWwtrYWn376qXj06FGRc3mZ0i7ailqEFVTkFeYaSUlJsmJt+vTpIikp6fWSJyIi0hEl9f3NDeN1WGluGP8qm8E/+xylEujbV72Uh6eneqLBs44ePYqIiAjp2M7ODiNGjIBCoSimd0JERKRdJfX9zaJNh5Vm0eblpV6q43nFVlGuYWWlXtIjb/GnUqmwcOFC2XZfnTt3RosWLV4zcyIiIt1SUt/fXEuBABRtM/iXXePZgu3ff//FzJkzZQXbmDFjWLAREREVAXvadFhp9rSVlL/++ks2G9fBwQGfffYZh0OJiKjMKqnvb62u00a6SakEAgIAhUK9uXtR110D1MOh4eHhyMjIkNq6deuGJk2aFGOmRERE5QeLNsonLAyIjc39uahFW2JiIlasWCFrGzduHCpUqFBMGRIREZU/vKetHHrZIrpBQYCrK1C9OpCUVLTFdg8dOiQr2JycnDBt2jQWbERERK+J97TpsJIaEy/sTNGizCjNycnB7NmzoVKppLYePXqgUaNGxZQ1ERGRfuDsUSo2hZ0pWti4hIQEfPnll7KCbcKECSzYiIiIihF72nSYPswe/f3333H48GHp2MXFBf3799diRkRERNrFnjYqMa+yUXx2djZCQ0NlBdtHH33Ego2IiKiEcPYoISxMfe9aYWeK3r59G6tWrZK1BQQEwNzcvIQyJCIiIhZthKCg3D1EX2bPnj04duyYdFy/fn306dOnBLMjIiIigEVbuZZ3w/eXzQ7NysrC7NmzZW19+vRB/fr1SzBDIiIi0mDRVo4Vdlj05s2bWL16tawtMDAQZmZmJZwhERERabBoK8cKMyy6Y8cOnDx5Ujpu2LAhevbsWQrZERERUV4s2soxP7/n97BlZmZizpw5srZPPvkEderUKYXMiIiI6Fks2iif69evY926dbK2oKAgmJqaaikjIiIiYtFGMtu2bcOZM2ek4yZNmqBbt27aS4iIiIgAsGij/2RkZCAsLEzWNmDAANSqVUs7CREREZEMizbC1atX8eOPP8ragoODYWJioqWMiIiI6Fks2sq5LVu24OLFi9JxixYt0LlzZy1mRERERAVh0VZOpaenY+7cubK2gQMHwsnJSUsZERER0YuwaCuHLl++jA0bNsjaJk2aBGNjYy1lRERERC/Doq0cyluwtW7dGr6+vlrMhoiIiAqDRVs5NmTIEFSrVk3baRAREVEhKIQQQttJUMFSU1NhY2ODlJQUWFtbazsdIiIiKoSS+v42KLYrEREREVGJYdFGREREpAdYtBERERHpARZtRERERHqARRsRERGRHmDRRkRERKQHWLQRERER6QEWbURERER6gEUbERERkR5g0UZERESkB1i0EREREekBFm1EREREeoBFGxEREZEeYNFGREREpAeMtJ0APZ8QAgCQmpqq5UyIiIiosDTf25rv8eLCok2HPXr0CADg5OSk5UyIiIioqB49egQbG5tiu55CFHcZSMVGpVLhzp07qFChAhQKhbbTKVWpqalwcnLCzZs3YW1tre10KA9+NrqLn43u4mej24r78xFC4NGjR6hWrRoMDIrvTjT2tOkwAwMD1KhRQ9tpaJW1tTX/gdNR/Gx0Fz8b3cXPRrcV5+dTnD1sGpyIQERERKQHWLQRERER6QEWbaSTTE1NERISAlNTU22nQs/gZ6O7+NnoLn42uk1fPh9ORCAiIiLSA+xpIyIiItIDLNqIiIiI9ACLNiIiIiI9wKKNiIiISA+waKNil5GRgaZNm0KhUOD06dOyc2fPnkXbtm1hZmYGJycnhIeH53v+li1b4ObmBjMzMzRu3Bi7du2SnRdCYNq0aXB0dIS5uTl8fHxw5coVWUxSUhL69u0La2tr2NraYtCgQUhLSytyLmWFn58fnJ2dYWZmBkdHR/Tr1w937tyRxWzevBlNmzaFhYUFatasia+++irfdQ4ePIjmzZvD1NQUdevWxdq1a/PFLFu2DLVq1YKZmRk8PDzw999/y86np6djxIgRsLOzg5WVFXr06IF79+7JYuLj49GpUydYWFigSpUqmDhxIrKzs1//F6GDCvPZREREoHXr1qhQoQLs7e3Ro0cPXL9+XRbDz6ZkvOzzmT59OhQKRb6HpaWl7Dr8d634FebvjhAC8+bNQ/369WFqaorq1atj1qxZshi9+rsjiIrZ6NGjRceOHQUAER0dLbWnpKSIqlWrir59+4rz58+LDRs2CHNzc/HNN99IMYcPHxaGhoYiPDxcXLx4UUyZMkUYGxuLc+fOSTFhYWHCxsZGbNu2TZw5c0b4+fkJFxcX8fTpUymmQ4cOokmTJuLo0aPizz//FHXr1hV9+vQpUi5lyYIFC0RUVJS4fv26OHz4sPD09BSenp7S+V27dgkjIyOxYsUKcfXqVbFjxw7h6OgolixZIsVcu3ZNWFhYiHHjxomLFy+KJUuWCENDQ7Fnzx4pZuPGjcLExESsXr1aXLhwQQwZMkTY2tqKe/fuSTFDhw4VTk5OIjIyUpw4cUK0bt1aeHl5Seezs7NFo0aNhI+Pj4iOjha7du0SlStXFsHBwSX8W9KOl302165dE6ampiI4OFj8888/4uTJk+Ktt94SzZo1k8XwsykZL/t8Hj16JO7evSt7NGjQQAwYMECK4b9rJeNln40QQowaNUq4urqK7du3i2vXrokTJ06IvXv3Suf17e8OizYqVrt27RJubm7iwoUL+Yq25cuXi4oVK4qMjAypLTAwULi6ukrHH330kejUqZPsmh4eHuLzzz8XQgihUqmEg4OD+Oqrr6TzycnJwtTUVGzYsEEIIcTFixcFAHH8+HEpZvfu3UKhUIjbt28XOpeybPv27UKhUIjMzEwhhBB9+vQRPXv2lMUsXrxY1KhRQ6hUKiGEEAEBAaJhw4aymF69eglfX1/puFWrVmLEiBHScU5OjqhWrZqYM2eOEEL9WRkbG4stW7ZIMZcuXRIARFRUlBBC/d+QgYGBSEhIkGJWrFghrK2tZZ9XWfXsZ7NlyxZhZGQkcnJypBilUimL4WdTep79fJ51+vRpAUD88ccfUhv/XSsdz342Fy9eFEZGRiImJua5z9G3vzscHqVic+/ePQwZMgQ//PADLCws8p2PiorCW2+9BRMTE6nN19cXsbGxePjwoRTj4+Mje56vry+ioqIAAHFxcUhISJDF2NjYwMPDQ4qJioqCra0tWrZsKcX4+PjAwMAAx44dK3QuZVVSUhLWr18PLy8vGBsbA1APaZuZmcnizM3NcevWLdy4cQPAyz+bzMxMnDx5UhZjYGAAHx8fKebkyZPIysqSxbi5ucHZ2Vn2+TVu3BhVq1aVvU5qaiouXLhQXL8GnVTQZ9OiRQsYGBhgzZo1yMnJQUpKCn744Qf4+PhIMfxsSkdBn8+zVq1ahfr166Nt27ZSG/9dK3kFfTa//fYbateujR07dsDFxQW1atXC4MGDkZSUJD1P3/7usGijYiGEgL+/P4YOHSr7RyWvhIQE2X+wAKTjhISEF8bkPZ/3ec+LqVKliuy8kZERKlWq9NLXyfsaZU1gYCAsLS1hZ2eH+Ph4bN++XTrn6+uLrVu3IjIyEiqVCpcvX8b8+fMBAHfv3gXw/N9Zamoqnj59igcPHiAnJ+eln42JiQlsbW1fGMPPJvezcXFxwd69ezFp0iSYmprC1tYWt27dwubNm6UYfjYl60WfT17p6elYv349Bg0aJGvnv2sl50WfzbVr13Djxg1s2bIF33//PdauXYuTJ0+iZ8+eUoy+/d1h0UYvFBQUVOBNtnkfMTExWLJkCR49eoTg4GBtp1xuFPaz0Zg4cSKio6Oxd+9eGBoaon///hD/bYgyZMgQjBw5Ep07d4aJiQlat26N3r17A1D/XyUVTXF+NgkJCRgyZAgGDBiA48eP49ChQzAxMUHPnj2lGCqa4vx88vr111/x6NEjDBgwoDTfTplSnJ+NSqVCRkYGvv/+e7Rt2xbvvPMOvvvuOxw4cACxsbHaeouvxUjbCZBuGz9+PPz9/V8YU7t2bezfvx9RUVH59m1r2bIl+vbti3Xr1sHBwSHfbBrNsYODg/RnQTF5z2vaHB0dZTFNmzaVYhITE2XXyM7ORlJS0ktfJ+9r6LrCfjYalStXRuXKlVG/fn24u7vDyckJR48ehaenJxQKBebOnYvZs2cjISEB9vb2iIyMlF3jeb8za2trmJubw9DQEIaGhi/9/DIzM5GcnCz7v9JnY56dmVWeP5tly5bBxsZGNgvwxx9/hJOTE44dO4bWrVvzsymi4vx88lq1ahU6d+6cr0eF/64VXnF+No6OjjAyMkL9+vWleHd3dwDqmZyurq7693en0He/Eb3AjRs3xLlz56RHRESEACB+/vlncfPmTSFE7k2yeW/gDQ4OzjcRoXPnzrJre3p65rthd968edL5lJSUAm/YPXHihBQTERFR4A27L8qlLLtx44YAIA4cOPDcmH79+slmYgUEBIhGjRrJYvr06ZPvht2RI0dKxzk5OaJ69er5btj9+eefpZiYmJgCb9jNOzPrm2++EdbW1iI9Pf3V3rAeefazGTdunGjVqpUs5s6dOwKAOHz4sBCCn01pet7fnWvXrgmFQiF+++23fM/hv2ul49nPRvM99M8//0gxmokisbGxQgj9+7vDoo1KRFxcXL7Zo8nJyaJq1aqiX79+4vz582Ljxo3CwsIi35IfRkZGYt68eeLSpUsiJCSkwKnxtra2Yvv27eLs2bOia9euBU6Nb9asmTh27Jj466+/RL169WRT4wuTS1lx9OhRsWTJEhEdHS2uX78uIiMjhZeXl6hTp470j8X9+/fFihUrxKVLl0R0dLQYPXq0MDMzE8eOHZOuo5kaP3HiRHHp0iWxbNmyAqfGm5qairVr14qLFy+Kzz77TNja2spmTA0dOlQ4OzuL/fv3ixMnTuSbpq+ZGt++fXtx+vRpsWfPHmFvb18ml5UozGcTGRkpFAqFCA0NFZcvXxYnT54Uvr6+ombNmuLJkydCCH42JaUwn4/GlClTRLVq1UR2dna+6/DfteJXmM8mJydHNG/eXLz11lvi1KlT4sSJE8LDw0O899570nX07e8OizYqEQUVbUIIcebMGdGmTRthamoqqlevLsLCwvI9d/PmzaJ+/frCxMRENGzYUOzcuVN2XqVSialTp4qqVasKU1NT8e6770r/16Tx77//ij59+ggrKythbW0tPv30U/Ho0aMi51IWnD17Vnh7e4tKlSoJU1NTUatWLTF06FBx69YtKeb+/fuidevWwtLSUlhYWIh3331XHD16NN+1Dhw4IJo2bSpMTExE7dq1xZo1a/LFLFmyRDg7OwsTExPRqlWrfNd5+vSpGD58uKhYsaKwsLAQH3zwgbh7964s5vr166Jjx47C3NxcVK5cWYwfP15kZWUVzy9EhxTmsxFCiA0bNohmzZoJS0tLYW9vL/z8/MSlS5dkMfxsil9hP5+cnBxRo0YNMWnSpOdei/+uFa/Cfja3b98W3bt3F1ZWVqJq1arC399f/Pvvv7IYffq7oxCCd7ISERER6TpOCyMiIiLSAyzaiIiIiPQAizYiIiIiPcCijYiIiEgPsGgjIiIi0gMs2oiIiIj0AIs2IiIiIj3Aoo2IqAQoFAps27ZN22nIHDx4EAqFAsnJydpOhYheAYs2IqLXMH36dGlTbyKiksSijYiIiEgPsGgjonJNpVJhzpw5cHFxgbm5OZo0aYKff/4ZQO5wYmRkJFq2bAkLCwt4eXkhNjYWALB27VqEhobizJkzUCgUUCgUWLt2rXTtBw8e4IMPPoCFhQXq1asHpVJZqJw0rxsREYFmzZrB3Nwc7dq1Q2JiInbv3g13d3dYW1vj448/xpMnT6TnZWRkYPTo0ahSpQrMzMzQpk0bHD9+vPh+WUSkVSzaiKhcmzNnDr7//nusXLkSFy5cwNixY/HJJ5/g0KFDUszkyZMxf/58nDhxAkZGRhg4cCAAoFevXhg/fjwaNmyIu3fv4u7du+jVq5f0vNDQUHz00Uc4e/Ys3n//ffTt2xdJSUmFzm369OlYunQpjhw5gps3b+Kjjz7CokWL8NNPP2Hnzp3Yu3cvlixZIsUHBATgl19+wbp163Dq1CnUrVsXvr6+RXpNItJhRdpenoioDElPTxcWFhbiyJEjsvZBgwaJPn36iAMHDggA4vfff5fO7dy5UwAQT58+FUIIERISIpo0aZLv2gDElClTpOO0tDQBQOzevfuleRX0unPmzBEAxNWrV6W2zz//XPj6+krXNzY2FuvXr5fOZ2ZmimrVqonw8HDZdR8+fPjSHIhI9xhpsV4kItKqf/75B0+ePMF7770na8/MzESzZs2k4//7v/+TfnZ0dAQAJCYmwtnZ+YXXz/s8S0tLWFtbIzExsdD55X1+1apVYWFhgdq1a8va/v77bwDA1atXkZWVhTfffFM6b2xsjFatWuHSpUuFfk0i0l0s2oio3EpLSwMA7Ny5E9WrV5edMzU1xdWrVwGoix8NhUIBQH0v3MvkfZ7muYV5XkHPVygUr309ItJvvKeNiMqtBg0awNTUFPHx8ahbt67s4eTkVKhrmJiYICcnp4Qzfbk6derAxMQEhw8fltqysrJw/PhxNGjQQIuZEVFxYU8bEZVbFSpUwIQJEzB27FioVCq0adMGKSkpOHz4MKytrVGzZs2XXqNWrVqIi4vD6dOnUaNGDVSoUAGmpqalkL2cpaUlhg0bhokTJ6JSpUpwdnZGeHg4njx5gkGDBpV6PkRU/Fi0EVG5NnPmTNjb22POnDm4du0abG1t0bx5c0yaNKlQQ489evTA1q1b4e3tjeTkZKxZswb+/v4ln3gBwsLCoFKp0K9fPzx69AgtW7ZEREQEKlasqJV8iKh4KYQQQttJEBEREdGL8Z42IiIiIj3Aoo2IqJQNHToUVlZWBT6GDh2q7fSISEdxeJSIqJQlJiYiNTW1wHPW1taoUqVKKWdERPqARRsRERGRHuDwKBEREZEeYNFGREREpAdYtBERERHpARZtRERERHqARRsRERGRHmDRRkRERKQHWLQRERER6QEWbURERER64P8BmFTol2Xcs30AAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.1 Importing Training and Validation Datasets\n", + "\n", + "In this section, we read the dataset from the CSV file located in this directory. 500 data points were simulated for S-CO2 physical properties using REFPROP package. This example is trained on the entire dataset because neural network can overfit on smaller dataset. The data is separated using an 80/20 split into training and validation data using the IDAES split_training_validation() method.\n", + "\n", + "We rename the column headers because they contained \".\", which may cause errors while reading the column names in subsequent code, thus as a good practice we change them to the variable names to be used in the property package. Further, the input variables are **pressure**, **temperature** , while the output variables are **enth_mol**, **entr_mol**, hence we create two new dataframes for the input and output variables. " ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkcklEQVR4nO3deVxU1fsH8M+wDfsqiyCIS4Jb7gtqKqbiiguYpamomaZmbilmv9wyyUrLNi0V/fa1NBGV3MgFdyz33MAlEEUWUxbZYeb+/pjvjAxbIAOXmfm8X695wT33zp1nnGwez3nOORJBEAQQERER6QEDsQMgIiIiqi1MfIiIiEhvMPEhIiIivcHEh4iIiPQGEx8iIiLSG0x8iIiISG8w8SEiIiK9wcSHiIiI9AYTHyIiItIbTHyISCtJJBIsXbpU7DBUgoKC4OnpKXYYRPQvmPgQkcZs2bIFEolE9TA1NUWzZs0wc+ZMpKSk1Ohrnz17FkuXLkV6erpG79u7d2+192Rvb49OnTph8+bNkMvlGnmNTz75BHv27NHIvYioYkZiB0BEumf58uVo1KgR8vLycPr0aXz//fc4cOAArl+/DnNzc428Rm5uLoyMnv8v7OzZs1i2bBmCgoJga2urkddQatCgAVatWgUAePz4Mf7zn/9g8uTJuH37NkJCQqp9/08++QSBgYEYPnx4te9FRBVj4kNEGjdw4EB07NgRAPDWW2/BwcEBa9aswd69e/HGG2+88H3lcjkKCgpgamoKU1NTTYX7r2xsbPDmm2+qjqdOnQovLy988803WLFiBYyNjWstFiKqHg51EVGN69OnDwAgLi4OAPD555+jW7ducHBwgJmZGTp06ICwsLBSz5NIJJg5cya2bduGli1bQiqV4tChQ6pzyhqfpUuX4v333wcANGrUSDUsFR8fj169eqFNmzZlxuXl5QU/P78qvx9zc3N07doV2dnZePz4cbnXZWdnY968eXB3d4dUKoWXlxc+//xzCIKg9h6zs7OxdetWVdxBQUFVjomIKoc9PkRU4+7duwcAcHBwAAB89dVX8Pf3x9ixY1FQUIDt27dj1KhR2LdvHwYPHqz23GPHjuHXX3/FzJkzUa9evTILiEeOHInbt2/jl19+wdq1a1GvXj0AgKOjI8aNG4cpU6bg+vXraNWqleo558+fx+3bt/Hhhx++0Hv6+++/YWhoWO6wmiAI8Pf3R1RUFCZPnoy2bdsiMjIS77//PhITE7F27VoAwE8//YS33noLnTt3xttvvw0AaNKkyQvFRESVIBARaUhoaKgAQDhy5Ijw+PFj4cGDB8L27dsFBwcHwczMTHj48KEgCIKQk5Oj9ryCggKhVatWQp8+fdTaAQgGBgbCjRs3Sr0WAGHJkiWq488++0wAIMTFxaldl56eLpiamgoLFy5Ua581a5ZgYWEhZGVlVfieevXqJXh7ewuPHz8WHj9+LNy6dUuYNWuWAEAYOnSo6roJEyYIDRs2VB3v2bNHACB8/PHHavcLDAwUJBKJcPfuXVWbhYWFMGHChArjICLN4FAXEWlc37594ejoCHd3d7z++uuwtLTE7t274ebmBgAwMzNTXZuWloaMjAy88soruHTpUql79erVCy1atHjhWGxsbDBs2DD88ssvqiEmmUyGHTt2YPjw4bCwsPjXe8TExMDR0RGOjo5o3rw5vv76awwePBibN28u9zkHDhyAoaEhZs2apdY+b948CIKAgwcPvvB7IqIXx6EuItK4b7/9Fs2aNYORkRGcnZ3h5eUFA4Pn/87at28fPv74Y1y5cgX5+fmqdolEUupejRo1qnY848ePx44dO3Dq1Cn07NkTR44cQUpKCsaNG1ep53t6euLHH39UTdF/6aWX4OTkVOFz7t+/D1dXV1hZWam1N2/eXHWeiGofEx8i0rjOnTurZnWVdOrUKfj7+6Nnz5747rvvUL9+fRgbGyM0NBQ///xzqeuL9w69KD8/Pzg7O+O///0vevbsif/+979wcXFB3759K/V8CwuLSl9LRHUbh7qIqFbt2rULpqamiIyMxKRJkzBw4ECNJBVl9RYpGRoaYsyYMQgLC0NaWhr27NmDN954A4aGhtV+3fI0bNgQjx49wrNnz9TaY2JiVOeVKoqdiDSLiQ8R1SpDQ0NIJBLIZDJVW3x8fLVXLlbW6pS3cvO4ceOQlpaGqVOnIisrS21dnpowaNAgyGQyfPPNN2rta9euhUQiwcCBA1VtFhYWGl9xmojKxqEuIqpVgwcPxpo1azBgwACMGTMGqamp+Pbbb9G0aVP89ddfL3zfDh06AAAWL16M119/HcbGxhg6dKgqIWrXrh1atWqFnTt3onnz5mjfvr1G3k95hg4dCl9fXyxevBjx8fFo06YNfv/9d+zduxezZ89Wm7LeoUMHHDlyBGvWrIGrqysaNWqELl261Gh8RPqKPT5EVKv69OmDTZs2ITk5GbNnz8Yvv/yCTz/9FCNGjKjWfTt16oQVK1bg6tWrCAoKwhtvvFFqccHx48cDQKWLmqvDwMAAERERmD17Nvbt24fZs2fj5s2b+Oyzz7BmzRq1a9esWYMOHTrgww8/xBtvvIHvv/++xuMj0lcSQSi2hCgRkQ776quvMGfOHMTHx8PDw0PscIhIBEx8iEgvCIKANm3awMHBAVFRUWKHQ0QiYY0PEem07OxsREREICoqCteuXcPevXvFDomIRMQeHyLSafHx8WjUqBFsbW0xffp0rFy5UuyQiEhETHyIiIhIb3BWFxEREekNJj5ERESkN1jcXIJcLsejR49gZWXFZeSJiIi0hCAIePbsGVxdXdU2RS6JiU8Jjx49gru7u9hhEBER0Qt48OABGjRoUO55Jj4lWFlZAVD8wVlbW4scDREREVVGZmYm3N3dVd/j5WHiU4JyeMva2pqJDxERkZb5tzIVFjcTERGR3mDiQ0RERHqDiQ8RERHpDdb4vACZTIbCwkKxw6BaYGxsDENDQ7HDICIiDWHiUwWCICA5ORnp6elih0K1yNbWFi4uLlzXiYhIBzDxqQJl0uPk5ARzc3N+Eeo4QRCQk5OD1NRUAED9+vVFjoiIiKqLiU8lyWQyVdLj4OAgdjhUS8zMzAAAqampcHJy4rAXEZGWY3FzJSlreszNzUWOhGqb8jNnXRcRkfZj4lNFHN7SP/zMiYh0BxMfIiIi0htMfIiIiEhvMPHRA0FBQZBIJJBIJDA2NoazszP69euHzZs3Qy6XV/o+W7Zsga2tbc0FSkREVMOY+OiJAQMGICkpCfHx8Th48CB8fX3x3nvvYciQISgqKhI7PCIi0gNZWVnIzs4WNQatSXxWrVqFTp06wcrKCk5OThg+fDhiY2PVrsnLy8OMGTPg4OAAS0tLBAQEICUlRaSI6xapVAoXFxe4ubmhffv2+OCDD7B3714cPHgQW7ZsAQCsWbMGrVu3hoWFBdzd3TF9+nRkZWUBAI4fP46JEyciIyND1Xu0dOlSAMBPP/2Ejh07wsrKCi4uLhgzZoxq7RsiIiJBEPDtt9/iiy++wPr16yEIgmixaE3ic+LECcyYMQPnzp3D4cOHUVhYiP79+6tljnPmzMFvv/2GnTt34sSJE3j06BFGjhxZYzEJgoCCggJRHpr4j6ZPnz5o06YNwsPDAQAGBgZYt24dbty4ga1bt+LYsWNYsGABAKBbt2748ssvYW1tjaSkJCQlJWH+/PkAFNO8V6xYgatXr2LPnj2Ij49HUFBQteMjIiLtl56ejuXLl+Off/4BAGRnZ4s6W1ZrFjA8dOiQ2vGWLVvg5OSEixcvomfPnsjIyMCmTZvw888/o0+fPgCA0NBQNG/eHOfOnUPXrl01HlNhYSFWrVql8ftWxqJFi2BiYlLt+3h7e+Ovv/4CAMyePVvV7unpiY8//hjTpk3Dd999BxMTE9jY2EAikcDFxUXtHpMmTVL93rhxY6xbtw6dOnVCVlYWLC0tqx0jERFpp/Pnz+PAgQOqYxsbG7z33nsiRqRFiU9JGRkZAAB7e3sAwMWLF1FYWIi+ffuqrvH29oaHhweio6PLTXzy8/ORn5+vOs7MzKzBqOseQRBUmfeRI0ewatUqxMTEIDMzE0VFRcjLy0NOTk6FCzdevHgRS5cuxdWrV5GWlqYqmE5ISECLFi1q5X0QEVHdIQgC1q1bp7a35aBBg9CpUyfxgvofrUx85HI5Zs+eje7du6NVq1YAFPtomZiYlJp15OzsjOTk5HLvtWrVKixbtuyF4jA2NsaiRYte6LnVZWxsrJH73Lp1C40aNUJ8fDyGDBmCd955BytXroS9vT1Onz6NyZMno6CgoNzEJzs7G35+fvDz88O2bdvg6OiIhIQE+Pn5oaCgQCMxEhGR9nj69Cm+/vprtbb33nuvzswK1srEZ8aMGbh+/TpOnz5d7XstWrQIc+fOVR1nZmbC3d29Us+VSCQaGW4Sy7Fjx3Dt2jXMmTMHFy9ehFwuxxdffAEDA0Xp16+//qp2vYmJCWQymVpbTEwMnjx5gpCQENWf24ULF2rnDRARUZ0SHR2N33//XXVcr149TJ8+vU6tgK91ic/MmTOxb98+nDx5Eg0aNFC1u7i4oKCgAOnp6WpZZUpKSqmalOKkUimkUmlNhlwn5OfnIzk5GTKZDCkpKTh06BBWrVqFIUOGYPz48bh+/ToKCwvx9ddfY+jQoThz5gzWr1+vdg9PT09kZWXh6NGjaNOmDczNzeHh4QETExN8/fXXmDZtGq5fv44VK1aI9C6JiEgMcrkca9asUZtwNHToULRv317EqMqmNbO6BEHAzJkzsXv3bhw7dgyNGjVSO9+hQwcYGxvj6NGjqrbY2FgkJCTAx8entsOtcw4dOoT69evD09MTAwYMQFRUFNatW4e9e/fC0NAQbdq0wZo1a/Dpp5+iVatW2LZtW6nC7W7dumHatGkYPXo0HB0dsXr1ajg6OmLLli3YuXMnWrRogZCQEHz++ecivUsiIqpt//zzD1asWFFqlnVZSU9EBNCtm+KnWCSCmJPpq2D69On4+eefsXfvXnh5eanabWxsYGZmBgB45513cODAAWzZsgXW1tZ49913AQBnz56t9OtkZmbCxsYGGRkZsLa2VrXn5eUhLi4OjRo1gqmpqYbeFWkDfvZERGU7deoUjh07pjquX78+pkyZUu7QVrduQHQ04OMDVOGruVLK+/4uSWuGur7//nsAQO/evdXaQ0NDVWvGrF27FgYGBggICEB+fj78/Pzw3Xff1XKkREREuk0ulyMkJASFhYWqthEjRuDll1+u8HnBwUBIiOKnWLSmx6e2sMeHSuJnT0T0XGpqqqozQmnevHmir9umcz0+REREJK6oqCicPHlSdezh4aHaCFtbMPEhIiKiCslkMqxcuVJtu6TAwEC0bNlSxKheDBMfIiIiKldSUhJ++OEHtbb58+fDwsJCpIiqR2umsxMREVHtOnz4sFrS07hxYyxZskSV9NSF6elVxR4fIiIiUlNUVISVK1eqtY0ePRre3t6IiFDMzPL1BdatA7KyFMf+/iIFW0VMfIiIiEjl4cOH2LRpk1rbggULVGvmhYQo1uK5dk2R9Fhaijs9vao41EVEREQAgIMHD6olPV5eXmjXbglefdVMNZwVHKxYgHDWLMXPbdu0p7cHYI8PaVBQUBDS09OxZ88eAIrFJtu2bYsvv/zyhe+piXsQEVHFCgsL8cknn6i1jRkzBi+99JJqtWXlcJbyoa3Y46MHlGssKHeTb9q0KZYvX46ioqIafd3w8PBKb1h6/PhxSCQSpKenv/A9iIio6hISEkolPQsXLsRLL70E4HkPjzYNZ1WEPT56YsCAAQgNDUV+fj4OHDiAGTNmwNjYGIsWLVK7rqCgACYmJhp5TXt7+zpxDyIiKltERAQuX76sOm7VqhUCAgLUrtH2Hp6S2OOjJ6RSKVxcXNCwYUO888476Nu3LyIiIhAUFIThw4dj5cqVcHV1VW0A++DBA7z22muwtbWFvb09hg0bhvj4eNX9ZDIZ5s6dC1tbWzg4OGDBggUouftJ7969MXv2bNVxfn4+Fi5cCHd3d0ilUjRt2hSbNm1CfHw8fH19AQB2dnaQSCSq/ddK3iMtLQ3jx4+HnZ0dzM3NMXDgQNy5c0d1fsuWLbC1tUVkZCSaN28OS0tLDBgwAElJSaprjh8/js6dO8PCwgK2trbo3r077t+/r6E/aSKiuq+goADLli1TS3qaNBlXKunRRUx89JSZmRkKCgoAAEePHkVsbCwOHz6Mffv2obCwEH5+frCyssKpU6dw5swZVQKhfM4XX3yBLVu2YPPmzTh9+jSePn2K3bt3V/ia48ePxy+//IJ169bh1q1b2LBhAywtLeHu7o5du3YBAGJjY5GUlISvvvqqzHsEBQXhwoULiIiIQHR0NARBwKBBg9Q2ysvJycHnn3+On376CSdPnkRCQgLmz58PQDFFc/jw4ejVqxf++usvREdH4+2339aq5daJiKojLi4Oq1atUmv75JNFWLmyMZo3B7y9tWtdnqriUJeeEQQBR48eRWRkJN599108fvwYFhYW2Lhxo2qI67///S/kcjk2btyoSghCQ0Nha2uL48ePo3///vjyyy+xaNEijBw5EgCwfv16REZGlvu6t2/fxq+//orDhw+jb9++ABQLYSkph7ScnJxga2tb5j3u3LmDiIgInDlzBt26dQMAbNu2De7u7tizZw9GjRoFQFGkt379ejRp0gQAMHPmTCxfvhyAYhO7jIwMDBkyRHW+efPmVf+DJCLSQuHh4bh27Zrq+PLltoiJGYYOHYCEBCAxUdGuTevyVBV7fERS26td7tu3D5aWljA1NcXAgQMxevRoLF26FADQunVrtbqeq1ev4u7du7CysoKlpSUsLS1hb2+PvLw83Lt3DxkZGUhKSkKXLl1UzzEyMkLHjh3Lff0rV67A0NAQvXr1euH3cOvWLRgZGam9roODA7y8vHDr1i1Vm7m5uSqpAYD69esjNTUVgCLBCgoKgp+fH4YOHYqvvvpKbRiMiEgX5efnY9myZWpJz5EjQUhNHYbVqxWFy0+eKNpNTXWnkLksTHxEolwAKiSkdl7P19cXV65cwZ07d5Cbm4utW7eqlhwvud9KVlYWOnTogCtXrqg9bt++jTFjxrzQ6ysXvqoNxsbGascSiUSt/ig0NBTR0dHo1q0bduzYgWbNmuHcuXO1Fh8RUW26e/cuQkp82Xz55Qfo2bOh6jgkBMjLUyxGuGOH7vb2AEx8RFPb0wMtLCzQtGlTeHh4wMio4hHO9u3b486dO3ByckLTpk3VHjY2NrCxsUH9+vXxxx9/qJ5TVFSEixcvlnvP1q1bQy6X48SJE2WeV/Y4yWSycu/RvHlzFBUVqb3ukydPEBsbixYtWlT4nkpq164dFi1ahLNnz6JVq1b4+eefq/R8IiJt8Ouvv2Lbtm2q43r1OiIycgmmTzfGunXP/wGu/E7StsUIXwQTH5H4+wNnz9bN/8DGjh2LevXqYdiwYTh16hTi4uJw/PhxzJo1Cw8fPgQAvPfeewgJCcGePXsQExOD6dOnl1qDpzhPT09MmDABkyZNwp49e1T3/PXXXwEADRs2hEQiwb59+/D48WNkZWWVusdLL72EYcOGYcqUKTh9+jSuXr2KN998E25ubhg2bFil3ltcXBwWLVqE6Oho3L9/H7///jvu3LnDOh8i0inh4blYtmyZWhnA5MmTMWPGYJw9C0RFqW83UZe/kzSNiQ+VYm5ujpMnT8LDwwMjR45E8+bNMXnyZOTl5cHa2hoAMG/ePIwbNw4TJkyAj48PrKysMGLEiArv+/333yMwMBDTp0+Ht7c3pkyZguzsbACAm5sbli1bhuDgYDg7O2PmzJll3iM0NBQdOnTAkCFD4OPjA0EQcODAgVLDWxW9t5iYGAQEBKBZs2Z4++23MWPGDEydOrUKf0JERHVXbGwsrl1brda2ePFiNGjQQHWsTz08JUmEkouv6LnMzEzY2NggIyND9SUPAHl5eYiLi0OjRo1gamoqYoRU2/jZE5G22LZtG+7evas6dnLygZtbf9Vwli4nOeV9f5fE6exERERaLjw8B9eufabW5uU1Ba+/7lpqry19x6EuIiIiLXbz5s1SSc+KFR9i3TpXALq311Z1sceHiIhIS23ZskVtyx1n51fg6toHnTsrEp2ICOjFMFdVMPEhIiLSMllZWfjiiy/U2ry9p2H0aGfVcUgIkJYGxMRwmKs4DnVVEWvB9Q8/cyKqS65du6aW9MhkRli+/EN89ZV60hMdDQgCh7lKYuJTScrp0jk5OSJHQrVN+ZlXdso8EZGmFN/eSBAE/PjjjwgPD1ed9/X1hUy2GCYmhkhIeL4NkrKuZ/Vq/Vmfp7I4nb2EiqbDJSUlIT09HU5OTjA3N+eO3jpOEATk5OQgNTUVtra2qF+/vtghEZGeadBAsXGovX0mZs1aq3auefPpmDvXEY8eKXp2AEWyc/asCIHWAZzOXgNcXFwAQLXhJekHW1tb1WdPRFSbUlOBtm2vYPjwvaq2ggIzrFgxHz16GKh2U5dIgGbNOKRVGUx8qkAikaB+/fpwcnJCYWGh2OFQLTA2NoahoaHYYRCRHhIEAb16XUCPHgdUbceP98OcOd1gYKBIcqZPB54+BebMAVauFDFYLcLE5wUYGhryy5CIiDSq+NTz/v3z8Ntvv6FHj5uq8xs2zET37g5QbrTu78/anRfBxIeIiEgkixcD69YBs2YpNg6Njga++y4RcXFhSE9Ph4GBAW7e7Ivt27sCkCA8HJDLOT29Opj4EBER1bKICGDBAuD2bUVh8rp1wH//K+CXX/6At/dhpKfLYWJii/HjA3HxohuuXAHi44G8vOc7qtOLYeJDRERUyxYsAGJjFb8bGACzZuUiN3cvmjdXNN682RxJSf5o2dIUISHAp58qruUqzNXHxIeIiKiWKVdDMTMDNm16iJSUMMTGZsDQ0BD16/dHZGQnBAdLVAsRhoRwPR5N4QKGREREtezTTwEfHwFffXUGd++GIiMjA3Z2dpg0aRIcHTsDUGRG3GBU89jjQ0REVMv69s1BVtYe3LlzBwBga9sS7u5DERgoxdOnimEw9vLUDCY+RERENaC8ndETEhIQFhaGZ8+eQSYzxIEDA3DxYgc4OEjw5Ang7c1enprExIeIiEiDlAlP8Z4bf3/lXlunkZgYBQMDAQ4ODti2LRAXLypWhn/69HnCw16emsPEh4iISAOUCU9aGhATo95zk52djd27dyMp6R4MDIA7d1rjyJHB6NNHijt3FElPQACwc6fY70L3MfEhIiKqpogIYOxYICsL8PJSJDy+vkB4OLBiRTxOn94FC4ssFBUZYf/+Qbh1qy3y8iSQyYB//hE7ev3CxIeIiKiaQkIUSY+lJbB6tWKoqnlzOZydT6FXrxMwMBDw+HE9XLgwCqamTpg7V7FSM+t4ah8THyIiomoKDgYWLlSswgwAWVlZ8PUNh7NzHADg8uW2OHlyILZsMWH9jsi4jg8REVEVREQA3bopfir5+wN2dopi5i+++BsrVqyHs3McCgqMER4+HHv3DkNGBpOeuoA9PkRERFVQfDVlZSITEQGkp8vh738c7dqdgkQCpKQ4YefOUfjnn3qQSICRI8WNmxTY40NERFQFwcGKAua0tOe9PmvXZqJLl/+gfXtF0nPxYnv8+ONbyMiohw8+UOyozhlbdQMTHyIioirw9wfs7RVT1kNCgLt376Jv3w3w9LwPQTDBsWMjcfjwUCxYYIyCAmDlSrEjpuKY+BAREVWgrJoeX1/A2lqGZs2OYNu2bSgqyoGLiwveffdtnDjRGrm5THjqKtb4EBERlWHxYmDdOsDGBkhMVKzTs22b4lxoaAYCA3fBw+MBAODy5Y4IC/ODkRG/Vus6fkJERERlWLdOsTZPfj5gYKD4PSQEcHSMxbhxe2FunguZTIr9+/0xYEALMOfRDvyYiIiIyjBggGLlZalUkfQYGsrQt+8RGBqeAwCYm7virbcCsXy5nciRUlWwxoeIiPRayRoe5fH164rZWNnZgK1tGiZODFUlPV26dMGcORNhZ8ekR9tIBEG5ziQBQGZmJmxsbJCRkQFra2uxwyEiohrWrZtiXR4fH+Ds2efHbm7Ao0eAl9ctDB++F6am+TA0NEVg4DB4e3uLHTaVUNnvbw51ERGR3oqIUKzH4+X1fN+s4GBFLc/Dh0UYMOAwunT5EwDQoEEDBAQEwNbWVryAqdqY+BARkd4KCVGsx2NqqthrS8nc/Cn8/cPg6JgEAHBy8kFQ0KswNDQUKVLSFA51lcChLiIi3RYRoUh4lD08r78O5OYqfvf2Bry9b6B58whIpQUoKDCDt/dwjBvXTLyAqVI41EVERFSG4nttnT2rWIU5MREwMipEhw6ReOmliwAACwt3zJkTyH8E6xgmPkREpFeUNTy+vopCZgBwcPgHo0eHwckpBQDQo0cP+Pr6wsCAk591DRMfIiLSC8qVmGfNUiQ/Y8cq1ufx8/sLnTrtg5FRIczNzTFixAg0bdpU7HCphjDxISIinRMRASxYoEhsLC2B1aufr8QcEgI0awbk5xdi5MiDePnlywAAT09PjBw5ElZWViJHTzWJiQ8REemckBAgNvb58ejRUG0pIZcDVlaPMWvWTlhZPQYA9OzZE7169eLQlh7gJ0xERDqh+ArMwcGKtXkcHBTn8vIUvT0A0KXLFQwd+iOsrB7DwsIC48aNYz2PHmGPDxERab2IiOfT0hcuBD79VJHoPH36/BoTkwIMGnQAbdtehVwONG7cGCNGjIClpaV4gVOtY+JDRERaLyTk+Vo8gqA4TkxUHEskQNOmKfDzC0O9ev9AIpGgd+/e6NGjB3t59BATHyIi0krFFyL09QWuXFGsybN6teL89OnAkycC5s+/DFPTgygqKoKVlRVGjhwJT09PMUMnETHxISIirVR8IUJA0ePj4QH4+yuO/fzysW/fPly/fh1FRUDTpk0xfPhwWFhYiBc0iY6JDxERaQ3lNHWJBBg5UtEWHAz88Qdw7Zqi5wcAkpKSEBYWhqdPn0IikaBPnz7o3r07JBKJeMFTnaCTg5vffvstPD09YWpqii5duuDPP/8UOyQiItIA5TT1mBggKkqx5YS/v+L3rCwgKkrA+fPnsWnTJjx9+hTW1tYICgpCjx49mPQQAB1MfHbs2IG5c+diyZIluHTpEtq0aQM/Pz+kpqaKHRoREVWTcpq6t/fzLSeU09dfeSUPo0eH4cCBA5DJZGjWrBmmTp0KDw8PscOmOkTndmfv0qULOnXqhG+++QYAIJfL4e7ujnfffRfByq14K8Dd2YmItEO3booaHx8fICzsEcLCwpCWlgYDAwP07dsXXbt2ZS+PHqns97dO9fgUFBTg4sWL6Nu3r6pN+RcgOjq6zOfk5+cjMzNT7UFERHXD4sWAlZXiZ8nj4GDAx0fApEnnsGnTJqSlpcHGxgYTJ06Ej48Pkx4qk04VN//zzz+QyWRwdnZWa3d2dkZMTEyZz1m1ahWWLVtWG+EREVElKaeqX76sWHV5zRpFHY/yeN06IDU1F7m5Ear/v3t7e8Pf3x9mZmYiR091mU71+LyIRYsWISMjQ/V48OCB2CEREek95VR1CwvAwAAwNlYcm5srNh19772H2LBhA2JiYmBoaIgBAwbgtddeY9JD/0qnEp969erB0NAQKSkpau0pKSlwcXEp8zlSqRTW1tZqDyIiqn1l7bWVna3YVLSwUHGNo6OAyMizkEpDkZGRATs7O0yaNAldunTh0BZVik4NdZmYmKBDhw44evQohg8fDkBR3Hz06FHMnDlT3OCIiKhCyl6ehQsBOzvFWj15eYoenlmzgNOnczB8+B4cPnwHANCyZUsMGTIEpqamIkdO2kSnEh8AmDt3LiZMmICOHTuic+fO+PLLL5GdnY2JEyeKHRoRERVTfMuJP/5Q1O+4uQHPninW6XFzU8zYCg4G2rZNQL16u5CZmaka2urQoQN7eajKdC7xGT16NB4/foyPPvoIycnJaNu2LQ4dOlSq4JmIiMShTHgSEhQbiS5YoPiZlwdkZCgSHkDR03PmjIDTp09jy5YoCIIAe3t7jBo1qtzyBaJ/o3Pr+FQX1/EhIqpZ3t6K1ZeNjRW1O25uiqTn6VMgIAAYN06RGM2bl43c3N24d+8eAKB169YYPHgwpFKpyO+A6qLKfn/rXI8PERHVXRERip4eAHByUqzJc/cuUFSkaEtMVGxB8fLL8di1axeysrJgZGSEgQMHol27dhzaompj4kNERLUmJESxi7qBgaJ+59Ch50mPRAIsXCjHiROncOLECQiCgHr16mHUqFFwcnISN3DSGUx8iIioxinrenx9FbuoZ2Upkp6sLMWQl6EhMHduFjIywnHlShwAoE2bNhg0aBBMTExEjp50CRMfIiKqURERwNixiiQHALZte54ERUUpZm21avU3wsPDEReXDWNjYwwaNAht27YVNW7STUx8iIioRhSfvZWVpRjK8vVV1PD4+yuukcvlOHHiBH766SQAwMnJCYGBgXB0dBQxctJlTHyIiEjjIiKAwEDFrC1DQ0WbIABbtwIrVyqOnz17hl27duH+/fsAgPbt22PAgAEwNjYWKWrSB0x8iIhI40JCnm8zYWio2HZCEBRT1gHg7t272L17N3JycmBiYoIhQ4agdevW4gVMeoOJDxERaUzxIuaEBODJE2DuXMW5deuAWbNkOHIkCmfOnAEAODs7Y9SoUXBwcBAxatInTHyIiOiFFE9ylEXKyv22zp0DXF2BHTue1/MsWJCBXbt24cyZBwCAjh07ws/PD0ZG/Cqi2sOVm0vgys1ERJXTrZsiybG0fD5jy8pK8bvym8XHBzh7Frh9+zb27NmD3NxcSKVSDB06FC1bthQveNI5lf3+NqjFmIiISIcEBysSm1mznrc9e6bo6TE1VWxFsWCBDJGRkfjll1+Qm5uL+vXr4+2332bSQ6Jhj08J7PEhIqo6BwdF4bKREbBrl2J4Kz09HWFhYUhMTAQAdO7cGf369ePQFtUI7tVFREQ1LiJCsbu6mZli89FPP1UkPTExMdi7dy/y8vJgamqKYcOGwdvbW+xwiZj4EBFR5SkLmt3cFFtO2NgoNhYFFMNegwYV4eDBw/jzzz8BAG5ubggMDIStra14QRMVw8SHiIgqbcECIDZWsQqzICg2GPXyUhzPmfMUmzeHISkpCQDg4+ODV199FYbKFQyJ6gAWNxMRUZkiIhQztyIinrdJJIqf9vaK2Vxz5wIxMUBY2A3cu/cDkpKSYGZmhjfeeAP9+/dn0kN1DoubS2BxMxGRQvHp6tu2KWp3lENdwcGK46KiIkRGRuLChQsAAHd3dwQEBMDGxkbk6EnfsLiZiIiqpHhSAyhWXpZIFOvyLFjw/NzZs4rzT548wc6dO5GSkgIA6NGjB3r37s1eHqrTmPgQERGA56suh4QojpVFy5aWigRIec7fH7h27Rr27duHgoICmJubY8SIEWjatKl4wRNVEmt8iIgIgKI3x80NuHxZ8dPNTbEQ4axZimnqPj7AggWFiIiIQHh4OAoKCtCwYUNMmzaNSQ9pDdb4lMAaHyLSZ8otJywtgdatFb08ym0nHj9+jLCwMKSmpgIAevbsiV69esHAgP+GJvGxxoeIiKps1izlLupAly7P63quXLmCAwcOoLCwEBYWFhg5ciQaN24sdrhEVcYenxLY40NE9FxBQQEOHDiAq1evAgAaNWqEkSNHwtLSUuTIiNRxk1IiIiqTcn2exYufr9NT1po9qamp+PHHH3H16lVIJBL07t0bb775JpMe0mrs8SmBPT5EpOuKr8+jrOdxc1OsyOzjA5w5I+Dy5cs4ePAgioqKYGVlhZEjR8LT01Ps0InKxRofIiIqU3CwonbH11dRz5OVpZiu7uMDvP9+Pnbv3o9r164BAJo0aYIRI0bAwsJC5KiJNINDXUREekI5nAUokp+oKEURs4+PYrp6eHgyHj78AdeuXYNEIsGrr76KsWPHMukhncIeHyIiPaFcoHDhQuDhQ0VPD6AY2rpw4QI2boyETCaDtbU1AgIC4OHhIW7ARDWAPT5ERDqkrCJlpeBgxU7q8fHPa3vefz8PYWFhOHDgAGQyGZo1a4apU6cy6SGdxR4fIiIdUnLbCWUtT1SUIvGxt1cUMVtaAj/++AgPHoQhLS0NBgYGePXVV+Hj4wOJcgt2Ih3ExIeISIcoC5eVP6OjgWvXFD08z9sFTJr0J+7c+R1yuRw2NjYIDAxEgwYNxA6fqMYx8SEi0gHFd1ZX7p4OKOp5nj1TTFcPDgb69ctFbm4EYmJiAADe3t7w9/eHmZmZSJET1S7W+BARaani9Twlh7giIhRJT3y8Ypd1e3ugffuH2LBhA2JiYmBgYIABAwbgtddeY9JDeoU9PkREWqp4slN8bZ5u3YC0NOB/nTqwtBQwcWI0QkOPQi6Xw87ODoGBgXB1dRX3DRCJgIkPEZGWKl7P4++veChXZTY1VQxv2dvnYOLEvXj06DYAoEWLFhg6dChMTU1Fjp5IHEx8iIi0lDLZiYgAvL0VBcy5uYpVmPPygJdfTkC/fruQmZkJQ0ND+Pn5oWPHjpy1RXqtyomPoaEhkpKS4OTkpNb+5MkTODk5QSaTaSw4IiL6dyEhiinqShKJgD59zqBLl2PIzBRgb2+PUaNGwcXFRbwgieqIKic+5e1pmp+fDxMTk2oHREREVRMcDCxYoOjxMTXNxquv7oGr610AQOvWrTF48GBIpVKRoySqGyqd+Kxbtw4AIJFIsHHjRlhaWqrOyWQynDx5Et7e3pqPkIiIKqQc8oqPj0d4eDiePXsGIyMjDBw4EO3atePQFlExlU581q5dC0DR47N+/XoYGhqqzpmYmMDT0xPr16/XfIRERKQSEQFMnw48fQrMmQOsXAnI5XKcOnUKJ06cgCAIqFevHgIDA+Hs7Cx2uER1jkQob+yqHL6+vggPD4ednV1NxSSqzMxM2NjYICMjA9bW1mKHQ0R6pvhChP7+pdsWLHhez2NpCSQlZSE8PBxxcXEAgDZt2mDQoEEsPSC9U9nv7yonPrqOiQ8RiSUiAhg7VlGr4+PzfAXm5s0Va/IoqwliYhQztz744G/Y2oYjOzsbxsbGGDRoENq2bSta/ERiquz3d5WLmydNmlTh+c2bN1f1lkREBEWvjnLX9ODg5+3Kf54KArB6NRASIseECSeQnHwS2dmAo6MjRo0aBUdHR3ECJ9IiVU580tLS1I4LCwtx/fp1pKeno0+fPhoLjIhI35RckBBQ9AIBit6eTz8FfH2f4enTXbh//z4AoF27dhg4cCCMjY1FippIu1Q58dm9e3epNrlcjnfeeQdNmjTRSFBERPqmvNqe4kNfLVrcxfr1u5GTkwMTExMMGTIErVu3FjdwIi2jsRqf2NhY9O7dG0lJSZq4nWhY40NEYlBuNaGs7Rk1CggLU5yzspJj9epjSEk5AwBwdnbGqFGj4ODgIGLERHVLjdX4lOfevXsoKirS1O2IiPRK8WGuiIjnSY+1dQb+7/92ISXlAQCgY8eO8PPzg5ERdxwiehFV/pszd+5ctWNBEJCUlIT9+/djwoQJGguMiEgX/dt0deVGowDw0ku3MXr0HmRn58LExAT+/v5o2bKleMET6YAXWsenOAMDAzg6OqJPnz6YNGmS1v8rhENdRFSTSg5pFW/z9gbs7ABfXxkSE4+iUaNoAED9+vURGBgIe3t7ESMnqttqbKgrKiqqWoEREemz4kNaJduePgVu3UpHly5haNQoEQDQuXNn9OvXT+v/UUlUV7zw36TU1FTE/m/5UC8vr1K7tRMRUWnKfbWK++MP4No1YNSoGLi67oWxcR5MTU3h7++P5s2bixMokY4yqOoTMjMzMW7cOLi6uqJXr17o1asX3Nzc8OabbyIjI6MmYiQi0mnffluEHj0OoWHDHTA2zkN6uhsaN57KpIeoBlQ58ZkyZQr++OMP7N+/H+np6UhPT8e+fftw4cIFTJ06tSZiJCLSORERitqenTvT8N57m9G16x8AgLg4H3z99USsXWsrboBEOqrKQ1379u1DZGQkevTooWrz8/PDjz/+iAEDBmg0OCIiXRUSAmRk3MTVqxEwNs6HmZkZhg0bhthYL9y+rV4DRESaU+XEx8HBATY2NqXabWxsdHbHdiIiTVBOW1+woAh9+0bC0PACAMDd3R0BAQGwsbGBl1fpGiAi0pwqD3V9+OGHmDt3LpKTk1VtycnJeP/99/F///d/Gg2OiEjbKYe0IiKA6dOB2NgnOHp0kyrp+fvv7pgwYUKZ/6AkIs2r8jo+7dq1w927d5Gfnw8PDw8AQEJCAqRSKV566SW1ay9duqS5SGsJ1/EhouooazFC5bo9+fnX4Oe3D1JpAYyMzPHHHyPw1ltN2cNDpAE1to7PsGHDIJFIqhUcEZEuKGsV5pAQRaITEqI4fvoU8PAoRJMmB9G06WUAgFzeEO++OxKLF/MfV0S1TWOblOoK9vgQUWWVtQpz8WQoJAS4c+cxRo0Kg7NzKgQB6NnzFfTu3RsGBlWuNCCiCtRYj0/jxo1x/vz5UrsCp6eno3379vj777+rHi0RkRYqaxXm4gsUPnlyFXfv7oeJSSGysizQps1I9OnTWJxgiQjACyQ+8fHxkMlkpdrz8/Px8OFDjQRFRKQNylqFGQB27y7Anj0H0bjxFZiYAPfvN0L9+iPx5puWtR8kEampdOITERGh+j0yMlJtBoJMJsPRo0fRqFEjzUZHRFTH/Nvu6l27puLs2Z1o3PgfyOUS/P13L2zd+gqHtojqiErX+Cj/0kokEpR8irGxMTw9PfHFF19gyJAhmo+yFrHGh4gqUv7u6gICAy+jbduDKCoqQm6uJc6eDcD8+Z6ctUVUCzRe4yOXywEAjRo1wvnz51GvXr3qR0lEpCWUvTq+vorj4nU977+fj4iI/fD0vIaiIqBJkyYYMWIELCwsxAmWiMpV5RqfuLi4moiDiKhOU05TB5739ADA9u3JOH8+DJ6eTyCXS3D3bh989FF3LvtBVEdVOfFZvnx5hec/+uijFw6mPPHx8VixYgWOHTuG5ORkuLq64s0338TixYthYmKiuu6vv/7CjBkzcP78eTg6OuLdd9/FggULNB4PEemfkjO4BEHAxYsXcfPmIVhby5CRYY0DBwKwerUHmPMQ1V1VTnx2796tdlxYWIi4uDgYGRmhSZMmNZL4xMTEQC6XY8OGDWjatCmuX7+OKVOmIDs7G59//jkAxdhe//790bdvX6xfvx7Xrl3DpEmTYGtri7ffflvjMRGRfik+gysvLw/79u3DjRs3YGgIJCa+hD/+GI7Vq81Zz0NUx2lkAcPMzEwEBQVhxIgRGDdunCbi+lefffYZvv/+e9W6Qd9//z0WL16M5ORkVS9QcHAw9uzZg5iYmErfl8XNRFSR7dsf4fLlMJibp0EuN0CDBq/irbd8OLRFJLLKfn9rZH6ltbU1li1bVqublGZkZMDe3l51HB0djZ49e6oNffn5+SE2NhZpaWm1FhcR6SZBEPDHH3/g5s3NMDdPQ0aGDTZvnojQ0G5Meoi0iMYWlsjIyEBGRoamblehu3fv4uuvv8bUqVNVbcnJyXB2dla7TnlcfCf5kvLz85GZman2ICL9U3wX9ZJyc3Px66+/4tChQzA0lCEmxgt79kyFu3sDtdldRFT3VbnGZ926dWrHgiAgKSkJP/30EwYOHFilewUHB+PTTz+t8Jpbt27B29tbdZyYmIgBAwZg1KhRmDJlSpVeryyrVq3CsmXLqn0fItJuxTcXLV6nk5iYiLCwMKSnp0MuN0BkZD/cuNEF27ZJWM9DpIWqnPisXbtW7djAwACOjo6YMGECFi1aVKV7zZs3D0FBQRVe07jx831tHj16BF9fX3Tr1g0//PCD2nUuLi5ISUlRa1Meu7i4lHv/RYsWYe7cuarjzMxMuLu7V/YtEJGO8PUFrl17vk6PIAg4d+4cjhw5ArlcDltbWzg5BeLwYTds21b2VhVEVPeJuo6Po6MjHB0dK3VtYmIifH190aFDB4SGhpZa/t3HxweLFy9GYWEhjI2NAQCHDx+Gl5cX7Ozsyr2vVCqFVCp98TdBRDohKgrIylL8zM3NxZ49e3D79m0AgK1tC0ydOhSmpqZ44w2RAyWianmhGp/09HRcuHABFy5cQHp6uoZDKi0xMRG9e/eGh4cHPv/8czx+/BjJyclqtTtjxoyBiYkJJk+ejBs3bmDHjh346quv1HpziIiKK17XExys2IZi5swHWL9+PW7fvg2ZzBD79g3C3LmBWLHCVOxwiUgDqjSdPT4+HjNmzEBkZKRqvy6JRIIBAwbgm2++gaenZ40EuWXLFkycOLHMc8XDL76AYb169fDuu+9i4cKFVXotTmcn0h/F9906c0bAxo1n8PDhMRgYCLC3t4ej4yiMHesCuRywtASePRM7YiIqT2W/vyud+Dx48ACdOnWCsbExpk+fjubNmwMAbt68ie+//x5FRUU4f/48GjRooJl3IBImPkT6Q7n/1rx52cjL24O7d+8CAJKSWuGrr4ZAKpVi8WJg3Tpg1ixg5UqRAyaicmk88Zk8eTLu3r2LyMhImJqqd/nm5uZiwIABeOmll7Bx48bqRS4yJj5EukmZ5AQHqxcm379/H7t27cKzZ88gCEb4/fcB8PVtj5UruTYPkTbReOLj5uaGHTt2oEePHmWeP3nyJF5//XU8evToxSKuI5j4EOmm4sNaZ88Ccrkcp0+fxvHjxyEIAqTSevjuu0A8eOAMLy+gCgu+E1EdoPGVm//5558Ka3gaN26Mp0+fVilIIqLaoixeDg4GsrKysG3bNkRFRUEQBLRp0wb790/BgweKRU+5EDOR7qp04lO/fn3cvHmz3PPXr1+vcL0cIqLaVtZqzM+exWH9+vX4+++/YWxsDA+PYVi9ejh69jSBlxfg7Q38y7qqRKTFKp34DB8+HPPnz8fjx49LnUtNTcXChQsxfPhwTcZGRFQlJROd4qsxh4TIIZVG4c6d/yA7OxuOjo6YMmUKfvyxLaKjFev3rF4NVLDsFxHpgErX+KSlpaFLly5ITk7Gm2++CW9vbwiCgFu3buHnn3+Gi4sLzp07p7ZxqDZijQ+R9ipZx/N8RtYz2NuHIysrHgDQrl07yOUDsXq1MXx9FUlPcPDzREn5fCLSHpX9/q70ys12dnb4448/8MEHH2D79u2qhQttbW0xZswYfPLJJ1qf9BCRdlMmL8qNQ6OiAGfnexCEcGRl5cDY2BhDhgzByy+/rEqSAPUkZ+FC4OlTRa8Rt6Ug0j1VWsBQSRAE1ZCXo6MjJDpUCcgeHyLdIJfL8cMPUUhJOQ0AcHZ2hr39KHz5pYMqMSprenvJXiMi0g4a7/EpTiKRwMnJ6YWDIyKqSZmZmdi1axdSUhIAAPXqdcDkyX7o1ctYVfNz9mzZPTole42ISLe8UOJDRFRX3b59G3v27EFubi6Kikywe7c/rK1bYsaMyiU1/v4c4iLSZS+0SSkRkViKz9wq/rtMJsPvv/+OX375Bbm5uahfvz5efnkqrK1bqhIdf//ye3qISD+8UI2PLmOND1HdVrwGB1D87uubjrFjd+Hhw4cAgM6dO6Nfv34wMiq/U7u8LSyISDtpfOVmIqK6QLkCs68vkJYG9OkTgz59NuDhw4eQSqV47bXXUFg4ED17GqktXFhS8TV+iEh/VKrHZ926dZW+4axZs6oVkNjY40OkHbp3l8Ha+jC6dv0DAODq6orAwEB8/rkdQkIAubzimVns8SHSLRrdpLRRo0aVelGJRIK///678lHWQUx8iOq+tLQ0bNwYhpwcxabIXbt2Rd++fWFoaAgrKyArCzAwAHbvZlJDpC80Op09Li5OY4EREVXHzZs3ERERgfz8fJiammL48OHw8vJSnZ81S7laM5MeIirthYubCwoKEBcXhyZNmlRYQKht2ONDVDcVFRUhMjISFy5cAAA0aNAAgYGBsLGxETkyIqoLaqy4OScnB5MnT4a5uTlatmyJhATFAmHvvvsuQlglSEQ14MmTJ9i0aZMq6enevTuCgoIqTHrK2pmdiKjKic+iRYtw9epVHD9+HKampqr2vn37YseOHRoNjojo+vXr+OGHH5CcnAxzc3OMGTNGVc9TEc7aIqKyVHmMas+ePdixYwe6du2qtkdXy5Ytce/ePY0GR0T6KSICWL26EK+/fghPnlwCAHh4eCAgIKDSQ9DceoKIylLlHp/Hjx+XuU9Xdna2Tm1WSkTi+frrf/DyyxtVSc8rr7yCCRMm4Phx60oPX3GVZiIqS5UTn44dO2L//v2qY2Wys3HjRvgol1IlInpBV69eRc+eP8DZORVGRhZ488030adPHxgYGKiGr8aOZe0OEb2YKic+n3zyCT744AO88847KCoqwldffYX+/fsjNDQUK1eurIkYiUhHFS9ALigowN69e7Fnzx7I5YXw9PTErFlT0aRJE9X1wcGApaVinZ6yandY0ExE/+aFprPfu3cPISEhuHr1KrKystC+fXssXLgQrVu3rokYaxWnsxPVHuW+W337pmLEiDA8fvwYEokEvXr1wiuvvAIDAwPVCsu+vkBU1POfZa24XHwfr/JWbCYi3aTRlZv1CRMfopr3PJkRcPv2FbRufQCCUARLS0sEBATA09NTdd3YsYoeHiVuQ0FEZdHoys2ZmZmVfmEmC0T0b0JCgIsXC9C69T60anUNggA0adIEI0aMgIWFhdp1xZMeA4OKZ2n5+zPhIaKKVSrxsbW1rfSMLZlMVq2AiEj3zZqVjEuXwmBh8QQSiQS+vr7o0aNHqf/PKKeku7kBhw6VvQ0Fe3mIqCoqlfhERUWpfo+Pj0dwcDCCgoJUs7iio6OxdetWrFq1qmaiJCKtp0hQBLz11kU8enQIFhYy5OVZoXXrQLzyikeZz6lMD07xhQqZ+BDRv6lyjc+rr76Kt956C2+88YZa+88//4wffvgBx48f12R8tY41PkQ145VX8uHi8htatboBAHj8+CWEhg5Hmzbm1SpEZo8PEQEarvEpLjo6GuvXry/V3rFjR7z11ltVvR0R6YGkpCQMGrQTBQVpAAzQr9+rePzYB5cuSaq9sjLreoioKqq8jo+7uzt+/PHHUu0bN26Eu7u7RoIiIt0gCAL+/PNPbNq0CQUFabCxscGkSUHo1q0bV3onIlFUucdn7dq1CAgIwMGDB9GlSxcAwJ9//ok7d+5g165dGg+QiLRTXl4eIiIicOvWLQCAl5cXhg0bBjMzMwCszSEicVS5x2fQoEG4c+cOhg4diqdPn+Lp06cYOnQobt++jUGDBtVEjESkZRITE7FhwwbcunULBgYG8PPzw+jRo1VJD6CoyfHx4SaiRFS7uIBhCSxuJnpxgiDg3LlzOHLkCORyOWxtbREYGAg3NzexQyMiHVdjxc0AkJ6ejk2bNqm6sFu2bIlJkybBxsbmxaIlIq0XHp6Lo0f3wMnpNgCgefPm8Pf3h6mpaalrS87E4swsIqotVR7qunDhApo0aYK1a9eqhrrWrFmDJk2a4NKlSzURIxHVcQ8ePMCff66Hk9NtyOWGGDhwIEaNGlVm0gOo1/eUdazETUeJSNOqnPjMmTMH/v7+iI+PR3h4OMLDwxEXF4chQ4Zg9uzZNRAiEdVVgiDgzJkzCA0NhZlZJrKz7dG8+WQkJ3dG9+6SchOWkvU95dX7lJcQERG9qCrX+JiZmeHy5cvw9vZWa7958yY6duyInJwcjQZY21jjQ1Q52dnZ2LNnD+7evQsAaNWqFYYMGQKpVKqxXdI5BEZElVVjNT7W1tZISEgolfg8ePAAVlZWVY+UiLTO/fv3sWvXLjx79gxGRkYYMGAA2rdvr1qbR7nHFhcnJKK6psqJz+jRozF58mR8/vnn6NatGwDgzJkzeP/990ttY0FEukUQBJw6dQrHjx+HIAhwcHDAqFGj4OzsrHYdExYiqquqnPh8/vnnkEgkGD9+PIqKigAAxsbGeOeddxDCgXginZWVlYXdu3fj77//BgAkJr6Ml18eDGdnk1LXcoiKiOqqF17HJycnB/fu3QMANGnSBObm5hoNTCys8SEqLS4uDuHh4cjKyoKRkREuXx6EXbvawsdHojaspUxyNFXjQ0RUWTW6jg8AmJubo3Xr1i/6dCLSAnK5HCdPnsSJEycAAKamjjhyZBQ6d3ZUzcIqufVERASQkACYmQFubookyNcXiIpiDxARia/Sic+kSZMqdd3mzZtfOBgiqjuePXuG8PBwxMfHAwDs7dtix45BOHPGGNnZ6j05xQuZQ0KAxETF74cOAVlZwLVrip/cl4uIxFbpxGfLli1o2LAh2rVrB+5yQaTb7t27h/DwcOTk5KCoyBgREUNgYfGyqofH11fRk6PswSmezAQHAwsWABIJMHKkoqfHzU2RBPn6iveeiIiAKtT4zJgxA7/88gsaNmyIiRMn4s0334S9vX1Nx1frWOND+kwulyMqKgqnT58GADg7O8PePhBfflmvWjU8rPkhoppW2e/vSq/c/O233yIpKQkLFizAb7/9Bnd3d7z22muIjIxkDxCRDsjMzMTWrVtVSU+HDh0wefJkvPZaPZw9q96r4+sLWFpWvgeHO7ETUV1RpS0rpFIp3njjDRw+fBg3b95Ey5YtMX36dHh6eiIrK6umYiSiGnbnzh2sX78eCQkJMDExQUBAAIYMGQJjY+My98uKilLU7ERFlb5XWdf7+6NU8kREJIYq79WleqKBASQSCQRBgEwm02RMRFRLZDIZDh8+jJ9//hm5ubmoX78+pk6dilatWqmuKWu/rIp6cLi/FhHVZVVKfPLz8/HLL7+gX79+aNasGa5du4ZvvvkGCQkJsLS0rKkYiagGpKenY8uWLTj7v6KbTp06YdKkSaVq95RJjrKgOSKi4h4cDmsRUV1W6eLm6dOnY/v27XB3d8ekSZMwduxY1KtXr6bjq3UsbiZ9EBMTg7179yIvLw9SqRT+/v5o0aJFhSsus0CZiOqyyn5/VzrxMTAwgIeHB9q1a6faiLAs4eHhVY+2DmHiQ7pMObT1xx9/AABcXV0RGBgIOzs7ABUnN9yGgojqMo2v3Dx+/PgKEx4iqtvS0tIQFhaGR48eAQC6du2Kvn37wtDQUHWNpnZVJyKqq154ry5dxR4f0jUREUBo6E106BABmSwfpqamGD58OLy8vKp0Hw51EVFdVuN7dRFR3bdnTxG2bPkd7dqdh0wGNGjQAAEBAbC1ta3yvdgbRES64IWnsxNR3fb06VOcOrUJ7dqdBwA4OXVDUFBQqaSn+Lo7Za3Bo8S1eIhIF3CoqwQOdZEuuH79On777TcUFBSgoMAM3t4jMG7cS2VeW3wIC+BwFhFpJw51EemhwsJCHDp0CJcuXQIAeHh4ICAgoML/CZQcwuJwFhHpMiY+RDrin3/+wc6dO5GamgoAeOWVV9C7d28YGDwf0S45Jb2sKeocyiIiXcahrhI41EXa6OrVq9i/fz8KCwthYWGBESNGoEmTJqWuKzkzizO1iEhXaHx3diKqewoKCrB3717s2bMHhYWF8PT0xNSpU1VJT8li5ZLbSXB7CSLSNxzqItJSqampCAsLw+PHjwEAvXr1Qs+ePdWGtopvGOrv/3wYS7mBaPE2IiJ9wB4fIi0jCAIuX76MH3/8EY8fP4alpSXGjx9fqp4HKLtHh7unE5E+Y48PkRYpKCjA/v378ddffwEAGjdujBEjRsDS0rLUteUVMvv6Ks5zeIuI9BETHyItkZKSgp07d+LJkyeQSCTw9fVFjx49yt1Dr+Qwl/IYYCEzEekvDnUR1XGCIODixYv48ccf8eTJE1hZWWHChAlIS3sF3btLylxlGah8IXNFqzUTEekarZvOnp+fjy5duuDq1au4fPky2rZtqzr3119/YcaMGTh//jwcHR3x7rvvYsGCBVW6P6ezU12Sn5+Pffv24fr16wCApk2bYsSIETA3N4e3NxAbC3h5ATExL/4anNJORLpAZ6ezL1iwAK6urqXaMzMz0b9/fzRs2BAXL17EZ599hqVLl+KHH34QIUqi6ktKSsIPP/yA69evQyKRoG/fvhgzZgzMzc0BAMoRroSE6vXWcEo7EekTrarxOXjwIH7//Xfs2rULBw8eVDu3bds2FBQUYPPmzTAxMUHLli1x5coVrFmzBm+//bZIERNVnSAIOH/+PH7//XfIZDLY2NggICAA7u7uatd9+ikwdiyQlfW8judFcEo7EekTrenxSUlJwZQpU/DTTz+p/sVbXHR0NHr27AkTExNVm5+fH2JjY5GWllbuffPz85GZman2IBJLXl4edu7ciYMHD0Imk8HLywtTp04tlfQAimRl2zb21hARVYVW9PgIgoCgoCBMmzYNHTt2RHx8fKlrkpOT0ahRI7U2Z2dn1Tk7O7sy771q1SosW7ZM4zETVVViYiLCwsKQnp4OAwMD9OvXD126dCl31hbA3hoioqoStccnODgYEomkwkdMTAy+/vprPHv2DIsWLdJ4DIsWLUJGRobq8eDBA42/BlFFBEHAuXPnsHnzZqSnp8PW1haTJk1C165dK0x6KoMztoiI1Ina4zNv3jwEBQVVeE3jxo1x7NgxREdHQyqVqp3r2LEjxo4di61bt8LFxQUpKSlq55XHLi4u5d5fKpWWui9RbcnNzcXevXsRGxsLAGjevDn8/f1hamqqkfuXXMuHiEjfiZr4ODo6wtHR8V+vW7duHT7++GPV8aNHj+Dn54cdO3agS5cuAAAfHx8sXrwYhYWFMDY2BgAcPnwYXl5e5Q5zEYnpwYMH2LVrFzIyMmBoaIj+/fujU6dOZfbylFyFubKCg58/j4iItHAdHwCIj49Ho0aN1NbxycjIgJeXF/r374+FCxfi+vXrmDRpEtauXVulWV1cx4dqmiAIOHv2LI4dOwa5XA47OzuMGjUK9evXL/c5XGuHiKhilf3+1ori5sqwsbHB77//jhkzZqBDhw6oV68ePvroI05lpzrlyZMnOHjwIO7duwcAsLVtiZ07h8LTU1phTw57boiINEMrEx9PT0+U1VH18ssv49SpUyJERPTvTp06hWPHjgEADA0NMXDgQLz7bntER0sgk5U9hFV8iIs9PURE1ac16/gQaSu5XI5PPvlElfQAwMSJE9GhQwcEB0sqXIeneHEyERFVHxMfohqUkpKCFStWoLCwUNU2b948uLm5AVD08pw9q/gZEQE0bw54ez+ffh4crNiLKy2NU9KJiDRBK4ubaxKLm0lToqKicPLkSdWxh4cHgoKCyp21pdx+AlAvYmZhMxHRv9O74maiukImk6ktvwAAgYGBaNmyZbnPCQlRJD1mZoCHh/rQFwubiYg0hz0+JbDHh6pDuaN6cfPnz4eFhQUARc/OwoXAs2eKc5aWwOrVit9fZJ0eIiJSqOz3NxOfEpj40Is6fPgwzhYbi2rcuDHGjRundo1y2Ko4DmEREVUfh7qIaklRURFWrlyp1jZ69Gh4e3uXujY4uHSPD4ewiIhqDxMfompITEzExo0b1doWLFgAMzOzMq/nbupEROLidHaiF3Tw4EG1pMfLywtLliwplfRwh3QiorqDiQ9RFRUWFmLZsmX4888/VW1jxozB66+/rjounuxwEUIiorqDQ11EVZCQkIDQ0FC1toULF8LU1FStrXiyw+noRER1B3t8iCopIiJCLelp1aoVlixZAlNT01LDWcHBUG1FUXx1ZiIiEhd7fIj+RUFBAVatWqXWdv78OLRr11h1XLyHR1nAzESHiKjuYeJDVIG4uDj85z//UWs7cmQRTp82wb17wIIFgEQCjBypOMfhLCKiuo2JD1E5wsPDce3aNdVx27ZtMWzYMLRrB8hkwNOnQGys4lxUFBchJCLSBkx8iErIz89HSIkpWEFBQWjYsCEiIp738gQEALt2KX5nTw8RkXZg4kNUzN27d7Ft2za1tg8++ADGxsYAFDU8xXt5YmJqO0IiIqoOJj5E//Prr7/i1q1bquOOHTti8ODBatcEBz/v8WEvDxGR9mHiQ3ovNzcXq5VbpP/P5MmT0aBBAwDPFyFUTk3nbC0iIu3FxIf0WmxsLLZv367WtnjxYhgZPf+rUXKqOhERaS8mPqS3tm3bhrt376qOfXx80L9//1LXceVlIiLdwcSH9E5OTg4+++wztbYpU6bA1dW1zOs5vEVEpDuY+JBeuXnzJnbu3KnW9uGHH8LQ0FCkiIiIqDZxry6qs0ruf1XZ6xcvLv08QRCwZcsWtaTn5MlXEBm5hEkPEZEeYeKjx6qaWNS24kXFVbl+3Tr152VlZWH58uW4f/++6lpv72nIze3Duh0iIj3DxEePVTWxqG3FdzivyvWzZgHe3ootJbZsuYYvvvhCdY1EYoTff/8QZmbO3DGdiEgPSQRBEMQOoi7JzMyEjY0NMjIyYG1tLXY4Nark+jS6pFs3Aa1abYSb2yNVm6+vL4KDeyI6WpEgcW8tIiLdUdnvb/b46DF/f2htr0dFw3SZmZnw81uulvQ0bz4dwcE94etbtV4kIiLSLZzVRVqpvEUFL1++jIhi2ZCZmRnmz5+PHj0MEB2taGNPDxGR/mLiQ1qp5KKCgiDg+++/x+PHj1XX9OvXD926dSvzeiIi0k+s8SlBn2p8dEVGRga+/PJLtbZ3330X9vb24gRERES1jjU+VKdpair9+fPn1ZKe9HQbREZ+xKSHiIjKxKEuEkV1N/4UBAHr1q1Denq6qq1Bg4GIjOzM4SwiIioXe3yoUjS92GFV1+gp7unTp1i+fLla0vPee+9h8uTOWjtLjYiIagdrfEpgjU/ZunVDnVj/5ty5c4iMjFQdOzg4YMaMGZBIJOIFRUREomOND2nUv/XQ1PT2F3K5HJ9//rla0jNkyBDMnDmTSQ8REVUae3xKYI/Pi6nJHqF//vkH3377rVrbnDlz+PkQEZFKZb+/WdxMGlFT6+ScPn0aR48eVR27uLjg7bffZi8PERG9ECY+VG2a2vOr+H0EQY4LFz6FkVGB6vzw4cPRpk0bDURMRET6ikNdJXCoq+o0NcylvE+/fqno3v17tXNz586FlZVVNSMlIiJdxaEuqjWaGuYKDgZ27jyOpk1PqNosLNwxb95EDm0REZFGMPGhavP3r/7aOTKZDFeurETTps87IAMCAtCqVatqRkdERPQcEx8SXXJyMjZs2KDWNn/+fFhYWIgUERER6SomPlTrihcxm5sfwZkzZ1TnGjdujHHjxokYHRER6TImPlSjSs74iogAxo4FcnOLcPnySrVrR48eDW9vb5EiJSIifcDEh2pU8c1IAUXSY2OTiPnzN6pdt2DBApiZmYkQIRER6RNuWUFqqrv1RMnnF9/qIiQE6NHjEKZMeZ70eHl5YcmSJUx6iIioVnAdnxL0fR2f6q7JU97zCwsL8cknn6hdO2bMGLz00kvVjJiIiIiblOqsmt4M9N82I/23GIo/X3ndzz8nlEp6Fi5cyKSHiIhqHXt8SqjrPT41uRmopmPo1g1wcPgNHTteUrW1bNkSgYGBtRAlERHpE67crKNqajNQTcdQUFAAP79Vam3jxo1D48aNazg6IiKi8jHx0TKaWCW5psXFxeE///mPWltwcDCkUqlIERERESkw8aEqKz5FvWQStnv3bvz111+q47Zt22LYsGG1HCEREVHZWNysBWq6oLmqyiqAzs/Px7Jly9SSnqCgICY9RERUp7C4uYS6WNxcFwqaK3L37l1s27ZNre2DDz6AsbGxSBEREZG+YXGzDqkLBc3l+fXXX3Hr1i3VcceOHTF48GARIyIiIiofEx8toImC5pJ7ZlVXbm4uVq9erdY2efJkNGjQoPo3JyIiqiFMfPRERQXJVRUbG4vt27ertS1evBhGRvzPiYiI6jZ+U+kJTQ2X/fzzz7hz547quGvXrvDz86tmdERERLWDiY+eqO5wWU5ODj777DO1tilTpsDV1bWakREREdUeJj70r27evImdO3eqtX344YcwNDQUKSIiIqIXw8SHKrR161bEx8erjnv06IFXX31VvICIiIiqgYkPlSkrKwtffPGFWtu0adPg7OwsUkRERETVx8SHSrl27RrCw8NVx0ZGRggODubQFhERaT0mPqQiCAI2bdqExMREVVvv3r3Rq1cvEaMiIiLSHK3aq2v//v3o0qULzMzMYGdnh+HDh6udT0hIwODBg2Fubg4nJye8//77KCoqEifYSqjKHlw1vV/Xs2fPsHz5crWkZ/r06Ux6iIhIp2hN4rNr1y6MGzcOEydOxNWrV3HmzBmMGTNGdV4mk2Hw4MEoKCjA2bNnsXXrVmzZsgUfffSRiFFXrPiigpq8tqpJ0uXLl7FmzRrVsZmZGf7v//4Pjo6OlbsBERGRltCKTUqLiorg6emJZcuWYfLkyWVec/DgQQwZMgSPHj1SFeCuX78eCxcuxOPHj2FiYlKp16rNTUqrso3E4sXAunXArFnAypUVX6vc1NTLC7C3L//+giBg/fr1SE1NVbX17dsX3bt3f4F3Q0REJJ7Kfn9rRY/PpUuXkJiYCAMDA7Rr1w7169fHwIEDcf36ddU10dHRaN26tdqsIz8/P2RmZuLGjRvl3js/Px+ZmZlqj9ri76/Ybb0yCwtGRQFZWYqf/yY4WLGTu0RSfi9RRkYGli9frpb0zJw5k0kPERHpNK1IfP7++28AwNKlS/Hhhx9i3759sLOzQ+/evfH06VMAQHJycqmp1srj5OTkcu+9atUq2NjYqB7u7u419C6qR5nMVGbLCWVC9emnZT/nwoUL+PLLL1XH1tbW+Oijj+Dg4KDZoImIiOoYUROf4OBgSCSSCh8xMTGQy+UAFBthBgQEoEOHDggNDYVEIim1onBVLVq0CBkZGarHgwcPNPHWNK4qvUPlPUcQBKxbtw779+9XXTNgwADMmTMHEolEwxETERHVPaJOZ583bx6CgoIqvKZx48ZISkoCALRo0ULVLpVK0bhxYyQkJAAAXFxc8Oeff6o9NyUlRXWuPFKpFFKp9EXC1yppaWlYt26dWtusWbNgZ2cnUkRERES1T9TEx9HRsVIzhzp06ACpVIrY2Fj06NEDAFBYWIj4+Hg0bNgQAODj44OVK1ciNTUVTk5OAIDDhw/D2tpaLWHSR+fOnUNkZKTq2MHBATNmzGAvDxER6R2tWMDQ2toa06ZNw5IlS+Du7o6GDRuqdgofNWoUAKB///5o0aIFxo0bh9WrVyM5ORkffvghZsyYofU9OlWZ/VWcXC7H2rVrkZWVpWobMmQIOnToUANREhER1X1akfgAwGeffQYjIyOMGzcOubm56NKlC44dO6YaqjE0NMS+ffvwzjvvwMfHBxYWFpgwYQKWL18ucuTVV3wNn8omPk+ePME333yj1jZ79mzY2NjUQIRERETaQSvW8alNtbmOT2VVtcfn9OnTOHr0qOrYxcUFb7/9Noe2iIhIZ1X2+1trenz0mb9/5RIeuVyO1atXIz8/X9U2bNgwtG3btuaCIyIi0iJasY6PLtPUHlypqalYsWKFWtIzd+5cJj1ERETFsMdHZC9Sv1PSiRMncPz4cdWxu7s7Jk6cyKEtIiKiEpj4iCw4+Hn9TlXJZDJ88sknqgUeASAgIACtWrXSYIRERES6g4mPyCpbv1NScnIyNmzYoNY2f/58WFhYaCgyIiIi3cPERwsdOXIEZ86cUR03atQI48ePFzEiIiIi7cDER4sUFRVh5cqVam2vvfYamjdvLlJERERE2oWJj5ZITEzExo0b1doWLFgAMzMzkSIiIiLSPpzOXkuqM2390KFDaklPs2bNsGTJEiY9REREVcQen1ryItPWCwsL8cknn6i1vfHGG2jWrFkNREhERKT7mPjUkqpOW3/w4AE2b96s1rZw4UKYmprWQHRERET6gYlPLanKtPV9+/bh4sWLquOWLVsiMDCwhiIjIiLSH0x86pCCggKsWrVKre3NN99EkyZNRIqIiIhItzDxqSPi4+OxdetWtbbg4GBIpVKRIiIiItI9THzqgD179uDq1auq4zZt2mD48OHiBURERKSjmPiIKD8/HyEhIWptEyZMgKenpzgBERER6TgmPiK5d+8e/vvf/6q1LVq0CCYmJiJFREREpPuY+Ihg586duHnzpuq4Q4cOGDJkiIgRERER6QcmPrUoLy8Pn376qVrbpEmT4O7uLlJERERE+oWJTy25c+cOfv75Z7W2Dz74AMbGxiJFREREpH+Y+NSS4klP165d4efnJ2I0RERE+omJTy3p1asXzp07h/Hjx8PV1VXscIiIiPSSRBAEQewg6pLMzEzY2NggIyMD1tbWYodDRERElVDZ72+DWoyJiIiISFRMfIiIiEhvMPEhIiIivcHEh4iIiPQGEx8iIiLSG0x8iIiISG8w8SEiIiK9wcSHiIiI9AYTHyIiItIbTHyIiIhIbzDxISIiIr3BxIeIiIj0BhMfIiIi0htMfIiIiEhvGIkdQF0jCAIAxfb2REREpB2U39vK7/HyMPEp4dmzZwAAd3d3kSMhIiKiqnr27BlsbGzKPS8R/i010jNyuRyPHj2ClZUVJBKJ2OHUqMzMTLi7u+PBgwewtrYWOxwqhp9N3cTPpW7i51J31eZnIwgCnj17BldXVxgYlF/Jwx6fEgwMDNCgQQOxw6hV1tbW/J9FHcXPpm7i51I38XOpu2rrs6mop0eJxc1ERESkN5j4EBERkd5g4qPHpFIplixZAqlUKnYoVAI/m7qJn0vdxM+l7qqLnw2Lm4mIiEhvsMeHiIiI9AYTHyIiItIbTHyIiIhIbzDxISIiIr3BxEeP7d+/H126dIGZmRns7OwwfPhwtfMJCQkYPHgwzM3N4eTkhPfffx9FRUXiBKtn8vPz0bZtW0gkEly5ckXt3F9//YVXXnkFpqamcHd3x+rVq8UJUo/Ex8dj8uTJaNSoEczMzNCkSRMsWbIEBQUFatfxsxHHt99+C09PT5iamqJLly74888/xQ5Jr6xatQqdOnWClZUVnJycMHz4cMTGxqpdk5eXhxkzZsDBwQGWlpYICAhASkqKKPEy8dFTu3btwrhx4zBx4kRcvXoVZ86cwZgxY1TnZTIZBg8ejIKCApw9exZbt27Fli1b8NFHH4kYtf5YsGABXF1dS7VnZmaif//+aNiwIS5evIjPPvsMS5cuxQ8//CBClPojJiYGcrkcGzZswI0bN7B27VqsX78eH3zwgeoafjbi2LFjB+bOnYslS5bg0qVLaNOmDfz8/JCamip2aHrjxIkTmDFjBs6dO4fDhw+jsLAQ/fv3R3Z2tuqaOXPm4LfffsPOnTtx4sQJPHr0CCNHjhQnYIH0TmFhoeDm5iZs3Lix3GsOHDggGBgYCMnJyaq277//XrC2thby8/NrI0y9deDAAcHb21u4ceOGAEC4fPmy6tx3330n2NnZqX0GCxcuFLy8vESIVL+tXr1aaNSokeqYn404OnfuLMyYMUN1LJPJBFdXV2HVqlUiRqXfUlNTBQDCiRMnBEEQhPT0dMHY2FjYuXOn6ppbt24JAITo6Ohaj489Pnro0qVLSExMhIGBAdq1a4f69etj4MCBuH79uuqa6OhotG7dGs7Ozqo2Pz8/ZGZm4saNG2KErRdSUlIwZcoU/PTTTzA3Ny91Pjo6Gj179oSJiYmqzc/PD7GxsUhLS6vNUPVeRkYG7O3tVcf8bGpfQUEBLl68iL59+6raDAwM0LdvX0RHR4sYmX7LyMgAANXfj4sXL6KwsFDtc/L29oaHh4conxMTHz30999/AwCWLl2KDz/8EPv27YOdnR169+6Np0+fAgCSk5PVkh4AquPk5OTaDVhPCIKAoKAgTJs2DR07dizzGn4udcPdu3fx9ddfY+rUqao2fja1759//oFMJivzz51/5uKQy+WYPXs2unfvjlatWgFQ/PdvYmICW1tbtWvF+pyY+OiQ4OBgSCSSCh/KWgUAWLx4MQICAtChQweEhoZCIpFg586dIr8L3VPZz+Xrr7/Gs2fPsGjRIrFD1huV/WyKS0xMxIABAzBq1ChMmTJFpMiJ6qYZM2bg+vXr2L59u9ihlMtI7ABIc+bNm4egoKAKr2ncuDGSkpIAAC1atFC1S6VSNG7cGAkJCQAAFxeXUjMjlBX4Li4uGoxa91X2czl27Biio6NL7WnTsWNHjB07Flu3boWLi0upmRD8XF5cZT8bpUePHsHX1xfdunUrVbTMz6b21atXD4aGhmX+ufPPvPbNnDkT+/btw8mTJ9GgQQNVu4uLCwoKCpCenq7W6yPa51TrVUUkuoyMDEEqlaoVNxcUFAhOTk7Chg0bBEF4XtyckpKiumbDhg2CtbW1kJeXV+sx64P79+8L165dUz0iIyMFAEJYWJjw4MEDQRCeF9AWFBSonrdo0SIW0NaChw8fCi+99JLw+uuvC0VFRaXO87MRR+fOnYWZM2eqjmUymeDm5sbi5lokl8uFGTNmCK6ursLt27dLnVcWN4eFhanaYmJiRCtuZuKjp9577z3Bzc1NiIyMFGJiYoTJkycLTk5OwtOnTwVBEISioiKhVatWQv/+/YUrV64Ihw4dEhwdHYVFixaJHLn+iIuLKzWrKz09XXB2dhbGjRsnXL9+Xdi+fbtgbm6uSlipZjx8+FBo2rSp8OqrrwoPHz4UkpKSVA8lfjbi2L59uyCVSoUtW7YIN2/eFN5++23B1tZWbUYq1ax33nlHsLGxEY4fP672dyMnJ0d1zbRp0wQPDw/h2LFjwoULFwQfHx/Bx8dHlHiZ+OipgoICYd68eYKTk5NgZWUl9O3bV7h+/braNfHx8cLAgQMFMzMzoV69esK8efOEwsJCkSLWP2UlPoIgCFevXhV69OghSKVSwc3NTQgJCREnQD0SGhoqACjzURw/G3F8/fXXgoeHh2BiYiJ07txZOHfunNgh6ZXy/m6EhoaqrsnNzRWmT58u2NnZCebm5sKIESPU/uFQmyT/C5qIiIhI53FWFxEREekNJj5ERESkN5j4EBERkd5g4kNERER6g4kPERER6Q0mPkRERKQ3mPgQERGR3mDiQ0RUQ44fPw6JRIL09HSxQyGi/2HiQ0Raa+nSpWjbtq3YYRCRFmHiQ0Q6r7CwUOwQiKiOYOJDRKKRy+VYtWoVGjVqBDMzM7Rp0wZhYWEAng8THT16FB07doS5uTm6deuG2NhYAMCWLVuwbNkyXL16FRKJBBKJBFu2bAEASCQSfP/99/D394eFhQVWrlxZYRzK14qMjES7du1gZmaGPn36IDU1FQcPHkTz5s1hbW2NMWPGICcnR/W8/Px8zJo1C05OTjA1NUWPHj1w/vz5mvnDIiLNEGWHMCIiQRA+/vhjwdvbWzh06JBw7949ITQ0VJBKpcLx48eFqKgoAYDQpUsX4fjx48KNGzeEV155RejWrZsgCIKQk5MjzJs3T2jZsmWp3aABCE5OTsLmzZuFe/fuCffv368wDuVrde3aVTh9+rRw6dIloWnTpkKvXr2E/v37C5cuXRJOnjwpODg4qG08OmvWLMHV1VU4cOCAcOPGDWHChAmCnZ2d8OTJE7X7pqWl1cwfIBFVGRMfIhJFXl6eYG5uLpw9e1atffLkycIbb7yhShqOHDmiOrd//34BgJCbmysIgiAsWbJEaNOmTal7AxBmz55d6VjKeq1Vq1YJAIR79+6p2qZOnSr4+fkJgiAIWVlZgrGxsbBt2zbV+YKCAsHV1VVYvXq12n2Z+BDVHUZi9TQRkX67e/cucnJy0K9fP7X2goICtGvXTnX88ssvq36vX78+ACA1NRUeHh4V3r9jx45Vjqn4azk7O8Pc3ByNGzdWa/vzzz8BAPfu3UNhYSG6d++uOm9sbIzOnTvj1q1bVX5tIqodTHyISBRZWVkAgP3798PNzU3tnFQqxb179wAokgkliUQCQFEb9G8sLCyqHFPJ1yp+rGyrzGsTUd3F4mYiEkWLFi0glUqRkJCApk2bqj3c3d0rdQ8TExPIZLIajrRsTZo0gYmJCc6cOaNqKywsxPnz59GiRQtRYiKif8ceHyIShZWVFebPn485c+ZALpejR48eyMjIwJkzZ2BtbY2GDRv+6z08PT0RFxeHK1euoEGDBrCysoJUKq2F6BU9Su+88w7ef/992Nvbw8PDA6tXr0ZOTg4mT55cKzEQUdUx8SEi0axYsQKOjo5YtWoV/v77b9ja2qJ9+/b44IMPKjWkFBAQgPDwcPj6+iI9PR2hoaEICgqq+cD/JyQkBHK5HOPGjcOzZ8/QsWNHREZGws7OrtZiIKKqkQiCIIgdBBEREVFtYI0PERER6Q0mPkSk86ZNmwZLS8syH9OmTRM7PCKqRRzqIiKdl5qaiszMzDLPWVtbw8nJqZYjIiKxMPEhIiIivcGhLiIiItIbTHyIiIhIbzDxISIiIr3BxIeIiIj0BhMfIiIi0htMfIiIiEhvMPEhIiIivcHEh4iIiPTG/wPG2TcaySCdxgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Import training data\n", + "np.set_printoptions(precision=6, suppress=True)\n", + "\n", + "csv_data = pd.read_csv(datafile_path(\"500_Points_DataSet.csv\"))\n", + "csv_data.columns.values[0:6] = [\n", + " \"pressure\",\n", + " \"temperature\",\n", + " \"enth_mol\",\n", + " \"entr_mol\",\n", + " \"CO2_enthalpy\",\n", + " \"CO2_entropy\",\n", + "]\n", + "data = csv_data.sample(n=500)\n", + "\n", + "# Creating input_data and output_data from data\n", + "input_data = data.iloc[:, :2]\n", + "output_data = data.iloc[:, 2:4]\n", + "\n", + "# Define labels, and split training and validation data\n", + "input_labels = input_data.columns\n", + "output_labels = output_data.columns\n", + "\n", + "n_data = data[input_labels[0]].size\n", + "data_training, data_validation = split_training_validation(data, 0.8, seed=n_data)" ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "13/13 [==============================] - 0s 4ms/step\n" - ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzcUlEQVR4nO3deXwTZf4H8E9aaGmBBkpvaGkpZ6UtCKgVLCBIwXog+FsQV24UBF1g5XJFhfVHEXdX1FXwBwq6isuq4CoIyIKASEWuyqGwUgtFaTmEptKWFpr5/VEzJulMMkkmmUnzeb9e7NpkMnlm8sw833lOgyAIAoiIiIgCWJDWCSAiIiLSGgMiIiIiCngMiIiIiCjgMSAiIiKigMeAiIiIiAIeAyIiIiIKeAyIiIiIKOAxICIiIqKAx4CIiIiIAh4DIiLyG88++ywMBoOibQ0GA5599lmvpqdfv37o16+fbvdHRMoxICIil61evRoGg0H816hRI7Ru3Rpjx47FTz/9pHXydCc5OdnmfMXExOC2227D+vXrVdl/ZWUlnn32WezYsUOV/REFIgZEROS2hQsX4h//+AeWL1+OIUOG4J133kHfvn1x9epVr3zfU089haqqKq/s29u6deuGf/zjH/jHP/6BJ554AmfPnsWwYcOwfPlyj/ddWVmJBQsWMCAi8kAjrRNARP5ryJAh6NmzJwBg4sSJiIqKwvPPP4+PP/4Yv/vd71T/vkaNGqFRI/+8bbVu3Rq///3vxb9Hjx6N9u3b48UXX8TkyZM1TBkRAawhIiIV3XbbbQCAwsJCm9ePHz+O+++/H5GRkWjSpAl69uyJjz/+2Gaba9euYcGCBejQoQOaNGmCVq1aoU+fPti6dau4jVQfourqasyYMQPR0dFo3rw57rnnHvz444/10jZ27FgkJyfXe11qn6tWrcLtt9+OmJgYhIaGIi0tDcuWLXPpXDgTFxeHLl26oKioyOF258+fx4QJExAbG4smTZogMzMTb731lvj+qVOnEB0dDQBYsGCB2Czn7f5TRA2Nfz5qEZEunTp1CgDQsmVL8bVjx46hd+/eaN26NebOnYumTZviX//6F4YOHYoPP/wQ9913H4C6wCQvLw8TJ07ETTfdhPLycuzfvx8HDx7EHXfcIfudEydOxDvvvINRo0bh1ltvxfbt25Gbm+vRcSxbtgw33HAD7rnnHjRq1AiffPIJHn30UZjNZkydOtWjfVtcu3YNZ86cQatWrWS3qaqqQr9+/XDy5ElMmzYNKSkpeP/99zF27FiUlZXhD3/4A6Kjo7Fs2TJMmTIF9913H4YNGwYAyMjIUCWdRAFDICJy0apVqwQAwn/+8x/hwoULwpkzZ4QPPvhAiI6OFkJDQ4UzZ86I2w4YMEBIT08Xrl69Kr5mNpuFW2+9VejQoYP4WmZmppCbm+vwe5955hnB+rZVUFAgABAeffRRm+1GjRolABCeeeYZ8bUxY8YIbdu2dbpPQRCEysrKetvl5OQI7dq1s3mtb9++Qt++fR2mWRAEoW3btsKgQYOECxcuCBcuXBC++eYbYeTIkQIA4bHHHpPd39KlSwUAwjvvvCO+VlNTI2RlZQnNmjUTysvLBUEQhAsXLtQ7XiJyDZvMiMhtAwcORHR0NBITE3H//fejadOm+Pjjj9GmTRsAwKVLl7B9+3b87ne/wy+//IKLFy/i4sWL+Pnnn5GTk4Pvv/9eHJXWokULHDt2DN9//73i7//0008BAI8//rjN69OnT/fouMLCwsT/NplMuHjxIvr27YsffvgBJpPJrX1+9tlniI6ORnR0NDIzM/H+++/joYcewvPPPy/7mU8//RRxcXF44IEHxNcaN26Mxx9/HFeuXMHOnTvdSgsR1ccmMyJy26uvvoqOHTvCZDLhzTffxK5duxAaGiq+f/LkSQiCgPnz52P+/PmS+zh//jxat26NhQsX4t5770XHjh3RtWtXDB48GA899JDDpp/Tp08jKCgIqampNq936tTJo+P68ssv8cwzzyA/Px+VlZU275lMJhiNRpf3efPNN+O5556DwWBAeHg4unTpghYtWjj8zOnTp9GhQwcEBdk+u3bp0kV8n4jUwYCIiNx20003iaPMhg4dij59+mDUqFE4ceIEmjVrBrPZDAB44oknkJOTI7mP9u3bAwCys7NRWFiIf//73/jss8+wcuVKvPjii1i+fDkmTpzocVrlJnSsra21+buwsBADBgxA586d8be//Q2JiYkICQnBp59+ihdffFE8JldFRUVh4MCBbn2WiLyPARERqSI4OBh5eXno378//v73v2Pu3Llo164dgLpmHiXBQGRkJMaNG4dx48bhypUryM7OxrPPPisbELVt2xZmsxmFhYU2tUInTpyot23Lli1RVlZW73X7WpZPPvkE1dXV+Pjjj5GUlCS+/vnnnztNv9ratm2Lw4cPw2w229QSHT9+XHwfkA/2iEg59iEiItX069cPN910E5YuXYqrV68iJiYG/fr1w+uvv46SkpJ621+4cEH8759//tnmvWbNmqF9+/aorq6W/b4hQ4YAAF5++WWb15cuXVpv29TUVJhMJhw+fFh8raSkpN5s0cHBwQAAQRDE10wmE1atWiWbDm+58847UVpairVr14qvXb9+Ha+88gqaNWuGvn37AgDCw8MBQDLgIyJlWENERKqaNWsW/ud//gerV6/G5MmT8eqrr6JPnz5IT0/HpEmT0K5dO5w7dw75+fn48ccf8c033wAA0tLS0K9fP/To0QORkZHYv38/PvjgA0ybNk32u7p164YHHngAr732GkwmE2699VZs27YNJ0+erLftyJEjMWfOHNx33314/PHHUVlZiWXLlqFjx444ePCguN2gQYMQEhKCu+++G4888giuXLmCFStWICYmRjKo86aHH34Yr7/+OsaOHYsDBw4gOTkZH3zwAb788kssXboUzZs3B1DXCTwtLQ1r165Fx44dERkZia5du6Jr164+TS+RX9N6mBsR+R/LsPt9+/bVe6+2tlZITU0VUlNThevXrwuCIAiFhYXC6NGjhbi4OKFx48ZC69athbvuukv44IMPxM8999xzwk033SS0aNFCCAsLEzp37iz87//+r1BTUyNuIzVEvqqqSnj88ceFVq1aCU2bNhXuvvtu4cyZM5LD0D/77DOha9euQkhIiNCpUyfhnXfekdznxx9/LGRkZAhNmjQRkpOTheeff1548803BQBCUVGRuJ0rw+6dTSkgt79z584J48aNE6KiooSQkBAhPT1dWLVqVb3P7tmzR+jRo4cQEhLCIfhEbjAIglW9MBEREVEAYh8iIiIiCngMiIiIiCjgMSAiIiKigKdpQLRs2TJkZGQgIiICERERyMrKwqZNm8T3+/XrJ67cbPk3efJkm30UFxcjNzcX4eHhiImJwaxZs3D9+nWbbXbs2IEbb7wRoaGhaN++PVavXu2LwyMiIiI/oemw+zZt2mDx4sXo0KEDBEHAW2+9hXvvvReHDh3CDTfcAACYNGkSFi5cKH7GMt8GUDfDbG5uLuLi4rBnzx6UlJRg9OjRaNy4MRYtWgQAKCoqQm5uLiZPnox3330X27Ztw8SJExEfHy87cy4REREFFt2NMouMjMQLL7yACRMmoF+/fujWrZvkJGsAsGnTJtx11104e/YsYmNjAQDLly/HnDlzcOHCBYSEhGDOnDnYuHEjjh49Kn5u5MiRKCsrw+bNm31xSERERKRzupmYsba2Fu+//z4qKiqQlZUlvv7uu+/inXfeQVxcHO6++27Mnz9frCXKz89Henq6GAwBQE5ODqZMmYJjx46he/fuyM/Pr7dkQE5OjsurYZvNZpw9exbNmzfnNPlERER+QhAE/PLLL0hISKi3ULI1zQOiI0eOICsrC1evXkWzZs2wfv16pKWlAQBGjRqFtm3bIiEhAYcPH8acOXNw4sQJrFu3DgBQWlpqEwwBEP8uLS11uE15eTmqqqoQFhYmma7q6mqbJQN++uknMV1ERETkX86cOYM2bdrIvq95QNSpUycUFBTAZDLhgw8+wJgxY7Bz506kpaXh4YcfFrdLT09HfHw8BgwYgMLCQqSmpno1XXl5eViwYEG918+cOYOIiAivfjcRERGpo7y8HImJieJSN3I0D4hCQkLQvn17AECPHj2wb98+vPTSS3j99dfrbXvzzTcDAE6ePInU1FTExcXh66+/ttnm3LlzAIC4uDjx/y2vWW8TEREhWzsEAPPmzcPMmTPFvy0n1DIijoiIiPyHs+4uupuHyGw2y65uXVBQAACIj48HAGRlZeHIkSM4f/68uM3WrVsREREhNm9lZWVh27ZtNvvZunWrTT8lKaGhoWLwwyCIiIioYdO0hmjevHkYMmQIkpKS8Msvv2DNmjXYsWMHtmzZgsLCQqxZswZ33nknWrVqhcOHD2PGjBnIzs5GRkYGgLpVqdPS0vDQQw9hyZIlKC0txVNPPYWpU6ciNDQUADB58mT8/e9/x+zZszF+/Hhs374d//rXv7Bx40YtD52IiIh0RNOA6Pz58xg9ejRKSkpgNBqRkZGBLVu24I477sCZM2fwn//8B0uXLkVFRQUSExMxfPhwPPXUU+Lng4ODsWHDBkyZMgVZWVlo2rQpxowZYzNvUUpKCjZu3IgZM2bgpZdeQps2bbBy5UrOQUREREQi3c1DpFfl5eUwGo0wmUxsPiMiamBqa2tx7do1rZNBbmjcuDGCg4Nl31dafmveqZqIiEgrgiCgtLQUZWVlWieFPNCiRQvExcV5NE8gAyIiIgpYlmAoJiYG4eHhnHjXzwiCgMrKSnFwlWXQlTsYEBERUUCqra0Vg6FWrVppnRxyk2UKnfPnzyMmJsZh85kjuht2T0RE5AuWPkPWi4aTf7L8hp70A2NAREREAY3NZP5Pjd+QAREREREFPAZEREREBKCupuWjjz7SOhk2duzYAYPB4PWRgAyIGpASUxX2FF5EialK66QQEZGOPfvss+jWrZvWydAVjjJrINbuK8a8dUdgFoAgA5A3LB0jeiVpnSwiIiK/wBqiBqDEVCUGQwBgFoAn1x1lTRERUQNlNpuRl5eHlJQUhIWFITMzEx988AGA35qYtm3bhp49eyI8PBy33norTpw4AQBYvXo1FixYgG+++QYGgwEGgwGrV68W933x4kXcd999CA8PR4cOHfDxxx8rSpPle7ds2YLu3bsjLCwMt99+O86fP49NmzahS5cuiIiIwKhRo1BZWSl+rrq6Go8//jhiYmLQpEkT9OnTB/v27VPvZCnEgKgBKLpYIQZDFrWCgFMXK6U/QEREqvNlt4W8vDy8/fbbWL58OY4dO4YZM2bg97//PXbu3Clu86c//Ql//etfsX//fjRq1Ajjx48HAIwYMQJ//OMfccMNN6CkpAQlJSUYMWKE+LkFCxbgd7/7HQ4fPow777wTDz74IC5duqQ4bc8++yz+/ve/Y8+ePThz5gx+97vfYenSpVizZg02btyIzz77DK+88oq4/ezZs/Hhhx/irbfewsGDB9G+fXvk5OS49J1qYEDUAKRENUWQ3YjDYIMByVGcW4OIyBfW7itG78XbMWrFXvRevB1r9xV77buqq6uxaNEivPnmm8jJyUG7du0wduxY/P73v8frr78ubve///u/6Nu3L9LS0jB37lzs2bMHV69eRVhYGJo1a4ZGjRohLi4OcXFx4uSGADB27Fg88MADaN++PRYtWoQrV67g66+/Vpy+5557Dr1790b37t0xYcIE7Ny5E8uWLUP37t1x22234f7778fnn38OAKioqMCyZcvwwgsvYMiQIUhLS8OKFSsQFhaGN954Q72TpgADogYg3hiGvGHpCP51HoZggwGLhnVFvDHMySeJiMhTvu62cPLkSVRWVuKOO+5As2bNxH9vv/02CgsLxe0yMjLE/7YsaWFZ4sIR6881bdoUERERij4n9fnY2FiEh4ejXbt2Nq9Z9ldYWIhr166hd+/e4vuNGzfGTTfdhO+++07xd6qBnaobiBG9kpDdMRqnLlYiOSqcwRARkY846rbgjXvxlStXAAAbN25E69atbd4LDQ0Vg6LGjRuLr1smLjSbzU73b/05y2eVfE7q8waDweP9+QoDogYk3hjGQIiIyMcs3RasgyJvdltIS0tDaGgoiouL0bdv33rvW9cSyQkJCUFtba03kueS1NRUhISE4Msvv0Tbtm0B1C2/sW/fPkyfPt2naWFARERE5AFLt4Un1x1FrSB4vdtC8+bN8cQTT2DGjBkwm83o06cPTCYTvvzyS0RERIiBhSPJyckoKipCQUEB2rRpg+bNmyM0NNQr6XWkadOmmDJlCmbNmoXIyEgkJSVhyZIlqKysxIQJE3yaFgZEREREHvJ1t4U///nPiI6ORl5eHn744Qe0aNECN954I5588klFzVHDhw/HunXr0L9/f5SVlWHVqlUYO3asV9MsZ/HixTCbzXjooYfwyy+/oGfPntiyZQtatmzp03QYBEEQnG9G5eXlMBqNMJlMiIiI0Do5RETkoatXr6KoqAgpKSlo0qSJ1skhDzj6LZWW3xxlRkRERAGPARERERE5NXnyZJth/tb/Jk+erHXyPMY+REREROTUwoUL8cQTT0i+1xC6kjAgIiIiIqdiYmIQExOjdTK8hk1mREREFPAYEBERUUDT46zJ5Bo1fkM2mRERUUAKCQlBUFAQzp49i+joaISEhIhLXJB/EAQBNTU1uHDhAoKCghASEuL2vhgQERFRQAoKCkJKSgpKSkpw9uxZrZNDHggPD0dSUhKCgtxv+GJAREREASskJARJSUm4fv26Ltb2ItcFBwejUaNGHtfuMSAiIqKAZlmR3X5Vdgos7FRNREREAY8BEREREQU8BkREREQU8BgQERERUcBjQEREREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHA0zQgWrZsGTIyMhAREYGIiAhkZWVh06ZN4vtXr17F1KlT0apVKzRr1gzDhw/HuXPnbPZRXFyM3NxchIeHIyYmBrNmzcL169dtttmxYwduvPFGhIaGon379li9erUvDo+IiIj8hKYBUZs2bbB48WIcOHAA+/fvx+233457770Xx44dAwDMmDEDn3zyCd5//33s3LkTZ8+exbBhw8TP19bWIjc3FzU1NdizZw/eeustrF69Gk8//bS4TVFREXJzc9G/f38UFBRg+vTpmDhxIrZs2eLz4yUiIiJ9MgiCIGidCGuRkZF44YUXcP/99yM6Ohpr1qzB/fffDwA4fvw4unTpgvz8fNxyyy3YtGkT7rrrLpw9exaxsbEAgOXLl2POnDm4cOECQkJCMGfOHGzcuBFHjx4Vv2PkyJEoKyvD5s2bFaervLwcRqMRJpMJERER6h40EREReYXS8ls3fYhqa2vxz3/+ExUVFcjKysKBAwdw7do1DBw4UNymc+fOSEpKQn5+PgAgPz8f6enpYjAEADk5OSgvLxdrmfLz8232YdnGsg851dXVKC8vt/lHREREDZPmAdGRI0fQrFkzhIaGYvLkyVi/fj3S0tJQWlqKkJAQtGjRwmb72NhYlJaWAgBKS0ttgiHL+5b3HG1TXl6Oqqoq2XTl5eXBaDSK/xITEz09VCIiItIpzQOiTp06oaCgAHv37sWUKVMwZswYfPvtt1onC/PmzYPJZBL/nTlzRuskERERkZc00joBISEhaN++PQCgR48e2LdvH1566SWMGDECNTU1KCsrs6klOnfuHOLi4gAAcXFx+Prrr232ZxmFZr2N/ci0c+fOISIiAmFhYbLpCg0NRWhoqMfHR0RERPqneQ2RPbPZjOrqavTo0QONGzfGtm3bxPdOnDiB4uJiZGVlAQCysrJw5MgRnD9/Xtxm69atiIiIQFpamriN9T4s21j2QURERKRpDdG8efMwZMgQJCUl4ZdffsGaNWuwY8cObNmyBUajERMmTMDMmTMRGRmJiIgIPPbYY8jKysItt9wCABg0aBDS0tLw0EMPYcmSJSgtLcVTTz2FqVOnirU7kydPxt///nfMnj0b48ePx/bt2/Gvf/0LGzdu1PLQiYiISEc0DYjOnz+P0aNHo6SkBEajERkZGdiyZQvuuOMOAMCLL76IoKAgDB8+HNXV1cjJycFrr70mfj44OBgbNmzAlClTkJWVhaZNm2LMmDFYuHChuE1KSgo2btyIGTNm4KWXXkKbNm2wcuVK5OTk+Px4iYiISJ90Nw+RXnEeIiIiIv/jd/MQEREREWmFAREREREFPAZEREREFPAYEBEpUGKqwp7Ciygxyc9uTkRE/kvziRmJ9G7tvmLMW3cEZgEIMgB5w9IxoleS1skiIiIVsYaIyIESU5UYDAGAWQCeXHeUNUVERA0MAyIiB4ouVojBkEWtIODUxUptEkRERF7BgIjIgZSopggy2L4WbDAgOSpcmwQREZFXMCAiciDeGIa8YekINtRFRcEGAxYN64p4o/zCwERE5H/YqZrIiRG9kpDdMRqnLlYiOSqcwRARUQPEgIhIgXhjGAMhIqIGjE1mREREFPAYEBEREVHAY0BEREREAY8BEREREQU8BkREREQU8BgQERERUcBjQEREREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAY8BEZHGSkxV2FN4ESWmKq2TQkQUsBppnQCiQLZ2XzHmrTsCswAEGYC8YekY0StJ62QREQUc1hARaaTEVCUGQwBgFoAn1x1lTRERkQYYEBFppOhihRgMWdQKAk5drNQmQUREAYwBEZFGUqKaIshg+1qwwYDkqHBtEkREFMAYEBFpJN4Yhrxh6Qg21EVFwQYDFg3rinhjmMYpIyIKPOxUTaShEb2SkN0xGqcuViI5KpzBEBGRRhgQEWks3hjGQIiISGNsMiMiIqKAx4CIiIiIAh4DIiIiIgp4DIiIiIgo4DEgIiIiooCnaUCUl5eHXr16oXnz5oiJicHQoUNx4sQJm2369esHg8Fg82/y5Mk22xQXFyM3Nxfh4eGIiYnBrFmzcP36dZttduzYgRtvvBGhoaFo3749Vq9e7e3DIyIiIj+haUC0c+dOTJ06FV999RW2bt2Ka9euYdCgQaioqLDZbtKkSSgpKRH/LVmyRHyvtrYWubm5qKmpwZ49e/DWW29h9erVePrpp8VtioqKkJubi/79+6OgoADTp0/HxIkTsWXLFp8dKxEREemXQRAEwflmvnHhwgXExMRg586dyM7OBlBXQ9StWzcsXbpU8jObNm3CXXfdhbNnzyI2NhYAsHz5csyZMwcXLlxASEgI5syZg40bN+Lo0aPi50aOHImysjJs3rxZUdrKy8thNBphMpkQERHh2YESERGRTygtv3XVh8hkMgEAIiMjbV5/9913ERUVha5du2LevHmorPxt8cv8/Hykp6eLwRAA5OTkoLy8HMeOHRO3GThwoM0+c3JykJ+fL5uW6upqlJeX2/wjIiKihkk3M1WbzWZMnz4dvXv3RteuXcXXR40ahbZt2yIhIQGHDx/GnDlzcOLECaxbtw4AUFpaahMMARD/Li0tdbhNeXk5qqqqEBZWf5bgvLw8LFiwQNVjJCIiIn3STUA0depUHD16FLt377Z5/eGHHxb/Oz09HfHx8RgwYAAKCwuRmprqtfTMmzcPM2fOFP8uLy9HYmKi176PiIiItKOLJrNp06Zhw4YN+Pzzz9GmTRuH2958880AgJMnTwIA4uLicO7cOZttLH/HxcU53CYiIkKydggAQkNDERERYfOPiIiIGiZNAyJBEDBt2jSsX78e27dvR0pKitPPFBQUAADi4+MBAFlZWThy5AjOnz8vbrN161ZEREQgLS1N3Gbbtm02+9m6dSuysrJUOhIiIiLyZ5oGRFOnTsU777yDNWvWoHnz5igtLUVpaSmqqqoAAIWFhfjzn/+MAwcO4NSpU/j4448xevRoZGdnIyMjAwAwaNAgpKWl4aGHHsI333yDLVu24KmnnsLUqVMRGhoKAJg8eTJ++OEHzJ49G8ePH8drr72Gf/3rX5gxY4Zmx05ERET6oemwe4PBIPn6qlWrMHbsWJw5cwa///3vcfToUVRUVCAxMRH33XcfnnrqKZsmrNOnT2PKlCnYsWMHmjZtijFjxmDx4sVo1Oi3LlI7duzAjBkz8O2336JNmzaYP38+xo4dqzitHHZPRETkf5SW37qah0jPGBARERH5H7+ch4iIiIhICwyIiIiIKOAxICIiIqKAx4CIiIiIAh4DIiIiIgp4DIiIqJ4SUxX2FF5EialK66QQEfmEbtYyIyJ9WLuvGPPWHYFZAIIMQN6wdIzolaR1soiIvIo1REQkKjFVicEQAJgF4Ml1R1lTREQNHgMiIhIVXawQgyGLWkHAqYuV2iSIiMhHGBARkSglqimC7FbUCTYYkBwVrk2CiIh8hAEREYnijWHIG5aO4F/XGQw2GLBoWFfEG8M0ThkRkXexUzUR2RjRKwnZHaNx6mIlkqPCGQwRUUBgQERE9cQbwxgIEVFAYZMZERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAY8BEQWcElMV9hRe5AruREQk4kzVFFDW7ivGvHVHYBaAIAOQNywdI3olaZ0sIiLSGGuIKGCUmKrEYAgAzALw5LqjrCkiIiIGRBQ4ii5WiMGQRa0g4NTFSm0SREREusGAiAJGSlRTBBlsXws2GJAcFa5NgoiISDcYEFHAiDeGIW9YOoINdVFRsMGARcO6clV3IiJip2oKLCN6JSG7YzROXaxEclQ4gyEiIgLAgIgCULwxjIEQERHZYJMZERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAY8BEREREQU8BkREREQU8DQNiPLy8tCrVy80b94cMTExGDp0KE6cOGGzzdWrVzF16lS0atUKzZo1w/Dhw3Hu3DmbbYqLi5Gbm4vw8HDExMRg1qxZuH79us02O3bswI033ojQ0FC0b98eq1ev9vbhERERkZ/QNCDauXMnpk6diq+++gpbt27FtWvXMGjQIFRUVIjbzJgxA5988gnef/997Ny5E2fPnsWwYcPE92tra5Gbm4uamhrs2bMHb731FlavXo2nn35a3KaoqAi5ubno378/CgoKMH36dEycOBFbtmzx6fESERGRPhkEQRC0ToTFhQsXEBMTg507dyI7OxsmkwnR0dFYs2YN7r//fgDA8ePH0aVLF+Tn5+OWW27Bpk2bcNddd+Hs2bOIjY0FACxfvhxz5szBhQsXEBISgjlz5mDjxo04evSo+F0jR45EWVkZNm/erCht5eXlMBqNMJlMiIiIUP/giYiISHVKy29d9SEymUwAgMjISADAgQMHcO3aNQwcOFDcpnPnzkhKSkJ+fj4AID8/H+np6WIwBAA5OTkoLy/HsWPHxG2s92HZxrIPIiIiCmyNtE6AhdlsxvTp09G7d2907doVAFBaWoqQkBC0aNHCZtvY2FiUlpaK21gHQ5b3Le852qa8vBxVVVUICwurl57q6mpUV1eLf5eXl3t2gERERKRbuqkhmjp1Ko4ePYp//vOfWicFQF2Hb6PRKP5LTEzUOklERETkJboIiKZNm4YNGzbg888/R5s2bcTX4+LiUFNTg7KyMpvtz507h7i4OHEb+1Fnlr+dbRMRESFZOwQA8+bNg8lkEv+dOXPGo2MkIiIi/dI0IBIEAdOmTcP69euxfft2pKSk2Lzfo0cPNG7cGNu2bRNfO3HiBIqLi5GVlQUAyMrKwpEjR3D+/Hlxm61btyIiIgJpaWniNtb7sGxj2YeU0NBQRERE2PwjIiKihknxKDNX+tAoDR4effRRrFmzBv/+97/RqVMn8XWj0SjW3EyZMgWffvopVq9ejYiICDz22GMAgD179gCoG3bfrVs3JCQkYMmSJSgtLcVDDz2EiRMnYtGiRQDqht137doVU6dOxfjx47F9+3Y8/vjj2LhxI3JychSllaPMiIiI/I/S8ltxQBQUFASDweBwG0EQYDAYUFtbqyiRcvtbtWoVxo4dC6BuYsY//vGPeO+991BdXY2cnBy89tprYnMYAJw+fRpTpkzBjh070LRpU4wZMwaLFy9Go0a/9RnfsWMHZsyYgW+//RZt2rTB/Pnzxe9QggERERGR/1E9INq5c6fiL+/bt6/ibf0FAyIiIiL/o7T8VjzsviEGOURERESAB/MQlZWV4Y033sB3330HALjhhhswfvx4GI1G1RJHRERE5AtujTLbv38/UlNT8eKLL+LSpUu4dOkS/va3vyE1NRUHDx5UO41EREREXuXWWma33XYb2rdvjxUrVogdl69fv46JEyfihx9+wK5du1RPqNbYh4iIiMj/qN6p2lpYWBgOHTqEzp0727z+7bffomfPnqisrHQ9xTrHgIiIiMj/eHVx14iICBQXF9d7/cyZM2jevLk7uyQiklViqsKewosoMVVpnRQiaqDc6lQ9YsQITJgwAX/5y19w6623AgC+/PJLzJo1Cw888ICqCSSiwLZ2XzHmrTsCswAEGYC8YekY0StJ62QRUQPjVkD0l7/8BQaDAaNHj8b169cBAI0bN8aUKVOwePFiVRNIRIGrxFQlBkMAYBaAJ9cdRXbHaMQbpdchJCJyh1sBUUhICF566SXk5eWhsLAQAJCamorw8HBVE0dEga3oYoUYDFnUCgJOXaxkQEREqnJ7HiIACA8PR3p6ulppISKykRLVFEEG2ARFwQYDkqP48EVE6nIrILp69SpeeeUVfP755zh//jzMZrPN+5yLiIjUEG8MQ96wdDy57ihqBQHBBgMWDevK2iEiUp1bAdGECRPw2Wef4f7778dNN93kdNFXIiJ3jeiVhOyO0Th1sRLJUeEMhojIK9wKiDZs2IBPP/0UvXv3Vjs9RET1xBvDGAgRkVe5NQ9R69atOd8QERERNRhuBUR//etfMWfOHJw+fVrt9BCRBjjxIREFOreazHr27ImrV6+iXbt2CA8PR+PGjW3ev3TpkiqJIyLv48SHRERuBkQPPPAAfvrpJyxatAixsbHsVE3kpzjxIRFRHbcCoj179iA/Px+ZmZlqp4eIfIgTHxIR1XGrD1Hnzp1RVcW+BkT+zjLxoTVOfEhEgcitgGjx4sX44x//iB07duDnn39GeXm5zT8ikqa3zsuWiQ+Df2325sSHRBSoDIIgCM43sxUUVBdH2fcdEgQBBoMBtbW16qROR8rLy2E0GmEymRAREaF1csgP6bnzcompihMfElGDpLT8dqsP0eeff+52wogCkd47LwfKxIclpioUXaxASlTTgDheIlLOrYCob9++irZ79NFHsXDhQkRFRbnzNUQNBjsva0/PNXREpD23+hAp9c4777BPERHYeVlrcjV0eunLRUTa82pA5Eb3JKIGiZ2XteWoho6ICHCzyYyIXMdV27VjqaGzDopYQ0dE1rxaQ0REtuKNYchKbcVgyMdYQ0dEzrCGiIgCAmvoiMgRBkREpEveGCIfKNMLEJHrvBoQ/f73v+ckhkTkMg6RJyJfc2umagAoKyvD119/jfPnz8NsNtu8N3r0aFUSpyecqZrIN0pMVei9eHu9DtC75/Zn7Q4RucyrM1V/8sknePDBB3HlyhVERETYLOFhMBgaZEBERL7BSSyJSAtujTL74x//iPHjx+PKlSsoKyvD5cuXxX+XLl1SO41EFEA4iSURacGtgOinn37C448/jvBw3qCItFBiqsKewosNcqZlDpEnIi241WSWk5OD/fv3o127dmqnh4icCIQOxxwiT0S+pjgg+vjjj8X/zs3NxaxZs/Dtt98iPT0djRs3ttn2nnvuUS+FRCSSW5Mru2N0gwsaOESeiHxJcUA0dOjQeq8tXLiw3msGgwG1tbUeJYqIpLHDMRGRdygOiOyH1hOR73FNLiIi73CrU/Xbb7+N6urqeq/X1NTg7bff9jhRRCSNHY6JiLzDrYkZg4ODUVJSgpiYGJvXf/75Z8TExDTIJjNOzEh6UmKqYodjIiIFlJbfbtUQCYJgMxmjxY8//gij0ah4P7t27cLdd9+NhIQEGAwGfPTRRzbvjx07FgaDwebf4MGDbba5dOkSHnzwQURERKBFixaYMGECrly5YrPN4cOHcdttt6FJkyZITEzEkiVLlB+sH2rIQ7KpTrwxDFmprRgMERGpxKVh9927dxcDkwEDBqBRo98+Xltbi6KionoBiyMVFRXIzMzE+PHjMWzYMMltBg8ejFWrVol/h4aG2rz/4IMPoqSkBFu3bsW1a9cwbtw4PPzww1izZg2Aushw0KBBGDhwIJYvX44jR45g/PjxaNGiBR5++GFXDt8vBMKQbCIiIrW5FBBZRpoVFBQgJycHzZo1E98LCQlBcnIyhg8frnh/Q4YMwZAhQxxuExoairi4OMn3vvvuO2zevBn79u1Dz549AQCvvPIK7rzzTvzlL39BQkIC3n33XdTU1ODNN99ESEgIbrjhBhQUFOBvf/tbgwuIAmlINhERkZpcCoieeeYZAEBycjJGjBiBJk2aeCVR1nbs2IGYmBi0bNkSt99+O5577jm0atUKAJCfn48WLVqIwRAADBw4EEFBQdi7dy/uu+8+5OfnIzs7GyEhIeI2OTk5eP7553H58mW0bNlS8nurq6ttOo6Xl5d76QjVwyHZRERE7nFrpuoxY8YAqBtVJrXafVKSOk00gwcPxrBhw5CSkoLCwkI8+eSTGDJkCPLz8xEcHIzS0tJ6HbsbNWqEyMhIlJaWAgBKS0uRkpJis01sbKz4nlxAlJeXhwULFqhyHL7CIdlEDU+JqQpFFyuQEtWUDzZEXuRWQPT9999j/Pjx2LNnj83rls7Wao0yGzlypPjf6enpyMjIQGpqKnbs2IEBAwao8h1y5s2bh5kzZ4p/l5eXIzEx0avf6SnLkOwn1x1FrSBwSDaRn2OfQCLfcSsgGjt2LBo1aoQNGzYgPj5ecsSZN7Rr1w5RUVE4efIkBgwYgLi4OJw/f95mm+vXr+PSpUtiv6O4uDicO3fOZhvL33J9k4C6vkv2Hbj9AdeAImoY2CeQyLfcCogKCgpw4MABdO7cWe30OPTjjz/i559/Rnx8PAAgKysLZWVlOHDgAHr06AEA2L59O8xmM26++WZxmz/96U+4du2auOba1q1b0alTJ9nmMn/HNaCI/B/7BBL5llvzEKWlpeHixYsef/mVK1dQUFCAgoICAEBRUREKCgpQXFyMK1euYNasWfjqq69w6tQpbNu2Dffeey/at2+PnJwcAECXLl0wePBgTJo0CV9//TW+/PJLTJs2DSNHjkRCQgIAYNSoUQgJCcGECRNw7NgxrF27Fi+99JJNc1hDx3mJiPyPpU+gNfYJJPIet2aq3r59O5566iksWrRIcrV7pTM579ixA/3796/3+pgxY7Bs2TIMHToUhw4dQllZGRISEjBo0CD8+c9/FjtFA3UTM06bNg2ffPIJgoKCMHz4cLz88ss2UwIcPnwYU6dOxb59+xAVFYXHHnsMc+bMcemY/XWmavZBIPJfa/cV1+sTyOuXyDVKy2+3AqKgoN8qlqz7D6ndqVpP/DEgKjFVoffi7fVGne2e259V7kR+gsu0EHlGafntVh+izz//3O2Eke+wDwKR/2OfQCLfcKsPUd++fREUFIQVK1Zg7ty5aN++Pfr27Yvi4mIEBwernUZyE/sgEBERKeNWQPThhx8iJycHYWFhOHTokDijs8lkwqJFi1RNILnPMi9R8K/NmpyXiIiISJpbfYi6d++OGTNmYPTo0WjevDm++eYbtGvXDocOHcKQIUPEWaIbEn/sQ2TBPghERBSovNqH6MSJE8jOzq73utFoRFlZmTu7JC9iHwQiIiLH3Goyi4uLw8mTJ+u9vnv3brRr187jRBERERH5klsB0aRJk/CHP/wBe/fuhcFgwNmzZ/Huu+/iiSeewJQpU9ROIxEREZFXudVkNnfuXJjNZgwYMACVlZXIzs5GaGgonnjiCTz22GNqp5GIiIjIq9zqVG1RU1ODkydP4sqVK0hLS7OZHbqh8edO1URERIHKq52qLUJCQpCWlubJLoiIyAtKTFUouliBlKimHFRBpIBHAREREekP1zAkcp1bnarJO9xdlZ6r2RORRYmpSgyGAMAsAE+uO8r7A5ETrCHSCXef6JR8zlHVOavV9YG/A6mFaxgSuYcBkQ7IPdFld4x2eANT8jlHAROr1fWBvwOpybKGoXVQxDUMiZxjk5kOOHqi8+RzjqrOWa2uD/wdSG1cw5DIPawh0gF3n+icfc5RwCRAYLW6DrB5g7xhRK8kZHeM1uUahmweJr1iDZEOuPtE5+xzloDJmiVgcvQe+Q5/B/KWeGMYslJb6SroWLuvGL0Xb8eoFXvRe/F2rN1XrHWSiEQeTcwYSHwxMaO7q9I7+tzafcV4ct1R1AqCGDBZ9yGSe09vGvJTpT/9DkTuKjFVoffi7fVqtHfP7d/grmnSF6XlNwMihfx5pmpHAZO7QZgvBUKnY3/4HYg8safwIkat2Fvv9fcm3YKs1FYapIgChU9mqib/EG8Mky1kHb2nB+6OwPM3ev8diDzF0W+kd+xDRLrm7gg8ItIXjn4jvWMNEekanyqJGg49j34jYg0R6RqfKokaFj2OfiMCWENEDuhlZBefKomIyNsYEJEkvY3sYqdjIiLyJjaZUT3fnLmMuR9yOQkiIgocDIjIxtp9xRj62h7YT07FkV1ERNSQMSAikWXOH6mpOjmyi4iIGjIGRCSSmvMHqMskHNlFREQNGTtVk0hqzp8gA7D+0VuRmdjSJ2nQy8g2IiIKLKwhIpHUnD95w9J9FgxxJWwiItIKa4jIhlZz/kitWTZv3RF0jmvus4CMAhNrJYkIYEBEErSY80eq/5JZAIa+ugeLhze81e1JH/Q23xYRaYdNZjpWYqrCnsKLDWb+H0fHY+m/ZE8A50Ai75CqlWReIwpcrCHSqYb25OrseCz9l6wLKAvLHEhsziA1SdVKMq8RBS7WEOlQQ3tyVXo8I3olYf2jt8K+oohzIJE3SNVKMq8RBS4GRDrk6MnVH7lyPJmJLbF4OFe3J++TGlXJvEYUuNhkpkNS8wH585Orq8fD1e3JV5jXiMiCNUQ61NCeXN05nnhjGLJSW/ntMZP/YF4jIkDjgGjXrl24++67kZCQAIPBgI8++sjmfUEQ8PTTTyM+Ph5hYWEYOHAgvv/+e5ttLl26hAcffBARERFo0aIFJkyYgCtXrthsc/jwYdx2221o0qQJEhMTsWTJEm8fmsdG9ErC7rn98d6kW7B7bn+/7lANNLzjISKihkXTgKiiogKZmZl49dVXJd9fsmQJXn75ZSxfvhx79+5F06ZNkZOTg6tXr4rbPPjggzh27Bi2bt2KDRs2YNeuXXj44YfF98vLyzFo0CC0bdsWBw4cwAsvvIBnn30W//d//+f141PC0VD0hvbk2tCOh4iI3FdiqsKGw2fxyTc/6WLQkEEQpNY29z2DwYD169dj6NChAOpqhxISEvDHP/4RTzzxBADAZDIhNjYWq1evxsiRI/Hdd98hLS0N+/btQ8+ePQEAmzdvxp133okff/wRCQkJWLZsGf70pz+htLQUISEhAIC5c+fio48+wvHjxxWnr7y8HEajESaTCREREaocs5Kh9ZxFl4iIGpq1+4ox98MjsAQgBsBrk/AqLb9124eoqKgIpaWlGDhwoPia0WjEzTffjPz8fABAfn4+WrRoIQZDADBw4EAEBQVh79694jbZ2dliMAQAOTk5OHHiBC5fviz7/dXV1SgvL7f5pyYlQ9H1vrZXQ5s4koiI3Ke0TLCUf9a1MQKAeR8e0bQ80e0os9LSUgBAbGyszeuxsbHie6WlpYiJibF5v1GjRoiMjLTZJiUlpd4+LO+1bCm9TlZeXh4WLFjg+YHIcDYpnFzAlN0xWvx805BgVNTUalJ71NAmjiQiIve5UiZIlX8AYAY0nRhVtwGR1ubNm4eZM2eKf5eXlyMxMVG1/Tsbii4XMK36sggrvyiyec/XAYmjYI3NekREgcXVMkGq/APqmqy0nF5Gt01mcXFxAIBz587ZvH7u3Dnxvbi4OJw/f97m/evXr+PSpUs220jtw/o7pISGhiIiIsLmn5qcDUWXmkU3yACs2FVULxP5eiZrTyeOZFMbEZF/cXTfdrVMsJR/BqsyzgAgb3i6pg/Vuq0hSklJQVxcHLZt24Zu3boBqKul2bt3L6ZMmQIAyMrKQllZGQ4cOIAePXoAALZv3w6z2Yybb75Z3OZPf/oTrl27hsaNGwMAtm7dik6dOsk2l/mKo0nh4o1huK97a3x48Cfxtd7to/DF9xcl9+XLNZg8mTiSTW1EtjhwgrRgne8ASP63JT86u2+7UyZYyr+Dpy9DEIAeyS01z/+aBkRXrlzByZMnxb+LiopQUFCAyMhIJCUlYfr06XjuuefQoUMHpKSkYP78+UhISBBHonXp0gWDBw/GpEmTsHz5cly7dg3Tpk3DyJEjkZCQAAAYNWoUFixYgAkTJmDOnDk4evQoXnrpJbz44otaHHI98cYwyUxQYqrC+kM/2by2WyYYAuoyqa+qGi3R/ZPrjqJWEBRPHMmmNiJbfEDwHQaev7HOd5ZKGgG2/23Jj9kdo53et90tE+KNYcjN0M9voWlAtH//fvTv31/829JnZ8yYMVi9ejVmz56NiooKPPzwwygrK0OfPn2wefNmNGnSRPzMu+++i2nTpmHAgAEICgrC8OHD8fLLL4vvG41GfPbZZ5g6dSp69OiBqKgoPP300zZzFemRVBWko/kRBAHY9d8LPruZurPkQUNbXZw3WPIEHxB8h4Hnb+zznf1ILwtLflw6MlPRfbshLIOjaUDUr18/OJoGyWAwYOHChVi4cKHsNpGRkVizZo3D78nIyMAXX3zhdjq1INfpTI4A399M5Wq35DSkNdp4gyVPNbQHBL1i4GlLboSXlFpBQJDBoPi+7WqZoDe67VQd6Ow7XQcZfqvOlONKx2YtNJQ12pTMIUUNmxoDA6QGTvjrA4KeeToIRO9czYtS+U5OsMGAG9u2dPu+7W8DaHTbqZrqV0Hu+u8FsY02yFDXTGZ9nfvDzdTfq1UtU83zyT5wqVU76G6/C3JNQ6qZtudOXrTPdwYDgF/LEuv/ts6P1vft8JAgVNTUosRU5TCv+mMtum6W7tA7byzd4Y4SU5VkgGTJvHrPcP7M+gK3F2wwYPfc/izMGrgSUxV6L95er3D15Le3vqaZf7xj7b7iBnev9DQvWuc7AJL/bb8fpUGON64TTygtv1lD5Ges22j1UtsSCJ2L7ZvJrPHJPnB4o9+Pv/e78Ad6uVcqofR+6kpelNqnfb6T+2/rfSjti+Wv/eMYEPk5rW+m/lgt6g65jojzc7vgzox4XV/kpJ6G3PzS0Gl9r1TClfup0ryo1j3alSDHX68Tdqomt1j60sz9MDA6F8t1gNUyGPK3DosNQUMZGEDas79+XR2soSQvqjkAxJVBAP56nbCGiFzmqC+NVtWi3m6281UHWKXHESg1c3rkT80vpE9S129iZLjLzUzO8qKaTVeu3gP98TphQNSAeSNIcNSXBtCmWtRXwYG3L3BXOixyXhVt+UPzC+mT3PW77tEsl5qZrO/vWamtJLdRu+nK1Xugv10nbDJroNbuK0bvxdsxasVe9F68HWv3FauyX0eTemlRLerrOYHijWHISm3llZohpcfR0OdVIWrI5K7fyhqz4mYmpfd3bzRduXoP9KemfdYQNUDerEGQeuIIMgAvj+wuuzifJzVVzj7rr6MZ7AVCh0WihsSVxVGtObp+s1JbOa2BcfX+7s2abWf3Z39r2mdA1AB5M0iQa0e+KzNBcntPLghHn7VciE1Dgv0mOHB083AlyOGEfkTacmVxVPv7nbPr11kzkzv3d280Xdnfnyf0ScH4Pini9/hj0z4DIj/hSi2Lt2sQlD5xeHJBSH123odHkN0xGrv+e8HmQryve2t8dOis14IDNfpiOQsMG3KHxUCYp4oaDmf51dXFUaXud55cv3qoIZa6P6/4oggrvyjC4uF19zZ/rL1nQOQHXK1l8UUNgtQTh/2NxJMLQuqzZgCvbDuJf+4rtrkQPzp0FusezcKZS1WAAejRtqWHR/cbNap8lQaGDbHDor9VmVNgU5JfXV0cVe5+5+71q4caYrlzYL3IuB4CN1cxINI5d2tZnBWucu3fataAZHeMdvuCSIlqil+X1bFhHQxZ1AoCNh4uxcrdP6ha8KpV5etKYOgPQY5S/lhlTg2fo74/SvKrVEEvx1sBgNY1xI7OgeXelpXaSvPAzVUMiHTOk1oWucJVrv1b7RqQ3XP7u31BxBvDMOm2FPzfF0U2r1vSbH1KggAxGLL+fk8LXrWqfL35pKTn5ih/rDKnhs3RvW9CnxTJ/Hrw9GW0bPrbNWZfQ2PN8Ov/CELdNT57SCcUXawAIL0chie0fHiynAOpKVis721aB26uYkCkc2oXpo7av71RA+LJBTGuTwpW7i6qd+yzB3fCks0nxCBrQp/keoGTGgWvWufeW1Xcem+O8scqc2q4nN373thdVO9hy2AApq05VO+BcUSvJJRVXcPiTcch/Hr9TezTDuP6JAOoWxz18I9leH7Tca9dn1o/DFnu7au+LMLKXUUwQ3pYvz/VejMg0jm1C1Nn7d/eqAFRu618RK8k3NMtwWZ1ZqnAyVnBK3dDsX5drXOv9pOSPzRH6aGvA5GFs3ufWQAezk7BG1+cQq0gIOjXmh7B6n3LNQYAz/8aDFnee2N3Ecb1SRbz94Mrv3Lp+nQlwNHLw1C8MQxP3pmGcb1TcODUZdX7cPoaAyI/oGZhKtc3x0JPNSCA/LHbB1mufr/cDUXq9d1z+6ty7tV8UvKX5ii9VJlr/TRN2nPW9yfYYMC43ikY1zsFpy5W4uKVq3jsvQKbbSzXmADB4fXn6vXpSoCjx4ch+5G/equtVooBkZ9QqzD9y5YT9YIhS4AUBPi0BkRpIaXk2Ef0SkLnuObYd+oyeiW3RGai/FOK3A2lc1xz2b5QclPja8WfmqO0rjLXy9M0acv+wc2+v4/9XEAlpiqH15ij91y5Pl0NcPT2MKQ0/f7wUMKAyE+5k7m+OXMZHx78qd7r4rVlqPeWS1wp+NQupFzZn9wNZd+py7q60TjC5ihl9Pg0Tdqxf3ADIPsQ5+wacza5otLr09UAR28PQ0rS7y8PJQyI/JC7mevrU5ccvu+rwsJZIaU02LOerVquxqeiprbefo78ZKq3r2CDASkyN5TwEH0u+aeX5ig909vTdENlf816c7keT9k/uLk7fYmz608q+NpTeLHecbka4OjtYchZ+v3poYQBkZ/xJHPdlBzpdP++KCwcFVJK26Lth8/aNwPWCgKGvrqn3uiQElMVnt90vN7+Zg/uhMqaWsn0VtaY3TtQH9C6OUrv9PY07a8cBSn2D2j3dW+N9Yd+Eq/NuUM645G+qYq+R481CY6uMWfXn+V9R8flToCjp4chZ+n3p4cSBkR+xpPMlZnYEsNvbC3ZbGbhi8JCrpAKDwlS3BYtN3zWmtToELmRJj9XVOP5zfUDJS0LT39oc9c7vT1N+yNnawraX7PW9xcBQN6m44ABeCTbcVDkTzUJFkquUSXH5U6A487DkLfuKY7S708PJQyI/Iynmeuvv+uG0Vltsf/UZfRMbonjpb/4vLCQK6QqamoVBXtyQY3lvEiNJLHsR+r8BRmAFbuK6gVWnnQy95SnT8rWzYlSzYaBRElho2ZB0ZACWWeFudJlLJ7fdBz3ZCY4PB/+VJMAOF/c1ELpcalR2+tKTZ7atW9y6fenhxIGRH5GjcyVmfjbKKzMxJaaVL1KFVLORnUAdRf8pYqaes1kwQYD1j2ahcoaM8JDgnDfa3sk9yN1/sb3ScYKu4kdAeCVUd2Rm5Fg85ovCjtPn5Stb3wWeml+0IqjwkbNgkKPTT6Aa/nWeltnhbnSZSzMApwGNv5Uk6BkcVMLXx2XqzV5vqx901MTnyMMiPyQ2plLq34oUp0bHQV79v2GLEGRZTtLkFdiqsKEPil449fJGu33I9XZ8Q2JiR1vtJtgzFeFnSdPyvY3Pgu1boANqfYDULeg0LrQsaTB/vdxJd/abztncGenk67aX7ODbojFpqOlNvtVEgD4oiZBrfyrZHFTd0acucudmjxf1r75y32DAZGfaqidaeWCPal+Q0EG4JWR3dEjuaVs0PRwdt1Ea1JDaq1fc3bD8rSwc+WG4MkTpaMmDE9vgHIL+PrDjU6OmgWFs325Wktz4PRlCIKAnsmRipr55H4fpflWKo8v2XwCc4Z0xpJNJ2SvDalr9vVdheKyFa4EAK487LlayKr5QKNkcVNXRqR5yp2aPF/Vvum11lQKAyKdUnMYq17JHZNUsCd1wZsFoLT8qs3+7IOmN744hXG9U5ymxdkNy5OC01lVtv058OSJ0tGNWs018MwCMPfDIzBY9dvy1Y3O2bUgt5q51LZqFhRy0zkkR4W7XEsz98MjYpOwAcDcOzsjvbVRNviZM6SzGIAAvwU+S0dmKs63cnk8o3ULp7O121+zj2Sn4p7MBLcCACUPe64WsmrX3lmuUWeLm7p6XO5SsnySFv149FBr6goGRDrkaBir3iNspVy9ockV9M9t/A6LPv0OecPSkRgZ7tHTvqMblrsFZ4mpyqZws74hOJpiwN0nSvsbn3Va1V4DTwBs1nJSu8bMneYfR6uZS+UxRwWFqzU6ctM5AFA0T1aJqQr7T13C3HVHbPrHCQDyPq3btwHAo/1SsWxnoc3+rIMhi7r1uAyK862jPO5OYe6tAMDVQrbEVIUNh8+q3mSkdHFTX1AS8GjRj0frpjpXMSDSGWfDWPUeYTtjaQqQCxLkjkmuoLf+/LpHs7xWLezuE9abu+uPXqsVBBw4ddnpTd3dAsX6xhceEoTKGrMqa+A56zyrRo2Zo22cNf84W81cLo9JFRSuBuxyTZUZbVrIFgpDX9sjrpRu/dDjiADg1R2F9V63BIDWH7f0g1Oab7WqRXCVK4Ws1AADCzXuDfHG3xY31brDsJKAx9ddLfypozzAgEh3lAxj1XOE7Yijm5OSY7Jc8BsPl+C5jd/V+3xljdnmhh4EYEKfZNXSn90xGktHZiLo14JGSa3BG7uL6r0eBAAOpgYAHDfzKOGNG9/EPilY+UXdk3AQfq0hsno/yABFNWbOAkG5bZw1/zi7dqTymHUtkGW9Oneq+Z3d+KWCSevaNUdzgykRbDBg9uBOWLK5fl8fV2oG/GE0kNJCVm6AgWV7NYM9R9ebL2ft1lvfUn8Jsi0YEOmMkidxPUfYchzdnADlxxRvDENuRjwWffqd5A0xK7VVXTX27lNYufsH/N8XRVi5u8ina6VZyBXQE7NT0KNtS8mb+uGfyvDgyq901Txqf+wP92mHcX2Sseu/F+qadyw1MgLwccFZpLcxyt7AlTzdy23jrPlHyWrm1nlM7jd1p5rf2Y3fPlBXY+5zy7FavmtEryTc0026344rBaXeClV7SgtZuetvfm4X3JkRbxOAe6t/picdirXojOyNc+EPQbYFAyKdkbrYh3ZPwEeHzvpFhC3H0dO7q8ek5Ia4cvcPqnXkc7djoNwkkJZRb/bHMHtwJ8mOsVo2j0od+xu7izCuTzKyO0bbVBEJ+HVWYsjfwCXPCWxrluRqAOybf4IMwHirGkD7c2r4tQ1JgG0ec9Zsq6QGQqrgULruldQ8WfaCACwcegNahIXgu5Lyes1k1vNuWX+XN/vt6GlQh5JCVu53tA6GvBl0eNKhWIvOyN48F3oPsi0YEOmQ1MX+RE4nv4iw5cgFBy/bDZtXytENUe2OfO7uz1ngZn8MvuqA6ErhduD0Zdk0CRBkl02Ru4Fbzol1MCIA2PXfC4rWdrLuyLpiVxFWfFGEN6xqAB2tZg4A/7vx23pzTtkfV1Zqq3qB1+whnZwWos7Oq3WhoOShx3I+7spMQER443rD2C3zbnmbXodNOytknV1/3g46HF07zvbv687I/jYazFsYEOmU/cXuLxG2HLmb012ZCc4/7GCfrjwZutvM6Mn+nD3J2h+DtzsgujP8256zvjEWcjfw7I7RMBh+60MjwPW1nVZ+USTbKV/q2rEfyi7F+rhG9EpCWeU1LP41CHl+03G0CGss27G7rPIant983Ol5tQRN2R2j6w1ll3rosWx/T2aC28PY3WG99IsvC0q1a6I8fXByNz1Krh1HfN0Z2d9Gg3kLAyLyGV+1JavdkU/Jk6bSmgFfptueK0+Blm3tA4ggA2T7xtiTu4F7uraTqzdvuWOxT6v9b/r85uP1gq6XHugm+d2LN9Xf1v68OgtG7Y9Xq5oZm6kLrAJXC28VlN46XncfnNxNj9Jrx1mafdkZ2d9Gg3kLA6IApkW/AF/VdKkdfMntT+2buDeDRlcCCbk+X9P6t6/rOySR3sM/lTmc0di61sGTm6+rN29H/dfkmm3lzhWE+rVi9sPdLdva1zS4OneOFk0Y9aYukBmhpXZBqXT0oZr3K0dBhyfnXy6/vTyyu0s14r56gLScV2czkgcCBkQNnNxNpCEuw2BP7eDLfn/eKrS8FTS6EkjIjdh6eftJ/P3zkzaBnyW9WamtZJt1pCYbdXeggKtPz3LHYsn3UoWU3LnqkVy/Y7dU4Wc/BYGrtVpaNWHIFeaWkXHeKiidHa+3ao/kgg5Pzr+jvOMqbz9ASq1dl9GmhZh39xRebDDlgRIMiBowR50/6y3DsO6IOCJHi46TehvFooS/tbu7EkjYb2vNUeAndQOXym8fHTorOUpKKVeenu2PJQh1Ux9IrXEn9xm5eX0+/uYnvPf1mXqfn9innc2+Xa3V0qoJQ+57PfmtPPne5Khwr9eWSeVZT86/r5u73CW3dt3uuf1tZtEHgFE3JeKxAR10dwxqC9I6Ac48++yzMBgMNv86d+4svn/16lVMnToVrVq1QrNmzTB8+HCcO3fOZh/FxcXIzc1FeHg4YmJiMGvWLFy/ft3Xh+JTcjcRS+BhX5D/2hpQb1tfWLuvGL0Xb8eoFXvRe/F2rN1X7JPv9ZTlpmlNrUKrxFSFPYUXVf8NRvRKwu65/fHepFuwe25/h0GvZduncrvUe896Ekln5ALHyhozslJbedS3S+nnrY/7y3m348k705x+ztG5ijeGITkqHP+UCIYMAMbZTQhqKSSDDXUZxlkh6er2apH73szElh79Vvbs87ej43X04OEtnp5/V64zrcid14OnbWfRB4A1X5/BrXn+c292l1/UEN1www34z3/+I/7dqNFvyZ4xYwY2btyI999/H0ajEdOmTcOwYcPw5ZdfAgBqa2uRm5uLuLg47NmzByUlJRg9ejQaN26MRYsW+fxYfMXRTUTNZRg85c/DPb31JOjtzrSuVMPHGx1PhKmEXjpsKj1u+9pKuc/sP3VJsqP2AzcnSvZ7cbVPiFYT2nn7e+Xyt9z3apV/PD0Pvuov6S6582oWBMmyQQAw78Mjqtyb9doi4BcBUaNGjRAXF1fvdZPJhDfeeANr1qzB7bffDgBYtWoVunTpgq+++gq33HILPvvsM3z77bf4z3/+g9jYWHTr1g1//vOfMWfOHDz77LMICQnx9eH4hNwEeD9XVCM5KrxePwjrGiLAdwWWvzU72VO78HAWIKp5I1G6L08DP39pQgBcC0YNBoPk671To8R9WYb6GwAsHl63L1eOW+1C1ZXf3Bu/j7P8LfW9WuYfvQc1npA7rz2TIyUHCgB1/cg8vTfrdV4rwE8Cou+//x4JCQlo0qQJsrKykJeXh6SkJBw4cADXrl3DwIEDxW07d+6MpKQk5Ofn45ZbbkF+fj7S09MRGxsrbpOTk4MpU6bg2LFj6N69uxaH5HX2md2SwaetOSRmQut5UHb990K9CwPwfqc6vdQeeMKdm6ZcweQoQLRu1/f0RuLqTcnTwM8fpu93tbayR9uW9QoOgwG4sW1LlJiq6k0+OVfi6dqXT8ruTiipJlcegDypXSNl5M7r3CGdxVnnrdnPKu8qvbcI6D4guvnmm7F69Wp06tQJJSUlWLBgAW677TYcPXoUpaWlCAkJQYsWLWw+Exsbi9LSUgBAaWmpTTBked/ynpzq6mpUV1eLf5eXl6t0RL5jyewHTl3G4/88VC8T7p7bX1zQ0v7C2PXfC+i9eLvXo3h/qj1Qi6NgRC5ADA8JUu1G4u5NSUng56hw1fvTtqu1lfHGMCwenl7vt4w3huGTb36q94QtADhw6jLuyvTOlA2OyP3mZVXXxBmwvZkGV6dckDs3Ur+DXptf/IXUdflI31TAACz+9Lf5tQwA8oane3SO9d4ioPuAaMiQIeJ/Z2Rk4Oabb0bbtm3xr3/9C2Fh3juBeXl5WLBggdf27yvxxjBENnNtIjypm+e8dUcQHhKMnsmRDjOuOzcnf3v683T1amdNBlIBYkVNrWo3Em/dlPRcFa6EO7WVcnlXrjnN8rIn15g75H7zxZuOi3MNeetp3dGUC0EAJth1QHclYNdDrVdD9Uh2Ku7JTMDB05chCBCnDVDaaiD1G+i9RUD3AZG9Fi1aoGPHjjh58iTuuOMO1NTUoKyszKaW6Ny5c2Kfo7i4OHz99dc2+7CMQpPql2Qxb948zJw5U/y7vLwciYmJKh6J76gxkZ1ZAB57r8BhQedJgaj32gMLpcfoTpOYZTupQrbEVKXajcQbNyW9V4Ur4W5tpVTeddScBrh/jblLrk+ht5/WHU25sPFwKVbu/gH/90URVuwuwtwhnfFIdqrigF3rWq9AUDeowvUaTUc1fHpuEdD9sHt7V65cQWFhIeLj49GjRw80btwY27ZtE98/ceIEiouLkZWVBQDIysrCkSNHcP78eXGbrVu3IiIiAmlpabLfExoaioiICJt//srVIaRSw8kt5IbkOxrm31AoPUZH0wgoHapvP6RcyW+odKi+N4Z0e3NotLemIJCi1nBpS3Oa5bcOMgCLh6XXe1KW4uq1o+T8SP3mc4Z09tq0ERZy+eLMpSqs3P2D+J4gAHmfHsfrOwsVXyOOar0a8n1IC67c351tq+cpCXRfQ/TEE0/g7rvvRtu2bXH27Fk888wzCA4OxgMPPACj0YgJEyZg5syZiIyMREREBB577DFkZWXhlltuAQAMGjQIaWlpeOihh7BkyRKUlpbiqaeewtSpUxEaGqrx0fmOJxPZ2ZN6WtN727AalC4G6U6TmJJz5Og39GYnaSXND96qCteiGU6t2kpH59ida0yK3Eg2Z+kJDwlCRU2t15drkMsXkJn2Y/Gm47inW4Kia0SrWi+taNkM6OmyP/bb6rVFQPcB0Y8//ogHHngAP//8M6Kjo9GnTx989dVXiI6uW0/pxRdfRFBQEIYPH47q6mrk5OTgtddeEz8fHByMDRs2YMqUKcjKykLTpk0xZswYLFy4UKtD0owrmdBy8zx4+jKmrTnkdEi+3tuG1aDkGN1tElNK6jf0ZidppQGJWlXh1jd9AJLH1TmuOSpqanXfP8RZAebqNSa1fyUj2azFG8PqjVa0Xq5B7fMply96tG0puXCsAGDV7lN4MreL02tEat+zB3fC85uP6/4+5Gpwo3X/PGcziVsfiz+XBQZBkFq+j+yVl5fDaDTCZDL5dfOZO9buK653Q5PrQ6RkO3/m7BhLTFXi6DyLYIMBu+f291rhvafwIkat2Fvv9fcm3SKOInSHO8dSYqpyu3O8/U1/Qp8UrPiiqN52loJUz/1DXC3A3Ll2PvnmJzz2XkG91//+gPwiolrkT8v32ueL13cVIu9TiaHdBuDLubcrTo/9vq3PpSUfje8jv0yLr7maN7T6zexJ5VEAkscil5+1quVSWn7rvoaItKe0RsPfRou5w9kxatFp0FtPZO40g7pbFS5Vy/XG7iLJCeK8MSpK7QkvXa2xc+facTaSzZIW6+NSs2nblXMmObQ7OxWnL1Zgjd3yJ2ZB2eR/1t9vHfhbzuWqL4uwYlcRVnxRhDd2F+kieHYnb+ilO4J9HgVgE6hZH4tUfta6lksJBkSkiNKCTq9tw2pydozeCAydze/jjSDMl1XfcqOuHs5OwRtfnBKHaJvtPqfH6QLcLcBcvXacjWSTOq7sjtGq/KZqnbPHBnTAP/edUZQe62tAySSlK78oqrc+o9ajHt3JG3pqgrLOo3sKLzo8FuttlQSCepgqgQEROaWHjOpv1AwMlRQ+3gjCfFnbJXfTH9e7blV6S0fg+17bo6gfg1LemC7AVwWYZSSb1MSQcse1e25/j39TNc+Z0jxmfw1ILUZt/f16qVWx507e0OtQdVeOxdnvoZfaIwZE5JBeMqo/UiOQdKXw8UbtnK+aQZ3d9C3/L7WNJ0uaeKPg9GUBJvf7ODouT39Ttc+Zs/RIXQP2rKd4cGVGbF9zN2/osTuCK8firFO2XuYwY0BEsvSUUf2NWoGkHp50fdUMKjUsvMRUZfPdrvRjUJJmpU+5rga3vizApH4fZ8flyW/qjRowR+mRugbsBRsMOPxjGR5c+ZV4zVnPiK2XWhXA/bzh6+4ISvK80mNxFDw5a3rzJQZEJEsPhbE1bzfdqbV/NQNJPfUfcEStcxdvrD8s3D6YdKUfg5Lvc/aU625w640CzJXV6r1RS2X5/jmDO2PJZu/NX2RN6hqwFmwwYPaQTuLs1IDtjNiVNWbZAFsreu9r6UqeV3oscsGTnu5xDIjIhvUNV08Z1dtNd2ruX81AUq/9B5R0cLUvvJ39bdmvK8HkkZ9M9V5zNY86esrVUy2pNyffdOf75wzpjIzW3pm/yFq8MUx2Cob5uV1wZ0a87DVXWWNG8aUKNvu7wJt5Xip40tM9jgERiaRuuHrIqN4ulNTev9qBpN76D1jnE8sIb/sOrmWV18QJ8izNF+sP/ST7t6WQciWYLDFV4flN9eexmT24k1uBp9RnvF1LqrTGx34SRrMAzF3neBJGwPWaCLn0SF0jSzad8NlcOOP7pNiMGgPqrqk7M+IRbwzD+fKr9UbcBRsMCA8J0k1A62vu1tpq0TKgl3scAyICIB8U7J7bH7vn9tc0o3r7AlV7/9544tFLFbt9PpFqxRBXUf/1b7MAfHjwJ/F9qb8thZSnI1cAIKNNC9cPTIY3a0ldqfE5cPqy5HxMB09fFhff9GZ6tG4+t4yok7qmLOm2D4YWDeuKippaXTX7+4onNd5atQzo4R7HgIgAOL7hWS8y6i5P+ph4+wL1xv718sSjNiUdXB3195BjndfUGLmiFm/2xXGl5kJuQQG11hlwlh49NJ9LXVP26Qbq8t+6R7MQE9EEB05flqw50lsfPDV5WuOtpyYsX2NARAC0fRJ2Fix5+wL11v718MSjNql8YkDdhIBmQbqDqxLWeU2NkSuesM+P3ghuXa1x6ZkcWX8SRgA9kls6Tb8a6dFLIWl/TclN6LnxSAlWflEkNutazl1DLtwtv/ulihqXa8V8kef9AQMiAqC8cHH1ZuvsaUVp1a63L1B/vgH4cuJMuXxif+5ahDW22WZo9wSxz5C9IAPq5TVPR664S252Z7XPr6sPIJYmo3kfHoEZdau65w1Pr5ced5tKlKTHnXPt7bwpueK9AVixq8hm0dsgA/DKyO7okdxSMh2O+k75w6S09v36XKkVk8szDfGBzhku7qpQoCzu6mhxTiU3W/sbiKOFR5OjwnWxaKE/02riTCWLuNpv882Zyxj66h6bG3UQgBVjeiAspJHbhY6a0yXY50fr2i+1z687C7o6Ou+eLgKq9oKcvsqb9uke3ydZckSa3GLHcun0l0lpneVbR3lLLwvHehsXdyW3yD0VKGmXdnXtJG901PSXJzqlHB2PlkPClTw92m+TmdiyXsfYod0TMOntA24XOt6eLkGAdxaTBdyrcXF03j29ntRckNOXeVNqss43dhcpqn2TS2fnuOZ+MzpNLt++MrI7WjULdZi3tO4srzcMiEgRZxeOu2snqdlvyV+e6JRydjyuDlHXQ6BoPxu19dpkrhY6vpguwZ59nvf0nKrZLNE0JBgGg21Ha1evJ+v0eHJ+fV3Q2p9Hpf2d5NK579RlvwkU5Jo75ZoHlXy2IXc6d4QBESni7MJxZ+0kNTtq6mkCPTUoOR6lNzO9BYqWwsvTWaaVBOmuBCz2+TEIv9YQWW1jOb/eOqeeNk/ZB0OedCD2JKiR69tz8cpVn8wWrbT2Te4a6pXc0m8CBU/uo3rpLK8XDIhIEWcXjrtrJ6nVKbahVf0qOR4lNzMlgZVWtUeePp06+ry7AYt9ftz13wv1zi8ArwTfajVPAXV9s9Y9moXMxPqj0JTy5Pexz5uWmqvH3ivwWVCutFlX6hrKTGzpV4GC3H1UzfXIAgEDIlLM0YXj6VOKKyM/pDS0ql+lx+PsZuYssNKy9kiqRmZCn2S3P69WwGKdH6XOrzcWo1S7ecoMoLLG7FZaLDytPbCcu4OnL2PamkP1ZjNXs/bWk6Be7hryRqDgzYcP+/uoq+uRAXV5yfrvQMOAiFzi6KlLzRuIqwV1Q6v6deV4HP0mjgIrPTQzWvLMqt2nsHL3D/i/L4qwcneR2zU63ghY7M+vN4JvtZun1HoY8PSajjeGoWXTinqzbKtZe6tGUC93DanZx0uNdLqy1Isr17bemtW1EqR1AqhhiTeGiUNb9xReRImpyulnSkxVNtvKXczO9jWiVxJ2z+2P9ybdgnWPZiExMlzR9ytJkxasj2f33P5u3aAsgVWwoW7VMevAylEh7Gsrd//g8u9tYclz9s231tSsLXR0Tt3lSZqVpsfdPG1/fl3lzd/D3XuFr6mRzrX7itF78XaMWrEXvRdvx9p9xbLbunJt+8s59AXWEJHqXHnakNo2MTLc7afleGOY7Orr3ki/t6nxhCr3lC/X8TU8xLfPSf6wlpy1ElMVEiPDse7RLFTWmFVpTlGrecqTOcSccbe5x5u/h7/0HfQ0na7W+Hi6JqAez6EvMCBqAPQypNqSFqUXrty26x7NcrsJwNNmID00I3mDVGBlX1ABdcd732t7fBoE+tNaclKBhdRkf+5Qo3lKri+ep3na04DK02OTu8f5S99BT9PpatDiShDqadr0VP54ik1mfs6ValRfcKWqVm7byhqz200SnjYDeaMZSWlThdR23m66G9ErCesezYJ1i4avq8y90QRl2a8aCxNbeNK0oPR3VDvNgOd5Wq0mFVeOzfp8ObrHeSvvqM3TdLrT7Ki0yd2TtOmt/PEUa4j8mB5rM1x52nC0bVZqK7eeKL05lNsZqSclpU/WUtsB8EnTXUVNrVc7vSrhD0N/3W1a0LoJ1pu1E5b31awdsD5fgO26XFL3OFfzjlY1Gp7kcXebHZU2ubu7Tp3eyh9PMSDyY3ps+3V1dJSjbd3pP+NpfwV3Py+3bImSG4bUjWXeh0cAq0LMmzcbtZodPC1o1BzR4w3uzASth0LD02tCLn8c/rEMD678StVAT2pOJSXButK8Y78I6twhnfFI31SP0uwK+3QquWYs22R3jMbuuf299tDg6vWnx/LHUwyI/Jhe289dedrwRs2Ap/t054lTqtB76YFuim4YcvPI2JcE3rrZqNHpVetaEG9zdyZobxUargafatdOzB7SCc9vOq56oCd1vuy5e4+zv04FAHmbjgMG4JFs3wVFFjbBmeHX4MwuHXq+rvRa/niCAZEf8/ZoGk/T5kqtjCtpti8MpAoHT2sbXPm8XKEHQdlabZKjvQCbGiK5z6rFkwJTD7Ug3uTJTNDuFBrOgh13C0lPrgn7/CGX5w+cuozIZsoCNanjdLaeXJABbt/j5IKt5zcdxz2ZCarkVXfnCRIEIO/T44AAscZK79eVnssfdzEg8nP+0PdCTfaFwX3dW2P9oZ80fYJytLiikhuG3I0FgE9vNpYC09KhVWntQ0OsOrfmyUzQrhYazoIdXxaS9oW7fUBln+cNAB7/5yG3p9sY0StJPF/zPjwC+7MbBGD9o7e6vRxJSlRTm/5IFmYBquRVVwJVh8FZtwQAwIbDZ3V/XTW08ocBUQOg974XapEqDD48+JP4vlZPUI4KPaU3DLntfH2zcaf2oSFWnVvz9PiU5gElwY6vgk9n+cA+z1sWwvVkug3Ltvazl5uF35onPVmbLd4YhrlDOtc1k1lRI6+6Ot3IpYoayf2YAaz6sggrvyiSDJisZ5n3ZsdwJbXwFp7W8OsJAyLyG0r6F8gVDiWmKhw4fRmCIKBncqTqF6J9oQfAppZFyfdJbefLYNfd2oeGWHVuTY3jU/I7Kgl2fBF8Ks0H1nn+54pqTFtzyGHanR3nxsMlyM2IF8/Vk7ldMK5PsqoPBI/0TQUMEPs/Wf+WnhTUSgNV+07d9rezIAOwYldRvdeB39Lq6cSzznizFl7PfaIABkRkR8/Ru7P+BYB04bB2XzHmfnhEvMkYACwerv6FaLmR6/2il+OoX8hdmY7zgnXhGB4ShIqaWpSYqnSXh4Df8njTkGBU1NRK5nX768AXTQNKgh1fBJ+u1EJZN7N6Mt0GADy38Tss+vQ7m+vFWSDpzv3qkexU3JOZYPNbenrNKvntpDp1W6YWEn7dfnyfZKz4oqje/ufndsGdGfEAgN6Lt3utydSbtfB67xMFMCAiK3ovyKUKg6HdE/DRobOyhYPlIrS+9wqoG9burX4Xer7oHRUgcgXV4/88hIqa607zQrzR82VTvM1+jhugfjod9W/xdh8uJcGOt4MzpYW7dT7a9d8LNiPwDA46P9sfpzWp60Uuz8pNdaEkQLL+LdW4Zp39diWmKsk+QQKAV0d1R2TTUPH8vrG7qN65v/PXmjOlCxe7+2CrtBb+4OnLaNnUtf37Q19DBkQNlKsXhN4LcgupwuCJnE6yhYPcBW6GOh0p7en5olfaL8S+Q6uz/hCWfAZA13lIarQYYJtOQNtjUBrseDM4c1a42+ejOUM64/lNx20eOgwCxPMpxXKcGw+X4LmN39m8Z329yOVZqfvV3HVHAKEuyHAlGFfrmpX77aSCcItggwE3tm1p8z2Ozr2SYNWTB1sltfAGAzBtzSHZ8+zPy6wwIGpALBnxyE8msY1c6QWh54Lcnn1h4KhwOPKTSfL1IMArF6K7F70vOkkq7RfSNLSRov4g9jfeCX1SdJ2HHD39WtIpQND8GPQwSEKucJfKR9bzEVkoeeCIN4YhNyMeiz79TvJ6cZRnpX5L68omVwJZNQtq+99OLgi3fIerNYBKaqI8Ceid1cIH/ToxqeVw7PfvKBjzh76GDIh0yJ3CUe4pROkFoefo3d1gocRUheftRpRY5A1P98qF6M5F74umSlcC3h5tW7rcH8Is1FX123cU1WLGa7n9NQ0Jln36tU6nL64DPffVs5AKzCSnIJDoIKz0nDm6Xhw1DympyVAayCq5ZtVugrL0CXKnBtBRwHTg9GWPA3pHtfAXr1zFY+8VSO4fcF67qvdh+gyIdMadwtHRUwig7ILQa/TuSbAgdzN6dVR35GYkqJzS37hy0fuqqdKVgFdJXpArGB/OTsEbX5zSzYzXUiNmLE+7Fvbp9PZ1oPe+eo7I5aPZgzthyeYTbp0zuevFUZ61z6P2NRfW23qSBkD9JijrPkFSlARfUgGTZfCIPXcCerlaeEed55U+dOmhBlQOAyIdcbdwdNYRTukFobfo3dNgQe5mdGNb9+cyUcrRRW99w/NVU6WrAa+zvCB3bsf1TsG43im6mPFaan8fHTqLdY9mobLGjPCQIFTWmOul05vXgb/01ZMjl49G9ErCPd0S3D5nUteLszxr/zvt+u8F1adG8EYTlCcTc8qRGjwCeDaztxRnx6PXVgalGBDpiLuFo6PqY3cWN9XLjdnTYEHpzciXzRf1OqQO7uyzm4irBb2jvODs3LpzHtUODuX2V1ljRlZqK4ef9dZ1oEVfPbXzt1w+sq5FcGWmc3e+y8L6d/JGIKvG76XmxJyupBMAXh7ZHXdlqlsbbjmeA6cuA4a6JnZAv60MrmBApCPu9uORyoizB3dCRpsWuqjpcZca/Zqc3Yx82XwhdcNbsvkE5gzpjCWb3GtucJWaBb3aBZDa/dj02C/O12nyJH+7MzuxN64nV/Ks2oGsWr+XknR5Enw1DQmW7MfVI7mlVx745KbX0Fsrg6sMgiBIxJVkr7y8HEajESaTCREREarvXxwh9qOpXlu8KzcwuYzoD504pazdVyxZPe8OqenorSc5A+puIrvn9vfoHMmd6z2FFzFqxd5627836RYkR4X77U1ETWr+3t7Ynxp8lSZP8re7fRkdfR/vQY65+3tJDaixXg9R7nf0ZLCKN+6b3qS0/A6oGqJXX30VL7zwAkpLS5GZmYlXXnkFN910k9bJkpzXI6O167U7vnxq8xW1njikzkFiZLjqzReOzrWzTqJ6vZn4ktpPmK7uzxeFtq+eot2tcVCzL6Pl+/Q+Yacjvvq93GlykhpQE2QA1j2ahZiIJrKzWnvye/jTFC2uCtI6Ab6ydu1azJw5E8888wwOHjyIzMxM5OTk4Pz585qmS7IZZdMJ1S48uZtbianK4337SrwxDFmprdw+H3LnwDIM25rS6nBLPwnr8+jsXFtueMEGg/hd3mwek0qjP/D093Z3f2v3FaP34u0YtWIvei/ejrX7ilX5fk/S5AlLAG5NSf52VOC5833hIUEBfw9SakSvJOye2x/vTboFu+f2d2v+OLMAVNaYZX/Hg6cve/R7uJuv/EHABER/+9vfMGnSJIwbNw5paWlYvnw5wsPD8eabb2qaLndvPnrZvz9w1LnWnQBFruBUcq5dveG5y5eFe0PQEB4c7LkbgLtb4Ml9X0VNbcDfg1zhSvDl6LeSe88syE8+qjR9vnyw86WAaDKrqanBgQMHMG/ePPG1oKAgDBw4EPn5+ZKfqa6uRnV1tfh3eXm5V9Lm7U6WeuxY6muOzkFWaiuXm1TkmhOUnmtvN4/5+9BuLTTUZgB3mns8GS0k9X2uLPxKrnH2W0m91zM50uuDVfxVQAREFy9eRG1tLWJjY21ej42NxfHjMjMZ5+VhwYIFXk+bt4cqNoShkJ5SMkRc6flwVHBmpbbSxbluqIW7NzXkBwd3AnBPCjz77+M9yLsc/VZy76nxezTEfo8BMcrs7NmzaN26Nfbs2YOsrCzx9dmzZ2Pnzp3Yu7f+yB+pGqLExESvjjLzZrTt7f37AzXOgZIRFlqfa38cBaIHehyR1pBofV2QrUD6PTjKzEpUVBSCg4Nx7tw5m9fPnTuHuLg4yc+EhoYiNDTUF8kD4P1ouyFG865S4xwoedrV+lzzidw9DbUZQC+0vi7IFn+P+gIiIAoJCUGPHj2wbds2DB06FABgNpuxbds2TJs2TdvEkd/xh4LTH9KoRywkiAJXQAREADBz5kyMGTMGPXv2xE033YSlS5eioqIC48aN0zpp5If8oeD0hzQSEelFwAREI0aMwIULF/D000+jtLQU3bp1w+bNm+t1tCYiIqLAExCdqtXg7aU7iIiISH1Ky++AmZiRiIiISA4DIiIiIgp4DIiIiIgo4DEgIiIiooDHgIiIiIgCHgMiIiIiCngMiIiIiCjgMSAiIiKigMeAiIiIiAJewCzd4SnLhN7l5eUap4SIiIiUspTbzhbmYECk0C+//AIASExM1DglRERE5KpffvkFRqNR9n2uZaaQ2WzG2bNn0bx5cxgMBq2T43Pl5eVITEzEmTNnuJabB3gePcdzqA6eR3XwPKrDm+dREAT88ssvSEhIQFCQfE8h1hApFBQUhDZt2midDM1FRETwolcBz6PneA7VwfOoDp5HdXjrPDqqGbJgp2oiIiIKeAyIiIiIKOAxICJFQkND8cwzzyA0NFTrpPg1nkfP8Ryqg+dRHTyP6tDDeWSnaiIiIgp4rCEiIiKigMeAiIiIiAIeAyIiIiIKeAyIiIiIKOAxICLRrl27cPfddyMhIQEGgwEfffSRzfuCIODpp59GfHw8wsLCMHDgQHz//ffaJFbHnJ3HsWPHwmAw2PwbPHiwNonVsby8PPTq1QvNmzdHTEwMhg4dihMnTthsc/XqVUydOhWtWrVCs2bNMHz4cJw7d06jFOuTkvPYr1+/enly8uTJGqVYn5YtW4aMjAxx4sCsrCxs2rRJfJ950Tln51DrfMiAiEQVFRXIzMzEq6++Kvn+kiVL8PLLL2P58uXYu3cvmjZtipycHFy9etXHKdU3Z+cRAAYPHoySkhLx33vvvefDFPqHnTt3YurUqfjqq6+wdetWXLt2DYMGDUJFRYW4zYwZM/DJJ5/g/fffx86dO3H27FkMGzZMw1Trj5LzCACTJk2yyZNLlizRKMX61KZNGyxevBgHDhzA/v37cfvtt+Pee+/FsWPHADAvKuHsHAIa50OBSAIAYf369eLfZrNZiIuLE1544QXxtbKyMiE0NFR47733NEihf7A/j4IgCGPGjBHuvfdeTdLjz86fPy8AEHbu3CkIQl3+a9y4sfD++++L23z33XcCACE/P1+rZOqe/XkUBEHo27ev8Ic//EG7RPmpli1bCitXrmRe9IDlHAqC9vmQNUSkSFFREUpLSzFw4EDxNaPRiJtvvhn5+fkapsw/7dixAzExMejUqROmTJmCn3/+Wesk6Z7JZAIAREZGAgAOHDiAa9eu2eTJzp07IykpiXnSAfvzaPHuu+8iKioKXbt2xbx581BZWalF8vxCbW0t/vnPf6KiogJZWVnMi26wP4cWWuZDLu5KipSWlgIAYmNjbV6PjY0V3yNlBg8ejGHDhiElJQWFhYV48sknMWTIEOTn5yM4OFjr5OmS2WzG9OnT0bt3b3Tt2hVAXZ4MCQlBixYtbLZlnpQndR4BYNSoUWjbti0SEhJw+PBhzJkzBydOnMC6des0TK3+HDlyBFlZWbh69SqaNWuG9evXIy0tDQUFBcyLCsmdQ0D7fMiAiMjHRo4cKf53eno6MjIykJqaih07dmDAgAEapky/pk6diqNHj2L37t1aJ8WvyZ3Hhx9+WPzv9PR0xMfHY8CAASgsLERqaqqvk6lbnTp1QkFBAUwmEz744AOMGTMGO3fu1DpZfkXuHKalpWmeD9lkRorExcUBQL1RE+fOnRPfI/e0a9cOUVFROHnypNZJ0aVp06Zhw4YN+Pzzz9GmTRvx9bi4ONTU1KCsrMxme+ZJaXLnUcrNN98MAMyTdkJCQtC+fXv06NEDeXl5yMzMxEsvvcS86AK5cyjF1/mQAREpkpKSgri4OGzbtk18rby8HHv37rVp/yXX/fjjj/j5558RHx+vdVJ0RRAETJs2DevXr8f27duRkpJi836PHj3QuHFjmzx54sQJFBcXM09acXYepRQUFAAA86QTZrMZ1dXVzIsesJxDKb7Oh2wyI9GVK1dsIvGioiIUFBQgMjISSUlJmD59Op577jl06NABKSkpmD9/PhISEjB06FDtEq1Djs5jZGQkFixYgOHDhyMuLg6FhYWYPXs22rdvj5ycHA1TrT9Tp07FmjVr8O9//xvNmzcX+2IYjUaEhYXBaDRiwoQJmDlzJiIjIxEREYHHHnsMWVlZuOWWWzROvX44O4+FhYVYs2YN7rzzTrRq1QqHDx/GjBkzkJ2djYyMDI1Trx/z5s3DkCFDkJSUhF9++QVr1qzBjh07sGXLFuZFhRydQ13kQ83Gt5HufP755wKAev/GjBkjCELd0Pv58+cLsbGxQmhoqDBgwADhxIkT2iZahxydx8rKSmHQoEFCdHS00LhxY6Ft27bCpEmThNLSUq2TrTtS5xCAsGrVKnGbqqoq4dFHHxVatmwphIeHC/fdd59QUlKiXaJ1yNl5LC4uFrKzs4XIyEghNDRUaN++vTBr1izBZDJpm3CdGT9+vNC2bVshJCREiI6OFgYMGCB89tln4vvMi845Ood6yIcGQRAE34ReRERERPrEPkREREQU8BgQERERUcBjQEREREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBGR36upqdE6CfXoMU1EJI8BERHpTr9+/TBt2jRMmzYNRqMRUVFRmD9/PiwrDSUnJ+PPf/4zRo8ejYiICDz88MMAgN27d+O2225DWFgYEhMT8fjjj6OiokLc72uvvYYOHTqgSZMmiI2Nxf333y++98EHHyA9PR1hYWFo1aoVBg4cKH62X79+mD59uk0ahw4dirFjx4p/u5smItIHBkREpEtvvfUWGjVqhK+//hovvfQS/va3v2HlypXi+3/5y1+QmZmJQ4cOYf78+SgsLMTgwYMxfPhwHD58GGvXrsXu3bsxbdo0AMD+/fvx+OOPY+HChThx4gQ2b96M7OxsAEBJSQkeeOABjB8/Ht999x127NiBYcOGwdWlHl1NExHpBxd3JSLd6devH86fP49jx47BYDAAAObOnYuPP/4Y3377LZKTk9G9e3esX79e/MzEiRMRHByM119/XXxt9+7d6Nu3LyoqKvDpp59i3Lhx+PHHH9G8eXOb7zt48CB69OiBU6dOoW3btpLp6datG5YuXSq+NnToULRo0QKrV68GALfS1KRJE4/OExGphzVERKRLt9xyixgMAUBWVha+//571NbWAgB69uxps/0333yD1atXo1mzZuK/nJwcmM1mFBUV4Y477kDbtm3Rrl07PPTQQ3j33XdRWVkJAMjMzMSAAQOQnp6O//mf/8GKFStw+fJll9PsapqISD8YEBGRX2ratKnN31euXMEjjzyCgoIC8d8333yD77//HqmpqWjevDkOHjyI9957D/Hx8Xj66aeRmZmJsrIyBAcHY+vWrdi0aRPS0tLwyiuvoFOnTmLQEhQUVK/57Nq1ax6niYj0gwEREenS3r17bf7+6quv0KFDBwQHB0tuf+ONN+Lbb79F+/bt6/0LCQkBADRq1AgDBw7EkiVLcPjwYZw6dQrbt28HABgMBvTu3RsLFizAoUOHEBISIjZ/RUdHo6SkRPyu2tpaHD161OkxKEkTEekDAyIi0qXi4mLMnDkTJ06cwHvvvYdXXnkFf/jDH2S3nzNnDvbs2YNp06ahoKAA33//Pf7973+LHZg3bNiAl19+GQUFBTh9+jTefvttmM1mdOrUCXv37sWiRYuwf/9+FBcXY926dbhw4QK6dOkCALj99tuxceNGbNy4EcePH8eUKVNQVlbm9BicpYmI9KOR1gkgIpIyevRoVFVV4aabbkJwcDD+8Ic/iEPZpWRkZGDnzp3405/+hNtuuw2CICA1NRUjRowAALRo0QLr1q3Ds88+i6tXr6JDhw547733cMMNN+C7777Drl27sHTpUpSXl6Nt27b461//iiFDhgAAxo8fj2+++QajR49Go0aNMGPGDPTv39/pMThLExHpB0eZEZHuSI3qIiLyJjaZERERUcBjQEREREQBj01mREREFPBYQ0REREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAe//AZgQYx7jt1AvAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2 Training Surrogate with TensorFlow Keras\n", + "TensorFlow Keras provides an interface to pass regression settings, build neural networks and train surrogate models. Keras enables the usage of two API formats: Sequential and Functional. While the Functional API offers more versatility, including multiple input and output layers in a single neural network, the Sequential API is more stable and user-friendly. Further, the Sequential API integrates cleanly with existing IDAES surrogate tools and will be utilized in this example.\n", + "\n", + "In the code below, we build the neural network structure based on our training data structure and desired regression settings. Offline, neural network models were trained for the list of settings below, and the options bolded and italicized were determined to have the minimum mean squared error for the dataset:\n", + "\n", + "* Activation function: sigmoid, **tanh**\n", + "* Optimizer: **Adam**\n", + "* Number of hidden layers: 3, **4**, 5, 6\n", + "* Number of neurons per layer: **20**, 40, 60\n", + "\n", + "Important thing to note here is that we do not use ReLU activation function for the training as the flowsheet we intend to solve with this surrogate model is a NLP problem and using ReLU activation function will make it an MINLP. Another thing to note here is the network is smaller (4,20) in order to avoid overfitting. \n", + "\n", + "Typically, Sequential Keras models are built vertically; the dataset is scaled and normalized. The network is defined for the input layer, hidden layers, and output layer for the passed activation functions and network/layer sizes. Then, the model is compiled using the passed optimizer and trained using a desired number of epochs. Keras internally validates while training and updates each epoch's model weight (coefficient) values.\n", + "\n", + "Finally, after training the model, we save the results and model expressions to a folder that contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgtklEQVR4nO3deXgUVdo28LsTSEgCNAQCBExICJtIiMjiRJBFGCGDC4sjwoyyKC6AuHwOBN8XBQcNODMO4wYOOqDjiMwoqKPi8spmhMGwoyMIMZAgQYhCB5KQYLq+P2K1vVRVV1VXd1V17t915bqgl+rT1VWnnjrnOec4BEEQQERERGRTMWYXgIiIiCgUDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIKCIWLlwIh8Oh6rUOhwMLFy4Ma3mGDRuGYcOGWXZ7RKQegxmiRmb16tVwOByevyZNmqBTp06YOnUqvv32W7OLZzkZGRk++6tdu3a4+uqrsX79ekO2X11djYULF2Lz5s2GbI+oMWIwQ9RIPfbYY/j73/+OFStWIC8vD6+++iqGDh2KCxcuhOXz/vd//xc1NTVh2Xa4XX755fj73/+Ov//973jooYdw4sQJjB8/HitWrAh529XV1Vi0aBGDGaIQNDG7AERkjry8PPTv3x8AcMcdd6Bt27ZYunQp3nnnHdx8882Gf16TJk3QpIk9q5xOnTrht7/9ref/t912G7p27Yo///nPuPvuu00sGREBbJkhop9cffXVAIDi4mKfxw8ePIibbroJycnJaNasGfr374933nnH5zUXL17EokWL0K1bNzRr1gxt2rTB4MGD8fHHH3teI5UzU1tbiwceeAApKSlo0aIFbrjhBhw/fjygbFOnTkVGRkbA41LbXLVqFa655hq0a9cO8fHx6NWrF5YvX65pXwTToUMHXHrppSgpKVF83alTp3D77bejffv2aNasGXJycvDyyy97nj969ChSUlIAAIsWLfJ0ZYU7X4go2tjzNomIDHf06FEAQOvWrT2Pffnllxg0aBA6deqE/Px8JCUl4Z///CfGjh2LN998E+PGjQPQEFQUFBTgjjvuwMCBA1FZWYmdO3di9+7d+OUvfyn7mXfccQdeffVVTJ48GVdddRU2btyIMWPGhPQ9li9fjssuuww33HADmjRpgn//+9+YOXMm3G43Zs2aFdK2RRcvXkRZWRnatGkj+5qamhoMGzYMR44cwezZs5GZmYl//etfmDp1Ks6ePYv77rsPKSkpWL58Oe655x6MGzcO48ePBwD06dPHkHISNRoCETUqq1atEgAI//d//yecPn1aKCsrE9544w0hJSVFiI+PF8rKyjyvHTFihJCdnS1cuHDB85jb7RauuuoqoVu3bp7HcnJyhDFjxih+7qOPPip4Vzl79+4VAAgzZ870ed3kyZMFAMKjjz7qeWzKlClC586dg25TEAShuro64HWjRo0SunTp4vPY0KFDhaFDhyqWWRAEoXPnzsK1114rnD59Wjh9+rSwb98+4ZZbbhEACPfee6/s9pYtWyYAEF599VXPY3V1dUJubq7QvHlzobKyUhAEQTh9+nTA9yUibdjNRNRIjRw5EikpKUhLS8NNN92EpKQkvPPOO7jkkksAAD/88AM2btyIm2++GefOnUNFRQUqKirw/fffY9SoUTh8+LBn9FOrVq3w5Zdf4vDhw6o///333wcAzJkzx+fx+++/P6TvlZCQ4Pm3y+VCRUUFhg4dim+++QYul0vXNj/66COkpKQgJSUFOTk5+Ne//oVbb70VS5culX3P+++/jw4dOmDSpEmex5o2bYo5c+bg/Pnz2LJli66yEFEgdjMRNVLPPfccunfvDpfLhb/97W/YunUr4uPjPc8fOXIEgiBgwYIFWLBggeQ2Tp06hU6dOuGxxx7DjTfeiO7du6N3794YPXo0br31VsXukmPHjiEmJgZZWVk+j/fo0SOk7/XZZ5/h0Ucfxfbt21FdXe3znMvlgtPp1LzNK6+8EosXL4bD4UBiYiIuvfRStGrVSvE9x44dQ7du3RAT43vPeOmll3qeJyJjMJghaqQGDhzoGc00duxYDB48GJMnT8ahQ4fQvHlzuN1uAMBDDz2EUaNGSW6ja9euAIAhQ4aguLgYb7/9Nj766CO8+OKL+POf/4wVK1bgjjvuCLmscpPt1dfX+/y/uLgYI0aMQM+ePfHUU08hLS0NcXFxeP/99/HnP//Z8520atu2LUaOHKnrvUQUfgxmiAixsbEoKCjA8OHD8eyzzyI/Px9dunQB0NA1ouZCnpycjGnTpmHatGk4f/48hgwZgoULF8oGM507d4bb7UZxcbFPa8yhQ4cCXtu6dWucPXs24HH/1o1///vfqK2txTvvvIP09HTP45s2bQpafqN17twZ+/fvh9vt9mmdOXjwoOd5QD5QIyL1mDNDRAAapuMfOHAgli1bhgsXLqBdu3YYNmwYXnjhBZSXlwe8/vTp055/f//99z7PNW/eHF27dkVtba3s5+Xl5QEAnn76aZ/Hly1bFvDarKwsuFwu7N+/3/NYeXl5wCy8sbGxAABBEDyPuVwurFq1SrYc4fKrX/0KJ0+exNq1az2P/fjjj3jmmWfQvHlzDB06FACQmJgIAJLBGhGpw5YZIvL43e9+h1//+tdYvXo17r77bjz33HMYPHgwsrOzMWPGDHTp0gXfffcdtm/fjuPHj2Pfvn0AgF69emHYsGHo168fkpOTsXPnTrzxxhuYPXu27GddfvnlmDRpEp5//nm4XC5cddVV+OSTT3DkyJGA195yyy2YN28exo0bhzlz5qC6uhrLly9H9+7dsXv3bs/rrr32WsTFxeH666/HXXfdhfPnz2PlypVo166dZEAWTnfeeSdeeOEFTJ06Fbt27UJGRgbeeOMNfPbZZ1i2bBlatGgBoCFhuVevXli7di26d++O5ORk9O7dG717945oeYlszezhVEQUWeLQ7KKiooDn6uvrhaysLCErK0v48ccfBUEQhOLiYuG2224TOnToIDRt2lTo1KmTcN111wlvvPGG532LFy8WBg4cKLRq1UpISEgQevbsKTz++ONCXV2d5zVSw6hramqEOXPmCG3atBGSkpKE66+/XigrK5McqvzRRx8JvXv3FuLi4oQePXoIr776quQ233nnHaFPnz5Cs2bNhIyMDGHp0qXC3/72NwGAUFJS4nmdlqHZwYady23vu+++E6ZNmya0bdtWiIuLE7Kzs4VVq1YFvHfbtm1Cv379hLi4OA7TJtLBIQhe7bFERERENsOcGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLYW9ZPmud1unDhxAi1atOC04URERDYhCALOnTuHjh07BizYKvVi02zZskW47rrrhNTUVAGAsH79es9zdXV1wty5c4XevXsLiYmJQmpqqnDrrbcK3377rabPECfg4h//+Mc//vGPf/b7KysrC3qtN7VlpqqqCjk5OZg+fTrGjx/v81x1dTV2796NBQsWICcnB2fOnMF9992HG264ATt37lT9GeKU4WVlZWjZsqWh5SciIqLwqKysRFpamuc6rsQyMwA7HA6sX78eY8eOlX1NUVERBg4ciGPHjvmsiKuksrISTqcTLpeLwQwREZFNaLl+2ypnxuVyweFwoFWrVrKvqa2t9Vmpt7KyMgIlIyIiIrPYZjTThQsXMG/ePEyaNEkxQisoKIDT6fT8paWlRbCUREREFGm2CGYuXryIm2++GYIgYPny5YqvnT9/Plwul+evrKwsQqUkIiIiM1i+m0kMZI4dO4aNGzcG7TeLj49HfHx8hEpHRERWUl9fj4sXL5pdDFKhadOmiI2NNWRblg5mxEDm8OHD2LRpE9q0aWN2kYiIyIIEQcDJkydx9uxZs4tCGrRq1QodOnQIeR44U4OZ8+fP48iRI57/l5SUYO/evUhOTkZqaipuuukm7N69G++++y7q6+tx8uRJAEBycjLi4uLMKjYREVmMGMi0a9cOiYmJnCTV4gRBQHV1NU6dOgUASE1NDWl7pg7N3rx5M4YPHx7w+JQpU7Bw4UJkZmZKvm/Tpk0YNmyYqs/g0GwiouhWX1+Pr7/+Gu3atWMLvs18//33OHXqFLp37x7Q5WSbodnDhg2DUixlkSlwiIjIwsQcmcTERJNLQlqJv9nFixdDyp+xxWgmIiKiYNi1ZD9G/WYMZoiIiMjWGMwQERFRWGzevBkOhyPso8wYzFhEuasG24orUO6qMbsoRERkEwsXLsTll19udjFMZ+l5ZhqLtUWlmL/uANwCEOMACsZnY+IAdQtpEhERBXPx4kU0bdrU7GKEDVtmTFbuqvEEMgDgFoCH133BFhoiokbA7XajoKAAmZmZSEhIQE5ODt544w0AP3fRfPLJJ+jfvz8SExNx1VVX4dChQwCA1atXY9GiRdi3bx8cDgccDgdWr14NoCGxdvny5bjhhhuQlJSExx9/XLEc4md9+OGH6Nu3LxISEnDNNdfg1KlT2LBhAy699FK0bNkSkydPRnV1ted9tbW1mDNnDtq1a4dmzZph8ODBKCoqCs/OUsBgxmQlFVWeQEZULwg4WlEt/QYiIgqbSHf5FxQU4JVXXsGKFSvw5Zdf4oEHHsBvf/tbbNmyxfOa//mf/8Gf/vQn7Ny5E02aNMH06dMBABMnTsT/+3//D5dddhnKy8tRXl6OiRMnet63cOFCjBs3DgcOHPC8J5iFCxfi2WefxbZt21BWVoabb74Zy5Ytw2uvvYb33nsPH330EZ555hnP6+fOnYs333wTL7/8Mnbv3o2uXbti1KhR+OGHHwzaQ+qwm8lkmW2TEOOAT0AT63Agoy3nSyAiiqRId/nX1tbiiSeewP/93/8hNzcXANClSxcUFhbihRdewJ133gkAePzxxzF06FAAQH5+PsaMGYMLFy4gISEBzZs3R5MmTdChQ4eA7U+ePBnTpk3TVKbFixdj0KBBAIDbb78d8+fPR3FxMbp06QIAuOmmm7Bp0ybMmzcPVVVVWL58OVavXo28vDwAwMqVK/Hxxx/jpZdewu9+9zt9O0YHtsyYLNWZgILx2Yj9aax9rMOBJ8b3RqozweSSERE1HmZ0+R85cgTV1dX45S9/iebNm3v+XnnlFRQXF3te16dPH8+/xWn/xWUAlPTv319zmbw/q3379khMTPQEMuJj4mcXFxfj4sWLnuAHaFg8cuDAgfjqq680f3Yo2DJjARMHpGNI9xQcrahGRttEBjJERBGm1OUfrjr5/PnzAID33nsPnTp18nkuPj7eE9B4J+6Kk8y53e6g209KStJcJv/P8k8adjgcqj470hjMWESqM4FBDBGRSczo8u/Vqxfi4+NRWlrq6Uby5t06IycuLg719fXhKF5QWVlZiIuLw2effYbOnTsDaBg1VVRUhPvvvz+iZWEwQ0REjZ7Y5f/wui9QLwgR6fJv0aIFHnroITzwwANwu90YPHgwXC4XPvvsM7Rs2dITICjJyMhASUkJ9u7di0suuQQtWrRAfHx82MrsLSkpCffccw9+97vfITk5Genp6XjyySdRXV2N22+/PSJlEDGYISIigjld/r///e+RkpKCgoICfPPNN2jVqhWuuOIKPPzww6q6cyZMmIB169Zh+PDhOHv2LFatWoWpU6eGvdyiJUuWwO1249Zbb8W5c+fQv39/fPjhh2jdunXEygAADiHKl6bWsoQ4ERHZz4ULF1BSUoLMzEw0a9bM7OKQBkq/nZbrN0czERERka0xmCEiIopyd999t8/wb++/u+++2+zihYw5M0RERFHusccew0MPPST5XDSkYDCYISIiinLt2rVDu3btzC5G2LCbiYiIiGyNwQwREUUFK85MS8qM+s3YzURERLYWFxeHmJgYnDhxAikpKYiLi/NM+0/WJAgC6urqcPr0acTExCAuLi6k7TGYISIiW4uJiUFmZibKy8tx4sQJs4tDGiQmJiI9PR0xMaF1FDGYISIi24uLi0N6ejp+/PFH09YqIm1iY2PRpEkTQ1rRGMwQEVFUEFd59l/pmaIfE4CJiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjVTg5mtW7fi+uuvR8eOHeFwOPDWW2/5PC8IAh555BGkpqYiISEBI0eOxOHDh80pLBEREVmSqcFMVVUVcnJy8Nxzz0k+/+STT+Lpp5/GihUrsGPHDiQlJWHUqFG4cOFChEtKREREVtXEzA/Py8tDXl6e5HOCIGDZsmX43//9X9x4440AgFdeeQXt27fHW2+9hVtuuSWSRSUiIiKLsmzOTElJCU6ePImRI0d6HnM6nbjyyiuxfft22ffV1taisrLS54+IiIiil2WDmZMnTwIA2rdv7/N4+/btPc9JKSgogNPp9PylpaWFtZxERERkLssGM3rNnz8fLpfL81dWVmZ2kYiIiCiMLBvMdOjQAQDw3Xff+Tz+3XffeZ6TEh8fj5YtW/r8ERERUfSybDCTmZmJDh064JNPPvE8VllZiR07diA3N9fEkhEREZGVmDqa6fz58zhy5Ijn/yUlJdi7dy+Sk5ORnp6O+++/H4sXL0a3bt2QmZmJBQsWoGPHjhg7dqx5hSYiIiJLMTWY2blzJ4YPH+75/4MPPggAmDJlClavXo25c+eiqqoKd955J86ePYvBgwfjgw8+QLNmzcwqMhEREVmMQxAEwexChFNlZSWcTidcLhfzZ4iIiGxCy/XbsjkzRERERGowmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGYoqpW7arCtuALlrhqzi0JERGHSxOwCEIXL2qJSzF93AG4BiHEABeOzMXFAutnFIiIig7FlhqJSuavGE8gAgFsAHl73BVtoiIiiEIMZikolFVWeQEZULwg4WlFtToGIiChsGMxQVMpsm4QYh+9jsQ4HMtommlMgIiIKGwYzFJVSnQkoGJ+NWEdDRBPrcOCJ8b2R6kwwuWRERGQ0JgBT1Jo4IB1DuqfgaEU1MtomMpAhIopSDGYoqqU6ExjEEBFFOXYzERERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQyRTuWuGmwrrkC5q8bsohARNWpNzC4AkR2tLSrF/HUH4BaAGAdQMD4bEwekm10sIqJGiS0zRBqVu2o8gQwAuAXg4XVfsIWGiMgkDGaINCqpqPIEMqJ6QcDRimpzCkRE1MhZOpipr6/HggULkJmZiYSEBGRlZeH3v/89BEEI/maiMMlsm4QYh+9jsQ4HMtommlMgIqJGztI5M0uXLsXy5cvx8ssv47LLLsPOnTsxbdo0OJ1OzJkzx+ziUSOV6kxAwfhsPLzuC9QLAmIdDjwxvjdSnQlmF42IqFGydDCzbds23HjjjRgzZgwAICMjA2vWrMHnn39ucsmosZs4IB1DuqfgaEU1MtomMpAhIjKRpbuZrrrqKnzyySf4+uuvAQD79u1DYWEh8vLyZN9TW1uLyspKnz+icEh1JiA3qw0DGSIik1m6ZSY/Px+VlZXo2bMnYmNjUV9fj8cffxy/+c1vZN9TUFCARYsWRbCUREREZCZLt8z885//xD/+8Q+89tpr2L17N15++WX88Y9/xMsvvyz7nvnz58Plcnn+ysrKIlhiIiIiijSHYOGhQWlpacjPz8esWbM8jy1evBivvvoqDh48qGoblZWVcDqdcLlcaNmyZbiKSkRERAbScv22dMtMdXU1YmJ8ixgbGwu3221SiYiIiMhqLJ0zc/311+Pxxx9Heno6LrvsMuzZswdPPfUUpk+fbnbRiIiIyCIs3c107tw5LFiwAOvXr8epU6fQsWNHTJo0CY888gji4uJUbYPdTERERPaj5fpt6WDGCAxmiIiI7CdqcmaIiIiIgmEwQ0RERLbGYIaIiIhsjcEMERER2RqDGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIaIiIhsjcEMERER2RqDGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIYoypS7arCtuALlrhqzi0JEFBFNzC4AERlnbVEp5q87ALcAxDiAgvHZmDgg3exiERGFFVtmiKJEuavGE8gAgFsAHl73BVtoiCjqMZghihIlFVWeQEZULwg4WlFtToGIiCKEwQzZCvNB5GW2TUKMw/exWIcDGW0TzSkQEVGEMJgh21hbVIpBSzZi8sodGLRkI9YWlZpdJEtJdSagYHw2Yh0NEU2sw4EnxvdGqjPB5JIREYWXQxAEIfjL7KuyshJOpxMulwstW7Y0uzikU7mrBoOWbPTpRol1OFCYP5wXaz/lrhocrahGRttE7hsisi0t12+OZiJbUMoH4QXbV6ozgfuEiBoVdjORLTAfhIiI5DCYIVtgPggREclhNxPZxsQB6RjSPYX5IERE5IPBDNkK80GIiMif6mCmsrJS9UY5aoiIiIgiRXUw06pVKzgcDsXXCIIAh8OB+vr6kAtGREREpIbqYGbTpk3hLAcRERGRLqqDmaFDh4azHERERES66E4APnv2LF566SV89dVXAIDLLrsM06dPh9PpNKxwRERERMHommdm586dyMrKwp///Gf88MMP+OGHH/DUU08hKysLu3fvNrqMRERERLJ0rc109dVXo2vXrli5ciWaNGlo3Pnxxx9xxx134JtvvsHWrVsNL6heXJuJiIjIfrRcv3UFMwkJCdizZw969uzp8/h///tf9O/fH9XV1Vo3GTYMZoiIiOxHy/VbVzdTy5YtUVpaGvB4WVkZWrRooWeTRERERLroCmYmTpyI22+/HWvXrkVZWRnKysrw+uuv44477sCkSZOMLiMRERGRLF2jmf74xz/C4XDgtttuw48//ggAaNq0Ke655x4sWbLE0AISERERKdGVMyOqrq5GcXExACArKwuJiYmGFcwozJkhIiKyHy3X75AWmkxMTER2dnYomyAiIiIKia5g5sKFC3jmmWewadMmnDp1Cm632+d5zjVDREREkaIrmLn99tvx0Ucf4aabbsLAgQODLkBJREREFC66gpl3330X77//PgYNGmR0eYiIiIg00TU0u1OnTpxPhoiIiCxBVzDzpz/9CfPmzcOxY8eMLk+Ab7/9Fr/97W/Rpk0bJCQkIDs7Gzt37gz75xIREZE96Opm6t+/Py5cuIAuXbogMTERTZs29Xn+hx9+MKRwZ86cwaBBgzB8+HBs2LABKSkpOHz4MFq3bm3I9omIiMj+dAUzkyZNwrfffosnnngC7du3D1sC8NKlS5GWloZVq1Z5HsvMzAzLZxEREZE96Zo0LzExEdu3b0dOTk44yuTRq1cvjBo1CsePH8eWLVvQqVMnzJw5EzNmzFC9DU6aR0REZD9hX2iyZ8+eqKmp0VU4Lb755hssX74c3bp1w4cffoh77rkHc+bMwcsvvyz7ntraWlRWVvr8ERERUfTS1TLz0UcfYdGiRXj88ceRnZ0dkDNjVAtIXFwc+vfvj23btnkemzNnDoqKirB9+3bJ9yxcuBCLFi0KeJwtM0RERPahpWVGVzATE9PQoOOfKyMIAhwOB+rr67VuUlLnzp3xy1/+Ei+++KLnseXLl2Px4sX49ttvJd9TW1uL2tpaz/8rKyuRlpbGYIaIiMhGwr4206ZNm3QVTKtBgwbh0KFDPo99/fXX6Ny5s+x74uPjER8fH+6iERERkUXoCmaGDh2q6nUzZ87EY489hrZt2+r5GDzwwAO46qqr8MQTT+Dmm2/G559/jr/+9a/461//qmt7REREFH10dTOp1bJlS+zduxddunTRvY13330X8+fPx+HDh5GZmYkHH3yQo5mIiIiiXNi7mdQyIk667rrrcN111xlQGiIiIopGuoZmExEREVkFgxkiIiKyNQYzREREZGsMZoiIiMjWNAczP/74Ix577DEcP3486Gt/+9vfcgQRERERhZWuodktWrTAgQMHkJGREYYiGYtDs4mIiOwn7AtNXnPNNdiyZYuuwhEREREZSdc8M3l5ecjPz8eBAwfQr18/JCUl+Tx/ww03GFI4IiIiomBCWmhScoMGLjRpBHYzERER2U/YZwB2u926CkZERERkNF05M6+88gpqa2sDHq+rq8Mrr7wScqGIiIiI1NLVzRQbG4vy8nK0a9fO5/Hvv/8e7dq1YzcTERERhSTso5kEQYDD4Qh4/Pjx43A6nXo2SURERKSLppyZvn37wuFwwOFwYMSIEWjS5Oe319fXo6SkBKNHjza8kERERERyNAUzY8eOBQDs3bsXo0aNQvPmzT3PxcXFISMjAxMmTDC0gERERERKNAUzjz76KAAgIyMDEydORLNmzcJSKCIiIiK1dA3NnjJlCoCG0UunTp0KGKqdnp4eesmIiIiIVNAVzBw+fBjTp0/Htm3bfB4XE4OtNJqJiMxT7qpBSUUVMtsmIdWZYHZxiChK6Qpmpk6diiZNmuDdd99Famqq5MgmImrc1haVYv66A3ALQIwDKBifjYkD2GpLRMbTFczs3bsXu3btQs+ePY0uD5FlsZVBvXJXjSeQAQC3ADy87gsM6Z7CfUdEhtMVzPTq1QsVFRVGl4XIstjKoE1JRZUnkBHVCwKOVlQzmCEiw+maNG/p0qWYO3cuNm/ejO+//x6VlZU+f0TRRK6VodxVY27BLCyzbRJi/HqfYx0OZLRNNKdARBTVdLXMjBw5EgBwzTXX+OTLMAGYohFbGbRLdSagYHw2Hl73BeoFAbEOB54Y35v7i4jCQlcws2nTJqPLQWRZYiuDd0BjlVYGK+fxTByQjiHdU3C0ohoZbRMtVz4iih66upmGDh2KmJgYrFy5Evn5+ejatSuGDh2K0tJSxMbGGl1GIlOJrQyxP7VCWqWVYW1RKQYt2YjJK3dg0JKNWFtUamp5pKQ6E5Cb1cb0fUVE0U1XMPPmm29i1KhRSEhIwJ49e1BbWwsAcLlceOKJJwwtIJEVTByQjsL84Vgz4xcozB9uevIv83iIiH6mK5hZvHgxVqxYgZUrV6Jp06aexwcNGoTdu3cbVjgiK7FSK4NSHg8RUWOjK5g5dOgQhgwZEvC40+nE2bNnQy0TEQXB0UJERD/TFcx06NABR44cCXi8sLAQXbp0CblQRKTMqnk8RERm0DWaacaMGbjvvvvwt7/9DQ6HAydOnMD27dvx0EMPYcGCBUaXkYgkcLQQEVEDXcFMfn4+3G43RowYgerqagwZMgTx8fF46KGHcO+99xpdRiKSkepMYBBDRI2eQxAEIfjLpNXV1eHIkSM4f/48evXqhebNmxtZNkNUVlbC6XTC5XKhZcuWZheHiIiIVNBy/dbVMiOKi4tDr169QtkEERERUUh0JQATERERWQWDGSKyvHJXDbYVV3BSQCKSFFI3ExFRuK0tKvXMdhzjAArGZ5s+AzMRWQtbZogiiC0M2nDZBiJSgy0zFmLlFZApdGxh0E5p2QaeI0QkYjBjEbzQRTe5FoYh3VN4UVYgLtvgHdBw2QYi8sduJgtgU3r048KQ+nDZBiJSgy0zFsCm9OjHFgb9uGwDEQXDlhkL4ArI0Y8tDKFJdSYgN6sN9xcRSWLLjAWIF7qH132BekHghS5KNaYWBiazE1EkMZixiMZ0oWvMGsPCkExmJ6JIYzeThbApneyOyexEZAYGMwbhZGhEHLVFROZgN5MBwtmsztwDshOO2iIiM9iqZWbJkiVwOBy4//77zS6KRzib1dcWlWLQko2YvHIHBi3ZiLVFpSFv0wxstWo8OGqLiMxgm5aZoqIivPDCC+jTp4/ZRfERrjliomXGWCaDNj5MZieiSLNFy8z58+fxm9/8BitXrkTr1q3NLo6PcM0REw25B0wGbbyYzE5EkWSLYGbWrFkYM2YMRo4caXZRAoSrWT0aJtKLhoCMiIisz/LdTK+//jp2796NoqIiVa+vra1FbW2t5/+VlZXhKppHOJrVo2EiPSaDEhFRJFg6mCkrK8N9992Hjz/+GM2aNVP1noKCAixatCjMJQsUjsnQ7J57EA0BGRERWZ9DEAQh+MvM8dZbb2HcuHGIjY31PFZfXw+Hw4GYmBjU1tb6PAdIt8ykpaXB5XKhZcuWESs7/azcVWPbgIyIiMxRWVkJp9Op6vpt6ZaZESNG4MCBAz6PTZs2DT179sS8efMCAhkAiI+PR3x8fKSKSCo0hin8iYjIPJYOZlq0aIHevXv7PJaUlIQ2bdoEPE5EZCWc8JIociwdzBArRCI74vxKRJFlu2Bm8+bNZhchYlghEtlPtEx4SWQntphnpjFSM+Eclwkgsh7Or0QUebZrmWksgi2TwFYbImvi/EpEkceWGYtSmgGYywRYB1vHyB8X2ySKPLbMWJTShHPbiivCsrglacPWMZJj9wkvieyGwYyFyVWIbMY2H5M8KRjOr0QUOexmsjip1YfZjG0+JnkSEVkHW2Zsis3Y5mLrGBGRdbBlxsakWm0oMtg6RkRkHWyZCRPO3Bv92DpGRGQNDGbCgKNcGg8meRIRmY/dTAbjHDBERESRxWDGYFYY5cKJ3IiIqDFhN5PBzB7lwi4uIiJqbNgyYzAzR7mwi4uIiBojtsyEgVmjXIItTklERBSNGMyEiRmjXJLiYuEA4B3PcCI3IiKKduxmihJri0ox7vltAYEMJ3IjsherJvBbtVxEAFtmooJ/rgzQkPy7bmYuctJam1cwItLEqgn8Vi0XkYgtM1FAKlfGLQDVdW5zCkREmlk1gd+q5SLyxmAmCojDwb1FOleGTdBEobHCHFVSrFouIm8MZqKA2Yseri0qxaAlGzF55Q4MWrIRa4tKI/K5RNHECjclUqxaLiJvDkEQhOAvs6/Kyko4nU64XC60bNnS7OKEVbmrJuLDwctdNRi0ZGPAJIGF+cOZeEyk0dqiUjy87gvUC4LnpsQKuSlWLRdFNy3XbyYARxEzhoNzbhsi41h1JXarlotIxGCGVCl31aCkogqZbZN8KjKzl28gijZWXYndquUiApgzYxo7Jcwq5cSYna9DRETEnBkT2GnOBrU5MWbk6xARUfTScv1my0yE2W3OBrXDMlOdCcjNasNAhoiIIo7BTITZbc4GDsskIiKrYzATYXYLDpgTQ0REVsfRTBEmBgf+czZYOTjgsEwiIrIyBjMmsGNwwGGZRESNg9xUHFbGYMYkDA7MZceTlYgo3Ow02tYbgxlqdOx6shIRhZPcaNsh3VMsf9PHBGBqVOw2NJ6IKFTiJK37ys4oTtZqt9G23tgyQ6pFQ9eMVdaSioZ9SUTW590SLZJrkZZangYA9h8/i9ysNhEorX4MZkiVaOmascJaUtGyL4nIOqRukPxbokXe3UcAfN43L68nCt4/6PP6Jz84hBsu7xgw6/uuY2cgCAL6ZySbflPGYIaCsnM/qj+zh8bbaV+y9YjIHuRukKRaokX1goBVn5XgxU9LfN6X3ckp+Vrv1uu1RaXIf/MAxE07ACyZYO5NGYMZCsoqXTNGMXNovF32JVuPiOxB6QZJrtsIaDivV24t8QQk4vvWzcxVbL0WP897kwKA+W8eMPWmjAnAFJTdZi2W4r9KuVlrSdlhX9opSdpOq88ThUOwGyTvGdxFsQ4Hbh+cCf8Yp14QUF3nVpz1Xa61xw2YmijMlhkKKpxdM5HoyrBSK4PZ3VxqsPWIyNq8681geYDeLdGJcTGornN7nnupsCTgXP/7f47i+d/0k229lmvtiQFMvSlzCIIg06MWHbQsIU7Kyl01hnbNROJiVO6qwaAlGwNO9ML84aZemI3el0ay2j6TS2y0UhmJIkWq3gQQcIOkpi79wwcH8dzm4oDH3551FXLSWiuWIX/dAYjRQ7hyZrRcv9kyE2F2Tqo0ctbiSCXCRrKVQctva+UZoK3UeqQlsdGKrUdERpKrNwvzh6Mwf7jmG6RWSU0lH9959IxiMCO29uw+dgaCAPTLaG36ecdgJoLYLP6zSF2MIjUUO9p+WyusH6Y1sdFquUdERlOqN/XkAA7MSJZ8vH+GfCAjSnUmYEwf69w4MAHYYHIJiUYlVUZLwmOkEmH9E+DC0cpgp4RZLcxKkhZpSWy0Yu4RkZRQ6nCpejPGASTG6buU56S1xoQrOvk8NuGKTp5WGTtdb9gyYyClu3MjWiKi6e4/kl0Z4W5lYJdHeGhJbLRi7hGRP/86fN7onsi+xKk67cC/3gQazo9xz2/TfT34082X47bczth59Az6Z7T2BDJ2u94wAdggwRISQ01YNDLh0Up5O1ZOhFWLyajhs7aoVFdiI5HVSNUTIq3Bwr6yMxj73DafodVG1jlWqdOYAGyCYHfnobZEGHX37x9t3z44E9MHZ0puIxJBj5UTYdWyUsJstGHrC0ULpdl4tQ6AqKqrl5wjxqjWYDu2NjOYMYiahMQh3VOw7JYcuGouolViHPp1Dp5kpWX7wUjldqz8tAQrPy3BnVdnYppXUGO3Jkaz8aIbPpEMeL0DeACWacEk+0uKi1V8XkuwEO4EeDsm2Fs+mCkoKMC6detw8OBBJCQk4KqrrsLSpUvRo0cPs4vmI9jduZaVS/VsXw2lO4O/flqCFwtLUDA+G0O6p4Q8bNpKXVmREg2tTI2Z9zkq5lgKYDBPxqiqq1d8XkuwEO7WYDu2Nls+Z2b06NG45ZZbMGDAAPz44494+OGH8cUXX+C///0vkpKSgr4/0pPmeeeAAA0BRFJcLMY9v00ykNDaDxlKjolSn613eZbdkoN71+wNeG7NjF+oWgaerTrBNcZgz8qCnRtS5yl/Q/IW7HhQOsb05oOFO+fQ7JzGqMqZ+eCDD3z+v3r1arRr1w67du3CkCFDTCqVPPHu/IUtxViy4SAEAA4HIBcySjUtKp0Uodz9i9G21JLw3uWJcTh0NzGqmQzP//tZbSn5cGOwZywjggqlVktAetVg/obRS+sxpeZ4kGrtmJvXA306tdIdLIS7NdhOrc2WD2b8uVwuAEBysvRkP7W1taitrfX8v7KyMiLl8vbC1mIUbDjo+b9S25d/kBDuSlLM7Vj1WYnPiqne5bmic2vdTYzBEsf8v9+4vp2wbve3PkvJ5+cFH65oxbtiNWWK1MzHjYVR54vS6sKA9KrB3r/h/HUH0LNDC8VZU41mxXPAzsT9eeC4C0s/OKj6mNJyTuvJrePvrI6tghm32437778fgwYNQu/evSVfU1BQgEWLFkW4ZD8rd9VgiVcgo8Q/SIjUhS7VmYCHf9UL0wZlYlXhUbxY+A3cgm959Ca0Sl0UxAXIyl01yH/zgM+S82/u/tbn/QLgCQTlKhIr3hWrLZMdRwlYlZHni/9dswMAfmpRVbNqsFsAxj63LSzr00ix4jkQTkZf0P23J5XTCKhrWdZ6Tmtp7Whsv3MobBXMzJo1C1988QUKCwtlXzN//nw8+OCDnv9XVlYiLS0tLOWROsFKKqoUW2KAhtaHZyf3xRU/jWbaVlyBzLZJEb/QpToT8PCYSzFtcIZk0KKniVG8KHgHLQKArV+fRlJ8k4CWICVyFYnUXXFiXKxpXVRaLqp2HCVgVUafL/4BPABNqwYLiEwrW2Nr3dN7QZcLgPwTvWcOz8LyzcWKXe9yLcvigAmpczoxLsZTt+v5XUL5nRtja45tgpnZs2fj3XffxdatW3HJJZfIvi4+Ph7x8fFhL4/cCRasuRpoqPSSk+Kx9evTvrNB5vU05UJndL/okO4pPnlCYiX/6A2Xat6W/8VJ7q743jV7Tbtz0XJRteMoAasKR2Dofy7I3VnL5Z5FopWtMbXu6b2gy9XP/tsTADy3KXDVaG/iMaW0yKP/OT22b0fPoA+99ZLe39k/WJvhN+1GtLL82kyCIGD27NlYv349Nm7ciMzMTLOLpLgWj1jRiWvG+K+jAfwctftv48kNhzBvdE/LrzcTbL0OuZOwTVI8JHaH5GMi/4uT1NokIrPWRNK6ztTEAekozB+ONTN+gcL84Ww21sn/XIvk+TJxQDrWz7wq4PFI3HxEal0zK1C6oMtRqp+DJXr78z6mlMrifU6vm5mL9Xu+DXmtNj2/s1Sw9tdPSzBoyUasLSr1eZ1d1lxSy/ItM7NmzcJrr72Gt99+Gy1atMDJkycBAE6nEwkJ1lwAz7+5euvXpwPuxKvq6iW30eeSVrqWco+EclcNVhU2TLKnNP+G3B3zFZ1bY8mEbMx/8wDcaIikCyZko2eHFrjxuW0BnxfjAObm9Qi4U543uieWbjgIt0QZzbhD1dPaYqdRAlZm5mSFB0+egwPwSV6X+92NbPZvTK17Sq1vcvtUqX7ObJvk85t5iwHg/mn74iijxLgYVNXVo9xVE7QlUDyntxVXGNJypud3lgvWvFu0/HsEoiUPx/LBzPLlywEAw4YN83l81apVmDp1auQLBHXN294XK6kKt9xVI7sNK17opBLk5Jp8lU5CqX2xrbhC8jPdArB0w0G0SmjqOdnWFpU2jDQAJCslo+9Q1V6EOAOwebSeL0YEFuIdsPfx53A0dLH6C0cSZ6SON7NzL/zrEvEGR+qCPKR7imdeL7m6devXpyUDmViHA+tm5qK6zu3Zn1K/m5rgwsjuT62/s1KaQ70gYNfRM1Gbb2X5YMaKc/oZcSdu1N1VJCob/6ZLb3J3HEonof++UDoBvU82AAFNqA4H4BB876hKKqo8nxPseyntO60XISsGoeTLqMBCLndLas6ocF08tBxveuoJq4ykmTggHWerL2LJhobh0kvebxjt6D0qMn/dAUD4ecbmcX074a09J3zqVqCh/vAX4wCmD85Au5bNgo4sLcwfHrTl3OiWMy2/syef66fWb5/vCeDrU+eiNt/K8sGMVRlxZxTqNiJV2QTrZ97/7VnJmYHVnoT+J78/8WQTIASOIBEaRoYlJ8Vj//GzDd1PKvZHsH3X2EaMNAZG/qZq776tkKyrp56w0vEvTnfhPTrSn3e14RaAt/acCGhpker+EV+/8tMSvPTTci4TB6Qr/m65WW2C7gMzW2o9c4l5TbshtmI//cmRgNdHS76V5ROArSzVmaDqwA7HNpSS3IymlHQLNCQul7tqQkoqExPonp3UVzbpTS4h7orOrZHRNtEz0RWgvD/U7Ds9iYf+nxFtCXZ2F+pv6k1t8rHZybp66wkj91Wodh07o2lKB6ChrNV1bp+6NVg95r1vjPjdjLg+6CVOu/FZ/jV4dlLfhtGlEq+LpnwrBjM2FcnKxr/i9lcvCFj1WUPG/OSVOwIy57V8znU5HWUvEkoXEC37Q81rQ6nM1haVhrwvyHhGBxZqRqWZOeIK0F9PBNtXkQzW5VINxPLFOAJHREr9rgEjTSW26d1qZubvZpRUZwKSm8dJtkgtGHOpptGUVr9BYzeTjXj3e0tl5Yfzjk9sutx19AzmvL7H5+SIccBnaYRQm6SVmmjlntOSdKc2gVtPv7dRzfNmJ15Go3CMAlLTlWpml4PeZFSlfaXUbSV13IZ6LPfPSA6o6xwA1s+8ytONJDViVOqzvH+LxLiYgAWAvfdNtCT1yx0Dv+qTarv8KSWWXzU7VJFeNTtc1KxpFMmp1L0rjumDM7Dy05KA13mvsh2Ji7N/uZRWoVX7WqVVY6W+07biCkxeuSNgO2pXHBfLFsmKQ/weSXGxqKqrD/ob2T3QMnsl4EjTcl74899XUis/iyuKS40wAmDIsby2qDRgSgf/7ej5XUPZN3YS6jEg95uLx0S46gMt128GM2Fm1DBQuaXjRTEO4LP8ayJWOXtXHAACyhfjaLhzyklrHdGLs5YKLZSLmtIMo0onfjD7ys5g7HPbAlrcCvOHA4DhlYbUkHul38gOd2gUyKgATi5Yf3ZSX8kWW0EIbD1Wey74C1cQ2liCW73fU+kGrfSHqrDWB1qu3+xmCqNwDgP1JzUsNJz8m9f9RyO5BWDc89saJriTSMwN16gIpWZ//8BS71DqYF1Jersy1haVIt9v7hLg55ykFz8t0XwsKQXTckPu5X4jtV1odm+5iUZGDeOW67KAxNQKclM57D52Bq2TtB8f4Zr6INTt2uV41/s9k+JiJVMapGaxN3PEJ4OZMAn3MFB/Zg+vmzggHT07tPBpVRAnvfOf78CMeQ2MbFHQOgO0mu/pmYRN4jfWm5P0wtbihiGtMrkN7+4/IXtMSf1GaoYZs+XGerRcbJWOGUA+l6Zf59YBdZRUy4zDAcx+bY/iDOJWprTatlW+j5HBlfj9/AMZpVnszZqzhsFMmBg5v4RUBTK2b8eASaHMviuoqqsPaFVwAz6LTgKRD7yMnjND6wzQasi1vsUAuH1wZkBOUrBj6YUtxSjYcNDzf7fQkLvQs0MLHDx5TnYSRLnvAwT/3laam4QavLCl2DNHS7CLrdQxI/X7yQXrUkEOAJ/Ze72DG7sdH/6By7y8np55rYDwfh+1AYqRwZVUy22MA1g3Mxc5aa0VZ7E3A4OZMDF6RV+pCuShUT0s1dcr953n5vXAkxsOmRZ4GT1xWThGxUjtOzHvqF3LZnipsET1sSROMubPLQA3PrdNdm0a721LfZ9UZ4JPBe7/OitMEEc/e2GruuCk3FWDXcfO+LxWJPX7+V9Yxf8P6Z4iOTuuWG9VnL+Ae9fsDdj+rqNncF2OtY8PqUDdO5ARheN4VxugGH0zITfLdXVdQ1t7OOrBUDCYCZNIDAMNJecjHH28ct954oB03JDT0bTAK9TAUmp/GTlsU9z+vNE98eQHvkFfTlprANJ3vXKfWVJRpRisSD23YMyl6J/R2mfGVH9ri0o9FbgDwNzRPXwqVaMD+GhhRk6FXECr1C0oJcYBn99PalSluEK03IVWrKek7uQB4N41e7D/+FlMG5wpuX+skJOy69gZyQu7UdNjyH1HLQGK0TcTas5nKw1fZzATRmb+0HInR7j7eOW+c7iS99QINSlXbn8Z8Z2kmq77dGqlen4dKWpyrLwFm3NCvHPPf/OAz5TyT35wCDdc3tHnNw7HnZrU0HHA+JFdasuh5jPF1247UoHnNhfL5qCES0lFlWT+FQDZbkEp8/J6er6r1IX1zd3fel7rfaEVy+C9r8Tjw3/dIAHAXz8twYteywmI++/AcZdnAIFZOSlri0qR/2bgmk6xDgfmju4RcANi1MhIQFuAYvTNhNrz2cy63RuDmTAz44dWGjYciZwG/+9shTurUJJywzUBntT2n9xwSHboqtpjyb8S8udAQx6TVFeRP6U7d6lKNZQA3ns/AQ0V+YFvXQHN+eJsr0YkkRqRi6CUFOotkjkiagLaYKMk5+f1xF1DslS/Hgg+8m7igHQkxTfB7Nf2BLxX3D9nqy/6jID0fz6So+ekVkcHGr6Xp9X5cv2tzsHqGC0BSjhuJqzU8hIMg5koo3RyhCOnweiVp40U6lBsI/aXUXddWomV0O5jZ1B4pAJri8p8ghc1FVSwO3elSlVrd4H3fvIOVqR4Px5KgBDQKja6J7IvcWpq6vefKM4/KdRfKL+vlot2qjNBMnEc+HkKB6WAJ8YB3HB5R5/H1ARIakbeSY18EtULgs+iklLPR3L0nFwA9/QtfXFdTsP+CeWGNVgdECxA8b8BSEtODFhgM1RWaXkJhsFMBBh95yCXgJfZNknx5DC6GdLKK08bUckZkWtj1F2XHt4XWgeAO4dkYtqgn/MSgv0GSnfiWu/6grVseO8nlb1jHnoCBKnfRkyA9Q9spPIlxMRVNUmh3vxzUNTSczxPH5yJFz8tkc3pkOv2Eb+L/z5Ver343dSMvFPajv/IR39Gj54LVjfLnaP9Mlqr2n4wB467Ah5Tm5cidwMgHh9qZxyPFgxmwszoO4dgCXjzRveUvUAa2QyppiIxa3SLUUFUqPtL7vvvPnYGY/oEv+sKhVSA8NKnRzFtUKbqbciNsHr6lr7ol9Fa0wVD6fdQ032hRE8AqPSZ3oGN3MgvpYnilEaLeeegAOpudPaVnWmYTFHj8ZzqTMCSCcrH18QB6Sj9vhrPbS4O+H5S+1Spm0g8LuRG3nl/V/ECvarwKF4s/Obn4zRIIGPk6Dk1dXO4z9GlHwQmac/N6xE0L0XpBiDcN41WSBuQwmAmjIxumVCTgPfkB4cwL6+nZyh0jMP35DCqD1RNRRLp0S3iSfZDVZ1hQVQo+0uuWX72a3twvvZHTByQHrY+aSMCSbmKXGxe9ydXyQUri9aEZcdP0YIA/asZq/1MqafFfAm5ieJuGZCG1z8v82l1iEFDIOOdg6LmYiomn/qXQ82QaUD++PVOql6+pRj+pC6oIqnvLbZWyB0zUus2TRyQjofHXIoxfToELOHhvd25eT0kk+JDqV+01M2RPEcBoE+nVrrfKwrXTaMVJwkUMZgJI6NbJtQm4PXp1ApzR/fAkp+avJe8fxDfn6v1DH3Uk9PgL5wrT+vh3+Rq1JBJQH+fsac53S/vRIBvxRlqn7TU76a2og/2m6utyKUqOTFPKykuVjJw2H/8LHKz2gQcJ/7BytzRPdDnklZIjIvx5AIACOniEixJWol3voR/uQUBeO3zMsQ4gDsHd8GYPh0k8xekLqbipIbicHy55FMg8LfUMurO51yR6dZRuqAGO6/9jxnAd+02/8BBarJNALjvmq645cp02d83lPpFa90cjryRUIKxYMG4uNzAtuIKQ9MbrDwpJoOZMDKyZaLcVYMfqupUTXiWGBeDpR8c9BlG6z/00Z/WiFttRaL2YhhK06VUk6sD8Oz7ULvTQmlSnTggHYlxsZKThRlx5yT3u6n5fdT+5sEqcqlKbp7XUNYYBzD6sg54/4uTPu/zHtotdQEMdsyEeix5f+b+b896WjOV+OdLeCdai9P0i/vgpcISTBucIVkGuQnJxj63DUsmNASCcstNiC1D3q0sUheZnh1aBKyCHnCuSGxfTR0V7Lz2Pma2FVdIBg7v7S/HmD6pshfmZzYdQcfWCYr1kN5WEyvMiRRKMBbsBmBs344Y9/w2Q1tQrD4pJoOZMDKqZUJuqKfcsgZSa2YAoS8g6E9tRRLsYhhq06XUSSYAeOaWvmjTPF733buecknNidI/IzksFWew303p99HymwcLDoK1GLoF4AO/QAaQTgz1TzhVux/E8gWMLpIZoeT9GanOBORmtfFM7Ogd2Kjp0kp1JqB1UuBEhUoVvdwFXACQv+6A5zP9xeDn1ehFcheZsc9vC5jfRmnZDLfCd5SitrVC7rsufu8rPPH+VygYny2ZEKwlN0hrS3MkW42VhNKF5R1IuwUB6cmJqK5zIzEuxhPIANpbUOT2mxUCQCUMZsIs1P5WueGxDjT0a981JCtgWQO5mTYB/QsIyjGiiyTUpkulEQd6y6anXFJBp3ghCUfFqeZ3k/t91P7mUpP6ZXdy+gRravJPwrVGl9KQbp9EXgeQ75ez4k8qsJFrJfKv8LVW9HJdkIB8Eqz/rNAi2cBI4tiVK6fRw3m9KXXpiWUrzB+Opyf3DUgs9k6Y10LNjYhV5lAJpQ6VykVKS07UXZ8H6660QgAoh8FMBIRysMrdSQlomGDthpyOkne0ckMf9SwgqJWWrplwJqpKXXjEzwxWNqVySW1DLuj0rqyl1q0JhdF97v7DXv1n/XULQMH7vqMvvIM1uSG74ra91+jyT0zXQ8uQbkEsuwDcNVQ+oBEptRLJVfjBKnr/80JqpXk5C8ZcKjtLs//xL7ayeBOP3dysNpLl9A+QjCYGDu/tL8fi974KKNuuo2fQL0N6/hnvhHk1tNyISNXNSpNcWmkUj9z3XDczV1e9oGa/WSUAlMJgxuKU7nqVLvpSQx+VmsmNiri1ds0YFUjpnYtBrmxy5dr/7Vn85sX/BHw/pa4W7wuJkSe/2t9Nbl4iqbWgUp3yM9hK8Q7W1s+6ytO14S0GP8+WCgGexPSlGw6iVUJT3X35eoZ0L91w0GcJBq2UKnylil7uvMhJa+0zfNp/ZWkg+HITgO/x79/NIG5DPKfMuiClOhMwpk8qnnj/q4Dfbc7re34OioMkzAcTyg2S3O9kxVE8ct+zus6tqz5Xu99CbY0PFwYzFqe1lcX/vQ+PuRTTBmcErbiMqOD05mEYFUj5n2ShzMUgFSjMHd3DZ1K0YM33onD2K0slznqPYAg6L5HfWlBq1uvx5x2sLRnve2G+Y3AXTxKsOK+Gd0tPKKMhpPa5Az8v1SDFDXgST/V8ppoZW6WOdS25TVu/Pq07KVR8XbBzyqwLklx95h0U/+WWy0NKmNd7g6SUSG3FUTxK3zM3q03Q+jzUrlKrYTBjA1paWaSorbhCreD05mEUjM82vAtGrjzByuZtSPcU/GXS5YAA9Mtorfj9/JvvRZHoVxZ/N6np+b3XuHELEvMS+a0Fpae1Q+1dv9GjIeRapsTP//DLcqzedizgfd6Jp5GYFVrue+86egbX5QTmNum9sZCalM7IVd2N6l6Rm3hPPBZCTZhPdSY0HPsbDmpKapb7nYqOSs8AbfYonmAts0r1ud6uUitjMGMTalpZjKh0QtmGmope7u6nMH+44dNvq5mLQa6ClJs3Ren7+Tf1Hz9TA7cgoH9GsqHfS+o3ktqvYmWuRM1Eh+Ksv9+erfF0S4nEFquSiioAP1egUseO5LYBfF9Vi3JXja5jVu6ivfXr03hle2AgI/K/u1Z73Evlp8wdrZz7I3cc3rtmD6rqfvRZJVrvOmJKQ/RDEa7uFbmJ94yYqXxtUWlDEI+GVrq5eT1UlVmu/hogkctjhRaLcleNrrWY9HaVWh2DGYuSq1zlKjkjKp1Qt6GmEorkXAX+5XEAwE85CUoVpNz08YX5w1U334frIiC3Xcl5S6BtrRux/Eqz/oorBIsT2O3/9qyn6y3Y95T6PQQ0JHiGso+CdS8C0ksMiMfdO/tONCxuqPK3mjggHWdrLv6c+/PBQbRKbOqZJFAq0Xze6J6ekVUiAQ0T5XmvEq1nP0hOwPem7wR8ehg5fN9fsLoilNYp/3l0vAdK6ClTTlpry7VYSNUDam8G9XSV2oFDEDROf2kzlZWVcDqdcLlcaNmypdnFUUXrhbDcVeMzwybQcJHy7j4QXydX4ajdhhrlrhrZuU12Hv0B972+15DP0VMeQHkyNrnp4wFgzYxfIDerjez38/48o/al2u0CkHzOewSR3LxEUsdWsO8Yyvcsd9Vg19EzmPP6nrAcB9uKKzB55Y6Ax6WGht89tIvkukRK5ZD63t7z0UglmqclJ0qWCZCerVrLflD6vktCCKLltiueB6Jgi4gqBTlqjjMl/ttXW+Zg25Srv6zQYhFq/RKu+ikctFy/2TJjMXrmN1HT2hEsQDKyxUQqsg9YbkBFC4lR/MujdJFSM318sDuXcLU+acnZ8Q5UvOdMSXUmBMxLJJLq6tBbnmBdNcnNw9dCJ9dd4B/Yzc3rgSXvBy70F6wckpM0ev1fKtF83cxcydYhqZYzrftBaZ4ZoxOs1XYbD+meIrsek7dQWgH0dAWrIVcmtWWVGz1oVM5RqPVLqN14VsVgxmL0HKhq5gwJFiDJbcOI9T2kRhXFCMCzk/viis7KE9tFcm4HpeRXLXOihGtUgFw+S8X5Cyh31cg2zUsFc0rBptqujnDOcxMKucraP7DbefQH2YUklcqhdWFMcbjskgnZPq1+4kR+3iPkAH0XX7kRj0oLUnpPfCh38dbbbbzr6JmwjgBSyr0L54U6WH2kZvRgdif5GanVMOLcsXNujBwGMxaj50ANVumonSnWfxtGre8hl8+RnBSveBJpucAaEfRktk2SXftKzUq2onDd+QTknPx0V3/vmr0hJX3qnYU5lO8Zjn2kZjSPf06TlHl5PTV9b6m5Ybz5D5fddfQMHA54AvlWCU1D3g+eCfj85vlRWpBSpHRuBbvoydVXkAj2jMyNU6rTwnWhDlYfSZ1H/qMHxUknQ80RM2KSULvmxshhzowFrS0qlbyrDEapr1dtH6m4DbmJt7zfs6/sDD4/+gMGZiQrJhrq6aPV8h4jk21f2FIckKhpdO5QqMpdNQELG4ZSzlDzDPR+TzGHKsbhCNpCF4zWwNf/2AIauj/z83qqmiFY3I7U3DBSieZq1vQy4lh5YWuxp6XH/7PlvjcQWs6EVH01pHtKWPMypL5LDID1s64Ky2zGauojufNITqj7Q+qY0TpJqNVmNfbHnBmb03tnodTXq/YuWNyG3Eq34p3V//vnXp+7jglXdMKfbr5ctlxa78LVdrcZvSz9XUOzAAcCLgh6thWuO59Up/aFDZWEMsmYWBFqHVZvZACq9RhYVVgieUF/dnJfjOnTUfXnev++elb9ltuWXmuLSj3HrQMNQ8aD5cWJQmk1kaqvyl01uH1wJl76aV/HALh9cIaq7am5wPrXKUBDa++457eFZXZeNfWRnu5HqX0uLiUi/DStg9I+UKoLpXK3vM8JK85qHAoGMxZl9IVQa4CkdIHbV3bGJ5ABGppTb8vtLHtXZOTnewtHsu1dQ7ICkmatxsicE6luk2A5QqFUhEYHoHLHgNQCheWuGqz8tCRgGzE/dfuEQio3KVKkLmRPfnDIZ+mGUGapDhZgeH93/9aBId3aovBIBf76aQleLCxRPFa0HFdSXWtG5+aI1Jxvcl314uhBf1L73H80pQPAkgnqzi0tk4QafQ5aQYzZBaDISXUmqF4fSDwxYx0NjZXeLRSfH/1B8j07j56JyOd7EysZb0YkkmopqxnU7h+1Jg5Ix9zRPeDAzxPurS0qlXytXEVY7qpR9VnBFvHUSsx18jf7tT0B36GkIrBFC2hYdsGqv7Uaavap/zEjCnbsrC0qxaAlGzF55Q4MWrJR9rgApIOqrYcrVB0reo6rqrp62dFgRlJ7vomzhj87qS/WzczFhH6XYN3MXKyZ8QvMz+sZ8H6goXuq3FUjOZpSQMOcQWrOLam60Jt3vWj0OWgFbJkhWXKtKQNlZrTtn2FsX7Wa1pxwJdvagdL+0doXrmXdpFBbw0JtVVL73QSoG7UXA2Cayi4Qq1K7T/1nqQ42c6zWO3g1y2HIHSvhGslpVE6I/76rqqv3mbk6WL7KXUOzPJNOinlWYh5OwzpmmZL7zg2oOrcCBggAspOE2n0dJikMZkiRVHdXTlprTLiiU0DOjNbEO7V942KzqNwQcTsPMwy1spX6ffR0AWm5kIRaEYYSgEp9t7TkRNmRRGpG7ZkV/Bp5odWTF6eG1gBDTd6I3LFi9EjOcOSEpDoTfObPEYfX35DTUXW+ilw3z4uflkjOOxQD5akCvKnN3bLSeWAUBjOky59uvhy35XbGzqNn0D+jteZARktFo+a14Uq2DadwDD3X2xeu5UJiREUY7C5Xy3dbNzNXdS6ImvVsIjHCIxwX2nAE9VoDjGB5I8GCLD3HlVwCcjhyQqSWSyh4/yCOaVzUVm66ijsHd8HKwm98ApqCCdmayqw2d0vr8WL1kU8MZqKEGQdaTpr2IAbQvuZLtCWqAdq+l5YLXyiz8mq5kBhx4fS/yw02Fb7cd6uuc6tasVzNejZq5hIxYjHXcB3TRgf1egIMqWNDbtZpNe9VW07v10ZyFm4AWPN5maZFbeWCxGmDM9CmRRyWvH/Q00UVTmqPFzuMfGIwEwXscKB501LRRGphSnHOE4fDgX4hznmihpah596jG4Jd+ELpAtJ6IQn1wql1KnylqerFCenkckHUBBDBXmPUeRbJxVaNoCfAkGod0BuY6BHOWbiluoIEADMGd8FLhSWeCS3FtbrkFqSVChKBhuR7ted7JNjlhpLBjImsdpcXqdYdLRVNUlys5EJ8RiaqhTIcUi+1iYvv7juhaT6ZULuAjAhQ1B5DWqfCDzZVvVzZy101eHf/iaABRLARHkadZ1qOf6s07dutGzdcOSGpzgTk5/X0zOQrEltVpg3OUD3XkFSQGGx+LzPYJfhmMGMgLRWP3F2e1srLqAMtkq07wSoacR8c+Nblc5cCBB9GqmcUj/8q2QIaLlzhvPNQm7goJVhCoFkJ0VqPIT1T4Wv9bkr7Um3Tf0bbRFXnmdpjT+2FNpQ6IpJBkFGfZXSZw3Ue3DUkCxB+mlgTgXWSmnwV7+e9XxPuUUZ69rFdRj4xmDGI1mROqbu8s9UXsfSDg5oCCiMONDOaEeUqGqWLT4wDWDczVzZPR+8oHqmYwS1ID4cM11BPucRFKXcMyQx7F5BWeo4huYt6v86tFY9ptd9NaV9qafoXX6NUJq3HXrALbSh1RCRuTDw3HMddmuss/21ktk1StcK2HuE6D/yHWRv1GWoCXb11kJrjQmrb4WrlMhqDGQMYMRdDvSBgiY6+UiMONLOaEf0rmmAXcrcAVNf5rwss/V4to3ikFpeUWjnZqNY0b2oSF/3LNW1QpqbPiAS9x5DcRd2IylNuXy4Ycyl+1SdVddM/oHyehbJQp9zzeuuISNyYyN1waPks/3PJe6FOq+Zk+DM6UBLrkSHdU1CYP1wyUNIbqKo5LpS2bYfpLxjMhEhtf7w3yYm7QlhlNtQDzSrNiMEu5FJlEiuAH6rqdI/iWTIh2zdn5qcTWSnQ8twp11z0rIdjxB1lsCnnjbwjMrKVKZRjSOqiYETlKVcmuUBGqjxqVuIOx82A3joi3DcmwW441HyW1LmkZzuRYpWh+qEEqsGOCzXbtnreFIOZEGjpj/cmdZc3N6+H56KoZhtS29R7oIWzGVFLRaD1Qu4/46beRGHxIrXr6Bk4flqjx7+sinfKBt4FSx4bo3ugzyWtDL0jMrorIhzHkNQxreV4CrVMcvvI//1G3Qz4fzef9bIA3DMsC8s3Fyt+TihlUbNv1dxwJMbFyE5wqWYbWsocbkYviCq1f9UGKaEEqsGOC7sk+SphMKOT1v54f1J3ea0SmprWLxmOZkStFYGWC7nUGjAO/Hz3qmcUz3U5yt1RUtPgh6MCCHeTbri6IsJdbj0XFr1l0rKPjAjk5L7b2ZqLWPLTTc7yzcUY17eT4gR0esvi//nz8noiu5Mz4MIb7IZjbN+OGPf8Ns92bh+ciemDM4Nuw+EAHAIkE2r9RSq52cjzROnYVRtIhNr6qXRcWKV1PhQOQZBYztNinnvuOfzhD3/AyZMnkZOTg2eeeQYDBw5U9d7Kyko4nU64XC60bNnSsDJtK67A5JU7Ah5X6o+X431yAsrD+eyi3FXjWXdEFOtwoDB/eNDvVe6qCUiK9a+85Pb/s5P6ok3z+KDrzchVhkrPrS0q9akMrr2sPTZ8cdLnNWq/o5nk9t2aGb8ImETOLP6/QyjHkx569pH/cauW3HdbNzPXExj4P65mTSUtM7v6f75IKmj0Pw/m5vVAn06tkBgXE1BeQHqqA/9tPDG+t6qg84WtxZ7W0HCPujTqPAl27Co9D8DnPJDab1q+v9JxEeq2w0HL9dvyLTNr167Fgw8+iBUrVuDKK6/EsmXLMGrUKBw6dAjt2rUzrVx6++P96c0wt7pQmi29uxfk9o/c/u+XoTzhndL+DvZb+E/BP+75bQHbn5vXw/K/kVw+RmJcjHmF8iK3/pKa48moc0XvOkF6PlPuXCk6ekby8eo6d9CLqZayKHX7SLVGyLV2Sc2RAkgv+KmUaC3nhS3FKNjw8/wuRicK+x87RrVWBKsL5VpN5EZ4hdL66Z1b5f1/wB5JvkqsUXspeOqppzBjxgxMmzYNvXr1wooVK5CYmIi//e1vppZLPACDLQmvRM2S92uLSjFoyUZMXrkDg5ZsxNqiUkO/R7hILUdv1JBxcQ0frftfaXtqfgug4XfPzWqDqrp6yYq7T6dWqr+fWfz3HdDwfcc9v83040vud0iKiw16PBl5rhhxfqsld64MyGgd8jmk9/O9eU8cKBLPA6lukFC2IafcVYMlGw4GPC61XT2kjh2jjgE1deHEAekozB+ONTN+gcL84RjSPUWx7lO739R8T2+hbNtslg5m6urqsGvXLowcOdLzWExMDEaOHInt27dLvqe2thaVlZU+f+HifwBqbZILNuOo2gusFRlREQTbP1r3v9L2gn2WPyOCNTNNHJCOdTNz4f0VrHB8BVt/Se54Cse5Eur5rZbcuZKT1joiAZVUcOtNa16GVEAT6rkhNx+U1BQKWikdO0YcA2rrQu9AQmt9pIadrydqWLqbqaKiAvX19Wjfvr3P4+3bt8fBg4FROgAUFBRg0aJFkSgegNBGEUV7hnkkhoxr2f/Bthfq6sBWnEhKSVVdvaalEiJB6TfyXn/J/3gK17kSyvmthdy5Eqmmf+/P2X/8LJ784JCu41rczqrPSvDi1hJVCb1qyCUez8vrGfI+UdMNFOpnaP0dw5GQa/frSTCWDmb0mD9/Ph588EHP/ysrK5GWlmZiieQ1hgzzUCoCowOGYNszYnVgO7Hi8RXsN5I7nqz4XbSS+26RCqjEz8nNahPS7LapzgQ8/KtemDYo07Bzw/+4iEFDIHPXkKyQtgtE7tjR8juG42YpGs4RJZYezVRXV4fExES88cYbGDt2rOfxKVOm4OzZs3j77beDbiNco5mMZLcM80jTO0pEz/aM/iyrs+rxped3sOp3IeOE6/y06rFj9Pe16veUo+X6belgBgCuvPJKDBw4EM888wwAwO12Iz09HbNnz0Z+fn7Q99shmAmmsV1gKbKi6fiKpu9CkdVYjh07fc+oGpr94IMPYsqUKejfvz8GDhyIZcuWoaqqCtOmTTO7aBETqWZmapyi6fiKpu9CkdVYjp1o/Z6WD2YmTpyI06dP45FHHsHJkydx+eWX44MPPghICiYiIqLGyfLdTKGKhm4mIiKixkbL9dvS88wQERERBcNghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtmb55QxCJU5wXFlZaXJJiIiISC3xuq1moYKoD2bOnTsHAEhLSzO5JERERKTVuXPn4HQ6FV8T9Wszud1unDhxAi1atIDD4TC7OBFXWVmJtLQ0lJWVcW2qEHA/GoP70Rjcj8bgfjRGuPajIAg4d+4cOnbsiJgY5ayYqG+ZiYmJwSWXXGJ2MUzXsmVLnqwG4H40BvejMbgfjcH9aIxw7MdgLTIiJgATERGRrTGYISIiIltjMBPl4uPj8eijjyI+Pt7sotga96MxuB+Nwf1oDO5HY1hhP0Z9AjARERFFN7bMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwUyU2Lp1K66//np07NgRDocDb731ls/zgiDgkUceQWpqKhISEjBy5EgcPnzYnMJaWLD9OHXqVDgcDp+/0aNHm1NYiyooKMCAAQPQokULtGvXDmPHjsWhQ4d8XnPhwgXMmjULbdq0QfPmzTFhwgR89913JpXYmtTsx2HDhgUcj3fffbdJJbam5cuXo0+fPp4J3XJzc7FhwwbP8zwW1Qm2H80+FhnMRImqqirk5OTgueeek3z+ySefxNNPP40VK1Zgx44dSEpKwqhRo3DhwoUIl9Tagu1HABg9ejTKy8s9f2vWrIlgCa1vy5YtmDVrFv7zn//g448/xsWLF3HttdeiqqrK85oHHngA//73v/Gvf/0LW7ZswYkTJzB+/HgTS209avYjAMyYMcPneHzyySdNKrE1XXLJJViyZAl27dqFnTt34pprrsGNN96IL7/8EgCPRbWC7UfA5GNRoKgDQFi/fr3n/263W+jQoYPwhz/8wfPY2bNnhfj4eGHNmjUmlNAe/PejIAjClClThBtvvNGU8tjVqVOnBADCli1bBEFoOPaaNm0q/Otf//K85quvvhIACNu3bzermJbnvx8FQRCGDh0q3HfffeYVyqZat24tvPjiizwWQyTuR0Ew/1hky0wjUFJSgpMnT2LkyJGex5xOJ6688kps377dxJLZ0+bNm9GuXTv06NED99xzD77//nuzi2RpLpcLAJCcnAwA2LVrFy5evOhzPPbs2RPp6ek8HhX470fRP/7xD7Rt2xa9e/fG/PnzUV1dbUbxbKG+vh6vv/46qqqqkJuby2NRJ//9KDLzWIz6hSYJOHnyJACgffv2Po+3b9/e8xypM3r0aIwfPx6ZmZkoLi7Gww8/jLy8PGzfvh2xsbFmF89y3G437r//fgwaNAi9e/cG0HA8xsXFoVWrVj6v5fEoT2o/AsDkyZPRuXNndOzYEfv378e8efNw6NAhrFu3zsTSWs+BAweQm5uLCxcuoHnz5li/fj169eqFvXv38ljUQG4/AuYfiwxmiDS45ZZbPP/Ozs5Gnz59kJWVhc2bN2PEiBEmlsyaZs2ahS+++AKFhYVmF8XW5PbjnXfe6fl3dnY2UlNTMWLECBQXFyMrKyvSxbSsHj16YO/evXC5XHjjjTcwZcoUbNmyxexi2Y7cfuzVq5fpxyK7mRqBDh06AEBAhv53333neY706dKlC9q2bYsjR46YXRTLmT17Nt59911s2rQJl1xyiefxDh06oK6uDmfPnvV5PY9HaXL7UcqVV14JADwe/cTFxaFr167o168fCgoKkJOTg7/85S88FjWS249SIn0sMphpBDIzM9GhQwd88sknnscqKyuxY8cOn/5O0u748eP4/vvvkZqaanZRLEMQBMyePRvr16/Hxo0bkZmZ6fN8v3790LRpU5/j8dChQygtLeXx6CXYfpSyd+9eAODxGITb7UZtbS2PxRCJ+1FKpI9FdjNFifPnz/tEwCUlJdi7dy+Sk5ORnp6O+++/H4sXL0a3bt2QmZmJBQsWoGPHjhg7dqx5hbYgpf2YnJyMRYsWYcKECejQoQOKi4sxd+5cdO3aFaNGjTKx1NYya9YsvPbaa3j77bfRokULT+6B0+lEQkICnE4nbr/9djz44INITk5Gy5Ytce+99yI3Nxe/+MUvTC69dQTbj8XFxXjttdfwq1/9Cm3atMH+/fvxwAMPYMiQIejTp4/JpbeO+fPnIy8vD+np6Th37hxee+01bN68GR9++CGPRQ2U9qMljkXTxlGRoTZt2iQACPibMmWKIAgNw7MXLFggtG/fXoiPjxdGjBghHDp0yNxCW5DSfqyurhauvfZaISUlRWjatKnQuXNnYcaMGcLJkyfNLralSO0/AMKqVas8r6mpqRFmzpwptG7dWkhMTBTGjRsnlJeXm1doCwq2H0tLS4UhQ4YIycnJQnx8vNC1a1fhd7/7neByucwtuMVMnz5d6Ny5sxAXFyekpKQII0aMED766CPP8zwW1VHaj1Y4Fh2CIAiRCZuIiIiIjMecGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIaIiIhsjcEMERER2RqDGSIiIrI1BjNEZJq6ujqzixDAimUiImUMZojIMMOGDcPs2bMxe/ZsOJ1OtG3bFgsWLIC4akpGRgZ+//vf47bbbkPLli1x5513AgAKCwtx9dVXIyEhAWlpaZgzZw6qqqo8233++efRrVs3NGvWDO3bt8dNN93kee6NN95AdnY2EhIS0KZNG4wcOdLz3mHDhuH+++/3KePYsWMxdepUz//1lomIrIPBDBEZ6uWXX0aTJk3w+eef4y9/+QueeuopvPjii57n//jHPyInJwd79uzBggULUFxcjNGjR2PChAnYv38/1q5di8LCQsyePRsAsHPnTsyZMwePPfYYDh06hA8++ABDhgwBAJSXl2PSpEmYPn06vvrqK2zevBnjx4+H1iXntJaJiKyFC00SkWGGDRuGU6dO4csvv4TD4QAA5Ofn45133sF///tfZGRkoG/fvli/fr3nPXfccQdiY2PxwgsveB4rLCzE0KFDUVVVhffffx/Tpk3D8ePH0aJFC5/P2717N/r164ejR4+ic+fOkuW5/PLLsWzZMs9jY8eORatWrbB69WoA0FWmZs2ahbSfiMhYbJkhIkP94he/8AQyAJCbm4vDhw+jvr4eANC/f3+f1+/btw+rV69G8+bNPX+jRo2C2+1GSUkJfvnLX6Jz587o0qULbr31VvzjH/9AdXU1ACAnJwcjRoxAdnY2fv3rX2PlypU4c+aM5jJrLRMRWQuDGSKKqKSkJJ//nz9/HnfddRf27t3r+du3bx8OHz6MrKwstGjRArt378aaNWuQmpqKRx55BDk5OTh79ixiY2Px8ccfY8OGDejVqxeeeeYZ9OjRwxNwxMTEBHQ5Xbx4MeQyEZG1MJghIkPt2LHD5///+c9/0K1bN8TGxkq+/oorrsB///tfdO3aNeAvLi4OANCkSROMHDkSTz75JPbv34+jR49i48aNAACHw4FBgwZh0aJF2LNnD+Li4jxdRikpKSgvL/d8Vn19Pb744oug30FNmYjIOhjMEJGhSktL8eCDD+LQoUNYs2YNnnnmGdx3332yr583bx62bduG2bNnY+/evTh8+DDefvttT7Ltu+++i6effhp79+7FsWPH8Morr8DtdqNHjx7YsWMHnnjiCezcuROlpaVYt24dTp8+jUsvvRQAcM011+C9997De++9h4MHD+Kee+7B2bNng36HYGUiImtpYnYBiCi63HbbbaipqcHAgQMRGxuL++67zzPcWUqfPn2wZcsW/M///A+uvvpqCIKArKwsTJw4EQDQqlUrrFu3DgsXLsSFCxfQrVs3rFmzBpdddhm++uorbN26FcuWLUNlZSU6d+6MP/3pT8jLywMATJ8+Hfv27cNtt92GJk2a4IEHHsDw4cODfodgZSIia+FoJiIyjNToISKicGM3ExEREdkagxkiIiKyNXYzERERka2xZYaIiIhsjcEMERER2RqDGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIaIiIhs7f8D+wfn2xM8vM8AAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/250\n", + "13/13 - 3s - loss: 0.4963 - mae: 0.5592 - mse: 0.4963 - val_loss: 0.1685 - val_mae: 0.3349 - val_mse: 0.1685 - 3s/epoch - 249ms/step\n", + "Epoch 2/250\n", + "13/13 - 0s - loss: 0.1216 - mae: 0.2839 - mse: 0.1216 - val_loss: 0.0809 - val_mae: 0.2245 - val_mse: 0.0809 - 237ms/epoch - 18ms/step\n", + "Epoch 3/250\n", + "13/13 - 0s - loss: 0.0665 - mae: 0.2043 - mse: 0.0665 - val_loss: 0.0359 - val_mae: 0.1503 - val_mse: 0.0359 - 262ms/epoch - 20ms/step\n", + "Epoch 4/250\n", + "13/13 - 0s - loss: 0.0294 - mae: 0.1329 - mse: 0.0294 - val_loss: 0.0221 - val_mae: 0.1119 - val_mse: 0.0221 - 283ms/epoch - 22ms/step\n", + "Epoch 5/250\n", + "13/13 - 0s - loss: 0.0170 - mae: 0.0964 - mse: 0.0170 - val_loss: 0.0115 - val_mae: 0.0792 - val_mse: 0.0115 - 351ms/epoch - 27ms/step\n", + "Epoch 6/250\n", + "13/13 - 0s - loss: 0.0097 - mae: 0.0734 - mse: 0.0097 - val_loss: 0.0067 - val_mae: 0.0636 - val_mse: 0.0067 - 364ms/epoch - 28ms/step\n", + "Epoch 7/250\n", + "13/13 - 0s - loss: 0.0061 - mae: 0.0610 - mse: 0.0061 - val_loss: 0.0048 - val_mae: 0.0550 - val_mse: 0.0048 - 245ms/epoch - 19ms/step\n", + "Epoch 8/250\n", + "13/13 - 0s - loss: 0.0042 - mae: 0.0521 - mse: 0.0042 - val_loss: 0.0034 - val_mae: 0.0464 - val_mse: 0.0034 - 203ms/epoch - 16ms/step\n", + "Epoch 9/250\n", + "13/13 - 0s - loss: 0.0032 - mae: 0.0458 - mse: 0.0032 - val_loss: 0.0027 - val_mae: 0.0418 - val_mse: 0.0027 - 300ms/epoch - 23ms/step\n", + "Epoch 10/250\n", + "13/13 - 0s - loss: 0.0028 - mae: 0.0420 - mse: 0.0028 - val_loss: 0.0024 - val_mae: 0.0379 - val_mse: 0.0024 - 255ms/epoch - 20ms/step\n", + "Epoch 11/250\n", + "13/13 - 0s - loss: 0.0024 - mae: 0.0384 - mse: 0.0024 - val_loss: 0.0021 - val_mae: 0.0358 - val_mse: 0.0021 - 247ms/epoch - 19ms/step\n", + "Epoch 12/250\n", + "13/13 - 0s - loss: 0.0022 - mae: 0.0358 - mse: 0.0022 - val_loss: 0.0018 - val_mae: 0.0330 - val_mse: 0.0018 - 321ms/epoch - 25ms/step\n", + "Epoch 13/250\n", + "13/13 - 0s - loss: 0.0020 - mae: 0.0338 - mse: 0.0020 - val_loss: 0.0017 - val_mae: 0.0315 - val_mse: 0.0017 - 219ms/epoch - 17ms/step\n", + "Epoch 14/250\n", + "13/13 - 0s - loss: 0.0018 - mae: 0.0323 - mse: 0.0018 - val_loss: 0.0015 - val_mae: 0.0302 - val_mse: 0.0015 - 272ms/epoch - 21ms/step\n", + "Epoch 15/250\n", + "13/13 - 0s - loss: 0.0017 - mae: 0.0311 - mse: 0.0017 - val_loss: 0.0015 - val_mae: 0.0296 - val_mse: 0.0015 - 299ms/epoch - 23ms/step\n", + "Epoch 16/250\n", + "13/13 - 0s - loss: 0.0016 - mae: 0.0303 - mse: 0.0016 - val_loss: 0.0014 - val_mae: 0.0289 - val_mse: 0.0014 - 271ms/epoch - 21ms/step\n", + "Epoch 17/250\n", + "13/13 - 0s - loss: 0.0016 - mae: 0.0293 - mse: 0.0016 - val_loss: 0.0014 - val_mae: 0.0281 - val_mse: 0.0014 - 248ms/epoch - 19ms/step\n", + "Epoch 18/250\n", + "13/13 - 0s - loss: 0.0015 - mae: 0.0287 - mse: 0.0015 - val_loss: 0.0013 - val_mae: 0.0275 - val_mse: 0.0013 - 256ms/epoch - 20ms/step\n", + "Epoch 19/250\n", + "13/13 - 0s - loss: 0.0015 - mae: 0.0285 - mse: 0.0015 - val_loss: 0.0014 - val_mae: 0.0285 - val_mse: 0.0014 - 153ms/epoch - 12ms/step\n", + "Epoch 20/250\n", + "13/13 - 0s - loss: 0.0015 - mae: 0.0282 - mse: 0.0015 - val_loss: 0.0012 - val_mae: 0.0269 - val_mse: 0.0012 - 239ms/epoch - 18ms/step\n", + "Epoch 21/250\n", + "13/13 - 0s - loss: 0.0015 - mae: 0.0278 - mse: 0.0015 - val_loss: 0.0012 - val_mae: 0.0266 - val_mse: 0.0012 - 263ms/epoch - 20ms/step\n", + "Epoch 22/250\n", + "13/13 - 0s - loss: 0.0015 - mae: 0.0279 - mse: 0.0015 - val_loss: 0.0012 - val_mae: 0.0266 - val_mse: 0.0012 - 243ms/epoch - 19ms/step\n", + "Epoch 23/250\n", + "13/13 - 0s - loss: 0.0014 - mae: 0.0274 - mse: 0.0014 - val_loss: 0.0012 - val_mae: 0.0265 - val_mse: 0.0012 - 138ms/epoch - 11ms/step\n", + "Epoch 24/250\n", + "13/13 - 0s - loss: 0.0014 - mae: 0.0264 - mse: 0.0014 - val_loss: 0.0012 - val_mae: 0.0259 - val_mse: 0.0012 - 189ms/epoch - 15ms/step\n", + "Epoch 25/250\n", + "13/13 - 0s - loss: 0.0014 - mae: 0.0268 - mse: 0.0014 - val_loss: 0.0012 - val_mae: 0.0258 - val_mse: 0.0012 - 280ms/epoch - 22ms/step\n", + "Epoch 26/250\n", + "13/13 - 0s - loss: 0.0013 - mae: 0.0268 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0258 - val_mse: 0.0011 - 222ms/epoch - 17ms/step\n", + "Epoch 27/250\n", + "13/13 - 0s - loss: 0.0013 - mae: 0.0265 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0247 - val_mse: 0.0011 - 286ms/epoch - 22ms/step\n", + "Epoch 28/250\n", + "13/13 - 0s - loss: 0.0013 - mae: 0.0259 - mse: 0.0013 - val_loss: 0.0012 - val_mae: 0.0259 - val_mse: 0.0012 - 116ms/epoch - 9ms/step\n", + "Epoch 29/250\n", + "13/13 - 0s - loss: 0.0013 - mae: 0.0259 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0252 - val_mse: 0.0011 - 157ms/epoch - 12ms/step\n", + "Epoch 30/250\n", + "13/13 - 0s - loss: 0.0013 - mae: 0.0256 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0248 - val_mse: 0.0011 - 267ms/epoch - 21ms/step\n", + "Epoch 31/250\n", + "13/13 - 0s - loss: 0.0013 - mae: 0.0254 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0245 - val_mse: 0.0011 - 264ms/epoch - 20ms/step\n", + "Epoch 32/250\n", + "13/13 - 0s - loss: 0.0012 - mae: 0.0254 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0243 - val_mse: 0.0010 - 269ms/epoch - 21ms/step\n", + "Epoch 33/250\n", + "13/13 - 0s - loss: 0.0012 - mae: 0.0248 - mse: 0.0012 - val_loss: 0.0012 - val_mae: 0.0251 - val_mse: 0.0012 - 353ms/epoch - 27ms/step\n", + "Epoch 34/250\n", + "13/13 - 1s - loss: 0.0012 - mae: 0.0256 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0248 - val_mse: 0.0010 - 537ms/epoch - 41ms/step\n", + "Epoch 35/250\n", + "13/13 - 0s - loss: 0.0012 - mae: 0.0254 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0243 - val_mse: 0.0010 - 330ms/epoch - 25ms/step\n", + "Epoch 36/250\n", + "13/13 - 0s - loss: 0.0012 - mae: 0.0245 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0234 - val_mse: 0.0010 - 289ms/epoch - 22ms/step\n", + "Epoch 37/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0244 - mse: 0.0011 - val_loss: 0.0010 - val_mae: 0.0239 - val_mse: 0.0010 - 155ms/epoch - 12ms/step\n", + "Epoch 38/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0243 - mse: 0.0011 - val_loss: 9.9094e-04 - val_mae: 0.0235 - val_mse: 9.9094e-04 - 289ms/epoch - 22ms/step\n", + "Epoch 39/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0243 - mse: 0.0011 - val_loss: 0.0010 - val_mae: 0.0238 - val_mse: 0.0010 - 118ms/epoch - 9ms/step\n", + "Epoch 40/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0241 - mse: 0.0011 - val_loss: 9.7491e-04 - val_mae: 0.0239 - val_mse: 9.7491e-04 - 299ms/epoch - 23ms/step\n", + "Epoch 41/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0241 - mse: 0.0011 - val_loss: 9.9821e-04 - val_mae: 0.0227 - val_mse: 9.9821e-04 - 151ms/epoch - 12ms/step\n", + "Epoch 42/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0240 - mse: 0.0011 - val_loss: 0.0010 - val_mae: 0.0235 - val_mse: 0.0010 - 192ms/epoch - 15ms/step\n", + "Epoch 43/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0238 - mse: 0.0011 - val_loss: 9.4863e-04 - val_mae: 0.0232 - val_mse: 9.4863e-04 - 237ms/epoch - 18ms/step\n", + "Epoch 44/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0236 - mse: 0.0011 - val_loss: 9.8018e-04 - val_mae: 0.0230 - val_mse: 9.8018e-04 - 154ms/epoch - 12ms/step\n", + "Epoch 45/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0239 - mse: 0.0011 - val_loss: 9.5093e-04 - val_mae: 0.0233 - val_mse: 9.5093e-04 - 158ms/epoch - 12ms/step\n", + "Epoch 46/250\n", + "13/13 - 0s - loss: 0.0010 - mae: 0.0230 - mse: 0.0010 - val_loss: 9.4785e-04 - val_mae: 0.0223 - val_mse: 9.4785e-04 - 218ms/epoch - 17ms/step\n", + "Epoch 47/250\n", + "13/13 - 0s - loss: 0.0010 - mae: 0.0231 - mse: 0.0010 - val_loss: 9.7827e-04 - val_mae: 0.0230 - val_mse: 9.7827e-04 - 116ms/epoch - 9ms/step\n", + "Epoch 48/250\n", + "13/13 - 0s - loss: 0.0010 - mae: 0.0232 - mse: 0.0010 - val_loss: 9.0671e-04 - val_mae: 0.0225 - val_mse: 9.0671e-04 - 288ms/epoch - 22ms/step\n", + "Epoch 49/250\n", + "13/13 - 0s - loss: 0.0010 - mae: 0.0230 - mse: 0.0010 - val_loss: 9.2521e-04 - val_mae: 0.0218 - val_mse: 9.2521e-04 - 140ms/epoch - 11ms/step\n", + "Epoch 50/250\n", + "13/13 - 0s - loss: 0.0010 - mae: 0.0231 - mse: 0.0010 - val_loss: 9.7818e-04 - val_mae: 0.0231 - val_mse: 9.7818e-04 - 149ms/epoch - 11ms/step\n", + "Epoch 51/250\n", + "13/13 - 0s - loss: 9.9977e-04 - mae: 0.0232 - mse: 9.9977e-04 - val_loss: 9.4350e-04 - val_mae: 0.0221 - val_mse: 9.4350e-04 - 146ms/epoch - 11ms/step\n", + "Epoch 52/250\n", + "13/13 - 0s - loss: 9.8599e-04 - mae: 0.0229 - mse: 9.8599e-04 - val_loss: 9.0638e-04 - val_mae: 0.0230 - val_mse: 9.0638e-04 - 265ms/epoch - 20ms/step\n", + "Epoch 53/250\n", + "13/13 - 0s - loss: 9.8295e-04 - mae: 0.0228 - mse: 9.8295e-04 - val_loss: 9.0667e-04 - val_mae: 0.0215 - val_mse: 9.0667e-04 - 179ms/epoch - 14ms/step\n", + "Epoch 54/250\n", + "13/13 - 0s - loss: 9.7266e-04 - mae: 0.0225 - mse: 9.7266e-04 - val_loss: 9.0391e-04 - val_mae: 0.0224 - val_mse: 9.0391e-04 - 287ms/epoch - 22ms/step\n", + "Epoch 55/250\n", + "13/13 - 0s - loss: 9.5234e-04 - mae: 0.0225 - mse: 9.5234e-04 - val_loss: 8.7426e-04 - val_mae: 0.0219 - val_mse: 8.7426e-04 - 284ms/epoch - 22ms/step\n", + "Epoch 56/250\n", + "13/13 - 0s - loss: 9.4315e-04 - mae: 0.0221 - mse: 9.4315e-04 - val_loss: 8.6742e-04 - val_mae: 0.0224 - val_mse: 8.6742e-04 - 297ms/epoch - 23ms/step\n", + "Epoch 57/250\n", + "13/13 - 0s - loss: 9.9226e-04 - mae: 0.0230 - mse: 9.9226e-04 - val_loss: 8.7793e-04 - val_mae: 0.0225 - val_mse: 8.7793e-04 - 206ms/epoch - 16ms/step\n", + "Epoch 58/250\n", + "13/13 - 0s - loss: 9.4137e-04 - mae: 0.0226 - mse: 9.4137e-04 - val_loss: 8.7477e-04 - val_mae: 0.0225 - val_mse: 8.7477e-04 - 160ms/epoch - 12ms/step\n", + "Epoch 59/250\n", + "13/13 - 0s - loss: 9.2474e-04 - mae: 0.0219 - mse: 9.2474e-04 - val_loss: 8.5320e-04 - val_mae: 0.0212 - val_mse: 8.5320e-04 - 274ms/epoch - 21ms/step\n", + "Epoch 60/250\n", + "13/13 - 0s - loss: 9.1133e-04 - mae: 0.0217 - mse: 9.1133e-04 - val_loss: 8.6082e-04 - val_mae: 0.0217 - val_mse: 8.6082e-04 - 160ms/epoch - 12ms/step\n", + "Epoch 61/250\n", + "13/13 - 0s - loss: 9.1801e-04 - mae: 0.0217 - mse: 9.1801e-04 - val_loss: 8.5403e-04 - val_mae: 0.0223 - val_mse: 8.5403e-04 - 143ms/epoch - 11ms/step\n", + "Epoch 62/250\n", + "13/13 - 0s - loss: 9.1987e-04 - mae: 0.0221 - mse: 9.1987e-04 - val_loss: 8.5714e-04 - val_mae: 0.0219 - val_mse: 8.5714e-04 - 128ms/epoch - 10ms/step\n", + "Epoch 63/250\n", + "13/13 - 0s - loss: 9.0862e-04 - mae: 0.0222 - mse: 9.0862e-04 - val_loss: 8.6160e-04 - val_mae: 0.0225 - val_mse: 8.6160e-04 - 154ms/epoch - 12ms/step\n", + "Epoch 64/250\n", + "13/13 - 0s - loss: 8.9349e-04 - mae: 0.0220 - mse: 8.9349e-04 - val_loss: 8.2851e-04 - val_mae: 0.0214 - val_mse: 8.2851e-04 - 284ms/epoch - 22ms/step\n", + "Epoch 65/250\n", + "13/13 - 0s - loss: 8.7848e-04 - mae: 0.0216 - mse: 8.7848e-04 - val_loss: 8.5189e-04 - val_mae: 0.0218 - val_mse: 8.5189e-04 - 168ms/epoch - 13ms/step\n", + "Epoch 66/250\n", + "13/13 - 0s - loss: 8.9773e-04 - mae: 0.0219 - mse: 8.9773e-04 - val_loss: 8.5650e-04 - val_mae: 0.0211 - val_mse: 8.5650e-04 - 113ms/epoch - 9ms/step\n", + "Epoch 67/250\n", + "13/13 - 0s - loss: 8.7443e-04 - mae: 0.0217 - mse: 8.7443e-04 - val_loss: 8.2545e-04 - val_mae: 0.0214 - val_mse: 8.2545e-04 - 264ms/epoch - 20ms/step\n", + "Epoch 68/250\n", + "13/13 - 0s - loss: 8.9141e-04 - mae: 0.0217 - mse: 8.9141e-04 - val_loss: 8.4471e-04 - val_mae: 0.0219 - val_mse: 8.4471e-04 - 189ms/epoch - 15ms/step\n", + "Epoch 69/250\n", + "13/13 - 0s - loss: 8.9507e-04 - mae: 0.0224 - mse: 8.9507e-04 - val_loss: 8.7916e-04 - val_mae: 0.0217 - val_mse: 8.7916e-04 - 175ms/epoch - 13ms/step\n", + "Epoch 70/250\n", + "13/13 - 0s - loss: 8.5737e-04 - mae: 0.0216 - mse: 8.5737e-04 - val_loss: 8.8807e-04 - val_mae: 0.0215 - val_mse: 8.8807e-04 - 322ms/epoch - 25ms/step\n", + "Epoch 71/250\n", + "13/13 - 0s - loss: 8.5560e-04 - mae: 0.0214 - mse: 8.5560e-04 - val_loss: 8.3750e-04 - val_mae: 0.0213 - val_mse: 8.3750e-04 - 207ms/epoch - 16ms/step\n", + "Epoch 72/250\n", + "13/13 - 0s - loss: 8.5576e-04 - mae: 0.0218 - mse: 8.5576e-04 - val_loss: 8.1156e-04 - val_mae: 0.0210 - val_mse: 8.1156e-04 - 257ms/epoch - 20ms/step\n", + "Epoch 73/250\n", + "13/13 - 0s - loss: 8.4688e-04 - mae: 0.0216 - mse: 8.4688e-04 - val_loss: 8.0221e-04 - val_mae: 0.0210 - val_mse: 8.0221e-04 - 233ms/epoch - 18ms/step\n", + "Epoch 74/250\n", + "13/13 - 0s - loss: 8.3636e-04 - mae: 0.0211 - mse: 8.3636e-04 - val_loss: 7.9384e-04 - val_mae: 0.0208 - val_mse: 7.9384e-04 - 250ms/epoch - 19ms/step\n", + "Epoch 75/250\n", + "13/13 - 0s - loss: 8.4758e-04 - mae: 0.0222 - mse: 8.4758e-04 - val_loss: 8.2932e-04 - val_mae: 0.0212 - val_mse: 8.2932e-04 - 119ms/epoch - 9ms/step\n", + "Epoch 76/250\n", + "13/13 - 0s - loss: 8.4142e-04 - mae: 0.0213 - mse: 8.4142e-04 - val_loss: 8.0552e-04 - val_mae: 0.0209 - val_mse: 8.0552e-04 - 150ms/epoch - 12ms/step\n", + "Epoch 77/250\n", + "13/13 - 0s - loss: 8.5035e-04 - mae: 0.0215 - mse: 8.5035e-04 - val_loss: 8.6014e-04 - val_mae: 0.0215 - val_mse: 8.6014e-04 - 126ms/epoch - 10ms/step\n", + "Epoch 78/250\n", + "13/13 - 0s - loss: 8.9015e-04 - mae: 0.0228 - mse: 8.9015e-04 - val_loss: 9.2548e-04 - val_mae: 0.0225 - val_mse: 9.2548e-04 - 242ms/epoch - 19ms/step\n", + "Epoch 79/250\n", + "13/13 - 0s - loss: 8.1577e-04 - mae: 0.0212 - mse: 8.1577e-04 - val_loss: 8.4703e-04 - val_mae: 0.0211 - val_mse: 8.4703e-04 - 165ms/epoch - 13ms/step\n", + "Epoch 80/250\n", + "13/13 - 0s - loss: 8.0555e-04 - mae: 0.0211 - mse: 8.0555e-04 - val_loss: 8.5652e-04 - val_mae: 0.0214 - val_mse: 8.5652e-04 - 131ms/epoch - 10ms/step\n", + "Epoch 81/250\n", + "13/13 - 0s - loss: 8.3478e-04 - mae: 0.0219 - mse: 8.3478e-04 - val_loss: 9.1057e-04 - val_mae: 0.0222 - val_mse: 9.1057e-04 - 166ms/epoch - 13ms/step\n", + "Epoch 82/250\n", + "13/13 - 0s - loss: 8.2593e-04 - mae: 0.0217 - mse: 8.2593e-04 - val_loss: 8.1172e-04 - val_mae: 0.0209 - val_mse: 8.1172e-04 - 143ms/epoch - 11ms/step\n", + "Epoch 83/250\n", + "13/13 - 0s - loss: 8.2887e-04 - mae: 0.0213 - mse: 8.2887e-04 - val_loss: 8.2033e-04 - val_mae: 0.0211 - val_mse: 8.2033e-04 - 115ms/epoch - 9ms/step\n", + "Epoch 84/250\n", + "13/13 - 0s - loss: 8.1454e-04 - mae: 0.0219 - mse: 8.1454e-04 - val_loss: 8.1589e-04 - val_mae: 0.0211 - val_mse: 8.1589e-04 - 148ms/epoch - 11ms/step\n", + "Epoch 85/250\n", + "13/13 - 0s - loss: 8.0777e-04 - mae: 0.0212 - mse: 8.0777e-04 - val_loss: 7.8637e-04 - val_mae: 0.0208 - val_mse: 7.8637e-04 - 282ms/epoch - 22ms/step\n", + "Epoch 86/250\n", + "13/13 - 0s - loss: 7.8107e-04 - mae: 0.0213 - mse: 7.8107e-04 - val_loss: 7.8138e-04 - val_mae: 0.0212 - val_mse: 7.8138e-04 - 246ms/epoch - 19ms/step\n", + "Epoch 87/250\n", + "13/13 - 0s - loss: 7.9729e-04 - mae: 0.0210 - mse: 7.9729e-04 - val_loss: 7.3667e-04 - val_mae: 0.0204 - val_mse: 7.3667e-04 - 237ms/epoch - 18ms/step\n", + "Epoch 88/250\n", + "13/13 - 0s - loss: 7.5931e-04 - mae: 0.0205 - mse: 7.5931e-04 - val_loss: 7.5522e-04 - val_mae: 0.0210 - val_mse: 7.5522e-04 - 208ms/epoch - 16ms/step\n", + "Epoch 89/250\n", + "13/13 - 0s - loss: 7.6036e-04 - mae: 0.0211 - mse: 7.6036e-04 - val_loss: 7.5503e-04 - val_mae: 0.0207 - val_mse: 7.5503e-04 - 193ms/epoch - 15ms/step\n", + "Epoch 90/250\n", + "13/13 - 0s - loss: 7.6322e-04 - mae: 0.0204 - mse: 7.6322e-04 - val_loss: 7.7629e-04 - val_mae: 0.0203 - val_mse: 7.7629e-04 - 168ms/epoch - 13ms/step\n", + "Epoch 91/250\n", + "13/13 - 0s - loss: 7.5436e-04 - mae: 0.0208 - mse: 7.5436e-04 - val_loss: 7.4549e-04 - val_mae: 0.0210 - val_mse: 7.4549e-04 - 156ms/epoch - 12ms/step\n", + "Epoch 92/250\n", + "13/13 - 0s - loss: 7.8479e-04 - mae: 0.0208 - mse: 7.8479e-04 - val_loss: 8.0607e-04 - val_mae: 0.0208 - val_mse: 8.0607e-04 - 137ms/epoch - 11ms/step\n", + "Epoch 93/250\n", + "13/13 - 0s - loss: 7.7194e-04 - mae: 0.0211 - mse: 7.7194e-04 - val_loss: 7.7994e-04 - val_mae: 0.0206 - val_mse: 7.7994e-04 - 174ms/epoch - 13ms/step\n", + "Epoch 94/250\n", + "13/13 - 0s - loss: 7.4802e-04 - mae: 0.0205 - mse: 7.4802e-04 - val_loss: 7.2386e-04 - val_mae: 0.0201 - val_mse: 7.2386e-04 - 303ms/epoch - 23ms/step\n", + "Epoch 95/250\n", + "13/13 - 0s - loss: 7.2616e-04 - mae: 0.0203 - mse: 7.2616e-04 - val_loss: 7.2728e-04 - val_mae: 0.0204 - val_mse: 7.2728e-04 - 129ms/epoch - 10ms/step\n", + "Epoch 96/250\n", + "13/13 - 0s - loss: 7.2310e-04 - mae: 0.0204 - mse: 7.2310e-04 - val_loss: 7.1349e-04 - val_mae: 0.0206 - val_mse: 7.1349e-04 - 218ms/epoch - 17ms/step\n", + "Epoch 97/250\n", + "13/13 - 0s - loss: 7.0905e-04 - mae: 0.0201 - mse: 7.0905e-04 - val_loss: 7.6242e-04 - val_mae: 0.0205 - val_mse: 7.6242e-04 - 128ms/epoch - 10ms/step\n", + "Epoch 98/250\n", + "13/13 - 0s - loss: 7.1839e-04 - mae: 0.0200 - mse: 7.1839e-04 - val_loss: 7.7098e-04 - val_mae: 0.0202 - val_mse: 7.7098e-04 - 147ms/epoch - 11ms/step\n", + "Epoch 99/250\n", + "13/13 - 0s - loss: 7.3924e-04 - mae: 0.0208 - mse: 7.3924e-04 - val_loss: 7.8554e-04 - val_mae: 0.0206 - val_mse: 7.8554e-04 - 130ms/epoch - 10ms/step\n", + "Epoch 100/250\n", + "13/13 - 0s - loss: 7.5556e-04 - mae: 0.0209 - mse: 7.5556e-04 - val_loss: 8.6021e-04 - val_mae: 0.0215 - val_mse: 8.6021e-04 - 174ms/epoch - 13ms/step\n", + "Epoch 101/250\n", + "13/13 - 0s - loss: 7.9288e-04 - mae: 0.0213 - mse: 7.9288e-04 - val_loss: 7.2968e-04 - val_mae: 0.0203 - val_mse: 7.2968e-04 - 125ms/epoch - 10ms/step\n", + "Epoch 102/250\n", + "13/13 - 0s - loss: 7.1861e-04 - mae: 0.0204 - mse: 7.1861e-04 - val_loss: 7.0941e-04 - val_mae: 0.0207 - val_mse: 7.0941e-04 - 260ms/epoch - 20ms/step\n", + "Epoch 103/250\n", + "13/13 - 0s - loss: 7.5092e-04 - mae: 0.0208 - mse: 7.5092e-04 - val_loss: 6.8788e-04 - val_mae: 0.0198 - val_mse: 6.8788e-04 - 275ms/epoch - 21ms/step\n", + "Epoch 104/250\n", + "13/13 - 0s - loss: 7.0460e-04 - mae: 0.0200 - mse: 7.0460e-04 - val_loss: 7.2570e-04 - val_mae: 0.0200 - val_mse: 7.2570e-04 - 125ms/epoch - 10ms/step\n", + "Epoch 105/250\n", + "13/13 - 0s - loss: 6.9255e-04 - mae: 0.0202 - mse: 6.9255e-04 - val_loss: 6.7411e-04 - val_mae: 0.0199 - val_mse: 6.7411e-04 - 275ms/epoch - 21ms/step\n", + "Epoch 106/250\n", + "13/13 - 0s - loss: 6.8175e-04 - mae: 0.0196 - mse: 6.8175e-04 - val_loss: 6.7593e-04 - val_mae: 0.0196 - val_mse: 6.7593e-04 - 157ms/epoch - 12ms/step\n", + "Epoch 107/250\n", + "13/13 - 0s - loss: 6.7018e-04 - mae: 0.0196 - mse: 6.7018e-04 - val_loss: 6.8702e-04 - val_mae: 0.0196 - val_mse: 6.8702e-04 - 183ms/epoch - 14ms/step\n", + "Epoch 108/250\n", + "13/13 - 0s - loss: 6.7955e-04 - mae: 0.0198 - mse: 6.7955e-04 - val_loss: 7.6778e-04 - val_mae: 0.0204 - val_mse: 7.6778e-04 - 192ms/epoch - 15ms/step\n", + "Epoch 109/250\n", + "13/13 - 1s - loss: 6.8953e-04 - mae: 0.0198 - mse: 6.8953e-04 - val_loss: 6.7251e-04 - val_mae: 0.0195 - val_mse: 6.7251e-04 - 516ms/epoch - 40ms/step\n", + "Epoch 110/250\n", + "13/13 - 0s - loss: 6.6819e-04 - mae: 0.0197 - mse: 6.6819e-04 - val_loss: 6.8310e-04 - val_mae: 0.0197 - val_mse: 6.8310e-04 - 146ms/epoch - 11ms/step\n", + "Epoch 111/250\n", + "13/13 - 0s - loss: 6.7136e-04 - mae: 0.0197 - mse: 6.7136e-04 - val_loss: 6.5858e-04 - val_mae: 0.0199 - val_mse: 6.5858e-04 - 208ms/epoch - 16ms/step\n", + "Epoch 112/250\n", + "13/13 - 0s - loss: 6.5784e-04 - mae: 0.0195 - mse: 6.5784e-04 - val_loss: 6.5838e-04 - val_mae: 0.0196 - val_mse: 6.5838e-04 - 215ms/epoch - 17ms/step\n", + "Epoch 113/250\n", + "13/13 - 0s - loss: 6.6861e-04 - mae: 0.0198 - mse: 6.6861e-04 - val_loss: 6.9871e-04 - val_mae: 0.0196 - val_mse: 6.9871e-04 - 149ms/epoch - 11ms/step\n", + "Epoch 114/250\n", + "13/13 - 0s - loss: 6.6345e-04 - mae: 0.0196 - mse: 6.6345e-04 - val_loss: 6.8190e-04 - val_mae: 0.0196 - val_mse: 6.8190e-04 - 141ms/epoch - 11ms/step\n", + "Epoch 115/250\n", + "13/13 - 0s - loss: 6.4121e-04 - mae: 0.0193 - mse: 6.4121e-04 - val_loss: 6.6493e-04 - val_mae: 0.0196 - val_mse: 6.6493e-04 - 166ms/epoch - 13ms/step\n", + "Epoch 116/250\n", + "13/13 - 0s - loss: 6.5036e-04 - mae: 0.0194 - mse: 6.5036e-04 - val_loss: 6.5858e-04 - val_mae: 0.0191 - val_mse: 6.5858e-04 - 107ms/epoch - 8ms/step\n", + "Epoch 117/250\n", + "13/13 - 0s - loss: 6.4983e-04 - mae: 0.0194 - mse: 6.4983e-04 - val_loss: 7.0443e-04 - val_mae: 0.0198 - val_mse: 7.0443e-04 - 109ms/epoch - 8ms/step\n", + "Epoch 118/250\n", + "13/13 - 0s - loss: 6.4994e-04 - mae: 0.0195 - mse: 6.4994e-04 - val_loss: 6.3181e-04 - val_mae: 0.0193 - val_mse: 6.3181e-04 - 296ms/epoch - 23ms/step\n", + "Epoch 119/250\n", + "13/13 - 0s - loss: 6.6252e-04 - mae: 0.0199 - mse: 6.6252e-04 - val_loss: 6.3527e-04 - val_mae: 0.0191 - val_mse: 6.3527e-04 - 165ms/epoch - 13ms/step\n", + "Epoch 120/250\n", + "13/13 - 0s - loss: 6.4578e-04 - mae: 0.0193 - mse: 6.4578e-04 - val_loss: 6.3127e-04 - val_mae: 0.0189 - val_mse: 6.3127e-04 - 190ms/epoch - 15ms/step\n", + "Epoch 121/250\n", + "13/13 - 0s - loss: 6.1375e-04 - mae: 0.0191 - mse: 6.1375e-04 - val_loss: 6.5351e-04 - val_mae: 0.0192 - val_mse: 6.5351e-04 - 125ms/epoch - 10ms/step\n", + "Epoch 122/250\n", + "13/13 - 0s - loss: 6.4650e-04 - mae: 0.0196 - mse: 6.4650e-04 - val_loss: 8.0733e-04 - val_mae: 0.0210 - val_mse: 8.0733e-04 - 142ms/epoch - 11ms/step\n", + "Epoch 123/250\n", + "13/13 - 0s - loss: 6.5887e-04 - mae: 0.0198 - mse: 6.5887e-04 - val_loss: 6.2666e-04 - val_mae: 0.0191 - val_mse: 6.2666e-04 - 278ms/epoch - 21ms/step\n", + "Epoch 124/250\n", + "13/13 - 0s - loss: 6.1387e-04 - mae: 0.0189 - mse: 6.1387e-04 - val_loss: 6.1020e-04 - val_mae: 0.0188 - val_mse: 6.1020e-04 - 246ms/epoch - 19ms/step\n", + "Epoch 125/250\n", + "13/13 - 0s - loss: 6.1348e-04 - mae: 0.0191 - mse: 6.1348e-04 - val_loss: 6.1093e-04 - val_mae: 0.0193 - val_mse: 6.1093e-04 - 135ms/epoch - 10ms/step\n", + "Epoch 126/250\n", + "13/13 - 0s - loss: 6.1374e-04 - mae: 0.0189 - mse: 6.1374e-04 - val_loss: 6.1062e-04 - val_mae: 0.0188 - val_mse: 6.1062e-04 - 174ms/epoch - 13ms/step\n", + "Epoch 127/250\n", + "13/13 - 0s - loss: 6.1279e-04 - mae: 0.0190 - mse: 6.1279e-04 - val_loss: 6.4391e-04 - val_mae: 0.0190 - val_mse: 6.4391e-04 - 142ms/epoch - 11ms/step\n", + "Epoch 128/250\n", + "13/13 - 0s - loss: 6.0951e-04 - mae: 0.0189 - mse: 6.0951e-04 - val_loss: 5.9592e-04 - val_mae: 0.0188 - val_mse: 5.9592e-04 - 249ms/epoch - 19ms/step\n", + "Epoch 129/250\n", + "13/13 - 0s - loss: 6.2194e-04 - mae: 0.0192 - mse: 6.2194e-04 - val_loss: 5.9344e-04 - val_mae: 0.0188 - val_mse: 5.9344e-04 - 279ms/epoch - 21ms/step\n", + "Epoch 130/250\n", + "13/13 - 0s - loss: 6.1795e-04 - mae: 0.0191 - mse: 6.1795e-04 - val_loss: 5.8880e-04 - val_mae: 0.0188 - val_mse: 5.8880e-04 - 356ms/epoch - 27ms/step\n", + "Epoch 131/250\n", + "13/13 - 0s - loss: 6.6297e-04 - mae: 0.0199 - mse: 6.6297e-04 - val_loss: 7.2306e-04 - val_mae: 0.0197 - val_mse: 7.2306e-04 - 151ms/epoch - 12ms/step\n", + "Epoch 132/250\n", + "13/13 - 0s - loss: 5.8788e-04 - mae: 0.0189 - mse: 5.8788e-04 - val_loss: 6.0686e-04 - val_mae: 0.0189 - val_mse: 6.0686e-04 - 102ms/epoch - 8ms/step\n", + "Epoch 133/250\n", + "13/13 - 0s - loss: 5.7425e-04 - mae: 0.0184 - mse: 5.7425e-04 - val_loss: 5.7895e-04 - val_mae: 0.0183 - val_mse: 5.7895e-04 - 239ms/epoch - 18ms/step\n", + "Epoch 134/250\n", + "13/13 - 0s - loss: 5.8783e-04 - mae: 0.0186 - mse: 5.8783e-04 - val_loss: 5.7846e-04 - val_mae: 0.0188 - val_mse: 5.7846e-04 - 285ms/epoch - 22ms/step\n", + "Epoch 135/250\n", + "13/13 - 0s - loss: 5.8541e-04 - mae: 0.0188 - mse: 5.8541e-04 - val_loss: 6.7887e-04 - val_mae: 0.0191 - val_mse: 6.7887e-04 - 178ms/epoch - 14ms/step\n", + "Epoch 136/250\n", + "13/13 - 0s - loss: 5.9158e-04 - mae: 0.0185 - mse: 5.9158e-04 - val_loss: 5.9231e-04 - val_mae: 0.0188 - val_mse: 5.9231e-04 - 113ms/epoch - 9ms/step\n", + "Epoch 137/250\n", + "13/13 - 0s - loss: 5.9616e-04 - mae: 0.0192 - mse: 5.9616e-04 - val_loss: 7.0218e-04 - val_mae: 0.0212 - val_mse: 7.0218e-04 - 138ms/epoch - 11ms/step\n", + "Epoch 138/250\n", + "13/13 - 0s - loss: 6.2132e-04 - mae: 0.0190 - mse: 6.2132e-04 - val_loss: 6.3436e-04 - val_mae: 0.0186 - val_mse: 6.3436e-04 - 144ms/epoch - 11ms/step\n", + "Epoch 139/250\n", + "13/13 - 0s - loss: 5.8416e-04 - mae: 0.0189 - mse: 5.8416e-04 - val_loss: 5.7793e-04 - val_mae: 0.0184 - val_mse: 5.7793e-04 - 279ms/epoch - 21ms/step\n", + "Epoch 140/250\n", + "13/13 - 0s - loss: 6.5695e-04 - mae: 0.0195 - mse: 6.5695e-04 - val_loss: 5.8062e-04 - val_mae: 0.0189 - val_mse: 5.8062e-04 - 174ms/epoch - 13ms/step\n", + "Epoch 141/250\n", + "13/13 - 0s - loss: 6.4168e-04 - mae: 0.0200 - mse: 6.4168e-04 - val_loss: 6.9879e-04 - val_mae: 0.0196 - val_mse: 6.9879e-04 - 118ms/epoch - 9ms/step\n", + "Epoch 142/250\n", + "13/13 - 0s - loss: 6.5517e-04 - mae: 0.0198 - mse: 6.5517e-04 - val_loss: 6.3928e-04 - val_mae: 0.0193 - val_mse: 6.3928e-04 - 120ms/epoch - 9ms/step\n", + "Epoch 143/250\n", + "13/13 - 0s - loss: 5.8456e-04 - mae: 0.0190 - mse: 5.8456e-04 - val_loss: 5.4596e-04 - val_mae: 0.0181 - val_mse: 5.4596e-04 - 304ms/epoch - 23ms/step\n", + "Epoch 144/250\n", + "13/13 - 0s - loss: 5.9458e-04 - mae: 0.0186 - mse: 5.9458e-04 - val_loss: 5.8598e-04 - val_mae: 0.0181 - val_mse: 5.8598e-04 - 178ms/epoch - 14ms/step\n", + "Epoch 145/250\n", + "13/13 - 0s - loss: 5.6787e-04 - mae: 0.0186 - mse: 5.6787e-04 - val_loss: 5.6263e-04 - val_mae: 0.0186 - val_mse: 5.6263e-04 - 131ms/epoch - 10ms/step\n", + "Epoch 146/250\n", + "13/13 - 0s - loss: 5.3545e-04 - mae: 0.0178 - mse: 5.3545e-04 - val_loss: 5.3802e-04 - val_mae: 0.0179 - val_mse: 5.3802e-04 - 396ms/epoch - 30ms/step\n", + "Epoch 147/250\n", + "13/13 - 0s - loss: 5.2310e-04 - mae: 0.0177 - mse: 5.2310e-04 - val_loss: 5.4103e-04 - val_mae: 0.0179 - val_mse: 5.4103e-04 - 151ms/epoch - 12ms/step\n", + "Epoch 148/250\n", + "13/13 - 0s - loss: 5.2826e-04 - mae: 0.0176 - mse: 5.2826e-04 - val_loss: 5.9310e-04 - val_mae: 0.0181 - val_mse: 5.9310e-04 - 155ms/epoch - 12ms/step\n", + "Epoch 149/250\n", + "13/13 - 0s - loss: 5.3295e-04 - mae: 0.0179 - mse: 5.3295e-04 - val_loss: 5.4002e-04 - val_mae: 0.0176 - val_mse: 5.4002e-04 - 120ms/epoch - 9ms/step\n", + "Epoch 150/250\n", + "13/13 - 0s - loss: 5.1491e-04 - mae: 0.0174 - mse: 5.1491e-04 - val_loss: 5.9602e-04 - val_mae: 0.0179 - val_mse: 5.9602e-04 - 137ms/epoch - 11ms/step\n", + "Epoch 151/250\n", + "13/13 - 0s - loss: 5.2334e-04 - mae: 0.0179 - mse: 5.2334e-04 - val_loss: 5.2811e-04 - val_mae: 0.0178 - val_mse: 5.2811e-04 - 315ms/epoch - 24ms/step\n", + "Epoch 152/250\n", + "13/13 - 0s - loss: 5.2768e-04 - mae: 0.0178 - mse: 5.2768e-04 - val_loss: 5.5139e-04 - val_mae: 0.0184 - val_mse: 5.5139e-04 - 198ms/epoch - 15ms/step\n", + "Epoch 153/250\n", + "13/13 - 0s - loss: 5.2962e-04 - mae: 0.0179 - mse: 5.2962e-04 - val_loss: 5.7462e-04 - val_mae: 0.0178 - val_mse: 5.7462e-04 - 129ms/epoch - 10ms/step\n", + "Epoch 154/250\n", + "13/13 - 0s - loss: 5.0260e-04 - mae: 0.0173 - mse: 5.0260e-04 - val_loss: 5.3387e-04 - val_mae: 0.0181 - val_mse: 5.3387e-04 - 131ms/epoch - 10ms/step\n", + "Epoch 155/250\n", + "13/13 - 0s - loss: 5.0501e-04 - mae: 0.0175 - mse: 5.0501e-04 - val_loss: 5.0751e-04 - val_mae: 0.0172 - val_mse: 5.0751e-04 - 267ms/epoch - 21ms/step\n", + "Epoch 156/250\n", + "13/13 - 0s - loss: 5.0518e-04 - mae: 0.0173 - mse: 5.0518e-04 - val_loss: 5.5553e-04 - val_mae: 0.0174 - val_mse: 5.5553e-04 - 182ms/epoch - 14ms/step\n", + "Epoch 157/250\n", + "13/13 - 0s - loss: 5.0064e-04 - mae: 0.0172 - mse: 5.0064e-04 - val_loss: 5.1205e-04 - val_mae: 0.0172 - val_mse: 5.1205e-04 - 160ms/epoch - 12ms/step\n", + "Epoch 158/250\n", + "13/13 - 0s - loss: 4.9541e-04 - mae: 0.0172 - mse: 4.9541e-04 - val_loss: 5.0799e-04 - val_mae: 0.0172 - val_mse: 5.0799e-04 - 131ms/epoch - 10ms/step\n", + "Epoch 159/250\n", + "13/13 - 0s - loss: 5.4153e-04 - mae: 0.0182 - mse: 5.4153e-04 - val_loss: 5.2077e-04 - val_mae: 0.0171 - val_mse: 5.2077e-04 - 172ms/epoch - 13ms/step\n", + "Epoch 160/250\n", + "13/13 - 0s - loss: 4.8280e-04 - mae: 0.0170 - mse: 4.8280e-04 - val_loss: 5.1410e-04 - val_mae: 0.0168 - val_mse: 5.1410e-04 - 164ms/epoch - 13ms/step\n", + "Epoch 161/250\n", + "13/13 - 0s - loss: 4.8993e-04 - mae: 0.0171 - mse: 4.8993e-04 - val_loss: 5.1744e-04 - val_mae: 0.0171 - val_mse: 5.1744e-04 - 169ms/epoch - 13ms/step\n", + "Epoch 162/250\n", + "13/13 - 0s - loss: 4.8044e-04 - mae: 0.0169 - mse: 4.8044e-04 - val_loss: 5.1099e-04 - val_mae: 0.0168 - val_mse: 5.1099e-04 - 188ms/epoch - 14ms/step\n", + "Epoch 163/250\n", + "13/13 - 0s - loss: 4.9657e-04 - mae: 0.0171 - mse: 4.9657e-04 - val_loss: 4.9877e-04 - val_mae: 0.0171 - val_mse: 4.9877e-04 - 258ms/epoch - 20ms/step\n", + "Epoch 164/250\n", + "13/13 - 0s - loss: 4.8858e-04 - mae: 0.0170 - mse: 4.8858e-04 - val_loss: 5.0099e-04 - val_mae: 0.0169 - val_mse: 5.0099e-04 - 150ms/epoch - 12ms/step\n", + "Epoch 165/250\n", + "13/13 - 0s - loss: 4.7747e-04 - mae: 0.0170 - mse: 4.7747e-04 - val_loss: 5.8449e-04 - val_mae: 0.0174 - val_mse: 5.8449e-04 - 158ms/epoch - 12ms/step\n", + "Epoch 166/250\n", + "13/13 - 0s - loss: 4.9897e-04 - mae: 0.0171 - mse: 4.9897e-04 - val_loss: 4.9512e-04 - val_mae: 0.0173 - val_mse: 4.9512e-04 - 265ms/epoch - 20ms/step\n", + "Epoch 167/250\n", + "13/13 - 0s - loss: 4.8695e-04 - mae: 0.0173 - mse: 4.8695e-04 - val_loss: 5.0306e-04 - val_mae: 0.0165 - val_mse: 5.0306e-04 - 151ms/epoch - 12ms/step\n", + "Epoch 168/250\n", + "13/13 - 0s - loss: 4.7948e-04 - mae: 0.0171 - mse: 4.7948e-04 - val_loss: 6.8895e-04 - val_mae: 0.0193 - val_mse: 6.8895e-04 - 128ms/epoch - 10ms/step\n", + "Epoch 169/250\n", + "13/13 - 0s - loss: 4.8055e-04 - mae: 0.0168 - mse: 4.8055e-04 - val_loss: 4.9053e-04 - val_mae: 0.0171 - val_mse: 4.9053e-04 - 234ms/epoch - 18ms/step\n", + "Epoch 170/250\n", + "13/13 - 0s - loss: 4.5980e-04 - mae: 0.0168 - mse: 4.5980e-04 - val_loss: 5.2267e-04 - val_mae: 0.0170 - val_mse: 5.2267e-04 - 167ms/epoch - 13ms/step\n", + "Epoch 171/250\n", + "13/13 - 0s - loss: 4.6495e-04 - mae: 0.0168 - mse: 4.6495e-04 - val_loss: 4.6718e-04 - val_mae: 0.0165 - val_mse: 4.6718e-04 - 243ms/epoch - 19ms/step\n", + "Epoch 172/250\n", + "13/13 - 0s - loss: 4.6046e-04 - mae: 0.0168 - mse: 4.6046e-04 - val_loss: 4.6731e-04 - val_mae: 0.0166 - val_mse: 4.6731e-04 - 148ms/epoch - 11ms/step\n", + "Epoch 173/250\n", + "13/13 - 0s - loss: 4.6993e-04 - mae: 0.0168 - mse: 4.6993e-04 - val_loss: 4.8190e-04 - val_mae: 0.0167 - val_mse: 4.8190e-04 - 143ms/epoch - 11ms/step\n", + "Epoch 174/250\n", + "13/13 - 0s - loss: 4.8411e-04 - mae: 0.0172 - mse: 4.8411e-04 - val_loss: 5.0800e-04 - val_mae: 0.0164 - val_mse: 5.0800e-04 - 131ms/epoch - 10ms/step\n", + "Epoch 175/250\n", + "13/13 - 0s - loss: 4.5295e-04 - mae: 0.0164 - mse: 4.5295e-04 - val_loss: 6.2583e-04 - val_mae: 0.0182 - val_mse: 6.2583e-04 - 136ms/epoch - 10ms/step\n", + "Epoch 176/250\n", + "13/13 - 0s - loss: 5.3742e-04 - mae: 0.0183 - mse: 5.3742e-04 - val_loss: 5.6727e-04 - val_mae: 0.0187 - val_mse: 5.6727e-04 - 141ms/epoch - 11ms/step\n", + "Epoch 177/250\n", + "13/13 - 0s - loss: 5.3634e-04 - mae: 0.0182 - mse: 5.3634e-04 - val_loss: 4.6197e-04 - val_mae: 0.0157 - val_mse: 4.6197e-04 - 316ms/epoch - 24ms/step\n", + "Epoch 178/250\n", + "13/13 - 0s - loss: 4.8847e-04 - mae: 0.0169 - mse: 4.8847e-04 - val_loss: 4.6646e-04 - val_mae: 0.0160 - val_mse: 4.6646e-04 - 214ms/epoch - 16ms/step\n", + "Epoch 179/250\n", + "13/13 - 0s - loss: 4.3622e-04 - mae: 0.0160 - mse: 4.3622e-04 - val_loss: 5.3203e-04 - val_mae: 0.0164 - val_mse: 5.3203e-04 - 181ms/epoch - 14ms/step\n", + "Epoch 180/250\n", + "13/13 - 0s - loss: 4.7108e-04 - mae: 0.0165 - mse: 4.7108e-04 - val_loss: 4.6548e-04 - val_mae: 0.0161 - val_mse: 4.6548e-04 - 144ms/epoch - 11ms/step\n", + "Epoch 181/250\n", + "13/13 - 0s - loss: 4.3932e-04 - mae: 0.0164 - mse: 4.3932e-04 - val_loss: 4.4195e-04 - val_mae: 0.0157 - val_mse: 4.4195e-04 - 302ms/epoch - 23ms/step\n", + "Epoch 182/250\n", + "13/13 - 0s - loss: 4.3340e-04 - mae: 0.0159 - mse: 4.3340e-04 - val_loss: 4.5463e-04 - val_mae: 0.0158 - val_mse: 4.5463e-04 - 216ms/epoch - 17ms/step\n", + "Epoch 183/250\n", + "13/13 - 0s - loss: 4.2639e-04 - mae: 0.0162 - mse: 4.2639e-04 - val_loss: 4.3874e-04 - val_mae: 0.0156 - val_mse: 4.3874e-04 - 296ms/epoch - 23ms/step\n", + "Epoch 184/250\n", + "13/13 - 0s - loss: 4.4119e-04 - mae: 0.0159 - mse: 4.4119e-04 - val_loss: 4.7791e-04 - val_mae: 0.0169 - val_mse: 4.7791e-04 - 195ms/epoch - 15ms/step\n", + "Epoch 185/250\n", + "13/13 - 0s - loss: 4.4805e-04 - mae: 0.0164 - mse: 4.4805e-04 - val_loss: 4.6275e-04 - val_mae: 0.0163 - val_mse: 4.6275e-04 - 119ms/epoch - 9ms/step\n", + "Epoch 186/250\n", + "13/13 - 0s - loss: 4.4495e-04 - mae: 0.0163 - mse: 4.4495e-04 - val_loss: 4.4746e-04 - val_mae: 0.0155 - val_mse: 4.4746e-04 - 115ms/epoch - 9ms/step\n", + "Epoch 187/250\n", + "13/13 - 0s - loss: 4.7030e-04 - mae: 0.0167 - mse: 4.7030e-04 - val_loss: 5.6234e-04 - val_mae: 0.0169 - val_mse: 5.6234e-04 - 147ms/epoch - 11ms/step\n", + "Epoch 188/250\n", + "13/13 - 0s - loss: 4.4920e-04 - mae: 0.0160 - mse: 4.4920e-04 - val_loss: 4.2347e-04 - val_mae: 0.0154 - val_mse: 4.2347e-04 - 451ms/epoch - 35ms/step\n", + "Epoch 189/250\n", + "13/13 - 0s - loss: 4.1850e-04 - mae: 0.0159 - mse: 4.1850e-04 - val_loss: 4.5828e-04 - val_mae: 0.0156 - val_mse: 4.5828e-04 - 110ms/epoch - 8ms/step\n", + "Epoch 190/250\n", + "13/13 - 0s - loss: 4.2816e-04 - mae: 0.0159 - mse: 4.2816e-04 - val_loss: 4.2983e-04 - val_mae: 0.0155 - val_mse: 4.2983e-04 - 121ms/epoch - 9ms/step\n", + "Epoch 191/250\n", + "13/13 - 0s - loss: 4.1442e-04 - mae: 0.0156 - mse: 4.1442e-04 - val_loss: 4.5135e-04 - val_mae: 0.0154 - val_mse: 4.5135e-04 - 173ms/epoch - 13ms/step\n", + "Epoch 192/250\n", + "13/13 - 0s - loss: 4.1126e-04 - mae: 0.0159 - mse: 4.1126e-04 - val_loss: 4.2590e-04 - val_mae: 0.0151 - val_mse: 4.2590e-04 - 149ms/epoch - 11ms/step\n", + "Epoch 193/250\n", + "13/13 - 0s - loss: 4.1197e-04 - mae: 0.0155 - mse: 4.1197e-04 - val_loss: 4.2111e-04 - val_mae: 0.0151 - val_mse: 4.2111e-04 - 243ms/epoch - 19ms/step\n", + "Epoch 194/250\n", + "13/13 - 0s - loss: 4.0958e-04 - mae: 0.0157 - mse: 4.0958e-04 - val_loss: 4.1117e-04 - val_mae: 0.0149 - val_mse: 4.1117e-04 - 272ms/epoch - 21ms/step\n", + "Epoch 195/250\n", + "13/13 - 0s - loss: 3.9243e-04 - mae: 0.0153 - mse: 3.9243e-04 - val_loss: 4.1405e-04 - val_mae: 0.0150 - val_mse: 4.1405e-04 - 136ms/epoch - 10ms/step\n", + "Epoch 196/250\n", + "13/13 - 0s - loss: 4.0300e-04 - mae: 0.0153 - mse: 4.0300e-04 - val_loss: 4.3989e-04 - val_mae: 0.0150 - val_mse: 4.3989e-04 - 151ms/epoch - 12ms/step\n", + "Epoch 197/250\n", + "13/13 - 0s - loss: 4.0142e-04 - mae: 0.0154 - mse: 4.0142e-04 - val_loss: 4.3665e-04 - val_mae: 0.0151 - val_mse: 4.3665e-04 - 160ms/epoch - 12ms/step\n", + "Epoch 198/250\n", + "13/13 - 0s - loss: 3.9936e-04 - mae: 0.0153 - mse: 3.9936e-04 - val_loss: 4.2897e-04 - val_mae: 0.0149 - val_mse: 4.2897e-04 - 114ms/epoch - 9ms/step\n", + "Epoch 199/250\n", + "13/13 - 0s - loss: 4.0143e-04 - mae: 0.0153 - mse: 4.0143e-04 - val_loss: 4.0877e-04 - val_mae: 0.0148 - val_mse: 4.0877e-04 - 209ms/epoch - 16ms/step\n", + "Epoch 200/250\n", + "13/13 - 0s - loss: 3.9668e-04 - mae: 0.0152 - mse: 3.9668e-04 - val_loss: 4.3571e-04 - val_mae: 0.0150 - val_mse: 4.3571e-04 - 198ms/epoch - 15ms/step\n", + "Epoch 201/250\n", + "13/13 - 0s - loss: 3.9516e-04 - mae: 0.0154 - mse: 3.9516e-04 - val_loss: 5.1984e-04 - val_mae: 0.0161 - val_mse: 5.1984e-04 - 147ms/epoch - 11ms/step\n", + "Epoch 202/250\n", + "13/13 - 0s - loss: 4.5166e-04 - mae: 0.0161 - mse: 4.5166e-04 - val_loss: 5.4696e-04 - val_mae: 0.0182 - val_mse: 5.4696e-04 - 128ms/epoch - 10ms/step\n", + "Epoch 203/250\n", + "13/13 - 0s - loss: 4.5904e-04 - mae: 0.0166 - mse: 4.5904e-04 - val_loss: 4.1240e-04 - val_mae: 0.0150 - val_mse: 4.1240e-04 - 137ms/epoch - 11ms/step\n", + "Epoch 204/250\n", + "13/13 - 0s - loss: 3.9851e-04 - mae: 0.0150 - mse: 3.9851e-04 - val_loss: 4.5210e-04 - val_mae: 0.0154 - val_mse: 4.5210e-04 - 141ms/epoch - 11ms/step\n", + "Epoch 205/250\n", + "13/13 - 0s - loss: 3.8760e-04 - mae: 0.0151 - mse: 3.8760e-04 - val_loss: 4.0982e-04 - val_mae: 0.0149 - val_mse: 4.0982e-04 - 121ms/epoch - 9ms/step\n", + "Epoch 206/250\n", + "13/13 - 0s - loss: 4.1937e-04 - mae: 0.0156 - mse: 4.1937e-04 - val_loss: 3.8857e-04 - val_mae: 0.0145 - val_mse: 3.8857e-04 - 294ms/epoch - 23ms/step\n", + "Epoch 207/250\n", + "13/13 - 0s - loss: 3.7173e-04 - mae: 0.0146 - mse: 3.7173e-04 - val_loss: 3.9353e-04 - val_mae: 0.0147 - val_mse: 3.9353e-04 - 146ms/epoch - 11ms/step\n", + "Epoch 208/250\n", + "13/13 - 0s - loss: 3.9673e-04 - mae: 0.0153 - mse: 3.9673e-04 - val_loss: 3.9003e-04 - val_mae: 0.0145 - val_mse: 3.9003e-04 - 115ms/epoch - 9ms/step\n", + "Epoch 209/250\n", + "13/13 - 0s - loss: 4.2359e-04 - mae: 0.0155 - mse: 4.2359e-04 - val_loss: 3.9027e-04 - val_mae: 0.0146 - val_mse: 3.9027e-04 - 150ms/epoch - 12ms/step\n", + "Epoch 210/250\n", + "13/13 - 0s - loss: 3.9302e-04 - mae: 0.0154 - mse: 3.9302e-04 - val_loss: 4.1320e-04 - val_mae: 0.0152 - val_mse: 4.1320e-04 - 167ms/epoch - 13ms/step\n", + "Epoch 211/250\n", + "13/13 - 0s - loss: 3.6641e-04 - mae: 0.0147 - mse: 3.6641e-04 - val_loss: 3.9564e-04 - val_mae: 0.0141 - val_mse: 3.9564e-04 - 167ms/epoch - 13ms/step\n", + "Epoch 212/250\n", + "13/13 - 0s - loss: 3.6259e-04 - mae: 0.0143 - mse: 3.6259e-04 - val_loss: 3.8787e-04 - val_mae: 0.0146 - val_mse: 3.8787e-04 - 309ms/epoch - 24ms/step\n", + "Epoch 213/250\n", + "13/13 - 0s - loss: 4.0665e-04 - mae: 0.0156 - mse: 4.0665e-04 - val_loss: 5.0910e-04 - val_mae: 0.0160 - val_mse: 5.0910e-04 - 158ms/epoch - 12ms/step\n", + "Epoch 214/250\n", + "13/13 - 0s - loss: 4.5758e-04 - mae: 0.0169 - mse: 4.5758e-04 - val_loss: 4.1241e-04 - val_mae: 0.0141 - val_mse: 4.1241e-04 - 125ms/epoch - 10ms/step\n", + "Epoch 215/250\n", + "13/13 - 0s - loss: 4.0666e-04 - mae: 0.0155 - mse: 4.0666e-04 - val_loss: 4.6639e-04 - val_mae: 0.0151 - val_mse: 4.6639e-04 - 177ms/epoch - 14ms/step\n", + "Epoch 216/250\n", + "13/13 - 0s - loss: 3.6615e-04 - mae: 0.0145 - mse: 3.6615e-04 - val_loss: 3.8294e-04 - val_mae: 0.0138 - val_mse: 3.8294e-04 - 253ms/epoch - 19ms/step\n", + "Epoch 217/250\n", + "13/13 - 0s - loss: 3.8135e-04 - mae: 0.0149 - mse: 3.8135e-04 - val_loss: 5.1259e-04 - val_mae: 0.0162 - val_mse: 5.1259e-04 - 136ms/epoch - 10ms/step\n", + "Epoch 218/250\n", + "13/13 - 0s - loss: 3.5877e-04 - mae: 0.0144 - mse: 3.5877e-04 - val_loss: 3.7918e-04 - val_mae: 0.0142 - val_mse: 3.7918e-04 - 254ms/epoch - 20ms/step\n", + "Epoch 219/250\n", + "13/13 - 0s - loss: 4.1097e-04 - mae: 0.0155 - mse: 4.1097e-04 - val_loss: 3.7973e-04 - val_mae: 0.0144 - val_mse: 3.7973e-04 - 167ms/epoch - 13ms/step\n", + "Epoch 220/250\n", + "13/13 - 0s - loss: 3.7840e-04 - mae: 0.0149 - mse: 3.7840e-04 - val_loss: 4.7988e-04 - val_mae: 0.0153 - val_mse: 4.7988e-04 - 157ms/epoch - 12ms/step\n", + "Epoch 221/250\n", + "13/13 - 0s - loss: 3.5545e-04 - mae: 0.0143 - mse: 3.5545e-04 - val_loss: 3.7230e-04 - val_mae: 0.0136 - val_mse: 3.7230e-04 - 218ms/epoch - 17ms/step\n", + "Epoch 222/250\n", + "13/13 - 0s - loss: 3.4610e-04 - mae: 0.0141 - mse: 3.4610e-04 - val_loss: 4.1371e-04 - val_mae: 0.0142 - val_mse: 4.1371e-04 - 141ms/epoch - 11ms/step\n", + "Epoch 223/250\n", + "13/13 - 0s - loss: 3.7775e-04 - mae: 0.0149 - mse: 3.7775e-04 - val_loss: 3.8045e-04 - val_mae: 0.0142 - val_mse: 3.8045e-04 - 176ms/epoch - 14ms/step\n", + "Epoch 224/250\n", + "13/13 - 0s - loss: 3.5911e-04 - mae: 0.0145 - mse: 3.5911e-04 - val_loss: 3.5609e-04 - val_mae: 0.0134 - val_mse: 3.5609e-04 - 421ms/epoch - 32ms/step\n", + "Epoch 225/250\n", + "13/13 - 0s - loss: 3.5933e-04 - mae: 0.0144 - mse: 3.5933e-04 - val_loss: 3.5900e-04 - val_mae: 0.0134 - val_mse: 3.5900e-04 - 159ms/epoch - 12ms/step\n", + "Epoch 226/250\n", + "13/13 - 0s - loss: 3.6466e-04 - mae: 0.0144 - mse: 3.6466e-04 - val_loss: 3.5378e-04 - val_mae: 0.0135 - val_mse: 3.5378e-04 - 307ms/epoch - 24ms/step\n", + "Epoch 227/250\n", + "13/13 - 0s - loss: 3.5876e-04 - mae: 0.0144 - mse: 3.5876e-04 - val_loss: 3.6523e-04 - val_mae: 0.0133 - val_mse: 3.6523e-04 - 193ms/epoch - 15ms/step\n", + "Epoch 228/250\n", + "13/13 - 0s - loss: 3.4559e-04 - mae: 0.0142 - mse: 3.4559e-04 - val_loss: 3.5907e-04 - val_mae: 0.0139 - val_mse: 3.5907e-04 - 133ms/epoch - 10ms/step\n", + "Epoch 229/250\n", + "13/13 - 0s - loss: 3.4162e-04 - mae: 0.0142 - mse: 3.4162e-04 - val_loss: 4.2194e-04 - val_mae: 0.0141 - val_mse: 4.2194e-04 - 107ms/epoch - 8ms/step\n", + "Epoch 230/250\n", + "13/13 - 0s - loss: 3.6967e-04 - mae: 0.0146 - mse: 3.6967e-04 - val_loss: 3.7720e-04 - val_mae: 0.0138 - val_mse: 3.7720e-04 - 165ms/epoch - 13ms/step\n", + "Epoch 231/250\n", + "13/13 - 0s - loss: 3.3735e-04 - mae: 0.0136 - mse: 3.3735e-04 - val_loss: 3.3976e-04 - val_mae: 0.0129 - val_mse: 3.3976e-04 - 276ms/epoch - 21ms/step\n", + "Epoch 232/250\n", + "13/13 - 0s - loss: 3.3844e-04 - mae: 0.0141 - mse: 3.3844e-04 - val_loss: 3.8716e-04 - val_mae: 0.0135 - val_mse: 3.8716e-04 - 134ms/epoch - 10ms/step\n", + "Epoch 233/250\n", + "13/13 - 0s - loss: 3.6741e-04 - mae: 0.0145 - mse: 3.6741e-04 - val_loss: 3.8668e-04 - val_mae: 0.0136 - val_mse: 3.8668e-04 - 146ms/epoch - 11ms/step\n", + "Epoch 234/250\n", + "13/13 - 0s - loss: 3.4129e-04 - mae: 0.0139 - mse: 3.4129e-04 - val_loss: 3.4933e-04 - val_mae: 0.0133 - val_mse: 3.4933e-04 - 165ms/epoch - 13ms/step\n", + "Epoch 235/250\n", + "13/13 - 0s - loss: 3.2338e-04 - mae: 0.0137 - mse: 3.2338e-04 - val_loss: 3.4566e-04 - val_mae: 0.0133 - val_mse: 3.4566e-04 - 153ms/epoch - 12ms/step\n", + "Epoch 236/250\n", + "13/13 - 0s - loss: 3.1652e-04 - mae: 0.0134 - mse: 3.1652e-04 - val_loss: 3.9728e-04 - val_mae: 0.0136 - val_mse: 3.9728e-04 - 187ms/epoch - 14ms/step\n", + "Epoch 237/250\n", + "13/13 - 0s - loss: 3.2047e-04 - mae: 0.0136 - mse: 3.2047e-04 - val_loss: 3.3756e-04 - val_mae: 0.0130 - val_mse: 3.3756e-04 - 209ms/epoch - 16ms/step\n", + "Epoch 238/250\n", + "13/13 - 0s - loss: 3.3167e-04 - mae: 0.0138 - mse: 3.3167e-04 - val_loss: 3.3191e-04 - val_mae: 0.0126 - val_mse: 3.3191e-04 - 175ms/epoch - 13ms/step\n", + "Epoch 239/250\n", + "13/13 - 0s - loss: 3.2033e-04 - mae: 0.0134 - mse: 3.2033e-04 - val_loss: 3.2969e-04 - val_mae: 0.0128 - val_mse: 3.2969e-04 - 234ms/epoch - 18ms/step\n", + "Epoch 240/250\n", + "13/13 - 0s - loss: 3.5224e-04 - mae: 0.0141 - mse: 3.5224e-04 - val_loss: 3.9061e-04 - val_mae: 0.0148 - val_mse: 3.9061e-04 - 130ms/epoch - 10ms/step\n", + "Epoch 241/250\n", + "13/13 - 0s - loss: 3.9777e-04 - mae: 0.0153 - mse: 3.9777e-04 - val_loss: 3.7065e-04 - val_mae: 0.0137 - val_mse: 3.7065e-04 - 122ms/epoch - 9ms/step\n", + "Epoch 242/250\n", + "13/13 - 0s - loss: 3.2502e-04 - mae: 0.0138 - mse: 3.2502e-04 - val_loss: 3.3236e-04 - val_mae: 0.0124 - val_mse: 3.3236e-04 - 128ms/epoch - 10ms/step\n", + "Epoch 243/250\n", + "13/13 - 0s - loss: 3.0734e-04 - mae: 0.0133 - mse: 3.0734e-04 - val_loss: 3.2635e-04 - val_mae: 0.0126 - val_mse: 3.2635e-04 - 321ms/epoch - 25ms/step\n", + "Epoch 244/250\n", + "13/13 - 0s - loss: 3.2928e-04 - mae: 0.0137 - mse: 3.2928e-04 - val_loss: 3.2871e-04 - val_mae: 0.0125 - val_mse: 3.2871e-04 - 167ms/epoch - 13ms/step\n", + "Epoch 245/250\n", + "13/13 - 0s - loss: 2.9711e-04 - mae: 0.0131 - mse: 2.9711e-04 - val_loss: 3.2920e-04 - val_mae: 0.0121 - val_mse: 3.2920e-04 - 129ms/epoch - 10ms/step\n", + "Epoch 246/250\n", + "13/13 - 0s - loss: 3.2661e-04 - mae: 0.0134 - mse: 3.2661e-04 - val_loss: 3.6936e-04 - val_mae: 0.0134 - val_mse: 3.6936e-04 - 191ms/epoch - 15ms/step\n", + "Epoch 247/250\n", + "13/13 - 0s - loss: 2.9618e-04 - mae: 0.0128 - mse: 2.9618e-04 - val_loss: 3.3549e-04 - val_mae: 0.0123 - val_mse: 3.3549e-04 - 119ms/epoch - 9ms/step\n", + "Epoch 248/250\n", + "13/13 - 0s - loss: 2.9979e-04 - mae: 0.0130 - mse: 2.9979e-04 - val_loss: 3.8099e-04 - val_mae: 0.0135 - val_mse: 3.8099e-04 - 122ms/epoch - 9ms/step\n", + "Epoch 249/250\n", + "13/13 - 0s - loss: 3.0599e-04 - mae: 0.0131 - mse: 3.0599e-04 - val_loss: 3.2729e-04 - val_mae: 0.0122 - val_mse: 3.2729e-04 - 150ms/epoch - 12ms/step\n", + "Epoch 250/250\n", + "13/13 - 0s - loss: 3.1256e-04 - mae: 0.0134 - mse: 3.1256e-04 - val_loss: 3.3855e-04 - val_mae: 0.0134 - val_mse: 3.3855e-04 - 127ms/epoch - 10ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTK0lEQVR4nO3deVxUVeM/8M/MIMMmmyCgILjvYoES+uCSPIKaSWihoiL6ZLmlD9q3bAG1eqj0l1halqW0uRZqi0tKUqaY5r7loz6YG4u4sKkgw/n9MXJjHJBBLnNZPu/X675kzj333jO3iflw7jn3qoQQAkRERET1hFrpBhARERHJieGGiIiI6hWGGyIiIqpXGG6IiIioXmG4ISIionqF4YaIiIjqFYYbIiIiqlcYboiIiKheYbghIiKieoXhhughjR8/Hj4+Pg+17dy5c6FSqeRtEClGpVJh7ty50uvExESoVCqcP3++0m19fHwwfvx4WdtTnc8mUX3AcEP1jkqlMmlJSUlRuqmKGD9+PFQqFezt7XH79m2j9WfOnJHO0cKFCw3WnT9/HtHR0WjdujWsrKzg7u6OPn36IC4uzqBev379KjzvHTp0qNH39yAvvPACVCoVzp49W2GdV199FSqVCkePHjVjy6ruypUrmDt3Lg4fPqx0UyTnz5+X/ju/+eab5daJjIyESqWCnZ2dQXlJSQm++OILBAQEwNnZGY0bN0a7du0wbtw47N27V6qXkpLywP+v16xZU6PvkeoGC6UbQCS3L7/80uD1F198ge3btxuVd+zYsVrHWb58OUpKSh5q29deew0vv/xytY5fHRYWFrh16xa+//57PPPMMwbrvv76a1hZWeHOnTsG5WfPnkWPHj1gbW2NCRMmwMfHB+np6Th48CDeeecdzJs3z6C+p6cn4uPjjY7t4OAg/xsyUWRkJD744AOsWrUKsbGx5dZZvXo1unbtim7duj30ccaOHYuRI0dCq9U+9D4qc+XKFcybNw8+Pj7o3r27wbrqfDblYGVlhdWrV+O1114zKC8oKMCmTZtgZWVltM0LL7yApUuXYtiwYYiMjISFhQVOnz6NLVu2oFWrVnjssceM6vfo0cNoP4GBgfK+GaqTGG6o3hkzZozB671792L79u1G5fe7desWbGxsTD5Oo0aNHqp9gD5cWFgo97+fVqtF7969sXr1aqNws2rVKgwZMgTffvutQfmiRYuQn5+Pw4cPw9vb22BdVlaW0TEcHBwqPefmFhAQgDZt2mD16tXlhpvU1FSkpaXh7bffrtZxNBoNNBpNtfZRHdX5bMph8ODBSEpKwpEjR+Dr6yuVb9q0CUVFRQgNDcXPP/8slWdmZuLDDz/Es88+i08++cRgXwkJCbh69arRMYKCgjBixIiaexNUp/GyFDVI/fr1Q5cuXXDgwAH06dMHNjY2eOWVVwDofwEPGTIEzZo1g1arRevWrfHGG29Ap9MZ7OP+cQ2lXfILFy7EJ598gtatW0Or1aJHjx7Yv3+/wbbljblRqVSYNm0aNm7ciC5dukCr1aJz587YunWrUftTUlLg7+8PKysrtG7dGh9//HGVx/GMHj0aW7Zswc2bN6Wy/fv348yZMxg9erRR/XPnzsHT09Mo2ABA06ZNTT7ug2RmZsLCwsKoFwgATp8+DZVKhSVLlgAA7t69i3nz5qFt27awsrJCkyZN8I9//APbt29/4DEiIyPx559/4uDBg0brVq1aBZVKhVGjRqGoqAixsbHw8/ODg4MDbG1tERQUhJ07d1b6PsobcyOEwJtvvglPT0/Y2Nigf//+OHHihNG2169fx+zZs9G1a1fY2dnB3t4egwYNwpEjR6Q6KSkpUq9FdHS0dEkmMTERQPljbgoKCjBr1ix4eXlBq9Wiffv2WLhwIYQQBvWq8jmsSGBgIFq2bIlVq1YZlH/99dcIDQ2Fs7OzQXlaWhqEEOjdu7fRvlQqlWyfL2o4GG6owbp27RoGDRqE7t27IyEhAf379weg/2Kys7NDTEwMFi9eDD8/P8TGxpp8GWnVqlVYsGABnnvuObz55ps4f/48wsPDcffu3Uq3/e233zBlyhSMHDkS7777Lu7cuYPhw4fj2rVrUp1Dhw4hNDQU165dw7x58zBx4kTMnz8fGzdurNL7Dw8Ph0qlQlJSkkHbO3TogEcffdSovre3Ny5evGjwF/eD6HQ6ZGdnGy0FBQUVbuPm5oa+ffti3bp1RuvWrl0LjUaDp59+GoA+IM6bNw/9+/fHkiVL8Oqrr6JFixblhpayIiMjpfd6f3vXrVuHoKAgtGjRArm5ufj000/Rr18/vPPOO5g7dy6uXr2KkJCQhxrnEhsbi9dffx2+vr5YsGABWrVqhYEDBxqdj//973/YuHEjnnjiCbz33nt48cUXcezYMfTt2xdXrlwBoL+kOn/+fADApEmT8OWXX+LLL79Enz59yj22EAJPPvkkFi1ahNDQULz33nto3749XnzxRcTExBjVN+VzWJlRo0ZhzZo1UnjKzs7GTz/9VG5wLg3M69evx61bt0zaf15eXrmfr/vDGjVQgqiemzp1qrj/o963b18BQCxbtsyo/q1bt4zKnnvuOWFjYyPu3LkjlUVFRQlvb2/pdVpamgAgmjRpIq5fvy6Vb9q0SQAQ33//vVQWFxdn1CYAwtLSUpw9e1YqO3LkiAAgPvjgA6ls6NChwsbGRly+fFkqO3PmjLCwsDDaZ3mioqKEra2tEEKIESNGiAEDBgghhNDpdMLd3V3MmzdPei8LFiyQtjt+/LiwtrYWAET37t3FjBkzxMaNG0VBQYHRMUrPb3nLc88998D2ffzxxwKAOHbsmEF5p06dxOOPPy699vX1FUOGDKn0/ZanR48ewtPTU+h0Oqls69atAoD4+OOPhRBCFBcXi8LCQoPtbty4Idzc3MSECRMMygGIuLg46fXKlSsFAJGWliaEECIrK0tYWlqKIUOGiJKSEqneK6+8IgCIqKgoqezOnTsG7RJC/9nSarVi/vz5Utn+/fsFALFy5Uqj93f/Z3Pjxo0CgHjzzTcN6o0YMUKoVCqDz5ypn8PylP3cHD9+XAAQu3btEkIIsXTpUmFnZycKCgoMPoOlxo0bJwAIJycn8dRTT4mFCxeKU6dOGR1j586dFX62AIj09PQHtpEaBvbcUIOl1WoRHR1tVG5tbS39XPrXYVBQEG7duoU///yz0v1GRETAyclJeh0UFARA/xd5ZYKDg9G6dWvpdbdu3WBvby9tq9PpsGPHDoSFhaFZs2ZSvTZt2mDQoEGV7v9+o0ePRkpKCjIyMvDzzz8jIyOj3L+sAaBz5844fPgwxowZg/Pnz2Px4sUICwuDm5sbli9fblTfx8cH27dvN1pmzpz5wDaFh4fDwsICa9eulcqOHz+OkydPIiIiQipzdHTEiRMncObMmSq/7zFjxuDSpUv49ddfpbJVq1bB0tJS6hnSaDSwtLQEoJ/Jc/36dRQXF8Pf37/S3qH77dixA0VFRZg+fbrBpcPyzoVWq4Varf/VrNPpcO3aNdjZ2aF9+/ZVPm6pzZs3Q6PR4IUXXjAonzVrFoQQ2LJli0F5ZZ9DU3Tu3BndunXD6tWrAejP77Bhwyoc17Zy5UosWbIELVu2xIYNGzB79mx07NgRAwYMwOXLl43qx8bGlvv5uv+SFzVMDDfUYDVv3lz68irrxIkTeOqpp+Dg4AB7e3u4urpKA2NzcnIq3W+LFi0MXpcGnRs3blR529LtS7fNysrC7du30aZNG6N65ZVVZvDgwWjcuDHWrl2Lr7/+Gj169Hjgftq1a4cvv/wS2dnZOHr0KP7zn//AwsICkyZNwo4dOwzq2traIjg42GipbCq4i4sLBgwYYHBpau3atbCwsEB4eLhUNn/+fNy8eRPt2rVD165d8eKLL5o8fXvkyJHQaDTSpak7d+5gw4YNGDRokEEw/fzzz9GtWzdpTI+rqyt+/PFHkz4HZf31118AgLZt2xqUu7q6GhwP0AepRYsWoW3bttBqtXBxcYGrqyuOHj1a5eOWPX6zZs3QuHFjg/LSGYOl7StV2efQVKNHj8b69etx9uxZ7Nmzp8LgDABqtRpTp07FgQMHkJ2djU2bNmHQoEH4+eefMXLkSKP6Xbt2LffzVd7/09TwMNxQg1W2h6bUzZs30bdvXxw5cgTz58/H999/j+3bt+Odd94BAJOm11Y0S0aYMBagOts+DK1Wi/DwcHz++efYsGHDA798ytJoNOjatSvmzJmDDRs2ANAPFpXLyJEj8d///lca27Ju3ToMGDAALi4uUp0+ffrg3LlzWLFiBbp06YJPP/0Ujz76KD799NNK99+0aVP885//xLfffou7d+/i+++/R15enjQeBwC++uorjB8/Hq1bt8Znn32GrVu3Yvv27Xj88cdrdJr1f/7zH8TExKBPnz746quvsG3bNmzfvh2dO3c22/RuuT6Ho0aNQnZ2Np599lk0adIEAwcONGm7Jk2a4Mknn8TmzZvRt29f/Pbbb0YBjOhBOBWcqIyUlBRcu3YNSUlJBoMz09LSFGzV35o2bQorK6tyb0L3oBvTPcjo0aOxYsUKqNXqcv9Croy/vz8AID09/aGOX56wsDA899xz0qWp//73v5gzZ45RPWdnZ0RHRyM6Ohr5+fno06cP5s6di3/961+VHiMyMhJbt27Fli1bsGrVKtjb22Po0KHS+m+++QatWrVCUlKSwaWk+29YaIrSAbNnzpxBq1atpPKrV68a9YZ888036N+/Pz777DOD8ps3bxqEu6rMjPP29saOHTuQl5dn0HtTepm1vBlwcmjRogV69+6NlJQUTJ48+aFuf+Dv749ffvkF6enpNdZOqn/Yc0NURulfrGX/Qi0qKsKHH36oVJMMaDQaBAcHY+PGjdLMGUAfbO4fN2Gq/v3744033sCSJUvg7u5eYb1du3aVO+Nr8+bNAID27ds/1PHL4+joiJCQEKxbtw5r1qyBpaUlwsLCDOrcP3PHzs4Obdq0QWFhoUnHCAsLg42NDT788ENs2bIF4eHhBjeXK++z8PvvvyM1NbXK7yc4OBiNGjXCBx98YLC/hIQEo7oajcaoh2T9+vVG405sbW0BwGAqf0UGDx4MnU4nTaMvtWjRIqhUqocar2WqN998E3FxcZg+fXqFdTIyMnDy5Emj8qKiIiQnJ0OtVj/UZVdquNhzQ1RGr1694OTkhKioKOlW/V9++WWtml46d+5c/PTTT+jduzcmT54sfWl16dLloaYoq9VqozvJluedd97BgQMHEB4eLt299+DBg/jiiy/g7OxsNDg2JycHX331Vbn7MuXmfhERERgzZgw+/PBDhISEwNHR0WB9p06d0K9fP/j5+cHZ2Rl//PEHvvnmG0ybNq3SfQP6MBQWFiaNuyl7SQoAnnjiCSQlJeGpp57CkCFDkJaWhmXLlqFTp07Iz8836RilXF1dMXv2bMTHx+OJJ57A4MGDcejQIWzZssWgN6b0uPPnz0d0dDR69eqFY8eO4euvvzbo8QGA1q1bw9HREcuWLUPjxo1ha2uLgIAAtGzZ0uj4Q4cORf/+/fHqq6/i/Pnz8PX1xU8//YRNmzZh5syZBoOH5da3b1/07dv3gXUuXbqEnj174vHHH8eAAQPg7u6OrKwsrF69GkeOHMHMmTONztOuXbuM7qIN6Ac/V+fu0lQ/MNwQldGkSRP88MMPmDVrFl577TU4OTlhzJgxGDBgAEJCQpRuHgDAz88PW7ZswezZs/H666/Dy8sL8+fPx6lTp0yazfWwXnnlFaxatQq//PILvv76a9y6dQseHh4YOXIkXn/9daMv1UuXLmHs2LHl7suUcPPkk0/C2toaeXl5BrOkSr3wwgv47rvv8NNPP6GwsBDe3t5488038eKLL5r8niIjI7Fq1Sp4eHjg8ccfN1g3fvx4ZGRk4OOPP8a2bdvQqVMnfPXVV1i/fv1DPZfszTffhJWVFZYtW4adO3ciICAAP/30E4YMGWJQ75VXXkFBQQFWrVqFtWvX4tFHH8WPP/5odJ+lRo0a4fPPP8ecOXPw/PPPo7i4GCtXriw33KjVanz33XeIjY3F2rVrsXLlSvj4+GDBggWYNWtWld+L3Nq3b4+EhARs3rwZH374ITIzM2FlZYUuXbpg+fLlmDhxotE277//frn7iouLY7ghqERt+pOUiB5aWFjYQ0+NJiKqTzjmhqgOuv9p3mfOnMHmzZvRr18/ZRpERFSLsOeGqA7y8PDA+PHj0apVK/z111/46KOPUFhYiEOHDhndS4WIqKHhmBuiOig0NBSrV69GRkYGtFotAgMD8Z///IfBhogI7LkhIiKieoZjboiIiKheYbghIiKieqXBjbkpKSnBlStX0Lhx4yrdvpyIiIiUI4RAXl4emjVrBrX6wX0zDS7cXLlyBV5eXko3g4iIiB7CxYsX4enp+cA6DS7clD407uLFi7C3t1e4NURERGSK3NxceHl5GTz8tSINLtyUXoqyt7dnuCEiIqpjTBlSwgHFREREVK8w3BAREVG9wnBDRERE9UqDG3NDRETVV1JSgqKiIqWbQfWMpaVlpdO8TcFwQ0REVVJUVIS0tDSUlJQo3RSqZ9RqNVq2bAlLS8tq7YfhhoiITCaEQHp6OjQaDby8vGT5K5sI+Psmu+np6WjRokW1brTLcENERCYrLi7GrVu30KxZM9jY2CjdHKpnXF1dceXKFRQXF6NRo0YPvZ9aEbmXLl0KHx8fWFlZISAgAPv27auwbmJiIlQqlcFiZWVlxtYSETVcOp0OAKp92YCoPKWfq9LP2cNSPNysXbsWMTExiIuLw8GDB+Hr64uQkBBkZWVVuI29vT3S09Ol5a+//jJji4mIiM/mo5og1+dK8XDz3nvv4dlnn0V0dDQ6deqEZcuWwcbGBitWrKhwG5VKBXd3d2lxc3MzY4vLp9MBKSnA6tX6f6sZOomIiOghKRpuioqKcODAAQQHB0tlarUawcHBSE1NrXC7/Px8eHt7w8vLC8OGDcOJEycqrFtYWIjc3FyDRW5JSYCPD9C/PzB6tP5fHx99ORER1U8+Pj5ISEgwuX5KSgpUKhVu3rxZY20iPUXDTXZ2NnQ6nVHPi5ubGzIyMsrdpn379lixYgU2bdqEr776CiUlJejVqxcuXbpUbv34+Hg4ODhIi9xPBE9KAkaMAO4//OXL+nIGHCIiY+bs7b5/nOb9y9y5cx9qv/v378ekSZNMrt+rVy+kp6fDwcHhoY5nqtIQ5eTkhDt37his279/v/S+y1q+fDl8fX1hZ2cHR0dHPPLII4iPj5fWz507t9xz16FDhxp9Lw+rzs2WCgwMRGBgoPS6V69e6NixIz7++GO88cYbRvXnzJmDmJgY6XXpU0XloNMBM2YAQhivEwJQqYCZM4FhwwCNRpZDEhHVeUlJ+t+dZf8o9PQEFi8GwsPlP156err089q1axEbG4vTp09LZXZ2dtLPQgjodDpYWFT+9ejq6lqldlhaWsLd3b1K21RH48aNsWHDBowaNUoq++yzz9CiRQtcuHBBKluxYgVmzpyJ999/H3379kVhYSGOHj2K48ePG+yvc+fO2LFjh0GZKedJCYr23Li4uECj0SAzM9OgPDMz0+QPQKNGjfDII4/g7Nmz5a7XarXSE8DlfhL4rl3GPTZlCQFcvKivR0REyvR2lx2j6eDgYDBu888//0Tjxo2xZcsW+Pn5QavV4rfffsO5c+cwbNgwuLm5wc7ODj169DD6Yr//spRKpcKnn36Kp556CjY2Nmjbti2+++47af39l6USExPh6OiIbdu2oWPHjrCzs0NoaKhBGCsuLsYLL7wAR0dHNGnSBC+99BKioqIQFhZW6fuOiooyGL96+/ZtrFmzBlFRUQb1vvvuOzzzzDOYOHEi2rRpg86dO2PUqFF46623DOpZWFgYnEt3d3e4uLhU2g4lKBpuLC0t4efnh+TkZKmspKQEycnJBr0zD6LT6XDs2DF4eHjUVDMrVObzJ0s9IqK6RgigoMC0JTcXeOGFinu7AX2PTm6uafsrbz8P6+WXX8bbb7+NU6dOoVu3bsjPz8fgwYORnJyMQ4cOITQ0FEOHDjXo8SjPvHnz8Mwzz+Do0aMYPHgwIiMjcf369Qrr37p1CwsXLsSXX36JX3/9FRcuXMDs2bOl9e+88w6+/vprrFy5Ert370Zubi42btxo0nsaO3Ysdu3aJbX522+/hY+PDx599FGDeu7u7ti7d2/9mnksFLZmzRqh1WpFYmKiOHnypJg0aZJwdHQUGRkZQgghxo4dK15++WWp/rx588S2bdvEuXPnxIEDB8TIkSOFlZWVOHHihEnHy8nJEQBETk5Otdu+c6cQ+v+9Hrzs3FntQxER1Qq3b98WJ0+eFLdv3xZCCJGfb9rvwZpY8vOr3v6VK1cKBwcH6fXOnTsFALFx48ZKt+3cubP44IMPpNfe3t5i0aJF0msA4rXXXpNe5+fnCwBiy5YtBse6ceOG1BYA4uzZs9I2S5cuFW5ubtJrNzc3sWDBAul1cXGxaNGihRg2bFiF7Sx7nLCwMDFv3jwhhBD9+/cXixcvFhs2bBBlv/6vXLkiHnvsMQFAtGvXTkRFRYm1a9cKnU4n1YmLixNqtVrY2toaLM8991yl560q7v98lVWV72/FL5ZFRETg6tWriI2NRUZGBrp3746tW7dKg4wvXLhgcHvvGzdu4Nlnn0VGRgacnJzg5+eHPXv2oFOnTmZve1CQ/jrx5cvl/wWhUunXBwWZvWlERFQF/v7+Bq/z8/Mxd+5c/Pjjj0hPT0dxcTFu375dac9Nt27dpJ9tbW1hb2//wPu22djYoHXr1tJrDw8PqX5OTg4yMzPRs2dPab1Go4Gfn5/Jz/WaMGECZsyYgTFjxiA1NRXr16/HrvvGSnh4eCA1NRXHjx/Hr7/+ij179iAqKgqffvoptm7dKn0Ht2/f3uAyGwBZh3rISfFwAwDTpk3DtGnTyl2XkpJi8HrRokVYtGiRGVpVOY1GPwBuxAjjdaUD0RMSOJiYiOovGxsgP9+0ur/+CgweXHm9zZuBPn1MO7ZcbG1tDV7Pnj0b27dvx8KFC9GmTRtYW1tjxIgRlT4J/f5HBqhUqgcGkfLqCxmvtw0aNAiTJk3CxIkTMXToUDRp0qTCul26dEGXLl0wZcoUPP/88wgKCsIvv/yC/v37A9APJWnTpo1sbatJit/Er64LDwe++Qa4/z6Cnp768poY+U9EVFuoVICtrWnLwIH6340V3YRWpQK8vPT1TNlfTd4keffu3Rg/fjyeeuopdO3aFe7u7jh//nzNHbAcDg4OcHNzw/79+6UynU6HgwcPmrwPCwsLjBs3DikpKZgwYYLJ25VeDSkoKDC9wbVIrei5qevCw4GWLYFHHwXs7YFNm/SXothjQ0T0t7K93SqV4eX82tbb3bZtWyQlJWHo0KFQqVR4/fXXTb4UJKfp06cjPj4ebdq0QYcOHfDBBx/gxo0bVXpMwRtvvIEXX3yxwl6byZMno1mzZnj88cfh6emJ9PR0vPnmm3B1dTWY3FNcXGx0DzqVSlUrnhJwP/bcyKR0qr9WC/TrVzv+5yQiqm1Ke7ubNzcsr2293e+99x6cnJzQq1cvDB06FCEhIUazjMzhpZdewqhRozBu3DgEBgbCzs4OISEhVXpgtKWlJVxcXCoMRMHBwdi7dy+efvpptGvXDsOHD4eVlRWSk5MNAtGJEyfg4eFhsHh7e1f7PdYElZDz4l4dkJubCwcHB+Tk5Mg6EOrECaBLF8DFBbh6VbbdEhHVKnfu3EFaWhpatmxZpS/Y++l0+nuApacDHh7s7TZVSUkJOnbsiGeeeabcG9fWdQ/6fFXl+5uXpWRSOqFLgV5LIqI6R6PR93LTg/3111/46aefpDsHL1myBGlpaRg9erTSTavVeFlKJgw3REQkN7VajcTERPTo0QO9e/fGsWPHsGPHDnTs2FHpptVq7LmRCcMNERHJzcvLC7t371a6GXUOe25kUjpOi+GGiIhIWQw3MintuWlYw7OJiIhqH4YbmfCyFBERUe3AcCMThhsiIqLageFGJgw3REREtQPDjUwYboiIiGoHhhuZcLYUEVH91q9fP8ycOVN67ePjg4SEhAduo1KpsHHjxmofW679NBQMNzLhbCkioirQ6YCUFGD1av2/Ol2NHWro0KEIDQ0td92uXbugUqlw9OjRKu93//79mDRpUnWbZ2Du3Lno3r27UXl6ejoGDRok67Hul5iYCJVKVe4NAtevXw+VSgUfHx+pTKfT4e2330aHDh1gbW0NZ2dnBAQE4NNPP5XqjB8/HiqVymip6L+HXHgTP5moy8REIf7uySEiovskJQEzZgCXLv1d5umpf2R4DTw5c+LEiRg+fDguXboET09Pg3UrV66Ev78/unXrVuX9urq6ytXESrm7u5vlOLa2tsjKykJqaqrBE8E/++wztGjRwqDuvHnz8PHHH2PJkiXw9/dHbm4u/vjjD9y4ccOgXmhoKFauXGlQptVqa+5NgD03sikbbnhpioioAklJwIgRhsEGAC5f1pcnJcl+yCeeeAKurq5ITEw0KM/Pz8f69esxceJEXLt2DaNGjULz5s1hY2ODrl27YvXq1Q/c7/2Xpc6cOYM+ffrAysoKnTp1wvbt2422eemll9CuXTvY2NigVatWeP3113H37l0A+p6TefPm4ciRI1IPR2mb778sdezYMTz++OOwtrZGkyZNMGnSJOTn50vrx48fj7CwMCxcuBAeHh5o0qQJpk6dKh2rIhYWFhg9ejRWrFghlV26dAkpKSlGz7P67rvvMGXKFDz99NNo2bIlfH19MXHiRMyePdugnlarhbu7u8Hi5OT0wHZUF8ONTBhuiKhBEgIoKDBtyc0FXnih/Ov3pWUzZujrmbI/E8cBWFhYYNy4cUhMTIQos8369euh0+kwatQo3LlzB35+fvjxxx9x/PhxTJo0CWPHjsW+fftMOkZJSQnCw8NhaWmJ33//HcuWLcNLL71kVK9x48ZITEzEyZMnsXjxYixfvhyLFi0CAERERGDWrFno3Lkz0tPTkZ6ejoiICKN9FBQUICQkBE5OTti/fz/Wr1+PHTt2YNq0aQb1du7ciXPnzmHnzp34/PPPkZiYaBTwyjNhwgSsW7cOt27dAqAPXaGhoXBzczOo5+7ujp9//hlXr1416RyZlWhgcnJyBACRk5Mj635v3hRC/3+aEHfuyLprIqJa4/bt2+LkyZPi9u3b+oL8/L9/+Zl7yc83ud2nTp0SAMTOnTulsqCgIDFmzJgKtxkyZIiYNWuW9Lpv375ixowZ0mtvb2+xaNEiIYQQ27ZtExYWFuLy5cvS+i1btggAYsOGDRUeY8GCBcLPz096HRcXJ3x9fY3qld3PJ598IpycnER+mff/448/CrVaLTIyMoQQQkRFRQlvb29RXFws1Xn66adFREREhW1ZuXKlcHBwEEII0b17d/H555+LkpIS0bp1a7Fp0yaxaNEi4e3tLdU/ceKE6Nixo1Cr1aJr167iueeeE5s3bzbYZ1RUlNBoNMLW1tZgeeutt8ptg9Hnq4yqfH+z50YmZcfYsOeGiKh26dChA3r16iVdbjl79ix27dqFiRMnAtAPjn3jjTfQtWtXODs7w87ODtu2bcOFCxdM2v+pU6fg5eWFZs2aSWVlx6yUWrt2LXr37g13d3fY2dnhtddeM/kYZY/l6+sLW1tbqax3794oKSnB6dOnpbLOnTtDo9FIrz08PJCVlWXSMSZMmICVK1fil19+QUFBAQYPHmxUp1OnTjh+/Dj27t2LCRMmICsrC0OHDsW//vUvg3r9+/fH4cOHDZbnn3++Su+5qhhuZHL/gGIiogbBxgbIzzdt2bzZtH1u3mza/mxsqtTUiRMn4ttvv0VeXh5WrlyJ1q1bo2/fvgCABQsWYPHixXjppZewc+dOHD58GCEhISgqKqrqGalQamoqIiMjMXjwYPzwww84dOgQXn31VVmPUVajRo0MXqtUKpSY+Nd3ZGQk9u7di7lz52Ls2LGwsCh//pFarUaPHj0wc+ZMJCUlITExEZ999hnS0tKkOra2tmjTpo3B4uzs/PBvzAScLSUTjrkhogZJpQLK9CA80MCB+llRly+X/1egSqVfP3AgUKbHQS7PPPMMZsyYgVWrVuGLL77A5MmTobrX7b57924MGzYMY8aMAaAfQ/Pf//4XnTp1MmnfHTt2xMWLF5Geng4PDw8AwN69ew3q7NmzB97e3nj11Velsr/++sugjqWlJXSVTIvv2LEjEhMTUVBQIPXe7N69G2q1Gu3btzepvZVxdnbGk08+iXXr1mHZsmUmb1d6vgoKCmRpx8Niz41MGG6IiCqh0einewPG98sofZ2QUCPBBgDs7OwQERGBOXPmID09HePHj5fWtW3bFtu3b8eePXtw6tQpPPfcc8jMzDR538HBwWjXrh2ioqJw5MgR7Nq1yyDElB7jwoULWLNmDc6dO4f3338fGzZsMKjj4+ODtLQ0HD58GNnZ2SgsLDQ6VmRkJKysrBAVFYXjx49j586dmD59OsaOHWs06Lc6EhMTkZ2djQ4dOpS7fsSIEVi0aBF+//13/PXXX0hJScHUqVPRrl07g20KCwuRkZFhsGRnZ8vWzvIw3MiE4YaIyATh4cA33wDNmxuWe3rqy2vgPjdlTZw4ETdu3EBISIjB+JjXXnsNjz76KEJCQtCvXz+4u7sjLCzM5P2q1Wps2LABt2/fRs+ePfGvf/0Lb731lkGdJ598Ev/+978xbdo0dO/eHXv27MHrr79uUGf48OEIDQ1F//794erqWu50dBsbG2zbtg3Xr19Hjx49MGLECAwYMABLliyp2smoROk084qEhITg+++/x9ChQ6Vg16FDB/z0008Gl7G2bt0KDw8Pg+Uf//iHrG29n0qIhjVCJDc3Fw4ODsjJyYG9vb1s+y0uBkovb167BtTw5UQiIkXcuXMHaWlpaNmyJaysrB5+RzodsGsXkJ4OeHgAQUE11mNDdceDPl9V+f7mmBuZlO1hbVhxkYjoIWg0QL9+SreC6ilelpIJL0sRERHVDgw3MuF9boiIiGoHhhsZlfbeMNwQEREph+FGRgw3RNRQNLC5KGQmcn2uGG5kxHBDRPVd6e38a+quutSwlX6uNNWcOcfZUjIqHXfDP2iIqL6ysLCAjY0Nrl69ikaNGkGt5t/IJI+SkhJcvXoVNjY2FT7uwVQMNzJizw0R1XcqlQoeHh5IS0szenQAUXWp1Wq0aNFCeizGw2K4kRHDDRE1BJaWlmjbti0vTZHsLC0tZekNZLiREcMNETUUarW6encoJqpBvFgqI4YbIiIi5THcyIjhhoiISHkMNzLibCkiIiLlMdzIiD03REREymO4kRHDDRERkfIYbmTEcENERKQ8hhsZMdwQEREpj+FGRhxQTEREpDyGGxmx54aIiEh5DDcyYrghIiJSHsONjBhuiIiIlMdwIyOGGyIiIuUx3MiI4YaIiEh5DDcy4mwpIiIi5THcyIg9N0RERMpjuJERww0REZHyGG5kxHBDRESkPIYbGTHcEBERKY/hRkYMN0RERMpjuJERZ0sREREpj+FGRuy5ISIiUh7DjYwYboiIiJRXK8LN0qVL4ePjAysrKwQEBGDfvn0mbbdmzRqoVCqEhYXVbANNxHBDRESkPMXDzdq1axETE4O4uDgcPHgQvr6+CAkJQVZW1gO3O3/+PGbPno2goCAztbRyDDdERETKUzzcvPfee3j22WcRHR2NTp06YdmyZbCxscGKFSsq3Ean0yEyMhLz5s1Dq1atzNjaB2O4ISIiUp6i4aaoqAgHDhxAcHCwVKZWqxEcHIzU1NQKt5s/fz6aNm2KiRMnVnqMwsJC5ObmGiw1hbOliIiIlKdouMnOzoZOp4Obm5tBuZubGzIyMsrd5rfffsNnn32G5cuXm3SM+Ph4ODg4SIuXl1e1210R9twQEREpT/HLUlWRl5eHsWPHYvny5XBxcTFpmzlz5iAnJ0daLl68WGPtY7ghIiJSnoWSB3dxcYFGo0FmZqZBeWZmJtzd3Y3qnzt3DufPn8fQoUOlspJ7ScLCwgKnT59G69atDbbRarXQarU10HpjDDdERETKU7TnxtLSEn5+fkhOTpbKSkpKkJycjMDAQKP6HTp0wLFjx3D48GFpefLJJ9G/f38cPny4Ri85mYLhhoiISHmK9twAQExMDKKiouDv74+ePXsiISEBBQUFiI6OBgCMGzcOzZs3R3x8PKysrNClSxeD7R0dHQHAqFwJpeGGA4qJiIiUo3i4iYiIwNWrVxEbG4uMjAx0794dW7dulQYZX7hwAWp13RgaVDpbij03REREylEJ0bD6GXJzc+Hg4ICcnBzY29vLuu/Bg4EtW4CVK4Hx42XdNRERUYNWle/vutElUkdwzA0REZHyGG5kxHBDRESkPIYbGTHcEBERKY/hRkZ8/AIREZHyGG5kxJ4bIiIi5THcyIjhhoiISHkMNzJiuCEiIlIew42MGG6IiIiUx3AjI4YbIiIi5THcyIizpYiIiJTHcCMj9twQEREpj+FGRgw3REREymO4kRHDDRERkfIYbmTEcENERKQ8hhsZlYYbDigmIiJSDsONjEpnS7HnhoiISDkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYwYboiIiJTHcCMjzpYiIiJSHsONjDhbioiISHkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYwYboiIiJTHcCMjzpYiIiJSHsONjDhbioiISHkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYwYboiIiJTHcCMjzpYiIiJSHsONjDhbioiISHkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYw4oJiIiEh5DDcy4oBiIiIi5THcyIiXpYiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYw4W4qIiEh5DDcy4mwpIiIi5THcyIiXpYiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYw4W4qIiEh5DDcy4mwpIiIi5THcyIiXpYiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MuKAYiIiIuUx3MiIPTdERETKY7iREWdLERERKa9WhJulS5fCx8cHVlZWCAgIwL59+yqsm5SUBH9/fzg6OsLW1hbdu3fHl19+acbWVow9N0RERMpTPNysXbsWMTExiIuLw8GDB+Hr64uQkBBkZWWVW9/Z2RmvvvoqUlNTcfToUURHRyM6Ohrbtm0zc8uNMdwQEREpTyWEssNfAwIC0KNHDyxZsgQAUFJSAi8vL0yfPh0vv/yySft49NFHMWTIELzxxhuV1s3NzYWDgwNycnJgb29frbbfb+tWYNAg4JFHgIMHZd01ERFRg1aV729Fe26Kiopw4MABBAcHS2VqtRrBwcFITU2tdHshBJKTk3H69Gn06dOn3DqFhYXIzc01WGoKZ0sREREpT9Fwk52dDZ1OBzc3N4NyNzc3ZGRkVLhdTk4O7OzsYGlpiSFDhuCDDz7AP//5z3LrxsfHw8HBQVq8vLxkfQ9l8bIUERGR8hQfc/MwGjdujMOHD2P//v146623EBMTg5SUlHLrzpkzBzk5OdJy8eLFGmsXZ0sREREpz0LJg7u4uECj0SAzM9OgPDMzE+7u7hVup1ar0aZNGwBA9+7dcerUKcTHx6Nfv35GdbVaLbRaraztrrhd+n8ZboiIiJSjaM+NpaUl/Pz8kJycLJWVlJQgOTkZgYGBJu+npKQEhYWFNdHEKmG4ISIiUp6iPTcAEBMTg6ioKPj7+6Nnz55ISEhAQUEBoqOjAQDjxo1D8+bNER8fD0A/hsbf3x+tW7dGYWEhNm/ejC+//BIfffSRkm8DAMMNERFRbaB4uImIiMDVq1cRGxuLjIwMdO/eHVu3bpUGGV+4cAFq9d8dTAUFBZgyZQouXboEa2trdOjQAV999RUiIiKUegsSzpYiIiJSnuL3uTG3mrzPTWoq0KsX0Lo1cPasrLsmIiJq0OrMfW7qG86WIiIiUh7DjYw45oaIiEh5DDcyYrghIiJSHsONjBhuiIiIlMdwIyPOliIiIlIew42MOKCYiIhIeQw3MuJlKSIiIuUx3MiI4YaIiEh5DDcyYrghIiJSHsONjDigmIiISHkMNzJizw0REZHyGG5kxNlSREREymO4kRF7boiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MuJsKSIiIuUx3MiIPTdERETKq1K4effdd3H79m3p9e7du1FYWCi9zsvLw5QpU+RrXR3D2VJERETKUwlh+kUUjUaD9PR0NG3aFABgb2+Pw4cPo1WrVgCAzMxMNGvWDDqdrmZaK4Pc3Fw4ODggJycH9vb2su47MxNwd9f/zEtTRERE8qnK93eVem7uz0FVyEUNgrrM2eSpISIiUgbH3MiobLjhpSkiIiJlMNzIiD03REREyrOo6gaffvop7OzsAADFxcVITEyEi4sLAP2A4oaMPTdERETKq9KAYh8fH6hKpwQ9QFpaWrUaVZNqckBxbi7g4KD/+fZtwMpK1t0TERE1WFX5/q5Sz8358+er0656jz03REREyuOYGxkx3BARESmvSuEmNTUVP/zwg0HZF198gZYtW6Jp06aYNGmSwU39GhoOKCYiIlJelcLN/PnzceLECen1sWPHMHHiRAQHB+Pll1/G999/j/j4eNkbWVew54aIiEh5VQo3hw8fxoABA6TXa9asQUBAAJYvX46YmBi8//77WLduneyNrCsYboiIiJRXpXBz48YNuLm5Sa9/+eUXDBo0SHrdo0cPXLx4Ub7W1TFlJ5Ix3BARESmjSuHGzc1NmuZdVFSEgwcP4rHHHpPW5+XloVGjRvK2sA5hzw0REZHyqhRuBg8ejJdffhm7du3CnDlzYGNjg6CgIGn90aNH0bp1a9kbWVew54aIiEh5VbrPzRtvvIHw8HD07dsXdnZ2SExMhKWlpbR+xYoVGDhwoOyNrEvUan2w4WwpIiIiZVQp3Li4uODXX39FTk4O7OzsoNFoDNavX78ejRs3lrWBdU1puGHPDRERkTKqFG4mTJhgUr0VK1Y8VGPqg9JxNww3REREyqhSuElMTIS3tzceeeQRVOGRVA1K6bgbhhsiIiJlVCncTJ48GatXr0ZaWhqio6MxZswYODs711Tb6iT23BARESmrSrOlli5divT0dPzf//0fvv/+e3h5eeGZZ57Btm3b2JNzD8MNERGRsqr84EytVotRo0Zh+/btOHnyJDp37owpU6bAx8cH+fn5NdHGOqU03DDrERERKaNaTwVXq9VQqVQQQkCn08nVpjqNPTdERETKqnK4KSwsxOrVq/HPf/4T7dq1w7Fjx7BkyRJcuHABdnZ2NdHGOoUDiomIiJRVpQHFU6ZMwZo1a+Dl5YUJEyZg9erVcHFxqam21UnsuSEiIlKWSlRhJLBarUaLFi3wyCOPQFX2WQP3SUpKkqVxNSE3NxcODg7IycmBvb297Pt3dQWys4Hjx4HOnWXfPRERUYNUle/vKvXcjBs37oGhhjigmIiISGlVvokfPRgvSxERESmrWrOlyBjDDRERkbIYbmTG2VJERETKYriRGXtuiIiIlMVwIzOGGyIiImUx3MiMs6WIiIiUxXAjM/bcEBERKYvhRmYMN0RERMpiuJEZZ0sREREpi+FGZuy5ISIiUhbDjcwYboiIiJTFcCMzzpYiIiJSVq0IN0uXLoWPjw+srKwQEBCAffv2VVh3+fLlCAoKgpOTE5ycnBAcHPzA+ubGnhsiIiJlKR5u1q5di5iYGMTFxeHgwYPw9fVFSEgIsrKyyq2fkpKCUaNGYefOnUhNTYWXlxcGDhyIy5cvm7nl5WO4ISIiUpZKCGUvoAQEBKBHjx5YsmQJAKCkpAReXl6YPn06Xn755Uq31+l0cHJywpIlSzBu3LhK6+fm5sLBwQE5OTmwt7evdvvv9+ijwKFDwJYtQGio7LsnIiJqkKry/a1oz01RUREOHDiA4OBgqUytViM4OBipqakm7ePWrVu4e/cunJ2da6qZVcKeGyIiImVZKHnw7Oxs6HQ6uLm5GZS7ubnhzz//NGkfL730Epo1a2YQkMoqLCxEYWGh9Do3N/fhG2wChhsiIiJlKT7mpjrefvttrFmzBhs2bICVlVW5deLj4+Hg4CAtXl5eNdomzpYiIiJSlqLhxsXFBRqNBpmZmQblmZmZcHd3f+C2CxcuxNtvv42ffvoJ3bp1q7DenDlzkJOTIy0XL16Upe0VYc8NERGRshQNN5aWlvDz80NycrJUVlJSguTkZAQGBla43bvvvos33ngDW7duhb+//wOPodVqYW9vb7DUJIYbIiIiZSk65gYAYmJiEBUVBX9/f/Ts2RMJCQkoKChAdHQ0AGDcuHFo3rw54uPjAQDvvPMOYmNjsWrVKvj4+CAjIwMAYGdnBzs7O8XeRyk+W4qIiEhZioebiIgIXL16FbGxscjIyED37t2xdetWaZDxhQsXoFb/3cH00UcfoaioCCNGjDDYT1xcHObOnWvOppeLPTdERETKUjzcAMC0adMwbdq0ctelpKQYvD5//nzNN6gaOKCYiIhIWXV6tlRtxJ4bIiIiZTHcyIzhhoiISFkMNzJjuCEiIlIWw43MOFuKiIhIWQw3MmPPDRERkbIYbmTG2VJERETKYriRGXtuiIiIlMVwIzOGGyIiImUx3MiMA4qJiIiUxXAjM/bcEBERKatWPH6hXtDpgF27EHQpHdfgAVEcBECjdKuIiIgaHIYbOSQlATNmAJcuYSaAmQDyYj2B5ouB8HBl20ZERNTA8LJUdSUlASNGAJcuGRTb3bysL09KUqhhREREDRPDTXXodPoem3JuaqPCvbKZM/X1iIiIyCwYbqpj1y6jHhsDQgAXL+rrERERkVkw3FRHerq89YiIiKjaGG6qw8ND3npERERUbQw31REUBHh6/n3nvvupVICXl74eERERmQXDTXVoNMDixfqf7ws4AvdeJyTo6xEREZFZMNxUV3g48M03Rpeech089eW8zw0REZFZMdzIITwcOH5cejkQ2/DBv9MYbIiIiBTAcCMXW1vpx33oCR0fvUBERKQIhhu5NGokjbuxwp3y7utHREREZsBwIxeVCrCyAqAPN3wqOBERkTIYbuR0L9xoUchwQ0REpBCGGzmx54aIiEhxDDdy0moBMNwQEREpieFGTuy5ISIiUhzDjZzKhBvOliIiIlIGw42c2HNDRESkOIYbOXG2FBERkeIYbuTEAcVERESKY7iREy9LERERKY7hRk4MN0RERIpjuJETZ0sREREpjuFGThxQTEREpDiGGznxshQREZHiGG7kxNlSREREimO4kRN7boiIiBTHcCMnDigmIiJSHMONnNhzQ0REpDiGGzlxthQREZHiGG7kVGZA8f/+B6SkADqdsk0iIiJqaBhuZLTv2N+XpfbsAfr3B3x8gKQkZdtFRETUkDDcyCQpCXgn4e9wU+ryZWDECAYcIiIic2G4kYFOB8yYAdyGcbgpnTU1cyYvUREREZkDw40Mdu0CLl0C7pQTbgB9wLl4UV+PiIiIahbDjQzS0/X/loYbLQofWI+IiIhqDsONDDw89P8W4u/ZUg+qR0RERDWH4UYGQUGApydQWMFlKZUK8PLS1yMiIqKaxXAjA40GWLy4/DE3KpX+34QEfT0iIiKqWQw3MgkPB97/xDjceHoC33yjX09EREQ1j+FGRoPD9eGmEYph1UiHnTuBtDQGGyIiInNiuJHTvccvAIDqbiGCgngpioiIyNwYbuR078GZgP7SVEGBgm0hIiJqoBhu5GRhAXGvq8YKd5Cfr3B7iIiIGiCGG5mprP4eVMxwQ0REZH6Kh5ulS5fCx8cHVlZWCAgIwL59+yqse+LECQwfPhw+Pj5QqVRISEgwX0NNVSbc5OUp3BYiIqIGSNFws3btWsTExCAuLg4HDx6Er68vQkJCkJWVVW79W7duoVWrVnj77bfh7u5u5taayOrvRzCw54aIiMj8FA037733Hp599llER0ejU6dOWLZsGWxsbLBixYpy6/fo0QMLFizAyJEjoS0zM6lW0f79CAb23BAREZmfYuGmqKgIBw4cQHBw8N+NUasRHByM1NRU2Y5TWFiI3Nxcg6VGccwNERGRohQLN9nZ2dDpdHBzczMod3NzQ0ZGhmzHiY+Ph4ODg7R4eXnJtu9yMdwQEREpSvEBxTVtzpw5yMnJkZaLFy/W7AE5oJiIiEhRFkod2MXFBRqNBpmZmQblmZmZsg4W1mq15h2fw54bIiIiRSnWc2NpaQk/Pz8kJydLZSUlJUhOTkZgYKBSzaq+e0FKi0L23BARESlAsZ4bAIiJiUFUVBT8/f3Rs2dPJCQkoKCgANHR0QCAcePGoXnz5oiPjwegH4R88uRJ6efLly/j8OHDsLOzQ5s2bRR7HwbYc0NERKQoRcNNREQErl69itjYWGRkZKB79+7YunWrNMj4woULUKv/7ly6cuUKHnnkEen1woULsXDhQvTt2xcpKSnmbn75yoSb6ww3REREZqdouAGAadOmYdq0aeWuuz+w+Pj4QAhhhlZVAwcUExERKarez5YyO16WIiIiUhTDjdwsLQEAj+AQ2l5OAXQ6ZdtDRETUwDDcyCkpCbj36Ihh+A4fnuoP+Pjoy4mIiMgsGG7kkpQEjBgBo4E2ly/ryxlwiIiIzILhRg46HTBjBlDeYOfSspkzeYmKiIjIDBhu5LBrF3DpUsXrhQAuXtTXIyIiohrFcCOH9HR56xEREdFDY7iRg4eHvPWIiIjooTHcyCEoCPD0BFSq8terVICXl74eERER1SiGGzloNMDixeWuEqWBJyFBX4+IiIhqFMONXMLDgW++Ae49F6tUUVNPfXl4uEINIyIialgYbuQUHg7s2wcA0EGFfvgZS2elQTeMwYaIiMhcGG5ktum3JgAADQT+QA/M+j8Nb1JMRERkRgw3MkpKAp6KtEEx9GNrHJADgDcpJiIiMieGG5lINymGCjlwAPB3uOFNiomIiMyH4UYmZW9SfH+4AXiTYiIiInNhuJFJ2ZsPl4YbR9x8YD0iIiKSH8ONTMrefPgmHAEY9tyUV4+IiIjkx3Ajk7I3KS7vshRvUkxERGQeDDcyKXuT4vvDDW9STEREZD4MNzIqvUmxzs4w3HjyJsVERERmY6F0A+qb8HCg5IAD8B99uGnaFEhLY48NERGRubDnpgaonR0B6GdL3brFYENERGRODDc1weHvy1L5+UBRkcLtISIiakAYbmqCg+GYm+vXlWwMERFRw8JwUxPuhRtnjT7cXLumZGOIiIgaFoabmnAv3Diq2HNDRERkbgw3NcHREQBgL9hzQ0REZG4MNzXhXs+NnS4HKpSw54aIiMiMGG5qwr1wo4aAHfLZc0NERGRGDDc1wcoKaNQIgH7GFHtuiIiIzIfhpiaoVAbTwdlzQ0REZD4MNzVBpwMsLQEA/bATN6/pFG4QERFRw8FwI7ekJMDHB7hyBQCwBC9gyY8++nIiIiKqcQw3ckpKAkaMAC5dMih2KbysL2fAISIiqnEMN3LR6YAZMwAhjFapca9s5kx9PSIiIqoxDDdy2bXLqMfGgBDAxYv6ekRERFRjGG7kkp5uUrV9m0yrR0RERA+H4UYuHh4mVXspwYNDb4iIiGoQw41cgoIAT08Ilarc1SVQ4QK8sAtBHHpDRERUgxhu5KLRAIsXA0IfZMoquffvTCRABw2H3hAREdUghhs5hYfjt5nf4DKaGxTfgi3iMBebMEwqM3GIDhEREVURw43MdMPC4YPzeB3zcAtWAAA7FOANxOE8fPAU9ANuTByiQ0RERFXEcCOzoCBgQpNNmIe5sMYdg3XNcRnfYASebZKEoCCFGkhERFTPMdzITAMdFmMGAIH7hxaX3swvATOhAUcUExER1QSGG7nt2gWba5cqPLFqCNhc44hiIiKimsJwIzfezI+IiEhRDDdy4838iIiIFMVwI7dKb+YHXIAnb+ZHRERUQxhu5PaAm/kB+hNug9t4Ept4Mz8iIqIawHBTE+7dzO86nMtd7Yzr+AYj8BSSeDM/IiIimTHc1BDdE8NwG9b3Jn8bKjsl/OxpXpciIiKSE8NNDQnCLnjhUjkXpvTUEGiBi0ietwvr15u1aURERPUaw00N0WSZdr1pCpZgdIQOa9fWcIOIiIgaCAulG1BvmTgl/Bl8i8HCHstH/gv/fvsp+M0MQvYNDVxdgebN9ZOvNJoabisREVE9ohJClDcspN7Kzc2Fg4MDcnJyYG9vX3MH0ukAHx+ISxVfmirPNThhI4ZhJx6HC67htnUT9O10FR7aaxAAVE2c0cijKXRZ16Bp2kT69276VeBa9evIvb9qHbO5OzI0zVHo1wvaA3vgVnwZxVcy9XVUamR36YeiwH7IvqFBkybAtWtAkybAVf1uAADOzkDTpn+vu3YNBsER0M9YS0/X51GzhEmdToGDEhHVbVX5/ma4qUlJSRDDh1cp3JAxHVTQlDs0G8iFLdbjaSkMZqMJXHEVTaAPSdfhjKtoKq0rW8dNrU9AmSV/17lt3QR9u1xDi0dqJui5/Hc32qZth1VRnvQe7tg44WznYbj5yOOKhMs6F3p5LngueC5q/bmw8HCFbbvm6DolCBpLef54q9L3t6gFlixZIry9vYVWqxU9e/YUv//++wPrr1u3TrRv315otVrRpUsX8eOPP5p8rJycHAFA5OTkVLfZJtHNmCkEwIULFy5cuDS45bLGU6S++K0s36dV+f5WfEDx2rVrERMTg7i4OBw8eBC+vr4ICQlBVlZWufX37NmDUaNGYeLEiTh06BDCwsIQFhaG48ePm7nlplGHDVO6CURERIpw111CzwUjsPf/zPu8IcUvSwUEBKBHjx5YsmQJAKCkpAReXl6YPn06Xn75ZaP6ERERKCgowA8//CCVPfbYY+jevTuWLVtW6fHMelkKeOixN0RERPVBCVRI13jC/VZatS5RVeX7W9Gem6KiIhw4cADBwcFSmVqtRnBwMFJTU8vdJjU11aA+AISEhFRYv7CwELm5uQaLWd17HIMKqGDUCBERUf2lhkBz3UUc+9B8zxtSNNxkZ2dDp9PBzc3NoNzNzQ0ZGRnlbpORkVGl+vHx8XBwcJAWLy8veRpfFeHhwLffQuVc/uMYiIiI6rtb58z3vCHFx9zUtDlz5iAnJ0daLl68qExDwsOBrCwgIoI9OERE1ODYtDbt/m9yUDTcuLi4QKPRIDMz06A8MzMT7u7u5W7j7u5epfparRb29vYGi2I0GmDNGqjWr4dwcVWuHURERGZSAhUua7zQdUqQ2Y6paLixtLSEn58fkpOTpbKSkhIkJycjMDCw3G0CAwMN6gPA9u3bK6xfK40YAVVGOrBzJ0q++ArpodEotOUlKyIiql9K7v17MSZBtvvdmELxxy/ExMQgKioK/v7+6NmzJxISElBQUIDo6GgAwLhx49C8eXPEx8cDAGbMmIG+ffvi//2//4chQ4ZgzZo1+OOPP/DJJ58o+TaqTqMB+vWDGoDH2Mi/71p7+TJw9SpKnJrgf/uvIbO4CYqu1O+bQpVX17XoMtqd+h7aguvSKbtj44QznYYCeflGN8Kri0qgkp4QT0RUH6VrvHAxJgGPvRtu1uMqHm4iIiJw9epVxMbGIiMjA927d8fWrVulQcMXLlyAWv13B1OvXr2watUqvPbaa3jllVfQtm1bbNy4EV26dFHqLcjjXtgppQbQJgpoo1iDaoH7HlNgFRSErqWPKbgvDFbl+QslTk1wZs9VpJ+4BiGAZl2d0TqgKc4f0IfJ4swaDnr3Hh1xNyBIeqxESebVWn/H0YZwzNraLp4LnovacsyHuUNxczP22JRS/D435mb2+9wQERFRtdWZ+9wQERERyY3hhoiIiOoVhhsiIiKqVxhuiIiIqF5huCEiIqJ6heGGiIiI6hWGGyIiIqpXGG6IiIioXmG4ISIionpF8ccvmFvpDZlzc3MVbgkRERGZqvR725QHKzS4cJOXp3/YopeXl8ItISIioqrKy8uDg4PDA+s0uGdLlZSU4MqVK2jcuDFUKpUs+8zNzYWXlxcuXrzI51XVMJ5r8+B5Nh+ea/PgeTafmjrXQgjk5eWhWbNmBg/ULk+D67lRq9Xw9PSskX3b29vzfxoz4bk2D55n8+G5Ng+eZ/OpiXNdWY9NKQ4oJiIionqF4YaIiIjqFYYbGWi1WsTFxUGr1SrdlHqP59o8eJ7Nh+faPHiezac2nOsGN6CYiIiI6jf23BAREVG9wnBDRERE9QrDDREREdUrDDdERERUrzDcyGDp0qXw8fGBlZUVAgICsG/fPqWbVKfNnTsXKpXKYOnQoYO0/s6dO5g6dSqaNGkCOzs7DB8+HJmZmQq2uG749ddfMXToUDRr1gwqlQobN240WC+EQGxsLDw8PGBtbY3g4GCcOXPGoM7169cRGRkJe3t7ODo6YuLEicjPzzfju6gbKjvX48ePN/qMh4aGGtThua5cfHw8evTogcaNG6Np06YICwvD6dOnDeqY8vviwoULGDJkCGxsbNC0aVO8+OKLKC4uNudbqfVMOdf9+vUz+lw///zzBnXMda4Zbqpp7dq1iImJQVxcHA4ePAhfX1+EhIQgKytL6abVaZ07d0Z6erq0/Pbbb9K6f//73/j++++xfv16/PLLL7hy5QrCw8MVbG3dUFBQAF9fXyxdurTc9e+++y7ef/99LFu2DL///jtsbW0REhKCO3fuSHUiIyNx4sQJbN++HT/88AN+/fVXTJo0yVxvoc6o7FwDQGhoqMFnfPXq1Qbrea4r98svv2Dq1KnYu3cvtm/fjrt372LgwIEoKCiQ6lT2+0Kn02HIkCEoKirCnj178PnnnyMxMRGxsbFKvKVay5RzDQDPPvuswef63XffldaZ9VwLqpaePXuKqVOnSq91Op1o1qyZiI+PV7BVdVtcXJzw9fUtd93NmzdFo0aNxPr166WyU6dOCQAiNTXVTC2s+wCIDRs2SK9LSkqEu7u7WLBggVR28+ZNodVqxerVq4UQQpw8eVIAEPv375fqbNmyRahUKnH58mWztb2uuf9cCyFEVFSUGDZsWIXb8Fw/nKysLAFA/PLLL0II035fbN68WajVapGRkSHV+eijj4S9vb0oLCw07xuoQ+4/10II0bdvXzFjxowKtzHnuWbPTTUUFRXhwIEDCA4OlsrUajWCg4ORmpqqYMvqvjNnzqBZs2Zo1aoVIiMjceHCBQDAgQMHcPfuXYNz3qFDB7Ro0YLnvBrS0tKQkZFhcF4dHBwQEBAgndfU1FQ4OjrC399fqhMcHAy1Wo3ff//d7G2u61JSUtC0aVO0b98ekydPxrVr16R1PNcPJycnBwDg7OwMwLTfF6mpqejatSvc3NykOiEhIcjNzcWJEyfM2Pq65f5zXerrr7+Gi4sLunTpgjlz5uDWrVvSOnOe6wb34Ew5ZWdnQ6fTGfyHAgA3Nzf8+eefCrWq7gsICEBiYiLat2+P9PR0zJs3D0FBQTh+/DgyMjJgaWkJR0dHg23c3NyQkZGhTIPrgdJzV95nuXRdRkYGmjZtarDewsICzs7OPPdVFBoaivDwcLRs2RLnzp3DK6+8gkGDBiE1NRUajYbn+iGUlJRg5syZ6N27N7p06QIAJv2+yMjIKPdzX7qOjJV3rgFg9OjR8Pb2RrNmzXD06FG89NJLOH36NJKSkgCY91wz3FCtM2jQIOnnbt26ISAgAN7e3li3bh2sra0VbBmRPEaOHCn93LVrV3Tr1g2tW7dGSkoKBgwYoGDL6q6pU6fi+PHjBuPzqGZUdK7Ljgnr2rUrPDw8MGDAAJw7dw6tW7c2axt5WaoaXFxcoNFojEbeZ2Zmwt3dXaFW1T+Ojo5o164dzp49C3d3dxQVFeHmzZsGdXjOq6f03D3os+zu7m40UL64uBjXr1/nua+mVq1awcXFBWfPngXAc11V06ZNww8//ICdO3fC09NTKjfl94W7u3u5n/vSdWSoonNdnoCAAAAw+Fyb61wz3FSDpaUl/Pz8kJycLJWVlJQgOTkZgYGBCrasfsnPz8e5c+fg4eEBPz8/NGrUyOCcnz59GhcuXOA5r4aWLVvC3d3d4Lzm5ubi999/l85rYGAgbt68iQMHDkh1fv75Z5SUlEi/xOjhXLp0CdeuXYOHhwcAnmtTCSEwbdo0bNiwAT///DNatmxpsN6U3xeBgYE4duyYQZjcvn077O3t0alTJ/O8kTqgsnNdnsOHDwOAwefabOda1uHJDdCaNWuEVqsViYmJ4uTJk2LSpEnC0dHRYDQ4Vc2sWbNESkqKSEtLE7t37xbBwcHCxcVFZGVlCSGEeP7550WLFi3Ezz//LP744w8RGBgoAgMDFW517ZeXlycOHTokDh06JACI9957Txw6dEj89ddfQggh3n77beHo6Cg2bdokjh49KoYNGyZatmwpbt++Le0jNDRUPPLII+L3338Xv/32m2jbtq0YNWqUUm+p1nrQuc7LyxOzZ88WqampIi0tTezYsUM8+uijom3btuLOnTvSPniuKzd58mTh4OAgUlJSRHp6urTcunVLqlPZ74vi4mLRpUsXMXDgQHH48GGxdetW4erqKubMmaPEW6q1KjvXZ8+eFfPnzxd//PGHSEtLE5s2bRKtWrUSffr0kfZhznPNcCODDz74QLRo0UJYWlqKnj17ir179yrdpDotIiJCeHh4CEtLS9G8eXMREREhzp49K62/ffu2mDJlinBychI2NjbiqaeeEunp6Qq2uG7YuXOnAGC0REVFCSH008Fff/114ebmJrRarRgwYIA4ffq0wT6uXbsmRo0aJezs7IS9vb2Ijo4WeXl5Cryb2u1B5/rWrVti4MCBwtXVVTRq1Eh4e3uLZ5991ugPIp7rypV3jgGIlStXSnVM+X1x/vx5MWjQIGFtbS1cXFzErFmzxN27d838bmq3ys71hQsXRJ8+fYSzs7PQarWiTZs24sUXXxQ5OTkG+zHXuVbdazQRERFRvcAxN0RERFSvMNwQERFRvcJwQ0RERPUKww0RERHVKww3REREVK8w3BAREVG9wnBDRERE9QrDDRE1SCqVChs3blS6GURUAxhuiMjsxo8fD5VKZbSEhoYq3TQiqgcslG4AETVMoaGhWLlypUGZVqtVqDVEVJ+w54aIFKHVauHu7m6wODk5AdBfMvroo48waNAgWFtbo1WrVvjmm28Mtj927Bgef/xxWFtbo0mTJpg0aRLy8/MN6qxYsQKdO3eGVquFh4cHpk2bZrA+OzsbTz31FGxsbNC2bVt899130robN24gMjISrq6usLa2Rtu2bY3CGBHVTgw3RFQrvf766xg+fDiOHDmCyMhIjBw5EqdOnQIAFBQUICQkBE5OTti/fz/Wr1+PHTt2GISXjz76CFOnTsWkSZNw7NgxfPfdd2jTpo3BMebNm4dnnnkGR48exeDBgxEZGYnr169Lxz958iS2bNmCU6dO4aOPPoKLi4v5TgARPTzZH8VJRFSJqKgoodFohK2trcHy1ltvCSH0TyB+/vnnDbYJCAgQkydPFkII8cknnwgnJyeRn58vrf/xxx+FWq2Wnq7drFkz8eqrr1bYBgDitddek17n5+cLAGLLli1CCCGGDh0qoqOj5XnDRGRWHHNDRIro378/PvroI4MyZ2dn6efAwECDdYGBgTh8+DAA4NSpU/D19YWtra20vnfv3igpKcHp06ehUqlw5coVDBgw4IFt6Natm/Szra0t7O3tkZWVBQCYPHkyhg8fjoMHD2LgwIEICwtDr169Huq9EpF5MdwQkSJsbW2NLhPJxdra2qR6jRo1MnitUqlQUlICABg0aBD++usvbN68Gdu3b8eAAQMwdepULFy4UPb2EpG8OOaGiGqlvXv3Gr3u2LEjAKBjx444cuQICgoKpPW7d++GWq1G+/bt0bhxY/j4+CA5OblabXB1dUVUVBS++uorJCQk4JNPPqnW/ojIPNhzQ0SKKCwsREZGhkGZhYWFNGh3/fr18Pf3xz/+8Q98/fXX2LdvHz777DMAQGRkJOLi4hAVFYW5c+fi6tWrmD59OsaOHQs3NzcAwNy5c/H888+jadOmGDRoEPLy8rB7925Mnz7dpPbFxsbCz88PnTt3RmFhIX744QcpXBFR7cZwQ0SK2Lp1Kzw8PAzK2rdvjz///BOAfibTmjVrMGXKFHh4eGD16tXo1KkTAMDGxgbbtm3DjBkz0KNHD9jY2GD48OF47733pH1FRUXhzp07WLRoEWbPng0XFxeMGDHC5PZZWlpizpw5OH/+PKytrREUFIQ1a9bI8M6JqKaphBBC6UYQEZWlUqmwYcMGhIWFKd0UIqqDOOaGiIiI6hWGGyIiIqpXOOaGiGodXi0noupgzw0RERHVKww3REREVK8w3BAREVG9wnBDRERE9QrDDREREdUrDDdERERUrzDcEBERUb3CcENERET1CsMNERER1Sv/H/3nbZyJcUQcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# selected settings for regression (best fit from options above)\n", + "activation, optimizer, n_hidden_layers, n_nodes_per_layer = \"tanh\", \"Adam\", 4, 20\n", + "loss, metrics = \"mse\", [\"mae\", \"mse\"]\n", + "\n", + "# Create data objects for training using scalar normalization\n", + "n_inputs = len(input_labels)\n", + "n_outputs = len(output_labels)\n", + "x = input_data\n", + "y = output_data\n", + "\n", + "input_scaler = None\n", + "output_scaler = None\n", + "input_scaler = OffsetScaler.create_normalizing_scaler(x)\n", + "output_scaler = OffsetScaler.create_normalizing_scaler(y)\n", + "x = input_scaler.scale(x)\n", + "y = output_scaler.scale(y)\n", + "x = x.to_numpy()\n", + "y = y.to_numpy()\n", + "\n", + "# Create Keras Sequential object and build neural network\n", + "model = tf.keras.Sequential()\n", + "model.add(\n", + " tf.keras.layers.Dense(\n", + " units=n_nodes_per_layer, input_dim=n_inputs, activation=activation\n", + " )\n", + ")\n", + "for i in range(1, n_hidden_layers):\n", + " model.add(tf.keras.layers.Dense(units=n_nodes_per_layer, activation=activation))\n", + "model.add(tf.keras.layers.Dense(units=n_outputs, activation=keras.activations.linear))\n", + "\n", + "# Train surrogate (calls optimizer on neural network and solves for weights)\n", + "model.compile(loss=loss, optimizer=optimizer, metrics=metrics)\n", + "mcp_save = tf.keras.callbacks.ModelCheckpoint(\n", + " \".mdl_co2.keras\", save_best_only=True, monitor=\"val_loss\", mode=\"min\"\n", + ")\n", + "history = model.fit(\n", + " x=x, y=y, validation_split=0.2, verbose=2, epochs=250, callbacks=[mcp_save]\n", + ")\n", + "\n", + "# Get the training and validation MSE from the history\n", + "train_mse = history.history[\"mse\"]\n", + "val_mse = history.history[\"val_mse\"]\n", + "\n", + "# Generate a plot of training MSE vs validation MSE\n", + "epochs = range(1, len(train_mse) + 1)\n", + "plt.plot(epochs, train_mse, \"bo-\", label=\"Training MSE\")\n", + "plt.plot(epochs, val_mse, \"ro-\", label=\"Validation MSE\")\n", + "plt.title(\"Training MSE vs Validation MSE\")\n", + "plt.xlabel(\"Epochs\")\n", + "plt.ylabel(\"MSE\")\n", + "plt.legend()\n", + "plt.show()" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6gUlEQVR4nO3de1wU5f4H8M+CgqACKncFQU2RBLxmeEFNj0h0Me2Xt7xbR1NLK0MrK7sI2TmnrFPa0dLOKcsu1ilNzeNdIUMTb6UlYViCSsqSgKDs8/uDdtrLzN6X3WU/79eLc3JmdvaZ2ZlnvvNcVUIIASIiIiIv5uPqBBARERG5GgMiIiIi8noMiIiIiMjrMSAiIiIir8eAiIiIiLweAyIiIiLyegyIiIiIyOsxICIiIiKvx4CIiIiIvB4DIiLyGM888wxUKpVF26pUKjzzzDNOTc/gwYMxePBgt90fEVmOARERWW3t2rVQqVTSX5MmTdC2bVtMmTIFv/76q6uT53bi4uL0zld4eDgGDhyITz/91CH7r6qqwjPPPINdu3Y5ZH9E3ogBERHZ7Nlnn8V//vMfrFy5EhkZGXj33XcxaNAgXL161Snf9+STT6K6utop+3a27t274z//+Q/+85//4NFHH8W5c+cwatQorFy50u59V1VVYcmSJQyIiOzQxNUJICLPlZGRgd69ewMAZsyYgdDQULz44ov4/PPPcc899zj8+5o0aYImTTwz22rbti3uvfde6d+TJk1Cp06d8PLLL2PmzJkuTBkRASwhIiIHGjhwIACgsLBQb/nJkydx9913o3Xr1mjWrBl69+6Nzz//XG+ba9euYcmSJbjhhhvQrFkztGnTBgMGDMC2bdukbeTaENXU1GD+/PkICwtDy5Ytcccdd+CXX34xStuUKVMQFxdntFxun2vWrMEtt9yC8PBw+Pv7IzExEStWrLDqXJgTGRmJrl27oqioyOR2Fy5cwPTp0xEREYFmzZohJSUF77zzjrT+zJkzCAsLAwAsWbJEqpZzdvsposbGM1+1iMgtnTlzBgDQqlUradmJEyfQv39/tG3bFgsXLkTz5s3x4YcfYuTIkfjkk09w1113AagPTLKzszFjxgzcdNNNqKiowMGDB/Htt9/iL3/5i+J3zpgxA++++y7Gjx+Pfv36YceOHcjMzLTrOFasWIEbb7wRd9xxB5o0aYIvvvgCDzzwADQaDWbPnm3XvrWuXbuGs2fPok2bNorbVFdXY/DgwTh9+jTmzJmD+Ph4fPTRR5gyZQrKy8vx0EMPISwsDCtWrMCsWbNw1113YdSoUQCA5ORkh6STyGsIIiIrrVmzRgAQ//vf/8TFixfF2bNnxccffyzCwsKEv7+/OHv2rLTt0KFDRVJSkrh69aq0TKPRiH79+okbbrhBWpaSkiIyMzNNfu/TTz8tdLOtgoICAUA88MADetuNHz9eABBPP/20tGzy5Mmiffv2ZvcphBBVVVVG26Wnp4sOHTroLRs0aJAYNGiQyTQLIUT79u3F8OHDxcWLF8XFixfFkSNHxNixYwUAMXfuXMX9vfLKKwKAePfdd6VltbW1IjU1VbRo0UJUVFQIIYS4ePGi0fESkXVYZUZENhs2bBjCwsIQExODu+++G82bN8fnn3+Odu3aAQAuXbqEHTt24J577sHvv/+OsrIylJWV4bfffkN6ejp+/PFHqVdaSEgITpw4gR9//NHi7//yyy8BAA8++KDe8nnz5tl1XAEBAdJ/q9VqlJWVYdCgQfjpp5+gVqtt2udXX32FsLAwhIWFISUlBR999BEmTpyIF198UfEzX375JSIjIzFu3DhpWdOmTfHggw/iypUr2L17t01pISJjrDIjIpu9/vrr6Ny5M9RqNd5++23s2bMH/v7+0vrTp09DCIHFixdj8eLFsvu4cOEC2rZti2effRZ33nknOnfujG7dumHEiBGYOHGiyaqfn3/+GT4+PujYsaPe8i5duth1XPv378fTTz+NvLw8VFVV6a1Tq9UIDg62ep99+/bF888/D5VKhcDAQHTt2hUhISEmP/Pzzz/jhhtugI+P/rtr165dpfVE5BgMiIjIZjfddJPUy2zkyJEYMGAAxo8fj1OnTqFFixbQaDQAgEcffRTp6emy++jUqRMAIC0tDYWFhfjvf/+Lr776CqtXr8bLL7+MlStXYsaMGXanVWlAx7q6Or1/FxYWYujQoUhISMA//vEPxMTEwM/PD19++SVefvll6ZisFRoaimHDhtn0WSJyPgZEROQQvr6+yM7OxpAhQ/DPf/4TCxcuRIcOHQDUV/NYEgy0bt0aU6dOxdSpU3HlyhWkpaXhmWeeUQyI2rdvD41Gg8LCQr1SoVOnThlt26pVK5SXlxstNyxl+eKLL1BTU4PPP/8csbGx0vKdO3eaTb+jtW/fHkePHoVGo9ErJTp58qS0HlAO9ojIcmxDREQOM3jwYNx000145ZVXcPXqVYSHh2Pw4MF48803UVJSYrT9xYsXpf/+7bff9Na1aNECnTp1Qk1NjeL3ZWRkAABeffVVveWvvPKK0bYdO3aEWq3G0aNHpWUlJSVGo0X7+voCAIQQ0jK1Wo01a9YopsNZbr31VpSWlmL9+vXSsuvXr+O1115DixYtMGjQIABAYGAgAMgGfERkGZYQEZFDLViwAP/3f/+HtWvXYubMmXj99dcxYMAAJCUl4b777kOHDh1w/vx55OXl4ZdffsGRI0cAAImJiRg8eDB69eqF1q1b4+DBg/j4448xZ84cxe/q3r07xo0bhzfeeANqtRr9+vXD9u3bcfr0aaNtx44di6ysLNx111148MEHUVVVhRUrVqBz58749ttvpe2GDx8OPz8/3H777fjrX/+KK1euYNWqVQgPD5cN6pzp/vvvx5tvvokpU6bg0KFDiIuLw8cff4z9+/fjlVdeQcuWLQHUNwJPTEzE+vXr0blzZ7Ru3RrdunVDt27dGjS9RB7N1d3ciMjzaLvd5+fnG62rq6sTHTt2FB07dhTXr18XQghRWFgoJk2aJCIjI0XTpk1F27ZtxW233SY+/vhj6XPPP/+8uOmmm0RISIgICAgQCQkJ4oUXXhC1tbXSNnJd5Kurq8WDDz4o2rRpI5o3by5uv/12cfbsWdlu6F999ZXo1q2b8PPzE126dBHvvvuu7D4///xzkZycLJo1aybi4uLEiy++KN5++20BQBQVFUnbWdPt3tyQAkr7O3/+vJg6daoIDQ0Vfn5+IikpSaxZs8bos7m5uaJXr17Cz8+PXfCJbKASQqdcmIiIiMgLsQ0REREReT0GREREROT1GBARERGR13NpQLRixQokJycjKCgIQUFBSE1NxebNm6X1gwcPlmZu1v7NnDlTbx/FxcXIzMxEYGAgwsPDsWDBAly/fl1vm127dqFnz57w9/dHp06dsHbt2oY4PCIiIvIQLu12365dO+Tk5OCGG26AEALvvPMO7rzzThw+fBg33ngjAOC+++7Ds88+K31GO94GUD/CbGZmJiIjI5Gbm4uSkhJMmjQJTZs2xdKlSwEARUVFyMzMxMyZM/Hee+9h+/btmDFjBqKiohRHziUiIiLv4na9zFq3bo2XXnoJ06dPx+DBg9G9e3fZQdYAYPPmzbjttttw7tw5REREAABWrlyJrKwsXLx4EX5+fsjKysKmTZtw/Phx6XNjx45FeXk5tmzZ0hCHRERERG7ObQZmrKurw0cffYTKykqkpqZKy9977z28++67iIyMxO23347FixdLpUR5eXlISkqSgiEASE9Px6xZs3DixAn06NEDeXl5RlMGpKenWz0btkajwblz59CyZUsOk09EROQhhBD4/fffER0dbTRRsi6XB0THjh1Damoqrl69ihYtWuDTTz9FYmIiAGD8+PFo3749oqOjcfToUWRlZeHUqVPYsGEDAKC0tFQvGAIg/bu0tNTkNhUVFaiurkZAQIBsumpqavSmDPj111+ldBEREZFnOXv2LNq1a6e43uUBUZcuXVBQUAC1Wo2PP/4YkydPxu7du5GYmIj7779f2i4pKQlRUVEYOnQoCgsL0bFjR6emKzs7G0uWLDFafvbsWQQFBTn1u4mIiMgxKioqEBMTI011o8TlAZGfnx86deoEAOjVqxfy8/OxfPlyvPnmm0bb9u3bFwBw+vRpdOzYEZGRkfjmm2/0tjl//jwAIDIyUvp/7TLdbYKCghRLhwBg0aJFePjhh6V/a0+otkccEREReQ5zzV3cbhwijUajOLt1QUEBACAqKgoAkJqaimPHjuHChQvSNtu2bUNQUJBUvZWamort27fr7Wfbtm167ZTk+Pv7S8EPgyAiIqLGzaUlRIsWLUJGRgZiY2Px+++/Y926ddi1axe2bt2KwsJCrFu3DrfeeivatGmDo0ePYv78+UhLS0NycjKA+lmpExMTMXHiRCxbtgylpaV48sknMXv2bPj7+wMAZs6ciX/+85947LHHMG3aNOzYsQMffvghNm3a5MpDJyIiIjfi0oDowoULmDRpEkpKShAcHIzk5GRs3boVf/nLX3D27Fn873//wyuvvILKykrExMRg9OjRePLJJ6XP+/r6YuPGjZg1axZSU1PRvHlzTJ48WW/covj4eGzatAnz58/H8uXL0a5dO6xevZpjEBEREZHE7cYhclcVFRUIDg6GWq1m9RkRUSNTV1eHa9euuToZZIOmTZvC19dXcb2lz2+XN6omIiJyFSEESktLUV5e7uqkkB1CQkIQGRlp1ziBDIiIiMhraYOh8PBwBAYGcuBdDyOEQFVVldS5StvpyhYMiIiIyCvV1dVJwVCbNm1cnRyykXYInQsXLiA8PNxk9ZkpbtftnoiIqCFo2wzpThpOnkn7G9rTDowBEREReTVWk3k+R/yGDIiIiIjI6zEgIiIiIgD1JS2fffaZq5OhZ9euXVCpVE7vCciAyMVK1NXILSxDibra1UkhIiIv8cwzz6B79+6uToZbYS8zF1qfX4xFG45BIwAfFZA9Kglj+sS6OllERERehyVELlKirpaCIQDQCODxDcdZUkRERGZpNBpkZ2cjPj4eAQEBSElJwccffwzgzyqm7du3o3fv3ggMDES/fv1w6tQpAMDatWuxZMkSHDlyBCqVCiqVCmvXrpX2XVZWhrvuuguBgYG44YYb8Pnnn1uUJu33bt26FT169EBAQABuueUWXLhwAZs3b0bXrl0RFBSE8ePHo6qqSvpcTU0NHnzwQYSHh6NZs2YYMGAA8vPzHXeyLMSAyEWKyiqlYEirTgicKauS/wAREbm1hmwCkZ2djX//+99YuXIlTpw4gfnz5+Pee+/F7t27pW2eeOIJ/P3vf8fBgwfRpEkTTJs2DQAwZswYPPLII7jxxhtRUlKCkpISjBkzRvrckiVLcM899+Do0aO49dZbMWHCBFy6dMnitD3zzDP45z//idzcXJw9exb33HMPXnnlFaxbtw6bNm3CV199hddee03a/rHHHsMnn3yCd955B99++y06deqE9PR0q77TERgQuUh8aHP4GPQS9FWpEBfK8TCIiDzN+vxi9M/ZgfGrDqB/zg6szy922nfV1NRg6dKlePvtt5Geno4OHTpgypQpuPfee/Hmm29K273wwgsYNGgQEhMTsXDhQuTm5uLq1asICAhAixYt0KRJE0RGRiIyMlIa3BAApkyZgnHjxqFTp05YunQprly5gm+++cbi9D3//PPo378/evTogenTp2P37t1YsWIFevTogYEDB+Luu+/Gzp07AQCVlZVYsWIFXnrpJWRkZCAxMRGrVq1CQEAA3nrrLcedNAswIHKRqOAAZI9Kgu8fYyf4qlRYOqobooIDzHySiIjcSUM3gTh9+jSqqqrwl7/8BS1atJD+/v3vf6OwsFDaLjk5Wfpv7ZQW2ikuTNH9XPPmzREUFGTR5+Q+HxERgcDAQHTo0EFvmXZ/hYWFuHbtGvr37y+tb9q0KW666SZ8//33Fn+nI7BRtQuN6ROLtM5hOFNWhbjQQAZDREQeyFQTCGfk61euXAEAbNq0CW3bttVb5+/vLwVFTZs2lZZrBy7UaDRm96/7Oe1nLfmc3OdVKpXd+2soDIhcLCo4gIEQEZEH0zaB0A2KnNkEIjExEf7+/iguLsagQYOM1uuWEinx8/NDXV2dM5JnlY4dO8LPzw/79+9H+/btAdRPv5Gfn4958+Y1aFoYEBEREdlB2wTi8Q3HUSeE05tAtGzZEo8++ijmz58PjUaDAQMGQK1WY//+/QgKCpICC1Pi4uJQVFSEgoICtGvXDi1btoS/v79T0mtK8+bNMWvWLCxYsACtW7dGbGwsli1bhqqqKkyfPr1B08KAiIiIyE4N3QTiueeeQ1hYGLKzs/HTTz8hJCQEPXv2xOOPP25RddTo0aOxYcMGDBkyBOXl5VizZg2mTJni1DQrycnJgUajwcSJE/H777+jd+/e2Lp1K1q1atWg6VAJIYT5zaiiogLBwcFQq9UICgpydXKIiMhOV69eRVFREeLj49GsWTNXJ4fsYOq3tPT5zV5mRERE5PUYEBEREZFZM2fO1Ovmr/s3c+ZMVyfPbmxDRERERGY9++yzePTRR2XXNYamJAyIiIiIyKzw8HCEh4e7OhlOwyozIiIi8noMiIiIyKu546jJZB1H/IasMiMiIq/k5+cHHx8fnDt3DmFhYfDz85OmuCDPIIRAbW0tLl68CB8fH/j5+dm8LwZERETklXx8fBAfH4+SkhKcO3fO1ckhOwQGBiI2NhY+PrZXfDEgIiIir+Xn54fY2Fhcv37dLeb2Iuv5+vqiSZMmdpfuMSAiIiKvpp2R3XBWdvIubFRNREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GREREROT1GBARERGR12NARERERF6PARERERF5PQZERERE5PUYEBEREZHXc2lAtGLFCiQnJyMoKAhBQUFITU3F5s2bpfVXr17F7Nmz0aZNG7Ro0QKjR4/G+fPn9fZRXFyMzMxMBAYGIjw8HAsWLMD169f1ttm1axd69uwJf39/dOrUCWvXrm2IwyMiIiIP4dKAqF27dsjJycGhQ4dw8OBB3HLLLbjzzjtx4sQJAMD8+fPxxRdf4KOPPsLu3btx7tw5jBo1Svp8XV0dMjMzUVtbi9zcXLzzzjtYu3YtnnrqKWmboqIiZGZmYsiQISgoKMC8efMwY8YMbN26tcGPl4iIiNyTSgghXJ0IXa1bt8ZLL72Eu+++G2FhYVi3bh3uvvtuAMDJkyfRtWtX5OXl4eabb8bmzZtx22234dy5c4iIiAAArFy5EllZWbh48SL8/PyQlZWFTZs24fjx49J3jB07FuXl5diyZYvF6aqoqEBwcDDUajWCgoIce9BERETkFJY+v92mDVFdXR0++OADVFZWIjU1FYcOHcK1a9cwbNgwaZuEhATExsYiLy8PAJCXl4ekpCQpGAKA9PR0VFRUSKVMeXl5evvQbqPdh5KamhpUVFTo/REREVHj5PKA6NixY2jRogX8/f0xc+ZMfPrpp0hMTERpaSn8/PwQEhKit31ERARKS0sBAKWlpXrBkHa9dp2pbSoqKlBdXa2YruzsbAQHB0t/MTEx9h4qERERuSmXB0RdunRBQUEBDhw4gFmzZmHy5Mn47rvvXJ0sLFq0CGq1Wvo7e/asq5NERERETtLE1Qnw8/NDp06dAAC9evVCfn4+li9fjjFjxqC2thbl5eV6pUTnz59HZGQkACAyMhLffPON3v60vdB0tzHsmXb+/HkEBQUhICBAMV3+/v7w9/e3+/iIiIjI/bm8hMiQRqNBTU0NevXqhaZNm2L79u3SulOnTqG4uBipqakAgNTUVBw7dgwXLlyQttm2bRuCgoKQmJgobaO7D+022n0QERERubSEaNGiRcjIyEBsbCx+//13rFu3Drt27cLWrVsRHByM6dOn4+GHH0br1q0RFBSEuXPnIjU1FTfffDMAYPjw4UhMTMTEiROxbNkylJaW4sknn8Ts2bOl0p2ZM2fin//8Jx577DFMmzYNO3bswIcffohNmza58tCJiIjIjbg0ILpw4QImTZqEkpISBAcHIzk5GVu3bsVf/vIXAMDLL78MHx8fjB49GjU1NUhPT8cbb7whfd7X1xcbN27ErFmzkJqaiubNm2Py5Ml49tlnpW3i4+OxadMmzJ8/H8uXL0e7du2wevVqpKenN/jxEhERkXtyu3GI3BXHISIiIvI8HjcOEREREZGrMCAiIiIir8eAiIiIiLweAyI3UaKuRm5hGUrUyqNnExERkXO4fGBGAtbnF2PRhmPQCMBHBWSPSsKYPrGuThYREZHXYAmRi5Woq6VgCAA0Anh8w3GWFBERETUgBkQuVlRWKQVDWnVC4ExZlWsSRERE5IUYELlYfGhz+Kj0l/mqVIgLDXRNgoiIiLwQAyIXiwoOQPaoJPiq6qMiX5UKS0d1Q1Sw8sSzRERE5FhsVO0GxvSJRVrnMJwpq0JcaCCDISIiogbGgMhNRAUHMBAiIiJyEVaZERERkddjQERERERejwEREREReT0GREREROT1GBARERGR12NARERERF6PARERERF5PQZERERE5PUYEBEREZHXY0BEREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GRG6iRF2N3MIylKirXZ0UIiIir9PE1QkgYH1+MRZtOAaNAHxUQPaoJIzpE+vqZBEREXkNlhC5WIm6WgqGAEAjgMc3HGdJERERUQNiQORiRWWVUjCkVScEzpRVuSZBREREXogBkYvFhzaHj0p/ma9KhbjQQNckiIiIyAsxIHKxqOAAZI9Kgq+qPiryVamwdFQ3RAUHuDhlRERE3oONqt3AmD6xSOschjNlVYgLDWQwRERE1MAYELmJqOAABkJEREQuwiozIiIi8noMiIiIiMjrMSAiIiIir8eAiIiIiLweAyIiIiLyei4NiLKzs9GnTx+0bNkS4eHhGDlyJE6dOqW3zeDBg6FSqfT+Zs6cqbdNcXExMjMzERgYiPDwcCxYsADXr1/X22bXrl3o2bMn/P390alTJ6xdu9bZh0dEREQewqUB0e7duzF79mx8/fXX2LZtG65du4bhw4ejsrJSb7v77rsPJSUl0t+yZcukdXV1dcjMzERtbS1yc3PxzjvvYO3atXjqqaekbYqKipCZmYkhQ4agoKAA8+bNw4wZM7B169YGO1YiIiJyXyohhDC/WcO4ePEiwsPDsXv3bqSlpQGoLyHq3r07XnnlFdnPbN68GbfddhvOnTuHiIgIAMDKlSuRlZWFixcvws/PD1lZWdi0aROOHz8ufW7s2LEoLy/Hli1bLEpbRUUFgoODoVarERQUZN+BEhERUYOw9PntVm2I1Go1AKB169Z6y9977z2EhoaiW7duWLRoEaqq/pz4NC8vD0lJSVIwBADp6emoqKjAiRMnpG2GDRumt8/09HTk5eUppqWmpgYVFRV6f0RERNQ4uc1I1RqNBvPmzUP//v3RrVs3afn48ePRvn17REdH4+jRo8jKysKpU6ewYcMGAEBpaaleMARA+ndpaanJbSoqKlBdXY2AAOMRorOzs7FkyRKHHiMRERG5J7cJiGbPno3jx49j3759esvvv/9+6b+TkpIQFRWFoUOHorCwEB07dnRaehYtWoSHH35Y+ndFRQViYmKc9n1ERETkOm5RZTZnzhxs3LgRO3fuRLt27Uxu27dvXwDA6dOnAQCRkZE4f/683jbaf0dGRprcJigoSLZ0CAD8/f0RFBSk90dERESNk0sDIiEE5syZg08//RQ7duxAfHy82c8UFBQAAKKiogAAqampOHbsGC5cuCBts23bNgQFBSExMVHaZvv27Xr72bZtG1JTUx10JEREROTJXBoQzZ49G++++y7WrVuHli1borS0FKWlpaiurgYAFBYW4rnnnsOhQ4dw5swZfP7555g0aRLS0tKQnJwMABg+fDgSExMxceJEHDlyBFu3bsWTTz6J2bNnw9/fHwAwc+ZM/PTTT3jsscdw8uRJvPHGG/jwww8xf/58lx07ERERuQ+XdrtXqVSyy9esWYMpU6bg7NmzuPfee3H8+HFUVlYiJiYGd911F5588km9Kqyff/4Zs2bNwq5du9C8eXNMnjwZOTk5aNLkzyZSu3btwvz58/Hdd9+hXbt2WLx4MaZMmWJxWtntnoiIyPNY+vx2q3GI3BkDIiIiIs/jkeMQEREREbkCAyIiIiLyegyIiIiIyOsxICIiIiKvx4CIiIiIvB4DIhcrUVcjt7AMJepqVyeFiIjIa7nNXGbeaH1+MRZtOAaNAHxUQPaoJIzpE+vqZBEREXkdlhC5SIm6WgqGAEAjgMc3HGdJERERkQswIHKRorJKKRjSqhMCZ8qqXJMgIiIiL8aAyEXiQ5vDx2DmEl+VCnGhga5JEBERkRdjQOQiUcEByB6VBN8/5nPzVamwdFQ3RAUHuDhlRERE3oeNql1oTJ9YpHUOw5myKsSFBjIYIiIichEGRC4WFRzAQIiIiMjFWGVGREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GREREROT1GBARERGR12NA5CFK1NXILSxDibra1UkhIiJqdDhStQdYn1+MRRuOQSMAHxWQPSoJY/rEujpZREREjQZLiNxcibpaCoYAQCOAxzccZ0kRERGRAzEgcnNFZZVSMKRVJwTOlFW5JkFERESNEAMiNxcf2hw+Kv1lvioV4kIDXZMgIiKiRogBkZuLCg5A9qgk+KrqoyJflQpLR3VDVHCAi1NGRETUeLBRtQcY0ycWaZ3DcKasCnGhgQyGiIiIHIwBkYeICg5gIEREROQkrDIjIiIir8eAiIiIiLweAyIiIiLyegyIiIiIyOsxICIiIiKvx4CIiIiIvB4DIiIiIvJ6DIiIiIjI6zEgIiIiIq/HgIiIiIi8nksDouzsbPTp0wctW7ZEeHg4Ro4ciVOnTultc/XqVcyePRtt2rRBixYtMHr0aJw/f15vm+LiYmRmZiIwMBDh4eFYsGABrl+/rrfNrl270LNnT/j7+6NTp05Yu3atsw+PiIiIPIRLA6Ldu3dj9uzZ+Prrr7Ft2zZcu3YNw4cPR2VlpbTN/Pnz8cUXX+Cjjz7C7t27ce7cOYwaNUpaX1dXh8zMTNTW1iI3NxfvvPMO1q5di6eeekrapqioCJmZmRgyZAgKCgowb948zJgxA1u3bm3Q4yUiIiL3pBJCCFcnQuvixYsIDw/H7t27kZaWBrVajbCwMKxbtw533303AODkyZPo2rUr8vLycPPNN2Pz5s247bbbcO7cOURERAAAVq5ciaysLFy8eBF+fn7IysrCpk2bcPz4cem7xo4di/LycmzZssWitFVUVCA4OBhqtRpBQUGOP3giIiJyOEuf327VhkitVgMAWrduDQA4dOgQrl27hmHDhknbJCQkIDY2Fnl5eQCAvLw8JCUlScEQAKSnp6OiogInTpyQttHdh3Yb7T6IiIjIuzVxdQK0NBoN5s2bh/79+6Nbt24AgNLSUvj5+SEkJERv24iICJSWlkrb6AZD2vXadaa2qaioQHV1NQICAozSU1NTg5qaGunfFRUV9h0gERERuS23KSGaPXs2jh8/jg8++MDVSQFQ3+A7ODhY+ouJiXF1koiIiMhJ3CIgmjNnDjZu3IidO3eiXbt20vLIyEjU1taivLxcb/vz588jMjJS2saw15n23+a2CQoKki0dAoBFixZBrVZLf2fPnrXrGImIiMh9uTQgEkJgzpw5+PTTT7Fjxw7Ex8frre/VqxeaNm2K7du3S8tOnTqF4uJipKamAgBSU1Nx7NgxXLhwQdpm27ZtCAoKQmJiorSN7j6022j3Icff3x9BQUF6f0RERNQ4WdzLzJo2NJYGDw888ADWrVuH//73v+jSpYu0PDg4WCq5mTVrFr788kusXbsWQUFBmDt3LgAgNzcXQH23++7duyM6OhrLli1DaWkpJk6ciBkzZmDp0qUA6rvdd+vWDbNnz8a0adOwY8cOPPjgg9i0aRPS09MtSit7mREREXkeS5/fFgdEPj4+UKlUJrcRQkClUqGurs6iRCrtb82aNZgyZQqA+oEZH3nkEbz//vuoqalBeno63njjDak6DAB+/vlnzJo1C7t27ULz5s0xefJk5OTkoEmTP9uM79q1C/Pnz8d3332Hdu3aYfHixdJ3WIIBERERkedxeEC0e/dui7980KBBFm/rKRgQEREReR5Ln98Wd7tvjEEOEREREWDHOETl5eV466238P333wMAbrzxRkybNg3BwcEOSxwRERFRQ7Cpl9nBgwfRsWNHvPzyy7h06RIuXbqEf/zjH+jYsSO+/fZbR6eRiIiIyKlsmsts4MCB6NSpE1atWiU1XL5+/TpmzJiBn376CXv27HF4Ql2NbYiIiIg8j8MbVesKCAjA4cOHkZCQoLf8u+++Q+/evVFVVWV9it0cAyIiIiLP49TJXYOCglBcXGy0/OzZs2jZsqUtuyQDJepq5BaWoURd7eqkEBERNXo2NaoeM2YMpk+fjr/97W/o168fAGD//v1YsGABxo0b59AEeqP1+cVYtOEYNALwUQHZo5Iwpk+sq5NFRETUaNkUEP3tb3+DSqXCpEmTcP36dQBA06ZNMWvWLOTk5Dg0gd6mRF0tBUMAoBHA4xuOI61zGKKC5eddIyIiIvvYFBD5+flh+fLlyM7ORmFhIQCgY8eOCAwMdGjivFFRWaUUDGnVCYEzZVUMiIiIiJzE5nGIACAwMBBJSUmOSgsBiA9tDh8V9IIiX5UKcaEMNomIiJzFpoDo6tWreO2117Bz505cuHABGo1Gbz3HIrJdVHAAskcl4fENx1EnBHxVKiwd1Y2lQ0RERE5kU0A0ffp0fPXVV7j77rtx0003mZ30lawzpk8s0jqH4UxZFeJCAxkMEREROZlNAdHGjRvx5Zdfon///o5OD/0hKjiAgRAREVEDsWkcorZt23K8ISIiImo0bAqI/v73vyMrKws///yzo9NDFuCgjURERI5lU5VZ7969cfXqVXTo0AGBgYFo2rSp3vpLly45JHFkjIM2EhEROZ5NAdG4cePw66+/YunSpYiIiGCj6gbCQRuJiIicw6aAKDc3F3l5eUhJSXF0esgEDtpIRETkHDa1IUpISEB1NduvNDTtoI26OGgjERGR/WwKiHJycvDII49g165d+O2331BRUaH3R86hHbTR948qSh8VMG1AnGsTRURE1AiohBDC/Gb6fHzq4yjDtkNCCKhUKtTV1TkmdW6koqICwcHBUKvVCAoKcmlaStTVWLO/CKv2FEGAjauJiIiUWPr8tqkN0c6dO21OGFmuRF2NorJKxIc2N2ojtHpvfTAEsHE1ERGRvWwKiAYNGmTRdg888ACeffZZhIaG2vI1Xs1U93o2riYiInIsm9oQWerdd99lmyIbKHWv1w7EyMbVREREjuXUgMiG5kkE0yVAgHHjal+VCktHdWPpEBERkY1sqjIj59KWAOkGRYYlQGP6xCKtcxjOlFUhLjSQwRAREZEdnFpCRLaxtAQoKjgAqR3bMBgiIiKyE0uI3BRLgIiIiBoOAyI3FhUcYBQImeqKT0RERLZxakB07733unwQw8aEM90TERE5h00jVQNAeXk5vvnmG1y4cAEajUZv3aRJkxySOHfi6pGqS9TV6J+zw6ih9b6FQ1hSREREpMCpI1V/8cUXmDBhAq5cuYKgoCC9KTxUKlWjDIhcjYMxEhEROY9NvcweeeQRTJs2DVeuXEF5eTkuX74s/V26dMnRaSRwMEYiIiJnsikg+vXXX/Hggw8iMJAP44ai1BUfAHILy6RRrImIiMh6NlWZpaen4+DBg+jQoYOj00MmGHbF3/PDRaldERtZExER2c7igOjzzz+X/jszMxMLFizAd999h6SkJDRt2lRv2zvuuMNxKSQ92q74SvOdccZ7IiIi61kcEI0cOdJo2bPPPmu0TKVSoa6uzq5EkXlsZE1EROQ4FgdEhl3rybUsme+MiIiILGNTo+p///vfqKmpMVpeW1uLf//733YniszjjPdERESOY9PAjL6+vigpKUF4eLje8t9++w3h4eGNssrM1QMzKilRV3O+MyIiIgWWPr9tKiESQugNxqj1yy+/IDg42OL97NmzB7fffjuio6OhUqnw2Wef6a2fMmUKVCqV3t+IESP0trl06RImTJiAoKAghISEYPr06bhy5YreNkePHsXAgQPRrFkzxMTEYNmyZZYfrJuzZcb7EnU1u+oTERHpsKrbfY8ePaTAZOjQoWjS5M+P19XVoaioyChgMaWyshIpKSmYNm0aRo0aJbvNiBEjsGbNGunf/v7+eusnTJiAkpISbNu2DdeuXcPUqVNx//33Y926dQDqI8Phw4dj2LBhWLlyJY4dO4Zp06YhJCQE999/vzWH3yhwPjQiIiJjVgVE2p5mBQUFSE9PR4sWLaR1fn5+iIuLw+jRoy3eX0ZGBjIyMkxu4+/vj8jISNl133//PbZs2YL8/Hz07t0bAPDaa6/h1ltvxd/+9jdER0fjvffeQ21tLd5++234+fnhxhtvREFBAf7xj394XUDErvpERETyrAqInn76aQBAXFwcxowZg2bNmjklUbp27dqF8PBwtGrVCrfccguef/55tGnTBgCQl5eHkJAQKRgCgGHDhsHHxwcHDhzAXXfdhby8PKSlpcHPz0/aJj09HS+++CIuX76MVq1ayX5vTU2NXsPxiooKJx1hw2FXfSIiInk2jVQ9efJkAPW9yuRmu4+NdUwVzIgRIzBq1CjEx8ejsLAQjz/+ODIyMpCXlwdfX1+UlpYaNexu0qQJWrdujdLSUgBAaWkp4uPj9baJiIiQ1ikFRNnZ2ViyZIlDjsMaJepqFJVVIj60ucODFHbVJyIikmdTQPTjjz9i2rRpyM3N1VuubWztqF5mY8eOlf47KSkJycnJ6NixI3bt2oWhQ4c65DuULFq0CA8//LD074qKCsTExDj1O53dvkfbVf/xDcdRJwS76hMREf3BpoBoypQpaNKkCTZu3IioqCjZHmfO0KFDB4SGhuL06dMYOnQoIiMjceHCBb1trl+/jkuXLkntjiIjI3H+/Hm9bbT/VmqbBNS3XTJswO1MDdW+x3A+NAZDRERENgZEBQUFOHToEBISEhydHpN++eUX/Pbbb4iKigIApKamory8HIcOHUKvXr0AADt27IBGo0Hfvn2lbZ544glcu3ZNmnNt27Zt6NKli2J1mSs0ZPse7XxoREREVM+mcYgSExNRVlZm95dfuXIFBQUFKCgoAAAUFRWhoKAAxcXFuHLlChYsWICvv/4aZ86cwfbt23HnnXeiU6dOSE9PBwB07doVI0aMwH333YdvvvkG+/fvx5w5czB27FhER0cDAMaPHw8/Pz9Mnz4dJ06cwPr167F8+XK96jB3oG3fo8uR7Xs49hAREZEym0aq3rFjB5588kksXbpUdrZ7S0dy3rVrF4YMGWK0fPLkyVixYgVGjhyJw4cPo7y8HNHR0Rg+fDiee+45qVE0UD8w45w5c/DFF1/Ax8cHo0ePxquvvqo3JMDRo0cxe/Zs5OfnIzQ0FHPnzkVWVpZVx9wQI1Wvzy82at/jiDZEHHuIiIi8laXPb5sCIh+fPwuWdNsPObpRtTtpqKk7HD0VR4m6Gv1zdhj1LNu3cAirzYiIqNGz9PltUxuinTt32pwwMs3R7Xs49hAREZF5NrUhGjRoEHx8fLBq1SosXLgQnTp1wqBBg1BcXAxfX19Hp5Hs4Oy2SURERI2BTQHRJ598gvT0dAQEBODw4cPSiM5qtRpLly51aALJPtqxh3z/qNrk2ENERETGbGpD1KNHD8yfPx+TJk1Cy5YtceTIEXTo0AGHDx9GRkaGNEp0Y9JQbYicxdFtk4iIiDyBU9sQnTp1CmlpaUbLg4ODUV5ebssuyck49hAREZEym6rMIiMjcfr0aaPl+/btQ4cOHexOFBEREVFDsikguu+++/DQQw/hwIEDUKlUOHfuHN577z08+uijmDVrlqPTSERERORUNlWZLVy4EBqNBkOHDkVVVRXS0tLg7++PRx99FHPnznV0GomIiIicyqZG1Vq1tbU4ffo0rly5gsTERL3RoRsbT29UTURE5I2c2qhay8/PD4mJifbsgixQoq5GUVkl4kObs2E0ERGRE9gVEJHzcR4yIiIi57OpUTU1jBJ1tRQMAYBGAI9vOO62M9aXqKuRW1jmtukjIiL34W7PDJYQuTFr5yFzRdVaiboaB89cQt5Pl/DBN8UsySIiIrPcsfaDAZEb085DZjhTvdw8ZK64uNbnF2PhJ8dg2CpfW5KV1jmMbZ6IiEiPUu2Hq58ZrDJzY5bOQ+aKqrUSdbVsMKSlLckiIiLSZar2w5VYQuRG5Kq8xvSJRVrnMJPzkFlbteYIRWWVisEQoFySRURE3s2a2o+GxIDITZiq8jI3D5krLq740OZQAbJBkY8KsiVZRERE2tqPxzccR50QirUfDc2ugRm9iTMHZixRV6N/zg6jgGbfwiGKF4hhadL6/GKji8sVbYjuT4vH1P7xLr+wiYjIvZWoq03WfjhKgwzMSI5hbZWXUmmSuao1R9N+56Ezl6FSAT3bt2IgREREFjFX+9HQGBC5AWuqvMy1zm/oiysqOAC3pbjPBU1ERGQL9jJzA5b2JgPct3U+ERGRJ2MJkZuwtMrLXVvnExEReTKWELmRqOAApHZsY7Lay5rSJCIiIrIMS4g8kCsaUFvLFdOIEBER2YoBkYdyt9b5utxxjhoiIiJTWGXWiLliJmFXTCNCRERkL5YQNVKuKqVxxTQiRERE9mIJUSPkylIabS84XewFR0RE7o4BUSPkyrGK2AuOiIg8EavMGiFXjlVUoq5GTOtAbHggFVW1GrftBUdERKSLJUSNkKtKadbnF6N/zg6MX3UAd72Ri+JLlQyGiIjII7CEqBFyRSmNuTnWiIiIlLjD2HUMiBoZud5lqR3bOP172buMiIhs4S5j17HKrBHxhN5lJepqbDx6Dl8c+ZVjExEReTl3GruOJUSNiCtLabTtlh7fcBx1Qsi2W1qfX4yFnxyDNokqADmjOYo1EZG3cqfaBQZEjYgre5cBpudY074F6F73AsCiT46xnRERkZdy9XNLF6vMGhF3GAMoKjgAqR3bGH2n3FsAAGiABhkfiYiI3I87PLe0WELUyJgqpXElubcAoD4i5yjWRETey12eWywhaoSUSmlcSfsWoNJpeK0CkD06ya3SSUREDc8dnlsuDYj27NmD22+/HdHR0VCpVPjss8/01gsh8NRTTyEqKgoBAQEYNmwYfvzxR71tLl26hAkTJiAoKAghISGYPn06rly5orfN0aNHMXDgQDRr1gwxMTFYtmyZsw+NZIzpE4vchbfg9fE98M9xPZC76BY2qCYiIrfg0oCosrISKSkpeP3112XXL1u2DK+++ipWrlyJAwcOoHnz5khPT8fVq1elbSZMmIATJ05g27Zt2LhxI/bs2YP7779fWl9RUYHhw4ejffv2OHToEF566SU888wz+Ne//uX043OVEnU1cgvL3LJbe1RwADKTo3FbSjRLhqjRcud70N3x3JGrqIQQMk1dG55KpcKnn36KkSNHAqgvHYqOjsYjjzyCRx99FACgVqsRERGBtWvXYuzYsfj++++RmJiI/Px89O7dGwCwZcsW3Hrrrfjll18QHR2NFStW4IknnkBpaSn8/PwAAAsXLsRnn32GkydPWpy+iooKBAcHQ61WIygoyLEH70DuMsAVkTeQG12X96DteO7IGSx9frttG6KioiKUlpZi2LBh0rLg4GD07dsXeXl5AIC8vDyEhIRIwRAADBs2DD4+Pjhw4IC0TVpamhQMAUB6ejpOnTqFy5cvK35/TU0NKioq9P7cnTsNcEXU2OnO3dc/ZwfW5xfzHrSSbmkQz13j42mlfW7by6y0tBQAEBERobc8IiJCWldaWorw8HC99U2aNEHr1q31tomPjzfah3Zdq1atZL8/OzsbS5Yssf9AGpA7DXBF5MnMzatUoq7WG2RU+/B+ZWwK70ELGZYGzRgQz3PXiHhiaZ/blhC52qJFi6BWq6W/s2fPujpJZlk6fQYRKZMr+TH09r4iGLY1qBMCPioV70ELyJUGrd5bxHPXSHhqaZ/bBkSRkZEAgPPnz+stP3/+vLQuMjISFy5c0Ft//fp1XLp0SW8buX3ofoccf39/BAUF6f25O3ca4MoenlbMSu7FnuvHkoy8RF2Nt/YVGX3WB0DP9q0a/B70xPtFrjRbA2DGgA4en3+R6doKd+a2VWbx8fGIjIzE9u3b0b17dwD1DaMOHDiAWbNmAQBSU1NRXl6OQ4cOoVevXgCAHTt2QKPRoG/fvtI2TzzxBK5du4amTZsCALZt24YuXbooVpd5Mt0BrgL9fFBZW4cSdbXHZCqeWMxK7sPe68eSamelUddnpMUjKjjA7kHmzFXX6VI6Xmv2Yc/327pfpekapg6Iw9QBcS4foI/s407TcVjDpQHRlStXcPr0aenfRUVFKCgoQOvWrREbG4t58+bh+eefxw033ID4+HgsXrwY0dHRUk+0rl27YsSIEbjvvvuwcuVKXLt2DXPmzMHYsWMRHR0NABg/fjyWLFmC6dOnIysrC8ePH8fy5cvx8ssvu+KQncYwE9vzw0WPCyyU3s451xlZwhHXjyUZudw2Pipgav8/2ypGBQfYdM1aE9ApHW959TW8uPmkTfe+s15I5PZrajJo3u+ezZLJvt2RS7vd79q1C0OGDDFaPnnyZKxduxZCCDz99NP417/+hfLycgwYMABvvPEGOnfuLG176dIlzJkzB1988QV8fHwwevRovPrqq2jRooW0zdGjRzF79mzk5+cjNDQUc+fORVZWllVpdedu94aZTVZGgpQhavmqVNi3cEiDXJC2vmEu3fQd/rXXuCri/ftuRmrHNo5MIjVCuYVlGL/qgNFya6+f9fnFRhm5YVBgyTbWKlFXo3/ODovvW6XjVakAYcO9b+33W8rUfgGwNKgRK1FXu8Xva+nz26UlRIMHD4apeEylUuHZZ5/Fs88+q7hN69atsW7dOpPfk5ycjL1799qcTncm95ZoGAwBDddbw9Y3zBJ1NVbJBEM+Ks51RpZxVDG9JVVezph7ydpeorIlVTCeL9DSe99ZvVRN7dfVUzWQc9laUuoqbtuomiwj2zhR1M8TpssHQKCfc39ue3oWFJVVGvXaAeobWXrSDUWu48hOBZbMq2S4jb2Nm63tJSp3vFkZCTb31HJWL1X2fiVP4baNqskySm/Fj43ogmVbTqHujxI4DYC73sh1alsie94wld52pw6Ic1ojT2p8XDVrtiUlo+auY1vaXcgdb0hgU5vabkQFB+CuHm3xybe/SstG9rB/ih1PbU9C3sdtpu5wd+7ehkiuPcORs5cx8o1cm9oT2MLeNghyxwHA4xqHk3ex5Lq3trG0vQGdLftwVhsie9JE5Age0YaIHEPprbiytg6G4a4z2xLZ+yZoeBwA9DJo9jojd2SuZFSpKjkhsiUqa+uMSowc0e7Cln3YUsJrTemto9uTsOSYHI0BUSMhl9m4YiwIe6ssdI8jt7CMQ/mT2zN3nykFGtrSW3cp+bQ2v3DlmGEcr4ycgY2qGzFXjVxtSYNUSxqgsjEmNTRbGkabu8/krmPgz67x7jKtgTX5hVyp16JPjuHIWeUJsx3FU6eFIPfHEqJGzpoSm4Yqgrb07c5UFRyLy8nR7Cl1MHWfGV7HPqjv5KDLXUo+Lc0vlKbeGPlGLnKcXFrDSazJWRgQeQFL6u4bqgja2tGE5TJoFpc3fg0d8DpilGtT95nhlDp3vZFrVDUV6OeD3MIylwf5luQXctVrQH2pl7Pb+XnqtBDk/lhlRg1aBG3LpH+6VXAsLm/8LJlt3tEO/XzZ6ZNRaq/jlBjjCWBH9ojGXW/kNugx20Nb6iX3AHH2JJ6NZRJrcj8sIaIGLYK29+2OxeWNW0POZ6cthTr2ixo5m08arXdmqcOYPrFIiGyJ/DOXER8aiPv+fcjhx+zsUjbtMRgO7eGjMj8IrL1pa6jxplg1710YEFGDFkHb2zWfxeWNW0MFvLrVrnJ8VHBqqYPu9xvOPQbYf8wNVa2cEtMKOTr3M1B/b5oaBNZRaXP2tBCsmncudww2GRBRg48ka+3bneGNw1FvG6+GCHgNS6HkjL0pxmkPP8PvVxoa9+iv5RZPSqt7jwBwWCmbdr/N/Xxlx0wCdEqKXs+Vpt9R+s6GLAG0h6ek05PoXqN7frjolsEmAyIC0PBTHlj6dqf0luaK6RnI+ewJeC1945QrhTL0wYGzmHvLDU6pptt49JzZ7weAZZtP4Y4U81NnGN4j0wfEO6SUTa4UTenhVVlbZzQXodx3ekqVt6ek01PolYj+scxc8OwKDIhI4m4zE1s7wi81DrYEvNZUbyj1kNKlARq0ms7Wrvhy98hb+4qgAvQCFN1StiNnL+ObM5dwU1xrpMS0smi/WkoPL0tL9jylyttT0ukJjEpEZbZxl2CTvczIbSmO8Pu6db1x7J2FnBqeJYN7alnb89Cwl5LcoIkNWU3nq1Jh1uCOMEyGNg2616/htSw7HpAA7kuLl+2F9ciHBbjz9Vy8sOkk7nw9F498WCCb3jX7ihQDRrleZJb2/PKUHmKekk5PYEmJrLsEmywhIrelONbJH/9vSVErG0Y2frZUbxiWQu354aLN7dIsqapTeigszuyK60Lgxc0njUp0lo7qptfWQreqQXstp3UOky3JmNo/HlP7x+uVsh05e1lvJnsA+OTbXzEptb1eSVGJuhqr9hYpHq/Sw8vSkj1PqfL2lHS6O7l8XIX6zgQa4V7BJgMicltGI/zKBEemHnxsGOkdlKo3zA10qFtFbOvDz7C32MKMBPw1raPFaewd18pokEYfFbDhgVSEBzXTm9xY99LXXsv7Fg4x2eZK9zi+OXNJ9hgOnrmsFxAVlVXKVmto02zq4WVptbs7VM9bEsi6Qzo9le75lbtG3THYZEBEbs2SEX611QqGmRsbRnoHuYbY2oEOrSkZtPbhJ9dbLPvLk4AA/jpIPyhSaixeWVsnW+VVVasxW9WgvZYtDeZuimstu7x3nH47IqU3+n+O74Ge7VtJ+3fHbtOWYsmxefb8vnLnd9/CIUbXqLtdNwyISJG7ZHi6Dyq5h4pSF042jPQepgJnU13A7bm+lQKWFzefxB3djXuHyQUuJepqk9eoqcbfuttZEsylxLTC6J5t9arNBt4QivCgZnrbKQVvPdu3QlFZJQAYVeUtzEgwCgLdFUuOzbMnYFQ6v/sWDrF4GAlXYUBEstz1DUr7UDl05jKgAmJaBZh8+GWNSMCLm09CA/eqqybH0wYFuYVlZksGHXF9x4c2lx1U0VQPNcPAxdwwA7rrVH90HROw/Vr++z3dMSm1PVbt/Qkbj5Zi749l6J+zw+j45dpYaavvfP44Zu1hCwDZm08CKshWF7oblhybZm/A6MnnlwERGXH3Nyi9t1MTo/zu+eEiXtxSHwypVMBjGV3cIqgj5zJXMnjk7GUs3HBMum5svb6jggOwMCOhvppMh7WlkKaqvAzXAdD7b1smgw0PaoYvj5VK/1YazkL7J5cfyHlx80mLxk1yNVPXh7uUiruSvQGNJ5fMMyAiI+4c4Vsyyq+2Qa3hdpYOdEeebc8PF/WuC5XONBzr84ux8JNjZgcRtPTB+Ne0joCA3aWQpqq85EqVLC3hsqZtnXakacP9WdJtGqh/ALpDHmGOUqmcu46e3NDsDWg8eTYBBkRkxJ0jfKXMWTuwnanGqu4S1JHzaANm3Z9eJYC0zmGy67R0r29rq9P+Oqgj7ugeLbVfqqytQ4m62q7rzFRAZmkJrtJxWDuchSUDWQLuk0dYQq7kTbdHnyOmO/HUUiZHBDSeOmQBAyIvYumN6s4RvlKwtuGBVFTVasw2VlXqiu3pmRjVkx2oEPUlFwJCPpjWKUGytbo4KjjAYSUM5gIyUyW42vXN/XxNHoc1w1lEBQdg+oB4k2MTOXsyXGfQLXlTane26WgJMpOjLB4gdM2+IqzaWyRb0uZJHBHQeOKQBQyIvIS1b73uGuErBWuGUxBY0xXbXRuQk/XMlW4arvMB8OkD/aTrx9bqYke1u7NkP0rHePSXckxY/bXU88tUtaClw1loTTMTEC2540apFE7uxcJciZerX0aUSsGe3/Q9ln75vdk8QW5aFndre2ktTwxo7MWAyAuYymQBKGZG7npD2DIirlJX7ITIlm7dgNxb2fqQtKbXllwwbWt1sVIgZU0Jg6n96AZkcsf4WEaX+nZM2jZzMvs2PA5zw1kYtltalJFQ35vMgArA4v+ewFP/PSF9t9ILhwrAfQPjMXVAvFVtoZzN8JzqMpcnmJqWhdX0noUBUSOnNLt2nRB4YdN32HS01COLdy0N1sx1xc4/c5ltjdyMvQ9Ja3ptyb0E2FJdbG8Jg6n9yAVkY/rEIiGyJfLPXEafuFaybeaAP0uKfP7oZan0QI9pHWhU7Wy4TVK7YMwZ0hFv7Co0mkpE9/+B+vQv2nAMoS38jCb2/NfeIqzeV4SsjAS9IK4hX0bkAm7ttbHpaAme3/S93vam8gRTjc49qV0VMSBq1EzNrg0AG48ad731xJIRS0oTlB40feJaGVejqMBMrIEY/naOqnqypteWIVuqi+0pYTC1H6WAzDBofOCPyWENb3WB+sBFI4CcL0+iovoa+ncKlc63YenNwowEo8HzDL8ra0QCktuF4LfKGsxZd1jxWDQCmP7OIcV1OV+eNNvbzxlMBdxRwQHITI7C0i+/t7iUUCkY9oHntasyxx2qN52JAVEjZaoYV4knloxYWppgqu1RVkaCXuYsRH3XbU8pLfNUcr9dTOtAtyixs6W62NYSBqX9fPvzZWiEQG+DKTdK1NV6QwdoBPDPnYWK+9MtwXl9ZyFe31koBTYvbtGvZjMcYFEuQF225RT2LRyCuNBAi3qfmUuXLme/jFgScEcFB+iVXlkyf5thI/UZAzpg6oA4j8pLzbEkr7UnYHKHYIsBUSOlVIw7sW8s/nOgWPYznla8a21pgtyb//r8YqM3VQHPLS1zZ7oZHgDZ327DA6luO+SDJWwpYZBjqsfa2/uKFCdftZRG/Dl2kiHdARZNtWlK7dhGcSRtSxmWajn7ZcSSNlrr84ulYEgF4LER5gd0dddOKI5iSV5rT1W3u7Ql82nwb6QGoS3G1eWrUuHu3u2MlgOWF++WqKuRW1iGEnW14xJrI3Pdj+VEBQcgtWMbveoZuQzc3H7IOuvzi9E/ZwfGrzqA/jk78Pa+ItnfrqpWg+xRSfBV1V+kum/ntl57pj7njOtZW2KgewyPjeiCorJKi75H7uGz6JNj2Hj0HI6cvYy39in39tJlLnOXC4a036e99pXyEW1wN6ZPLPYtHIL377sZuQtvwWez+8mnRQX0l5nHSq6K7/ENx52Wv5g7HqOBX1FfImZJenTzlsbGVKeBEnW1YsBk6/XuzGvAFJYQNVKmqogMi3fH9olFv05t0Kt9K5P7dJcoXsveASRtaQzpDsW6nkYuw3trX5FR6YD2nKd2bCNbkmfLtWfqc868nnVLDI7+Wi6VOFjyPUpjKc1Zd1i2nZAhHxXw6tge6BXXCp8XnJPtGQbUn++ZgzvgdYPqNsNJYy3pgaZb3XT/wHj8y6CLvkYA+wt/k01rQ1aRmjseV47S7855i7lOAzMGxNt83txpZgQGRI2YUjGuXmb9Szle3HIS674pNjsFgLt1T7d3AEnFxpAKg8zJNS5NahfslhmYO5F9wAvg/rR4vLX3jOxvp/uQtfXaMzfchLOv56jgAFyouKpXJWv4PXIPQVMjQ8sFQ6o//nRHar8tJRpA/SjaUEGvNxd0thvTJxZBAU1Ntpextjpo6oB4rJYpATTko4JRTzOgvmRLt8TG0UGCqeNx1Sj97vayachcp4HVe4tsPm/uNDMCA6JGTqlxqHaZdiA3wPRDwZ2ieF321N0bNYYEMCMtHlP7x8t2OzZ8gGrfvN0xA3MnShne1P7159rcb2frtWfqc3KjVpvap1xvOHMP6vX5xfWTyBosrxMC3/58GQVni/DWH4GD7jVk6uGjpT2f2gDG1D3w17SOuCPlz6lFDLvW665X+h2saWQu18hYLjh6dWwP3JYSjZCApnqNxAXq2xEBMAoS0jqH6bVDszVYMpUvOnqUfnPXiju+bMox1WlAA+D+AR3w1r4iq8+bM865rRgQeTFrHjTuFMUbsqVHkJalAZWp6jV3zcDchbkMz5Yxfiy59qwdtVppn4Zv73f1aItPD/9qtrfNog3HZCcfVgGYbdBd3fAa0l6Xh85cxoMfHDZKp9yYQabOo7l7xJ57SI4lI2H3iquvok/rHAaV6s+JmgXq20xB5/fRCGDhhmNSo23dMZAMfwN7S5Xk8gRr96nd/tgvaqknn9K14q4vm3JMdRqYOiAOUwfE2fRy6i6N0hkQebH40OZGbRJUqC+uNswA3CmKdzRLHgbmJrh01wzMXTiyJM/Sa8/c5yzZp9zb+yff/iqtVwqGTQXQSjVJciNS35YSgMra62anqnFHuveVte12NIDRidINLnVXaX+DhMiW2Hi0RLbUzZ60W1udpTT+m9K14s4vm3LsfcExtV9X558MiEiPAPD5kXOyjUDTOofhlbEp8FGp0LN9K5dfvA3JXDWGO2dg7qIhSvKs+Zwl+zQV2GjJBcNyDzlzY/YoXUPu8vZsD2vb7fgAECrIlrDJqRMCd76eq7fMESW31lZnmRv/Te5a8cSXTVuuSXduNK7FgMiLFZVVyr6tZn/5Z68UbQZQXnXNbNFvY2fYc2jZ5lMek4G5I2szSFsDKlOfM7dPcyWDgHIgM31AvFRa4atSYdqAOMUJUs3NFu8Ob8/2sqbdzsge0digUxJnK3tLbq2tzjIXQLsq6HVGMGLNNenujca1GBB5MbkqMzl1QiBns3JPGW+izQRSO7Yx2xCVjFnTtsIdKD2sPzt8TjEYNpwO4/4/GuoDkAIkXeNvisHcoTd49TUk1+bIXL6kbXdkKmD1AfBbZQ1K1NU2nV9rq7NMBdCWjHhtLo22BDauDkY8pdE44AEDMz7zzDNQqVR6fwkJCdL6q1evYvbs2WjTpg1atGiB0aNH4/z583r7KC4uRmZmJgIDAxEeHo4FCxbg+vXrDX0obicqOAD3DYw3u52Pyjho4sCFjXsgNmfQHZwxW2ZST3cY7FOXdtDGtM5h0uCD+xYOwd/v6a73b92Hi9zAfm/tPQPAeMBGHxWw6NYELB2VzGsIf95PShPV6hqaEIbPHuiH9++7GZ8+0E92sFnty96cdYfRP2cH1ufLj9BvLk1KA4Vauv2iWxNkrxVrGQ5uasnxuMOgh7YMoOsqHlFCdOONN+J///uf9O8mTf5M9vz587Fp0yZ89NFHCA4Oxpw5czBq1Cjs378fAFBXV4fMzExERkYiNzcXJSUlmDRpEpo2bYqlS5c2+LG4G7kxQ1QqQCX+HNfksYwusuOYOKLNjCfUK5P9bGlb4Urm3qqV3ubNVbE0hvZAzmZJNeX2kxex4+RF5Iyu/10Mh88Y2zcGH3xzVi8QWLThGAL9fNE7rrVTe0A54ze2tJTFMD91hx5sntRo3CMCoiZNmiAyMtJouVqtxltvvYV169bhlltuAQCsWbMGXbt2xddff42bb74ZX331Fb777jv873//Q0REBLp3747nnnsOWVlZeOaZZ+Dn59fQh+MycsGHUoM+wxs6JKCpwxv9uboolxqOrW0rXEFp6oyEyJYID2pmMoC3JPNvDO2BnEmbJ5mbnFrgz6BAd5gCbZ/8dQfO6m2vEcDc9wtsymus/c0c/RtbOgeb3LhNrg5GPKnRuEcERD/++COio6PRrFkzpKamIjs7G7GxsTh06BCuXbuGYcOGSdsmJCQgNjYWeXl5uPnmm5GXl4ekpCRERERI26Snp2PWrFk4ceIEevTo4YpDanCmgg+lNxpre+RYQ+mhY6r3hiNLklgy1bDsaVvR0JS6gd/5eq5UDaP0UPWkzN+dafObNfuLsGqP8mS2ulUva/YVYdXeImmcIqX2kQ3VhsWReYy5QFupBGnfwiFucT16Ssmo2wdEffv2xdq1a9GlSxeUlJRgyZIlGDhwII4fP47S0lL4+fkhJCRE7zMREREoLS0FAJSWluoFQ9r12nVKampqUFNTI/27oqLCQUfU8CwpbrXkjcaRbz1KD501+87g8cyuesttKUkylRmxZKrhyQUKj2V0QXLbkAbLIC19QFkydYaph6qnZP7uLio4AI/fmoip/eOxZt8ZrNr7k2yAs//0RUxYXaj3e2mDIqXf0dnVRo7OY8wF2qZKkNzlevSEklG3D4gyMjKk/05OTkbfvn3Rvn17fPjhhwgIcN7Jzc7OxpIlS5y2/4bkDvXIhpR6uK3e9xOmDoiT0mVLDwVTmZFsydQG5ZIpR/GGEilzx+jKjNmaB5RUZfPJMcUZ4QHT95AnZP6eIio4AI9ndkVyTDDmGIzwDQCv7yyUDZQEgHE3xRhVnQHOrTaytb2POVaP5aQCAv3q+03xerSM2/cyMxQSEoLOnTvj9OnTiIyMRG1tLcrLy/W2OX/+vNTmKDIy0qjXmfbfcu2StBYtWgS1Wi39nT1rfFN5Cu3NosvVbTaUerhpBPR6H1jbQ8FcrwqliUbX7JcfH8YRbOkd4mksPUZX9MxTCoJN9bQZ0ycWn87uB5VM7yUtV99D3qZX+1ayvclMdUiTC4bMjflkL0vyLFvzBKX7x7B3G1B/nd/1Rq7d+Y22t6W79QJ1Bo8LiK5cuYLCwkJERUWhV69eaNq0KbZv3y6tP3XqFIqLi5GamgoASE1NxbFjx3DhwgVpm23btiEoKAiJiYmK3+Pv74+goCC9P09lbdfRhjJ1QLzZQM3aYM5cZiS3PwBYvafIKTe80sP4iyO/NpoMxhVde63JpG0NglNiWiFH575RAVKA5C73kDcxzMdMxKomvTq2h0OqyJWuQXN5lrPulzF9YrHhgVS982Lvvr3hZU6X21eZPfroo7j99tvRvn17nDt3Dk8//TR8fX0xbtw4BAcHY/r06Xj44YfRunVrBAUFYe7cuUhNTcXNN98MABg+fDgSExMxceJELFu2DKWlpXjyyScxe/Zs+Pv7u/joGo6l1RUNWbVjSQNUaxupmmt8GBUcgOkD4o1GDNYAZqsQbTk3Sg9jW3u7uKOGrpI1VyVq+BsptQlavacIU/vHIypYefJOw/sGgMvbYngz3d8jt/AiXttRaNXndSeVtYepa9Ce9j7WXFNy12xlbZ3imHHWXq+eNKCio7h9QPTLL79g3Lhx+O233xAWFoYBAwbg66+/RlhYGADg5Zdfho+PD0aPHo2amhqkp6fjjTfekD7v6+uLjRs3YtasWUhNTUXz5s0xefJkPPvss646JJcxV4/s6IaAlgQQlgRq1rQ9sSSAmjYgHqv36vdcMVf9Yeu5MdVAt7FkMI4cZ8TcNWMqk97zw0XZ38hcEKz0OS3D+8aTf6vGQPt7BPr5mA2ItKV62ulT7C3VK1FX4+CZS2YDBWvb+1h7vyjlR468F20N3Dy5vaRKCEunz/NuFRUVCA4Ohlqt9ujqMyUl6mr0z9lhdCPtWzjEpova1T25StTVJgOo9fnFRkGTUvrsPTe63yXn/ftuRmrHNpYdmBPZk5FZcz5N7cPcNZNbWIbxqw4Yffb5kTfiqf+eUPyN3txTqDdHn3b9hgdScdcbuQ677qlhPfJhAT7RmfOsZ2wIjpxVmxxTzVZKs9hrWXMf23O/mMuPHHEvWvI9Ssfljj14LX1+u30JETUMR1Z7uENRq6nSsBJ1NWJaB2LDA6moqtWYzSjtPTdpncPwytgUqKuvYfFnJ/RKprQ9QVz9VmVvRmZvDzJLrxmlErcnPzthtE/dtmMvbj5ptP6xEV1kp4lwdQ9Mstzf7+mOSantcfDMZfSOa4WUmFayL0OOHjfNkLWlMPbcLw01Grq1zRXcId+3FwMiAuDYag9XdvM3F1jIPfjNvdXZc24Mv29Uz7bSxKBA/T5Hvp4LwPSAf46gdG4clZHZ07XX0mtG6hJvZhRj4M/fSGmU7OR29WMguXokX7JPSkx9IKTljC7mpkZat7UqztZ0NuRo6NYEV+44vIu1PK6XGTmHI3uiuaqbv7keEbb27rD13Mh932eHz+Ffk3rq9QQRMB7wz5E9tErU1Xhh03eK58YdJl889ovaaJnSNTOmTyyWj+0uux/tdaf7G5m6Ht21Bya5F+24abp8ALw+vofdk7Zaq6GvWUuHynDH4V2sxRIikriqqNURLCnlsKeRoFwVm7nSKKXvKyqrMjl2iiPfqtbnF2PhJ8f0vs/w3Lh68sUSdTVe3CJTpZXRRfEc9I5rLZtmuWpQc9eju4zkS65hSXX1nh8u6v1bBSB7dBIyk6MbIIXG3PGadUW+72gMiEiPK4paHcGSYMeWB79SFZslbW6Uvq9PXCuTs3k7KhjRBolyX6N7bsxlZM5u36RYpdU2RPEzhmn2ATB9QBzCg5pJwWpuYZmUZnPXozOqWcj9WXIfy91HKlV920BXcsdr1h0DNWswICKbWPKQlLthTX3OngevpcHO9AHxeGtfkUXdcJVKnRIiWyour6ytk9KvFGikxLTSW64CABUgdNIEQO+Bbgtz7R50z41uRhbo54PK2jqUqKvNdkl3BFtLqKQJQPedwep9P+Ffe4uwel8R7urRFp8e/lW2+72nZdDkPJa2nVMaS8yT2sY0JE++zxgQkdVs7ZFk6nP29nIyV8qhu38VgPvT4qVB+ZQolTrln7ksu3zkG7kQBulXemMyNeDfnh8uSt1d7QlClHpkKU1dEBUcoBcAaZsDGLZvcnSvEWuK2uWC5tX7ftJ7qOl2w/bEni7kPLrXj6VV6K6uUnYX2nPX3M8XlbV10v974nhDShgQkVVs7ZFk6nMAHNLLSSn4MPxuAeCtvWcwtb/xXGq6rK3yEjrpX7ThGBIiWyIlppXiG5Ph8qjgABw5exkLNxxT3Jc15KqVZpgIBOXOkyFn9RqxpKhdLmiOaR1otreZp/V0IecwvH6yMhIsCnQaQ9sYwP5xxpR6drrTeEP2YkBEVrG1YbKpzwkIh3XXlAs+bE2zpVVePoDRrOja7vQ5oy3PKOQaQNu6Ly17u80acuabsamidrlA8fENx7HhgVST7bEA73ybJ31yL2TLNp9C1ogELNtyymyg4+ltY+wpgTc3BlNjKoVlQERWsbX42NznnFkkbU+Rt1zVVm5hGdI6h2HfwiFSmxvD0Y6B+hIWSzMKUw2grd2XIUvr9OXOk6OnPjBH7i1WKVCsEwJVtRrZaTm0PPVtnhxL6aUouV2IdB9bMi2QJ15H9o4zZsmLUmMpheU4RGTE1Ezito6BYepzzh5Xw979a8fh0Lbt0Y7l8/a+IsSFBkolRoZjcACWj+djTabjLFHBAcgakSBlCr4qFXJGJ2H/wlvw/n03Y9/CIUjrHGbxLPPWkhtHylSgqA1qpw2Id5sxYsg9mRuLypJxdpzJVJ5rL3vHGZM7d4YaSyksS4hIjyVFq7YWH5v6nKOLpA1LGmzZv+4+AON2Tqv2FmH13iKpKishsiVGvp5r1aSxWqYmgbV2X7Zan1+MF7echAb1pUKPZXTRm8HbmfMUKb3FvjI2RbHdgm5QmzPauGrTVWPEkPtx5NASjh6Gwpr7ypbvtrdRuOG5M+SrUuGxEV1QVFYpbe+pOLmrhRr75K6A4yd4dRVHPLgN9zFjQDz+ZaJaxhETKxp+dmSPaGmaDx8AMwbGIzM5yik9O8z99s6+NpQmbX19fA/Mff+w3vf6APh0dj+jRubmJvQlkrtGrMkvHP1SYM19JffdaZ3DLAqQHDHhq/bcBfr5oKpWI/3/0V/L8eLmk04L6ByBk7uS1RrDXDSOmJdLbh+r9xYpluA4amJFuc8+mt5Fb5wdbVDmyBKaEnU1Nh49Z/K3t/TasDXDU3qL7dm+lWLDdkOe2saDGo7hNWJNfuGMyUutua8Mv3vhhmOAsGwOREeUwCuNKzdh9dcWnRNnljA7CgMikjSG8TYcEdTJDsQG4P4BHfTGvNFy5MSKcp+V+05td/xAP1/0jmtt8/eZ6k6re1yWXBv2ZHimqjTSOofhlbEp8PkjQGLQQ45iTX5hri2OI18EDPNcue/WrduxJDhzxguDPQGdO/ZMY6Nqkji7cXNDcMQEg0r7mDogDvsX3oL70+L1Gh478xyZamytEcDc9wtkJ7K1hKnutIbHZe7asHXiXN20aOeL0zbgHtMnFm/uKUS/nB2Y+34B5r5/2GhOKSJ7WJNfKG179Ndyk5NKG9JtQG1pnmtJw+aGnpAZsPz8ucME0pZgCRHp8fTxNhwxiJq5fTx+ayKm9o9vkHNkSWNrW9+2lIKtxZldcWtylNG+TF0b9pTMKc0X9+buQmRv/nPSV3d9qyTPZU1+IbftYyO6SO1nAPPXqFIpqrk812iQ1T+m+rGlA4ecEnU1Dp65BJVKhV5WlMJaev48pfaBAREZcYe2GPY0vnNEUOcuk4Ga6+GhpRR8GPaU0z2nSpmUXDCkmx7tfnT/bWuGZ2q+uBydYMjccRLZypr8wnBba14EzFUbmbumDb97zw8XHTJ6tuE4XyrU99q0tMG2LQGdu9Y+MCAip7M2uHFE4ztHBCzuEBgCxhOv/nK5GnPWHTb7dmg4fxtg3ADT2kxK6bexNcMzNV+cXPjno4LbvVWS57PmXjfc1tIXAUe0b9T9bke8+JWoq40GPRUAFn5yTPpvS/JgWwI6d8hbDTEgIqeyNrjxlMZ39rI2SNTNcFJiWuFKzXW9qUMeG9HFZCNG3QxP95xak0mZ+21syfCsnS8uKyOhUV0H5FkM71trXgQcWW2km47Ujm2kdknWlqgXlVXKvngo5ReN5SVTCQMiMsmeqiu5B6i5iUobQ9d/cxxRAjamTyzKq68h54/2Cy9uOYmQwKYY0ydWsRu9Lt1zamkmZclvY22Gp/RAkZsvLisjAX9N62jxvokcSem+tfRFwFHVRobpuKtHW3x6+Feb8pP40OZQQX4iZ12NLQ9WwoCIFNn74Jbtvi5MT1TqKY3vbGVPCZhhe6AXN580muy0vOpa/WjTZnI4W86pLb+NJQG10gPFE4rYyTtY0v7HkuvT3DVt7n6RS8cn3/4qrbe2NCcqOAA5o5OM2hABjmuw7UkYEJEsR1RdKfWQElDel6c0vrOVtY0wtZnjnh8uGo2cLbefnM0nZd/2VH/8jxDmhwqQy5S1yyydHRywLqBWeqC4exE7eQdHllwrXdPm7hdLSn7l0mUuyNIGaYfOXIZKBfRs38phDbY9DQMikuWoBoDZo5Jkx7qpEwKHzlxG6xbGN2pjLhmwtJTFMHPU7WKrNHK2Uvd8bTd6AGbPqVymDEBvWVZGApLbhpjcj1J1qb0DSRK5grNLrs29gJoaQNWQjwoou3IVJepqoxcp3SDLMFC6LcU78mBTOJeZhbxhLjNdjpy76sjZy0aTnqpQP4GoOw/jbg1r2lqZm1dI7tzLuX9gB7y1r+jPMVEy9MdEAf78zQDzI+nKfa8PAMg8CMxdB0pzkwGN4/cm7+OI+cAMafONS5W1mLPusNH69++7GXGhgYr5geGch6o/GgQJKFd97Vs4RC9QUgFYmJGAvw5yTfu8hpjfjHOZkV0cWXWVEtNKbzZyH9TfpI2lJ5lhqcr0AfGYNiDe6jYzWqZGp9bSjpw9dUCc3n5CApoa/Wam3hLNfa8GMGpxaUlJoakBJT399ybv5OhSE8NhMQwbN2tLoCwZQPXR9C749ufLesNxyGUhdULg258vG/VAzd58ElDB4k4Ljgpi3G1+MwZEpMiRGUBa5zAsH9ddenUxfBvy1F4MckXdq/YWYfXeIsWG44DptjFywYRKBahEfYAiN62GNi3a6S+qajVScb7u26WpYETue5VKiMxVFZgbUNJTf2/ybubatFkaKMgNi6HCn9Xehve4qQFUtd+pEcJsbzEfFXCytEI2wHpx80nckRKtt0+543BUEOOOQ6wwICJFznoLyMpIaNCeZM4sklV6ezPVcNwcpdI5U8Gp0vQXuYVlFrcFU/pe/HEs1pYUagNqwzdXwHt6rZD3sCZQkJ2sFcBrY3ugTQt/vXvcVGm94XcaljLpNk1Q/dEW8bUdhbJp0oj6Nobm2h0ZtQ38xPRQKkrccYgVBkQky5lvAcs2n7Kqt5I97D0Oc8GUqaohW29u3ZKeXy5XQyOE1BDZ0q642ukvLlXWKhbFyx2bUqmgrSWFUcEByEwO0BtI0pt6rZB3sLa0Q6mRdq84+XnE5O5Lue9UqQAfg5JkpZcSQ74qFQL9fEweh1K1+sg3cpFjZd7qjkOsMCAiI44sylR6C0huF4J9C4c4tReDvcdhSTBlqiedNTe3Njg59qtaahit2yjSVMNHpXOsbciu2z7BknZFcoGXvd3fvbXXCnkHa0s7bGmjaXgPypYyCeCf43ugdXP9UqZWzeVHpNbmCz4qYOmobqisrTN5HIpDqSjkraZeKN1xiBUGRGRE6eY+dOayXtdMSzT385WKarW0gYKzx5ixp0jWmmBK+7Bfs78Iq/cUybbzMUWpS60w+G+lho+mxnvS/r+Pqr44vldcfbG2pe2KlJjK6JTWcUwhaoxK1NX47UqN1aUd9r4kKJWw9NSZrV57Lzb385Vtl6g7sGvhhStIiGxp8jikF8BPjtV3uNBhmLda8kLpbi9KDIjIiNID9sEPDqOy9rriOBaGtDeEYTDUUG8B9hTJ2vLG9/itiZjaP96qm9sw8DJHqeGjUialpRFAmxb+iAoOsKpdkRxTGZ279RohciajnmIWDn6qZc9Lgqk2f7mFZXqlzdopPrTd830MXlIB4F97i7BqXxEGdArF/tNlso27gfogJiGyJUa+kau3D93xjwBY/ELpTi9KDIjIiNJbgO5Fba4rt9yD3gfAhgdSrW58Z+9x2FIk29zPV7HtjbnvtObmtqSLvS5TDR9fHd9DdiwToD6j1qa9uZ+v7DaBfj5mv99UyRlgeSZI5OkMZ4oXqG+/88/xPfRKabTb2tKxw9JRprUvYXt+uCg7ZpFGAJ8dPif1QC27chVz3y8w2p8QwN4fywAA96fFY2p/+eFDUmJaIUcnb9UGgnPfLzA5kr679yxlQESyxvSJRXP/JrLd4w+duWz2wafU+K6qVqkMwzlsKZKVSrZ0ljmrZMvU5Ipyy001fNzwQKpiA2/dHVXW1smmxZLfxlTJmYDwyEyQyBZv7ysyuj81AFo399e73s2NU6YU9Fha2qp9CTNX2lwnBKpqNUjt2AYl6mrlvOIPb+09g6n94xXXK/Ui1Qj5kfRd3WDaEuZfCclr9WrfCj4q/WW+KpXRuDTAnw8+LW11leFnXXFDRAUHILVjG5ursHxU9SVbSlU/Jepq5BaWSUXFSsuU0jbuphjZda+N64FFtyZI51EblCk1fKyq1SB7VJLsTS0A6feR+218dEqQTJH9LICq2mtSOwpdnpAJElmrRF2Nt/YVGS33gf59pDROWb/sHVifX4z1+cXon7MD41cdQP+c+mVKn3t8w3GUqKsV8xZzpc1ybYFMBQCGebqcqOAAtGruJxsYzhjQof55gYZtKmEPlhCRIqUqJ22gZCr6t7a6qiGGb7eEbMmWUC49sWTuL1PtaNbnF+OD/LNGy7VdcG8LjsYdKdFG3W2Vzn9qxzay9ftymeFCnfZdQgB7frhotr2P3ICLGgDT3zkEwLZ2FESeRin4mJGmX8VkapyyRZ8c03u51C1pVyqJXbPvDFbv+0k2bzE1BIhSW6C0zmF6+zT8jDUvSYb5kdxI+u6OARGZpFTlZEmwY2l1lTs1xLWmIbbSIGVKmZxcbyy5Im4fwGgkasPeWrrn30cFTBsQJ603rN+X+33SOofpVaMJWN7eR6lRpXY/Su0oiBoL2VHdVTCqYjI5hQ2gOC2O0qjxuoGLYd4i9xL62IguSG6nPBFzVHAAHs/siqkD4mzuJWvu5deT8gAGRGSWXENhS4Mdc42M3W34dmtKtuyd+0vp7fG18T2QmRxtMp26Xf1X7SnCqr1FeGtfkRRMWjJfmuFXWzO0wtnL1UbBkJZcOwqixsTSfMLUOGXaOR3lOm7I7X/6gDj8a69+NZ1h3mJrN3Zbe8lqWfu97lIjYIgBEdnMEd0l7R2+3Rk3lqU3t71zf5kaR8RSq/cW6TVmNHxjtCbtgPHQCrqkwSN/USNn80nFNLHdEHkDS/MJpXHKRvaIxoZvf5W2U0G/ZNhw/wCwel+R2bzF3q78jvhsQ8yF5gwMiMil7BkryJk3liUZg6lxQPSKrTO6oKisUvqcbkZhy7AA2szmtys1NgeTlgytoNTjxRS2GyJvIpdPyAUDhiUwgX4+uOuNXP15x1SQhq9Q2r+rRna25sXTVL7sbjUChrwqIHr99dfx0ksvobS0FCkpKXjttddw0003uTpZXs2eoMAdbixzc38d/aVcdioO3YzCmqJmc5M5AsDRX8uR2rGNRWlXGlpBN6iyZPDI5+68EZ3CW3pM40kiZzD3kqYNcOQGR9WOMWbq/rG1SsyeknRrXjzN5cvuOKGrLq8JiNavX4+HH34YK1euRN++ffHKK68gPT0dp06dQnh4uKuT59Vsucnd6caSe0vU/nvC6q+ldOomV656yxzZyRxltlu2+ZQ0mrXcPnQzRkt6DFrSnXdYYoRbZGhErmLNS5qpknFzwYu11Vr2lKRb++JpLl92xwlddXnNOET/+Mc/cN9992Hq1KlITEzEypUrERgYiLffftvVSSNYN1YQ4F7jHCkxF0hYMs6Huf3J7V5pv3JjnmhL6EyNFyJ3rrVYRUZUz1QwYEjpvtOONG04LpGtTI1n5OhjAszny5bkN67kFSVEtbW1OHToEBYtWiQt8/HxwbBhw5CXlyf7mZqaGtTU1Ej/rqiocHo6yXK2VrU1JFNdbgHrAzilrr5CmJ9ixNSbnrkSOtnuvBldkNxWuTsvkbextvRDrtG0vZMuG7K3JN3aY7IkX3a3CV11eUVAVFZWhrq6OkREROgtj4iIwMmT8r1lsrOzsWTJkoZIHtnInW8swDhzUAGAHYMWWtqIW26/5jJGc8Xw7n6uiVzNlpc03fvO3kmX5dhbRWXLMVmSVziih7IzeEVAZItFixbh4Ycflv5dUVGBmBj5KRbIddz1xtKSewu0J6gw14hbab+OqLt393NN5Gr2vDg4o32NI0rSbTkmT80rvCIgCg0Nha+vL86fP6+3/Pz584iMjJT9jL+/P/z9/RsiedTIGWYO9mYUSo24zb2JunsVI1FjYGsw4Kx71BGlu54a4FjLKwIiPz8/9OrVC9u3b8fIkSMBABqNBtu3b8ecOXNcmziiBsJqLyL35qx71FsCGnt5RUAEAA8//DAmT56M3r1746abbsIrr7yCyspKTJ061dVJI2owzBiJ3BvvUdfxmoBozJgxuHjxIp566imUlpaie/fu2LJli1FDayIiIvI+KiGUpmgkXRUVFQgODoZarUZQUJCrk0NEREQWsPT57TUDMxIREREpYUBEREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GREREROT1GBARERGR1/OaqTvspR3Qu6KiwsUpISIiIktpn9vmJuZgQGSh33//HQAQExPj4pQQERGRtX7//XcEBwcrrudcZhbSaDQ4d+4cWrZsCZVKZfN+KioqEBMTg7Nnz3rtnGg8B/V4HngOAJ4DgOdAi+fBOedACIHff/8d0dHR8PFRbinEEiIL+fj4oF27dg7bX1BQkNde8Fo8B/V4HngOAJ4DgOdAi+fB8efAVMmQFhtVExERkddjQERERERejwFRA/P398fTTz8Nf39/VyfFZXgO6vE88BwAPAcAz4EWz4NrzwEbVRMREZHXYwkREREReT0GREREROT1GBARERGR12NARERERF6PAZEDrFixAsnJydJAUqmpqdi8ebO0/urVq5g9ezbatGmDFi1aYPTo0Th//rzePoqLi5GZmYnAwECEh4djwYIFuH79ekMfisPk5ORApVJh3rx50rLGfh6eeeYZqFQqvb+EhARpfWM/fl2//vor7r33XrRp0wYBAQFISkrCwYMHpfVCCDz11FOIiopCQEAAhg0bhh9//FFvH5cuXcKECRMQFBSEkJAQTJ8+HVeuXGnoQ7FJXFyc0bWgUqkwe/ZsAN5xLdTV1WHx4sWIj49HQEAAOnbsiOeee05vPqnGfh0A9dNFzJs3D+3bt0dAQAD69euH/Px8aX1jPAd79uzB7bffjujoaKhUKnz22Wd66x11zEePHsXAgQPRrFkzxMTEYNmyZfYlXJDdPv/8c7Fp0ybxww8/iFOnTonHH39cNG3aVBw/flwIIcTMmTNFTEyM2L59uzh48KC4+eabRb9+/aTPX79+XXTr1k0MGzZMHD58WHz55ZciNDRULFq0yFWHZJdvvvlGxMXFieTkZPHQQw9Jyxv7eXj66afFjTfeKEpKSqS/ixcvSusb+/FrXbp0SbRv315MmTJFHDhwQPz0009i69at4vTp09I2OTk5Ijg4WHz22WfiyJEj4o477hDx8fGiurpa2mbEiBEiJSVFfP3112Lv3r2iU6dOYty4ca44JKtduHBB7zrYtm2bACB27twphPCOa+GFF14Qbdq0ERs3bhRFRUXio48+Ei1atBDLly+Xtmns14EQQtxzzz0iMTFR7N69W/z444/i6aefFkFBQeKXX34RQjTOc/Dll1+KJ554QmzYsEEAEJ9++qneekccs1qtFhEREWLChAni+PHj4v333xcBAQHizTfftDndDIicpFWrVmL16tWivLxcNG3aVHz00UfSuu+//14AEHl5eUKI+ovHx8dHlJaWStusWLFCBAUFiZqamgZPuz1+//13ccMNN4ht27aJQYMGSQGRN5yHp59+WqSkpMiu84bj18rKyhIDBgxQXK/RaERkZKR46aWXpGXl5eXC399fvP/++0IIIb777jsBQOTn50vbbN68WahUKvHrr786L/FO8tBDD4mOHTsKjUbjNddCZmammDZtmt6yUaNGiQkTJgghvOM6qKqqEr6+vmLjxo16y3v27CmeeOIJrzgHhgGRo475jTfeEK1atdK7H7KyskSXLl1sTiurzBysrq4OH3zwASorK5GamopDhw7h2rVrGDZsmLRNQkICYmNjkZeXBwDIy8tDUlISIiIipG3S09NRUVGBEydONPgx2GP27NnIzMzUO14AXnMefvzxR0RHR6NDhw6YMGECiouLAXjP8QPA559/jt69e+P//u//EB4ejh49emDVqlXS+qKiIpSWluqdi+DgYPTt21fvXISEhKB3797SNsOGDYOPjw8OHDjQcAfjALW1tXj33Xcxbdo0qFQqr7kW+vXrh+3bt+OHH34AABw5cgT79u1DRkYGAO+4Dq5fv466ujo0a9ZMb3lAQAD27dvnFefAkKOOOS8vD2lpafDz85O2SU9Px6lTp3D58mWb0sbJXR3k2LFjSE1NxdWrV9GiRQt8+umnSExMREFBAfz8/BASEqK3fUREBEpLSwEApaWlehmfdr12naf44IMP8O233+rVj2uVlpY2+vPQt29frF27Fl26dEFJSQmWLFmCgQMH4vjx415x/Fo//fQTVqxYgYcffhiPP/448vPz8eCDD8LPzw+TJ0+WjkXuWHXPRXh4uN76Jk2aoHXr1h51LgDgs88+Q3l5OaZMmQLAO+4FAFi4cCEqKiqQkJAAX19f1NXV4YUXXsCECRMAwCuug5YtWyI1NRXPPfccunbtioiICLz//vvIy8tDp06dvOIcGHLUMZeWliI+Pt5oH9p1rVq1sjptDIgcpEuXLigoKIBarcbHH3+MyZMnY/fu3a5OVoM5e/YsHnroIWzbts3obchbaN98ASA5ORl9+/ZF+/bt8eGHHyIgIMCFKWtYGo0GvXv3xtKlSwEAPXr0wPHjx7Fy5UpMnjzZxalreG+99RYyMjIQHR3t6qQ0qA8//BDvvfce1q1bhxtvvBEFBQWYN28eoqOjveo6+M9//oNp06ahbdu28PX1Rc+ePTFu3DgcOnTI1UkjA6wycxA/Pz906tQJvXr1QnZ2NlJSUrB8+XJERkaitrYW5eXletufP38ekZGRAIDIyEijHibaf2u3cXeHDh3ChQsX0LNnTzRp0gRNmjTB7t278eqrr6JJkyaIiIjwivOgKyQkBJ07d8bp06e95joAgKioKCQmJuot69q1q1R9qD0WuWPVPRcXLlzQW3/9+nVcunTJo87Fzz//jP/973+YMWOGtMxbroUFCxZg4cKFGDt2LJKSkjBx4kTMnz8f2dnZALznOujYsSN2796NK1eu4OzZs/jmm29w7do1dOjQwWvOgS5HHbMz7hEGRE6i0WhQU1ODXr16oWnTpti+fbu07tSpUyguLkZqaioAIDU1FceOHdO7ALZt24agoCCjB4u7Gjp0KI4dO4aCggLpr3fv3pgwYYL0395wHnRduXIFhYWFiIqK8prrAAD69++PU6dO6S374Ycf0L59ewBAfHw8IiMj9c5FRUUFDhw4oHcuysvL9d6id+zYAY1Gg759+zbAUTjGmjVrEB4ejszMTGmZt1wLVVVV8PHRf8T4+vpCo9EA8K7rAACaN2+OqKgoXL58GVu3bsWdd97pdecAcNzvnpqaij179uDatWvSNtu2bUOXLl1sqi4DwG73jrBw4UKxe/duUVRUJI4ePSoWLlwoVCqV+Oqrr4QQ9V1sY2NjxY4dO8TBgwdFamqqSE1NlT6v7WI7fPhwUVBQILZs2SLCwsI8qoutHN1eZkI0/vPwyCOPiF27domioiKxf/9+MWzYMBEaGiouXLgghGj8x6/1zTffiCZNmogXXnhB/Pjjj+K9994TgYGB4t1335W2ycnJESEhIeK///2vOHr0qLjzzjtlu9326NFDHDhwQOzbt0/ccMMNbt3V2FBdXZ2IjY0VWVlZRuu84VqYPHmyaNu2rdTtfsOGDSI0NFQ89thj0jbecB1s2bJFbN68Wfz000/iq6++EikpKaJv376itrZWCNE4z8Hvv/8uDh8+LA4fPiwAiH/84x/i8OHD4ueffxZCOOaYy8vLRUREhJg4caI4fvy4+OCDD0RgYCC73bvatGnTRPv27YWfn58ICwsTQ4cOlYIhIYSorq4WDzzwgGjVqpUIDAwUd911lygpKdHbx5kzZ0RGRoYICAgQoaGh4pFHHhHXrl1r6ENxKMOAqLGfhzFjxoioqCjh5+cn2rZtK8aMGaM39k5jP35dX3zxhejWrZvw9/cXCQkJ4l//+pfeeo1GIxYvXiwiIiKEv7+/GDp0qDh16pTeNr/99psYN26caNGihQgKChJTp04Vv//+e0Mehl22bt0qABgdlxDecS1UVFSIhx56SMTGxopmzZqJDh06iCeeeEKvm7Q3XAfr168XHTp0EH5+fiIyMlLMnj1blJeXS+sb4znYuXOnAGD0N3nyZCGE4475yJEjYsCAAcLf31+0bdtW5OTk2JVulRA6w4YSEREReSG2ISIiIiKvx4CIiIiIvB4DIiIiIvJ6DIiIiIjI6zEgIiIiIq/HgIiIiIi8HgMiIiIi8noMiIiIiMjrMSAiIqcZPHgw5s2b5+pkON0zzzyD7t27uzoZRGQHBkRERApqa2sb9PuEELh+/XqDficR1WNAREROMWXKFOzevRvLly+HSqWCSqXCmTNncPz4cWRkZKBFixaIiIjAxIkTUVZWJn1u8ODBmDt3LubNm4dWrVohIiICq1atQmVlJaZOnYqWLVuiU6dO2Lx5s/SZXbt2QaVSYdOmTUhOTkazZs1w88034/jx43pp2rdvHwYOHIiAgADExMTgwQcfRGVlpbQ+Li4Ozz33HCZNmoSgoCDcf//9AICsrCx07twZgYGB6NChAxYvXizNsr127VosWbIER44ckY5z7dq1OHPmDFQqFQoKCqT9l5eXQ6VSYdeuXXrp3rx5M3r16gV/f3/s27cPGo0G2dnZiI+PR0BAAFJSUvDxxx87+iciIh0MiIjIKZYvX47U1FTcd999KCkpQUlJCVq2bIlbbrkFPXr0wMGDB7FlyxacP38e99xzj95n33nnHYSGhuKbb77B3LlzMWvWLPzf//0f+vXrh2+//RbDhw/HxIkTUVVVpfe5BQsW4O9//zvy8/MRFhaG22+/XQpcCgsLMWLECIwePRpHjx7F+vXrsW/fPsyZM0dvH3/729+QkpKCw4cPY/HixQCAli1bYu3atfjuu++wfPlyrFq1Ci+//DIAYMyYMXjkkUdw4403Ssc5ZswYq87VwoULkZOTg++//x7JycnIzs7Gv//9b6xcuRInTpzA/Pnzce+992L37t1W7ZeIrGDX1LBERCYMGjRIPPTQQ9K/n3vuOTF8+HC9bc6ePas3K/ygQYPEgAEDpPXXr18XzZs3FxMnTpSWlZSUCAAiLy9PCPHn7NoffPCBtM1vv/0mAgICxPr164UQQkyfPl3cf//9et+9d+9e4ePjI6qrq4UQQrRv316MHDnS7HG99NJLolevXtK/n376aZGSkqK3TVFRkQAgDh8+LC27fPmyACB27typl+7PPvtM2ubq1asiMDBQ5Obm6u1v+vTpYty4cWbTRkS2aeLKYIyIvMuRI0ewc+dOtGjRwmhdYWEhOnfuDABITk6Wlvv6+qJNmzZISkqSlkVERAAALly4oLeP1NRU6b9bt26NLl264Pvvv5e+++jRo3jvvfekbYQQ0Gg0KCoqQteuXQEAvXv3Nkrb+vXr8eqrr6KwsBBXrlzB9evXERQUZPXxK9H9ztOnT6Oqqgp/+ctf9Lapra1Fjx49HPadRKSPARERNZgrV67g9ttvx4svvmi0LioqSvrvpk2b6q1TqVR6y1QqFQBAo9FY9d1//etf8eCDDxqti42Nlf67efPmeuvy8vIwYcIELFmyBOnp6QgODsYHH3yAv//97ya/z8envkWCEEJapq2+M6T7nVeuXAEAbNq0CW3bttXbzt/f3+R3EpHtGBARkdP4+fmhrq5O+nfPnj3xySefIC4uDk2aOD77+frrr6Xg5vLly/jhhx+kkp+ePXviu+++Q6dOnazaZ25uLtq3b48nnnhCWvbzzz/rbWN4nAAQFhYGACgpKZFKdnQbWCtJTEyEv78/iouLMWjQIKvSSkS2Y6NqInKauLg4HDhwAGfOnEFZWRlmz56NS5cuYdy4ccjPz0dhYSG2bt2KqVOnGgUUtnj22Wexfft2HD9+HFOmTEFoaChGjhwJoL6nWG5uLubMmYOCggL8+OOP+O9//2vUqNrQDTfcgOLiYnzwwQcoLCzEq6++ik8//dToOIuKilBQUICysjLU1NQgICAAN998s9RYevfu3XjyySfNHkPLli3x6KOPYv78+XjnnXdQWFiIb7/9Fq+99hreeecdm88NEZnGgIiInObRRx+Fr68vEhMTERYWhtraWuzfvx91dXUYPnw4kpKSMG/ePISEhEhVTPbIycnBQw89hF69eqG0tBRffPEF/Pz8ANS3S9q9ezd++OEHDBw4ED169MBTTz2F6Ohok/u84447MH/+fMyZMwfdu3dHbm6u1PtMa/To0RgxYgSGDBmCsLAwvP/++wCAt99+G9evX0evXr0wb948PP/88xYdx3PPPYfFixcjOzsbXbt2xYgRI7Bp0ybEx8fbcFaIyBIqoVvBTUTkgXbt2oUhQ4bg8uXLCAkJcXVyiMgDsYSIiIiIvB4DIiIiIvJ6rDIjIiIir8cSIiIiIvJ6DIiIiIjI6zEgIiIiIq/HgIiIiIi8HgMiIiIi8noMiIiIiMjrMSAiIiIir8eAiIiIiLweAyIiIiLyev8PBcjMfq1Q8SEAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO:tensorflow:Assets written to: keras_surrogate\\assets\n" + ] + } + ], + "source": [ + "# Adding input bounds and variables along with scalers and output variable to kerasSurrogate\n", + "xmin, xmax = [7, 306], [40, 1000]\n", + "input_bounds = {input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))}\n", + "\n", + "keras_surrogate = KerasSurrogate(\n", + " model,\n", + " input_labels=list(input_labels),\n", + " output_labels=list(output_labels),\n", + " input_bounds=input_bounds,\n", + " input_scaler=input_scaler,\n", + " output_scaler=output_scaler,\n", + ")\n", + "keras_surrogate.save_to_folder(\n", + " keras_folder_name=\"sco2_keras_surr\", keras_model_name=\"sco2_keras_model\"\n", + ")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmYUlEQVR4nO3deXwU5f0H8M9sIGETkuVIAgETEoIQkBCRywAGECqkKCJYEY9yqhUU0SoELQIqBmzrWQUEBa0VaBXUCnhULmP4QbhB5YoBIgQhQjZAQgLZ5/dHnGWPmb2vST7v1yutzM7OPDM788x3nlMSQggQERERaZQu2AkgIiIi8gaDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIKiNmzZ0OSJJfWlSQJs2fP9mt6+vfvj/79+4fs9ojIdQxmiOqZZcuWQZIk81+DBg3QunVrjB07FidOnAh28kJOcnKy1fmKj4/HTTfdhNWrV/tk+xUVFZg9ezY2btzok+0R1UcMZojqqeeeew7//Oc/sXDhQmRnZ+ODDz5Av379cOnSJb/s7y9/+QsqKyv9sm1/u/766/HPf/4T//znP/Hkk0/i5MmTGDFiBBYuXOj1tisqKjBnzhwGM0ReaBDsBBBRcGRnZ6N79+4AgIkTJyI2Nhbz58/HZ599hrvuusvn+2vQoAEaNNBmltO6dWvcd9995n//8Y9/RLt27fDKK6/gT3/6UxBTRkQAS2aI6Dc33XQTAKCwsNBq+YEDB3DnnXeiWbNmaNSoEbp3747PPvvMap3Lly9jzpw5uPbaa9GoUSM0b94cffv2xddff21eR6nNTFVVFR5//HHExcUhOjoaw4YNw88//2yXtrFjxyI5OdluudI2ly5diptvvhnx8fGIiIhAp06dsGDBArfOhTMtW7ZEx44dUVRU5HC906dPY8KECWjRogUaNWqEjIwMvPfee+bPjx49iri4OADAnDlzzFVZ/m4vRFTXaPM1iYh87ujRowCApk2bmpd9//336NOnD1q3bo2cnBxERUXh3//+N4YPH46PP/4Yd9xxB4DaoCI3NxcTJ05Ez549UV5eju3bt2Pnzp343e9+p7rPiRMn4oMPPsA999yD3r17Y/369Rg6dKhXx7FgwQJcd911GDZsGBo0aID//ve/mDRpEkwmEyZPnuzVtmWXL19GcXExmjdvrrpOZWUl+vfvjyNHjuCRRx5BSkoK/vOf/2Ds2LEoKyvDY489hri4OCxYsAAPP/ww7rjjDowYMQIA0KVLF5+kk6jeEERUryxdulQAEP/73//EmTNnRHFxsfjoo49EXFyciIiIEMXFxeZ1Bw4cKNLT08WlS5fMy0wmk+jdu7e49tprzcsyMjLE0KFDHe531qxZwjLL2b17twAgJk2aZLXePffcIwCIWbNmmZeNGTNGtGnTxuk2hRCioqLCbr3BgweLtm3bWi3r16+f6Nevn8M0CyFEmzZtxC233CLOnDkjzpw5I/bs2SPuvvtuAUA8+uijqtt79dVXBQDxwQcfmJdVV1eLzMxM0bhxY1FeXi6EEOLMmTN2x0tE7mE1E1E9NWjQIMTFxSExMRF33nknoqKi8Nlnn+Gaa64BAJw9exbr16/HXXfdhfPnz6O0tBSlpaX49ddfMXjwYBw+fNjc+6lJkyb4/vvvcfjwYZf3v3btWgDAlClTrJZPnTrVq+PS6/Xm/zYajSgtLUW/fv3w008/wWg0erTNr776CnFxcYiLi0NGRgb+85//4P7778f8+fNVv7N27Vq0bNkSo0ePNi9r2LAhpkyZggsXLmDTpk0epYWI7LGaiaieevPNN9G+fXsYjUa8++672Lx5MyIiIsyfHzlyBEIIzJw5EzNnzlTcxunTp9G6dWs899xzuP3229G+fXt07twZQ4YMwf333++wuuTYsWPQ6XRITU21Wt6hQwevjuu7777DrFmzsGXLFlRUVFh9ZjQaYTAY3N5mr1698MILL0CSJERGRqJjx45o0qSJw+8cO3YM1157LXQ663fGjh07mj8nIt9gMENUT/Xs2dPcm2n48OHo27cv7rnnHhw8eBCNGzeGyWQCADz55JMYPHiw4jbatWsHAMjKykJhYSE+/fRTfPXVV1iyZAleeeUVLFy4EBMnTvQ6rWqD7dXU1Fj9u7CwEAMHDkRaWhpefvllJCYmIjw8HGvXrsUrr7xiPiZ3xcbGYtCgQR59l4j8j8EMESEsLAy5ubkYMGAA/vGPfyAnJwdt27YFUFs14sqDvFmzZhg3bhzGjRuHCxcuICsrC7Nnz1YNZtq0aQOTyYTCwkKr0piDBw/ardu0aVOUlZXZLbct3fjvf/+LqqoqfPbZZ0hKSjIv37Bhg9P0+1qbNm2wd+9emEwmq9KZAwcOmD8H1AM1InId28wQEYDa4fh79uyJV199FZcuXUJ8fDz69++PRYsWoaSkxG79M2fOmP/7119/tfqscePGaNeuHaqqqlT3l52dDQB4/fXXrZa/+uqrduumpqbCaDRi79695mUlJSV2o/CGhYUBAIQQ5mVGoxFLly5VTYe//P73v8epU6ewcuVK87IrV67gjTfeQOPGjdGvXz8AQGRkJAAoBmtE5BqWzBCR2VNPPYU//OEPWLZsGf70pz/hzTffRN++fZGeno4HHngAbdu2xS+//IItW7bg559/xp49ewAAnTp1Qv/+/dGtWzc0a9YM27dvx0cffYRHHnlEdV/XX389Ro8ejbfeegtGoxG9e/fGN998gyNHjtite/fdd2P69Om44447MGXKFFRUVGDBggVo3749du7caV7vlltuQXh4OG677TY89NBDuHDhAhYvXoz4+HjFgMyfHnzwQSxatAhjx47Fjh07kJycjI8++gjfffcdXn31VURHRwOobbDcqVMnrFy5Eu3bt0ezZs3QuXNndO7cOaDpJdK0YHenIqLAkrtmFxQU2H1WU1MjUlNTRWpqqrhy5YoQQojCwkLxxz/+UbRs2VI0bNhQtG7dWtx6663io48+Mn/vhRdeED179hRNmjQRer1epKWliblz54rq6mrzOkrdqCsrK8WUKVNE8+bNRVRUlLjttttEcXGxYlflr776SnTu3FmEh4eLDh06iA8++EBxm5999pno0qWLaNSokUhOThbz588X7777rgAgioqKzOu50zXbWbdzte398ssvYty4cSI2NlaEh4eL9PR0sXTpUrvv5ufni27duonw8HB20ybygCSERXksERERkcawzQwRERFpGoMZIiIi0jQGM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNq/OD5plMJpw8eRLR0dEcNpyIiEgjhBA4f/48WrVqZTdhq9LKQbNp0yZx6623ioSEBAFArF692vxZdXW1mDZtmujcubOIjIwUCQkJ4v777xcnTpxwax/yAFz84x//+Mc//vFPe3/FxcVOn/VBLZm5ePEiMjIyMH78eIwYMcLqs4qKCuzcuRMzZ85ERkYGzp07h8ceewzDhg3D9u3bXd6HPGR4cXExYmJifJp+IiIi8o/y8nIkJiaan+OOhMwIwJIkYfXq1Rg+fLjqOgUFBejZsyeOHTtmNSOuI+Xl5TAYDDAajQxmiIiINMKd57em2swYjUZIkoQmTZqorlNVVWU1U295eXkAUkZERETBopneTJcuXcL06dMxevRohxFabm4uDAaD+S8xMTGAqSQiIqJA00Qwc/nyZdx1110QQmDBggUO150xYwaMRqP5r7i4OECpJCIiomAI+WomOZA5duwY1q9f77TeLCIiAhEREQFKHRERhZKamhpcvnw52MkgFzRs2BBhYWE+2VZIBzNyIHP48GFs2LABzZs3D3aSiIgoBAkhcOrUKZSVlQU7KeSGJk2aoGXLll6PAxfUYObChQs4cuSI+d9FRUXYvXs3mjVrhoSEBNx5553YuXMnPv/8c9TU1ODUqVMAgGbNmiE8PDxYySYiohAjBzLx8fGIjIzkIKkhTgiBiooKnD59GgCQkJDg1faC2jV748aNGDBggN3yMWPGYPbs2UhJSVH83oYNG9C/f3+X9sGu2UREdVtNTQ0OHTqE+Ph4luBrzK+//orTp0+jffv2dlVOmuma3b9/fziKpUJkCBwiIgphchuZyMjIIKeE3CX/ZpcvX/aq/YwmejMRERE5w6ol7fHVb8ZghoiIiDSNwQwRERH5xcaNGyFJkt97mTGY8UKJsRL5haUoMVYGOylERFQPzZ49G9dff32wkxF0IT3OTChbWXAcM1btg0kAOgnIHZGOUT1cm/ySiIgokC5fvoyGDRsGOxl+w5IZD5QYK82BDACYBPD0qv0soSEiIreYTCbk5uYiJSUFer0eGRkZ+OijjwBcraL55ptv0L17d0RGRqJ37944ePAgAGDZsmWYM2cO9uzZA0mSIEkSli1bBqC2Ye2CBQswbNgwREVFYe7cuQ7TIe/ryy+/RNeuXaHX63HzzTfj9OnTWLduHTp27IiYmBjcc889qKioMH+vqqoKU6ZMQXx8PBo1aoS+ffuioKDAPyfLAQYzHigqvWgOZGQ1QuBoaYXyF4iISBMC3XwgNzcX77//PhYuXIjvv/8ejz/+OO677z5s2rTJvM4zzzyDv//979i+fTsaNGiA8ePHAwBGjRqFP//5z7juuutQUlKCkpISjBo1yvy92bNn44477sC+ffvM33Fm9uzZ+Mc//oH8/HwUFxfjrrvuwquvvooPP/wQa9aswVdffYU33njDvP60adPw8ccf47333sPOnTvRrl07DB48GGfPnvXRGXINq5k8kBIbBZ0Eq4AmTJKQHMsxDoiItCrQzQeqqqrw4osv4n//+x8yMzMBAG3btkVeXh4WLVqEBx98EAAwd+5c9OvXDwCQk5ODoUOH4tKlS9Dr9WjcuDEaNGiAli1b2m3/nnvuwbhx49xK0wsvvIA+ffoAACZMmIAZM2agsLAQbdu2BQDceeed2LBhA6ZPn46LFy9iwYIFWLZsGbKzswEAixcvxtdff4133nkHTz31lGcnxgMsmfFAgkGP3BHpCPutf3yYJOHFEZ2RYNAHOWVEROSJYDQfOHLkCCoqKvC73/0OjRs3Nv+9//77KCwsNK/XpUsX83/Lw/7L0wA40r17d7fTZLmvFi1aIDIy0hzIyMvkfRcWFuLy5cvm4AeonTyyZ8+e+PHHH93etzdYMuOhUT2SkNU+DkdLK5AcG8lAhohIwxw1H/BX/n7hwgUAwJo1a9C6dWurzyIiIswBjWXDXXmQOZPJ5HT7UVFRbqfJdl+2jYYlSXJp34HGYMYLCQY9gxgiojogGM0HOnXqhIiICBw/ftxcjWTJsnRGTXh4OGpqavyRPKdSU1MRHh6O7777Dm3atAFQ22uqoKAAU6dODWhaGMwQEVG9JzcfeHrVftQIEZDmA9HR0XjyySfx+OOPw2QyoW/fvjAajfjuu+8QExNjDhAcSU5ORlFREXbv3o1rrrkG0dHRiIiI8FuaLUVFReHhhx/GU089hWbNmiEpKQkvvfQSKioqMGHChICkQcZghoiICMFpPvD8888jLi4Oubm5+Omnn9CkSRPccMMNePrpp12qzhk5ciRWrVqFAQMGoKysDEuXLsXYsWP9nm7ZvHnzYDKZcP/99+P8+fPo3r07vvzySzRt2jRgaQAASdTxqandmUKciIi059KlSygqKkJKSgoaNWoU7OSQGxz9du48v9mbiYiIiDSNwQwREVEd96c//cmq+7fl35/+9KdgJ89rbDNDRERUxz333HN48sknFT+rC00wGMwQERHVcfHx8YiPjw92MvyG1UxERESkaQxmiIioTgjFkWnJMV/9ZqxmIiIiTQsPD4dOp8PJkycRFxeH8PBw87D/FJqEEKiursaZM2eg0+kQHh7u1fYYzBARkabpdDqkpKSgpKQEJ0+eDHZyyA2RkZFISkqCTuddRRGDGSIi0rzw8HAkJSXhypUrQZuriNwTFhaGBg0a+KQUjcEMERHVCfIsz7YzPVPdxwbAREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk1jMENERESaxmCGiIiINI3BDBEREWkagxkiIiLSNAYzREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk1jMENERESaxmCGiIiINI3BDBEREWkagxkiIiLSNAYzREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk1jMENERESaxmCGiIiINI3BDBEREWlaUIOZzZs347bbbkOrVq0gSRI++eQTq8+FEHj22WeRkJAAvV6PQYMG4fDhw8FJLBEREYWkoAYzFy9eREZGBt58803Fz1966SW8/vrrWLhwIbZu3YqoqCgMHjwYly5dCnBKiYiIKFQ1CObOs7OzkZ2drfiZEAKvvvoq/vKXv+D2228HALz//vto0aIFPvnkE9x9992BTCoRERGFqJBtM1NUVIRTp05h0KBB5mUGgwG9evXCli1bVL9XVVWF8vJyqz8iIiKqu0I2mDl16hQAoEWLFlbLW7RoYf5MSW5uLgwGg/kvMTHRr+kkIiKi4ArZYMZTM2bMgNFoNP8VFxcHO0lERETkRyEbzLRs2RIA8Msvv1gt/+WXX8yfKYmIiEBMTIzVHxEREdVdIRvMpKSkoGXLlvjmm2/My8rLy7F161ZkZmYGMWVEREQUSoLam+nChQs4cuSI+d9FRUXYvXs3mjVrhqSkJEydOhUvvPACrr32WqSkpGDmzJlo1aoVhg8fHrxEExERUUgJajCzfft2DBgwwPzvJ554AgAwZswYLFu2DNOmTcPFixfx4IMPoqysDH379sUXX3yBRo0aBSvJREREFGIkIYQIdiL8qby8HAaDAUajke1niIiINMKd53fItpkhIiIicgWDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYMZLJcZK5BeWosRYGeykEBER1UsNgp0ALVtZcBwzVu2DSQA6CcgdkY5RPZKCnSwiIqJ6hSUzHioxVpoDGQAwCeDpVftZQkNERBRgDGY8VFR60RzIyGqEwNHSiuAkiIiIqJ5iMOOhlNgo6CTrZWGShOTYyOAkiIiIqJ5iMOOhBIMeuSPSESbVRjRhkoQXR3RGgkEf5JQRERHVL2wA7IVRPZKQ1T4OR0srkBwbyUCGiIgoCBjMeCnBoGcQQ0REFESsZiIiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZHygxViK/sBQlxspgJ4WIiKjeaRDsBGjdyoLjmLFqH0wC0ElA7oh0jOqRFOxkERER1RssmfFCibHSHMgAgEkAT6/azxIaIiKiAGIw44Wi0ovmQEZWIwSOllYEJ0FERET1UEgHMzU1NZg5cyZSUlKg1+uRmpqK559/HkII518OgJTYKOgk62VhkoTk2MjgJIiIiKgeCuk2M/Pnz8eCBQvw3nvv4brrrsP27dsxbtw4GAwGTJkyJdjJQ4JBj9wR6Xh61X7UCIEwScKLIzojwaAPdtKIiIjqjZAOZvLz83H77bdj6NChAIDk5GQsX74c27ZtC3LKrhrVIwlZ7eNwtLQCybGRDGSIiIgCLKSrmXr37o1vvvkGhw4dAgDs2bMHeXl5yM7OVv1OVVUVysvLrf78LcGgR2ZqcwYyREREQRDSJTM5OTkoLy9HWloawsLCUFNTg7lz5+Lee+9V/U5ubi7mzJkTwFQSERFRMIV0ycy///1v/Otf/8KHH36InTt34r333sPf/vY3vPfee6rfmTFjBoxGo/mvuLg4gCkmIiKiQJNEqHQNUpCYmIicnBxMnjzZvOyFF17ABx98gAMHDri0jfLychgMBhiNRsTExPgrqURERORD7jy/Q7pkpqKiAjqddRLDwsJgMpmClCIiIiIKNSHdZua2227D3LlzkZSUhOuuuw67du3Cyy+/jPHjxwc7aURERBQiQrqa6fz585g5cyZWr16N06dPo1WrVhg9ejSeffZZhIeHu7QNVjMRERFpjzvP75AOZnyBwQwREZH21Jk2M0RERETOMJghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMw44USYyXyC0tRYqwMdlKIiIjqrQbBToBWrSw4jhmr9sEkAJ0E5I5Ix6geScFOFhERUb3DkhkPlBgrzYEMAJgE8PSq/SyhISIiCgIGMx4oKr1oDmRkNULgaGlFcBJERERUjzGY8UBKbBR0kvWyMElCcmyk4vpsW0NEROQ/DGY8kGDQI3dEOsKk2ogmTJLw4ojOSDDo7dZdWXAcfeatxz2Lt6LPvPVYWXA80MklIiKq0yQhhHC+mnaVl5fDYDDAaDQiJibGp9suMVbiaGkFkmMjFQOZEmMl+sxbb1UlFSZJyMsZoLg+ERER1XLn+c3eTF5IMOgdBiWO2tYwmCEiIvINVjP5kbtta4iIiMh9DGb8yJ22NUREROQZVjP52ageSchqH+ewbQ0RERF5jsFMADhrW0NERESeczmYKS8vd3mjvu41RERERKTG5WCmSZMmkCTJ4TpCCEiShJqaGq8TRkREROQKl4OZDRs2+DMdRERERB5xOZjp16+fP9NBRERE5BGPGwCXlZXhnXfewY8//ggAuO666zB+/HgYDAafJY6IiIjIGY/Gmdm+fTtSU1Pxyiuv4OzZszh79ixefvllpKamYufOnb5OIxEREZEqj+Zmuummm9CuXTssXrwYDRrUFu5cuXIFEydOxE8//YTNmzf7PKGe8ufcTEREROQf7jy/PQpm9Ho9du3ahbS0NKvlP/zwA7p3746Kigp3N+k3DGaIiIi0x53nt0fVTDExMTh+/Ljd8uLiYkRHR3uySSIiIiKPeBTMjBo1ChMmTMDKlStRXFyM4uJirFixAhMnTsTo0aN9nUYiIiIiVR71Zvrb3/4GSZLwxz/+EVeuXAEANGzYEA8//DDmzZvn0wQSEREROeJRmxlZRUUFCgsLAQCpqamIjIz0WcJ8hW1miIiItMed57dXE01GRkYiPT3dm00QERERecWjYObSpUt44403sGHDBpw+fRomk8nqc441Q0RERIHiUTAzYcIEfPXVV7jzzjvRs2dPpxNQEhEREfmLR8HM559/jrVr16JPnz6+Tg8RERGRWzzqmt26dWuOJ0NEREQhwaNg5u9//zumT5+OY8eO+To9dk6cOIH77rsPzZs3h16vR3p6OrZv3+73/RIREZE2eFTN1L17d1y6dAlt27ZFZGQkGjZsaPX52bNnfZK4c+fOoU+fPhgwYADWrVuHuLg4HD58GE2bNvXJ9omIiEj7PApmRo8ejRMnTuDFF19EixYt/NYAeP78+UhMTMTSpUvNy1JSUvyyLyIiItImjwbNi4yMxJYtW5CRkeGPNJl16tQJgwcPxs8//4xNmzahdevWmDRpEh544AGXt8FB84iIiLTH7xNNpqWlobKy0qPEueOnn37CggULcO211+LLL7/Eww8/jClTpuC9995T/U5VVRXKy8ut/oiIiKju8qhk5quvvsKcOXMwd+5cpKen27WZ8VUJSHh4OLp37478/HzzsilTpqCgoABbtmxR/M7s2bMxZ84cu+UsmSEiItIOd0pmPApmdLraAh3btjJCCEiShJqaGnc3qahNmzb43e9+hyVLlpiXLViwAC+88AJOnDih+J2qqipUVVWZ/11eXo7ExEQGM0RERBri97mZNmzY4FHC3NWnTx8cPHjQatmhQ4fQpk0b1e9EREQgIiLC30kjIiKiEOFRMNOvXz+X1ps0aRKee+45xMbGerIbPP744+jduzdefPFF3HXXXdi2bRvefvttvP322x5tj4iIiOoej6qZXBUTE4Pdu3ejbdu2Hm/j888/x4wZM3D48GGkpKTgiSeeYG8mIiKiOs7v1Uyu8kWcdOutt+LWW2/1QWqIiIioLvKoazYRERFRqGAwQ0RERJrGYIaIiIg0jcEMERERaZrbwcyVK1fw3HPP4eeff3a67n333cceRERERORXHnXNjo6Oxr59+5CcnOyHJPkWu2YTERFpj98nmrz55puxadMmjxJHRERE5EsejTOTnZ2NnJwc7Nu3D926dUNUVJTV58OGDfNJ4oiIiIic8WqiScUN+nCiSV9gNRMREZH2+H0EYJPJ5FHCiIiIiHzNozYz77//PqqqquyWV1dX4/333/c6UURERESu8qiaKSwsDCUlJYiPj7da/uuvvyI+Pp7VTEREROQVv/dmEkJAkiS75T///DMMBoMnmyQiIiLyiFttZrp27QpJkiBJEgYOHIgGDa5+vaamBkVFRRgyZIjPE0lERESkxq1gZvjw4QCA3bt3Y/DgwWjcuLH5s/DwcCQnJ2PkyJE+TSARERGRI24FM7NmzQIAJCcnY9SoUWjUqJFfEkVERETkKo+6Zo8ZMwZAbe+l06dP23XVTkpK8j5lRERERC7wKJg5fPgwxo8fj/z8fKvlcsPgUOrNFGglxkoUlV5ESmwUEgz6YCeHiIiozvMomBk7diwaNGiAzz//HAkJCYo9m+qjlQXHMWPVPpgEoJOA3BHpGNWDpVRERET+5FEws3v3buzYsQNpaWm+To9mlRgrzYEMAJgE8PSq/chqH2dXQsPSGyIiIt/xKJjp1KkTSktLfZ0WTSsqvWgOZGQ1QuBoaYVVwMLSGyIiIt/yaNC8+fPnY9q0adi4cSN+/fVXlJeXW/3VRymxUdDZ1LaFSRKSYyPN/1YrvSkxVgYwpURERHWLRyUzgwYNAgDcfPPNVu1l6nMD4ASDHrkj0vH0qv2oEQJhkoQXR3S2KpVxtfSGiIiIXOdRMLNhwwZfp6NOGNUjCVnt43C0tALJsZF2AUpKbBQkAJbxjG3pDREREbnHo2qmfv36QafTYfHixcjJyUG7du3Qr18/HD9+HGFhYb5Oo6YkGPTITG2uWNKy+dAZq39LgF3pDREREbnHo2Dm448/xuDBg6HX67Fr1y5UVVUBAIxGI1588UWfJrCukNvLWJbKSBKQ1T4uaGkiIiKqCzwKZl544QUsXLgQixcvRsOGDc3L+/Tpg507d/oscXWJUnsZkwCOllYEJ0FERER1hEfBzMGDB5GVlWW33GAwoKyszNs01Umu9HYiIiIi93kUzLRs2RJHjhyxW56Xl4e2bdt6nai6SO7tFPZb7y+l3k5ERETkPo96Mz3wwAN47LHH8O6770KSJJw8eRJbtmzBk08+iZkzZ/o6jXWGs95ORERE5D6PgpmcnByYTCYMHDgQFRUVyMrKQkREBJ588kk8+uijvk5jnZJg0DOIISIi8iFJCCGcr6asuroaR44cwYULF9CpUyc0btzYl2nzifLychgMBhiNRsTExAQ7OUREROQCd57fHpXMyMLDw9GpUydvNkFERETkFY8aABMRERGFCgYzflBirER+YSknkCQiIgoAr6qZyN7KguPmmbF1EpA7Ih2jeiQFO1lERER1FktmfEieskAe6dckgKdX7VctoWEJDhERkfdYMuNDSlMW1AiBo6UVdt2xPS3BKTFWoqj0IlJio9jFm4iICAxmfEqessAyoFGaskCtBCerfZzDAIVVWERERPZYzeRDrk5Z4KgER427VVhERET1BUtmfMyVKQtcLcGx5E4VFhERUX3Ckhk/SDDokZnaXDXI8GTSSc66TUREpIwlMwFk2XjX3Ukn5QDo6VX7USMEZ90mIiL6DYOZAFFrvOtOMMJZt4mIiOyxmikAfNl411kVFhERUX3DYCYAPOm9FGgcwI+IiLSK1UwB4EnvJUv+HiiP49cQEZGWaapkZt68eZAkCVOnTg12Utxi23tJJwHj+ya79N2VBcfRZ9563LN4K/rMW4+VBcd9mjaOX0NERFqnmWCmoKAAixYtQpcuXYKdFI+M6pGEvJwBeDArBUIAi78tchqcBCLQ0EIVGBERkSOaCGYuXLiAe++9F4sXL0bTpk2DnRyvLPm2CHLs4Cw4CUSgwfFriIhI6zQRzEyePBlDhw7FoEGDgp0Ur7gbnAQi0PBkAD8iIqJQEvINgFesWIGdO3eioKDApfWrqqpQVVVl/nd5ebm/kuY2dxsCB2qgPI5fQ0REWhbSwUxxcTEee+wxfP3112jUqJFL38nNzcWcOXP8nDLPeBKcBCrQSDDoGcQQEZEmSUII4Xy14Pjkk09wxx13ICwszLyspqYGkiRBp9OhqqrK6jNAuWQmMTERRqMRMTExAUu7IyXGSpaCEBEROVBeXg6DweDS8zukS2YGDhyIffv2WS0bN24c0tLSMH36dLtABgAiIiIQERERqCR6hKUgREREvhPSwUx0dDQ6d+5stSwqKgrNmze3Wx4K/D24HREREdkL6WBGS7Q6ii4DMCIi0jrNBTMbN24MdhLsqA1ul9U+LqQDBK0GYERERJY0Mc5MqNPiKLp7is8hh9MYEBFRHcBgxge0NoruyoLjGP5mPmz7sYV6AEZERKSEwYwP+GIU3RJjJfILS/1eMiJXiSn1xw/lAIyIiEiN5trMhCpvBrcLZNsVpSoxoHa/nMaAiIi0iMGMD3kyfkygGw8rTamgA7B6Um9kJGp7Ek8iIqqfWM0UZIFuPKxUJZY7Mp2BDBERaRZLZoLM3cknfYETSxIRUV3Ckpkg80XjYU/3m5nanIEMERFpHktmQoCWSko4YjAREYUaBjMhQguTT3LEYCIiCkWsZiKXqPW64ojBREQUbAxmyI7SAH5anLKBiIjqB1YzkRW1qqRg9LoiIiJyBUtmyMxRVVKwel0RERE5w5IZMnNUlZRg0Guq1xUREdUfDGZCULC6P7tSlaSFXldERFS/sJrJR5QazXoyE/bKguPoM2897lm8FX3mrcfKguP+SK4iViUREZEWSUIIhTmU647y8nIYDAYYjUbExMT4ZR9KjWYBuD0mS4mxEn3mrbcrGcnLGRDQgKLEWMmqJCIiCip3nt+sZvKSUqPZGav2QQhAjklcnQnbWZuVQGFVEhERaQmrmbykFICYLAIZmStjsshtViwFsvuzJ9ViREREwcZgxktKAYhOAmwWuRSUBLPNSjDb6hAREXmDbWZ8YGXBcTy9aj9qhDAHIADslrk6j1Gg26yESlsdIiIiGdvMBJja+CuejskS6DYrodJWh4iIyBMMZnxEKQDRSkNaV8aXCdbYN0RERM6wzQw5bavjansaNiAmIqJgYJsZMlNqq+Nqexq1CSqJiIg84c7zmyUzZJZg0CMztblVkOKoPY3M0QSVRERE/sZghhxyZewbVwIeIiIif2EwQw65MvZNsAf7IyKi+o29mcgpta7nMjngsR1Xh72eiIgoEBjMkEucdTN3FvAQhTIOPUCkbQxmyIo3mbpWxtUhssSeeETax2CGzJipU32j1hPP2Qz3RBRa2ACYALB7NWmXN4M1ujr0gL8Gg+RAk0S+wZIZAuDe/ExqVVFsd0CB5m1porOpPPxZWsmSUCLfYclMCAnmW5qr3avVpjZwdcoDIl9RKk2csWqfW/ePo6EH/Fla6WjbWi6t0XLaSdtYMhMigv2W5kr3arUMOK1ltGq7AwAsrSG/UCpNNAlg6XdFePr3nVzejlpPPH/OJq+27aV5R7Ek7ydNltYEOw+j+o3BTAgIlUaIzrpXq2XABUfPKWfM3xVhybdFzNzIL5SqiABgyeYijOuT4ta9o9QTz5XZ5D2ltG0dYA5kAG01Rg6VPIzqL1YzhYBQmg5AaX4mmVpVVI/kpnbLdRKweHMRGxSTR1yprkgw6DGhb4rdchPgk3vHldGvfbntiTelhEw+4ArL3yiU8jCqn1gyEwLU3jD3nihDZmpzl7YRiMa3alVRGYlN7Zb3adccmw+XWn3fV0X0VLe5U10xvm8KlnxbBMtbx5dTafhzMEjbbQPAkrwij0uCAtkA3/Y3mj4kzW+lWESukIQQwvlq2uXOFOLBtGhTIXLXHbBaFiZJyMsZ4DRjCnRddYmxUjFzl5dHhusw/M182F5YOgn4Ludml3tHUf1TYqxEn3nr7R6Kju6DlQXH7QJsrVZnenosgcwD1H6jadkd8NK6g3Xid6DQ4M7zmyUzISL9GoPdMldKMoJRV6020q+8PL+w1C6QAYCJfdsiwaDHnuJz2Hb0LHomN8OBU+fZaJDMPGl0W5em0vDkWAKdB6j9Rl1aN0FezoA68TuQ9jCYCRGeNjb0Z48LT6k1bhzXNxl//vdufLzzhOL32GiQPL0P6tJUGu4eS6DzAEe/UV36HUhb2AA4RHja2NDV8WECSelYckem43T5JdVARsZGg9rm7Tgj/mx06y/BHlvF33mA7fFp8Teiuo9tZkKMWnsUR0K1zYDtsUz+1w6s2XfK4XdcbSdEoceX7TY8uQ+CIVTGVrHMA3QSMD07DQ9lpfpku2rHp5XfiLTLnec3g5k6ItQzlhJjJXrnrldsS2Npxu99kwlTYHnScNcfaXC3Ibk3jc9D4ZgtLdpUiHnrDkDAN4FVqB0f1T9sAFwPhXpddVHpRaeBDAB0ad3E30khPwh0uw3bIMSTEhJPS1Xkff96oSpk2quVGCsx/4sD5nvMF+3PQrE9HpEaBjPkMXfeatXG0rHkrJ6fXbhDlzej5br7u9qNcZKdhvnrDtjN0ZTWMhoZiU0Vt7Gn+BxyVu2DsPiOKw9/231LgN/GuHGHPwIPf46ATORrId8AODc3Fz169EB0dDTi4+MxfPhwHDx4MNjJqvfcnVhSqdHgyBtau9yIkBNZhjZPG4W6+7sqdUO2DGRkJgEMfzNfcXsrC47XjoPk5oi1SvsGrmaiwWwI649GwGzoS1oS8m1mhgwZgrvvvhs9evTAlStX8PTTT2P//v344YcfEBUV5fT79aXNTCB5U5du27bHUVsf+Y09KjwMd7yVz7p7DXCn7ZYn11F+YSnuWbzVbrltCYna9pT26e2+7+mViNu6tA56ezV3OwK4WiIW6u3xqO6qU21mvvjiC6t/L1u2DPHx8dixYweysrKClKr6zZsibdu2PWptfSyL8yUJqm/RckDE6qfQIVxqHaV+Ha3ZW4KhXRJU5wdTqtqZNqQD5n9hX0Jje10q7ROoDYYclTqUGCtx9mK1YtC0fGsxBqbFo6j0IgAE7Rp0Z8A9d9oLhXp7PCJAA8GMLaPRCABo1qyZ4udVVVWoqqoy/7u8vDwg6dICXz30o8LDFJdHhtvXWnraw8SyOF+p7FAuQl+0+bceHBxBOOjcbVCr1o7qhTU/Yu7aH5Fj0724xFiJd/OKrNaVg5BRPZJwY9tmdtNo2Fa1qO1TAEhrGe30uCSFzwWACe/tMKfngZtSMK6ve7N22/L0XnUl8Aj2DNd8+SB/CPk2M5ZMJhOmTp2KPn36oHPnzorr5ObmwmAwmP8SExMDnEr3BGrALV+2OblYXaO4vKLa5JN9qr0927ZN+Gz3SeSuPWDXiJMzcwee2gPS2azXlm0yLAkB5K49gEWbCgHUXku9c9djsc2kkpIEZLWPAwBkJDbFvJGO23iozbQNAMPfsm9jYxdYOzwLtZ+//W0R+sxbj0WbCl26t23zAH+3D1MrEdtx9JxP96OEbd/IXzRVMjN58mTs378feXl5quvMmDEDTzzxhPnf5eXlIRvQBGrALV+/ibnSy8Gbfaptf9WkTFRUm8z76Z273u677DoaGLZv155WPcpVI2v2luCFNT/afT5v3QFERoRh1qffKwYSJgGrfWS1j8Nro68HBNAtuanivpVm2gZqA6gZH+9DbONw6MMbICU2ymG1lKPAxiRgnjhW7nGV3tpgVxrhSs8sX5eaqJVOTVmxCxerr/h1gspglgiRb4VaCZtmSmYeeeQRfP7559iwYQOuueYa1fUiIiIQExNj9ReKPHmTtf2+qyU6jh40nnCll4M3+1TbfkZiU2SmNjc/PJUeJjoJ7DrqJ/I1t2hTod3btTe9aRIMegztkgCFAhoIADM/+V61S7/lPuS3/kc+3IUpK3Zh86EzqvubNzJdMfMzobbKSD62fSeMise1ZEw3xfQqMf1WymRbGuFqzyxfT/Eh31+2x+/vkk1f50MUPKFYwhbyJTNCCDz66KNYvXo1Nm7ciJQU5SJirXH2Juso6vVF2wRvu206a2zo7T492T5Q+2YbCm8JdY3lNWdJfgDm5QxA7oh0u940rv4WCQY9crLTkLv2gMtp0klXG+26+9Y/qkcS0lpGY/hb9l20LY/tpXUHMX1IGl764qDVcQ3s2BLzLI7XVZbpUsoD5HY5/h67ZlSPJERFNMAjH+6yWh6sCSr9IdRKDuqKUC1hC/lgZvLkyfjwww/x6aefIjo6GqdO1c7tYzAYoNdr9wJ1dGM7mw/F3QtJfhPz9EEjs80cHDU29NU+1XrG2G5fB9/NR0PWSoyVyPl4n2q1ivwAVAtAXX2oPJSVCsilEw7SowMwMSsFQ9MTcLG6xrx9d6u5MhKbYt6IdMz4eJ/q/mqEQJdrmiAvZ4DdcVkeb2S4Dmv2nsKSvJ8cDgxpmS61PGDakA52wZO759IV3do0tZ/d3o8lm77KE1wRKnNm1UWhOjJ0yI8zI6mU5S5duhRjx451+v1QHmdGaVyIrPZxduNgSADyZ9yMBINedayL5Q/ciMzU5g735814Ed4M/e7uPuVeK+/kFTndH8fA8L+5a37A4m+LHK7z6eTeiqPtenLdlBgrsePoOUxZscv6QQvgjXu64oY2TbH50BmHbU0A18ci2lN8TrWExt3xjOTrce+JMry07qBiqY3lNtXGhlG6rj3tueeslNdyJGQJwLyR/n3w+/ue5ZxS/hXI81unxpkJ8VjLK0pvsvmFpYrdRqd/tBfvT+jltKjWUcbl6XgRzkqDfLnPlQXH7UoBHJU+cQwM7zn6/UqMlXgnz3EgA9j3ZJO/60lxdIJBj1sz9LhYfcXuQT+0SyvF7apVB7lybcglNLZVRjoJmJbdwaOu0ZmpzTEso1VtYPNzmWq61EqzbK/rRZsKzQ2K5WN2NGWD/JvuO2HEvLW1czYpBSpZ7eOs6rQEnP9G3pYO+fueDdWSg7oikCVs7gj5YKaus72xlQYFA4DNh0uxp/gcMhKbql5I/ipadZQ52L4he7NP+SGlFL4yM/IPZ9eMWm8eS2rtHrx9qKg96NW2q1Yd5ArLfeUdPoO3NhaaG+Q20Tf06Jq2Cmyub6WaLmcP9xJjJeats29LJE/ZYBugqLVvEgByPt5nFagoNaR39BtpofqGc0r5nzsDNAaKZnoz1RcJBj1+n95S8bPtv40DMapHEvJyBmD5AzciL2eAuVjam95Rjqj1VIkM1/l0n44enMyMfM+Va0bpt5fg2nxEvpgvSA4GbAN+te0qre/OvpJjI7FgU6Hd7NPe9jL0Jl2OZpyXS1Lk/dn+pkrrL9963Ly+O7+RP/MYX3KltyV5z5tr2h8YzISgB7PaKi7vnny1ONn2QvJnt0e1zOFidY1P96mUsQLWvVZkgRpsUCs8OR+uXDNKv/28ken4bsbNVsG0En89VPz5sPLmPvJXd1W1+0Ipfa6UpL2+/og5fe6cSy11rVZ64aO6jdVMISgjsSlG3tAaH+88YV6WdW0s4mMaqX7H30WrSsWKJcZKn+1Troe3bPcg91oZ18d6aHgtFHUHkqfnw9VrxlG7Dmf8VRztr+16eh+52z7InXYntm0UbFmmT23IAlsmUVvllNYy2uVzqbXqG7anq19CvjeTt0K5N5Mze4rPYfHmIqzZVwIB5w8qV2fN9WX3Tndn6lXbhm3PlC6tm6jOpK3Ukn7VpExcrK5xeEyWs3A7WzfUqP1m3vYs8MXvV9d4ck7c6WXobc9ApQbFtm1m5PTLBTpqmbxlo2BX8gVeLxRI7jy/GcyEME8eVM66PfqjVMObrpbuHqPaQ0OeWVvtmJQaRWqlVMfRb+ZNV31ZXe/e7ulkp+6cE1evY2+CcXfSt6f4HAqOnkOP5KaIj2mEncfOYbLNAHky267tzu6Lun69kHv8OThhneqaXZ950hvEsg2N5b8B/43c6E1xrrvHGBUeZg5cLNlONml5TGqNIkNl5EpHnP1mvij6r8vF8Z4G7/I5kdsiOcuoXe2uqna9y7N9W6bR0yEP1I55T3EZ3lYYL0iebsHy347ui1C4Xji6b2iwHEojEGMUOcJgJoR58qBylHl72lXWnxmHO8coH5tlIKMD7EZvtT0mR40iQ73Lt7PfzNlDNJCZfqg9YJQCwRkf70NURAN0a6M8CaUldwMhV9qeqA29YNt7qqzyslslJfJ5B6Aa/I7rm2I367iaUL4v2GYuNNiODK7U9T+QGMyEMHcHJ/LHW7y/Mw5Xj1GpdEUHYPGYbnjg/R0Oj8lRo8hQbsAIuBbsqT1EA5nph+IDRnHuIwCPfLjLpQDBMqN2Z8A/R5/bTn6pFNjUCGEe6M7Zvm3P+8S+KarBb2Zqc8wbme5wagpZqN4X/pwXKNSC8VC3/ehZxaB8x9FzuDUj8OePXbNDnDtdDJ11nXS3S2ugxpVw5RjVHkyR4Q1dOqaJfVPsLnYtjD/h6m9m21U/kGOC+Htf7nY7l9ePCg9T7dLsLI3v5tmXYLjaDVktvUqDQkoSoJREV/atdN6XfFukOiZUfmEpstrHIX/GzZhyczvV9IfyfeGv7uGhOAt0qFObasjV2eR9jSUzGuBqHbU3b/FKAlkt5ewYldrKyMeWmdpc9Zhs31wf7NsWQ7u0REW1STMNGD3phhzIId3d3Zc714e7JT6269/RtTU+2XVSsUuzWhrVpnDQwfkkjO5W85oE8GBWCpZ8W+SwO7VSSYlagP9g37Z4J6/IXNI5vGsr3PFWPkyiNnDKyU7D6F5J+MeGI3YN4l+/uyu6JTuvggsWR3mcpyUre4rPeVQKV5c5O5clxkqI33rL2QbnN7Sxn14jEBjM1CGuVtn4IjhSu9j9Ud2g1lZm2pCr8+YoHZPSm+s7eUUY1zdZc5mUu40uAzkmiCftnuTrY0LfFIzvm6KaYbo7dovt+p/sOolVkzJRfLbSbuJKd6ZhAIC7eyVix7FzEOIsuic3M68r3wPO2ujsO2G026ZOAtJbGzB7WCc8++kP9juF+hxRaud9XN9kjOubbJ7NWw5kgNoHT+66A8Bv96ZtXnFrRivFNIQKtTzO02lVzBNt2iwP5TZD/qaUh2e1jzNf65bnWsLVqlJ53WCdMwYzdYwvBxNLMOhxR1frwfuGd22lmnH4oj7bNkhS7YkEYP4XB9AkUn3eHF+UTmitHt0yvYGaDC7BoLfq2utquyeTABZ/W4Ql3xYp9oJw9/dTW7+i2oRbM1opTlyplMZfL1TZBQkSgA+3FuPDrcVWyywz8cRmkaptdNRK3k0CeHT5bugk5fYz0m/rzFt7AEdLL2LKwGutAnhHv3GCQXniWqB2zqnvcm72eC6rYLLN4wBYdXd3Nd8xV/tpsC2dvyjdozmr9gHi6rUuBKwa/eoA/OO32eyDeQ0xmKmDfNV1ssRYidW7TlgtW73rBFbtPKFYJOtt8KD0RqD0gJA5y7S8LZ0IxUatjizaVIh56w5YPWDlh1VkuA4Xq2tQYqz0eYazsuC4OZCRUFti5mq7J6A2Q1TqZaTWcHvvz2WKY+gora8DEBle21rKWaBv+XtLsB67SOmBZ3sPrJqUqdrQ3FmDW5Oo3Z9O1AZAut++Y/nQWL6tGMu3FWO+ReCX1T4Os2/vhDPlVRjYMd5uBm213lMmAXOjYC32crPM45QCNlfyHbXrUQf76VMc0doLjyNK58Ty2lc6XyYAzaIign7sbABMikqMlfh870nFOn61IllvJhZUK9Vx1IjTct9K5BID+fvulE5oZVI92aLNhchdZ98DBgCOn72IO97K90vjRtvzJAC89MVBxfPkaI4huQTDMn3y72dLbfu2jaXl7d7xVj4WbSpEfmEpACg+wJWOQxLAm/d0xWt3X+80GJFLgGz37w4hgDfu6YrlD9yI1+/pqrrPGR/vQ4mxEisLjqN37nrM/OR7vL7+CIa/ma/4297dM9FumSclD+40xJbzj6dX7fV7w1ql60onXQ1i3f3e6sm9XX5pqWsNh53NA6YkVEqxGMxoRCAnVpRv0LlrDth9JheHW7KcsdjTCQAdVRE4ekA4upEclRg4O59amlSvxFiJeevsf6saIbDz2Dm/BmXunCf5+nCUWdqmL721wW4dy+3b/o6jeiRh1aRMqx4VJlHbTsTRA0etMW2zqAh0T27mNIOXr0O5Z94/RndVnm38t2Vq99ENbZoiM7U5urVpql41hdrur7ZdrAVqx5iRz4V8Hy/fVmzev7wfd4L6/MJSLNpc6PJDWw6yHvlwFz7cVuz3FwLFIFbUBrGO0qmUX+WOSLcr3VLjyxeeUJk4V+lc2pJwNXAIpZ5vrGbSgEBWd6i1UQGuXrgAVOvpPW2z46hKyLK30t4TZXhp3UGn7UDUSgyGXa/e5sfV9ASSK0XYRaUXFatBdABMQvi1V5O750m+PpZ+V4Qlm4vsBjy0TZ+j7avdFxeraxTPB6BeNeloP3IGn2PTvkKuhlJqq3Jrhl6xjY7lvbH50BmH7V1ystNqG+va0AGApFx1JVcfAbC7jyU4b9tgeb1Z3idK5zCtZbTdFAxK3c8t+ath7ageSUhrGW0eSdkynY7aznjTxtBXPQZDpTpb/u3TWkbj1bszcPj0Bbz+zRG79R64qa25gXkotbViMBPivGlU60ldrlo98syhHfH7Lgnm7TjKADxps+NKY0Z5LJVhGa2c3khqGc2Oo8olFbbnc/OhM3YPrmnZHRSnifAXVzM5tbYl07PTzKUK/grK5N/NMp3O3tQSDHo8/ftOGNcnBTuOnnPYy0itETqgPtKts5mjlR44zq4/+aG389g5CAF0S659e3d0HTqbbdzZg/ShfqmABKsB9CQAuSPTzSU3toeok2q7jzsqaVL7bWyvN8uGnkrnUGkKBkejbQPWv22JsRLbj56FJEkujcjszMXqGo96JXnaxtDdQF4pP/bnIIDuUJq7zrKnkkwHmHuDhkoQI2MwE+I8jf49jfbVblDLQAbwz/wsrr4lubJvteOAwkPO9nwqvV0KcfWh4qxLsS+4ksmp9VySJw58KCsVgHIXXF+nWw783Jm2NsGgR7fk2gENl3xbW0qjNB2DbSP0T3adxIC0eNXfMTO1udUx21J74Di7/hIMegztYr/M2TF68yB9KCsVwzJaWQVR8vq2o/lKNl1j3X3Q2l5vziiVgDgKJCUAE/omA7Ce00f+zJV5fRy9oAW6NNVZAGxJLT8O5HhQatRK4wWuVo2aRG0gMz07LeSCGBmDmRDnyQ3qTbTvzg3qD74IkuQMb/qQNLz0hXWVVLc2TZ2eT0e9bgDrLsU52WlIv8bg854MzjI5pcxRrZutK0Gipz0ybAM/AeVrTWn7SgMa2o4BpHYeIBw/rC2P2dWqSSA0JlG0pRREAVePccfRc+bByixLf9y5j52VqDhjG0jaVsllXRuLvCOlePvbIsX5oeT2Po7yKGcvaMHIu1y9t9wpRdRJQOmFSx73PHTnXlbr6CETAEb3SMLyguMwCefDYQQTg5kQ58kN6m2078uxagLNNsObnp2GLq2bWB2Hs/PprJpCJgBzmwZf13U76pacHBupmDnm5QxQ7LIMeDbLsitcudYWbf6ty7jF9rPaxykOaDi0S0urjFgtmO+W3NTp7+hu1aQWye1zlLhzH6t14XaVXL1luV+5NCmxmd5u4D4lcnsfdwMCy/Wz2sfh1bszoPutMXUgfmtnAbCje8S2FFFuhyWPPeRunuLKvSwHO/tOGM0dJNToAKwoOG4OTINVDeYKBjMa4G5w4Yvi1lB8Q3VGKcN7ad1B5OUMcKmkwlG1jaP2A/K+fHmTJxj0mNQ/Ff/YUGi1/KUvDqJ1U71Hwao/6uydXWuLNhVaNWKVt//a6OsVj0GpHYZa0OLOfaHF69kXXD3uBIMeD9yUgre/LXJpu7aBj0kAn+0+WdvOB9alSWoD99lyVCLhStDs64a0vho/xtk9Yhn8PfLhLo+nVXB2L5cYK/FuXhHeyXM8dYZMnrjU9poI1dGRGcxohDuZcbCrioLFnRIp2/PprNpGrWeHK/vyxMqC43jTJpCR9+GsikVte/6os3d0rTnqMq50DIByOwxHQUt9DVL8YVzfFCyxedCFSRKmDelgHowRqG2bk5OdZtUwGbg6TYLcVksWFR7m0v5NDkoknAUEvm5I68vAyJX8OMGgR9Ooi15Nq+DoXv5sz0nkrrW/F9XoAKye1BvxMY0Ur4lQGFfGFoOZOiqrfRxeG309YNNosC7ztERKLSO0rLZxpUuxuz0ZnKVHKW5ytYrFleNTq7N3N7NSCzaKSu0zZ6D24SAfg6MA0TIjZ9Dif2oP3VE9kjDs+lZWbXPUftv56w5gWEYru5IAdygFIs4CAl82pPVHDyNXShG9vRfVvp93+Aze3Gj/YqRGPrfyeDtaeTFmMKNBzh6MoTJuQaB5WiLlakaYYLjapdi2YakOV3tq2HL391AdZt2i27MrVWWuZPS2dfaeZFZq16OjLuPyMUSGh+HR5bsVtxuqb4B1maPu5LZtcxxNk7D50Bm7Qf0s6QDFFwKZ0v3nKCDwVU8mtQaxvih1dRaQe1uirvT9adkdXCqRUWtfCGinDSWDGY1x9mBUe6tQGuCqLvLkxnM3I7RtWLo07yiW5P2Et78twpK8IkwfUtvDKSo8DMfPVrj9e6jNMbR6Um+r0UldqSob1SMJUeFhdg8etZ4/7mZWjq7HBIP1BJRy107LagilcXAA18arIf9wpRQswaA8qF+YJCEyXOdw4LyBafHonxaHWZ9+r1oqp3T/OXqJ80XVutJYK47S4w/eBg6WPdwgAecqqp1+RylvsaWFklFJCHdGhtCe8vJyGAwGGI1GxMTEBDs5XikxVlrNDgv8Voxo0cA1v7AU9yzeavddy0nz6ktJjTtWFhxXLF53Ruk3cYWz38Pd9KhdG9OyO9j1WHDn+Bxxdj1a9mKSUNvOQm4gqnasOgATs1Iwro//xvAh31m0udButvTEZpGKeZAt6bf/sX0CKV0rrpZulhgrrQIBV6t3Hd3HvrpfPOVuQ2TbCVMdZU2uju8TLO48v1kyoyFq1QVr9pZg6G+D2qkV7Wuha10wefpG5On4HJa/x4xV+xAZHobuyc3M+3U3PWrXhhxMyHQSsGpSpkvzzzjLRB02ONx90uqtXeDqdBK229JKMTbZkwf1sw0gXB3aQOlJKwDMW3d1PBNHpc3Hz1ZYjSBsWYLgTvWuqyOfB5q7VdRK07jUFwxmNEQtUHlhzY94ce2Pil1ZleqmQ7VrnRJfdY90hSdFqa6OSSNT+j3UenG4kx61qinbdJkEUFHtqLVCLVcyUbXquchwnWovJrXrTgvF2KTM9rezrfLxhMDVgGXb0bOKQfPtb+ab/21bwuBuI15XRz73FVfyNU8aIrv7ciWf57rwcstZszVEziSUZjSVL/QSY6V55t7lD9yI1ZN7283eKz9wQmGWVkfkWX9dmanXGX/NSuvoN7GkA/DmPV0Vfw+ZSQAzPt6HPcXnnKbX9nPbdIRJEqZnpyn+9p707pqxqjZdjo5dLo5XmiMHsB5Yjeo2yzxoRnaa0/tDiRywzF3jvAGrgPWM4e7Oeq92LfvjAe9qvubKMdjmAymxUVA71bemJyjOxO7ovGgJS2Y0Ri6SX7O3BC+s+dHqM7WurLYN44Z3bWUekTNU29D4snukO6NielICZFlN8t2RM3hrY6FiG5WhXWonSHT01moCcPub+ea6bqX0qh2PUnVNk8iGPundZRLA8Dfz7erXlfapVs0QyvO6kO9ZNZS/vpV9D0AXBqNUolYSKvekUqtudxbIB6K60518zdkxqOUDOdlpdj2YwiQJz9zaEQ9kpWD4W/lWVc91pdcgS2Y0KMGgx9Au9lG2own05LekVZMysXrXCbubybYEwF8lGa5y981KjSulDL4oAUow6HH87EW7QEaebTurfZz5fI7qkYRVkzIxZWA71e3Jm7D9fdQyQ8sSmszU5lZtb+TfPi9ngFuTjSqlSelasd2n7VuuDsAMm15MVL/I18hDWanm6/G7nJsxb6TzUk1bD/dPVSxhsCz5U7oG1YZOUEqnv4Jud/I1R6VFjvKBh7JSMSM7zfxwt/xeRmJTzHOxBCrYzwB3sWRGozYfOmO3zJUJ9JSGFvf3sOCe8NW4Ec5KGZTmCPKkBEh15lkB5K49YH5T0knA4Ota4ov9p8yz0jp7M7X8fTwZHMzd9ihyJqp0PK62t2KjXlJjeT3aXicAFEudLS3c+FPtCMQ2oxJbzhhuuW3boRNcyc8cldR6U4rrbr5mOdWBSQh0T24GwPnYWA/1SzWXhnkybkwoPAPcxWBGg9RGiC2rvKy4risT9/lrWHBP+WLcCEC9ga5cyqA2R5C7DaRdbXhnEsC6/aes0iFZ/LcSy9/HF0GeK5nxqB5JSGsZbZ4ryZN9sVEvucL2OhnaJQEvrv3R4cjQXa5pgvwZNyvOGG5rSd5PbuVnjh7k3j7k3c3XbOdTspyo1Vk+IG+zqPSi1b/l//Zlw+NQwGomDVJ7cM5fd8CqSFCp+sRZQzd3q3c8LYp05XueVJHYko9XqdrEco4gS56UAKlVzbhCAHjgprbm30QCzI34bH8fbxsqulOllpHY1KoaIJSHMqe6w1mjevn+TDDocWtGKwztYt/dX+ZJfqZWfeOsitdVruZrKwuOo3fueiz+tshunwCc5gOeVp+7c85CqSqKJTMalBIb5XAocUd1qs4m7nPnzd/TtxR3vueLt3tHpQyJzfSY0DfF/Obj6QPbm+6oOgDj+iZjXN9kq+J2tWJgtaJnZ1yZVde2xIbVRRQMltfd3p/L8NIXBz0qoXW3JNPRg1xA+KQUF3Cerzman03ep6N705vSFVfPWahVRTGY0aAEg/pQ4vIF56xOVe1mcrUY1NObJVhFmHIpg1qvLgnA0PSWeDCrrUsDyimxzFwiw3UoPluJKSt2Oa1+suzlY1sUrMZyFm9XMxJH14Sj7bG6iIJBqTeUuwG1bX6mk4C7elyDHcfOoVubq/eYHMhHhYc5fJD7oh2fK5bazFRtyXKfavemNxNvuvIMCMWqKAYzGvVQv1RAgt1Q4vKF5E3bClfexj29WXw5u60jzkoZIsN15kAGqC3lWrPvFNbuO+XV8N6WmUtGYlNcrL5izhRsS9MkADm/t+7l46/BtADHg9yFWsZEZMmbgDqrfRxm394JGw+cxjcHzmD5tmIs31ZsHmgPgFUgf0fX1vhk10nFB7m/Z5AuMVZi+9GzWPxtkeLnanOWuds20hlnz4BA5ePuYDCjYUpDicu8bUDrLPPw9GbxVS8lR5xNfqjWqwvw/YiYllVCj3y4y+ozCcCwjFYupduSpxmJ3VsqgGlDOqD4XGXIZUxEvrCy4Ljq7N0CwPSP95nnSQNq86VPdp3EqkmZqKg2BXQGaUcTXQK1g949c2tHu32q5RveBl6OngGByMfdxWBG4xxdcP688TwNlnzVS0mNq6UWjqYh8PWDPMGgR9Ooi/ZtnADsPHYOTaNqi7d9NZiWI6N6JKGs8jLm/VaiZ9m91VKwMyYibzlqd2LJtolbjRCoqDYhM7W54vr+qHYtMVaqBl1Abbs6pUDG07aR3vJ3Pu4JBjN1nD/bO3h6s/jzJnO11EK+GZXehPzxIFcKQCQJeOTDXarjzdQIYQ52UmKjAMBclOxpRrKn+JzV5JNKmadaUTaRlng6Cazt/e9q1a+rs3PLbXMuVteY1383r8jh0Axq96OnbSN9IdQ6BzCYqUMCOSmjzNObxV83mTulFuZBtb4rwpLNRTD9tu607A6KYzMAnp9jpYaIlkO5K2VktsGOvJ5clJyXM8DljKTEWImleUV4W6Uu3tLrd3fFrRbVX0Ra5O4ksIB9IO9K1a+r1cNq1Ui3X98Kn+0+abe+BOAf93RVHEPHUYNlT+ZA8yZfC3YQI5OE8HBaU40oLy+HwWCA0WhETExMsJPjN6HWTS5Y5If2km+vBicvjujs0oifcjfQ+V8csDuPaoNXuXuO5f2UXriER5fvtvtczpiczVsTJknIyxngUkbirC7e0+0ShbqVBceRs2qfuSRSAjD8+lZYrRA8AMA/Rl8N5EuMlegzb73di5Hl/eHKOmrrOfNgVgqe/n0nq20UlV7Evp+NVnnUkOtaYt1vI4rLx+hOJ4ZQfna48/xmyUwdEIrd5ILB9qZ8sG9bjOub7FbR8L1L/s/uPJZVXsa8tdZtS5ydY7U3HflNpsRYad+7SQJWT+qNimqTarAjc7Vdj9o0C+Z9/vb/AhwUj+oeywb4QgDdkmuHXVAKZnTS1c8B16qsXa3WdrfKSycB4/qkmP+t9kJiEsBaixHFAfc6MdSlZweDmTogFLvJBZrSTflOXhHGqUwup/Q2ktgsUvE8qjWStRwV0zJw8fhNRwDxMY3MwY6jInJX2/U4ykR1AFZP7o34mEYhU+9N5GsJBj2Gdrl6XecXliquN7FvW/PnKbFRLk398uuFKtV1LKuClNZTY/tS4eyFRImr+X9denYwmKkD/NlNLhjtcDzhzk2p9jayalKmff0z1DMgnQT8d88JLN9WbG7LMn1ImrkI2HLbtm86RaX2vZsEYNVwz7KNjfRbMY6A/QzAjn4jtXYDOgC5I9PNAwSG8m9L5EtK94QOQPPocHNVkPwSotbQXq2kRF7HchBKmQTHE8vqpNr2at2Sm1oFMp/vPel2Q2ZX8/9Q7GLtKQYzdYC/usmFcl2qLXduSrXAp6LaZHcepw3pYBWcyCTUtmn5cFuxeZlJ/DaIoc3+lIIqR+mVg5Os9nFWjXwB2M0AfEfX1li964Tqb6TU8Hiik+o3orpMKb+cNqSDeQBS4OpLSF7OALuG9molJRKAadkdkNU+TrF9jKN4RJ71+1aVcafcoYPrvRFDsYu1pzQRzLz55pv461//ilOnTiEjIwNvvPEGevbsGexkhRRfd5PTWl2qOzelo0AiM7W53XlsEtnQaqC5u3smmktjbJkAq0G4gNrMJTLcek5XtfQ6mlagxFhpNwPwxztPXN23ym8Ual0oiYLN9p5wVLIrjzdTVHoRp8svYdvRs6oDbs5fdwAXLl12KQDRScCcYdehWVS4XY8lR1VLlqU70m//I37LLzx5UbEdGf1idQ1KjJWayydCPphZuXIlnnjiCSxcuBC9evXCq6++isGDB+PgwYOIj48PdvJCjnA6RJRrtFiX6upD21ngY9ndsMRYicRmkVYjghaVXrQqkbEkd+1+ad1B84STJgB3vJVvV2pim14AVm90tsGJK40I1X6jUOpCSRQKbO8JtRccd0pITAJ4Y32hS/s3CaBdfLTi4Hxq9/rAtHh8c+C0+d8CgE5c7cItf1c+PlclGPQuzfcWys0OQj6Yefnll/HAAw9g3LhxAICFCxdizZo1ePfdd5GTkxPk1IUOX1cJabUu1dWHtiuBj9I5lTMetcZ807I74KGsVNyY0gzD38q3GiZdqdTEMr1KUyxYBieujJuhhd+IKNSoveAA8KiqxxWO7lXFdj0SrAIZmQlAs6gIjyaflblSEh/qzQ50zlcJnurqauzYsQODBg0yL9PpdBg0aBC2bNmi+J2qqiqUl5db/dV1ahdiibHS423KN3eYVNt5V8t1qWoSDLUz8qp1rVY7pwkGPSb0TbH7DgB0ad0EAHCxukZxmHS595MSOQOzZDtDru1vMvKG1nX6NyIKlFE9kpCXMwDLH7gReTkDMKpHksejCMseG9hOcbmzUbaV7nW1PEcnQXWyWFefAY5K4gH/PGN8LaRLZkpLS1FTU4MWLVpYLW/RogUOHDig+J3c3FzMmTMnEMkLGf6qEqrPbS2cndPxfVOw5FvrIcgtAw9PSrZcafej9Js8ObhDvfyNiHzNtmTXk1GEZWGShLt7JqFVE71Vm7uJWSkY1yfF6b2qVA0tD9ppaXp2Gi5W13j1DHCWX2mh2UFIBzOemDFjBp544gnzv8vLy5GYmBjEFPmfP6uE6mtbC2fnNMGgx7yRjtvdeNJLwJUA0vY3qa+/EZG/2d7HSuTxmg6cOq94v3vzUmh7b9vOej89Ow0PZaUqjkvlzjPAWX6lhWYHIT2dQXV1NSIjI/HRRx9h+PDh5uVjxoxBWVkZPv30U6fbqE/TGdheiKFUn6lFrpxTeXoCtUzK2edEFPrk+zgyXIc1+0qs5nKzzBcCcb+r7cMXzwBH6Q/GM8ad53dIBzMA0KtXL/Ts2RNvvPEGAMBkMiEpKQmPPPKISw2A60swA/DB6Q88p0RkK1TzBX+nK9DHXafmZnriiScwZswYdO/eHT179sSrr76Kixcvmns30VWsbvA9nlMishWq+YK/0xWqxw1oIJgZNWoUzpw5g2effRanTp3C9ddfjy+++MKuUTARERHVTyFfzeSt+lTNREREVFe48/wO6XFmiIiIiJxhMENERESaxmCGiIiINI3BDBEREWkagxkiIiLSNAYzREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk0L+ekMvCUPcFxeXh7klBAREZGr5Oe2KxMV1Plg5vz58wCAxMTEIKeEiIiI3HX+/HkYDAaH69T5uZlMJhNOnjyJ6OhoSJLk1bbKy8uRmJiI4uLiejvPE88BzwHAcyDjeeA5AHgOAP+cAyEEzp8/j1atWkGnc9wqps6XzOh0OlxzzTU+3WZMTEy9vWBlPAc8BwDPgYzngecA4DkAfH8OnJXIyNgAmIiIiDSNwQwRERFpGoMZN0RERGDWrFmIiIgIdlKChueA5wDgOZDxPPAcADwHQPDPQZ1vAExERER1G0tmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJpWr4OZBQsWoEuXLuZBfjIzM7Fu3Trz55cuXcLkyZPRvHlzNG7cGCNHjsQvv/xitY3jx49j6NChiIyMRHx8PJ566ilcuXIl0IfiM/PmzYMkSZg6dap5WX04D7Nnz4YkSVZ/aWlp5s/rwzkAgBMnTuC+++5D8+bNodfrkZ6eju3bt5s/F0Lg2WefRUJCAvR6PQYNGoTDhw9bbePs2bO49957ERMTgyZNmmDChAm4cOFCoA/FY8nJyXbXgiRJmDx5MoD6cS3U1NRg5syZSElJgV6vR2pqKp5//nmrOXLqw7Vw/vx5TJ06FW3atIFer0fv3r1RUFBg/ryunYPNmzfjtttuQ6tWrSBJEj755BOrz311vHv37sVNN92ERo0aITExES+99JL3iRf12GeffSbWrFkjDh06JA4ePCiefvpp0bBhQ7F//34hhBB/+tOfRGJiovjmm2/E9u3bxY033ih69+5t/v6VK1dE586dxaBBg8SuXbvE2rVrRWxsrJgxY0awDskr27ZtE8nJyaJLly7iscceMy+vD+dh1qxZ4rrrrhMlJSXmvzNnzpg/rw/n4OzZs6JNmzZi7NixYuvWreKnn34SX375pThy5Ih5nXnz5gmDwSA++eQTsWfPHjFs2DCRkpIiKisrzesMGTJEZGRkiP/7v/8T3377rWjXrp0YPXp0MA7JI6dPn7a6Dr7++msBQGzYsEEIUT+uhblz54rmzZuLzz//XBQVFYn//Oc/onHjxuK1114zr1MfroW77rpLdOrUSWzatEkcPnxYzJo1S8TExIiff/5ZCFH3zsHatWvFM888I1atWiUAiNWrV1t97ovjNRqNokWLFuLee+8V+/fvF8uXLxd6vV4sWrTIq7TX62BGSdOmTcWSJUtEWVmZaNiwofjPf/5j/uzHH38UAMSWLVuEELU/vE6nE6dOnTKvs2DBAhETEyOqqqoCnnZvnD9/Xlx77bXi66+/Fv369TMHM/XlPMyaNUtkZGQoflZfzsH06dNF3759VT83mUyiZcuW4q9//at5WVlZmYiIiBDLly8XQgjxww8/CACioKDAvM66deuEJEnixIkT/ku8Hz322GMiNTVVmEymenMtDB06VIwfP95q2YgRI8S9994rhKgf10JFRYUICwsTn3/+udXyG264QTzzzDN1/hzYBjO+Ot633npLNG3a1OpemD59uujQoYNX6a3X1UyWampqsGLFCly8eBGZmZnYsWMHLl++jEGDBpnXSUtLQ1JSErZs2QIA2LJlC9LT09GiRQvzOoMHD0Z5eTm+//77gB+DNyZPnoyhQ4daHS+AenUeDh8+jFatWqFt27a49957cfz4cQD15xx89tln6N69O/7whz8gPj4eXbt2xeLFi82fFxUV4dSpU1bnwWAwoFevXlbnoUmTJujevbt5nUGDBkGn02Hr1q2BOxgfqa6uxgcffIDx48dDkqR6cy307t0b33zzDQ4dOgQA2LNnD/Ly8pCdnQ2gflwLV65cQU1NDRo1amS1XK/XIy8vr16cA0u+Ot4tW7YgKysL4eHh5nUGDx6MgwcP4ty5cx6nr85PNOnMvn37kJmZiUuXLqFx48ZYvXo1OnXqhN27dyM8PBxNmjSxWr9FixY4deoUAODUqVNWGZb8ufyZVqxYsQI7d+60qguWnTp1ql6ch169emHZsmXo0KEDSkpKMGfOHNx0003Yv39/vTkHP/30ExYsWIAnnngCTz/9NAoKCjBlyhSEh4djzJgx5uNQOk7L8xAfH2/1eYMGDdCsWTPNnAdLn3zyCcrKyjB27FgA9ed+yMnJQXl5OdLS0hAWFoaamhrMnTsX9957LwDUi2shOjoamZmZeP7559GxY0e0aNECy5cvx5YtW9CuXbt6cQ4s+ep4T506hZSUFLttyJ81bdrUo/TV+2CmQ4cO2L17N4xGIz766COMGTMGmzZtCnayAqa4uBiPPfYYvv76a7s3kPpEfuMEgC5duqBXr15o06YN/v3vf0Ov1wcxZYFjMpnQvXt3vPjiiwCArl27Yv/+/Vi4cCHGjBkT5NQFxzvvvIPs7Gy0atUq2EkJqH//+9/417/+hQ8//BDXXXcddu/ejalTp6JVq1b16lr45z//ifHjx6N169YICwvDDTfcgNGjR2PHjh3BThrZqPfVTOHh4WjXrh26deuG3NxcZGRk4LXXXkPLli1RXV2NsrIyq/V/+eUXtGzZEgDQsmVLu14M8r/ldULdjh07cPr0adxwww1o0KABGjRogE2bNuH1119HgwYN0KJFi3pxHmw1adIE7du3x5EjR+rNtZCQkIBOnTpZLevYsaO5uk0+DqXjtDwPp0+ftvr8ypUrOHv2rGbOg+zYsWP43//+h4kTJ5qX1Zdr4amnnkJOTg7uvvtupKen4/7778fjjz+O3NxcAPXnWkhNTcWmTZtw4cIFFBcXY9u2bbh8+TLatm1bb86BzFfH66/7o94HM7ZMJhOqqqrQrVs3NGzYEN988435s4MHD+L48ePIzMwEAGRmZmLfvn1WP97XX3+NmJgYu4dCqBo4cCD27duH3bt3m/+6d++Oe++91/zf9eE82Lpw4QIKCwuRkJBQb66FPn364ODBg1bLDh06hDZt2gAAUlJS0LJlS6vzUF5ejq1bt1qdh7KyMqs31/Xr18NkMqFXr14BOArfWbp0KeLj4zF06FDzsvpyLVRUVECns348hIWFwWQyAah/10JUVBQSEhJw7tw5fPnll7j99tvr3Tnw1fFmZmZi8+bNuHz5snmdr7/+Gh06dPC4iglA/e6anZOTIzZt2iSKiorE3r17RU5OjpAkSXz11VdCiNoumElJSWL9+vVi+/btIjMzU2RmZpq/L3fBvOWWW8Tu3bvFF198IeLi4jTVBVOJZW8mIerHefjzn/8sNm7cKIqKisR3330nBg0aJGJjY8Xp06eFEPXjHGzbtk00aNBAzJ07Vxw+fFj861//EpGRkeKDDz4wrzNv3jzRpEkT8emnn4q9e/eK22+/XbFrZteuXcXWrVtFXl6euPbaa0O2K6qampoakZSUJKZPn273WX24FsaMGSNat25t7pq9atUqERsbK6ZNm2Zepz5cC1988YVYt26d+Omnn8RXX30lMjIyRK9evUR1dbUQou6dg/Pnz4tdu3aJXbt2CQDi5ZdfFrt27RLHjh0TQvjmeMvKykSLFi3E/fffL/bv3y9WrFghIiMj2TXbG+PHjxdt2rQR4eHhIi4uTgwcONAcyAghRGVlpZg0aZJo2rSpiIyMFHfccYcoKSmx2sbRo0dFdna20Ov1IjY2Vvz5z38Wly9fDvSh+JRtMFMfzsOoUaNEQkKCCA8PF61btxajRo2yGl+lPpwDIYT473//Kzp37iwiIiJEWlqaePvtt60+N5lMYubMmaJFixYiIiJCDBw4UBw8eNBqnV9//VWMHj1aNG7cWMTExIhx48aJ8+fPB/IwvPbll18KAHbHJkT9uBbKy8vFY489JpKSkkSjRo1E27ZtxTPPPGPVnbY+XAsrV64Ubdu2FeHh4aJly5Zi8uTJoqyszPx5XTsHGzZsEADs/saMGSOE8N3x7tmzR/Tt21dERESI1q1bi3nz5nmddkkIiyEdiYiIiDSGbWaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRpDGaISFH//v0xderUYCfD72bPno3rr78+2MkgIi8wmCGiOqm6ujqg+xNC4MqVKwHdJxHVYjBDRHbGjh2LTZs24bXXXoMkSZAkCUePHsX+/fuRnZ2Nxo0bo0WLFrj//vtRWlpq/l7//v3x6KOPYurUqWjatClatGiBxYsX4+LFixg3bhyio6PRrl07rFu3zvydjRs3QpIkrFmzBl26dEGjRo1w4403Yv/+/VZpysvLw0033QS9Xo/ExERMmTIFFy9eNH+enJyM559/Hn/84x8RExODBx98EAAwffp0tG/fHpGRkWjbti1mzpxpnrF32bJlmDNnDvbs2WM+zmXLluHo0aOQJAm7d+82b7+srAySJGHjxo1W6V63bh26deuGiIgI5OXlwWQyITc3FykpKdDr9cjIyMBHH33k65+IiCwwmCEiO6+99hoyMzPxwAMPoKSkBCUlJYiOjsbNN9+Mrl27Yvv27fjiiy/wyy+/4K677rL67nvvvYfY2Fhs27YNjz76KB5++GH84Q9/QO/evbFz507ccsstuP/++1FRUWH1vaeeegp///vfUVBQgLi4ONx2223moKOwsBBDhgzByJEjsXfvXqxcuRJ5eXl45JFHrLbxt7/9DRkZGdi1axdmzpwJAIiOjsayZcvwww8/4LXXXsPixYvxyiuvAABGjRqFP//5z7juuuvMxzlq1Ci3zlVOTg7mzZuHH3/8EV26dEFubi7ef/99LFy4EN9//z0ef/xx3Hfffdi0aZNb2yUiN3g9VSUR1Um2s6c///zz4pZbbrFap7i42Gp26X79+om+ffuaP79y5YqIiooS999/v3lZSUmJACC2bNkihLg6U++KFSvM6/z6669Cr9eLlStXCiGEmDBhgnjwwQet9v3tt98KnU4nKisrhRBCtGnTRgwfPtzpcf31r38V3bp1M/971qxZIiMjw2qdoqIiAUDs2rXLvOzcuXMCgNiwYYNVuj/55BPzOpcuXRKRkZEiPz/fansTJkwQo0ePdpo2IvJMg2AGUkSkHXv27MGGDRvQuHFju88KCwvRvn17AECXLl3My8PCwtC8eXOkp6ebl7Vo0QIAcPr0aattZGZmmv+7WbNm6NChA3788Ufzvvfu3Yt//etf5nWEEDCZTCgqKkLHjh0BAN27d7dL28qVK/H666+jsLAQFy5cwJUrVxATE+P28aux3OeRI0dQUVGB3/3ud1brVFdXo2vXrj7bJxFZYzBDRC65cOECbrvtNsyfP9/us4SEBPN/N2zY0OozSZKslkmSBAAwmUxu7fuhhx7ClClT7D5LSkoy/3dUVJTVZ1u2bMG9996LOXPmYPDgwTAYDFixYgX+/ve/O9yfTldbAy+EMC+Tq7xsWe7zwoULAIA1a9agdevWVutFREQ43CcReY7BDBEpCg8PR01NjfnfN9xwAz7++GMkJyejQQPfZx3/93//Zw5Mzp07h0OHDplLXG644Qb88MMPaNeunVvbzM/PR5s2bfDMM8+Ylx07dsxqHdvjBIC4uDgAQElJiblExbIxsJpOnTohIiICx48fR79+/dxKKxF5jg2AiUhRcnIytm7diqNHj6K0tBSTJ0/G2bNnMXr0aBQUFKCwsBBffvklxo0bZxcMeOK5557DN998g/3792Ps2LGIjY3F8OHDAdT2SMrPz8cjjzyC3bt34/Dhw/j000/tGgDbuvbaa3H8+HGsWLEChYWFeP3117F69Wq74ywqKsLu3btRWlqKqqoq6PV63HjjjeaGvZs2bcJf/vIXp8cQHR2NJ598Eo8//jjee+89FBYWYufOnXjjjTfw3nvveXxuiMgxBjNEpOjJJ59EWFgYOnXqhLi4OFRXV+O7775DTU0NbrnlFqSnp2Pq1Klo0qSJuVrGG/PmzcNjjz2Gbt264dSpU/jvf/+L8PBwALXtcDZt2oRDhw7hpptuQteuXfHss8+iVatWDrc5bNgwPP7443jkkUdw/fXXIz8/39zLSTZy5EgMGTIEAwYMQFxcHJYvXw4AePfdd3HlyhV069YNU6dOxQsvvODScTz//POYOXMmcnNz0bFjRwwZMgRr1qxBSkqKB2eFiFwhCctKYSKiANu4cSMGDBiAc+fOoUmTJsFODhFpEEtmiIiISNMYzBAREZGmsZqJiIiINI0lM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRp/w8ekd4YKrY9/QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.3 Visualizing Surrogates\n", + "\n", + "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "surrogate_scatter2D(keras_surrogate, data_training)\n", - "surrogate_parity(keras_surrogate, data_training)\n", - "surrogate_residual(keras_surrogate, data_training)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.4 Model Validation\n", - "\n", - "We check the fit on the validation set to see if the surrogate is fitting well. This step can be used to check for overfitting on the training set." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "4/4 [==============================] - 0s 5ms/step\n" - ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABosUlEQVR4nO3deVzU1f4/8NfMCAgIQyyyuADill4zl1SszIWCQs2r3tTKvUy/YrnkdsutrrlUrrjUzdK6WmnaIpZlLnVNpFLRTOUqP3AJkRhkwA105vz+oPnIsA4w8Pl8Zl7Px2MeOvM5M3Pm4zjznvc55300QggBIiIiIqpTWrk7QEREROSMGIQRERERyYBBGBEREZEMGIQRERERyYBBGBEREZEMGIQRERERyYBBGBEREZEMGIQRERERyYBBGBEREZEMGIQREVGFNm7cCI1Gg/T0dLm7QuRQGIQRkex++eUXxMXFoW3btvD09ETTpk3x1FNP4X//+1+ptj179oRGo4FGo4FWq4W3tzdatWqF4cOHY8+ePVV63p07d+KRRx5Bw4YN4eHhgWbNmuGpp57C7t277fXSSnnjjTfwxRdflLr90KFDmD9/PnJzc2vtuUuaP3++dC41Gg08PDzQpk0bvPrqq8jLy7PLc2zZsgUrVqywy2MRORoGYUQkuyVLlmD79u3o06cPVq5ciXHjxuHHH39Ex44dcfLkyVLtGzdujI8++ggffvgh3nzzTfTv3x+HDh3CY489hiFDhuD27duVPudbb72F/v37Q6PRYPbs2Vi+fDkGDRqEs2fP4pNPPqmNlwmg4iBswYIFdRqEWaxbtw4fffQRli1bhtatW2PhwoWIiYmBPbYWZhBGVL56cneAiGjq1KnYsmULXF1dpduGDBmCdu3aYfHixfjPf/5j1V6v1+PZZ5+1um3x4sV48cUXsXbtWoSFhWHJkiXlPt+dO3fw+uuv49FHH8V3331X6nhWVlYNX5Fy3LhxAx4eHhW2GTx4MPz9/QEA48ePx6BBg7Bjxw4cPnwYkZGRddFNIqfETBgRya579+5WARgAtGjRAm3btsXp06dtegydTodVq1ahTZs2iI+Ph9FoLLdtdnY28vLy8OCDD5Z5vGHDhlbXb926hfnz56Nly5aoX78+goODMXDgQKSmpkpt3nrrLXTv3h1+fn5wd3dHp06d8Nlnn1k9jkajwfXr17Fp0yZpCHDUqFGYP38+pk+fDgAIDw+XjhWfg/Wf//wHnTp1gru7O3x9fTF06FBcvHjR6vF79uyJv/3tbzhy5Ah69OgBDw8P/POf/7Tp/BXXu3dvAEBaWlqF7dauXYu2bdvCzc0NISEhmDhxolUmr2fPnti1axfOnz8vvaawsLAq94fIUTETRkSKJITAlStX0LZtW5vvo9PpMGzYMMyZMwcHDx5EbGxsme0aNmwId3d37Ny5E5MmTYKvr2+5j2kymdC3b1/s3bsXQ4cOxUsvvYT8/Hzs2bMHJ0+eREREBABg5cqV6N+/P5555hkUFhbik08+wT/+8Q8kJCRI/fjoo4/w3HPPoUuXLhg3bhwAICIiAp6envjf//6Hjz/+GMuXL5eyUgEBAQCAhQsXYs6cOXjqqafw3HPP4c8//8Tq1avRo0cPHDt2DD4+PlJ/DQYDHn/8cQwdOhTPPvssAgMDbT5/Fpbg0s/Pr9w28+fPx4IFCxAVFYUJEyYgJSUF69atwy+//IKffvoJLi4ueOWVV2A0GnHp0iUsX74cANCgQYMq94fIYQkiIgX66KOPBACxYcMGq9sfeeQR0bZt23Lv9/nnnwsAYuXKlRU+/ty5cwUA4enpKR5//HGxcOFCceTIkVLt3n//fQFALFu2rNQxs9ks/f3GjRtWxwoLC8Xf/vY30bt3b6vbPT09xciRI0s91ptvvikAiLS0NKvb09PThU6nEwsXLrS6/bfffhP16tWzuv2RRx4RAMT69evLfd3FzZs3TwAQKSkp4s8//xRpaWninXfeEW5ubiIwMFBcv35dCCHEBx98YNW3rKws4erqKh577DFhMpmkx4uPjxcAxPvvvy/dFhsbK0JDQ23qD5Gz4XAkESnOmTNnMHHiRERGRmLkyJFVuq8l05Kfn19huwULFmDLli3o0KEDvv32W7zyyivo1KkTOnbsaDUEun37dvj7+2PSpEmlHkOj0Uh/d3d3l/5+9epVGI1GPPzwwzh69GiV+l/Sjh07YDab8dRTTyE7O1u6BAUFoUWLFti/f79Vezc3N4wePbpKz9GqVSsEBAQgPDwcL7zwApo3b45du3aVO5fs+++/R2FhISZPngyt9u7XyPPPPw9vb2/s2rWr6i+UyAlxOJKIFCUzMxOxsbHQ6/X47LPPoNPpqnT/a9euAQC8vLwqbTts2DAMGzYMeXl5SEpKwsaNG7Flyxb069cPJ0+eRP369ZGamopWrVqhXr2KPy4TEhLwr3/9C8nJySgoKJBuLx6oVcfZs2chhECLFi3KPO7i4mJ1vVGjRqXm11Vm+/bt8Pb2houLCxo3biwNsZbn/PnzAIqCt+JcXV3RrFkz6TgRVYxBGBEphtFoxOOPP47c3Fz897//RUhISJUfw1LSonnz5jbfx9vbG48++igeffRRuLi4YNOmTUhKSsIjjzxi0/3/+9//on///ujRowfWrl2L4OBguLi44IMPPsCWLVuq/BqKM5vN0Gg0+Oabb8oMSEvOsSqekbNVjx49pHloRFR3GIQRkSLcunUL/fr1w//+9z98//33aNOmTZUfw2QyYcuWLfDw8MBDDz1UrX507twZmzZtwuXLlwEUTZxPSkrC7du3S2WdLLZv34769evj22+/hZubm3T7Bx98UKpteZmx8m6PiIiAEALh4eFo2bJlVV9OrQgNDQUApKSkoFmzZtLthYWFSEtLQ1RUlHRbTTOBRI6Mc8KISHYmkwlDhgxBYmIitm3bVq3aVCaTCS+++CJOnz6NF198Ed7e3uW2vXHjBhITE8s89s033wC4O9Q2aNAgZGdnIz4+vlRb8VcxU51OB41GA5PJJB1LT08vsyirp6dnmQVZPT09AaDUsYEDB0Kn02HBggWliqcKIWAwGMp+kbUoKioKrq6uWLVqlVWfNmzYAKPRaLUq1dPTs8JyIUTOjJkwIpLdtGnT8NVXX6Ffv37IyckpVZy1ZGFWo9Eotblx4wbOnTuHHTt2IDU1FUOHDsXrr79e4fPduHED3bt3R7du3RATE4MmTZogNzcXX3zxBf773/9iwIAB6NChAwBgxIgR+PDDDzF16lT8/PPPePjhh3H9+nV8//33+L//+z88+eSTiI2NxbJlyxATE4Onn34aWVlZWLNmDZo3b44TJ05YPXenTp3w/fffY9myZQgJCUF4eDi6du2KTp06AQBeeeUVDB06FC4uLujXrx8iIiLwr3/9C7Nnz0Z6ejoGDBgALy8vpKWl4fPPP8e4cePw8ssv1+j8V1VAQABmz56NBQsWICYmBv3790dKSgrWrl2LBx54wOrfq1OnTvj0008xdepUPPDAA2jQoAH69etXp/0lUiw5l2YSEQlxt7RCeZeK2jZo0EC0aNFCPPvss+K7776z6flu374t/v3vf4sBAwaI0NBQ4ebmJjw8PESHDh3Em2++KQoKCqza37hxQ7zyyisiPDxcuLi4iKCgIDF48GCRmpoqtdmwYYNo0aKFcHNzE61btxYffPCBVAKiuDNnzogePXoId3d3AcCqXMXrr78uGjVqJLRabalyFdu3bxcPPfSQ8PT0FJ6enqJ169Zi4sSJIiUlxercVFS+oyRL//78888K25UsUWERHx8vWrduLVxcXERgYKCYMGGCuHr1qlWba9euiaefflr4+PgIACxXQVSMRgg7bA5GRERERFXCOWFEREREMmAQRkRERCQDBmFEREREMmAQRkRERCQDBmFEREREMmAQRkRERCQDFmtVMLPZjIyMDHh5eXHrDyIiIpUQQiA/Px8hISHQasvPdzEIU7CMjAw0adJE7m4QERFRNVy8eBGNGzcu9ziDMAXz8vICUPSPWNE+eERERKQceXl5aNKkifQ9Xh4GYQpmGYL09vZmEEZERKQylU0l4sR8IiIiIhkwCCMiIiKSAYMwIiIiIhlwThgREZGDMZlMuH37ttzdcFguLi7Q6XQ1fhwGYURERA5CCIHMzEzk5ubK3RWH5+Pjg6CgoBrV8WQQRkRE5CAsAVjDhg3h4eHBQt+1QAiBGzduICsrCwAQHBxc7cdiEEZEROQATCaTFID5+fnJ3R2H5u7uDgDIyspCw4YNqz00qZqJ+f3790fTpk1Rv359BAcHY/jw4cjIyLBqI4TAW2+9hZYtW8LNzQ2NGjXCwoULrdocOHAAHTt2hJubG5o3b46NGzeWeq41a9YgLCwM9evXR9euXfHzzz9bHb916xYmTpwIPz8/NGjQAIMGDcKVK1es2ly4cAGxsbHw8PBAw4YNMX36dNy5c8c+J4OIiKgEyxwwDw8PmXviHCznuSZz71QThPXq1Qtbt25FSkoKtm/fjtTUVAwePNiqzUsvvYT33nsPb731Fs6cOYOvvvoKXbp0kY6npaUhNjYWvXr1QnJyMiZPnoznnnsO3377rdTm008/xdSpUzFv3jwcPXoU7du3R3R0tJR2BIApU6Zg586d2LZtG3744QdkZGRg4MCB0nGTyYTY2FgUFhbi0KFD2LRpEzZu3Ii5c+fW4hkiIiKqvEAo2YddzrNQqS+//FJoNBpRWFgohBDi1KlTol69euLMmTPl3mfGjBmibdu2VrcNGTJEREdHS9e7dOkiJk6cKF03mUwiJCRELFq0SAghRG5urnBxcRHbtm2T2pw+fVoAEImJiUIIIb7++muh1WpFZmam1GbdunXC29tbFBQU2PwajUajACCMRqPN9yEiIiGys7NFRkZGuZfs7Gy5u2h3N2/eFKdOnRI3b96UuytOoaLzbev3tyrnhOXk5GDz5s3o3r07XFxcAAA7d+5Es2bNkJCQgJiYGAghEBUVhaVLl8LX1xcAkJiYiKioKKvHio6OxuTJkwEAhYWFOHLkCGbPni0d12q1iIqKQmJiIgDgyJEjuH37ttXjtG7dGk2bNkViYiK6deuGxMREtGvXDoGBgVbPM2HCBPz+++/o0KFDma+roKAABQUF0vW8vLwanCUiIudkMBgQHx9fabu4uDjOnSJZqWY4EgBmzpwJT09P+Pn54cKFC/jyyy+lY//v//0/nD9/Htu2bcOHH36IjRs34siRI1ZDlpmZmVaBEQAEBgYiLy8PN2/eRHZ2NkwmU5ltMjMzpcdwdXWFj49PhW3KegzLsfIsWrQIer1eujRp0sTGM0NERBaFhYV2bUe1b9SoUdBoNNBoNHBxcUFgYCAeffRRvP/++zCbzTY/zsaNG0t9PyuZrEHYrFmzpJNe3uXMmTNS++nTp+PYsWP47rvvoNPpMGLECAghAABmsxkFBQX48MMP8fDDD6Nnz57YsGED9u/fj5SUFLleYpXMnj0bRqNRuly8eFHuLhERUS0xGAy4fPlyuReDweBU/YmJicHly5eRnp6Ob775Br169cJLL72Evn37OuzCNlmHI6dNm4ZRo0ZV2KZZs2bS3/39/eHv74+WLVvi3nvvRZMmTXD48GFERkYiODgY9erVQ8uWLaX29957L4CilYqtWrVCUFBQqVWMV65cgbe3N9zd3aHT6aDT6cpsExQUBAAICgpCYWEhcnNzraLtkm1Krqi0PKalTVnc3Nzg5uZW4fkgIiL1U9qQqRL64+bmJn1HNmrUCB07dkS3bt3Qp08fbNy4Ec899xyWLVuGDz74AP/v//0/+Pr6ol+/fli6dCkaNGiAAwcOYPTo0QDuTpqfN28e5s+fj48++ggrV65ESkoKPD090bt3b6xYsQINGzaslddiK1kzYQEBAWjdunWFF1dX1zLva0lPWuZQPfjgg7hz5w5SU1OlNv/73/8AAKGhoQCAyMhI7N271+px9uzZg8jISACAq6srOnXqZNXGbDZj7969UptOnTrBxcXFqk1KSgouXLggtYmMjMRvv/1mtaJyz5498Pb2Rps2bapxpoiIHEddZ1yMRi+kpYXBaPSy6+PWhNKGTJXWH4vevXujffv22LFjB4CiedqrVq3C77//jk2bNmHfvn2YMWMGAKB79+5YsWIFvL29pffSyy+/DKCojMTrr7+O48eP44svvkB6enqlSaC6oIqJ+UlJSfjll1/w0EMP4Z577kFqairmzJmDiIgIKfCJiopCx44dMWbMGKxYsQJmsxkTJ07Eo48+KmXHxo8fj/j4eMyYMQNjxozBvn37sHXrVuzatUt6rqlTp2LkyJHo3LkzunTpghUrVuD69etSdK3X6zF27FhMnToVvr6+8Pb2xqRJkxAZGYlu3boBAB577DG0adMGw4cPx9KlS5GZmYlXX30VEydOZKbLRgaDocL/7K6urpxQS6RCdZ1xOXq0A3bu7AshtNBozOjXLwEdOx6r8eNS3WndujVOnDgBANJCOgAICwvDv/71L4wfPx5r166Fq6sr9Ho9NBpNqVGnMWPGSH9v1qwZVq1ahQceeADXrl1DgwYN6uR1lEUVQZiHhwd27NiBefPm4fr16wgODkZMTAxeffVVKajRarXYuXMnJk2ahB49esDT0xOPP/443n77belxwsPDsWvXLkyZMgUrV65E48aN8d577yE6OlpqM2TIEPz555+YO3cuMjMzcf/992P37t1WE+2XL18OrVaLQYMGoaCgANHR0Vi7dq10XKfTISEhARMmTEBkZCQ8PT0xcuRIvPbaa3VwttRPCWlxIqoddZlxMRq9pAAMAITQYufOvoiIOAe9Pr/Gj29PRqMXcnL84OtrUFzf5CaEkIYXv//+eyxatAhnzpxBXl4e7ty5g1u3buHGjRsVFqk9cuQI5s+fj+PHj+Pq1avSaNqFCxdkHaFSRRDWrl077Nu3r9J2ISEh2L59e4VtevbsiWPHKv4VFBcXh7i4uHKP169fH2vWrMGaNWvKbRMaGoqvv/664g5TmZSaFicidcnJ8ZMCMAshtMjJ8VVUoMNsXcVOnz6N8PBwpKeno2/fvpgwYQIWLlwIX19fHDx4EGPHjkVhYWG5Qdj169cRHR2N6OhobN68GQEBAbhw4QKio6Nl/x5RRRBGRESOqTYyQJa5xL6+Bmg0ZqtATKMxw9c3x6qdnNSUrZPDvn378Ntvv2HKlCk4cuQIzGYz3n77bWi1Redr69atVu1dXV1hMpmsbjtz5gwMBgMWL14slX769ddf6+YFVIJBGBERyaK2MkB+fn6Ii4tDYWEhGjXKw8yZephMGuh0AkuW5OHpp4cpZl6pWrJ1daGgoACZmZkwmUy4cuUKdu/ejUWLFqFv374YMWIETp48idu3b2P16tXo168ffvrpJ6xfv97qMcLCwnDt2jXs3bsX7du3h4eHB5o2bQpXV1esXr0a48ePx8mTJ/H666/L9CqtqapYKxEROYbyMkD2WsHo5+eH4OBgTJvmg/R0DfbvB9LTNZg2zQfBwcGKCMCAu9m64opn65zJ7t27ERwcjLCwMMTExGD//v1YtWoVvvzyS+h0OrRv3x7Lli3DkiVL8Le//Q2bN2/GokWLrB6je/fuGD9+PIYMGYKAgAAsXboUAQEB2LhxI7Zt24Y2bdpg8eLFeOutt2R6ldaYCSMiojpXlxmgxo2LLkpiGQrV6/PRr19CqYyg5RzU1ZCprc9TW/3ZuHEjNm7cWGm7KVOmYMqUKVa3DR8+3Or6unXrsG7dOqvbhg0bhmHDhlndZin2LicGYUREVCl7l42pbL6Woys+ZAoAc+f+ifT0eggLu4OQkAcAPFCnQ6Yl+1MWpQzhOhIGYUREVCF7lo1RWgZITsXPVXAw0KmTjJ0BGGDJgEEYKU7JD9/yVk85w4c0kRLYs2yM0jJARHJiEEaKU/xDessWd7z2mh5mswZarcDSpUY8/fRNfkgTyaimZSWUlgEikguDMFIkPz8/XLoEzJgB/FXYGGazBjNn+mDIEB8w/iKSBwuLEtkPS1SQYp09ezcAszCZgHPn5OkPkbOxbLSdnZ0NoPbLShA5G2bCSLFatAC0WutATKcDmjeXr09EzqKsyfgsLEpkX8yEkWI1bgy8+25R4AUU/fnOO8qr90PkiMqaZM/CokT2xSCMFG3sWCA9HX9Vuy66TkR1zzIZPyrqeykQK1lWgoiqhsORpHhKrHYtJ3sXzSSqTMnJ+FFR3yMkJAO+vjksG0OqcODAAfTq1QtXr16Fj4+PTfcJCwvD5MmTMXny5FrrF4MwIhWxZ9FMIluUNRn/+++jMHnyCuj1+Rg4cCD8/f0Z/FONjBo1Cps2bcILL7xQalPuiRMnYu3atRg5cqRNWxupCYMwIhlVNatlz6KZRLaobDK+v78/goODZeodOZImTZrgk08+wfLly+Hu7g4AuHXrFrZs2YKmTZvK3LvawSCMSCbMapEaOPsej1R3OnbsiNTUVOzYsQPPPPMMAGDHjh1o2rQpwsPDpXYFBQWYPn06PvnkE+Tl5aFz585Yvnw5HnjgAanN119/jcmTJ+PixYvo1q0bRo4cWer5Dh48iNmzZ+PXX3+Fv78//v73v2PRokXw9PSs/Rf7F07MJ5IJs1qkBpY9HjkZ37lculS0IOrSpbp93jFjxuCDDz6Qrr///vsYPXq0VZsZM2Zg+/bt2LRpE44ePYrmzZsjOjoaOTlFPwwuXryIgQMHol+/fkhOTsZzzz2HWbNmWT1GamoqYmJiMGjQIJw4cQKffvopDh48iLi4uNp/kcUwE0akYjXdPoaoPMUn2XfseAwREeeQk+PLyfhOYMMGYNy4ohqNWm1RqaC6Wpn+7LPPYvbs2Th//jwA4KeffsInn3yCAwcOAACuX7+OdevWYePGjXj88ccBAP/+97+xZ88ebNiwAdOnT8e6desQERGBt99+GwDQqlUr/Pbbb1iyZIn0PIsWLcIzzzwjTbpv0aIFVq1ahUceeQTr1q1D/fr16+T1MggjUiluH0O1qeRG22XhZHzHc+nS3QAMKPrzhReA6Oi6WaUeEBCA2NhYbNy4EUIIxMbGwt/fXzqempqK27dv48EHH5Ruc3FxQZcuXXD69GkAwOnTp9G1a1erx42MjLS6fvz4cZw4cQKbN2+WbhNCwGw2Iy0tDffee29tvLxSGIQRKURVslrlbR8TEXFONRkxltpQPp5/51PRdnF1VSpozJgx0rDgmjVrauU5rl27hhdeeAEvvvhiqWN1uQiAQRiRAlQ1q6X27WO4KIFImZSwXVxMTAwKCwuh0WgQHR1tdSwiIgKurq746aefEBoaCgC4ffs2fvnlF2lo8d5778VXX31ldb/Dhw9bXe/YsSNOnTqF5jLvg8eJ+SQrywbB5V0MBoPcXax1VdkU2TL/prLtY5Q+T4eLEoiUSQnbxel0Opw+fRqnTp2CztKRv3h6emLChAmYPn06du/ejVOnTuH555/HjRs3MPaviWvjx4/H2bNnMX36dKSkpGDLli2l6ovNnDkThw4dQlxcHJKTk3H27Fl8+eWXnJhPzoPZkCJVyWoVn6fTqFEeZs7Uw2TSQKcTWLIkD08/PUyVw3hcYECkHGPHFs0BO3euKAMmx44l3t7e5R5bvHgxzGYzhg8fjvz8fHTu3Bnffvst7rnnHgBFw4nbt2/HlClTsHr1anTp0gVvvPEGxowZIz3Gfffdhx9++AGvvPIKHn74YQghEBERgSFDhtT6ayuOQRjJxtmzISWzWuXVYSqZ1bIEWNOmAUOGWD4oNWjc2AeAT1103a64wIBIeep6u7jKKuF/8cUX0t/r16+PVatWYdWqVeW279u3L/r27Wt1W8lSFw888AC+++67ch8jPT29wj7ZA4MwIpnYI6ul9n01HWGBARFRdTEII8VwxiEpR8tqVZXaFxgQEdUEgzBSBA5JqT+rVR3cEoeInBlXR5LsqrI6kBwLt8QhImfGTBjJjkNSzodb4hDVHiFErT5+YSFw6xZQvz7gzP9F7XGeGYSR7DgkpU41qXjPLXGI7M/FxQUAcOPGDbi7u9fKc/z5J/DXto4AgNBQICCgVp5K8W7cuAHg7nmvDgZhJBtLlsMyJFVyTpglI8JsSN2oSlBljxpvDLCI7Eun08HHxwdZWVkAAA8PD2g0Grs89p07d1BYKHD+fD0Adx/z/HkBne4OXF01qFfPOUIKIQRu3LiBrKws+Pj4lCooWxXOccZIkUpmQ+bO/RPp6fUQFnYHISEPAHiA2ZA6UtWgqmSwVt7KVket8WZRPHDNyNAiLa0ewsPvICSkaI4b379U14KCggBACsTswWQyIT8/H3fu1MP16w1KHb958xrq1bsDLy+vGgUkauPj4yOd7+piEEayKv4FFRwMdOokY2ecWE2CKmdd2Vo8cK3oHDj6jg+kLBqNBsHBwWjYsCFu375tl8fMysrC7t27ce2aJzZtGllq6sjIkZvQoMF1PPXUU2jYsKFdnlPpXFxc7BJwMggjIitVCaqcudiqJSCt7Bw4ejaQlEmn09ktK+Xi4oLr169Do7mO++77vtTng0aThevXi9rVr1/fLs/pLBiEEZGkqkEVV7byHJBzqWg1M1UdgzAiklQ1oODKVp4Dcj56fT6DLzthsVYiklgCiuIqCihsLbZqMBhw+fJlXL58GUeOXMFnnxlw5MgV6TaDwVA7L6gOsOAsEVUXM2FEJKmsXEhZKhuecIYJ7ByiIaLqYBBGRFZsCShK1m4rb3jC1dVV1RPYKypBkZ2dbdWWQzREVFUMwojsrCaV5OVSlaAKqFrF+8uXLwNQ3wR2WzN4RI7O1oLZLKxddQzCiOyoZNHT8uptKW3orTrbCFW1/2qbwG5rBq8y/GIiteM2Y7WHQRiRHRX/kKooe6LEobfa/gCtznwzJagsgzdw4ED4+/uXeV9+MZGj4Pu4djAII6oFzlzEtCJqnMBeWQbP398fwcHBcnWPiFSMJSqIakFF2RNnp9fnIzz8vCoCMIAlKIio9jATRtWixsnndUlt85+oYmrM4BGR8jEIoypT6+TzuqTW+U+1wVFWVrEEBRHZG4MwqjI1Tz6vS8yeFOHKKiKisjEIo2rj5PPKMXtSRI0BlqNk8IhIuRiEUbUpofhmRRXNgbrPsPCL23Ewg0dEtY1BGFWb3JPPlbgnIb+4HQv/nYioNjEIo2qTe/K5UvcktOWL+9Il4OxZoEULoHHjOugUEREpDoMwqhElTD5XwrCoLSxDp1u2uGPGDD3MZg20WoGlS414+umbzJARETkZBmFUY3JPPpd7WNQWlqFTo9ELK1ZMhhAaAIDZrMH06d7444/3odfnO3VZj8owe0hEjoYV86nKlDb5XA0VzS1DopVV0nf2sh4lGQwGXL58GW+/nYvQUIHevYHQUIG3387F5cuXYTAY5O4iUZVcugTs31/0JxEzYVRlSpx8roRhUVvYkrVjxqcIs4fkaDZsAMaNA8xmQKsF3n0XGDtW7l6RnBiEUbUo8UtP7mFRW1S2mOHdd0147TXB+WKwLXsox8ILouq4dOluAAYU/fnCC0B0tHP/2HJ2DMKI6lh5WbuijE8IMz4lqGHOH1FFDAYDDh8GzGbr/78mE5CUZIC7uzJ/2NoLs/vl45wwUi2lzU2rCr0+H+Hh560yd5wvVjY1zPkjKo9lWP3QoU3Se9hCozHjp582IT4+3mHnN27YAISG4q/5nEXX6S5mwki1is9NK6taPqCuwqjM+JRPLXP+iEqy/HiqbCqCo/zIKp71AjgEWxkGYaRajlZ3S+7it0qnhjl/RBVR44+Jqgwlllx4MHXq3QDMwmQCzp1jEGbBIIxUSW0r52wdElXjhzQR2U5NPyaqspqzrIUHy5YJaLVFn8sWOp2Al1cWDIZ6ivhslhuDMFIlta2cq6isR3Z2Nnbs2CFdV9OHNBE5pqqu5jx7tnTWy2zWoHv3n5CYGCll92NjE5CQUPf7+ioVgzBSNTXNo3L2D5uqUvPCCyK1KyuoKm8o0WAwwNv7DrTahlZZL43GjK5dk9C1a1KZ2X2l/EiWE4MwUjXOo3JcSiwKTOQsWrTAX0OJd2/T6YDmza3bWaaGAEDfvh3K/SzmZ3LZGISR6ql9HhUzPuVjgEVU9wwGA3S6Qixd6o6ZM/UwmTTQ6QSWLDFCp7sJg+Huj5/iP5LU/lksBwZh5BDUPI+KGR8ix6W2H1nFM1sA8OKLXlJQde1aPt59t+j28uZzqfmzWA6qCcL69++P5ORkZGVl4Z577kFUVBSWLFmCkJAQAMD8+fOxYMGCUvfz8PDA9evXpevbtm3DnDlzkJ6ejhYtWmDJkiV44oknpONCCMybNw///ve/kZubiwcffBDr1q1DC0vREwA5OTmYNGkSdu7cCa1Wi0GDBmHlypVo0KCB1ObEiROYOHEifvnlFwQEBGDSpEmYMWNGbZwacgAMsIgck9p+ZJXsZ3lBFedz2YdqKub36tULW7duRUpKCrZv347U1FQMHjxYOv7yyy/j8uXLVpc2bdrgH//4h9Tm0KFDGDZsGMaOHYtjx45hwIABGDBgAE6ePCm1Wbp0KVatWoX169cjKSkJnp6eiI6Oxq1bt6Q2zzzzDH7//Xfs2bMHCQkJ+PHHHzFu3DjpeF5eHh577DGEhobiyJEjePPNNzF//ny8a/kJQURETsPPzw/BwcHlXpQSgFHdU00mbMqUKdLfQ0NDMWvWLAwYMAC3b9+Gi4sLGjRoYJWJOn78OE6dOoX169dLt61cuRIxMTGYPn06AOD111/Hnj17EB8fj/Xr10MIgRUrVuDVV1/Fk08+CQD48MMPERgYiC+++AJDhw7F6dOnsXv3bvzyyy/o3LkzAGD16tV44okn8NZbbyEkJASbN29GYWEh3n//fbi6uqJt27ZITk7GsmXLrII1qj61pfiJiIhKUk0QVlxOTg42b96M7t27w8XFpcw27733Hlq2bImHH35Yui0xMRFTp061ahcdHY0vvvgCAJCWlobMzExERUVJx/V6Pbp27YrExEQMHToUiYmJ8PHxkQIwAIiKioJWq0VSUhL+/ve/IzExET169LAKAKKjo7FkyRJcvXoV99xzT5l9LigoQEFBgXQ9Ly/P9pPiZNSW4iciImv8kayyIGzmzJmIj4/HjRs30K1bNyQkJJTZ7tatW9i8eTNmzZpldXtmZiYCAwOtbgsMDERmZqZ03HJbRW0aNmxodbxevXrw9fW1ahMeHl7qMSzHygvCFi1aVOa8NiobAywi5anKNjfkPAYOHAh/f3/pOn8kF5F1TtisWbOg0WgqvJw5c0ZqP336dBw7dgzfffcddDodRowYASFEqcf9/PPPkZ+fj5EjR9bly6mx2bNnw2g0SpeLFy/K3SUiIptt2ACEhgK9exf9uWGD3D2y3aVLwP79RX+S7WzNZoWEhHAeXBlkzYRNmzYNo0aNqrBNs2bNpL/7+/vD398fLVu2xL333osmTZrg8OHDiIyMtLrPe++9h759+5bKaAUFBeHKlStWt125cgVBQUHSccttwcHBVm3uv/9+qU1WVpbVY9y5cwc5OTlWj1PW8xR/jrK4ubnBzc2t3ONEREpV1W1ulKQqeySSNU4NqRlZg7CAgAAEBARU677mv/6nF59DBRTN69q/fz+++uqrUveJjIzE3r17MXnyZOm2PXv2SEFceHg4goKCsHfvXinoysvLQ1JSEiZMmCA9Rm5uLo4cOYJOnToBAPbt2wez2YyuXbtKbV555RVp0YDleVq1alXuUCQRkVoZDAYcPgyYzdZftCYTkJRkwNWrWmRn36PIIUo1B4+1oTqLnhhg1YBQgcOHD4vVq1eLY8eOifT0dLF3717RvXt3ERERIW7dumXV9tVXXxUhISHizp07pR7np59+EvXq1RNvvfWWOH36tJg3b55wcXERv/32m9Rm8eLFwsfHR3z55ZfixIkT4sknnxTh4eHi5s2bUpuYmBjRoUMHkZSUJA4ePChatGghhg0bJh3Pzc0VgYGBYvjw4eLkyZPik08+ER4eHuKdd96p0us2Go0CgDAajVW6HxFRXcnOzhbz588XU6a8LTQakwCEdNFoTOLRR7+VbtdqhXjvPbl7bG3fPmHVZ8tl/365eyaf7OxskZGRUe4lOztb7i4qnq3f36oIwk6cOCF69eolfH19hZubmwgLCxPjx48Xly5dsmpnMplE48aNxT//+c9yH2vr1q2iZcuWwtXVVbRt21bs2rXL6rjZbBZz5swRgYGBws3NTfTp00ekpKRYtTEYDGLYsGGiQYMGwtvbW4wePVrk5+dbtTl+/Lh46KGHhJubm2jUqJFYvHhxlV83gzAiUrqMjAwxf/58MX/+fNG//5dSwFUyALNcdDohLl6Uu9dFsrOzxa+/Zgqt1lyij2bx66+ZpYKNixeLgjal9J+Uy9bvb40QZcxsJ0XIy8uDXq+H0WiEt7e33N0hIirl8uXLVoWojca729zk5Phh06bSC6Q++8yAnj3lHcYqvj3P0aOlN57u2PEYgLvb83DeGFWFrd/fqipRQUREylZymxuNxgwhtFbXf/ppE06ezC93/8G6YOvG04WFhZw3RrVGNdsWERGRuuj1+ejXLwEaTVH0YskyWYIcJe0/qNfnIzz8fJn7JJ49ezcAszCZgHPn6qhz5LCYCSMih8biofKqKMukBkXDSVpotQ1hNmuk23U6AS+vLBgM9Rx+dSD/D9UeZsKIyGGpuXioI6koy6R0n376KRIS1qNv351WGb3Y2J1ISFiP+Ph4GAwGmXtZe/h/qHYxE0ZEDsdgMCA9/Q7GjbubvSiaxyNw//1ZCAtz/OwF2Vdl88YcEefC1T4GYUTkUCyr3tLSwmA2W6/MM5k0WL36G4SHn5d1UrgjcaZNmEsuOqgLcg4FVjQXjkGYfTAIIyKHYslK+PoaylyZ5+ubY9WOaqasbWuys7OxY8cOGXvlGOQui9GiRdHzFg/EdDqgefO664Oj45wwInJIla3MI/vx8/Oz2pzZ399f7i5VSukZvPKGAutqg3GDwQCd7jKWLs2FTldUTlSnE1iyJBc63WWHngdXl5gJIyKHpfaVeWpVnf0H65otG0/n5uZi69atddiru+QcCixeyBYAXnzxbgHea9fyYanNyyH9mmMQRkQOTY55PM7OlgDH1dVV9i9wuZ+/PAaDAd7ed2Qri1Hy3628/0Mc0q85BmFERGR3Sg1wlK54FqpvX+vtlGJjE5CQYL2dEqkbgzAiIqIyyDGsWpXtlEj9GIQRERGVQQnDqhxOd2wMwkiVuI0GlUcNk8JJPTjkR7WJQRipjty1c0jZlJC9IPvjDy9yRAzCSFW4jQbZggGWY+EPL3JULNZKqlJR7RyLS5eA/fvrrqghEdUeuYuWqlVNPgc5pF93mAkjValsGw3+YiZ74hCYvAwGAw4fBsxm68ymyQQkJRng7s6sZ1lq+jnIIf26w0wYqUZl22j89ttV/mImu9mwAQgNBXr3Lvpzwwa5e+RcLPWyDh3aJG09ZaHRmPHTT5sQHx/vcNvn1DQLZa/MYcmtqEpeGIDZBzNhpAq2bKORlhYGs3mk1f3qapsPciyceyg/SxbGsgdo8aKlxfcAdbR6WTXNQsm53RFVHYMwUgVbttHw9TVAqxUltvm4O1RJZAsOgSmPs+0BWpP3V2VTNkhZOBxJDkOvz8fcuX+UOVTpaEMWVDucdQhMDfT6fISHn3f4AKwmKpuywfet8jATRg5mQ5lDlQD3WqPKOesQGKmfLVM2AH4OKg2DMHI45W3zwS9OqgpnGwIjdbNlykZZ7UheDMKIyOnYWnqC+/YRUW3inDAiciosPUFESsEgjIicBquvqwertpMz4HAkqQI/aKmmbCk9QcrBqu3kDBiEkSpU9IGcnZ2NHTt2yNArspXc2/9YVo4ZjV7QaCZDiLuDAJbSEydP5mPIkCF13zkqFwMscnQMwkg1+IGsTkrYz9PW0hNCCJsej5lZIrIHBmGkepw7olxK3P6notITPj4+HAIjVeLnoDoxCCPV49yR2lOTYUQlb/9jKT1hNHohLS0Mvr4GKRjj+4TUiJ+DFZN7SkR5GISRQ6jOB4tS/1MqRU2GEW2dgyVn9e6jRzuUGpYkUjNnDbAqo4QpEeVhiQpySqwVVbGalnIoOQfLsg+jUrb/MRq9pAAMAITQYufOvsjI4EcikSNRelkaZsLI6ShxnpKS2HsYUYnb/+Tk+Fll54CiQOz48esICzMwo0DkIM6evftZb2EyAefOKePznj/7yOlU9J/S2VmGEQ8d2iRlrywsw4jx8fEwGAxVely9Ph/h4ecVEYABgK+voczXd/LkF9V6fUSkTC1aFA1BFqfTAc2by9OfkhiEkVMxGAzw9r4Crda6FIFOJ+DldcXpv3yVPoxYXSVXhDna6yOisjVuXDQHTKcruq7TAe+8o4wsGMDhSHIiliwPAPTtaz0pOzY2AQkJxwBA1sniSqLEYcTqsqwcy8jIkAr7OtLrI6LSDAYDCgsL8cQTQFKSFunp9RAWdgchIWZcvqyM1aIMwshpFM9uVPQFzCzIXZZSDo7Az8+v1L+tI70+Irqr+I/u4k6etL4u949uBmFOzNlLNPALmIjIMdn6Y1ruH92cE+akWKKBahOrdxMRVY6ZMCfEEg1U21i9m4iocgzCnJDS66aQY2CARURUMQ5HOiGl100h+Tj6MKKjvz4iUhdmwpyMwWCATleIpUvdMXOmHiaTBjqdwJIlRuh0N2EwcIjImTn6MKKjvz4iUhcGYU6k5JLdF1/0kko0XLuWj3ffLbpd7iW7tYVZENs44r99cY7++ki9nH3FujNiEOZEbK2RJPeS3drCLAgRKdWGDXcXTGm1RVXex46Vu1fqpZYf3QzCyKkwwCIipeGKdftTy49uBmFEJBsOv5CzMxgMOHwYMJutgwGTCUhKMsDdnT8eq0sN542rI4nI7i5dAvbvL/qzPCwYTM7OMk/30KFN0mbyFhqNGT/9tAnx8fEwGAwy9ZBqG4MwIrIrW4Kr8oZfKgraiByNZahMr89Hv34JUiCm0ZjRr1+CNGfXUefpEocjiciObJnbwuEXotI6djyGiIhz0op17mvrHBiEEZFd2BJcAUB8fDyMRi9oNJMhxN1kvGX45eTJfIctk0JUkfJWrJPj4nCkE1HLkl1SH1vntmRlZQHg8AsREcBMmFNRy5JdUp+Sc1t27uwLIbSlgqs7d+5I9+HwS93hKlQiZWIQ5mQYYFFtq0pwxeGX2scioETKZXMQlpeXZ/ODent7V6szROQYGFzJz2AwID39DsaNawizWQPAslBC4P77sxAWVo8/yohkZnMQ5uPjA41GU2EbIQQ0Gg1MJlONO0ZERNVjmaOXlhYGs3mk1TGTSYPVq79BePh5LoCQmTPN0+WQeNlsDsL2799fm/0gIiI7sczR8/U1QKMxl1qF6uubY9WO5OEs83Q5JF4+m4OwRx55pDb7QUREdlbZQgmSn9oDrMpwX8yKVXtifm5uLjZs2IDTp08DANq2bYsxY8ZAr9fbrXNE5FhcXFxsaucIwy9KwVWoJKezZ+8GYBYmE3DuHIMwoJpB2K+//oro6Gi4u7ujS5cuAIBly5Zh4cKF+O6779CxY0e7dpKIlM3WoCkgIMAphl+UhgslSA4GgwHe3neg1d5dHAIAOp2Al1cWDAYuDqlWEDZlyhT0798f//73v1GvXtFD3LlzB8899xwmT56MH3/80a6dJCJ5VTap1lnmtsiBE5pJjSyLQwCgb98OVkPisbEJSEg4BgBOvzik2pmw4gEYANSrVw8zZsxA586d7dY5IpKfrZNqnfmD1N4MBgMKCwuxZYs7ZszQw2zWQKsVWLrUiKefvsmAlhSv+A+yiobEnX1xSLWCMG9vb1y4cAGtW7e2uv3ixYvw8vKyS8eISF6sMyUPSwbBaPTCihWTIYTl3Gswfbo3/vjjfej13F+T1IVD4mWr1t6RQ4YMwdixY/Hpp5/i4sWLuHjxIj755BM899xzGDZsmL37SER1zBIIrF6922ouB3C3zlR8fDwMBoNMPXRclsxATo6fVWkJABBCi5wcX6t2ZXGm+lNEalatIOytt97CwIEDMWLECISFhSEsLAyjRo3C4MGDsWTJEnv3EQDQv39/NG3aFPXr10dwcDCGDx+OjIwMqzbffvstunXrBi8vLwQEBGDQoEFIT0+3anPgwAF07NgRbm5uaN68OTZu3FjqudasWYOwsDDUr18fXbt2xc8//2x1/NatW5g4cSL8/PzQoEEDDBo0CFeuXLFqc+HCBcTGxsLDwwMNGzbE9OnTrfbNI1KyknWmimOdqbpR2bmviGWO3rhx48q9MJNGJL9qBWGurq5YuXIlrl69iuTkZCQnJyMnJwfLly+Hm5ubvfsIAOjVqxe2bt2KlJQUbN++HampqRg8eLB0PC0tDU8++SR69+6N5ORkfPvtt8jOzsbAgQOt2sTGxqJXr15ITk7G5MmT8dxzz+Hbb7+V2nz66aeYOnUq5s2bh6NHj6J9+/aIjo5GVlaW1GbKlCnYuXMntm3bhh9++AEZGRlWz2MymRAbG4vCwkIcOnQImzZtwsaNGzF37txaOTeO6NIlYP/+oj9JPpY6U5ZggHWm6k5Nz72fnx+Cg4PLvTAAI5KfRggh5O5EdXz11VcYMGAACgoK4OLigs8++wzDhg1DQUEBtNqi2HLnzp148sknpTYzZ87Erl27cPLkSelxhg4ditzcXOzevRsA0LVrVzzwwAPSqg6z2YwmTZpg0qRJmDVrFoxGIwICArBlyxYpCDxz5gzuvfdeJCYmolu3bvjmm2/Qt29fZGRkIDAwEACwfv16zJw5E3/++afNQwB5eXnQ6/UwGo1OtR8nqyvL7/Lly3j33Xel60ajV5mTaseNG4fg4GA5uuiweO7JEZR8H5fHUd/Htn5/VysTduvWLbz55pt44okn0LlzZ3Ts2NHqUttycnKwefNmdO/eXSr+2KlTJ2i1WnzwwQcwmUwwGo346KOPEBUVJbVJTExEVFSU1WNFR0cjMTERQNHQypEjR6zaaLVaREVFSW2OHDmC27dvW7Vp3bo1mjZtKrVJTExEu3btpADM8jx5eXn4/fffa+GMOI7yqiszI1YzNc0s6vX5CA8/zwyYDHjuiRxXtVZHjh07Ft999x0GDx6MLl26VLqxt73MnDkT8fHxuHHjBrp164aEhATpWHh4OL777js89dRTeOGFF2AymRAZGYmvv/5aapOZmWkVGAFAYGAg8vLycPPmTVy9ehUmk6nMNmfOnJEew9XVFT4+PqXaZGZmVvg8lmPlKSgoQEFBgXQ9Ly+vslPicFhd2f6YWSSiusbFIbapVhCWkJCAr7/+Gg8++GCNnnzWrFmVTuQ/ffq0VApj+vTpGDt2LM6fP48FCxZgxIgRSEhIgEajQWZmJp5//nmMHDkSw4YNQ35+PubOnYvBgwdjz549dRYo1sSiRYuwYMECubshG1ZXti+WmCAiubCAs22qFYQ1atTILvXApk2bhlGjRlXYplmzZtLf/f394e/vj5YtW+Lee+9FkyZNcPjwYURGRmLNmjXQ6/VYunSp1P4///kPmjRpgqSkJHTr1g1BQUGlVjFeuXIF3t7ecHd3h06ng06nK7NNUFAQACAoKAiFhYXIzc21yoaVbFNyRaXlMS1tyjJ79mxMnTpVup6Xl4cmTZpUeH4cBasr25flfKalhcFsHml1zFJiIjz8PM9nJeSoVs8MAjkKfrZUrlpB2Ntvv42ZM2di/fr1CA0NrfaTBwQEICAgoFr3Nf81ZmUZvrtx44Y0Id9Cp9NZtS05PAkAe/bsQWRkJICiD7VOnTph7969GDBggHTfvXv3Ii4uDkDR3DMXFxfs3bsXgwYNAgCkpKTgwoUL0uNERkZi4cKFyMrKQsOGDaXn8fb2Rps2bcp9TW5ubrW2ulTpWF3ZvkqWmCheb8qWEhPOHAjIXa2eGQQi51GtIKxz5864desWmjVrBg8PD2niu0VOTuV1bKoiKSkJv/zyCx566CHcc889SE1NxZw5cxARESEFPrGxsVi+fDlee+01aTjyn//8J0JDQ9GhQwcAwPjx4xEfH48ZM2ZgzJgx2LdvH7Zu3Ypdu3ZJzzV16lSMHDkSnTt3RpcuXbBixQpcv34do0ePBgDo9XqMHTsWU6dOha+vL7y9vTFp0iRERkaiW7duAIDHHnsMbdq0wfDhw7F06VJkZmbi1VdfxcSJE502yKoqVle2D0uZg+KZRVvKHDhrIKCUavWOdl6JqGzVCsKGDRuGP/74A2+88QYCAwNrfb6Vh4cHduzYgXnz5uH69esIDg5GTEwMXn31VSmo6d27N7Zs2YKlS5di6dKl8PDwQGRkJHbv3g13d3cARZP3d+3ahSlTpmDlypVo3Lgx3nvvPURHR0vPNWTIEPz555+YO3cuMjMzcf/992P37t1WE+2XL18OrVaLQYMGoaCgANHR0Vi7dq10XKfTISEhARMmTEBkZCQ8PT0xcuRIvPbaa7V6nojKUlFmsSLOGAjYUq1er89nRpaomrghvbVqBWGHDh1CYmIi2rdvb+/+lKldu3bYt29fpe2GDh2KoUOHVtimZ8+eOHbsWIVt4uLipOHHstSvXx9r1qzBmjVrym0TGhpaauiTyF6q+kHGzGLVVDaMS0RVx5XapVWrTljr1q1x8+ZNe/eFiGywYQMQGgr07l3054YNcvfI8XCnACL7Yg3IslUrE7Z48WJMmzYNCxcuRLt27UrNCXOm6u5EdYUlJ+pWdYdxiciawWDA4cOA2Wz9+WQyAUlJBri7O+f0B6CaQVhMTAwAoE+fPla3CyGg0WhgMplq3jMikrDkhDw4jEtUM8UXu2g0k0sN8f/00yacPFn7i12UqlpB2P79++3dD3JyzlISobqTUqtacsJZzicRKZvlM6myldrOutilWkHYI488YlO7//u//8Nrr70Gf3//6jwNORFnKIlgj0mptpaccIbzSUTqwiH+0qoVhNnqP//5D15++WUGYWQTRw0I7D2Xy9YPMkc9n7WJGUSi2sUhfmu1GoQJIWrz4YkUr7bmcvGDrHYwg0hEdalWgzAiZ1fT7YOo7tk7wLJsgwQAGRlapKXVQ3j4HYSEFK3VZ1BH5LwYhBHVgepuH0TqVnxj+qNHO5T69+/YkRvTEzkzBmFEdYSTUp2PJQNmNHpJARhQtAXSzp19ERFxjtsgETkxBmFEdai6c7k4YVzdKtuLkshR8bOrYrUahD377LOsnk9kB5wwrlzF53yVlJ2dDYB7UZIy1cVm2vzsqli1g7Dc3Fz8/PPPyMrKgtmyGdRfRowYAQBYt25dzXpHRBJn/ZBSsuJzvoCiYcecHD/4+hqsMlycE0hKYfnRsGWLO2bM0MNs1kCrFVi61Iinn75ZKwERP7vKV60gbOfOnXjmmWdw7do1eHt7Q6PRSMc0Go0UhBER1aaKslBA7f/CLv7cFU28BzgnkORXfAuhFSsmQwhL3UINpk/3xh9/vA+93nm3EJJDtYKwadOmYcyYMXjjjTfg4eFh7z4ROQzOh6g9tmah6uILpbKJ9xas70ZysvxoqGyOoqMvFKmLYVhbVSsI++OPP/Diiy8yACOqBOdD1B5bs1B18YXCifekJs48R9Ee28fZk7byJqVFR0fj119/tXdfiBySn58fgoODy70wAKuZ8rJQRqNXnfXB8qVWXFW+1JgJpbpkmaNoec9qNGZERibK3Kvad+nS3QAMsGwfV3S7XGzOhH311VfS32NjYzF9+nScOnUK7dq1g4uLi1Xb/v3726+HREQVUEIWqrKJ9wMHDix3D11mQkkOljmKSUldcehQJA4dehCJiZHo1y8B2dnZDve+NBgMOHwYMJutX5PJBCQlGeDuLs8CApuDsAEDBpS67bXXXit1m0ajgclkqlGniEj96mrSvFKGViqaeO/v74/g4OA67Q+RLRITI2EZFLs7l3GFQ03QL74gQaOZXOqz4qefNuHkSXler81BWMkyFERE5Sk5ab489vjQU1L5B068JzVxlgn6ltdR2WeFHK+3WhPzP/zwQwwZMgRubm5WtxcWFuKTTz5hiQoiJ1fyw6y8lYv2+tCTq/wDV7+Smikli1yXlFYqplpB2OjRoxETE4OGDRta3Z6fn4/Ro0czCCMiSWX1s+xFjiwUV7+SEhQf+s/I0CItrR7Cw+8gJKRoBMvyHiz5Y0BJWeS6pKSMdbWCMCGEVYFWi0uXLkGv19e4U0TkGGytn1UdSslCMcAiORUf+q/oB49l6D8uLg4ZGRnYsWMHAOVlhpxNlYKwDh06QKPRQKPRoE+fPqhX7+7dTSYT0tLSEBMTY/dOEpE61ebKRWahiO4O6Vf2g8fSzs/Pr9T/GSVlhpxNlYIwywrJ5ORkREdHo0GDBtIxV1dXhIWFYdCgQXbtIBGpV23POWGApWxybyvlTJRQqoWqrkpB2Lx58wAAYWFhGDJkCOrXr18rnSIix+Csc06oblfIykkpgaYzTrJ3BNWaEzZy5EgARWnQrKysUuUrmjZtWvOeEZFDqKs5J0r5MqQitq58VXMZBCXtX1qVHzxKmU9ZV5T8eqsVhJ09exZjxozBoUOHrG63TNhnsVYi51bWKqyafBlUxlmyLmpWXoCiZkravxSw/QePs82nVPLrrVYQNmrUKNSrVw8JCQkIDg4uc6UkETmvuv7Qq+u6ZFQ1dVWmRC61uQq4qmydZO8oAZatlPp6qxWEJScn48iRI2jdurW9+0NEDkKuDz1H/8JXGyUFKLWFk+KpurSVNymtTZs2yM7OtndfiIhqpLwvfKPRS+aeOa+KAhRHYZkUX1xdTYpX8nwnqly1MmFLlizBjBkz8MYbb6Bdu3ZwcXGxOu7t7W2XzhERVQUzEsrjDKv25FwFrOT5TlS5agVhUVFRAIDevXtbzQfjxHwikpMzfOGrjbOUKZGz8jwDLPWqVhC2f/9+e/eDiKjGnOULXw2KD39VFKA40jAZK89TVVUrCHvkkUfw3//+F++88w5SU1Px2WefoVGjRvjoo48QHh5u7z4SEdmMe+EpgzMMk3E+FtVUtYKw7du3Y/jw4XjmmWdw7NgxFBQUAACMRiPeeOMNfP3113btJBFRReq6LhnZRs0Bli2cIdCk2qURQoiq3qlDhw6YMmUKRowYAS8vLxw/fhzNmjXDsWPH8PjjjyMzM7M2+up08vLyoNfrYTQaudiBqBKsmE9ESmHr93e1MmEpKSno0aNHqdv1ej1yc3Or85BERDXCAIuI1KZaQVhQUBDOnTuHsLAwq9sPHjyIZs2a2aNf5KSYzSAiImdRrSDs+eefx0svvYT3338fGo0GGRkZSExMxMsvv4w5c+bYu4/kJJS0GS4REVFtq1YQNmvWLJjNZvTp0wc3btxAjx494ObmhpdffhmTJk2ydx/JSShtM1wiorrAEQDnVa0gTKPR4JVXXsH06dNx7tw5XLt2DW3atEGDBg3s3T9yQs6w1xwREVB6BKA8HAFwTNUKwixcXV3Rpk0be/WFCAC3niEi51EyA1beNAyOADimGgVhRLWhsq1nSm4ez1Q9ETmCiqZhkGNiEOYk1DTnoLKtZ3bs2FHqPkzVE5GacRqGc2IQ5gTUOOegqlvPMFVPRGrGaRjOiUGYE1DrnIOytp4pr+9ERGpW2TQMckwMwpyMkuccVLavn5L7TkRUE5VNwyDHxCDMiSh9zkFZm+FmZ2djx44diu87EVFNVXUaBqkfgzAnooY5B+XNSVND34mIqqrkCEBZ0zDKakeOgUGYE1HznAM1952IqDxljQCUpKTV62RfDMKciJrnHKi570REFWGA5bwYhDkZtc05KJ6Cr6jvTNUTEZHaMAhzAmqec8BUPREROSqNEELI3QkqW15eHvR6PYxGI7y9vWv0WGqqmE9ERKRmtn5/MxPmJBhgERERKYu28iZEREREZG8MwoiIiIhkwCCMiIiISAacE0ZENcaFH0REVccgjIhqxGAwID4+vtJ2cXFxDMSIiIrhcCQR1UhFGbDqtCMichbMhBERESkUh/orV/wcZWRokZZWD+HhdxASYgag7HPEIIyIiEiBONRfueLn6OjRDqX2F+7Y8RgA5Z4jBmEk4S8uIiLl4FB/5Syv3Wj0kgIwABBCi507+yIi4hz0+nzFniMGYQSAv7hIefijgMia0eiFnBw/+Poaytz/15nl5PhJAZiFEFrk5Pgq+lwxCCMA/MVF9mOPLwr+KCCyVtFQGwG+vgZoNGarQEyjMcPXN0fGXlVONasj+/fvj6ZNm6J+/foIDg7G8OHDkZGRYdVm69atuP/+++Hh4YHQ0FC8+eabpR7nwIED6NixI9zc3NC8eXNs3LixVJs1a9YgLCwM9evXR9euXfHzzz9bHb916xYmTpwIPz8/NGjQAIMGDcKVK1es2ly4cAGxsbHw8PBAw4YNMX36dNy5c6fmJ4JIwY4e7YAVKyZj06aRWLFiMo4e7VCtx+GPAqK7yhtqMxq9ZO6Zcuj1+ejXLwEaTdFkfEugquQsGKCiIKxXr17YunUrUlJSsH37dqSmpmLw4MHS8W+++QbPPPMMxo8fj5MnT2Lt2rVYvny51a/ptLQ0xMbGolevXkhOTsbkyZPx3HPP4dtvv5XafPrpp5g6dSrmzZuHo0ePon379oiOjkZWVpbUZsqUKdi5cye2bduGH374ARkZGRg4cKB03GQyITY2FoWFhTh06BA2bdqEjRs3Yu7cubV8lojqnqurK4DKvygs7YioaioaaqO7OnY8hsmTV2DkyI2YPHmFKjKFqgnCpkyZgm7duiE0NBTdu3fHrFmzcPjwYdy+fRsA8NFHH2HAgAEYP348mjVrhtjYWMyePRtLliyBEAIAsH79eoSHh+Ptt9/Gvffei7i4OAwePBjLly+XnmfZsmV4/vnnMXr0aLRp0wbr16+Hh4cH3n//fQCA0WjEhg0bsGzZMvTu3RudOnXCBx98gEOHDuHw4cMAgO+++w6nTp3Cf/7zH9x///14/PHH8frrr2PNmjX85U4Ox8/PD3FxcejefWSZXxQPPjiSw4ZENWAZaitODUNtctDr8xEefl7xGTAL1QRhxeXk5GDz5s3o3r07XFxcAAAFBQWoX7++VTt3d3dcunQJ58+fBwAkJiYiKirKqk10dDQSExMBFA1tHDlyxKqNVqtFVFSU1ObIkSO4ffu2VZvWrVujadOmUpvExES0a9cOgYGBVs+Tl5eH33//vdzXVVBQgLy8PKsLkRr4+fmhWzc/aEt8ouh0QNeufgzAiGpArUNtVDlVTcyfOXMm4uPjcePGDXTr1g0JCQnSsejoaEyZMgWjRo1Cr169cO7cObz99tsAgMuXLyMsLAyZmZlWgREABAYGIi8vDzdv3sTVq1dhMpnKbHPmzBkAQGZmJlxdXeHj41OqTWZmptSmrMewHCvPokWLsGDBgiqckdrDVThUVY0bA+++C7zwAmAyFQVg77xTdLvacaUmyaH4EH7HjscQEXEOOTm+8PXNsfpcduahfltfu1LPkaxB2KxZs7BkyZIK25w+fRqtW7cGAEyfPh1jx47F+fPnsWDBAowYMQIJCQnQaDR4/vnnkZqair59++L27dvw9vbGSy+9hPnz50Nb8ue5Qs2ePRtTp06Vrufl5aFJkyZ13g+uwqHqGjsWiI4Gzp0Dmje3XwAm548CrtQkuViG+vkDoHxqP0eyBmHTpk3DqFGjKmzTrFkz6e/+/v7w9/dHy5Ytce+996JJkyY4fPgwIiMjodFosGTJErzxxhvIzMxEQEAA9u7da/UYQUFBpVYxXrlyBd7e3nB3d4dOp4NOpyuzTVBQkPQYhYWFyM3NtcqGlWxTckWl5TEtbcri5uYGNze3Cs9HbalscrWl4J1Sf02QcjRubN/sl9w/CrhSk+Sk1OBBSdR8jmQNwgICAhAQEFCt+5rNRWPjBQUFVrfrdDo0atQIAPDxxx8jMjJSeo7IyEh8/fXXVu337NmDyMhIAEWBSKdOnbB3714MGDBAep69e/ciLi4OANCpUye4uLhg7969GDRoEAAgJSUFFy5ckB4nMjISCxcuRFZWFho2bCg9j7e3N9q0aVOt11vbLL8m9u8Hli8ve3J1z57qfrOTevBHgWPhcC5R2VQxJywpKQm//PILHnroIdxzzz1ITU3FnDlzEBERIQU+2dnZ+Oyzz9CzZ0/cunULH3zwgVRCwmL8+PGIj4/HjBkzMGbMGOzbtw9bt27Frl27pDZTp07FyJEj0blzZ3Tp0gUrVqzA9evXMXr0aACAXq/H2LFjMXXqVPj6+sLb2xuTJk1CZGQkunXrBgB47LHH0KZNGwwfPhxLly5FZmYmXn31VUycOFG2TJctiiZXA1otYC62EOfu5Gr5+kbORY0/CrKzs6W/M6i4i8O51cPA1TmoIgjz8PDAjh07MG/ePFy/fh3BwcGIiYnBq6++ahXUbNq0CS+//DKEEIiMjMSBAwfQpUsX6Xh4eDh27dqFKVOmYOXKlWjcuDHee+89REdHS22GDBmCP//8E3PnzkVmZibuv/9+7N6922qi/fLly6HVajFo0CAUFBQgOjoaa9eulY7rdDokJCRgwoQJiIyMhKenJ0aOHInXXnutls9UzTny5GpSF7X9KNixY4fVdQYVRTicW3UMXJ2HRliKaJHi5OXlQa/Xw2g0wtvbu06f+9Il+0+uJqqODRtK/ygYO7bunv/y5ct49913q3y/cePGITg4uBZ6pC62nj+er7t4ztTP1u9vVWTCqO7Ze3I11YwzD03U1orL6mL5FiKyFwZhRArHoQnl/CiQe6UmOScG/o6LQRiRwnFOjbxsXalJVBsY+Ds2dVQxJSKSSWV7Y3IT5aoxGr2QlhYmbexO5Ssv8Oe5cxzMhBERVaK8lZrcRLlqmNWpmpwcv3IDf2ZfHQMzYURENrCUb9HpihaUW4IIAMzsVKCy4VzLeWPh3dJ8fQ3Spt0WDPwdCzNhREQ2GjsW6NIlF2+//SV8fXOQmtocK1ZMLjOz4wxBha2rdtVWeFdulveOXp+Pfv0SSmUPLVkwZ3iPOTrWCVMwOeuEkXKwZpDyGAwGpKffQZcuDWE2a6TbdTqBpKQshIXVc/igoqqrdi9dAkJDSxfeTU9XxspXpSke4GZkaJGeXg9hYXcQElJ0Ah25LI0jYJ0wIgfF5ery8/Pzw4kT1gEFAJhMGuTnByqumn9tqOqqXe7GUTXFA6zgYKBTJxk7Q7WGQRiRwhUfcqhoYjOHJupWixZlb6nUvLl8fVI6pRXeJZIbgzAihbPMqUlPv4PXXmsIIYqGv4TQYteufpg7t6tTDH8pDTM71aOUwrtESsAgjEgFOPylTMzsKIszb+9F6sQgjEglOPylTMzsKAO39yI1Yp0wIpW4W6eq6DqHv0hJ5K6Ez+29SI2YCSNSEQ5/kRKxEj5R9TAII1IZDn+REti6sTlX7RKVj0EYERFVmdIr4bOeHqkBgzAiIqqW8jY21+mArl39ZFu1y+FRUgsGYUREKqSUcgxKq5dW2fAokZIwCCMiUhmllWNQ0oKRnBw/KQCzEEKLnBxfBmGkOAzCiIhURonlGOReMGJZAODra4BGY7YKxDQaM3x9c6zaESkBgzAiIlKFyoZgn332WXh4eKBRozzMnKmHyaSBTiewZEkenn56GCvmk+IwCCMiIsWryhDstGk+GDLEMjyqQePGPgB8aruLqqWU+YXOiEEYEREpXlWHYOUeHlULpc0vdDbctoiISOXk3jKI1KtkcFvee4nbPdUOZsKIiFSMNbHIXvheqnvMhBERqVR5NbGcISPG7J99OfN7SU7MhBERqYylzEJlNbEctRwDMzb2x/pq8mAQRkSkMpZ9G9PT7+CjjwTMZo10TKcTmDTpcYSF1XPIidSsiF87KquvRrWDw5FERCrk5+eHTp0C8e67Guh0RbcVbRmkQadOgQ4ZgAEVZ2yo+vT6fPTrlwCNpmgTUEuGkYFt7WImjIhIxZS0ZVBtYkX82tex4zFERJxDTo4vfH1zGIDVAQZhRFRlLO6oLM5QE8syBFtYWMiK+HZUMmjV6/PLDL4Y3NYOjRBCyN0JKlteXh70ej2MRiO8vb3l7g4RABZ3JGW4dMnxs391hT+q7M/W729mwoioSpS4eTQ5H2fI/tUVBljyYRBGRJUq/ks5Oztb5t4QETkGBmFEVCFbhx+JiKhqWKKCiCrEYUUiotrBIIyIaoTbxxARVQ+HI4mo2rh9DBFR9TETRkTVwg1/iYhqhpkwIqoSo9ELOTl+uH7dwyk3jyYishcGYURks+LDj4AZgADgPJtHExHZE4MwIrJJyeHHotkMZmg0AkJoodMJafNoInthNXdyZAzCiKhClmHFnBy/UsOPgBaDBm2Fp+cNTJv2JNq1u6fuO0gOi1tkkaNjEEZEFbJsnJyefgcffSRgNlsPP86a9chfw48MwMi+SmbALPMRfX0NVptMs5YdqRWDMCKqlJ+fH/z8gHffBV54ATCZAJ0OHH6kOsNyKOSIGIQRkc3GjgWio4Fz54DmzbmBMtWN8sqhREScs8qIEakNgzByWJzQWzsaN2bwRXWrrPmIxcuhEFXHpUvA2bNAixbyfaYxCCOHxAm9RI7D19cAjcZsFYhpNGb4+ubI2CtSsw0bgHHjALMZ0GqLplqMHVv3/WDFfHJItk7U5YReIuXT6/PRr18CNBozAEhzwpgFo6oyGAw4cuQKxo0TMBe9nWA2Ay+8IHDkyBUYDIY67Q8zYeQUyltVRUTq0LHjMUREnENOji98fXP4/5iqzDJCkpYWBrN5pNUxk0mD1au/QXj4+TodIWEQRg6Pq6pqjxLmVJDjKrn1lV6fX2bwxS2yyBaWkY/KhrfrcoSEQRg5NK6qsj/LgoctW9wxY4YeZrMGWq3A0qVGPP30TS54ILux1KjjAhuyJ8vwdskf53J8JzAII4fGVVX2ZUnnG41eWLFiMoQoKtxqNmswfbo3/vjjfej1+VzwQHbD9xHVBqUMbzMII4fGVVX2ZclIVBbccsEDESldecPbdYmrI8mhcVVV7bAEt8UxuCUiqhpmwsghFZ+oW1HamRN6q0dJcyqIiNSKQRg5JE7orX1KmVNBRKRWDMLIYTHAqn1KmFNBRGQLW0c+6nKEhEEYEREROTwljpAwCCMiIiKnoLQREq6OJCKbKTGdT0SkVsyEEZHNlJjOJyJSKwZhRFQlDLCIiOyDw5FEREREMmAQRkRERCQDBmFEREREMlBdEFZQUID7778fGo0GycnJVsdOnDiBhx9+GPXr10eTJk2wdOnSUvfftm0bWrdujfr166Ndu3b4+uuvrY4LITB37lwEBwfD3d0dUVFROHv2rFWbnJwcPPPMM/D29oaPjw/Gjh2La9euVbkvRERE5LxUF4TNmDEDISEhpW7Py8vDY489htDQUBw5cgRvvvkm5s+fj3fffVdqc+jQIQwbNgxjx47FsWPHMGDAAAwYMAAnT56U2ixduhSrVq3C+vXrkZSUBE9PT0RHR+PWrVtSm2eeeQa///479uzZg4SEBPz4448YN25clfpCRERETk6oyNdffy1at24tfv/9dwFAHDt2TDq2du1acc8994iCggLptpkzZ4pWrVpJ15966ikRGxtr9Zhdu3YVL7zwghBCCLPZLIKCgsSbb74pHc/NzRVubm7i448/FkIIcerUKQFA/PLLL1Kbb775Rmg0GvHHH3/Y3BdbGI1GAUAYjcYq3Y+IiIjkY+v3t2oyYVeuXMHzzz+Pjz76CB4eHqWOJyYmokePHlZFIqOjo5GSkoKrV69KbaKioqzuFx0djcTERABAWloaMjMzrdro9Xp07dpVapOYmAgfHx907txZahMVFQWtVoukpCSb+1KWgoIC5OXlWV2IiIjIMakiCBNCYNSoURg/frxV8FNcZmYmAgMDrW6zXM/MzKywTfHjxe9XXpuGDRtaHa9Xrx58fX0rfZ7iz1GWRYsWQa/XS5cmTZqU25aIiIjUTdYgbNasWdBoNBVezpw5g9WrVyM/Px+zZ8+Ws7u1bvbs2TAajdLl4sWLcneJiIiIaomsFfOnTZuGUaNGVdimWbNm2LdvHxITE+Hm5mZ1rHPnznjmmWewadMmBAUF4cqVK1bHLdeDgoKkP8tqU/y45bbg4GCrNvfff7/UJisry+ox7ty5g5ycnEqfp/hzlMXNza3UayQiIiLHJGsmLCAgAK1bt67w4urqilWrVuH48eNITk5GcnKyVFbi008/xcKFCwEAkZGR+PHHH3H79m3p8ffs2YNWrVrhnnvukdrs3bvXqg979uxBZGQkACA8PBxBQUFWbfLy8pCUlCS1iYyMRG5uLo4cOSK12bdvH8xmM7p27WpzX4iInNWlS8D+/UV/Ejm1ulknYF9paWmlVkfm5uaKwMBAMXz4cHHy5EnxySefCA8PD/HOO+9IbX766SdRr1498dZbb4nTp0+LefPmCRcXF/Hbb79JbRYvXix8fHzEl19+KU6cOCGefPJJER4eLm7evCm1iYmJER06dBBJSUni4MGDokWLFmLYsGFV6ostuDqSiBzNe+8JodUKART9+d57cveIyP5s/f52mCBMCCGOHz8uHnroIeHm5iYaNWokFi9eXOq+W7duFS1bthSurq6ibdu2YteuXVbHzWazmDNnjggMDBRubm6iT58+IiUlxaqNwWAQw4YNEw0aNBDe3t5i9OjRIj8/v8p9qQyDMCJyJBcv3g3ALBedruh2Ikdi6/e3Rggh5MzEUfny8vKg1+thNBrh7e0td3eISEUuXQLOngVatAAaN5a7N0X27wd69y779p4967w7RLXG1u9vVZSoICIi223YAISGFgU8oaFF15WgRQtAW+JbR6cDmjeXpz9EcmMQRkTkQC5dAsaNA8zmoutmM/DCC8qYBN+4MfDuu0WBF1D055Qp8vaJSE4MwoiIHMjZs3cDMAuTCTh3Tp7+WBgMBly+fBlPPHEZSUlXMH78NZjNAm+9BYSGCqxceU3eDhLJQNY6YUREZF+WIb/igZjcQ34GgwHx8fHSdaPRC++8MxlCaAAAZrMGU6Z4oHfvq2jXjmV8yHkwE0ZE5EDKGvJ75x15J+cXFhZaXc/J8UPJrYuF0OJ//yuRwiNycMyEERE5mLFjgejooiHI5s2VszrSwtfXAI3GbBWIaTRmhIXdkbFXRHWPmTAiIgfUuHFR2QelBWAAoNfno1+/BGg0RZkvjcaMfv0SEBLCTBg5F2bCiIgchMFgKDX0V5yrqyv8/PzqsEfl69jxGCIiziEnxxe+vjnQ6/MBPCB3txRNibXfqGYYhBEROYCSk9/LExcXp5hATK/P/yv4KpKdna2oQFFJNmy4W3pEqy2a9zd2rNy9opricCQRkQOoKANWnXZy2LFjB+Lj42EwGOTuiqJUVvuNG6KrF4MwIiJSFCUHinKoqPabUndHINswCCMiolrl6uoqdxdUrbztnjw9lbs7AtmGQRgREdUqPz8/xMXFYeDAgXJ3RZXKq/127Zoyd0cg23FiPhER1To/Pz8OM1aDZcXrE08ASUlapKfXQ1jYHYSEmJGRoYVW2xBms0ZqL/fuCFQ1DMKIiIgUqLwVrydP3v17374dsGtXP5hMGkXsjkBVwyCMiIhIgWzJHHbseAxz53ZFfn6gIndHoIoxCCMicgC2Tn7nJHnH4+qahVatiiaHXb5suY311tSAQRgRkQOwTH5XcsV8Boq1Y8eOHWXerqTCvFQ2BmFERA5C6V+4aggUHQkXQigfgzAiIqozDLCI7mKdMCIiIiIZMAgjIiIikgGDMCIiIgXiAgXHxzlhREREClTeQobs7OxyV0SSujAIIyIiUiguZHBsHI4kIiJSEdZbcxzMhBEREakI6605DgZhREREKsMAyzFwOJKIiIhIBgzCiIiIiGTAIIyIiIhIBgzCiIiIiGTAIIyIiIhIBgzCiIiIiGTAIIyIiIhIBgzCiIiIiGTAIIyIiIhIBqyYr2BCCABAXl6ezD0hIiIiW1m+ty3f4+VhEKZg+fn5AIAmTZrI3BMiIiKqqvz8fOj1+nKPa0RlYRrJxmw2IyMjA15eXtBoNHJ3p87k5eWhSZMmuHjxIry9veXujqrxXNoHz6P98FzaD8+lfdTGeRRCID8/HyEhIdBqy5/5xUyYgmm1WjRu3FjubsjG29ubHyx2wnNpHzyP9sNzaT88l/Zh7/NYUQbMghPziYiIiGTAIIyIiIhIBgzCSHHc3Nwwb948uLm5yd0V1eO5tA+eR/vhubQfnkv7kPM8cmI+ERERkQyYCSMiIiKSAYMwIiIiIhkwCCMiIiKSAYMwIiIiIhkwCCPZ/Pjjj+jXrx9CQkKg0WjwxRdfWB0XQmDu3LkIDg6Gu7s7oqKicPbsWXk6q3CVnctRo0ZBo9FYXWJiYuTprIItWrQIDzzwALy8vNCwYUMMGDAAKSkpVm1u3bqFiRMnws/PDw0aNMCgQYNw5coVmXqsTLacx549e5Z6T44fP16mHivXunXrcN9990mFRCMjI/HNN99Ix/l+tF1l51KO9ySDMJLN9evX0b59e6xZs6bM40uXLsWqVauwfv16JCUlwdPTE9HR0bh161Yd91T5KjuXABATE4PLly9Ll48//rgOe6gOP/zwAyZOnIjDhw9jz549uH37Nh577DFcv35dajNlyhTs3LkT27Ztww8//ICMjAwMHDhQxl4rjy3nEQCef/55q/fk0qVLZeqxcjVu3BiLFy/GkSNH8Ouvv6J379548skn8fvvvwPg+7EqKjuXgAzvSUGkAADE559/Ll03m80iKChIvPnmm9Jtubm5ws3NTXz88ccy9FA9Sp5LIYQYOXKkePLJJ2Xpj5plZWUJAOKHH34QQhS9B11cXMS2bdukNqdPnxYARGJiolzdVLyS51EIIR555BHx0ksvydcpFbvnnnvEe++9x/ejHVjOpRDyvCeZCSNFSktLQ2ZmJqKioqTb9Ho9unbtisTERBl7pl4HDhxAw4YN0apVK0yYMAEGg0HuLime0WgEAPj6+gIAjhw5gtu3b1u9L1u3bo2mTZvyfVmBkufRYvPmzfD398ff/vY3zJ49Gzdu3JCje6phMpnwySef4Pr164iMjOT7sQZKnkuLun5PcgNvUqTMzEwAQGBgoNXtgYGB0jGyXUxMDAYOHIjw8HCkpqbin//8Jx5//HEkJiZCp9PJ3T1FMpvNmDx5Mh588EH87W9/A1D0vnR1dYWPj49VW74vy1fWeQSAp59+GqGhoQgJCcGJEycwc+ZMpKSkYMeOHTL2Vpl+++03REZG4tatW2jQoAE+//xztGnTBsnJyXw/VlF55xKQ5z3JIIzICQwdOlT6e7t27XDfffchIiICBw4cQJ8+fWTsmXJNnDgRJ0+exMGDB+XuiqqVdx7HjRsn/b1du3YIDg5Gnz59kJqaioiIiLrupqK1atUKycnJMBqN+OyzzzBy5Ej88MMPcndLlco7l23atJHlPcnhSFKkoKAgACi1yufKlSvSMaq+Zs2awd/fH+fOnZO7K4oUFxeHhIQE7N+/H40bN5ZuDwoKQmFhIXJzc63a831ZtvLOY1m6du0KAHxPlsHV1RXNmzdHp06dsGjRIrRv3x4rV67k+7EayjuXZamL9ySDMFKk8PBwBAUFYe/evdJteXl5SEpKshq/p+q5dOkSDAYDgoOD5e6KogghEBcXh88//xz79u1DeHi41fFOnTrBxcXF6n2ZkpKCCxcu8H1ZTGXnsSzJyckAwPekDcxmMwoKCvh+tAPLuSxLXbwnORxJsrl27ZrVL4y0tDQkJyfD19cXTZs2xeTJk/Gvf/0LLVq0QHh4OObMmYOQkBAMGDBAvk4rVEXn0tfXFwsWLMCgQYMQFBSE1NRUzJgxA82bN0d0dLSMvVaeiRMnYsuWLfjyyy/h5eUlzavR6/Vwd3eHXq/H2LFjMXXqVPj6+sLb2xuTJk1CZGQkunXrJnPvlaOy85iamootW7bgiSeegJ+fH06cOIEpU6agR48euO+++2TuvbLMnj0bjz/+OJo2bYr8/Hxs2bIFBw4cwLfffsv3YxVVdC5le0/W6VpMomL2798vAJS6jBw5UghRVKZizpw5IjAwULi5uYk+ffqIlJQUeTutUBWdyxs3bojHHntMBAQECBcXFxEaGiqef/55kZmZKXe3FaescwhAfPDBB1Kbmzdviv/7v/8T99xzj/Dw8BB///vfxeXLl+XrtAJVdh4vXLggevToIXx9fYWbm5to3ry5mD59ujAajfJ2XIHGjBkjQkNDhaurqwgICBB9+vQR3333nXSc70fbVXQu5XpPaoQQovZCPCIiIiIqC+eEEREREcmAQRgRERGRDBiEEREREcmAQRgRERGRDBiEEREREcmAQRgRERGRDBiEEREREcmAQRgRERGRDBiEEREREcmAQRgRUTUUFhbK3YVSlNgnIiofgzAiIgA9e/ZEXFwc4uLioNfr4e/vjzlz5sCys1tYWBhef/11jBgxAt7e3hg3bhwA4ODBg3j44Yfh7u6OJk2a4MUXX8T169elx127di1atGiB+vXrIzAwEIMHD5aOffbZZ2jXrh3c3d3h5+eHqKgo6b49e/bE5MmTrfo4YMAAjBo1Srpe3T4RkTIwCCMi+sumTZtQr149/Pzzz1i5ciWWLVuG9957Tzr+1ltvoX379jh27BjmzJmD1NRUxMTEYNCgQThx4gQ+/fRTHDx4EHFxcQCAX3/9FS+++CJee+01pKSkYPfu3ejRowcA4PLlyxg2bBjGjBmD06dP48CBAxg4cCCqup1vVftERMrBDbyJiFCUecrKysLvv/8OjUYDAJg1axa++uornDp1CmFhYejQoQM+//xz6T7PPfccdDod3nnnHem2gwcP4pFHHsH169fx9ddfY/To0bh06RK8vLysnu/o0aPo1KkT0tPTERoaWmZ/7r//fqxYsUK6bcCAAfDx8cHGjRsBoFp9ql+/fo3OExHZDzNhRER/6datmxSAAUBkZCTOnj0Lk8kEAOjcubNV++PHj2Pjxo1o0KCBdImOjobZbEZaWhoeffRRhIaGolmzZhg+fDg2b96MGzduAADat2+PPn36oF27dvjHP/6Bf//737h69WqV+1zVPhGRcjAIIyKykaenp9X1a9eu4YUXXkBycrJ0OX78OM6ePYuIiAh4eXnh6NGj+PjjjxEcHIy5c+eiffv2yM3NhU6nw549e/DNN9+gTZs2WL16NVq1aiUFSlqtttTQ5O3bt2vcJyJSDgZhRER/SUpKsrp++PBhtGjRAjqdrsz2HTt2xKlTp9C8efNSF1dXVwBAvXr1EBUVhaVLl+LEiRNIT0/Hvn37AAAajQYPPvggFixYgGPHjsHV1VUaWgwICMDly5el5zKZTDh58mSlr8GWPhGRMjAIIyL6y4ULFzB16lSkpKTg448/xurVq/HSSy+V237mzJk4dOgQ4uLikJycjLNnz+LLL7+UJsEnJCRg1apVSE5Oxvnz5/Hhhx/CbDajVatWSEpKwhtvvIFff/0VFy5cwI4dO/Dnn3/i3nvvBQD07t0bu3btwq5du3DmzBlMmDABubm5lb6GyvpERMpRT+4OEBEpxYgRI3Dz5k106dIFOp0OL730klT2oSz33XcffvjhB7zyyit4+OGHIYRAREQEhgwZAgDw8fHBjh07MH/+fNy6dQstWrTAxx9/jLZt2+L06dP48ccfsWLFCuTl5SE0NBRvv/02Hn/8cQDAmDFjcPz4cYwYMQL16tXDlClT0KtXr0pfQ2V9IiLl4OpIIiKUvRqRiKg2cTiSiIiISAYMwoiIiIhkwOFIIiIiIhkwE0ZEREQkAwZhRERERDJgEEZEREQkAwZhRERERDJgEEZEREQkAwZhRERERDJgEEZEREQkAwZhRERERDJgEEZEREQkg/8PWOYDR7Ixe24AAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 [==============================] - 1s 3ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChQElEQVR4nO2deXgT1f7/30m6UKBNIWVppdBSkEURBbQUFBGqRQHlC0pxA2QTLqAFZFNAwAXhKjuKXhEQqYKC/qQoCojeq5SqKCKKXOUWBNsCDTQta5fM7484IUmzTCaznJl8Xs/TB5JMJme2c97nsx0Dx3EcCIIgCIIgCEUxqt0AgiAIgiCIcIREGEEQBEEQhAqQCCMIgiAIglABEmEEQRAEQRAqQCKMIAiCIAhCBUiEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYQRAE4Zd169bBYDDg2LFjajeFIHQFiTCCIFTnu+++w4QJE3DdddehXr16aN68OQYPHoz//ve/tbbt2bMnDAYDDAYDjEYj4uLi0KZNGzz66KPYuXNnUL+7bds23H777WjcuDHq1q2Lli1bYvDgwdixY4dUh1aLF198ER999FGt9/fu3Yu5c+eirKxMtt/2ZO7cuc5zaTAYULduXbRv3x6zZs1CeXm5JL+Rm5uLpUuXSrIvgtAbJMIIglCdhQsXYsuWLejduzeWLVuGMWPG4N///jc6deqEQ4cO1dq+WbNm2LBhA95++23885//xL333ou9e/firrvuQnZ2NqqqqgL+5ssvv4x7770XBoMBM2fOxJIlSzBo0CD8/vvveO+99+Q4TAD+Rdi8efMUFWE8r732GjZs2IDFixejbdu2eOGFF9CnTx9IsbQwiTCC8E2E2g0gCIKYPHkycnNzERUV5XwvOzsbHTp0wEsvvYR33nnHbXuz2YxHHnnE7b2XXnoJTzzxBF599VWkpKRg4cKFPn+vuroazz33HO688058/vnntT4/ffp0iEfEDhcvXkTdunX9bnP//fcjISEBADB27FgMGjQIW7duxb59+5CRkaFEMwkiLCFLGEEQqtOtWzc3AQYArVu3xnXXXYfDhw8L2ofJZMLy5cvRvn17rFy5Ejabzee2paWlKC8vR/fu3b1+3rhxY7fXly9fxty5c3HttdeiTp06SExMxMCBA3H06FHnNi+//DK6desGi8WCmJgYdO7cGR988IHbfgwGAy5cuID169c7XYDDhw/H3LlzMXXqVABAamqq8zPXGKx33nkHnTt3RkxMDBo2bIghQ4bgxIkTbvvv2bMnrr/+euzfvx89evRA3bp18fTTTws6f6706tULAFBYWOh3u1dffRXXXXcdoqOjkZSUhPHjx7tZ8nr27Int27fj+PHjzmNKSUkJuj0EoVfIEkYQBJNwHIdTp07huuuuE/wdk8mEBx98ELNnz8bXX3+Nvn37et2ucePGiImJwbZt2zBx4kQ0bNjQ5z5ramrQr18/7N69G0OGDMGTTz6JiooK7Ny5E4cOHUJaWhoAYNmyZbj33nvx8MMPo7KyEu+99x4eeOAB5OXlOduxYcMGjBo1CrfccgvGjBkDAEhLS0O9evXw3//+F++++y6WLFnitEo1atQIAPDCCy9g9uzZGDx4MEaNGoUzZ85gxYoV6NGjB3788UfEx8c722u1WnH33XdjyJAheOSRR9CkSRPB54+HF5cWi8XnNnPnzsW8efOQmZmJcePG4ciRI3jttdfw3Xff4ZtvvkFkZCSeeeYZ2Gw2nDx5EkuWLAEA1K9fP+j2EIRu4QiCIBhkw4YNHABuzZo1bu/ffvvt3HXXXefzex9++CEHgFu2bJnf/c+ZM4cDwNWrV4+7++67uRdeeIHbv39/re3eeustDgC3ePHiWp/Z7Xbn/y9evOj2WWVlJXf99ddzvXr1cnu/Xr163LBhw2rt65///CcHgCssLHR7/9ixY5zJZOJeeOEFt/d//vlnLiIiwu3922+/nQPArV692udxu/Lss89yALgjR45wZ86c4QoLC7nXX3+di46O5po0acJduHCB4ziOW7t2rVvbTp8+zUVFRXF33XUXV1NT49zfypUrOQDcW2+95Xyvb9++XIsWLQS1hyDCDXJHEgTBHL/99hvGjx+PjIwMDBs2LKjv8paWiooKv9vNmzcPubm5uOmmm/DZZ5/hmWeeQefOndGpUyc3F+iWLVuQkJCAiRMn1tqHwWBw/j8mJsb5/3PnzsFms+G2227DDz/8EFT7Pdm6dSvsdjsGDx6M0tJS51/Tpk3RunVr7Nmzx2376OhoPPbYY0H9Rps2bdCoUSOkpqbi8ccfR6tWrbB9+3afsWS7du1CZWUlcnJyYDReHUZGjx6NuLg4bN++PfgDJYgwhNyRBEEwRUlJCfr27Quz2YwPPvgAJpMpqO+fP38eABAbGxtw2wcffBAPPvggysvLUVBQgHXr1iE3Nxf9+/fHoUOHUKdOHRw9ehRt2rRBRIT/7jIvLw/PP/88Dhw4gCtXrjjfdxVqYvj999/BcRxat27t9fPIyEi319dcc02t+LpAbNmyBXFxcYiMjESzZs2cLlZfHD9+HIBDvLkSFRWFli1bOj8nCMI/JMIIgmAGm82Gu+++G2VlZfjPf/6DpKSkoPfBl7Ro1aqV4O/ExcXhzjvvxJ133onIyEisX78eBQUFuP322wV9/z//+Q/uvfde9OjRA6+++ioSExMRGRmJtWvXIjc3N+hjcMVut8NgMODTTz/1Kkg9Y6xcLXJC6dGjhzMOjSAI5SARRhAEE1y+fBn9+/fHf//7X+zatQvt27cPeh81NTXIzc1F3bp1ceutt4pqR5cuXbB+/XoUFxcDcATOFxQUoKqqqpbViWfLli2oU6cOPvvsM0RHRzvfX7t2ba1tfVnGfL2flpYGjuOQmpqKa6+9NtjDkYUWLVoAAI4cOYKWLVs636+srERhYSEyMzOd74VqCSQIPUMxYQRBqE5NTQ2ys7ORn5+P999/X1RtqpqaGjzxxBM4fPgwnnjiCcTFxfnc9uLFi8jPz/f62aeffgrgqqtt0KBBKC0txcqVK2tty/1dzNRkMsFgMKCmpsb52bFjx7wWZa1Xr57Xgqz16tUDgFqfDRw4ECaTCfPmzatVPJXjOFitVu8HKSOZmZmIiorC8uXL3dq0Zs0a2Gw2t6zUevXq+S0XQhDhDFnCCIJQnSlTpuDjjz9G//79cfbs2VrFWT0Ls9psNuc2Fy9exB9//IGtW7fi6NGjGDJkCJ577jm/v3fx4kV069YNXbt2RZ8+fZCcnIyysjJ89NFH+M9//oMBAwbgpptuAgAMHToUb7/9NiZPnoxvv/0Wt912Gy5cuIBdu3bhH//4B+677z707dsXixcvRp8+ffDQQw/h9OnTWLVqFVq1aoWDBw+6/Xbnzp2xa9cuLF68GElJSUhNTUV6ejo6d+4MAHjmmWcwZMgQREZGon///khLS8Pzzz+PmTNn4tixYxgwYABiY2NRWFiIDz/8EGPGjMFTTz0V0vkPlkaNGmHmzJmYN28e+vTpg3vvvRdHjhzBq6++iptvvtntenXu3BmbNm3C5MmTcfPNN6N+/fro37+/ou0lCGZRMzWTIAiC466WVvD152/b+vXrc61bt+YeeeQR7vPPPxf0e1VVVdy//vUvbsCAAVyLFi246Ohorm7dutxNN93E/fOf/+SuXLnitv3Fixe5Z555hktNTeUiIyO5pk2bcvfffz939OhR5zZr1qzhWrduzUVHR3Nt27bl1q5d6ywB4cpvv/3G9ejRg4uJieEAuJWreO6557hrrrmGMxqNtcpVbNmyhbv11lu5evXqcfXq1ePatm3LjR8/njty5IjbufFXvsMTvn1nzpzxu51niQqelStXcm3btuUiIyO5Jk2acOPGjePOnTvnts358+e5hx56iIuPj+cAULkKgnDBwHESLA5GEARBEARBBAXFhBEEQRAEQagAiTCCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVIBEGEEQBEEQhAqQCCMIgiAIglABKtbKMHa7HUVFRYiNjaWlPwiCIAhCI3Ach4qKCiQlJcFo9G3vIhHGMEVFRUhOTla7GQRBEARBiODEiRNo1qyZz89JhDFMbGwsAMdF9LcOHkEQBEEQ7FBeXo7k5GTnOO4LEmEMw7sg4+LiSIQRBEEQhMYIFEpEgfkEQRAEQRAqQCKMIAiCIAhCBUiEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYQRAEQRCECpAIIwiCIAiCUAHNiLB7770XzZs3R506dZCYmIhHH30URUVFbttwHIeXX34Z1157LaKjo3HNNdfghRdecNvmyy+/RKdOnRAdHY1WrVph3bp1tX5r1apVSElJQZ06dZCeno5vv/3W7fPLly9j/PjxsFgsqF+/PgYNGoRTp065bfPnn3+ib9++qFu3Lho3boypU6eiurpampNBEARBEITm0YwIu+OOO7B582YcOXIEW7ZswdGjR3H//fe7bfPkk0/izTffxMsvv4zffvsNH3/8MW655Rbn54WFhejbty/uuOMOHDhwADk5ORg1ahQ+++wz5zabNm3C5MmT8eyzz+KHH35Ax44dkZWVhdOnTzu3mTRpErZt24b3338fX331FYqKijBw4EDn5zU1Nejbty8qKyuxd+9erF+/HuvWrcOcOXNkPEOEGKxWK4qLi33+Wa1WtZtIEARB6BQDx3Gc2o0Qw8cff4wBAwbgypUriIyMxOHDh3HDDTfg0KFDaNOmjdfvTJ8+Hdu3b8ehQ4ec7w0ZMgRlZWXYsWMHACA9PR0333wzVq5cCQCw2+1ITk7GxIkTMWPGDNhsNjRq1Ai5ublOEfjbb7+hXbt2yM/PR9euXfHpp5+iX79+KCoqQpMmTQAAq1evxvTp03HmzBlERUUJOsby8nKYzWbYbDZmli2yWq2orKz0+XlUVBQsFouCLRKP1Wp1Xmd/TJgwQTPHRASPnu5pgiDYQOj4rcm1I8+ePYuNGzeiW7duiIyMBABs27YNLVu2RF5eHvr06QOO45CZmYlFixahYcOGAID8/HxkZma67SsrKws5OTkAgMrKSuzfvx8zZ850fm40GpGZmYn8/HwAwP79+1FVVeW2n7Zt26J58+ZOEZafn48OHTo4BRj/O+PGjcMvv/yCm266yetxXblyBVeuXHG+Li8vD+EsSY/eRIu/gVfMdoT20Ns9TRCEttCUCJs+fTpWrlyJixcvomvXrsjLy3N+9r///Q/Hjx/H+++/j7fffhs1NTWYNGkS7r//fnzxxRcAgJKSEjdhBABNmjRBeXk5Ll26hHPnzqGmpsbrNr/99ptzH1FRUYiPj6+1TUlJid/f4T/zxYIFCzBv3rwgzoiykGjRBmTZEQ7d0wThgPoNdVBVhM2YMQMLFy70u83hw4fRtm1bAMDUqVMxcuRIHD9+HPPmzcPQoUORl5cHg8EAu92OK1eu4O2338a1114LAFizZg06d+6MI0eO+HRRssTMmTMxefJk5+vy8nIkJyer2CJCa5BlhyCIYKF+Qz1UFWFTpkzB8OHD/W7TsmVL5/8TEhKQkJCAa6+9Fu3atUNycjL27duHjIwMJCYmIiIiwinAAKBdu3YAHJmKbdq0QdOmTWtlMZ46dQpxcXGIiYmByWSCyWTyuk3Tpk0BAE2bNkVlZSXKysrcrGGe23hmVPL75LfxRnR0NKKjo/2eD4LwB1l2CIIIFuo31ENVEdaoUSM0atRI1HftdjsAOGOounfvjurqahw9ehRpaWkAgP/+978AgBYtWgAAMjIy8Mknn7jtZ+fOncjIyADgMLd27twZu3fvxoABA5y/s3v3bkyYMAEA0LlzZ0RGRmL37t0YNGgQAODIkSP4888/nfvJyMjACy+8gNOnT6Nx48bO34mLi0P79u1FHS+hf8gdIA10HrUJXTd2sNlicfasBQ0bWmE2V6jaFr3fF5qICSsoKMB3332HW2+9FQ0aNMDRo0cxe/ZspKWlOYVPZmYmOnXqhBEjRmDp0qWw2+0YP3487rzzTqd1bOzYsVi5ciWmTZuGESNG4IsvvsDmzZuxfft2529NnjwZw4YNQ5cuXXDLLbdg6dKluHDhAh577DEAgNlsxsiRIzF58mQ0bNgQcXFxmDhxIjIyMtC1a1cAwF133YX27dvj0UcfxaJFi1BSUoJZs2Zh/PjxZOkSgd4fQoDcAVJB51Gb0HVjhx9+uAnbtvUDxxlhMNjRv38eOnX6UZW2hMN9oQkRVrduXWzduhXPPvssLly4gMTERPTp0wezZs1yihqj0Yht27Zh4sSJ6NGjB+rVq4e7774br7zyinM/qamp2L59OyZNmoRly5ahWbNmePPNN5GVleXcJjs7G2fOnMGcOXNQUlKCG2+8ETt27HALtF+yZAmMRiMGDRqEK1euICsrC6+++qrzc5PJhLy8PIwbNw4ZGRmoV68ehg0bhvnz5ytwtvSFnh9CV3FZWloq6DvkDvBPqG4VliwA4QS5w9jAZot1CjAA4Dgjtm3rh7S0P1R5Hjyvt6/nU8v3hSZEWIcOHZwZjv5ISkrCli1b/G7Ts2dP/Pijf1U/YcIEp/vRG3Xq1MGqVauwatUqn9u0aNGiluuTCB45O2eh9dqEbhcMQsUloRwsWQAI/cKyZf/sWYtTgPFwnBFnzzZUfVKi1+dTEyKMYAM1RYscWCwWTJgwwdkhFhUZUVgYgdTUaiQlOWIO5eoQ5Zi5Wa1WwRY1wnG+bDYbgMAWAK3c03pBrxZJ1i37DRtaYTDY3YSYwWBHw4ZnFW+LK6xZ6KSERBghGE/R4g2txWfxbV2zBhgzBrDbAaMReOMNYORIlRsXBL46d70OZqFSVlaGzZs3O1/7sgB07DgI/frV19Q9rXX0avEA2He7ms0V6N8/r9b5F9J3yGnhY9lCFyokwoig0ONgdPLkVQEGOP59/HEgKwto1kzdtgnFW+fnbzALF8uOLxFaXV3ttp0vC8D119dR9J5n2VWlBHq2eHiDlUmSa3/QqdOPSEv7A2fPNkTDhmfd2uWr35DbwseqhU4KSIQRojl5Evj9d6B1a+2IFW/8/vtVAcZTUwP88Qd7x1VaWipoIPY1mE2Y0BqdOjXW9UDOE4xFxZcFICnpZsXay7qrSgn0bPHwhCWLX6heDrkC6MvKygCEZqFjHRJhhCi07r5zpXVrxzG4CjGTCWjVSr02+erEtm7dCiDwQOxrMCsvDw8BFsiicu7cuVrf8W4BUE6Ese6qkgvXWEY9WzxcYdHiJ1W/IJW4tFqtbiEDaWl/YNCgLQA4JCef1IUAA0iEESLQg/vOlWbNHCLy8ccdFjCTCXj99avHorSLSEgnFmgg9jWYpaRU+/mWduGvER9oH8iismfPHq/7MZsrdNO5awFP618gi4de3Oh6tfhJKS5d+7hAfaKW7wsSYUTQKOm+83y4fFmIQn0IR450iMg//nBYwFwFmBIuIv64IiOvSNKJseBekwIhAhhArWsUrEWFldgc1pB7AuJt394skgMHDkRSUpJurLh6tfjJIS4DCbvs7GxN3xckwoigUdJ95xqrkJsbg/nzzbDbDTAaOSxaZMNDD12SzBLVrFltESmXi8hVNLrO8gA7gNA7MZstFg0anMPIkW+iqipKFfdaqAgVwIMHD671XjAxJCzF5riitjBUI0bN9ZhTU487309ISND0QOuJXmOc5BCXgYSd2WwWvW8WIBFGBE0g9x2PVLNoi8WCkyeBadNcXaAGTJ8ej+zseGixb+bF5bFj1Zg/vzE4zvD3J0YAHACDc1t/nRh/jl3rg3kTFa4DmlYQKmw9Mx15/GV58bAYmwOwIQyVjlGTMpaI1QzTULMQWUcOcalXqyEPiTBCFL7cdzxSz6K1lMEoFIvFgoMHax8XYHB2Ov46MW/nmIqOuuMZ4+VpXQo0y1bjfLEqDOW0zEl1zKxnmOqx1qInQiY/waBXqyEPiTBCNN7cdzxSz6JZzGCUAm/HZTDYnW7EyMhKVFVFw2aLrdXpeDt3vkRF9+7D0LOnPuu8eeJLLHiztKSl/eF1lj18+K3o0KG/KueLxaBtuS1zUh2zFjJM9fgMek5WfCW4iJ3USC3sWIJEGKEJhLpAtUbt4+LQt28emjUrFjXweTPdm0wc0tMtmnTbuiLEEuPrnPmytOTkLPU6y27T5mbFB0t+gArkflHaOqeEZU4ul5PacXVywZrLVQkLn14zl0mEEZohkAtUCeTo1F2Py2Ipw9atvkWDq1vRW4fnzXS/cGE5mjWLl6StoSJ28BAiSP2dM3+WFrXrg/G4DmTXXFOO6dPNqKkxwGTisHBhOR566EFVXFVKWObkcDnJab1TUwR5ulx99UlKu1yl/i29rVXsCxJhhKbw5wKVGzk79avH1QBJSROwZw+wZIl/t2JxcbHb53xnnJb2B3JyljpFxUMPPQggXpJ2hoLYeB2hlhh/YsGXpSUyshKFhSm1svHUgj/uKVOA7Gx+wmH4W0THq9ImOQOj5QpUl8N6xwsvz3VHlRZBQutnKelydRWlRUVGFBZGIDW1GklJjjgLMaI0HOLnABJhBOEXvvNXMuDdYrGga1fvMXC+3IosZNMFQmy8TiBLTGRkJAD/YsFsrsD8+SV49tlE2O2OxIcbbjiINWtGMXvO1JxwuCJnYLRcA63U1jtf1qeiokTs2pWpighiJYHD9dz464fEiFKtCywhkAgjCD/wg4QQy5SUBBMDx0pnLDVCY6QaNWok2I13992nsGLFp4iMrHQKMEA/50xKlCqnIMdAG+iecS3p4oovwefL+uRaTsbbPSSn25KVBA7++AL1Q3pbbksqSIQRkuDZ2Xh2cloOkBVjmZICoTFwrHTGwRLonhATIxXIjZeUZEdq6nEUFqZo8pwpiZbdQYGsd1u3bhXlRvQUGq71/AD3e+jEiRP49NNP3b4rpduStfpZWu2H1IZEGBEygWJ9/JmotRJUqVZ2pj+XFKvZdEIQ6j4VEyMlxI3H2gDGKiwKLH8Itd6JjaXyJjRccb2HXAXYN99kSO62ZK1+Fj1T4iARRoSMv07Em4l6+/b+mDMnHSkpEZrq5FnIznSF1Wy6QIh1n0oRI8UP0movFM1aiQG94Gm98xZEf+JEMj7+uB/45cGCcUV7Exq8S9KXCPrmmwzs3Hkn/LktxcJS/SyzuQKZmbtqiU2ygvmHRBghK95mjjU1BlRUNNFk3SpWgqV5WMymC0Qgt4WnK1tKQeI5SM+ZcwbHjkUgJaX678XNb5ZdALFe1V3r+Dpn7rFc7vi6/zzvBW/iPTNzF5KSiryKIJstFjt3ZsKf2zJU1K6fVVZWBsBxfnkBBjjOC0uJLqxCIoyQFe/FQ7Vf6Z5FWBKI3iw9/OAWyG2xdevWWvuTUpC47icxEejcWZLdCsbzvPiKFaJAZumoHcvljmu5krVrd9aK2XIlGOvT2bMW8BY3z98T66ZjqX6W1WrF5s2bvZxfI3btysT11x8iS1gASIQRsuI5c9RLpXs1Yd2VFcjSIyaWRa+CRAulRfSAv1iuQOVKfBVFFiIufLkvMzN3iRYnLCVM8G1gJSj/5EnHOsOtW2tnjCERRkiO58yenzl27z4M6ekWzTwcQlFSFGnBlSVEMHXq9CMmTGiNEyeicejQR86OWstZtMGi19IiLOLL+jpo0AeIjy8LWK5EqFUpOzsbZrMZNpsNmzZtqjXhAOy4885d6N49P6TjYc1NLSQoXy7LHN//5ubGYNo0M+x2A4xGDosW2fDQQ5ec/S+rAo1EGCEpvmb2ZnMFunWrRGKiNL/DijVIaVGkhQWKPfElrK6/Ph7XXw+cOOF4L9ysQqxYD8IBX9bX668/LKhcSSjWJ5aC5+UikHU7Oztblv6Y739ttlgsXZoDjnPE3tntBkydGoe//noLZnMF4uOnYPLk+rDbHaWG3njDkWjFAiTCCMlQambPkjVIbVHEuuVIqLAKR6uQ2in9rExklMKXGBJ6HeRafJrFEjJi8Cc2zWazLL8pxB0KAPPn13PWeLTbgccf53DjjaeZyNAnEUaEDN+JBJrZS9XZqC18WIF1y1EwwiocrUJq1nlidRFoufEmhuS4DkL7ukceeYTp8xusC0+tTE1/QvrsWQvsdvfs1JoaA1as+BSpqcdVv8dJhBEhw5vqjx2rxoYNnNsNbzJxmDjxbiZmHEqglGVKC5ajYISVGlYhFixBarmqWFwEWg6EiiGprwNLwfNiWbMGGDMGTLrwPAkkpP31LWrf4yTCCEmwWBzL99SuKm9A585NZP1tVlxySlqmtGA5CkZYKW0VUtOl7SkMfFkPlHBTySHmXcVtUZERhYURSE2tRlKSwx+kpPjwJ4ZKS0vdyqFIbcVhWWD5w2q14tixaowZ09g5oVbShSc2gN6XkGZtZQFPSIQRkqJ0VXlWXHJKW6bUjicSgpDOT6lFoj1Rs1aXnFaSYK17Uot5V3Hr79mUWtyKEX4s1dtiBf76FRamwG4f5vaZNxee1OcwVOubLyHNcnIEiTBCcpQqGsqSS05pyxTLs7tghJVQQQIAxcXFfrcRO6irIeTlzBTj8RfnxSO1mOevY6BnU0pxK1b46cFlKDX8uQh0X/DbSXUOlbC+qb2ygC9IhBGCYSGGxhWWXHJyWaY8zzm/RAigrOUoGILtmIV00HK5DlkS8qEiJs5LLjGv5LMZivALJ4EVDMHcF6Gew2Ctb3qDRBghCJbKQvCw4JKTc0FoIefcbK7AmDH3uKWAszB7l/L35XQdsiTkpSJYYSmHq0aNZ1OP11JNlHLhBWt9c0UPrmISYYQgWCoLIafwCRY5F4QWKj7MZjMSpaqCyzhSuw5ZEPJSI0aMSO2qUcNdrsdrqTZKuPAcMXwpaNjQGvQ9E0ziBauQCCM0h5zCR2x7ePwtCB2KO1cq8cGaSzkY5HAdshxbJxYpl5AJZSKjdDC0Hq+l3nEE4jeG3T7Meb1ycpYGdc/46q+0knhBIowQhdplIYQKH1YIxZ0rlfhg0aUcDHK5m1jOnBKDEDEiRUC1t4xEs7msVluUPJ96u5Z65uRJPhPSEYjP92s5OUuRmno85P1rJfGCRBgRNP6sMqWlpUzc2KwRSlyTVOJDzbIMUuDLwnPhQj3YbLEoLS0FIKxjZalWlxwIESOhPKO+MxIboH//m1RduYHVLDjiKlarFfv2AXa7+z0odQyfFsYhEmFEUASyyvA+eFatKSwQrGtRjlgXVuqrBYM3Cw/HAR988AAMBjuOHs1Dp07C7j+tzJJDQU4xIjQj0RdaFbeBEFtolBWUcOG5LrptMOSEfQwfiTAiKIRaZVi1psiJv3gr3kojZtCSOtZFy2UZeAvPiRPN8MEH9wMQX4dKKoHFSoV4NWJgAvUHAwcOREJCQq3fl/J8qB37w1//3NwYTJtmht1ugNHIYdEiGx566JKmxLwSkxN+3xTD54BEGBEUvqwykZHhJ7pcERpvJda1KGWsi9ZS+b25Ds+evQRegPGocQxqVYj3hhrWvUBW2oSEBNkzd9W0arpadZYuzQHH8YVGDZg6NQ5//fUWzOYKTXkGlGxnMP2aXq2nJMLCDLHZcb7KQgAcOM6INWtGacKlJRdC462CcS3KFbektVR+10GWTztn5RjUqBDvD6UHelasGWoJHP66BprYKHX9tegO9dWvuVpRtWRNDBYSYWFEKNlx/EBYVFQEYCsaNy7Bm2+Ogi93UDjjzyISbCVqOWb4rAycweB5jKwdg9asi1Kip4xEsSKGhUlBqOsusoYSVlQWIBEWRoSaHWexWJyfVVVFgwV3kJJIFfMVzKAl1+xPDwMnS8fAwiCsJnrISAxFxEg5KQhWCCqx7mIoaNE6pyQkwsKUULPjQh10tFY0VOjiyEItImqURNBjWQZWBn/WLHOEcKQSMVJMCoIVgiysu+hPZHk7nnvukaUZmoVEWBgiRXZcoEHHX80mLRYNFbo4ciBx6i1bjEdu4alEADMrmYJqwJJlTm7UzkiUCqlFjNhJgVghGMq6i1LgTzReLcYKl+MBCgqMvncYhpAIC0NCiV9x7VQ9Bx0AzjXAXNfs8uzAtFw0NJCADSRO1Y5zkFMAKZEpyPrgz4plTm70UmdNbREDSCME1bDE+hJZWVlATIz3Yqw1NcAvv1wRtH/WBbxUkAgLQ0JxJXrLVDObK/wOuv46MK0VDRUiYMPJIuKKEpmCehn8tY7DBWXRTZyPmu5kqYSgkv2Or4r3NTXA7t3HcezYOp/FWA8c+ABmMzB48GDEx8d73X84PcMkwsKQUDscqdY2VLpoqBSuMqECVg/xVt7wdw55F7TcmYIsdc6sW+bkQG9ZeDxiRIyU118KIaiEJTZQxfufftoCsznw8cTHx4dF9mMgSISFKSwU/1QyrV8qV1mgjkXNmC+5EXoOwylTkDXLnJyZaKxn4UlBsCJG6uuvBSt6MBXvtXA8akMiLIxgrfinkoO1lK4yfx2L2jFfciL0HIZLpuBVwWNR1SWnxLI5LGThyYWvmFShSH28WoorFCKypD4evZW8IBEWRrBW/FONwVoq65uWOkqpCee4ONbWCVRq2RwWAtjlIDc35u/zpo2YVBZRsi/UoyucRFiYwVrxT6UHa7HWt3CM/fFFqHFxWoXFdQKVXjZHT1bOkyeBadPMzuuotVU/Tp4Evv++Lmy22KCy2rWKv2xMLVvESIQRkiF00FWzaKjYQYS12B810dNAHAysrRPoipKufT1YOX1l9/myigfbF8ntMrtqETLDaJzktMR6UlRkxIkTdXDpkln6RijM779fFWA8NTXAH3+QCCPCFLHWISGC5uLFi6isrERxcbHkRT/FDiLhILCEEspArPVZOYuJB0oLYy1bOQNl9/HXkS+hEGxfE6zLLNh+tLZFyIDp0+ORnR3vJkb05rpr3dpxHK5CzGQCWrVSr01SQCKMEE0o1iF/nZrVasUbb7wBQL6in1oeRPyhZNCqr3Oo5wxRgF1LoB4sVEogNLsv2BIKYrNHg+lH/dXnKiiwIibGsT8tuO6CmYxZrVaYTJVYtCgG06ebUVNjgMnEYeFCG0ymS7BatduvkAgjQkKOG1+Jop96grVgcT1niPKwKnj0OrmQC6muY6jZo0Kez0AWvG++WY9Dhxwxib//bhHkuhMzaRMqnrKzs2E2e3eDBtMneS5z98QTsc7rdf58Bf6er2syMxcgEUaoiK/Cn1FR0hf91GtgvZLB4no9h2IhwaMPpLiOSmSPCrXgnTlzBnFx1TAar1rkAMBk4hAbexpWq8MiJ9ZdqXR8rOfv+LpeWp2UkwgjVMF/4c8CdOokbeyNXgPrlQwW1+s5JAJDAtxBIMuRUq5qfxa8TZs2AQD69XPvV/v2zUNeniOUY+DAJzBmTAPR7kp6xqWDRBihCkJdjlJ2aHruOJQKFtfzOVQTsbF8SokjEuDCA92VclUHsuD5a8eRI3ZdZhpqERJhhKoEsuCwGnvDGqwGiyuFEgkJcgmeULLYlBRHehZYgQg20J0VV7WvdpjNp2E0NvTrriSUgUQYoSpCLDisdGisE66CValUfKkFTyhrMbqLThow5URIRqLW2Lt3s193pVaD3LUIiTBCVcLdgiMUoZaecBKsaiwoLdX+Qsmm01v9J6UJxqIpNCNx8ODBcjVXNvxN2rQa5K5FSIQRquOrMwi0sK5r8UI9LejKI6T0hNaQ6lppfUFpMdl0SolOvT5PPMFYNIuLiwEEnixWV1cr0napCadJG6uQCCOYwLMzcM2YdBUePHwnqVergNDSE8HOwNUcYKW8VnpZUFqoJVgp0anX58kTMefIn+UoMjJS0D5CmThpcdIlBXrPzCURRsiKmEHfM2PSsSyHGT17XnHO9q1WK/bvP6WoK0pJhJaeMBgM3r5ei6ioKNUGWDktOHpwZwuJ5fMnOgEORUVJSE09Llp0quHa1SK+A93NsidICLHglZWVYfPmzaJ/g0X0nplLIoyQDX+Dvr9Zizfh4Trbf+SRR/DOO+9o1hUVDIEsPUI6/4sXL/49wHKKD7BKWHD0kJAg1C1kNlcgM3MXdu68EwAvwA3YtSsT119/SNRva921ywpKnJtAv8GSNUhKq7ue7zsSYYTkCJ1Ve4qH0tJSbN26NaDwuHjxIoDQXVFaiH0RYukRsg6nkAH20iWL5OdDKbdhOMW2JCUV46oAc8BbR8vKyoJeMkovrl0isNWI72PlJlzc2lJgDLwJG9x7771o3rw56tSpg8TERDz66KMoKipyfj537lwYDIZaf/Xq1XPbz/vvv4+2bduiTp066NChAz755BO3zzmOw5w5c5CYmIiYmBhkZmbi999/d9vm7NmzePjhhxEXF4f4+HiMHDkS58+fd9vm4MGDuO2221CnTh0kJydj0aJFEp8RNuFn1StW7HCrQQM4Bv2XXvoKU6bk4eefz8FisaCmJhG//ZaImppE56LPvPAwGBxFeXy5mIRu5401a4AWLYBevRz/rlkjxdHLQ6dOPyInZymGDVuHnJylzgXMheA5wLriOsCuW2eS9XyEcq0Id7xdS94luXnzZlitVlH7pWukDywWCxITE73+8X2snPiqqXbypOw/rUk0Ywm744478PTTTyMxMRF//fUXnnrqKdx///3Yu3cvAOCpp57C2LFj3b7Tu3dv3Hzzzc7Xe/fuxYMPPogFCxagX79+yM3NxYABA/DDDz/g+uuvBwAsWrQIy5cvx/r165GamorZs2cjKysLv/76K+rUqQMAePjhh1FcXIydO3eiqqoKjz32GMaMGYPc3FwAQHl5Oe666y5kZmZi9erV+PnnnzFixAjEx8djzJgxSpwu1Qg0q/7gg/sBGLFhA4dHHwU2bLg6W1q06GrBHaEupmBdUVqNfQnV0uPPomazxWL+fLNHpyn9+RDjNtSCtVIO+MzgoiIjPA1bgVySZ86cCWvXLuEbJYLcf//9qgDjoWr8vtGMCJs0aZLz/y1atMCMGTMwYMAAVFVVITIyEvXr10f9+vWd2/z000/49ddfsXr1aud7y5YtQ58+fTB16lQAwHPPPYedO3di5cqVWL16NTiOw9KlSzFr1izcd999AIC3334bTZo0wUcffYQhQ4bg8OHD2LFjB7777jt06dIFALBixQrcc889ePnll5GUlISNGzeisrISb731FqKionDdddfhwIEDWLx4se5FGI+3QZ/jAN74arcbsH49B34QsduBadPMePLJWGfHH0ycjJDtwj32xdcAe/asxavVUo7zEYyY1LNLw98g55oZvGEDhzfeAO65x30bfy7JTZs2hXTNwsm1Gwi9ZeYpEeTeurXjeXUVYiYT0KqV6F3qGs2IMFfOnj2LjRs3olu3bj5Tg998801ce+21uO2225zv5efnY/LkyW7bZWVl4aOPPgIAFBYWoqSkBJmZmc7PzWYz0tPTkZ+fjyFDhiA/Px/x8fFOAQYAmZmZMBqNKCgowP/93/8hPz8fPXr0cHsws7KysHDhQpw7dw4NGjTw2uYrV67gypUrztfl5eXCTwqDuA76Fy7UwwcfPOCxhfsgYrcbnFl/ckCxL94HWNbOhxBrpdYHR2+DYVlZGU6eBObPb+tWkuTxxzl8+mmZW9081q6ZXtFjZp6cbbVarTCZKrFoUQymTzejpsYAk4nDwoU2mEyXYLVq61wpgaZE2PTp07Fy5UpcvHgRXbt2RV5entftLl++jI0bN2LGjBlu75eUlKBJkyZu7zVp0gQlJSXOz/n3/G3TuHFjt88jIiLQsGFDt21SU1Nr7YP/zJcIW7BgAebNm+f94DUKP+g7Kk7XTq13FWJyLDjtq02slzVQUmSwdD6CsVZqfXB0bZvVasXmzZv/Pu52btvV1Bgwd+5Z5OfnuF0fVq6Z3mH5HmIJ/tnleeKJWKfV/fz5CrzxhuN9tT0NrIU4qCrCZsyYgYULF/rd5vDhw2jbti0AYOrUqRg5ciSOHz+OefPmYejQocjLy6tVK+nDDz9ERUUFhg0b5m2XzDJz5kw3S115eTmSk5NVbJF0eBvob7jhIA4evEGVQYT12BelZ+CsnI9grJXBZgGyjP86YHbk52c43+M4I7Zt64ecnKXIyVmq+jUjCKC29dWXW1tNKy2LIQ6qirApU6Zg+PDhfrdp2bKl8/8JCQlISEjAtddei3bt2iE5ORn79u1DRkaG23fefPNN9OvXr5ZFq2nTpjh16pTbe6dOnULTpk2dn/PvuXbwp06dwo033ujc5vTp0277qK6uxtmzZ9324+13XH/DG9HR0YiOjvb5udJIPWPwNtD36vVF0INI3bp1BW0XyErEeuyL0rNFOc6HWIseS9Y5V+SeRXs77oyMfOzd291tOz7+KzX1eMjnROuuXYIQgq+szawsdS1iqoqwRo0aoVGjRqK+a//7TLrGUAGOuK49e/bg448/rvWdjIwM7N69Gzk5Oc73du7c6RRxqampaNq0KXbv3u0UXeXl5SgoKMC4ceOc+ygrK8P+/fvRuXNnAMAXX3wBu92O9PR05zbPPPOMM2mA/502bdr4dEWyhlwzBs+B3tfAP3DgQK/p1Lz1R+uuKKVQe+AM5VqxYp3jUWoW7XncANwsYYB41703EUnPExEOsJq1qYmYsIKCAnz33Xe49dZb0aBBAxw9ehSzZ89GWlpaLSvYW2+9hcTERNx999219vPkk0/i9ttvxyuvvIK+ffvivffew/fff483/nZWGwwG5OTk4Pnnn0fr1q2dJSqSkpIwYMAAAEC7du3Qp08fjB49GqtXr0ZVVRUmTJiAIUOGICkpCQDw0EMPYd68eRg5ciSmT5+OQ4cOYdmyZViyZIm8J0oCQi3hINWgn5CQ4NfdRAOCMPwNsEoVbgzlWrFgrVSjrInncUthFfQnItV+nliL0yG0g9B7h9WsTU2IsLp162Lr1q149tlnceHCBSQmJqJPnz6YNWuWm/vObrdj3bp1GD58OEwmU639dOvWDbm5uZg1axaefvpptG7dGh999JGzRhgATJs2DRcuXMCYMWNQVlaGW2+9FTt27HDWCAOAjRs3YsKECejduzeMRiMGDRqE5cuXOz83m834/PPPMX78eHTu3BkJCQmYM2cO8+UppCjh4DnoKzXQE75Re4DVMqyUNQnVKsiqKwZgM05HC5BwDe7eadbM8fnjjzssYCYT8Prr6p87TYiwDh064Isvvgi4ndFoxIkTJ/xu88ADD+CBBzxLJVzFYDBg/vz5mD9/vs9tGjZs6CzM6osbbrgB//nPf/w3mDGkKuHA6qBPsS/uaPl8FBUZ8dtv8g9ALJU1CcYq6HrNrFYr9u0D7Hb357KmBigosCImRr1nlmVxyDIkXIO7d6xWKyorK3HPPUBBgRHHjkUgJaUaSUl2FBer627XhAgjlIWFoGg5Bn6KfXFHq+fjhx9uwvz5jRUdgFh4JnzhGT/pes14S56jRExOLRH5zTfrcehQRUiWPLEWGZbFIcvoRbiGaskTGuPlWTqD55DHevdqlc4gEUZ4RaqgaKFiKjs7G2az2fkduR4GMfvVs9mftUEu0P1is8X+LYRcY7OUGYDkTBQIZdLhL36SF9iBRKRYS54/i4y/50YJcahXWA0wD8ayLoUlT2iMl9B7W63SGSTCCJ9IERStVWsLD5n9lcXf/VJWVoa9e6M9amgpazmRK1HA23FLHU8ptYj0Z5H57DP/z43c4lDPsBpgLrSvv3TJErIlT0+V+UmEEbJjsVhqzYpdX7P6rOjF7K81vHWefEV5PVtOPJ+TpCTpY/akEpH+XInbt5/FP/7RwCOT1Pdzw1opEpZhXXwI+e09e0Kz5GmlMr9QSIQRsuNpTXr0UWDDBratSyzFq+jZHSqUcLCc1La6KmtFFnqfBXIl7tq1G3a7e/JToOeGhVIkrKMX8RGqJU8LlfmDgUQYISverEnr11/9nBXrkusAFBPDTrwKuUNrozfLif86ZNVISZHfupGbG4Np04TdZ4EEcXLyCa+ZpK7PDRE8lZWVbou4a1F8sG7JUwMSYYQTT7eG5wPvazt/eAsi9URJ65K32b6n0Fm0yFFjTm2rC7lDfaOU5UTuMh4s1CGz2WIxf75Z1H3mSxDr1VqpJrm5MVi61H0R906dfgxqH2pa1fViyZMaEmGEE9fAytzcmL87ZgOMRg6LFtnw0EOXgnJ/WK1WxMVVw2i8OsN3wAG4+lop65I3q1JWVm2hM326GU88EQuzuUI1qwtL7tBwRu7EEhbqkJ09a/F4PoO7z7wJYr1ZK9Xm5Elg2jSzMyuYX8Q9Le0PwedWbCarVOjNjSgVxsCbEOGExWJBTU0ipk2Ld3GNGDB9ejxqahKDEmArV65EXt5q9Ou3DQaDQ+UYDHZ07PiT2+vMzF2yz5K9W5U4bN9+zkuQqAFnzzZ0vjabKyRZKFko/Lnbu3e98zzx8IJ15cqVsFqtirQn3LFYLEhMTPT5J4UY5q2urs+FFHXIhFjoeAHoihT3mdLPjZ5xeBTchTK/iLsQfFnVT550iLMWLYBevRz/rlkjdevVhfWi1GQJI2ohRR0aVzHlbVbcuPFp7NyZCY4zYteuTMTEXA7atB4M3o/JgF27dsJguF+SxZGlIhyC0InayGE9ErJ2qBr3GesDI2s4gtk5NyEWTD/lq0/Pz9d/yAPrZZJIhBFu+HIhmkwcYmNPw2oVt1ixq+nZZovFrl2Z4A2xrqZ1OfB1TAaDHcnJJ5mthA6QWyfckCPWTcjzqvR9JmRgLC2tg4MHG4R1VjBwNZh9zpwazJuXJKqf8pWRyHFsFn6VGpZDN0iEEU5cAyf79bvJTZj07ZuHvDyHpSrUuK2zZy21Cm7ypvWysjKf1b/F4O+Y+E6MdaFD6ftkORFLMLE+St9n/voQIVnB4VC6xTOYPScnNuh+yl9GYlraFS8TbvULv/pDb30BiTDCSSAXorftxOAvCHnz5s2SBucLPSYSOmzDukuBReQqbyL34CYkK1hvpVt8CUqhweyueC7e7i8jMS/PMTnNy+sPu10b5SL01heQCCN8IpcwUTPWScpj0spMSy9opVNlATnLm/gaBMvKyrB58+aA3/f33AjJCpZi2RuWkEJQ8ou4e4oPISLOc3KqhXIRLLZJLCTCCFVg3QXIw3dunsgx0+Jnw3FxlLQcLsjhWlGivIm37ycmJoZkoRC6qHdKymOw25u7fVerpVukEsv+FnEXQrDlIsS4gvXmRpQKEmGEamjBBRhq5yYU99lwY/Trd5Os2aJEcMgVfyS1a0WokJGran0oAkhoVvBPP32g+koWUiFFJrrSiLXc8ff6sWPVKCyMQGpqNZKS3A9eS25EqSARRshCuM1mQqH2bNggqBAjnWNlkDv+SMpBJ5jyJixbJgLFb3o7NgAoLEzBsWPV0MI4LiQTnTVCtdx99JFFV7F8UsDeVSZ0gbcZPl+XSEsoMQB5mw1znBHduw9Dt27eLSThOGNUA60sHeXNlR3I5c96gLM/S7nnsR092sq5pM+GDRzzg7vQTPTs7Gw1m1mLUCx3WnmWlIZEGCEbWhIJ3mK/lBiA/M2GU1KqSWypiFaWjvLnyg7k8meh/WLhj81mi3WKGMBhSWZ9cBeatV1VVaVG83ziq96YkJIWWnS9KgGJMMIJy+4JsQhta1JSkuIDklJ12YjgCSa2Ss1rI9aVrSe81R3U2uDuSyxHRAgbopXok/3VGxNS0iIUAadnSIQRTuR2T6gh8lh2uShVl40InmCXjnIN3AeUKSLqy1LHFz4OFxHmre5gqCt8SI3n/bFvXxRsttiA1yg+Pj6k/kuqvjRQvbFAJS1CFXB6hkQY4YacD4JagkjM/tSoxq2FbNFwJFBslas70PC3R5nj5A08DmSpU3PtU6XxJpRZsiR7vz8sMBhy0L9/XsAs6FDaLlVNN6FFY7317aEKOL1DIoxQFC08ZHqrxk2Ejq9Bp6jI6OYO5Lirn8kZeCzUUicGtZYDCsVqw6ol2dNd7Hp/uK6ZK+fkS46absEQioALB0iEEYQLlMEjHrkGb5bXCDxw4EKtYGNXlAjiF1P42JfgUXMCEshSHsh6wx/32bMWt9dq4i0Y3RU1XcdamBCHAyTCCMIFyuARh1yDN+tWyV9++aiWO9AVpYL4fVkXgsn6ZWEC4u/8eFpvPEve/PDDTbUsgmoWPPaV+eyKVK5jlicqQrDZYvHNN1Ho2lWb7Q8FWh+FIP7G0WmegtHIub3vCPI9BavVqlLL2MbX4H3yJJv7lRLeHWgwOBrp+Pfq/5VaE9UX/IoPrn++Aqf37bN6nYAUFFiZufctFovzOFzFpWeZCt7VZ7PFqtJOPg4qL281+vXb5rw/ALvbvRLIdSzERbtmDdCiBdCrl+PfNWukOALl+OGHm7B0aQ4eeMCiyfaHClnCCAJULkIsctXS0kqNLqC2OxAA82uiuqKVchz+8Famgnf12Ww2RZYec8Vf5rOjvbXvD0+rpZCYLBasl6FQu8abttovBSTCiIBo3dQtBDXKRWi9Lptcg3eg/e7YsQXbtkVjypR70aFDA0mPiSfYc+7pDtSC+OLxF+SfkZFfazsW8Vamgnf1bdq0SXUBKeT+ELNOrdbDJ/RQ4y1USIQRfmE9JkculCgXwXINMyEEW0tLiv3ecMNBrFkzSvblaQJdGy0uwSUEfgJSUJCOvXszsHdvd+TnZzjXZmQVqe9BLSBk7Ump+g65Jozea7xdLeAaDgYAEmGET7Ru6tYCrAqsYBGToRfsfiMjK50CDJB/eRqWr43cVtT8/AzwIcN8fNWcOWegsFfPL57HFso9qLXBXunwiVAmjP7uQU/xbDIBr7/uuAbhYgAgEUb4ROumbqkJ5wweIchlPeT3W1iY4tV1wVqMmBLIaUX1FV/1008XkJJiZeY8WywWDB482K1shZh7UIuDvRrhE2Kvu7+CsdXV1Rg4EJg06X+wWhsgJaUaSUl27N9vxJgxVy18ejYAkAgjfEJrfV2FT39fssSomY5aDCxbBHzF/WghcNwVqc6xXMfq7TwDHN577w+cOJHP1HmOj48P6ft6sfazvtqG5/1itVq91nw7dMjxb2FhCuz2YW6f6dUAQCUqCK841voqxqJFZTCZHCUbHGt9lcFkKlY9Zf3kSWDPHmXKFfjK4GGpVIIUsJ7q7q0cRDBxP1LeM2LcfFFRUcyfY8BxnjMzdwFwLdViwK5dmbDZYnUVX+XP2q8mSvZvahDoHuInAq7o1QBAljCiFqyv9SW3+8Bmi8XZsxY0bGiF2VwRFhk8WrEIiI37kfqe8XSx8K4VVyIjI2E2mwE4BNilSxZNnGMASEoqBuBeYFTNkg9yIGdgu1iRDmjTPSo1/IQrL68/7HZ9L/ZNIoyoBctrfcklFvgO0FvV7bS0P7xk8EifgaQmWor/C9b1Itc943rdA4mSq8VQ2at75k0wsF7yIVTkDmz3FOk2mw1VVVVu20RERDjdqXz8npB79eRJYN++KNhssUy7IEPFc8LFggFADkiEhSEsx/0EQi6xYLFYMHDgE5g/Px4c55gV81lhOTlLa6W/8x21zRaLHj1GoksXs+bOJY9Yi4BcGXpS1kVjoegr68VQecFQVFTkLLuhlZIPYu9BJQLbgxHpPIH6t6tWMgsMhhzVl2aSG5YMAHJBIizM0LqpW85kgdLSBrU6QN4F462j1kOwfigWAbky9Dz3K7YmFyviR656alJisVhq/b5cZUekRKp7kIXA9kCToZ9/jsKYMVf7KH6SmJb2h+ptJ8RDIiyM0Ercjy8cyQKVWLQoBtOnm1FTI12sgK8O0HWBXdeOWi/LbYRqEZBLvEixXxbFjxaEjSssiJNA6MEtJWQy5C1jkJ8k+rpGrK62QVyFRFgYoaW4H0/kTBbw1wH6WmBXr8H6Whh0xaC2+PFM9tDjOSbEI2Qy1LChFUYj5zZJNBo5PPxwOpKTuzqTQIqKjCgsjECbNkZYLNIu66XlUBZWIREWRgh15Tke4hTngMECciYLCLUGueJ9uQ19BeuzglSxZ2qIn5MngRdeiMXrr+e4CXsW43jIasIO3u5Vs7kC/fptc5sk9uuXh717r4YMfPSRRbZwEylDWeheuwqJsDBBqCvP8aA1ht0+zOuA4Tqj1ytCBmtvLi45lgsJZ67OurW5xuayZecxaVI9cFx953ssx/F4q0BPsIW/SeKxY9WyhZtIHcriK5ZPr2uy+oNEWBgg1JU3cOATfwd+umcH8gOGZ/mGFi0u4skn1TgiNlBquZBwpPas26KppIeffz6HSZPMzkxbVwLF8UhNMC6kUCvQE/Lja5JYWBghW7iJHKEsrE2a1IIq5ocB3lx5qanHaz3IR47YvWYHdu8+DP36jUVeXn+n+43jjJgypb5uKzoLxde59IXeK2FLga9Zt1bOmdVqxbffnqsVM8jjmuwhN8FW6Jd7YXBW0ONxms2nYTRybu85QiROhbTCiSNp6ZQs+/ZEj9clEGQJI5ykplZ7jRlLT7doOqifFbReHkQJWKjrFQr+ymIAtZdackXq+mgO95TnIsgcbrzxNFJSvMctyrkwOEvo8Tj37t0seeFZuYvaeuLruvDJBqmp1T7vXa1CIoxwEhV1GosWRXuNGUtIqAOjsYEs9bm0wsCBAwFAVMwCq+VBWJp5Sl3XS41j81UWA7CjW7d8pKcXuAmwgQMHIiEhQdIBnz+P3hdBNmDFik+Rmnrc53lkZYCTOxOPleOUEqlDJJQoauuJ53XR++SVRBjhhBcX3mLGbLZYDBs2DOvXN9T9Wl6+SEhIEP1dVi2JLFkEpK7rpfaxCcm0TUhIELUOoz+Bwh+vv6WHXLdjEb0PvJ5IORGQMwtY6QxjVievUkIijKiF54PmGpDvmNHvRXp6gaJreclp1Qhm32IGLjkXCpYCFgW0VHW91D42OQYtoQIlkJhlFb0NvEIsev4mDOGYMcjD6uRVSkiEEX7xrAwPGJGfn4H09AK37eSeVctp1Qhm38XFxUHtW+mYCj1BRU3dERPnpXaR2mDRekygJ8FY9Hwdl56C0INFzmXqWIFEGOEXb5XhlU6x57l0ySJbjIjQjj1Yi5waMRVax7O6PBFcnJcnWhGzrKz1KRVSWfS8TRJdA9Wjok7r0lImdpk6rVX1JxEWBoQykwoUV6IUrMSIhGqR08qAqBaetehYrS4vFUKfTT3EeQWCxbU+xSK1Rc91W8++cNGiaMnazQpil6ljZZwIBhJhYUAg4eAv5oCFuBLWYkSknIXzVp+iIiNExGdrBiGz06Iio5vrm+Xq8qEycOBAJCUlBX0vsfA8KoHW3KiuyGnR89YXTp9uxhNPxCpyjpSyUotZpo61cUIoJMLChFCEg9odol6DM12tPhs2cJqYtYlByOzUarXiwIEL4Lgmbu+r5foWi1DLlhgBxqP286gUWrUay2XR821dMwh6RkJNWvJnpWYhbk2r4wSJMEIQanaIYoIzWY8L8Ex4sNsNmpi1BYPQQPJAlgNP1zcLHb4vlCqL4e95LC2tg8LClIDWCpbPo16QSjALfUays7NhNptrfT/UpKVjx6oxf35j5zJcHGfE9u39MWdOOjPFU7UaxE8ijGC6MxYTnKmFuABvCQ9amLUJJZhAcqGWA7EuPKVRs325uTGYNi0edvswGI0cFi2y4aGHLtXaTmvV4LWMFBNYoc+I2WwWVXfOHxaLBQcPerMyGVBR0QQs3EZig/hZgEQY4XX2HmxtGjmEnJjgTKXjAsRa3LwFWLNSN0wKxAaS+7McJCQkaP68yInNFov5880u974B06eb0bPnFWasFUToKO2OZr3OodggflYgEUYAcJ+9nzwJHDkSBZstcLCnnNYJMcGZSsYFeLO4ZWW5izJf4tTbjFaPdcPEBJJrNRZIbc6etbgNkoCwZYrkhvXQAC2i1DOihTqHYsYJlhAswsrLywXvNC4uTlRjCPW5KiwsMBhyApYIYMk6oeSMzZvFbcwYgOMcf1fdoO5WRlcLY7jUDQuXQHI5EWJpZrF8RTChASytY0o4oDqH8iNYhMXHx8NgMPjdhuM4GAwG1NTUhNwwQnk8hYWWSgQoOWPzlaXkaoFzd4P6/r1wsfqEy3HKhZBlbVgqXyGmur/cSQ1kkQsdpZ5juZeSYwnBImzPnj1ytoNgAG+uPK2UCFBqxuYvS8kTPQXaE+ojRHywYHUMJinDmxCTAyWTdciiFzpyLiXHGoJF2O233y5nOwgG8JbiG6g6PqsdiVwztmPHqp3p/55WB44DAH0G2hPaQW2rI0vV/cVY5EJFqTIleidczo/owPyysjKsWbMGhw8fBgBcd911GDFihNcaJQT7eEvxNRo5zJlThIED70RkZGSta8tCR2KzxeKbb6KQmlot+285ZtONYbcPc7p6cnKWOq0OR4+2YjJwlXXIcqBNArn31HaPhmKRCxWp90fPSG34+y8urrY3Qkvrz4oSYd9//z2ysrIQExODW265BQCwePFivPDCC/j888/RqVMnSRtJyIu/FF+gAnylCtaEBF/BeckSI4xGDv363STbOoNX4+WuFivctq0fcnKWIjX1OAAKXHUlmEGDLAfawWq1orKy8u96ZGbY7Qa3emSe111N9yhLFrlQoWfEHXf3cmO3vl9r68+KEmGTJk3Cvffei3/961+IiHDsorq6GqNGjUJOTg7+/e9/S9pIQl5YTfH1N5B7qzgvVxKBr0B8b/FyaruCWCHYQYP1wYOCut3jIZcuzXFWT7fbDZg6NQ5//fUWzOYKZGdnu31P7WdCbYucVATzjOj5fq2dmX617wfgc/1ZVq2Eoi1hrgIMACIiIjBt2jR06dJFssYR4Y2/gfybb6KwZIm7GVqOJIJgl9QJRDi5FVgXVoEQYvVh4RiVuqf459Dbag+uz15VVVVIvyMHLCQsKIWUSQgs9le+Esi6dx8GjoPXceH220fCYmEzVEqUCIuLi8Off/6Jtm3bur1/4sQJxMbGStIwggC8D+RWqxWpqdUwGjm3emBiRFEghC4XIhRyK2gDoVYfFlz0St9Tgdx7rKK2RU5u5EhCYK2/8lcLMiWlGlFRUV7Xj+zcmU0BBogUYdnZ2Rg5ciRefvlldOvWDQDwzTffYOrUqXjwwQclbSBBuOKvHpgQURTKjE2q2bTagzYRGKFWH1biiZS8p/Tg3nMN3NYDciYhsNJfCa0FOW/eaMydm6iZ9SNFibCXX34ZBoMBQ4cORXW1IystMjIS48aNw0svvSRpA3nuvfdeHDhwAKdPn0aDBg2QmZmJhQsXIikpybnNZ599hmeffRa//PIL6tSpgx49euCVV15BSkqKc5svv/wSkydPxi+//ILk5GTMmjULw4cPd/utVatW4Z///CdKSkrQsWNHrFixwpmAAACXL1/GlClT8N577+HKlSvIysrCq6++iiZNmji3+fPPPzFu3Djs2bMH9evXx7Bhw7BgwQI3F64ekTsWQWg9sIEDByIhIcHtu1LM2PQ+m2YJFuJatGr1kRt/z57QPk4tl7tn4LbZXIQxY4qD6h9YuDdd0VMSgi+E9v01Nf/S1PqRohRBVFQUli1bhgULFuDo0aMAgLS0NNStW1fSxrlyxx134Omnn0ZiYiL++usvPPXUU7j//vuxd+9eAEBhYSHuu+8+TJ48GRs3boTNZsOkSZMwcOBA/PDDD85t+vbti7Fjx2Ljxo3YvXs3Ro0ahcTERGRlZQEANm3ahMmTJ2P16tVIT0/H0qVLkZWVhSNHjqBx48YAHIkJ27dvx/vvvw+z2YwJEyZg4MCB+OabbwAANTU16Nu3L5o2bYq9e/eiuLgYQ4cORWRkJF588UXZzpHaKFkQkceXKEpISEBiYqK8P+4DLaVHswZrcVhqWn1YG+g98fXsxcfHM+XCcsUzoYfjjJg3Lwk229KA7mXW7k1vSHG/sn7f8fibELOSXCaEkMwydevWRYcOHaRqi18mTZrk/H+LFi0wY8YMDBgwAFVVVYiMjMT+/ftRU1OD559/Hkaj4wF76qmncN999zm3Wb16NVJTU/HKK68AANq1a4evv/4aS5YscYqwxYsXY/To0XjssccAAKtXr8b27dvx1ltvYcaMGbDZbFizZg1yc3PRq1cvAMDatWvRrl077Nu3D127dsXnn3+OX3/9Fbt27UKTJk1w44034rnnnsP06dMxd+5cXQRde+JtLcWry/ao2zYl8ZUercdrDkjbYbMQh+Wt9pCSQd1aGOiFwEIbvT1zYt3LLNybQgnlflVjIh0KepjwihJhly9fxooVK7Bnzx6cPn0ado9UBd7yJBdnz57Fxo0b0a1bN0RGRgIAOnfuDKPRiLVr12L48OE4f/48NmzYgMzMTOc2+fn5yMzMdNtXVlYWcnJyADhU8v79+zFz5kzn50ajEZmZmcjPzwcA7N+/H1VVVW77adu2LZo3b478/Hx07doV+fn56NChg5t7MisrC+PGjcMvv/yCm266yetxXblyBVeuXHG+DmbR9FCQIgPGW8ZKOC3bM3DgQFRWNsb8+Y2dHTTHGbF9e388//xtsFgaqNxC6ZG6w1YrDsu78HGvPaSEG1pLA70WcA0q59fXFOte1lqMoJj7VWsTaa3VA/OFKBE2cuRIfP7557j//vtxyy23BFzYWyqmT5+OlStX4uLFi+jatSvy8vKcn6WmpuLzzz/H4MGD8fjjj6OmpgYZGRn45JNPnNuUlJS4CSMAaNKkCcrLy3Hp0iWcO3cONTU1Xrf57bffnPuIiopCfHx8rW1KSkr8/g7/mS8WLFiAefPmCTwb0hFqBoy/jJVwWbYnMjISR45EuB0/4AiK/e9/7UhKsurmHMi9FIyScVj+hI/Si9ezNNDzwhQAioqMKCyMQELCBUHfZcnq63kfhuqu02uMoK9aiDU1QEGBFTExbFg3eby5lZV+XqVClAjLy8vDJ598gu7du4f04zNmzMDChQv9bnP48GFnKYypU6di5MiROH78OObNm4ehQ4ciLy8PBoMBJSUlGD16NIYNG4YHH3wQFRUVmDNnDu6//37s3LlTMaEYCjNnzsTkyZOdr8vLy5GcnKzIb4t9wIRmrGh19i50QNm0aZPPWmLffLMehw7pw4KhxFIwSsZhCRU+SqL2QO/6TLtbGxqgf/+r1sHBgwfXmoxqwV0airtOD5mhngSqhchi/8XS8xoqokTYNddcI0k9sClTptTKTPSkZcuWzv8nJCQgISEB1157Ldq1a4fk5GTs27cPGRkZWLVqFcxmMxYtWuTc/p133kFycjIKCgrQtWtXNG3aFKdOnXLb/6lTpxAXF4eYmBiYTCaYTCav2zRt2hQA0LRpU1RWVqKsrMytA/Lc5ttvv621D/4zX0RHRyM6Otrv+WANoRkrrJjpg0WIlbCsrAybN28O2EFr9Ry4olQWllRxWEJj1sQKHzmsPmoP9Py1C2RtiI+PVy35JVRCcS/rrfCr0FqILPVfak9UpESUCHvllVcwffp0rF69Gi1atBD9440aNUKjRo1EfZePQ+NjqC5evOgMyOcxmUxu23q6JwFg586dyMjIAODoUDt37ozdu3djwIABzu/u3r0bEyZMAOCIPYuMjMTu3bsxaNAgAMCRI0fw559/OveTkZGBF154AadPn3ZmVO7cuRNxcXFo3769qOPVCnLHzoQavyYmkDyY2Z/eOmhfKCEUxN5LvoLbx4y5gFGjLnh1lwY6HrlKnviChftIT9YGqfF3b6qRXShVZXsW7jtfuLZd7YmKlIgSYV26dMHly5fRsmVL1K1b1xn4znP2rLRqtKCgAN999x1uvfVWNGjQAEePHsXs2bORlpbmFD59+/bFkiVLMH/+fKc78umnn0aLFi2cgfBjx47FypUrMW3aNIwYMQJffPEFNm/ejO3btzt/a/LkyRg2bBi6dOmCW265BUuXLsWFCxec2ZJmsxkjR47E5MmT0bBhQ8TFxWHixInIyMhA165dAQB33XUX2rdvj0cffRSLFi1CSUkJZs2ahfHjx2vO0sUaocSvKZX5Ey61xFjssP3FeK1eXR+rV9fFvffmYeHCa2tNAP0djxolT9S+j/RkbVCKN96owfz5nOJZrVJWtlf7vvOFxWLB4MGDsXnzZgDi+h+W4hV5RImwBx98EH/99RdefPFFNGnSRPZ4q7p162Lr1q149tlnceHCBSQmJqJPnz6YNWuWU9T06tULubm5WLRoERYtWoS6desiIyMDO3bsQExMDABH8P727dsxadIkLFu2DM2aNcObb77pLE8BOFYDOHPmDObMmYOSkhLceOON2LFjh1ug/ZIlS2A0GjFo0CC3Yq08JpMJeXl5GDduHDIyMlCvXj0MGzYM8+fPl/U8hQvBdmYnTwJ79wKjRwMc53iP9cwfVgg0q2etw/YX4+WAd6k56kINHjzY7VPWjkdN9GRtUGINRIfwT1Itq5WVeC058YxB9PW8Km25DgVRImzv3r3Iz89Hx44dpW6PVzp06IAvvvgi4HZDhgzBkCFD/G7Ts2dP/Pij/zTWCRMmON2P3qhTpw5WrVqFVatW+dymRYsWtVyfhPI4rF9craxFgN3MH7XxV6vqrrtKZftdKQdKb1YcHleXGr/iB+EdFq2dYgjVUiTknmMhq5VwoGax7mARJcLatm2LS5cuSd0WgpAUR90b7wIMYDfzR00C16raCbNMa+FK7VJxteK4wqpLTQlrDY+3EhSpqdVISrKjtNRdaPuyNpSWltb6Lt8+Fp+lUNrk794MtQYZEd6IEmEvvfQSpkyZghdeeAEdOnSoFRMWFxcnSeMIQiy+6t7wsJz5oyZql2yQcvDmrTgFBenYuzcDQG2Xmmff5QslYkmkFKH+8F2CIriCl7NmFWLbtuu8flePk5pAx6Mn9y2hHKJEWJ8+fQAAvXv3dnuf4zgYDAbU1NSE3jJCEyg5exdKoLo3gwZ9gOTkk5J1jiyeg1AJdVbPyrGazRW4665dSE8v8OpS49d+ZWWdQyV+R2gJCn8E+m64Tmq06L7VY/+lJUSJsD179kjdDkKjKDV7D4ZAdW+uv/6wpL/H4jkIFTElG3hYPFZ/AfestVUpAlk7vV1j3vVG5St8o7XkDj32X1pClAi7/fbbBW33j3/8A/Pnz/fZWRP6gOWHU6mZKcvnQCyslWwgpCWQtdPfNab4J32hlf4rGKudGvXaxCBKhAnlnXfewVNPPUUijFAVrc1MWUJr545cJsIJJYaJ4p+8Y7PF4uxZCxo2tDJ3LrQiSvwh1Gr30UcWRWpCSoGsIozjizIRBEEoAN9Jnz592lnU0R/hLtpCsRSzGv/kL/MTkN61dvHiRQCBkxzUuNf8lZtRooisHARqryMr3iHAAPZrQsoqwgiCIJTGYrFQnEsQhGLtZM1SKjTzU6rsTavVinfeeSdgosIjjzyi+L0WuNyMMkVklcRXVjzLNSFJhBEEyCLCo6dMKdY6W0J+hGZ+SpW9KbSkS926dSX5PTnappdM1kBZ8azWhCQRRoQtfPYXWUTcXTg9ejyE//3PhObNr6BpU0dF+cjISJj/rtJK50vbhCK0tSLSlc7eZDlRgeW2eUNs7FqgrHhWa0KSCCN0h9ABICkpicQElHfhEOoSiqtWLTev6yRByG8qLTxYTlRguW2eOJaZCz2gntV4RW/IKsIeeeQRqp5PKA7FAwWH0i4cQn1CXcJHSVwnCYDvDETX9X7VEB4sD/wstw1wXONjx6oxZkxj5zJzdrtj2bnExFKkpxuDvu9Yi1f0hWgRVlZWhm+//RanT5+GnU9D+JuhQ4cCAF577bXQWkcQIiGBFTxUgFMegrXiEO64njt/llrPc6yG8GB54Ge1bbzILixMgd0+zO0zu92Afv0s6N8/D2+91V2Xz4koEbZt2zY8/PDDOH/+POLi4mAwXF0g2WAwOEUYQRDaQWuxI1ogGCuOHgcYKRGzzFKwwkPp8hbEVfHsrf8Brl7nH344gk6d9DfBFiXCpkyZghEjRuDFF19UJeuDIJRCDwUOhaKl2BEe1q1MYq04UsH6+QkGuS21FBupLnz/8/HH/QDUvs4bNxZg797jujv/okTYX3/9hSeeeIIEGKFL9FjgUCi8C+fEiWYADEhOPuH8rKysjKmlilizMnkTPKWlpc62iV0sO5T2uJ4fX2hlUBNiqQ0le1NMbCTL2aIst80XnTr9iMaNS7BmzSif11lvsamiRFhWVha+//57tGzZUur2EISqhGOBQ0+OHm3l1QqwefNmpo5bbSuTK/4FoTrxdp7H7UukamVQE2KplSIpJ5hrxXISEMtt80ezZsWiLPJaFJ1AECLs448/dv6/b9++mDp1Kn799Vd06NABkZGRbtvee++90rWQIBREywUOpXA9aTFDUg0rkyeBBGFa2h+qxtsFWlJHKwgJtg9VVAQbG8maiHGF5bb5Q0xShVZFp2ARNmDAgFrvzZ8/v9Z7BoMBNTU1ITWKINQmUEdss9mc77MQwBuKa851ZqjFDEmW2uxLEObkLFUt3k4pkapU/JncWX5ajI3UI/x1ttliUViYImhRdNYElhAEizDPMhQEoWcCdcSbNm0CwE4AbyiuOYvFguzsbGzatEmTGZIstdmfIFSrVpMSIlXO+DM13Eys19UKF7z1ZaWlpUxatMQiKibs7bffRnZ2NqKjo93er6ysxHvvvUclKoiQYSErMVBHzKLrTqzVg1+SSItWAJbaHEgQqlGrSQmRGkr8mRALmhpuJlbraukNX+LZd1+2VFdxuaJE2GOPPYY+ffqgcePGbu9XVFTgscceIxFGiILFrER/HTFLbjAp26RFKwArbRYrCOUMFlZapAYTfxaMBY2lzFxCOvhYrqKiImzdutX5vhbjcsUgSoRxHOdWoJXn5MmTzhk1QQSDFrMSWXKDSd0mLVoBWGmzP0HILxrvihKTC6VEarCWWJYyOLWaXecNrdWH89YWFvtXOQhKhN10000wGAwwGAzo3bs3IiKufr2mpgaFhYXo06eP5I0k9I+aWYmuHdahQ2WCg0BZcoOx3Ca5YHnQ9CUIExISFLPoeB63rzZJeX5CscSqncGp1ew6T5Ssnydl2IinRSxc+rKgRBifIXngwAFkZWWhfv36zs+ioqKQkpKCQYMGSdpAIrxQevbjvUp2O8GDACtusFDbFIqgUWvWzdKgyaIgVOP8iH1+WSgzAmgzu84TuevnyRk2YrFY3NrFYv8qNUGJsGeffRYAkJKSguzsbNSpU0eWRhHhi9KzH6FVsl3dSGVlZdi8ebNbm1nrHIJtk9gBW+2q7KwMmiwJQlfUiKEU8/yyGF+pdeQQtnKHjZw8CezbFwWbLdbZRhb7VykRFRM2bJhjpfPKykqcPn26VvmK5s2bh94yImxRY/YTzCBQXV0taJ/8kjWuyDUQS2GJEdMulmJ61MabQHU97srKShQXFztfa8G1JQYxz2+4xP8oiRzCVo6wkdqWNQsMhhzNFhQOFlEi7Pfff8eIESOwd+9et/f5gH0q1kqEitDZj+tAF0rR1ECDwNq1O72KC3/4+o4cViEWLDFqx/SwhNoWQqUJNf5MjAVNa8HnSiOnsJVq374sa2q5o9VAlAgbPnw4IiIikJeXh8TERK+ZkgQhN97jucQVTfU3CPjbt6ubsrS01JlircZahmoOOKzE9LCC0GusFwuhFJOAYCxo4SZyxSBnaIdU+xZqWfOGFrJUhSBKhB04cAD79+9H27ZtpW4PQQhGaDyX0IHO2yAQaN/est30tkyMECimxz++3LR6Qsy9JtaCRm5wYcgZ2hHqvl3jvwJZ1jxLu+jJyilKhLVv395rvAtBiCWUmCYpBYDnICBm3ywtE5Odne2zdp+UHRnF9PgmWDctS+JabqSwoOnJDS7HtZczsD3YffuL//JnWQultAsLq6/4Q5QIW7hwIaZNm4YXX3wRHTp0QGRkpNvncXFxkjSOCB9C6YxZi30I9B0p1j4Tagng17j0hVTumnCp6RMswVpFw9HNFspx6MkNLtW1Z7FcChA4/isnZylycpZKYrVjcfUVX4gSYZmZmQCAXr16ucWDUWA+EQpiH4pQBECgjkjMvj2/A9iRkZHv/JyPG5NqIBViCVDCXRMONX2CJViraLjFkoWKntzgUrlY+QntmTNnUFVV5XUb10LrSiEk/is19XjI101rq6+IuhJ79uyRuh0EERJiBYAvC5xrkL2YffPfKShIR35+Bvbu7Y78/AzJA/SFWALkdNeoUZVdS4RqpfU1EEthTdUDenWDS/HMulrBpaqaL4WVTe5rpubqK2IQJcJuv/12/Oc//8Hrr7+Oo0eP4oMPPsA111yDDRs2IDU1Veo2EoQgxMY+COmExO47Pz9DVldJoI5GbncNC6UxWCYUK62/gVhqa6pW0aMbXIpnVq6q+VI870pdM60IdFEibMuWLXj00Ufx8MMP48cff8SVK1cAADabDS+++CI++eQTSRtJEEojZsbn+R0lXCWBOhol2hDOIsAXrveCP0uqr/tM6EDMymxeTfTmBpfymZVjEibF8x7sNRNjSdeKQBclwp5//nmsXr0aQ4cOxXvvved8v3v37nj++eclaxxB+EPOAFQxMz7PBWiVmIkF6mi0MhvUG6FaDHwNxCdONIPZfFjStmoROdzgrGSlSvnMshwzx//+2bMWt9d33nmnm0ctlPMeSOyxkDkpSoQdOXIEPXr0qPW+2WxGWVlZqG0iCEHI4QoLtSN2XYBWqZkY39GcONEMgAHJySecnwVqg5JLK4UboZxDbwMxAGzZcj8qK6+6k/jrF27XTOpnn6WsVCn7DZYnYb7cpDt37pT0PPsS6G+8UYP58znVMydFibCmTZvijz/+QEpKitv7X3/9NVq2bClFuwhCEFI+LFJ1xK4TEblcJZ4z/KNHW/mM+/DXBj62yBM9xhqFKrCVtJTwA/HHH/cDcHUA9XQnuV4/PV4zf0h5rKxlpUrVb4Qq6OS656UqsC0WR+ZkEhOZk6JE2OjRo/Hkk0/irbfegsFgQFFREfLz8/HUU09h9uzZUreRkAm5HjBWzPrBIkVHbLVasXnzZrf35CiWaLFYMHjwYGzevFlQ3EewbdBbrFGoAlspS4lnLFlU1BV88MEDbtv4cifp7ZqpiRorHMiVaSxW0Hne86FmWLq2W203KUuZk6JE2IwZM2C329G7d29cvHgRPXr0QHR0NJ566ilMnDhR6jYSMiDXoMKSWT9UxHTEwTy8oZZtiI+PBxC4Q/G1viUQHsvpAKELbKUsJZ5xhcnJJ5h1J+kVtSrwy5lpLGYiKHWGpcViQXZ2NjZt2iSrm1RIv8qSm1aUCDMYDHjmmWcwdepU/PHHHzh//jzat2+P+vXrS90+QibkWntNL2u6SdUR+zr+7OxsWCwWSayGgToUX0t+6Gm5Fz0RKK4wM3NXrWBmQhrUrsAv1cRUyqQlKc8Jv4SanPGy/sQsPwllKXMypLK5UVFRaN++vVRtIVRCrsFYq4O8VJ2Ov+M3m82SWQ3FdChqDzZqE6oF0Nf3bTab6DXuXPFV4qKoKAm7dmVq7pnSCmq7yaRCSquaXOdEztIiQo6LldImyq9dQDCFXIOxlgd5KTodIccvpYsr2A5FL4ONGEKdHPj7/qZNmyRxtbsOoq4u5LffHirqmdJqnKbSsOSmChWprqec50TOxcW18PsAibCwR67BWMuDvBSdjhLHH0ogr54Gm2AIdXIgpbgOhOcgKvae0lOcptyw5KZiBTFlbnhI3AeGRFiYI9dgrOVBXoqOWMzxB+siC8XlEK6DTajiWM3JhdhnirXyCywS6goHekdMmRseV3EvZ4FtrUIiLMyRazDW4iAvZUcc7PGLdZEFO8sM98Em1MmB9yKqwr8vxi3IX4tA95Rer5kS0BqogQnkuhOShKX2eWZRBJIII2QLUGQl8FEoUnQQwYgc/neUjJ9TuxNUi1CFjOf33YuoGnD0aKuAolmsW9Dzms2ZcwbHjkUgJaUaSUk3A7g5qGvGQlkSFmPU9HbPh0owQiSYSaSa55nF/o9EWJgiV2FAufYrBUp0/EIfcuBqLIXSLq5wHGyECJmLFy+isrISxcXFXvdx991349NPP0Va2h8wGACO4z8xCBLNobgFXa9ZYiLQubOgXdWChYxlilHTBoH6Mj5hRKlJpGv/XVRkRGFhBFJTq5GUZAcgvP9m7Z4iERamyDUjUHum4UtolZWV1apk7w2pMtv84TkIaTl+Tkv4EzJWqxVvvPGGoP1oNemElYxlilHTDmqWsHDFtc/0N5HQonAnERbGyHWzqvUQCJ1h+0OJjt/zNyjWR32Cue5aFc1aFY8E24TyPAj1TggN3dCicCcRRugGLT6APN7ixwYOHIikpCTNzez0jlSiWenYLDnFI4sxXoQyiE3CCmZtSh49TiRIhBGEyrh2Pqmpx53vJyQk0MDFGNnZ2c6lV0IJkFcyNkvu7MpQY7xYSBTQC2qJYTFJWELXpiwqKnJup1UrtD9IhBFhCSsdPwuB0kRtfN0fZrPZuSyR2AB5pWOzPOM0J036H/73PyOSk6+gadNUAKmIiIhwJiUEO1CHEuNF9790KJ3wIFUSlq/noXHjElRVRWPt2p3O/Wqx9FEgSIQRusXXQMpKx89KoDThjtz3hxouFX7QtVqt+OorRwLCiRO+t1ciwJnuf2lROuFBqiQsX8/DmjWjvD6DWit9FAgSYYQu8TWQstTx6zG+QevIeX/wFoFALhU5EzFYykyk+19elLD2SyHUvRdA5vw+gyys+SgVJMII1ZE6jsHfQMpSx6/H+AatI+f94Wo5uOaackyfbkZNjQEmE4eFC8vx0EMP6iKAPdDgH6wYpaD/4GHF2i8ETxcjYMfVQsgO9CzOSYQRqiJHHIO/gVRNKwQPLUOjLEIGcaWsVPw9PGUKkJ0N/PEH0KqVAc2axQOID2nfLCBk8A9GjFJh1+BhydovFFcXY2RkpdMVySN0cqrFPpNEGKEqUrpHhAykZnMF5s8/hblzm6pmhZB6GZpwRKh1JJhBXGkrVbNmjj+9EMzgL1SMsuQ+1QosWfuDwdXF6G9yOnDgQCQkJNT6vlb7TBJhhG4IZoY9fLi6VgiplqEJR4IRVsEM4nzWo16tVN6QMm5I7OCvNzGqNqyFOfiaMNlsNp/f8Rd8n5CQ4HxW9QCJMEJXCJ1hh1vHr6e4GiWsI+Fwf0gVN8RCwgFxFZbKOAidMA0ePBjV1dXYunWr8z09Bd/7g0RYmKOnwdmTcBhIhUBxNYQnUsYNKZlwoHZ9P5b7S1eR68+SpKQY9jxXvq5ffHy84HbpTcyTCAtjWByc1e5k9QjF1RA8/AAWyHUY7ECnRMKB2hl/LPaXrkhVt0suAl0/1tsvFyTCwhjWBme1O1lC/4S7yOcHumPHqrFhAwe73eD8zGTiMHHi3UhJiQhpoJPDAs1Cxh9r/aU3WBUoQq8fq+2XExJhREBKS0t9fialm0HtTpbQJkKFFYl8BxaLBRYL8MYbwOOPAzU1gMkEvP66AZ07N1G7eV7RasYfS6jpSqXr5xvNiLB7770XBw4cwOnTp9GgQQNkZmZi4cKFSEpKcm6zefNmvPjii/jvf/+LRo0aYcKECZg6darbfr788ktMnjwZv/zyC5KTkzFr1iwMHz7cbZtVq1bhn//8J0pKStCxY0esWLECt9xyi/Pzy5cvY8qUKXjvvfdw5coVZGVl4dVXX0WTJlc7sD///BPjxo3Dnj17UL9+fQwbNgwLFixARIRmTrkT12BJb4RifpfLPcIKLMeQ6AGhwopEfm1GjgSysnjXIZvxk2oG/Xs+u56TUS1ZVY8ePYp33nkn4HZyuVJZy9hkCc0ogjvuuANPP/00EhMT8ddff+Gpp57C/fffj7179wIAPv30Uzz88MNYsWIF7rrrLhw+fBijR49GTEwMJkyYAAAoLCxE3759MXbsWGzcuBG7d+/GqFGjkJiYiKysLADApk2bMHnyZKxevRrp6elYunQpsrKycOTIETRu3BgAMGnSJGzfvh3vv/8+zGYzJkyYgIEDB+Kbb74BANTU1KBv375o2rQp9u7di+LiYgwdOhSRkZF48cUXVTh78uJPZAgRIXK7R9SC9RgSrSNEWOld5IcK68kraq0yEOjZ1ZJV1Wq1ChJggHyuVJYyNllDMyJs0qRJzv+3aNECM2bMwIABA1BVVYXIyEhs2LABAwYMwNixYwEALVu2xMyZM7Fw4UKMHz8eBoMBq1evRmpqKl555RUAQLt27fD1119jyZIlThG2ePFijB49Go899hgAYPXq1di+fTveeustzJgxAzabDWvWrEFubi569eoFAFi7di3atWuHffv2oWvXrvj888/x66+/YteuXWjSpAluvPFGPPfcc5g+fTrmzp0bNh1+MCKkc+cmmnKPCIHVGBItzeC9EYywUiIGipAXNVYZ8PdMas2q6r1GV2h9gBgLv94W3pYKzYgwV86ePYuNGzeiW7duiIyMBABcuXIFdevWddsuJiYGJ0+exPHjx5GSkoL8/HxkZma6bZOVlYWcnBwAjpt1//79mDlzpvNzo9GIzMxM5OfnAwD279+Pqqoqt/20bdsWzZs3R35+Prp27Yr8/Hx06NDBzT2ZlZWFcePG4ZdffsFNN90k6fmQCqkH52BFiBbcI1pHSzN4XwQrrFiLgSIXtXhCtdxJce61Ht8Uah8QzOTa0+Dgq/ZXuBgmvKEpETZ9+nSsXLkSFy9eRNeuXZGXl+f8LCsrC5MmTcLw4cNxxx134I8//nBavIqLi5GSkoKSkhI3YQQATZo0QXl5OS5duoRz586hpqbG6za//fYbAKCkpARRUVGIj4+vtU1JSYlzG2/74D/zxZUrV3DlyhXn6/LyciGnRRJYGZxZd49oEb6DCzSD99cRsiYcxAgrFkQ+uajVI5hz7w8txzfZbLH4+ON+4BfIFmPFE1r7i1+FIhzLTgSDqiJsxowZWLhwod9tDh8+jLZt2wIApk6dipEjR+L48eOYN28ehg4diry8PBgMBowePRpHjx5Fv379UFVVhbi4ODz55JOYO3cujEaj399ghQULFmDevHmK/Z7QwTkQpaWlYf8gsQxvOdqzB1iypPYMvnv3YejZ03d6OMvCIVhhpbbIZ9VFHQ6Ecu49hYa/+CabzcZsf1hQkA5egPGEYsUTumA74RtVRdiUKVNqZSZ60rJlS+f/ExISkJCQgGuvvRbt2rVDcnIy9u3bh4yMDBgMBixcuBAvvvgiSkpK0KhRI+zevdttH02bNsWpU6fc9n/q1CnExcUhJiYGJpMJJpPJ6zZNmzZ17qOyshJlZWVu1jDPbb799tta++A/88XMmTMxefJk5+vy8nIkJyf7PT+hEGhwvv76AThxYoPzPV8zHj57kmbv7GKxWNC1K2A0Anb71fdNJiA93WFV8gXrwkFtYaU1WLNqso4voeErvmnTpk0A2OsPbbZY5OdnePlEnBVPa7FxrKKqCGvUqBEaNWok6rv2v0cSV/cdAJhMJlxzzTUAgHfffRcZGRnO38jIyMAnn3zitv3OnTuRkeG4MaOiotC5c2fs3r0bAwYMcP7O7t27nSbqzp07IzIyErt378agQYMAAEeOHMGff/7p3E9GRgZeeOEFnD592plRuXPnTsTFxaF9+/Y+jyk6OhrR0dGizodY/A3OHTvWw4kTjtdCZjw0e2ebZs28ue9IwIQTLFs1WSSQ0PAnNljrD73FsgFAt275okST1mPjWEETMWEFBQX47rvvcOutt6JBgwY4evQoZs+ejbS0NKfwKS0txQcffICePXvi8uXLWLt2Ld5//3189dVXzv2MHTsWK1euxLRp0zBixAh88cUX2Lx5M7Zv3+7cZvLkyRg2bBi6dOmCW265BUuXLsWFCxec2ZJmsxkjR47E5MmT0bBhQ8TFxWHixInIyMhA165dAQB33XUX2rdvj0cffRSLFi1CSUkJZs2ahfHjxysusoQQE2PFokUmj/RvG+rVOweAZjxSwUJWIgtxUYR6sG7VVBIhz6NSQkMJ66SvWLb09AK33wl1f1qIjWMJTYiwunXrYuvWrXj22Wdx4cIFJCYmok+fPpg1a5abqFm/fj2eeuopcByHjIwMfPnll25FVlNTU7F9+3ZMmjQJy5YtQ7NmzfDmm286y1MAQHZ2Ns6cOYM5c+agpKQEN954I3bs2OEWaL9kyRIYjUYMGjTIrVgrj8lkQl5eHsaNG4eMjAzUq1cPw4YNw/z582U+U8HjOjN+4olYp3n9/PkK/G1Vl6wjYkGEKIlrh+bPkqh0ZhC57/QBuRXFE8iyL7RIrBTIbZ3kjyVQLNsjjzwS1P6p9pc0aEKEdejQAV988YXfbRISEpxlJPzRs2dP/Pij/6y/CRMm+M2QqVOnDlatWoVVq1b53KZFixa1XJ8s4tqJ+zKvi+2I1BYhag9SrqUU5s9vDI5zlFLgOCO2b++POXPSqUZVmCN2YkJuRfEIsez7KxI7e3YRgAq3/YUyuZTbOum5MPacOWdw7FgEUlKqkZR0M4CbRfeFVPsrdDQhwgh1ETvjUVOEsDJIWSwWHDzoHm8HADU1BlRUNPEbEC83aovUcCeUsjDkVhSPUMu+ryKxJpMJb7zh2IaV0j6BcH2OExOBzp3F70srtb+00r+RCCMEIXbGo5YIYWmQat3ae+JDq1a+vyN3BxJKzaRwcytLiRQ124jgsVqtsNlsAMStQ+nqwi8udvwrV6ws68+Xp2XNG0oIHH99ZFlZGTZv3ux87eucsmApJhFGCCZQNpAvxIgQPRFsVqISVrxgRKrabmU9EWrNNqlhfcCXAs/nyZdlf/Tou9G4cWPB516OoH0tWtbUQGgfCfg/pyxYikmEhSGuM4jS0tKgv++r4/Y1CFNphOCyElmy4gEU2yY1odRskxKtDPih4u058WbZj4+/2es97GlxKSsrAyDOouYPykIXjtCq/Vo4pyTCwoxgZhCuZGdnw2w2Izc3BvPnm2G3G2A0cli0yIaHHroU0PxMpRG0nZXIcmwbSwh1I6s1MSF36FWEWPb99ZeeFjVHaZ9yPPTQg6LccVR3Sxz+JhNaOKckwsIMsdYTs9mMmppETJt2dSC22w2YPj0e2dnxggZhpUSI1WoVZeEj/BPubuVABOtGVmNiwpo7lHUC9Ze8Ra1792FIT7egWbN4APGifovqbgVPoMmEFs4piTBCEFFRUT4sIY5BJJQBRMogdLGWPiIw5Fb2jxg3slQTk2Biu1hxh+oFs7kC3bpVIjFRXF8mtI5XOFgngyWQpUsLtcxIhBFeGThwIBISEgBc7TjksIRIHYTOQqClniG3MhuEmiwRzoJarmQEsX2ZnHW89I4QSxfrtcxIhBFu8B1UZWVjJCY2cfssUMctZhaoVBB6sMkE4UYwA5OWY9v0ghTJEnoU1N76INfQBDmTEULpy6Ss4xVOCLV0ic3sVwISYYQT1w5qwwYOb7zh6Khd8dVxs1Ic1RveOt7nn09FUlJS2M4u9Vh2QivFGaVCimQJPQnqQH2QFJly4VDSQ2uEYulioX8jEUYAqN1B2e0GPP64Q3B5dtLeOm6hs8CioiK3beUOoPfV8c6Zc4bZAdmzY5DDiqe3shMsTwLkhJIlrhKoDwoUPxToeQrWiqYVwabFyYvQqv18Vr+vfbBwXCTCCADeOygpgu492bp1q3Q7E4CvjvfYsQhmTf6uMSJiS4II/R29lJ1grbaaUoRzbFeweIsfMpk4TJx4t9uEw1sdxWCtaP4Em7+Jp9LCQKuTF1aq9ksBibAww9dsz3sHpf0Ztb/AzeJidh9gi8WCkycRUkkQIZAlRT6UsoToMbZLDvj4oe3b+/+9GDfw+usGdO58NfbVlygRYkXjBUEgwRZoIqqk4NHy5EULAksIJMLCDH8ziGuuKcf06WaXDkr7HbqvwM1///tH/Pvf/r+r9uzv99/lKQniCllSpEPNODs9xXZJhTcR3KnTj5gzJx0VFU28ClZfYkOIFa3470UlQy0Qqqbg0YoLVU+QCAtDfAmLKVOA7Gxtz6i9DXBiAzfVnv0pZaUKZEnRYsyIGugtzk7L+BPBSUl2JCYGtz9v1fE9rWg8WigQ6o1wWcaKNUiEhTknTzosLq1bX51Nsyi+hFoPPC19RUVGFBZGIDW1GklJDjVjs9mwadMm2doqFUpaqXxdd63GjKiFnuLstIpc6wW6TuYmTry7lgATWnTVtZ2sWJ20sMaiXiERFsasWQOMGeMYMIxGeC1JoSSuBWJdCdbSwm/L2vGJQe14Hy3HjKgFxdmpi5TrBXoKJf6Pn9C5EqjoamlpqjMejDWrkxbWWNQrJMLClJMnrwoUwPGvr5IUQpAiziUhIQE1NYluljmx+Ds+kynkpioKq9ZJllHTykBxdt6R263N90GB3IFC+yoxQklI0VUWrU5adaHqARJhYYrUQd/+Av5LS0sFlabIzY1xZgOGarnyd3xt2ojbp5pQXJZ/WCs+q7YFkzWUcGu79kHuSUYcFi4sx0MPPSj4OZFTKLFoddLCGot6hURYmCKHy8RX5yZk4LPZYv+uh+V4HaplTk8uIYrLCgyLQfFkwbyKUm5t/vq6JxkZ0KxZPIB4wfuRUyixZHVy7Zv9JTDx29FkUHpIhIUpcrtM3AP+AxfWKyioiyVLDG7vhWKZ83d8f2eSawaKyxIGBcUTrogRwVK7NL3tO5DVScmldIIpekqTQXkgERbGyOUy8R4Q7/+h7NJFesuVr+MT2smxsK4YERx6soASyiOlS9PfvoHagfvAzapYkoT+nqdQ8xV3Ge6TwWAhERbmSO0yERLw71kWg2+HHJY5b8cnpIwFmdW1CQXFE6EilUvT374B34H7WoC17E4tQyKMEI23+IB9+6Jgt7uLF1e3or+yEUoGM+upjIWcKLGYuNSEa1B8oHidixcvom7duj4/V3LiwVKNLH9QXF9tWMzu1DIkwghR+IoPsNliYTDkeF2DUoiVTMlOT+oyHXpEqcXEpSbcBk+h8TqBUCKeR+tWlHAPTmcxu1PLkAgjROGrE/K1vEezZsCePfKvhRgMSqzNqAeUWkycEI9UcThyx/MItaKwKnQoOJ2t7E49QCKMkBxfy3uwFjTNWntYhgQrEQq8uzqQFSUqKoppoUOZylRTTGpIhBGywC/vERV1GsXFjtHbZAIWL47FlCn1mQia1koQNwtxWSRYiVBwreO2YQMHu/1qORqTicPEiXc767gVC6who2ehwzr+aooRwUEijJAVb5Xyf/zxCVitDZgImtZCEDcLcVlaEawEu1gsFlgs3u4jQ63FsLWCVhIMpMBzksdPtANtR/iHRBihOAkJl9Ghg9qtuIoWgrhZiMvSgmAlHAQSB4E+lzMmK9j7iFWho/UEg2AJprArIRwSYQQRBGoGDEsdlyXmWLQgWMOdQOIg0OdKxGQJvY+UEjrBPgvhWqaBBJb0kAgjCIGoHTAsZVyW2sdCyEMgcSBEPLASfK6U0AnmWeDRQ5kGVjNQww0SYYQowtHvr/bgJGVcltrHQkiL0OxDIdmJrFxzpYSOmGdB62UaaBLGDiTCCFF4iw8oLS31GojvC5qJBQ/FZRHeEJJ9GB9/HmVl9SXLTpSLsrIyAGwKHRYX4RYDrQPJDiTCCNGEIpBoJhY8vGg1mYA2bRzvuY6XJFrDm8DZh44MxGCzE5UMjLdardi8eTOAwELn4sWLfgWj2OfB3/Gyugh3KIRbggFrkAgjVEHP7rDS0lIA0ooiEq1XIQuqfwJZS4Oxpio9QHteV1/1qO655x688847AfcX7PMg5Hj1sgg3EL4JBixBIoyQhJMnge+/rwubLTbgw8tS3IkcuLpkpRJFehatwUBiVBiBsg+FZCeyMED7skrVqVNH0PeDeR5YOF6l0UOCgdYhEUaEzJo1/ELYZhiNk5wFRL3BWynUjjtRCq2IIlZrMXlCYlQ51B6g/VmlKircf1+K+1ft41UDFuPuwg0SYURInDzJCzDHa9cCohQ0rg0oJoRwhQ8qDzRAyxl8HsgqtXPnTue2Ut2/4ShIaB1I9SERRoREOC3sLHQNRy3AH0ugwU6OgVbKmC4tXwNWcQ0+v+aackyfbkZNjQEmE4eFC8vx0EMPyh53J9QqJYULUS8Zj2KhdSDVhUQYERL+CoiePOkQaa1b60OQuQ5Ob7xRg6VLk1SzHoUqPvhj2bMHWLKk9mDXvfsw9OwpfYVsKWO6yIInH/y5nzIFyM7mg/gNaNYsHkC87L8v1CpVUJAesgtRjxmPgRC6DqTNZkNRkRGFhRFITa1GUpLd+X09nQ81IRFGhISvAqKffXbVTWk0OrYZOVLt1oYOv4bj/PkcOM5Ra0npAF6pxIfFYkHXrt5FdHq6RZb1KIXGahUVFTnb6I1wDKJWCzWWqhLiJrPZYrF3b0at74pxIeop41EI/taBLCsrc5YJmT79vz77mnBPfpEKEmFEyHimvANAixaucWIOkZaVdbUzF2raZ9EF4HDBGtze4zgjfv21Pdq3/1VWESC1+JCyCr+U8Bmmvjr6cAyiDgdcn/dAbrKzZy0AjPAkIyOf7gEBBBJQgfoaNZNf9ORlIRFGSILrbHnPnsBxYv5mYjysmrwdLljOQ4hx+OyzPvj887tkcYsJXZZGjGhVswp/ILeqr/sjHIOowwEh/QJvqfF2DwB2pKcXOF+xOInTCqxNdPhY0tzcGEybZobdboDRyDmz8VkdLwJBIoyQHKELTbs+MFqa2TRrBixefAGTJtX9u5PiAHh3TUo1CAhZloZfdkYMaricXN2qgB3duuUjPb3Abwcf7kHU4YDQezjQPZCdna3JQZkVWJro8LGkNlssli7NcYaC2O0GTJ0ah7/+egtmc4UmXaQkwgjJCdbFdbXOmHbix558sj569TqHrVuNmDvX7PaZXIHtgZel0Q6erg7AiL17uyM/P8OvJTEcg6jDHc9sWn5FCsC/y9Jsdn8uieBgqXwFf/0DWee0WB+QRBghC0JdXLXrjNWOH2OVDh0aoEEDYP585QLbAX0s4u2tMwWExbiFWxB1OCMkm9ZXZh9ZQ0OHtfIVLFnnpIJEGCEbQlxcWq8zplZguxruQynxHs/jIJwC7GkdTP94nhtfMYQDBw5EQkKC83W4nzcp8SVy1YAl65xUkAgjVEVo/BjL6MEypRSeMV0ff9wPnhluWp/ZCsXTyuNLYGgxzkUO/JVmSUhIQGJiosotJJSANetcqJAII1SF1RIJwaJ1y5RS8DFdjjpgW5GW9gcKCtKRn5+hm5mtUFytPP4EhhbjXKSG6sIphxbKB7FknQsVEmGE6pAlKbxwteqYzRW4665dSE8v8DqzDYe4HhIYgWGtXIKe0XL5IC1CIoxgArIkhRfU0V+FBEZg9BiQzTLh8NyxAokwgiD8IlcNt3Dv6MvKygCQwBCCHgOyw5lg+xQtuEjFQiKMIHSKFOJJizXctIDVanWuz3f0aCtw3NXPSGB4R28B2eGKmD5Fz5ZzEmEEoUNCFU9WqxXHjlVjzJjGzur8jhpuHG688bTf6vxaWv1ALfjBhI8Hc80Q5TggLe0PlVrGFp6WDaoJpm1CqQupRYElBBJhBKEzQi2Ay5dOKCxMgd0+zO2zmhoDVqz4FKmpx72WTiDLWXB4L1pL8WA8eraAhBtWqxX79gF2u/u1qqkBCgqsiInRr9DyB4kwgvCBFi06UnR0/IAXKFbJc2DU8uoHaiEkHkwvVh6xz1M4Dsx6w3XtR4Mhp9b9/s0363HokDbXfgyV2uWqCYLAmjVAixZAr16Of9esUbtFgeE7ur1718NgcF+GgO/oVq5cCavVKmh/fDA0vy9/sUoO8Wf1uvpBQYFV8G+GG4HOsdYXobZarSguLsYrr5ShRQvu7+eJwyuvlKG4uJjuizCBn7AFut+lrol38iSwZ4/jX1YhSxhBeKBVi45nR+crkyyYjk5IMDTNckNDr4tQu94XS5fmgOP42EIDpk6Nw19/vQWzme6LcEOpBAuthEaQCCMID7S+niUgrKMT6h4KVJ1aDvEXbuipAjgPf70D1UHjt9Oi+58Qh9z3u5Ym0iTCCMIDPaxnCfjv6OSaJVIZAX0jRigJiXtj1WpBwlB7aC0BgGLCCMIDfj1Lk8nxWqvrWfqiqMjodZYoVdyE2VyB1NTjJMD8oMXik2LjJAPFAcl9P4pF7rhQLcQraQ2p42KVgCxhRMjocbYox3qWap0nmy0WZ89a0LChFWZzBQoLI0S5Wz33Q4hHa6UXQnXv+LOQHjhwwWdChxpWi1Bq5AmFVcuf1tFiaASJMCIk9NyZSLmepVrn6YcfbqrVEfXrV+3X3erN+uJtPyxZabRIsAO5WiJeKveOL/f4L798xExCRyg18oTuX26BRzjQSmgEiTCNY7fbVVP1JSXACy8AyclX33vxRaB3b6BpU1WaFDLnzp1DVVWV87XBYIDJZILB4OgwxVgn1AoS5aux84MbxxmxbVs/zJlzBm+84WhDTU1td6unlaaoyIj58xs7s9s4zojt2/vj0iWDfI0n3FBLxCuR+cqS1UJsjTwhyC3wWEYt97sWEl5IhGmYyspKFBYWwu5py1eIy5eBV1+t/f65c8ClS8q3J1RqampQUVH7gb106RK+++47XL58GQCC7iSVyrb07MB8ZaWdPFknoLvV9fh++81b+w2ayhZljWCsWmpmeinl3mHNaiHHguFyCjzW0Zr7XUk0J8KuXLmC9PR0/PTTT/jxxx9x4403Oj87ePAgxo8fj++++w6NGjXCxIkTMW3aNLfvv//++5g9ezaOHTuG1q1bY+HChbjnnnucn3Mch2effRb/+te/UFZWhu7du+O1115D69atnducPXsWEydOxLZt22A0GjFo0CAsW7YM9evXD6otocBxHIqLi2EymZCcnAyjUfkci8pKh5jwJC0N0KKnqrKyEmVlZW7vcRyHc+fOoU2bNvjpp5+c2wWDUtmW3ixYGzZwTrcHABiNHJo1u4zi4oswmYA2bRzvFxc7/vXWEQZqvxaDzNUkWKuWHCJejGszWKEU7PVmzWohlzCUQ+BpgXAUWELQnAibNm0akpKSnAMiT3l5Oe666y5kZmZi9erV+PnnnzFixAjEx8djzJgxAIC9e/fiwQcfxIIFC9CvXz/k5uZiwIAB+OGHH3D99dcDABYtWoTly5dj/fr1SE1NxezZs5GVlYVff/0VderUAQA8/PDDKC4uxs6dO1FVVYXHHnsMY8aMQW5uruC2hEp1dTUuXryIpKQk1K1bV5J9BkudOo6soePHr77XogUQF6dKc0LGaDQiIqL2I2E2m9GoUSNERUWJmqXy2Za+3H9S4trRJSZ6/i6Hvn23IS/vR7/78LT0BWq/2FmuHhM6AiHGqiW1iA/FtRmMUAp0X5SWlmLr1q1Cm60KcglD1ix/hHpoSoR9+umn+Pzzz7FlyxZ8+umnbp9t3LgRlZWVeOuttxAVFYXrrrsOBw4cwOLFi53CZ9myZejTpw+mTp0KAHjuueewc+dOrFy5EqtXrwbHcVi6dClmzZqF++67DwDw9ttvo0mTJvjoo48wZMgQHD58GDt27MB3332HLl26AABWrFiBe+65By+//DKSkpIEtSVUav42QaltXWjUCDCbgStXgOhobVrAAmE0GmE0GhEZGSnaVSBHtmWwvxsbezqgAAO8W/qCcV8KQc8JHf4I1qpltVphMlVi0aIYTJ9uRk2NASYTh4ULbTCZLsFqDc6Fo7Rrk6wfvmHN8keog2ZE2KlTpzB69Gh89NFHXi0/+fn56NGjh5soycrKwsKFC3Hu3Dk0aNAA+fn5mDx5stv3srKy8NFHHwEACgsLUVJSgszMTOfnZrMZ6enpyM/Px5AhQ5Cfn4/4+HinAAOAzMxMGI1GFBQU4P/+7/8EtUUq+IBxNYmK0qf44pHqHEuZbSnmd4uLQ4sdlKr9WqpmLTXBWLX4QG6eJ56IdVpOzp+vwBtvON4PJkZRD6tBEIQvtBgaoQkRxnEchg8fjrFjx6JLly44duxYrW1KSkqQmprq9l6TJk2cnzVo0AAlJSXO91y3KSkpcW7n+j1f2zRu3Njt84iICDRs2NBtm0Bt8caVK1dw5coV5+vy8nKv2xGElglnIRCMa9rTIunLchKMdVYvq0EQhDe0mACgasX8GTNmwGAw+P377bffsGLFClRUVGDmzJlqNld2FixYALPZ7PxLdq39oBOGDx/uvLaRkZFo0qQJ7rzzTrz11ltBZXmuW7cO8fHx8jWUAfRaUZsXAq6EkxAYORI4dsxxbY8dU84N63BtFmPRojKYTBwA/O3aLIPJVKx4FXEWrRYstokIDovFgsTERJ9/LAkwQGVL2JQpUzB8+HC/27Rs2RJffPEF8vPzER0d7fZZly5d8PDDD2P9+vVo2rQpTp065fY5/7rp30WrfG3j+jn/XmJiots2fBZm06ZNcfr0abd9VFdX4+zZswF/x/U3vDFz5kw3d2l5ebkuhVifPn2wdu1a1NTU4NSpU9ixYweefPJJfPDBB/j444+9BseHG6zETFmtVslnlUomKohBroQB13MpNDNVyt8W49qUU5SwaLWQs00k8AhvqDraNWrUCI0aNQq43fLly/H88887XxcVFSErKwubNm1Ceno6ACAjIwPPPPMMqqqqEBkZCQDYuXMn2rRp43T/ZWRkYPfu3cjJyXHua+fOncjIyAAApKamomnTpti9e7dTdJWXl6OgoADjxo1z7qOsrAz79+9H586dAQBffPEF7HZ7UG3xRnR0dC2hKRdyDK5CiY6OdorRa665Bp06dULXrl3Ru3dvrFu3DqNGjcLixYuxdu1a/O9//0PDhg3Rv39/LFq0CPXr18eXX36Jxx57DMDVeK1nn30Wc+fOxYYNG7Bs2TIcOXIE9erVQ69evbB06dJaLmRvCC3zIXcnKUXMlLfrW1paGlQ7PAduX4gpLqlWokIg5BK/cp5LIYh1bcotlFizSgDytYlF0RmusJSZrQmTQ/Pmzd1e8/W40tLS0OzvM/jQQw9h3rx5GDlyJKZPn45Dhw5h2bJlWLJkifN7Tz75JG6//Xa88sor6Nu3L9577z18//33eOPvaaDBYEBOTg6ef/55tG7d2lmiIikpCQMGDAAAtGvXDn369MHo0aOxevVqVFVVYcKECRgyZAiSkpIEt0VN1B4QvNGrVy907NgRW7duxahRo2A0GrF8+XKkpqbif//7H/7xj39g2rRpePXVV9GtWzcsXboUc+bMwZEjRwBcvSeqqqrw3HPPoU2bNjh9+jQmT56M4cOH45NPPgnYhoiICDRu3LiWW/Ty5csoLy/H4MGDUa9ePdnPSagxU0Kur5B1IIXGGonNGFUrUcEXciYMyH0u5YREgXTQuVQfVrwMPJoQYUIwm834/PPPMX78eHTu3BkJCQmYM2eOW0mIbt26ITc3F7NmzcLTTz+N1q1b46OPPnLWCAMcdcguXLiAMWPGoKysDLfeeit27NjhrBEGOMphTJgwAb1793YWa12+fHlQbVETVgeEtm3b4uDBgwDgZq1MSUnB888/j7Fjx+LVV19FVFQUzGYzDAZDLffuiBEjnP9v2bIlli9fjptvvhnnz593K6brC2+uULvdDpPJhMaNG7vdB3IRavB0oOvmbR3ITp2ulq4IV3dIOCcMEPLAksWFYDMzW5MiLCUlBRzH1Xr/hhtuwH/+8x+/333ggQfwwAMP+PzcYDBg/vz5mD9/vs9tGjZs6CzM6gshbSHc4TjO6V7ctWsXFixYgN9++w3l5eWorq7G5cuXcfHiRb/Faffv34+5c+fip59+wrlz55xWrT///BPt27dX5DhCRc6YKW/rSW7f3h9z5qQjKcke1u4QyhwkpIQ1iwvB5kRL1exIgnDl8OHDSE1NxbFjx9CvXz/ccMMN2LJlC/bv349Vq1YB8G/luXDhArKyshAXF4eNGzfiu+++w4cffhjwe3JitVpRXFzs889XRppcGXTe1pOsqTGgoqIJk5lDSsKLX5PJ8VrthAEK5NYuviwuest01hosZmZr0hJG6I8vvvgCP//8MyZNmoT9+/fDbrfjlVdecQbLb9682W37qKgo56oBPL/99husViteeuklZ1bp999/r8wBeCHU2Ds5Yqa8LR6sdifEEq4JA/XqAefPOwbOUK7DyZPAvn1RsNlig6qQToHc2oVFiwvBZmY2iTBCca5cuYKSkhK3EhX8ep5Dhw7FoUOHUFVVhRUrVqB///745ptvsHr1ard9pKSk4Pz589i9ezc6duyIunXronnz5oiKisKKFSswduxYHDp0CM8995xKR8lm7J3n4sFKd0JqZuUKpVkz4LPPpHElXXVJWWAw5NSKvwuE2ueCEAe5ttmD73vuuQcoKDDi2LEIpKRUIynJjuJi9foeEmGE4uzYsQOJiYmIiIhAgwYN0LFjRyxfvhzDhg2D0WhEx44dsXjxYixcuBAzZ85Ejx49sGDBAgwdOtS5j27dumHs2LHIzs6G1Wp1lqhYt24dnn76aSxfvhydOnXCyy+/jHvvvVfFo2UPfvHg7t2HIT3doqgAE5K12aPHSHTpYlZtdipV8K7nfjjOiG3b+iEt7Q/F1wwk16ZySL3eJxE6vvqeQ4fcXytZEYCHRBihKOvWrcO6desCbjdp0iRMmjTJ7b1HH33U7fVrr72G1157ze29Bx98EA8++KDbe96SOMIds7kC3bpVwqUmcS2kHriFZm0uWWJUNZBZKleSt/1wnBFnzzb0KcLkEkFKuTbDPRtQjvU+idBh0SvBQyIsDKFZsb6R6voqGZPkmbWpdOq4q5s0Ls4Io7Ex7ParC7ebTBxatQpuIXfvLikOEyfejaSk2kt0ye0OkXvQp2xAedb7JPQNibAwhAJ+9Y2U11epe8B71qYygczeXBX9+rnXUuvbNw8xMd0BCD8f3oOADejcuYnER6A+LNZfIggtQCIsTCGBpW+0dn3VzNr0Jlb5uDnelWQ2V6Cy8uag983q8kyBCNatSNmABCEOqhNGiKK6uhqVlZU+/6qrq9VuIqEh+KxNg8ExkrOQOm42VyA19XjIQfTNmgE9e2pHjKxZA7RoAfTq5fh3zZrA32Gx/hJBaAGyhBFBU11djdOnTwfcrnHjxl6XAQoXKPYuONTK2iSuItatyGL9JYLQAuE7QhKi8VzgOtTt9ArF3gWPkKxNQj5CcSuy7HoN96xNgl1IhBGEjJDAugpZBtkn1CKjcqzyECqUtUmw3PeQCCMIQhHIMsg+YtyKLK+CoHTWJsuDfTjDct9DIowgCMXQssAqLS0V3FGzLEwCEYxbMdT1UeVG6axNlgf7cIfVc04ijNAVX375Je644w6cO3cO8fHxgr6TkpKCnJwc5OTkyNo2gk2EWiW2bt0KILCgYF2YCEGoW5HlSuSAOms4snpNCTahEhWEogwfPhwGgwFjx46t9dn48eNhMBgwfPhw5RvGCFarFcXFxT7/rFYrk/vWMrz1YuDAgYK2DyQoWBcm4QTvXjWZHK8pa5NgDbKEEYqTnJyM9957D0uWLEFMTAwA4PLly8jNzUXz5s1Vbp16yGlB0YN1Rk4sFkvYiyItu1D9wXLWJkGQCCOCxuhZlTHI7Tp16oSjR49i69atePjhhwE4XD3NmzdHamqqc7srV65g6tSpeO+991BeXo4uXbpgyZIluPnmq5XLP/nkE+Tk5ODEiRPo2rUrhg0bVuv3vv76a8ycORPff/89EhIS8H//939YsGAB6tWrF8xhy46cFhSyzhD+0LtIZzFrkyAAckcSIoiIiEDjxo2RkJDg8y9QodYRI0Zg7dq1ztdvvfUWHnvsMbdtpk2bhi1btmD9+vX44Ycf0KpVK2RlZeHs2bMAgBMnTmDgwIHo378/Dhw4gFGjRmHGjBlu+zh69Cj69OmDQYMG4eDBg9i0aRO+/vprTJgwQcIzQhDaRo8indzvhBYgSxghqpBhqJXwH3nkEcycORPHjx8HAHzzzTd477338OWXXwIALly4gNdeew3r1q3D3XffDQD417/+hZ07d2LNmjWYOnUqXnvtNaSlpeGVV14BALRp0wY///wzFi5c6PydBQsW4OGHH3YG3bdu3RrLly/H7bffjtdeew116tQJ6TiI0NGrG4xQD71b9gj9QCIszFGrkGGjRo3Qt29frFu3DhzHoW/fvkhISHB+fvToUVRVVaF79+7O9yIjI3HLLbfg8OHDAIDDhw8jPT3dbb8ZGRlur3/66SccPHgQGzdudL7HcRzsdjsKCwvRrl07OQ6PEAgNloQc6NGyR+gTEmFhjNKFDD0ZMWKE0y24atUqWX7j/PnzePzxx/HEE0/U+iyckwBYgQZLbUPFSQkiNEiEhTFKFzL0pE+fPqisrITBYEBWVpbbZ2lpaYiKisI333yDFi1aAACqqqrw3XffOV2L7dq1w8cff+z2vX379rm97tSpE3799Ve0krMwEKELpBIU4SRMqDgpQYQGibAwRo1Chq6YTCana9HEF/L5m3r16mHcuHGYOnUqGjZsiObNm2PRokW4ePEiRv7tLx07dixeeeUVTJ06FaNGjcL+/fuxbt06t/1Mnz4dXbt2xYQJEzBq1CjUq1cPv/76K3bu3CnIDUaED1IJinATJno5DoJQAxJhYYyYdeKkJi4uzudnL730Eux2Ox599FFUVFSgS5cu+Oyzz9CgQQMADnfili1bMGnSJKxYsQK33HILXnzxRYwYMcK5jxtuuAFfffUVnnnmGdx2223gOA5paWnIzs6W/diCRU4LSjhZZ0JBKkFBwoQgCCEYOI7j1G4E4Z3y8nKYzWbYbLZaYuXy5csoLCxEampqyBl+J09SIUN/SHmuAyFnpiCLWYjFxcV44403Am43ZswYJCYmKtCi8ERvCRJ0XxFq42/8doUsYQQVMmQIOQc4LQyehDqEmwuVIFiBRBhBEAShK4FF7ndCK5AIIwhCNWiwJOSALHuEViARRhCEatBgScgF3TOEFiARRhCEqtBgSRBEuEILeGscSm6VHzrHBEEQhByQCNMofHFTWs5Ffvhz7FlQliAIgiBCgdyRGiUiIgJ169bFmTNnEBkZCaOR9LQc2O12nDlzBnXr1kVEBD0uBEEQhHTQqKJRDAYDEhMTUVhYiOPHj6vdHF1jNBrRvHlzGAwGtZtCEARB6AgSYRomKioKrVu3JpekzERFRZGlkSAIgpAcEmEax2g0yr6UDkEQBEEQ0kPTe4IgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgGLCGIYvElpeXq5ySwiCIAiCEAo/bgcq9k0ijGEqKioAAMnJySq3hCAIgiCIYKmoqIDZbPb5uYGjNVmYxW63o6ioCLGxsWFZo6q8vBzJyck4ceIE4uLi1G6OZqHzKA10HkOHzqE00HmUBjnPI8dxqKioQFJSkt8SR2QJYxij0YhmzZqp3QzViYuLo45GAug8SgOdx9ChcygNdB6lQa7z6M8CxkOB+QRBEARBECpAIowgCIIgCEIFSIQRzBIdHY1nn30W0dHRajdF09B5lAY6j6FD51Aa6DxKAwvnkQLzCYIgCIIgVIAsYQRBEARBECpAIowgCIIgCEIFSIQRBEEQBEGoAIkwgiAIgiAIFSARRqjOv//9b/Tv3x9JSUkwGAz46KOP3D7nOA5z5sxBYmIiYmJikJmZid9//12dxjJKoHM4fPhwGAwGt78+ffqo01iGWbBgAW6++WbExsaicePGGDBgAI4cOeK2zeXLlzF+/HhYLBbUr18fgwYNwqlTp1RqMZsIOY89e/asdU+OHTtWpRazyWuvvYYbbrjBWUw0IyMDn376qfNzuheFEeg8qnkvkggjVOfChQvo2LEjVq1a5fXzRYsWYfny5Vi9ejUKCgpQr149ZGVl4fLlywq3lF0CnUMA6NOnD4qLi51/7777roIt1AZfffUVxo8fj3379mHnzp2oqqrCXXfdhQsXLji3mTRpErZt24b3338fX331FYqKijBw4EAVW80eQs4jAIwePdrtnly0aJFKLWaTZs2a4aWXXsL+/fvx/fffo1evXrjvvvvwyy+/AKB7USiBziOg4r3IEQRDAOA+/PBD52u73c41bdqU++c//+l8r6ysjIuOjubeffddFVrIPp7nkOM4btiwYdx9992nSnu0zOnTpzkA3FdffcVxnOPei4yM5N5//33nNocPH+YAcPn5+Wo1k3k8zyPHcdztt9/OPfnkk+o1SqM0aNCAe/PNN+leDBH+PHKcuvciWcIIpiksLERJSQkyMzOd75nNZqSnpyM/P1/FlmmPL7/8Eo0bN0abNm0wbtw4WK1WtZvEPDabDQDQsGFDAMD+/ftRVVXldj+2bdsWzZs3p/vRD57nkWfjxo1ISEjA9ddfj5kzZ+LixYtqNE8T1NTU4L333sOFCxeQkZFB96JIPM8jj1r3Ii3gTTBNSUkJAKBJkyZu7zdp0sT5GRGYPn36YODAgUhNTcXRo0fx9NNP4+6770Z+fj5MJpPazWMSu92OnJwcdO/eHddffz0Ax/0YFRWF+Ph4t23pfvSNt/MIAA899BBatGiBpKQkHDx4ENOnT8eRI0ewdetWFVvLHj///DMyMjJw+fJl1K9fHx9++CHat2+PAwcO0L0YBL7OI6DuvUgijCDCgCFDhjj/36FDB9xwww1IS0vDl19+id69e6vYMnYZP348Dh06hK+//lrtpmgaX+dxzJgxzv936NABiYmJ6N27N44ePYq0tDSlm8ksbdq0wYEDB2Cz2fDBBx9g2LBh+Oqrr9RulubwdR7bt2+v6r1I7kiCaZo2bQoAtTJ+Tp065fyMCJ6WLVsiISEBf/zxh9pNYZIJEyYgLy8Pe/bsQbNmzZzvN23aFJWVlSgrK3Pbnu5H7/g6j95IT08HALonPYiKikKrVq3QuXNnLFiwAB07dsSyZcvoXgwSX+fRG0reiyTCCKZJTU1F06ZNsXv3bud75eXlKCgocPPnE8Fx8uRJWK1WJCYmqt0UpuA4DhMmTMCHH36IL774AqmpqW6fd+7cGZGRkW7345EjR/Dnn3/S/ehCoPPojQMHDgAA3ZMBsNvtuHLlCt2LIcKfR28oeS+SO5JQnfPnz7vNOAoLC3HgwAE0bNgQzZs3R05ODp5//nm0bt0aqampmD17NpKSkjBgwAD1Gs0Y/s5hw4YNMW/ePAwaNAhNmzbF0aNHMW3aNLRq1QpZWVkqtpo9xo8fj9zcXPy///f/EBsb64ytMZvNiImJgdlsxsiRIzF58mQ0bNgQcXFxmDhxIjIyMtC1a1eVW88Ogc7j0aNHkZubi3vuuQcWiwUHDx7EpEmT0KNHD9xwww0qt54dZs6cibvvvhvNmzdHRUUFcnNz8eWXX+Kzzz6jezEI/J1H1e9FVXIyCcKFPXv2cABq/Q0bNozjOEeZitmzZ3NNmjThoqOjud69e3NHjhxRt9GM4e8cXrx4kbvrrru4Ro0acZGRkVyLFi240aNHcyUlJWo3mzm8nUMA3Nq1a53bXLp0ifvHP/7BNWjQgKtbty73f//3f1xxcbF6jWaQQOfxzz//5Hr06ME1bNiQi46O5lq1asVNnTqVs9ls6jacMUaMGMG1aNGCi4qK4ho1asT17t2b+/zzz52f070oDH/nUe170cBxHCe/1CMIgiAIgiBcoZgwgiAIgiAIFSARRhAEQRAEoQIkwgiCIAiCIFSARBhBEARBEIQKkAgjCIIgCIJQARJhBEEQBEEQKkAijCAIgiAIQgVIhBEEQRAEQagAiTCCIAiCIAgVIBFGEAQhgsrKSrWbUAsW20QQhG9IhBEEQQDo2bMnJkyYgAkTJsBsNiMhIQGzZ88Gv7JbSkoKnnvuOQwdOhRxcXEYM2YMAODrr7/GbbfdhpiYGCQnJ+OJJ57AhQsXnPt99dVX0bp1a9SpUwdNmjTB/fff7/zsgw8+QIcOHRATEwOLxYLMzEznd3v27ImcnBy3Ng4YMADDhw93vhbbJoIg2IBEGEEQxN+sX78eERER+Pbbb7Fs2TIsXrwYb775pvPzl19+GR07dsSPP/6I2bNn4+jRo+jTpw8GDRqEgwcPYtOmTfj6668xYcIEAMD333+PJ554AvPnz8eRI0ewY8cO9OjRAwBQXFyMBx98ECNGjMDhw4fx5ZdfYuDAgQh2Od9g20QQBDvQAt4EQRBwWJ5Onz6NX375BQaDAQAwY8YMfPzxx/j111+RkpKCm266CR9++KHzO6NGjYLJZMLrr7/ufO/rr7/G7bffjgsXLuCTTz7BY489hpMnTyI2Ntbt93744Qd07twZx44dQ4sWLby258Ybb8TSpUud7w0YMADx8fFYt24dAIhqU506dUI6TwRBSAdZwgiCIP6ma9euTgEGABkZGfj9999RU1MDAOjSpYvb9j/99BPWrVuH+vXrO/+ysrJgt9tRWFiIO++8Ey1atEDLli3x6KOPYuPGjbh48SIAoGPHjujduzc6dOiABx54AP/6179w7ty5oNscbJsIgmAHEmEEQRACqVevntvr8+fP4/HHH8eBAwecfz/99BN+//13pKWlITY2Fj/88APeffddJCYmYs6cOejYsSPKyspgMpmwc+dOfPrpp2jfvj1WrFiBNm3aOIWS0Wis5ZqsqqoKuU0EQbADiTCCIIi/KSgocHu9b98+tG7dGiaTyev2nTp1wq+//opWrVrV+ouKigIAREREIDMzE4sWLcLBgwdx7NgxfPHFFwAAg8GA7t27Y968efjxxx8RFRXldC02atQIxcXFzt+qqanBoUOHAh6DkDYRBMEGJMIIgiD+5s8//8TkyZNx5MgRvPvuu1ixYgWefPJJn9tPnz4de/fuxYQJE3DgwAH8/vvv+H//7/85g+Dz8vKwfPlyHDhwAMePH8fbb78Nu92ONm3aoKCgAC+++CK+//57/Pnnn9i6dSvOnDmDdu3aAQB69eqF7du3Y/v27fjtt98wbtw4lJWVBTyGQG0iCIIdItRuAEEQBCsMHToUly5dwi233AKTyYQnn3zSWfbBGzfccAO++uorPPPMM7jtttvAcRzS0tKQnZ0NAIiPj8fWrVsxd+5cXL58Ga1bt8a7776L6667DocPH8a///1vLF26FOXl5WjRogVeeeUV3H333QCAESNG4KeffsLQoUMRERGBSZMm4Y477gh4DIHaRBAEO1B2JEEQBLxnIxIEQcgJuSMJgiAIgiBUgEQYQRAEQRCECpA7kiAIgiAIQgXIEkYQBEEQBKECJMIIgiAIgiBUgEQYQRAEQRCECpAIIwiCIAiCUAESYQRBEARBECpAIowgCIIgCEIFSIQRBEEQBEGoAIkwgiAIgiAIFSARRhAEQRAEoQL/H6+AZe06G5giAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHjklEQVR4nO3deVhUZf8G8PsMAgLCIDsoCuKKO1g4uGWh6M8lX/EVfbU0MatXK7RcyrQ9zRa1rKy0tNLS1MolTTBbFCLXzDXlxYUAl0EG3ACZ5/fHNIdZYdgclvtzXVzKnGfOnJlIb5/ne76PJIQQICIiIqI7SmHvCyAiIiJqiBjCiIiIiOyAIYyIiIjIDhjCiIiIiOyAIYyIiIjIDhjCiIiIiOyAIYyIiIjIDhjCiIiIiOyAIYyIiIjIDhjCiIioTKtWrYIkSTh79qy9L4WoXmEIIyK727dvH6ZNm4aOHTvCzc0NLVq0wOjRo/HXX3+Zjb3nnnsgSRIkSYJCoYCHhwfatWuHBx54AElJSRV63S1btqBfv37w8/ODq6srWrVqhdGjR2PHjh3V9dbMvPbaa/j222/NHk9JScELL7yAvLy8GnttUy+88IL8WUqSBFdXV4SHh+O5555Dfn5+tbzG2rVrsWTJkmo5F1F9wxBGRHb3+uuvY+PGjbjvvvuwdOlSTJkyBb/88gsiIiJw9OhRs/HNmzfH559/js8++wxvvPEGhg8fjpSUFAwcOBDx8fEoLi4u9zXffPNNDB8+HJIk4ZlnnsHixYsRFxeH06dP46uvvqqJtwmg7BD24osv3tEQpvfBBx/g888/x9tvv4327dvj1VdfxaBBg1AdWwszhBFZ18jeF0BENGPGDKxduxZOTk7yY/Hx8ejcuTMWLlyIL774wmi8UqnE+PHjjR5buHAhnnjiCbz//vsICQnB66+/bvX1bt++jZdffhkDBgzAzp07zY5funSpiu+o9rhx4wZcXV3LHDNq1Cj4+PgAAB599FHExcVh06ZN+O2336BSqe7EZRI1SJwJIyK7i46ONgpgANCmTRt07NgRJ06csOkcDg4OeOeddxAeHo5ly5ZBo9FYHXvlyhXk5+ejV69eFo/7+fkZfX/r1i288MILaNu2LRo3bozAwECMHDkS6enp8pg333wT0dHR8Pb2houLCyIjI7Fhwwaj80iShOvXr2P16tXyEuDEiRPxwgsvYObMmQCA0NBQ+ZhhDdYXX3yByMhIuLi4wMvLC2PGjMGFCxeMzn/PPfegU6dOOHDgAPr27QtXV1c8++yzNn1+hu69914AQEZGRpnj3n//fXTs2BHOzs4ICgrC1KlTjWby7rnnHmzbtg3nzp2T31NISEiFr4eovuJMGBHVSkIIXLx4ER07drT5OQ4ODhg7dizmzZuHPXv2YMiQIRbH+fn5wcXFBVu2bMHjjz8OLy8vq+csKSnB0KFDsWvXLowZMwZPPvkkCgoKkJSUhKNHjyIsLAwAsHTpUgwfPhzjxo1DUVERvvrqK/z73//G1q1b5ev4/PPPMXnyZNx9992YMmUKACAsLAxubm7466+/8OWXX2Lx4sXyrJSvry8A4NVXX8W8efMwevRoTJ48GZcvX8a7776Lvn374tChQ/D09JSvV61WY/DgwRgzZgzGjx8Pf39/mz8/PX249Pb2tjrmhRdewIsvvoiYmBg89thjOHXqFD744APs27cPe/fuhaOjI+bOnQuNRoPMzEwsXrwYANCkSZMKXw9RvSWIiGqhzz//XAAQK1euNHq8X79+omPHjlaf98033wgAYunSpWWef/78+QKAcHNzE4MHDxavvvqqOHDggNm4Tz75RAAQb7/9ttkxrVYr//7GjRtGx4qKikSnTp3Evffea/S4m5ubmDBhgtm53njjDQFAZGRkGD1+9uxZ4eDgIF599VWjx//880/RqFEjo8f79esnAIjly5dbfd+Gnn/+eQFAnDp1Sly+fFlkZGSIDz/8UDg7Owt/f39x/fp1IYQQn376qdG1Xbp0STg5OYmBAweKkpIS+XzLli0TAMQnn3wiPzZkyBDRsmVLm66HqKHhciQR1TonT57E1KlToVKpMGHChAo9Vz/TUlBQUOa4F198EWvXrkX37t3xww8/YO7cuYiMjERERITREujGjRvh4+ODxx9/3OwckiTJv3dxcZF/f/XqVWg0GvTp0wcHDx6s0PWb2rRpE7RaLUaPHo0rV67IXwEBAWjTpg12795tNN7Z2RkPPfRQhV6jXbt28PX1RWhoKB555BG0bt0a27Zts1pLlpycjKKiIiQmJkKhKP1r5OGHH4aHhwe2bdtW8TdK1ABxOZKIapWcnBwMGTIESqUSGzZsgIODQ4Wef+3aNQCAu7t7uWPHjh2LsWPHIj8/H2lpaVi1ahXWrl2LYcOG4ejRo2jcuDHS09PRrl07NGpU9h+XW7duxSuvvILDhw+jsLBQftwwqFXG6dOnIYRAmzZtLB53dHQ0+r5Zs2Zm9XXl2bhxIzw8PODo6IjmzZvLS6zWnDt3DoAuvBlycnJCq1at5ONEVDaGMCKqNTQaDQYPHoy8vDz8+uuvCAoKqvA59C0tWrdubfNzPDw8MGDAAAwYMACOjo5YvXo10tLS0K9fP5ue/+uvv2L48OHo27cv3n//fQQGBsLR0RGffvop1q5dW+H3YEir1UKSJGzfvt1iIDWtsTKckbNV37595To0IrpzGMKIqFa4desWhg0bhr/++gvJyckIDw+v8DlKSkqwdu1auLq6onfv3pW6jh49emD16tXIzs4GoCucT0tLQ3Fxsdmsk97GjRvRuHFj/PDDD3B2dpYf//TTT83GWpsZs/Z4WFgYhBAIDQ1F27ZtK/p2akTLli0BAKdOnUKrVq3kx4uKipCRkYGYmBj5sarOBBLVZ6wJIyK7KykpQXx8PFJTU/H1119XqjdVSUkJnnjiCZw4cQJPPPEEPDw8rI69ceMGUlNTLR7bvn07gNKltri4OFy5cgXLli0zGyv+aWbq4OAASZJQUlIiHzt79qzFpqxubm4WG7K6ubkBgNmxkSNHwsHBAS+++KJZ81QhBNRqteU3WYNiYmLg5OSEd955x+iaVq5cCY1GY3RXqpubW5ntQogaMs6EEZHdPfXUU9i8eTOGDRuG3Nxcs+aspo1ZNRqNPObGjRs4c+YMNm3ahPT0dIwZMwYvv/xyma9348YNREdHo2fPnhg0aBCCg4ORl5eHb7/9Fr/++itGjBiB7t27AwAefPBBfPbZZ5gxYwZ+//139OnTB9evX0dycjL++9//4v7778eQIUPw9ttvY9CgQfjPf/6DS5cu4b333kPr1q1x5MgRo9eOjIxEcnIy3n77bQQFBSE0NBRRUVGIjIwEAMydOxdjxoyBo6Mjhg0bhrCwMLzyyit45plncPbsWYwYMQLu7u7IyMjAN998gylTpuDpp5+u0udfUb6+vnjmmWfw4osvYtCgQRg+fDhOnTqF999/H3fddZfRf6/IyEisW7cOM2bMwF133YUmTZpg2LBhd/R6iWote96aSUQkRGlrBWtfZY1t0qSJaNOmjRg/frzYuXOnTa9XXFwsPv74YzFixAjRsmVL4ezsLFxdXUX37t3FG2+8IQoLC43G37hxQ8ydO1eEhoYKR0dHERAQIEaNGiXS09PlMStXrhRt2rQRzs7Oon379uLTTz+VW0AYOnnypOjbt69wcXERAIzaVbz88suiWbNmQqFQmLWr2Lhxo+jdu7dwc3MTbm5uon379mLq1Kni1KlTRp9NWe07TOmv7/Lly2WOM21Robds2TLRvn174ejoKPz9/cVjjz0mrl69ajTm2rVr4j//+Y/w9PQUANiugsiAJEQ1bA5GRERERBXCmjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDNmutxbRaLbKysuDu7s6tP4iIiOoIIQQKCgoQFBQEhcL6fBdDWC2WlZWF4OBge18GERERVcKFCxfQvHlzq8cZwmoxd3d3ALr/iGXtg0dERES1R35+PoKDg+W/x61hCKvF9EuQHh4eDGFERER1THmlRCzMJyIiIrIDhjAiIiIiO2AIIyIiIrID1oTVcVqtFkVFRfa+jHrNycmpzFuMiYiIKoMhrA4rKipCRkYGtFqtvS+lXlMoFAgNDYWTk5O9L4WIiOoRhrA6SgiB7OxsODg4IDg4mDM1NUTfMDc7OxstWrRg01wiIqo2DGF11O3bt3Hjxg0EBQXB1dXV3pdTr/n6+iIrKwu3b9+Go6OjvS+HiIjqCU6f1FElJSUAwCWyO0D/Ges/cyIioupQZ0LY8OHD0aJFCzRu3BiBgYF44IEHkJWVZTRGCIE333wTbdu2hbOzM5o1a4ZXX33VaMxPP/2EiIgIODs7o3Xr1li1apXZa7333nsICQlB48aNERUVhd9//93o+K1btzB16lR4e3ujSZMmiIuLw8WLF43GnD9/HkOGDIGrqyv8/Pwwc+ZM3L59u3o+DANcHqt5/IyJiKgm1JkQ1r9/f6xfvx6nTp3Cxo0bkZ6ejlGjRhmNefLJJ7FixQq8+eabOHnyJDZv3oy7775bPp6RkYEhQ4agf//+OHz4MBITEzF58mT88MMP8ph169ZhxowZeP7553Hw4EF07doVsbGxuHTpkjxm+vTp2LJlC77++mv8/PPPyMrKwsiRI+XjJSUlGDJkCIqKipCSkoLVq1dj1apVmD9/fg1+QkRERFQWtVqN7Oxsq19qtfqOXo8khBB39BWryebNmzFixAgUFhbC0dERJ06cQJcuXXD06FG0a9fO4nNmz56Nbdu24ejRo/JjY8aMQV5eHnbs2AEAiIqKwl133YVly5YB0BVmBwcH4/HHH8ecOXOg0Wjg6+uLtWvXyiHw5MmT6NChA1JTU9GzZ09s374dQ4cORVZWFvz9/QEAy5cvx+zZs3H58mWblxDz8/OhVCqh0WjMti26desWMjIyEBoaisaNG1fsw6MK4WdNRFR3qdVqFBUVIS8vD+vXry93/LRp0+Dt7V2l1yzr729DdWYmzFBubi7WrFmD6OhouVB6y5YtaNWqFbZu3YrQ0FCEhIRg8uTJyM3NlZ+XmpqKmJgYo3PFxsYiNTUVgK7lw4EDB4zGKBQKxMTEyGMOHDiA4uJiozHt27dHixYt5DGpqano3LmzHMD0r5Ofn49jx45ZfV+FhYXIz883+qpvJk6cCEmSIEkSHB0d4e/vjwEDBuCTTz6pUKuNVatWwdPTs+YulIiI6jy1Wo1ly5bho48+simAAcDly5dr+KpK1akQNnv2bLi5ucHb2xvnz5/Hd999Jx/73//+h3PnzuHrr7/GZ599hlWrVuHAgQNGS5Y5OTlGwQgA/P39kZ+fj5s3b+LKlSsoKSmxOCYnJ0c+h5OTk1kAMB1j6Rz6Y9YsWLAASqVS/goODrbxk6k4e07JDho0CNnZ2Th79iy2b9+O/v3748knn8TQoUNrpG6OiIgaJsNSIlsVFxfXwJVYZtcQNmfOHHlWxNrXyZMn5fEzZ87EoUOHsHPnTjg4OODBBx+EfjVVq9WisLAQn332Gfr06YN77rkHK1euxO7du3Hq1Cl7vcUKeeaZZ6DRaOSvCxcu1MjrGP7LwNrXsmXLaiyIOTs7IyAgAM2aNUNERASeffZZfPfdd9i+fbt8o8Tbb7+Nzp07w83NDcHBwfjvf/+La9euAdDdXPHQQw9Bo9HIPycvvPACAODzzz9Hjx494O7ujoCAAPznP/+p1P+ERERUt6nVaptnv+zFrn3CnnrqKUycOLHMMa1atZJ/7+PjAx8fH7Rt2xYdOnRAcHAwfvvtN6hUKgQGBqJRo0Zo27atPL5Dhw4AdHcqtmvXDgEBAWZ3MV68eBEeHh5wcXGBg4MDHBwcLI4JCAgAAAQEBMhry4azYaZjTO+o1J9TP8YSZ2dnODs7l/l5VAdbtzm6k9sh3XvvvejatSs2bdqEyZMnQ6FQ4J133kFoaCj+97//4b///S9mzZqF999/H9HR0ViyZAnmz58vB+wmTZoA0P0L5uWXX0a7du1w6dIlzJgxAxMnTsT3339/x94LERHZX13Y0s+uIczX1xe+vr6Veq6+fqiwsBAA0KtXL9y+fRvp6ekICwsDAPz1118AgJYtWwIAVCqV2V/GSUlJUKlUAHT9oCIjI7Fr1y6MGDFCfp1du3Zh2rRpAIDIyEg4Ojpi165diIuLAwCcOnUK58+fl8+jUqnw6quv4tKlS/Dz85Nfx8PDA+Hh4ZV6vw1B+/btceTIEQBAYmKi/HhISAheeeUVPProo3j//ffh5OQEpVIJSZLMQu2kSZPk37dq1QrvvPMO7rrrLly7dk0OakREVD+lp6fj4sWLuH37ttXaLo3GHbm53vDyUkOpLLjDV2isTnTMT0tLw759+9C7d280bdoU6enpmDdvHsLCwuTgExMTg4iICEyaNAlLliyBVqvF1KlTMWDAAHl27NFHH8WyZcswa9YsTJo0CT/++CPWr1+Pbdu2ya81Y8YMTJgwAT169MDdd9+NJUuW4Pr163jooYcAAEqlEgkJCZgxYwa8vLzg4eGBxx9/HCqVCj179gQADBw4EOHh4XjggQewaNEi5OTk4LnnnsPUqVPvyExXXSWEkHtyJScnY8GCBTh58iTy8/Nx+/Zt3Lp1Czdu3Chzh4ADBw7ghRdewB9//IGrV6/KYf38+fMMwERE9ZD+7scLFy5g+/btZY49eLA7tmwZCiEUkCQthg3bioiIQ3foSs3ViRDm6uqKTZs24fnnn8f169cRGBiIQYMG4bnnnpNDjUKhwJYtW/D444+jb9++cHNzw+DBg/HWW2/J5wkNDcW2bdswffp0LF26FM2bN8eKFSsQGxsrj4mPj8fly5cxf/585OTkoFu3btixY4dRof3ixYuhUCgQFxeHwsJCxMbG4v3335ePOzg4YOvWrXjsscegUqng5uaGCRMm4KWXXroDn1bddeLECYSGhuLs2bMYOnQoHnvsMbz66qvw8vLCnj17kJCQgKKiIqsh7Pr164iNjUVsbCzWrFkDX19fnD9/HrGxsXViWpqIiComPT0dX3zxRbnjNBp3XLgQjM2bh0JfDi+EAps3D4WfXw6aN8+u4Su1rE6EsM6dO+PHH38sd1xQUBA2btxY5ph77rkHhw6VnXqnTZsmLz9a0rhxY7z33nt47733rI5p2bIl65Aq4Mcff8Sff/6J6dOn48CBA9BqtXjrrbfkjclNiyudnJzMthE6efIk1Go1Fi5cKN9Zun///jvzBoiI6I5Sq9U2BTDD2S9zCqxcOdloRqxRozsXjepUiwqqHwoLC5GTk4O///4bBw8exGuvvYb7778fQ4cOxYMPPojWrVujuLgY7777Lv73v//h888/x/Lly43OERISgmvXrmHXrl24cuUKbty4gRYtWsDJyUl+3ubNm/Hyyy/b6V0SEVFNUKvVOHnyZJl9N/UyMwOxebO1AKYjhAJbtgyFRuMOAHIt953AEEZ33I4dOxAYGIiQkBAMGjQIu3fvxjvvvIPvvvsODg4O6Nq1K95++228/vrr6NSpE9asWYMFCxYYnSM6OhqPPvoo4uPj4evri0WLFsHX1xerVq3C119/jfDwcCxcuBBvvvmmnd4lERFVN32LpXXr1mH37t1ljj14sDtWrpwMW6KOEAp06jSiWrrlV0Sd3baoIaipbYv0P8TludM/jLUVty0iIrI/tVqNrKwsbNq0yeoY/Z2Pjo6FWLHCWgDTxx7J6LGdOzUYMMCzWq7V1m2L6kRNGFUvb29vTJs2rcxidScnJwYwIiKyK/2djxqNBuvWrbM6TqNxR1paFFJSVNAFLy2sz4BJFh9zdPSs8vVWFENYA8WARUREtVl5qzb6Wa+srEAkJ8eY1H1VrNrKwQFo3bqSF1oFDGFERERUa6jValy+fBlnz561Osb4jkcBy7Nb5dE9z8EB+PBDoHnzyl1vVTCEERERUa1gS98vjcbdpOWELQHMUlCTsHgxMGqUfQIYwLsjiYiIqBawpe+XRuOOY8c6ltlywjIJkkkGc3CwbwADOBNGREREdqIvvM/Ly8O5c+fKHFuVJUgHB4GFCyXMmQOUlMCuS5CGGMKIiIjojrO1XRKgb7o6DKXBq2IB7MMPJSQkAGPGAGfO6Irw7R3AAIYwIiIisoPLly/bNG7vXhWSkmJQ0eJ7SdLi44+vITbWQw5czZvXjvClxxBGREREd9zVq1etHtNvuH3qVBv8+WdXVLT4XpIEFi++gYQE641SawOGMKpXfvrpJ/Tv3x9Xr16Fp6enTc8JCQlBYmIiEhMTa/TaiIgaMsP6r7y8POzcuVM+pu/55eWlRnp6a5Olx7Log5cWffr8Cn//ixg8eDAGDnRH8+ZNauidVB+GMLqjJk6ciNWrV+ORRx4x25R76tSpeP/99zFhwgSsWrXKPhdIRETVzlL9l362KyMjBAcPRhoU3NtWdN+37260bXsaxcVOmDixN9q1awsnp07w9navkfdQExjC6I4LDg7GV199hcWLF8PFxQWAbn/GtWvXokWLFna+OiIiqm6m2+QdPNjdymyXZOExS7SIjDyEUaN6ol27dnV2Fxj2CaM7LiIiAsHBwUabsG7atAktWrRA9+7d5ccKCwvxxBNPwM/PD40bN0bv3r2xb98+o3N9//33aNu2LVxcXNC/f3+LHZb37NmDPn36wMXFBcHBwXjiiSdw/fr1Gnt/RERUKj09HadPn5a/12jcK7DcaIkWw4dvhVJZUKcDGMAQRgAyM4Hdu3W/3imTJk3Cp59+Kn//ySef4KGHHjIaM2vWLGzcuBGrV6/GwYMH0bp1a8TGxiI3NxcAcOHCBYwcORLDhg3D4cOHMXnyZMyZM8foHOnp6Rg0aBDi4uJw5MgRrFu3Dnv27MG0adNq/k0SETUgarUa2dnZRl+7d+/GF198gd27dwPQtZrYteteVC6AafHSSyexf/9lLF9+F6ZNm1anAxjA5cgGb+VKYMoUQKsFFArgo4+AhISaf93x48fjmWeekZvz7d27F1999RV++uknAMD169fxwQcfYNWqVRg8eDAA4OOPP0ZSUhJWrlyJmTNn4oMPPkBYWBjeeustAEC7du3w559/4vXXX5dfZ8GCBRg3bpxcdN+mTRu888476NevHz744AM0bty45t8sEVE9Z0vPr/XrR+H48XBULIDp6sMkSYthw7biv//tVeeDlyGGsAYsM7M0gAG6Xx95BIiNrfk+Kr6+vhgyZAhWrVoFIQSGDBkCHx8f+Xh6ejqKi4vRq1cv+TFHR0fcfffdOHHiBADgxIkTiIqKMjqvSqUy+v6PP/7AkSNHsGbNGvkxIQS0Wi0yMjLQoUOHmnh7REQNimnNF1BaeA8A5883LyeAWSrG12LAgGTcf38zhIc7oUuX+hXAAIawBu306dIApldSousmfCea2U2aNEleFnzvvfdq5DWuXbuGRx55BE888YTZMd4EQERUdWq1GkePHjV6zLzwvrw7Hs2PjRq1AS+91Lle/2OZIawBa9NGtwRpGMQcHHTbOdwJgwYNQlFRESRJQmxsrNGxsLAwODk5Ye/evWjZsiUAoLi4GPv27ZOXFjt06IDNmzcbPe+3334z+j4iIgLHjx9H6zv1poiIGgi1Wo3Lly9j3bp1Ro/rthgaCuNgVVYA0/8lVFqmLklaBAdnws/vvuq63FqJIawBa95cVwP2yCP22dDUwcFBXlp0cHAwOubm5obHHnsMM2fOhJeXF1q0aIFFixbhxo0bSPinaO3RRx/FW2+9hZkzZ2Ly5Mk4cOCAWX+x2bNno2fPnpg2bRomT54MNzc3HD9+HElJSTbvWUZERMbS09PxxRdfyN/rm61mZQUiKWkAyq/7Mq71AiBvzi1JWrz0Ug4ee2xCvVt+NMUQ1sAlJOhqwOy1oamHh/UtJRYuXAitVosHHngABQUF6NGjB3744Qc0bdoUgG45cePGjZg+fTreffdd3H333XjttdcwadIk+RxdunTBzz//jLlz56JPnz4QQiAsLAzx8fE1/t6IiOoTw47369evB6ALX2lpUUhJUUE3k1XWsmNpd/u7705Dhw6n4OWVC6WyAAAQFnYGubleGDOmBwYN6lTzb6gWkIQQwt4XQZbl5+dDqVRCo9GYhZVbt24hIyMDoaGhvMOvhvGzJqKGzNqy48GD3eXZq/LpiuyDgrKMgpdejx490KJFC7i6uiIsLKwar94+yvr72xBnwoiIiMgia60nNBr3CgQwgbFjv0S7dmesjmjfvn29CF8VxRBGREREFhm2ntDXfTk6FuL8+ZY2BjAAkODkVGz16PDhwxtkAAMYwoiIiMiEvv7rypUrAEyXHvW1XbZttC1JWnh55Ro9Nnr0aHh6esLJyaneF9+XhSGMiIiIZIZLkLqGq+EmS4+Sya+WGN/9aFgDNnr06Hrd+6siGMLqON5XUfP4GRNRQ6FWq3Hq1CkAFS281xOIjNyP7t0PobjYyWIRvp+fXzVecd3GEFZH6ftqFRUVwcXFxc5XU7/payJMe5kREdUH+qVHjUYj3wGp0bibdLwvnyRpEROTjF69UuXHOnXqhMDAQHh5eUGpVDb45UdTDGF1VKNGjeDq6orLly/D0dERCkVF/qVCttJqtbh8+TJcXV3RqBH/dyGiuk+tVuPSpUu4ffs2CgoKkJSUZDbml1/6wNYAJklaxMVtQHBwptmsV3R0NAIDA6vjsusl/q1SR0mShMDAQGRkZODcuXP2vpx6TaFQoEWLFpAk2/9FSERUG1lrOaGn33T7wIEeNp1PX/PVqdMJi8ednJwqdZ0NBUNYHebk5IQ2bdpY3L2eqo+TkxNnGomoXrDWcqK42BlZWYFITo4ppwastOt9dHQqoqLSzGa/AGDkyJEICgri0mM5GMLqOIVCwS7uRERkleHy49WrVwFUtuWEQJ8+v6BVqwyLBfeGGMBswxBGRERUT1laftQV3Q+Fbq9HoPyWE1pERh5A376/Wgxe/fv3h6+vLzw9PQGAxfcVwBBGRERUj+jvdgQgN1vVy8wMxI4dg1AawMqixahRlgvuDbVp04bF95XEEEZERFRPlFV4v27dKJw4EY6KNFm1VnBviMX3lccQRkREVA+o1WpkZWWZPa7RuCM5+T4bAhgQGbkfnTodK7fmKyoqCi1btoSfnx+XHquAIYyIiKiOszYDtnevCklJA2DrHo/W6r5M3XXXXQxf1YAhjIiIqI4xrPsCjGu/9L2+Tp1qiz//7ILK7vE4cOBANGnSBI6OjlAqlfLjLLyvPgxhREREdYi1WS+Nxh1paVFISVHB1sL7Pn1+NWs5MXDgQLRt25ZB6w5gCCMiIqpDLl++bPR9ZmYgfv65L06fbgfbthoS6Nz5D8TE/Ghx6TEkJIQB7A5hCCMiIqrlrG2yvWnTv3DuXAhsDV+RkfttrvuimscQRkREVIulp6fjiy++MHpMV3AfA9uWHQFAiwEDktGrV2q1Xx9VHkMYERFRLaVWq40CmL7dRPkF93oC0dEpVvd4tIR9v+4chjAiIqJayvAOSNvbTehqvtq1+6vcbvcAMGDAAISGhgLgnY93GkMYERFRLaKv/8rLy8OxYxpkZITgxIl2+P33KNgSwAYMSKrQsmO7du0YvOyEIYyIiKiWMGw/cfBgd2zZMhRC9IS+n5d1Zd/xCOi63Ddr1gwA5N5fnPmyL4YwIiKiWuLs2dvIyAhBUVEjbN48DKXBy1oAKz986XXt2pUbbdcyDGFERES1wMqVwJQpftBqJ6D8mS+AdzzWfQxhREREdpaZCTz8sIAQ5c18ARWZ/TLEux5rH4YwIiIiO8nMBE6f1s2ClQawslR89is+Ph6+vr6s/aqFGMKIiIjuAMNNt7OyFFixwg0ffuj2T/gqv/C+Mt3ux48fj7CwsCpdN9UchjAiIqIaZnjXo+V+X2UHsIq2nQAYwOoChjAiIqIadunSJWg07vjllz44cKAHbCm6/7//2wZX15s2NVw1xOXHuoMhjIiIqBqZLjv++ectrF17AcnJiRDClr0eBQYMSMbddx+06fVGjhwJHx8fAOx4X9cwhBEREVUTy81WFQBaoLwlR93xihfeBwUFMXjVUQxhRERE1UQ/A6bRuBsEMKCsZquRkfvRvfshFBc7wcsr16alx9GjR8PT05MzX3UcQxgREVE10mjcsXPnQBuWHivXbJUF9/UHQxgREVE1efttCYsXJwIoO4B17PgnBg5MqlDBPaArumcAqz8YwoiIiKogMxPYv1+DH34owvLl/rDlzsfKBDAA8PX1rdQ1Uu3EEEZERFQB+/YBO3ZcQ2TkTaSmOuGVVzwAKFF2w1XdMUnSYtiwrRUOYCNHjmQBfj3EEEZERGSjiROB1asFgCYA3P55tOz9HiVJi5iYZAQFZdlceG+KAax+YggjIiIqQ2Ym8NNPf+Pq1SKsXh2C8kJXqcptNQQAPXr0QNOmTeHl5cXGq/UYQxgREZEVK1cCU6YIaLXNUP7+jqX0s18VvfNRr2fPngxeDQBDGBERkQm1Wo20NC0eftjnnw22AdsCmBajRm2o0FZDhh3vAXa9b0hs2T+hVhg+fDhatGiBxo0bIzAwEA888ACysrLk4y+88AIkSTL7cnNzMzrP119/jfbt26Nx48bo3Lkzvv/+e6PjQgjMnz8fgYGBcHFxQUxMDE6fPm00Jjc3F+PGjYOHhwc8PT2RkJCAa9euGY05cuQI+vTpg8aNGyM4OBiLFi2q5k+EiIiqU2YmsHs3kJSUh+HDT2LIEG+DAGYLLYYP34pOnU5UaPnRx8cHgYGB8hcDWMNRZ0JY//79sX79epw6dQobN25Eeno6Ro0aJR9/+umnkZ2dbfQVHh6Of//73/KYlJQUjB07FgkJCTh06BBGjBiBESNG4OjRo/KYRYsW4Z133sHy5cuRlpYGNzc3xMbG4tatW/KYcePG4dixY0hKSsLWrVvxyy+/YMqUKfLx/Px8DBw4EC1btsSBAwfwxhtv4IUXXsBHH31Uw58SERFVxsqVQMuWwL33AgMHKpGS0gu2/xWpRWTkPkyfvgQREYcq/NpOTk4Vfg7VD5IQQtj7Iipj8+bNGDFiBAoLC+Ho6Gh2/I8//kC3bt3wyy+/oE+fPgB0Te6uX7+OrVu3yuN69uyJbt26Yfny5RBCICgoCE899RSefvppAIBGo4G/vz9WrVqFMWPG4MSJEwgPD8e+ffvQo0cPAMCOHTvwf//3f8jMzERQUBA++OADzJ07Fzk5OfL/XHPmzMG3336LkydP2vwe8/PzoVQqodFo4OHhUenPioiIrMvMBFq2FNBqKzLrBURFpSA4OLNCS4+m2P2+frL17+86WROWm5uLNWvWIDo62mIAA4AVK1agbdu2cgADgNTUVMyYMcNoXGxsLL799lsAQEZGBnJychATEyMfVyqViIqKQmpqKsaMGYPU1FR4enrKAQwAYmJioFAokJaWhn/9619ITU1F3759jf51Exsbi9dffx1Xr15F06ZNLV5zYWEhCgsL5e/z8/Nt/1CIiKjC1Go1kpOvQattWaHnSZIW0dG/VSh8DRgwAF5eXlAqlQBY+0V1aDkSAGbPng03Nzd4e3vj/Pnz+O677yyOu3XrFtasWYOEhASjx3NycuDv72/0mL+/P3JycuTj+sfKGuPn52d0vFGjRvDy8jIaY+kchq9hyYIFC6BUKuWv4OBgq2OJiKhq1Go1li1bhr17fwCgtfl5lWm4On78eERHR6N9+/as/SKZXUPYnDlzLBbTG34ZLt/NnDkThw4dws6dO+Hg4IAHH3wQllZTv/nmGxQUFGDChAl38u1U2TPPPAONRiN/Xbhwwd6XRERUbxUVFeHgwe5YuXIydH8dlledo8WoUeuRmGhb7dfIkSMxZcoUTJs2jUuOZJFdlyOfeuopTJw4scwxrVq1kn/v4+MDHx8ftG3bFh06dEBwcDB+++03qFQqo+esWLECQ4cONZuNCggIwMWLF40eu3jxIgICAuTj+scCAwONxnTr1k0ec+nSJaNz3L59G7m5uUbnsfQ6hq9hibOzM5ydna0eJyKiisvMBE6fBtq0AZo3L3380KFG2LJlKITQz0dYrwnTz3516nTC5tdll3sqj11DmK+vb6U3I9VqdVPHhjVUgK6ua/fu3di8ebPZc1QqFXbt2oXExET5saSkJDnEhYaGIiAgALt27ZJDV35+PtLS0vDYY4/J58jLy8OBAwcQGRkJAPjxxx+h1WoRFRUlj5k7dy6Ki4vlmrWkpCS0a9fOaj0YERFVP12zVUCrBRQK4KOPgIQE4M03gZkzfWDLZtsV7fs1cOBAtG3blgGMylUn7o5MS0vDvn370Lt3bzRt2hTp6emYN28eLl68iGPHjhnNHs2bNw+ffPIJzp8/DwcHB6PzpKSkoF+/fli4cCGGDBmCr776Cq+99hoOHjyITp06AQBef/11LFy4EKtXr0ZoaCjmzZuHI0eO4Pjx42jcuDEAYPDgwbh48SKWL1+O4uJiPPTQQ+jRowfWrl0LQHdHZbt27TBw4EDMnj0bR48exaRJk7B48WKjVhbl4d2RRESVo1arcfbsbdx9t5/RXY8KhUC/fnnYvdsTlgOYFpIECKGQZ78q2nZi2rRpDGANXL26O9LV1RWbNm3C888/j+vXryMwMBCDBg3Cc889ZxTAtFotVq1ahYkTJ5oFMACIjo7G2rVr8dxzz+HZZ59FmzZt8O2338oBDABmzZqF69evY8qUKcjLy0Pv3r2xY8cOOYABwJo1azBt2jTcd999UCgUiIuLwzvvvCMfVyqV2LlzJ6ZOnYrIyEj4+Phg/vz5FQpgRERUOfqC+4yMEGi1xrXBWq2E3bstr0joQ1dY2Bnk5nrZvNl2//790aZNGwC845Eqpk7MhDVUnAkjIqq47OxsfPTRR8jMDMTKlZMNar7KosXkySvQvHl2hV8vPj4e7du3r/iFUr1Vr2bCiIiIKuLgwe7YvHkoSu96LKv2S2DAgORKBTAAct8vooqqU33CiIiIDOn3e8zMLH0sK0thEMCA8gJYnz6/oFev1EpfA7cdosriTBgREdVJlu58HDFCjYULG8G2OQYtBgxItjmARUVFoVmzZnB0dGTXe6oWDGFERFQnZGYCKSm634eGlgYwQPfrlCkCmzal4Pvvh5RxFi0iIw8gNDSjwns+3nXXXQxcVK0YwoiIqNZbuRJ4+GGg9FYy8zovrVbC998PK+MsFSu+HzlyJHx8fABwxotqBkMYERHVapmZpgEMKL/Jqikthg/fWqHiex8fH6PdU4iqG0MYERHVGoZbDAG6369efRNCuFTyjLrlx759f63Q0iPRncAQRkREtYJhob30z0SXbvarcVlPs0iStIiLq9h2Q0R3GkMYERHZXWamcaF91ZYeBWJikiu02bYlbD1BNY0hjIiI7G7p0tIAVjUVazthaPDgwQgODgbAQny6MxjCiIjIrv788yreessT5TVVLfu4FtHRqYiKSqvU8uPo0aPRoUOHCj+PqCoYwoiIyG7S09Px1lt7IMQEC0f1wcv011KSpIVKVfnwpefn51fp5xJVFkMYERHZhVqtxhdffAEvL3dIktZko21Lwcvw+6rNfOmNHj0afn5+XHoku2AIIyIiuygqKgIAKJUFGDZsK7ZsGfpPEDMNXoYkxMbuQHj48UqHrwEDBiA0NJR1X2R33MCbiIjuCEubbeuFhZ1BXNxGREWloKzaL0nSVimAAUC7du0QGBjIAEZ2x5kwIiKqcaabbS9cCISGOkGjccfRo52QlBQD3byAKOMsutYTFQlgAwcOREhIiPw9Z7+oNmEIIyKiGmXaA0yrBWbNAgBvAInQzXxZqvsyVLnWE23btmXoolqLIYyIiGrU6dNl9QCzVBWjK7zXHatcAf7IkSMRFBTEAEa1GkMYERHVGLVaDQ+P21Ao/KDV2tr5XovJk1eguNgJXl65lar/8vHxYQCjWo8hjIiIaoRarcayZcsAAEOHdje4+7EsAgMGJKN58+wqvTa3HKK6gCGMiIiqXWYm8NtvQGZmILKygnDtWhPcc8+P2L07xupzJEmLmJjKbTmkFx8fD19fX86CUZ3AEEZERBWWmamr9WrTBmje3PhY6Z2Q3gAeRmmRvUBprZehqjdeZdNVqosYwoiIqEJM20189BGQkKA7ZnonpPFdjvrf64JYVbccGj16NDw9Pdl2guoshjAiIrKZpXYTU6YARUVA795XsWiRE7RatzLOIKFv358QGnqu0kX3ADB+/HiEhYVV6rlEtQVDGBER2cxSuwmtFvjvfwFAibK63esItG17utKF92w9QfUJty0iIiKb6NpNXIRCYa2rvQJlhzCBrl3/qNKdjwxgVJ9wJoyIiMpVuXYTAKBF//67UFLSqFIzYCNHjoSPjw8AbjlE9Q9DGBFRA1fWnY56RUVF0GjckZvrjbCwMxgz5kt8+eV/UN7yY2TkAfTrl1Lpa/Px8UFgYGCln09UmzGEERE1YGXd6Who7VoXLFmS+M/sl0Dp/o6W9nnU06Jv31+rdH1sukr1GWvCiIgaKEt3Oj7yiO5x03GzZikNlh8llP71odvnsXPnw9AFMj0thg/fWum7HwHdHZBcfqT6jDNhREQNlKU7HUtKgDNnSpcl1Wo1fvtN33jVGgUiIg4jJuZHXLige2JwcGa5AaxDhw4ICAgAADRq1Aju7u5o1KgRe39Rg8EQRkTUQO3fb/6YQgG0bq2b/dq/X4NfflmNo0c7ARiAspYd9T2/lMoTNr9+hw4d0Llz58pcOlG9wBBGRNRAGBbgX716FXPmeMI0WGm1Ao8+ehPbt7tAq1UCSPxnjLUApttwuyrLjkQNFUMYEVEDYFyAL9Cz53Fotb0sjJSwbZsLSkNXWaXDAn36/FLpDbddXV0r9Tyi+oIhjIionsvMBB5+GBD/1M1rtRJSUqJheTNtoPyu9wCgxYAByRUKYAMGDIC7uzsAXQDjtkPU0DGEERHVA9Z6fWVm6tpOCLMm9xIiI/fjwIFIVORG+cpuuj148GDcfffdNo8naggYwoiI6jhrvb4MH7ckNDQDffv+il9+6YMDB3qg/BkwLRISVlRq26Hg4OAKP4eovmOfMCKiOsxar699+8oOYIBWbiMxbNj3GDAgCbrlScskSdf3q7L7PrLpKpE5zoQREdVh1np97dlTdgCLjDyAU6fawtX1JoKDL6BXr1S0bHkWK1dONtoTUpK0iIvbYFPfL2tGjx7Nnl9EFjCEERHVIaa1X23a6JYgDQOXg4NAu3ZXoFD4QKstXWKUJC06dTqCP//sigMH7jI4q26WKyLiEIYN2ypvzi1JWgwbthWdOtne+8sSPz+/Kj2fqL6ShDAv16TaIT8/H0qlEhqNBh4eHva+HCKyszfeAGbP1hXZKxTA229fw+jRBVi71gWzZytRUiJBoRAYOnQLwsLOIC0tCqmpKoP9Hsva61GL6dOXQKks+Gejbi+5AautBgwYgNDQUKPH2PmeGiJb//7mTBgRUR3w5pvArFml32u1wPTprjh37iMolQV44onS4JSe3tpgs20tjFtRWCu+VyA31+ufrvcFlVp6DA0NRWBgYIWfR9RQsTCfiKiWy8zUzYCZEkIh79WoVBYgNPQcAMjLiToK2PZHvW7roapg8T1RxXAmjIiolrNUfK+3ceMoFBXp6rkAIDfX26iw3jLTJUldTVhFZr969OgBLy8vNGnSBI0aNYKfnx+XHYkqiCGMiKiW8/G5CoXC06jIXk8IBbZsGYqwsDNQKgvg5aWG9U74OpGR+xEamoEbN1z+uTuy4nc+RkREcOmRqIoYwoiIaglLXe/T09OxadMXGDq0u8kyYyn9smRu7k1kZQWirKarkqRF376/VnnDbS49ElUdQxgRUS1gqev9iBFqfPHFFwCAiIhDCAs7gwsXmmPDhlEwnOmSJK3BY9bufoTccqKyAWzkyJHw8fHhHY9E1YQhjIjIzqx1ve/W7bbRON1diydQVGTcy0vXaKi8ux8rv+WQXlBQEMMXUTViCCMisrOUFMtd78+eLf0jWte7yxteXmp5Viw31wvnzzfH7t0x5bxCxbYc0s94GeLsF1H1YwgjIrIj/TKkKQcHICTkNo4eBQ4e7G7WxT4i4hB+/PFe/PFHV6vnliQtVKpUREWlVWgJ0sfHh0X3RHcAQxgRkZ3oliGF2V2PCoXA669rkJubi6NHw40K8vV3Q0rS7X8CWM0tPxJRzWIIIyKyk/37NdBqlWaPd+++H7/8ko2ZM4dCiA5mx4VQ4Lvv/oXyCvArG8B45yPRncEQRkR0h5i2oAgOvgXAHaY9vQ4ejMSBAzB7vJS1OyAF/u//tqJdu9M2LT/26tUL/v7+8veOjo7w9fVl7RfRHcIQRkR0B5i2oHj77Wu4995LiI4+g5SUXkZjy+54b60Rq0DXrn/g7rsPlnstI0eO5J2ORLUA944kIqphllpQTJ/uik8/TUJUVBokyfjWSN335vsUSZIWY8d+aTYe0GLs2LX417++s+l6fHx8GMCIagGGMCKiKsrMBHbv1v1qiaUWFEIokJvrBaWyAMOGbZWDlSRpEROTjI4dj5udRwgFnJyKzcYPH74V7dqdqdb3REQ1z+blyPz8fJtP6uHhUamLISKqayx1uk9IKD2+dOk1TJ/uBvMaLgFHxyIAMOr7lZUVhOTkmH+WJI1rvyRJCy+vXISGnpPHe3nlVnkLIiKyD5tDmKenJyTJ+n5kACCEgCRJKCkpqfKFERHVdtY63cfG6grv//zzKqZPV0IIS392SiguLr0LUaksQEFBE4MAphujD2KmWw7puudXLnzx7kei2sHmELZ79+6avA4iojrn9GnLne7PnNGFsIMHCyBEU4vP1c9q6R082B2bNw+FeZWIhNjYHQgPP17p0BUfHw+lUtcKg53viWoPm0NYv379avI6iIjqnDZtdEuQhkHMwQFo3RpQq9Vwc8uCJDU3u9vRdFZLo3HHli2WAphubGUCWP/+/dGmTRuGLqJarNItKvLy8rBy5UqcOHECANCxY0dMmjRJ/tcWEVF9plarcfHibUyZ4oYPP3STlxy1WoFVq7JRUvIxAGDYsEsGHe+1iI7WbSNUUNAEP/7YD02aXIOr602LbSlMw1pF+Pn5cesholpOEkKIij5p//79iI2NhYuLC+6++24AwL59+3Dz5k3s3LkTERER1X6hDVF+fj6USiU0Gg1vdiCqRdRqNSZN2msQrswL6BMTlxjNdBkW0X/zzf0mWw7pp9IMg5gWkydXftuhKVOmMIQR2Ymtf39XaiZs+vTpGD58OD7++GM0aqQ7xe3btzF58mQkJibil19+qdxVExHVAWfP3jbaz9H0zkd9+wkAyM31hpeXGqGh5wAAmZmBFvZ81M2S6RuxVnXbIYDF90R1QaVC2P79+40CGAA0atQIs2bNQo8ePart4oiIaqOMjEZldrWXJC2ysoLw2WcPQojSUBURcQgpKdGwvOWQAqNGrYeb240qtZ2Ij4/n1kNEdUSlQpiHhwfOnz+P9u3bGz1+4cIFuLu7V8uFERHVRmq1GkrlJUhSU5MgVtpKIiYm2ajVhBAKbNkyFH5+OThxItzKmbUIDs4sM3wNHDgQTZo0QaNGjeDp6Wl2nEX4RHVLpUJYfHw8EhIS8OabbyI6OhoAsHfvXsycORNjx46t1gskIqot1Go1li1bBgAYNqy7vCSpD15BQVnw8spFbq632UyZEAqcP9/Cygyarut9ebNfISEhrPMiqkcqtW3Rm2++iZEjR+LBBx9ESEgIQkJCMHHiRIwaNQqvv/56dV8jAGD48OFo0aIFGjdujMDAQDzwwAPIysoyGvPDDz+gZ8+ecHd3h6+vL+Li4nD27FmjMT/99BMiIiLg7OyM1q1bY9WqVWav9d577yEkJASNGzdGVFQUfv/9d6Pjt27dwtSpU+Ht7Y0mTZogLi4OFy9eNBpz/vx5DBkyBK6urvDz88PMmTNx+/btavksiKj6lbf1EAAUFRXJv4+IOITExCUYNWo94uI2olOnowgNPQelsgBeXmoL+zsK3LzpYnHfx8mTVyAi4lC518g6L6L6pVIhzMnJCUuXLsXVq1dx+PBhHD58GLm5uVi8eDGcnZ2r+xoB6HrerF+/HqdOncLGjRuRnp6OUaNGycczMjJw//33495778Xhw4fxww8/4MqVKxg5cqTRmCFDhqB///44fPgwEhMTMXnyZPzwww/ymHXr1mHGjBl4/vnncfDgQXTt2hWxsbG4dOmSPGb69OnYsmULvv76a/z888/Iysoyep2SkhIMGTIERUVFSElJwerVq7Fq1SrMnz+/Rj4bIqqalSuBli2Be+/V/bpype7x8oJZenprbNw4Chs2/BuLFydi584YaDS6kowWLc5Bt0SpJ2HPnj6IiUk22/exvAL8kSNHYtq0aVxqJKpnKtWiojbYvHkzRowYgcLCQjg6OmLDhg0YO3YsCgsLoVDosuWWLVtw//33y2Nmz56Nbdu24ejRo/J5xowZg7y8POzYsQMAEBUVhbvuuktectBqtQgODsbjjz+OOXPmQKPRwNfXF2vXrpVD4MmTJ9GhQwekpqaiZ8+e2L59O4YOHYqsrCz4+/sDAJYvX47Zs2fj8uXLNv9rli0qiGpeZqYueJk2XF2wAJgzx3hPyG7dLuLdd3fAy0uNgoImWLFiMsz/LSv++bL8b9wJE1b9s2Rp+76PDGBEdUuNtqi4desW3n33XezevRuXLl2C1mTfjoMHD1bmtDbLzc3FmjVrEB0dDUdHRwBAZGQkFAoFPv30U0ycOBHXrl3D559/jpiYGHlMamoqYmJijM4VGxuLxMREALqlhgMHDuCZZ56RjysUCsTExCA1NRUAcODAARQXFxudp3379mjRooUcwlJTU9G5c2c5gOlf57HHHsOxY8fQvXt3i++rsLAQhYWF8vcV2TSdiCrH2tZDs2cD+n+iarXAww8DkuQHrXYCyg5aEizf/QgAWjl4lRW+Ro4cCR8fHwAstieqzyoVwhISErBz506MGjUKd999d7kbe1eX2bNnY9myZbhx4wZ69uyJrVu3ysdCQ0Oxc+dOjB49Go888ghKSkqgUqnw/fffy2NycnKMghEA+Pv7Iz8/Hzdv3sTVq1dRUlJicczJkyflczg5OZndmeTv74+cnJwyX0d/zJoFCxbgxRdftPHTIKKqUqvV8PC4DYXCD1pt6Z9jCoUw+h7QBbLSjbjLClrWCAwYkGzTzJePjw8L8IkagEqFsK1bt+L7779Hr169qvTic+bMKbeQ/8SJE3IrjJkzZyIhIQHnzp3Diy++iAcffBBbt26FJEnIycnBww8/jAkTJmDs2LEoKCjA/PnzMWrUKCQlJd2xoFgVzzzzDGbMmCF/n5+fj+DgYDteEVH9ZXin49Chxnc63nefcYuJqtLfPdmrV2q1nI+I6odKhbBmzZpVSz+wp556ChMnTixzTKtWreTf+/j4wMfHB23btkWHDh0QHByM3377DSqVCu+99x6USiUWLVokj//iiy8QHByMtLQ09OzZEwEBAWZ3MV68eBEeHh5wcXGBg4MDHBwcLI4JCAgAAAQEBKCoqAh5eXlGs2GmY0zvqNSfUz/GEmdn5xq7sYGIjJne6RgWdsaoTsvF5ZbRno/lz34JC8cFIiP3o2/fXyvdfJWI6q9K/TPvrbfewuzZs3Hu3Lkqvbivry/at29f5pe1InZ9HZq+hurGjRtyQb6eg4OD0ViVSoVdu3YZjUlKSoJKpQKgq72IjIw0GqPVarFr1y55TGRkJBwdHY3GnDp1CufPn5fHqFQq/Pnnn0Z3VCYlJcHDwwPh4dYaNRLRnaC/4zEry/jPC6WyQG4xAQBhYWcQEXEApbVfwqC9hKX7mSR07Pgn9PtASpIWAwYkYdiw7yscwNiKgqhhqNRMWI8ePXDr1i20atUKrq6ucuG7Xm5ubrVcnF5aWhr27duH3r17o2nTpkhPT8e8efMQFhYmB58hQ4Zg8eLFeOmll+TlyGeffRYtW7aUC+EfffRRLFu2DLNmzcKkSZPw448/Yv369di2bZv8WjNmzMCECRPQo0cP3H333ViyZAmuX7+Ohx56CACgVCqRkJCAGTNmwMvLCx4eHnj88cehUqnQs2dPALqu1uHh4XjggQewaNEi5OTk4LnnnsPUqVM500VkRytXAlOm6O949MPQod0t9uc6eLA7Nm8eCuN/pyogROn+jpY27R44MAkDByZV6M5HU+PHj2chPlEDUakQNnbsWPz999947bXX4O/vX+P1Vq6urti0aROef/55XL9+HYGBgRg0aBCee+45OdTce++9WLt2LRYtWoRFixbB1dUVKpUKO3bsgIuLCwBd8f62bdswffp0LF26FM2bN8eKFSsQGxsrv1Z8fDwuX76M+fPnIycnB926dcOOHTuMCu0XL14MhUKBuLg4FBYWIjY2Fu+//7583MHBAVu3bsVjjz0GlUoFNzc3TJgwAS+99FKNfk5EZCwzU3f3Y5s2uu/1AQwAtFoJmzcPhZNTIYKDL8iBSaNxx5YtpgFMz/AxCYZbFQ0bVtrx3pbwNXr0aLMbfHgnJFHDUqk+Ya6urkhNTUXXrl1r4proH+wTRlR5xrNeAlOmXMfy5U0sjjXcYDsjIwSrV0+w+XViY3cgPPx4hWa9xo8fj7CwMJvHE1HdUqN9wtq3b4+bN29W+uKIiGpSZqb5rNeHH7qidCnRmH6D7bCwM3B0LISlIntJ0v7TN0xh9FhFAtjIkSMRFBTE2S4iAlDJwvyFCxfiqaeewk8//QS1Wo38/HyjLyIie1Gr1fjtN7VZA1YhFIiOTrWwd2Pp8bS0qH+64BsGMC2io/ciMXEJhg/farTlkOESpC18fHwYwIhIVqmZsEGDBgEA7rvvPqPHhRCQJAklJSVVvzIiogrS9/7SaNwhSYlGfb4kSYuoqDRERaXhwoXm2LhxlNnxlBQVLP3bNCoqDUplgcVWFhXBux6JyFClQtju3bur+zqIiKpM3/tLqSzAsGFbjRqwGhfOn0BRkfFxlSoVKSmWGlArkJvrZVR0X5m7HkePHs1ZMCIyUqkQ1q9fP5vG/fe//8VLL70k74FGRHSnlDdrZXq8oKCJxZkwSdLt91hVfn5+VT4HEdUvlQphtvriiy/w9NNPM4QRkV2UN2ulVBagoKAJdu4ciGPHwmHa/6sidV+Gm26bYusJIrKkRkNYJbpfEBHdERqNOzZvHob09NYwLsTX9f0aPHgb2rU7bfPSI+96JKKKqtEQRkRUG1nuiF9KCAV8fdVmAWzgwIEICQkxG8+ZLiKqDIYwImpQyu6Ir2OtDiwkJASBgYE1eHVE1JAwhBFRnaNWq+U7IbOyFMjIaITQ0NtwcrpS5vM0GnccO9bRqDWFOet1YGwxQUTViSGMiOoUfS8wQLesaNyGIg0REZafZzjWUkd8QCAs7AyGD99iFMD69+8PX19f+Pn5ccmRiKpVjYaw8ePHc89DIqpW+hkw/bKiflbLcOshw824c3O9UVTUyKQGrHTzbUCLjh2PQaVKRfPm2Wav16ZNGy5BElGNqHQIy8vLw++//45Lly5Ba7I/yIMPPggA+OCDD6p2dUREVuTmepstKwpR2li1/JkvqVKbbxMRVZdKhbAtW7Zg3LhxuHbtGjw8PCBJpX+4SZIkhzAiopri5aX+Z1Nt462HHB2LcPRouIWZL2MV3XybiKi6VSqEPfXUU5g0aRJee+01uLq6Vvc1EVEDk5kJnD4NtGkDNG9e+rhhAb5eRkYGAPOtiQBACGDFiodhKXQZq/jm20RE1a1SIezvv//GE088wQBGRJWmD1hr17pg1iwltFoJCoXAiy/m4P77r+DmzZv46qs9yM31hpeXGgDk3yuVunOEhZ2BcU/osu561JEkLRISVlis/yIiupMqFcJiY2Oxf/9+tGrVqrqvh4gaAP0djhqNO5YsSYQQupkrrVbC/Pn+yM39EunprbFlS6JBTZeALmRpER2diqioNFy4EAxbgpe+Jky/DVFFAhjbUhBRTbE5hG3evFn+/ZAhQzBz5kwcP34cnTt3hqOjo9HY4cOHV98VElG9o19itFZcf+FCc6NlRt3yon6JUYGUlF5ISYmGLlxZJ0laxMVtgKdnHoqLnSxu5A1Y3/eRnfCJqCbZHMJGjBhh9thLL71k9pgkSSgpKanSRRFR/WNY33X0aB4yMkLg6FhoVlwPaAFI5TRUBYyDWelzJQkGfcO2olOnE+Vem4+PD9tQENEdZ3MIM21DQURkK8sNVjtAkrTo0uUI/vijCwzvZNRolBbCWflGjdqA4OBM5OZ6WZ31IiKqLSr2J9w/PvvsMxQWFpo9XlRUhM8++6zKF0VEdVtmJrB7t+5XoOwGq3/80QWS0YSWhOTkGMTEJEOSdP/40/1a3j8EBTw986BUFiA09FyFAhjrvojIHioVwh566CFoNBqzxwsKCvDQQw9V+aKIqO5Rq9XIzs7GW2/loWVLgXvvBVq2FHjrrTxcuaLb09FSDRigsFgXFhSUhcTEJZgwYdU/gUw+auUKJBQXVyxMjRw5EtOmTWPdFxHZRaXujhRCGDVo1cvMzIRSf+84ETUYZd3tOHOmB/7+OwlKpeUGq4Z1XHqSpIWXVy4A4Pp1NyQlxcC48ap+Vszyc2wVFBTEAEZEdlOhENa9e3dIkgRJknDfffehUaPSp5eUlCAjIwODBg2q9oskotrt0qVLAMrfSsi0waq+eB6A2WO6FhVDrdSFKRAdvRepqSqj5+iXIAcMGICmTZvi9u3bAABHR0ezfyDyzkcisrcKhTD9HZKHDx9GbGwsmjRpIh9zcnJCSEgI4uLiqvUCiah2U6vVWL9+PQAgKysQpvs0ms5QRUQcQljYGbPiecPHAPwzo2a5YkKStIiKSkNUVJrFIvzQ0FDe7UhEtV6FQtjzzz8PAAgJCUF8fDwaN25cIxdFRHWHYdF9cnIMjNtGCMTEJJsVyetnxaw9dvRoeBl3Rhqfk3dAElFdVamasAkTJgDQ/eF76dIls/YVLVq0qPqVEVGtpO/3pdFoUFxcjKtXrwKwVnQvQanU9QTTbTdUfmDSt7CwTkJQUFbl3wARUS1RqRB2+vRpTJo0CSkpKUaP6wv22ayVqH7RB6+8vDx8/PF2s/0cHR0Dcf26K3QF88ZF9xs3jjKq24qIOGT1dUxbWFhSmQJ8IqLaqFIhbOLEiWjUqBG2bt2KwMBAi3dKElH9YN5o1dJ+jvo6MIHSIKbvfK/780EIBbZsGYqwsDNWZ8Qsz6aVMi3At4Z9v4ioLqhUCDt8+DAOHDiA9u3bV/f1EFEtY63RqvG2QaW/SpJAXNx6ABI2bPi30bmEUODYsXB07HgcgH4WrRDFxc7w8lJbbGEhSVoMHrwNrq43ERycaRTALO35yLseiaiuqFQICw8Pl5svElHDUN4slZ4QCri53YCXV66FnmACO3cOws6dsTCdRdPPcllqYWFtCZN7PhJRXVapEPb6669j1qxZeO2119C5c2c4OjoaHffw8KiWiyMi+9HXgen/wWW50ao5fc2WaU8w49YV5rNo+uXKxMQlSExcYtP+j1x2JKK6TBJCWNsDxCqFwnCpoLQejIX51Ss/Px9KpRIajYbBlu4owzowQLcUmZvrjaysQCQnx1gIVcazWYYzVxqNO44dC8fOnbY1cp4wYRVCQ8+VOy4+Pp4lEURUK9n693elZsJ2795d6QsjotpPXwcGlLaM0C8Ptm59GqdPt4VxQ1aBuLivjWq29MHNy0uNjh2PIylpoM2zaLbw9fWt+BsjIqpFKhXC+vXrh19//RUffvgh0tPTsWHDBjRr1gyff/45QkNDq/saichOTIvxhVCYBTD9425uN+QAZhrchg3bipiYZCQlDTB7rsFZLDZ2NaQvxGfxPRHVB+VX2VqwceNGxMbGwsXFBYcOHUJhYSEAQKPR4LXXXqvWCySiO0OtViM7OxvZ2dlyHZi1BqymDGewLAW3LVuGwtGxyOJzdbQYMCAJvXqllnmNQUFBCAwMZAAjonqhUjNhr7zyCpYvX44HH3wQX331lfx4r1698Morr1TbxRHRnWFaA6ZnuRjfeG9I/QwWAGRkhOD6dVeLm3ir1V4WX7tv392IjDxkNgNm2n6Cs19EVN9UKoSdOnUKffv2NXtcqVQiLy+vqtdERDVAf7ejKY1Gg0uXLpk8VlrPZdoyokuXIzhypMs/QUuLAQOS4eJyS95wW5K0MO+cD6SlqWBpc29LAQxg+wkiqv8qFcICAgJw5swZhISEGD2+Z88etGrVqjqui4iqkbWZLkss1XOZtoy4994f5e8ByAEMgEk3fcMZMwmAFpIkjM7NDbiJqKGqVAh7+OGH8eSTT+KTTz6BJEnIyspCamoqnn76acybN6+6r5GIrDCc3crLy8Pt27eNjjs6OkKpVNrcXNlaPVdi4hKjthFKZYEcnjIyQmyqG9NRIC5uvdzMlT3AiKghq1QImzNnDrRaLe677z7cuHEDffv2hbOzM55++mk8/vjj1X2NRGRBRWa3TBkuNxoGoQsXgi3Wc+XmelkNTNbrxvQd8UtJktZs6yFLxo8fz/ovIqr3KhXCJEnC3LlzMXPmTJw5cwbXrl1DeHg4mjRpUt3XR0RWmNZ3GQYrABZDFmC+3BgTk4xevVJx8GB3bN481Ox1TO98ND2vUlmA3r1/xa+/9oX5XpKltWHlLT/Gx8dDqVSyAJ+IGoxKhTA9JycnhIeHV9e1EFElGQYrw1ko0w72lpYbk5IG4NYtZ+zZ0wfmXWu06N37V+TmeuPo0U5yt3zT87q43IL5EqSEvn1/gp/fZQAoc/NtBi8iaoiqFMKIyP5Mg5Xhvoz6mq6wsDNQKgus9v369VdLAQwAFPj117749dd+MCy0Nz1vixbnYKl1Rdu2p9G8ebbF6+bdj0TU0FWqWSsR1R6Wg1UpfU0XUFq/ZU5h5XHAfInR/LzNm2eja9c/oAtiACDQtesfVgMYERFxJoyozrNcGF9KX9Olr+cyr9+CXBtWujl3+Uz3efzXv77DXXf9jgsXWiA4+DwDGBFRORjCiOo4pbLArKGqEIBhTVh6emuj4+Hhx3H8eAejMbqlRQ1u3GiM7duHWAlj+iVHy0X2zZtn2xy+2IKCiBo6hjCieiAi4hDCws4YNVAtq5nqiRMdMHnyChQXO8HLKxfp6a2NOt536HACJ050MCj01wUv/eyZZK0NmBX6Ox/1WIhPRMQQRlSrWdpqSKPRoLi4GAUFxrNQhg1U9d8DlpupCqFAcbETQkPPWbxj8vjxcOiDV+fORxAcfOGf2THLhfmm+zwaYuAiIrKMIYyoFlKr1bh06RLWr19fqedHR0cjJSUFgOWaMcN6Lmt3TOoo8Oef3fDnn11geh+PYRNX3ulIRFRxDGFEtUxVOuHrBQQEyL+3VDNmWM9VXmG/juGypI5pYT4REVUMQxhRLWO6/FgdTGvGlMoCo+73hiHNvN+XniSHNW6+TURUdQxhRHWYtT0gLTGsGTPusK9FdHQqEhJW4PjxjkhJibb4fEnSIiGhtJifAYyIqGoYwojqCNPAZboHpOE2QlevXrX6XAAmHfYVSEnphZQU1T/fG3e918+ADRu21Wr7CbabICKqOIYwolpOo3FHWlrUPyFJYbGxqundirt375afbxrWVKpUK/Vflh6TEBu7A+Hhx7nvIxFRNWMII6rFjJcNdXSbbsegrLsV9Sy1n0hJUdlQiK+jb+xquvTIuyGJiKqOIYyoBlnq82WorFkk8425DSnKbDuhZ7n9hAIREftw4EAkyto+lsX3REQ1iyGMqIbY2mpi2rRpFoNYWRtzmy5JWgtM1tpP6AKY5bb3kqRFXNwGBAdnWg1grAEjIqo6hjCiGmJrqwnTcfqAY71/V2kRfqdOR5Gb64URIzrhjz8OmZ3btEdYKevhbtiwrejU6YTZMX0dGGvAiIiqR/lFIUR0R3l7e2P8+PFygJIkLQBdQIqO3ovp05fId0EqlQUIDT2HsDBns/NoNO7IyAhBWNgZxMVttOGVdS0o9Oc2FRQUhMDAQAYwIqJqwpkwIju7cuWK0fdOTk5wdXUFYLnJqi1M74iMiUm2MKumhSTBaDnTtAUFZ7+IiGoOQxiRjapSZF+WTZs2mT02evRo+femG3NbYtgXzNIdkcnJMejd+1fs2dPHKHSVF/CCgoIYvoiIaghDGJENqlpkD1Ssu/3t27crdH2GfcHS0qLM6siEUODXX/tgwIBkBAVlwcsrF//+twpNmoSanatRo0bw9PTk7BcRUQ1jCCOyQWWL7PXK6m5fEeUFOY3G3aDzvSndjFhi4hIolQUICQlhry8iIjtiCCMqg34J0rRuqyIsLQ8adre39RxpaVFITVWVGeRyc71R1v02lhq6EhGRfdSZuyOHDx+OFi1aoHHjxggMDMQDDzyArKwsozHr169Ht27d4OrqipYtW+KNN94wO89PP/2EiIgIODs7o3Xr1li1apXZmPfeew8hISFo3LgxoqKi8Pvvvxsdv3XrFqZOnQpvb280adIEcXFxuHjxotGY8+fPY8iQIXB1dYWfnx9mzpxZ4SUmsi/9EuRHH31ksW7LkitXriA7OxvZ2dnQaDQALPf70ochWxw82B2LFyciJaWXWZDTaNwBlN4J6ehYKN9NaYmlhq5ERGQfdWYmrH///nj22WcRGBiIv//+G08//TRGjRqFlJQUAMD27dsxbtw4vPvuuxg4cCBOnDiBhx9+GC4uLpg2bRoAICMjA0OGDMGjjz6KNWvWYNeuXZg8eTICAwMRGxsLAFi3bh1mzJiB5cuXIyoqCkuWLEFsbCxOnToFPz8/AMD06dOxbds2fP3111AqlZg2bRpGjhyJvXv3AgBKSkowZMgQBAQEICUlBdnZ2XjwwQfh6OiI1157zQ6fHlXGpUuXKvwcS2HNUr8vW8OQfhbN0r+X9EEuPb210VJnly5HcORIF/l7IQB9h312wCciqj0kIXR/RNc1mzdvxogRI1BYWAhHR0f85z//QXFxMb7++mt5zLvvvotFixbh/PnzkCQJs2fPxrZt23D06FF5zJgxY5CXl4cdO3YAAKKionDXXXfJRdharRbBwcF4/PHHMWfOHGg0Gvj6+mLt2rUYNWoUAODkyZPo0KEDUlNT0bNnT2zfvh1Dhw5FVlYW/P39AQDLly/H7NmzcfnyZZu7jefn50OpVEKj0cDDw6NaPjeyja2F+LY6eLA7tm0bhpISyWgp0VqNV3x8PNatW4eMjBCsXj3B4jklSdfXa+XKyWYBLyFhBYqLneSgZ+kOyClTprAmjIioBtj693edWY40lJubizVr1iA6OhqOjo4AgMLCQjRu3NhonIuLCzIzM3Hu3DkAQGpqKmJiYozGxMbGIjU1FYCuqPrAgQNGYxQKBWJiYuQxBw4cQHFxsdGY9u3bo0WLFvKY1NRUdO7cWQ5g+tfJz8/HsWPHqutjoBpUXiG+fvlPvxxYnoiIQ0hLu4QNG9RITNQ1Wz14sDuWLEnE6tUTsGRJIg4e7C6PLy4uxujRozF0aDuLy4v6IHf8eEeLS53FxU4IDT0nt7fQ/94Qtx4iIrKvOrMcCQCzZ8/GsmXLcOPGDfTs2RNbt26Vj8XGxmL69OmYOHEi+vfvjzNnzuCtt94CAGRnZyMkJAQ5OTlGwQgA/P39kZ+fj5s3b+Lq1asoKSmxOObkyZMAgJycHDg5OcHT09NsTE5OjjzG0jn0x6wpLCxEYWGh/H1+fr4tHwvdYZW909HVNRfdujnh6NGCcov1DZc1hw27ZDBWi+joVISHH0NWVpDFOyENlzr1zVZNsf0EEZH92XUmbM6cOZAkqcwvffgBgJkzZ+LQoUPYuXMnHBwc8OCDD0K/mvrwww9j2rRpGDp0KJycnNCzZ0+MGTMGgG42qy5YsGABlEql/BUcHGzvS6q31Gq1XEBv6SsvL8/i86yFJ1tmxNavX4/i4mIAFSvWj4g4hMTEJZgwYRUmT14BAFixYjK+/95yrZhKlSrPeum3GjL9YgAjIrI/u86EPfXUU5g4cWKZY1q1aiX/3sfHBz4+Pmjbti06dOiA4OBg/Pbbb1CpVJAkCa+//jpee+015OTkwNfXF7t27TI6R0BAgNldjBcvXoSHhwdcXFzg4OAABwcHi2MCAgLkcxQVFSEvL89oNsx0jOkdlfpz6sdY8swzz2DGjBny9/n5+QxiNaCy9V4ajTuOHbO8/Gdr2wd9sX9Fi/WVygKkp7fG5s2Wg1cpLaKi0gDo6soYtoiIai+7hjBfX1/4+vpW6rlara5OxnD5DgAcHBzQrFkzAMCXX34JlUolv4ZKpcL3339vND4pKQkqlW5Jx8nJCZGRkdi1axdGjBghv86uXbvkOywjIyPh6OiIXbt2IS4uDgBw6tQpnD9/Xj6PSqXCq6++ikuXLsl3VCYlJcHDwwPh4eFW35OzszOcnc03YqbqZWvjVUOGS5CAACDJxxQKYXPbB31ne/3m3KbLmtaCXFl3SZbSYvjw0nMolUqbromIiOyjTtSEpaWlYd++fejduzeaNm2K9PR0zJs3D2FhYXLwuXLlCjZs2IB77rkHt27dwqeffoqvv/4aP//8s3yeRx99FMuWLcOsWbMwadIk/Pjjj1i/fj22bdsmj5kxYwYmTJiAHj164O6778aSJUtw/fp1PPTQQwB0f7ElJCRgxowZ8PLygoeHBx5//HGoVCr07NkTADBw4ECEh4fjgQcewKJFi5CTk4PnnnsOU6dOZci6wyzt91jRxqumS5C6AKYLYpKkxYsv5qCkpMBovC3bE9myObf+XNevu5rNwBnS3xFpuAE3C++JiGq3OhHCXF1dsWnTJjz//PO4fv06AgMDMWjQIDz33HNGoWb16tV4+umnIYSASqXCTz/9hLvvvls+Hhoaim3btmH69OlYunQpmjdvjhUrVsg9wgDdEs7ly5cxf/585OTkoFu3btixY4dRof3ixYuhUCgQFxeHwsJCxMbG4v3335ePOzg4YOvWrXjsscegUqng5uaGCRMm4KWXXqrhT4oMVVebCUv1W4CE2NgdmDOnNTp3bgr9y1S0aL+szblNzwVoYWkmTP86+gAWHx8PX19fLkUSEdVydbZPWEPAPmFVk52djY8++qjK59m7V4WkpAEwXIKUJC0SE5dg7twJ8Pb2xsmTJ/HRR99jyZJEszov/V6NllibNcvMDLTY/0vfeBXQIjLyAEJDMxAcnCk/Nz4+Hu3bt6/yeyYiosqz9e/vOjETRmQvERHD8dJL3WAYwACBxMQcTJnyf/IjSqWyzDseLYUwa7NmBw92t1iAL4QCo0ath5vbDavLl5WtsSQiojuPIYyoDBs3HoFW293kUQm5uTuxbp2uCbD+po2K3PFordWFm1uB1TsgJUkrz3rFx8ebFd6z9xcRUd3CEEZUBluCVVFREZycnMzueAQAIYD09NZmdWEXLgRbnDX78sv/wHjWrfQ1hw3bioceGoCgoCCGLSKieoAhjOocS3c8GqrojFBZdzPa2krC29sb06ZNw9mzt7Fli2GIMu6ED8BgudGUceuLUqV3PgYF9WIAIyKqJxjCqE6x9Y5H/RJheWy5m7G8VhKGLS8uXHCFEMZByrAuzHq/L8t3PgJAdHQqmjfPxujRoxnAiIjqEYYwqlNsbbR6+fJleYsga8rbv9FQWa0kDPd51GjcoVBMh1ZrfCelfvnScrsLwPIMmO65+g74pvuVEhFR3VY3NlUkqqB169YZhSNLKrJ/o62UygLMmpX+T18vXYiKiUlGbq43NBp3ucbMmBbWliHL6qJPRER1G2fCqMGq6P6NtmrceA0SE92Rm+uFrKwgJCfHyMudMTHJUKlSkZKiAlD6mH6M4XWYdsAnIqL6hSGM6gy1Wl3hLYcMmRbgm9/NqAtEFW2saon++GefPWi03Klv+ipJWqhUexEVlQalsgAuLrfMatMYwIiI6jeGMKoTqroFkaUC/Ndfb4spU5To0qUAr77qASEUSE6OgYvLLbPi/IpuRwRY3+4I0AWy1FSVXO9lyz6S3AuSiKh+YQijOuHSpUuVfq61Avz58y+jSRN/vPYaoN+8S3/Mzy8HxcXO8PJSA4DNBfyGLC13GjLtpm+t+J97QRIR1U8MYVTrqdVqrF+/vtLPt1aAf/ZsI+TnA1qTOnkhFFixYjL0NVsqVWqFtiPSS09vjbJ2ZpUkLf71r85o2zbK6p2P7IJPRFR/MYRRrWdrWwprrBXgh4Tchr8/oFCYBjEB/Y3D+mVD0z5ekqSFo2MRMjJCLNaIWe8HVvr8YcO2ondvNl8lImqo2KKC6j19Ab5h24hhw7YiKEiL5s2Bjz4CHByEfMy0XYQQCkRHpxo9v0uXI1i5cjJWr56AJUsScfCgbn9JjcYdGRkhOHWqrdVlSECLL75IxyefMIARETVknAmjBsFS4btG0xZOTk5ISPBGt26X8O672+HoWISVKyebzZpFRaUhKioNXbvGwdGxCOPHdzGrEbt5s7FBqwnL65D6ANi//10MYEREDRxDGNVptrSNMBwTGnpOfnzdunUAdFscBQVp5WNl7RU5cKAT9u5tYrFGLCkpBqWTy6bNV7WIjk6VW1I4OfWq8nsnIqK6jSGM6ixb2kbYMsa05qy8dhGhobct3PVYWkdmyahRG9Cp0wmMHDkSQUFBnAUjIiLWhFHdZK3tRGZmIDIyQqDRuFsdo9G42/gq5lsJ5eXlIShIa1Rjpgtglvd+BHRLkMHBmQAAHx8fBjAiIgLAmTCqo6y1ndDXc1W0tYRhI9SyZs/Wr1+P+Ph4REQcgp9fjtzKwhrT5UwiIiI9hjCq9Sx1irfcCFUYzXqlpKhs3hvS29sb8fHx+Oij78ttzKpvHFtc7IyyWlDExW1AcHCmUQBj13siItJjCKNaz9vbG9OmTTOq3dq79xzS0lKRmqqS9300D0QKqFR75THlzUoplUqrM2yGs2e7d+8GYL0jvv51OnU6AUDX8V6pVLLxKhERGWEIozrBMLysXAlMmRIArVaC7q7DvQgPP1Zma4my9mQ0ZK2xq+HsmeHdlsZ3Ugo8+OAVjBt3Bc2bt4Gn510MXkREZBVDGNUpmZnAlCn4J4ABgK6jfXj4MahUqVZnvWytydI3drXWosJSvVhi4hLk5nrh8ccHIzLSH4BvDbxzIiKqbxjCqMao1eoytxyqzCzR0qVl7/WonxnT9+MyZK2nWEZGBq5cuYKbN28CKG1RceFCcwASgoMvyM+3VC+WmLgEoaHnEBRkcmFERERlYAijGqFWq7Fs2bJyx02bNs3mIJaZCbz1lqUjhj26dDNjUVFpAIDRo0fD09MT7713E0uWhFi84zEpKcnsjOnprc1mvJo2vVqpjbyJiIgsYZ8wqhG2brpdkc25T58GhMXdgMz3eszN9QIAeHp6oqQkEAsWhNrcL8zajJejY6FBb7B/XtnK3ZZERETlYQijOqNNG0Bh9hOrLTcYnT5tWEOmYxjUTFm7Q7K42MniRuCcBSMiosrgciRVK30d2JUrV6r93M2bAx99BDzyCFBSUhqCAGDz5qHQ14QZBiMnJ6d/wpswCmJlzWCVdYdkaOi5Mrc0IiIishVDGFUbW+vAqiIhAYiNBc6cAby9NfDxuQtr17pg61YJWi2gUEjo27cv/vMf4/YQ8+f/jRdfDCqzX5i11hMKhcDQocZ3WloKX2zESkREFcEQRtWmIvVdVdG8ue4LaIrMTGDWrNI7JrVaCbNne2LgQAEfn1vIzs4GAPTv/z9oNOvlGayCgiZISekJb+8rcHK6jaysQCQnx1htPRES0gtFRXdZvSb2AyMioopiCCO7srRsqZ9RsqW9ha7ey/hYSQnw1lvfITT0nNHjSqVuFuubb+7HH390ha6gX5j8arn1BAMWERFVN4YwsqtNmzZV+rnTpk1DmzbeUCiMg5iDg7Ba75WZGWgQwGDhVx22niAioprGuyOpzioqKpKL9R0cdI85OACvv66xGp7On28J08BlCVtPEBFRTWMIoypTq9XIzs6ukTsibZGQAJw9C+zerfv1//4v2+rYFi3OQbf0aInucdPCfRbcExFRTeByJFXJnbgj0hb6Yv309HSsX7/e6JjhXY/u7tcQFnYG6emtYTgjJklaxMQkIygoC15euXj44cHcgJuIiGoUQxhVyZ26I9KSK1euGIUktVqNL774wmiM4YbbgBa64KUvxC8lBNCp01EolQWIj49H+/bt78h7ICKihovLkXRHaDTuyMgIsbpVUGVs2rQJy5Ytg1qtBmAeCE23H9L9uFsuxAdKO+grlcpqu0YiIiJrOBNGNc5wNsp082xbGC4nWiq4LyoqglqtNqtJ++WXPmbbD1nDQnwiIrrTGMKoRlnbDDss7IxN7R9sCXB5eXlmdWB796pw4ECPcs6u6w3GPSCJiMgeGMKoRlnbDFvfg6usWS5LAW7z5qHw88tB8+ald0Devn3b6HmZmYFIShoAy60oSoOXYSE+AxgREd1pDGFUYzQad1y/7gpdQbz5Ztims1y6UJQtBzJLAQ5QYOXKyVaXNA8e7P7PZt6WApgWkyevQHGxU5nBiy0piIjoTmAIoxphfFeigD6I6Zf+AJjNculnr/RjwsLOQJK0FmfSLC1p6mfOLN9vIjBgQLI8gzZy5Ej4+PiYjWJLCiIiulMYwqhKLM0amd+VKEGSBOLi1iM4OBMAcOxYRwuzXOZ7Nw4btvWfmS3rS5p6lmfOAECgT59f0KtXqvxIUFAQwxYREdkVQxhVibe3N6ZNm2bUHmLvXicsXmwemtzcbiA9vbXJDJnlLYSEUOD48XCEhx/H5MkrsHLlZKOAZXg3Y0GBLohlZQVaOaeEVq0y5O/Gjx/PAEZERHbHPmFUZd7e3ggMDERgYCBKSgKh1XpDMslBkqSFo2OR2QxZadNU062EBH74YRCWLEnEpUsBGDZsKyRJK5/L8G7GpKQkaDTuSE6OgaVQZxjY4uPjERYWVi3vm4iIqCo4E0bVZuVKYMoUQKsFJEn3JYRuU+233rqBZs3isGKF+RJkbOwOaLUKJCfHmAQ046XJxMQlaNnyPoSHOyEgIBRAKAoKCpCUlGR1KdI0sLERKxER1RYMYVQtMjNLAxhQGr6+/BJQqYDmzZsgM7MJFIrSMQDg4CAQHn4cAJCUFGPx3Pr6r9DQc8jL+xYpKeZjvLzUFor4tUhIWGHUzoKIiKi24HIkVYvTp43DFQCUlAC+vrqNtQHdrx99pAtngO7X11/XyO0orP04Gi4nWtv+SKksMFuyHD58KwMYERHVWpwJo2rRpg0szHIBrVsbj0tIAGJjgTNndMccHG7io4+szWQBQOlyYnnd8yMiDiEs7Axyc73YgJWIiGo9zoRRtbA0y/Xhh6WzYKZj77nH+JjpTJa+UF9f4G9t+yNLM2KhoefYiJWIiGo9zoRRtTGd5bIUwEwZhqKIiEPw88sxakehD1txcRvL3P6oPCNHjmRvMCIiqlUYwqhaNW9uW/jS0/cZy8rKwqZNm1Bc7GwxbAHCbLnSsFasPD4+PgxgRERUq3A5kmpcZiawe7fuV0NqtRrZ2dkoKipCTk4jZGSEwNGx0GBJUkf3vYSYmGSrvcLKw2VIIiKqbTgTRtUuM1N3t2SbNsAPP5S2rlAodHVjCQm6ALZs2TIAhvtMdoAkadGlyxEcOdJFLsAXAtiw4d8Gm3xnmRXeW9sLEuB+kEREVDsxhFG1Mm7YqiuuF0JXXa/VAo88ItCt2yW4uV0FYLng/siRLkhIWIG8PE9s2DAK+glbIXQNXRMTl5jNgLHei4iI6hqGMKo25g1bzbcQKimR8O672xEaeg6A5U23hVCguNgJbm43YWnj7k6dRkClKoSnpycAznQREVHdxJowspm12i5At7z4229qs4atpkyL6fX9wSyNsXbs6NFvsX79ejg5OSEwMJABjIiI6iSGMLLJypVAy5bAvffqfl25svSYvr4rJWW1WWgypVKlGi0lpqe3hjDau1sLlSoVgOUu+IbF+EVFRdXy3oiIiOyBy5FULtNlRl1tl64nWPPmpWFIH5pKa7wE9Btx//NMREWlyd/p68GM/y0gISWlF1JTVXJHfHbBJyKi+oghjMplbV/IM2d0v//tNydoNO5QKguMQlNWVhCSk2OMthnShyiNxh3HjnW0sE2RLrTpm7SGhZ2BUlnA8EVERPUOQxiVy9q+kPv3A/fdB2i13pCkRHnmSh+aQkPPoVOno0azWBqNO9LSopCSooJuBsx0tqxURTriExER1TUMYVQu/b6QjzyimwFzcAAWLABmzza8E9J45krPcBbLcAPuUhJKg5hxIKtIR3wiIqK6hoX5DVRZdzpaGpOQAJw9C6xfD6xdCzRpYr5EqZ+5ssS0H5gxXQDr0+eXSnfEJyIiqms4E9YAGTZUNexiX94YwLhA35ThzJVG447cXG94eamhVBZY7Adm8my0apWBHj0OsAifiIgaBIawBqa8Ox2tjZkyRfzze8v1W4YzV4bLjvrHw8LOmG3Abfp8ffDifpBERNQQMIQ1MGXd6agPYZbGWAtfeoMHb0PTpleRmRlotg3Rli1DkZi4xKR9hSGBmJjkMsOX6d6Q7JJPRER1XZ2rCSssLES3bt0gSRIOHz5sdOzIkSPo06cPGjdujODgYCxatMjs+V9//TXat2+Pxo0bo3Pnzvj++++NjgshMH/+fAQGBsLFxQUxMTE4ffq00Zjc3FyMGzcOHh4e8PT0REJCAq5du1bha7EH/Z2OhhwcgNatyx4DaK02YpUkgR07hmL16glYufJhi9sQ5eZ6ISLiEBITlyA6ei8A/bm0GDAgCb16pZZ53T4+PggMDJS/GMCIiKiuq3MhbNasWQgKCjJ7PD8/HwMHDkTLli1x4MABvPHGG3jhhRfwkb6YCUBKSgrGjh2LhIQEHDp0CCNGjMCIESNw9OhRecyiRYvwzjvvYPny5UhLS4ObmxtiY2Nx69Ytecy4ceNw7NgxJCUlYevWrfjll18wZcqUCl2LvejvdHRw0H3v4AB8+GHpLJjxGN0SpCRpMWBA8j+d7PXhSd/mXgshSmfKLO0XaVgrplQWYODAZEyfvgQTJqzC9OlLyg1gRERE9ZEkhPGmMbXZ9u3bMWPGDGzcuBEdO3bEoUOH0K1bNwDABx98gLlz5yInJ0euFZozZw6+/fZbnDx5EgAQHx+P69evY+vWrfI5e/bsiW7dumH58uUQQiAoKAhPPfUUnn76aQCARqOBv78/Vq1ahTFjxuDEiRMIDw/Hvn370KNHDwDAjh078H//93/IzMxEUFCQTddii/z8fCiVSmg0Gnh4eFT58zOUmalbgmzd2jiAGTpw4CLefXe7WdNVlSoV4eHHUFzshOvX3bBhw7+tvo5CITB06BZERByq0vVOmTIFgYGBVToHERHRnWDr3991Zibs4sWLePjhh/H555/D1dXV7Hhqair69u1rVKwdGxuLU6dO4erVq/KYmJgYo+fFxsYiNVU3E5ORkYGcnByjMUqlElFRUfKY1NRUeHp6ygEMAGJiYqBQKJCWlmbztdhb8+bAPfdYD2AAEBSkm8HSBzBAt7SYmqqCu/s1hIaeQ3DwhTL3ixw58usqBzCARfhERFT/1InCfCEEJk6ciEcffRQ9evTA2bNnzcbk5OQgNDTU6DF/f3/5WNOmTZGTkyM/ZjgmJydHHmf4PGtj/Pz8jI43atQIXl5eRmPKuxZLCgsLUVhYKH+fn59vcdydZKm1hGEne/P9IktJkhbBwWU0IrOCRfhERNQQ2HUmbM6cOZAkqcyvkydP4t1330VBQQGeeeYZe15ujVuwYAGUSqX8FRwcXKOvZ0vDVi8vtdlMl2kne0sF91VpthoUFMQifCIiqvfsOhP21FNPYeLEiWWOadWqFX788UekpqbC2dnZ6FiPHj0wbtw4rF69GgEBAbh48aLRcf33AQEB8q+Wxhge1z9mWH908eJFufYsICAAly5dMjrH7du3kZubW+7rGL6GJc888wxmzJghf5+fn19jQcyWhq2ArpA+JibZ6kbchuMGDkxGVFRalZqtjh8/nqGLiIgaBLuGMF9fX/j6+pY77p133sErr7wif5+VlYXY2FisW7cOUVFRAACVSoW5c+eiuLgYjo6OAICkpCS0a9dOXv5TqVTYtWsXEhMT5XMlJSVBpVIBAEJDQxEQEIBdu3bJoSs/Px9paWl47LHH5HPk5eXhwIEDiIyMBAD8+OOP0Gq1FboWS5ydnc2CZk2wpWEroFsGPHiwu0FNmBYxMckWa7wMO+SHhp6z+tr9+/c3+wwcHR2hVCq57EhERA1KnagJa9GihdH3TZo0AQCEhYWh+T+p4T//+Q9efPFFJCQkYPbs2Th69CiWLl2KxYsXy8978skn0a9fP7z11lsYMmQIvvrqK+zfv19uHSFJEhITE/HKK6+gTZs2CA0Nxbx58xAUFIQRI0YAADp06IBBgwbh4YcfxvLly1FcXIxp06ZhzJgxcusMW67Fnmxp2AoAN296Y+vWYQZtJxRITo5Bp05HjWa5LHXIt1aM36ZNG97lSEREhDoSwmyhVCqxc+dOTJ06FZGRkfDx8cH8+fON+ndFR0dj7dq1eO655/Dss8+iTZs2+Pbbb9GpUyd5zKxZs3D9+nVMmTIFeXl56N27N3bs2IHGjRvLY9asWYNp06bhvvvug0KhQFxcHN55550KXYs9tWkDSBJg2JxEoTBu2Arow5px3y/DonyNxh0XLgRj8+ah0JcX6jvkh4Wd4d6PREREZahTfcIamprqE5aZCbRoYRzCJAk4f954JiwzE2jZUhgFMUnSIjFxCdLTW1vZgkhnwoRVFpcl2e+LiIjqu3rXJ4yqz+nTxgEM0H1/5gygVquRnZ2N7OxsODhkY/78v+W7I/VLjQDKDGCmd08aYr8vIiIinXqzHEm20+8NaVgX5uAAFBfn4dFHfwQABAdfkJcTExPdje54zMgIKTOAWbp7cuTIkQgKCmLhPRER0T8Ywhog/d6QjzyiK8h3cADGjwdiY5UQQr8FkcDw4brthvRNWfX0vcMMg5gkaREXtwHBwZkWa8F8fHwYwIiIiAxwObIByswEWrUCUlN1zVpTU4HPPjPdfFvCli1DodG4mz1f3yXfdJmyU6cTVovxuQxJRERkjDNhDYylJq2tWpnXiAG6Ox0vXGgOpfKE2bGIiEMICztTbmPWgQMHom3btpwFIyIiMsGZsAbEWpPWJk10d0dasmHDKBw82N3iMaWyAKGh58psRRESEsIARkREZAFDWANirUnr9evAxx8DkmSpW4nC6rIkERERVR5DWAOivyvSkIMD4OamW5LcuvUK+vbdbfY8fYNWIiIiqj4MYQ2Ii4saixblwcFBN+Pl4CAwcuQN9OwpcO+9wLBhPnB2LpYL7vXK6vtFRERElcPC/AZCrVZj2bJlAIAnntD1/XJ0LMLKlZPluyK1WgnJyTGIiUmWN+221veLiIiIqoYhrIEoKiqSf6/v+2Wp6aoQCowZ0xqdOi0p985HIiIiqjyGsAYsKysQgABQemukg4NA165uuHChoFrCF/uDERERWcYQ1kBpNO5ITo6BYQADBJ54IhtOTuoqnTs+Ph5KpRJOTk5sT0FERGQFQ1gDlZvrbWH/Rwm5uTuxadM5m84xcuRI+Pj4GD3G4EVERGQbhrAGytr+jxW5C5IbchMREVUeQ1gDpd//ccuWoRW6C1I/+8UZLyIioqphCGvAbN3/0ZCPjw8CAwPvwNURERHVbwxhDYS1uxT17SqIiIjozmLH/AbC29sbAwcOtPdlEBER0T8YwhoItVqN4uJie18GERER/YPLkQ2A4ZZFREREVDtwJqwBMNyyqKrYAZ+IiKh6cCaMbBIfHw9fX1+2pSAiIqomDGFkVf/+/eHr6ws/Pz+GLyIiomrGEEZWtWnThj3BiIiIaghrwsgq1n8RERHVHIYwsig+Pp5LkERERDWIIYws8vX1tfclEBER1WusCWsAbF1WHD16NDw9Pbk5NxER0R3AENYAeHt7Y9q0aWX2C2PwIiIiurMYwhoIBiwiIqLahTVhRERERHbAEEZERERkBwxhRERERHbAEEZERERkBwxhRERERHbAEEZERERkBwxhRERERHbAEEZERERkBwxhRERERHbAjvm1mBACAJCfn2/nKyEiIiJb6f/e1v89bg1DWC1WUFAAAAgODrbzlRAREVFFFRQUQKlUWj0uifJiGtmNVqtFVlYW3N3dIUlSpc+Tn5+P4OBgXLhwAR4eHtV4hXUHPwMdfg78DAB+BgA/Az1+DjXzGQghUFBQgKCgICgU1iu/OBNWiykUCjRv3rzazufh4dFg/yfT42egw8+BnwHAzwDgZ6DHz6H6P4OyZsD0WJhPREREZAcMYURERER2wBDWADg7O+P555+Hs7OzvS/FbvgZ6PBz4GcA8DMA+Bno8XOw72fAwnwiIiIiO+BMGBEREZEdMIQRERER2QFDGBEREZEdMIQRERER2QFDWB31wQcfoEuXLnJzOZVKhe3bt8vHb926halTp8Lb2xtNmjRBXFwcLl68aHSO8+fPY8iQIXB1dYWfnx9mzpyJ27dv3+m3Um0WLlwISZKQmJgoP9YQPocXXngBkiQZfbVv314+3hA+AwD4+++/MX78eHh7e8PFxQWdO3fG/v375eNCCMyfPx+BgYFwcXFBTEwMTp8+bXSO3NxcjBs3Dh4eHvD09ERCQgKuXbt2p99KpYSEhJj9HEiShKlTpwJoGD8HJSUlmDdvHkJDQ+Hi4oKwsDC8/PLLRvv31fefA0C3VU5iYiJatmwJFxcXREdHY9++ffLx+vgZ/PLLLxg2bBiCgoIgSRK+/fZbo+PV9Z6PHDmCPn36oHHjxggODsaiRYuqduGC6qTNmzeLbdu2ib/++kucOnVKPPvss8LR0VEcPXpUCCHEo48+KoKDg8WuXbvE/v37Rc+ePUV0dLT8/Nu3b4tOnTqJmJgYcejQIfH9998LHx8f8cwzz9jrLVXJ77//LkJCQkSXLl3Ek08+KT/eED6H559/XnTs2FFkZ2fLX5cvX5aPN4TPIDc3V7Rs2VJMnDhRpKWlif/973/ihx9+EGfOnJHHLFy4UCiVSvHtt9+KP/74QwwfPlyEhoaKmzdvymMGDRokunbtKn777Tfx66+/itatW4uxY8fa4y1V2KVLl4x+BpKSkgQAsXv3biFEw/g5ePXVV4W3t7fYunWryMjIEF9//bVo0qSJWLp0qTymvv8cCCHE6NGjRXh4uPj555/F6dOnxfPPPy88PDxEZmamEKJ+fgbff/+9mDt3rti0aZMAIL755huj49XxnjUajfD39xfjxo0TR48eFV9++aVwcXERH374YaWvmyGsHmnatKlYsWKFyMvLE46OjuLrr7+Wj504cUIAEKmpqUII3Q+sQqEQOTk58pgPPvhAeHh4iMLCwjt+7VVRUFAg2rRpI5KSkkS/fv3kENZQPofnn39edO3a1eKxhvIZzJ49W/Tu3dvqca1WKwICAsQbb7whP5aXlyecnZ3Fl19+KYQQ4vjx4wKA2Ldvnzxm+/btQpIk8ffff9fcxdeQJ598UoSFhQmtVttgfg6GDBkiJk2aZPTYyJEjxbhx44QQDePn4MaNG8LBwUFs3brV6PGIiAgxd+7cBvEZmIaw6nrP77//vmjatKnR/w+zZ88W7dq1q/S1cjmyHigpKcFXX32F69evQ6VS4cCBAyguLkZMTIw8pn379mjRogVSU1MBAKmpqejcuTP8/f3lMbGxscjPz8exY8fu+HuoiqlTp2LIkCFG7xdAg/ocTp8+jaCgILRq1Qrjxo3D+fPnATScz2Dz5s3o0aMH/v3vf8PPzw/du3fHxx9/LB/PyMhATk6O0eegVCoRFRVl9Dl4enqiR48e8piYmBgoFAqkpaXduTdTDYqKivDFF19g0qRJkCSpwfwcREdHY9euXfjrr78AAH/88Qf27NmDwYMHA2gYPwe3b99GSUkJGjdubPS4i4sL9uzZ0yA+A1PV9Z5TU1PRt29fODk5yWNiY2Nx6tQpXL16tVLXxg2867A///wTKpUKt27dQpMmTfDNN98gPDwchw8fhpOTEzw9PY3G+/v7IycnBwCQk5Nj9Iet/rj+WF3x1Vdf4eDBg0b1Dno5OTkN4nOIiorCqlWr0K5dO2RnZ+PFF19Enz59cPTo0QbzGfzvf//DBx98gBkzZuDZZ5/Fvn378MQTT8DJyQkTJkyQ34el92n4Ofj5+Rkdb9SoEby8vOrM56D37bffIi8vDxMnTgTQcP5fmDNnDvLz89G+fXs4ODigpKQEr776KsaNGwcADeLnwN3dHSqVCi+//DI6dOgAf39/fPnll0hNTUXr1q0bxGdgqrrec05ODkJDQ83OoT/WtGnTCl8bQ1gd1q5dOxw+fBgajQYbNmzAhAkT8PPPP9v7su6YCxcu4Mknn0RSUpLZv/oaEv2/8gGgS5cuiIqKQsuWLbF+/Xq4uLjY8cruHK1Wix49euC1114DAHTv3h1Hjx7F8uXLMWHCBDtf3Z23cuVKDB48GEFBQfa+lDtq/fr1WLNmDdauXYuOHTvi8OHDSExMRFBQUIP6Ofj8888xadIkNGvWDA4ODoiIiMDYsWNx4MABe18ameByZB3m5OSE1q1bIzIyEgsWLEDXrl2xdOlSBAQEoKioCHl5eUbjL168iICAAABAQECA2Z1R+u/1Y2q7AwcO4NKlS4iIiECjRo3QqFEj/Pzzz3jnnXfQqFEj+Pv7N4jPwZSnpyfatm2LM2fONJifhcDAQISHhxs91qFDB3lZVv8+LL1Pw8/h0qVLRsdv376N3NzcOvM5AMC5c+eQnJyMyZMny481lJ+DmTNnYs6cORgzZgw6d+6MBx54ANOnT8eCBQsANJyfg7CwMPz888+4du0aLly4gN9//x3FxcVo1apVg/kMDFXXe66J/0cYwuoRrVaLwsJCREZGwtHREbt27ZKPnTp1CufPn4dKpQIAqFQq/Pnnn0Y/dElJSfDw8DD7y6y2uu+++/Dnn3/i8OHD8lePHj0wbtw4+fcN4XMwde3aNaSnpyMwMLDB/Cz06tULp06dMnrsr7/+QsuWLQEAoaGhCAgIMPoc8vPzkZaWZvQ55OXlGc0W/Pjjj9BqtYiKiroD76J6fPrpp/Dz88OQIUPkxxrKz8GNGzegUBj/tebg4ACtVgugYf0cAICbmxsCAwNx9epV/PDDD7j//vsb3GcAVN9/d5VKhV9++QXFxcXymKSkJLRr165SS5EA2KKirpozZ474+eefRUZGhjhy5IiYM2eOkCRJ7Ny5Uwihux29RYsW4scffxT79+8XKpVKqFQq+fn629EHDhwoDh8+LHbs2CF8fX3r1O3olhjeHSlEw/gcnnrqKfHTTz+JjIwMsXfvXhETEyN8fHzEpUuXhBAN4zP4/fffRaNGjcSrr74qTp8+LdasWSNcXV3FF198IY9ZuHCh8PT0FN999504cuSIuP/++y3eot69e3eRlpYm9uzZI9q0aVOrb8s3VVJSIlq0aCFmz55tdqwh/BxMmDBBNGvWTG5RsWnTJuHj4yNmzZolj2kIPwc7duwQ27dvF//73//Ezp07RdeuXUVUVJQoKioSQtTPz6CgoEAcOnRIHDp0SAAQb7/9tjh06JA4d+6cEKJ63nNeXp7w9/cXDzzwgDh69Kj46quvhKurK1tUNESTJk0SLVu2FE5OTsLX11fcd999cgATQoibN2+K//73v6Jp06bC1dVV/Otf/xLZ2dlG5zh79qwYPHiwcHFxET4+PuKpp54SxcXFd/qtVCvTENYQPof4+HgRGBgonJycRLNmzUR8fLxRf6yG8BkIIcSWLVtEp06dhLOzs2jfvr346KOPjI5rtVoxb9484e/vL5ydncV9990nTp06ZTRGrVaLsWPHiiZNmggPDw/x0EMPiYKCgjv5Nqrkhx9+EADM3pcQDePnID8/Xzz55JOiRYsWonHjxqJVq1Zi7ty5Ri0FGsLPwbp160SrVq2Ek5OTCAgIEFOnThV5eXny8fr4GezevVsAMPuaMGGCEKL63vMff/whevfuLZydnUWzZs3EwoULq3TdkhAGrYSJiIiI6I5gTRgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgR1Sv33HMPEhMT7X0ZNe6FF15At27d7H0ZRFQFDGFERLVIUVHRHX09IQRu3759R1+TiHQYwoio3pg4cSJ+/vlnLF26FJIkQZIknD17FkePHsXgwYPRpEkT+Pv744EHHsCVK1fk591zzz14/PHHkZiYiKZNm8Lf3x8ff/wxrl+/joceegju7u5o3bo1tm/fLj/np59+giRJ2LZtG7p06YLGjRujZ8+eOHr0qNE17dmzB3369IGLiwuCg4PxxBNP4Pr16/LxkJAQvPzyy3jwwQfh4eGBKVOmAABmz56Ntm3bwtXVFa1atcK8efNQXFwMAFi1ahVefPFF/PHHH/L7XLVqFc6ePQtJknD48GH5/Hl5eZAkCT/99JPRdW/fvh2RkZFwdnbGnj17oNVqsWDBAoSGhsLFxQVdu3bFhg0bqvs/EREZYAgjonpj6dKlUKlUePjhh5GdnY3s7Gy4u7vj3nvvRffu3bF//37s2LEDFy9exOjRo42eu3r1avj4+OD333/H448/jsceewz//ve/ER0djYMHD2LgwIF44IEHcOPGDaPnzZw5E2+99Rb27dsHX19fDBs2TA5L6enpGDRoEOLi4nDkyBGsW7cOe/bswbRp04zO8eabb6Jr1644dOgQ5s2bBwBwd3fHqlWrcPz4cSxduhQff/wxFi9eDACIj4/HU089hY4dO8rvMz4+vkKf1Zw5c7Bw4UKcOHECXbp0wYIFC/DZZ59h+fLlOHbsGKZPn47x48fj559/rtB5iagCqrT9NxFRLdOvXz/x5JNPyt+//PLLYuDAgUZjLly4IACIU6dOyc/p3bu3fPz27dvCzc1NPPDAA/Jj2dnZAoBITU0VQgixe/duAUB89dVX8hi1Wi1cXFzEunXrhBBCJCQkiClTphi99q+//ioUCoW4efOmEEKIli1bihEjRpT7vt544w0RGRkpf//888+Lrl27Go3JyMgQAMShQ4fkx65evSoAiN27dxtd97fffiuPuXXrlnB1dRUpKSlG50tISBBjx44t99qIqHIa2TMAEhHVtD/++AO7d+9GkyZNzI6lp6ejbdu2AIAuXbrIjzs4OMDb2xudO3eWH/P39wcAXLp0yegcKpVK/r2XlxfatWuHEydOyK995MgRrFmzRh4jhIBWq0VGRgY6dOgAAOjRo4fZta1btw7vvPMO0tPTce3aNdy+fRseHh4Vfv/WGL7mmTNncOPGDQwYMMBoTFFREbp3715tr0lExhjCiKheu3btGoYNG4bXX3/d7FhgYKD8e0dHR6NjkiQZPSZJEgBAq9VW6LUfeeQRPPHEE2bHWrRoIf/ezc3N6FhqairGjRuHF198EbGxsVAqlfjqq6/w1ltvlfl6CoWuwkQIIT+mXxo1Zfia165dAwBs27YNzZo1Mxrn7Oxc5msSUeUxhBFRveLk5ISSkhL5+4iICGzcuBEhISFo1Kj6/8j77bff5EB19epV/PXXX/IMV0REBI4fP47WrVtX6JwpKSlo2bIl5s6dKz927tw5ozGm7xMAfH19AQDZ2dnyDJZhkb414eHhcHZ2xvnz59GvX78KXSsRVR4L84moXgkJCUFaWhrOnj2LK1euYOrUqcjNzcXYsWOxb98+pKen44cffsBDDz1kFmIq46WXXsKuXbtw9OhRTJw4ET4+PhgxYgQA3R2OKSkpmDZtGg4fPozTp0/ju+++MyvMN9WmTRucP38eX331FdLT0/HOO+/gm2++MXufGRkZOHz4MK5cuYLCwkK4uLigZ8+ecsH9zz//jOeee67c9+Du7o6nn34a06dPx+rVq5Geno6DBw/i3XffxerVqyv92RBR2RjCiKheefrpp+Hg4IDw8HD4+vqiqKgIe/fuRUlJCQYOHIjOnTsjMTERnp6e8vJdVSxcuBBPPvkkIiMjkZOTgy1btsDJyQmArs7s559/xl9//YU+ffqge/fumD9/PoKCgso85/DhwzF9+nRMmzYN3bp1Q0pKinzXpF5cXBwGDRqE/v37w9fXF19++SUA4JNPPsHt27cRGRmJxMREvPLKKza9j5dffhnz5s3DggUL0KFDBwwaNAjbtm1DaGhoJT4VIrKFJAyLB4iIyCY//fQT+vfvj6tXr8LT09Pel0NEdRBnwoiIiIjsgCGMiIiIyA64HElERERkB5wJIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrKD/wcnjf4SfQ+W4gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUCUlEQVR4nO2deXxU1d3/PzOTxQSSCSQsCVvCUiyCVKKGQEWKyCJg/YFNKi6gKGpBRaggj48ouCCobFq3FsGqKFTQKqgFKloFpJVFRJEKD1FigsBgJoEACZn7+2O4kzuTu6/nznzfrxcvzcydO2fuPfecz/lux8NxHAeCIAiCIIgEwOt0AwiCIAiCIOyChA9BEARBEAkDCR+CIAiCIBIGEj4EQRAEQSQMJHwIgiAIgkgYSPgQBEEQBJEwkPAhCIIgCCJhIOFDEARBEETCQMKHIAiCIIiEgYQPQRAEgyxfvhwejwdlZWVON4Ug4goSPgSRoPznP//B5MmTccEFF6BZs2bo2LEjSkpK8N///rfJsQMHDoTH44HH44HX60VmZia6d++OG2+8ERs2bND0ve+99x4uv/xytG7dGunp6ejcuTNKSkrw4YcfmvXTmvD444/jnXfeafL6li1b8PDDD6Oqqsqy747l4YcfjlxLj8eD9PR09OjRA//7v/+L6upqU75jxYoVWLRokSnnIoh4g4QPQSQo8+bNw+rVq3HFFVdg8eLFmDhxIv71r3+hT58+2LNnT5Pj27dvj1dffRV//etf8eSTT+Lqq6/Gli1bMGTIEJSWlqK+vl7xO5966ilcffXV8Hg8mDlzJhYuXIgxY8bgu+++w5tvvmnFzwQgL3xmz55tq/Dhef755/Hqq69iwYIFOP/88/HYY49h2LBhMGP7RBI+BCFNktMNIAjCGaZOnYoVK1YgJSUl8lppaSl69eqFJ554Aq+99lrU8X6/HzfccEPUa0888QTuvvtuPPfcc8jPz8e8efMkv+/s2bN45JFHcOWVV2L9+vVN3j9y5IjBX8QOtbW1SE9Plz3m2muvRU5ODgDgjjvuwJgxY7BmzRp8/vnnKC4utqOZBJGQkMWHIBKUfv36RYkeAOjWrRsuuOAC7N27V9U5fD4flixZgh49euDZZ59FMBiUPPbYsWOorq5G//79Rd9v3bp11N+nT5/Gww8/jF/84hc477zzkJubi9GjR+PAgQORY5566in069cP2dnZSEtLQ2FhId56662o83g8Hpw8eRKvvPJKxL00fvx4PPzww7jvvvsAAAUFBZH3hDE1r732GgoLC5GWloaWLVvi97//PQ4dOhR1/oEDB6Jnz57Yvn07BgwYgPT0dPzP//yPqusnZNCgQQCAgwcPyh733HPP4YILLkBqairy8vIwadKkKIvVwIEDsW7dOnz//feR35Sfn6+5PQQRr5DFhyCICBzH4aeffsIFF1yg+jM+nw/XXXcdHnzwQXz22WcYMWKE6HGtW7dGWloa3nvvPdx1111o2bKl5DkbGhowcuRI/POf/8Tvf/973HPPPaipqcGGDRuwZ88edOnSBQCwePFiXH311bj++utRV1eHN998E7/73e+wdu3aSDteffVV3Hrrrbj00ksxceJEAECXLl3QrFkz/Pe//8Ubb7yBhQsXRqwvrVq1AgA89thjePDBB1FSUoJbb70VR48exTPPPIMBAwZg586dyMrKirQ3EAhg+PDh+P3vf48bbrgBbdq0UX39eHhBl52dLXnMww8/jNmzZ2Pw4MG48847sW/fPjz//PP4z3/+g82bNyM5ORkPPPAAgsEgysvLsXDhQgBA8+bNNbeHIOIWjiAI4hyvvvoqB4BbunRp1OuXX345d8EFF0h+7u233+YAcIsXL5Y9/6xZszgAXLNmzbjhw4dzjz32GLd9+/Ymx7388sscAG7BggVN3guFQpH/r62tjXqvrq6O69mzJzdo0KCo15s1a8aNGzeuybmefPJJDgB38ODBqNfLyso4n8/HPfbYY1Gvf/XVV1xSUlLU65dffjkHgHvhhRckf7eQhx56iAPA7du3jzt69Ch38OBB7sUXX+RSU1O5Nm3acCdPnuQ4juOWLVsW1bYjR45wKSkp3JAhQ7iGhobI+Z599lkOAPfyyy9HXhsxYgTXqVMnVe0hiESDXF0EQQAAvv32W0yaNAnFxcUYN26cps/yFoWamhrZ42bPno0VK1bgoosuwj/+8Q888MADKCwsRJ8+faLca6tXr0ZOTg7uuuuuJufweDyR/09LS4v8/88//4xgMIjLLrsMO3bs0NT+WNasWYNQKISSkhIcO3Ys8q9t27bo1q0bNm3aFHV8amoqbr75Zk3f0b17d7Rq1QoFBQW4/fbb0bVrV6xbt04yNmjjxo2oq6vDlClT4PU2Dt233XYbMjMzsW7dOu0/lCASEHJ1EQSBw4cPY8SIEfD7/Xjrrbfg8/k0ff7EiRMAgIyMDMVjr7vuOlx33XWorq7Gtm3bsHz5cqxYsQKjRo3Cnj17cN555+HAgQPo3r07kpLkh6i1a9fi0Ucfxa5du3DmzJnI60JxpIfvvvsOHMehW7duou8nJydH/d2uXbsm8VJKrF69GpmZmUhOTkb79u0j7jspvv/+ewBhwSQkJSUFnTt3jrxPEIQ8JHwIIsEJBoMYPnw4qqqq8OmnnyIvL0/zOfj0965du6r+TGZmJq688kpceeWVSE5OxiuvvIJt27bh8ssvV/X5Tz/9FFdffTUGDBiA5557Drm5uUhOTsayZcuwYsUKzb9BSCgUgsfjwQcffCAqAmNjZoSWJ7UMGDAgEldEEIR9kPAhiATm9OnTGDVqFP773/9i48aN6NGjh+ZzNDQ0YMWKFUhPT8evf/1rXe24+OKL8corr6CyshJAOPh427ZtqK+vb2Jd4Vm9ejXOO+88/OMf/0Bqamrk9WXLljU5VsoCJPV6ly5dwHEcCgoK8Itf/ELrz7GETp06AQD27duHzp07R16vq6vDwYMHMXjw4MhrRi1eBBHPUIwPQSQoDQ0NKC0txdatW/G3v/1NV+2YhoYG3H333di7dy/uvvtuZGZmSh5bW1uLrVu3ir73wQcfAGh044wZMwbHjh3Ds88+2+RY7lyBP5/PB4/Hg4aGhsh7ZWVlooUKmzVrJlqksFmzZgDQ5L3Ro0fD5/Nh9uzZTQoKchyHQCAg/iMtZPDgwUhJScGSJUui2rR06VIEg8GobLpmzZrJlhYgiESGLD4EkaBMmzYN7777LkaNGoXjx483KVgYW6wwGAxGjqmtrcX+/fuxZs0aHDhwAL///e/xyCOPyH5fbW0t+vXrh759+2LYsGHo0KEDqqqq8M477+DTTz/FNddcg4suuggAcNNNN+Gvf/0rpk6din//+9+47LLLcPLkSWzcuBF/+MMf8Nvf/hYjRozAggULMGzYMIwdOxZHjhzBn/70J3Tt2hW7d++O+u7CwkJs3LgRCxYsQF5eHgoKClBUVITCwkIAwAMPPIDf//73SE5OxqhRo9ClSxc8+uijmDlzJsrKynDNNdcgIyMDBw8exNtvv42JEyfij3/8o6Hrr5VWrVph5syZmD17NoYNG4arr74a+/btw3PPPYdLLrkk6n4VFhZi5cqVmDp1Ki655BI0b94co0aNsrW9BMEsTqaUEQThHHwattQ/uWObN2/OdevWjbvhhhu49evXq/q++vp67s9//jN3zTXXcJ06deJSU1O59PR07qKLLuKefPJJ7syZM1HH19bWcg888ABXUFDAJScnc23btuWuvfZa7sCBA5Fjli5dynXr1o1LTU3lzj//fG7ZsmWRdHEh3377LTdgwAAuLS2NAxCV2v7II49w7dq147xeb5PU9tWrV3O//vWvuWbNmnHNmjXjzj//fG7SpEncvn37oq6NXKp/LHz7jh49KntcbDo7z7PPPsudf/75XHJyMtemTRvuzjvv5H7++eeoY06cOMGNHTuWy8rK4gBQajtBCPBwnAkbwxAEQRAEQbgAivEhCIIgCCJhIOFDEARBEETCQMKHIAiCIIiEgYQPQRAEQRAJAwkfgiAIgiASBhI+BEEQBEEkDFTAMIZQKISKigpkZGRQ2XeCIAiCcAkcx6GmpgZ5eXnweqXtOiR8YqioqECHDh2cbgZBEARBEDo4dOgQ2rdvL/k+CZ8YMjIyAIQvnNy+QwRBEARBsEN1dTU6dOgQmcelIOETA+/eyszMJOFDEARBEC5DKUyFgpsJgiAIgkgYSPgQBEEQBJEwkPAhCIIgCCJhoBgfgiAIgjCBhoYG1NfXO92MuCU5ORk+n8/weUj4EARBEIQBOI7D4cOHUVVV5XRT4p6srCy0bdvWUJ09Ej4EQRAEYQBe9LRu3Rrp6elU/NYCOI5DbW0tjhw5AgDIzc3VfS4SPgRBEAShk4aGhojoyc7Odro5cU1aWhoA4MiRI2jdurVutxcFNxMEQRCETviYnvT0dIdbkhjw19lILBUJH4IgCIIwCLm37MGM60yuLhcQCARQV1cn+X5KSgqZWAmCIAhCBSR8GCcQCODZZ59VPG7y5MkkfgiCIAhCAXJ1MY6cpUfPcQRBEAQBAOPHj4fH44HH40FycjLatGmDK6+8Ei+//DJCoZDq8yxfvhxZWVnWNdRkyOJDEARBEA7hdCjDsGHDsGzZMjQ0NOCnn37Chx9+iHvuuQdvvfUW3n33XSQlxZ9McM0vmjt3LtasWYNvv/0WaWlp6NevH+bNm4fu3btHjjl9+jSmTZuGN998E2fOnMHQoUPx3HPPoU2bNg62nCAIgiCawkIoQ2pqKtq2bQsAaNeuHfr06YO+ffviiiuuwPLly3HrrbdiwYIFWLZsGf7v//4PLVu2xKhRozB//nw0b94cH3/8MW6++WYAjYHHDz30EB5++GG8+uqrWLx4Mfbt24dmzZph0KBBWLRoEVq3bm3Jb1GLa1xdn3zyCSZNmoTPP/8cGzZsQH19PYYMGYKTJ09Gjrn33nvx3nvv4W9/+xs++eQTVFRUYPTo0Q62miAIgiDEYTWUYdCgQejduzfWrFkDAPB6vViyZAm+/vprvPLKK/joo48wffp0AEC/fv2waNEiZGZmorKyEpWVlfjjH/8IIJxy/sgjj+DLL7/EO++8g7KyMowfP97W3yKGayw+H374YdTfy5cvR+vWrbF9+3YMGDAAwWAQS5cuxYoVKzBo0CAAwLJly/DLX/4Sn3/+Ofr27etEswmCIAjCdZx//vnYvXs3AGDKlCmR1/Pz8/Hoo4/ijjvuwHPPPYeUlBT4/X54PJ6I5Yjnlltuifx/586dsWTJElxyySU4ceIEmjdvbsvvEMM1Fp9YgsEgAKBly5YAgO3bt6O+vh6DBw+OHHP++eejY8eO2Lp1q+R5zpw5g+rq6qh/BEEQBJHIcBwXcV1t3LgRV1xxBdq1a4eMjAzceOONCAQCqK2tlT3H9u3bMWrUKHTs2BEZGRm4/PLLAQA//PCD5e2Xw5XCJxQKYcqUKejfvz969uwJILxXSkpKSpPI8jZt2uDw4cOS55o7dy78fn/kX4cOHaxsOkEQBEEwz969e1FQUICysjKMHDkSF154IVavXo3t27fjT3/6EwB5F9zJkycxdOhQZGZm4vXXX8d//vMfvP3224qfswPXuLqETJo0CXv27MFnn31m+FwzZ87E1KlTI39XV1czJX5SUlKi/g4GM3D8eDZatgzA76+RPM4oTmcaEARBEM7w0Ucf4auvvsK9996L7du3IxQK4emnn4bXG7aVrFq1Kur4lJQUNDQ0RL327bffIhAI4IknnojMqV988YU9P0AB1wmfyZMnY+3atfjXv/6F9u3bR15v27Yt6urqUFVVFWX1+emnn5r4HYWkpqYiNTXVyiYbIjs7G5MnT0ZdXR1WrEjDnDl+hEIeeL0c5s8PYuzYU6aLEKszDUhUEQRBsMGZM2dw+PDhqHT2uXPnYuTIkbjpppuwZ88e1NfX45lnnsGoUaOwefNmvPDCC1HnyM/Px4kTJ/DPf/4TvXv3Rnp6Ojp27IiUlBQ888wzuOOOO7Bnzx488sgjDv3KaFwjfDiOw1133YW3334bH3/8MQoKCqLeLywsRHJyMv75z39izJgxAIB9+/bhhx9+QHFxsRNNNo3s7GyUlwPTpwN8TalQyIMZM7JQWpoFoUYwQ1RYmWnAQvomQRAEEebDDz9Ebm4ukpKS0KJFC/Tu3RtLlizBuHHj4PV60bt3byxYsADz5s3DzJkzMWDAAMydOxc33XRT5Bz9+vXDHXfcgdLSUgQCgUg6+/Lly/E///M/WLJkCfr06YOnnnoKV199tYO/NoxrhM+kSZOwYsUK/P3vf0dGRkYkbsfv9yMtLQ1+vx8TJkzA1KlT0bJlS2RmZuKuu+5CcXFxXGR0ffddo+jhaWgA9u8HeMOXG0QFq+mbBEEQdqM2RMHsUAae5cuXY/ny5YrH3Xvvvbj33nujXrvxxhuj/n7++efx/PPPR7123XXX4brrrot6jeM4fY01EdcIH/6CDhw4MOr1ZcuWReoCLFy4EF6vF2PGjIkqYBgPdOsGeL3R4sfnA7p2bfybRAVBEIR7EIYySEGuf/NxjfBRoxLPO+88/OlPf4pEnMcT7dsDL70E3H572NLj8wFPP30CPl8NKivDxxw7dszZRhIEQRCaIFFjP64RPgQwYQIwdGjYvZWd/TPWrFmCl15yulUEQRAE4R5I+LiM9u3D/yorT9v2nVIp9ARBEAThNkj4xDFmCJYdOy7Ce++NBMd54fGEMGrUWvTps5OpNhIEQRCEWkj4xClGBAufQRAMZkTOAQAc58V7741Ely774ffXGM40sFpUqYFqChEEQSQWJHziBKHlBICsYFGCzzTYtAlYuDB6VxOO86J//3EYOFBfUJ5aUVVbW4tKPmpb4jxGiycGg0GsXLlS8TNq0v9JQBEEQbgDEj6MIzWhCjO4Yi0nxcVbI4KCh+O8OH68pWpLTXZ2Nvr2FU+hLyrKht45XI2o+tWvqvDaa68pnktrPSK1dY5iUUr/d0P9JIIgCCIMCR8b0GsNUDOhillOtmwphscTihI/Ph+Hu+4ajvz8JNWTr1gK/YsvNhZM1IuSqPL5rKlHZFX9IqqfRBAE4R5I+FiMEWuAmony+PHsJtYdwIvi4s3YurUYHOc9J1g8KCxso6XpAKJT6Lt2NS56eORElYyHyxGOHTsmK06pfhJBEERTPv74Y/zmN7/Bzz//HLWHphz5+fmYMmUKpkyZYlm7YmdMwmTMtAYEgxk4eDAfwWBG5LWWLQPweKL3svB4Qigq2oYpUxbhnXeCKCsLCxi9tG8PDBwIpKUFUFlZKfkvEAhoOu+ECUBZGbBpEwy30UrWrFmDZ599tsnv40XtmjVrHGoZQRCEfsaPHw+Px4M77rijyXuTJk2Cx+OJ7IwQT5DFx2b0pm9LZUD5/TUYNWpt5D2fj8O8edUYO/a6c1YKvynttiqOha9LJIddKe9K3xMrTsl1RRCE2+nQoQPefPNNLFy4EGlpaQCA06dPY8WKFejYsaPDrbMGEj42ojd9WykDqk+fnejSZT/69x+HoqJstG+fBSDL1LY7FcdiZcq7UOgcONDV8dR6giAIu+nTpw8OHDiANWvW4PrrrwcQtnJ37NgRBQUFkePOnDmD++67D2+++Saqq6tx8cUXY+HChbjkkksix7z//vuYMmUKDh06hL59+2LcuHFNvu+zzz7DzJkz8cUXXyAnJwf/7//9P8ydOxfNmjWz/seeg1xdNiElXoRuKynE4ng4zotDhxpNJX5/Dfr1qzMtBkcJMbebFd+h95opsWPHRVi0aApeeWUcFi6cgnffHaX6ewKBsMtPKrbHjmtDEET8UV4edv2Xl9v7vbfccguWLVsW+fvll1/GzTffHHXM9OnTsXr1arzyyivYsWMHunbtiqFDh+L48eMAgEOHDmH06NEYNWoUdu3ahVtvvRX3339/1DkOHDiAYcOGYcyYMdi9ezdWrlyJzz77DJMnT7b+Rwogi49NSIkXPsVcDj6OJ/bzb711Lerq7LdM2FV40Mg1kyNWUInpf15Y+v17o15XcvmxUJTRDVDdI4KIZulSYOLEcKar1xtO/rAr7vGGG27AzJkz8f333wMANm/ejDfffBMff/wxAODkyZN4/vnnsXz5cgwfPhwA8Oc//xkbNmzA0qVLcd999+H5559Hly5d8PTTTwMAunfvjq+++grz5s2LfM/cuXNx/fXXRwKXu3XrhiVLluDyyy/H888/j/POO8+W30vCxybExIvHE0LLlscVPxsbx9NItMuLt0BYOWkoud3MgK8zpHTNtFaO5o8Xz4RripiwlJusy8tzLa10zTJahAzVPSKIaMrLG0UPEP7v7beHM2rtsOK3atUKI0aMwPLly8FxHEaMGIGcnJzI+wcOHEB9fT369+8feS05ORmXXnop9u4NLw737t2LoqKiqPMWFxdH/f3ll19i9+7deP311yOvcRyHUCiEgwcP4pe//KUVP68JJHxsIla88NYAObEgnCj79NmJlJQzeOut30Udw3FefP11D1xwwTdR2UVWTRpWWWGE8EUO6+rq0K5dNWbM8KOhwRMVuF1bW4u6ujrJ6s5i4o8/b1nZWbz6KodQyCN4NwSPB7LCUo4dOy7Cu++ORKz1iOO86NnzGvz2t/64ncS1Chmqe0QQ0Xz3XXRNMyBc5mP/fnuEDxB2d/Eupz/96U+WfMeJEydw++234+67727ynp2B1CR8LCZWvHTpsh/Hj7dEy5bHoyZTMWsAP1FXVFRgzZo16NDhkIjLi8P69cOwYcOQKLeKVZOGEcuVFniRMG0aUFrK1xHyoH37LAQCDXjppZcUzyEm/rKzw1Wno2sIcRgxYq2ksFQSdbwVTMxl5vGE0Lt3s7gVPQAVcCQIo3TrJl7QtWtX+9owbNgw1NXVwePxYOjQoVHvdenSBSkpKdi8eTM6deoEAKivr8d//vOfiNvql7/8Jd59992oz33++edRf/fp0wfffPMNutr5w0Qg4WMxQuuFFHKuKeEKuanLiwMQtlqocTmZEVehx3JllNiUdzMmWmFhxuzsKqxZsxPBYIaiay32nMFgBr7++gJR1xl/bfLz+zd5L1Ghgo8E0RSrquRrwefzRdxWPp8v6r1mzZrhzjvvxH333YeWLVuiY8eOmD9/PmprazHhXCDSHXfcgaeffhr33Xcfbr31Vmzfvh3Lly+POs+MGTPQt29fTJ48GbfeeiuaNWuGb775Bhs2bNC1nZBeSPjYgNHVvpjV6Ouve2D9+mFRx8lZJ2LdEVI1a6RcZEYsV1ajt85Po6Bqgbw8da41qT3ShCIUADweDmvXBlBU1N911h6rAo+rqqqwatUqI00jiLjFqir5WsjMzJR874knnkAoFMKNN96ImpoaXHzxxfjHP/6BFi1aAAi7qlavXo17770XzzzzDC699FI8/vjjuOWWWyLnuPDCC/HJJ5/ggQcewGWXXQaO49ClSxeUlpZa/tuEkPBxAUKr0bFjx7BmzRpccME32LBhiGqXk3Aik8s8kprwjFqurMKsLCqtrrWmmWEe8OLH4wnhySercdVVrYz9OAfQEq8DoIkYlOPo0aOG2kYQ8Y6agq5mEmuRieWdd96J/P95552HJUuWYMmSJZLHjxw5EiNHjox6LTYt/pJLLsH69eslz1FWVibbJjMg4eMSYgWFXpeTkaws1iwXVmWYqXGtiWeGeTB06Ifo0eMbjB17HcwuIqkXLRYctW7Eo0ePYuXKlZrasWnTJtHX7arMTRAEAZDwcTVyLicp7MjKsgunfkswmIGTJ9MBhCAMaPZ4QujR4xumUtetSh2vr6+XfE+LkKG6RwRB2A0JH5fj99domuTtysqyAyd+S9O4nrD48XhCeOihCkyceB1TxffszrjSImSULHZ2iUcqpkgQiQUJH5ehdjKQOs6JrCyrUPNb9ExqsZ/hY1jE4no8Hg5jxqxChw7lmDjxOuTm5pr3AzUi9luNZlBpsd5odT1KWezsrHtExRQJIvEg4eMyzAgy5l1k4b2+POjQ4VDkPX6irKjw4uDBJBQUnEVeXkjVeZUoLw8X6urWzVgAn9oMs0OHDuGDDz6I/K0mk01uIpSaqJs1q3VcOKqdwKWuAX/fpbLW1FhvxNL65VyPyclnRC12dtY9SvQaRGTtMg+O45xuQkJgxnUm4eNCzBiIpHYjX7NmjeyEp3Xlyw+sK1akYfp0P0IhD7xeDvPnBzF27CnFgVU4MAvFWElJCaqqqrB+/fqIu4/fHJSf1IWiR20mm1idHl4osOwmVDMxy10DYdVvQJv1Rj6tP4Tk5Lqo+yL1Gb5NeXmXgLAesnaZQ3JyMgCgtrYWaWlpDrcm/qmtrQXQeN31QMInQRBaSeQmNQCyE56WlS8/sAaDGVi0aAo4LjwhhkIe3HdfJn788WX4/TWSA6twYG46aW+Lsj7ITep6s7/EzulWN6FZbqhY641SWv+FF+7G0qW3Rl2vLl32i3wmhAkT/oL27SuRkkIFH+0g0a1dZuHz+ZCVlYUjR44AANLT0+HxeBQ+RWiF4zjU1tbiyJEjyMrKalJkUQskfOIQMZdSdnY2SkpKsGrVKtlJDfCYlinFD5hKk6jUwMq/rjRpK72vJ/tL6pxTpizClCmLNBVvdMKdEOvS0noNlKxbSUnhoUMurb9Dhx8ioof/vvfeG4nhw98X+YwXxcWD43pPM7WQ+8l9tG3bFgAi4oewjqysrMj11gsJH8YwGgezdGnjLr9eb7gM+rmK4sjKygIgP6nV1DQ33Z1j1EWkNGkrva/n++XOWVDwPW6++cqo3YulJiMn3AlilqouXfZLXgOxuB+/vwYPPVSBRx5p16SKtVDgSV3bHj2+kbyG778/okmbWdnTzOmaQnb1F9o6xFw8Hg9yc3PRunVr2VIPhDGSk5MNWXp4SPgwhJxoUSIQCKCs7CwmTmwd2XU8FAJuv51Dbu4x1NWloEOHxkmouHgrtm4tjpochXE/sXEXRiYBo5lkSsJF6X093690zpycHFUZXHIxQ8LvN8udIGepErsGUrFeADBxog8TJniiqlgLizLyQfZi23yMGHEVKit9ePVVLtIfw0THAIVhI7aHhZpCdrif1IorQjs+n8+UiZmwFhI+jFBe3ih6AF60hPduUbL88APZwYP5CIXGRb3X0ODBiBHZALzwejPRq9dvsXv3hecmxhD69duMoqJtAHAuDkc87kKsvVosU3qKLfIoCRc1wkbr91uR9m/HxCpnqerTZycmT+6GQ4dSsWfPOwCi73lTF2IQfj/QvXv4PJUx3SAlJQW5ubmi23wAWTj/fH7jRQ4NDeH+JLaD/bXXvoWePfcCsFb4yKX7W1UFnEWkRJPT1i4rYdV9yGq74h0SPgwQCATw+edAKBTdwRsagG3bAkhLk8/k4h8cMStFeIUd/jsU8uDLL3ujccXtxdatxSgq2iYRq+FFfX3TuBW9limtxRaFKAkXNcJG6/cbEWux2DWxKlmqevbMQs+ewKFDNTh4MF/WRahmSwre5SK1x9CECcCll1bh6af/juTkuqiYH75tHTqUAwhvYmrVQK9k5VByl7JSidsqWLB2WQWr2WustisRIOHjMMLMJ49nSpNJYfPmV7Bnj3TmkxAxK4VY4KkQfnBXGwezZ08VJk5s28Sd9qtfHUF+fpKlD6iScNErrISTWuwEJ3VOrROh1dtr8O1RslSlpKTICmWt8VxqXC69erXA00+PwtGjR3HkiHTb+J3brRjoldopdi18Pg533TXc8n4thx1WGDNEOcuWC1az11htVyJAwsdh+E6tNGGp7fxCK4XYCluszgpvzVDj2nn99X8jFPpl1GsNDR4888wHKCj4nsnVSWlpKfx+v+h7sQOyVbvQW10DKLbds2YdRVlZEvLzz56Lnbkk0u5AIABAmzvP6AScnZ2Nuro6VVY0JwZ6/lqsWzfqXKwS8OKLHhQWtrG9LTx2WWEOHepgyNpFlgvCbZDwYQizXCtCK0XsxHbhhbsjMT6xE53c9//mN7/Bpk2bFCdw4aRldHsNtZ8vKSmJZKyJnUPrYGvF4GzHViHCdufmAoWF0scpiaSqqqqIBUZuAuZjZLRcZ6mCk3YiJuT69NmJWbOKUFPTBl27Gqsubkb77HCN8vc2Fo8nhOuvL0KfPqMU76vbLBesxjKx1C6WLXhmQMKHScwrfiUmZgYN+khSXEm5dlq0aBF5X+0ELmY9id0KQ+4Bssr64hRmxgwZRa1IUpqAhRWftazonYwpkfvuvLwQHNxuLYLVrlFArPgkT/ia9Ox5iWueLbWwGsukt11WCJREsOCR8GEIqx7KWDFjJMgY0DaBCx8MPUHRbn2weMyIGVIa3Gpra5Geni7bBr3XUWoC/uabHujR4xtdKflOZlA5nb2l5l4Cyq5RM4KtxRMajGfZKe0HF4tc/xRer6qqKpw9ezbq/eTk5IgbW6mfO33vzW6XVQLF7hIcTkDChxGseChjO6yZplQt4kmuxpAdQdFWILWHWOyGrkatVrGDm9I9VLMRqxakMgX/8Y9hWL9+iC5xboc1w87vVrvqVjtR3XDDDUhPTxetj8QXkDTyvPCiSUpc8Vl2esSVlv3ghIj1Tz31huT6uZP9Tg697bJKoFRVVUX+n1ULmVFI+DCCkYdSbICK7bBisT12dGClGkMsB0VLIb+HWNMNXY38LuGgpTQIqd2IVQuxrk1hcLxece7kZq9mf7eWVbfae5Ceni5bH8koQjFuprgysngTuzZ6+mxdXV0TIcpbmozee6viXszok2YJlEAgEIntY9VCZgYkfBjBSOePtSrs2VOF2bO7R3VYYf0ePR2Y35tJK2pTp1k0m0oVaVS7h5iZv8nofmVaEYpp3rX5zTc98I9/DIs6Ts+K2YxAb62TkJZ0fy0YCexVY4GVqo8Ui9brwf+/meJKzeJNjRtMSkAIP8t/X+x5Dh06hA8++EC0fUbuvRVuJbP6pJnPvrAPbdtWxKSFzAxI+DgM79NX6vz8cVIIH7bNm1NU1+8RduDRo0dH7T/FI6z9ohc7sprMgJ9AVqxIw/TpfoRCHni9HObPD2Ls2FNRg5CdpnOj+5VpRSimjx07hjVr1qBHj2+wfv0Q3StTMTGlZbNXHj2TkJZ0fyOodSeb6UIwOimrFVdKSC1ukpPrcPBgPioqcrFx42BVbrDJkydH/S28XmGrY7gwa+x5YkVP7P3g+13Pntegd+9mqu+9FW4ls/qkFeNQMJiBLVuKm7xul2XWakj4OIwwKFVuMpALXhUSCASQnX0cHk8L2fo9AIeKijwUFHwfeSUvL0821kQNcpMWS1lNYgiLSYa3cuDjkTy4775M/Pjjy/D7a1BSUgLAXpeN0f3K9BDbF4yKV7Oy9PROQmoz2fSiVsyYbZ1zOp1cznJx4YW7BbXEmrpJW7c+jPr6VNl71zT7zNPkPGLXbvPmYlGh5ffXYPjwNOTm6qvRZKZoNdIn+VgcK57948ezIba9THHxVubGbT2Q8GEMIxlXwpXfqFHRD+cvf7kX33zTA43ix4ONGwejZ889mDjxKrRq1Up2wjFr0jKaUWYl/G9TWkHxmSV2WrGUvsuuthgVr2bHcbESfKlFzFhtKbSrHozQvVZaWor6+nqMHg3ceOO/sXbttyIFVJtanfn35e6dVPaZ8Dyx127z5mJs2HAljMajxcJK3IswFsfvr8HgwRubiDwj7RFPaghF9nV0OyR84gihKImdoI4fz8Y331wQdXzjgOFXNSG5JfjYKFpWUGqEgNYNXaUwY78yPVi1jYdRWJmEAG1ixsgKXW6jVcA+IajkXisogOhecNFwqu6d+CTcSOy1CwYzsGHDYKhx72uFlcyw2KQHXvQAIQwevNHwPVezkHLz/nUkfOKY2AnKqUwaPZglFvSg1XoiJQSOHTsmGyukR0gqWcyssKixWkiSlUkI0CZm9Frn5Esb2CsE1bgbpTdN9gAIIdaVInXvxK4XxwHCGB/hZ6TcNGaMd05mJArh3VxN3YDeiCVfb8A+j9xCqrS01NULYRI+CYLcYFtVVYVcC8vVSpneY7M0ePTu/m4mZlhPli3bIBsrNHnyZJw6lS0r8MxaVRk9j5ODXGzNpF27TiEYzGBmEgK0r5D1BHcrlTZo0eJnR4SglJVJ7JoMHrwReXkVovsIxt47uesFQPLZlBJcgwdvNKV+mdNJGkI3l1LmlVGBIrWQktr70C2Q8EkgpAbbVatWWVZHZ9UqPlA4elCMHSw7darFPfeELT286AH4QofA0KHOWH7EHvrk5GRVn1eySCxf7sP06fICT421xcrKzU4jXjOpDTyeKRg1aq3jk5AWMWOW5UzKsjNhwl9sF4JKVia5a6J072Kvl1Ll5mAwiJUrVzYRJ0AIV165Ef37bzXlNzudpCEsp6GUeaVVoOjZX9FJ67xeSPgkGFKTuRUZH+XlwNSpzc+ZpcOD4rp1o3D77cWYMycnYgnhOC+mTWuOMWPCDxAvengaGsJ1Rlh5qPx+v+wExqd/y1kkgsEMzJnjjxF44pWsjYqW8nJg0yZ3DUw8SjWTpkxZhClTFjk2CWkVM2YIUClBXV+fYrsQVBL3sSUy+GcDUCcgorOe1Fullc6t1QJqdZyb2krwQqzIvNLan5Ws86yKIhI+DiP1oMS6h9wYSCYuYjzYt6+VqLjZvj2I9u1Pw+tt3NoCAHw+DhkZRxAIsLO1hZp2yJnFw5Wso4MvzaxkraYekZ7z6xmgzUBugi0o+N72YGsnd6+WE9QFBd/rro9kdlsAICcnJ0qwWCkg1J77hhtu0HxvrIxz01oJnsfMzKtogaL8G9RsQ/TOO9mOhyxIQcLHYcQeqBUr0s5ZA8KT1YIFJ5Gd3dzBVmonEAggM/NsExHj9XJo02Y/vN6uTV7/5JOl8PtrMHJk9MM/YsRarF0r/vCbiR4zrxJSK08rK1mrrUek9VrqHaDNQOl6xVoWrBQeavdPs6qvKsWZ3HzzlU0KkVp1PbTGvFghIBonbWuD8K3qT3orwZsVb6Q1plLNNkQtWx7H4sX3Mrs3IwkfBhB2gvJyROI+gPBkxbuBlEyFrFiFhBNDrIgZOXItvvtup+jr/AMrZ6a2cmsLq1Z1YitPK4Mk1dYj0notndiqg0fpesVaFqxE7f5pZlwHoWVpz54qHDyYj5YtA7LPiJ3XAtAe82LGpCdt0fRh7Fh3xrXpyVI04tLTu3m0mm2Ijh/PttSibRQSPoxhJMZFbOIuKyvD+vXrLWipNHL1hNSIG8C5Qof8w2iHb9rqIEm9WU9Kv92pNHKng0pjsTp9XNzC9ssmmVNOYNRlZcRlapVF02n0Pq9S114uo+urr37G00+vxcmT6QiFfhf1nlqBorQYYXlvRhI+NqF2Iu3WLWxuFIofnw/o2lXd97D4oEunRLJZxdnOdHorr4Eeq5Ka3+5kGrmZ18uouLVaAKq1sMVih+XXiHXUqMvUKoum05htBZbK6Ao/41kIhcbB4wkhtqaSFoEitRhhIe1fDhI+NqBlIm3fPvz+7beHLT0+H/Dii2xFxMczZqTTs+JyBNRbSdSYvXlYH9TkMDPo2y4BqCVzyk4Xj97vMctlaub1NyKCzbQOq3le9cYiij3jjQUhw+JHz7MstRhhzUIrhISPxWiZSPlB+aqrgG3bvIKdekOorNQ3qFkRsBuvBAIBfP45EApFX+OGBmDbtgDS0tQN9nKrYWE6r10oWUnUBCsWFHyP0tLSyOt2DWpm9l+zXSR2CUCtmVNuwajFzOj1NyKCrcqa5H+X3G/QY22Te8Y5zotrr12FZs1qTX+WWbXqk/CxGLUxO1J73+zZE/23Vr81q9sNsIZwUvR4pjSZZDZvfgV79qifFN10PdUEKwJAfX191OfsGNTM7L96XCRisSh+f1XkfTsEoJstbFIEgxk4eTLdsMVG7/U3IoJZiDFSqvgeW7tL6Rnv0KHc1f1JKyR8LEZtzE5Z2dlIxoZcB9Tjt3bLJGzXrtJCeDN1Zqa6HdeNxg2wbIFjdYK1OzWeRzoWpQUGDy6OVAK2QwCy7DZQCy8iX3qpIVLNHQhF7oXe/qbn+huJEzI7xkjrmKAUOiH2/lVXhd9j9Rm3GxI+FhIIBODz1WH+/DTMmOFHQ4MHPh+HefOC8PlOIRAIr1TDHbV1JNjMqh2VWUbtrtJmCoLoAaI1Ro68CH367LR0krHDAmdEXMn99mPHzlMlzll3m6od/OViUTZsuBIAZLdB0HId1MSJsOo2UENTK0njppocF8K1164ybHXQs3AyEidkVoyRljFBKXRC6v1t2xrbaHR8Y/35VgMJH4uIdV3dfXdGpKOdOFGDl14Kvz569N2YOLFFVLBZbMaG1GaerKL1wRCbWNatG4VZs4oi6a38ec1a/TcdIDxR193KScZqC5xRcSX223fsuAhz5nRFKNQtKpZBy3n1YkVpAbHBn3/OKiq8EIbMiK3sAQ82bGjcBbukpARZWVmRd9VcB6U4kWAwaM6PZQA5KwngRbNmtYaeN7GFkxq0WkDKy4HPP09BMJhhqvVEzTOjFIN45kwVdu7MEn3/yy9PRr1mZHyTG1/4/dKUcFo8kfCxCLEqm2Idbd++UJMYIKG5NPaBbteuGtOmWdlyadROQHIPBr/RoHBzwc2bU7BwYfRg2NDgQU1NG1gVsykWe2VHLRq7MFN8NArTxliGGTOyUFqaZXm2oZWlBYTPpPA5e/VVDvPnV2HIkGMApLYGAAAvtm0rwpAhG+HxeDQFGKuNE1GD05OIFvRYSWLHndjfK5Uddu+9/4eUlIDis6DWAtLYF7Mjm+RqEdBGUBuDKPX+nj3vQM+G6vy1jr0HUtc0NzfXFTGlJHwcpqDgbJMYIOFGlrEP9IwZfpSW2p/ernUCknswYunb11jtIj2IxV7ZVYvGbYit0rVmumlFb1VZPcQ+Z43iYwOA8CT2619/ik8/HQAguhrt1q3FKCrahpUrV2oKZlUbJxJrSYqFhUlEC1qsJCkpKRLjTnhhdeTIEaxatUryGi5f/pnqKsFyFhCpNPBYCzHQVECbJdT5/qJ0/YxaocRKI5g19rMECR+HycsLnavbw6GhwdNkI8umE47H9p3KzahtI4XaOCgzEftOr5eL2jaDaERqla41000tatPrzfpeqYlz27YibN1aHJlAOnUqw/ffFzQ5zkjBPCULSFZWlitT1eWQs7DwE29tbe05scFJCl9eEFq5711VVRVWrVolmQYutBCLCWixcdKo61bJQmUkhie2NIKVY7+TkPBxmGPHjuGqq4APPqjC669vi+qoyclnmjzQPh+Hrl09UqezBCPbaMihNg7KzIlV7jsTVfQouUqsznSLRW16vdbvlfqdUrtc86IHCE9yP/zQCXJVbvWQqFk2UhaWnJwcpKSk4KWXXlIUviUlJZFzWXUNz54NZ3uqcdGpsYya5bpVitHRG8MT+4xYNfY7DQkfhxEWsysQLCaFJlOAAxC2Bj39dC3at7d3p3aj22hIIZy4pDIygsEMbNoUdoeZ8aCpjb2Swk3xFGqRiskSFlt0Ip3a7Akt9nfyv0/se4qLt2LLlv5Rn+c4L/r12xxlBVLTHqUVfjykqpuJWuHLixJA+zVU+xwnJycDUNcXlSyjjYks4fecsJ4IXVmxiLlNrRr7nYaED4PEmkzDoofDm29+j8suOw+VlTW2+vat3kZDKpWdf33hQq/le2bFIjZAuC2eQgtqKxXbPSmbLQqkfmfs9wCIsvgA4UmsqGgbioq2qW6P2hW+m1PVrUKr8NVyDdVmPqrZcFlte8USWey2nmip8u1EGIJdkPBhEPGYAw/ef/8T7N37feQ1O3YftmIbDSFSGRmtWx+O8Zfbuzpy6zYA8YjVokBobSwoaHy+lIJI5VAKzk5Pr7Ls97CIltpSWsSGEdSMW5WVlVF/K/VFufb6/Ufg9baM9AcgHLqQkXEEgYB5wfpm4EQYgp3EpfD505/+hCeffBKHDx9G79698cwzz+DSSy+1tQ1GXCJqUz6t3n3Yqm00hEgFlv7wQ0dRf7nbfcsEW8gVzjS6HYJSjEoioaW2lFaxwRpS7d2yZRVGjozubyNGrMXatfK70TuB2pAAq+cgq4g74bNy5UpMnToVL7zwAoqKirBo0SIMHToU+/btQ+vWrW1rh9KDLrdZJSsBj2o7tZHOLyXyOnb8QSSwO+xbtqKgHZFYBAIB7NlTJbs7OGBsOwQzKvtKLaDMeAbsfo5YmdSdRE5MK4lCNShVr47HGEU9xJ3wWbBgAW677TbcfPPNAIAXXngB69atw8svv4z777/f1rZoedBjO2yiBDxKibz27SujXud9yytXQlDl1t64HyI+EFpkOO6XUe8ZKWIZO6koLWBKS0tx8mQLHDyYhIKCs1FVyvnziY0hZmQGWVkY0i74wGMlWJvs9YhpNRaz5ct9WLy4VZMK4DzxHKOolbgSPnV1ddi+fTtmzpwZec3r9WLw4MHYulV8T50zZ87gzJkzkb+rq6stb2csUuZ2t5l4tVJVVQVAehUU+/qPPyKmym181JQwgpWrdqc2VLX6e82wyMQGv0tNKnILmHXr2mL69CzV4kNNUUelXbvtLAxpNX6/n5l97+xA7neUlwP/+7/RW/DYVV3djcSV8Dl27BgaGhrQpk2bqNfbtGmDb7/9VvQzc+fOxezZs+1onihSwb1Cc7uTWLVjeiAQwKpVqyJ/S4k84eviBR21xf2wvDu6Vqxetduxoarc95aVndVsDdGCEZdyXl6e6u8X69vBYAbmzPGrTm1WEzf0888tsXbtKElrqN2FIfWi5RllYd87vsihk8RrvR2riCvho4eZM2di6tSpkb+rq6vRoUMHy7+Xf7iVStY7yYoVaZGdlM3eNd6sKrdaa0o4NZmbjdUVVRstSdmODJzvvJNtiytGTRXhWMzoH8ePZ0dl9wDy24AoWamSk+ti9lNrasWxqjCk2bD2jCp9DwuLpHitt2MVcSV8cnJy4PP58NNPP0W9/tNPP6Ft27ain0lNTUVqaqodzYtCuKp99VUuahBkYc+o8vJwLA0/kLJgiYpdoeutJ8SaqNHqrlLapdno/llOx3/YXSZfroqwnpIGFRVeHDyYL2sl1bsNiJSVqr4+VXR7G6EVR+kcTi+0hLD2jPKIPatGElnMwupaa0ZhLSElroRPSkoKCgsL8c9//hPXXHMNACAUCuGf//xn1IPPCtnZ2cjOju6wWgYhK1caYdNp9IqUBUsUv0Lv2fMa9O7dzLR6Qk6hVWSo3aVZr7vC6b15rBZ1VhO+n60RCo2TtZIa2QZEakdwLVacREmeMBO5Z9XJPmlFrTWluYUPgTh27DzFHeidXkiJEVfCBwCmTp2KcePG4eKLL8all16KRYsW4eTJk5EsL5aI7bBffnkSe/a8ozgIjR49WlOMgR7CplN1lii7Tb1+fw0OHXoVhw5Fvy412bO22uDRIzLU7tKs113hZKyAVlEnvK982528x433U52V1Ij4iLVS6bHixHvyhJkYWRBYGVdoVa01OSvWihVp5+LTPHj1VXkh4/RCSoq4Ez6lpaU4evQoZs2ahcOHD+NXv/oVPvzwwyYBz04j1WH9fuXP5uTkWL7CCJtOPZFd48Pp5NUYO/a6qOOEqwmnBYbYQ8riaoPHqMgwe9UeCASQmXkWXm9rxFaXra09hnfeScHFF/stu7daRJ3wvnrONZXj7L3Hwv6eliZuqeI4L3r2vAbFxWeQlZXVxO1hpvgwoz8EgxnYvDnFtL3x4gUjz6qVMUtaa61pGaOlFpHTp6sXMqwGXced8AHC6pZF15YQIwGEVltY5Eyn/PfHPhQsCgxWVxs8ZgQkmjVxCoV4bHXZnj13Y+TIC8FxXni9HF56yWP5vZWbxCsqvFH3leMaP6fmHpuxAo/u7xxGjtyMLl32i1qq9ux5B4cOhS1VUhtEmoWR/qBmbzynFzdOUF4OHD1q7FllwT1rxhitVciwGnQdl8InnlBbL8Qs9JhOWRUYrK42APY2AJTaHyk5uQ5Ll94q2DPNY9u9lZrEd+062eS+ClGKBzK6Am/a3z14772RmDJlkSXuRzuILash9gyzuLixmvBvDrv8PR4OHk9430QtzyoLYjF2saB3jNYqZFgNuibhwzh2b5apZ5sKPQJD7aq7pKQEZ8+e1ZUVwepqww0bAPKiQ6p2kpOBxl9//U4Ty4oQNUHeetstFXzNB/5bFTRshpVX7hxiZTWE9/nUqWwmFzdWEha4jXGO4QzXEK699m/o0KFc1bMqJxbtFEQHDyaZsgjUI2QmTAj3k/37w2MvC/2FhA9hGD0Cw8imhWpgzaIixE0bAOpNu7YSsRigsLvLWiuLUvA1H/hvRdCw1POiJVVa7BzBYBArV65UvM/5+TcjFOoYdT6nBbBRlISHWGYr4EWzZrVN7q9YP5OzhP/jH/ZazwoKzpq2CFQrZPiQCf67uncPv84P505m4pLwiQPsNqXGBkDqNWfq7fRK1aSVLCpPPhn+/LRpV6NXrxa62pAoGM0es6pvxlpWAFiemq02+FoOKatLbJ8WO07sedEaryT1zCn9pi+/fEtU7H344Wq8916q654lNW47LZmtYkhZwrdutT80IC8vZNjlpEXISIVMxOKUVZuEj8ux2+8eGwC5YMEJlJTUmFpDQs33y1WTlrOoCD//6quc6+IUnNhyQ6/7xuq+KZbSbRd6r4mY1UWYHuz1cliw4CSys5vrPl8sap9Bud8kJowuvHB3JP7LTc+SmphE3mI8a1YDZs/O01XoUcoSznH2xx4eO3bM0BitVcjoCZmwExI+LsbuoGKxAMh7703H99+/FDUYGK0hEQs/iUvta9a69WHU16cqFtNq2n77AnXNwqly/lrdN3r6Jgul/7Wg16UlvDdN04M9mDatOcaMUd8nzbzXcr+JlaB3oyjFJMZO8lOmZGgWuHKu9i5dzoiUjNDndlL7zMS6Q7WO0awLGa2Q8HEIM1budmct6d1XzOjDwE/2mzYBCxc2/f6lS28DxzUW07rqKvXtZyXLSwtWmobN2JRWb/VlK0v/s5BZE4sbq1SzHPSuFqWYRLUxeFIoudrXrg2XjFi3btQ5QaTO7WTldhluESxmQcLHIcxYududtaS0uaFVhB/4bHTq1PT3Any2RaNVYds28WwfMzY5jVdSUlJUuRGVMLqlhhUTJitp2MJFjNJ1+vDD1dizp9LxndKlEHuWAGeD3mMRq+ydk/MzcnJOyyY9GEWNcOrTZycmT+6G6urWqtxORrfLMGNBE0+Q8HEQIwODVVlLchamWD9/uHCbtZsbxj7wN94IvPZaeHUpJoIaGoCyMvFuLdZ+FrK8WODUqWysXTvK8Ka0Vm+poRWz6pdoQWxX99gJTeo6ARw4zou//OVWXHnlRkycyOZKnG/3u++OBMCLHw8OHOiKPn12Om5BkKrs7fH4MWrUp+jTZ6dkGYnS0lJb2rhlyyoAym4noyENZixo4g0SPi7EyjowcimvgL2bG4o98K+9xuHdd4/h1Ckv0tJCGDUqp4mvPD//bJPBhCe2/U7UzXEiQFkJKzalNbuv6LkeX311WlQcW+mS0Vp7q0+fnWjd+jD+8pdb0SgivNiw4Uo891w1HnnE9CaaQrhStbByticilp0kdtwQVvaOFfRifbK+vl7zd5r5rMaKRiMhDRUVXtG4SK0LmniDhI8LsboOjNJkYNfmhuIPvAerVq1DQcH3AKK3V+AtOCkpR2TP63TdHKcClKWQ2qNLjRtTacA3s6/EXreqqiqcPXs26pjk5GT4/X4Eg0G89NL7WLfu3wA6oFFQ6K9DZKVgra9PjWpjGA8efzwTJSU/W5YqbmTClov5cxKxcUOIUUHPw1v2rH5WjYQ0HDyYpCsuM94h4UMwi9gDHzsZi1lwdMa/2oodokZNQK8w1qRv3yJs3Vos6poqKSlBVlZW1GedKEAm/D4pq0p5ObB4cQZefHFKxH0EhGC0wKGVgrVly0CkjUJCIQ+efvrvePDBy9ClSxfN51VC6TdVVVVh1apVou/JxfwFg0FbK84LERs3hJgVl1hX1xrfftsmEkNkFUa2fSgoOOtIXCaLVm0hJHwIJhHGME2f7j+3V454HQ0pqwK/IjOSDeRW1Ab01tXVRcUAACH067cZRUXboq5pVlaWYxOZFpYuBW67DeA4YR2c8D5LY8asQocO5YZWulYJPb+/BldeuREbNlwJoKnV7bXXXrPMFSt3ztzc3ChhJHyW5OK4Vq5cqdheKzLtxMeNsK+L46THEK3s2HER5sxpbXnAvNyG0Wpq8OTlhXQX2xSip1AmS1btWEj4EJajVdXHxjDdc4/2OhqA/fucsYKWYMjYGADAi61bi1FUtM3WNhslEAigrOwsJk5sHQnQFsJx4lsNsET//lsBABs3DmZqk1O5yUkujkuuvVZk2smNG4D6yt5JSfLTYmM9sOhsUrMD5vVsGB1LSkqK5D0SZnopjdF6hAzLySIkfAjTUJPNogajdTQSHS3BkPEQA8BPEAcP5iMUGid6jB3mfTPo338revbcY0vygFnYUdxSDUrjhto2ZmVlyU7ymzenNKknJny+zHLfGC0ayFuL+I2ehaxZ0wKLF7eLVAu/4AKPovBkWchohYQPYRpSFhY7isdRnYowUoHKPh+HjIwjCASSovbT8fuPwONpYVoMgBO+fX7gF68tA9PcG1pQ6vNKZSNY7cNm3De7C6/qQW6S79tXPtjYjA1ljSK3xUQwmIFFi6YILFbRVbdZLPZpNiR8CEuxo3gc1akIIxzshNluHk8II0asxdq14WsyefJkAIgcO2pU0+und+J10rfftCZOCP36bW0Sr2Q1avo8f50qKipcFX+WnZ2NkpISyYBnJbQIc7vhF09yW9+orZ9mxoayRpB7/uQq2Nu9a7xTkPBxIXavqvV8X3k5sGULH2gafs0KX7jU/l3CWiKsZxiYhXCw0xJ7YXa9HSdN4lbWmVKzEtbixtGymSNLxGb3qUWLMLerD/HueeFGsfzWN8IJv7wc+OKLIP71r1cifUpr/TRWAn6lKtg3a2b/rvFOQcLHhdj9AGn9PuGKNxazTdpqaomwMuDYjRaXCcvuFa1o+S1qxa4aK44b996yE73C3EpycnLQ0JAbs1Fs9ITfeO/98HimRCzKeuqBsXD/Yy2jfHr8iRPsuyDNgoSPS3GyfoocsSveWMzeG0uulkhtbW3kNRYGHDfjdmuYEK2F59RYcfTuURZP11UrrIhtuZgjILYKdHxUPuaFZ//+41BUlB2J7bFz70cnEd/NkSB0Ilc1NewLr4LPV4lAIGDK9/GrF48n/KXCGJXXXnvNtO9JVEaPHs3EhpNmwgfhq/lNYStOQHLbC75/xe69JdYfhcfxZGdn44YbblDVblZEUry5jvmCh0L4CV9sPGOhOrUZ+P01+MUvKuDzVaKyshI+XyUWLDgBny/8vpZCiW6DLD6EqYQHEa7J1gdjxryFDh3KVfnCtQ6YrJjN45GcnJy4Ej1a0GLFEaI1zqhLly7MuGLVxDGx6jrWI7Rqa2uRnl4pGayck3MevN4WstXjgeisUrPgf49SxqoRgSkWWL9z590IBFqga9f4FD0ACR/CRPiMh1mzGjB7dl5UllDPnnubHC81cKoZWGNL6bNiNifsR+vAr/Z4IzvNa+2PLIhLLRmYLLQ3lthxIxgMNtlwNCkpKRKcXVtbi9deey3ynlSw8uzZt+Hhh3PR0CBe+Tk2q7Rdu2pMm2bO78nKmoY5c5pF6u3Mnx/E2LGnIsdYITBzck6jVy9TT8kcJHwIU4itGzFlir5qyzwsDqwEmwgnPLHJDmic8PROFEpWnIoKLw4ezHdtHSmrigrajZq93HgqKyuj/pYSqw0Nf44SRcJjxLJKZ8zwo7TU+HUrLwemTm0uuCcezJiRhdLSLMVzG7ECHTt2TPR88TQmk/AhTIGqLduHlDvCitgLt8Rp8IOylVuUSPXpFSv4faHGubKOFGWjKSN178Vr4nhMyYQyUuhRzGqutoCi1DHxFOtHwocgXIScO0Jr7IXYsWHLRRIKCs4iP9+5YnJuIRjMiNR/AdyX9aM3G00PdgZF21V9WLwmDoeuXZvuF6cVsV3mtWRZmf3sxlO8JAkfgnAJatwRWga72GPtqLKtBTeUzj9+PDsqkB9w115nRuKYtGJXULSd/fiaay6G31+BOXMa972KreKsl/btw22//fawpcfuLKt43gaIhA9BuAAr3RHCnc35STwsqjj86ldHHLH8sCbCpJCrIyWGXa5DPaLRyqrXPFb3IytjlcSEwKZNmwBsitoJXk3mqlomTAi3ff9+2JplJbYNUDxBwodwJfFWS0QOK90RcjubNzR48MwzH6Cg4Hvb/PssijA5lCwlfLFEwL4AUSOi0e2xeVZtgKq0H6CeKs5y8DurA2FLT/fu4df5eGwr+5LUNkCzZh2V3MPMbZDwIRzDiChhtZaIGcSu1q10R8jtbC60XNjh32dNhKntn3KWEr5Yol3ES3aWHqzaAFVuP0ArRKLczupCtD4Havuz1DZAZWVJKCxU/XVMQ8KHsBWt2wXI4UZRo4TYav2qqxrft8odoSSqrIQXepmZZwGwIcIAeXEdmyFjl6VEzoWVyNlZejZANSoErIrjiu1vUrE2Wp8Dqf4c25elnr/8/LOS53ZDPJ4QEj6EKagdRPLy8uJ28DWCnIvngw+qoo61apK1I8Yjlmih1xojR16EPn12OibCYmGpr8q5sOzMztKCXROing1Q5YRtMBjEypUrAWiP4zITJRebVtTce6lFUF7eJaLHuyUeTwgJH8IU4tn1ZDVKLp7XX9+GggJ72mKGqFIz2YkLPU/EheCECGMZJReWndlZanFyQlTbj6XGo9zcXEyePBlHjx5FfX19k8ytP/5xP9LTre2TdrnYxBatYs9fSkr/Jse51bVKwoeIYHR1RqJGH2rjbNxA7GQ3dSpwzz3R/UlO6AldCE4E2rJoslfjwhKiRTRalSTg1gkxFt7qAyAqc8tq0QPY52Izsmi1Kpjcakj4EADYMleyOPnYgZNxNkaRctU99RTw9NMcFi48iXvuaQ6APaHHZ9A0VmCO3hdJbNC3K6tQrQurtLQ06nNaLB5mW2rjJdbI6Wr0dj4f/P0QZpMJqaurQ2VlZZO+YLTIolOQ8ElwWEsfZkmAOYEbXTxyFhwA4DgP7r03Hb1770evXi0ir7Mg9ITCYtGiKeC4Rrfbffdl4scfX4bf3zQ2xi7XrloXltj+ZGox8/lmNdbIKYwIX7ufDz3ZZE4XWdQLCZ8EhqX0YdYEmJPoXVnqGWTNsFzIWXB4OM6L5cs/Q0HB9ygpKYm87rTQ49uu5FYQEzh290enr5UaWIw1shphrSYhZghfO++52nsSe5xTRRaNQMIngWGlhgtLAswp1JSHlxpgAf2DrJmWi9jJToiwP509e7bJ57QM6FYUpWTF7aaEmwoMxk7aACI72McTZtdqqq2tjfpb6p7HHuck7du7Q/DwkPAhHHc56BFg8RQHtGJF2jk3i3zKqlXF8MwUk/xkt21bEbZsKQagvz+JCT2rMgOdfgZiaaxt1NR65ib4STs2Lbtdu2pMm2be97BQyd2sMSk9Pd3U48wkGMzA5s0p6NsXSEsTjwfiYTmLl4QPAYANM7raySde4oB499706a0jsSVu291bDL+/BkOGbERR0TZD/cnuqsdOPwPiQdaNtY3kSEpSN5Q7sYWLWFr2jBl+lJZqEwhywsLpchrxMibJwYvXhQu98Ho5jBy5OapfilmtWbXSk/AhIrBgRpebfILBICoqvHERB6Q2pVuI2/YdY6E/acWpNssFWasRwllZWczW0RKLn2po8GjK8FIjLJx69sNjkvtT9+WIFa+x/VKq0CKrsVwkfAjHqajwRnz/cvVbVq5cGTdxQGrde2Zu8cEKycnJqo5zm9AzgtogazlY7R9SfVxthpdTNYHU9r9Dh85zZS0bLcj1SwCShRZZhYQP4SjhlVxrhELjVJVkdzoQ22yU3Ht2u3vswO/3M2udcBq9QdYsi0QjGV5O1gRS6z47dcpvuJaN0I3n8xlotEXI9UslUcQiJHwIQ+gN6BNLX1cT38JaEKoQvdeCd+8dOtQegAcdOhyyrI1WoGfSZUXUOBUUK9VXlPq3nQHfepC6Tnrip1ioCaR03kAgAJ+vEvPnp2HGDD8aGjzw+TjMmxeEz3cKgYDyvYl1482fnyZ7vFXI9fHYfunzcRgxorFfuiEjUggJnwRG76Cvp9Jt7Oe1xrcIcToIVYjRa8Fz4EBXUR95VVUV8xYffmV85MgRrFq1SvF4lqwTdgbFyvWVIUOORY6T6985OTloaMhlNqNReD2N7mDPek2g2IJ/d9/duKXFiRM1eOml8OtywkzMjTdjhh93351h+7im5ll49NEgAoEWyMg4EtnxnuXFqBQkfBIYPYO+3kq3QszYsoCFwFkzrgUgvxnhqlWrXBG3lJ2d7XhmjV7saI9yX9kAv7/xeKn+/dJLDZgzh9MtsO3AinYoLXacKG+hdksLuedBfK8rj6qYLisWEEr3Ljc3fK0//zwJwWCjOGNpMaoGEj42I7UXCo/dA5jW7zJS6TYWpZVCv34lCAZbo6DgLNLTj6uyJtiJWdfCjGvJCqxMvqxhRvByWDTl6RbYbkdKWIQtaO5MJZfa62ratN8iJ+e05OfsnCeEc1ajtTIbHs+UqJhMFhajaiHhYyN69kJhFbMq3UqtFHbsuAhz5pwfWdnOmqV/LyKrMXot3FI1mDCOkXsdTwLZLILBDMyZ43dtKrnUXlfCPe2cRDhnxVor1cRkslRdWoi7y4K6DL17obAIb63xeMIjjhG/rt9fg4KC7yOf5V0/jbV6PJg9Ow/BYIbiufbsqcJbbwWwfftPqKysRGVlJQIBa0vk67kWQjO1mdeSYBsj95oXTUISXSAfP54dGSd4+Iwvq597owQCAVRWVuKqqyqxbdtPeOutALZt+wlXXWXPuKUG4VykJ3vrtddeY+J3xEIWHwdRsz8Ty1jl19XrDtix4yLMnt1ddOsHq61oWq9FdnY2SktLsXLlSl2fdxKh6TtcgykJBQVnkZcXnpRZijdhEbl7LZa1xQcJuy2I1I6MOaM1gpxCyvq/Z0/03yy1X6+1ksWFPAkfh5CqdKkXp2KHrPDrqi3qBzROCnIBwna5AbReC78wmlXH551AOGDL9WGnB2zWYulikbrXSnWb3CSQ7Qh2ZzXjSwk3Wv/dJrzlIOHjAEqTtFbiKXYI0FfUz0jQKKEefiBmQWhKEfs8SFlW3fI8xOIGgcxj5PqqtQS5SQy6nXi51iR8HMDsSTp2kpEa6FlZPagZ0LQ+YBQgbC+sCE0xy86xY401ceSsUqw8D/GGWanlchYjozWCzICFHeGdwE3CWwoSPg5g5SRttgstFjMedqkBzchgFmslAkIoLt4adW6z3RtGr4WbB04WhKa8Zcd8y6oR3Hyv1WBWIc9Y1HzGqVhJt9atIjQIn+rqatUnzczM1NWYRMEqX6kdA71ZD7uVRc62bSvC1q3F2LKlP7ZuLcaoUWsBhAWVme4No9fCyOedjmFhwd8v/P1igr9Fi5+ZsEoBxu4166LJrEKeerB6oaeE0u8pLwc2bWKzynYio1r4ZGVlwePxyB7DcRw8Hg8aGhoMNyweEQ5Mcq4cvQOYXe4H1lcwW7cWWxZ7Yrbg0HMtWYlhYcXfLyX4J0z4iyNWKSv6iNOWBTn3lZlFTdUSDAaZsuiJEbsHl5sKK/JonYvckqmsWvhs2rTJynYkBFYPYCy4H4xgxsrWSvHHiuBQsnTYGcPCgr9f6p7X16fYbpWyqo84sdjQ6r6ya/wJBAJYuXIljh/PZ8aiF4vYHlxuKqzIk52djZKSElVV86XGIhbdt6qFz+WXX25lOxKGeHc/6EG4Qi4pKcHZs2ej3k9OTo6kfscOtrEPlZWDr1rBUVFRISk6zFyZs77itQu5e15Q8L2tVimWRKkRtLiveOwaf7Ts9efUpCu+Bxewf39Y+LDuvhSSlZWleEwwmIG1a0dFVXVet24UHn30MmRns1GFWoju4OaqqiosXboUe/fuBQBccMEFuOWWW5rUJiHshRX3g1qMrpB5K1pFRYVtRd6UBAcfoG21RciJzCoWB2yle+6EVcrtolSv+8rO8UfpvpeUlDhmKcvMPAuvt3VUVWmfj0NGxhEEAklMuC/NRLyCtgeBAHuiB9ApfL744gsMHToUaWlpuPTSSwEACxYswGOPPYb169ejT58+pjaSkCd2kpEa6FlYPcRixgo5Ozs76n2rB181gsOO1b4Trk1WB2w999zK54GVdH+j6OljRoSm1lR4ufuuxlJhNsKF3MiR0WPAiBFrsXYtGwU+YzFagqBlywC8Xi5G6AFdu5rYSBPRJXzuvfdeXH311fjzn/+MpKTwKc6ePYtbb70VU6ZMwb/+9S9TG0nIw+pkpAWjK+Sqqqqov61c5StNBnat9p1ybbLaj6Tuudg2EFY/D26Pt+Oxo48ZTYVnIc6MR+0CjCVXpxlB2H5/DebPD2LGjKyozVZZjWfSbfERih4ASEpKwvTp03HxxReb1jhCPaxORmoxskIOBAKqgu/MQmkysHO17zbXppmotdjk5eXZ/nzYJUrtKGtgZR9zMhXeDlgSZWKIBWFPnAhceCFwySXh19Q+Z+PHN6C0NBzH1LUru6IH0Cl8MjMz8cMPP+D888+Pev3QoUPIyFDeQZsgYjGyQlZbuRowz73BTwaHDrUH4EGHDoci79m92md9cLUK1i2dVotSO7MM5fqYkbgvJ1LhiUbEgrBDIaBv30bLj9JzVlVVBY/Hg7q6Ovh8lejePfx6ZWX4vyx6G3QJn9LSUkyYMAFPPfUU+vXrBwDYvHkz7rvvPlx33XWmNpBIDMxaIcvF1pSWlpr6AB440FX0u6xe7bMYYOwUsfcz1gJSV1eHSn4Ehv2DsJWilJUMMjMEaLy4Bt1Gt25h95aY+BGm30vdO7XWdtYsdrqEz1NPPQWPx4ObbropknqcnJyMO++8E0888YSpDSQSB6MrZKXYGj7jUK97QCgklL5L7rcI95JS+k4xWLd0OAULm/U6IUr1xJQpPQPBYFBTG8ywKKldLJDwN4dAIACfrw7z5zfGVgkRpt9L4cZd5gGdwiclJQWLFy/G3LlzceDAAQBAly5dkJ6ebmrjeMrKyvDII4/go48+wuHDh5GXl4cbbrgBDzzwQFTn3r17NyZNmoT//Oc/aNWqFe666y5Mnz7dkjYR1mBkhawmtsbI5Cgs5qXmu6R+i3A/MqXvlCLRRI0aWNis1wlRqjWmTK2LTA1migu1Cx8S/saJ7QO33JKLpUtvbWJxy84OAmAzJd0IhjYpTU9PR69evcxqiyTffvstQqEQXnzxRXTt2hV79uzBbbfdhpMnT+Kpp54CEN5LbMiQIRg8eDBeeOEFfPXVV7jllluQlZWFiRMnWt5GQh9mrt7UmMuNrlD4FFkrTPOsrYrcjJN7ONk94Wrti2pdZCUlJbIp4VaIC7ULHxI1xogda9q3rxS1uAEFCARCcXe9dQmf06dP45lnnsGmTZtw5MgRhGIchDt27DClcTzDhg3DsGHDIn937twZ+/btw/PPPx8RPq+//jrq6urw8ssvIyUlBRdccAF27dqFBQsWkPCxGDmzOR/4JlXYMiUlxbTVm57YGr2rXaXvEqZQx+4675b9bNyK24sHakVvTJnSdcrKykJubq4dPyFucLMbTmhxS06uQ319KpYt2+/qrDopdAmfCRMmYP369bj22mtx6aWXKm5eagXBYBAtW7aM/L1161YMGDAgqkMNHToU8+bNw88//4wWLeLPXMcCal1HckyePNm0AVZLnJBRq4Dcd+Xk5Ij+Jqd3k04E9JQTcHq3e6PoiY+LlyKLLOF2N5zfXyOatBFv1mhdwmft2rV4//330b9/f7Pbo4r9+/fjmWeeiVh7AODw4cMoKCiIOq5NmzaR96SEz5kzZ3DmzJnI39XV1Ra0OH4x44Eweg4tlav579JrFTBSJTvRLBFOodX1w0JQtBlojY9jIZPKzRYSKVjuI0pIjVGzZh1FPBn/dAmfdu3amVKv5/7778e8efNkj9m7d29UvaAff/wRw4YNw+9+9zvcdttthtswd+5czJ492/B5tOD21SVraFll8anNele7RlZ0tMK2B62uH7XCu6KiAgA7E5tR0cDCpsZut5BIYXQLCKeQGqPKypJQWOhQoyxAl/B5+umnMWPGDLzwwgvo1KmT7i+fNm0axo8fL3tM586dI/9fUVGB3/zmN+jXrx9eeumlqOPatm2Ln376Keo1/u+2bdtKnn/mzJmYOnVq5O/q6mp06NBB7U/QDCurS6vEl1z8ipWxLWraGggEIqnkRla7eu8LCytsu3FK5BspjSDVT/k4LVYsP2aIBq3XyYr7ycK1NAOjW2+oxUpRJTVGZWYeQSDQ9F651WKnS/hcfPHFOH36NDp37oz09HQkJydHvX/8uLqBvFWrVmjVqpWqY3/88Uf85je/QWFhIZYtWwavN1qVFhcX44EHHkB9fX2kPRs2bED37t1l43tSU1ORmpqqqg1mwELdA6vEl1z8itOxLbG/2YnVLgsrbDuxW+SbsVmvmn7KUryDGddNrYvMzkrRbsOurTfM2FdLDqkxasuWndiypem9davFTpfwue666/Djjz/i8ccfR5s2bSwPbv7xxx8xcOBAdOrUCU899RSOHj0aeY+35owdOxazZ8/GhAkTMGPGDOzZsweLFy/GwoULLW2bG7FCfMnFrwBwPLZF7LfIrXbNXKEIz2XXd7KAGf1Mi4XB6CCcKDFYelfprFSKZhE7tt4Q21dLWF1ZC3J9QOvmqqyJGjXoEj5btmzB1q1b0bt3b7PbI8qGDRuwf/9+7N+/H+1j7jDHcQAAv9+P9evXY9KkSSgsLEROTg5mzZrl2lR2seq+PCwqaLkHHvAwG9sSu9odPXq06ZtaunVV5DR6LEZGrqFUHz50qD38/r26z8saJBCtwyp3diAQwOefA6FQ9D1paAC2bQsgLU1b3+f7QEVFBZYt29DEchfv+//pEj7nn38+Tp06ZXZbJBk/frxiLBAAXHjhhfj000+tb5ANSFX35WHNnKz0wLMW2yJlps/JybHkurJ0r9yC3W5hsT4MAKtXX4u6ukaLBr8ocbNYtUIgsrCQcRor3NlCN5rHM6XJOLp58yvYs0e7Gy07OxuvvZZ6zjWXWOU1dAmfJ554AtOmTcNjjz2GXr16NYnxyczMNKVxhDSsmJN5k6nSAy/3nt0uHqfjjRIV1gs38n343XdHAmicXGItGsJFCWsLEDtIxCB9LRjdczAWfqxXGmO1zgnl5cDUqc1xzmmSUJY7XcKHr6J8xRVXRL3OcRw8Hg8aGhqMt4xwBbFm81mzjqKsLAn5+WeRl3cJqqq6wePxYOJEf5P3gEtsXzWTmd4ZzBCbUsIpGAwaKoAZG4OVknIGb731u6hjpCwarCxA7CTegvSFcWQVFV4cPJiEgoKzyMsLB9PoGaOschUZFVV8RlhOzs/Yty/UxHWWKJY7XcJn06ZNZreDcBCjK3HhoJCbi6h6D8IJKfY9JyAzvf2YITblhNPKlSsNWV6E8Q5r1qxBhw6HyKKhgNlWDacQxpHJ9TGWLHt6RZUwI8zj8WPw4I3weAZb0s9Zr2OkS/hcfvnlqo77wx/+gDlz5kT2LCLYy9xJNLcPmentx6jYVCOcjFpehJOamEVj8OCNOH48O/I+ER8BsGoruevpX2ILSqPWSb3EZoRxnBcbNw7G4MEbsXHjYFMtd1an3JuBod3ZlXjttdfwxz/+kYSPgFjXUKxpNXZDSz0opQDX1tYCUH7YWRNpRlAbixRPv9lp+GupJDaVrrldVjrhs3ns2DF06bIIx4+3REVFXpPJIZ4XB1JYUayOlSr2RvtY7G+WWlAatU7qQSojjOO8yMurwJQpi1Rb7pTurZkp91ZiqfDhU82JaPhOL6aMr7rK2LnVpgDfcMMN2LkzCwsXNn3Y+/cfh4ED4ysTSSkWyYl4o3hHeM3btavGjBl+NDR44PNxmDevGmPHXofa2lrU1dVFthIRYkaVbT1t5uEngb/+9SZdbjpWJnWzMLssAytV7AHjfSw7OxslJSVYtWqVJdYjvShlhPFiR6wvjx49Ospooebefvddo+jhaWgA9u9PIOFDSCOljLdt88p/UAG1D1V6ejr69s2G1xvdUX0+oKgoGy4aj1UjF4tEWAN/zadNA0pLwwNg164etG+fhUCgocnWM2LEWumAsOtJrbXHiADRawlgaVI3EzPbGntPpGIN7RAKZgRsZ2VlAWArjlBtRpgYOTk5mtxygUAAmZln4fW2RijUWNTY5+OQkXEEgUASM32dhI9DSCnj8vLzVH0+GAwaXjG2bx+2Mt1+e/i7fT7gxRfZUuZE/NC+fXTf0jKh9emzE6dOnRdxOW3cOBhpaacVXU5GBYheSwALW9O4CRZiDc0K2DbbQmmWi9HKgHThczZyZPS9HDFiLdauZStInISPQ3TrBlFrS2GhH7/+9WQcOXIEq1atkvz8ypUrARjvSBMmhP2v4ZU4iR6CTYLBjIjoAdS7nPQKEIoJsw+WSkyYEbBtdrq/mS5Gvg1mB+oL26a05QULGV8kfBwiLS2A+fN9MXEPQfh8pyDs30qp5masGGNX4gTBGna7DygmzD5Ycg2ZhdnWFbP6mV2WNSkBGd653vmML83C5+zZs3j88cdxyy23NNk3K5YbbriBqjiLIDQL3n13RuThOHGiBsKQBxbMvwTBAkYzw/RgZkwY61WrncTJEhNWZKrx6LUeWVFQEdBuWTP7mQoGMzBnjp+JjC/NwicpKQlPPvkkbrrpJsVjn3/+eV2NineEVhqph4Ml8y9B2IGUOCgtLYXf75fMDGPd8kILGHmcrATN2gbCVhZUVLKslZSURAK0rfjNx49nRwU9A85lfOlydQ0aNAiffPIJ8vPzTW4OwROP5t9EI97Sma1EbpD3+/3Izc0VzQwDsjR9j92WF5YWMCz3RycrQZv1m82wHllZUFHJspaVlWVpccWWLQPwejkmMr50CZ/hw4fj/vvvx1dffYXCwkI0a9Ys6v2rr77alMYlMnrNv1aabt0CCwN8vKYzW4EWcWAkHs0JywsrCxgW+2PsGCRl/XbLWGWm9cisfiO8dk7vseb312DkyPeYyPjSJXz+8Ic/AAAWLFjQ5D3apNQc9HZS1ky3dsPKAB+P6cxaBKWaY/lBWWmQN2Pis9vyYlbVarNgsT/G41hlVlvNinvKzs5GaWlpJAvY6T3WlDK+7EKX8AnFFqAhLEFvJxU+fCykDtoJiwN8PKBFUAJQfezkyZNRVnYWr77a1AR+113DkZ9vzARup7gSoqZqtdFJnQXLplFYb59TmGmd8fv9Tc5ttuDR8vywsMebLuHz17/+FaWlpUhNTY16va6uDm+++aaqwOdEQzhI8aX41aDUSeQ6nBs2iyPcgRWCsq6uDrm5ucjOFiuk6UFhYRu9zY3ACxArxZXcdwPhqtVDhvyM//43dC4dPrxwFG7VoVWksGLZJKzDaeuMFuSsd2bsP2k2uoTPzTffjGHDhqF169ZRr9fU1ODmm28m4ROD2kEqFj6bRQq5wdItm8URBGBtIc3s7GxLxZUSgUAAa9aEn/89e6SP0yJSyLKZGEgtfPnFs5np7kZxk8DWJXw4joPH42nyenl5uexEnajoHXxatWqluzO5ZbM4guCxupCmU1XKWRQpVFfI3axZs8b0dPdEQpPwueiii+DxeODxeHDFFVcgKanx4w0NDTh48CCGDRtmeiMTBeFuuEZVu9SWGF27Gm0loQeaaNiAqpRTXSGWURsroyXdnTJ9m6JJ+FxzzTUAgF27dmHo0KFo3rx55L2UlBTk5+djzJgxpjYwkZDbDVdrkLJTG5DGQ8Cl2dBEQ7ACS3WFiKYoZbrx8TJa0t3Nyp6Lp0QZTcLnoYceAgDk5+ejtLQU552nbidxwhh6g5TtNu1TwGUj/OpJaaJJpFUWYR1KFkWnstsI7agZG7Wmu+sdb/mFbHiPLT9CIQ+8Xg7z5wcxduwpVYKJRYuTrhifcePGAQj7pI8cOdIkvb1jx47GW0YAMB6kbKdpn4VYhtiHR2pCsPoh41dZmzYBCxc2nWj69x+HgQPdFRAoRIvrjtx80Zh9PdRYFLVmt5HlVj1OXCuz0t3lrDj8QjYYzMCiRVPAceE+Ewp5cN99mfjxx5fh99coLmRZrNekS/h89913uOWWW7Bly5ao1/mgZypgaB4UpKwN4UO2YkXauU3xtK9SzGpL377isVZFReFMIzlYmnyEQlFuoo0VlFqOTQTMdntqcV2pzW4jy616nLxWetPd1Vpx+LFHyUqoZiHLWj/RJXzGjx+PpKQkrF27Frm5uaIZXoR6+BVgRYUXsSE+FKSsnezsbJSXA9OnCy1lHsyYkYXS0ixFwWEmemOtWJt8hBaDOXNaR1Z/HOfFunWjMGtWUZTFQMuxiYKZ8TVGXFdKLnAWLLduwelrpbUYoBYrDo9ZVaRZQpfw2bVrF7Zv347zzz/f7PbEJXIrW+EK8NVXuSbxO04FKbsdlixlemKtnB5QxcjOzsbu3WLX1YOamjZRglLLsfGOFfE1RgszUnabNbDu1lWy4hw61B7Hj5/Cjh1H0LbtWQDO7/FlBbqET48ePTRVH050pHycFRXeqBVxKOQRjd+Rmzj1ukNYcqNYAWuWsniZaLRcV9bugVNYVT3a6cKMRDR2ZG+aFSgsZsUBQli9+lpwnBd//Svf/vA7bqoirQZdwmfevHmYPn06Hn/8cfTq1QvJyclR72dmZprSuHhCbFD79lv1VgmxiVOvO8QKN0ogEGBKDJOlzBq0XFe6B41YKVKcKsxINGJXmQCzAoVjrThACIAnyi0d234W9tgyC13CZ/DgwQCAQYMGRcX3UHCzNoyuiPW6Q8x2o+jdksNqaEKwBi3Xle5BNFZdDystiqy7b1hAS10do5hliRdacU6ebIa33vpd1PtWtZ8FdAmfTZs2md2OhCReVsRa40zszObRMiHEu/vPTLRcVxbcfCzdWxauh1pYKL7J0r2Twq0BwLwVJxjMcGX79aJL+Fx++eX49NNP8eKLL+LAgQN466230K5dO7z66qsoKCgwu41xjR0r4lgXlFMuqdGjRyMvL8/xQUoMu7Ko3DCIxxusZci5BRaqPLvl3rk9ANhI+91YlkKX8Fm9ejVuvPFGXH/99di5cyfOnDkDAAgGg3j88cfx/vvvm9rIeMfqFeCaNWusO7kGcnJymJ1Y7Mii0jKIE+bBYoYcy7BU5Zn1eye8BnIBwHaLA6kFltyiV679wn0khbh1oaZL+Dz66KN44YUXcNNNN+HNN9+MvN6/f388+uijpjWOcDcUGxCNlkGcxTLvRGJgVRZaPMJiVeLYBZaWcVgqgFluH0k3okv47Nu3DwMGDGjyut/vR1VVldE2xT3xtNmbFGKxAYR6YgfUigovDh5MQkHBWeTlhaPh3braItjHqVT5WEsFS5miUrD2DAqvn1yM1ujRowGw4xGwE13Cp23btti/fz/y8/OjXv/ss8/QuXNnM9oVt+jdcNRNSMUGzJp1tEllakIafkBNhD5DsImdWXlqXMFkRVaPUoxWTk5OwlqWdQmf2267Dffccw9efvlleDweVFRUYOvWrfjjH/+IBx980Ow2xg1GNxyNxerOqPf8UrEBZWVJKCw0o2WJg9l9hnAGNwe1G41BVPvblVzBLGSYacXJ+64mxZ5FV50d6BI+999/P0KhEK644grU1tZiwIABSE1NxR//+EfcddddZrcxbjB7GwW5Tnvs2DFVJkwzgtZiBZJUaucvfuGN/SihAEtbbxD6cEtmkhWYFdDPQoaZVg4cOIDXXntN8Tir7rvaFPt463Nq0CV8PB4PHnjgAdx3333Yv38/Tpw4gR49eqB58+Zmty+usKKEv9FOa0bQmpgAa9euGjNm+NHQ4IHPx+Hpp2uRlxdCZWWl5HnicWVhFNr2gS30rOBZz0yyErN+u50FAs0gEAioEj2AtRuYujnF3kp0CR+elJQU9OjRw6y2xD3xUrBQjNjBfto0oLSUjw3wIC3tDNOrXlZ93fHcZ+zCrHubyJYbp1GyXgSDQaYWTmJixon4pHjbY8ssDAkfQjt2BQuyMJELYwMqK9le9drh69Z7T2jbB2OYlSGXyJYbJ4gVCnLWi5UrVwJgV3SaEZ+kN14onvbYMgsSPg5gR8l6LRO52en1bk3XFw4aVvwGIxOwm7Y5YBHKkHMXUkJByXrBougMBjPw7rsjAeiPT9JibWRh0cs6JHziGDUrH7MngniYWKz8DTQBOwdlyLkDpUBmt1kvtm0rAi96eLTGJ2mxNubm5iZkppYWSPjEEVqtFGZPBHLn8/m0n88J7JgcaQI2F7UuAMqQcx65OBe1W2W4iWAwA1u3Fou8Y2wDUKV4oUQWNWog4RMn6LEgmD0RyJ2ve3ft53MCOyZHmoDNQ4sLoFu3bMqQcxClOBe5rTK8Xs70ncLtqLEjJuIAoF+/rbpFnBvrGbEGCZ84QK8FwexU6XhIvbbjN8TDdWIFLS4ApzLkYmMppFbr8Rhzwf8mJfcVf5zUVhnz5gVx4oR51h67MvSkstGKirZF/tZy391Yz4hFSPi4DLFVyuefpyAUin441VgQzJ4I5M4nU76HKeyYHOMpRd1tFYmdyJATBrWvWJGGOXP8CIU88Ho5zJ8fxNixp5i7TmbA943S0lJs3pwi6r7q338cBg5s6pqJvU8+3ym89FLj+0ZTw63O0OPFjFI22g033KDpvseTG9BJSPi4CKlVSjCYAY9nStQDEWtBkIr/MXsikDqfmzIN7Jgc4yFF3a11bfRmyBnpw3z25PTpQsusBzNmZKG0NAsMXR5TENshPHaM4qu5Z2e3ED1HdDmMxtfd4OqJzeCcNesoysqSkJ9/Fnl5lwC4RJfYVVuNmZCHhI+LkFp9xK4qfD4OL77oiQwaSvE/ZqdKi53PbXvC2JE+LvcdbrCkJFpdG6P1gBIptiv2nktZPnJyLlF1Pq0uMxYQ9oPcXJiyTyFVYzYHEj5xgrDGxV13DUdhYRsAbGUQOT1RuwW3WlISASPlCBI9tku8Do+48BET/iUlJdiyJVWTy0wtrO/6LhR0cvWMWBJ+LEPCJ47ga1zwq08gsVaZZuOU1SXRLCluQ+9iIp5iu/Sipg6PnPCXcusXFWXrdhe60XUmBgtWYLdAwifOSfRVpl7I6kJIYWQxEQ+xXVYjN7k3desbE49uypJywzjjBhc9QMInLjl27Fjk/30+YMGCDEyb1pypVSbr21qQ1cUdOBE0b3QxQduPGIN39fTvPw5FRdlISwvI7gUoN9lSlpQ25IRNVVUVVq1aFflbyn3IwmKRhE8csmbNmiav7dx5NwKBFkysMmm7BsIsnHABkMsqGrHJULj4sgK/vwb9+tUhJUWfZZYXwkpZUhQz04haKzgg7z5kYbFIwidByMk5jV69nG4FW8HWRHxg9eayYpDLKozaydCq4GG9llmhYG7XrhozZvjR0OCBz8dh3rxqjB17HTNuGVaIvYZS99QN7kMSPi4iHlYfFGwdP7BWm8luSyK5rNQJD7nVv5NjGi9qpk0DSkt5EetB+/ZZALIca5cbkLunbnAfkvBxEWJm/WPHjom6tliFgq3jB5YyTciSyCZiq/9160Zh1qwi5OcnMWNRIRGrHiWLjhuKLJLwcRmsDBR6ofgIZVizpMjhhJtJDLIksonY6r+hwYOamjaq089Zr7GTaChZdNxQZJGED2E7FB8hD0uWFLU4HbBOlkQ2EVv9i90XYYB0VVVV5HUlNxkLgbKJhhqLjlyRRRYg4UM4AuumZaetLiyJGiVYcDORJZFN+NX/unWjzgUPN70vcnsQKrnJKlXufiyXZebEIsIt9W7EUGvRUVOs0ilI+BCECCxZXVivecSKm4ksiWzSp89OzJpVhJqaNqL3ReoZ0+Mmk3KLKcVB2llbJh6Koxqx6LDgoifh43KctkzEMywMOk67kNTAkpuJdUtiopKXF0JurrbPqHGTCcc1I1tP2Okyc2tx1Ng5RMqiU1paCr/fL3kOFsZVEj4uhyXLRDzjhNWFBReSGsjNlLjEToZSFhc9C6+m21NwePFFT1S/4se/srKzmDOnNTjOA6DRLTZ5cjds2bJK4hsILcTTXEPCJw7Q0tHc7Ft2CqesLqy4kNRAbiY2sfp5F06GK1akYc4cP0IhD7xeDvPnBzF27ClD3yF0qdx113AUFrYRbcPu3WLPigfV1a11fS8hTrzMDSR8Egi3+padFGtOWl1YciGpgdxMbGHX856dnY3ycmD6dOFz4sGMGVkoLc3SvWs6D+9SycsLSR4j9azk55/Fnj3Gvt9qKF3ffkj4uBit7hc3+padFmtOWl3IhUQYwc7n3WnrpNSzIieWWMBIXBKhH6/yIQSLLF0KdOoEDBoU/u/SpU63yBqcFmv8SlKInVaXCROAsjJg06bwf1kLbCYIwNznJBjMwMGD+QgGMzR9Ts2zovfcViBVAZmFtsU7rrP4nDlzBkVFRfjyyy+xc+dO/OpXv4q8t3v3bkyaNAn/+c9/0KpVK9x1112YPn26c421CLcEvcYDLFhdyIXELhQzF8bIc6I2M0tNgLTcs8KadcUNe1rFK64TPtOnT0deXh6+/PLLqNerq6sxZMgQDB48GC+88AK++uor3HLLLcjKysLEiRMdaq01OG1WTjTMDNyliTJ+UOuGLSkpQVZWluh78XS/9T4nSplZRvb14sWS0v5Sdpb74L9LqQIylSCxDlcJnw8++ADr16/H6tWr8cEHH0S99/rrr6Ourg4vv/wyUlJScMEFF2DXrl1YsGBB3AkftwW9xgNmWF2cjlcizEWte3XVKvl06ni633qfE7nMLC37eomdd/Lkydi0CVi4sKl1pX//cRg40N5sJWEmXLt21Zgxw3+uqjWHefOqMXbsdXEliFnENcLnp59+wm233YZ33nkH6enpTd7funUrBgwYEKWShw4dinnz5uHnn39GixYtRM975swZnDlzJvJ3dXW1+Y03GTmzMutVfhMZp+OVCDah+x3GqgVddnY2+vYVP3dRUbbhrDO9bQKAadOA0lLeSuZB+/ZZALKijiUrsfm4QvhwHIfx48fjjjvuwMUXX4yysrImxxw+fBgFBQVRr7Vp0ybynpTwmTt3LmbPnm16m61GzKzshiq/VsHvxUODAEG4Eyvj6ViI1ZNrm1Q7yEpsDY4Kn/vvvx/z5s2TPWbv3r1Yv349ampqMHPmTNPbMHPmTEydOjXyd3V1NTp06GD691iB8IFRE/Acz9tbCPfiMXMQoNUW4Va0VlVmoa9bWQjTjUU2yUpsDY4Kn2nTpmH8+PGyx3Tu3BkfffQRtm7ditTU1Kj3Lr74Ylx//fV45ZVX0LZtW/z0009R7/N/t23bVvL8qampTc7rRtQEPLux5LgeEWbWIECrLcLNaKmqzFJfF7OAmCXKKEOSABwWPq1atUKrVq0Uj1uyZAkeffTRyN8VFRUYOnQoVq5ciaKiIgBAcXExHnjgAdTX1yM5ORkAsGHDBnTv3l3SzRVPqPWPu22CFg7ex44dU9xl2UxotUW4HbVVlVnu6yyJMqehKs/m4IoYn44dO0b93bx5cwBAly5d0P6cfB87dixmz56NCRMmYMaMGdizZw8WL16MhQsX2t5eJ2DZh20U4WBGDz5BaMPt5S9YFmV2wlodIjfjCuGjBr/fj/Xr12PSpEkoLCxETk4OZs2aFXep7HK40YethRUr0rBo0RR68AkmMDsWzqoYGyp/4X6U6hAR2nCl8MnPzwfHcU1ev/DCC/Hpp5860CJ20OLDdlPqe9hc748qbua2Bz+eg8sTkdiYuYoKLw4eTEJBwVnk5YUQDAaxcuVKxfOkpKRY6s6JZ2twokBVns3FlcKHMI7bUt/D5npP1Gtue/CVJkqAveByHhYyfliE/83iz1Ou6vtdWVmp6vv0unPi3Roc7yhVeSa0QcInAXHjXl9hcz0XJX7c+ODLT5QON04CCi6VR/55Yud+U0aT++Ctv35/DUaNWtskxodf9JGVWBskfBIQNwY7tm8PLFhwEvfemx558AcP3ojjx8MTi1hdErMxK7DabcKTgkvlUXqe3Ha/7UKvFTGREhxircSzZh1FWVkS8vPPIi/vEgCXJKy11QgkfBIQtwY73nNPcwwa9DP++98Qdu1KwuOPXylZl8QMzNw1WogbhSchjdLz5Ib7rbXYoVG0WBGFJGJmk3A8y80FCgsdbEycQMInAXFzsGOvXi3QogVQUiJfl8QMrNo12q3CkxBH6Xlyy/0uLS1FfX091qxpgcWL20UWFbNm/YiSkhq0bt3atEWFFisiizusE+6GhE+C4uZgRztX0FbsGu2E8KTgZGuRe55YX2gIrS/BYMa5khFhkR8KeTB7dh6CwUV44IFxjrSPxR3WCXdDwieBcWuwo90raCu+z07hScHJ9iD3PGm933bGsQgFsVzadF1dnWMCmsUd1vVACxA2IOFDuA67V9BWfZ9dwlOtW6GiogKA8so5kYJLzUTuflsVT6YVubRptXWJrBLQrFvOlKAFCDuQ8CFcid2uOje7BtXC74MmN/AmYnCpHVgVT6YVubTp+vp6VeewMrvPzc8hZUeyAwkfwrXY7apzq2tQK7EDLwWX2oMV8WR66NNnJ7p02Y/jx1uiZcvjEateTY111j0tVsREeQ4J6yDhQxCELBRcah+sZID5/TVNBMiGDRss+a5EtSKSy9g5SPgQRIKhZ8CNl+BS1mEhjsWOCTnRrYiJKvZYgYQPQSQQRgZcFiblRMDJOBa7JuREtiLSTuvOQ8KHIBIEsQH33XdHonXrw2jfXt0mmW4OLnUTdsaxqLW+xGLUMpSoVkTaad15vMqHEAThZviJTWzABbxYuvRW7NhxkerztW8PDBxIoide4K0v/fqNE52Q+/cfh5KSkqjXd+y4CIsWTcErr4zDokVTNPUfIbwV0ecL/50IVkS+ZIAQN2647GZI+BBEnMNPbNdff2mTARdoXNkHgxkOtI5ggbD1JRvemBmBt75kZWVFXpOyDPH9R2tczoQJQFkZsGlT+L9271pvF7E7rfPPIu20bj/k6iKIBCA7Oxt9+gCjRq3Fu++OROyaR2hqp4E3MZGL4aoUeELlXDUTJ16lKy4nEVLUaad1diDhQxAJQnZ2Nl5+uT+2bQtg5MicSJE8APD5ONx113BbiuQR7KImhquiIhcAB6Cx//CuGr/fb1tb3QjttM4GJHwIIoHIzs7GVVcBf/5z7Mreg8LCNk43j2AAMeuLMAB648bBEIoegMPgwRvJWmgQ2sfLPjwcx3FON4Ilqqur4ff7EQwGkZmZ6XRzCMIyyssTMzuLJhh9BAIBbNoE/O53Ta/NW28F4jb93A5oHy9zUDt/k8WHIBKURIiriIUmGHVIicOCAi+8Xg6hkNBNGt/p53YQe62lSgXQPl7mQMKHYIrycuC778Kl+904KZvVfrdfB1ahjSKVURKHI0c2FjlMhPRzu6GqztZD6ewEMyxdCnTqBAwaFP7v0qVOt0gbZrXf7deBcDdKoq9Pn52YMmUR3norENfp506gVCqAMAcSPi6lvDxc96K83OmWmEN5OTBxYmMF11AoHHzrlt9nVvvdfh3cRjCYgYMH82li0YjfX4N+/erI0mMycqUCnCae5hxydbmQpUsbJ0evN1x7w+2rru++iy5bD4Qzjvbvd4cZ3Yz2BwIBfP45EApFB0s0NADbtgWQlkbBo2ZCLgWCNfiqzkLx42RVZz7Wa8WKNEyf7kco5IHXy2H+/CDGjj3l2kQAsvi4jHi1CHTrBtGqsV27OtMerRhtPx9XsWXLK6Ll7DdvfgXPPvssAoGA6OfjaTVmB+RSUA9ZxexDqaqznfBj0pNPvoH77suMBLSHQh7cd18mnnzyDdkxiWXI4uMy3G4ZkcLNO38HAgH4fHWYPz8NM2b40dDggc/HYd68IHy+UwgElFdFfFwFP/DFWiL4gU8s/iIeLYBWUVVVBYA2ilQLWcXsp0+fnejSZT+OH295riikM/2RH2uUnhU3JgKQ8HEZvGUhdjdjt1hG5HDjzt+xGTB3350RGbBOnKjBSy+FX9eSHq1l4JOyAA4d6o7rZyeBQACrVq0CwJ5LgUW07tZO6Ce28KPfXyN6jZ0oEBmPzwoJH5fhZsuIGtxWWyZ2tSM1YGldFUmdJ5Z4tQBagfAe+P01GDx4IzZuHCxqWaMKxGQVs5PYfbzEcCqeRskK7UZI+LgQN1pGiDBm1ucJBALIzDwLr7d1TEE5DhkZRxAI0L5bUuzYcVFE9AAhDB68MeLCKS0tTejrxos+pZU+iUNzYbnPseJ+MwsSPi7FbZYRwtxYHKGLTVhQzuMJYcSItVi7NjyJJ3oFYjFiXTiAFxs3DkbPnnvOWdoSe6NNofWhXbvqmLi1aowde51rs3kI/ai1QrsBEj4EYQMVFV5TY3GEJnG51ZgbAw+thlw4yvCiZto0oLSUty570L59FoAsJ5tGEIYh4UPENaxs/XDwYJKlsTjxtBqzmngM1rQSsi4T8QbV8SHiFie3foitfVJQcFa2zo/aeAmKqzAOS7VSCIJV4nlMIosP4ThSO0Hz6IkncDLNW6z2ycSJIdlsPJazOuKReAvWJAiziecxiYQP4ShKO0HzaA3StSvNO3a1I1X75NFHg4rZeG4cQNwEy7VSCIJF4nVMIuFDOIra4FutQbp2FXqMXRVt3pyChQubBs4GAi0AaI+XYCVGKR6I5xWsECssqIT7obGkERI+RFxiZ6FH4STSt695gou2ojCfeJ/wYy2owWAGjh/PRsuWgSjrFpU5SAzidZNRo5DwIeIWJwo9miW4lGKU4jnwkNCP0NIjt88WlTmIf3gRHAxmYNGiKeC46E1Gf/zxZfj9NQkpgkn4EHGNE6m4ZggupRilRHHbEPqgfbaIeN5k1CgkfAjCAowKLjUxSiRqCCmoSCPBQ3WrmkLChyAsRk+wabxvRktYC012BE88bjJqFBI+BGEhRtL1aTNaAtCXjaM02R07dgxAeCuVgweTUFBwFnl5YfMiuUjjDzvrVrkhe4yED+Eo8R6kazRdn7YLSEzMyMaRm+zWrFkjG/yciAGv8Y4d29q4JROVhA/hKBSkay9uWI2xhBPXy8xsHKnJTin42e6AV6E7mKxQ7sTJavlaIeFDOA4NaPbgltUYKzh1vYxk46i1jLIU/Cx0B5MVyr3YVS3fDEj4EISAeLWIuGk1xgIsXC89AcpKFtRjx45hzZo1TAU/8221wwoVr8+3GHaGEQQCAWRmnoXX2xqhkCfyus/HISPjCAKBJKZEKwkfgjhHPFtE3LQaswotkx4L10tvNo6aCYbFTB+rrFCJWr3YrjACocVu5Mhoi92IEWuxdi17FjsSPgQBNlb4VmLX3mWsolXUsnK9rMzGYW2HeiusUIlevdiO3yQUVnJ9iqVCiV7lQwgi/pFb4ccDfF0gny/8dyLVBZISteXl4scHAgH4fJWYP78KPh8HIGyynzevCj5fJQKBgO52bNok/b1S+P01KCj43hJhYuW59bRl1Ki18HjCN8oMK5SaeCnhcYRxWOpTUpDFhyBg3QqfpXT9RK0LpMVtFVt36e67MyKr1xMnavDSS+HXtVoI4tmNaiZWWaFYimkinIeED0HAnErJUhWaS0pKcPbsWSQnJ8Pv9zd5P9bPrqfSs1oSsS6QFlEbe92l0sG1WAhYcqOyJMSlsKLeDIsxTYRzkPAhiHMYsYioqdAcDGZgwIAJuPhiv+S5jVR6JsRxevsPrYHSVoqTRK6bxVpME+EcJHwIQoBei4iSBYCvT7JwoVfW1WG00jMhjpNuPq1uVKvFCWuixk4rlB3Viwn2IeFDEBYTW58k3jLGzMCq+ipCt6HPB3TvHn69sjL8X6utG+FA6TrMn5+GGTP8aGjwnAuUDsLnO4VAQPz7WRMnVpLIVijCGUj4EITFiGWUJFoNHTmsCvx12m1oVaB0PJLov9/NuCFuLBYSPkTcYWVwsB7EMkoSqYaOHFYG/jrtNrQiUJrQhhsnZbfhRosdCR8irnB6lS9GbEZJItXQUYKFCslE/OLGSdmNuO36kfAh4gqnV/lS8Bkl/fuPQ1FRNk3q52ClQjIPWQjiD7dNyoT1kPAhCJvw+2vQr18dcnOdbgk7OJ1qHgtZCAgi/iHhQxAmYJalIBEtDqxVlCZRQxDxDQkfgjABsywFVlgcWAv2FiMRK0oTBOEMJHwIwiTMEg9mihAWg70JgiCchHZnJ4g4Rk0QdzCYoWvXcCvQu4O5GE67DZ3+foIgxCGLD0EkMGq30rADswsZOh2o7PT3EwQhjquEz7p16zBnzhzs3r0b5513Hi6//HK88847kfd/+OEH3Hnnndi0aROaN2+OcePGYe7cuUhKctXPlMQNsRpOQ6ts9bC0lYbZhQwbt8BwtnRAoj+PTmDV9ieEMVi6L65RBKtXr8Ztt92Gxx9/HIMGDcLZs2exZ8+eyPsNDQ0YMWIE2rZtiy1btqCyshI33XQTkpOT8fjjjzvYcnOgWA110CpbPSxtpWFmIUOrtsAg2IfuPZuwdl88HMdxzn29Os6ePYv8/HzMnj0bEySu1gcffICRI0eioqICbdq0AQC88MILmDFjBo4ePap6hV9dXQ2/349gMIjMzEzTfoNRKisr8RK/uY8MEydORC4ViiHOIddvgsEMLFo0pclWGmVlzlh8OnVqWshQa1vMOg/hPujes4md90Xt/O2K4OYdO3bgxx9/hNfrxUUXXYTc3FwMHz48yuKzdetW9OrVKyJ6AGDo0KGorq7G119/LXnuM2fOoLq6OuofQSQC/FYaHk94RLK7eGAgEEBlZSUqKyvh81Vi/vwq+HzcubZwePrpE5rbImc5IuIbuvdswuJ9cYWr6//+7/8AAA8//DAWLFiA/Px8PP300xg4cCD++9//omXLljh8+HCU6AEQ+fvw4cOS5547dy5mz55tXeMJgmGc2kpDynUr3MG8qqoGgYA21y1rW2AQ9kH3nk1YvC+OWnzuv/9+eDwe2X/ffvstQueu2AMPPIAxY8agsLAQy5Ytg8fjwd/+9jdDbZg5cyaCwWDk36FDh8z4aQTBBGpcvH5/DQYOtNcdIBWD5ffXoKDg+8gu5lr3VOO3wPD5wn87vQUGYQ+BQEDUajhvXhV8vkoEAgGHW5i4sPhMOmrxmTZtGsaPHy97TOfOnVFZWQkA6NGjR+T11NRUdO7cGT/88AMAoG3btvj3v/8d9dmffvop8p4UqampSE1N1dN8gmCeRAz2Zm0LDKthKVvGCWKth0Kr4YkTNeBD3BI98cNJWHsmHRU+rVq1QqtWrRSPKywsRGpqKvbt24df//rXAID6+nqUlZWhU6dOAIDi4mI89thjOHLkCFq3bg0A2LBhAzIzM6MEE0EkGok42CfKFhisZcs4Qayo9/trIhZDueMI6xGWYPH5gO7dw6+fs2U4tuhyRYxPZmYm7rjjDjz00EPo0KEDOnXqhCeffBIA8Lvf/Q4AMGTIEPTo0QM33ngj5s+fj8OHD+N///d/MWnSJLLoEAQRd5hd+4ggzITlEiyuED4A8OSTTyIpKQk33ngjTp06haKiInz00Udo0aIFAMDn82Ht2rW48847UVxcjGbNmmHcuHGYM2eOwy03ByrMRxCEEDNrHxGE2ai1sDlhiXON8ElOTsZTTz2Fp556SvKYTp064f3337exVfaRiLEaBJFIaI3VYTFbhiDcgGuED5GYsRoEkQjoidXhs2Vuvz1s6WEhW4Yg3IArChgSBBFfkOu2EalYHTU71E+YEK6Au2lT+L+JFthMEHogiw9BELZDrttGjMbqJEoGG0GYBQkfIuGhXe+dga5pGIrVMQZZDwmtkPAhEhqWUy4TBbOEp1sFLMXqGIOsh4RWSPgQCY3VKZdunYztwizh6XYBq7WyLfWraBLpt7oFli1xJHwIwiLcPhnbgVnCk+WaIWpRG6vjln6V6FtpJDosW+JI+BCERcTDZEywhxv6FW2lQQDsWuIonZ0gCIIwDSPp+QRhByR8CIIgCNOQS88nCBYg4UMQBEGYBp+eL4TS8wmWoBgfgiAIh4jH7CxKzydYh4QPkdCwnHJpJfE44boNt2Rn6UFrej5B2AkJHyKhYTnl0ipYmnDNEp5uFLBuyM4yAm2lQbAKCR8i4bFqcmd1MmZpwjVLeCaSgGW1XxGEWyDhQxAWkUiTsRHM+v2Jch2pXxGEMUj4EISF0ORDWAGr/Ypixwg3QMKHIAiCMAxLsWMEIQfV8SEIgiAMw1LsGEHIQcKHIAiCIIiEgYQPQRCEA1B2FkE4A8X4EESCQRMuG1B2FkE4AwkfgkgwaMJlB7rGBGE/JHwIIgGhCZcgiESFYnwIgiAIgkgYSPgQBEEQhqHYMcItkKuLIAiCMAzFjhFugYQPQRAEYQokagg3QK4ugiAIgiASBhI+BEEQBEEkDCR8CIIgCIJIGEj4EARBEASRMJDwIQiCIAgiYSDhQxAEQRBEwkDChyAIgiCIhIGED0EQBEEQCQMJH4IgCIIgEgaq3BwDx3EAgOrqaodbQhAEQRCEWvh5m5/HpSDhE0NNTQ0AoEOHDg63hCAIgiAIrdTU1MDv90u+7+GUpFGCEQqFUFFRgYyMDHg8HqebYzvV1dXo0KEDDh06hMzMTKeb41roOpoDXUfj0DU0B7qO5mDldeQ4DjU1NcjLy4PXKx3JQxafGLxeL9q3b+90MxwnMzOTHm4ToOtoDnQdjUPX0BzoOpqDVddRztLDQ8HNBEEQBEEkDCR8CIIgCIJIGEj4EFGkpqbioYceQmpqqtNNcTV0Hc2BrqNx6BqaA11Hc2DhOlJwM0EQBEEQCQNZfAiCIAiCSBhI+BAEQRAEkTCQ8CEIgiAIImEg4UMQBEEQRMJAwidB+de//oVRo0YhLy8PHo8H77zzTtT7HMdh1qxZyM3NRVpaGgYPHozvvvvOmcYyitI1HD9+PDweT9S/YcOGOdNYhpk7dy4uueQSZGRkoHXr1rjmmmuwb9++qGNOnz6NSZMmITs7G82bN8eYMWPw008/OdRiNlFzHQcOHNikT95xxx0OtZhNnn/+eVx44YWRAnvFxcX44IMPIu9TX1SH0nV0si+S8ElQTp48id69e+NPf/qT6Pvz58/HkiVL8MILL2Dbtm1o1qwZhg4ditOnT9vcUnZRuoYAMGzYMFRWVkb+vfHGGza20B188sknmDRpEj7//HNs2LAB9fX1GDJkCE6ePBk55t5778V7772Hv/3tb/jkk09QUVGB0aNHO9hq9lBzHQHgtttui+qT8+fPd6jFbNK+fXs88cQT2L59O7744gsMGjQIv/3tb/H1118DoL6oFqXrCDjYFzki4QHAvf3225G/Q6EQ17ZtW+7JJ5+MvFZVVcWlpqZyb7zxhgMtZJ/Ya8hxHDdu3Djut7/9rSPtcTNHjhzhAHCffPIJx3HhvpecnMz97W9/ixyzd+9eDgC3detWp5rJPLHXkeM47vLLL+fuuece5xrlUlq0aMH95S9/ob5oEP46cpyzfZEsPkQTDh48iMOHD2Pw4MGR1/x+P4qKirB161YHW+Y+Pv74Y7Ru3Rrdu3fHnXfeiUAg4HSTmCcYDAIAWrZsCQDYvn076uvro/rj+eefj44dO1J/lCH2OvK8/vrryMnJQc+ePTFz5kzU1tY60TxX0NDQgDfffBMnT55EcXEx9UWdxF5HHqf6Im1SSjTh8OHDAIA2bdpEvd6mTZvIe4Qyw4YNw+jRo1FQUIADBw7gf/7nfzB8+HBs3boVPp/P6eYxSSgUwpQpU9C/f3/07NkTQLg/pqSkICsrK+pY6o/SiF1HABg7diw6deqEvLw87N69GzNmzMC+ffuwZs0aB1vLHl999RWKi4tx+vRpNG/eHG+//TZ69OiBXbt2UV/UgNR1BJztiyR8CMIifv/730f+v1evXrjwwgvRpUsXfPzxx7jiiiscbBm7TJo0CXv27MFnn33mdFNcjdR1nDhxYuT/e/XqhdzcXFxxxRU4cOAAunTpYnczmaV79+7YtWsXgsEg3nrrLYwbNw6ffPKJ081yHVLXsUePHo72RXJ1EU1o27YtADTJVPjpp58i7xHa6dy5M3JycrB//36nm8IkkydPxtq1a7Fp0ya0b98+8nrbtm1RV1eHqqqqqOOpP4ojdR3FKCoqAgDqkzGkpKSga9euKCwsxNy5c9G7d28sXryY+qJGpK6jGHb2RRI+RBMKCgrQtm1b/POf/4y8Vl1djW3btkX5ZwltlJeXIxAIIDc31+mmMAXHcZg8eTLefvttfPTRRygoKIh6v7CwEMnJyVH9cd++ffjhhx+oPwpQuo5i7Nq1CwCoTyoQCoVw5swZ6osG4a+jGHb2RXJ1JSgnTpyIUtYHDx7Erl270LJlS3Ts2BFTpkzBo48+im7duqGgoAAPPvgg8vLycM011zjXaMaQu4YtW7bE7NmzMWbMGLRt2xYHDhzA9OnT0bVrVwwdOtTBVrPHpEmTsGLFCvz9739HRkZGJFbC7/cjLS0Nfr8fEyZMwNSpU9GyZUtkZmbirrvuQnFxMfr27etw69lB6ToeOHAAK1aswFVXXYXs7Gzs3r0b9957LwYMGIALL7zQ4dazw8yZMzF8+HB07NgRNTU1WLFiBT7++GP84x//oL6oAbnr6HhfdCSXjHCcTZs2cQCa/Bs3bhzHceGU9gcffJBr06YNl5qayl1xxRXcvn37nG00Y8hdw9raWm7IkCFcq1atuOTkZK5Tp07cbbfdxh0+fNjpZjOH2DUEwC1btixyzKlTp7g//OEPXIsWLbj09HTu//2//8dVVlY612gGUbqOP/zwAzdgwACuZcuWXGpqKte1a1fuvvvu44LBoLMNZ4xbbrmF69SpE5eSksK1atWKu+KKK7j169dH3qe+qA656+h0X/RwHMdZL68IgiAIgiCch2J8CIIgCIJIGEj4EARBEASRMJDwIQiCIAgiYSDhQxAEQRBEwkDChyAIgiCIhIGED0EQBEEQCQMJH4IgCIIgEgYSPgRBEARBJAwkfAiCIAiCSBhI+BAE4Rrq6uqcbkITWGwTQRDSkPAhCMIxBg4ciMmTJ2Py5Mnw+/3IycnBgw8+CH4nnfz8fDzyyCO46aabkJmZiYkTJwIAPvvsM1x22WVIS0tDhw4dcPfdd+PkyZOR8z733HPo1q0bzjvvPLRp0wbXXntt5L233noLvXr1QlpaGrKzszF48ODIZwcOHIgpU6ZEtfGaa67B+PHjI3/rbRNBEGxAwocgCEd55ZVXkJSUhH//+99YvHgxFixYgL/85S+R95966in07t0bO3fuxIMPPogDBw5g2LBhGDNmDHbv3o2VK1fis88+w+TJkwEAX3zxBe6++27MmTMH+/btw4cffogBAwYAACorK3Hdddfhlltuwd69e/Hxxx9j9OjR0LplodY2EQTBDrRJKUEQjjFw4EAcOXIEX3/9NTweDwDg/vvvx7vvvotvvvkG+fn5uOiii/D2229HPnPrrbfC5/PhxRdfjLz22Wef4fLLL8fJkyfx/vvv4+abb0Z5eTkyMjKivm/Hjh0oLCxEWVkZOnXqJNqeX/3qV1i0aFHktWuuuQZZWVlYvnw5AOhq03nnnWfoOhEEYR5k8SEIwlH69u0bET0AUFxcjO+++w4NDQ0AgIsvvjjq+C+//BLLly9H8+bNI/+GDh2KUCiEgwcP4sorr0SnTp3QuXNn3HjjjXj99ddRW1sLAOjduzeuuOIK9OrVC7/73e/w5z//GT///LPmNmttE0EQ7EDChyAIpmnWrFnU3ydOnMDtt9+OXbt2Rf59+eWX+O6779ClSxdkZGRgx44deOONN5Cbm4tZs2ahd+/eqKqqgs/nw4YNG/DBBx+gR48eeOaZZ9C9e/eIOPF6vU3cXvX19YbbRBAEO5DwIQjCUbZt2xb19+eff45u3brB5/OJHt+nTx9888036Nq1a5N/KSkpAICkpCQMHjwY8+fPx+7du1FWVoaPPvoIAODxeNC/f3/Mnj0bO3fuREpKSsRt1apVK1RWVka+q6GhAXv27FH8DWraRBAEG5DwIQjCUX744QdMnToV+/btwxtvvIFnnnkG99xzj+TxM2bMwJYtWzB58mTs2rUL3333Hf7+979HAonXrl2LJUuWYNeuXfj+++/x17/+FaFQCN27d8e2bdvw+OOP44svvsAPP/yANWvW4OjRo/jlL38JABg0aBDWrVuHdevW4dtvv8Wdd96Jqqoqxd+g1CaCINghyekGEASR2Nx00004deoULr30Uvh8Ptxzzz2RFHExLrzwQnzyySd44IEHcNlll4HjOHTp0gWlpaUAgKysLKxZswYPP/wwTp8+jW7duuGNN97ABRdcgL179+Jf//oXFi1ahOrqanTq1AlPP/00hg8fDgC45ZZb8OWXX+Kmm25CUlIS7r33XvzmN79R/A1KbSIIgh0oq4sgCMcQy6IiCIKwEnJ1EQRBEASRMJDwIQiCIAgiYSBXF0EQBEEQCQNZfAiCIAiCSBhI+BAEQRAEkTCQ8CEIgiAIImEg4UMQBEEQRMJAwocgCIIgiISBhA9BEARBEAkDCR+CIAiCIBIGEj4EQRAEQSQMJHwIgiAIgkgY/j8koO3uKDDgCwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVjklEQVR4nO3deXwTdf4/8NekFy20KbQUWlpoKQhySovWgnJoOZRj/YHS9QStorugVhHQ5SuKruKJoK4HisKqrLDAuoCrUhQvWqtyiBVEwBaoLUJTmpZDemR+f4SZziQzySRNz7yejwcPaTKZTEY0b96f9+f9FkRRFEFERETkB0zNfQFERERETYWBDxEREfkNBj5ERETkNxj4EBERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RUQu0cuVKCIKAoqKi5r4UojaFgQ+Rn/ruu+8we/Zs9O/fH+3bt0f37t0xbdo0/PLLL07Hjho1CoIgQBAEmEwmREREoE+fPrj55puRk5Pj0ftu2rQJI0eORExMDMLCwtCzZ09MmzYNH3/8sa8+mpMnn3wSH3zwgdPjubm5ePTRR1FRUdFo7+3o0Ucfle+lIAgICwtDv3798H//93+orKz0yXusXr0aS5cu9cm5iNoaBj5Efurpp5/G+vXrceWVV2LZsmWYOXMmvvzyS6SkpKCgoMDp+Pj4eLzzzjv45z//iWeffRaTJ09Gbm4uxo4di8zMTNTU1Lh9z+eeew6TJ0+GIAh46KGH8MILL2Dq1Kk4cOAA3n///cb4mABcBz6LFi1q0sBH8uqrr+Kdd97BkiVL0LdvXzzxxBMYP348fDE+kYEPkb7A5r4AImoe999/P1avXo3g4GD5sczMTAwcOBBPPfUU3n33XdXxZrMZN910k+qxp556Cvfccw9eeeUVJCYm4umnn9Z9v9raWjz++OMYM2YMtmzZ4vT88ePHG/iJWo4zZ84gLCzM5THXXnstoqOjAQB33XUXpk6dig0bNuCbb75Benp6U1wmkV9ixofITw0bNkwV9ABA79690b9/f+zbt8/QOQICAvDiiy+iX79+ePnll2G1WnWPLSsrQ2VlJYYPH675fExMjOrnP/74A48++iguuOACtGvXDrGxsZgyZQoOHTokH/Pcc89h2LBhiIqKQmhoKFJTU7Fu3TrVeQRBwOnTp7Fq1Sp5eWnGjBl49NFHMXfuXABAUlKS/Jyypubdd99FamoqQkND0alTJ/z5z3/G0aNHVecfNWoUBgwYgB07dmDEiBEICwvD3/72N0P3T+mKK64AABQWFro87pVXXkH//v0REhKCuLg4zJo1S5WxGjVqFD788EMcPnxY/kyJiYkeXw9RW8WMDxHJRFHE77//jv79+xt+TUBAAK6//no8/PDD+PrrrzFhwgTN42JiYhAaGopNmzbh7rvvRqdOnXTPWVdXh4kTJ+LTTz/Fn//8Z9x7772oqqpCTk4OCgoKkJycDABYtmwZJk+ejBtvvBHV1dV4//33cd1112Hz5s3ydbzzzju4/fbbcckll2DmzJkAgOTkZLRv3x6//PIL/vWvf+GFF16Qsy+dO3cGADzxxBN4+OGHMW3aNNx+++04ceIEXnrpJYwYMQK7du1CZGSkfL0WiwVXXXUV/vznP+Omm25Cly5dDN8/iRTQRUVF6R7z6KOPYtGiRcjIyMBf/vIX7N+/H6+++iq+++47bN++HUFBQViwYAGsViuKi4vxwgsvAAA6dOjg8fUQtVkiEdF577zzjghAXLFiherxkSNHiv3799d93X/+8x8RgLhs2TKX51+4cKEIQGzfvr141VVXiU888YS4Y8cOp+PeeustEYC4ZMkSp+dsNpv8+zNnzqieq66uFgcMGCBeccUVqsfbt28vTp8+3elczz77rAhALCwsVD1eVFQkBgQEiE888YTq8R9//FEMDAxUPT5y5EgRgPjaa6/pfm6lRx55RAQg7t+/Xzxx4oRYWFgovv7662JISIjYpUsX8fTp06IoiuLbb7+turbjx4+LwcHB4tixY8W6ujr5fC+//LIIQHzrrbfkxyZMmCD26NHD0PUQ+RsudRERAODnn3/GrFmzkJ6ejunTp3v0WimjUFVV5fK4RYsWYfXq1RgyZAg++eQTLFiwAKmpqUhJSVEtr61fvx7R0dG4++67nc4hCIL8+9DQUPn3J0+ehNVqxeWXX46dO3d6dP2ONmzYAJvNhmnTpqGsrEz+1bVrV/Tu3Rvbtm1THR8SEoJbb73Vo/fo06cPOnfujKSkJNx5553o1asXPvzwQ93aoK1bt6K6uhrZ2dkwmer/133HHXcgIiICH374oecflMgPcamLiHDs2DFMmDABZrMZ69atQ0BAgEevP3XqFAAgPDzc7bHXX389rr/+elRWViI/Px8rV67E6tWrMWnSJBQUFKBdu3Y4dOgQ+vTpg8BA1/+L2rx5M/7+979j9+7dOHfunPy4MjjyxoEDByCKInr37q35fFBQkOrnbt26OdVLubN+/XpEREQgKCgI8fHx8vKdnsOHDwOwB0xKwcHB6Nmzp/w8EbnGwIfIz1mtVlx11VWoqKjAV199hbi4OI/PIW1/79Wrl+HXREREYMyYMRgzZgyCgoKwatUq5OfnY+TIkYZe/9VXX2Hy5MkYMWIEXnnlFcTGxiIoKAhvv/02Vq9e7fFnULLZbBAEAR999JFmEOhYM6PMPBk1YsQIua6IiJoOAx8iP/bHH39g0qRJ+OWXX7B161b069fP43PU1dVh9erVCAsLw2WXXebVdQwdOhSrVq1CaWkpAHvxcX5+PmpqapyyK5L169ejXbt2+OSTTxASEiI//vbbbzsdq5cB0ns8OTkZoigiKSkJF1xwgacfp1H06NEDALB//3707NlTfry6uhqFhYXIyMiQH2toxouoLWOND5GfqqurQ2ZmJvLy8vDvf//bq94xdXV1uOeee7Bv3z7cc889iIiI0D32zJkzyMvL03zuo48+AlC/jDN16lSUlZXh5ZdfdjpWPN/gLyAgAIIgoK6uTn6uqKhIs1Fh+/btNZsUtm/fHgCcnpsyZQoCAgKwaNEip4aCoijCYrFof8hGlJGRgeDgYLz44ouqa1qxYgWsVqtqN1379u1dthYg8mfM+BD5qTlz5mDjxo2YNGkSysvLnRoWOjYrtFqt8jFnzpzBwYMHsWHDBhw6dAh//vOf8fjjj7t8vzNnzmDYsGG49NJLMX78eCQkJKCiogIffPABvvrqK1xzzTUYMmQIAOCWW27BP//5T9x///349ttvcfnll+P06dPYunUr/vrXv+JPf/oTJkyYgCVLlmD8+PG44YYbcPz4cfzjH/9Ar169sGfPHtV7p6amYuvWrViyZAni4uKQlJSEtLQ0pKamAgAWLFiAP//5zwgKCsKkSZOQnJyMv//973jooYdQVFSEa665BuHh4SgsLMR//vMfzJw5Ew888ECD7r+nOnfujIceegiLFi3C+PHjMXnyZOzfvx+vvPIKLr74YtW/r9TUVKxZswb3338/Lr74YnTo0AGTJk1q0uslarGac0sZETUfaRu23i9Xx3bo0EHs3bu3eNNNN4lbtmwx9H41NTXiG2+8IV5zzTVijx49xJCQEDEsLEwcMmSI+Oyzz4rnzp1THX/mzBlxwYIFYlJSkhgUFCR27dpVvPbaa8VDhw7Jx6xYsULs3bu3GBISIvbt21d8++235e3iSj///LM4YsQIMTQ0VASg2tr++OOPi926dRNNJpPT1vb169eLl112mdi+fXuxffv2Yt++fcVZs2aJ+/fvV90bV1v9HUnXd+LECZfHOW5nl7z88sti3759xaCgILFLly7iX/7yF/HkyZOqY06dOiXecMMNYmRkpAiAW9uJFARR9MFgGCIiIqJWgDU+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNBj5ERETkNxj4EBERkd9gA0MHNpsNJSUlCA8PZ9t3IiKiVkIURVRVVSEuLg4mk35eh4GPg5KSEiQkJDT3ZRAREZEXjh49ivj4eN3nGfg4CA8PB2C/ca7mDhEREVHLUVlZiYSEBPl7XA8DHwfS8lZERAQDHyIiolbGXZkKi5uJiIjIbzDwISIiIr/BwIeIiIj8Bmt8vGCz2VBdXd3cl9GmBQcHu9yOSERE5A0GPh6qrq5GYWEhbDZbc19Km2YymZCUlITg4ODmvhQiImpDGPh4QBRFlJaWIiAgAAkJCcxINBKpiWRpaSm6d+/ORpJEROQzDHw8UFtbizNnziAuLg5hYWHNfTltWufOnVFSUoLa2loEBQU19+UQEVEbwZSFB+rq6gCAyy9NQLrH0j0nIiLyBQY+XuDSS+PjPSYiosbApS4iIiLyKYvF4nL3c3BwMKKioprwiuox8CEiIiKfsVgsePnll90eN3v27GYJfrjU5QdmzJgBQRAgCAKCgoLQpUsXjBkzBm+99ZZH2/JXrlyJyMjIxrtQIiJq9Yz2uWuufnjM+DSh5kz9jR8/Hm+//Tbq6urw+++/4+OPP8a9996LdevWYePGjQgM5B8FIiJq+1rNt93ixYuxYcMG/PzzzwgNDcWwYcPw9NNPo0+fPvIxf/zxB+bMmYP3338f586dw7hx4/DKK6+gS5cuzXjlds2d+gsJCUHXrl0BAN26dUNKSgouvfRSXHnllVi5ciVuv/12LFmyBG+//TZ+/fVXdOrUCZMmTcIzzzyDDh064PPPP8ett94KoL7w+JFHHsGjjz6Kd955B8uWLcP+/fvRvn17XHHFFVi6dCliYmJ8/jmIiIgaotUsdX3xxReYNWsWvvnmG+Tk5KCmpgZjx47F6dOn5WPuu+8+bNq0Cf/+97/xxRdfoKSkBFOmTGnGq67XElN/V1xxBQYPHowNGzYAsHdLfvHFF/HTTz9h1apV+OyzzzBv3jwAwLBhw7B06VJERESgtLQUpaWleOCBBwAANTU1ePzxx/HDDz/ggw8+QFFREWbMmNFkn4OIiMioVpPx+fjjj1U/r1y5EjExMdixYwdGjBgBq9WKFStWYPXq1bjiiisAAG+//TYuvPBCfPPNN7j00kub47JbvL59+2LPnj0AgOzsbPnxxMRE/P3vf8ddd92FV155BcHBwTCbzRAEQc4cSW677Tb59z179sSLL76Iiy++GKdOnUKHDh2a5HMQEREZ0WoyPo6sVisAoFOnTgCAHTt2oKamBhkZGfIxffv2Rffu3ZGXl6d7nnPnzqGyslL1y5+IoigvXW3duhVXXnklunXrhvDwcNx8882wWCw4c+aMy3Ps2LEDkyZNQvfu3REeHo6RI0cCAI4cOdLo109EROSJVhn42Gw2ZGdnY/jw4RgwYAAA4NixYwgODnbaddSlSxccO3ZM91yLFy+G2WyWfyUkJDTmpbc4+/btQ1JSEoqKijBx4kQMGjQI69evx44dO/CPf/wDgOvlt9OnT2PcuHGIiIjAe++9h++++w7/+c9/3L6OiIioObSapS6lWbNmoaCgAF9//XWDz/XQQw/h/vvvl3+urKz0m+Dns88+w48//oj77rsPO3bsgM1mw/PPPy8PX127dq3q+ODgYKcREj///DMsFgueeuop+b59//33TfMBiIioWbjapSytyNT/HI7y8ih06mSB2VwlP95c459aXeAze/ZsbN68GV9++SXi4+Plx7t27Yrq6mpUVFSosj6///67U02KUkhICEJCQhrzkluEc+fO4dixY6rt7IsXL8bEiRNxyy23oKCgADU1NXjppZcwadIkbN++Ha+99prqHImJiTh16hQ+/fRTDB48GGFhYejevTuCg4Px0ksv4a677kJBQQEef/zxZvqURETU2IzuUp42bRr+979YPPaYGTabAJNJxMKFv2HKlJMICgpCdXU1SktLm7yLc6sJfERRxN13343//Oc/+Pzzz5GUlKR6PjU1FUFBQfj0008xdepUAMD+/ftx5MgRpKenN8cltygff/wxYmNjERgYiI4dO2Lw4MF48cUXMX36dJhMJgwePBhLlizB008/jYceeggjRozA4sWLccstt8jnGDZsGO666y5kZmbCYrHI29lXrlyJv/3tb3jxxReRkpKC5557DpMnT27GT0tERHoa2lPOaBnDmTOdMG+ePegBAJtNwKJFcbBa16oyP0DTdnFuNYHPrFmzsHr1avz3v/9FeHi4XLdjNpsRGhoKs9mMrKws3H///ejUqRMiIiJw9913Iz09vUXs6DKa0muM1N/KlSuxcuVKt8fdd999uO+++1SP3XzzzaqfX331Vbz66quqx66//npcf/31qsdEUfTuYomIqNE0ZU+5wsJAOeiRiKIJ5eWdnAKfpqwJbTWBj/RlO2rUKNXjb7/9ttwz5oUXXoDJZMLUqVNVDQxbgqioKMyePbvFDm0jIqK2ryl7yiUl1cJkElXBjyDY0KlTeYPP3RCtJvAxkkFo164d/vGPf8i7kVoaBjVERORLLXkKelycDc88Y8XcuREQRRMEwYZJkzY7ZXuaWqsJfIiIiKhec49CMuKGG87it9/eQnl5J3TqVN7sQQ/AwIeIiKhVaimjkPS2q0vM5qoWEfBIGPgQERH5KXdBizs7dw7Bpk0TVUtZKSm7Gu39fIGBDxERkR/yNGiRSLuPrdZw+fWAfcfWpk0TkZx8EGZzFaxWK2pqahr8fr7GwIeIiKgN8CSb4i5oKSsrUx3vWCSdmZmJ7duD5ddLlNvV16xZY/j9mrKLMwMfIiKiRtbYu6+MZlOkAKO8PMpl0LJhwwan186ePRsA5IJqqzUcgpCtOo/ednW99xs+fDpGjWraXc8MfIiIiAzwNnhp7N1X7rIpSlJPuaKiWrzzjmc9dhw/u9lchUmTNjsFXFrZpk6dLBAEmyr4CQgA0tKi0NQbzhj4UIN9/vnnGD16NE6ePKmak+ZKYmIisrOzkZ2d3ajXRkTkCw0JXhp795W77I2jqCh7sLF8OXDnnUBdHQz12Dlw4IDTYykpu5CcfNDtdnXHICkgQMTrrwtQjNxsMgx8/MCMGTOwatUq3HnnnU6DR2fNmoVXXnkF06dPNzTWgojIHxkNSkpKSpyOdayXMVKLYyS7JC1baWVTlNkbvfqZrCxg3DggP9+C7dtXua0L2rZtm+bjRrerK4Oku+++CqmpXdy+pjEw8PETCQkJeP/99/HCCy8gNDQUAPDHH39g9erV6N69ezNfHRFR66IXvGjVxigZqcXxJLskjULq1q0S8+ebUVcnICBAxNNPV+KGG653WzsUHw8EBFSjoKD+MzRky7nRnj5xcTaPzutLJveHUFuQkpKChIQE1X+UGzZsQPfu3TFkyBD5sXPnzuGee+5BTEwM2rVrh8suuwzfffed6lz/+9//cMEFFyA0NBSjR49GUVGR0/t9/fXXuPzyyxEaGoqEhATcc889OH36dKN9PiKiprJz5xAsXZqNVaumY+nSbOzcOcT9i6Bfi2O1hquO82RpLCoqCrGxsZgzJxJFRQK2bQOKigTMmROJ2NhYj2uGPP1sVms4CgsTYbWGe31fmhoDn2ZSXAxs22b/Z1O57bbb8Pbbb8s/v/XWW7j11ltVx8ybNw/r16/HqlWrsHPnTvTq1Qvjxo1Debk9ZXr06FFMmTIFkyZNwu7du3H77bfjwQcfVJ3j0KFDGD9+PKZOnYo9e/ZgzZo1+Prrr+UdAURErZWR4EUZDCi5qsVx955a53MUHw+MGgXDdTMWiwWlpaXyUpzRwEyiDHReeCEbGzdOcnptcXGsoWtvSlzqagYrVgAzZwI2G2Ay2QvMsrIa/31vuukmPPTQQzh8+DAAYPv27Xj//ffx+eefAwBOnz6NV199FStXrsRVV10FAHjjjTeQk5ODFStWYO7cuXj11VeRnJyM559/HgDQp08f/Pjjj3j66afl91m8eDFuvPFGuXC5d+/eePHFFzFy5Ei8+uqraNeuXeN/WCKiRuCukNjVUpa7WhwtjdX0T2s5Te+z7d3bD/367VUtXTkGSVp5FFE0YcWK2zWvXVn31NSDVBn4NLHi4vqgB7D/88477QVmjV3d3rlzZ0yYMAErV66EKIqYMGECoqOj5ecPHTqEmpoaDB8+XH4sKCgIl1xyCfbt2wcA2LdvH9LS0lTnTU9PV/38ww8/YM+ePXjvvffkx0RRhM1mQ2FhIS688MLG+HhERD7jWFwsfVG7Cl7cbSv3ZPs34Nk2dU9pLadpfTZAxCefjMeWLWPlwMVqDcdPP/V3CpKcibrX7lgL1ZSDVBn4NLEDB+qDHkldHXDwYOMHPoB9uUtacvrHP/7RKO9x6tQp3HnnnbjnnnucnmMhNRG1dI7ZkPqC3XCXwUthYaLbbeWutn877r5yl10qKyvzabbE8bMBIgBBft9Nmybi7Nl22Lo1w+l5OxsEAeefs8ExC+Rqi31jD1JVYuDTxHr3ti9vKYOfgACgV6+mef/x48ejuroagiBg3LhxqueSk5MRHByM7du3o0ePHgCAmpoafPfdd/Ky1YUXXoiNGzeqXvfNN9+ofk5JScHevXvRq6k+FBGRDym/hPWWmrSCF3dLWVOmTFFl2ZW0Ahh355OyJr7Mlkifbe/efvjkk/Gq50TRpAh6AHvQYw9+pHsj3ZegoGp5mUvr2psTi5ubWHy8vaYnIMD+c0AA8PrrTZPtsb9fAPbt24e9e/ciQLqI89q3b4+//OUvmDt3Lj7++GPs3bsXd9xxB86cOYOs80VId911Fw4cOIC5c+di//79WL16tVP/n/nz5yM3NxezZ8/G7t27ceDAAfz3v/9lcTMRtSquin3N5irMnHkB5s69HlOmTAFQnzERBPvfbB2XsqKjoxEbG6v5SytwcXc+iS+yJcoCarO5Cv367ZXft57jMhgACBg37mNkZy9FSsoumM1VSEo6jPj4UkPX3hyY8WkGUtOogwftmZ6m7lwZERGh+9xTTz0Fm82Gm2++GVVVVRg6dCg++eQTdOzYEYB9qWr9+vW477778NJLL+GSSy7Bk08+idtuu00+x6BBg/DFF19gwYIFuPzyyyGKIpKTk5GZmdnon42IyFfcLTXl5ORg9uzZiIuLk5/3ZClLj/I45fmCgqpRUxMiBycSqf7I22UvvazWpEmbsXnzJNhsAkwmEVdeudUh42MPaBwLn43ci+YkiKIoNvdFtCSVlZUwm82wWq1OAcIff/yBwsJCJCUlcWdSI+O9JqLmUlpaiuXLl8NqDcfSpdlOxb5jxuRg+PA8AMDMmTMRGxvr8yGkFosFJSUl8nKW0d1dRpe9XH1GQbAhO3spzOaq8/VNnXDllT3w669fNtouM+k+NoSr728lZnyIiIg0mM1VyMjYipycMagv4hWwdWsGBgwoUGUwfL0jKSoqSg6kPNnd5Rh86QVkUpbIXVZL+vXrr/Y2KA3N4jSkK7SvMPAhIiLSERdXCvXOJde7kxqDJ/11lIyMvvCmt5Cr2VyuApvGyhZ5ioEPERGRDm8Cg6a4Bq3+Oo6MFD172lvIFVeBjbusldH6J19g4ENERKSg/BL2NjDQWmKyWq2oqakBAAQGBiIyMtLpfV3t7nLVX0cKICoqKjyulTFSQO2Ou8Bm0KCpmlmr4cOnY9Qo3y8VusLAxwusB298vMdE5K3iYnuz2N69gdDQ+gCkpMSEwsJAJCXVytPBtYKNs2ejkJh4K374YR3M5iqXdS1Wq9Xp/SsqKrB27VrFMcbrWpTFyVq7u/T660hLb2vXrsW0adMQExPjdG5X12E2V+HQoV6K4MWGYcPykJaWr3nNjufSW44bMOAaDBtWjZqaCM0edmlpUWjCmAcAAx+PSH1vqqurERoa2sxX07ZJ/6Ny7DVERKRFyrCsXh2KefPM8hbsiRO3IyVll8tlGKnHmPr13SEI2fJxyroW5Zf+mjVr5GtQBwP2x/TeVy8IUWaJoqKiMHv2bFRXV6OsrAwbNmxAv357sWXLWJdLb1LQNW3aNPkxd/U1WrO3cnOHIzc33SkA0jpXcvJBzSXBgoIPcPSo/XVLlszBnDkdUFfX9D3slBj4eCAwMBBhYWE4ceIEgoKCYDKx/2NjsNlsOHHiBMLCwhAYyD+iROSaVMRbvzXbvgxkswnYtGkiYmKOuVyGOX78ONauXev0eq3dU3oBhF4woPW+yrEP7op8HbNRniy91dbWAjC2K0wrY2NnD4Dy8tJdfqbs7KVur2vatCpMndqh2XrYSfit4gFBEBAbG4vCwkJ5wjk1DpPJhO7du0MQBPcHE1Gbo1yucvcFKWVJ9JZbjh7t7nLLthQguNvarRdA6AVWU6eu1zyfsgmg0cGjWsteR4/GAxCQkHDU5f1x9bmk54OCzmkUUKuPd/WZyss7GdrqHh/ffAGPhIGPh4KDg9G7d+8mHajmj4KDg5lRI2rFPAlcHK1YAcycaa8HMZnsY37GjXN/Pr0dWAkJRwztzHK3g0svgDhyRDuwAkSNYMI5uDCyPT4qKgqZmZny0pon9Th6n6ukJA7//OctcoZm0KA9+OGHQdCbZiWKJhw/Hg3HAaQmkyjfI1db3VsKBj5eMJlM7CZMRKRDK3A5P+7PiRQgdegA/PabFcHB1Zg5Mxo2m7RcBdxxh32zgygKLs+ntwwkzY1ytzzkbhlJL4Do3l07sEpIKHY632WXfYWvv77cq+3x5vOFQ3r1ONJylLRsFhQUpPu5MjK2OmWe9uwZhNtvfxN79/ZHbm46nAMgEV9+ORr2XWX24EcQbFi4sARAyw52lBj4EBGRzxQX1wc9gP2fd95pz9g4ZmqUAZL9y9QM+xeqY8PA+p/t5xNx0UXHkZgY6FQDo7fcYrTjsKvjvAmsUlJ24ezZdsjJsQcZX399OQYN2oM9ewZpBldG5m7p1eM4LpvV1NTgpptuQlhYGABg4cIT+OGH0ygo+EA3e1VTE4yxY7ciLS0f+flpyMtLd9pCb5/GLmLq1LVISCjG6NFDsW1b/Xn0CrelzybxdrZYQzHwISIin7BYLPjmG8BmU3+Z1dUB+fkWhIbWF+s6Bkj1X6qOX7LO6uoEvPTSR0hKOizvyFLSW24xugzj6jhPAyurNRxbt2ZAyp5ImZWsrDdRUxPsFFxJs7kA+64sZa8faeu8dkNDyOeXls2kc0lb5GNjgcREi7zLytWyntlcJQdAP/3UD1u2OG+hb9/+DMzmKmxTRD2udo8pP5vE6GwxX2LgQ0REDabcWSUIzkMvt29fhYKCKjlQ0QqQ6gmKL2UpA6QMhEQEBdnrLJuj3tKTwMpVZiUpyfUmGWUvIMf3mTRpMzZunAjH5SitZTO9LfLdulWqtv4/8MBBhIUpexTZMzd6S3mO7+PJTDGta2sqDHyIiKjBpC8wd3Uyyq3jjgGSRBBsckbk9On2WLfuOscjUFNj3+VktVrl2hdvSbUwjcHIyAtPGhxOmzbt/G7XNUhOPqhajjLaVVrKsMyYYcFvv70gZ6mUQY8ycwPYkJx8CL/+muzyfdztimspGPgQEZFPuaqTkbaO641hUNbNADgfIOkHDjU1NYbnPGVmZjoFSb6cEaVcmiosLEROTo7bQNDTBoeRkZGIjY3F7NmzUVJSArN5A9LS8r0aN1FdXa2ZpdIqnj50qDfsu8e2O+0ek65Va0u89O+qJUxllzDwISLycw3Zeq7HSD2N84yoYKcvbyMN+5TLN3rcFdK6e/2ZM2fkImF357dYLMjJydH8nI71P942OIyKilJl2ZTb2xs6+dxVM8O8vHSkpeXLjzgGblqF2768Nl9g4ENE5Mc82XreGJQBkl72w8iOrIYWyCqDFmUApBwseubMGafholoBlfNwUu1sh97SkKsGh8qdUVKxs7vamqKiIhQWFsrZNsA+iUD5s/I6XTUzdNfQUVm4HRRUjYqKjli3biqUxd1GGjY2JgY+RER+ysjW8+JiIDfX/vthwxqv6667L29vGuMpgxgjA0qlAm3lNSkDFr0AxtXOJFe7nLR3Z7lucKi1M8pdbc2WLVvc3iutzI1WM0PlMuPRowm6hdsnT3ZyWC7TvrbmwMCHiMhPHTignpYN2LeeHzxoD3BWrADuuAMQ7f0DIQjAG280TkbI14WxyiDG3YBSKWhRZmqMLOFI59BbIjMSzLlrLAi4b3BopIDaFb3MjdTMUFk8nZGxFeXlUSgoGHB+m76aINgQFFStG/R4em2NgYEPEZEfslgsiIiohckUI3dJBoCAABHh4cfx44/BuOOOjnLQA9gDIL1mhA3l6Ze3lH0pK9Puoi8FI+6CD62gRes1P/wwGNKWer3lGinDJC1HGQnmtJbxQkP/cArUAKCwMFGzONhdHZQyUwXYMzUAkJBwFGZzlaFmhuXlnVBSEqcIyrR6Ldnft6YmxGXQo7w2XxaXG8XAh4jIzyizIVdema4qpJ0wYTM2b96FwsJEiOJ0p9cqM0JKRr/A9LaOezJ1XJmNeecdEc88U4EbbjirWW/jTSZJu7jXsZu0+hyOy2SA+2BuypQpAOyN/ZRBSseOJ1UNDg8d6nV+arx+cbBzobi9QPzQoV6Kfj+OPZHsM7769fvJbTNDAPJcL637AQDXXrsOAwbs092JN3XqOiQkFOPWW8cgOvpidm4mIqKmIWU5du4covgbvH0ZQ11/IqrGRQD2gZSieBAWSyfVl5bRnVWuGClidszG2GwC5s6NwG+/vQWzucqp3sabZSDt2ht1hsPxHHoFzcqlK8dgLjo6WvUarSW5Tp3KDTUFlN6vpCRW9X72jF39tnS1+hlfrsZoAK52etXfj4SEYgD6QeyAAfvkzx0bG6t7rsbGwIeIyA9p9WrZujUDAwYUKOpPNqm6AwuCDRMnbsaXX+7Cl186F/Ua/du7FCBVVFTgxIkTqpEHekXMo0ePxrZt29xmcBwDEE8ySa5e4y4wUHIMYDIytiIursTljDCt5bWNGydixIgv3Was1M0G6wM0V4GK4/mUu7FuvDENAwZcDOBiWK1WrFmzxmUwqHU/jM5Gaw4MfIiI/JAn9SdHj9rXtRISilVfYN6OG5ACpNjYWERGRqoCHz0dO3aE1RqO06fDIE0Gl7jL4HjzJaz1miuu+MztObQCmK1bM5CdvdTpNRUVFee7MOtlVEz48stRcJVtcg5g9WecuaIcozFgwDinjIxeIbargE4viG2Ouh4lBj5ERH7I6BKQ/ctrn+qx+mUVE5pqxeLdd0PkOhd7IGAPfoyOafBmO7zja4ycw1VAKT0vFSgrZ3G5GjxqD2a0syvulqCMMrLTymgAqdUhW9JcdT1KDHyIiPxMRUWF7hIQUL97CFB/UQPOhcWN1fDQcSfS0qW9VFkNQRAxdepapyyUN6TdWBUVFV6NVggODpazX3oBZUlJnFwcrFWg7DzCw5GAceM+Rr9+e1XX5Tpgcj3lXnl9RoJH6Tq1jpsyZQqio6NbRGDjDgMfIiI/YrFY5EyD49/glbuH7F+aIpRZleTkg06FxQ3d3q617OFYI5OenqeZRWnf/ozul7XR5ZQzZ85g+fLlivfV3j01ZswYhIeH63ZuLi21zxYz0ptHr0A5Ofmgqn2AkiDY5KBH2g329ts5TgXUzqRlQa0p9zZce+06l8Gj0fsYFxfX4gMeCQMfIiI/olX8qzV+QPklKX1RT5263unLVW97u1HK3WAVFRUoLgYee6yvvJtMFE3IzU3XzKIEBenXGBndZWa0309SUpLhnUiOAaW7eqoxY8YgJ8cexDjvvAKkHXf1W+dDsWZNV7z2WjakwDQlZQd27LjY4XUCrr3232jf/owc2OrttHK8LxJfzEFraRj4EBE1g8YYDNoQ7mpFpCyQYwAiNTy0WAK9/vKLioqSM1GFhYmw2S50OMKE9PTtcgdhQIQomrBixe1O08wLCirkVwUHB7sNVqRMjbvgpKKiwuW5HDMjjktCruqpwsPDAbjaRm8vkA4N/QMAsGhRT9UxomjCzp2p0Cr6VmZzXNXouFqqak1BjREMfIiImlhzDwbV4rpWpP5L1HEZR2p4CLieWeWOuxqZtLR89Ov3E95883Y4DrxUTjP/5z/1R1J4+vmVwcnatWtdnksrM1JWVqa5HKVXU2M2V52fkSV1iVZvTbffd0ArKySKJgwbtl01XkLvPbSWtZq7t05TYuBDRNSEjAwGbQ5atSnSl6zyS9RV1sDb7e3urkN6b62lIFE0IScnA3rTv41ek1ZxsSgCBQUDEBdXik6dLCgpKUF1dbXu0o7jhPcNGzqqOi672/5ttYZjz55BqK/Dce4WrUcKDqXxEp72zmnuLeZNiYEPEVETcjcYtDk5BjUAVF+iyh1PSUmHff7+0vmTkw8iO3up0xe4XlbG05EUepyLi03IyRkDaRv5oUObkZJin44ubdl2nPouNfyzWsMVheL1/Xyyst48H8DVj4I4e/YsAGPdkbUzPursjqtdV1paW41OQzHwISLykjd1Or1725e3lMFPQADQq1fjXKOntHrXAK4nnPvC6tWhbudRGZ1mDrgufNajXVysPZh0zZo1Lu+JXs2QtFSnPD4iIgKA61EZynYDjjve0tLy3QZ5/rSU5Q4DHyIiL3hbpxMfbz/2zjvtmZ6AAOD115s/2+OKux1PDWGxWFBUVIt582JUO7n0zu9umrlUDCwVPpeVlRnOaLirc1JmkqzWcNU4D+maY2KOIT6+1GWhsnT85s2TcN99/QDUAjDeHdmbURD+tJTlDgMfIiIPeVunI9V+XH01kJ9vQlFRIBIT7UskpaVNs+TgzRegNxPOjZAmmtt3cqknwbs6v2NWKiVlF2JijmHFits1grOlmsNLJcr74Vznoz8qIj8/DVr1Rm++eTsmT7ZncpxrptTH22wCVq78WrVsaKQ7srsO0o7LWv62lOUOAx8iIg95U6cjfck7KihQ/9yQnVFGOO4+Kisrw4YNG1y+xpsJ50a428ll9PxWaziOHOnh0fBSSVRUFDIzM+W6nI4dT8rDOktK4px2YgFAQUE/5OYO07ma+myVMogJCqpWBWauPqM34zWUuKzlGgMfIiI3HGt5vKnTMbq7yNVx3tQUab3G08DKmwnnjXV+x5ESepPJAWPBk8ViQU1NjWa9zvDheRgwoECns7U+ZcClDGIa8x6ScQx8iIhccKzlWbLkFKZNq8Izz4Ri/nwz6uoEBASIePppKwICzsJiaZxlBW9qinzZL8jIEkxwcLDXjRldnX/YsGHIzc11CHJsSE3dgZ07Ux26TWsP89Ty448n8fzzmxEUdA6bNmktkx100dlan17A5c2UeG+wnsc1Bj5ERDqKi4E77oC8xdlmA+67LwyHDy+H2VyFe+4Jl7/ETp2qwvmRTz5frvKmpsjoazz5knQ1oDIuLg4ffBDlNtBSBkYBAdrnt1rDVYNS33uvBEFBsQ6Bh0ljRAOgN8zTkT0ojDxfW6TueAw41xi5n4JubFp8Q5exXMnMzETnzp1Zz+MGAx8iIh3LltUHPRK9ZQwl5XKV9EUfEeE+U6DHm5oio69xrPmpqKhAba19l9HJkyexbds2t9cXHR2Ns2ej3AZajhmoZ54JdTqXY1ZHmhnmareVknKYp+OEd8C+tJWfb8Mdd0TLu8jsQY/rZTLXO75suP12e11QY2Zypk2bphqQqsQCZuMY+BARaSguBpYs0XrGeNGt+os+BhMnDvGq9403NUWevEb5haksii0tLTUU+FRUVOCnn4Jhs6m/eOvqgPx8C86dq0BFRQfMnBkDm80eXNhswLx5Ztx7b7gcpBw9mqDaIq7MwmjV8DhSZlsca3a6davEjBkW3Hbb9vOPO57H9TKZ3o4v6dj4+FLNaxo9erShe+gqqAEY2PgSAx8iIg1aGRMAGDYsz9Df6J2XmgSvet9YLBYEBFR7VFPkzWsaYu3atbBawyEI2U67lrZvX4WCgirNLes2m4Dy8k6qqeGuCdBalgJsuPbadfJATq2+Q3PnmhEbe9DN+9jPn5X1pmYg47hLy0iGp2PHjm4+k11kZCR3YjURBj5E5Nf0inGjo0/CZIqUMxQAYDKJSEvLN3RercDJ0943jlvgjdQUefMaX3C3M0tvy3pQULVHRcNZWW9i797+TsM4BwzYJx+n3XdIwBNP/GHgfUyoqdGve/K0RicoKMjQcSxIbjoMfIjIb+nterJYLNiw4WVMnKheLpk40fj2Y62lJqluxHFLtpLyC9Bxa7uRmiJvXqPH0y9jV7uWzOYqzQnlNTUhLoIRGwQBquPj40sRH1/qchinvabHOTO0b19/jcc93wLvic6dOztNbXfEZaymxcCHiPySq11Pp06dANCw7cfx8cDNNwOrVtU/lplZjW7dbsO8eWbYbAJMJhHPPGPFDTfYh1S2tC9Ax8JnLdJQToleoLVz5xDFTC37KIaUlF3nl8icM0FTp9qXrgDoBlKudk4NG5aH3NzhqsdF0YRhw7arskUXXrgPe/deCCM7sowYO3YsEhMTAbS8f59kx8CHiPyS3q6nHTus2L3b/Re5KxUVFSgpMeGdd2KgzCasXRuCtWtDFAW+AubPj0RmZmSLndXl7ovbPp08UTN7JXHugWOfVD5gQIHuEply6cqbQCQtLV8OcCSCYENaWr5TtsiegfNNb53ExETW6rRwbTLw+cc//oFnn30Wx44dw+DBg/HSSy/hkksuae7LIqIWRG/XU3z8H9i9u2HnXrt2rW4xryN329JbMvtSYQxstukuJ7a7m/XVGI393NUcGckeTZkyBYGBgVi7dm2Dr4dajjYX+KxZswb3338/XnvtNaSlpWHp0qUYN24c9u/fj5iYmOa+PCJqAVztegoOPm74PI7DIAH70s/y5f/D6dNhcK4nqa9Zkbjblt4SSRPVldvTld2OAahqmLRqbhxrafSCD1f1UO40NKCKjo72uM6JRcotX5sLfJYsWYI77rgDt956KwDgtddew4cffoi33noLDz74YDNfHRH5irejEdztenIzr1NFaxjk6tWhinlOIhw7+gKQsxBNMerC19xNVM/PT3PacWWnzHYZq6XRmp8lZZS0+t441hsBDe+UrKxzUjZ3VAoKCoLZbGZNTyvRpgKf6upq7NixAw899JD8mMlkQkZGBvLy8jRfc+7cOZw7d07+ubKystGvk4gapiEzqIzuevJGcbG9KV99czwBgiBi6tS1co8ZAKoshDdbzBuSBWko6f6VlMRCa0dUbm46pMyOlAWyd79WHgc5M6RHqxfPhx9OwsKFaUhMDGzSAEN6L9butA1tKvApKytDXV0dunTponq8S5cu+PnnnzVfs3jxYixatKgpLo+IfMCbuVVaGiN4sBdMq+t4RNGE9u3PGKopcQzKtJZNtLIgyuNcLbUoP3NDlmSs1nBs3ZoBdRZHPB/gONfyODLSz0irLqiuTkBVVRfoxTxcZiIj2lTg442HHnoI999/v/xzZWUlEhISmvGKiMgVb+ZWOXK1hOIJxy9ae8G0qAp+GtIXxnE7eUmJCY89FiNnlETRhM2bJ+HsWUH3NZLVq0Px2GP12+j79xe8mtReUVGhM7BTgNY4CftWdcBVfY9WrZR9V5z6Xrqrh4qKisK0adNYjEwueT81rwWKjo5GQEAAfv/9d9Xjv//+O7p27ar5mpCQEERERKh+EVHLJe3GUvKkQLikxOS0hLJp00RYreEeXce0adOcllvi44GFC3+DINgjM3d9YaQp5K7eOyoqCrGxsQgODkZhYaBTRslmE/DEE6dgsVicXiP9qquLxbx5kapt9Hfeac+eKRUXA9u2OT8usVgsWLt2rdyF2R1BsCE9PQ9jxmx1uicA5M8u1Uopf6WmdsHy5YI8wT0gAHj9dffBrat5V0RAG8v4BAcHIzU1FZ9++imuueYaAIDNZsOnn36K2bNnN+/FEZFPxMfba3ruvNOe6TH6hSgpLAx0ubXaKMddohaLBdXV1Rg9+ldYrWvd7iTSyjrpkQqKteZhAcBrr4UhNHQ5FiyYrjm365tvoDtANDTUHigZqZuSskhaW8Wdl7nsj9mbCNqQmroDSUmFSEgoxqFDveQCcGmA6Jw5zvfy6quB/HwTiooCkZhYi7g4G0pLm64xIJfO2qY2FfgAwP3334/p06dj6NChuOSSS7B06VKcPn1a3uVFRK2XL74Qk5JqNTsFOy5H6S2/FBYGok8fE6Ki6odPOu4UM5tdN93TKtzdtGkiFi48Aa36WWXAkZ7u3JEYsAduRUW12LMH6NABOHXKPm9swwbtgEk5QHTKlHswc2ZHj+qmHLeKKweNOgdCJuzYcTF27kxVja2QPvv8+WZkZtrfy/FeSgoK1D/rFYIbDVZuuukmhIWF6T7PHVptV5sLfDIzM3HixAksXLgQx44dw0UXXYSPP/7YqeCZiFoXb78QHbe9x8XZXDa2kzhuVXeVETEy90pJr6FfUVEgUlPVxxYXA998EwyrNRxmcxXS0vJVO6cAexBTUhKHSy6JUdU/mUyRmDhxCFJSdmnOyZI+87ffnoTNpp4iXlcHrFhhxZQpNgwcqD1hXFmkLQVCR4/G4/jxGHz55Sin40XRhJycDDhWWdTVCXKNltF7qXeckTEbDGr8W5sLfAD7//i4tEXUtnjzhegYrCxZcgpjx1YYamynzBz4aieZRG9SeWKiukdM/fVHQRCy5SLsyZPVgVt9UONc/7Np00ScPdtOc06W5KefPtBYQhPx6KNmLFpkwwsvnMK993aQn9HbEafM+jhuda9ncvrsvm7iyKCGXGmTgQ8RkVawct99YcjO/kheitIKeDIzM9G5c2fVl6cvdpIp6Y1TCAvrDYvF3qPG8fqVnZEdAzftXVb1r1MuLTnOydK6HmXQIoomzJnTHlOnAr//bsKWLRlyxkm5I855HpcAreBHHajZmzi+/rrQKkd2UOvEwIeI2iStYMVIEbPZbHbKGOjN9WpIlkIr67R2rT0Lc9NNN2HXrkingmTl9TsGbo5ZlHrOj2vdh5SUXYiJOYY337wdWktRs2adwaZNMRDFLqrzSMGY3hb3/v1/xN69/Z1aBwwYUIDy8k6YM+dPuktpRI2BgQ8RtUlawYo3PXVczfWSRk0YNXr0aGzbtk3+WS/r9O677+oWJGtdv17GxjG74u48FRUdod3lRMTGjdqFwFIQpbd8N3ZsDsaOzVEFeKNHj0bHjh0RGBiIyMg/UFpaCoC7qKhpMPAhombjzbwtox2XpW3v9TU+IiZOVBcxuzuXu7le0qiJzMxMQ9fesaNzZkPvGtxNF3eUnHwQU6euByAiMrICNTXBcqARGvqH6jzp6c4jfHbuHIKNGydqnFmvVsdOCqI8mYauDP4cGb2XRN5i4ENEzcKbeVtGOy5L294rKkIBmKH1xW3kXEbnetXU1Lj9vN58HqPTxY2eJz8/Dbm56cjNHY68vHSn+hznbI/jdHk1QRAxf/6vGDmyHwBg6NA6JCcv9XoaOuD9vSQyioEPETU5b3ZJ6XVcTk4+qPqCraiowNq1a1FcHIsVK26XdzpJO5yk4Zh65/JGYKCx/5UGBQXJv9fr5eP4edwNUTV6HgDIy3MeIKpfnwNcffWH+OijCU7PSVmjtLR8tGtXhfz8+ufc9TByx+i95LIYeYuBDxE1OW92SR092s5Qka4gCIplG+3jAUH3XN6IjIzE7NmzUVRUi8LCQCQl2ZsqKgUHB6sySHq9fH76qR/6999rOHjQO4/jfXH1ft27H9Gsz+nT5wACA5W1QzYMG2YPeBprKrx0L9mHhxoLAx8ianLe7JIaOtTsNADUZBKRnv4nDB1ajbg4G4KDg1FUVKuzbKMu6jXSvdkTH3wQ5XbpTiriBbR7+QAitmwZj5ycsZpLb1r1QJ06WeC4JCUINlRXByE391J0734Y8fGlLt9PEGwYNGgP9uwZ5FSfY3S5zZcY1FBjYuBDRE3KyC4prXlTjq8RBBGiCNx1V0eYTCKWL7dPG9+2zaK5bONYbKtXiHvmzBmPP1NJicnjpTt3vXM2bZqImJhjqKkJQadOFqeREHPnHkRY2L9w6FAvqGuYbOjWrRj/+tcNkHrpDB78A/7f//uvy/fbs2cQsrLeVBVFK6+1KQIeoqbAwIeImozRXVLKsRNarzl6NB7r1l0LKcthnzYuYtw4QXMWF2BDVtabiI+vz7joZTLeffdd3TlQeuxT09WPaS3dOdalSNfw00/9sGXLeNVzomg6X6PkPPtKFE147rneuO222PPZrfrARxCA4uIExWMCfvhhMC6++FtFr5474FjwLYom1NQEIynpsOHPTdQa6ZfrExH5mNYuqaSkw07ZBOVxWq9p3/4stJrs7dhhRXX1r5g0aTMEwR6JCIINkydvVgU9nry/EWbzcZhMouqxgAAR4eG/w2KxALAXdO/ZE4WRI290uob+/ffK11tPVBUsO35em03AkSPdNet2nHexCTh6tDsAoKYmRON5AGjYUh9Ra8GMDxG1Olr1KiaTiC++WHG+LgVe16VYreHYvj0Yl14KnDzZDoWFiW57BuXmrsXEieot5RMmbMZ779l3TCUlXYvHHmt/vv4nWR4cKnFe9nK9jRywB3R6Rcn2nWzK4EZEQsIR3XsHiBgzZmuLWM7ibi1qbAx8iKjV0WqW98ADBxEW1rC6FKkfzgsvmCAIANARojgdJpOIZ56x4oYbzqqOLysrw4YNGwA4L50dOtQLS5dmK+pp7JTb6h1HRkivDwqqlpe56onnf9XXJMXHl2LQoD344YfBkOp5Bg3aAwCqxwYP/kHOeGndu4yMrRg+3LmpYWObNm0aIiMj5Z+5W4uaAgMfImqVHAMNZdDjDed+OPXP2WwC5s+PRGZmpMsO01KwpT2ws57ezDBlsKY9gkJEevp2eTu51RqOH34YBGU9z549g5CdvRQXX/wtjh7tjoSEI07LfM2xUyszMxNms1n+mUEONRcGPkTUavlyt5GrCeeAZ9PY3Z3LyNZ5raGhomhCXl460tLsHQPz89Og16soKemwZl2TxJf37uqrr0aHDh1U2RslBjnUkjDwIaJGJ83kiohwv59CWWNjdH6XL2jXvtSzFysfh8US6PZLXKu3jnJwqKuZW0r2QmT9Rov2TsyOmq5IecqUKYiLi2NQQ60KAx8ialTqmVwxToW9SsoaG6kJ4NVXN811ahUYCwJUxcqbN9uv2912d63eOmPGbEVcXImhpSWpUWFQ0DnNQuSSkjhodZ8GgGHD8pqsSJlBD7VGDHyIyKeUE9cBx5lc2oW9gHONjdQEcNeudk127Y61LwA062Ck7e4lJSanXV/1Az/VvXUGDChwO3OrvDwKJSWx2Lo1Qw64+vbdh337+kFZx7N1awayst7U3NElLYM1xJQpUxAUFISamhoEBgZqLmFx+YpaKwY+ROQzjhPX77/feSaXKJowfPh0DBum7pWzfXswXnjBsTcPYLF0lGc3KXdRNZRUbOt4TsfaF71gxf5ZY2CzTVdNRDc6O0tJOV3dsaPyvn0XQq/ZoF736YaKjo5GbGxsg89D1BIx8CEin9CauP7CCzi/XFR/XEAAkJYWBeX3qsViQVJSrdMsLqmuBgj02RfxtGnTEBMT06BsRf2ICvWIieTkg5q1Qq6KmUeMuAGPPdZLniLv3FzQpHu+pKTDTb47i6i1Y+BDRD6hN3H9rrtO4Y032uvO5FKOpNBqAqisqzFqypQpiI6OdnrcV8szu3ef1sxkSbupPMnEWCydVMGeI6nPjnL5S3k+ztEi8gwDHyLyCa2J64JgQ2joctxzD3RncinHQ7jqL1NdXW24q29jF93+9NMHEIRshyUtG06fbg+rNVz3c1it4Th6NAEAkJBw9PzIjFqn++a4AywlZRcGDChosswOuydTW8bAh4gaTHt6unNmwpHWTCxXGYyoqCinYMlRUxTdao+YELBu3XWqYEX5OXbuHIKNGyehfinLPkMsM/MkFi2qw8KFXVWdlB13gHmT2Rk9ejQ6duwIADh58iS2bdvm9jXTpk1j0TK1aQx8iKhBXE1cb4zMRFN8KUs7rFzN6JKyOkePxmP9+mvlGh1lvY+rnV6ACRs3TkRy8lKYzVXIzvb9fevdu7dcG2WxWAwFPjExMT55b6KWioEPETWI1vR0XwY89du8TWiMjUaOyzrKHVbK7I0Ws7kK5eVn3e7i0u/kXH9cY9fqtJRsGVFzY+BDRC2WMgh55x0Ry5cDWVnqXkEN7e4sBQQnTpzA0aMiHnusryp7s3nzJNx6axz69u2Ampoap+30Wk0GHXdx6XeFbtwuy45BHYMaIsde6ERELYRzQ0MBd94JPPss0KMHcMUV9n+uWKF+XXExsG2b/Z+eWLNmDd5771unHVY2m4APPijAmjVrEBQUpHpu584hiinq9j37gmBDerp60rlUEyQI9RXMgiBi8mTf9N3RwlodIm3M+BBRi6S1PFRXB8yfL8oZGXt3ZxEXXXQciYmB+OCDKFUDRSlD5E51dTWs1nCcPh3mMntTU1MDoH531saNE1H/90cBgA2iCOTmDkdeXrpqmUxZEwQACQnFjbq0pTcwlMjfMfAhomalt3VarxGgczAk4KWXPkKnTuVYtuw+OWPjGBS5yn6sXh2KpUuz5R1a0vto9eBRd1l2VP+YVpGzvY5nn7tbQkSNiIEPETUp5Y4pqZhWWXQrjZBw3DLu2MhPImVkysujnJappKAoKemw7mDR4mJg3jyzonOyCaJow7XXrnXKypSVtXMR9DhzN6qiMbEXD5E2Bj5E1CSmTJmCLVsS8NhjZthsAkwmEf37C8jK0i+61Roaevp0e+TmpkMa5aDMyLhapqqurnYqirZYLPjmG8Bmc3x/E9q3P+MUsPzyi97uLOm97a/Vev/GotWlmruziPQx8CGiBjGaWSgra4d588yKpSjB0FKUtM3bcZt5evp2pKXlq5aRXI2KWL06FPPm1df/LFlyChUVL6O4OBaCcLvLXVmAtMTVUeMKRVx77b+RkFCMQ4d6NcrQUFc4UJTIMwx8iKhB3PWHsVqtWLNmDVatyoXN1lv1nN5SlGMDQccdXqJoQl5eOtLS8lXnczUqwp5psh9nswFz5rTHFVekK5bO1GMilAFL/ftrzdQS5SUxVyM33HHM3Ej3zR0uaRF5hoEPURvhy942njKyrOJuarm0FPXEE+F4/fVsVdakY8eTmk0Cjx6NR3n5WVWHZa1GgHr1Pzk5GXDclZWV9Sbi40udXq9f16Ou4/G2EaFj5iY2NpYNB4kaAQMfojZgxQp4vI27qQMld0tRK1aIWLhQhCh2kF8j7YzKynpTM2hat+5aKGt99DosG90hBphQU+OcQdFvQKhfxzN69GgEBQVhy5Ytrm6LSwxqiHyPgQ9RK2axWFBUVIuZM2M82sbtTaDkC66WopYu7aq5lCSK9mDEMWhSFhJrbR1X8nSHmNKUKVMAAIcOKYeS6i+LSYzMxSKipsfAh6iVkoaDFhYmwmabrnpOr3bG20DJl/SWolztlurUqRxJSYfloOn06fZYt+461XHuto5rBV2hoX+4LUYOCgpCTU2N6vVBQdWoqQlutEGsRNR4GPgQtVJS7YeR2hnAu0BJj6+XyfSWkhyDESloslrDXX5mvenqjkGXkWJkZYFxYw4SZZEyUdNg4EPUyrmrnZEUFdWisDDR7VBNV8W0QOMskzl+BsCGYcPyVNvVJVJQo1yqUn7mnTuHYPPmSXKvoIkTNyElZZf8uqCgc6ipCZGDosaeii7R6rcjYZEyUdNh4EPUBrjLXNiDlRjYbNMhCDYMGrQHe/YM8qjfTGMvkxnJvjj28snI2Iq4uBL5eKs1/Pz8rPpeQZs2TcTZs+10t63rFUT7GvvtELUMDHyI2gi9zEVBQQVmzuwqByuiaMKePYOQlfWm4TqVhiyTebKE4yr7otXLZ+vWDGRnL5Vfk5+fBmXnZOVx9Rmu+vvgqiB6ypQpCAwMxNq1aw1fPxG1fAx8iNoAvZoWAHjvvW9hs12oekzaKZWUdNjQ+T2tJ1Jy1eBQmstlhFYBtLKg2WoNR15eusYrtbehO77ekd6yFBG1bgx8iFo5x+Ufx+Ubd8GKJ4zWEznyRf2Ku89x9GiCZoCTmroDO3em6gQ/jT9Li4haFgY+RK2A1i6qiooKzeUfx+UbV8GKVqaopMSEn3/W37HVkLEMelxlrCSuPsfOnUPO1/aoCYINI0Z8hU6dTiInZwykZS47EWPGbNV9v+DgYLeF3p7gri2iloGBD1ELZbFYUF1dfX64Zv1E82eeseLqq0uxdu1alJcnulz+kWgFK1qZIgB47LGY8zu27O91ww1nUVFRoXoPX+yEslgssFqtqusAbBgzZiuGD8/TfI3W55CCP8faHmVgJJ1PGlEhFUYPH56HzMxMmM1m1WulXValperRFe7o7dziri2iloOBD1ELJBUT2zsaZ8sdjW02AXPnRuC3396C2ezZMpYyWNHKFG3cOBGCAJ338u12b+Xn27QpW3H9pvOZGWD48DxcddVVCA8PxxtvfKTKCCmvR6/54dSp6zBgwD755+HD8zBgQIFTpspsNuvutvI0S8OdW0QtHwMfIg9JmRg9vvjbvXR+vYLevXv7oV+/vV7X3GgHC6bzYyDU7+WqG7K3XH0+QMDWrRkYMKAAH330EQIC7jgf/GnXMJWUxELaoi6fQbAhIaHY6X21MlVlZWW6/86kwuySkhLDRdhE1LIx8CHygJSpcMdI92MjtDsai/jkk/HYsmWsHAR4WnOjfV7b+YxPw4ugjerUyQLABq0t6OXlnQAAy5bFylkoxxomqzUcW7dmwLF2JyNDv3bHkRTQ6P078+TfI+t4iFo+Bj5EHjBa7Oqroljnjsb1mQ1peSom5hji40s9ysroZYoAeJw9UvL0i99srsKYMVudCo+lgKu8PEruPyRRZqH0MkZxcSUeXQfg+t+Zqy35EtbxELUODHyIGsDIbqSGkjI6e/f2wyefjHd41oQVK273qgOxXqZI+RgAFBYmolMnC667Lh0dOnRAYGAgIiMjnc7n7Re/VHisNX4CgMsaJl9u1XeHQQ1R28DAh8hLrvrnlJWVAfBdFsBsrkK/fnuxZctYzZofvQ7EjjuWHBsGatW8SI85fr5DhzYjJWULAGDatGlOwU91dTUsFovXwY924bHrGiZva5yIyH8x8CHygrv+Ocrgwlf1PtKXvL1fjfst7PbX6O9YcsXd51u7dq1utsvbz6u3Rd5dDVNj9BUioraLgQ+RF4zstpL4sgleSsouxMQcw4oVtxta3vG22NbdeAhX2S5Xn1dqxBgRoT1CQo+7vkFNNWGdiFo/Bj5EXjC628pT0lZ5qSuzVkYlPr7U5fKO1ERPa5nNaCCkt+srKKjaULdorc+kbMQoCDFIT89AWlo+AxYialKGA5/KykrDJ42IiPDqYohaC3e7rVwFAnqUW+XtGRX93jVGlneqq6tVnYelQEhrd5LVakVNTQ1OnjyJbdu26Xw+eyF1enqeoW7Rys/k2IhRFAXk5g5Hbm46Jk/2LkgkIvKG4cAnMjISgiC4PEYURQiCgLq6ugZfGFFLpMyYuNpt5U3jPykYMZpR0Vve2bBhg8f1N1IdUGlpKbZt2yZ/PsdlNVE0nZ+Aru69o1xqU876Cghw1agQAOxb8q++Oh4jR4bJhdieTG33FfbgIfIPhgMf6X+GRP5MmTGRvpy1dls1ZEu1q/oa6XlX2+e9rb/RUlMTonkt/fv/iL17+2sOC1XO+lq40P6XIO2lM4kJd911ESZP3oy33hreLNvGb7rpJm5XJ/IThgOfkSNHNuZ1ELUajl+Q7rZUS1vbtWjV4ej1pikpicM//3mL7vIXYDxbZJReLdNPPw0EYMOwYdvlOp36966f9bVoURyys8Nd7kizs19nUdEJREX5Nvty0003ISwsTPd5Nh4k8i9eFzdXVFRgxYoV2LfPPgSwf//+uO2225ymHBP5A1c1N9KSjdHlJ61AKiNjq9zgD3AOaEaPHo1t27a53Y3ljmPA4aqWCbAve6Wl5QNwvxNMWjp78807oB4xUX9sUVEgUlPdd0o2uhQ2bdo0JCcnuz2OiPyHV4HP999/j3HjxiE0NBSXXHIJAGDJkiV44oknsGXLFqSkpPj0IolaIq0gwVfLT46BVH5+msugomPHjgAa3slYayinkVomADh9OgxatT9BQdVy9+f4+FJMnrxJlZVSHhsVdRJAlHwtDaXVYZqI/JtXgc99992HyZMn44033kBgoP0UtbW1uP3225GdnY0vv/zSpxdJ1BIZzUq4W34qLCyUj1eSAimrNRy5uelO59cKaHzRyTgqKsrpM+l1jnZcgrNnhOzBjyDYMGjQHrk4WhnwJScfRH5+2vnPVf9cVFSS4eskIvKG1xkfZdADAIGBgZg3bx6GDh3qs4sjaumMZCXcLQHl5OS4fb1WXUx6ep5XnY7dsVgssFqtTo8bWYIDBAiCiKlT1yIoqAb/+tf18rU7Bnxjx25FWlq+w3UaC3yM1gBxpxYROfIq8ImIiMCRI0fQt29f1eNHjx5FeHi4Ty6MqK0wuvykVwOk10xQqq3R4m0nY2UvIa1rcgyq9IK6kpJu57e9u643crzOkydPGpr3xWnpROQtrwKfzMxMZGVl4bnnnsOwYcMAANu3b8fcuXNx/fXX+/QCiVo75wJhQBSBQ4d6yXU+rmqAjCxfKbOvrlRUVADQDwqUgYTeNTkGK1pBnbSE5chdvdG2bduwbds2Q/O+GNQQkTe8Cnyee+45CIKAW265BbW1tQCAoKAg/OUvf8FTTz3l0wskam2kEQ3Kmp3k5IMQReVR9cs+ANxuQXe3fBUTEyNnQKxWK9asWaN5bWvXrpV/rwwuHK/ZkyaKjkFZenoecnOHa7y78XojX843IyJS8irwCQ4OxrJly7B48WIcOnQIAJCcnOyyV0ZDFBUV4fHHH8dnn32GY8eOIS4uDjfddBMWLFigWsPfs2cPZs2ahe+++w6dO3fG3XffjXnz5jXKNRFpcVwqkmjV6dTviBIMbUHXW77KzMx0mf3QW0KTggut5a2ffurv8pqk7fOAc1AGAHl56U5ZoKysNxEfXwoioubUoCGlYWFhGDhwoK+uRdfPP/8Mm82G119/Hb169UJBQQHuuOMOnD59Gs899xwA+yyxsWPHIiMjA6+99hp+/PFH3HbbbYiMjMTMmTMb/RqJAP1Mhbs6n4ZsQe/cubPuc66W0LSuWXm8umeP+pqk7fMSx6BMa2mOQQ8RtQReBT5//PEHXnrpJWzbtg3Hjx+HzWZTPb9z506fXJxk/PjxGD++vn9Iz549sX//frz66qty4PPee++huroab731FoKDg9G/f3/s3r0bS5YsYeBDhigno0tLuEpBQUEwm80eFc0qsy16dTpWazjS0/PkLInetHUtrq7F0y7Ojsfbgx578ON4vd9+2x5Wa7juslVDd5YRETUWrwKfrKwsbNmyBddeey0uueQSt8NLG4PVakWnTp3kn/Py8jBixAjV0te4cePw9NNP4+TJk05/QyVS0lui0mOk+FYr25KdvVQVDKgzLOoREJLo6Gh5iKjetSuzNlKdjqddnLUHiQoYN+5j9Ou31+l6BSFbM4Mk8XZnGRFRY/Iq8Nm8eTP+97//YfhwrQLGxnfw4EG89NJLcrYHAI4dO4akJHUPkC5dusjP6QU+586dw7lz5+SfKysrG+GKqaXztJjW3fF62Zbs7KVISjqseYzjCAiJq140rgI2T7s46x0vBT2+ngNGRNQctKYFutWtWzef9Ot58MEHIQiCy18///yz6jW//fYbxo8fj+uuuw533HFHg69h8eLFMJvN8q+EhIQGn5N8x2KxoLS0VPeXxWJp7kvU5G7CupFjpkyZoplZUt6TkpIS3WuQdlwJgn0p2l0XZ63j09Pz3F7v8OHTMXPmTEyZMkX3WoiIWgqvMj7PP/885s+fj9deew09evTw+s3nzJmDGTNmuDymZ8+e8u9LSkowevRoDBs2DMuXL1cd17VrV/z++++qx6Sfu3btqnv+hx56CPfff7/8c2VlJYOfFsLo8pNjcOC49OPISI2OVJsTFHQONTUhTjuiHMdLOJ7TSLbFyDHV1dWqhn7u7om7hoNan0HZpVk6/ssvL8eOHanIzR2OvLx0TJq0GVOmtMc774iw2eqXtgMCRCQm1iI4OFi3Dskb7LhMRI3Fq8Bn6NCh+OOPP9CzZ0+EhYUhKChI9Xx5ufHdKK52pCj99ttvGD16NFJTU/H222/DZFL/zTM9PR0LFixATU2NfD05OTno06ePy/qekJAQhISEGLoGalpGl5+Ux3kbLClp7Wxy3BGlNRl89uzZ8u+NNB10d4zyPaTrdXVPjDQcVAZGetPNCwoGYMeOoZB2dNUvaS3FxImnVe8xYcJmbN5svyeZmZm616ZFr2ibHZeJqDF5Ffhcf/31+O233/Dkk0+iS5cujV7c/Ntvv2HUqFHo0aMHnnvuOZw4cUJ+Tsrm3HDDDVi0aBGysrIwf/58FBQUYNmyZXjhhRca9dqoZfEmWFLS3tlkrJ6lurpalakwsrPJ6O4nV0taWtetdb1GtrZbreHIycmAchu7dL7y8k4ur7empsblNTqKi4tjgENETc6rwCc3Nxd5eXkYPHiwr69HU05ODg4ePIiDBw8iPj5e9Zx4vh2u2WzGli1bMGvWLKSmpiI6OhoLFy7kVvZWSKvzcVPR3tlk52pHlMToDCkA8mfcsGGD2+JgKTszbdo01eNSBuf06TCXO7jcBUbTpk3D/v2n8eqrFrgbNdHQ3VpTpkxh0ENEzcarwKdv3744e/asr69F14wZM9zWAgHAoEGD8NVXXzX+BVGj8XRbua9pDwS1k7789TohSxrzC12Z7XTM4AA2KIMWZbDibmv7+vVmLFzYR7NxISAiI2Or22DH6LwwBj1E1Jy8CnyeeuopzJkzB0888QQGDhzoVOMTERHhk4sj/9NcM5qkLIzzQFF1jc+hQ73cLhc1hLugShoToZXBsQds9uDHsV7IVSG11RqOZctiIYpSsFPfuBCwYcyYrRg+vH53l57IyEhOTCeiFs+rwEfqonzllVeqHhdFEYIgoK6uruFXRtSElEtUFRUVmD17P44eDUG7dnU4ceIMDh/+FACwdGl2g/vYKHedKZfzHDM46el5Ts0MJXoZnGuvXYv27c9o1gspu0MD9VvVy8ujVDu17NSNC41iUENELZ1XgY/0t06ils5dBkVJ+tKOjY3FhRfWP15aWorly6tQWJjoUSdkLXpLeVoZnNzc4cjNTcfkyc5ZJb0MTkJCMczmKowZMwY5OTkAHHep2dCjRyEOH06Ut6pnZGx12biQiKgt8SrwGTlypKHj/vrXv+Kxxx7zaX8PIkd6PV+M7GLyhKedkLXoLQPpF1Xbs0rBweeQkHBUDkTcbYWXxrlodYc+fDgRyt1qW7dmICNjK7ZuzdDdek9E1FY0aDq7O++++y4eeOABBj5kWEVFhe5zyuzNrbeOQXR0tFPNiBQEudvF5EmDPL36H8cAoSFN91wVVYuiCevWXecUvM2ZEykvySUknEPXrkkAkhAUFISqKvs16c3fcjx/XFyJ0xwxT7HpIBG1Bo0a+EhbzYmMsFgsWLt2reZzjtmbbt0qMWdOpNNxUq3Otm3ACy9oj1cYNcqzWhTHLeoLF55AUVEgEhNrERd3MYCL5QDMXddovcDOuajamWPwplxyPnpU+/2Cgs7BeZeWmpS1MrJNfcyYMU4z8QAWLRNR69GogQ+RJ4w2FRRFE+bPNyMzE3Bo6wTAHqhceilgMgE2W/3jAQFAWloUvPl+Vn6px8YCqanOx3izFV+ZxZKaA+bnpyE3Nx1a/XS0aopc1THV1ITAVdBjdKu6JCkpyeWkeCKilo6BDzUZb7MhWss1dXUCDh7UDnwA++PLlwN33gnU1dmDntdf1z/eFzzdiq9XgzR27FakpeXj6NF4rFt3LfR687g6h0R7Cc3zreoSLmcRUWvHwIeaREMaE2p9eQcEAL16uX5dVhYwbhxw8KD92MYMejzlrgbJ/msfqqv1a4r0zhETcwwVFfb5dAkJR53qkjIytiIursRwLY80U4vLWUTUFjDwIZ/Tyux4O35CWsZR7joKCBDx+uuCoUAmPr5lBTwSd52UJSkpuzB7dm9UVsbINUVlZUnYsGGD7jnefPN21GeJREyevKlBhcvR0dFc3iKiNsPjwKe2thZPPvkkbrvtNqe5WY5uuukmdnH2M74cOeG4jCNlKu6++yqkpnbxyXs0F72t8adPt4fVGq4KTgYMiERsrHOmRX8ZS/mzgE2bJiI7eymSkg57da1c3iKitsTjwCcwMBDPPvssbrnlFrfHvvrqq15dFLVevho5obWMs3VrBrKzlyIuzubm1S2Dq6Jjra3xogjNbevO57XK5xg0aA9++GEw1GMm1Dxpsigta0m4vEVEbY1XS11XXHEFvvjiCyQmJvr4cojsXC0FecNdYbWvv+D1io61dnE5FjG7G4VRU1MDwB5Y7dkzCPXBjnbw40mTRS5rEVFb51Xgc9VVV+HBBx/Ejz/+iNTUVLRv3171/OTJk31yceS/XHVJlpZejAYzRpffZs+e7ZPgR6/o+OzZdk7dkVNSdqG8/Cwct667ytJIU9D1mxPWT2n3tAszl7WIqK3zKvD561//CgBYsmSJ03McUkoNkZmZCbPZDADo1q0S8+ebUVcnICBAxNNPV2LGjOkeBzNGl9+qq6vlYMpqtcqZFaXAwEBERkZqZoikoEEvWyUFPdLPUlbH3SgMx2AkMjISgH5wmJX1Jioq7MdIs7uMyMzM5LIWEbV5XgU+NlvrqLGg1sdsNstLLZmZQEICIAhAerqA+PhI+ThPghmjrFYr1qxZY/h4xwyR1OG5qKgW77wjOkw8dx5HIWV1kpIOq+p9pCDvhhuud7kEpzdCIz6+FPHxpYY/h6Rz584ev4aIqLXxKvD55z//iczMTISEhKger66uxvvvv2+o8Jlal6aqkZGyGytWADNn2jsvm0z2ZoRZWQ0+vUtaGR5XpPvheG/CwiowcWK+0440ZcYHUGd1pHqf4cOnIy0t6nyQF+n2GqTXGd2q7li8LGERMxH5C68Cn1tvvRXjx49HTEyM6vGqqirceuutDHzaGE+WlYzS+gKWvnyLi+uDHsD+zzvvtDcjbGk9efTuTUoKnAKS0NA/dJsRAvYMzrBh1YiNVQdTJSUmFBYGIimpFnFxNqeeSEZmbElYvExE/s6rwEcURQiC87bZ4uJiuT6D2g5PlpWMFsfGxcXpZhgOHFDP2ALsYydcjahoLq7ujWNAoszOBAVVo6YmxKlnD6AOptyNpCAiIs94FPgMGTIEgiBAEARceeWV8u4SAKirq0NhYSHGjx/v84uk1sNxkrkWd8sqvXtrDxh1N6LCKFf9dRqb2VyFQ4d6uQxmpHvnbqwFERF5zqPA55prrgEA7N69G+PGjUOHDh3k54KDg5GYmIipU6f69AKp9XEV1EhLODt2/K5avpEEBwcjPj6q0QaMNncGxUgwY1/aSsTp02Eux1oolwsLCwuRk5PTZJ+DiKi18ijweeSRRwAAiYmJyMzMRLt27RrloqhtkpZw3AUfs2fPRlZWlM8GjErLb+6CDmUG05eUGSZ3M7pWrAAeeSQGNtt02PvxqBsSKguilfU6wcHBhgIf9ukhIn/n1f/pp0+fDsCekj9+/LjT9vbu3bs3/MqozbH3x3Gf8ZCWelwNGHX8AtdbvpKW1WbPno1t24AXXnAOOoYPn45Ro5zrdaRzBgWdQ01NiObSWEVFhcvr0Jo35th7x2QSERRUjYKCfli3rgvqAx0TABsEQdQtiJb4YomRiMgfeBX4HDhwALfddhtyc3NVj0tFz2xgSHqMTiV3R/qiP378ONauDceyZd1gswkwmUQsXPgbpkw5iaCgINXxl16qXTuUlhaFqCh7RkqiDFikrItjdurMmTNYu3at5mu0trBLTQyVjwuCDQMH7sGKFbdrdGEGABOmTl2L9u3PuN2uzqCGiMg9rwKfGTNmIDAwEJs3b0ZsbKzmDi8iACgutu/S6t3bHmS461LsqTfe+AhLl2ZDFO1/Bm02AYsWxcFqXSsHCVKjwfh4uKwdUjYgfOyxGPmcUgZGFE3YvHkSFi5MQ2JioCq7ojdUVSvIi4srQXb2Unl3l37QY783nnRfJiIi17wKfHbv3o0dO3agb9++vr4eaoGM1oU4HufYhPCZZ0J1uw1788VeXV1tKIOkDFCysuCydigqKgp79jhvp5fYbAKqqrogKgooLa3vjqx3Hcq5WYA9kAkKqpaX0I4c6eEy6PH23hARkTavAp9+/fo5NVGjtknahZWZmanqbHzq1CnU1NQgMDAQ4eHhCAy0Z0CkYKCsrB1mzuyoakI4f74Z99wT7nG3YVe8ySC5qh0CtLfTS/S21etdR0bGVnz66RjYbPalskGDlMtaUuGycwHz1Knr3GZ6WKhMROQ5rwKfp59+GvPmzcOTTz6JgQMHqmopACAiIsInF0fNy2jHZi2FhYnndybVq6sT5EyMJ92GXfFlBkniuCQmcbWtXu86UlJ2Ye7cBLz3Xr7GspZyKU1dRzRgwD6n91BuX2ehMhGRd7wKfDIyMgAAV1xxhaq+h8XNbYsnAz4d+bqWxxVfZpAkyiWx9u2B06fdb6tPTj6IqVPXAxBV2ZquXWuRlHQYhYWJustagIBx4z5Gv357da+f4yaIiBrOq8Bn27Ztvr4OamMakomxWq3y741mNtxlkLwZsqq1JKY8j3K510hjRK1gUCIINpdBDxER+YZXgc/IkSPx1Vdf4fXXX8ehQ4ewbt06dOvWDe+88w6SkpJ8fY3UTBx71HhKKxOTmZkpz3OrqKhQbQeXrFmzRvWz8jWA58s8eu/jSNr9pUdv6c/oaAnHYNBxectd0MOaHiKihvMq8Fm/fj1uvvlm3Hjjjdi1axfOnTsHwP439SeffBL/+9//fHqR1PQsFouhYMEdx0yM2Wz2eLnGMRACPJsEX1tba+g4d0t7es+721l29uxZ+XHnQaXBLpfnpLoe1vQQEfmGXsGBS3//+9/x2muv4Y033lAVNg8fPhw7d+702cVR82lIfY9R0kwqqzXc49d6Mgnesfje16QlLCVBsOH06fawWsPx0UcfqZ4zm6uQlHQY8fGlSEo67DLTExcXh9jYWAY9REQ+4lXGZ//+/RgxYoTT42azucHLI9Ty+WK6ub3Hj30mlbfDQh3HNNgDKfXg0+DgYK+COK2aIL0WDlr1TKIIrFt3nVefjVkeIqLG41Xg07VrVxw8eBCJiYmqx7/++mv07NnTF9dFLZQvppsXF0uNDes7ImvVxBghBQaOzRKXL7fvzALUjQaNMLqNXxkASktYR4/GY926ayElU735bHFxcQx4iIgaiVeBzx133IF7770Xb731FgRBQElJCfLy8vDAAw/g4Ycf9vU1UgthtIjXnQMHnJsDejOvS1IfSNl/ttnsPXjGjQNCQy2Gm21Kxxk5Xi8ALC8/C8cVZOVncyzUdsQsDxFR4/Iq8HnwwQdhs9lw5ZVX4syZMxgxYgRCQkLwwAMP4O677/b1NVILoVfEO3z4dPTvf0KzCNlRcHCwZmfkhvT40Qqk6uqAHTus2L3beAPGDRs2GDrOVQDorn+RN8XdRETkO14FPoIgYMGCBZg7dy4OHjyIU6dOoV+/fujQoYOvr49aEK0vdZNJRGJiLcxmMzIzMyGKIiIjIzVfr8xm2Dsji6irM76dW49WIBUQICIsrMSr87njahdXUtJhn3eSJiIi3/Eq8JEEBwejX79+vroWauG0ingnTtyMzZvVNT7u+uEA9vqbSy6pwPPP/7fB3Zbj44ElS07hvvvC5OuaMGEzcnM9qz0yyl1WpzE6SRMRkW80KPChtktvq7iRL3Wju6gGDuyI55+fpDreaLNBx+ubNq0Khw8vNxRseLorzfH4Q4d6QRTrn9fK6vhqFhkREfkWAx/S5LhVHLAX/W7YsMHpS10rkCguttfe9O7ter6VMjNUXAwcOxaLKVPuQXT0HwD0t6hrZZSMBBue7kpzPP6yy77CV19dDmUBsyja53QZwe7LRETNi4EP6TKyu0grkFi9OhTz5mlvLdej3o7eEcuX2x/X26LuDU93pWkd/9VXI1A/VV1Sv2tLOUHdEXdsERE1PwY+ZJjUaVnK7GgFBhs3TsTmzYLm1nK9zI/ednSbDfKSkv0xERdddFzO/EiMZlHcjZaQSBms06fDNAaKOgY96voeTlAnImrZGPiQIVqdljt2PKkRGJg0t5YfPKgf+OhtR3dUVyfgpZc+QlLSYafnMjMz3X4Gd0XJgHMGC7DB9WQX7toiImpNvJrVRf5Fr9NyUNA5pxlVgA0mk6h6JCAA6NVL//zSdnTH1wgOyRVXvX5qamqMfBSkp+fJ1+xYlKyVwbJfg+NnrL+e229/U1UjxBoeIqKWjRmfNkZrxpSSN3Umep2Wa2qCNXvWjBgxAvPnR6Kuzh7AvP66frbHYrEgIKAazzwTivnzzairExAQIOLpp60AgHnzzLDZGt7rR53JETFs2HakpeWrznf0aILmUtiIEZ/jyy9HOZ0zPT0P8fH2cRiZmZno3Lkza3iIiFo4Bj5tiNEZU0b67Ci56rSclHTYaXv7jBnDkZlpX97q1ct10KO83nvuCZfPc+qUPSC5995wQ1vUAwP1/yg7Z3IE5OWlIy0tXz5m584h2LhxotNrBcGGCy74BV99NcIhKLLJr8/MzETfvn1135+IiFoOBj5tiNH+OZ5OK//kEzj0rRHx7LOVuOGG652OlZZ6AgJK0aeP/THHGaFS1snxOrS2oxvthxMZGSlvvy8rK8Pbb+fIW+zdFTVLgZHjyq+UZYqPL3XZjdnV7C0iImpZGPiQS1J9jzrwEZCZGYnY2Ein4z3JOvlaVFQULBYLNmzoiKVLs+UgJSNjq8uiZq0lLgBYtOgX2Gz2+h1XjRtZ10NE1How8CGXtOp7bDYgP99em+PIarUaOq+nWScjLBYLnnhilRz0APbMztatGcjI2IqtWzOcMjZS7Y8jQbDh6qs7IjFxts9rpoiIqPkw8CGX9Op7tm9fhYKClrWFu7q6WndZKy6uBNnZS1UZG8fan3r2wKh9+wsQFcXaHSKitoTb2dsAi8WC0tJSlJWV+fzc8fH2jskBAfafldkSqzUchYWJsFrDff6+njpz5gzKysrkXj1K0rKW2VyFpKTD8jKVVpAEANdeuw4pKbuwZs0aWCyWJrl+IiJqGsz4tHJGa2oaIivL3nk5P9+C7dtXqZaIjM68aohp06YhMjJS9VhFRQVqa2sBAGfPnsW7774LADCb4bIQWUmroSEgwmqtf6/GWJIjIqLmw8CnlWuqL+b4eCAgoBoFBdqjKlzNvGqoyMhIeQxEcTHw/fdWfPnlv3Tfy7EQGYBq1IbEbK46P3RUOX9LwNatGRgwoIDdmImI2iAGPn6oobuQjM688tV1SMfVDzI1QxCyXWaZpG3wrjJTO3cOwddfXw7H+VvefBYiImodGPj4CWlquC92IRmZeWVEVFSU3HtHj3S9joNMjWSZXGWmAOgUNnv3WYiIqHVg4OMnfDk13GyuMlxHo0fK4iiDsOJi+/b53r2duz3rjc1wlZnRG0FRXt4JgKAZ9HDoKBFR28bAh7ziqqGfVjGyklbWqX4Zy759fvlye1G1xL6tXpQHpQKuMzOuRlBIr9HKWmVlvSnP3yIioraHgQ8Z5liTozdOIiYmxqPlNMdlLJsNuPNO+04yKfMTGmrBxInbDWWZ9EZQmEwiFi06hro6+2u0slYMeoiI2jYGPmSYJzU5ElfLVxKtZay6OvuQU+k11dXVLrNMSnojKF59tQKTJglYvtz+s5HzcRwFEVHbwsCnlfN0Z1RDeZLJcbd8JdHqDh0QYJ/s7sjd0FJXS1zp6cazVpmZmejcuTPHURARtTGCKCrHT1JlZSXMZjOsVisiIiKa+3IMsVgszTJPylU2p7gY6NHDOZgpKtLO/KxYYV/eqquzH/f66+ogqbS0FMulVI0DqzUc5eVRCAo6hxUrbnfK9phMIpYsOY177+0AoPnuFxERNR6j39/M+LRSzf3l7S6bY2T5SmKxWHD11dXIzzehqCgQiYm1iIuzobS0/rPocezTo7fENXNmR/lnBjVERP6LgU8rZHRMxezZs+UveV8GSkaKkY0uX2l9loIC5/fMzMx0ekyrTw8gQtmQUBBsSE3l2AkiIrJj4NMKGR1TUVRUiz17gOjok9iwwbNAyRUj2RxpuKnj8pVjtsfoZ6mpqXF6THvIqAAp+JF2asXFXWzoPYiIqO3jdPY2aufOIbjkkhhccQVw0UWR2LlziNvXGA1CpGyOklY2JyvLXtOzbZv9n1qFzd6yWsNx+nQYAJvGs4Lck6exBqcSEVHr1OoCn3PnzuGiiy6CIAjYvXu36rk9e/bg8ssvR7t27ZCQkIBnnnmmeS6ymUlLQFKzP5tNwKZNE2G1hvvk/FI2JyDA/rNeNgew99/p06cUAQGlKC11/lVRUWHoPQMD65OTO3cOwdKl2Vi37jo4ztmSiKIJNTXcik5ERGqtbqlr3rx5iIuLww8//KB6vLKyEmPHjkVGRgZee+01/Pjjj7jtttsQGRmJmTNnNtPVNg9vh4harVaX51XWAWVl2Wt6Dh60Z3q0gh6jtUhGREZGYvbs2fjxx5NYtKin4vNpBz7KDs3sxUNERJJWFfh89NFH2LJlC9avX4+PPvpI9dx7772H6upqvPXWWwgODkb//v2xe/duLFmyxO8CH2+HiK5Zs8btuZV1QPHx+k0JAeDEiRPGLtigqKgoiGIU3DVgMJlEPPNMJW644XpuTSciIpVWs9T1+++/44477sA777yDsLAwp+fz8vIwYsQI1d/ux40bh/379+PkyZO65z137hwqKytVv1ozqadNRsZWBATYI4SAANFngzeN1gEB2gXJ3iorK0NpaSkiIn6HyaQd+QQEAGvXAocPC5gzJxKxsbEMeoiISKVVZHxEUcSMGTNw1113YejQoSgqKnI65tixY0hKSlI91qVLF/m5jh07Or0GABYvXoxFixb5/Jqbg2NPmzlzjuPSSwMREXEcubmtu8h3w4YN8u8nThyi2MZu38El1Rldd12zXSIREbUCzRr4PPjgg3j66addHrNv3z5s2bIFVVVVeOihh3x+DQ899BDuv/9++efKykokJCT4/H18SatmRaunzfPPd0Z29lKfZHqaipSx6tTJonvdyhlb06ZNQFhYZ906IyIiIqVmDXzmzJmDGTNmuDymZ8+e+Oyzz5CXl4eQkBDVc0OHDsWNN96IVatWoWvXrvj9999Vz0s/d+3aVff8ISEhTudt6bSGhW7fHowXXvC8oLkl+eOPG7FsWTJsNgEmk4iJEzfpbkeXZmwNGVKL2NgmvlAiImq1mjXw6dy5Mzp37uz2uBdffBF///vf5Z9LSkowbtw4rFmzBmlpaQCA9PR0LFiwADU1NQgKCgIA5OTkoE+fPrrLXK2ZY+3KpZc6d0o2UtDcUlit4Vi6tCdEUb0FPzn5IMzmKkOZICIiIndaRY1P9+7dVT936GAfNpmcnIz48+sbN9xwAxYtWoSsrCzMnz8fBQUFWLZsGV544YUmv97m4NwpWcSECdoFzS0xiHC1Bf/QoV6q2qVJkzazMSEREXmlVQQ+RpjNZmzZsgWzZs1CamoqoqOjsXDhQr/ayq7srRMefhybNzsHB44F0L4MIhzngVVVGQ+q9LbgBwVVO9UuKTNBREREnmiVgU9iYiJEjWYugwYNwldffdUMV9S8iovt87N6967vrVNa6jzKQasA2tMgQq8ZoJFmha4yTWZzFSZN2ixfn73GZzNqakK8asZIRESkpVUGPlRvxYr6Sekmk325S28mlicdnfv3HwerNQbdu59D1661AOxjI6qrq2GxWJxqjNz199m5cwg2bpwIe+soGyZPds40KXdr3XhjGnJzd8FqDfeqGSMREZEWBj6tWHFxfdAD2P9555325S5pjpaS0Y7OO3cOwaJFl7hcDjM6yR2wZ3rqgx4AMGHjRu1Mk7RbKz4+Tf5ZmQmSrkd6HcdREBGRJxj4tGIHDqh3cQH2wuaDB4GBA9UBgbKj89atGXIQkZGxFeXl9gBG2j1lZDnMkw7OR48mwLlJuAlHj8YDKNZc/pJmc0nvs3DhCRQVBSIxsRZxcRcDuJjjKIiIyGMMfFqx3r2dt7AHBNiHhip7/axeHYrHHjPL/XEyMnIQF1eCkpI4VRA0adJmdOx4sslqavbvvwDr11+rm1lSBjWxsUBqqk/fnoiI/FCrmdVFzqQt7NKyljS2QepgHBUVhbq6WMybFwmbrb4/zmefjcG0aRPw6adjVJmdDz+chLFjh0EQ1GkkIzU1FRUVus8lJByFfbSE2o8/DnbKLFmt4QC4hEVERI2DgU8rl5UFFBUB27bZ/+lY2Ky9HCZg//7OcjCkfPyPPwIwadJmOfhxrKnRYrFYsHbtWt3nzeYqTJ68CYDjTjP1+4uiCcOHT/eofoiIiMgTXOpqA6Qt7Fr0lsMuuwwwmURV8CMINhQUfICUlCp5d1WnTuVul7hOnDjh9Jjj1vWUlF0IDj6Hdev0p4gGBABpaVFgzENERI2FGZ82Tm85rGdPCxYu/E03s2M2VyEp6TAAoLAwUV6CcmSxWLBmzRrVYzt3DsHSpdlYtWo6li7Nxs6dQwDYl7wcl9GkJbCAAFG1TEdERNQYmPHxA8qOzr16AaGh9c0Gs7PDdTM7Rro8O+7ucrcrzHFrekbGVsTFleDuu69CamqXRrwLREREDHz8hnI5rLS0PliR+uY4chfABAcHw2KxoKysTPU6vSaJP/3UD/3771U1KVQGW3Fxzp2miYiIfI2BD2nSC2CGD5+OUaPsP2uNqNBqkgiI2LJlPHJyxp7P8JS2qAGpRETkPxj4kExZkKwVwCiLj0tLSzXPYTZXqZok2mt47AXUomhCTs4YAAKnrBMRUbNg4EMAtOt5lPU4jj2CXJ2nPuixwbl+vj4I4pR1IiJqatzVRSgujsXGjdr1PNnZS7FunUWzR5AjaSZXfZZIyvhokzpCExERNRVmfPyclOlxjIGloCQp6TBGjYKh3jr5+WlO55GWtRyXvQBOWScioqbHwMePOe7cUhIEG268MQ0pKZMMdVG2WsORl5eu8YwNWVlvoqYmWHM2GKesExFRU2Lg44ekIENr55adVHg83PDoiKNHEzTPNX26BQ8+eCXCwsIAACUlnLJORETNh4GPH5ImtxcV1eKdd9RjK0wmEZs2WZCWZjzo2blzCDZunOj0uCDYcPfdNiQnJ8uPcco6ERE1JxY3+6moqCikpnbB8uWCapzF8uUCrr66s9ugR8oaSctljn+UpKWsyMhTjXH5REREXhFEUdTfduOHKisrYTabYbVaERER0dyX0+gsFguKimoVy0/qDsqulqEOHTqExx//GqtWTXd67tpr12LAgH0AwGnrRETU6Ix+f3Opy49ZLBZV9+WCAu3jpk2bhsjISNVjwcHBCAsL0+nUbENCQrH8k+M8LyIioubCwKeFKy4GDhwAevd23TzQ8TgjrzMakKxdu1bz8czMTHnwqL3GRwp+BBw61ItdmYmIqMVhjU8LtmIF0KMHcMUV9n+uWGHsuBkzjL2uoWpqagAAyckHIQjKZwRs2jQRVmt447wxERGRlxj4NKHiYmDbNvs/jRw7cyZgO19yY7MBd97p/Fqt41atcv86LVZrOAoLEz0OWLS2srMrMxERtURc6moiK1bUBygmE7B8uesREAcO1Acvkro64OBB9dKV1nGO6uqA/HwLQkOhW2SsNavL3VLVyZMnXW5lZ1dmIiJqaZjxaQJGszdKvXvbAySlgACgVy/3xznOxxIEG7ZvX4WXX34ZFovF6b0cOzhLs7qkzI9eJuiDD753uZWdw0eJiKilYcanCRjN3ijFx9uzQnfeaT9Wazq6xWJBQEA1nnkmFPPmmc83IrTBcR6WMgg5fvy4XNRcVlYGQLuDs7RUdehQL91MkF7n56lT18lb2YmIiFoSBj5NQMrKKIMfreyNo6wsYNw4e4DUq5dz0KPcin7vveE4ejQe69dfC1GsD3xE0V58LNHaoaW1JV0QbAgKqtbMBCUnH4TZXKX7OuVWdoBzuIiIqOXgUlcTkLI3yg7JjtkbV68dNcr5WMet6GZzFdq3P6uRgdEvMpaWsABg0qTNEAR7ZCZldmpqQlwWLUtb2R1fJ2WXpkyZwuaFRETUojDj00RcZW88VVwMfPNNMKzWcFUdjV4GRqvIWKuYOTt7KcrLO+H//b+B2L17F6zWcLfnS0nZheTkgygv74ROncpV1xMdHc2gh4iIWhRmfJqQXvbGE1LPnuuui8LSpdnYuXOI/Jy7DIxEr5gZAJKSDuOSS+Iwe/ZszJ17PZ59thIBAfZi6YAAEc8+W4lbbx2jOp/ZXIWkpMMsZiYiohaPGZ9WxHF3mGPNDeA6AyNxVcwsHS9laubMATIzpUyVgPj4SJSWnm3ET0lERNR4GPi0MK5GTWjtDnMMWAB7BsZV9sWTJTHAfh0NyVIRERG1FFzqakH0RlRIHZ87dHDu2eNNo0CjS2J6jO7S4m4uIiJqaZjxaSG0mxyKKCqqxJNPRsBmE2AyiZg69Sw2bAhFXZ3gccAyduxYbNmyBYCxJTE9UVFRmD17tsshp8HBwSxsJiKiFoeBTwuh3eRQwBNPhMt9eWw2AevWtUNW1hsYNWoCduxY41HA0rFjR9XPektiRjI1DGqIiKg1YuDTQmg1OQRsmkXIFRWRuOIKE8aPn47q6mqUlZVhw4YNbt9DFEVkZmbKU9UdBQYGIiYmBlFRUS5rjYiIiForBj4tRP2IClFexsrI2IqtWzOcgp91667FpZdWYs6cSI/eQ9m12WoNR3l5FDp1sqiyPpmZmVi5MkAegWEyiXjmGStuuOEsl6+IiKjVE0RRFN0f5j8qKythNpthtVoRERHR5O+/Y8fveOmlj+S6G2WjQaWAABFFRQLi453HV7jjahK71RqOpUuznXZ8ZWcvhdlcxU7MRETUIhn9/mbGp4WJi7MhKemw/HNKyi4EB5/DunXXqY6rqxPkIadGio2tVivWrFmj27xQ6gXkrsePq/cgIiJq6Rj4tAIJCUed+u4EBIjo1at+GKnRLIy7wMbTHj9EREStCfv4tAJafXcefvg3BASUorTU/stisRg6lxTYKCkDm4b2+CEiImrJmPFpJRz77gBVWL5cfYxW/Y3FYkFRUS127z6L4uJY1NSEqIqmpSLq8nL768zmqgb1+CEiImrJGPi0MK566LgbRaGsv7FYLDh+/DgefPDA+ZqeLgDuAFC/YywurgQlJXGqIEgqdHb3XkRERK0RA58WRlmoXFJiQmFhIMzm48jNXev2tSUlJvz8MxAdfRIbNrx8vpBZuUPLXhMkiibk5GTg9tvfVG2X1xp6SkRE1JYw8GmBoqKisGJF/QgLk6kTJk4cIm8517Jz5xA89ljM+eMjMXHiEHTseNKpkLmeCXl56W6ntBMREbUlLG5uYtLA0eJi18eo53YJ2LRpIqzWcM3jpS3qNpugOj4o6JxTIbPS3r39AegXOmvh4FEiImrNmPFpQuosjr1Tc1aW83Fac7u0MjFS9+XTp8M0Mzc1NcGYNGmzZgNE6Zhhw7bLmR/HHVyZmZkwm83y8ezcTERErR0DnyaiPX0dGDfOeRaW1twux0yMY/dle+bGufdOUtJhxMQcw5tv3g7HBJ8g2JCWlo+0tHzNHVxmsxmxsbE+ugNERETNj0tdTUR7+jpw8KDzsdLcroAA+88BAaIqE6PVfdm+W8s+fcRkUh9fUxMCrX/V6el58u6tpKTDrOshIqI2jxmfJqKVxQkIAHr10j4+K8ueDTp4EIiKqsCGDfWFzVrdlwEBomjDsGG5SEvLVwUxWt2YAXu2h4iIyJ8w49NEnLM4wOuvOy9zSSwWCwICStGlyz4AxRgzZgxGjx6N0aNHY+LEPjCZtGbL2ndqOdLqxjx5MrsxExGR/2HGpwllZQGDBgFffw1cdhlw8cXaxxmZtj5x4nHNomW97ejsxkxERMTAp0kZ3dVlZAJ6SsouzaJlV9vR2Y2ZiIj8HZe6mojeri69fj5WazgKCxN1e/cAQHx8KSZP5kBRIiIio5jxaSKudnU51vmsXh2KpUuzneZnaWnMJSw2KyQioraGgU8TcbWry2KxyMtbJSUmzJsXA1Gsn6vlbn5WQ5ewpk2bhsjISNVjbFZIRERtEQOfJiLt6rrzTnumR9rVFRqqLmQuLEyEzTZd9dqGzs+aMmUKoqOjNZ9jgENERP6EgU8TUvbm6dXLHgyVlqoLmbV67ribn+VOXFwcgxsiIiIw8Gly8fH6vXuA+p47ynEU3hYsT5kyhUEPERGRAgOfFshXBcvR0dEMeoiIiBQY+LRQjgXLQ4cOBQB8//33zXVJRERErR4Dn1aCAQ8REVHDsYFhEykuBrZtc25YWFJictuo0Fvsw0NERKTGjE8T0BtVYX88BjbbdLeNCpWmTJmCwMBA1NbWOj0XFBQEs9nMbepEREQaWlXG58MPP0RaWhpCQ0PRsWNHXHPNNarnjxw5ggkTJiAsLAwxMTGYO3euZnDQlH788SRmzhQdRlWI+N//Tpx/vL5R4caNE91mfqzWcOzfH4fw8AvRseNAlJUNRMeOAzFwoP1X3759ERsby6CHiIhIQ6vJ+Kxfvx533HEHnnzySVxxxRWora1FQUGB/HxdXR0mTJiArl27Ijc3F6WlpbjlllsQFBSEJ598slmu2WKx4PnnNzs1JKyrE/Diiztgs413eIUJ+flpGDt2q+b5du4cgk2bJuKFF0wQ7PESRNH1wFMiIiKq1yoyPrW1tbj33nvx7LPP4q677sIFF1yAfv36Ydq0afIxW7Zswd69e/Huu+/ioosuwlVXXYXHH38c//jHPwxNO28M1dXVckNCJUGwISHhCACb02vy8tI1sz5Wa7jc2wewBzyiaH/O3cBTIiIismsVgc/OnTvx22+/wWQyYciQIYiNjcVVV12lyvjk5eVh4MCB6NKli/zYuHHjUFlZiZ9++kn33OfOnUNlZaXqly9JDQkdJ6jHx5di2LA8p+Ol8RSOysujVN2cHUkDT4mIiEhfq1jq+vXXXwEAjz76KJYsWYLExEQ8//zzGDVqFH755Rd06tQJx44dUwU9AOSfjx07pnvuxYsXY9GiRY138dBvSJiWlo+8vHRD4ym0RlkoSQNPiYiISF+zZnwefPBBCILg8tfPP/8M2/nK4AULFmDq1KlITU3F22+/DUEQ8O9//7tB1/DQQw/BarXKv44ePeqLj+bEbK5CUtJhVVNCKRsUEGBfs3I1nsI5cyRCEOyvCwgQ8frrrkdhEBERUTNnfObMmYMZM2a4PKZnz54oLS0FAPTr109+PCQkBD179sSRI0cAAF27dsW3336reu3vv/8uP6cnJCQEISEh3ly+T6Sk7MLChWkoKgrExx+vR01NCKzWcM3gxzFzBED+/TXXTAfAnVxERESuNGvg07lzZ3Tu3NntcampqQgJCcH+/ftx2WWXAQBqampQVFSEHj16AADS09PxxBNP4Pjx44iJiQEA5OTkICIiQhUwtURxcTZ8/nkAVqy4XTWYVKunj+MoC+n3JSUlqK6uZv8eIiIiF1pFjU9ERATuuusuPPLII0hISECPHj3w7LPPAgCuu+46AMDYsWPRr18/3HzzzXjmmWdw7Ngx/N///R9mzZrVrBkdI0pKTJg3zwxRrO/ps2nTRCQnHzQ8oHTDhg3y72fPns3gh4iISEOrCHwA4Nlnn0VgYCBuvvlmnD17Fmlpafjss8/QsWNHAEBAQAA2b96Mv/zlL0hPT0f79u0xffp0PPbYY812zUZHRhw92k5uZCiRdnd5M5m9ubbvExERtXSCKErdYAgAKisrYTabYbVaERER0eDzWSwWzUDEPqMrEH36mNCxY0f06CGqgh9BsCE7e6lXgc/MmTMRGxvboOsmIiJqTYx+f7eajE9rpbXkpDW765lnrJg7N0JV4+NN0ENERET6GPg0seLi+qAHqO+6vGuXiN9+W+rU64eIiIh8h4FPEztwoD7okdTVARZLRyxYMN1pWaysrExVuExERETeY+DTBJR1PhERJphMMap6noAAEb16CZrLYkYLpImIiMg9Bj6NzGKx4OWXX1Y9NnHiEHngqCDYMGHCZhw5Eo2TJ+3DSQMDAxETE4OoqChERUVh9uzZqK6uZvaHiIiogRj4NDKtHV1as7tycpxfm5mZic6dO8uZIKPZH2aJiIiItDHwaWQVFRVOj1mt4Sgvj0KnThaXRcxr1qwBUN+QUJn90cPOzURERPoY+DSy2tpa1c87d6qXufRGUygpAx0GNURERN5r1uns/sZqDZeDHqB+NIXVGt7MV0ZEROQfGPg0ofLyKDnokUijKYiIiKjxMfBpQp06WSAI6iY+gmBDp07lzXRFRERE/oWBTxMym6swadJmOfjhaAoiIqKmxeLmRmSxWHDq1CnVY1pb2YmIiKhpMPBpJFqNCyVmcxUDHiIiombApa5G4qrXjqfYkJCIiMg3mPFpYaZMmYLo6Gj5ZzYkJCIi8h0GPi1MdHQ0YmNjm/syiIiI2iQudREREZHfYOBDREREfoOBDxEREfkNBj4tDHdwERERNR4GPo3EmwAmMzOTO7iIiIgaEXd1NZKoqCjMnj0b1dXVKCsrw4YNG9y+xmw2N8GVERER+S8GPo2I2RsiIqKWhUtdRERE5DcY+DQBo/U+LGwmIiJqXFzqagLKeh89HE1BRETU+Bj4NBEGNURERM2PS11ERETkNxj4EBERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DfYudmBKIoAgMrKyma+EiIiIjJK+t6Wvsf1MPBxUFVVBQBISEho5ishIiIiT1VVVcFsNus+L4juQiM/Y7PZUFJSgvDwcAiC4PV5KisrkZCQgKNHjyIiIsKHV9h68B7Y8T7wHgC8BwDvgYT3oXHugSiKqKqqQlxcHEwm/UoeZnwcmEwmxMfH++x8ERERfvsHW8J7YMf7wHsA8B4AvAcS3gff3wNXmR4Ji5uJiIjIbzDwISIiIr/BwKeRhISE4JFHHkFISEhzX0qz4T2w433gPQB4DwDeAwnvQ/PeAxY3ExERkd9gxoeIiIj8BgMfIiIi8hsMfIiIiMhvMPAhIiIiv8HAxwOvvvoqBg0aJDdcSk9Px0cffSQ//8cff2DWrFmIiopChw4dMHXqVPz++++qcxw5cgQTJkxAWFgYYmJiMHfuXNTW1jb1R/GZp556CoIgIDs7W37MH+7Do48+CkEQVL/69u0rP+8P9wAAfvvtN9x0002IiopCaGgoBg4ciO+//15+XhRFLFy4ELGxsQgNDUVGRgYOHDigOkd5eTluvPFGREREIDIyEllZWTh16lRTfxSvJCYmOv05EAQBs2bNAuAffw7q6urw8MMPIykpCaGhoUhOTsbjjz+umpfU1v8cAPYxCdnZ2ejRowdCQ0MxbNgwfPfdd/LzbfEefPnll5g0aRLi4uIgCAI++OAD1fO++sx79uzB5Zdfjnbt2iEhIQHPPPNMwy5cJMM2btwofvjhh+Ivv/wi7t+/X/zb3/4mBgUFiQUFBaIoiuJdd90lJiQkiJ9++qn4/fffi5deeqk4bNgw+fW1tbXigAEDxIyMDHHXrl3i//73PzE6Olp86KGHmusjNci3334rJiYmioMGDRLvvfde+XF/uA+PPPKI2L9/f7G0tFT+deLECfl5f7gH5eXlYo8ePcQZM2aI+fn54q+//ip+8skn4sGDB+VjnnrqKdFsNosffPCB+MMPP4iTJ08Wk5KSxLNnz8rHjB8/Xhw8eLD4zTffiF999ZXYq1cv8frrr2+Oj+Sx48ePq/4M5OTkiADEbdu2iaLoH38OnnjiCTEqKkrcvHmzWFhYKP773/8WO3ToIC5btkw+pq3/ORBFUZw2bZrYr18/8YsvvhAPHDggPvLII2JERIRYXFwsimLbvAf/+9//xAULFogbNmwQAYj/+c9/VM/74jNbrVaxS5cu4o033igWFBSI//rXv8TQ0FDx9ddf9/q6Gfg0UMeOHcU333xTrKioEIOCgsR///vf8nP79u0TAYh5eXmiKNr/kJhMJvHYsWPyMa+++qoYEREhnjt3rsmvvSGqqqrE3r17izk5OeLIkSPlwMdf7sMjjzwiDh48WPM5f7kH8+fPFy+77DLd5202m9i1a1fx2WeflR+rqKgQQ0JCxH/961+iKIri3r17RQDid999Jx/z0UcfiYIgiL/99lvjXXwjuffee8Xk5GTRZrP5zZ+DCRMmiLfddpvqsSlTpog33nijKIr+8efgzJkzYkBAgLh582bV4ykpKeKCBQv84h44Bj6++syvvPKK2LFjR9V/D/Pnzxf79Onj9bVyqctLdXV1eP/993H69Gmkp6djx44dqKmpQUZGhnxM37590b17d+Tl5QEA8vLyMHDgQHTp0kU+Zty4caisrMRPP/3U5J+hIWbNmoUJEyaoPi8Av7oPBw4cQFxcHHr27Ikbb7wRR44cAeA/92Djxo0YOnQorrvuOsTExGDIkCF444035OcLCwtx7Ngx1X0wm81IS0tT3YfIyEgMHTpUPiYjIwMmkwn5+flN92F8oLq6Gu+++y5uu+02CILgN38Ohg0bhk8//RS//PILAOCHH37A119/jauuugqAf/w5qK2tRV1dHdq1a6d6PDQ0FF9//bVf3ANHvvrMeXl5GDFiBIKDg+Vjxo0bh/379+PkyZNeXRuHlHroxx9/RHp6Ov744w906NAB//nPf9CvXz/s3r0bwcHBiIyMVB3fpUsXHDt2DABw7Ngx1f/gpOel51qL999/Hzt37lStX0uOHTvmF/chLS0NK1euRJ8+fVBaWopFixbh8ssvR0FBgd/cg19//RWvvvoq7r//fvztb3/Dd999h3vuuQfBwcGYPn26/Dm0PqfyPsTExKieDwwMRKdOnVrNfZB88MEHqKiowIwZMwD4z38LDz74ICorK9G3b18EBASgrq4OTzzxBG688UYA8Is/B+Hh4UhPT8fjjz+OCy+8EF26dMG//vUv5OXloVevXn5xDxz56jMfO3YMSUlJTueQnuvYsaPH18bAx0N9+vTB7t27YbVasW7dOkyfPh1ffPFFc19Wkzl69Cjuvfde5OTkOP3txp9If5sFgEGDBiEtLQ09evTA2rVrERoa2oxX1nRsNhuGDh2KJ598EgAwZMgQFBQU4LXXXsP06dOb+eqa3ooVK3DVVVchLi6uuS+lSa1duxbvvfceVq9ejf79+2P37t3Izs5GXFycX/05eOedd3DbbbehW7duCAgIQEpKCq6//nrs2LGjuS+NHHCpy0PBwcHo1asXUlNTsXjxYgwePBjLli1D165dUV1djYqKCtXxv//+O7p27QoA6Nq1q9OODuln6ZiWbseOHTh+/DhSUlIQGBiIwMBAfPHFF3jxxRcRGBiILl26+MV9cBQZGYkLLrgABw8e9Js/C7GxsejXr5/qsQsvvFBe8pM+h9bnVN6H48ePq56vra1FeXl5q7kPAHD48GFs3boVt99+u/yYv/w5mDt3Lh588EH8+c9/xsCBA3HzzTfjvvvuw+LFiwH4z5+D5ORkfPHFFzh16hSOHj2Kb7/9FjU1NejZs6ff3AMlX33mxvhvhIFPA9lsNpw7dw6pqakICgrCp59+Kj+3f/9+HDlyBOnp6QCA9PR0/Pjjj6p/0Tk5OYiIiHD6AmmprrzySvz444/YvXu3/Gvo0KG48cYb5d/7w31wdOrUKRw6dAixsbF+82dh+PDh2L9/v+qxX375BT169AAAJCUloWvXrqr7UFlZifz8fNV9qKioUP2t+LPPPoPNZkNaWloTfArfePvttxETE4MJEybIj/nLn4MzZ87AZFJ/lQQEBMBmswHwrz8HANC+fXvExsbi5MmT+OSTT/CnP/3J7+4B4Lt/7+np6fjyyy9RU1MjH5OTk4M+ffp4tcwFgNvZPfHggw+KX3zxhVhYWCju2bNHfPDBB0VBEMQtW7aIomjfutq9e3fxs88+E7///nsxPT1dTE9Pl18vbV0dO3asuHv3bvHjjz8WO3fu3Kq2rmpR7uoSRf+4D3PmzBE///xzsbCwUNy+fbuYkZEhRkdHi8ePHxdF0T/uwbfffisGBgaKTzzxhHjgwAHxvffeE8PCwsR3331XPuapp54SIyMjxf/+97/inj17xD/96U+a21mHDBki5ufni19//bXYu3fvFr2F11FdXZ3YvXt3cf78+U7P+cOfg+nTp4vdunWTt7Nv2LBBjI6OFufNmycf4w9/Dj7++GPxo48+En/99Vdxy5Yt4uDBg8W0tDSxurpaFMW2eQ+qqqrEXbt2ibt27RIBiEuWLBF37dolHj58WBRF33zmiooKsUuXLuLNN98sFhQUiO+//74YFhbG7exN5bbbbhN79OghBgcHi507dxavvPJKOegRRVE8e/as+Ne//lXs2LGjGBYWJv6///f/xNLSUtU5ioqKxKuuukoMDQ0Vo6OjxTlz5og1NTVN/VF8yjHw8Yf7kJmZKcbGxorBwcFit27dxMzMTFX/Gn+4B6Ioips2bRIHDBgghoSEiH379hWXL1+uet5ms4kPP/yw2KVLFzEkJES88sorxf3796uOsVgs4vXXXy926NBBjIiIEG+99VaxqqqqKT9Gg3zyySciAKfPJYr+8eegsrJSvPfee8Xu3buL7dq1E3v27CkuWLBAtf3YH/4crFmzRuzZs6cYHBwsdu3aVZw1a5ZYUVEhP98W78G2bdtEAE6/pk+fLoqi7z7zDz/8IF522WViSEiI2K1bN/Gpp55q0HULoqhor0lERETUhrHGh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AYDHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIGmzUqFHIzs5u7stodI8++iguuuii5r4MImoABj5E5Peqq6ub9P1EUURtbW2TvicR2THwIaIGmTFjBr744gssW7YMgiBAEAQUFRWhoKAAV111FTp06IAuXbrg5ptvRllZmfy6UaNG4e6770Z2djY6duyILl264I033sDp06dx6623Ijw8HL169cJHH30kv+bzzz+HIAj48MMPMWjQILRr1w6XXnopCgoKVNf09ddf4/LLL0doaCgSEhJwzz334PTp0/LziYmJePzxx3HLLbcgIiICM2fOBADMnz8fF1xwAcLCwtCzZ088/PDD8lTolStXYtGiRfjhhx/kz7ly5UoUFRVBEATs3r1bPn9FRQUEQcDnn3+uuu6PPvoIqampCAkJwddffw2bzYbFixcjKSkJoaGhGDx4MNatW+frf0VEpMDAh4gaZNmyZUhPT8cdd9yB0tJSlJaWIjw8HFdccQWGDBmC77//Hh9//DF+//13TJs2TfXaVatWITo6Gt9++y3uvvtu/OUvf8F1112HYcOGYefOnRg7dixuvvlmnDlzRvW6uXPn4vnnn8d3332Hzp07Y9KkSXKAcujQIYwfPx5Tp07Fnj17sGbNGnz99deYPXu26hzPPfccBg8ejF27duHhhx8GAISHh2PlypXYu3cvli1bhjfeeAMvvPACACAzMxNz5sxB//795c+ZmZnp0b168MEH8dRTT2Hfvn0YNGgQFi9ejH/+85947bXX8NNPP+G+++7DTTfdhC+++MKj8xKRBxo04pSISBTFkSNHivfee6/88+OPPy6OHTtWdczRo0dVU8xHjhwpXnbZZfLztbW1Yvv27cWbb75Zfqy0tFQEIObl5YmiWD8N+v3335ePsVgsYmhoqLhmzRpRFEUxKytLnDlzpuq9v/rqK9FkMolnz54VRVEUe/ToIV5zzTVuP9ezzz4rpqamyj8/8sgj4uDBg1XHFBYWigDEXbt2yY+dPHlSBCBu27ZNdd0ffPCBfMwff/whhoWFibm5uarzZWVliddff73bayMi7wQ2Z9BFRG3TDz/8gG3btqFDhw5Ozx06dAgXXHABAGDQoEHy4wEBAYiKisLAgQPlx7p06QIAOH78uOoc6enp8u87deqEPn36YN++ffJ779mzB++99558jCiKsNlsKCwsxIUXXggAGDp0qNO1rVmzBi+++CIOHTqEU6dOoba2FhERER5/fj3K9zx48CDOnDmDMWPGqI6prq7GkCFDfPaeRKTGwIeIfO7UqVOYNGkSnn76aafnYmNj5d8HBQWpnhMEQfWYIAgAAJvN5tF733nnnbjnnnucnuvevbv8+/bt26uey8vLw4033ohFixZh3LhxMJvNeP/99/H888+7fD+TyV4xIIqi/Ji07OZI+Z6nTp0CAHz44Yfo1q2b6riQkBCX70lE3mPgQ0QNFhwcjLq6OvnnlJQUrF+/HomJiQgM9P3/Zr755hs5iDl58iR++eUXOZOTkpKCvXv3olevXh6dMzc3Fz169MCCBQvkxw4fPqw6xvFzAkDnzp0BAKWlpXKmRlnorKdfv34ICQnBkSNHMHLkSI+ulYi8x+JmImqwxMRE5Ofno6ioCGVlZZg1axbKy8tx/fXX47vvvsOhQ4fwySef4NZbb3UKHLzx2GOP4dNPP0VBQQFmzJiB6OhoXHPNNQDsO7Nyc3Mxe/Zs7N69GwcOHMB///tfp+JmR71798aRI0fw/vvv49ChQ3jxxRfxn//8x+lzFhYWYvfu3SgrK8O5c+cQGhqKSy+9VC5a/uKLL/B///d/bj9DeHg4HnjgAdx3331YtWoVDh06hJ07d+Kll17CqlWrvL43ROQaAx8iarAHHngAAQEB6NevHzp37ozq6mps374ddXV1GDt2LAYOHIjs7GxERkbKS0MN8dRTT+Hee+9Famoqjh07hk2bNiE4OBiAvW7oiy++wC+//ILLL78cQ4YMwcKFCxEXF+fynJMnT8Z9992H2bNn46KLLkJubq6820sydepUjB8/HqNHj0bnzp3xr3/9CwDw1ltvoba2FqmpqcjOzsbf//53Q5/j8ccfx8MPP4zFixfjwgsvxPjx4/Hhhx8iKSnJi7tCREYIonJhmoioBfv8888xevRonDx5EpGRkc19OUTUCjHjQ0RERH6DgQ8RERH5DS51ERERkd9gxoeIiIj8BgMfIiIi8hsMfIiIiMhvMPAhIiIiv8HAh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/Mb/ByivaIjw4Gq5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 [==============================] - 0s 3ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzzUlEQVR4nO3deVxU1fsH8M+wbwKKKKiguAEuP9dESCuMRFPR1FIzlVzKPVcWN0RTkdxyr6+5VOZWppMbGi6VorngLmiK4oZoCIjKOuf3xzQXrqCCAjMDn/frNS+55z5z5xkmnadz7jlHIYQQICIiIiKdZqDtBIiIiIjo5Vi0EREREekBFm1EREREeoBFGxEREZEeYNFGREREpAdYtBERERHpARZtRERERHqARRsRERGRHmDRRkRERKQHWLQREb0mhUKB6dOnazsNib+/P2rVqqXtNIiomLFoI6Iyae3atVAoFNLDzMwM9evXx8iRI3Hv3r0Sfe0jR45g+vTpSE5OLtbrvvPOO7L3VKlSJbzxxhtYvXo1VCpVsbzG7NmzsW3btmK5FhEVLyNtJ0BEVJJmzJgBFxcXpKen46+//sKKFSuwa9cunD9/HhYWFsXyGk+fPoWRUe4/p0eOHEFoaCj8/f1ha2tbLK+hUaNGDcyZMwcAcP/+fXz//fcYNGgQLl++jLCwsNe+/uzZs9GzZ09069btta9FRMWLRRsRlWkdO3ZEy5YtAQCDBw+GnZ0dFixYgO3bt6NPnz6vfF2VSoXMzEyYmZnBzMysuNJ9KRsbG3zyySfS8eeffw5XV1csXboUM2fOhLGxcanlQkSli8OjRFSutGvXDgAQFxcHAJg3bx68vLxgZ2cHc3NztGjRAj///HO+5ykUCowcORLr169Hw4YNYWpqij179kjnNPe0TZ8+HRMnTgQAuLi4SEOZ169fx9tvv40mTZoUmJerqyt8fX2L/H4sLCzQunVrPH78GPfv339u3OPHjzF+/Hg4OTnB1NQUrq6umDdvHoQQsvf4+PFjrFu3Tsrb39+/yDkRUclgTxsRlStXr14FANjZ2QEAvv76a/j5+aFv377IzMzExo0b8eGHH2LHjh3o1KmT7Ln79+/H5s2bMXLkSFSuXLnAm/27d++Oy5cvY8OGDVi4cCEqV64MALC3t0e/fv0wZMgQnD9/Ho0aNZKec/z4cVy+fBlTpkx5pfd07do1GBoaPncoVggBPz8/HDhwAIMGDULTpk0RERGBiRMn4vbt21i4cCEA4IcffsDgwYPRqlUrfPbZZwCAOnXqvFJORFQCBBFRGbRmzRoBQPz+++/i/v374ubNm2Ljxo3Czs5OmJubi1u3bgkhhHjy5InseZmZmaJRo0aiXbt2snYAwsDAQFy4cCHfawEQISEh0vFXX30lAIi4uDhZXHJysjAzMxOBgYGy9tGjRwtLS0uRlpb2wvf09ttvCzc3N3H//n1x//59cenSJTF69GgBQHTp0kWKGzBggKhZs6Z0vG3bNgFAfPnll7Lr9ezZUygUCvHPP/9IbZaWlmLAgAEvzIOItIPDo0RUpvn4+MDe3h5OTk7o3bs3rKys8Ouvv6J69eoAAHNzcyn24cOHSElJQdu2bXHq1Kl813r77bfRoEGDV87FxsYGXbt2xYYNG6RhyZycHGzatAndunWDpaXlS68RExMDe3t72Nvbw93dHUuWLEGnTp2wevXq5z5n165dMDQ0xOjRo2Xt48ePhxACu3fvfuX3RESlh8OjRFSmLVu2DPXr14eRkRGqVq0KV1dXGBjk/v/qjh078OWXX+L06dPIyMiQ2hUKRb5rubi4vHY+/fv3x6ZNm/Dnn3/irbfewu+//4579+6hX79+hXp+rVq18L///U9axqRevXqoUqXKC59z48YNVKtWDRUqVJC1u7u7S+eJSPexaCOiMq1Vq1bS7NFn/fnnn/Dz88Nbb72F5cuXw9HREcbGxlizZg1++umnfPF5e+Vela+vL6pWrYoff/wRb731Fn788Uc4ODjAx8enUM+3tLQsdCwRlS0cHiWicuuXX36BmZkZIiIiMHDgQHTs2LFYCqKCeuk0DA0N8fHHH+Pnn3/Gw4cPsW3bNvTp0weGhoav/brPU7NmTdy5cwePHj2StcfExEjnNV6UOxFpF4s2Iiq3DA0NoVAokJOTI7Vdv379tXcE0Nyb9rwdEfr164eHDx/i888/R1pammzdtZLw/vvvIycnB0uXLpW1L1y4EAqFAh07dpTaLC0ti30nByIqHhweJaJyq1OnTliwYAE6dOiAjz/+GImJiVi2bBnq1q2Ls2fPvvJ1W7RoAQCYPHkyevfuDWNjY3Tp0kUq5po1a4ZGjRphy5YtcHd3R/PmzYvl/TxPly5d4O3tjcmTJ+P69eto0qQJ9u7di+3bt2PMmDGyZT1atGiB33//HQsWLEC1atXg4uICDw+PEs2PiAqHPW1EVG61a9cO3333HRISEjBmzBhs2LABc+fOxQcffPBa133jjTcwc+ZMnDlzBv7+/ujTp0++hW/79+8PAIWegPA6DAwMoFQqMWbMGOzYsQNjxozBxYsX8dVXX2HBggWy2AULFqBFixaYMmUK+vTpgxUrVpR4fkRUOAoh8iyHTUREpeLrr7/G2LFjcf36dTg7O2s7HSLSAyzaiIhKmRACTZo0gZ2dHQ4cOKDtdIhIT/CeNiKiUvL48WMolUocOHAA586dw/bt27WdEhHpEfa0ERGVkuvXr8PFxQW2trYYPnw4Zs2ape2UiEiPsGgjIiIi0gOcPUpERESkB1i0EREREekBTkTQYSqVCnfu3EGFChW4tQwREZGeEELg0aNHqFatGgwMiq9/jEWbDrtz5w6cnJy0nQYRERG9gps3b6JGjRrFdj0WbTqsQoUKANQfurW1tZazISIiosJITU2Fk5OT9D1eXFi06TDNkKi1tTWLNiIiIj1T3Lc2cSICERERkR5g0UZERESkB1i0EREREekB3tOm53JycpCVlaXtNKgUGBsbw9DQUNtpEBGRlrBo01NCCCQkJCA5OVnbqVApsrW1hYODA9ftIyIqh1i06SlNwValShVYWFjwS7yME0LgyZMnSExMBAA4OjpqOSMiIiptLNr0UE5OjlSw2dnZaTsdKiXm5uYAgMTERFSpUoVDpURE5QwnIughzT1sFhYWWs6ESpvmM+d9jERE5Y/eFG1+fn5wdnaGmZkZHB0d0a9fP9y5c0cWI4TAvHnzUL9+fZiamqJ69eqYNWuWLObgwYNo3rw5TE1NUbduXaxduzbfay1btgy1atWCmZkZPDw88Pfff8vOp6enY8SIEbCzs4OVlRV69OiBe/fuyWLi4+PRqVMnWFhYoEqVKpg4cSKys7OL55fxHw6Jlj/8zImIyi+9Kdq8vb2xefNmxMbG4pdffsHVq1fRs2dPWcwXX3yBVatWYd68eYiJiYFSqUSrVq2k83FxcejUqRO8vb1x+vRpjBkzBoMHD0ZERIQUs2nTJowbNw4hISE4deoUmjRpAl9fX+leIgAYO3YsfvvtN2zZsgWHDh3CnTt30L17d+l8Tk4OOnXqhMzMTBw5cgTr1q3D2rVrMW3atBL8DREREVGZJvTU9u3bhUKhEJmZmUIIIS5evCiMjIxETEzMc58TEBAgGjZsKGvr1auX8PX1lY5btWolRowYIR3n5OSIatWqiTlz5gghhEhOThbGxsZiy5YtUsylS5cEABEVFSWEEGLXrl3CwMBAJCQkSDErVqwQ1tbWIiMjo9DvMSUlRQAQKSkpsvanT5+KixcviqdPnxb6WlQ28LMnItJ9z/v+fl1609OWV1JSEtavXw8vLy8YGxsDAH777TfUrl0bO3bsgIuLC2rVqoXBgwcjKSlJel5UVBR8fHxk1/L19UVUVBQAIDMzEydPnpTFGBgYwMfHR4o5efIksrKyZDFubm5wdnaWYqKiotC4cWNUrVpV9jqpqam4cOHCc99XRkYGUlNTZY+yxt/fHwqFAgqFAsbGxqhatSree+89rF69GiqVqtDXWbt2LWxtbUsuUSIiIh2jV0VbYGAgLC0tYWdnh/j4eGzfvl06d+3aNdy4cQNbtmzB999/j7Vr1+LkyZOyIdSEhARZIQUAVatWRWpqKp4+fYoHDx4gJyenwJiEhATpGiYmJvkKhmdjCrqG5tzzzJkzBzY2NtLDycmpkL8Z/dKhQwfcvXsX169fx+7du+Ht7Y0vvvgCnTt3Lvb7/oiIiAqSlpaGx48fazuNItFq0RYUFCT1ujzvERMTI8VPnDgR0dHR2Lt3LwwNDdG/f38IIQAAKpUKGRkZ+P7779G2bVu88847+O6773DgwAHExsZq6y0WSXBwMFJSUqTHzZs3tZ1SiTA1NYWDgwOqV6+O5s2bY9KkSdi+fTt2794tTQxZsGABGjduDEtLSzg5OWH48OFIS0sDoJ5M8umnnyIlJUX672T69OkAgB9++AEtW7ZEhQoV4ODggI8//lh2PyIREZVvQggsW7YM8+fPx8qVK6U6Qh9odZ228ePHw9/f/4UxtWvXln6uXLkyKleujPr168Pd3R1OTk44evQoPD094ejoCCMjI9SvX1+Kd3d3B6Ceyenq6goHB4d8szzv3bsHa2trmJubw9DQEIaGhgXGODg4AAAcHByQmZmJ5ORkWW/bszHPzjjVXFMTUxBTU1OYmpq+8PfxPEIIrS0DYWxs/NqzGtu1a4cmTZpg69atGDx4MAwMDLB48WK4uLjg2rVrGD58OAICArB8+XJ4eXlh0aJFmDZtmlSQW1lZAVAvhTFz5ky4uroiMTER48aNg7+/P3bt2vXa75OIiPRbcnIyvv76a+n48ePHejUrX6tFm729Pezt7V/puZr7nzIyMgAAb775JrKzs3H16lXUqVMHAHD58mUAQM2aNQEAnp6e+b689+3bB09PTwCAiYkJWrRogcjISHTr1k16ncjISIwcORIA0KJFCxgbGyMyMhI9evQAAMTGxiI+Pl66jqenJ2bNmiUtgqp5HWtrazRo0OCV3u/LZGVlYc6cOSVy7ZcJDg6GiYnJa1/Hzc0NZ8+eBQCMGTNGaq9Vqxa+/PJLDB06FMuXL4eJiQlsbGygUCjyFcEDBw6Ufq5duzYWL16MN954A2lpaVJhR0RE5c/x48dlNYCNjQ2++OILLWZUdHqxI8KxY8dw/PhxtGnTBhUrVsTVq1cxdepU1KlTRyqUfHx80Lx5cwwcOBCLFi2CSqXCiBEj8N5770m9b0OHDsXSpUsREBCAgQMHYv/+/di8eTN27twpvda4ceMwYMAAtGzZEq1atcKiRYvw+PFjfPrppwDUH/KgQYMwbtw4VKpUCdbW1hg1ahQ8PT3RunVrAED79u3RoEED9OvXD+Hh4UhISMCUKVMwYsSIV+5JKw+EENL/8fz++++YM2cOYmJikJqaiuzsbKSnp+PJkycvXFT45MmTmD59Os6cOYOHDx9KxX18fHyJFcxERKS7hBBYvHixbK/u999/H2+88Yb2knpFelG0WVhYYOvWrQgJCcHjx4/h6OiIDh06YMqUKVIRZGBggN9++w2jRo3CW2+9BUtLS3Ts2BHz58+XruPi4oKdO3di7Nix+Prrr1GjRg2sWrUKvr6+UkyvXr1w//59TJs2DQkJCWjatCn27Nkjm1iwcOFCGBgYoEePHsjIyICvry+WL18unTc0NMSOHTswbNgweHp6wtLSEgMGDMCMGTNK7HdkbGyM4ODgErv+y167OFy6dAkuLi64fv06OnfujGHDhmHWrFmoVKkS/vrrLwwaNAiZmZnPLdoeP34MX19f+Pr6Yv369bC3t0d8fDx8fX2RmZlZLDkSEZH+SEpKwpIlS2RtDRp8gTfesNVOQq9JL4q2xo0bY//+/S+Nq1atGn755ZcXxrzzzjuIjo5+YczIkSOl4dCCmJmZYdmyZVi2bNlzY2rWrFmq91EpFIpiGaLUlv379+PcuXMYO3YsTp48CZVKhfnz58PAQD1XZvPmzbJ4ExMT5OTkyNpiYmLw77//IiwsTJp5e+LEidJ5A0REpFOioqKwd+9e6TgtrTLmzRsOT08FPvxQi4m9Br1a8oPKhoyMDCQkJOD27ds4deoUZs+eja5du6Jz587o378/6tati6ysLCxZsgTXrl3DDz/8gJUrV8quUatWLaSlpSEyMhIPHjzAkydP4OzsDBMTE+l5SqUSM2fO1NK7JCIibVCpVJg3b56sYOvSpQvath0BT08FvL0BLy9AqdRikq+IRRuVuj179sDR0RG1atVChw4dcODAASxevBjbt2+HoaEhmjRpggULFmDu3Llo1KgR1q9fn2+ShZeXF4YOHYpevXrB3t4e4eHhsLe3x9q1a7FlyxY0aNAAYWFhmDdvnpbeJRERlbYHDx5g5syZsvXXDh4ci+bNm8PPDzhyBDhwAIiKAsLCtJjoK1IIfVqgpJxJTU2FjY0NUlJSYG1tLbWnp6cjLi4OLi4uMDMz02KGVNr42RMRFezPP/+U3UqlUjliwYIhGD1agVmzcuOUSnXB5u2tLuCCggA/v+LN5Xnf36+LPW1ERESkt1QqFWbPni0r2D744APs2/cZ0tIUOHBA3aZUqodFAf3tcWPRRkRERHopMTERM2fOlC0u36jRePzf//0fvL0BKyt1jxqgLs7yFmlBQYCnp/pPfcGijYiIiPTOgQMHsGLFCuk4KckZ06dPw/z5Vv+dB9LSIPW0aYo0zUQEQN3jVtxDoyWJRRsRERHpjZycHISGzsAff/whtZ0+3RPvvvspPD0VUs/Zsz1tZWEigl6s00ZERER09+5dfPvtt7K2X3+dgPR0SwDqokzj2Z42jaAgdcGmT8OiGizaiIiISOft27cPR/JUZQ8e1MZ77/VDRARw5kxuz5lmZujDh4Cra/7izM9Pv4ZE82LRRkRERDorOzsbs/Ku2QEgK6sXTp50w3vvqQu0c+fUf2omG5w7p+5l8/TU3wKtICzaiIiISCfdunUL3333naxt7twAGBqaIy0tt3dNMwyqGfrMuwZbWcKijYiIiHTO7t278ffff0vH9+654v793jA0BDp0AG7fzi3KNPeo6fPQZ2GwaKMyyd/fH8nJydi2bRsA4J133kHTpk2xaNGiV75mcVyDiIheLCsrC7Nnz5a1HTz4MQ4erAczMyA9HdizB1i/PrdAK8uFWl5c8oNKlb+/PxQKBRQKBUxMTFC3bl3MmDED2dnZJfq6W7duLfTm8QcPHoRCoUBycvIrX4OIiIouPj4+X8H2f/8XiKNH6wEA7OzUy3jkHRotT9jTRqWuQ4cOWLNmDTIyMrBr1y6MGDECxsbGCA4OlsVlZmbCxMSkWF6zUqVKOnENIiLKT6kEfvtNiRo1oqW2u3cb4f33eyAsTN27Zm6uLtgGDCib96sVBnvaqNSZmprCwcEBNWvWxLBhw+Dj4wOlUgl/f39069YNs2bNQrVq1eDq6goAuHnzJj766CPY2tqiUqVK6Nq1K65fvy5dLycnB+PGjYOtrS3s7OwQEBAAIYTsNd955x2MGTNGOs7IyEBgYCCcnJxgamqKunXr4rvvvsP169fh/d9KjBUrVoRCoYC/v3+B13j48CH69++PihUrwsLCAh07dsSVK1ek82vXroWtrS0iIiLg7u4OKysrdOjQAXfv3pViDh48iFatWsHS0hK2trZ48803cePGjWL6TRMR6TalEmjUKBPR0aGygu348X6ws+shTSrw9AScnYHYWHXBpm87GRQXFm2kdebm5sjMzAQAREZGIjY2Fvv27cOOHTuQlZUFX19fVKhQAX/++ScOHz4sFT+a58yfPx9r167F6tWr8ddffyEpKQm//vrrC1+zf//+2LBhAxYvXoxLly7hm2++gZWVFZycnPDLL78AAGJjY3H37l18/fXXBV7D398fJ06cgFKpRFRUFIQQeP/992V74D158gTz5s3DDz/8gD/++APx8fGYMGECAPU09m7duuHtt9/G2bNnERUVhc8++wwKheK1f6dERPpg/vw4fPjhHFnb778HY+fO2li8WL18h6ZICw/Xv71CixuHR0lrhBCIjIxEREQERo0ahfv378PS0hKrVq2ShkV//PFHqFQqrFq1Sipm1qxZA1tbWxw8eBDt27fHokWLEBwcjO7duwMAVq5ciYiIiOe+7uXLl7F582bs27cPPj4+AIDatWtL5zXDoFWqVIGtrW2B17hy5QqUSiUOHz4Mr/82sVu/fj2cnJywbds2fPjhhwDUN9SuXLkSderUAQCMHDkSM2bMAACkpqYiJSUFnTt3ls67u7sX/RdJRKSHtm7dinbtzknHlSo1xahRXdGsGZCTA1Svrp5wkHcbqvLYu5YXe9oISqV681ylsnReb8eOHbCysoKZmRk6duyIXr16Yfr06QCAxo0by+5jO3PmDP755x9UqFABVlZWsLKyQqVKlZCeno6rV68iJSUFd+/ehYeHh/QcIyMjtGzZ8rmvf/r0aRgaGuLtt99+5fdw6dIlGBkZyV7Xzs4Orq6uuHTpktRmYWEhFWQA4OjoiMTERADq4tDf3x++vr7o0qULvv76a9nQKRFRWaNUAi4uGQgNDcW5c7kF2++/+6Nmza4AcvcIvX274G2oyjMWbSStIF1aM3G8vb1x+vRpXLlyBU+fPsW6detgaaneN07zp0ZaWhpatGiB06dPyx6XL1/Gxx9//Eqvb25u/trvobCMjY1lxwqFQna/3Zo1axAVFQUvLy9s2rQJ9evXx9GjR0stPyKi0rRq1T/w95d/2ezbNwl//VUz33dQUBCHQ5/Foo1K/S+GpaUl6tatC2dnZxgZvXiEvnnz5rhy5QqqVKmCunXryh42NjawsbGBo6Mjjh07Jj0nOzsbJ0+efO41GzduDJVKhUOHDhV4XtPTl5OT89xruLu7Izs7W/a6//77L2JjY9GgQYMXvqdnNWvWDMHBwThy5AgaNWqEn376qUjPJyLSZUol4O4ODB68GS1arJfac3JaIiQkBAEBxgV+B2l63Mr7kGheLNpIp/9i9O3bF5UrV0bXrl3x559/Ii4uDgcPHsTo0aNx69YtAMAXX3yBsLAwbNu2DTExMRg+fHi+NdbyqlWrFgYMGICBAwdi27Zt0jU3b94MAKhZsyYUCgV27NiB+/fvIy0tLd816tWrh65du2LIkCH466+/cObMGXzyySeoXr06unbtWqj3FhcXh+DgYERFReHGjRvYu3cvrly5wvvaiKhMmTfvKXr3DoWTU+6tI4MGDcKMGZ0A6PZ3kK5h0UY6zcLCAn/88QecnZ3RvXt3uLu7Y9CgQUhPT4e1tTUAYPz48ejXrx8GDBgAT09PVKhQAR988MELr7tixQr07NkTw4cPh5ubG4YMGYLHjx8DAKpXr47Q0FAEBQWhatWqGDlyZIHXWLNmDVq0aIHOnTvD09MTQgjs2rUr35Doi95bTEwMevTogfr16+Ozzz7DiBEj8PnnnxfhN0REpJuUSqBr11i8+264rH3y5MmoUaOGlrLSbwrx7IJWpDNSU1NhY2ODlJQUqUABgPT0dMTFxcHFxQVmZmZazJBKGz97ItJlSmXuPqD7969BxYrx0rm4OE+sXdtei9mVnud9f78u9rQRERHRK8u7AkFYGHDhQgqio0NlBdsPPwxB9+7tS321grKG67QRERHRK8u7AoG//yHcvXtQdn7v3ilYsMAQfn7qgk0Ty3vYio5FGxEREb2yoCB1EebrG4q8S03Gxzvh8OGBiInJH8tlPF4NizYiIiIqkrz3rmVkJMHXd4ns/M6d/XD8eG24ucmfx10NXg+LNj3GOSTlDz9zItIFmiHRX375HbVrH5admzlzCurVM+TCuCWARZse0iwp8eTJk1Jd3Z+078mTJwDy77RARFTS8vauVa8uMH36DNl5laoONm36BPXqAXPnsketJLBo00OGhoawtbWV9rC0sLCQNlOnskkIgSdPniAxMRG2trYwNDTUdkpEVM5oetdGjXqAgQOXyc75+/ujT5+aiI1V77DDgq1ksGjTUw4ODgAgFW5UPtja2kqfPRFRafL2Bmxtd8PD429Z+5QpU2BoaMhJBqWAi+vqsMIszpeTk4OsrKxSzoy0wdjYmD1sRKQV27cLnD4tHw51d3fHRx99pKWMdFtJLa7LnjY9Z2hoyC9yIiIqMffu3cPp0ytlbYMGDeJWVFrAHRGIiIiowN0KlEolVq6UF2xTp05lwaYl7GkjIiIi2c4GXboIzJghHw6Ni/s/rF37gZayI4BFGxEREUE9gSAgAHjy5A5mzPif7NzKlZ/D1paToLSNw6NERETl1LNDos2a/YwPPpAXbE2bToOLiwPmztVCgiTD2aM6rKRmnxAREQG5G7h7eanQvv1M2bkrV1rgxx87aykz/cbZo0RERFSsvL2Bf/+9ifbtV8va//prOEaNstdSVvQ8LNqIiIjKIaUSuHlzAz7++LKsfdq0adxlR0fxnjYiIqIy7tl713JychAdHYo6dXILtsOHPREREcKCTYexp42IiKgMUyqBvn2BtDT1ch6NG8fh+++/l8W4u49ERIQdt6DScSzaiIiIyhilUl2geXsDixerCzYrK6BHj3X4/vvrsljNcCh3pNJ9LNqIiIjKkLw9a+fOqf+0tMzGhAmzkJaWG3f16lv4/ntv7SVKRcaijYiIqAwJC1MXamZmgI0N0LDhP+jYcb0s5tChLzBmjK12EqRXxqKNiIioDAkKUhduDx8Cbdv+D9Wr35GdDwkJ0VJm9Lo4e5SIiKgM0MwQBYBDh7LQu3eorGBzdHyXBZueY08bERFRGaDZ8D0oKAbR0Ztk5xo2HIuePbmzjr5j0UZERKSnlEogMBAQAujRA2jRYikqV/5XFsPetbKDRRsREZEeyLuMx4EDufeuxcQAJiYZMDEJQ+XKufEdOnSAh4eH9hKmYseijYiISA9ohj81y3iEhakLt2XLzsPL6xdZ7Pjx42FlZaWlTKmksGgjIiLScZMnA9HRQPXqwIABuT1tV67Mh5dX7uJrBgYGmDp1qhYzpZLEoo2IiEhHaYZEo6OB9HQgJQWYNQtIT0/H3LlzZbGdO3dGixYttJQplQYWbURERDpKMyRavbq6YOvQAejZ8zQaN94ui5s4cSIsLCy0lCWVFhZtREREOiooKHd26PLlwPHjc2BklCmdNzc3R0BAgBYzpNLExXWJiIh0hGaBXKVSfeznB1SsCNy8+QTR0aGygq1bt24s2MoZ9rQRERHpCM1waFhY7vG77x6Hr+8uWVxgYCDMzMy0kCFpE4s2IiIiHaBUAklJgJtb7hpsvr6hshgbGxuMGTNGOwmS1rFoIyIi0jKlEujbV73+mqcn4O39CNHRC2QxH374IRo0aKClDEkXsGgjIiLSorwFm5UVMHBgFBYs2CuLCQ4OhomJiZYyJF3Boo2IiEgLNGuwJSXlFmwTJoTi9u3cmCpVqmDYsGHaS5J0Cos2IiIiLQgMVO8bWr064O2dgrffXiQ737t3b7i6umonOdJJLNqIiIhK0ZtvAkeOAJrJnx4ef+D//u+ALGbSpEkwNjbWQnaky1i0ERERlQKlEggIAGJj1cfp6cD06fLZoTVq1MCgQYO0kB3pAxZtREREJSzvZAMAqFjxIb74YrEs5pNPPkGdOnW0kB3pC73ZEcHPzw/Ozs4wMzODo6Mj+vXrhzt37kjnp0+fDoVCke9haWkpu86WLVvg5uYGMzMzNG7cGLt2yRcsFEJg2rRpcHR0hLm5OXx8fHDlyhVZTFJSEvr27Qtra2vY2tpi0KBBSNP8TfzP2bNn0bZtW5iZmcHJyQnh4eHF/BshIiJdlHdXA83PgYHqgs3MDPjww8h8BdvkyZNZsNFL6U3R5u3tjc2bNyM2Nha//PILrl69ip49e0rnJ0yYgLt378oeDRo0wIcffijFHDlyBH369MGgQYMQHR2Nbt26oVu3bjh//rwUEx4ejsWLF2PlypU4duwYLC0t4evri/T0dCmmb9++uHDhAvbt24cdO3bgjz/+wGeffSadT01NRfv27VGzZk2cPHkSX331FaZPn45vv/22hH9LRESkbZpdDYYPB7p1U//86BHg6SkQFBSKhg3/kmJr166NkJAQGBlx4IteTiGEENpO4lUolUp069YNGRkZBd6seebMGTRt2hR//PEH2rZtCwDo1asXHj9+jB07dkhxrVu3RtOmTbFy5UoIIVCtWjWMHz8eEyZMAACkpKSgatWqWLt2LXr37o1Lly6hQYMGOH78OFq2bAkA2LNnD95//33cunUL1apVw4oVKzB58mQkJCRI6+oEBQVh27ZtiImJKfR7TE1NhY2NDVJSUmBtbf3KvysiIio9kycDixcDGRlAVpa67Y03HqBTp2WyOH9/f9SsWVMLGVJJK6nvb73pacsrKSkJ69evh5eX13Nn16xatQr169eXCjYAiIqKgo+PjyzO19cXUVFRAIC4uDgkJCTIYmxsbODh4SHFREVFwdbWVirYAMDHxwcGBgY4duyYFPPWW2/JFkL09fVFbGwsHj58+Nz3lZGRgdTUVNmDiIj0y7p16qFQU1P1cGiPHnvyFWxTpkxhwUZFpldFW2BgICwtLWFnZ4f4+Hhs3769wLj09HSsX78+3wychIQEVK1aVdZWtWpVJCQkSOc1bS+KqVKliuy8kZERKlWqJIsp6Bp5X6Mgc+bMgY2NjfRwcnJ6biwREemmpCT1nzk56uHQxo2PSefc3NwQEhICQ0NDLWVH+kyrRVtQUFCBkwfyPvIOJ06cOBHR0dHYu3cvDA0N0b9/fxQ0uvvrr7/i0aNHGDBgQGm+ndcWHByMlJQU6XHz5k1tp0RERIWQd/LB2LFArVqJCAycIYsZNGgQevXqpaUMqSzQ6p2P48ePh7+//wtjateuLf1cuXJlVK5cGfXr14e7uzucnJxw9OhReHp6yp6zatUqdO7cOV9vl4ODA+7duydru3fvHhwcHKTzmjZHR0dZTNOmTaWYxMRE2TWys7ORlJQku05Br5P3NQpiamoKU1PT554nIiLt0Ww7FRQE+PnJz2kmH4SFAcHBv8HE5JTs/NSpU2FgoFeDW6SDtPpfkL29Pdzc3F74eN4GuSqVCoD6PrC84uLicODAgQIXJ/T09ERkZKSsbd++fVLR5+LiAgcHB1lMamoqjh07JsV4enoiOTkZJ0+elGL2798PlUoFDw8PKeaPP/5AluYO1P9ex9XVFRUrViz074eIiHRH3sIsb88aoC7kPD0FfH1DcepUbsHWuHFjhISEsGCjYqEXs0ePHTuG48ePo02bNqhYsSKuXr2KqVOn4t69e7hw4YKsd2rq1KlYvXo14uPj890zcOTIEbz99tsICwtDp06dsHHjRsyePRunTp1Co0aNAABz585FWFgY1q1bBxcXF0ydOhVnz57FxYsXYfbfniMdO3bEvXv3sHLlSmRlZeHTTz9Fy5Yt8dNPPwFQzzh1dXVF+/btERgYiPPnz2PgwIFYuHChbGmQl+HsUSIi3ZG3p02zb6ibG3DpEnD37t18yzp99tlnslEbKj9K6vtbLxaGsbCwwNatWxESEoLHjx/D0dERHTp0wJQpU2QFm0qlwtq1a+Hv71/gTZ5eXl746aefMGXKFEyaNAn16tXDtm3bpIINAAICAvD48WN89tlnSE5ORps2bbBnzx6pYAOA9evXY+TIkXj33XdhYGCAHj16YPHi3IUSbWxssHfvXowYMQItWrRA5cqVMW3atCIVbEREpFs0Q6JhYep11wBACGDr1q04d+6cLHbatGlQKBSlnCGVdXrR01ZesaeNiEh78vasAeqfk5LUe4e6ugJ2diq0bz9T9pwWLVqgc+fOWsiWdEm57mkjIiIqTXn3Cg0LU7dFRamHQz09gVGjbuLy5dWy5wwbNizfklBExYlFGxER0TPCwtQFm0IBxMcDmhWkgoKAx4834PLly7J4DodSaeB0FiIiIshnhAYFAVZW6nvWbt8GDhwA/vwzB9HRobKCrXXr1ggJCWHBRqWC97TpMN7TRkRUery81EOgBgbqos3DQz1LVAhg6tTr+OefdbL4kSNHws7OTkvZki7jPW1EREQlRKlUD4MCgEql3vD90SP1jNHvv/8e//wTJ4vncChpA4s2IiIq1z78EPj559xjAwNg9Gj1bjezZs2SxbZt2xbt2rUr5QyJ1Fi0ERFRuaRZ0uPo0dw2Nzdg7lygQYN/MGvWeln8F198AVtb29JNkigPFm1ERFSuaIq1hw/VuxpUqgQkJwPduwNbtqj3r46Ovi17TkhIiHaSJcqDRRsREZUbkycDc+aoJxdUr65ec02zAXxWVhZCQ2fL4tu1a4e2bdtqKVsiORZtRERU5imV6pmgsbHqgg0AKlQAjhxR/xwbG4uNGzfKnjN27FjO3CedwqKNiIjKvLAw9VAooF4wt1o19b1rALBs2TI8ePBAFs/hUNJFLNqIiKjMCwrKXXMtPFw9HJqRkYHQ0DBZnK+vL1q3bq2lLIlejEUbERGVSZoJB97e6h0N5s5VF2sAcP78efzyyy+y+PHjx8PKykoLmRIVDos2IiIqUzTFWny8eguq06eBp0/VbX5+wMKFC5GamirFKxQKTJs2TXsJExUSizYiIipTwsLU21GZmamPK1UCnJ2BCRPSERo6VxbbqVMntGzZUgtZEhUdizYiIipTgoLkw6JBQYCz82ls375dFjdx4kRYWFhoKUuiomPRRkREeuvZ+9Y0a65p7l0DgLCwMERHZ0jHpqamCAoK0kK2RK+HRRsREeklpRLo2xdISwOio4H0dCAgILdge/LkCb766ivZc7p164YmTZpoIVui18eijYiI9FJYmLpgMzAALCzURZtCoT534sQJ7Ny5UxYfGBgIM82NbkR6iEUbERHppaAgoFcvdbFmbp67JVVoaKgsztraGmPHjtVSlkTFh0UbERHpJT8/oFYt9U4HFSoAe/emYf78+bKYnj17omHDhtpJkKiYGWg7ASIiosJSKgEvL/WfgHrBXE9PYPz4qHwFW3BwMAs2KlPY00ZERDpNqVRPMEhLA/79Vz0cqlko188PiI4Oxe3bufH29vYYPny49hImKiEs2oiISGflnSGqYWWlvnctNTUVCxculMX37t0brq6upZwlUelg0UZERDorMFBdsJmYAPb26oItPByoWPFPLFy4XxY7adIkGBsbaylTopLHoo2IiHTShx+qJxkAgItL7s/Pzg6tXr06Bg8eXMrZEZU+Fm1ERKR1Be1ssHVr7vnwcODhw4dYvHix7HmffPIJ6tSpU8rZEmkHizYiItI6zSbv586ph0PDwoDu3dWFW/fugJXVfixe/KfsOZMnT4aREb/GqPzgkh9ERKQVeZfvCApSL90xenTuIrlbtgDZ2QKNGoXizz9zCzYXFxeEhISwYKNyh//FExGRVmh61zTDoufOqf88ckR9/t9//8XSpUtlzxkwYABq1apV+skS6QAWbUREVOqUSuDhQ8DVVd2rplnWY/FiYNYsICIiAkePHpU9Z8qUKTA0NNRSxkTapxBCCG0nQQVLTU2FjY0NUlJSYG1tre10iIiKjbu7ejaomxtw6RIwebK6YBs9WsDEZIYs1tXVFb1799ZSpkRFV1Lf37ynjYiISo3mPrbERPXxo0fqP2fNAq5eTcxXsA0aNIgFG9F/ODxKRESlQqkEevVSb0OlWQO3QgX1n7/99htOnToli586dSoMDNi3QKTBoo2IiEqUUqne2eDqVSArS91WpQrg7AwEBgqEhsp71xo1aoQePXpoIVMi3caijYiISkxBe4eamQHLlwNvvHEX3377rSz+s88+g6OjYylnSaQfWLQREVGJyFuwmZsDlSqph0PnzgWys7fi22/PyeKnTZsGhUKhpWyJdB+LNiIiKjaaoVAhAIVCXbBZWQHr1wN+foBKpcLMmTNlz2nevDm6dOmipYyJ9AeLNiIiKjZhYbkbu7u65u5u4OcH3Lp1C999950sftiwYahSpYoWMiXSPyzaiIio2Hh7A6dPq4dCw8PVxRoAbNq0CTGaau4/HA4lKpoiF22Ghoa4e/duvv8z+vfff1GlShXk5OQUW3JERKT7nh0SffpUPTPUzw/IycnBl19+KYv38PBAhw4dtJQtkf4qctH2vA0UMjIyYGJi8toJERGRflAq1cOhSUlAbKy6rXr13CHR69evY926dbLnjBw5EnZ2dlrIlkj/FbpoW7x4MQBAoVBg1apVsLKyks7l5OTgjz/+gJubW/FnSEREOuXZYs3cHDAxATIz1bNDjxwBvv/+e6xbFyd7HodDiV5PofcedXFxAQDcuHEDNWrUkG3aa2Jiglq1amHGjBnw8PAomUzLIe49SkS6yMsLiIpS7xt644Z6OLR6dfWQaEBANs6cmSWLb9OmDd59910tZUtU+krq+7vQPW1xcer/Y/L29sbWrVtRsWLFYkuCiIj0h7c3cO4c0L078Msv6t42Kyvghx+u4scff5TFjh49mt8XRMWkyJu6HThwgH8BiYjKEc0m70ql+vjAAfX6awcOqGeIenoCgwZ9l69gCwkJ4fcFUTEq8kSEgQMHvvD86tWrXzkZIiLSPWFh6uHQgAD1z97e6vagIKBjxyxER8/Gkye58d7e3njrrbe0kyxRGVbkou3hw4ey46ysLJw/fx7Jyclo165dsSVGRETapZlwoCnS4uPVQ6EPHwKXLgGxsbGYPXuj7DljxoyBjY2NFrIlKvuKXLT9+uuv+dpUKhWGDRuGOnXqFEtSRESkfZoetqQk9WK5GkIAy5cvx/3792XxISEhpZwhUflS6NmjLxMbG4t33nkHd+/eLY7LETh7lIi0S9PT9vChemsqNzegcuVM+PjMkcW1b98enp6eWsqSSPdoffboy1y9ehXZ2dnFdTkiIiplmp0NHj1SH1tZqScaAOri7fPPL+D69Z9lzxk/frxs3U4iKjlFLtrGjRsnOxZC4O7du9i5cycGDBhQbIkREVHpyrvZe962I0eAa9cW4fr1FNk5DocSla4iF23R0dGyYwMDA9jb22P+/PkvnVlKRES6afJkIDpavaNBejpgbQ1UrgxMnJiO0NC5sthOnTqhZcuWWsqUqPwqctF24MCBksiDiIi0aPFidbGWmQmoVED9+sCKFWewbds2WdzEiRNhYWGhnSSJyrkiL66rkZiYiD///BN//vknEhMTizMnIiIqBXkXze3QATAwAFq3Vi+W+/77c2UFm4mJCUJCQliwEWlRkXvaUlNTMWLECGzYsAEqlQoAYGhoiF69emHZsmVcn4eISE9olvQIC1Mfq1SAkdETtGv3FXJycuO6du2Kpk2baiVHIspV5J62IUOG4NixY9i5cyeSk5ORnJyMHTt24MSJE/j8889LIkciIipGmh42b291r1pQkPrx4Ycn0a7dV7LYwMBAFmxEOqLI67RZWloiIiICbdq0kbX/+eef6NChAx4/flysCZZnXKeNiIqDZr21oCD1cd++6r1DrayA9esBPz9gxowZyPt1UKFChXyrBRBR4ejMOm12dnYFDoHa2NhwY2AiIh307DBoWpr6/rW0NGDBgjRER8+Xxffo0QONGjXSQqZE9CJFHh6dMmUKxo0bh4SEBKktISEBEydOxNSpU4s1OSIien1BQephUG9v9ZZUbm7qtl69jsLbe/4zsUEs2Ih0VJGHR5s1a4Z//vkHGRkZcHZ2BgDEx8fD1NQU9erVk8WeOnWq+DIthzg8SkTFyctL3ePm6Qn4+obKzlWuXBkjRozQUmZEZYvODI927doVCoWi2BIgIqLipdmOSgj1NlR+fur2oCBg4cJUvPPOQll8r1694ObmpoVMiagoim3DeCp+7GkjoqLQFGvXr6sXygUAV1egUiV1wVax4p/Yv3+/7DmTJk2CsbFx6SdLVIbpTE9b7dq1cfz4cdjZ2cnak5OT0bx5c1y7dq3YkiMiosLLu3eomRlQsyagUKiHRKOj5cOh1apVw5AhQ7SQJRG9qiIXbdevX0dO3lUX/5ORkYFbt24VS1JERFR0QUHA8OFAYiJgZ6ceGs3ISMbFi1/L4vr27Yu6detqKUsielWFLtqUSqX0c0REhGzZj5ycHERGRsLFxaV4syMiokLz81P3tt2+rX78/PMB1Knzhyxm8uTJMDIq8v+vE5EOKPSSH926dUO3bt2gUCgwYMAA6bhbt27o3bs39u3bh/nz57/8Qq/Iz88Pzs7OMDMzg6OjI/r164c7d+7IYiIiItC6dWtUqFAB9vb26NGjB65fvy6LOXjwIJo3bw5TU1PUrVsXa9euzfday5YtQ61atWBmZgYPDw/8/fffsvPp6ekYMWIE7OzsYGVlhR49euDevXuymPj4eHTq1AkWFhaoUqUKJk6ciOzs7GL5XRARPU9QEODmJjB9eqisYKtVqxZCQkJYsBHpsUIXbSqVCiqVCs7OzkhMTJSOVSoVMjIyEBsbi86dO5dYot7e3ti8eTNiY2Pxyy+/4OrVq+jZs6d0Pi4uDl27dkW7du1w+vRpRERE4MGDB+jevbssplOnTvD29sbp06cxZswYDB48GBEREVLMpk2bMG7cOISEhODUqVNo0qQJfH19kZiYKMWMHTsWv/32G7Zs2YJDhw7hzp07stfJyclBp06dkJmZiSNHjmDdunVYu3Ytpk2bVmK/HyIqn5RKwN1dvfaaUgm8+ea/6N17hixmwIABGDBggJYyJKJiI/TU9u3bhUKhEJmZmUIIIbZs2SKMjIxETk6OFKNUKmUxAQEBomHDhrLr9OrVS/j6+krHrVq1EiNGjJCOc3JyRLVq1cScOXOEEEIkJycLY2NjsWXLFinm0qVLAoCIiooSQgixa9cuYWBgIBISEqSYFStWCGtra5GRkVHo95iSkiIAiJSUlEI/h4jKtu3bhfD0VP8phBBubkKoF/cQwt9/j5g+fbrskZ2drd2Eicqhkvr+LnI/+YwZM154vjR6k5KSkrB+/Xp4eXlJU9VbtGgBAwMDrFmzBv7+/khLS8MPP/wAHx8fKSYqKgo+Pj6ya/n6+mLMmDEAgMzMTJw8eRLBwcHSeQMDA/j4+CAqKgoAcPLkSWRlZcmu4+bmBmdnZ0RFRaF169aIiopC48aNUbVqVdnrDBs2DBcuXECzZs0KfF8ZGRnIyMiQjlNTU1/jt0REZZFmS6oPPgC6d1cv7wEITJ8u/7e5fv366NOnjzZSJKISUuSi7ddff5UdZ2VlIS4uDkZGRqhTp06JFm2BgYFYunQpnjx5gtatW2PHjh3SORcXF+zduxcfffQRPv/8c+Tk5MDT0xO7du2SYhISEmSFFABUrVoVqampePr0KR4+fIicnJwCY2L+m0efkJAAExMT2Nra5ovRbO31vNfRnHueOXPmIDQ09Lnniaj80mz67u2tLtpUKuDnnwF7+0QEBa2QxQ4cOBBOTk5aypSISkqR9x6Njo6WPc6fP4+7d+/i3XffxdixY4t0raCgICgUihc+NMUSAEycOBHR0dHYu3cvDA0N0b9/f4j/1gZOSEjAkCFDMGDAABw/fhyHDh2CiYkJevbsKcXouuDgYKSkpEiPmzdvajslItIRmh62rVtz27p02YERI+QF29SpU1mwEZVRxTKNyNraGqGhoejSpQv69etX6OeNHz8e/v7+L4ypXbu29HPlypVRuXJl1K9fH+7u7nBycsLRo0fh6emJZcuWwcbGBuHh4VL8jz/+CCcnJxw7dgytW7eGg4NDvlme9+7dg7W1NczNzWFoaAhDQ8MCYxwcHAAADg4OyMzMRHJysqy37dmYZ2ecaq6piSmIqakpTE1NX/j7IKLyKShIXbglJQEKhUBIiHw4tFGjRujRo4eWsiOi0lBsc781vUNFYW9vD3t7+1d6PZVKBQDSPWBPnjyBgYG849DQ0FAW++xwKQDs27cPnp6eAAATExO0aNECkZGR6Natm/TcyMhIjBw5EoD63jljY2NERkZK/0DGxsYiPj5euo6npydmzZqFxMREVKlSRXoda2trNGjQ4JXeLxGVb35+6sfGjXcRG/ut7NyQIUNQrVo1LWVGRKWlyEXb4sWLZcdCCNy9exc//PADOnbsWGyJ5XXs2DEcP34cbdq0QcWKFXH16lVMnToVderUkQqlTp06YeHChZgxYwb69OmDR48eYdKkSahZs6Z04//QoUOxdOlSBAQEYODAgdi/fz82b96MnTt3Sq81btw4DBgwAC1btkSrVq2waNEiPH78GJ9++ikAwMbGBoMGDcK4ceNQqVIlWFtbY9SoUfD09ETr1q0BAO3bt0eDBg3Qr18/hIeHIyEhAVOmTMGIESPYk0ZERaa5n61371/x8OFZ2blp06ZBoVBoKTMiKk1F3jD+2V0PDAwMYG9vj3bt2iE4OBgVKlQo1gQB4Ny5c/jiiy9w5swZPH78GI6OjujQoQOmTJmC6tWrS3EbN25EeHg4Ll++DAsLC3h6emLu3Llwc3OTYg4ePIixY8fi4sWLqFGjBqZOnZpviHbp0qX46quvkJCQgKZNm2Lx4sXw8PCQzqenp2P8+PHYsGEDMjIy4Ovri+XLl8uGPm/cuIFhw4bh4MGDsLS0xIABAxAWFlakhS25YTxR+aRUAgEBQFoaUKECoFCo0KvXTFlMs2bN4Ofnp6UMiehFSur7u8hFG5UeFm1E5ZOXl3rSAQBUr34bQ4askp0fOnRovhnqRKQ7Sur7+5XuaUtOTsY///wDAKhbt26+5S+IiKjwNMOfQUHq44cPgerVAR+fTXBxiZHFcjiUqPwqUtF2/fp1jBgxAhEREdIyGgqFAh06dMDSpUtRq1atksiRiKhM0yznERamPr58OQfTpn0pi2nVqlWJ3TdMRPqh0MOjN2/exBtvvAFjY2MMHz4c7u7uAICLFy9ixYoVyM7OxvHjx1GjRo0STbg84fAoUfmgVAKBgcCjR4CDww106bJWdn7EiBGoXLmydpIjoiLT+j1tgwYNwj///IOIiAiYmZnJzj19+hQdOnRAvXr1sGrVqudcgYqKRRtR+eHlBdSt+wPq1Lkma+dwKJH+0fo9bXv27MGmTZvyFWwAYG5ujpkzZ6J3797FlhgRUXmRnZ0NX99ZsrY2bdrg3Xff1VJGRKSLCl20PXjw4IX3rNWuXRtJSUnFkRMRUblx9epV/Pjjj7K20aNHo2LFilrKiIh0VaH3HnV0dMTFixefe/78+fMv3KKJiKg8UyrVQ6BKZW7bd999l69gCwkJYcFGRAUqdE9bt27dMGHCBERGRubbeioxMRGBgYHS1k9ERCQXEADExgK9egEbNmThzJnZsvPvvPMO3n77bS1lR0T6oNBFW0hICHbt2oU6dergk08+gZubG4QQuHTpEn766Sc4ODhg2rRpJZkrEZHe0swlcHa+jDNnNsjOjRkzBjY2NlrIioj0SaGLtooVK+LYsWOYNGkSNm7ciOTkZACAra0tPv74Y8yePRuVKlUqqTyJiPTa3LlARMQKVKmSKGsPCQnRUkZEpG9eaRsrIQTu378PALC3t+d09BLCJT+I9Jtmp4OJEzNx9uwc2bn33nsPXl5eWsqMiEqS1pf8yEuhUKBKlSrFlgQRUVmRd0uqsDAgJeUizp7dIosZN24cKlSooKUMiUhfvVLRRkREBcu7JVWXLl8jMzNZdp7DoUT0qli0EREVA00Pm7c38OhROnx95yIzM/f8+++/jzfeeEN7CRKR3mPRRkRUDDQ9bI6OZ9Gz56+ycxMnToSFhYWWMiOisoJFGxHRa1IqgYcPgaCgcJiZPZXaDQyMMXXqJC1mRkRlSaGKtsWLFxf6gqNHj37lZIiI9IlmSPTx46fo3Ttcds7Pzw/NmjXTUmZEVBYVaskPFxeXwl1MocC1a9deOylS45IfRLrNzQ2wtDwFP7/fZO2NGwege3dzLWVFRNqm1SU/4uLiiu0FiYjKio8+mglDQ5V0bGVlhfHjx2sxIyIqy175nrbMzEzExcWhTp06MDLirXFEVD4olcCCBY/h7T0Phoa57UeOdEdERGPtJUZEZZ5BUZ/w5MkTDBo0CBYWFmjYsCHi4+MBAKNGjUJYWFixJ0hEpG1KJeDurh4OXbXqGLy958nOb9kShBEjWLARUckqctEWHByMM2fO4ODBgzAzM5PafXx8sGnTpmJNjohIF4SFATExQJ8+oWjRYo/Ubmdnh5CQEJw/bwo/Py0mSETlQpHHNbdt24ZNmzahdevWsj1HGzZsiKtXrxZrckRE2pS7YG4qfH0Xys599NFHcHd311JmRFQeFblou3//foH7jj5+/JgbxxNRmRIWBhgY/AUTk0hZe3BwMExMTLSUFRGVV0UeHm3ZsiV27twpHWsKtVWrVsHT07P4MiMi0hKlEvDyAnx9Q/Hee7kFW0qKI5o1C2HBRkRaUeSettmzZ6Njx464ePEisrOz8fXXX+PixYs4cuQIDh06VBI5EhGVCqUSCAwEkpKSMXz417JzH3/8MerVq6elzIiIXqGnrU2bNjh9+jSys7PRuHFj7N27F1WqVEFUVBRatGhREjkSEZWKsDDAweFAvoKtSZPJLNiISOsKtSMCaQd3RCAqeZrJBoGBAqdPz5Cdq1mzJvz9/bWTGBHpLa3uiJCamlroC7K4ICJ9EhYGxMYm4fTpJbL2/v37F3oLPyKi0lCoos3W1rbQM0NzcnJeKyEiotIyeTJgbb0Xo0dHydqnTJkCw7zbHRAR6YBCFW0HDhyQfr5+/TqCgoLg7+8vzRaNiorCunXrMGfOnJLJkoiomAkhYGIyA3knvScm1oOv78dgvUZEuqjI97S9++67GDx4MPr06SNr/+mnn/Dtt9/i4MGDxZlfucZ72oiKl+b+tS++uI+YmOWyc1lZn+LLL521lBkRlSUl9f1d5NmjUVFRaNmyZb72li1b4u+//y6WpIiIipNm3bXAQKBSpZ35CrYZM6Zi/34WbESk24pctDk5OeF///tfvvZVq1bBycmpWJIiIipOYWHA0aMCvXuH4o03Tkjtd+82RGZmCDw8DBAUpMUEiYgKociL6y5cuBA9evTA7t274eHhAQD4+++/ceXKFfzyyy/FniAR0etQKgEhEhAS8o2sPSpqCPbsqaalrIiIiq7IPW3vv/8+rly5gi5duiApKQlJSUno0qULLl++jPfff78kciQiemU7dmxDhw7ygm3jxmkYPpwFGxHpFy6uq8M4EYHo1alUKsycOVPWdupUUyiVXeHpCRw5oqXEiKjM0+rius9KTk7Gd999h0uXLgEAGjZsiIEDB8LGxqbYEiMiKgrNzNCgIKBFi9tYtWqV7PzQoUNx7FhV3L8P3r9GRHqpyD1tJ06cgK+vL8zNzdGqVSsAwPHjx/H06VPs3bsXzZs3L5FEyyP2tBEVnrs7EBMDDBq0GU5Ol2Tnmjadhq5dC7dAOBHR6yqp7+8iF21t27ZF3bp18b///Q9GRuqOuuzsbAwePBjXrl3DH3/8UWzJlXcs2ogKz91dhd695cOhN268gTVr3udwKBGVKp0ZHj1x4oSsYAMAIyMjBAQEFLh+GxFRSbtx4wZ6914ra/vrrxEYNaoyYmI4HEpEZUORizZra2vEx8fDzc1N1n7z5k1UqFCh2BIjIiqMBQt+xKNHV2Vt8+ZNw/r1Cvj5AX5+WkqMiKiYFblo69WrFwYNGoR58+bBy8sLAHD48GFMnDgx39ZWREQlZdu2HJw586Ws7f79N3HqlA/Wr2exRkRlT5GLtnnz5kGhUKB///7Izs4GABgbG2PYsGEICwsr9gSJiJ517do1nDnzg6zt669HIT29Ep480VJSREQl7JXXaXvy5AmuXlUPSdSpUwcWFhbFmhhxIgJRQVavXo2bN2/K2qZPnwZAgerVgVu3tJMXEZGGzkxE0LCwsEDjxo2LLREiohfJzs7GrFmzZG3vvPMOOnd+GwBgYAAsX17QM4mIyoZCF20DBw4sVNzq1atfORkiooJcvnwZGzZskLU1bDgGb79tg9GjgcWLgdGjeR8bEZVthR4eNTAwQM2aNdGsWTO86Cm//vprsSVX3nF4lAhYuXIl7t27J2ubPj2Ea68Rkc7S+vDosGHDsGHDBsTFxeHTTz/FJ598gkqVKhVbIkREeWVmZmLOnDmytmrVfLBgwZtwdeXaa0RU/hgUNnDZsmW4e/cuAgIC8Ntvv8HJyQkfffQRIiIiXtjzRkRUVJcuXcpXsDVqNA7jxr2JmBigUiUOhRJR+fPKs0dv3LiBtWvX4vvvv0d2djYuXLgAKyur4s6vXOPwKJU3SiVw+PBiWFg8lLU3axaCsDAgKgqwsgLXYSMinab14dFnGRgYQKFQQAiBnJycYkuIiMqnjIwMREeHIe/qQR07dkSrVq2k47Aw9bAoCzYiKo+KVLRlZGRg69atWL16Nf766y907twZS5cuRYcOHWBgUOiRViIimbNnz+abxDRhwgRYWlpKx9ySiojKu0IXbcOHD8fGjRvh5OSEgQMHYsOGDahcuXJJ5kZE5cCsWV8hOzt3GwMjIyM0bjwZ773HXjUioryKtOSHs7MzmjVrBoVC8dy4rVu3Flty5R3vaaOy7OnTpwgPD5e1ZWf7YdGiZrCxAW7fBpf1ICK9pPV72vr37//CYo2IqLDWrDmF+PjfZG2ZmQGYM8ccQgAZGeqCjct6EBHlKnTRtnbt2hJMg4jKiy+//FI2ecnS0hL1609A376Apt+/ShX2sBERPeuVZ48SERXF48ePMW/ePFlbdnZ3TJjQGF5eQFoaYGYG1KoFzJ2rnRyJiHQZizYiKnF///03du/eLWubMycILi6miIwEvL3VbZx4QET0fCzaiKhEhYaGyo4rVqyIWrVGo3lzIClJvWAuwOFQIqKXYdFGRCXi0aNHWLBggazto48+wpUr7tIiuQBkPxMR0fO98jZWVPK45Afpq8OHD+P333+XtQUHB8PExAReXureNS7nQURlldaX/CAiKoxnh0MdHBzw+eefS8dBQexdIyJ6FSzaiKhYpKSkYNGiRbK22rU/xooV9eDomDvBgNtRERG9GhZtRPTaDh48iEOHDsna9u2bjAcPjBAbCwQEsFAjInpderPLu5+fH5ydnWFmZgZHR0f069cPd+7ckcVs3rwZTZs2hYWFBWrWrImvvvoq33UOHjyI5s2bw9TUFHXr1i1w0eBly5ahVq1aMDMzg4eHB/7++2/Z+fT0dIwYMQJ2dnawsrJCjx49cO/ePVlMfHw8OnXqBAsLC1SpUgUTJ05Ednb26/8iiHSIEAKhoaGygs3S0hkRESEICDBCWpq6TfMnERG9Or0p2ry9vbF582bExsbil19+wdWrV9GzZ0/p/O7du9G3b18MHToU58+fx/Lly7Fw4UIsXbpUiomLi0OnTp3g7e2N06dPY8yYMRg8eDAiIiKkmE2bNmHcuHEICQnBqVOn0KRJE/j6+iIxMVGKGTt2LH777Tds2bIFhw4dwp07d9C9e3fpfE5ODjp16oTMzEwcOXIE69atw9q1azFt2rQS/i0RlZ6kpCTMmDFD1tavXz9MmPCpdN+aRoUKpZwcEVEZpLezR5VKJbp164aMjAwYGxvj448/RlZWFrZs2SLFLFmyBOHh4YiPj4dCoUBgYCB27tyJ8+fPSzG9e/dGcnIy9uzZAwDw8PDAG2+8IRV7KpUKTk5OGDVqFIKCgpCSkgJ7e3v89NNPUtEYExMDd3d3REVFoXXr1ti9ezc6d+6MO3fuoGrVqgCAlStXIjAwEPfv34eJiUmh3iNnj5Ku2rdvH448M/Vz794pCAw0hJ8fpBmirq5ApUpcNJeIypeS+v7Wm562vJKSkrB+/Xp4eXnB2NgYAJCRkQEzMzNZnLm5OW7duoUbN24AAKKiouDj4yOL8fX1RdR/q3tmZmbi5MmTshgDAwP4+PhIMSdPnkRWVpYsxs3NDc7OzlJMVFQUGjduLBVsmtdJTU3FhQsXiuvXQFTqNMOheQu2unXrIiIiBEeOGEq9a0FB6iU9wsPVy3qwYCMien16VbQFBgbC0tISdnZ2iI+Px/bt26Vzvr6+2Lp1KyIjI6FSqXD58mXMnz8fAHD37l0AQEJCgqyQAoCqVasiNTUVT58+xYMHD5CTk1NgTEJCgnQNExMT2NravjCmoGtozj1PRkYGUlNTZQ8iXXH//v18w6H16n2Kvn37IigIcHNT73CgVKqLNBZrRETFS6tFW1BQEBQKxQsfMTExUvzEiRMRHR2NvXv3wtDQEP3794dmdHfIkCEYOXIkOnfuDBMTE7Ru3Rq9e/cGoO4t0wdz5syBjY2N9HByctJ2SkQAgF27dmH58uWythkzpmLpUmfp+NYtIDZWfi8bEREVH60u+TF+/Hj4+/u/MKZ27drSz5UrV0blypVRv359uLu7w8nJCUePHoWnpycUCgXmzp2L2bNnIyEhAfb29oiMjJRdw8HBId8sz3v37sHa2hrm5uYwNDSEoaFhgTEODg7SNTIzM5GcnCzrbXs25tkZp5pramIKEhwcjHHjxknHqampLNxIq4QQ+XrXLlxogHPnPoSHh3wrqrQ0wMqKi+YSEZUUrRZt9vb2sLe3f6XnqlQqAOohxbwMDQ1RvXp1AMCGDRvg6ekpvYanpyd27doli9+3bx88PT0BACYmJmjRogUiIyPRrVs36XUiIyMxcuRIAECLFi1gbGyMyMhI9OjRAwAQGxuL+Ph46Tqenp6YNWsWEhMTUaVKFel1rK2t0aBBg+e+J1NTU5iamr7S74OouCUkJOCbb76RtUVEDMbDh9UhhHxyQd5dDjgkSkRUMvRi9uixY8dw/PhxtGnTBhUrVsTVq1cxdepU3Lt3DxcuXICpqSkePHiAn3/+Ge+88w7S09OxZs0afPvttzh06BBatWoFQL3kR6NGjTBixAgMHDgQ+/fvx+jRo7Fz5074+voCUC/5MWDAAHzzzTdo1aoVFi1ahM2bNyMmJka6L23YsGHYtWsX1q5dC2tra4waNQoApJuzc3Jy0LRpU1SrVg3h4eFISEhAv379MHjwYMyePbvQ75uzR0lbtm/fjtOnT8vaIiKmIijIAGFh6pmhVlbA+vUs0oiInlVi399CD5w9e1Z4e3uLSpUqCVNTU1GrVi0xdOhQcevWLSnm/v37onXr1sLS0lJYWFiId999Vxw9ejTftQ4cOCCaNm0qTExMRO3atcWaNWvyxSxZskQ4OzsLExMT0apVq3zXefr0qRg+fLioWLGisLCwEB988IG4e/euLOb69euiY8eOwtzcXFSuXFmMHz9eZGVlFel9p6SkCAAiJSWlSM8jelU5OTli+vTpsse2bdtkMZMmCWFgIAQghKenlhIlItJhJfX9rRc9beUVe9qoNN2+fRurVq2StX3++ef4+28H2dCnZg029rQRERWspL6/WbTpMBZtVFq2bNmCixcvytqmTZsGhUIhFWlubkDFioC3N3DgAO9fIyJ6npL6/uaG8UTlmEqlwsyZM2VtLVu2RE5OJ7z5prpAS0pSF2xCqIs3QL0GGxERlS4WbUTlVHx8PNasWSNrGz58OOzt7aXetXPn1Et5eHrKZ4gSEVHpY9FGVA4tXPgTUlOvyNoiIqahWTMF/PzUhVlAgLpgq149dyiUw6FERNqjH1sFEFGx2LYtB6GhobKCzcvLCxERIYiKUiAwUD3RAFBv9H77tvpPFmtERNrHnjaiciIuLg5nznwva2vQYBTee68Snj5VD30mJamHRfv2BUaPVsdwOJSISDewaCMqB9asWYP4+HhZm2Z2KJA79KlUqgu2tDT1DFFOOCAi0h0cHiUqw7KzsxEaGior2N5++22EhIRAoVBAqVQPhyqV6nN+fuq11zQTD4iISHewaCMqo65cuYJZs2bJ2r744gukpr4jFWqaLanCwnJj/PzUPWy8j42ISLewaCMqg7755hv89NNPsraQkBDY2trKCrWgIMDVFXj4MLe3jYiIdBOLNqIyJDMzE6GhoUhISJDaqlXzQUREiFSUBQWpF8uNjwcCA9VtMTHy3jYiItI9LNqIyohLly5hzpw5srZx48ZhzZo3ZUOgfn7q7ahu31YXawoF72EjItIHnD1KVAYsWbIESUlJsraIiBA0aybfyUBzH5tmeyqFApg7l/evERHpAxZtRHosIyMDYc+Ma3bo0AFjx3pIvWt5JxVotqcC1L1sRESkPzg8SqSnzp07l69gmzBhAjw8PBAUpB7y9PaWL+mhaedQKBGR/lEIIYS2k6CCpaamwsbGBikpKbC2ttZ2OqRD5s2bh8ePH0vHKpUhsrOn4MCB3H1CgdyeNU9PLpRLRFRaSur7m8OjRHrk6dOnCA8Pl7WdP98FP//cHFZW6p0MwsJyi7a897MREZF+Y9FGpCeio6OhfGYxtf37A9Cmjbk0FKrpaQPkkw7yzhwlIiL9xKKNSA/MmjUL2dnZ0rG5uTnWrAlATAyQmAhcupT/OZpFdM+dy98DR0RE+odFG5EOe/z4MebNmydr++CDD/B///d/WL1afSxEbq+appdN08MG5O+BIyIi/cSijUhH/f3339i9e7esLTAwEGZmZgCA8PDcQu3ZPUQ1y3pw8gERUdnBoo1IB4WGhsqObW1t8cUXX8ja/Pzkw53P9rSxZ42IqGxh0UakQx49eoQFCxbI2j788EM0aNDghc/TFG+aYo09bEREZQ+LNiIdceTIEezbt0/WFhwcDBMTk0I9P+8QKSccEBGVPdwRgUgHhIaGygq2hISqiIgIkRVsSmXu7gaanydPzm3jbgdERGUbd0TQYdwRoexLSUnBokWLZG21a/fBrFn1823mnnd3A0D9s2ZBXe54QESkO7gjAlEZc+jQIRw8eFDWNmnSJBgbG2PFivxDnc/ubqBZ1oPLeRARlQ/sadNh7Gkrm4QQmDFjhqzNyckJAwcOlI7zrrvG+9OIiPQLe9qIyoC0tDTMnz9f1vbJJ5+gTp06srZnl/MgIiLiRASiUnL27Nl8BduUKVPyFWyAfNIBERERwKKNqMQJIfC///0Pv/76q9RmZ9ccEREh2LnTsMDnPLvDAREREYs2ohKUmpqKGTNm4M6dO1Kbu/twBAd3QVQU8MEH6mU7nsXlO4iI6FmciKDDOBFBv0VHR0OZZ3zT3NwcEyZMQJs2BtLeoIB62Y5Hj7SQIBERlQhORCDSE0IIrFixAvfv35fa3nvvPXh5eQHIXbqjenVgzx5g9GhtZUpERPqERRtRMSposdxRo0ahUqVK0jFnhhIR0atg0UZUTI4fP45du3ZJxzY2Nvjiiy+gUCi0mBUREZUVnIhA9JqEEPj6669lBVtkZEfcvz8Gb76p4LIdRERULNjTRvQakpKSsGTJElnbt99+gTt3bBEdrd4XNO9WVERERK+KPW1Er+jo0aOygi0trTKaNp2GFSts4empnmDwomU7uIAuEREVBXvaiIpIpVJhwYIFePz4sdR27FgX7N7dHIcP5xZpHh7ArFnPv07eBXTZE0dERC/DnjaiInjw4AFmzpwpK9gWLBiLuLjmUq9aYXcz4AK6RERUFCzaiArpr7/+wrJly6RjlcoBGzdOg6OjNebOBY4cUfeYeXurF8z19s59bkFDoX5+uc8hIiJ6GQ6PEr2AUgnMnatChw5zoVJlSu1bt3bDtWtNkJamLtDyOnBAPQHhwIHcNg6FEhHR62JPG9ELLF2aiPbtZ8oKtkaNxsPSsglGj1YXbJoZohoFDXtyKJSIiF4X9x7VYdx7tHQpleriKyhI3Rt28OBBHDp0SDrv7OwMf39/abFcpRIICAAUCmDuXPagERGRGvceJSphmiHMuXNzcPr0LOT9/5nTp3uiWbOGyLu5QVgYEBur7kFjwUZERCWNw6NE/wkKAtq3T0D79l/KCratWydg27aG+WaDaoY8vb253hoREZU8Fm1E/7Gw+B1eXt9Ixw8e1Mb06SHIzLQs8H40zezPAwcKt8QHERHR6+DwKJV727Zl48wZ+Sq4vXr1wuXLbjh5Mvcet+fRrM3GSQZERFSSOBFBh3EiQsm7ffs2Vq1aJWsLCAiAubm5ljIiIiJ9x4kIRMVs+fI9uH//mHRsY+OKMWN6azEjIiKi52PRRuVOVlYWZs+eLWv7+OOPUa9ePS1lRERE9HIs2qhciY+Px5o1a2Rt//d/gahXz0xLGRERERUOizYqN3777TecOnVKOm7UqBF69OihxYyIiIgKj0UblSnP7lIAAF99lQkfnzmyuH79+qF27dpayJCIiOjVsGijMkGzBdXDh+pdCgD1caVKcfDx+V4WGxQUBFNTUy1kSURE9OpYtJHeUyqBvn3VG7e7uqofCgXQu/evePjwrBTXtGlTdO3aVYuZEhERvToWbaT3wsLUBZuVFRAeDvj6ZiAsLAwPH+bG+Pv7o2bNmtpLkoiI6DVxGyvSaUpl/n09n23z9lYXbKNHAw0a/IOwZ/aTmjRpEgs2IiLSe9wRQYdxRwR1cRYVpd6Y/ciRgts0x0OHboaDwyXpuS1btkSnTp20lDkREZVXJfX9zZ420jl5e9KCgpBvs/Zn2yZMeIrp00NlBdugQYNYsBERUZnCe9pI54SFqXvOwsLUPWmazdonTwYWL1YPg2p63WJjY3Hu3EbZ8ydPngwjI/6nTUREZQt72kjnPNuTpul5W7BAPeFg8WJ1+08//YSNG3MLttatWyMkJIQFGxERlUm8p02H6do9bZq10IKCcnu/SoO7OxATA9jZARkZwOjRT2Bi8pUsZsiQIahWrVrpJUVERPQcvKeNtC7vsOXLFDTrU9Pu7g64ueU/9zya/62oXBk4duxivoJtypQpLNiIiKjMY9FGhVbQpIDneV6BFxam7jWLjc1/7nmFXni4+nWHDFmHLVu2SO1t27ZFSEgIDA0NX/EdERER6Q+9K9oyMjLQtGlTKBQKnD59Wnbu7NmzaNu2LczMzODk5ITw8PB8z9+yZQvc3NxgZmaGxo0bY9euXbLzQghMmzYNjo6OMDc3h4+PD65cuSKLSUpKQt++fWFtbQ1bW1sMGjQIaWlpRc5F3/j5yScGvMjzCrygIHUvm6tr/nPPK/TatUuDr28o0tKuS21Dhw5Fu3btXu2NEBER6SG9K9oCAgIKHApLTU1F+/btUbNmTZw8eRJfffUVpk+fjm+//VaKOXLkCPr06YNBgwYhOjoa3bp1Q7du3XD+/HkpJjw8HIsXL8bKlStx7NgxWFpawtfXF+np6VJM3759ceHCBezbtw87duzAH3/8gc8++6xIuZR1zyvw/PzUG7lXqpT/OQUVeufOncP8+fOlYyMjI0yZMgVVq1YtocyJiIh0lNAju3btEm5ubuLChQsCgIiOjpbOLV++XFSsWFFkZGRIbYGBgcLV1VU6/uijj0SnTp1k1/Tw8BCff/65EEIIlUolHBwcxFdffSWdT05OFqampmLDhg1CCCEuXrwoAIjjx49LMbt37xYKhULcvn270LkURkpKigAgUlJSivQ8XefpKQQghJWVENu3FxyjUqnE//73PzF9+nTpcfDgwdJNlIiI6BWU1Pe33vS03bt3D0OGDMEPP/wACwuLfOejoqLw1ltvwcTERGrz9fVFbGwsHv63CWVUVBR8fHxkz/P19UVUVBQAIC4uDgkJCbIYGxsbeHh4SDFRUVGwtbVFy5YtpRgfHx8YGBjg2LFjhc6lrHrefWl5BQWpt51KSyt4UsOjR48wY8YM3L59W2obPnw43n777RLImIiISD/oRdEmhIC/vz+GDh0qK5bySkhIyDdkpjlOSEh4YUze83mf97yYKlWqyM4bGRmhUqVKL32dvK9RkIyMDKSmpsoe+qYwM0z9/ID16wu+5y06OhoLFiyQjs3NzTF16lTY29uXUMZERET6QatFW1BQEBQKxQsfMTExWLJkCR49eoTg4GBtplvi5syZAxsbG+nh5OSk7ZSKrLAzTJ+9500IgRUrVkCZp4vOx8cHAQEBMDDQi/+3ICIiKlFaXTp+/Pjx8Pf3f2FM7dq1sX//fkRFRcHU1FR2rmXLlujbty/WrVsHBwcH3Lt3T3Zec+zg4CD9WVBM3vOaNkdHR1lM06ZNpZjExETZNbKzs5GUlPTS18n7GgUJDg7GuHHjpOPU1FS9K9z8/Iq+8G5KSgoWLVokaxs5ciTs7OyKLzEiIiI9p9UuDHt7e7i5ub3wYWJigsWLF+PMmTM4ffo0Tp8+LS3TsWnTJsyaNQsA4OnpiT/++ANZWVnS9fft2wdXV1dUrFhRiomMjJTlsG/fPnh6egIAXFxc4ODgIItJTU3FsWPHpBhPT08kJyfj5MmTUsz+/fuhUqng4eFR6FwKYmpqCmtra9mjNBXmfrTiduLECVnBZm1tjWnTprFgIyIielaxTmsoJXFxcflmjyYnJ4uqVauKfv36ifPnz4uNGzcKCwsL8c0330gxhw8fFkZGRmLevHni0qVLIiQkRBgbG4tz585JMWFhYcLW1lZs375dnD17VnTt2lW4uLiIp0+fSjEdOnQQzZo1E8eOHRN//fWXqFevnujTp0+RcimM0p49qpnV6elZuPjt29Wxz5sB+iIqlUp8/fXXstmhR48eLfqFiIiIdExJfX+XmaJNCCHOnDkj2rRpI0xNTUX16tVFWFhYvudu3rxZ1K9fX5iYmIiGDRuKnTt3ys6rVCoxdepUUbVqVWFqaireffddERsbK4v5999/RZ8+fYSVlZWwtrYWn376qXj06FGRc3mZ0i7ailqEFVTkFeYaSUlJsmJt+vTpIikp6fWSJyIi0hEl9f3NDeN1WGluGP8qm8E/+xylEujbV72Uh6eneqLBs44ePYqIiAjp2M7ODiNGjIBCoSimd0JERKRdJfX9zaJNh5Vm0eblpV6q43nFVlGuYWWlXtIjb/GnUqmwcOFC2XZfnTt3RosWLV4zcyIiIt1SUt/fXEuBABRtM/iXXePZgu3ff//FzJkzZQXbmDFjWLAREREVAXvadFhp9rSVlL/++ks2G9fBwQGfffYZh0OJiKjMKqnvb62u00a6SakEAgIAhUK9uXtR110D1MOh4eHhyMjIkNq6deuGJk2aFGOmRERE5QeLNsonLAyIjc39uahFW2JiIlasWCFrGzduHCpUqFBMGRIREZU/vKetHHrZIrpBQYCrK1C9OpCUVLTFdg8dOiQr2JycnDBt2jQWbERERK+J97TpsJIaEy/sTNGizCjNycnB7NmzoVKppLYePXqgUaNGxZQ1ERGRfuDsUSo2hZ0pWti4hIQEfPnll7KCbcKECSzYiIiIihF72nSYPswe/f3333H48GHp2MXFBf3799diRkRERNrFnjYqMa+yUXx2djZCQ0NlBdtHH33Ego2IiKiEcPYoISxMfe9aYWeK3r59G6tWrZK1BQQEwNzcvIQyJCIiIhZthKCg3D1EX2bPnj04duyYdFy/fn306dOnBLMjIiIigEVbuZZ3w/eXzQ7NysrC7NmzZW19+vRB/fr1SzBDIiIi0mDRVo4Vdlj05s2bWL16tawtMDAQZmZmJZwhERERabBoK8cKMyy6Y8cOnDx5Ujpu2LAhevbsWQrZERERUV4s2soxP7/n97BlZmZizpw5srZPPvkEderUKYXMiIiI6Fks2iif69evY926dbK2oKAgmJqaaikjIiIiYtFGMtu2bcOZM2ek4yZNmqBbt27aS4iIiIgAsGij/2RkZCAsLEzWNmDAANSqVUs7CREREZEMizbC1atX8eOPP8ragoODYWJioqWMiIiI6Fks2sq5LVu24OLFi9JxixYt0LlzZy1mRERERAVh0VZOpaenY+7cubK2gQMHwsnJSUsZERER0YuwaCuHLl++jA0bNsjaJk2aBGNjYy1lRERERC/Doq0cyluwtW7dGr6+vlrMhoiIiAqDRVs5NmTIEFSrVk3baRAREVEhKIQQQttJUMFSU1NhY2ODlJQUWFtbazsdIiIiKoSS+v42KLYrEREREVGJYdFGREREpAdYtBERERHpARZtRERERHqARRsRERGRHmDRRkRERKQHWLQRERER6QEWbURERER6gEUbERERkR5g0UZERESkB1i0EREREekBFm1EREREeoBFGxEREZEeYNFGREREpAeMtJ0APZ8QAgCQmpqq5UyIiIiosDTf25rv8eLCok2HPXr0CADg5OSk5UyIiIioqB49egQbG5tiu55CFHcZSMVGpVLhzp07qFChAhQKhbbTKVWpqalwcnLCzZs3YW1tre10KA9+NrqLn43u4mej24r78xFC4NGjR6hWrRoMDIrvTjT2tOkwAwMD1KhRQ9tpaJW1tTX/gdNR/Gx0Fz8b3cXPRrcV5+dTnD1sGpyIQERERKQHWLQRERER6QEWbaSTTE1NERISAlNTU22nQs/gZ6O7+NnoLn42uk1fPh9ORCAiIiLSA+xpIyIiItIDLNqIiIiI9ACLNiIiIiI9wKKNiIiISA+waKNil5GRgaZNm0KhUOD06dOyc2fPnkXbtm1hZmYGJycnhIeH53v+li1b4ObmBjMzMzRu3Bi7du2SnRdCYNq0aXB0dIS5uTl8fHxw5coVWUxSUhL69u0La2tr2NraYtCgQUhLSytyLmWFn58fnJ2dYWZmBkdHR/Tr1w937tyRxWzevBlNmzaFhYUFatasia+++irfdQ4ePIjmzZvD1NQUdevWxdq1a/PFLFu2DLVq1YKZmRk8PDzw999/y86np6djxIgRsLOzg5WVFXr06IF79+7JYuLj49GpUydYWFigSpUqmDhxIrKzs1//F6GDCvPZREREoHXr1qhQoQLs7e3Ro0cPXL9+XRbDz6ZkvOzzmT59OhQKRb6HpaWl7Dr8d634FebvjhAC8+bNQ/369WFqaorq1atj1qxZshi9+rsjiIrZ6NGjRceOHQUAER0dLbWnpKSIqlWrir59+4rz58+LDRs2CHNzc/HNN99IMYcPHxaGhoYiPDxcXLx4UUyZMkUYGxuLc+fOSTFhYWHCxsZGbNu2TZw5c0b4+fkJFxcX8fTpUymmQ4cOokmTJuLo0aPizz//FHXr1hV9+vQpUi5lyYIFC0RUVJS4fv26OHz4sPD09BSenp7S+V27dgkjIyOxYsUKcfXqVbFjxw7h6OgolixZIsVcu3ZNWFhYiHHjxomLFy+KJUuWCENDQ7Fnzx4pZuPGjcLExESsXr1aXLhwQQwZMkTY2tqKe/fuSTFDhw4VTk5OIjIyUpw4cUK0bt1aeHl5Seezs7NFo0aNhI+Pj4iOjha7du0SlStXFsHBwSX8W9KOl302165dE6ampiI4OFj8888/4uTJk+Ktt94SzZo1k8XwsykZL/t8Hj16JO7evSt7NGjQQAwYMECK4b9rJeNln40QQowaNUq4urqK7du3i2vXrokTJ06IvXv3Suf17e8OizYqVrt27RJubm7iwoUL+Yq25cuXi4oVK4qMjAypLTAwULi6ukrHH330kejUqZPsmh4eHuLzzz8XQgihUqmEg4OD+Oqrr6TzycnJwtTUVGzYsEEIIcTFixcFAHH8+HEpZvfu3UKhUIjbt28XOpeybPv27UKhUIjMzEwhhBB9+vQRPXv2lMUsXrxY1KhRQ6hUKiGEEAEBAaJhw4aymF69eglfX1/puFWrVmLEiBHScU5OjqhWrZqYM2eOEEL9WRkbG4stW7ZIMZcuXRIARFRUlBBC/d+QgYGBSEhIkGJWrFghrK2tZZ9XWfXsZ7NlyxZhZGQkcnJypBilUimL4WdTep79fJ51+vRpAUD88ccfUhv/XSsdz342Fy9eFEZGRiImJua5z9G3vzscHqVic+/ePQwZMgQ//PADLCws8p2PiorCW2+9BRMTE6nN19cXsbGxePjwoRTj4+Mje56vry+ioqIAAHFxcUhISJDF2NjYwMPDQ4qJioqCra0tWrZsKcX4+PjAwMAAx44dK3QuZVVSUhLWr18PLy8vGBsbA1APaZuZmcnizM3NcevWLdy4cQPAyz+bzMxMnDx5UhZjYGAAHx8fKebkyZPIysqSxbi5ucHZ2Vn2+TVu3BhVq1aVvU5qaiouXLhQXL8GnVTQZ9OiRQsYGBhgzZo1yMnJQUpKCn744Qf4+PhIMfxsSkdBn8+zVq1ahfr166Nt27ZSG/9dK3kFfTa//fYbateujR07dsDFxQW1atXC4MGDkZSUJD1P3/7usGijYiGEgL+/P4YOHSr7RyWvhIQE2X+wAKTjhISEF8bkPZ/3ec+LqVKliuy8kZERKlWq9NLXyfsaZU1gYCAsLS1hZ2eH+Ph4bN++XTrn6+uLrVu3IjIyEiqVCpcvX8b8+fMBAHfv3gXw/N9Zamoqnj59igcPHiAnJ+eln42JiQlsbW1fGMPPJvezcXFxwd69ezFp0iSYmprC1tYWt27dwubNm6UYfjYl60WfT17p6elYv349Bg0aJGvnv2sl50WfzbVr13Djxg1s2bIF33//PdauXYuTJ0+iZ8+eUoy+/d1h0UYvFBQUVOBNtnkfMTExWLJkCR49eoTg4GBtp1xuFPaz0Zg4cSKio6Oxd+9eGBoaon///hD/bYgyZMgQjBw5Ep07d4aJiQlat26N3r17A1D/XyUVTXF+NgkJCRgyZAgGDBiA48eP49ChQzAxMUHPnj2lGCqa4vx88vr111/x6NEjDBgwoDTfTplSnJ+NSqVCRkYGvv/+e7Rt2xbvvPMOvvvuOxw4cACxsbHaeouvxUjbCZBuGz9+PPz9/V8YU7t2bezfvx9RUVH59m1r2bIl+vbti3Xr1sHBwSHfbBrNsYODg/RnQTF5z2vaHB0dZTFNmzaVYhITE2XXyM7ORlJS0ktfJ+9r6LrCfjYalStXRuXKlVG/fn24u7vDyckJR48ehaenJxQKBebOnYvZs2cjISEB9vb2iIyMlF3jeb8za2trmJubw9DQEIaGhi/9/DIzM5GcnCz7v9JnY56dmVWeP5tly5bBxsZGNgvwxx9/hJOTE44dO4bWrVvzsymi4vx88lq1ahU6d+6cr0eF/64VXnF+No6OjjAyMkL9+vWleHd3dwDqmZyurq7693en0He/Eb3AjRs3xLlz56RHRESEACB+/vlncfPmTSFE7k2yeW/gDQ4OzjcRoXPnzrJre3p65rthd968edL5lJSUAm/YPXHihBQTERFR4A27L8qlLLtx44YAIA4cOPDcmH79+slmYgUEBIhGjRrJYvr06ZPvht2RI0dKxzk5OaJ69er5btj9+eefpZiYmJgCb9jNOzPrm2++EdbW1iI9Pf3V3rAeefazGTdunGjVqpUs5s6dOwKAOHz4sBCCn01pet7fnWvXrgmFQiF+++23fM/hv2ul49nPRvM99M8//0gxmokisbGxQgj9+7vDoo1KRFxcXL7Zo8nJyaJq1aqiX79+4vz582Ljxo3CwsIi35IfRkZGYt68eeLSpUsiJCSkwKnxtra2Yvv27eLs2bOia9euBU6Nb9asmTh27Jj466+/RL169WRT4wuTS1lx9OhRsWTJEhEdHS2uX78uIiMjhZeXl6hTp470j8X9+/fFihUrxKVLl0R0dLQYPXq0MDMzE8eOHZOuo5kaP3HiRHHp0iWxbNmyAqfGm5qairVr14qLFy+Kzz77TNja2spmTA0dOlQ4OzuL/fv3ixMnTuSbpq+ZGt++fXtx+vRpsWfPHmFvb18ml5UozGcTGRkpFAqFCA0NFZcvXxYnT54Uvr6+ombNmuLJkydCCH42JaUwn4/GlClTRLVq1UR2dna+6/DfteJXmM8mJydHNG/eXLz11lvi1KlT4sSJE8LDw0O899570nX07e8OizYqEQUVbUIIcebMGdGmTRthamoqqlevLsLCwvI9d/PmzaJ+/frCxMRENGzYUOzcuVN2XqVSialTp4qqVasKU1NT8e6770r/16Tx77//ij59+ggrKythbW0tPv30U/Ho0aMi51IWnD17Vnh7e4tKlSoJU1NTUatWLTF06FBx69YtKeb+/fuidevWwtLSUlhYWIh3331XHD16NN+1Dhw4IJo2bSpMTExE7dq1xZo1a/LFLFmyRDg7OwsTExPRqlWrfNd5+vSpGD58uKhYsaKwsLAQH3zwgbh7964s5vr166Jjx47C3NxcVK5cWYwfP15kZWUVzy9EhxTmsxFCiA0bNohmzZoJS0tLYW9vL/z8/MSlS5dkMfxsil9hP5+cnBxRo0YNMWnSpOdei/+uFa/Cfja3b98W3bt3F1ZWVqJq1arC399f/Pvvv7IYffq7oxCCd7ISERER6TpOCyMiIiLSAyzaiIiIiPQAizYiIiIiPcCijYiIiEgPsGgjIiIi0gMs2oiIiIj0AIs2IiIiIj3Aoo2IqAQoFAps27ZN22nIHDx4EAqFAsnJydpOhYheAYs2IqLXMH36dGlTbyKiksSijYiIiEgPsGgjonJNpVJhzpw5cHFxgbm5OZo0aYKff/4ZQO5wYmRkJFq2bAkLCwt4eXkhNjYWALB27VqEhobizJkzUCgUUCgUWLt2rXTtBw8e4IMPPoCFhQXq1asHpVJZqJw0rxsREYFmzZrB3Nwc7dq1Q2JiInbv3g13d3dYW1vj448/xpMnT6TnZWRkYPTo0ahSpQrMzMzQpk0bHD9+vPh+WUSkVSzaiKhcmzNnDr7//nusXLkSFy5cwNixY/HJJ5/g0KFDUszkyZMxf/58nDhxAkZGRhg4cCAAoFevXhg/fjwaNmyIu3fv4u7du+jVq5f0vNDQUHz00Uc4e/Ys3n//ffTt2xdJSUmFzm369OlYunQpjhw5gps3b+Kjjz7CokWL8NNPP2Hnzp3Yu3cvlixZIsUHBATgl19+wbp163Dq1CnUrVsXvr6+RXpNItJhRdpenoioDElPTxcWFhbiyJEjsvZBgwaJPn36iAMHDggA4vfff5fO7dy5UwAQT58+FUIIERISIpo0aZLv2gDElClTpOO0tDQBQOzevfuleRX0unPmzBEAxNWrV6W2zz//XPj6+krXNzY2FuvXr5fOZ2ZmimrVqonw8HDZdR8+fPjSHIhI9xhpsV4kItKqf/75B0+ePMF7770na8/MzESzZs2k4//7v/+TfnZ0dAQAJCYmwtnZ+YXXz/s8S0tLWFtbIzExsdD55X1+1apVYWFhgdq1a8va/v77bwDA1atXkZWVhTfffFM6b2xsjFatWuHSpUuFfk0i0l0s2oio3EpLSwMA7Ny5E9WrV5edMzU1xdWrVwGoix8NhUIBQH0v3MvkfZ7muYV5XkHPVygUr309ItJvvKeNiMqtBg0awNTUFPHx8ahbt67s4eTkVKhrmJiYICcnp4Qzfbk6derAxMQEhw8fltqysrJw/PhxNGjQQIuZEVFxYU8bEZVbFSpUwIQJEzB27FioVCq0adMGKSkpOHz4MKytrVGzZs2XXqNWrVqIi4vD6dOnUaNGDVSoUAGmpqalkL2cpaUlhg0bhokTJ6JSpUpwdnZGeHg4njx5gkGDBpV6PkRU/Fi0EVG5NnPmTNjb22POnDm4du0abG1t0bx5c0yaNKlQQ489evTA1q1b4e3tjeTkZKxZswb+/v4ln3gBwsLCoFKp0K9fPzx69AgtW7ZEREQEKlasqJV8iKh4KYQQQttJEBEREdGL8Z42IiIiIj3Aoo2IqJQNHToUVlZWBT6GDh2q7fSISEdxeJSIqJQlJiYiNTW1wHPW1taoUqVKKWdERPqARRsRERGRHuDwKBEREZEeYNFGREREpAdYtBERERHpARZtRERERHqARRsRERGRHmDRRkRERKQHWLQRERER6QEWbURERER64P8BmFTol2Xcs30AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkcklEQVR4nO3deVxU1fsH8M+wDfsqiyCIS4Jb7gtqKqbiiguYpamomaZmbilmv9wyyUrLNi0V/fa1NBGV3MgFdyz33MAlEEUWUxbZYeb+/pjvjAxbIAOXmfm8X695wT33zp1nnGwez3nOORJBEAQQERER6QEDsQMgIiIiqi1MfIiIiEhvMPEhIiIivcHEh4iIiPQGEx8iIiLSG0x8iIiISG8w8SEiIiK9wcSHiIiI9AYTHyIiItIbTHyISCtJJBIsXbpU7DBUgoKC4OnpKXYYRPQvmPgQkcZs2bIFEolE9TA1NUWzZs0wc+ZMpKSk1Ohrnz17FkuXLkV6erpG79u7d2+192Rvb49OnTph8+bNkMvlGnmNTz75BHv27NHIvYioYkZiB0BEumf58uVo1KgR8vLycPr0aXz//fc4cOAArl+/DnNzc428Rm5uLoyMnv8v7OzZs1i2bBmCgoJga2urkddQatCgAVatWgUAePz4Mf7zn/9g8uTJuH37NkJCQqp9/08++QSBgYEYPnx4te9FRBVj4kNEGjdw4EB07NgRAPDWW2/BwcEBa9aswd69e/HGG2+88H3lcjkKCgpgamoKU1NTTYX7r2xsbPDmm2+qjqdOnQovLy988803WLFiBYyNjWstFiKqHg51EVGN69OnDwAgLi4OAPD555+jW7ducHBwgJmZGTp06ICwsLBSz5NIJJg5cya2bduGli1bQiqV4tChQ6pzyhqfpUuX4v333wcANGrUSDUsFR8fj169eqFNmzZlxuXl5QU/P78qvx9zc3N07doV2dnZePz4cbnXZWdnY968eXB3d4dUKoWXlxc+//xzCIKg9h6zs7OxdetWVdxBQUFVjomIKoc9PkRU4+7duwcAcHBwAAB89dVX8Pf3x9ixY1FQUIDt27dj1KhR2LdvHwYPHqz23GPHjuHXX3/FzJkzUa9evTILiEeOHInbt2/jl19+wdq1a1GvXj0AgKOjI8aNG4cpU6bg+vXraNWqleo558+fx+3bt/Hhhx++0Hv6+++/YWhoWO6wmiAI8Pf3R1RUFCZPnoy2bdsiMjIS77//PhITE7F27VoAwE8//YS33noLnTt3xttvvw0AaNKkyQvFRESVIBARaUhoaKgAQDhy5Ijw+PFj4cGDB8L27dsFBwcHwczMTHj48KEgCIKQk5Oj9ryCggKhVatWQp8+fdTaAQgGBgbCjRs3Sr0WAGHJkiWq488++0wAIMTFxaldl56eLpiamgoLFy5Ua581a5ZgYWEhZGVlVfieevXqJXh7ewuPHz8WHj9+LNy6dUuYNWuWAEAYOnSo6roJEyYIDRs2VB3v2bNHACB8/PHHavcLDAwUJBKJcPfuXVWbhYWFMGHChArjICLN4FAXEWlc37594ejoCHd3d7z++uuwtLTE7t274ebmBgAwMzNTXZuWloaMjAy88soruHTpUql79erVCy1atHjhWGxsbDBs2DD88ssvqiEmmUyGHTt2YPjw4bCwsPjXe8TExMDR0RGOjo5o3rw5vv76awwePBibN28u9zkHDhyAoaEhZs2apdY+b948CIKAgwcPvvB7IqIXx6EuItK4b7/9Fs2aNYORkRGcnZ3h5eUFA4Pn/87at28fPv74Y1y5cgX5+fmqdolEUupejRo1qnY848ePx44dO3Dq1Cn07NkTR44cQUpKCsaNG1ep53t6euLHH39UTdF/6aWX4OTkVOFz7t+/D1dXV1hZWam1N2/eXHWeiGofEx8i0rjOnTurZnWVdOrUKfj7+6Nnz5747rvvUL9+fRgbGyM0NBQ///xzqeuL9w69KD8/Pzg7O+O///0vevbsif/+979wcXFB3759K/V8CwuLSl9LRHUbh7qIqFbt2rULpqamiIyMxKRJkzBw4ECNJBVl9RYpGRoaYsyYMQgLC0NaWhr27NmDN954A4aGhtV+3fI0bNgQjx49wrNnz9TaY2JiVOeVKoqdiDSLiQ8R1SpDQ0NIJBLIZDJVW3x8fLVXLlbW6pS3cvO4ceOQlpaGqVOnIisrS21dnpowaNAgyGQyfPPNN2rta9euhUQiwcCBA1VtFhYWGl9xmojKxqEuIqpVgwcPxpo1azBgwACMGTMGqamp+Pbbb9G0aVP89ddfL3zfDh06AAAWL16M119/HcbGxhg6dKgqIWrXrh1atWqFnTt3onnz5mjfvr1G3k95hg4dCl9fXyxevBjx8fFo06YNfv/9d+zduxezZ89Wm7LeoUMHHDlyBGvWrIGrqysaNWqELl261Gh8RPqKPT5EVKv69OmDTZs2ITk5GbNnz8Yvv/yCTz/9FCNGjKjWfTt16oQVK1bg6tWrCAoKwhtvvFFqccHx48cDQKWLmqvDwMAAERERmD17Nvbt24fZs2fj5s2b+Oyzz7BmzRq1a9esWYMOHTrgww8/xBtvvIHvv/++xuMj0lcSQSi2hCgRkQ776quvMGfOHMTHx8PDw0PscIhIBEx8iEgvCIKANm3awMHBAVFRUWKHQ0QiYY0PEem07OxsREREICoqCteuXcPevXvFDomIRMQeHyLSafHx8WjUqBFsbW0xffp0rFy5UuyQiEhETHyIiIhIb3BWFxEREekNJj5ERESkN1jcXIJcLsejR49gZWXFZeSJiIi0hCAIePbsGVxdXdU2RS6JiU8Jjx49gru7u9hhEBER0Qt48OABGjRoUO55Jj4lWFlZAVD8wVlbW4scDREREVVGZmYm3N3dVd/j5WHiU4JyeMva2pqJDxERkZb5tzIVFjcTERGR3mDiQ0RERHqDiQ8RERHpDdb4vACZTIbCwkKxw6BaYGxsDENDQ7HDICIiDWHiUwWCICA5ORnp6elih0K1yNbWFi4uLlzXiYhIBzDxqQJl0uPk5ARzc3N+Eeo4QRCQk5OD1NRUAED9+vVFjoiIiKqLiU8lyWQyVdLj4OAgdjhUS8zMzAAAqampcHJy4rAXEZGWY3FzJSlreszNzUWOhGqb8jNnXRcRkfZj4lNFHN7SP/zMiYh0BxMfIiIi0htMfIiIiEhvMPHRA0FBQZBIJJBIJDA2NoazszP69euHzZs3Qy6XV/o+W7Zsga2tbc0FSkREVMOY+OiJAQMGICkpCfHx8Th48CB8fX3x3nvvYciQISgqKhI7PCIi0gNZWVnIzs4WNQatSXxWrVqFTp06wcrKCk5OThg+fDhiY2PVrsnLy8OMGTPg4OAAS0tLBAQEICUlRaSI6xapVAoXFxe4ubmhffv2+OCDD7B3714cPHgQW7ZsAQCsWbMGrVu3hoWFBdzd3TF9+nRkZWUBAI4fP46JEyciIyND1Xu0dOlSAMBPP/2Ejh07wsrKCi4uLhgzZoxq7RsiIiJBEPDtt9/iiy++wPr16yEIgmixaE3ic+LECcyYMQPnzp3D4cOHUVhYiP79+6tljnPmzMFvv/2GnTt34sSJE3j06BFGjhxZYzEJgoCCggJRHpr4j6ZPnz5o06YNwsPDAQAGBgZYt24dbty4ga1bt+LYsWNYsGABAKBbt2748ssvYW1tjaSkJCQlJWH+/PkAFNO8V6xYgatXr2LPnj2Ij49HUFBQteMjIiLtl56ejuXLl+Off/4BAGRnZ4s6W1ZrFjA8dOiQ2vGWLVvg5OSEixcvomfPnsjIyMCmTZvw888/o0+fPgCA0NBQNG/eHOfOnUPXrl01HlNhYSFWrVql8ftWxqJFi2BiYlLt+3h7e+Ovv/4CAMyePVvV7unpiY8//hjTpk3Dd999BxMTE9jY2EAikcDFxUXtHpMmTVL93rhxY6xbtw6dOnVCVlYWLC0tqx0jERFpp/Pnz+PAgQOqYxsbG7z33nsiRqRFiU9JGRkZAAB7e3sAwMWLF1FYWIi+ffuqrvH29oaHhweio6PLTXzy8/ORn5+vOs7MzKzBqOseQRBUmfeRI0ewatUqxMTEIDMzE0VFRcjLy0NOTk6FCzdevHgRS5cuxdWrV5GWlqYqmE5ISECLFi1q5X0QEVHdIQgC1q1bp7a35aBBg9CpUyfxgvofrUx85HI5Zs+eje7du6NVq1YAFPtomZiYlJp15OzsjOTk5HLvtWrVKixbtuyF4jA2NsaiRYte6LnVZWxsrJH73Lp1C40aNUJ8fDyGDBmCd955BytXroS9vT1Onz6NyZMno6CgoNzEJzs7G35+fvDz88O2bdvg6OiIhIQE+Pn5oaCgQCMxEhGR9nj69Cm+/vprtbb33nuvzswK1srEZ8aMGbh+/TpOnz5d7XstWrQIc+fOVR1nZmbC3d29Us+VSCQaGW4Sy7Fjx3Dt2jXMmTMHFy9ehFwuxxdffAEDA0Xp16+//qp2vYmJCWQymVpbTEwMnjx5gpCQENWf24ULF2rnDRARUZ0SHR2N33//XXVcr149TJ8+vU6tgK91ic/MmTOxb98+nDx5Eg0aNFC1u7i4oKCgAOnp6WpZZUpKSqmalOKkUimkUmlNhlwn5OfnIzk5GTKZDCkpKTh06BBWrVqFIUOGYPz48bh+/ToKCwvx9ddfY+jQoThz5gzWr1+vdg9PT09kZWXh6NGjaNOmDczNzeHh4QETExN8/fXXmDZtGq5fv44VK1aI9C6JiEgMcrkca9asUZtwNHToULRv317EqMqmNbO6BEHAzJkzsXv3bhw7dgyNGjVSO9+hQwcYGxvj6NGjqrbY2FgkJCTAx8entsOtcw4dOoT69evD09MTAwYMQFRUFNatW4e9e/fC0NAQbdq0wZo1a/Dpp5+iVatW2LZtW6nC7W7dumHatGkYPXo0HB0dsXr1ajg6OmLLli3YuXMnWrRogZCQEHz++ecivUsiIqpt//zzD1asWFFqlnVZSU9EBNCtm+KnWCSCmJPpq2D69On4+eefsXfvXnh5eanabWxsYGZmBgB45513cODAAWzZsgXW1tZ49913AQBnz56t9OtkZmbCxsYGGRkZsLa2VrXn5eUhLi4OjRo1gqmpqYbeFWkDfvZERGU7deoUjh07pjquX78+pkyZUu7QVrduQHQ04OMDVOGruVLK+/4uSWuGur7//nsAQO/evdXaQ0NDVWvGrF27FgYGBggICEB+fj78/Pzw3Xff1XKkREREuk0ulyMkJASFhYWqthEjRuDll1+u8HnBwUBIiOKnWLSmx6e2sMeHSuJnT0T0XGpqqqozQmnevHmir9umcz0+REREJK6oqCicPHlSdezh4aHaCFtbMPEhIiKiCslkMqxcuVJtu6TAwEC0bNlSxKheDBMfIiIiKldSUhJ++OEHtbb58+fDwsJCpIiqR2umsxMREVHtOnz4sFrS07hxYyxZskSV9NSF6elVxR4fIiIiUlNUVISVK1eqtY0ePRre3t6IiFDMzPL1BdatA7KyFMf+/iIFW0VMfIiIiEjl4cOH2LRpk1rbggULVGvmhYQo1uK5dk2R9Fhaijs9vao41EVEREQAgIMHD6olPV5eXmjXbglefdVMNZwVHKxYgHDWLMXPbdu0p7cHYI8PaVBQUBDS09OxZ88eAIrFJtu2bYsvv/zyhe+piXsQEVHFCgsL8cknn6i1jRkzBi+99JJqtWXlcJbyoa3Y46MHlGssKHeTb9q0KZYvX46ioqIafd3w8PBKb1h6/PhxSCQSpKenv/A9iIio6hISEkolPQsXLsRLL70E4HkPjzYNZ1WEPT56YsCAAQgNDUV+fj4OHDiAGTNmwNjYGIsWLVK7rqCgACYmJhp5TXt7+zpxDyIiKltERAQuX76sOm7VqhUCAgLUrtH2Hp6S2OOjJ6RSKVxcXNCwYUO888476Nu3LyIiIhAUFIThw4dj5cqVcHV1VW0A++DBA7z22muwtbWFvb09hg0bhvj4eNX9ZDIZ5s6dC1tbWzg4OGDBggUouftJ7969MXv2bNVxfn4+Fi5cCHd3d0ilUjRt2hSbNm1CfHw8fH19AQB2dnaQSCSq/ddK3iMtLQ3jx4+HnZ0dzM3NMXDgQNy5c0d1fsuWLbC1tUVkZCSaN28OS0tLDBgwAElJSaprjh8/js6dO8PCwgK2trbo3r077t+/r6E/aSKiuq+goADLli1TS3qaNBlXKunRRUx89JSZmRkKCgoAAEePHkVsbCwOHz6Mffv2obCwEH5+frCyssKpU6dw5swZVQKhfM4XX3yBLVu2YPPmzTh9+jSePn2K3bt3V/ia48ePxy+//IJ169bh1q1b2LBhAywtLeHu7o5du3YBAGJjY5GUlISvvvqqzHsEBQXhwoULiIiIQHR0NARBwKBBg9Q2ysvJycHnn3+On376CSdPnkRCQgLmz58PQDFFc/jw4ejVqxf++usvREdH4+2339aq5daJiKojLi4Oq1atUmv75JNFWLmyMZo3B7y9tWtdnqriUJeeEQQBR48eRWRkJN599108fvwYFhYW2Lhxo2qI67///S/kcjk2btyoSghCQ0Nha2uL48ePo3///vjyyy+xaNEijBw5EgCwfv16REZGlvu6t2/fxq+//orDhw+jb9++ABQLYSkph7ScnJxga2tb5j3u3LmDiIgInDlzBt26dQMAbNu2De7u7tizZw9GjRoFQFGkt379ejRp0gQAMHPmTCxfvhyAYhO7jIwMDBkyRHW+efPmVf+DJCLSQuHh4bh27Zrq+PLltoiJGYYOHYCEBCAxUdGuTevyVBV7fERS26td7tu3D5aWljA1NcXAgQMxevRoLF26FADQunVrtbqeq1ev4u7du7CysoKlpSUsLS1hb2+PvLw83Lt3DxkZGUhKSkKXLl1UzzEyMkLHjh3Lff0rV67A0NAQvXr1euH3cOvWLRgZGam9roODA7y8vHDr1i1Vm7m5uSqpAYD69esjNTUVgCLBCgoKgp+fH4YOHYqvvvpKbRiMiEgX5efnY9myZWpJz5EjQUhNHYbVqxWFy0+eKNpNTXWnkLksTHxEolwAKiSkdl7P19cXV65cwZ07d5Cbm4utW7eqlhwvud9KVlYWOnTogCtXrqg9bt++jTFjxrzQ6ysXvqoNxsbGascSiUSt/ig0NBTR0dHo1q0bduzYgWbNmuHcuXO1Fh8RUW26e/cuQkp82Xz55Qfo2bOh6jgkBMjLUyxGuGOH7vb2AEx8RFPb0wMtLCzQtGlTeHh4wMio4hHO9u3b486dO3ByckLTpk3VHjY2NrCxsUH9+vXxxx9/qJ5TVFSEixcvlnvP1q1bQy6X48SJE2WeV/Y4yWSycu/RvHlzFBUVqb3ukydPEBsbixYtWlT4nkpq164dFi1ahLNnz6JVq1b4+eefq/R8IiJt8Ouvv2Lbtm2q43r1OiIycgmmTzfGunXP/wGu/E7StsUIXwQTH5H4+wNnz9bN/8DGjh2LevXqYdiwYTh16hTi4uJw/PhxzJo1Cw8fPgQAvPfeewgJCcGePXsQExOD6dOnl1qDpzhPT09MmDABkyZNwp49e1T3/PXXXwEADRs2hEQiwb59+/D48WNkZWWVusdLL72EYcOGYcqUKTh9+jSuXr2KN998E25ubhg2bFil3ltcXBwWLVqE6Oho3L9/H7///jvu3LnDOh8i0inh4blYtmyZWhnA5MmTMWPGYJw9C0RFqW83UZe/kzSNiQ+VYm5ujpMnT8LDwwMjR45E8+bNMXnyZOTl5cHa2hoAMG/ePIwbNw4TJkyAj48PrKysMGLEiArv+/333yMwMBDTp0+Ht7c3pkyZguzsbACAm5sbli1bhuDgYDg7O2PmzJll3iM0NBQdOnTAkCFD4OPjA0EQcODAgVLDWxW9t5iYGAQEBKBZs2Z4++23MWPGDEydOrUKf0JERHVXbGwsrl1brda2ePFiNGjQQHWsTz08JUmEkouv6LnMzEzY2NggIyND9SUPAHl5eYiLi0OjRo1gamoqYoRU2/jZE5G22LZtG+7evas6dnLygZtbf9Vwli4nOeV9f5fE6exERERaLjw8B9eufabW5uU1Ba+/7lpqry19x6EuIiIiLXbz5s1SSc+KFR9i3TpXALq311Z1sceHiIhIS23ZskVtyx1n51fg6toHnTsrEp2ICOjFMFdVMPEhIiLSMllZWfjiiy/U2ry9p2H0aGfVcUgIkJYGxMRwmKs4DnVVEWvB9Q8/cyKqS65du6aW9MhkRli+/EN89ZV60hMdDQgCh7lKYuJTScrp0jk5OSJHQrVN+ZlXdso8EZGmFN/eSBAE/PjjjwgPD1ed9/X1hUy2GCYmhkhIeL4NkrKuZ/Vq/Vmfp7I4nb2EiqbDJSUlIT09HU5OTjA3N+eO3jpOEATk5OQgNTUVtra2qF+/vtghEZGeadBAsXGovX0mZs1aq3auefPpmDvXEY8eKXp2AEWyc/asCIHWAZzOXgNcXFwAQLXhJekHW1tb1WdPRFSbUlOBtm2vYPjwvaq2ggIzrFgxHz16GKh2U5dIgGbNOKRVGUx8qkAikaB+/fpwcnJCYWGh2OFQLTA2NoahoaHYYRCRHhIEAb16XUCPHgdUbceP98OcOd1gYKBIcqZPB54+BebMAVauFDFYLcLE5wUYGhryy5CIiDSq+NTz/v3z8Ntvv6FHj5uq8xs2zET37g5QbrTu78/anRfBxIeIiEgkixcD69YBs2YpNg6Njga++y4RcXFhSE9Ph4GBAW7e7Ivt27sCkCA8HJDLOT29Opj4EBER1bKICGDBAuD2bUVh8rp1wH//K+CXX/6At/dhpKfLYWJii/HjA3HxohuuXAHi44G8vOc7qtOLYeJDRERUyxYsAGJjFb8bGACzZuUiN3cvmjdXNN682RxJSf5o2dIUISHAp58qruUqzNXHxIeIiKiWKVdDMTMDNm16iJSUMMTGZsDQ0BD16/dHZGQnBAdLVAsRhoRwPR5N4QKGREREtezTTwEfHwFffXUGd++GIiMjA3Z2dpg0aRIcHTsDUGRG3GBU89jjQ0REVMv69s1BVtYe3LlzBwBga9sS7u5DERgoxdOnimEw9vLUDCY+RERENaC8ndETEhIQFhaGZ8+eQSYzxIEDA3DxYgc4OEjw5Ang7c1enprExIeIiEiDlAlP8Z4bf3/lXlunkZgYBQMDAQ4ODti2LRAXLypWhn/69HnCw16emsPEh4iISAOUCU9aGhATo95zk52djd27dyMp6R4MDIA7d1rjyJHB6NNHijt3FElPQACwc6fY70L3MfEhIiKqpogIYOxYICsL8PJSJDy+vkB4OLBiRTxOn94FC4ssFBUZYf/+Qbh1qy3y8iSQyYB//hE7ev3CxIeIiKiaQkIUSY+lJbB6tWKoqnlzOZydT6FXrxMwMBDw+HE9XLgwCqamTpg7V7FSM+t4ah8THyIiomoKDgYWLlSswgwAWVlZ8PUNh7NzHADg8uW2OHlyILZsMWH9jsi4jg8REVEVREQA3bopfir5+wN2dopi5i+++BsrVqyHs3McCgqMER4+HHv3DkNGBpOeuoA9PkRERFVQfDVlZSITEQGkp8vh738c7dqdgkQCpKQ4YefOUfjnn3qQSICRI8WNmxTY40NERFQFwcGKAua0tOe9PmvXZqJLl/+gfXtF0nPxYnv8+ONbyMiohw8+UOyozhlbdQMTHyIioirw9wfs7RVT1kNCgLt376Jv3w3w9LwPQTDBsWMjcfjwUCxYYIyCAmDlSrEjpuKY+BAREVWgrJoeX1/A2lqGZs2OYNu2bSgqyoGLiwveffdtnDjRGrm5THjqKtb4EBERlWHxYmDdOsDGBkhMVKzTs22b4lxoaAYCA3fBw+MBAODy5Y4IC/ODkRG/Vus6fkJERERlWLdOsTZPfj5gYKD4PSQEcHSMxbhxe2FunguZTIr9+/0xYEALMOfRDvyYiIiIyjBggGLlZalUkfQYGsrQt+8RGBqeAwCYm7virbcCsXy5nciRUlWwxoeIiPRayRoe5fH164rZWNnZgK1tGiZODFUlPV26dMGcORNhZ8ekR9tIBEG5ziQBQGZmJmxsbJCRkQFra2uxwyEiohrWrZtiXR4fH+Ds2efHbm7Ao0eAl9ctDB++F6am+TA0NEVg4DB4e3uLHTaVUNnvbw51ERGR3oqIUKzH4+X1fN+s4GBFLc/Dh0UYMOAwunT5EwDQoEEDBAQEwNbWVryAqdqY+BARkd4KCVGsx2NqqthrS8nc/Cn8/cPg6JgEAHBy8kFQ0KswNDQUKVLSFA51lcChLiIi3RYRoUh4lD08r78O5OYqfvf2Bry9b6B58whIpQUoKDCDt/dwjBvXTLyAqVI41EVERFSG4nttnT2rWIU5MREwMipEhw6ReOmliwAACwt3zJkTyH8E6xgmPkREpFeUNTy+vopCZgBwcPgHo0eHwckpBQDQo0cP+Pr6wsCAk591DRMfIiLSC8qVmGfNUiQ/Y8cq1ufx8/sLnTrtg5FRIczNzTFixAg0bdpU7HCphjDxISIinRMRASxYoEhsLC2B1aufr8QcEgI0awbk5xdi5MiDePnlywAAT09PjBw5ElZWViJHTzWJiQ8REemckBAgNvb58ejRUG0pIZcDVlaPMWvWTlhZPQYA9OzZE7169eLQlh7gJ0xERDqh+ArMwcGKtXkcHBTn8vIUvT0A0KXLFQwd+iOsrB7DwsIC48aNYz2PHmGPDxERab2IiOfT0hcuBD79VJHoPH36/BoTkwIMGnQAbdtehVwONG7cGCNGjIClpaV4gVOtY+JDRERaLyTk+Vo8gqA4TkxUHEskQNOmKfDzC0O9ev9AIpGgd+/e6NGjB3t59BATHyIi0krFFyL09QWuXFGsybN6teL89OnAkycC5s+/DFPTgygqKoKVlRVGjhwJT09PMUMnETHxISIirVR8IUJA0ePj4QH4+yuO/fzysW/fPly/fh1FRUDTpk0xfPhwWFhYiBc0iY6JDxERaQ3lNHWJBBg5UtEWHAz88Qdw7Zqi5wcAkpKSEBYWhqdPn0IikaBPnz7o3r07JBKJeMFTnaCTg5vffvstPD09YWpqii5duuDPP/8UOyQiItIA5TT1mBggKkqx5YS/v+L3rCwgKkrA+fPnsWnTJjx9+hTW1tYICgpCjx49mPQQAB1MfHbs2IG5c+diyZIluHTpEtq0aQM/Pz+kpqaKHRoREVWTcpq6t/fzLSeU09dfeSUPo0eH4cCBA5DJZGjWrBmmTp0KDw8PscOmOkTndmfv0qULOnXqhG+++QYAIJfL4e7ujnfffRfByq14K8Dd2YmItEO3booaHx8fICzsEcLCwpCWlgYDAwP07dsXXbt2ZS+PHqns97dO9fgUFBTg4sWL6Nu3r6pN+RcgOjq6zOfk5+cjMzNT7UFERHXD4sWAlZXiZ8nj4GDAx0fApEnnsGnTJqSlpcHGxgYTJ06Ej48Pkx4qk04VN//zzz+QyWRwdnZWa3d2dkZMTEyZz1m1ahWWLVtWG+EREVElKaeqX76sWHV5zRpFHY/yeN06IDU1F7m5Ear/v3t7e8Pf3x9mZmYiR091mU71+LyIRYsWISMjQ/V48OCB2CEREek95VR1CwvAwAAwNlYcm5srNh19772H2LBhA2JiYmBoaIgBAwbgtddeY9JD/0qnEp969erB0NAQKSkpau0pKSlwcXEp8zlSqRTW1tZqDyIiqn1l7bWVna3YVLSwUHGNo6OAyMizkEpDkZGRATs7O0yaNAldunTh0BZVik4NdZmYmKBDhw44evQohg8fDkBR3Hz06FHMnDlT3OCIiKhCyl6ehQsBOzvFWj15eYoenlmzgNOnczB8+B4cPnwHANCyZUsMGTIEpqamIkdO2kSnEh8AmDt3LiZMmICOHTuic+fO+PLLL5GdnY2JEyeKHRoRERVTfMuJP/5Q1O+4uQHPninW6XFzU8zYCg4G2rZNQL16u5CZmaka2urQoQN7eajKdC7xGT16NB4/foyPPvoIycnJaNu2LQ4dOlSq4JmIiMShTHgSEhQbiS5YoPiZlwdkZCgSHkDR03PmjIDTp09jy5YoCIIAe3t7jBo1qtzyBaJ/o3Pr+FQX1/EhIqpZ3t6K1ZeNjRW1O25uiqTn6VMgIAAYN06RGM2bl43c3N24d+8eAKB169YYPHgwpFKpyO+A6qLKfn/rXI8PERHVXRERip4eAHByUqzJc/cuUFSkaEtMVGxB8fLL8di1axeysrJgZGSEgQMHol27dhzaompj4kNERLUmJESxi7qBgaJ+59Ch50mPRAIsXCjHiROncOLECQiCgHr16mHUqFFwcnISN3DSGUx8iIioxinrenx9FbuoZ2Upkp6sLMWQl6EhMHduFjIywnHlShwAoE2bNhg0aBBMTExEjp50CRMfIiKqURERwNixiiQHALZte54ERUUpZm21avU3wsPDEReXDWNjYwwaNAht27YVNW7STUx8iIioRhSfvZWVpRjK8vVV1PD4+yuukcvlOHHiBH766SQAwMnJCYGBgXB0dBQxctJlTHyIiEjjIiKAwEDFrC1DQ0WbIABbtwIrVyqOnz17hl27duH+/fsAgPbt22PAgAEwNjYWKWrSB0x8iIhI40JCnm8zYWio2HZCEBRT1gHg7t272L17N3JycmBiYoIhQ4agdevW4gVMeoOJDxERaUzxIuaEBODJE2DuXMW5deuAWbNkOHIkCmfOnAEAODs7Y9SoUXBwcBAxatInTHyIiOiFFE9ylEXKyv22zp0DXF2BHTue1/MsWJCBXbt24cyZBwCAjh07ws/PD0ZG/Cqi2sOVm0vgys1ERJXTrZsiybG0fD5jy8pK8bvym8XHBzh7Frh9+zb27NmD3NxcSKVSDB06FC1bthQveNI5lf3+NqjFmIiISIcEBysSm1mznrc9e6bo6TE1VWxFsWCBDJGRkfjll1+Qm5uL+vXr4+2332bSQ6Jhj08J7PEhIqo6BwdF4bKREbBrl2J4Kz09HWFhYUhMTAQAdO7cGf369ePQFtUI7tVFREQ1LiJCsbu6mZli89FPP1UkPTExMdi7dy/y8vJgamqKYcOGwdvbW+xwiZj4EBFR5SkLmt3cFFtO2NgoNhYFFMNegwYV4eDBw/jzzz8BAG5ubggMDIStra14QRMVw8SHiIgqbcECIDZWsQqzICg2GPXyUhzPmfMUmzeHISkpCQDg4+ODV199FYbKFQyJ6gAWNxMRUZkiIhQztyIinrdJJIqf9vaK2Vxz5wIxMUBY2A3cu/cDkpKSYGZmhjfeeAP9+/dn0kN1DoubS2BxMxGRQvHp6tu2KWp3lENdwcGK46KiIkRGRuLChQsAAHd3dwQEBMDGxkbk6EnfsLiZiIiqpHhSAyhWXpZIFOvyLFjw/NzZs4rzT548wc6dO5GSkgIA6NGjB3r37s1eHqrTmPgQERGA56suh4QojpVFy5aWigRIec7fH7h27Rr27duHgoICmJubY8SIEWjatKl4wRNVEmt8iIgIgKI3x80NuHxZ8dPNTbEQ4axZimnqPj7AggWFiIiIQHh4OAoKCtCwYUNMmzaNSQ9pDdb4lMAaHyLSZ8otJywtgdatFb08ym0nHj9+jLCwMKSmpgIAevbsiV69esHAgP+GJvGxxoeIiKps1izlLupAly7P63quXLmCAwcOoLCwEBYWFhg5ciQaN24sdrhEVcYenxLY40NE9FxBQQEOHDiAq1evAgAaNWqEkSNHwtLSUuTIiNRxk1IiIiqTcn2exYufr9NT1po9qamp+PHHH3H16lVIJBL07t0bb775JpMe0mrs8SmBPT5EpOuKr8+jrOdxc1OsyOzjA5w5I+Dy5cs4ePAgioqKYGVlhZEjR8LT01Ps0InKxRofIiIqU3CwonbH11dRz5OVpZiu7uMDvP9+Pnbv3o9r164BAJo0aYIRI0bAwsJC5KiJNINDXUREekI5nAUokp+oKEURs4+PYrp6eHgyHj78AdeuXYNEIsGrr76KsWPHMukhncIeHyIiPaFcoHDhQuDhQ0VPD6AY2rpw4QI2boyETCaDtbU1AgIC4OHhIW7ARDWAPT5ERDqkrCJlpeBgxU7q8fHPa3vefz8PYWFhOHDgAGQyGZo1a4apU6cy6SGdxR4fIiIdUnLbCWUtT1SUIvGxt1cUMVtaAj/++AgPHoQhLS0NBgYGePXVV+Hj4wOJcgt2Ih3ExIeISIcoC5eVP6OjgWvXFD08z9sFTJr0J+7c+R1yuRw2NjYIDAxEgwYNxA6fqMYx8SEi0gHFd1ZX7p4OKOp5nj1TTFcPDgb69ctFbm4EYmJiAADe3t7w9/eHmZmZSJET1S7W+BARaani9Twlh7giIhRJT3y8Ypd1e3ugffuH2LBhA2JiYmBgYIABAwbgtddeY9JDeoU9PkREWqp4slN8bZ5u3YC0NOB/nTqwtBQwcWI0QkOPQi6Xw87ODoGBgXB1dRX3DRCJgIkPEZGWKl7P4++veChXZTY1VQxv2dvnYOLEvXj06DYAoEWLFhg6dChMTU1Fjp5IHEx8iIi0lDLZiYgAvL0VBcy5uYpVmPPygJdfTkC/fruQmZkJQ0ND+Pn5oWPHjpy1RXqtyomPoaEhkpKS4OTkpNb+5MkTODk5QSaTaSw4IiL6dyEhiinqShKJgD59zqBLl2PIzBRgb2+PUaNGwcXFRbwgieqIKic+5e1pmp+fDxMTk2oHREREVRMcDCxYoOjxMTXNxquv7oGr610AQOvWrTF48GBIpVKRoySqGyqd+Kxbtw4AIJFIsHHjRlhaWqrOyWQynDx5Et7e3pqPkIiIKqQc8oqPj0d4eDiePXsGIyMjDBw4EO3atePQFlExlU581q5dC0DR47N+/XoYGhqqzpmYmMDT0xPr16/XfIRERKQSEQFMnw48fQrMmQOsXAnI5XKcOnUKJ06cgCAIqFevHgIDA+Hs7Cx2uER1jkQob+yqHL6+vggPD4ednV1NxSSqzMxM2NjYICMjA9bW1mKHQ0R6pvhChP7+pdsWLHhez2NpCSQlZSE8PBxxcXEAgDZt2mDQoEEsPSC9U9nv7yonPrqOiQ8RiSUiAhg7VlGr4+PzfAXm5s0Va/IoqwliYhQztz744G/Y2oYjOzsbxsbGGDRoENq2bSta/ERiquz3d5WLmydNmlTh+c2bN1f1lkREBEWvjnLX9ODg5+3Kf54KArB6NRASIseECSeQnHwS2dmAo6MjRo0aBUdHR3ECJ9IiVU580tLS1I4LCwtx/fp1pKeno0+fPhoLjIhI35RckBBQ9AIBit6eTz8FfH2f4enTXbh//z4AoF27dhg4cCCMjY1FippIu1Q58dm9e3epNrlcjnfeeQdNmjTRSFBERPqmvNqe4kNfLVrcxfr1u5GTkwMTExMMGTIErVu3FjdwIi2jsRqf2NhY9O7dG0lJSZq4nWhY40NEYlBuNaGs7Rk1CggLU5yzspJj9epjSEk5AwBwdnbGqFGj4ODgIGLERHVLjdX4lOfevXsoKirS1O2IiPRK8WGuiIjnSY+1dQb+7/92ISXlAQCgY8eO8PPzg5ERdxwiehFV/pszd+5ctWNBEJCUlIT9+/djwoQJGguMiEgX/dt0deVGowDw0ku3MXr0HmRn58LExAT+/v5o2bKleMET6YAXWsenOAMDAzg6OqJPnz6YNGmS1v8rhENdRFSTSg5pFW/z9gbs7ABfXxkSE4+iUaNoAED9+vURGBgIe3t7ESMnqttqbKgrKiqqWoEREemz4kNaJduePgVu3UpHly5haNQoEQDQuXNn9OvXT+v/UUlUV7zw36TU1FTE/m/5UC8vr1K7tRMRUWnKfbWK++MP4No1YNSoGLi67oWxcR5MTU3h7++P5s2bixMokY4yqOoTMjMzMW7cOLi6uqJXr17o1asX3Nzc8OabbyIjI6MmYiQi0mnffluEHj0OoWHDHTA2zkN6uhsaN57KpIeoBlQ58ZkyZQr++OMP7N+/H+np6UhPT8e+fftw4cIFTJ06tSZiJCLSORERitqenTvT8N57m9G16x8AgLg4H3z99USsXWsrboBEOqrKQ1379u1DZGQkevTooWrz8/PDjz/+iAEDBmg0OCIiXRUSAmRk3MTVqxEwNs6HmZkZhg0bhthYL9y+rV4DRESaU+XEx8HBATY2NqXabWxsdHbHdiIiTVBOW1+woAh9+0bC0PACAMDd3R0BAQGwsbGBl1fpGiAi0pwqD3V9+OGHmDt3LpKTk1VtycnJeP/99/F///d/Gg2OiEjbKYe0IiKA6dOB2NgnOHp0kyrp+fvv7pgwYUKZ/6AkIs2r8jo+7dq1w927d5Gfnw8PDw8AQEJCAqRSKV566SW1ay9duqS5SGsJ1/EhouooazFC5bo9+fnX4Oe3D1JpAYyMzPHHHyPw1ltN2cNDpAE1to7PsGHDIJFIqhUcEZEuKGsV5pAQRaITEqI4fvoU8PAoRJMmB9G06WUAgFzeEO++OxKLF/MfV0S1TWOblOoK9vgQUWWVtQpz8WQoJAS4c+cxRo0Kg7NzKgQB6NnzFfTu3RsGBlWuNCCiCtRYj0/jxo1x/vz5UrsCp6eno3379vj777+rHi0RkRYqaxXm4gsUPnlyFXfv7oeJSSGysizQps1I9OnTWJxgiQjACyQ+8fHxkMlkpdrz8/Px8OFDjQRFRKQNylqFGQB27y7Anj0H0bjxFZiYAPfvN0L9+iPx5puWtR8kEampdOITERGh+j0yMlJtBoJMJsPRo0fRqFEjzUZHRFTH/Nvu6l27puLs2Z1o3PgfyOUS/P13L2zd+gqHtojqiErX+Cj/0kokEpR8irGxMTw9PfHFF19gyJAhmo+yFrHGh4gqUv7u6gICAy+jbduDKCoqQm6uJc6eDcD8+Z6ctUVUCzRe4yOXywEAjRo1wvnz51GvXr3qR0lEpCWUvTq+vorj4nU977+fj4iI/fD0vIaiIqBJkyYYMWIELCwsxAmWiMpV5RqfuLi4moiDiKhOU05TB5739ADA9u3JOH8+DJ6eTyCXS3D3bh989FF3LvtBVEdVOfFZvnx5hec/+uijFw6mPPHx8VixYgWOHTuG5ORkuLq64s0338TixYthYmKiuu6vv/7CjBkzcP78eTg6OuLdd9/FggULNB4PEemfkjO4BEHAxYsXcfPmIVhby5CRYY0DBwKwerUHmPMQ1V1VTnx2796tdlxYWIi4uDgYGRmhSZMmNZL4xMTEQC6XY8OGDWjatCmuX7+OKVOmIDs7G59//jkAxdhe//790bdvX6xfvx7Xrl3DpEmTYGtri7ffflvjMRGRfik+gysvLw/79u3DjRs3YGgIJCa+hD/+GI7Vq81Zz0NUx2lkAcPMzEwEBQVhxIgRGDdunCbi+lefffYZvv/+e9W6Qd9//z0WL16M5ORkVS9QcHAw9uzZg5iYmErfl8XNRFSR7dsf4fLlMJibp0EuN0CDBq/irbd8OLRFJLLKfn9rZH6ltbU1li1bVqublGZkZMDe3l51HB0djZ49e6oNffn5+SE2NhZpaWm1FhcR6SZBEPDHH3/g5s3NMDdPQ0aGDTZvnojQ0G5Meoi0iMYWlsjIyEBGRoamblehu3fv4uuvv8bUqVNVbcnJyXB2dla7TnlcfCf5kvLz85GZman2ICL9U3wX9ZJyc3Px66+/4tChQzA0lCEmxgt79kyFu3sDtdldRFT3VbnGZ926dWrHgiAgKSkJP/30EwYOHFilewUHB+PTTz+t8Jpbt27B29tbdZyYmIgBAwZg1KhRmDJlSpVeryyrVq3CsmXLqn0fItJuxTcXLV6nk5iYiLCwMKSnp0MuN0BkZD/cuNEF27ZJWM9DpIWqnPisXbtW7djAwACOjo6YMGECFi1aVKV7zZs3D0FBQRVe07jx831tHj16BF9fX3Tr1g0//PCD2nUuLi5ISUlRa1Meu7i4lHv/RYsWYe7cuarjzMxMuLu7V/YtEJGO8PUFrl17vk6PIAg4d+4cjhw5ArlcDltbWzg5BeLwYTds21b2VhVEVPeJuo6Po6MjHB0dK3VtYmIifH190aFDB4SGhpZa/t3HxweLFy9GYWEhjI2NAQCHDx+Gl5cX7Ozsyr2vVCqFVCp98TdBRDohKgrIylL8zM3NxZ49e3D79m0AgK1tC0ydOhSmpqZ44w2RAyWianmhGp/09HRcuHABFy5cQHp6uoZDKi0xMRG9e/eGh4cHPv/8czx+/BjJyclqtTtjxoyBiYkJJk+ejBs3bmDHjh346quv1HpziIiKK17XExys2IZi5swHWL9+PW7fvg2ZzBD79g3C3LmBWLHCVOxwiUgDqjSdPT4+HjNmzEBkZKRqvy6JRIIBAwbgm2++gaenZ40EuWXLFkycOLHMc8XDL76AYb169fDuu+9i4cKFVXotTmcn0h/F9906c0bAxo1n8PDhMRgYCLC3t4ej4yiMHesCuRywtASePRM7YiIqT2W/vyud+Dx48ACdOnWCsbExpk+fjubNmwMAbt68ie+//x5FRUU4f/48GjRooJl3IBImPkT6Q7n/1rx52cjL24O7d+8CAJKSWuGrr4ZAKpVi8WJg3Tpg1ixg5UqRAyaicmk88Zk8eTLu3r2LyMhImJqqd/nm5uZiwIABeOmll7Bx48bqRS4yJj5EukmZ5AQHqxcm379/H7t27cKzZ88gCEb4/fcB8PVtj5UruTYPkTbReOLj5uaGHTt2oEePHmWeP3nyJF5//XU8evToxSKuI5j4EOmm4sNaZ88Ccrkcp0+fxvHjxyEIAqTSevjuu0A8eOAMLy+gCgu+E1EdoPGVm//5558Ka3gaN26Mp0+fVilIIqLaoixeDg4GsrKysG3bNkRFRUEQBLRp0wb790/BgweKRU+5EDOR7qp04lO/fn3cvHmz3PPXr1+vcL0cIqLaVtZqzM+exWH9+vX4+++/YWxsDA+PYVi9ejh69jSBlxfg7Q38y7qqRKTFKp34DB8+HPPnz8fjx49LnUtNTcXChQsxfPhwTcZGRFQlJROd4qsxh4TIIZVG4c6d/yA7OxuOjo6YMmUKfvyxLaKjFev3rF4NVLDsFxHpgErX+KSlpaFLly5ITk7Gm2++CW9vbwiCgFu3buHnn3+Gi4sLzp07p7ZxqDZijQ+R9ipZx/N8RtYz2NuHIysrHgDQrl07yOUDsXq1MXx9FUlPcPDzREn5fCLSHpX9/q70ys12dnb4448/8MEHH2D79u2qhQttbW0xZswYfPLJJ1qf9BCRdlMmL8qNQ6OiAGfnexCEcGRl5cDY2BhDhgzByy+/rEqSAPUkZ+FC4OlTRa8Rt6Ug0j1VWsBQSRAE1ZCXo6MjJDpUCcgeHyLdIJfL8cMPUUhJOQ0AcHZ2hr39KHz5pYMqMSprenvJXiMi0g4a7/EpTiKRwMnJ6YWDIyKqSZmZmdi1axdSUhIAAPXqdcDkyX7o1ctYVfNz9mzZPTole42ISLe8UOJDRFRX3b59G3v27EFubi6Kikywe7c/rK1bYsaMyiU1/v4c4iLSZS+0SSkRkViKz9wq/rtMJsPvv/+OX375Bbm5uahfvz5efnkqrK1bqhIdf//ye3qISD+8UI2PLmOND1HdVrwGB1D87uubjrFjd+Hhw4cAgM6dO6Nfv34wMiq/U7u8LSyISDtpfOVmIqK6QLkCs68vkJYG9OkTgz59NuDhw4eQSqV47bXXUFg4ED17GqktXFhS8TV+iEh/VKrHZ926dZW+4axZs6oVkNjY40OkHbp3l8Ha+jC6dv0DAODq6orAwEB8/rkdQkIAubzimVns8SHSLRrdpLRRo0aVelGJRIK///678lHWQUx8iOq+tLQ0bNwYhpwcxabIXbt2Rd++fWFoaAgrKyArCzAwAHbvZlJDpC80Op09Li5OY4EREVXHzZs3ERERgfz8fJiammL48OHw8vJSnZ81S7laM5MeIirthYubCwoKEBcXhyZNmlRYQKht2ONDVDcVFRUhMjISFy5cAAA0aNAAgYGBsLGxETkyIqoLaqy4OScnB5MnT4a5uTlatmyJhATFAmHvvvsuQlglSEQ14MmTJ9i0aZMq6enevTuCgoIqTHrK2pmdiKjKic+iRYtw9epVHD9+HKampqr2vn37YseOHRoNjojo+vXr+OGHH5CcnAxzc3OMGTNGVc9TEc7aIqKyVHmMas+ePdixYwe6du2qtkdXy5Ytce/ePY0GR0T6KSICWL26EK+/fghPnlwCAHh4eCAgIKDSQ9DceoKIylLlHp/Hjx+XuU9Xdna2Tm1WSkTi+frrf/DyyxtVSc8rr7yCCRMm4Phx60oPX3GVZiIqS5UTn44dO2L//v2qY2Wys3HjRvgol1IlInpBV69eRc+eP8DZORVGRhZ488030adPHxgYGKiGr8aOZe0OEb2YKic+n3zyCT744AO88847KCoqwldffYX+/fsjNDQUK1eurIkYiUhHFS9ALigowN69e7Fnzx7I5YXw9PTErFlT0aRJE9X1wcGApaVinZ6yandY0ExE/+aFprPfu3cPISEhuHr1KrKystC+fXssXLgQrVu3rokYaxWnsxPVHuW+W337pmLEiDA8fvwYEokEvXr1wiuvvAIDAwPVCsu+vkBU1POfZa24XHwfr/JWbCYi3aTRlZv1CRMfopr3PJkRcPv2FbRufQCCUARLS0sEBATA09NTdd3YsYoeHiVuQ0FEZdHoys2ZmZmVfmEmC0T0b0JCgIsXC9C69T60anUNggA0adIEI0aMgIWFhdp1xZMeA4OKZ2n5+zPhIaKKVSrxsbW1rfSMLZlMVq2AiEj3zZqVjEuXwmBh8QQSiQS+vr7o0aNHqf/PKKeku7kBhw6VvQ0Fe3mIqCoqlfhERUWpfo+Pj0dwcDCCgoJUs7iio6OxdetWrFq1qmaiJCKtp0hQBLz11kU8enQIFhYy5OVZoXXrQLzyikeZz6lMD07xhQqZ+BDRv6lyjc+rr76Kt956C2+88YZa+88//4wffvgBx48f12R8tY41PkQ145VX8uHi8htatboBAHj8+CWEhg5Hmzbm1SpEZo8PEQEarvEpLjo6GuvXry/V3rFjR7z11ltVvR0R6YGkpCQMGrQTBQVpAAzQr9+rePzYB5cuSaq9sjLreoioKqq8jo+7uzt+/PHHUu0bN26Eu7u7RoIiIt0gCAL+/PNPbNq0CQUFabCxscGkSUHo1q0bV3onIlFUucdn7dq1CAgIwMGDB9GlSxcAwJ9//ok7d+5g165dGg+QiLRTXl4eIiIicOvWLQCAl5cXhg0bBjMzMwCszSEicVS5x2fQoEG4c+cOhg4diqdPn+Lp06cYOnQobt++jUGDBtVEjESkZRITE7FhwwbcunULBgYG8PPzw+jRo1VJD6CoyfHx4SaiRFS7uIBhCSxuJnpxgiDg3LlzOHLkCORyOWxtbREYGAg3NzexQyMiHVdjxc0AkJ6ejk2bNqm6sFu2bIlJkybBxsbmxaIlIq0XHp6Lo0f3wMnpNgCgefPm8Pf3h6mpaalrS87E4swsIqotVR7qunDhApo0aYK1a9eqhrrWrFmDJk2a4NKlSzURIxHVcQ8ePMCff66Hk9NtyOWGGDhwIEaNGlVm0gOo1/eUdazETUeJSNOqnPjMmTMH/v7+iI+PR3h4OMLDwxEXF4chQ4Zg9uzZNRAiEdVVgiDgzJkzCA0NhZlZJrKz7dG8+WQkJ3dG9+6SchOWkvU95dX7lJcQERG9qCrX+JiZmeHy5cvw9vZWa7958yY6duyInJwcjQZY21jjQ1Q52dnZ2LNnD+7evQsAaNWqFYYMGQKpVKqxXdI5BEZElVVjNT7W1tZISEgolfg8ePAAVlZWVY+UiLTO/fv3sWvXLjx79gxGRkYYMGAA2rdvr1qbR7nHFhcnJKK6psqJz+jRozF58mR8/vnn6NatGwDgzJkzeP/990ttY0FEukUQBJw6dQrHjx+HIAhwcHDAqFGj4OzsrHYdExYiqquqnPh8/vnnkEgkGD9+PIqKigAAxsbGeOeddxDCgXginZWVlYXdu3fj77//BgAkJr6Ml18eDGdnk1LXcoiKiOqqF17HJycnB/fu3QMANGnSBObm5hoNTCys8SEqLS4uDuHh4cjKyoKRkREuXx6EXbvawsdHojaspUxyNFXjQ0RUWTW6jg8AmJubo3Xr1i/6dCLSAnK5HCdPnsSJEycAAKamjjhyZBQ6d3ZUzcIqufVERASQkACYmQFubookyNcXiIpiDxARia/Sic+kSZMqdd3mzZtfOBgiqjuePXuG8PBwxMfHAwDs7dtix45BOHPGGNnZ6j05xQuZQ0KAxETF74cOAVlZwLVrip/cl4uIxFbpxGfLli1o2LAh2rVrB+5yQaTb7t27h/DwcOTk5KCoyBgREUNgYfGyqofH11fRk6PswSmezAQHAwsWABIJMHKkoqfHzU2RBPn6iveeiIiAKtT4zJgxA7/88gsaNmyIiRMn4s0334S9vX1Nx1frWOND+kwulyMqKgqnT58GADg7O8PePhBfflmvWjU8rPkhoppW2e/vSq/c/O233yIpKQkLFizAb7/9Bnd3d7z22muIjIxkDxCRDsjMzMTWrVtVSU+HDh0wefJkvPZaPZw9q96r4+sLWFpWvgeHO7ETUV1RpS0rpFIp3njjDRw+fBg3b95Ey5YtMX36dHh6eiIrK6umYiSiGnbnzh2sX78eCQkJMDExQUBAAIYMGQJjY+My98uKilLU7ERFlb5XWdf7+6NU8kREJIYq79WleqKBASQSCQRBgEwm02RMRFRLZDIZDh8+jJ9//hm5ubmoX78+pk6dilatWqmuKWu/rIp6cLi/FhHVZVVKfPLz8/HLL7+gX79+aNasGa5du4ZvvvkGCQkJsLS0rKkYiagGpKenY8uWLTj7v6KbTp06YdKkSaVq95RJjrKgOSKi4h4cDmsRUV1W6eLm6dOnY/v27XB3d8ekSZMwduxY1KtXr6bjq3UsbiZ9EBMTg7179yIvLw9SqRT+/v5o0aJFhSsus0CZiOqyyn5/VzrxMTAwgIeHB9q1a6faiLAs4eHhVY+2DmHiQ7pMObT1xx9/AABcXV0RGBgIOzs7ABUnN9yGgojqMo2v3Dx+/PgKEx4iqtvS0tIQFhaGR48eAQC6du2Kvn37wtDQUHWNpnZVJyKqq154ry5dxR4f0jUREUBo6E106BABmSwfpqamGD58OLy8vKp0Hw51EVFdVuN7dRFR3bdnTxG2bPkd7dqdh0wGNGjQAAEBAbC1ta3yvdgbRES64IWnsxNR3fb06VOcOrUJ7dqdBwA4OXVDUFBQqaSn+Lo7Za3Bo8S1eIhIF3CoqwQOdZEuuH79On777TcUFBSgoMAM3t4jMG7cS2VeW3wIC+BwFhFpJw51EemhwsJCHDp0CJcuXQIAeHh4ICAgoML/CZQcwuJwFhHpMiY+RDrin3/+wc6dO5GamgoAeOWVV9C7d28YGDwf0S45Jb2sKeocyiIiXcahrhI41EXa6OrVq9i/fz8KCwthYWGBESNGoEmTJqWuKzkzizO1iEhXaHx3diKqewoKCrB3717s2bMHhYWF8PT0xNSpU1VJT8li5ZLbSXB7CSLSNxzqItJSqampCAsLw+PHjwEAvXr1Qs+ePdWGtopvGOrv/3wYS7mBaPE2IiJ9wB4fIi0jCAIuX76MH3/8EY8fP4alpSXGjx9fqp4HKLtHh7unE5E+Y48PkRYpKCjA/v378ddffwEAGjdujBEjRsDS0rLUteUVMvv6Ks5zeIuI9BETHyItkZKSgp07d+LJkyeQSCTw9fVFjx49yt1Dr+Qwl/IYYCEzEekvDnUR1XGCIODixYv48ccf8eTJE1hZWWHChAlIS3sF3btLylxlGah8IXNFqzUTEekarZvOnp+fjy5duuDq1au4fPky2rZtqzr3119/YcaMGTh//jwcHR3x7rvvYsGCBVW6P6ezU12Sn5+Pffv24fr16wCApk2bYsSIETA3N4e3NxAbC3h5ATExL/4anNJORLpAZ6ezL1iwAK6urqXaMzMz0b9/fzRs2BAXL17EZ599hqVLl+KHH34QIUqi6ktKSsIPP/yA69evQyKRoG/fvhgzZgzMzc0BAMoRroSE6vXWcEo7EekTrarxOXjwIH7//Xfs2rULBw8eVDu3bds2FBQUYPPmzTAxMUHLli1x5coVrFmzBm+//bZIERNVnSAIOH/+PH7//XfIZDLY2NggICAA7u7uatd9+ikwdiyQlfW8judFcEo7EekTrenxSUlJwZQpU/DTTz+p/sVbXHR0NHr27AkTExNVm5+fH2JjY5GWllbuffPz85GZman2IBJLXl4edu7ciYMHD0Imk8HLywtTp04tlfQAimRl2zb21hARVYVW9PgIgoCgoCBMmzYNHTt2RHx8fKlrkpOT0ahRI7U2Z2dn1Tk7O7sy771q1SosW7ZM4zETVVViYiLCwsKQnp4OAwMD9OvXD126dCl31hbA3hoioqoStccnODgYEomkwkdMTAy+/vprPHv2DIsWLdJ4DIsWLUJGRobq8eDBA42/BlFFBEHAuXPnsHnzZqSnp8PW1haTJk1C165dK0x6KoMztoiI1Ina4zNv3jwEBQVVeE3jxo1x7NgxREdHQyqVqp3r2LEjxo4di61bt8LFxQUpKSlq55XHLi4u5d5fKpWWui9RbcnNzcXevXsRGxsLAGjevDn8/f1hamqqkfuXXMuHiEjfiZr4ODo6wtHR8V+vW7duHT7++GPV8aNHj+Dn54cdO3agS5cuAAAfHx8sXrwYhYWFMDY2BgAcPnwYXl5e5Q5zEYnpwYMH2LVrFzIyMmBoaIj+/fujU6dOZfbylFyFubKCg58/j4iItHAdHwCIj49Ho0aN1NbxycjIgJeXF/r374+FCxfi+vXrmDRpEtauXVulWV1cx4dqmiAIOHv2LI4dOwa5XA47OzuMGjUK9evXL/c5XGuHiKhilf3+1ori5sqwsbHB77//jhkzZqBDhw6oV68ePvroI05lpzrlyZMnOHjwIO7duwcAsLVtiZ07h8LTU1phTw57boiINEMrEx9PT0+U1VH18ssv49SpUyJERPTvTp06hWPHjgEADA0NMXDgQLz7bntER0sgk5U9hFV8iIs9PURE1ac16/gQaSu5XI5PPvlElfQAwMSJE9GhQwcEB0sqXIeneHEyERFVHxMfohqUkpKCFStWoLCwUNU2b948uLm5AVD08pw9q/gZEQE0bw54ez+ffh4crNiLKy2NU9KJiDRBK4ubaxKLm0lToqKicPLkSdWxh4cHgoKCyp21pdx+AlAvYmZhMxHRv9O74maiukImk6ktvwAAgYGBaNmyZbnPCQlRJD1mZoCHh/rQFwubiYg0hz0+JbDHh6pDuaN6cfPnz4eFhQUARc/OwoXAs2eKc5aWwOrVit9fZJ0eIiJSqOz3NxOfEpj40Is6fPgwzhYbi2rcuDHGjRundo1y2Ko4DmEREVUfh7qIaklRURFWrlyp1jZ69Gh4e3uXujY4uHSPD4ewiIhqDxMfompITEzExo0b1doWLFgAMzOzMq/nbupEROLidHaiF3Tw4EG1pMfLywtLliwplfRwh3QiorqDiQ9RFRUWFmLZsmX4888/VW1jxozB66+/rjounuxwEUIiorqDQ11EVZCQkIDQ0FC1toULF8LU1FStrXiyw+noRER1B3t8iCopIiJCLelp1aoVlixZAlNT01LDWcHBUG1FUXx1ZiIiEhd7fIj+RUFBAVatWqXWdv78OLRr11h1XLyHR1nAzESHiKjuYeJDVIG4uDj85z//UWs7cmQRTp82wb17wIIFgEQCjBypOMfhLCKiuo2JD1E5wsPDce3aNdVx27ZtMWzYMLRrB8hkwNOnQGys4lxUFBchJCLSBkx8iErIz89HSIkpWEFBQWjYsCEiIp738gQEALt2KX5nTw8RkXZg4kNUzN27d7Ft2za1tg8++ADGxsYAFDU8xXt5YmJqO0IiIqoOJj5E//Prr7/i1q1bquOOHTti8ODBatcEBz/v8WEvDxGR9mHiQ3ovNzcXq5VbpP/P5MmT0aBBAwDPFyFUTk3nbC0iIu3FxIf0WmxsLLZv367WtnjxYhgZPf+rUXKqOhERaS8mPqS3tm3bhrt376qOfXx80L9//1LXceVlIiLdwcSH9E5OTg4+++wztbYpU6bA1dW1zOs5vEVEpDuY+JBeuXnzJnbu3KnW9uGHH8LQ0FCkiIiIqDZxry6qs0ruf1XZ6xcvLv08QRCwZcsWtaTn5MlXEBm5hEkPEZEeYeKjx6qaWNS24kXFVbl+3Tr152VlZWH58uW4f/++6lpv72nIze3Duh0iIj3DxEePVTWxqG3FdzivyvWzZgHe3ootJbZsuYYvvvhCdY1EYoTff/8QZmbO3DGdiEgPSQRBEMQOoi7JzMyEjY0NMjIyYG1tLXY4Nark+jS6pFs3Aa1abYSb2yNVm6+vL4KDeyI6WpEgcW8tIiLdUdnvb/b46DF/f2htr0dFw3SZmZnw81uulvQ0bz4dwcE94etbtV4kIiLSLZzVRVqpvEUFL1++jIhi2ZCZmRnmz5+PHj0MEB2taGNPDxGR/mLiQ1qp5KKCgiDg+++/x+PHj1XX9OvXD926dSvzeiIi0k+s8SlBn2p8dEVGRga+/PJLtbZ3330X9vb24gRERES1jjU+VKdpair9+fPn1ZKe9HQbREZ+xKSHiIjKxKEuEkV1N/4UBAHr1q1Denq6qq1Bg4GIjOzM4SwiIioXe3yoUjS92GFV1+gp7unTp1i+fLla0vPee+9h8uTOWjtLjYiIagdrfEpgjU/ZunVDnVj/5ty5c4iMjFQdOzg4YMaMGZBIJOIFRUREomOND2nUv/XQ1PT2F3K5HJ9//rla0jNkyBDMnDmTSQ8REVUae3xKYI/Pi6nJHqF//vkH3377rVrbnDlz+PkQEZFKZb+/WdxMGlFT6+ScPn0aR48eVR27uLjg7bffZi8PERG9ECY+VG2a2vOr+H0EQY4LFz6FkVGB6vzw4cPRpk0bDURMRET6ikNdJXCoq+o0NcylvE+/fqno3v17tXNz586FlZVVNSMlIiJdxaEuqjWaGuYKDgZ27jyOpk1PqNosLNwxb95EDm0REZFGMPGhavP3r/7aOTKZDFeurETTps87IAMCAtCqVatqRkdERPQcEx8SXXJyMjZs2KDWNn/+fFhYWIgUERER6SomPlTrihcxm5sfwZkzZ1TnGjdujHHjxokYHRER6TImPlSjSs74iogAxo4FcnOLcPnySrVrR48eDW9vb5EiJSIifcDEh2pU8c1IAUXSY2OTiPnzN6pdt2DBApiZmYkQIRER6RNuWUFqqrv1RMnnF9/qIiQE6NHjEKZMeZ70eHl5YcmSJUx6iIioVnAdnxL0fR2f6q7JU97zCwsL8cknn6hdO2bMGLz00kvVjJiIiIiblOqsmt4M9N82I/23GIo/X3ndzz8nlEp6Fi5cyKSHiIhqHXt8SqjrPT41uRmopmPo1g1wcPgNHTteUrW1bNkSgYGBtRAlERHpE67crKNqajNQTcdQUFAAP79Vam3jxo1D48aNazg6IiKi8jHx0TKaWCW5psXFxeE///mPWltwcDCkUqlIERERESkw8aEqKz5FvWQStnv3bvz111+q47Zt22LYsGG1HCEREVHZWNysBWq6oLmqyiqAzs/Px7Jly9SSnqCgICY9RERUp7C4uYS6WNxcFwqaK3L37l1s27ZNre2DDz6AsbGxSBEREZG+YXGzDqkLBc3l+fXXX3Hr1i3VcceOHTF48GARIyIiIiofEx8toImC5pJ7ZlVXbm4uVq9erdY2efJkNGjQoPo3JyIiqiFMfPRERQXJVRUbG4vt27ertS1evBhGRvzPiYiI6jZ+U+kJTQ2X/fzzz7hz547quGvXrvDz86tmdERERLWDiY+eqO5wWU5ODj777DO1tilTpsDV1bWakREREdUeJj70r27evImdO3eqtX344YcwNDQUKSIiIqIXw8SHKrR161bEx8erjnv06IFXX31VvICIiIiqgYkPlSkrKwtffPGFWtu0adPg7OwsUkRERETVx8SHSrl27RrCw8NVx0ZGRggODubQFhERaT0mPqQiCAI2bdqExMREVVvv3r3Rq1cvEaMiIiLSHK3aq2v//v3o0qULzMzMYGdnh+HDh6udT0hIwODBg2Fubg4nJye8//77KCoqEifYSqjKHlw1vV/Xs2fPsHz5crWkZ/r06Ux6iIhIp2hN4rNr1y6MGzcOEydOxNWrV3HmzBmMGTNGdV4mk2Hw4MEoKCjA2bNnsXXrVmzZsgUfffSRiFFXrPiigpq8tqpJ0uXLl7FmzRrVsZmZGf7v//4Pjo6OlbsBERGRltCKTUqLiorg6emJZcuWYfLkyWVec/DgQQwZMgSPHj1SFeCuX78eCxcuxOPHj2FiYlKp16rNTUqrso3E4sXAunXArFnAypUVX6vc1NTLC7C3L//+giBg/fr1SE1NVbX17dsX3bt3f4F3Q0REJJ7Kfn9rRY/PpUuXkJiYCAMDA7Rr1w7169fHwIEDcf36ddU10dHRaN26tdqsIz8/P2RmZuLGjRvl3js/Px+ZmZlqj9ri76/Ybb0yCwtGRQFZWYqf/yY4WLGTu0RSfi9RRkYGli9frpb0zJw5k0kPERHpNK1IfP7++28AwNKlS/Hhhx9i3759sLOzQ+/evfH06VMAQHJycqmp1srj5OTkcu+9atUq2NjYqB7u7u419C6qR5nMVGbLCWVC9emnZT/nwoUL+PLLL1XH1tbW+Oijj+Dg4KDZoImIiOoYUROf4OBgSCSSCh8xMTGQy+UAFBthBgQEoEOHDggNDYVEIim1onBVLVq0CBkZGarHgwcPNPHWNK4qvUPlPUcQBKxbtw779+9XXTNgwADMmTMHEolEwxETERHVPaJOZ583bx6CgoIqvKZx48ZISkoCALRo0ULVLpVK0bhxYyQkJAAAXFxc8Oeff6o9NyUlRXWuPFKpFFKp9EXC1yppaWlYt26dWtusWbNgZ2cnUkRERES1T9TEx9HRsVIzhzp06ACpVIrY2Fj06NEDAFBYWIj4+Hg0bNgQAODj44OVK1ciNTUVTk5OAIDDhw/D2tpaLWHSR+fOnUNkZKTq2MHBATNmzGAvDxER6R2tWMDQ2toa06ZNw5IlS+Du7o6GDRuqdgofNWoUAKB///5o0aIFxo0bh9WrVyM5ORkffvghZsyYofU9OlWZ/VWcXC7H2rVrkZWVpWobMmQIOnToUANREhER1X1akfgAwGeffQYjIyOMGzcOubm56NKlC44dO6YaqjE0NMS+ffvwzjvvwMfHBxYWFpgwYQKWL18ucuTVV3wNn8omPk+ePME333yj1jZ79mzY2NjUQIRERETaQSvW8alNtbmOT2VVtcfn9OnTOHr0qOrYxcUFb7/9Noe2iIhIZ1X2+1trenz0mb9/5RIeuVyO1atXIz8/X9U2bNgwtG3btuaCIyIi0iJasY6PLtPUHlypqalYsWKFWtIzd+5cJj1ERETFsMdHZC9Sv1PSiRMncPz4cdWxu7s7Jk6cyKEtIiKiEpj4iCw4+Hn9TlXJZDJ88sknqgUeASAgIACtWrXSYIRERES6g4mPyCpbv1NScnIyNmzYoNY2f/58WFhYaCgyIiIi3cPERwsdOXIEZ86cUR03atQI48ePFzEiIiIi7cDER4sUFRVh5cqVam2vvfYamjdvLlJERERE2oWJj5ZITEzExo0b1doWLFgAMzMzkSIiIiLSPpzOXkuqM2390KFDaklPs2bNsGTJEiY9REREVcQen1ryItPWCwsL8cknn6i1vfHGG2jWrFkNREhERKT7mPjUkqpOW3/w4AE2b96s1rZw4UKYmprWQHRERET6gYlPLanKtPV9+/bh4sWLquOWLVsiMDCwhiIjIiLSH0x86pCCggKsWrVKre3NN99EkyZNRIqIiIhItzDxqSPi4+OxdetWtbbg4GBIpVKRIiIiItI9THzqgD179uDq1auq4zZt2mD48OHiBURERKSjmPiIKD8/HyEhIWptEyZMgKenpzgBERER6TgmPiK5d+8e/vvf/6q1LVq0CCYmJiJFREREpPuY+Ihg586duHnzpuq4Q4cOGDJkiIgRERER6QcmPrUoLy8Pn376qVrbpEmT4O7uLlJERERE+oWJTy25c+cOfv75Z7W2Dz74AMbGxiJFREREpH+Y+NSS4klP165d4efnJ2I0RERE+omJTy3p1asXzp07h/Hjx8PV1VXscIiIiPSSRBAEQewg6pLMzEzY2NggIyMD1tbWYodDRERElVDZ72+DWoyJiIiISFRMfIiIiEhvMPEhIiIivcHEh4iIiPQGEx8iIiLSG0x8iIiISG8w8SEiIiK9wcSHiIiI9AYTHyIiItIbTHyIiIhIbzDxISIiIr3BxIeIiIj0BhMfIiIi0htMfIiIiEhvGIkdQF0jCAIAxfb2REREpB2U39vK7/HyMPEp4dmzZwAAd3d3kSMhIiKiqnr27BlsbGzKPS8R/i010jNyuRyPHj2ClZUVJBKJ2OHUqMzMTLi7u+PBgwewtrYWOxwqhp9N3cTPpW7i51J31eZnIwgCnj17BldXVxgYlF/Jwx6fEgwMDNCgQQOxw6hV1tbW/J9FHcXPpm7i51I38XOpu2rrs6mop0eJxc1ERESkN5j4EBERkd5g4qPHpFIplixZAqlUKnYoVAI/m7qJn0vdxM+l7qqLnw2Lm4mIiEhvsMeHiIiI9AYTHyIiItIbTHyIiIhIbzDxISIiIr3BxEeP7d+/H126dIGZmRns7OwwfPhwtfMJCQkYPHgwzM3N4eTkhPfffx9FRUXiBKtn8vPz0bZtW0gkEly5ckXt3F9//YVXXnkFpqamcHd3x+rVq8UJUo/Ex8dj8uTJaNSoEczMzNCkSRMsWbIEBQUFatfxsxHHt99+C09PT5iamqJLly74888/xQ5Jr6xatQqdOnWClZUVnJycMHz4cMTGxqpdk5eXhxkzZsDBwQGWlpYICAhASkqKKPEy8dFTu3btwrhx4zBx4kRcvXoVZ86cwZgxY1TnZTIZBg8ejIKCApw9exZbt27Fli1b8NFHH4kYtf5YsGABXF1dS7VnZmaif//+aNiwIS5evIjPPvsMS5cuxQ8//CBClPojJiYGcrkcGzZswI0bN7B27VqsX78eH3zwgeoafjbi2LFjB+bOnYslS5bg0qVLaNOmDfz8/JCamip2aHrjxIkTmDFjBs6dO4fDhw+jsLAQ/fv3R3Z2tuqaOXPm4LfffsPOnTtx4sQJPHr0CCNHjhQnYIH0TmFhoeDm5iZs3Lix3GsOHDggGBgYCMnJyaq277//XrC2thby8/NrI0y9deDAAcHb21u4ceOGAEC4fPmy6tx3330n2NnZqX0GCxcuFLy8vESIVL+tXr1aaNSokeqYn404OnfuLMyYMUN1LJPJBFdXV2HVqlUiRqXfUlNTBQDCiRMnBEEQhPT0dMHY2FjYuXOn6ppbt24JAITo6Ohaj489Pnro0qVLSExMhIGBAdq1a4f69etj4MCBuH79uuqa6OhotG7dGs7Ozqo2Pz8/ZGZm4saNG2KErRdSUlIwZcoU/PTTTzA3Ny91Pjo6Gj179oSJiYmqzc/PD7GxsUhLS6vNUPVeRkYG7O3tVcf8bGpfQUEBLl68iL59+6raDAwM0LdvX0RHR4sYmX7LyMgAANXfj4sXL6KwsFDtc/L29oaHh4conxMTHz30999/AwCWLl2KDz/8EPv27YOdnR169+6Np0+fAgCSk5PVkh4AquPk5OTaDVhPCIKAoKAgTJs2DR07dizzGn4udcPdu3fx9ddfY+rUqao2fja1759//oFMJivzz51/5uKQy+WYPXs2unfvjlatWgFQ/PdvYmICW1tbtWvF+pyY+OiQ4OBgSCSSCh/KWgUAWLx4MQICAtChQweEhoZCIpFg586dIr8L3VPZz+Xrr7/Gs2fPsGjRIrFD1huV/WyKS0xMxIABAzBq1ChMmTJFpMiJ6qYZM2bg+vXr2L59u9ihlMtI7ABIc+bNm4egoKAKr2ncuDGSkpIAAC1atFC1S6VSNG7cGAkJCQAAFxeXUjMjlBX4Li4uGoxa91X2czl27Biio6NL7WnTsWNHjB07Flu3boWLi0upmRD8XF5cZT8bpUePHsHX1xfdunUrVbTMz6b21atXD4aGhmX+ufPPvPbNnDkT+/btw8mTJ9GgQQNVu4uLCwoKCpCenq7W6yPa51TrVUUkuoyMDEEqlaoVNxcUFAhOTk7Chg0bBEF4XtyckpKiumbDhg2CtbW1kJeXV+sx64P79+8L165dUz0iIyMFAEJYWJjw4MEDQRCeF9AWFBSonrdo0SIW0NaChw8fCi+99JLw+uuvC0VFRaXO87MRR+fOnYWZM2eqjmUymeDm5sbi5lokl8uFGTNmCK6ursLt27dLnVcWN4eFhanaYmJiRCtuZuKjp9577z3Bzc1NiIyMFGJiYoTJkycLTk5OwtOnTwVBEISioiKhVatWQv/+/YUrV64Ihw4dEhwdHYVFixaJHLn+iIuLKzWrKz09XXB2dhbGjRsnXL9+Xdi+fbtgbm6uSlipZjx8+FBo2rSp8OqrrwoPHz4UkpKSVA8lfjbi2L59uyCVSoUtW7YIN2/eFN5++23B1tZWbUYq1ax33nlHsLGxEY4fP672dyMnJ0d1zbRp0wQPDw/h2LFjwoULFwQfHx/Bx8dHlHiZ+OipgoICYd68eYKTk5NgZWUl9O3bV7h+/braNfHx8cLAgQMFMzMzoV69esK8efOEwsJCkSLWP2UlPoIgCFevXhV69OghSKVSwc3NTQgJCREnQD0SGhoqACjzURw/G3F8/fXXgoeHh2BiYiJ07txZOHfunNgh6ZXy/m6EhoaqrsnNzRWmT58u2NnZCebm5sKIESPU/uFQmyT/C5qIiIhI53FWFxEREekNJj5ERESkN5j4EBERkd5g4kNERER6g4kPERER6Q0mPkRERKQ3mPgQERGR3mDiQ0RUQ44fPw6JRIL09HSxQyGi/2HiQ0Raa+nSpWjbtq3YYRCRFmHiQ0Q6r7CwUOwQiKiOYOJDRKKRy+VYtWoVGjVqBDMzM7Rp0wZhYWEAng8THT16FB07doS5uTm6deuG2NhYAMCWLVuwbNkyXL16FRKJBBKJBFu2bAEASCQSfP/99/D394eFhQVWrlxZYRzK14qMjES7du1gZmaGPn36IDU1FQcPHkTz5s1hbW2NMWPGICcnR/W8/Px8zJo1C05OTjA1NUWPHj1w/vz5mvnDIiLNEGWHMCIiQRA+/vhjwdvbWzh06JBw7949ITQ0VJBKpcLx48eFqKgoAYDQpUsX4fjx48KNGzeEV155RejWrZsgCIKQk5MjzJs3T2jZsmWp3aABCE5OTsLmzZuFe/fuCffv368wDuVrde3aVTh9+rRw6dIloWnTpkKvXr2E/v37C5cuXRJOnjwpODg4qG08OmvWLMHV1VU4cOCAcOPGDWHChAmCnZ2d8OTJE7X7pqWl1cwfIBFVGRMfIhJFXl6eYG5uLpw9e1atffLkycIbb7yhShqOHDmiOrd//34BgJCbmysIgiAsWbJEaNOmTal7AxBmz55d6VjKeq1Vq1YJAIR79+6p2qZOnSr4+fkJgiAIWVlZgrGxsbBt2zbV+YKCAsHV1VVYvXq12n2Z+BDVHUZi9TQRkX67e/cucnJy0K9fP7X2goICtGvXTnX88ssvq36vX78+ACA1NRUeHh4V3r9jx45Vjqn4azk7O8Pc3ByNGzdWa/vzzz8BAPfu3UNhYSG6d++uOm9sbIzOnTvj1q1bVX5tIqodTHyISBRZWVkAgP3798PNzU3tnFQqxb179wAokgkliUQCQFEb9G8sLCyqHFPJ1yp+rGyrzGsTUd3F4mYiEkWLFi0glUqRkJCApk2bqj3c3d0rdQ8TExPIZLIajrRsTZo0gYmJCc6cOaNqKywsxPnz59GiRQtRYiKif8ceHyIShZWVFebPn485c+ZALpejR48eyMjIwJkzZ2BtbY2GDRv+6z08PT0RFxeHK1euoEGDBrCysoJUKq2F6BU9Su+88w7ef/992Nvbw8PDA6tXr0ZOTg4mT55cKzEQUdUx8SEi0axYsQKOjo5YtWoV/v77b9ja2qJ9+/b44IMPKjWkFBAQgPDwcPj6+iI9PR2hoaEICgqq+cD/JyQkBHK5HOPGjcOzZ8/QsWNHREZGws7OrtZiIKKqkQiCIIgdBBEREVFtYI0PERER6Q0mPkSk86ZNmwZLS8syH9OmTRM7PCKqRRzqIiKdl5qaiszMzDLPWVtbw8nJqZYjIiKxMPEhIiIivcGhLiIiItIbTHyIiIhIbzDxISIiIr3BxIeIiIj0BhMfIiIi0htMfIiIiEhvMPEhIiIivcHEh4iIiPTG/wPG2TcaySCdxgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 [==============================] - 0s 4ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzcUlEQVR4nO3deXwTZf4H8E9aaGmBBkpvaGkpZ6UtCKgVLCBIwXog+FsQV24UBF1g5XJFhfVHEXdX1FXwBwq6isuq4CoIyIKASEWuyqGwUgtFaTmEptKWFpr5/VEzJulMMkkmmUnzeb9e7NpkMnlm8sw833lOgyAIAoiIiIgCWJDWCSAiIiLSGgMiIiIiCngMiIiIiCjgMSAiIiKigMeAiIiIiAIeAyIiIiIKeAyIiIiIKOAxICIiIqKAx4CIiIiIAh4DIiLyG88++ywMBoOibQ0GA5599lmvpqdfv37o16+fbvdHRMoxICIil61evRoGg0H816hRI7Ru3Rpjx47FTz/9pHXydCc5OdnmfMXExOC2227D+vXrVdl/ZWUlnn32WezYsUOV/REFIgZEROS2hQsX4h//+AeWL1+OIUOG4J133kHfvn1x9epVr3zfU089haqqKq/s29u6deuGf/zjH/jHP/6BJ554AmfPnsWwYcOwfPlyj/ddWVmJBQsWMCAi8kAjrRNARP5ryJAh6NmzJwBg4sSJiIqKwvPPP4+PP/4Yv/vd71T/vkaNGqFRI/+8bbVu3Rq///3vxb9Hjx6N9u3b48UXX8TkyZM1TBkRAawhIiIV3XbbbQCAwsJCm9ePHz+O+++/H5GRkWjSpAl69uyJjz/+2Gaba9euYcGCBejQoQOaNGmCVq1aoU+fPti6dau4jVQfourqasyYMQPR0dFo3rw57rnnHvz444/10jZ27FgkJyfXe11qn6tWrcLtt9+OmJgYhIaGIi0tDcuWLXPpXDgTFxeHLl26oKioyOF258+fx4QJExAbG4smTZogMzMTb731lvj+qVOnEB0dDQBYsGCB2Czn7f5TRA2Nfz5qEZEunTp1CgDQsmVL8bVjx46hd+/eaN26NebOnYumTZviX//6F4YOHYoPP/wQ9913H4C6wCQvLw8TJ07ETTfdhPLycuzfvx8HDx7EHXfcIfudEydOxDvvvINRo0bh1ltvxfbt25Gbm+vRcSxbtgw33HAD7rnnHjRq1AiffPIJHn30UZjNZkydOtWjfVtcu3YNZ86cQatWrWS3qaqqQr9+/XDy5ElMmzYNKSkpeP/99zF27FiUlZXhD3/4A6Kjo7Fs2TJMmTIF9913H4YNGwYAyMjIUCWdRAFDICJy0apVqwQAwn/+8x/hwoULwpkzZ4QPPvhAiI6OFkJDQ4UzZ86I2w4YMEBIT08Xrl69Kr5mNpuFW2+9VejQoYP4WmZmppCbm+vwe5955hnB+rZVUFAgABAeffRRm+1GjRolABCeeeYZ8bUxY8YIbdu2dbpPQRCEysrKetvl5OQI7dq1s3mtb9++Qt++fR2mWRAEoW3btsKgQYOECxcuCBcuXBC++eYbYeTIkQIA4bHHHpPd39KlSwUAwjvvvCO+VlNTI2RlZQnNmjUTysvLBUEQhAsXLtQ7XiJyDZvMiMhtAwcORHR0NBITE3H//fejadOm+Pjjj9GmTRsAwKVLl7B9+3b87ne/wy+//IKLFy/i4sWL+Pnnn5GTk4Pvv/9eHJXWokULHDt2DN9//73i7//0008BAI8//rjN69OnT/fouMLCwsT/NplMuHjxIvr27YsffvgBJpPJrX1+9tlniI6ORnR0NDIzM/H+++/joYcewvPPPy/7mU8//RRxcXF44IEHxNcaN26Mxx9/HFeuXMHOnTvdSgsR1ccmMyJy26uvvoqOHTvCZDLhzTffxK5duxAaGiq+f/LkSQiCgPnz52P+/PmS+zh//jxat26NhQsX4t5770XHjh3RtWtXDB48GA899JDDpp/Tp08jKCgIqampNq936tTJo+P68ssv8cwzzyA/Px+VlZU275lMJhiNRpf3efPNN+O5556DwWBAeHg4unTpghYtWjj8zOnTp9GhQwcEBdk+u3bp0kV8n4jUwYCIiNx20003iaPMhg4dij59+mDUqFE4ceIEmjVrBrPZDAB44oknkJOTI7mP9u3bAwCys7NRWFiIf//73/jss8+wcuVKvPjii1i+fDkmTpzocVrlJnSsra21+buwsBADBgxA586d8be//Q2JiYkICQnBp59+ihdffFE8JldFRUVh4MCBbn2WiLyPARERqSI4OBh5eXno378//v73v2Pu3Llo164dgLpmHiXBQGRkJMaNG4dx48bhypUryM7OxrPPPisbELVt2xZmsxmFhYU2tUInTpyot23Lli1RVlZW73X7WpZPPvkE1dXV+Pjjj5GUlCS+/vnnnztNv9ratm2Lw4cPw2w229QSHT9+XHwfkA/2iEg59iEiItX069cPN910E5YuXYqrV68iJiYG/fr1w+uvv46SkpJ621+4cEH8759//tnmvWbNmqF9+/aorq6W/b4hQ4YAAF5++WWb15cuXVpv29TUVJhMJhw+fFh8raSkpN5s0cHBwQAAQRDE10wmE1atWiWbDm+58847UVpairVr14qvXb9+Ha+88gqaNWuGvn37AgDCw8MBQDLgIyJlWENERKqaNWsW/ud//gerV6/G5MmT8eqrr6JPnz5IT0/HpEmT0K5dO5w7dw75+fn48ccf8c033wAA0tLS0K9fP/To0QORkZHYv38/PvjgA0ybNk32u7p164YHHngAr732GkwmE2699VZs27YNJ0+erLftyJEjMWfOHNx33314/PHHUVlZiWXLlqFjx444ePCguN2gQYMQEhKCu+++G4888giuXLmCFStWICYmRjKo86aHH34Yr7/+OsaOHYsDBw4gOTkZH3zwAb788kssXboUzZs3B1DXCTwtLQ1r165Fx44dERkZia5du6Jr164+TS+RX9N6mBsR+R/LsPt9+/bVe6+2tlZITU0VUlNThevXrwuCIAiFhYXC6NGjhbi4OKFx48ZC69athbvuukv44IMPxM8999xzwk033SS0aNFCCAsLEzp37iz87//+r1BTUyNuIzVEvqqqSnj88ceFVq1aCU2bNhXuvvtu4cyZM5LD0D/77DOha9euQkhIiNCpUyfhnXfekdznxx9/LGRkZAhNmjQRkpOTheeff1548803BQBCUVGRuJ0rw+6dTSkgt79z584J48aNE6KiooSQkBAhPT1dWLVqVb3P7tmzR+jRo4cQEhLCIfhEbjAIglW9MBEREVEAYh8iIiIiCngMiIiIiCjgMSAiIiKigKdpQLRs2TJkZGQgIiICERERyMrKwqZNm8T3+/XrJ67cbPk3efJkm30UFxcjNzcX4eHhiImJwaxZs3D9+nWbbXbs2IEbb7wRoaGhaN++PVavXu2LwyMiIiI/oemw+zZt2mDx4sXo0KEDBEHAW2+9hXvvvReHDh3CDTfcAACYNGkSFi5cKH7GMt8GUDfDbG5uLuLi4rBnzx6UlJRg9OjRaNy4MRYtWgQAKCoqQm5uLiZPnox3330X27Ztw8SJExEfHy87cy4REREFFt2NMouMjMQLL7yACRMmoF+/fujWrZvkJGsAsGnTJtx11104e/YsYmNjAQDLly/HnDlzcOHCBYSEhGDOnDnYuHEjjh49Kn5u5MiRKCsrw+bNm31xSERERKRzupmYsba2Fu+//z4qKiqQlZUlvv7uu+/inXfeQVxcHO6++27Mnz9frCXKz89Henq6GAwBQE5ODqZMmYJjx46he/fuyM/Pr7dkQE5OjsurYZvNZpw9exbNmzfnNPlERER+QhAE/PLLL0hISKi3ULI1zQOiI0eOICsrC1evXkWzZs2wfv16pKWlAQBGjRqFtm3bIiEhAYcPH8acOXNw4sQJrFu3DgBQWlpqEwwBEP8uLS11uE15eTmqqqoQFhYmma7q6mqbJQN++uknMV1ERETkX86cOYM2bdrIvq95QNSpUycUFBTAZDLhgw8+wJgxY7Bz506kpaXh4YcfFrdLT09HfHw8BgwYgMLCQqSmpno1XXl5eViwYEG918+cOYOIiAivfjcRERGpo7y8HImJieJSN3I0D4hCQkLQvn17AECPHj2wb98+vPTSS3j99dfrbXvzzTcDAE6ePInU1FTExcXh66+/ttnm3LlzAIC4uDjx/y2vWW8TEREhWzsEAPPmzcPMmTPFvy0n1DIijoiIiPyHs+4uupuHyGw2y65uXVBQAACIj48HAGRlZeHIkSM4f/68uM3WrVsREREhNm9lZWVh27ZtNvvZunWrTT8lKaGhoWLwwyCIiIioYdO0hmjevHkYMmQIkpKS8Msvv2DNmjXYsWMHtmzZgsLCQqxZswZ33nknWrVqhcOHD2PGjBnIzs5GRkYGgLpVqdPS0vDQQw9hyZIlKC0txVNPPYWpU6ciNDQUADB58mT8/e9/x+zZszF+/Hhs374d//rXv7Bx40YtD52IiIh0RNOA6Pz58xg9ejRKSkpgNBqRkZGBLVu24I477sCZM2fwn//8B0uXLkVFRQUSExMxfPhwPPXUU+Lng4ODsWHDBkyZMgVZWVlo2rQpxowZYzNvUUpKCjZu3IgZM2bgpZdeQps2bbBy5UrOQUREREQi3c1DpFfl5eUwGo0wmUxsPiMiamBqa2tx7do1rZNBbmjcuDGCg4Nl31dafmveqZqIiEgrgiCgtLQUZWVlWieFPNCiRQvExcV5NE8gAyIiIgpYlmAoJiYG4eHhnHjXzwiCgMrKSnFwlWXQlTsYEBERUUCqra0Vg6FWrVppnRxyk2UKnfPnzyMmJsZh85kjuht2T0RE5AuWPkPWi4aTf7L8hp70A2NAREREAY3NZP5Pjd+QAREREREFPAZEREREBKCupuWjjz7SOhk2duzYAYPB4PWRgAyIGpASUxX2FF5EialK66QQEZGOPfvss+jWrZvWydAVjjJrINbuK8a8dUdgFoAgA5A3LB0jeiVpnSwiIiK/wBqiBqDEVCUGQwBgFoAn1x1lTRERUQNlNpuRl5eHlJQUhIWFITMzEx988AGA35qYtm3bhp49eyI8PBy33norTpw4AQBYvXo1FixYgG+++QYGgwEGgwGrV68W933x4kXcd999CA8PR4cOHfDxxx8rSpPle7ds2YLu3bsjLCwMt99+O86fP49NmzahS5cuiIiIwKhRo1BZWSl+rrq6Go8//jhiYmLQpEkT9OnTB/v27VPvZCnEgKgBKLpYIQZDFrWCgFMXK6U/QEREqvNlt4W8vDy8/fbbWL58OY4dO4YZM2bg97//PXbu3Clu86c//Ql//etfsX//fjRq1Ajjx48HAIwYMQJ//OMfccMNN6CkpAQlJSUYMWKE+LkFCxbgd7/7HQ4fPow777wTDz74IC5duqQ4bc8++yz+/ve/Y8+ePThz5gx+97vfYenSpVizZg02btyIzz77DK+88oq4/ezZs/Hhhx/irbfewsGDB9G+fXvk5OS49J1qYEDUAKRENUWQ3YjDYIMByVGcW4OIyBfW7itG78XbMWrFXvRevB1r9xV77buqq6uxaNEivPnmm8jJyUG7du0wduxY/P73v8frr78ubve///u/6Nu3L9LS0jB37lzs2bMHV69eRVhYGJo1a4ZGjRohLi4OcXFx4uSGADB27Fg88MADaN++PRYtWoQrV67g66+/Vpy+5557Dr1790b37t0xYcIE7Ny5E8uWLUP37t1x22234f7778fnn38OAKioqMCyZcvwwgsvYMiQIUhLS8OKFSsQFhaGN954Q72TpgADogYg3hiGvGHpCP51HoZggwGLhnVFvDHMySeJiMhTvu62cPLkSVRWVuKOO+5As2bNxH9vv/02CgsLxe0yMjLE/7YsaWFZ4sIR6881bdoUERERij4n9fnY2FiEh4ejXbt2Nq9Z9ldYWIhr166hd+/e4vuNGzfGTTfdhO+++07xd6qBnaobiBG9kpDdMRqnLlYiOSqcwRARkY846rbgjXvxlStXAAAbN25E69atbd4LDQ0Vg6LGjRuLr1smLjSbzU73b/05y2eVfE7q8waDweP9+QoDogYk3hjGQIiIyMcs3RasgyJvdltIS0tDaGgoiouL0bdv33rvW9cSyQkJCUFtba03kueS1NRUhISE4Msvv0Tbtm0B1C2/sW/fPkyfPt2naWFARERE5AFLt4Un1x1FrSB4vdtC8+bN8cQTT2DGjBkwm83o06cPTCYTvvzyS0RERIiBhSPJyckoKipCQUEB2rRpg+bNmyM0NNQr6XWkadOmmDJlCmbNmoXIyEgkJSVhyZIlqKysxIQJE3yaFgZEREREHvJ1t4U///nPiI6ORl5eHn744Qe0aNECN954I5588klFzVHDhw/HunXr0L9/f5SVlWHVqlUYO3asV9MsZ/HixTCbzXjooYfwyy+/oGfPntiyZQtatmzp03QYBEEQnG9G5eXlMBqNMJlMiIiI0Do5RETkoatXr6KoqAgpKSlo0qSJ1skhDzj6LZWW3xxlRkRERAGPARERERE5NXnyZJth/tb/Jk+erHXyPMY+REREROTUwoUL8cQTT0i+1xC6kjAgIiIiIqdiYmIQExOjdTK8hk1mREREFPAYEBERUUDT46zJ5Bo1fkM2mRERUUAKCQlBUFAQzp49i+joaISEhIhLXJB/EAQBNTU1uHDhAoKCghASEuL2vhgQERFRQAoKCkJKSgpKSkpw9uxZrZNDHggPD0dSUhKCgtxv+GJAREREASskJARJSUm4fv26Ltb2ItcFBwejUaNGHtfuMSAiIqKAZlmR3X5Vdgos7FRNREREAY8BEREREQU8BkREREQU8BgQERERUcBjQEREREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHA0zQgWrZsGTIyMhAREYGIiAhkZWVh06ZN4vtXr17F1KlT0apVKzRr1gzDhw/HuXPnbPZRXFyM3NxchIeHIyYmBrNmzcL169dtttmxYwduvPFGhIaGon379li9erUvDo+IiIj8hKYBUZs2bbB48WIcOHAA+/fvx+233457770Xx44dAwDMmDEDn3zyCd5//33s3LkTZ8+exbBhw8TP19bWIjc3FzU1NdizZw/eeustrF69Gk8//bS4TVFREXJzc9G/f38UFBRg+vTpmDhxIrZs2eLz4yUiIiJ9MgiCIGidCGuRkZF44YUXcP/99yM6Ohpr1qzB/fffDwA4fvw4unTpgvz8fNxyyy3YtGkT7rrrLpw9exaxsbEAgOXLl2POnDm4cOECQkJCMGfOHGzcuBFHjx4Vv2PkyJEoKyvD5s2bFaervLwcRqMRJpMJERER6h40EREReYXS8ls3fYhqa2vxz3/+ExUVFcjKysKBAwdw7do1DBw4UNymc+fOSEpKQn5+PgAgPz8f6enpYjAEADk5OSgvLxdrmfLz8232YdnGsg851dXVKC8vt/lHREREDZPmAdGRI0fQrFkzhIaGYvLkyVi/fj3S0tJQWlqKkJAQtGjRwmb72NhYlJaWAgBKS0ttgiHL+5b3HG1TXl6Oqqoq2XTl5eXBaDSK/xITEz09VCIiItIpzQOiTp06oaCgAHv37sWUKVMwZswYfPvtt1onC/PmzYPJZBL/nTlzRuskERERkZc00joBISEhaN++PQCgR48e2LdvH1566SWMGDECNTU1KCsrs6klOnfuHOLi4gAAcXFx+Prrr232ZxmFZr2N/ci0c+fOISIiAmFhYbLpCg0NRWhoqMfHR0RERPqneQ2RPbPZjOrqavTo0QONGzfGtm3bxPdOnDiB4uJiZGVlAQCysrJw5MgRnD9/Xtxm69atiIiIQFpamriN9T4s21j2QURERKRpDdG8efMwZMgQJCUl4ZdffsGaNWuwY8cObNmyBUajERMmTMDMmTMRGRmJiIgIPPbYY8jKysItt9wCABg0aBDS0tLw0EMPYcmSJSgtLcVTTz2FqVOnirU7kydPxt///nfMnj0b48ePx/bt2/Gvf/0LGzdu1PLQiYiISEc0DYjOnz+P0aNHo6SkBEajERkZGdiyZQvuuOMOAMCLL76IoKAgDB8+HNXV1cjJycFrr70mfj44OBgbNmzAlClTkJWVhaZNm2LMmDFYuHChuE1KSgo2btyIGTNm4KWXXkKbNm2wcuVK5OTk+Px4iYiISJ90Nw+RXnEeIiIiIv/jd/MQEREREWmFAREREREFPAZEREREFPAYEBEpUGKqwp7Ciygxyc9uTkRE/kvziRmJ9G7tvmLMW3cEZgEIMgB5w9IxoleS1skiIiIVsYaIyIESU5UYDAGAWQCeXHeUNUVERA0MAyIiB4ouVojBkEWtIODUxUptEkRERF7BgIjIgZSopggy2L4WbDAgOSpcmwQREZFXMCAiciDeGIa8YekINtRFRcEGAxYN64p4o/zCwERE5H/YqZrIiRG9kpDdMRqnLlYiOSqcwRARUQPEgIhIgXhjGAMhIqIGjE1mREREFPAYEBEREVHAY0BEREREAY8BEREREQU8BkREREQU8BgQERERUcBjQEREREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAY8BEZHGSkxV2FN4ESWmKq2TQkQUsBppnQCiQLZ2XzHmrTsCswAEGYC8YekY0StJ62QREQUc1hARaaTEVCUGQwBgFoAn1x1lTRERkQYYEBFppOhihRgMWdQKAk5drNQmQUREAYwBEZFGUqKaIshg+1qwwYDkqHBtEkREFMAYEBFpJN4Yhrxh6Qg21EVFwQYDFg3rinhjmMYpIyIKPOxUTaShEb2SkN0xGqcuViI5KpzBEBGRRhgQEWks3hjGQIiISGNsMiMiIqKAx4CIiIiIAh4DIiIiIgp4DIiIiIgo4DEgIiIiooCnaUCUl5eHXr16oXnz5oiJicHQoUNx4sQJm2369esHg8Fg82/y5Mk22xQXFyM3Nxfh4eGIiYnBrFmzcP36dZttduzYgRtvvBGhoaFo3749Vq9e7e3DIyIiIj+haUC0c+dOTJ06FV999RW2bt2Ka9euYdCgQaioqLDZbtKkSSgpKRH/LVmyRHyvtrYWubm5qKmpwZ49e/DWW29h9erVePrpp8VtioqKkJubi/79+6OgoADTp0/HxIkTsWXLFp8dKxEREemXQRAEwflmvnHhwgXExMRg586dyM7OBlBXQ9StWzcsXbpU8jObNm3CXXfdhbNnzyI2NhYAsHz5csyZMwcXLlxASEgI5syZg40bN+Lo0aPi50aOHImysjJs3rxZUdrKy8thNBphMpkQERHh2YESERGRTygtv3XVh8hkMgEAIiMjbV5/9913ERUVha5du2LevHmorPxt8cv8/Hykp6eLwRAA5OTkoLy8HMeOHRO3GThwoM0+c3JykJ+fL5uW6upqlJeX2/wjIiKihkk3M1WbzWZMnz4dvXv3RteuXcXXR40ahbZt2yIhIQGHDx/GnDlzcOLECaxbtw4AUFpaahMMARD/Li0tdbhNeXk5qqqqEBZWf5bgvLw8LFiwQNVjJCIiIn3STUA0depUHD16FLt377Z5/eGHHxb/Oz09HfHx8RgwYAAKCwuRmprqtfTMmzcPM2fOFP8uLy9HYmKi176PiIiItKOLJrNp06Zhw4YN+Pzzz9GmTRuH2958880AgJMnTwIA4uLicO7cOZttLH/HxcU53CYiIkKydggAQkNDERERYfOPiIiIGiZNAyJBEDBt2jSsX78e27dvR0pKitPPFBQUAADi4+MBAFlZWThy5AjOnz8vbrN161ZEREQgLS1N3Gbbtm02+9m6dSuysrJUOhIiIiLyZ5oGRFOnTsU777yDNWvWoHnz5igtLUVpaSmqqqoAAIWFhfjzn/+MAwcO4NSpU/j4448xevRoZGdnIyMjAwAwaNAgpKWl4aGHHsI333yDLVu24KmnnsLUqVMRGhoKAJg8eTJ++OEHzJ49G8ePH8drr72Gf/3rX5gxY4Zmx05ERET6oemwe4PBIPn6qlWrMHbsWJw5cwa///3vcfToUVRUVCAxMRH33XcfnnrqKZsmrNOnT2PKlCnYsWMHmjZtijFjxmDx4sVo1Oi3LlI7duzAjBkz8O2336JNmzaYP38+xo4dqzitHHZPRETkf5SW37qah0jPGBARERH5H7+ch4iIiIhICwyIiIiIKOAxICIiIqKAx4CIiIiIAh4DIiIiIgp4DIiIqJ4SUxX2FF5EialK66QQEfmEbtYyIyJ9WLuvGPPWHYFZAIIMQN6wdIzolaR1soiIvIo1REQkKjFVicEQAJgF4Ml1R1lTREQNHgMiIhIVXawQgyGLWkHAqYuV2iSIiMhHGBARkSglqimC7FbUCTYYkBwVrk2CiIh8hAEREYnijWHIG5aO4F/XGQw2GLBoWFfEG8M0ThkRkXexUzUR2RjRKwnZHaNx6mIlkqPCGQwRUUBgQERE9cQbwxgIEVFAYZMZERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAY8BEQWcElMV9hRe5AruREQk4kzVFFDW7ivGvHVHYBaAIAOQNywdI3olaZ0sIiLSGGuIKGCUmKrEYAgAzALw5LqjrCkiIiIGRBQ4ii5WiMGQRa0g4NTFSm0SREREusGAiAJGSlRTBBlsXws2GJAcFa5NgoiISDcYEFHAiDeGIW9YOoINdVFRsMGARcO6clV3IiJip2oKLCN6JSG7YzROXaxEclQ4gyEiIgLAgIgCULwxjIEQERHZYJMZERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAY8BEREREQU8BkREREQU8DQNiPLy8tCrVy80b94cMTExGDp0KE6cOGGzzdWrVzF16lS0atUKzZo1w/Dhw3Hu3DmbbYqLi5Gbm4vw8HDExMRg1qxZuH79us02O3bswI033ojQ0FC0b98eq1ev9vbhERERkZ/QNCDauXMnpk6diq+++gpbt27FtWvXMGjQIFRUVIjbzJgxA5988gnef/997Ny5E2fPnsWwYcPE92tra5Gbm4uamhrs2bMHb731FlavXo2nn35a3KaoqAi5ubno378/CgoKMH36dEycOBFbtmzx6fESERGRPhkEQRC0ToTFhQsXEBMTg507dyI7OxsmkwnR0dFYs2YN7r//fgDA8ePH0aVLF+Tn5+OWW27Bpk2bcNddd+Hs2bOIjY0FACxfvhxz5szBhQsXEBISgjlz5mDjxo04evSo+F0jR45EWVkZNm/erCht5eXlMBqNMJlMiIiIUP/giYiISHVKy29d9SEymUwAgMjISADAgQMHcO3aNQwcOFDcpnPnzkhKSkJ+fj4AID8/H+np6WIwBAA5OTkoLy/HsWPHxG2s92HZxrIPIiIiCmyNtE6AhdlsxvTp09G7d2907doVAFBaWoqQkBC0aNHCZtvY2FiUlpaK21gHQ5b3Le852qa8vBxVVVUICwurl57q6mpUV1eLf5eXl3t2gERERKRbuqkhmjp1Ko4ePYp//vOfWicFQF2Hb6PRKP5LTEzUOklERETkJboIiKZNm4YNGzbg888/R5s2bcTX4+LiUFNTg7KyMpvtz507h7i4OHEb+1Fnlr+dbRMRESFZOwQA8+bNg8lkEv+dOXPGo2MkIiIi/dI0IBIEAdOmTcP69euxfft2pKSk2Lzfo0cPNG7cGNu2bRNfO3HiBIqLi5GVlQUAyMrKwpEjR3D+/Hlxm61btyIiIgJpaWniNtb7sGxj2YeU0NBQRERE2PwjIiKihknxKDNX+tAoDR4effRRrFmzBv/+97/RqVMn8XWj0SjW3EyZMgWffvopVq9ejYiICDz22GMAgD179gCoG3bfrVs3JCQkYMmSJSgtLcVDDz2EiRMnYtGiRQDqht137doVU6dOxfjx47F9+3Y8/vjj2LhxI3JychSllaPMiIiI/I/S8ltxQBQUFASDweBwG0EQYDAYUFtbqyiRcvtbtWoVxo4dC6BuYsY//vGPeO+991BdXY2cnBy89tprYnMYAJw+fRpTpkzBjh070LRpU4wZMwaLFy9Go0a/9RnfsWMHZsyYgW+//RZt2rTB/Pnzxe9QggERERGR/1E9INq5c6fiL+/bt6/ibf0FAyIiIiL/o7T8VjzsviEGOURERESAB/MQlZWV4Y033sB3330HALjhhhswfvx4GI1G1RJHRERE5AtujTLbv38/UlNT8eKLL+LSpUu4dOkS/va3vyE1NRUHDx5UO41EREREXuXWWma33XYb2rdvjxUrVogdl69fv46JEyfihx9+wK5du1RPqNbYh4iIiMj/qN6p2lpYWBgOHTqEzp0727z+7bffomfPnqisrHQ9xTrHgIiIiMj/eHVx14iICBQXF9d7/cyZM2jevLk7uyQiklViqsKewosoMVVpnRQiaqDc6lQ9YsQITJgwAX/5y19w6623AgC+/PJLzJo1Cw888ICqCSSiwLZ2XzHmrTsCswAEGYC8YekY0StJ62QRUQPjVkD0l7/8BQaDAaNHj8b169cBAI0bN8aUKVOwePFiVRNIRIGrxFQlBkMAYBaAJ9cdRXbHaMQbpdchJCJyh1sBUUhICF566SXk5eWhsLAQAJCamorw8HBVE0dEga3oYoUYDFnUCgJOXaxkQEREqnJ7HiIACA8PR3p6ulppISKykRLVFEEG2ARFwQYDkqP48EVE6nIrILp69SpeeeUVfP755zh//jzMZrPN+5yLiIjUEG8MQ96wdDy57ihqBQHBBgMWDevK2iEiUp1bAdGECRPw2Wef4f7778dNN93kdNFXIiJ3jeiVhOyO0Th1sRLJUeEMhojIK9wKiDZs2IBPP/0UvXv3Vjs9RET1xBvDGAgRkVe5NQ9R69atOd8QERERNRhuBUR//etfMWfOHJw+fVrt9BCRBjjxIREFOreazHr27ImrV6+iXbt2CA8PR+PGjW3ev3TpkiqJIyLv48SHRERuBkQPPPAAfvrpJyxatAixsbHsVE3kpzjxIRFRHbcCoj179iA/Px+ZmZlqp4eIfIgTHxIR1XGrD1Hnzp1RVcW+BkT+zjLxoTVOfEhEgcitgGjx4sX44x//iB07duDnn39GeXm5zT8ikqa3zsuWiQ+Df2325sSHRBSoDIIgCM43sxUUVBdH2fcdEgQBBoMBtbW16qROR8rLy2E0GmEymRAREaF1csgP6bnzcompihMfElGDpLT8dqsP0eeff+52wogCkd47LwfKxIclpioUXaxASlTTgDheIlLOrYCob9++irZ79NFHsXDhQkRFRbnzNUQNBjsva0/PNXREpD23+hAp9c4777BPERHYeVlrcjV0eunLRUTa82pA5Eb3JKIGiZ2XteWoho6ICHCzyYyIXMdV27VjqaGzDopYQ0dE1rxaQ0REtuKNYchKbcVgyMdYQ0dEzrCGiIgCAmvoiMgRBkREpEveGCIfKNMLEJHrvBoQ/f73v+ckhkTkMg6RJyJfc2umagAoKyvD119/jfPnz8NsNtu8N3r0aFUSpyecqZrIN0pMVei9eHu9DtC75/Zn7Q4RucyrM1V/8sknePDBB3HlyhVERETYLOFhMBgaZEBERL7BSSyJSAtujTL74x//iPHjx+PKlSsoKyvD5cuXxX+XLl1SO41EFEA4iSURacGtgOinn37C448/jvBw3qCItFBiqsKewosNcqZlDpEnIi241WSWk5OD/fv3o127dmqnh4icCIQOxxwiT0S+pjgg+vjjj8X/zs3NxaxZs/Dtt98iPT0djRs3ttn2nnvuUS+FRCSSW5Mru2N0gwsaOESeiHxJcUA0dOjQeq8tXLiw3msGgwG1tbUeJYqIpLHDMRGRdygOiOyH1hOR73FNLiIi73CrU/Xbb7+N6urqeq/X1NTg7bff9jhRRCSNHY6JiLzDrYkZg4ODUVJSgpiYGJvXf/75Z8TExDTIJjNOzEh6UmKqYodjIiIFlJbfbtUQCYJgMxmjxY8//gij0ah4P7t27cLdd9+NhIQEGAwGfPTRRzbvjx07FgaDwebf4MGDbba5dOkSHnzwQURERKBFixaYMGECrly5YrPN4cOHcdttt6FJkyZITEzEkiVLlB+sH2rIQ7KpTrwxDFmprRgMERGpxKVh9927dxcDkwEDBqBRo98+Xltbi6KionoBiyMVFRXIzMzE+PHjMWzYMMltBg8ejFWrVol/h4aG2rz/4IMPoqSkBFu3bsW1a9cwbtw4PPzww1izZg2Aushw0KBBGDhwIJYvX44jR45g/PjxaNGiBR5++GFXDt8vBMKQbCIiIrW5FBBZRpoVFBQgJycHzZo1E98LCQlBcnIyhg8frnh/Q4YMwZAhQxxuExoairi4OMn3vvvuO2zevBn79u1Dz549AQCvvPIK7rzzTvzlL39BQkIC3n33XdTU1ODNN99ESEgIbrjhBhQUFOBvf/tbgwuIAmlINhERkZpcCoieeeYZAEBycjJGjBiBJk2aeCVR1nbs2IGYmBi0bNkSt99+O5577jm0atUKAJCfn48WLVqIwRAADBw4EEFBQdi7dy/uu+8+5OfnIzs7GyEhIeI2OTk5eP7553H58mW0bNlS8nurq6ttOo6Xl5d76QjVwyHZRERE7nFrpuoxY8YAqBtVJrXafVKSOk00gwcPxrBhw5CSkoLCwkI8+eSTGDJkCPLz8xEcHIzS0tJ6HbsbNWqEyMhIlJaWAgBKS0uRkpJis01sbKz4nlxAlJeXhwULFqhyHL7CIdlEDU+JqQpFFyuQEtWUDzZEXuRWQPT9999j/Pjx2LNnj83rls7Wao0yGzlypPjf6enpyMjIQGpqKnbs2IEBAwao8h1y5s2bh5kzZ4p/l5eXIzEx0avf6SnLkOwn1x1FrSBwSDaRn2OfQCLfcSsgGjt2LBo1aoQNGzYgPj5ecsSZN7Rr1w5RUVE4efIkBgwYgLi4OJw/f95mm+vXr+PSpUtiv6O4uDicO3fOZhvL33J9k4C6vkv2Hbj9AdeAImoY2CeQyLfcCogKCgpw4MABdO7cWe30OPTjjz/i559/Rnx8PAAgKysLZWVlOHDgAHr06AEA2L59O8xmM26++WZxmz/96U+4du2auOba1q1b0alTJ9nmMn/HNaCI/B/7BBL5llvzEKWlpeHixYsef/mVK1dQUFCAgoICAEBRUREKCgpQXFyMK1euYNasWfjqq69w6tQpbNu2Dffeey/at2+PnJwcAECXLl0wePBgTJo0CV9//TW+/PJLTJs2DSNHjkRCQgIAYNSoUQgJCcGECRNw7NgxrF27Fi+99JJNc1hDx3mJiPyPpU+gNfYJJPIet2aq3r59O5566iksWrRIcrV7pTM579ixA/3796/3+pgxY7Bs2TIMHToUhw4dQllZGRISEjBo0CD8+c9/FjtFA3UTM06bNg2ffPIJgoKCMHz4cLz88ss2UwIcPnwYU6dOxb59+xAVFYXHHnsMc+bMcemY/XWmavZBIPJfa/cV1+sTyOuXyDVKy2+3AqKgoN8qlqz7D6ndqVpP/DEgKjFVoffi7fVGne2e259V7kR+gsu0EHlGafntVh+izz//3O2Eke+wDwKR/2OfQCLfcKsPUd++fREUFIQVK1Zg7ty5aN++Pfr27Yvi4mIEBwernUZyE/sgEBERKeNWQPThhx8iJycHYWFhOHTokDijs8lkwqJFi1RNILnPMi9R8K/NmpyXiIiISJpbfYi6d++OGTNmYPTo0WjevDm++eYbtGvXDocOHcKQIUPEWaIbEn/sQ2TBPghERBSovNqH6MSJE8jOzq73utFoRFlZmTu7JC9iHwQiIiLH3Goyi4uLw8mTJ+u9vnv3brRr187jRBERERH5klsB0aRJk/CHP/wBe/fuhcFgwNmzZ/Huu+/iiSeewJQpU9ROIxEREZFXudVkNnfuXJjNZgwYMACVlZXIzs5GaGgonnjiCTz22GNqp5GIiIjIq9zqVG1RU1ODkydP4sqVK0hLS7OZHbqh8edO1URERIHKq52qLUJCQpCWlubJLoiIyAtKTFUouliBlKimHFRBpIBHAREREekP1zAkcp1bnarJO9xdlZ6r2RORRYmpSgyGAMAsAE+uO8r7A5ETrCHSCXef6JR8zlHVOavV9YG/A6mFaxgSuYcBkQ7IPdFld4x2eANT8jlHAROr1fWBvwOpybKGoXVQxDUMiZxjk5kOOHqi8+RzjqrOWa2uD/wdSG1cw5DIPawh0gF3n+icfc5RwCRAYLW6DrB5g7xhRK8kZHeM1uUahmweJr1iDZEOuPtE5+xzloDJmiVgcvQe+Q5/B/KWeGMYslJb6SroWLuvGL0Xb8eoFXvRe/F2rN1XrHWSiEQeTcwYSHwxMaO7q9I7+tzafcV4ct1R1AqCGDBZ9yGSe09vGvJTpT/9DkTuKjFVoffi7fVqtHfP7d/grmnSF6XlNwMihfx5pmpHAZO7QZgvBUKnY3/4HYg8safwIkat2Fvv9fcm3YKs1FYapIgChU9mqib/EG8Mky1kHb2nB+6OwPM3ev8diDzF0W+kd+xDRLrm7gg8ItIXjn4jvWMNEekanyqJGg49j34jYg0R6RqfKokaFj2OfiMCWENEDuhlZBefKomIyNsYEJEkvY3sYqdjIiLyJjaZUT3fnLmMuR9yOQkiIgocDIjIxtp9xRj62h7YT07FkV1ERNSQMSAikWXOH6mpOjmyi4iIGjIGRCSSmvMHqMskHNlFREQNGTtVk0hqzp8gA7D+0VuRmdjSJ2nQy8g2IiIKLKwhIpHUnD95w9J9FgxxJWwiItIKa4jIhlZz/kitWTZv3RF0jmvus4CMAhNrJYkIYEBEErSY80eq/5JZAIa+ugeLhze81e1JH/Q23xYRaYdNZjpWYqrCnsKLDWb+H0fHY+m/ZE8A50Ai75CqlWReIwpcrCHSqYb25OrseCz9l6wLKAvLHEhsziA1SdVKMq8RBS7WEOlQQ3tyVXo8I3olYf2jt8K+oohzIJE3SNVKMq8RBS4GRDrk6MnVH7lyPJmJLbF4OFe3J++TGlXJvEYUuNhkpkNS8wH585Orq8fD1e3JV5jXiMiCNUQ61NCeXN05nnhjGLJSW/ntMZP/YF4jIkDjgGjXrl24++67kZCQAIPBgI8++sjmfUEQ8PTTTyM+Ph5hYWEYOHAgvv/+e5ttLl26hAcffBARERFo0aIFJkyYgCtXrthsc/jwYdx2221o0qQJEhMTsWTJEm8fmsdG9ErC7rn98d6kW7B7bn+/7lANNLzjISKihkXTgKiiogKZmZl49dVXJd9fsmQJXn75ZSxfvhx79+5F06ZNkZOTg6tXr4rbPPjggzh27Bi2bt2KDRs2YNeuXXj44YfF98vLyzFo0CC0bdsWBw4cwAsvvIBnn30W//d//+f141PC0VD0hvbk2tCOh4iI3FdiqsKGw2fxyTc/6WLQkEEQpNY29z2DwYD169dj6NChAOpqhxISEvDHP/4RTzzxBADAZDIhNjYWq1evxsiRI/Hdd98hLS0N+/btQ8+ePQEAmzdvxp133okff/wRCQkJWLZsGf70pz+htLQUISEhAIC5c+fio48+wvHjxxWnr7y8HEajESaTCREREaocs5Kh9ZxFl4iIGpq1+4ox98MjsAQgBsBrk/AqLb9124eoqKgIpaWlGDhwoPia0WjEzTffjPz8fABAfn4+WrRoIQZDADBw4EAEBQVh79694jbZ2dliMAQAOTk5OHHiBC5fviz7/dXV1SgvL7f5pyYlQ9H1vrZXQ5s4koiI3Ke0TLCUf9a1MQKAeR8e0bQ80e0os9LSUgBAbGyszeuxsbHie6WlpYiJibF5v1GjRoiMjLTZJiUlpd4+LO+1bCm9TlZeXh4WLFjg+YHIcDYpnFzAlN0xWvx805BgVNTUalJ71NAmjiQiIve5UiZIlX8AYAY0nRhVtwGR1ubNm4eZM2eKf5eXlyMxMVG1/Tsbii4XMK36sggrvyiyec/XAYmjYI3NekREgcXVMkGq/APqmqy0nF5Gt01mcXFxAIBz587ZvH7u3Dnxvbi4OJw/f97m/evXr+PSpUs220jtw/o7pISGhiIiIsLmn5qcDUWXmkU3yACs2FVULxP5eiZrTyeOZFMbEZF/cXTfdrVMsJR/BqsyzgAgb3i6pg/Vuq0hSklJQVxcHLZt24Zu3boBqKul2bt3L6ZMmQIAyMrKQllZGQ4cOIAePXoAALZv3w6z2Yybb75Z3OZPf/oTrl27hsaNGwMAtm7dik6dOsk2l/mKo0nh4o1huK97a3x48Cfxtd7to/DF9xcl9+XLNZg8mTiSTW1EtjhwgrRgne8ASP63JT86u2+7UyZYyr+Dpy9DEIAeyS01z/+aBkRXrlzByZMnxb+LiopQUFCAyMhIJCUlYfr06XjuuefQoUMHpKSkYP78+UhISBBHonXp0gWDBw/GpEmTsHz5cly7dg3Tpk3DyJEjkZCQAAAYNWoUFixYgAkTJmDOnDk4evQoXnrpJbz44otaHHI98cYwyUxQYqrC+kM/2by2WyYYAuoyqa+qGi3R/ZPrjqJWEBRPHMmmNiJbfEDwHQaev7HOd5ZKGgG2/23Jj9kdo53et90tE+KNYcjN0M9voWlAtH//fvTv31/829JnZ8yYMVi9ejVmz56NiooKPPzwwygrK0OfPn2wefNmNGnSRPzMu+++i2nTpmHAgAEICgrC8OHD8fLLL4vvG41GfPbZZ5g6dSp69OiBqKgoPP300zZzFemRVBWko/kRBAHY9d8LPruZurPkQUNbXZw3WPIEHxB8h4Hnb+zznf1ILwtLflw6MlPRfbshLIOjaUDUr18/OJoGyWAwYOHChVi4cKHsNpGRkVizZo3D78nIyMAXX3zhdjq1INfpTI4A399M5Wq35DSkNdp4gyVPNbQHBL1i4GlLboSXlFpBQJDBoPi+7WqZoDe67VQd6Ow7XQcZfqvOlONKx2YtNJQ12pTMIUUNmxoDA6QGTvjrA4KeeToIRO9czYtS+U5OsMGAG9u2dPu+7W8DaHTbqZrqV0Hu+u8FsY02yFDXTGZ9nfvDzdTfq1UtU83zyT5wqVU76G6/C3JNQ6qZtudOXrTPdwYDgF/LEuv/ts6P1vft8JAgVNTUosRU5TCv+mMtum6W7tA7byzd4Y4SU5VkgGTJvHrPcP7M+gK3F2wwYPfc/izMGrgSUxV6L95er3D15Le3vqaZf7xj7b7iBnev9DQvWuc7AJL/bb8fpUGON64TTygtv1lD5Ges22j1UtsSCJ2L7ZvJrPHJPnB4o9+Pv/e78Ad6uVcqofR+6kpelNqnfb6T+2/rfSjti+Wv/eMYEPk5rW+m/lgt6g65jojzc7vgzox4XV/kpJ6G3PzS0Gl9r1TClfup0ryo1j3alSDHX68Tdqomt1j60sz9MDA6F8t1gNUyGPK3DosNQUMZGEDas79+XR2soSQvqjkAxJVBAP56nbCGiFzmqC+NVtWi3m6281UHWKXHESg1c3rkT80vpE9S129iZLjLzUzO8qKaTVeu3gP98TphQNSAeSNIcNSXBtCmWtRXwYG3L3BXOixyXhVt+UPzC+mT3PW77tEsl5qZrO/vWamtJLdRu+nK1Xugv10nbDJroNbuK0bvxdsxasVe9F68HWv3FauyX0eTemlRLerrOYHijWHISm3llZohpcfR0OdVIWrI5K7fyhqz4mYmpfd3bzRduXoP9KemfdYQNUDerEGQeuIIMgAvj+wuuzifJzVVzj7rr6MZ7AVCh0WihsSVxVGtObp+s1JbOa2BcfX+7s2abWf3Z39r2mdA1AB5M0iQa0e+KzNBcntPLghHn7VciE1Dgv0mOHB083AlyOGEfkTacmVxVPv7nbPr11kzkzv3d280Xdnfnyf0ScH4Pini9/hj0z4DIj/hSi2Lt2sQlD5xeHJBSH123odHkN0xGrv+e8HmQryve2t8dOis14IDNfpiOQsMG3KHxUCYp4oaDmf51dXFUaXud55cv3qoIZa6P6/4oggrvyjC4uF19zZ/rL1nQOQHXK1l8UUNgtQTh/2NxJMLQuqzZgCvbDuJf+4rtrkQPzp0FusezcKZS1WAAejRtqWHR/cbNap8lQaGDbHDor9VmVNgU5JfXV0cVe5+5+71q4caYrlzYL3IuB4CN1cxINI5d2tZnBWucu3fataAZHeMdvuCSIlqil+X1bFhHQxZ1AoCNh4uxcrdP6ha8KpV5etKYOgPQY5S/lhlTg2fo74/SvKrVEEvx1sBgNY1xI7OgeXelpXaSvPAzVUMiHTOk1oWucJVrv1b7RqQ3XP7u31BxBvDMOm2FPzfF0U2r1vSbH1KggAxGLL+fk8LXrWqfL35pKTn5ih/rDKnhs3RvW9CnxTJ/Hrw9GW0bPrbNWZfQ2PN8Ov/CELdNT57SCcUXawAIL0chie0fHiynAOpKVis721aB26uYkCkc2oXpo7av71RA+LJBTGuTwpW7i6qd+yzB3fCks0nxCBrQp/keoGTGgWvWufeW1Xcem+O8scqc2q4nN373thdVO9hy2AApq05VO+BcUSvJJRVXcPiTcch/Hr9TezTDuP6JAOoWxz18I9leH7Tca9dn1o/DFnu7au+LMLKXUUwQ3pYvz/VejMg0jm1C1Nn7d/eqAFRu618RK8k3NMtwWZ1ZqnAyVnBK3dDsX5drXOv9pOSPzRH6aGvA5GFs3ufWQAezk7BG1+cQq0gIOjXmh7B6n3LNQYAz/8aDFnee2N3Ecb1SRbz94Mrv3Lp+nQlwNHLw1C8MQxP3pmGcb1TcODUZdX7cPoaAyI/oGZhKtc3x0JPNSCA/LHbB1mufr/cDUXq9d1z+6ty7tV8UvKX5ii9VJlr/TRN2nPW9yfYYMC43ikY1zsFpy5W4uKVq3jsvQKbbSzXmADB4fXn6vXpSoCjx4ch+5G/equtVooBkZ9QqzD9y5YT9YIhS4AUBPi0BkRpIaXk2Ef0SkLnuObYd+oyeiW3RGai/FOK3A2lc1xz2b5QclPja8WfmqO0rjLXy9M0acv+wc2+v4/9XEAlpiqH15ij91y5Pl0NcPT2MKQ0/f7wUMKAyE+5k7m+OXMZHx78qd7r4rVlqPeWS1wp+NQupFzZn9wNZd+py7q60TjC5ihl9Pg0Tdqxf3ADIPsQ5+wacza5otLr09UAR28PQ0rS7y8PJQyI/JC7mevrU5ccvu+rwsJZIaU02LOerVquxqeiprbefo78ZKq3r2CDASkyN5TwEH0u+aeX5ig909vTdENlf816c7keT9k/uLk7fYmz608q+NpTeLHecbka4OjtYchZ+v3poYQBkZ/xJHPdlBzpdP++KCwcFVJK26Lth8/aNwPWCgKGvrqn3uiQElMVnt90vN7+Zg/uhMqaWsn0VtaY3TtQH9C6OUrv9PY07a8cBSn2D2j3dW+N9Yd+Eq/NuUM645G+qYq+R481CY6uMWfXn+V9R8flToCjp4chZ+n3p4cSBkR+xpPMlZnYEsNvbC3ZbGbhi8JCrpAKDwlS3BYtN3zWmtToELmRJj9XVOP5zfUDJS0LT39oc9c7vT1N+yNnawraX7PW9xcBQN6m44ABeCTbcVDkTzUJFkquUSXH5U6A487DkLfuKY7S708PJQyI/Iynmeuvv+uG0Vltsf/UZfRMbonjpb/4vLCQK6QqamoVBXtyQY3lvEiNJLHsR+r8BRmAFbuK6gVWnnQy95SnT8rWzYlSzYaBRElho2ZB0ZACWWeFudJlLJ7fdBz3ZCY4PB/+VJMAOF/c1ELpcalR2+tKTZ7atW9y6fenhxIGRH5GjcyVmfjbKKzMxJaaVL1KFVLORnUAdRf8pYqaes1kwQYD1j2ahcoaM8JDgnDfa3sk9yN1/sb3ScYKu4kdAeCVUd2Rm5Fg85ovCjtPn5Stb3wWeml+0IqjwkbNgkKPTT6Aa/nWeltnhbnSZSzMApwGNv5Uk6BkcVMLXx2XqzV5vqx901MTnyMMiPyQ2plLq34oUp0bHQV79v2GLEGRZTtLkFdiqsKEPil449fJGu33I9XZ8Q2JiR1vtJtgzFeFnSdPyvY3Pgu1boANqfYDULeg0LrQsaTB/vdxJd/abztncGenk67aX7ODbojFpqOlNvtVEgD4oiZBrfyrZHFTd0acucudmjxf1r75y32DAZGfaqidaeWCPal+Q0EG4JWR3dEjuaVs0PRwdt1Ea1JDaq1fc3bD8rSwc+WG4MkTpaMmDE9vgHIL+PrDjU6OmgWFs325Wktz4PRlCIKAnsmRipr55H4fpflWKo8v2XwCc4Z0xpJNJ2SvDalr9vVdheKyFa4EAK487LlayKr5QKNkcVNXRqR5yp2aPF/Vvum11lQKAyKdUnMYq17JHZNUsCd1wZsFoLT8qs3+7IOmN744hXG9U5ymxdkNy5OC01lVtv058OSJ0tGNWs018MwCMPfDIzBY9dvy1Y3O2bUgt5q51LZqFhRy0zkkR4W7XEsz98MjYpOwAcDcOzsjvbVRNviZM6SzGIAAvwU+S0dmKs63cnk8o3ULp7O121+zj2Sn4p7MBLcCACUPe64WsmrX3lmuUWeLm7p6XO5SsnySFv149FBr6goGRDrkaBir3iNspVy9ockV9M9t/A6LPv0OecPSkRgZ7tHTvqMblrsFZ4mpyqZws74hOJpiwN0nSvsbn3Va1V4DTwBs1nJSu8bMneYfR6uZS+UxRwWFqzU6ctM5AFA0T1aJqQr7T13C3HVHbPrHCQDyPq3btwHAo/1SsWxnoc3+rIMhi7r1uAyK862jPO5OYe6tAMDVQrbEVIUNh8+q3mSkdHFTX1AS8GjRj0frpjpXMSDSGWfDWPUeYTtjaQqQCxLkjkmuoLf+/LpHs7xWLezuE9abu+uPXqsVBBw4ddnpTd3dAsX6xhceEoTKGrMqa+A56zyrRo2Zo22cNf84W81cLo9JFRSuBuxyTZUZbVrIFgpDX9sjrpRu/dDjiADg1R2F9V63BIDWH7f0g1Oab7WqRXCVK4Ws1AADCzXuDfHG3xY31brDsJKAx9ddLfypozzAgEh3lAxj1XOE7Yijm5OSY7Jc8BsPl+C5jd/V+3xljdnmhh4EYEKfZNXSn90xGktHZiLo14JGSa3BG7uL6r0eBAAOpgYAHDfzKOGNG9/EPilY+UXdk3AQfq0hsno/yABFNWbOAkG5bZw1/zi7dqTymHUtkGW9Oneq+Z3d+KWCSevaNUdzgykRbDBg9uBOWLK5fl8fV2oG/GE0kNJCVm6AgWV7NYM9R9ebL2ft1lvfUn8Jsi0YEOmMkidxPUfYchzdnADlxxRvDENuRjwWffqd5A0xK7VVXTX27lNYufsH/N8XRVi5u8ina6VZyBXQE7NT0KNtS8mb+uGfyvDgyq901Txqf+wP92mHcX2Sseu/F+qadyw1MgLwccFZpLcxyt7AlTzdy23jrPlHyWrm1nlM7jd1p5rf2Y3fPlBXY+5zy7FavmtEryTc0026344rBaXeClV7SgtZuetvfm4X3JkRbxOAe6t/picdirXojOyNc+EPQbYFAyKdkbrYh3ZPwEeHzvpFhC3H0dO7q8ek5Ia4cvcPqnXkc7djoNwkkJZRb/bHMHtwJ8mOsVo2j0od+xu7izCuTzKyO0bbVBEJ+HVWYsjfwCXPCWxrluRqAOybf4IMwHirGkD7c2r4tQ1JgG0ec9Zsq6QGQqrgULruldQ8WfaCACwcegNahIXgu5Lyes1k1vNuWX+XN/vt6GlQh5JCVu53tA6GvBl0eNKhWIvOyN48F3oPsi0YEOmQ1MX+RE4nv4iw5cgFBy/bDZtXytENUe2OfO7uz1ngZn8MvuqA6ErhduD0Zdk0CRBkl02Ru4Fbzol1MCIA2PXfC4rWdrLuyLpiVxFWfFGEN6xqAB2tZg4A/7vx23pzTtkfV1Zqq3qB1+whnZwWos7Oq3WhoOShx3I+7spMQER443rD2C3zbnmbXodNOytknV1/3g46HF07zvbv687I/jYazFsYEOmU/cXuLxG2HLmb012ZCc4/7GCfrjwZutvM6Mn+nD3J2h+DtzsgujP8256zvjEWcjfw7I7RMBh+60MjwPW1nVZ+USTbKV/q2rEfyi7F+rhG9EpCWeU1LP41CHl+03G0CGss27G7rPIant983Ol5tQRN2R2j6w1ll3rosWx/T2aC28PY3WG99IsvC0q1a6I8fXByNz1Krh1HfN0Z2d9Gg3kLAyLyGV+1JavdkU/Jk6bSmgFfptueK0+Blm3tA4ggA2T7xtiTu4F7uraTqzdvuWOxT6v9b/r85uP1gq6XHugm+d2LN9Xf1v68OgtG7Y9Xq5oZm6kLrAJXC28VlN46XncfnNxNj9Jrx1mafdkZ2d9Gg3kLA6IApkW/AF/VdKkdfMntT+2buDeDRlcCCbk+X9P6t6/rOySR3sM/lTmc0di61sGTm6+rN29H/dfkmm3lzhWE+rVi9sPdLdva1zS4OneOFk0Y9aYukBmhpXZBqXT0oZr3K0dBhyfnXy6/vTyyu0s14r56gLScV2czkgcCBkQNnNxNpCEuw2BP7eDLfn/eKrS8FTS6EkjIjdh6eftJ/P3zkzaBnyW9WamtZJt1pCYbdXeggKtPz3LHYsn3UoWU3LnqkVy/Y7dU4Wc/BYGrtVpaNWHIFeaWkXHeKiidHa+3ao/kgg5Pzr+jvOMqbz9ASq1dl9GmhZh39xRebDDlgRIMiBowR50/6y3DsO6IOCJHi46TehvFooS/tbu7EkjYb2vNUeAndQOXym8fHTorOUpKKVeenu2PJQh1Ux9IrXEn9xm5eX0+/uYnvPf1mXqfn9innc2+Xa3V0qoJQ+57PfmtPPne5Khwr9eWSeVZT86/r5u73CW3dt3uuf1tZtEHgFE3JeKxAR10dwxqC9I6Ac48++yzMBgMNv86d+4svn/16lVMnToVrVq1QrNmzTB8+HCcO3fOZh/FxcXIzc1FeHg4YmJiMGvWLFy/ft3Xh+JTcjcRS+BhX5D/2hpQb1tfWLuvGL0Xb8eoFXvRe/F2rN1X7JPv9ZTlpmlNrUKrxFSFPYUXVf8NRvRKwu65/fHepFuwe25/h0GvZduncrvUe896Ekln5ALHyhozslJbedS3S+nnrY/7y3m348k705x+ztG5ijeGITkqHP+UCIYMAMbZTQhqKSSDDXUZxlkh6er2apH73szElh79Vvbs87ej43X04OEtnp5/V64zrcid14OnbWfRB4A1X5/BrXn+c292l1/UEN1www34z3/+I/7dqNFvyZ4xYwY2btyI999/H0ajEdOmTcOwYcPw5ZdfAgBqa2uRm5uLuLg47NmzByUlJRg9ejQaN26MRYsW+fxYfMXRTUTNZRg85c/DPb31JOjtzrSuVMPHGx1PhKmEXjpsKj1u+9pKuc/sP3VJsqP2AzcnSvZ7cbVPiFYT2nn7e+Xyt9z3apV/PD0Pvuov6S6582oWBMmyQQAw78Mjqtyb9doi4BcBUaNGjRAXF1fvdZPJhDfeeANr1qzB7bffDgBYtWoVunTpgq+++gq33HILPvvsM3z77bf4z3/+g9jYWHTr1g1//vOfMWfOHDz77LMICQnx9eH4hNwEeD9XVCM5KrxePwjrGiLAdwWWvzU72VO78HAWIKp5I1G6L08DP39pQgBcC0YNBoPk671To8R9WYb6GwAsHl63L1eOW+1C1ZXf3Bu/j7P8LfW9WuYfvQc1npA7rz2TIyUHCgB1/cg8vTfrdV4rwE8Cou+//x4JCQlo0qQJsrKykJeXh6SkJBw4cADXrl3DwIEDxW07d+6MpKQk5Ofn45ZbbkF+fj7S09MRGxsrbpOTk4MpU6bg2LFj6N69uxaH5HX2md2SwaetOSRmQut5UHb990K9CwPwfqc6vdQeeMKdm6ZcweQoQLRu1/f0RuLqTcnTwM8fpu93tbayR9uW9QoOgwG4sW1LlJiq6k0+OVfi6dqXT8ruTiipJlcegDypXSNl5M7r3CGdxVnnrdnPKu8qvbcI6D4guvnmm7F69Wp06tQJJSUlWLBgAW677TYcPXoUpaWlCAkJQYsWLWw+Exsbi9LSUgBAaWmpTTBked/ynpzq6mpUV1eLf5eXl6t0RL5jyewHTl3G4/88VC8T7p7bX1zQ0v7C2PXfC+i9eLvXo3h/qj1Qi6NgRC5ADA8JUu1G4u5NSUng56hw1fvTtqu1lfHGMCwenl7vt4w3huGTb36q94QtADhw6jLuyvTOlA2OyP3mZVXXxBmwvZkGV6dckDs3Ur+DXptf/IXUdflI31TAACz+9Lf5tQwA8oane3SO9d4ioPuAaMiQIeJ/Z2Rk4Oabb0bbtm3xr3/9C2Fh3juBeXl5WLBggdf27yvxxjBENnNtIjypm+e8dUcQHhKMnsmRDjOuOzcnf3v683T1amdNBlIBYkVNrWo3Em/dlPRcFa6EO7WVcnlXrjnN8rIn15g75H7zxZuOi3MNeetp3dGUC0EAJth1QHclYNdDrVdD9Uh2Ku7JTMDB05chCBCnDVDaaiD1G+i9RUD3AZG9Fi1aoGPHjjh58iTuuOMO1NTUoKyszKaW6Ny5c2Kfo7i4OHz99dc2+7CMQpPql2Qxb948zJw5U/y7vLwciYmJKh6J76gxkZ1ZAB57r8BhQedJgaj32gMLpcfoTpOYZTupQrbEVKXajcQbNyW9V4Ur4W5tpVTeddScBrh/jblLrk+ht5/WHU25sPFwKVbu/gH/90URVuwuwtwhnfFIdqrigF3rWq9AUDeowvUaTUc1fHpuEdD9sHt7V65cQWFhIeLj49GjRw80btwY27ZtE98/ceIEiouLkZWVBQDIysrCkSNHcP78eXGbrVu3IiIiAmlpabLfExoaioiICJt//srVIaRSw8kt5IbkOxrm31AoPUZH0wgoHapvP6RcyW+odKi+N4Z0e3NotLemIJCi1nBpS3Oa5bcOMgCLh6XXe1KW4uq1o+T8SP3mc4Z09tq0ERZy+eLMpSqs3P2D+J4gAHmfHsfrOwsVXyOOar0a8n1IC67c351tq+cpCXRfQ/TEE0/g7rvvRtu2bXH27Fk888wzCA4OxgMPPACj0YgJEyZg5syZiIyMREREBB577DFkZWXhlltuAQAMGjQIaWlpeOihh7BkyRKUlpbiqaeewtSpUxEaGqrx0fmOJxPZ2ZN6WtN727AalC4G6U6TmJJz5Og39GYnaSXND96qCteiGU6t2kpH59ida0yK3Eg2Z+kJDwlCRU2t15drkMsXkJn2Y/Gm47inW4Kia0SrWi+taNkM6OmyP/bb6rVFQPcB0Y8//ogHHngAP//8M6Kjo9GnTx989dVXiI6uW0/pxRdfRFBQEIYPH47q6mrk5OTgtddeEz8fHByMDRs2YMqUKcjKykLTpk0xZswYLFy4UKtD0owrmdBy8zx4+jKmrTnkdEi+3tuG1aDkGN1tElNK6jf0ZidppQGJWlXh1jd9AJLH1TmuOSpqanXfP8RZAebqNSa1fyUj2azFG8PqjVa0Xq5B7fMply96tG0puXCsAGDV7lN4MreL02tEat+zB3fC85uP6/4+5Gpwo3X/PGcziVsfiz+XBQZBkFq+j+yVl5fDaDTCZDL5dfOZO9buK653Q5PrQ6RkO3/m7BhLTFXi6DyLYIMBu+f291rhvafwIkat2Fvv9fcm3SKOInSHO8dSYqpyu3O8/U1/Qp8UrPiiqN52loJUz/1DXC3A3Ll2PvnmJzz2XkG91//+gPwiolrkT8v32ueL13cVIu9TiaHdBuDLubcrTo/9vq3PpSUfje8jv0yLr7maN7T6zexJ5VEAkscil5+1quVSWn7rvoaItKe0RsPfRou5w9kxatFp0FtPZO40g7pbFS5Vy/XG7iLJCeK8MSpK7QkvXa2xc+facTaSzZIW6+NSs2nblXMmObQ7OxWnL1Zgjd3yJ2ZB2eR/1t9vHfhbzuWqL4uwYlcRVnxRhDd2F+kieHYnb+ilO4J9HgVgE6hZH4tUfta6lksJBkSkiNKCTq9tw2pydozeCAydze/jjSDMl1XfcqOuHs5OwRtfnBKHaJvtPqfH6QLcLcBcvXacjWSTOq7sjtGq/KZqnbPHBnTAP/edUZQe62tAySSlK78oqrc+o9ajHt3JG3pqgrLOo3sKLzo8FuttlQSCepgqgQEROaWHjOpv1AwMlRQ+3gjCfFnbJXfTH9e7blV6S0fg+17bo6gfg1LemC7AVwWYZSSb1MSQcse1e25/j39TNc+Z0jxmfw1ILUZt/f16qVWx507e0OtQdVeOxdnvoZfaIwZE5JBeMqo/UiOQdKXw8UbtnK+aQZ3d9C3/L7WNJ0uaeKPg9GUBJvf7ODouT39Ttc+Zs/RIXQP2rKd4cGVGbF9zN2/osTuCK8firFO2XuYwY0BEsvSUUf2NWoGkHp50fdUMKjUsvMRUZfPdrvRjUJJmpU+5rga3vizApH4fZ8flyW/qjRowR+mRugbsBRsMOPxjGR5c+ZV4zVnPiK2XWhXA/bzh6+4ISvK80mNxFDw5a3rzJQZEJEsPhbE1bzfdqbV/NQNJPfUfcEStcxdvrD8s3D6YdKUfg5Lvc/aU625w640CzJXV6r1RS2X5/jmDO2PJZu/NX2RN6hqwFmwwYPaQTuLs1IDtjNiVNWbZAFsreu9r6UqeV3oscsGTnu5xDIjIhvUNV08Z1dtNd2ruX81AUq/9B5R0cLUvvJ39bdmvK8HkkZ9M9V5zNY86esrVUy2pNyffdOf75wzpjIzW3pm/yFq8MUx2Cob5uV1wZ0a87DVXWWNG8aUKNvu7wJt5Xip40tM9jgERiaRuuHrIqN4ulNTev9qBpN76D1jnE8sIb/sOrmWV18QJ8izNF+sP/ST7t6WQciWYLDFV4flN9eexmT24k1uBp9RnvF1LqrTGx34SRrMAzF3neBJGwPWaCLn0SF0jSzad8NlcOOP7pNiMGgPqrqk7M+IRbwzD+fKr9UbcBRsMCA8J0k1A62vu1tpq0TKgl3scAyICIB8U7J7bH7vn9tc0o3r7AlV7/9544tFLFbt9PpFqxRBXUf/1b7MAfHjwJ/F9qb8thZSnI1cAIKNNC9cPTIY3a0ldqfE5cPqy5HxMB09fFhff9GZ6tG4+t4yok7qmLOm2D4YWDeuKippaXTX7+4onNd5atQzo4R7HgIgAOL7hWS8y6i5P+ph4+wL1xv718sSjNiUdXB3195BjndfUGLmiFm/2xXGl5kJuQQG11hlwlh49NJ9LXVP26Qbq8t+6R7MQE9EEB05flqw50lsfPDV5WuOtpyYsX2NARAC0fRJ2Fix5+wL11v718MSjNql8YkDdhIBmQbqDqxLWeU2NkSuesM+P3ghuXa1x6ZkcWX8SRgA9kls6Tb8a6dFLIWl/TclN6LnxSAlWflEkNutazl1DLtwtv/ulihqXa8V8kef9AQMiAqC8cHH1ZuvsaUVp1a63L1B/vgH4cuJMuXxif+5ahDW22WZo9wSxz5C9IAPq5TVPR664S252Z7XPr6sPIJYmo3kfHoEZdau65w1Pr5ced5tKlKTHnXPt7bwpueK9AVixq8hm0dsgA/DKyO7okdxSMh2O+k75w6S09v36XKkVk8szDfGBzhku7qpQoCzu6mhxTiU3W/sbiKOFR5OjwnWxaKE/02riTCWLuNpv882Zyxj66h6bG3UQgBVjeiAspJHbhY6a0yXY50fr2i+1z687C7o6Ou+eLgKq9oKcvsqb9uke3ydZckSa3GLHcun0l0lpneVbR3lLLwvHehsXdyW3yD0VKGmXdnXtJG901PSXJzqlHB2PlkPClTw92m+TmdiyXsfYod0TMOntA24XOt6eLkGAdxaTBdyrcXF03j29ntRckNOXeVNqss43dhcpqn2TS2fnuOZ+MzpNLt++MrI7WjULdZi3tO4srzcMiEgRZxeOu2snqdlvyV+e6JRydjyuDlHXQ6BoPxu19dpkrhY6vpguwZ59nvf0nKrZLNE0JBgGg21Ha1evJ+v0eHJ+fV3Q2p9Hpf2d5NK579RlvwkU5Jo75ZoHlXy2IXc6d4QBESni7MJxZ+0kNTtq6mkCPTUoOR6lNzO9BYqWwsvTWaaVBOmuBCz2+TEIv9YQWW1jOb/eOqeeNk/ZB0OedCD2JKiR69tz8cpVn8wWrbT2Te4a6pXc0m8CBU/uo3rpLK8XDIhIEWcXjrtrJ6nVKbahVf0qOR4lNzMlgZVWtUeePp06+ry7AYt9ftz13wv1zi8ArwTfajVPAXV9s9Y9moXMxPqj0JTy5Pexz5uWmqvH3ivwWVCutFlX6hrKTGzpV4GC3H1UzfXIAgEDIlLM0YXj6VOKKyM/pDS0ql+lx+PsZuYssNKy9kiqRmZCn2S3P69WwGKdH6XOrzcWo1S7ecoMoLLG7FZaLDytPbCcu4OnL2PamkP1ZjNXs/bWk6Be7hryRqDgzYcP+/uoq+uRAXV5yfrvQMOAiFzi6KlLzRuIqwV1Q6v6deV4HP0mjgIrPTQzWvLMqt2nsHL3D/i/L4qwcneR2zU63ghY7M+vN4JvtZun1HoY8PSajjeGoWXTinqzbKtZe6tGUC93DanZx0uNdLqy1Isr17bemtW1EqR1AqhhiTeGiUNb9xReRImpyulnSkxVNtvKXczO9jWiVxJ2z+2P9ybdgnWPZiExMlzR9ytJkxasj2f33P5u3aAsgVWwoW7VMevAylEh7Gsrd//g8u9tYclz9s231tSsLXR0Tt3lSZqVpsfdPG1/fl3lzd/D3XuFr6mRzrX7itF78XaMWrEXvRdvx9p9xbLbunJt+8s59AXWEJHqXHnakNo2MTLc7afleGOY7Orr3ki/t6nxhCr3lC/X8TU8xLfPSf6wlpy1ElMVEiPDse7RLFTWmFVpTlGrecqTOcSccbe5x5u/h7/0HfQ0na7W+Hi6JqAez6EvMCBqAPQypNqSFqUXrty26x7NcrsJwNNmID00I3mDVGBlX1ABdcd732t7fBoE+tNaclKBhdRkf+5Qo3lKri+ep3na04DK02OTu8f5S99BT9PpatDiShDqadr0VP54ik1mfs6ValRfcKWqVm7byhqz200SnjYDeaMZSWlThdR23m66G9ErCesezYJ1i4avq8y90QRl2a8aCxNbeNK0oPR3VDvNgOd5Wq0mFVeOzfp8ObrHeSvvqM3TdLrT7Ki0yd2TtOmt/PEUa4j8mB5rM1x52nC0bVZqK7eeKL05lNsZqSclpU/WUtsB8EnTXUVNrVc7vSrhD0N/3W1a0LoJ1pu1E5b31awdsD5fgO26XFL3OFfzjlY1Gp7kcXebHZU2ubu7Tp3eyh9PMSDyY3ps+3V1dJSjbd3pP+NpfwV3Py+3bImSG4bUjWXeh0cAq0LMmzcbtZodPC1o1BzR4w3uzASth0LD02tCLn8c/rEMD678StVAT2pOJSXButK8Y78I6twhnfFI31SP0uwK+3QquWYs22R3jMbuuf299tDg6vWnx/LHUwyI/Jhe289dedrwRs2Ap/t054lTqtB76YFuim4YcvPI2JcE3rrZqNHpVetaEG9zdyZobxUargafatdOzB7SCc9vOq56oCd1vuy5e4+zv04FAHmbjgMG4JFs3wVFFjbBmeHX4MwuHXq+rvRa/niCAZEf8/ZoGk/T5kqtjCtpti8MpAoHT2sbXPm8XKEHQdlabZKjvQCbGiK5z6rFkwJTD7Ug3uTJTNDuFBrOgh13C0lPrgn7/CGX5w+cuozIZsoCNanjdLaeXJABbt/j5IKt5zcdxz2ZCarkVXfnCRIEIO/T44AAscZK79eVnssfdzEg8nP+0PdCTfaFwX3dW2P9oZ80fYJytLiikhuG3I0FgE9vNpYC09KhVWntQ0OsOrfmyUzQrhYazoIdXxaS9oW7fUBln+cNAB7/5yG3p9sY0StJPF/zPjwC+7MbBGD9o7e6vRxJSlRTm/5IFmYBquRVVwJVh8FZtwQAwIbDZ3V/XTW08ocBUQOg974XapEqDD48+JP4vlZPUI4KPaU3DLntfH2zcaf2oSFWnVvz9PiU5gElwY6vgk9n+cA+z1sWwvVkug3Ltvazl5uF35onPVmbLd4YhrlDOtc1k1lRI6+6Ot3IpYoayf2YAaz6sggrvyiSDJisZ5n3ZsdwJbXwFp7W8OsJAyLyG0r6F8gVDiWmKhw4fRmCIKBncqTqF6J9oQfAppZFyfdJbefLYNfd2oeGWHVuTY3jU/I7Kgl2fBF8Ks0H1nn+54pqTFtzyGHanR3nxsMlyM2IF8/Vk7ldMK5PsqoPBI/0TQUMEPs/Wf+WnhTUSgNV+07d9rezIAOwYldRvdeB39Lq6cSzznizFl7PfaIABkRkR8/Ru7P+BYB04bB2XzHmfnhEvMkYACwerv6FaLmR6/2il+OoX8hdmY7zgnXhGB4ShIqaWpSYqnSXh4Df8njTkGBU1NRK5nX768AXTQNKgh1fBJ+u1EJZN7N6Mt0GADy38Tss+vQ7m+vFWSDpzv3qkexU3JOZYPNbenrNKvntpDp1W6YWEn7dfnyfZKz4oqje/ufndsGdGfEAgN6Lt3utydSbtfB67xMFMCAiK3ovyKUKg6HdE/DRobOyhYPlIrS+9wqoG9burX4Xer7oHRUgcgXV4/88hIqa607zQrzR82VTvM1+jhugfjod9W/xdh8uJcGOt4MzpYW7dT7a9d8LNiPwDA46P9sfpzWp60Uuz8pNdaEkQLL+LdW4Zp39diWmKsk+QQKAV0d1R2TTUPH8vrG7qN65v/PXmjOlCxe7+2CrtBb+4OnLaNnUtf37Q19DBkQNlKsXhN4LcgupwuCJnE6yhYPcBW6GOh0p7en5olfaL8S+Q6uz/hCWfAZA13lIarQYYJtOQNtjUBrseDM4c1a42+ejOUM64/lNx20eOgwCxPMpxXKcGw+X4LmN39m8Z329yOVZqfvV3HVHAKEuyHAlGFfrmpX77aSCcItggwE3tm1p8z2Ozr2SYNWTB1sltfAGAzBtzSHZ8+zPy6wwIGpALBnxyE8msY1c6QWh54Lcnn1h4KhwOPKTSfL1IMArF6K7F70vOkkq7RfSNLSRov4g9jfeCX1SdJ2HHD39WtIpQND8GPQwSEKucJfKR9bzEVkoeeCIN4YhNyMeiz79TvJ6cZRnpX5L68omVwJZNQtq+99OLgi3fIerNYBKaqI8Ceid1cIH/ToxqeVw7PfvKBjzh76GDIh0yJ3CUe4pROkFoefo3d1gocRUheftRpRY5A1P98qF6M5F74umSlcC3h5tW7rcH8Is1FX123cU1WLGa7n9NQ0Jln36tU6nL64DPffVs5AKzCSnIJDoIKz0nDm6Xhw1DympyVAayCq5ZtVugrL0CXKnBtBRwHTg9GWPA3pHtfAXr1zFY+8VSO4fcF67qvdh+gyIdMadwtHRUwig7ILQa/TuSbAgdzN6dVR35GYkqJzS37hy0fuqqdKVgFdJXpArGB/OTsEbX5zSzYzXUiNmLE+7Fvbp9PZ1oPe+eo7I5aPZgzthyeYTbp0zuevFUZ61z6P2NRfW23qSBkD9JijrPkFSlARfUgGTZfCIPXcCerlaeEed55U+dOmhBlQOAyIdcbdwdNYRTukFobfo3dNgQe5mdGNb9+cyUcrRRW99w/NVU6WrAa+zvCB3bsf1TsG43im6mPFaan8fHTqLdY9mobLGjPCQIFTWmOul05vXgb/01ZMjl49G9ErCPd0S3D5nUteLszxr/zvt+u8F1adG8EYTlCcTc8qRGjwCeDaztxRnx6PXVgalGBDpiLuFo6PqY3cWN9XLjdnTYEHpzciXzRf1OqQO7uyzm4irBb2jvODs3LpzHtUODuX2V1ljRlZqK4ef9dZ1oEVfPbXzt1w+sq5FcGWmc3e+y8L6d/JGIKvG76XmxJyupBMAXh7ZHXdlqlsbbjmeA6cuA4a6JnZAv60MrmBApCPu9uORyoizB3dCRpsWuqjpcZca/Zqc3Yx82XwhdcNbsvkE5gzpjCWb3GtucJWaBb3aBZDa/dj02C/O12nyJH+7MzuxN64nV/Ks2oGsWr+XknR5Enw1DQmW7MfVI7mlVx745KbX0Fsrg6sMgiBIxJVkr7y8HEajESaTCREREarvXxwh9qOpXlu8KzcwuYzoD504pazdVyxZPe8OqenorSc5A+puIrvn9vfoHMmd6z2FFzFqxd5627836RYkR4X77U1ETWr+3t7Ynxp8lSZP8re7fRkdfR/vQY65+3tJDaixXg9R7nf0ZLCKN+6b3qS0/A6oGqJXX30VL7zwAkpLS5GZmYlXXnkFN910k9bJkpzXI6O167U7vnxq8xW1njikzkFiZLjqzReOzrWzTqJ6vZn4ktpPmK7uzxeFtq+eot2tcVCzL6Pl+/Q+Yacjvvq93GlykhpQE2QA1j2ahZiIJrKzWnvye/jTFC2uCtI6Ab6ydu1azJw5E8888wwOHjyIzMxM5OTk4Pz585qmS7IZZdMJ1S48uZtbianK4337SrwxDFmprdw+H3LnwDIM25rS6nBLPwnr8+jsXFtueMEGg/hd3mwek0qjP/D093Z3f2v3FaP34u0YtWIvei/ejrX7ilX5fk/S5AlLAG5NSf52VOC5833hIUEBfw9SakSvJOye2x/vTboFu+f2d2v+OLMAVNaYZX/Hg6cve/R7uJuv/EHABER/+9vfMGnSJIwbNw5paWlYvnw5wsPD8eabb2qaLndvPnrZvz9w1LnWnQBFruBUcq5dveG5y5eFe0PQEB4c7LkbgLtb4Ml9X0VNbcDfg1zhSvDl6LeSe88syE8+qjR9vnyw86WAaDKrqanBgQMHMG/ePPG1oKAgDBw4EPn5+ZKfqa6uRnV1tfh3eXm5V9Lm7U6WeuxY6muOzkFWaiuXm1TkmhOUnmtvN4/5+9BuLTTUZgB3mns8GS0k9X2uLPxKrnH2W0m91zM50uuDVfxVQAREFy9eRG1tLWJjY21ej42NxfHjMjMZ5+VhwYIFXk+bt4cqNoShkJ5SMkRc6flwVHBmpbbSxbluqIW7NzXkBwd3AnBPCjz77+M9yLsc/VZy76nxezTEfo8BMcrs7NmzaN26Nfbs2YOsrCzx9dmzZ2Pnzp3Yu7f+yB+pGqLExESvjjLzZrTt7f37AzXOgZIRFlqfa38cBaIHehyR1pBofV2QrUD6PTjKzEpUVBSCg4Nx7tw5m9fPnTuHuLg4yc+EhoYiNDTUF8kD4P1ouyFG865S4xwoedrV+lzzidw9DbUZQC+0vi7IFn+P+gIiIAoJCUGPHj2wbds2DB06FABgNpuxbds2TJs2TdvEkd/xh4LTH9KoRywkiAJXQAREADBz5kyMGTMGPXv2xE033YSlS5eioqIC48aN0zpp5If8oeD0hzQSEelFwAREI0aMwIULF/D000+jtLQU3bp1w+bNm+t1tCYiIqLAExCdqtXg7aU7iIiISH1Ky++AmZiRiIiISA4DIiIiIgp4DIiIiIgo4DEgIiIiooDHgIiIiIgCHgMiIiIiCngMiIiIiCjgMSAiIiKigMeAiIiIiAJewCzd4SnLhN7l5eUap4SIiIiUspTbzhbmYECk0C+//AIASExM1DglRERE5KpffvkFRqNR9n2uZaaQ2WzG2bNn0bx5cxgMBq2T43Pl5eVITEzEmTNnuJabB3gePcdzqA6eR3XwPKrDm+dREAT88ssvSEhIQFCQfE8h1hApFBQUhDZt2midDM1FRETwolcBz6PneA7VwfOoDp5HdXjrPDqqGbJgp2oiIiIKeAyIiIiIKOAxICJFQkND8cwzzyA0NFTrpPg1nkfP8Ryqg+dRHTyP6tDDeWSnaiIiIgp4rCEiIiKigMeAiIiIiAIeAyIiIiIKeAyIiIiIKOAxICLRrl27cPfddyMhIQEGgwEfffSRzfuCIODpp59GfHw8wsLCMHDgQHz//ffaJFbHnJ3HsWPHwmAw2PwbPHiwNonVsby8PPTq1QvNmzdHTEwMhg4dihMnTthsc/XqVUydOhWtWrVCs2bNMHz4cJw7d06jFOuTkvPYr1+/enly8uTJGqVYn5YtW4aMjAxx4sCsrCxs2rRJfJ950Tln51DrfMiAiEQVFRXIzMzEq6++Kvn+kiVL8PLLL2P58uXYu3cvmjZtipycHFy9etXHKdU3Z+cRAAYPHoySkhLx33vvvefDFPqHnTt3YurUqfjqq6+wdetWXLt2DYMGDUJFRYW4zYwZM/DJJ5/g/fffx86dO3H27FkMGzZMw1Trj5LzCACTJk2yyZNLlizRKMX61KZNGyxevBgHDhzA/v37cfvtt+Pee+/FsWPHADAvKuHsHAIa50OBSAIAYf369eLfZrNZiIuLE1544QXxtbKyMiE0NFR47733NEihf7A/j4IgCGPGjBHuvfdeTdLjz86fPy8AEHbu3CkIQl3+a9y4sfD++++L23z33XcCACE/P1+rZOqe/XkUBEHo27ev8Ic//EG7RPmpli1bCitXrmRe9IDlHAqC9vmQNUSkSFFREUpLSzFw4EDxNaPRiJtvvhn5+fkapsw/7dixAzExMejUqROmTJmCn3/+Wesk6Z7JZAIAREZGAgAOHDiAa9eu2eTJzp07IykpiXnSAfvzaPHuu+8iKioKXbt2xbx581BZWalF8vxCbW0t/vnPf6KiogJZWVnMi26wP4cWWuZDLu5KipSWlgIAYmNjbV6PjY0V3yNlBg8ejGHDhiElJQWFhYV48sknMWTIEOTn5yM4OFjr5OmS2WzG9OnT0bt3b3Tt2hVAXZ4MCQlBixYtbLZlnpQndR4BYNSoUWjbti0SEhJw+PBhzJkzBydOnMC6des0TK3+HDlyBFlZWbh69SqaNWuG9evXIy0tDQUFBcyLCsmdQ0D7fMiAiMjHRo4cKf53eno6MjIykJqaih07dmDAgAEapky/pk6diqNHj2L37t1aJ8WvyZ3Hhx9+WPzv9PR0xMfHY8CAASgsLERqaqqvk6lbnTp1QkFBAUwmEz744AOMGTMGO3fu1DpZfkXuHKalpWmeD9lkRorExcUBQL1RE+fOnRPfI/e0a9cOUVFROHnypNZJ0aVp06Zhw4YN+Pzzz9GmTRvx9bi4ONTU1KCsrMxme+ZJaXLnUcrNN98MAMyTdkJCQtC+fXv06NEDeXl5yMzMxEsvvcS86AK5cyjF1/mQAREpkpKSgri4OGzbtk18rby8HHv37rVp/yXX/fjjj/j5558RHx+vdVJ0RRAETJs2DevXr8f27duRkpJi836PHj3QuHFjmzx54sQJFBcXM09acXYepRQUFAAA86QTZrMZ1dXVzIsesJxDKb7Oh2wyI9GVK1dsIvGioiIUFBQgMjISSUlJmD59Op577jl06NABKSkpmD9/PhISEjB06FDtEq1Djs5jZGQkFixYgOHDhyMuLg6FhYWYPXs22rdvj5ycHA1TrT9Tp07FmjVr8O9//xvNmzcX+2IYjUaEhYXBaDRiwoQJmDlzJiIjIxEREYHHHnsMWVlZuOWWWzROvX44O4+FhYVYs2YN7rzzTrRq1QqHDx/GjBkzkJ2djYyMDI1Trx/z5s3DkCFDkJSUhF9++QVr1qzBjh07sGXLFuZFhRydQ13kQ83Gt5HufP755wKAev/GjBkjCELd0Pv58+cLsbGxQmhoqDBgwADhxIkT2iZahxydx8rKSmHQoEFCdHS00LhxY6Ft27bCpEmThNLSUq2TrTtS5xCAsGrVKnGbqqoq4dFHHxVatmwphIeHC/fdd59QUlKiXaJ1yNl5LC4uFrKzs4XIyEghNDRUaN++vTBr1izBZDJpm3CdGT9+vNC2bVshJCREiI6OFgYMGCB89tln4vvMi845Ood6yIcGQRAE34ReRERERPrEPkREREQU8BgQERERUcBjQEREREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBGR36upqdE6CfXoMU1EJI8BERHpTr9+/TBt2jRMmzYNRqMRUVFRmD9/PiwrDSUnJ+PPf/4zRo8ejYiICDz88MMAgN27d+O2225DWFgYEhMT8fjjj6OiokLc72uvvYYOHTqgSZMmiI2Nxf333y++98EHHyA9PR1hYWFo1aoVBg4cKH62X79+mD59uk0ahw4dirFjx4p/u5smItIHBkREpEtvvfUWGjVqhK+//hovvfQS/va3v2HlypXi+3/5y1+QmZmJQ4cOYf78+SgsLMTgwYMxfPhwHD58GGvXrsXu3bsxbdo0AMD+/fvx+OOPY+HChThx4gQ2b96M7OxsAEBJSQkeeOABjB8/Ht999x127NiBYcOGwdWlHl1NExHpBxd3JSLd6devH86fP49jx47BYDAAAObOnYuPP/4Y3377LZKTk9G9e3esX79e/MzEiRMRHByM119/XXxt9+7d6Nu3LyoqKvDpp59i3Lhx+PHHH9G8eXOb7zt48CB69OiBU6dOoW3btpLp6datG5YuXSq+NnToULRo0QKrV68GALfS1KRJE4/OExGphzVERKRLt9xyixgMAUBWVha+//571NbWAgB69uxps/0333yD1atXo1mzZuK/nJwcmM1mFBUV4Y477kDbtm3Rrl07PPTQQ3j33XdRWVkJAMjMzMSAAQOQnp6O//mf/8GKFStw+fJll9PsapqISD8YEBGRX2ratKnN31euXMEjjzyCgoIC8d8333yD77//HqmpqWjevDkOHjyI9957D/Hx8Xj66aeRmZmJsrIyBAcHY+vWrdi0aRPS0tLwyiuvoFOnTmLQEhQUVK/57Nq1ax6niYj0gwEREenS3r17bf7+6quv0KFDBwQHB0tuf+ONN+Lbb79F+/bt6/0LCQkBADRq1AgDBw7EkiVLcPjwYZw6dQrbt28HABgMBvTu3RsLFizAoUOHEBISIjZ/RUdHo6SkRPyu2tpaHD161OkxKEkTEekDAyIi0qXi4mLMnDkTJ06cwHvvvYdXXnkFf/jDH2S3nzNnDvbs2YNp06ahoKAA33//Pf7973+LHZg3bNiAl19+GQUFBTh9+jTefvttmM1mdOrUCXv37sWiRYuwf/9+FBcXY926dbhw4QK6dOkCALj99tuxceNGbNy4EcePH8eUKVNQVlbm9BicpYmI9KOR1gkgIpIyevRoVFVV4aabbkJwcDD+8Ic/iEPZpWRkZGDnzp3405/+hNtuuw2CICA1NRUjRowAALRo0QLr1q3Ds88+i6tXr6JDhw547733cMMNN+C7777Drl27sHTpUpSXl6Nt27b461//iiFDhgAAxo8fj2+++QajR49Go0aNMGPGDPTv39/pMThLExHpB0eZEZHuSI3qIiLyJjaZERERUcBjQEREREQBj01mREREFPBYQ0REREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAe//AZgQYx7jt1AvAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgtklEQVR4nO3deXgUVdo28LsTSEgCNAQCBExICJtIiMjiRJBFGCGDC4sjwoyyKC6AuHwOBN8XBQcNODMO4wYOOqDjiMwoqKPi8spmhMGwoyMIMZAgQYhCB5KQYLq+P2K1vVRVV1VXd1V17t915bqgl+rT1VWnnjrnOec4BEEQQERERGRTMWYXgIiIiCgUDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIKCIWLlwIh8Oh6rUOhwMLFy4Ma3mGDRuGYcOGWXZ7RKQegxmiRmb16tVwOByevyZNmqBTp06YOnUqvv32W7OLZzkZGRk++6tdu3a4+uqrsX79ekO2X11djYULF2Lz5s2GbI+oMWIwQ9RIPfbYY/j73/+OFStWIC8vD6+++iqGDh2KCxcuhOXz/vd//xc1NTVh2Xa4XX755fj73/+Ov//973jooYdw4sQJjB8/HitWrAh529XV1Vi0aBGDGaIQNDG7AERkjry8PPTv3x8AcMcdd6Bt27ZYunQp3nnnHdx8882Gf16TJk3QpIk9q5xOnTrht7/9ref/t912G7p27Yo///nPuPvuu00sGREBbJkhop9cffXVAIDi4mKfxw8ePIibbroJycnJaNasGfr374933nnH5zUXL17EokWL0K1bNzRr1gxt2rTB4MGD8fHHH3teI5UzU1tbiwceeAApKSlo0aIFbrjhBhw/fjygbFOnTkVGRkbA41LbXLVqFa655hq0a9cO8fHx6NWrF5YvX65pXwTToUMHXHrppSgpKVF83alTp3D77bejffv2aNasGXJycvDyyy97nj969ChSUlIAAIsWLfJ0ZYU7X4go2tjzNomIDHf06FEAQOvWrT2Pffnllxg0aBA6deqE/Px8JCUl4Z///CfGjh2LN998E+PGjQPQEFQUFBTgjjvuwMCBA1FZWYmdO3di9+7d+OUvfyn7mXfccQdeffVVTJ48GVdddRU2btyIMWPGhPQ9li9fjssuuww33HADmjRpgn//+9+YOXMm3G43Zs2aFdK2RRcvXkRZWRnatGkj+5qamhoMGzYMR44cwezZs5GZmYl//etfmDp1Ks6ePYv77rsPKSkpWL58Oe655x6MGzcO48ePBwD06dPHkHISNRoCETUqq1atEgAI//d//yecPn1aKCsrE9544w0hJSVFiI+PF8rKyjyvHTFihJCdnS1cuHDB85jb7RauuuoqoVu3bp7HcnJyhDFjxih+7qOPPip4Vzl79+4VAAgzZ870ed3kyZMFAMKjjz7qeWzKlClC586dg25TEAShuro64HWjRo0SunTp4vPY0KFDhaFDhyqWWRAEoXPnzsK1114rnD59Wjh9+rSwb98+4ZZbbhEACPfee6/s9pYtWyYAEF599VXPY3V1dUJubq7QvHlzobKyUhAEQTh9+nTA9yUibdjNRNRIjRw5EikpKUhLS8NNN92EpKQkvPPOO7jkkksAAD/88AM2btyIm2++GefOnUNFRQUqKirw/fffY9SoUTh8+LBn9FOrVq3w5Zdf4vDhw6o///333wcAzJkzx+fx+++/P6TvlZCQ4Pm3y+VCRUUFhg4dim+++QYul0vXNj/66COkpKQgJSUFOTk5+Ne//oVbb70VS5culX3P+++/jw4dOmDSpEmex5o2bYo5c+bg/Pnz2LJli66yEFEgdjMRNVLPPfccunfvDpfLhb/97W/YunUr4uPjPc8fOXIEgiBgwYIFWLBggeQ2Tp06hU6dOuGxxx7DjTfeiO7du6N3794YPXo0br31VsXukmPHjiEmJgZZWVk+j/fo0SOk7/XZZ5/h0Ucfxfbt21FdXe3znMvlgtPp1LzNK6+8EosXL4bD4UBiYiIuvfRStGrVSvE9x44dQ7du3RAT43vPeOmll3qeJyJjMJghaqQGDhzoGc00duxYDB48GJMnT8ahQ4fQvHlzuN1uAMBDDz2EUaNGSW6ja9euAIAhQ4aguLgYb7/9Nj766CO8+OKL+POf/4wVK1bgjjvuCLmscpPt1dfX+/y/uLgYI0aMQM+ePfHUU08hLS0NcXFxeP/99/HnP//Z8520atu2LUaOHKnrvUQUfgxmiAixsbEoKCjA8OHD8eyzzyI/Px9dunQB0NA1ouZCnpycjGnTpmHatGk4f/48hgwZgoULF8oGM507d4bb7UZxcbFPa8yhQ4cCXtu6dWucPXs24HH/1o1///vfqK2txTvvvIP09HTP45s2bQpafqN17twZ+/fvh9vt9mmdOXjwoOd5QD5QIyL1mDNDRAAapuMfOHAgli1bhgsXLqBdu3YYNmwYXnjhBZSXlwe8/vTp055/f//99z7PNW/eHF27dkVtba3s5+Xl5QEAnn76aZ/Hly1bFvDarKwsuFwu7N+/3/NYeXl5wCy8sbGxAABBEDyPuVwurFq1SrYc4fKrX/0KJ0+exNq1az2P/fjjj3jmmWfQvHlzDB06FACQmJgIAJLBGhGpw5YZIvL43e9+h1//+tdYvXo17r77bjz33HMYPHgwsrOzMWPGDHTp0gXfffcdtm/fjuPHj2Pfvn0AgF69emHYsGHo168fkpOTsXPnTrzxxhuYPXu27GddfvnlmDRpEp5//nm4XC5cddVV+OSTT3DkyJGA195yyy2YN28exo0bhzlz5qC6uhrLly9H9+7dsXv3bs/rrr32WsTFxeH666/HXXfdhfPnz2PlypVo166dZEAWTnfeeSdeeOEFTJ06Fbt27UJGRgbeeOMNfPbZZ1i2bBlatGgBoCFhuVevXli7di26d++O5ORk9O7dG717945oeYlszezhVEQUWeLQ7KKiooDn6uvrhaysLCErK0v48ccfBUEQhOLiYuG2224TOnToIDRt2lTo1KmTcN111wlvvPGG532LFy8WBg4cKLRq1UpISEgQevbsKTz++ONCXV2d5zVSw6hramqEOXPmCG3atBGSkpKE66+/XigrK5McqvzRRx8JvXv3FuLi4oQePXoIr776quQ233nnHaFPnz5Cs2bNhIyMDGHp0qXC3/72NwGAUFJS4nmdlqHZwYady23vu+++E6ZNmya0bdtWiIuLE7Kzs4VVq1YFvHfbtm1Cv379hLi4OA7TJtLBIQhe7bFERERENsOcGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLYW9ZPmud1unDhxAi1atOC04URERDYhCALOnTuHjh07BizYKvVi02zZskW47rrrhNTUVAGAsH79es9zdXV1wty5c4XevXsLiYmJQmpqqnDrrbcK3377rabPECfg4h//+Mc//vGPf/b7KysrC3qtN7VlpqqqCjk5OZg+fTrGjx/v81x1dTV2796NBQsWICcnB2fOnMF9992HG264ATt37lT9GeKU4WVlZWjZsqWh5SciIqLwqKysRFpamuc6rsQyMwA7HA6sX78eY8eOlX1NUVERBg4ciGPHjvmsiKuksrISTqcTLpeLwQwREZFNaLl+2ypnxuVyweFwoFWrVrKvqa2t9Vmpt7KyMgIlIyIiIrPYZjTThQsXMG/ePEyaNEkxQisoKIDT6fT8paWlRbCUREREFGm2CGYuXryIm2++GYIgYPny5YqvnT9/Plwul+evrKwsQqUkIiIiM1i+m0kMZI4dO4aNGzcG7TeLj49HfHx8hEpHRERWUl9fj4sXL5pdDFKhadOmiI2NNWRblg5mxEDm8OHD2LRpE9q0aWN2kYiIyIIEQcDJkydx9uxZs4tCGrRq1QodOnQIeR44U4OZ8+fP48iRI57/l5SUYO/evUhOTkZqaipuuukm7N69G++++y7q6+tx8uRJAEBycjLi4uLMKjYREVmMGMi0a9cOiYmJnCTV4gRBQHV1NU6dOgUASE1NDWl7pg7N3rx5M4YPHx7w+JQpU7Bw4UJkZmZKvm/Tpk0YNmyYqs/g0GwiouhWX1+Pr7/+Gu3atWMLvs18//33OHXqFLp37x7Q5WSbodnDhg2DUixlkSlwiIjIwsQcmcTERJNLQlqJv9nFixdDyp+xxWgmIiKiYNi1ZD9G/WYMZoiIiMjWGMwQERFRWGzevBkOhyPso8wYzFhEuasG24orUO6qMbsoRERkEwsXLsTll19udjFMZ+l5ZhqLtUWlmL/uANwCEOMACsZnY+IAdQtpEhERBXPx4kU0bdrU7GKEDVtmTFbuqvEEMgDgFoCH133BFhoiokbA7XajoKAAmZmZSEhIQE5ODt544w0AP3fRfPLJJ+jfvz8SExNx1VVX4dChQwCA1atXY9GiRdi3bx8cDgccDgdWr14NoCGxdvny5bjhhhuQlJSExx9/XLEc4md9+OGH6Nu3LxISEnDNNdfg1KlT2LBhAy699FK0bNkSkydPRnV1ted9tbW1mDNnDtq1a4dmzZph8ODBKCoqCs/OUsBgxmQlFVWeQEZULwg4WlEt/QYiIgqbSHf5FxQU4JVXXsGKFSvw5Zdf4oEHHsBvf/tbbNmyxfOa//mf/8Gf/vQn7Ny5E02aNMH06dMBABMnTsT/+3//D5dddhnKy8tRXl6OiRMnet63cOFCjBs3DgcOHPC8J5iFCxfi2WefxbZt21BWVoabb74Zy5Ytw2uvvYb33nsPH330EZ555hnP6+fOnYs333wTL7/8Mnbv3o2uXbti1KhR+OGHHwzaQ+qwm8lkmW2TEOOAT0AT63Agoy3nSyAiiqRId/nX1tbiiSeewP/93/8hNzcXANClSxcUFhbihRdewJ133gkAePzxxzF06FAAQH5+PsaMGYMLFy4gISEBzZs3R5MmTdChQ4eA7U+ePBnTpk3TVKbFixdj0KBBAIDbb78d8+fPR3FxMbp06QIAuOmmm7Bp0ybMmzcPVVVVWL58OVavXo28vDwAwMqVK/Hxxx/jpZdewu9+9zt9O0YHtsyYLNWZgILx2Yj9aax9rMOBJ8b3RqozweSSERE1HmZ0+R85cgTV1dX45S9/iebNm3v+XnnlFRQXF3te16dPH8+/xWn/xWUAlPTv319zmbw/q3379khMTPQEMuJj4mcXFxfj4sWLnuAHaFg8cuDAgfjqq680f3Yo2DJjARMHpGNI9xQcrahGRttEBjJERBGm1OUfrjr5/PnzAID33nsPnTp18nkuPj7eE9B4J+6Kk8y53e6g209KStJcJv/P8k8adjgcqj470hjMWESqM4FBDBGRSczo8u/Vqxfi4+NRWlrq6Uby5t06IycuLg719fXhKF5QWVlZiIuLw2effYbOnTsDaBg1VVRUhPvvvz+iZWEwQ0REjZ7Y5f/wui9QLwgR6fJv0aIFHnroITzwwANwu90YPHgwXC4XPvvsM7Rs2dITICjJyMhASUkJ9u7di0suuQQtWrRAfHx82MrsLSkpCffccw9+97vfITk5Genp6XjyySdRXV2N22+/PSJlEDGYISIigjld/r///e+RkpKCgoICfPPNN2jVqhWuuOIKPPzww6q6cyZMmIB169Zh+PDhOHv2LFatWoWpU6eGvdyiJUuWwO1249Zbb8W5c+fQv39/fPjhh2jdunXEygAADiHKl6bWsoQ4ERHZz4ULF1BSUoLMzEw0a9bM7OKQBkq/nZbrN0czERERka0xmCEiIopyd999t8/wb++/u+++2+zihYw5M0RERFHusccew0MPPST5XDSkYDCYISIiinLt2rVDu3btzC5G2LCbiYiIiGyNwQwREUUFK85MS8qM+s3YzURERLYWFxeHmJgYnDhxAikpKYiLi/NM+0/WJAgC6urqcPr0acTExCAuLi6k7TGYISIiW4uJiUFmZibKy8tx4sQJs4tDGiQmJiI9PR0xMaF1FDGYISIi24uLi0N6ejp+/PFH09YqIm1iY2PRpEkTQ1rRGMwQEVFUEFd59l/pmaIfE4CJiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjVTg5mtW7fi+uuvR8eOHeFwOPDWW2/5PC8IAh555BGkpqYiISEBI0eOxOHDh80pLBEREVmSqcFMVVUVcnJy8Nxzz0k+/+STT+Lpp5/GihUrsGPHDiQlJWHUqFG4cOFChEtKREREVtXEzA/Py8tDXl6e5HOCIGDZsmX43//9X9x4440AgFdeeQXt27fHW2+9hVtuuSWSRSUiIiKLsmzOTElJCU6ePImRI0d6HnM6nbjyyiuxfft22ffV1taisrLS54+IiIiil2WDmZMnTwIA2rdv7/N4+/btPc9JKSgogNPp9PylpaWFtZxERERkLssGM3rNnz8fLpfL81dWVmZ2kYiIiCiMLBvMdOjQAQDw3Xff+Tz+3XffeZ6TEh8fj5YtW/r8ERERUfSybDCTmZmJDh064JNPPvE8VllZiR07diA3N9fEkhEREZGVmDqa6fz58zhy5Ijn/yUlJdi7dy+Sk5ORnp6O+++/H4sXL0a3bt2QmZmJBQsWoGPHjhg7dqx5hSYiIiJLMTWY2blzJ4YPH+75/4MPPggAmDJlClavXo25c+eiqqoKd955J86ePYvBgwfjgw8+QLNmzcwqMhEREVmMQxAEwexChFNlZSWcTidcLhfzZ4iIiGxCy/XbsjkzRERERGowmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGYoqpW7arCtuALlrhqzi0JERGHSxOwCEIXL2qJSzF93AG4BiHEABeOzMXFAutnFIiIig7FlhqJSuavGE8gAgFsAHl73BVtoiIiiEIMZikolFVWeQEZULwg4WlFtToGIiChsGMxQVMpsm4QYh+9jsQ4HMtommlMgIiIKGwYzFJVSnQkoGJ+NWEdDRBPrcOCJ8b2R6kwwuWRERGQ0JgBT1Jo4IB1DuqfgaEU1MtomMpAhIopSDGYoqqU6ExjEEBFFOXYzERERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQyRTuWuGmwrrkC5q8bsohARNWpNzC4AkR2tLSrF/HUH4BaAGAdQMD4bEwekm10sIqJGiS0zRBqVu2o8gQwAuAXg4XVfsIWGiMgkDGaINCqpqPIEMqJ6QcDRimpzCkRE1MhZOpipr6/HggULkJmZiYSEBGRlZeH3v/89BEEI/maiMMlsm4QYh+9jsQ4HMtommlMgIqJGztI5M0uXLsXy5cvx8ssv47LLLsPOnTsxbdo0OJ1OzJkzx+ziUSOV6kxAwfhsPLzuC9QLAmIdDjwxvjdSnQlmF42IqFGydDCzbds23HjjjRgzZgwAICMjA2vWrMHnn39ucsmosZs4IB1DuqfgaEU1MtomMpAhIjKRpbuZrrrqKnzyySf4+uuvAQD79u1DYWEh8vLyZN9TW1uLyspKnz+icEh1JiA3qw0DGSIik1m6ZSY/Px+VlZXo2bMnYmNjUV9fj8cffxy/+c1vZN9TUFCARYsWRbCUREREZCZLt8z885//xD/+8Q+89tpr2L17N15++WX88Y9/xMsvvyz7nvnz58Plcnn+ysrKIlhiIiIiijSHYOGhQWlpacjPz8esWbM8jy1evBivvvoqDh48qGoblZWVcDqdcLlcaNmyZbiKSkRERAbScv22dMtMdXU1YmJ8ixgbGwu3221SiYiIiMhqLJ0zc/311+Pxxx9Heno6LrvsMuzZswdPPfUUpk+fbnbRiIiIyCIs3c107tw5LFiwAOvXr8epU6fQsWNHTJo0CY888gji4uJUbYPdTERERPaj5fpt6WDGCAxmiIiI7CdqcmaIiIiIgmEwQ0RERLbGYIaIiIhsjcEMERER2RqDGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIaIiIhsjcEMERER2RqDGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIYoypS7arCtuALlrhqzi0JEFBFNzC4AERlnbVEp5q87ALcAxDiAgvHZmDgg3exiERGFFVtmiKJEuavGE8gAgFsAHl73BVtoiCjqMZghihIlFVWeQEZULwg4WlFtToGIiCKEwQzZCvNB5GW2TUKMw/exWIcDGW0TzSkQEVGEMJgh21hbVIpBSzZi8sodGLRkI9YWlZpdJEtJdSagYHw2Yh0NEU2sw4EnxvdGqjPB5JIREYWXQxAEIfjL7KuyshJOpxMulwstW7Y0uzikU7mrBoOWbPTpRol1OFCYP5wXaz/lrhocrahGRttE7hsisi0t12+OZiJbUMoH4QXbV6ozgfuEiBoVdjORLTAfhIiI5DCYIVtgPggREclhNxPZxsQB6RjSPYX5IERE5IPBDNkK80GIiMif6mCmsrJS9UY5aoiIiIgiRXUw06pVKzgcDsXXCIIAh8OB+vr6kAtGREREpIbqYGbTpk3hLAcRERGRLqqDmaFDh4azHERERES66E4APnv2LF566SV89dVXAIDLLrsM06dPh9PpNKxwRERERMHommdm586dyMrKwp///Gf88MMP+OGHH/DUU08hKysLu3fvNrqMRERERLJ0rc109dVXo2vXrli5ciWaNGlo3Pnxxx9xxx134JtvvsHWrVsNL6heXJuJiIjIfrRcv3UFMwkJCdizZw969uzp8/h///tf9O/fH9XV1Vo3GTYMZoiIiOxHy/VbVzdTy5YtUVpaGvB4WVkZWrRooWeTRERERLroCmYmTpyI22+/HWvXrkVZWRnKysrw+uuv44477sCkSZOMLiMRERGRLF2jmf74xz/C4XDgtttuw48//ggAaNq0Ke655x4sWbLE0AISERERKdGVMyOqrq5GcXExACArKwuJiYmGFcwozJkhIiKyHy3X75AWmkxMTER2dnYomyAiIiIKia5g5sKFC3jmmWewadMmnDp1Cm632+d5zjVDREREkaIrmLn99tvx0Ucf4aabbsLAgQODLkBJREREFC66gpl3330X77//PgYNGmR0eYiIiIg00TU0u1OnTpxPhoiIiCxBVzDzpz/9CfPmzcOxY8eMLk+Ab7/9Fr/97W/Rpk0bJCQkIDs7Gzt37gz75xIREZE96Opm6t+/Py5cuIAuXbogMTERTZs29Xn+hx9+MKRwZ86cwaBBgzB8+HBs2LABKSkpOHz4MFq3bm3I9omIiMj+dAUzkyZNwrfffosnnngC7du3D1sC8NKlS5GWloZVq1Z5HsvMzAzLZxEREZE96Zo0LzExEdu3b0dOTk44yuTRq1cvjBo1CsePH8eWLVvQqVMnzJw5EzNmzFC9DU6aR0REZD9hX2iyZ8+eqKmp0VU4Lb755hssX74c3bp1w4cffoh77rkHc+bMwcsvvyz7ntraWlRWVvr8ERERUfTS1TLz0UcfYdGiRXj88ceRnZ0dkDNjVAtIXFwc+vfvj23btnkemzNnDoqKirB9+3bJ9yxcuBCLFi0KeJwtM0RERPahpWVGVzATE9PQoOOfKyMIAhwOB+rr67VuUlLnzp3xy1/+Ei+++KLnseXLl2Px4sX49ttvJd9TW1uL2tpaz/8rKyuRlpbGYIaIiMhGwr4206ZNm3QVTKtBgwbh0KFDPo99/fXX6Ny5s+x74uPjER8fH+6iERERkUXoCmaGDh2q6nUzZ87EY489hrZt2+r5GDzwwAO46qqr8MQTT+Dmm2/G559/jr/+9a/461//qmt7REREFH10dTOp1bJlS+zduxddunTRvY13330X8+fPx+HDh5GZmYkHH3yQo5mIiIiiXNi7mdQyIk667rrrcN111xlQGiIiIopGuoZmExEREVkFgxkiIiKyNQYzREREZGsMZoiIiMjWNAczP/74Ix577DEcP3486Gt/+9vfcgQRERERhZWuodktWrTAgQMHkJGREYYiGYtDs4mIiOwn7AtNXnPNNdiyZYuuwhEREREZSdc8M3l5ecjPz8eBAwfQr18/JCUl+Tx/ww03GFI4IiIiomBCWmhScoMGLjRpBHYzERER2U/YZwB2u926CkZERERkNF05M6+88gpqa2sDHq+rq8Mrr7wScqGIiIiI1NLVzRQbG4vy8nK0a9fO5/Hvv/8e7dq1YzcTERERhSTso5kEQYDD4Qh4/Pjx43A6nXo2SURERKSLppyZvn37wuFwwOFwYMSIEWjS5Oe319fXo6SkBKNHjza8kERERERyNAUzY8eOBQDs3bsXo0aNQvPmzT3PxcXFISMjAxMmTDC0gERERERKNAUzjz76KAAgIyMDEydORLNmzcJSKCIiIiK1dA3NnjJlCoCG0UunTp0KGKqdnp4eesmIiIiIVNAVzBw+fBjTp0/Htm3bfB4XE4OtNJqJiMxT7qpBSUUVMtsmIdWZYHZxiChK6Qpmpk6diiZNmuDdd99Famqq5MgmImrc1haVYv66A3ALQIwDKBifjYkD2GpLRMbTFczs3bsXu3btQs+ePY0uD5FlsZVBvXJXjSeQAQC3ADy87gsM6Z7CfUdEhtMVzPTq1QsVFRVGl4XIstjKoE1JRZUnkBHVCwKOVlQzmCEiw+maNG/p0qWYO3cuNm/ejO+//x6VlZU+f0TRRK6VodxVY27BLCyzbRJi/HqfYx0OZLRNNKdARBTVdLXMjBw5EgBwzTXX+OTLMAGYohFbGbRLdSagYHw2Hl73BeoFAbEOB54Y35v7i4jCQlcws2nTJqPLQWRZYiuDd0BjlVYGK+fxTByQjiHdU3C0ohoZbRMtVz4iih66upmGDh2KmJgYrFy5Evn5+ejatSuGDh2K0tJSxMbGGl1GIlOJrQyxP7VCWqWVYW1RKQYt2YjJK3dg0JKNWFtUamp5pKQ6E5Cb1cb0fUVE0U1XMPPmm29i1KhRSEhIwJ49e1BbWwsAcLlceOKJJwwtIJEVTByQjsL84Vgz4xcozB9uevIv83iIiH6mK5hZvHgxVqxYgZUrV6Jp06aexwcNGoTdu3cbVjgiK7FSK4NSHg8RUWOjK5g5dOgQhgwZEvC40+nE2bNnQy0TEQXB0UJERD/TFcx06NABR44cCXi8sLAQXbp0CblQRKTMqnk8RERm0DWaacaMGbjvvvvwt7/9DQ6HAydOnMD27dvx0EMPYcGCBUaXkYgkcLQQEVEDXcFMfn4+3G43RowYgerqagwZMgTx8fF46KGHcO+99xpdRiKSkepMYBBDRI2eQxAEIfjLpNXV1eHIkSM4f/48evXqhebNmxtZNkNUVlbC6XTC5XKhZcuWZheHiIiIVNBy/dbVMiOKi4tDr169QtkEERERUUh0JQATERERWQWDGSKyvHJXDbYVV3BSQCKSFFI3ExFRuK0tKvXMdhzjAArGZ5s+AzMRWQtbZogiiC0M2nDZBiJSgy0zFmLlFZApdGxh0E5p2QaeI0QkYjBjEbzQRTe5FoYh3VN4UVYgLtvgHdBw2QYi8sduJgtgU3r048KQ+nDZBiJSgy0zFsCm9OjHFgb9uGwDEQXDlhkL4ArI0Y8tDKFJdSYgN6sN9xcRSWLLjAWIF7qH132BekHghS5KNaYWBiazE1EkMZixiMZ0oWvMGsPCkExmJ6JIYzeThbApneyOyexEZAYGMwbhZGhEHLVFROZgN5MBwtmsztwDshOO2iIiM9iqZWbJkiVwOBy4//77zS6KRzib1dcWlWLQko2YvHIHBi3ZiLVFpSFv0wxstWo8OGqLiMxgm5aZoqIivPDCC+jTp4/ZRfERrjliomXGWCaDNj5MZieiSLNFy8z58+fxm9/8BitXrkTr1q3NLo6PcM0REw25B0wGbbyYzE5EkWSLYGbWrFkYM2YMRo4caXZRAoSrWT0aJtKLhoCMiIisz/LdTK+//jp2796NoqIiVa+vra1FbW2t5/+VlZXhKppHOJrVo2EiPSaDEhFRJFg6mCkrK8N9992Hjz/+GM2aNVP1noKCAixatCjMJQsUjsnQ7J57EA0BGRERWZ9DEAQh+MvM8dZbb2HcuHGIjY31PFZfXw+Hw4GYmBjU1tb6PAdIt8ykpaXB5XKhZcuWESs7/azcVWPbgIyIiMxRWVkJp9Op6vpt6ZaZESNG4MCBAz6PTZs2DT179sS8efMCAhkAiI+PR3x8fKSKSCo0hin8iYjIPJYOZlq0aIHevXv7PJaUlIQ2bdoEPE5EZCWc8JIociwdzBArRCI74vxKRJFlu2Bm8+bNZhchYlghEtlPtEx4SWQntphnpjFSM+Eclwkgsh7Or0QUebZrmWksgi2TwFYbImvi/EpEkceWGYtSmgGYywRYB1vHyB8X2ySKPLbMWJTShHPbiivCsrglacPWMZJj9wkvieyGwYyFyVWIbMY2H5M8KRjOr0QUOexmsjip1YfZjG0+JnkSEVkHW2Zsis3Y5mLrGBGRdbBlxsakWm0oMtg6RkRkHWyZCRPO3Bv92DpGRGQNDGbCgKNcGg8meRIRmY/dTAbjHDBERESRxWDGYFYY5cKJ3IiIqDFhN5PBzB7lwi4uIiJqbNgyYzAzR7mwi4uIiBojtsyEgVmjXIItTklERBSNGMyEiRmjXJLiYuEA4B3PcCI3IiKKduxmihJri0ox7vltAYEMJ3IjsherJvBbtVxEAFtmooJ/rgzQkPy7bmYuctJam1cwItLEqgn8Vi0XkYgtM1FAKlfGLQDVdW5zCkREmlk1gd+q5SLyxmAmCojDwb1FOleGTdBEobHCHFVSrFouIm8MZqKA2Yseri0qxaAlGzF55Q4MWrIRa4tKI/K5RNHECjclUqxaLiJvDkEQhOAvs6/Kyko4nU64XC60bNnS7OKEVbmrJuLDwctdNRi0ZGPAJIGF+cOZeEyk0dqiUjy87gvUC4LnpsQKuSlWLRdFNy3XbyYARxEzhoNzbhsi41h1JXarlotIxGCGVCl31aCkogqZbZN8KjKzl28gijZWXYndquUiApgzYxo7Jcwq5cSYna9DRETEnBkT2GnOBrU5MWbk6xARUfTScv1my0yE2W3OBrXDMlOdCcjNasNAhoiIIo7BTITZbc4GDsskIiKrYzATYXYLDpgTQ0REVsfRTBEmBgf+czZYOTjgsEwiIrIyBjMmsGNwwGGZRESNg9xUHFbGYMYkDA7MZceTlYgo3Ow02tYbgxlqdOx6shIRhZPcaNsh3VMsf9PHBGBqVOw2NJ6IKFTiJK37ys4oTtZqt9G23tgyQ6pFQ9eMVdaSioZ9SUTW590SLZJrkZZangYA9h8/i9ysNhEorX4MZkiVaOmascJaUtGyL4nIOqRukPxbokXe3UcAfN43L68nCt4/6PP6Jz84hBsu7xgw6/uuY2cgCAL6ZySbflPGYIaCsnM/qj+zh8bbaV+y9YjIHuRukKRaokX1goBVn5XgxU9LfN6X3ckp+Vrv1uu1RaXIf/MAxE07ACyZYO5NGYMZCsoqXTNGMXNovF32JVuPiOxB6QZJrtsIaDivV24t8QQk4vvWzcxVbL0WP897kwKA+W8eMPWmjAnAFJTdZi2W4r9KuVlrSdlhX9opSdpOq88ThUOwGyTvGdxFsQ4Hbh+cCf8Yp14QUF3nVpz1Xa61xw2YmijMlhkKKpxdM5HoyrBSK4PZ3VxqsPWIyNq8681geYDeLdGJcTGornN7nnupsCTgXP/7f47i+d/0k229lmvtiQFMvSlzCIIg06MWHbQsIU7Kyl01hnbNROJiVO6qwaAlGwNO9ML84aZemI3el0ay2j6TS2y0UhmJIkWq3gQQcIOkpi79wwcH8dzm4oDH3551FXLSWiuWIX/dAYjRQ7hyZrRcv9kyE2F2Tqo0ctbiSCXCRrKVQctva+UZoK3UeqQlsdGKrUdERpKrNwvzh6Mwf7jmG6RWSU0lH9959IxiMCO29uw+dgaCAPTLaG36ecdgJoLYLP6zSF2MIjUUO9p+WyusH6Y1sdFquUdERlOqN/XkAA7MSJZ8vH+GfCAjSnUmYEwf69w4MAHYYHIJiUYlVUZLwmOkEmH9E+DC0cpgp4RZLcxKkhZpSWy0Yu4RkZRQ6nCpejPGASTG6buU56S1xoQrOvk8NuGKTp5WGTtdb9gyYyClu3MjWiKi6e4/kl0Z4W5lYJdHeGhJbLRi7hGRP/86fN7onsi+xKk67cC/3gQazo9xz2/TfT34082X47bczth59Az6Z7T2BDJ2u94wAdggwRISQ01YNDLh0Up5O1ZOhFWLyajhs7aoVFdiI5HVSNUTIq3Bwr6yMxj73DafodVG1jlWqdOYAGyCYHfnobZEGHX37x9t3z44E9MHZ0puIxJBj5UTYdWyUsJstGHrC0ULpdl4tQ6AqKqrl5wjxqjWYDu2NjOYMYiahMQh3VOw7JYcuGouolViHPp1Dp5kpWX7wUjldqz8tAQrPy3BnVdnYppXUGO3Jkaz8aIbPpEMeL0DeACWacEk+0uKi1V8XkuwEO4EeDsm2Fs+mCkoKMC6detw8OBBJCQk4KqrrsLSpUvRo0cPs4vmI9jduZaVS/VsXw2lO4O/flqCFwtLUDA+G0O6p4Q8bNpKXVmREg2tTI2Z9zkq5lgKYDBPxqiqq1d8XkuwEO7WYDu2Nls+Z2b06NG45ZZbMGDAAPz44494+OGH8cUXX+C///0vkpKSgr4/0pPmeeeAAA0BRFJcLMY9v00ykNDaDxlKjolSn613eZbdkoN71+wNeG7NjF+oWgaerTrBNcZgz8qCnRtS5yl/Q/IW7HhQOsb05oOFO+fQ7JzGqMqZ+eCDD3z+v3r1arRr1w67du3CkCFDTCqVPPHu/IUtxViy4SAEAA4HIBcySjUtKp0Uodz9i9G21JLw3uWJcTh0NzGqmQzP//tZbSn5cGOwZywjggqlVktAetVg/obRS+sxpeZ4kGrtmJvXA306tdIdLIS7NdhOrc2WD2b8uVwuAEBysvRkP7W1taitrfX8v7KyMiLl8vbC1mIUbDjo+b9S25d/kBDuSlLM7Vj1WYnPiqne5bmic2vdTYzBEsf8v9+4vp2wbve3PkvJ5+cFH65oxbtiNWWK1MzHjYVR54vS6sKA9KrB3r/h/HUH0LNDC8VZU41mxXPAzsT9eeC4C0s/OKj6mNJyTuvJrePvrI6tghm32437778fgwYNQu/evSVfU1BQgEWLFkW4ZD8rd9VgiVcgo8Q/SIjUhS7VmYCHf9UL0wZlYlXhUbxY+A3cgm959Ca0Sl0UxAXIyl01yH/zgM+S82/u/tbn/QLgCQTlKhIr3hWrLZMdRwlYlZHni/9dswMAfmpRVbNqsFsAxj63LSzr00ix4jkQTkZf0P23J5XTCKhrWdZ6Tmtp7Whsv3MobBXMzJo1C1988QUKCwtlXzN//nw8+OCDnv9XVlYiLS0tLOWROsFKKqoUW2KAhtaHZyf3xRU/jWbaVlyBzLZJEb/QpToT8PCYSzFtcIZk0KKniVG8KHgHLQKArV+fRlJ8k4CWICVyFYnUXXFiXKxpXVRaLqp2HCVgVUafL/4BPABNqwYLiEwrW2Nr3dN7QZcLgPwTvWcOz8LyzcWKXe9yLcvigAmpczoxLsZTt+v5XUL5nRtja45tgpnZs2fj3XffxdatW3HJJZfIvi4+Ph7x8fFhL4/cCRasuRpoqPSSk+Kx9evTvrNB5vU05UJndL/okO4pPnlCYiX/6A2Xat6W/8VJ7q743jV7Tbtz0XJRteMoAasKR2Dofy7I3VnL5Z5FopWtMbXu6b2gy9XP/tsTADy3KXDVaG/iMaW0yKP/OT22b0fPoA+99ZLe39k/WJvhN+1GtLL82kyCIGD27NlYv349Nm7ciMzMTLOLpLgWj1jRiWvG+K+jAfwctftv48kNhzBvdE/LrzcTbL0OuZOwTVI8JHaH5GMi/4uT1NokIrPWRNK6ztTEAekozB+ONTN+gcL84Ww21sn/XIvk+TJxQDrWz7wq4PFI3HxEal0zK1C6oMtRqp+DJXr78z6mlMrifU6vm5mL9Xu+DXmtNj2/s1Sw9tdPSzBoyUasLSr1eZ1d1lxSy/ItM7NmzcJrr72Gt99+Gy1atMDJkycBAE6nEwkJ1lwAz7+5euvXpwPuxKvq6iW30eeSVrqWco+EclcNVhU2TLKnNP+G3B3zFZ1bY8mEbMx/8wDcaIikCyZko2eHFrjxuW0BnxfjAObm9Qi4U543uieWbjgIt0QZzbhD1dPaYqdRAlZm5mSFB0+egwPwSV6X+92NbPZvTK17Sq1vcvtUqX7ObJvk85t5iwHg/mn74iijxLgYVNXVo9xVE7QlUDyntxVXGNJypud3lgvWvFu0/HsEoiUPx/LBzPLlywEAw4YN83l81apVmDp1auQLBHXN294XK6kKt9xVI7sNK17opBLk5Jp8lU5CqX2xrbhC8jPdArB0w0G0SmjqOdnWFpU2jDQAJCslo+9Q1V6EOAOwebSeL0YEFuIdsPfx53A0dLH6C0cSZ6SON7NzL/zrEvEGR+qCPKR7imdeL7m6devXpyUDmViHA+tm5qK6zu3Zn1K/m5rgwsjuT62/s1KaQ70gYNfRM1Gbb2X5YMaKc/oZcSdu1N1VJCob/6ZLb3J3HEonof++UDoBvU82AAFNqA4H4BB876hKKqo8nxPseyntO60XISsGoeTLqMBCLndLas6ocF08tBxveuoJq4ykmTggHWerL2LJhobh0kvebxjt6D0qMn/dAUD4ecbmcX074a09J3zqVqCh/vAX4wCmD85Au5bNgo4sLcwfHrTl3OiWMy2/syef66fWb5/vCeDrU+eiNt/K8sGMVRlxZxTqNiJV2QTrZ97/7VnJmYHVnoT+J78/8WQTIASOIBEaRoYlJ8Vj//GzDd1PKvZHsH3X2EaMNAZG/qZq776tkKyrp56w0vEvTnfhPTrSn3e14RaAt/acCGhpker+EV+/8tMSvPTTci4TB6Qr/m65WW2C7gMzW2o9c4l5TbshtmI//cmRgNdHS76V5ROArSzVmaDqwA7HNpSS3IymlHQLNCQul7tqQkoqExPonp3UVzbpTS4h7orOrZHRNtEz0RWgvD/U7Ds9iYf+nxFtCXZ2F+pv6k1t8rHZybp66wkj91Wodh07o2lKB6ChrNV1bp+6NVg95r1vjPjdjLg+6CVOu/FZ/jV4dlLfhtGlEq+LpnwrBjM2FcnKxr/i9lcvCFj1WUPG/OSVOwIy57V8znU5HWUvEkoXEC37Q81rQ6nM1haVhrwvyHhGBxZqRqWZOeIK0F9PBNtXkQzW5VINxPLFOAJHREr9rgEjTSW26d1qZubvZpRUZwKSm8dJtkgtGHOpptGUVr9BYzeTjXj3e0tl5Yfzjk9sutx19AzmvL7H5+SIccBnaYRQm6SVmmjlntOSdKc2gVtPv7dRzfNmJ15Go3CMAlLTlWpml4PeZFSlfaXUbSV13IZ6LPfPSA6o6xwA1s+8ytONJDViVOqzvH+LxLiYgAWAvfdNtCT1yx0Dv+qTarv8KSWWXzU7VJFeNTtc1KxpFMmp1L0rjumDM7Dy05KA13mvsh2Ji7N/uZRWoVX7WqVVY6W+07biCkxeuSNgO2pXHBfLFsmKQ/weSXGxqKqrD/ob2T3QMnsl4EjTcl74899XUis/iyuKS40wAmDIsby2qDRgSgf/7ej5XUPZN3YS6jEg95uLx0S46gMt128GM2Fm1DBQuaXjRTEO4LP8ayJWOXtXHAACyhfjaLhzyklrHdGLs5YKLZSLmtIMo0onfjD7ys5g7HPbAlrcCvOHA4DhlYbUkHul38gOd2gUyKgATi5Yf3ZSX8kWW0EIbD1Wey74C1cQ2liCW73fU+kGrfSHqrDWB1qu3+xmCqNwDgP1JzUsNJz8m9f9RyO5BWDc89saJriTSMwN16gIpWZ//8BS71DqYF1Jersy1haVIt9v7hLg55ykFz8t0XwsKQXTckPu5X4jtV1odm+5iUZGDeOW67KAxNQKclM57D52Bq2TtB8f4Zr6INTt2uV41/s9k+JiJVMapGaxN3PEJ4OZMAn3MFB/Zg+vmzggHT07tPBpVRAnvfOf78CMeQ2MbFHQOgO0mu/pmYRN4jfWm5P0wtbihiGtMrkN7+4/IXtMSf1GaoYZs+XGerRcbJWOGUA+l6Zf59YBdZRUy4zDAcx+bY/iDOJWprTatlW+j5HBlfj9/AMZpVnszZqzhsFMmBg5v4RUBTK2b8eASaHMviuoqqsPaFVwAz6LTgKRD7yMnjND6wzQasi1vsUAuH1wZkBOUrBj6YUtxSjYcNDzf7fQkLvQs0MLHDx5TnYSRLnvAwT/3laam4QavLCl2DNHS7CLrdQxI/X7yQXrUkEOAJ/Ze72DG7sdH/6By7y8np55rYDwfh+1AYqRwZVUy22MA1g3Mxc5aa0VZ7E3A4OZMDF6RV+pCuShUT0s1dcr953n5vXAkxsOmRZ4GT1xWThGxUjtOzHvqF3LZnipsET1sSROMubPLQA3PrdNdm0a721LfZ9UZ4JPBe7/OitMEEc/e2GruuCk3FWDXcfO+LxWJPX7+V9Yxf8P6Z4iOTuuWG9VnL+Ae9fsDdj+rqNncF2OtY8PqUDdO5ARheN4VxugGH0zITfLdXVdQ1t7OOrBUDCYCZNIDAMNJecjHH28ct954oB03JDT0bTAK9TAUmp/GTlsU9z+vNE98eQHvkFfTlprANJ3vXKfWVJRpRisSD23YMyl6J/R2mfGVH9ri0o9FbgDwNzRPXwqVaMD+GhhRk6FXECr1C0oJcYBn99PalSluEK03IVWrKek7uQB4N41e7D/+FlMG5wpuX+skJOy69gZyQu7UdNjyH1HLQGK0TcTas5nKw1fZzATRmb+0HInR7j7eOW+c7iS99QINSlXbn8Z8Z2kmq77dGqlen4dKWpyrLwFm3NCvHPPf/OAz5TyT35wCDdc3tHnNw7HnZrU0HHA+JFdasuh5jPF1247UoHnNhfL5qCES0lFlWT+FQDZbkEp8/J6er6r1IX1zd3fel7rfaEVy+C9r8Tjw3/dIAHAXz8twYteywmI++/AcZdnAIFZOSlri0qR/2bgmk6xDgfmju4RcANi1MhIQFuAYvTNhNrz2cy63RuDmTAz44dWGjYciZwG/+9shTurUJJywzUBntT2n9xwSHboqtpjyb8S8udAQx6TVFeRP6U7d6lKNZQA3ns/AQ0V+YFvXQHN+eJsr0YkkRqRi6CUFOotkjkiagLaYKMk5+f1xF1DslS/Hgg+8m7igHQkxTfB7Nf2BLxX3D9nqy/6jID0fz6So+ekVkcHGr6Xp9X5cv2tzsHqGC0BSjhuJqzU8hIMg5koo3RyhCOnweiVp40U6lBsI/aXUXddWomV0O5jZ1B4pAJri8p8ghc1FVSwO3elSlVrd4H3fvIOVqR4Px5KgBDQKja6J7IvcWpq6vefKM4/KdRfKL+vlot2qjNBMnEc+HkKB6WAJ8YB3HB5R5/H1ARIakbeSY18EtULgs+iklLPR3L0nFwA9/QtfXFdTsP+CeWGNVgdECxA8b8BSEtODFhgM1RWaXkJhsFMBBh95yCXgJfZNknx5DC6GdLKK08bUckZkWtj1F2XHt4XWgeAO4dkYtqgn/MSgv0GSnfiWu/6grVseO8nlb1jHnoCBKnfRkyA9Q9spPIlxMRVNUmh3vxzUNTSczxPH5yJFz8tkc3pkOv2Eb+L/z5Ver343dSMvFPajv/IR39Gj54LVjfLnaP9Mlqr2n4wB467Ah5Tm5cidwMgHh9qZxyPFgxmwszoO4dgCXjzRveUvUAa2QyppiIxa3SLUUFUqPtL7vvvPnYGY/oEv+sKhVSA8NKnRzFtUKbqbciNsHr6lr7ol9Fa0wVD6fdQ032hRE8AqPSZ3oGN3MgvpYnilEaLeeegAOpudPaVnWmYTFHj8ZzqTMCSCcrH18QB6Sj9vhrPbS4O+H5S+1Spm0g8LuRG3nl/V/ECvarwKF4s/Obn4zRIIGPk6Dk1dXO4z9GlHwQmac/N6xE0L0XpBiDcN41WSBuQwmAmjIxumVCTgPfkB4cwL6+nZyh0jMP35DCqD1RNRRLp0S3iSfZDVZ1hQVQo+0uuWX72a3twvvZHTByQHrY+aSMCSbmKXGxe9ydXyQUri9aEZcdP0YIA/asZq/1MqafFfAm5ieJuGZCG1z8v82l1iEFDIOOdg6LmYiomn/qXQ82QaUD++PVOql6+pRj+pC6oIqnvLbZWyB0zUus2TRyQjofHXIoxfToELOHhvd25eT0kk+JDqV+01M2RPEcBoE+nVrrfKwrXTaMVJwkUMZgJI6NbJtQm4PXp1ApzR/fAkp+avJe8fxDfn6v1DH3Uk9PgL5wrT+vh3+Rq1JBJQH+fsac53S/vRIBvxRlqn7TU76a2og/2m6utyKUqOTFPKykuVjJw2H/8LHKz2gQcJ/7BytzRPdDnklZIjIvx5AIACOniEixJWol3voR/uQUBeO3zMsQ4gDsHd8GYPh0k8xekLqbipIbicHy55FMg8LfUMurO51yR6dZRuqAGO6/9jxnAd+02/8BBarJNALjvmq645cp02d83lPpFa90cjryRUIKxYMG4uNzAtuIKQ9MbrDwpJoOZMDKyZaLcVYMfqupUTXiWGBeDpR8c9BlG6z/00Z/WiFttRaL2YhhK06VUk6sD8Oz7ULvTQmlSnTggHYlxsZKThRlx5yT3u6n5fdT+5sEqcqlKbp7XUNYYBzD6sg54/4uTPu/zHtotdQEMdsyEeix5f+b+b896WjOV+OdLeCdai9P0i/vgpcISTBucIVkGuQnJxj63DUsmNASCcstNiC1D3q0sUheZnh1aBKyCHnCuSGxfTR0V7Lz2Pma2FVdIBg7v7S/HmD6pshfmZzYdQcfWCYr1kN5WEyvMiRRKMBbsBmBs344Y9/w2Q1tQrD4pJoOZMDKqZUJuqKfcsgZSa2YAoS8g6E9tRRLsYhhq06XUSSYAeOaWvmjTPF733buecknNidI/IzksFWew303p99HymwcLDoK1GLoF4AO/QAaQTgz1TzhVux/E8gWMLpIZoeT9GanOBORmtfFM7Ogd2Kjp0kp1JqB1UuBEhUoVvdwFXACQv+6A5zP9xeDn1ehFcheZsc9vC5jfRmnZDLfCd5SitrVC7rsufu8rPPH+VygYny2ZEKwlN0hrS3MkW42VhNKF5R1IuwUB6cmJqK5zIzEuxhPIANpbUOT2mxUCQCUMZsIs1P5WueGxDjT0a981JCtgWQO5mTYB/QsIyjGiiyTUpkulEQd6y6anXFJBp3ghCUfFqeZ3k/t91P7mUpP6ZXdy+gRravJPwrVGl9KQbp9EXgeQ75ez4k8qsJFrJfKv8LVW9HJdkIB8Eqz/rNAi2cBI4tiVK6fRw3m9KXXpiWUrzB+Opyf3DUgs9k6Y10LNjYhV5lAJpQ6VykVKS07UXZ8H6660QgAoh8FMBIRysMrdSQlomGDthpyOkne0ckMf9SwgqJWWrplwJqpKXXjEzwxWNqVySW1DLuj0rqyl1q0JhdF97v7DXv1n/XULQMH7vqMvvIM1uSG74ra91+jyT0zXQ8uQbkEsuwDcNVQ+oBEptRLJVfjBKnr/80JqpXk5C8ZcKjtLs//xL7ayeBOP3dysNpLl9A+QjCYGDu/tL8fi974KKNuuo2fQL0N6/hnvhHk1tNyISNXNSpNcWmkUj9z3XDczV1e9oGa/WSUAlMJgxuKU7nqVLvpSQx+VmsmNiri1ds0YFUjpnYtBrmxy5dr/7Vn85sX/BHw/pa4W7wuJkSe/2t9Nbl4iqbWgUp3yM9hK8Q7W1s+6ytO14S0GP8+WCgGexPSlGw6iVUJT3X35eoZ0L91w0GcJBq2UKnylil7uvMhJa+0zfNp/ZWkg+HITgO/x79/NIG5DPKfMuiClOhMwpk8qnnj/q4Dfbc7re34OioMkzAcTyg2S3O9kxVE8ct+zus6tqz5Xu99CbY0PFwYzFqe1lcX/vQ+PuRTTBmcErbiMqOD05mEYFUj5n2ShzMUgFSjMHd3DZ1K0YM33onD2K0slznqPYAg6L5HfWlBq1uvx5x2sLRnve2G+Y3AXTxKsOK+Gd0tPKKMhpPa5Az8v1SDFDXgST/V8ppoZW6WOdS25TVu/Pq07KVR8XbBzyqwLklx95h0U/+WWy0NKmNd7g6SUSG3FUTxK3zM3q03Q+jzUrlKrYTBjA1paWaSorbhCreD05mEUjM82vAtGrjzByuZtSPcU/GXS5YAA9Mtorfj9/JvvRZHoVxZ/N6np+b3XuHELEvMS+a0Fpae1Q+1dv9GjIeRapsTP//DLcqzedizgfd6Jp5GYFVrue+86egbX5QTmNum9sZCalM7IVd2N6l6Rm3hPPBZCTZhPdSY0HPsbDmpKapb7nYqOSs8AbfYonmAts0r1ud6uUitjMGMTalpZjKh0QtmGmope7u6nMH+44dNvq5mLQa6ClJs3Ren7+Tf1Hz9TA7cgoH9GsqHfS+o3ktqvYmWuRM1Eh+Ksv9+erfF0S4nEFquSiioAP1egUseO5LYBfF9Vi3JXja5jVu6ivfXr03hle2AgI/K/u1Z73Evlp8wdrZz7I3cc3rtmD6rqfvRZJVrvOmJKQ/RDEa7uFbmJ94yYqXxtUWlDEI+GVrq5eT1UlVmu/hogkctjhRaLcleNrrWY9HaVWh2DGYuSq1zlKjkjKp1Qt6GmEorkXAX+5XEAwE85CUoVpNz08YX5w1U334frIiC3Xcl5S6BtrRux/Eqz/oorBIsT2O3/9qyn6y3Y95T6PQQ0JHiGso+CdS8C0ksMiMfdO/tONCxuqPK3mjggHWdrLv6c+/PBQbRKbOqZJFAq0Xze6J6ekVUiAQ0T5XmvEq1nP0hOwPem7wR8ehg5fN9fsLoilNYp/3l0vAdK6ClTTlpry7VYSNUDam8G9XSV2oFDEDROf2kzlZWVcDqdcLlcaNmypdnFUUXrhbDcVeMzwybQcJHy7j4QXydX4ajdhhrlrhrZuU12Hv0B972+15DP0VMeQHkyNrnp4wFgzYxfIDerjez38/48o/al2u0CkHzOewSR3LxEUsdWsO8Yyvcsd9Vg19EzmPP6nrAcB9uKKzB55Y6Ax6WGht89tIvkukRK5ZD63t7z0UglmqclJ0qWCZCerVrLflD6vktCCKLltiueB6Jgi4gqBTlqjjMl/ttXW+Zg25Srv6zQYhFq/RKu+ikctFy/2TJjMXrmN1HT2hEsQDKyxUQqsg9YbkBFC4lR/MujdJFSM318sDuXcLU+acnZ8Q5UvOdMSXUmBMxLJJLq6tBbnmBdNcnNw9dCJ9dd4B/Yzc3rgSXvBy70F6wckpM0ev1fKtF83cxcydYhqZYzrftBaZ4ZoxOs1XYbD+meIrsek7dQWgH0dAWrIVcmtWWVGz1oVM5RqPVLqN14VsVgxmL0HKhq5gwJFiDJbcOI9T2kRhXFCMCzk/viis7KE9tFcm4HpeRXLXOihGtUgFw+S8X5Cyh31cg2zUsFc0rBptqujnDOcxMKucraP7DbefQH2YUklcqhdWFMcbjskgnZPq1+4kR+3iPkAH0XX7kRj0oLUnpPfCh38dbbbbzr6JmwjgBSyr0L54U6WH2kZvRgdif5GanVMOLcsXNujBwGMxaj50ANVumonSnWfxtGre8hl8+RnBSveBJpucAaEfRktk2SXftKzUq2onDd+QTknPx0V3/vmr0hJX3qnYU5lO8Zjn2kZjSPf06TlHl5PTV9b6m5Ybz5D5fddfQMHA54AvlWCU1D3g+eCfj85vlRWpBSpHRuBbvoydVXkAj2jMyNU6rTwnWhDlYfSZ1H/qMHxUknQ80RM2KSULvmxshhzowFrS0qlbyrDEapr1dtH6m4DbmJt7zfs6/sDD4/+gMGZiQrJhrq6aPV8h4jk21f2FIckKhpdO5QqMpdNQELG4ZSzlDzDPR+TzGHKsbhCNpCF4zWwNf/2AIauj/z83qqmiFY3I7U3DBSieZq1vQy4lh5YWuxp6XH/7PlvjcQWs6EVH01pHtKWPMypL5LDID1s64Ky2zGauojufNITqj7Q+qY0TpJqNVmNfbHnBmb03tnodTXq/YuWNyG3Eq34p3V//vnXp+7jglXdMKfbr5ctlxa78LVdrcZvSz9XUOzAAcCLgh6thWuO59Up/aFDZWEMsmYWBFqHVZvZACq9RhYVVgieUF/dnJfjOnTUfXnev++elb9ltuWXmuLSj3HrQMNQ8aD5cWJQmk1kaqvyl01uH1wJl76aV/HALh9cIaq7am5wPrXKUBDa++457eFZXZeNfWRnu5HqX0uLiUi/DStg9I+UKoLpXK3vM8JK85qHAoGMxZl9IVQa4CkdIHbV3bGJ5ABGppTb8vtLHtXZOTnewtHsu1dQ7ICkmatxsicE6luk2A5QqFUhEYHoHLHgNQCheWuGqz8tCRgGzE/dfuEQio3KVKkLmRPfnDIZ+mGUGapDhZgeH93/9aBId3aovBIBf76aQleLCxRPFa0HFdSXWtG5+aI1Jxvcl314uhBf1L73H80pQPAkgnqzi0tk4QafQ5aQYzZBaDISXUmqF4fSDwxYx0NjZXeLRSfH/1B8j07j56JyOd7EysZb0YkkmopqxnU7h+1Jg5Ix9zRPeDAzxPurS0qlXytXEVY7qpR9VnBFvHUSsx18jf7tT0B36GkIrBFC2hYdsGqv7Uaavap/zEjCnbsrC0qxaAlGzF55Q4MWrJR9rgApIOqrYcrVB0reo6rqrp62dFgRlJ7vomzhj87qS/WzczFhH6XYN3MXKyZ8QvMz+sZ8H6goXuq3FUjOZpSQMOcQWrOLam60Jt3vWj0OWgFbJkhWXKtKQNlZrTtn2FsX7Wa1pxwJdvagdL+0doXrmXdpFBbw0JtVVL73QSoG7UXA2Cayi4Qq1K7T/1nqQ42c6zWO3g1y2HIHSvhGslpVE6I/76rqqv3mbk6WL7KXUOzPJNOinlWYh5OwzpmmZL7zg2oOrcCBggAspOE2n0dJikMZkiRVHdXTlprTLiiU0DOjNbEO7V942KzqNwQcTsPMwy1spX6ffR0AWm5kIRaEYYSgEp9t7TkRNmRRGpG7ZkV/Bp5odWTF6eG1gBDTd6I3LFi9EjOcOSEpDoTfObPEYfX35DTUXW+ilw3z4uflkjOOxQD5akCvKnN3bLSeWAUBjOky59uvhy35XbGzqNn0D+jteZARktFo+a14Uq2DadwDD3X2xeu5UJiREUY7C5Xy3dbNzNXdS6ImvVsIjHCIxwX2nAE9VoDjGB5I8GCLD3HlVwCcjhyQqSWSyh4/yCOaVzUVm66ijsHd8HKwm98ApqCCdmayqw2d0vr8WL1kU8MZqKEGQdaTpr2IAbQvuZLtCWqAdq+l5YLXyiz8mq5kBhx4fS/yw02Fb7cd6uuc6tasVzNejZq5hIxYjHXcB3TRgf1egIMqWNDbtZpNe9VW07v10ZyFm4AWPN5maZFbeWCxGmDM9CmRRyWvH/Q00UVTmqPFzuMfGIwEwXscKB501LRRGphSnHOE4fDgX4hznmihpah596jG4Jd+ELpAtJ6IQn1wql1KnylqerFCenkckHUBBDBXmPUeRbJxVaNoCfAkGod0BuY6BHOWbiluoIEADMGd8FLhSWeCS3FtbrkFqSVChKBhuR7ted7JNjlhpLBjImsdpcXqdYdLRVNUlys5EJ8RiaqhTIcUi+1iYvv7juhaT6ZULuAjAhQ1B5DWqfCDzZVvVzZy101eHf/iaABRLARHkadZ1qOf6s07dutGzdcOSGpzgTk5/X0zOQrEltVpg3OUD3XkFSQGGx+LzPYJfhmMGMgLRWP3F2e1srLqAMtkq07wSoacR8c+Nblc5cCBB9GqmcUj/8q2QIaLlzhvPNQm7goJVhCoFkJ0VqPIT1T4Wv9bkr7Um3Tf0bbRFXnmdpjT+2FNpQ6IpJBkFGfZXSZw3Ue3DUkCxB+mlgTgXWSmnwV7+e9XxPuUUZ69rFdRj4xmDGI1mROqbu8s9UXsfSDg5oCCiMONDOaEeUqGqWLT4wDWDczVzZPR+8oHqmYwS1ID4cM11BPucRFKXcMyQx7F5BWeo4huYt6v86tFY9ptd9NaV9qafoXX6NUJq3HXrALbSh1RCRuTDw3HMddmuss/21ktk1StcK2HuE6D/yHWRv1GWoCXb11kJrjQmrb4WrlMhqDGQMYMRdDvSBgiY6+UiMONLOaEf0rmmAXcrcAVNf5rwss/V4to3ikFpeUWjnZqNY0b2oSF/3LNW1QpqbPiAS9x5DcRd2IylNuXy4Ycyl+1SdVddM/oHyehbJQp9zzeuuISNyYyN1waPks/3PJe6FOq+Zk+DM6UBLrkSHdU1CYP1wyUNIbqKo5LpS2bYfpLxjMhEhtf7w3yYm7QlhlNtQDzSrNiMEu5FJlEiuAH6rqdI/iWTIh2zdn5qcTWSnQ8twp11z0rIdjxB1lsCnnjbwjMrKVKZRjSOqiYETlKVcmuUBGqjxqVuIOx82A3joi3DcmwW441HyW1LmkZzuRYpWh+qEEqsGOCzXbtnreFIOZEGjpj/cmdZc3N6+H56KoZhtS29R7oIWzGVFLRaD1Qu4/46beRGHxIrXr6Bk4flqjx7+sinfKBt4FSx4bo3ugzyWtDL0jMrorIhzHkNQxreV4CrVMcvvI//1G3Qz4fzef9bIA3DMsC8s3Fyt+TihlUbNv1dxwJMbFyE5wqWYbWsocbkYviCq1f9UGKaEEqsGOC7sk+SphMKOT1v54f1J3ea0SmprWLxmOZkStFYGWC7nUGjAO/Hz3qmcUz3U5yt1RUtPgh6MCCHeTbri6IsJdbj0XFr1l0rKPjAjk5L7b2ZqLWPLTTc7yzcUY17eT4gR0esvi//nz8noiu5Mz4MIb7IZjbN+OGPf8Ns92bh+ciemDM4Nuw+EAHAIkE2r9RSq52cjzROnYVRtIhNr6qXRcWKV1PhQOQZBYztNinnvuOfzhD3/AyZMnkZOTg2eeeQYDBw5U9d7Kyko4nU64XC60bNnSsDJtK67A5JU7Ah5X6o+X431yAsrD+eyi3FXjWXdEFOtwoDB/eNDvVe6qCUiK9a+85Pb/s5P6ok3z+KDrzchVhkrPrS0q9akMrr2sPTZ8cdLnNWq/o5nk9t2aGb8ImETOLP6/QyjHkx569pH/cauW3HdbNzPXExj4P65mTSUtM7v6f75IKmj0Pw/m5vVAn06tkBgXE1BeQHqqA/9tPDG+t6qg84WtxZ7W0HCPujTqPAl27Co9D8DnPJDab1q+v9JxEeq2w0HL9dvyLTNr167Fgw8+iBUrVuDKK6/EsmXLMGrUKBw6dAjt2rUzrVx6++P96c0wt7pQmi29uxfk9o/c/u+XoTzhndL+DvZb+E/BP+75bQHbn5vXw/K/kVw+RmJcjHmF8iK3/pKa48moc0XvOkF6PlPuXCk6ekby8eo6d9CLqZayKHX7SLVGyLV2Sc2RAkgv+KmUaC3nhS3FKNjw8/wuRicK+x87RrVWBKsL5VpN5EZ4hdL66Z1b5f1/wB5JvkqsUXspeOqppzBjxgxMmzYNvXr1wooVK5CYmIi//e1vppZLPACDLQmvRM2S92uLSjFoyUZMXrkDg5ZsxNqiUkO/R7hILUdv1JBxcQ0frftfaXtqfgug4XfPzWqDqrp6yYq7T6dWqr+fWfz3HdDwfcc9v83040vud0iKiw16PBl5rhhxfqsld64MyGgd8jmk9/O9eU8cKBLPA6lukFC2IafcVYMlGw4GPC61XT2kjh2jjgE1deHEAekozB+ONTN+gcL84RjSPUWx7lO739R8T2+hbNtslg5m6urqsGvXLowcOdLzWExMDEaOHInt27dLvqe2thaVlZU+f+HifwBqbZILNuOo2gusFRlREQTbP1r3v9L2gn2WPyOCNTNNHJCOdTNz4f0VrHB8BVt/Se54Cse5Eur5rZbcuZKT1joiAZVUcOtNa16GVEAT6rkhNx+U1BQKWikdO0YcA2rrQu9AQmt9pIadrydqWLqbqaKiAvX19Wjfvr3P4+3bt8fBg4FROgAUFBRg0aJFkSgegNBGEUV7hnkkhoxr2f/Bthfq6sBWnEhKSVVdvaalEiJB6TfyXn/J/3gK17kSyvmthdy5Eqmmf+/P2X/8LJ784JCu41rczqrPSvDi1hJVCb1qyCUez8vrGfI+UdMNFOpnaP0dw5GQa/frSTCWDmb0mD9/Ph588EHP/ysrK5GWlmZiieQ1hgzzUCoCowOGYNszYnVgO7Hi8RXsN5I7nqz4XbSS+26RCqjEz8nNahPS7LapzgQ8/KtemDYo07Bzw/+4iEFDIHPXkKyQtgtE7tjR8juG42YpGs4RJZYezVRXV4fExES88cYbGDt2rOfxKVOm4OzZs3j77beDbiNco5mMZLcM80jTO0pEz/aM/iyrs+rxped3sOp3IeOE6/y06rFj9Pe16veUo+X6belgBgCuvPJKDBw4EM888wwAwO12Iz09HbNnz0Z+fn7Q99shmAmmsV1gKbKi6fiKpu9CkdVYjh07fc+oGpr94IMPYsqUKejfvz8GDhyIZcuWoaqqCtOmTTO7aBETqWZmapyi6fiKpu9CkdVYjp1o/Z6WD2YmTpyI06dP45FHHsHJkydx+eWX44MPPghICiYiIqLGyfLdTKGKhm4mIiKixkbL9dvS88wQERERBcNghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtmb55QxCJU5wXFlZaXJJiIiISC3xuq1moYKoD2bOnTsHAEhLSzO5JERERKTVuXPn4HQ6FV8T9Wszud1unDhxAi1atIDD4TC7OBFXWVmJtLQ0lJWVcW2qEHA/GoP70Rjcj8bgfjRGuPajIAg4d+4cOnbsiJgY5ayYqG+ZiYmJwSWXXGJ2MUzXsmVLnqwG4H40BvejMbgfjcH9aIxw7MdgLTIiJgATERGRrTGYISIiIltjMBPl4uPj8eijjyI+Pt7sotga96MxuB+Nwf1oDO5HY1hhP0Z9AjARERFFN7bMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwUyU2Lp1K66//np07NgRDocDb731ls/zgiDgkUceQWpqKhISEjBy5EgcPnzYnMJaWLD9OHXqVDgcDp+/0aNHm1NYiyooKMCAAQPQokULtGvXDmPHjsWhQ4d8XnPhwgXMmjULbdq0QfPmzTFhwgR89913JpXYmtTsx2HDhgUcj3fffbdJJbam5cuXo0+fPp4J3XJzc7FhwwbP8zwW1Qm2H80+FhnMRImqqirk5OTgueeek3z+ySefxNNPP40VK1Zgx44dSEpKwqhRo3DhwoUIl9Tagu1HABg9ejTKy8s9f2vWrIlgCa1vy5YtmDVrFv7zn//g448/xsWLF3HttdeiqqrK85oHHngA//73v/Gvf/0LW7ZswYkTJzB+/HgTS209avYjAMyYMcPneHzyySdNKrE1XXLJJViyZAl27dqFnTt34pprrsGNN96IL7/8EgCPRbWC7UfA5GNRoKgDQFi/fr3n/263W+jQoYPwhz/8wfPY2bNnhfj4eGHNmjUmlNAe/PejIAjClClThBtvvNGU8tjVqVOnBADCli1bBEFoOPaaNm0q/Otf//K85quvvhIACNu3bzermJbnvx8FQRCGDh0q3HfffeYVyqZat24tvPjiizwWQyTuR0Ew/1hky0wjUFJSgpMnT2LkyJGex5xOJ6688kps377dxJLZ0+bNm9GuXTv06NED99xzD77//nuzi2RpLpcLAJCcnAwA2LVrFy5evOhzPPbs2RPp6ek8HhX470fRP/7xD7Rt2xa9e/fG/PnzUV1dbUbxbKG+vh6vv/46qqqqkJuby2NRJ//9KDLzWIz6hSYJOHnyJACgffv2Po+3b9/e8xypM3r0aIwfPx6ZmZkoLi7Gww8/jLy8PGzfvh2xsbFmF89y3G437r//fgwaNAi9e/cG0HA8xsXFoVWrVj6v5fEoT2o/AsDkyZPRuXNndOzYEfv378e8efNw6NAhrFu3zsTSWs+BAweQm5uLCxcuoHnz5li/fj169eqFvXv38ljUQG4/AuYfiwxmiDS45ZZbPP/Ozs5Gnz59kJWVhc2bN2PEiBEmlsyaZs2ahS+++AKFhYVmF8XW5PbjnXfe6fl3dnY2UlNTMWLECBQXFyMrKyvSxbSsHj16YO/evXC5XHjjjTcwZcoUbNmyxexi2Y7cfuzVq5fpxyK7mRqBDh06AEBAhv53333neY706dKlC9q2bYsjR46YXRTLmT17Nt59911s2rQJl1xyiefxDh06oK6uDmfPnvV5PY9HaXL7UcqVV14JADwe/cTFxaFr167o168fCgoKkJOTg7/85S88FjWS249SIn0sMphpBDIzM9GhQwd88sknnscqKyuxY8cOn/5O0u748eP4/vvvkZqaanZRLEMQBMyePRvr16/Hxo0bkZmZ6fN8v3790LRpU5/j8dChQygtLeXx6CXYfpSyd+9eAODxGITb7UZtbS2PxRCJ+1FKpI9FdjNFifPnz/tEwCUlJdi7dy+Sk5ORnp6O+++/H4sXL0a3bt2QmZmJBQsWoGPHjhg7dqx5hbYgpf2YnJyMRYsWYcKECejQoQOKi4sxd+5cdO3aFaNGjTKx1NYya9YsvPbaa3j77bfRokULT+6B0+lEQkICnE4nbr/9djz44INITk5Gy5Ytce+99yI3Nxe/+MUvTC69dQTbj8XFxXjttdfwq1/9Cm3atMH+/fvxwAMPYMiQIejTp4/JpbeO+fPnIy8vD+np6Th37hxee+01bN68GR9++CGPRQ2U9qMljkXTxlGRoTZt2iQACPibMmWKIAgNw7MXLFggtG/fXoiPjxdGjBghHDp0yNxCW5DSfqyurhauvfZaISUlRWjatKnQuXNnYcaMGcLJkyfNLralSO0/AMKqVas8r6mpqRFmzpwptG7dWkhMTBTGjRsnlJeXm1doCwq2H0tLS4UhQ4YIycnJQnx8vNC1a1fhd7/7neByucwtuMVMnz5d6Ny5sxAXFyekpKQII0aMED766CPP8zwW1VHaj1Y4Fh2CIAiRCZuIiIiIjMecGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIaIiIhsjcEMERER2RqDGSIiIrI1BjNEZJq6ujqzixDAimUiImUMZojIMMOGDcPs2bMxe/ZsOJ1OtG3bFgsWLIC4akpGRgZ+//vf47bbbkPLli1x5513AgAKCwtx9dVXIyEhAWlpaZgzZw6qqqo8233++efRrVs3NGvWDO3bt8dNN93kee6NN95AdnY2EhIS0KZNG4wcOdLz3mHDhuH+++/3KePYsWMxdepUz//1lomIrIPBDBEZ6uWXX0aTJk3w+eef4y9/+QueeuopvPjii57n//jHPyInJwd79uzBggULUFxcjNGjR2PChAnYv38/1q5di8LCQsyePRsAsHPnTsyZMwePPfYYDh06hA8++ABDhgwBAJSXl2PSpEmYPn06vvrqK2zevBnjx4+H1iXntJaJiKyFC00SkWGGDRuGU6dO4csvv4TD4QAA5Ofn45133sF///tfZGRkoG/fvli/fr3nPXfccQdiY2PxwgsveB4rLCzE0KFDUVVVhffffx/Tpk3D8ePH0aJFC5/P2717N/r164ejR4+ic+fOkuW5/PLLsWzZMs9jY8eORatWrbB69WoA0FWmZs2ahbSfiMhYbJkhIkP94he/8AQyAJCbm4vDhw+jvr4eANC/f3+f1+/btw+rV69G8+bNPX+jRo2C2+1GSUkJfvnLX6Jz587o0qULbr31VvzjH/9AdXU1ACAnJwcjRoxAdnY2fv3rX2PlypU4c+aM5jJrLRMRWQuDGSKKqKSkJJ//nz9/HnfddRf27t3r+du3bx8OHz6MrKwstGjRArt378aaNWuQmpqKRx55BDk5OTh79ixiY2Px8ccfY8OGDejVqxeeeeYZ9OjRwxNwxMTEBHQ5Xbx4MeQyEZG1MJghIkPt2LHD5///+c9/0K1bN8TGxkq+/oorrsB///tfdO3aNeAvLi4OANCkSROMHDkSTz75JPbv34+jR49i48aNAACHw4FBgwZh0aJF2LNnD+Li4jxdRikpKSgvL/d8Vn19Pb744oug30FNmYjIOhjMEJGhSktL8eCDD+LQoUNYs2YNnnnmGdx3332yr583bx62bduG2bNnY+/evTh8+DDefvttT7Ltu+++i6effhp79+7FsWPH8Morr8DtdqNHjx7YsWMHnnjiCezcuROlpaVYt24dTp8+jUsvvRQAcM011+C9997De++9h4MHD+Kee+7B2bNng36HYGUiImtpYnYBiCi63HbbbaipqcHAgQMRGxuL++67zzPcWUqfPn2wZcsW/M///A+uvvpqCIKArKwsTJw4EQDQqlUrrFu3DgsXLsSFCxfQrVs3rFmzBpdddhm++uorbN26FcuWLUNlZSU6d+6MP/3pT8jLywMATJ8+Hfv27cNtt92GJk2a4IEHHsDw4cODfodgZSIia+FoJiIyjNToISKicGM3ExEREdkagxkiIiKyNXYzERERka2xZYaIiIhsjcEMERER2RqDGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIaIiIhs7f8D+wfn2xM8vM8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6gUlEQVR4nO3de1wU5f4H8M+CgqACKncFQU2RBLxmeEFNj0h0Me2Xt7xbR1NLK0MrK7sI2TmnrFPa0dLOKcsu1ilNzeNdIUMTb6UlYViCSsqSgKDs8/uDdtrLzN6X3WU/79eLc3JmdvaZ2ZlnvvNcVUIIASIiIiIv5uPqBBARERG5GgMiIiIi8noMiIiIiMjrMSAiIiIir8eAiIiIiLweAyIiIiLyegyIiIiIyOsxICIiIiKvx4CIiIiIvB4DIiLyGM888wxUKpVF26pUKjzzzDNOTc/gwYMxePBgt90fEVmOARERWW3t2rVQqVTSX5MmTdC2bVtMmTIFv/76q6uT53bi4uL0zld4eDgGDhyITz/91CH7r6qqwjPPPINdu3Y5ZH9E3ogBERHZ7Nlnn8V//vMfrFy5EhkZGXj33XcxaNAgXL161Snf9+STT6K6utop+3a27t274z//+Q/+85//4NFHH8W5c+cwatQorFy50u59V1VVYcmSJQyIiOzQxNUJICLPlZGRgd69ewMAZsyYgdDQULz44ov4/PPPcc899zj8+5o0aYImTTwz22rbti3uvfde6d+TJk1Cp06d8PLLL2PmzJkuTBkRASwhIiIHGjhwIACgsLBQb/nJkydx9913o3Xr1mjWrBl69+6Nzz//XG+ba9euYcmSJbjhhhvQrFkztGnTBgMGDMC2bdukbeTaENXU1GD+/PkICwtDy5Ytcccdd+CXX34xStuUKVMQFxdntFxun2vWrMEtt9yC8PBw+Pv7IzExEStWrLDqXJgTGRmJrl27oqioyOR2Fy5cwPTp0xEREYFmzZohJSUF77zzjrT+zJkzCAsLAwAsWbJEqpZzdvsposbGM1+1iMgtnTlzBgDQqlUradmJEyfQv39/tG3bFgsXLkTz5s3x4YcfYuTIkfjkk09w1113AagPTLKzszFjxgzcdNNNqKiowMGDB/Htt9/iL3/5i+J3zpgxA++++y7Gjx+Pfv36YceOHcjMzLTrOFasWIEbb7wRd9xxB5o0aYIvvvgCDzzwADQaDWbPnm3XvrWuXbuGs2fPok2bNorbVFdXY/DgwTh9+jTmzJmD+Ph4fPTRR5gyZQrKy8vx0EMPISwsDCtWrMCsWbNw1113YdSoUQCA5ORkh6STyGsIIiIrrVmzRgAQ//vf/8TFixfF2bNnxccffyzCwsKEv7+/OHv2rLTt0KFDRVJSkrh69aq0TKPRiH79+okbbrhBWpaSkiIyMzNNfu/TTz8tdLOtgoICAUA88MADetuNHz9eABBPP/20tGzy5Mmiffv2ZvcphBBVVVVG26Wnp4sOHTroLRs0aJAYNGiQyTQLIUT79u3F8OHDxcWLF8XFixfFkSNHxNixYwUAMXfuXMX9vfLKKwKAePfdd6VltbW1IjU1VbRo0UJUVFQIIYS4ePGi0fESkXVYZUZENhs2bBjCwsIQExODu+++G82bN8fnn3+Odu3aAQAuXbqEHTt24J577sHvv/+OsrIylJWV4bfffkN6ejp+/PFHqVdaSEgITpw4gR9//NHi7//yyy8BAA8++KDe8nnz5tl1XAEBAdJ/q9VqlJWVYdCgQfjpp5+gVqtt2udXX32FsLAwhIWFISUlBR999BEmTpyIF198UfEzX375JSIjIzFu3DhpWdOmTfHggw/iypUr2L17t01pISJjrDIjIpu9/vrr6Ny5M9RqNd5++23s2bMH/v7+0vrTp09DCIHFixdj8eLFsvu4cOEC2rZti2effRZ33nknOnfujG7dumHEiBGYOHGiyaqfn3/+GT4+PujYsaPe8i5duth1XPv378fTTz+NvLw8VFVV6a1Tq9UIDg62ep99+/bF888/D5VKhcDAQHTt2hUhISEmP/Pzzz/jhhtugI+P/rtr165dpfVE5BgMiIjIZjfddJPUy2zkyJEYMGAAxo8fj1OnTqFFixbQaDQAgEcffRTp6emy++jUqRMAIC0tDYWFhfjvf/+Lr776CqtXr8bLL7+MlStXYsaMGXanVWlAx7q6Or1/FxYWYujQoUhISMA//vEPxMTEwM/PD19++SVefvll6ZisFRoaimHDhtn0WSJyPgZEROQQvr6+yM7OxpAhQ/DPf/4TCxcuRIcOHQDUV/NYEgy0bt0aU6dOxdSpU3HlyhWkpaXhmWeeUQyI2rdvD41Gg8LCQr1SoVOnThlt26pVK5SXlxstNyxl+eKLL1BTU4PPP/8csbGx0vKdO3eaTb+jtW/fHkePHoVGo9ErJTp58qS0HlAO9ojIcmxDREQOM3jwYNx000145ZVXcPXqVYSHh2Pw4MF48803UVJSYrT9xYsXpf/+7bff9Na1aNECnTp1Qk1NjeL3ZWRkAABeffVVveWvvPKK0bYdO3aEWq3G0aNHpWUlJSVGo0X7+voCAIQQ0jK1Wo01a9YopsNZbr31VpSWlmL9+vXSsuvXr+O1115DixYtMGjQIABAYGAgAMgGfERkGZYQEZFDLViwAP/3f/+HtWvXYubMmXj99dcxYMAAJCUl4b777kOHDh1w/vx55OXl4ZdffsGRI0cAAImJiRg8eDB69eqF1q1b4+DBg/j4448xZ84cxe/q3r07xo0bhzfeeANqtRr9+vXD9u3bcfr0aaNtx44di6ysLNx111148MEHUVVVhRUrVqBz58749ttvpe2GDx8OPz8/3H777fjrX/+KK1euYNWqVQgPD5cN6pzp/vvvx5tvvokpU6bg0KFDiIuLw8cff4z9+/fjlVdeQcuWLQHUNwJPTEzE+vXr0blzZ7Ru3RrdunVDt27dGjS9RB7N1d3ciMjzaLvd5+fnG62rq6sTHTt2FB07dhTXr18XQghRWFgoJk2aJCIjI0XTpk1F27ZtxW233SY+/vhj6XPPP/+8uOmmm0RISIgICAgQCQkJ4oUXXhC1tbXSNnJd5Kurq8WDDz4o2rRpI5o3by5uv/12cfbsWdlu6F999ZXo1q2b8PPzE126dBHvvvuu7D4///xzkZycLJo1aybi4uLEiy++KN5++20BQBQVFUnbWdPt3tyQAkr7O3/+vJg6daoIDQ0Vfn5+IikpSaxZs8bos7m5uaJXr17Cz8+PXfCJbKASQqdcmIiIiMgLsQ0REREReT0GREREROT1GBARERGR13NpQLRixQokJycjKCgIQUFBSE1NxebNm6X1gwcPlmZu1v7NnDlTbx/FxcXIzMxEYGAgwsPDsWDBAly/fl1vm127dqFnz57w9/dHp06dsHbt2oY4PCIiIvIQLu12365dO+Tk5OCGG26AEALvvPMO7rzzThw+fBg33ngjAOC+++7Ds88+K31GO94GUD/CbGZmJiIjI5Gbm4uSkhJMmjQJTZs2xdKlSwEARUVFyMzMxMyZM/Hee+9h+/btmDFjBqKiohRHziUiIiLv4na9zFq3bo2XXnoJ06dPx+DBg9G9e3fZQdYAYPPmzbjttttw7tw5REREAABWrlyJrKwsXLx4EX5+fsjKysKmTZtw/Phx6XNjx45FeXk5tmzZ0hCHRERERG7ObQZmrKurw0cffYTKykqkpqZKy9977z28++67iIyMxO23347FixdLpUR5eXlISkqSgiEASE9Px6xZs3DixAn06NEDeXl5RlMGpKenWz0btkajwblz59CyZUsOk09EROQhhBD4/fffER0dbTRRsi6XB0THjh1Damoqrl69ihYtWuDTTz9FYmIiAGD8+PFo3749oqOjcfToUWRlZeHUqVPYsGEDAKC0tFQvGAIg/bu0tNTkNhUVFaiurkZAQIBsumpqavSmDPj111+ldBEREZFnOXv2LNq1a6e43uUBUZcuXVBQUAC1Wo2PP/4YkydPxu7du5GYmIj7779f2i4pKQlRUVEYOnQoCgsL0bFjR6emKzs7G0uWLDFafvbsWQQFBTn1u4mIiMgxKioqEBMTI011o8TlAZGfnx86deoEAOjVqxfy8/OxfPlyvPnmm0bb9u3bFwBw+vRpdOzYEZGRkfjmm2/0tjl//jwAIDIyUvp/7TLdbYKCghRLhwBg0aJFePjhh6V/a0+otkccEREReQ5zzV3cbhwijUajOLt1QUEBACAqKgoAkJqaimPHjuHChQvSNtu2bUNQUJBUvZWamort27fr7Wfbtm167ZTk+Pv7S8EPgyAiIqLGzaUlRIsWLUJGRgZiY2Px+++/Y926ddi1axe2bt2KwsJCrFu3DrfeeivatGmDo0ePYv78+UhLS0NycjKA+lmpExMTMXHiRCxbtgylpaV48sknMXv2bPj7+wMAZs6ciX/+85947LHHMG3aNOzYsQMffvghNm3a5MpDJyIiIjfi0oDowoULmDRpEkpKShAcHIzk5GRs3boVf/nLX3D27Fn873//wyuvvILKykrExMRg9OjRePLJJ6XP+/r6YuPGjZg1axZSU1PRvHlzTJ48WW/covj4eGzatAnz58/H8uXL0a5dO6xevZpjEBEREZHE7cYhclcVFRUIDg6GWq1m9RkRUSNTV1eHa9euuToZZIOmTZvC19dXcb2lz2+XN6omIiJyFSEESktLUV5e7uqkkB1CQkIQGRlp1ziBDIiIiMhraYOh8PBwBAYGcuBdDyOEQFVVldS5StvpyhYMiIiIyCvV1dVJwVCbNm1cnRyykXYInQsXLiA8PNxk9ZkpbtftnoiIqCFo2wzpThpOnkn7G9rTDowBEREReTVWk3k+R/yGDIiIiIjI6zEgIiIiIgD1JS2fffaZq5OhZ9euXVCpVE7vCciAyMVK1NXILSxDibra1UkhIiIv8cwzz6B79+6uToZbYS8zF1qfX4xFG45BIwAfFZA9Kglj+sS6OllERERehyVELlKirpaCIQDQCODxDcdZUkRERGZpNBpkZ2cjPj4eAQEBSElJwccffwzgzyqm7du3o3fv3ggMDES/fv1w6tQpAMDatWuxZMkSHDlyBCqVCiqVCmvXrpX2XVZWhrvuuguBgYG44YYb8Pnnn1uUJu33bt26FT169EBAQABuueUWXLhwAZs3b0bXrl0RFBSE8ePHo6qqSvpcTU0NHnzwQYSHh6NZs2YYMGAA8vPzHXeyLMSAyEWKyiqlYEirTgicKauS/wAREbm1hmwCkZ2djX//+99YuXIlTpw4gfnz5+Pee+/F7t27pW2eeOIJ/P3vf8fBgwfRpEkTTJs2DQAwZswYPPLII7jxxhtRUlKCkpISjBkzRvrckiVLcM899+Do0aO49dZbMWHCBFy6dMnitD3zzDP45z//idzcXJw9exb33HMPXnnlFaxbtw6bNm3CV199hddee03a/rHHHsMnn3yCd955B99++y06deqE9PR0q77TERgQuUh8aHP4GPQS9FWpEBfK8TCIiDzN+vxi9M/ZgfGrDqB/zg6szy922nfV1NRg6dKlePvtt5Geno4OHTpgypQpuPfee/Hmm29K273wwgsYNGgQEhMTsXDhQuTm5uLq1asICAhAixYt0KRJE0RGRiIyMlIa3BAApkyZgnHjxqFTp05YunQprly5gm+++cbi9D3//PPo378/evTogenTp2P37t1YsWIFevTogYEDB+Luu+/Gzp07AQCVlZVYsWIFXnrpJWRkZCAxMRGrVq1CQEAA3nrrLcedNAswIHKRqOAAZI9Kgu8fYyf4qlRYOqobooIDzHySiIjcSUM3gTh9+jSqqqrwl7/8BS1atJD+/v3vf6OwsFDaLjk5Wfpv7ZQW2ikuTNH9XPPmzREUFGTR5+Q+HxERgcDAQHTo0EFvmXZ/hYWFuHbtGvr37y+tb9q0KW666SZ8//33Fn+nI7BRtQuN6ROLtM5hOFNWhbjQQAZDREQeyFQTCGfk61euXAEAbNq0CW3bttVb5+/vLwVFTZs2lZZrBy7UaDRm96/7Oe1nLfmc3OdVKpXd+2soDIhcLCo4gIEQEZEH0zaB0A2KnNkEIjExEf7+/iguLsagQYOM1uuWEinx8/NDXV2dM5JnlY4dO8LPzw/79+9H+/btAdRPv5Gfn4958+Y1aFoYEBEREdlB2wTi8Q3HUSeE05tAtGzZEo8++ijmz58PjUaDAQMGQK1WY//+/QgKCpICC1Pi4uJQVFSEgoICtGvXDi1btoS/v79T0mtK8+bNMWvWLCxYsACtW7dGbGwsli1bhqqqKkyfPr1B08KAiIiIyE4N3QTiueeeQ1hYGLKzs/HTTz8hJCQEPXv2xOOPP25RddTo0aOxYcMGDBkyBOXl5VizZg2mTJni1DQrycnJgUajwcSJE/H777+jd+/e2Lp1K1q1atWg6VAJIYT5zaiiogLBwcFQq9UICgpydXKIiMhOV69eRVFREeLj49GsWTNXJ4fsYOq3tPT5zV5mRERE5PUYEBEREZFZM2fO1Ovmr/s3c+ZMVyfPbmxDRERERGY9++yzePTRR2XXNYamJAyIiIiIyKzw8HCEh4e7OhlOwyozIiIi8noMiIiIyKu546jJZB1H/IasMiMiIq/k5+cHHx8fnDt3DmFhYfDz85OmuCDPIIRAbW0tLl68CB8fH/j5+dm8LwZERETklXx8fBAfH4+SkhKcO3fO1ckhOwQGBiI2NhY+PrZXfDEgIiIir+Xn54fY2Fhcv37dLeb2Iuv5+vqiSZMmdpfuMSAiIiKvpp2R3XBWdvIubFRNREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GREREROT1GBARERGR12NARERERF6PARERERF5PQZERERE5PUYEBEREZHXc2lAtGLFCiQnJyMoKAhBQUFITU3F5s2bpfVXr17F7Nmz0aZNG7Ro0QKjR4/G+fPn9fZRXFyMzMxMBAYGIjw8HAsWLMD169f1ttm1axd69uwJf39/dOrUCWvXrm2IwyMiIiIP4dKAqF27dsjJycGhQ4dw8OBB3HLLLbjzzjtx4sQJAMD8+fPxxRdf4KOPPsLu3btx7tw5jBo1Svp8XV0dMjMzUVtbi9zcXLzzzjtYu3YtnnrqKWmboqIiZGZmYsiQISgoKMC8efMwY8YMbN26tcGPl4iIiNyTSgghXJ0IXa1bt8ZLL72Eu+++G2FhYVi3bh3uvvtuAMDJkyfRtWtX5OXl4eabb8bmzZtx22234dy5c4iIiAAArFy5EllZWbh48SL8/PyQlZWFTZs24fjx49J3jB07FuXl5diyZYvF6aqoqEBwcDDUajWCgoIce9BERETkFJY+v92mDVFdXR0++OADVFZWIjU1FYcOHcK1a9cwbNgwaZuEhATExsYiLy8PAJCXl4ekpCQpGAKA9PR0VFRUSKVMeXl5evvQbqPdh5KamhpUVFTo/REREVHj5PKA6NixY2jRogX8/f0xc+ZMfPrpp0hMTERpaSn8/PwQEhKit31ERARKS0sBAKWlpXrBkHa9dp2pbSoqKlBdXa2YruzsbAQHB0t/MTEx9h4qERERuSmXB0RdunRBQUEBDhw4gFmzZmHy5Mn47rvvXJ0sLFq0CGq1Wvo7e/asq5NERERETtLE1Qnw8/NDp06dAAC9evVCfn4+li9fjjFjxqC2thbl5eV6pUTnz59HZGQkACAyMhLffPON3v60vdB0tzHsmXb+/HkEBQUhICBAMV3+/v7w9/e3+/iIiIjI/bm8hMiQRqNBTU0NevXqhaZNm2L79u3SulOnTqG4uBipqakAgNTUVBw7dgwXLlyQttm2bRuCgoKQmJgobaO7D+022n0QERERubSEaNGiRcjIyEBsbCx+//13rFu3Drt27cLWrVsRHByM6dOn4+GHH0br1q0RFBSEuXPnIjU1FTfffDMAYPjw4UhMTMTEiROxbNkylJaW4sknn8Ts2bOl0p2ZM2fin//8Jx577DFMmzYNO3bswIcffohNmza58tCJiIjIjbg0ILpw4QImTZqEkpISBAcHIzk5GVu3bsVf/vIXAMDLL78MHx8fjB49GjU1NUhPT8cbb7whfd7X1xcbN27ErFmzkJqaiubNm2Py5Ml49tlnpW3i4+OxadMmzJ8/H8uXL0e7du2wevVqpKenN/jxEhERkXtyu3GI3BXHISIiIvI8HjcOEREREZGrMCAiIiIir8eAiIiIiLweAyI3UaKuRm5hGUrUyqNnExERkXO4fGBGAtbnF2PRhmPQCMBHBWSPSsKYPrGuThYREZHXYAmRi5Woq6VgCAA0Anh8w3GWFBERETUgBkQuVlRWKQVDWnVC4ExZlWsSRERE5IUYELlYfGhz+Kj0l/mqVIgLDXRNgoiIiLwQAyIXiwoOQPaoJPiq6qMiX5UKS0d1Q1Sw8sSzRERE5FhsVO0GxvSJRVrnMJwpq0JcaCCDISIiogbGgMhNRAUHMBAiIiJyEVaZERERkddjQERERERejwEREREReT0GREREROT1GBARERGR12NARERERF6PARERERF5PQZERERE5PUYEBEREZHXY0BEREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GRG6iRF2N3MIylKirXZ0UIiIir9PE1QkgYH1+MRZtOAaNAHxUQPaoJIzpE+vqZBEREXkNlhC5WIm6WgqGAEAjgMc3HGdJERERUQNiQORiRWWVUjCkVScEzpRVuSZBREREXogBkYvFhzaHj0p/ma9KhbjQQNckiIiIyAsxIHKxqOAAZI9Kgq+qPiryVamwdFQ3RAUHuDhlRERE3oONqt3AmD6xSOschjNlVYgLDWQwRERE1MAYELmJqOAABkJEREQuwiozIiIi8noMiIiIiMjrMSAiIiIir8eAiIiIiLweAyIiIiLyei4NiLKzs9GnTx+0bNkS4eHhGDlyJE6dOqW3zeDBg6FSqfT+Zs6cqbdNcXExMjMzERgYiPDwcCxYsADXr1/X22bXrl3o2bMn/P390alTJ6xdu9bZh0dEREQewqUB0e7duzF79mx8/fXX2LZtG65du4bhw4ejsrJSb7v77rsPJSUl0t+yZcukdXV1dcjMzERtbS1yc3PxzjvvYO3atXjqqaekbYqKipCZmYkhQ4agoKAA8+bNw4wZM7B169YGO1YiIiJyXyohhDC/WcO4ePEiwsPDsXv3bqSlpQGoLyHq3r07XnnlFdnPbN68GbfddhvOnTuHiIgIAMDKlSuRlZWFixcvws/PD1lZWdi0aROOHz8ufW7s2LEoLy/Hli1bLEpbRUUFgoODoVarERQUZN+BEhERUYOw9PntVm2I1Go1AKB169Z6y9977z2EhoaiW7duWLRoEaqq/pz4NC8vD0lJSVIwBADp6emoqKjAiRMnpG2GDRumt8/09HTk5eUppqWmpgYVFRV6f0RERNQ4uc1I1RqNBvPmzUP//v3RrVs3afn48ePRvn17REdH4+jRo8jKysKpU6ewYcMGAEBpaaleMARA+ndpaanJbSoqKlBdXY2AAOMRorOzs7FkyRKHHiMRERG5J7cJiGbPno3jx49j3759esvvv/9+6b+TkpIQFRWFoUOHorCwEB07dnRaehYtWoSHH35Y+ndFRQViYmKc9n1ERETkOm5RZTZnzhxs3LgRO3fuRLt27Uxu27dvXwDA6dOnAQCRkZE4f/683jbaf0dGRprcJigoSLZ0CAD8/f0RFBSk90dERESNk0sDIiEE5syZg08//RQ7duxAfHy82c8UFBQAAKKiogAAqampOHbsGC5cuCBts23bNgQFBSExMVHaZvv27Xr72bZtG1JTUx10JEREROTJXBoQzZ49G++++y7WrVuHli1borS0FKWlpaiurgYAFBYW4rnnnsOhQ4dw5swZfP7555g0aRLS0tKQnJwMABg+fDgSExMxceJEHDlyBFu3bsWTTz6J2bNnw9/fHwAwc+ZM/PTTT3jsscdw8uRJvPHGG/jwww8xf/58lx07ERERuQ+XdrtXqVSyy9esWYMpU6bg7NmzuPfee3H8+HFUVlYiJiYGd911F5588km9Kqyff/4Zs2bNwq5du9C8eXNMnjwZOTk5aNLkzyZSu3btwvz58/Hdd9+hXbt2WLx4MaZMmWJxWtntnoiIyPNY+vx2q3GI3BkDIiIiIs/jkeMQEREREbkCAyIiIiLyegyIiIiIyOsxICIiIiKvx4CIiIiIvB4DIhcrUVcjt7AMJepqVyeFiIjIa7nNXGbeaH1+MRZtOAaNAHxUQPaoJIzpE+vqZBEREXkdlhC5SIm6WgqGAEAjgMc3HGdJERERkQswIHKRorJKKRjSqhMCZ8qqXJMgIiIiL8aAyEXiQ5vDx2DmEl+VCnGhga5JEBERkRdjQOQiUcEByB6VBN8/5nPzVamwdFQ3RAUHuDhlRERE3oeNql1oTJ9YpHUOw5myKsSFBjIYIiIichEGRC4WFRzAQIiIiMjFWGVGREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GREREROT1GBARERGR12NA5CFK1NXILSxDibra1UkhIiJqdDhStQdYn1+MRRuOQSMAHxWQPSoJY/rEujpZREREjQZLiNxcibpaCoYAQCOAxzccZ0kRERGRAzEgcnNFZZVSMKRVJwTOlFW5JkFERESNEAMiNxcf2hw+Kv1lvioV4kIDXZMgIiKiRogBkZuLCg5A9qgk+KrqoyJflQpLR3VDVHCAi1NGRETUeLBRtQcY0ycWaZ3DcKasCnGhgQyGiIiIHIwBkYeICg5gIEREROQkrDIjIiIir8eAiIiIiLweAyIiIiLyegyIiIiIyOsxICIiIiKvx4CIiIiIvB4DIiIiIvJ6DIiIiIjI6zEgIiIiIq/HgIiIiIi8nksDouzsbPTp0wctW7ZEeHg4Ro4ciVOnTultc/XqVcyePRtt2rRBixYtMHr0aJw/f15vm+LiYmRmZiIwMBDh4eFYsGABrl+/rrfNrl270LNnT/j7+6NTp05Yu3atsw+PiIiIPIRLA6Ldu3dj9uzZ+Prrr7Ft2zZcu3YNw4cPR2VlpbTN/Pnz8cUXX+Cjjz7C7t27ce7cOYwaNUpaX1dXh8zMTNTW1iI3NxfvvPMO1q5di6eeekrapqioCJmZmRgyZAgKCgowb948zJgxA1u3bm3Q4yUiIiL3pBJCCFcnQuvixYsIDw/H7t27kZaWBrVajbCwMKxbtw533303AODkyZPo2rUr8vLycPPNN2Pz5s247bbbcO7cOURERAAAVq5ciaysLFy8eBF+fn7IysrCpk2bcPz4cem7xo4di/LycmzZssWitFVUVCA4OBhqtRpBQUGOP3giIiJyOEuf327VhkitVgMAWrduDQA4dOgQrl27hmHDhknbJCQkIDY2Fnl5eQCAvLw8JCUlScEQAKSnp6OiogInTpyQttHdh3Yb7T6IiIjIuzVxdQK0NBoN5s2bh/79+6Nbt24AgNLSUvj5+SEkJERv24iICJSWlkrb6AZD2vXadaa2qaioQHV1NQICAozSU1NTg5qaGunfFRUV9h0gERERuS23KSGaPXs2jh8/jg8++MDVSQFQ3+A7ODhY+ouJiXF1koiIiMhJ3CIgmjNnDjZu3IidO3eiXbt20vLIyEjU1taivLxcb/vz588jMjJS2saw15n23+a2CQoKki0dAoBFixZBrVZLf2fPnrXrGImIiMh9uTQgEkJgzpw5+PTTT7Fjxw7Ex8frre/VqxeaNm2K7du3S8tOnTqF4uJipKamAgBSU1Nx7NgxXLhwQdpm27ZtCAoKQmJiorSN7j6022j3Icff3x9BQUF6f0RERNQ4WdzLzJo2NJYGDw888ADWrVuH//73v+jSpYu0PDg4WCq5mTVrFr788kusXbsWQUFBmDt3LgAgNzcXQH23++7duyM6OhrLli1DaWkpJk6ciBkzZmDp0qUA6rvdd+vWDbNnz8a0adOwY8cOPPjgg9i0aRPS09MtSit7mREREXkeS5/fFgdEPj4+UKlUJrcRQkClUqGurs6iRCrtb82aNZgyZQqA+oEZH3nkEbz//vuoqalBeno63njjDak6DAB+/vlnzJo1C7t27ULz5s0xefJk5OTkoEmTP9uM79q1C/Pnz8d3332Hdu3aYfHixdJ3WIIBERERkedxeEC0e/dui7980KBBFm/rKRgQEREReR5Ln98Wd7tvjEEOEREREWDHOETl5eV466238P333wMAbrzxRkybNg3BwcEOSxwRERFRQ7Cpl9nBgwfRsWNHvPzyy7h06RIuXbqEf/zjH+jYsSO+/fZbR6eRiIiIyKlsmsts4MCB6NSpE1atWiU1XL5+/TpmzJiBn376CXv27HF4Ql2NbYiIiIg8j8MbVesKCAjA4cOHkZCQoLf8u+++Q+/evVFVVWV9it0cAyIiIiLP49TJXYOCglBcXGy0/OzZs2jZsqUtuyQDJepq5BaWoURd7eqkEBERNXo2NaoeM2YMpk+fjr/97W/o168fAGD//v1YsGABxo0b59AEeqP1+cVYtOEYNALwUQHZo5Iwpk+sq5NFRETUaNkUEP3tb3+DSqXCpEmTcP36dQBA06ZNMWvWLOTk5Dg0gd6mRF0tBUMAoBHA4xuOI61zGKKC5eddIyIiIvvYFBD5+flh+fLlyM7ORmFhIQCgY8eOCAwMdGjivFFRWaUUDGnVCYEzZVUMiIiIiJzE5nGIACAwMBBJSUmOSgsBiA9tDh8V9IIiX5UKcaEMNomIiJzFpoDo6tWreO2117Bz505cuHABGo1Gbz3HIrJdVHAAskcl4fENx1EnBHxVKiwd1Y2lQ0RERE5kU0A0ffp0fPXVV7j77rtx0003mZ30lawzpk8s0jqH4UxZFeJCAxkMEREROZlNAdHGjRvx5Zdfon///o5OD/0hKjiAgRAREVEDsWkcorZt23K8ISIiImo0bAqI/v73vyMrKws///yzo9NDFuCgjURERI5lU5VZ7969cfXqVXTo0AGBgYFo2rSp3vpLly45JHFkjIM2EhEROZ5NAdG4cePw66+/YunSpYiIiGCj6gbCQRuJiIicw6aAKDc3F3l5eUhJSXF0esgEDtpIRETkHDa1IUpISEB1NduvNDTtoI26OGgjERGR/WwKiHJycvDII49g165d+O2331BRUaH3R86hHbTR948qSh8VMG1AnGsTRURE1AiohBDC/Gb6fHzq4yjDtkNCCKhUKtTV1TkmdW6koqICwcHBUKvVCAoKcmlaStTVWLO/CKv2FEGAjauJiIiUWPr8tqkN0c6dO21OGFmuRF2NorJKxIc2N2ojtHpvfTAEsHE1ERGRvWwKiAYNGmTRdg888ACeffZZhIaG2vI1Xs1U93o2riYiInIsm9oQWerdd99lmyIbKHWv1w7EyMbVREREjuXUgMiG5kkE0yVAgHHjal+VCktHdWPpEBERkY1sqjIj59KWAOkGRYYlQGP6xCKtcxjOlFUhLjSQwRAREZEdnFpCRLaxtAQoKjgAqR3bMBgiIiKyE0uI3BRLgIiIiBoOAyI3FhUcYBQImeqKT0RERLZxakB07733unwQw8aEM90TERE5h00jVQNAeXk5vvnmG1y4cAEajUZv3aRJkxySOHfi6pGqS9TV6J+zw6ih9b6FQ1hSREREpMCpI1V/8cUXmDBhAq5cuYKgoCC9KTxUKlWjDIhcjYMxEhEROY9NvcweeeQRTJs2DVeuXEF5eTkuX74s/V26dMnRaSRwMEYiIiJnsikg+vXXX/Hggw8iMJAP44ai1BUfAHILy6RRrImIiMh6NlWZpaen4+DBg+jQoYOj00MmGHbF3/PDRaldERtZExER2c7igOjzzz+X/jszMxMLFizAd999h6SkJDRt2lRv2zvuuMNxKSQ92q74SvOdccZ7IiIi61kcEI0cOdJo2bPPPmu0TKVSoa6uzq5EkXlsZE1EROQ4FgdEhl3rybUsme+MiIiILGNTo+p///vfqKmpMVpeW1uLf//733YniszjjPdERESOY9PAjL6+vigpKUF4eLje8t9++w3h4eGNssrM1QMzKilRV3O+MyIiIgWWPr9tKiESQugNxqj1yy+/IDg42OL97NmzB7fffjuio6OhUqnw2Wef6a2fMmUKVCqV3t+IESP0trl06RImTJiAoKAghISEYPr06bhy5YreNkePHsXAgQPRrFkzxMTEYNmyZZYfrJuzZcb7EnU1u+oTERHpsKrbfY8ePaTAZOjQoWjS5M+P19XVoaioyChgMaWyshIpKSmYNm0aRo0aJbvNiBEjsGbNGunf/v7+eusnTJiAkpISbNu2DdeuXcPUqVNx//33Y926dQDqI8Phw4dj2LBhWLlyJY4dO4Zp06YhJCQE999/vzWH3yhwPjQiIiJjVgVE2p5mBQUFSE9PR4sWLaR1fn5+iIuLw+jRoy3eX0ZGBjIyMkxu4+/vj8jISNl133//PbZs2YL8/Hz07t0bAPDaa6/h1ltvxd/+9jdER0fjvffeQ21tLd5++234+fnhxhtvREFBAf7xj394XUDErvpERETyrAqInn76aQBAXFwcxowZg2bNmjklUbp27dqF8PBwtGrVCrfccguef/55tGnTBgCQl5eHkJAQKRgCgGHDhsHHxwcHDhzAXXfdhby8PKSlpcHPz0/aJj09HS+++CIuX76MVq1ayX5vTU2NXsPxiooKJx1hw2FXfSIiInk2jVQ9efJkAPW9yuRmu4+NdUwVzIgRIzBq1CjEx8ejsLAQjz/+ODIyMpCXlwdfX1+UlpYaNexu0qQJWrdujdLSUgBAaWkp4uPj9baJiIiQ1ikFRNnZ2ViyZIlDjsMaJepqFJVVIj60ucODFHbVJyIikmdTQPTjjz9i2rRpyM3N1VuubWztqF5mY8eOlf47KSkJycnJ6NixI3bt2oWhQ4c65DuULFq0CA8//LD074qKCsTExDj1O53dvkfbVf/xDcdRJwS76hMREf3BpoBoypQpaNKkCTZu3IioqCjZHmfO0KFDB4SGhuL06dMYOnQoIiMjceHCBb1trl+/jkuXLkntjiIjI3H+/Hm9bbT/VmqbBNS3XTJswO1MDdW+x3A+NAZDRERENgZEBQUFOHToEBISEhydHpN++eUX/Pbbb4iKigIApKamory8HIcOHUKvXr0AADt27IBGo0Hfvn2lbZ544glcu3ZNmnNt27Zt6NKli2J1mSs0ZPse7XxoREREVM+mcYgSExNRVlZm95dfuXIFBQUFKCgoAAAUFRWhoKAAxcXFuHLlChYsWICvv/4aZ86cwfbt23HnnXeiU6dOSE9PBwB07doVI0aMwH333YdvvvkG+/fvx5w5czB27FhER0cDAMaPHw8/Pz9Mnz4dJ06cwPr167F8+XK96jB3oG3fo8uR7Xs49hAREZEym0aq3rFjB5588kksXbpUdrZ7S0dy3rVrF4YMGWK0fPLkyVixYgVGjhyJw4cPo7y8HNHR0Rg+fDiee+45qVE0UD8w45w5c/DFF1/Ax8cHo0ePxquvvqo3JMDRo0cxe/Zs5OfnIzQ0FHPnzkVWVpZVx9wQI1Wvzy82at/jiDZEHHuIiIi8laXPb5sCIh+fPwuWdNsPObpRtTtpqKk7HD0VR4m6Gv1zdhj1LNu3cAirzYiIqNGz9PltUxuinTt32pwwMs3R7Xs49hAREZF5NrUhGjRoEHx8fLBq1SosXLgQnTp1wqBBg1BcXAxfX19Hp5Hs4Oy2SURERI2BTQHRJ598gvT0dAQEBODw4cPSiM5qtRpLly51aALJPtqxh3z/qNrk2ENERETGbGpD1KNHD8yfPx+TJk1Cy5YtceTIEXTo0AGHDx9GRkaGNEp0Y9JQbYicxdFtk4iIiDyBU9sQnTp1CmlpaUbLg4ODUV5ebssuyck49hAREZEym6rMIiMjcfr0aaPl+/btQ4cOHexOFBEREVFDsikguu+++/DQQw/hwIEDUKlUOHfuHN577z08+uijmDVrlqPTSERERORUNlWZLVy4EBqNBkOHDkVVVRXS0tLg7++PRx99FHPnznV0GomIiIicyqZG1Vq1tbU4ffo0rly5gsTERL3RoRsbT29UTURE5I2c2qhay8/PD4mJifbsgixQoq5GUVkl4kObs2E0ERGRE9gVEJHzcR4yIiIi57OpUTU1jBJ1tRQMAYBGAI9vOO62M9aXqKuRW1jmtukjIiL34W7PDJYQuTFr5yFzRdVaiboaB89cQt5Pl/DBN8UsySIiIrPcsfaDAZEb085DZjhTvdw8ZK64uNbnF2PhJ8dg2CpfW5KV1jmMbZ6IiEiPUu2Hq58ZrDJzY5bOQ+aKqrUSdbVsMKSlLckiIiLSZar2w5VYQuRG5Kq8xvSJRVrnMJPzkFlbteYIRWWVisEQoFySRURE3s2a2o+GxIDITZiq8jI3D5krLq740OZQAbJBkY8KsiVZRERE2tqPxzccR50QirUfDc2ugRm9iTMHZixRV6N/zg6jgGbfwiGKF4hhadL6/GKji8sVbYjuT4vH1P7xLr+wiYjIvZWoq03WfjhKgwzMSI5hbZWXUmmSuao1R9N+56Ezl6FSAT3bt2IgREREFjFX+9HQGBC5AWuqvMy1zm/oiysqOAC3pbjPBU1ERGQL9jJzA5b2JgPct3U+ERGRJ2MJkZuwtMrLXVvnExEReTKWELmRqOAApHZsY7Lay5rSJCIiIrIMS4g8kCsaUFvLFdOIEBER2YoBkYdyt9b5utxxjhoiIiJTWGXWiLliJmFXTCNCRERkL5YQNVKuKqVxxTQiRERE9mIJUSPkylIabS84XewFR0RE7o4BUSPkyrGK2AuOiIg8EavMGiFXjlVUoq5GTOtAbHggFVW1GrftBUdERKSLJUSNkKtKadbnF6N/zg6MX3UAd72Ri+JLlQyGiIjII7CEqBFyRSmNuTnWiIiIlLjD2HUMiBoZud5lqR3bOP172buMiIhs4S5j17HKrBHxhN5lJepqbDx6Dl8c+ZVjExEReTl3GruOJUSNiCtLabTtlh7fcBx1Qsi2W1qfX4yFnxyDNokqADmjOYo1EZG3cqfaBQZEjYgre5cBpudY074F6F73AsCiT46xnRERkZdy9XNLF6vMGhF3GAMoKjgAqR3bGH2n3FsAAGiABhkfiYiI3I87PLe0WELUyJgqpXElubcAoD4i5yjWRETey12eWywhaoSUSmlcSfsWoNJpeK0CkD06ya3SSUREDc8dnlsuDYj27NmD22+/HdHR0VCpVPjss8/01gsh8NRTTyEqKgoBAQEYNmwYfvzxR71tLl26hAkTJiAoKAghISGYPn06rly5orfN0aNHMXDgQDRr1gwxMTFYtmyZsw+NZIzpE4vchbfg9fE98M9xPZC76BY2qCYiIrfg0oCosrISKSkpeP3112XXL1u2DK+++ipWrlyJAwcOoHnz5khPT8fVq1elbSZMmIATJ05g27Zt2LhxI/bs2YP7779fWl9RUYHhw4ejffv2OHToEF566SU888wz+Ne//uX043OVEnU1cgvL3LJbe1RwADKTo3FbSjRLhqjRcud70N3x3JGrqIQQMk1dG55KpcKnn36KkSNHAqgvHYqOjsYjjzyCRx99FACgVqsRERGBtWvXYuzYsfj++++RmJiI/Px89O7dGwCwZcsW3Hrrrfjll18QHR2NFStW4IknnkBpaSn8/PwAAAsXLsRnn32GkydPWpy+iooKBAcHQ61WIygoyLEH70DuMsAVkTeQG12X96DteO7IGSx9frttG6KioiKUlpZi2LBh0rLg4GD07dsXeXl5AIC8vDyEhIRIwRAADBs2DD4+Pjhw4IC0TVpamhQMAUB6ejpOnTqFy5cvK35/TU0NKioq9P7cnTsNcEXU2OnO3dc/ZwfW5xfzHrSSbmkQz13j42mlfW7by6y0tBQAEBERobc8IiJCWldaWorw8HC99U2aNEHr1q31tomPjzfah3Zdq1atZL8/OzsbS5Yssf9AGpA7DXBF5MnMzatUoq7WG2RU+/B+ZWwK70ELGZYGzRgQz3PXiHhiaZ/blhC52qJFi6BWq6W/s2fPujpJZlk6fQYRKZMr+TH09r4iGLY1qBMCPioV70ELyJUGrd5bxHPXSHhqaZ/bBkSRkZEAgPPnz+stP3/+vLQuMjISFy5c0Ft//fp1XLp0SW8buX3ofoccf39/BAUF6f25O3ca4MoenlbMSu7FnuvHkoy8RF2Nt/YVGX3WB0DP9q0a/B70xPtFrjRbA2DGgA4en3+R6doKd+a2VWbx8fGIjIzE9u3b0b17dwD1DaMOHDiAWbNmAQBSU1NRXl6OQ4cOoVevXgCAHTt2QKPRoG/fvtI2TzzxBK5du4amTZsCALZt24YuXbooVpd5Mt0BrgL9fFBZW4cSdbXHZCqeWMxK7sPe68eSamelUddnpMUjKjjA7kHmzFXX6VI6Xmv2Yc/327pfpekapg6Iw9QBcS4foI/s407TcVjDpQHRlStXcPr0aenfRUVFKCgoQOvWrREbG4t58+bh+eefxw033ID4+HgsXrwY0dHRUk+0rl27YsSIEbjvvvuwcuVKXLt2DXPmzMHYsWMRHR0NABg/fjyWLFmC6dOnIysrC8ePH8fy5cvx8ssvu+KQncYwE9vzw0WPCyyU3s451xlZwhHXjyUZudw2Pipgav8/2ypGBQfYdM1aE9ApHW959TW8uPmkTfe+s15I5PZrajJo3u+ezZLJvt2RS7vd79q1C0OGDDFaPnnyZKxduxZCCDz99NP417/+hfLycgwYMABvvPEGOnfuLG176dIlzJkzB1988QV8fHwwevRovPrqq2jRooW0zdGjRzF79mzk5+cjNDQUc+fORVZWllVpdedu94aZTVZGgpQhavmqVNi3cEiDXJC2vmEu3fQd/rXXuCri/ftuRmrHNo5MIjVCuYVlGL/qgNFya6+f9fnFRhm5YVBgyTbWKlFXo3/ODovvW6XjVakAYcO9b+33W8rUfgGwNKgRK1FXu8Xva+nz26UlRIMHD4apeEylUuHZZ5/Fs88+q7hN69atsW7dOpPfk5ycjL1799qcTncm95ZoGAwBDddbw9Y3zBJ1NVbJBEM+Ks51RpZxVDG9JVVezph7ydpeorIlVTCeL9DSe99ZvVRN7dfVUzWQc9laUuoqbtuomiwj2zhR1M8TpssHQKCfc39ue3oWFJVVGvXaAeobWXrSDUWu48hOBZbMq2S4jb2Nm63tJSp3vFkZCTb31HJWL1X2fiVP4baNqskySm/Fj43ogmVbTqHujxI4DYC73sh1alsie94wld52pw6Ic1ojT2p8XDVrtiUlo+auY1vaXcgdb0hgU5vabkQFB+CuHm3xybe/SstG9rB/ih1PbU9C3sdtpu5wd+7ehkiuPcORs5cx8o1cm9oT2MLeNghyxwHA4xqHk3ex5Lq3trG0vQGdLftwVhsie9JE5Age0YaIHEPprbiytg6G4a4z2xLZ+yZoeBwA9DJo9jojd2SuZFSpKjkhsiUqa+uMSowc0e7Cln3YUsJrTemto9uTsOSYHI0BUSMhl9m4YiwIe6ssdI8jt7CMQ/mT2zN3nykFGtrSW3cp+bQ2v3DlmGEcr4ycgY2qGzFXjVxtSYNUSxqgsjEmNTRbGkabu8/krmPgz67x7jKtgTX5hVyp16JPjuHIWeUJsx3FU6eFIPfHEqJGzpoSm4Yqgrb07c5UFRyLy8nR7Cl1MHWfGV7HPqjv5KDLXUo+Lc0vlKbeGPlGLnKcXFrDSazJWRgQeQFL6u4bqgja2tGE5TJoFpc3fg0d8DpilGtT95nhlDp3vZFrVDUV6OeD3MIylwf5luQXctVrQH2pl7Pb+XnqtBDk/lhlRg1aBG3LpH+6VXAsLm/8LJlt3tEO/XzZ6ZNRaq/jlBjjCWBH9ojGXW/kNugx20Nb6iX3AHH2JJ6NZRJrcj8sIaIGLYK29+2OxeWNW0POZ6cthTr2ixo5m08arXdmqcOYPrFIiGyJ/DOXER8aiPv+fcjhx+zsUjbtMRgO7eGjMj8IrL1pa6jxplg1710YEFGDFkHb2zWfxeWNW0MFvLrVrnJ8VHBqqYPu9xvOPQbYf8wNVa2cEtMKOTr3M1B/b5oaBNZRaXP2tBCsmncudww2GRBRg48ka+3bneGNw1FvG6+GCHgNS6HkjL0pxmkPP8PvVxoa9+iv5RZPSqt7jwBwWCmbdr/N/Xxlx0wCdEqKXs+Vpt9R+s6GLAG0h6ek05PoXqN7frjolsEmAyIC0PBTHlj6dqf0luaK6RnI+ewJeC1945QrhTL0wYGzmHvLDU6pptt49JzZ7weAZZtP4Y4U81NnGN4j0wfEO6SUTa4UTenhVVlbZzQXodx3ekqVt6ek01PolYj+scxc8OwKDIhI4m4zE1s7wi81DrYEvNZUbyj1kNKlARq0ms7Wrvhy98hb+4qgAvQCFN1StiNnL+ObM5dwU1xrpMS0smi/WkoPL0tL9jylyttT0ukJjEpEZbZxl2CTvczIbSmO8Pu6db1x7J2FnBqeJYN7alnb89Cwl5LcoIkNWU3nq1Jh1uCOMEyGNg2616/htSw7HpAA7kuLl+2F9ciHBbjz9Vy8sOkk7nw9F498WCCb3jX7ihQDRrleZJb2/PKUHmKekk5PYEmJrLsEmywhIrelONbJH/9vSVErG0Y2frZUbxiWQu354aLN7dIsqapTeigszuyK60Lgxc0njUp0lo7qptfWQreqQXstp3UOky3JmNo/HlP7x+uVsh05e1lvJnsA+OTbXzEptb1eSVGJuhqr9hYpHq/Sw8vSkj1PqfL2lHS6O7l8XIX6zgQa4V7BJgMicltGI/zKBEemHnxsGOkdlKo3zA10qFtFbOvDz7C32MKMBPw1raPFaewd18pokEYfFbDhgVSEBzXTm9xY99LXXsv7Fg4x2eZK9zi+OXNJ9hgOnrmsFxAVlVXKVmto02zq4WVptbs7VM9bEsi6Qzo9le75lbtG3THYZEBEbs2SEX611QqGmRsbRnoHuYbY2oEOrSkZtPbhJ9dbLPvLk4AA/jpIPyhSaixeWVsnW+VVVasxW9WgvZYtDeZuimstu7x3nH47IqU3+n+O74Ge7VtJ+3fHbtOWYsmxefb8vnLnd9/CIUbXqLtdNwyISJG7ZHi6Dyq5h4pSF042jPQepgJnU13A7bm+lQKWFzefxB3djXuHyQUuJepqk9eoqcbfuttZEsylxLTC6J5t9arNBt4QivCgZnrbKQVvPdu3QlFZJQAYVeUtzEgwCgLdFUuOzbMnYFQ6v/sWDrF4GAlXYUBEstz1DUr7UDl05jKgAmJaBZh8+GWNSMCLm09CA/eqqybH0wYFuYVlZksGHXF9x4c2lx1U0VQPNcPAxdwwA7rrVH90HROw/Vr++z3dMSm1PVbt/Qkbj5Zi749l6J+zw+j45dpYaavvfP44Zu1hCwDZm08CKshWF7oblhybZm/A6MnnlwERGXH3Nyi9t1MTo/zu+eEiXtxSHwypVMBjGV3cIqgj5zJXMnjk7GUs3HBMum5svb6jggOwMCOhvppMh7WlkKaqvAzXAdD7b1smgw0PaoYvj5VK/1YazkL7J5cfyHlx80mLxk1yNVPXh7uUiruSvQGNJ5fMMyAiI+4c4Vsyyq+2Qa3hdpYOdEeebc8PF/WuC5XONBzr84ux8JNjZgcRtPTB+Ne0joCA3aWQpqq85EqVLC3hsqZtnXakacP9WdJtGqh/ALpDHmGOUqmcu46e3NDsDWg8eTYBBkRkxJ0jfKXMWTuwnanGqu4S1JHzaANm3Z9eJYC0zmGy67R0r29rq9P+Oqgj7ugeLbVfqqytQ4m62q7rzFRAZmkJrtJxWDuchSUDWQLuk0dYQq7kTbdHnyOmO/HUUiZHBDSeOmQBAyIvYumN6s4RvlKwtuGBVFTVasw2VlXqiu3pmRjVkx2oEPUlFwJCPpjWKUGytbo4KjjAYSUM5gIyUyW42vXN/XxNHoc1w1lEBQdg+oB4k2MTOXsyXGfQLXlTane26WgJMpOjLB4gdM2+IqzaWyRb0uZJHBHQeOKQBQyIvIS1b73uGuErBWuGUxBY0xXbXRuQk/XMlW4arvMB8OkD/aTrx9bqYke1u7NkP0rHePSXckxY/bXU88tUtaClw1loTTMTEC2540apFE7uxcJciZerX0aUSsGe3/Q9ln75vdk8QW5aFndre2ktTwxo7MWAyAuYymQBKGZG7npD2DIirlJX7ITIlm7dgNxb2fqQtKbXllwwbWt1sVIgZU0Jg6n96AZkcsf4WEaX+nZM2jZzMvs2PA5zw1kYtltalJFQ35vMgArA4v+ewFP/PSF9t9ILhwrAfQPjMXVAvFVtoZzN8JzqMpcnmJqWhdX0noUBUSOnNLt2nRB4YdN32HS01COLdy0N1sx1xc4/c5ltjdyMvQ9Ja3ptyb0E2FJdbG8Jg6n9yAVkY/rEIiGyJfLPXEafuFaybeaAP0uKfP7oZan0QI9pHWhU7Wy4TVK7YMwZ0hFv7Co0mkpE9/+B+vQv2nAMoS38jCb2/NfeIqzeV4SsjAS9IK4hX0bkAm7ttbHpaAme3/S93vam8gRTjc49qV0VMSBq1EzNrg0AG48ad731xJIRS0oTlB40feJaGVejqMBMrIEY/naOqnqypteWIVuqi+0pYTC1H6WAzDBofOCPyWENb3WB+sBFI4CcL0+iovoa+ncKlc63YenNwowEo8HzDL8ra0QCktuF4LfKGsxZd1jxWDQCmP7OIcV1OV+eNNvbzxlMBdxRwQHITI7C0i+/t7iUUCkY9oHntasyxx2qN52JAVEjZaoYV4knloxYWppgqu1RVkaCXuYsRH3XbU8pLfNUcr9dTOtAtyixs6W62NYSBqX9fPvzZWiEQG+DKTdK1NV6QwdoBPDPnYWK+9MtwXl9ZyFe31koBTYvbtGvZjMcYFEuQF225RT2LRyCuNBAi3qfmUuXLme/jFgScEcFB+iVXlkyf5thI/UZAzpg6oA4j8pLzbEkr7UnYHKHYIsBUSOlVIw7sW8s/nOgWPYznla8a21pgtyb//r8YqM3VQHPLS1zZ7oZHgDZ327DA6luO+SDJWwpYZBjqsfa2/uKFCdftZRG/Dl2kiHdARZNtWlK7dhGcSRtSxmWajn7ZcSSNlrr84ulYEgF4LER5gd0dddOKI5iSV5rT1W3u7Ql82nwb6QGoS3G1eWrUuHu3u2MlgOWF++WqKuRW1iGEnW14xJrI3Pdj+VEBQcgtWMbveoZuQzc3H7IOuvzi9E/ZwfGrzqA/jk78Pa+ItnfrqpWg+xRSfBV1V+kum/ntl57pj7njOtZW2KgewyPjeiCorJKi75H7uGz6JNj2Hj0HI6cvYy39in39tJlLnOXC4a036e99pXyEW1wN6ZPLPYtHIL377sZuQtvwWez+8mnRQX0l5nHSq6K7/ENx52Wv5g7HqOBX1FfImZJenTzlsbGVKeBEnW1YsBk6/XuzGvAFJYQNVKmqogMi3fH9olFv05t0Kt9K5P7dJcoXsveASRtaQzpDsW6nkYuw3trX5FR6YD2nKd2bCNbkmfLtWfqc868nnVLDI7+Wi6VOFjyPUpjKc1Zd1i2nZAhHxXw6tge6BXXCp8XnJPtGQbUn++ZgzvgdYPqNsNJYy3pgaZb3XT/wHj8y6CLvkYA+wt/k01rQ1aRmjseV47S7855i7lOAzMGxNt83txpZgQGRI2YUjGuXmb9Szle3HIS674pNjsFgLt1T7d3AEnFxpAKg8zJNS5NahfslhmYO5F9wAvg/rR4vLX3jOxvp/uQtfXaMzfchLOv56jgAFyouKpXJWv4PXIPQVMjQ8sFQ6o//nRHar8tJRpA/SjaUEGvNxd0thvTJxZBAU1Ntpextjpo6oB4rJYpATTko4JRTzOgvmRLt8TG0UGCqeNx1Sj97vayachcp4HVe4tsPm/uNDMCA6JGTqlxqHaZdiA3wPRDwZ2ieF321N0bNYYEMCMtHlP7x8t2OzZ8gGrfvN0xA3MnShne1P7159rcb2frtWfqc3KjVpvap1xvOHMP6vX5xfWTyBosrxMC3/58GQVni/DWH4GD7jVk6uGjpT2f2gDG1D3w17SOuCPlz6lFDLvW665X+h2saWQu18hYLjh6dWwP3JYSjZCApnqNxAXq2xEBMAoS0jqH6bVDszVYMpUvOnqUfnPXiju+bMox1WlAA+D+AR3w1r4iq8+bM865rRgQeTFrHjTuFMUbsqVHkJalAZWp6jV3zcDchbkMz5Yxfiy59qwdtVppn4Zv73f1aItPD/9qtrfNog3HZCcfVgGYbdBd3fAa0l6Xh85cxoMfHDZKp9yYQabOo7l7xJ57SI4lI2H3iquvok/rHAaV6s+JmgXq20xB5/fRCGDhhmNSo23dMZAMfwN7S5Xk8gRr96nd/tgvaqknn9K14q4vm3JMdRqYOiAOUwfE2fRy6i6N0hkQebH40OZGbRJUqC+uNswA3CmKdzRLHgbmJrh01wzMXTiyJM/Sa8/c5yzZp9zb+yff/iqtVwqGTQXQSjVJciNS35YSgMra62anqnFHuveVte12NIDRidINLnVXaX+DhMiW2Hi0RLbUzZ60W1udpTT+m9K14s4vm3LsfcExtV9X558MiEiPAPD5kXOyjUDTOofhlbEp8FGp0LN9K5dfvA3JXDWGO2dg7qIhSvKs+Zwl+zQV2GjJBcNyDzlzY/YoXUPu8vZsD2vb7fgAECrIlrDJqRMCd76eq7fMESW31lZnmRv/Te5a8cSXTVuuSXduNK7FgMiLFZVVyr6tZn/5Z68UbQZQXnXNbNFvY2fYc2jZ5lMek4G5I2szSFsDKlOfM7dPcyWDgHIgM31AvFRa4atSYdqAOMUJUs3NFu8Ob8/2sqbdzsge0digUxJnK3tLbq2tzjIXQLsq6HVGMGLNNenujca1GBB5MbkqMzl1QiBns3JPGW+izQRSO7Yx2xCVjFnTtsIdKD2sPzt8TjEYNpwO4/4/GuoDkAIkXeNvisHcoTd49TUk1+bIXL6kbXdkKmD1AfBbZQ1K1NU2nV9rq7NMBdCWjHhtLo22BDauDkY8pdE44AEDMz7zzDNQqVR6fwkJCdL6q1evYvbs2WjTpg1atGiB0aNH4/z583r7KC4uRmZmJgIDAxEeHo4FCxbg+vXrDX0obicqOAD3DYw3u52Pyjho4sCFjXsgNmfQHZwxW2ZST3cY7FOXdtDGtM5h0uCD+xYOwd/v6a73b92Hi9zAfm/tPQPAeMBGHxWw6NYELB2VzGsIf95PShPV6hqaEIbPHuiH9++7GZ8+0E92sFnty96cdYfRP2cH1ufLj9BvLk1KA4Vauv2iWxNkrxVrGQ5uasnxuMOgh7YMoOsqHlFCdOONN+J///uf9O8mTf5M9vz587Fp0yZ89NFHCA4Oxpw5czBq1Cjs378fAFBXV4fMzExERkYiNzcXJSUlmDRpEpo2bYqlS5c2+LG4G7kxQ1QqQCX+HNfksYwusuOYOKLNjCfUK5P9bGlb4Urm3qqV3ubNVbE0hvZAzmZJNeX2kxex4+RF5Iyu/10Mh88Y2zcGH3xzVi8QWLThGAL9fNE7rrVTe0A54ze2tJTFMD91hx5sntRo3CMCoiZNmiAyMtJouVqtxltvvYV169bhlltuAQCsWbMGXbt2xddff42bb74ZX331Fb777jv873//Q0REBLp3747nnnsOWVlZeOaZZ+Dn59fQh+MycsGHUoM+wxs6JKCpwxv9uboolxqOrW0rXEFp6oyEyJYID2pmMoC3JPNvDO2BnEmbJ5mbnFrgz6BAd5gCbZ/8dQfO6m2vEcDc9wtsymus/c0c/RtbOgeb3LhNrg5GPKnRuEcERD/++COio6PRrFkzpKamIjs7G7GxsTh06BCuXbuGYcOGSdsmJCQgNjYWeXl5uPnmm5GXl4ekpCRERERI26Snp2PWrFk4ceIEevTo4YpDanCmgg+lNxpre+RYQ+mhY6r3hiNLklgy1bDsaVvR0JS6gd/5eq5UDaP0UPWkzN+dafObNfuLsGqP8mS2ulUva/YVYdXeImmcIqX2kQ3VhsWReYy5QFupBGnfwiFucT16Ssmo2wdEffv2xdq1a9GlSxeUlJRgyZIlGDhwII4fP47S0lL4+fkhJCRE7zMREREoLS0FAJSWluoFQ9r12nVKampqUFNTI/27oqLCQUfU8CwpbrXkjcaRbz1KD501+87g8cyuesttKUkylRmxZKrhyQUKj2V0QXLbkAbLIC19QFkydYaph6qnZP7uLio4AI/fmoip/eOxZt8ZrNr7k2yAs//0RUxYXaj3e2mDIqXf0dnVRo7OY8wF2qZKkNzlevSEklG3D4gyMjKk/05OTkbfvn3Rvn17fPjhhwgIcN7Jzc7OxpIlS5y2/4bkDvXIhpR6uK3e9xOmDoiT0mVLDwVTmZFsydQG5ZIpR/GGEilzx+jKjNmaB5RUZfPJMcUZ4QHT95AnZP6eIio4AI9ndkVyTDDmGIzwDQCv7yyUDZQEgHE3xRhVnQHOrTaytb2POVaP5aQCAv3q+03xerSM2/cyMxQSEoLOnTvj9OnTiIyMRG1tLcrLy/W2OX/+vNTmKDIy0qjXmfbfcu2StBYtWgS1Wi39nT1rfFN5Cu3NosvVbTaUerhpBPR6H1jbQ8FcrwqliUbX7JcfH8YRbOkd4mksPUZX9MxTCoJN9bQZ0ycWn87uB5VM7yUtV99D3qZX+1ayvclMdUiTC4bMjflkL0vyLFvzBKX7x7B3G1B/nd/1Rq7d+Y22t6W79QJ1Bo8LiK5cuYLCwkJERUWhV69eaNq0KbZv3y6tP3XqFIqLi5GamgoASE1NxbFjx3DhwgVpm23btiEoKAiJiYmK3+Pv74+goCC9P09lbdfRhjJ1QLzZQM3aYM5cZiS3PwBYvafIKTe80sP4iyO/NpoMxhVde63JpG0NglNiWiFH575RAVKA5C73kDcxzMdMxKomvTq2h0OqyJWuQXN5lrPulzF9YrHhgVS982Lvvr3hZU6X21eZPfroo7j99tvRvn17nDt3Dk8//TR8fX0xbtw4BAcHY/r06Xj44YfRunVrBAUFYe7cuUhNTcXNN98MABg+fDgSExMxceJELFu2DKWlpXjyyScxe/Zs+Pv7u/joGo6l1RUNWbVjSQNUaxupmmt8GBUcgOkD4o1GDNYAZqsQbTk3Sg9jW3u7uKOGrpI1VyVq+BsptQlavacIU/vHIypYefJOw/sGgMvbYngz3d8jt/AiXttRaNXndSeVtYepa9Ce9j7WXFNy12xlbZ3imHHWXq+eNKCio7h9QPTLL79g3Lhx+O233xAWFoYBAwbg66+/RlhYGADg5Zdfho+PD0aPHo2amhqkp6fjjTfekD7v6+uLjRs3YtasWUhNTUXz5s0xefJkPPvss646JJcxV4/s6IaAlgQQlgRq1rQ9sSSAmjYgHqv36vdcMVf9Yeu5MdVAt7FkMI4cZ8TcNWMqk97zw0XZ38hcEKz0OS3D+8aTf6vGQPt7BPr5mA2ItKV62ulT7C3VK1FX4+CZS2YDBWvb+1h7vyjlR468F20N3Dy5vaRKCEunz/NuFRUVCA4Ohlqt9ujqMyUl6mr0z9lhdCPtWzjEpova1T25StTVJgOo9fnFRkGTUvrsPTe63yXn/ftuRmrHNpYdmBPZk5FZcz5N7cPcNZNbWIbxqw4Yffb5kTfiqf+eUPyN3txTqDdHn3b9hgdScdcbuQ677qlhPfJhAT7RmfOsZ2wIjpxVmxxTzVZKs9hrWXMf23O/mMuPHHEvWvI9Ssfljj14LX1+u30JETUMR1Z7uENRq6nSsBJ1NWJaB2LDA6moqtWYzSjtPTdpncPwytgUqKuvYfFnJ/RKprQ9QVz9VmVvRmZvDzJLrxmlErcnPzthtE/dtmMvbj5ptP6xEV1kp4lwdQ9Mstzf7+mOSantcfDMZfSOa4WUmFayL0OOHjfNkLWlMPbcLw01Grq1zRXcId+3FwMiAuDYag9XdvM3F1jIPfjNvdXZc24Mv29Uz7bSxKBA/T5Hvp4LwPSAf46gdG4clZHZ07XX0mtG6hJvZhRj4M/fSGmU7OR29WMguXokX7JPSkx9IKTljC7mpkZat7UqztZ0NuRo6NYEV+44vIu1PK6XGTmHI3uiuaqbv7keEbb27rD13Mh932eHz+Ffk3rq9QQRMB7wz5E9tErU1Xhh03eK58YdJl889ovaaJnSNTOmTyyWj+0uux/tdaf7G5m6Ht21Bya5F+24abp8ALw+vofdk7Zaq6GvWUuHynDH4V2sxRIikriqqNURLCnlsKeRoFwVm7nSKKXvKyqrMjl2iiPfqtbnF2PhJ8f0vs/w3Lh68sUSdTVe3CJTpZXRRfEc9I5rLZtmuWpQc9eju4zkS65hSXX1nh8u6v1bBSB7dBIyk6MbIIXG3PGadUW+72gMiEiPK4paHcGSYMeWB79SFZslbW6Uvq9PXCuTs3k7KhjRBolyX6N7bsxlZM5u36RYpdU2RPEzhmn2ATB9QBzCg5pJwWpuYZmUZnPXozOqWcj9WXIfy91HKlV920BXcsdr1h0DNWswICKbWPKQlLthTX3OngevpcHO9AHxeGtfkUXdcJVKnRIiWyour6ytk9KvFGikxLTSW64CABUgdNIEQO+Bbgtz7R50z41uRhbo54PK2jqUqKvNdkl3BFtLqKQJQPedwep9P+Ffe4uwel8R7urRFp8e/lW2+72nZdDkPJa2nVMaS8yT2sY0JE++zxgQkdVs7ZFk6nP29nIyV8qhu38VgPvT4qVB+ZQolTrln7ksu3zkG7kQBulXemMyNeDfnh8uSt1d7QlClHpkKU1dEBUcoBcAaZsDGLZvcnSvEWuK2uWC5tX7ftJ7qOl2w/bEni7kPLrXj6VV6K6uUnYX2nPX3M8XlbV10v974nhDShgQkVVs7ZFk6nMAHNLLSSn4MPxuAeCtvWcwtb/xXGq6rK3yEjrpX7ThGBIiWyIlppXiG5Ph8qjgABw5exkLNxxT3Jc15KqVZpgIBOXOkyFn9RqxpKhdLmiOaR1otreZp/V0IecwvH6yMhIsCnQaQ9sYwP5xxpR6drrTeEP2YkBEVrG1YbKpzwkIh3XXlAs+bE2zpVVePoDRrOja7vQ5oy3PKOQaQNu6Ly17u80acuabsamidrlA8fENx7HhgVST7bEA73ybJ31yL2TLNp9C1ogELNtyymyg4+ltY+wpgTc3BlNjKoVlQERWsbX42NznnFkkbU+Rt1zVVm5hGdI6h2HfwiFSmxvD0Y6B+hIWSzMKUw2grd2XIUvr9OXOk6OnPjBH7i1WKVCsEwJVtRrZaTm0PPVtnhxL6aUouV2IdB9bMi2QJ15H9o4zZsmLUmMpheU4RGTE1Ezito6BYepzzh5Xw979a8fh0Lbt0Y7l8/a+IsSFBkolRoZjcACWj+djTabjLFHBAcgakSBlCr4qFXJGJ2H/wlvw/n03Y9/CIUjrHGbxLPPWkhtHylSgqA1qpw2Id5sxYsg9mRuLypJxdpzJVJ5rL3vHGZM7d4YaSyksS4hIjyVFq7YWH5v6nKOLpA1LGmzZv+4+AON2Tqv2FmH13iKpKishsiVGvp5r1aSxWqYmgbV2X7Zan1+MF7echAb1pUKPZXTRm8HbmfMUKb3FvjI2RbHdgm5QmzPauGrTVWPEkPtx5NASjh6Gwpr7ypbvtrdRuOG5M+SrUuGxEV1QVFYpbe+pOLmrhRr75K6A4yd4dRVHPLgN9zFjQDz+ZaJaxhETKxp+dmSPaGmaDx8AMwbGIzM5yik9O8z99s6+NpQmbX19fA/Mff+w3vf6APh0dj+jRubmJvQlkrtGrMkvHP1SYM19JffdaZ3DLAqQHDHhq/bcBfr5oKpWI/3/0V/L8eLmk04L6ByBk7uS1RrDXDSOmJdLbh+r9xYpluA4amJFuc8+mt5Fb5wdbVDmyBKaEnU1Nh49Z/K3t/TasDXDU3qL7dm+lWLDdkOe2saDGo7hNWJNfuGMyUutua8Mv3vhhmOAsGwOREeUwCuNKzdh9dcWnRNnljA7CgMikjSG8TYcEdTJDsQG4P4BHfTGvNFy5MSKcp+V+05td/xAP1/0jmtt8/eZ6k6re1yWXBv2ZHimqjTSOofhlbEp8PkjQGLQQ45iTX5hri2OI18EDPNcue/WrduxJDhzxguDPQGdO/ZMY6Nqkji7cXNDcMQEg0r7mDogDvsX3oL70+L1Gh478xyZamytEcDc9wtkJ7K1hKnutIbHZe7asHXiXN20aOeL0zbgHtMnFm/uKUS/nB2Y+34B5r5/2GhOKSJ7WJNfKG179Ndyk5NKG9JtQG1pnmtJw+aGnpAZsPz8ucME0pZgCRHp8fTxNhwxiJq5fTx+ayKm9o9vkHNkSWNrW9+2lIKtxZldcWtylNG+TF0b9pTMKc0X9+buQmRv/nPSV3d9qyTPZU1+IbftYyO6SO1nAPPXqFIpqrk812iQ1T+m+rGlA4ecEnU1Dp65BJVKhV5WlMJaev48pfaBAREZcYe2GPY0vnNEUOcuk4Ga6+GhpRR8GPaU0z2nSpmUXDCkmx7tfnT/bWuGZ2q+uBydYMjccRLZypr8wnBba14EzFUbmbumDb97zw8XHTJ6tuE4XyrU99q0tMG2LQGdu9Y+MCAip7M2uHFE4ztHBCzuEBgCxhOv/nK5GnPWHTb7dmg4fxtg3ADT2kxK6bexNcMzNV+cXPjno4LbvVWS57PmXjfc1tIXAUe0b9T9bke8+JWoq40GPRUAFn5yTPpvS/JgWwI6d8hbDTEgIqeyNrjxlMZ39rI2SNTNcFJiWuFKzXW9qUMeG9HFZCNG3QxP95xak0mZ+21syfCsnS8uKyOhUV0H5FkM71trXgQcWW2km47Ujm2kdknWlqgXlVXKvngo5ReN5SVTCQMiMsmeqiu5B6i5iUobQ9d/cxxRAjamTyzKq68h54/2Cy9uOYmQwKYY0ydWsRu9Lt1zamkmZclvY22Gp/RAkZsvLisjAX9N62jxvokcSem+tfRFwFHVRobpuKtHW3x6+Feb8pP40OZQQX4iZ12NLQ9WwoCIFNn74Jbtvi5MT1TqKY3vbGVPCZhhe6AXN580muy0vOpa/WjTZnI4W86pLb+NJQG10gPFE4rYyTtY0v7HkuvT3DVt7n6RS8cn3/4qrbe2NCcqOAA5o5OM2hABjmuw7UkYEJEsR1RdKfWQElDel6c0vrOVtY0wtZnjnh8uGo2cLbefnM0nZd/2VH/8jxDmhwqQy5S1yyydHRywLqBWeqC4exE7eQdHllwrXdPm7hdLSn7l0mUuyNIGaYfOXIZKBfRs38phDbY9DQMikuWoBoDZo5Jkx7qpEwKHzlxG6xbGN2pjLhmwtJTFMHPU7WKrNHK2Uvd8bTd6AGbPqVymDEBvWVZGApLbhpjcj1J1qb0DSRK5grNLrs29gJoaQNWQjwoou3IVJepqoxcp3SDLMFC6LcU78mBTOJeZhbxhLjNdjpy76sjZy0aTnqpQP4GoOw/jbg1r2lqZm1dI7tzLuX9gB7y1r+jPMVEy9MdEAf78zQDzI+nKfa8PAMg8CMxdB0pzkwGN4/cm7+OI+cAMafONS5W1mLPusNH69++7GXGhgYr5geGch6o/GgQJKFd97Vs4RC9QUgFYmJGAvw5yTfu8hpjfjHOZkV0cWXWVEtNKbzZyH9TfpI2lJ5lhqcr0AfGYNiDe6jYzWqZGp9bSjpw9dUCc3n5CApoa/Wam3hLNfa8GMGpxaUlJoakBJT399ybv5OhSE8NhMQwbN2tLoCwZQPXR9C749ufLesNxyGUhdULg258vG/VAzd58ElDB4k4Ljgpi3G1+MwZEpMiRGUBa5zAsH9ddenUxfBvy1F4MckXdq/YWYfXeIsWG44DptjFywYRKBahEfYAiN62GNi3a6S+qajVScb7u26WpYETue5VKiMxVFZgbUNJTf2/ybubatFkaKMgNi6HCn9Xehve4qQFUtd+pEcJsbzEfFXCytEI2wHpx80nckRKtt0+543BUEOOOQ6wwICJFznoLyMpIaNCeZM4sklV6ezPVcNwcpdI5U8Gp0vQXuYVlFrcFU/pe/HEs1pYUagNqwzdXwHt6rZD3sCZQkJ2sFcBrY3ugTQt/vXvcVGm94XcaljLpNk1Q/dEW8bUdhbJp0oj6Nobm2h0ZtQ38xPRQKkrccYgVBkQky5lvAcs2n7Kqt5I97D0Oc8GUqaohW29u3ZKeXy5XQyOE1BDZ0q642ukvLlXWKhbFyx2bUqmgrSWFUcEByEwO0BtI0pt6rZB3sLa0Q6mRdq84+XnE5O5Lue9UqQAfg5JkpZcSQ74qFQL9fEweh1K1+sg3cpFjZd7qjkOsMCAiI44sylR6C0huF4J9C4c4tReDvcdhSTBlqiedNTe3Njg59qtaahit2yjSVMNHpXOsbciu2z7BknZFcoGXvd3fvbXXCnkHa0s7bGmjaXgPypYyCeCf43ugdXP9UqZWzeVHpNbmCz4qYOmobqisrTN5HIpDqSjkraZeKN1xiBUGRGRE6eY+dOayXtdMSzT385WKarW0gYKzx5ixp0jWmmBK+7Bfs78Iq/cUybbzMUWpS60w+G+lho+mxnvS/r+Pqr44vldcfbG2pe2KlJjK6JTWcUwhaoxK1NX47UqN1aUd9r4kKJWw9NSZrV57Lzb385Vtl6g7sGvhhStIiGxp8jikF8BPjtV3uNBhmLda8kLpbi9KDIjIiNID9sEPDqOy9rriOBaGtDeEYTDUUG8B9hTJ2vLG9/itiZjaP96qm9sw8DJHqeGjUialpRFAmxb+iAoOsKpdkRxTGZ279RohciajnmIWDn6qZc9Lgqk2f7mFZXqlzdopPrTd830MXlIB4F97i7BqXxEGdArF/tNlso27gfogJiGyJUa+kau3D93xjwBY/ELpTi9KDIjIiNJbgO5Fba4rt9yD3gfAhgdSrW58Z+9x2FIk29zPV7HtjbnvtObmtqSLvS5TDR9fHd9DdiwToD6j1qa9uZ+v7DaBfj5mv99UyRlgeSZI5OkMZ4oXqG+/88/xPfRKabTb2tKxw9JRprUvYXt+uCg7ZpFGAJ8dPif1QC27chVz3y8w2p8QwN4fywAA96fFY2p/+eFDUmJaIUcnb9UGgnPfLzA5kr679yxlQESyxvSJRXP/JrLd4w+duWz2wafU+K6qVqkMwzlsKZKVSrZ0ljmrZMvU5Ipyy001fNzwQKpiA2/dHVXW1smmxZLfxlTJmYDwyEyQyBZv7ysyuj81AFo399e73s2NU6YU9Fha2qp9CTNX2lwnBKpqNUjt2AYl6mrlvOIPb+09g6n94xXXK/Ui1Qj5kfRd3WDaEuZfCclr9WrfCj4q/WW+KpXRuDTAnw8+LW11leFnXXFDRAUHILVjG5ursHxU9SVbSlU/Jepq5BaWSUXFSsuU0jbuphjZda+N64FFtyZI51EblCk1fKyq1SB7VJLsTS0A6feR+218dEqQTJH9LICq2mtSOwpdnpAJElmrRF2Nt/YVGS33gf59pDROWb/sHVifX4z1+cXon7MD41cdQP+c+mVKn3t8w3GUqKsV8xZzpc1ybYFMBQCGebqcqOAAtGruJxsYzhjQof55gYZtKmEPlhCRIqUqJ22gZCr6t7a6qiGGb7eEbMmWUC49sWTuL1PtaNbnF+OD/LNGy7VdcG8LjsYdKdFG3W2Vzn9qxzay9ftymeFCnfZdQgB7frhotr2P3ICLGgDT3zkEwLZ2FESeRin4mJGmX8VkapyyRZ8c03u51C1pVyqJXbPvDFbv+0k2bzE1BIhSW6C0zmF6+zT8jDUvSYb5kdxI+u6OARGZpFTlZEmwY2l1lTs1xLWmIbbSIGVKmZxcbyy5Im4fwGgkasPeWrrn30cFTBsQJ603rN+X+33SOofpVaMJWN7eR6lRpXY/Su0oiBoL2VHdVTCqYjI5hQ2gOC2O0qjxuoGLYd4i9xL62IguSG6nPBFzVHAAHs/siqkD4mzuJWvu5deT8gAGRGSWXENhS4Mdc42M3W34dmtKtuyd+0vp7fG18T2QmRxtMp26Xf1X7SnCqr1FeGtfkRRMWjJfmuFXWzO0wtnL1UbBkJZcOwqixsTSfMLUOGXaOR3lOm7I7X/6gDj8a69+NZ1h3mJrN3Zbe8lqWfu97lIjYIgBEdnMEd0l7R2+3Rk3lqU3t71zf5kaR8RSq/cW6TVmNHxjtCbtgPHQCrqkwSN/USNn80nFNLHdEHkDS/MJpXHKRvaIxoZvf5W2U0G/ZNhw/wCwel+R2bzF3q78jvhsQ8yF5gwMiMil7BkryJk3liUZg6lxQPSKrTO6oKisUvqcbkZhy7AA2szmtys1NgeTlgytoNTjxRS2GyJvIpdPyAUDhiUwgX4+uOuNXP15x1SQhq9Q2r+rRna25sXTVL7sbjUChrwqIHr99dfx0ksvobS0FCkpKXjttddw0003uTpZXs2eoMAdbixzc38d/aVcdioO3YzCmqJmc5M5AsDRX8uR2rGNRWlXGlpBN6iyZPDI5+68EZ3CW3pM40kiZzD3kqYNcOQGR9WOMWbq/rG1SsyeknRrXjzN5cvuOKGrLq8JiNavX4+HH34YK1euRN++ffHKK68gPT0dp06dQnh4uKuT59Vsucnd6caSe0vU/nvC6q+ldOomV656yxzZyRxltlu2+ZQ0mrXcPnQzRkt6DFrSnXdYYoRbZGhErmLNS5qpknFzwYu11Vr2lKRb++JpLl92xwlddXnNOET/+Mc/cN9992Hq1KlITEzEypUrERgYiLffftvVSSNYN1YQ4F7jHCkxF0hYMs6Huf3J7V5pv3JjnmhL6EyNFyJ3rrVYRUZUz1QwYEjpvtOONG04LpGtTI1n5OhjAszny5bkN67kFSVEtbW1OHToEBYtWiQt8/HxwbBhw5CXlyf7mZqaGtTU1Ej/rqiocHo6yXK2VrU1JFNdbgHrAzilrr5CmJ9ixNSbnrkSOtnuvBldkNxWuTsvkbextvRDrtG0vZMuG7K3JN3aY7IkX3a3CV11eUVAVFZWhrq6OkREROgtj4iIwMmT8r1lsrOzsWTJkoZIHtnInW8swDhzUAGAHYMWWtqIW26/5jJGc8Xw7n6uiVzNlpc03fvO3kmX5dhbRWXLMVmSVziih7IzeEVAZItFixbh4Ycflv5dUVGBmBj5KRbIddz1xtKSewu0J6gw14hbab+OqLt393NN5Gr2vDg4o32NI0rSbTkmT80rvCIgCg0Nha+vL86fP6+3/Pz584iMjJT9jL+/P/z9/RsiedTIGWYO9mYUSo24zb2JunsVI1FjYGsw4Kx71BGlu54a4FjLKwIiPz8/9OrVC9u3b8fIkSMBABqNBtu3b8ecOXNcmziiBsJqLyL35qx71FsCGnt5RUAEAA8//DAmT56M3r1746abbsIrr7yCyspKTJ061dVJI2owzBiJ3BvvUdfxmoBozJgxuHjxIp566imUlpaie/fu2LJli1FDayIiIvI+KiGUpmgkXRUVFQgODoZarUZQUJCrk0NEREQWsPT57TUDMxIREREpYUBEREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GREREROT1GBARERGR1/OaqTvspR3Qu6KiwsUpISIiIktpn9vmJuZgQGSh33//HQAQExPj4pQQERGRtX7//XcEBwcrrudcZhbSaDQ4d+4cWrZsCZVKZfN+KioqEBMTg7Nnz3rtnGg8B/V4HngOAJ4DgOdAi+fBOedACIHff/8d0dHR8PFRbinEEiIL+fj4oF27dg7bX1BQkNde8Fo8B/V4HngOAJ4DgOdAi+fB8efAVMmQFhtVExERkddjQERERERejwFRA/P398fTTz8Nf39/VyfFZXgO6vE88BwAPAcAz4EWz4NrzwEbVRMREZHXYwkREREReT0GREREROT1GBARERGR12NARERERF6PAZEDrFixAsnJydJAUqmpqdi8ebO0/urVq5g9ezbatGmDFi1aYPTo0Th//rzePoqLi5GZmYnAwECEh4djwYIFuH79ekMfisPk5ORApVJh3rx50rLGfh6eeeYZqFQqvb+EhARpfWM/fl2//vor7r33XrRp0wYBAQFISkrCwYMHpfVCCDz11FOIiopCQEAAhg0bhh9//FFvH5cuXcKECRMQFBSEkJAQTJ8+HVeuXGnoQ7FJXFyc0bWgUqkwe/ZsAN5xLdTV1WHx4sWIj49HQEAAOnbsiOeee05vPqnGfh0A9dNFzJs3D+3bt0dAQAD69euH/Px8aX1jPAd79uzB7bffjujoaKhUKnz22Wd66x11zEePHsXAgQPRrFkzxMTEYNmyZfYlXJDdPv/8c7Fp0ybxww8/iFOnTonHH39cNG3aVBw/flwIIcTMmTNFTEyM2L59uzh48KC4+eabRb9+/aTPX79+XXTr1k0MGzZMHD58WHz55ZciNDRULFq0yFWHZJdvvvlGxMXFieTkZPHQQw9Jyxv7eXj66afFjTfeKEpKSqS/ixcvSusb+/FrXbp0SbRv315MmTJFHDhwQPz0009i69at4vTp09I2OTk5Ijg4WHz22WfiyJEj4o477hDx8fGiurpa2mbEiBEiJSVFfP3112Lv3r2iU6dOYty4ca44JKtduHBB7zrYtm2bACB27twphPCOa+GFF14Qbdq0ERs3bhRFRUXio48+Ei1atBDLly+Xtmns14EQQtxzzz0iMTFR7N69W/z444/i6aefFkFBQeKXX34RQjTOc/Dll1+KJ554QmzYsEEAEJ9++qneekccs1qtFhEREWLChAni+PHj4v333xcBAQHizTfftDndDIicpFWrVmL16tWivLxcNG3aVHz00UfSuu+//14AEHl5eUKI+ovHx8dHlJaWStusWLFCBAUFiZqamgZPuz1+//13ccMNN4ht27aJQYMGSQGRN5yHp59+WqSkpMiu84bj18rKyhIDBgxQXK/RaERkZKR46aWXpGXl5eXC399fvP/++0IIIb777jsBQOTn50vbbN68WahUKvHrr786L/FO8tBDD4mOHTsKjUbjNddCZmammDZtmt6yUaNGiQkTJgghvOM6qKqqEr6+vmLjxo16y3v27CmeeOIJrzgHhgGRo475jTfeEK1atdK7H7KyskSXLl1sTiurzBysrq4OH3zwASorK5GamopDhw7h2rVrGDZsmLRNQkICYmNjkZeXBwDIy8tDUlISIiIipG3S09NRUVGBEydONPgx2GP27NnIzMzUO14AXnMefvzxR0RHR6NDhw6YMGECiouLAXjP8QPA559/jt69e+P//u//EB4ejh49emDVqlXS+qKiIpSWluqdi+DgYPTt21fvXISEhKB3797SNsOGDYOPjw8OHDjQcAfjALW1tXj33Xcxbdo0qFQqr7kW+vXrh+3bt+OHH34AABw5cgT79u1DRkYGAO+4Dq5fv466ujo0a9ZMb3lAQAD27dvnFefAkKOOOS8vD2lpafDz85O2SU9Px6lTp3D58mWb0sbJXR3k2LFjSE1NxdWrV9GiRQt8+umnSExMREFBAfz8/BASEqK3fUREBEpLSwEApaWlehmfdr12naf44IMP8O233+rVj2uVlpY2+vPQt29frF27Fl26dEFJSQmWLFmCgQMH4vjx415x/Fo//fQTVqxYgYcffhiPP/448vPz8eCDD8LPzw+TJ0+WjkXuWHXPRXh4uN76Jk2aoHXr1h51LgDgs88+Q3l5OaZMmQLAO+4FAFi4cCEqKiqQkJAAX19f1NXV4YUXXsCECRMAwCuug5YtWyI1NRXPPfccunbtioiICLz//vvIy8tDp06dvOIcGHLUMZeWliI+Pt5oH9p1rVq1sjptDIgcpEuXLigoKIBarcbHH3+MyZMnY/fu3a5OVoM5e/YsHnroIWzbts3obchbaN98ASA5ORl9+/ZF+/bt8eGHHyIgIMCFKWtYGo0GvXv3xtKlSwEAPXr0wPHjx7Fy5UpMnjzZxalreG+99RYyMjIQHR3t6qQ0qA8//BDvvfce1q1bhxtvvBEFBQWYN28eoqOjveo6+M9//oNp06ahbdu28PX1Rc+ePTFu3DgcOnTI1UkjA6wycxA/Pz906tQJvXr1QnZ2NlJSUrB8+XJERkaitrYW5eXletufP38ekZGRAIDIyEijHibaf2u3cXeHDh3ChQsX0LNnTzRp0gRNmjTB7t278eqrr6JJkyaIiIjwivOgKyQkBJ07d8bp06e95joAgKioKCQmJuot69q1q1R9qD0WuWPVPRcXLlzQW3/9+nVcunTJo87Fzz//jP/973+YMWOGtMxbroUFCxZg4cKFGDt2LJKSkjBx4kTMnz8f2dnZALznOujYsSN2796NK1eu4OzZs/jmm29w7do1dOjQwWvOgS5HHbMz7hEGRE6i0WhQU1ODXr16oWnTpti+fbu07tSpUyguLkZqaioAIDU1FceOHdO7ALZt24agoCCjB4u7Gjp0KI4dO4aCggLpr3fv3pgwYYL0395wHnRduXIFhYWFiIqK8prrAAD69++PU6dO6S374Ycf0L59ewBAfHw8IiMj9c5FRUUFDhw4oHcuysvL9d6id+zYAY1Gg759+zbAUTjGmjVrEB4ejszMTGmZt1wLVVVV8PHRf8T4+vpCo9EA8K7rAACaN2+OqKgoXL58GVu3bsWdd97pdecAcNzvnpqaij179uDatWvSNtu2bUOXLl1sqi4DwG73jrBw4UKxe/duUVRUJI4ePSoWLlwoVCqV+Oqrr4QQ9V1sY2NjxY4dO8TBgwdFamqqSE1NlT6v7WI7fPhwUVBQILZs2SLCwsI8qoutHN1eZkI0/vPwyCOPiF27domioiKxf/9+MWzYMBEaGiouXLgghGj8x6/1zTffiCZNmogXXnhB/Pjjj+K9994TgYGB4t1335W2ycnJESEhIeK///2vOHr0qLjzzjtlu9326NFDHDhwQOzbt0/ccMMNbt3V2FBdXZ2IjY0VWVlZRuu84VqYPHmyaNu2rdTtfsOGDSI0NFQ89thj0jbecB1s2bJFbN68Wfz000/iq6++EikpKaJv376itrZWCNE4z8Hvv/8uDh8+LA4fPiwAiH/84x/i8OHD4ueffxZCOOaYy8vLRUREhJg4caI4fvy4+OCDD0RgYCC73bvatGnTRPv27YWfn58ICwsTQ4cOlYIhIYSorq4WDzzwgGjVqpUIDAwUd911lygpKdHbx5kzZ0RGRoYICAgQoaGh4pFHHhHXrl1r6ENxKMOAqLGfhzFjxoioqCjh5+cn2rZtK8aMGaM39k5jP35dX3zxhejWrZvw9/cXCQkJ4l//+pfeeo1GIxYvXiwiIiKEv7+/GDp0qDh16pTeNr/99psYN26caNGihQgKChJTp04Vv//+e0Mehl22bt0qABgdlxDecS1UVFSIhx56SMTGxopmzZqJDh06iCeeeEKvm7Q3XAfr168XHTp0EH5+fiIyMlLMnj1blJeXS+sb4znYuXOnAGD0N3nyZCGE4475yJEjYsCAAcLf31+0bdtW5OTk2JVulRA6w4YSEREReSG2ISIiIiKvx4CIiIiIvB4DIiIiIvJ6DIiIiIjI6zEgIiIiIq/HgIiIiIi8HgMiIiIi8noMiIiIiMjrMSAiIqcZPHgw5s2b5+pkON0zzzyD7t27uzoZRGQHBkRERApqa2sb9PuEELh+/XqDficR1WNAREROMWXKFOzevRvLly+HSqWCSqXCmTNncPz4cWRkZKBFixaIiIjAxIkTUVZWJn1u8ODBmDt3LubNm4dWrVohIiICq1atQmVlJaZOnYqWLVuiU6dO2Lx5s/SZXbt2QaVSYdOmTUhOTkazZs1w88034/jx43pp2rdvHwYOHIiAgADExMTgwQcfRGVlpbQ+Li4Ozz33HCZNmoSgoCDcf//9AICsrCx07twZgYGB6NChAxYvXizNsr127VosWbIER44ckY5z7dq1OHPmDFQqFQoKCqT9l5eXQ6VSYdeuXXrp3rx5M3r16gV/f3/s27cPGo0G2dnZiI+PR0BAAFJSUvDxxx87+iciIh0MiIjIKZYvX47U1FTcd999KCkpQUlJCVq2bIlbbrkFPXr0wMGDB7FlyxacP38e99xzj95n33nnHYSGhuKbb77B3LlzMWvWLPzf//0f+vXrh2+//RbDhw/HxIkTUVVVpfe5BQsW4O9//zvy8/MRFhaG22+/XQpcCgsLMWLECIwePRpHjx7F+vXrsW/fPsyZM0dvH3/729+QkpKCw4cPY/HixQCAli1bYu3atfjuu++wfPlyrFq1Ci+//DIAYMyYMXjkkUdw4403Ssc5ZswYq87VwoULkZOTg++//x7JycnIzs7Gv//9b6xcuRInTpzA/Pnzce+992L37t1W7ZeIrGDX1LBERCYMGjRIPPTQQ9K/n3vuOTF8+HC9bc6ePas3K/ygQYPEgAEDpPXXr18XzZs3FxMnTpSWlZSUCAAiLy9PCPHn7NoffPCBtM1vv/0mAgICxPr164UQQkyfPl3cf//9et+9d+9e4ePjI6qrq4UQQrRv316MHDnS7HG99NJLolevXtK/n376aZGSkqK3TVFRkQAgDh8+LC27fPmyACB27typl+7PPvtM2ubq1asiMDBQ5Obm6u1v+vTpYty4cWbTRkS2aeLKYIyIvMuRI0ewc+dOtGjRwmhdYWEhOnfuDABITk6Wlvv6+qJNmzZISkqSlkVERAAALly4oLeP1NRU6b9bt26NLl264Pvvv5e+++jRo3jvvfekbYQQ0Gg0KCoqQteuXQEAvXv3Nkrb+vXr8eqrr6KwsBBXrlzB9evXERQUZPXxK9H9ztOnT6Oqqgp/+ctf9Lapra1Fjx49HPadRKSPARERNZgrV67g9ttvx4svvmi0LioqSvrvpk2b6q1TqVR6y1QqFQBAo9FY9d1//etf8eCDDxqti42Nlf67efPmeuvy8vIwYcIELFmyBOnp6QgODsYHH3yAv//97ya/z8envkWCEEJapq2+M6T7nVeuXAEAbNq0CW3bttXbzt/f3+R3EpHtGBARkdP4+fmhrq5O+nfPnj3xySefIC4uDk2aOD77+frrr6Xg5vLly/jhhx+kkp+ePXviu+++Q6dOnazaZ25uLtq3b48nnnhCWvbzzz/rbWN4nAAQFhYGACgpKZFKdnQbWCtJTEyEv78/iouLMWjQIKvSSkS2Y6NqInKauLg4HDhwAGfOnEFZWRlmz56NS5cuYdy4ccjPz0dhYSG2bt2KqVOnGgUUtnj22Wexfft2HD9+HFOmTEFoaChGjhwJoL6nWG5uLubMmYOCggL8+OOP+O9//2vUqNrQDTfcgOLiYnzwwQcoLCzEq6++ik8//dToOIuKilBQUICysjLU1NQgICAAN998s9RYevfu3XjyySfNHkPLli3x6KOPYv78+XjnnXdQWFiIb7/9Fq+99hreeecdm88NEZnGgIiInObRRx+Fr68vEhMTERYWhtraWuzfvx91dXUYPnw4kpKSMG/ePISEhEhVTPbIycnBQw89hF69eqG0tBRffPEF/Pz8ANS3S9q9ezd++OEHDBw4ED169MBTTz2F6Ohok/u84447MH/+fMyZMwfdu3dHbm6u1PtMa/To0RgxYgSGDBmCsLAwvP/++wCAt99+G9evX0evXr0wb948PP/88xYdx3PPPYfFixcjOzsbXbt2xYgRI7Bp0ybEx8fbcFaIyBIqoVvBTUTkgXbt2oUhQ4bg8uXLCAkJcXVyiMgDsYSIiIiIvB4DIiIiIvJ6rDIjIiIir8cSIiIiIvJ6DIiIiIjI6zEgIiIiIq/HgIiIiIi8HgMiIiIi8noMiIiIiMjrMSAiIiIir8eAiIiIiLweAyIiIiLyev8PBcjMfq1Q8SEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmYUlEQVR4nO3deXwU5f0H8M9sIGETkuVIAgETEoIQkBCRywAGECqkKCJYEY9yqhUU0SoELQIqBmzrWQUEBa0VaBXUCnhULmP4QbhB5YoBIgQhQjZAQgLZ5/dHnGWPmb2vST7v1yutzM7OPDM788x3nlMSQggQERERaZQu2AkgIiIi8gaDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIKiNmzZ0OSJJfWlSQJs2fP9mt6+vfvj/79+4fs9ojIdQxmiOqZZcuWQZIk81+DBg3QunVrjB07FidOnAh28kJOcnKy1fmKj4/HTTfdhNWrV/tk+xUVFZg9ezY2btzok+0R1UcMZojqqeeeew7//Oc/sXDhQmRnZ+ODDz5Av379cOnSJb/s7y9/+QsqKyv9sm1/u/766/HPf/4T//znP/Hkk0/i5MmTGDFiBBYuXOj1tisqKjBnzhwGM0ReaBDsBBBRcGRnZ6N79+4AgIkTJyI2Nhbz58/HZ599hrvuusvn+2vQoAEaNNBmltO6dWvcd9995n//8Y9/RLt27fDKK6/gT3/6UxBTRkQAS2aI6Dc33XQTAKCwsNBq+YEDB3DnnXeiWbNmaNSoEbp3747PPvvMap3Lly9jzpw5uPbaa9GoUSM0b94cffv2xddff21eR6nNTFVVFR5//HHExcUhOjoaw4YNw88//2yXtrFjxyI5OdluudI2ly5diptvvhnx8fGIiIhAp06dsGDBArfOhTMtW7ZEx44dUVRU5HC906dPY8KECWjRogUaNWqEjIwMvPfee+bPjx49iri4OADAnDlzzFVZ/m4vRFTXaPM1iYh87ujRowCApk2bmpd9//336NOnD1q3bo2cnBxERUXh3//+N4YPH46PP/4Yd9xxB4DaoCI3NxcTJ05Ez549UV5eju3bt2Pnzp343e9+p7rPiRMn4oMPPsA999yD3r17Y/369Rg6dKhXx7FgwQJcd911GDZsGBo0aID//ve/mDRpEkwmEyZPnuzVtmWXL19GcXExmjdvrrpOZWUl+vfvjyNHjuCRRx5BSkoK/vOf/2Ds2LEoKyvDY489hri4OCxYsAAPP/ww7rjjDowYMQIA0KVLF5+kk6jeEERUryxdulQAEP/73//EmTNnRHFxsfjoo49EXFyciIiIEMXFxeZ1Bw4cKNLT08WlS5fMy0wmk+jdu7e49tprzcsyMjLE0KFDHe531qxZwjLL2b17twAgJk2aZLXePffcIwCIWbNmmZeNGTNGtGnTxuk2hRCioqLCbr3BgweLtm3bWi3r16+f6Nevn8M0CyFEmzZtxC233CLOnDkjzpw5I/bs2SPuvvtuAUA8+uijqtt79dVXBQDxwQcfmJdVV1eLzMxM0bhxY1FeXi6EEOLMmTN2x0tE7mE1E1E9NWjQIMTFxSExMRF33nknoqKi8Nlnn+Gaa64BAJw9exbr16/HXXfdhfPnz6O0tBSlpaX49ddfMXjwYBw+fNjc+6lJkyb4/vvvcfjwYZf3v3btWgDAlClTrJZPnTrVq+PS6/Xm/zYajSgtLUW/fv3w008/wWg0erTNr776CnFxcYiLi0NGRgb+85//4P7778f8+fNVv7N27Vq0bNkSo0ePNi9r2LAhpkyZggsXLmDTpk0epYWI7LGaiaieevPNN9G+fXsYjUa8++672Lx5MyIiIsyfHzlyBEIIzJw5EzNnzlTcxunTp9G6dWs899xzuP3229G+fXt07twZQ4YMwf333++wuuTYsWPQ6XRITU21Wt6hQwevjuu7777DrFmzsGXLFlRUVFh9ZjQaYTAY3N5mr1698MILL0CSJERGRqJjx45o0qSJw+8cO3YM1157LXQ663fGjh07mj8nIt9gMENUT/Xs2dPcm2n48OHo27cv7rnnHhw8eBCNGzeGyWQCADz55JMYPHiw4jbatWsHAMjKykJhYSE+/fRTfPXVV1iyZAleeeUVLFy4EBMnTvQ6rWqD7dXU1Fj9u7CwEAMHDkRaWhpefvllJCYmIjw8HGvXrsUrr7xiPiZ3xcbGYtCgQR59l4j8j8EMESEsLAy5ubkYMGAA/vGPfyAnJwdt27YFUFs14sqDvFmzZhg3bhzGjRuHCxcuICsrC7Nnz1YNZtq0aQOTyYTCwkKr0piDBw/ardu0aVOUlZXZLbct3fjvf/+LqqoqfPbZZ0hKSjIv37Bhg9P0+1qbNm2wd+9emEwmq9KZAwcOmD8H1AM1InId28wQEYDa4fh79uyJV199FZcuXUJ8fDz69++PRYsWoaSkxG79M2fOmP/7119/tfqscePGaNeuHaqqqlT3l52dDQB4/fXXrZa/+uqrduumpqbCaDRi79695mUlJSV2o/CGhYUBAIQQ5mVGoxFLly5VTYe//P73v8epU6ewcuVK87IrV67gjTfeQOPGjdGvXz8AQGRkJAAoBmtE5BqWzBCR2VNPPYU//OEPWLZsGf70pz/hzTffRN++fZGeno4HHngAbdu2xS+//IItW7bg559/xp49ewAAnTp1Qv/+/dGtWzc0a9YM27dvx0cffYRHHnlEdV/XX389Ro8ejbfeegtGoxG9e/fGN998gyNHjtite/fdd2P69Om44447MGXKFFRUVGDBggVo3749du7caV7vlltuQXh4OG677TY89NBDuHDhAhYvXoz4+HjFgMyfHnzwQSxatAhjx47Fjh07kJycjI8++gjfffcdXn31VURHRwOobbDcqVMnrFy5Eu3bt0ezZs3QuXNndO7cOaDpJdK0YHenIqLAkrtmFxQU2H1WU1MjUlNTRWpqqrhy5YoQQojCwkLxxz/+UbRs2VI0bNhQtG7dWtx6663io48+Mn/vhRdeED179hRNmjQRer1epKWliblz54rq6mrzOkrdqCsrK8WUKVNE8+bNRVRUlLjttttEcXGxYlflr776SnTu3FmEh4eLDh06iA8++EBxm5999pno0qWLaNSokUhOThbz588X7777rgAgioqKzOu50zXbWbdzte398ssvYty4cSI2NlaEh4eL9PR0sXTpUrvv5ufni27duonw8HB20ybygCSERXksERERkcawzQwRERFpGoMZIiIi0jQGM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNq/OD5plMJpw8eRLR0dEcNpyIiEgjhBA4f/48WrVqZTdhq9LKQbNp0yZx6623ioSEBAFArF692vxZdXW1mDZtmujcubOIjIwUCQkJ4v777xcnTpxwax/yAFz84x//+Mc//vFPe3/FxcVOn/VBLZm5ePEiMjIyMH78eIwYMcLqs4qKCuzcuRMzZ85ERkYGzp07h8ceewzDhg3D9u3bXd6HPGR4cXExYmJifJp+IiIi8o/y8nIkJiaan+OOhMwIwJIkYfXq1Rg+fLjqOgUFBejZsyeOHTtmNSOuI+Xl5TAYDDAajQxmiIiINMKd57em2swYjUZIkoQmTZqorlNVVWU1U295eXkAUkZERETBopneTJcuXcL06dMxevRohxFabm4uDAaD+S8xMTGAqSQiIqJA00Qwc/nyZdx1110QQmDBggUO150xYwaMRqP5r7i4OECpJCIiomAI+WomOZA5duwY1q9f77TeLCIiAhEREQFKHRERhZKamhpcvnw52MkgFzRs2BBhYWE+2VZIBzNyIHP48GFs2LABzZs3D3aSiIgoBAkhcOrUKZSVlQU7KeSGJk2aoGXLll6PAxfUYObChQs4cuSI+d9FRUXYvXs3mjVrhoSEBNx5553YuXMnPv/8c9TU1ODUqVMAgGbNmiE8PDxYySYiohAjBzLx8fGIjIzkIKkhTgiBiooKnD59GgCQkJDg1faC2jV748aNGDBggN3yMWPGYPbs2UhJSVH83oYNG9C/f3+X9sGu2UREdVtNTQ0OHTqE+Ph4luBrzK+//orTp0+jffv2dlVOmuma3b9/fziKpUJkCBwiIgphchuZyMjIIKeE3CX/ZpcvX/aq/YwmejMRERE5w6ol7fHVb8ZghoiIiDSNwQwRERH5xcaNGyFJkt97mTGY8UKJsRL5haUoMVYGOylERFQPzZ49G9dff32wkxF0IT3OTChbWXAcM1btg0kAOgnIHZGOUT1cm/ySiIgokC5fvoyGDRsGOxl+w5IZD5QYK82BDACYBPD0qv0soSEiIreYTCbk5uYiJSUFer0eGRkZ+OijjwBcraL55ptv0L17d0RGRqJ37944ePAgAGDZsmWYM2cO9uzZA0mSIEkSli1bBqC2Ye2CBQswbNgwREVFYe7cuQ7TIe/ryy+/RNeuXaHX63HzzTfj9OnTWLduHTp27IiYmBjcc889qKioMH+vqqoKU6ZMQXx8PBo1aoS+ffuioKDAPyfLAQYzHigqvWgOZGQ1QuBoaYXyF4iISBMC3XwgNzcX77//PhYuXIjvv/8ejz/+OO677z5s2rTJvM4zzzyDv//979i+fTsaNGiA8ePHAwBGjRqFP//5z7juuutQUlKCkpISjBo1yvy92bNn44477sC+ffvM33Fm9uzZ+Mc//oH8/HwUFxfjrrvuwquvvooPP/wQa9aswVdffYU33njDvP60adPw8ccf47333sPOnTvRrl07DB48GGfPnvXRGXINq5k8kBIbBZ0Eq4AmTJKQHMsxDoiItCrQzQeqqqrw4osv4n//+x8yMzMBAG3btkVeXh4WLVqEBx98EAAwd+5c9OvXDwCQk5ODoUOH4tKlS9Dr9WjcuDEaNGiAli1b2m3/nnvuwbhx49xK0wsvvIA+ffoAACZMmIAZM2agsLAQbdu2BQDceeed2LBhA6ZPn46LFy9iwYIFWLZsGbKzswEAixcvxtdff4133nkHTz31lGcnxgMsmfFAgkGP3BHpCPutf3yYJOHFEZ2RYNAHOWVEROSJYDQfOHLkCCoqKvC73/0OjRs3Nv+9//77KCwsNK/XpUsX83/Lw/7L0wA40r17d7fTZLmvFi1aIDIy0hzIyMvkfRcWFuLy5cvm4AeonTyyZ8+e+PHHH93etzdYMuOhUT2SkNU+DkdLK5AcG8lAhohIwxw1H/BX/n7hwgUAwJo1a9C6dWurzyIiIswBjWXDXXmQOZPJ5HT7UVFRbqfJdl+2jYYlSXJp34HGYMYLCQY9gxgiojogGM0HOnXqhIiICBw/ftxcjWTJsnRGTXh4OGpqavyRPKdSU1MRHh6O7777Dm3atAFQ22uqoKAAU6dODWhaGMwQEVG9JzcfeHrVftQIEZDmA9HR0XjyySfx+OOPw2QyoW/fvjAajfjuu+8QExNjDhAcSU5ORlFREXbv3o1rrrkG0dHRiIiI8FuaLUVFReHhhx/GU089hWbNmiEpKQkvvfQSKioqMGHChICkQcZghoiICMFpPvD8888jLi4Oubm5+Omnn9CkSRPccMMNePrpp12qzhk5ciRWrVqFAQMGoKysDEuXLsXYsWP9nm7ZvHnzYDKZcP/99+P8+fPo3r07vvzySzRt2jRgaQAASdTxqandmUKciIi059KlSygqKkJKSgoaNWoU7OSQGxz9du48v9mbiYiIiDSNwQwREVEd96c//cmq+7fl35/+9KdgJ89rbDNDRERUxz333HN48sknFT+rC00wGMwQERHVcfHx8YiPjw92MvyG1UxERESkaQxmiIioTgjFkWnJMV/9ZqxmIiIiTQsPD4dOp8PJkycRFxeH8PBw87D/FJqEEKiursaZM2eg0+kQHh7u1fYYzBARkabpdDqkpKSgpKQEJ0+eDHZyyA2RkZFISkqCTuddRRGDGSIi0rzw8HAkJSXhypUrQZuriNwTFhaGBg0a+KQUjcEMERHVCfIsz7YzPVPdxwbAREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk1jMENERESaxmCGiIiINI3BDBEREWkagxkiIiLSNAYzREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk1jMENERESaxmCGiIiINI3BDBEREWkagxkiIiLSNAYzREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk1jMENERESaxmCGiIiINI3BDBEREWlaUIOZzZs347bbbkOrVq0gSRI++eQTq8+FEHj22WeRkJAAvV6PQYMG4fDhw8FJLBEREYWkoAYzFy9eREZGBt58803Fz1966SW8/vrrWLhwIbZu3YqoqCgMHjwYly5dCnBKiYiIKFQ1CObOs7OzkZ2drfiZEAKvvvoq/vKXv+D2228HALz//vto0aIFPvnkE9x9992BTCoRERGFqJBtM1NUVIRTp05h0KBB5mUGgwG9evXCli1bVL9XVVWF8vJyqz8iIiKqu0I2mDl16hQAoEWLFlbLW7RoYf5MSW5uLgwGg/kvMTHRr+kkIiKi4ArZYMZTM2bMgNFoNP8VFxcHO0lERETkRyEbzLRs2RIA8Msvv1gt/+WXX8yfKYmIiEBMTIzVHxEREdVdIRvMpKSkoGXLlvjmm2/My8rLy7F161ZkZmYGMWVEREQUSoLam+nChQs4cuSI+d9FRUXYvXs3mjVrhqSkJEydOhUvvPACrr32WqSkpGDmzJlo1aoVhg8fHrxEExERUUgJajCzfft2DBgwwPzvJ554AgAwZswYLFu2DNOmTcPFixfx4IMPoqysDH379sUXX3yBRo0aBSvJREREFGIkIYQIdiL8qby8HAaDAUajke1niIiINMKd53fItpkhIiIicgWDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYMZLJcZK5BeWosRYGeykEBER1UsNgp0ALVtZcBwzVu2DSQA6CcgdkY5RPZKCnSwiIqJ6hSUzHioxVpoDGQAwCeDpVftZQkNERBRgDGY8VFR60RzIyGqEwNHSiuAkiIiIqJ5iMOOhlNgo6CTrZWGShOTYyOAkiIiIqJ5iMOOhBIMeuSPSESbVRjRhkoQXR3RGgkEf5JQRERHVL2wA7IVRPZKQ1T4OR0srkBwbyUCGiIgoCBjMeCnBoGcQQ0REFESsZiIiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZHygxViK/sBQlxspgJ4WIiKjeaRDsBGjdyoLjmLFqH0wC0ElA7oh0jOqRFOxkERER1RssmfFCibHSHMgAgEkAT6/azxIaIiKiAGIw44Wi0ovmQEZWIwSOllYEJ0FERET1UEgHMzU1NZg5cyZSUlKg1+uRmpqK559/HkII518OgJTYKOgk62VhkoTk2MjgJIiIiKgeCuk2M/Pnz8eCBQvw3nvv4brrrsP27dsxbtw4GAwGTJkyJdjJQ4JBj9wR6Xh61X7UCIEwScKLIzojwaAPdtKIiIjqjZAOZvLz83H77bdj6NChAIDk5GQsX74c27ZtC3LKrhrVIwlZ7eNwtLQCybGRDGSIiIgCLKSrmXr37o1vvvkGhw4dAgDs2bMHeXl5yM7OVv1OVVUVysvLrf78LcGgR2ZqcwYyREREQRDSJTM5OTkoLy9HWloawsLCUFNTg7lz5+Lee+9V/U5ubi7mzJkTwFQSERFRMIV0ycy///1v/Otf/8KHH36InTt34r333sPf/vY3vPfee6rfmTFjBoxGo/mvuLg4gCkmIiKiQJNEqHQNUpCYmIicnBxMnjzZvOyFF17ABx98gAMHDri0jfLychgMBhiNRsTExPgrqURERORD7jy/Q7pkpqKiAjqddRLDwsJgMpmClCIiIiIKNSHdZua2227D3LlzkZSUhOuuuw67du3Cyy+/jPHjxwc7aURERBQiQrqa6fz585g5cyZWr16N06dPo1WrVhg9ejSeffZZhIeHu7QNVjMRERFpjzvP75AOZnyBwQwREZH21Jk2M0RERETOMJghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMw44USYyXyC0tRYqwMdlKIiIjqrQbBToBWrSw4jhmr9sEkAJ0E5I5Ix6geScFOFhERUb3DkhkPlBgrzYEMAJgE8PSq/SyhISIiCgIGMx4oKr1oDmRkNULgaGlFcBJERERUjzGY8UBKbBR0kvWyMElCcmyk4vpsW0NEROQ/DGY8kGDQI3dEOsKk2ogmTJLw4ojOSDDo7dZdWXAcfeatxz2Lt6LPvPVYWXA80MklIiKq0yQhhHC+mnaVl5fDYDDAaDQiJibGp9suMVbiaGkFkmMjFQOZEmMl+sxbb1UlFSZJyMsZoLg+ERER1XLn+c3eTF5IMOgdBiWO2tYwmCEiIvINVjP5kbtta4iIiMh9DGb8yJ22NUREROQZVjP52ageSchqH+ewbQ0RERF5jsFMADhrW0NERESeczmYKS8vd3mjvu41RERERKTG5WCmSZMmkCTJ4TpCCEiShJqaGq8TRkREROQKl4OZDRs2+DMdRERERB5xOZjp16+fP9NBRERE5BGPGwCXlZXhnXfewY8//ggAuO666zB+/HgYDAafJY6IiIjIGY/Gmdm+fTtSU1Pxyiuv4OzZszh79ixefvllpKamYufOnb5OIxEREZEqj+Zmuummm9CuXTssXrwYDRrUFu5cuXIFEydOxE8//YTNmzf7PKGe8ufcTEREROQf7jy/PQpm9Ho9du3ahbS0NKvlP/zwA7p3746Kigp3N+k3DGaIiIi0x53nt0fVTDExMTh+/Ljd8uLiYkRHR3uySSIiIiKPeBTMjBo1ChMmTMDKlStRXFyM4uJirFixAhMnTsTo0aN9nUYiIiIiVR71Zvrb3/4GSZLwxz/+EVeuXAEANGzYEA8//DDmzZvn0wQSEREROeJRmxlZRUUFCgsLAQCpqamIjIz0WcJ8hW1miIiItMed57dXE01GRkYiPT3dm00QERERecWjYObSpUt44403sGHDBpw+fRomk8nqc441Q0RERIHiUTAzYcIEfPXVV7jzzjvRs2dPpxNQEhEREfmLR8HM559/jrVr16JPnz6+Tg8RERGRWzzqmt26dWuOJ0NEREQhwaNg5u9//zumT5+OY8eO+To9dk6cOIH77rsPzZs3h16vR3p6OrZv3+73/RIREZE2eFTN1L17d1y6dAlt27ZFZGQkGjZsaPX52bNnfZK4c+fOoU+fPhgwYADWrVuHuLg4HD58GE2bNvXJ9omIiEj7PApmRo8ejRMnTuDFF19EixYt/NYAeP78+UhMTMTSpUvNy1JSUvyyLyIiItImjwbNi4yMxJYtW5CRkeGPNJl16tQJgwcPxs8//4xNmzahdevWmDRpEh544AGXt8FB84iIiLTH7xNNpqWlobKy0qPEueOnn37CggULcO211+LLL7/Eww8/jClTpuC9995T/U5VVRXKy8ut/oiIiKju8qhk5quvvsKcOXMwd+5cpKen27WZ8VUJSHh4OLp37478/HzzsilTpqCgoABbtmxR/M7s2bMxZ84cu+UsmSEiItIOd0pmPApmdLraAh3btjJCCEiShJqaGnc3qahNmzb43e9+hyVLlpiXLViwAC+88AJOnDih+J2qqipUVVWZ/11eXo7ExEQGM0RERBri97mZNmzY4FHC3NWnTx8cPHjQatmhQ4fQpk0b1e9EREQgIiLC30kjIiKiEOFRMNOvXz+X1ps0aRKee+45xMbGerIbPP744+jduzdefPFF3HXXXdi2bRvefvttvP322x5tj4iIiOoej6qZXBUTE4Pdu3ejbdu2Hm/j888/x4wZM3D48GGkpKTgiSeeYG8mIiKiOs7v1Uyu8kWcdOutt+LWW2/1QWqIiIioLvKoazYRERFRqGAwQ0RERJrGYIaIiIg0jcEMERERaZrbwcyVK1fw3HPP4eeff3a67n333cceRERERORXHnXNjo6Oxr59+5CcnOyHJPkWu2YTERFpj98nmrz55puxadMmjxJHRERE5EsejTOTnZ2NnJwc7Nu3D926dUNUVJTV58OGDfNJ4oiIiIic8WqiScUN+nCiSV9gNRMREZH2+H0EYJPJ5FHCiIiIiHzNozYz77//PqqqquyWV1dX4/333/c6UURERESu8qiaKSwsDCUlJYiPj7da/uuvvyI+Pp7VTEREROQVv/dmEkJAkiS75T///DMMBoMnmyQiIiLyiFttZrp27QpJkiBJEgYOHIgGDa5+vaamBkVFRRgyZIjPE0lERESkxq1gZvjw4QCA3bt3Y/DgwWjcuLH5s/DwcCQnJ2PkyJE+TSARERGRI24FM7NmzQIAJCcnY9SoUWjUqJFfEkVERETkKo+6Zo8ZMwZAbe+l06dP23XVTkpK8j5lRERERC7wKJg5fPgwxo8fj/z8fKvlcsPgUOrNFGglxkoUlV5ESmwUEgz6YCeHiIiozvMomBk7diwaNGiAzz//HAkJCYo9m+qjlQXHMWPVPpgEoJOA3BHpGNWDpVRERET+5FEws3v3buzYsQNpaWm+To9mlRgrzYEMAJgE8PSq/chqH2dXQsPSGyIiIt/xKJjp1KkTSktLfZ0WTSsqvWgOZGQ1QuBoaYVVwMLSGyIiIt/yaNC8+fPnY9q0adi4cSN+/fVXlJeXW/3VRymxUdDZ1LaFSRKSYyPN/1YrvSkxVgYwpURERHWLRyUzgwYNAgDcfPPNVu1l6nMD4ASDHrkj0vH0qv2oEQJhkoQXR3S2KpVxtfSGiIiIXOdRMLNhwwZfp6NOGNUjCVnt43C0tALJsZF2AUpKbBQkAJbxjG3pDREREbnHo2qmfv36QafTYfHixcjJyUG7du3Qr18/HD9+HGFhYb5Oo6YkGPTITG2uWNKy+dAZq39LgF3pDREREbnHo2Dm448/xuDBg6HX67Fr1y5UVVUBAIxGI1588UWfJrCukNvLWJbKSBKQ1T4uaGkiIiKqCzwKZl544QUsXLgQixcvRsOGDc3L+/Tpg507d/oscXWJUnsZkwCOllYEJ0FERER1hEfBzMGDB5GVlWW33GAwoKyszNs01Umu9HYiIiIi93kUzLRs2RJHjhyxW56Xl4e2bdt6nai6SO7tFPZb7y+l3k5ERETkPo96Mz3wwAN47LHH8O6770KSJJw8eRJbtmzBk08+iZkzZ/o6jXWGs95ORERE5D6PgpmcnByYTCYMHDgQFRUVyMrKQkREBJ588kk8+uijvk5jnZJg0DOIISIi8iFJCCGcr6asuroaR44cwYULF9CpUyc0btzYl2nzifLychgMBhiNRsTExAQ7OUREROQCd57fHpXMyMLDw9GpUydvNkFERETkFY8aABMRERGFCgYzflBirER+YSknkCQiIgoAr6qZyN7KguPmmbF1EpA7Ih2jeiQFO1lERER1FktmfEieskAe6dckgKdX7VctoWEJDhERkfdYMuNDSlMW1AiBo6UVdt2xPS3BKTFWoqj0IlJio9jFm4iICAxmfEqessAyoFGaskCtBCerfZzDAIVVWERERPZYzeRDrk5Z4KgER427VVhERET1BUtmfMyVKQtcLcGx5E4VFhERUX3Ckhk/SDDokZnaXDXI8GTSSc66TUREpIwlMwFk2XjX3Ukn5QDo6VX7USMEZ90mIiL6DYOZAFFrvOtOMMJZt4mIiOyxmikAfNl411kVFhERUX3DYCYAPOm9FGgcwI+IiLSK1UwB4EnvJUv+HiiP49cQEZGWaapkZt68eZAkCVOnTg12Utxi23tJJwHj+ya79N2VBcfRZ9563LN4K/rMW4+VBcd9mjaOX0NERFqnmWCmoKAAixYtQpcuXYKdFI+M6pGEvJwBeDArBUIAi78tchqcBCLQ0EIVGBERkSOaCGYuXLiAe++9F4sXL0bTpk2DnRyvLPm2CHLs4Cw4CUSgwfFriIhI6zQRzEyePBlDhw7FoEGDgp0Ur7gbnAQi0PBkAD8iIqJQEvINgFesWIGdO3eioKDApfWrqqpQVVVl/nd5ebm/kuY2dxsCB2qgPI5fQ0REWhbSwUxxcTEee+wxfP3112jUqJFL38nNzcWcOXP8nDLPeBKcBCrQSDDoGcQQEZEmSUII4Xy14Pjkk09wxx13ICwszLyspqYGkiRBp9OhqqrK6jNAuWQmMTERRqMRMTExAUu7IyXGSpaCEBEROVBeXg6DweDS8zukS2YGDhyIffv2WS0bN24c0tLSMH36dLtABgAiIiIQERERqCR6hKUgREREvhPSwUx0dDQ6d+5stSwqKgrNmze3Wx4K/D24HREREdkL6WBGS7Q6ii4DMCIi0jrNBTMbN24MdhLsqA1ul9U+LqQDBK0GYERERJY0Mc5MqNPiKLp7is8hh9MYEBFRHcBgxge0NoruyoLjGP5mPmz7sYV6AEZERKSEwYwP+GIU3RJjJfILS/1eMiJXiSn1xw/lAIyIiEiN5trMhCpvBrcLZNsVpSoxoHa/nMaAiIi0iMGMD3kyfkygGw8rTamgA7B6Um9kJGp7Ek8iIqqfWM0UZIFuPKxUJZY7Mp2BDBERaRZLZoLM3cknfYETSxIRUV3Ckpkg80XjYU/3m5nanIEMERFpHktmQoCWSko4YjAREYUaBjMhQguTT3LEYCIiCkWsZiKXqPW64ojBREQUbAxmyI7SAH5anLKBiIjqB1YzkRW1qqRg9LoiIiJyBUtmyMxRVVKwel0RERE5w5IZMnNUlZRg0Guq1xUREdUfDGZCULC6P7tSlaSFXldERFS/sJrJR5QazXoyE/bKguPoM2897lm8FX3mrcfKguP+SK4iViUREZEWSUIIhTmU647y8nIYDAYYjUbExMT4ZR9KjWYBuD0mS4mxEn3mrbcrGcnLGRDQgKLEWMmqJCIiCip3nt+sZvKSUqPZGav2QQhAjklcnQnbWZuVQGFVEhERaQmrmbykFICYLAIZmStjsshtViwFsvuzJ9ViREREwcZgxktKAYhOAmwWuRSUBLPNSjDb6hAREXmDbWZ8YGXBcTy9aj9qhDAHIADslrk6j1Gg26yESlsdIiIiGdvMBJja+CuejskS6DYrodJWh4iIyBMMZnxEKQDRSkNaV8aXCdbYN0RERM6wzQw5bavjansaNiAmIqJgYJsZMlNqq+Nqexq1CSqJiIg84c7zmyUzZJZg0CMztblVkOKoPY3M0QSVRERE/sZghhxyZewbVwIeIiIif2EwQw65MvZNsAf7IyKi+o29mcgpta7nMjngsR1Xh72eiIgoEBjMkEucdTN3FvAQhTIOPUCkbQxmyIo3mbpWxtUhssSeeETax2CGzJipU32j1hPP2Qz3RBRa2ACYALB7NWmXN4M1ujr0gL8Gg+RAk0S+wZIZAuDe/ExqVVFsd0CB5m1porOpPPxZWsmSUCLfYclMCAnmW5qr3avVpjZwdcoDIl9RKk2csWqfW/ePo6EH/Fla6WjbWi6t0XLaSdtYMhMigv2W5kr3arUMOK1ltGq7AwAsrSG/UCpNNAlg6XdFePr3nVzejlpPPH/OJq+27aV5R7Ek7ydNltYEOw+j+o3BTAgIlUaIzrpXq2XABUfPKWfM3xVhybdFzNzIL5SqiABgyeYijOuT4ta9o9QTz5XZ5D2ltG0dYA5kAG01Rg6VPIzqL1YzhYBQmg5AaX4mmVpVVI/kpnbLdRKweHMRGxSTR1yprkgw6DGhb4rdchPgk3vHldGvfbntiTelhEw+4ArL3yiU8jCqn1gyEwLU3jD3nihDZmpzl7YRiMa3alVRGYlN7Zb3adccmw+XWn3fV0X0VLe5U10xvm8KlnxbBMtbx5dTafhzMEjbbQPAkrwij0uCAtkA3/Y3mj4kzW+lWESukIQQwvlq2uXOFOLBtGhTIXLXHbBaFiZJyMsZ4DRjCnRddYmxUjFzl5dHhusw/M182F5YOgn4Ludml3tHUf1TYqxEn3nr7R6Kju6DlQXH7QJsrVZnenosgcwD1H6jadkd8NK6g3Xid6DQ4M7zmyUzISL9GoPdMldKMoJRV6020q+8PL+w1C6QAYCJfdsiwaDHnuJz2Hb0LHomN8OBU+fZaJDMPGl0W5em0vDkWAKdB6j9Rl1aN0FezoA68TuQ9jCYCRGeNjb0Z48LT6k1bhzXNxl//vdufLzzhOL32GiQPL0P6tJUGu4eS6DzAEe/UV36HUhb2AA4RHja2NDV8WECSelYckem43T5JdVARsZGg9rm7Tgj/mx06y/BHlvF33mA7fFp8Teiuo9tZkKMWnsUR0K1zYDtsUz+1w6s2XfK4XdcbSdEoceX7TY8uQ+CIVTGVrHMA3QSMD07DQ9lpfpku2rHp5XfiLTLnec3g5k6ItQzlhJjJXrnrldsS2Npxu99kwlTYHnScNcfaXC3Ibk3jc9D4ZgtLdpUiHnrDkDAN4FVqB0f1T9sAFwPhXpddVHpRaeBDAB0ad3E30khPwh0uw3bIMSTEhJPS1Xkff96oSpk2quVGCsx/4sD5nvMF+3PQrE9HpEaBjPkMXfeatXG0rHkrJ6fXbhDlzej5br7u9qNcZKdhvnrDtjN0ZTWMhoZiU0Vt7Gn+BxyVu2DsPiOKw9/231LgN/GuHGHPwIPf46ATORrId8AODc3Fz169EB0dDTi4+MxfPhwHDx4MNjJqvfcnVhSqdHgyBtau9yIkBNZhjZPG4W6+7sqdUO2DGRkJgEMfzNfcXsrC47XjoPk5oi1SvsGrmaiwWwI649GwGzoS1oS8m1mhgwZgrvvvhs9evTAlStX8PTTT2P//v344YcfEBUV5fT79aXNTCB5U5du27bHUVsf+Y09KjwMd7yVz7p7DXCn7ZYn11F+YSnuWbzVbrltCYna9pT26e2+7+mViNu6tA56ezV3OwK4WiIW6u3xqO6qU21mvvjiC6t/L1u2DPHx8dixYweysrKClKr6zZsibdu2PWptfSyL8yUJqm/RckDE6qfQIVxqHaV+Ha3ZW4KhXRJU5wdTqtqZNqQD5n9hX0Jje10q7ROoDYYclTqUGCtx9mK1YtC0fGsxBqbFo6j0IgAE7Rp0Z8A9d9oLhXp7PCJAA8GMLaPRCABo1qyZ4udVVVWoqqoy/7u8vDwg6dICXz30o8LDFJdHhtvXWnraw8SyOF+p7FAuQl+0+bceHBxBOOjcbVCr1o7qhTU/Yu7aH5Fj0724xFiJd/OKrNaVg5BRPZJwY9tmdtNo2Fa1qO1TAEhrGe30uCSFzwWACe/tMKfngZtSMK6ve7N22/L0XnUl8Aj2DNd8+SB/CPk2M5ZMJhOmTp2KPn36oHPnzorr5ObmwmAwmP8SExMDnEr3BGrALV+2OblYXaO4vKLa5JN9qr0927ZN+Gz3SeSuPWDXiJMzcwee2gPS2azXlm0yLAkB5K49gEWbCgHUXku9c9djsc2kkpIEZLWPAwBkJDbFvJGO23iozbQNAMPfsm9jYxdYOzwLtZ+//W0R+sxbj0WbCl26t23zAH+3D1MrEdtx9JxP96OEbd/IXzRVMjN58mTs378feXl5quvMmDEDTzzxhPnf5eXlIRvQBGrALV+/ibnSy8Gbfaptf9WkTFRUm8z76Z273u677DoaGLZv155WPcpVI2v2luCFNT/afT5v3QFERoRh1qffKwYSJgGrfWS1j8Nro68HBNAtuanivpVm2gZqA6gZH+9DbONw6MMbICU2ymG1lKPAxiRgnjhW7nGV3tpgVxrhSs8sX5eaqJVOTVmxCxerr/h1gspglgiRb4VaCZtmSmYeeeQRfP7559iwYQOuueYa1fUiIiIQExNj9ReKPHmTtf2+qyU6jh40nnCll4M3+1TbfkZiU2SmNjc/PJUeJjoJ7DrqJ/I1t2hTod3btTe9aRIMegztkgCFAhoIADM/+V61S7/lPuS3/kc+3IUpK3Zh86EzqvubNzJdMfMzobbKSD62fSeMise1ZEw3xfQqMf1WymRbGuFqzyxfT/Eh31+2x+/vkk1f50MUPKFYwhbyJTNCCDz66KNYvXo1Nm7ciJQU5SJirXH2Juso6vVF2wRvu206a2zo7T492T5Q+2YbCm8JdY3lNWdJfgDm5QxA7oh0u940rv4WCQY9crLTkLv2gMtp0klXG+26+9Y/qkcS0lpGY/hb9l20LY/tpXUHMX1IGl764qDVcQ3s2BLzLI7XVZbpUsoD5HY5/h67ZlSPJERFNMAjH+6yWh6sCSr9IdRKDuqKUC1hC/lgZvLkyfjwww/x6aefIjo6GqdO1c7tYzAYoNdr9wJ1dGM7mw/F3QtJfhPz9EEjs80cHDU29NU+1XrG2G5fB9/NR0PWSoyVyPl4n2q1ivwAVAtAXX2oPJSVCsilEw7SowMwMSsFQ9MTcLG6xrx9d6u5MhKbYt6IdMz4eJ/q/mqEQJdrmiAvZ4DdcVkeb2S4Dmv2nsKSvJ8cDgxpmS61PGDakA52wZO759IV3do0tZ/d3o8lm77KE1wRKnNm1UWhOjJ0yI8zI6mU5S5duhRjx451+v1QHmdGaVyIrPZxduNgSADyZ9yMBINedayL5Q/ciMzU5g735814Ed4M/e7uPuVeK+/kFTndH8fA8L+5a37A4m+LHK7z6eTeiqPtenLdlBgrsePoOUxZscv6QQvgjXu64oY2TbH50BmHbU0A18ci2lN8TrWExt3xjOTrce+JMry07qBiqY3lNtXGhlG6rj3tueeslNdyJGQJwLyR/n3w+/ue5ZxS/hXI81unxpkJ8VjLK0pvsvmFpYrdRqd/tBfvT+jltKjWUcbl6XgRzkqDfLnPlQXH7UoBHJU+cQwM7zn6/UqMlXgnz3EgA9j3ZJO/60lxdIJBj1sz9LhYfcXuQT+0SyvF7apVB7lybcglNLZVRjoJmJbdwaOu0ZmpzTEso1VtYPNzmWq61EqzbK/rRZsKzQ2K5WN2NGWD/JvuO2HEvLW1czYpBSpZ7eOs6rQEnP9G3pYO+fueDdWSg7oikCVs7gj5YKaus72xlQYFA4DNh0uxp/gcMhKbql5I/ipadZQ52L4he7NP+SGlFL4yM/IPZ9eMWm8eS2rtHrx9qKg96NW2q1Yd5ArLfeUdPoO3NhaaG+Q20Tf06Jq2Cmyub6WaLmcP9xJjJeats29LJE/ZYBugqLVvEgByPt5nFagoNaR39BtpofqGc0r5nzsDNAaKZnoz1RcJBj1+n95S8bPtv40DMapHEvJyBmD5AzciL2eAuVjam95Rjqj1VIkM1/l0n44enMyMfM+Va0bpt5fg2nxEvpgvSA4GbAN+te0qre/OvpJjI7FgU6Hd7NPe9jL0Jl2OZpyXS1Lk/dn+pkrrL9963Ly+O7+RP/MYX3KltyV5z5tr2h8YzISgB7PaKi7vnny1ONn2QvJnt0e1zOFidY1P96mUsQLWvVZkgRpsUCs8OR+uXDNKv/28ken4bsbNVsG0En89VPz5sPLmPvJXd1W1+0Ipfa6UpL2+/og5fe6cSy11rVZ64aO6jdVMISgjsSlG3tAaH+88YV6WdW0s4mMaqX7H30WrSsWKJcZKn+1Troe3bPcg91oZ18d6aHgtFHUHkqfnw9VrxlG7Dmf8VRztr+16eh+52z7InXYntm0UbFmmT23IAlsmUVvllNYy2uVzqbXqG7anq19CvjeTt0K5N5Mze4rPYfHmIqzZVwIB5w8qV2fN9WX3Tndn6lXbhm3PlC6tm6jOpK3Ukn7VpExcrK5xeEyWs3A7WzfUqP1m3vYs8MXvV9d4ck7c6WXobc9ApQbFtm1m5PTLBTpqmbxlo2BX8gVeLxRI7jy/GcyEME8eVM66PfqjVMObrpbuHqPaQ0OeWVvtmJQaRWqlVMfRb+ZNV31ZXe/e7ulkp+6cE1evY2+CcXfSt6f4HAqOnkOP5KaIj2mEncfOYbLNAHky267tzu6Lun69kHv8OThhneqaXZ950hvEsg2N5b8B/43c6E1xrrvHGBUeZg5cLNlONml5TGqNIkNl5EpHnP1mvij6r8vF8Z4G7/I5kdsiOcuoXe2uqna9y7N9W6bR0yEP1I55T3EZ3lYYL0iebsHy347ui1C4Xji6b2iwHEojEGMUOcJgJoR58qBylHl72lXWnxmHO8coH5tlIKMD7EZvtT0mR40iQ73Lt7PfzNlDNJCZfqg9YJQCwRkf70NURAN0a6M8CaUldwMhV9qeqA29YNt7qqzyslslJfJ5B6Aa/I7rm2I367iaUL4v2GYuNNiODK7U9T+QGMyEMHcHJ/LHW7y/Mw5Xj1GpdEUHYPGYbnjg/R0Oj8lRo8hQbsAIuBbsqT1EA5nph+IDRnHuIwCPfLjLpQDBMqN2Z8A/R5/bTn6pFNjUCGEe6M7Zvm3P+8S+KarBb2Zqc8wbme5wagpZqN4X/pwXKNSC8VC3/ehZxaB8x9FzuDUj8OePXbNDnDtdDJ11nXS3S2ugxpVw5RjVHkyR4Q1dOqaJfVPsLnYtjD/h6m9m21U/kGOC+Htf7nY7l9ePCg9T7dLsLI3v5tmXYLjaDVktvUqDQkoSoJREV/atdN6XfFukOiZUfmEpstrHIX/GzZhyczvV9IfyfeGv7uGhOAt0qFObasjV2eR9jSUzGuBqHbU3b/FKAlkt5ewYldrKyMeWmdpc9Zhs31wf7NsWQ7u0REW1STMNGD3phhzIId3d3Zc714e7JT6269/RtTU+2XVSsUuzWhrVpnDQwfkkjO5W85oE8GBWCpZ8W+SwO7VSSYlagP9g37Z4J6/IXNI5vGsr3PFWPkyiNnDKyU7D6F5J+MeGI3YN4l+/uyu6JTuvggsWR3mcpyUre4rPeVQKV5c5O5clxkqI33rL2QbnN7Sxn14jEBjM1CGuVtn4IjhSu9j9Ud2g1lZm2pCr8+YoHZPSm+s7eUUY1zdZc5mUu40uAzkmiCftnuTrY0LfFIzvm6KaYbo7dovt+p/sOolVkzJRfLbSbuJKd6ZhAIC7eyVix7FzEOIsuic3M68r3wPO2ujsO2G026ZOAtJbGzB7WCc8++kP9juF+hxRaud9XN9kjOubbJ7NWw5kgNoHT+66A8Bv96ZtXnFrRivFNIQKtTzO02lVzBNt2iwP5TZD/qaUh2e1jzNf65bnWsLVqlJ53WCdMwYzdYwvBxNLMOhxR1frwfuGd22lmnH4oj7bNkhS7YkEYP4XB9AkUn3eHF+UTmitHt0yvYGaDC7BoLfq2utquyeTABZ/W4Ql3xYp9oJw9/dTW7+i2oRbM1opTlyplMZfL1TZBQkSgA+3FuPDrcVWyywz8cRmkaptdNRK3k0CeHT5bugk5fYz0m/rzFt7AEdLL2LKwGutAnhHv3GCQXniWqB2zqnvcm72eC6rYLLN4wBYdXd3Nd8xV/tpsC2dvyjdozmr9gHi6rUuBKwa/eoA/OO32eyDeQ0xmKmDfNV1ssRYidW7TlgtW73rBFbtPKFYJOtt8KD0RqD0gJA5y7S8LZ0IxUatjizaVIh56w5YPWDlh1VkuA4Xq2tQYqz0eYazsuC4OZCRUFti5mq7J6A2Q1TqZaTWcHvvz2WKY+gora8DEBle21rKWaBv+XtLsB67SOmBZ3sPrJqUqdrQ3FmDW5Oo3Z9O1AZAut++Y/nQWL6tGMu3FWO+ReCX1T4Os2/vhDPlVRjYMd5uBm213lMmAXOjYC32crPM45QCNlfyHbXrUQf76VMc0doLjyNK58Ty2lc6XyYAzaIign7sbABMikqMlfh870nFOn61IllvJhZUK9Vx1IjTct9K5BID+fvulE5oZVI92aLNhchdZ98DBgCOn72IO97K90vjRtvzJAC89MVBxfPkaI4huQTDMn3y72dLbfu2jaXl7d7xVj4WbSpEfmEpACg+wJWOQxLAm/d0xWt3X+80GJFLgGz37w4hgDfu6YrlD9yI1+/pqrrPGR/vQ4mxEisLjqN37nrM/OR7vL7+CIa/ma/4297dM9FumSclD+40xJbzj6dX7fV7w1ql60onXQ1i3f3e6sm9XX5pqWsNh53NA6YkVEqxGMxoRCAnVpRv0LlrDth9JheHW7KcsdjTCQAdVRE4ekA4upEclRg4O59amlSvxFiJeevsf6saIbDz2Dm/BmXunCf5+nCUWdqmL721wW4dy+3b/o6jeiRh1aRMqx4VJlHbTsTRA0etMW2zqAh0T27mNIOXr0O5Z94/RndVnm38t2Vq99ENbZoiM7U5urVpql41hdrur7ZdrAVqx5iRz4V8Hy/fVmzev7wfd4L6/MJSLNpc6PJDWw6yHvlwFz7cVuz3FwLFIFbUBrGO0qmUX+WOSLcr3VLjyxeeUJk4V+lc2pJwNXAIpZ5vrGbSgEBWd6i1UQGuXrgAVOvpPW2z46hKyLK30t4TZXhp3UGn7UDUSgyGXa/e5sfV9ASSK0XYRaUXFatBdABMQvi1V5O750m+PpZ+V4Qlm4vsBjy0TZ+j7avdFxeraxTPB6BeNeloP3IGn2PTvkKuhlJqq3Jrhl6xjY7lvbH50BmH7V1ystNqG+va0AGApFx1JVcfAbC7jyU4b9tgeb1Z3idK5zCtZbTdFAxK3c8t+ath7ageSUhrGW0eSdkynY7aznjTxtBXPQZDpTpb/u3TWkbj1bszcPj0Bbz+zRG79R64qa25gXkotbViMBPivGlU60ldrlo98syhHfH7Lgnm7TjKADxps+NKY0Z5LJVhGa2c3khqGc2Oo8olFbbnc/OhM3YPrmnZHRSnifAXVzM5tbYl07PTzKUK/grK5N/NMp3O3tQSDHo8/ftOGNcnBTuOnnPYy0itETqgPtKts5mjlR44zq4/+aG389g5CAF0S659e3d0HTqbbdzZg/ShfqmABKsB9CQAuSPTzSU3toeok2q7jzsqaVL7bWyvN8uGnkrnUGkKBkejbQPWv22JsRLbj56FJEkujcjszMXqGo96JXnaxtDdQF4pP/bnIIDuUJq7zrKnkkwHmHuDhkoQI2MwE+I8jf49jfbVblDLQAbwz/wsrr4lubJvteOAwkPO9nwqvV0KcfWh4qxLsS+4ksmp9VySJw58KCsVgHIXXF+nWw783Jm2NsGgR7fk2gENl3xbW0qjNB2DbSP0T3adxIC0eNXfMTO1udUx21J74Di7/hIMegztYr/M2TF68yB9KCsVwzJaWQVR8vq2o/lKNl1j3X3Q2l5vziiVgDgKJCUAE/omA7Ce00f+zJV5fRy9oAW6NNVZAGxJLT8O5HhQatRK4wWuVo2aRG0gMz07LeSCGBmDmRDnyQ3qTbTvzg3qD74IkuQMb/qQNLz0hXWVVLc2TZ2eT0e9bgDrLsU52WlIv8bg854MzjI5pcxRrZutK0Gipz0ybAM/AeVrTWn7SgMa2o4BpHYeIBw/rC2P2dWqSSA0JlG0pRREAVePccfRc+bByixLf9y5j52VqDhjG0jaVsllXRuLvCOlePvbIsX5oeT2Po7yKGcvaMHIu1y9t9wpRdRJQOmFSx73PHTnXlbr6CETAEb3SMLyguMwCefDYQQTg5kQ58kN6m2078uxagLNNsObnp2GLq2bWB2Hs/PprJpCJgBzmwZf13U76pacHBupmDnm5QxQ7LIMeDbLsitcudYWbf6ty7jF9rPaxykOaDi0S0urjFgtmO+W3NTp7+hu1aQWye1zlLhzH6t14XaVXL1luV+5NCmxmd5u4D4lcnsfdwMCy/Wz2sfh1bszoPutMXUgfmtnAbCje8S2FFFuhyWPPeRunuLKvSwHO/tOGM0dJNToAKwoOG4OTINVDeYKBjMa4G5w4Yvi1lB8Q3VGKcN7ad1B5OUMcKmkwlG1jaP2A/K+fHmTJxj0mNQ/Ff/YUGi1/KUvDqJ1U71Hwao/6uydXWuLNhVaNWKVt//a6OsVj0GpHYZa0OLOfaHF69kXXD3uBIMeD9yUgre/LXJpu7aBj0kAn+0+WdvOB9alSWoD99lyVCLhStDs64a0vho/xtk9Yhn8PfLhLo+nVXB2L5cYK/FuXhHeyXM8dYZMnrjU9poI1dGRGcxohDuZcbCrioLFnRIp2/PprNpGrWeHK/vyxMqC43jTJpCR9+GsikVte/6os3d0rTnqMq50DIByOwxHQUt9DVL8YVzfFCyxedCFSRKmDelgHowRqG2bk5OdZtUwGbg6TYLcVksWFR7m0v5NDkoknAUEvm5I68vAyJX8OMGgR9Ooi15Nq+DoXv5sz0nkrrW/F9XoAKye1BvxMY0Ur4lQGFfGFoOZOiqrfRxeG309YNNosC7ztERKLSO0rLZxpUuxuz0ZnKVHKW5ytYrFleNTq7N3N7NSCzaKSu0zZ6D24SAfg6MA0TIjZ9Dif2oP3VE9kjDs+lZWbXPUftv56w5gWEYru5IAdygFIs4CAl82pPVHDyNXShG9vRfVvp93+Aze3Gj/YqRGPrfyeDtaeTFmMKNBzh6MoTJuQaB5WiLlakaYYLjapdi2YakOV3tq2HL391AdZt2i27MrVWWuZPS2dfaeZFZq16OjLuPyMUSGh+HR5bsVtxuqb4B1maPu5LZtcxxNk7D50Bm7Qf0s6QDFFwKZ0v3nKCDwVU8mtQaxvih1dRaQe1uirvT9adkdXCqRUWtfCGinDSWDGY1x9mBUe6tQGuCqLvLkxnM3I7RtWLo07yiW5P2Et78twpK8IkwfUtvDKSo8DMfPVrj9e6jNMbR6Um+r0UldqSob1SMJUeFhdg8etZ4/7mZWjq7HBIP1BJRy107LagilcXAA18arIf9wpRQswaA8qF+YJCEyXOdw4LyBafHonxaHWZ9+r1oqp3T/OXqJ80XVutJYK47S4w/eBg6WPdwgAecqqp1+RylvsaWFklFJCHdGhtCe8vJyGAwGGI1GxMTEBDs5XikxVlrNDgv8Voxo0cA1v7AU9yzeavddy0nz6ktJjTtWFhxXLF53Ruk3cYWz38Pd9KhdG9OyO9j1WHDn+Bxxdj1a9mKSUNvOQm4gqnasOgATs1Iwro//xvAh31m0udButvTEZpGKeZAt6bf/sX0CKV0rrpZulhgrrQIBV6t3Hd3HvrpfPOVuQ2TbCVMdZU2uju8TLO48v1kyoyFq1QVr9pZg6G+D2qkV7Wuha10wefpG5On4HJa/x4xV+xAZHobuyc3M+3U3PWrXhhxMyHQSsGpSpkvzzzjLRB02ONx90uqtXeDqdBK229JKMTbZkwf1sw0gXB3aQOlJKwDMW3d1PBNHpc3Hz1ZYjSBsWYLgTvWuqyOfB5q7VdRK07jUFwxmNEQtUHlhzY94ce2Pil1ZleqmQ7VrnRJfdY90hSdFqa6OSSNT+j3UenG4kx61qinbdJkEUFHtqLVCLVcyUbXquchwnWovJrXrTgvF2KTM9rezrfLxhMDVgGXb0bOKQfPtb+ab/21bwuBuI15XRz73FVfyNU8aIrv7ciWf57rwcstZszVEziSUZjSVL/QSY6V55t7lD9yI1ZN7283eKz9wQmGWVkfkWX9dmanXGX/NSuvoN7GkA/DmPV0Vfw+ZSQAzPt6HPcXnnKbX9nPbdIRJEqZnpyn+9p707pqxqjZdjo5dLo5XmiMHsB5Yjeo2yzxoRnaa0/tDiRywzF3jvAGrgPWM4e7Oeq92LfvjAe9qvubKMdjmAymxUVA71bemJyjOxO7ovGgJS2Y0Ri6SX7O3BC+s+dHqM7WurLYN44Z3bWUekTNU29D4snukO6NielICZFlN8t2RM3hrY6FiG5WhXWonSHT01moCcPub+ea6bqX0qh2PUnVNk8iGPundZRLA8Dfz7erXlfapVs0QyvO6kO9ZNZS/vpV9D0AXBqNUolYSKvekUqtudxbIB6K60518zdkxqOUDOdlpdj2YwiQJz9zaEQ9kpWD4W/lWVc91pdcgS2Y0KMGgx9Au9lG2own05LekVZMysXrXCbubybYEwF8lGa5y981KjSulDL4oAUow6HH87EW7QEaebTurfZz5fI7qkYRVkzIxZWA71e3Jm7D9fdQyQ8sSmszU5lZtb+TfPi9ngFuTjSqlSelasd2n7VuuDsAMm15MVL/I18hDWanm6/G7nJsxb6TzUk1bD/dPVSxhsCz5U7oG1YZOUEqnv4Jud/I1R6VFjvKBh7JSMSM7zfxwt/xeRmJTzHOxBCrYzwB3sWRGozYfOmO3zJUJ9JSGFvf3sOCe8NW4Ec5KGZTmCPKkBEh15lkB5K49YH5T0knA4Ota4ov9p8yz0jp7M7X8fTwZHMzd9ihyJqp0PK62t2KjXlJjeT3aXicAFEudLS3c+FPtCMQ2oxJbzhhuuW3boRNcyc8cldR6U4rrbr5mOdWBSQh0T24GwPnYWA/1SzWXhnkybkwoPAPcxWBGg9RGiC2rvKy4risT9/lrWHBP+WLcCEC9ga5cyqA2R5C7DaRdbXhnEsC6/aes0iFZ/LcSy9/HF0GeK5nxqB5JSGsZbZ4ryZN9sVEvucL2OhnaJQEvrv3R4cjQXa5pgvwZNyvOGG5rSd5PbuVnjh7k3j7k3c3XbOdTspyo1Vk+IG+zqPSi1b/l//Zlw+NQwGomDVJ7cM5fd8CqSFCp+sRZQzd3q3c8LYp05XueVJHYko9XqdrEco4gS56UAKlVzbhCAHjgprbm30QCzI34bH8fbxsqulOllpHY1KoaIJSHMqe6w1mjevn+TDDocWtGKwztYt/dX+ZJfqZWfeOsitdVruZrKwuOo3fueiz+tshunwCc5gOeVp+7c85CqSqKJTMalBIb5XAocUd1qs4m7nPnzd/TtxR3vueLt3tHpQyJzfSY0DfF/Obj6QPbm+6oOgDj+iZjXN9kq+J2tWJgtaJnZ1yZVde2xIbVRRQMltfd3p/L8NIXBz0qoXW3JNPRg1xA+KQUF3Cerzman03ep6N705vSFVfPWahVRTGY0aAEg/pQ4vIF56xOVe1mcrUY1NObJVhFmHIpg1qvLgnA0PSWeDCrrUsDyimxzFwiw3UoPluJKSt2Oa1+suzlY1sUrMZyFm9XMxJH14Sj7bG6iIJBqTeUuwG1bX6mk4C7elyDHcfOoVubq/eYHMhHhYc5fJD7oh2fK5bazFRtyXKfavemNxNvuvIMCMWqKAYzGvVQv1RAgt1Q4vKF5E3bClfexj29WXw5u60jzkoZIsN15kAGqC3lWrPvFNbuO+XV8N6WmUtGYlNcrL5izhRsS9MkADm/t+7l46/BtADHg9yFWsZEZMmbgDqrfRxm394JGw+cxjcHzmD5tmIs31ZsHmgPgFUgf0fX1vhk10nFB7m/Z5AuMVZi+9GzWPxtkeLnanOWuds20hlnz4BA5ePuYDCjYUpDicu8bUDrLPPw9GbxVS8lR5xNfqjWqwvw/YiYllVCj3y4y+ozCcCwjFYupduSpxmJ3VsqgGlDOqD4XGXIZUxEvrCy4Ljq7N0CwPSP95nnSQNq86VPdp3EqkmZqKg2BXQGaUcTXQK1g949c2tHu32q5RveBl6OngGByMfdxWBG4xxdcP688TwNlnzVS0mNq6UWjqYh8PWDPMGgR9Ooi/ZtnADsPHYOTaNqi7d9NZiWI6N6JKGs8jLm/VaiZ9m91VKwMyYibzlqd2LJtolbjRCoqDYhM7W54vr+qHYtMVaqBl1Abbs6pUDG07aR3vJ3Pu4JBjN1nD/bO3h6s/jzJnO11EK+GZXehPzxIFcKQCQJeOTDXarjzdQIYQ52UmKjAMBclOxpRrKn+JzV5JNKmadaUTaRlng6Cazt/e9q1a+rs3PLbXMuVteY1383r8jh0Axq96OnbSN9IdQ6BzCYqUMCOSmjzNObxV83mTulFuZBtb4rwpLNRTD9tu607A6KYzMAnp9jpYaIlkO5K2VktsGOvJ5clJyXM8DljKTEWImleUV4W6Uu3tLrd3fFrRbVX0Ra5O4ksIB9IO9K1a+r1cNq1Ui3X98Kn+0+abe+BOAf93RVHEPHUYNlT+ZA8yZfC3YQI5OE8HBaU40oLy+HwWCA0WhETExMsJPjN6HWTS5Y5If2km+vBicvjujs0oifcjfQ+V8csDuPaoNXuXuO5f2UXriER5fvtvtczpiczVsTJknIyxngUkbirC7e0+0ShbqVBceRs2qfuSRSAjD8+lZYrRA8AMA/Rl8N5EuMlegzb73di5Hl/eHKOmrrOfNgVgqe/n0nq20UlV7Evp+NVnnUkOtaYt1vI4rLx+hOJ4ZQfna48/xmyUwdEIrd5ILB9qZ8sG9bjOub7FbR8L1L/s/uPJZVXsa8tdZtS5ydY7U3HflNpsRYad+7SQJWT+qNimqTarAjc7Vdj9o0C+Z9/vb/AhwUj+oeywb4QgDdkmuHXVAKZnTS1c8B16qsXa3WdrfKSycB4/qkmP+t9kJiEsBaixHFAfc6MdSlZweDmTogFLvJBZrSTflOXhHGqUwup/Q2ktgsUvE8qjWStRwV0zJw8fhNRwDxMY3MwY6jInJX2/U4ykR1AFZP7o34mEYhU+9N5GsJBj2Gdrl6XecXliquN7FvW/PnKbFRLk398uuFKtV1LKuClNZTY/tS4eyFRImr+X9denYwmKkD/NlNLhjtcDzhzk2p9jayalKmff0z1DMgnQT8d88JLN9WbG7LMn1ImrkI2HLbtm86RaX2vZsEYNVwz7KNjfRbMY6A/QzAjn4jtXYDOgC5I9PNAwSG8m9L5EtK94QOQPPocHNVkPwSotbQXq2kRF7HchBKmQTHE8vqpNr2at2Sm1oFMp/vPel2Q2ZX8/9Q7GLtKQYzdYC/usmFcl2qLXduSrXAp6LaZHcepw3pYBWcyCTUtmn5cFuxeZlJ/DaIoc3+lIIqR+mVg5Os9nFWjXwB2M0AfEfX1li964Tqb6TU8Hiik+o3orpMKb+cNqSDeQBS4OpLSF7OALuG9molJRKAadkdkNU+TrF9jKN4RJ71+1aVcafcoYPrvRFDsYu1pzQRzLz55pv461//ilOnTiEjIwNvvPEGevbsGexkhRRfd5PTWl2qOzelo0AiM7W53XlsEtnQaqC5u3smmktjbJkAq0G4gNrMJTLcek5XtfQ6mlagxFhpNwPwxztPXN23ym8Ual0oiYLN9p5wVLIrjzdTVHoRp8svYdvRs6oDbs5fdwAXLl12KQDRScCcYdehWVS4XY8lR1VLlqU70m//I37LLzx5UbEdGf1idQ1KjJWayydCPphZuXIlnnjiCSxcuBC9evXCq6++isGDB+PgwYOIj48PdvJCjnA6RJRrtFiX6upD21ngY9ndsMRYicRmkVYjghaVXrQqkbEkd+1+ad1B84STJgB3vJVvV2pim14AVm90tsGJK40I1X6jUOpCSRQKbO8JtRccd0pITAJ4Y32hS/s3CaBdfLTi4Hxq9/rAtHh8c+C0+d8CgE5c7cItf1c+PlclGPQuzfcWys0OQj6Yefnll/HAAw9g3LhxAICFCxdizZo1ePfdd5GTkxPk1IUOX1cJabUu1dWHtiuBj9I5lTMetcZ807I74KGsVNyY0gzD38q3GiZdqdTEMr1KUyxYBieujJuhhd+IKNSoveAA8KiqxxWO7lXFdj0SrAIZmQlAs6gIjyaflblSEh/qzQ50zlcJnurqauzYsQODBg0yL9PpdBg0aBC2bNmi+J2qqiqUl5db/dV1ahdiibHS423KN3eYVNt5V8t1qWoSDLUz8qp1rVY7pwkGPSb0TbH7DgB0ad0EAHCxukZxmHS595MSOQOzZDtDru1vMvKG1nX6NyIKlFE9kpCXMwDLH7gReTkDMKpHksejCMseG9hOcbmzUbaV7nW1PEcnQXWyWFefAY5K4gH/PGN8LaRLZkpLS1FTU4MWLVpYLW/RogUOHDig+J3c3FzMmTMnEMkLGf6qEqrPbS2cndPxfVOw5FvrIcgtAw9PSrZcafej9Js8ObhDvfyNiHzNtmTXk1GEZWGShLt7JqFVE71Vm7uJWSkY1yfF6b2qVA0tD9ppaXp2Gi5W13j1DHCWX2mh2UFIBzOemDFjBp544gnzv8vLy5GYmBjEFPmfP6uE6mtbC2fnNMGgx7yRjtvdeNJLwJUA0vY3qa+/EZG/2d7HSuTxmg6cOq94v3vzUmh7b9vOej89Ow0PZaUqjkvlzjPAWX6lhWYHIT2dQXV1NSIjI/HRRx9h+PDh5uVjxoxBWVkZPv30U6fbqE/TGdheiKFUn6lFrpxTeXoCtUzK2edEFPrk+zgyXIc1+0qs5nKzzBcCcb+r7cMXzwBH6Q/GM8ad53dIBzMA0KtXL/Ts2RNvvPEGAMBkMiEpKQmPPPKISw2A60swA/DB6Q88p0RkK1TzBX+nK9DHXafmZnriiScwZswYdO/eHT179sSrr76Kixcvmns30VWsbvA9nlMishWq+YK/0xWqxw1oIJgZNWoUzpw5g2effRanTp3C9ddfjy+++MKuUTARERHVTyFfzeSt+lTNREREVFe48/wO6XFmiIiIiJxhMENERESaxmCGiIiINI3BDBEREWkagxkiIiLSNAYzREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk0L+ekMvCUPcFxeXh7klBAREZGr5Oe2KxMV1Plg5vz58wCAxMTEIKeEiIiI3HX+/HkYDAaH69T5uZlMJhNOnjyJ6OhoSJLk1bbKy8uRmJiI4uLiejvPE88BzwHAcyDjeeA5AHgOAP+cAyEEzp8/j1atWkGnc9wqps6XzOh0OlxzzTU+3WZMTEy9vWBlPAc8BwDPgYzngecA4DkAfH8OnJXIyNgAmIiIiDSNwQwRERFpGoMZN0RERGDWrFmIiIgIdlKChueA5wDgOZDxPPAcADwHQPDPQZ1vAExERER1G0tmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJpWr4OZBQsWoEuXLuZBfjIzM7Fu3Trz55cuXcLkyZPRvHlzNG7cGCNHjsQvv/xitY3jx49j6NChiIyMRHx8PJ566ilcuXIl0IfiM/PmzYMkSZg6dap5WX04D7Nnz4YkSVZ/aWlp5s/rwzkAgBMnTuC+++5D8+bNodfrkZ6eju3bt5s/F0Lg2WefRUJCAvR6PQYNGoTDhw9bbePs2bO49957ERMTgyZNmmDChAm4cOFCoA/FY8nJyXbXgiRJmDx5MoD6cS3U1NRg5syZSElJgV6vR2pqKp5//nmrOXLqw7Vw/vx5TJ06FW3atIFer0fv3r1RUFBg/ryunYPNmzfjtttuQ6tWrSBJEj755BOrz311vHv37sVNN92ERo0aITExES+99JL3iRf12GeffSbWrFkjDh06JA4ePCiefvpp0bBhQ7F//34hhBB/+tOfRGJiovjmm2/E9u3bxY033ih69+5t/v6VK1dE586dxaBBg8SuXbvE2rVrRWxsrJgxY0awDskr27ZtE8nJyaJLly7iscceMy+vD+dh1qxZ4rrrrhMlJSXmvzNnzpg/rw/n4OzZs6JNmzZi7NixYuvWreKnn34SX375pThy5Ih5nXnz5gmDwSA++eQTsWfPHjFs2DCRkpIiKisrzesMGTJEZGRkiP/7v/8T3377rWjXrp0YPXp0MA7JI6dPn7a6Dr7++msBQGzYsEEIUT+uhblz54rmzZuLzz//XBQVFYn//Oc/onHjxuK1114zr1MfroW77rpLdOrUSWzatEkcPnxYzJo1S8TExIiff/5ZCFH3zsHatWvFM888I1atWiUAiNWrV1t97ovjNRqNokWLFuLee+8V+/fvF8uXLxd6vV4sWrTIq7TX62BGSdOmTcWSJUtEWVmZaNiwofjPf/5j/uzHH38UAMSWLVuEELU/vE6nE6dOnTKvs2DBAhETEyOqqqoCnnZvnD9/Xlx77bXi66+/Fv369TMHM/XlPMyaNUtkZGQoflZfzsH06dNF3759VT83mUyiZcuW4q9//at5WVlZmYiIiBDLly8XQgjxww8/CACioKDAvM66deuEJEnixIkT/ku8Hz322GMiNTVVmEymenMtDB06VIwfP95q2YgRI8S9994rhKgf10JFRYUICwsTn3/+udXyG264QTzzzDN1/hzYBjO+Ot633npLNG3a1OpemD59uujQoYNX6a3X1UyWampqsGLFCly8eBGZmZnYsWMHLl++jEGDBpnXSUtLQ1JSErZs2QIA2LJlC9LT09GiRQvzOoMHD0Z5eTm+//77gB+DNyZPnoyhQ4daHS+AenUeDh8+jFatWqFt27a49957cfz4cQD15xx89tln6N69O/7whz8gPj4eXbt2xeLFi82fFxUV4dSpU1bnwWAwoFevXlbnoUmTJujevbt5nUGDBkGn02Hr1q2BOxgfqa6uxgcffIDx48dDkqR6cy307t0b33zzDQ4dOgQA2LNnD/Ly8pCdnQ2gflwLV65cQU1NDRo1amS1XK/XIy8vr16cA0u+Ot4tW7YgKysL4eHh5nUGDx6MgwcP4ty5cx6nr85PNOnMvn37kJmZiUuXLqFx48ZYvXo1OnXqhN27dyM8PBxNmjSxWr9FixY4deoUAODUqVNWGZb8ufyZVqxYsQI7d+60qguWnTp1ql6ch169emHZsmXo0KEDSkpKMGfOHNx0003Yv39/vTkHP/30ExYsWIAnnngCTz/9NAoKCjBlyhSEh4djzJgx5uNQOk7L8xAfH2/1eYMGDdCsWTPNnAdLn3zyCcrKyjB27FgA9ed+yMnJQXl5OdLS0hAWFoaamhrMnTsX9957LwDUi2shOjoamZmZeP7559GxY0e0aNECy5cvx5YtW9CuXbt6cQ4s+ep4T506hZSUFLttyJ81bdrUo/TV+2CmQ4cO2L17N4xGIz766COMGTMGmzZtCnayAqa4uBiPPfYYvv76a7s3kPpEfuMEgC5duqBXr15o06YN/v3vf0Ov1wcxZYFjMpnQvXt3vPjiiwCArl27Yv/+/Vi4cCHGjBkT5NQFxzvvvIPs7Gy0atUq2EkJqH//+9/417/+hQ8//BDXXXcddu/ejalTp6JVq1b16lr45z//ifHjx6N169YICwvDDTfcgNGjR2PHjh3BThrZqPfVTOHh4WjXrh26deuG3NxcZGRk4LXXXkPLli1RXV2NsrIyq/V/+eUXtGzZEgDQsmVLu14M8r/ldULdjh07cPr0adxwww1o0KABGjRogE2bNuH1119HgwYN0KJFi3pxHmw1adIE7du3x5EjR+rNtZCQkIBOnTpZLevYsaO5uk0+DqXjtDwPp0+ftvr8ypUrOHv2rGbOg+zYsWP43//+h4kTJ5qX1Zdr4amnnkJOTg7uvvtupKen4/7778fjjz+O3NxcAPXnWkhNTcWmTZtw4cIFFBcXY9u2bbh8+TLatm1bb86BzFfH66/7o94HM7ZMJhOqqqrQrVs3NGzYEN988435s4MHD+L48ePIzMwEAGRmZmLfvn1WP97XX3+NmJgYu4dCqBo4cCD27duH3bt3m/+6d++Oe++91/zf9eE82Lpw4QIKCwuRkJBQb66FPn364ODBg1bLDh06hDZt2gAAUlJS0LJlS6vzUF5ejq1bt1qdh7KyMqs31/Xr18NkMqFXr14BOArfWbp0KeLj4zF06FDzsvpyLVRUVECns348hIWFwWQyAah/10JUVBQSEhJw7tw5fPnll7j99tvr3Tnw1fFmZmZi8+bNuHz5snmdr7/+Gh06dPC4iglA/e6anZOTIzZt2iSKiorE3r17RU5OjpAkSXz11VdCiNoumElJSWL9+vVi+/btIjMzU2RmZpq/L3fBvOWWW8Tu3bvFF198IeLi4jTVBVOJZW8mIerHefjzn/8sNm7cKIqKisR3330nBg0aJGJjY8Xp06eFEPXjHGzbtk00aNBAzJ07Vxw+fFj861//EpGRkeKDDz4wrzNv3jzRpEkT8emnn4q9e/eK22+/XbFrZteuXcXWrVtFXl6euPbaa0O2K6qampoakZSUJKZPn273WX24FsaMGSNat25t7pq9atUqERsbK6ZNm2Zepz5cC1988YVYt26d+Omnn8RXX30lMjIyRK9evUR1dbUQou6dg/Pnz4tdu3aJXbt2CQDi5ZdfFrt27RLHjh0TQvjmeMvKykSLFi3E/fffL/bv3y9WrFghIiMj2TXbG+PHjxdt2rQR4eHhIi4uTgwcONAcyAghRGVlpZg0aZJo2rSpiIyMFHfccYcoKSmx2sbRo0dFdna20Ov1IjY2Vvz5z38Wly9fDvSh+JRtMFMfzsOoUaNEQkKCCA8PF61btxajRo2yGl+lPpwDIYT473//Kzp37iwiIiJEWlqaePvtt60+N5lMYubMmaJFixYiIiJCDBw4UBw8eNBqnV9//VWMHj1aNG7cWMTExIhx48aJ8+fPB/IwvPbll18KAHbHJkT9uBbKy8vFY489JpKSkkSjRo1E27ZtxTPPPGPVnbY+XAsrV64Ubdu2FeHh4aJly5Zi8uTJoqyszPx5XTsHGzZsEADs/saMGSOE8N3x7tmzR/Tt21dERESI1q1bi3nz5nmddkkIiyEdiYiIiDSGbWaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRpDGaISFH//v0xderUYCfD72bPno3rr78+2MkgIi8wmCGiOqm6ujqg+xNC4MqVKwHdJxHVYjBDRHbGjh2LTZs24bXXXoMkSZAkCUePHsX+/fuRnZ2Nxo0bo0WLFrj//vtRWlpq/l7//v3x6KOPYurUqWjatClatGiBxYsX4+LFixg3bhyio6PRrl07rFu3zvydjRs3QpIkrFmzBl26dEGjRo1w4403Yv/+/VZpysvLw0033QS9Xo/ExERMmTIFFy9eNH+enJyM559/Hn/84x8RExODBx98EAAwffp0tG/fHpGRkWjbti1mzpxpnrF32bJlmDNnDvbs2WM+zmXLluHo0aOQJAm7d+82b7+srAySJGHjxo1W6V63bh26deuGiIgI5OXlwWQyITc3FykpKdDr9cjIyMBHH33k65+IiCwwmCEiO6+99hoyMzPxwAMPoKSkBCUlJYiOjsbNN9+Mrl27Yvv27fjiiy/wyy+/4K677rL67nvvvYfY2Fhs27YNjz76KB5++GH84Q9/QO/evbFz507ccsstuP/++1FRUWH1vaeeegp///vfUVBQgLi4ONx2223moKOwsBBDhgzByJEjsXfvXqxcuRJ5eXl45JFHrLbxt7/9DRkZGdi1axdmzpwJAIiOjsayZcvwww8/4LXXXsPixYvxyiuvAABGjRqFP//5z7juuuvMxzlq1Ci3zlVOTg7mzZuHH3/8EV26dEFubi7ef/99LFy4EN9//z0ef/xx3Hfffdi0aZNb2yUiN3g9VSUR1Um2s6c///zz4pZbbrFap7i42Gp26X79+om+ffuaP79y5YqIiooS999/v3lZSUmJACC2bNkihLg6U++KFSvM6/z6669Cr9eLlStXCiGEmDBhgnjwwQet9v3tt98KnU4nKisrhRBCtGnTRgwfPtzpcf31r38V3bp1M/971qxZIiMjw2qdoqIiAUDs2rXLvOzcuXMCgNiwYYNVuj/55BPzOpcuXRKRkZEiPz/fansTJkwQo0ePdpo2IvJMg2AGUkSkHXv27MGGDRvQuHFju88KCwvRvn17AECXLl3My8PCwtC8eXOkp6ebl7Vo0QIAcPr0aattZGZmmv+7WbNm6NChA3788Ufzvvfu3Yt//etf5nWEEDCZTCgqKkLHjh0BAN27d7dL28qVK/H666+jsLAQFy5cwJUrVxATE+P28aux3OeRI0dQUVGB3/3ud1brVFdXo2vXrj7bJxFZYzBDRC65cOECbrvtNsyfP9/us4SEBPN/N2zY0OozSZKslkmSBAAwmUxu7fuhhx7ClClT7D5LSkoy/3dUVJTVZ1u2bMG9996LOXPmYPDgwTAYDFixYgX+/ve/O9yfTldbAy+EMC+Tq7xsWe7zwoULAIA1a9agdevWVutFREQ43CcReY7BDBEpCg8PR01NjfnfN9xwAz7++GMkJyejQQPfZx3/93//Zw5Mzp07h0OHDplLXG644Qb88MMPaNeunVvbzM/PR5s2bfDMM8+Ylx07dsxqHdvjBIC4uDgAQElJiblExbIxsJpOnTohIiICx48fR79+/dxKKxF5jg2AiUhRcnIytm7diqNHj6K0tBSTJ0/G2bNnMXr0aBQUFKCwsBBffvklxo0bZxcMeOK5557DN998g/3792Ps2LGIjY3F8OHDAdT2SMrPz8cjjzyC3bt34/Dhw/j000/tGgDbuvbaa3H8+HGsWLEChYWFeP3117F69Wq74ywqKsLu3btRWlqKqqoq6PV63HjjjeaGvZs2bcJf/vIXp8cQHR2NJ598Eo8//jjee+89FBYWYufOnXjjjTfw3nvveXxuiMgxBjNEpOjJJ59EWFgYOnXqhLi4OFRXV+O7775DTU0NbrnlFqSnp2Pq1Klo0qSJuVrGG/PmzcNjjz2Gbt264dSpU/jvf/+L8PBwALXtcDZt2oRDhw7hpptuQteuXfHss8+iVatWDrc5bNgwPP7443jkkUdw/fXXIz8/39zLSTZy5EgMGTIEAwYMQFxcHJYvXw4AePfdd3HlyhV069YNU6dOxQsvvODScTz//POYOXMmcnNz0bFjRwwZMgRr1qxBSkqKB2eFiFwhCctKYSKiANu4cSMGDBiAc+fOoUmTJsFODhFpEEtmiIiISNMYzBAREZGmsZqJiIiINI0lM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRp/w8ekd4YKrY9/QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "surrogate_scatter2D(keras_surrogate, data_training)\n", + "surrogate_parity(keras_surrogate, data_training)\n", + "surrogate_residual(keras_surrogate, data_training)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABt7klEQVR4nO3deVxU1f8/8NcddhAGWWQRFMR9SUUTsaw0Evso5k/9aGamSVl9RUXNLXOpPubSpmZmloWV5t4ibpFbqUTmGqakhAsBKoMMuIEw5/fHNNcZZoABgQHm9Xw85gHce+bOufdD8v6c8z7vIwkhBIiIiIioRiks3QEiIiIia8QgjIiIiMgCGIQRERERWQCDMCIiIiILYBBGREREZAEMwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiMoUFxcHSZJw4cIFS3eFqF5hEEZEFnfkyBHExMSgXbt2cHFxQZMmTTB06FD89ddfRm0fe+wxSJIESZKgUCjg5uaGVq1aYeTIkUhISKjQ527btg2PPvooGjVqBGdnZzRr1gxDhw7Frl27qurWjLz99tv47rvvjI4fPnwY8+bNQ25ubrV9dknz5s2Tn6UkSXB2dkbbtm3x+uuvIy8vr0o+Y926dViyZEmVXIuovmEQRkQWt2jRImzZsgWPP/44li5dirFjx+Lnn39GaGgokpOTjdoHBATgq6++wpdffol33nkHAwYMwOHDh9GnTx8MGzYMd+/eLfcz3333XQwYMACSJGHmzJn44IMPMHjwYJw7dw7r16+vjtsEUHYQ9sYbb9RoEKbz8ccf46uvvsL777+P1q1bY/78+ejbty+qYmthBmFEpbO1dAeIiCZPnox169bB3t5ePjZs2DB06NABCxcuxNdff23QXqlU4tlnnzU4tnDhQkyYMAErVqxAUFAQFi1aVOrnFRUV4a233sITTzyBH3/80ej81atX7/OOao9bt27B2dm5zDZDhgyBl5cXAODll1/G4MGDsXXrVvz6668IDw+viW4SWSWOhBGRxfXo0cMgAAOAFi1aoF27djhz5oxZ17CxscGyZcvQtm1bLF++HGq1utS22dnZyMvLw0MPPWTyfKNGjQx+vnPnDubNm4eWLVvC0dERfn5+GDRoEFJTU+U27777Lnr06AFPT084OTmhS5cu2Lx5s8F1JEnCzZs3sWbNGnkKcPTo0Zg3bx6mTp0KAAgODpbP6edgff311+jSpQucnJzg4eGBp59+GpcvXza4/mOPPYb27dvj6NGjeOSRR+Ds7IzXXnvNrOenr3fv3gCAtLS0MtutWLEC7dq1g4ODA/z9/TFu3DiDkbzHHnsM27dvx8WLF+V7CgoKqnB/iOorjoQRUa0khMCVK1fQrl07s99jY2OD4cOHY/bs2Th48CD69etnsl2jRo3g5OSEbdu2Yfz48fDw8Cj1msXFxejfvz/27NmDp59+GhMnTkR+fj4SEhKQnJyMkJAQAMDSpUsxYMAAjBgxAoWFhVi/fj3++9//Ij4+Xu7HV199hRdeeAHdunXD2LFjAQAhISFwcXHBX3/9hW+++QYffPCBPCrl7e0NAJg/fz5mz56NoUOH4oUXXsC1a9fw4Ycf4pFHHsHx48fh7u4u91elUuHJJ5/E008/jWeffRY+Pj5mPz8dXXDp6elZapt58+bhjTfeQEREBF555RWkpKTg448/xpEjR3Do0CHY2dlh1qxZUKvVSE9PxwcffAAAaNCgQYX7Q1RvCSKiWuirr74SAMTq1asNjj/66KOiXbt2pb7v22+/FQDE0qVLy7z+nDlzBADh4uIinnzySTF//nxx9OhRo3aff/65ACDef/99o3MajUb+/tatWwbnCgsLRfv27UXv3r0Njru4uIhRo0YZXeudd94RAERaWprB8QsXLggbGxsxf/58g+N//PGHsLW1NTj+6KOPCgBi5cqVpd63vrlz5woAIiUlRVy7dk2kpaWJTz75RDg4OAgfHx9x8+ZNIYQQX3zxhUHfrl69Kuzt7UWfPn1EcXGxfL3ly5cLAOLzzz+Xj/Xr1080bdrUrP4QWRtORxJRrXP27FmMGzcO4eHhGDVqVIXeqxtpyc/PL7PdG2+8gXXr1qFz587YvXs3Zs2ahS5duiA0NNRgCnTLli3w8vLC+PHjja4hSZL8vZOTk/z99evXoVar0bNnTxw7dqxC/S9p69at0Gg0GDp0KLKzs+WXr68vWrRogX379hm0d3BwwPPPP1+hz2jVqhW8vb0RHByMl156Cc2bN8f27dtLzSX76aefUFhYiNjYWCgU9/6MvPjii3Bzc8P27dsrfqNEVojTkURUq2RlZaFfv35QKpXYvHkzbGxsKvT+GzduAABcXV3LbTt8+HAMHz4ceXl5SEpKQlxcHNatW4eoqCgkJyfD0dERqampaNWqFWxty/7nMj4+Hv/73/9w4sQJFBQUyMf1A7XKOHfuHIQQaNGihcnzdnZ2Bj83btzYKL+uPFu2bIGbmxvs7OwQEBAgT7GW5uLFiwC0wZs+e3t7NGvWTD5PRGVjEEZEtYZarcaTTz6J3Nxc/PLLL/D396/wNXQlLZo3b272e9zc3PDEE0/giSeegJ2dHdasWYOkpCQ8+uijZr3/l19+wYABA/DII49gxYoV8PPzg52dHb744gusW7euwvegT6PRQJIk7Ny502RAWjLHSn9EzlyPPPKInIdGRDWHQRgR1Qp37txBVFQU/vrrL/z0009o27Ztha9RXFyMdevWwdnZGQ8//HCl+tG1a1esWbMGmZmZALSJ80lJSbh7967RqJPOli1b4OjoiN27d8PBwUE+/sUXXxi1LW1krLTjISEhEEIgODgYLVu2rOjtVIumTZsCAFJSUtCsWTP5eGFhIdLS0hARESEfu9+RQKL6jDlhRGRxxcXFGDZsGBITE7Fp06ZK1aYqLi7GhAkTcObMGUyYMAFubm6ltr116xYSExNNntu5cyeAe1NtgwcPRnZ2NpYvX27UVvxbzNTGxgaSJKG4uFg+d+HCBZNFWV1cXEwWZHVxcQEAo3ODBg2CjY0N3njjDaPiqUIIqFQq0zdZjSIiImBvb49ly5YZ9Gn16tVQq9UGq1JdXFzKLBdCZM04EkZEFjdlyhT88MMPiIqKQk5OjlFx1pKFWdVqtdzm1q1bOH/+PLZu3YrU1FQ8/fTTeOutt8r8vFu3bqFHjx7o3r07+vbti8DAQOTm5uK7777DL7/8goEDB6Jz584AgOeeew5ffvklJk+ejN9++w09e/bEzZs38dNPP+H//u//8NRTT6Ffv354//330bdvXzzzzDO4evUqPvroIzRv3hynTp0y+OwuXbrgp59+wvvvvw9/f38EBwcjLCwMXbp0AQDMmjULTz/9NOzs7BAVFYWQkBD873//w8yZM3HhwgUMHDgQrq6uSEtLw7fffouxY8fi1Vdfva/nX1He3t6YOXMm3njjDfTt2xcDBgxASkoKVqxYgQcffNDgf68uXbpgw4YNmDx5Mh588EE0aNAAUVFRNdpfolrLkksziYiEuFdaobRXWW0bNGggWrRoIZ599lnx448/mvV5d+/eFZ9++qkYOHCgaNq0qXBwcBDOzs6ic+fO4p133hEFBQUG7W/duiVmzZolgoODhZ2dnfD19RVDhgwRqampcpvVq1eLFi1aCAcHB9G6dWvxxRdfyCUg9J09e1Y88sgjwsnJSQAwKFfx1ltvicaNGwuFQmFUrmLLli3i4YcfFi4uLsLFxUW0bt1ajBs3TqSkpBg8m7LKd5Sk69+1a9fKbFeyRIXO8uXLRevWrYWdnZ3w8fERr7zyirh+/bpBmxs3bohnnnlGuLu7CwAsV0GkRxKiCjYHIyIiIqIKYU4YERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2Cx1lpMo9EgIyMDrq6u3PqDiIiojhBCID8/H/7+/lAoSh/vYhBWi2VkZCAwMNDS3SAiIqJKuHz5MgICAko9zyCsFnN1dQWg/R+xrH3wiIiIqPbIy8tDYGCg/He8NAzCajHdFKSbmxuDMCIiojqmvFQiJuYTERERWQCDMCIiIiILYBBGREREZAHMCavjNBoNCgsLLd2Nes3e3r7MJcZERESVwSCsDissLERaWho0Go2lu1KvKRQKBAcHw97e3tJdISKieoRBWB0lhEBmZiZsbGwQGBjIkZpqoiuYm5mZiSZNmrBoLhERVRkGYXVUUVERbt26BX9/fzg7O1u6O/Wat7c3MjIyUFRUBDs7O0t3h4iI6ok6M3wyYMAANGnSBI6OjvDz88PIkSORkZFh0EYIgXfffRctW7aEg4MDGjdujPnz5xu02b9/P0JDQ+Hg4IDmzZsjLi7O6LM++ugjBAUFwdHREWFhYfjtt98Mzt+5cwfjxo2Dp6cnGjRogMGDB+PKlSsGbS5duoR+/frB2dkZjRo1wtSpU1FUVFQ1DwNAcXExAHCKrAbonrHumRMREVWFOhOE9erVCxs3bkRKSgq2bNmC1NRUDBkyxKDNxIkT8dlnn+Hdd9/F2bNn8cMPP6Bbt27y+bS0NPTr1w+9evXCiRMnEBsbixdeeAG7d++W22zYsAGTJ0/G3LlzcezYMXTs2BGRkZG4evWq3GbSpEnYtm0bNm3ahAMHDiAjIwODBg2SzxcXF6Nfv34oLCzE4cOHsWbNGsTFxWHOnDlV/lw4PVb9+IyJiKhaiDrq+++/F5IkicLCQiGEEH/++aewtbUVZ8+eLfU906ZNE+3atTM4NmzYMBEZGSn/3K1bNzFu3Dj55+LiYuHv7y8WLFgghBAiNzdX2NnZiU2bNsltzpw5IwCIxMREIYQQO3bsEAqFQmRlZcltPv74Y+Hm5iYKCgrMvke1Wi0ACLVabXTu9u3b4s8//xS3b982+3pUOXzWRET1Q3Z2tsjIyCj1lZ2dXSWfU9bfb311MicsJycHa9euRY8ePeQcnW3btqFZs2aIj49H3759IYRAREQEFi9eDA8PDwBAYmIiIiIiDK4VGRmJ2NhYANrVhkePHsXMmTPl8wqFAhEREUhMTAQAHD16FHfv3jW4TuvWrdGkSRMkJiaie/fuSExMRIcOHeDj42PwOa+88gpOnz6Nzp07m7yvgoICFBQUyD/n5eXdx1MiIiIiHZVKheXLl5fbLiYmBp6enjXQozo0HQkA06dPh4uLCzw9PXHp0iV8//338rm///4bFy9exKZNm/Dll18iLi4OR48eNZiyzMrKMgiMAMDHxwd5eXm4ffs2srOzUVxcbLJNVlaWfA17e3u4u7uX2cbUNXTnSrNgwQIolUr5FRgYaOaTqTtGjx4NSZIgSRLs7Ozg4+ODJ554Ap9//nmFSm3ExcUZ/W9ARERUGnNratZk7U2LBmEzZsyQ/yCX9jp79qzcfurUqTh+/Dh+/PFH2NjY4LnnnoMQAoC2lEBBQQG+/PJL9OzZE4899hhWr16Nffv2ISUlxVK3WCEzZ86EWq2WX5cvX662z1KpVMjMzCz1pVKpqu2z+/bti8zMTFy4cAE7d+5Er169MHHiRPTv379KFy8QEZF10/9bl52dbenuGLHodOSUKVMwevToMts0a9ZM/t7LywteXl5o2bIl2rRpg8DAQPz6668IDw+Hn58fbG1t0bJlS7l9mzZtAGhXKrZq1Qq+vr5GqxivXLkCNzc3ODk5wcbGBjY2Nibb+Pr6AgB8fX1RWFiI3Nxcg5GYkm1KrqjUXVPXxhQHBwc4ODiU+TyqgqWHZB0cHOTn0LhxY4SGhqJ79+54/PHHERcXhxdeeAHvv/8+vvjiC/z999/w8PBAVFQUFi9ejAYNGmD//v14/vnnAdxLmp87dy7mzZuHr776CkuXLkVKSgpcXFzQu3dvLFmyBI0aNary+yAiotrL3L91lmTRkTBvb2+0bt26zFdpJRh0U1e6HKqHHnoIRUVFSE1Nldv89ddfAICmTZsCAMLDw7Fnzx6D6yQkJCA8PByAthRBly5dDNpoNBrs2bNHbtOlSxfY2dkZtElJScGlS5fkNuHh4fjjjz8MVlQmJCTAzc0Nbdu2rcSTqlq1cUi2d+/e6NixI7Zu3QpAm4u3bNkynD59GmvWrMHevXsxbdo0AECPHj2wZMkSuLm5yf8P59VXXwUA3L17F2+99RZOnjyJ7777DhcuXCg30CciovpBf+SrZBmrktRqV6SlBUGtdq2h3hmrE4n5SUlJOHLkCB5++GE0bNgQqampmD17NkJCQuTAJyIiAqGhoRgzZgyWLFkCjUaDcePG4YknnpBHx15++WUsX74c06ZNw5gxY7B3715s3LgR27dvlz9r8uTJGDVqFLp27Ypu3bphyZIluHnzpjzyolQqER0djcmTJ8PDwwNubm4YP348wsPD0b17dwBAnz590LZtW4wcORKLFy9GVlYWXn/9dYwbN65GRrrqqtatW+PUqVMAIC+WAICgoCD873//w8svv4wVK1bA3t4eSqUSkiQZjSyOGTNG/r5Zs2ZYtmwZHnzwQdy4cQMNGjSokfsgIqKao1KpUFhYCLVajQ0bNpj1nmPHOmPbtv4QQgFJ0iAqKh6hoceruafG6kQQ5uzsjK1bt2Lu3Lm4efMm/Pz80LdvX7z++utyUKNQKLBt2zaMHz8ejzzyCFxcXPDkk0/ivffek68THByM7du3Y9KkSVi6dCkCAgLw2WefITIyUm4zbNgwXLt2DXPmzEFWVhY6deqEXbt2GSTaf/DBB1AoFBg8eDAKCgoQGRmJFStWyOdtbGwQHx+PV155BeHh4XBxccGoUaPw5ptv1sDTqruEEPL04k8//YQFCxbg7NmzyMvLQ1FREe7cuYNbt26VuUPA0aNHMW/ePJw8eRLXr1+XR0wvXbpUK0YhiYio6lRkylGtdkVOjifs7ArkAAwAhFBg27b+CAk5D6Uyvzq7a6ROBGEdOnTA3r17y23n7++PLVu2lNnmsccew/HjZUe7MTExiImJKfW8o6MjPvroI3z00UeltmnatCl27NhRdofJwJkzZxAcHIwLFy6gf//+eOWVVzB//nx4eHjg4MGDiI6ORmFhYalB2M2bNxEZGYnIyEisXbsW3t7euHTpEiIjI2t0apWIiGqGuf+26498ARqUzMYSQoGcHA8GYWSd9u7diz/++AOTJk3C0aNHodFo8N5778kbk2/cuNGgvb29vdE2QmfPnoVKpcLChQvl8h6///57zdwAERHVKqWNfGkDMAHg3m4okqSBh0cOgJrdDpBBGNW4goICZGVlobi4GFeuXMGuXbuwYMEC9O/fH8899xySk5Nx9+5dfPjhh4iKisKhQ4ewcuVKg2sEBQXhxo0b2LNnDzp27AhnZ2c0adIE9vb2+PDDD/Hyyy8jOTkZb731loXukoiILKVkzte9AExHko8rFAKLF+fhmWeGw97evsYKtQJ1rFgr1Q+7du2Cn58fgoKC0LdvX+zbtw/Lli3D999/DxsbG3Ts2BHvv/8+Fi1ahPbt22Pt2rVYsGCBwTV69OiBl19+GcOGDYO3tzcWL14Mb29vxMXFYdOmTWjbti0WLlyId99910J3SURElqBWuxrlfGlHvu6RJA2ioz/DqFFx+O23q5gyxR1+fn41GoABgCR01U6p1snLy4NSqYRarYabm5vBuTt37iAtLQ3BwcFwdHSs0HUtXSesrrmfZ01ERNUnMzMTq1atMjiWlhaENWtGmWitzQUruRqyOv7WlfX3Wx+nI62Qp6cnYmJiykxorOkhWSIiopJ05SdKo1arjY55eKiMpiB1I19379pjxIgwtG//IIAHLf63jkGYlWKARUREtVllK94rlfmIioo3qgMWEJAJAAgNjao1fwMZhBEREVGtU5nSQroVkSEh5xEbuwQ5OR7w8MjBiy8+CXd3y498lcQgjIiIiGo9XYDl4aEyqOc1dOhQuLu7Y906J7z5phIajfTvikc1pk69XesCL30MwoiIiKhWK2ubIXd3dxQX+2HaNODfTVKg0UiYPt0dw4a5o5bGXwAYhBEREZGFlJV4n52dDcB0yYmS2wydO3cvANMpLgbOnwcCAqqv//eLQRgRERHVOHMT73NyPI2KrZbcZqhFC0ChMAzEbGyA5s2rtMtVjsVaiYiIqMaZm3ivKzmhT3+bIUA72rVqlTbwArRfP/mkdo+CAQzCiIiIqBZQq12RlhYEtdrV4Liu5IQuENPlhJXcbDs6GrhwAdi3T/s1OrqGOn4fOB1J9cr+/fvRq1cvXL9+He7u7ma9JygoCLGxsYiNja3WvhERWRtzcr6AshPvASA09DhCQs7LJSf0AzD9DbcDAmr/6Jc+BmFUo0aPHo01a9bgpZdeMtqUe9y4cVixYgVGjRqFuLg4y3SQiIiqhLk5X+Ul3g8aNAheXl4m31uby0+Yg0EY1bjAwECsX78eH3zwAZycnABo92dct24dmjRpYuHeERFRZemPfOmPdJWlvMR7Ly8v+Pn5VXlfawPmhFGNCw0NRWBgILZu3Sof27p1K5o0aYLOnTvLxwoKCjBhwgQ0atQIjo6OePjhh3HkyBGDa+3YsQMtW7aEk5MTevXqhQsXLhh93sGDB9GzZ084OTkhMDAQEyZMwM2bN6vt/oiIrJFu5GvVqlVYtWqVwb/xZTEn8b6+YhBGSE/XJjKmp9fcZ44ZMwZffPGF/PPnn3+O559/3qDNtGnTsGXLFqxZswbHjh1D8+bNERkZiZwc7X+Yly9fxqBBgxAVFYUTJ07ghRdewIwZMwyukZqair59+2Lw4ME4deoUNmzYgIMHDyImJqb6b5KIyIpUZpshwPzE+/qI05FWbvVqYOxYbW0VhUK7xLcmVpQ8++yzmDlzJi5evAgAOHToENavX4/9+/cDAG7evImPP/4YcXFxePLJJwEAn376KRISErB69WpMnToVH3/8MUJCQvDee+8BAFq1aoU//vgDixYtkj9nwYIFGDFihJx036JFCyxbtgyPPvooPv74Yzg6Olb/zRIRUanbDgHmJ97XNwzCrFh6+r0ADNB+feklIDKy+leXeHt7o1+/foiLi4MQAv369TNIvExNTcXdu3fx0EMPycfs7OzQrVs3nDlzBgBw5swZhIWFGVw3PDzc4OeTJ0/i1KlTWLt2rXxMCAGNRoO0tDS0adOmOm6PiIj0lLX6sT4n3peHQZgVs/Q2D2PGjJGnBT/66KNq+YwbN27gpZdewoQJE4zOcREAEVHlmCo9UTIRXzfyZWdXUObqx/qceF8eBmFWzNLbPPTt2xeFhYWQJAmRkZEG50JCQmBvb49Dhw6hadOmAIC7d+/iyJEj8tRimzZt8MMPPxi879dffzX4OTQ0FH/++Sea1/a9K4iI6ghzSk+UHPkqb9sha8XEfCtm6W0ebGxscObMGfz555+w0XXiXy4uLnjllVcwdepU7Nq1C3/++SdefPFF3Lp1C9H/Jq29/PLLOHfuHKZOnYqUlBSsW7fOqL7Y9OnTcfjwYcTExODEiRM4d+4cvv/+eybmExFVgEqlQmZmJjIzM5GRkVFmW1N1vwBh0EZ/9WN9zvkqD0fCrFx0tDYH7Px57QhYTVcadnNzK/XcwoULodFoMHLkSOTn56Nr167YvXs3GjZsCEA7nbhlyxZMmjQJH374Ibp164a3334bY8aMka/xwAMP4MCBA5g1axZ69uwJIQRCQkIwbNiwar83IqL6oLyRr5IJ96bqfgESAA0ABRQKgcWL8/DMM8Prfc5XeSQhhCi/GVlCXl4elEol1Gq1UbBy584dpKWlITg4mCv8qhmfNRFZs8zMTKxatcrkOVMJ9yEh57FkSaxBICZJGkRHf4a7d+0xZcpT6NChYU113yLK+vutj9ORREREVGGlbTcEAFFR8VAotGM8NjYC77yThzffjMJ770XV+wCsIjgdSURERGbTTT/evOlcasJ9aOhxzJkThvx8HzRvLiEgwB2AuyW6W6sxCCMiIiKzlJx+1OV56egn3Pv7a2CllSfMxulIIiIiKpep6UdJArSBmHVtN1RVOBJWx3FdRfXjMyYia5Geri3k3aKF8Wp5U6sehVBgyJCNcHG5ZVXbDVUVBmF1lK6uVmFhIZycnCzcm/pNVxW6ZC0zIqK6rGTV+3XrnDBtmhIajQSFQuD9929i4sQG8nkPD5VR4VVJ0iAwMB1KZb7B9kPWXnrCXAzC6ihbW1s4Ozvj2rVrsLOzg0LBmeXqoNFocO3aNTg7O8PWlv+5EFHdp1KpcO3aNWzYsEE+pla7/ltWQgIAaDQSJk1yRseO5xEYqD2mVOYjKireqCSFbvTL39+fgVcF8a9KHSVJEvz8/JCWloaLFy9aujv1mkKhQJMmTSBpkx+IiOqskoVXdSsdr10zPdUYF3cQwcEX8eyzz8LZ2RkAMGfONVy4YIugoCL4+z8I4EGOfFUSg7A6zN7eHi1atDDaRJWqlr29PUcaiaheuHr1qvz9sWOd8cMP/aFdo2ec+6q/0tHZ2VneZNvPD+jSpSZ6W/8xCKvjFAoFq7gTEZFZioqKAGhHwO4FYIB2WyF9XOlYExiEERERWZnLlwNRVpWqIUM2o337MzXXISvFORYiIiKS6VY8UvXjSBgREVE9ol96IiNDgbQ0WwQHF8HfX4Pr168DAAIDL0ObB2Y4DcmCqzWLQRgREVE9ob/6seQWQ1FR8QgNPQ5AW25iwIBtehXwNejRIxFhYUkMwGoQgzAiIqI6Tjf6lZ2dDbXaFZcvBxok3guhwLZt/REScl4OskJDjyMk5DxycjyMqt1TzWAQRkREVAfpAi+1Wi0XXtWOfsUa1fwCtIFYTo6HQbClVOabFXxxC6LqwSCMiIiojjFVdPXy5UCDDbZL0q/7VZ6hQ4fC3d0dALcgqk4MwoiIiOoY/SLd+rlfpSmZcK+/z2NJDLpqDoMwIiKiOkqtdi139Gvw4M3yJts6Xl5ecgV8shwGYURERHVUTo7xno86utEvFl2tvRiEERER1SL6db5M0U+S9/BQQZI0JQIxDYYMMR79otqHQRgREVEtYSrhPifHEx4eKoOAaujQoQC0qxujouKN6oGVN/rF1Y61A4MwIiKiWqK0hPuSxVZ1G3ED5tf70iXjM/G+9mAQRkREVMuUTLg3VWxVnzn1vvz9/Rl81TIMwoiIiCzA1B6PSmUuANMJ9/rFVu3s7Mz6DF29L45+1U4MwoiIiGpY6Xs8NkRUVGeEhJw3SrjXL7aqVCoRExNTbgI/A6/ajUEYERFRDdNuN2Rc5V437Rgbu8Rkwr3+lCMDrLqPQRgREVEN0U1BrlpVjCVLyt7jkRts138MwoiIiGqAbgoyPd0Pq1e/YNYej+ZusE11E4MwIiKiaqZSqZCRkYFDh8KRkBABoOwq9+UFXqzzVT8wCCMiIqpGf/xxHe+9F4+//w7CL788AUAy0cp0lXtTG20z4b7+YBBGRERUxXS5X+vWOWHaNHdoNKMACJgKwMqqcs+Ntus3BmFERERVSKVSYf78Nbh8ORCbNw/GvcDL9AhYdPRnCAjIrMEeUm3BIIyIiKgKxcXZlLry0ZDAE0/8VGYAxtyv+o1BGBERUSWlpwPnzgEtWgABAcCRI8DUqUoIYWrUC9BNSUqSBhERP+GhhxKNWnCPR+vBIIyIiKgCDPO9lNBoJEiSwH/+cxs7djiVGoDpAi9//4wy634xD8x6MAgjIiIyk67Wl1rt+u+UozbgEkLC9u1OKC3xfvBg45WPpeEUpPVgEEZERGQm3V6NpjbYrujKx5IGDRoEf39/TkFaEQZhREREFeThoTLaYNtYxVY+MgCzPuUt3SAiIqISlMp8RET8BG2ivT7tz5KkwYAB8WYHYEOHDmUAZoU4EkZERFQJupWNum2IzE28N8Xd3b16Okm1GoMwIiKiSnrooUS0b5+MnByPCgde+piMb53qzHTkgAED0KRJEzg6OsLPzw8jR45ERkaGfH7evHmQJMno5eLiYnCdTZs2oXXr1nB0dESHDh2wY8cOg/NCCMyZMwd+fn5wcnJCREQEzp07Z9AmJycHI0aMgJubG9zd3REdHY0bN24YtDl16hR69uwJR0dHBAYGYvHixVX8RIiIqDZQKvMRHHzRrABs0KBBGDt2rMErJiaGU5FWqs4EYb169cLGjRuRkpKCLVu2IDU1FUOGDJHPv/rqq8jMzDR4tW3bFv/973/lNocPH8bw4cMRHR2N48ePY+DAgRg4cCCSk5PlNosXL8ayZcuwcuVKJCUlwcXFBZGRkbhz547cZsSIETh9+jQSEhIQHx+Pn3/+GWPHjpXP5+XloU+fPmjatCmOHj2Kd955B/PmzcOqVauq+SkREVFtpqsBpv9iAGa9JCFEyazCOuGHH37AwIEDUVBQADs7O6PzJ0+eRKdOnfDzzz+jZ8+eAIBhw4bh5s2biI+Pl9t1794dnTp1wsqVKyGEgL+/P6ZMmYJXX30VAKBWq+Hj44O4uDg8/fTTOHPmDNq2bYsjR46ga9euAIBdu3bhP//5D9LT0+Hv74+PP/4Ys2bNQlZWljzEPGPGDHz33Xc4e/as2feYl5cHpVIJtVoNNze3Sj8rIiKqGro6YZU1duxYFmK1Aub+/a4zI2H6cnJysHbtWvTo0cNkAAYAn332GVq2bCkHYACQmJiIiIgIg3aRkZFITNQmV6alpSErK8ugjVKpRFhYmNwmMTER7u7ucgAGABEREVAoFEhKSpLbPPLIIwZz/JGRkUhJScH169dLva+CggLk5eUZvIiIqPbw9PTEsGHDKv1+5n6RvjoVhE2fPh0uLi7w9PTEpUuX8P3335tsd+fOHaxduxbR0dEGx7OysuDj42NwzMfHB1lZWfJ53bGy2jRq1MjgvK2tLTw8PAzamLqG/meYsmDBAiiVSvkVGBhYalsiIrp/6enAvn3ar+ZSKpUV/pxBgwYx94uMWDQImzFjhslkev2X/vTd1KlTcfz4cfz444+wsbHBc889B1Ozqd9++y3y8/MxatSomryd+zZz5kyo1Wr5dfnyZUt3iYioXkpPB6ZOBZo0AXr3Bpo2BVavrr7PYyFWMsWiJSqmTJmC0aNHl9mmWbNm8vdeXl7w8vJCy5Yt0aZNGwQGBuLXX39FeHi4wXs+++wz9O/f32g0ytfXF1euXDE4duXKFfj6+srndcf05+yvXLmCTp06yW2uXr1qcI2ioiLk5OQYXMfU5+h/hikODg5wcHAo9TwREd2/1auBsWMBjebeMY0GeOklIDISCAioms8ZNGgQvLy8YG9vzwCMTLJoEObt7Q1vb+9KvVfz7389BQUFBsfT0tKwb98+/PDDD0bvCQ8Px549exAbGysfS0hIkIO44OBg+Pr6Ys+ePXLQlZeXh6SkJLzyyivyNXJzc3H06FF06dIFALB3715oNBqEhYXJbWbNmoW7d+/KOWsJCQlo1aoVGjZsWKn7JSKi+5eeDrz4opA33tZXXAwkJang5IQygyZz87o4+kXlEnXAr7/+Kj788ENx/PhxceHCBbFnzx7Ro0cPERISIu7cuWPQ9vXXXxf+/v6iqKjI6DqHDh0Stra24t133xVnzpwRc+fOFXZ2duKPP/6Q2yxcuFC4u7uL77//Xpw6dUo89dRTIjg4WNy+fVtu07dvX9G5c2eRlJQkDh48KFq0aCGGDx8un8/NzRU+Pj5i5MiRIjk5Waxfv144OzuLTz75pEL3rVarBQChVqsr9D4iIjJt3LibAhAmX5JULCZNek/MmzdPZGdnl3md7OxskZGRUeqrvPdT/Wbu3+86EYSdOnVK9OrVS3h4eAgHBwcRFBQkXn75ZZGenm7Qrri4WAQEBIjXXnut1Gtt3LhRtGzZUtjb24t27dqJ7du3G5zXaDRi9uzZwsfHRzg4OIjHH39cpKSkGLRRqVRi+PDhokGDBsLNzU08//zzIj8/36DNyZMnxcMPPywcHBxE48aNxcKFCyt83wzCiIjuz+XLQuzdq/166lSOUCg0pQRhxWLAgO/FvHnzxLx580RGRoalu051mLl/v+tsnTBrwDphRESVp5/7pVAIdO9+GIcPP2TUrl27P9CnT4JBxXvW86L7Ua/rhBEREZUlPd0w+V6jkZCYGA5AY9BOkjRGARhRTWEQRkRE9c65c4arHwFACAV69EiEJGlPSJIGUVHxDMDIYiy6OpKIiOh+pacDhw9rv+/RA3ByUsHNrQgKRSNoNPdWQUqSBmFhSQgLS0JOjgc8PHIYgJFFMQgjIqI6a/Vq4MUXtan1ACBJAlFRhxAaehz9+3fGtm39IYTCaNSLwRfVBgzCiIiozlGpVLhwoQgvvtjIoOaXEBK2beuPkJDzCA09jpCQ8xz1olqLQRgREdUpKpUK8+evwenT7SBEpNF5IRTIyfGAUpkvvyqKG21TTWAQRkREdUpcnA2WLImFEAoAAoBh9XtJ0sDDI6dS1x40aBAr3VON4epIIiKqM9LTgWnTlP8GYIA2ALtX7vJ+VzwyAKOaxJEwIiKqM7SlJ0ru+yjhkUf2oVGjawgMTK90APbss88yAKMaxSCMiIjqBJWq9NITXbocr1DwNWjQIHh5eck/29vbMwCjGscgjIiIaj2VSoXly5cDQJmlJ8zl5eXFbYnI4hiEERFRrVdYWCh/XxWlJ7j6kWoDBmFERFTnmFt6ouS0I8CpR6o9GIQREVG1SU/XJtO3aAEEBNT853PakWozlqggIqJqsXo10LQp0Lu39uvq1cZt0tOBffu0X4msDYMwIiKqcunpwNixgEaj/VmjAV56yTDYMidII6rPOB1JRERVQn/qUVvPy/B8cTFw/rz2+8OHTQdpkZFVO23JBHyqzRiEERHRfVu9+l5QpVAACxdqv+oHYjY2wJEjwOOPCxMFV7VBWlKSCk5OqHTivH4iPhPwqbbjdCQREd0XU1OPM2cKvPaaGpJ0b0uh4mKB6dNNB2CAtujqoUNrsHz5cqhUKoNz5o5o+fv7w8/PD35+fgzAqNbjSBgREd0X01OPEs6e3Q0hhuDeBtsShCj57n/PlCi6ql8XDNCOjMXExBgd18eRL6prGIQREdF9adHCeOpRkjTQBl/lTbhoMGTIZrP2fGSARfUNpyOJiKjSVCoVbGwysXhxLmxstMNculGtwMDL/wZj+jTyMUnSYMCAeLRvf6bSm24T1WUcCSMiokrR388RACZMcDXaSigqKt5on8f73XKIqL5gEEZERJVSMj/L1FZCpe3zyOCLiEEYERFVQno68Ouv9lCrXcsNqMzd55HI2jAIIyKiCrlXE8wTkhSLqKh4hIYet3S3iOocJuYTEZHZStYEE0KBbdv6Q612rdLPYaV7sgYcCSMiIrOoVCr8+qt2BEyfEArk5Hjc95Sjrto9632RtWAQRkREJunvBenkpF0JqVa7QpJiIcS9iRRJ0sDDI+e+P8/Lywt+fn73fR2iuoLTkUREZGT1aqBpU6B3b+3XuDgbANok+6ioeINaX/qV7onIfBwJIyIiA6b2gpw+XYkJE7QrIUsrO1Ga//znP9ixY0e5n8s8MLI2DMKIiKycbtqxQQPgn3/UOHNGQKNxN2hTXCwZ5H2VVnZCl9elo8vvatasGfd9JCqBQRgRkRXQz+8KCLh3/F65CQAQAJT/fjVkbt5XaXldDLCIjDEnjIioniuZ37V6tfZ4yWlH7Ybb+l///Yl5X0TVgiNhRET1mKn8rpdeArp1u46UFI1RuQlTBg/ejPbtz1RzT4msD4MwIqJ67Nw5/ZEureJi4L33voeHR45RuYmSJEmDwMD0au4lkXXidCQRUT2lUqng5nYFCoVhjpdCIeRVjfrlJu7lgmm/VmYakisciczHkTAionpIpdIWVwWA/v07Y9u2/hBCAUnSoH//e4GVfrkJO7tC3L1rL38trfxEyRWQOlzhSFQxDMKIiOoh/XIQ5dX1Kq3cRGlY2Z6oajAIIyKqA0orMWGuigZaRFT9mBNGRFTLlVZiwlKY90VUNTgSRkRUi5VWYiIysnIjYvdj0KBB8Pf3Z94XURXhSBgRUS1WWomJ8+drvi9eXl4MwIiqEIMwIqJarEULQFHiX2obG6B5c8v0h4iqDoMwIqJaSqVSwcYmE4sX58LGRlu7y8ZGYNGiXNjYZEKlUt33ZzzxxBPo1avXfV+HiCqOOWFERLWQfp0vAJgwwVUuMXHjRj5WrdIej4mJgaenp9HqSXOT51u1aoXCwkLs27evOm6DiMrAIIyIqBbSr/MFlF5iorCwEKtX30veVyiAVauA6GhPxMTEGF1Hn664qrkjalwVSVS1GIQREdVhGRmKMlZPmpdE7+lpfsBGRFWHQRgRUS2lVrsiJ8cTHh6qUgutnjhx0+TqyaQkFZycYHbgxACLqOYxCCMiqmXS04H5813xySex8n6PUVHxCA09btT29OnvIEnadjqSpMGhQ2uQnJwv54wRUe3D1ZFERLXI6tVAkybAypUN5MBKCAW2besPtdrVqL1SmY+oqHhIknY4TBew6UbOyppiJCLL4kgYEVEtoa2OLyCEZHROCAVycjxMTkuWt0E3EdVODMKIiGoBlUqFPXtuQqNpYvK8JGng4ZFT6vu5QTdR3cMgjIjIwnQ1wdRqV6P8LsB4ipGI6gcGYUREFqaftxUenojExPB/AzENevRIRFhYkkEANmjQIADA1q1ba7qrRFSFGIQREdUCx451xrZt/fWCr0NGwZeOl5dXzXeQiKqc2UFYXl6e2Rd1c3OrVGeIiKyNSqVCcnKuXgAGAAokJoYjLCzJon0joupldhDm7u4OSTJesaNPCAFJklBcXHzfHSMiqu90uWDJyW0hRBuDc2WthgTM30KIWw0R1V5mB2Hc3JWIqGoVFhbK05AllbcaklsNEdV9Zgdhjz76aHX2g4jI6mRkKEpMQ+qYtxqSARZR3VbpxPzc3FysXr0aZ86cAQC0a9cOY8aMgVKprLLOERHVZ2lptiYCMGDIkM1o3/5Mqe/jFCNR/VCpbYt+//13hISE4IMPPkBOTg5ycnLw/vvvIyQkBMeOHavqPhIR1TsqlQpK5VV5uyEdSdIgMDDd5HuGDh3KvSCJ6hFJCCEq+qaePXuiefPm+PTTT2Frqx1MKyoqwgsvvIC///4bP//8c5V31Brl5eVBqVRCrVZzxSlRLZaeDpw7B7RoAQQElH9cl5APGJamKG2j7kGDBsHf35/BF1EdYe7f70pNR/7+++8GARgA2NraYtq0aejatWtlLklEVCetXg2MHQtoNIBCAbz//g0MHZqPdeucMG2aEhqNBIVCYPFiNZ555jbs7e0NkunN2ffRy8uLARhRPVSpIMzNzQ2XLl1C69atDY5fvnwZrq6uVdIxIqLaTKVS4cKFIowd2wgajbZ8j0YDTJrkjOTkdVi9+gV5I26NRsLUqW7455/PoVTmY+jQoQbX4r6PRNapUkHYsGHDEB0djXfffRc9evQAABw6dAhTp07F8OHDq7SDRES1jW46MS0tCBrNKINzQihw6VITo4R7/bpfRUVFFfo8JuIT1U+VSsx/9913MWjQIDz33HMICgpCUFAQRo8ejSFDhmDRokVV3UcAwIABA9CkSRM4OjrCz88PI0eOREZGhkGb3bt3o3v37nB1dYW3tzcGDx6MCxcuGLTZv38/QkND4eDggObNmyMuLs7osz766CMEBQXB0dERYWFh+O233wzO37lzB+PGjYOnpycaNGiAwYMH48qVKwZtLl26hH79+sHZ2RmNGjXC1KlTK/wPLxHVTrrpRA8PlcnE+iZNLpk8XlbdL1MGDRrERHyieqxSQZi9vT2WLl2K69ev48SJEzhx4gRycnLwwQcfwMHBoar7CADo1asXNm7ciJSUFGzZsgWpqakYMmSIfD4tLQ1PPfUUevfujRMnTmD37t3Izs6WN7rVtenXrx969eqFEydOIDY2Fi+88AJ2794tt9mwYQMmT56MuXPn4tixY+jYsSMiIyNx9epVuc2kSZOwbds2bNq0CQcOHEBGRobB5xQXF6Nfv34oLCzE4cOHsWbNGsTFxWHOnDnV8myIqPLS04F9+7RfK0qpzEdUVLwccOkS6wMCMk0er+iUI3PBiOq3Sq2OrA1++OEHDBw4EAUFBbCzs8PmzZsxfPhwFBQUQKHQxpbbtm3DU089JbeZPn06tm/fjuTkZPk6Tz/9NHJzc7Fr1y4AQFhYGB588EF55ZJGo0FgYCDGjx+PGTNmQK1Ww9vbG+vWrZODwLNnz6JNmzZITExE9+7dsXPnTvTv3x8ZGRnw8fEBAKxcuRLTp0/HtWvXzJ5a4OpIoupVMql+1SogOrr892VmZmLVqlXyz2q1q8nE+tKODxo0CFu3bi33c8aOHQs/P7+K3RQRWZy5f78rNRJ2584dvPPOO/jPf/6Drl27IjQ01OBV3XJycrB27Vr06NEDdnZ2AIAuXbpAoVDgiy++QHFxMdRqNb766itERETIbRITExEREWFwrcjISCQmJgLQTjEcPXrUoI1CoUBERITc5ujRo7h7965Bm9atW6NJkyZym8TERHTo0EEOwHSfk5eXh9OnT1fDEyGiikpPvxeAAdqvL72kPV7R0TGlMh/BwReNRrpKO05EBFQyMT86Oho//vgjhgwZgm7dupW7sXdVmT59OpYvX45bt26he/fuiI+Pl88FBwfjxx9/xNChQ/HSSy+huLgY4eHh2LFjh9wmKyvLIDACAB8fH+Tl5eH27du4fv06iouLTbY5e/asfA17e3u4u7sbtcnKyirzc3TnSlNQUICCggL557y8vPIeCRFV0rlz9wIwneJiYOlS4P33Kz46VhG6/2NYHibkE9VvlQrC4uPjsWPHDjz00EP39eEzZswoN5H/zJkzcimMqVOnIjo6GhcvXsQbb7yB5557DvHx8ZAkCVlZWXjxxRcxatQoDB8+HPn5+ZgzZw6GDBmChISEGgsU78eCBQvwxhtvWLobRPWeSqWCm1sRFIp75SUAQKEQeO896JWWAF56SaBTp6sICrKtsvwspVLJzbeJqHJBWOPGjaukHtiUKVMwevToMts0a9ZM/t7LywteXl5o2bIl2rRpg8DAQPz6668IDw/HRx99BKVSicWLF8vtv/76awQGBiIpKQndu3eHr6+v0SrGK1euwM3NDU5OTrCxsYGNjY3JNr6+vgAAX19fFBYWIjc312A0rGSbkisqddfUtTFl5syZmDx5svxzXl4eAgMDy3w+RFQx+tXq+/c3rFbfvXsiDh82/D+XxcUSPvxwJ4KDL1bZSkUGWEQEVDIIe++99zB9+nSsXLkSTZs2rfSHe3t7w9vbu1Lv1fw7j6Cbvrt165ackK9jY2Nj0Lbk9CQAJCQkIDw8HID2H8YuXbpgz549GDhwoPzePXv2ICYmBoA298zOzg579uzB4MGDAQApKSm4dOmSfJ3w8HDMnz8fV69eRaNGjeTPcXNzQ9u2bUu9JwcHh2pbXUpEWmVVqweAxMTwEjW+BDIy/BEcfBHXrl2Dp6en2dOEQ4cONUpdYABGRDqVWh157do1DB06FD///DOcnZ2N8htycipWC6c8SUlJOHLkCB5++GE0bNgQqampmD17Nq5cuYLTp0/DwcEBe/fuRUREBObNmydPR7722ms4e/Yszpw5AycnJ6SlpaF9+/YYN24cxowZg71792LChAnYvn07IiMjAWhLVIwaNQqffPIJunXrhiVLlmDjxo04e/asnNf1yiuvYMeOHYiLi4ObmxvGjx8PADh8+DAAbYmKTp06wd/fH4sXL0ZWVhZGjhyJF154AW+//bbZ983VkURVr+TKxpIOHQpHQsITAO5NU0qSBrGxS6BU5sujYSqVitOJRGRSte4dOXz4cPzzzz94++234ePjU+35Vs7Ozti6dSvmzp2Lmzdvws/PD3379sXrr78ujxz17t0b69atw+LFi7F48WI4OzsjPDwcu3btgpOTEwBt8v727dsxadIkLF26FAEBAfjss8/kAAzQ7gZw7do1zJkzB1lZWejUqRN27dplkGj/wQcfQKFQYPDgwSgoKEBkZCRWrFghn7exsUF8fDxeeeUVhIeHw8XFBaNGjcKbb75Zrc+JiO6fv38m9AMwQFvt/vLlACiVZ+TAiwEWEd2vSo2EOTs7IzExER07dqyOPtG/OBJGVHXS07UrIt3criA+fmWp7dRqVyxZEmu07ZCu4OrKlQ+ydhcRlala64S1bt0at2/frnTniIhq0urVQNOmQO/eQLdujXDsWOdS2+qq4AOG9SuEUGDbtv7IyKjUP5tEREYq9a/JwoULMWXKFOzfvx8qlQp5eXkGLyKi2kClUuHo0SsYO1boFWWVsG1bf6jVpa/wDg09jiFDthgdF0KBkydvQqVSVVeXiciKVConrG/fvgCAxx9/3OC4EAKSJKG4uPj+e0ZEdB90pSjS0oKg0YwyOCeEAjk5HmVWsg8MvAxJ0hhMS0qSBsnJ3+Hy5XxurE1E961SQdi+ffuquh9ERPdFl/PVogUQEHCvFIWHh8pkMKUrSVEa3bSkfh0x/U24y1oZSURkjkoFYY8++qhZ7f7v//4Pb775Jry8vCrzMUREZjG1Efd//qM9V14wNWjQIHh5eSEtLQ0JCQkG1y1ZR4x7QBJRVapUEGaur7/+Gq+++iqDMCKqFiqVChcuFGHs2HvbD+m2Gtq5M1duV1Yw5eXlBT8/P9jb2xsFYYA2iGPwRUTVoVqDsEpUvyAiMktZOV/FxRLWrk1CcPC9Y+UFU56enoiJiUFGRga2bt1aXd0mIpJVaxBGRFRdzMn5UqtdkZPjCQ8PlVmjWZ6ensz1IqIawyCMiOq00nK+UlObGx0LDT1u6e4SEckYhBFRnWdqI279qve6QqshIeeZ30VEtQaDMCKqF/RzvtLSgoy2HSqtNpi9vX2ZP5fG3HZERKWp1iDs2Wef5Z6HRFSlVCoVCgsLkZ2dXWobDw8VtNsOma4NpitLYW9vb1RwVZegX1ZumKn3ERFVVKWDsNzcXPz222+4evUqNBrDPdaee+45AMDHH398f70jItKjWxGpU1rifWpqcwCS3jsNa4PpylKUhgEWEdWESgVh27Ztw4gRI3Djxg24ublBku79YydJkhyEERHdD92ol47+6NexY51NJt6r1a7Ytq0/9IMwSQJCQs7XZNeJiMpVqSBsypQpGDNmDN5++204OztXdZ+IiMoY9dJuvK0LwIB7iff29gXyz/rM2SuSiKimVSoI++effzBhwgQGYERUbfRHwEqOeoWHJ5oMtDZv/i8kSYOy8sGIiGoLRflNjEVGRuL333+v6r4QERnRTS/qj3odPhz+b7BlTBuoAdpADEZ7RQJc2UhEtYPZI2E//PCD/H2/fv0wdepU/Pnnn+jQoQPs7OwM2g4YMKDqekhEVi0nx9No1AtQoFmzcyYS8LWEUGDIkI1wcblltFfk0KFDmXhPRLWC2UHYwIEDjY69+eabRsckSUJxcfF9dYqI6reSCfcl6Y9UlbYtUWpqCEwFYLrzgYHpJnPA3N3dK91vIqKqZHYQVrIMBRFRZZRMuC/NsGHDAJjelig8PBGHDz9k8n2mph+JiGqjSiXmf/nllxg2bBgcHBwMjhcWFmL9+vUsUUFEpSo5AlZara+7d+/K35valigxMbzENKUGQ4ZsLnUEjIiotqlUYv7zzz8PtVptdDw/Px/PP//8fXeKiKzDsWOdsWRJLNasGYUlS2Jx7Fhn+Vx+/r1A6l6gliNvTxQVFS8n50uSBgMGxKN9+zPlBmBMyiei2qJSI2FCCIMCrTrp6elQKpX33Skiqv9MrXrU32Q7ISEBQOlFWUuOjpUWfOm2KAK43RAR1S4VCsI6d+4MSZIgSRIef/xx2Nree3txcTHS0tLQt2/fKu8kEdU/plY9liyqWl6gpr9pd2nK26KIiMhSKhSE6VZInjhxApGRkWjQoIF8zt7eHkFBQRg8eHCVdpCI6pfc3FwApa961C+qak6gRkRUV1UoCJs7dy4AICgoCMOGDYOjo2O1dIqI6ieVSoWNGzcCML3qseSqRnMCNSKiuqpSOWGjRo0CoF3ldPXqVaPyFU2aNLn/nhFRnVNe/S/dKJiOLq/r8uUAABICAy8bnDcnUCsPE/GJqLaqVBB27tw5jBkzBocPHzY4rkvYZ7FWIutjbv0vfWq1K5KSwnD4cDgAw8R7nbIS8Pv06WOQFgEAtra2ckFWJuITUW1WqSBs9OjRsLW1RXx8PPz8/EyulCQi62Ju/S8d/VWPOiUT73VKS8APCgpi0j0R1VmVCsJOnDiBo0ePonXr1lXdHyKqB0orK6FTctWjPibeE5G1qFSx1rZt2yI7O7uq+0JE9UBpZSXUale5jelNubUqknjPfC8iqssqNRK2aNEiTJs2DW+//TY6dOgAOzs7g/Nubm5V0jkiqnvMKSthatWjlmHivX6h1ZKY70VEdV2lgrCIiAgAQO/evQ3ywZiYT0TmlJUobVPusLAkg2lIFlolovqsUkHYvn37qrofRFRPmFtWwtxth4iI6qtKBWGPPvoofvnlF3zyySdITU3F5s2b0bhxY3z11VcIDg6u6j4SUR1TVoA1bNgwCCGwcePGcrcdYs4XEdVnlQrCtmzZgpEjR2LEiBE4fvw4CgoKAABqtRpvv/02duzYUaWdJKLar2TAVFqA5e3tDU9PT8TExJRZ2JU5X0RU30lCCFHRN3Xu3BmTJk3Cc889B1dXV5w8eRLNmjXD8ePH8eSTTyIrK6s6+mp18vLyoFQqoVarudiB6oTyKuYzsCIia2Du3+9KjYSlpKTgkUceMTquVCqNtiUhIuvBAIuIyHyVCsJ8fX1x/vx5BAUFGRw/ePAgmjVrVhX9IqJK4mgUEVHdUKkg7MUXX8TEiRPx+eefQ5IkZGRkIDExEa+++ipmz55d1X0kIjOV3L+xtK2DYmJiGIgREVlYpYKwGTNmQKPR4PHHH8etW7fwyCOPwMHBAa+++irGjx9f1X0kIjPpj4CVtXVQWSNlpnB0jYio6lUqCJMkCbNmzcLUqVNx/vx53LhxA23btkWDBg2qun9EVAmlbR1UcmNsc5QcXSsNR9eIiCqmUkGYjr29Pdq2bVtVfSGiKmLO1kHmKjkCVtoUZ0VH14iIrN19BWFEVPPKmhrMzs4GYN7WQZVR1hQnERFVDIMwolqotEBLrVZjw4YN5b7f3K2DKqIqpziJiIhBGFGtY24OVnmqem/GqpziJCIiBmFEtY65OVjlnQNK3zqoMqpripOIyFoxCCOqxcrKwbqf/KzKbIxdHVOcRETWjEEYUS1VVg4WgDLzswYNGgQvLy+T172fml5VPcVJRGTNGIQR1VJl5WABUpn5WV5eXvDz86uSfpQcNSttirMyo2tERNaMQRhRLVVeDlZN5Wd5enoiJiaGFfOJiKoYgzCiWqq8HKyazM9igEVEVPUYhBHVYmXlYJV1jlODRES1H4MwolrG3BysoUOHwt3d3eT7OXJFRFT7MQgjqmWYg0VEZB0YhBHVQgywiIjqP0X5TYiIiIioqjEIIyIiIrIABmFEREREFsCcMCILUqlUTMAnIrJSDMKILESlUmH58uXltouJiWEgRkRUD3E6kshCyhoBq0w7IiKqWzgSRlTHlJzCzM3NRVFREQAgK8sWGRkuaN/eAf7+GgCc0iQiqq0YhBHVIWVNYR471tloL8nQ0OMAOKVJRFQbMQgjMqG2JsyX1ie12lUOwABACAW2beuPkJDzUCrzOaVJRFQLMQgjKqE6EuZNBXXZ2dmV6p8+tdoVOTmeuHnTWQ7AdIRQICfHw+S+k0REZHkMwohKqOqEeXODOl1A5eGhMitwKjn9CGigv9ZGkjTw8Mgxq49ERFTz6szqyAEDBqBJkyZwdHSEn58fRo4ciYyMDIM2GzduRKdOneDs7IymTZvinXfeMbrO/v37ERoaCgcHBzRv3hxxcXFGbT766CMEBQXB0dERYWFh+O233wzO37lzB+PGjYOnpycaNGiAwYMH48qVKwZtLl26hH79+sHZ2RmNGjXC1KlT5eRpsi7mBGvHjnXGkiWxWLNmFJYsicWxY53LbG9q+lGSAG0gBjknjKNgRES1V50Jwnr16oWNGzciJSUFW7ZsQWpqKoYMGSKf37lzJ0aMGIGXX34ZycnJWLFiBT744AODEYi0tDT069cPvXr1wokTJxAbG4sXXngBu3fvltts2LABkydPxty5c3Hs2DF07NgRkZGRuHr1qtxm0qRJ2LZtGzZt2oQDBw4gIyMDgwYNks8XFxejX79+KCwsxOHDh7FmzRrExcVhzpw51fyUqC4qLZ9LrXYFoM0/Kyknx9Pk9OOQIZsxalQcYmOXyEn5RERUO0lCCGHpTlTGDz/8gIEDB6KgoAB2dnZ45plncPfuXWzatElu8+GHH2Lx4sW4dOkSJEnC9OnTsX37diQnJ8ttnn76aeTm5mLXrl0AgLCwMDz44INy8KbRaBAYGIjx48djxowZUKvV8Pb2xrp16+Qg8OzZs2jTpg0SExPRvXt37Ny5E/3790dGRgZ8fHwAACtXrsT06dNx7do1k39UTcnLy4NSqYRarYabm1uVPDcqX2ZmJlatWlVuu7Fjx8LPz+++r5eWFoQ1a0YZHd+8WYXHHoNB3pnuWmq1K5YsiTUIxCRJg9jYJSZHv8ztKxER3T9z/37XmZEwfTk5OVi7di169OgBOzs7AEBBQQEcHR0N2jk5OSE9PR0XL14EACQmJiIiIsKgTWRkJBITEwFop42OHj1q0EahUCAiIkJuc/ToUdy9e9egTevWrdGkSRO5TWJiIjp06CAHYLrPycvLw+nTp0u9r4KCAuTl5Rm8qP7z8FD9m9N1j40NEBbmWWriv1KZj6ioePl9nH4kIqp76lQQNn36dLi4uMDT0xOXLl3C999/L5+LjIzE1q1bsWfPHmg0Gvz111947733AGhHDwAgKyvLIDACAB8fH+Tl5eH27dvIzs5GcXGxyTZZWVnyNezt7eHu7l5mG1PX0J0rzYIFC6BUKuVXYGCguY+GqpFa7Yq0tCB5erA8KpUKmZmZ8qu8VZC6gMrGRjsobWMDfPIJEBBg3FZ/FDU09DhiY5eYNf1o7ugrERHVHIuujpwxYwYWLVpUZpszZ86gdevWAICpU6ciOjoaFy9exBtvvIHnnnsO8fHxkCQJL774IlJTU9G/f3/cvXsXbm5umDhxIubNmweFom7EmjNnzsTkyZPln/Py8hiIWVhZBVBNMWclpKlVkKGhxzFnThjy833QvLnpAAzQTk3GxMSUWjEfAOzs7KBUKuWfWTGfiKh2smgQNmXKFIwePbrMNs2aNZO/9/LygpeXF1q2bIk2bdogMDAQv/76K8LDwyFJEhYtWoS3334bWVlZ8Pb2xp49ewyu4evra7SK8cqVK3Bzc4OTkxNsbGxgY2Njso2vr698jcLCQuTm5hqMhpVsU3JFpe6aujamODg4wMHBocznQdVPN2pUXgFUU6NL5a2ELCuo8/fXwJy0rZIBFXO9iIjqJosOEXl7e6N169ZlvkqbRtFotLkwBQUFBsdtbGzQuHFj2Nvb45tvvkF4eDi8vb0BAOHh4XJgppOQkIDw8HAA2j++Xbp0MWij0WiwZ88euU2XLl1gZ2dn0CYlJQWXLl2S24SHh+OPP/4wWFGZkJAANzc3tG3btlLPimqObrSpR49RJlcgPvTQqEptA1SZVZBERFR/1YlirUlJSThy5AgefvhhNGzYEKmpqZg9ezZCQkLkwCc7OxubN2/GY489hjt37uCLL76QS0jovPzyy1i+fDmmTZuGMWPGYO/evdi4cSO2b98ut5k8eTJGjRqFrl27olu3bliyZAlu3ryJ559/HgCgVCoRHR2NyZMnw8PDA25ubhg/fjzCw8PRvXt3AECfPn3Qtm1bjBw5EosXL0ZWVhZef/11jBs3jiNddYSnpye6dwcUCkCjlzN/L2Fe+3PJSvhl5X+VVlaiWbM+iIiwRWFhITIzMzl9SERkJepEEObs7IytW7di7ty5uHnzJvz8/NC3b1+8/vrrBkHNmjVr8Oqrr0IIgfDwcOzfvx/dunWTzwcHB2P79u2YNGkSli5dioCAAHz22WeIjIyU2wwbNgzXrl3DnDlzkJWVhU6dOmHXrl0GifYffPABFAoFBg8ejIKCAkRGRmLFihXyeRsbG8THx+OVV15BeHg4XFxcMGrUKLz55pvV/KSoKgUEAKtWAS+9BBQXGyfMm1sJX0e3CrJkWYm///4RGzYYrmrkhttERPVfna0TZg1YJ6x2SE8Hzp+HUcK8ufXE9Jmb6M+6XkREdZe5f7/rxEgYUXUytbm2Picnezz2WOVGpUquhAwNPY6QkPPIyfGAh0cO63oREVkxBmFk1cydUqzM9GBpo15KZb4cfFV0024iIqo/GISRVTNnc+2KtNMpr7wFUPEaZEREVL/UjSqmRHVMaSsh//yzLdRq13LLVRARUf3HkTCiamBqJSQgsHt3X/z4Yx+EhyeaDNJycjw4LUlEZCU4EkZURfT3mCy5wTYgAEja74QCiYnhAAw37ZYkDTw8cmq0z0REZDkcCSMyU8lVlLm5ufL3peV3hYSch739M1i0yHC7KiEU6NHjEBITww3eoxsFY/V8IqL6j0EYkRlyc3OxceNGk+dM5Xdt3x6FOXPCEBRki9u3PfHOOyUr7wssW9YcwDVcuGCLoKAi+Ps/COBBVswnIrISDMKI9JRWMqKoqKjU95hKwi8ulpCf7yNvb2RceV9Cly7aXRi6dKn6+yAiotqPQRhZNf1pv7JKRtjZ2ZV6DVNJ+DY22gr7OtHRQGSk6cr7RERknbhtUS3GbYtqhkqlwoULRejWrRE0Gkk+bmMjkJR0FUFB2s21y9qiSD+A0+0xGR1dE70nIqLahtsWEZnJ09MTp04Z5mwB96YUARWys7PLvIYuCf+hh0YhLMyTI11ERFQuBmFEAFq0ABSKksnzgKfndbO2NQIApTIfPXoUgvtuExGROVgnjAjaHK1Vq7SBFwB5StHL647J9vo1wYiIiCqDI2FE/zKVPJ+ZadyOez4SEVFVYBBGpCcgoOyVi+VtzM0iq0REZC4GYUQVcPlyoMk9H9u3H4innlKyyCoREZmNQRiRmXTTkCVJkgYdO7owACMiogphEEZWo+TejyWVtV1QyWnIe7Q5Ydoth4iIiMzHIIysgkqlMqvURExMjMlAzNTWRAAwZMhmtG9/BgCDMCIiqhiWqCCrUNYIWFntdIn2uq2J9EmSBoGB6QbtiIiIzMWRMCI92dnZBtOSnp6eiImJQWFhIRo3zsP06UoUF0uwsRFYtCgPzzwzvMxpTCIiotIwCCPSs3XrVgDA0KFD4e7uDkA7yuXn54cpU4Bhw3R1xCQEBLgDcLdUV4mIqI5jEEZkwsaNGw1+1uWKlVdHjIiIyFzMCSOrVNq2Q6UdNzenjIiIyFwcCSOrU9q2Q9yOiIiIahJHwsiqmNp26Icf+iMlpbnJ7Yi4QTcREVUXBmFkFXQlJEzX+1Lgm2+Gm9yOKCfHo4Z6SERE1oZBGFkFXamJESO6GdX70lIAEAZHJEkDD4+cGukfERFZHwZhZDU8PT3Rvr07oqLiAZgKxCQ5QNPlhCmV+TXaRyIish5MzCerYm9vj9DQ42jUKAurV79gMAUpSRpER3+Gu3ft4eGRwwCMiIiqFYMwqjXuZ4Ntc+lXwG/dOg/Tpimh0UjyyFdAQGapn01ERFSVJCGEKL8ZWUJeXh6USiXUajXc3Nws3Z1qdb8bbFdWejpw9KgaAQF34O9vaoqyaoI/IiKyHub+/eZIGNUKld1g+35pK+ArASir9LpERETlYRBGFqWbgszOzrZ0V4iIiGoUgzCyGHOnIImIiOojlqggi+F+jEREZM0YhFGtVNpG2kRERPUFpyOp1uFG2kREZA04Eka1iqkNtrmRNhER1UcMwqjWUKtdcfp0uzI30mbRVCIiqi84HUm1gv4UpHYjbUk+p1AIjB//JIKCbFk0lYiI6g0GYWRxJacgtQGYNhCTJA3mzMmAv78NCgsLkZlpuK0Qq9kTEVFdxSCMLEY3tZiT42k0BQlIiIzchbZt/wSQj1WrSr9OVW9lREREVBOYE0YWo9tMe/z4vlAoDLcwtbERmDKlKZTKfPlYaWUrWG+MiIjqIo6EkUV5enrC0xNYtQp46SWguBiwsQE++URC+/buOHxY245lK4iIqL7hSBjVCtHRwIULwL592q/R0ffOsWwFERHVRxwJo3LpNtkuTVUlxwcEaF8lmcoZ05Wt0J+uJCIiqksYhFGZzN1kuzqT4zMy/FCybIUkaeDhkVMtn0dERFQTOB1JZTI36b06kuPVajXUalf89FME9AMwQCAi4ieOghERUZ3GIIwqpKY21lapVNiwYUOp5Sv8/TOq9fOJiIiqG6cjyWwVWaGYng6cOwe0aGE6z6s8upE1Dw8VJEljEIiVnIrkVkZERFQXcSSMzGLOCkWVSoXMzEy8914umjYV6N0baNpU4L33cpGZmQmVSlXhz1Uq8xEVFQ9J0gCAHPzppiKHDh3KQq1ERFQncSSMzFLeCsXc3Fxs3LgRarUrliyJhRDaHC6NRsLUqW7455/PoVTmVyqBPzT0OEJCziMnxwMeHjkGuWDu7u73fW9ERESWwCCMzFLetGBRURGA8oO1yibwK5X5TMQnIqJ6hdORZJbypgV1dMGaPpaTICIiMsaRMCqTftJ7WdOCdnZ2AO4FayUT+DmKRUREZIhBGJVJt8l2eRXz9c+XFawRERGRFoMwKpc5ifSZmZkGP99vDpe5ZSdYnoKIiOoqBmFUK5k7AsfyFEREVFcxCKNaiwEWERHVZ1wdSVWC04dEREQVw5EwqhKcPiQiIqoYBmFUZRhgERERmY/TkUREREQWwCCMiIiIyAIYhBERERFZQJ0LwgoKCtCpUydIkoQTJ04YnDt16hR69uwJR0dHBAYGYvHixUbv37RpE1q3bg1HR0d06NABO3bsMDgvhMCcOXPg5+cHJycnRERE4Ny5cwZtcnJyMGLECLi5ucHd3R3R0dG4ceNGhftCRERE1qvOBWHTpk2Dv7+/0fG8vDz06dMHTZs2xdGjR/HOO+9g3rx5WLVqldzm8OHDGD58OKKjo3H8+HEMHDgQAwcORHJystxm8eLFWLZsGVauXImkpCS4uLggMjISd+7ckduMGDECp0+fRkJCAuLj4/Hzzz9j7NixFeoLERERWTlRh+zYsUO0bt1anD59WgAQx48fl8+tWLFCNGzYUBQUFMjHpk+fLlq1aiX/PHToUNGvXz+Da4aFhYmXXnpJCCGERqMRvr6+4p133pHP5+bmCgcHB/HNN98IIYT4888/BQBx5MgRuc3OnTuFJEnin3/+Mbsv5lCr1QKAUKvVFXofERERWY65f7/rzEjYlStX8OKLL+Krr76Cs7Oz0fnExEQ88sgjBsVAIyMjkZKSguvXr8ttIiIiDN4XGRmJxMREAEBaWhqysrIM2iiVSoSFhcltEhMT4e7ujq5du8ptIiIioFAokJSUZHZfTCkoKEBeXp7Bi4iIiOqnOhGECSEwevRovPzyywbBj76srCz4+PgYHNP9nJWVVWYb/fP67yutTaNGjQzO29rawsPDo9zP0f8MUxYsWAClUim/AgMDS21LREREdZtFg7AZM2ZAkqQyX2fPnsWHH36I/Px8zJw505LdrXYzZ86EWq2WX5cvX7Z0l4iIiKiaWLRi/pQpUzB69Ogy2zRr1gx79+5FYmIiHBwcDM517doVI0aMwJo1a+Dr64srV64YnNf97OvrK3811Ub/vO6Yn5+fQZtOnTrJba5evWpwjaKiIuTk5JT7OfqfYYqDg4PRPRIREVH9ZNGRMG9vb7Ru3brMl729PZYtW4aTJ0/ixIkTOHHihFxWYsOGDZg/fz4AIDw8HD///DPu3r0rXz8hIQGtWrVCw4YN5TZ79uwx6ENCQgLCw8MBAMHBwfD19TVok5eXh6SkJLlNeHg4cnNzcfToUbnN3r17odFoEBYWZnZf6pL0dGDfPu1XIiIiqiI1s06gaqWlpRmtjszNzRU+Pj5i5MiRIjk5Waxfv144OzuLTz75RG5z6NAhYWtrK959911x5swZMXfuXGFnZyf++OMPuc3ChQuFu7u7+P7778WpU6fEU089JYKDg8Xt27flNn379hWdO3cWSUlJ4uDBg6JFixZi+PDhFeqLOWrD6sjPPhNCoRAC0H797DOLdYWIiKhOMPfvd70JwoQQ4uTJk+Lhhx8WDg4OonHjxmLhwoVG7924caNo2bKlsLe3F+3atRPbt283OK/RaMTs2bOFj4+PcHBwEI8//rhISUkxaKNSqcTw4cNFgwYNhJubm3j++edFfn5+hftSHksHYZcv3wvAdC8bG+1xIiIiMs3cv9+SEEJYciSOSpeXlwelUgm1Wg03N7ca+cz0dODcOaBFC+3X3r2N2+zbBzz2WI10h4iIqM4x9+93nShRQTVj9WqgaVNt4NW0KfD774CixG+IjQ3QvLll+kdERFSfMAgjANoRsBdfBDQa7c8aDTBzJrBokTbwArRfP/kECAiwXD+JiIjqC4uWqKDaY+lSbdaXvuJiIDhYhaSkIly4YIugoCL4+2uQmQnY29vD09PTMp0lIiKqBxiEEdLTgfffN3VGg0OH1iA5OR8AoLfPOQAgJiaGgRgREVElcTqScO7cvWlIfT16JEKpzC/1fYWFhdXYKyIiovqNQRihRQvjBHxJ0iAsLMkyHSIiIrICDMIIAQHAqlX6CfgCUVHxZY6CERER0f1hTpiVS08Hfv9djU6d7iApCbhwwRZubldx+PBxS3eNiIioXmMQZsVWrwbGjhXQaJSQJFdERcUjNJTBFxERUU3gdKQVSk8HNm4EXnxRQKORAABCKLBtW3+o1a4W7h0REZF1YBBmZXRV8YcNA4SQDM4JoUBOjoeFekZERGRdGIRZkfR0YOxY0+UoAO2KSA+PHLOvZ29vX0U9IyIisj7MCbMipdUDA7QBWFkrIgcNGgQvLy/5Z1bMJyIiuj8MwqyIrh6YfiAmSRoMHrwZgYHpZZak8PLygp+fXw30koiIyDpwOtKKBAQA779/A5KkjcJ0o1/t259hTTAiIqIaxpEwKzN0aD4uXlyFnBwPeHjkMPgiIiKyEAZhVkKlUqGwsBDZ2dlQKvMrHHwxCZ+IiKhqMQizAiqVCsuXL6/0+5999lkm4RMREVUxBmFWoLCwsMLv0a2G5CpIIiKi6sEgjEziakgiIqLqxdWRRERERBbAIIyIiIjIAhiEkUlcDUlERFS9mBNGMibjExER1RwGYSRjMj4REVHN4XSkFTB3apFTkERERDWHI2FWwNPTEzExMWXWC+MUJBERUc1iEGYlGGARERHVLpyOJCIiIrIABmFEREREFsAgjIiIiMgCGIQRERERWQCDMCIiIiILYBBGREREZAEMwoiIiIgsgEEYERERkQUwCCMiIiKyAFbMr8WEEACAvLw8C/eEiIiIzKX7u637O14aBmG1WH5+PgAgMDDQwj0hIiKiisrPz4dSqSz1vCTKC9PIYjQaDTIyMuDq6gpJksx6T15eHgIDA3H58mW4ublVcw9rLz4HLT4HPgMdPgctPgc+A53qfA5CCOTn58Pf3x8KRemZXxwJq8UUCgUCAgIq9V43Nzer/o9Lh89Bi8+Bz0CHz0GLz4HPQKe6nkNZI2A6TMwnIiIisgAGYUREREQWwCCsnnFwcMDcuXPh4OBg6a5YFJ+DFp8Dn4EOn4MWnwOfgU5teA5MzCciIiKyAI6EEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBWB3w8ccf44EHHpALyoWHh2Pnzp3y+Tt37mDcuHHw9PREgwYNMHjwYFy5csXgGpcuXUK/fv3g7OyMRo0aYerUqSgqKqrpW6kyCxcuhCRJiI2NlY9Zy3OYN28eJEkyeLVu3Vo+by3P4Z9//sGzzz4LT09PODk5oUOHDvj999/l80IIzJkzB35+fnByckJERATOnTtncI2cnByMGDECbm5ucHd3R3R0NG7cuFHTt1JpQUFBRr8LkiRh3LhxAKznd6G4uBizZ89GcHAwnJycEBISgrfeestg3z5r+H3Iz89HbGwsmjZtCicnJ/To0QNHjhyRz9fHZ/Dzzz8jKioK/v7+kCQJ3333ncH5qrrnU6dOoWfPnnB0dERgYCAWL15cNTcgqNb74YcfxPbt28Vff/0lUlJSxGuvvSbs7OxEcnKyEEKIl19+WQQGBoo9e/aI33//XXTv3l306NFDfn9RUZFo3769iIiIEMePHxc7duwQXl5eYubMmZa6pfvy22+/iaCgIPHAAw+IiRMnyset5TnMnTtXtGvXTmRmZsqva9euyeet4Tnk5OSIpk2bitGjR4ukpCTx999/i927d4vz58/LbRYuXCiUSqX47rvvxMmTJ8WAAQNEcHCwuH37ttymb9++omPHjuLXX38Vv/zyi2jevLkYPny4JW6pUq5evWrwe5CQkCAAiH379gkhrON3QQgh5s+fLzw9PUV8fLxIS0sTmzZtEg0aNBBLly6V21jD78PQoUNF27ZtxYEDB8S5c+fE3LlzhZubm0hPTxdC1M9nsGPHDjFr1iyxdetWAUB8++23Buer4p7VarXw8fERI0aMEMnJyeKbb74RTk5O4pNPPrnv/jMIq6MaNmwoPvvsM5Gbmyvs7OzEpk2b5HNnzpwRAERiYqIQQvtLqlAoRFZWltzm448/Fm5ubqKgoKDG+34/8vPzRYsWLURCQoJ49NFH5SDMmp7D3LlzRceOHU2es5bnMH36dPHwww+Xel6j0QhfX1/xzjvvyMdyc3OFg4OD+Oabb4QQQvz5558CgDhy5IjcZufOnUKSJPHPP/9UX+er0cSJE0VISIjQaDRW87sghBD9+vUTY8aMMTg2aNAgMWLECCGEdfw+3Lp1S9jY2Ij4+HiD46GhoWLWrFlW8QxKBmFVdc8rVqwQDRs2NPhvYvr06aJVq1b33WdOR9YxxcXFWL9+PW7evInw8HAcPXoUd+/eRUREhNymdevWaNKkCRITEwEAiYmJ6NChA3x8fOQ2kZGRyMvLw+nTp2v8Hu7HuHHj0K9fP4P7BWB1z+HcuXPw9/dHs2bNMGLECFy6dAmA9TyHH374AV27dsV///tfNGrUCJ07d8ann34qn09LS0NWVpbBc1AqlQgLCzN4Du7u7ujatavcJiIiAgqFAklJSTV3M1WksLAQX3/9NcaMGQNJkqzmdwEAevTogT179uCvv/4CAJw8eRIHDx7Ek08+CcA6fh+KiopQXFwMR0dHg+NOTk44ePCgVTyDkqrqnhMTE/HII4/A3t5ebhMZGYmUlBRcv379vvrIDbzriD/++APh4eG4c+cOGjRogG+//RZt27bFiRMnYG9vD3d3d4P2Pj4+yMrKAgBkZWUZ/COrO687V1esX78ex44dM8hx0MnKyrKa5xAWFoa4uDi0atUKmZmZeOONN9CzZ08kJydbzXP4+++/8fHHH2Py5Ml47bXXcOTIEUyYMAH29vYYNWqUfB+m7lP/OTRq1MjgvK2tLTw8POrMc9D33XffITc3F6NHjwZgXf9NzJgxA3l5eWjdujVsbGxQXFyM+fPnY8SIEQBgFb8Prq6uCA8Px1tvvYU2bdrAx8cH33zzDRITE9G8eXOreAYlVdU9Z2VlITg42OgaunMNGzasdB8ZhNURrVq1wokTJ6BWq7F582aMGjUKBw4csHS3aszly5cxceJEJCQkGP0/PWuj+3/3APDAAw8gLCwMTZs2xcaNG+Hk5GTBntUcjUaDrl274u233wYAdO7cGcnJyVi5ciVGjRpl4d5ZxurVq/Hkk0/C39/f0l2pcRs3bsTatWuxbt06tGvXDidOnEBsbCz8/f2t6vfhq6++wpgxY9C4cWPY2NggNDQUw4cPx9GjRy3dNSoFpyPrCHt7ezRv3hxdunTBggUL0LFjRyxduhS+vr4oLCxEbm6uQfsrV67A19cXAODr62u0Ikr3s65NbXf06FFcvXoVoaGhsLW1ha2tLQ4cOIBly5bB1tYWPj4+VvEcTHF3d0fLli1x/vx5q/l98PPzQ9u2bQ2OtWnTRp6W1d2HqfvUfw5Xr141OF9UVIScnJw68xx0Ll68iJ9++gkvvPCCfMxafhcAYOrUqZgxYwaefvppdOjQASNHjsSkSZOwYMECANbz+xASEoIDBw7gxo0buHz5Mn777TfcvXsXzZo1s5pnoK+q7rk6/zthEFZHaTQaFBQUoEuXLrCzs8OePXvkcykpKbh06RLCw8MBAOHh4fjjjz8MftESEhLg5uZm9Iestnr88cfxxx9/4MSJE/Kra9euGDFihPy9NTwHU27cuIHU1FT4+flZze/DQw89hJSUFINjf/31F5o2bQoACA4Ohq+vr8FzyMvLQ1JSksFzyM3NNRgl2Lt3LzQaDcLCwmrgLqrOF198gUaNGqFfv37yMWv5XQCAW7duQaEw/HNmY2MDjUYDwPp+H1xcXODn54fr169j9+7deOqpp6zuGQBV9797eHg4fv75Z9y9e1duk5CQgFatWt3XVCQAlqioC2bMmCEOHDgg0tLSxKlTp8SMGTOEJEnixx9/FEJol6E3adJE7N27V/z+++8iPDxchIeHy+/XLUPv06ePOHHihNi1a5fw9vauc8vQS9JfHSmE9TyHKVOmiP3794u0tDRx6NAhERERIby8vMTVq1eFENbxHH777Tdha2sr5s+fL86dOyfWrl0rnJ2dxddffy23WbhwoXB3dxfff/+9OHXqlHjqqadMLk3v3LmzSEpKEgcPHhQtWrSo1cvxTSkuLhZNmjQR06dPNzpnDb8LQggxatQo0bhxY7lExdatW4WXl5eYNm2a3MYafh927doldu7cKf7++2/x448/io4dO4qwsDBRWFgohKifzyA/P18cP35cHD9+XAAQ77//vjh+/Li4ePGiEKJq7jk3N1f4+PiIkSNHiuTkZLF+/Xrh7OzMEhXWYsyYMaJp06bC3t5eeHt7i8cff1wOwIQQ4vbt2+L//u//RMOGDYWzs7P4f//v/4nMzEyDa1y4cEE8+eSTwsnJSXh5eYkpU6aIu3fv1vStVKmSQZi1PIdhw4YJPz8/YW9vLxo3biyGDRtmUB/LWp7Dtm3bRPv27YWDg4No3bq1WLVqlcF5jUYjZs+eLXx8fISDg4N4/PHHRUpKikEblUolhg8fLho0aCDc3NzE888/L/Lz82vyNu7b7t27BQCjexPCen4X8vLyxMSJE0WTJk2Eo6OjaNasmZg1a5ZBSQFr+H3YsGGDaNasmbC3txe+vr5i3LhxIjc3Vz5fH5/Bvn37BACj16hRo4QQVXfPJ0+eFA8//LBwcHAQjRs3FgsXLqyS/ktC6JUUJiIiIqIawZwwIiIiIgtgEEZERERkAQzCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsAgjIiIiMgCGIQRERERWQCDMCKqVx577DHExsZauhvVbt68eejUqZOlu0FE94FBGBFRLVJYWFijnyeEQFFRUY1+JhFpMQgjonpj9OjROHDgAJYuXQpJkiBJEi5cuIDk5GQ8+eSTaNCgAXx8fDBy5EhkZ2fL73vssccwfvx4xMbGomHDhvDx8cGnn36Kmzdv4vnnn4erqyuaN2+OnTt3yu/Zv38/JEnC9u3b8cADD8DR0RHdu3dHcnKyQZ8OHjyInj17wsnJCYGBgZgwYQJu3rwpnw8KCsJbb72F5557Dm5ubhg7diwAYPr06WjZsiWcnZ3RrFkzzJ49G3fv3gUAxMXF4Y033sDJkyfl+4yLi8OFCxcgSRJOnDghXz83NxeSJGH//v0G/d65cye6dOkCBwcHHDx4EBqNBgsWLEBwcDCcnJzQsWNHbN68uar/JyIiPQzCiKjeWLp0KcLDw/Hiiy8iMzMTmZmZcHV1Re/evdG5c2f8/vvv2LVrF65cuYKhQ4cavHfNmjXw8vLCb7/9hvHjx+OVV17Bf//7X/To0QPHjh1Dnz59MHLkSNy6dcvgfVOnTsV7772HI0eOwNvbG1FRUXKwlJqair59+2Lw4ME4deoUNmzYgIMHDyImJsbgGu+++y46duyI48ePY/bs2QAAV1dXxMXF4c8//8TSpUvx6aef4oMPPgAADBs2DFOmTEG7du3k+xw2bFiFntWMGTOwcOFCnDlzBg888AAWLFiAL7/8EitXrsTp06cxadIkPPvsszhw4ECFrktEFVAl24ATEdUSjz76qJg4caL881tvvSX69Olj0Oby5csCgEhJSZHf8/DDD8vni4qKhIuLixg5cqR8LDMzUwAQiYmJQggh9u3bJwCI9evXy21UKpVwcnISGzZsEEIIER0dLcaOHWvw2b/88otQKBTi9u3bQgghmjZtKgYOHFjufb3zzjuiS5cu8s9z584VHTt2NGiTlpYmAIjjx4/Lx65fvy4AiH379hn0+7vvvpPb3LlzRzg7O4vDhw8bXC86OloMHz683L4RUeXYWjIAJCKqbidPnsS+ffvQoEEDo3Opqalo2bIlAOCBBx6Qj9vY2MDT0xMdOnSQj/n4+AAArl69anCN8PBw+XsPDw+0atUKZ86ckT/71KlTWLt2rdxGCAGNRoO0tDS0adMGANC1a1ejvm3YsAHLli1Damoqbty4gaKiIri5uVX4/kuj/5nnz5/HrVu38MQTTxi0KSwsROfOnavsM4nIEIMwIqrXbty4gaioKCxatMjonJ+fn/y9nZ2dwTlJkgyOSZIEANBoNBX67JdeegkTJkwwOtekSRP5excXF4NziYmJGDFiBN544w1ERkZCqVRi/fr1eO+998r8PIVCm2EihJCP6aZGS9L/zBs3bgAAtm/fjsaNGxu0c3BwKPMziajyGIQRUb1ib2+P4uJi+efQ0FBs2bIFQUFBsLWt+n/yfv31Vzmgun79Ov766y95hCs0NBR//vknmjdvXqFrHj58GE2bNsWsWbPkYxcvXjRoU/I+AcDb2xsAkJmZKY9g6Sfpl6Zt27ZwcHDApUuX8Oijj1aor0RUeUzMJ6J6JSgoCElJSbhw4QKys7Mxbtw45OTkYPjw4Thy5AhSU1Oxe/duPP/880ZBTGW8+eab2LNnD5KTkzF69Gh4eXlh4MCBALQrHA8fPoyYmBicOHEC586dw/fff2+UmF9SixYtcOnSJaxfvx6pqalYtmwZvv32W6P7TEtLw4kTJ5CdnY2CggI4OTmhe/fucsL9gQMH8Prrr5d7D66urnj11VcxadIkrFmzBqmpqTh27Bg+/PBDrFmzptLPhojKxiCMiOqVV199FTY2Nmjbti28vb1RWFiIQ4cOobi4GH369EGHDh0QGxsLd3d3efrufixcuBATJ05Ely5dkJWVhW3btsHe3h6ANs/swIED+Ouvv9CzZ0907twZc+bMgb+/f5nXHDBgACZNmoSYmBh06tQJhw8flldN6gwePBh9+/ZFr1694O3tjW+++QYA8Pnnn6OoqAhdunRBbGws/ve//5l1H2+99RZmz56NBQsWoE2bNujbty+2b9+O4ODgSjwVIjKHJPSTB4iIyCz79+9Hr169cP36dbi7u1u6O0RUB3EkjIiIiMgCGIQRERERWQCnI4mIiIgsgCNhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjIiIisgAGYUREREQW8P8B6JPQbxtY+lcAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.4 Model Validation\n", + "\n", + "We check the fit on the validation set to see if the surrogate is fitting well. This step can be used to check for overfitting on the training set." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYbUlEQVR4nO3deXgTdeI/8HeSHpTSpjb0tNCWtoIgIlREYAUEpCDU5QeuKKIgxYJLRcTlWr4ieHHJ7QVuOWTFk+oKLC6oiAIVlYLYFRDYFiyUK7VpodJCMr8/YkLTNmmSJpmZzPv1PDwlk0n6yTSZeedzqgRBEEBERESkAGqxC0BERETkKww+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERBK0bt06qFQqFBcXi10UIr/C4EOkUN9//z1ycnLQoUMHhIaGonXr1njggQfwyy+/1Nu3T58+UKlUUKlUUKvVCA8PR9u2bfHII49gx44dLv3ezZs3o3fv3oiOjkbz5s3Rpk0bPPDAA/jss8889dLqefnll/HJJ5/U2753717MmTMH5eXlXvvddc2ZM8d6LFUqFZo3b4727dvj//7v/1BRUeGR37Fx40YsW7bMI89F5G8YfIgUasGCBdi0aRP69euH5cuXIzs7G19//TW6dOmCwsLCevsnJCRgw4YNePvtt7Fo0SLcd9992Lt3LwYMGIARI0bg6tWrjf7OV155Bffddx9UKhVmzpyJpUuXYvjw4Th27Bjee+89b7xMAI6Dz9y5c30afCzeeOMNbNiwAUuWLEG7du3w0ksvYeDAgfDE8okMPkT2BYhdACISx5QpU7Bx40YEBQVZt40YMQIdO3bE/Pnz8c9//tNmf61Wi1GjRtlsmz9/PiZNmoTXX38dSUlJWLBggd3fd+3aNbzwwgu45557sH379nr3nz9/vomvSDqqqqrQvHlzh/vcf//9aNmyJQBgwoQJGD58OPLy8vDtt9+ie/fuvigmkSKxxodIoXr06GETegAgLS0NHTp0wOHDh516Do1GgxUrVqB9+/Z49dVXYTAY7O578eJFVFRUoGfPng3eHx0dbXP7ypUrmDNnDm666SY0a9YMcXFxGDZsGE6cOGHd55VXXkGPHj2g0+kQEhKC9PR0fPTRRzbPo1KpcPnyZaxfv97avDRmzBjMmTMHU6dOBQAkJydb76vdp+af//wn0tPTERISgsjISDz44IP49ddfbZ6/T58+uOWWW7B//3706tULzZs3x9///nenjl9tffv2BQAUFRU53O/1119Hhw4dEBwcjPj4eEycONGmxqpPnz7YunUrTp48aX1NSUlJLpeHyF+xxoeIrARBwLlz59ChQwenH6PRaPDQQw/h2Wefxe7duzF48OAG94uOjkZISAg2b96MJ598EpGRkXaf02g0YsiQIfjiiy/w4IMP4qmnnkJlZSV27NiBwsJCpKSkAACWL1+O++67Dw8//DBqamrw3nvv4S9/+Qu2bNliLceGDRswbtw43HHHHcjOzgYApKSkIDQ0FL/88gveffddLF261Fr7EhUVBQB46aWX8Oyzz+KBBx7AuHHjcOHCBaxcuRK9evXCgQMHEBERYS2vXq/HoEGD8OCDD2LUqFGIiYlx+vhZWAKdTqezu8+cOXMwd+5c9O/fH0888QSOHj2KN954A99//z327NmDwMBAzJo1CwaDASUlJVi6dCkAoEWLFi6Xh8hvCUREf9iwYYMAQMjNzbXZ3rt3b6FDhw52H/fxxx8LAITly5c7fP7Zs2cLAITQ0FBh0KBBwksvvSTs37+/3n5r1qwRAAhLliypd5/JZLL+v6qqyua+mpoa4ZZbbhH69u1rsz00NFQYPXp0vedatGiRAEAoKiqy2V5cXCxoNBrhpZdestn+008/CQEBATbbe/fuLQAQ3nzzTbuvu7bnnntOACAcPXpUuHDhglBUVCSsWrVKCA4OFmJiYoTLly8LgiAIa9eutSnb+fPnhaCgIGHAgAGC0Wi0Pt+rr74qABDWrFlj3TZ48GAhMTHRqfIQKQ2buogIAHDkyBFMnDgR3bt3x+jRo116rKVGobKy0uF+c+fOxcaNG9G5c2f85z//waxZs5Ceno4uXbrYNK9t2rQJLVu2xJNPPlnvOVQqlfX/ISEh1v//9ttvMBgMuOuuu1BQUOBS+evKy8uDyWTCAw88gIsXL1r/xcbGIi0tDTt37rTZPzg4GI899phLv6Nt27aIiopCcnIyxo8fj9TUVGzdutVu36DPP/8cNTU1mDx5MtTq66fuxx9/HOHh4di6davrL5RIgdjURUQ4e/YsBg8eDK1Wi48++ggajcalx1+6dAkAEBYW1ui+Dz30EB566CFUVFRg3759WLduHTZu3IjMzEwUFhaiWbNmOHHiBNq2bYuAAMenqC1btuDFF1/EwYMHUV1dbd1eOxy549ixYxAEAWlpaQ3eHxgYaHP7xhtvrNdfqjGbNm1CeHg4AgMDkZCQYG2+s+fkyZMAzIGptqCgILRp08Z6PxE5xuBDpHAGgwGDBg1CeXk5vvnmG8THx7v8HJbh76mpqU4/Jjw8HPfccw/uueceBAYGYv369di3bx969+7t1OO/+eYb3HfffejVqxdef/11xMXFITAwEGvXrsXGjRtdfg21mUwmqFQqbNu2rcEQWLfPTO2aJ2f16tXL2q+IiHyHwYdIwa5cuYLMzEz88ssv+Pzzz9G+fXuXn8NoNGLjxo1o3rw5/vSnP7lVjttvvx3r169HaWkpAHPn43379uHq1av1alcsNm3ahGbNmuE///kPgoODrdvXrl1bb197NUD2tqekpEAQBCQnJ+Omm25y9eV4RWJiIgDg6NGjaNOmjXV7TU0NioqK0L9/f+u2ptZ4Efkz9vEhUiij0YgRI0YgPz8fH374oVtzxxiNRkyaNAmHDx/GpEmTEB4ebnffqqoq5OfnN3jftm3bAFxvxhk+fDguXryIV199td6+wh8T/Gk0GqhUKhiNRut9xcXFDU5UGBoa2uAkhaGhoQBQ775hw4ZBo9Fg7ty59SYUFAQBer2+4RfpRf3790dQUBBWrFhhU6bc3FwYDAab0XShoaEOpxYgUjLW+BAp1DPPPINPP/0UmZmZKCsrqzdhYd3JCg0Gg3WfqqoqHD9+HHl5eThx4gQefPBBvPDCCw5/X1VVFXr06IE777wTAwcORKtWrVBeXo5PPvkE33zzDYYOHYrOnTsDAB599FG8/fbbmDJlCr777jvcdddduHz5Mj7//HP89a9/xZ///GcMHjwYS5YswcCBAzFy5EicP38er732GlJTU3Ho0CGb352eno7PP/8cS5YsQXx8PJKTk9GtWzekp6cDAGbNmoUHH3wQgYGByMzMREpKCl588UXMnDkTxcXFGDp0KMLCwlBUVISPP/4Y2dnZ+Nvf/tak4++qqKgozJw5E3PnzsXAgQNx33334ejRo3j99dfRtWtXm79Xeno63n//fUyZMgVdu3ZFixYtkJmZ6dPyEkmWmEPKiEg8lmHY9v452rdFixZCWlqaMGrUKGH79u1O/b6rV68Kb731ljB06FAhMTFRCA4OFpo3by507txZWLRokVBdXW2zf1VVlTBr1iwhOTlZCAwMFGJjY4X7779fOHHihHWf3NxcIS0tTQgODhbatWsnrF271jpcvLYjR44IvXr1EkJCQgQANkPbX3jhBeHGG28U1Gp1vaHtmzZtEv70pz8JoaGhQmhoqNCuXTth4sSJwtGjR22OjaOh/nVZynfhwgWH+9Udzm7x6quvCu3atRMCAwOFmJgY4YknnhB+++03m30uXbokjBw5UoiIiBAAcGg7US0qQfDAwjBEREREMsA+PkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGAw+REREpBicwLAOk8mEM2fOICwsjNO+ExERyYQgCKisrER8fDzUavv1Ogw+dZw5cwatWrUSuxhERETkhl9//RUJCQl272fwqSMsLAyA+cA5WneIiIiIpKOiogKtWrWyXsftYfCpw9K8FR4ezuBDREQkM411U2HnZiIiIlIMBh8iIiJSDAYfIiIiUgz28SEiIvIAo9GIq1evil0MvxUYGAiNRtPk55FN8Jk3bx7y8vJw5MgRhISEoEePHliwYAHatm1r3efKlSt45pln8N5776G6uhoZGRl4/fXXERMTI2LJiYjInwmCgLNnz6K8vFzsovi9iIgIxMbGNmmePdkEn127dmHixIno2rUrrl27hr///e8YMGAAfv75Z4SGhgIAnn76aWzduhUffvghtFotcnJyMGzYMOzZs0fk0hMRkb+yhJ7o6Gg0b96ck996gSAIqKqqwvnz5wEAcXFxbj+XShAEwVMF86ULFy4gOjoau3btQq9evWAwGBAVFYWNGzfi/vvvBwAcOXIEN998M/Lz83HnnXc69bwVFRXQarUwGAwczk5ERA4ZjUb88ssviI6Ohk6nE7s4fk+v1+P8+fO46aab6jV7OXv9lm3nZoPBAACIjIwEAOzfvx9Xr15F//79rfu0a9cOrVu3Rn5+vihlJCIi/2bp09O8eXORS6IMluPclL5Usmnqqs1kMmHy5Mno2bMnbrnlFgDmqsagoCBERETY7BsTE4OzZ8/afa7q6mpUV1dbb1dUVHilzERE5L/YvOUbnjjOsgw+EydORGFhIXbv3t3k55o3bx7mzp3rgVLJn16vR01Njd37g4KCWJVLRESyJrvgk5OTgy1btuDrr7+2WYQsNjYWNTU1KC8vt6n1OXfuHGJjY+0+38yZMzFlyhTrbctaH0qj1+vx6quvNrpfTk4Oww8REcmWbPr4CIKAnJwcfPzxx/jyyy+RnJxsc396ejoCAwPxxRdfWLcdPXoUp06dQvfu3e0+b3BwsHVdLiWvz+Wopsed/YiISNrGjBkDlUoFlUqFwMBAxMTE4J577sGaNWtgMpmcfp5169bV62YiZbKp8Zk4cSI2btyIf/3rXwgLC7P229FqtQgJCYFWq0VWVhamTJmCyMhIhIeH48knn0T37t2dHtFFRETkS2J3MRg4cCDWrl0Lo9GIc+fO4bPPPsNTTz2Fjz76CJ9++ikCAmQTE5wmm1f0xhtvAAD69Oljs33t2rUYM2YMAGDp0qVQq9UYPny4zQSGREREUiOFLgbBwcHW7iA33ngjunTpgjvvvBP9+vXDunXrMG7cOCxZsgRr167F//73P0RGRiIzMxMLFy5EixYt8NVXX+Gxxx4DcL3j8XPPPYc5c+Zgw4YNWL58OY4ePYrQ0FD07dsXy5YtQ3R0tFdei7Nk1dTV0D9L6AGAZs2a4bXXXkNZWRkuX76MvLw8h/17iIiIxCLVLgZ9+/ZFp06dkJeXBwBQq9VYsWIF/vvf/2L9+vX48ssvMW3aNABAjx49sGzZMoSHh6O0tBSlpaX429/+BsA85PyFF17Ajz/+iE8++QTFxcU212yxyKbGh4iIiHyjXbt2OHToEABg8uTJ1u1JSUl48cUXMWHCBLz++usICgqCVquFSqWqV9EwduxY6//btGmDFStWoGvXrrh06RJatGjhk9fRENnU+JBvGQxhKCpKgsEQJnZRiIjIxwRBsDZdff755+jXrx9uvPFGhIWF4ZFHHoFer0dVVZXD59i/fz8yMzPRunVrhIWFoXfv3gCAU6dOeb38jjD4UD0FBZ2xbNlkrF8/GsuWTUZBQWexi0RERD50+PBhJCcno7i4GEOGDMGtt96KTZs2Yf/+/XjttdcAOG6Cu3z5MjIyMhAeHo533nkH33//PT7++ONGH+cLbOoiAOaRA4C5pmfz5iEQBHMmFgQ1Nm8egpSU49BqK637ERGRf/ryyy/x008/4emnn8b+/fthMpmwePFiqNXm68IHH3xgs39QUBCMRqPNtiNHjkCv12P+/PnWufF++OEH37yARrDGhwAAOp0OOTk56NFjtDX0WAiCGj17jubkhUREfqa6uhpnz57F6dOnUVBQgJdffhl//vOfMWTIEDz66KNITU3F1atXsXLlSvzvf//Dhg0b8Oabb9o8R1JSEi5duoQvvvgCFy9eRFVVFVq3bo2goCDr4z799FO88MILIr1KWww+ZKXT6XDnnTqo67wrNBqgWzcdQw8RkZ/57LPPEBcXh6SkJAwcOBA7d+7EihUr8K9//QsajQadOnXCkiVLsGDBAtxyyy145513MG/ePJvn6NGjByZMmIARI0YgKioKCxcuRFRUFNatW4cPP/wQ7du3x/z58/HKK6+I9CptqQRBEMQuhJQ4u6y9nDU2YdYHH4ThmWdawGg0h55Vq4CsLB8WkIhIJq5cuYKioiIkJyejWbNmLj1WCvP4yI2j4+3s9Zt9fBTG2Q/agQOToNffgNRUoNaSaERE5CGWLgZcHNq3GHwUxtne9C1bXkHHjl4uDBGRwjHU+B77+BAREZFiMPgoHCcqJCIiJWFTl4IVFHS2ztmjUpmQmbkFXbocELtYREREXsMaH4WyN1Eha36IiMifMfgoVFmZrsGJCsvKIkUqERERkfexqUuhIiP1UKlMNuFHpTIhMrJMxFL5RmPzGDU0fNSdxxARkfQw+MiIJy6+lrW2tNpKZGZuqdfHR6uttNnP37gzYRgnGSMi8h8MPjJR9+JrMIShrEyHyEi9NawAjV98606YNXv2BRQXByAp6Rri47sC6OrXtRfOzmNUez93HkNEpHRfffUV7r77bvz222+IiIhw6jFJSUmYPHkyJk+e7LVysY+PTNS+qBYUdMayZZOxfv1oLFs2GQUFnRvczx6dToe4uDjExcUhPT0Gw4frkJ4eY93mr6GHiIiuGzNmDFQqFSZMmFDvvokTJ0KlUmHMmDG+L5iXMfjIDEdjeZY78xhx7iMi8hetWrXCe++9h99//9267cqVK9i4cSNat24tYsm8h8FHZjgay3Mc1Zx58jFERFLVpUsXtGrVCnl5edZteXl5aN26NTp3vn5+q66uxqRJkxAdHY1mzZrhT3/6E77//nub5/r3v/+Nm266CSEhIbj77rtRXFxc7/ft3r0bd911F0JCQtCqVStMmjQJly9f9trrawiDj8xYRmPVppTRWJ7kTs0Za9uIyJtKSoCdO80/fWns2LFYu3at9faaNWvw2GOP2ewzbdo0bNq0CevXr0dBQQFSU1ORkZGBsjLztefXX3/FsGHDkJmZiYMHD2LcuHGYMWOGzXOcOHECAwcOxPDhw3Ho0CG8//772L17N3Jycrz/Imth8JEZy2gsS/ipOxqLnONOzRlr24jIW3JzgcREoG9f88/cXN/97lGjRmH37t04efIkTp48iT179mDUqFHW+y9fvow33ngDixYtwqBBg9C+fXu89dZbCAkJQe4fBX3jjTeQkpKCxYsXo23btnj44Yfr9Q+aN28eHn74YUyePBlpaWno0aMHVqxYgbfffhtXrlzx2evlqC4Z6tLlAFJSjqOsLBKRkWUMPW5wZx4jJc99RETeU1ICZGcDpj8q800mYPx4ICMDSEjw/u+PiorC4MGDsW7dOgiCgMGDB6Nly5bW+0+cOIGrV6+iZ8+e1m2BgYG44447cPjwYQDA4cOH0a1bN5vn7d69u83tH3/8EYcOHcI777xj3SYIAkwmE4qKinDzzTd74+XVw+AjU1ptJQOPG9yZx0jpcx8ROYsTfbrn2LHrocfCaASOH/dN8AHMzV2WJqfXXnvNK7/j0qVLGD9+PCZNmlTvPl92pGbwkQlnL6q+uPjWPrmdOaNGUVEAkpOvIT7eZC2DVE9u7sxj5E9zH/HCpFze/ttzok/3paUBarVt+NFogNRU35Vh4MCBqKmpgUqlQkZGhs19KSkpCAoKwp49e5CYmAgAuHr1Kr7//nvrfDs333wzPv30U5vHffvttza3u3Tpgp9//hmpvnxhDWDwkYm6F9+G+OKiVfvk5mh1d1+f3Fw5qdcuV1wckJ7e+PO78xip4YVJuXzxt+dEn+5LSABWrzY3bxmN5tCzapXvansAQKPRWJutNBqNzX2hoaF44oknMHXqVERGRqJ169ZYuHAhqqqqkJWVBQCYMGECFi9ejKlTp2LcuHHYv38/1q1bZ/M806dPx5133omcnByMGzcOoaGh+Pnnn7Fjxw6n3p+ewuAjI1K4GFlOWvZGOKWkHIdWW+nTk5unZrX2d7wwyY+namn4t5e+rCxzn57jx801Pb4MPRbh4eF275s/fz5MJhMeeeQRVFZW4vbbb8d//vMf3HDDDQDMTVWbNm3C008/jZUrV+KOO+7Ayy+/jLFjx1qf49Zbb8WuXbswa9Ys3HXXXRAEASkpKRgxYoTXX1ttDD7kFkcjnHzd96jurNb2aqGkeFJn0xPZwxo65UlI8G3gqVsjU9cnn3xi/X+zZs2wYsUKrFixwu7+Q4YMwZAhQ2y21R0W37VrV2zfvt3uczQ094+nMfiQW6Q4wqmxWiipcXfBVE8FJXs1YyQNrKXxDn7ZIAYfcotWW4n+/T/H55/3b3CEkxikVAvljLonX3tBxLKfJ2sAHNWMkbgsF+aLFy+KXRS/w1o0Ahh8yE0FBZ2toQcwoX//z0W/cEqxFspZzgQRV4OSPXKrGVMSZy/MTeWL2j4p1iiyFo0ABh9yUXl5eb0LJ6DG55/3xy23FIp6gmtsnh2pcieINKXGRm41Y0riiwuuL2r7WKNIUsbgQ07T6/X44IMPUFaWJNkLpxxntXY1iDS1xkbONWNK5okaFG/W9lnmEGvsd/jrRJ+CIIhdBEXwxHFm8CGnWb6NOnPhFPPkZm9W68LCcuzZEyS5yRZdDSLOBqW6nTgNBgMAzkAtR02tQbH8TRt77zTlb2+Za2znTmDp0vq/o2fP0ejTRxrTclh4IkwGBgYCAKqqqhASEuLJ4lEDqqqqAFw/7u5g8CGXNXbhHDFihE9Pbs6crAsKOmPu3LaSmGyxLleb6JwJSo31FbHUjHXqNBy33NJMdjNQK4XBEIZff23V5FoaSygpLr6GDRsEmEwq630ajYAnnxyEpKSAJv/tdTod7ryz4VmIu3XTQUpvLU81x2k0GkREROD8+fMAgObNm0OlUjXyKHKVIAioqqrC+fPnERERUW+SRVcw+JBbHDUpabVan5bF3qzWFy9eRF5enqQmW7THlSY6Z4KSMx2htdpKDBgQhLi4GO+8KGqS2hfmutyppdHpzMGj/gzBKqSne+49IIVZiBvj6Sa/2NhYALCGH/KeiIgI6/F2F4MPuU1KC6U6+qbqTNNQSYl5ocC0NN+doOtesOwdz4YubK4EJX/raKqEeVjqDyCwpVa7X0vjixmCpTALsSOe7uCvUqkQFxeH6OhoXL161VPFpDoCAwObVNNjweBDfq+xpqHVq414/nlz9b9aLWDhQgNGjvzd6xdQV9dfcyUoObu0iNwoZR6Whi7MFiqVCQsXVjSplsYXMwT7ehZiZ1g+Q42dE9zt66TRaDxyYSbvYvAhv+eoachgCMOyZfEQBHObvMmkwtSp4Th9eg202kqvX0BdeW5XglJpaSkA/xu67qm5jKTK0YUZMOH++z9Cq1YlGDNmtDgFlLnan6Ebb6zA9OlaGI0qaDQCFiyowMiRD/lFjSE5xuBDimCvaaixYCC1C6irJ2Q5Dl131JRVezZjf2vCA5y5MN/FC3MTWY7dM88AI0ZYmuNUSEiIABAhZtHIRxh8yGnOVv9KdTh0Q01DcgwGrpDbpI7ONmX5WxNebbww+44Um+PI+xh8yGmu9kmRA7kFA3fIaVJHZ5uy/K0Jzx5emIk8j8GHXCKnUONszZOcgoGzmjJiTCocNWX5e00dEXkPgw/5LUc1VJY5fiykNDTfE+ReO9dYU5YSauqIyDsYfMivSfXC7gtyfu3ONGX5Y00dEXkfgw8R2ag9qurMGTWKigJ8vr6Zs01ZcmzCIyJxMfiQIsl9hJq31B5V5aiPjbfnN2qsKWvYsGFo2bJlg4+VchMeEYmPwYcUSe59YLzF2RmffTG/kaOmrJYtWyIuLs7rZSAi/8PgQ04TYz0rb1JaqHGFWMPF/WE0GhFJG4MPOSU3F8jOBkwmQK02r76clSV2qchbxBouzpo4oob52xdPMTH4UKNKSq6HHsD8c/x48+rL/AD6JzGHizPUENniF0/PYvChRh07dj30WBiN5qn0LcGH30b8D4eLE4lLr9ejuPgasrOjYTJZFlIGxo8XcNtt55GUFMAvCm5QN74LKV1amvlbRm0aDZCaav5/bi6QmAj07Wv+mZvr+zKSd2i1lUhOPsnQQ+RjlhGWK1d+Zg09FkajCitXbsOrr74KvV4vUgnli8GHHNLr9dBoSrFwYTk0GgEA/lgpuhwaTSl++um3BpvBSkpELDQRkcxZ+rlZ+tvVVru/nS9GWPobNnWRXXVXyp40Kcza7HHpUiVWrwaKipJgMo22eVzdZjCSD85vRCQtXJ7F8xh8yK663yQaGlocGamHWi3YVMXWbgYjeeGoKiLpYX87z2Lw8TF/6wSs1VZi9uzTeOGFG2E0qv5oBjNAo/kdej0vkHLEvxmR9PjbQspiYvDxIf8dkpjbYDMY4P2lDYiIiFzBzs0+Ym8uHH/pBGxv9A873hERkZQw+PiIo7lwiIiIyDcYfHyksblwiIjIO0pKgJ075VXDzhGW3sM+Pj6SkGDu0zN+vLmmR6MBVq3yjw7ORHX5Wyd+ki+59q3kCEvvYfDxAb1ej5qaGtx7L7BvnxrFxQFISrqG+HgTSkul++blNwlyh1wvNORf/GG5B6mXT64YfLys7iSAFoWFtrelOPrJ0TeOixcvIi8vz+XnZE2Af+OCtiQFlvNuwxOsmpd7SE4+KcnzLnkfg4+XOTuqSaqjnzx5UmBNgH/T6/X49lvAZLJ9zxiNwL59eoSE8Bss+Ubd5R4E4XoHS6Us98AvmfaxczO5xdWOd/4+nF/pLN+w9+5d3+C6Qnv2rOeCil4kx867vmBZ7sHynpTLcg+u/j3r7s+Fox1jjQ+5xdWOd46G8/PbiPxZ3geNrSvkz9+wxcKaVMfkttyDq3/PuvvPnw/MmMHmZkcYfMhtrjRbWIbz1w4/HM7vn+R2oZGrxjrvBgUF4eLFG9jUAfks9+BqH7mG9q8deiz4JdOWXzZ1vfbaa0hKSkKzZs3QrVs3fPfdd2IXSfEsw/k1GvNtDuf3b/Zm8ibPsDQtrlz5mc0CwYC58+6kScfRqZOWTR0y4+pEtw3tb6n5qY1fMm35XfB5//33MWXKFDz33HMoKChAp06dkJGRgfPnz4tdNMXS6/UoLS3FvfeWYt++c/joIz327TuHe+8tRWlpKft9ELmobuddWybk53e3dui11ALt339Ocp819k2y5epEtw3vL+DvfzdAoxGstxcsKIdGw3Othd81dS1ZsgSPP/44HnvsMQDAm2++ia1bt2LNmjWYMWOGyKVTHjkP5yeSuob6VHXvno+9e3va7CfFIdzsm2RLr9dDo6nBwoUhmD5dC6NR9UdoMUCj+R16ve18bw3tr1KZMHjwFgQEHODC0Q74VfCpqanB/v37MXPmTOs2tVqN/v37Iz8/v8HHVFdXo7q62nq7oqLCo2VS+rTjch/OTyR1dftUAbCp8QGkN4Tb2/M9ye28W/cLYmOhxdH+luZle/2apPD3F5tfBZ+LFy/CaDQiJibGZntMTAyOHDnS4GPmzZuHuXPneq1MnHaciLyt7kXO0cg6sbk635M789HI7bxbt5yNhRZn96eG+VXwccfMmTMxZcoU6+2Kigq0atXKo79DKh8uIm/x5DdsTrzWdFIdWWepqTAYwqBSTa5XK7Vnz3oUFlZaazaa0hzG8y7Z41fBp2XLltBoNDh37pzN9nPnziE2NrbBxwQHByM4ONgXxSNyiqcu/L4MEJ76hs1+H54jxVoAV+Z74vIn5C1+FXyCgoKQnp6OL774AkOHDgUAmEwmfPHFF8jJyRG3cERO8NSFX4wA0dRv2LzQKYujWimDwYDCwiAuf0Je4XfD2adMmYK33noL69evx+HDh/HEE0/g8uXL1lFeRFLlqWU9pLo8iKOhy+Z+H/oG5zDZt0/PYbh1SKVTblPZm+/p/fff5/In5DV+VeMDACNGjMCFCxcwe/ZsnD17Frfddhs+++yzeh2eiaTGU8t6SHF5EEc1UK72+6CGmxYvXryIvLw8EUvlWWIufyKFfmYGQxjKynSIjNRLrslS7vwu+ADmIX9s2pIGuQ0rFYter0d4+DWo1dE2M/FqNALCws5Drw9w6qLvqefxpMaasLjOl3vq/h398bMmRidtKfQzKyjoXO9z0KXLAY88t5z+/t7il8GHpENuw0rFUHtOjiFDbE94gwdvwZYt5hNeYzUennoeT3Jm6HJtUh2NJAfe+KxJoebDl520xepnVjuMGAxh1s8uAAiCGps3D0FKynHrfs6GlwceeAARERE2v0fJ51oLBh/yOn7QHKt9oXJ04W+sxsNTz+MpzjZhjRgxwuZxUhyNJBee/KxJoebD18RqJq4dWvfsCcLSpbbdbwVBjd69s6DTaevtbw9Djn0MPkQS46kLv9gBwl4TFmBeVsHi6tWrIpWQ7PFWzYfUm1ksa1/VDj++WuDTElLuvLPhMqSnaxvcn1zH4ENEXmepgdq3rxvy87tj796eyM/vjszMLRg2TOzSUW2uzqzsCmdqKsrLy/HBBx+49fxN4epaWd6SkGCuXRs/3nzMNRpg1SpO6eBJDD5E5DO115Cy9F3IyTkqcqnIwhcj7KRYU+HqWlneLEdNTQ3uvRfYt0+N4uIAJCVdQ3y8CaWlbL7yFAYfIvKJsjKdzYUUMIefn3/maC2pkMIIOzFGp7m6VpY31A1fFoWFtrc5rUPTMfiQlRRGcJD/iozUQ6Uy1atFOHnyC2i1Dh74B6n3D/E3Yo2wk3PH3aacQ50NVZzWoekYfAiAMkdwkG81VoswbNgwtGzZssHHSvVC5+/E6iAvx781z6HyweBDXCNJZJ6q2pfDBHaOahFatmyJuLg40cpG5C6eQ+WFwYckucSBkniqal9qTQT2ApbYw+yJPI3nUHlh8CFR564gM0+EEXP/Al2j/Qt81ZfLEsTOnDnjV2tIEdXFc6i8+N3q7OQ6y7wRGo35NueNkJ/cXCAxEejb1/wzN7dp+3mKTqez22+HyB+Y5/8pxcKF5dBoBAD4Y/6fcmg0pVxFXoJY46NwnDdC/pztX8B+CNQYOfQT8wZ3X7dU5v8h1zD4KBjnjfAPzvYvYD8EaozU+on5iruv25Pz/yg1dIqBwUfBOG+E/On1eoSHX4NaHQ2TSWXdrtEICAs7D70+ADqdzun9vIEndHnxt1DjLLFft1JDpxgYfIhkqnaN3ZAhnW3mxxk8eAu2bDkAABg1ahT++c9/Nrqft2r2eEIncg4/A77B4EMkU7WDhKP5caqqqpzaz5s1ezyhE5FUMPgQ+Qln58fhPDpEpGQczk4kUSUlwM6d5p9ERHIj1XMYgw+RBPl6vh0iIk+S8jmMwYdIYuzNtyO1b01ESscRiw2T+jmMfXwUjB9a6dHr9fj2W8Bksu0MbDQC+/bpERLCjsJEUsERiw2T+pxhDD4Kxg+td7m6JpZleLrBEAaVajIE4XqFrEplwp4961FYWMkJJYkkhJ/F+qS+dhmbuhROp9MhLi7O7j9+qN3jTvu2JYBqtZXIzNwClcp81lCpTMjM3GIdiWXZz9mauObNmzu1H2v2iMgTpL7+o0oQBEHsQkhJRUUFtFotDAYDwsPDxS4OyVBJiTns1P22U1zs+INfWlqK1ZbFfQAYDGENzreTnZ2NuLg4ANfXWrPHUmPn7H7kOa7W+BH5m5ISc/NWaqpvPgPOXr/Z1EXkQZ7so+PMfDvOPhdDjW/l5l7v3KlWm7/9ZmWJXSpqCAOq9yQkSPOYsqmL/J6n5pJo7HksfXT27l1vbaaysPTRefXVV6HX65tWEJI0qY9ooeukPOSavIfBh/yap05szjyPq310yP+Ya/z0DY5o2bdPz9ArIQyo3qHX61FaWmr3nxQ+A2zqIr9l78SWkeFa9as7z+NoTSzyTxyVJy9SH3ItR7UXTnZE7M8Aa3zIbzk6sTmrKd/gtdpKJCefZOiRIXeaR1njJx96vR7h4eegVtuO7dFoBISFnZNErYQcOfveFvszwBof8kvmE9s1qNXRMJlU1u3mE9t56PUBjX7j8PU3eE4oKQ2e6JjMGj/pql0rMWRIZ2zePASCoIZKZcLgwVuwZcsBAOLXSpD3MPiQ3/HUia3uN/jaz+ONb/CcUFJcer0excXXkJ19PSybmzUF3HbbeSQlNR6Wa3NmVB75Xu3Pl6OAKnatBHkPgw/5HW+c2Hz1DZ6hRhyWsFxUlASTabTNfUajCitXbkNy8knWAvghBlTlYfAhv+epExtPkP7LEoIjI/VQqUz1mjUjI8ts9iMi+WLnZiIPYR8dz/DUvEvuaKxjMhHJH2t8iDyEfXSaTgozHrNjMpF/Y/Ah8iCGGvd4umNxU7nTrMkaP5IaXy/HIZfPAIMPEYnKXzoWs8aPpESM2lO5fAYYfIjskMu3F7nzp47FYp/QqXFK+Fx7atZ6d8jhM8DgQ37HUyc2uXx78ReNzZdE5AlK+FxzOQ7HGHzI73jyxCbnk58cidWxWAm1AHSdv3+u09LMzVu1w49GA6SmilcmKWHwIb/k7yc2fybGfElKqAUg5UhIMPfpGT/eXNOj0QCrVrG2x4LBh4gIDMvkH/R6PWpqanDvvcC+fWoUFwcgKeka4uNNKC1lgAcYfIiIiPxC7XUKaysstL0t9RGS3saZm4mIiPyAsyMf5TBC0psYfIhIVOxYTES+xKYuIhKVNzoWW/o5AMCZM2oUFQUgOdncz8Gd5yMi/8HgQ0Ru89SU+J4MIbX7ORQUdK43L1CXLgcAsJ8DkVKxqYuIXKLX61FaWorFi8uRmCigb18gMVHA4sXlKC0thV6vF7V8lpoegyHMGnoAQBDU2Lx5CAyGMJv9iEhZWOPjRbWr2xvC6naSG0ttisEQhmXLJkMQLAuKqjB1ajhOn14DrbbS67Upjj5bFy9eBACUlelslr8AzOGnrCySs0ETKRiDj5fYG1ZYF6vbyZO83bfF8tyNhQpv1qbU/WwZDGEoK9MhMlJvE2gaW/uLSCnsfUaUisHHSziskHzNl31bxAwVtT8zjl4n1/4ipWlo5GNDnxGlj5Bk8CE2yfmJxvq2pKQc91htjBRCRWOvExBv7S8iMdQdIXnmjBrPPx9tbZIWBDW2bs3E77+rxCym6Bh8FM7ZZgM2ycmHr/q2iB0qnH2dYqz9RSSW2ufpI0caWqVdpfhV2hl8fESqbazONhuwSU4+fNkMJWaoYB8eIse4SnvDOJzdBwoKOmPZsslYv340li2bjIKCzmIXqZ7Ghv6SfFiaoVQq89nOX/u2NPV1Kr2fA/k/yyrtGo35NldpN2ONj5c50w9BCjj017+I3QzlK45e57Bhw9CyZcsGH8d+a+TvuEq7fQw+XiaXQMFmA//jjWYoKa6rZe91tmzZEnFxcT4rB5FUcJV2xxh8vMRy4m8sUEilur2xUTqWSeEslPxtQcm8sa6Wq6QYvoikhNOpOMbg4yW1LxA33liB6dO1MBpV0GgELFhQgZEjH5JceHDUbJCXl1dvf6V+W5AqXwUCsf/mUghfRCRfTgefiooKp580PDzcrcL4G8uJ95lngBEjgOPHgdRUFRISIgBEiFk0u1xpHlHqtwWpEiMQiDUHFEMNyZWnFvYl9zkdfCIiIqBSOZ70SBAEqFQqGI3GJhfM3yQkSPNN7sy3f6kOxaf6fBkIOAcUkWtyc4HsbPPwcrXaPOIqK0vsUimP08Fn586d3iwHiaShWoKLFy9am7Ycze1DysY5oIicV1JyPfQA5p/jxwMZGdL8UuzPnA4+vXv39mY5SET2vo3LZSg+iYvvEyLH9Ho9vv0WMJlsz7VGI7Bvnx4hIWy+9SW3OzeXl5cjNzcXhw8fBgB06NABY8eOhVar9VjhSFxyGYpP4uL7hMg+S5OwwRAGlWpyvRG+n322CYWFpWwS9iG3Zm7+4YcfkJKSgqVLl6KsrAxlZWVYsmQJUlJSUFBQ4OkykkgsQ/Fr49w+VBffJ0T2WZp66840DggQBDVyc8ehoKCzR5uEpTjlQ0kJsHOn+afY3Krxefrpp3HffffhrbfeQkCA+SmuXbuGcePGYfLkyfj66689WkgShxRW4Cbp4/uEyDlduhxAdPRZ/OMf42Cpd7A0Dc+efQGemm9TalM+SK1Tt1vB54cffrAJPQAQEBCAadOm4fbbb/dY4SyKi4vxwgsv4Msvv8TZs2cRHx+PUaNGYdasWTaJ9dChQ5g4cSK+//57REVF4cknn8S0adM8Xh5/V/uYOprbhxPEkYVSlsiQA7GmGCDnXL0ajLqNLYKgxo8/XkZSkt5jfxup/I2l2KnbreATHh6OU6dOoV27djbbf/31V4SFeX5RyyNHjsBkMmHVqlVITU1FYWEhHn/8cVy+fBmvvPIKAPM8QwMGDED//v3x5ptv4qeffsLYsWMRERGB7Oxsj5fJn0nt2wLJg5grtZOZvaUK6mJ/Es9yZW4ee7P5FxZ+gl9/rfS7v82xY7arwwPmTt3Hj8ss+IwYMQJZWVl45ZVX0KNHDwDAnj17MHXqVDz00EMeLSAADBw4EAMHDrTebtOmDY4ePYo33njDGnzeeecd1NTUYM2aNQgKCkKHDh1w8OBBLFmyhMHHDf70wSPvkGI/AqWr+2XF3txKnGLAc1xtxmmsadjf/jZpaebjUjv8aDRAaqp4ZXIr+LzyyitQqVR49NFHce3aNQBAYGAgnnjiCcyfP9+jBbTHYDAgMjLSejs/Px+9evWyOclmZGRgwYIF+O2333DDDTc0+DzV1dWorq623nZlhmoiJWPNoLRxDi7v0uv1KC6+huzsaJhM5sl9zc04Am677TySkgLsvveV1DSckGAOg+PHm2t6NBpg1Spx5y5yK/gEBQVh+fLlmDdvHk6cOAEASElJQfPmzT1aOHuOHz+OlStXWmt7AODs2bNITk622S8mJsZ6n73gM2/ePMydO9d7hSXyYww10sS5lbzL0qRYVJQEk2m0zX1GoworV25DcvJJ5OTk2H0OJTQNW/qb3XsvsG+fGsXFAUhKuob4eBNKS8X7YtSkRUqbN2+Ojh07uv34GTNmYMGCBQ73OXz4sE1fotOnT2PgwIH4y1/+gscff9zt320xc+ZMTJkyxXq7oqICrVq1avLzEhGJxd/nVqrdgfvMGTWKigKQnGy+oALev6Bafre9/jqWqRxqamoU29Rrr79ZYaHtbTH6NLkVfK5cuYKVK1di586dOH/+PEx1ei45O5fPM888gzFjxjjcp02bNtb/nzlzBnfffTd69OiB1atX2+wXGxuLc+fO2Wyz3I6NjbX7/MHBwQgODnaqvEREctDYBVnOal9QHTXn+eKC6sxUDpYm4TNnzliXAlICZ/sqidGnya3gk5WVhe3bt+P+++/HHXfc0ejipfZERUUhKirKqX1Pnz6Nu+++G+np6Vi7di3UattvM927d8esWbNw9epVBAYGAgB27NiBtm3b2m3mkgIOPSUiT/PnuZUs58vGmvN8dUF1pr+OTqfzu07LcuZW8NmyZQv+/e9/o2fPnp4uT4NOnz6NPn36IDExEa+88gouXLhgvc9SmzNy5EjMnTsXWVlZmD59OgoLC7F8+XIsXbrUJ2V0B4eeEpG3+HsHWik15ymhv44/cSv43HjjjV6Zr8eeHTt24Pjx4zh+/DgS6nQFFwQBAKDVarF9+3ZMnDgR6enpaNmyJWbPni3poexSrgokIvmp25/E3gXZH/qdyK05j9M/SIdbwWfx4sWYPn063nzzTSQmJnq6TPWMGTOm0b5AAHDrrbfim2++8Xp5iIikSElTDMitOU9Jfxupcyv43H777bhy5QratGmD5s2bW/vUWJSVSTNxExH5OyVdOOXWnKekv42UuRV8HnroIZw+fRovv/wyYmJi3O7cTERE1BRi9K9hs5W8uRV89u7di/z8fHTq1MnT5SEiIpI0Nls1Tsrh0K3g065dO/z++++eLgsREZFDUrmgKjnUOEPK4dCt4DN//nw888wzeOmll9CxY8d6fXzCw8M9UjgiIqLapHxBJVtS/Ru4FXwsK6X369fPZrsgCFCpVDAajU0vmQJI5ZsLEZGcSPWCSvLgVvDZuXOnp8uhSHW/uYix5gwREZGSuBV8evfu7dR+f/3rX/H888+jZcuW7vwaRbCEmtxcIDsbMJkAtRpYvRrIyhK5cERERH5G3fgu7vvnP/+JiooKb/4Kv1BScj30AOaf48ebtxMREZHnuFXj4yzLchLk2LFj10OPhdEIHD8O1Fmhg4iIPIALRCuXV4MPOSctzdy8VTv8aDRAaqp4ZSIi8ld1F4g2GMJQVqZDZKTeZjJELhDtnxh8JCAhwdynZ/x4c02PRgOsWsXaHnKM31iJ3FP7c1NQ0Lneel9duhyotx/5DwYficjKAjIyzM1bqakMPeRY3W+s9vAbK5F9BkOYNfQAgCCosXnzEKSkHJf8ul/kPgYfCUlIYOAh5zj7TZTfWInsKyvTWUOPhSCoUVYWyeDjx1we1XXt2jU8//zzKHFiyNGoUaM4izMREUlSZKQeKpXtyBKVyoTIyDKRSkS+4HLwCQgIwKJFi3Dt2rVG933jjTc4hw8REUmSVluJzMwt1vBj6ePD2h7/5lZTV9++fbFr1y4kJSV5uDhERES+06XLAaSkHEdZWSQiI8sYehTAreAzaNAgzJgxAz/99BPS09MRGhpqc/99993nkcIRERF5m1ZbycCjIG4Fn7/+9a8AgCVLltS7j4uUEhGRlHGBaGVzK/iY6k4zTESisjcBm6s4NxApQd0FohvC97r/civ4vP322xgxYgSCg4NtttfU1OC9997Do48+6pHCEVHDan8TdTQBmyvfWDk3ECkJ38PKpRLcWFBLo9GgtLQU0dHRNtv1ej2io6Nl3dRVUVEBrVYLg8HAofgkaXq9HsXF13DHHdEwmVTW7RqNgH37ziMpKcClk3tpaSlWr17d6H7Z2dmIi4tzq8xERN7i7PXbrdXZBUGASqWqt72kpARardadpyQiF+l0OlRUxNiEHgAwGlWorIzhN1oioga41NTVuXNnqFQqqFQq9OvXDwEB1x9uNBpRVFSEgQMHeryQRNQwLnBLROQal4LP0KFDAQAHDx5ERkYGWrRoYb0vKCgISUlJGD58uEcLSET2cYFbIiLXuBR8nnvuOQBAUlISRowYgWbNmnmlUETkPC5wS0TkPLdGdY0ePRqAeRTX+fPn6w1vb926ddNLRkRO4wK3RETOcSv4HDt2DGPHjsXevXtttls6Pct5VBcRERH5L7eCz5gxYxAQEIAtW7YgLi6uwRFeRHKntMn86s75Y29SRM5mS0Ry5tY8PqGhodi/fz/atWvnjTKJivP4EKDcyfwsYW/jxhBMm6aFyaSCWi1g4UIDRo783adhT2nBk4iaxtnrt1s1Pu3bt8fFixfdLhyR1Dm64Lqzn1zodDqUlADTpl0fIm8yqTB9egRGjIiAr3KGUoMnSQNDt39zK/gsWLAA06ZNw8svv4yOHTsiMDDQ5n7WlBDJ17FjtvMCAeah8seP+64DtVKDJ4mPodv/uRV8+vfvDwDo27evTf8edm4mkj9OikhKxtDt/9wKPjt37vR0OYhIIjgpIhH5M7eCT+/evfHNN99g1apVOHHiBD766CPceOON2LBhA5KTkz1dRiLyMblMili7ryH7XZA32BvdqHS1+0GdOaNGUVEAkpOvIT7eXFUs5c+jW8Fn06ZNeOSRR/Dwww/jwIEDqK6uBgAYDAa8/PLL+Pe//+3RQhKR78lhUsS8vDyb2+x3QZ5UUNAZmzcPgSCooVKZkJm5BV26HBC7WKKr3Q/K0TGS6ufRrdXZX3zxRbz55pt46623bDo29+zZEwUFBR4rHBGRK9jvgjzFYAizXtABQBDU2Lx5CAyGMJFLJj7L56yxYyTVz6Nbwefo0aPo1atXve1arRbl5eVNLROR6JydpI+T+RH5p7IynfWCbiEIapSVRYpUIumR6zFyq6krNjYWx48fR1JSks323bt3o02bNp4oF5GodDodcnJyOJeHSBgoSWyRkXqoVCabC7tKZUJkZJmIpZIWuR4jt4LP448/jqeeegpr1qyBSqXCmTNnkJ+fj7/97W949tlnPV1GIlHUDjUlJeb5bdLSpN/vxR/UDZ6FheV4553v2MHUBZyEzz2W0K3VViIzc0u9/iuW9x/DeePHSKrcCj4zZsyAyWRCv379UFVVhV69eiE4OBh/+9vf8OSTT3q6jESiys0FsrPN89qo1eah3llZYpfK/1kuyubjHwuT6WZ2MHUSJ+FzX93QPXv2BRQXByAp6Rri47sC6MrQWEuXLgeQknIcZWWRiIwsk3zoAdwMPiqVCrNmzcLUqVNx/PhxXLp0Ce3bt0eLFi08XT4iUZWUXA89gPnn+PHmod6s+fG+68ffPFGqpfNkSspxWZxgxcJJ+JqmdqiJiwPS00UsjAxotZWy+jy6FXwsgoKC0L59e0+VhUhypLB8g5I1dPwtnSfldKIlIulwa1QXkVJYlm+ojcs3+E5Dx99R50n2uyDyPrmPem1SjQ+Rv+PyDeKqf/wFLFhQgZEjH6q3L/tdUFOxQ7hz5D7qlcGHqBFyWb7BX9kefxUSEiJQUhLBUXbkUewQ7ho5HwMGHyInyGH5Bn9W+/hzlB15AzuEKwf7+BCRbNgbZVdSIm65iEg+GHyISDYcjbKj6+p2KjUYwlBUlFRvnSmpdj4l8iY2dRGRbFhGedUOPxxlV1/tzqcbN4bg+ee1MJlUUKsFLFxowMiRv0u68ymRNzH4EJFscJSd8yOPdDodSkqAadNqNw2qMH16BEaMiAAzj2MGQxjKynRcJsUPMfgQkawoeZSdqyOPOAGnewoKOtdbf4rLpPgPBh8ikh2ljrJzdeQRmwZdZzCEWUMPwGVS/BE7NxMR+SlL06BGY76txKZBZ1k6epeV6ayhx8KyTErt/Ui+WONDROTHlNw06ApLh/Di4mvYsEGwLowLmGcMf/LJQUhKCmCHcD/A4ENE5OeU2jToKnOn8IY60KuQnh4jdvHIQxh8iIiIamEtmX9j8CEiIrf568KerCXzXww+RETkFi7sSXLEUV1ERDLh7IgiX4084sKeJEes8SEikonaS1EAwJkzahQVBSA5+Rri482T9ci1aYnIVxh8iIicJIX+LJbnz829vlK9Wm0eiZSV5dVfTeQXGHyIiJwgpf4sJSXXQw9g/jl+vHkkEjvkEjnGPj5ERE6QUn8WR2twEZFjDD5ERDJjWYOrNq7BReQcBh8iIpmR6hpcBkMYioqSYDCEiVsQIgfYx4eISIakMLtw7WHzBQWdrauaq1QmZGZuQZcuB+rtRyQ22dX4VFdX47bbboNKpcLBgwdt7jt06BDuuusuNGvWDK1atcLChQvFKSQRkQ8kJAB9+ohX02MZXj9kyARs2ZJpXdVcENTYujUTQ4ZM4OSFJDmyCz7Tpk1DfHx8ve0VFRUYMGAAEhMTsX//fixatAhz5szB6tWrRSglEZEy6HQ6VFTE2KxmDgBGowqVlTEMPSQ5smrq2rZtG7Zv345NmzZh27ZtNve98847qKmpwZo1axAUFIQOHTrg4MGDWLJkCbKzs0UqMRGRvDkzd1Famg5qte1IM3a2JqmSTfA5d+4cHn/8cXzyySdo3rx5vfvz8/PRq1cvm7bkjIwMLFiwAL/99htuuOGGBp+3uroa1dXV1tsVFRWeLzwRyZ7UlovwBVfmLlq9Wofx483D6qXS2ZqoIbIIPoIgYMyYMZgwYQJuv/12FBcX19vn7NmzSE5OttkWExNjvc9e8Jk3bx7mzp3r8TITkX+pu1xEQ/xtuQhX5i6SQmdrImeIGnxmzJiBBQsWONzn8OHD2L59OyorKzFz5kyPl2HmzJmYMmWK9XZFRQVatWrl8d9D1FRSWC5B6Wof35IS80SCaWm8yFskJPBYkPSJGnyeeeYZjBkzxuE+bdq0wZdffon8/HwEBwfb3Hf77bfj4Ycfxvr16xEbG4tz587Z3G+5HRsba/f5g4OD6z0vkdRIabkE4jpZRHImavCJiopCVFRUo/utWLECL774ovX2mTNnkJGRgffffx/dunUDAHTv3h2zZs3C1atXERgYCADYsWMH2rZta7eZi0gupLRcgtJxnSzyBNbgikcWfXxat25tc7tFixYAgJSUFCT8caYZOXIk5s6di6ysLEyfPh2FhYVYvnw5li5d6vPyEnlC7RPjxYsXRS4NWThaJ4vBh5zBGlxxySL4OEOr1WL79u2YOHEi0tPT0bJlS8yePZtD2UmWnD0xku9Z1sni0G1yF2twxSXL4JOUlARBEOptv/XWW/HNN9+IUCIiz+IJT7os62Qpcei2wRCGsjIdIiP10GorxS4OkVtkGXyIiMSklKHbXIvLNxgofYvBh4jIDUoYum2Zu6i4+Bqefz4agmBelsKyFtfs2d2QlBTAfihN4ChQknfIbq0uIiLyHa7F5T0GQ5g19ADmQLl58xAYDGEil8y/MfgQyZDBEIaioqR6J0g2OZA3WDp018YO3U1XVqazhh4LQVCjrCxSpBIpA5u6iGSmdtW4Wi1g4UIDRo78nfN+kNcouUO3N0VG6qFSmWzCj0plQmRkmYil8n+s8SGSAUsNT0lJnE3VuMmkwvTpETAa4xh6yKuysoDiYmDnTvNPzlTtPkvNrFZbiczMLVCpzHMjWPr4WDo4swbXO1jjQyRB9kbTACbU/b7CyfPIV5TQodsX6i54O3v2BRQXByAp6Rri47sC6MoaXC9SCQ1NiKNgFRUV0Gq1MBgMCA8PF7s4pGB6vR7Fxddwxx3RdTqWCgCu39ZozN/AeUEiIiVz9vrNGh/yKK4/4zk6nQ6HDtVfHgFQWWcOZl8LIiLXMPiQx3D9Gc+ztzxCfj5w+bJ/T55HROQN7NxMHsP1ZzzPMppGozHfttTwdO0K9OnD0ENE5CrW+BBJnFKWRyAi8gUGH/Iarj/jORxNQ0TkGQw+5BVcf4aIiKSIfXzI47j+DBERSRWDD3kc158hIiKpYvAhj7OsP1Mb158hIiIpYB8f8pi668/U7ePD9WeI5IETkZI/45IVdXDJiqapfcI8c0Zda/0Zcw0QT5hE0saJSEmuuGQFiaL2iTAuDkhPF7EwROQyTkRK/o59fIiIiEgxGHyIZKakBNi50/yTiIhcw+BDJAN6vR6lpaVYvLgciYkC+vYFEhMFLF5cjtLSUuj1erGLSEQkC+zjQyRxls6mBkMYli2bDEFQAQBMJhWmTg3H6dNroNVWsrMpeQWXniF/w+BDJHGWTqSOJobUaivZ2ZQ8jkvPkD9iUxeRTHBiSPIlLj1D/orBh0gmLBNDWsJP3YkhiTzBMsFoY0vPcCJSkis2dRHJSJcuB5CSchxlZZGIjCxj6CGP0+l0yMnJQXHxNWzYIMBkUlnv02gEPPnkICQlBbA/GckWgw+RzGi1lQw85FU6nQ46HbB6NTB+PGA0AhoNsGqVCunpMWIXj6hJGHyIiKhBWVlARgZw/DiQmgokJIhdIqKmY/AhIiK7EhIYeMi/sHMzkcQ524mUnU2JSOqkMPM8a3yIJM7S2dTRPD1c9Z6IpC43F8jOBkwmQK029yHLyvJ9ORh8iGSAoYaI5Eqv16O4+Bqys6OtowRNJmD8eAG33Xbe56MEGXyIiIjIKyxL7hQVJcFkGm1zn9GowsqV25CcfNKnS+6wjw8RERF5haWJvrGZ53255A6DDxEREXmVlGaeZ1MXEREReZ1UZp5n8CEiIiKfkMLM82zqIiIiIsVg8CEiIiLFYPAhIiIixWDwISIiIq+Q4pI77NxMREREXiHFJXcYfIiIiMhrpLbkDpu6iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIgUoKQE2LnT/JNIyRh8iIj8XG4ukJgI9O1r/pmbK3aJiMTD4ENE5MdKSoDsbMBkMt82mYDx41nzQ8rF4ENE5CFSbE46dux66LEwGoHjx8UpD5HYZBV8tm7dim7duiEkJAQ33HADhg4danP/qVOnMHjwYDRv3hzR0dGYOnUqrl27Jk5hiUhRpNqclJYGqOuc6TUaIDVVnPIQiU02wWfTpk145JFH8Nhjj+HHH3/Enj17MHLkSOv9RqMRgwcPRk1NDfbu3Yv169dj3bp1mD17toilJiIlkHJzUkICsHq1OewA5p+rVpm3EymRShAEQexCNObatWtISkrC3LlzkZWV1eA+27Ztw5AhQ3DmzBnExMQAAN58801Mnz4dFy5cQFBQkFO/q6KiAlqtFgaDAeHh4R57DUTkv3buNNf0NLS9Tx+fF6dBJSXm5q3UVIYe8k/OXr9lUeNTUFCA06dPQ61Wo3PnzoiLi8OgQYNQWFho3Sc/Px8dO3a0hh4AyMjIQEVFBf773//afe7q6mpUVFTY/CMicoVUm5P0ej1KS0tRWloKjaYUbduaf1q26fV6cQtIJIIAsQvgjP/9738AgDlz5mDJkiVISkrC4sWL0adPH/zyyy+IjIzE2bNnbUIPAOvts2fP2n3uefPmYe7cud4rPBH5PUtz0vjx5o7DUmhO0uv1ePXVV+ttNxjCUFamQ2SkHlptJXJycqDT6UQoIZE4RK3xmTFjBlQqlcN/R44cgemPhvNZs2Zh+PDhSE9Px9q1a6FSqfDhhx82qQwzZ86EwWCw/vv111898dKISGGysoDiYnPzVnGx+baYampq6m0rKOiMZcsmY/360Vi2bDIKCjo3uB+RPxO1xueZZ57BmDFjHO7Tpk0blJaWAgDat29v3R4cHIw2bdrg1KlTAIDY2Fh89913No89d+6c9T57goODERwc7E7xiYhsJCRIt/+MwRCGzZuHQBDM33cFQY3Nm4dg9uwLiIsTuXBEPiRq8ImKikJUVFSj+6WnpyM4OBhHjx7Fn/70JwDA1atXUVxcjMTERABA9+7d8dJLL+H8+fOIjo4GAOzYsQPh4eE2gYmISInKynTW0GMhCGoUFwcgPV2kQhGJQBZ9fMLDwzFhwgQ899xzaNWqFRITE7Fo0SIAwF/+8hcAwIABA9C+fXs88sgjWLhwIc6ePYv/+7//w8SJE1mjQ0SKFxmph0plsgk/KpUJSUmc64yURRajugBg0aJFePDBB/HII4+ga9euOHnyJL788kvccMMNAACNRoMtW7ZAo9Gge/fuGDVqFB599FE8//zzIpeciEh8Wm0lMjO3QKUy95lUqUzIzNyC+HhTI48k8i+ymMfHlziPDxG5Qq/XO+wgHBQUJMqoqdLSUqxevbredvOorkhERpZBq61EdnY24tjJh/yAs9dvWTR1ERFJkb0h43VJaci4VlsJrbZS7GIQiUY2TV1ERFLj7FBwMYaMOztbvbP7EfkL1vgQEfkhnU6HnJwc1NTUoLy8vMEFmwMDA1FTUwO9Xi+ZGikib2PwISLyUzqdDnq9Hh988EGj+0qpOY7Im9jURUTkx6TcHCcHJSXm2bhLSsQuCXkKgw8REVEDcnOBxESgb1/zz9xcsUtEnsDgQ0REVEdJCZCdDfyxVCRMJvMitKz5kT8GHyIiojqOHbseeiyMRuD4cXHKQ57D4ENE5CYOGfdfaWmAus4VUqMBUlPN/2ffH/niqC4iIjfVHjJuj1gzN1PTJCQAq1ebm7eMRnPoWbXKvD0393ozmFpt3i8rS+wSk7MYfIiImoChxn9lZQEZGebmrdRUc+ix1/cnI8N8P0kfgw8RkR9jc1zTJCTYBhpHfX8YfOSBwYeIyI+xOc51jhaeDQ9XQ62Ohsmksm6r3feHpI/Bh4jIzzHUOM+ZhWeHDOmMrVszYTSqbPr+kDww+BAREf3BmRmsu3Q5gNmzu6GyMsba94fkg8GHiIjIRfHxJsTFiV0Kcgfn8SEiIiLFYI0PERGRiy5evFhvGzuJywODDxERkYvy8vIa3J6Tk8PwI3Fs6iIiIvIQZzpHk7gYfIiIiEgxGHyIiIj+wBms/R/7+BAREf3B3kzXFy9etNuvh+SFwYeIiKgWdk72b2zqIiIiIsVg8CEiIiLFYPAhIiJqhLOdntk5WvrYx4eIiKgR9jo918aZm+WBwYeIiMgJDDX+gU1dREREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGJy5uQ5BEAAAFRUVIpeEiIiInGW5bluu4/Yw+NRRWVkJAGjVqpXIJSEiIiJXVVZWQqvV2r1fJTQWjRTGZDLhzJkzCAsLg0qlErs4PlNRUYFWrVrh119/RXh4uNjFkTUeS8/gcfQcHkvP4bH0DG8cR0EQUFlZifj4eKjV9nvysManDrVajYSEBLGLIZrw8HB+mD2Ex9IzeBw9h8fSc3gsPcPTx9FRTY8FOzcTERGRYjD4EBERkWIw+BAAIDg4GM899xyCg4PFLors8Vh6Bo+j5/BYeg6PpWeIeRzZuZmIiIgUgzU+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPgrz9ddfIzMzE/Hx8VCpVPjkk09s7hcEAbNnz0ZcXBxCQkLQv39/HDt2TJzCSlxjx3LMmDFQqVQ2/wYOHChOYSVs3rx56Nq1K8LCwhAdHY2hQ4fi6NGjNvtcuXIFEydOhE6nQ4sWLTB8+HCcO3dOpBJLkzPHsU+fPvXekxMmTBCpxNL1xhtv4NZbb7VOrte9e3ds27bNej/fj85r7FiK8Z5k8FGYy5cvo1OnTnjttdcavH/hwoVYsWIF3nzzTezbtw+hoaHIyMjAlStXfFxS6WvsWALAwIEDUVpaav337rvv+rCE8rBr1y5MnDgR3377LXbs2IGrV69iwIABuHz5snWfp59+Gps3b8aHH36IXbt24cyZMxg2bJiIpZYeZ44jADz++OM278mFCxeKVGLpSkhIwPz587F//3788MMP6Nu3L/785z/jv//9LwC+H13R2LEERHhPCqRYAISPP/7YettkMgmxsbHCokWLrNvKy8uF4OBg4d133xWhhPJR91gKgiCMHj1a+POf/yxKeeTs/PnzAgBh165dgiCY34OBgYHChx9+aN3n8OHDAgAhPz9frGJKXt3jKAiC0Lt3b+Gpp54Sr1AydsMNNwj/+Mc/+H70AMuxFARx3pOs8SGroqIinD17Fv3797du02q16NatG/Lz80UsmXx99dVXiI6ORtu2bfHEE09Ar9eLXSTJMxgMAIDIyEgAwP79+3H16lWb92W7du3QunVrvi8dqHscLd555x20bNkSt9xyC2bOnImqqioxiicbRqMR7733Hi5fvozu3bvz/dgEdY+lha/fk1yklKzOnj0LAIiJibHZHhMTY72PnDdw4EAMGzYMycnJOHHiBP7+979j0KBByM/Ph0ajEbt4kmQymTB58mT07NkTt9xyCwDz+zIoKAgRERE2+/J9aV9DxxEARo4cicTERMTHx+PQoUOYPn06jh49iry8PBFLK00//fQTunfvjitXrqBFixb4+OOP0b59exw8eJDvRxfZO5aAOO9JBh8iL3nwwQet/+/YsSNuvfVWpKSk4KuvvkK/fv1ELJl0TZw4EYWFhdi9e7fYRZE1e8cxOzvb+v+OHTsiLi4O/fr1w4kTJ5CSkuLrYkpa27ZtcfDgQRgMBnz00UcYPXo0du3aJXaxZMnesWzfvr0o70k2dZFVbGwsANQbnXDu3DnrfeS+Nm3aoGXLljh+/LjYRZGknJwcbNmyBTt37kRCQoJ1e2xsLGpqalBeXm6zP9+XDbN3HBvSrVs3AOB7sgFBQUFITU1Feno65s2bh06dOmH58uV8P7rB3rFsiC/ekww+ZJWcnIzY2Fh88cUX1m0VFRXYt2+fTXssuaekpAR6vR5xcXFiF0VSBEFATk4OPv74Y3z55ZdITk62uT89PR2BgYE278ujR4/i1KlTfF/W0thxbMjBgwcBgO9JJ5hMJlRXV/P96AGWY9kQX7wn2dSlMJcuXbJJ0kVFRTh48CAiIyPRunVrTJ48GS+++CLS0tKQnJyMZ599FvHx8Rg6dKh4hZYoR8cyMjISc+fOxfDhwxEbG4sTJ05g2rRpSE1NRUZGhoillp6JEydi48aN+Ne//oWwsDBrPwmtVouQkBBotVpkZWVhypQpiIyMRHh4OJ588kl0794dd955p8ill47GjuOJEyewceNG3HvvvdDpdDh06BCefvpp9OrVC7feeqvIpZeWmTNnYtCgQWjdujUqKyuxceNGfPXVV/jPf/7D96OLHB1L0d6TPh1DRqLbuXOnAKDev9GjRwuCYB7S/uyzzwoxMTFCcHCw0K9fP+Ho0aPiFlqiHB3LqqoqYcCAAUJUVJQQGBgoJCYmCo8//rhw9uxZsYstOQ0dQwDC2rVrrfv8/vvvwl//+lfhhhtuEJo3by78v//3/4TS0lLxCi1BjR3HU6dOCb169RIiIyOF4OBgITU1VZg6dapgMBjELbgEjR07VkhMTBSCgoKEqKgooV+/fsL27dut9/P96DxHx1Ks96RKEATBe7GKiIiISDrYx4eIiIgUg8GHiIiIFIPBh4iIiBSDwYeIiIgUg8GHiIiIFIPBh4iIiBSDwYeIiIgUg8GHiIiIFIPBh4iIiBSDwYeIZKOmpkbsItQjxTIRkX0MPkQkmj59+iAnJwc5OTnQarVo2bIlnn32WVhW0klKSsILL7yARx99FOHh4cjOzgYA7N69G3fddRdCQkLQqlUrTJo0CZcvX7Y+7+uvv460tDQ0a9YMMTExuP/++633ffTRR+jYsSNCQkKg0+nQv39/62P79OmDyZMn25Rx6NChGDNmjPW2u2UiImlg8CEiUa1fvx4BAQH47rvvsHz5cixZsgT/+Mc/rPe/8sor6NSpEw4cOIBnn30WJ06cwMCBAzF8+HAcOnQI77//Pnbv3o2cnBwAwA8//IBJkybh+eefx9GjR/HZZ5+hV69eAIDS0lI89NBDGDt2LA4fPoyvvvoKw4YNg6tLFrpaJiKSDi5SSkSi6dOnD86fP4///ve/UKlUAIAZM2bg008/xc8//4ykpCR07twZH3/8sfUx48aNg0ajwapVq6zbdu/ejd69e+Py5cv497//jcceewwlJSUICwuz+X0FBQVIT09HcXExEhMTGyzPbbfdhmXLllm3DR06FBEREVi3bh0AuFWmZs2aNek4EZHnsMaHiER15513WkMPAHTv3h3Hjh2D0WgEANx+++02+//4449Yt24dWrRoYf2XkZEBk8mEoqIi3HPPPUhMTESbNm3wyCOP4J133kFVVRUAoFOnTujXrx86duyIv/zlL3jrrbfw22+/uVxmV8tERNLB4ENEkhYaGmpz+9KlSxg/fjwOHjxo/ffjjz/i2LFjSElJQVhYGAoKCvDuu+8iLi4Os2fPRqdOnVBeXg6NRoMdO3Zg27ZtaN++PVauXIm2bdtaw4lara7X7HX16tUml4mIpIPBh4hEtW/fPpvb3377LdLS0qDRaBrcv0uXLvj555+Rmppa719QUBAAICAgAP3798fChQtx6NAhFBcX48svvwQAqFQq9OzZE3PnzsWBAwcQFBRkbbaKiopCaWmp9XcZjUYUFhY2+hqcKRMRSQODDxGJ6tSpU5gyZQqOHj2Kd999FytXrsRTTz1ld//p06dj7969yMnJwcGDB3Hs2DH861//snYk3rJlC1asWIGDBw/i5MmTePvtt2EymdC2bVvs27cPL7/8Mn744QecOnUKeXl5uHDhAm6++WYAQN++fbF161Zs3boVR44cwRNPPIHy8vJGX0NjZSIi6QgQuwBEpGyPPvoofv/9d9xxxx3QaDR46qmnrEPEG3Lrrbdi165dmDVrFu666y4IgoCUlBSMGDECABAREYG8vDzMmTMHV65cQVpaGt5991106NABhw8fxtdff41ly5ahoqICiYmJWLx4MQYNGgQAGDt2LH788Uc8+uijCAgIwNNPP42777670dfQWJmISDo4qouIRNPQKCoiIm9iUxcREREpBoMPERERKQabuoiIiEgxWONDREREisHgQ0RERIrB4ENERESKweBDREREisHgQ0RERIrB4ENERESKweBDREREisHgQ0RERIrB4ENERESK8f8BKTkfuivYzxoAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4/4 [==============================] - 0s 5ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABosUlEQVR4nO3deVzU1f4/8NfMCAgIQyyyuADill4zl1SszIWCQs2r3tTKvUy/YrnkdsutrrlUrrjUzdK6WmnaIpZlLnVNpFLRTOUqP3AJkRhkwA105vz+oPnIsA4w8Pl8Zl7Px2MeOvM5M3Pm4zjznvc55300QggBIiIiIqpTWrk7QEREROSMGIQRERERyYBBGBEREZEMGIQRERERyYBBGBEREZEMGIQRERERyYBBGBEREZEMGIQRERERyYBBGBEREZEMGIQREVGFNm7cCI1Gg/T0dLm7QuRQGIQRkex++eUXxMXFoW3btvD09ETTpk3x1FNP4X//+1+ptj179oRGo4FGo4FWq4W3tzdatWqF4cOHY8+ePVV63p07d+KRRx5Bw4YN4eHhgWbNmuGpp57C7t277fXSSnnjjTfwxRdflLr90KFDmD9/PnJzc2vtuUuaP3++dC41Gg08PDzQpk0bvPrqq8jLy7PLc2zZsgUrVqywy2MRORoGYUQkuyVLlmD79u3o06cPVq5ciXHjxuHHH39Ex44dcfLkyVLtGzdujI8++ggffvgh3nzzTfTv3x+HDh3CY489hiFDhuD27duVPudbb72F/v37Q6PRYPbs2Vi+fDkGDRqEs2fP4pNPPqmNlwmg4iBswYIFdRqEWaxbtw4fffQRli1bhtatW2PhwoWIiYmBPbYWZhBGVL56cneAiGjq1KnYsmULXF1dpduGDBmCdu3aYfHixfjPf/5j1V6v1+PZZ5+1um3x4sV48cUXsXbtWoSFhWHJkiXlPt+dO3fw+uuv49FHH8V3331X6nhWVlYNX5Fy3LhxAx4eHhW2GTx4MPz9/QEA48ePx6BBg7Bjxw4cPnwYkZGRddFNIqfETBgRya579+5WARgAtGjRAm3btsXp06dtegydTodVq1ahTZs2iI+Ph9FoLLdtdnY28vLy8OCDD5Z5vGHDhlbXb926hfnz56Nly5aoX78+goODMXDgQKSmpkpt3nrrLXTv3h1+fn5wd3dHp06d8Nlnn1k9jkajwfXr17Fp0yZpCHDUqFGYP38+pk+fDgAIDw+XjhWfg/Wf//wHnTp1gru7O3x9fTF06FBcvHjR6vF79uyJv/3tbzhy5Ah69OgBDw8P/POf/7Tp/BXXu3dvAEBaWlqF7dauXYu2bdvCzc0NISEhmDhxolUmr2fPnti1axfOnz8vvaawsLAq94fIUTETRkSKJITAlStX0LZtW5vvo9PpMGzYMMyZMwcHDx5EbGxsme0aNmwId3d37Ny5E5MmTYKvr2+5j2kymdC3b1/s3bsXQ4cOxUsvvYT8/Hzs2bMHJ0+eREREBABg5cqV6N+/P5555hkUFhbik08+wT/+8Q8kJCRI/fjoo4/w3HPPoUuXLhg3bhwAICIiAp6envjf//6Hjz/+GMuXL5eyUgEBAQCAhQsXYs6cOXjqqafw3HPP4c8//8Tq1avRo0cPHDt2DD4+PlJ/DQYDHn/8cQwdOhTPPvssAgMDbT5/Fpbg0s/Pr9w28+fPx4IFCxAVFYUJEyYgJSUF69atwy+//IKffvoJLi4ueOWVV2A0GnHp0iUsX74cANCgQYMq94fIYQkiIgX66KOPBACxYcMGq9sfeeQR0bZt23Lv9/nnnwsAYuXKlRU+/ty5cwUA4enpKR5//HGxcOFCceTIkVLt3n//fQFALFu2rNQxs9ks/f3GjRtWxwoLC8Xf/vY30bt3b6vbPT09xciRI0s91ptvvikAiLS0NKvb09PThU6nEwsXLrS6/bfffhP16tWzuv2RRx4RAMT69evLfd3FzZs3TwAQKSkp4s8//xRpaWninXfeEW5ubiIwMFBcv35dCCHEBx98YNW3rKws4erqKh577DFhMpmkx4uPjxcAxPvvvy/dFhsbK0JDQ23qD5Gz4XAkESnOmTNnMHHiRERGRmLkyJFVuq8l05Kfn19huwULFmDLli3o0KEDvv32W7zyyivo1KkTOnbsaDUEun37dvj7+2PSpEmlHkOj0Uh/d3d3l/5+9epVGI1GPPzwwzh69GiV+l/Sjh07YDab8dRTTyE7O1u6BAUFoUWLFti/f79Vezc3N4wePbpKz9GqVSsEBAQgPDwcL7zwApo3b45du3aVO5fs+++/R2FhISZPngyt9u7XyPPPPw9vb2/s2rWr6i+UyAlxOJKIFCUzMxOxsbHQ6/X47LPPoNPpqnT/a9euAQC8vLwqbTts2DAMGzYMeXl5SEpKwsaNG7Flyxb069cPJ0+eRP369ZGamopWrVqhXr2KPy4TEhLwr3/9C8nJySgoKJBuLx6oVcfZs2chhECLFi3KPO7i4mJ1vVGjRqXm11Vm+/bt8Pb2houLCxo3biwNsZbn/PnzAIqCt+JcXV3RrFkz6TgRVYxBGBEphtFoxOOPP47c3Fz897//RUhISJUfw1LSonnz5jbfx9vbG48++igeffRRuLi4YNOmTUhKSsIjjzxi0/3/+9//on///ujRowfWrl2L4OBguLi44IMPPsCWLVuq/BqKM5vN0Gg0+Oabb8oMSEvOsSqekbNVjx49pHloRFR3GIQRkSLcunUL/fr1w//+9z98//33aNOmTZUfw2QyYcuWLfDw8MBDDz1UrX507twZmzZtwuXLlwEUTZxPSkrC7du3S2WdLLZv34769evj22+/hZubm3T7Bx98UKpteZmx8m6PiIiAEALh4eFo2bJlVV9OrQgNDQUApKSkoFmzZtLthYWFSEtLQ1RUlHRbTTOBRI6Mc8KISHYmkwlDhgxBYmIitm3bVq3aVCaTCS+++CJOnz6NF198Ed7e3uW2vXHjBhITE8s89s033wC4O9Q2aNAgZGdnIz4+vlRb8VcxU51OB41GA5PJJB1LT08vsyirp6dnmQVZPT09AaDUsYEDB0Kn02HBggWliqcKIWAwGMp+kbUoKioKrq6uWLVqlVWfNmzYAKPRaLUq1dPTs8JyIUTOjJkwIpLdtGnT8NVXX6Ffv37IyckpVZy1ZGFWo9Eotblx4wbOnTuHHTt2IDU1FUOHDsXrr79e4fPduHED3bt3R7du3RATE4MmTZogNzcXX3zxBf773/9iwIAB6NChAwBgxIgR+PDDDzF16lT8/PPPePjhh3H9+nV8//33+L//+z88+eSTiI2NxbJlyxATE4Onn34aWVlZWLNmDZo3b44TJ05YPXenTp3w/fffY9myZQgJCUF4eDi6du2KTp06AQBeeeUVDB06FC4uLujXrx8iIiLwr3/9C7Nnz0Z6ejoGDBgALy8vpKWl4fPPP8e4cePw8ssv1+j8V1VAQABmz56NBQsWICYmBv3790dKSgrWrl2LBx54wOrfq1OnTvj0008xdepUPPDAA2jQoAH69etXp/0lUiw5l2YSEQlxt7RCeZeK2jZo0EC0aNFCPPvss+K7776z6flu374t/v3vf4sBAwaI0NBQ4ebmJjw8PESHDh3Em2++KQoKCqza37hxQ7zyyisiPDxcuLi4iKCgIDF48GCRmpoqtdmwYYNo0aKFcHNzE61btxYffPCBVAKiuDNnzogePXoId3d3AcCqXMXrr78uGjVqJLRabalyFdu3bxcPPfSQ8PT0FJ6enqJ169Zi4sSJIiUlxercVFS+oyRL//78888K25UsUWERHx8vWrduLVxcXERgYKCYMGGCuHr1qlWba9euiaefflr4+PgIACxXQVSMRgg7bA5GRERERFXCOWFEREREMmAQRkRERCQDBmFEREREMmAQRkRERCQDBmFEREREMmAQRkRERCQDFmtVMLPZjIyMDHh5eXHrDyIiIpUQQiA/Px8hISHQasvPdzEIU7CMjAw0adJE7m4QERFRNVy8eBGNGzcu9ziDMAXz8vICUPSPWNE+eERERKQceXl5aNKkifQ9Xh4GYQpmGYL09vZmEEZERKQylU0l4sR8IiIiIhkwCCMiIiKSAYMwIiIiIhlwThgREZGDMZlMuH37ttzdcFguLi7Q6XQ1fhwGYURERA5CCIHMzEzk5ubK3RWH5+Pjg6CgoBrV8WQQRkRE5CAsAVjDhg3h4eHBQt+1QAiBGzduICsrCwAQHBxc7cdiEEZEROQATCaTFID5+fnJ3R2H5u7uDgDIyspCw4YNqz00qZqJ+f3790fTpk1Rv359BAcHY/jw4cjIyLBqI4TAW2+9hZYtW8LNzQ2NGjXCwoULrdocOHAAHTt2hJubG5o3b46NGzeWeq41a9YgLCwM9evXR9euXfHzzz9bHb916xYmTpwIPz8/NGjQAIMGDcKVK1es2ly4cAGxsbHw8PBAw4YNMX36dNy5c8c+J4OIiKgEyxwwDw8PmXviHCznuSZz71QThPXq1Qtbt25FSkoKtm/fjtTUVAwePNiqzUsvvYT33nsPb731Fs6cOYOvvvoKXbp0kY6npaUhNjYWvXr1QnJyMiZPnoznnnsO3377rdTm008/xdSpUzFv3jwcPXoU7du3R3R0tJR2BIApU6Zg586d2LZtG3744QdkZGRg4MCB0nGTyYTY2FgUFhbi0KFD2LRpEzZu3Ii5c+fW4hkiIiKqvEAo2YddzrNQqS+//FJoNBpRWFgohBDi1KlTol69euLMmTPl3mfGjBmibdu2VrcNGTJEREdHS9e7dOkiJk6cKF03mUwiJCRELFq0SAghRG5urnBxcRHbtm2T2pw+fVoAEImJiUIIIb7++muh1WpFZmam1GbdunXC29tbFBQU2PwajUajACCMRqPN9yEiIiGys7NFRkZGuZfs7Gy5u2h3N2/eFKdOnRI3b96UuytOoaLzbev3tyrnhOXk5GDz5s3o3r07XFxcAAA7d+5Es2bNkJCQgJiYGAghEBUVhaVLl8LX1xcAkJiYiKioKKvHio6OxuTJkwEAhYWFOHLkCGbPni0d12q1iIqKQmJiIgDgyJEjuH37ttXjtG7dGk2bNkViYiK6deuGxMREtGvXDoGBgVbPM2HCBPz+++/o0KFDma+roKAABQUF0vW8vLwanCUiIudkMBgQHx9fabu4uDjOnSJZqWY4EgBmzpwJT09P+Pn54cKFC/jyyy+lY//v//0/nD9/Htu2bcOHH36IjRs34siRI1ZDlpmZmVaBEQAEBgYiLy8PN2/eRHZ2NkwmU5ltMjMzpcdwdXWFj49PhW3KegzLsfIsWrQIer1eujRp0sTGM0NERBaFhYV2bUe1b9SoUdBoNNBoNHBxcUFgYCAeffRRvP/++zCbzTY/zsaNG0t9PyuZrEHYrFmzpJNe3uXMmTNS++nTp+PYsWP47rvvoNPpMGLECAghAABmsxkFBQX48MMP8fDDD6Nnz57YsGED9u/fj5SUFLleYpXMnj0bRqNRuly8eFHuLhERUS0xGAy4fPlyuReDweBU/YmJicHly5eRnp6Ob775Br169cJLL72Evn37OuzCNlmHI6dNm4ZRo0ZV2KZZs2bS3/39/eHv74+WLVvi3nvvRZMmTXD48GFERkYiODgY9erVQ8uWLaX29957L4CilYqtWrVCUFBQqVWMV65cgbe3N9zd3aHT6aDT6cpsExQUBAAICgpCYWEhcnNzraLtkm1Krqi0PKalTVnc3Nzg5uZW4fkgIiL1U9qQqRL64+bmJn1HNmrUCB07dkS3bt3Qp08fbNy4Ec899xyWLVuGDz74AP/v//0/+Pr6ol+/fli6dCkaNGiAAwcOYPTo0QDuTpqfN28e5s+fj48++ggrV65ESkoKPD090bt3b6xYsQINGzaslddiK1kzYQEBAWjdunWFF1dX1zLva0lPWuZQPfjgg7hz5w5SU1OlNv/73/8AAKGhoQCAyMhI7N271+px9uzZg8jISACAq6srOnXqZNXGbDZj7969UptOnTrBxcXFqk1KSgouXLggtYmMjMRvv/1mtaJyz5498Pb2Rps2bapxpoiIHEddZ1yMRi+kpYXBaPSy6+PWhNKGTJXWH4vevXujffv22LFjB4CiedqrVq3C77//jk2bNmHfvn2YMWMGAKB79+5YsWIFvL29pffSyy+/DKCojMTrr7+O48eP44svvkB6enqlSaC6oIqJ+UlJSfjll1/w0EMP4Z577kFqairmzJmDiIgIKfCJiopCx44dMWbMGKxYsQJmsxkTJ07Eo48+KmXHxo8fj/j4eMyYMQNjxozBvn37sHXrVuzatUt6rqlTp2LkyJHo3LkzunTpghUrVuD69etSdK3X6zF27FhMnToVvr6+8Pb2xqRJkxAZGYlu3boBAB577DG0adMGw4cPx9KlS5GZmYlXX30VEydOZKbLRgaDocL/7K6urpxQS6RCdZ1xOXq0A3bu7AshtNBozOjXLwEdOx6r8eNS3WndujVOnDgBANJCOgAICwvDv/71L4wfPx5r166Fq6sr9Ho9NBpNqVGnMWPGSH9v1qwZVq1ahQceeADXrl1DgwYN6uR1lEUVQZiHhwd27NiBefPm4fr16wgODkZMTAxeffVVKajRarXYuXMnJk2ahB49esDT0xOPP/443n77belxwsPDsWvXLkyZMgUrV65E48aN8d577yE6OlpqM2TIEPz555+YO3cuMjMzcf/992P37t1WE+2XL18OrVaLQYMGoaCgANHR0Vi7dq10XKfTISEhARMmTEBkZCQ8PT0xcuRIvPbaa3VwttRPCWlxIqoddZlxMRq9pAAMAITQYufOvoiIOAe9Pr/Gj29PRqMXcnL84OtrUFzf5CaEkIYXv//+eyxatAhnzpxBXl4e7ty5g1u3buHGjRsVFqk9cuQI5s+fj+PHj+Pq1avSaNqFCxdkHaFSRRDWrl077Nu3r9J2ISEh2L59e4VtevbsiWPHKv4VFBcXh7i4uHKP169fH2vWrMGaNWvKbRMaGoqvv/664g5TmZSaFicidcnJ8ZMCMAshtMjJ8VVUoMNsXcVOnz6N8PBwpKeno2/fvpgwYQIWLlwIX19fHDx4EGPHjkVhYWG5Qdj169cRHR2N6OhobN68GQEBAbhw4QKio6Nl/x5RRRBGRESOqTYyQJa5xL6+Bmg0ZqtATKMxw9c3x6qdnNSUrZPDvn378Ntvv2HKlCk4cuQIzGYz3n77bWi1Redr69atVu1dXV1hMpmsbjtz5gwMBgMWL14slX769ddf6+YFVIJBGBERyaK2MkB+fn6Ii4tDYWEhGjXKw8yZephMGuh0AkuW5OHpp4cpZl6pWrJ1daGgoACZmZkwmUy4cuUKdu/ejUWLFqFv374YMWIETp48idu3b2P16tXo168ffvrpJ6xfv97qMcLCwnDt2jXs3bsX7du3h4eHB5o2bQpXV1esXr0a48ePx8mTJ/H666/L9CqtqapYKxEROYbyMkD2WsHo5+eH4OBgTJvmg/R0DfbvB9LTNZg2zQfBwcGKCMCAu9m64opn65zJ7t27ERwcjLCwMMTExGD//v1YtWoVvvzyS+h0OrRv3x7Lli3DkiVL8Le//Q2bN2/GokWLrB6je/fuGD9+PIYMGYKAgAAsXboUAQEB2LhxI7Zt24Y2bdpg8eLFeOutt2R6ldaYCSMiojpXlxmgxo2LLkpiGQrV6/PRr19CqYyg5RzU1ZCprc9TW/3ZuHEjNm7cWGm7KVOmYMqUKVa3DR8+3Or6unXrsG7dOqvbhg0bhmHDhlndZin2LicGYUREVCl7l42pbL6Woys+ZAoAc+f+ifT0eggLu4OQkAcAPFCnQ6Yl+1MWpQzhOhIGYUREVCF7lo1RWgZITsXPVXAw0KmTjJ0BGGDJgEEYKU7JD9/yVk85w4c0kRLYs2yM0jJARHJiEEaKU/xDessWd7z2mh5mswZarcDSpUY8/fRNfkgTyaimZSWUlgEikguDMFIkPz8/XLoEzJgB/FXYGGazBjNn+mDIEB8w/iKSBwuLEtkPS1SQYp09ezcAszCZgHPn5OkPkbOxbLSdnZ0NoPbLShA5G2bCSLFatAC0WutATKcDmjeXr09EzqKsyfgsLEpkX8yEkWI1bgy8+25R4AUU/fnOO8qr90PkiMqaZM/CokT2xSCMFG3sWCA9HX9Vuy66TkR1zzIZPyrqeykQK1lWgoiqhsORpHhKrHYtJ3sXzSSqTMnJ+FFR3yMkJAO+vjksG0OqcODAAfTq1QtXr16Fj4+PTfcJCwvD5MmTMXny5FrrF4MwIhWxZ9FMIluUNRn/+++jMHnyCuj1+Rg4cCD8/f0Z/FONjBo1Cps2bcILL7xQalPuiRMnYu3atRg5cqRNWxupCYMwIhlVNatlz6KZRLaobDK+v78/goODZeodOZImTZrgk08+wfLly+Hu7g4AuHXrFrZs2YKmTZvK3LvawSCMSCbMapEaOPsej1R3OnbsiNTUVOzYsQPPPPMMAGDHjh1o2rQpwsPDpXYFBQWYPn06PvnkE+Tl5aFz585Yvnw5HnjgAanN119/jcmTJ+PixYvo1q0bRo4cWer5Dh48iNmzZ+PXX3+Fv78//v73v2PRokXw9PSs/Rf7F07MJ5IJs1qkBpY9HjkZ37lculS0IOrSpbp93jFjxuCDDz6Qrr///vsYPXq0VZsZM2Zg+/bt2LRpE44ePYrmzZsjOjoaOTlFPwwuXryIgQMHol+/fkhOTsZzzz2HWbNmWT1GamoqYmJiMGjQIJw4cQKffvopDh48iLi4uNp/kcUwE0akYjXdPoaoPMUn2XfseAwREeeQk+PLyfhOYMMGYNy4ohqNWm1RqaC6Wpn+7LPPYvbs2Th//jwA4KeffsInn3yCAwcOAACuX7+OdevWYePGjXj88ccBAP/+97+xZ88ebNiwAdOnT8e6desQERGBt99+GwDQqlUr/Pbbb1iyZIn0PIsWLcIzzzwjTbpv0aIFVq1ahUceeQTr1q1D/fr16+T1MggjUiluH0O1qeRG22XhZHzHc+nS3QAMKPrzhReA6Oi6WaUeEBCA2NhYbNy4EUIIxMbGwt/fXzqempqK27dv48EHH5Ruc3FxQZcuXXD69GkAwOnTp9G1a1erx42MjLS6fvz4cZw4cQKbN2+WbhNCwGw2Iy0tDffee29tvLxSGIQRKURVslrlbR8TEXFONRkxltpQPp5/51PRdnF1VSpozJgx0rDgmjVrauU5rl27hhdeeAEvvvhiqWN1uQiAQRiRAlQ1q6X27WO4KIFImZSwXVxMTAwKCwuh0WgQHR1tdSwiIgKurq746aefEBoaCgC4ffs2fvnlF2lo8d5778VXX31ldb/Dhw9bXe/YsSNOnTqF5jLvg8eJ+SQrywbB5V0MBoPcXax1VdkU2TL/prLtY5Q+T4eLEoiUSQnbxel0Opw+fRqnTp2CztKRv3h6emLChAmYPn06du/ejVOnTuH555/HjRs3MPaviWvjx4/H2bNnMX36dKSkpGDLli2l6ovNnDkThw4dQlxcHJKTk3H27Fl8+eWXnJhPzoPZkCJVyWoVn6fTqFEeZs7Uw2TSQKcTWLIkD08/PUyVw3hcYECkHGPHFs0BO3euKAMmx44l3t7e5R5bvHgxzGYzhg8fjvz8fHTu3Bnffvst7rnnHgBFw4nbt2/HlClTsHr1anTp0gVvvPEGxowZIz3Gfffdhx9++AGvvPIKHn74YQghEBERgSFDhtT6ayuOQRjJxtmzISWzWuXVYSqZ1bIEWNOmAUOGWD4oNWjc2AeAT1103a64wIBIeep6u7jKKuF/8cUX0t/r16+PVatWYdWqVeW279u3L/r27Wt1W8lSFw888AC+++67ch8jPT29wj7ZA4MwIpnYI6ul9n01HWGBARFRdTEII8VwxiEpR8tqVZXaFxgQEdUEgzBSBA5JqT+rVR3cEoeInBlXR5LsqrI6kBwLt8QhImfGTBjJjkNSzodb4hDVHiFErT5+YSFw6xZQvz7gzP9F7XGeGYSR7DgkpU41qXjPLXGI7M/FxQUAcOPGDbi7u9fKc/z5J/DXto4AgNBQICCgVp5K8W7cuAHg7nmvDgZhJBtLlsMyJFVyTpglI8JsSN2oSlBljxpvDLCI7Eun08HHxwdZWVkAAA8PD2g0Grs89p07d1BYKHD+fD0Adx/z/HkBne4OXF01qFfPOUIKIQRu3LiBrKws+Pj4lCooWxXOccZIkUpmQ+bO/RPp6fUQFnYHISEPAHiA2ZA6UtWgqmSwVt7KVket8WZRPHDNyNAiLa0ewsPvICSkaI4b379U14KCggBACsTswWQyIT8/H3fu1MP16w1KHb958xrq1bsDLy+vGgUkauPj4yOd7+piEEayKv4FFRwMdOokY2ecWE2CKmdd2Vo8cK3oHDj6jg+kLBqNBsHBwWjYsCFu375tl8fMysrC7t27ce2aJzZtGllq6sjIkZvQoMF1PPXUU2jYsKFdnlPpXFxc7BJwMggjIitVCaqcudiqJSCt7Bw4ejaQlEmn09ktK+Xi4oLr169Do7mO++77vtTng0aThevXi9rVr1/fLs/pLBiEEZGkqkEVV7byHJBzqWg1M1UdgzAiklQ1oODKVp4Dcj56fT6DLzthsVYiklgCiuIqCihsLbZqMBhw+fJlXL58GUeOXMFnnxlw5MgV6TaDwVA7L6gOsOAsEVUXM2FEJKmsXEhZKhuecIYJ7ByiIaLqYBBGRFZsCShK1m4rb3jC1dVV1RPYKypBkZ2dbdWWQzREVFUMwojsrCaV5OVSlaAKqFrF+8uXLwNQ3wR2WzN4RI7O1oLZLKxddQzCiOyoZNHT8uptKW3orTrbCFW1/2qbwG5rBq8y/GIiteM2Y7WHQRiRHRX/kKooe6LEobfa/gCtznwzJagsgzdw4ED4+/uXeV9+MZGj4Pu4djAII6oFzlzEtCJqnMBeWQbP398fwcHBcnWPiFSMJSqIakFF2RNnp9fnIzz8vCoCMIAlKIio9jATRtWixsnndUlt85+oYmrM4BGR8jEIoypT6+TzuqTW+U+1wVFWVrEEBRHZG4MwqjI1Tz6vS8yeFOHKKiKisjEIo2rj5PPKMXtSRI0BlqNk8IhIuRiEUbUpofhmRRXNgbrPsPCL23Ewg0dEtY1BGFWb3JPPlbgnIb+4HQv/nYioNjEIo2qTe/K5UvcktOWL+9Il4OxZoEULoHHjOugUEREpDoMwqhElTD5XwrCoLSxDp1u2uGPGDD3MZg20WoGlS414+umbzJARETkZBmFUY3JPPpd7WNQWlqFTo9ELK1ZMhhAaAIDZrMH06d7444/3odfnO3VZj8owe0hEjoYV86nKlDb5XA0VzS1DopVV0nf2sh4lGQwGXL58GW+/nYvQUIHevYHQUIG3387F5cuXYTAY5O4iUZVcugTs31/0JxEzYVRlSpx8roRhUVvYkrVjxqcIs4fkaDZsAMaNA8xmQKsF3n0XGDtW7l6RnBiEUbUo8UtP7mFRW1S2mOHdd0147TXB+WKwLXsox8ILouq4dOluAAYU/fnCC0B0tHP/2HJ2DMKI6lh5WbuijE8IMz4lqGHOH1FFDAYDDh8GzGbr/78mE5CUZIC7uzJ/2NoLs/vl45wwUi2lzU2rCr0+H+Hh560yd5wvVjY1zPkjKo9lWP3QoU3Se9hCozHjp582IT4+3mHnN27YAISG4q/5nEXX6S5mwki1is9NK6taPqCuwqjM+JRPLXP+iEqy/HiqbCqCo/zIKp71AjgEWxkGYaRajlZ3S+7it0qnhjl/RBVR44+Jqgwlllx4MHXq3QDMwmQCzp1jEGbBIIxUSW0r52wdElXjhzQR2U5NPyaqspqzrIUHy5YJaLVFn8sWOp2Al1cWDIZ6ivhslhuDMFIlta2cq6isR3Z2Nnbs2CFdV9OHNBE5pqqu5jx7tnTWy2zWoHv3n5CYGCll92NjE5CQUPf7+ioVgzBSNTXNo3L2D5uqUvPCCyK1KyuoKm8o0WAwwNv7DrTahlZZL43GjK5dk9C1a1KZ2X2l/EiWE4MwUjXOo3JcSiwKTOQsWrTAX0OJd2/T6YDmza3bWaaGAEDfvh3K/SzmZ3LZGISR6ql9HhUzPuVjgEVU9wwGA3S6Qixd6o6ZM/UwmTTQ6QSWLDFCp7sJg+Huj5/iP5LU/lksBwZh5BDUPI+KGR8ix6W2H1nFM1sA8OKLXlJQde1aPt59t+j28uZzqfmzWA6qCcL69++P5ORkZGVl4Z577kFUVBSWLFmCkJAQAMD8+fOxYMGCUvfz8PDA9evXpevbtm3DnDlzkJ6ejhYtWmDJkiV44oknpONCCMybNw///ve/kZubiwcffBDr1q1DC0vREwA5OTmYNGkSdu7cCa1Wi0GDBmHlypVo0KCB1ObEiROYOHEifvnlFwQEBGDSpEmYMWNGbZwacgAMsIgck9p+ZJXsZ3lBFedz2YdqKub36tULW7duRUpKCrZv347U1FQMHjxYOv7yyy/j8uXLVpc2bdrgH//4h9Tm0KFDGDZsGMaOHYtjx45hwIABGDBgAE6ePCm1Wbp0KVatWoX169cjKSkJnp6eiI6Oxq1bt6Q2zzzzDH7//Xfs2bMHCQkJ+PHHHzFu3DjpeF5eHh577DGEhobiyJEjePPNNzF//ny8a/kJQURETsPPzw/BwcHlXpQSgFHdU00mbMqUKdLfQ0NDMWvWLAwYMAC3b9+Gi4sLGjRoYJWJOn78OE6dOoX169dLt61cuRIxMTGYPn06AOD111/Hnj17EB8fj/Xr10MIgRUrVuDVV1/Fk08+CQD48MMPERgYiC+++AJDhw7F6dOnsXv3bvzyyy/o3LkzAGD16tV44okn8NZbbyEkJASbN29GYWEh3n//fbi6uqJt27ZITk7GsmXLrII1qj61pfiJiIhKUk0QVlxOTg42b96M7t27w8XFpcw27733Hlq2bImHH35Yui0xMRFTp061ahcdHY0vvvgCAJCWlobMzExERUVJx/V6Pbp27YrExEQMHToUiYmJ8PHxkQIwAIiKioJWq0VSUhL+/ve/IzExET169LAKAKKjo7FkyRJcvXoV99xzT5l9LigoQEFBgXQ9Ly/P9pPiZNSW4iciImv8kayyIGzmzJmIj4/HjRs30K1bNyQkJJTZ7tatW9i8eTNmzZpldXtmZiYCAwOtbgsMDERmZqZ03HJbRW0aNmxodbxevXrw9fW1ahMeHl7qMSzHygvCFi1aVOa8NiobAywi5anKNjfkPAYOHAh/f3/pOn8kF5F1TtisWbOg0WgqvJw5c0ZqP336dBw7dgzfffcddDodRowYASFEqcf9/PPPkZ+fj5EjR9bly6mx2bNnw2g0SpeLFy/K3SUiIptt2ACEhgK9exf9uWGD3D2y3aVLwP79RX+S7WzNZoWEhHAeXBlkzYRNmzYNo0aNqrBNs2bNpL/7+/vD398fLVu2xL333osmTZrg8OHDiIyMtLrPe++9h759+5bKaAUFBeHKlStWt125cgVBQUHSccttwcHBVm3uv/9+qU1WVpbVY9y5cwc5OTlWj1PW8xR/jrK4ubnBzc2t3ONEREpV1W1ulKQqeySSNU4NqRlZg7CAgAAEBARU677mv/6nF59DBRTN69q/fz+++uqrUveJjIzE3r17MXnyZOm2PXv2SEFceHg4goKCsHfvXinoysvLQ1JSEiZMmCA9Rm5uLo4cOYJOnToBAPbt2wez2YyuXbtKbV555RVp0YDleVq1alXuUCQRkVoZDAYcPgyYzdZftCYTkJRkwNWrWmRn36PIIUo1B4+1oTqLnhhg1YBQgcOHD4vVq1eLY8eOifT0dLF3717RvXt3ERERIW7dumXV9tVXXxUhISHizp07pR7np59+EvXq1RNvvfWWOH36tJg3b55wcXERv/32m9Rm8eLFwsfHR3z55ZfixIkT4sknnxTh4eHi5s2bUpuYmBjRoUMHkZSUJA4ePChatGghhg0bJh3Pzc0VgYGBYvjw4eLkyZPik08+ER4eHuKdd96p0us2Go0CgDAajVW6HxFRXcnOzhbz588XU6a8LTQakwCEdNFoTOLRR7+VbtdqhXjvPbl7bG3fPmHVZ8tl/365eyaf7OxskZGRUe4lOztb7i4qnq3f36oIwk6cOCF69eolfH19hZubmwgLCxPjx48Xly5dsmpnMplE48aNxT//+c9yH2vr1q2iZcuWwtXVVbRt21bs2rXL6rjZbBZz5swRgYGBws3NTfTp00ekpKRYtTEYDGLYsGGiQYMGwtvbW4wePVrk5+dbtTl+/Lh46KGHhJubm2jUqJFYvHhxlV83gzAiUrqMjAwxf/58MX/+fNG//5dSwFUyALNcdDohLl6Uu9dFsrOzxa+/Zgqt1lyij2bx66+ZpYKNixeLgjal9J+Uy9bvb40QZcxsJ0XIy8uDXq+H0WiEt7e33N0hIirl8uXLVoWojca729zk5Phh06bSC6Q++8yAnj3lHcYqvj3P0aOlN57u2PEYgLvb83DeGFWFrd/fqipRQUREylZymxuNxgwhtFbXf/ppE06ezC93/8G6YOvG04WFhZw3RrVGNdsWERGRuuj1+ejXLwEaTVH0YskyWYIcJe0/qNfnIzz8fJn7JJ49ezcAszCZgHPn6qhz5LCYCSMih8biofKqKMukBkXDSVpotQ1hNmuk23U6AS+vLBgM9Rx+dSD/D9UeZsKIyGGpuXioI6koy6R0n376KRIS1qNv351WGb3Y2J1ISFiP+Ph4GAwGmXtZe/h/qHYxE0ZEDsdgMCA9/Q7GjbubvSiaxyNw//1ZCAtz/OwF2Vdl88YcEefC1T4GYUTkUCyr3tLSwmA2W6/MM5k0WL36G4SHn5d1UrgjcaZNmEsuOqgLcg4FVjQXjkGYfTAIIyKHYslK+PoaylyZ5+ubY9WOaqasbWuys7OxY8cOGXvlGOQui9GiRdHzFg/EdDqgefO664Oj45wwInJIla3MI/vx8/Oz2pzZ399f7i5VSukZvPKGAutqg3GDwQCd7jKWLs2FTldUTlSnE1iyJBc63WWHngdXl5gJIyKHpfaVeWpVnf0H65otG0/n5uZi69atddiru+QcCixeyBYAXnzxbgHea9fyYanNyyH9mmMQRkQOTY55PM7OlgDH1dVV9i9wuZ+/PAaDAd7ed2Qri1Hy3628/0Mc0q85BmFERGR3Sg1wlK54FqpvX+vtlGJjE5CQYL2dEqkbgzAiIqIyyDGsWpXtlEj9GIQRERGVQQnDqhxOd2wMwkiVuI0GlUcNk8JJPTjkR7WJQRipjty1c0jZlJC9IPvjDy9yRAzCSFW4jQbZggGWY+EPL3JULNZKqlJR7RyLS5eA/fvrrqghEdUeuYuWqlVNPgc5pF93mAkjValsGw3+YiZ74hCYvAwGAw4fBsxm68ymyQQkJRng7s6sZ1lq+jnIIf26w0wYqUZl22j89ttV/mImu9mwAQgNBXr3Lvpzwwa5e+RcLPWyDh3aJG09ZaHRmPHTT5sQHx/vcNvn1DQLZa/MYcmtqEpeGIDZBzNhpAq2bKORlhYGs3mk1f3qapsPciyceyg/SxbGsgdo8aKlxfcAdbR6WTXNQsm53RFVHYMwUgVbttHw9TVAqxUltvm4O1RJZAsOgSmPs+0BWpP3V2VTNkhZOBxJDkOvz8fcuX+UOVTpaEMWVDucdQhMDfT6fISHn3f4AKwmKpuywfet8jATRg5mQ5lDlQD3WqPKOesQGKmfLVM2AH4OKg2DMHI45W3zwS9OqgpnGwIjdbNlykZZ7UheDMKIyOnYWnqC+/YRUW3inDAiciosPUFESsEgjIicBquvqwertpMz4HAkqQI/aKmmbCk9QcrBqu3kDBiEkSpU9IGcnZ2NHTt2yNArspXc2/9YVo4ZjV7QaCZDiLuDAJbSEydP5mPIkCF13zkqFwMscnQMwkg1+IGsTkrYz9PW0hNCCJsej5lZIrIHBmGkepw7olxK3P6notITPj4+HAIjVeLnoDoxCCPV49yR2lOTYUQlb/9jKT1hNHohLS0Mvr4GKRjj+4TUiJ+DFZN7SkR5GISRQ6jOB4tS/1MqRU2GEW2dgyVn9e6jRzuUGpYkUjNnDbAqo4QpEeVhiQpySqwVVbGalnIoOQfLsg+jUrb/MRq9pAAMAITQYufOvsjI4EcikSNRelkaZsLI6ShxnpKS2HsYUYnb/+Tk+Fll54CiQOz48esICzMwo0DkIM6evftZb2EyAefOKePznj/7yOlU9J/S2VmGEQ8d2iRlrywsw4jx8fEwGAxVely9Ph/h4ecVEYABgK+voczXd/LkF9V6fUSkTC1aFA1BFqfTAc2by9OfkhiEkVMxGAzw9r4Crda6FIFOJ+DldcXpv3yVPoxYXSVXhDna6yOisjVuXDQHTKcruq7TAe+8o4wsGMDhSHIiliwPAPTtaz0pOzY2AQkJxwBA1sniSqLEYcTqsqwcy8jIkAr7OtLrI6LSDAYDCgsL8cQTQFKSFunp9RAWdgchIWZcvqyM1aIMwshpFM9uVPQFzCzIXZZSDo7Az8+v1L+tI70+Irqr+I/u4k6etL4u949uBmFOzNlLNPALmIjIMdn6Y1ruH92cE+akWKKBahOrdxMRVY6ZMCfEEg1U21i9m4iocgzCnJDS66aQY2CARURUMQ5HOiGl100h+Tj6MKKjvz4iUhdmwpyMwWCATleIpUvdMXOmHiaTBjqdwJIlRuh0N2EwcIjImTn6MKKjvz4iUhcGYU6k5JLdF1/0kko0XLuWj3ffLbpd7iW7tYVZENs44r99cY7++ki9nH3FujNiEOZEbK2RJPeS3drCLAgRKdWGDXcXTGm1RVXex46Vu1fqpZYf3QzCyKkwwCIipeGKdftTy49uBmFEJBsOv5CzMxgMOHwYMJutgwGTCUhKMsDdnT8eq0sN542rI4nI7i5dAvbvL/qzPCwYTM7OMk/30KFN0mbyFhqNGT/9tAnx8fEwGAwy9ZBqG4MwIrIrW4Kr8oZfKgraiByNZahMr89Hv34JUiCm0ZjRr1+CNGfXUefpEocjiciObJnbwuEXotI6djyGiIhz0op17mvrHBiEEZFd2BJcAUB8fDyMRi9oNJMhxN1kvGX45eTJfIctk0JUkfJWrJPj4nCkE1HLkl1SH1vntmRlZQHg8AsREcBMmFNRy5JdUp+Sc1t27uwLIbSlgqs7d+5I9+HwS93hKlQiZWIQ5mQYYFFtq0pwxeGX2scioETKZXMQlpeXZ/ODent7V6szROQYGFzJz2AwID39DsaNawizWQPAslBC4P77sxAWVo8/yohkZnMQ5uPjA41GU2EbIQQ0Gg1MJlONO0ZERNVjmaOXlhYGs3mk1TGTSYPVq79BePh5LoCQmTPN0+WQeNlsDsL2799fm/0gIiI7sczR8/U1QKMxl1qF6uubY9WO5OEs83Q5JF4+m4OwRx55pDb7QUREdlbZQgmSn9oDrMpwX8yKVXtifm5uLjZs2IDTp08DANq2bYsxY8ZAr9fbrXNE5FhcXFxsaucIwy9KwVWoJKezZ+8GYBYmE3DuHIMwoJpB2K+//oro6Gi4u7ujS5cuAIBly5Zh4cKF+O6779CxY0e7dpKIlM3WoCkgIMAphl+UhgslSA4GgwHe3neg1d5dHAIAOp2Al1cWDAYuDqlWEDZlyhT0798f//73v1GvXtFD3LlzB8899xwmT56MH3/80a6dJCJ5VTap1lnmtsiBE5pJjSyLQwCgb98OVkPisbEJSEg4BgBOvzik2pmw4gEYANSrVw8zZsxA586d7dY5IpKfrZNqnfmD1N4MBgMKCwuxZYs7ZszQw2zWQKsVWLrUiKefvsmAlhSv+A+yiobEnX1xSLWCMG9vb1y4cAGtW7e2uv3ixYvw8vKyS8eISF6sMyUPSwbBaPTCihWTIYTl3Gswfbo3/vjjfej13F+T1IVD4mWr1t6RQ4YMwdixY/Hpp5/i4sWLuHjxIj755BM899xzGDZsmL37SER1zBIIrF6922ouB3C3zlR8fDwMBoNMPXRclsxATo6fVWkJABBCi5wcX6t2ZXGm+lNEalatIOytt97CwIEDMWLECISFhSEsLAyjRo3C4MGDsWTJEnv3EQDQv39/NG3aFPXr10dwcDCGDx+OjIwMqzbffvstunXrBi8vLwQEBGDQoEFIT0+3anPgwAF07NgRbm5uaN68OTZu3FjqudasWYOwsDDUr18fXbt2xc8//2x1/NatW5g4cSL8/PzQoEEDDBo0CFeuXLFqc+HCBcTGxsLDwwMNGzbE9OnTrfbNI1KyknWmimOdqbpR2bmviGWO3rhx48q9MJNGJL9qBWGurq5YuXIlrl69iuTkZCQnJyMnJwfLly+Hm5ubvfsIAOjVqxe2bt2KlJQUbN++HampqRg8eLB0PC0tDU8++SR69+6N5ORkfPvtt8jOzsbAgQOt2sTGxqJXr15ITk7G5MmT8dxzz+Hbb7+V2nz66aeYOnUq5s2bh6NHj6J9+/aIjo5GVlaW1GbKlCnYuXMntm3bhh9++AEZGRlWz2MymRAbG4vCwkIcOnQImzZtwsaNGzF37txaOTeO6NIlYP/+oj9JPpY6U5ZggHWm6k5Nz72fnx+Cg4PLvTAAI5KfRggh5O5EdXz11VcYMGAACgoK4OLigs8++wzDhg1DQUEBtNqi2HLnzp148sknpTYzZ87Erl27cPLkSelxhg4ditzcXOzevRsA0LVrVzzwwAPSqg6z2YwmTZpg0qRJmDVrFoxGIwICArBlyxYpCDxz5gzuvfdeJCYmolu3bvjmm2/Qt29fZGRkIDAwEACwfv16zJw5E3/++afNQwB5eXnQ6/UwGo1OtR8nqyvL7/Lly3j33Xel60ajV5mTaseNG4fg4GA5uuiweO7JEZR8H5fHUd/Htn5/VysTduvWLbz55pt44okn0LlzZ3Ts2NHqUttycnKwefNmdO/eXSr+2KlTJ2i1WnzwwQcwmUwwGo346KOPEBUVJbVJTExEVFSU1WNFR0cjMTERQNHQypEjR6zaaLVaREVFSW2OHDmC27dvW7Vp3bo1mjZtKrVJTExEu3btpADM8jx5eXn4/fffa+GMOI7yqiszI1YzNc0s6vX5CA8/zwyYDHjuiRxXtVZHjh07Ft999x0GDx6MLl26VLqxt73MnDkT8fHxuHHjBrp164aEhATpWHh4OL777js89dRTeOGFF2AymRAZGYmvv/5aapOZmWkVGAFAYGAg8vLycPPmTVy9ehUmk6nMNmfOnJEew9XVFT4+PqXaZGZmVvg8lmPlKSgoQEFBgXQ9Ly+vslPicFhd2f6YWSSiusbFIbapVhCWkJCAr7/+Gg8++GCNnnzWrFmVTuQ/ffq0VApj+vTpGDt2LM6fP48FCxZgxIgRSEhIgEajQWZmJp5//nmMHDkSw4YNQ35+PubOnYvBgwdjz549dRYo1sSiRYuwYMECubshG1ZXti+WmCAiubCAs22qFYQ1atTILvXApk2bhlGjRlXYplmzZtLf/f394e/vj5YtW+Lee+9FkyZNcPjwYURGRmLNmjXQ6/VYunSp1P4///kPmjRpgqSkJHTr1g1BQUGlVjFeuXIF3t7ecHd3h06ng06nK7NNUFAQACAoKAiFhYXIzc21yoaVbFNyRaXlMS1tyjJ79mxMnTpVup6Xl4cmTZpUeH4cBasr25flfKalhcFsHml1zFJiIjz8PM9nJeSoVs8MAjkKfrZUrlpB2Ntvv42ZM2di/fr1CA0NrfaTBwQEICAgoFr3Nf81ZmUZvrtx44Y0Id9Cp9NZtS05PAkAe/bsQWRkJICiD7VOnTph7969GDBggHTfvXv3Ii4uDkDR3DMXFxfs3bsXgwYNAgCkpKTgwoUL0uNERkZi4cKFyMrKQsOGDaXn8fb2Rps2bcp9TW5ubrW2ulTpWF3ZvkqWmCheb8qWEhPOHAjIXa2eGQQi51GtIKxz5864desWmjVrBg8PD2niu0VOTuV1bKoiKSkJv/zyCx566CHcc889SE1NxZw5cxARESEFPrGxsVi+fDlee+01aTjyn//8J0JDQ9GhQwcAwPjx4xEfH48ZM2ZgzJgx2LdvH7Zu3Ypdu3ZJzzV16lSMHDkSnTt3RpcuXbBixQpcv34do0ePBgDo9XqMHTsWU6dOha+vL7y9vTFp0iRERkaiW7duAIDHHnsMbdq0wfDhw7F06VJkZmbi1VdfxcSJE502yKoqVle2D0uZg+KZRVvKHDhrIKCUavWOdl6JqGzVCsKGDRuGP/74A2+88QYCAwNrfb6Vh4cHduzYgXnz5uH69esIDg5GTEwMXn31VSmo6d27N7Zs2YKlS5di6dKl8PDwQGRkJHbv3g13d3cARZP3d+3ahSlTpmDlypVo3Lgx3nvvPURHR0vPNWTIEPz555+YO3cuMjMzcf/992P37t1WE+2XL18OrVaLQYMGoaCgANHR0Vi7dq10XKfTISEhARMmTEBkZCQ8PT0xcuRIvPbaa7V6nojKUlFmsSLOGAjYUq1er89nRpaomrghvbVqBWGHDh1CYmIi2rdvb+/+lKldu3bYt29fpe2GDh2KoUOHVtimZ8+eOHbsWIVt4uLipOHHstSvXx9r1qzBmjVrym0TGhpaauiTyF6q+kHGzGLVVDaMS0RVx5XapVWrTljr1q1x8+ZNe/eFiGywYQMQGgr07l3054YNcvfI8XCnACL7Yg3IslUrE7Z48WJMmzYNCxcuRLt27UrNCXOm6u5EdYUlJ+pWdYdxiciawWDA4cOA2Wz9+WQyAUlJBri7O+f0B6CaQVhMTAwAoE+fPla3CyGg0WhgMplq3jMikrDkhDw4jEtUM8UXu2g0k0sN8f/00yacPFn7i12UqlpB2P79++3dD3JyzlISobqTUqtacsJZzicRKZvlM6myldrOutilWkHYI488YlO7//u//8Nrr70Gf3//6jwNORFnKIlgj0mptpaccIbzSUTqwiH+0qoVhNnqP//5D15++WUGYWQTRw0I7D2Xy9YPMkc9n7WJGUSi2sUhfmu1GoQJIWrz4YkUr7bmcvGDrHYwg0hEdalWgzAiZ1fT7YOo7tk7wLJsgwQAGRlapKXVQ3j4HYSEFK3VZ1BH5LwYhBHVgepuH0TqVnxj+qNHO5T69+/YkRvTEzkzBmFEdYSTUp2PJQNmNHpJARhQtAXSzp19ERFxjtsgETkxBmFEdai6c7k4YVzdKtuLkshR8bOrYrUahD377LOsnk9kB5wwrlzF53yVlJ2dDYB7UZIy1cVm2vzsqli1g7Dc3Fz8/PPPyMrKgtmyGdRfRowYAQBYt25dzXpHRBJn/ZBSsuJzvoCiYcecHD/4+hqsMlycE0hKYfnRsGWLO2bM0MNs1kCrFVi61Iinn75ZKwERP7vKV60gbOfOnXjmmWdw7do1eHt7Q6PRSMc0Go0UhBER1aaKslBA7f/CLv7cFU28BzgnkORXfAuhFSsmQwhL3UINpk/3xh9/vA+93nm3EJJDtYKwadOmYcyYMXjjjTfg4eFh7z4ROQzOh6g9tmah6uILpbKJ9xas70ZysvxoqGyOoqMvFKmLYVhbVSsI++OPP/Diiy8yACOqBOdD1B5bs1B18YXCifekJs48R9Ee28fZk7byJqVFR0fj119/tXdfiBySn58fgoODy70wAKuZ8rJQRqNXnfXB8qVWXFW+1JgJpbpkmaNoec9qNGZERibK3Kvad+nS3QAMsGwfV3S7XGzOhH311VfS32NjYzF9+nScOnUK7dq1g4uLi1Xb/v3726+HREQVUEIWqrKJ9wMHDix3D11mQkkOljmKSUldcehQJA4dehCJiZHo1y8B2dnZDve+NBgMOHwYMJutX5PJBCQlGeDuLs8CApuDsAEDBpS67bXXXit1m0ajgclkqlGniEj96mrSvFKGViqaeO/v74/g4OA67Q+RLRITI2EZFLs7l3GFQ03QL74gQaOZXOqz4qefNuHkSXler81BWMkyFERE5Sk5ab489vjQU1L5B068JzVxlgn6ltdR2WeFHK+3WhPzP/zwQwwZMgRubm5WtxcWFuKTTz5hiQoiJ1fyw6y8lYv2+tCTq/wDV7+Smikli1yXlFYqplpB2OjRoxETE4OGDRta3Z6fn4/Ro0czCCMiSWX1s+xFjiwUV7+SEhQf+s/I0CItrR7Cw+8gJKRoBMvyHiz5Y0BJWeS6pKSMdbWCMCGEVYFWi0uXLkGv19e4U0TkGGytn1UdSslCMcAiORUf+q/oB49l6D8uLg4ZGRnYsWMHAOVlhpxNlYKwDh06QKPRQKPRoE+fPqhX7+7dTSYT0tLSEBMTY/dOEpE61ebKRWahiO4O6Vf2g8fSzs/Pr9T/GSVlhpxNlYIwywrJ5ORkREdHo0GDBtIxV1dXhIWFYdCgQXbtIBGpV23POWGApWxybyvlTJRQqoWqrkpB2Lx58wAAYWFhGDJkCOrXr18rnSIix+Csc06oblfIykkpgaYzTrJ3BNWaEzZy5EgARWnQrKysUuUrmjZtWvOeEZFDqKs5J0r5MqQitq58VXMZBCXtX1qVHzxKmU9ZV5T8eqsVhJ09exZjxozBoUOHrG63TNhnsVYi51bWKqyafBlUxlmyLmpWXoCiZkravxSw/QePs82nVPLrrVYQNmrUKNSrVw8JCQkIDg4uc6UkETmvuv7Qq+u6ZFQ1dVWmRC61uQq4qmydZO8oAZatlPp6qxWEJScn48iRI2jdurW9+0NEDkKuDz1H/8JXGyUFKLWFk+KpurSVNymtTZs2yM7OtndfiIhqpLwvfKPRS+aeOa+KAhRHYZkUX1xdTYpX8nwnqly1MmFLlizBjBkz8MYbb6Bdu3ZwcXGxOu7t7W2XzhERVQUzEsrjDKv25FwFrOT5TlS5agVhUVFRAIDevXtbzQfjxHwikpMzfOGrjbOUKZGz8jwDLPWqVhC2f/9+e/eDiKjGnOULXw2KD39VFKA40jAZK89TVVUrCHvkkUfw3//+F++88w5SU1Px2WefoVGjRvjoo48QHh5u7z4SEdmMe+EpgzMMk3E+FtVUtYKw7du3Y/jw4XjmmWdw7NgxFBQUAACMRiPeeOMNfP3113btJBFRReq6LhnZRs0Bli2cIdCk2qURQoiq3qlDhw6YMmUKRowYAS8vLxw/fhzNmjXDsWPH8PjjjyMzM7M2+up08vLyoNfrYTQaudiBqBKsmE9ESmHr93e1MmEpKSno0aNHqdv1ej1yc3Or85BERDXCAIuI1KZaQVhQUBDOnTuHsLAwq9sPHjyIZs2a2aNf5KSYzSAiImdRrSDs+eefx0svvYT3338fGo0GGRkZSExMxMsvv4w5c+bYu4/kJJS0GS4REVFtq1YQNmvWLJjNZvTp0wc3btxAjx494ObmhpdffhmTJk2ydx/JSShtM1wiorrAEQDnVa0gTKPR4JVXXsH06dNx7tw5XLt2DW3atEGDBg3s3T9yQs6w1xwREVB6BKA8HAFwTNUKwixcXV3Rpk0be/WFCAC3niEi51EyA1beNAyOADimGgVhRLWhsq1nSm4ez1Q9ETmCiqZhkGNiEOYk1DTnoLKtZ3bs2FHqPkzVE5GacRqGc2IQ5gTUOOegqlvPMFVPRGrGaRjOiUGYE1DrnIOytp4pr+9ERGpW2TQMckwMwpyMkuccVLavn5L7TkRUE5VNwyDHxCDMiSh9zkFZm+FmZ2djx44diu87EVFNVXUaBqkfgzAnooY5B+XNSVND34mIqqrkCEBZ0zDKakeOgUGYE1HznAM1952IqDxljQCUpKTV62RfDMKciJrnHKi570REFWGA5bwYhDkZtc05KJ6Cr6jvTNUTEZHaMAhzAmqec8BUPREROSqNEELI3QkqW15eHvR6PYxGI7y9vWv0WGqqmE9ERKRmtn5/MxPmJBhgERERKYu28iZEREREZG8MwoiIiIhkwCCMiIiISAacE0ZENcaFH0REVccgjIhqxGAwID4+vtJ2cXFxDMSIiIrhcCQR1UhFGbDqtCMichbMhBERESkUh/orV/wcZWRokZZWD+HhdxASYgag7HPEIIyIiEiBONRfueLn6OjRDqX2F+7Y8RgA5Z4jBmEk4S8uIiLl4FB/5Syv3Wj0kgIwABBCi507+yIi4hz0+nzFniMGYQSAv7hIefijgMia0eiFnBw/+Poaytz/15nl5PhJAZiFEFrk5Pgq+lwxCCMA/MVF9mOPLwr+KCCyVtFQGwG+vgZoNGarQEyjMcPXN0fGXlVONasj+/fvj6ZNm6J+/foIDg7G8OHDkZGRYdVm69atuP/+++Hh4YHQ0FC8+eabpR7nwIED6NixI9zc3NC8eXNs3LixVJs1a9YgLCwM9evXR9euXfHzzz9bHb916xYmTpwIPz8/NGjQAIMGDcKVK1es2ly4cAGxsbHw8PBAw4YNMX36dNy5c6fmJ4JIwY4e7YAVKyZj06aRWLFiMo4e7VCtx+GPAqK7yhtqMxq9ZO6Zcuj1+ejXLwEaTdFkfEugquQsGKCiIKxXr17YunUrUlJSsH37dqSmpmLw4MHS8W+++QbPPPMMxo8fj5MnT2Lt2rVYvny51a/ptLQ0xMbGolevXkhOTsbkyZPx3HPP4dtvv5XafPrpp5g6dSrmzZuHo0ePon379oiOjkZWVpbUZsqUKdi5cye2bduGH374ARkZGRg4cKB03GQyITY2FoWFhTh06BA2bdqEjRs3Yu7cubV8lojqnqurK4DKvygs7YioaioaaqO7OnY8hsmTV2DkyI2YPHmFKjKFqgnCpkyZgm7duiE0NBTdu3fHrFmzcPjwYdy+fRsA8NFHH2HAgAEYP348mjVrhtjYWMyePRtLliyBEAIAsH79eoSHh+Ptt9/Gvffei7i4OAwePBjLly+XnmfZsmV4/vnnMXr0aLRp0wbr16+Hh4cH3n//fQCA0WjEhg0bsGzZMvTu3RudOnXCBx98gEOHDuHw4cMAgO+++w6nTp3Cf/7zH9x///14/PHH8frrr2PNmjX85U4Ox8/PD3FxcejefWSZXxQPPjiSw4ZENWAZaitODUNtctDr8xEefl7xGTAL1QRhxeXk5GDz5s3o3r07XFxcAAAFBQWoX7++VTt3d3dcunQJ58+fBwAkJiYiKirKqk10dDQSExMBFA1tHDlyxKqNVqtFVFSU1ObIkSO4ffu2VZvWrVujadOmUpvExES0a9cOgYGBVs+Tl5eH33//vdzXVVBQgLy8PKsLkRr4+fmhWzc/aEt8ouh0QNeufgzAiGpArUNtVDlVTcyfOXMm4uPjcePGDXTr1g0JCQnSsejoaEyZMgWjRo1Cr169cO7cObz99tsAgMuXLyMsLAyZmZlWgREABAYGIi8vDzdv3sTVq1dhMpnKbHPmzBkAQGZmJlxdXeHj41OqTWZmptSmrMewHCvPokWLsGDBgiqckdrDVThUVY0bA+++C7zwAmAyFQVg77xTdLvacaUmyaH4EH7HjscQEXEOOTm+8PXNsfpcduahfltfu1LPkaxB2KxZs7BkyZIK25w+fRqtW7cGAEyfPh1jx47F+fPnsWDBAowYMQIJCQnQaDR4/vnnkZqair59++L27dvw9vbGSy+9hPnz50Nb8ue5Qs2ePRtTp06Vrufl5aFJkyZ13g+uwqHqGjsWiI4Gzp0Dmje3XwAm548CrtQkuViG+vkDoHxqP0eyBmHTpk3DqFGjKmzTrFkz6e/+/v7w9/dHy5Ytce+996JJkyY4fPgwIiMjodFosGTJErzxxhvIzMxEQEAA9u7da/UYQUFBpVYxXrlyBd7e3nB3d4dOp4NOpyuzTVBQkPQYhYWFyM3NtcqGlWxTckWl5TEtbcri5uYGNze3Cs9HbalscrWl4J1Sf02QcjRubN/sl9w/CrhSk+Sk1OBBSdR8jmQNwgICAhAQEFCt+5rNRWPjBQUFVrfrdDo0atQIAPDxxx8jMjJSeo7IyEh8/fXXVu337NmDyMhIAEWBSKdOnbB3714MGDBAep69e/ciLi4OANCpUye4uLhg7969GDRoEAAgJSUFFy5ckB4nMjISCxcuRFZWFho2bCg9j7e3N9q0aVOt11vbLL8m9u8Hli8ve3J1z57qfrOTevBHgWPhcC5R2VQxJywpKQm//PILHnroIdxzzz1ITU3FnDlzEBERIQU+2dnZ+Oyzz9CzZ0/cunULH3zwgVRCwmL8+PGIj4/HjBkzMGbMGOzbtw9bt27Frl27pDZTp07FyJEj0blzZ3Tp0gUrVqzA9evXMXr0aACAXq/H2LFjMXXqVPj6+sLb2xuTJk1CZGQkunXrBgB47LHH0KZNGwwfPhxLly5FZmYmXn31VUycOFG2TJctiiZXA1otYC62EOfu5Gr5+kbORY0/CrKzs6W/M6i4i8O51cPA1TmoIgjz8PDAjh07MG/ePFy/fh3BwcGIiYnBq6++ahXUbNq0CS+//DKEEIiMjMSBAwfQpUsX6Xh4eDh27dqFKVOmYOXKlWjcuDHee+89REdHS22GDBmCP//8E3PnzkVmZibuv/9+7N6922qi/fLly6HVajFo0CAUFBQgOjoaa9eulY7rdDokJCRgwoQJiIyMhKenJ0aOHInXXnutls9UzTny5GpSF7X9KNixY4fVdQYVRTicW3UMXJ2HRliKaJHi5OXlQa/Xw2g0wtvbu06f+9Il+0+uJqqODRtK/ygYO7bunv/y5ct49913q3y/cePGITg4uBZ6pC62nj+er7t4ztTP1u9vVWTCqO7Ze3I11YwzD03U1orL6mL5FiKyFwZhRArHoQnl/CiQe6UmOScG/o6LQRiRwnFOjbxsXalJVBsY+Ds2dVQxJSKSSWV7Y3IT5aoxGr2QlhYmbexO5Ssv8Oe5cxzMhBERVaK8lZrcRLlqmNWpmpwcv3IDf2ZfHQMzYURENrCUb9HpihaUW4IIAMzsVKCy4VzLeWPh3dJ8fQ3Spt0WDPwdCzNhREQ2GjsW6NIlF2+//SV8fXOQmtocK1ZMLjOz4wxBha2rdtVWeFdulveOXp+Pfv0SSmUPLVkwZ3iPOTrWCVMwOeuEkXKwZpDyGAwGpKffQZcuDWE2a6TbdTqBpKQshIXVc/igoqqrdi9dAkJDSxfeTU9XxspXpSke4GZkaJGeXg9hYXcQElJ0Ah25LI0jYJ0wIgfF5ery8/Pzw4kT1gEFAJhMGuTnByqumn9tqOqqXe7GUTXFA6zgYKBTJxk7Q7WGQRiRwhUfcqhoYjOHJupWixZlb6nUvLl8fVI6pRXeJZIbgzAihbPMqUlPv4PXXmsIIYqGv4TQYteufpg7t6tTDH8pDTM71aOUwrtESsAgjEgFOPylTMzsKIszb+9F6sQgjEglOPylTMzsKAO39yI1Yp0wIpW4W6eq6DqHv0hJ5K6Ez+29SI2YCSNSEQ5/kRKxEj5R9TAII1IZDn+REti6sTlX7RKVj0EYERFVmdIr4bOeHqkBgzAiIqqW8jY21+mArl39ZFu1y+FRUgsGYUREKqSUcgxKq5dW2fAokZIwCCMiUhmllWNQ0oKRnBw/KQCzEEKLnBxfBmGkOAzCiIhURonlGOReMGJZAODra4BGY7YKxDQaM3x9c6zaESkBgzAiIlKFyoZgn332WXh4eKBRozzMnKmHyaSBTiewZEkenn56GCvmk+IwCCMiIsWryhDstGk+GDLEMjyqQePGPgB8aruLqqWU+YXOiEEYEREpXlWHYOUeHlULpc0vdDbctoiISOXk3jKI1KtkcFvee4nbPdUOZsKIiFSMNbHIXvheqnvMhBERqVR5NbGcISPG7J99OfN7SU7MhBERqYylzEJlNbEctRwDMzb2x/pq8mAQRkSkMpZ9G9PT7+CjjwTMZo10TKcTmDTpcYSF1XPIidSsiF87KquvRrWDw5FERCrk5+eHTp0C8e67Guh0RbcVbRmkQadOgQ4ZgAEVZ2yo+vT6fPTrlwCNpmgTUEuGkYFt7WImjIhIxZS0ZVBtYkX82tex4zFERJxDTo4vfH1zGIDVAQZhRFRlLO6oLM5QE8syBFtYWMiK+HZUMmjV6/PLDL4Y3NYOjRBCyN0JKlteXh70ej2MRiO8vb3l7g4RABZ3JGW4dMnxs391hT+q7M/W729mwoioSpS4eTQ5H2fI/tUVBljyYRBGRJUq/ks5Oztb5t4QETkGBmFEVCFbhx+JiKhqWKKCiCrEYUUiotrBIIyIaoTbxxARVQ+HI4mo2rh9DBFR9TETRkTVwg1/iYhqhpkwIqoSo9ELOTl+uH7dwyk3jyYishcGYURks+LDj4AZgADgPJtHExHZE4MwIrJJyeHHotkMZmg0AkJoodMJafNoInthNXdyZAzCiKhClmHFnBy/UsOPgBaDBm2Fp+cNTJv2JNq1u6fuO0gOi1tkkaNjEEZEFbJsnJyefgcffSRgNlsPP86a9chfw48MwMi+SmbALPMRfX0NVptMs5YdqRWDMCKqlJ+fH/z8gHffBV54ATCZAJ0OHH6kOsNyKOSIGIQRkc3GjgWio4Fz54DmzbmBMtWN8sqhREScs8qIEakNgzByWJzQWzsaN2bwRXWrrPmIxcuhEFXHpUvA2bNAixbyfaYxCCOHxAm9RI7D19cAjcZsFYhpNGb4+ubI2CtSsw0bgHHjALMZ0GqLplqMHVv3/WDFfHJItk7U5YReIuXT6/PRr18CNBozAEhzwpgFo6oyGAw4cuQKxo0TMBe9nWA2Ay+8IHDkyBUYDIY67Q8zYeQUyltVRUTq0LHjMUREnENOji98fXP4/5iqzDJCkpYWBrN5pNUxk0mD1au/QXj4+TodIWEQRg6Pq6pqjxLmVJDjKrn1lV6fX2bwxS2yyBaWkY/KhrfrcoSEQRg5NK6qsj/LgoctW9wxY4YeZrMGWq3A0qVGPP30TS54ILux1KjjAhuyJ8vwdskf53J8JzAII4fGVVX2ZUnnG41eWLFiMoQoKtxqNmswfbo3/vjjfej1+VzwQHbD9xHVBqUMbzMII4fGVVX2ZclIVBbccsEDESldecPbdYmrI8mhcVVV7bAEt8UxuCUiqhpmwsghFZ+oW1HamRN6q0dJcyqIiNSKQRg5JE7orX1KmVNBRKRWDMLIYTHAqn1KmFNBRGQLW0c+6nKEhEEYEREROTwljpAwCCMiIiKnoLQREq6OJCKbKTGdT0SkVsyEEZHNlJjOJyJSKwZhRFQlDLCIiOyDw5FEREREMmAQRkRERCQDBmFEREREMlBdEFZQUID7778fGo0GycnJVsdOnDiBhx9+GPXr10eTJk2wdOnSUvfftm0bWrdujfr166Ndu3b4+uuvrY4LITB37lwEBwfD3d0dUVFROHv2rFWbnJwcPPPMM/D29oaPjw/Gjh2La9euVbkvRERE5LxUF4TNmDEDISEhpW7Py8vDY489htDQUBw5cgRvvvkm5s+fj3fffVdqc+jQIQwbNgxjx47FsWPHMGDAAAwYMAAnT56U2ixduhSrVq3C+vXrkZSUBE9PT0RHR+PWrVtSm2eeeQa///479uzZg4SEBPz4448YN25clfpCRERETk6oyNdffy1at24tfv/9dwFAHDt2TDq2du1acc8994iCggLptpkzZ4pWrVpJ15966ikRGxtr9Zhdu3YVL7zwghBCCLPZLIKCgsSbb74pHc/NzRVubm7i448/FkIIcerUKQFA/PLLL1Kbb775Rmg0GvHHH3/Y3BdbGI1GAUAYjcYq3Y+IiIjkY+v3t2oyYVeuXMHzzz+Pjz76CB4eHqWOJyYmokePHlZFIqOjo5GSkoKrV69KbaKioqzuFx0djcTERABAWloaMjMzrdro9Xp07dpVapOYmAgfHx907txZahMVFQWtVoukpCSb+1KWgoIC5OXlWV2IiIjIMakiCBNCYNSoURg/frxV8FNcZmYmAgMDrW6zXM/MzKywTfHjxe9XXpuGDRtaHa9Xrx58fX0rfZ7iz1GWRYsWQa/XS5cmTZqU25aIiIjUTdYgbNasWdBoNBVezpw5g9WrVyM/Px+zZ8+Ws7u1bvbs2TAajdLl4sWLcneJiIiIaomsFfOnTZuGUaNGVdimWbNm2LdvHxITE+Hm5mZ1rHPnznjmmWewadMmBAUF4cqVK1bHLdeDgoKkP8tqU/y45bbg4GCrNvfff7/UJisry+ox7ty5g5ycnEqfp/hzlMXNza3UayQiIiLHJGsmLCAgAK1bt67w4urqilWrVuH48eNITk5GcnKyVFbi008/xcKFCwEAkZGR+PHHH3H79m3p8ffs2YNWrVrhnnvukdrs3bvXqg979uxBZGQkACA8PBxBQUFWbfLy8pCUlCS1iYyMRG5uLo4cOSK12bdvH8xmM7p27WpzX4iInNWlS8D+/UV/Ejm1ulknYF9paWmlVkfm5uaKwMBAMXz4cHHy5EnxySefCA8PD/HOO+9IbX766SdRr1498dZbb4nTp0+LefPmCRcXF/Hbb79JbRYvXix8fHzEl19+KU6cOCGefPJJER4eLm7evCm1iYmJER06dBBJSUni4MGDokWLFmLYsGFV6ostuDqSiBzNe+8JodUKART9+d57cveIyP5s/f52mCBMCCGOHz8uHnroIeHm5iYaNWokFi9eXOq+W7duFS1bthSurq6ibdu2YteuXVbHzWazmDNnjggMDBRubm6iT58+IiUlxaqNwWAQw4YNEw0aNBDe3t5i9OjRIj8/v8p9qQyDMCJyJBcv3g3ALBedruh2Ikdi6/e3Rggh5MzEUfny8vKg1+thNBrh7e0td3eISEUuXQLOngVatAAaN5a7N0X27wd69y779p4967w7RLXG1u9vVZSoICIi223YAISGFgU8oaFF15WgRQtAW+JbR6cDmjeXpz9EcmMQRkTkQC5dAsaNA8zmoutmM/DCC8qYBN+4MfDuu0WBF1D055Qp8vaJSE4MwoiIHMjZs3cDMAuTCTh3Tp7+WBgMBly+fBlPPHEZSUlXMH78NZjNAm+9BYSGCqxceU3eDhLJQNY6YUREZF+WIb/igZjcQ34GgwHx8fHSdaPRC++8MxlCaAAAZrMGU6Z4oHfvq2jXjmV8yHkwE0ZE5EDKGvJ75x15J+cXFhZaXc/J8UPJrYuF0OJ//yuRwiNycMyEERE5mLFjgejooiHI5s2VszrSwtfXAI3GbBWIaTRmhIXdkbFXRHWPmTAiIgfUuHFR2QelBWAAoNfno1+/BGg0RZkvjcaMfv0SEBLCTBg5F2bCiIgchMFgKDX0V5yrqyv8/PzqsEfl69jxGCIiziEnxxe+vjnQ6/MBPCB3txRNibXfqGYYhBEROYCSk9/LExcXp5hATK/P/yv4KpKdna2oQFFJNmy4W3pEqy2a9zd2rNy9opricCQRkQOoKANWnXZy2LFjB+Lj42EwGOTuiqJUVvuNG6KrF4MwIiJSFCUHinKoqPabUndHINswCCMiolrl6uoqdxdUrbztnjw9lbs7AtmGQRgREdUqPz8/xMXFYeDAgXJ3RZXKq/127Zoyd0cg23FiPhER1To/Pz8OM1aDZcXrE08ASUlapKfXQ1jYHYSEmJGRoYVW2xBms0ZqL/fuCFQ1DMKIiIgUqLwVrydP3v17374dsGtXP5hMGkXsjkBVwyCMiIhIgWzJHHbseAxz53ZFfn6gIndHoIoxCCMicgC2Tn7nJHnH4+qahVatiiaHXb5suY311tSAQRgRkQOwTH5XcsV8Boq1Y8eOHWXerqTCvFQ2BmFERA5C6V+4aggUHQkXQigfgzAiIqozDLCI7mKdMCIiIiIZMAgjIiIikgGDMCIiIgXiAgXHxzlhREREClTeQobs7OxyV0SSujAIIyIiUiguZHBsHI4kIiJSEdZbcxzMhBEREakI6605DgZhREREKsMAyzFwOJKIiIhIBgzCiIiIiGTAIIyIiIhIBgzCiIiIiGTAIIyIiIhIBgzCiIiIiGTAIIyIiIhIBgzCiIiIiGTAIIyIiIhIBqyYr2BCCABAXl6ezD0hIiIiW1m+ty3f4+VhEKZg+fn5AIAmTZrI3BMiIiKqqvz8fOj1+nKPa0RlYRrJxmw2IyMjA15eXtBoNHJ3p87k5eWhSZMmuHjxIry9veXujqrxXNoHz6P98FzaD8+lfdTGeRRCID8/HyEhIdBqy5/5xUyYgmm1WjRu3FjubsjG29ubHyx2wnNpHzyP9sNzaT88l/Zh7/NYUQbMghPziYiIiGTAIIyIiIhIBgzCSHHc3Nwwb948uLm5yd0V1eO5tA+eR/vhubQfnkv7kPM8cmI+ERERkQyYCSMiIiKSAYMwIiIiIhkwCCMiIiKSAYMwIiIiIhkwCCPZ/Pjjj+jXrx9CQkKg0WjwxRdfWB0XQmDu3LkIDg6Gu7s7oqKicPbsWXk6q3CVnctRo0ZBo9FYXWJiYuTprIItWrQIDzzwALy8vNCwYUMMGDAAKSkpVm1u3bqFiRMnws/PDw0aNMCgQYNw5coVmXqsTLacx549e5Z6T44fP16mHivXunXrcN9990mFRCMjI/HNN99Ix/l+tF1l51KO9ySDMJLN9evX0b59e6xZs6bM40uXLsWqVauwfv16JCUlwdPTE9HR0bh161Yd91T5KjuXABATE4PLly9Ll48//rgOe6gOP/zwAyZOnIjDhw9jz549uH37Nh577DFcv35dajNlyhTs3LkT27Ztww8//ICMjAwMHDhQxl4rjy3nEQCef/55q/fk0qVLZeqxcjVu3BiLFy/GkSNH8Ouvv6J379548skn8fvvvwPg+7EqKjuXgAzvSUGkAADE559/Ll03m80iKChIvPnmm9Jtubm5ws3NTXz88ccy9FA9Sp5LIYQYOXKkePLJJ2Xpj5plZWUJAOKHH34QQhS9B11cXMS2bdukNqdPnxYARGJiolzdVLyS51EIIR555BHx0ksvydcpFbvnnnvEe++9x/ejHVjOpRDyvCeZCSNFSktLQ2ZmJqKioqTb9Ho9unbtisTERBl7pl4HDhxAw4YN0apVK0yYMAEGg0HuLime0WgEAPj6+gIAjhw5gtu3b1u9L1u3bo2mTZvyfVmBkufRYvPmzfD398ff/vY3zJ49Gzdu3JCje6phMpnwySef4Pr164iMjOT7sQZKnkuLun5PcgNvUqTMzEwAQGBgoNXtgYGB0jGyXUxMDAYOHIjw8HCkpqbin//8Jx5//HEkJiZCp9PJ3T1FMpvNmDx5Mh588EH87W9/A1D0vnR1dYWPj49VW74vy1fWeQSAp59+GqGhoQgJCcGJEycwc+ZMpKSkYMeOHTL2Vpl+++03REZG4tatW2jQoAE+//xztGnTBsnJyXw/VlF55xKQ5z3JIIzICQwdOlT6e7t27XDfffchIiICBw4cQJ8+fWTsmXJNnDgRJ0+exMGDB+XuiqqVdx7HjRsn/b1du3YIDg5Gnz59kJqaioiIiLrupqK1atUKycnJMBqN+OyzzzBy5Ej88MMPcndLlco7l23atJHlPcnhSFKkoKAgACi1yufKlSvSMaq+Zs2awd/fH+fOnZO7K4oUFxeHhIQE7N+/H40bN5ZuDwoKQmFhIXJzc63a831ZtvLOY1m6du0KAHxPlsHV1RXNmzdHp06dsGjRIrRv3x4rV67k+7EayjuXZamL9ySDMFKk8PBwBAUFYe/evdJteXl5SEpKshq/p+q5dOkSDAYDgoOD5e6KogghEBcXh88//xz79u1DeHi41fFOnTrBxcXF6n2ZkpKCCxcu8H1ZTGXnsSzJyckAwPekDcxmMwoKCvh+tAPLuSxLXbwnORxJsrl27ZrVL4y0tDQkJyfD19cXTZs2xeTJk/Gvf/0LLVq0QHh4OObMmYOQkBAMGDBAvk4rVEXn0tfXFwsWLMCgQYMQFBSE1NRUzJgxA82bN0d0dLSMvVaeiRMnYsuWLfjyyy/h5eUlzavR6/Vwd3eHXq/H2LFjMXXqVPj6+sLb2xuTJk1CZGQkunXrJnPvlaOy85iamootW7bgiSeegJ+fH06cOIEpU6agR48euO+++2TuvbLMnj0bjz/+OJo2bYr8/Hxs2bIFBw4cwLfffsv3YxVVdC5le0/W6VpMomL2798vAJS6jBw5UghRVKZizpw5IjAwULi5uYk+ffqIlJQUeTutUBWdyxs3bojHHntMBAQECBcXFxEaGiqef/55kZmZKXe3FaescwhAfPDBB1Kbmzdviv/7v/8T99xzj/Dw8BB///vfxeXLl+XrtAJVdh4vXLggevToIXx9fYWbm5to3ry5mD59ujAajfJ2XIHGjBkjQkNDhaurqwgICBB9+vQR3333nXSc70fbVXQu5XpPaoQQovZCPCIiIiIqC+eEEREREcmAQRgRERGRDBiEEREREcmAQRgRERGRDBiEEREREcmAQRgRERGRDBiEEREREcmAQRgRERGRDBiEEREREcmAQRgRUTUUFhbK3YVSlNgnIiofgzAiIgA9e/ZEXFwc4uLioNfr4e/vjzlz5sCys1tYWBhef/11jBgxAt7e3hg3bhwA4ODBg3j44Yfh7u6OJk2a4MUXX8T169elx127di1atGiB+vXrIzAwEIMHD5aOffbZZ2jXrh3c3d3h5+eHqKgo6b49e/bE5MmTrfo4YMAAjBo1Srpe3T4RkTIwCCMi+sumTZtQr149/Pzzz1i5ciWWLVuG9957Tzr+1ltvoX379jh27BjmzJmD1NRUxMTEYNCgQThx4gQ+/fRTHDx4EHFxcQCAX3/9FS+++CJee+01pKSkYPfu3ejRowcA4PLlyxg2bBjGjBmD06dP48CBAxg4cCCqup1vVftERMrBDbyJiFCUecrKysLvv/8OjUYDAJg1axa++uornDp1CmFhYejQoQM+//xz6T7PPfccdDod3nnnHem2gwcP4pFHHsH169fx9ddfY/To0bh06RK8vLysnu/o0aPo1KkT0tPTERoaWmZ/7r//fqxYsUK6bcCAAfDx8cHGjRsBoFp9ql+/fo3OExHZDzNhRER/6datmxSAAUBkZCTOnj0Lk8kEAOjcubNV++PHj2Pjxo1o0KCBdImOjobZbEZaWhoeffRRhIaGolmzZhg+fDg2b96MGzduAADat2+PPn36oF27dvjHP/6Bf//737h69WqV+1zVPhGRcjAIIyKykaenp9X1a9eu4YUXXkBycrJ0OX78OM6ePYuIiAh4eXnh6NGj+PjjjxEcHIy5c+eiffv2yM3NhU6nw549e/DNN9+gTZs2WL16NVq1aiUFSlqtttTQ5O3bt2vcJyJSDgZhRER/SUpKsrp++PBhtGjRAjqdrsz2HTt2xKlTp9C8efNSF1dXVwBAvXr1EBUVhaVLl+LEiRNIT0/Hvn37AAAajQYPPvggFixYgGPHjsHV1VUaWgwICMDly5el5zKZTDh58mSlr8GWPhGRMjAIIyL6y4ULFzB16lSkpKTg448/xurVq/HSSy+V237mzJk4dOgQ4uLikJycjLNnz+LLL7+UJsEnJCRg1apVSE5Oxvnz5/Hhhx/CbDajVatWSEpKwhtvvIFff/0VFy5cwI4dO/Dnn3/i3nvvBQD07t0bu3btwq5du3DmzBlMmDABubm5lb6GyvpERMpRT+4OEBEpxYgRI3Dz5k106dIFOp0OL730klT2oSz33XcffvjhB7zyyit4+OGHIYRAREQEhgwZAgDw8fHBjh07MH/+fNy6dQstWrTAxx9/jLZt2+L06dP48ccfsWLFCuTl5SE0NBRvv/02Hn/8cQDAmDFjcPz4cYwYMQL16tXDlClT0KtXr0pfQ2V9IiLl4OpIIiKUvRqRiKg2cTiSiIiISAYMwoiIiIhkwOFIIiIiIhkwE0ZEREQkAwZhRERERDJgEEZEREQkAwZhRERERDJgEEZEREQkAwZhRERERDJgEEZEREQkAwZhRERERDJgEEZEREQkg/8PWOYDR7Ixe24AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABt7klEQVR4nO3deVxU1f8/8NcddhAGWWQRFMR9SUUTsaw0Evso5k/9aGamSVl9RUXNLXOpPubSpmZmloWV5t4ibpFbqUTmGqakhAsBKoMMuIEw5/fHNNcZZoABgQHm9Xw85gHce+bOufdD8v6c8z7vIwkhBIiIiIioRiks3QEiIiIia8QgjIiIiMgCGIQRERERWQCDMCIiIiILYBBGREREZAEMwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiMoUFxcHSZJw4cIFS3eFqF5hEEZEFnfkyBHExMSgXbt2cHFxQZMmTTB06FD89ddfRm0fe+wxSJIESZKgUCjg5uaGVq1aYeTIkUhISKjQ527btg2PPvooGjVqBGdnZzRr1gxDhw7Frl27qurWjLz99tv47rvvjI4fPnwY8+bNQ25ubrV9dknz5s2Tn6UkSXB2dkbbtm3x+uuvIy8vr0o+Y926dViyZEmVXIuovmEQRkQWt2jRImzZsgWPP/44li5dirFjx+Lnn39GaGgokpOTjdoHBATgq6++wpdffol33nkHAwYMwOHDh9GnTx8MGzYMd+/eLfcz3333XQwYMACSJGHmzJn44IMPMHjwYJw7dw7r16+vjtsEUHYQ9sYbb9RoEKbz8ccf46uvvsL777+P1q1bY/78+ejbty+qYmthBmFEpbO1dAeIiCZPnox169bB3t5ePjZs2DB06NABCxcuxNdff23QXqlU4tlnnzU4tnDhQkyYMAErVqxAUFAQFi1aVOrnFRUV4a233sITTzyBH3/80ej81atX7/OOao9bt27B2dm5zDZDhgyBl5cXAODll1/G4MGDsXXrVvz6668IDw+viW4SWSWOhBGRxfXo0cMgAAOAFi1aoF27djhz5oxZ17CxscGyZcvQtm1bLF++HGq1utS22dnZyMvLw0MPPWTyfKNGjQx+vnPnDubNm4eWLVvC0dERfn5+GDRoEFJTU+U27777Lnr06AFPT084OTmhS5cu2Lx5s8F1JEnCzZs3sWbNGnkKcPTo0Zg3bx6mTp0KAAgODpbP6edgff311+jSpQucnJzg4eGBp59+GpcvXza4/mOPPYb27dvj6NGjeOSRR+Ds7IzXXnvNrOenr3fv3gCAtLS0MtutWLEC7dq1g4ODA/z9/TFu3DiDkbzHHnsM27dvx8WLF+V7CgoKqnB/iOorjoQRUa0khMCVK1fQrl07s99jY2OD4cOHY/bs2Th48CD69etnsl2jRo3g5OSEbdu2Yfz48fDw8Cj1msXFxejfvz/27NmDp59+GhMnTkR+fj4SEhKQnJyMkJAQAMDSpUsxYMAAjBgxAoWFhVi/fj3++9//Ij4+Xu7HV199hRdeeAHdunXD2LFjAQAhISFwcXHBX3/9hW+++QYffPCBPCrl7e0NAJg/fz5mz56NoUOH4oUXXsC1a9fw4Ycf4pFHHsHx48fh7u4u91elUuHJJ5/E008/jWeffRY+Pj5mPz8dXXDp6elZapt58+bhjTfeQEREBF555RWkpKTg448/xpEjR3Do0CHY2dlh1qxZUKvVSE9PxwcffAAAaNCgQYX7Q1RvCSKiWuirr74SAMTq1asNjj/66KOiXbt2pb7v22+/FQDE0qVLy7z+nDlzBADh4uIinnzySTF//nxx9OhRo3aff/65ACDef/99o3MajUb+/tatWwbnCgsLRfv27UXv3r0Njru4uIhRo0YZXeudd94RAERaWprB8QsXLggbGxsxf/58g+N//PGHsLW1NTj+6KOPCgBi5cqVpd63vrlz5woAIiUlRVy7dk2kpaWJTz75RDg4OAgfHx9x8+ZNIYQQX3zxhUHfrl69Kuzt7UWfPn1EcXGxfL3ly5cLAOLzzz+Xj/Xr1080bdrUrP4QWRtORxJRrXP27FmMGzcO4eHhGDVqVIXeqxtpyc/PL7PdG2+8gXXr1qFz587YvXs3Zs2ahS5duiA0NNRgCnTLli3w8vLC+PHjja4hSZL8vZOTk/z99evXoVar0bNnTxw7dqxC/S9p69at0Gg0GDp0KLKzs+WXr68vWrRogX379hm0d3BwwPPPP1+hz2jVqhW8vb0RHByMl156Cc2bN8f27dtLzSX76aefUFhYiNjYWCgU9/6MvPjii3Bzc8P27dsrfqNEVojTkURUq2RlZaFfv35QKpXYvHkzbGxsKvT+GzduAABcXV3LbTt8+HAMHz4ceXl5SEpKQlxcHNatW4eoqCgkJyfD0dERqampaNWqFWxty/7nMj4+Hv/73/9w4sQJFBQUyMf1A7XKOHfuHIQQaNGihcnzdnZ2Bj83btzYKL+uPFu2bIGbmxvs7OwQEBAgT7GW5uLFiwC0wZs+e3t7NGvWTD5PRGVjEEZEtYZarcaTTz6J3Nxc/PLLL/D396/wNXQlLZo3b272e9zc3PDEE0/giSeegJ2dHdasWYOkpCQ8+uijZr3/l19+wYABA/DII49gxYoV8PPzg52dHb744gusW7euwvegT6PRQJIk7Ny502RAWjLHSn9EzlyPPPKInIdGRDWHQRgR1Qp37txBVFQU/vrrL/z0009o27Ztha9RXFyMdevWwdnZGQ8//HCl+tG1a1esWbMGmZmZALSJ80lJSbh7967RqJPOli1b4OjoiN27d8PBwUE+/sUXXxi1LW1krLTjISEhEEIgODgYLVu2rOjtVIumTZsCAFJSUtCsWTP5eGFhIdLS0hARESEfu9+RQKL6jDlhRGRxxcXFGDZsGBITE7Fp06ZK1aYqLi7GhAkTcObMGUyYMAFubm6ltr116xYSExNNntu5cyeAe1NtgwcPRnZ2NpYvX27UVvxbzNTGxgaSJKG4uFg+d+HCBZNFWV1cXEwWZHVxcQEAo3ODBg2CjY0N3njjDaPiqUIIqFQq0zdZjSIiImBvb49ly5YZ9Gn16tVQq9UGq1JdXFzKLBdCZM04EkZEFjdlyhT88MMPiIqKQk5OjlFx1pKFWdVqtdzm1q1bOH/+PLZu3YrU1FQ8/fTTeOutt8r8vFu3bqFHjx7o3r07+vbti8DAQOTm5uK7777DL7/8goEDB6Jz584AgOeeew5ffvklJk+ejN9++w09e/bEzZs38dNPP+H//u//8NRTT6Ffv354//330bdvXzzzzDO4evUqPvroIzRv3hynTp0y+OwuXbrgp59+wvvvvw9/f38EBwcjLCwMXbp0AQDMmjULTz/9NOzs7BAVFYWQkBD873//w8yZM3HhwgUMHDgQrq6uSEtLw7fffouxY8fi1Vdfva/nX1He3t6YOXMm3njjDfTt2xcDBgxASkoKVqxYgQcffNDgf68uXbpgw4YNmDx5Mh588EE0aNAAUVFRNdpfolrLkksziYiEuFdaobRXWW0bNGggWrRoIZ599lnx448/mvV5d+/eFZ9++qkYOHCgaNq0qXBwcBDOzs6ic+fO4p133hEFBQUG7W/duiVmzZolgoODhZ2dnfD19RVDhgwRqampcpvVq1eLFi1aCAcHB9G6dWvxxRdfyCUg9J09e1Y88sgjwsnJSQAwKFfx1ltvicaNGwuFQmFUrmLLli3i4YcfFi4uLsLFxUW0bt1ajBs3TqSkpBg8m7LKd5Sk69+1a9fKbFeyRIXO8uXLRevWrYWdnZ3w8fERr7zyirh+/bpBmxs3bohnnnlGuLu7CwAsV0GkRxKiCjYHIyIiIqIKYU4YERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2Cx1lpMo9EgIyMDrq6u3PqDiIiojhBCID8/H/7+/lAoSh/vYhBWi2VkZCAwMNDS3SAiIqJKuHz5MgICAko9zyCsFnN1dQWg/R+xrH3wiIiIqPbIy8tDYGCg/He8NAzCajHdFKSbmxuDMCIiojqmvFQiJuYTERERWQCDMCIiIiILYBBGREREZAHMCavjNBoNCgsLLd2Nes3e3r7MJcZERESVwSCsDissLERaWho0Go2lu1KvKRQKBAcHw97e3tJdISKieoRBWB0lhEBmZiZsbGwQGBjIkZpqoiuYm5mZiSZNmrBoLhERVRkGYXVUUVERbt26BX9/fzg7O1u6O/Wat7c3MjIyUFRUBDs7O0t3h4iI6ok6M3wyYMAANGnSBI6OjvDz88PIkSORkZFh0EYIgXfffRctW7aEg4MDGjdujPnz5xu02b9/P0JDQ+Hg4IDmzZsjLi7O6LM++ugjBAUFwdHREWFhYfjtt98Mzt+5cwfjxo2Dp6cnGjRogMGDB+PKlSsGbS5duoR+/frB2dkZjRo1wtSpU1FUVFQ1DwNAcXExAHCKrAbonrHumRMREVWFOhOE9erVCxs3bkRKSgq2bNmC1NRUDBkyxKDNxIkT8dlnn+Hdd9/F2bNn8cMPP6Bbt27y+bS0NPTr1w+9evXCiRMnEBsbixdeeAG7d++W22zYsAGTJ0/G3LlzcezYMXTs2BGRkZG4evWq3GbSpEnYtm0bNm3ahAMHDiAjIwODBg2SzxcXF6Nfv34oLCzE4cOHsWbNGsTFxWHOnDlV/lw4PVb9+IyJiKhaiDrq+++/F5IkicLCQiGEEH/++aewtbUVZ8+eLfU906ZNE+3atTM4NmzYMBEZGSn/3K1bNzFu3Dj55+LiYuHv7y8WLFgghBAiNzdX2NnZiU2bNsltzpw5IwCIxMREIYQQO3bsEAqFQmRlZcltPv74Y+Hm5iYKCgrMvke1Wi0ACLVabXTu9u3b4s8//xS3b982+3pUOXzWRET1Q3Z2tsjIyCj1lZ2dXSWfU9bfb311MicsJycHa9euRY8ePeQcnW3btqFZs2aIj49H3759IYRAREQEFi9eDA8PDwBAYmIiIiIiDK4VGRmJ2NhYANrVhkePHsXMmTPl8wqFAhEREUhMTAQAHD16FHfv3jW4TuvWrdGkSRMkJiaie/fuSExMRIcOHeDj42PwOa+88gpOnz6Nzp07m7yvgoICFBQUyD/n5eXdx1MiIiIiHZVKheXLl5fbLiYmBp6enjXQozo0HQkA06dPh4uLCzw9PXHp0iV8//338rm///4bFy9exKZNm/Dll18iLi4OR48eNZiyzMrKMgiMAMDHxwd5eXm4ffs2srOzUVxcbLJNVlaWfA17e3u4u7uX2cbUNXTnSrNgwQIolUr5FRgYaOaTqTtGjx4NSZIgSRLs7Ozg4+ODJ554Ap9//nmFSm3ExcUZ/W9ARERUGnNratZk7U2LBmEzZsyQ/yCX9jp79qzcfurUqTh+/Dh+/PFH2NjY4LnnnoMQAoC2lEBBQQG+/PJL9OzZE4899hhWr16Nffv2ISUlxVK3WCEzZ86EWq2WX5cvX662z1KpVMjMzCz1pVKpqu2z+/bti8zMTFy4cAE7d+5Er169MHHiRPTv379KFy8QEZF10/9bl52dbenuGLHodOSUKVMwevToMts0a9ZM/t7LywteXl5o2bIl2rRpg8DAQPz6668IDw+Hn58fbG1t0bJlS7l9mzZtAGhXKrZq1Qq+vr5GqxivXLkCNzc3ODk5wcbGBjY2Nibb+Pr6AgB8fX1RWFiI3Nxcg5GYkm1KrqjUXVPXxhQHBwc4ODiU+TyqgqWHZB0cHOTn0LhxY4SGhqJ79+54/PHHERcXhxdeeAHvv/8+vvjiC/z999/w8PBAVFQUFi9ejAYNGmD//v14/vnnAdxLmp87dy7mzZuHr776CkuXLkVKSgpcXFzQu3dvLFmyBI0aNary+yAiotrL3L91lmTRkTBvb2+0bt26zFdpJRh0U1e6HKqHHnoIRUVFSE1Nldv89ddfAICmTZsCAMLDw7Fnzx6D6yQkJCA8PByAthRBly5dDNpoNBrs2bNHbtOlSxfY2dkZtElJScGlS5fkNuHh4fjjjz8MVlQmJCTAzc0Nbdu2rcSTqlq1cUi2d+/e6NixI7Zu3QpAm4u3bNkynD59GmvWrMHevXsxbdo0AECPHj2wZMkSuLm5yf8P59VXXwUA3L17F2+99RZOnjyJ7777DhcuXCg30CciovpBf+SrZBmrktRqV6SlBUGtdq2h3hmrE4n5SUlJOHLkCB5++GE0bNgQqampmD17NkJCQuTAJyIiAqGhoRgzZgyWLFkCjUaDcePG4YknnpBHx15++WUsX74c06ZNw5gxY7B3715s3LgR27dvlz9r8uTJGDVqFLp27Ypu3bphyZIluHnzpjzyolQqER0djcmTJ8PDwwNubm4YP348wsPD0b17dwBAnz590LZtW4wcORKLFy9GVlYWXn/9dYwbN65GRrrqqtatW+PUqVMAIC+WAICgoCD873//w8svv4wVK1bA3t4eSqUSkiQZjSyOGTNG/r5Zs2ZYtmwZHnzwQdy4cQMNGjSokfsgIqKao1KpUFhYCLVajQ0bNpj1nmPHOmPbtv4QQgFJ0iAqKh6hoceruafG6kQQ5uzsjK1bt2Lu3Lm4efMm/Pz80LdvX7z++utyUKNQKLBt2zaMHz8ejzzyCFxcXPDkk0/ivffek68THByM7du3Y9KkSVi6dCkCAgLw2WefITIyUm4zbNgwXLt2DXPmzEFWVhY6deqEXbt2GSTaf/DBB1AoFBg8eDAKCgoQGRmJFStWyOdtbGwQHx+PV155BeHh4XBxccGoUaPw5ptv1sDTqruEEPL04k8//YQFCxbg7NmzyMvLQ1FREe7cuYNbt26VuUPA0aNHMW/ePJw8eRLXr1+XR0wvXbpUK0YhiYio6lRkylGtdkVOjifs7ArkAAwAhFBg27b+CAk5D6Uyvzq7a6ROBGEdOnTA3r17y23n7++PLVu2lNnmsccew/HjZUe7MTExiImJKfW8o6MjPvroI3z00UeltmnatCl27NhRdofJwJkzZxAcHIwLFy6gf//+eOWVVzB//nx4eHjg4MGDiI6ORmFhYalB2M2bNxEZGYnIyEisXbsW3t7euHTpEiIjI2t0apWIiGqGuf+26498ARqUzMYSQoGcHA8GYWSd9u7diz/++AOTJk3C0aNHodFo8N5778kbk2/cuNGgvb29vdE2QmfPnoVKpcLChQvl8h6///57zdwAERHVKqWNfGkDMAHg3m4okqSBh0cOgJrdDpBBGNW4goICZGVlobi4GFeuXMGuXbuwYMEC9O/fH8899xySk5Nx9+5dfPjhh4iKisKhQ4ewcuVKg2sEBQXhxo0b2LNnDzp27AhnZ2c0adIE9vb2+PDDD/Hyyy8jOTkZb731loXukoiILKVkzte9AExHko8rFAKLF+fhmWeGw97evsYKtQJ1rFgr1Q+7du2Cn58fgoKC0LdvX+zbtw/Lli3D999/DxsbG3Ts2BHvv/8+Fi1ahPbt22Pt2rVYsGCBwTV69OiBl19+GcOGDYO3tzcWL14Mb29vxMXFYdOmTWjbti0WLlyId99910J3SURElqBWuxrlfGlHvu6RJA2ioz/DqFFx+O23q5gyxR1+fn41GoABgCR01U6p1snLy4NSqYRarYabm5vBuTt37iAtLQ3BwcFwdHSs0HUtXSesrrmfZ01ERNUnMzMTq1atMjiWlhaENWtGmWitzQUruRqyOv7WlfX3Wx+nI62Qp6cnYmJiykxorOkhWSIiopJ05SdKo1arjY55eKiMpiB1I19379pjxIgwtG//IIAHLf63jkGYlWKARUREtVllK94rlfmIioo3qgMWEJAJAAgNjao1fwMZhBEREVGtU5nSQroVkSEh5xEbuwQ5OR7w8MjBiy8+CXd3y498lcQgjIiIiGo9XYDl4aEyqOc1dOhQuLu7Y906J7z5phIajfTvikc1pk69XesCL30MwoiIiKhWK2ubIXd3dxQX+2HaNODfTVKg0UiYPt0dw4a5o5bGXwAYhBEREZGFlJV4n52dDcB0yYmS2wydO3cvANMpLgbOnwcCAqqv//eLQRgRERHVOHMT73NyPI2KrZbcZqhFC0ChMAzEbGyA5s2rtMtVjsVaiYiIqMaZm3ivKzmhT3+bIUA72rVqlTbwArRfP/mkdo+CAQzCiIiIqBZQq12RlhYEtdrV4Liu5IQuENPlhJXcbDs6GrhwAdi3T/s1OrqGOn4fOB1J9cr+/fvRq1cvXL9+He7u7ma9JygoCLGxsYiNja3WvhERWRtzcr6AshPvASA09DhCQs7LJSf0AzD9DbcDAmr/6Jc+BmFUo0aPHo01a9bgpZdeMtqUe9y4cVixYgVGjRqFuLg4y3SQiIiqhLk5X+Ul3g8aNAheXl4m31uby0+Yg0EY1bjAwECsX78eH3zwAZycnABo92dct24dmjRpYuHeERFRZemPfOmPdJWlvMR7Ly8v+Pn5VXlfawPmhFGNCw0NRWBgILZu3Sof27p1K5o0aYLOnTvLxwoKCjBhwgQ0atQIjo6OePjhh3HkyBGDa+3YsQMtW7aEk5MTevXqhQsXLhh93sGDB9GzZ084OTkhMDAQEyZMwM2bN6vt/oiIrJFu5GvVqlVYtWqVwb/xZTEn8b6+YhBGSE/XJjKmp9fcZ44ZMwZffPGF/PPnn3+O559/3qDNtGnTsGXLFqxZswbHjh1D8+bNERkZiZwc7X+Yly9fxqBBgxAVFYUTJ07ghRdewIwZMwyukZqair59+2Lw4ME4deoUNmzYgIMHDyImJqb6b5KIyIpUZpshwPzE+/qI05FWbvVqYOxYbW0VhUK7xLcmVpQ8++yzmDlzJi5evAgAOHToENavX4/9+/cDAG7evImPP/4YcXFxePLJJwEAn376KRISErB69WpMnToVH3/8MUJCQvDee+8BAFq1aoU//vgDixYtkj9nwYIFGDFihJx036JFCyxbtgyPPvooPv74Yzg6Olb/zRIRUanbDgHmJ97XNwzCrFh6+r0ADNB+feklIDKy+leXeHt7o1+/foiLi4MQAv369TNIvExNTcXdu3fx0EMPycfs7OzQrVs3nDlzBgBw5swZhIWFGVw3PDzc4OeTJ0/i1KlTWLt2rXxMCAGNRoO0tDS0adOmOm6PiIj0lLX6sT4n3peHQZgVs/Q2D2PGjJGnBT/66KNq+YwbN27gpZdewoQJE4zOcREAEVHlmCo9UTIRXzfyZWdXUObqx/qceF8eBmFWzNLbPPTt2xeFhYWQJAmRkZEG50JCQmBvb49Dhw6hadOmAIC7d+/iyJEj8tRimzZt8MMPPxi879dffzX4OTQ0FH/++Sea1/a9K4iI6ghzSk+UHPkqb9sha8XEfCtm6W0ebGxscObMGfz555+w0XXiXy4uLnjllVcwdepU7Nq1C3/++SdefPFF3Lp1C9H/Jq29/PLLOHfuHKZOnYqUlBSsW7fOqL7Y9OnTcfjwYcTExODEiRM4d+4cvv/+eybmExFVgEqlQmZmJjIzM5GRkVFmW1N1vwBh0EZ/9WN9zvkqD0fCrFx0tDYH7Px57QhYTVcadnNzK/XcwoULodFoMHLkSOTn56Nr167YvXs3GjZsCEA7nbhlyxZMmjQJH374Ibp164a3334bY8aMka/xwAMP4MCBA5g1axZ69uwJIQRCQkIwbNiwar83IqL6oLyRr5IJ96bqfgESAA0ABRQKgcWL8/DMM8Prfc5XeSQhhCi/GVlCXl4elEol1Gq1UbBy584dpKWlITg4mCv8qhmfNRFZs8zMTKxatcrkOVMJ9yEh57FkSaxBICZJGkRHf4a7d+0xZcpT6NChYU113yLK+vutj9ORREREVGGlbTcEAFFR8VAotGM8NjYC77yThzffjMJ770XV+wCsIjgdSURERGbTTT/evOlcasJ9aOhxzJkThvx8HzRvLiEgwB2AuyW6W6sxCCMiIiKzlJx+1OV56egn3Pv7a2CllSfMxulIIiIiKpep6UdJArSBmHVtN1RVOBJWx3FdRfXjMyYia5Geri3k3aKF8Wp5U6sehVBgyJCNcHG5ZVXbDVUVBmF1lK6uVmFhIZycnCzcm/pNVxW6ZC0zIqK6rGTV+3XrnDBtmhIajQSFQuD9929i4sQG8nkPD5VR4VVJ0iAwMB1KZb7B9kPWXnrCXAzC6ihbW1s4Ozvj2rVrsLOzg0LBmeXqoNFocO3aNTg7O8PWlv+5EFHdp1KpcO3aNWzYsEE+pla7/ltWQgIAaDQSJk1yRseO5xEYqD2mVOYjKireqCSFbvTL39+fgVcF8a9KHSVJEvz8/JCWloaLFy9aujv1mkKhQJMmTSBpkx+IiOqskoVXdSsdr10zPdUYF3cQwcEX8eyzz8LZ2RkAMGfONVy4YIugoCL4+z8I4EGOfFUSg7A6zN7eHi1atDDaRJWqlr29PUcaiaheuHr1qvz9sWOd8cMP/aFdo2ec+6q/0tHZ2VneZNvPD+jSpSZ6W/8xCKvjFAoFq7gTEZFZioqKAGhHwO4FYIB2WyF9XOlYExiEERERWZnLlwNRVpWqIUM2o337MzXXISvFORYiIiKS6VY8UvXjSBgREVE9ol96IiNDgbQ0WwQHF8HfX4Pr168DAAIDL0ObB2Y4DcmCqzWLQRgREVE9ob/6seQWQ1FR8QgNPQ5AW25iwIBtehXwNejRIxFhYUkMwGoQgzAiIqI6Tjf6lZ2dDbXaFZcvBxok3guhwLZt/REScl4OskJDjyMk5DxycjyMqt1TzWAQRkREVAfpAi+1Wi0XXtWOfsUa1fwCtIFYTo6HQbClVOabFXxxC6LqwSCMiIiojjFVdPXy5UCDDbZL0q/7VZ6hQ4fC3d0dALcgqk4MwoiIiOoY/SLd+rlfpSmZcK+/z2NJDLpqDoMwIiKiOkqtdi139Gvw4M3yJts6Xl5ecgV8shwGYURERHVUTo7xno86utEvFl2tvRiEERER1SL6db5M0U+S9/BQQZI0JQIxDYYMMR79otqHQRgREVEtYSrhPifHEx4eKoOAaujQoQC0qxujouKN6oGVN/rF1Y61A4MwIiKiWqK0hPuSxVZ1G3ED5tf70iXjM/G+9mAQRkREVMuUTLg3VWxVnzn1vvz9/Rl81TIMwoiIiCzA1B6PSmUuANMJ9/rFVu3s7Mz6DF29L45+1U4MwoiIiGpY6Xs8NkRUVGeEhJw3SrjXL7aqVCoRExNTbgI/A6/ajUEYERFRDdNuN2Rc5V437Rgbu8Rkwr3+lCMDrLqPQRgREVEN0U1BrlpVjCVLyt7jkRts138MwoiIiGqAbgoyPd0Pq1e/YNYej+ZusE11E4MwIiKiaqZSqZCRkYFDh8KRkBABoOwq9+UFXqzzVT8wCCMiIqpGf/xxHe+9F4+//w7CL788AUAy0cp0lXtTG20z4b7+YBBGRERUxXS5X+vWOWHaNHdoNKMACJgKwMqqcs+Ntus3BmFERERVSKVSYf78Nbh8ORCbNw/GvcDL9AhYdPRnCAjIrMEeUm3BIIyIiKgKxcXZlLry0ZDAE0/8VGYAxtyv+o1BGBERUSWlpwPnzgEtWgABAcCRI8DUqUoIYWrUC9BNSUqSBhERP+GhhxKNWnCPR+vBIIyIiKgCDPO9lNBoJEiSwH/+cxs7djiVGoDpAi9//4wy634xD8x6MAgjIiIyk67Wl1rt+u+UozbgEkLC9u1OKC3xfvBg45WPpeEUpPVgEEZERGQm3V6NpjbYrujKx5IGDRoEf39/TkFaEQZhREREFeThoTLaYNtYxVY+MgCzPuUt3SAiIqISlMp8RET8BG2ivT7tz5KkwYAB8WYHYEOHDmUAZoU4EkZERFQJupWNum2IzE28N8Xd3b16Okm1GoMwIiKiSnrooUS0b5+MnByPCgde+piMb53qzHTkgAED0KRJEzg6OsLPzw8jR45ERkaGfH7evHmQJMno5eLiYnCdTZs2oXXr1nB0dESHDh2wY8cOg/NCCMyZMwd+fn5wcnJCREQEzp07Z9AmJycHI0aMgJubG9zd3REdHY0bN24YtDl16hR69uwJR0dHBAYGYvHixVX8RIiIqDZQKvMRHHzRrABs0KBBGDt2rMErJiaGU5FWqs4EYb169cLGjRuRkpKCLVu2IDU1FUOGDJHPv/rqq8jMzDR4tW3bFv/973/lNocPH8bw4cMRHR2N48ePY+DAgRg4cCCSk5PlNosXL8ayZcuwcuVKJCUlwcXFBZGRkbhz547cZsSIETh9+jQSEhIQHx+Pn3/+GWPHjpXP5+XloU+fPmjatCmOHj2Kd955B/PmzcOqVauq+SkREVFtpqsBpv9iAGa9JCFEyazCOuGHH37AwIEDUVBQADs7O6PzJ0+eRKdOnfDzzz+jZ8+eAIBhw4bh5s2biI+Pl9t1794dnTp1wsqVKyGEgL+/P6ZMmYJXX30VAKBWq+Hj44O4uDg8/fTTOHPmDNq2bYsjR46ga9euAIBdu3bhP//5D9LT0+Hv74+PP/4Ys2bNQlZWljzEPGPGDHz33Xc4e/as2feYl5cHpVIJtVoNNze3Sj8rIiKqGro6YZU1duxYFmK1Aub+/a4zI2H6cnJysHbtWvTo0cNkAAYAn332GVq2bCkHYACQmJiIiIgIg3aRkZFITNQmV6alpSErK8ugjVKpRFhYmNwmMTER7u7ucgAGABEREVAoFEhKSpLbPPLIIwZz/JGRkUhJScH169dLva+CggLk5eUZvIiIqPbw9PTEsGHDKv1+5n6RvjoVhE2fPh0uLi7w9PTEpUuX8P3335tsd+fOHaxduxbR0dEGx7OysuDj42NwzMfHB1lZWfJ53bGy2jRq1MjgvK2tLTw8PAzamLqG/meYsmDBAiiVSvkVGBhYalsiIrp/6enAvn3ar+ZSKpUV/pxBgwYx94uMWDQImzFjhslkev2X/vTd1KlTcfz4cfz444+wsbHBc889B1Ozqd9++y3y8/MxatSomryd+zZz5kyo1Wr5dfnyZUt3iYioXkpPB6ZOBZo0AXr3Bpo2BVavrr7PYyFWMsWiJSqmTJmC0aNHl9mmWbNm8vdeXl7w8vJCy5Yt0aZNGwQGBuLXX39FeHi4wXs+++wz9O/f32g0ytfXF1euXDE4duXKFfj6+srndcf05+yvXLmCTp06yW2uXr1qcI2ioiLk5OQYXMfU5+h/hikODg5wcHAo9TwREd2/1auBsWMBjebeMY0GeOklIDISCAioms8ZNGgQvLy8YG9vzwCMTLJoEObt7Q1vb+9KvVfz7389BQUFBsfT0tKwb98+/PDDD0bvCQ8Px549exAbGysfS0hIkIO44OBg+Pr6Ys+ePXLQlZeXh6SkJLzyyivyNXJzc3H06FF06dIFALB3715oNBqEhYXJbWbNmoW7d+/KOWsJCQlo1aoVGjZsWKn7JSKi+5eeDrz4opA33tZXXAwkJang5IQygyZz87o4+kXlEnXAr7/+Kj788ENx/PhxceHCBbFnzx7Ro0cPERISIu7cuWPQ9vXXXxf+/v6iqKjI6DqHDh0Stra24t133xVnzpwRc+fOFXZ2duKPP/6Q2yxcuFC4u7uL77//Xpw6dUo89dRTIjg4WNy+fVtu07dvX9G5c2eRlJQkDh48KFq0aCGGDx8un8/NzRU+Pj5i5MiRIjk5Waxfv144OzuLTz75pEL3rVarBQChVqsr9D4iIjJt3LibAhAmX5JULCZNek/MmzdPZGdnl3md7OxskZGRUeqrvPdT/Wbu3+86EYSdOnVK9OrVS3h4eAgHBwcRFBQkXn75ZZGenm7Qrri4WAQEBIjXXnut1Gtt3LhRtGzZUtjb24t27dqJ7du3G5zXaDRi9uzZwsfHRzg4OIjHH39cpKSkGLRRqVRi+PDhokGDBsLNzU08//zzIj8/36DNyZMnxcMPPywcHBxE48aNxcKFCyt83wzCiIjuz+XLQuzdq/166lSOUCg0pQRhxWLAgO/FvHnzxLx580RGRoalu051mLl/v+tsnTBrwDphRESVp5/7pVAIdO9+GIcPP2TUrl27P9CnT4JBxXvW86L7Ua/rhBEREZUlPd0w+V6jkZCYGA5AY9BOkjRGARhRTWEQRkRE9c65c4arHwFACAV69EiEJGlPSJIGUVHxDMDIYiy6OpKIiOh+pacDhw9rv+/RA3ByUsHNrQgKRSNoNPdWQUqSBmFhSQgLS0JOjgc8PHIYgJFFMQgjIqI6a/Vq4MUXtan1ACBJAlFRhxAaehz9+3fGtm39IYTCaNSLwRfVBgzCiIiozlGpVLhwoQgvvtjIoOaXEBK2beuPkJDzCA09jpCQ8xz1olqLQRgREdUpKpUK8+evwenT7SBEpNF5IRTIyfGAUpkvvyqKG21TTWAQRkREdUpcnA2WLImFEAoAAoBh9XtJ0sDDI6dS1x40aBAr3VON4epIIiKqM9LTgWnTlP8GYIA2ALtX7vJ+VzwyAKOaxJEwIiKqM7SlJ0ru+yjhkUf2oVGjawgMTK90APbss88yAKMaxSCMiIjqBJWq9NITXbocr1DwNWjQIHh5eck/29vbMwCjGscgjIiIaj2VSoXly5cDQJmlJ8zl5eXFbYnI4hiEERFRrVdYWCh/XxWlJ7j6kWoDBmFERFTnmFt6ouS0I8CpR6o9GIQREVG1SU/XJtO3aAEEBNT853PakWozlqggIqJqsXo10LQp0Lu39uvq1cZt0tOBffu0X4msDYMwIiKqcunpwNixgEaj/VmjAV56yTDYMidII6rPOB1JRERVQn/qUVvPy/B8cTFw/rz2+8OHTQdpkZFVO23JBHyqzRiEERHRfVu9+l5QpVAACxdqv+oHYjY2wJEjwOOPCxMFV7VBWlKSCk5OqHTivH4iPhPwqbbjdCQREd0XU1OPM2cKvPaaGpJ0b0uh4mKB6dNNB2CAtujqoUNrsHz5cqhUKoNz5o5o+fv7w8/PD35+fgzAqNbjSBgREd0X01OPEs6e3Q0hhuDeBtsShCj57n/PlCi6ql8XDNCOjMXExBgd18eRL6prGIQREdF9adHCeOpRkjTQBl/lTbhoMGTIZrP2fGSARfUNpyOJiKjSVCoVbGwysXhxLmxstMNculGtwMDL/wZj+jTyMUnSYMCAeLRvf6bSm24T1WUcCSMiokrR388RACZMcDXaSigqKt5on8f73XKIqL5gEEZERJVSMj/L1FZCpe3zyOCLiEEYERFVQno68Ouv9lCrXcsNqMzd55HI2jAIIyKiCrlXE8wTkhSLqKh4hIYet3S3iOocJuYTEZHZStYEE0KBbdv6Q612rdLPYaV7sgYcCSMiIrOoVCr8+qt2BEyfEArk5Hjc95Sjrto9632RtWAQRkREJunvBenkpF0JqVa7QpJiIcS9iRRJ0sDDI+e+P8/Lywt+fn73fR2iuoLTkUREZGT1aqBpU6B3b+3XuDgbANok+6ioeINaX/qV7onIfBwJIyIiA6b2gpw+XYkJE7QrIUsrO1Ga//znP9ixY0e5n8s8MLI2DMKIiKycbtqxQQPgn3/UOHNGQKNxN2hTXCwZ5H2VVnZCl9elo8vvatasGfd9JCqBQRgRkRXQz+8KCLh3/F65CQAQAJT/fjVkbt5XaXldDLCIjDEnjIioniuZ37V6tfZ4yWlH7Ybb+l///Yl5X0TVgiNhRET1mKn8rpdeArp1u46UFI1RuQlTBg/ejPbtz1RzT4msD4MwIqJ67Nw5/ZEureJi4L33voeHR45RuYmSJEmDwMD0au4lkXXidCQRUT2lUqng5nYFCoVhjpdCIeRVjfrlJu7lgmm/VmYakisciczHkTAionpIpdIWVwWA/v07Y9u2/hBCAUnSoH//e4GVfrkJO7tC3L1rL38trfxEyRWQOlzhSFQxDMKIiOoh/XIQ5dX1Kq3cRGlY2Z6oajAIIyKqA0orMWGuigZaRFT9mBNGRFTLlVZiwlKY90VUNTgSRkRUi5VWYiIysnIjYvdj0KBB8Pf3Z94XURXhSBgRUS1WWomJ8+drvi9eXl4MwIiqEIMwIqJarEULQFHiX2obG6B5c8v0h4iqDoMwIqJaSqVSwcYmE4sX58LGRlu7y8ZGYNGiXNjYZEKlUt33ZzzxxBPo1avXfV+HiCqOOWFERLWQfp0vAJgwwVUuMXHjRj5WrdIej4mJgaenp9HqSXOT51u1aoXCwkLs27evOm6DiMrAIIyIqBbSr/MFlF5iorCwEKtX30veVyiAVauA6GhPxMTEGF1Hn664qrkjalwVSVS1GIQREdVhGRmKMlZPmpdE7+lpfsBGRFWHQRgRUS2lVrsiJ8cTHh6qUgutnjhx0+TqyaQkFZycYHbgxACLqOYxCCMiqmXS04H5813xySex8n6PUVHxCA09btT29OnvIEnadjqSpMGhQ2uQnJwv54wRUe3D1ZFERLXI6tVAkybAypUN5MBKCAW2besPtdrVqL1SmY+oqHhIknY4TBew6UbOyppiJCLL4kgYEVEtoa2OLyCEZHROCAVycjxMTkuWt0E3EdVODMKIiGoBlUqFPXtuQqNpYvK8JGng4ZFT6vu5QTdR3cMgjIjIwnQ1wdRqV6P8LsB4ipGI6gcGYUREFqaftxUenojExPB/AzENevRIRFhYkkEANmjQIADA1q1ba7qrRFSFGIQREdUCx451xrZt/fWCr0NGwZeOl5dXzXeQiKqc2UFYXl6e2Rd1c3OrVGeIiKyNSqVCcnKuXgAGAAokJoYjLCzJon0joupldhDm7u4OSTJesaNPCAFJklBcXHzfHSMiqu90uWDJyW0hRBuDc2WthgTM30KIWw0R1V5mB2Hc3JWIqGoVFhbK05AllbcaklsNEdV9Zgdhjz76aHX2g4jI6mRkKEpMQ+qYtxqSARZR3VbpxPzc3FysXr0aZ86cAQC0a9cOY8aMgVKprLLOERHVZ2lptiYCMGDIkM1o3/5Mqe/jFCNR/VCpbYt+//13hISE4IMPPkBOTg5ycnLw/vvvIyQkBMeOHavqPhIR1TsqlQpK5VV5uyEdSdIgMDDd5HuGDh3KvSCJ6hFJCCEq+qaePXuiefPm+PTTT2Frqx1MKyoqwgsvvIC///4bP//8c5V31Brl5eVBqVRCrVZzxSlRLZaeDpw7B7RoAQQElH9cl5APGJamKG2j7kGDBsHf35/BF1EdYe7f70pNR/7+++8GARgA2NraYtq0aejatWtlLklEVCetXg2MHQtoNIBCAbz//g0MHZqPdeucMG2aEhqNBIVCYPFiNZ555jbs7e0NkunN2ffRy8uLARhRPVSpIMzNzQ2XLl1C69atDY5fvnwZrq6uVdIxIqLaTKVS4cKFIowd2wgajbZ8j0YDTJrkjOTkdVi9+gV5I26NRsLUqW7455/PoVTmY+jQoQbX4r6PRNapUkHYsGHDEB0djXfffRc9evQAABw6dAhTp07F8OHDq7SDRES1jW46MS0tCBrNKINzQihw6VITo4R7/bpfRUVFFfo8JuIT1U+VSsx/9913MWjQIDz33HMICgpCUFAQRo8ejSFDhmDRokVV3UcAwIABA9CkSRM4OjrCz88PI0eOREZGhkGb3bt3o3v37nB1dYW3tzcGDx6MCxcuGLTZv38/QkND4eDggObNmyMuLs7osz766CMEBQXB0dERYWFh+O233wzO37lzB+PGjYOnpycaNGiAwYMH48qVKwZtLl26hH79+sHZ2RmNGjXC1KlTK/wPLxHVTrrpRA8PlcnE+iZNLpk8XlbdL1MGDRrERHyieqxSQZi9vT2WLl2K69ev48SJEzhx4gRycnLwwQcfwMHBoar7CADo1asXNm7ciJSUFGzZsgWpqakYMmSIfD4tLQ1PPfUUevfujRMnTmD37t3Izs6WN7rVtenXrx969eqFEydOIDY2Fi+88AJ2794tt9mwYQMmT56MuXPn4tixY+jYsSMiIyNx9epVuc2kSZOwbds2bNq0CQcOHEBGRobB5xQXF6Nfv34oLCzE4cOHsWbNGsTFxWHOnDnV8myIqPLS04F9+7RfK0qpzEdUVLwccOkS6wMCMk0er+iUI3PBiOq3Sq2OrA1++OEHDBw4EAUFBbCzs8PmzZsxfPhwFBQUQKHQxpbbtm3DU089JbeZPn06tm/fjuTkZPk6Tz/9NHJzc7Fr1y4AQFhYGB588EF55ZJGo0FgYCDGjx+PGTNmQK1Ww9vbG+vWrZODwLNnz6JNmzZITExE9+7dsXPnTvTv3x8ZGRnw8fEBAKxcuRLTp0/HtWvXzJ5a4OpIoupVMql+1SogOrr892VmZmLVqlXyz2q1q8nE+tKODxo0CFu3bi33c8aOHQs/P7+K3RQRWZy5f78rNRJ2584dvPPOO/jPf/6Drl27IjQ01OBV3XJycrB27Vr06NEDdnZ2AIAuXbpAoVDgiy++QHFxMdRqNb766itERETIbRITExEREWFwrcjISCQmJgLQTjEcPXrUoI1CoUBERITc5ujRo7h7965Bm9atW6NJkyZym8TERHTo0EEOwHSfk5eXh9OnT1fDEyGiikpPvxeAAdqvL72kPV7R0TGlMh/BwReNRrpKO05EBFQyMT86Oho//vgjhgwZgm7dupW7sXdVmT59OpYvX45bt26he/fuiI+Pl88FBwfjxx9/xNChQ/HSSy+huLgY4eHh2LFjh9wmKyvLIDACAB8fH+Tl5eH27du4fv06iouLTbY5e/asfA17e3u4u7sbtcnKyirzc3TnSlNQUICCggL557y8vPIeCRFV0rlz9wIwneJiYOlS4P33Kz46VhG6/2NYHibkE9VvlQrC4uPjsWPHDjz00EP39eEzZswoN5H/zJkzcimMqVOnIjo6GhcvXsQbb7yB5557DvHx8ZAkCVlZWXjxxRcxatQoDB8+HPn5+ZgzZw6GDBmChISEGgsU78eCBQvwxhtvWLobRPWeSqWCm1sRFIp75SUAQKEQeO896JWWAF56SaBTp6sICrKtsvwspVLJzbeJqHJBWOPGjaukHtiUKVMwevToMts0a9ZM/t7LywteXl5o2bIl2rRpg8DAQPz6668IDw/HRx99BKVSicWLF8vtv/76awQGBiIpKQndu3eHr6+v0SrGK1euwM3NDU5OTrCxsYGNjY3JNr6+vgAAX19fFBYWIjc312A0rGSbkisqddfUtTFl5syZmDx5svxzXl4eAgMDy3w+RFQx+tXq+/c3rFbfvXsiDh82/D+XxcUSPvxwJ4KDL1bZSkUGWEQEVDIIe++99zB9+nSsXLkSTZs2rfSHe3t7w9vbu1Lv1fw7j6Cbvrt165ackK9jY2Nj0Lbk9CQAJCQkIDw8HID2H8YuXbpgz549GDhwoPzePXv2ICYmBoA298zOzg579uzB4MGDAQApKSm4dOmSfJ3w8HDMnz8fV69eRaNGjeTPcXNzQ9u2bUu9JwcHh2pbXUpEWmVVqweAxMTwEjW+BDIy/BEcfBHXrl2Dp6en2dOEQ4cONUpdYABGRDqVWh157do1DB06FD///DOcnZ2N8htycipWC6c8SUlJOHLkCB5++GE0bNgQqampmD17Nq5cuYLTp0/DwcEBe/fuRUREBObNmydPR7722ms4e/Yszpw5AycnJ6SlpaF9+/YYN24cxowZg71792LChAnYvn07IiMjAWhLVIwaNQqffPIJunXrhiVLlmDjxo04e/asnNf1yiuvYMeOHYiLi4ObmxvGjx8PADh8+DAAbYmKTp06wd/fH4sXL0ZWVhZGjhyJF154AW+//bbZ983VkURVr+TKxpIOHQpHQsITAO5NU0qSBrGxS6BU5sujYSqVitOJRGRSte4dOXz4cPzzzz94++234ePjU+35Vs7Ozti6dSvmzp2Lmzdvws/PD3379sXrr78ujxz17t0b69atw+LFi7F48WI4OzsjPDwcu3btgpOTEwBt8v727dsxadIkLF26FAEBAfjss8/kAAzQ7gZw7do1zJkzB1lZWejUqRN27dplkGj/wQcfQKFQYPDgwSgoKEBkZCRWrFghn7exsUF8fDxeeeUVhIeHw8XFBaNGjcKbb75Zrc+JiO6fv38m9AMwQFvt/vLlACiVZ+TAiwEWEd2vSo2EOTs7IzExER07dqyOPtG/OBJGVHXS07UrIt3criA+fmWp7dRqVyxZEmu07ZCu4OrKlQ+ydhcRlala64S1bt0at2/frnTniIhq0urVQNOmQO/eQLdujXDsWOdS2+qq4AOG9SuEUGDbtv7IyKjUP5tEREYq9a/JwoULMWXKFOzfvx8qlQp5eXkGLyKi2kClUuHo0SsYO1boFWWVsG1bf6jVpa/wDg09jiFDthgdF0KBkydvQqVSVVeXiciKVConrG/fvgCAxx9/3OC4EAKSJKG4uPj+e0ZEdB90pSjS0oKg0YwyOCeEAjk5HmVWsg8MvAxJ0hhMS0qSBsnJ3+Hy5XxurE1E961SQdi+ffuquh9ERPdFl/PVogUQEHCvFIWHh8pkMKUrSVEa3bSkfh0x/U24y1oZSURkjkoFYY8++qhZ7f7v//4Pb775Jry8vCrzMUREZjG1Efd//qM9V14wNWjQIHh5eSEtLQ0JCQkG1y1ZR4x7QBJRVapUEGaur7/+Gq+++iqDMCKqFiqVChcuFGHs2HvbD+m2Gtq5M1duV1Yw5eXlBT8/P9jb2xsFYYA2iGPwRUTVoVqDsEpUvyAiMktZOV/FxRLWrk1CcPC9Y+UFU56enoiJiUFGRga2bt1aXd0mIpJVaxBGRFRdzMn5UqtdkZPjCQ8PlVmjWZ6ensz1IqIawyCMiOq00nK+UlObGx0LDT1u6e4SEckYhBFRnWdqI279qve6QqshIeeZ30VEtQaDMCKqF/RzvtLSgoy2HSqtNpi9vX2ZP5fG3HZERKWp1iDs2Wef5Z6HRFSlVCoVCgsLkZ2dXWobDw8VtNsOma4NpitLYW9vb1RwVZegX1ZumKn3ERFVVKWDsNzcXPz222+4evUqNBrDPdaee+45AMDHH398f70jItKjWxGpU1rifWpqcwCS3jsNa4PpylKUhgEWEdWESgVh27Ztw4gRI3Djxg24ublBku79YydJkhyEERHdD92ol47+6NexY51NJt6r1a7Ytq0/9IMwSQJCQs7XZNeJiMpVqSBsypQpGDNmDN5++204OztXdZ+IiMoY9dJuvK0LwIB7iff29gXyz/rM2SuSiKimVSoI++effzBhwgQGYERUbfRHwEqOeoWHJ5oMtDZv/i8kSYOy8sGIiGoLRflNjEVGRuL333+v6r4QERnRTS/qj3odPhz+b7BlTBuoAdpADEZ7RQJc2UhEtYPZI2E//PCD/H2/fv0wdepU/Pnnn+jQoQPs7OwM2g4YMKDqekhEVi0nx9No1AtQoFmzcyYS8LWEUGDIkI1wcblltFfk0KFDmXhPRLWC2UHYwIEDjY69+eabRsckSUJxcfF9dYqI6reSCfcl6Y9UlbYtUWpqCEwFYLrzgYHpJnPA3N3dK91vIqKqZHYQVrIMBRFRZZRMuC/NsGHDAJjelig8PBGHDz9k8n2mph+JiGqjSiXmf/nllxg2bBgcHBwMjhcWFmL9+vUsUUFEpSo5AlZara+7d+/K35valigxMbzENKUGQ4ZsLnUEjIiotqlUYv7zzz8PtVptdDw/Px/PP//8fXeKiKzDsWOdsWRJLNasGYUlS2Jx7Fhn+Vx+/r1A6l6gliNvTxQVFS8n50uSBgMGxKN9+zPlBmBMyiei2qJSI2FCCIMCrTrp6elQKpX33Skiqv9MrXrU32Q7ISEBQOlFWUuOjpUWfOm2KAK43RAR1S4VCsI6d+4MSZIgSRIef/xx2Nree3txcTHS0tLQt2/fKu8kEdU/plY9liyqWl6gpr9pd2nK26KIiMhSKhSE6VZInjhxApGRkWjQoIF8zt7eHkFBQRg8eHCVdpCI6pfc3FwApa961C+qak6gRkRUV1UoCJs7dy4AICgoCMOGDYOjo2O1dIqI6ieVSoWNGzcCML3qseSqRnMCNSKiuqpSOWGjRo0CoF3ldPXqVaPyFU2aNLn/nhFRnVNe/S/dKJiOLq/r8uUAABICAy8bnDcnUCsPE/GJqLaqVBB27tw5jBkzBocPHzY4rkvYZ7FWIutjbv0vfWq1K5KSwnD4cDgAw8R7nbIS8Pv06WOQFgEAtra2ckFWJuITUW1WqSBs9OjRsLW1RXx8PPz8/EyulCQi62Ju/S8d/VWPOiUT73VKS8APCgpi0j0R1VmVCsJOnDiBo0ePonXr1lXdHyKqB0orK6FTctWjPibeE5G1qFSx1rZt2yI7O7uq+0JE9UBpZSXUale5jelNubUqknjPfC8iqssqNRK2aNEiTJs2DW+//TY6dOgAOzs7g/Nubm5V0jkiqnvMKSthatWjlmHivX6h1ZKY70VEdV2lgrCIiAgAQO/evQ3ywZiYT0TmlJUobVPusLAkg2lIFlolovqsUkHYvn37qrofRFRPmFtWwtxth4iI6qtKBWGPPvoofvnlF3zyySdITU3F5s2b0bhxY3z11VcIDg6u6j4SUR1TVoA1bNgwCCGwcePGcrcdYs4XEdVnlQrCtmzZgpEjR2LEiBE4fvw4CgoKAABqtRpvv/02duzYUaWdJKLar2TAVFqA5e3tDU9PT8TExJRZ2JU5X0RU30lCCFHRN3Xu3BmTJk3Cc889B1dXV5w8eRLNmjXD8ePH8eSTTyIrK6s6+mp18vLyoFQqoVarudiB6oTyKuYzsCIia2Du3+9KjYSlpKTgkUceMTquVCqNtiUhIuvBAIuIyHyVCsJ8fX1x/vx5BAUFGRw/ePAgmjVrVhX9IqJK4mgUEVHdUKkg7MUXX8TEiRPx+eefQ5IkZGRkIDExEa+++ipmz55d1X0kIjOV3L+xtK2DYmJiGIgREVlYpYKwGTNmQKPR4PHHH8etW7fwyCOPwMHBAa+++irGjx9f1X0kIjPpj4CVtXVQWSNlpnB0jYio6lUqCJMkCbNmzcLUqVNx/vx53LhxA23btkWDBg2qun9EVAmlbR1UcmNsc5QcXSsNR9eIiCqmUkGYjr29Pdq2bVtVfSGiKmLO1kHmKjkCVtoUZ0VH14iIrN19BWFEVPPKmhrMzs4GYN7WQZVR1hQnERFVDIMwolqotEBLrVZjw4YN5b7f3K2DKqIqpziJiIhBGFGtY24OVnmqem/GqpziJCIiBmFEtY65OVjlnQNK3zqoMqpripOIyFoxCCOqxcrKwbqf/KzKbIxdHVOcRETWjEEYUS1VVg4WgDLzswYNGgQvLy+T172fml5VPcVJRGTNGIQR1VJl5WABUpn5WV5eXvDz86uSfpQcNSttirMyo2tERNaMQRhRLVVeDlZN5Wd5enoiJiaGFfOJiKoYgzCiWqq8HKyazM9igEVEVPUYhBHVYmXlYJV1jlODRES1H4MwolrG3BysoUOHwt3d3eT7OXJFRFT7MQgjqmWYg0VEZB0YhBHVQgywiIjqP0X5TYiIiIioqjEIIyIiIrIABmFEREREFsCcMCILUqlUTMAnIrJSDMKILESlUmH58uXltouJiWEgRkRUD3E6kshCyhoBq0w7IiKqWzgSRlTHlJzCzM3NRVFREQAgK8sWGRkuaN/eAf7+GgCc0iQiqq0YhBHVIWVNYR471tloL8nQ0OMAOKVJRFQbMQgjMqG2JsyX1ie12lUOwABACAW2beuPkJDzUCrzOaVJRFQLMQgjKqE6EuZNBXXZ2dmV6p8+tdoVOTmeuHnTWQ7AdIRQICfHw+S+k0REZHkMwohKqOqEeXODOl1A5eGhMitwKjn9CGigv9ZGkjTw8Mgxq49ERFTz6szqyAEDBqBJkyZwdHSEn58fRo4ciYyMDIM2GzduRKdOneDs7IymTZvinXfeMbrO/v37ERoaCgcHBzRv3hxxcXFGbT766CMEBQXB0dERYWFh+O233wzO37lzB+PGjYOnpycaNGiAwYMH48qVKwZtLl26hH79+sHZ2RmNGjXC1KlT5eRpsi7mBGvHjnXGkiWxWLNmFJYsicWxY53LbG9q+lGSAG0gBjknjKNgRES1V50Jwnr16oWNGzciJSUFW7ZsQWpqKoYMGSKf37lzJ0aMGIGXX34ZycnJWLFiBT744AODEYi0tDT069cPvXr1wokTJxAbG4sXXngBu3fvltts2LABkydPxty5c3Hs2DF07NgRkZGRuHr1qtxm0qRJ2LZtGzZt2oQDBw4gIyMDgwYNks8XFxejX79+KCwsxOHDh7FmzRrExcVhzpw51fyUqC4qLZ9LrXYFoM0/Kyknx9Pk9OOQIZsxalQcYmOXyEn5RERUO0lCCGHpTlTGDz/8gIEDB6KgoAB2dnZ45plncPfuXWzatElu8+GHH2Lx4sW4dOkSJEnC9OnTsX37diQnJ8ttnn76aeTm5mLXrl0AgLCwMDz44INy8KbRaBAYGIjx48djxowZUKvV8Pb2xrp16+Qg8OzZs2jTpg0SExPRvXt37Ny5E/3790dGRgZ8fHwAACtXrsT06dNx7do1k39UTcnLy4NSqYRarYabm1uVPDcqX2ZmJlatWlVuu7Fjx8LPz+++r5eWFoQ1a0YZHd+8WYXHHoNB3pnuWmq1K5YsiTUIxCRJg9jYJSZHv8ztKxER3T9z/37XmZEwfTk5OVi7di169OgBOzs7AEBBQQEcHR0N2jk5OSE9PR0XL14EACQmJiIiIsKgTWRkJBITEwFop42OHj1q0EahUCAiIkJuc/ToUdy9e9egTevWrdGkSRO5TWJiIjp06CAHYLrPycvLw+nTp0u9r4KCAuTl5Rm8qP7z8FD9m9N1j40NEBbmWWriv1KZj6ioePl9nH4kIqp76lQQNn36dLi4uMDT0xOXLl3C999/L5+LjIzE1q1bsWfPHmg0Gvz111947733AGhHDwAgKyvLIDACAB8fH+Tl5eH27dvIzs5GcXGxyTZZWVnyNezt7eHu7l5mG1PX0J0rzYIFC6BUKuVXYGCguY+GqpFa7Yq0tCB5erA8KpUKmZmZ8qu8VZC6gMrGRjsobWMDfPIJEBBg3FZ/FDU09DhiY5eYNf1o7ugrERHVHIuujpwxYwYWLVpUZpszZ86gdevWAICpU6ciOjoaFy9exBtvvIHnnnsO8fHxkCQJL774IlJTU9G/f3/cvXsXbm5umDhxIubNmweFom7EmjNnzsTkyZPln/Py8hiIWVhZBVBNMWclpKlVkKGhxzFnThjy833QvLnpAAzQTk3GxMSUWjEfAOzs7KBUKuWfWTGfiKh2smgQNmXKFIwePbrMNs2aNZO/9/LygpeXF1q2bIk2bdogMDAQv/76K8LDwyFJEhYtWoS3334bWVlZ8Pb2xp49ewyu4evra7SK8cqVK3Bzc4OTkxNsbGxgY2Njso2vr698jcLCQuTm5hqMhpVsU3JFpe6aujamODg4wMHBocznQdVPN2pUXgFUU6NL5a2ELCuo8/fXwJy0rZIBFXO9iIjqJosOEXl7e6N169ZlvkqbRtFotLkwBQUFBsdtbGzQuHFj2Nvb45tvvkF4eDi8vb0BAOHh4XJgppOQkIDw8HAA2j++Xbp0MWij0WiwZ88euU2XLl1gZ2dn0CYlJQWXLl2S24SHh+OPP/4wWFGZkJAANzc3tG3btlLPimqObrSpR49RJlcgPvTQqEptA1SZVZBERFR/1YlirUlJSThy5AgefvhhNGzYEKmpqZg9ezZCQkLkwCc7OxubN2/GY489hjt37uCLL76QS0jovPzyy1i+fDmmTZuGMWPGYO/evdi4cSO2b98ut5k8eTJGjRqFrl27olu3bliyZAlu3ryJ559/HgCgVCoRHR2NyZMnw8PDA25ubhg/fjzCw8PRvXt3AECfPn3Qtm1bjBw5EosXL0ZWVhZef/11jBs3jiNddYSnpye6dwcUCkCjlzN/L2Fe+3PJSvhl5X+VVlaiWbM+iIiwRWFhITIzMzl9SERkJepEEObs7IytW7di7ty5uHnzJvz8/NC3b1+8/vrrBkHNmjVr8Oqrr0IIgfDwcOzfvx/dunWTzwcHB2P79u2YNGkSli5dioCAAHz22WeIjIyU2wwbNgzXrl3DnDlzkJWVhU6dOmHXrl0GifYffPABFAoFBg8ejIKCAkRGRmLFihXyeRsbG8THx+OVV15BeHg4XFxcMGrUKLz55pvV/KSoKgUEAKtWAS+9BBQXGyfMm1sJX0e3CrJkWYm///4RGzYYrmrkhttERPVfna0TZg1YJ6x2SE8Hzp+HUcK8ufXE9Jmb6M+6XkREdZe5f7/rxEgYUXUytbm2Picnezz2WOVGpUquhAwNPY6QkPPIyfGAh0cO63oREVkxBmFk1cydUqzM9GBpo15KZb4cfFV0024iIqo/GISRVTNnc+2KtNMpr7wFUPEaZEREVL/UjSqmRHVMaSsh//yzLdRq13LLVRARUf3HkTCiamBqJSQgsHt3X/z4Yx+EhyeaDNJycjw4LUlEZCU4EkZURfT3mCy5wTYgAEja74QCiYnhAAw37ZYkDTw8cmq0z0REZDkcCSMyU8lVlLm5ufL3peV3hYSch739M1i0yHC7KiEU6NHjEBITww3eoxsFY/V8IqL6j0EYkRlyc3OxceNGk+dM5Xdt3x6FOXPCEBRki9u3PfHOOyUr7wssW9YcwDVcuGCLoKAi+Ps/COBBVswnIrISDMKI9JRWMqKoqKjU95hKwi8ulpCf7yNvb2RceV9Cly7aXRi6dKn6+yAiotqPQRhZNf1pv7JKRtjZ2ZV6DVNJ+DY22gr7OtHRQGSk6cr7RERknbhtUS3GbYtqhkqlwoULRejWrRE0Gkk+bmMjkJR0FUFB2s21y9qiSD+A0+0xGR1dE70nIqLahtsWEZnJ09MTp04Z5mwB96YUARWys7PLvIYuCf+hh0YhLMyTI11ERFQuBmFEAFq0ABSKksnzgKfndbO2NQIApTIfPXoUgvtuExGROVgnjAjaHK1Vq7SBFwB5StHL647J9vo1wYiIiCqDI2FE/zKVPJ+ZadyOez4SEVFVYBBGpCcgoOyVi+VtzM0iq0REZC4GYUQVcPlyoMk9H9u3H4innlKyyCoREZmNQRiRmXTTkCVJkgYdO7owACMiogphEEZWo+TejyWVtV1QyWnIe7Q5Ydoth4iIiMzHIIysgkqlMqvURExMjMlAzNTWRAAwZMhmtG9/BgCDMCIiqhiWqCCrUNYIWFntdIn2uq2J9EmSBoGB6QbtiIiIzMWRMCI92dnZBtOSnp6eiImJQWFhIRo3zsP06UoUF0uwsRFYtCgPzzwzvMxpTCIiotIwCCPSs3XrVgDA0KFD4e7uDkA7yuXn54cpU4Bhw3R1xCQEBLgDcLdUV4mIqI5jEEZkwsaNGw1+1uWKlVdHjIiIyFzMCSOrVNq2Q6UdNzenjIiIyFwcCSOrU9q2Q9yOiIiIahJHwsiqmNp26Icf+iMlpbnJ7Yi4QTcREVUXBmFkFXQlJEzX+1Lgm2+Gm9yOKCfHo4Z6SERE1oZBGFkFXamJESO6GdX70lIAEAZHJEkDD4+cGukfERFZHwZhZDU8PT3Rvr07oqLiAZgKxCQ5QNPlhCmV+TXaRyIish5MzCerYm9vj9DQ42jUKAurV79gMAUpSRpER3+Gu3ft4eGRwwCMiIiqFYMwqjXuZ4Ntc+lXwG/dOg/Tpimh0UjyyFdAQGapn01ERFSVJCGEKL8ZWUJeXh6USiXUajXc3Nws3Z1qdb8bbFdWejpw9KgaAQF34O9vaoqyaoI/IiKyHub+/eZIGNUKld1g+35pK+ArASir9LpERETlYRBGFqWbgszOzrZ0V4iIiGoUgzCyGHOnIImIiOojlqggi+F+jEREZM0YhFGtVNpG2kRERPUFpyOp1uFG2kREZA04Eka1iqkNtrmRNhER1UcMwqjWUKtdcfp0uzI30mbRVCIiqi84HUm1gv4UpHYjbUk+p1AIjB//JIKCbFk0lYiI6g0GYWRxJacgtQGYNhCTJA3mzMmAv78NCgsLkZlpuK0Qq9kTEVFdxSCMLEY3tZiT42k0BQlIiIzchbZt/wSQj1WrSr9OVW9lREREVBOYE0YWo9tMe/z4vlAoDLcwtbERmDKlKZTKfPlYaWUrWG+MiIjqIo6EkUV5enrC0xNYtQp46SWguBiwsQE++URC+/buOHxY245lK4iIqL7hSBjVCtHRwIULwL592q/R0ffOsWwFERHVRxwJo3LpNtkuTVUlxwcEaF8lmcoZ05Wt0J+uJCIiqksYhFGZzN1kuzqT4zMy/FCybIUkaeDhkVMtn0dERFQTOB1JZTI36b06kuPVajXUalf89FME9AMwQCAi4ieOghERUZ3GIIwqpKY21lapVNiwYUOp5Sv8/TOq9fOJiIiqG6cjyWwVWaGYng6cOwe0aGE6z6s8upE1Dw8VJEljEIiVnIrkVkZERFQXcSSMzGLOCkWVSoXMzEy8914umjYV6N0baNpU4L33cpGZmQmVSlXhz1Uq8xEVFQ9J0gCAHPzppiKHDh3KQq1ERFQncSSMzFLeCsXc3Fxs3LgRarUrliyJhRDaHC6NRsLUqW7455/PoVTmVyqBPzT0OEJCziMnxwMeHjkGuWDu7u73fW9ERESWwCCMzFLetGBRURGA8oO1yibwK5X5TMQnIqJ6hdORZJbypgV1dMGaPpaTICIiMsaRMCqTftJ7WdOCdnZ2AO4FayUT+DmKRUREZIhBGJVJt8l2eRXz9c+XFawRERGRFoMwKpc5ifSZmZkGP99vDpe5ZSdYnoKIiOoqBmFUK5k7AsfyFEREVFcxCKNaiwEWERHVZ1wdSVWC04dEREQVw5EwqhKcPiQiIqoYBmFUZRhgERERmY/TkUREREQWwCCMiIiIyAIYhBERERFZQJ0LwgoKCtCpUydIkoQTJ04YnDt16hR69uwJR0dHBAYGYvHixUbv37RpE1q3bg1HR0d06NABO3bsMDgvhMCcOXPg5+cHJycnRERE4Ny5cwZtcnJyMGLECLi5ucHd3R3R0dG4ceNGhftCRERE1qvOBWHTpk2Dv7+/0fG8vDz06dMHTZs2xdGjR/HOO+9g3rx5WLVqldzm8OHDGD58OKKjo3H8+HEMHDgQAwcORHJystxm8eLFWLZsGVauXImkpCS4uLggMjISd+7ckduMGDECp0+fRkJCAuLj4/Hzzz9j7NixFeoLERERWTlRh+zYsUO0bt1anD59WgAQx48fl8+tWLFCNGzYUBQUFMjHpk+fLlq1aiX/PHToUNGvXz+Da4aFhYmXXnpJCCGERqMRvr6+4p133pHP5+bmCgcHB/HNN98IIYT4888/BQBx5MgRuc3OnTuFJEnin3/+Mbsv5lCr1QKAUKvVFXofERERWY65f7/rzEjYlStX8OKLL+Krr76Cs7Oz0fnExEQ88sgjBsVAIyMjkZKSguvXr8ttIiIiDN4XGRmJxMREAEBaWhqysrIM2iiVSoSFhcltEhMT4e7ujq5du8ptIiIioFAokJSUZHZfTCkoKEBeXp7Bi4iIiOqnOhGECSEwevRovPzyywbBj76srCz4+PgYHNP9nJWVVWYb/fP67yutTaNGjQzO29rawsPDo9zP0f8MUxYsWAClUim/AgMDS21LREREdZtFg7AZM2ZAkqQyX2fPnsWHH36I/Px8zJw505LdrXYzZ86EWq2WX5cvX7Z0l4iIiKiaWLRi/pQpUzB69Ogy2zRr1gx79+5FYmIiHBwcDM517doVI0aMwJo1a+Dr64srV64YnNf97OvrK3811Ub/vO6Yn5+fQZtOnTrJba5evWpwjaKiIuTk5JT7OfqfYYqDg4PRPRIREVH9ZNGRMG9vb7Ru3brMl729PZYtW4aTJ0/ixIkTOHHihFxWYsOGDZg/fz4AIDw8HD///DPu3r0rXz8hIQGtWrVCw4YN5TZ79uwx6ENCQgLCw8MBAMHBwfD19TVok5eXh6SkJLlNeHg4cnNzcfToUbnN3r17odFoEBYWZnZf6pL0dGDfPu1XIiIiqiI1s06gaqWlpRmtjszNzRU+Pj5i5MiRIjk5Waxfv144OzuLTz75RG5z6NAhYWtrK959911x5swZMXfuXGFnZyf++OMPuc3ChQuFu7u7+P7778WpU6fEU089JYKDg8Xt27flNn379hWdO3cWSUlJ4uDBg6JFixZi+PDhFeqLOWrD6sjPPhNCoRAC0H797DOLdYWIiKhOMPfvd70JwoQQ4uTJk+Lhhx8WDg4OonHjxmLhwoVG7924caNo2bKlsLe3F+3atRPbt283OK/RaMTs2bOFj4+PcHBwEI8//rhISUkxaKNSqcTw4cNFgwYNhJubm3j++edFfn5+hftSHksHYZcv3wvAdC8bG+1xIiIiMs3cv9+SEEJYciSOSpeXlwelUgm1Wg03N7ca+cz0dODcOaBFC+3X3r2N2+zbBzz2WI10h4iIqM4x9+93nShRQTVj9WqgaVNt4NW0KfD774CixG+IjQ3QvLll+kdERFSfMAgjANoRsBdfBDQa7c8aDTBzJrBokTbwArRfP/kECAiwXD+JiIjqC4uWqKDaY+lSbdaXvuJiIDhYhaSkIly4YIugoCL4+2uQmQnY29vD09PTMp0lIiKqBxiEEdLTgfffN3VGg0OH1iA5OR8AoLfPOQAgJiaGgRgREVElcTqScO7cvWlIfT16JEKpzC/1fYWFhdXYKyIiovqNQRihRQvjBHxJ0iAsLMkyHSIiIrICDMIIAQHAqlX6CfgCUVHxZY6CERER0f1hTpiVS08Hfv9djU6d7iApCbhwwRZubldx+PBxS3eNiIioXmMQZsVWrwbGjhXQaJSQJFdERcUjNJTBFxERUU3gdKQVSk8HNm4EXnxRQKORAABCKLBtW3+o1a4W7h0REZF1YBBmZXRV8YcNA4SQDM4JoUBOjoeFekZERGRdGIRZkfR0YOxY0+UoAO2KSA+PHLOvZ29vX0U9IyIisj7MCbMipdUDA7QBWFkrIgcNGgQvLy/5Z1bMJyIiuj8MwqyIrh6YfiAmSRoMHrwZgYHpZZak8PLygp+fXw30koiIyDpwOtKKBAQA779/A5KkjcJ0o1/t259hTTAiIqIaxpEwKzN0aD4uXlyFnBwPeHjkMPgiIiKyEAZhVkKlUqGwsBDZ2dlQKvMrHHwxCZ+IiKhqMQizAiqVCsuXL6/0+5999lkm4RMREVUxBmFWoLCwsMLv0a2G5CpIIiKi6sEgjEziakgiIqLqxdWRRERERBbAIIyIiIjIAhiEkUlcDUlERFS9mBNGMibjExER1RwGYSRjMj4REVHN4XSkFTB3apFTkERERDWHI2FWwNPTEzExMWXWC+MUJBERUc1iEGYlGGARERHVLpyOJCIiIrIABmFEREREFsAgjIiIiMgCGIQRERERWQCDMCIiIiILYBBGREREZAEMwoiIiIgsgEEYERERkQUwCCMiIiKyAFbMr8WEEACAvLw8C/eEiIiIzKX7u637O14aBmG1WH5+PgAgMDDQwj0hIiKiisrPz4dSqSz1vCTKC9PIYjQaDTIyMuDq6gpJksx6T15eHgIDA3H58mW4ublVcw9rLz4HLT4HPgMdPgctPgc+A53qfA5CCOTn58Pf3x8KRemZXxwJq8UUCgUCAgIq9V43Nzer/o9Lh89Bi8+Bz0CHz0GLz4HPQKe6nkNZI2A6TMwnIiIisgAGYUREREQWwCCsnnFwcMDcuXPh4OBg6a5YFJ+DFp8Dn4EOn4MWnwOfgU5teA5MzCciIiKyAI6EEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBWB3w8ccf44EHHpALyoWHh2Pnzp3y+Tt37mDcuHHw9PREgwYNMHjwYFy5csXgGpcuXUK/fv3g7OyMRo0aYerUqSgqKqrpW6kyCxcuhCRJiI2NlY9Zy3OYN28eJEkyeLVu3Vo+by3P4Z9//sGzzz4LT09PODk5oUOHDvj999/l80IIzJkzB35+fnByckJERATOnTtncI2cnByMGDECbm5ucHd3R3R0NG7cuFHTt1JpQUFBRr8LkiRh3LhxAKznd6G4uBizZ89GcHAwnJycEBISgrfeestg3z5r+H3Iz89HbGwsmjZtCicnJ/To0QNHjhyRz9fHZ/Dzzz8jKioK/v7+kCQJ3333ncH5qrrnU6dOoWfPnnB0dERgYCAWL15cNTcgqNb74YcfxPbt28Vff/0lUlJSxGuvvSbs7OxEcnKyEEKIl19+WQQGBoo9e/aI33//XXTv3l306NFDfn9RUZFo3769iIiIEMePHxc7duwQXl5eYubMmZa6pfvy22+/iaCgIPHAAw+IiRMnyset5TnMnTtXtGvXTmRmZsqva9euyeet4Tnk5OSIpk2bitGjR4ukpCTx999/i927d4vz58/LbRYuXCiUSqX47rvvxMmTJ8WAAQNEcHCwuH37ttymb9++omPHjuLXX38Vv/zyi2jevLkYPny4JW6pUq5evWrwe5CQkCAAiH379gkhrON3QQgh5s+fLzw9PUV8fLxIS0sTmzZtEg0aNBBLly6V21jD78PQoUNF27ZtxYEDB8S5c+fE3LlzhZubm0hPTxdC1M9nsGPHDjFr1iyxdetWAUB8++23Buer4p7VarXw8fERI0aMEMnJyeKbb74RTk5O4pNPPrnv/jMIq6MaNmwoPvvsM5Gbmyvs7OzEpk2b5HNnzpwRAERiYqIQQvtLqlAoRFZWltzm448/Fm5ubqKgoKDG+34/8vPzRYsWLURCQoJ49NFH5SDMmp7D3LlzRceOHU2es5bnMH36dPHwww+Xel6j0QhfX1/xzjvvyMdyc3OFg4OD+Oabb4QQQvz5558CgDhy5IjcZufOnUKSJPHPP/9UX+er0cSJE0VISIjQaDRW87sghBD9+vUTY8aMMTg2aNAgMWLECCGEdfw+3Lp1S9jY2Ij4+HiD46GhoWLWrFlW8QxKBmFVdc8rVqwQDRs2NPhvYvr06aJVq1b33WdOR9YxxcXFWL9+PW7evInw8HAcPXoUd+/eRUREhNymdevWaNKkCRITEwEAiYmJ6NChA3x8fOQ2kZGRyMvLw+nTp2v8Hu7HuHHj0K9fP4P7BWB1z+HcuXPw9/dHs2bNMGLECFy6dAmA9TyHH374AV27dsV///tfNGrUCJ07d8ann34qn09LS0NWVpbBc1AqlQgLCzN4Du7u7ujatavcJiIiAgqFAklJSTV3M1WksLAQX3/9NcaMGQNJkqzmdwEAevTogT179uCvv/4CAJw8eRIHDx7Ek08+CcA6fh+KiopQXFwMR0dHg+NOTk44ePCgVTyDkqrqnhMTE/HII4/A3t5ebhMZGYmUlBRcv379vvrIDbzriD/++APh4eG4c+cOGjRogG+//RZt27bFiRMnYG9vD3d3d4P2Pj4+yMrKAgBkZWUZ/COrO687V1esX78ex44dM8hx0MnKyrKa5xAWFoa4uDi0atUKmZmZeOONN9CzZ08kJydbzXP4+++/8fHHH2Py5Ml47bXXcOTIEUyYMAH29vYYNWqUfB+m7lP/OTRq1MjgvK2tLTw8POrMc9D33XffITc3F6NHjwZgXf9NzJgxA3l5eWjdujVsbGxQXFyM+fPnY8SIEQBgFb8Prq6uCA8Px1tvvYU2bdrAx8cH33zzDRITE9G8eXOreAYlVdU9Z2VlITg42OgaunMNGzasdB8ZhNURrVq1wokTJ6BWq7F582aMGjUKBw4csHS3aszly5cxceJEJCQkGP0/PWuj+3/3APDAAw8gLCwMTZs2xcaNG+Hk5GTBntUcjUaDrl274u233wYAdO7cGcnJyVi5ciVGjRpl4d5ZxurVq/Hkk0/C39/f0l2pcRs3bsTatWuxbt06tGvXDidOnEBsbCz8/f2t6vfhq6++wpgxY9C4cWPY2NggNDQUw4cPx9GjRy3dNSoFpyPrCHt7ezRv3hxdunTBggUL0LFjRyxduhS+vr4oLCxEbm6uQfsrV67A19cXAODr62u0Ikr3s65NbXf06FFcvXoVoaGhsLW1ha2tLQ4cOIBly5bB1tYWPj4+VvEcTHF3d0fLli1x/vx5q/l98PPzQ9u2bQ2OtWnTRp6W1d2HqfvUfw5Xr141OF9UVIScnJw68xx0Ll68iJ9++gkvvPCCfMxafhcAYOrUqZgxYwaefvppdOjQASNHjsSkSZOwYMECANbz+xASEoIDBw7gxo0buHz5Mn777TfcvXsXzZo1s5pnoK+q7rk6/zthEFZHaTQaFBQUoEuXLrCzs8OePXvkcykpKbh06RLCw8MBAOHh4fjjjz8MftESEhLg5uZm9Iestnr88cfxxx9/4MSJE/Kra9euGDFihPy9NTwHU27cuIHU1FT4+flZze/DQw89hJSUFINjf/31F5o2bQoACA4Ohq+vr8FzyMvLQ1JSksFzyM3NNRgl2Lt3LzQaDcLCwmrgLqrOF198gUaNGqFfv37yMWv5XQCAW7duQaEw/HNmY2MDjUYDwPp+H1xcXODn54fr169j9+7deOqpp6zuGQBV9797eHg4fv75Z9y9e1duk5CQgFatWt3XVCQAlqioC2bMmCEOHDgg0tLSxKlTp8SMGTOEJEnixx9/FEJol6E3adJE7N27V/z+++8iPDxchIeHy+/XLUPv06ePOHHihNi1a5fw9vauc8vQS9JfHSmE9TyHKVOmiP3794u0tDRx6NAhERERIby8vMTVq1eFENbxHH777Tdha2sr5s+fL86dOyfWrl0rnJ2dxddffy23WbhwoXB3dxfff/+9OHXqlHjqqadMLk3v3LmzSEpKEgcPHhQtWrSo1cvxTSkuLhZNmjQR06dPNzpnDb8LQggxatQo0bhxY7lExdatW4WXl5eYNm2a3MYafh927doldu7cKf7++2/x448/io4dO4qwsDBRWFgohKifzyA/P18cP35cHD9+XAAQ77//vjh+/Li4ePGiEKJq7jk3N1f4+PiIkSNHiuTkZLF+/Xrh7OzMEhXWYsyYMaJp06bC3t5eeHt7i8cff1wOwIQQ4vbt2+L//u//RMOGDYWzs7P4f//v/4nMzEyDa1y4cEE8+eSTwsnJSXh5eYkpU6aIu3fv1vStVKmSQZi1PIdhw4YJPz8/YW9vLxo3biyGDRtmUB/LWp7Dtm3bRPv27YWDg4No3bq1WLVqlcF5jUYjZs+eLXx8fISDg4N4/PHHRUpKikEblUolhg8fLho0aCDc3NzE888/L/Lz82vyNu7b7t27BQCjexPCen4X8vLyxMSJE0WTJk2Eo6OjaNasmZg1a5ZBSQFr+H3YsGGDaNasmbC3txe+vr5i3LhxIjc3Vz5fH5/Bvn37BACj16hRo4QQVXfPJ0+eFA8//LBwcHAQjRs3FgsXLqyS/ktC6JUUJiIiIqIawZwwIiIiIgtgEEZERERkAQzCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsAgjIiIiMgCGIQRERERWQCDMCKqVx577DHExsZauhvVbt68eejUqZOlu0FE94FBGBFRLVJYWFijnyeEQFFRUY1+JhFpMQgjonpj9OjROHDgAJYuXQpJkiBJEi5cuIDk5GQ8+eSTaNCgAXx8fDBy5EhkZ2fL73vssccwfvx4xMbGomHDhvDx8cGnn36Kmzdv4vnnn4erqyuaN2+OnTt3yu/Zv38/JEnC9u3b8cADD8DR0RHdu3dHcnKyQZ8OHjyInj17wsnJCYGBgZgwYQJu3rwpnw8KCsJbb72F5557Dm5ubhg7diwAYPr06WjZsiWcnZ3RrFkzzJ49G3fv3gUAxMXF4Y033sDJkyfl+4yLi8OFCxcgSRJOnDghXz83NxeSJGH//v0G/d65cye6dOkCBwcHHDx4EBqNBgsWLEBwcDCcnJzQsWNHbN68uar/JyIiPQzCiKjeWLp0KcLDw/Hiiy8iMzMTmZmZcHV1Re/evdG5c2f8/vvv2LVrF65cuYKhQ4cavHfNmjXw8vLCb7/9hvHjx+OVV17Bf//7X/To0QPHjh1Dnz59MHLkSNy6dcvgfVOnTsV7772HI0eOwNvbG1FRUXKwlJqair59+2Lw4ME4deoUNmzYgIMHDyImJsbgGu+++y46duyI48ePY/bs2QAAV1dXxMXF4c8//8TSpUvx6aef4oMPPgAADBs2DFOmTEG7du3k+xw2bFiFntWMGTOwcOFCnDlzBg888AAWLFiAL7/8EitXrsTp06cxadIkPPvsszhw4ECFrktEFVAl24ATEdUSjz76qJg4caL881tvvSX69Olj0Oby5csCgEhJSZHf8/DDD8vni4qKhIuLixg5cqR8LDMzUwAQiYmJQggh9u3bJwCI9evXy21UKpVwcnISGzZsEEIIER0dLcaOHWvw2b/88otQKBTi9u3bQgghmjZtKgYOHFjufb3zzjuiS5cu8s9z584VHTt2NGiTlpYmAIjjx4/Lx65fvy4AiH379hn0+7vvvpPb3LlzRzg7O4vDhw8bXC86OloMHz683L4RUeXYWjIAJCKqbidPnsS+ffvQoEEDo3Opqalo2bIlAOCBBx6Qj9vY2MDT0xMdOnSQj/n4+AAArl69anCN8PBw+XsPDw+0atUKZ86ckT/71KlTWLt2rdxGCAGNRoO0tDS0adMGANC1a1ejvm3YsAHLli1Damoqbty4gaKiIri5uVX4/kuj/5nnz5/HrVu38MQTTxi0KSwsROfOnavsM4nIEIMwIqrXbty4gaioKCxatMjonJ+fn/y9nZ2dwTlJkgyOSZIEANBoNBX67JdeegkTJkwwOtekSRP5excXF4NziYmJGDFiBN544w1ERkZCqVRi/fr1eO+998r8PIVCm2EihJCP6aZGS9L/zBs3bgAAtm/fjsaNGxu0c3BwKPMziajyGIQRUb1ib2+P4uJi+efQ0FBs2bIFQUFBsLWt+n/yfv31Vzmgun79Ov766y95hCs0NBR//vknmjdvXqFrHj58GE2bNsWsWbPkYxcvXjRoU/I+AcDb2xsAkJmZKY9g6Sfpl6Zt27ZwcHDApUuX8Oijj1aor0RUeUzMJ6J6JSgoCElJSbhw4QKys7Mxbtw45OTkYPjw4Thy5AhSU1Oxe/duPP/880ZBTGW8+eab2LNnD5KTkzF69Gh4eXlh4MCBALQrHA8fPoyYmBicOHEC586dw/fff2+UmF9SixYtcOnSJaxfvx6pqalYtmwZvv32W6P7TEtLw4kTJ5CdnY2CggI4OTmhe/fucsL9gQMH8Prrr5d7D66urnj11VcxadIkrFmzBqmpqTh27Bg+/PBDrFmzptLPhojKxiCMiOqVV199FTY2Nmjbti28vb1RWFiIQ4cOobi4GH369EGHDh0QGxsLd3d3efrufixcuBATJ05Ely5dkJWVhW3btsHe3h6ANs/swIED+Ouvv9CzZ0907twZc+bMgb+/f5nXHDBgACZNmoSYmBh06tQJhw8flldN6gwePBh9+/ZFr1694O3tjW+++QYA8Pnnn6OoqAhdunRBbGws/ve//5l1H2+99RZmz56NBQsWoE2bNujbty+2b9+O4ODgSjwVIjKHJPSTB4iIyCz79+9Hr169cP36dbi7u1u6O0RUB3EkjIiIiMgCGIQRERERWQCnI4mIiIgsgCNhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjIiIisgAGYUREREQW8P8B6JPQbxtY+lcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYbUlEQVR4nO3deXgTdeI/8HeSHpTSpjb0tNCWtoIgIlREYAUEpCDU5QeuKKIgxYJLRcTlWr4ieHHJ7QVuOWTFk+oKLC6oiAIVlYLYFRDYFiyUK7VpodJCMr8/YkLTNmmSJpmZzPv1PDwlk0n6yTSZeedzqgRBEEBERESkAGqxC0BERETkKww+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERBK0bt06qFQqFBcXi10UIr/C4EOkUN9//z1ycnLQoUMHhIaGonXr1njggQfwyy+/1Nu3T58+UKlUUKlUUKvVCA8PR9u2bfHII49gx44dLv3ezZs3o3fv3oiOjkbz5s3Rpk0bPPDAA/jss8889dLqefnll/HJJ5/U2753717MmTMH5eXlXvvddc2ZM8d6LFUqFZo3b4727dvj//7v/1BRUeGR37Fx40YsW7bMI89F5G8YfIgUasGCBdi0aRP69euH5cuXIzs7G19//TW6dOmCwsLCevsnJCRgw4YNePvtt7Fo0SLcd9992Lt3LwYMGIARI0bg6tWrjf7OV155Bffddx9UKhVmzpyJpUuXYvjw4Th27Bjee+89b7xMAI6Dz9y5c30afCzeeOMNbNiwAUuWLEG7du3w0ksvYeDAgfDE8okMPkT2BYhdACISx5QpU7Bx40YEBQVZt40YMQIdO3bE/Pnz8c9//tNmf61Wi1GjRtlsmz9/PiZNmoTXX38dSUlJWLBggd3fd+3aNbzwwgu45557sH379nr3nz9/vomvSDqqqqrQvHlzh/vcf//9aNmyJQBgwoQJGD58OPLy8vDtt9+ie/fuvigmkSKxxodIoXr06GETegAgLS0NHTp0wOHDh516Do1GgxUrVqB9+/Z49dVXYTAY7O578eJFVFRUoGfPng3eHx0dbXP7ypUrmDNnDm666SY0a9YMcXFxGDZsGE6cOGHd55VXXkGPHj2g0+kQEhKC9PR0fPTRRzbPo1KpcPnyZaxfv97avDRmzBjMmTMHU6dOBQAkJydb76vdp+af//wn0tPTERISgsjISDz44IP49ddfbZ6/T58+uOWWW7B//3706tULzZs3x9///nenjl9tffv2BQAUFRU53O/1119Hhw4dEBwcjPj4eEycONGmxqpPnz7YunUrTp48aX1NSUlJLpeHyF+xxoeIrARBwLlz59ChQwenH6PRaPDQQw/h2Wefxe7duzF48OAG94uOjkZISAg2b96MJ598EpGRkXaf02g0YsiQIfjiiy/w4IMP4qmnnkJlZSV27NiBwsJCpKSkAACWL1+O++67Dw8//DBqamrw3nvv4S9/+Qu2bNliLceGDRswbtw43HHHHcjOzgYApKSkIDQ0FL/88gveffddLF261Fr7EhUVBQB46aWX8Oyzz+KBBx7AuHHjcOHCBaxcuRK9evXCgQMHEBERYS2vXq/HoEGD8OCDD2LUqFGIiYlx+vhZWAKdTqezu8+cOXMwd+5c9O/fH0888QSOHj2KN954A99//z327NmDwMBAzJo1CwaDASUlJVi6dCkAoEWLFi6Xh8hvCUREf9iwYYMAQMjNzbXZ3rt3b6FDhw52H/fxxx8LAITly5c7fP7Zs2cLAITQ0FBh0KBBwksvvSTs37+/3n5r1qwRAAhLliypd5/JZLL+v6qqyua+mpoa4ZZbbhH69u1rsz00NFQYPXp0vedatGiRAEAoKiqy2V5cXCxoNBrhpZdestn+008/CQEBATbbe/fuLQAQ3nzzTbuvu7bnnntOACAcPXpUuHDhglBUVCSsWrVKCA4OFmJiYoTLly8LgiAIa9eutSnb+fPnhaCgIGHAgAGC0Wi0Pt+rr74qABDWrFlj3TZ48GAhMTHRqfIQKQ2buogIAHDkyBFMnDgR3bt3x+jRo116rKVGobKy0uF+c+fOxcaNG9G5c2f85z//waxZs5Ceno4uXbrYNK9t2rQJLVu2xJNPPlnvOVQqlfX/ISEh1v//9ttvMBgMuOuuu1BQUOBS+evKy8uDyWTCAw88gIsXL1r/xcbGIi0tDTt37rTZPzg4GI899phLv6Nt27aIiopCcnIyxo8fj9TUVGzdutVu36DPP/8cNTU1mDx5MtTq66fuxx9/HOHh4di6davrL5RIgdjURUQ4e/YsBg8eDK1Wi48++ggajcalx1+6dAkAEBYW1ui+Dz30EB566CFUVFRg3759WLduHTZu3IjMzEwUFhaiWbNmOHHiBNq2bYuAAMenqC1btuDFF1/EwYMHUV1dbd1eOxy549ixYxAEAWlpaQ3eHxgYaHP7xhtvrNdfqjGbNm1CeHg4AgMDkZCQYG2+s+fkyZMAzIGptqCgILRp08Z6PxE5xuBDpHAGgwGDBg1CeXk5vvnmG8THx7v8HJbh76mpqU4/Jjw8HPfccw/uueceBAYGYv369di3bx969+7t1OO/+eYb3HfffejVqxdef/11xMXFITAwEGvXrsXGjRtdfg21mUwmqFQqbNu2rcEQWLfPTO2aJ2f16tXL2q+IiHyHwYdIwa5cuYLMzEz88ssv+Pzzz9G+fXuXn8NoNGLjxo1o3rw5/vSnP7lVjttvvx3r169HaWkpAHPn43379uHq1av1alcsNm3ahGbNmuE///kPgoODrdvXrl1bb197NUD2tqekpEAQBCQnJ+Omm25y9eV4RWJiIgDg6NGjaNOmjXV7TU0NioqK0L9/f+u2ptZ4Efkz9vEhUiij0YgRI0YgPz8fH374oVtzxxiNRkyaNAmHDx/GpEmTEB4ebnffqqoq5OfnN3jftm3bAFxvxhk+fDguXryIV199td6+wh8T/Gk0GqhUKhiNRut9xcXFDU5UGBoa2uAkhaGhoQBQ775hw4ZBo9Fg7ty59SYUFAQBer2+4RfpRf3790dQUBBWrFhhU6bc3FwYDAab0XShoaEOpxYgUjLW+BAp1DPPPINPP/0UmZmZKCsrqzdhYd3JCg0Gg3WfqqoqHD9+HHl5eThx4gQefPBBvPDCCw5/X1VVFXr06IE777wTAwcORKtWrVBeXo5PPvkE33zzDYYOHYrOnTsDAB599FG8/fbbmDJlCr777jvcdddduHz5Mj7//HP89a9/xZ///GcMHjwYS5YswcCBAzFy5EicP38er732GlJTU3Ho0CGb352eno7PP/8cS5YsQXx8PJKTk9GtWzekp6cDAGbNmoUHH3wQgYGByMzMREpKCl588UXMnDkTxcXFGDp0KMLCwlBUVISPP/4Y2dnZ+Nvf/tak4++qqKgozJw5E3PnzsXAgQNx33334ejRo3j99dfRtWtXm79Xeno63n//fUyZMgVdu3ZFixYtkJmZ6dPyEkmWmEPKiEg8lmHY9v452rdFixZCWlqaMGrUKGH79u1O/b6rV68Kb731ljB06FAhMTFRCA4OFpo3by507txZWLRokVBdXW2zf1VVlTBr1iwhOTlZCAwMFGJjY4X7779fOHHihHWf3NxcIS0tTQgODhbatWsnrF271jpcvLYjR44IvXr1EkJCQgQANkPbX3jhBeHGG28U1Gp1vaHtmzZtEv70pz8JoaGhQmhoqNCuXTth4sSJwtGjR22OjaOh/nVZynfhwgWH+9Udzm7x6quvCu3atRMCAwOFmJgY4YknnhB+++03m30uXbokjBw5UoiIiBAAcGg7US0qQfDAwjBEREREMsA+PkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGAw+REREpBicwLAOk8mEM2fOICwsjNO+ExERyYQgCKisrER8fDzUavv1Ogw+dZw5cwatWrUSuxhERETkhl9//RUJCQl272fwqSMsLAyA+cA5WneIiIiIpKOiogKtWrWyXsftYfCpw9K8FR4ezuBDREQkM411U2HnZiIiIlIMBh8iIiJSDAYfIiIiUgz28SEiIvIAo9GIq1evil0MvxUYGAiNRtPk55FN8Jk3bx7y8vJw5MgRhISEoEePHliwYAHatm1r3efKlSt45pln8N5776G6uhoZGRl4/fXXERMTI2LJiYjInwmCgLNnz6K8vFzsovi9iIgIxMbGNmmePdkEn127dmHixIno2rUrrl27hr///e8YMGAAfv75Z4SGhgIAnn76aWzduhUffvghtFotcnJyMGzYMOzZs0fk0hMRkb+yhJ7o6Gg0b96ck996gSAIqKqqwvnz5wEAcXFxbj+XShAEwVMF86ULFy4gOjoau3btQq9evWAwGBAVFYWNGzfi/vvvBwAcOXIEN998M/Lz83HnnXc69bwVFRXQarUwGAwczk5ERA4ZjUb88ssviI6Ohk6nE7s4fk+v1+P8+fO46aab6jV7OXv9lm3nZoPBAACIjIwEAOzfvx9Xr15F//79rfu0a9cOrVu3Rn5+vihlJCIi/2bp09O8eXORS6IMluPclL5Usmnqqs1kMmHy5Mno2bMnbrnlFgDmqsagoCBERETY7BsTE4OzZ8/afa7q6mpUV1dbb1dUVHilzERE5L/YvOUbnjjOsgw+EydORGFhIXbv3t3k55o3bx7mzp3rgVLJn16vR01Njd37g4KCWJVLRESyJrvgk5OTgy1btuDrr7+2WYQsNjYWNTU1KC8vt6n1OXfuHGJjY+0+38yZMzFlyhTrbctaH0qj1+vx6quvNrpfTk4Oww8REcmWbPr4CIKAnJwcfPzxx/jyyy+RnJxsc396ejoCAwPxxRdfWLcdPXoUp06dQvfu3e0+b3BwsHVdLiWvz+Wopsed/YiISNrGjBkDlUoFlUqFwMBAxMTE4J577sGaNWtgMpmcfp5169bV62YiZbKp8Zk4cSI2btyIf/3rXwgLC7P229FqtQgJCYFWq0VWVhamTJmCyMhIhIeH48knn0T37t2dHtFFRETkS2J3MRg4cCDWrl0Lo9GIc+fO4bPPPsNTTz2Fjz76CJ9++ikCAmQTE5wmm1f0xhtvAAD69Oljs33t2rUYM2YMAGDp0qVQq9UYPny4zQSGREREUiOFLgbBwcHW7iA33ngjunTpgjvvvBP9+vXDunXrMG7cOCxZsgRr167F//73P0RGRiIzMxMLFy5EixYt8NVXX+Gxxx4DcL3j8XPPPYc5c+Zgw4YNWL58OY4ePYrQ0FD07dsXy5YtQ3R0tFdei7Nk1dTV0D9L6AGAZs2a4bXXXkNZWRkuX76MvLw8h/17iIiIxCLVLgZ9+/ZFp06dkJeXBwBQq9VYsWIF/vvf/2L9+vX48ssvMW3aNABAjx49sGzZMoSHh6O0tBSlpaX429/+BsA85PyFF17Ajz/+iE8++QTFxcU212yxyKbGh4iIiHyjXbt2OHToEABg8uTJ1u1JSUl48cUXMWHCBLz++usICgqCVquFSqWqV9EwduxY6//btGmDFStWoGvXrrh06RJatGjhk9fRENnU+JBvGQxhKCpKgsEQJnZRiIjIxwRBsDZdff755+jXrx9uvPFGhIWF4ZFHHoFer0dVVZXD59i/fz8yMzPRunVrhIWFoXfv3gCAU6dOeb38jjD4UD0FBZ2xbNlkrF8/GsuWTUZBQWexi0RERD50+PBhJCcno7i4GEOGDMGtt96KTZs2Yf/+/XjttdcAOG6Cu3z5MjIyMhAeHo533nkH33//PT7++ONGH+cLbOoiAOaRA4C5pmfz5iEQBHMmFgQ1Nm8egpSU49BqK637ERGRf/ryyy/x008/4emnn8b+/fthMpmwePFiqNXm68IHH3xgs39QUBCMRqPNtiNHjkCv12P+/PnWufF++OEH37yARrDGhwAAOp0OOTk56NFjtDX0WAiCGj17jubkhUREfqa6uhpnz57F6dOnUVBQgJdffhl//vOfMWTIEDz66KNITU3F1atXsXLlSvzvf//Dhg0b8Oabb9o8R1JSEi5duoQvvvgCFy9eRFVVFVq3bo2goCDr4z799FO88MILIr1KWww+ZKXT6XDnnTqo67wrNBqgWzcdQw8RkZ/57LPPEBcXh6SkJAwcOBA7d+7EihUr8K9//QsajQadOnXCkiVLsGDBAtxyyy145513MG/ePJvn6NGjByZMmIARI0YgKioKCxcuRFRUFNatW4cPP/wQ7du3x/z58/HKK6+I9CptqQRBEMQuhJQ4u6y9nDU2YdYHH4ThmWdawGg0h55Vq4CsLB8WkIhIJq5cuYKioiIkJyejWbNmLj1WCvP4yI2j4+3s9Zt9fBTG2Q/agQOToNffgNRUoNaSaERE5CGWLgZcHNq3GHwUxtne9C1bXkHHjl4uDBGRwjHU+B77+BAREZFiMPgoHCcqJCIiJWFTl4IVFHS2ztmjUpmQmbkFXbocELtYREREXsMaH4WyN1Eha36IiMifMfgoVFmZrsGJCsvKIkUqERERkfexqUuhIiP1UKlMNuFHpTIhMrJMxFL5RmPzGDU0fNSdxxARkfQw+MiIJy6+lrW2tNpKZGZuqdfHR6uttNnP37gzYRgnGSMi8h8MPjJR9+JrMIShrEyHyEi9NawAjV98606YNXv2BRQXByAp6Rri47sC6OrXtRfOzmNUez93HkNEpHRfffUV7r77bvz222+IiIhw6jFJSUmYPHkyJk+e7LVysY+PTNS+qBYUdMayZZOxfv1oLFs2GQUFnRvczx6dToe4uDjExcUhPT0Gw4frkJ4eY93mr6GHiIiuGzNmDFQqFSZMmFDvvokTJ0KlUmHMmDG+L5iXMfjIDEdjeZY78xhx7iMi8hetWrXCe++9h99//9267cqVK9i4cSNat24tYsm8h8FHZjgay3Mc1Zx58jFERFLVpUsXtGrVCnl5edZteXl5aN26NTp3vn5+q66uxqRJkxAdHY1mzZrhT3/6E77//nub5/r3v/+Nm266CSEhIbj77rtRXFxc7/ft3r0bd911F0JCQtCqVStMmjQJly9f9trrawiDj8xYRmPVppTRWJ7kTs0Za9uIyJtKSoCdO80/fWns2LFYu3at9faaNWvw2GOP2ewzbdo0bNq0CevXr0dBQQFSU1ORkZGBsjLztefXX3/FsGHDkJmZiYMHD2LcuHGYMWOGzXOcOHECAwcOxPDhw3Ho0CG8//772L17N3Jycrz/Imth8JEZy2gsS/ipOxqLnONOzRlr24jIW3JzgcREoG9f88/cXN/97lGjRmH37t04efIkTp48iT179mDUqFHW+y9fvow33ngDixYtwqBBg9C+fXu89dZbCAkJQe4fBX3jjTeQkpKCxYsXo23btnj44Yfr9Q+aN28eHn74YUyePBlpaWno0aMHVqxYgbfffhtXrlzx2evlqC4Z6tLlAFJSjqOsLBKRkWUMPW5wZx4jJc99RETeU1ICZGcDpj8q800mYPx4ICMDSEjw/u+PiorC4MGDsW7dOgiCgMGDB6Nly5bW+0+cOIGrV6+iZ8+e1m2BgYG44447cPjwYQDA4cOH0a1bN5vn7d69u83tH3/8EYcOHcI777xj3SYIAkwmE4qKinDzzTd74+XVw+AjU1ptJQOPG9yZx0jpcx8ROYsTfbrn2LHrocfCaASOH/dN8AHMzV2WJqfXXnvNK7/j0qVLGD9+PCZNmlTvPl92pGbwkQlnL6q+uPjWPrmdOaNGUVEAkpOvIT7eZC2DVE9u7sxj5E9zH/HCpFze/ttzok/3paUBarVt+NFogNRU35Vh4MCBqKmpgUqlQkZGhs19KSkpCAoKwp49e5CYmAgAuHr1Kr7//nvrfDs333wzPv30U5vHffvttza3u3Tpgp9//hmpvnxhDWDwkYm6F9+G+OKiVfvk5mh1d1+f3Fw5qdcuV1wckJ7e+PO78xip4YVJuXzxt+dEn+5LSABWrzY3bxmN5tCzapXvansAQKPRWJutNBqNzX2hoaF44oknMHXqVERGRqJ169ZYuHAhqqqqkJWVBQCYMGECFi9ejKlTp2LcuHHYv38/1q1bZ/M806dPx5133omcnByMGzcOoaGh+Pnnn7Fjxw6n3p+ewuAjI1K4GFlOWvZGOKWkHIdWW+nTk5unZrX2d7wwyY+namn4t5e+rCxzn57jx801Pb4MPRbh4eF275s/fz5MJhMeeeQRVFZW4vbbb8d//vMf3HDDDQDMTVWbNm3C008/jZUrV+KOO+7Ayy+/jLFjx1qf49Zbb8WuXbswa9Ys3HXXXRAEASkpKRgxYoTXX1ttDD7kFkcjnHzd96jurNb2aqGkeFJn0xPZwxo65UlI8G3gqVsjU9cnn3xi/X+zZs2wYsUKrFixwu7+Q4YMwZAhQ2y21R0W37VrV2zfvt3uczQ094+nMfiQW6Q4wqmxWiipcXfBVE8FJXs1YyQNrKXxDn7ZIAYfcotWW4n+/T/H55/3b3CEkxikVAvljLonX3tBxLKfJ2sAHNWMkbgsF+aLFy+KXRS/w1o0Ahh8yE0FBZ2toQcwoX//z0W/cEqxFspZzgQRV4OSPXKrGVMSZy/MTeWL2j4p1iiyFo0ABh9yUXl5eb0LJ6DG55/3xy23FIp6gmtsnh2pcieINKXGRm41Y0riiwuuL2r7WKNIUsbgQ07T6/X44IMPUFaWJNkLpxxntXY1iDS1xkbONWNK5okaFG/W9lnmEGvsd/jrRJ+CIIhdBEXwxHFm8CGnWb6NOnPhFPPkZm9W68LCcuzZEyS5yRZdDSLOBqW6nTgNBgMAzkAtR02tQbH8TRt77zTlb2+Za2znTmDp0vq/o2fP0ejTRxrTclh4IkwGBgYCAKqqqhASEuLJ4lEDqqqqAFw/7u5g8CGXNXbhHDFihE9Pbs6crAsKOmPu3LaSmGyxLleb6JwJSo31FbHUjHXqNBy33NJMdjNQK4XBEIZff23V5FoaSygpLr6GDRsEmEwq630ajYAnnxyEpKSAJv/tdTod7ryz4VmIu3XTQUpvLU81x2k0GkREROD8+fMAgObNm0OlUjXyKHKVIAioqqrC+fPnERERUW+SRVcw+JBbHDUpabVan5bF3qzWFy9eRF5enqQmW7THlSY6Z4KSMx2htdpKDBgQhLi4GO+8KGqS2hfmutyppdHpzMGj/gzBKqSne+49IIVZiBvj6Sa/2NhYALCGH/KeiIgI6/F2F4MPuU1KC6U6+qbqTNNQSYl5ocC0NN+doOtesOwdz4YubK4EJX/raKqEeVjqDyCwpVa7X0vjixmCpTALsSOe7uCvUqkQFxeH6OhoXL161VPFpDoCAwObVNNjweBDfq+xpqHVq414/nlz9b9aLWDhQgNGjvzd6xdQV9dfcyUoObu0iNwoZR6Whi7MFiqVCQsXVjSplsYXMwT7ehZiZ1g+Q42dE9zt66TRaDxyYSbvYvAhv+eoachgCMOyZfEQBHObvMmkwtSp4Th9eg202kqvX0BdeW5XglJpaSkA/xu67qm5jKTK0YUZMOH++z9Cq1YlGDNmtDgFlLnan6Ebb6zA9OlaGI0qaDQCFiyowMiRD/lFjSE5xuBDimCvaaixYCC1C6irJ2Q5Dl131JRVezZjf2vCA5y5MN/FC3MTWY7dM88AI0ZYmuNUSEiIABAhZtHIRxh8yGnOVv9KdTh0Q01DcgwGrpDbpI7ONmX5WxNebbww+44Um+PI+xh8yGmu9kmRA7kFA3fIaVJHZ5uy/K0Jzx5emIk8j8GHXCKnUONszZOcgoGzmjJiTCocNWX5e00dEXkPgw/5LUc1VJY5fiykNDTfE+ReO9dYU5YSauqIyDsYfMivSfXC7gtyfu3ONGX5Y00dEXkfgw8R2ag9qurMGTWKigJ8vr6Zs01ZcmzCIyJxMfiQIsl9hJq31B5V5aiPjbfnN2qsKWvYsGFo2bJlg4+VchMeEYmPwYcUSe59YLzF2RmffTG/kaOmrJYtWyIuLs7rZSAi/8PgQ04TYz0rb1JaqHGFWMPF/WE0GhFJG4MPOSU3F8jOBkwmQK02r76clSV2qchbxBouzpo4oob52xdPMTH4UKNKSq6HHsD8c/x48+rL/AD6JzGHizPUENniF0/PYvChRh07dj30WBiN5qn0LcGH30b8D4eLE4lLr9ejuPgasrOjYTJZFlIGxo8XcNtt55GUFMAvCm5QN74LKV1amvlbRm0aDZCaav5/bi6QmAj07Wv+mZvr+zKSd2i1lUhOPsnQQ+RjlhGWK1d+Zg09FkajCitXbsOrr74KvV4vUgnli8GHHNLr9dBoSrFwYTk0GgEA/lgpuhwaTSl++um3BpvBSkpELDQRkcxZ+rlZ+tvVVru/nS9GWPobNnWRXXVXyp40Kcza7HHpUiVWrwaKipJgMo22eVzdZjCSD85vRCQtXJ7F8xh8yK663yQaGlocGamHWi3YVMXWbgYjeeGoKiLpYX87z2Lw8TF/6wSs1VZi9uzTeOGFG2E0qv5oBjNAo/kdej0vkHLEvxmR9PjbQspiYvDxIf8dkpjbYDMY4P2lDYiIiFzBzs0+Ym8uHH/pBGxv9A873hERkZQw+PiIo7lwiIiIyDcYfHyksblwiIjIO0pKgJ075VXDzhGW3sM+Pj6SkGDu0zN+vLmmR6MBVq3yjw7ORHX5Wyd+ki+59q3kCEvvYfDxAb1ej5qaGtx7L7BvnxrFxQFISrqG+HgTSkul++blNwlyh1wvNORf/GG5B6mXT64YfLys7iSAFoWFtrelOPrJ0TeOixcvIi8vz+XnZE2Af+OCtiQFlvNuwxOsmpd7SE4+KcnzLnkfg4+XOTuqSaqjnzx5UmBNgH/T6/X49lvAZLJ9zxiNwL59eoSE8Bss+Ubd5R4E4XoHS6Us98AvmfaxczO5xdWOd/4+nF/pLN+w9+5d3+C6Qnv2rOeCil4kx867vmBZ7sHynpTLcg+u/j3r7s+Fox1jjQ+5xdWOd46G8/PbiPxZ3geNrSvkz9+wxcKaVMfkttyDq3/PuvvPnw/MmMHmZkcYfMhtrjRbWIbz1w4/HM7vn+R2oZGrxjrvBgUF4eLFG9jUAfks9+BqH7mG9q8deiz4JdOWXzZ1vfbaa0hKSkKzZs3QrVs3fPfdd2IXSfEsw/k1GvNtDuf3b/Zm8ibPsDQtrlz5mc0CwYC58+6kScfRqZOWTR0y4+pEtw3tb6n5qY1fMm35XfB5//33MWXKFDz33HMoKChAp06dkJGRgfPnz4tdNMXS6/UoLS3FvfeWYt++c/joIz327TuHe+8tRWlpKft9ELmobuddWybk53e3dui11ALt339Ocp819k2y5epEtw3vL+DvfzdAoxGstxcsKIdGw3Othd81dS1ZsgSPP/44HnvsMQDAm2++ia1bt2LNmjWYMWOGyKVTHjkP5yeSuob6VHXvno+9e3va7CfFIdzsm2RLr9dDo6nBwoUhmD5dC6NR9UdoMUCj+R16ve18bw3tr1KZMHjwFgQEHODC0Q74VfCpqanB/v37MXPmTOs2tVqN/v37Iz8/v8HHVFdXo7q62nq7oqLCo2VS+rTjch/OTyR1dftUAbCp8QGkN4Tb2/M9ye28W/cLYmOhxdH+luZle/2apPD3F5tfBZ+LFy/CaDQiJibGZntMTAyOHDnS4GPmzZuHuXPneq1MnHaciLyt7kXO0cg6sbk635M789HI7bxbt5yNhRZn96eG+VXwccfMmTMxZcoU6+2Kigq0atXKo79DKh8uIm/x5DdsTrzWdFIdWWepqTAYwqBSTa5XK7Vnz3oUFlZaazaa0hzG8y7Z41fBp2XLltBoNDh37pzN9nPnziE2NrbBxwQHByM4ONgXxSNyiqcu/L4MEJ76hs1+H54jxVoAV+Z74vIn5C1+FXyCgoKQnp6OL774AkOHDgUAmEwmfPHFF8jJyRG3cERO8NSFX4wA0dRv2LzQKYujWimDwYDCwiAuf0Je4XfD2adMmYK33noL69evx+HDh/HEE0/g8uXL1lFeRFLlqWU9pLo8iKOhy+Z+H/oG5zDZt0/PYbh1SKVTblPZm+/p/fff5/In5DV+VeMDACNGjMCFCxcwe/ZsnD17Frfddhs+++yzeh2eiaTGU8t6SHF5EEc1UK72+6CGmxYvXryIvLw8EUvlWWIufyKFfmYGQxjKynSIjNRLrslS7vwu+ADmIX9s2pIGuQ0rFYter0d4+DWo1dE2M/FqNALCws5Drw9w6qLvqefxpMaasLjOl3vq/h398bMmRidtKfQzKyjoXO9z0KXLAY88t5z+/t7il8GHpENuw0rFUHtOjiFDbE94gwdvwZYt5hNeYzUennoeT3Jm6HJtUh2NJAfe+KxJoebDl520xepnVjuMGAxh1s8uAAiCGps3D0FKynHrfs6GlwceeAARERE2v0fJ51oLBh/yOn7QHKt9oXJ04W+sxsNTz+MpzjZhjRgxwuZxUhyNJBee/KxJoebD18RqJq4dWvfsCcLSpbbdbwVBjd69s6DTaevtbw9Djn0MPkQS46kLv9gBwl4TFmBeVsHi6tWrIpWQ7PFWzYfUm1ksa1/VDj++WuDTElLuvLPhMqSnaxvcn1zH4ENEXmepgdq3rxvy87tj796eyM/vjszMLRg2TOzSUW2uzqzsCmdqKsrLy/HBBx+49fxN4epaWd6SkGCuXRs/3nzMNRpg1SpO6eBJDD5E5DO115Cy9F3IyTkqcqnIwhcj7KRYU+HqWlneLEdNTQ3uvRfYt0+N4uIAJCVdQ3y8CaWlbL7yFAYfIvKJsjKdzYUUMIefn3/maC2pkMIIOzFGp7m6VpY31A1fFoWFtrc5rUPTMfiQlRRGcJD/iozUQ6Uy1atFOHnyC2i1Dh74B6n3D/E3Yo2wk3PH3aacQ50NVZzWoekYfAiAMkdwkG81VoswbNgwtGzZssHHSvVC5+/E6iAvx781z6HyweBDXCNJZJ6q2pfDBHaOahFatmyJuLg40cpG5C6eQ+WFwYckucSBkniqal9qTQT2ApbYw+yJPI3nUHlh8CFR564gM0+EEXP/Al2j/Qt81ZfLEsTOnDnjV2tIEdXFc6i8+N3q7OQ6y7wRGo35NueNkJ/cXCAxEejb1/wzN7dp+3mKTqez22+HyB+Y5/8pxcKF5dBoBAD4Y/6fcmg0pVxFXoJY46NwnDdC/pztX8B+CNQYOfQT8wZ3X7dU5v8h1zD4KBjnjfAPzvYvYD8EaozU+on5iruv25Pz/yg1dIqBwUfBOG+E/On1eoSHX4NaHQ2TSWXdrtEICAs7D70+ADqdzun9vIEndHnxt1DjLLFft1JDpxgYfIhkqnaN3ZAhnW3mxxk8eAu2bDkAABg1ahT++c9/Nrqft2r2eEIncg4/A77B4EMkU7WDhKP5caqqqpzaz5s1ezyhE5FUMPgQ+Qln58fhPDpEpGQczk4kUSUlwM6d5p9ERHIj1XMYgw+RBPl6vh0iIk+S8jmMwYdIYuzNtyO1b01ESscRiw2T+jmMfXwUjB9a6dHr9fj2W8Bksu0MbDQC+/bpERLCjsJEUsERiw2T+pxhDD4Kxg+td7m6JpZleLrBEAaVajIE4XqFrEplwp4961FYWMkJJYkkhJ/F+qS+dhmbuhROp9MhLi7O7j9+qN3jTvu2JYBqtZXIzNwClcp81lCpTMjM3GIdiWXZz9mauObNmzu1H2v2iMgTpL7+o0oQBEHsQkhJRUUFtFotDAYDwsPDxS4OyVBJiTns1P22U1zs+INfWlqK1ZbFfQAYDGENzreTnZ2NuLg4ANfXWrPHUmPn7H7kOa7W+BH5m5ISc/NWaqpvPgPOXr/Z1EXkQZ7so+PMfDvOPhdDjW/l5l7v3KlWm7/9ZmWJXSpqCAOq9yQkSPOYsqmL/J6n5pJo7HksfXT27l1vbaaysPTRefXVV6HX65tWEJI0qY9ooeukPOSavIfBh/yap05szjyPq310yP+Ya/z0DY5o2bdPz9ArIQyo3qHX61FaWmr3nxQ+A2zqIr9l78SWkeFa9as7z+NoTSzyTxyVJy9SH3ItR7UXTnZE7M8Aa3zIbzk6sTmrKd/gtdpKJCefZOiRIXeaR1njJx96vR7h4eegVtuO7dFoBISFnZNErYQcOfveFvszwBof8kvmE9s1qNXRMJlU1u3mE9t56PUBjX7j8PU3eE4oKQ2e6JjMGj/pql0rMWRIZ2zePASCoIZKZcLgwVuwZcsBAOLXSpD3MPiQ3/HUia3uN/jaz+ONb/CcUFJcer0excXXkJ19PSybmzUF3HbbeSQlNR6Wa3NmVB75Xu3Pl6OAKnatBHkPgw/5HW+c2Hz1DZ6hRhyWsFxUlASTabTNfUajCitXbkNy8knWAvghBlTlYfAhv+epExtPkP7LEoIjI/VQqUz1mjUjI8ts9iMi+WLnZiIPYR8dz/DUvEvuaKxjMhHJH2t8iDyEfXSaTgozHrNjMpF/Y/Ah8iCGGvd4umNxU7nTrMkaP5IaXy/HIZfPAIMPEYnKXzoWs8aPpESM2lO5fAYYfIjskMu3F7nzp47FYp/QqXFK+Fx7atZ6d8jhM8DgQ37HUyc2uXx78ReNzZdE5AlK+FxzOQ7HGHzI73jyxCbnk58cidWxWAm1AHSdv3+u09LMzVu1w49GA6SmilcmKWHwIb/k7yc2fybGfElKqAUg5UhIMPfpGT/eXNOj0QCrVrG2x4LBh4gIDMvkH/R6PWpqanDvvcC+fWoUFwcgKeka4uNNKC1lgAcYfIiIiPxC7XUKaysstL0t9RGS3saZm4mIiPyAsyMf5TBC0psYfIhIVOxYTES+xKYuIhKVNzoWW/o5AMCZM2oUFQUgOdncz8Gd5yMi/8HgQ0Ru89SU+J4MIbX7ORQUdK43L1CXLgcAsJ8DkVKxqYuIXKLX61FaWorFi8uRmCigb18gMVHA4sXlKC0thV6vF7V8lpoegyHMGnoAQBDU2Lx5CAyGMJv9iEhZWOPjRbWr2xvC6naSG0ttisEQhmXLJkMQLAuKqjB1ajhOn14DrbbS67Upjj5bFy9eBACUlelslr8AzOGnrCySs0ETKRiDj5fYG1ZYF6vbyZO83bfF8tyNhQpv1qbU/WwZDGEoK9MhMlJvE2gaW/uLSCnsfUaUisHHSziskHzNl31bxAwVtT8zjl4n1/4ipWlo5GNDnxGlj5Bk8CE2yfmJxvq2pKQc91htjBRCRWOvExBv7S8iMdQdIXnmjBrPPx9tbZIWBDW2bs3E77+rxCym6Bh8FM7ZZgM2ycmHr/q2iB0qnH2dYqz9RSSW2ufpI0caWqVdpfhV2hl8fESqbazONhuwSU4+fNkMJWaoYB8eIse4SnvDOJzdBwoKOmPZsslYv340li2bjIKCzmIXqZ7Ghv6SfFiaoVQq89nOX/u2NPV1Kr2fA/k/yyrtGo35NldpN2ONj5c50w9BCjj017+I3QzlK45e57Bhw9CyZcsGH8d+a+TvuEq7fQw+XiaXQMFmA//jjWYoKa6rZe91tmzZEnFxcT4rB5FUcJV2xxh8vMRy4m8sUEilur2xUTqWSeEslPxtQcm8sa6Wq6QYvoikhNOpOMbg4yW1LxA33liB6dO1MBpV0GgELFhQgZEjH5JceHDUbJCXl1dvf6V+W5AqXwUCsf/mUghfRCRfTgefiooKp580PDzcrcL4G8uJ95lngBEjgOPHgdRUFRISIgBEiFk0u1xpHlHqtwWpEiMQiDUHFEMNyZWnFvYl9zkdfCIiIqBSOZ70SBAEqFQqGI3GJhfM3yQkSPNN7sy3f6kOxaf6fBkIOAcUkWtyc4HsbPPwcrXaPOIqK0vsUimP08Fn586d3iwHiaShWoKLFy9am7Ycze1DysY5oIicV1JyPfQA5p/jxwMZGdL8UuzPnA4+vXv39mY5SET2vo3LZSg+iYvvEyLH9Ho9vv0WMJlsz7VGI7Bvnx4hIWy+9SW3OzeXl5cjNzcXhw8fBgB06NABY8eOhVar9VjhSFxyGYpP4uL7hMg+S5OwwRAGlWpyvRG+n322CYWFpWwS9iG3Zm7+4YcfkJKSgqVLl6KsrAxlZWVYsmQJUlJSUFBQ4OkykkgsQ/Fr49w+VBffJ0T2WZp66840DggQBDVyc8ehoKCzR5uEpTjlQ0kJsHOn+afY3Krxefrpp3HffffhrbfeQkCA+SmuXbuGcePGYfLkyfj66689WkgShxRW4Cbp4/uEyDlduhxAdPRZ/OMf42Cpd7A0Dc+efQGemm9TalM+SK1Tt1vB54cffrAJPQAQEBCAadOm4fbbb/dY4SyKi4vxwgsv4Msvv8TZs2cRHx+PUaNGYdasWTaJ9dChQ5g4cSK+//57REVF4cknn8S0adM8Xh5/V/uYOprbhxPEkYVSlsiQA7GmGCDnXL0ajLqNLYKgxo8/XkZSkt5jfxup/I2l2KnbreATHh6OU6dOoV27djbbf/31V4SFeX5RyyNHjsBkMmHVqlVITU1FYWEhHn/8cVy+fBmvvPIKAPM8QwMGDED//v3x5ptv4qeffsLYsWMRERGB7Oxsj5fJn0nt2wLJg5grtZOZvaUK6mJ/Es9yZW4ee7P5FxZ+gl9/rfS7v82xY7arwwPmTt3Hj8ss+IwYMQJZWVl45ZVX0KNHDwDAnj17MHXqVDz00EMeLSAADBw4EAMHDrTebtOmDY4ePYo33njDGnzeeecd1NTUYM2aNQgKCkKHDh1w8OBBLFmyhMHHDf70wSPvkGI/AqWr+2XF3txKnGLAc1xtxmmsadjf/jZpaebjUjv8aDRAaqp4ZXIr+LzyyitQqVR49NFHce3aNQBAYGAgnnjiCcyfP9+jBbTHYDAgMjLSejs/Px+9evWyOclmZGRgwYIF+O2333DDDTc0+DzV1dWorq623nZlhmoiJWPNoLRxDi7v0uv1KC6+huzsaJhM5sl9zc04Am677TySkgLsvveV1DSckGAOg+PHm2t6NBpg1Spx5y5yK/gEBQVh+fLlmDdvHk6cOAEASElJQfPmzT1aOHuOHz+OlStXWmt7AODs2bNITk622S8mJsZ6n73gM2/ePMydO9d7hSXyYww10sS5lbzL0qRYVJQEk2m0zX1GoworV25DcvJJ5OTk2H0OJTQNW/qb3XsvsG+fGsXFAUhKuob4eBNKS8X7YtSkRUqbN2+Ojh07uv34GTNmYMGCBQ73OXz4sE1fotOnT2PgwIH4y1/+gscff9zt320xc+ZMTJkyxXq7oqICrVq1avLzEhGJxd/nVqrdgfvMGTWKigKQnGy+oALev6Bafre9/jqWqRxqamoU29Rrr79ZYaHtbTH6NLkVfK5cuYKVK1di586dOH/+PEx1ei45O5fPM888gzFjxjjcp02bNtb/nzlzBnfffTd69OiB1atX2+wXGxuLc+fO2Wyz3I6NjbX7/MHBwQgODnaqvEREctDYBVnOal9QHTXn+eKC6sxUDpYm4TNnzliXAlICZ/sqidGnya3gk5WVhe3bt+P+++/HHXfc0ejipfZERUUhKirKqX1Pnz6Nu+++G+np6Vi7di3UattvM927d8esWbNw9epVBAYGAgB27NiBtm3b2m3mkgIOPSUiT/PnuZUs58vGmvN8dUF1pr+OTqfzu07LcuZW8NmyZQv+/e9/o2fPnp4uT4NOnz6NPn36IDExEa+88gouXLhgvc9SmzNy5EjMnTsXWVlZmD59OgoLC7F8+XIsXbrUJ2V0B4eeEpG3+HsHWik15ymhv44/cSv43HjjjV6Zr8eeHTt24Pjx4zh+/DgS6nQFFwQBAKDVarF9+3ZMnDgR6enpaNmyJWbPni3poexSrgokIvmp25/E3gXZH/qdyK05j9M/SIdbwWfx4sWYPn063nzzTSQmJnq6TPWMGTOm0b5AAHDrrbfim2++8Xp5iIikSElTDMitOU9Jfxupcyv43H777bhy5QratGmD5s2bW/vUWJSVSTNxExH5OyVdOOXWnKekv42UuRV8HnroIZw+fRovv/wyYmJi3O7cTERE1BRi9K9hs5W8uRV89u7di/z8fHTq1MnT5SEiIpI0Nls1Tsrh0K3g065dO/z++++eLgsREZFDUrmgKjnUOEPK4dCt4DN//nw888wzeOmll9CxY8d6fXzCw8M9UjgiIqLapHxBJVtS/Ru4FXwsK6X369fPZrsgCFCpVDAajU0vmQJI5ZsLEZGcSPWCSvLgVvDZuXOnp8uhSHW/uYix5gwREZGSuBV8evfu7dR+f/3rX/H888+jZcuW7vwaRbCEmtxcIDsbMJkAtRpYvRrIyhK5cERERH5G3fgu7vvnP/+JiooKb/4Kv1BScj30AOaf48ebtxMREZHnuFXj4yzLchLk2LFj10OPhdEIHD8O1Fmhg4iIPIALRCuXV4MPOSctzdy8VTv8aDRAaqp4ZSIi8ld1F4g2GMJQVqZDZKTeZjJELhDtnxh8JCAhwdynZ/x4c02PRgOsWsXaHnKM31iJ3FP7c1NQ0Lneel9duhyotx/5DwYficjKAjIyzM1bqakMPeRY3W+s9vAbK5F9BkOYNfQAgCCosXnzEKSkHJf8ul/kPgYfCUlIYOAh5zj7TZTfWInsKyvTWUOPhSCoUVYWyeDjx1we1XXt2jU8//zzKHFiyNGoUaM4izMREUlSZKQeKpXtyBKVyoTIyDKRSkS+4HLwCQgIwKJFi3Dt2rVG933jjTc4hw8REUmSVluJzMwt1vBj6ePD2h7/5lZTV9++fbFr1y4kJSV5uDhERES+06XLAaSkHEdZWSQiI8sYehTAreAzaNAgzJgxAz/99BPS09MRGhpqc/99993nkcIRERF5m1ZbycCjIG4Fn7/+9a8AgCVLltS7j4uUEhGRlHGBaGVzK/iY6k4zTESisjcBm6s4NxApQd0FohvC97r/civ4vP322xgxYgSCg4NtttfU1OC9997Do48+6pHCEVHDan8TdTQBmyvfWDk3ECkJ38PKpRLcWFBLo9GgtLQU0dHRNtv1ej2io6Nl3dRVUVEBrVYLg8HAofgkaXq9HsXF13DHHdEwmVTW7RqNgH37ziMpKcClk3tpaSlWr17d6H7Z2dmIi4tzq8xERN7i7PXbrdXZBUGASqWqt72kpARardadpyQiF+l0OlRUxNiEHgAwGlWorIzhN1oioga41NTVuXNnqFQqqFQq9OvXDwEB1x9uNBpRVFSEgQMHeryQRNQwLnBLROQal4LP0KFDAQAHDx5ERkYGWrRoYb0vKCgISUlJGD58uEcLSET2cYFbIiLXuBR8nnvuOQBAUlISRowYgWbNmnmlUETkPC5wS0TkPLdGdY0ePRqAeRTX+fPn6w1vb926ddNLRkRO4wK3RETOcSv4HDt2DGPHjsXevXtttls6Pct5VBcRERH5L7eCz5gxYxAQEIAtW7YgLi6uwRFeRHKntMn86s75Y29SRM5mS0Ry5tY8PqGhodi/fz/atWvnjTKJivP4EKDcyfwsYW/jxhBMm6aFyaSCWi1g4UIDRo783adhT2nBk4iaxtnrt1s1Pu3bt8fFixfdLhyR1Dm64Lqzn1zodDqUlADTpl0fIm8yqTB9egRGjIiAr3KGUoMnSQNDt39zK/gsWLAA06ZNw8svv4yOHTsiMDDQ5n7WlBDJ17FjtvMCAeah8seP+64DtVKDJ4mPodv/uRV8+vfvDwDo27evTf8edm4mkj9OikhKxtDt/9wKPjt37vR0OYhIIjgpIhH5M7eCT+/evfHNN99g1apVOHHiBD766CPceOON2LBhA5KTkz1dRiLyMblMili7ryH7XZA32BvdqHS1+0GdOaNGUVEAkpOvIT7eXFUs5c+jW8Fn06ZNeOSRR/Dwww/jwIEDqK6uBgAYDAa8/PLL+Pe//+3RQhKR78lhUsS8vDyb2+x3QZ5UUNAZmzcPgSCooVKZkJm5BV26HBC7WKKr3Q/K0TGS6ufRrdXZX3zxRbz55pt46623bDo29+zZEwUFBR4rHBGRK9jvgjzFYAizXtABQBDU2Lx5CAyGMJFLJj7L56yxYyTVz6Nbwefo0aPo1atXve1arRbl5eVNLROR6JydpI+T+RH5p7IynfWCbiEIapSVRYpUIumR6zFyq6krNjYWx48fR1JSks323bt3o02bNp4oF5GodDodcnJyOJeHSBgoSWyRkXqoVCabC7tKZUJkZJmIpZIWuR4jt4LP448/jqeeegpr1qyBSqXCmTNnkJ+fj7/97W949tlnPV1GIlHUDjUlJeb5bdLSpN/vxR/UDZ6FheV4553v2MHUBZyEzz2W0K3VViIzc0u9/iuW9x/DeePHSKrcCj4zZsyAyWRCv379UFVVhV69eiE4OBh/+9vf8OSTT3q6jESiys0FsrPN89qo1eah3llZYpfK/1kuyubjHwuT6WZ2MHUSJ+FzX93QPXv2BRQXByAp6Rri47sC6MrQWEuXLgeQknIcZWWRiIwsk3zoAdwMPiqVCrNmzcLUqVNx/PhxXLp0Ce3bt0eLFi08XT4iUZWUXA89gPnn+PHmod6s+fG+68ffPFGqpfNkSspxWZxgxcJJ+JqmdqiJiwPS00UsjAxotZWy+jy6FXwsgoKC0L59e0+VhUhypLB8g5I1dPwtnSfldKIlIulwa1QXkVJYlm+ojcs3+E5Dx99R50n2uyDyPrmPem1SjQ+Rv+PyDeKqf/wFLFhQgZEjH6q3L/tdUFOxQ7hz5D7qlcGHqBFyWb7BX9kefxUSEiJQUhLBUXbkUewQ7ho5HwMGHyInyGH5Bn9W+/hzlB15AzuEKwf7+BCRbNgbZVdSIm65iEg+GHyISDYcjbKj6+p2KjUYwlBUlFRvnSmpdj4l8iY2dRGRbFhGedUOPxxlV1/tzqcbN4bg+ee1MJlUUKsFLFxowMiRv0u68ymRNzH4EJFscJSd8yOPdDodSkqAadNqNw2qMH16BEaMiAAzj2MGQxjKynRcJsUPMfgQkawoeZSdqyOPOAGnewoKOtdbf4rLpPgPBh8ikh2ljrJzdeQRmwZdZzCEWUMPwGVS/BE7NxMR+SlL06BGY76txKZBZ1k6epeV6ayhx8KyTErt/Ui+WONDROTHlNw06ApLh/Di4mvYsEGwLowLmGcMf/LJQUhKCmCHcD/A4ENE5OeU2jToKnOn8IY60KuQnh4jdvHIQxh8iIiIamEtmX9j8CEiIrf568KerCXzXww+RETkFi7sSXLEUV1ERDLh7IgiX4084sKeJEes8SEikonaS1EAwJkzahQVBSA5+Rri482T9ci1aYnIVxh8iIicJIX+LJbnz829vlK9Wm0eiZSV5dVfTeQXGHyIiJwgpf4sJSXXQw9g/jl+vHkkEjvkEjnGPj5ERE6QUn8WR2twEZFjDD5ERDJjWYOrNq7BReQcBh8iIpmR6hpcBkMYioqSYDCEiVsQIgfYx4eISIakMLtw7WHzBQWdrauaq1QmZGZuQZcuB+rtRyQ22dX4VFdX47bbboNKpcLBgwdt7jt06BDuuusuNGvWDK1atcLChQvFKSQRkQ8kJAB9+ohX02MZXj9kyARs2ZJpXdVcENTYujUTQ4ZM4OSFJDmyCz7Tpk1DfHx8ve0VFRUYMGAAEhMTsX//fixatAhz5szB6tWrRSglEZEy6HQ6VFTE2KxmDgBGowqVlTEMPSQ5smrq2rZtG7Zv345NmzZh27ZtNve98847qKmpwZo1axAUFIQOHTrg4MGDWLJkCbKzs0UqMRGRvDkzd1Famg5qte1IM3a2JqmSTfA5d+4cHn/8cXzyySdo3rx5vfvz8/PRq1cvm7bkjIwMLFiwAL/99htuuOGGBp+3uroa1dXV1tsVFRWeLzwRyZ7UlovwBVfmLlq9Wofx483D6qXS2ZqoIbIIPoIgYMyYMZgwYQJuv/12FBcX19vn7NmzSE5OttkWExNjvc9e8Jk3bx7mzp3r8TITkX+pu1xEQ/xtuQhX5i6SQmdrImeIGnxmzJiBBQsWONzn8OHD2L59OyorKzFz5kyPl2HmzJmYMmWK9XZFRQVatWrl8d9D1FRSWC5B6Wof35IS80SCaWm8yFskJPBYkPSJGnyeeeYZjBkzxuE+bdq0wZdffon8/HwEBwfb3Hf77bfj4Ycfxvr16xEbG4tz587Z3G+5HRsba/f5g4OD6z0vkdRIabkE4jpZRHImavCJiopCVFRUo/utWLECL774ovX2mTNnkJGRgffffx/dunUDAHTv3h2zZs3C1atXERgYCADYsWMH2rZta7eZi0gupLRcgtJxnSzyBNbgikcWfXxat25tc7tFixYAgJSUFCT8caYZOXIk5s6di6ysLEyfPh2FhYVYvnw5li5d6vPyEnlC7RPjxYsXRS4NWThaJ4vBh5zBGlxxySL4OEOr1WL79u2YOHEi0tPT0bJlS8yePZtD2UmWnD0xku9Z1sni0G1yF2twxSXL4JOUlARBEOptv/XWW/HNN9+IUCIiz+IJT7os62Qpcei2wRCGsjIdIiP10GorxS4OkVtkGXyIiMSklKHbXIvLNxgofYvBh4jIDUoYum2Zu6i4+Bqefz4agmBelsKyFtfs2d2QlBTAfihN4ChQknfIbq0uIiLyHa7F5T0GQ5g19ADmQLl58xAYDGEil8y/MfgQyZDBEIaioqR6J0g2OZA3WDp018YO3U1XVqazhh4LQVCjrCxSpBIpA5u6iGSmdtW4Wi1g4UIDRo78nfN+kNcouUO3N0VG6qFSmWzCj0plQmRkmYil8n+s8SGSAUsNT0lJnE3VuMmkwvTpETAa4xh6yKuysoDiYmDnTvNPzlTtPkvNrFZbiczMLVCpzHMjWPr4WDo4swbXO1jjQyRB9kbTACbU/b7CyfPIV5TQodsX6i54O3v2BRQXByAp6Rri47sC6MoaXC9SCQ1NiKNgFRUV0Gq1MBgMCA8PF7s4pGB6vR7Fxddwxx3RdTqWCgCu39ZozN/AeUEiIiVz9vrNGh/yKK4/4zk6nQ6HDtVfHgFQWWcOZl8LIiLXMPiQx3D9Gc+ztzxCfj5w+bJ/T55HROQN7NxMHsP1ZzzPMppGozHfttTwdO0K9OnD0ENE5CrW+BBJnFKWRyAi8gUGH/Iarj/jORxNQ0TkGQw+5BVcf4aIiKSIfXzI47j+DBERSRWDD3kc158hIiKpYvAhj7OsP1Mb158hIiIpYB8f8pi668/U7ePD9WeI5IETkZI/45IVdXDJiqapfcI8c0Zda/0Zcw0QT5hE0saJSEmuuGQFiaL2iTAuDkhPF7EwROQyTkRK/o59fIiIiEgxGHyIZKakBNi50/yTiIhcw+BDJAN6vR6lpaVYvLgciYkC+vYFEhMFLF5cjtLSUuj1erGLSEQkC+zjQyRxls6mBkMYli2bDEFQAQBMJhWmTg3H6dNroNVWsrMpeQWXniF/w+BDJHGWTqSOJobUaivZ2ZQ8jkvPkD9iUxeRTHBiSPIlLj1D/orBh0gmLBNDWsJP3YkhiTzBMsFoY0vPcCJSkis2dRHJSJcuB5CSchxlZZGIjCxj6CGP0+l0yMnJQXHxNWzYIMBkUlnv02gEPPnkICQlBbA/GckWgw+RzGi1lQw85FU6nQ46HbB6NTB+PGA0AhoNsGqVCunpMWIXj6hJGHyIiKhBWVlARgZw/DiQmgokJIhdIqKmY/AhIiK7EhIYeMi/sHMzkcQ524mUnU2JSOqkMPM8a3yIJM7S2dTRPD1c9Z6IpC43F8jOBkwmQK029yHLyvJ9ORh8iGSAoYaI5Eqv16O4+Bqys6OtowRNJmD8eAG33Xbe56MEGXyIiIjIKyxL7hQVJcFkGm1zn9GowsqV25CcfNKnS+6wjw8RERF5haWJvrGZ53255A6DDxEREXmVlGaeZ1MXEREReZ1UZp5n8CEiIiKfkMLM82zqIiIiIsVg8CEiIiLFYPAhIiIixWDwISIiIq+Q4pI77NxMREREXiHFJXcYfIiIiMhrpLbkDpu6iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIgUoKQE2LnT/JNIyRh8iIj8XG4ukJgI9O1r/pmbK3aJiMTD4ENE5MdKSoDsbMBkMt82mYDx41nzQ8rF4ENE5CFSbE46dux66LEwGoHjx8UpD5HYZBV8tm7dim7duiEkJAQ33HADhg4danP/qVOnMHjwYDRv3hzR0dGYOnUqrl27Jk5hiUhRpNqclJYGqOuc6TUaIDVVnPIQiU02wWfTpk145JFH8Nhjj+HHH3/Enj17MHLkSOv9RqMRgwcPRk1NDfbu3Yv169dj3bp1mD17toilJiIlkHJzUkICsHq1OewA5p+rVpm3EymRShAEQexCNObatWtISkrC3LlzkZWV1eA+27Ztw5AhQ3DmzBnExMQAAN58801Mnz4dFy5cQFBQkFO/q6KiAlqtFgaDAeHh4R57DUTkv3buNNf0NLS9Tx+fF6dBJSXm5q3UVIYe8k/OXr9lUeNTUFCA06dPQ61Wo3PnzoiLi8OgQYNQWFho3Sc/Px8dO3a0hh4AyMjIQEVFBf773//afe7q6mpUVFTY/CMicoVUm5P0ej1KS0tRWloKjaYUbduaf1q26fV6cQtIJIIAsQvgjP/9738AgDlz5mDJkiVISkrC4sWL0adPH/zyyy+IjIzE2bNnbUIPAOvts2fP2n3uefPmYe7cud4rPBH5PUtz0vjx5o7DUmhO0uv1ePXVV+ttNxjCUFamQ2SkHlptJXJycqDT6UQoIZE4RK3xmTFjBlQqlcN/R44cgemPhvNZs2Zh+PDhSE9Px9q1a6FSqfDhhx82qQwzZ86EwWCw/vv111898dKISGGysoDiYnPzVnGx+baYampq6m0rKOiMZcsmY/360Vi2bDIKCjo3uB+RPxO1xueZZ57BmDFjHO7Tpk0blJaWAgDat29v3R4cHIw2bdrg1KlTAIDY2Fh89913No89d+6c9T57goODERwc7E7xiYhsJCRIt/+MwRCGzZuHQBDM33cFQY3Nm4dg9uwLiIsTuXBEPiRq8ImKikJUVFSj+6WnpyM4OBhHjx7Fn/70JwDA1atXUVxcjMTERABA9+7d8dJLL+H8+fOIjo4GAOzYsQPh4eE2gYmISInKynTW0GMhCGoUFwcgPV2kQhGJQBZ9fMLDwzFhwgQ899xzaNWqFRITE7Fo0SIAwF/+8hcAwIABA9C+fXs88sgjWLhwIc6ePYv/+7//w8SJE1mjQ0SKFxmph0plsgk/KpUJSUmc64yURRajugBg0aJFePDBB/HII4+ga9euOHnyJL788kvccMMNAACNRoMtW7ZAo9Gge/fuGDVqFB599FE8//zzIpeciEh8Wm0lMjO3QKUy95lUqUzIzNyC+HhTI48k8i+ymMfHlziPDxG5Qq/XO+wgHBQUJMqoqdLSUqxevbredvOorkhERpZBq61EdnY24tjJh/yAs9dvWTR1ERFJkb0h43VJaci4VlsJrbZS7GIQiUY2TV1ERFLj7FBwMYaMOztbvbP7EfkL1vgQEfkhnU6HnJwc1NTUoLy8vMEFmwMDA1FTUwO9Xi+ZGikib2PwISLyUzqdDnq9Hh988EGj+0qpOY7Im9jURUTkx6TcHCcHJSXm2bhLSsQuCXkKgw8REVEDcnOBxESgb1/zz9xcsUtEnsDgQ0REVEdJCZCdDfyxVCRMJvMitKz5kT8GHyIiojqOHbseeiyMRuD4cXHKQ57D4ENE5CYOGfdfaWmAus4VUqMBUlPN/2ffH/niqC4iIjfVHjJuj1gzN1PTJCQAq1ebm7eMRnPoWbXKvD0393ozmFpt3i8rS+wSk7MYfIiImoChxn9lZQEZGebmrdRUc+ix1/cnI8N8P0kfgw8RkR9jc1zTJCTYBhpHfX8YfOSBwYeIyI+xOc51jhaeDQ9XQ62Ohsmksm6r3feHpI/Bh4jIzzHUOM+ZhWeHDOmMrVszYTSqbPr+kDww+BAREf3BmRmsu3Q5gNmzu6GyMsba94fkg8GHiIjIRfHxJsTFiV0Kcgfn8SEiIiLFYI0PERGRiy5evFhvGzuJywODDxERkYvy8vIa3J6Tk8PwI3Fs6iIiIvIQZzpHk7gYfIiIiEgxGHyIiIj+wBms/R/7+BAREf3B3kzXFy9etNuvh+SFwYeIiKgWdk72b2zqIiIiIsVg8CEiIiLFYPAhIiJqhLOdntk5WvrYx4eIiKgR9jo918aZm+WBwYeIiMgJDDX+gU1dREREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGJy5uQ5BEAAAFRUVIpeEiIiInGW5bluu4/Yw+NRRWVkJAGjVqpXIJSEiIiJXVVZWQqvV2r1fJTQWjRTGZDLhzJkzCAsLg0qlErs4PlNRUYFWrVrh119/RXh4uNjFkTUeS8/gcfQcHkvP4bH0DG8cR0EQUFlZifj4eKjV9nvysManDrVajYSEBLGLIZrw8HB+mD2Ex9IzeBw9h8fSc3gsPcPTx9FRTY8FOzcTERGRYjD4EBERkWIw+BAAIDg4GM899xyCg4PFLors8Vh6Bo+j5/BYeg6PpWeIeRzZuZmIiIgUgzU+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPgrz9ddfIzMzE/Hx8VCpVPjkk09s7hcEAbNnz0ZcXBxCQkLQv39/HDt2TJzCSlxjx3LMmDFQqVQ2/wYOHChOYSVs3rx56Nq1K8LCwhAdHY2hQ4fi6NGjNvtcuXIFEydOhE6nQ4sWLTB8+HCcO3dOpBJLkzPHsU+fPvXekxMmTBCpxNL1xhtv4NZbb7VOrte9e3ds27bNej/fj85r7FiK8Z5k8FGYy5cvo1OnTnjttdcavH/hwoVYsWIF3nzzTezbtw+hoaHIyMjAlStXfFxS6WvsWALAwIEDUVpaav337rvv+rCE8rBr1y5MnDgR3377LXbs2IGrV69iwIABuHz5snWfp59+Gps3b8aHH36IXbt24cyZMxg2bJiIpZYeZ44jADz++OM278mFCxeKVGLpSkhIwPz587F//3788MMP6Nu3L/785z/jv//9LwC+H13R2LEERHhPCqRYAISPP/7YettkMgmxsbHCokWLrNvKy8uF4OBg4d133xWhhPJR91gKgiCMHj1a+POf/yxKeeTs/PnzAgBh165dgiCY34OBgYHChx9+aN3n8OHDAgAhPz9frGJKXt3jKAiC0Lt3b+Gpp54Sr1AydsMNNwj/+Mc/+H70AMuxFARx3pOs8SGroqIinD17Fv3797du02q16NatG/Lz80UsmXx99dVXiI6ORtu2bfHEE09Ar9eLXSTJMxgMAIDIyEgAwP79+3H16lWb92W7du3QunVrvi8dqHscLd555x20bNkSt9xyC2bOnImqqioxiicbRqMR7733Hi5fvozu3bvz/dgEdY+lha/fk1yklKzOnj0LAIiJibHZHhMTY72PnDdw4EAMGzYMycnJOHHiBP7+979j0KBByM/Ph0ajEbt4kmQymTB58mT07NkTt9xyCwDz+zIoKAgRERE2+/J9aV9DxxEARo4cicTERMTHx+PQoUOYPn06jh49iry8PBFLK00//fQTunfvjitXrqBFixb4+OOP0b59exw8eJDvRxfZO5aAOO9JBh8iL3nwwQet/+/YsSNuvfVWpKSk4KuvvkK/fv1ELJl0TZw4EYWFhdi9e7fYRZE1e8cxOzvb+v+OHTsiLi4O/fr1w4kTJ5CSkuLrYkpa27ZtcfDgQRgMBnz00UcYPXo0du3aJXaxZMnesWzfvr0o70k2dZFVbGwsANQbnXDu3DnrfeS+Nm3aoGXLljh+/LjYRZGknJwcbNmyBTt37kRCQoJ1e2xsLGpqalBeXm6zP9+XDbN3HBvSrVs3AOB7sgFBQUFITU1Feno65s2bh06dOmH58uV8P7rB3rFsiC/ekww+ZJWcnIzY2Fh88cUX1m0VFRXYt2+fTXssuaekpAR6vR5xcXFiF0VSBEFATk4OPv74Y3z55ZdITk62uT89PR2BgYE278ujR4/i1KlTfF/W0thxbMjBgwcBgO9JJ5hMJlRXV/P96AGWY9kQX7wn2dSlMJcuXbJJ0kVFRTh48CAiIyPRunVrTJ48GS+++CLS0tKQnJyMZ599FvHx8Rg6dKh4hZYoR8cyMjISc+fOxfDhwxEbG4sTJ05g2rRpSE1NRUZGhoillp6JEydi48aN+Ne//oWwsDBrPwmtVouQkBBotVpkZWVhypQpiIyMRHh4OJ588kl0794dd955p8ill47GjuOJEyewceNG3HvvvdDpdDh06BCefvpp9OrVC7feeqvIpZeWmTNnYtCgQWjdujUqKyuxceNGfPXVV/jPf/7D96OLHB1L0d6TPh1DRqLbuXOnAKDev9GjRwuCYB7S/uyzzwoxMTFCcHCw0K9fP+Ho0aPiFlqiHB3LqqoqYcCAAUJUVJQQGBgoJCYmCo8//rhw9uxZsYstOQ0dQwDC2rVrrfv8/vvvwl//+lfhhhtuEJo3by78v//3/4TS0lLxCi1BjR3HU6dOCb169RIiIyOF4OBgITU1VZg6dapgMBjELbgEjR07VkhMTBSCgoKEqKgooV+/fsL27dut9/P96DxHx1Ks96RKEATBe7GKiIiISDrYx4eIiIgUg8GHiIiIFIPBh4iIiBSDwYeIiIgUg8GHiIiIFIPBh4iIiBSDwYeIiIgUg8GHiIiIFIPBh4iIiBSDwYeIZKOmpkbsItQjxTIRkX0MPkQkmj59+iAnJwc5OTnQarVo2bIlnn32WVhW0klKSsILL7yARx99FOHh4cjOzgYA7N69G3fddRdCQkLQqlUrTJo0CZcvX7Y+7+uvv460tDQ0a9YMMTExuP/++633ffTRR+jYsSNCQkKg0+nQv39/62P79OmDyZMn25Rx6NChGDNmjPW2u2UiImlg8CEiUa1fvx4BAQH47rvvsHz5cixZsgT/+Mc/rPe/8sor6NSpEw4cOIBnn30WJ06cwMCBAzF8+HAcOnQI77//Pnbv3o2cnBwAwA8//IBJkybh+eefx9GjR/HZZ5+hV69eAIDS0lI89NBDGDt2LA4fPoyvvvoKw4YNg6tLFrpaJiKSDi5SSkSi6dOnD86fP4///ve/UKlUAIAZM2bg008/xc8//4ykpCR07twZH3/8sfUx48aNg0ajwapVq6zbdu/ejd69e+Py5cv497//jcceewwlJSUICwuz+X0FBQVIT09HcXExEhMTGyzPbbfdhmXLllm3DR06FBEREVi3bh0AuFWmZs2aNek4EZHnsMaHiER15513WkMPAHTv3h3Hjh2D0WgEANx+++02+//4449Yt24dWrRoYf2XkZEBk8mEoqIi3HPPPUhMTESbNm3wyCOP4J133kFVVRUAoFOnTujXrx86duyIv/zlL3jrrbfw22+/uVxmV8tERNLB4ENEkhYaGmpz+9KlSxg/fjwOHjxo/ffjjz/i2LFjSElJQVhYGAoKCvDuu+8iLi4Os2fPRqdOnVBeXg6NRoMdO3Zg27ZtaN++PVauXIm2bdtaw4lara7X7HX16tUml4mIpIPBh4hEtW/fPpvb3377LdLS0qDRaBrcv0uXLvj555+Rmppa719QUBAAICAgAP3798fChQtx6NAhFBcX48svvwQAqFQq9OzZE3PnzsWBAwcQFBRkbbaKiopCaWmp9XcZjUYUFhY2+hqcKRMRSQODDxGJ6tSpU5gyZQqOHj2Kd999FytXrsRTTz1ld//p06dj7969yMnJwcGDB3Hs2DH861//snYk3rJlC1asWIGDBw/i5MmTePvtt2EymdC2bVvs27cPL7/8Mn744QecOnUKeXl5uHDhAm6++WYAQN++fbF161Zs3boVR44cwRNPPIHy8vJGX0NjZSIi6QgQuwBEpGyPPvoofv/9d9xxxx3QaDR46qmnrEPEG3Lrrbdi165dmDVrFu666y4IgoCUlBSMGDECABAREYG8vDzMmTMHV65cQVpaGt5991106NABhw8fxtdff41ly5ahoqICiYmJWLx4MQYNGgQAGDt2LH788Uc8+uijCAgIwNNPP42777670dfQWJmISDo4qouIRNPQKCoiIm9iUxcREREpBoMPERERKQabuoiIiEgxWONDREREisHgQ0RERIrB4ENERESKweBDREREisHgQ0RERIrB4ENERESKweBDREREisHgQ0RERIrB4ENERESK8f8BKTkfuivYzxoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABg+klEQVR4nO3dfVzT5f4/8Ndn40ZAGHIPooBgmqYmWIaVllnqUTv9tCQz06S0jmikeXc8mWalZpqaZdrX1CzTSuukZmlllkpm3sbJTAxUErwZMlBTYLt+f6zNbWxjjN2y1/Px4KH7fD7brn2i9uq63td1SUIIASIiIiIfIHN3A4iIiIhchcGHiIiIfAaDDxEREfkMBh8iIiLyGQw+RERE5DMYfIiIiMhnMPgQERGRz2DwISIiIp/B4ENEREQ+g8GHiMgDrVq1CpIkoaioyN1NIWpUGHyIfNS+ffuQk5OD9u3bIyQkBC1btsTgwYPx+++/17r2rrvugiRJkCQJMpkMYWFhaNOmDYYNG4bt27fX6303bdqEHj16ICYmBsHBwWjVqhUGDx6ML7/80lEfrZZXXnkFn332Wa3je/bswYwZM1BeXu609zY1Y8YM/b2UJAnBwcFo164d/vOf/6CiosIh77F27VosXLjQIa9F1Ngw+BD5qLlz52LDhg245557sGjRIowaNQrff/890tPTkZ+fX+v6xMRErFmzBu+99x7mzZuH+++/H3v27MF9992HrKwsVFdX1/mer732Gu6//35IkoSpU6fi9ddfx6BBg3D8+HGsW7fOGR8TgPXgM3PmTJcGH52lS5dizZo1WLBgAdq2bYuXX34Zffr0gSO2T2TwIbLMz90NICL3GD9+PNauXYuAgAD9saysLHTo0AFz5szB+++/b3S9QqHAo48+anRszpw5GDduHN566y0kJydj7ty5Ft+vpqYGs2bNwr333ott27bVOn/u3LkGfiLPceXKFQQHB1u95sEHH0RUVBQA4KmnnsKgQYOwceNG/Pjjj8jMzHRFM4l8Ent8iHxUt27djEIPALRu3Rrt27fH0aNHbXoNuVyOxYsXo127dliyZAlUKpXFay9cuICKigrcfvvtZs/HxMQYPb569SpmzJiBG264AU2aNEF8fDwGDhyIEydO6K957bXX0K1bN0RGRiIoKAgZGRn45JNPjF5HkiRcvnwZq1ev1g8vjRgxAjNmzMDEiRMBACkpKfpzhjU177//PjIyMhAUFISIiAg8/PDDOH36tNHr33XXXbjpppuwf/9+dO/eHcHBwfj3v/9t0/0z1LNnTwBAYWGh1eveeusttG/fHoGBgUhISMCYMWOMeqzuuusubNmyBSdPntR/puTk5Hq3h6ixYo8PEekJIXD27Fm0b9/e5ufI5XIMGTIEzz//PHbt2oV+/fqZvS4mJgZBQUHYtGkTxo4di4iICIuvqVar0b9/f3zzzTd4+OGH8cwzz6CyshLbt29Hfn4+UlNTAQCLFi3C/fffj6FDh6Kqqgrr1q3DQw89hM2bN+vbsWbNGjzxxBO49dZbMWrUKABAamoqQkJC8Pvvv+PDDz/E66+/ru99iY6OBgC8/PLLeP755zF48GA88cQTOH/+PN544w10794dBw8eRHh4uL69SqUSffv2xcMPP4xHH30UsbGxNt8/HV2gi4yMtHjNjBkzMHPmTPTq1QtPP/00jh07hqVLl2Lfvn3YvXs3/P39MW3aNKhUKhQXF+P1118HADRt2rTe7SFqtAQR0d/WrFkjAIgVK1YYHe/Ro4do3769xed9+umnAoBYtGiR1defPn26ACBCQkJE3759xcsvvyz2799f67p3331XABALFiyodU6j0ej/fuXKFaNzVVVV4qabbhI9e/Y0Oh4SEiKGDx9e67XmzZsnAIjCwkKj40VFRUIul4uXX37Z6Pgvv/wi/Pz8jI736NFDABBvv/22xc9t6IUXXhAAxLFjx8T58+dFYWGhWLZsmQgMDBSxsbHi8uXLQgghVq5cadS2c+fOiYCAAHHfffcJtVqtf70lS5YIAOLdd9/VH+vXr59ISkqyqT1EvoZDXUQEAPjtt98wZswYZGZmYvjw4fV6rq5HobKy0up1M2fOxNq1a9G5c2d89dVXmDZtGjIyMpCenm40vLZhwwZERUVh7NixtV5DkiT934OCgvR/v3jxIlQqFe68804cOHCgXu03tXHjRmg0GgwePBgXLlzQ/8TFxaF169bYsWOH0fWBgYF4/PHH6/Uebdq0QXR0NFJSUjB69GikpaVhy5YtFmuDvv76a1RVVSE3Nxcy2fX/dD/55JMICwvDli1b6v9BiXwQh7qICKWlpejXrx8UCgU++eQTyOXyej3/0qVLAIDQ0NA6rx0yZAiGDBmCiooK7N27F6tWrcLatWsxYMAA5Ofno0mTJjhx4gTatGkDPz/r/4navHkzXnrpJRw6dAjXrl3THzcMR/Y4fvw4hBBo3bq12fP+/v5Gj5s3b16rXqouGzZsQFhYGPz9/ZGYmKgfvrPk5MmTALSByVBAQABatWqlP09E1jH4EPk4lUqFvn37ory8HD/88AMSEhLq/Rq66e9paWk2PycsLAz33nsv7r33Xvj7+2P16tXYu3cvevToYdPzf/jhB9x///3o3r073nrrLcTHx8Pf3x8rV67E2rVr6/0ZDGk0GkiShK1bt5oNgaY1M4Y9T7bq3r27vq6IiFyHwYfIh129ehUDBgzA77//jq+//hrt2rWr92uo1WqsXbsWwcHBuOOOO+xqR5cuXbB69WqUlJQA0BYf7927F9XV1bV6V3Q2bNiAJk2a4KuvvkJgYKD++MqVK2tda6kHyNLx1NRUCCGQkpKCG264ob4fxymSkpIAAMeOHUOrVq30x6uqqlBYWIhevXrpjzW0x4uoMWOND5GPUqvVyMrKQl5eHj7++GO71o5Rq9UYN24cjh49inHjxiEsLMzitVeuXEFeXp7Zc1u3bgVwfRhn0KBBuHDhApYsWVLrWvH3An9yuRySJEGtVuvPFRUVmV2oMCQkxOwihSEhIQBQ69zAgQMhl8sxc+bMWgsKCiGgVCrNf0gn6tWrFwICArB48WKjNq1YsQIqlcpoNl1ISIjVpQWIfBl7fIh81IQJE/D5559jwIABKCsrq7VgoelihSqVSn/NlStXUFBQgI0bN+LEiRN4+OGHMWvWLKvvd+XKFXTr1g233XYb+vTpgxYtWqC8vByfffYZfvjhBzzwwAPo3LkzAOCxxx7De++9h/Hjx+Onn37CnXfeicuXL+Prr7/Gv/71L/zzn/9Ev379sGDBAvTp0wePPPIIzp07hzfffBNpaWk4cuSI0XtnZGTg66+/xoIFC5CQkICUlBR07doVGRkZAIBp06bh4Ycfhr+/PwYMGIDU1FS89NJLmDp1KoqKivDAAw8gNDQUhYWF+PTTTzFq1Cg899xzDbr/9RUdHY2pU6di5syZ6NOnD+6//34cO3YMb731Fm655Rajf14ZGRlYv349xo8fj1tuuQVNmzbFgAEDXNpeIo/lzillROQ+umnYln6sXdu0aVPRunVr8eijj4pt27bZ9H7V1dXinXfeEQ888IBISkoSgYGBIjg4WHTu3FnMmzdPXLt2zej6K1euiGnTpomUlBTh7+8v4uLixIMPPihOnDihv2bFihWidevWIjAwULRt21asXLlSP13c0G+//Sa6d+8ugoKCBACjqe2zZs0SzZs3FzKZrNbU9g0bNog77rhDhISEiJCQENG2bVsxZswYcezYMaN7Y22qvyld+86fP2/1OtPp7DpLliwRbdu2Ff7+/iI2NlY8/fTT4uLFi0bXXLp0STzyyCMiPDxcAODUdiIDkhAO2BiGiIiIyAuwxoeIiIh8BoMPERER+QwGHyIiIvIZDD5ERETkMxh8iIiIyGcw+BAREZHP4AKGJjQaDc6cOYPQ0FAu+05EROQlhBCorKxEQkICZDLL/ToMPibOnDmDFi1auLsZREREZIfTp08jMTHR4nkGHxOhoaEAtDfO2r5DRERE5DkqKirQokUL/fe4JQw+JnTDW2FhYQw+REREXqauMhUWNxMREZHPYPAhIiIin8HgQ0RERD6DNT520Gg0qKqqcnczGrWAgACr0xGJiIjs4TXBZ/bs2di4cSN+++03BAUFoVu3bpg7dy7atGmjv+bq1auYMGEC1q1bh2vXrqF379546623EBsb67B2VFVVobCwEBqNxmGvSbXJZDKkpKQgICDA3U0hIqJGRBJCCHc3whZ9+vTBww8/jFtuuQU1NTX497//jfz8fPz6668ICQkBADz99NPYsmULVq1aBYVCgZycHMhkMuzevdvm96moqIBCoYBKpao1q0sIgVOnTqG6urrOBZLIfrpFJP39/dGyZUsuJElERHWy9v1tyGuCj6nz588jJiYGO3fuRPfu3aFSqRAdHY21a9fiwQcfBAD89ttvuPHGG5GXl4fbbrvNpte1duOqq6tRUFCAhIQEKBQKh38muk6lUuHMmTNIS0uDv7+/u5tDREQeztbg47VdFiqVCgAQEREBANi/fz+qq6vRq1cv/TVt27ZFy5YtkZeX55D3VKvVAMDhFxfQ3WPdPSciInIEr6nxMaTRaJCbm4vbb78dN910EwCgtLQUAQEBCA8PN7o2NjYWpaWlFl/r2rVruHbtmv5xRUVFne/PoRfn4z0mIiJn8MrgM2bMGOTn52PXrl0Nfq3Zs2dj5syZDmgVERGRb1AqlVZnNwcEBCAyMtKFLbKd1wWfnJwcbN68Gd9//73RJmRxcXGoqqpCeXm5Ua/P2bNnERcXZ/H1pk6divHjx+sf6/b6ICIiotqUSiWWLFlS53U5OTkeGX68psZHCIGcnBx8+umn+Pbbb5GSkmJ0PiMjA/7+/vjmm2/0x44dO4ZTp04hMzPT4usGBgbq9+VqrPtzjRgxApIkQZIk+Pv7IzY2Fvfeey/efffdek3LX7VqVa2hRCIi8i22rmPnqevdeU2Pz5gxY7B27Vr897//RWhoqL5uR6FQICgoCAqFAtnZ2Rg/fjwiIiIQFhaGsWPHIjMz0+YZXc7mzq7BPn36YOXKlVCr1Th79iy+/PJLPPPMM/jkk0/w+eefw8/Pa34ViIiI7OY133ZLly4FANx1111Gx1euXIkRI0YAAF5//XXIZDIMGjTIaAFDT+DursHAwED9kF/z5s2Rnp6O2267Dffccw9WrVqFJ554AgsWLMDKlSvxxx9/ICIiAgMGDMCrr76Kpk2b4rvvvsPjjz8O4Hrh8QsvvIAZM2ZgzZo1WLRoEY4dO4aQkBD07NkTCxcuRExMjMM/BxERUUN41VCXuR9d6AGAJk2a4M0330RZWRkuX76MjRs3Wq3vcSVP7Brs2bMnOnXqhI0bNwLQrpa8ePFi/O9//8Pq1avx7bffYtKkSQCAbt26YeHChQgLC0NJSQlKSkrw3HPPAdCubzRr1iwcPnwYn332GYqKioz+uRAREXkKr+nxIedo27Ytjhw5AgDIzc3VH09OTsZLL72Ep556Cm+99RYCAgKgUCggSVKtMDly5Ej931u1aoXFixfjlltuwaVLl9C0aVOXfA4iIiJbeE2PDzmHEEI/dPX111/jnnvuQfPmzREaGophw4ZBqVTiypUrVl9j//79GDBgAFq2bInQ0FD06NEDAHDq1Cmnt5+IiNxLpQpFYWEyVKpQdzfFJgw+Pu7o0aNISUlBUVER+vfvj44dO2LDhg3Yv38/3nzzTQDWh98uX76M3r17IywsDB988AH27duHTz/9tM7nERGR9ztwoDMWLszF6tXDsXBhLg4c6OzuJtWJQ10+7Ntvv8Uvv/yCZ599Fvv374dGo8H8+fP1m69+9NFHRtcHBATU2kLit99+g1KpxJw5c/TrH/3888+u+QBERORyui2FVKpQbNrUH0JovzOEkGHTpv5ITS2AQlHpsds7scfHR1y7dg2lpaX4888/ceDAAbzyyiv45z//if79++Oxxx5DWloaqqur8cYbb+CPP/7AmjVr8Pbbbxu9RnJyMi5duoRvvvkGFy5cwJUrV9CyZUsEBATon/f5559j1qxZbvqURETkbJGRkcjJyUG3bsP1oUdHCBluv324xy5eCDD4+Iwvv/wS8fHxSE5ORp8+fbBjxw4sXrwY//3vfyGXy9GpUycsWLAAc+fOxU033YQPPvgAs2fPNnqNbt264amnnkJWVhaio6Px6quvIjo6GqtWrcLHH3+Mdu3aYc6cOXjttdfc9CmJiMgVIiMjcdttkZCZpAi5HOjaNdJjQw8ASEII4e5GeBJr29pfvXoVhYWFSElJQZMmTer1uu5ex8fbNOReExE1Bt6wH9aKFcDo0YBarQ09y5YB2dnuaYu1729DrPFxEV3XoKf/EhMRkft5y/8sZ2cDvXsDBQVAWhpgsIWmx2LwcSGGGiIisoUnLnprSWKidwQeHdb4EBERkc9g8CEiIvJw3rZIoCfjUBcREZEHO3Cgs369HEnSYMCAzUhPP+juZnkt9vgQERF5KEuLBLLnx34MPkRERB6qrCzS7CKBZWURbmqR9+NQFxERkYeKiFBCkjRG4UeSNIiIKNM/Nl3vp7y8HDU1NfrH/v7+UCgU+se+vnQKgw8REfk8T1ssULfPlUJRiQEDNteq8VEoKgEAV65cwfLly+v9+u5e/8edGHyowb777jvcfffduHjxIsLDw216TnJyMnJzc5Gbm+vUthER1cV0sUCVKhRlZZGIiFDqAwbg2rBguujt9OnnUVTkh+TkGiQk3ALgFgQEBNi9jo8nrP/jLqzx8QEjRoyAJEl46qmnap0bM2YMJEnCiBEjXN8wIiIPYBgCDhzojIULc7F69XAsXJiLAwc6m73OFSIjIxEfH4/4+HhkZMRi0KBIZGTE6o/5ao9NQzH4+IgWLVpg3bp1+Ouvv/THrl69irVr16Jly5ZubBkRkWdoDDOoTNf74fo/tTH4+Ij09HS0aNECGzdu1B/buHEjWrZsic6dr/8fzbVr1zBu3DjExMSgSZMmuOOOO7Bv3z6j1/riiy9www03ICgoCHfffTeKiopqvd+uXbtw5513IigoCC1atMC4ceNw+fJlp30+IqKG8vYZVKa9VZ9++k+LvVe+jMHHTYqLgR07tH+6ysiRI7Fy5Ur943fffRePP/640TWTJk3Chg0bsHr1ahw4cABpaWno3bs3ysq0MwhOnz6NgQMHYsCAATh06BCeeOIJTJkyxeg1Tpw4gT59+mDQoEE4cuQI1q9fj127diEnJ8f5H5KIyE66GVSGTGdQeSpzvVWHD3fy6t4rZ2HwcYMVK4CkJKBnT+2fK1a45n0fffRR7Nq1CydPnsTJkyexe/duPProo/rzly9fxtKlSzFv3jz07dsX7dq1wzvvvIOgoCCs+LuRS5cuRWpqKubPn482bdpg6NChteqDZs+ejaFDhyI3NxetW7dGt27dsHjxYrz33nu4evWqaz4sEVE96WZQ6cKP6QwqT2autwqQjB55U++VM3FWl4sVFwOjRgGav/+nQqMBRo8Gevd2/u620dHR6NevH1atWgUhBPr164eoqCj9+RMnTqC6uhq33367/pi/vz9uvfVWHD16FABw9OhRdO3a1eh1MzMzjR4fPnwYR44cwQcffKA/JoSARqNBYWEhbrzxRmd8PCKiBktPP4jU1AKUlUUgIqLMK0IPYH69H0DAMPx4S++VszH4uNjx49dDj45aDRQUOD/4ANrhLt2Q05tvvumU97h06RJGjx6NcePG1TrHQmoi8nQKRaXXBB5r6/107HgER450NLv+j+55ruBpayQx+LhY69aATGYcfuRyIC3NNe/fp08fVFVVQZIk9O7d2+hcamoqAgICsHv3biQlJQEAqqursW/fPv16OzfeeCM+//xzo+f9+OOPRo/T09Px66+/Is1VH4qIyEaGX8JnzshQWOiHyMhLNj3XlWHBHEsBIisrC9XV1Rg82A/Tp59Hfv5VJCRcQVycHKWlx1BSEoL27QON1v9xZNCwFmzKy8vx0Ucf1fkarlwjicHHxRITgeXLtcNbarU29Cxb5preHgCQy+X6YSu5XG50LiQkBE8//TQmTpyIiIgItGzZEq+++iquXLmC7OxsAMBTTz2F+fPnY+LEiXjiiSewf/9+rFq1yuh1Jk+ejNtuuw05OTl44oknEBISgl9//RXbt283WiSMiMiVDBcqNN7xvBkGDOis3/E8KyvLaIsH4HqvhLt6L0wXWbQkJycHGRlJ+scdOji8KUZsbVddXLlGEoOPG2Rna2t6Cgq0PT2uCj06YWFhFs/NmTMHGo0Gw4YNQ2VlJbp06YKvvvoKzZo1A6AdqtqwYQOeffZZvPHGG7j11lvxyiuvYOTIkfrX6NixI3bu3Ilp06bhzjvvhBACqampyMrKcvpnIyKyRPflamm9ntTUgr+HuRSIj4+v9Xx3rvBsazBwRICoT7jzxhWgGXzcJDHRdYHHtEfG1Geffab/e5MmTbB48WIsXrzY4vX9+/dH//79jY6ZTou/5ZZbsG3bNouvYW7tHyIiV7C2Xo+12h7TFZ5N98/S9RiZCwOeVudiSX16ljyhvfZg8CEiIp9iy47n1tTVY2TK1jAxePBgxMTE2BQoLPU2NZQre5bchcGHiIi8SnGxdoZs69b29ZzXteN5XerbY2QaEiyFFl0RcF29KdZ6m2xhrffpwoULNr+Ot2LwISIir7FixfW10GQy7WSRv+de1EtD1utpSI+RYWgBNOjWLQ9du+41en9rvSn17W0y5ahiZGvts9YT5ayeqvpg8CEiIo+nVCpRVFSDUaNioNFoF+XTLgArcPPN55Cc7FfvmhN71+uxt8fINLQAMuzZczvy8jJt7rWxtz5Jx5lDVHX1RDW0p8pRGHzsIIRwdxMaPd5jItLR9VIUFiZDoxludE6tlvDGG1uRknLSpQW39vQYmd9Won69Ng2tT6ovW3to6uqJquu8K9dIYvCpB926N1VVVQgKCnJzaxo33f+VmK41RES+R/ffg7q+9C31ZuhqWlQqlU1f5LZ+CVvqMTKtk9E9Nr+thFZdvTbWVmh21orMtvTQ6N7PUk/U6dOJKCv7C5cvB5s9f/vtw3HXXeDKzZ7Kz88PwcHBOH/+PPz9/SGTcY9XZ9BoNDh//jyCg4Ph58dfUSLSsmeIqfaihblmv8gHDx6M8PBwq9PKbQ0VGzdutNr+zz/vD9M9wuvqtYmMjEROTo4+3E2ffh5FRX5ITq5p0IrMloKgrbVEunYVFdVgzRqhH4bUfaZPPnnw78+qgeneYXI50LVrJFw9K57fKvUgSRLi4+NRWFiIkydPurs5jZpMJkPLli0hSVLdFxORz6jvEJOtixaGh4ebXbTQkGn40Llw4YJR2LHWq6Rr/969XZGXl1mvGiHDUBMfD2RkWL28TtZ6dOqqJTIMgZGR2vCi3ZVAQK2W/u7ZAq4HPG34kSQBIWSQywWWLZNcvoAvwOBTbwEBAWjdurVXr2HgDQICAtijRkRm2VKUrJvyHham/e9IQ4uCderqUbFleEihqMR9932Nrl33um0X+LqC4NCht9bqwZHLBcaO7WuxkDw7G7j55nN4442tuHw5BJ988pDJFTIMGvQRQkKuYOzYvsjIiHXmR7SIwccOMpkMTZo0cXcziIjIQHl5OQBg7dogTJqkgEYjQSaLQf/+nZGaWuD0ouD6TjW3FOBcUehbVxC86aZwLF8umewrKdUZVpKT/ZCSchIqVajZ+92iRTEUikokJ7svfjD4EBFRo/DRRx9BpQrFwoW5EEI35V3Cpk39kZu7sEGLFtrC1l4lS0NhAwcOREJCglMLfXWhqq5C8YCAALv2lTQcDmzevAKTJyugVkuQywXmzq3AI48Mcfv2HAw+RETUaFgLHw1ZtNAc3Wwxa7O2THuVrA2FRUVFOT0Q1DeY2LOvpO65EyYAWVm64CQhMTEcQLhDP489GHyIiMij1Wfop67wYe+ihabMrYBc16yzhq667CiuDCau3JDbVgw+RETk0SzNpjKkUqmwfv36Bu/DZStL+2+lphYgN3eh2V4lRxVYO5InBhNnY/AhIiKPV58hIHuGtBpSUGzrVgyuXnWZzGPwISKiRsfSkNbAgQMRFRVldKwhxbZ1DV8NHDgQgHZRQ1f1RpF1DD5EROQzoqKi6lyosD7qGr4yDVmOLrCm+mPwISKiRk9Xg5OfX64/5ohp1bYMX5kOo7lz/R5i8CEiokbAWmgwrMF57z3jGpyG7uhuy/CVLcXZ7l7bxpcw+BARkdczDRe6/bPqqsFxxPZDtgxfMdR4DgYfIqJGRrdPVevWvjVV2Vy4cNYUcg5feS8GHyKiRmTFCmDUKECjAWQy7Y7Z2dnubpX7OGsKuSOHr3w1qLoLgw8RUSNRXHw99ADaP0eP1u635KtfqM6cQu6I4SsGVddj8CEi8mKGvQXHj18PPTpqtXZLAl8NPoBnTiFXKpUoKqrBqFEx0Gh0G6oCo0cL3HzzOSQn+7EuyEkYfIiIvJRpb8GcOdo/DcOPXK7dWdvXOWqPLkfQ7fNVWJgMjWa40Tm1WsIbb2xFSsrJBs84I/NkdV9CRESextyw1tSpAv/+twpyuQCAv3fcLodcXgKlUunG1pIhXV2Qrv7IkGH9kSNmnFFt7PEhIvJC5oe1JJw+/SnGjSvTD+tculSJ5cu1532pB8HW2VTunHXFLSzcg8GHiMgLtW5de1hL11tgaVjHl3oQvGXRQE+sP2rsGHyIiCzw1GnGSqUScnkVXn01CJMnK6BWS+wtMMPdocZWnlR/5AsYfIiIzPDUaca6wlidceNC2VtAVA8sbiYiMmFpPZziYve2C6g9XKVQVCIl5SRDD5GNGHyIiExYWw+HiLwbgw8RkQld4bAhrofjvYqLgR07PKPHDvCOGWeNGWt8iIhMJCZqa3pGj9b29MjlwLJlnlXg7G6eWvhtyhNrtbxlxlljxeBDRGRAqVSiqqoK//gHsHevDEVFfkhOrkFCggYlJd79heSoHgRPDBOmPH1LCG/9HWoMGHyIiP5mOmNKJz/f+LGtCwG6s1dk4MCBiIqK0j92VGDzho1QuSUEWcPgQ0T0N1sX+LPlOnf3ikRFRSE+Pt6hr6lUKvHjj4BGYxwW1Gpg714lgoLc25OhC5phYTUArm8JIcT1gi1uCUEsbiYicjBnTod3V2Gsrhdlz57VZveX2r17NZYsWWLTnmCOKDY2fI3iYmDiRCApCejZE7j11hgcONBZvyWErr1c5JEA9vgQETmctenwDR0OcldhrO796tpfqq5eFEf0hBm+hiQBQhif12gkbNrUH6mpBdwSgmph8CEicjBz+2g5cjq8u+tS7AkTv/xyEXv2CDz9dDMIYX+xsWlvmmno0RFChrKyCP12EAw8pNMoh7refPNNJCcno0mTJujatSt++ukndzeJiHyIbjq8XK593Binw9dnxehFiy6hUycFnnoqQh96dHTFxrYOk5nrTTPHsJaHyFCj6/FZv349xo8fj7fffhtdu3bFwoUL0bt3bxw7dgwxMTHubh4RNXKNeTp8femmlI8fH1Mr8OjUt9jYXG+aKZlMoH9/1vKQeY0u+CxYsABPPvkkHn/8cQDA22+/jS1btuDdd9/FlClT3Nw6ImrMHD0d3ptZm1KuU99iY8Nd6SdNUvy9Po/m7zofGQANunXLQ9euexl6yKJGFXyqqqqwf/9+TJ06VX9MJpOhV69eyMvLM/uca9eu4dq1a/rHFRUVTm8nEXmmhs6YcuR0eG+n+4zmppRraZCd/X9ITCyx6fVMQ+Uzz1zflR6AXcXL3BLCNzWq4HPhwgWo1WrExsYaHY+NjcVvv/1m9jmzZ8/GzJkzXdE8IvJw3ErAMYqLgR9/DIBKFQqFohKZmXnYs+d2k6tkqK62PXiY25XeMORYCzymizkC/OfoyxpV8LHH1KlTMX78eP3jiooKtGjRwo0tIiJ3aixfho5eNdrW3pGPPgrF+PHaRQ4lKRcDBmxG1657sWdPJgzn07iy+NgZizmS92pUwScqKgpyuRxnz541On727FnExcWZfU5gYCACAwNd0TwiIj1LwcQRgcUZq0bb0ht24UIT3HxzU4Op5jJs2tQfubkLcf/9ltf+IXKlRhV8AgICkJGRgW+++QYPPPAAAECj0eCbb75BTk6OextHRPS3tWuDMGlS7WDiiMDizL20rPWGKZVKHDumqTXbSreeDhcSJE/RqIIPAIwfPx7Dhw9Hly5dcOutt2LhwoW4fPmyfpYXEZE7qVShePFFRa1g0rFj3YGlrt4gd+2lpSs8VqlCIUm5FvfGqmshQRYbkys0uuCTlZWF8+fPY/r06SgtLcXNN9+ML7/8slbBMxGRO5SVRf49Dfs6tRrYtcv6Nhd19QbVFT52716N/PzKBk2lNw1eppuC1rWdhSUDBw5EQkJCo6mvIs/W6IIPoF0jg0NbRORqtvRYREQoIZMJo/AjkwnExhZAJkszOi6XC4SGnsMvvwRg1KhmVnuDHLWXliWmwWvYMGDNGt3jGPTv3xnp6QftGtKKiopyauhhTxIZapTBh4jIHawVAJeXl+Ojjz6CQlGJ/v03GQWT/v034/jxg+jfv7PR8X79NmPz5oNmFwG0NnxVV/iobwG1ubqh1auvnzfcFNRZe2PZE14GDx6MmJgY9iSREQYfIiIHsuVL1lIwsXTc3CKApsNXpiyFD0uF1dbYsj+W4aagzmAaKlUqFaqrq42u8fPzQ3h4OACu00OWMfgQEbmBLpioVKEoLExGRITSYm+Jo4avLBVW1zXjy5b9sRqyLo+tvTmGQYbr8pC9GHyIiNzkwIHOtcJMevpBs9c6Yjq4pcJqazO+DPfHmjxZAbVaglwuMHDgX9i4MUj/uF8/24qYuYIyuRuDDxGRG6hUofrQA1xf7E9XJ2NOQ2tnbBkyMwwhpvtjjRsXahS8EhO1jx944CYcPmw+sBniCsrkCUx3jSMiIhcoK4ustXGnrk7GWXRDZpKkHbOqa8jM3P5YKSkn9dfrHh8+vMWm9+fsKvIE7PEhIpdz9D5S3shS74uz6mRUqlCUlUUiNbUAubkLnbqCMoe0yJMx+BCRSzljHylvZO9if5ZYm0q/fLkaCxcm2FRL5Agc0iJPxuBDRC7jzH2kPJ25HhlH719lrkeluBh48UUBIbRFzbbUEhE1ZqzxISKXMbcejG5bhsZO1yMzcOBAo+OmdTM6AwcOxODBg216bWvDXNp7bjyTy9m1RESejD0+ROQy5taDkcuBtDT3tUlHV3fUtClw6ZJz6o8iIyNtXnNHN1xkafhKp67aGe09N94ioyG1RETejsGHiFwmMVFb0zN6tLanRy4Hli1z/zCXYd2RjqfUHzWkIFi3Bs/06WrMnJngkFoiIm/H4ENELqFUKlFVVYV//APYu1eGoiI/JCfXICFBg5IS9836Ma070vH2+iPTNXhyc0PrrCUyHTLj9HNqjBh8iMjpTL+EdfLzjR+bLqDnCtb2odLVH3lj8DG3Bo+5wKObem4ueJrOFNNttFoXBibyZAw+ROR0tta12HqdoyiVSoSF1UAmi6lVAAxoa2NCQ89BqfRzWCCzNRS4KjzUNfXcdH+shtYcEbkbgw8R+STDXqj+/TsbbB8hAEiQJA3699+MzZu16904qjfK2no7Op4cHjy1XUS2YvAhIp9kGDwM19Px969CdXVArVoYR/ZGMTwQuQ+DDxERGr4BKBF5By5gSEReqbgY2LFD+2dj0Ng+D5GnYvAhIq+zYgWQlAT07Kn9c8UKd7eoYRrb5yHyZAw+RORVLO335a09Jc76PJ42e4zIU7DGh4iczlFfwkqlEj/+CGg0xsXBajWwd68SQUHeVzhsbf+yhqwf5O2zx4ichcGHiJzOli/hCxea4MiRZhb3yNJNP1epQiFJuX9PPdeSJA12716N/PxKtyyC2BDO3L/Mm+4DkatwqIuIXCIyMhLx8fFmf774Ih4339zMao2LLjQpFJUYMGAzJEmbFEz3nrJ12nl9h3icNSSk279MLtc+9pT9y4gaK0kIIdzdCE9SUVEBhUIBlUqFsLAwdzeHqNErLtaGHdMej6Ii4y//kpISLF++XP9YpTK/99SoUaOsrkRsSKlUoqioBvn515CQcBlxcTVG5/38/BAeHu6SIaHiYu3wVloaQw+RPWz9/uZQFxG5TUNqdhyx7s5nn0XqC4vt2Y29uFhbo2NpeK4+EhMZeIhcgUNdRGS3utaesXZeV7OzZ89q/bCVjq5mZ8mSJVAqlU5oecNnU3EKOpF3YvAhIrvU9cVf13lH1+zUh7anSWl2NtXevco6w5ajpqArlUqUlJRY/HFW6CPyZRzqIqJ6s/TF37u3drimrvOmDPfKMq3ZcTRHzA5zxBR0w01SrfG2WWpEno49PkRUb9a++O3tTVEoKpGScrLBoefMGZnV4beG9jQplUqEhZ2FTGY8L0QuFwgNPWtzL42tPVnO6PEi8mXs8SGietF+8ddAJouBRiPpj8vlAkIUYMmStTb1ptSXLdPJDxzojBdfjLG5WLm+PU2GvTT9+3fGpk39IYQMkqRBv36bsXnzQQDspSHyZAw+RGSzur74v/9e+8Wv600xPN/Quh1riyCqVCqcPi3w4ott9WFMO7wmcPPN55Cc7OeQ2WGG720tNLGXhshzMfgQkc1s/eK35bw9zIUXpVKJ9evXo7AwGRrNjUbn1GoJb7yxFSkpJ53SC+OIKfVE5FoMPkRkt7q++F0RDHRhLCJCCUnS1Bpei4goM7qOiHwbi5uJyC3M1eyoVKEoLEyGShVq9Tpz6ipWJiIC2ONDRG5iWrOzdm0QXnxRAY1Ggkwm8OqrKowYoa7X8JQrp8UTkXdijw8RuU1kZCQCAgJw5owMkyYpDAqTJUyerEBRUU29F/Gra1q8rgfJXO+SueucxdbXd3Y7iHwNe3yIyG10s8S0hcnDjc45qzA5MjIS4eET8OKLIUa9S4888pf+GldsSmptlpor20Hkaxh8iMjldL0Y7ihMLi4Gxo9varCqtITJk8ORlRVe56rLju6lYaghcj0GHyKyma1f6FlZWVAoFBZfw/QLv651fxypIdtNsJeGyPsx+BCRzZz5xW9vYXJ9e2Fat9au6mwYfuRyIC3NtnYy1BB5NwYfIqoXZ37x27PuT33DWGKidiuL0aO1PT1yObBsme2bixKRd2PwISKvZ2sYUyqVqKqqwj/+AezdK0NRkR+Sk2uQkKBBSQmHqYh8AYMPEfkEw33GDOXnGz/mBqNEjRvX8SEin2DrzDBubUHUuDH4EJHbcBE/InI1DnURUYPpamcA4MwZGQoL/ZCSoq2dASzXznB6OBG5GoMPEVlUXKxd96Z1a8uzngxrZw4c6FxrLZ709IMALNfOMNQQkStxqIuIjCiVSpSUlGD+/HIkJQn07AkkJQnMn1+OkpKSWntn6XprVKpQfegBACFk2LSpv34vLNbOEJEnYI8P0d8Mh2vM8YUhF13vjUoVioULcyHE9U1DJ04Mw59/vguFohKDBw9GeHg4AODChQsAgLKySKMtJwBt+Ckri+Au6UTkMRh8iGB5qrMpb57qbEsdju68tRADAHPn/oSICKVRoKlrv636sGWIjYjIHgw+RGj8U51trcPJysoCYDnEnDmTgPfee8zscx2139aKFcCoUdotJWQy7SrL2dkNvwecQUZEAIMPkUN4+jBZXXU4qakFUCgqUV1dDcB8iOnV62t8/XUvi88F7N9vS6e4+HroAbR/jh4N9O7d8J4fziAjIoDBh6jBTIfJVKpQlJVF1hoK8oRhsvrU4ZiGGFufa89+WzoN2TndFu6+/0Tkfgw+RGZYCi/mGPYgWBtG8oRhsvrW4ZiGGEfV8FjS0J3TiYjqwunsRCYOHOiMhQtzsXr1cCxcmIsDBzrb9Ly6pnN7At0QliRpk0V96nAa8lzAttoZ3c7pcrn2MXdOJyJHY48PkYG6amCs8Zbp3A2pw7H23IEDByIqKsrs82ypneHO6UTkCgw+RAYaEl4cOZ3b2SzV4fj51f2fBEvPjYqKQnx8vF3t4c7pROQqDD5EuD4MU1d4KS8vr/Vc3QJ+jprO7U7h4eG1Zj6pVCqsX7++zuc2ZBp4Y19OgIg8B4MPEYynOjdvXoHJkxVQqyXI5QIzZpyFWq0NLx999JHV12nodG5nqc8aNqY9KvHx8ZwGTkSNhs3Bp6KiwuYXDQsLs6sxRO6k++KeMAHIytJOoU5LkyCXawtubdWQ6dz2sHUNoYaEF1tDDVdcJiJPZ3PwCQ8PhyRJVq8RQkCSJKjV6gY3jMidEhOvf3GXlBifq89Ud0POWBHYk9YQctaKy0REjmRz8NmxY4cz20HkFayt09PQWU328JQ1hJy54jIRkSPZHHx69OjhzHYQeby6pro3ZFaTs9vmTEqlEj/+CGg0xsFOrQb27lUiKIgrJhOR57C7uLm8vBwrVqzA0aNHAQDt27fHyJEjoVAoHNY4Ik/iyev0uLJthnU8QUHaoTaVKhSSlFtrNtzu3auRn1/JaehE5DHsWrn5559/RmpqKl5//XWUlZWhrKwMCxYsQGpqKg4cOODoNhJ5BN1Ud0Oesk6Pq9q2YgWQlAT07Kn9c+FCPxQWJgOA1VWd6xpq487pROQqdvX4PPvss7j//vvxzjvv6Bc8q6mpwRNPPIHc3Fx8//33Dm0kkSfw5HV6XNE2c3U8L70UBmC4/v1ycxfaNZWfO6cTkavYFXx+/vlno9ADaFd8nTRpErp06eKwxukUFRVh1qxZ+Pbbb1FaWoqEhAQ8+uijmDZtmtH/AR45cgRjxozBvn37EB0djbFjx2LSpEkObw/5FsPfMWvr9Li7N8Ja21QqldXn1hUqLNXxANqZnrqaotzchUhJOWlX+xlqiMgV7Ao+YWFhOHXqFNq2bWt0/PTp0wgNdfyGjL/99hs0Gg2WLVuGtLQ05Ofn48knn8Tly5fx2muvAdCuM3TfffehV69eePvtt/HLL79g5MiRCA8Px6hRoxzeJvId3tQbYWkNIVtWXjatw9HV8kRFXcTGjebreAx5Sr0TEZE1dgWfrKwsZGdn47XXXkO3bt0AALt378bEiRMxZMgQhzYQAPr06YM+ffroH7dq1QrHjh3D0qVL9cHngw8+QFVVFd59910EBASgffv2OHToEBYsWMDgQw3mCaHGHHt6mSyt9WMY7IzX5AlH//6dkZ5+0Gg4DRDQ9fgAnlPvRERkjV3B57XXXoMkSXjsscdQU1MDAPD398fTTz+NOXPmOLSBlqhUKkREROgf5+XloXv37kZfBL1798bcuXNx8eJFNGvWzOzrXLt2DdeuXdM/rs8K1UTuZktvVHl5uX6rDWtr/QDaIa2iohqMGhUDjUYbajQaST813nA47cyZBHz9dS+Pq3ciIrLGruATEBCARYsWYfbs2Thx4gQAIDU1FcHBwQ5tnCUFBQV444039L09AFBaWoqUlBSj62JjY/XnLAWf2bNnY+bMmc5rLJGT2dobVddaP7qAVFiYDI1muNFzDYexdD8pKSdx0035HrcvGRGRNXZNZ9cJDg5Ghw4d0KFDB7tCz5QpUyBJktWf3377zeg5f/75J/r06YOHHnoITz75ZEOaDwCYOnUqVCqV/uf06dMNfk0iT2RprZ/Tp7VLK58/fx5A/abG6wJQXaHH3YXfREQ6dvX4XL16FW+88QZ27NiBc+fOQaMx/o+krWv5TJgwASNGjLB6TatWrfR/P3PmDO6++25069YNy012jYyLi8PZs2eNjukex8XFWXz9wMBABAYG2tReIm+mCzSm4eeTTx5EVdVmANptaRwxNd5w+w5PKfwmIgLsDD7Z2dnYtm0bHnzwQdx66611bl5qSXR0NKKjo2269s8//8Tdd9+NjIwMrFy5EjKZ8X+8MzMzMW3aNFRXV8Pf3x8AsH37drRp08biMBd5Flt3GSf7mAaa62pvb2Ftarwt3Ll9BxGRNXYFn82bN+OLL77A7bff7uj2mPXnn3/irrvuQlJSEl577TV9lzxwvTfnkUcewcyZM5GdnY3JkycjPz8fixYtwuuvv+6SNlLDmO4ybgm3PmiY9PSDCAi4hk8+ecjouLmp6JamxhMReTO7gk/z5s2dsl6PJdu3b0dBQQEKCgqQaLLVsxACAKBQKLBt2zaMGTMGGRkZiIqKwvTp0zmV3UvYunu4s3cZb4xM62tatDhda8iLU9GJyFfYVdw8f/58TJ48GSdP2rdCa32NGDECQgizP4Y6duyIH374AVevXkVxcTEmT57skvYReTLdlPeBAwcCuD7kZWlfLSKixsyuHp8uXbrg6tWraNWqFYKDg/U1NTplZfw/RyJPEhkZadRb1tAaHiIib2VX8BkyZAj+/PNPvPLKK4iNjbW7uJmI3Ic1PETki+wKPnv27EFeXh46derk6PYQkZsZTkU3deXKFbz//vt1vgbX7SEiT2VX8Gnbti3++usvR7eFiJzI1jCSkJBgdeact2zYSkRkjl3BZ86cOZgwYQJefvlldOjQoVaNT1hYmEMaR0SO46hd5hlqiMib2RV8dDul33PPPUbHhRCQJAlqtbrhLSOfYmtvBIdQGoahhYh8nV3BZ8eOHY5uB/k4096IM2dkKCz0Q0pKDRIStNOuOYRCREQNZVfw6dGjh03X/etf/8KLL75osVCSyJAu1KxYAYwaBWg0gEwGLF8OZGe7uXFERNQoNGh39rq8//77qKiocOZbUCNTXHw99ADaP0eP1h4nIiJqKLt6fGxlurIyUV2OH78eenTUaqCgADDZraTR46atRESO59TgQ1RfrVtrh7cMw49cDqSlua9N7mC6aatKFYqyskhERCiNFh3kpq1ERPXD4EMeJTFRW9MzerS2p0cuB5Ytc2xvjzf0pBi278CBzti0qT+EkOn31UpPP1jrOiIiqhuDD3mc7Gygd2/t8FZamuNDj2FPiiWe0pOiUoXqQw8ACCHDpk39kZpawO0miIjswOBDHikx0Tk1Pbb2kHhKT0pZWaQ+9OgIIUNZWQSDDxGRHeo9q6umpgYvvvgiim2YZvPoo49yFWeiBoiIUEKSjKu9JUmDiIgyN7WIiMi71Tv4+Pn5Yd68eaipqanz2qVLl3INH6IGUCgqMWDAZn340dX4sLeHiMg+dg119ezZEzt37kRycrKDm0NEptLTDyI1tQBlZRGIiChj6CEiagC7gk/fvn0xZcoU/PLLL8jIyEBISIjR+fvvv98hjSMiLYWikoGHiMgB7Ao+//rXvwAACxYsqHWOm5QSNRw3bSUicg67go/GdGldIg9kbr2eCxcuGD22tDCgu5lu2mqOJ6w3RETkbewKPu+99x6ysrIQGBhodLyqqgrr1q3DY4895pDGEdnLlvV6rC0M6Ak9KQw1RESOJwk7NtSSy+UoKSlBTEyM0XGlUomYmBivHuqqqKiAQqGASqXiVHwvVlJSguXLl1s8r1KFYuHCXKM1cuRygb17zyE52Y+hg4jIy9j6/W1Xj48QApIk1TpeXFwMhUJhz0sSuZS5hQHVagmVlbFg5iEiarzqFXw6d+4MSZIgSRLuuece+Pldf7parUZhYSH69Onj8EYSOZpuYUDjHh/f2wyViMjX1Cv4PPDAAwCAQ4cOoXfv3mjatKn+XEBAAJKTkzFo0CCHNpDIGXQLA27ZMgBqteSUzVCJiMjz1Cv4vPDCCwCA5ORkZGVloUmTJk5pFJErpKcfxPTpXVFZGevwzVCJiMgz2VXjM3z4cADaWVznzp2rNb29ZcuWDW8ZkQskJGgQH+/uVhARkavYFXyOHz+OkSNHYs+ePUbHdUXP3jyri4iIiBovu4LPiBEj4Ofnh82bNyM+Pt7sDC8ia8wtLmiooYvzma7DY2mhQk9Yr4eIiFzHruBz6NAh7N+/H23btnV0e8gH2LK4IADk5OTYHH7MBamsrCxUV1dj48ZmWLSoOTQaCTKZwKuvqvDII39x5WMiIh9kV/Bp165draX/iWxlrafHnuusBanrCxVqeyU1GgmTJ4cjKyu8Xuv1OLuHioiIXMOu4DN37lxMmjQJr7zyCjp06AB/f3+j81zxmFzJWiAxv1AhUFBg+ywuZ/RQERGRe9gVfHr16gUA6Nmzp1F9D4ubydM4YqFCR/dQERGR+9gVfHbs2OHodhA5hW6hQt1mpFyokIjIt9kVfHr06IEffvgBy5Ytw4kTJ/DJJ5+gefPmWLNmDVJSUhzdRiIjpvU2ddWbpacfRGpqAW6/fTi6do1scOgxnSGme5yfX66/hjU/RESeya7gs2HDBgwbNgxDhw7FwYMHce3aNQCASqXCK6+8gi+++MKhjSTSsbXexpRCUYlu3aoavFjhgQOd9b1HkqRBx45HcORIRwghw3vvaTBgwGakpx8EwJofIiJPJKv7ktpeeuklvP3223jnnXeMCptvv/12HDhwwGGNIzLlzjoalSpUH3oAQAgZDh/uZPR406b+UKlC3d5WIiIyz67gc+zYMXTv3r3WcYVCgfLy8oa2iRo5WxcN9LTFBc3NEAOMF+8UQoaysgjXNYqIiOrFrqGuuLg4FBQUIDk52ej4rl270KpVK0e0ixqxyMhI5OTkuHxdnIYGKXMzxAABw/AjSRpERJQ16H2IiMh57Ao+Tz75JJ555hm8++67kCQJZ86cQV5eHp577jk8//zzjm4jNUKGoaa4GDh+HGjd2jGzrVSqULRseQ/atw9AXFwNAMDf3x9VVVUoKSmpd6jSBSbTGWKmNT6SpK3xMdwSg4iIPItdwWfKlCnQaDS45557cOXKFXTv3h2BgYF47rnnMHbsWEe3kRqxFSuAUaMAjQaQyYDly4HsbPtfz7T42LDY2FB9Co9Ne6hyco7hgw/2IiKiDApFJXr2/BZlZRH6x0RE5LnsCj6SJGHatGmYOHEiCgoKcOnSJbRr1w5NmzZ1dPuoESsuvh56AO2fo0cDvXvb1/Njrvh406b+SE0tqBVI6lt4bBqSUlJO6v+uUFQy8BAReQm7go9OQEAA2rVr56i2kI85fvx66NGp73YShswVH+uKjRlMiIgIsHNWF5EjtG6tHd4yVNd2EtYKlHXFx4acUWzsrbPSiIiogT0+RA2RmKit6Rk9WtvTY8t2EnXNCFMozmDmzIQ6i41NV3uuT8Gzu2alERFRw0lCCOHuRniSiooKKBQKqFQq7jLvIsXF2uGttLT6D3GZzggrKSnBvHkf2lVszJWWiYi8l63f3+zxIbdLTLSvpsfcjLB//MP+YmOutExE1Pixxoe8kqUZYWfO8FeaiIgs47cEeSVLM8KKi5sYHVOpQlFYmKzfP4uIiHwbh7rIK+lmhBmGH7kcyMhQ4I47tIXHa9cG4cUXFdBoJKuLGRIRke9g8CGPplQqzdbeyOXAq68GYfJkBdRqyWRGWCSKi4FJk64HI8PFDAHtmj8REUqu70NE5GMYfMhjKZVKLFmyxOo148aFokePbGRkKIwKpM0NhQkhw969XZGXl1nnlhZERNQ4scaHPJYts6wUikrceuuVWrPCzC2OKEka7NmTWWtLC9b/EBH5DgYfapR0iyPK5drHkqRBZmYeTH/ldVtaAFxpmYjIF3Coixqt7GzthqcFBUBkpApVVWm49VYBjUbSXyOXC4wd2xfJyX5cvJCIyAcw+FCjdn1xxGYAzG2RISEjI9atbSQiItdh8CGfYtgLZM8WGURE5N0YfMgjKZXKWhuJOoq9W2QQEZH3Y/Ahj2PLNHYiIiJ7cFYXeZz6bhbK2VhERGQr9viQ11CpQo1WXB44cCASEhI4G4uIiGzG4ENOZWnLCZ2AgACbgsuBA52xaVN/oxWXR42KYughIqJ6YfAhp7G1VicnJ8dqgFGpQvWhB7i+4vL06ecRH++w5hIRkQ9gjQ85ja21OnVdV1YWqQ89OkLIUFTE3E5ERPXD4EMeLyJCCUky3nFUkjRITq5xU4uIiMhbMfiQV9Dus6UNP7oan4QEjfUnERERmeBYAXkcw+nppkXNmZm70bXrXigUlQgIuN2NrSQiIm/kdT0+165dw8033wxJknDo0CGjc0eOHMGdd96JJk2aoEWLFnj11Vfd00hqkMjISOTk5KB//6ewefMAo6LmvXu7YejQoXUWRBMREZnjdcFn0qRJSEhIqHW8oqIC9913H5KSkrB//37MmzcPM2bMwPLly93QSmqoyMhIVFTEGu2kDgBqtYTKyliGHiIisotXBZ+tW7di27ZteO2112qd++CDD1BVVYV3330X7du3x8MPP4xx48ZhwYIFbmgp1ceFCxegVCprHW/dGpCZ/IbK5drNRYmIiOzhNcHn7NmzePLJJ7FmzRoEBwfXOp+Xl4fu3bsb1Yf07t0bx44dw8WLFy2+7rVr11BRUWH0Q45h61YSGzduxJIlS2qFn8REYPlybdgBtH8uW8YNRomIyH5eEXyEEBgxYgSeeuopdOnSxew1paWliI2NNTqme1xaWmrxtWfPng2FQqH/adGiheMa7uN0tToDBw606Xpz6/lkZwNFRcCOHdo/s7Md20YiIvItbp3VNWXKFMydO9fqNUePHsW2bdtQWVmJqVOnOrwNU6dOxfjx4/WPKyoqfCr8OGpLCUsiIyP1r2+615atEhPZy0NERI7h1uAzYcIEjBgxwuo1rVq1wrfffou8vDwEBgYanevSpQuGDh2K1atXIy4uDmfPnjU6r3scFxdn8fUDAwNrva6vcNSWErYwt9dWevrBBr0mERFRfbk1+ERHRyM6OrrO6xYvXoyXXnpJ//jMmTPo3bs31q9fj65duwIAMjMzMW3aNFRXV8Pf3x8AsH37drRp0wbNmjVzzgfwco7aUqIuZ87IzO61lZpaYNTzc+HCBf3fG9rTREREZI5XLGDYsmVLo8dNmzYFAKSmpiLx7zGQRx55BDNnzkR2djYmT56M/Px8LFq0CK+//rrL2+vpdMNbhkHDmQoL/czutVVWFmEUfDZu3Gh0DdfqISIiR/OK4GMLhUKBbdu2YcyYMcjIyEBUVBSmT5+OUaNGubtpHsXW4S1HSkmpgSRpjMKPJGkQEVFm9XkN7WkiIiIy5ZXBJzk5GUKIWsc7duyIH374wQ0t8h7uCBMJCdqanuvDXZq/994iIiJyLa8MPuRdAgICkJ5+EKmpBdi7tyvy8jKxZ8/tyMvLxIABm5GaWmDXbC8iIqL6YvAhp9Ot51NUVINFi2IghHYbCiFk+Pzz/pAkcLYXERG5hFcsYEjez9LeW4Cs1mwvlSrU9Q0kIiKfwOBDeipVKAoLk2sFD1u3nqiLub23TOlmexERETkDh7oIQO0FBl944QxGjZI7dD0d3d5bo0cLqNUSAA0A6e8fLVtmexEREdmLwcfHqVShOH26Ra0FBmfNao7sbAmOXkYnOxu49dZyzJ//X0RElOHEibRaKzrrCpwd1dNERESkw+DjYwzDhGEvjym1WkJBgXP2yOrQoRnmzx+gn1o/ffp5FBX5ITm5BgkJtwC4hSs3ExGRU0jC3II4PqyiogIKhQIqlQphYWHubo5TKJVKFBXV4NZbY8wUG2vJ5drd0Lk5KBEReQNbv7/Z4+OhnLlremRkJI4cATQa8+flcmDZMoYeIiJqfBh8PJArdk3XzbAyDD8yGbBuHZCZydBDRESNE6ezeyBX7Jqum2Ell2sfy+Xaxw89xNBDRESNF3t8fFh2NtC7N1BQAKSlMfAQEVHjx+DjBVSqUKftZZWYyMBDRES+g8HHw5kuLMi9rIiIiOzHGh8PplKF1lpYkHtZERER2Y/Bx4OVlUXWWlyQe1kRERHZj8HHg0VEKCFJxovtcC8rIiIi+7HGxwPptpVQKCoxYMBml+9l5czFE4mIiNyJW1aY8JQtKwzDx5kzMoO9rLQ9QM4KH65YPJGIiMjRuGWFlzMMFfHxQEaGa97XFYsnEhERuQtrfIiIiMhnMPg0IsXFwI4d2j+JiIioNgYfL6dUKlFSUoL588uRlCTQsyeQlCQwf345SkpKoFQq3d1EIiIij8EaHy+mK0RWqUKxcGEuhJAAABqNhIkTw/Dnn+9CoahsUCGyM7fLICIicjUGHy+mKzC2ttChQlFpdyEyt8sgIqLGhkNdjYAzFjrkdhlERNQYMfg0ArqFDnXhx3Shw/rQLYpY13YZzlo8kYiIyJk41NVIpKcfRGpqAcrKIhARUWZ3PU5kZCRycnJQVFSDNWsENBpJf04uFxg7ti+Sk/24eCEREXklBp9GRKGodEgBcmRkJCIjgeXLgdGjAbUakMuBZcskZGTEOqClRERE7sHgQxZlZwO9ewMFBUBaGpCY6O4WERERNQyDD1mVmMjAQ0REjQeLm72YrQXG9hYicyVoIiJqbNjj48V0hcjW1umxdxf3FSuAUaMAjQaQybT1PtnZDWktERGR+zH4eDlHz65SKpUoKqrBqFEx+hldGg0werTAzTef44wuIiLyagw+pKfbAqOwMBkazXCjc2q1hDfe2IqUlJMN2gKDiIjInVjjQ3q6IbO6VoK2dwsMIiIid2PwoVocuRI0ERGRJ+FQF5nlqJWgiYiIPAmDD1nkqJWgiYiIPAWHuoiIiMhnMPgQERGRz2DwISIiIp/B4EN6zt4Cg4iIyN1Y3Ex6ztwCg4iIyBMw+JARhhoiImrMONRFREREPoPBh4iIiHwGgw8RERH5DAYfIiIi8hkMPkREROQzGHyIiIjIZzD4EBERkc9g8CEiIiKfweBDREREPoPBh4iIiHwGgw8RERH5DAYfIiIi8hkMPkREROQzGHyIiIjIZzD4EBERkc9g8CEiIiKfweBDREREPoPBh4iIiHwGg4+HKi4GduzQ/klERESOweDjgVasAJKSgJ49tX+uWOHuFhERETUODD4eprgYGDUK0Gi0jzUaYPRo9vwQERE5AoOPBzAc1jp+/Hro0VGrgYIC97SNiIioMfGq4LNlyxZ07doVQUFBaNasGR544AGj86dOnUK/fv0QHByMmJgYTJw4ETU1Ne5prI1Mh7V+/hmQmfxTkcuBtDT3tI+IiKgx8XN3A2y1YcMGPPnkk3jllVfQs2dP1NTUID8/X39erVajX79+iIuLw549e1BSUoLHHnsM/v7+eOWVV9zYcsvMDWtNnQrMnQtMmaLt6ZHLgWXLgMRE97aViIioMZCEEMLdjahLTU0NkpOTMXPmTGRnZ5u9ZuvWrejfvz/OnDmD2NhYAMDbb7+NyZMn4/z58wgICLDpvSoqKqBQKKBSqRAWFuawz2DOjh3anh5zx9PStMNbaWkMPURERHWx9fvbK4a6Dhw4gD///BMymQydO3dGfHw8+vbta9Tjk5eXhw4dOuhDDwD07t0bFRUV+N///mfxta9du4aKigqjH1dp3drcsJZAaOhZyOUlaNOmBHJ5CUpKtD9KpdJlbSMiImqMvGKo648//gAAzJgxAwsWLEBycjLmz5+Pu+66C7///jsiIiJQWlpqFHoA6B+XlpZafO3Zs2dj5syZzmu8FYmJwJw52mEtjQaQJA369duMzZsPWnxOTk4OIiMjXdhKIiKixsOtPT5TpkyBJElWf3777Tdo/i6CmTZtGgYNGoSMjAysXLkSkiTh448/blAbpk6dCpVKpf85ffq0Iz6aTVasMAw9Ar16fY30dMuhBwCqqqpc1DoiIqLGx609PhMmTMCIESOsXtOqVSuUlJQAANq1a6c/HhgYiFatWuHUqVMAgLi4OPz0009Gzz179qz+nCWBgYEIDAy0p/kNYlrYLISEr7/uhZtuyodCUeny9hAREfkCtwaf6OhoREdH13ldRkYGAgMDcezYMdxxxx0AgOrqahQVFSEpKQkAkJmZiZdffhnnzp1DTEwMAGD79u0ICwszCkyewtx6PULIUFYWweBDRETkJF5R4xMWFoannnoKL7zwAlq0aIGkpCTMmzcPAPDQQw8BAO677z60a9cOw4YNw6uvvorS0lL85z//wZgxY9zSo1MXXWGzYfiRJA0iIsrc1ygiIqJGziuCDwDMmzcPfn5+GDZsGP766y907doV3377LZo1awYAkMvl2Lx5M55++mlkZmYiJCQEw4cPx4svvujmlpuXmAgsX67djkK7Xo9Av36b2dtDRETkRF6xjo8ruWodH6VSiaqqKpw5I0NRkR/Cws5hz56P6nzeqFGjEB8f77R2EREReSNbv7+9psenMVEqlViyZIm7m0FERORzvGIBw8amIVPSbV2BmoiIiGpjj48bqFQqm64bOHAgoqKi9I8DAgK4eCEREVEDMPi4mFKpxPr16226NioqivU8REREDsShLherqqqCShWKwsJkqFSh7m4OERGRT2GPj4utXRuEhQtzIYQMkqTBgAGb69ymgoiIiByDPT4uVFwMTJqkgBDa2y6EDJs29WfPDxERkYsw+LiQdpsKyeiYbpsKIiIicj4GHxcpLgbOn9fuwm7I2jYVnLpORETkWKzxcYEVK67vxC5JAKABcL3Gx9w2FYMHD+bUdSIiIgdj8HGy4uLroQcAhJAgSQKDBn2EFi2KLe7NFR4e7rpGEhER+QgOdTmZtq7H+JgQMoSEXLG6ISmHuYiIiByPPT5O1ro1IJMZhx+ZTGDo0K6Ii8vQH/Pz89P38nCFZiIiIudg8HGyxERgwYJLePbZYP3aPf37b8aePbXX7snJyWHgISIiciIGHxcYPLgSJ08uR1lZBCIiyiwOcTVk81IiIiKqG4OPiygUlVZreoiIiMj5WNxMREREPoM9Pk6kVCpRVVWFCxcuuLspREREBAYfp1EqlViyZIm7m0FEREQGONTlJCxUJiIi8jwMPkREROQzGHw8CFdrJiIici7W+LjZwIEDERUVxdWaiYiIXIDBx82ioqIQHx/v7mYQERH5BA51ERERkc9g8CEiIiKfweDjJLYWKrOgmYiIyHVY4+MkkZGRyMnJsbqeDwuaiYiIXIvBx4kYaoiIiDwLh7qIiIjIZzD4EBERkc9g8CEiIiKfweBDREREPoPBh4iIiHwGgw8RERH5DAYfIiIi8hkMPkREROQzGHyIiIjIZ3DlZhNCCABARUWFm1tCREREttJ9b+u+xy1h8DFRWVkJAGjRooWbW0JERET1VVlZCYVCYfG8JOqKRj5Go9HgzJkzCA0NhSRJNj2noqICLVq0wOnTpxEWFubkFnou3gct3gfeAx3eBy3eB94DHWfeByEEKisrkZCQAJnMciUPe3xMyGQyJCYm2vXcsLAwn/6F1uF90OJ94D3Q4X3Q4n3gPdBx1n2w1tOjw+JmIiIi8hkMPkREROQzGHwcIDAwEC+88AICAwPd3RS34n3Q4n3gPdDhfdDifeA90PGE+8DiZiIiIvIZ7PEhIiIin8HgQ0RERD6DwYeIiIh8BoMPERER+QwGHwuWLl2Kjh076hdZyszMxNatW/Xnr169ijFjxiAyMhJNmzbFoEGDcPbsWaPXOHXqFPr164fg4GDExMRg4sSJqKmpcfVHcZg5c+ZAkiTk5ubqj/nKfZgxYwYkSTL6adu2rf68r9yHP//8E48++igiIyMRFBSEDh064Oeff9afF0Jg+vTpiI+PR1BQEHr16oXjx48bvUZZWRmGDh2KsLAwhIeHIzs7G5cuXXL1R7FbcnJyrd8FSZIwZswYAL7zu6BWq/H8888jJSUFQUFBSE1NxaxZs4z2SfKF34fKykrk5uYiKSkJQUFB6NatG/bt26c/3xjvwffff48BAwYgISEBkiThs88+MzrvqM985MgR3HnnnWjSpAlatGiBV1991TEfQJBZn3/+udiyZYv4/fffxbFjx8S///1v4e/vL/Lz84UQQjz11FOiRYsW4ptvvhE///yzuO2220S3bt30z6+pqRE33XST6NWrlzh48KD44osvRFRUlJg6daq7PlKD/PTTTyI5OVl07NhRPPPMM/rjvnIfXnjhBdG+fXtRUlKi/zl//rz+vC/ch7KyMpGUlCRGjBgh9u7dK/744w/x1VdfiYKCAv01c+bMEQqFQnz22Wfi8OHD4v777xcpKSnir7/+0l/Tp08f0alTJ/Hjjz+KH374QaSlpYkhQ4a44yPZ5dy5c0a/B9u3bxcAxI4dO4QQvvG7IIQQL7/8soiMjBSbN28WhYWF4uOPPxZNmzYVixYt0l/jC78PgwcPFu3atRM7d+4Ux48fFy+88IIICwsTxcXFQojGeQ+++OILMW3aNLFx40YBQHz66adG5x3xmVUqlYiNjRVDhw4V+fn54sMPPxRBQUFi2bJlDW4/g089NGvWTPzf//2fKC8vF/7+/uLjjz/Wnzt69KgAIPLy8oQQ2l8MmUwmSktL9dcsXbpUhIWFiWvXrrm87Q1RWVkpWrduLbZv3y569OihDz6+dB9eeOEF0alTJ7PnfOU+TJ48Wdxxxx0Wz2s0GhEXFyfmzZunP1ZeXi4CAwPFhx9+KIQQ4tdffxUAxL59+/TXbN26VUiSJP7880/nNd6JnnnmGZGamio0Go3P/C4IIUS/fv3EyJEjjY4NHDhQDB06VAjhG78PV65cEXK5XGzevNnoeHp6upg2bZpP3APT4OOoz/zWW2+JZs2aGf07MXnyZNGmTZsGt5lDXTZQq9VYt24dLl++jMzMTOzfvx/V1dXo1auX/pq2bduiZcuWyMvLAwDk5eWhQ4cOiI2N1V/Tu3dvVFRU4H//+5/LP0NDjBkzBv369TP6vAB87j4cP34cCQkJaNWqFYYOHYpTp04B8J378Pnnn6NLly546KGHEBMTg86dO+Odd97Rny8sLERpaanRfVAoFOjatavRfQgPD0eXLl301/Tq1QsymQx79+513YdxkKqqKrz//vsYOXIkJEnymd8FAOjWrRu++eYb/P777wCAw4cPY9euXejbty8A3/h9qKmpgVqtRpMmTYyOBwUFYdeuXT5xD0w56jPn5eWhe/fuCAgI0F/Tu3dvHDt2DBcvXmxQG7lJqRW//PILMjMzcfXqVTRt2hSffvop2rVrh0OHDiEgIADh4eFG18fGxqK0tBQAUFpaavQfNt153TlvsW7dOhw4cMBozFqntLTUZ+5D165dsWrVKrRp0wYlJSWYOXMm7rzzTuTn5/vMffjjjz+wdOlSjB8/Hv/+97+xb98+jBs3DgEBARg+fLj+c5j7nIb3ISYmxui8n58fIiIivOY+GPrss89QXl6OESNGAPCtfyemTJmCiooKtG3bFnK5HGq1Gi+//DKGDh0KAD7x+xAaGorMzEzMmjULN954I2JjY/Hhhx8iLy8PaWlpPnEPTDnqM5eWliIlJaXWa+jONWvWzO42MvhY0aZNGxw6dAgqlQqffPIJhg8fjp07d7q7WS5z+vRpPPPMM9i+fXut/6PxNbr/iwWAjh07omvXrkhKSsJHH32EoKAgN7bMdTQaDbp06YJXXnkFANC5c2fk5+fj7bffxvDhw93cOvdYsWIF+vbti4SEBHc3xeU++ugjfPDBB1i7di3at2+PQ4cOITc3FwkJCT71+7BmzRqMHDkSzZs3h1wuR3p6OoYMGYL9+/e7u2lkAYe6rAgICEBaWhoyMjIwe/ZsdOrUCYsWLUJcXByqqqpQXl5udP3Zs2cRFxcHAIiLi6s1k0P3WHeNp9u/fz/OnTuH9PR0+Pn5wc/PDzt37sTixYvh5+eH2NhYn7gP5oSHh+OGG25AQUGBz/w+xMfHo127dkbHbrzxRv2Qn+5zmPuchvfh3LlzRudrampQVlbmNfdB5+TJk/j666/xxBNP6I/5yu8CAEycOBFTpkzBww8/jA4dOmDYsGF49tlnMXv2bAC+8/uQmpqKnTt34tKlSzh9+jR++uknVFdXo1WrVj5zDww56jM7898TBp960Gg0uHbtGjIyMuDv749vvvlGf+7YsWM4deoUMjMzAQCZmZn45ZdfjP7hbt++HWFhYbW+PDzVPffcg19++QWHDh3S/3Tp0gVDhw7V/90X7oM5ly5dwokTJxAfH+8zvw+33347jh07ZnTs999/R1JSEgAgJSUFcXFxRvehoqICe/fuNboP5eXlRv83/O2330Kj0aBr164u+BSOs3LlSsTExKBfv376Y77yuwAAV65cgUxm/BUil8uh0WgA+N7vQ0hICOLj43Hx4kV89dVX+Oc//+lz9wBw3D/3zMxMfP/996iurtZfs337drRp06ZBw1wAOJ3dkilTpoidO3eKwsJCceTIETFlyhQhSZLYtm2bEEI7ZbVly5bi22+/FT///LPIzMwUmZmZ+ufrpqzed9994tChQ+LLL78U0dHRXjdl1ZThrC4hfOc+TJgwQXz33XeisLBQ7N69W/Tq1UtERUWJc+fOCSF84z789NNPws/PT7z88svi+PHj4oMPPhDBwcHi/fff118zZ84cER4eLv773/+KI0eOiH/+859mp7F27txZ7N27V+zatUu0bt3ao6fumqNWq0XLli3F5MmTa53zhd8FIYQYPny4aN68uX46+8aNG0VUVJSYNGmS/hpf+H348ssvxdatW8Uff/whtm3bJjp16iS6du0qqqqqhBCN8x5UVlaKgwcPioMHDwoAYsGCBeLgwYPi5MmTQgjHfOby8nIRGxsrhg0bJvLz88W6detEcHAwp7M708iRI0VSUpIICAgQ0dHR4p577tGHHiGE+Ouvv8S//vUv0axZMxEcHCz+3//7f6KkpMToNYqKikTfvn1FUFCQiIqKEhMmTBDV1dWu/igOZRp8fOU+ZGVlifj4eBEQECCaN28usrKyjNav8ZX7sGnTJnHTTTeJwMBA0bZtW7F8+XKj8xqNRjz//PMiNjZWBAYGinvuuUccO3bM6BqlUimGDBkimjZtKsLCwsTjjz8uKisrXfkxGuyrr74SAGp9NiF853ehoqJCPPPMM6Jly5aiSZMmolWrVmLatGlG04994fdh/fr1olWrViIgIEDExcWJMWPGiPLycv35xngPduzYIQDU+hk+fLgQwnGf+fDhw+KOO+4QgYGBonnz5mLOnDkOab8khMEym0RERESNGGt8iIiIyGcw+BAREZHPYPAhIiIin8HgQ0RERD6DwYeIiIh8BoMPERER+QwGHyIiIvIZDD5ERETkMxh8iKjB7rrrLuTm5rq7GU43Y8YM3Hzzze5uBhE1AIMPEfm8qqoql76fEAI1NTUufU8i0mLwIaIGGTFiBHbu3IlFixZBkiRIkoSioiLk5+ejb9++aNq0KWJjYzFs2DBcuHBB/7y77roLY8eORW5uLpo1a4bY2Fi88847uHz5Mh5//HGEhoYiLS0NW7du1T/nu+++gyRJ2LJlCzp27IgmTZrgtttuQ35+vlGbdu3ahTvvvBNBQUFo0aIFxo0bh8uXL+vPJycnY9asWXjssccQFhaGUaNGAQAmT56MG264AcHBwWjVqhWef/55/e7Qq1atwsyZM3H48GH951y1ahWKioogSRIOHTqkf/3y8nJIkoTvvvvOqN1bt25FRkYGAgMDsWvXLmg0GsyePRspKSkICgpCp06d8Mknnzj6HxERGWDwIaIGWbRoETIzM/Hkk0+ipKQEJSUlCA0NRc+ePdG5c2f8/PPP+PLLL3H27FkMHjzY6LmrV69GVFQUfvrpJ4wdOxZPP/00HnroIXTr1g0HDhzAfffdh2HDhuHKlStGz5s4cSLmz5+Pffv2ITo6GgMGDNAHlBMnTqBPnz4YNGgQjhw5gvXr12PXrl3Iyckxeo3XXnsNnTp1wsGDB/H8888DAEJDQ7Fq1Sr8+uuvWLRoEd555x28/vrrAICsrCxMmDAB7du313/OrKyset2rKVOmYM6cOTh69Cg6duyI2bNn47333sPbb7+N//3vf3j22Wfx6KOPYufOnfV6XSKqB4dsdUpEPq1Hjx7imWee0T+eNWuWuO+++4yuOX36tNGO5j169BB33HGH/nxNTY0ICQkRw4YN0x8rKSkRAEReXp4Q4vqu0OvWrdNfo1QqRVBQkFi/fr0QQojs7GwxatQoo/f+4YcfhEwmE3/99ZcQQoikpCTxwAMP1Pm55s2bJzIyMvSPX3jhBdGpUyejawoLCwUAcfDgQf2xixcvCgBix44dRu3+7LPP9NdcvXpVBAcHiz179hi9XnZ2thgyZEidbSMi+/i5M3QRUeN0+PBh7NixA02bNq117sSJE7jhhhsAAB07dtQfl8vliIyMRIcOHfTHYmNjAQDnzp0zeo3MzEz93yMiItCmTRscPXpU/95HjhzBBx98oL9GCAGNRoPCwkLceOONAIAuXbrUatv69euxePFinDhxApcuXUJNTQ3CwsLq/fktMXzPgoICXLlyBffee6/RNVVVVejcubPD3pOIjDH4EJHDXbp0CQMGDMDcuXNrnYuPj9f/3d/f3+icJElGxyRJAgBoNJp6vffo0aMxbty4Wudatmyp/3tISIjRuby8PAwdOhQzZ85E7969oVAosG7dOsyfP9/q+8lk2ooBIYT+mG7YzZThe166dAkAsGXLFjRv3tzousDAQKvvSUT2Y/AhogYLCAiAWq3WP05PT8eGDRuQnJwMPz/H/2fmxx9/1IeYixcv4vfff9f35KSnp+PXX39FWlpavV5zz549SEpKwrRp0/THTp48aXSN6ecEgOjoaABASUmJvqfGsNDZknbt2iEwMBCnTp1Cjx496tVWIrIfi5uJqMGSk5Oxd+9eFBUV4cKFCxgzZgzKysowZMgQ7Nu3DydOnMBXX32Fxx9/vFZwsMeLL76Ib775Bvn5+RgxYgSioqLwwAMPANDOzNqzZw9ycnJw6NAhHD9+HP/9739rFTebat26NU6dOoV169bhxIkTWLx4MT799NNan7OwsBCHDh3ChQsXcO3aNQQFBeG2227TFy3v3LkT//nPf+r8DKGhoXjuuefw7LPPYvXq1Thx4gQOHDiAN954A6tXr7b73hCRdQw+RNRgzz33HORyOdq1a4fo6GhUVVVh9+7dUKvVuO+++9ChQwfk5uYiPDxcPzTUEHPmzMEzzzyDjIwMlJaWYtOmTQgICACgrRvauXMnfv/9d9x5553o3Lkzpk+fjoSEBKuvef/99+PZZ59FTk4Obr75ZuzZs0c/20tn0KBB6NOnD+6++25ER0fjww8/BAC8++67qKmpQUZGBnJzc/HSSy/Z9DlmzZqF559/HrNnz8aNN96IPn36YMuWLUhJSbHjrhCRLSRhODBNROTBvvvuO9x99924ePEiwsPD3d0cIvJC7PEhIiIin8HgQ0RERD6DQ11ERETkM9jjQ0RERD6DwYeIiIh8BoMPERER+QwGHyIiIvIZDD5ERETkMxh8iIiIyGcw+BAREZHPYPAhIiIin8HgQ0RERD7j/wNMvoG13BwBoAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4/4 [==============================] - 0s 4ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAHHCAYAAAAGU9SoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf+ElEQVR4nO3dfVzN5+M/8Nfp/oYKpUKR23IzoqnTsJnmsCw2PsMM0WyMmftiSLYRwzY34/v52MTmfjZyG8vNbspdwtyUjRIjMSpF99fvj369dZwTxTmdczqv5+NxHpzrfZ33uU7v6bx2Xe/rumRCCAEiIiIi0nsmum4AEREREVUOgxsRERGRgWBwIyIiIjIQDG5EREREBoLBjYiIiMhAMLgRERERGQgGNyIiIiIDweBGREREZCAY3IiIiIgMBIMbEdFzkslkmDNnjq6bIQkODkaTJk103Qwi0gIGNyKqkaKioiCTyaSHlZUVWrZsiXHjxuHWrVtafe+4uDjMmTMHmZmZGj3vK6+8ovSZ6tatixdffBHfffcdSkpKNPIe8+bNw/bt2zVyLiLSPDNdN4CISJvmzp0LDw8P5OXl4ffff8fKlSuxZ88enDt3DjY2Nhp5j4cPH8LM7NGv07i4OERERCA4OBgODg4aeY8yjRo1wvz58wEAt2/fxrp16xASEoJLly4hMjLyuc8/b948DBgwAP369XvucxGR5jG4EVGN1rt3b/j4+AAA3nvvPdSrVw9LlizBjh07MHjw4Gc+b0lJCQoKCmBlZQUrKytNNfep7O3t8e6770rPP/jgA7Rq1QrLly/Hp59+CnNz82prCxFVPw6VEpFRefXVVwEAKSkpAIBFixbB398f9erVg7W1NTp16oQff/xR5XUymQzjxo3D+vXr0aZNG1haWmLfvn3SsbJ73ObMmYOpU6cCADw8PKRhzdTUVLz88sto37692na1atUKCoWiyp/HxsYGfn5+yM3Nxe3btyusl5ubi8mTJ8PNzQ2WlpZo1aoVFi1aBCGE0mfMzc3F2rVrpXYHBwdXuU1EpD3scSMio3L58mUAQL169QAAX3/9NYKCgjBkyBAUFBRg06ZN+M9//oNdu3YhMDBQ6bUHDx7Eli1bMG7cODg6OqqdAPDWW2/h0qVL2LhxI7788ks4OjoCAJycnDB06FCMGjUK586dQ9u2baXXnDhxApcuXcLMmTOf6TNduXIFpqamFQ7LCiEQFBSEQ4cOISQkBB06dEBMTAymTp2Kf/75B19++SUA4Pvvv8d7772Hzp074/333wcANGvW7JnaRERaIoiIaqA1a9YIAOKXX34Rt2/fFteuXRObNm0S9erVE9bW1uL69etCCCEePHig9LqCggLRtm1b8eqrryqVAxAmJibi/PnzKu8FQISHh0vPv/jiCwFApKSkKNXLzMwUVlZWIjQ0VKl8/PjxwtbWVuTk5DzxM7388svC09NT3L59W9y+fVtcvHhRjB8/XgAQb7zxhlRv+PDhonHjxtLz7du3CwDis88+UzrfgAEDhEwmE3///bdUZmtrK4YPH/7EdhCR7nColIhqtICAADg5OcHNzQ2DBg1CrVq18PPPP6Nhw4YAAGtra6nuvXv3kJWVha5du+LUqVMq53r55ZfRunXrZ26Lvb09+vbti40bN0pDlMXFxdi8eTP69esHW1vbp54jKSkJTk5OcHJygpeXF5YtW4bAwEB89913Fb5mz549MDU1xfjx45XKJ0+eDCEE9u7d+8yfiYiqF4dKiahGW7FiBVq2bAkzMzM4OzujVatWMDF59P+su3btwmeffYbTp08jPz9fKpfJZCrn8vDweO72DBs2DJs3b8Zvv/2Gbt264ZdffsGtW7cwdOjQSr2+SZMm+N///ictcdKiRQvUr1//ia+5evUqGjRogNq1ayuVe3l5SceJyDAwuBFRjda5c2dpVunjfvvtNwQFBaFbt2745ptv4OrqCnNzc6xZswYbNmxQqV++d+5ZKRQKODs744cffkC3bt3www8/wMXFBQEBAZV6va2tbaXrElHNw6FSIjJa27Ztg5WVFWJiYjBy5Ej07t1bI6FIXW9dGVNTU7zzzjv48ccfce/ePWzfvh2DBw+Gqanpc79vRRo3bowbN27g/v37SuVJSUnS8TJPajsR6R6DGxEZLVNTU8hkMhQXF0tlqampz71zQNm9ahXtnDB06FDcu3cPH3zwAXJycpTWZdOG119/HcXFxVi+fLlS+ZdffgmZTIbevXtLZba2thrf8YGINIdDpURktAIDA7FkyRL06tUL77zzDjIyMrBixQo0b94cZ8+efebzdurUCQDwySefYNCgQTA3N8cbb7whBTpvb2+0bdsWW7duhZeXFzp27KiRz1ORN954A927d8cnn3yC1NRUtG/fHvv378eOHTswYcIEpSU/OnXqhF9++QVLlixBgwYN4OHhAV9fX622j4gqjz1uRGS0Xn31VXz77bdIT0/HhAkTsHHjRixYsABvvvnmc533xRdfxKeffoozZ84gODgYgwcPVlkcd9iwYQBQ6UkJz8PExATR0dGYMGECdu3ahQkTJuDChQv44osvsGTJEqW6S5YsQadOnTBz5kwMHjwYK1eu1Hr7iKjyZEKUWzabiIiqxddff42JEyciNTUV7u7uum4OERkIBjciomomhED79u1Rr149HDp0SNfNISIDwnvciIiqSW5uLqKjo3Ho0CH8+eef2LFjh66bREQGhj1uRETVJDU1FR4eHnBwcMCHH36Izz//XNdNIiIDw+BGREREZCA4q5SIiIjIQDC4ERERERkITk7QYyUlJbhx4wZq167NbWiIiIgMhBAC9+/fR4MGDWBiotk+MgY3PXbjxg24ubnpuhlERET0DK5du4ZGjRpp9JwMbnqsdu3aAEovvJ2dnY5bQ0RERJWRnZ0NNzc36Xtckxjc9FjZ8KidnR2DGxERkYHRxm1OnJxAREREZCAY3IiIiIgMBIMbERERkYHgPW4Grri4GIWFhbpuBlUDc3NzmJqa6roZRESkQwxuBkoIgfT0dGRmZuq6KVSNHBwc4OLiwnX9iIiMFIObgSoLbfXr14eNjQ2/yGs4IQQePHiAjIwMAICrq6uOW0RERLrA4GaAiouLpdBWr149XTeHqom1tTUAICMjA/Xr1+ewKRGRETKYyQlBQUFwd3eHlZUVXF1dMXToUNy4cUOpjhACixYtQsuWLWFpaYmGDRvi888/V6pz+PBhdOzYEZaWlmjevDmioqJU3mvFihVo0qQJrKys4Ovri+PHjysdz8vLw9ixY1GvXj3UqlUL/fv3x61bt5TqpKWlITAwEDY2Nqhfvz6mTp2KoqIijfwsyu5ps7Gx0cj5yHCUXXPe10hEZJwMJrh1794dW7ZsQXJyMrZt24bLly9jwIABSnU+/vhjrF69GosWLUJSUhKio6PRuXNn6XhKSgoCAwPRvXt3nD59GhMmTMB7772HmJgYqc7mzZsxadIkhIeH49SpU2jfvj0UCoU0RAUAEydOxM6dO7F161YcOXIEN27cwFtvvSUdLy4uRmBgIAoKChAXF4e1a9ciKioKs2fP1ujPhMOjxofXnIjIyAkDtWPHDiGTyURBQYEQQogLFy4IMzMzkZSUVOFrpk2bJtq0aaNUNnDgQKFQKKTnnTt3FmPHjpWeFxcXiwYNGoj58+cLIYTIzMwU5ubmYuvWrVKdixcvCgAiPj5eCCHEnj17hImJiUhPT5fqrFy5UtjZ2Yn8/PxKf8asrCwBQGRlZSmVP3z4UFy4cEE8fPiw0ueimoHXnohI/1X0/a0JBtPjVt7du3exfv16+Pv7w9zcHACwc+dONG3aFLt27YKHhweaNGmC9957D3fv3pVeFx8fj4CAAKVzKRQKxMfHAwAKCgqQkJCgVMfExAQBAQFSnYSEBBQWFirV8fT0hLu7u1QnPj4e7dq1g7Ozs9L7ZGdn4/z58xV+rvz8fGRnZys9iIiIiMoYVHALDQ2Fra0t6tWrh7S0NOzYsUM6duXKFVy9ehVbt27FunXrEBUVhYSEBKXh1PT0dKUwBQDOzs7Izs7Gw4cPcefOHRQXF6utk56eLp3DwsICDg4OT6yj7hxlxyoyf/582NvbSw83N7dK/mQMR3BwMGQyGWQyGczNzeHs7IzXXnsN3333HUpKSip9nqioKJVrQEREVNPpNLiFhYVJX+IVPZKSkqT6U6dORWJiIvbv3w9TU1MMGzYMQggAQElJCfLz87Fu3Tp07doVr7zyCr799lscOnQIycnJuvqIVTJ9+nRkZWVJj2vXrum6SVrRq1cv3Lx5E6mpqdi7dy+6d++Ojz/+GH369NHYBA4iIqInycnJQW5urq6bUWU6DW6TJ0/GxYsXn/ho2rSpVN/R0REtW7bEa6+9hk2bNmHPnj04evQogNJ1rczMzNCyZUupvpeXF4DSGZ4A4OLiojL789atW7Czs4O1tTUcHR1hamqqto6Li4t0joKCApWFbx+vo+4cZccqYmlpCTs7O6VHTWRpaQkXFxc0bNgQHTt2xIwZM7Bjxw7s3btXmuW7ZMkStGvXDra2tnBzc8OHH36InJwcAKUzg0eMGIGsrCwp4M+ZMwcA8P3338PHxwe1a9eGi4sL3nnnHaWJJUREZNyEEFixYgUWL16MVatWSR1AhkKnwc3JyQmenp5PfFhYWKh9bdmwWn5+PgDgpZdeQlFRES5fvizVuXTpEgCgcePGAAC5XI7Y2Fil8xw4cAByuRwAYGFhgU6dOinVKSkpQWxsrFSnU6dOMDc3V6qTnJyMtLQ0qY5cLseff/6pFBgOHDgAOzs7tG7d+hl+Uk8nhEBBQYFOHpr4j/7VV19F+/bt8dNPPwEovbdw6dKlOH/+PNauXYuDBw9i2rRpAAB/f3989dVXsLOzw82bN3Hz5k1MmTIFQOkyGZ9++inOnDmD7du3IzU1FcHBwc/dPiIiMnyZmZmYO3cu7ty5AwDIzc01uNn6BrEA77Fjx3DixAl06dIFderUweXLlzFr1iw0a9ZMCksBAQHo2LEjRo4cia+++golJSUYO3YsXnvtNakXbvTo0Vi+fDmmTZuGkSNH4uDBg9iyZQt2794tvdekSZMwfPhw+Pj4oHPnzvjqq6+Qm5uLESNGAADs7e0REhKCSZMmoW7durCzs8NHH30EuVwOPz8/AEDPnj3RunVrDB06FAsXLkR6ejpmzpyJsWPHwtLSUis/o8LCQsyfP18r536a6dOnVxiwq8LT0xNnz54FAEyYMEEqb9KkCT777DOMHj0a33zzDSwsLGBvbw+ZTKbSgzly5Ejp702bNsXSpUvx4osvIicnB7Vq1XruNhIRkWE6ceIE9uzZIz23t7fHxx9/rMMWPRuDmJxgY2ODn376CT169ECrVq0QEhKCF154AUeOHJGCkImJCXbu3AlHR0d069YNgYGB8PLywqZNm6TzeHh4YPfu3Thw4ADat2+PxYsXY/Xq1VAoFFKdgQMHYtGiRZg9ezY6dOiA06dPY9++fUqTDb788kv06dMH/fv3R7du3eDi4iL1FAGAqakpdu3aBVNTU8jlcrz77rsYNmwY5s6dWw0/LcMlhJD+z+eXX35Bjx490LBhQ9SuXRtDhw7Fv//+iwcPHjzxHAkJCXjjjTfg7u6O2rVr4+WXXwbwaLiciIiMS0lJCSIiIpRC2+uvv46mTSfgpZdkiI7WYeOegUwY2uCuEcnOzoa9vT2ysrKU7nfLy8tDSkoKPDw8YGVlBaA09OhqNX1zc/NKdzUHBwcjMzMT27dvVzn2wgsvwN3dHcuXL4enpyfGjBmDgQMHom7duvj9998REhKCe/fuwcHBAVFRUZgwYYLSvYa5ublo3LgxFAoFRo8eDScnJ6SlpUGhUCAxMREdOnTQzAfWIXXXnoiI1EtKSsLmzZuVyj7++GM4ODjA3x+IjwfkciAuTrPvW9H3tyYYxFApPZ1MJtPIcKWuHDx4EH/++ScmTpyIhIQElJSUYPHixTAxKe0U3rJli1J9CwsLFBcXK5UlJSXh33//RWRkpLSUysmTJ6vnAxARkV6JiIhQKYuJmQ1vbxmCgoCwMCAysvRPQ2IQQ6VUs+Tn5yM9PR3//PMPTp06hXnz5qFv377o06cPhg0bhubNm6OwsBDLli3DlStX8P3332PVqlVK52jSpAlycnIQGxuLO3fu4MGDB3B3d4eFhYX0uujoaHz66ac6+pRERKQLhYWFKqHNyckJMTHhiI+XITKytCwoqLSnLShIB418DgxuVO327dsHV1dXNGnSBL169cKhQ4ewdOlS7NixA6ampmjfvj2WLFmCBQsWoG3btli/fr3KxAt/f3+MHj0aAwcOhJOTExYuXAgnJydERUVh69ataN26NSIjI7Fo0SIdfUoiIqpu0dHRmDdvnlLZ2bNvolGjDxEWVjosamg9bI/jPW56rCr3uJFx4LUnIlKvoqHR+HiZVu5jexLe40ZERESkRl5eHhYsWKBSHh4eDm9vw7yP7UkY3IiIiMggbd68WWlrTADo27evtIpAUJDh3cP2NAxuREREZHDUDY3Onj3b4HZCqCoGNyIiIjIY9+/fx5IlS1TKw8PDddCa6sfgRkRERAYhMjJS2qO8zNtvvw0vLy+VutHRj+5vq0nDpVwOhIiIiPReRESESmjz9g5XG9qA0tAWHw9p3baagsGNiIiI9Na9e/fU3s82Z074E0NZTVm37XEcKiUiIiK9pC6w9e/fH1eutH1qKKuJM0oBBjciIiLSQ+pCW9kEhLZta2YoqwwOlVKNFBwcjH79+knPX3nlFUyYMOG5zqmJcxAR0ZNlZGQ8MbQZO/a4UbUKDg7G2rVrAQDm5uZwd3fHsGHDMGPGDJiZae8/x59++gnm5uaVqnv48GF0794d9+7dg4ODwzOdg4iIqk5dYGvWbAjefbe5DlqjnxjcqNr16tULa9asQX5+Pvbs2YOxY8fC3Nwc06dPV6pXUFAACwsLjbxn3bp19eIcRESkXkUTEORy4N13ddAgPcWhUqp2lpaWcHFxQePGjTFmzBgEBAQgOjpaGt78/PPP0aBBA7Rq1QoAcO3aNbz99ttwcHBA3bp10bdvX6SmpkrnKy4uxqRJk+Dg4IB69eph2rRpEEIovefjw5z5+fkIDQ2Fm5sbLC0t0bx5c3z77bdITU1F9+7dAQB16tSBTCZDcHCw2nPcu3cPw4YNQ506dWBjY4PevXvjr7/+ko5HRUXBwcEBMTEx8PLyQq1atdCrVy/cvHlTqnP48GF07twZtra2cHBwwEsvvYSrV69q6CdNRKT/0tLS1IY2b+/wGjkr9Hmxx410ztraGv/++y8AIDY2FnZ2djhw4AAAoLCwEAqFAnK5HL/99hvMzMzw2WefoVevXjh79iwsLCywePFiREVF4bvvvoOXlxcWL16Mn3/+Ga+++mqF7zls2DDEx8dj6dKlaN++PVJSUnDnzh24ublh27Zt6N+/P5KTk2FnZwdra2u15wgODsZff/2F6Oho2NnZITQ0FK+//jouXLggDak+ePAAixYtwvfffw8TExO8++67mDJlCtavX4+ioiL069cPo0aNwsaNG1FQUIDjx4/X+O1aiIjKqAtsI0aMgLu7OwDjnYDwJAxupDNCCMTGxiImJgYfffQRbt++DVtbW6xevVoaIv3hhx9QUlKC1atXS4FmzZo1cHBwwOHDh9GzZ0989dVXmD59Ot566y0AwKpVqxATE1Ph+166dAlbtmzBgQMHEBAQAABo2rSpdLxsSLR+/fpK97iVVxbY/vjjD/j7+wMA1q9fDzc3N2zfvh3/+c9/AJQGz1WrVqFZs2YAgHHjxmHu3LkAgOzsbGRlZaFPnz7S8YoWkiQiqmk4AeHZcKiUEB0N+PuX/lkddu3ahVq1asHKygq9e/fGwIEDMWfOHABAu3btlO5rO3PmDP7++2/Url0btWrVQq1atVC3bl3k5eXh8uXLyMrKws2bN+Hr6yu9xszMDD4+PhW+/+nTp2FqaoqXX375mT/DxYsXYWZmpvS+9erVQ6tWrXDx4kWpzMbGRgplAODq6oqMjAwApQExODgYCoUCb7zxBr7++mulYVQioprozJkzDG3PgT1upLQtSHV0S3fv3h0rV66EhYUFGjRooDSb1NbWVqluTk4OOnXqhPXr16ucx8nJ6Znev6KhT214fBaqTCZTuv9uzZo1GD9+PPbt24fNmzdj5syZOHDgAPz8/KqtjURE1UVdYGvZciSWLXODtzeHRiuDPW5U7duC2Nraonnz5nB3d3/qEiAdO3bEX3/9hfr166N58+ZKD3t7e9jb28PV1RXHjh2TXlNUVISEhIQKz9muXTuUlJTgyJEjao+X9fgVFxdXeA4vLy8UFRUpve+///6L5ORktG7d+omf6XHe3t6YPn064uLi0LZtW2zYsKFKryciMgQV9bItW+ZWI/cU1RYGN0JQEBAXp5//pzNkyBA4Ojqib9+++O2335CSkoLDhw9j/PjxuH79OgDg448/RmRkJLZv346kpCR8+OGHyMzMrPCcTZo0wfDhwzFy5Ehs375dOueWLVsAAI0bN4ZMJsOuXbtw+/Zt5OTkqJyjRYsW6Nu3L0aNGoXff/8dZ86cwbvvvouGDRuib9++lfpsKSkpmD59OuLj43H16lXs378ff/31F+9zI6IaJT4+Xm1oi4kJR3R0zd1TVFsY3Eiv2djY4Ndff4W7uzveeusteHl5ISQkBHl5ebCzswMATJ48GUOHDsXw4cMhl8tRu3ZtvPnmm08878qVKzFgwAB8+OGH8PT0xKhRo5CbmwsAaNiwISIiIhAWFgZnZ2eMGzdO7TnWrFmDTp06oU+fPpDL5RBCYM+ePZVepNfGxgZJSUno378/WrZsiffffx9jx47FBx98UIWfEBGR/oqIiMD+/fuVykaNGoWYmHClW3T0tfNAH8nE4wtekd7Izs6Gvb09srKypJACAHl5eUhJSYGHhwesrKx02EKqbrz2RGQonjQBITq6NLSFhdXMwFbR97cmcHICERERacyWLVuUZteXKT9rNCioZga26sDgRkRERBqhrpftm2/GoFmz+uBqH5rB4EZERETPraJtq5o148QDTWJwIyIiome2evVq/PPPPyrlMTHh8PYunXhAmsPgZsA4r8T48JoTkT5R18v20UcfoU+futW6sLsx4XIgBqj8BuZkXMqueWWXHCEi0gYhRIWzRuvWrcu12bSIPW4GyNTUFA4ODtKelzY2NtIG7FQzCSHw4MEDZGRkwMHBAaamprpuEhEZiceX7li0aJG07mV5nDVaPRjcDJSLiwsASOGNjIODg4N07YmIqkP5/awTE1V72SZNmoTatWvroGXGicHNQMlkMri6uqJ+/fooLCzUdXOoGpibm7OnjYiqXVgYsGBBMXr2/EzlWDjX+Kh2DG4GztTUlF/mRESkFdHRpb1sPXuqHmNo0w0GNyIiIlJL3dBobGwofv2VW+7pCoMbERERKcnPz0dkZKRKeUxMOGeK6hiDGxEREUnULfMBlO6CwNFR3WNwIyIiIgDqQ9uMGTO4dqQeYXAjIiIyctu25eDcucUq5ZyAoH8Y3IiIiIxYRUOjDG36icGNiIjIyJTthqBQqIa2WbNmwcSEO2LqKwY3IiIiI7N06R0oFCtUytnLpv8Y3IiIiIxIREQEunZVLWdoMwwMbkREREZC3f1ss2fPhkwm00Fr6FkwuBEREdVwKSkpWLdunUq5t3c4mNkMC4MbERFRDcZZozULgxsREVENpS60MbAZNgY3IiKiGub06dPYsWOHSjlDm+FjcCMiIqpB1PWymZqaYubMmTpoDWkagxsREVENoS60eXuHIyhIB40hrWBwIyIiMmDR0cCWLUfQosVhlWMcGq15GNyIiIgMWGJiBFq0UC6rU6cOxo8fr5sGkVYxuBERERmQsn1Gw8JKQ9vj2MtWszG4ERERGZDISKBhwx+RmHhe5RhDW83H4EZERKTnyveyKRSqvWzu7u4YMWKEDlpG1c1E1w0gIiIiZdHRgL9/6Z9AaWiLj694aJShzXjIhBBC140g9bKzs2Fvb4+srCzY2dnpujlERFRN/P1Lg5qnJ1CnDtCz51LIZPdU6nFoVD9p8/ubPW5ERER6JiwMkMsBIUqHRh8PbW3btmVoM1IMbkRERDr0+LAoAAQFAXFxwODB6odG+/fvX40tJH3CyQlERETVrPxkg7L71yIjIe1woG4HBIBDo8TgRkREVO3Kh7WwMCA0FLh7tzTQqZuA4O/vj9dee00HLSV9w6FSIiKialI2LNq9e+k9bGFhpb1sdeoAyckVzxplaKMy7HEjIiKqJmU9bUDpPWxlFIoIKBSq9Tk0So9jcCMiIqomZfe0hYU9KlN3P1uvXr3g6+tbjS0jQ8HgRkREVE2Cgh5NQADUhzb2stGTMLgRERFVM84apWdlMJMTgoKC4O7uDisrK7i6umLo0KG4ceOGdHzOnDmQyWQqD1tbW6XzbN26FZ6enrCyskK7du2wZ88epeNCCMyePRuurq6wtrZGQEAA/vrrL6U6d+/exZAhQ2BnZwcHBweEhIQgJydHqc7Zs2fRtWtXWFlZwc3NDQsXLtTwT4SIiAyRutD2n//8h6GNKsVgglv37t2xZcsWJCcnY9u2bbh8+TIGDBggHZ8yZQpu3ryp9GjdujX+85//SHXi4uIwePBghISEIDExEf369UO/fv1w7tw5qc7ChQuxdOlSrFq1CseOHYOtrS0UCgXy8vKkOkOGDMH58+dx4MAB7Nq1C7/++ivef/996Xh2djZ69uyJxo0bIyEhAV988QXmzJmD//73v1r+KRERkb4SQlQ4NNq6dWsdtIgMkcHuVRodHY1+/fohPz8f5ubmKsfPnDmDDh064Ndff0XXrl0BAAMHDkRubi527dol1fPz80OHDh2watUqCCHQoEEDTJ48GVOmTAEAZGVlwdnZGVFRURg0aBAuXryI1q1b48SJE/Dx8QEA7Nu3D6+//jquX7+OBg0aYOXKlfjkk0+Qnp4OCwsLAEBYWBi2b9+OpKSkSn9G7lVKRFQzcGjUuHCv0sfcvXsX69evh7+/v9rQBgCrV69Gy5YtpdAGAPHx8QgICFCqp1AoEP//52anpKQgPT1dqY69vT18fX2lOvHx8XBwcJBCGwAEBATAxMQEx44dk+p069ZNCm1l75OcnIx791Q3CS6Tn5+P7OxspQcRERk2daFtxIgRDG30TAwquIWGhsLW1hb16tVDWloaduzYobZeXl4e1q9fj5CQEKXy9PR0ODs7K5U5OzsjPT1dOl5W9qQ69evXVzpuZmaGunXrKtVRd47y76HO/PnzYW9vLz3c3NwqrEtERPqtsLCwwqFRd3d3HbSIagKdBrewsDC1EwrKP8oPLU6dOhWJiYnYv38/TE1NMWzYMKgb6f35559x//59DB8+vDo/znObPn06srKypMe1a9d03SQiInoGERERmDdvnko5e9noeel0OZDJkycjODj4iXWaNm0q/d3R0RGOjo5o2bIlvLy84ObmhqNHj0Iulyu9ZvXq1ejTp49Kr5eLiwtu3bqlVHbr1i24uLhIx8vKXF1dlep06NBBqpORkaF0jqKiIty9e1fpPOrep/x7qGNpaQlLS8sKjxMRkf4ov1H809ZmGzt2LBwdHauxdVRT6TS4OTk5wcnJ6ZleW1JSAqD0vrDyUlJScOjQIURHR6u8Ri6XIzY2FhMmTJDKDhw4IAU/Dw8PuLi4IDY2Vgpq2dnZOHbsGMaMGSOdIzMzEwkJCejUqRMA4ODBgygpKZFWuZbL5fjkk09QWFgo3YN34MABtGrVCnXq1Hmmz0tERPqhLLDdvVu6v2hkZGlwy8nJweLFi1Xqs5eNNMkgZpUeO3YMJ06cQJcuXVCnTh1cvnwZs2bNwq1bt3D+/HmlXqpZs2bhu+++Q1paGkxNTZXOExcXh5dffhmRkZEIDAzEpk2bMG/ePJw6dQpt27YFACxYsACRkZFYu3YtPDw8MGvWLJw9exYXLlyAlZUVAKB37964desWVq1ahcLCQowYMQI+Pj7YsGEDgNKZqK1atULPnj0RGhqKc+fOYeTIkfjyyy+Vlg15Gs4qJSLSL9HRwJAhQE4O4OlZujl8WJj6zeEBhjZjpc3vb4PYOcHGxgY//fQTwsPDkZubC1dXV/Tq1QszZ85UCm0lJSWIiopCcHCwSmgDAH9/f2zYsAEzZ87EjBkz0KJFC2zfvl0KbQAwbdo05Obm4v3330dmZia6dOmCffv2SaENANavX49x48ahR48eMDExQf/+/bF06VLpuL29Pfbv34+xY8eiU6dOcHR0xOzZs6sU2oiISP9ERpaGtlq1gAULSnva1A2NTpkyRWUBeCJNMIgeN2PFHjciIv1S/r42ufw2vvnmG5U67GUjruNGRERUzaKjAX//0j/LBAUBcXGlQ6MMbaQLBjFUSkREVN0iI4H4+EeTD8qoGxr95JNPYGbGr1TSPva4ERERqVE6HFr6JwBcuXKlwgV1GdqouvC/NCIiIjWCgh71tHGvUdIX7HEjIiKjVv5eNnX3takLbbNnz2ZoI51gjxsRERm18veyAY/+3qjRKezcuVOlPgMb6RKDGxERGbWwsEdLfAClf1coIqAmszG0kc4xuBERkdF5fJ/R8rNG1e2CwMBG+oLBjYiIjI66pT727t2L48ePq9RlaCN9wuBGRERG5/HhUc4aJUPB4EZEREbnaUt9MLCRvmJwIyIio7R27VqkpqaqlDO0kT5jcCMiIqPDoVEyVAxuRERkVDg0SoaMwY2IiIzCokWLkJubq1LO0EaGhFteERGRwVO3VVV5ERERDG1UI7DHjYiIDF7ZumxDhgDr1ysvqMuhUapJGNyIiMjghYWVhracnEeL6nICAtVEHColIiKD88knQO3apX8CpUFt/XpALi8NcepCm62tLUMbGTyZEELouhGkXnZ2Nuzt7ZGVlQU7OztdN4eISG/Url3au2ZiAvz8M4dGSb9o8/ubPW5ERGRwxo8vDW0lJaVDo0BpYGNoo5qOPW56jD1uREQVi45+tN9oYqJqYGvevDmGDBmig5aRsdPm9zcnJxARkUEq22+UvWxkTBjciIjIIHHWKBkjBjciIjI46kJbly5d0KNHDx20hqj6MLgREZFB4dAoGTMGNyIi0jvlJx6ULfXBoVEiBjciItJDZVtYPWkXhL59+6JDhw7V3zgiHWJwIyIivRMWVhraQkMFIiLmqhxnLxsZKy7AS0REOhUdDfj7l/5ZJigIUCgicPo0QxtReexxIyIinXp8WBRQPzQ6bNgweHh4VHPriPQLe9yIiEinwsIebQ5fWFhY4axRhjYibnml17jlFREZE84apZqCm8wTEZFBevz+tehowNMT8PJSvqdNXWgbM2YMQxvRY9jjpsfY40ZEhs7fv/T+tVq1gPXrH93PBpQOjx44kItFixapvI6BjQwZe9yIiMgghYWVhracnEcL6rZqVdrrplBEMLQRVRFnlRIRkdYEBT3qaSvbBaGiBXUnT56MWrVq6aCVRIaDwY2IiLSqLKwBwJ07d7BixQqVOuxlI6ocBjciIqoWnDVK9PwY3IiISOvUhbYZM2bA3NxcB60hMlxVnpxgamqKjIwMlfJ///0XpqamGmkUERHpP3VbVT3uypUrFS6oy9BGVHVV7nGraPWQ/Px8WFhYPHeDiIjIMKjbqqo8Do0SaV6lg9vSpUsBADKZDKtXr1aa+VNcXIxff/0Vnp6emm8hERHppbCwR7NFH6cutM2aNQsmJlyFiuh5VHoB3rI94q5evYpGjRopDYtaWFigSZMmmDt3Lnx9fbXTUiPEBXiJyNCcOnUKO3fuVClnLxsZE21+f1e6xy0lJQUA0L17d/z000+oU6eORhtCRESGjUOjRNpX5XvcDh06pI12EBGRAatoAgIRaVaVg9vIkSOfePy777575sYQEZFh+eWXX/DHH3+olDO0EWlHlYPbvXv3lJ4XFhbi3LlzyMzMxKuvvqqxhhERkX6IjlbesqoMh0aJql+Vg9vPP/+sUlZSUoIxY8agWbNmGmkUERHpD3XLfnBolEg3Kj2r9GmSk5Pxyiuv4ObNm5o4HYGzSolIP5TvccvP34oLFy6o1GFoI3pEm9/fGltQ5/LlyygqKtLU6YiISIfK74oQFATExQGJiREMbUQ6VuWh0kmTJik9F0Lg5s2b2L17N4YPH66xhhERkW5ERwNDhgA5OY+GRzk0SqQfqhzcEhMTlZ6bmJjAyckJixcvfuqMUyIi0n+RkaWhrVYt4I03liIi4p5KHYY2It3gOm5ERKSkbCsrhSICBQWqxxnaiHSnysGtTEZGBpKTkwEArVq1Qv369TXWKCIi0p2goNL72R7HwEake1UObtnZ2Rg7diw2btyIkpISAICpqSkGDhyIFStWwN7eXuONJCKi6sG12Yj0W5VnlY4aNQrHjh3D7t27kZmZiczMTOzatQsnT57EBx98oI02EhGRFpSfOQqoD202NjYMbUR6pMrruNna2iImJgZdunRRKv/tt9/Qq1cv5ObmarSBxozruBGRNvn7ly6sK5eX3s/2OAY2omejze/vKg+V1qtXT+1wqL29PerUqaORRhERkfaFham/lw1gaCPSV1UeKp05cyYmTZqE9PR0qSw9PR1Tp07FrFmzNNo4IiJ6Po8Ph5anLrS1aNGCoY1Ij1V5qNTb2xt///038vPz4e7uDgBIS0uDpaUlWrRooVT31KlTmmupEeJQKRE9r/LDoXFxj8q5oC6R9ujVUGnfvn0hk8k02ggiItKOsjXZwsJKn3PWKJFh09gm86R57HEjIk1SF9p8fX3Rq1cvHbSGqObSq03mmzZtin///VelPDMzE02bNtVIo4iISLMqGhplaCMyLFUeKk1NTUVxcbFKeX5+Pq5fv66RRhER0bOLjgamTQNkMmDQIA6NEtUklQ5u0eWmJMXExCgtCVJcXIzY2Fh4eHhotnVERFRlkZFAcjIwZ45qaAsMDISPj48OWkVEmlDpodJ+/fqhX79+kMlkGD58uPS8X79+GDRoEA4cOIDFixdrraFBQUFwd3eHlZUVXF1dMXToUNy4cUOpTkxMDPz8/FC7dm04OTmhf//+SE1NVapz+PBhdOzYEZaWlmjevDmioqJU3mvFihVo0qQJrKys4Ovri+PHjysdz8vLw9ixY1GvXj3UqlUL/fv3x61bt5TqpKWlITAwEDY2Nqhfvz6mTp2KoqIijfwsiIieJDRUqA1t4eHhDG1EBq7Swa2kpAQlJSVwd3dHRkaG9LykpAT5+flITk5Gnz59tNbQ7t27Y8uWLUhOTsa2bdtw+fJlDBgwQDqekpKCvn374tVXX8Xp06cRExODO3fu4K233lKqExgYiO7du+P06dOYMGEC3nvvPcTExEh1Nm/ejEmTJiE8PBynTp1C+/btoVAokJGRIdWZOHEidu7cia1bt+LIkSO4ceOG0vsUFxcjMDAQBQUFiIuLw9q1axEVFYXZs2dr7edDRASU3st2+vRclXIOjRLVDAY7qzQ6Ohr9+vVDfn4+zM3N8eOPP2Lw4MHIz8+HiUlpHt25cyf69u0r1QkNDcXu3btx7tw56TyDBg1CZmYm9u3bB6B0htWLL76I5cuXAygNrG5ubvjoo48QFhaGrKwsODk5YcOGDVJwTEpKgpeXF+Lj4+Hn54e9e/eiT58+uHHjBpydnQEAq1atQmhoKG7fvg0LC4tKfUbOKiWiqlA3AWHQoEFo1aqVDlpDZLz0ah23uXNV/0+uvOroVbp79y7Wr18Pf39/mJubAwA6deoEExMTrFmzBsHBwcjJycH333+PgIAAqU58fDwCAgKUzqVQKDBhwgQAQEFBARISEjB9+nTpuImJCQICAhAfHw8ASEhIQGFhodJ5PD094e7uLgW3+Ph4tGvXTgptZe8zZswYnD9/Ht7e3lr5uRBRzRYd/WhNtqCgR+VFRUX4/PPPVeqzl42o5qlycPv555+VnhcWFiIlJQVmZmZo1qyZVoNbaGgoli9fjgcPHsDPzw+7du2Sjnl4eGD//v14++238cEHH6C4uBhyuRx79uyR6qSnpyuFKQBwdnZGdnY2Hj58iHv37qG4uFhtnaSkJOkcFhYWcHBwUKlTtg1YRe9Tdqwi+fn5yM/Pl55nZ2c/7UdCREYkMrJ0F4TIyEfBjQvqEhmXKq/jlpiYqPQ4d+4cbt68iR49emDixIlVOldYWBhkMtkTH2WBCQCmTp2KxMRE7N+/H6amphg2bBjKRnrT09MxatQoDB8+HCdOnMCRI0dgYWGBAQMGwFBGg+fPnw97e3vp4ebmpusmEZEe6d4dqFWr9E9AfWgbNWoUQxtRDVblHjd17OzsEBERgTfeeANDhw6t9OsmT56M4ODgJ9Ypv6ivo6MjHB0d0bJlS3h5ecHNzQ1Hjx6FXC7HihUrYG9vj4ULF0r1f/jhB7i5ueHYsWPw8/ODi4uLyuzPW7duwc7ODtbW1jA1NYWpqanaOi4uLgAAFxcXFBQUIDMzU6nX7fE6j89ELTtnWR11pk+fjkmTJknPs7OzGd6ISHLoEJCTA/z++wNERHyhcpyBjajm00hwA4CsrCxkZWVV6TVOTk5wcnJ6pvcrKSkBAGlo8cGDB9KkhDKmpqZKdR8fOgWAAwcOQC6XAwAsLCzQqVMnxMbGol+/ftJrY2NjMW7cOACl99KZm5sjNjYW/fv3BwAkJycjLS1NOo9cLsfnn3+OjIwM1K9fX3ofOzs7tG7dusLPZGlpCUtLy2f6eRBRzRcWBiQmcmiUyJhVObgtXbpU6bkQAjdv3sT333+P3r17a6xh5R07dgwnTpxAly5dUKdOHVy+fBmzZs1Cs2bNpLAUGBiIL7/8EnPnzsXgwYNx//59zJgxA40bN5YmA4wePRrLly/HtGnTMHLkSBw8eBBbtmzB7t27pfeaNGkShg8fDh8fH3Tu3BlfffUVcnNzMWLECACAvb09QkJCMGnSJNStWxd2dnb46KOPIJfL4efnBwDo2bMnWrdujaFDh2LhwoVIT0/HzJkzMXbsWAYzIqqS8hMS1IW2CRMmKC2ITkQ1W5WXA3l8dwQTExM4OTnh1VdfxfTp01G7dm2NNhAA/vzzT3z88cc4c+YMcnNz4erqil69emHmzJlo2LChVG/Tpk1YuHAhLl26BBsbG8jlcixYsACenp5SncOHD2PixIm4cOECGjVqhFmzZqkM1y5fvhxffPEF0tPT0aFDByxduhS+vr7S8by8PEyePBkbN25Efn4+FAoFvvnmG6Vh0KtXr2LMmDE4fPgwbG1tMXz4cERGRsLMrPJZmcuBEJG/P/DXX3cwbtwKlWPsZSPST9r8/jbYddyMAYMbEXHWKJHh0at13AAgMzMTf//9NwCgefPmKktjEBFR1ahbo01daAsLC+MtF0RGrErLgaSmpiIwMBCOjo7w9fWFr68vHB0d0adPH5U9QYmIqPJCQ0vXaAsNLd2eT11oCw8PZ2gjMnKV7nG7du0a/Pz8YG5ujk8//RReXl4AgAsXLmDlypWQy+U4ceIEGjVqpLXGEhHVVGU3rQwaFIF161SPc2iUiIAq3OMWEhKCv//+GzExMbCyslI69vDhQ/Tq1QstWrTA6tWrtdJQY8R73IiMR3S0+lmjs2bNUlnqiIj0m17c47Zv3z5s3rxZJbQBgLW1NT799FMMGjRIo40jIjIGp0+fRmLiDpVy9rIR0eMqHdzu3LmDJk2aVHi8adOmuHv3ribaRERUoz1tbTaAoY2I1Kt0cHN1dZXWPlPn3LlzT9zOiYiISpVtFq8utDGwEdGTVPrGiX79+mHKlCm4ffu2yrGMjAyEhoZK20QREVHFhg37BXPmMLQRUdVVenLCvXv34Ovri/T0dLz77rvw9PSEEAIXL17Ehg0b4OLigqNHj6Ju3brabrPR4OQEopqHC+oS1Xx6MTmhTp06OHbsGGbMmIFNmzYhMzMTAODg4IB33nkH8+bNY2gjIqpARbNGGdiIqCqeacsrIYQ0ZOrk5ASZTKbxhhF73Ihqiu+++w7Xrl1TKWdoI6qZ9KLHrTyZTIb69etrtCFERDURh0aJSJOeKbgREdHTVbRtFRHRs2JwIyLSgPJrs509+xmKi4tV6jC0EdHzYnAjItKAJ63NBjC0EZFmMLgREWlARbsgMLARkSZVKrgtXbq00iccP378MzeGiEjflR8SDQoqLeMEBCKqLpVaDsTDw6NyJ5PJcOXKleduFJXiciBE+sffv3RIVC4H4uIY2ohIlc6XA0lJSdHomxIRGaqwMCA0FLh7l7NGiaj6PfM9bgUFBUhJSUGzZs1gZsZb5YjIOAQFcQICEelOpTeZL/PgwQOEhITAxsYGbdq0QVpaGgDgo48+QmRkpMYbSESkT9T1sllZWTG0EVG1qHJwmz59Os6cOYPDhw/DyspKKg8ICMDmzZs12jgiIn0RHV3x0GhoaKgOWkRExqjKY5zbt2/H5s2b4efnp7RHaZs2bXD58mWNNo6ISB9wAgIR6YsqB7fbt2+r3ac0NzeXm80TUY0SHa3+frY2bdpgwIABOmgRERm7Kg+V+vj4YPfu3dLzsrC2evVqyOVyzbWMiEjHKlpQl6GNiHSlyj1u8+bNQ+/evXHhwgUUFRXh66+/xoULFxAXF4cjR45oo41ERNWKQ6NEpK+q3OPWpUsXnD59GkVFRWjXrh3279+P+vXrIz4+Hp06ddJGG4mIqo260PbKK68wtBGRXqjUzgmkG9w5gaj6CCEwd+5clXIGNiKqKp3vnJCdnV3pEzJgEJGh4dAoERmKSgU3BweHSs8YLS4ufq4GERFVJ3Wh7c0338QLL7ygg9YQET1ZpYLboUOHpL+npqYiLCwMwcHB0izS+Ph4rF27FvPnz9dOK4mINKy4uBifffaZSrm3dziY2YhIX1X5HrcePXrgvffew+DBg5XKN2zYgP/+9784fPiwJttn1HiPG5F2cGiUiLRJm9/fVZ5VGh8fDx8fH5VyHx8fHD9+XCONIiLSFnWhLT7+PXh7M7QRkf6rcnBzc3PD//73P5Xy1atXw83NTSONIiLStIcPH1a41+i+fQ0RFKSDRhERVVGVF+D98ssv0b9/f+zduxe+vr4AgOPHj+Ovv/7Ctm3bNN5AIqLnxaFRIqopnmkdt+vXr+Obb75BUlISAMDLywujR49mj5uG8R43ouenLrR9/PHHcHBwqP7GEJFR0Ob3Nxfg1WMMbkTP7u7du1i2bJlKOXvZiEjbdL4A7+MyMzPx7bff4uLFiwCANm3aYOTIkbC3t9do44iIngWHRomopqpyj9vJkyehUChgbW2Nzp07AwBOnDiBhw8fYv/+/ejYsaNWGmqM2ONGVHXqQltoaCisrKx00BoiMkZ6NVTatWtXNG/eHP/73/9gZlbaYVdUVIT33nsPV65cwa+//qrRBhozBjeiyrt27Rq+++47lXL2shFRddOr4GZtbY3ExER4enoqlV+4cAE+Pj548OCBRhtozBjciCqHQ6NEpE/06h43Ozs7pKWlqQS3a9euoXbt2hprGBFRZagLbTNnzoSpqakOWkNEpF1VDm4DBw5ESEgIFi1aBH9/fwDAH3/8galTp6psg0VEpC0XLlzA1q1bVcrZy0ZENVmVg9uiRYsgk8kwbNgwFBUVAQDMzc0xZswYREZGaryBRESP49AoERmrZ17H7cGDB7h8+TIAoFmzZrCxsdFow4j3uBGpoy60zZ49GzKZTAetISJSpVf3uJWxsbFBu3btNNkWIqIK/f7774iNjVUpZy8bERmTSge3kSNHVqqeuun4RETPo6KhUW9vhjYiMi6VDm5RUVFo3LgxvL29wV2yiKi6qAtt7GUjImNV6eA2ZswYbNy4ESkpKRgxYgTeffdd1K1bV5ttIyIjtmvXLiQkJKiUM7QRkTEzqWzFFStW4ObNm5g2bRp27twJNzc3vP3224iJiWEPHBFpVEREhNrQFhPD0EZExu2ZZ5VevXoVUVFRWLduHYqKinD+/HnUqlVL0+0zapxVSsZI3dDoxo3hkMmABQuAoCAdNIqIqAr0clapiYkJZDIZhBAoLi7WZJuIyAitWbMGaWlpKuXh4eHg6CgRUalKD5UCQH5+PjZu3IjXXnsNLVu2xJ9//only5cjLS2NvW1E9MwiIiIqDG1ERPRIpXvcPvzwQ2zatAlubm4YOXIkNm7cCEdHR222jYiMAGeNEhFVXqXvcTMxMYG7uzu8vb2fuEL5Tz/9pLHGGTve40Y12bx581BYWKhSztBGRIZOL+5xGzZsGLeUISKNUNfLZmFhgenTp+ugNUREhqNKC/ASET0vDo0SET27Z55VSkRUFRVtW8XQRkRUeQxuRKR16kKbu7s7RowYoYPWEBEZLgY3ItIqDo0SEWkOgxsRaQWHRomINI/BjYg0Tl1o8/HxQWBgoA5aQ0RUczC4EZFGcWiUiEh7GNyISCM4NEpEpH0MbkT0XKKjgcRE1dDWs2dPyOVyHbSIiKjmYnAjomcmhEBi4lyVcvayERFpB4MbET0TDo0SEVU/E103oLKCgoLg7u4OKysruLq6YujQobhx44ZSnS1btqBDhw6wsbFB48aN8cUXX6ic5/Dhw+jYsSMsLS3RvHlztVt5rVixAk2aNIGVlRV8fX1x/PhxpeN5eXkYO3Ys6tWrh1q1aqF///64deuWUp20tDQEBgbCxsYG9evXx9SpU1FUVPT8PwgiPaAutDVtOpihjYhIywwmuHXv3h1btmxBcnIytm3bhsuXL2PAgAHS8b1792LIkCEYPXo0zp07h2+++QZffvklli9fLtVJSUlBYGAgunfvjtOnT2PChAl47733EBMTI9XZvHkzJk2ahPDwcJw6dQrt27eHQqFARkaGVGfixInYuXMntm7diiNHjuDGjRt46623pOPFxcUIDAxEQUEB4uLisHbtWkRFRWH27Nla/ikRaVdJSYna0DZnTjhWrmyJ6GjA37/0vjciItI8mRBC6LoRzyI6Ohr9+vVDfn4+zM3N8c4776CwsBBbt26V6ixbtgwLFy5EWloaZDIZQkNDsXv3bpw7d06qM2jQIGRmZmLfvn0AAF9fX7z44otS4CspKYGbmxs++ugjhIWFISsrC05OTtiwYYMUHJOSkuDl5YX4+Hj4+flh79696NOnD27cuAFnZ2cAwKpVqxAaGorbt2/DwsKiUp8xOzsb9vb2yMrKgp2dnUZ+bkTPqqKhUW/vcERGAmFhQGQkEB8PyOVAXFw1N5CISE9o8/vbYHrcyrt79y7Wr18Pf39/mJubAwDy8/NhZWWlVM/a2hrXr1/H1atXAQDx8fEICAhQqqNQKBAfHw8AKCgoQEJCglIdExMTBAQESHUSEhJQWFioVMfT0xPu7u5Snfj4eLRr104KbWXvk52djfPnz1f4ufLz85Gdna30INIH6kLbBx98gPDwcAQFlYa0oKDS8CaXl/5JRESaZ1DBLTQ0FLa2tqhXrx7S0tKwY8cO6ZhCocBPP/2E2NhYlJSU4NKlS1i8eDEA4ObNmwCA9PR0pTAFAM7OzsjOzsbDhw9x584dFBcXq62Tnp4uncPCwgIODg5PrKPuHGXHKjJ//nzY29tLDzc3t8r+aIi0oqCgoMIFdV1cXFTKy4c4IiLSPJ0Gt7CwMMhksic+kpKSpPpTp05FYmIi9u/fD1NTUwwbNgxlI72jRo3CuHHj0KdPH1hYWMDPzw+DBg0CUNprZgimT5+OrKws6XHt2jVdN4mMWEREBObPn69SzgkIRES6o9PlQCZPnozg4OAn1mnatKn0d0dHRzg6OqJly5bw8vKCm5sbjh49CrlcDplMhgULFmDevHlIT0+Hk5MTYmNjlc7h4uKiMvvz1q1bsLOzg7W1NUxNTWFqaqq2TlnvgouLCwoKCpCZmanU6/Z4ncdnopadU10vRRlLS0tYWlo+8edBVB3U9bJNnDhRulcjOhrSfW3sXSMiqj467YpycnKCp6fnEx8V3chfUlICoPS+sPJMTU3RsGFDWFhYYOPGjZDL5XBycgIAyOVyKcyVOXDggLS6u4WFBTp16qRUp6SkBLGxsVKdTp06wdzcXKlOcnIy0tLSpDpyuRx//vmn0kzUAwcOwM7ODq1bt36mnxVRdcjJyalwaLR8aBsypHQSQmRkdbeQiMi4GcQCvMeOHcOJEyfQpUsX1KlTB5cvX8asWbPQrFkzKSzduXMHP/74I1555RXk5eVhzZo10nIdZUaPHo3ly5dj2rRpGDlyJA4ePIgtW7Zg9+7dUp1JkyZh+PDh8PHxQefOnfHVV18hNzcXI0aMAADY29sjJCQEkyZNQt26dWFnZ4ePPvoIcrkcfn5+AEq3+mndujWGDh2KhQsXIj09HTNnzsTYsWPZo0Z6q7IL6kZGAjk5QK1anIRARFTthAE4e/as6N69u6hbt66wtLQUTZo0EaNHjxbXr1+X6ty+fVv4+fkJW1tbYWNjI3r06CGOHj2qcq5Dhw6JDh06CAsLC9G0aVOxZs0alTrLli0T7u7uwsLCQnTu3FnlPA8fPhQffvihqFOnjrCxsRFvvvmmuHnzplKd1NRU0bt3b2FtbS0cHR3F5MmTRWFhYZU+d1ZWlgAgsrKyqvQ6oqqaM2eOyiMvL09t3R07hJDLS/8kIiJV2vz+Nth13IwB13Ejbbt9+za++eYblXJOQCAienba/P42iKFSItI87jVKRGR4GNyIjJC60DZz5kyYmprqoDVERFRZhrHAGRFpxLVr1yqcNVoW2rjfKBGR/mKPG5GRqGhoNCYmHN7ej9ZjK9tvNDKSa7QREekb9rgRGQF1oW327NnYuDEc8fHAtGmPyrnfKBGR/mKPG1ENdunSJWzcuFGlvGwCgkwGpT+B0l429rQREeknBjeiGqoys0YXLHi0dRUREek/BjeiGqiiCQjlcb9RIiLDw3vciGqQhISESoU2QHkSAhERGQb2uBHVEFVdUDcsjMOkRESGhsGNqAaobC/b48OjHCIlIjIsDG5EBuy3337DwYMHVcor6mXjGm1ERIaNwY3IQKnrZXN0dMTYsWMrfA2HR4mIDBuDG5EBquzQ6OM4PEpEZNgY3IgMyM6dO3Hq1CmV8sqENiIiMnxcDoTIQERERKiEtnbt2iE8PJwbwxMRGQn2uBEZgKcNjXLSARGRcWBwI9Jj69atQ0pKikr540OjnHRARGQcGNyI9JS6XrauXbsiJ+dV+Psrb1XFSQdERMaBwY1IDz1paNTfn8OiRETGisGNSI8sWbIE9+/fVykvPzTKYVEiIuPF4EakJ9T1svXp0wedOnVSKuOwKBGR8WJwI9IDz7qgLhERGRcGNyId+vTTT1FSUqJSztBGRETqMLgR6Yi6XrYhQ4agefPmOmgNEREZAgY3omomhMDcuXNVytnLRkRET8PgRlSNPvvsMxQXF6uUl21bVTZblJMPiIhIHQY3omqibmg0Lu4DxMS4AOC2VURE9HTcZJ5Iy4QQakPbpk3huHrVRdoYPiwMkMu5PhsREVVMJoQQum4EqZednQ17e3tkZWXBzs5O182hZ6AusAGlQ6NlOyDI5UBcXDU3jIiItEab398cKiXSEnWhbcKECbC3twfAHRCIiKjqGNyINKyoqAiff/65Svnjs0a5AwIREVUVgxuRBj1paJSIiOh5MbgRaYi60DZt2jRYW1vroDVERFQTMbgRPaf8/HxERkaqlLOXjYiINI3Bjeg5cGiUiIiqE4Mb0TNSF9pmzJgBc3NzHbSGiIiMAYMbURXl5uZi0aJFKuXsZSMiIm1jcCOqAg6NEhGRLnHLK6JKUhfaZs2aBW/v0l0QyrauIiIi0hYGN6KnyMzMVBvawsPDYWJiorQ5PBERkTZxqJToCdQFNkvLeoiOHgdv79KdD7h1FRERVRduMq/HuMm8bqkLbbNnz8ZLL8m4OTwREVVIm9/fHColekxGRkaFQ6MymQxhYaWhjT1sRERU3ThUSlSOusDm4eGBYcOGSc+5OTwREekKgxvR/1dRLxsREZG+YHAjo3fjxg3873//UylnaCMiIn3D4EZGTV0vW/v27dGvX7/qbwwREdFTMLiR0VIX2ry9w3n/GhER6S3OKqUaLzoaSjsbXLlypcL72RjaiIhIn7HHjWq88jsbJCaqBraAgAC89NJLOmgZERFR1TC4UY1XtrOBQsFZo0REZNgY3KjG8/L6CwrFBpVyb2+GNiIiMiwMblQjRUdX3Mt2+vQAbN/eBnI5F9IlIiLDwuBGNdKThkajo4Fbt7hlFRERGR4GN6pxLl++DIXiB5XysvvZuGUVEREZKgY3qlHULfMxYsQIuLu766A1REREmsXgRjUG9xolIqKajsGNDF5SUhI2b96sUs7QRkRENQ2DGxk0db1sY8eOhaOjow5aQ0REpF0MbmSwODRKRETGhsGNDM6ZM2ewfft2lXKGNiIiqukY3MigqOtlmzBhAuzt7XXQGiIiourF4EYGg0OjRERk7BjcSO8dPXoUMTExSmW1atXC5MmTddQiIiIi3WBwI72mrpdtypQpsLW11UFriIiIdIvBjfSSEAJz585VKefQKBERGTMTXTegqvLz89GhQwfIZDKcPn1a6djZs2fRtWtXWFlZwc3NDQsXLlR5/datW+Hp6QkrKyu0a9cOe/bsUTouhMDs2bPh6uoKa2trBAQE4K+//lKqc/fuXQwZMgR2dnZwcHBASEgIcnJyqtwWUu/w4cMqoc3FxYWhjYiIjJ7BBbdp06ahQYMGKuXZ2dno2bMnGjdujISEBHzxxReYM2cO/vvf/0p14uLiMHjwYISEhCAxMRH9+vVDv379cO7cOanOwoULsXTpUqxatQrHjh2Dra0tFAoF8vLypDpDhgzB+fPnceDAAezatQu//vor3n///Sq1hdSLiIjAkSNHlMpCQ0PxwQcf6KhFRERE+kMmhBC6bkRl7d27F5MmTcK2bdvQpk0bJCYmokOHDgCAlStX4pNPPkF6ejosLCwAAGFhYdi+fTuSkpIAAAMHDkRubi527dolndPPzw8dOnTAqlWrIIRAgwYNMHnyZEyZMgUAkJWVBWdnZ0RFRWHQoEG4ePEiWrdujRMnTsDHxwcAsG/fPrz++uu4fv06GjRoUKm2VEZ2djbs7e2RlZUFOzu75/756bOSkhJ8+umnKuXsZSMiIkOjze9vg+lxu3XrFkaNGoXvv/8eNjY2Ksfj4+PRrVs3KSgBgEKhQHJyMu7duyfVCQgIUHqdQqFAfHw8ACAlJQXp6elKdezt7eHr6yvViY+Ph4ODgxTaACAgIAAmJiY4duxYpduiTn5+PrKzs5UexmDv3r0qoa1Zs2YMbURERI8xiMkJQggEBwdj9OjR8PHxQWpqqkqd9PR0eHh4KJU5OztLx+rUqYP09HSprHyd9PR0qV7511VUp379+krHzczMULduXaU6T2uLOvPnz1c7i7ImU/d5Z8yYAXNzcx20hoiISL/ptMctLCwMMpnsiY+kpCQsW7YM9+/fx/Tp03XZXK2bPn06srKypMe1a9d03SStKS4urnBBXYY2IiIi9XTa4zZ58mQEBwc/sU7Tpk1x8OBBxMfHw9LSUumYj48PhgwZgrVr18LFxQW3bt1SOl723MXFRfpTXZ3yx8vKXF1dleqU3Uvn4uKCjIwMpXMUFRXh7t27T32f8u+hjqWlpcpnrIm2bdumNCEEAF544QW8+eabOmoRERGRYdBpcHNycoKTk9NT6y1duhSfffaZ9PzGjRtQKBTYvHkzfH19AQByuRyffPIJCgsLpR6bAwcOoFWrVtLQpFwuR2xsLCZMmCCd68CBA5DL5QAADw8PuLi4IDY2Vgpq2dnZOHbsGMaMGSOdIzMzEwkJCejUqRMA4ODBgygpKalSW4yVul62mTNnwtTUVAetISIiMiwGMTnB3d0dbdu2lR4tW7YEUHoDe6NGjQAA77zzDiwsLBASEoLz589j8+bN+PrrrzFp0iTpPB9//DH27duHxYsXIykpCXPmzMHJkycxbtw4AIBMJsOECRPw2WefITo6Gn/++SeGDRuGBg0aoF+/fgAALy8v9OrVC6NGjcLx48fxxx9/YNy4cRg0aJC0TEll2mJsCgsLKxwaZWgjIiKqHIOYnFAZ9vb22L9/P8aOHYtOnTrB0dERs2fPVlpfzd/fHxs2bMDMmTMxY8YMtGjRAtu3b0fbtm2lOtOmTUNubi7ef/99ZGZmokuXLti3bx+srKykOuvXr8e4cePQo0cPmJiYoH///li6dGmV2lJTREcDkZFAWBgQFKS+zrp165CSkqJU5ufnB4VCUQ0tJCIiqjkMah03Y2MI67j5+wPx8YBcDsTFqR5X18s2e/ZsyGSyamgdERFR9eM6bqRT0dGlAS06WvVYWFhpaAsLUy7Py8urcGiUoY2IiOjZsMdNj+lLj9vTetUet3LlSpWZt6+88gpefvllLbWQiIhIf2jz+7vG3ONG2hMW9ug+tqfh0CgREZH2cKiUKlQ2RAqU9rRVNPkAAHJycjg0SkREpGXscaMKRUaWDpFGRj45tH3xxRd48OCBUlnv3r3RuXNnLbeQiIjIuDC4UYUqM0RaUS8bERERaR6DG1UoKKjinrb79+9jyZIlKuUMbURERNrD4EZVtmrVKpW9WN9880288MILOmoRERGRceDkBHriOm2Pi4iIUAlt4eHhDG1ERETVgMGNlCYhVOTevXu8n42IiEjHOFRKT52EsGTJEty/f1+pLDg4GI0bN66G1hEREVEZ9rgZoceHRoOCKl6nLSIiQiW0hYeHM7QRERHpAIObEarM0Ghubi6HRomIiPQMh0qN0NOGRg8fPowjR44olY0dOxaOjo7V0DoiIiKqCIObEXrS+mzsZSMiItJfDG4EQP2Cuq+88gpefvllHbWIiIiIHsfgRjhw4ADi4uKUyqZMmQJbW1sdtYiIiIjUYXAzclu3bsWFCxeUyjg0SkREpJ8Y3IxUXl4eFixYoFTWs2dPyOVyHbWIiIiInobBzQhdunQJGzduVCqbMWMGzM3NddQiIiIiqgwGNyNUPrT5+flBoVDosDVERERUWQxuRmzUqFFo0KCBrptBRERElSQTQghdN4LUy87Ohr29PbKysmBnZ6fr5hAREVElaPP7m1teERERERkIBjciIiIiA8HgRkRERGQgGNyIiIiIDASDGxEREZGBYHAjIiIiMhAMbkREREQGgsGNiIiIyEAwuBEREREZCAY3IiIiIgPB4EZERERkIBjciIiIiAwEgxsRERGRgWBwIyIiIjIQZrpuAFVMCAEAyM7O1nFLiIiIqLLKvrfLvsc1icFNj92/fx8A4ObmpuOWEBERUVXdv38f9vb2Gj2nTGgjDpJGlJSU4MaNG6hduzZkMpmum6N12dnZcHNzw7Vr12BnZ6fr5tBjeH30G6+PfuP10W+avj5CCNy/fx8NGjSAiYlm70pjj5seMzExQaNGjXTdjGpnZ2fHX2x6jNdHv/H66DdeH/2myeuj6Z62MpycQERERGQgGNyIiIiIDASDG+kNS0tLhIeHw9LSUtdNITV4ffQbr49+4/XRb4Z0fTg5gYiIiMhAsMeNiIiIyEAwuBEREREZCAY3IiIiIgPB4EZERERkIBjcSCPy8/PRoUMHyGQynD59WunY2bNn0bVrV1hZWcHNzQ0LFy5Uef3WrVvh6ekJKysrtGvXDnv27FE6LoTA7Nmz4erqCmtrawQEBOCvv/5SqnP37l0MGTIEdnZ2cHBwQEhICHJycqrclpokKCgI7u7usLKygqurK4YOHYobN24o1dmyZQs6dOgAGxsbNG7cGF988YXKeQ4fPoyOHTvC0tISzZs3R1RUlEqdFStWoEmTJrCysoKvry+OHz+udDwvLw9jx45FvXr1UKtWLfTv3x+3bt1SqpOWlobAwEDY2Nigfv36mDp1KoqKip7/B6GnKnN9YmJi4Ofnh9q1a8PJyQn9+/dHamqqUh1eH+152jWaM2cOZDKZysPW1lbpPPwdpx2V+TckhMCiRYvQsmVLWFpaomHDhvj888+V6hjUvyFBpAHjx48XvXv3FgBEYmKiVJ6VlSWcnZ3FkCFDxLlz58TGjRuFtbW1+L//+z+pzh9//CFMTU3FwoULxYULF8TMmTOFubm5+PPPP6U6kZGRwt7eXmzfvl2cOXNGBAUFCQ8PD/Hw4UOpTq9evUT79u3F0aNHxW+//SaaN28uBg8eXKW21DRLliwR8fHxIjU1Vfzxxx9CLpcLuVwuHd+zZ48wMzMTK1euFJcvXxa7du0Srq6uYtmyZVKdK1euCBsbGzFp0iRx4cIFsWzZMmFqair27dsn1dm0aZOwsLAQ3333nTh//rwYNWqUcHBwELdu3ZLqjB49Wri5uYnY2Fhx8uRJ4efnJ/z9/aXjRUVFom3btiIgIEAkJiaKPXv2CEdHRzF9+nQt/5R052nX58qVK8LS0lJMnz5d/P333yIhIUF069ZNeHt7K9Xh9dGep12j+/fvi5s3byo9WrduLYYPHy7V4e847Xna9RFCiI8++ki0atVK7NixQ1y5ckWcPHlS7N+/XzpuaP+GGNzoue3Zs0d4enqK8+fPqwS3b775RtSpU0fk5+dLZaGhoaJVq1bS87ffflsEBgYqndPX11d88MEHQgghSkpKhIuLi/jiiy+k45mZmcLS0lJs3LhRCCHEhQsXBABx4sQJqc7evXuFTCYT//zzT6XbUtPt2LFDyGQyUVBQIIQQYvDgwWLAgAFKdZYuXSoaNWokSkpKhBBCTJs2TbRp00apzsCBA4VCoZCed+7cWYwdO1Z6XlxcLBo0aCDmz58vhCi9Xubm5mLr1q1SnYsXLwoAIj4+XghR+t+RiYmJSE9Pl+qsXLlS2NnZKV2zmuzx67N161ZhZmYmiouLpTrR0dFKdXh9qtfj1+hxp0+fFgDEr7/+KpXxd1z1efz6XLhwQZiZmYmkpKQKX2No/4Y4VErP5datWxg1ahS+//572NjYqByPj49Ht27dYGFhIZUpFAokJyfj3r17Up2AgACl1ykUCsTHxwMAUlJSkJ6erlTH3t4evr6+Up34+Hg4ODjAx8dHqhMQEAATExMcO3as0m2pye7evYv169fD398f5ubmAEqHuK2srJTqWVtb4/r167h69SqAp1+fgoICJCQkKNUxMTFBQECAVCchIQGFhYVKdTw9PeHu7q50Ddu1awdnZ2el98nOzsb58+c19WPQW+quT6dOnWBiYoI1a9aguLgYWVlZ+P777xEQECDV4fWpPuqu0eNWr16Nli1bomvXrlIZf8dVD3XXZ+fOnWjatCl27doFDw8PNGnSBO+99x7u3r0rvc7Q/g0xuNEzE0IgODgYo0ePVvplUl56errSf6QApOfp6elPrFP+ePnXVVSnfv36SsfNzMxQt27dp75P+feoiUJDQ2Fra4t69eohLS0NO3bskI4pFAr89NNPiI2NRUlJCS5duoTFixcDAG7evAmg4p9bdnY2Hj58iDt37qC4uPip18fCwgIODg5PrMPro3x9PDw8sH//fsyYMQOWlpZwcHDA9evXsWXLFqkOr4/2PekalZeXl4f169cjJCREqZy/47TrSdfnypUruHr1KrZu3Yp169YhKioKCQkJGDBggFTH0P4NMbiRirCwMLU325Z/JCUlYdmyZbh//z6mT5+u6yYblcpenzJTp05FYmIi9u/fD1NTUwwbNgzi/2+YMmrUKIwbNw59+vSBhYUF/Pz8MGjQIACl/0dJVafJ65Oeno5Ro0Zh+PDhOHHiBI4cOQILCwsMGDBAqkNVp8lrVN7PP/+M+/fvY/jw4dX5cWocTV6fkpIS5OfnY926dejatSteeeUVfPvttzh06BCSk5N19RGfi5muG0D6Z/LkyQgODn5inaZNm+LgwYOIj49X2dvNx8cHQ4YMwdq1a+Hi4qIyq6bsuYuLi/Snujrlj5eVubq6KtXp0KGDVCcjI0PpHEVFRbh79+5T36f8exiCyl6fMo6OjnB0dETLli3h5eUFNzc3HD16FHK5HDKZDAsWLMC8efOQnp4OJycnxMbGKp2jop+bnZ0drK2tYWpqClNT06dew4KCAmRmZir9H+njdR6fpWXs12fFihWwt7dXmhn4ww8/wM3NDceOHYOfnx+vzzPQ5DUqb/Xq1ejTp49Krwp/x1WNJq+Pq6srzMzM0LJlS6m+l5cXgNIZnq1atTK8f0OVvhuO6DFXr14Vf/75p/SIiYkRAMSPP/4orl27JoR4dLNs+Rt5p0+frjI5oU+fPkrnlsvlKjfuLlq0SDqelZWl9sbdkydPSnViYmLU3rj7pLbUdFevXhUAxKFDhyqsM3ToUKVZWdOmTRNt27ZVqjN48GCVG3fHjRsnPS8uLhYNGzZUuXH3xx9/lOokJSWpvXG3/Cyt//u//xN2dnYiLy/v2T6wgXn8+kyaNEl07txZqc6NGzcEAPHHH38IIXh9qltF/4auXLkiZDKZ2Llzp8pr+Duu+jx+fcq+l/7++2+pTtkEkuTkZCGE4f0bYnAjjUlJSVGZVZqZmSmcnZ3F0KFDxblz58SmTZuEjY2NynIgZmZmYtGiReLixYsiPDxc7VR5BwcHsWPHDnH27FnRt29ftVPlvb29xbFjx8Tvv/8uWrRooTRVvjJtqUmOHj0qli1bJhITE0VqaqqIjY0V/v7+olmzZtIvidu3b4uVK1eKixcvisTERDF+/HhhZWUljh07Jp2nbKr81KlTxcWLF8WKFSvUTpW3tLQUUVFR4sKFC+L9998XDg4OSrOnRo8eLdzd3cXBgwfFyZMnVabtl02V79mzpzh9+rTYt2+fcHJyqrHLTVTm+sTGxgqZTCYiIiLEpUuXREJCglAoFKJx48biwYMHQgheH22qzDUqM3PmTNGgQQNRVFSkch7+jtOOylyf4uJi0bFjR9GtWzdx6tQpcfLkSeHr6ytee+016TyG9m+IwY00Rl1wE0KIM2fOiC5dughLS0vRsGFDERkZqfLaLVu2iJYtWwoLCwvRpk0bsXv3bqXjJSUlYtasWcLZ2VlYWlqKHj16SP+3VObff/8VgwcPFrVq1RJ2dnZixIgR4v79+1VuS01x9uxZ0b17d1G3bl1haWkpmjRpIkaPHi2uX78u1bl9+7bw8/MTtra2wsbGRvTo0UMcPXpU5VyHDh0SHTp0EBYWFqJp06ZizZo1KnWWLVsm3N3dhYWFhejcubPKeR4+fCg+/PBDUadOHWFjYyPefPNNcfPmTaU6qamponfv3sLa2lo4OjqKyZMni8LCQs38QPRMZa6PEEJs3LhReHt7C1tbW+Hk5CSCgoLExYsXlerw+mhHZa9RcXGxaNSokZgxY0aF5+LvOM2r7PX5559/xFtvvSVq1aolnJ2dRXBwsPj333+V6hjSvyGZELzDlYiIiMgQcNoYERERkYFgcCMiIiIyEAxuRERERAaCwY2IiIjIQDC4ERERERkIBjciIiIiA8HgRkRERGQgGNyIiLRAJpNh+/btum6GksOHD0MmkyEzM1PXTSGiZ8TgRkT0HObMmSNtBE5EpG0MbkREREQGgsGNiIxaSUkJ5s+fDw8PD1hbW6N9+/b48ccfATwaWoyNjYWPjw9sbGzg7++P5ORkAEBUVBQiIiJw5swZyGQyyGQyREVFSee+c+cO3nzzTdjY2KBFixaIjo6uVJvK3jcmJgbe3t6wtrbGq6++ioyMDOzduxdeXl6ws7PDO++8gwcPHkivy8/Px/jx41G/fn1YWVmhS5cuOHHihOZ+WESkcwxuRGTU5s+fj3Xr1mHVqlU4f/48Jk6ciHfffRdHjhyR6nzyySdYvHgxTp48CTMzM4wcORIAMHDgQEyePBlt2rTBzZs3cfPmTQwcOFB6XUREBN5++22cPXsWr7/+OoYMGYK7d+9Wum1z5szB8uXLERcXh2vXruHtt9/GV199hQ0bNmD37t3Yv38/li1bJtWfNm0atm3bhrVr1+LUqVNo3rw5FApFld6TiPRclbakJyKqQfLy8oSNjY2Ii4tTKg8JCRGDBw8Whw4dEgDEL7/8Ih3bvXu3ACAePnwohBAiPDxctG/fXuXcAMTMmTOl5zk5OQKA2Lt371Pbpe5958+fLwCIy5cvS2UffPCBUCgU0vnNzc3F+vXrpeMFBQWiQYMGYuHChUrnvXfv3lPbQET6yUyHmZGISKf+/vtvPHjwAK+99ppSeUFBAby9vaXnL7zwgvR3V1dXAEBGRgbc3d2feP7yr7O1tYWdnR0yMjIq3b7yr3d2doaNjQ2aNm2qVHb8+HEAwOXLl1FYWIiXXnpJOm5ubo7OnTvj4sWLlX5PItJvDG5EZLRycnIAALt370bDhg2VjllaWuLy5csASgNQGZlMBqD03rinKf+6stdW5nXqXi+TyZ77fERk+HiPGxEZrdatW8PS0hJpaWlo3ry50sPNza1S57CwsEBxcbGWW/p0zZo1g4WFBf744w+prLCwECdOnEDr1q112DIi0iT2uBGR0apduzamTJmCiRMnoqSkBF26dEFWVhb++OMP2NnZoXHjxk89R5MmTZCSkoLTp0+jUaNGqF27NiwtLauh9cpsbW0xZswYTJ06FXXr1oW7uzsWLlyIBw8eICQkpNrbQ0TaweBGREbt008/hZOTE+bPn48rV67AwcEBHTt2xIwZMyo1DNm/f3/89NNP6N69OzIzM7FmzRoEBwdrv+FqREZGoqSkBEOHDsX9+/fh4+ODmJgY1KlTRyftISLNkwkhhK4bQURERERPx3vciIiIiAwEgxsRUTUbPXo0atWqpfYxevRoXTePiPQYh0qJiKpZRkYGsrOz1R6zs7ND/fr1q7lFRGQoGNyIiIiIDASHSomIiIgMBIMbERERkYFgcCMiIiIyEAxuRERERAaCwY2IiIjIQDC4ERERERkIBjciIiIiA8HgRkRERGQg/h8Bu7sJt+ciGQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLyUlEQVR4nO3deVzU1f7H8feALKIsLiBq4Fou2TXSNLgt6s9EK8m2X6tKmWVqZtoCZiJZiWZ202vavaV2y9QsM35qmZXaIvdmapYLmqZpJWqp4Mr6/f3BZXScQQcY+M7yej4e88A53+9854Nzu/P2nPM9x2IYhiEAAAAf4Gd2AQAAADWF4AMAAHwGwQcAAPgMgg8AAPAZBB8AAOAzCD4AAMBnEHwAAIDPIPgAAACfQfABAAA+g+ADwCNZLBaNHz/e7DKskpOT1bx5c7PLAHABBB8ALjN37lxZLBbrIzg4WJdccomGDx+uAwcOVOt7r127VuPHj9fRo0ddet1u3brZ/E7169fXlVdeqdmzZ6ukpMQl7/Hiiy9qyZIlLrkWgPOrZXYBALzPc889pxYtWuj06dP6+uuvNXPmTC1fvlybN29WSEiIS97j1KlTqlXrzP+FrV27Vunp6UpOTlZERIRL3qPMRRddpIkTJ0qSDh06pH/9618aNGiQduzYoYyMjCpf/8UXX9Ttt9+ufv36VflaAM6P4APA5fr06aPOnTtLkh588EE1aNBAU6dO1UcffaS777670tctKSlRQUGBgoODFRwc7KpyLyg8PFz33Xef9fnDDz+sNm3a6O9//7smTJiggICAGqsFQNUw1AWg2vXo0UOStHv3bknSlClTlJCQoAYNGqh27drq1KmT3n//fbvXWSwWDR8+XPPmzdOll16qoKAgffLJJ9ZjZXN8xo8fryeffFKS1KJFC+uw1J49e3TdddepY8eODutq06aNEhMTK/z7hISE6KqrrtKJEyd06NChcs87ceKERo8erZiYGAUFBalNmzaaMmWKDMOw+R1PnDiht956y1p3cnJyhWsC4Bx6fABUu127dkmSGjRoIEl69dVXlZSUpHvvvVcFBQVasGCB7rjjDi1dulQ33nijzWu/+OILvffeexo+fLgaNmzocALxrbfeqh07dmj+/Pl65ZVX1LBhQ0lSZGSk+vfvr8GDB2vz5s3q0KGD9TXr1q3Tjh07NHbs2Er9Tj///LP8/f3LHVYzDENJSUlatWqVBg0apMsvv1wrVqzQk08+qd9++02vvPKKJOntt9/Wgw8+qC5duuihhx6SJLVq1apSNQFwggEALjJnzhxDkvHZZ58Zhw4dMvbt22csWLDAaNCggVG7dm3j119/NQzDME6ePGnzuoKCAqNDhw5Gjx49bNolGX5+fsaWLVvs3kuSkZaWZn3+0ksvGZKM3bt325x39OhRIzg42Hj66adt2keMGGHUqVPHOH78+Hl/p+uuu85o27atcejQIePQoUPGtm3bjBEjRhiSjL59+1rPGzhwoNGsWTPr8yVLlhiSjOeff97merfffrthsViMnTt3Wtvq1KljDBw48Lx1AHANhroAuFzPnj0VGRmpmJgY3XXXXapbt64+/PBDNW3aVJJUu3Zt67lHjhxRbm6urrnmGm3YsMHuWtddd53at29f6VrCw8N18803a/78+dYhpuLiYi1cuFD9+vVTnTp1LniN7OxsRUZGKjIyUu3atdP06dN14403avbs2eW+Zvny5fL399eIESNs2kePHi3DMPTxxx9X+ncCUHkMdQFwuRkzZuiSSy5RrVq11KhRI7Vp00Z+fmf+nbV06VI9//zz+v7775Wfn29tt1gsdtdq0aJFlesZMGCAFi5cqK+++krXXnutPvvsMx04cED9+/d36vXNmzfXP//5T+st+hdffLGioqLO+5pffvlFTZo0UWhoqE17u3btrMcB1DyCDwCX69Kli/WurnN99dVXSkpK0rXXXqvXXntNjRs3VkBAgObMmaN3333X7vyze4cqKzExUY0aNdI777yja6+9Vu+8846io6PVs2dPp15fp04dp88F4N4Y6gJQoz744AMFBwdrxYoVeuCBB9SnTx+XhApHvUVl/P39dc899+j999/XkSNHtGTJEt19993y9/ev8vuWp1mzZvr999917Ngxm/bs7Gzr8TLnqx2AaxF8ANQof39/WSwWFRcXW9v27NlT5ZWLy+bqlLdyc//+/XXkyBE9/PDDOn78uM26PNXhhhtuUHFxsf7+97/btL/yyiuyWCzq06ePta1OnTouX3EagGMMdQGoUTfeeKOmTp2q3r1765577tHBgwc1Y8YMtW7dWj/88EOlr9upUydJ0jPPPKO77rpLAQEB6tu3rzUQxcXFqUOHDlq0aJHatWunK664wiW/T3n69u2r7t2765lnntGePXvUsWNHffrpp/roo480cuRIm1vWO3XqpM8++0xTp05VkyZN1KJFC3Xt2rVa6wN8FT0+AGpUjx499OabbyonJ0cjR47U/PnzNWnSJN1yyy1Vuu6VV16pCRMmaNOmTUpOTtbdd99tt7jggAEDJMnpSc1V4efnp8zMTI0cOVJLly7VyJEjtXXrVr300kuaOnWqzblTp05Vp06dNHbsWN19992aOXNmtdcH+CqLYZy1hCgAeLFXX31Vjz/+uPbs2aPY2FizywFgAoIPAJ9gGIY6duyoBg0aaNWqVWaXA8AkzPEB4NVOnDihzMxMrVq1Sj/++KM++ugjs0sCYCJ6fAB4tT179qhFixaKiIjQ0KFD9cILL5hdEgATEXwAAIDP4K4uAADgMwg+AADAZzC5+RwlJSX6/fffFRoayjLyAAB4CMMwdOzYMTVp0sRmU+RzEXzO8fvvvysmJsbsMgAAQCXs27dPF110UbnHCT7nCA0NlVT6FxcWFmZyNQAAwBl5eXmKiYmxfo+Xh+BzjrLhrbCwMIIPAAAe5kLTVJjcDAAAfAbBBwAA+AyCDwAA8BnM8amE4uJiFRYWml0GakBAQID8/f3NLgMA4CIeE3wmTpyoxYsXKzs7W7Vr11ZCQoImTZqkNm3aWM85ffq0Ro8erQULFig/P1+JiYl67bXX1KhRI5fUYBiGcnJydPToUZdcD54hIiJC0dHRrOsEAF7AY4LPmjVrNGzYMF155ZUqKirSmDFj1KtXL23dulV16tSRJD3++ONatmyZFi1apPDwcA0fPly33nqrvvnmG5fUUBZ6oqKiFBISwhehlzMMQydPntTBgwclSY0bNza5IgBAVXnsJqWHDh1SVFSU1qxZo2uvvVa5ubmKjIzUu+++q9tvv12SlJ2drXbt2ikrK0tXXXWVU9fNy8tTeHi4cnNzbW5nLy4u1o4dOxQVFaUGDRpUy+8E9/Tnn3/q4MGDuuSSSxj2AgA3Vd7397k8dnJzbm6uJKl+/fqSpPXr16uwsFA9e/a0ntO2bVvFxsYqKyuryu9XNqcnJCSkyteCZyn7zJnXBQCez2OGus5WUlKikSNH6q9//as6dOggqXQYKjAwUBERETbnNmrUSDk5OeVeKz8/X/n5+dbneXl5531vhrd8D585AHgPj+zxGTZsmDZv3qwFCxZU+VoTJ05UeHi49cE+XQAAeC+PCz7Dhw/X0qVLtWrVKptNyKKjo1VQUGB3x9WBAwcUHR1d7vVSU1OVm5trfezbt6+6SgcAACbzmOBjGIaGDx+uDz/8UF988YVatGhhc7xTp04KCAjQ559/bm3bvn279u7dq/j4+HKvGxQUZN2Xy1v350pOTpbFYpHFYlFAQIAaNWqk66+/XrNnz1ZJSYnT15k7d67dUCIAAJ7EY+b4DBs2TO+++64++ugjhYaGWufthIeHq3bt2goPD9egQYM0atQo1a9fX2FhYXr00UcVHx/v9B1d3qx3796aM2eOiouLdeDAAX3yySd67LHH9P777yszM1O1annM/xQAAB7q+PHjslgs1mVozOAxPT4zZ85Ubm6uunXrpsaNG1sfCxcutJ7zyiuv6KabbtJtt92ma6+9VtHR0Vq8eLGJVbuPoKAgRUdHq2nTprriiis0ZswYffTRR/r44481d+5cSdLUqVN12WWXqU6dOoqJidHQoUN1/PhxSdLq1at1//33Kzc319p7NH78eEnS22+/rc6dOys0NFTR0dG65557rGvfAABgGIZmzJihl19+WbNmzZKZK+l4zD/znflLCg4O1owZMzRjxowaqKi0JrNucQ4ICKjy3UY9evRQx44dtXjxYj344IPy8/PTtGnT1KJFC/38888aOnSonnrqKb322mtKSEjQ3/72N40bN07bt2+XJNWtW1dS6W3eEyZMUJs2bXTw4EGNGjVKycnJWr58eZV/TwCAZzt69KheffVV6/MTJ06YeresxwQfd1RYWKiJEyea8t6pqakKDAys8nXatm2rH374QZI0cuRIa3vz5s31/PPPa8iQIXrttdcUGBio8PBwWSwWu8niDzzwgPXPLVu21LRp03TllVfq+PHj1nAEAPA969ats/lHcHh4uB577DETKyL4+DzDMKzJ+7PPPtPEiROVnZ2tvLw8FRUV6fTp0zp58uR5F25cv369xo8fr02bNunIkSPWCdN79+5V+/bta+T3AAC4D8MwNG3aNJs7rW+44QZdeeWV5hX1XwSfKggICFBqaqpp7+0K27ZtU4sWLbRnzx7ddNNNeuSRR/TCCy+ofv36+vrrrzVo0CAVFBSUG3xOnDihxMREJSYmat68eYqMjNTevXuVmJiogoICl9QIAPAchw8f1vTp023aHnvsMbe5K5jgUwUWi8Ulw01m+eKLL/Tjjz/q8ccf1/r161VSUqKXX35Zfn6lc97fe+89m/MDAwNVXFxs05adna0///xTGRkZ1sUfv/vuu5r5BQAAbiUrK0uffvqp9XnDhg01dOhQ68hCZqaUkSGlpEhJSebUSPDxEfn5+crJybG5nX3ixIm66aabNGDAAG3evFmFhYWaPn26+vbtq2+++UazZs2yuUbz5s11/Phxff755+rYsaNCQkIUGxurwMBATZ8+XUOGDNHmzZs1YcIEk35LAIAZSkpKNHXqVJ04ccLa1rdvX11xxRU252VkSFlZpT/NCj4eczs7quaTTz5R48aN1bx5c/Xu3VurVq3StGnT9NFHH8nf318dO3bU1KlTNWnSJHXo0EHz5s2zm7idkJCgIUOG6M4771RkZKQmT56syMhIzZ07V4sWLVL79u2VkZGhKVOmmPRbAgBq2h9//KEJEybYhJ7HH3/cLvRIpT098fGlP81iMcy8md4Nlbet/enTp7V79261aNFCwcHBJlaImsZnDwCOffXVV/riiy+szxs3bqzBgwebcrt6ed/f52KoCwAAVEhJSYkyMjJs1rK75ZZb9Je//MXEqpxD8AEAAE47ePCgZs6cadM2evRoj1m3jeADAACcsnTpUq1fv976PDY21roRtqcg+AAAgPMqLCzUiy++aNN2++2369JLLzWposoj+AAAgHJt3LhRmZmZNm0dOjyhSy81b4f1qiD4AAAAh9LT0+3axo9PU3y8dNttJhTkAgQfAABgIz8/XxkZGTZtl19+uSyWm01fh6eqCD4AAMDq22+/1ccff2zT9uijj6p+/fqSzFtx2VUIPgAAQJLjoa20tDQTKqk+bFkBl0lOTla/fv2sz7t166aRI0dW6ZquuAYA4PxOnTplF3q6dOnidaFHosfHJyQnJ+utt96SJAUEBCg2NlYDBgzQmDFjVKtW9f1PYPHixQoICHDq3NWrV6t79+46cuSIIiIiKnUNAEDFLV68WD/++KNN28iRIxUeHm5SRdWL4OMjevfurTlz5ig/P1/Lly/XsGHDFBAQoNTUVJvzCgoKFBgY6JL3LBsPNvsaAADHfGFo61wMdfmIoKAgRUdHq1mzZnrkkUfUs2dPZWZmWoenXnjhBTVp0kRt2rSRJO3bt0//+7//q4iICNWvX18333yz9uzZY71ecXGxRo0apYiICDVo0EBPPfWUzt3v9txhqvz8fD399NOKiYlRUFCQWrdurTfffFN79uxR9+7dJUn16tWTxWJRcnKyw2scOXJEAwYMUL169RQSEqI+ffrop59+sh6fO3euIiIitGLFCrVr105169ZV7969tX//fus5q1evVpcuXVSnTh1FRETor3/9q3755RcX/U0DgPv79ddf7UJPp06dvD70SAQfn1W7dm0VFBRIkj7//HNt375dK1eu1NKlS1VYWKjExESFhobqq6++0jfffGMNEGWvefnllzV37lzNnj1bX3/9tQ4fPqwPP/zwvO85YMAAzZ8/X9OmTdO2bdv0+uuvq27duoqJidEHH3wgSdq+fbv279+vV1991eE1kpOT9d133ykzM1NZWVkyDEM33HCDzUZ5J0+e1JQpU/T222/ryy+/1N69e/XEE09IkoqKitSvXz9dd911+uGHH5SVlaWHHnrIo5ZbB4CqSE9P15tvvmnTNnv2w8rKusmkimoWQ10+xjAMff7551qxYoUeffRRHTp0SHXq1NEbb7xhHeJ65513VFJSojfeeMMaCObMmaOIiAitXr1avXr10t/+9jelpqbq1ltvlSTNmjVLK1asKPd9d+zYoffee08rV65Uz549JUktW7a0Hi8b0oqKirKZ43O2n376SZmZmfrmm2+UkJAgSZo3b55iYmK0ZMkS3XHHHZJKl1afNWuWWrVqJUkaPny4nnvuOUlSXl6ecnNzddNNN1mPt2vXruJ/kQDggRwNbU2Zkqbjx6Vp06QXXjChqBpGj49JMjOlhITSnzVh6dKlqlu3roKDg9WnTx/deeedGj9+vCTpsssus5nXs2nTJu3cuVOhoaGqW7eu6tatq/r16+v06dPatWuXcnNztX//fnXt2tX6mlq1aqlz587lvv/3338vf39/XXfddZX+HbZt26ZatWrZvG+DBg3Upk0bbdu2zdoWEhJiDTWS1LhxYx08eFBSacBKTk5WYmKi+vbtq1dffdVmGAwAvNHPP/9c7nyeESOkunWlESNMKMwE9PiYJCNDysoq/VkTi0F1795dM2fOVGBgoJo0aWJzN1edOrb7rRw/flydOnXSvHnz7K4TGRlZqfevXbt2pV5XGefeBWaxWGzmH82ZM0cjRozQJ598ooULF2rs2LFauXKlrrrqqhqrEQBqiqPA8/DDDys6OlpSaS+PL/T0lKHHxyQpKarRZb/r1Kmj1q1bKzY29oK3sF9xxRX66aefFBUVpdatW9s8wsPDFR4ersaNG+s///mP9TVFRUVav359ude87LLLVFJSojVr1jg8XtbjVFxcXO412rVrp6KiIpv3/fPPP7V9+3a1b9/+vL/TueLi4pSamqq1a9eqQ4cOevfddyv0egDwBOX18pSFHl9E8DFJUpK0dq17Lv197733qmHDhrr55pv11Vdfaffu3Vq9erVGjBihX3/9VZL02GOPKSMjQ0uWLFF2draGDh2qo0ePlnvN5s2ba+DAgXrggQe0ZMkS6zXfe+89SVKzZs1ksVi0dOlSHTp0SMePH7e7xsUXX6ybb75ZgwcP1tdff61NmzbpvvvuU9OmTXXzzTc79bvt3r1bqampysrK0i+//KJPP/1UP/30E/N8AHiVbdu2+eSt6s4g+MBOSEiIvvzyS8XGxurWW29Vu3btNGjQIJ0+fVphYWGSpNGjR6t///4aOHCg4uPjFRoaqltuueW81505c6Zuv/12DR06VG3bttXgwYN14sQJSVLTpk2Vnp6ulJQUNWrUSMOHD3d4jTlz5qhTp0666aabFB8fL8MwtHz5cqcXOQwJCVF2drZuu+02XXLJJXrooYc0bNgwPfzwwxX4GwIA91M2dzQ9Pd36j8oyw4cPJ/T8l8U4d/EVH5eXl6fw8HDl5uZav+Ql6fTp09q9e7datGih4OBgEytETeOzB+AJEhKkxETf7eUp7/v7XExuBgDAw/3tbwuVmJht0+bn56dnn33WpIrcF8EHAAAP5mguz+OPP37eXg9fRvABAMADGYZhXZz1bHFxaSLzlI/JzQAAuLlzF71NT093GHrGj09TRkYNF+dhCD4VxFxw38NnDsBsZy9662hoa9iwYYqLS1PTptL330vPPFPzNXoKgo+Tym6XPnnypMmVoKaVfebO3jIPAK5Wuuit4fCurbi4NDVs2FBJSVJurnTqVOm+W3CMOT5O8vf3V0REhHXPp5CQEHb09nKGYejkyZM6ePCgIiIi5O/vb3ZJAHzUxo3pSky0by8oODO0lZRUut/WtGm+s+9WZbCOzznOtw6AYRjKyck57wrF8D4RERGKjo4m6AKoUZmZpUNbjnp52rd/VK+8Ul9HjkjZ2aVbIK1da0KRboR1fKqBxWJR48aNFRUVpcLCQrPLQQ0ICAigpweAKSZPLlJiov3uoXFxabr3Xun4calNm5rd99EbEHwqwd/fny9DAIBLlfXwpKSUDm1df739OWlpaUpIKA09detKkye7556P7ozgAwCAGyi7c2vjRvuhrQ4dRuu22+pKKg1GZQGJ0FNxzPE5h7NjhAAAuNLixSf1448v2bX7yl5bVcUcHwAAPISjtXkkQk91IPgAAGAiR6Hns89S9NVXQSZU4/0IPgAAmODw4cOaPn26XfuKFWncpVWNCD4AANSw8w1tMbpVvQg+AADUIEehZ+zYsSyTUkMIPgAA1IBff/1Vb775pl17XFyayDw1h+ADAEA1464t90HwAQCgmmRmOl6QcNy4cez/ZxKCDwAA1WDr1q3auHGRXTu9POYi+AAA4GIMbbkvgg8AABVw9maijvbKchR6CDzug+ADAEAFlG0mmpFx5nlKitSw4VqtXLnS7nxCj3sh+AAAUAFn745+vh3VJUKPOyL4AABQDkfDWklJtkNcjkIPgcd9+ZldAAAA7urcYa2zLVu2jNDjgejxAQCgHGcPa52Nu7Y8F8EHAIBynDusJXHXlqcj+AAA4IR//etf2r17t107ocezMMcHAODTMjOlhITSn+VJT0+3Cz3169cn9HggenwAAD7t7AnMLEjo/Qg+AACfVt4E5hdeeEFFRUV25xN6PBvBBwDg05ydwNymTRvdddddNVQVqgtzfAAAPsvR/J7yhrYIPd6BHh8AgM8pW5H5yBEpO7v0z2w74RsIPgAAn1M2oblNGyk+XkpMtA89Xbp0UZ8+fUyoDtWJoS4AgFc6323qKSmlgWfyZMehJy0tjdDjpSyGYRhmF+FO8vLyFB4ertzcXIWFhZldDgCgktq1Kx3GattW2rbN/jjbTngXZ7+/6fEBAHidZ56Rtm8v/bNh2Pf+OAo9vXv3JvT4AK8MPjNmzFDz5s0VHBysrl276ttvvzW7JABADZo2rTTw+PmVDmedvUhheXdtde3a1YRKUdO8LvgsXLhQo0aNUlpamjZs2KCOHTsqMTFRBw8eNLs0AEANGTFCCg6WGjcufZ6SIo0fn17ufB74Dq+b49O1a1ddeeWV+vvf/y5JKikpUUxMjB599FGlnLsspwPM8QEA75CQUNrLU95dW7feeqsuu+wyEypDdfDJOT4FBQVav369evbsaW3z8/NTz549lZWV5fA1+fn5ysvLs3kAADzPufN4Su/cKim3l4fQ45u8Kvj88ccfKi4uVqNGjWzaGzVqpJycHIevmThxosLDw62PmJiYmigVAOBiZ8/jkUoXJExMnGB3HkNbvs2rgk9lpKamKjc31/rYt2+f2SUBACqhbG2elBTHE5jvv/9+Qg+8K/g0bNhQ/v7+OnDggE37gQMHFB0d7fA1QUFBCgsLs3kAANzfuUNbSUnS6tUFDreeSEtLU2xsbA1XCHfkVcEnMDBQnTp10ueff25tKykp0eeff674+HgTKwMAuFJmpnTvvbZDW+np6Zo4caLdufTy4Gxet1fXqFGjNHDgQHXu3FldunTR3/72N504cUL333+/2aUBAKrgmWdK1+cZMUJatUo6flyqW7f8oa2hQ4cqMjLShErhzrwu+Nx55506dOiQxo0bp5ycHF1++eX65JNP7CY8AwA8y7RppWFn2jRp3rzSnp7Ro49p48apdufSy4PyeN06PlXFOj4A4F4yM0tDTtOm0ieflPb4vPACe23BlrPf317X4wMA8GyZmdJTT0kWizRp0pnb1OPjpWPHSs9xFHqeeOIJ1alTp4arhach+AAA3EpGxpkNRjMySufwlP08cOCAZs2aZfcaenngLK+6qwsA4Pm6dy/dZ6tp09Kwk5QkrV1buiAhoQdVRY8PAMCtrFolnT4txcaWhh7J8dDWmDFjFBAQUMPVwdMRfAAAbqFsEnP37qXPU1KknTt3at68eXbn0suDyiL4AADcQtkkZql0aCs9PV0bN9qfR+hBVRB8AABu4exJzI6GtsaNGyeLxWJCZfAmBB8AgFtISpKaNl2vpUuX2h2jlweuwl1dAIBql5kptW0rtWt3ZlPRc6WnpxN6UO3o8QEAVLtz1+Ypu1urjKOhLQIPqgPBBwBQ7VJSzqzGnJJypn3lypVau3at3fmEHlQXgg8AoNolJTnXyyMRelC9CD4AgGqRmSk9/bRkGNLkybbBh6EtmIXgAwCoFhkZUnb2mT8nJUnz58/Xjh077M4l9KCmEHwAANUiJeVMj095a/NIhB7ULIIPAKBanD2vh6EtuAuCDwCg2kyaNEmnT5+2ayf0wCwEHwBAtWBoC+6I4AMAcDmGtuCuCD4AAJehlwfujr26AAB2MjOlhATH+2qVd8xR6AkNDSX0wK1YDMMwzC7CneTl5Sk8PFy5ubkKCwszuxwAMEVCgpSVJcXHS+fuKOHoGENbMJuz398MdQEA7KSklC46ePa+Wo6OMbQFT8NQFwDATlLSmd6cc4e1yo5t3Ggfei6++GJCD9waPT4AgHJlZJQOa5VtOVGGoS14KoIPAKBc5w55MbQFT8dQFwDA7k6tsudS6bBWUpLj0JOQkEDogUfhrq5zcFcXAF9UdqdW3brSvHlnhrjK7txiaAvujru6AABOycyUDh+WgoOl48fPDG1lZEiJielyNLpF6IGnIvgAgI/LyJC2b5fatpXq1SsNPUlJju/auuGGG3TllVeaUCXgGgQfAPBhmZnSkSNSmzbSpEmlgccwDKWnP2d3Lr088AYEHwDwYRkZUnZ26Vye8iYwS4QeeA+CDwD4sAutwnzfffepVatWJlQGVA9uZwcAH5aUJK1ZU+hwPk9aWhqhB16HHh8A8GEMbcHXEHwAwEc5Cj1DhgxRo0aNTKgGqBkMdQGADzh7Zebjx4+XuyAhoQfejuADAB7u3O0mHClbiXnjxnS9/PLLdscZ2oKvYMuKc7BlBQBPU7bdRNn2Eo5kZjpekHDUqFEKDQ2t5gqB6ufs9zc9PgDg4VJSSkNP2Q7q5zp48GC5d20ReuBrmNwMAB4uKan04Qh3bQG2CD4A4KUchZ7U1FQFBgaaUA3gHio81OXv76+DBw/atf/555/y9/d3SVEAgMrbuXNnuXdtEXrg6yrc41PeXOj8/Hz+gwIAkzG0BZyf08Fn2rRpkiSLxaI33nhDdevWtR4rLi7Wl19+qbZt27q+QgCAUxyFnmeffVZ+ftzHApRxOvi88sorkkp7fGbNmmUzrBUYGKjmzZtr1qxZrq8QAHBe3333nZYtW2bXTi8PYM/p4LN7925JUvfu3bV48WLVq1ev2ooCADiHoS2gYio8x2fVqlXVUQcAoILKm8AMoHwVDj4PPPDAeY/Pnj270sUAAM4vM1P66KPlio1dZ3eM0ANcWIWDz5EjR2yeFxYWavPmzTp69Kh69OjhssIAAGdkZpbut5WYmK7YWPvjhB7AORUOPh9++KFdW0lJiR555BG1atXKJUUBAGyVhZ5zEXiAinHZJqXbt29Xt27dtH//fldczjRsUgrAXZT18tx880ydPm2/cCyhBzijxjcp3bVrl4qKilx1OQDwepmZpTurZ2Y6Pv7006W9PIQewHUqPNQ1atQom+eGYWj//v1atmyZBg4c6LLCAMDbZWRIWVmlPx1tMnrXXQxtAa5W4eCzceNGm+d+fn6KjIzUyy+/fME7vgAAZ6SklIaelBTb9gkTJqikpMTufEIPUHWs4wMAJklKsu/pKW9Bwrg4Qg/gChUOPmUOHjyo7du3S5LatGmjqKgolxUFAL7IUehZsSJNWVlSfLzj4TAAFVPh4JOXl6dhw4Zp/vz51q5Yf39/3XnnnZoxY4bCw8NdXiQAeLPzbTsRF+d4OAxA5VT4rq7BgwfrP//5j5YtW6ajR4/q6NGjWrp0qb777js9/PDD1VEjAHitC+21lZQkrV1Lbw/gKhVex6dOnTpasWKFrr76apv2r776Sr1799aJEydcWmBNYx0fADWFvbYA13H2+7vCQ10NGjRwOJwVHh7Oju0A4AR2VAfMU+GhrrFjx2rUqFHKycmxtuXk5OjJJ5/Us88+69LiAMDbOAo9jRs3JvQANaTCQ11xcXHauXOn8vPzFfvfnfL27t2roKAgXXzxxTbnbtiwwXWV1hCGugBUVdlWEykptnNzGNoCqk+1DXXdfPPNslgsVSoOALzZuSsyM7QFuA+XbVLqLejxAVBVZ/f4bNxoH3o2bIjToUNJWrvWhOIAL1Vtm5S2bNlSf/75p1370aNH1bJly4peDgC8Ttkt6I5CT0FBmg4dSmJdHsAkFR7q2rNnj4qLi+3a8/Pz9euvv7qkKADwFI7m8zC0Bbgvp3t8MjMzlZmZKUlasWKF9XlmZqY+/PBDTZgwQS1atKiWIvfs2aNBgwapRYsWql27tlq1aqW0tDQVFBTYnPfDDz/ommuuUXBwsGJiYjR58uRqqQeAb8rMlBISSn+WOXs+j+Q49PTu3ZvQA7gJp3t8+vXrJ0myWCwaOHCgzbGAgAA1b95cL7/8skuLK5Odna2SkhK9/vrrat26tTZv3qzBgwfrxIkTmjJliqTSsb1evXqpZ8+emjVrln788Uc98MADioiI0EMPPVQtdQHwLedOWpbO7LD+9NOG0tOfs3sNgQdwLxWe3NyiRQutW7dODRs2rK6anPLSSy9p5syZ+vnnnyVJM2fO1DPPPKOcnBwFBgZKklJSUrRkyRJlZ2c7fV0mNwMoT0VuU5cIPUBNqrbb2Xfv3l2lwlwlNzdX9evXtz7PysrStddeaw09kpSYmKhJkybpyJEj5a4qnZ+fr/z8fOvzvLy86isagEcrCztlw1rl3ap+5513qm3btjVYGQBnVTj4PPecfVfu2caNG1fpYpy1c+dOTZ8+3TrMJZWuHn3uHKNGjRpZj5UXfCZOnFjuv9YA4Fxlw12TJxdp48YX7I7TywO4twoHnw8//NDmeWFhoXbv3q1atWqpVatWFQo+KSkpmjRp0nnP2bZtm82/nH777Tf17t1bd9xxhwYPHlyx4h1ITU3VqFGjrM/z8vIUExNT5esC8E7lrc0jEXoAT1Dh4LNx40a7try8PCUnJ+uWW26p0LVGjx6t5OTk855z9tpAv//+u7p3766EhAT94x//sDkvOjpaBw4csGkrex4dHV3u9YOCghQUFFShugH4Lkeh56GHHlLjxo1NqAZARVU4+DgSFham9PR09e3bV/3793f6dZGRkYqMjHTq3N9++03du3dXp06dNGfOHPn52d6JHx8fr2eeeUaFhYUKCAiQJK1cuVJt2rRh13gAVbZ48Un9+ONLdu308gCepcIrN5cnNzdXubm5rrqcjd9++03dunVTbGyspkyZokOHDiknJ8dmh/h77rlHgYGBGjRokLZs2aKFCxfq1VdftRnGAoDKSE9PJ/QAXqLCPT7Tpk2zeW4Yhvbv36+3335bffr0cVlhZ1u5cqV27typnTt36qKLLrJ7f0kKDw/Xp59+qmHDhqlTp05q2LChxo0bxxo+AKrE0c0Pjz/+OMtdAB6qUuv4nM3Pz0+RkZHq0aOHUlNTFRoa6tICaxrr+ACQpMOHD2v69Ol27fTyAO7J69fxAYDqwoKEgPeq1OTmo0ePaufOnZKk1q1bKyIiwpU1AYBpHIWe1NRUm8VRAXiuCk1u3rNnj2688UY1bNhQXbt2VdeuXdWwYUPddNNN2rNnTzWVCADV79dff3UYetLS0gg9gBdxusdn3759uuqqqxQQEKAJEyaoXbt2kqStW7dq5syZio+P17p16+wmHwOAu2NoC/AdTk9uHjRokHbu3KkVK1YoODjY5tipU6fUu3dvXXzxxXrjjTeqpdCawuRmwLc4Cj3PPvus3VphANybyyc3f/LJJ1q4cKFd6JGk2rVra8KECbrrrrsqVy0A1LBt27bpvffes2unlwfwbk4Hnz/++EPNmzcv93jLli11+PBhV9QEANWKoS3AdzkdfBo3bqytW7eWO4dn8+bN590TCwDcQXkTmAH4BqcHsfv166cnnnhChw4dsjt28OBBPf300+rXr58rawMAl1m7dm2FQ09mppSQUPoTgHdwenLzkSNH1LVrV+Xk5Oi+++5T27ZtZRiGtm3bpnfffVfR0dH697//rfr161d3zdWKyc2A96ns0FZCgpSVJcXHS2vXVkdlAFzF5ZOb69Wrp//85z8aM2aMFixYoKNHj0qSIiIidM899+jFF1/0+NADwPtUZWgrJUXKyCj9CcA7VHivLql0Y9CyIa/IyEhZLBaXF2YWenwA7/B///d/2rBhg10783kA71Rte3VJksViUVRUVKWLA4DqxF1bAMpTqeADAO6Ku7YAnA/BB4BXmD17tvbt22fXHhdH6AFwBsEHgMdjaAuAswg+ADwaQ1sAKsKp4DNt2jSnLzhixIhKFwMAznrppZd08uRJu3ZCD4Dzcep29hYtWjh3MYtFP//8c5WLMhO3swPuz1EvT/369fXoo4+aUA0Ad+DS29l3797tssIAoCoY2gJQFZWe41NQUKDdu3erVatWqlWLqUIAqhcTmAG4gtOblJY5efKkBg0apJCQEF166aXau3evJOnRRx9VRkaGywsEAEehp127djahhw1FATijwsEnNTVVmzZt0urVqxUcHGxt79mzpxYuXOjS4gCgvKGt//3f/7Vpy8go3VCUf38BOJ8Kj1EtWbJECxcu1FVXXWWzR9ell16qXbt2ubQ4AL6rokNbbCgKwBkVDj6HDh1yuE/XiRMnvGqzUgDmcRR6rrnmGvXo0aPc1yQllT4A4HwqPNTVuXNnLVu2zPq8LOy88cYbio+Pd11lAHxSeUNb5ws9AOCsCvf4vPjii+rTp4+2bt2qoqIivfrqq9q6davWrl2rNWvWVEeNAHwAd20BqAkV7vG5+uqr9f3336uoqEiXXXaZPv30U0VFRSkrK0udOnWqjhoBeDlHoefmm28m9ABwOadWbvYlrNwM1BzDMPTcc8/ZtRN4AFSUS1duzsvLc/qNCQsAnMHQFgAzOBV8IiIinL5jq7i4uEoFAfB+jkJP//791bJlS5u2zMwzt6hzxxYAV3Aq+Kxatcr65z179iglJUXJycnWu7iysrL01ltvaeLEidVTJQCvUFxcrOeff96uvbxenrMXJST4AHCFCs/x+Z//+R89+OCDuvvuu23a3333Xf3jH//Q6tWrXVlfjWOOD1A9KjO0RY8PAGc5+/1d4eATEhKiTZs26eKLL7Zp37Fjhy6//HKdPHmychW7CYIP4HqOQs8jjzzicDFUAKgMZ7+/K3w7e0xMjP75z3/atb/xxhuKiYmp6OUAeLH8/PxyFyQk9AAwQ4UXMHzllVd022236eOPP1bXrl0lSd9++61++uknffDBBy4vEIBn4q4tAO6owj0+N9xwg3766Sf17dtXhw8f1uHDh9W3b1/t2LFDN9xwQ3XUCMBDZGZKCQmOQ8+qVaMVF0foAWAuFjA8B3N8gMrr1u2Yunefate+YkWasrKk+Hhp7VoTCgPg9Vy6gOG5jh49qjfffFPbtm2TJF166aV64IEHFB4eXrlqAXi89PR0de9u356Wlqa4uDN3ZwGAmSrc4/Pdd98pMTFRtWvXVpcuXSRJ69at06lTp/Tpp5/qiiuuqJZCawo9PkDFORraSk1NVWBgoAnVAPBF1XY7+zXXXKPWrVvrn//8p2rVKu0wKioq0oMPPqiff/5ZX375ZdUqNxnBB3DeH3/8oRkzZti1M4EZQE2rtuBTu3Ztbdy4UW3btrVp37p1qzp37sw6PoCPqOhdW5mZ0lNPSRaLNGkSCxICcK1qm+MTFhamvXv32gWfffv2KTQ0tOKVAvA4jkLPs88+Kz+/8m8UzciQtm8/82eCDwAzVPh29jvvvFODBg3SwoULtW/fPu3bt08LFixwuI0FAO+yd+/echckPF/okUonNrdpI7VtyyRnAOapcI/PlClTZLFYNGDAABUVFUmSAgIC9MgjjygjI8PlBQJwD1VdkDApiV4eAOar9Do+J0+e1K5duyRJrVq1UkhIiEsLMwtzfAB7jkLPuHHjZLFYTKgGAOxV6zo+UulmpZdddlllXw7AA2zdulWLFi2ya+euLQCeyung88ADDzh13uzZsytdDAD3UZmhrczMMwsVMqwFwB05HXzmzp2rZs2aKS4uTuxyAXi38iYwX0hGhpSVxV1bANyX08HnkUce0fz587V7927df//9uu+++1S/fv3qrA1ADVu3bp2WL19u135u6CmvZyclha0pALi3Ck1uzs/P1+LFizV79mytXbtWN954owYNGqRevXp5zSRHJjfDVznq5fH399fYsWPt2hMSxKajANxKta3cXOaXX37R3Llz9a9//UtFRUXasmWL6tatW+mC3QXBB76ookNbzOUB4G6c/f6u8AKG1hf6+cliscgwDBUXF1f2MgBM9Nlnn5UbejIzS3t2MjPtX5eUVNrTQ+gB4GkqFHzy8/M1f/58XX/99brkkkv0448/6u9//7v27t3rFb09gC9JT0/XN998Y9PWqFEja0/P2ROVAcBbOD25eejQoVqwYIFiYmL0wAMPaP78+WrYsGF11gagmjgztMVEZQDeyOk5Pn5+foqNjVVcXNx5JzIvXrzYZcWZgTk+8GYfffSRvv/+e7t2FiQE4OlcvnLzgAEDvObOLcAXOerlufzyy3XzzTebUA0AmKNCCxgC8EyVXZAQALxNpffqAuD+5syZo71799q1E3oA+CqCD+ClHPXydOvWTdddd50J1QCAeyD4AF6IoS0AcIzgA3iRKVOm6MSJE3bthB4AKFXplZsBuJf09HS70JOUlFRu6DnfyswA4K0IPoAXKG9oKy4urtzXsDIzAF/EUBfgwRwFHsm5oS1WZgbgiwg+gIdyFHruvvtuXXLJJU69PimJTUYB+B6CD+BhDMPQc889Z9fOBGYAuDCPm+OTn5+vyy+/XBaLxW7PoR9++EHXXHONgoODFRMTo8mTJ5tTJFBN0tPTnQo9TFwGAMc8Lvg89dRTatKkiV17Xl6eevXqpWbNmmn9+vV66aWXNH78eP3jH/8woUrA9RwNbT388MMOe3qYuAwAjnlU8Pn444/16aefasqUKXbH5s2bp4KCAs2ePVuXXnqp7rrrLo0YMUJTp041oVLAdUpKSsq9ays6Otrha1JSpPh4Ji4DwLk8Zo7PgQMHNHjwYC1ZskQhISF2x7OysnTttdcqMDDQ2paYmKhJkybpyJEjqlevnsPr5ufnKz8/3/o8Ly/P9cUDlVTZu7aYuAwAjnlEj49hGEpOTtaQIUPUuXNnh+fk5OSoUaNGNm1lz3Nycsq99sSJExUeHm59xMTEuK5woAochZ7HHnuMScwAUAWmBp+UlBRZLJbzPrKzszV9+nQdO3ZMqampLq8hNTVVubm51se+fftc/h5ARRQVFZU7tBUREVHzBQGAFzF1qGv06NFKTk4+7zktW7bUF198oaysLAUFBdkc69y5s+6991699dZbio6O1oEDB2yOlz0vbx6EJAUFBdldFzBLVRYkBABcmKnBJzIyUpGRkRc8b9q0aXr++eetz3///XclJiZq4cKF6tq1qyQpPj5ezzzzjAoLCxUQECBJWrlypdq0aVPu/B7AnTgKPU8++aTDOW1lMjPPrL7MnB4AuDCPmOMTGxurDh06WB9lK9O2atVKF110kSTpnnvuUWBgoAYNGqQtW7Zo4cKFevXVVzVq1CgzSwcu6PTp0+UObZ0v9Ejctg4AFeUxd3VdSHh4uD799FMNGzZMnTp1UsOGDTVu3Dg99NBDZpcGlKuqQ1vstwUAFWMxDMMwuwh3kpeXp/DwcOXm5iosLMzscuDFHIWeMWPGWIdqAQDOc/b722t6fABPcfz4cb388st27UxgBoDq5xFzfABvkZ6e7lToYa8tAKgeBB+ghjga2lqx4lnFxbHXFgDUFIIPUM2OHj1aTuhJU1aWn8Nww15bAFA9mOMDVCNHgScyMlJDhw5VXFz5d2Sx1xYAVA+CD1BNHIWecePGyWKxSLINNyxECAA1g6EuwMUOHDhQ7oKEZaHnXMzpAYCaQfABXCg9PV2zZs2yaWvdurXNXVuO7thiTg8A1AwWMDwHCxiissrr5TlXQkJp7058vLR2bU1UBgDez9nvb3p8gCrau3ev06FHoncHAMzE5GagChwFnri4OCWdZ4Yyd2wBgHkIPkAlVaSXBwDgHgg+QAXt2rVL77zzjl07oQcA3B/BB6gAR7081157rbp3725CNQCAimJyM+Ck8radIPQAgOegxwe4gM2bN+uDDz6wa1+xIo07swDAwxB8gPNw1MvTr18/dezYUUzpAQDPQ/ABysFdWwDgfQg+wDm+/fZbffzxx3bthB4A8HwEH+Asjnp57r77bl1yySUmVAMAcDWCD/BfDG0BgPcj+MDnZWVl6dNPP7VrJ/QAgPch+MCnOerluf/++xUbG2tCNQCA6kbwgU/JzJQyMkp3Rt+4kaEtAPA1BB/4lIwMKSTkM23c+I3dMUIPAHg/gg98SmKifS/PsGHDtHZtQyUklPYEJSWZUBgAoEawVxd8gmEY5d611bBhQ2VkSFlZpT1CAADvRY8PvN5nn32mb745/9BWSsqZuT8AAO9F8IFXc9TLM3r0aNWtW9emLSmJIS4A8AUEH3glwzD03HPP2bUzgRkAfBvBB17no48+0vfff2/TFhgYqNTUVHMKAgC4DYIPvIqjoa2nn35awcHBJlQDAHA3BB94hZKSEk2YMMGunaEtAMDZuJ0dHiczU0pIKP0pSe+++65d6GnYsCGhBwBghx4feJyz19xxtO3EmDFjFBAQYEJlAAB3R48PPE5KivTXvxY5XIU5LS2N0AMAKBc9PvA4Bw++oeuv/82mrXnz5ho4cKBJFQEAPAXBBx7F0V1bY8eOlb+/vwnVAAA8DcEHHqGgoEATJ060a2cCMwCgIgg+cHtz587VL7/8YtMWHx+vXr16mVQRAMBTEXzg1hwNbY0bN04Wi8WEagAAno7gA7d06tQpTZ482a6doS0AQFUQfOB2ZsyYoT/++MOmrUePHrrmmmtMqggA4C0IPnArDG0BAKoTwQdu4fjx43r55Zft2hnaAgC4EsEHpps0aZJOnz5t03bDDTfoyiuvNKkiAIC3IvjAVI6GtujlAQBUF4IPTHHkyBFNmzbNrp3QAwCoTgQf1DhHvTy33nqrLrvsMhOqAQD4EoIPahRDWwAAMxF8UCMOHTqk1157za6d0AMAqEkEH1Q7R70899xzjy6++GITqgEA+DKCD6oVQ1sAAHdC8EG1+O233/TGG2/YtRN6AABmIvjA5Rz18iQnJ6tZs2YmVAMAwBkEH7gUQ1sAAHdG8IFL7N69W//617/s2gk9AAB3QvBBlTnq5XnooYfUuHFjE6oBAKB8BB9UCUNbAABPQvBBpWRnZ2vhwoV27YQeAIA7I/igwhz18gwbNkwNGzY0oRoAAJxH8EGFMLQFAPBkBB84ZdOmTVqyZIldO6EHAOBJCD64IEe9PCNHjlR4eLgJ1QAAUHkEH5wXQ1sAAG/iZ3YBqFmZmVJCQunP8/nPf/5jF3pCQ0MJPQAAj0aPj4/JyJCyskp/JiU5PsdRL88TTzyhOnXqVHN1AABUL4/q8Vm2bJm6du2q2rVrq169eurXr5/N8b179+rGG29USEiIoqKi9OSTT6qoqMicYt1USooUH1/681yGYZQ7tEXoAQB4A4/p8fnggw80ePBgvfjii+rRo4eKioq0efNm6/Hi4mLdeOONio6O1tq1a7V//34NGDBAAQEBevHFF02svOZkZpb25KSklN+bk5Tk+Njq1au1Zs0am7bGjRvroYceqoZKAQAwh8UwDMPsIi6kqKhIzZs3V3p6ugYNGuTwnI8//lg33XSTfv/9dzVq1EiSNGvWLD399NM6dOiQAgMDnXqvvLw8hYeHKzc3V2FhYS77HWpCQkLpMFZ8vLR2rfOvc9TL8/TTTys4ONiF1QEAUH2c/f72iKGuDRs26LfffpOfn5/i4uLUuHFj9enTx6bHJysrS5dddpk19EhSYmKi8vLytGXLlnKvnZ+fr7y8PJuHpzrfMJYjJSUl5Q5tEXoAAN7II4a6fv75Z0nS+PHjNXXqVDVv3lwvv/yyunXrph07dqh+/frKycmxCT2SrM9zcnLKvfbEiRMdfvl7ovKGsRz5+OOP9e2339q0tWrVSvfdd181VAYAgHswtccnJSVFFovlvI/s7GyVlJRIkp555hnddttt6tSpk+bMmSOLxaJFixZVqYbU1FTl5uZaH/v27XPFr+bW0tPT7ULPmDFjCD0AAK9nao/P6NGjlZycfN5zWrZsqf3790uS2rdvb20PCgpSy5YttXfvXklSdHS03Zf5gQMHrMfKExQUpKCgoMqUbypnJjKfq7i4WM8//7xdO2vzAAB8hanBJzIyUpGRkRc8r1OnTgoKCtL27dt19dVXS5IKCwu1Z88eNWvWTJIUHx+vF154QQcPHlRUVJQkaeXKlQoLC7MJTN7CmfV4zvb555/r66+/tmn7y1/+oltuuaWaKgQAwP14xByfsLAwDRkyRGlpaYqJiVGzZs300ksvSZLuuOMOSVKvXr3Uvn179e/fX5MnT1ZOTo7Gjh2rYcOGeWSPzoWkpJzp8bkQR3OYxo4dK39//2qoDAAA9+URwUeSXnrpJdWqVUv9+/fXqVOn1LVrV33xxReqV6+eJMnf319Lly7VI488ovj4eNWpU0cDBw7Uc889Z3Ll1cOZicxFRUV64YUX7NoZ2gIA+CqPWMenJnnyOj5nW7Zsmb777jubtl69eik+Pt6kigAAqD7Ofn97TI8PnOdoaGvcuHGyWCwmVAMAgPsg+HiR/Px8ZWRk2LUztAUAQCmCj5dwdNdW3759dcUVV5hUEQAA7ofg4wUY2gIAwDkEHw/G0BYAABVD8PFQK1as0L///W+btgEDBqhFixYmVQQAgPvziN3ZvV1mppSQUPrTGenp6XahJy0tjdADAMAFEHzcwNnbT5xPfn6+3XyewMBAhrYAAHASQ11uwJntJ9atW6fly5fbtA0fPlwNGjSo5uoAAPAeBB83cKHtJxzdtUUvDwAAFcdQVw2p6DweSTp16pRd6OncuTOhBwCASqLHp4acPY/nQpuLStLatWu1cuVKm7bHHntMERER1VMgAAA+gOBTQ5yZx1OGoS0AAKoHwaeGXGgejySdOHFCU6ZMsWlLSEjQ9ddfX42VAQDgOwg+bmL16tVas2aNTduoUaMUGhpqUkUAAHgfgo8bYGgLAICaQfAxkaO9trp166brrrvOpIoAAPBuBB+T7Nq1S++8845N2xNPPKE6deqYVBEAAN6P4GOCRYsWaevWrdbnnTp10k033WRiRQAA+AaCTw06ffq0Jk2aZNP2wAMPKCYmxqSKAADwLQSfGrJjxw7Nnz/fpm3MmDEKCAgwqSIAAHwPwaeGnB16rrrqKiUmJppYDQAAvongU8MGDx6sJk2amF0GAAA+yWIYhmF2Ee4kLy9P4eHhys3NVVhYmNnlAAAAJzj7/c3u7AAAwGcQfAAAgM8g+AAAAJ9B8AEAAD6D4AMAAHwGwQcAAPgMgg8AAPAZBB8AAOAzCD4AAMBnEHwAAIDPIPgAAACfQfABAAA+g+ADAAB8BsEHAAD4jFpmF+BuDMOQVLq9PQAA8Axl39tl3+PlIfic49ixY5KkmJgYkysBAAAVdezYMYWHh5d73GJcKBr5mJKSEv3+++8KDQ2VxWIxu5xql5eXp5iYGO3bt09hYWFmlwMH+IzcH5+R++Mzcn9V/YwMw9CxY8fUpEkT+fmVP5OHHp9z+Pn56aKLLjK7jBoXFhbG/xm4OT4j98dn5P74jNxfVT6j8/X0lGFyMwAA8BkEHwAA4DMIPj4uKChIaWlpCgoKMrsUlIPPyP3xGbk/PiP3V1OfEZObAQCAz6DHBwAA+AyCDwAA8BkEHwAA4DMIPgAAwGcQfHzcsmXL1LVrV9WuXVv16tVTv379bI7v3btXN954o0JCQhQVFaUnn3xSRUVF5hTrw/Lz83X55ZfLYrHo+++/tzn2ww8/6JprrlFwcLBiYmI0efJkc4r0QXv27NGgQYPUokUL1a5dW61atVJaWpoKCgpszuMzMt+MGTPUvHlzBQcHq2vXrvr222/NLsknTZw4UVdeeaVCQ0MVFRWlfv36afv27TbnnD59WsOGDVODBg1Ut25d3XbbbTpw4IDLaiD4+LAPPvhA/fv31/33369Nmzbpm2++0T333GM9XlxcrBtvvFEFBQVau3at3nrrLc2dO1fjxo0zsWrf9NRTT6lJkyZ27Xl5eerVq5eaNWum9evX66WXXtL48eP1j3/8w4QqfU92drZKSkr0+uuva8uWLXrllVc0a9YsjRkzxnoOn5H5Fi5cqFGjRiktLU0bNmxQx44dlZiYqIMHD5pdms9Zs2aNhg0bpn//+99auXKlCgsL1atXL504ccJ6zuOPP67/+7//06JFi7RmzRr9/vvvuvXWW11XhAGfVFhYaDRt2tR44403yj1n+fLlhp+fn5GTk2NtmzlzphEWFmbk5+fXRJkwSj+Htm3bGlu2bDEkGRs3brQee+2114x69erZfB5PP/200aZNGxMqhWEYxuTJk40WLVpYn/MZma9Lly7GsGHDrM+Li4uNJk2aGBMnTjSxKhiGYRw8eNCQZKxZs8YwDMM4evSoERAQYCxatMh6zrZt2wxJRlZWlkvekx4fH7Vhwwb99ttv8vPzU1xcnBo3bqw+ffpo8+bN1nOysrJ02WWXqVGjRta2xMRE5eXlacuWLWaU7XMOHDigwYMH6+2331ZISIjd8aysLF177bUKDAy0tiUmJmr79u06cuRITZaK/8rNzVX9+vWtz/mMzFVQUKD169erZ8+e1jY/Pz/17NlTWVlZJlYGqfS/F0nW/2bWr1+vwsJCm8+rbdu2io2NddnnRfDxUT///LMkafz48Ro7dqyWLl2qevXqqVu3bjp8+LAkKScnxyb0SLI+z8nJqdmCfZBhGEpOTtaQIUPUuXNnh+fwGbmXnTt3avr06Xr44YetbXxG5vrjjz9UXFzs8DPg799cJSUlGjlypP7617+qQ4cOkkr/mwgMDFRERITNua78vAg+XiYlJUUWi+W8j7J5CZL0zDPP6LbbblOnTp00Z84cWSwWLVq0yOTfwrs5+xlNnz5dx44dU2pqqtkl+xxnP6Oz/fbbb+rdu7fuuOMODR482KTKAc8xbNgwbd68WQsWLKjR961Vo++Gajd69GglJyef95yWLVtq//79kqT27dtb24OCgtSyZUvt3btXkhQdHW1350PZzPro6GgXVu1bnP2MvvjiC2VlZdntW9O5c2fde++9euuttxQdHW13twOfUdU5+xmV+f3339W9e3clJCTYTVrmMzJXw4YN5e/v7/Az4O/fPMOHD9fSpUv15Zdf6qKLLrK2R0dHq6CgQEePHrXp9XHp5+WSmULwOLm5uUZQUJDN5OaCggIjKirKeP311w3DODO5+cCBA9ZzXn/9dSMsLMw4ffp0jdfsa3755Rfjxx9/tD5WrFhhSDLef/99Y9++fYZhnJk4W1BQYH1damoqE2dr0K+//mpcfPHFxl133WUUFRXZHeczMl+XLl2M4cOHW58XFxcbTZs2ZXKzCUpKSoxhw4YZTZo0MXbs2GF3vGxy8/vvv29ty87OdunkZoKPD3vssceMpk2bGitWrDCys7ONQYMGGVFRUcbhw4cNwzCMoqIio0OHDkavXr2M77//3vjkk0+MyMhIIzU11eTKfdPu3bvt7uo6evSo0ahRI6N///7G5s2bjQULFhghISHW8Irq9euvvxqtW7c2/ud//sf49ddfjf3791sfZfiMzLdgwQIjKCjImDt3rrF161bjoYceMiIiImzuWEXNeOSRR4zw8HBj9erVNv+9nDx50nrOkCFDjNjYWOOLL74wvvvuOyM+Pt6Ij493WQ0EHx9WUFBgjB492oiKijJCQ0ONnj17Gps3b7Y5Z8+ePUafPn2M2rVrGw0bNjRGjx5tFBYWmlSxb3MUfAzDMDZt2mRcffXVRlBQkNG0aVMjIyPDnAJ90Jw5cwxJDh9n4zMy3/Tp043Y2FgjMDDQ6NKli/Hvf//b7JJ8Unn/vcyZM8d6zqlTp4yhQ4ca9erVM0JCQoxbbrnF5h8TVWX5byEAAABej7u6AACAzyD4AAAAn0HwAQAAPoPgAwAAfAbBBwAA+AyCDwAA8BkEHwAA4DMIPgBQTVavXi2LxaKjR4+aXQqA/yL4APBY48eP1+WXX252GQA8CMEHgNcrLCw0uwQAboLgA8A0JSUlmjhxolq0aKHatWurY8eOev/99yWdGSb6/PPP1blzZ4WEhCghIUHbt2+XJM2dO1fp6enatGmTLBaLLBaL5s6dK0myWCyaOXOmkpKSVKdOHb3wwgvnraPsvVasWKG4uDjVrl1bPXr00MGDB/Xxxx+rXbt2CgsL0z333KOTJ09aX5efn68RI0YoKipKwcHBuvrqq7Vu3brq+csC4Bou2/ULACro+eefN9q2bWt88sknxq5du4w5c+YYQUFBxurVq41Vq1YZkoyuXbsaq1evNrZs2WJcc801RkJCgmEYhnHy5Elj9OjRxqWXXmq3w7MkIyoqypg9e7axa9cu45dffjlvHWXvddVVVxlff/21sWHDBqN169bGddddZ/Tq1cvYsGGD8eWXXxoNGjSw2WB0xIgRRpMmTYzly5cbW7ZsMQYOHGjUq1fP+PPPP22ue+TIker5CwRQYQQfAKY4ffq0ERISYqxdu9amfdCgQcbdd99tDQ2fffaZ9diyZcsMScapU6cMwzCMtLQ0o2PHjnbXlmSMHDnS6VocvdfEiRMNScauXbusbQ8//LCRmJhoGIZhHD9+3AgICDDmzZtnPV5QUGA0adLEmDx5ss11CT6A+6hlVk8TAN+2c+dOnTx5Utdff71Ne0FBgeLi4qzP//KXv1j/3LhxY0nSwYMHFRsbe97rd+7cucI1nf1ejRo1UkhIiFq2bGnT9u2330qSdu3apcLCQv31r3+1Hg8ICFCXLl20bdu2Cr83gJpB8AFgiuPHj0uSli1bpqZNm9ocCwoK0q5duySVhokyFotFUuncoAupU6dOhWs6973Ofl7W5sx7A3BfTG4GYIr27dsrKChIe/fuVevWrW0eMTExTl0jMDBQxcXF1VypY61atVJgYKC++eYba1thYaHWrVun9u3bm1ITgAujxweAKUJDQ/XEE0/o8ccfV0lJia6++mrl5ubqm2++UVhYmJo1a3bBazRv3ly7d+/W999/r4suukihoaEKCgqqgepLe5QeeeQRPfnkk6pfv75iY2M1efJknTx5UoMGDaqRGgBUHMEHgGkmTJigyMhITZw4UT///LMiIiJ0xRVXaMyYMU4NKd12221avHixunfvrqNHj2rOnDlKTk6u/sL/KyMjQyUlJerfv7+OHTumzp07a8WKFapXr16N1QCgYiyGYRhmFwEAAFATmOMDAAB8BsEHgNcbMmSI6tat6/AxZMgQs8sDUIMY6gLg9Q4ePKi8vDyHx8LCwhQVFVXDFQEwC8EHAAD4DIa6AACAzyD4AAAAn0HwAQAAPoPgAwAAfAbBBwAA+AyCDwAA8BkEHwAA4DMIPgAAwGf8PyZ6NzE4vB44AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4/4 [==============================] - 0s 5ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOD0lEQVR4nO3de1xUZf4H8M9wlYsMch0wUMQrimaiRhhqsuKtMnXzlve0DDS1TG3T1EzQWjOttNxNbVNza7XMynLFy6qEiOEtZZVFseSiGTMiCMic3x/+ODlyG4aZOWfmfN6v17xecM4zM88cDme+53m+z/OoBEEQQERERKRgDlJXgIiIiEhqDIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIyGYsXrwYKpXKqLIqlQqLFy+2aH369OmDPn36yPb1iMh4DIiIqME2bdoElUolPpycnNC8eXNMnDgRv/76q9TVk52WLVsaHK+AgAA8+uij2Llzp1lev6SkBIsXL8aBAwfM8npESsSAiIhMtnTpUvzjH//A+vXrMXDgQHz66afo3bs3bt++bZH3e+2111BaWmqR17a0Bx98EP/4xz/wj3/8Ay+//DKuXr2KYcOGYf369Y1+7ZKSEixZsoQBEVEjOEldASKyXQMHDkRUVBQA4Nlnn4Wfnx9WrFiBXbt24emnnzb7+zk5OcHJyTYvW82bN8czzzwj/j5+/Hi0bt0a77zzDp5//nkJa0ZEAFuIiMiMHn30UQBAdna2wfbz589jxIgR8PHxQZMmTRAVFYVdu3YZlKmoqMCSJUvQpk0bNGnSBL6+vujVqxf27t0rlqkph6isrAyzZ8+Gv78/mjZtiieeeAK//PJLtbpNnDgRLVu2rLa9ptfcuHEjHnvsMQQEBMDV1RURERFYt25dg45FfTQaDTp06ICcnJw6yxUWFmLKlCkIDAxEkyZN0KVLF2zevFncf+nSJfj7+wMAlixZInbLWTp/isje2OatFhHJ0qVLlwAAzZo1E7edPXsWMTExaN68OebPnw8PDw/885//xNChQ/Gvf/0LTz31FIC7gUlSUhKeffZZ9OjRAzqdDsePH8eJEyfwpz/9qdb3fPbZZ/Hpp59izJgxeOSRR5CSkoLBgwc36nOsW7cOHTt2xBNPPAEnJyd8/fXXeOGFF6DX65GQkNCo165SUVGBK1euwNfXt9YypaWl6NOnDy5evIjExESEhYXh888/x8SJE1FUVIQXX3wR/v7+WLduHaZPn46nnnoKw4YNAwB07tzZLPUkUgyBiKiBNm7cKAAQ/v3vfwvXrl0Trly5InzxxReCv7+/4OrqKly5ckUs269fPyEyMlK4ffu2uE2v1wuPPPKI0KZNG3Fbly5dhMGDB9f5vq+//rpw72UrMzNTACC88MILBuXGjBkjABBef/11cduECROEFi1a1PuagiAIJSUl1crFx8cLrVq1MtjWu3dvoXfv3nXWWRAEoUWLFkL//v2Fa9euCdeuXRNOnjwpjBo1SgAgzJgxo9bXW716tQBA+PTTT8Vt5eXlQnR0tODp6SnodDpBEATh2rVr1T4vETUMu8yIyGRxcXHw9/dHSEgIRowYAQ8PD+zatQsPPPAAAODGjRtISUnB008/jZs3b+L69eu4fv06fvvtN8THx+PChQviqDRvb2+cPXsWFy5cMPr9v/32WwDAzJkzDbbPmjWrUZ/Lzc1N/Fmr1eL69evo3bs3/ve//0Gr1Zr0mj/88AP8/f3h7++PLl264PPPP8e4ceOwYsWKWp/z7bffQqPRYPTo0eI2Z2dnzJw5E8XFxTh48KBJdSGi6thlRkQme//999G2bVtotVp8/PHHOHToEFxdXcX9Fy9ehCAIWLhwIRYuXFjjaxQWFqJ58+ZYunQpnnzySbRt2xadOnXCgAEDMG7cuDq7fi5fvgwHBweEh4cbbG/Xrl2jPteRI0fw+uuvIzU1FSUlJQb7tFot1Gp1g1+zZ8+eWLZsGVQqFdzd3dGhQwd4e3vX+ZzLly+jTZs2cHAwvHft0KGDuJ+IzIMBERGZrEePHuIos6FDh6JXr14YM2YMsrKy4OnpCb1eDwB4+eWXER8fX+NrtG7dGgAQGxuL7OxsfPXVV/jhhx/wt7/9De+88w7Wr1+PZ599ttF1rW1Cx8rKSoPfs7Oz0a9fP7Rv3x6rVq1CSEgIXFxc8O233+Kdd94RP1ND+fn5IS4uzqTnEpHlMSAiIrNwdHREUlIS+vbti/feew/z589Hq1atANzt5jEmGPDx8cGkSZMwadIkFBcXIzY2FosXL641IGrRogX0ej2ys7MNWoWysrKqlW3WrBmKioqqbb+/leXrr79GWVkZdu3ahdDQUHH7/v37662/ubVo0QKnTp2CXq83aCU6f/68uB+oPdgjIuMxh4iIzKZPnz7o0aMHVq9ejdu3byMgIAB9+vTBhx9+iLy8vGrlr127Jv7822+/Gezz9PRE69atUVZWVuv7DRw4EACwZs0ag+2rV6+uVjY8PBxarRanTp0St+Xl5VWbLdrR0REAIAiCuE2r1WLjxo211sNSBg0ahPz8fGzfvl3cdufOHaxduxaenp7o3bs3AMDd3R0Aagz4iMg4bCEiIrOaO3cu/vznP2PTpk14/vnn8f7776NXr16IjIzE1KlT0apVKxQUFCA1NRW//PILTp48CQCIiIhAnz590K1bN/j4+OD48eP44osvkJiYWOt7Pfjggxg9ejQ++OADaLVaPPLII9i3bx8uXrxYreyoUaMwb948PPXUU5g5cyZKSkqwbt06tG3bFidOnBDL9e/fHy4uLnj88cfx3HPPobi4GBs2bEBAQECNQZ0lTZs2DR9++CEmTpyIjIwMtGzZEl988QWOHDmC1atXo2nTpgDuJoFHRERg+/btaNu2LXx8fNCpUyd06tTJqvUlsmlSD3MjIttTNew+PT292r7KykohPDxcCA8PF+7cuSMIgiBkZ2cL48ePFzQajeDs7Cw0b95cGDJkiPDFF1+Iz1u2bJnQo0cPwdvbW3BzcxPat28vvPnmm0J5eblYpqYh8qWlpcLMmTMFX19fwcPDQ3j88ceFK1eu1DgM/YcffhA6deokuLi4CO3atRM+/fTTGl9z165dQufOnYUmTZoILVu2FFasWCF8/PHHAgAhJydHLNeQYff1TSlQ2+sVFBQIkyZNEvz8/AQXFxchMjJS2LhxY7XnHj16VOjWrZvg4uLCIfhEJlAJwj3twkREREQKxBwiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseJGY2k1+tx9epVNG3alNPkExER2QhBEHDz5k0EBwdXWyj5XgyIjHT16lWEhIRIXQ0iIiIywZUrV/DAAw/Uup8BkZGqpsi/cuUKvLy8JK4NERERGUOn0yEkJET8Hq8NAyIjVXWTeXl5MSAiIiKyMfWluzCpmoiIiBSPAREREREpHgMiIiIiUjzmEBERkeJVVlaioqJC6mqQCZydneHo6Njo15E0IDp06BDeeustZGRkIC8vDzt37sTQoUNrLPv888/jww8/xDvvvINZs2aJ22/cuIEZM2bg66+/hoODA4YPH453330Xnp6eYplTp04hISEB6enp8Pf3x4wZM/DKK69Y+NMREZHcCYKA/Px8FBUVSV0VagRvb29oNJpGzRMoaUB069YtdOnSBZMnT8awYcNqLbdz5078+OOPCA4OrrZv7NixyMvLw969e1FRUYFJkyZh2rRp2Lp1K4C7w+369++PuLg4rF+/HqdPn8bkyZPh7e2NadOmWeyzERGR/FUFQwEBAXB3d+fEuzZGEASUlJSgsLAQABAUFGTya0kaEA0cOBADBw6ss8yvv/6KGTNm4Pvvv8fgwYMN9p07dw579uxBeno6oqKiAABr167FoEGD8PbbbyM4OBhbtmxBeXk5Pv74Y7i4uKBjx47IzMzEqlWrGBARESlYZWWlGAz5+vpKXR0ykZubGwCgsLAQAQEBJnefyTqpWq/XY9y4cZg7dy46duxYbX9qaiq8vb3FYAgA4uLi4ODggLS0NLFMbGwsXFxcxDLx8fHIysrC77//Xut7l5WVQafTGTyIiMh+VOUMubu7S1wTaqyqv2Fj8sBkHRCtWLECTk5OmDlzZo378/PzERAQYLDNyckJPj4+yM/PF8sEBgYalKn6vapMTZKSkqBWq8UHl+0gIrJP7Cazfeb4G8o2IMrIyMC7776LTZs2SXKyLliwAFqtVnxcuXLF6nUgIiIi65BtQPSf//wHhYWFCA0NhZOTE5ycnHD58mW89NJLaNmyJQBAo9GIiVRV7ty5gxs3bkCj0YhlCgoKDMpU/V5Vpiaurq7iMh1croOIiJRApVLhyy+/lLoaBg4cOACVSmXxkYCyDYjGjRuHU6dOITMzU3wEBwdj7ty5+P777wEA0dHRKCoqQkZGhvi8lJQU6PV69OzZUyxz6NAhg37FvXv3ol27dmjWrJl1PxQRKVKethRHs68jT1sqdVWIAACLFy/Ggw8+KHU1ZEXSUWbFxcW4ePGi+HtOTg4yMzPh4+OD0NDQaln/zs7O0Gg0aNeuHQCgQ4cOGDBgAKZOnYr169ejoqICiYmJGDVqlDhEf8yYMViyZAmmTJmCefPm4cyZM3j33XfxzjvvWO+DEpFibU/PxYIdp6EXAAcVkDQsEiO7h0pdLSK6j6QtRMePH0fXrl3RtWtXAMCcOXPQtWtXLFq0yOjX2LJlC9q3b49+/fph0KBB6NWrFz766CNxv1qtxg8//ICcnBx069YNL730EhYtWsQh90RkcXnaUjEYAgC9ALy64wxbiqjR9Ho9kpKSEBYWBjc3N3Tp0gVffPEFgD+6mPbt24eoqCi4u7vjkUceQVZWFgBg06ZNWLJkCU6ePAmVSgWVSoVNmzaJr339+nU89dRTcHd3R5s2bbBr1y6j6lT1vt9//z26du0KNzc3PPbYYygsLMR3332HDh06wMvLC2PGjEFJSYn4vLKyMsycORMBAQFo0qQJevXqhfT0dPMdLCNJ2kLUp08fCIJgdPlLly5V2+bj4yNOwlibzp074z//+U9Dq0dE1Cg512+JwVCVSkHApeslCFK7SVMpspg8bSlyrt9CmJ+Hxf++SUlJ+PTTT7F+/Xq0adMGhw4dwjPPPAN/f3+xzF/+8hf89a9/hb+/P55//nlMnjwZR44cwciRI3HmzBns2bMH//73vwHcbTyosmTJEqxcuRJvvfUW1q5di7Fjx+Ly5cvw8fExqm6LFy/Ge++9B3d3dzz99NN4+umn4erqiq1bt6K4uBhPPfUU1q5di3nz5gEAXnnlFfzrX//C5s2b0aJFC6xcuRLx8fG4ePGi0e9pDrLNISIisnVhfh5wuG+QrKNKhZZ+nPfG3mxPz0VMcgrGbEhDTHIKtqfnWuy9ysrKsHz5cnz88ceIj49Hq1atMHHiRDzzzDP48MMPxXJvvvkmevfujYiICMyfPx9Hjx7F7du34ebmBk9PTzg5OUGj0UCj0YiTGwLAxIkTMXr0aLRu3RrLly9HcXExjh07ZnT9li1bhpiYGHTt2hVTpkzBwYMHsW7dOnTt2hWPPvooRowYgf379wO4u2LFunXr8NZbb2HgwIGIiIjAhg0b4Obmhr///e/mO2hGYEBERGQhQWo3JA2LhOP/Tx3iqFJh+bBObB2yM9buGr148SJKSkrwpz/9CZ6enuLjk08+QXZ2tliuc+fO4s9VS1rcPzK7Jvc+z8PDA15eXkY9r6bnBwYGwt3dHa1atTLYVvV62dnZqKioQExMjLjf2dkZPXr0wLlz54x+T3PgavdERBY0snsoYtv649L1ErT0c2cwZIes3TVaXFwMAPjmm2/QvHlzg32urq5iUOTs7Cxur5rPT6/X1/v69z6v6rnGPK+m56tUqka/nrUwICIisrAgtRsDITtW1TV6b1Bkya7RiIgIuLq6Ijc3F7179662/95Wotq4uLigsrLSEtVrkPDwcLi4uODIkSNo0aIFgLvLb6Snp2PWrFlWrQsDIiIiokao6hp9dccZVAqCxbtGmzZtipdffhmzZ8+GXq9Hr169oNVqceTIEXh5eYmBRV1atmwpTnXzwAMPoGnTpnB1dbVIfevi4eGB6dOnY+7cueKUOytXrkRJSQmmTJli1bowICIiImoka3eNvvHGG/D390dSUhL+97//wdvbGw899BBeffVVo7qjhg8fjh07dqBv374oKirCxo0bMXHiRIvWuTbJycniYu43b95EVFQUvv/+e6tPnqwSGjLuXcF0Oh3UajW0Wi2X8SAisgO3b99GTk4OwsLC0KRJE6mrQ41Q19/S2O9vjjIjIiIixWNARERERPV6/vnnDYb53/t4/vnnpa5eozGHiIiIiOq1dOlSvPzyyzXus4dUEgZEREREVK+AgAAEBARIXQ2LYZcZERERKR4DIiIiUjQ5zppMDWOOvyG7zIiISJFcXFzg4OCAq1evwt/fHy4uLuISF2QbBEFAeXk5rl27BgcHB7i4uJj8WgyIiIhIkRwcHBAWFoa8vDxcvXpV6upQI7i7uyM0NBQODqZ3fDEgIiIixXJxcUFoaCju3Lkji7W9qOEcHR3h5OTU6NY9BkRERKRoVSuy378qOykLk6qJiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBRP0oDo0KFDePzxxxEcHAyVSoUvv/xS3FdRUYF58+YhMjISHh4eCA4Oxvjx43H16lWD17hx4wbGjh0LLy8veHt7Y8qUKSguLjYoc+rUKTz66KNo0qQJQkJCsHLlSmt8PCIim5GnLcXR7OvI05ZKXRUiSUgaEN26dQtdunTB+++/X21fSUkJTpw4gYULF+LEiRPYsWMHsrKy8MQTTxiUGzt2LM6ePYu9e/di9+7dOHToEKZNmybu1+l06N+/P1q0aIGMjAy89dZbWLx4MT766COLfz4iIluwPT0XMckpGLMhDTHJKdienit1lYisTiUIgiB1JQBApVJh586dGDp0aK1l0tPT0aNHD1y+fBmhoaE4d+4cIiIikJ6ejqioKADAnj17MGjQIPzyyy8IDg7GunXr8Je//AX5+flwcXEBAMyfPx9ffvklzp8/b3T9dDod1Go1tFotvLy8GvVZiYjkIk9bipjkFOjv+SZwVKlweH5fBKndpKsYkZkY+/1tUzlEWq0WKpUK3t7eAIDU1FR4e3uLwRAAxMXFwcHBAWlpaWKZ2NhYMRgCgPj4eGRlZeH333+v9b3Kysqg0+kMHkRE9ibn+i2DYAgAKgUBl66XSFMhIonYTEB0+/ZtzJs3D6NHjxYjvPz8fAQEBBiUc3Jygo+PD/Lz88UygYGBBmWqfq8qU5OkpCSo1WrxERISYs6PQ0QkC2F+HnBQGW5zVKnQ0s9dmgoRScQmAqKKigo8/fTTEAQB69ats8p7LliwAFqtVnxcuXLFKu9LRGRNQWo3JA2LhKPqblTkqFJh+bBO7C4jxXGSugL1qQqGLl++jJSUFIP+P41Gg8LCQoPyd+7cwY0bN6DRaMQyBQUFBmWqfq8qUxNXV1e4urqa62MQEcnWyO6hiG3rj0vXS9DSz53BECmSrFuIqoKhCxcu4N///jd8fX0N9kdHR6OoqAgZGRnitpSUFOj1evTs2VMsc+jQIVRUVIhl9u7di3bt2qFZs2bW+SBERDIXpHZDdLgvgyFSLEkDouLiYmRmZiIzMxMAkJOTg8zMTOTm5qKiogIjRozA8ePHsWXLFlRWViI/Px/5+fkoLy8HAHTo0AEDBgzA1KlTcezYMRw5cgSJiYkYNWoUgoODAQBjxoyBi4sLpkyZgrNnz2L79u149913MWfOHKk+NhEREcmMpMPuDxw4gL59+1bbPmHCBCxevBhhYWE1Pm///v3o06cPgLsTMyYmJuLrr7+Gg4MDhg8fjjVr1sDT01Msf+rUKSQkJCA9PR1+fn6YMWMG5s2b16C6ctg9ERGR7TH2+1s28xDJHQMiIiIi22OX8xARERERWQIDIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIykzxtKY5mX0eetlTqqlADOUldASIiInuwPT0XC3achl4AHFRA0rBIjOweKnW1yEhsISIiImqkPG2pGAwBgF4AXt1xhi1FNoQBERERUSPlXL8lBkNVKgUBl66XSFMhajAGRERERI0U5ucBB5XhNkeVCi393KWpEDUYAyIiIqJGClK7IWlYJBxVd6MiR5UKy4d1QpDaTeKakbGYVE1ERGQGI7uHIratPy5dL0FLP3cGQzaGAREREVED5WlLkXP9FsL8PAwCnyC1GwMhG8WAiIiIqAE4vN4+MYeIiIjISBxeb78YEBERKRhnVm4YDq+3X+wyIyJSKHb9NFzV8Pp7gyIOr7cPbCEiIlIgdv2YhsPr7RdbiIiIFKiurh9+udeNw+vtEwMiIiIFYtdP43B4vf1hlxkRkQKx64fIEFuIiIgUil0/RH9gQEREpGDs+iG6i11mREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIGoQLQRIRkT3isHsyGheCJCIieyVpC9GhQ4fw+OOPIzg4GCqVCl9++aXBfkEQsGjRIgQFBcHNzQ1xcXG4cOGCQZkbN25g7Nix8PLygre3N6ZMmYLi4mKDMqdOncKjjz6KJk2aICQkBCtXrrT0R7M7XAiSiIjsmaQB0a1bt9ClSxe8//77Ne5fuXIl1qxZg/Xr1yMtLQ0eHh6Ij4/H7du3xTJjx47F2bNnsXfvXuzevRuHDh3CtGnTxP06nQ79+/dHixYtkJGRgbfeeguLFy/GRx99ZPHP1xBy74qqayFIIiIiWydpl9nAgQMxcODAGvcJgoDVq1fjtddew5NPPgkA+OSTTxAYGIgvv/wSo0aNwrlz57Bnzx6kp6cjKioKALB27VoMGjQIb7/9NoKDg7FlyxaUl5fj448/houLCzp27IjMzEysWrXKIHCSki10RXEhSCIiaqw8bSlyrt9CmJ+H7GZIl21SdU5ODvLz8xEXFyduU6vV6NmzJ1JTUwEAqamp8Pb2FoMhAIiLi4ODgwPS0tLEMrGxsXBxcRHLxMfHIysrC7///ruVPk3tbKUrigtBEhFRY2xPz0VMcgrGbEhDTHIKtqfnSl0lA7JNqs7PzwcABAYGGmwPDAwU9+Xn5yMgIMBgv5OTE3x8fAzKhIWFVXuNqn3NmjWr8f3LyspQVlYm/q7T6RrxaWpXV1eU3IINLgRJRESmqO3mP7atv2y+S2TbQiS1pKQkqNVq8RESEmKR96nqirqXnLuigtRuiA73lc0JTERE8mcLeaiyDYg0Gg0AoKCgwGB7QUGBuE+j0aCwsNBg/507d3Djxg2DMjW9xr3vUZMFCxZAq9WKjytXrjTuA9WCXVFERGTvbOHmX7YBUVhYGDQaDfbt2ydu0+l0SEtLQ3R0NAAgOjoaRUVFyMjIEMukpKRAr9ejZ8+eYplDhw6hoqJCLLN37160a9eu1u4yAHB1dYWXl5fBw1JGdg/F4fl9sW3qwzg8v6/sEqqJiIgawxZu/lWCIAj1F7OM4uJiXLx4EQDQtWtXrFq1Cn379oWPjw9CQ0OxYsUKJCcnY/PmzQgLC8PChQtx6tQp/Pzzz2jSpAmAuyPVCgoKsH79elRUVGDSpEmIiorC1q1bAQBarRbt2rVD//79MW/ePJw5cwaTJ0/GO++806BRZjqdDmq1Glqt1qLBERERkb3K05ZaPQ/V6O9vQUL79+8XAFR7TJgwQRAEQdDr9cLChQuFwMBAwdXVVejXr5+QlZVl8Bq//fabMHr0aMHT01Pw8vISJk2aJNy8edOgzMmTJ4VevXoJrq6uQvPmzYXk5OQG11Wr1QoABK1Wa/LnJSIiIusy9vtb0hYiW8IWIiIiIttj7Pe3bHOIiIiIiKyFAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERDYiT1uKo9nXkactlboqdsdJ6goQERFR/ban52LBjtPQC4CDCkgaFomR3UOlrpbdYAsRUSPwbo2IrCFPWyoGQwCgF4BXd5zhtceM2EJEZCLerRGRteRcvyUGQ1UqBQGXrpcgSO0mTaXsDFuIiEzAuzUisqYwPw84qAy3OapUaOnnLk2F7BADIiIT1HW3RkRkbkFqNyQNi4Sj6m5U5KhSYfmwTmwdMiN2mRGZoOpu7d6giHdrRGRJI7uHIratPy5dL0FLP3cGQ2bGFiIiE/BujYikEKR2Q3S4L681FsAWIiIT8W6NiMh+MCAiaoQgtRsDISIiO8AuMyIiIlI8BkREREQWxAlcbQO7zIiIiCyEE7jaDrYQERERWQAncLUtDIiIiIgsgBO42hYGRCQL7GMnInvD5TZsCwMiktz29FzEJKdgzIY0xCSnYHt6rtRVIiJqNKkncK3pRpM3n7VTCYIg1F+MdDod1Go1tFotvLy8pK6O3cjTliImOaXaEhiH5/fl/D5EZBfytKVWn8C1pmRuAIpM8Db2+5ujzEhSdfWxMyAiIntg7Qlca0rmXvCv08A96y9WJXjHtvXntfb/scuMJMU+diKyFbbS3VTTjaYeYIJ3PYwOiHQ6ndEPc6msrMTChQsRFhYGNzc3hIeH44033sC9vXyCIGDRokUICgqCm5sb4uLicOHCBYPXuXHjBsaOHQsvLy94e3tjypQpKC4uNls9yXRS97ETERnDlnIda7rRdAB481kPo7vMvL29oVKp6iwjCAJUKhUqKysbXTEAWLFiBdatW4fNmzejY8eOOH78OCZNmgS1Wo2ZM2cCAFauXIk1a9Zg8+bNCAsLw8KFCxEfH4+ff/4ZTZo0AQCMHTsWeXl52Lt3LyoqKjBp0iRMmzYNW7duNUs9qXZ52lLkXL+FMD+PWoMcLpJKRHJW23xC1u5uMuZ6Cvxxo/nqjjOoFATxRhNAtW283v7B6KTqgwcPGv2ivXv3NrlC9xoyZAgCAwPx97//Xdw2fPhwuLm54dNPP4UgCAgODsZLL72El19+GQCg1WoRGBiITZs2YdSoUTh37hwiIiKQnp6OqKgoAMCePXswaNAg/PLLLwgODjaqLkyqrl1t/6ScoZWI7MHR7OsYsyGt2vZtUx9GdLivVepgyvW0pmRuKRK8pWb2pGpzBTkN8cgjj+Cjjz7Cf//7X7Rt2xYnT57E4cOHsWrVKgBATk4O8vPzERcXJz5HrVajZ8+eSE1NxahRo5Camgpvb28xGAKAuLg4ODg4IC0tDU899VSN711WVoaysjLxd3N2BdqT2v5J5XJHRUTUWFVdUPePhrVWd5Op19OakrmtneBtS0weZVZUVIS///3vOHfuHACgY8eOmDx5MtRqtdkqN3/+fOh0OrRv3x6Ojo6orKzEm2++ibFjxwIA8vPzAQCBgYEGzwsMDBT35efnIyAgwGC/k5MTfHx8xDI1SUpKwpIlS8z2WexRXf+kHD1GRPaiti4oa13LeD21DpMCouPHjyM+Ph5ubm7o0aMHAGDVqlV488038cMPP+Chhx4yS+X++c9/YsuWLdi6dSs6duyIzMxMzJo1C8HBwZgwYYJZ3qM2CxYswJw5c8TfdTodQkJCLPqetqauf1Kp76iIiMxJylxHXk+tw6Rh97Nnz8YTTzyBS5cuYceOHdixYwdycnIwZMgQzJo1y2yVmzt3LubPn49Ro0YhMjIS48aNw+zZs5GUlAQA0Gg0AICCggKD5xUUFIj7NBoNCgsLDfbfuXMHN27cEMvUxNXVFV5eXgYPMlTXkHmOHiMiexOkdkN0uK/Vr2O8nlqHyS1EGzZsgJPTH093cnLCK6+8YpCr01glJSVwcDCM2RwdHaHX6wEAYWFh0Gg02LdvHx588EEAd1ty0tLSMH36dABAdHQ0ioqKkJGRgW7dugEAUlJSoNfr0bNnT7PVVYnqa0bm6DEiIvPg9dTyTAqIvLy8kJubi/bt2xtsv3LlCpo2bWqWigHA448/jjfffBOhoaHo2LEjfvrpJ6xatQqTJ08GAKhUKsyaNQvLli1DmzZtxGH3wcHBGDp0KACgQ4cOGDBgAKZOnYr169ejoqICiYmJGDVqlNEjzKh29f2TMoGPiMg8eD21LJMCopEjR2LKlCl4++238cgjjwAAjhw5grlz52L06NFmq9zatWuxcOFCvPDCCygsLERwcDCee+45LFq0SCzzyiuv4NatW5g2bRqKiorQq1cv7NmzR5yDCAC2bNmCxMRE9OvXDw4ODhg+fDjWrFljtnoqHf9JiYjI1pm0uGt5eTnmzp2L9evX486dOwAAZ2dnTJ8+HcnJyXB1dTV7RaWm5HmIjJ0MjIiISG6M/f5u1Gr3JSUlyM7OBgCEh4fD3d1+M96VGhBxckUiIrJlVlnt3t3dHZGRkY15CZIxTq5IRGR/2OpfM5MCotu3b2Pt2rXYv38/CgsLxVFfVU6cOGGWypG0OBkYEZF9Yat/7UwKiKZMmYIffvgBI0aMQI8ePepd9JVsEycDIyKyH2z1r5tJAdHu3bvx7bffIiYmxtz1IRmRerp6IiIyH7b6182kgKh58+ZmnW+I5IuTgRGR3DAHxjRs9a+bSUt3/PWvf8W8efNw+fJlc9eHZEiq6eqJiO63PT0XMckpGLMhDTHJKdienit1lWwGlwCpm0ktRFFRUbh9+zZatWoFd3d3ODs7G+y/ceOGWSpHRGQsthrYP+bANB5b/WtnUkA0evRo/Prrr1i+fDkCAwOZVE1EkuLIGWVgDox5cHWBmpkUEB09ehSpqano0qWLuetDRNQgbDVQDubAkCWZlEPUvn17lJaWmrsuREQNVlerAdkX5sCQJZnUQpScnIyXXnoJb775JiIjI6vlEClpaQsikhZbDZSFOTBkKSatZebgcLdh6f7cIUEQoFKpUFlZaZ7ayYhS1zIjsgXb03OrzZfFHCLbxQR5MieLrmW2f/9+kytGRGQuVV+csW39cXh+X7Ya2AEmyJNUTAqIevfubVS5F154AUuXLoWfn58pb0NEVCt+cdofJsiTlExKqjbWp59+Cp1OZ8m3ICIFqu2LM0/LwR6WlqctxdHs6xY51kyQJymZ1EJkLBPSk4iI6sX5aKRh6VY5JsiTlCzaQkREZAlVX5z34henZVmjVY7D6klKFm0hIiKyhKovzvtHlvGL03Ks1Sonl2H1HOmmPAyIiGwEL9CG5PLFqRTW7M6SemkJJuwrE7vMiGwAV/iuWZDaDdHhvgyGrEAp3VlM2Fcui7YQPfPMM5zE0AzYMqBschuKzPNRuZTQKseEfeUyOSAqKirCsWPHUFhYCL1eb7Bv/PjxAIB169Y1rnbEpluS1QWa5yNJ3Z1laRzpplwmBURff/01xo4di+LiYnh5eRks4aFSqcSAiBpHbi0DJA25XKB5PpISMGFfuUwKiF566SVMnjwZy5cvh7s7o2ZLkVPLAEnH3BdoU7u8eD6SUiiha5CqMykg+vXXXzFz5kwGQxYml5YBkp65LtCN6fLi+Uj2pq6bA3vvGqTqTBplFh8fj+PHj5u7LnQfpYzqIOM0dkRVY0fP8Hy0D5ZcesOWcOQm3c/oFqJdu3aJPw8ePBhz587Fzz//jMjISDg7OxuUfeKJJ8xXQ4Vj0y2Zizm6vHg+2jYmxd/FfDiqidEB0dChQ6ttW7p0abVtKpUKlZWVjaoUGWLTLZmDubq8eD7aJgYBf2A+HNXE6C4zvV5v1IPBEJE82XqXF7t6Gocryf+Ba+FRTUxKqv7kk08wcuRIuLq6GmwvLy/HZ599xmH3RDIlxy4vY0a9savHNPceWybF/4FD66kmKkEQhPqLGXJ0dEReXh4CAgIMtv/2228ICAiwy1YinU4HtVoNrVbL2beJzMSYQCdPW4qY5JRqX+SH5/flF1gdajq2AKoFAUoOLPO0pbK6OSDLMPb726QWIkEQDCZjrPLLL79ArVab8pJEpDDG5rQw36Phaju2h+f3xeH5fRkE/D/mw9G9GhQQde3aFSqVCiqVCv369YOT0x9Pr6ysRE5ODgYMGGD2ShKR/TE20GFXT8PVdWy5GC5RzRoUEFWNNMvMzER8fDw8PT3FfS4uLmjZsiWGDx9u1goSkX2qKdBxAODuYjjWg/keDccgkqjhTMoh2rx5M0aOHIkmTZpYok6yxBwiIvPbnp4rBjpV6solYleP8e49tswXIiUz9vvbpICoSnl5eY2r3YeG2t8/HQMiosaraUTZySu/Y+gHRyEwadrsGEQSWTip+sKFC5g8eTKOHj1qsL0q2doeR5kRUePUNqLsVnkl7r8tY9K0eTBpmGpj6iLP9syktcwmTpwIBwcH7N69GxkZGThx4gROnDiBn376CSdOnDBrBX/99Vc888wz8PX1hZubGyIjIw3WURMEAYsWLUJQUBDc3NwQFxeHCxcuGLzGjRs3MHbsWHh5ecHb2xtTpkxBcXGxWetJRLWrax01TpJHZF1cx61mJrUQZWZmIiMjA+3btzd3fQz8/vvviImJQd++ffHdd9/B398fFy5cQLNmzcQyK1euxJo1a7B582aEhYVh4cKFiI+Px88//yzmOI0dOxZ5eXnYu3cvKioqMGnSJEybNg1bt261aP2J6K76Rj0xaZrIOriES+1MCogiIiJw/fp1c9elmhUrViAkJAQbN24Ut4WFhYk/C4KA1atX47XXXsOTTz4J4O4s2oGBgfjyyy8xatQonDt3Dnv27EF6ejqioqIAAGvXrsWgQYPw9ttvIzg42OKfg0gqcmkWr2/Ukxxn0CayR5zXq3YmdZmtWLECr7zyCg4cOIDffvsNOp3O4GEuu3btQlRUFP785z8jICAAXbt2xYYNG8T9OTk5yM/PR1xcnLhNrVajZ8+eSE1NBQCkpqbC29tbDIYAIC4uDg4ODkhLS6v1vcvKyiz2uYis4d5m8UeSUvDhwWzJ6mLMOmpBajfOkWMmXPeNasMu6tqZ1EJUFYA89thjBjNWmzup+n//+x/WrVuHOXPm4NVXX0V6ejpmzpwJFxcXTJgwAfn5+QCAwMBAg+cFBgaK+/Lz86stMeLk5AQfHx+xTE2SkpKwZMkSs3wOImu7v1lcAJD03XlABTwXGy5JnZTSCiR1qxzXfaO6cF6v2pkUEO3fv9/c9aiRXq9HVFQUli9fDuDuTNlnzpzB+vXrMWHCBIu+94IFCzBnzhzxd51Oh5CQEIu+J5G51NQsDgArvjuPJ7oES3bxs/dRT1IHI8wPIWPI6eZE6huIe5nUZda7d284ODhgw4YNmD9/Plq3bo3evXsjNzcXjo6OZqtcUFAQIiIiDLZ16NABubl3M+I1Gg0AoKCgwKBMQUGBuE+j0aCwsNBg/507d3Djxg2xTE1cXV3h5eVl8CCyFWF+Hqi+2uDdL8hL10tqfA67WRqnrpF01lJXfgjRveTQRX1/t/7yb36W9PpjUkD0r3/9C/Hx8XBzc8NPP/2EsrIyAIBWqxVbc8whJiYGWVlZBtv++9//okWLFgDuJlhrNBrs27dP3K/T6ZCWlobo6GgAQHR0NIqKipCRkSGWSUlJgV6vR8+ePc1WVyI5CVK7Yf7A6qNAa8sV4DDcxpNDMML8ELIVNXXrf/SfHEmvPyYFRMuWLcP69euxYcMGODs7i9tjYmLMOg/R7Nmz8eOPP2L58uW4ePEitm7dio8++ggJCQkAAJVKhVmzZmHZsmXYtWsXTp8+jfHjxyM4OFhcd61Dhw4YMGAApk6dimPHjuHIkSNITEzEqFGjOMKM7NpzvcOxYFB78QuytlwBObRs2AM5BCPGJK8TyUFt3fpSXn9MyiHKyspCbGxste1qtRpFRUWNrZOoe/fu2LlzJxYsWIClS5ciLCwMq1evxtixY8Uyr7zyCm7duoVp06ahqKgIvXr1wp49ewzWWduyZQsSExPRr18/ODg4YPjw4VizZo3Z6kkkV8/FhuOJLsF15gpwGK55yCVZVU75IUS1qWkqjipSXX9MCog0Gg0uXryIli1bGmw/fPgwWrVqZY56iYYMGYIhQ4bUul+lUmHp0qVYunRprWV8fHw4CSMpVn2JzFwZ3XzkEowYk7wup2RWUp6qG4gF/zoN/X37pLr+mNRlNnXqVLz44otIS0uDSqXC1atXsWXLFrz88suYPn26uetIRBbEbhbzkkOyan2YM0ZyMLJ7KI4seAzTHm1Vb9e+NZi02r0gCFi+fDmSkpJQUnI3YdDV1RUvv/wy3njjDbNXUg642j3ZO66Mrgx52lLEJKdUaxE8PL8v/+4kGUtef4z9/jYpIKpSXl6Oixcvori4GBEREfD09DT1pWSPARER2YOj2dcxZkP1Wfq3TX0Y0eG+EtSIyLKM/f42KYeoiouLS7V5goiISL6YM0ZUM5NyiIiIyDYxZ4yoZo1qISIiItsjl9FwRHLCgIiISIHsfV05ooZilxkREREpHgMiIjvCBVqJiEzDLjMiG1PbDMPb03PFNckcVEDSsEiM7B4qYU2JiGwHAyIiG1Jb0FPbAq2xbf2ZJ0JEZAR2mRHZiLpWpa9rgVYiIqofAyIiG1FX0FM12d69ONkeEZHxGBAR2Yi6gh5OtkdE1DjMISKyEVVBz6s7zqBSEKoFPZxsj4jIdAyIiGxIfUEPJ9sjIjINAyIiG8Ogh4jI/JhDRGRlnDyRiMyF1xPzYQsRkRVx8kQiMhdeT8yLLUREVlLXPEKkHLyjJ3Pg9cT82EJEZCV1zSPEnCBl4B09mQuvJ+bHFiIiK+HkicrGO3oyJ15PzI8BEZGVcPJEZePyKmROvJ6YH7vMiKyIkycqV9Ud/b1BEe/oqTF4PTEvthARWVmQ2g3R4b68eCkM7+jJEng9MR+2EBERWYkS7+jztKXIuX4LYX4eivi8ZLsYEJFi8UJNUlDSTOMcVUe2hAERKZI5L9QMrIiqq21UXWxbf/6fkCwxICLFMeeFmnfARDXjPDlka5hUTYpjruHPcphXhrMek1xxnhyyNQyISHHMdaGWel6Z7em5iElOwZgNaYhJTsH29FyrvC+RMTiqjmwNu8xIcaou1K/uOINKQTD5Qi3lvDLMzyBboMRRdWS7GBCRIpnjQm2uwMoUzM8gW6GkUXVk2xgQkWKZ40It1R0wZz0mIjIv5hARNZIUM8UyP4OIyLzYQkRmx3l5rIP5GdbHc5vIfjEgIrPivDzWxfwM6+G5TWTf2GVGZiOHeXmILIHnNpH9Y0BEZiP1vDxkPUqbEJLnNpH9s6mAKDk5GSqVCrNmzRK33b59GwkJCfD19YWnpyeGDx+OgoICg+fl5uZi8ODBcHd3R0BAAObOnYs7d+5Yufb2jzPTKoMSJ4TkuU1k/2wmIEpPT8eHH36Izp07G2yfPXs2vv76a3z++ec4ePAgrl69imHDhon7KysrMXjwYJSXl+Po0aPYvHkzNm3ahEWLFln7I9g9jnyyf0rtOuK5TWT/VIIgCPUXk1ZxcTEeeughfPDBB1i2bBkefPBBrF69GlqtFv7+/ti6dStGjBgBADh//jw6dOiA1NRUPPzww/juu+8wZMgQXL16FYGBgQCA9evXY968ebh27RpcXFyMqoNOp4NarYZWq4WXl5fFPqs9yNOWcuSTnTqafR1jNqRV275t6sOIDveVoEbWxXObyPYY+/1tEy1ECQkJGDx4MOLi4gy2Z2RkoKKiwmB7+/btERoaitTUVABAamoqIiMjxWAIAOLj46HT6XD27Nla37OsrAw6nc7gQcaRYl4esg6ldx3x3CayX7IPiD777DOcOHECSUlJ1fbl5+fDxcUF3t7eBtsDAwORn58vlrk3GKraX7WvNklJSVCr1eIjJCSkkZ+EyPax64hqorQke7JPsp6H6MqVK3jxxRexd+9eNGnSxKrvvWDBAsyZM0f8XafTMSgiAieEJEOcn8k8OOmn9GQdEGVkZKCwsBAPPfSQuK2yshKHDh3Ce++9h++//x7l5eUoKioyaCUqKCiARqMBAGg0Ghw7dszgdatGoVWVqYmrqytcXV3N+GnIFvEiVTNOCElA7Un2sW39eX40AINKeZB1l1m/fv1w+vRpZGZmio+oqCiMHTtW/NnZ2Rn79u0Tn5OVlYXc3FxER0cDAKKjo3H69GkUFhaKZfbu3QsvLy9ERERY/TOR7VDi8HKihjBlfiZ2rxlS6shNOZJ1C1HTpk3RqVMng20eHh7w9fUVt0+ZMgVz5syBj48PvLy8MGPGDERHR+Phhx8GAPTv3x8REREYN24cVq5cifz8fLz22mtISEhgCxDVine+RPWrSrK/NyiqK8meLSHV1RVU8lpjXbJuITLGO++8gyFDhmD48OGIjY2FRqPBjh07xP2Ojo7YvXs3HB0dER0djWeeeQbjx4/H0qVLJaw1yZ0tzkzMO2+ytoYk2bMlpGZKH7kpJzYxD5EcKG0eIqXnzuRpSxGTnFLtzvfw/L6yPB688yYpGTM/k9LnsKrL9vRcvLrjDCoFQQwq+f9rPsZ+f8u6y4ykwS/XP+58779I1RUMSRVEsnuPpGZMkn1Du9eUhCM35YEBERngl+sfGnKRkjKIZA4C2QJTbjKUhCM3pceAiAzwy9WQMRcpqYNI3nmTrWBLCMmZzSdVk3kxwa/hpE7A5uzRZEu4/AnJFVuIyACbtRtODi00vPMmsg9KH9AiJQZEVA2/XBtGLkEkcxCIbBsHtEiLw+6NpLRh90pnyl2aMUOPyXS8cyZ7ZmtTfdgSDrsnMpGpd2lsobEc3jmTveOAFukxqZroHpxNV374NyEl4IAW6TEgIsW7d8kLqUeMUXX8m5AScLSo9NhlRop2f1fMvAHtJR8xRobkMIpPKZinJS0OaJEWW4hIsWrqilm5JwvzBrbnXZqM8M7ZOran5yImOQVjNqQhJjkF29Nzpa6SInGeJumwhYgUq7aumM7NvXF4fl/epckI75wtS+rZ1onkgAERKVZdXTEcMSY//JtYDkc4EbHLjBSMXTFEd3GEExFbiEjh2BVDJJ/Z1omkxICIFI9dMUS8OSBiQERERAB4c0DKxhwiIiIiI907kSvZF7YQERERGYFr6tk3thARERHVg2vq2T8GRERERPXgmnr2jwERERFRPThXk/1jQERERFQPTuRq/5hUTUREZATO1WTfGBARkc3J05Yi5/othPl58EuJrIpzNdkvBkREZFM49JmILIE5RERkMzj0mYgshQEREdkMDn0mW8EZrW0Pu8yIyGZUDX2+Nyji0GeSG3br2ia2EJFF8O6ILIFDn0nu2K1ru9hCRGbHuyOyJA59Jjmrq1uX56q8sYWIzIp3R2QNQWo3RIf78guGZIczWtsuBkRkVkx6JSJb1tjufnbr2i52mZFZMemViGxVQ7r765oclN26toktRGRWvDsiIlvUkO7+7em5iElOwZgNaYhJTsH29NxqZdita3vYQkRmx7sjIrI1xiZD1xY4xbb157XOxjEgIovgej9EZEuM7e7nKDL7Jfsus6SkJHTv3h1NmzZFQEAAhg4diqysLIMyt2/fRkJCAnx9feHp6Ynhw4ejoKDAoExubi4GDx4Md3d3BAQEYO7cubhz5441Pwr9P85RRERyY2x3P0eR2S/ZtxAdPHgQCQkJ6N69O+7cuYNXX30V/fv3x88//wwPDw8AwOzZs/HNN9/g888/h1qtRmJiIoYNG4YjR44AACorKzF48GBoNBocPXoUeXl5GD9+PJydnbF8+XIpP57icI4iIpIrY7r7qwKnV3ecQaUgME/SjqgEQRDqLyYf165dQ0BAAA4ePIjY2FhotVr4+/tj69atGDFiBADg/Pnz6NChA1JTU/Hwww/ju+++w5AhQ3D16lUEBgYCANavX4958+bh2rVrcHFxqfd9dTod1Go1tFotvLy8LPoZ7VWethQxySnVmqQPz+/LiwmRieoa7USWk6ctZZ6kjTD2+1v2XWb302q1AAAfHx8AQEZGBioqKhAXFyeWad++PUJDQ5GamgoASE1NRWRkpBgMAUB8fDx0Oh3Onj1b4/uUlZVBp9MZPKhxOEcRkXkZM9qJLIOjyOyPTQVEer0es2bNQkxMDDp16gQAyM/Ph4uLC7y9vQ3KBgYGIj8/XyxzbzBUtb9qX02SkpKgVqvFR0hIiJk/jfKw753kxNZz2TgrPJF52VRAlJCQgDNnzuCzzz6z+HstWLAAWq1WfFy5csXi72nvOEcRyYU9tKywxZXIvGSfVF0lMTERu3fvxqFDh/DAAw+I2zUaDcrLy1FUVGTQSlRQUACNRiOWOXbsmMHrVY1CqypzP1dXV7i6upr5UxDnKCKp2cs8MpwVnsi8ZN9CJAgCEhMTsXPnTqSkpCAsLMxgf7du3eDs7Ix9+/aJ27KyspCbm4vo6GgAQHR0NE6fPo3CwkKxzN69e+Hl5YWIiAjrfBASse+dpGQvLStscSUyL9m3ECUkJGDr1q346quv0LRpUzHnR61Ww83NDWq1GlOmTMGcOXPg4+MDLy8vzJgxA9HR0Xj44YcBAP3790dERATGjRuHlStXIj8/H6+99hoSEhLYCkSkMPbUssIWVyLzkf2we5VKVeP2jRs3YuLEiQDuTsz40ksvYdu2bSgrK0N8fDw++OADg+6wy5cvY/r06Thw4AA8PDwwYcIEJCcnw8nJuJiQw+6JbIMxw9C3p+dWm0eG82ER2Sdjv79lHxDJBQMiskf2NodNQ1crZ8sKkf0z9vtb9l1mRGQZ9jZreEOTpbneHhHdS/ZJ1URkfvY4h429JEsTkTQYEBEpkD0GD5z4k4gagwERkQLZY/DAYehE1BjMISJSIHtdsZvD0InIVAyIiBTKksGDlKPXmCxNJA+2NoqVARGRglkieLC30WtE1HC2eB1gDhERmY2cRq/Z+mr2RLZKTteBhmALERGZTV2j16zZZG6Ld6dE9kIu14GGYgsRKQZbDCxPDqPXbPXulMheyOE6YAoGRKQI29NzEZOcgjEb0hCTnILt6blSV8kuyWHouz3OsURkS+RwHTAFu8zsjK1l9VtDQ5d0oMaReui7Pa1mT2SrpL4OmIIBkR1h3kTNbLU/25ZJOfTdXudYIrI1tjYFBgMiOyFFK4ittEaxxUB5bPHulIikxYDITli7FcSWWqPYYtAwthLo1sfW7k4bwl7+RkRywoDITlizFcQWc3LYYvCHur5MbSnQVSr+jYgsg6PM7IQ1s/ptdRRPkNoN0eG+ig6G6hptx+Hq8se/EZHlsIXIjlirFYQ5ObapvpY9Jp/LH/9GRJbDFiI7Y41WEFudY0Lp6mvZs9XJ1JSEfyPjcBJWMgVbiMgkzMmxPfW17DH5XP74N6ofc6zIVCpBEIT6i5FOp4NarYZWq4WXl5fU1SEyyfb03Gpfpvd/WeRpSxnoyhz/RjXL05YiJjmlWtB/eH5fHicFM/b7my1ERApiTMuePQ9Xtxf8G9WMOVbUGAyIiBSGX6ZkrzjggxqDSdVERGQXOOCDGoMtRERkUZxVmayJAz7IVAyIiMhiOOKHpMBuYTIFu8yIyCI4qzIR2RIGRERkEba6xAuRXHCCSetilxmRzNlqDg5H/BCZjt3N1scWIiIZq2sx1trI5a6SI37I1kn1v8TuZmmwhYhIpupbjLUmcrur5IgfslVS/i9xgklpsIWIjCKXVgclaWgOjlzvKq2x4DCROUn9v8RFfKXBgIjqZUq3DTVeQy+KTGImMg+p/5fY3SwNdplRnUzptiHzaOjK5kxiJjIPOfwvsbvZ+hgQUZ3Yly2thlwUGxpAkXLZ6shFa5HL/xInmLQuBkRUJzncKSldQy6KvKuk+pgrWdjegyr+LykPAyKJyf2iIpc7JTIe7yqpNubqApfbaEZL4f+SsjAgkpCtXFR4p0RkH8zRBc68QrJXihpl9v7776Nly5Zo0qQJevbsiWPHjklWF6mHdTYUh04T2T5zDOeWegQWkaUoJiDavn075syZg9dffx0nTpxAly5dEB8fj8LCQknqw4sKEVmbOYZzc44cslcqQRCE+ovZvp49e6J79+547733AAB6vR4hISGYMWMG5s+fX+/zdTod1Go1tFotvLy8Gl2fPG0pYpJTqiUrH57fl60wRGRRedrSRnWBb0/PrZZXKMfufiLA+O9vReQQlZeXIyMjAwsWLBC3OTg4IC4uDqmpqZLUicnKRCSVxiYLM6+Q7JEiAqLr16+jsrISgYGBBtsDAwNx/vz5Gp9TVlaGsrIy8XedTmf2evGiQkS2iiOwyN4oJoeooZKSkqBWq8VHSEiIRd6HycpERETSU0RA5OfnB0dHRxQUFBhsLygogEajqfE5CxYsgFarFR9XrlyxRlWJiIhIAooIiFxcXNCtWzfs27dP3KbX67Fv3z5ER0fX+BxXV1d4eXkZPIiIiMg+KSKHCADmzJmDCRMmICoqCj169MDq1atx69YtTJo0SeqqERERkcQUExCNHDkS165dw6JFi5Cfn48HH3wQe/bsqZZoTURERMqjmHmIGsvc8xARERGR5Rn7/a2IHCIiIiKiujAgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPMXMQ9RYVbMTWGKRVyIiIrKMqu/t+mYZYkBkpJs3bwKAxRZ5JSIiIsu5efMm1Gp1rfs5MaOR9Ho9rl69iqZNm0KlUkldHavR6XQICQnBlStXOCFlI/FYmgePo/nwWJoHj6P5WOJYCoKAmzdvIjg4GA4OtWcKsYXISA4ODnjggQekroZkuMCt+fBYmgePo/nwWJoHj6P5mPtY1tUyVIVJ1URERKR4DIiIiIhI8RgQUZ1cXV3x+uuvw9XVVeqq2DweS/PgcTQfHkvz4HE0HymPJZOqiYiISPHYQkRERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEBAA4dOgQHn/8cQQHB0OlUuHLL7802C8IAhYtWoSgoCC4ubkhLi4OFy5ckKayMlbfcZw4cSJUKpXBY8CAAdJUVuaSkpLQvXt3NG3aFAEBARg6dCiysrIMyty+fRsJCQnw9fWFp6cnhg8fjoKCAolqLE/GHMc+ffpUOy+ff/55iWosX+vWrUPnzp3FSQOjo6Px3Xffift5PhqnvuMo1fnIgIgAALdu3UKXLl3w/vvv17h/5cqVWLNmDdavX4+0tDR4eHggPj4et2/ftnJN5a2+4wgAAwYMQF5envjYtm2bFWtoOw4ePIiEhAT8+OOP2Lt3LyoqKtC/f3/cunVLLDN79mx8/fXX+Pzzz3Hw4EFcvXoVw4YNk7DW8mPMcQSAqVOnGpyXK1eulKjG8vXAAw8gOTkZGRkZOH78OB577DE8+eSTOHv2LACej8aq7zgCEp2PAtF9AAg7d+4Uf9fr9YJGoxHeeustcVtRUZHg6uoqbNu2TYIa2ob7j6MgCMKECROEJ598UpL62LrCwkIBgHDw4EFBEO6eg87OzsLnn38uljl37pwAQEhNTZWqmrJ3/3EUBEHo3bu38OKLL0pXKRvWrFkz4W9/+xvPx0aqOo6CIN35yBYiqldOTg7y8/MRFxcnblOr1ejZsydSU1MlrJltOnDgAAICAtCuXTtMnz4dv/32m9RVsglarRYA4OPjAwDIyMhARUWFwXnZvn17hIaG8rysw/3HscqWLVvg5+eHTp06YcGCBSgpKZGiejajsrISn332GW7duoXo6Giejya6/zhWkeJ85OKuVK/8/HwAQGBgoMH2wMBAcR8ZZ8CAARg2bBjCwsKQnZ2NV199FQMHDkRqaiocHR2lrp5s6fV6zJo1CzExMejUqROAu+eli4sLvL29DcryvKxdTccRAMaMGYMWLVogODgYp06dwrx585CVlYUdO3ZIWFt5On36NKKjo3H79m14enpi586diIiIQGZmJs/HBqjtOALSnY8MiIisaNSoUeLPkZGR6Ny5M8LDw3HgwAH069dPwprJW0JCAs6cOYPDhw9LXRWbVttxnDZtmvhzZGQkgoKC0K9fP2RnZyM8PNza1ZS1du3aITMzE1qtFl988QUmTJiAgwcPSl0tm1PbcYyIiJDsfGSXGdVLo9EAQLXREgUFBeI+Mk2rVq3g5+eHixcvSl0V2UpMTMTu3buxf/9+PPDAA+J2jUaD8vJyFBUVGZTneVmz2o5jTXr27AkAPC9r4OLigtatW6Nbt25ISkpCly5d8O677/J8bKDajmNNrHU+MiCieoWFhUGj0WDfvn3iNp1Oh7S0NIM+X2q4X375Bb/99huCgoKkrorsCIKAxMRE7Ny5EykpKQgLCzPY361bNzg7Oxucl1lZWcjNzeV5eY/6jmNNMjMzAYDnpRH0ej3Kysp4PjZS1XGsibXOR3aZEQCguLjYIPrOyclBZmYmfHx8EBoailmzZmHZsmVo06YNwsLCsHDhQgQHB2Po0KHSVVqG6jqOPj4+WLJkCYYPHw6NRoPs7Gy88soraN26NeLj4yWstTwlJCRg69at+Oqrr9C0aVMxD0OtVsPNzQ1qtRpTpkzBnDlz4OPjAy8vL8yYMQPR0dF4+OGHJa69fNR3HLOzs7F161YMGjQIvr6+OHXqFGbPno3Y2Fh07txZ4trLy4IFCzBw4ECEhobi5s2b2Lp1Kw4cOIDvv/+e52MD1HUcJT0frT6ujWRp//79AoBqjwkTJgiCcHfo/cKFC4XAwEDB1dVV6Nevn5CVlSVtpWWoruNYUlIi9O/fX/D39xecnZ2FFi1aCFOnThXy8/OlrrYs1XQcAQgbN24Uy5SWlgovvPCC0KxZM8Hd3V146qmnhLy8POkqLUP1Hcfc3FwhNjZW8PHxEVxdXYXWrVsLc+fOFbRarbQVl6HJkycLLVq0EFxcXAR/f3+hX79+wg8//CDu5/lonLqOo5Tno0oQBMGyIRcRERGRvDGHiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPARER2bzy8nKpq1CNHOtERLVjQEREstOnTx8kJiYiMTERarUafn5+WLhwIapWGmrZsiXeeOMNjB8/Hl5eXpg2bRoA4PDhw3j00Ufh5uaGkJAQzJw5E7du3RJf94MPPkCbNm3QpEkTBAYGYsSIEeK+L774ApGRkXBzc4Ovry/i4uLE5/bp0wezZs0yqOPQoUMxceJE8XdT60RE8sCAiIhkafPmzXBycsKxY8fw7rvvYtWqVfjb3/4m7n/77bfRpUsX/PTTT1i4cCGys7MxYMAADB8+HKdOncL27dtx+PBhJCYmAgCOHz+OmTNnYunSpcjKysKePXsQGxsLAMjLy8Po0aMxefJknDt3DgcOHMCwYcPQ0KUeG1onIpIPLu5KRLLTp08fFBYW4uzZs1CpVACA+fPnY9euXfj555/RsmVLdO3aFTt37hSf8+yzz8LR0REffvihuO3w4cPo3bs3bt26hW+//RaTJk3CL7/8gqZNmxq834kTJ9CtWzdcunQJLVq0qLE+Dz74IFavXi1uGzp0KLy9vbFp0yYAMKlOTZo0adRxIiLzYQsREcnSww8/LAZDABAdHY0LFy6gsrISABAVFWVQ/uTJk9i0aRM8PT3FR3x8PPR6PXJycvCnP/0JLVq0QKtWrTBu3Dhs2bIFJSUlAIAuXbqgX79+iIyMxJ///Gds2LABv//+e4Pr3NA6EZF8MCAiIpvk4eFh8HtxcTGee+45ZGZmio+TJ0/iwoULCA8PR9OmTXHixAls27YNQUFBWLRoEbp06YKioiI4Ojpi7969+O677xAREYG1a9eiXbt2YtDi4OBQrfusoqKi0XUiIvlgQEREspSWlmbw+48//og2bdrA0dGxxvIPPfQQfv75Z7Ru3braw8XFBQDg5OSEuLg4rFy5EqdOncKlS5eQkpICAFCpVIiJicGSJUvw008/wcXFRez+8vf3R15envhelZWVOHPmTL2fwZg6EZE8MCAiIlnKzc3FnDlzkJWVhW3btmHt2rV48cUXay0/b948HD16FImJicjMzMSFCxfw1VdfiQnMu3fvxpo1a5CZmYnLly/jk08+gV6vR7t27ZCWlobly5fj+PHjyM3NxY4dO3Dt2jV06NABAPDYY4/hm2++wTfffIPz589j+vTpKCoqqvcz1FcnIpIPJ6krQERUk/Hjx6O0tBQ9evSAo6MjXnzxRXEoe006d+6MgwcP4i9/+QseffRRCIKA8PBwjBw5EgDg7e2NHTt2YPHixbh9+zbatGmDbdu2oWPHjjh37hwOHTqE1atXQ6fToUWLFvjrX/+KgQMHAgAmT56MkydPYvz48XBycsLs2bPRt2/fej9DfXUiIvngKDMikp2aRnUREVkSu8yIiIhI8RgQERERkeKxy4yIiIgUjy1EREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHj/BxuX9VtXNomyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABELElEQVR4nO3deXRU9f3/8dckkBCWDFs2IRB2RCAgi4QoBEED9adGtEX4VnYsCApSF7AugNag1harFixWqAtKsaBWcaFsHgQpi1GhypEUSJSExZYJhBAgub8/aKaErDOZmXvnzvNxzpwDd+7MvOfmztz3vD+bwzAMQwAAADYRZnYAAAAAvkRyAwAAbIXkBgAA2ArJDQAAsBWSGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgPAFPPmzZPD4ajVvg6HQ/PmzfNrPGlpaUpLS7Ps8wGoPZIbIMQtX75cDofDfatXr55atWql8ePH64cffjA7PMtJSkoqd7xiY2N1zTXXaM2aNT55/tOnT2vevHnatGmTT54PCEUkNwAkSQsWLNBrr72mJUuWaMSIEXr99dc1ePBgnTlzxi+v9/DDD6uoqMgvz+1vvXr10muvvabXXntN9913nw4fPqyRI0dqyZIldX7u06dPa/78+SQ3QB3UMzsAANYwYsQI9e3bV5I0efJktWzZUk899ZTee+89/exnP/P569WrV0/16gXnV1CrVq3085//3P3/sWPHqmPHjvrd736nqVOnmhgZAInKDYAqXHPNNZKk7Ozsctu//fZb3XbbbWrevLkaNGigvn376r333iu3z7lz5zR//nx16tRJDRo0UIsWLXT11Vdr3bp17n0q63NTXFyse++9VzExMWrSpIluuukmff/99xViGz9+vJKSkipsr+w5ly1bpmuvvVaxsbGKjIxUt27dtHjxYo+ORU3i4+N1+eWX68CBA9Xud/ToUU2aNElxcXFq0KCBkpOT9ec//9l9/8GDBxUTEyNJmj9/vrvpy9/9jQC7Cc6fTQD87uDBg5KkZs2aubft3btXqampatWqlebMmaNGjRrpL3/5izIyMvTXv/5Vt9xyi6QLSUZmZqYmT56s/v37q6CgQDt37tTu3bt13XXXVfmakydP1uuvv64xY8Zo4MCB2rBhg2644YY6vY/Fixfriiuu0E033aR69erpb3/7m+666y6VlpZq+vTpdXruMufOnVNubq5atGhR5T5FRUVKS0vT/v37NWPGDLVr106rVq3S+PHjdeLECc2cOVMxMTFavHixpk2bpltuuUUjR46UJPXs2dMncQIhwwAQ0pYtW2ZIMv7+978bx44dM3Jzc423337biImJMSIjI43c3Fz3vkOHDjV69OhhnDlzxr2ttLTUGDhwoNGpUyf3tuTkZOOGG26o9nUfe+wx4+KvoKysLEOScdddd5Xbb8yYMYYk47HHHnNvGzdunNG2bdsan9MwDOP06dMV9ktPTzfat29fbtvgwYONwYMHVxuzYRhG27Ztjeuvv944duyYcezYMePLL780br/9dkOScffdd1f5fIsWLTIkGa+//rp729mzZ42UlBSjcePGRkFBgWEYhnHs2LEK7xeAZ2iWAiBJGjZsmGJiYpSYmKjbbrtNjRo10nvvvafWrVtLkv79739rw4YN+tnPfqaTJ0/q+PHjOn78uH788Uelp6fru+++c4+uatq0qfbu3avvvvuu1q+/du1aSdI999xTbvusWbPq9L6ioqLc/3a5XDp+/LgGDx6sf/3rX3K5XF495yeffKKYmBjFxMQoOTlZq1at0h133KGnnnqqysesXbtW8fHxGj16tHtb/fr1dc899+jUqVPavHmzV7EAqIhmKQCSpBdffFGdO3eWy+XSK6+8ok8//VSRkZHu+/fv3y/DMPTII4/okUceqfQ5jh49qlatWmnBggW6+eab1blzZ3Xv3l3Dhw/XHXfcUW3zyqFDhxQWFqYOHTqU296lS5c6va/PPvtMjz32mLZt26bTp0+Xu8/lcsnpdHr8nFdddZWeeOIJORwONWzYUJdffrmaNm1a7WMOHTqkTp06KSys/G/Kyy+/3H0/AN8guQEgSerfv797tFRGRoauvvpqjRkzRvv27VPjxo1VWloqSbrvvvuUnp5e6XN07NhRkjRo0CBlZ2fr3Xff1SeffKKXX35Zv/vd77RkyRJNnjy5zrFWNflfSUlJuf9nZ2dr6NCh6tq1q377298qMTFRERERWrt2rX73u9+535OnWrZsqWHDhnn1WAD+R3IDoILw8HBlZmZqyJAheuGFFzRnzhy1b99e0oWmlNpc2Js3b64JEyZowoQJOnXqlAYNGqR58+ZVmdy0bdtWpaWlys7OLlet2bdvX4V9mzVrphMnTlTYfmn1429/+5uKi4v13nvvqU2bNu7tGzdurDF+X2vbtq2++uorlZaWlqvefPvtt+77paoTNwC1R58bAJVKS0tT//79tWjRIp05c0axsbFKS0vTSy+9pLy8vAr7Hzt2zP3vH3/8sdx9jRs3VseOHVVcXFzl640YMUKS9Pvf/77c9kWLFlXYt0OHDnK5XPrqq6/c2/Ly8irMEhweHi5JMgzDvc3lcmnZsmVVxuEvP/nJT5Sfn6+VK1e6t50/f17PP/+8GjdurMGDB0uSGjZsKEmVJm8AaofKDYAq3X///frpT3+q5cuXa+rUqXrxxRd19dVXq0ePHpoyZYrat2+vI0eOaNu2bfr+++/15ZdfSpK6deumtLQ09enTR82bN9fOnTv19ttva8aMGVW+Vq9evTR69Gj94Q9/kMvl0sCBA7V+/Xrt37+/wr633367HnzwQd1yyy265557dPr0aS1evFidO3fW7t273ftdf/31ioiI0I033qhf/OIXOnXqlJYuXarY2NhKEzR/uvPOO/XSSy9p/Pjx2rVrl5KSkvT222/rs88+06JFi9SkSRNJFzpAd+vWTStXrlTnzp3VvHlzde/eXd27dw9ovEBQM3u4FgBzlQ0F37FjR4X7SkpKjA4dOhgdOnQwzp8/bxiGYWRnZxtjx4414uPjjfr16xutWrUy/t//+3/G22+/7X7cE088YfTv399o2rSpERUVZXTt2tX49a9/bZw9e9a9T2XDtouKiox77rnHaNGihdGoUSPjxhtvNHJzcysdGv3JJ58Y3bt3NyIiIowuXboYr7/+eqXP+d577xk9e/Y0GjRoYCQlJRlPPfWU8corrxiSjAMHDrj382QoeE3D3Kt6viNHjhgTJkwwWrZsaURERBg9evQwli1bVuGxW7duNfr06WNEREQwLBzwgsMwLqrXAgAABDn63AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGArITeJX2lpqQ4fPqwmTZowzTkAAEHCMAydPHlSl112WYUFaC8VcsnN4cOHlZiYaHYYAADAC7m5uWrdunW1+4RcclM2xXlubq6io6NNjgYAANRGQUGBEhMT3dfx6oRcclPWFBUdHU1yAwBAkKlNlxI6FAMAAFshuQEAALZCcgMAAGwl5PrcAABCR0lJic6dO2d2GKiliIiIGod51wbJDQDAdgzDUH5+vk6cOGF2KPBAWFiY2rVrp4iIiDo9D8kNAMB2yhKb2NhYNWzYkElbg0DZJLt5eXlq06ZNnf5mJDcAAFspKSlxJzYtWrQwOxx4ICYmRocPH9b58+dVv359r5+HDsUAAFsp62PTsGFDkyOBp8qao0pKSur0PCQ3AABboikq+Pjqb0ZyAwAAbIXkBgAABMSmTZvkcDj8PoqN5AYAPJDnKtLW7OPKcxWZHQpQwbx589SrVy+zwzAdo6UAoJZW7sjR3NVfq9SQwhxS5sgeGtWvjdlhAR47d+5cnUYjWR2VGwCohTxXkTuxkaRSQ3po9R4qOPCp0tJSZWZmql27doqKilJycrLefvttSf9r0lm/fr369u2rhg0bauDAgdq3b58kafny5Zo/f76+/PJLORwOORwOLV++XNKFjrqLFy/WTTfdpEaNGunXv/51tXGUvdbHH3+s3r17KyoqStdee62OHj2qDz/8UJdffrmio6M1ZswYnT592v244uJi3XPPPYqNjVWDBg109dVXa8eOHf45WNUguQGAWjhwvNCd2JQpMQwdPH668gfANgLZFJmZmalXX31VS5Ys0d69e3Xvvffq5z//uTZv3uze51e/+pWeffZZ7dy5U/Xq1dPEiRMlSaNGjdIvf/lLXXHFFcrLy1NeXp5GjRrlfty8efN0yy236Ouvv3Y/pibz5s3TCy+8oK1btyo3N1c/+9nPtGjRIq1YsUIffPCBPvnkEz3//PPu/R944AH99a9/1Z///Gft3r1bHTt2VHp6uv7973/76AjVDs1SAFAL7Vo2UphD5RKccIdDSS2ZS8XOAtkUWVxcrCeffFJ///vflZKSIklq3769tmzZopdeekl33nmnJOnXv/61Bg8eLEmaM2eObrjhBp05c0ZRUVFq3Lix6tWrp/j4+ArPP2bMGE2YMMGjmJ544gmlpqZKkiZNmqS5c+cqOztb7du3lyTddttt2rhxox588EEVFhZq8eLFWr58uUaMGCFJWrp0qdatW6c//elPuv/++707MF6gcgMAtZDgjFLmyB4K/+88HOEOh54c2V0JziiTI4O/BLopcv/+/Tp9+rSuu+46NW7c2H179dVXlZ2d7d6vZ8+e7n8nJCRIko4ePVrj8/ft29fjmC5+rbi4ODVs2NCd2JRtK3vt7OxsnTt3zp0MSVL9+vXVv39/ffPNNx6/dl1QuQGAWhrVr40GdY7RweOnldSyIYmNzVXXFOmPv/2pU6ckSR988IFatWpV7r7IyEh3gnNxR+CySe9KS0trfP5GjRp5HNOlr3VpJ2SHw1Gr1w40khsA8ECCM4qkJkQEuimyW7duioyMVE5OjrvZ6WIXV2+qEhERUeelC7zVoUMHRURE6LPPPlPbtm0lXRiVtWPHDs2aNSugsZDcAABQibKmyIdW71GJYfi9KbJJkya67777dO+996q0tFRXX321XC6XPvvsM0VHR7sThuokJSXpwIEDysrKUuvWrdWkSRNFRkb6Jd5LNWrUSNOmTdP999+v5s2bq02bNnr66ad1+vRpTZo0KSAxlCG5AQCgCoFuinz88ccVExOjzMxM/etf/1LTpk115ZVX6qGHHqpV88+tt96q1atXa8iQITpx4oSWLVum8ePH+zXmiy1cuFClpaW64447dPLkSfXt21cff/yxmjVrFrAYJMlhGIZR8272UVBQIKfTKZfLpejoaLPDAQD42JkzZ3TgwAG1a9dODRo0MDsceKC6v50n129GSwEAAFshuQEAIMRMnTq13HDzi29Tp041O7w6o88NAAAhZsGCBbrvvvsqvc8OXTZIbgAACDGxsbGKjY01Owy/oVkKAADYCskNAMCWrDhzLqrnqwHcNEsBAGwlIiJCYWFhOnz4sGJiYhQREeFepgDWZRiGjh07VukyD54iuQEA2EpYWJjatWunvLw8HT582Oxw4AGHw6HWrVsrPDy8Ts9DcgMAsJ2IiAi1adNG58+fN22tJXiufv36dU5sJJIbAIBNlTVv1LWJA8GHDsUAAMBWSG4AAICtkNwAAABbIbkBAAC2QnIDAABsheQGAADYCskNAACwFZIbAABgKyQ3AADAVkxNbhYvXqyePXsqOjpa0dHRSklJ0YcffljtY1atWqWuXbuqQYMG6tGjh9auXRugaAEAQDAwNblp3bq1Fi5cqF27dmnnzp269tprdfPNN2vv3r2V7r9161aNHj1akyZN0hdffKGMjAxlZGRoz549AY4cAABYlcMwDMPsIC7WvHlzPfPMM5o0aVKF+0aNGqXCwkK9//777m0DBgxQr169tGTJklo9f0FBgZxOp1wul6Kjo30WNwAA8B9Prt+W6XNTUlKit956S4WFhUpJSal0n23btmnYsGHltqWnp2vbtm1VPm9xcbEKCgrK3QAAgH2Zntx8/fXXaty4sSIjIzV16lStWbNG3bp1q3Tf/Px8xcXFldsWFxen/Pz8Kp8/MzNTTqfTfUtMTPRp/AAAwFpMT266dOmirKwsbd++XdOmTdO4ceP0z3/+02fPP3fuXLlcLvctNzfXZ88NAACsp57ZAURERKhjx46SpD59+mjHjh167rnn9NJLL1XYNz4+XkeOHCm37ciRI4qPj6/y+SMjIxUZGenboAEAgGWZXrm5VGlpqYqLiyu9LyUlRevXry+3bd26dVX20QEAAKHH1MrN3LlzNWLECLVp00YnT57UihUrtGnTJn388ceSpLFjx6pVq1bKzMyUJM2cOVODBw/Ws88+qxtuuEFvvfWWdu7cqT/+8Y9mvg0AAGAhpiY3R48e1dixY5WXlyen06mePXvq448/1nXXXSdJysnJUVjY/4pLAwcO1IoVK/Twww/roYceUqdOnfTOO++oe/fuZr0FAABgMZab58bfmOcGAIDgE5Tz3AAAAPgCyQ0AALAVkhsAAGArJDcAAMBWSG4AAICtkNwAAABbIbkBAAC2QnIDAABsheQGAADYCskNAACVyHMVaWv2ceW5iswOBR4ydW0pAACsaOWOHM1d/bVKDSnMIWWO7KFR/dqYHRZqicoNAAAXyXMVuRMbSSo1pIdW76GCE0RIbgAAuMiB44XuxKZMiWHo4PHT5gQEj5HcAABwkXYtGynMUX5buMOhpJYNzQkIHiO5AQDgIgnOKGWO7KFwx4UMJ9zh0JMjuyvBGWVyZNZi5Q7XdCgGAJvJcxXpwPFCtWvZiAuyl0b1a6NBnWN08PhpJbVsyHG8hNU7XJPcAICNWP2iE0wSnFEkNZWoqsP1oM4xljleNEsBgE0wygeBEAwdrkluAMAmguGig+AXDB2uSW4AwCaC4aKD4BcMHa7pcwMANlF20Xlo9R6VGIYlLzqwB6t3uCa5AQAbsfpFB/Zh5Q7XJDcAYDNWvugAgUCfGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AIGTluYq0Nfs4i4vaDJP4AQBC0sodOe5V1MMcUubIHhrVr43ZYcEHqNwAAEJOnqvIndhIUqkhPbR6DxUcmyC5AQCEnAPHC92JTZkSw9DB46fNCQg+RXIDAAg57Vo2Upij/LZwh0NJLRuaExB8iuQGABByEpxRyhzZQ+GOCxlOuMOhJ0d2Z8FRm6BDMQAgJI3q10aDOsfo4PHTSmrZkMTGRkhuAAAhK8EZRVJjQzRLAQAAWyG5AQAAtmJqcpOZmal+/fqpSZMmio2NVUZGhvbt21ftY5YvXy6Hw1Hu1qBBgwBFDAAArM7U5Gbz5s2aPn26Pv/8c61bt07nzp3T9ddfr8LCwmofFx0drby8PPft0KFDAYoYAABYnakdij/66KNy/1++fLliY2O1a9cuDRo0qMrHORwOxcfH+zs8AAAQhCzV58blckmSmjdvXu1+p06dUtu2bZWYmKibb75Ze/furXLf4uJiFRQUlLsBAAD7skxyU1paqlmzZik1NVXdu3evcr8uXbrolVde0bvvvqvXX39dpaWlGjhwoL7//vtK98/MzJTT6XTfEhMT/fUWAACABTgMwzBq3s3/pk2bpg8//FBbtmxR69ata/24c+fO6fLLL9fo0aP1+OOPV7i/uLhYxcXF7v8XFBQoMTFRLpdL0dHRPokdAAD4V0FBgZxOZ62u35aYxG/GjBl6//339emnn3qU2EhS/fr11bt3b+3fv7/S+yMjIxUZGemLMAEAQBAwtVnKMAzNmDFDa9as0YYNG9SuXTuPn6OkpERff/21EhIS/BAhAAAINqZWbqZPn64VK1bo3XffVZMmTZSfny9Jcjqdioq6MB322LFj1apVK2VmZkqSFixYoAEDBqhjx446ceKEnnnmGR06dEiTJ0827X0AAADrMDW5Wbx4sSQpLS2t3PZly5Zp/PjxkqScnByFhf2vwPSf//xHU6ZMUX5+vpo1a6Y+ffpo69at6tatW6DCBgAAFmaZDsWB4kmHJAAAYA2eXL8tMxQcAADAF0huAACArZDcAAAAWyG5AQAAtkJyAwAAbIXkBgAA2ArJDQAAsBWSGwAAYCskNwAAwFZIboD/ynMVaWv2ceW5iswOBQBQB6auLQVYxcodOZq7+muVGlKYQ8oc2UOj+rUxOywAgBeo3CDk5bmK3ImNJJUa0kOr91DBAYAgRXKDkHfgeKE7sSlTYhg6ePy0OQEBAOqE5AYhr13LRgpzlN8W7nAoqWVDcwICANQJyQ1CXoIzSpkjeyjccSHDCXc49OTI7kpwRpkcGQDAG3QoBiSN6tdGgzrH6ODx00pq2ZDEBgCCGMkN8F8JziiSGgCwAZqlAAAIUszPVTkqNwAABCHm56oalRsAsAl+xYcO5ueqHpUbALABfsWHlurm56LvIJUbAAh6/IoPPczPVT2SmwCjbAwEj2D5vDLLduhhfq7q0SwVQJSNgeARTJ/Xsl/xFyc4/Iq3P+bnqhqVmwChbAwEj2D7vPIrPnQlOKOU0qEFf+tLULkJEDp/AbWX5yrSgeOFateykSmfj2D8vPIrHvgfkpsAoWwM1I4VmoOC9fPKLNvABTRLBQhlY6BmVmkO4vMKBDcqNwFE2RionpWag/i8AsGL5CbAKBsDVbNacxCfVyA40SwFwDJoDgLgC1RuAFgKzUEA6orkBoDl0BwEoC5olgIAALZCcgMAAGyF5AYAANSZlRaapc8NAACoEyvMLH4xKjcAAMBrVplZ/GIkN/A5K5UmgWDH5wlWV93M4mahWQo+ZbXSJIKH2SuBWxGfJwQDq80sLplcucnMzFS/fv3UpEkTxcbGKiMjQ/v27avxcatWrVLXrl3VoEED9ejRQ2vXrg1AtKiJFUuTCA4rd+QodeEGjVm6XakLN2jljhyzQzIdnycECyvOLG5qcrN582ZNnz5dn3/+udatW6dz587p+uuvV2FhYZWP2bp1q0aPHq1Jkybpiy++UEZGhjIyMrRnz54ARo7KWLE0CevjIl45Pk8IJqP6tdGWOUP05pQB2jJniOkVRlObpT766KNy/1++fLliY2O1a9cuDRo0qNLHPPfccxo+fLjuv/9+SdLjjz+udevW6YUXXtCSJUv8HjOqZsXSJKzPSiuBWwmfJ/uzW1OslWYWt1SHYpfLJUlq3rx5lfts27ZNw4YNK7ctPT1d27Zt82tsduHPzolWLE3C+sou4hfjIs7nye5oivUvy3QoLi0t1axZs5Samqru3btXuV9+fr7i4uLKbYuLi1N+fn6l+xcXF6u4uNj9/4KCAt8EHIQC0TmRRQ/hqbKL+EOr96jEMLiIX4TPkz1V1RQ7qHOMV39ju1WAfMEyyc306dO1Z88ebdmyxafPm5mZqfnz5/v0OYORrz9M1bFSaRLBgYt41fg82Y8vm2IZUVc5SzRLzZgxQ++//742btyo1q1bV7tvfHy8jhw5Um7bkSNHFB8fX+n+c+fOlcvlct9yc3N9FncwoXMirC7BGaWUDi24kMP2fNUUS2f8qpma3BiGoRkzZmjNmjXasGGD2rVrV+NjUlJStH79+nLb1q1bp5SUlEr3j4yMVHR0dLlbKKJfAwBYg6/6U/GjtWqmNktNnz5dK1as0LvvvqsmTZq4+804nU5FRV34I48dO1atWrVSZmamJGnmzJkaPHiwnn32Wd1www166623tHPnTv3xj3807X1cyortn/RrAIC689X3uy+aYhlRVzWHYRhGzbv56cUdjkq3L1u2TOPHj5ckpaWlKSkpScuXL3ffv2rVKj388MM6ePCgOnXqpKefflo/+clPavWaBQUFcjqdcrlcfqniWL39M89VRL8GAPCCFb/fV+7IqfCj1eyY/MWT67epyY0Z/Jnc5LmKlLpwQ4UsesucISQSABDErPz9Hio/Wj25fte6WcqTIdSh2q+FycgAwJ6s/P3OiLqKap3cNG3atMpmpDKGYcjhcKikpKTOgQUj2j8BwJ74fg8utU5uNm7c6M84bIFOuwBgT3y/Bxf63PhBqLR/AkCo4fvdPH7pc3OpEydO6E9/+pO++eYbSdIVV1yhiRMnyul0evuUtmHH9k8rDm8HgECz4/e7HXlVudm5c6fS09MVFRWl/v37S5J27NihoqIiffLJJ7ryyit9HqivBKJyYzdWHP4IAAgtfh8Kfs0116hjx45aunSp6tW7UPw5f/68Jk+erH/961/69NNPvYs8AEhuPGPl4Y8AgNDh92apnTt3lktsJKlevXp64IEH1LdvX2+eEhZl5eGPAABUxqu1paKjo5WTk1Nhe25urpo0aVLnoGCePFeRtmYfdy+8xppUAIBg41VyM2rUKE2aNEkrV65Ubm6ucnNz9dZbb2ny5MkaPXq0r2NEgKzckaPUhRs0Zul2pS7coJU7cny2wBsAAIHiVbPUb37zGzkcDo0dO1bnz5+XJNWvX1/Tpk3TwoULfRogAiPPVeTuNCxdmKjqodV7NKhzjE8WeIPnGKEGAN7xKrmJiIjQc889p8zMTGVnZ0uSOnTooIYNaaoIVjX1rWH4Y2AxQg0AvOf1PDeS1LBhQ/Xo0cNXscBETC1uHdVV0UgwAaBmXiU3Z86c0fPPP6+NGzfq6NGjKi0tLXf/7t27fRIcAoepxa2DEWrwFE2YQHleJTeTJk3SJ598ottuu039+/evcUFNBAf61lhDIKtoXBSDH02YNeM8Dz1eTeLndDq1du1apaam+iMmv2ISPwSDlTtyKlTRfH3B4qIY/Jhks2ac5/bh90n8WrVqxXw2gB/5u4pGvx57oAmzepznocureW6effZZPfjggzp06JCv4wHwXwnOKKV0aOGXL+HqLooIHoGeZPPSST6tzu7nebD9PQLJq8pN3759debMGbVv314NGzZU/fr1y93/73//2yfBAfAPRsfZQyAHAgRj846dz/Ng/HsEklfJzejRo/XDDz/oySefVFxcHB2KgSDD6Dj78HUTZmWdb4O1eccu5/mlf5Ng/XsEklfJzdatW7Vt2zYlJyf7Oh4AAcLoOPvw1SSbVVUDgrlvT7Cf55X9TRKbNwzav0egeNXnpmvXrioqoo0PCHb+7NeD4FJVNSDPVRT0C+hWdp4HQ3+Vqv4mjSLCg/rvEQheJTcLFy7UL3/5S23atEk//vijCgoKyt0AAMGlpuqMnRbQrWyRYCuq6m9y+myprf4e/uBVs9Tw4cMlSUOHDi233TAMORwOlZSU1D0yAEDA1NT5Ntibd8oEU3+V6v4mKR1a2OLv4S9eJTcbN270dRwAABPVpvOtHRbQDab+QzX9Tezw9/AXr5KbwYMH12q/u+66SwsWLFDLli29eRkAQADZpTpTnWAbHh4KfxN/8KrPTW29/vrr9MEBgCBi907mwdh/yO5/E3/wqnJTW14sWwUAgF9RDbE/vyY3AABYkZn9VVil3P9IbgAACBCWTQgMv/a5AQAAF1Q3USJ8i+QGMEEwzI4KwLfsvkq5lXic3Jw/f14LFizQ999/X+O+P//5zxUdHe1VYIBdBcvsqAB8K9iXsQgmHic39erV0zPPPKPz58/XuO/ixYuZ4wa4CGVpIHQF4zD0YOVVh+Jrr71WmzdvVlJSko/DAeytprI0IygAe2MYemB4ldyMGDFCc+bM0ddff60+ffqoUaNG5e6/6aabfBIcYDdVzY761fcn9H8vf84ICiAEsGyC/zkML2baCwurujXL6gtnFhQUyOl0yuVy0R8Ipli5I6fcWjEPjOiipz78tkLCs2XOEL4AAeC/PLl+e1W5KS0t9SowABXL0sG0kB8ABAOvhoK/+uqrKi4urrD97NmzevXVV+scFGB3F68VwwgKAPAtr5KbCRMmyOVyVdh+8uRJTZgwoc5BAaGEERQA4FteNUsZhiGHw1Fh+/fffy+n01nnoIBQwwgKAPAdj5Kb3r17y+FwyOFwaOjQoapX738PLykp0YEDBzR8+PBaP9+nn36qZ555Rrt27VJeXp7WrFmjjIyMKvfftGmThgwZUmF7Xl6e4uPjPXkrgOXUZgQFC+4BQM08Sm7KEo+srCylp6ercePG7vsiIiKUlJSkW2+9tdbPV1hYqOTkZE2cOFEjR46s9eP27dtXrqd0bGxsrR8LBCsW3AOA2vEouXnsscckSUlJSRo1apQaNGhQpxcfMWKERowY4fHjYmNj1bRp0zq9NhBMqprZeFDnGCo4AHAJr/rcjBs3TtKF0VFHjx6tMDS8TRv//prs1auXiouL1b17d82bN0+pqalV7ltcXFxuZFdBQYFfYwP8oarh4rsP/UfNGtFMBQAX8yq5+e677zRx4kRt3bq13Payjsb+msQvISFBS5YsUd++fVVcXKyXX35ZaWlp2r59u6688spKH5OZman58+f7JR6grmrbh6aymY0dDmnGii9kiGYqALiYVzMUp6amql69epozZ44SEhIqjJxKTk72PBCHo8YOxZUZPHiw2rRpo9dee63S+yur3CQmJjJDMXyiLh18Pe1Dc/HMxmEOyTCkiz+8zGoMwM78PkNxVlaWdu3apa5du3oVoC/1799fW7ZsqfL+yMhIRUZGBjAimMGMUUR16eDrTR+aQZ1jtOj2ZIU5HCo1DN39Zla5+y+e1ZhRVQBCmVfJTbdu3XT8+HFfx+KVrKwsJSQkmB0GTGTGKKK6dvD1dMmFS9/jg8O7VroAZ1LLhoyqAhDyvJqh+KmnntIDDzygTZs26ccff1RBQUG5W22dOnVKWVlZysrKkiQdOHBAWVlZysnJkSTNnTtXY8eOde+/aNEivfvuu9q/f7/27NmjWbNmacOGDZo+fbo3bwM2UFWSkecq8uvrVpec1IYnSy5U9h6f/mifHhzRtcKsxpJMOR4AYCVeVW6GDRsmSbr22mvL9bfxtEPxzp07y03KN3v2bEkXRmMtX75ceXl57kRHujA665e//KV++OEHNWzYUD179tTf//73Sif2Q2jw9aKTdeng68l6UGVLLly8OnhVSy5U9R57tmqqLXOGlJvVeGv2cRbhBBDyvEpuNm7c6JMXT0tLU3X9mZcvX17u/w888IAeeOABn7w27KGuScbFPGnO8SQ5qUptl1yo7j1eOquxL48HAAQrr5qlBg8erLCwMC1dulRz5sxRx44dNXjwYOXk5Cg8PNzXMQJV8tWik940b43q10Zb5gzRm1MGaMucIV71a7l4dfDq9qnte2QRTgDwsnLz17/+VXfccYf+7//+T1988YV7qLXL5dKTTz6ptWvX+jRIoDq+WHTS2+at2qwH5QuevEcW4QQQ6ryq3DzxxBNasmSJli5dqvr167u3p6amavfu3T4LDqit2lRAquNJB1+zePIe63o8ACCYeZXc7Nu3T4MGDaqw3el06sSJE3WNCQg4mnMAc+S5irQ1+zgj+uBTXjVLxcfHa//+/UpKSiq3fcuWLWrfvr0v4gICjuYcILCYkwn+4lXlZsqUKZo5c6a2b98uh8Ohw4cP64033tB9992nadOm+TpG+Am/mCqiOQcIDLPmqEJo8KpyM2fOHJWWlmro0KE6ffq0Bg0apMjISN133326++67fR0j/IBfTADMXKbD13NUWQnLn5jPq4Uzy5w9e1b79+/XqVOn1K1bNzVu3NiXsfmFJwtv2VWeq0ipCzdUmAuFRRfhK3y5W5/ZP3Ds+j1k9nG1M0+u3141S5WJiIhQt27d1L9//6BIbHBBXZcOAKqzckeOUhdu0Jil25W6cINW7sip+UEIKCs0CdmxE78Vjisu8KpZCsGNWWzhL1/m/kdzVn8t45Iv99ouKIrAsEqTkN068VvluKKOlRsEJzv+YoL5Vu7IUcaLW3VpQzdVQeux0rxOdurEb6XjGuqo3IQou/1igrnKyvGVdeDjy916fLE2GiriuFoHyU0IC9TSAbC/ysrx0oUOlXy5WxM/cPyD42oNJDcA6qyyflxhktbcNVDJic1MiwvV4weOf3BczUefGwB1Vlk/rsxbe5DYADAFlRsAPkE5HpVhziOYgeQGgM9QjsfFmNAOZqFZCkDAsa6Z/TGhHee5majcAAgofs2HhlCf0I7z3FxUbgAEDL/mQ0coT2jHeW4+khsAAcO6ZqEjlGdC5zw3H81SAAKGdc1CS6iOoOM8Nx+VGwABE8q/5kOVndaOqi3Oc/M5DOPSZe7sraCgQE6nUy6XS9HR0WaHA4SkPFdRyP2aR+jhPPctT67fNEsBCDi7zIfDBHWojl3O82BEcgMAXmCoL2Bd9LkBAA8x1BewNpIbAPAQQ30vYAZeWBXNUgDgIYb60iwHa6NyAwAeCvWhvjTLweqo3ACAF0J1gjqJdaNgfSQ3AOClUB3qS7McrI5mKQCwIX929g31ZjlYH5UbAF5hAjvrCkRnX6s1y3E+4mIkNwA8ZoeRMna9GFbV2XdQ5xifv0+rNMvZ4XyEb9EsBcAjdhgps3JHjlIXbtCYpduVunCDVu7IMTsknwm1OXjscD7ajRXmP6JyA8AjwT5SJpCVDTOEWmffYD8f7cYqVTQqNwA8UnbxvFgwXTztVNmo7BdyqHX2Dfbz0U6sVEWjcgPAI2UXz4dW71GJYQTdxdMulY3qfiFbrbOvPwX7+WgnVqqikdwA8FgwXzztcDGsTdOaVTr7BkIwn492YqUfDqY2S3366ae68cYbddlll8nhcOidd96p8TGbNm3SlVdeqcjISHXs2FHLly/3e5wAKkpwRimlQ4ugvJCM6tdGW+YM0ZtTBmjLnCFBN7LGTk1rvhLM56NdWKlJ1NTKTWFhoZKTkzVx4kSNHDmyxv0PHDigG264QVOnTtUbb7yh9evXa/LkyUpISFB6enoAIgZgF8Fc2bDSL2TgYlapojkMwzBq3s3/HA6H1qxZo4yMjCr3efDBB/XBBx9oz5497m233367Tpw4oY8++qhWr1NQUCCn0ymXy6Xo6Oi6hg0AAXHpvDwrd+RUaFoLtgoU4AlPrt9B1edm27ZtGjZsWLlt6enpmjVrVpWPKS4uVnFxsfv/BQUF/goPAPyiqs7DVviFDFhRUA0Fz8/PV1xcXLltcXFxKigoUFFR5UPNMjMz5XQ63bfExMRAhGobVpiMCQhl1Q2vpZ8JULmgSm68MXfuXLlcLvctNzfX7JCChp1ncQWCBZ2HAc8FVXITHx+vI0eOlNt25MgRRUdHKyqq8l8ukZGRio6OLndDzaw0GRPshWqgZ5ikznycs8EnqPrcpKSkaO3ateW2rVu3TikpKSZFZF9WmowJ9mGVqdmDiR3m5bGq2iyeyjkbnExNbk6dOqX9+/e7/3/gwAFlZWWpefPmatOmjebOnasffvhBr776qiRp6tSpeuGFF/TAAw9o4sSJ2rBhg/7yl7/ogw8+MOst2BZDTeFrdl/TyZ/oPOx7tUlaOGeDl6nNUjt37lTv3r3Vu3dvSdLs2bPVu3dvPfroo5KkvLw85eT8r59Hu3bt9MEHH2jdunVKTk7Ws88+q5dffpk5bvzASpMxwR7oO1I3dB72ndo2u3POBi9TKzdpaWmqbpqdymYfTktL0xdffOHHqFCGX4vwJaqBsIraNrtzzgavoOpQjMDj1yJ8hWogrKK2nbQ5Z4OXZWYoDhRmKAbMlecqohpYhdp0cIVveDLDM+esNXhy/Sa5AQALYFRO4JG0BBdPrt80SwGAycycVyqU53Ch2d2+gmqeGwCwI7PmlaJaBLuicgMAJjNjFmJmIYedkdwAgMnMGJXDHC7WE8pNhL5GsxQAWECg55ViDhdroYnQt6jcAIBFBLKDK3O4WAdNhL5H5QYAQhSzkFsDCxX7HskNAISwBGcUF1CT0UToezRLAQBgIpoIfY/KDQAAJqOJ0LdIbhAyWLcHgJXRROg7JDcICQyzBIDQQZ8b2B7DLIHQxKR4oYvKDWyPYZZA6KFaG9qo3MD2zFi3B4B5qNaC5Aa2xzBLWBXNJv7BulmgWQohgWGWsBqaTfyHSfFA5QYhI5Dr9gDVodnEv6jWgsoNAAQYndz9j2ptaCO5ga0wUR+CAc0mgcGkeKGLZinYxsodOUpduEFjlm5X6sINWrkjx+yQvEZHU3uj2QTwL4dhGEbNu9lHQUGBnE6nXC6XoqOjzQ4HPpLnKlLqwg0VfglvmTMk6C4YdDQNHXmuIppNgFry5PpN5Qa2YJehn3Q0DS10cgf8g+QGtmCXifrskqQBgJlIbmALdunDYJckDUB59KMLLEZLwTbsMPSzLEl7aPUelRhG0CZpgcYoOVgZ/egCjw7FqBEXjsCjo2ntceGAldlpsIPZPLl+U7lBtbhwmIP5OWqnqg7YgzrHcPxgCUzYaA763KBKoTxyh/bx4EAHbFgd/ejMQXKDKoXqhcNOkwHaHRcOWJ1dBjsEG5qlUKVQnCKeZo7gQgdsBAM7DHYItr6XJDeoUiheOGgfr8jqX2p2uHDAXIE4x4O5H10w9r0kuUG1Qu3CEYrVquoEy5daMF84YK5gOcfNEqzVbPrcoEahNEU87eP/E8odyhEaOMdrFqx9L6ncAJcItWpVVWiig91xjtcsWKvZVG58iOHD9hFK1aqqzltGIsHuOMdrFqzVbCo3PkK7LcxQ146Q1Z23odihHKGFc7x2grGabYnlF1588UU988wzys/PV3Jysp5//nn179+/0n2XL1+uCRMmlNsWGRmpM2fO1Oq1/LH8AtNrwwx1Tahre96yFATsjnM8OHhy/Ta9WWrlypWaPXu2HnvsMe3evVvJyclKT0/X0aNHq3xMdHS08vLy3LdDhw4FMOKKgrXDFYKXLzpC1va8NbuJjuZe+JvZ5zh8z/Tk5re//a2mTJmiCRMmqFu3blqyZIkaNmyoV155pcrHOBwOxcfHu29xcXEBjLgi2m2tzY4XR18k1MFw3jJbNABvmJrcnD17Vrt27dKwYcPc28LCwjRs2DBt27atysedOnVKbdu2VWJiom6++Wbt3bs3EOFWKVg7XIUCu14cfZGYWP28ZZguAG+Z2qH4+PHjKikpqVB5iYuL07ffflvpY7p06aJXXnlFPXv2lMvl0m9+8xsNHDhQe/fuVevWrSvsX1xcrOLiYvf/CwoKfPsm/isYO1zZXbBOPlUbvuoIaeXzlmG6ALwVdKOlUlJSlJKS4v7/wIEDdfnll+ull17S448/XmH/zMxMzZ8/PyCxMUuqtdj94uirxMSq522wzq8B37L68h+wJlObpVq2bKnw8HAdOXKk3PYjR44oPj6+Vs9Rv3599e7dW/v376/0/rlz58rlcrlvubm5dY4bwSEY+pTUlZ07Qlq92Qz+Z9dmZfifqclNRESE+vTpo/Xr17u3lZaWav369eWqM9UpKSnR119/rYSEhErvj4yMVHR0dLkbQgMXx+A3ql8bbZkzRG9OGaAtc4Ywd1QIoc8V6sL0ZqnZs2dr3Lhx6tu3r/r3769FixapsLDQPZfN2LFj1apVK2VmZkqSFixYoAEDBqhjx446ceKEnnnmGR06dEiTJ082823AoqzcpyQQ7FDSt2qzGfzL7s3K8C/Tk5tRo0bp2LFjevTRR5Wfn69evXrpo48+cncyzsnJUVjY/wpM//nPfzRlyhTl5+erWbNm6tOnj7Zu3apu3bqZ9RZgcaF6cWTWbAQz+lyhLiwxQ3Eg+WOGYsBqmDUbdrByR06FEYEk6KHLk+u36ZUb+J8dmibgGUr6sINQb1aG90hubI6midBESR92EarNyqgb05dfgP8w2iB0MVIMQCijcmNjNE2ENkr6AEIVyY2N0TQBSvoAQhHNUjZG0wQAIBRRubE5miYAAKGG5CYE0DQBAAglNEshKOW5irQ1+zgjvwAAFVC5QdBh7h4AQHWo3KBOAl1BYe4eAEBNqNzAa2ZUUJi7BwBQEyo3FmblfiVmVVDK5u65GHP3AAAuRnJjUSt35Ch14QaNWbpdqQs3aOWOHLNDKqe6Coo/MXcPAKAmNEtZUFVVkUGdYyxzETdz9mPm7gEAVIfKjQWZVRXxhNkVlARnlFI6tCCxAQBUQOXGgoJlTSgqKAAAK6JyY0H+ror4sqMyFRQAgNVQubEof1VFmAAPAGB3VG4szNdVESbAAwCEApKbEBIMHZUBAKgrkpsQwgR4AIBQQHITQswevg0AQCDQoTjEMHwbAGB3JDchKMEZRVIDALAtmqUAAICtkNwAAABbIbkBAAC2QnIDAABsheQGgGX5ch00AKGD0VIALIl10AB4i8oNJPELGdbCOmi1x2e3djhOoYXKDfiFbGF5riIdOF6odi0bhdTcRNWtgxZKx6EmfHZrh+MUeqjchDh+IVvXyh05Sl24QWOWblfqwg1auSPH7JD8orJf1KyDVjM+u7XDcQpNJDchjpXCrcnTL+RgLblXlcCxDlrN+OzWDscpNNEsFeLKfiFf/OHnF7L5PGmWCWTJ3ZfNZFUlcIM6xyjBGcU6aDXgs1s7HKfQROUmxPEL2Zpq2ywTyJK7r5vJavOLOsEZpZQOLTgfK8Fnt3Y4TqGJyg34hWxBZV/ID63eoxLDqPILOVAdb2uqsniDX9R1x2e3djhOoYfkBpJYKdyKavOFHKgEwR9JVG0TOFSPz27tcJxCC8kNEECe9lmp6Qs5UAmCv5IoflED8AeSGyBA/NXxNxAJgj+TKH5RA/A1S3QofvHFF5WUlKQGDRroqquu0j/+8Y9q91+1apW6du2qBg0aqEePHlq7dm2AIgW84++Ov4HoeDuqXxttmTNEb04ZoC1zhjAJGgDLMj25WblypWbPnq3HHntMu3fvVnJystLT03X06NFK99+6datGjx6tSZMm6YsvvlBGRoYyMjK0Z8+eAEcO1J5d5tpg9BKAYOAwDMOoeTf/ueqqq9SvXz+98MILkqTS0lIlJibq7rvv1pw5cyrsP2rUKBUWFur99993bxswYIB69eqlJUuW1Ph6BQUFcjqdcrlcio6O9t0bAaqR5ypS6sINFfqsbJkzhEQBAGrBk+u3qZWbs2fPateuXRo2bJh7W1hYmIYNG6Zt27ZV+pht27aV21+S0tPTq9y/uLhYBQUF5W5AoDHXBgAEjqkdio8fP66SkhLFxcWV2x4XF6dvv/220sfk5+dXun9+fn6l+2dmZmr+/Pm+CRioA0YGAUBgmN7nxt/mzp0rl8vlvuXm5podEkIYfVYAwP9Mrdy0bNlS4eHhOnLkSLntR44cUXx8fKWPiY+P92j/yMhIRUZG+iZgAABgeaZWbiIiItSnTx+tX7/eva20tFTr169XSkpKpY9JSUkpt78krVu3rsr9AQBAaDF9Er/Zs2dr3Lhx6tu3r/r3769FixapsLBQEyZMkCSNHTtWrVq1UmZmpiRp5syZGjx4sJ599lndcMMNeuutt7Rz50798Y9/NPNtAAAAizA9uRk1apSOHTumRx99VPn5+erVq5c++ugjd6fhnJwchYX9r8A0cOBArVixQg8//LAeeughderUSe+88466d+9u1lsAAAAWYvo8N4HGPDcAAASfoJnnBgAAwNdIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANiK6fPcBFrZyHdWBwcAIHiUXbdrM4NNyCU3J0+elCQlJiaaHAkAAPDUyZMn5XQ6q90n5CbxKy0t1eHDh9WkSRM5HA6zwwmogoICJSYmKjc3lwkM64hj6RscR9/hWPoGx9F3fH0sDcPQyZMnddlll5VbuaAyIVe5CQsLU+vWrc0Ow1TR0dF8aH2EY+kbHEff4Vj6BsfRd3x5LGuq2JShQzEAALAVkhsAAGArJDchJDIyUo899pgiIyPNDiXocSx9g+PoOxxL3+A4+o6ZxzLkOhQDAAB7o3IDAABsheQGAADYCskNAACwFZIbAABgKyQ3NvTpp5/qxhtv1GWXXSaHw6F33nmn3P2GYejRRx9VQkKCoqKiNGzYMH333XfmBGthNR3H8ePHy+FwlLsNHz7cnGAtLDMzU/369VOTJk0UGxurjIwM7du3r9w+Z86c0fTp09WiRQs1btxYt956q44cOWJSxNZVm2OZlpZW4bycOnWqSRFb1+LFi9WzZ0/3BHMpKSn68MMP3fdzTtZOTcfRrPOR5MaGCgsLlZycrBdffLHS+59++mn9/ve/15IlS7R9+3Y1atRI6enpOnPmTIAjtbaajqMkDR8+XHl5ee7bm2++GcAIg8PmzZs1ffp0ff7551q3bp3OnTun66+/XoWFhe597r33Xv3tb3/TqlWrtHnzZh0+fFgjR440MWprqs2xlKQpU6aUOy+ffvppkyK2rtatW2vhwoXatWuXdu7cqWuvvVY333yz9u7dK4lzsrZqOo6SSeejAVuTZKxZs8b9/9LSUiM+Pt545pln3NtOnDhhREZGGm+++aYJEQaHS4+jYRjGuHHjjJtvvtmUeILZ0aNHDUnG5s2bDcO4cP7Vr1/fWLVqlXufb775xpBkbNu2zawwg8Klx9IwDGPw4MHGzJkzzQsqiDVr1sx4+eWXOSfrqOw4GoZ55yOVmxBz4MAB5efna9iwYe5tTqdTV111lbZt22ZiZMFp06ZNio2NVZcuXTRt2jT9+OOPZodkeS6XS5LUvHlzSdKuXbt07ty5cudk165d1aZNG87JGlx6LMu88cYbatmypbp37665c+fq9OnTZoQXNEpKSvTWW2+psLBQKSkpnJNeuvQ4ljHjfAy5hTNDXX5+viQpLi6u3Pa4uDj3faid4cOHa+TIkWrXrp2ys7P10EMPacSIEdq2bZvCw8PNDs+SSktLNWvWLKWmpqp79+6SLpyTERERatq0abl9OSerV9mxlKQxY8aobdu2uuyyy/TVV1/pwQcf1L59+7R69WoTo7Wmr7/+WikpKTpz5owaN26sNWvWqFu3bsrKyuKc9EBVx1Ey73wkuQG8dPvtt7v/3aNHD/Xs2VMdOnTQpk2bNHToUBMjs67p06drz5492rJli9mhBL2qjuWdd97p/nePHj2UkJCgoUOHKjs7Wx06dAh0mJbWpUsXZWVlyeVy6e2339a4ceO0efNms8MKOlUdx27dupl2PtIsFWLi4+MlqUKv/yNHjrjvg3fat2+vli1bav/+/WaHYkkzZszQ+++/r40bN6p169bu7fHx8Tp79qxOnDhRbn/OyapVdSwrc9VVV0kS52UlIiIi1LFjR/Xp00eZmZlKTk7Wc889xznpoaqOY2UCdT6S3ISYdu3aKT4+XuvXr3dvKygo0Pbt28u1kcJz33//vX788UclJCSYHYqlGIahGTNmaM2aNdqwYYPatWtX7v4+ffqofv365c7Jffv2KScnh3PyEjUdy8pkZWVJEudlLZSWlqq4uJhzso7KjmNlAnU+0ixlQ6dOnSqXFR84cEBZWVlq3ry52rRpo1mzZumJJ55Qp06d1K5dOz3yyCO67LLLlJGRYV7QFlTdcWzevLnmz5+vW2+9VfHx8crOztYDDzygjh07Kj093cSorWf69OlasWKF3n33XTVp0sTdZ8HpdCoqKkpOp1OTJk3S7Nmz1bx5c0VHR+vuu+9WSkqKBgwYYHL01lLTsczOztaKFSv0k5/8RC1atNBXX32le++9V4MGDVLPnj1Njt5a5s6dqxEjRqhNmzY6efKkVqxYoU2bNunjjz/mnPRAdcfR1PMx4OOz4HcbN240JFW4jRs3zjCMC8PBH3nkESMuLs6IjIw0hg4dauzbt8/coC2ouuN4+vRp4/rrrzdiYmKM+vXrG23btjWmTJli5Ofnmx225VR2DCUZy5Ytc+9TVFRk3HXXXUazZs2Mhg0bGrfccouRl5dnXtAWVdOxzMnJMQYNGmQ0b97ciIyMNDp27Gjcf//9hsvlMjdwC5o4caLRtm1bIyIiwoiJiTGGDh1qfPLJJ+77OSdrp7rjaOb56DAMw/Bv+gQAABA49LkBAAC2QnIDAABsheQGAADYCskNAACwFZIbAABgKyQ3AADAVkhuAACArZDcAAAAWyG5AQAAtkJyA8BSzp49a3YIFVgxJgBVI7kB4FdpaWmaMWOGZsyYIafTqZYtW+qRRx5R2covSUlJevzxxzV27FhFR0frzjvvlCRt2bJF11xzjaKiopSYmKh77rlHhYWF7uf9wx/+oE6dOqlBgwaKi4vTbbfd5r7v7bffVo8ePRQVFaUWLVpo2LBh7sempaVp1qxZ5WLMyMjQ+PHj3f/3NiYA1kByA8Dv/vznP6tevXr6xz/+oeeee06//e1v9fLLL7vv/81vfqPk5GR98cUXeuSRR5Sdna3hw4fr1ltv1VdffaWVK1dqy5YtmjFjhiRp586duueee7RgwQLt27dPH330kQYNGiRJysvL0+jRozVx4kR988032rRpk0aOHClPl9HzNCYA1sHCmQD8Ki0tTUePHtXevXvlcDgkSXPmzNF7772nf/7zn0pKSlLv3r21Zs0a92MmT56s8PBwvfTSS+5tW7Zs0eDBg1VYWKi1a9dqwoQJ+v7779WkSZNyr7d792716dNHBw8eVNu2bSuNp1evXlq0aJF7W0ZGhpo2barly5dLklcxNWjQoE7HCYDvULkB4HcDBgxwJzaSlJKSou+++04lJSWSpL59+5bb/8svv9Ty5cvVuHFj9y09PV2lpaU6cOCArrvuOrVt21bt27fXHXfcoTfeeEOnT5+WJCUnJ2vo0KHq0aOHfvrTn2rp0qX6z3/+43HMnsYEwDpIbgCYrlGjRuX+f+rUKf3iF79QVlaW+/bll1/qu+++U4cOHdSkSRPt3r1bb775phISEvToo48qOTlZJ06cUHh4uNatW6cPP/xQ3bp10/PPP68uXbq4E5CwsLAKTVTnzp2rc0wArIPkBoDfbd++vdz/P//8c3Xq1Enh4eGV7n/llVfqn//8pzp27FjhFhERIUmqV6+ehg0bpqefflpfffWVDh48qA0bNkiSHA6HUlNTNX/+fH3xxReKiIhwNzHFxMQoLy/P/VolJSXas2dPje+hNjEBsAaSGwB+l5OTo9mzZ2vfvn1688039fzzz2vmzJlV7v/ggw9q69atmjFjhrKysvTdd9/p3XffdXfeff/99/X73/9eWVlZOnTokF599VWVlpaqS5cu2r59u5588knt3LlTOTk5Wr16tY4dO6bLL79cknTttdfqgw8+0AcffKBvv/1W06ZN04kTJ2p8DzXFBMA66pkdAAD7Gzt2rIqKitS/f3+Fh4dr5syZ7uHVlenZs6c2b96sX/3qV7rmmmtkGIY6dOigUaNGSZKaNm2q1atXa968eTpz5ow6deqkN998U1dccYW++eYbffrpp1q0aJEKCgrUtm1bPfvssxoxYoQkaeLEifryyy81duxY1atXT/fee6+GDBlS43uoKSYA1sFoKQB+VdnoJADwJ5qlAACArZDcAAAAW6FZCgAA2AqVGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGAr/x+FoOgGs8heLQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVMUlEQVR4nO3deVhU5eIH8O+wDILIILKJgeAuiqaSirgmVzRbTLu5kLmlt3K3TKxcS0HrlsstLe8t7abFrateW9S84nJVLiKKW0ZKKJYskjIjgmzz/v7wx7mOgAzDDHNmzvfzPPM8cs47M+85Dsz3vNtRCSEEiIiIiBTMwdoVICIiIrI2BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiKyGUuXLoVKpTKqrEqlwtKlSy1an4EDB2LgwIGyfT0iMh4DERHV2ebNm6FSqaSHk5MTWrRogYkTJ+K3336zdvVkJzg42OB8+fr6ol+/ftixY4dZXr+oqAhLly7FwYMHzfJ6RErEQEREJlu+fDn+/ve/Y+PGjRg2bBg+//xzDBgwAHfu3LHI+7355psoLi62yGtb2sMPP4y///3v+Pvf/45XX30V165dw8iRI7Fx48Z6v3ZRURGWLVvGQERUD07WrgAR2a5hw4YhPDwcAPDCCy/A29sbq1atwq5du/Dss8+a/f2cnJzg5GSbf7ZatGiB5557Tvr5+eefR5s2bfD+++/jxRdftGLNiAhgCxERmVG/fv0AABkZGQbbf/rpJzzzzDPw8vJCo0aNEB4ejl27dhmUKSsrw7Jly9C2bVs0atQIzZo1Q9++fbFv3z6pTHVjiEpKSjB37lz4+PigSZMmePLJJ/Hrr79WqdvEiRMRHBxcZXt1r/npp5/i0Ucfha+vL1xcXBAaGooNGzbU6VzUxt/fHx07dkRmZuYDy+Xl5WHKlCnw8/NDo0aN0LVrV2zZskXaf/nyZfj4+AAAli1bJnXLWXr8FJG9sc1LLSKSpcuXLwMAmjZtKm07f/48IiMj0aJFC8TGxqJx48b4xz/+gREjRuCf//wnnn76aQB3g0lcXBxeeOEF9OzZEzqdDidOnMDJkyfxhz/8ocb3fOGFF/D5559j3Lhx6NOnDxITEzF8+PB6HceGDRvQqVMnPPnkk3BycsI333yDl19+GXq9HtOnT6/Xa1cqKyvD1atX0axZsxrLFBcXY+DAgbh06RJmzJiBkJAQfPXVV5g4cSIKCgowe/Zs+Pj4YMOGDXjppZfw9NNPY+TIkQCALl26mKWeRIohiIjq6NNPPxUAxL///W9x/fp1cfXqVfH1118LHx8f4eLiIq5evSqVHTx4sAgLCxN37tyRtun1etGnTx/Rtm1baVvXrl3F8OHDH/i+S5YsEff+2UpLSxMAxMsvv2xQbty4cQKAWLJkibRtwoQJomXLlrW+phBCFBUVVSkXHR0tWrVqZbBtwIABYsCAAQ+ssxBCtGzZUgwZMkRcv35dXL9+XZw+fVqMGTNGABAzZ86s8fXWrFkjAIjPP/9c2lZaWioiIiKEu7u70Ol0Qgghrl+/XuV4iahu2GVGRCaLioqCj48PAgMD8cwzz6Bx48bYtWsXHnroIQDAjRs3kJiYiGeffRa3bt1Cfn4+8vPz8fvvvyM6OhoXL16UZqV5enri/PnzuHjxotHv//333wMAZs2aZbB9zpw59TouV1dX6d9arRb5+fkYMGAAfvnlF2i1WpNe84cffoCPjw98fHzQtWtXfPXVVxg/fjxWrVpV43O+//57+Pv7Y+zYsdI2Z2dnzJo1C4WFhTh06JBJdSGiqthlRkQm++CDD9CuXTtotVp88sknOHz4MFxcXKT9ly5dghACixYtwqJFi6p9jby8PLRo0QLLly/HU089hXbt2qFz584YOnQoxo8f/8CunytXrsDBwQGtW7c22N6+fft6HdfRo0exZMkSJCUloaioyGCfVquFRqOp82v26tULb7/9NlQqFdzc3NCxY0d4eno+8DlXrlxB27Zt4eBgeO3asWNHaT8RmQcDERGZrGfPntIssxEjRqBv374YN24c0tPT4e7uDr1eDwB49dVXER0dXe1rtGnTBgDQv39/ZGRk4F//+hd++OEH/PWvf8X777+PjRs34oUXXqh3XWta0LGiosLg54yMDAwePBgdOnTAe++9h8DAQKjVanz//fd4//33pWOqK29vb0RFRZn0XCKyPAYiIjILR0dHxMXFYdCgQfjLX/6C2NhYtGrVCsDdbh5jwoCXlxcmTZqESZMmobCwEP3798fSpUtrDEQtW7aEXq9HRkaGQatQenp6lbJNmzZFQUFBle33t7J88803KCkpwa5duxAUFCRtP3DgQK31N7eWLVvizJkz0Ov1Bq1EP/30k7QfqDnsEZHxOIaIiMxm4MCB6NmzJ9asWYM7d+7A19cXAwcOxEcffYTs7Owq5a9fvy79+/fffzfY5+7ujjZt2qCkpKTG9xs2bBgAYN26dQbb16xZU6Vs69atodVqcebMGWlbdnZ2ldWiHR0dAQBCCGmbVqvFp59+WmM9LOWxxx5DTk4OEhISpG3l5eVYv3493N3dMWDAAACAm5sbAFQb+IjIOGwhIiKzmj9/Pv74xz9i8+bNePHFF/HBBx+gb9++CAsLw9SpU9GqVSvk5uYiKSkJv/76K06fPg0ACA0NxcCBA9GjRw94eXnhxIkT+PrrrzFjxowa3+vhhx/G2LFj8eGHH0Kr1aJPnz7Yv38/Ll26VKXsmDFjsGDBAjz99NOYNWsWioqKsGHDBrRr1w4nT56Uyg0ZMgRqtRpPPPEE/vSnP6GwsBCbNm2Cr69vtaHOkqZNm4aPPvoIEydORGpqKoKDg/H111/j6NGjWLNmDZo0aQLg7iDw0NBQJCQkoF27dvDy8kLnzp3RuXPnBq0vkU2z9jQ3IrI9ldPuU1JSquyrqKgQrVu3Fq1btxbl5eVCCCEyMjLE888/L/z9/YWzs7No0aKFePzxx8XXX38tPe/tt98WPXv2FJ6ensLV1VV06NBBrFixQpSWlkplqpsiX1xcLGbNmiWaNWsmGjduLJ544glx9erVaqeh//DDD6Jz585CrVaL9u3bi88//7za19y1a5fo0qWLaNSokQgODharVq0Sn3zyiQAgMjMzpXJ1mXZf25ICNb1ebm6umDRpkvD29hZqtVqEhYWJTz/9tMpzjx07Jnr06CHUajWn4BOZQCXEPe3CRERERArEMURERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4XJjRSHq9HteuXUOTJk24TD4REZGNEELg1q1bCAgIqHKj5HsxEBnp2rVrCAwMtHY1iIiIyARXr17FQw89VON+BiIjVS6Rf/XqVXh4eFi5NkRERGQMnU6HwMBA6Xu8JgxERqrsJvPw8GAgIiIisjG1DXfhoGoiIiJSPAYiIiIiUjwGIiIiIlI8jiEiIiLFq6ioQFlZmbWrQSZwdnaGo6NjvV/HqoHo8OHDeOedd5Camors7Gzs2LEDI0aMqLbsiy++iI8++gjvv/8+5syZI22/ceMGZs6ciW+++QYODg4YNWoU1q5dC3d3d6nMmTNnMH36dKSkpMDHxwczZ87Ea6+9ZuGjIyIiuRNCICcnBwUFBdauCtWDp6cn/P3967VOoFUD0e3bt9G1a1dMnjwZI0eOrLHcjh078N///hcBAQFV9sXExCA7Oxv79u1DWVkZJk2ahGnTpmHbtm0A7k63GzJkCKKiorBx40acPXsWkydPhqenJ6ZNm2axYyMiIvmrDEO+vr5wc3Pjwrs2RgiBoqIi5OXlAQCaN29u8mtZNRANGzYMw4YNe2CZ3377DTNnzsTevXsxfPhwg30XLlzAnj17kJKSgvDwcADA+vXr8dhjj+Hdd99FQEAAtm7ditLSUnzyySdQq9Xo1KkT0tLS8N577zEQEREpWEVFhRSGmjVrZu3qkIlcXV0BAHl5efD19TW5+0zWg6r1ej3Gjx+P+fPno1OnTlX2JyUlwdPTUwpDABAVFQUHBwckJydLZfr37w+1Wi2ViY6ORnp6Om7evFnje5eUlECn0xk8iIjIflSOGXJzc7NyTai+Kv8P6zMOTNaBaNWqVXBycsKsWbOq3Z+TkwNfX1+DbU5OTvDy8kJOTo5Uxs/Pz6BM5c+VZaoTFxcHjUYjPXjbDiIi+8RuMttnjv9D2Qai1NRUrF27Fps3b7bKh3XhwoXQarXS4+rVqw1eByIiImoYsg1E//nPf5CXl4egoCA4OTnByckJV65cwSuvvILg4GAAgL+/vzSQqlJ5eTlu3LgBf39/qUxubq5BmcqfK8tUx8XFRbpNB2/XQURESqBSqbBz505rV8PAwYMHoVKpLD4TULaBaPz48Thz5gzS0tKkR0BAAObPn4+9e/cCACIiIlBQUIDU1FTpeYmJidDr9ejVq5dU5vDhwwb9ivv27UP79u3RtGnThj2oOsjWFuNYRj6ytcXWrgoREdmZpUuX4uGHH7Z2NWTFqrPMCgsLcenSJennzMxMpKWlwcvLC0FBQVVG/Ts7O8Pf3x/t27cHAHTs2BFDhw7F1KlTsXHjRpSVlWHGjBkYM2aMNEV/3LhxWLZsGaZMmYIFCxbg3LlzWLt2Ld5///2GO9A6SkjJwsLtZ6EXgIMKiBsZhtGPBFm7WkRERHbLqi1EJ06cQLdu3dCtWzcAwLx589CtWzcsXrzY6NfYunUrOnTogMGDB+Oxxx5D37598fHHH0v7NRoNfvjhB2RmZqJHjx545ZVXsHjxYtlOuc/WFkthCAD0Anh9+zm2FBERkUSv1yMuLg4hISFwdXVF165d8fXXXwP4XxfT/v37ER4eDjc3N/Tp0wfp6ekAgM2bN2PZsmU4ffo0VCoVVCoVNm/eLL12fn4+nn76abi5uaFt27bYtWuXUXWqfN+9e/eiW7ducHV1xaOPPoq8vDzs3r0bHTt2hIeHB8aNG4eioiLpeSUlJZg1axZ8fX3RqFEj9O3bFykpKeY7WUayagvRwIEDIYQwuvzly5erbPPy8pIWYaxJly5d8J///Keu1bOKzPzbUhiqVCEELucXobnG1TqVIiKiWmVri5GZfxsh3o0t/vc6Li4On3/+OTZu3Ii2bdvi8OHDeO655+Dj4yOVeeONN/DnP/8ZPj4+ePHFFzF58mQcPXoUo0ePxrlz57Bnzx78+9//BnC38aDSsmXLsHr1arzzzjtYv349YmJicOXKFXh5eRlVt6VLl+Ivf/kL3Nzc8Oyzz+LZZ5+Fi4sLtm3bhsLCQjz99NNYv349FixYAAB47bXX8M9//hNbtmxBy5YtsXr1akRHR+PSpUtGv6c5yHYMkVKFeDeGw32T6hxVKgR7c50MIiK5SkjJQmR8IsZtSkZkfCISUrIs9l4lJSVYuXIlPvnkE0RHR6NVq1aYOHEinnvuOXz00UdSuRUrVmDAgAEIDQ1FbGwsjh07hjt37sDV1RXu7u5wcnKCv78//P39pcUNAWDixIkYO3Ys2rRpg5UrV6KwsBDHjx83un5vv/02IiMj0a1bN0yZMgWHDh3Chg0b0K1bN/Tr1w/PPPMMDhw4AODuHSs2bNiAd955B8OGDUNoaCg2bdoEV1dX/O1vfzPfSTMCA5HMNNe4Im5kGBz/f6kBR5UKK0d2ZusQEZFMNfRQh0uXLqGoqAh/+MMf4O7uLj0+++wzZGRkSOW6dOki/bvylhb3z8yuzr3Pa9y4MTw8PIx6XnXP9/Pzg5ubG1q1amWwrfL1MjIyUFZWhsjISGm/s7MzevbsiQsXLhj9nubAu93L0OhHgtC/nQ8u5xch2NuNYYiISMYaeqhDYWEhAOC7775DixYtDPa5uLhIocjZ2VnaXrmen16vr/X1731e5XONeV51z1epVPV+vYbCQCRTzTWuDEJERDagcqjDvaHIkkMdQkND4eLigqysLAwYMKDK/ntbiWqiVqtRUVFhierVSevWraFWq3H06FG0bNkSwN3bb6SkpGDOnDkNWhcGIiIionqoHOrw+vZzqBDC4kMdmjRpgldffRVz586FXq9H3759odVqcfToUXh4eEjB4kGCg4OlpW4eeughNGnSBC4uLhap74M0btwYL730EubPny8tubN69WoUFRVhypQpDVoXBiIiIqJ6auihDm+99RZ8fHwQFxeHX375BZ6enujevTtef/11o7qjRo0ahe3bt2PQoEEoKCjAp59+iokTJ1q0zjWJj4+XbuZ+69YthIeHY+/evQ2+eLJK1GXeu4LpdDpoNBpotVrexoOIyA7cuXMHmZmZCAkJQaNGjaxdHaqHB/1fGvv9zVlmREREpHgMRERERFSrF1980WCa/72PF1980drVqzeOISIiIqJaLV++HK+++mq1++xhKAkDEREREdXK19cXvr6+1q6GxbDLjIiIiBSPgYiIiBRNjqsmU92Y4/+QXWZERKRIarUaDg4OuHbtGnx8fKBWq6VbXJBtEEKgtLQU169fh4ODA9RqtcmvxUBERESK5ODggJCQEGRnZ+PatWvWrg7Vg5ubG4KCguDgYHrHFwMREREpllqtRlBQEMrLy2Vxby+qO0dHRzg5OdW7dY+BiIiIFK3yjuz335WdlIWDqomIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPGsGogOHz6MJ554AgEBAVCpVNi5c6e0r6ysDAsWLEBYWBgaN26MgIAAPP/887h27ZrBa9y4cQMxMTHw8PCAp6cnpkyZgsLCQoMyZ86cQb9+/dCoUSMEBgZi9erVDXF49ZKtLcaxjHxka4utXRUiIiK7Z9VAdPv2bXTt2hUffPBBlX1FRUU4efIkFi1ahJMnT2L79u1IT0/Hk08+aVAuJiYG58+fx759+/Dtt9/i8OHDmDZtmrRfp9NhyJAhaNmyJVJTU/HOO+9g6dKl+Pjjjy1+fKZKSMlCZHwixm1KRmR8IhJSsqxdJSIiIrumEkIIa1cCAFQqFXbs2IERI0bUWCYlJQU9e/bElStXEBQUhAsXLiA0NBQpKSkIDw8HAOzZswePPfYYfv31VwQEBGDDhg144403kJOTA7VaDQCIjY3Fzp078dNPPxldP51OB41GA61WCw8Pj3od64Nka4sRGZ8I/T3/K44qFY7EDkJzjavF3peIiMgeGfv9bVNjiLRaLVQqFTw9PQEASUlJ8PT0lMIQAERFRcHBwQHJyclSmf79+0thCACio6ORnp6Omzdv1vheJSUl0Ol0Bo+GkJl/2yAMAUCFELicX9Qg709ERKRENhOI7ty5gwULFmDs2LFSwsvJyYGvr69BOScnJ3h5eSEnJ0cq4+fnZ1Cm8ufKMtWJi4uDRqORHoGBgeY8nBqFeDeGg8pwm6NKhWBvtwZ5fyIiIiWyiUBUVlaGZ599FkIIbNiwoUHec+HChdBqtdLj6tWrDfK+zTWuiBsZBkfV3VTkqFJh5cjO7C4jIiKyICdrV6A2lWHoypUrSExMNOj/8/f3R15enkH58vJy3LhxA/7+/lKZ3NxcgzKVP1eWqY6LiwtcXFzMdRh1MvqRIPRv54PL+UUI9nZjGCIiIrIwWbcQVYahixcv4t///jeaNWtmsD8iIgIFBQVITU2VtiUmJkKv16NXr15SmcOHD6OsrEwqs2/fPrRv3x5NmzZtmAMxQXONKyJaN2MYIiIiagBWDUSFhYVIS0tDWloaACAzMxNpaWnIyspCWVkZnnnmGZw4cQJbt25FRUUFcnJykJOTg9LSUgBAx44dMXToUEydOhXHjx/H0aNHMWPGDIwZMwYBAQEAgHHjxkGtVmPKlCk4f/48EhISsHbtWsybN89ah01EREQyY9Vp9wcPHsSgQYOqbJ8wYQKWLl2KkJCQap934MABDBw4EMDdhRlnzJiBb775Bg4ODhg1ahTWrVsHd3d3qfyZM2cwffp0pKSkwNvbGzNnzsSCBQvqVNeGmnZPRERE5mPs97ds1iGSOwYiIiIi22OX6xARERERWQIDERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DkZVla4txLCMf2dpia1eFiIhIsZysXQElS0jJwsLtZ6EXgIMKiBsZhtGPBFm7WkRERIrDFiIrydYWS2EIAPQCeH37ObYUERERWQEDkZVk5t+WwlClCiFwOb/IOhUiIiJSMAYiKwnxbgwHleE2R5UKwd5u1qkQERGRgjEQWUlzjSviRobBUXU3FTmqVFg5sjOaa1ytXDMiIiLl4aBqKxr9SBD6t/PB5fwiBHu7MQwRERFZCQORlTXXuEpBKFtbjMz82wjxbsxwRERE1IAYiGSCU/CJiIish2OIZIBT8ImIiKyLgUgG6jIFnytbExERmR+7zGSgcgr+vaGouin47FYjIiKyDLYQyYAxU/DZrUZERGQ5bCGSidqm4D+oW40z0oiIiOqHgUhG7p2Cfz9ju9WIiIio7thlZiO4sjUREZHlsIXIhnBlayIiIstgILIxD+pWIyIiItOwy4yIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiMzKFm9Ezmn3REREZDa2eiNyq7YQHT58GE888QQCAgKgUqmwc+dOg/1CCCxevBjNmzeHq6sroqKicPHiRYMyN27cQExMDDw8PODp6YkpU6agsLDQoMyZM2fQr18/NGrUCIGBgVi9erWlD42IiEhxbPlG5FYNRLdv30bXrl3xwQcfVLt/9erVWLduHTZu3Ijk5GQ0btwY0dHRuHPnjlQmJiYG58+fx759+/Dtt9/i8OHDmDZtmrRfp9NhyJAhaNmyJVJTU/HOO+9g6dKl+Pjjjy1+fERkn2yxO4CoITzoRuRyZ9Uus2HDhmHYsGHV7hNCYM2aNXjzzTfx1FNPAQA+++wz+Pn5YefOnRgzZgwuXLiAPXv2ICUlBeHh4QCA9evX47HHHsO7776LgIAAbN26FaWlpfjkk0+gVqvRqVMnpKWl4b333jMITkRExmjo7oBsbTEy828jxLsxV6kn2bPlG5HLdlB1ZmYmcnJyEBUVJW3TaDTo1asXkpKSAABJSUnw9PSUwhAAREVFwcHBAcnJyVKZ/v37Q61WS2Wio6ORnp6OmzdvNtDREJE9aOjugISULETGJ2LcpmRExiciISXLIu9DZC62fCNy2Q6qzsnJAQD4+fkZbPfz85P25eTkwNfX12C/k5MTvLy8DMqEhIRUeY3KfU2bNq32/UtKSlBSUiL9rNPp6nE0RGQPHtQdYO4/+DWFr/7tfGziy4WUy1ZvRC7bFiJri4uLg0ajkR6BgYHWrhIRWVlld8C9LNUdYMtjMYiaa1wR0bqZzYQhQMaByN/fHwCQm5trsD03N1fa5+/vj7y8PIP95eXluHHjhkGZ6l7j3veozsKFC6HVaqXH1atX63dARGTzGrI7oCHDFxHJOBCFhITA398f+/fvl7bpdDokJycjIiICABAREYGCggKkpqZKZRITE6HX69GrVy+pzOHDh1FWViaV2bdvH9q3b19jdxkAuLi4wMPDw+BBRDT6kSAciR2EL6b2xpHYQRYbUG3LYzGIbJFKCCFqL2YZhYWFuHTpEgCgW7dueO+99zBo0CB4eXkhKCgIq1atQnx8PLZs2YKQkBAsWrQIZ86cwY8//ohGjRoBuDtTLTc3Fxs3bkRZWRkmTZqE8PBwbNu2DQCg1WrRvn17DBkyBAsWLMC5c+cwefJkvP/++3WaZabT6aDRaKDVahmOiKjBZGuLbW4sBpGcGP39LazowIEDAkCVx4QJE4QQQuj1erFo0SLh5+cnXFxcxODBg0V6errBa/z+++9i7Nixwt3dXXh4eIhJkyaJW7duGZQ5ffq06Nu3r3BxcREtWrQQ8fHxda6rVqsVAIRWqzX5eImIiKhhGfv9bdUWIlvCFiIiIiLbY+z3t2zHEBERERE1FAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIyq2xtMY5l5CNbW2ztqhAZzcnaFSAiIvuRkJKFhdvPQi8ABxUQNzIMox8Jsna1iGrFFiKSLV5lEtmWbG2xFIYAQC+A17ef4+8w2QS2EJEs8SqTyPZk5t+WwlClCiFwOb8IzTWu1qkUkZHYQkSyw6tMItsU4t0YDirDbY4qFYK93axTIaI6YCAi2XnQVSYRyVdzjSviRobBUXU3FTmqVFg5sjNbh8gmsMuMZKfyKvPeUMSrTCLbMPqRIPRv54PL+UUI9nZjGCKbwRYikh1eZRLZtuYaV0S0bsbfWbIpbCEiWeJVJhERNSQGIpKt5hpXBiEiImoQ7DIjIiIixWMgIiJSMC6ASnQXu8yIiBSKC6AS/Q9biIiIFIgLoBIZYiAiIlIgLoBKZIiBiIiogclh3A5vs0FkiGOIiIgakFzG7VQugPr69nOoEMIuF0DN1hYjM/82Gqsdcbu0AiHeje3q+Mi8VEIIUXsx0ul00Gg00Gq18PDwsHZ1iMgGZWuLERmfWOW2NEdiB1ntizpbW2yXC6DeGzwrceC4Mhn7/c0uMyKiBiLHcTv2eJuN+weMV+LAcXoQBiIiogZir+N25DAm6l7VBc9K1g6gJF9GByKdTmf0w1wqKiqwaNEihISEwNXVFa1bt8Zbb72Fe3v5hBBYvHgxmjdvDldXV0RFReHixYsGr3Pjxg3ExMTAw8MDnp6emDJlCgoLC81WTyIiY9jjjYsTUrIQGZ+IcZuSERmfiISULGtXqdrgWckeAihZhtGDqj09PaFS1fAJ+39CCKhUKlRUVNS7YgCwatUqbNiwAVu2bEGnTp1w4sQJTJo0CRqNBrNmzQIArF69GuvWrcOWLVsQEhKCRYsWITo6Gj/++CMaNWoEAIiJiUF2djb27duHsrIyTJo0CdOmTcO2bdvMUk8iImM11I2LKwcUW3IgcU1rGfVv52PVMVGZ+bexYFgHrN6djop7LqDtIYCS5RgdiA4cOGDJelTr2LFjeOqppzB8+HAAQHBwML744gscP34cwN0AtmbNGrz55pt46qmnAACfffYZ/Pz8sHPnTowZMwYXLlzAnj17kJKSgvDwcADA+vXr8dhjj+Hdd99FQEBAgx8XESmbpW9cXNNMNnOHpAeNibJG6Lj/uBcM7YAuD3nCTe2AolK93Q0cJ/MyOhANGDDAkvWoVp8+ffDxxx/j559/Rrt27XD69GkcOXIE7733HgAgMzMTOTk5iIqKkp6j0WjQq1cvJCUlYcyYMUhKSoKnp6cUhgAgKioKDg4OSE5OxtNPP13te5eUlKCkpET62ZxdgUREllJTq01BcRlW7f7JrNP9K7um7p81Z40uqeqOe/WedKvO4CPbYvI6RAUFBfjb3/6GCxcuAAA6deqEyZMnQ6PRmK1ysbGx0Ol06NChAxwdHVFRUYEVK1YgJiYGAJCTkwMA8PPzM3ien5+ftC8nJwe+vr4G+52cnODl5SWVqU5cXByWLVtmtmMhImoINbXaxO/+CcLMXVtyWstIbq1VZHtMCkQnTpxAdHQ0XF1d0bNnTwDAe++9hxUrVuCHH35A9+7dzVK5f/zjH9i6dSu2bduGTp06IS0tDXPmzEFAQAAmTJhglveoycKFCzFv3jzpZ51Oh8DAQIu+JxFRfVXXauMAWCwsNNSYqNrIqbWKbJNJ0+7nzp2LJ598EpcvX8b27duxfft2ZGZm4vHHH8ecOXPMVrn58+cjNjYWY8aMQVhYGMaPH4+5c+ciLi4OAODv7w8AyM3NNXhebm6utM/f3x95eXkG+8vLy3Hjxg2pTHVcXFzg4eFh8CAikrvqZrItGNbBotP95bCWkT3O4KOGZXIL0aZNm+Dk9L+nOzk54bXXXjMYq1NfRUVFcHAwzGyOjo7Q6/UAgJCQEPj7+2P//v14+OGHAdxtyUlOTsZLL70EAIiIiEBBQQFSU1PRo0cPAEBiYiL0ej169epltroSEclFda02nm7OsujasiS5tFaRbTIpEHl4eCArKwsdOnQw2H716lU0adLELBUDgCeeeAIrVqxAUFAQOnXqhFOnTuG9997D5MmTAQAqlQpz5szB22+/jbZt20rT7gMCAjBixAgAQMeOHTF06FBMnToVGzduRFlZGWbMmIExY8ZwhhkR2a37Z7IpJSxYegYf2S+TAtHo0aMxZcoUvPvuu+jTpw8A4OjRo5g/fz7Gjh1rtsqtX78eixYtwssvv4y8vDwEBATgT3/6ExYvXiyVee2113D79m1MmzYNBQUF6Nu3L/bs2SOtQQQAW7duxYwZMzB48GA4ODhg1KhRWLdundnqSURkCxgWiGpm0s1dS0tLMX/+fGzcuBHl5eUAAGdnZ7z00kuIj4+Hi4uL2Stqbby5K5HlNcRigkSkLMZ+f9frbvdFRUXIyMgAALRu3RpubvY7mp+BiMiyalpMkIioPoz9/jZ5HSIAcHNzQ1hYWH1egohIVreAYCsVkTKZFIju3LmD9evX48CBA8jLy5NmfVU6efKkWSpHRMogl0X12EpFpFwmBaIpU6bghx9+wDPPPIOePXvWetNXIqIHkcOienJqpSKihmdSIPr222/x/fffIzIy0tz1ISIFksMtIOTSSkVE1mFSIGrRooVZ1xsiIrL2OjlyaKWydxyfRXJm0q07/vznP2PBggW4cuWKuetDRApmzVtA8NYPlpWQkoXI+ESM25SMyPhEJKRkWbtKRAZMaiEKDw/HnTt30KpVK7i5ucHZ2dlg/40bN8xSOSJT8UqUTGHtVip7xfFZZAtMCkRjx47Fb7/9hpUrV8LPz4+DqklWOFOI6oOrOZsfx2eRLTApEB07dgxJSUno2rWruetDVC+8EiWSH47PIltg0hiiDh06oLi42Nx1Iaq3B12JEpF1cHwW2QKTWoji4+PxyiuvYMWKFQgLC6syhoi3tiBr4ZUokTxxfBbJnUn3MnNwuNuwdP/YISEEVCoVKioqzFM7GeG9zGxHQkpWlfVsOIaISL44CYIsyaL3Mjtw4IDJFSOytJquRPlHl0h+OAmC5KJed7uvzcsvv4zly5fD29vbUm/RYNhCZNv4R5dIfrK1xYiMT6zSxX0kdhAvWshsjP3+NmlQtbE+//xz6HQ6S74FUa1qmnmWreXEAKJ7ZWuLcSwjv8F+NzgJguTEpC4zY1mw8YnIaFwDhah21mhF5SQIkhOLthARyUHlH9178Y8u0f9YqxWV0/FJTizaQkQkB3K4kzopi60N4LdmKyqn45NcMBCRIvCPLjWU+nY9WSNMWbvrirdLITlglxkphjXvpE7KUN+uJ2vdEZ5dV0QWbiF67rnnOEWdzMrcV8+21rVB8lafridr34ePraikdCYHooKCAhw/fhx5eXnQ6/UG+55//nkAwIYNG+pXO6J7mHsWDNcmInOrT9eTHGZDsuuKlMykQPTNN98gJiYGhYWF8PDwMLiFh0qlkgIRkbmY++rZ2lfjZJ/qM4Df2uN4iJTOpED0yiuvYPLkyVi5ciXc3PjLSpZn7qtnOVyNk30yteuptjDF7l0iyzIpEP3222+YNWsWwxA1GHNfPfNqnCzJ1K6nmsIUu3ctgyGT7mXSLLPo6GicOHHC3HUhqpG5Z8FwVg3J1f2zIe351jMNfauQe1lrRh/Jl9EtRLt27ZL+PXz4cMyfPx8//vgjwsLC4OzsbFD2ySefNF8Nif6fuWfBcFYN2QJ77d61ZqsXxxBSdYwORCNGjKiybfny5VW2qVQqVFRU1KtSRDUx9ywYzqohubPH7l1rBxJ7DZlUP0Z3men1eqMeDENEROZj7u5da3ZTVbL2Xe55f0OqjkljiD777DOUlJRU2V5aWorPPvus3pUiIqL/Gf1IEI7EDsIXU3vjSOygKl1LxoYcuYybqSmQuKkdGiSscQwhVUclhBC1FzPk6OiI7Oxs+Pr6Gmz//fff4evra5etRDqdDhqNBlqtlqtvE5FsGDsWJ1tbjMj4xCpdb0diB1klCCSkZBksMTCiWwB2nPqtQccUZWuLOYZQAYz9/jZp2r0QwmAxxkq//vorNBqNKS9JRER1VJexOHIbN3PvpAY3tQOe/vBYg48p4hhCuledAlG3bt2gUqmgUqkwePBgODn97+kVFRXIzMzE0KFDzV5JIiKqqi4hR46DsysDybGMfFmFNVKmOgWiyplmaWlpiI6Ohru7u7RPrVYjODgYo0aNMmsFiYiUyJhFA+sScupzWxFLk2NYI+UxaQzRli1bMHr0aDRq1MgSdZIljiEiooZSlzV67h+Ls3Jk5weOvZHruJm6HgeRsYz9/jYpEFUqLS2t9m73QUH29yFmICKihmDK4Gc5hZz63A5DTsdB9sOig6ovXryIyZMn49ixYwbbKwdb2+MsMyKyPiXce8qUwc9yGRxc39Wn5XIcpEwmrUM0ceJEODg44Ntvv0VqaipOnjyJkydP4tSpUzh58qRZK/jbb7/hueeeQ7NmzeDq6oqwsDCD+6gJIbB48WI0b94crq6uiIqKwsWLFw1e48aNG4iJiYGHhwc8PT0xZcoUFBYWmrWeRGRZcllDx9JsddFAe77nGimDSS1EaWlpSE1NRYcOHcxdHwM3b95EZGQkBg0ahN27d8PHxwcXL15E06ZNpTKrV6/GunXrsGXLFoSEhGDRokWIjo7Gjz/+KI1xiomJQXZ2Nvbt24eysjJMmjQJ06ZNw7Zt2yxafyIyD2vf6qEhyXnw84PIbVo/UV2ZFIhCQ0ORn59v7rpUsWrVKgQGBuLTTz+VtoWEhEj/FkJgzZo1ePPNN/HUU08BuLuKtp+fH3bu3IkxY8bgwoUL2LNnD1JSUhAeHg4AWL9+PR577DG8++67CAgIsPhxkG1RQreMrVHal60t3niYM8XI1pnUZbZq1Sq89tprOHjwIH7//XfodDqDh7ns2rUL4eHh+OMf/whfX19069YNmzZtkvZnZmYiJycHUVFR0jaNRoNevXohKSkJAJCUlARPT08pDAFAVFQUHBwckJycXON7l5SUWOy4yHzMfV8mpXTL2BprdiNZ695fzTWuiGjdzCbCEMDbYZDtM6mFqDKAPProowYrVpt7UPUvv/yCDRs2YN68eXj99deRkpKCWbNmQa1WY8KECcjJyQEA+Pn5GTzPz89P2peTk1PlFiNOTk7w8vKSylQnLi4Oy5YtM8tx0IOZ2iJT3wGc1dVDKd0ytsZa3Ujm/ozZO1ts2SKqZFIgOnDggLnrUS29Xo/w8HCsXLkSwN2Vss+dO4eNGzdiwoQJFn3vhQsXYt68edLPOp0OgYGBFn1PJTL1C8cS4UVp3TKWYqkux4b+smVANg1nipGtMqnLbMCAAXBwcMCmTZsQGxuLNm3aYMCAAcjKyoKjo6PZKte8eXOEhoYabOvYsSOysu52Y/j7+wMAcnNzDcrk5uZK+/z9/ZGXl2ewv7y8HDdu3JDKVMfFxQUeHh4GD7rLXF0I9ZmV8qDwYipbnd0jJ5bucmzIbqSaPmOpl29a/L2JqOGZFIj++c9/Ijo6Gq6urjh16hRKSkoAAFqtVmrNMYfIyEikp6cbbPv555/RsmVLAHcHWPv7+2P//v3Sfp1Oh+TkZERERAAAIiIiUFBQgNTUVKlMYmIi9Ho9evXqZba6KoU5v/DqE2osEV44BqJ+7G3adXWfMQCY9eUpji0jskMmBaK3334bGzduxKZNm+Ds7Cxtj4yMNOs6RHPnzsV///tfrFy5EpcuXcK2bdvw8ccfY/r06QAAlUqFOXPm4O2338auXbtw9uxZPP/88wgICJDuu9axY0cMHToUU6dOxfHjx3H06FHMmDEDY8aM4QyzOjL3F159Qo2lwsvoR4JwJHYQvpjaG0diB3G8SB1YotXOmio/Y/f/kbT1oEdE1TNpDFF6ejr69+9fZbtGo0FBQUF96yR55JFHsGPHDixcuBDLly9HSEgI1qxZg5iYGKnMa6+9htu3b2PatGkoKChA3759sWfPHoP7rG3duhUzZszA4MGD4eDggFGjRmHdunVmq6dSmHuMTX0HylpqTAnHQJjGHqddj34kCI1dnDBj2ymD7RxbRmR/TApE/v7+uHTpEoKDgw22HzlyBK1atTJHvSSPP/44Hn/88Rr3q1QqLF++HMuXL6+xjJeXFxdhNANLfOHVN9SYGl641pD52eqCgrXp0bKp3QU9IqrKpEA0depUzJ49G5988glUKhWuXbuGpKQkvPrqq1i0aJG560gyYakvvIZukeFUasuxx2nX9hr0iMiQSXe7F0Jg5cqViIuLQ1HR3fEBLi4uePXVV/HWW2+ZvZJywLvd/48t35HalDuJEwG2/bknUjJjv79NCkSVSktLcenSJRQWFiI0NBTu7u6mvpTsMRDZh2MZ+Ri3qeoK5V9M7Y2I1s2sUCMiIrIkY7+/Teoyq6RWq6usE0QkZ/Y48JeIiOrPpGn3RLaKaw0REVF16tVCRGSL7HHgLxER1Q8DESkS1xoiIqJ7scuMiIiIFI+BiGplrpu5EhERyRW7zOiBuIgh2RquQk5EpmAgohrVdDPX/u18+EVDssQAT0SmYpcZ1cje7l5O9q2mAM+uXiIyBgMR1ahyEcN7cRFDkisGeCKqDwYiqhEXMSRbwgBPRPXBMUT0QFzEkGwF70pPRPXBQES14iKGZCsY4InIVAxERGRXGOCJyBQcQ0REssaFQUmp+NlvWGwhIiLZ4rpCpFT87Dc8thARkSxZe10hXp2TtVj7s69UbCEiIll60LpClh4jxKtzsiZrfvaVjC1ERCRL1lpXiFfnZG1cU8s6GIiISJastTAoV7wma+OiuNbBLjMiki1rrCtUeXV+byji1Tk1NK6p1fDYQkREstZc44qI1s0a7AuBV+ckFw392Vc6thCRzcrWFiMz/zZCvBvzDwaZFa/OiZSHgYhsEmcByZs9hFWueE2kLAxEZHNqmgXUv50Pv8BkoLawag9hiYjsDwMR2Ryu0SFftYVVtuwRkVxxUDVVS86r9HKNDvl6UFjl+j5EJGcMRFRFQkoWIuMTMW5TMiLjE5GQkmXtKhngLCD5elBY5fo+RCRn7DIjA7YyPoezgOSpMqy+vv0cKoSoEla5vg8RyRUDERmwpfE5nAUkTzWF1drCEhGRNTEQkQGu0kvmUFNYZcseEckVxxCRAY7PIUvj6rtEJEdsIaIqeBVP9ojrH9k//h9TfTAQUbU4PofsCdc/sn/8P6b6YpcZEdk1rn9k//h/TObAQEREdo3rH9k/U/+P5bwALTU8mwpE8fHxUKlUmDNnjrTtzp07mD59Opo1awZ3d3eMGjUKubm5Bs/LysrC8OHD4ebmBl9fX8yfPx/l5eUNXHsisgaubG7/TPk/lvsCtNTwbCYQpaSk4KOPPkKXLl0Mts+dOxfffPMNvvrqKxw6dAjXrl3DyJEjpf0VFRUYPnw4SktLcezYMWzZsgWbN2/G4sWLG/oQiMgKOHPS/tX1/5hdbFQdlRBC1F7MugoLC9G9e3d8+OGHePvtt/Hwww9jzZo10Gq18PHxwbZt2/DMM88AAH766Sd07NgRSUlJ6N27N3bv3o3HH38c165dg5+fHwBg48aNWLBgAa5fvw61Wm1UHXQ6HTQaDbRaLTw8PCx2rERkGdnaYs6ctHPG/h8fy8jHuE3JVbZ/MbU3Ilo3s2QVyQqM/f62iRai6dOnY/jw4YiKijLYnpqairKyMoPtHTp0QFBQEJKSkgAASUlJCAsLk8IQAERHR0On0+H8+fM1vmdJSQl0Op3Bg4hsF9c/sn/G/h+zG5WqI/tA9OWXX+LkyZOIi4ursi8nJwdqtRqenp4G2/38/JCTkyOVuTcMVe6v3FeTuLg4aDQa6REYGFjPI6HacIAjETUEdqNSdWS9DtHVq1cxe/Zs7Nu3D40aNWrQ9164cCHmzZsn/azT6RiKLIhriNgvLpZHcsQFaOl+sg5EqampyMvLQ/fu3aVtFRUVOHz4MP7yl79g7969KC0tRUFBgUErUW5uLvz9/QEA/v7+OH78uMHrVs5CqyxTHRcXF7i4uJjxaKgmNQ1w7N/Oh3+kbByDLsnN/QGdf2Ookqy7zAYPHoyzZ88iLS1NeoSHhyMmJkb6t7OzM/bv3y89Jz09HVlZWYiIiAAARERE4OzZs8jLy5PK7Nu3Dx4eHggNDW3wY6KquE6MfeJMHpIbTrWXLzkMmZB1C1GTJk3QuXNng22NGzdGs2bNpO1TpkzBvHnz4OXlBQ8PD8ycORMRERHo3bs3AGDIkCEIDQ3F+PHjsXr1auTk5ODNN9/E9OnT2QIkE5UDHO8NRRzgaPseFHR5VU4NjS3R8iWXlmRZtxAZ4/3338fjjz+OUaNGoX///vD398f27dul/Y6Ojvj222/h6OiIiIgIPPfcc3j++eexfPlyK9a6YckheT8IBzjaJ87kITlhS7Q8yakl2SbWIZIDW12HSC7J2xhcJ8b+JKRk4fXt51AhhBR05fr5I/uWrS1GZHxilZboI7GDbPrvja1PWmiINaGM/f6WdZcZ1Y+tNRFzgKP94UwekovKluj7A7otfybrc8ErlyAlpyETDER2jGM4SA4YdEku7Cmg1+eCV049B3IKqgxEdkxOyZuISA7sJaCbesErx54DuQRVmx9UTTXjYGUiIvtk6qQFuQ4ul8OtddhCZOfkkrzJ/sllTAKREpja1cSeg5oxECmAvTQRk3zJaUwCkVKYcsErpzE7csNp90ay1Wn3RJbWENOZ2fpEVD/3/w4paZkTTrsnogZh6dmMbH0iqp+afofsPQjVFQdVE1G9WHJFajmtYktki/g7ZDwGIiKqF0vOZpTrjBiyP3K/xZGp+DtkPHaZEVG9WWo2I2fEUEOw525ZufwO2cI4QLYQEZFZWGIdEa6lRZZm711KcvgdSkjJQmR8IsZtSkZkfCISUrIa7L3rgi1ERCRrXEuLLEkJtziy5u+QHFfGrgkDERHJHtfSIkuRS5eSpVnrd8iWAie7zIiISLHk0KVkzyw5C9Xc2EJERESKxm5Zy7GllbEZiIiISPHYLWs5thI4GYiIiIjIomwhcHIMERHsd1E2IiIyDluISPHseVE2IiIyDluISNHsfVE2IiIyDgMRKRrv80NERAADESmcLa2RQURElsNARIrGRdmIiAjgoGoim1kjg4iILIeBiAi2sUYGEdmebG0xMvNvI8S7Mf/GyBwDERERkQVwSQ/bwjFEREREZsYlPWwPAxER1QlX9SaqHZf0sD3sMiMio7ELgMg4lUt63BuKuKSHvLGFiIiMwi4AUgpztIJySQ/bwxYiIjLKg7oA+Eee7IU5W0G5pIdtYQsRERmFq3qTvbNEK2hzjSsiWjdjGLIBDEREZBR2AZC940DohiHXiRnsMiMyEyUswMYuALJnHAhteXKemMEWIiIzSEjJQmR8IsZtSkZkfCISUrKsXSWLYRcA2Su2glqW3CdmsIWIqJ5q+iXv386Hf0iJbAxbQS1H7hMzGIiI6knuv+REVDe8t6FlyL1LUvZdZnFxcXjkkUfQpEkT+Pr6YsSIEUhPTzcoc+fOHUyfPh3NmjWDu7s7Ro0ahdzcXIMyWVlZGD58ONzc3ODr64v58+ejvLy8IQ/F7OQ6ME1pOPuKiKh2cu+SlH0L0aFDhzB9+nQ88sgjKC8vx+uvv44hQ4bgxx9/ROPGjQEAc+fOxXfffYevvvoKGo0GM2bMwMiRI3H06FEAQEVFBYYPHw5/f38cO3YM2dnZeP755+Hs7IyVK1da8/BMJueBaUpT+Uv++vZzqBBCdr/kRERyIecuSZUQQtReTD6uX78OX19fHDp0CP3794dWq4WPjw+2bduGZ555BgDw008/oWPHjkhKSkLv3r2xe/duPP7447h27Rr8/PwAABs3bsSCBQtw/fp1qNXqWt9Xp9NBo9FAq9XCw8PDosdYm2xtMSLjE6s0Ox6JHSSrD5fSZGuLZflLTkRkbrY0q9bY72/Zd5ndT6vVAgC8vLwAAKmpqSgrK0NUVJRUpkOHDggKCkJSUhIAICkpCWFhYVIYAoDo6GjodDqcP3++2vcpKSmBTqczeMgF18qQJ86+IiIlsNdZtTYViPR6PebMmYPIyEh07twZAJCTkwO1Wg1PT0+Dsn5+fsjJyZHK3BuGKvdX7qtOXFwcNBqN9AgMDDTz0ZiOY1bI1nC8G5F9kPvU+fqwqUA0ffp0nDt3Dl9++aXF32vhwoXQarXS4+rVqxZ/T2PJfWAa0b3s9WqSSInsuYdC9oOqK82YMQPffvstDh8+jIceekja7u/vj9LSUhQUFBi0EuXm5sLf318qc/z4cYPXq5yFVlnmfi4uLnBxcTHzUZiPnAemEVXiGk1E9kXuU+frQ/YtREIIzJgxAzt27EBiYiJCQkIM9vfo0QPOzs7Yv3+/tC09PR1ZWVmIiIgAAERERODs2bPIy8uTyuzbtw8eHh4IDQ1tmAOxAI5ZIbmz56tJIiWy5x4K2bcQTZ8+Hdu2bcO//vUvNGnSRBrzo9Fo4OrqCo1GgylTpmDevHnw8vKCh4cHZs6ciYiICPTu3RsAMGTIEISGhmL8+PFYvXo1cnJy8Oabb2L69OmybgUisnX2fDVJpFT22kMh+2n3KpWq2u2ffvopJk6cCODuwoyvvPIKvvjiC5SUlCA6OhoffvihQXfYlStX8NJLL+HgwYNo3LgxJkyYgPj4eDg5GZcJ5TTtnsiWJKRkVVmjiWtmEVVlS1PZbYmx39+yD0RywUBEZDqu0UT04MDDxXYtx9jvb9l3mRGR7eO9oUjpHhR4OPlAHmQ/qJqIiMiW1bZ2DycfyAMDERERkQXVFni42K48MBARERFZUG2Bx56nstsSjiEiIiKyoMrAc/9sy3sDj71OZbclDEREFmLPU2jt+diILMGYwMPJB9bFQERkAfY8hdaej43Ikhh45I1jiIjMzJ7vBv2gY+Md7YnIlrGFiMjMHjSjxNavDms6tk+PXMZfj/zCViMisllsISIyM3ueQlvdsTkAUhgC7KtFjMgUbC21TQxERGZmz1Noqzu2F/qFcFE5ov+XkJKFyPhEjNuUjMj4RCSkZFm7SmQkdpkRWYA9T6G9/9gA4K9HMnlHe7J7tc2u5C04bBsDEZGF2POMkvuPrbY1VohsnTGzK+15/KASMBARmYmS1+ax5xYxImNbfirH2LG11DYxEBGZAdfmse8WMVI2Y1t+jFmR2tLMdWGmxAs8BiKierKncQNK/CNIVJu6tPxYs7XUXBdmSr3A4ywzonqq7U7WtoKzY4iqV9eZo801roho3azBW4bMsSCsPS8sWxu2EBHVkz2MG7CnVi4iS5D7ODlzDehW8sBwthAR1ZM9rDtkL61cRJZkjZYfY5lrQVh7Xli2NmwhIjIDuV891qa6Vi4AOPNrASJaN7NOpYjIaOYa0C2HgeHWohJCiNqLkU6ng0ajgVarhYeHh7WrQ2R2Hx3OQNz3Pxlsc1SpcCR2kCL+GBLZg2xtsVkuzMz1OnJg7Pc3W4iICAAQ1kJTZZtSxg4Q2QtzLX+hxGU0OIaIiAAoe+wAEREDEREBsI/B4UREpmKXGZECGLvgoq0PDiciMhUDEZGdq+uqs0ocO0BExC4zIjum5FVniYjqgoGIZCtbW4xjGfn88q4HLrhIRGQcdpmRLCn15oLmZg+3FSFSAt5Y2foYiEh2eF8t49X2R1TJq84S2Yr7LwAXDO2AsIc0DEcNjIGIZEfJNxesC2Nb0ThzjEi+qrsAjNt9d8V4to43LI4hItmx1wUCzTkmqq6DpeV8U0oiJavuArASJ0E0LAYikh17XCAwISULkfGJGLcpGZHxiUhIyarX63GwNJF9qO4C8F78vW447DIjWbKnbh5LjIniYGki+3D/OL/78fe64TAQkWzZywKBlhgTZYnB0pzlQmQd914AnvmtAKt3p3MShBUwEJFJ+OVpPEu15pizFY3LHBBZV+UFYETrZniya4BdtI7bGgYiqjMlf3maEgQtOfXdHK1oXOaASF7spXXc1jAQUZ0o+cuzPkFQzmOiuMwBEZHCZpl98MEHCA4ORqNGjdCrVy8cP37c2lWyOUqd3WSOe4LJdeq7vS5zQERUF4oJRAkJCZg3bx6WLFmCkydPomvXroiOjkZeXp61q2ZTlPrlac9B0B6XOSAiqiuVENXM87NDvXr1wiOPPIK//OUvAAC9Xo/AwEDMnDkTsbGxtT5fp9NBo9FAq9XCw8PD0tWVtYSUrCrjYex9DFG2thiR8YlVBkYfiR1kN8EhW1ssyy49IqL6MPb7WxFjiEpLS5GamoqFCxdK2xwcHBAVFYWkpCQr1sw2yXk8jKUo4Z5gHMhJREqmiECUn5+PiooK+Pn5GWz38/PDTz/9VO1zSkpKUFJSIv2s0+ksWkdbo8QvTyUGQSIipVDMGKK6iouLg0ajkR6BgYHWrhLJgFwHRhMRUf0oIhB5e3vD0dERubm5Bttzc3Ph7+9f7XMWLlwIrVYrPa5evdoQVSUiIiIrUEQgUqvV6NGjB/bv3y9t0+v12L9/PyIiIqp9jouLCzw8PAweREREZJ8UMYYIAObNm4cJEyYgPDwcPXv2xJo1a3D79m1MmjTJ2lUjIiIiK1NMIBo9ejSuX7+OxYsXIycnBw8//DD27NlTZaA1ERERKY9i1iGqL65DREREZHuM/f5WxBgiIiIiogdhICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixVPMOkT1Vbk6AW/ySkREZDsqv7drW2WIgchIt27dAgDe5JWIiMgG3bp1CxqNpsb9XJjRSHq9HteuXUOTJk2gUqmMeo5Op0NgYCCuXr2q6MUceR54DirxPNzF83AXzwPPQSVLngchBG7duoWAgAA4ONQ8UogtREZycHDAQw89ZNJzeXPYu3geeA4q8TzcxfNwF88Dz0ElS52HB7UMVeKgaiIiIlI8BiIiIiJSPAYiC3JxccGSJUvg4uJi7apYFc8Dz0Elnoe7eB7u4nngOagkh/PAQdVERESkeGwhIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjIKqjDRs2oEuXLtLiUREREdi9e7e0/86dO5g+fTqaNWsGd3d3jBo1Crm5uQavkZWVheHDh8PNzQ2+vr6YP38+ysvLG/pQzCY+Ph4qlQpz5syRtinhPCxduhQqlcrg0aFDB2m/Es5Bpd9++w3PPfccmjVrBldXV4SFheHEiRPSfiEEFi9ejObNm8PV1RVRUVG4ePGiwWvcuHEDMTEx8PDwgKenJ6ZMmYLCwsKGPhSTBQcHV/k8qFQqTJ8+HYAyPg8VFRVYtGgRQkJC4OrqitatW+Ott94yuIeUEj4LwN3bRMyZMwctW7aEq6sr+vTpg5SUFGm/PZ6Hw4cP44knnkBAQABUKhV27txpsN9cx3zmzBn069cPjRo1QmBgIFavXm2eAxBUJ7t27RLfffed+Pnnn0V6erp4/fXXhbOzszh37pwQQogXX3xRBAYGiv3794sTJ06I3r17iz59+kjPLy8vF507dxZRUVHi1KlT4vvvvxfe3t5i4cKF1jqkejl+/LgIDg4WXbp0EbNnz5a2K+E8LFmyRHTq1ElkZ2dLj+vXr0v7lXAOhBDixo0bomXLlmLixIkiOTlZ/PLLL2Lv3r3i0qVLUpn4+Hih0WjEzp07xenTp8WTTz4pQkJCRHFxsVRm6NChomvXruK///2v+M9//iPatGkjxo4da41DMkleXp7BZ2Hfvn0CgDhw4IAQQhmfhxUrVohmzZqJb7/9VmRmZoqvvvpKuLu7i7Vr10pllPBZEEKIZ599VoSGhopDhw6JixcviiVLlggPDw/x66+/CiHs8zx8//334o033hDbt28XAMSOHTsM9pvjmLVarfDz8xMxMTHi3Llz4osvvhCurq7io48+qnf9GYjMoGnTpuKvf/2rKCgoEM7OzuKrr76S9l24cEEAEElJSUKIux8YBwcHkZOTI5XZsGGD8PDwECUlJQ1e9/q4deuWaNu2rdi3b58YMGCAFIiUch6WLFkiunbtWu0+pZwDIYRYsGCB6Nu3b4379Xq98Pf3F++88460raCgQLi4uIgvvvhCCCHEjz/+KACIlJQUqczu3buFSqUSv/32m+Uqb0GzZ88WrVu3Fnq9XjGfh+HDh4vJkycbbBs5cqSIiYkRQijns1BUVCQcHR3Ft99+a7C9e/fu4o033lDEebg/EJnrmD/88EPRtGlTg9+JBQsWiPbt29e7zuwyq4eKigp8+eWXuH37NiIiIpCamoqysjJERUVJZTp06ICgoCAkJSUBAJKSkhAWFgY/Pz+pTHR0NHQ6Hc6fP9/gx1Af06dPx/Dhww2OF4CizsPFixcREBCAVq1aISYmBllZWQCUdQ527dqF8PBw/PGPf4Svry+6deuGTZs2SfszMzORk5NjcC40Gg169eplcC48PT0RHh4ulYmKioKDgwOSk5Mb7mDMpLS0FJ9//jkmT54MlUqlmM9Dnz59sH//fvz8888AgNOnT+PIkSMYNmwYAOV8FsrLy1FRUYFGjRoZbHd1dcWRI0cUcx7uZa5jTkpKQv/+/aFWq6Uy0dHRSE9Px82bN+tVR97c1QRnz55FREQE7ty5A3d3d+zYsQOhoaFIS0uDWq2Gp6enQXk/Pz/k5OQAAHJycgz+4FXur9xnK7788kucPHnSoE+8Uk5OjiLOQ69evbB582a0b98e2dnZWLZsGfr164dz584p5hwAwC+//IINGzZg3rx5eP3115GSkoJZs2ZBrVZjwoQJ0rFUd6z3ngtfX1+D/U5OTvDy8rKpc1Fp586dKCgowMSJEwEo53ciNjYWOp0OHTp0gKOjIyoqKrBixQrExMQAgGI+C02aNEFERATeeustdOzYEX5+fvjiiy+QlJSENm3aKOY83Mtcx5yTk4OQkJAqr1G5r2nTpibXkYHIBO3bt0daWhq0Wi2+/vprTJgwAYcOHbJ2tRrM1atXMXv2bOzbt6/KFZCSVF71AkCXLl3Qq1cvtGzZEv/4xz/g6upqxZo1LL1ej/DwcKxcuRIA0K1bN5w7dw4bN27EhAkTrFw76/jb3/6GYcOGISAgwNpVaVD/+Mc/sHXrVmzbtg2dOnVCWloa5syZg4CAAMV9Fv7+979j8uTJaNGiBRwdHdG9e3eMHTsWqamp1q4a1YBdZiZQq9Vo06YNevTogbi4OHTt2hVr166Fv78/SktLUVBQYFA+NzcX/v7+AAB/f/8qM0sqf64sI3epqanIy8tD9+7d4eTkBCcnJxw6dAjr1q2Dk5MT/Pz8FHEe7ufp6Yl27drh0qVLivksAEDz5s0RGhpqsK1jx45S92HlsVR3rPeei7y8PIP95eXluHHjhk2dCwC4cuUK/v3vf+OFF16Qtinl8zB//nzExsZizJgxCAsLw/jx4zF37lzExcUBUNZnoXXr1jh06BAKCwtx9epVHD9+HGVlZWjVqpWizkMlcx2zJX9PGIjMQK/Xo6SkBD169ICzszP2798v7UtPT0dWVhYiIiIAABERETh79qzBf/q+ffvg4eFR5UtFrgYPHoyzZ88iLS1NeoSHhyMmJkb6txLOw/0KCwuRkZGB5s2bK+azAACRkZFIT0832Pbzzz+jZcuWAICQkBD4+/sbnAudTofk5GSDc1FQUGBw9ZyYmAi9Xo9evXo1wFGYz6effgpfX18MHz5c2qaUz0NRUREcHAy/VhwdHaHX6wEo77MAAI0bN0bz5s1x8+ZN7N27F0899ZQiz4O5jjkiIgKHDx9GWVmZVGbfvn1o3759vbrLAHDafV3FxsaKQ4cOiczMTHHmzBkRGxsrVCqV+OGHH4QQd6fWBgUFicTERHHixAkREREhIiIipOdXTq0dMmSISEtLE3v27BE+Pj42NbW2OvfOMhNCGefhlVdeEQcPHhSZmZni6NGjIioqSnh7e4u8vDwhhDLOgRB3l15wcnISK1asEBcvXhRbt24Vbm5u4vPPP5fKxMfHC09PT/Gvf/1LnDlzRjz11FPVTrft1q2bSE5OFkeOHBFt27aV9RTj6lRUVIigoCCxYMGCKvuU8HmYMGGCaNGihTTtfvv27cLb21u89tprUhmlfBb27Nkjdu/eLX755Rfxww8/iK5du4pevXqJ0tJSIYR9nodbt26JU6dOiVOnTgkA4r333hOnTp0SV65cEUKY55gLCgqEn5+fGD9+vDh37pz48ssvhZubG6fdW8PkyZNFy5YthVqtFj4+PmLw4MFSGBJCiOLiYvHyyy+Lpk2bCjc3N/H000+L7Oxsg9e4fPmyGDZsmHB1dRXe3t7ilVdeEWVlZQ19KGZ1fyBSwnkYPXq0aN68uVCr1aJFixZi9OjRBmvvKOEcVPrmm29E586dhYuLi+jQoYP4+OOPDfbr9XqxaNEi4efnJ1xcXMTgwYNFenq6QZnff/9djB07Vri7uwsPDw8xadIkcevWrYY8jHrbu3evAFDl2IRQxudBp9OJ2bNni6CgINGoUSPRqlUr8cYbbxhMkVbKZyEhIUG0atVKqNVq4e/vL6ZPny4KCgqk/fZ4Hg4cOCAAVHlMmDBBCGG+Yz59+rTo27evcHFxES1atBDx8fFmqb9KiHuWECUiIiJSII4hIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIosZOHAg5syZY+1qWNzSpUvx8MMPW7saRFQPDERERDUoLS1t0PcTQqC8vLxB35OI7mIgIiKLmDhxIg4dOoS1a9dCpVJBpVLh8uXLOHfuHIYNGwZ3d3f4+flh/PjxyM/Pl543cOBAzJw5E3PmzEHTpk3h5+eHTZs24fbt25g0aRKaNGmCNm3aYPfu3dJzDh48CJVKhe+++w5dunRBo0aN0Lt3b5w7d86gTkeOHEG/fv3g6uqKwMBAzJo1C7dv35b2BwcH46233sLzzz8PDw8PTJs2DQCwYMECtGvXDm5ubmjVqhUWLVok3W178+bNWLZsGU6fPi0d5+bNm3H58mWoVCqkpaVJr19QUACVSoWDBw8a1Hv37t3o0aMHXFxccOTIEej1esTFxSEkJASurq7o2rUrvv76a3P/FxHRPRiIiMgi1q5di4iICEydOhXZ2dnIzs5GkyZN8Oijj6Jbt244ceIE9uzZg9zcXDz77LMGz92yZQu8vb1x/PhxzJw5Ey+99BL++Mc/ok+fPjh58iSGDBmC8ePHo6ioyOB58+fPx5///GekpKTAx8cHTzzxhBRcMjIyMHToUIwaNQpnzpxBQkICjhw5ghkzZhi8xrvvvouuXbvi1KlTWLRoEQCgSZMm2Lx5M3788UesXbsWmzZtwvvvvw8AGD16NF555RV06tRJOs7Ro0fX6VzFxsYiPj4eFy5cQJcuXRAXF4fPPvsMGzduxPnz5zF37lw899xzOHToUJ1el4jqwCy3iCUiqsaAAQPE7NmzpZ/feustMWTIEIMyV69eNbhD/IABA0Tfvn2l/eXl5aJx48Zi/Pjx0rbs7GwBQCQlJQkh/neX7S+//FIq8/vvvwtXV1eRkJAghBBiypQpYtq0aQbv/Z///Ec4ODiI4uJiIYQQLVu2FCNGjKj1uN555x3Ro0cP6eclS5aIrl27GpTJzMwUAMSpU6ekbTdv3hQAxIEDBwzqvXPnTqnMnTt3hJubmzh27JjB602ZMkWMHTu21roRkWmcrBnGiEhZTp8+jQMHDsDd3b3KvoyMDLRr1w4A0KVLF2m7o6MjmjVrhrCwMGmbn58fACAvL8/gNSIiIqR/e3l5oX379rhw4YL03mfOnMHWrVulMkII6PV6ZGZmomPHjgCA8PDwKnVLSEjAunXrkJGRgcLCQpSXl8PDw6POx1+Te9/z0qVLKCoqwh/+8AeDMqWlpejWrZvZ3pOIDDEQEVGDKSwsxBNPPIFVq1ZV2de8eXPp387Ozgb7VCqVwTaVSgUA0Ov1dXrvP/3pT5g1a1aVfUFBQdK/GzdubLAvKSkJMTExWLZsGaKjo6HRaPDll1/iz3/+8wPfz8Hh7ogEIYS0rbL77n73vmdhYSEA4LvvvkOLFi0Myrm4uDzwPYnIdAxERGQxarUaFRUV0s/du3fHP//5TwQHB8PJyfx/fv773/9K4ebmzZv4+eefpZaf7t2748cff0SbNm3q9JrHjh1Dy5Yt8cYbb0jbrly5YlDm/uMEAB8fHwBAdna21LJz7wDrmoSGhsLFxQVZWVkYMGBAnepKRKbjoGoispjg4GAkJyfj8uXLyM/Px/Tp03Hjxg2MHTsWKSkpyMjIwN69ezFp0qQqgcIUy5cvx/79+3Hu3DlMnDgR3t7eGDFiBIC7M8WOHTuGGTNmIC0tDRcvXsS//vWvKoOq79e2bVtkZWXhyy+/REZGBtatW4cdO3ZUOc7MzEykpaUhPz8fJSUlcHV1Re/evaXB0ocOHcKbb75Z6zE0adIEr776KubOnYstW7YgIyMDJ0+exPr167FlyxaTzw0RPRgDERFZzKuvvgpHR0eEhobCx8cHpaWlOHr0KCoqKjBkyBCEhYVhzpw58PT0lLqY6iM+Ph6zZ89Gjx49kJOTg2+++QZqtRrA3XFJhw4dws8//4x+/fqhW7duWLx4MQICAh74mk8++STmzp2LGTNm4OGHH8axY8ek2WeVRo0ahaFDh2LQoEHw8fHBF198AQD45JNPUF5ejh49emDOnDl4++23jTqOt956C4sWLUJcXBw6duyIoUOH4rvvvkNISIgJZ4WIjKES93ZwExHZoIMHD2LQoEG4efMmPD09rV0dIrJBbCEiIiIixWMgIiIiIsVjlxkREREpHluIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8f4PaXCA11XIDegAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABL0klEQVR4nO3deVxUZf8//tcAMoDAuLCKILhLKi64ICaaJnr7rcy6IzV37WNpamWJtrhVUN7eacutZXdSWUmWtrnnehNkoKJiZUoolKCSMcgiCnP9/vDHxMiwzDAz58yZ1/PxmMdDz7nmzHXODDPvc72vRSWEECAiIiJSCCepK0BERERkSQxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuiEgSy5Ytg0qlalRZlUqFZcuWWbU+Q4cOxdChQ2V7PCJqPAY3RA4uKSkJKpVK/3BxcUFQUBCmTp2KP/74Q+rqyU5oaKjB9fLz88Odd96Jbdu2WeT4ZWVlWLZsGQ4ePGiR4xE5IgY3RAQAWLFiBT766COsX78eo0ePxqZNmxATE4Pr169b5fWef/55lJeXW+XY1tarVy989NFH+Oijj7Bw4UJcvHgR48aNw/r165t87LKyMixfvpzBDVETuEhdASKSh9GjRyMyMhIAMHPmTPj4+ODVV1/F119/jYceesjir+fi4gIXF/v8CgoKCsIjjzyi///kyZPRsWNHvP7665g9e7aENSMigC03RFSHO++8EwCQnZ1tsP2XX37Bgw8+iFatWsHNzQ2RkZH4+uuvDcrcvHkTy5cvR6dOneDm5obWrVtj8ODB2Lt3r76MsT43FRUVePLJJ+Hr6wsvLy/ce++9+P3332vVberUqQgNDa213dgxN27ciLvuugt+fn5Qq9UIDw/HunXrTLoWDQkICEC3bt2Qk5NTb7nLly9jxowZ8Pf3h5ubGyIiIvDBBx/o958/fx6+vr4AgOXLl+tTX9bub0SkNPZ520REVnf+/HkAQMuWLfXbTp8+jejoaAQFBSE+Ph7NmzfHZ599hrFjx+KLL77A/fffD+BWkJGQkICZM2eif//+KC4uRkZGBo4dO4a77767ztecOXMmNm3ahAkTJmDQoEHYv38/xowZ06TzWLduHe644w7ce++9cHFxwTfffIPHH38cOp0Oc+bMadKxq928eRN5eXlo3bp1nWXKy8sxdOhQnDt3DnPnzkVYWBi2bNmCqVOnoqioCPPnz4evry/WrVuHxx57DPfffz/GjRsHAOjZs6dF6knkMAQRObSNGzcKAOK7774TV65cEXl5eeLzzz8Xvr6+Qq1Wi7y8PH3Z4cOHix49eojr16/rt+l0OjFo0CDRqVMn/baIiAgxZsyYel936dKlouZXUGZmpgAgHn/8cYNyEyZMEADE0qVL9dumTJki2rVr1+AxhRCirKysVrnY2FjRvn17g20xMTEiJiam3joLIUS7du3EyJEjxZUrV8SVK1fEiRMnxMMPPywAiCeeeKLO461Zs0YAEJs2bdJvu3HjhoiKihKenp6iuLhYCCHElStXap0vEZmGaSkiAgCMGDECvr6+CA4OxoMPPojmzZvj66+/Rtu2bQEAV69exf79+/HQQw/h2rVrKCwsRGFhIf7880/Exsbi7Nmz+tFVLVq0wOnTp3H27NlGv/6OHTsAAPPmzTPYvmDBgiadl7u7u/7fWq0WhYWFiImJwW+//QatVmvWMffs2QNfX1/4+voiIiICW7ZswaRJk/Dqq6/W+ZwdO3YgICAA48eP129r1qwZ5s2bh5KSEhw6dMisuhBRbUxLEREA4O2330bnzp2h1Wrx/vvv4/Dhw1Cr1fr9586dgxACL7zwAl544QWjx7h8+TKCgoKwYsUK3HfffejcuTO6d++OUaNGYdKkSfWmVy5cuAAnJyd06NDBYHuXLl2adF7ff/89li5dirS0NJSVlRns02q10Gg0Jh9zwIABeOmll6BSqeDh4YFu3bqhRYsW9T7nwoUL6NSpE5ycDO8pu3Xrpt9PRJbB4IaIAAD9+/fXj5YaO3YsBg8ejAkTJuDMmTPw9PSETqcDACxcuBCxsbFGj9GxY0cAwJAhQ5CdnY2vvvoKe/bswXvvvYfXX38d69evx8yZM5tc17om/6uqqjL4f3Z2NoYPH46uXbvi3//+N4KDg+Hq6oodO3bg9ddf15+TqXx8fDBixAiznktE1sfghohqcXZ2RkJCAoYNG4a33noL8fHxaN++PYBbqZTG/LC3atUK06ZNw7Rp01BSUoIhQ4Zg2bJldQY37dq1g06nQ3Z2tkFrzZkzZ2qVbdmyJYqKimptv73145tvvkFFRQW+/vprhISE6LcfOHCgwfpbWrt27XDy5EnodDqD1ptffvlFvx+oO3AjosZjnxsiMmro0KHo378/1qxZg+vXr8PPzw9Dhw7FO++8g/z8/Frlr1y5ov/3n3/+abDP09MTHTt2REVFRZ2vN3r0aADAG2+8YbB9zZo1tcp26NABWq0WJ0+e1G/Lz8+vNUuws7MzAEAIod+m1WqxcePGOuthLf/4xz9QUFCA5ORk/bbKykq8+eab8PT0RExMDADAw8MDAIwGb0TUOGy5IaI6PfPMM/jnP/+JpKQkzJ49G2+//TYGDx6MHj16YNasWWjfvj0uXbqEtLQ0/P777zhx4gQAIDw8HEOHDkXfvn3RqlUrZGRk4PPPP8fcuXPrfK1evXph/Pjx+M9//gOtVotBgwZh3759OHfuXK2yDz/8MBYtWoT7778f8+bNQ1lZGdatW4fOnTvj2LFj+nIjR46Eq6sr7rnnHvzf//0fSkpKsGHDBvj5+RkN0Kzp0UcfxTvvvIOpU6fi6NGjCA0Nxeeff47vv/8ea9asgZeXF4BbHaDDw8ORnJyMzp07o1WrVujevTu6d+9u0/oS2TWph2sRkbSqh4Knp6fX2ldVVSU6dOggOnToICorK4UQQmRnZ4vJkyeLgIAA0axZMxEUFCT+3//7f+Lzzz/XP++ll14S/fv3Fy1atBDu7u6ia9eu4uWXXxY3btzQlzE2bLu8vFzMmzdPtG7dWjRv3lzcc889Ii8vz+jQ6D179oju3bsLV1dX0aVLF7Fp0yajx/z6669Fz549hZubmwgNDRWvvvqqeP/99wUAkZOToy9nylDwhoa513W8S5cuiWnTpgkfHx/h6uoqevToITZu3FjruampqaJv377C1dWVw8KJzKASokZ7LREREZGdY58bIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBDREREiuJwk/jpdDpcvHgRXl5enOaciIjITgghcO3aNbRp06bWArS3c7jg5uLFiwgODpa6GkRERGSGvLw8tG3btt4yDhfcVE9xnpeXB29vb4lrQ0RERI1RXFyM4OBg/e94fRwuuKlORXl7ezO4ISIisjON6VLCDsVERESkKAxuiIiISFEY3BAREZGiOFyfGyIichxVVVW4efOm1NWgRnJ1dW1wmHdjMLghIiLFEUKgoKAARUVFUleFTODk5ISwsDC4uro26TgMboiISHGqAxs/Pz94eHhw0lY7UD3Jbn5+PkJCQpr0njG4ISIiRamqqtIHNq1bt5a6OmQCX19fXLx4EZWVlWjWrJnZx2GHYiIiUpTqPjYeHh4S14RMVZ2OqqqqatJxGNwQEZEiMRVlfyz1njG4ISIiIkVhcENEREQ2cfDgQahUKquPYmNwYwP52nKkZhciX1sudVWIiEjBli1bhl69ekldDclxtJSVJafnYvHWU9AJwEkFJIzrgbh+IVJXi4iIHNjNmzebNBpJ7thyY0X52nJ9YAMAOgEs2ZrFFhwiIjJKp9MhISEBYWFhcHd3R0REBD7//HMAf6d09u3bh8jISHh4eGDQoEE4c+YMACApKQnLly/HiRMnoFKpoFKpkJSUBOBWR91169bh3nvvRfPmzfHyyy/XW4/q19q9ezd69+4Nd3d33HXXXbh8+TJ27tyJbt26wdvbGxMmTEBZWZn+eRUVFZg3bx78/Pzg5uaGwYMHIz093ToXqx4Mbqwop7BUH9hUqxIC5wvLjD+BiIhkx5ZdCxISEvDhhx9i/fr1OH36NJ588kk88sgjOHTokL7Mc889h9WrVyMjIwMuLi6YPn06ACAuLg5PP/007rjjDuTn5yM/Px9xcXH65y1btgz3338/Tp06pX9OQ5YtW4a33noLqampyMvLw0MPPYQ1a9bgk08+wfbt27Fnzx68+eab+vLPPvssvvjiC3zwwQc4duwYOnbsiNjYWFy9etVCV6hxmJayojCf5nBSwSDAcVapEOrDuReIiOyBLbsWVFRU4JVXXsF3332HqKgoAED79u2RkpKCd955B48++igA4OWXX0ZMTAwAID4+HmPGjMH169fh7u4OT09PuLi4ICAgoNbxJ0yYgGnTpplUp5deegnR0dEAgBkzZmDx4sXIzs5G+/btAQAPPvggDhw4gEWLFqG0tBTr1q1DUlISRo8eDQDYsGED9u7di//+97945plnzLswZmDLjRUFatyRMK4HnP//cfvOKhVeGdcdgRp3iWtGREQNsXXXgnPnzqGsrAx33303PD099Y8PP/wQ2dnZ+nI9e/bU/zswMBAAcPny5QaPHxkZaXKdar6Wv78/PDw89IFN9bbq187OzsbNmzf1wRAANGvWDP3798fPP/9s8ms3BVturCyuXwiGdPbF+cIyhPp4MLAhIrIT9XUtsMZ3eUlJCQBg+/btCAoKMtinVqv1AU7NjsDVk97pdLoGj9+8eXOT63T7a93eCVmlUjXqtW2NwY0NBGrcGdQQEdkZW3ctCA8Ph1qtRm5urj7tVFPN1pu6uLq6NnnpAnN16NABrq6u+P7779GuXTsAt0ZlpaenY8GCBTatC4MbIiIiI6q7FizZmoUqIazetcDLywsLFy7Ek08+CZ1Oh8GDB0Or1eL777+Ht7e3PmCoT2hoKHJycpCZmYm2bdvCy8sLarXaKvW9XfPmzfHYY4/hmWeeQatWrRASEoLXXnsNZWVlmDFjhk3qUI3BDRERUR1s3bVg5cqV8PX1RUJCAn777Te0aNECffr0wZIlSxqV/nnggQewdetWDBs2DEVFRdi4cSOmTp1q1TrXlJiYCJ1Oh0mTJuHatWuIjIzE7t270bJlS5vVAQBUQgjRcDHlKC4uhkajgVarhbe3t9TVISIiC7t+/TpycnIQFhYGNzc3qatDJqjvvTPl95ujpYiIiEhRGNwQERE5mNmzZxsMN6/5mD17ttTVazL2uSEiInIwK1aswMKFC43uU0KXDQY3REREDsbPzw9+fn5SV8NqmJYiIiIiRWFwQ0REiiTHmXOpfpYawM20FBERKYqrqyucnJxw8eJF+Pr6wtXVVb9MAcmXEAJXrlwxusyDqRjcEBGRojg5OSEsLAz5+fm4ePGi1NUhE6hUKrRt2xbOzs5NOg6DGyIiUhxXV1eEhISgsrJSsrWWyHTNmjVrcmADMLghIiKFqk5vNDXFQfaHHYqJiIhIURjcEBERkaIwuCEiIiJFYXBDREREisLghoiIiBSFwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIUSQNbtatW4eePXvC29sb3t7eiIqKws6dO+t9zpYtW9C1a1e4ubmhR48e2LFjh41qS0RERPZA0uCmbdu2SExMxNGjR5GRkYG77roL9913H06fPm20fGpqKsaPH48ZM2bg+PHjGDt2LMaOHYusrCwb15yIiIjkSiWEEFJXoqZWrVph1apVmDFjRq19cXFxKC0txbfffqvfNnDgQPTq1Qvr169v1PGLi4uh0Wig1Wrh7e1tsXoTERGR9Zjy+y2bPjdVVVXYvHkzSktLERUVZbRMWloaRowYYbAtNjYWaWlpdR63oqICxcXFBg8iIiJSLsmDm1OnTsHT0xNqtRqzZ8/Gtm3bEB4ebrRsQUEB/P39Dbb5+/ujoKCgzuMnJCRAo9HoH8HBwRatPxEREcmL5MFNly5dkJmZiSNHjuCxxx7DlClT8NNPP1ns+IsXL4ZWq9U/8vLyLHZsIiIikh8XqSvg6uqKjh07AgD69u2L9PR0rF27Fu+8806tsgEBAbh06ZLBtkuXLiEgIKDO46vVaqjVastWmoiIiGRL8pab2+l0OlRUVBjdFxUVhX379hls27t3b519dIiIiMjxSNpys3jxYowePRohISG4du0aPvnkExw8eBC7d+8GAEyePBlBQUFISEgAAMyfPx8xMTFYvXo1xowZg82bNyMjIwPvvvuulKdBREREMiJpcHP58mVMnjwZ+fn50Gg06NmzJ3bv3o27774bAJCbmwsnp78blwYNGoRPPvkEzz//PJYsWYJOnTrhyy+/RPfu3aU6BSIiIpIZ2c1zY22c54aIiMj+2OU8N0RERESWwOCGiIiIFIXBDRERESkKgxsiIiJSFAY3REREpCgMboiIiEhRGNwQERGRojC4ISIiIkVhcENERESKwuDGgvK15UjNLkS+tlzqqhARETksSdeWUpLk9Fws3noKOgE4qYCEcT0Q1y9E6moRERE5HLbcWEC+tlwf2ACATgBLtmaxBYeIiEgCDG4sIKewVB/YVKsSAucLy6SpEBERkQNjcGMBYT7N4aQy3OasUiHUx0OaChERETkwBjcWEKhxR8K4HnBW3YpwnFUqvDKuOwI17hLXjIjkhIMOiGyDHYotJK5fCIZ09sX5wjKE+ngYBDb52nLkFJYizKc5Ax4iB8VBB0S2w+DGggI17rWCF36hEVFdgw6GdPblDQ+RFTAtZUUcRUVEAAcdENkagxsr4hcaEQEcdEBkawxurIhfaEQEcNABka2xz40VVX+hLdmahSoh+IVG5MDqG3RARJbF4MbK+IVGRNWMDTogIstjcGMD/EIjIiKyHfa5ISIiIkVhcENERESKwuCGiIiIFIXBDRERESkKgxsiIiJSFAY3REREpCgMboiIiEhRGNxYSb62HKnZhVwkk4iIyMY4iZ8VJKfn6lcDd1IBCeN6IK5fiNTVIiIicghsubGwfG25PrABAJ0AlmzNYgsOERGRjTC4sbCcwlJ9YFOtSgicLyyTpkJEREQOhsGNhYX5NIeTynCbs0qFUB8PaSpERETkYBjcWFigxh0J43rAWXUrwnFWqfDKuO5cOJOIiMhG2KHYCuL6hWBIZ1+cLyxDqI8HAxsiIiIbYnBjJYEadwY1REREEmBaioiIiBSFwQ0REREpiqTBTUJCAvr16wcvLy/4+flh7NixOHPmTL3PSUpKgkqlMni4ubnZqMZEREQkd5IGN4cOHcKcOXPwww8/YO/evbh58yZGjhyJ0tLSep/n7e2N/Px8/ePChQs2qjERERHJnaQdinft2mXw/6SkJPj5+eHo0aMYMmRInc9TqVQICAiwdvWIiIjIDsmqz41WqwUAtGrVqt5yJSUlaNeuHYKDg3Hffffh9OnTdZatqKhAcXGxwYOIiIiUSzbBjU6nw4IFCxAdHY3u3bvXWa5Lly54//338dVXX2HTpk3Q6XQYNGgQfv/9d6PlExISoNFo9I/g4GBrnQIRERHJgEoIIRouZn2PPfYYdu7ciZSUFLRt27bRz7t58ya6deuG8ePHY+XKlbX2V1RUoKKiQv//4uJiBAcHQ6vVwtvb2yJ1JyIiIusqLi6GRqNp1O+3LCbxmzt3Lr799lscPnzYpMAGAJo1a4bevXvj3LlzRver1Wqo1WpLVJOIiIjsgKRpKSEE5s6di23btmH//v0ICwsz+RhVVVU4deoUAgMDrVBDIiIisjeSttzMmTMHn3zyCb766it4eXmhoKAAAKDRaODufmvpgsmTJyMoKAgJCQkAgBUrVmDgwIHo2LEjioqKsGrVKly4cAEzZ86U7DyIiIhIPiQNbtatWwcAGDp0qMH2jRs3YurUqQCA3NxcODn93cD0119/YdasWSgoKEDLli3Rt29fpKamIjw83FbVJiIiIhmTTYdiWzGlQxIRERHJgym/37IZCk5ERERkCQxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuyCbyteVIzS5EvrZc6qoQEZHCSbq2FDmG5PRcLN56CjoBOKmAhHE9ENcvROpqERGRQrHlhqwqX1uuD2wAQCeAJVuz2IJDRERWw+CGrCqnsFQf2FSrEgLnC8ukqRARESkegxuyqjCf5nBSGW5zVqkQ6uMhTYWIiEjxGNyQVQVq3JEwrgecVbciHGeVCq+M645AjbvENSMiIqVih2Kyurh+IRjS2RfnC8sQ6uPBwIaIiKyKwQ3ZRKDGnUENERHZBNNSRKRYnF+JyDGx5YaIFInzKxE5LrbcSIh3lUTWwfmViBwbW24kwrtKIuupb34l9v0iUj623EiAd5VE1sX5lYgcG4MbCSh51l5TUm1My5G1cH4lIsfGtJQEqu8qawY4SrirNCXVxrQcWRvnVyJyXGy5kYAS7ypNSbUxLUe2EqhxR1SH1nb9t0VEpmPLjUSUdldpSgdOUzt75mvLkVNYijCf5nZ/nYiIyPoY3EhISbP2mpJqM6Us01dERGQqpqXIIkxJtTW2LNNXRERkDrbckMWYkmprTFnOVUJEROZgcEMWZUqqraGySh1VRkRE1sW0FMmWEkeVERGR9bHlhmRNaaPKiIjI+hjckOwpaVQZERFZH9NSREREpCgMboiIiEhRGNwQUZ24uCkR2SP2uSEiozg7NBHZK7bcEFEtnB2aiOwZgxuSDaZA5KO+2aHJED+3RPLDtBTJgqkpEK4Ubl2cHbpxmLojkidJW24SEhLQr18/eHl5wc/PD2PHjsWZM2cafN6WLVvQtWtXuLm5oUePHtixY4cNakvWYmoKJDk9F9GJ+zFhwxFEJ+5HcnquDWvrGDg7dMOYuiOSL0mDm0OHDmHOnDn44YcfsHfvXty8eRMjR45EaWlpnc9JTU3F+PHjMWPGDBw/fhxjx47F2LFjkZWVZcOakyWZkgLhD4rtxPULQUr8MHw6ayBS4oexReI2TN0RyZekaaldu3YZ/D8pKQl+fn44evQohgwZYvQ5a9euxahRo/DMM88AAFauXIm9e/firbfewvr1661eZ7I8U1IgXCnctjg7dN0cJXXHFDDZI1l1KNZqtQCAVq1a1VkmLS0NI0aMMNgWGxuLtLQ0q9aNrMeUFEj1D0pNSvxBUQKld7R1hNQdU8Bkr2TToVin02HBggWIjo5G9+7d6yxXUFAAf39/g23+/v4oKCgwWr6iogIVFRX6/xcXF1umwmRRjV0gs/oHZcnWLFQJocgfFCVoTEdbJbQIKHlh17pSwEM6+yrqPEmZZBPczJkzB1lZWUhJSbHocRMSErB8+XKLHpOso7EpECX/oChBY34UlTTKSKmpO6aAyZ7JIi01d+5cfPvttzhw4ADatm1bb9mAgABcunTJYNulS5cQEBBgtPzixYuh1Wr1j7y8PIvVm6QTqHFHVIfW/JKVoYY62rJTuH1gCpjsmaTBjRACc+fOxbZt27B//36EhYU1+JyoqCjs27fPYNvevXsRFRVltLxarYa3t7fBg4isp6EfRY4ysg+O0KeIlEvStNScOXPwySef4KuvvoKXl5e+34xGo4G7+60/oMmTJyMoKAgJCQkAgPnz5yMmJgarV6/GmDFjsHnzZmRkZODdd9+V7DyI6G8N9YuS2ygjJfT9AaxzHkwBk71SCSFEw8Ws9OIqldHtGzduxNSpUwEAQ4cORWhoKJKSkvT7t2zZgueffx7nz59Hp06d8Nprr+Ef//hHo16zuLgYGo0GWq2WrThEVpSvLa/zRzE5PbdW8CNFnxul9P1RynkQ1ceU329JgxspMLghkof6gh9bvX504v5aLUgp8cPsqoVCKedB1BBTfr8bnZYyZQg1gwYiaojUo4yUMhpIKedBZEmNDm5atGhRZxqpmhACKpUKVVVVTa4YEZE1ya3vj7mUch5EltTo4ObAgQPWrAcRkU0pZUJIpZwHkSWxzw0ROTSp+/5YilLOg6guVulzc7uioiL897//xc8//wwAuOOOOzB9+nRoNBpzD0lEZHNS9/1pjMYM87aH8yCyFbNabjIyMhAbGwt3d3f0798fAJCeno7y8nLs2bMHffr0sXhFLYUtN0RkTzjMm+gWqw8Fv/POO9GxY0ds2LABLi63Gn8qKysxc+ZM/Pbbbzh8+LB5NbcBBjdEZC84zJvob1ZPS2VkZBgENgDg4uKCZ599FpGRkeYckoiIbsNh3kTmMWttKW9vb+Tm5tbanpeXBy8vryZXioiI6l6ny8PVCanZhVxslKgOZgU3cXFxmDFjBpKTk5GXl4e8vDxs3rwZM2fOxPjx4y1dRyIih2Rs8cqxvdvg/v+kYsKGI4hO3I/k9No3mkSOzqy01L/+9S+oVCpMnjwZlZWVAIBmzZrhscceQ2JiokUrSJallEUCiRxFzcUrPVydcP9/UvWpKp0AlmzNwpDOvvx7JqrBrODG1dUVa9euRUJCArKzswEAHTp0gIcHZ8SUM466ILJP1cO8U7ML2QeHqBHMnucGADw8PNCjRw9L1YWsKF9brg9sAN7xEdkjLrVA1DhmBTfXr1/Hm2++iQMHDuDy5cvQ6XQG+48dO2aRypHlKHnUBVNt5Ci41AJR45gV3MyYMQN79uzBgw8+iP79+ze4oCZJT6l3fDVTbSoAs+4Mw7TBYfyyJ4uRW/Bcsw8Ol1ogMs6sSfw0Gg127NiB6Ohoa9TJqhx5Er/k9Nxad3z23OfG2ARnAPsTkeWwnxqRfFh9Er+goCDOZ2OHlHbHZyzVBrA/EVkG+6kR2S+z5rlZvXo1Fi1ahAsXLli6PmRlgRp3RHVoLasv53xtuVkTkhmb4KxadX8iInPV10+NpGPu9wU5FrNabiIjI3H9+nW0b98eHh4eaNasmcH+q1evWqRypHxNafav7ly5+ItT0N22Twn9iUhaSu2nZs+YJqTGMiu4GT9+PP744w+88sor8Pf3Z4diqqUxnTAt0exfnWrbmHIe76X8Bp0AR5CQRXBkknzka8uRcf4q04TUaGYFN6mpqUhLS0NERISl60MK0Ni7K0sNTw/UuGPJmG6YNjhUMf2JSB6U1k/NHtX8PrmdUqazIMszK7jp2rUrysuZ76TaTGmNsXSzf/UsrkSW5GifKzkNfb/9++R2TBNSXczqUJyYmIinn34aBw8exJ9//oni4mKDBzkuUzphGlsUkM3+RNJJTs9FdOJ+2SzKWdeISIDfF1Q/s1puRo0aBQAYPny4wXYhBFQqFaqqqppeM7JLprbGsNmfSB7kOPTd2PeJE4A3J/RGn3Yt+X1BdTIruDlw4ICl60EKYU4nTEdr9ieSIzku0VLX98mYnm0kqQ/ZD7OCm5iYmEaVe/zxx7FixQr4+PiY8zJkp9gaQ2R/5Dr0nd8nZA6z+tw01qZNm9gHx0HJcbJAIqqbnPvA8fuETGVWy01jmbFsFRERSYStJKQUVg1uiIjIvsipD5ychqWTfWFwQ0REssOlFqgprNrnhoiIyFR1DUvnYpnUWAxuiIisgKtXm48rslNTmRzcVFZWYsWKFfj9998bLPvII4/A29vbrIoREdkruc30a2+qh6XXJIdh6WQ/TA5uXFxcsGrVKlRWVjZYdt26dZzjhogcClMqTSfnYelkH8zqUHzXXXfh0KFDCA0NtXB1yBo44oDIduQ406894rB0agqzgpvRo0cjPj4ep06dQt++fdG8eXOD/ffee69FKkdNxxEHRLYl15l+7ZGchqWTfVEJM2bac3KqO5sl94Uzi4uLodFooNVqFd8fKF9bjujE/bW+ZFPih/ELg8iKktNza62HxJsKoqYx5ffbrJYbnU5nVsXIttg8TiQNplSIpGXWUPAPP/wQFRUVtbbfuHEDH374YZMrRZbBEQdE0uF6SETSMSu4mTZtGrRaba3t165dw7Rp05pcKbIMjjggIiJHZFZaSggBlUpVa/vvv/8OjUbT5EqR5bB5nIiIHI1JwU3v3r2hUqmgUqkwfPhwuLj8/fSqqirk5ORg1KhRjT7e4cOHsWrVKhw9ehT5+fnYtm0bxo4dW2f5gwcPYtiwYbW25+fnIyAgwJRTcSgccUB0C6dFIHIMJgU31YFHZmYmYmNj4enpqd/n6uqK0NBQPPDAA40+XmlpKSIiIjB9+nSMGzeu0c87c+aMQU9pPz+/Rj+XiBwTp0UgchwmBTdLly4FAISGhiIuLg5ubm5NevHRo0dj9OjRJj/Pz88PLVq0aNJrE5HjqGvW4CGdfdmCQ6RAZvW5mTJlCoBbo6MuX75ca2h4SIh174Z69eqFiooKdO/eHcuWLUN0dHSdZSsqKgxGdhUXF1u1bkQkP3KbFoHpMSLrMiu4OXv2LKZPn47U1FSD7dUdja01iV9gYCDWr1+PyMhIVFRU4L333sPQoUNx5MgR9OnTx+hzEhISsHz5cqvUh4isy1JBgJxmDWZ6jMj6zJqhODo6Gi4uLoiPj0dgYGCtkVMRERGmV0SlarBDsTExMTEICQnBRx99ZHS/sZab4OBgh5ihmEhuTAlWLB0EyGHWYM4aTmQ+q89QnJmZiaNHj6Jr165mVdCS+vfvj5SUlDr3q9VqqNVqG9aI5ITN/01nqWtoSrBijT4yNadF8HB1QumNKuRry236uZBbeoxIqcwKbsLDw1FYWGjpupglMzMTgYGBUleDZIjN/01nqWtoarBirSAgUOOOw79ekexzIaf0GJGSmTVD8auvvopnn30WBw8exJ9//oni4mKDR2OVlJQgMzMTmZmZAICcnBxkZmYiNzcXALB48WJMnjxZX37NmjX46quvcO7cOWRlZWHBggXYv38/5syZY85pkILV9WOary2XtmJ2xJLXsL5gxRhrLR0i9eeCs4YT2YZZLTcjRowAANx1110G/W1M7VCckZFhMCnfU089BeDWaKykpCTk5+frAx3g1uisp59+Gn/88Qc8PDzQs2dPfPfdd0Yn9iPHxub/pmvMNWxsysrUFovqIOD2PjJNfe/k8LngrOFE1mdWcHPgwAGLvPjQoUNRX3/mpKQkg/8/++yzePbZZy3y2qRsbP5vuoauoSkpK3OCFWsEAXL5XHDWcCLrMistFRMTAycnJ2zYsAHx8fHo2LEjYmJikJubC2dnZ0vXkchkbP5vuvquoTnpnbh+IUiJH4ZPZw1ESvywRvVzsfTK2vxcEDkGs1puvvjiC0yaNAkTJ07E8ePH9UOttVotXnnlFezYscOilSQyB5v/m66ua2huekcOLRb8XBApn1ktNy+99BLWr1+PDRs2oFmzZvrt0dHROHbsmMUqR9RUlr7zd0TGrqG1OvzaCj8XRMpmVnBz5swZDBkypNZ2jUaDoqKiptaJiGSO6R3K15YjNbuQIxBJlsxKSwUEBODcuXMIDQ012J6SkoL27dtbol5EJHNM7zguziFFcmdWy82sWbMwf/58HDlyBCqVChcvXsTHH3+MhQsX4rHHHrN0HYlIppjecTxSzxVEtmePrXRmtdzEx8dDp9Nh+PDhKCsrw5AhQ6BWq7Fw4UI88cQTlq4jEckEl7OwH9Z6r+QwVxDZjr220pm1cGa1Gzdu4Ny5cygpKUF4eDg8PT0tWTerMGXhLSL6m71+ycmBrYNCa75XXPzTccjtvTbl99ustFQ1V1dXhIeHo3///nYR2BCReZiKMF9yei6iE/djwoYjiE7cj+T03Iaf1ATWfq/YmdxxmLpsipyYlZYiIsfCVIR5TF0w1BItPLZ4r9iZ3DHIZUZvczC4IaIG2fOXnJRMCTQslUqy1XslhwkZybqstcabLTQpLUVEjoGpCPM0drJDS6aS+F6RJZmzbIocsOWGiBqFqQjTNfbO19KpJL5XZEn22ErH4IaIGs0ev+Sk1phAwxqpJL5X5MiYliIisrKGJjtkKonIsthyQ0QkA0pJJXGiR5IDBjdERDJh76kkTvRIcsG0FBHVYo9ryTgiOb1PnOiR5IQtN0RkgHff9kFu7xMneiQ5YcsNEenx7ts+yPF9auycPkS2wOCGiPTseS0ZRyLH94kjvkhOmJYiIj0us2Af5Po+KWXEF9k/ttwQkR7vvu2DnN+nhub0IbIFlRBCNFxMOYqLi6HRaKDVauHt7S11dYhkKV9bzrtvO8D3iRyJKb/fTEsRUS32Pt/K7ZQ6sZzS3iciS2FwQ0SKJrch00RkfexzQ0SKJcch00RkfQxuiEix5Dhkmkjp5DBzNtNSRKRYch0yTaRUckkDs+WGiBRLzkOmiZRGTmlgttwQkaJxYjki25DT+mIMbohI8Thkmsj65JQGZlqKiIiIGq2uDsNySgOz5YaIiIyyp8kP7amu9qyhDsNySQMzuCEiu8MfMuuTy6iXxrCnutqzujoMD+nsa/B3KIc0MNNSDk4O8xEQmSI5PRfRifsxYcMRRCfuR3J6rtRVUhw5jXppiD3V1d7Z07xRbLlxYLzbIXvT2DtHaho5jXppiD3V1d7JqcNwQ9hy46B4t0P2yJ7uHO1Z9Y9YTQ39iEnVCmxOXck8cuow3BC23Dgo3u2QPbKnO0d7Vv0jtmRrFqqEaPBHTMpWYFPrSk0jlw7DDWFw46D4I0H2iD9kttPYHzE5pArt5QdXKeTQYbghkqalDh8+jHvuuQdt2rSBSqXCl19+2eBzDh48iD59+kCtVqNjx45ISkqyej2VyJ6aF4lqiusXgpT4Yfh01kCkxA9jPzErCtS4I6pD63q/F+SSKmxMXclxSNpyU1paioiICEyfPh3jxo1rsHxOTg7GjBmD2bNn4+OPP8a+ffswc+ZMBAYGIjY21gY1Vhbe7ZC9soc7R0fBVmCSI5UQQjRczPpUKhW2bduGsWPH1llm0aJF2L59O7KysvTbHn74YRQVFWHXrl2Nep3i4mJoNBpotVp4e3s3tdpERA4vOT23VqpwSGdfzkVEFmXK77dd9blJS0vDiBEjDLbFxsZiwYIFdT6noqICFRUV+v8XFxdbq3pERA7p9lbgw79eQXTifk4zQZKxq6HgBQUF8Pf3N9jm7++P4uJilJcbH36YkJAAjUajfwQHB9uiqkREDqW6zwsAi0wzwQlGqSnsKrgxx+LFi6HVavWPvLw8qatERKRYluhgzFmoqansKrgJCAjApUuXDLZdunQJ3t7ecHc3ntNVq9Xw9vY2eBCRdHfGvCNXtqZOqscJRskS7KrPTVRUFHbs2GGwbe/evYiKipKoRiRHXFSxYVJNusYlP5SvqXMRcYJRsgRJg5uSkhKcO3dO//+cnBxkZmaiVatWCAkJweLFi/HHH3/gww8/BADMnj0bb731Fp599llMnz4d+/fvx2effYbt27dLdQokM/zxbJhUk67JYbI3so2mTDPBoeVkCZKmpTIyMtC7d2/07t0bAPDUU0+hd+/eePHFFwEA+fn5yM39O9caFhaG7du3Y+/evYiIiMDq1avx3nvvcY4bAsDm7MaSatI1uUz2RrZh7qR6nGCULEHSlpuhQ4eivml2jM0+PHToUBw/ftyKtSJ7xebsxpHqzph35NRYnGCUmsquOhQT1YerAzeOVHfGvCMnU3A5BWoK2cxQbCucoVjZjM2Uyj43xuVryyW5M5bqdYnIOHsZhGHK7zeDG1Ic/ngSETWOPQ3CMOX3m2kpB6fEOUfYnE1E1DAlD8Kwq3luyLLsKWInIiLLUvIgDLbcOCglR+xERNQwJQ/CYHDjoDjnCBGRbcg1/a/kEYxMSzkozjlCRGR9ck//K3VOIbbcOCglR+xERHJgL+l/JQ7CYMuNA1NqxE5EJAdK7rArdwxuHFygxp1/ZEREVsD0v3SYliIiIrICpv+lw5YbIiIiK2H6XxoMboiIyC7Zy5pITP/bHoMbIiKyO3IfYk3SYp8bIiKyK/YyxNoRyHWCQrbcEBGRXeEQa3mQc+sZW26IiMiuKHlNJHsh99YzBjdERGRXOMTaNNZIHcl9fUKmpYiIyO5wiHXjWCt1JPcJCtlyQ0REdkmJayJZkjVTR3JvPWPLDRERkQJZu+O1nFvPGNwQEZFi2MvEfrZgi9SRXCcoZFrKzsh1TgEiIqklp+ciOnE/Jmw4gujE/UhOz5W6SpKSe+rImlRCCNFwMeUoLi6GRqOBVquFt7e31NUxiZznFCAiklK+thzRiftrtVKkxA9ziB/z+uRry2WZOjKVKb/fbLmxE3KfU4CISEpyH5osJUfseM3gxk7wD5eIqG6c2I9qYnBjJ+z9D5d9hYjImhy5fwnVxtFSdqL6D3fJ1ixUCWFXf7jsK6QsHI1CciXnoclkW+xQbGfsrWMYO/kpCwNVsjcMxpXDlN9vttzYGbnOKVAXrt6rHHV1ah/S2ZfvJckSg3HHxT43ZFX23leI/sZO7WRPHGmEKfs01sbghqyKnfyUg4Eq2RNHCcY5caFxTEuR1Smhkx/z9vbdqZ0cj9xXrbYEporrxuCGbMLe+grVDGYO/3pF0Xl7UwI3JQSq5BgcIRhnn8a6Mbghus3tnRCFAKq/P5R2Z2ROh0t7C1TJcSk9GHeE1ilzsc8NUQ3GmnlvnytBKXl7R+pwSY5LyUsPsE9j3dhyQ1SDsWbe2ynlzohN2kT2T+mtU+ZicEMOy1hfE2PNvCoVoBKADsq6M2KTNimJI3f6Z6q4NgY35JDq6mtSVydEe7wzaujL3hE6XJJj4GR9dDtZLL/w9ttvY9WqVSgoKEBERATefPNN9O/f32jZpKQkTJs2zWCbWq3G9evXG/Va9r78AjVdY5aEsLdlLm5nype9vZ8rOTYu8eI4TPn9lrxDcXJyMp566iksXboUx44dQ0REBGJjY3H58uU6n+Pt7Y38/Hz948KFCzasMdm7xkzuZc+dEE3tKGzsXDnjKdkLR5msj0wjeXDz73//G7NmzcK0adMQHh6O9evXw8PDA++//36dz1GpVAgICNA//P39bVhjsndKn2m3qV/2nPGU7InS/56N4c1HwyQNbm7cuIGjR49ixIgR+m1OTk4YMWIE0tLS6nxeSUkJ2rVrh+DgYNx33304ffq0LapLCqH04ZNN+bLn8HCyN0r/e74dbz4aR9IOxYWFhaiqqqrV8uLv749ffvnF6HO6dOmC999/Hz179oRWq8W//vUvDBo0CKdPn0bbtm1rla+oqEBFRYX+/8XFxZY9CbJLSh4+2ZSOwhweTvZIyX/PNXG5hcazu9FSUVFRiIqK0v9/0KBB6NatG9555x2sXLmyVvmEhAQsX77cllUkO6Hk4ZPVX/bHLvwFnRCIDG3VqOdxeDjZKyX/PVfjzUfjSZqW8vHxgbOzMy5dumSw/dKlSwgICGjUMZo1a4bevXvj3LlzRvcvXrwYWq1W/8jLy2tyvYnsweFfr+CJT4/jiU8zG9187WhN/ET2xBH7F5lL0uDG1dUVffv2xb59+/TbdDod9u3bZ9A6U5+qqiqcOnUKgYGBRver1Wp4e3sbPIiUril9Z+L6hSAlfhg+nTUQKfHDOF8IkUzw5qPxJE9LPfXUU5gyZQoiIyPRv39/rFmzBqWlpfq5bCZPnoygoCAkJCQAAFasWIGBAweiY8eOKCoqwqpVq3DhwgXMnDlTytMgkpWmNl87QhM/kdwZm4jTUfoXNZXkwU1cXByuXLmCF198EQUFBejVqxd27dql72Scm5sLJ6e/G5j++usvzJo1CwUFBWjZsiX69u2L1NRUhIeHS3UKRLLDvjNE9q2+iTh589EwWcxQbEucoZgcRXJ6bq0RU0wxEckfZ102zpTfb8lbbojIOth8TWQ/aqagOCqq6RjcECkYm6+J5O/2FNSi0V2ZVm4iyZdfICIiclTGRja+tvMMFo3qylFRTcCWGyIiIonUlYLq2bYFUuKHMa1sJgY3REREEqlvZCPTyuZjWoqIiEginJjPOthyQ0REJCGObLQ8BjdEREQSYwrKspiWIiIiMiJfW47U7MJGrclG8sKWGyIiotvUt/wByR9bbmSAdwdERPJhbO6ZJVuz+B1tR9hyIzHeHRARyQuXP7B/bLmREO8OiIikUV+LefXcMzVx+QP7wuBGQvXdHRARkXUkp+ciOnE/Jmw4gujE/UhOzzXYz7ln7B/TUhKqb2ZKIiKyvLpazId09jUIXjj3jH1jy42EeHdARGRbprSYB2rcEdWhNb+T7RBbbiTGuwMiItthi7ljYMuNDPDuwP5w+D6RfWKLuWNgyw2RiTh8n8i+scVc+dhyQ2QCDt8nUga2mCsbgxsiE3D4PhGR/DG4ITIBJ/ciIpI/BjdEJmBnRCIi+WOHYiITsTMiEZG8MbghMkOgxp1BDRGRTDEtRURERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdEREQWxvXnpMXRUkRERBbE9eekx5YbIiOkuOuy5GvyrpFIGlx/Th7YckN0Gynuuiz5mrxrJJJOfevPcW4s22HLDVENUtx1WfI1eddIZD2NaRE1tv4cAJz8o8h6FaNaGNwQ1SDFqt+WfE2uWk5kHcnpuYhO3I8JG44gOnE/3jmcbTTQCdS4Y9GorrWe/9rOM7zJsCGmpYhqqL7rqhkgWHvVb1NfM19bjpzCUoT5NK/VzC1F/YmUzliLaMKOXwAYT/32aKupdQympmyLLTdENUix6rcpr3n73WNyeq7k9SdSOmMtotWMpX6NpaZ4k2FbKiFEHW+ZMhUXF0Oj0UCr1cLb21vq6pBM5WvLbb7qd0Ovma8tR3Ti/lqtMinxw2qVl6L+REpl7G/vdp/OGoioDq31/09Oz8WSrVmoEkJ/k8GO/U1jyu8301JERkix6ndDr2nKKAyuWk5kOdUtotXByu2MtcrE9QvBkM6+vMmQCIMbIjvB/jRE0qkZrJz8vQiv7Tpj0CpTM3ip2S+uZmsO2Q6DGyI7cfvdI/vTENlWdYtoVIfWuLdXG6OtMpxnSh5k0aH47bffRmhoKNzc3DBgwAD8+OOP9ZbfsmULunbtCjc3N/To0QM7duywUU2JpBXXLwQp8cPw6ayBSIkfxi9NIolUBzm3t9hwnil5kDy4SU5OxlNPPYWlS5fi2LFjiIiIQGxsLC5fvmy0fGpqKsaPH48ZM2bg+PHjGDt2LMaOHYusrCwb15xIGsa+VIlIepxnSj4kHy01YMAA9OvXD2+99RYAQKfTITg4GE888QTi4+NrlY+Li0NpaSm+/fZb/baBAweiV69eWL9+fYOvx9FSRERkDaaMaCTTmfL7LWnLzY0bN3D06FGMGDFCv83JyQkjRoxAWlqa0eekpaUZlAeA2NjYOstXVFSguLjY4EFERGRpnGdKPiTtUFxYWIiqqir4+/sbbPf398cvv/xi9DkFBQVGyxcUFBgtn5CQgOXLl1umwkRERPXgEHB5kLzPjbUtXrwYWq1W/8jLy5O6SkREpGDsFyc9SVtufHx84OzsjEuXLhlsv3TpEgICAow+JyAgwKTyarUaarXaMhUmIiIi2ZO05cbV1RV9+/bFvn379Nt0Oh327duHqKgoo8+JiooyKA8Ae/furbM8ERERORbJJ/F76qmnMGXKFERGRqJ///5Ys2YNSktLMW3aNADA5MmTERQUhISEBADA/PnzERMTg9WrV2PMmDHYvHkzMjIy8O6770p5GkRERCQTkgc3cXFxuHLlCl588UUUFBSgV69e2LVrl77TcG5uLpyc/m5gGjRoED755BM8//zzWLJkCTp16oQvv/wS3bt3l+oUiIiISEYkn+fG1jjPDRERkf2xm3luiIiIiCyNwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaJIPs+NrVWPfOfq4ERERPaj+ne7MTPYOFxwc+3aNQBAcHCwxDUhIiIiU127dg0ajabeMg43iZ9Op8PFixfh5eUFlUrV6OcVFxcjODgYeXl5Dj35H68Dr0E1XodbeB14DarxOtxiresghMC1a9fQpk0bg5ULjHG4lhsnJye0bdvW7Od7e3s79Ie2Gq8Dr0E1XodbeB14DarxOtxijevQUItNNXYoJiIiIkVhcENERESKwuCmkdRqNZYuXQq1Wi11VSTF68BrUI3X4RZeB16DarwOt8jhOjhch2IiIiJSNrbcEBERkaIwuCEiIiJFYXBDREREisLghoiIiBTFoYObdevWoWfPnvqJhqKiorBz5079/uvXr2POnDlo3bo1PD098cADD+DSpUsGx8jNzcWYMWPg4eEBPz8/PPPMM6isrLT1qVhMYmIiVCoVFixYoN/mCNdh2bJlUKlUBo+uXbvq9zvCNaj2xx9/4JFHHkHr1q3h7u6OHj16ICMjQ79fCIEXX3wRgYGBcHd3x4gRI3D27FmDY1y9ehUTJ06Et7c3WrRogRkzZqCkpMTWp2K20NDQWp8HlUqFOXPmAHCMz0NVVRVeeOEFhIWFwd3dHR06dMDKlSsN1vVxhM8CcGu6/wULFqBdu3Zwd3fHoEGDkJ6ert+vxOtw+PBh3HPPPWjTpg1UKhW+/PJLg/2WOueTJ0/izjvvhJubG4KDg/Haa69Z5gSEA/v666/F9u3bxa+//irOnDkjlixZIpo1ayaysrKEEELMnj1bBAcHi3379omMjAwxcOBAMWjQIP3zKysrRffu3cWIESPE8ePHxY4dO4SPj49YvHixVKfUJD/++KMIDQ0VPXv2FPPnz9dvd4TrsHTpUnHHHXeI/Px8/ePKlSv6/Y5wDYQQ4urVq6Jdu3Zi6tSp4siRI+K3334Tu3fvFufOndOXSUxMFBqNRnz55ZfixIkT4t577xVhYWGivLxcX2bUqFEiIiJC/PDDD+J///uf6Nixoxg/frwUp2SWy5cvG3wW9u7dKwCIAwcOCCEc4/Pw8ssvi9atW4tvv/1W5OTkiC1btghPT0+xdu1afRlH+CwIIcRDDz0kwsPDxaFDh8TZs2fF0qVLhbe3t/j999+FEMq8Djt27BDPPfec2Lp1qwAgtm3bZrDfEues1WqFv7+/mDhxosjKyhKffvqpcHd3F++8806T6+/QwY0xLVu2FO+9954oKioSzZo1E1u2bNHv+/nnnwUAkZaWJoS49eY7OTmJgoICfZl169YJb29vUVFRYfO6N8W1a9dEp06dxN69e0VMTIw+uHGU67B06VIRERFhdJ+jXAMhhFi0aJEYPHhwnft1Op0ICAgQq1at0m8rKioSarVafPrpp0IIIX766ScBQKSnp+vL7Ny5U6hUKvHHH39Yr/JWNH/+fNGhQweh0+kc5vMwZswYMX36dINt48aNExMnThRCOM5noaysTDg7O4tvv/3WYHufPn3Ec8895xDX4fbgxlLn/J///Ee0bNnS4G9i0aJFokuXLk2us0OnpWqqqqrC5s2bUVpaiqioKBw9ehQ3b97EiBEj9GW6du2KkJAQpKWlAQDS0tLQo0cP+Pv768vExsaiuLgYp0+ftvk5NMWcOXMwZswYg/MF4FDX4ezZs2jTpg3at2+PiRMnIjc3F4BjXYOvv/4akZGR+Oc//wk/Pz/07t0bGzZs0O/PyclBQUGBwbXQaDQYMGCAwbVo0aIFIiMj9WVGjBgBJycnHDlyxHYnYyE3btzApk2bMH36dKhUKof5PAwaNAj79u3Dr7/+CgA4ceIEUlJSMHr0aACO81morKxEVVUV3NzcDLa7u7sjJSXFYa5DTZY657S0NAwZMgSurq76MrGxsThz5gz++uuvJtXR4RbOvN2pU6cQFRWF69evw9PTE9u2bUN4eDgyMzPh6uqKFi1aGJT39/dHQUEBAKCgoMDgy6t6f/U+e7F582YcO3bMIIdcraCgwCGuw4ABA5CUlIQuXbogPz8fy5cvx5133omsrCyHuQYA8Ntvv2HdunV46qmnsGTJEqSnp2PevHlwdXXFlClT9Odi7FxrXgs/Pz+D/S4uLmjVqpVdXYtqX375JYqKijB16lQAjvM3ER8fj+LiYnTt2hXOzs6oqqrCyy+/jIkTJwKAw3wWvLy8EBUVhZUrV6Jbt27w9/fHp59+irS0NHTs2NFhrkNNljrngoIChIWF1TpG9b6WLVuaXUeHD266dOmCzMxMaLVafP7555gyZQoOHTokdbVsJi8vD/Pnz8fevXtr3Zk4kuq7UQDo2bMnBgwYgHbt2uGzzz6Du7u7hDWzLZ1Oh8jISLzyyisAgN69eyMrKwvr16/HlClTJK6dNP773/9i9OjRaNOmjdRVsanPPvsMH3/8MT755BPccccdyMzMxIIFC9CmTRuH+yx89NFHmD59OoKCguDs7Iw+ffpg/PjxOHr0qNRVozo4fFrK1dUVHTt2RN++fZGQkICIiAisXbsWAQEBuHHjBoqKigzKX7p0CQEBAQCAgICAWiMkqv9fXUbujh49isuXL6NPnz5wcXGBi4sLDh06hDfeeAMuLi7w9/d3iOtwuxYtWqBz5844d+6cw3wWACAwMBDh4eEG27p166ZP0VWfi7FzrXktLl++bLC/srISV69etatrAQAXLlzAd999h5kzZ+q3Ocrn4ZlnnkF8fDwefvhh9OjRA5MmTcKTTz6JhIQEAI71WejQoQMOHTqEkpIS5OXl4ccff8TNmzfRvn17h7oO1Sx1ztb8O3H44OZ2Op0OFRUV6Nu3L5o1a4Z9+/bp9505cwa5ubmIiooCAERFReHUqVMGb+DevXvh7e1d6wdCroYPH45Tp04hMzNT/4iMjMTEiRP1/3aE63C7kpISZGdnIzAw0GE+CwAQHR2NM2fOGGz79ddf0a5dOwBAWFgYAgICDK5FcXExjhw5YnAtioqKDO5q9+/fD51OhwEDBtjgLCxn48aN8PPzw5gxY/TbHOXzUFZWBicnw58IZ2dn6HQ6AI73WQCA5s2bIzAwEH/99Rd2796N++67zyGvg6XOOSoqCocPH8bNmzf1Zfbu3YsuXbo0KSUFwLGHgsfHx4tDhw6JnJwccfLkSREfHy9UKpXYs2ePEOLWcM+QkBCxf/9+kZGRIaKiokRUVJT++dXDPUeOHCkyMzPFrl27hK+vr10N9zSm5mgpIRzjOjz99NPi4MGDIicnR3z//fdixIgRwsfHR1y+fFkI4RjXQIhb0wG4uLiIl19+WZw9e1Z8/PHHwsPDQ2zatElfJjExUbRo0UJ89dVX4uTJk+K+++4zOgS0d+/e4siRIyIlJUV06tRJ1sNejamqqhIhISFi0aJFtfY5wudhypQpIigoSD8UfOvWrcLHx0c8++yz+jKO8lnYtWuX2Llzp/jtt9/Enj17REREhBgwYIC4ceOGEEKZ1+HatWvi+PHj4vjx4wKA+Pe//y2OHz8uLly4IISwzDkXFRUJf39/MWnSJJGVlSU2b94sPDw8OBS8qaZPny7atWsnXF1dha+vrxg+fLg+sBFCiPLycvH444+Lli1bCg8PD3H//feL/Px8g2OcP39ejB49Wri7uwsfHx/x9NNPi5s3b9r6VCzq9uDGEa5DXFycCAwMFK6uriIoKEjExcUZzO3iCNeg2jfffCO6d+8u1Gq16Nq1q3j33XcN9ut0OvHCCy8If39/oVarxfDhw8WZM2cMyvz5559i/PjxwtPTU3h7e4tp06aJa9eu2fI0mmz37t0CQK1zE8IxPg/FxcVi/vz5IiQkRLi5uYn27duL5557zmDYrqN8FpKTk0X79u2Fq6urCAgIEHPmzBFFRUX6/Uq8DgcOHBAAaj2mTJkihLDcOZ84cUIMHjxYqNVqERQUJBITEy1Sf5UQNaabJCIiIrJz7HNDREREisLghoiIiBSFwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBDRI0ydOhQLFiwQOpqWN2yZcvQq1cvqatBRE3A4IaIHMKNGzds+npCCFRWVtr0NYnoFgY3RNSgqVOn4tChQ1i7di1UKhVUKhXOnz+PrKwsjB49Gp6envD398ekSZNQWFiof97QoUPxxBNPYMGCBWjZsiX8/f2xYcMGlJaWYtq0afDy8kLHjh2xc+dO/XMOHjwIlUqF7du3o2fPnnBzc8PAgQORlZVlUKeUlBTceeedcHd3R3BwMObNm4fS0lL9/tDQUKxcuRKTJ0+Gt7c3Hn30UQDAokWL0LlzZ3h4eKB9+/Z44YUX9KsSJyUlYfny5Thx4oT+PJOSknD+/HmoVCpkZmbqj19UVASVSoWDBw8a1Hvnzp3o27cv1Go1UlJSoNPpkJCQgLCwMLi7uyMiIgKff/65pd8iIqqBwQ0RNWjt2rWIiorCrFmzkJ+fj/z8fHh5eeGuu+5C7969kZGRgV27duHSpUt46KGHDJ77wQcfwMfHBz/++COeeOIJPPbYY/jnP/+JQYMG4dixYxg5ciQmTZqEsrIyg+c988wzWL16NdLT0+Hr64t77rlHH4RkZ2dj1KhReOCBB3Dy5EkkJycjJSUFc+fONTjGv/71L0REROD48eN44YUXAABeXl5ISkrCTz/9hLVr12LDhg14/fXXAQBxcXF4+umncccdd+jPMy4uzqRrFR8fj8TERPz888/o2bMnEhIS8OGHH2L9+vU4ffo0nnzySTzyyCM4dOiQScclIhNYZPlNIlK821eLX7lypRg5cqRBmby8PIOVtGNiYsTgwYP1+ysrK0Xz5s3FpEmT9Nvy8/MFAJGWliaE+Hs14s2bN+vL/Pnnn8Ld3V0kJycLIYSYMWOGePTRRw1e+3//+59wcnIS5eXlQggh2rVrJ8aOHdvgea1atUr07dtX//+lS5eKiIgIgzI5OTkCgDh+/Lh+219//SUAiAMHDhjU+8svv9SXuX79uvDw8BCpqakGx5sxY4YYP358g3UjIvO4SBlYEZH9OnHiBA4cOABPT89a+7Kzs9G5c2cAQM+ePfXbnZ2d0bp1a/To0UO/zd/fHwBw+fJlg2NERUXp/92qVSt06dIFP//8s/61T548iY8//lhfRggBnU6HnJwcdOvWDQAQGRlZq27Jycl44403kJ2djZKSElRWVsLb29vk869Lzdc8d+4cysrKcPfddxuUuXHjBnr37m2x1yQiQwxuiMgsJSUluOeee/Dqq6/W2hcYGKj/d7NmzQz2qVQqg20qlQoAoNPpTHrt//u//8O8efNq7QsJCdH/u3nz5gb70tLSMHHiRCxfvhyxsbHQaDTYvHkzVq9eXe/rOTndyuALIfTbqlNkt6v5miUlJQCA7du3IygoyKCcWq2u9zWJyHwMboioUVxdXVFVVaX/f58+ffDFF18gNDQULi6W/yr54Ycf9IHKX3/9hV9//VXfItOnTx/89NNP6Nixo0nHTE1NRbt27fDcc8/pt124cMGgzO3nCQC+vr4AgPz8fH2LS83OxXUJDw+HWq1Gbm4uYmJiTKorEZmPHYqJqFFCQ0Nx5MgRnD9/HoWFhZgzZw6uXr2K8ePHIz09HdnZ2di9ezemTZtWKzgwx4oVK7Bv3z5kZWVh6tSp8PHxwdixYwHcGvGUmpqKuXPnIjMzE2fPnsVXX31Vq0Px7Tp16oTc3Fxs3rwZ2dnZeOONN7Bt27Za55mTk4PMzEwUFhaioqIC7u7uGDhwoL6j8KFDh/D88883eA5eXl5YuHAhnnzySXzwwQfIzs7GsWPH8Oabb+KDDz4w+9oQUf0Y3BBRoyxcuBDOzs4IDw+Hr68vbty4ge+//x5VVVUYOXIkevTogQULFqBFixb6NE5TJCYmYv78+ejbty8KCgrwzTffwNXVFcCtfjyHDh3Cr7/+ijvvvBO9e/fGiy++iDZt2tR7zHvvvRdPPvkk5s6di169eiE1NVU/iqraAw88gFGjRmHYsGHw9fXFp59+CgB4//33UVlZib59+2LBggV46aWXGnUeK1euxAsvvICEhAR069YNo0aNwvbt2xEWFmbGVSGixlCJmklkIiKJHTx4EMOGDcNff/2FFi1aSF0dIrJDbLkhIiIiRWFwQ0RERIrCtBQREREpCltuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuiIiISFH+P6mFqBfr0aimAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(keras_surrogate, data_validation)\n", + "surrogate_parity(keras_surrogate, data_validation)\n", + "surrogate_residual(keras_surrogate, data_validation)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABg+klEQVR4nO3dfVzT5f4/8Ndn40ZAGHIPooBgmqYmWIaVllnqUTv9tCQz06S0jmikeXc8mWalZpqaZdrX1CzTSuukZmlllkpm3sbJTAxUErwZMlBTYLt+f6zNbWxjjN2y1/Px4KH7fD7brn2i9uq63td1SUIIASIiIiIfIHN3A4iIiIhchcGHiIiIfAaDDxEREfkMBh8iIiLyGQw+RERE5DMYfIiIiMhnMPgQERGRz2DwISIiIp/B4ENEREQ+g8GHiMgDrVq1CpIkoaioyN1NIWpUGHyIfNS+ffuQk5OD9u3bIyQkBC1btsTgwYPx+++/17r2rrvugiRJkCQJMpkMYWFhaNOmDYYNG4bt27fX6303bdqEHj16ICYmBsHBwWjVqhUGDx6ML7/80lEfrZZXXnkFn332Wa3je/bswYwZM1BeXu609zY1Y8YM/b2UJAnBwcFo164d/vOf/6CiosIh77F27VosXLjQIa9F1Ngw+BD5qLlz52LDhg245557sGjRIowaNQrff/890tPTkZ+fX+v6xMRErFmzBu+99x7mzZuH+++/H3v27MF9992HrKwsVFdX1/mer732Gu6//35IkoSpU6fi9ddfx6BBg3D8+HGsW7fOGR8TgPXgM3PmTJcGH52lS5dizZo1WLBgAdq2bYuXX34Zffr0gSO2T2TwIbLMz90NICL3GD9+PNauXYuAgAD9saysLHTo0AFz5szB+++/b3S9QqHAo48+anRszpw5GDduHN566y0kJydj7ty5Ft+vpqYGs2bNwr333ott27bVOn/u3LkGfiLPceXKFQQHB1u95sEHH0RUVBQA4KmnnsKgQYOwceNG/Pjjj8jMzHRFM4l8Ent8iHxUt27djEIPALRu3Rrt27fH0aNHbXoNuVyOxYsXo127dliyZAlUKpXFay9cuICKigrcfvvtZs/HxMQYPb569SpmzJiBG264AU2aNEF8fDwGDhyIEydO6K957bXX0K1bN0RGRiIoKAgZGRn45JNPjF5HkiRcvnwZq1ev1g8vjRgxAjNmzMDEiRMBACkpKfpzhjU177//PjIyMhAUFISIiAg8/PDDOH36tNHr33XXXbjpppuwf/9+dO/eHcHBwfj3v/9t0/0z1LNnTwBAYWGh1eveeusttG/fHoGBgUhISMCYMWOMeqzuuusubNmyBSdPntR/puTk5Hq3h6ixYo8PEekJIXD27Fm0b9/e5ufI5XIMGTIEzz//PHbt2oV+/fqZvS4mJgZBQUHYtGkTxo4di4iICIuvqVar0b9/f3zzzTd4+OGH8cwzz6CyshLbt29Hfn4+UlNTAQCLFi3C/fffj6FDh6Kqqgrr1q3DQw89hM2bN+vbsWbNGjzxxBO49dZbMWrUKABAamoqQkJC8Pvvv+PDDz/E66+/ru99iY6OBgC8/PLLeP755zF48GA88cQTOH/+PN544w10794dBw8eRHh4uL69SqUSffv2xcMPP4xHH30UsbGxNt8/HV2gi4yMtHjNjBkzMHPmTPTq1QtPP/00jh07hqVLl2Lfvn3YvXs3/P39MW3aNKhUKhQXF+P1118HADRt2rTe7SFqtAQR0d/WrFkjAIgVK1YYHe/Ro4do3769xed9+umnAoBYtGiR1defPn26ACBCQkJE3759xcsvvyz2799f67p3331XABALFiyodU6j0ej/fuXKFaNzVVVV4qabbhI9e/Y0Oh4SEiKGDx9e67XmzZsnAIjCwkKj40VFRUIul4uXX37Z6Pgvv/wi/Pz8jI736NFDABBvv/22xc9t6IUXXhAAxLFjx8T58+dFYWGhWLZsmQgMDBSxsbHi8uXLQgghVq5cadS2c+fOiYCAAHHfffcJtVqtf70lS5YIAOLdd9/VH+vXr59ISkqyqT1EvoZDXUQEAPjtt98wZswYZGZmYvjw4fV6rq5HobKy0up1M2fOxNq1a9G5c2d89dVXmDZtGjIyMpCenm40vLZhwwZERUVh7NixtV5DkiT934OCgvR/v3jxIlQqFe68804cOHCgXu03tXHjRmg0GgwePBgXLlzQ/8TFxaF169bYsWOH0fWBgYF4/PHH6/Uebdq0QXR0NFJSUjB69GikpaVhy5YtFmuDvv76a1RVVSE3Nxcy2fX/dD/55JMICwvDli1b6v9BiXwQh7qICKWlpejXrx8UCgU++eQTyOXyej3/0qVLAIDQ0NA6rx0yZAiGDBmCiooK7N27F6tWrcLatWsxYMAA5Ofno0mTJjhx4gTatGkDPz/r/4navHkzXnrpJRw6dAjXrl3THzcMR/Y4fvw4hBBo3bq12fP+/v5Gj5s3b16rXqouGzZsQFhYGPz9/ZGYmKgfvrPk5MmTALSByVBAQABatWqlP09E1jH4EPk4lUqFvn37ory8HD/88AMSEhLq/Rq66e9paWk2PycsLAz33nsv7r33Xvj7+2P16tXYu3cvevToYdPzf/jhB9x///3o3r073nrrLcTHx8Pf3x8rV67E2rVr6/0ZDGk0GkiShK1bt5oNgaY1M4Y9T7bq3r27vq6IiFyHwYfIh129ehUDBgzA77//jq+//hrt2rWr92uo1WqsXbsWwcHBuOOOO+xqR5cuXbB69WqUlJQA0BYf7927F9XV1bV6V3Q2bNiAJk2a4KuvvkJgYKD++MqVK2tda6kHyNLx1NRUCCGQkpKCG264ob4fxymSkpIAAMeOHUOrVq30x6uqqlBYWIhevXrpjzW0x4uoMWOND5GPUqvVyMrKQl5eHj7++GO71o5Rq9UYN24cjh49inHjxiEsLMzitVeuXEFeXp7Zc1u3bgVwfRhn0KBBuHDhApYsWVLrWvH3An9yuRySJEGtVuvPFRUVmV2oMCQkxOwihSEhIQBQ69zAgQMhl8sxc+bMWgsKCiGgVCrNf0gn6tWrFwICArB48WKjNq1YsQIqlcpoNl1ISIjVpQWIfBl7fIh81IQJE/D5559jwIABKCsrq7VgoelihSqVSn/NlStXUFBQgI0bN+LEiRN4+OGHMWvWLKvvd+XKFXTr1g233XYb+vTpgxYtWqC8vByfffYZfvjhBzzwwAPo3LkzAOCxxx7De++9h/Hjx+Onn37CnXfeicuXL+Prr7/Gv/71L/zzn/9Ev379sGDBAvTp0wePPPIIzp07hzfffBNpaWk4cuSI0XtnZGTg66+/xoIFC5CQkICUlBR07doVGRkZAIBp06bh4Ycfhr+/PwYMGIDU1FS89NJLmDp1KoqKivDAAw8gNDQUhYWF+PTTTzFq1Cg899xzDbr/9RUdHY2pU6di5syZ6NOnD+6//34cO3YMb731Fm655Rajf14ZGRlYv349xo8fj1tuuQVNmzbFgAEDXNpeIo/lzillROQ+umnYln6sXdu0aVPRunVr8eijj4pt27bZ9H7V1dXinXfeEQ888IBISkoSgYGBIjg4WHTu3FnMmzdPXLt2zej6K1euiGnTpomUlBTh7+8v4uLixIMPPihOnDihv2bFihWidevWIjAwULRt21asXLlSP13c0G+//Sa6d+8ugoKCBACjqe2zZs0SzZs3FzKZrNbU9g0bNog77rhDhISEiJCQENG2bVsxZswYcezYMaN7Y22qvyld+86fP2/1OtPp7DpLliwRbdu2Ff7+/iI2NlY8/fTT4uLFi0bXXLp0STzyyCMiPDxcAODUdiIDkhAO2BiGiIiIyAuwxoeIiIh8BoMPERER+QwGHyIiIvIZDD5ERETkMxh8iIiIyGcw+BAREZHP4AKGJjQaDc6cOYPQ0FAu+05EROQlhBCorKxEQkICZDLL/ToMPibOnDmDFi1auLsZREREZIfTp08jMTHR4nkGHxOhoaEAtDfO2r5DRERE5DkqKirQokUL/fe4JQw+JnTDW2FhYQw+REREXqauMhUWNxMREZHPYPAhIiIin8HgQ0RERD6DNT520Gg0qKqqcnczGrWAgACr0xGJiIjs4TXBZ/bs2di4cSN+++03BAUFoVu3bpg7dy7atGmjv+bq1auYMGEC1q1bh2vXrqF379546623EBsb67B2VFVVobCwEBqNxmGvSbXJZDKkpKQgICDA3U0hIqJGRBJCCHc3whZ9+vTBww8/jFtuuQU1NTX497//jfz8fPz6668ICQkBADz99NPYsmULVq1aBYVCgZycHMhkMuzevdvm96moqIBCoYBKpao1q0sIgVOnTqG6urrOBZLIfrpFJP39/dGyZUsuJElERHWy9v1tyGuCj6nz588jJiYGO3fuRPfu3aFSqRAdHY21a9fiwQcfBAD89ttvuPHGG5GXl4fbbrvNpte1duOqq6tRUFCAhIQEKBQKh38muk6lUuHMmTNIS0uDv7+/u5tDREQeztbg47VdFiqVCgAQEREBANi/fz+qq6vRq1cv/TVt27ZFy5YtkZeX55D3VKvVAMDhFxfQ3WPdPSciInIEr6nxMaTRaJCbm4vbb78dN910EwCgtLQUAQEBCA8PN7o2NjYWpaWlFl/r2rVruHbtmv5xRUVFne/PoRfn4z0mIiJn8MrgM2bMGOTn52PXrl0Nfq3Zs2dj5syZDmgVERGRb1AqlVZnNwcEBCAyMtKFLbKd1wWfnJwcbN68Gd9//73RJmRxcXGoqqpCeXm5Ua/P2bNnERcXZ/H1pk6divHjx+sf6/b6ICIiotqUSiWWLFlS53U5OTkeGX68psZHCIGcnBx8+umn+Pbbb5GSkmJ0PiMjA/7+/vjmm2/0x44dO4ZTp04hMzPT4usGBgbq9+VqrPtzjRgxApIkQZIk+Pv7IzY2Fvfeey/efffdek3LX7VqVa2hRCIi8i22rmPnqevdeU2Pz5gxY7B27Vr897//RWhoqL5uR6FQICgoCAqFAtnZ2Rg/fjwiIiIQFhaGsWPHIjMz0+YZXc7mzq7BPn36YOXKlVCr1Th79iy+/PJLPPPMM/jkk0/w+eefw8/Pa34ViIiI7OY133ZLly4FANx1111Gx1euXIkRI0YAAF5//XXIZDIMGjTIaAFDT+DursHAwED9kF/z5s2Rnp6O2267Dffccw9WrVqFJ554AgsWLMDKlSvxxx9/ICIiAgMGDMCrr76Kpk2b4rvvvsPjjz8O4Hrh8QsvvIAZM2ZgzZo1WLRoEY4dO4aQkBD07NkTCxcuRExMjMM/BxERUUN41VCXuR9d6AGAJk2a4M0330RZWRkuX76MjRs3Wq3vcSVP7Brs2bMnOnXqhI0bNwLQrpa8ePFi/O9//8Pq1avx7bffYtKkSQCAbt26YeHChQgLC0NJSQlKSkrw3HPPAdCubzRr1iwcPnwYn332GYqKioz+uRAREXkKr+nxIedo27Ytjhw5AgDIzc3VH09OTsZLL72Ep556Cm+99RYCAgKgUCggSVKtMDly5Ej931u1aoXFixfjlltuwaVLl9C0aVOXfA4iIiJbeE2PDzmHEEI/dPX111/jnnvuQfPmzREaGophw4ZBqVTiypUrVl9j//79GDBgAFq2bInQ0FD06NEDAHDq1Cmnt5+IiNxLpQpFYWEyVKpQdzfFJgw+Pu7o0aNISUlBUVER+vfvj44dO2LDhg3Yv38/3nzzTQDWh98uX76M3r17IywsDB988AH27duHTz/9tM7nERGR9ztwoDMWLszF6tXDsXBhLg4c6OzuJtWJQ10+7Ntvv8Uvv/yCZ599Fvv374dGo8H8+fP1m69+9NFHRtcHBATU2kLit99+g1KpxJw5c/TrH/3888+u+QBERORyui2FVKpQbNrUH0JovzOEkGHTpv5ITS2AQlHpsds7scfHR1y7dg2lpaX4888/ceDAAbzyyiv45z//if79++Oxxx5DWloaqqur8cYbb+CPP/7AmjVr8Pbbbxu9RnJyMi5duoRvvvkGFy5cwJUrV9CyZUsEBATon/f5559j1qxZbvqURETkbJGRkcjJyUG3bsP1oUdHCBluv324xy5eCDD4+Iwvv/wS8fHxSE5ORp8+fbBjxw4sXrwY//3vfyGXy9GpUycsWLAAc+fOxU033YQPPvgAs2fPNnqNbt264amnnkJWVhaio6Px6quvIjo6GqtWrcLHH3+Mdu3aYc6cOXjttdfc9CmJiMgVIiMjcdttkZCZpAi5HOjaNdJjQw8ASEII4e5GeBJr29pfvXoVhYWFSElJQZMmTer1uu5ex8fbNOReExE1Bt6wH9aKFcDo0YBarQ09y5YB2dnuaYu1729DrPFxEV3XoKf/EhMRkft5y/8sZ2cDvXsDBQVAWhpgsIWmx2LwcSGGGiIisoUnLnprSWKidwQeHdb4EBERkc9g8CEiIvJw3rZIoCfjUBcREZEHO3Cgs369HEnSYMCAzUhPP+juZnkt9vgQERF5KEuLBLLnx34MPkRERB6qrCzS7CKBZWURbmqR9+NQFxERkYeKiFBCkjRG4UeSNIiIKNM/Nl3vp7y8HDU1NfrH/v7+UCgU+se+vnQKgw8REfk8T1ssULfPlUJRiQEDNteq8VEoKgEAV65cwfLly+v9+u5e/8edGHyowb777jvcfffduHjxIsLDw216TnJyMnJzc5Gbm+vUthER1cV0sUCVKhRlZZGIiFDqAwbg2rBguujt9OnnUVTkh+TkGiQk3ALgFgQEBNi9jo8nrP/jLqzx8QEjRoyAJEl46qmnap0bM2YMJEnCiBEjXN8wIiIPYBgCDhzojIULc7F69XAsXJiLAwc6m73OFSIjIxEfH4/4+HhkZMRi0KBIZGTE6o/5ao9NQzH4+IgWLVpg3bp1+Ouvv/THrl69irVr16Jly5ZubBkRkWdoDDOoTNf74fo/tTH4+Ij09HS0aNECGzdu1B/buHEjWrZsic6dr/8fzbVr1zBu3DjExMSgSZMmuOOOO7Bv3z6j1/riiy9www03ICgoCHfffTeKiopqvd+uXbtw5513IigoCC1atMC4ceNw+fJlp30+IqKG8vYZVKa9VZ9++k+LvVe+jMHHTYqLgR07tH+6ysiRI7Fy5Ur943fffRePP/640TWTJk3Chg0bsHr1ahw4cABpaWno3bs3ysq0MwhOnz6NgQMHYsCAATh06BCeeOIJTJkyxeg1Tpw4gT59+mDQoEE4cuQI1q9fj127diEnJ8f5H5KIyE66GVSGTGdQeSpzvVWHD3fy6t4rZ2HwcYMVK4CkJKBnT+2fK1a45n0fffRR7Nq1CydPnsTJkyexe/duPProo/rzly9fxtKlSzFv3jz07dsX7dq1wzvvvIOgoCCs+LuRS5cuRWpqKubPn482bdpg6NChteqDZs+ejaFDhyI3NxetW7dGt27dsHjxYrz33nu4evWqaz4sEVE96WZQ6cKP6QwqT2autwqQjB55U++VM3FWl4sVFwOjRgGav/+nQqMBRo8Gevd2/u620dHR6NevH1atWgUhBPr164eoqCj9+RMnTqC6uhq33367/pi/vz9uvfVWHD16FABw9OhRdO3a1eh1MzMzjR4fPnwYR44cwQcffKA/JoSARqNBYWEhbrzxRmd8PCKiBktPP4jU1AKUlUUgIqLMK0IPYH69H0DAMPx4S++VszH4uNjx49dDj45aDRQUOD/4ANrhLt2Q05tvvumU97h06RJGjx6NcePG1TrHQmoi8nQKRaXXBB5r6/107HgER450NLv+j+55ruBpayQx+LhY69aATGYcfuRyIC3NNe/fp08fVFVVQZIk9O7d2+hcamoqAgICsHv3biQlJQEAqqursW/fPv16OzfeeCM+//xzo+f9+OOPRo/T09Px66+/Is1VH4qIyEaGX8JnzshQWOiHyMhLNj3XlWHBHEsBIisrC9XV1Rg82A/Tp59Hfv5VJCRcQVycHKWlx1BSEoL27QON1v9xZNCwFmzKy8vx0Ucf1fkarlwjicHHxRITgeXLtcNbarU29Cxb5preHgCQy+X6YSu5XG50LiQkBE8//TQmTpyIiIgItGzZEq+++iquXLmC7OxsAMBTTz2F+fPnY+LEiXjiiSewf/9+rFq1yuh1Jk+ejNtuuw05OTl44oknEBISgl9//RXbt283WiSMiMiVDBcqNN7xvBkGDOis3/E8KyvLaIsH4HqvhLt6L0wXWbQkJycHGRlJ+scdOji8KUZsbVddXLlGEoOPG2Rna2t6Cgq0PT2uCj06YWFhFs/NmTMHGo0Gw4YNQ2VlJbp06YKvvvoKzZo1A6AdqtqwYQOeffZZvPHGG7j11lvxyiuvYOTIkfrX6NixI3bu3Ilp06bhzjvvhBACqampyMrKcvpnIyKyRPflamm9ntTUgr+HuRSIj4+v9Xx3rvBsazBwRICoT7jzxhWgGXzcJDHRdYHHtEfG1Geffab/e5MmTbB48WIsXrzY4vX9+/dH//79jY6ZTou/5ZZbsG3bNouvYW7tHyIiV7C2Xo+12h7TFZ5N98/S9RiZCwOeVudiSX16ljyhvfZg8CEiIp9iy47n1tTVY2TK1jAxePBgxMTE2BQoLPU2NZQre5bchcGHiIi8SnGxdoZs69b29ZzXteN5XerbY2QaEiyFFl0RcF29KdZ6m2xhrffpwoULNr+Ot2LwISIir7FixfW10GQy7WSRv+de1EtD1utpSI+RYWgBNOjWLQ9du+41en9rvSn17W0y5ahiZGvts9YT5ayeqvpg8CEiIo+nVCpRVFSDUaNioNFoF+XTLgArcPPN55Cc7FfvmhN71+uxt8fINLQAMuzZczvy8jJt7rWxtz5Jx5lDVHX1RDW0p8pRGHzsIIRwdxMaPd5jItLR9VIUFiZDoxludE6tlvDGG1uRknLSpQW39vQYmd9Won69Ng2tT6ovW3to6uqJquu8K9dIYvCpB926N1VVVQgKCnJzaxo33f+VmK41RES+R/ffg7q+9C31ZuhqWlQqlU1f5LZ+CVvqMTKtk9E9Nr+thFZdvTbWVmh21orMtvTQ6N7PUk/U6dOJKCv7C5cvB5s9f/vtw3HXXeDKzZ7Kz88PwcHBOH/+PPz9/SGTcY9XZ9BoNDh//jyCg4Ph58dfUSLSsmeIqfaihblmv8gHDx6M8PBwq9PKbQ0VGzdutNr+zz/vD9M9wuvqtYmMjEROTo4+3E2ffh5FRX5ITq5p0IrMloKgrbVEunYVFdVgzRqhH4bUfaZPPnnw78+qgeneYXI50LVrJFw9K57fKvUgSRLi4+NRWFiIkydPurs5jZpMJkPLli0hSVLdFxORz6jvEJOtixaGh4ebXbTQkGn40Llw4YJR2LHWq6Rr/969XZGXl1mvGiHDUBMfD2RkWL28TtZ6dOqqJTIMgZGR2vCi3ZVAQK2W/u7ZAq4HPG34kSQBIWSQywWWLZNcvoAvwOBTbwEBAWjdurVXr2HgDQICAtijRkRm2VKUrJvyHham/e9IQ4uCderqUbFleEihqMR9932Nrl33um0X+LqC4NCht9bqwZHLBcaO7WuxkDw7G7j55nN4442tuHw5BJ988pDJFTIMGvQRQkKuYOzYvsjIiHXmR7SIwccOMpkMTZo0cXcziIjIQHl5OQBg7dogTJqkgEYjQSaLQf/+nZGaWuD0ouD6TjW3FOBcUehbVxC86aZwLF8umewrKdUZVpKT/ZCSchIqVajZ+92iRTEUikokJ7svfjD4EBFRo/DRRx9BpQrFwoW5EEI35V3Cpk39kZu7sEGLFtrC1l4lS0NhAwcOREJCglMLfXWhqq5C8YCAALv2lTQcDmzevAKTJyugVkuQywXmzq3AI48Mcfv2HAw+RETUaFgLHw1ZtNAc3Wwxa7O2THuVrA2FRUVFOT0Q1DeY2LOvpO65EyYAWVm64CQhMTEcQLhDP489GHyIiMij1Wfop67wYe+ihabMrYBc16yzhq667CiuDCau3JDbVgw+RETk0SzNpjKkUqmwfv36Bu/DZStL+2+lphYgN3eh2V4lRxVYO5InBhNnY/AhIiKPV58hIHuGtBpSUGzrVgyuXnWZzGPwISKiRsfSkNbAgQMRFRVldKwhxbZ1DV8NHDgQgHZRQ1f1RpF1DD5EROQzoqKi6lyosD7qGr4yDVmOLrCm+mPwISKiRk9Xg5OfX64/5ohp1bYMX5kOo7lz/R5i8CEiokbAWmgwrMF57z3jGpyG7uhuy/CVLcXZ7l7bxpcw+BARkdczDRe6/bPqqsFxxPZDtgxfMdR4DgYfIqJGRrdPVevWvjVV2Vy4cNYUcg5feS8GHyKiRmTFCmDUKECjAWQy7Y7Z2dnubpX7OGsKuSOHr3w1qLoLgw8RUSNRXHw99ADaP0eP1u635KtfqM6cQu6I4SsGVddj8CEi8mKGvQXHj18PPTpqtXZLAl8NPoBnTiFXKpUoKqrBqFEx0Gh0G6oCo0cL3HzzOSQn+7EuyEkYfIiIvJRpb8GcOdo/DcOPXK7dWdvXOWqPLkfQ7fNVWJgMjWa40Tm1WsIbb2xFSsrJBs84I/NkdV9CRESextyw1tSpAv/+twpyuQCAv3fcLodcXgKlUunG1pIhXV2Qrv7IkGH9kSNmnFFt7PEhIvJC5oe1JJw+/SnGjSvTD+tculSJ5cu1532pB8HW2VTunHXFLSzcg8GHiMgLtW5de1hL11tgaVjHl3oQvGXRQE+sP2rsGHyIiCzw1GnGSqUScnkVXn01CJMnK6BWS+wtMMPdocZWnlR/5AsYfIiIzPDUaca6wlidceNC2VtAVA8sbiYiMmFpPZziYve2C6g9XKVQVCIl5SRDD5GNGHyIiExYWw+HiLwbgw8RkQld4bAhrofjvYqLgR07PKPHDvCOGWeNGWt8iIhMJCZqa3pGj9b29MjlwLJlnlXg7G6eWvhtyhNrtbxlxlljxeBDRGRAqVSiqqoK//gHsHevDEVFfkhOrkFCggYlJd79heSoHgRPDBOmPH1LCG/9HWoMGHyIiP5mOmNKJz/f+LGtCwG6s1dk4MCBiIqK0j92VGDzho1QuSUEWcPgQ0T0N1sX+LPlOnf3ikRFRSE+Pt6hr6lUKvHjj4BGYxwW1Gpg714lgoLc25OhC5phYTUArm8JIcT1gi1uCUEsbiYicjBnTod3V2Gsrhdlz57VZveX2r17NZYsWWLTnmCOKDY2fI3iYmDiRCApCejZE7j11hgcONBZvyWErr1c5JEA9vgQETmctenwDR0OcldhrO796tpfqq5eFEf0hBm+hiQBQhif12gkbNrUH6mpBdwSgmph8CEicjBz+2g5cjq8u+tS7AkTv/xyEXv2CDz9dDMIYX+xsWlvmmno0RFChrKyCP12EAw8pNMoh7refPNNJCcno0mTJujatSt++ukndzeJiHyIbjq8XK593Binw9dnxehFiy6hUycFnnoqQh96dHTFxrYOk5nrTTPHsJaHyFCj6/FZv349xo8fj7fffhtdu3bFwoUL0bt3bxw7dgwxMTHubh4RNXKNeTp8femmlI8fH1Mr8OjUt9jYXG+aKZlMoH9/1vKQeY0u+CxYsABPPvkkHn/8cQDA22+/jS1btuDdd9/FlClT3Nw6ImrMHD0d3ptZm1KuU99iY8Nd6SdNUvy9Po/m7zofGQANunXLQ9euexl6yKJGFXyqqqqwf/9+TJ06VX9MJpOhV69eyMvLM/uca9eu4dq1a/rHFRUVTm8nEXmmhs6YcuR0eG+n+4zmppRraZCd/X9ITCyx6fVMQ+Uzz1zflR6AXcXL3BLCNzWq4HPhwgWo1WrExsYaHY+NjcVvv/1m9jmzZ8/GzJkzXdE8IvJw3ErAMYqLgR9/DIBKFQqFohKZmXnYs+d2k6tkqK62PXiY25XeMORYCzymizkC/OfoyxpV8LHH1KlTMX78eP3jiooKtGjRwo0tIiJ3aixfho5eNdrW3pGPPgrF+PHaRQ4lKRcDBmxG1657sWdPJgzn07iy+NgZizmS92pUwScqKgpyuRxnz541On727FnExcWZfU5gYCACAwNd0TwiIj1LwcQRgcUZq0bb0ht24UIT3HxzU4Op5jJs2tQfubkLcf/9ltf+IXKlRhV8AgICkJGRgW+++QYPPPAAAECj0eCbb75BTk6OextHRPS3tWuDMGlS7WDiiMDizL20rPWGKZVKHDumqTXbSreeDhcSJE/RqIIPAIwfPx7Dhw9Hly5dcOutt2LhwoW4fPmyfpYXEZE7qVShePFFRa1g0rFj3YGlrt4gd+2lpSs8VqlCIUm5FvfGqmshQRYbkys0uuCTlZWF8+fPY/r06SgtLcXNN9+ML7/8slbBMxGRO5SVRf49Dfs6tRrYtcv6Nhd19QbVFT52716N/PzKBk2lNw1eppuC1rWdhSUDBw5EQkJCo6mvIs/W6IIPoF0jg0NbRORqtvRYREQoIZMJo/AjkwnExhZAJkszOi6XC4SGnsMvvwRg1KhmVnuDHLWXliWmwWvYMGDNGt3jGPTv3xnp6QftGtKKiopyauhhTxIZapTBh4jIHawVAJeXl+Ojjz6CQlGJ/v03GQWT/v034/jxg+jfv7PR8X79NmPz5oNmFwG0NnxVV/iobwG1ubqh1auvnzfcFNRZe2PZE14GDx6MmJgY9iSREQYfIiIHsuVL1lIwsXTc3CKApsNXpiyFD0uF1dbYsj+W4aagzmAaKlUqFaqrq42u8fPzQ3h4OACu00OWMfgQEbmBLpioVKEoLExGRITSYm+Jo4avLBVW1zXjy5b9sRqyLo+tvTmGQYbr8pC9GHyIiNzkwIHOtcJMevpBs9c6Yjq4pcJqazO+DPfHmjxZAbVaglwuMHDgX9i4MUj/uF8/24qYuYIyuRuDDxGRG6hUofrQA1xf7E9XJ2NOQ2tnbBkyMwwhpvtjjRsXahS8EhO1jx944CYcPmw+sBniCsrkCUx3jSMiIhcoK4ustXGnrk7GWXRDZpKkHbOqa8jM3P5YKSkn9dfrHh8+vMWm9+fsKvIE7PEhIpdz9D5S3shS74uz6mRUqlCUlUUiNbUAubkLnbqCMoe0yJMx+BCRSzljHylvZO9if5ZYm0q/fLkaCxcm2FRL5Agc0iJPxuBDRC7jzH2kPJ25HhlH719lrkeluBh48UUBIbRFzbbUEhE1ZqzxISKXMbcejG5bhsZO1yMzcOBAo+OmdTM6AwcOxODBg216bWvDXNp7bjyTy9m1RESejD0+ROQy5taDkcuBtDT3tUlHV3fUtClw6ZJz6o8iIyNtXnNHN1xkafhKp67aGe09N94ioyG1RETejsGHiFwmMVFb0zN6tLanRy4Hli1z/zCXYd2RjqfUHzWkIFi3Bs/06WrMnJngkFoiIm/H4ENELqFUKlFVVYV//APYu1eGoiI/JCfXICFBg5IS9836Ma070vH2+iPTNXhyc0PrrCUyHTLj9HNqjBh8iMjpTL+EdfLzjR+bLqDnCtb2odLVH3lj8DG3Bo+5wKObem4ueJrOFNNttFoXBibyZAw+ROR0tta12HqdoyiVSoSF1UAmi6lVAAxoa2NCQ89BqfRzWCCzNRS4KjzUNfXcdH+shtYcEbkbgw8R+STDXqj+/TsbbB8hAEiQJA3699+MzZu16904qjfK2no7Op4cHjy1XUS2YvAhIp9kGDwM19Px969CdXVArVoYR/ZGMTwQuQ+DDxERGr4BKBF5By5gSEReqbgY2LFD+2dj0Ng+D5GnYvAhIq+zYgWQlAT07Kn9c8UKd7eoYRrb5yHyZAw+RORVLO335a09Jc76PJ42e4zIU7DGh4iczlFfwkqlEj/+CGg0xsXBajWwd68SQUHeVzhsbf+yhqwf5O2zx4ichcGHiJzOli/hCxea4MiRZhb3yNJNP1epQiFJuX9PPdeSJA12716N/PxKtyyC2BDO3L/Mm+4DkatwqIuIXCIyMhLx8fFmf774Ih4339zMao2LLjQpFJUYMGAzJEmbFEz3nrJ12nl9h3icNSSk279MLtc+9pT9y4gaK0kIIdzdCE9SUVEBhUIBlUqFsLAwdzeHqNErLtaGHdMej6Ii4y//kpISLF++XP9YpTK/99SoUaOsrkRsSKlUoqioBvn515CQcBlxcTVG5/38/BAeHu6SIaHiYu3wVloaQw+RPWz9/uZQFxG5TUNqdhyx7s5nn0XqC4vt2Y29uFhbo2NpeK4+EhMZeIhcgUNdRGS3utaesXZeV7OzZ89q/bCVjq5mZ8mSJVAqlU5oecNnU3EKOpF3YvAhIrvU9cVf13lH1+zUh7anSWl2NtXevco6w5ajpqArlUqUlJRY/HFW6CPyZRzqIqJ6s/TF37u3drimrvOmDPfKMq3ZcTRHzA5zxBR0w01SrfG2WWpEno49PkRUb9a++O3tTVEoKpGScrLBoefMGZnV4beG9jQplUqEhZ2FTGY8L0QuFwgNPWtzL42tPVnO6PEi8mXs8SGietF+8ddAJouBRiPpj8vlAkIUYMmStTb1ptSXLdPJDxzojBdfjLG5WLm+PU2GvTT9+3fGpk39IYQMkqRBv36bsXnzQQDspSHyZAw+RGSzur74v/9e+8Wv600xPN/Quh1riyCqVCqcPi3w4ott9WFMO7wmcPPN55Cc7OeQ2WGG720tNLGXhshzMfgQkc1s/eK35bw9zIUXpVKJ9evXo7AwGRrNjUbn1GoJb7yxFSkpJ53SC+OIKfVE5FoMPkRkt7q++F0RDHRhLCJCCUnS1Bpei4goM7qOiHwbi5uJyC3M1eyoVKEoLEyGShVq9Tpz6ipWJiIC2ONDRG5iWrOzdm0QXnxRAY1Ggkwm8OqrKowYoa7X8JQrp8UTkXdijw8RuU1kZCQCAgJw5owMkyYpDAqTJUyerEBRUU29F/Gra1q8rgfJXO+SueucxdbXd3Y7iHwNe3yIyG10s8S0hcnDjc45qzA5MjIS4eET8OKLIUa9S4888pf+GldsSmptlpor20Hkaxh8iMjldL0Y7ihMLi4Gxo9varCqtITJk8ORlRVe56rLju6lYaghcj0GHyKyma1f6FlZWVAoFBZfw/QLv651fxypIdtNsJeGyPsx+BCRzZz5xW9vYXJ9e2Fat9au6mwYfuRyIC3NtnYy1BB5NwYfIqoXZ37x27PuT33DWGKidiuL0aO1PT1yObBsme2bixKRd2PwISKvZ2sYUyqVqKqqwj/+AezdK0NRkR+Sk2uQkKBBSQmHqYh8AYMPEfkEw33GDOXnGz/mBqNEjRvX8SEin2DrzDBubUHUuDH4EJHbcBE/InI1DnURUYPpamcA4MwZGQoL/ZCSoq2dASzXznB6OBG5GoMPEVlUXKxd96Z1a8uzngxrZw4c6FxrLZ709IMALNfOMNQQkStxqIuIjCiVSpSUlGD+/HIkJQn07AkkJQnMn1+OkpKSWntn6XprVKpQfegBACFk2LSpv34vLNbOEJEnYI8P0d8Mh2vM8YUhF13vjUoVioULcyHE9U1DJ04Mw59/vguFohKDBw9GeHg4AODChQsAgLKySKMtJwBt+Ckri+Au6UTkMRh8iGB5qrMpb57qbEsdju68tRADAHPn/oSICKVRoKlrv636sGWIjYjIHgw+RGj8U51trcPJysoCYDnEnDmTgPfee8zscx2139aKFcCoUdotJWQy7SrL2dkNvwecQUZEAIMPkUN4+jBZXXU4qakFUCgqUV1dDcB8iOnV62t8/XUvi88F7N9vS6e4+HroAbR/jh4N9O7d8J4fziAjIoDBh6jBTIfJVKpQlJVF1hoK8oRhsvrU4ZiGGFufa89+WzoN2TndFu6+/0Tkfgw+RGZYCi/mGPYgWBtG8oRhsvrW4ZiGGEfV8FjS0J3TiYjqwunsRCYOHOiMhQtzsXr1cCxcmIsDBzrb9Ly6pnN7At0QliRpk0V96nAa8lzAttoZ3c7pcrn2MXdOJyJHY48PkYG6amCs8Zbp3A2pw7H23IEDByIqKsrs82ypneHO6UTkCgw+RAYaEl4cOZ3b2SzV4fj51f2fBEvPjYqKQnx8vF3t4c7pROQqDD5EuD4MU1d4KS8vr/Vc3QJ+jprO7U7h4eG1Zj6pVCqsX7++zuc2ZBp4Y19OgIg8B4MPEYynOjdvXoHJkxVQqyXI5QIzZpyFWq0NLx999JHV12nodG5nqc8aNqY9KvHx8ZwGTkSNhs3Bp6KiwuYXDQsLs6sxRO6k++KeMAHIytJOoU5LkyCXawtubdWQ6dz2sHUNoYaEF1tDDVdcJiJPZ3PwCQ8PhyRJVq8RQkCSJKjV6gY3jMidEhOvf3GXlBifq89Ud0POWBHYk9YQctaKy0REjmRz8NmxY4cz20HkFayt09PQWU328JQ1hJy54jIRkSPZHHx69OjhzHYQeby6pro3ZFaTs9vmTEqlEj/+CGg0xsFOrQb27lUiKIgrJhOR57C7uLm8vBwrVqzA0aNHAQDt27fHyJEjoVAoHNY4Ik/iyev0uLJthnU8QUHaoTaVKhSSlFtrNtzu3auRn1/JaehE5DHsWrn5559/RmpqKl5//XWUlZWhrKwMCxYsQGpqKg4cOODoNhJ5BN1Ud0Oesk6Pq9q2YgWQlAT07Kn9c+FCPxQWJgOA1VWd6xpq487pROQqdvX4PPvss7j//vvxzjvv6Bc8q6mpwRNPPIHc3Fx8//33Dm0kkSfw5HV6XNE2c3U8L70UBmC4/v1ycxfaNZWfO6cTkavYFXx+/vlno9ADaFd8nTRpErp06eKwxukUFRVh1qxZ+Pbbb1FaWoqEhAQ8+uijmDZtmtH/AR45cgRjxozBvn37EB0djbFjx2LSpEkObw/5FsPfMWvr9Li7N8Ja21QqldXn1hUqLNXxANqZnrqaotzchUhJOWlX+xlqiMgV7Ao+YWFhOHXqFNq2bWt0/PTp0wgNdfyGjL/99hs0Gg2WLVuGtLQ05Ofn48knn8Tly5fx2muvAdCuM3TfffehV69eePvtt/HLL79g5MiRCA8Px6hRoxzeJvId3tQbYWkNIVtWXjatw9HV8kRFXcTGjebreAx5Sr0TEZE1dgWfrKwsZGdn47XXXkO3bt0AALt378bEiRMxZMgQhzYQAPr06YM+ffroH7dq1QrHjh3D0qVL9cHngw8+QFVVFd59910EBASgffv2OHToEBYsWMDgQw3mCaHGHHt6mSyt9WMY7IzX5AlH//6dkZ5+0Gg4DRDQ9fgAnlPvRERkjV3B57XXXoMkSXjsscdQU1MDAPD398fTTz+NOXPmOLSBlqhUKkREROgf5+XloXv37kZfBL1798bcuXNx8eJFNGvWzOzrXLt2DdeuXdM/rs8K1UTuZktvVHl5uX6rDWtr/QDaIa2iohqMGhUDjUYbajQaST813nA47cyZBHz9dS+Pq3ciIrLGruATEBCARYsWYfbs2Thx4gQAIDU1FcHBwQ5tnCUFBQV444039L09AFBaWoqUlBSj62JjY/XnLAWf2bNnY+bMmc5rLJGT2dobVddaP7qAVFiYDI1muNFzDYexdD8pKSdx0035HrcvGRGRNXZNZ9cJDg5Ghw4d0KFDB7tCz5QpUyBJktWf3377zeg5f/75J/r06YOHHnoITz75ZEOaDwCYOnUqVCqV/uf06dMNfk0iT2RprZ/Tp7VLK58/fx5A/abG6wJQXaHH3YXfREQ6dvX4XL16FW+88QZ27NiBc+fOQaMx/o+krWv5TJgwASNGjLB6TatWrfR/P3PmDO6++25069YNy012jYyLi8PZs2eNjukex8XFWXz9wMBABAYG2tReIm+mCzSm4eeTTx5EVdVmANptaRwxNd5w+w5PKfwmIgLsDD7Z2dnYtm0bHnzwQdx66611bl5qSXR0NKKjo2269s8//8Tdd9+NjIwMrFy5EjKZ8X+8MzMzMW3aNFRXV8Pf3x8AsH37drRp08biMBd5Flt3GSf7mAaa62pvb2Ftarwt3Ll9BxGRNXYFn82bN+OLL77A7bff7uj2mPXnn3/irrvuQlJSEl577TV9lzxwvTfnkUcewcyZM5GdnY3JkycjPz8fixYtwuuvv+6SNlLDmO4ybgm3PmiY9PSDCAi4hk8+ecjouLmp6JamxhMReTO7gk/z5s2dsl6PJdu3b0dBQQEKCgqQaLLVsxACAKBQKLBt2zaMGTMGGRkZiIqKwvTp0zmV3UvYunu4s3cZb4xM62tatDhda8iLU9GJyFfYVdw8f/58TJ48GSdP2rdCa32NGDECQgizP4Y6duyIH374AVevXkVxcTEmT57skvYReTLdlPeBAwcCuD7kZWlfLSKixsyuHp8uXbrg6tWraNWqFYKDg/U1NTplZfw/RyJPEhkZadRb1tAaHiIib2VX8BkyZAj+/PNPvPLKK4iNjbW7uJmI3Ic1PETki+wKPnv27EFeXh46derk6PYQkZsZTkU3deXKFbz//vt1vgbX7SEiT2VX8Gnbti3++usvR7eFiJzI1jCSkJBgdeact2zYSkRkjl3BZ86cOZgwYQJefvlldOjQoVaNT1hYmEMaR0SO46hd5hlqiMib2RV8dDul33PPPUbHhRCQJAlqtbrhLSOfYmtvBIdQGoahhYh8nV3BZ8eOHY5uB/k4096IM2dkKCz0Q0pKDRIStNOuOYRCREQNZVfw6dGjh03X/etf/8KLL75osVCSyJAu1KxYAYwaBWg0gEwGLF8OZGe7uXFERNQoNGh39rq8//77qKiocOZbUCNTXHw99ADaP0eP1h4nIiJqKLt6fGxlurIyUV2OH78eenTUaqCgADDZraTR46atRESO59TgQ1RfrVtrh7cMw49cDqSlua9N7mC6aatKFYqyskhERCiNFh3kpq1ERPXD4EMeJTFRW9MzerS2p0cuB5Ytc2xvjzf0pBi278CBzti0qT+EkOn31UpPP1jrOiIiqhuDD3mc7Gygd2/t8FZamuNDj2FPiiWe0pOiUoXqQw8ACCHDpk39kZpawO0miIjswOBDHikx0Tk1Pbb2kHhKT0pZWaQ+9OgIIUNZWQSDDxGRHeo9q6umpgYvvvgiim2YZvPoo49yFWeiBoiIUEKSjKu9JUmDiIgyN7WIiMi71Tv4+Pn5Yd68eaipqanz2qVLl3INH6IGUCgqMWDAZn340dX4sLeHiMg+dg119ezZEzt37kRycrKDm0NEptLTDyI1tQBlZRGIiChj6CEiagC7gk/fvn0xZcoU/PLLL8jIyEBISIjR+fvvv98hjSMiLYWikoGHiMgB7Ao+//rXvwAACxYsqHWOm5QSNRw3bSUicg67go/GdGldIg9kbr2eCxcuGD22tDCgu5lu2mqOJ6w3RETkbewKPu+99x6ysrIQGBhodLyqqgrr1q3DY4895pDGEdnLlvV6rC0M6Ak9KQw1RESOJwk7NtSSy+UoKSlBTEyM0XGlUomYmBivHuqqqKiAQqGASqXiVHwvVlJSguXLl1s8r1KFYuHCXKM1cuRygb17zyE52Y+hg4jIy9j6/W1Xj48QApIk1TpeXFwMhUJhz0sSuZS5hQHVagmVlbFg5iEiarzqFXw6d+4MSZIgSRLuuece+Pldf7parUZhYSH69Onj8EYSOZpuYUDjHh/f2wyViMjX1Cv4PPDAAwCAQ4cOoXfv3mjatKn+XEBAAJKTkzFo0CCHNpDIGXQLA27ZMgBqteSUzVCJiMjz1Cv4vPDCCwCA5ORkZGVloUmTJk5pFJErpKcfxPTpXVFZGevwzVCJiMgz2VXjM3z4cADaWVznzp2rNb29ZcuWDW8ZkQskJGgQH+/uVhARkavYFXyOHz+OkSNHYs+ePUbHdUXP3jyri4iIiBovu4LPiBEj4Ofnh82bNyM+Pt7sDC8ia8wtLmiooYvzma7DY2mhQk9Yr4eIiFzHruBz6NAh7N+/H23btnV0e8gH2LK4IADk5OTYHH7MBamsrCxUV1dj48ZmWLSoOTQaCTKZwKuvqvDII39x5WMiIh9kV/Bp165draX/iWxlrafHnuusBanrCxVqeyU1GgmTJ4cjKyu8Xuv1OLuHioiIXMOu4DN37lxMmjQJr7zyCjp06AB/f3+j81zxmFzJWiAxv1AhUFBg+ywuZ/RQERGRe9gVfHr16gUA6Nmzp1F9D4ubydM4YqFCR/dQERGR+9gVfHbs2OHodhA5hW6hQt1mpFyokIjIt9kVfHr06IEffvgBy5Ytw4kTJ/DJJ5+gefPmWLNmDVJSUhzdRiIjpvU2ddWbpacfRGpqAW6/fTi6do1scOgxnSGme5yfX66/hjU/RESeya7gs2HDBgwbNgxDhw7FwYMHce3aNQCASqXCK6+8gi+++MKhjSTSsbXexpRCUYlu3aoavFjhgQOd9b1HkqRBx45HcORIRwghw3vvaTBgwGakpx8EwJofIiJPJKv7ktpeeuklvP3223jnnXeMCptvv/12HDhwwGGNIzLlzjoalSpUH3oAQAgZDh/uZPR406b+UKlC3d5WIiIyz67gc+zYMXTv3r3WcYVCgfLy8oa2iRo5WxcN9LTFBc3NEAOMF+8UQoaysgjXNYqIiOrFrqGuuLg4FBQUIDk52ej4rl270KpVK0e0ixqxyMhI5OTkuHxdnIYGKXMzxAABw/AjSRpERJQ16H2IiMh57Ao+Tz75JJ555hm8++67kCQJZ86cQV5eHp577jk8//zzjm4jNUKGoaa4GDh+HGjd2jGzrVSqULRseQ/atw9AXFwNAMDf3x9VVVUoKSmpd6jSBSbTGWKmNT6SpK3xMdwSg4iIPItdwWfKlCnQaDS45557cOXKFXTv3h2BgYF47rnnMHbsWEe3kRqxFSuAUaMAjQaQyYDly4HsbPtfz7T42LDY2FB9Co9Ne6hyco7hgw/2IiKiDApFJXr2/BZlZRH6x0RE5LnsCj6SJGHatGmYOHEiCgoKcOnSJbRr1w5NmzZ1dPuoESsuvh56AO2fo0cDvXvb1/Njrvh406b+SE0tqBVI6lt4bBqSUlJO6v+uUFQy8BAReQm7go9OQEAA2rVr56i2kI85fvx66NGp73YShswVH+uKjRlMiIgIsHNWF5EjtG6tHd4yVNd2EtYKlHXFx4acUWzsrbPSiIiogT0+RA2RmKit6Rk9WtvTY8t2EnXNCFMozmDmzIQ6i41NV3uuT8Gzu2alERFRw0lCCOHuRniSiooKKBQKqFQq7jLvIsXF2uGttLT6D3GZzggrKSnBvHkf2lVszJWWiYi8l63f3+zxIbdLTLSvpsfcjLB//MP+YmOutExE1Pixxoe8kqUZYWfO8FeaiIgs47cEeSVLM8KKi5sYHVOpQlFYmKzfP4uIiHwbh7rIK+lmhBmGH7kcyMhQ4I47tIXHa9cG4cUXFdBoJKuLGRIRke9g8CGPplQqzdbeyOXAq68GYfJkBdRqyWRGWCSKi4FJk64HI8PFDAHtmj8REUqu70NE5GMYfMhjKZVKLFmyxOo148aFokePbGRkKIwKpM0NhQkhw969XZGXl1nnlhZERNQ4scaHPJYts6wUikrceuuVWrPCzC2OKEka7NmTWWtLC9b/EBH5DgYfapR0iyPK5drHkqRBZmYeTH/ldVtaAFxpmYjIF3Coixqt7GzthqcFBUBkpApVVWm49VYBjUbSXyOXC4wd2xfJyX5cvJCIyAcw+FCjdn1xxGYAzG2RISEjI9atbSQiItdh8CGfYtgLZM8WGURE5N0YfMgjKZXKWhuJOoq9W2QQEZH3Y/Ahj2PLNHYiIiJ7cFYXeZz6bhbK2VhERGQr9viQ11CpQo1WXB44cCASEhI4G4uIiGzG4ENOZWnLCZ2AgACbgsuBA52xaVN/oxWXR42KYughIqJ6YfAhp7G1VicnJ8dqgFGpQvWhB7i+4vL06ecRH++w5hIRkQ9gjQ85ja21OnVdV1YWqQ89OkLIUFTE3E5ERPXD4EMeLyJCCUky3nFUkjRITq5xU4uIiMhbMfiQV9Dus6UNP7oan4QEjfUnERERmeBYAXkcw+nppkXNmZm70bXrXigUlQgIuN2NrSQiIm/kdT0+165dw8033wxJknDo0CGjc0eOHMGdd96JJk2aoEWLFnj11Vfd00hqkMjISOTk5KB//6ewefMAo6LmvXu7YejQoXUWRBMREZnjdcFn0qRJSEhIqHW8oqIC9913H5KSkrB//37MmzcPM2bMwPLly93QSmqoyMhIVFTEGu2kDgBqtYTKyliGHiIisotXBZ+tW7di27ZteO2112qd++CDD1BVVYV3330X7du3x8MPP4xx48ZhwYIFbmgp1ceFCxegVCprHW/dGpCZ/IbK5drNRYmIiOzhNcHn7NmzePLJJ7FmzRoEBwfXOp+Xl4fu3bsb1Yf07t0bx44dw8WLFy2+7rVr11BRUWH0Q45h61YSGzduxJIlS2qFn8REYPlybdgBtH8uW8YNRomIyH5eEXyEEBgxYgSeeuopdOnSxew1paWliI2NNTqme1xaWmrxtWfPng2FQqH/adGiheMa7uN0tToDBw606Xpz6/lkZwNFRcCOHdo/s7Md20YiIvItbp3VNWXKFMydO9fqNUePHsW2bdtQWVmJqVOnOrwNU6dOxfjx4/WPKyoqfCr8OGpLCUsiIyP1r2+615atEhPZy0NERI7h1uAzYcIEjBgxwuo1rVq1wrfffou8vDwEBgYanevSpQuGDh2K1atXIy4uDmfPnjU6r3scFxdn8fUDAwNrva6vcNSWErYwt9dWevrBBr0mERFRfbk1+ERHRyM6OrrO6xYvXoyXXnpJ//jMmTPo3bs31q9fj65duwIAMjMzMW3aNFRXV8Pf3x8AsH37drRp0wbNmjVzzgfwco7aUqIuZ87IzO61lZpaYNTzc+HCBf3fG9rTREREZI5XLGDYsmVLo8dNmzYFAKSmpiLx7zGQRx55BDNnzkR2djYmT56M/Px8LFq0CK+//rrL2+vpdMNbhkHDmQoL/czutVVWFmEUfDZu3Gh0DdfqISIiR/OK4GMLhUKBbdu2YcyYMcjIyEBUVBSmT5+OUaNGubtpHsXW4S1HSkmpgSRpjMKPJGkQEVFm9XkN7WkiIiIy5ZXBJzk5GUKIWsc7duyIH374wQ0t8h7uCBMJCdqanuvDXZq/994iIiJyLa8MPuRdAgICkJ5+EKmpBdi7tyvy8jKxZ8/tyMvLxIABm5GaWmDXbC8iIqL6YvAhp9Ot51NUVINFi2IghHYbCiFk+Pzz/pAkcLYXERG5hFcsYEjez9LeW4Cs1mwvlSrU9Q0kIiKfwOBDeipVKAoLk2sFD1u3nqiLub23TOlmexERETkDh7oIQO0FBl944QxGjZI7dD0d3d5bo0cLqNUSAA0A6e8fLVtmexEREdmLwcfHqVShOH26Ra0FBmfNao7sbAmOXkYnOxu49dZyzJ//X0RElOHEibRaKzrrCpwd1dNERESkw+DjYwzDhGEvjym1WkJBgXP2yOrQoRnmzx+gn1o/ffp5FBX5ITm5BgkJtwC4hSs3ExGRU0jC3II4PqyiogIKhQIqlQphYWHubo5TKJVKFBXV4NZbY8wUG2vJ5drd0Lk5KBEReQNbv7/Z4+OhnLlremRkJI4cATQa8+flcmDZMoYeIiJqfBh8PJArdk3XzbAyDD8yGbBuHZCZydBDRESNE6ezeyBX7Jqum2Ell2sfy+Xaxw89xNBDRESNF3t8fFh2NtC7N1BQAKSlMfAQEVHjx+DjBVSqUKftZZWYyMBDRES+g8HHw5kuLMi9rIiIiOzHGh8PplKF1lpYkHtZERER2Y/Bx4OVlUXWWlyQe1kRERHZj8HHg0VEKCFJxovtcC8rIiIi+7HGxwPptpVQKCoxYMBml+9l5czFE4mIiNyJW1aY8JQtKwzDx5kzMoO9rLQ9QM4KH65YPJGIiMjRuGWFlzMMFfHxQEaGa97XFYsnEhERuQtrfIiIiMhnMPg0IsXFwI4d2j+JiIioNgYfL6dUKlFSUoL588uRlCTQsyeQlCQwf345SkpKoFQq3d1EIiIij8EaHy+mK0RWqUKxcGEuhJAAABqNhIkTw/Dnn+9CoahsUCGyM7fLICIicjUGHy+mKzC2ttChQlFpdyEyt8sgIqLGhkNdjYAzFjrkdhlERNQYMfg0ArqFDnXhx3Shw/rQLYpY13YZzlo8kYiIyJk41NVIpKcfRGpqAcrKIhARUWZ3PU5kZCRycnJQVFSDNWsENBpJf04uFxg7ti+Sk/24eCEREXklBp9GRKGodEgBcmRkJCIjgeXLgdGjAbUakMuBZcskZGTEOqClRERE7sHgQxZlZwO9ewMFBUBaGpCY6O4WERERNQyDD1mVmMjAQ0REjQeLm72YrQXG9hYicyVoIiJqbNjj48V0hcjW1umxdxf3FSuAUaMAjQaQybT1PtnZDWktERGR+zH4eDlHz65SKpUoKqrBqFEx+hldGg0werTAzTef44wuIiLyagw+pKfbAqOwMBkazXCjc2q1hDfe2IqUlJMN2gKDiIjInVjjQ3q6IbO6VoK2dwsMIiIid2PwoVocuRI0ERGRJ+FQF5nlqJWgiYiIPAmDD1nkqJWgiYiIPAWHuoiIiMhnMPgQERGRz2DwISIiIp/B4EN6zt4Cg4iIyN1Y3Ex6ztwCg4iIyBMw+JARhhoiImrMONRFREREPoPBh4iIiHwGgw8RERH5DAYfIiIi8hkMPkREROQzGHyIiIjIZzD4EBERkc9g8CEiIiKfweBDREREPoPBh4iIiHwGgw8RERH5DAYfIiIi8hkMPkREROQzGHyIiIjIZzD4EBERkc9g8CEiIiKfweBDREREPoPBh4iIiHwGg4+HKi4GduzQ/klERESOweDjgVasAJKSgJ49tX+uWOHuFhERETUODD4eprgYGDUK0Gi0jzUaYPRo9vwQERE5AoOPBzAc1jp+/Hro0VGrgYIC97SNiIioMfGq4LNlyxZ07doVQUFBaNasGR544AGj86dOnUK/fv0QHByMmJgYTJw4ETU1Ne5prI1Mh7V+/hmQmfxTkcuBtDT3tI+IiKgx8XN3A2y1YcMGPPnkk3jllVfQs2dP1NTUID8/X39erVajX79+iIuLw549e1BSUoLHHnsM/v7+eOWVV9zYcsvMDWtNnQrMnQtMmaLt6ZHLgWXLgMRE97aViIioMZCEEMLdjahLTU0NkpOTMXPmTGRnZ5u9ZuvWrejfvz/OnDmD2NhYAMDbb7+NyZMn4/z58wgICLDpvSoqKqBQKKBSqRAWFuawz2DOjh3anh5zx9PStMNbaWkMPURERHWx9fvbK4a6Dhw4gD///BMymQydO3dGfHw8+vbta9Tjk5eXhw4dOuhDDwD07t0bFRUV+N///mfxta9du4aKigqjH1dp3drcsJZAaOhZyOUlaNOmBHJ5CUpKtD9KpdJlbSMiImqMvGKo648//gAAzJgxAwsWLEBycjLmz5+Pu+66C7///jsiIiJQWlpqFHoA6B+XlpZafO3Zs2dj5syZzmu8FYmJwJw52mEtjQaQJA369duMzZsPWnxOTk4OIiMjXdhKIiKixsOtPT5TpkyBJElWf3777Tdo/i6CmTZtGgYNGoSMjAysXLkSkiTh448/blAbpk6dCpVKpf85ffq0Iz6aTVasMAw9Ar16fY30dMuhBwCqqqpc1DoiIqLGx609PhMmTMCIESOsXtOqVSuUlJQAANq1a6c/HhgYiFatWuHUqVMAgLi4OPz0009Gzz179qz+nCWBgYEIDAy0p/kNYlrYLISEr7/uhZtuyodCUeny9hAREfkCtwaf6OhoREdH13ldRkYGAgMDcezYMdxxxx0AgOrqahQVFSEpKQkAkJmZiZdffhnnzp1DTEwMAGD79u0ICwszCkyewtx6PULIUFYWweBDRETkJF5R4xMWFoannnoKL7zwAlq0aIGkpCTMmzcPAPDQQw8BAO677z60a9cOw4YNw6uvvorS0lL85z//wZgxY9zSo1MXXWGzYfiRJA0iIsrc1ygiIqJGziuCDwDMmzcPfn5+GDZsGP766y907doV3377LZo1awYAkMvl2Lx5M55++mlkZmYiJCQEw4cPx4svvujmlpuXmAgsX67djkK7Xo9Av36b2dtDRETkRF6xjo8ruWodH6VSiaqqKpw5I0NRkR/Cws5hz56P6nzeqFGjEB8f77R2EREReSNbv7+9psenMVEqlViyZIm7m0FERORzvGIBw8amIVPSbV2BmoiIiGpjj48bqFQqm64bOHAgoqKi9I8DAgK4eCEREVEDMPi4mFKpxPr16226NioqivU8REREDsShLherqqqCShWKwsJkqFSh7m4OERGRT2GPj4utXRuEhQtzIYQMkqTBgAGb69ymgoiIiByDPT4uVFwMTJqkgBDa2y6EDJs29WfPDxERkYsw+LiQdpsKyeiYbpsKIiIicj4GHxcpLgbOn9fuwm7I2jYVnLpORETkWKzxcYEVK67vxC5JAKABcL3Gx9w2FYMHD+bUdSIiIgdj8HGy4uLroQcAhJAgSQKDBn2EFi2KLe7NFR4e7rpGEhER+QgOdTmZtq7H+JgQMoSEXLG6ISmHuYiIiByPPT5O1ro1IJMZhx+ZTGDo0K6Ii8vQH/Pz89P38nCFZiIiIudg8HGyxERgwYJLePbZYP3aPf37b8aePbXX7snJyWHgISIiciIGHxcYPLgSJ08uR1lZBCIiyiwOcTVk81IiIiKqG4OPiygUlVZreoiIiMj5WNxMREREPoM9Pk6kVCpRVVWFCxcuuLspREREBAYfp1EqlViyZIm7m0FEREQGONTlJCxUJiIi8jwMPkREROQzGHw8CFdrJiIici7W+LjZwIEDERUVxdWaiYiIXIDBx82ioqIQHx/v7mYQERH5BA51ERERkc9g8CEiIiKfweDjJLYWKrOgmYiIyHVY4+MkkZGRyMnJsbqeDwuaiYiIXIvBx4kYaoiIiDwLh7qIiIjIZzD4EBERkc9g8CEiIiKfweBDREREPoPBh4iIiHwGgw8RERH5DAYfIiIi8hkMPkREROQzGHyIiIjIZ3DlZhNCCABARUWFm1tCREREttJ9b+u+xy1h8DFRWVkJAGjRooWbW0JERET1VVlZCYVCYfG8JOqKRj5Go9HgzJkzCA0NhSRJNj2noqICLVq0wOnTpxEWFubkFnou3gct3gfeAx3eBy3eB94DHWfeByEEKisrkZCQAJnMciUPe3xMyGQyJCYm2vXcsLAwn/6F1uF90OJ94D3Q4X3Q4n3gPdBx1n2w1tOjw+JmIiIi8hkMPkREROQzGHwcIDAwEC+88AICAwPd3RS34n3Q4n3gPdDhfdDifeA90PGE+8DiZiIiIvIZ7PEhIiIin8HgQ0RERD6DwYeIiIh8BoMPERER+QwGHwuWLl2Kjh076hdZyszMxNatW/Xnr169ijFjxiAyMhJNmzbFoEGDcPbsWaPXOHXqFPr164fg4GDExMRg4sSJqKmpcfVHcZg5c+ZAkiTk5ubqj/nKfZgxYwYkSTL6adu2rf68r9yHP//8E48++igiIyMRFBSEDh064Oeff9afF0Jg+vTpiI+PR1BQEHr16oXjx48bvUZZWRmGDh2KsLAwhIeHIzs7G5cuXXL1R7FbcnJyrd8FSZIwZswYAL7zu6BWq/H8888jJSUFQUFBSE1NxaxZs4z2SfKF34fKykrk5uYiKSkJQUFB6NatG/bt26c/3xjvwffff48BAwYgISEBkiThs88+MzrvqM985MgR3HnnnWjSpAlatGiBV1991TEfQJBZn3/+udiyZYv4/fffxbFjx8S///1v4e/vL/Lz84UQQjz11FOiRYsW4ptvvhE///yzuO2220S3bt30z6+pqRE33XST6NWrlzh48KD44osvRFRUlJg6daq7PlKD/PTTTyI5OVl07NhRPPPMM/rjvnIfXnjhBdG+fXtRUlKi/zl//rz+vC/ch7KyMpGUlCRGjBgh9u7dK/744w/x1VdfiYKCAv01c+bMEQqFQnz22Wfi8OHD4v777xcpKSnir7/+0l/Tp08f0alTJ/Hjjz+KH374QaSlpYkhQ4a44yPZ5dy5c0a/B9u3bxcAxI4dO4QQvvG7IIQQL7/8soiMjBSbN28WhYWF4uOPPxZNmzYVixYt0l/jC78PgwcPFu3atRM7d+4Ux48fFy+88IIICwsTxcXFQojGeQ+++OILMW3aNLFx40YBQHz66adG5x3xmVUqlYiNjRVDhw4V+fn54sMPPxRBQUFi2bJlDW4/g089NGvWTPzf//2fKC8vF/7+/uLjjz/Wnzt69KgAIPLy8oQQ2l8MmUwmSktL9dcsXbpUhIWFiWvXrrm87Q1RWVkpWrduLbZv3y569OihDz6+dB9eeOEF0alTJ7PnfOU+TJ48Wdxxxx0Wz2s0GhEXFyfmzZunP1ZeXi4CAwPFhx9+KIQQ4tdffxUAxL59+/TXbN26VUiSJP7880/nNd6JnnnmGZGamio0Go3P/C4IIUS/fv3EyJEjjY4NHDhQDB06VAjhG78PV65cEXK5XGzevNnoeHp6upg2bZpP3APT4OOoz/zWW2+JZs2aGf07MXnyZNGmTZsGt5lDXTZQq9VYt24dLl++jMzMTOzfvx/V1dXo1auX/pq2bduiZcuWyMvLAwDk5eWhQ4cOiI2N1V/Tu3dvVFRU4H//+5/LP0NDjBkzBv369TP6vAB87j4cP34cCQkJaNWqFYYOHYpTp04B8J378Pnnn6NLly546KGHEBMTg86dO+Odd97Rny8sLERpaanRfVAoFOjatavRfQgPD0eXLl301/Tq1QsymQx79+513YdxkKqqKrz//vsYOXIkJEnymd8FAOjWrRu++eYb/P777wCAw4cPY9euXejbty8A3/h9qKmpgVqtRpMmTYyOBwUFYdeuXT5xD0w56jPn5eWhe/fuCAgI0F/Tu3dvHDt2DBcvXmxQG7lJqRW//PILMjMzcfXqVTRt2hSffvop2rVrh0OHDiEgIADh4eFG18fGxqK0tBQAUFpaavQfNt153TlvsW7dOhw4cMBozFqntLTUZ+5D165dsWrVKrRp0wYlJSWYOXMm7rzzTuTn5/vMffjjjz+wdOlSjB8/Hv/+97+xb98+jBs3DgEBARg+fLj+c5j7nIb3ISYmxui8n58fIiIivOY+GPrss89QXl6OESNGAPCtfyemTJmCiooKtG3bFnK5HGq1Gi+//DKGDh0KAD7x+xAaGorMzEzMmjULN954I2JjY/Hhhx8iLy8PaWlpPnEPTDnqM5eWliIlJaXWa+jONWvWzO42MvhY0aZNGxw6dAgqlQqffPIJhg8fjp07d7q7WS5z+vRpPPPMM9i+fXut/6PxNbr/iwWAjh07omvXrkhKSsJHH32EoKAgN7bMdTQaDbp06YJXXnkFANC5c2fk5+fj7bffxvDhw93cOvdYsWIF+vbti4SEBHc3xeU++ugjfPDBB1i7di3at2+PQ4cOITc3FwkJCT71+7BmzRqMHDkSzZs3h1wuR3p6OoYMGYL9+/e7u2lkAYe6rAgICEBaWhoyMjIwe/ZsdOrUCYsWLUJcXByqqqpQXl5udP3Zs2cRFxcHAIiLi6s1k0P3WHeNp9u/fz/OnTuH9PR0+Pn5wc/PDzt37sTixYvh5+eH2NhYn7gP5oSHh+OGG25AQUGBz/w+xMfHo127dkbHbrzxRv2Qn+5zmPuchvfh3LlzRudrampQVlbmNfdB5+TJk/j666/xxBNP6I/5yu8CAEycOBFTpkzBww8/jA4dOmDYsGF49tlnMXv2bAC+8/uQmpqKnTt34tKlSzh9+jR++uknVFdXo1WrVj5zDww56jM7898TBp960Gg0uHbtGjIyMuDv749vvvlGf+7YsWM4deoUMjMzAQCZmZn45ZdfjP7hbt++HWFhYbW+PDzVPffcg19++QWHDh3S/3Tp0gVDhw7V/90X7oM5ly5dwokTJxAfH+8zvw+33347jh07ZnTs999/R1JSEgAgJSUFcXFxRvehoqICe/fuNboP5eXlRv83/O2330Kj0aBr164u+BSOs3LlSsTExKBfv376Y77yuwAAV65cgUxm/BUil8uh0WgA+N7vQ0hICOLj43Hx4kV89dVX+Oc//+lz9wBw3D/3zMxMfP/996iurtZfs337drRp06ZBw1wAOJ3dkilTpoidO3eKwsJCceTIETFlyhQhSZLYtm2bEEI7ZbVly5bi22+/FT///LPIzMwUmZmZ+ufrpqzed9994tChQ+LLL78U0dHRXjdl1ZThrC4hfOc+TJgwQXz33XeisLBQ7N69W/Tq1UtERUWJc+fOCSF84z789NNPws/PT7z88svi+PHj4oMPPhDBwcHi/fff118zZ84cER4eLv773/+KI0eOiH/+859mp7F27txZ7N27V+zatUu0bt3ao6fumqNWq0XLli3F5MmTa53zhd8FIYQYPny4aN68uX46+8aNG0VUVJSYNGmS/hpf+H348ssvxdatW8Uff/whtm3bJjp16iS6du0qqqqqhBCN8x5UVlaKgwcPioMHDwoAYsGCBeLgwYPi5MmTQgjHfOby8nIRGxsrhg0bJvLz88W6detEcHAwp7M708iRI0VSUpIICAgQ0dHR4p577tGHHiGE+Ouvv8S//vUv0axZMxEcHCz+3//7f6KkpMToNYqKikTfvn1FUFCQiIqKEhMmTBDV1dWu/igOZRp8fOU+ZGVlifj4eBEQECCaN28usrKyjNav8ZX7sGnTJnHTTTeJwMBA0bZtW7F8+XKj8xqNRjz//PMiNjZWBAYGinvuuUccO3bM6BqlUimGDBkimjZtKsLCwsTjjz8uKisrXfkxGuyrr74SAGp9NiF853ehoqJCPPPMM6Jly5aiSZMmolWrVmLatGlG04994fdh/fr1olWrViIgIEDExcWJMWPGiPLycv35xngPduzYIQDU+hk+fLgQwnGf+fDhw+KOO+4QgYGBonnz5mLOnDkOab8khMEym0RERESNGGt8iIiIyGcw+BAREZHPYPAhIiIin8HgQ0RERD6DwYeIiIh8BoMPERER+QwGHyIiIvIZDD5ERETkMxh8iKjB7rrrLuTm5rq7GU43Y8YM3Hzzze5uBhE1AIMPEfm8qqoql76fEAI1NTUufU8i0mLwIaIGGTFiBHbu3IlFixZBkiRIkoSioiLk5+ejb9++aNq0KWJjYzFs2DBcuHBB/7y77roLY8eORW5uLpo1a4bY2Fi88847uHz5Mh5//HGEhoYiLS0NW7du1T/nu+++gyRJ2LJlCzp27IgmTZrgtttuQ35+vlGbdu3ahTvvvBNBQUFo0aIFxo0bh8uXL+vPJycnY9asWXjssccQFhaGUaNGAQAmT56MG264AcHBwWjVqhWef/55/e7Qq1atwsyZM3H48GH951y1ahWKioogSRIOHTqkf/3y8nJIkoTvvvvOqN1bt25FRkYGAgMDsWvXLmg0GsyePRspKSkICgpCp06d8Mknnzj6HxERGWDwIaIGWbRoETIzM/Hkk0+ipKQEJSUlCA0NRc+ePdG5c2f8/PPP+PLLL3H27FkMHjzY6LmrV69GVFQUfvrpJ4wdOxZPP/00HnroIXTr1g0HDhzAfffdh2HDhuHKlStGz5s4cSLmz5+Pffv2ITo6GgMGDNAHlBMnTqBPnz4YNGgQjhw5gvXr12PXrl3Iyckxeo3XXnsNnTp1wsGDB/H8888DAEJDQ7Fq1Sr8+uuvWLRoEd555x28/vrrAICsrCxMmDAB7du313/OrKyset2rKVOmYM6cOTh69Cg6duyI2bNn47333sPbb7+N//3vf3j22Wfx6KOPYufOnfV6XSKqB4dsdUpEPq1Hjx7imWee0T+eNWuWuO+++4yuOX36tNGO5j169BB33HGH/nxNTY0ICQkRw4YN0x8rKSkRAEReXp4Q4vqu0OvWrdNfo1QqRVBQkFi/fr0QQojs7GwxatQoo/f+4YcfhEwmE3/99ZcQQoikpCTxwAMP1Pm55s2bJzIyMvSPX3jhBdGpUyejawoLCwUAcfDgQf2xixcvCgBix44dRu3+7LPP9NdcvXpVBAcHiz179hi9XnZ2thgyZEidbSMi+/i5M3QRUeN0+PBh7NixA02bNq117sSJE7jhhhsAAB07dtQfl8vliIyMRIcOHfTHYmNjAQDnzp0zeo3MzEz93yMiItCmTRscPXpU/95HjhzBBx98oL9GCAGNRoPCwkLceOONAIAuXbrUatv69euxePFinDhxApcuXUJNTQ3CwsLq/fktMXzPgoICXLlyBffee6/RNVVVVejcubPD3pOIjDH4EJHDXbp0CQMGDMDcuXNrnYuPj9f/3d/f3+icJElGxyRJAgBoNJp6vffo0aMxbty4Wudatmyp/3tISIjRuby8PAwdOhQzZ85E7969oVAosG7dOsyfP9/q+8lk2ooBIYT+mG7YzZThe166dAkAsGXLFjRv3tzousDAQKvvSUT2Y/AhogYLCAiAWq3WP05PT8eGDRuQnJwMPz/H/2fmxx9/1IeYixcv4vfff9f35KSnp+PXX39FWlpavV5zz549SEpKwrRp0/THTp48aXSN6ecEgOjoaABASUmJvqfGsNDZknbt2iEwMBCnTp1Cjx496tVWIrIfi5uJqMGSk5Oxd+9eFBUV4cKFCxgzZgzKysowZMgQ7Nu3DydOnMBXX32Fxx9/vFZwsMeLL76Ib775Bvn5+RgxYgSioqLwwAMPANDOzNqzZw9ycnJw6NAhHD9+HP/9739rFTebat26NU6dOoV169bhxIkTWLx4MT799NNan7OwsBCHDh3ChQsXcO3aNQQFBeG2227TFy3v3LkT//nPf+r8DKGhoXjuuefw7LPPYvXq1Thx4gQOHDiAN954A6tXr7b73hCRdQw+RNRgzz33HORyOdq1a4fo6GhUVVVh9+7dUKvVuO+++9ChQwfk5uYiPDxcPzTUEHPmzMEzzzyDjIwMlJaWYtOmTQgICACgrRvauXMnfv/9d9x5553o3Lkzpk+fjoSEBKuvef/99+PZZ59FTk4Obr75ZuzZs0c/20tn0KBB6NOnD+6++25ER0fjww8/BAC8++67qKmpQUZGBnJzc/HSSy/Z9DlmzZqF559/HrNnz8aNN96IPn36YMuWLUhJSbHjrhCRLSRhODBNROTBvvvuO9x99924ePEiwsPD3d0cIvJC7PEhIiIin8HgQ0RERD6DQ11ERETkM9jjQ0RERD6DwYeIiIh8BoMPERER+QwGHyIiIvIZDD5ERETkMxh8iIiIyGcw+BAREZHPYPAhIiIin8HgQ0RERD7j/wNMvoG13BwBoAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding_test.ipynb](./surrogate_embedding_test.ipynb) file." ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "4/4 [==============================] - 0s 4ms/step\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAHHCAYAAAAGU9SoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf+ElEQVR4nO3dfVzN5+M/8Nfp/oYKpUKR23IzoqnTsJnmsCw2PsMM0WyMmftiSLYRwzY34/v52MTmfjZyG8vNbspdwtyUjRIjMSpF99fvj369dZwTxTmdczqv5+NxHpzrfZ33uU7v6bx2Xe/rumRCCAEiIiIi0nsmum4AEREREVUOgxsRERGRgWBwIyIiIjIQDG5EREREBoLBjYiIiMhAMLgRERERGQgGNyIiIiIDweBGREREZCAY3IiIiIgMBIMbEdFzkslkmDNnjq6bIQkODkaTJk103Qwi0gIGNyKqkaKioiCTyaSHlZUVWrZsiXHjxuHWrVtafe+4uDjMmTMHmZmZGj3vK6+8ovSZ6tatixdffBHfffcdSkpKNPIe8+bNw/bt2zVyLiLSPDNdN4CISJvmzp0LDw8P5OXl4ffff8fKlSuxZ88enDt3DjY2Nhp5j4cPH8LM7NGv07i4OERERCA4OBgODg4aeY8yjRo1wvz58wEAt2/fxrp16xASEoJLly4hMjLyuc8/b948DBgwAP369XvucxGR5jG4EVGN1rt3b/j4+AAA3nvvPdSrVw9LlizBjh07MHjw4Gc+b0lJCQoKCmBlZQUrKytNNfep7O3t8e6770rPP/jgA7Rq1QrLly/Hp59+CnNz82prCxFVPw6VEpFRefXVVwEAKSkpAIBFixbB398f9erVg7W1NTp16oQff/xR5XUymQzjxo3D+vXr0aZNG1haWmLfvn3SsbJ73ObMmYOpU6cCADw8PKRhzdTUVLz88sto37692na1atUKCoWiyp/HxsYGfn5+yM3Nxe3btyusl5ubi8mTJ8PNzQ2WlpZo1aoVFi1aBCGE0mfMzc3F2rVrpXYHBwdXuU1EpD3scSMio3L58mUAQL169QAAX3/9NYKCgjBkyBAUFBRg06ZN+M9//oNdu3YhMDBQ6bUHDx7Eli1bMG7cODg6OqqdAPDWW2/h0qVL2LhxI7788ks4OjoCAJycnDB06FCMGjUK586dQ9u2baXXnDhxApcuXcLMmTOf6TNduXIFpqamFQ7LCiEQFBSEQ4cOISQkBB06dEBMTAymTp2Kf/75B19++SUA4Pvvv8d7772Hzp074/333wcANGvW7JnaRERaIoiIaqA1a9YIAOKXX34Rt2/fFteuXRObNm0S9erVE9bW1uL69etCCCEePHig9LqCggLRtm1b8eqrryqVAxAmJibi/PnzKu8FQISHh0vPv/jiCwFApKSkKNXLzMwUVlZWIjQ0VKl8/PjxwtbWVuTk5DzxM7388svC09NT3L59W9y+fVtcvHhRjB8/XgAQb7zxhlRv+PDhonHjxtLz7du3CwDis88+UzrfgAEDhEwmE3///bdUZmtrK4YPH/7EdhCR7nColIhqtICAADg5OcHNzQ2DBg1CrVq18PPPP6Nhw4YAAGtra6nuvXv3kJWVha5du+LUqVMq53r55ZfRunXrZ26Lvb09+vbti40bN0pDlMXFxdi8eTP69esHW1vbp54jKSkJTk5OcHJygpeXF5YtW4bAwEB89913Fb5mz549MDU1xfjx45XKJ0+eDCEE9u7d+8yfiYiqF4dKiahGW7FiBVq2bAkzMzM4OzujVatWMDF59P+su3btwmeffYbTp08jPz9fKpfJZCrn8vDweO72DBs2DJs3b8Zvv/2Gbt264ZdffsGtW7cwdOjQSr2+SZMm+N///ictcdKiRQvUr1//ia+5evUqGjRogNq1ayuVe3l5SceJyDAwuBFRjda5c2dpVunjfvvtNwQFBaFbt2745ptv4OrqCnNzc6xZswYbNmxQqV++d+5ZKRQKODs744cffkC3bt3www8/wMXFBQEBAZV6va2tbaXrElHNw6FSIjJa27Ztg5WVFWJiYjBy5Ej07t1bI6FIXW9dGVNTU7zzzjv48ccfce/ePWzfvh2DBw+Gqanpc79vRRo3bowbN27g/v37SuVJSUnS8TJPajsR6R6DGxEZLVNTU8hkMhQXF0tlqampz71zQNm9ahXtnDB06FDcu3cPH3zwAXJycpTWZdOG119/HcXFxVi+fLlS+ZdffgmZTIbevXtLZba2thrf8YGINIdDpURktAIDA7FkyRL06tUL77zzDjIyMrBixQo0b94cZ8+efebzdurUCQDwySefYNCgQTA3N8cbb7whBTpvb2+0bdsWW7duhZeXFzp27KiRz1ORN954A927d8cnn3yC1NRUtG/fHvv378eOHTswYcIEpSU/OnXqhF9++QVLlixBgwYN4OHhAV9fX622j4gqjz1uRGS0Xn31VXz77bdIT0/HhAkTsHHjRixYsABvvvnmc533xRdfxKeffoozZ84gODgYgwcPVlkcd9iwYQBQ6UkJz8PExATR0dGYMGECdu3ahQkTJuDChQv44osvsGTJEqW6S5YsQadOnTBz5kwMHjwYK1eu1Hr7iKjyZEKUWzabiIiqxddff42JEyciNTUV7u7uum4OERkIBjciomomhED79u1Rr149HDp0SNfNISIDwnvciIiqSW5uLqKjo3Ho0CH8+eef2LFjh66bREQGhj1uRETVJDU1FR4eHnBwcMCHH36Izz//XNdNIiIDw+BGREREZCA4q5SIiIjIQDC4ERERERkITk7QYyUlJbhx4wZq167NbWiIiIgMhBAC9+/fR4MGDWBiotk+MgY3PXbjxg24ubnpuhlERET0DK5du4ZGjRpp9JwMbnqsdu3aAEovvJ2dnY5bQ0RERJWRnZ0NNzc36Xtckxjc9FjZ8KidnR2DGxERkYHRxm1OnJxAREREZCAY3IiIiIgMBIMbERERkYHgPW4Grri4GIWFhbpuBlUDc3NzmJqa6roZRESkQwxuBkoIgfT0dGRmZuq6KVSNHBwc4OLiwnX9iIiMFIObgSoLbfXr14eNjQ2/yGs4IQQePHiAjIwMAICrq6uOW0RERLrA4GaAiouLpdBWr149XTeHqom1tTUAICMjA/Xr1+ewKRGRETKYyQlBQUFwd3eHlZUVXF1dMXToUNy4cUOpjhACixYtQsuWLWFpaYmGDRvi888/V6pz+PBhdOzYEZaWlmjevDmioqJU3mvFihVo0qQJrKys4Ovri+PHjysdz8vLw9ixY1GvXj3UqlUL/fv3x61bt5TqpKWlITAwEDY2Nqhfvz6mTp2KoqIijfwsyu5ps7Gx0cj5yHCUXXPe10hEZJwMJrh1794dW7ZsQXJyMrZt24bLly9jwIABSnU+/vhjrF69GosWLUJSUhKio6PRuXNn6XhKSgoCAwPRvXt3nD59GhMmTMB7772HmJgYqc7mzZsxadIkhIeH49SpU2jfvj0UCoU0RAUAEydOxM6dO7F161YcOXIEN27cwFtvvSUdLy4uRmBgIAoKChAXF4e1a9ciKioKs2fP1ujPhMOjxofXnIjIyAkDtWPHDiGTyURBQYEQQogLFy4IMzMzkZSUVOFrpk2bJtq0aaNUNnDgQKFQKKTnnTt3FmPHjpWeFxcXiwYNGoj58+cLIYTIzMwU5ubmYuvWrVKdixcvCgAiPj5eCCHEnj17hImJiUhPT5fqrFy5UtjZ2Yn8/PxKf8asrCwBQGRlZSmVP3z4UFy4cEE8fPiw0ueimoHXnohI/1X0/a0JBtPjVt7du3exfv16+Pv7w9zcHACwc+dONG3aFLt27YKHhweaNGmC9957D3fv3pVeFx8fj4CAAKVzKRQKxMfHAwAKCgqQkJCgVMfExAQBAQFSnYSEBBQWFirV8fT0hLu7u1QnPj4e7dq1g7Ozs9L7ZGdn4/z58xV+rvz8fGRnZys9iIiIiMoYVHALDQ2Fra0t6tWrh7S0NOzYsUM6duXKFVy9ehVbt27FunXrEBUVhYSEBKXh1PT0dKUwBQDOzs7Izs7Gw4cPcefOHRQXF6utk56eLp3DwsICDg4OT6yj7hxlxyoyf/582NvbSw83N7dK/mQMR3BwMGQyGWQyGczNzeHs7IzXXnsN3333HUpKSip9nqioKJVrQEREVNPpNLiFhYVJX+IVPZKSkqT6U6dORWJiIvbv3w9TU1MMGzYMQggAQElJCfLz87Fu3Tp07doVr7zyCr799lscOnQIycnJuvqIVTJ9+nRkZWVJj2vXrum6SVrRq1cv3Lx5E6mpqdi7dy+6d++Ojz/+GH369NHYBA4iIqInycnJQW5urq6bUWU6DW6TJ0/GxYsXn/ho2rSpVN/R0REtW7bEa6+9hk2bNmHPnj04evQogNJ1rczMzNCyZUupvpeXF4DSGZ4A4OLiojL789atW7Czs4O1tTUcHR1hamqqto6Li4t0joKCApWFbx+vo+4cZccqYmlpCTs7O6VHTWRpaQkXFxc0bNgQHTt2xIwZM7Bjxw7s3btXmuW7ZMkStGvXDra2tnBzc8OHH36InJwcAKUzg0eMGIGsrCwp4M+ZMwcA8P3338PHxwe1a9eGi4sL3nnnHaWJJUREZNyEEFixYgUWL16MVatWSR1AhkKnwc3JyQmenp5PfFhYWKh9bdmwWn5+PgDgpZdeQlFRES5fvizVuXTpEgCgcePGAAC5XI7Y2Fil8xw4cAByuRwAYGFhgU6dOinVKSkpQWxsrFSnU6dOMDc3V6qTnJyMtLQ0qY5cLseff/6pFBgOHDgAOzs7tG7d+hl+Uk8nhEBBQYFOHpr4j/7VV19F+/bt8dNPPwEovbdw6dKlOH/+PNauXYuDBw9i2rRpAAB/f3989dVXsLOzw82bN3Hz5k1MmTIFQOkyGZ9++inOnDmD7du3IzU1FcHBwc/dPiIiMnyZmZmYO3cu7ty5AwDIzc01uNn6BrEA77Fjx3DixAl06dIFderUweXLlzFr1iw0a9ZMCksBAQHo2LEjRo4cia+++golJSUYO3YsXnvtNakXbvTo0Vi+fDmmTZuGkSNH4uDBg9iyZQt2794tvdekSZMwfPhw+Pj4oHPnzvjqq6+Qm5uLESNGAADs7e0REhKCSZMmoW7durCzs8NHH30EuVwOPz8/AEDPnj3RunVrDB06FAsXLkR6ejpmzpyJsWPHwtLSUis/o8LCQsyfP18r536a6dOnVxiwq8LT0xNnz54FAEyYMEEqb9KkCT777DOMHj0a33zzDSwsLGBvbw+ZTKbSgzly5Ejp702bNsXSpUvx4osvIicnB7Vq1XruNhIRkWE6ceIE9uzZIz23t7fHxx9/rMMWPRuDmJxgY2ODn376CT169ECrVq0QEhKCF154AUeOHJGCkImJCXbu3AlHR0d069YNgYGB8PLywqZNm6TzeHh4YPfu3Thw4ADat2+PxYsXY/Xq1VAoFFKdgQMHYtGiRZg9ezY6dOiA06dPY9++fUqTDb788kv06dMH/fv3R7du3eDi4iL1FAGAqakpdu3aBVNTU8jlcrz77rsYNmwY5s6dWw0/LcMlhJD+z+eXX35Bjx490LBhQ9SuXRtDhw7Fv//+iwcPHjzxHAkJCXjjjTfg7u6O2rVr4+WXXwbwaLiciIiMS0lJCSIiIpRC2+uvv46mTSfgpZdkiI7WYeOegUwY2uCuEcnOzoa9vT2ysrKU7nfLy8tDSkoKPDw8YGVlBaA09OhqNX1zc/NKdzUHBwcjMzMT27dvVzn2wgsvwN3dHcuXL4enpyfGjBmDgQMHom7duvj9998REhKCe/fuwcHBAVFRUZgwYYLSvYa5ublo3LgxFAoFRo8eDScnJ6SlpUGhUCAxMREdOnTQzAfWIXXXnoiI1EtKSsLmzZuVyj7++GM4ODjA3x+IjwfkciAuTrPvW9H3tyYYxFApPZ1MJtPIcKWuHDx4EH/++ScmTpyIhIQElJSUYPHixTAxKe0U3rJli1J9CwsLFBcXK5UlJSXh33//RWRkpLSUysmTJ6vnAxARkV6JiIhQKYuJmQ1vbxmCgoCwMCAysvRPQ2IQQ6VUs+Tn5yM9PR3//PMPTp06hXnz5qFv377o06cPhg0bhubNm6OwsBDLli3DlStX8P3332PVqlVK52jSpAlycnIQGxuLO3fu4MGDB3B3d4eFhYX0uujoaHz66ac6+pRERKQLhYWFKqHNyckJMTHhiI+XITKytCwoqLSnLShIB418DgxuVO327dsHV1dXNGnSBL169cKhQ4ewdOlS7NixA6ampmjfvj2WLFmCBQsWoG3btli/fr3KxAt/f3+MHj0aAwcOhJOTExYuXAgnJydERUVh69ataN26NSIjI7Fo0SIdfUoiIqpu0dHRmDdvnlLZ2bNvolGjDxEWVjosamg9bI/jPW56rCr3uJFx4LUnIlKvoqHR+HiZVu5jexLe40ZERESkRl5eHhYsWKBSHh4eDm9vw7yP7UkY3IiIiMggbd68WWlrTADo27evtIpAUJDh3cP2NAxuREREZHDUDY3Onj3b4HZCqCoGNyIiIjIY9+/fx5IlS1TKw8PDddCa6sfgRkRERAYhMjJS2qO8zNtvvw0vLy+VutHRj+5vq0nDpVwOhIiIiPReRESESmjz9g5XG9qA0tAWHw9p3baagsGNiIiI9Na9e/fU3s82Z074E0NZTVm37XEcKiUiIiK9pC6w9e/fH1eutH1qKKuJM0oBBjciIiLSQ+pCW9kEhLZta2YoqwwOlVKNFBwcjH79+knPX3nlFUyYMOG5zqmJcxAR0ZNlZGQ8MbQZO/a4UbUKDg7G2rVrAQDm5uZwd3fHsGHDMGPGDJiZae8/x59++gnm5uaVqnv48GF0794d9+7dg4ODwzOdg4iIqk5dYGvWbAjefbe5DlqjnxjcqNr16tULa9asQX5+Pvbs2YOxY8fC3Nwc06dPV6pXUFAACwsLjbxn3bp19eIcRESkXkUTEORy4N13ddAgPcWhUqp2lpaWcHFxQePGjTFmzBgEBAQgOjpaGt78/PPP0aBBA7Rq1QoAcO3aNbz99ttwcHBA3bp10bdvX6SmpkrnKy4uxqRJk+Dg4IB69eph2rRpEEIovefjw5z5+fkIDQ2Fm5sbLC0t0bx5c3z77bdITU1F9+7dAQB16tSBTCZDcHCw2nPcu3cPw4YNQ506dWBjY4PevXvjr7/+ko5HRUXBwcEBMTEx8PLyQq1atdCrVy/cvHlTqnP48GF07twZtra2cHBwwEsvvYSrV69q6CdNRKT/0tLS1IY2b+/wGjkr9Hmxx410ztraGv/++y8AIDY2FnZ2djhw4AAAoLCwEAqFAnK5HL/99hvMzMzw2WefoVevXjh79iwsLCywePFiREVF4bvvvoOXlxcWL16Mn3/+Ga+++mqF7zls2DDEx8dj6dKlaN++PVJSUnDnzh24ublh27Zt6N+/P5KTk2FnZwdra2u15wgODsZff/2F6Oho2NnZITQ0FK+//jouXLggDak+ePAAixYtwvfffw8TExO8++67mDJlCtavX4+ioiL069cPo0aNwsaNG1FQUIDjx4/X+O1aiIjKqAtsI0aMgLu7OwDjnYDwJAxupDNCCMTGxiImJgYfffQRbt++DVtbW6xevVoaIv3hhx9QUlKC1atXS4FmzZo1cHBwwOHDh9GzZ0989dVXmD59Ot566y0AwKpVqxATE1Ph+166dAlbtmzBgQMHEBAQAABo2rSpdLxsSLR+/fpK97iVVxbY/vjjD/j7+wMA1q9fDzc3N2zfvh3/+c9/AJQGz1WrVqFZs2YAgHHjxmHu3LkAgOzsbGRlZaFPnz7S8YoWkiQiqmk4AeHZcKiUEB0N+PuX/lkddu3ahVq1asHKygq9e/fGwIEDMWfOHABAu3btlO5rO3PmDP7++2/Url0btWrVQq1atVC3bl3k5eXh8uXLyMrKws2bN+Hr6yu9xszMDD4+PhW+/+nTp2FqaoqXX375mT/DxYsXYWZmpvS+9erVQ6tWrXDx4kWpzMbGRgplAODq6oqMjAwApQExODgYCoUCb7zxBr7++mulYVQioprozJkzDG3PgT1upLQtSHV0S3fv3h0rV66EhYUFGjRooDSb1NbWVqluTk4OOnXqhPXr16ucx8nJ6Znev6KhT214fBaqTCZTuv9uzZo1GD9+PPbt24fNmzdj5syZOHDgAPz8/KqtjURE1UVdYGvZciSWLXODtzeHRiuDPW5U7duC2Nraonnz5nB3d3/qEiAdO3bEX3/9hfr166N58+ZKD3t7e9jb28PV1RXHjh2TXlNUVISEhIQKz9muXTuUlJTgyJEjao+X9fgVFxdXeA4vLy8UFRUpve+///6L5ORktG7d+omf6XHe3t6YPn064uLi0LZtW2zYsKFKryciMgQV9bItW+ZWI/cU1RYGN0JQEBAXp5//pzNkyBA4Ojqib9+++O2335CSkoLDhw9j/PjxuH79OgDg448/RmRkJLZv346kpCR8+OGHyMzMrPCcTZo0wfDhwzFy5Ehs375dOueWLVsAAI0bN4ZMJsOuXbtw+/Zt5OTkqJyjRYsW6Nu3L0aNGoXff/8dZ86cwbvvvouGDRuib9++lfpsKSkpmD59OuLj43H16lXs378ff/31F+9zI6IaJT4+Xm1oi4kJR3R0zd1TVFsY3Eiv2djY4Ndff4W7uzveeusteHl5ISQkBHl5ebCzswMATJ48GUOHDsXw4cMhl8tRu3ZtvPnmm08878qVKzFgwAB8+OGH8PT0xKhRo5CbmwsAaNiwISIiIhAWFgZnZ2eMGzdO7TnWrFmDTp06oU+fPpDL5RBCYM+ePZVepNfGxgZJSUno378/WrZsiffffx9jx47FBx98UIWfEBGR/oqIiMD+/fuVykaNGoWYmHClW3T0tfNAH8nE4wtekd7Izs6Gvb09srKypJACAHl5eUhJSYGHhwesrKx02EKqbrz2RGQonjQBITq6NLSFhdXMwFbR97cmcHICERERacyWLVuUZteXKT9rNCioZga26sDgRkRERBqhrpftm2/GoFmz+uBqH5rB4EZERETPraJtq5o148QDTWJwIyIiome2evVq/PPPPyrlMTHh8PYunXhAmsPgZsA4r8T48JoTkT5R18v20UcfoU+futW6sLsx4XIgBqj8BuZkXMqueWWXHCEi0gYhRIWzRuvWrcu12bSIPW4GyNTUFA4ODtKelzY2NtIG7FQzCSHw4MEDZGRkwMHBAaamprpuEhEZiceX7li0aJG07mV5nDVaPRjcDJSLiwsASOGNjIODg4N07YmIqkP5/awTE1V72SZNmoTatWvroGXGicHNQMlkMri6uqJ+/fooLCzUdXOoGpibm7OnjYiqXVgYsGBBMXr2/EzlWDjX+Kh2DG4GztTUlF/mRESkFdHRpb1sPXuqHmNo0w0GNyIiIlJL3dBobGwofv2VW+7pCoMbERERKcnPz0dkZKRKeUxMOGeK6hiDGxEREUnULfMBlO6CwNFR3WNwIyIiIgDqQ9uMGTO4dqQeYXAjIiIyctu25eDcucUq5ZyAoH8Y3IiIiIxYRUOjDG36icGNiIjIyJTthqBQqIa2WbNmwcSEO2LqKwY3IiIiI7N06R0oFCtUytnLpv8Y3IiIiIxIREQEunZVLWdoMwwMbkREREZC3f1ss2fPhkwm00Fr6FkwuBEREdVwKSkpWLdunUq5t3c4mNkMC4MbERFRDcZZozULgxsREVENpS60MbAZNgY3IiKiGub06dPYsWOHSjlDm+FjcCMiIqpB1PWymZqaYubMmTpoDWkagxsREVENoS60eXuHIyhIB40hrWBwIyIiMmDR0cCWLUfQosVhlWMcGq15GNyIiIgMWGJiBFq0UC6rU6cOxo8fr5sGkVYxuBERERmQsn1Gw8JKQ9vj2MtWszG4ERERGZDISKBhwx+RmHhe5RhDW83H4EZERKTnyveyKRSqvWzu7u4YMWKEDlpG1c1E1w0gIiIiZdHRgL9/6Z9AaWiLj694aJShzXjIhBBC140g9bKzs2Fvb4+srCzY2dnpujlERFRN/P1Lg5qnJ1CnDtCz51LIZPdU6nFoVD9p8/ubPW5ERER6JiwMkMsBIUqHRh8PbW3btmVoM1IMbkRERDr0+LAoAAQFAXFxwODB6odG+/fvX40tJH3CyQlERETVrPxkg7L71yIjIe1woG4HBIBDo8TgRkREVO3Kh7WwMCA0FLh7tzTQqZuA4O/vj9dee00HLSV9w6FSIiKialI2LNq9e+k9bGFhpb1sdeoAyckVzxplaKMy7HEjIiKqJmU9bUDpPWxlFIoIKBSq9Tk0So9jcCMiIqomZfe0hYU9KlN3P1uvXr3g6+tbjS0jQ8HgRkREVE2Cgh5NQADUhzb2stGTMLgRERFVM84apWdlMJMTgoKC4O7uDisrK7i6umLo0KG4ceOGdHzOnDmQyWQqD1tbW6XzbN26FZ6enrCyskK7du2wZ88epeNCCMyePRuurq6wtrZGQEAA/vrrL6U6d+/exZAhQ2BnZwcHBweEhIQgJydHqc7Zs2fRtWtXWFlZwc3NDQsXLtTwT4SIiAyRutD2n//8h6GNKsVgglv37t2xZcsWJCcnY9u2bbh8+TIGDBggHZ8yZQpu3ryp9GjdujX+85//SHXi4uIwePBghISEIDExEf369UO/fv1w7tw5qc7ChQuxdOlSrFq1CseOHYOtrS0UCgXy8vKkOkOGDMH58+dx4MAB7Nq1C7/++ivef/996Xh2djZ69uyJxo0bIyEhAV988QXmzJmD//73v1r+KRERkb4SQlQ4NNq6dWsdtIgMkcHuVRodHY1+/fohPz8f5ubmKsfPnDmDDh064Ndff0XXrl0BAAMHDkRubi527dol1fPz80OHDh2watUqCCHQoEEDTJ48GVOmTAEAZGVlwdnZGVFRURg0aBAuXryI1q1b48SJE/Dx8QEA7Nu3D6+//jquX7+OBg0aYOXKlfjkk0+Qnp4OCwsLAEBYWBi2b9+OpKSkSn9G7lVKRFQzcGjUuHCv0sfcvXsX69evh7+/v9rQBgCrV69Gy5YtpdAGAPHx8QgICFCqp1AoEP//52anpKQgPT1dqY69vT18fX2lOvHx8XBwcJBCGwAEBATAxMQEx44dk+p069ZNCm1l75OcnIx791Q3CS6Tn5+P7OxspQcRERk2daFtxIgRDG30TAwquIWGhsLW1hb16tVDWloaduzYobZeXl4e1q9fj5CQEKXy9PR0ODs7K5U5OzsjPT1dOl5W9qQ69evXVzpuZmaGunXrKtVRd47y76HO/PnzYW9vLz3c3NwqrEtERPqtsLCwwqFRd3d3HbSIagKdBrewsDC1EwrKP8oPLU6dOhWJiYnYv38/TE1NMWzYMKgb6f35559x//59DB8+vDo/znObPn06srKypMe1a9d03SQiInoGERERmDdvnko5e9noeel0OZDJkycjODj4iXWaNm0q/d3R0RGOjo5o2bIlvLy84ObmhqNHj0Iulyu9ZvXq1ejTp49Kr5eLiwtu3bqlVHbr1i24uLhIx8vKXF1dlep06NBBqpORkaF0jqKiIty9e1fpPOrep/x7qGNpaQlLS8sKjxMRkf4ov1H809ZmGzt2LBwdHauxdVRT6TS4OTk5wcnJ6ZleW1JSAqD0vrDyUlJScOjQIURHR6u8Ri6XIzY2FhMmTJDKDhw4IAU/Dw8PuLi4IDY2Vgpq2dnZOHbsGMaMGSOdIzMzEwkJCejUqRMA4ODBgygpKZFWuZbL5fjkk09QWFgo3YN34MABtGrVCnXq1Hmmz0tERPqhLLDdvVu6v2hkZGlwy8nJweLFi1Xqs5eNNMkgZpUeO3YMJ06cQJcuXVCnTh1cvnwZs2bNwq1bt3D+/HmlXqpZs2bhu+++Q1paGkxNTZXOExcXh5dffhmRkZEIDAzEpk2bMG/ePJw6dQpt27YFACxYsACRkZFYu3YtPDw8MGvWLJw9exYXLlyAlZUVAKB37964desWVq1ahcLCQowYMQI+Pj7YsGEDgNKZqK1atULPnj0RGhqKc+fOYeTIkfjyyy+Vlg15Gs4qJSLSL9HRwJAhQE4O4OlZujl8WJj6zeEBhjZjpc3vb4PYOcHGxgY//fQTwsPDkZubC1dXV/Tq1QszZ85UCm0lJSWIiopCcHCwSmgDAH9/f2zYsAEzZ87EjBkz0KJFC2zfvl0KbQAwbdo05Obm4v3330dmZia6dOmCffv2SaENANavX49x48ahR48eMDExQf/+/bF06VLpuL29Pfbv34+xY8eiU6dOcHR0xOzZs6sU2oiISP9ERpaGtlq1gAULSnva1A2NTpkyRWUBeCJNMIgeN2PFHjciIv1S/r42ufw2vvnmG5U67GUjruNGRERUzaKjAX//0j/LBAUBcXGlQ6MMbaQLBjFUSkREVN0iI4H4+EeTD8qoGxr95JNPYGbGr1TSPva4ERERqVE6HFr6JwBcuXKlwgV1GdqouvC/NCIiIjWCgh71tHGvUdIX7HEjIiKjVv5eNnX3takLbbNnz2ZoI51gjxsRERm18veyAY/+3qjRKezcuVOlPgMb6RKDGxERGbWwsEdLfAClf1coIqAmszG0kc4xuBERkdF5fJ/R8rNG1e2CwMBG+oLBjYiIjI66pT727t2L48ePq9RlaCN9wuBGRERG5/HhUc4aJUPB4EZEREbnaUt9MLCRvmJwIyIio7R27VqkpqaqlDO0kT5jcCMiIqPDoVEyVAxuRERkVDg0SoaMwY2IiIzCokWLkJubq1LO0EaGhFteERGRwVO3VVV5ERERDG1UI7DHjYiIDF7ZumxDhgDr1ysvqMuhUapJGNyIiMjghYWVhracnEeL6nICAtVEHColIiKD88knQO3apX8CpUFt/XpALi8NcepCm62tLUMbGTyZEELouhGkXnZ2Nuzt7ZGVlQU7OztdN4eISG/Url3au2ZiAvz8M4dGSb9o8/ubPW5ERGRwxo8vDW0lJaVDo0BpYGNoo5qOPW56jD1uREQVi45+tN9oYqJqYGvevDmGDBmig5aRsdPm9zcnJxARkUEq22+UvWxkTBjciIjIIHHWKBkjBjciIjI46kJbly5d0KNHDx20hqj6MLgREZFB4dAoGTMGNyIi0jvlJx6ULfXBoVEiBjciItJDZVtYPWkXhL59+6JDhw7V3zgiHWJwIyIivRMWVhraQkMFIiLmqhxnLxsZKy7AS0REOhUdDfj7l/5ZJigIUCgicPo0QxtReexxIyIinXp8WBRQPzQ6bNgweHh4VHPriPQLe9yIiEinwsIebQ5fWFhY4axRhjYibnml17jlFREZE84apZqCm8wTEZFBevz+tehowNMT8PJSvqdNXWgbM2YMQxvRY9jjpsfY40ZEhs7fv/T+tVq1gPXrH93PBpQOjx44kItFixapvI6BjQwZe9yIiMgghYWVhracnEcL6rZqVdrrplBEMLQRVRFnlRIRkdYEBT3qaSvbBaGiBXUnT56MWrVq6aCVRIaDwY2IiLSqLKwBwJ07d7BixQqVOuxlI6ocBjciIqoWnDVK9PwY3IiISOvUhbYZM2bA3NxcB60hMlxVnpxgamqKjIwMlfJ///0XpqamGmkUERHpP3VbVT3uypUrFS6oy9BGVHVV7nGraPWQ/Px8WFhYPHeDiIjIMKjbqqo8Do0SaV6lg9vSpUsBADKZDKtXr1aa+VNcXIxff/0Vnp6emm8hERHppbCwR7NFH6cutM2aNQsmJlyFiuh5VHoB3rI94q5evYpGjRopDYtaWFigSZMmmDt3Lnx9fbXTUiPEBXiJyNCcOnUKO3fuVClnLxsZE21+f1e6xy0lJQUA0L17d/z000+oU6eORhtCRESGjUOjRNpX5XvcDh06pI12EBGRAatoAgIRaVaVg9vIkSOfePy777575sYQEZFh+eWXX/DHH3+olDO0EWlHlYPbvXv3lJ4XFhbi3LlzyMzMxKuvvqqxhhERkX6IjlbesqoMh0aJql+Vg9vPP/+sUlZSUoIxY8agWbNmGmkUERHpD3XLfnBolEg3Kj2r9GmSk5Pxyiuv4ObNm5o4HYGzSolIP5TvccvP34oLFy6o1GFoI3pEm9/fGltQ5/LlyygqKtLU6YiISIfK74oQFATExQGJiREMbUQ6VuWh0kmTJik9F0Lg5s2b2L17N4YPH66xhhERkW5ERwNDhgA5OY+GRzk0SqQfqhzcEhMTlZ6bmJjAyckJixcvfuqMUyIi0n+RkaWhrVYt4I03liIi4p5KHYY2It3gOm5ERKSkbCsrhSICBQWqxxnaiHSnysGtTEZGBpKTkwEArVq1Qv369TXWKCIi0p2goNL72R7HwEake1UObtnZ2Rg7diw2btyIkpISAICpqSkGDhyIFStWwN7eXuONJCKi6sG12Yj0W5VnlY4aNQrHjh3D7t27kZmZiczMTOzatQsnT57EBx98oI02EhGRFpSfOQqoD202NjYMbUR6pMrruNna2iImJgZdunRRKv/tt9/Qq1cv5ObmarSBxozruBGRNvn7ly6sK5eX3s/2OAY2omejze/vKg+V1qtXT+1wqL29PerUqaORRhERkfaFham/lw1gaCPSV1UeKp05cyYmTZqE9PR0qSw9PR1Tp07FrFmzNNo4IiJ6Po8Ph5anLrS1aNGCoY1Ij1V5qNTb2xt///038vPz4e7uDgBIS0uDpaUlWrRooVT31KlTmmupEeJQKRE9r/LDoXFxj8q5oC6R9ujVUGnfvn0hk8k02ggiItKOsjXZwsJKn3PWKJFh09gm86R57HEjIk1SF9p8fX3Rq1cvHbSGqObSq03mmzZtin///VelPDMzE02bNtVIo4iISLMqGhplaCMyLFUeKk1NTUVxcbFKeX5+Pq5fv66RRhER0bOLjgamTQNkMmDQIA6NEtUklQ5u0eWmJMXExCgtCVJcXIzY2Fh4eHhotnVERFRlkZFAcjIwZ45qaAsMDISPj48OWkVEmlDpodJ+/fqhX79+kMlkGD58uPS8X79+GDRoEA4cOIDFixdrraFBQUFwd3eHlZUVXF1dMXToUNy4cUOpTkxMDPz8/FC7dm04OTmhf//+SE1NVapz+PBhdOzYEZaWlmjevDmioqJU3mvFihVo0qQJrKys4Ovri+PHjysdz8vLw9ixY1GvXj3UqlUL/fv3x61bt5TqpKWlITAwEDY2Nqhfvz6mTp2KoqIijfwsiIieJDRUqA1t4eHhDG1EBq7Swa2kpAQlJSVwd3dHRkaG9LykpAT5+flITk5Gnz59tNbQ7t27Y8uWLUhOTsa2bdtw+fJlDBgwQDqekpKCvn374tVXX8Xp06cRExODO3fu4K233lKqExgYiO7du+P06dOYMGEC3nvvPcTExEh1Nm/ejEmTJiE8PBynTp1C+/btoVAokJGRIdWZOHEidu7cia1bt+LIkSO4ceOG0vsUFxcjMDAQBQUFiIuLw9q1axEVFYXZs2dr7edDRASU3st2+vRclXIOjRLVDAY7qzQ6Ohr9+vVDfn4+zM3N8eOPP2Lw4MHIz8+HiUlpHt25cyf69u0r1QkNDcXu3btx7tw56TyDBg1CZmYm9u3bB6B0htWLL76I5cuXAygNrG5ubvjoo48QFhaGrKwsODk5YcOGDVJwTEpKgpeXF+Lj4+Hn54e9e/eiT58+uHHjBpydnQEAq1atQmhoKG7fvg0LC4tKfUbOKiWiqlA3AWHQoEFo1aqVDlpDZLz0ah23uXNV/0+uvOroVbp79y7Wr18Pf39/mJubAwA6deoEExMTrFmzBsHBwcjJycH333+PgIAAqU58fDwCAgKUzqVQKDBhwgQAQEFBARISEjB9+nTpuImJCQICAhAfHw8ASEhIQGFhodJ5PD094e7uLgW3+Ph4tGvXTgptZe8zZswYnD9/Ht7e3lr5uRBRzRYd/WhNtqCgR+VFRUX4/PPPVeqzl42o5qlycPv555+VnhcWFiIlJQVmZmZo1qyZVoNbaGgoli9fjgcPHsDPzw+7du2Sjnl4eGD//v14++238cEHH6C4uBhyuRx79uyR6qSnpyuFKQBwdnZGdnY2Hj58iHv37qG4uFhtnaSkJOkcFhYWcHBwUKlTtg1YRe9Tdqwi+fn5yM/Pl55nZ2c/7UdCREYkMrJ0F4TIyEfBjQvqEhmXKq/jlpiYqPQ4d+4cbt68iR49emDixIlVOldYWBhkMtkTH2WBCQCmTp2KxMRE7N+/H6amphg2bBjKRnrT09MxatQoDB8+HCdOnMCRI0dgYWGBAQMGwFBGg+fPnw97e3vp4ebmpusmEZEe6d4dqFWr9E9AfWgbNWoUQxtRDVblHjd17OzsEBERgTfeeANDhw6t9OsmT56M4ODgJ9Ypv6ivo6MjHB0d0bJlS3h5ecHNzQ1Hjx6FXC7HihUrYG9vj4ULF0r1f/jhB7i5ueHYsWPw8/ODi4uLyuzPW7duwc7ODtbW1jA1NYWpqanaOi4uLgAAFxcXFBQUIDMzU6nX7fE6j89ELTtnWR11pk+fjkmTJknPs7OzGd6ISHLoEJCTA/z++wNERHyhcpyBjajm00hwA4CsrCxkZWVV6TVOTk5wcnJ6pvcrKSkBAGlo8cGDB9KkhDKmpqZKdR8fOgWAAwcOQC6XAwAsLCzQqVMnxMbGol+/ftJrY2NjMW7cOACl99KZm5sjNjYW/fv3BwAkJycjLS1NOo9cLsfnn3+OjIwM1K9fX3ofOzs7tG7dusLPZGlpCUtLy2f6eRBRzRcWBiQmcmiUyJhVObgtXbpU6bkQAjdv3sT333+P3r17a6xh5R07dgwnTpxAly5dUKdOHVy+fBmzZs1Cs2bNpLAUGBiIL7/8EnPnzsXgwYNx//59zJgxA40bN5YmA4wePRrLly/HtGnTMHLkSBw8eBBbtmzB7t27pfeaNGkShg8fDh8fH3Tu3BlfffUVcnNzMWLECACAvb09QkJCMGnSJNStWxd2dnb46KOPIJfL4efnBwDo2bMnWrdujaFDh2LhwoVIT0/HzJkzMXbsWAYzIqqS8hMS1IW2CRMmKC2ITkQ1W5WXA3l8dwQTExM4OTnh1VdfxfTp01G7dm2NNhAA/vzzT3z88cc4c+YMcnNz4erqil69emHmzJlo2LChVG/Tpk1YuHAhLl26BBsbG8jlcixYsACenp5SncOHD2PixIm4cOECGjVqhFmzZqkM1y5fvhxffPEF0tPT0aFDByxduhS+vr7S8by8PEyePBkbN25Efn4+FAoFvvnmG6Vh0KtXr2LMmDE4fPgwbG1tMXz4cERGRsLMrPJZmcuBEJG/P/DXX3cwbtwKlWPsZSPST9r8/jbYddyMAYMbEXHWKJHh0at13AAgMzMTf//9NwCgefPmKktjEBFR1ahbo01daAsLC+MtF0RGrErLgaSmpiIwMBCOjo7w9fWFr68vHB0d0adPH5U9QYmIqPJCQ0vXaAsNLd2eT11oCw8PZ2gjMnKV7nG7du0a/Pz8YG5ujk8//RReXl4AgAsXLmDlypWQy+U4ceIEGjVqpLXGEhHVVGU3rQwaFIF161SPc2iUiIAq3OMWEhKCv//+GzExMbCyslI69vDhQ/Tq1QstWrTA6tWrtdJQY8R73IiMR3S0+lmjs2bNUlnqiIj0m17c47Zv3z5s3rxZJbQBgLW1NT799FMMGjRIo40jIjIGp0+fRmLiDpVy9rIR0eMqHdzu3LmDJk2aVHi8adOmuHv3ribaRERUoz1tbTaAoY2I1Kt0cHN1dZXWPlPn3LlzT9zOiYiISpVtFq8utDGwEdGTVPrGiX79+mHKlCm4ffu2yrGMjAyEhoZK20QREVHFhg37BXPmMLQRUdVVenLCvXv34Ovri/T0dLz77rvw9PSEEAIXL17Ehg0b4OLigqNHj6Ju3brabrPR4OQEopqHC+oS1Xx6MTmhTp06OHbsGGbMmIFNmzYhMzMTAODg4IB33nkH8+bNY2gjIqpARbNGGdiIqCqeacsrIYQ0ZOrk5ASZTKbxhhF73Ihqiu+++w7Xrl1TKWdoI6qZ9KLHrTyZTIb69etrtCFERDURh0aJSJOeKbgREdHTVbRtFRHRs2JwIyLSgPJrs509+xmKi4tV6jC0EdHzYnAjItKAJ63NBjC0EZFmMLgREWlARbsgMLARkSZVKrgtXbq00iccP378MzeGiEjflR8SDQoqLeMEBCKqLpVaDsTDw6NyJ5PJcOXKleduFJXiciBE+sffv3RIVC4H4uIY2ohIlc6XA0lJSdHomxIRGaqwMCA0FLh7l7NGiaj6PfM9bgUFBUhJSUGzZs1gZsZb5YjIOAQFcQICEelOpTeZL/PgwQOEhITAxsYGbdq0QVpaGgDgo48+QmRkpMYbSESkT9T1sllZWTG0EVG1qHJwmz59Os6cOYPDhw/DyspKKg8ICMDmzZs12jgiIn0RHV3x0GhoaKgOWkRExqjKY5zbt2/H5s2b4efnp7RHaZs2bXD58mWNNo6ISB9wAgIR6YsqB7fbt2+r3ac0NzeXm80TUY0SHa3+frY2bdpgwIABOmgRERm7Kg+V+vj4YPfu3dLzsrC2evVqyOVyzbWMiEjHKlpQl6GNiHSlyj1u8+bNQ+/evXHhwgUUFRXh66+/xoULFxAXF4cjR45oo41ERNWKQ6NEpK+q3OPWpUsXnD59GkVFRWjXrh3279+P+vXrIz4+Hp06ddJGG4mIqo260PbKK68wtBGRXqjUzgmkG9w5gaj6CCEwd+5clXIGNiKqKp3vnJCdnV3pEzJgEJGh4dAoERmKSgU3BweHSs8YLS4ufq4GERFVJ3Wh7c0338QLL7ygg9YQET1ZpYLboUOHpL+npqYiLCwMwcHB0izS+Ph4rF27FvPnz9dOK4mINKy4uBifffaZSrm3dziY2YhIX1X5HrcePXrgvffew+DBg5XKN2zYgP/+9784fPiwJttn1HiPG5F2cGiUiLRJm9/fVZ5VGh8fDx8fH5VyHx8fHD9+XCONIiLSFnWhLT7+PXh7M7QRkf6rcnBzc3PD//73P5Xy1atXw83NTSONIiLStIcPH1a41+i+fQ0RFKSDRhERVVGVF+D98ssv0b9/f+zduxe+vr4AgOPHj+Ovv/7Ctm3bNN5AIqLnxaFRIqopnmkdt+vXr+Obb75BUlISAMDLywujR49mj5uG8R43ouenLrR9/PHHcHBwqP7GEJFR0Ob3Nxfg1WMMbkTP7u7du1i2bJlKOXvZiEjbdL4A7+MyMzPx7bff4uLFiwCANm3aYOTIkbC3t9do44iIngWHRomopqpyj9vJkyehUChgbW2Nzp07AwBOnDiBhw8fYv/+/ejYsaNWGmqM2ONGVHXqQltoaCisrKx00BoiMkZ6NVTatWtXNG/eHP/73/9gZlbaYVdUVIT33nsPV65cwa+//qrRBhozBjeiyrt27Rq+++47lXL2shFRddOr4GZtbY3ExER4enoqlV+4cAE+Pj548OCBRhtozBjciCqHQ6NEpE/06h43Ozs7pKWlqQS3a9euoXbt2hprGBFRZagLbTNnzoSpqakOWkNEpF1VDm4DBw5ESEgIFi1aBH9/fwDAH3/8galTp6psg0VEpC0XLlzA1q1bVcrZy0ZENVmVg9uiRYsgk8kwbNgwFBUVAQDMzc0xZswYREZGaryBRESP49AoERmrZ17H7cGDB7h8+TIAoFmzZrCxsdFow4j3uBGpoy60zZ49GzKZTAetISJSpVf3uJWxsbFBu3btNNkWIqIK/f7774iNjVUpZy8bERmTSge3kSNHVqqeuun4RETPo6KhUW9vhjYiMi6VDm5RUVFo3LgxvL29wV2yiKi6qAtt7GUjImNV6eA2ZswYbNy4ESkpKRgxYgTeffdd1K1bV5ttIyIjtmvXLiQkJKiUM7QRkTEzqWzFFStW4ObNm5g2bRp27twJNzc3vP3224iJiWEPHBFpVEREhNrQFhPD0EZExu2ZZ5VevXoVUVFRWLduHYqKinD+/HnUqlVL0+0zapxVSsZI3dDoxo3hkMmABQuAoCAdNIqIqAr0clapiYkJZDIZhBAoLi7WZJuIyAitWbMGaWlpKuXh4eHg6CgRUalKD5UCQH5+PjZu3IjXXnsNLVu2xJ9//only5cjLS2NvW1E9MwiIiIqDG1ERPRIpXvcPvzwQ2zatAlubm4YOXIkNm7cCEdHR222jYiMAGeNEhFVXqXvcTMxMYG7uzu8vb2fuEL5Tz/9pLHGGTve40Y12bx581BYWKhSztBGRIZOL+5xGzZsGLeUISKNUNfLZmFhgenTp+ugNUREhqNKC/ASET0vDo0SET27Z55VSkRUFRVtW8XQRkRUeQxuRKR16kKbu7s7RowYoYPWEBEZLgY3ItIqDo0SEWkOgxsRaQWHRomINI/BjYg0Tl1o8/HxQWBgoA5aQ0RUczC4EZFGcWiUiEh7GNyISCM4NEpEpH0MbkT0XKKjgcRE1dDWs2dPyOVyHbSIiKjmYnAjomcmhEBi4lyVcvayERFpB4MbET0TDo0SEVU/E103oLKCgoLg7u4OKysruLq6YujQobhx44ZSnS1btqBDhw6wsbFB48aN8cUXX6ic5/Dhw+jYsSMsLS3RvHlztVt5rVixAk2aNIGVlRV8fX1x/PhxpeN5eXkYO3Ys6tWrh1q1aqF///64deuWUp20tDQEBgbCxsYG9evXx9SpU1FUVPT8PwgiPaAutDVtOpihjYhIywwmuHXv3h1btmxBcnIytm3bhsuXL2PAgAHS8b1792LIkCEYPXo0zp07h2+++QZffvklli9fLtVJSUlBYGAgunfvjtOnT2PChAl47733EBMTI9XZvHkzJk2ahPDwcJw6dQrt27eHQqFARkaGVGfixInYuXMntm7diiNHjuDGjRt46623pOPFxcUIDAxEQUEB4uLisHbtWkRFRWH27Nla/ikRaVdJSYna0DZnTjhWrmyJ6GjA37/0vjciItI8mRBC6LoRzyI6Ohr9+vVDfn4+zM3N8c4776CwsBBbt26V6ixbtgwLFy5EWloaZDIZQkNDsXv3bpw7d06qM2jQIGRmZmLfvn0AAF9fX7z44otS4CspKYGbmxs++ugjhIWFISsrC05OTtiwYYMUHJOSkuDl5YX4+Hj4+flh79696NOnD27cuAFnZ2cAwKpVqxAaGorbt2/DwsKiUp8xOzsb9vb2yMrKgp2dnUZ+bkTPqqKhUW/vcERGAmFhQGQkEB8PyOVAXFw1N5CISE9o8/vbYHrcyrt79y7Wr18Pf39/mJubAwDy8/NhZWWlVM/a2hrXr1/H1atXAQDx8fEICAhQqqNQKBAfHw8AKCgoQEJCglIdExMTBAQESHUSEhJQWFioVMfT0xPu7u5Snfj4eLRr104KbWXvk52djfPnz1f4ufLz85Gdna30INIH6kLbBx98gPDwcAQFlYa0oKDS8CaXl/5JRESaZ1DBLTQ0FLa2tqhXrx7S0tKwY8cO6ZhCocBPP/2E2NhYlJSU4NKlS1i8eDEA4ObNmwCA9PR0pTAFAM7OzsjOzsbDhw9x584dFBcXq62Tnp4uncPCwgIODg5PrKPuHGXHKjJ//nzY29tLDzc3t8r+aIi0oqCgoMIFdV1cXFTKy4c4IiLSPJ0Gt7CwMMhksic+kpKSpPpTp05FYmIi9u/fD1NTUwwbNgxlI72jRo3CuHHj0KdPH1hYWMDPzw+DBg0CUNprZgimT5+OrKws6XHt2jVdN4mMWEREBObPn69SzgkIRES6o9PlQCZPnozg4OAn1mnatKn0d0dHRzg6OqJly5bw8vKCm5sbjh49CrlcDplMhgULFmDevHlIT0+Hk5MTYmNjlc7h4uKiMvvz1q1bsLOzg7W1NUxNTWFqaqq2TlnvgouLCwoKCpCZmanU6/Z4ncdnopadU10vRRlLS0tYWlo+8edBVB3U9bJNnDhRulcjOhrSfW3sXSMiqj467YpycnKCp6fnEx8V3chfUlICoPS+sPJMTU3RsGFDWFhYYOPGjZDL5XBycgIAyOVyKcyVOXDggLS6u4WFBTp16qRUp6SkBLGxsVKdTp06wdzcXKlOcnIy0tLSpDpyuRx//vmn0kzUAwcOwM7ODq1bt36mnxVRdcjJyalwaLR8aBsypHQSQmRkdbeQiMi4GcQCvMeOHcOJEyfQpUsX1KlTB5cvX8asWbPQrFkzKSzduXMHP/74I1555RXk5eVhzZo10nIdZUaPHo3ly5dj2rRpGDlyJA4ePIgtW7Zg9+7dUp1JkyZh+PDh8PHxQefOnfHVV18hNzcXI0aMAADY29sjJCQEkyZNQt26dWFnZ4ePPvoIcrkcfn5+AEq3+mndujWGDh2KhQsXIj09HTNnzsTYsWPZo0Z6q7IL6kZGAjk5QK1anIRARFTthAE4e/as6N69u6hbt66wtLQUTZo0EaNHjxbXr1+X6ty+fVv4+fkJW1tbYWNjI3r06CGOHj2qcq5Dhw6JDh06CAsLC9G0aVOxZs0alTrLli0T7u7uwsLCQnTu3FnlPA8fPhQffvihqFOnjrCxsRFvvvmmuHnzplKd1NRU0bt3b2FtbS0cHR3F5MmTRWFhYZU+d1ZWlgAgsrKyqvQ6oqqaM2eOyiMvL09t3R07hJDLS/8kIiJV2vz+Nth13IwB13Ejbbt9+za++eYblXJOQCAienba/P42iKFSItI87jVKRGR4GNyIjJC60DZz5kyYmprqoDVERFRZhrHAGRFpxLVr1yqcNVoW2rjfKBGR/mKPG5GRqGhoNCYmHN7ej9ZjK9tvNDKSa7QREekb9rgRGQF1oW327NnYuDEc8fHAtGmPyrnfKBGR/mKPG1ENdunSJWzcuFGlvGwCgkwGpT+B0l429rQREeknBjeiGqoys0YXLHi0dRUREek/BjeiGqiiCQjlcb9RIiLDw3vciGqQhISESoU2QHkSAhERGQb2uBHVEFVdUDcsjMOkRESGhsGNqAaobC/b48OjHCIlIjIsDG5EBuy3337DwYMHVcor6mXjGm1ERIaNwY3IQKnrZXN0dMTYsWMrfA2HR4mIDBuDG5EBquzQ6OM4PEpEZNgY3IgMyM6dO3Hq1CmV8sqENiIiMnxcDoTIQERERKiEtnbt2iE8PJwbwxMRGQn2uBEZgKcNjXLSARGRcWBwI9Jj69atQ0pKikr540OjnHRARGQcGNyI9JS6XrauXbsiJ+dV+Psrb1XFSQdERMaBwY1IDz1paNTfn8OiRETGisGNSI8sWbIE9+/fVykvPzTKYVEiIuPF4EakJ9T1svXp0wedOnVSKuOwKBGR8WJwI9IDz7qgLhERGRcGNyId+vTTT1FSUqJSztBGRETqMLgR6Yi6XrYhQ4agefPmOmgNEREZAgY3omomhMDcuXNVytnLRkRET8PgRlSNPvvsMxQXF6uUl21bVTZblJMPiIhIHQY3omqibmg0Lu4DxMS4AOC2VURE9HTcZJ5Iy4QQakPbpk3huHrVRdoYPiwMkMu5PhsREVVMJoQQum4EqZednQ17e3tkZWXBzs5O182hZ6AusAGlQ6NlOyDI5UBcXDU3jIiItEab398cKiXSEnWhbcKECbC3twfAHRCIiKjqGNyINKyoqAiff/65Svnjs0a5AwIREVUVgxuRBj1paJSIiOh5MbgRaYi60DZt2jRYW1vroDVERFQTMbgRPaf8/HxERkaqlLOXjYiINI3Bjeg5cGiUiIiqE4Mb0TNSF9pmzJgBc3NzHbSGiIiMAYMbURXl5uZi0aJFKuXsZSMiIm1jcCOqAg6NEhGRLnHLK6JKUhfaZs2aBW/v0l0QyrauIiIi0hYGN6KnyMzMVBvawsPDYWJiorQ5PBERkTZxqJToCdQFNkvLeoiOHgdv79KdD7h1FRERVRduMq/HuMm8bqkLbbNnz8ZLL8m4OTwREVVIm9/fHColekxGRkaFQ6MymQxhYaWhjT1sRERU3ThUSlSOusDm4eGBYcOGSc+5OTwREekKgxvR/1dRLxsREZG+YHAjo3fjxg3873//UylnaCMiIn3D4EZGTV0vW/v27dGvX7/qbwwREdFTMLiR0VIX2ry9w3n/GhER6S3OKqUaLzoaSjsbXLlypcL72RjaiIhIn7HHjWq88jsbJCaqBraAgAC89NJLOmgZERFR1TC4UY1XtrOBQsFZo0REZNgY3KjG8/L6CwrFBpVyb2+GNiIiMiwMblQjRUdX3Mt2+vQAbN/eBnI5F9IlIiLDwuBGNdKThkajo4Fbt7hlFRERGR4GN6pxLl++DIXiB5XysvvZuGUVEREZKgY3qlHULfMxYsQIuLu766A1REREmsXgRjUG9xolIqKajsGNDF5SUhI2b96sUs7QRkRENQ2DGxk0db1sY8eOhaOjow5aQ0REpF0MbmSwODRKRETGhsGNDM6ZM2ewfft2lXKGNiIiqukY3MigqOtlmzBhAuzt7XXQGiIiourF4EYGg0OjRERk7BjcSO8dPXoUMTExSmW1atXC5MmTddQiIiIi3WBwI72mrpdtypQpsLW11UFriIiIdIvBjfSSEAJz585VKefQKBERGTMTXTegqvLz89GhQwfIZDKcPn1a6djZs2fRtWtXWFlZwc3NDQsXLlR5/datW+Hp6QkrKyu0a9cOe/bsUTouhMDs2bPh6uoKa2trBAQE4K+//lKqc/fuXQwZMgR2dnZwcHBASEgIcnJyqtwWUu/w4cMqoc3FxYWhjYiIjJ7BBbdp06ahQYMGKuXZ2dno2bMnGjdujISEBHzxxReYM2cO/vvf/0p14uLiMHjwYISEhCAxMRH9+vVDv379cO7cOanOwoULsXTpUqxatQrHjh2Dra0tFAoF8vLypDpDhgzB+fPnceDAAezatQu//vor3n///Sq1hdSLiIjAkSNHlMpCQ0PxwQcf6KhFRERE+kMmhBC6bkRl7d27F5MmTcK2bdvQpk0bJCYmokOHDgCAlStX4pNPPkF6ejosLCwAAGFhYdi+fTuSkpIAAAMHDkRubi527dolndPPzw8dOnTAqlWrIIRAgwYNMHnyZEyZMgUAkJWVBWdnZ0RFRWHQoEG4ePEiWrdujRMnTsDHxwcAsG/fPrz++uu4fv06GjRoUKm2VEZ2djbs7e2RlZUFOzu75/756bOSkhJ8+umnKuXsZSMiIkOjze9vg+lxu3XrFkaNGoXvv/8eNjY2Ksfj4+PRrVs3KSgBgEKhQHJyMu7duyfVCQgIUHqdQqFAfHw8ACAlJQXp6elKdezt7eHr6yvViY+Ph4ODgxTaACAgIAAmJiY4duxYpduiTn5+PrKzs5UexmDv3r0qoa1Zs2YMbURERI8xiMkJQggEBwdj9OjR8PHxQWpqqkqd9PR0eHh4KJU5OztLx+rUqYP09HSprHyd9PR0qV7511VUp379+krHzczMULduXaU6T2uLOvPnz1c7i7ImU/d5Z8yYAXNzcx20hoiISL/ptMctLCwMMpnsiY+kpCQsW7YM9+/fx/Tp03XZXK2bPn06srKypMe1a9d03SStKS4urnBBXYY2IiIi9XTa4zZ58mQEBwc/sU7Tpk1x8OBBxMfHw9LSUumYj48PhgwZgrVr18LFxQW3bt1SOl723MXFRfpTXZ3yx8vKXF1dleqU3Uvn4uKCjIwMpXMUFRXh7t27T32f8u+hjqWlpcpnrIm2bdumNCEEAF544QW8+eabOmoRERGRYdBpcHNycoKTk9NT6y1duhSfffaZ9PzGjRtQKBTYvHkzfH19AQByuRyffPIJCgsLpR6bAwcOoFWrVtLQpFwuR2xsLCZMmCCd68CBA5DL5QAADw8PuLi4IDY2Vgpq2dnZOHbsGMaMGSOdIzMzEwkJCejUqRMA4ODBgygpKalSW4yVul62mTNnwtTUVAetISIiMiwGMTnB3d0dbdu2lR4tW7YEUHoDe6NGjQAA77zzDiwsLBASEoLz589j8+bN+PrrrzFp0iTpPB9//DH27duHxYsXIykpCXPmzMHJkycxbtw4AIBMJsOECRPw2WefITo6Gn/++SeGDRuGBg0aoF+/fgAALy8v9OrVC6NGjcLx48fxxx9/YNy4cRg0aJC0TEll2mJsCgsLKxwaZWgjIiKqHIOYnFAZ9vb22L9/P8aOHYtOnTrB0dERs2fPVlpfzd/fHxs2bMDMmTMxY8YMtGjRAtu3b0fbtm2lOtOmTUNubi7ef/99ZGZmokuXLti3bx+srKykOuvXr8e4cePQo0cPmJiYoH///li6dGmV2lJTREcDkZFAWBgQFKS+zrp165CSkqJU5ufnB4VCUQ0tJCIiqjkMah03Y2MI67j5+wPx8YBcDsTFqR5X18s2e/ZsyGSyamgdERFR9eM6bqRT0dGlAS06WvVYWFhpaAsLUy7Py8urcGiUoY2IiOjZsMdNj+lLj9vTetUet3LlSpWZt6+88gpefvllLbWQiIhIf2jz+7vG3ONG2hMW9ug+tqfh0CgREZH2cKiUKlQ2RAqU9rRVNPkAAHJycjg0SkREpGXscaMKRUaWDpFGRj45tH3xxRd48OCBUlnv3r3RuXNnLbeQiIjIuDC4UYUqM0RaUS8bERERaR6DG1UoKKjinrb79+9jyZIlKuUMbURERNrD4EZVtmrVKpW9WN9880288MILOmoRERGRceDkBHriOm2Pi4iIUAlt4eHhDG1ERETVgMGNlCYhVOTevXu8n42IiEjHOFRKT52EsGTJEty/f1+pLDg4GI0bN66G1hEREVEZ9rgZoceHRoOCKl6nLSIiQiW0hYeHM7QRERHpAIObEarM0Ghubi6HRomIiPQMh0qN0NOGRg8fPowjR44olY0dOxaOjo7V0DoiIiKqCIObEXrS+mzsZSMiItJfDG4EQP2Cuq+88gpefvllHbWIiIiIHsfgRjhw4ADi4uKUyqZMmQJbW1sdtYiIiIjUYXAzclu3bsWFCxeUyjg0SkREpJ8Y3IxUXl4eFixYoFTWs2dPyOVyHbWIiIiInobBzQhdunQJGzduVCqbMWMGzM3NddQiIiIiqgwGNyNUPrT5+flBoVDosDVERERUWQxuRmzUqFFo0KCBrptBRERElSQTQghdN4LUy87Ohr29PbKysmBnZ6fr5hAREVElaPP7m1teERERERkIBjciIiIiA8HgRkRERGQgGNyIiIiIDASDGxEREZGBYHAjIiIiMhAMbkREREQGgsGNiIiIyEAwuBEREREZCAY3IiIiIgPB4EZERERkIBjciIiIiAwEgxsRERGRgWBwIyIiIjIQZrpuAFVMCAEAyM7O1nFLiIiIqLLKvrfLvsc1icFNj92/fx8A4ObmpuOWEBERUVXdv38f9vb2Gj2nTGgjDpJGlJSU4MaNG6hduzZkMpmum6N12dnZcHNzw7Vr12BnZ6fr5tBjeH30G6+PfuP10W+avj5CCNy/fx8NGjSAiYlm70pjj5seMzExQaNGjXTdjGpnZ2fHX2x6jNdHv/H66DdeH/2myeuj6Z62MpycQERERGQgGNyIiIiIDASDG+kNS0tLhIeHw9LSUtdNITV4ffQbr49+4/XRb4Z0fTg5gYiIiMhAsMeNiIiIyEAwuBEREREZCAY3IiIiIgPB4EZERERkIBjcSCPy8/PRoUMHyGQynD59WunY2bNn0bVrV1hZWcHNzQ0LFy5Uef3WrVvh6ekJKysrtGvXDnv27FE6LoTA7Nmz4erqCmtrawQEBOCvv/5SqnP37l0MGTIEdnZ2cHBwQEhICHJycqrclpokKCgI7u7usLKygqurK4YOHYobN24o1dmyZQs6dOgAGxsbNG7cGF988YXKeQ4fPoyOHTvC0tISzZs3R1RUlEqdFStWoEmTJrCysoKvry+OHz+udDwvLw9jx45FvXr1UKtWLfTv3x+3bt1SqpOWlobAwEDY2Nigfv36mDp1KoqKip7/B6GnKnN9YmJi4Ofnh9q1a8PJyQn9+/dHamqqUh1eH+152jWaM2cOZDKZysPW1lbpPPwdpx2V+TckhMCiRYvQsmVLWFpaomHDhvj888+V6hjUvyFBpAHjx48XvXv3FgBEYmKiVJ6VlSWcnZ3FkCFDxLlz58TGjRuFtbW1+L//+z+pzh9//CFMTU3FwoULxYULF8TMmTOFubm5+PPPP6U6kZGRwt7eXmzfvl2cOXNGBAUFCQ8PD/Hw4UOpTq9evUT79u3F0aNHxW+//SaaN28uBg8eXKW21DRLliwR8fHxIjU1Vfzxxx9CLpcLuVwuHd+zZ48wMzMTK1euFJcvXxa7du0Srq6uYtmyZVKdK1euCBsbGzFp0iRx4cIFsWzZMmFqair27dsn1dm0aZOwsLAQ3333nTh//rwYNWqUcHBwELdu3ZLqjB49Wri5uYnY2Fhx8uRJ4efnJ/z9/aXjRUVFom3btiIgIEAkJiaKPXv2CEdHRzF9+nQt/5R052nX58qVK8LS0lJMnz5d/P333yIhIUF069ZNeHt7K9Xh9dGep12j+/fvi5s3byo9WrduLYYPHy7V4e847Xna9RFCiI8++ki0atVK7NixQ1y5ckWcPHlS7N+/XzpuaP+GGNzoue3Zs0d4enqK8+fPqwS3b775RtSpU0fk5+dLZaGhoaJVq1bS87ffflsEBgYqndPX11d88MEHQgghSkpKhIuLi/jiiy+k45mZmcLS0lJs3LhRCCHEhQsXBABx4sQJqc7evXuFTCYT//zzT6XbUtPt2LFDyGQyUVBQIIQQYvDgwWLAgAFKdZYuXSoaNWokSkpKhBBCTJs2TbRp00apzsCBA4VCoZCed+7cWYwdO1Z6XlxcLBo0aCDmz58vhCi9Xubm5mLr1q1SnYsXLwoAIj4+XghR+t+RiYmJSE9Pl+qsXLlS2NnZKV2zmuzx67N161ZhZmYmiouLpTrR0dFKdXh9qtfj1+hxp0+fFgDEr7/+KpXxd1z1efz6XLhwQZiZmYmkpKQKX2No/4Y4VErP5datWxg1ahS+//572NjYqByPj49Ht27dYGFhIZUpFAokJyfj3r17Up2AgACl1ykUCsTHxwMAUlJSkJ6erlTH3t4evr6+Up34+Hg4ODjAx8dHqhMQEAATExMcO3as0m2pye7evYv169fD398f5ubmAEqHuK2srJTqWVtb4/r167h69SqAp1+fgoICJCQkKNUxMTFBQECAVCchIQGFhYVKdTw9PeHu7q50Ddu1awdnZ2el98nOzsb58+c19WPQW+quT6dOnWBiYoI1a9aguLgYWVlZ+P777xEQECDV4fWpPuqu0eNWr16Nli1bomvXrlIZf8dVD3XXZ+fOnWjatCl27doFDw8PNGnSBO+99x7u3r0rvc7Q/g0xuNEzE0IgODgYo0ePVvplUl56errSf6QApOfp6elPrFP+ePnXVVSnfv36SsfNzMxQt27dp75P+feoiUJDQ2Fra4t69eohLS0NO3bskI4pFAr89NNPiI2NRUlJCS5duoTFixcDAG7evAmg4p9bdnY2Hj58iDt37qC4uPip18fCwgIODg5PrMPro3x9PDw8sH//fsyYMQOWlpZwcHDA9evXsWXLFqkOr4/2PekalZeXl4f169cjJCREqZy/47TrSdfnypUruHr1KrZu3Yp169YhKioKCQkJGDBggFTH0P4NMbiRirCwMLU325Z/JCUlYdmyZbh//z6mT5+u6yYblcpenzJTp05FYmIi9u/fD1NTUwwbNgzi/2+YMmrUKIwbNw59+vSBhYUF/Pz8MGjQIACl/0dJVafJ65Oeno5Ro0Zh+PDhOHHiBI4cOQILCwsMGDBAqkNVp8lrVN7PP/+M+/fvY/jw4dX5cWocTV6fkpIS5OfnY926dejatSteeeUVfPvttzh06BCSk5N19RGfi5muG0D6Z/LkyQgODn5inaZNm+LgwYOIj49X2dvNx8cHQ4YMwdq1a+Hi4qIyq6bsuYuLi/Snujrlj5eVubq6KtXp0KGDVCcjI0PpHEVFRbh79+5T36f8exiCyl6fMo6OjnB0dETLli3h5eUFNzc3HD16FHK5HDKZDAsWLMC8efOQnp4OJycnxMbGKp2jop+bnZ0drK2tYWpqClNT06dew4KCAmRmZir9H+njdR6fpWXs12fFihWwt7dXmhn4ww8/wM3NDceOHYOfnx+vzzPQ5DUqb/Xq1ejTp49Krwp/x1WNJq+Pq6srzMzM0LJlS6m+l5cXgNIZnq1atTK8f0OVvhuO6DFXr14Vf/75p/SIiYkRAMSPP/4orl27JoR4dLNs+Rt5p0+frjI5oU+fPkrnlsvlKjfuLlq0SDqelZWl9sbdkydPSnViYmLU3rj7pLbUdFevXhUAxKFDhyqsM3ToUKVZWdOmTRNt27ZVqjN48GCVG3fHjRsnPS8uLhYNGzZUuXH3xx9/lOokJSWpvXG3/Cyt//u//xN2dnYiLy/v2T6wgXn8+kyaNEl07txZqc6NGzcEAPHHH38IIXh9qltF/4auXLkiZDKZ2Llzp8pr+Duu+jx+fcq+l/7++2+pTtkEkuTkZCGE4f0bYnAjjUlJSVGZVZqZmSmcnZ3F0KFDxblz58SmTZuEjY2NynIgZmZmYtGiReLixYsiPDxc7VR5BwcHsWPHDnH27FnRt29ftVPlvb29xbFjx8Tvv/8uWrRooTRVvjJtqUmOHj0qli1bJhITE0VqaqqIjY0V/v7+olmzZtIvidu3b4uVK1eKixcvisTERDF+/HhhZWUljh07Jp2nbKr81KlTxcWLF8WKFSvUTpW3tLQUUVFR4sKFC+L9998XDg4OSrOnRo8eLdzd3cXBgwfFyZMnVabtl02V79mzpzh9+rTYt2+fcHJyqrHLTVTm+sTGxgqZTCYiIiLEpUuXREJCglAoFKJx48biwYMHQgheH22qzDUqM3PmTNGgQQNRVFSkch7+jtOOylyf4uJi0bFjR9GtWzdx6tQpcfLkSeHr6ytee+016TyG9m+IwY00Rl1wE0KIM2fOiC5dughLS0vRsGFDERkZqfLaLVu2iJYtWwoLCwvRpk0bsXv3bqXjJSUlYtasWcLZ2VlYWlqKHj16SP+3VObff/8VgwcPFrVq1RJ2dnZixIgR4v79+1VuS01x9uxZ0b17d1G3bl1haWkpmjRpIkaPHi2uX78u1bl9+7bw8/MTtra2wsbGRvTo0UMcPXpU5VyHDh0SHTp0EBYWFqJp06ZizZo1KnWWLVsm3N3dhYWFhejcubPKeR4+fCg+/PBDUadOHWFjYyPefPNNcfPmTaU6qamponfv3sLa2lo4OjqKyZMni8LCQs38QPRMZa6PEEJs3LhReHt7C1tbW+Hk5CSCgoLExYsXlerw+mhHZa9RcXGxaNSokZgxY0aF5+LvOM2r7PX5559/xFtvvSVq1aolnJ2dRXBwsPj333+V6hjSvyGZELzDlYiIiMgQcNoYERERkYFgcCMiIiIyEAxuRERERAaCwY2IiIjIQDC4ERERERkIBjciIiIiA8HgRkRERGQgGNyIiLRAJpNh+/btum6GksOHD0MmkyEzM1PXTSGiZ8TgRkT0HObMmSNtBE5EpG0MbkREREQGgsGNiIxaSUkJ5s+fDw8PD1hbW6N9+/b48ccfATwaWoyNjYWPjw9sbGzg7++P5ORkAEBUVBQiIiJw5swZyGQyyGQyREVFSee+c+cO3nzzTdjY2KBFixaIjo6uVJvK3jcmJgbe3t6wtrbGq6++ioyMDOzduxdeXl6ws7PDO++8gwcPHkivy8/Px/jx41G/fn1YWVmhS5cuOHHihOZ+WESkcwxuRGTU5s+fj3Xr1mHVqlU4f/48Jk6ciHfffRdHjhyR6nzyySdYvHgxTp48CTMzM4wcORIAMHDgQEyePBlt2rTBzZs3cfPmTQwcOFB6XUREBN5++22cPXsWr7/+OoYMGYK7d+9Wum1z5szB8uXLERcXh2vXruHtt9/GV199hQ0bNmD37t3Yv38/li1bJtWfNm0atm3bhrVr1+LUqVNo3rw5FApFld6TiPRclbakJyKqQfLy8oSNjY2Ii4tTKg8JCRGDBw8Whw4dEgDEL7/8Ih3bvXu3ACAePnwohBAiPDxctG/fXuXcAMTMmTOl5zk5OQKA2Lt371Pbpe5958+fLwCIy5cvS2UffPCBUCgU0vnNzc3F+vXrpeMFBQWiQYMGYuHChUrnvXfv3lPbQET6yUyHmZGISKf+/vtvPHjwAK+99ppSeUFBAby9vaXnL7zwgvR3V1dXAEBGRgbc3d2feP7yr7O1tYWdnR0yMjIq3b7yr3d2doaNjQ2aNm2qVHb8+HEAwOXLl1FYWIiXXnpJOm5ubo7OnTvj4sWLlX5PItJvDG5EZLRycnIAALt370bDhg2VjllaWuLy5csASgNQGZlMBqD03rinKf+6stdW5nXqXi+TyZ77fERk+HiPGxEZrdatW8PS0hJpaWlo3ry50sPNza1S57CwsEBxcbGWW/p0zZo1g4WFBf744w+prLCwECdOnEDr1q112DIi0iT2uBGR0apduzamTJmCiRMnoqSkBF26dEFWVhb++OMP2NnZoXHjxk89R5MmTZCSkoLTp0+jUaNGqF27NiwtLauh9cpsbW0xZswYTJ06FXXr1oW7uzsWLlyIBw8eICQkpNrbQ0TaweBGREbt008/hZOTE+bPn48rV67AwcEBHTt2xIwZMyo1DNm/f3/89NNP6N69OzIzM7FmzRoEBwdrv+FqREZGoqSkBEOHDsX9+/fh4+ODmJgY1KlTRyftISLNkwkhhK4bQURERERPx3vciIiIiAwEgxsRUTUbPXo0atWqpfYxevRoXTePiPQYh0qJiKpZRkYGsrOz1R6zs7ND/fr1q7lFRGQoGNyIiIiIDASHSomIiIgMBIMbERERkYFgcCMiIiIyEAxuRERERAaCwY2IiIjIQDC4ERERERkIBjciIiIiA8HgRkRERGQg/h8Bu7sJt+ciGQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLyUlEQVR4nO3deVzU1f7H8feALKIsLiBq4Fou2TXSNLgt6s9EK8m2X6tKmWVqZtoCZiJZiWZ202vavaV2y9QsM35qmZXaIvdmapYLmqZpJWqp4Mr6/f3BZXScQQcY+M7yej4e88A53+9854Nzu/P2nPM9x2IYhiEAAAAf4Gd2AQAAADWF4AMAAHwGwQcAAPgMgg8AAPAZBB8AAOAzCD4AAMBnEHwAAIDPIPgAAACfQfABAAA+g+ADwCNZLBaNHz/e7DKskpOT1bx5c7PLAHABBB8ALjN37lxZLBbrIzg4WJdccomGDx+uAwcOVOt7r127VuPHj9fRo0ddet1u3brZ/E7169fXlVdeqdmzZ6ukpMQl7/Hiiy9qyZIlLrkWgPOrZXYBALzPc889pxYtWuj06dP6+uuvNXPmTC1fvlybN29WSEiIS97j1KlTqlXrzP+FrV27Vunp6UpOTlZERIRL3qPMRRddpIkTJ0qSDh06pH/9618aNGiQduzYoYyMjCpf/8UXX9Ttt9+ufv36VflaAM6P4APA5fr06aPOnTtLkh588EE1aNBAU6dO1UcffaS777670tctKSlRQUGBgoODFRwc7KpyLyg8PFz33Xef9fnDDz+sNm3a6O9//7smTJiggICAGqsFQNUw1AWg2vXo0UOStHv3bknSlClTlJCQoAYNGqh27drq1KmT3n//fbvXWSwWDR8+XPPmzdOll16qoKAgffLJJ9ZjZXN8xo8fryeffFKS1KJFC+uw1J49e3TdddepY8eODutq06aNEhMTK/z7hISE6KqrrtKJEyd06NChcs87ceKERo8erZiYGAUFBalNmzaaMmWKDMOw+R1PnDiht956y1p3cnJyhWsC4Bx6fABUu127dkmSGjRoIEl69dVXlZSUpHvvvVcFBQVasGCB7rjjDi1dulQ33nijzWu/+OILvffeexo+fLgaNmzocALxrbfeqh07dmj+/Pl65ZVX1LBhQ0lSZGSk+vfvr8GDB2vz5s3q0KGD9TXr1q3Tjh07NHbs2Er9Tj///LP8/f3LHVYzDENJSUlatWqVBg0apMsvv1wrVqzQk08+qd9++02vvPKKJOntt9/Wgw8+qC5duuihhx6SJLVq1apSNQFwggEALjJnzhxDkvHZZ58Zhw4dMvbt22csWLDAaNCggVG7dm3j119/NQzDME6ePGnzuoKCAqNDhw5Gjx49bNolGX5+fsaWLVvs3kuSkZaWZn3+0ksvGZKM3bt325x39OhRIzg42Hj66adt2keMGGHUqVPHOH78+Hl/p+uuu85o27atcejQIePQoUPGtm3bjBEjRhiSjL59+1rPGzhwoNGsWTPr8yVLlhiSjOeff97merfffrthsViMnTt3Wtvq1KljDBw48Lx1AHANhroAuFzPnj0VGRmpmJgY3XXXXapbt64+/PBDNW3aVJJUu3Zt67lHjhxRbm6urrnmGm3YsMHuWtddd53at29f6VrCw8N18803a/78+dYhpuLiYi1cuFD9+vVTnTp1LniN7OxsRUZGKjIyUu3atdP06dN14403avbs2eW+Zvny5fL399eIESNs2kePHi3DMPTxxx9X+ncCUHkMdQFwuRkzZuiSSy5RrVq11KhRI7Vp00Z+fmf+nbV06VI9//zz+v7775Wfn29tt1gsdtdq0aJFlesZMGCAFi5cqK+++krXXnutPvvsMx04cED9+/d36vXNmzfXP//5T+st+hdffLGioqLO+5pffvlFTZo0UWhoqE17u3btrMcB1DyCDwCX69Kli/WurnN99dVXSkpK0rXXXqvXXntNjRs3VkBAgObMmaN3333X7vyze4cqKzExUY0aNdI777yja6+9Vu+8846io6PVs2dPp15fp04dp88F4N4Y6gJQoz744AMFBwdrxYoVeuCBB9SnTx+XhApHvUVl/P39dc899+j999/XkSNHtGTJEt19993y9/ev8vuWp1mzZvr999917Ngxm/bs7Gzr8TLnqx2AaxF8ANQof39/WSwWFRcXW9v27NlT5ZWLy+bqlLdyc//+/XXkyBE9/PDDOn78uM26PNXhhhtuUHFxsf7+97/btL/yyiuyWCzq06ePta1OnTouX3EagGMMdQGoUTfeeKOmTp2q3r1765577tHBgwc1Y8YMtW7dWj/88EOlr9upUydJ0jPPPKO77rpLAQEB6tu3rzUQxcXFqUOHDlq0aJHatWunK664wiW/T3n69u2r7t2765lnntGePXvUsWNHffrpp/roo480cuRIm1vWO3XqpM8++0xTp05VkyZN1KJFC3Xt2rVa6wN8FT0+AGpUjx499OabbyonJ0cjR47U/PnzNWnSJN1yyy1Vuu6VV16pCRMmaNOmTUpOTtbdd99tt7jggAEDJMnpSc1V4efnp8zMTI0cOVJLly7VyJEjtXXrVr300kuaOnWqzblTp05Vp06dNHbsWN19992aOXNmtdcH+CqLYZy1hCgAeLFXX31Vjz/+uPbs2aPY2FizywFgAoIPAJ9gGIY6duyoBg0aaNWqVWaXA8AkzPEB4NVOnDihzMxMrVq1Sj/++KM++ugjs0sCYCJ6fAB4tT179qhFixaKiIjQ0KFD9cILL5hdEgATEXwAAIDP4K4uAADgMwg+AADAZzC5+RwlJSX6/fffFRoayjLyAAB4CMMwdOzYMTVp0sRmU+RzEXzO8fvvvysmJsbsMgAAQCXs27dPF110UbnHCT7nCA0NlVT6FxcWFmZyNQAAwBl5eXmKiYmxfo+Xh+BzjrLhrbCwMIIPAAAe5kLTVJjcDAAAfAbBBwAA+AyCDwAA8BnM8amE4uJiFRYWml0GakBAQID8/f3NLgMA4CIeE3wmTpyoxYsXKzs7W7Vr11ZCQoImTZqkNm3aWM85ffq0Ro8erQULFig/P1+JiYl67bXX1KhRI5fUYBiGcnJydPToUZdcD54hIiJC0dHRrOsEAF7AY4LPmjVrNGzYMF155ZUqKirSmDFj1KtXL23dulV16tSRJD3++ONatmyZFi1apPDwcA0fPly33nqrvvnmG5fUUBZ6oqKiFBISwhehlzMMQydPntTBgwclSY0bNza5IgBAVXnsJqWHDh1SVFSU1qxZo2uvvVa5ubmKjIzUu+++q9tvv12SlJ2drXbt2ikrK0tXXXWVU9fNy8tTeHi4cnNzbW5nLy4u1o4dOxQVFaUGDRpUy+8E9/Tnn3/q4MGDuuSSSxj2AgA3Vd7397k8dnJzbm6uJKl+/fqSpPXr16uwsFA9e/a0ntO2bVvFxsYqKyuryu9XNqcnJCSkyteCZyn7zJnXBQCez2OGus5WUlKikSNH6q9//as6dOggqXQYKjAwUBERETbnNmrUSDk5OeVeKz8/X/n5+dbneXl5531vhrd8D585AHgPj+zxGTZsmDZv3qwFCxZU+VoTJ05UeHi49cE+XQAAeC+PCz7Dhw/X0qVLtWrVKptNyKKjo1VQUGB3x9WBAwcUHR1d7vVSU1OVm5trfezbt6+6SgcAACbzmOBjGIaGDx+uDz/8UF988YVatGhhc7xTp04KCAjQ559/bm3bvn279u7dq/j4+HKvGxQUZN2Xy1v350pOTpbFYpHFYlFAQIAaNWqk66+/XrNnz1ZJSYnT15k7d67dUCIAAJ7EY+b4DBs2TO+++64++ugjhYaGWufthIeHq3bt2goPD9egQYM0atQo1a9fX2FhYXr00UcVHx/v9B1d3qx3796aM2eOiouLdeDAAX3yySd67LHH9P777yszM1O1annM/xQAAB7q+PHjslgs1mVozOAxPT4zZ85Ubm6uunXrpsaNG1sfCxcutJ7zyiuv6KabbtJtt92ma6+9VtHR0Vq8eLGJVbuPoKAgRUdHq2nTprriiis0ZswYffTRR/r44481d+5cSdLUqVN12WWXqU6dOoqJidHQoUN1/PhxSdLq1at1//33Kzc319p7NH78eEnS22+/rc6dOys0NFTR0dG65557rGvfAABgGIZmzJihl19+WbNmzZKZK+l4zD/znflLCg4O1owZMzRjxowaqKi0JrNucQ4ICKjy3UY9evRQx44dtXjxYj344IPy8/PTtGnT1KJFC/38888aOnSonnrqKb322mtKSEjQ3/72N40bN07bt2+XJNWtW1dS6W3eEyZMUJs2bXTw4EGNGjVKycnJWr58eZV/TwCAZzt69KheffVV6/MTJ06YeresxwQfd1RYWKiJEyea8t6pqakKDAys8nXatm2rH374QZI0cuRIa3vz5s31/PPPa8iQIXrttdcUGBio8PBwWSwWu8niDzzwgPXPLVu21LRp03TllVfq+PHj1nAEAPA969ats/lHcHh4uB577DETKyL4+DzDMKzJ+7PPPtPEiROVnZ2tvLw8FRUV6fTp0zp58uR5F25cv369xo8fr02bNunIkSPWCdN79+5V+/bta+T3AAC4D8MwNG3aNJs7rW+44QZdeeWV5hX1XwSfKggICFBqaqpp7+0K27ZtU4sWLbRnzx7ddNNNeuSRR/TCCy+ofv36+vrrrzVo0CAVFBSUG3xOnDihxMREJSYmat68eYqMjNTevXuVmJiogoICl9QIAPAchw8f1vTp023aHnvsMbe5K5jgUwUWi8Ulw01m+eKLL/Tjjz/q8ccf1/r161VSUqKXX35Zfn6lc97fe+89m/MDAwNVXFxs05adna0///xTGRkZ1sUfv/vuu5r5BQAAbiUrK0uffvqp9XnDhg01dOhQ68hCZqaUkSGlpEhJSebUSPDxEfn5+crJybG5nX3ixIm66aabNGDAAG3evFmFhYWaPn26+vbtq2+++UazZs2yuUbz5s11/Phxff755+rYsaNCQkIUGxurwMBATZ8+XUOGDNHmzZs1YcIEk35LAIAZSkpKNHXqVJ04ccLa1rdvX11xxRU252VkSFlZpT/NCj4eczs7quaTTz5R48aN1bx5c/Xu3VurVq3StGnT9NFHH8nf318dO3bU1KlTNWnSJHXo0EHz5s2zm7idkJCgIUOG6M4771RkZKQmT56syMhIzZ07V4sWLVL79u2VkZGhKVOmmPRbAgBq2h9//KEJEybYhJ7HH3/cLvRIpT098fGlP81iMcy8md4Nlbet/enTp7V79261aNFCwcHBJlaImsZnDwCOffXVV/riiy+szxs3bqzBgwebcrt6ed/f52KoCwAAVEhJSYkyMjJs1rK75ZZb9Je//MXEqpxD8AEAAE47ePCgZs6cadM2evRoj1m3jeADAACcsnTpUq1fv976PDY21roRtqcg+AAAgPMqLCzUiy++aNN2++2369JLLzWposoj+AAAgHJt3LhRmZmZNm0dOjyhSy81b4f1qiD4AAAAh9LT0+3axo9PU3y8dNttJhTkAgQfAABgIz8/XxkZGTZtl19+uSyWm01fh6eqCD4AAMDq22+/1ccff2zT9uijj6p+/fqSzFtx2VUIPgAAQJLjoa20tDQTKqk+bFkBl0lOTla/fv2sz7t166aRI0dW6ZquuAYA4PxOnTplF3q6dOnidaFHosfHJyQnJ+utt96SJAUEBCg2NlYDBgzQmDFjVKtW9f1PYPHixQoICHDq3NWrV6t79+46cuSIIiIiKnUNAEDFLV68WD/++KNN28iRIxUeHm5SRdWL4OMjevfurTlz5ig/P1/Lly/XsGHDFBAQoNTUVJvzCgoKFBgY6JL3LBsPNvsaAADHfGFo61wMdfmIoKAgRUdHq1mzZnrkkUfUs2dPZWZmWoenXnjhBTVp0kRt2rSRJO3bt0//+7//q4iICNWvX18333yz9uzZY71ecXGxRo0apYiICDVo0EBPPfWUzt3v9txhqvz8fD399NOKiYlRUFCQWrdurTfffFN79uxR9+7dJUn16tWTxWJRcnKyw2scOXJEAwYMUL169RQSEqI+ffrop59+sh6fO3euIiIitGLFCrVr105169ZV7969tX//fus5q1evVpcuXVSnTh1FRETor3/9q3755RcX/U0DgPv79ddf7UJPp06dvD70SAQfn1W7dm0VFBRIkj7//HNt375dK1eu1NKlS1VYWKjExESFhobqq6++0jfffGMNEGWvefnllzV37lzNnj1bX3/9tQ4fPqwPP/zwvO85YMAAzZ8/X9OmTdO2bdv0+uuvq27duoqJidEHH3wgSdq+fbv279+vV1991eE1kpOT9d133ykzM1NZWVkyDEM33HCDzUZ5J0+e1JQpU/T222/ryy+/1N69e/XEE09IkoqKitSvXz9dd911+uGHH5SVlaWHHnrIo5ZbB4CqSE9P15tvvmnTNnv2w8rKusmkimoWQ10+xjAMff7551qxYoUeffRRHTp0SHXq1NEbb7xhHeJ65513VFJSojfeeMMaCObMmaOIiAitXr1avXr10t/+9jelpqbq1ltvlSTNmjVLK1asKPd9d+zYoffee08rV65Uz549JUktW7a0Hi8b0oqKirKZ43O2n376SZmZmfrmm2+UkJAgSZo3b55iYmK0ZMkS3XHHHZJKl1afNWuWWrVqJUkaPny4nnvuOUlSXl6ecnNzddNNN1mPt2vXruJ/kQDggRwNbU2Zkqbjx6Vp06QXXjChqBpGj49JMjOlhITSnzVh6dKlqlu3roKDg9WnTx/deeedGj9+vCTpsssus5nXs2nTJu3cuVOhoaGqW7eu6tatq/r16+v06dPatWuXcnNztX//fnXt2tX6mlq1aqlz587lvv/3338vf39/XXfddZX+HbZt26ZatWrZvG+DBg3Upk0bbdu2zdoWEhJiDTWS1LhxYx08eFBSacBKTk5WYmKi+vbtq1dffdVmGAwAvNHPP/9c7nyeESOkunWlESNMKMwE9PiYJCNDysoq/VkTi0F1795dM2fOVGBgoJo0aWJzN1edOrb7rRw/flydOnXSvHnz7K4TGRlZqfevXbt2pV5XGefeBWaxWGzmH82ZM0cjRozQJ598ooULF2rs2LFauXKlrrrqqhqrEQBqiqPA8/DDDys6OlpSaS+PL/T0lKHHxyQpKarRZb/r1Kmj1q1bKzY29oK3sF9xxRX66aefFBUVpdatW9s8wsPDFR4ersaNG+s///mP9TVFRUVav359ude87LLLVFJSojVr1jg8XtbjVFxcXO412rVrp6KiIpv3/fPPP7V9+3a1b9/+vL/TueLi4pSamqq1a9eqQ4cOevfddyv0egDwBOX18pSFHl9E8DFJUpK0dq17Lv197733qmHDhrr55pv11Vdfaffu3Vq9erVGjBihX3/9VZL02GOPKSMjQ0uWLFF2draGDh2qo0ePlnvN5s2ba+DAgXrggQe0ZMkS6zXfe+89SVKzZs1ksVi0dOlSHTp0SMePH7e7xsUXX6ybb75ZgwcP1tdff61NmzbpvvvuU9OmTXXzzTc79bvt3r1bqampysrK0i+//KJPP/1UP/30E/N8AHiVbdu2+eSt6s4g+MBOSEiIvvzyS8XGxurWW29Vu3btNGjQIJ0+fVphYWGSpNGjR6t///4aOHCg4uPjFRoaqltuueW81505c6Zuv/12DR06VG3bttXgwYN14sQJSVLTpk2Vnp6ulJQUNWrUSMOHD3d4jTlz5qhTp0666aabFB8fL8MwtHz5cqcXOQwJCVF2drZuu+02XXLJJXrooYc0bNgwPfzwwxX4GwIA91M2dzQ9Pd36j8oyw4cPJ/T8l8U4d/EVH5eXl6fw8HDl5uZav+Ql6fTp09q9e7datGih4OBgEytETeOzB+AJEhKkxETf7eUp7/v7XExuBgDAw/3tbwuVmJht0+bn56dnn33WpIrcF8EHAAAP5mguz+OPP37eXg9fRvABAMADGYZhXZz1bHFxaSLzlI/JzQAAuLlzF71NT093GHrGj09TRkYNF+dhCD4VxFxw38NnDsBsZy9662hoa9iwYYqLS1PTptL330vPPFPzNXoKgo+Tym6XPnnypMmVoKaVfebO3jIPAK5Wuuit4fCurbi4NDVs2FBJSVJurnTqVOm+W3CMOT5O8vf3V0REhHXPp5CQEHb09nKGYejkyZM6ePCgIiIi5O/vb3ZJAHzUxo3pSky0by8oODO0lZRUut/WtGm+s+9WZbCOzznOtw6AYRjKyck57wrF8D4RERGKjo4m6AKoUZmZpUNbjnp52rd/VK+8Ul9HjkjZ2aVbIK1da0KRboR1fKqBxWJR48aNFRUVpcLCQrPLQQ0ICAigpweAKSZPLlJiov3uoXFxabr3Xun4calNm5rd99EbEHwqwd/fny9DAIBLlfXwpKSUDm1df739OWlpaUpIKA09detKkye7556P7ozgAwCAGyi7c2vjRvuhrQ4dRuu22+pKKg1GZQGJ0FNxzPE5h7NjhAAAuNLixSf1448v2bX7yl5bVcUcHwAAPISjtXkkQk91IPgAAGAiR6Hns89S9NVXQSZU4/0IPgAAmODw4cOaPn26XfuKFWncpVWNCD4AANSw8w1tMbpVvQg+AADUIEehZ+zYsSyTUkMIPgAA1IBff/1Vb775pl17XFyayDw1h+ADAEA1464t90HwAQCgmmRmOl6QcNy4cez/ZxKCDwAA1WDr1q3auHGRXTu9POYi+AAA4GIMbbkvgg8AABVw9maijvbKchR6CDzug+ADAEAFlG0mmpFx5nlKitSw4VqtXLnS7nxCj3sh+AAAUAFn745+vh3VJUKPOyL4AABQDkfDWklJtkNcjkIPgcd9+ZldAAAA7urcYa2zLVu2jNDjgejxAQCgHGcPa52Nu7Y8F8EHAIBynDusJXHXlqcj+AAA4IR//etf2r17t107ocezMMcHAODTMjOlhITSn+VJT0+3Cz3169cn9HggenwAAD7t7AnMLEjo/Qg+AACfVt4E5hdeeEFFRUV25xN6PBvBBwDg05ydwNymTRvdddddNVQVqgtzfAAAPsvR/J7yhrYIPd6BHh8AgM8pW5H5yBEpO7v0z2w74RsIPgAAn1M2oblNGyk+XkpMtA89Xbp0UZ8+fUyoDtWJoS4AgFc6323qKSmlgWfyZMehJy0tjdDjpSyGYRhmF+FO8vLyFB4ertzcXIWFhZldDgCgktq1Kx3GattW2rbN/jjbTngXZ7+/6fEBAHidZ56Rtm8v/bNh2Pf+OAo9vXv3JvT4AK8MPjNmzFDz5s0VHBysrl276ttvvzW7JABADZo2rTTw+PmVDmedvUhheXdtde3a1YRKUdO8LvgsXLhQo0aNUlpamjZs2KCOHTsqMTFRBw8eNLs0AEANGTFCCg6WGjcufZ6SIo0fn17ufB74Dq+b49O1a1ddeeWV+vvf/y5JKikpUUxMjB599FGlnLsspwPM8QEA75CQUNrLU95dW7feeqsuu+wyEypDdfDJOT4FBQVav369evbsaW3z8/NTz549lZWV5fA1+fn5ysvLs3kAADzPufN4Su/cKim3l4fQ45u8Kvj88ccfKi4uVqNGjWzaGzVqpJycHIevmThxosLDw62PmJiYmigVAOBiZ8/jkUoXJExMnGB3HkNbvs2rgk9lpKamKjc31/rYt2+f2SUBACqhbG2elBTHE5jvv/9+Qg+8K/g0bNhQ/v7+OnDggE37gQMHFB0d7fA1QUFBCgsLs3kAANzfuUNbSUnS6tUFDreeSEtLU2xsbA1XCHfkVcEnMDBQnTp10ueff25tKykp0eeff674+HgTKwMAuFJmpnTvvbZDW+np6Zo4caLdufTy4Gxet1fXqFGjNHDgQHXu3FldunTR3/72N504cUL333+/2aUBAKrgmWdK1+cZMUJatUo6flyqW7f8oa2hQ4cqMjLShErhzrwu+Nx55506dOiQxo0bp5ycHF1++eX65JNP7CY8AwA8y7RppWFn2jRp3rzSnp7Ro49p48apdufSy4PyeN06PlXFOj4A4F4yM0tDTtOm0ieflPb4vPACe23BlrPf317X4wMA8GyZmdJTT0kWizRp0pnb1OPjpWPHSs9xFHqeeOIJ1alTp4arhach+AAA3EpGxpkNRjMySufwlP08cOCAZs2aZfcaenngLK+6qwsA4Pm6dy/dZ6tp09Kwk5QkrV1buiAhoQdVRY8PAMCtrFolnT4txcaWhh7J8dDWmDFjFBAQUMPVwdMRfAAAbqFsEnP37qXPU1KknTt3at68eXbn0suDyiL4AADcQtkkZql0aCs9PV0bN9qfR+hBVRB8AABu4exJzI6GtsaNGyeLxWJCZfAmBB8AgFtISpKaNl2vpUuX2h2jlweuwl1dAIBql5kptW0rtWt3ZlPRc6WnpxN6UO3o8QEAVLtz1+Ypu1urjKOhLQIPqgPBBwBQ7VJSzqzGnJJypn3lypVau3at3fmEHlQXgg8AoNolJTnXyyMRelC9CD4AgGqRmSk9/bRkGNLkybbBh6EtmIXgAwCoFhkZUnb2mT8nJUnz58/Xjh077M4l9KCmEHwAANUiJeVMj095a/NIhB7ULIIPAKBanD2vh6EtuAuCDwCg2kyaNEmnT5+2ayf0wCwEHwBAtWBoC+6I4AMAcDmGtuCuCD4AAJehlwfujr26AAB2MjOlhATH+2qVd8xR6AkNDSX0wK1YDMMwzC7CneTl5Sk8PFy5ubkKCwszuxwAMEVCgpSVJcXHS+fuKOHoGENbMJuz398MdQEA7KSklC46ePa+Wo6OMbQFT8NQFwDATlLSmd6cc4e1yo5t3Ggfei6++GJCD9waPT4AgHJlZJQOa5VtOVGGoS14KoIPAKBc5w55MbQFT8dQFwDA7k6tsudS6bBWUpLj0JOQkEDogUfhrq5zcFcXAF9UdqdW3brSvHlnhrjK7txiaAvujru6AABOycyUDh+WgoOl48fPDG1lZEiJielyNLpF6IGnIvgAgI/LyJC2b5fatpXq1SsNPUlJju/auuGGG3TllVeaUCXgGgQfAPBhmZnSkSNSmzbSpEmlgccwDKWnP2d3Lr088AYEHwDwYRkZUnZ26Vye8iYwS4QeeA+CDwD4sAutwnzfffepVatWJlQGVA9uZwcAH5aUJK1ZU+hwPk9aWhqhB16HHh8A8GEMbcHXEHwAwEc5Cj1DhgxRo0aNTKgGqBkMdQGADzh7Zebjx4+XuyAhoQfejuADAB7u3O0mHClbiXnjxnS9/PLLdscZ2oKvYMuKc7BlBQBPU7bdRNn2Eo5kZjpekHDUqFEKDQ2t5gqB6ufs9zc9PgDg4VJSSkNP2Q7q5zp48GC5d20ReuBrmNwMAB4uKan04Qh3bQG2CD4A4KUchZ7U1FQFBgaaUA3gHio81OXv76+DBw/atf/555/y9/d3SVEAgMrbuXNnuXdtEXrg6yrc41PeXOj8/Hz+gwIAkzG0BZyf08Fn2rRpkiSLxaI33nhDdevWtR4rLi7Wl19+qbZt27q+QgCAUxyFnmeffVZ+ftzHApRxOvi88sorkkp7fGbNmmUzrBUYGKjmzZtr1qxZrq8QAHBe3333nZYtW2bXTi8PYM/p4LN7925JUvfu3bV48WLVq1ev2ooCADiHoS2gYio8x2fVqlXVUQcAoILKm8AMoHwVDj4PPPDAeY/Pnj270sUAAM4vM1P66KPlio1dZ3eM0ANcWIWDz5EjR2yeFxYWavPmzTp69Kh69OjhssIAAGdkZpbut5WYmK7YWPvjhB7AORUOPh9++KFdW0lJiR555BG1atXKJUUBAGyVhZ5zEXiAinHZJqXbt29Xt27dtH//fldczjRsUgrAXZT18tx880ydPm2/cCyhBzijxjcp3bVrl4qKilx1OQDwepmZpTurZ2Y6Pv7006W9PIQewHUqPNQ1atQom+eGYWj//v1atmyZBg4c6LLCAMDbZWRIWVmlPx1tMnrXXQxtAa5W4eCzceNGm+d+fn6KjIzUyy+/fME7vgAAZ6SklIaelBTb9gkTJqikpMTufEIPUHWs4wMAJklKsu/pKW9Bwrg4Qg/gChUOPmUOHjyo7du3S5LatGmjqKgolxUFAL7IUehZsSJNWVlSfLzj4TAAFVPh4JOXl6dhw4Zp/vz51q5Yf39/3XnnnZoxY4bCw8NdXiQAeLPzbTsRF+d4OAxA5VT4rq7BgwfrP//5j5YtW6ajR4/q6NGjWrp0qb777js9/PDD1VEjAHitC+21lZQkrV1Lbw/gKhVex6dOnTpasWKFrr76apv2r776Sr1799aJEydcWmBNYx0fADWFvbYA13H2+7vCQ10NGjRwOJwVHh7Oju0A4AR2VAfMU+GhrrFjx2rUqFHKycmxtuXk5OjJJ5/Us88+69LiAMDbOAo9jRs3JvQANaTCQ11xcXHauXOn8vPzFfvfnfL27t2roKAgXXzxxTbnbtiwwXWV1hCGugBUVdlWEykptnNzGNoCqk+1DXXdfPPNslgsVSoOALzZuSsyM7QFuA+XbVLqLejxAVBVZ/f4bNxoH3o2bIjToUNJWrvWhOIAL1Vtm5S2bNlSf/75p1370aNH1bJly4peDgC8Ttkt6I5CT0FBmg4dSmJdHsAkFR7q2rNnj4qLi+3a8/Pz9euvv7qkKADwFI7m8zC0Bbgvp3t8MjMzlZmZKUlasWKF9XlmZqY+/PBDTZgwQS1atKiWIvfs2aNBgwapRYsWql27tlq1aqW0tDQVFBTYnPfDDz/ommuuUXBwsGJiYjR58uRqqQeAb8rMlBISSn+WOXs+j+Q49PTu3ZvQA7gJp3t8+vXrJ0myWCwaOHCgzbGAgAA1b95cL7/8skuLK5Odna2SkhK9/vrrat26tTZv3qzBgwfrxIkTmjJliqTSsb1evXqpZ8+emjVrln788Uc98MADioiI0EMPPVQtdQHwLedOWpbO7LD+9NOG0tOfs3sNgQdwLxWe3NyiRQutW7dODRs2rK6anPLSSy9p5syZ+vnnnyVJM2fO1DPPPKOcnBwFBgZKklJSUrRkyRJlZ2c7fV0mNwMoT0VuU5cIPUBNqrbb2Xfv3l2lwlwlNzdX9evXtz7PysrStddeaw09kpSYmKhJkybpyJEj5a4qnZ+fr/z8fOvzvLy86isagEcrCztlw1rl3ap+5513qm3btjVYGQBnVTj4PPecfVfu2caNG1fpYpy1c+dOTZ8+3TrMJZWuHn3uHKNGjRpZj5UXfCZOnFjuv9YA4Fxlw12TJxdp48YX7I7TywO4twoHnw8//NDmeWFhoXbv3q1atWqpVatWFQo+KSkpmjRp0nnP2bZtm82/nH777Tf17t1bd9xxhwYPHlyx4h1ITU3VqFGjrM/z8vIUExNT5esC8E7lrc0jEXoAT1Dh4LNx40a7try8PCUnJ+uWW26p0LVGjx6t5OTk855z9tpAv//+u7p3766EhAT94x//sDkvOjpaBw4csGkrex4dHV3u9YOCghQUFFShugH4Lkeh56GHHlLjxo1NqAZARVU4+DgSFham9PR09e3bV/3793f6dZGRkYqMjHTq3N9++03du3dXp06dNGfOHPn52d6JHx8fr2eeeUaFhYUKCAiQJK1cuVJt2rRh13gAVbZ48Un9+ONLdu308gCepcIrN5cnNzdXubm5rrqcjd9++03dunVTbGyspkyZokOHDiknJ8dmh/h77rlHgYGBGjRokLZs2aKFCxfq1VdftRnGAoDKSE9PJ/QAXqLCPT7Tpk2zeW4Yhvbv36+3335bffr0cVlhZ1u5cqV27typnTt36qKLLrJ7f0kKDw/Xp59+qmHDhqlTp05q2LChxo0bxxo+AKrE0c0Pjz/+OMtdAB6qUuv4nM3Pz0+RkZHq0aOHUlNTFRoa6tICaxrr+ACQpMOHD2v69Ol27fTyAO7J69fxAYDqwoKEgPeq1OTmo0ePaufOnZKk1q1bKyIiwpU1AYBpHIWe1NRUm8VRAXiuCk1u3rNnj2688UY1bNhQXbt2VdeuXdWwYUPddNNN2rNnTzWVCADV79dff3UYetLS0gg9gBdxusdn3759uuqqqxQQEKAJEyaoXbt2kqStW7dq5syZio+P17p16+wmHwOAu2NoC/AdTk9uHjRokHbu3KkVK1YoODjY5tipU6fUu3dvXXzxxXrjjTeqpdCawuRmwLc4Cj3PPvus3VphANybyyc3f/LJJ1q4cKFd6JGk2rVra8KECbrrrrsqVy0A1LBt27bpvffes2unlwfwbk4Hnz/++EPNmzcv93jLli11+PBhV9QEANWKoS3AdzkdfBo3bqytW7eWO4dn8+bN590TCwDcQXkTmAH4BqcHsfv166cnnnhChw4dsjt28OBBPf300+rXr58rawMAl1m7dm2FQ09mppSQUPoTgHdwenLzkSNH1LVrV+Xk5Oi+++5T27ZtZRiGtm3bpnfffVfR0dH697//rfr161d3zdWKyc2A96ns0FZCgpSVJcXHS2vXVkdlAFzF5ZOb69Wrp//85z8aM2aMFixYoKNHj0qSIiIidM899+jFF1/0+NADwPtUZWgrJUXKyCj9CcA7VHivLql0Y9CyIa/IyEhZLBaXF2YWenwA7/B///d/2rBhg10783kA71Rte3VJksViUVRUVKWLA4DqxF1bAMpTqeADAO6Ku7YAnA/BB4BXmD17tvbt22fXHhdH6AFwBsEHgMdjaAuAswg+ADwaQ1sAKsKp4DNt2jSnLzhixIhKFwMAznrppZd08uRJu3ZCD4Dzcep29hYtWjh3MYtFP//8c5WLMhO3swPuz1EvT/369fXoo4+aUA0Ad+DS29l3797tssIAoCoY2gJQFZWe41NQUKDdu3erVatWqlWLqUIAqhcTmAG4gtOblJY5efKkBg0apJCQEF166aXau3evJOnRRx9VRkaGywsEAEehp127djahhw1FATijwsEnNTVVmzZt0urVqxUcHGxt79mzpxYuXOjS4gCgvKGt//3f/7Vpy8go3VCUf38BOJ8Kj1EtWbJECxcu1FVXXWWzR9ell16qXbt2ubQ4AL6rokNbbCgKwBkVDj6HDh1yuE/XiRMnvGqzUgDmcRR6rrnmGvXo0aPc1yQllT4A4HwqPNTVuXNnLVu2zPq8LOy88cYbio+Pd11lAHxSeUNb5ws9AOCsCvf4vPjii+rTp4+2bt2qoqIivfrqq9q6davWrl2rNWvWVEeNAHwAd20BqAkV7vG5+uqr9f3336uoqEiXXXaZPv30U0VFRSkrK0udOnWqjhoBeDlHoefmm28m9ABwOadWbvYlrNwM1BzDMPTcc8/ZtRN4AFSUS1duzsvLc/qNCQsAnMHQFgAzOBV8IiIinL5jq7i4uEoFAfB+jkJP//791bJlS5u2zMwzt6hzxxYAV3Aq+Kxatcr65z179iglJUXJycnWu7iysrL01ltvaeLEidVTJQCvUFxcrOeff96uvbxenrMXJST4AHCFCs/x+Z//+R89+OCDuvvuu23a3333Xf3jH//Q6tWrXVlfjWOOD1A9KjO0RY8PAGc5+/1d4eATEhKiTZs26eKLL7Zp37Fjhy6//HKdPHmychW7CYIP4HqOQs8jjzzicDFUAKgMZ7+/K3w7e0xMjP75z3/atb/xxhuKiYmp6OUAeLH8/PxyFyQk9AAwQ4UXMHzllVd022236eOPP1bXrl0lSd9++61++uknffDBBy4vEIBn4q4tAO6owj0+N9xwg3766Sf17dtXhw8f1uHDh9W3b1/t2LFDN9xwQ3XUCMBDZGZKCQmOQ8+qVaMVF0foAWAuFjA8B3N8gMrr1u2Yunefate+YkWasrKk+Hhp7VoTCgPg9Vy6gOG5jh49qjfffFPbtm2TJF166aV64IEHFB4eXrlqAXi89PR0de9u356Wlqa4uDN3ZwGAmSrc4/Pdd98pMTFRtWvXVpcuXSRJ69at06lTp/Tpp5/qiiuuqJZCawo9PkDFORraSk1NVWBgoAnVAPBF1XY7+zXXXKPWrVvrn//8p2rVKu0wKioq0oMPPqiff/5ZX375ZdUqNxnBB3DeH3/8oRkzZti1M4EZQE2rtuBTu3Ztbdy4UW3btrVp37p1qzp37sw6PoCPqOhdW5mZ0lNPSRaLNGkSCxICcK1qm+MTFhamvXv32gWfffv2KTQ0tOKVAvA4jkLPs88+Kz+/8m8UzciQtm8/82eCDwAzVPh29jvvvFODBg3SwoULtW/fPu3bt08LFixwuI0FAO+yd+/echckPF/okUonNrdpI7VtyyRnAOapcI/PlClTZLFYNGDAABUVFUmSAgIC9MgjjygjI8PlBQJwD1VdkDApiV4eAOar9Do+J0+e1K5duyRJrVq1UkhIiEsLMwtzfAB7jkLPuHHjZLFYTKgGAOxV6zo+UulmpZdddlllXw7AA2zdulWLFi2ya+euLQCeyung88ADDzh13uzZsytdDAD3UZmhrczMMwsVMqwFwB05HXzmzp2rZs2aKS4uTuxyAXi38iYwX0hGhpSVxV1bANyX08HnkUce0fz587V7927df//9uu+++1S/fv3qrA1ADVu3bp2WL19u135u6CmvZyclha0pALi3Ck1uzs/P1+LFizV79mytXbtWN954owYNGqRevXp5zSRHJjfDVznq5fH399fYsWPt2hMSxKajANxKta3cXOaXX37R3Llz9a9//UtFRUXasmWL6tatW+mC3QXBB76ookNbzOUB4G6c/f6u8AKG1hf6+cliscgwDBUXF1f2MgBM9Nlnn5UbejIzS3t2MjPtX5eUVNrTQ+gB4GkqFHzy8/M1f/58XX/99brkkkv0448/6u9//7v27t3rFb09gC9JT0/XN998Y9PWqFEja0/P2ROVAcBbOD25eejQoVqwYIFiYmL0wAMPaP78+WrYsGF11gagmjgztMVEZQDeyOk5Pn5+foqNjVVcXNx5JzIvXrzYZcWZgTk+8GYfffSRvv/+e7t2FiQE4OlcvnLzgAEDvObOLcAXOerlufzyy3XzzTebUA0AmKNCCxgC8EyVXZAQALxNpffqAuD+5syZo71799q1E3oA+CqCD+ClHPXydOvWTdddd50J1QCAeyD4AF6IoS0AcIzgA3iRKVOm6MSJE3bthB4AKFXplZsBuJf09HS70JOUlFRu6DnfyswA4K0IPoAXKG9oKy4urtzXsDIzAF/EUBfgwRwFHsm5oS1WZgbgiwg+gIdyFHruvvtuXXLJJU69PimJTUYB+B6CD+BhDMPQc889Z9fOBGYAuDCPm+OTn5+vyy+/XBaLxW7PoR9++EHXXHONgoODFRMTo8mTJ5tTJFBN0tPTnQo9TFwGAMc8Lvg89dRTatKkiV17Xl6eevXqpWbNmmn9+vV66aWXNH78eP3jH/8woUrA9RwNbT388MMOe3qYuAwAjnlU8Pn444/16aefasqUKXbH5s2bp4KCAs2ePVuXXnqp7rrrLo0YMUJTp041oVLAdUpKSsq9ays6Otrha1JSpPh4Ji4DwLk8Zo7PgQMHNHjwYC1ZskQhISF2x7OysnTttdcqMDDQ2paYmKhJkybpyJEjqlevnsPr5ufnKz8/3/o8Ly/P9cUDlVTZu7aYuAwAjnlEj49hGEpOTtaQIUPUuXNnh+fk5OSoUaNGNm1lz3Nycsq99sSJExUeHm59xMTEuK5woAochZ7HHnuMScwAUAWmBp+UlBRZLJbzPrKzszV9+nQdO3ZMqampLq8hNTVVubm51se+fftc/h5ARRQVFZU7tBUREVHzBQGAFzF1qGv06NFKTk4+7zktW7bUF198oaysLAUFBdkc69y5s+6991699dZbio6O1oEDB2yOlz0vbx6EJAUFBdldFzBLVRYkBABcmKnBJzIyUpGRkRc8b9q0aXr++eetz3///XclJiZq4cKF6tq1qyQpPj5ezzzzjAoLCxUQECBJWrlypdq0aVPu/B7AnTgKPU8++aTDOW1lMjPPrL7MnB4AuDCPmOMTGxurDh06WB9lK9O2atVKF110kSTpnnvuUWBgoAYNGqQtW7Zo4cKFevXVVzVq1CgzSwcu6PTp0+UObZ0v9Ejctg4AFeUxd3VdSHh4uD799FMNGzZMnTp1UsOGDTVu3Dg99NBDZpcGlKuqQ1vstwUAFWMxDMMwuwh3kpeXp/DwcOXm5iosLMzscuDFHIWeMWPGWIdqAQDOc/b722t6fABPcfz4cb388st27UxgBoDq5xFzfABvkZ6e7lToYa8tAKgeBB+ghjga2lqx4lnFxbHXFgDUFIIPUM2OHj1aTuhJU1aWn8Nww15bAFA9mOMDVCNHgScyMlJDhw5VXFz5d2Sx1xYAVA+CD1BNHIWecePGyWKxSLINNyxECAA1g6EuwMUOHDhQ7oKEZaHnXMzpAYCaQfABXCg9PV2zZs2yaWvdurXNXVuO7thiTg8A1AwWMDwHCxiissrr5TlXQkJp7058vLR2bU1UBgDez9nvb3p8gCrau3ev06FHoncHAMzE5GagChwFnri4OCWdZ4Yyd2wBgHkIPkAlVaSXBwDgHgg+QAXt2rVL77zzjl07oQcA3B/BB6gAR7081157rbp3725CNQCAimJyM+Ck8radIPQAgOegxwe4gM2bN+uDDz6wa1+xIo07swDAwxB8gPNw1MvTr18/dezYUUzpAQDPQ/ABysFdWwDgfQg+wDm+/fZbffzxx3bthB4A8HwEH+Asjnp57r77bl1yySUmVAMAcDWCD/BfDG0BgPcj+MDnZWVl6dNPP7VrJ/QAgPch+MCnOerluf/++xUbG2tCNQCA6kbwgU/JzJQyMkp3Rt+4kaEtAPA1BB/4lIwMKSTkM23c+I3dMUIPAHg/gg98SmKifS/PsGHDtHZtQyUklPYEJSWZUBgAoEawVxd8gmEY5d611bBhQ2VkSFlZpT1CAADvRY8PvN5nn32mb745/9BWSsqZuT8AAO9F8IFXc9TLM3r0aNWtW9emLSmJIS4A8AUEH3glwzD03HPP2bUzgRkAfBvBB17no48+0vfff2/TFhgYqNTUVHMKAgC4DYIPvIqjoa2nn35awcHBJlQDAHA3BB94hZKSEk2YMMGunaEtAMDZuJ0dHiczU0pIKP0pSe+++65d6GnYsCGhBwBghx4feJyz19xxtO3EmDFjFBAQYEJlAAB3R48PPE5KivTXvxY5XIU5LS2N0AMAKBc9PvA4Bw++oeuv/82mrXnz5ho4cKBJFQEAPAXBBx7F0V1bY8eOlb+/vwnVAAA8DcEHHqGgoEATJ060a2cCMwCgIgg+cHtz587VL7/8YtMWHx+vXr16mVQRAMBTEXzg1hwNbY0bN04Wi8WEagAAno7gA7d06tQpTZ482a6doS0AQFUQfOB2ZsyYoT/++MOmrUePHrrmmmtMqggA4C0IPnArDG0BAKoTwQdu4fjx43r55Zft2hnaAgC4EsEHpps0aZJOnz5t03bDDTfoyiuvNKkiAIC3IvjAVI6GtujlAQBUF4IPTHHkyBFNmzbNrp3QAwCoTgQf1DhHvTy33nqrLrvsMhOqAQD4EoIPahRDWwAAMxF8UCMOHTqk1157za6d0AMAqEkEH1Q7R70899xzjy6++GITqgEA+DKCD6oVQ1sAAHdC8EG1+O233/TGG2/YtRN6AABmIvjA5Rz18iQnJ6tZs2YmVAMAwBkEH7gUQ1sAAHdG8IFL7N69W//617/s2gk9AAB3QvBBlTnq5XnooYfUuHFjE6oBAKB8BB9UCUNbAABPQvBBpWRnZ2vhwoV27YQeAIA7I/igwhz18gwbNkwNGzY0oRoAAJxH8EGFMLQFAPBkBB84ZdOmTVqyZIldO6EHAOBJCD64IEe9PCNHjlR4eLgJ1QAAUHkEH5wXQ1sAAG/iZ3YBqFmZmVJCQunP8/nPf/5jF3pCQ0MJPQAAj0aPj4/JyJCyskp/JiU5PsdRL88TTzyhOnXqVHN1AABUL4/q8Vm2bJm6du2q2rVrq169eurXr5/N8b179+rGG29USEiIoqKi9OSTT6qoqMicYt1USooUH1/681yGYZQ7tEXoAQB4A4/p8fnggw80ePBgvfjii+rRo4eKioq0efNm6/Hi4mLdeOONio6O1tq1a7V//34NGDBAAQEBevHFF02svOZkZpb25KSklN+bk5Tk+Njq1au1Zs0am7bGjRvroYceqoZKAQAwh8UwDMPsIi6kqKhIzZs3V3p6ugYNGuTwnI8//lg33XSTfv/9dzVq1EiSNGvWLD399NM6dOiQAgMDnXqvvLw8hYeHKzc3V2FhYS77HWpCQkLpMFZ8vLR2rfOvc9TL8/TTTys4ONiF1QEAUH2c/f72iKGuDRs26LfffpOfn5/i4uLUuHFj9enTx6bHJysrS5dddpk19EhSYmKi8vLytGXLlnKvnZ+fr7y8PJuHpzrfMJYjJSUl5Q5tEXoAAN7II4a6fv75Z0nS+PHjNXXqVDVv3lwvv/yyunXrph07dqh+/frKycmxCT2SrM9zcnLKvfbEiRMdfvl7ovKGsRz5+OOP9e2339q0tWrVSvfdd181VAYAgHswtccnJSVFFovlvI/s7GyVlJRIkp555hnddttt6tSpk+bMmSOLxaJFixZVqYbU1FTl5uZaH/v27XPFr+bW0tPT7ULPmDFjCD0AAK9nao/P6NGjlZycfN5zWrZsqf3790uS2rdvb20PCgpSy5YttXfvXklSdHS03Zf5gQMHrMfKExQUpKCgoMqUbypnJjKfq7i4WM8//7xdO2vzAAB8hanBJzIyUpGRkRc8r1OnTgoKCtL27dt19dVXS5IKCwu1Z88eNWvWTJIUHx+vF154QQcPHlRUVJQkaeXKlQoLC7MJTN7CmfV4zvb555/r66+/tmn7y1/+oltuuaWaKgQAwP14xByfsLAwDRkyRGlpaYqJiVGzZs300ksvSZLuuOMOSVKvXr3Uvn179e/fX5MnT1ZOTo7Gjh2rYcOGeWSPzoWkpJzp8bkQR3OYxo4dK39//2qoDAAA9+URwUeSXnrpJdWqVUv9+/fXqVOn1LVrV33xxReqV6+eJMnf319Lly7VI488ovj4eNWpU0cDBw7Uc889Z3Ll1cOZicxFRUV64YUX7NoZ2gIA+CqPWMenJnnyOj5nW7Zsmb777jubtl69eik+Pt6kigAAqD7Ofn97TI8PnOdoaGvcuHGyWCwmVAMAgPsg+HiR/Px8ZWRk2LUztAUAQCmCj5dwdNdW3759dcUVV5hUEQAA7ofg4wUY2gIAwDkEHw/G0BYAABVD8PFQK1as0L///W+btgEDBqhFixYmVQQAgPvziN3ZvV1mppSQUPrTGenp6XahJy0tjdADAMAFEHzcwNnbT5xPfn6+3XyewMBAhrYAAHASQ11uwJntJ9atW6fly5fbtA0fPlwNGjSo5uoAAPAeBB83cKHtJxzdtUUvDwAAFcdQVw2p6DweSTp16pRd6OncuTOhBwCASqLHp4acPY/nQpuLStLatWu1cuVKm7bHHntMERER1VMgAAA+gOBTQ5yZx1OGoS0AAKoHwaeGXGgejySdOHFCU6ZMsWlLSEjQ9ddfX42VAQDgOwg+bmL16tVas2aNTduoUaMUGhpqUkUAAHgfgo8bYGgLAICaQfAxkaO9trp166brrrvOpIoAAPBuBB+T7Nq1S++8845N2xNPPKE6deqYVBEAAN6P4GOCRYsWaevWrdbnnTp10k033WRiRQAA+AaCTw06ffq0Jk2aZNP2wAMPKCYmxqSKAADwLQSfGrJjxw7Nnz/fpm3MmDEKCAgwqSIAAHwPwaeGnB16rrrqKiUmJppYDQAAvongU8MGDx6sJk2amF0GAAA+yWIYhmF2Ee4kLy9P4eHhys3NVVhYmNnlAAAAJzj7/c3u7AAAwGcQfAAAgM8g+AAAAJ9B8AEAAD6D4AMAAHwGwQcAAPgMgg8AAPAZBB8AAOAzCD4AAMBnEHwAAIDPIPgAAACfQfABAAA+g+ADAAB8BsEHAAD4jFpmF+BuDMOQVLq9PQAA8Axl39tl3+PlIfic49ixY5KkmJgYkysBAAAVdezYMYWHh5d73GJcKBr5mJKSEv3+++8KDQ2VxWIxu5xql5eXp5iYGO3bt09hYWFmlwMH+IzcH5+R++Mzcn9V/YwMw9CxY8fUpEkT+fmVP5OHHp9z+Pn56aKLLjK7jBoXFhbG/xm4OT4j98dn5P74jNxfVT6j8/X0lGFyMwAA8BkEHwAA4DMIPj4uKChIaWlpCgoKMrsUlIPPyP3xGbk/PiP3V1OfEZObAQCAz6DHBwAA+AyCDwAA8BkEHwAA4DMIPgAAwGcQfHzcsmXL1LVrV9WuXVv16tVTv379bI7v3btXN954o0JCQhQVFaUnn3xSRUVF5hTrw/Lz83X55ZfLYrHo+++/tzn2ww8/6JprrlFwcLBiYmI0efJkc4r0QXv27NGgQYPUokUL1a5dW61atVJaWpoKCgpszuMzMt+MGTPUvHlzBQcHq2vXrvr222/NLsknTZw4UVdeeaVCQ0MVFRWlfv36afv27TbnnD59WsOGDVODBg1Ut25d3XbbbTpw4IDLaiD4+LAPPvhA/fv31/33369Nmzbpm2++0T333GM9XlxcrBtvvFEFBQVau3at3nrrLc2dO1fjxo0zsWrf9NRTT6lJkyZ27Xl5eerVq5eaNWum9evX66WXXtL48eP1j3/8w4QqfU92drZKSkr0+uuva8uWLXrllVc0a9YsjRkzxnoOn5H5Fi5cqFGjRiktLU0bNmxQx44dlZiYqIMHD5pdms9Zs2aNhg0bpn//+99auXKlCgsL1atXL504ccJ6zuOPP67/+7//06JFi7RmzRr9/vvvuvXWW11XhAGfVFhYaDRt2tR44403yj1n+fLlhp+fn5GTk2NtmzlzphEWFmbk5+fXRJkwSj+Htm3bGlu2bDEkGRs3brQee+2114x69erZfB5PP/200aZNGxMqhWEYxuTJk40WLVpYn/MZma9Lly7GsGHDrM+Li4uNJk2aGBMnTjSxKhiGYRw8eNCQZKxZs8YwDMM4evSoERAQYCxatMh6zrZt2wxJRlZWlkvekx4fH7Vhwwb99ttv8vPzU1xcnBo3bqw+ffpo8+bN1nOysrJ02WWXqVGjRta2xMRE5eXlacuWLWaU7XMOHDigwYMH6+2331ZISIjd8aysLF177bUKDAy0tiUmJmr79u06cuRITZaK/8rNzVX9+vWtz/mMzFVQUKD169erZ8+e1jY/Pz/17NlTWVlZJlYGqfS/F0nW/2bWr1+vwsJCm8+rbdu2io2NddnnRfDxUT///LMkafz48Ro7dqyWLl2qevXqqVu3bjp8+LAkKScnxyb0SLI+z8nJqdmCfZBhGEpOTtaQIUPUuXNnh+fwGbmXnTt3avr06Xr44YetbXxG5vrjjz9UXFzs8DPg799cJSUlGjlypP7617+qQ4cOkkr/mwgMDFRERITNua78vAg+XiYlJUUWi+W8j7J5CZL0zDPP6LbbblOnTp00Z84cWSwWLVq0yOTfwrs5+xlNnz5dx44dU2pqqtkl+xxnP6Oz/fbbb+rdu7fuuOMODR482KTKAc8xbNgwbd68WQsWLKjR961Vo++Gajd69GglJyef95yWLVtq//79kqT27dtb24OCgtSyZUvt3btXkhQdHW1350PZzPro6GgXVu1bnP2MvvjiC2VlZdntW9O5c2fde++9euuttxQdHW13twOfUdU5+xmV+f3339W9e3clJCTYTVrmMzJXw4YN5e/v7/Az4O/fPMOHD9fSpUv15Zdf6qKLLrK2R0dHq6CgQEePHrXp9XHp5+WSmULwOLm5uUZQUJDN5OaCggIjKirKeP311w3DODO5+cCBA9ZzXn/9dSMsLMw4ffp0jdfsa3755Rfjxx9/tD5WrFhhSDLef/99Y9++fYZhnJk4W1BQYH1damoqE2dr0K+//mpcfPHFxl133WUUFRXZHeczMl+XLl2M4cOHW58XFxcbTZs2ZXKzCUpKSoxhw4YZTZo0MXbs2GF3vGxy8/vvv29ty87OdunkZoKPD3vssceMpk2bGitWrDCys7ONQYMGGVFRUcbhw4cNwzCMoqIio0OHDkavXr2M77//3vjkk0+MyMhIIzU11eTKfdPu3bvt7uo6evSo0ahRI6N///7G5s2bjQULFhghISHW8Irq9euvvxqtW7c2/ud//sf49ddfjf3791sfZfiMzLdgwQIjKCjImDt3rrF161bjoYceMiIiImzuWEXNeOSRR4zw8HBj9erVNv+9nDx50nrOkCFDjNjYWOOLL74wvvvuOyM+Pt6Ij493WQ0EHx9WUFBgjB492oiKijJCQ0ONnj17Gps3b7Y5Z8+ePUafPn2M2rVrGw0bNjRGjx5tFBYWmlSxb3MUfAzDMDZt2mRcffXVRlBQkNG0aVMjIyPDnAJ90Jw5cwxJDh9n4zMy3/Tp043Y2FgjMDDQ6NKli/Hvf//b7JJ8Unn/vcyZM8d6zqlTp4yhQ4ca9erVM0JCQoxbbrnF5h8TVWX5byEAAABej7u6AACAzyD4AAAAn0HwAQAAPoPgAwAAfAbBBwAA+AyCDwAA8BkEHwAA4DMIPgBQTVavXi2LxaKjR4+aXQqA/yL4APBY48eP1+WXX252GQA8CMEHgNcrLCw0uwQAboLgA8A0JSUlmjhxolq0aKHatWurY8eOev/99yWdGSb6/PPP1blzZ4WEhCghIUHbt2+XJM2dO1fp6enatGmTLBaLLBaL5s6dK0myWCyaOXOmkpKSVKdOHb3wwgvnraPsvVasWKG4uDjVrl1bPXr00MGDB/Xxxx+rXbt2CgsL0z333KOTJ09aX5efn68RI0YoKipKwcHBuvrqq7Vu3brq+csC4Bou2/ULACro+eefN9q2bWt88sknxq5du4w5c+YYQUFBxurVq41Vq1YZkoyuXbsaq1evNrZs2WJcc801RkJCgmEYhnHy5Elj9OjRxqWXXmq3w7MkIyoqypg9e7axa9cu45dffjlvHWXvddVVVxlff/21sWHDBqN169bGddddZ/Tq1cvYsGGD8eWXXxoNGjSw2WB0xIgRRpMmTYzly5cbW7ZsMQYOHGjUq1fP+PPPP22ue+TIker5CwRQYQQfAKY4ffq0ERISYqxdu9amfdCgQcbdd99tDQ2fffaZ9diyZcsMScapU6cMwzCMtLQ0o2PHjnbXlmSMHDnS6VocvdfEiRMNScauXbusbQ8//LCRmJhoGIZhHD9+3AgICDDmzZtnPV5QUGA0adLEmDx5ss11CT6A+6hlVk8TAN+2c+dOnTx5Utdff71Ne0FBgeLi4qzP//KXv1j/3LhxY0nSwYMHFRsbe97rd+7cucI1nf1ejRo1UkhIiFq2bGnT9u2330qSdu3apcLCQv31r3+1Hg8ICFCXLl20bdu2Cr83gJpB8AFgiuPHj0uSli1bpqZNm9ocCwoK0q5duySVhokyFotFUuncoAupU6dOhWs6973Ofl7W5sx7A3BfTG4GYIr27dsrKChIe/fuVevWrW0eMTExTl0jMDBQxcXF1VypY61atVJgYKC++eYba1thYaHWrVun9u3bm1ITgAujxweAKUJDQ/XEE0/o8ccfV0lJia6++mrl5ubqm2++UVhYmJo1a3bBazRv3ly7d+/W999/r4suukihoaEKCgqqgepLe5QeeeQRPfnkk6pfv75iY2M1efJknTx5UoMGDaqRGgBUHMEHgGkmTJigyMhITZw4UT///LMiIiJ0xRVXaMyYMU4NKd12221avHixunfvrqNHj2rOnDlKTk6u/sL/KyMjQyUlJerfv7+OHTumzp07a8WKFapXr16N1QCgYiyGYRhmFwEAAFATmOMDAAB8BsEHgNcbMmSI6tat6/AxZMgQs8sDUIMY6gLg9Q4ePKi8vDyHx8LCwhQVFVXDFQEwC8EHAAD4DIa6AACAzyD4AAAAn0HwAQAAPoPgAwAAfAbBBwAA+AyCDwAA8BkEHwAA4DMIPgAAwGf8PyZ6NzE4vB44AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "4/4 [==============================] - 0s 5ms/step\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOD0lEQVR4nO3de1xUZf4H8M9wlYsMch0wUMQrimaiRhhqsuKtMnXzlve0DDS1TG3T1EzQWjOttNxNbVNza7XMynLFy6qEiOEtZZVFseSiGTMiCMic3x/+ODlyG4aZOWfmfN6v17xecM4zM88cDme+53m+z/OoBEEQQERERKRgDlJXgIiIiEhqDIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIyGYsXrwYKpXKqLIqlQqLFy+2aH369OmDPn36yPb1iMh4DIiIqME2bdoElUolPpycnNC8eXNMnDgRv/76q9TVk52WLVsaHK+AgAA8+uij2Llzp1lev6SkBIsXL8aBAwfM8npESsSAiIhMtnTpUvzjH//A+vXrMXDgQHz66afo3bs3bt++bZH3e+2111BaWmqR17a0Bx98EP/4xz/wj3/8Ay+//DKuXr2KYcOGYf369Y1+7ZKSEixZsoQBEVEjOEldASKyXQMHDkRUVBQA4Nlnn4Wfnx9WrFiBXbt24emnnzb7+zk5OcHJyTYvW82bN8czzzwj/j5+/Hi0bt0a77zzDp5//nkJa0ZEAFuIiMiMHn30UQBAdna2wfbz589jxIgR8PHxQZMmTRAVFYVdu3YZlKmoqMCSJUvQpk0bNGnSBL6+vujVqxf27t0rlqkph6isrAyzZ8+Gv78/mjZtiieeeAK//PJLtbpNnDgRLVu2rLa9ptfcuHEjHnvsMQQEBMDV1RURERFYt25dg45FfTQaDTp06ICcnJw6yxUWFmLKlCkIDAxEkyZN0KVLF2zevFncf+nSJfj7+wMAlixZInbLWTp/isje2OatFhHJ0qVLlwAAzZo1E7edPXsWMTExaN68OebPnw8PDw/885//xNChQ/Gvf/0LTz31FIC7gUlSUhKeffZZ9OjRAzqdDsePH8eJEyfwpz/9qdb3fPbZZ/Hpp59izJgxeOSRR5CSkoLBgwc36nOsW7cOHTt2xBNPPAEnJyd8/fXXeOGFF6DX65GQkNCo165SUVGBK1euwNfXt9YypaWl6NOnDy5evIjExESEhYXh888/x8SJE1FUVIQXX3wR/v7+WLduHaZPn46nnnoKw4YNAwB07tzZLPUkUgyBiKiBNm7cKAAQ/v3vfwvXrl0Trly5InzxxReCv7+/4OrqKly5ckUs269fPyEyMlK4ffu2uE2v1wuPPPKI0KZNG3Fbly5dhMGDB9f5vq+//rpw72UrMzNTACC88MILBuXGjBkjABBef/11cduECROEFi1a1PuagiAIJSUl1crFx8cLrVq1MtjWu3dvoXfv3nXWWRAEoUWLFkL//v2Fa9euCdeuXRNOnjwpjBo1SgAgzJgxo9bXW716tQBA+PTTT8Vt5eXlQnR0tODp6SnodDpBEATh2rVr1T4vETUMu8yIyGRxcXHw9/dHSEgIRowYAQ8PD+zatQsPPPAAAODGjRtISUnB008/jZs3b+L69eu4fv06fvvtN8THx+PChQviqDRvb2+cPXsWFy5cMPr9v/32WwDAzJkzDbbPmjWrUZ/Lzc1N/Fmr1eL69evo3bs3/ve//0Gr1Zr0mj/88AP8/f3h7++PLl264PPPP8e4ceOwYsWKWp/z7bffQqPRYPTo0eI2Z2dnzJw5E8XFxTh48KBJdSGi6thlRkQme//999G2bVtotVp8/PHHOHToEFxdXcX9Fy9ehCAIWLhwIRYuXFjjaxQWFqJ58+ZYunQpnnzySbRt2xadOnXCgAEDMG7cuDq7fi5fvgwHBweEh4cbbG/Xrl2jPteRI0fw+uuvIzU1FSUlJQb7tFot1Gp1g1+zZ8+eWLZsGVQqFdzd3dGhQwd4e3vX+ZzLly+jTZs2cHAwvHft0KGDuJ+IzIMBERGZrEePHuIos6FDh6JXr14YM2YMsrKy4OnpCb1eDwB4+eWXER8fX+NrtG7dGgAQGxuL7OxsfPXVV/jhhx/wt7/9De+88w7Wr1+PZ599ttF1rW1Cx8rKSoPfs7Oz0a9fP7Rv3x6rVq1CSEgIXFxc8O233+Kdd94RP1ND+fn5IS4uzqTnEpHlMSAiIrNwdHREUlIS+vbti/feew/z589Hq1atANzt5jEmGPDx8cGkSZMwadIkFBcXIzY2FosXL641IGrRogX0ej2ys7MNWoWysrKqlW3WrBmKioqqbb+/leXrr79GWVkZdu3ahdDQUHH7/v37662/ubVo0QKnTp2CXq83aCU6f/68uB+oPdgjIuMxh4iIzKZPnz7o0aMHVq9ejdu3byMgIAB9+vTBhx9+iLy8vGrlr127Jv7822+/Gezz9PRE69atUVZWVuv7DRw4EACwZs0ag+2rV6+uVjY8PBxarRanTp0St+Xl5VWbLdrR0REAIAiCuE2r1WLjxo211sNSBg0ahPz8fGzfvl3cdufOHaxduxaenp7o3bs3AMDd3R0Aagz4iMg4bCEiIrOaO3cu/vznP2PTpk14/vnn8f7776NXr16IjIzE1KlT0apVKxQUFCA1NRW//PILTp48CQCIiIhAnz590K1bN/j4+OD48eP44osvkJiYWOt7Pfjggxg9ejQ++OADaLVaPPLII9i3bx8uXrxYreyoUaMwb948PPXUU5g5cyZKSkqwbt06tG3bFidOnBDL9e/fHy4uLnj88cfx3HPPobi4GBs2bEBAQECNQZ0lTZs2DR9++CEmTpyIjIwMtGzZEl988QWOHDmC1atXo2nTpgDuJoFHRERg+/btaNu2LXx8fNCpUyd06tTJqvUlsmlSD3MjIttTNew+PT292r7KykohPDxcCA8PF+7cuSMIgiBkZ2cL48ePFzQajeDs7Cw0b95cGDJkiPDFF1+Iz1u2bJnQo0cPwdvbW3BzcxPat28vvPnmm0J5eblYpqYh8qWlpcLMmTMFX19fwcPDQ3j88ceFK1eu1DgM/YcffhA6deokuLi4CO3atRM+/fTTGl9z165dQufOnYUmTZoILVu2FFasWCF8/PHHAgAhJydHLNeQYff1TSlQ2+sVFBQIkyZNEvz8/AQXFxchMjJS2LhxY7XnHj16VOjWrZvg4uLCIfhEJlAJwj3twkREREQKxBwiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseJGY2k1+tx9epVNG3alNPkExER2QhBEHDz5k0EBwdXWyj5XgyIjHT16lWEhIRIXQ0iIiIywZUrV/DAAw/Uup8BkZGqpsi/cuUKvLy8JK4NERERGUOn0yEkJET8Hq8NAyIjVXWTeXl5MSAiIiKyMfWluzCpmoiIiBSPAREREREpHgMiIiIiUjzmEBERkeJVVlaioqJC6mqQCZydneHo6Njo15E0IDp06BDeeustZGRkIC8vDzt37sTQoUNrLPv888/jww8/xDvvvINZs2aJ22/cuIEZM2bg66+/hoODA4YPH453330Xnp6eYplTp04hISEB6enp8Pf3x4wZM/DKK69Y+NMREZHcCYKA/Px8FBUVSV0VagRvb29oNJpGzRMoaUB069YtdOnSBZMnT8awYcNqLbdz5078+OOPCA4OrrZv7NixyMvLw969e1FRUYFJkyZh2rRp2Lp1K4C7w+369++PuLg4rF+/HqdPn8bkyZPh7e2NadOmWeyzERGR/FUFQwEBAXB3d+fEuzZGEASUlJSgsLAQABAUFGTya0kaEA0cOBADBw6ss8yvv/6KGTNm4Pvvv8fgwYMN9p07dw579uxBeno6oqKiAABr167FoEGD8PbbbyM4OBhbtmxBeXk5Pv74Y7i4uKBjx47IzMzEqlWrGBARESlYZWWlGAz5+vpKXR0ykZubGwCgsLAQAQEBJnefyTqpWq/XY9y4cZg7dy46duxYbX9qaiq8vb3FYAgA4uLi4ODggLS0NLFMbGwsXFxcxDLx8fHIysrC77//Xut7l5WVQafTGTyIiMh+VOUMubu7S1wTaqyqv2Fj8sBkHRCtWLECTk5OmDlzZo378/PzERAQYLDNyckJPj4+yM/PF8sEBgYalKn6vapMTZKSkqBWq8UHl+0gIrJP7Cazfeb4G8o2IMrIyMC7776LTZs2SXKyLliwAFqtVnxcuXLF6nUgIiIi65BtQPSf//wHhYWFCA0NhZOTE5ycnHD58mW89NJLaNmyJQBAo9GIiVRV7ty5gxs3bkCj0YhlCgoKDMpU/V5Vpiaurq7iMh1croOIiJRApVLhyy+/lLoaBg4cOACVSmXxkYCyDYjGjRuHU6dOITMzU3wEBwdj7ty5+P777wEA0dHRKCoqQkZGhvi8lJQU6PV69OzZUyxz6NAhg37FvXv3ol27dmjWrJl1PxQRKVKethRHs68jT1sqdVWIAACLFy/Ggw8+KHU1ZEXSUWbFxcW4ePGi+HtOTg4yMzPh4+OD0NDQaln/zs7O0Gg0aNeuHQCgQ4cOGDBgAKZOnYr169ejoqICiYmJGDVqlDhEf8yYMViyZAmmTJmCefPm4cyZM3j33XfxzjvvWO+DEpFibU/PxYIdp6EXAAcVkDQsEiO7h0pdLSK6j6QtRMePH0fXrl3RtWtXAMCcOXPQtWtXLFq0yOjX2LJlC9q3b49+/fph0KBB6NWrFz766CNxv1qtxg8//ICcnBx069YNL730EhYtWsQh90RkcXnaUjEYAgC9ALy64wxbiqjR9Ho9kpKSEBYWBjc3N3Tp0gVffPEFgD+6mPbt24eoqCi4u7vjkUceQVZWFgBg06ZNWLJkCU6ePAmVSgWVSoVNmzaJr339+nU89dRTcHd3R5s2bbBr1y6j6lT1vt9//z26du0KNzc3PPbYYygsLMR3332HDh06wMvLC2PGjEFJSYn4vLKyMsycORMBAQFo0qQJevXqhfT0dPMdLCNJ2kLUp08fCIJgdPlLly5V2+bj4yNOwlibzp074z//+U9Dq0dE1Cg512+JwVCVSkHApeslCFK7SVMpspg8bSlyrt9CmJ+Hxf++SUlJ+PTTT7F+/Xq0adMGhw4dwjPPPAN/f3+xzF/+8hf89a9/hb+/P55//nlMnjwZR44cwciRI3HmzBns2bMH//73vwHcbTyosmTJEqxcuRJvvfUW1q5di7Fjx+Ly5cvw8fExqm6LFy/Ge++9B3d3dzz99NN4+umn4erqiq1bt6K4uBhPPfUU1q5di3nz5gEAXnnlFfzrX//C5s2b0aJFC6xcuRLx8fG4ePGi0e9pDrLNISIisnVhfh5wuG+QrKNKhZZ+nPfG3mxPz0VMcgrGbEhDTHIKtqfnWuy9ysrKsHz5cnz88ceIj49Hq1atMHHiRDzzzDP48MMPxXJvvvkmevfujYiICMyfPx9Hjx7F7du34ebmBk9PTzg5OUGj0UCj0YiTGwLAxIkTMXr0aLRu3RrLly9HcXExjh07ZnT9li1bhpiYGHTt2hVTpkzBwYMHsW7dOnTt2hWPPvooRowYgf379wO4u2LFunXr8NZbb2HgwIGIiIjAhg0b4Obmhr///e/mO2hGYEBERGQhQWo3JA2LhOP/Tx3iqFJh+bBObB2yM9buGr148SJKSkrwpz/9CZ6enuLjk08+QXZ2tliuc+fO4s9VS1rcPzK7Jvc+z8PDA15eXkY9r6bnBwYGwt3dHa1atTLYVvV62dnZqKioQExMjLjf2dkZPXr0wLlz54x+T3PgavdERBY0snsoYtv649L1ErT0c2cwZIes3TVaXFwMAPjmm2/QvHlzg32urq5iUOTs7Cxur5rPT6/X1/v69z6v6rnGPK+m56tUqka/nrUwICIisrAgtRsDITtW1TV6b1Bkya7RiIgIuLq6Ijc3F7179662/95Wotq4uLigsrLSEtVrkPDwcLi4uODIkSNo0aIFgLvLb6Snp2PWrFlWrQsDIiIiokao6hp9dccZVAqCxbtGmzZtipdffhmzZ8+GXq9Hr169oNVqceTIEXh5eYmBRV1atmwpTnXzwAMPoGnTpnB1dbVIfevi4eGB6dOnY+7cueKUOytXrkRJSQmmTJli1bowICIiImoka3eNvvHGG/D390dSUhL+97//wdvbGw899BBeffVVo7qjhg8fjh07dqBv374oKirCxo0bMXHiRIvWuTbJycniYu43b95EVFQUvv/+e6tPnqwSGjLuXcF0Oh3UajW0Wi2X8SAisgO3b99GTk4OwsLC0KRJE6mrQ41Q19/S2O9vjjIjIiIixWNARERERPV6/vnnDYb53/t4/vnnpa5eozGHiIiIiOq1dOlSvPzyyzXus4dUEgZEREREVK+AgAAEBARIXQ2LYZcZERERKR4DIiIiUjQ5zppMDWOOvyG7zIiISJFcXFzg4OCAq1evwt/fHy4uLuISF2QbBEFAeXk5rl27BgcHB7i4uJj8WgyIiIhIkRwcHBAWFoa8vDxcvXpV6upQI7i7uyM0NBQODqZ3fDEgIiIixXJxcUFoaCju3Lkji7W9qOEcHR3h5OTU6NY9BkRERKRoVSuy378qOykLk6qJiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBRP0oDo0KFDePzxxxEcHAyVSoUvv/xS3FdRUYF58+YhMjISHh4eCA4Oxvjx43H16lWD17hx4wbGjh0LLy8veHt7Y8qUKSguLjYoc+rUKTz66KNo0qQJQkJCsHLlSmt8PCIim5GnLcXR7OvI05ZKXRUiSUgaEN26dQtdunTB+++/X21fSUkJTpw4gYULF+LEiRPYsWMHsrKy8MQTTxiUGzt2LM6ePYu9e/di9+7dOHToEKZNmybu1+l06N+/P1q0aIGMjAy89dZbWLx4MT766COLfz4iIluwPT0XMckpGLMhDTHJKdienit1lYisTiUIgiB1JQBApVJh586dGDp0aK1l0tPT0aNHD1y+fBmhoaE4d+4cIiIikJ6ejqioKADAnj17MGjQIPzyyy8IDg7GunXr8Je//AX5+flwcXEBAMyfPx9ffvklzp8/b3T9dDod1Go1tFotvLy8GvVZiYjkIk9bipjkFOjv+SZwVKlweH5fBKndpKsYkZkY+/1tUzlEWq0WKpUK3t7eAIDU1FR4e3uLwRAAxMXFwcHBAWlpaWKZ2NhYMRgCgPj4eGRlZeH333+v9b3Kysqg0+kMHkRE9ibn+i2DYAgAKgUBl66XSFMhIonYTEB0+/ZtzJs3D6NHjxYjvPz8fAQEBBiUc3Jygo+PD/Lz88UygYGBBmWqfq8qU5OkpCSo1WrxERISYs6PQ0QkC2F+HnBQGW5zVKnQ0s9dmgoRScQmAqKKigo8/fTTEAQB69ats8p7LliwAFqtVnxcuXLFKu9LRGRNQWo3JA2LhKPqblTkqFJh+bBO7C4jxXGSugL1qQqGLl++jJSUFIP+P41Gg8LCQoPyd+7cwY0bN6DRaMQyBQUFBmWqfq8qUxNXV1e4urqa62MQEcnWyO6hiG3rj0vXS9DSz53BECmSrFuIqoKhCxcu4N///jd8fX0N9kdHR6OoqAgZGRnitpSUFOj1evTs2VMsc+jQIVRUVIhl9u7di3bt2qFZs2bW+SBERDIXpHZDdLgvgyFSLEkDouLiYmRmZiIzMxMAkJOTg8zMTOTm5qKiogIjRozA8ePHsWXLFlRWViI/Px/5+fkoLy8HAHTo0AEDBgzA1KlTcezYMRw5cgSJiYkYNWoUgoODAQBjxoyBi4sLpkyZgrNnz2L79u149913MWfOHKk+NhEREcmMpMPuDxw4gL59+1bbPmHCBCxevBhhYWE1Pm///v3o06cPgLsTMyYmJuLrr7+Gg4MDhg8fjjVr1sDT01Msf+rUKSQkJCA9PR1+fn6YMWMG5s2b16C6ctg9ERGR7TH2+1s28xDJHQMiIiIi22OX8xARERERWQIDIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIykzxtKY5mX0eetlTqqlADOUldASIiInuwPT0XC3achl4AHFRA0rBIjOweKnW1yEhsISIiImqkPG2pGAwBgF4AXt1xhi1FNoQBERERUSPlXL8lBkNVKgUBl66XSFMhajAGRERERI0U5ucBB5XhNkeVCi393KWpEDUYAyIiIqJGClK7IWlYJBxVd6MiR5UKy4d1QpDaTeKakbGYVE1ERGQGI7uHIratPy5dL0FLP3cGQzaGAREREVED5WlLkXP9FsL8PAwCnyC1GwMhG8WAiIiIqAE4vN4+MYeIiIjISBxeb78YEBERKRhnVm4YDq+3X+wyIyJSKHb9NFzV8Pp7gyIOr7cPbCEiIlIgdv2YhsPr7RdbiIiIFKiurh9+udeNw+vtEwMiIiIFYtdP43B4vf1hlxkRkQKx64fIEFuIiIgUil0/RH9gQEREpGDs+iG6i11mREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIGoQLQRIRkT3isHsyGheCJCIieyVpC9GhQ4fw+OOPIzg4GCqVCl9++aXBfkEQsGjRIgQFBcHNzQ1xcXG4cOGCQZkbN25g7Nix8PLygre3N6ZMmYLi4mKDMqdOncKjjz6KJk2aICQkBCtXrrT0R7M7XAiSiIjsmaQB0a1bt9ClSxe8//77Ne5fuXIl1qxZg/Xr1yMtLQ0eHh6Ij4/H7du3xTJjx47F2bNnsXfvXuzevRuHDh3CtGnTxP06nQ79+/dHixYtkJGRgbfeeguLFy/GRx99ZPHP1xBy74qqayFIIiIiWydpl9nAgQMxcODAGvcJgoDVq1fjtddew5NPPgkA+OSTTxAYGIgvv/wSo0aNwrlz57Bnzx6kp6cjKioKALB27VoMGjQIb7/9NoKDg7FlyxaUl5fj448/houLCzp27IjMzEysWrXKIHCSki10RXEhSCIiaqw8bSlyrt9CmJ+H7GZIl21SdU5ODvLz8xEXFyduU6vV6NmzJ1JTUwEAqamp8Pb2FoMhAIiLi4ODgwPS0tLEMrGxsXBxcRHLxMfHIysrC7///ruVPk3tbKUrigtBEhFRY2xPz0VMcgrGbEhDTHIKtqfnSl0lA7JNqs7PzwcABAYGGmwPDAwU9+Xn5yMgIMBgv5OTE3x8fAzKhIWFVXuNqn3NmjWr8f3LyspQVlYm/q7T6RrxaWpXV1eU3IINLgRJRESmqO3mP7atv2y+S2TbQiS1pKQkqNVq8RESEmKR96nqirqXnLuigtRuiA73lc0JTERE8mcLeaiyDYg0Gg0AoKCgwGB7QUGBuE+j0aCwsNBg/507d3Djxg2DMjW9xr3vUZMFCxZAq9WKjytXrjTuA9WCXVFERGTvbOHmX7YBUVhYGDQaDfbt2ydu0+l0SEtLQ3R0NAAgOjoaRUVFyMjIEMukpKRAr9ejZ8+eYplDhw6hoqJCLLN37160a9eu1u4yAHB1dYWXl5fBw1JGdg/F4fl9sW3qwzg8v6/sEqqJiIgawxZu/lWCIAj1F7OM4uJiXLx4EQDQtWtXrFq1Cn379oWPjw9CQ0OxYsUKJCcnY/PmzQgLC8PChQtx6tQp/Pzzz2jSpAmAuyPVCgoKsH79elRUVGDSpEmIiorC1q1bAQBarRbt2rVD//79MW/ePJw5cwaTJ0/GO++806BRZjqdDmq1Glqt1qLBERERkb3K05ZaPQ/V6O9vQUL79+8XAFR7TJgwQRAEQdDr9cLChQuFwMBAwdXVVejXr5+QlZVl8Bq//fabMHr0aMHT01Pw8vISJk2aJNy8edOgzMmTJ4VevXoJrq6uQvPmzYXk5OQG11Wr1QoABK1Wa/LnJSIiIusy9vtb0hYiW8IWIiIiIttj7Pe3bHOIiIiIiKyFAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERDYiT1uKo9nXkactlboqdsdJ6goQERFR/ban52LBjtPQC4CDCkgaFomR3UOlrpbdYAsRUSPwbo2IrCFPWyoGQwCgF4BXd5zhtceM2EJEZCLerRGRteRcvyUGQ1UqBQGXrpcgSO0mTaXsDFuIiEzAuzUisqYwPw84qAy3OapUaOnnLk2F7BADIiIT1HW3RkRkbkFqNyQNi4Sj6m5U5KhSYfmwTmwdMiN2mRGZoOpu7d6giHdrRGRJI7uHIratPy5dL0FLP3cGQ2bGFiIiE/BujYikEKR2Q3S4L681FsAWIiIT8W6NiMh+MCAiaoQgtRsDISIiO8AuMyIiIlI8BkREREQWxAlcbQO7zIiIiCyEE7jaDrYQERERWQAncLUtDIiIiIgsgBO42hYGRCQL7GMnInvD5TZsCwMiktz29FzEJKdgzIY0xCSnYHt6rtRVIiJqNKkncK3pRpM3n7VTCYIg1F+MdDod1Go1tFotvLy8pK6O3cjTliImOaXaEhiH5/fl/D5EZBfytKVWn8C1pmRuAIpM8Db2+5ujzEhSdfWxMyAiIntg7Qlca0rmXvCv08A96y9WJXjHtvXntfb/scuMJMU+diKyFbbS3VTTjaYeYIJ3PYwOiHQ6ndEPc6msrMTChQsRFhYGNzc3hIeH44033sC9vXyCIGDRokUICgqCm5sb4uLicOHCBYPXuXHjBsaOHQsvLy94e3tjypQpKC4uNls9yXRS97ETERnDlnIda7rRdAB481kPo7vMvL29oVKp6iwjCAJUKhUqKysbXTEAWLFiBdatW4fNmzejY8eOOH78OCZNmgS1Wo2ZM2cCAFauXIk1a9Zg8+bNCAsLw8KFCxEfH4+ff/4ZTZo0AQCMHTsWeXl52Lt3LyoqKjBp0iRMmzYNW7duNUs9qXZ52lLkXL+FMD+PWoMcLpJKRHJW23xC1u5uMuZ6Cvxxo/nqjjOoFATxRhNAtW283v7B6KTqgwcPGv2ivXv3NrlC9xoyZAgCAwPx97//Xdw2fPhwuLm54dNPP4UgCAgODsZLL72El19+GQCg1WoRGBiITZs2YdSoUTh37hwiIiKQnp6OqKgoAMCePXswaNAg/PLLLwgODjaqLkyqrl1t/6ScoZWI7MHR7OsYsyGt2vZtUx9GdLivVepgyvW0pmRuKRK8pWb2pGpzBTkN8cgjj+Cjjz7Cf//7X7Rt2xYnT57E4cOHsWrVKgBATk4O8vPzERcXJz5HrVajZ8+eSE1NxahRo5Camgpvb28xGAKAuLg4ODg4IC0tDU899VSN711WVoaysjLxd3N2BdqT2v5J5XJHRUTUWFVdUPePhrVWd5Op19OakrmtneBtS0weZVZUVIS///3vOHfuHACgY8eOmDx5MtRqtdkqN3/+fOh0OrRv3x6Ojo6orKzEm2++ibFjxwIA8vPzAQCBgYEGzwsMDBT35efnIyAgwGC/k5MTfHx8xDI1SUpKwpIlS8z2WexRXf+kHD1GRPaiti4oa13LeD21DpMCouPHjyM+Ph5ubm7o0aMHAGDVqlV488038cMPP+Chhx4yS+X++c9/YsuWLdi6dSs6duyIzMxMzJo1C8HBwZgwYYJZ3qM2CxYswJw5c8TfdTodQkJCLPqetqauf1Kp76iIiMxJylxHXk+tw6Rh97Nnz8YTTzyBS5cuYceOHdixYwdycnIwZMgQzJo1y2yVmzt3LubPn49Ro0YhMjIS48aNw+zZs5GUlAQA0Gg0AICCggKD5xUUFIj7NBoNCgsLDfbfuXMHN27cEMvUxNXVFV5eXgYPMlTXkHmOHiMiexOkdkN0uK/Vr2O8nlqHyS1EGzZsgJPTH093cnLCK6+8YpCr01glJSVwcDCM2RwdHaHX6wEAYWFh0Gg02LdvHx588EEAd1ty0tLSMH36dABAdHQ0ioqKkJGRgW7dugEAUlJSoNfr0bNnT7PVVYnqa0bm6DEiIvPg9dTyTAqIvLy8kJubi/bt2xtsv3LlCpo2bWqWigHA448/jjfffBOhoaHo2LEjfvrpJ6xatQqTJ08GAKhUKsyaNQvLli1DmzZtxGH3wcHBGDp0KACgQ4cOGDBgAKZOnYr169ejoqICiYmJGDVqlNEjzKh29f2TMoGPiMg8eD21LJMCopEjR2LKlCl4++238cgjjwAAjhw5grlz52L06NFmq9zatWuxcOFCvPDCCygsLERwcDCee+45LFq0SCzzyiuv4NatW5g2bRqKiorQq1cv7NmzR5yDCAC2bNmCxMRE9OvXDw4ODhg+fDjWrFljtnoqHf9JiYjI1pm0uGt5eTnmzp2L9evX486dOwAAZ2dnTJ8+HcnJyXB1dTV7RaWm5HmIjJ0MjIiISG6M/f5u1Gr3JSUlyM7OBgCEh4fD3d1+M96VGhBxckUiIrJlVlnt3t3dHZGRkY15CZIxTq5IRGR/2OpfM5MCotu3b2Pt2rXYv38/CgsLxVFfVU6cOGGWypG0OBkYEZF9Yat/7UwKiKZMmYIffvgBI0aMQI8ePepd9JVsEycDIyKyH2z1r5tJAdHu3bvx7bffIiYmxtz1IRmRerp6IiIyH7b6182kgKh58+ZmnW+I5IuTgRGR3DAHxjRs9a+bSUt3/PWvf8W8efNw+fJlc9eHZEiq6eqJiO63PT0XMckpGLMhDTHJKdienit1lWwGlwCpm0ktRFFRUbh9+zZatWoFd3d3ODs7G+y/ceOGWSpHRGQsthrYP+bANB5b/WtnUkA0evRo/Prrr1i+fDkCAwOZVE1EkuLIGWVgDox5cHWBmpkUEB09ehSpqano0qWLuetDRNQgbDVQDubAkCWZlEPUvn17lJaWmrsuREQNVlerAdkX5sCQJZnUQpScnIyXXnoJb775JiIjI6vlEClpaQsikhZbDZSFOTBkKSatZebgcLdh6f7cIUEQoFKpUFlZaZ7ayYhS1zIjsgXb03OrzZfFHCLbxQR5MieLrmW2f/9+kytGRGQuVV+csW39cXh+X7Ya2AEmyJNUTAqIevfubVS5F154AUuXLoWfn58pb0NEVCt+cdofJsiTlExKqjbWp59+Cp1OZ8m3ICIFqu2LM0/LwR6WlqctxdHs6xY51kyQJymZ1EJkLBPSk4iI6sX5aKRh6VY5JsiTlCzaQkREZAlVX5z34henZVmjVY7D6klKFm0hIiKyhKovzvtHlvGL03Ks1Sonl2H1HOmmPAyIiGwEL9CG5PLFqRTW7M6SemkJJuwrE7vMiGwAV/iuWZDaDdHhvgyGrEAp3VlM2Fcui7YQPfPMM5zE0AzYMqBschuKzPNRuZTQKseEfeUyOSAqKirCsWPHUFhYCL1eb7Bv/PjxAIB169Y1rnbEpluS1QWa5yNJ3Z1laRzpplwmBURff/01xo4di+LiYnh5eRks4aFSqcSAiBpHbi0DJA25XKB5PpISMGFfuUwKiF566SVMnjwZy5cvh7s7o2ZLkVPLAEnH3BdoU7u8eD6SUiiha5CqMykg+vXXXzFz5kwGQxYml5YBkp65LtCN6fLi+Uj2pq6bA3vvGqTqTBplFh8fj+PHj5u7LnQfpYzqIOM0dkRVY0fP8Hy0D5ZcesOWcOQm3c/oFqJdu3aJPw8ePBhz587Fzz//jMjISDg7OxuUfeKJJ8xXQ4Vj0y2Zizm6vHg+2jYmxd/FfDiqidEB0dChQ6ttW7p0abVtKpUKlZWVjaoUGWLTLZmDubq8eD7aJgYBf2A+HNXE6C4zvV5v1IPBEJE82XqXF7t6Gocryf+Ba+FRTUxKqv7kk08wcuRIuLq6GmwvLy/HZ599xmH3RDIlxy4vY0a9savHNPceWybF/4FD66kmKkEQhPqLGXJ0dEReXh4CAgIMtv/2228ICAiwy1YinU4HtVoNrVbL2beJzMSYQCdPW4qY5JRqX+SH5/flF1gdajq2AKoFAUoOLPO0pbK6OSDLMPb726QWIkEQDCZjrPLLL79ArVab8pJEpDDG5rQw36Phaju2h+f3xeH5fRkE/D/mw9G9GhQQde3aFSqVCiqVCv369YOT0x9Pr6ysRE5ODgYMGGD2ShKR/TE20GFXT8PVdWy5GC5RzRoUEFWNNMvMzER8fDw8PT3FfS4uLmjZsiWGDx9u1goSkX2qKdBxAODuYjjWg/keDccgkqjhTMoh2rx5M0aOHIkmTZpYok6yxBwiIvPbnp4rBjpV6solYleP8e49tswXIiUz9vvbpICoSnl5eY2r3YeG2t8/HQMiosaraUTZySu/Y+gHRyEwadrsGEQSWTip+sKFC5g8eTKOHj1qsL0q2doeR5kRUePUNqLsVnkl7r8tY9K0eTBpmGpj6iLP9syktcwmTpwIBwcH7N69GxkZGThx4gROnDiBn376CSdOnDBrBX/99Vc888wz8PX1hZubGyIjIw3WURMEAYsWLUJQUBDc3NwQFxeHCxcuGLzGjRs3MHbsWHh5ecHb2xtTpkxBcXGxWetJRLWrax01TpJHZF1cx61mJrUQZWZmIiMjA+3btzd3fQz8/vvviImJQd++ffHdd9/B398fFy5cQLNmzcQyK1euxJo1a7B582aEhYVh4cKFiI+Px88//yzmOI0dOxZ5eXnYu3cvKioqMGnSJEybNg1bt261aP2J6K76Rj0xaZrIOriES+1MCogiIiJw/fp1c9elmhUrViAkJAQbN24Ut4WFhYk/C4KA1atX47XXXsOTTz4J4O4s2oGBgfjyyy8xatQonDt3Dnv27EF6ejqioqIAAGvXrsWgQYPw9ttvIzg42OKfg0gqcmkWr2/Ukxxn0CayR5zXq3YmdZmtWLECr7zyCg4cOIDffvsNOp3O4GEuu3btQlRUFP785z8jICAAXbt2xYYNG8T9OTk5yM/PR1xcnLhNrVajZ8+eSE1NBQCkpqbC29tbDIYAIC4uDg4ODkhLS6v1vcvKyiz2uYis4d5m8UeSUvDhwWzJ6mLMOmpBajfOkWMmXPeNasMu6tqZ1EJUFYA89thjBjNWmzup+n//+x/WrVuHOXPm4NVXX0V6ejpmzpwJFxcXTJgwAfn5+QCAwMBAg+cFBgaK+/Lz86stMeLk5AQfHx+xTE2SkpKwZMkSs3wOImu7v1lcAJD03XlABTwXGy5JnZTSCiR1qxzXfaO6cF6v2pkUEO3fv9/c9aiRXq9HVFQUli9fDuDuTNlnzpzB+vXrMWHCBIu+94IFCzBnzhzxd51Oh5CQEIu+J5G51NQsDgArvjuPJ7oES3bxs/dRT1IHI8wPIWPI6eZE6huIe5nUZda7d284ODhgw4YNmD9/Plq3bo3evXsjNzcXjo6OZqtcUFAQIiIiDLZ16NABubl3M+I1Gg0AoKCgwKBMQUGBuE+j0aCwsNBg/507d3Djxg2xTE1cXV3h5eVl8CCyFWF+Hqi+2uDdL8hL10tqfA67WRqnrpF01lJXfgjRveTQRX1/t/7yb36W9PpjUkD0r3/9C/Hx8XBzc8NPP/2EsrIyAIBWqxVbc8whJiYGWVlZBtv++9//okWLFgDuJlhrNBrs27dP3K/T6ZCWlobo6GgAQHR0NIqKipCRkSGWSUlJgV6vR8+ePc1WVyI5CVK7Yf7A6qNAa8sV4DDcxpNDMML8ELIVNXXrf/SfHEmvPyYFRMuWLcP69euxYcMGODs7i9tjYmLMOg/R7Nmz8eOPP2L58uW4ePEitm7dio8++ggJCQkAAJVKhVmzZmHZsmXYtWsXTp8+jfHjxyM4OFhcd61Dhw4YMGAApk6dimPHjuHIkSNITEzEqFGjOMKM7NpzvcOxYFB78QuytlwBObRs2AM5BCPGJK8TyUFt3fpSXn9MyiHKyspCbGxste1qtRpFRUWNrZOoe/fu2LlzJxYsWIClS5ciLCwMq1evxtixY8Uyr7zyCm7duoVp06ahqKgIvXr1wp49ewzWWduyZQsSExPRr18/ODg4YPjw4VizZo3Z6kkkV8/FhuOJLsF15gpwGK55yCVZVU75IUS1qWkqjipSXX9MCog0Gg0uXryIli1bGmw/fPgwWrVqZY56iYYMGYIhQ4bUul+lUmHp0qVYunRprWV8fHw4CSMpVn2JzFwZ3XzkEowYk7wup2RWUp6qG4gF/zoN/X37pLr+mNRlNnXqVLz44otIS0uDSqXC1atXsWXLFrz88suYPn26uetIRBbEbhbzkkOyan2YM0ZyMLJ7KI4seAzTHm1Vb9e+NZi02r0gCFi+fDmSkpJQUnI3YdDV1RUvv/wy3njjDbNXUg642j3ZO66Mrgx52lLEJKdUaxE8PL8v/+4kGUtef4z9/jYpIKpSXl6Oixcvori4GBEREfD09DT1pWSPARER2YOj2dcxZkP1Wfq3TX0Y0eG+EtSIyLKM/f42KYeoiouLS7V5goiISL6YM0ZUM5NyiIiIyDYxZ4yoZo1qISIiItsjl9FwRHLCgIiISIHsfV05ooZilxkREREpHgMiIjvCBVqJiEzDLjMiG1PbDMPb03PFNckcVEDSsEiM7B4qYU2JiGwHAyIiG1Jb0FPbAq2xbf2ZJ0JEZAR2mRHZiLpWpa9rgVYiIqofAyIiG1FX0FM12d69ONkeEZHxGBAR2Yi6gh5OtkdE1DjMISKyEVVBz6s7zqBSEKoFPZxsj4jIdAyIiGxIfUEPJ9sjIjINAyIiG8Ogh4jI/JhDRGRlnDyRiMyF1xPzYQsRkRVx8kQiMhdeT8yLLUREVlLXPEKkHLyjJ3Pg9cT82EJEZCV1zSPEnCBl4B09mQuvJ+bHFiIiK+HkicrGO3oyJ15PzI8BEZGVcPJEZePyKmROvJ6YH7vMiKyIkycqV9Ud/b1BEe/oqTF4PTEvthARWVmQ2g3R4b68eCkM7+jJEng9MR+2EBERWYkS7+jztKXIuX4LYX4eivi8ZLsYEJFi8UJNUlDSTOMcVUe2hAERKZI5L9QMrIiqq21UXWxbf/6fkCwxICLFMeeFmnfARDXjPDlka5hUTYpjruHPcphXhrMek1xxnhyyNQyISHHMdaGWel6Z7em5iElOwZgNaYhJTsH29FyrvC+RMTiqjmwNu8xIcaou1K/uOINKQTD5Qi3lvDLMzyBboMRRdWS7GBCRIpnjQm2uwMoUzM8gW6GkUXVk2xgQkWKZ40It1R0wZz0mIjIv5hARNZIUM8UyP4OIyLzYQkRmx3l5rIP5GdbHc5vIfjEgIrPivDzWxfwM6+G5TWTf2GVGZiOHeXmILIHnNpH9Y0BEZiP1vDxkPUqbEJLnNpH9s6mAKDk5GSqVCrNmzRK33b59GwkJCfD19YWnpyeGDx+OgoICg+fl5uZi8ODBcHd3R0BAAObOnYs7d+5Yufb2jzPTKoMSJ4TkuU1k/2wmIEpPT8eHH36Izp07G2yfPXs2vv76a3z++ec4ePAgrl69imHDhon7KysrMXjwYJSXl+Po0aPYvHkzNm3ahEWLFln7I9g9jnyyf0rtOuK5TWT/VIIgCPUXk1ZxcTEeeughfPDBB1i2bBkefPBBrF69GlqtFv7+/ti6dStGjBgBADh//jw6dOiA1NRUPPzww/juu+8wZMgQXL16FYGBgQCA9evXY968ebh27RpcXFyMqoNOp4NarYZWq4WXl5fFPqs9yNOWcuSTnTqafR1jNqRV275t6sOIDveVoEbWxXObyPYY+/1tEy1ECQkJGDx4MOLi4gy2Z2RkoKKiwmB7+/btERoaitTUVABAamoqIiMjxWAIAOLj46HT6XD27Nla37OsrAw6nc7gQcaRYl4esg6ldx3x3CayX7IPiD777DOcOHECSUlJ1fbl5+fDxcUF3t7eBtsDAwORn58vlrk3GKraX7WvNklJSVCr1eIjJCSkkZ+EyPax64hqorQke7JPsp6H6MqVK3jxxRexd+9eNGnSxKrvvWDBAsyZM0f8XafTMSgiAieEJEOcn8k8OOmn9GQdEGVkZKCwsBAPPfSQuK2yshKHDh3Ce++9h++//x7l5eUoKioyaCUqKCiARqMBAGg0Ghw7dszgdatGoVWVqYmrqytcXV3N+GnIFvEiVTNOCElA7Un2sW39eX40AINKeZB1l1m/fv1w+vRpZGZmio+oqCiMHTtW/NnZ2Rn79u0Tn5OVlYXc3FxER0cDAKKjo3H69GkUFhaKZfbu3QsvLy9ERERY/TOR7VDi8HKihjBlfiZ2rxlS6shNOZJ1C1HTpk3RqVMng20eHh7w9fUVt0+ZMgVz5syBj48PvLy8MGPGDERHR+Phhx8GAPTv3x8REREYN24cVq5cifz8fLz22mtISEhgCxDVine+RPWrSrK/NyiqK8meLSHV1RVU8lpjXbJuITLGO++8gyFDhmD48OGIjY2FRqPBjh07xP2Ojo7YvXs3HB0dER0djWeeeQbjx4/H0qVLJaw1yZ0tzkzMO2+ytoYk2bMlpGZKH7kpJzYxD5EcKG0eIqXnzuRpSxGTnFLtzvfw/L6yPB688yYpGTM/k9LnsKrL9vRcvLrjDCoFQQwq+f9rPsZ+f8u6y4ykwS/XP+58779I1RUMSRVEsnuPpGZMkn1Du9eUhCM35YEBERngl+sfGnKRkjKIZA4C2QJTbjKUhCM3pceAiAzwy9WQMRcpqYNI3nmTrWBLCMmZzSdVk3kxwa/hpE7A5uzRZEu4/AnJFVuIyACbtRtODi00vPMmsg9KH9AiJQZEVA2/XBtGLkEkcxCIbBsHtEiLw+6NpLRh90pnyl2aMUOPyXS8cyZ7ZmtTfdgSDrsnMpGpd2lsobEc3jmTveOAFukxqZroHpxNV374NyEl4IAW6TEgIsW7d8kLqUeMUXX8m5AScLSo9NhlRop2f1fMvAHtJR8xRobkMIpPKZinJS0OaJEWW4hIsWrqilm5JwvzBrbnXZqM8M7ZOran5yImOQVjNqQhJjkF29Nzpa6SInGeJumwhYgUq7aumM7NvXF4fl/epckI75wtS+rZ1onkgAERKVZdXTEcMSY//JtYDkc4EbHLjBSMXTFEd3GEExFbiEjh2BVDJJ/Z1omkxICIFI9dMUS8OSBiQERERAB4c0DKxhwiIiIiI907kSvZF7YQERERGYFr6tk3thARERHVg2vq2T8GRERERPXgmnr2jwERERFRPThXk/1jQERERFQPTuRq/5hUTUREZATO1WTfGBARkc3J05Yi5/othPl58EuJrIpzNdkvBkREZFM49JmILIE5RERkMzj0mYgshQEREdkMDn0mW8EZrW0Pu8yIyGZUDX2+Nyji0GeSG3br2ia2EJFF8O6ILIFDn0nu2K1ru9hCRGbHuyOyJA59Jjmrq1uX56q8sYWIzIp3R2QNQWo3RIf78guGZIczWtsuBkRkVkx6JSJb1tjufnbr2i52mZFZMemViGxVQ7r765oclN26toktRGRWvDsiIlvUkO7+7em5iElOwZgNaYhJTsH29NxqZdita3vYQkRmx7sjIrI1xiZD1xY4xbb157XOxjEgIovgej9EZEuM7e7nKDL7Jfsus6SkJHTv3h1NmzZFQEAAhg4diqysLIMyt2/fRkJCAnx9feHp6Ynhw4ejoKDAoExubi4GDx4Md3d3BAQEYO7cubhz5441Pwr9P85RRERyY2x3P0eR2S/ZtxAdPHgQCQkJ6N69O+7cuYNXX30V/fv3x88//wwPDw8AwOzZs/HNN9/g888/h1qtRmJiIoYNG4YjR44AACorKzF48GBoNBocPXoUeXl5GD9+PJydnbF8+XIpP57icI4iIpIrY7r7qwKnV3ecQaUgME/SjqgEQRDqLyYf165dQ0BAAA4ePIjY2FhotVr4+/tj69atGDFiBADg/Pnz6NChA1JTU/Hwww/ju+++w5AhQ3D16lUEBgYCANavX4958+bh2rVrcHFxqfd9dTod1Go1tFotvLy8LPoZ7VWethQxySnVmqQPz+/LiwmRieoa7USWk6ctZZ6kjTD2+1v2XWb302q1AAAfHx8AQEZGBioqKhAXFyeWad++PUJDQ5GamgoASE1NRWRkpBgMAUB8fDx0Oh3Onj1b4/uUlZVBp9MZPKhxOEcRkXkZM9qJLIOjyOyPTQVEer0es2bNQkxMDDp16gQAyM/Ph4uLC7y9vQ3KBgYGIj8/XyxzbzBUtb9qX02SkpKgVqvFR0hIiJk/jfKw753kxNZz2TgrPJF52VRAlJCQgDNnzuCzzz6z+HstWLAAWq1WfFy5csXi72nvOEcRyYU9tKywxZXIvGSfVF0lMTERu3fvxqFDh/DAAw+I2zUaDcrLy1FUVGTQSlRQUACNRiOWOXbsmMHrVY1CqypzP1dXV7i6upr5UxDnKCKp2cs8MpwVnsi8ZN9CJAgCEhMTsXPnTqSkpCAsLMxgf7du3eDs7Ix9+/aJ27KyspCbm4vo6GgAQHR0NE6fPo3CwkKxzN69e+Hl5YWIiAjrfBASse+dpGQvLStscSUyL9m3ECUkJGDr1q346quv0LRpUzHnR61Ww83NDWq1GlOmTMGcOXPg4+MDLy8vzJgxA9HR0Xj44YcBAP3790dERATGjRuHlStXIj8/H6+99hoSEhLYCkSkMPbUssIWVyLzkf2we5VKVeP2jRs3YuLEiQDuTsz40ksvYdu2bSgrK0N8fDw++OADg+6wy5cvY/r06Thw4AA8PDwwYcIEJCcnw8nJuJiQw+6JbIMxw9C3p+dWm0eG82ER2Sdjv79lHxDJBQMiskf2NodNQ1crZ8sKkf0z9vtb9l1mRGQZ9jZreEOTpbneHhHdS/ZJ1URkfvY4h429JEsTkTQYEBEpkD0GD5z4k4gagwERkQLZY/DAYehE1BjMISJSIHtdsZvD0InIVAyIiBTKksGDlKPXmCxNJA+2NoqVARGRglkieLC30WtE1HC2eB1gDhERmY2cRq/Z+mr2RLZKTteBhmALERGZTV2j16zZZG6Ld6dE9kIu14GGYgsRKQZbDCxPDqPXbPXulMheyOE6YAoGRKQI29NzEZOcgjEb0hCTnILt6blSV8kuyWHouz3OsURkS+RwHTAFu8zsjK1l9VtDQ5d0oMaReui7Pa1mT2SrpL4OmIIBkR1h3kTNbLU/25ZJOfTdXudYIrI1tjYFBgMiOyFFK4ittEaxxUB5bPHulIikxYDITli7FcSWWqPYYtAwthLo1sfW7k4bwl7+RkRywoDITlizFcQWc3LYYvCHur5MbSnQVSr+jYgsg6PM7IQ1s/ptdRRPkNoN0eG+ig6G6hptx+Hq8se/EZHlsIXIjlirFYQ5ObapvpY9Jp/LH/9GRJbDFiI7Y41WEFudY0Lp6mvZs9XJ1JSEfyPjcBJWMgVbiMgkzMmxPfW17DH5XP74N6ofc6zIVCpBEIT6i5FOp4NarYZWq4WXl5fU1SEyyfb03Gpfpvd/WeRpSxnoyhz/RjXL05YiJjmlWtB/eH5fHicFM/b7my1ERApiTMuePQ9Xtxf8G9WMOVbUGAyIiBSGX6ZkrzjggxqDSdVERGQXOOCDGoMtRERkUZxVmayJAz7IVAyIiMhiOOKHpMBuYTIFu8yIyCI4qzIR2RIGRERkEba6xAuRXHCCSetilxmRzNlqDg5H/BCZjt3N1scWIiIZq2sx1trI5a6SI37I1kn1v8TuZmmwhYhIpupbjLUmcrur5IgfslVS/i9xgklpsIWIjCKXVgclaWgOjlzvKq2x4DCROUn9v8RFfKXBgIjqZUq3DTVeQy+KTGImMg+p/5fY3SwNdplRnUzptiHzaOjK5kxiJjIPOfwvsbvZ+hgQUZ3Yly2thlwUGxpAkXLZ6shFa5HL/xInmLQuBkRUJzncKSldQy6KvKuk+pgrWdjegyr+LykPAyKJyf2iIpc7JTIe7yqpNubqApfbaEZL4f+SsjAgkpCtXFR4p0RkH8zRBc68QrJXihpl9v7776Nly5Zo0qQJevbsiWPHjklWF6mHdTYUh04T2T5zDOeWegQWkaUoJiDavn075syZg9dffx0nTpxAly5dEB8fj8LCQknqw4sKEVmbOYZzc44cslcqQRCE+ovZvp49e6J79+547733AAB6vR4hISGYMWMG5s+fX+/zdTod1Go1tFotvLy8Gl2fPG0pYpJTqiUrH57fl60wRGRRedrSRnWBb0/PrZZXKMfufiLA+O9vReQQlZeXIyMjAwsWLBC3OTg4IC4uDqmpqZLUicnKRCSVxiYLM6+Q7JEiAqLr16+jsrISgYGBBtsDAwNx/vz5Gp9TVlaGsrIy8XedTmf2evGiQkS2iiOwyN4oJoeooZKSkqBWq8VHSEiIRd6HycpERETSU0RA5OfnB0dHRxQUFBhsLygogEajqfE5CxYsgFarFR9XrlyxRlWJiIhIAooIiFxcXNCtWzfs27dP3KbX67Fv3z5ER0fX+BxXV1d4eXkZPIiIiMg+KSKHCADmzJmDCRMmICoqCj169MDq1atx69YtTJo0SeqqERERkcQUExCNHDkS165dw6JFi5Cfn48HH3wQe/bsqZZoTURERMqjmHmIGsvc8xARERGR5Rn7/a2IHCIiIiKiujAgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPMXMQ9RYVbMTWGKRVyIiIrKMqu/t+mYZYkBkpJs3bwKAxRZ5JSIiIsu5efMm1Gp1rfs5MaOR9Ho9rl69iqZNm0KlUkldHavR6XQICQnBlStXOCFlI/FYmgePo/nwWJoHj6P5WOJYCoKAmzdvIjg4GA4OtWcKsYXISA4ODnjggQekroZkuMCt+fBYmgePo/nwWJoHj6P5mPtY1tUyVIVJ1URERKR4DIiIiIhI8RgQUZ1cXV3x+uuvw9XVVeqq2DweS/PgcTQfHkvz4HE0HymPJZOqiYiISPHYQkRERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEBAA4dOgQHn/8cQQHB0OlUuHLL7802C8IAhYtWoSgoCC4ubkhLi4OFy5ckKayMlbfcZw4cSJUKpXBY8CAAdJUVuaSkpLQvXt3NG3aFAEBARg6dCiysrIMyty+fRsJCQnw9fWFp6cnhg8fjoKCAolqLE/GHMc+ffpUOy+ff/55iWosX+vWrUPnzp3FSQOjo6Px3Xffift5PhqnvuMo1fnIgIgAALdu3UKXLl3w/vvv17h/5cqVWLNmDdavX4+0tDR4eHggPj4et2/ftnJN5a2+4wgAAwYMQF5envjYtm2bFWtoOw4ePIiEhAT8+OOP2Lt3LyoqKtC/f3/cunVLLDN79mx8/fXX+Pzzz3Hw4EFcvXoVw4YNk7DW8mPMcQSAqVOnGpyXK1eulKjG8vXAAw8gOTkZGRkZOH78OB577DE8+eSTOHv2LACej8aq7zgCEp2PAtF9AAg7d+4Uf9fr9YJGoxHeeustcVtRUZHg6uoqbNu2TYIa2ob7j6MgCMKECROEJ598UpL62LrCwkIBgHDw4EFBEO6eg87OzsLnn38uljl37pwAQEhNTZWqmrJ3/3EUBEHo3bu38OKLL0pXKRvWrFkz4W9/+xvPx0aqOo6CIN35yBYiqldOTg7y8/MRFxcnblOr1ejZsydSU1MlrJltOnDgAAICAtCuXTtMnz4dv/32m9RVsglarRYA4OPjAwDIyMhARUWFwXnZvn17hIaG8rysw/3HscqWLVvg5+eHTp06YcGCBSgpKZGiejajsrISn332GW7duoXo6Giejya6/zhWkeJ85OKuVK/8/HwAQGBgoMH2wMBAcR8ZZ8CAARg2bBjCwsKQnZ2NV199FQMHDkRqaiocHR2lrp5s6fV6zJo1CzExMejUqROAu+eli4sLvL29DcryvKxdTccRAMaMGYMWLVogODgYp06dwrx585CVlYUdO3ZIWFt5On36NKKjo3H79m14enpi586diIiIQGZmJs/HBqjtOALSnY8MiIisaNSoUeLPkZGR6Ny5M8LDw3HgwAH069dPwprJW0JCAs6cOYPDhw9LXRWbVttxnDZtmvhzZGQkgoKC0K9fP2RnZyM8PNza1ZS1du3aITMzE1qtFl988QUmTJiAgwcPSl0tm1PbcYyIiJDsfGSXGdVLo9EAQLXREgUFBeI+Mk2rVq3g5+eHixcvSl0V2UpMTMTu3buxf/9+PPDAA+J2jUaD8vJyFBUVGZTneVmz2o5jTXr27AkAPC9r4OLigtatW6Nbt25ISkpCly5d8O677/J8bKDajmNNrHU+MiCieoWFhUGj0WDfvn3iNp1Oh7S0NIM+X2q4X375Bb/99huCgoKkrorsCIKAxMRE7Ny5EykpKQgLCzPY361bNzg7Oxucl1lZWcjNzeV5eY/6jmNNMjMzAYDnpRH0ej3Kysp4PjZS1XGsibXOR3aZEQCguLjYIPrOyclBZmYmfHx8EBoailmzZmHZsmVo06YNwsLCsHDhQgQHB2Po0KHSVVqG6jqOPj4+WLJkCYYPHw6NRoPs7Gy88soraN26NeLj4yWstTwlJCRg69at+Oqrr9C0aVMxD0OtVsPNzQ1qtRpTpkzBnDlz4OPjAy8vL8yYMQPR0dF4+OGHJa69fNR3HLOzs7F161YMGjQIvr6+OHXqFGbPno3Y2Fh07txZ4trLy4IFCzBw4ECEhobi5s2b2Lp1Kw4cOIDvv/+e52MD1HUcJT0frT6ujWRp//79AoBqjwkTJgiCcHfo/cKFC4XAwEDB1dVV6Nevn5CVlSVtpWWoruNYUlIi9O/fX/D39xecnZ2FFi1aCFOnThXy8/OlrrYs1XQcAQgbN24Uy5SWlgovvPCC0KxZM8Hd3V146qmnhLy8POkqLUP1Hcfc3FwhNjZW8PHxEVxdXYXWrVsLc+fOFbRarbQVl6HJkycLLVq0EFxcXAR/f3+hX79+wg8//CDu5/lonLqOo5Tno0oQBMGyIRcRERGRvDGHiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPARER2bzy8nKpq1CNHOtERLVjQEREstOnTx8kJiYiMTERarUafn5+WLhwIapWGmrZsiXeeOMNjB8/Hl5eXpg2bRoA4PDhw3j00Ufh5uaGkJAQzJw5E7du3RJf94MPPkCbNm3QpEkTBAYGYsSIEeK+L774ApGRkXBzc4Ovry/i4uLE5/bp0wezZs0yqOPQoUMxceJE8XdT60RE8sCAiIhkafPmzXBycsKxY8fw7rvvYtWqVfjb3/4m7n/77bfRpUsX/PTTT1i4cCGys7MxYMAADB8+HKdOncL27dtx+PBhJCYmAgCOHz+OmTNnYunSpcjKysKePXsQGxsLAMjLy8Po0aMxefJknDt3DgcOHMCwYcPQ0KUeG1onIpIPLu5KRLLTp08fFBYW4uzZs1CpVACA+fPnY9euXfj555/RsmVLdO3aFTt37hSf8+yzz8LR0REffvihuO3w4cPo3bs3bt26hW+//RaTJk3CL7/8gqZNmxq834kTJ9CtWzdcunQJLVq0qLE+Dz74IFavXi1uGzp0KLy9vbFp0yYAMKlOTZo0adRxIiLzYQsREcnSww8/LAZDABAdHY0LFy6gsrISABAVFWVQ/uTJk9i0aRM8PT3FR3x8PPR6PXJycvCnP/0JLVq0QKtWrTBu3Dhs2bIFJSUlAIAuXbqgX79+iIyMxJ///Gds2LABv//+e4Pr3NA6EZF8MCAiIpvk4eFh8HtxcTGee+45ZGZmio+TJ0/iwoULCA8PR9OmTXHixAls27YNQUFBWLRoEbp06YKioiI4Ojpi7969+O677xAREYG1a9eiXbt2YtDi4OBQrfusoqKi0XUiIvlgQEREspSWlmbw+48//og2bdrA0dGxxvIPPfQQfv75Z7Ru3braw8XFBQDg5OSEuLg4rFy5EqdOncKlS5eQkpICAFCpVIiJicGSJUvw008/wcXFRez+8vf3R15envhelZWVOHPmTL2fwZg6EZE8MCAiIlnKzc3FnDlzkJWVhW3btmHt2rV48cUXay0/b948HD16FImJicjMzMSFCxfw1VdfiQnMu3fvxpo1a5CZmYnLly/jk08+gV6vR7t27ZCWlobly5fj+PHjyM3NxY4dO3Dt2jV06NABAPDYY4/hm2++wTfffIPz589j+vTpKCoqqvcz1FcnIpIPJ6krQERUk/Hjx6O0tBQ9evSAo6MjXnzxRXEoe006d+6MgwcP4i9/+QseffRRCIKA8PBwjBw5EgDg7e2NHTt2YPHixbh9+zbatGmDbdu2oWPHjjh37hwOHTqE1atXQ6fToUWLFvjrX/+KgQMHAgAmT56MkydPYvz48XBycsLs2bPRt2/fej9DfXUiIvngKDMikp2aRnUREVkSu8yIiIhI8RgQERERkeKxy4yIiIgUjy1EREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHj/BxuX9VtXNomyAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABELElEQVR4nO3deXRU9f3/8dckkBCWDFs2IRB2RCAgi4QoBEED9adGtEX4VnYsCApSF7AugNag1harFixWqAtKsaBWcaFsHgQpi1GhypEUSJSExZYJhBAgub8/aKaErDOZmXvnzvNxzpwDd+7MvOfmztz3vD+bwzAMQwAAADYRZnYAAAAAvkRyAwAAbIXkBgAA2ArJDQAAsBWSGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgPAFPPmzZPD4ajVvg6HQ/PmzfNrPGlpaUpLS7Ps8wGoPZIbIMQtX75cDofDfatXr55atWql8ePH64cffjA7PMtJSkoqd7xiY2N1zTXXaM2aNT55/tOnT2vevHnatGmTT54PCEUkNwAkSQsWLNBrr72mJUuWaMSIEXr99dc1ePBgnTlzxi+v9/DDD6uoqMgvz+1vvXr10muvvabXXntN9913nw4fPqyRI0dqyZIldX7u06dPa/78+SQ3QB3UMzsAANYwYsQI9e3bV5I0efJktWzZUk899ZTee+89/exnP/P569WrV0/16gXnV1CrVq3085//3P3/sWPHqmPHjvrd736nqVOnmhgZAInKDYAqXHPNNZKk7Ozsctu//fZb3XbbbWrevLkaNGigvn376r333iu3z7lz5zR//nx16tRJDRo0UIsWLXT11Vdr3bp17n0q63NTXFyse++9VzExMWrSpIluuukmff/99xViGz9+vJKSkipsr+w5ly1bpmuvvVaxsbGKjIxUt27dtHjxYo+ORU3i4+N1+eWX68CBA9Xud/ToUU2aNElxcXFq0KCBkpOT9ec//9l9/8GDBxUTEyNJmj9/vrvpy9/9jQC7Cc6fTQD87uDBg5KkZs2aubft3btXqampatWqlebMmaNGjRrpL3/5izIyMvTXv/5Vt9xyi6QLSUZmZqYmT56s/v37q6CgQDt37tTu3bt13XXXVfmakydP1uuvv64xY8Zo4MCB2rBhg2644YY6vY/Fixfriiuu0E033aR69erpb3/7m+666y6VlpZq+vTpdXruMufOnVNubq5atGhR5T5FRUVKS0vT/v37NWPGDLVr106rVq3S+PHjdeLECc2cOVMxMTFavHixpk2bpltuuUUjR46UJPXs2dMncQIhwwAQ0pYtW2ZIMv7+978bx44dM3Jzc423337biImJMSIjI43c3Fz3vkOHDjV69OhhnDlzxr2ttLTUGDhwoNGpUyf3tuTkZOOGG26o9nUfe+wx4+KvoKysLEOScdddd5Xbb8yYMYYk47HHHnNvGzdunNG2bdsan9MwDOP06dMV9ktPTzfat29fbtvgwYONwYMHVxuzYRhG27Ztjeuvv944duyYcezYMePLL780br/9dkOScffdd1f5fIsWLTIkGa+//rp729mzZ42UlBSjcePGRkFBgWEYhnHs2LEK7xeAZ2iWAiBJGjZsmGJiYpSYmKjbbrtNjRo10nvvvafWrVtLkv79739rw4YN+tnPfqaTJ0/q+PHjOn78uH788Uelp6fru+++c4+uatq0qfbu3avvvvuu1q+/du1aSdI999xTbvusWbPq9L6ioqLc/3a5XDp+/LgGDx6sf/3rX3K5XF495yeffKKYmBjFxMQoOTlZq1at0h133KGnnnqqysesXbtW8fHxGj16tHtb/fr1dc899+jUqVPavHmzV7EAqIhmKQCSpBdffFGdO3eWy+XSK6+8ok8//VSRkZHu+/fv3y/DMPTII4/okUceqfQ5jh49qlatWmnBggW6+eab1blzZ3Xv3l3Dhw/XHXfcUW3zyqFDhxQWFqYOHTqU296lS5c6va/PPvtMjz32mLZt26bTp0+Xu8/lcsnpdHr8nFdddZWeeOIJORwONWzYUJdffrmaNm1a7WMOHTqkTp06KSys/G/Kyy+/3H0/AN8guQEgSerfv797tFRGRoauvvpqjRkzRvv27VPjxo1VWloqSbrvvvuUnp5e6XN07NhRkjRo0CBlZ2fr3Xff1SeffKKXX35Zv/vd77RkyRJNnjy5zrFWNflfSUlJuf9nZ2dr6NCh6tq1q377298qMTFRERERWrt2rX73u9+535OnWrZsqWHDhnn1WAD+R3IDoILw8HBlZmZqyJAheuGFFzRnzhy1b99e0oWmlNpc2Js3b64JEyZowoQJOnXqlAYNGqR58+ZVmdy0bdtWpaWlys7OLlet2bdvX4V9mzVrphMnTlTYfmn1429/+5uKi4v13nvvqU2bNu7tGzdurDF+X2vbtq2++uorlZaWlqvefPvtt+77paoTNwC1R58bAJVKS0tT//79tWjRIp05c0axsbFKS0vTSy+9pLy8vAr7Hzt2zP3vH3/8sdx9jRs3VseOHVVcXFzl640YMUKS9Pvf/77c9kWLFlXYt0OHDnK5XPrqq6/c2/Ly8irMEhweHi5JMgzDvc3lcmnZsmVVxuEvP/nJT5Sfn6+VK1e6t50/f17PP/+8GjdurMGDB0uSGjZsKEmVJm8AaofKDYAq3X///frpT3+q5cuXa+rUqXrxxRd19dVXq0ePHpoyZYrat2+vI0eOaNu2bfr+++/15ZdfSpK6deumtLQ09enTR82bN9fOnTv19ttva8aMGVW+Vq9evTR69Gj94Q9/kMvl0sCBA7V+/Xrt37+/wr633367HnzwQd1yyy265557dPr0aS1evFidO3fW7t273ftdf/31ioiI0I033qhf/OIXOnXqlJYuXarY2NhKEzR/uvPOO/XSSy9p/Pjx2rVrl5KSkvT222/rs88+06JFi9SkSRNJFzpAd+vWTStXrlTnzp3VvHlzde/eXd27dw9ovEBQM3u4FgBzlQ0F37FjR4X7SkpKjA4dOhgdOnQwzp8/bxiGYWRnZxtjx4414uPjjfr16xutWrUy/t//+3/G22+/7X7cE088YfTv399o2rSpERUVZXTt2tX49a9/bZw9e9a9T2XDtouKiox77rnHaNGihdGoUSPjxhtvNHJzcysdGv3JJ58Y3bt3NyIiIowuXboYr7/+eqXP+d577xk9e/Y0GjRoYCQlJRlPPfWU8corrxiSjAMHDrj382QoeE3D3Kt6viNHjhgTJkwwWrZsaURERBg9evQwli1bVuGxW7duNfr06WNEREQwLBzwgsMwLqrXAgAABDn63AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGArITeJX2lpqQ4fPqwmTZowzTkAAEHCMAydPHlSl112WYUFaC8VcsnN4cOHlZiYaHYYAADAC7m5uWrdunW1+4RcclM2xXlubq6io6NNjgYAANRGQUGBEhMT3dfx6oRcclPWFBUdHU1yAwBAkKlNlxI6FAMAAFshuQEAALZCcgMAAGwl5PrcAABCR0lJic6dO2d2GKiliIiIGod51wbJDQDAdgzDUH5+vk6cOGF2KPBAWFiY2rVrp4iIiDo9D8kNAMB2yhKb2NhYNWzYkElbg0DZJLt5eXlq06ZNnf5mJDcAAFspKSlxJzYtWrQwOxx4ICYmRocPH9b58+dVv359r5+HDsUAAFsp62PTsGFDkyOBp8qao0pKSur0PCQ3AABboikq+Pjqb0ZyAwAAbIXkBgAABMSmTZvkcDj8PoqN5AYAPJDnKtLW7OPKcxWZHQpQwbx589SrVy+zwzAdo6UAoJZW7sjR3NVfq9SQwhxS5sgeGtWvjdlhAR47d+5cnUYjWR2VGwCohTxXkTuxkaRSQ3po9R4qOPCp0tJSZWZmql27doqKilJycrLefvttSf9r0lm/fr369u2rhg0bauDAgdq3b58kafny5Zo/f76+/PJLORwOORwOLV++XNKFjrqLFy/WTTfdpEaNGunXv/51tXGUvdbHH3+s3r17KyoqStdee62OHj2qDz/8UJdffrmio6M1ZswYnT592v244uJi3XPPPYqNjVWDBg109dVXa8eOHf45WNUguQGAWjhwvNCd2JQpMQwdPH668gfANgLZFJmZmalXX31VS5Ys0d69e3Xvvffq5z//uTZv3uze51e/+pWeffZZ7dy5U/Xq1dPEiRMlSaNGjdIvf/lLXXHFFcrLy1NeXp5GjRrlfty8efN0yy236Ouvv3Y/pibz5s3TCy+8oK1btyo3N1c/+9nPtGjRIq1YsUIffPCBPvnkEz3//PPu/R944AH99a9/1Z///Gft3r1bHTt2VHp6uv7973/76AjVDs1SAFAL7Vo2UphD5RKccIdDSS2ZS8XOAtkUWVxcrCeffFJ///vflZKSIklq3769tmzZopdeekl33nmnJOnXv/61Bg8eLEmaM2eObrjhBp05c0ZRUVFq3Lix6tWrp/j4+ArPP2bMGE2YMMGjmJ544gmlpqZKkiZNmqS5c+cqOztb7du3lyTddttt2rhxox588EEVFhZq8eLFWr58uUaMGCFJWrp0qdatW6c//elPuv/++707MF6gcgMAtZDgjFLmyB4K/+88HOEOh54c2V0JziiTI4O/BLopcv/+/Tp9+rSuu+46NW7c2H179dVXlZ2d7d6vZ8+e7n8nJCRIko4ePVrj8/ft29fjmC5+rbi4ODVs2NCd2JRtK3vt7OxsnTt3zp0MSVL9+vXVv39/ffPNNx6/dl1QuQGAWhrVr40GdY7RweOnldSyIYmNzVXXFOmPv/2pU6ckSR988IFatWpV7r7IyEh3gnNxR+CySe9KS0trfP5GjRp5HNOlr3VpJ2SHw1Gr1w40khsA8ECCM4qkJkQEuimyW7duioyMVE5OjrvZ6WIXV2+qEhERUeelC7zVoUMHRURE6LPPPlPbtm0lXRiVtWPHDs2aNSugsZDcAABQibKmyIdW71GJYfi9KbJJkya67777dO+996q0tFRXX321XC6XPvvsM0VHR7sThuokJSXpwIEDysrKUuvWrdWkSRNFRkb6Jd5LNWrUSNOmTdP999+v5s2bq02bNnr66ad1+vRpTZo0KSAxlCG5AQCgCoFuinz88ccVExOjzMxM/etf/1LTpk115ZVX6qGHHqpV88+tt96q1atXa8iQITpx4oSWLVum8ePH+zXmiy1cuFClpaW64447dPLkSfXt21cff/yxmjVrFrAYJMlhGIZR8272UVBQIKfTKZfLpejoaLPDAQD42JkzZ3TgwAG1a9dODRo0MDsceKC6v50n129GSwEAAFshuQEAIMRMnTq13HDzi29Tp041O7w6o88NAAAhZsGCBbrvvvsqvc8OXTZIbgAACDGxsbGKjY01Owy/oVkKAADYCskNAMCWrDhzLqrnqwHcNEsBAGwlIiJCYWFhOnz4sGJiYhQREeFepgDWZRiGjh07VukyD54iuQEA2EpYWJjatWunvLw8HT582Oxw4AGHw6HWrVsrPDy8Ts9DcgMAsJ2IiAi1adNG58+fN22tJXiufv36dU5sJJIbAIBNlTVv1LWJA8GHDsUAAMBWSG4AAICtkNwAAABbIbkBAAC2QnIDAABsheQGAADYCskNAACwFZIbAABgKyQ3AADAVkxNbhYvXqyePXsqOjpa0dHRSklJ0YcffljtY1atWqWuXbuqQYMG6tGjh9auXRugaAEAQDAwNblp3bq1Fi5cqF27dmnnzp269tprdfPNN2vv3r2V7r9161aNHj1akyZN0hdffKGMjAxlZGRoz549AY4cAABYlcMwDMPsIC7WvHlzPfPMM5o0aVKF+0aNGqXCwkK9//777m0DBgxQr169tGTJklo9f0FBgZxOp1wul6Kjo30WNwAA8B9Prt+W6XNTUlKit956S4WFhUpJSal0n23btmnYsGHltqWnp2vbtm1VPm9xcbEKCgrK3QAAgH2Zntx8/fXXaty4sSIjIzV16lStWbNG3bp1q3Tf/Px8xcXFldsWFxen/Pz8Kp8/MzNTTqfTfUtMTPRp/AAAwFpMT266dOmirKwsbd++XdOmTdO4ceP0z3/+02fPP3fuXLlcLvctNzfXZ88NAACsp57ZAURERKhjx46SpD59+mjHjh167rnn9NJLL1XYNz4+XkeOHCm37ciRI4qPj6/y+SMjIxUZGenboAEAgGWZXrm5VGlpqYqLiyu9LyUlRevXry+3bd26dVX20QEAAKHH1MrN3LlzNWLECLVp00YnT57UihUrtGnTJn388ceSpLFjx6pVq1bKzMyUJM2cOVODBw/Ws88+qxtuuEFvvfWWdu7cqT/+8Y9mvg0AAGAhpiY3R48e1dixY5WXlyen06mePXvq448/1nXXXSdJysnJUVjY/4pLAwcO1IoVK/Twww/roYceUqdOnfTOO++oe/fuZr0FAABgMZab58bfmOcGAIDgE5Tz3AAAAPgCyQ0AALAVkhsAAGArJDcAAMBWSG4AAICtkNwAAABbIbkBAAC2QnIDAABsheQGAADYCskNAACVyHMVaWv2ceW5iswOBR4ydW0pAACsaOWOHM1d/bVKDSnMIWWO7KFR/dqYHRZqicoNAAAXyXMVuRMbSSo1pIdW76GCE0RIbgAAuMiB44XuxKZMiWHo4PHT5gQEj5HcAABwkXYtGynMUX5buMOhpJYNzQkIHiO5AQDgIgnOKGWO7KFwx4UMJ9zh0JMjuyvBGWVyZNZi5Q7XdCgGAJvJcxXpwPFCtWvZiAuyl0b1a6NBnWN08PhpJbVsyHG8hNU7XJPcAICNWP2iE0wSnFEkNZWoqsP1oM4xljleNEsBgE0wygeBEAwdrkluAMAmguGig+AXDB2uSW4AwCaC4aKD4BcMHa7pcwMANlF20Xlo9R6VGIYlLzqwB6t3uCa5AQAbsfpFB/Zh5Q7XJDcAYDNWvugAgUCfGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AIGTluYq0Nfs4i4vaDJP4AQBC0sodOe5V1MMcUubIHhrVr43ZYcEHqNwAAEJOnqvIndhIUqkhPbR6DxUcmyC5AQCEnAPHC92JTZkSw9DB46fNCQg+RXIDAAg57Vo2Upij/LZwh0NJLRuaExB8iuQGABByEpxRyhzZQ+GOCxlOuMOhJ0d2Z8FRm6BDMQAgJI3q10aDOsfo4PHTSmrZkMTGRkhuAAAhK8EZRVJjQzRLAQAAWyG5AQAAtmJqcpOZmal+/fqpSZMmio2NVUZGhvbt21ftY5YvXy6Hw1Hu1qBBgwBFDAAArM7U5Gbz5s2aPn26Pv/8c61bt07nzp3T9ddfr8LCwmofFx0drby8PPft0KFDAYoYAABYnakdij/66KNy/1++fLliY2O1a9cuDRo0qMrHORwOxcfH+zs8AAAQhCzV58blckmSmjdvXu1+p06dUtu2bZWYmKibb75Ze/furXLf4uJiFRQUlLsBAAD7skxyU1paqlmzZik1NVXdu3evcr8uXbrolVde0bvvvqvXX39dpaWlGjhwoL7//vtK98/MzJTT6XTfEhMT/fUWAACABTgMwzBq3s3/pk2bpg8//FBbtmxR69ata/24c+fO6fLLL9fo0aP1+OOPV7i/uLhYxcXF7v8XFBQoMTFRLpdL0dHRPokdAAD4V0FBgZxOZ62u35aYxG/GjBl6//339emnn3qU2EhS/fr11bt3b+3fv7/S+yMjIxUZGemLMAEAQBAwtVnKMAzNmDFDa9as0YYNG9SuXTuPn6OkpERff/21EhIS/BAhAAAINqZWbqZPn64VK1bo3XffVZMmTZSfny9Jcjqdioq6MB322LFj1apVK2VmZkqSFixYoAEDBqhjx446ceKEnnnmGR06dEiTJ0827X0AAADrMDW5Wbx4sSQpLS2t3PZly5Zp/PjxkqScnByFhf2vwPSf//xHU6ZMUX5+vpo1a6Y+ffpo69at6tatW6DCBgAAFmaZDsWB4kmHJAAAYA2eXL8tMxQcAADAF0huAACArZDcAAAAWyG5AQAAtkJyAwAAbIXkBgAA2ArJDQAAsBWSGwAAYCskNwAAwFZIboD/ynMVaWv2ceW5iswOBQBQB6auLQVYxcodOZq7+muVGlKYQ8oc2UOj+rUxOywAgBeo3CDk5bmK3ImNJJUa0kOr91DBAYAgRXKDkHfgeKE7sSlTYhg6ePy0OQEBAOqE5AYhr13LRgpzlN8W7nAoqWVDcwICANQJyQ1CXoIzSpkjeyjccSHDCXc49OTI7kpwRpkcGQDAG3QoBiSN6tdGgzrH6ODx00pq2ZDEBgCCGMkN8F8JziiSGgCwAZqlAAAIUszPVTkqNwAABCHm56oalRsAsAl+xYcO5ueqHpUbALABfsWHlurm56LvIJUbAAh6/IoPPczPVT2SmwCjbAwEj2D5vDLLduhhfq7q0SwVQJSNgeARTJ/Xsl/xFyc4/Iq3P+bnqhqVmwChbAwEj2D7vPIrPnQlOKOU0qEFf+tLULkJEDp/AbWX5yrSgeOFateykSmfj2D8vPIrHvgfkpsAoWwM1I4VmoOC9fPKLNvABTRLBQhlY6BmVmkO4vMKBDcqNwFE2RionpWag/i8AsGL5CbAKBsDVbNacxCfVyA40SwFwDJoDgLgC1RuAFgKzUEA6orkBoDl0BwEoC5olgIAALZCcgMAAGyF5AYAANSZlRaapc8NAACoEyvMLH4xKjcAAMBrVplZ/GIkN/A5K5UmgWDH5wlWV93M4mahWQo+ZbXSJIKH2SuBWxGfJwQDq80sLplcucnMzFS/fv3UpEkTxcbGKiMjQ/v27avxcatWrVLXrl3VoEED9ejRQ2vXrg1AtKiJFUuTCA4rd+QodeEGjVm6XakLN2jljhyzQzIdnycECyvOLG5qcrN582ZNnz5dn3/+udatW6dz587p+uuvV2FhYZWP2bp1q0aPHq1Jkybpiy++UEZGhjIyMrRnz54ARo7KWLE0CevjIl45Pk8IJqP6tdGWOUP05pQB2jJniOkVRlObpT766KNy/1++fLliY2O1a9cuDRo0qNLHPPfccxo+fLjuv/9+SdLjjz+udevW6YUXXtCSJUv8HjOqZsXSJKzPSiuBWwmfJ/uzW1OslWYWt1SHYpfLJUlq3rx5lfts27ZNw4YNK7ctPT1d27Zt82tsduHPzolWLE3C+sou4hfjIs7nye5oivUvy3QoLi0t1axZs5Samqru3btXuV9+fr7i4uLKbYuLi1N+fn6l+xcXF6u4uNj9/4KCAt8EHIQC0TmRRQ/hqbKL+EOr96jEMLiIX4TPkz1V1RQ7qHOMV39ju1WAfMEyyc306dO1Z88ebdmyxafPm5mZqfnz5/v0OYORrz9M1bFSaRLBgYt41fg82Y8vm2IZUVc5SzRLzZgxQ++//742btyo1q1bV7tvfHy8jhw5Um7bkSNHFB8fX+n+c+fOlcvlct9yc3N9FncwoXMirC7BGaWUDi24kMP2fNUUS2f8qpma3BiGoRkzZmjNmjXasGGD2rVrV+NjUlJStH79+nLb1q1bp5SUlEr3j4yMVHR0dLlbKKJfAwBYg6/6U/GjtWqmNktNnz5dK1as0LvvvqsmTZq4+804nU5FRV34I48dO1atWrVSZmamJGnmzJkaPHiwnn32Wd1www166623tHPnTv3xj3807X1cyortn/RrAIC689X3uy+aYhlRVzWHYRhGzbv56cUdjkq3L1u2TOPHj5ckpaWlKSkpScuXL3ffv2rVKj388MM6ePCgOnXqpKefflo/+clPavWaBQUFcjqdcrlcfqniWL39M89VRL8GAPCCFb/fV+7IqfCj1eyY/MWT67epyY0Z/Jnc5LmKlLpwQ4UsesucISQSABDErPz9Hio/Wj25fte6WcqTIdSh2q+FycgAwJ6s/P3OiLqKap3cNG3atMpmpDKGYcjhcKikpKTOgQUj2j8BwJ74fg8utU5uNm7c6M84bIFOuwBgT3y/Bxf63PhBqLR/AkCo4fvdPH7pc3OpEydO6E9/+pO++eYbSdIVV1yhiRMnyul0evuUtmHH9k8rDm8HgECz4/e7HXlVudm5c6fS09MVFRWl/v37S5J27NihoqIiffLJJ7ryyit9HqivBKJyYzdWHP4IAAgtfh8Kfs0116hjx45aunSp6tW7UPw5f/68Jk+erH/961/69NNPvYs8AEhuPGPl4Y8AgNDh92apnTt3lktsJKlevXp64IEH1LdvX2+eEhZl5eGPAABUxqu1paKjo5WTk1Nhe25urpo0aVLnoGCePFeRtmYfdy+8xppUAIBg41VyM2rUKE2aNEkrV65Ubm6ucnNz9dZbb2ny5MkaPXq0r2NEgKzckaPUhRs0Zul2pS7coJU7cny2wBsAAIHiVbPUb37zGzkcDo0dO1bnz5+XJNWvX1/Tpk3TwoULfRogAiPPVeTuNCxdmKjqodV7NKhzjE8WeIPnGKEGAN7xKrmJiIjQc889p8zMTGVnZ0uSOnTooIYNaaoIVjX1rWH4Y2AxQg0AvOf1PDeS1LBhQ/Xo0cNXscBETC1uHdVV0UgwAaBmXiU3Z86c0fPPP6+NGzfq6NGjKi0tLXf/7t27fRIcAoepxa2DEWrwFE2YQHleJTeTJk3SJ598ottuu039+/evcUFNBAf61lhDIKtoXBSDH02YNeM8Dz1eTeLndDq1du1apaam+iMmv2ISPwSDlTtyKlTRfH3B4qIY/Jhks2ac5/bh90n8WrVqxXw2gB/5u4pGvx57oAmzepznocureW6effZZPfjggzp06JCv4wHwXwnOKKV0aOGXL+HqLooIHoGeZPPSST6tzu7nebD9PQLJq8pN3759debMGbVv314NGzZU/fr1y93/73//2yfBAfAPRsfZQyAHAgRj846dz/Ng/HsEklfJzejRo/XDDz/oySefVFxcHB2KgSDD6Dj78HUTZmWdb4O1eccu5/mlf5Ng/XsEklfJzdatW7Vt2zYlJyf7Oh4AAcLoOPvw1SSbVVUDgrlvT7Cf55X9TRKbNwzav0egeNXnpmvXrioqoo0PCHb+7NeD4FJVNSDPVRT0C+hWdp4HQ3+Vqv4mjSLCg/rvEQheJTcLFy7UL3/5S23atEk//vijCgoKyt0AAMGlpuqMnRbQrWyRYCuq6m9y+myprf4e/uBVs9Tw4cMlSUOHDi233TAMORwOlZSU1D0yAEDA1NT5Ntibd8oEU3+V6v4mKR1a2OLv4S9eJTcbN270dRwAABPVpvOtHRbQDab+QzX9Tezw9/AXr5KbwYMH12q/u+66SwsWLFDLli29eRkAQADZpTpTnWAbHh4KfxN/8KrPTW29/vrr9MEBgCBi907mwdh/yO5/E3/wqnJTW14sWwUAgF9RDbE/vyY3AABYkZn9VVil3P9IbgAACBCWTQgMv/a5AQAAF1Q3USJ8i+QGMEEwzI4KwLfsvkq5lXic3Jw/f14LFizQ999/X+O+P//5zxUdHe1VYIBdBcvsqAB8K9iXsQgmHic39erV0zPPPKPz58/XuO/ixYuZ4wa4CGVpIHQF4zD0YOVVh+Jrr71WmzdvVlJSko/DAeytprI0IygAe2MYemB4ldyMGDFCc+bM0ddff60+ffqoUaNG5e6/6aabfBIcYDdVzY761fcn9H8vf84ICiAEsGyC/zkML2baCwurujXL6gtnFhQUyOl0yuVy0R8Ipli5I6fcWjEPjOiipz78tkLCs2XOEL4AAeC/PLl+e1W5KS0t9SowABXL0sG0kB8ABAOvhoK/+uqrKi4urrD97NmzevXVV+scFGB3F68VwwgKAPAtr5KbCRMmyOVyVdh+8uRJTZgwoc5BAaGEERQA4FteNUsZhiGHw1Fh+/fffy+n01nnoIBQwwgKAPAdj5Kb3r17y+FwyOFwaOjQoapX738PLykp0YEDBzR8+PBaP9+nn36qZ555Rrt27VJeXp7WrFmjjIyMKvfftGmThgwZUmF7Xl6e4uPjPXkrgOXUZgQFC+4BQM08Sm7KEo+srCylp6ercePG7vsiIiKUlJSkW2+9tdbPV1hYqOTkZE2cOFEjR46s9eP27dtXrqd0bGxsrR8LBCsW3AOA2vEouXnsscckSUlJSRo1apQaNGhQpxcfMWKERowY4fHjYmNj1bRp0zq9NhBMqprZeFDnGCo4AHAJr/rcjBs3TtKF0VFHjx6tMDS8TRv//prs1auXiouL1b17d82bN0+pqalV7ltcXFxuZFdBQYFfYwP8oarh4rsP/UfNGtFMBQAX8yq5+e677zRx4kRt3bq13Payjsb+msQvISFBS5YsUd++fVVcXKyXX35ZaWlp2r59u6688spKH5OZman58+f7JR6grmrbh6aymY0dDmnGii9kiGYqALiYVzMUp6amql69epozZ44SEhIqjJxKTk72PBCHo8YOxZUZPHiw2rRpo9dee63S+yur3CQmJjJDMXyiLh18Pe1Dc/HMxmEOyTCkiz+8zGoMwM78PkNxVlaWdu3apa5du3oVoC/1799fW7ZsqfL+yMhIRUZGBjAimMGMUUR16eDrTR+aQZ1jtOj2ZIU5HCo1DN39Zla5+y+e1ZhRVQBCmVfJTbdu3XT8+HFfx+KVrKwsJSQkmB0GTGTGKKK6dvD1dMmFS9/jg8O7VroAZ1LLhoyqAhDyvJqh+KmnntIDDzygTZs26ccff1RBQUG5W22dOnVKWVlZysrKkiQdOHBAWVlZysnJkSTNnTtXY8eOde+/aNEivfvuu9q/f7/27NmjWbNmacOGDZo+fbo3bwM2UFWSkecq8uvrVpec1IYnSy5U9h6f/mifHhzRtcKsxpJMOR4AYCVeVW6GDRsmSbr22mvL9bfxtEPxzp07y03KN3v2bEkXRmMtX75ceXl57kRHujA665e//KV++OEHNWzYUD179tTf//73Sif2Q2jw9aKTdeng68l6UGVLLly8OnhVSy5U9R57tmqqLXOGlJvVeGv2cRbhBBDyvEpuNm7c6JMXT0tLU3X9mZcvX17u/w888IAeeOABn7w27KGuScbFPGnO8SQ5qUptl1yo7j1eOquxL48HAAQrr5qlBg8erLCwMC1dulRz5sxRx44dNXjwYOXk5Cg8PNzXMQJV8tWik940b43q10Zb5gzRm1MGaMucIV71a7l4dfDq9qnte2QRTgDwsnLz17/+VXfccYf+7//+T1988YV7qLXL5dKTTz6ptWvX+jRIoDq+WHTS2+at2qwH5QuevEcW4QQQ6ryq3DzxxBNasmSJli5dqvr167u3p6amavfu3T4LDqit2lRAquNJB1+zePIe63o8ACCYeZXc7Nu3T4MGDaqw3el06sSJE3WNCQg4mnMAc+S5irQ1+zgj+uBTXjVLxcfHa//+/UpKSiq3fcuWLWrfvr0v4gICjuYcILCYkwn+4lXlZsqUKZo5c6a2b98uh8Ohw4cP64033tB9992nadOm+TpG+Am/mCqiOQcIDLPmqEJo8KpyM2fOHJWWlmro0KE6ffq0Bg0apMjISN133326++67fR0j/IBfTADMXKbD13NUWQnLn5jPq4Uzy5w9e1b79+/XqVOn1K1bNzVu3NiXsfmFJwtv2VWeq0ipCzdUmAuFRRfhK3y5W5/ZP3Ds+j1k9nG1M0+u3141S5WJiIhQt27d1L9//6BIbHBBXZcOAKqzckeOUhdu0Jil25W6cINW7sip+UEIKCs0CdmxE78Vjisu8KpZCsGNWWzhL1/m/kdzVn8t45Iv99ouKIrAsEqTkN068VvluKKOlRsEJzv+YoL5Vu7IUcaLW3VpQzdVQeux0rxOdurEb6XjGuqo3IQou/1igrnKyvGVdeDjy916fLE2GiriuFoHyU0IC9TSAbC/ysrx0oUOlXy5WxM/cPyD42oNJDcA6qyyflxhktbcNVDJic1MiwvV4weOf3BczUefGwB1Vlk/rsxbe5DYADAFlRsAPkE5HpVhziOYgeQGgM9QjsfFmNAOZqFZCkDAsa6Z/TGhHee5majcAAgofs2HhlCf0I7z3FxUbgAEDL/mQ0coT2jHeW4+khsAAcO6ZqEjlGdC5zw3H81SAAKGdc1CS6iOoOM8Nx+VGwABE8q/5kOVndaOqi3Oc/M5DOPSZe7sraCgQE6nUy6XS9HR0WaHA4SkPFdRyP2aR+jhPPctT67fNEsBCDi7zIfDBHWojl3O82BEcgMAXmCoL2Bd9LkBAA8x1BewNpIbAPAQQ30vYAZeWBXNUgDgIYb60iwHa6NyAwAeCvWhvjTLweqo3ACAF0J1gjqJdaNgfSQ3AOClUB3qS7McrI5mKQCwIX929g31ZjlYH5UbAF5hAjvrCkRnX6s1y3E+4mIkNwA8ZoeRMna9GFbV2XdQ5xifv0+rNMvZ4XyEb9EsBcAjdhgps3JHjlIXbtCYpduVunCDVu7IMTsknwm1OXjscD7ajRXmP6JyA8AjwT5SJpCVDTOEWmffYD8f7cYqVTQqNwA8UnbxvFgwXTztVNmo7BdyqHX2Dfbz0U6sVEWjcgPAI2UXz4dW71GJYQTdxdMulY3qfiFbrbOvPwX7+WgnVqqikdwA8FgwXzztcDGsTdOaVTr7BkIwn492YqUfDqY2S3366ae68cYbddlll8nhcOidd96p8TGbNm3SlVdeqcjISHXs2FHLly/3e5wAKkpwRimlQ4ugvJCM6tdGW+YM0ZtTBmjLnCFBN7LGTk1rvhLM56NdWKlJ1NTKTWFhoZKTkzVx4kSNHDmyxv0PHDigG264QVOnTtUbb7yh9evXa/LkyUpISFB6enoAIgZgF8Fc2bDSL2TgYlapojkMwzBq3s3/HA6H1qxZo4yMjCr3efDBB/XBBx9oz5497m233367Tpw4oY8++qhWr1NQUCCn0ymXy6Xo6Oi6hg0AAXHpvDwrd+RUaFoLtgoU4AlPrt9B1edm27ZtGjZsWLlt6enpmjVrVpWPKS4uVnFxsfv/BQUF/goPAPyiqs7DVviFDFhRUA0Fz8/PV1xcXLltcXFxKigoUFFR5UPNMjMz5XQ63bfExMRAhGobVpiMCQhl1Q2vpZ8JULmgSm68MXfuXLlcLvctNzfX7JCChp1ncQWCBZ2HAc8FVXITHx+vI0eOlNt25MgRRUdHKyqq8l8ukZGRio6OLndDzaw0GRPshWqgZ5ikznycs8EnqPrcpKSkaO3ateW2rVu3TikpKSZFZF9WmowJ9mGVqdmDiR3m5bGq2iyeyjkbnExNbk6dOqX9+/e7/3/gwAFlZWWpefPmatOmjebOnasffvhBr776qiRp6tSpeuGFF/TAAw9o4sSJ2rBhg/7yl7/ogw8+MOst2BZDTeFrdl/TyZ/oPOx7tUlaOGeDl6nNUjt37lTv3r3Vu3dvSdLs2bPVu3dvPfroo5KkvLw85eT8r59Hu3bt9MEHH2jdunVKTk7Ws88+q5dffpk5bvzASpMxwR7oO1I3dB72ndo2u3POBi9TKzdpaWmqbpqdymYfTktL0xdffOHHqFCGX4vwJaqBsIraNrtzzgavoOpQjMDj1yJ8hWogrKK2nbQ5Z4OXZWYoDhRmKAbMlecqohpYhdp0cIVveDLDM+esNXhy/Sa5AQALYFRO4JG0BBdPrt80SwGAycycVyqU53Ch2d2+gmqeGwCwI7PmlaJaBLuicgMAJjNjFmJmIYedkdwAgMnMGJXDHC7WE8pNhL5GsxQAWECg55ViDhdroYnQt6jcAIBFBLKDK3O4WAdNhL5H5QYAQhSzkFsDCxX7HskNAISwBGcUF1CT0UToezRLAQBgIpoIfY/KDQAAJqOJ0LdIbhAyWLcHgJXRROg7JDcICQyzBIDQQZ8b2B7DLIHQxKR4oYvKDWyPYZZA6KFaG9qo3MD2zFi3B4B5qNaC5Aa2xzBLWBXNJv7BulmgWQohgWGWsBqaTfyHSfFA5QYhI5Dr9gDVodnEv6jWgsoNAAQYndz9j2ptaCO5ga0wUR+CAc0mgcGkeKGLZinYxsodOUpduEFjlm5X6sINWrkjx+yQvEZHU3uj2QTwL4dhGEbNu9lHQUGBnE6nXC6XoqOjzQ4HPpLnKlLqwg0VfglvmTMk6C4YdDQNHXmuIppNgFry5PpN5Qa2YJehn3Q0DS10cgf8g+QGtmCXifrskqQBgJlIbmALdunDYJckDUB59KMLLEZLwTbsMPSzLEl7aPUelRhG0CZpgcYoOVgZ/egCjw7FqBEXjsCjo2ntceGAldlpsIPZPLl+U7lBtbhwmIP5OWqnqg7YgzrHcPxgCUzYaA763KBKoTxyh/bx4EAHbFgd/ejMQXKDKoXqhcNOkwHaHRcOWJ1dBjsEG5qlUKVQnCKeZo7gQgdsBAM7DHYItr6XJDeoUiheOGgfr8jqX2p2uHDAXIE4x4O5H10w9r0kuUG1Qu3CEYrVquoEy5daMF84YK5gOcfNEqzVbPrcoEahNEU87eP/E8odyhEaOMdrFqx9L6ncAJcItWpVVWiig91xjtcsWKvZVG58iOHD9hFK1aqqzltGIsHuOMdrFqzVbCo3PkK7LcxQ146Q1Z23odihHKGFc7x2grGabYnlF1588UU988wzys/PV3Jysp5//nn179+/0n2XL1+uCRMmlNsWGRmpM2fO1Oq1/LH8AtNrwwx1Tahre96yFATsjnM8OHhy/Ta9WWrlypWaPXu2HnvsMe3evVvJyclKT0/X0aNHq3xMdHS08vLy3LdDhw4FMOKKgrXDFYKXLzpC1va8NbuJjuZe+JvZ5zh8z/Tk5re//a2mTJmiCRMmqFu3blqyZIkaNmyoV155pcrHOBwOxcfHu29xcXEBjLgi2m2tzY4XR18k1MFw3jJbNABvmJrcnD17Vrt27dKwYcPc28LCwjRs2DBt27atysedOnVKbdu2VWJiom6++Wbt3bs3EOFWKVg7XIUCu14cfZGYWP28ZZguAG+Z2qH4+PHjKikpqVB5iYuL07ffflvpY7p06aJXXnlFPXv2lMvl0m9+8xsNHDhQe/fuVevWrSvsX1xcrOLiYvf/CwoKfPsm/isYO1zZXbBOPlUbvuoIaeXzlmG6ALwVdKOlUlJSlJKS4v7/wIEDdfnll+ull17S448/XmH/zMxMzZ8/PyCxMUuqtdj94uirxMSq522wzq8B37L68h+wJlObpVq2bKnw8HAdOXKk3PYjR44oPj6+Vs9Rv3599e7dW/v376/0/rlz58rlcrlvubm5dY4bwSEY+pTUlZ07Qlq92Qz+Z9dmZfifqclNRESE+vTpo/Xr17u3lZaWav369eWqM9UpKSnR119/rYSEhErvj4yMVHR0dLkbQgMXx+A3ql8bbZkzRG9OGaAtc4Ywd1QIoc8V6sL0ZqnZs2dr3Lhx6tu3r/r3769FixapsLDQPZfN2LFj1apVK2VmZkqSFixYoAEDBqhjx446ceKEnnnmGR06dEiTJ082823AoqzcpyQQ7FDSt2qzGfzL7s3K8C/Tk5tRo0bp2LFjevTRR5Wfn69evXrpo48+cncyzsnJUVjY/wpM//nPfzRlyhTl5+erWbNm6tOnj7Zu3apu3bqZ9RZgcaF6cWTWbAQz+lyhLiwxQ3Eg+WOGYsBqmDUbdrByR06FEYEk6KHLk+u36ZUb+J8dmibgGUr6sINQb1aG90hubI6midBESR92EarNyqgb05dfgP8w2iB0MVIMQCijcmNjNE2ENkr6AEIVyY2N0TQBSvoAQhHNUjZG0wQAIBRRubE5miYAAKGG5CYE0DQBAAglNEshKOW5irQ1+zgjvwAAFVC5QdBh7h4AQHWo3KBOAl1BYe4eAEBNqNzAa2ZUUJi7BwBQEyo3FmblfiVmVVDK5u65GHP3AAAuRnJjUSt35Ch14QaNWbpdqQs3aOWOHLNDKqe6Coo/MXcPAKAmNEtZUFVVkUGdYyxzETdz9mPm7gEAVIfKjQWZVRXxhNkVlARnlFI6tCCxAQBUQOXGgoJlTSgqKAAAK6JyY0H+ror4sqMyFRQAgNVQubEof1VFmAAPAGB3VG4szNdVESbAAwCEApKbEBIMHZUBAKgrkpsQwgR4AIBQQHITQswevg0AQCDQoTjEMHwbAGB3JDchKMEZRVIDALAtmqUAAICtkNwAAABbIbkBAAC2QnIDAABsheQGgGX5ch00AKGD0VIALIl10AB4i8oNJPELGdbCOmi1x2e3djhOoYXKDfiFbGF5riIdOF6odi0bhdTcRNWtgxZKx6EmfHZrh+MUeqjchDh+IVvXyh05Sl24QWOWblfqwg1auSPH7JD8orJf1KyDVjM+u7XDcQpNJDchjpXCrcnTL+RgLblXlcCxDlrN+OzWDscpNNEsFeLKfiFf/OHnF7L5PGmWCWTJ3ZfNZFUlcIM6xyjBGcU6aDXgs1s7HKfQROUmxPEL2Zpq2ywTyJK7r5vJavOLOsEZpZQOLTgfK8Fnt3Y4TqGJyg34hWxBZV/ID63eoxLDqPILOVAdb2uqsniDX9R1x2e3djhOoYfkBpJYKdyKavOFHKgEwR9JVG0TOFSPz27tcJxCC8kNEECe9lmp6Qs5UAmCv5IoflED8AeSGyBA/NXxNxAJgj+TKH5RA/A1S3QofvHFF5WUlKQGDRroqquu0j/+8Y9q91+1apW6du2qBg0aqEePHlq7dm2AIgW84++Ov4HoeDuqXxttmTNEb04ZoC1zhjAJGgDLMj25WblypWbPnq3HHntMu3fvVnJystLT03X06NFK99+6datGjx6tSZMm6YsvvlBGRoYyMjK0Z8+eAEcO1J5d5tpg9BKAYOAwDMOoeTf/ueqqq9SvXz+98MILkqTS0lIlJibq7rvv1pw5cyrsP2rUKBUWFur99993bxswYIB69eqlJUuW1Ph6BQUFcjqdcrlcio6O9t0bAaqR5ypS6sINFfqsbJkzhEQBAGrBk+u3qZWbs2fPateuXRo2bJh7W1hYmIYNG6Zt27ZV+pht27aV21+S0tPTq9y/uLhYBQUF5W5AoDHXBgAEjqkdio8fP66SkhLFxcWV2x4XF6dvv/220sfk5+dXun9+fn6l+2dmZmr+/Pm+CRioA0YGAUBgmN7nxt/mzp0rl8vlvuXm5podEkIYfVYAwP9Mrdy0bNlS4eHhOnLkSLntR44cUXx8fKWPiY+P92j/yMhIRUZG+iZgAABgeaZWbiIiItSnTx+tX7/eva20tFTr169XSkpKpY9JSUkpt78krVu3rsr9AQBAaDF9Er/Zs2dr3Lhx6tu3r/r3769FixapsLBQEyZMkCSNHTtWrVq1UmZmpiRp5syZGjx4sJ599lndcMMNeuutt7Rz50798Y9/NPNtAAAAizA9uRk1apSOHTumRx99VPn5+erVq5c++ugjd6fhnJwchYX9r8A0cOBArVixQg8//LAeeughderUSe+88466d+9u1lsAAAAWYvo8N4HGPDcAAASfoJnnBgAAwNdIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANiK6fPcBFrZyHdWBwcAIHiUXbdrM4NNyCU3J0+elCQlJiaaHAkAAPDUyZMn5XQ6q90n5CbxKy0t1eHDh9WkSRM5HA6zwwmogoICJSYmKjc3lwkM64hj6RscR9/hWPoGx9F3fH0sDcPQyZMnddlll5VbuaAyIVe5CQsLU+vWrc0Ow1TR0dF8aH2EY+kbHEff4Vj6BsfRd3x5LGuq2JShQzEAALAVkhsAAGArJDchJDIyUo899pgiIyPNDiXocSx9g+PoOxxL3+A4+o6ZxzLkOhQDAAB7o3IDAABsheQGAADYCskNAACwFZIbAABgKyQ3NvTpp5/qxhtv1GWXXSaHw6F33nmn3P2GYejRRx9VQkKCoqKiNGzYMH333XfmBGthNR3H8ePHy+FwlLsNHz7cnGAtLDMzU/369VOTJk0UGxurjIwM7du3r9w+Z86c0fTp09WiRQs1btxYt956q44cOWJSxNZVm2OZlpZW4bycOnWqSRFb1+LFi9WzZ0/3BHMpKSn68MMP3fdzTtZOTcfRrPOR5MaGCgsLlZycrBdffLHS+59++mn9/ve/15IlS7R9+3Y1atRI6enpOnPmTIAjtbaajqMkDR8+XHl5ee7bm2++GcAIg8PmzZs1ffp0ff7551q3bp3OnTun66+/XoWFhe597r33Xv3tb3/TqlWrtHnzZh0+fFgjR440MWprqs2xlKQpU6aUOy+ffvppkyK2rtatW2vhwoXatWuXdu7cqWuvvVY333yz9u7dK4lzsrZqOo6SSeejAVuTZKxZs8b9/9LSUiM+Pt545pln3NtOnDhhREZGGm+++aYJEQaHS4+jYRjGuHHjjJtvvtmUeILZ0aNHDUnG5s2bDcO4cP7Vr1/fWLVqlXufb775xpBkbNu2zawwg8Klx9IwDGPw4MHGzJkzzQsqiDVr1sx4+eWXOSfrqOw4GoZ55yOVmxBz4MAB5efna9iwYe5tTqdTV111lbZt22ZiZMFp06ZNio2NVZcuXTRt2jT9+OOPZodkeS6XS5LUvHlzSdKuXbt07ty5cudk165d1aZNG87JGlx6LMu88cYbatmypbp37665c+fq9OnTZoQXNEpKSvTWW2+psLBQKSkpnJNeuvQ4ljHjfAy5hTNDXX5+viQpLi6u3Pa4uDj3faid4cOHa+TIkWrXrp2ys7P10EMPacSIEdq2bZvCw8PNDs+SSktLNWvWLKWmpqp79+6SLpyTERERatq0abl9OSerV9mxlKQxY8aobdu2uuyyy/TVV1/pwQcf1L59+7R69WoTo7Wmr7/+WikpKTpz5owaN26sNWvWqFu3bsrKyuKc9EBVx1Ey73wkuQG8dPvtt7v/3aNHD/Xs2VMdOnTQpk2bNHToUBMjs67p06drz5492rJli9mhBL2qjuWdd97p/nePHj2UkJCgoUOHKjs7Wx06dAh0mJbWpUsXZWVlyeVy6e2339a4ceO0efNms8MKOlUdx27dupl2PtIsFWLi4+MlqUKv/yNHjrjvg3fat2+vli1bav/+/WaHYkkzZszQ+++/r40bN6p169bu7fHx8Tp79qxOnDhRbn/OyapVdSwrc9VVV0kS52UlIiIi1LFjR/Xp00eZmZlKTk7Wc889xznpoaqOY2UCdT6S3ISYdu3aKT4+XuvXr3dvKygo0Pbt28u1kcJz33//vX788UclJCSYHYqlGIahGTNmaM2aNdqwYYPatWtX7v4+ffqofv365c7Jffv2KScnh3PyEjUdy8pkZWVJEudlLZSWlqq4uJhzso7KjmNlAnU+0ixlQ6dOnSqXFR84cEBZWVlq3ry52rRpo1mzZumJJ55Qp06d1K5dOz3yyCO67LLLlJGRYV7QFlTdcWzevLnmz5+vW2+9VfHx8crOztYDDzygjh07Kj093cSorWf69OlasWKF3n33XTVp0sTdZ8HpdCoqKkpOp1OTJk3S7Nmz1bx5c0VHR+vuu+9WSkqKBgwYYHL01lLTsczOztaKFSv0k5/8RC1atNBXX32le++9V4MGDVLPnj1Njt5a5s6dqxEjRqhNmzY6efKkVqxYoU2bNunjjz/mnPRAdcfR1PMx4OOz4HcbN240JFW4jRs3zjCMC8PBH3nkESMuLs6IjIw0hg4dauzbt8/coC2ouuN4+vRp4/rrrzdiYmKM+vXrG23btjWmTJli5Ofnmx225VR2DCUZy5Ytc+9TVFRk3HXXXUazZs2Mhg0bGrfccouRl5dnXtAWVdOxzMnJMQYNGmQ0b97ciIyMNDp27Gjcf//9hsvlMjdwC5o4caLRtm1bIyIiwoiJiTGGDh1qfPLJJ+77OSdrp7rjaOb56DAMw/Bv+gQAABA49LkBAAC2QnIDAABsheQGAADYCskNAACwFZIbAABgKyQ3AADAVkhuAACArZDcAAAAWyG5AQAAtkJyA8BSzp49a3YIFVgxJgBVI7kB4FdpaWmaMWOGZsyYIafTqZYtW+qRRx5R2covSUlJevzxxzV27FhFR0frzjvvlCRt2bJF11xzjaKiopSYmKh77rlHhYWF7uf9wx/+oE6dOqlBgwaKi4vTbbfd5r7v7bffVo8ePRQVFaUWLVpo2LBh7sempaVp1qxZ5WLMyMjQ+PHj3f/3NiYA1kByA8Dv/vznP6tevXr6xz/+oeeee06//e1v9fLLL7vv/81vfqPk5GR98cUXeuSRR5Sdna3hw4fr1ltv1VdffaWVK1dqy5YtmjFjhiRp586duueee7RgwQLt27dPH330kQYNGiRJysvL0+jRozVx4kR988032rRpk0aOHClPl9HzNCYA1sHCmQD8Ki0tTUePHtXevXvlcDgkSXPmzNF7772nf/7zn0pKSlLv3r21Zs0a92MmT56s8PBwvfTSS+5tW7Zs0eDBg1VYWKi1a9dqwoQJ+v7779WkSZNyr7d792716dNHBw8eVNu2bSuNp1evXlq0aJF7W0ZGhpo2barly5dLklcxNWjQoE7HCYDvULkB4HcDBgxwJzaSlJKSou+++04lJSWSpL59+5bb/8svv9Ty5cvVuHFj9y09PV2lpaU6cOCArrvuOrVt21bt27fXHXfcoTfeeEOnT5+WJCUnJ2vo0KHq0aOHfvrTn2rp0qX6z3/+43HMnsYEwDpIbgCYrlGjRuX+f+rUKf3iF79QVlaW+/bll1/qu+++U4cOHdSkSRPt3r1bb775phISEvToo48qOTlZJ06cUHh4uNatW6cPP/xQ3bp10/PPP68uXbq4E5CwsLAKTVTnzp2rc0wArIPkBoDfbd++vdz/P//8c3Xq1Enh4eGV7n/llVfqn//8pzp27FjhFhERIUmqV6+ehg0bpqefflpfffWVDh48qA0bNkiSHA6HUlNTNX/+fH3xxReKiIhwNzHFxMQoLy/P/VolJSXas2dPje+hNjEBsAaSGwB+l5OTo9mzZ2vfvn1688039fzzz2vmzJlV7v/ggw9q69atmjFjhrKysvTdd9/p3XffdXfeff/99/X73/9eWVlZOnTokF599VWVlpaqS5cu2r59u5588knt3LlTOTk5Wr16tY4dO6bLL79cknTttdfqgw8+0AcffKBvv/1W06ZN04kTJ2p8DzXFBMA66pkdAAD7Gzt2rIqKitS/f3+Fh4dr5syZ7uHVlenZs6c2b96sX/3qV7rmmmtkGIY6dOigUaNGSZKaNm2q1atXa968eTpz5ow6deqkN998U1dccYW++eYbffrpp1q0aJEKCgrUtm1bPfvssxoxYoQkaeLEifryyy81duxY1atXT/fee6+GDBlS43uoKSYA1sFoKQB+VdnoJADwJ5qlAACArZDcAAAAW6FZCgAA2AqVGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGAr/x+FoOgGs8heLQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVMUlEQVR4nO3deVhU5eIH8O+wDILIILKJgeAuiqaSirgmVzRbTLu5kLmlt3K3TKxcS0HrlsstLe8t7abFrateW9S84nJVLiKKW0ZKKJYskjIjgmzz/v7wx7mOgAzDDHNmzvfzPPM8cs47M+85Dsz3vNtRCSEEiIiIiBTMwdoVICIiIrI2BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiKyGUuXLoVKpTKqrEqlwtKlSy1an4EDB2LgwIGyfT0iMh4DERHV2ebNm6FSqaSHk5MTWrRogYkTJ+K3336zdvVkJzg42OB8+fr6ol+/ftixY4dZXr+oqAhLly7FwYMHzfJ6RErEQEREJlu+fDn+/ve/Y+PGjRg2bBg+//xzDBgwAHfu3LHI+7355psoLi62yGtb2sMPP4y///3v+Pvf/45XX30V165dw8iRI7Fx48Z6v3ZRURGWLVvGQERUD07WrgAR2a5hw4YhPDwcAPDCCy/A29sbq1atwq5du/Dss8+a/f2cnJzg5GSbf7ZatGiB5557Tvr5+eefR5s2bfD+++/jxRdftGLNiAhgCxERmVG/fv0AABkZGQbbf/rpJzzzzDPw8vJCo0aNEB4ejl27dhmUKSsrw7Jly9C2bVs0atQIzZo1Q9++fbFv3z6pTHVjiEpKSjB37lz4+PigSZMmePLJJ/Hrr79WqdvEiRMRHBxcZXt1r/npp5/i0Ucfha+vL1xcXBAaGooNGzbU6VzUxt/fHx07dkRmZuYDy+Xl5WHKlCnw8/NDo0aN0LVrV2zZskXaf/nyZfj4+AAAli1bJnXLWXr8FJG9sc1LLSKSpcuXLwMAmjZtKm07f/48IiMj0aJFC8TGxqJx48b4xz/+gREjRuCf//wnnn76aQB3g0lcXBxeeOEF9OzZEzqdDidOnMDJkyfxhz/8ocb3fOGFF/D5559j3Lhx6NOnDxITEzF8+PB6HceGDRvQqVMnPPnkk3BycsI333yDl19+GXq9HtOnT6/Xa1cqKyvD1atX0axZsxrLFBcXY+DAgbh06RJmzJiBkJAQfPXVV5g4cSIKCgowe/Zs+Pj4YMOGDXjppZfw9NNPY+TIkQCALl26mKWeRIohiIjq6NNPPxUAxL///W9x/fp1cfXqVfH1118LHx8f4eLiIq5evSqVHTx4sAgLCxN37tyRtun1etGnTx/Rtm1baVvXrl3F8OHDH/i+S5YsEff+2UpLSxMAxMsvv2xQbty4cQKAWLJkibRtwoQJomXLlrW+phBCFBUVVSkXHR0tWrVqZbBtwIABYsCAAQ+ssxBCtGzZUgwZMkRcv35dXL9+XZw+fVqMGTNGABAzZ86s8fXWrFkjAIjPP/9c2lZaWioiIiKEu7u70Ol0Qgghrl+/XuV4iahu2GVGRCaLioqCj48PAgMD8cwzz6Bx48bYtWsXHnroIQDAjRs3kJiYiGeffRa3bt1Cfn4+8vPz8fvvvyM6OhoXL16UZqV5enri/PnzuHjxotHv//333wMAZs2aZbB9zpw59TouV1dX6d9arRb5+fkYMGAAfvnlF2i1WpNe84cffoCPjw98fHzQtWtXfPXVVxg/fjxWrVpV43O+//57+Pv7Y+zYsdI2Z2dnzJo1C4WFhTh06JBJdSGiqthlRkQm++CDD9CuXTtotVp88sknOHz4MFxcXKT9ly5dghACixYtwqJFi6p9jby8PLRo0QLLly/HU089hXbt2qFz584YOnQoxo8f/8CunytXrsDBwQGtW7c22N6+fft6HdfRo0exZMkSJCUloaioyGCfVquFRqOp82v26tULb7/9NlQqFdzc3NCxY0d4eno+8DlXrlxB27Zt4eBgeO3asWNHaT8RmQcDERGZrGfPntIssxEjRqBv374YN24c0tPT4e7uDr1eDwB49dVXER0dXe1rtGnTBgDQv39/ZGRk4F//+hd++OEH/PWvf8X777+PjRs34oUXXqh3XWta0LGiosLg54yMDAwePBgdOnTAe++9h8DAQKjVanz//fd4//33pWOqK29vb0RFRZn0XCKyPAYiIjILR0dHxMXFYdCgQfjLX/6C2NhYtGrVCsDdbh5jwoCXlxcmTZqESZMmobCwEP3798fSpUtrDEQtW7aEXq9HRkaGQatQenp6lbJNmzZFQUFBle33t7J88803KCkpwa5duxAUFCRtP3DgQK31N7eWLVvizJkz0Ov1Bq1EP/30k7QfqDnsEZHxOIaIiMxm4MCB6NmzJ9asWYM7d+7A19cXAwcOxEcffYTs7Owq5a9fvy79+/fffzfY5+7ujjZt2qCkpKTG9xs2bBgAYN26dQbb16xZU6Vs69atodVqcebMGWlbdnZ2ldWiHR0dAQBCCGmbVqvFp59+WmM9LOWxxx5DTk4OEhISpG3l5eVYv3493N3dMWDAAACAm5sbAFQb+IjIOGwhIiKzmj9/Pv74xz9i8+bNePHFF/HBBx+gb9++CAsLw9SpU9GqVSvk5uYiKSkJv/76K06fPg0ACA0NxcCBA9GjRw94eXnhxIkT+PrrrzFjxowa3+vhhx/G2LFj8eGHH0Kr1aJPnz7Yv38/Ll26VKXsmDFjsGDBAjz99NOYNWsWioqKsGHDBrRr1w4nT56Uyg0ZMgRqtRpPPPEE/vSnP6GwsBCbNm2Cr69vtaHOkqZNm4aPPvoIEydORGpqKoKDg/H111/j6NGjWLNmDZo0aQLg7iDw0NBQJCQkoF27dvDy8kLnzp3RuXPnBq0vkU2z9jQ3IrI9ldPuU1JSquyrqKgQrVu3Fq1btxbl5eVCCCEyMjLE888/L/z9/YWzs7No0aKFePzxx8XXX38tPe/tt98WPXv2FJ6ensLV1VV06NBBrFixQpSWlkplqpsiX1xcLGbNmiWaNWsmGjduLJ544glx9erVaqeh//DDD6Jz585CrVaL9u3bi88//7za19y1a5fo0qWLaNSokQgODharVq0Sn3zyiQAgMjMzpXJ1mXZf25ICNb1ebm6umDRpkvD29hZqtVqEhYWJTz/9tMpzjx07Jnr06CHUajWn4BOZQCXEPe3CRERERArEMURERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4XJjRSHq9HteuXUOTJk24TD4REZGNEELg1q1bCAgIqHKj5HsxEBnp2rVrCAwMtHY1iIiIyARXr17FQw89VON+BiIjVS6Rf/XqVXh4eFi5NkRERGQMnU6HwMBA6Xu8JgxERqrsJvPw8GAgIiIisjG1DXfhoGoiIiJSPAYiIiIiUjwGIiIiIlI8jiEiIiLFq6ioQFlZmbWrQSZwdnaGo6NjvV/HqoHo8OHDeOedd5Camors7Gzs2LEDI0aMqLbsiy++iI8++gjvv/8+5syZI22/ceMGZs6ciW+++QYODg4YNWoU1q5dC3d3d6nMmTNnMH36dKSkpMDHxwczZ87Ea6+9ZuGjIyIiuRNCICcnBwUFBdauCtWDp6cn/P3967VOoFUD0e3bt9G1a1dMnjwZI0eOrLHcjh078N///hcBAQFV9sXExCA7Oxv79u1DWVkZJk2ahGnTpmHbtm0A7k63GzJkCKKiorBx40acPXsWkydPhqenJ6ZNm2axYyMiIvmrDEO+vr5wc3Pjwrs2RgiBoqIi5OXlAQCaN29u8mtZNRANGzYMw4YNe2CZ3377DTNnzsTevXsxfPhwg30XLlzAnj17kJKSgvDwcADA+vXr8dhjj+Hdd99FQEAAtm7ditLSUnzyySdQq9Xo1KkT0tLS8N577zEQEREpWEVFhRSGmjVrZu3qkIlcXV0BAHl5efD19TW5+0zWg6r1ej3Gjx+P+fPno1OnTlX2JyUlwdPTUwpDABAVFQUHBwckJydLZfr37w+1Wi2ViY6ORnp6Om7evFnje5eUlECn0xk8iIjIflSOGXJzc7NyTai+Kv8P6zMOTNaBaNWqVXBycsKsWbOq3Z+TkwNfX1+DbU5OTvDy8kJOTo5Uxs/Pz6BM5c+VZaoTFxcHjUYjPXjbDiIi+8RuMttnjv9D2Qai1NRUrF27Fps3b7bKh3XhwoXQarXS4+rVqw1eByIiImoYsg1E//nPf5CXl4egoCA4OTnByckJV65cwSuvvILg4GAAgL+/vzSQqlJ5eTlu3LgBf39/qUxubq5BmcqfK8tUx8XFRbpNB2/XQURESqBSqbBz505rV8PAwYMHoVKpLD4TULaBaPz48Thz5gzS0tKkR0BAAObPn4+9e/cCACIiIlBQUIDU1FTpeYmJidDr9ejVq5dU5vDhwwb9ivv27UP79u3RtGnThj2oOsjWFuNYRj6ytcXWrgoREdmZpUuX4uGHH7Z2NWTFqrPMCgsLcenSJennzMxMpKWlwcvLC0FBQVVG/Ts7O8Pf3x/t27cHAHTs2BFDhw7F1KlTsXHjRpSVlWHGjBkYM2aMNEV/3LhxWLZsGaZMmYIFCxbg3LlzWLt2Ld5///2GO9A6SkjJwsLtZ6EXgIMKiBsZhtGPBFm7WkRERHbLqi1EJ06cQLdu3dCtWzcAwLx589CtWzcsXrzY6NfYunUrOnTogMGDB+Oxxx5D37598fHHH0v7NRoNfvjhB2RmZqJHjx545ZVXsHjxYtlOuc/WFkthCAD0Anh9+zm2FBERkUSv1yMuLg4hISFwdXVF165d8fXXXwP4XxfT/v37ER4eDjc3N/Tp0wfp6ekAgM2bN2PZsmU4ffo0VCoVVCoVNm/eLL12fn4+nn76abi5uaFt27bYtWuXUXWqfN+9e/eiW7ducHV1xaOPPoq8vDzs3r0bHTt2hIeHB8aNG4eioiLpeSUlJZg1axZ8fX3RqFEj9O3bFykpKeY7WUayagvRwIEDIYQwuvzly5erbPPy8pIWYaxJly5d8J///Keu1bOKzPzbUhiqVCEELucXobnG1TqVIiKiWmVri5GZfxsh3o0t/vc6Li4On3/+OTZu3Ii2bdvi8OHDeO655+Dj4yOVeeONN/DnP/8ZPj4+ePHFFzF58mQcPXoUo0ePxrlz57Bnzx78+9//BnC38aDSsmXLsHr1arzzzjtYv349YmJicOXKFXh5eRlVt6VLl+Ivf/kL3Nzc8Oyzz+LZZ5+Fi4sLtm3bhsLCQjz99NNYv349FixYAAB47bXX8M9//hNbtmxBy5YtsXr1akRHR+PSpUtGv6c5yHYMkVKFeDeGw32T6hxVKgR7c50MIiK5SkjJQmR8IsZtSkZkfCISUrIs9l4lJSVYuXIlPvnkE0RHR6NVq1aYOHEinnvuOXz00UdSuRUrVmDAgAEIDQ1FbGwsjh07hjt37sDV1RXu7u5wcnKCv78//P39pcUNAWDixIkYO3Ys2rRpg5UrV6KwsBDHjx83un5vv/02IiMj0a1bN0yZMgWHDh3Chg0b0K1bN/Tr1w/PPPMMDhw4AODuHSs2bNiAd955B8OGDUNoaCg2bdoEV1dX/O1vfzPfSTMCA5HMNNe4Im5kGBz/f6kBR5UKK0d2ZusQEZFMNfRQh0uXLqGoqAh/+MMf4O7uLj0+++wzZGRkSOW6dOki/bvylhb3z8yuzr3Pa9y4MTw8PIx6XnXP9/Pzg5ubG1q1amWwrfL1MjIyUFZWhsjISGm/s7MzevbsiQsXLhj9nubAu93L0OhHgtC/nQ8u5xch2NuNYYiISMYaeqhDYWEhAOC7775DixYtDPa5uLhIocjZ2VnaXrmen16vr/X1731e5XONeV51z1epVPV+vYbCQCRTzTWuDEJERDagcqjDvaHIkkMdQkND4eLigqysLAwYMKDK/ntbiWqiVqtRUVFhierVSevWraFWq3H06FG0bNkSwN3bb6SkpGDOnDkNWhcGIiIionqoHOrw+vZzqBDC4kMdmjRpgldffRVz586FXq9H3759odVqcfToUXh4eEjB4kGCg4OlpW4eeughNGnSBC4uLhap74M0btwYL730EubPny8tubN69WoUFRVhypQpDVoXBiIiIqJ6auihDm+99RZ8fHwQFxeHX375BZ6enujevTtef/11o7qjRo0ahe3bt2PQoEEoKCjAp59+iokTJ1q0zjWJj4+XbuZ+69YthIeHY+/evQ2+eLJK1GXeu4LpdDpoNBpotVrexoOIyA7cuXMHmZmZCAkJQaNGjaxdHaqHB/1fGvv9zVlmREREpHgMRERERFSrF1980WCa/72PF1980drVqzeOISIiIqJaLV++HK+++mq1++xhKAkDEREREdXK19cXvr6+1q6GxbDLjIiIiBSPgYiIiBRNjqsmU92Y4/+QXWZERKRIarUaDg4OuHbtGnx8fKBWq6VbXJBtEEKgtLQU169fh4ODA9RqtcmvxUBERESK5ODggJCQEGRnZ+PatWvWrg7Vg5ubG4KCguDgYHrHFwMREREpllqtRlBQEMrLy2Vxby+qO0dHRzg5OdW7dY+BiIiIFK3yjuz335WdlIWDqomIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPGsGogOHz6MJ554AgEBAVCpVNi5c6e0r6ysDAsWLEBYWBgaN26MgIAAPP/887h27ZrBa9y4cQMxMTHw8PCAp6cnpkyZgsLCQoMyZ86cQb9+/dCoUSMEBgZi9erVDXF49ZKtLcaxjHxka4utXRUiIiK7Z9VAdPv2bXTt2hUffPBBlX1FRUU4efIkFi1ahJMnT2L79u1IT0/Hk08+aVAuJiYG58+fx759+/Dtt9/i8OHDmDZtmrRfp9NhyJAhaNmyJVJTU/HOO+9g6dKl+Pjjjy1+fKZKSMlCZHwixm1KRmR8IhJSsqxdJSIiIrumEkIIa1cCAFQqFXbs2IERI0bUWCYlJQU9e/bElStXEBQUhAsXLiA0NBQpKSkIDw8HAOzZswePPfYYfv31VwQEBGDDhg144403kJOTA7VaDQCIjY3Fzp078dNPPxldP51OB41GA61WCw8Pj3od64Nka4sRGZ8I/T3/K44qFY7EDkJzjavF3peIiMgeGfv9bVNjiLRaLVQqFTw9PQEASUlJ8PT0lMIQAERFRcHBwQHJyclSmf79+0thCACio6ORnp6Omzdv1vheJSUl0Ol0Bo+GkJl/2yAMAUCFELicX9Qg709ERKRENhOI7ty5gwULFmDs2LFSwsvJyYGvr69BOScnJ3h5eSEnJ0cq4+fnZ1Cm8ufKMtWJi4uDRqORHoGBgeY8nBqFeDeGg8pwm6NKhWBvtwZ5fyIiIiWyiUBUVlaGZ599FkIIbNiwoUHec+HChdBqtdLj6tWrDfK+zTWuiBsZBkfV3VTkqFJh5cjO7C4jIiKyICdrV6A2lWHoypUrSExMNOj/8/f3R15enkH58vJy3LhxA/7+/lKZ3NxcgzKVP1eWqY6LiwtcXFzMdRh1MvqRIPRv54PL+UUI9nZjGCIiIrIwWbcQVYahixcv4t///jeaNWtmsD8iIgIFBQVITU2VtiUmJkKv16NXr15SmcOHD6OsrEwqs2/fPrRv3x5NmzZtmAMxQXONKyJaN2MYIiIiagBWDUSFhYVIS0tDWloaACAzMxNpaWnIyspCWVkZnnnmGZw4cQJbt25FRUUFcnJykJOTg9LSUgBAx44dMXToUEydOhXHjx/H0aNHMWPGDIwZMwYBAQEAgHHjxkGtVmPKlCk4f/48EhISsHbtWsybN89ah01EREQyY9Vp9wcPHsSgQYOqbJ8wYQKWLl2KkJCQap934MABDBw4EMDdhRlnzJiBb775Bg4ODhg1ahTWrVsHd3d3qfyZM2cwffp0pKSkwNvbGzNnzsSCBQvqVNeGmnZPRERE5mPs97ds1iGSOwYiIiIi22OX6xARERERWQIDERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DkZVla4txLCMf2dpia1eFiIhIsZysXQElS0jJwsLtZ6EXgIMKiBsZhtGPBFm7WkRERIrDFiIrydYWS2EIAPQCeH37ObYUERERWQEDkZVk5t+WwlClCiFwOb/IOhUiIiJSMAYiKwnxbgwHleE2R5UKwd5u1qkQERGRgjEQWUlzjSviRobBUXU3FTmqVFg5sjOaa1ytXDMiIiLl4aBqKxr9SBD6t/PB5fwiBHu7MQwRERFZCQORlTXXuEpBKFtbjMz82wjxbsxwRERE1IAYiGSCU/CJiIish2OIZIBT8ImIiKyLgUgG6jIFnytbExERmR+7zGSgcgr+vaGouin47FYjIiKyDLYQyYAxU/DZrUZERGQ5bCGSidqm4D+oW40z0oiIiOqHgUhG7p2Cfz9ju9WIiIio7thlZiO4sjUREZHlsIXIhnBlayIiIstgILIxD+pWIyIiItOwy4yIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiMzKFm9Ezmn3REREZDa2eiNyq7YQHT58GE888QQCAgKgUqmwc+dOg/1CCCxevBjNmzeHq6sroqKicPHiRYMyN27cQExMDDw8PODp6YkpU6agsLDQoMyZM2fQr18/NGrUCIGBgVi9erWlD42IiEhxbPlG5FYNRLdv30bXrl3xwQcfVLt/9erVWLduHTZu3Ijk5GQ0btwY0dHRuHPnjlQmJiYG58+fx759+/Dtt9/i8OHDmDZtmrRfp9NhyJAhaNmyJVJTU/HOO+9g6dKl+Pjjjy1+fERkn2yxO4CoITzoRuRyZ9Uus2HDhmHYsGHV7hNCYM2aNXjzzTfx1FNPAQA+++wz+Pn5YefOnRgzZgwuXLiAPXv2ICUlBeHh4QCA9evX47HHHsO7776LgIAAbN26FaWlpfjkk0+gVqvRqVMnpKWl4b333jMITkRExmjo7oBsbTEy828jxLsxV6kn2bPlG5HLdlB1ZmYmcnJyEBUVJW3TaDTo1asXkpKSAABJSUnw9PSUwhAAREVFwcHBAcnJyVKZ/v37Q61WS2Wio6ORnp6OmzdvNtDREJE9aOjugISULETGJ2LcpmRExiciISXLIu9DZC62fCNy2Q6qzsnJAQD4+fkZbPfz85P25eTkwNfX12C/k5MTvLy8DMqEhIRUeY3KfU2bNq32/UtKSlBSUiL9rNPp6nE0RGQPHtQdYO4/+DWFr/7tfGziy4WUy1ZvRC7bFiJri4uLg0ajkR6BgYHWrhIRWVlld8C9LNUdYMtjMYiaa1wR0bqZzYQhQMaByN/fHwCQm5trsD03N1fa5+/vj7y8PIP95eXluHHjhkGZ6l7j3veozsKFC6HVaqXH1atX63dARGTzGrI7oCHDFxHJOBCFhITA398f+/fvl7bpdDokJycjIiICABAREYGCggKkpqZKZRITE6HX69GrVy+pzOHDh1FWViaV2bdvH9q3b19jdxkAuLi4wMPDw+BBRDT6kSAciR2EL6b2xpHYQRYbUG3LYzGIbJFKCCFqL2YZhYWFuHTpEgCgW7dueO+99zBo0CB4eXkhKCgIq1atQnx8PLZs2YKQkBAsWrQIZ86cwY8//ohGjRoBuDtTLTc3Fxs3bkRZWRkmTZqE8PBwbNu2DQCg1WrRvn17DBkyBAsWLMC5c+cwefJkvP/++3WaZabT6aDRaKDVahmOiKjBZGuLbW4sBpGcGP39LazowIEDAkCVx4QJE4QQQuj1erFo0SLh5+cnXFxcxODBg0V6errBa/z+++9i7Nixwt3dXXh4eIhJkyaJW7duGZQ5ffq06Nu3r3BxcREtWrQQ8fHxda6rVqsVAIRWqzX5eImIiKhhGfv9bdUWIlvCFiIiIiLbY+z3t2zHEBERERE1FAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIyq2xtMY5l5CNbW2ztqhAZzcnaFSAiIvuRkJKFhdvPQi8ABxUQNzIMox8Jsna1iGrFFiKSLV5lEtmWbG2xFIYAQC+A17ef4+8w2QS2EJEs8SqTyPZk5t+WwlClCiFwOb8IzTWu1qkUkZHYQkSyw6tMItsU4t0YDirDbY4qFYK93axTIaI6YCAi2XnQVSYRyVdzjSviRobBUXU3FTmqVFg5sjNbh8gmsMuMZKfyKvPeUMSrTCLbMPqRIPRv54PL+UUI9nZjGCKbwRYikh1eZRLZtuYaV0S0bsbfWbIpbCEiWeJVJhERNSQGIpKt5hpXBiEiImoQ7DIjIiIixWMgIiJSMC6ASnQXu8yIiBSKC6AS/Q9biIiIFIgLoBIZYiAiIlIgLoBKZIiBiIiogclh3A5vs0FkiGOIiIgakFzG7VQugPr69nOoEMIuF0DN1hYjM/82Gqsdcbu0AiHeje3q+Mi8VEIIUXsx0ul00Gg00Gq18PDwsHZ1iMgGZWuLERmfWOW2NEdiB1ntizpbW2yXC6DeGzwrceC4Mhn7/c0uMyKiBiLHcTv2eJuN+weMV+LAcXoQBiIiogZir+N25DAm6l7VBc9K1g6gJF9GByKdTmf0w1wqKiqwaNEihISEwNXVFa1bt8Zbb72Fe3v5hBBYvHgxmjdvDldXV0RFReHixYsGr3Pjxg3ExMTAw8MDnp6emDJlCgoLC81WTyIiY9jjjYsTUrIQGZ+IcZuSERmfiISULGtXqdrgWckeAihZhtGDqj09PaFS1fAJ+39CCKhUKlRUVNS7YgCwatUqbNiwAVu2bEGnTp1w4sQJTJo0CRqNBrNmzQIArF69GuvWrcOWLVsQEhKCRYsWITo6Gj/++CMaNWoEAIiJiUF2djb27duHsrIyTJo0CdOmTcO2bdvMUk8iImM11I2LKwcUW3IgcU1rGfVv52PVMVGZ+bexYFgHrN6djop7LqDtIYCS5RgdiA4cOGDJelTr2LFjeOqppzB8+HAAQHBwML744gscP34cwN0AtmbNGrz55pt46qmnAACfffYZ/Pz8sHPnTowZMwYXLlzAnj17kJKSgvDwcADA+vXr8dhjj+Hdd99FQEBAgx8XESmbpW9cXNNMNnOHpAeNibJG6Lj/uBcM7YAuD3nCTe2AolK93Q0cJ/MyOhANGDDAkvWoVp8+ffDxxx/j559/Rrt27XD69GkcOXIE7733HgAgMzMTOTk5iIqKkp6j0WjQq1cvJCUlYcyYMUhKSoKnp6cUhgAgKioKDg4OSE5OxtNPP13te5eUlKCkpET62ZxdgUREllJTq01BcRlW7f7JrNP9K7um7p81Z40uqeqOe/WedKvO4CPbYvI6RAUFBfjb3/6GCxcuAAA6deqEyZMnQ6PRmK1ysbGx0Ol06NChAxwdHVFRUYEVK1YgJiYGAJCTkwMA8PPzM3ien5+ftC8nJwe+vr4G+52cnODl5SWVqU5cXByWLVtmtmMhImoINbXaxO/+CcLMXVtyWstIbq1VZHtMCkQnTpxAdHQ0XF1d0bNnTwDAe++9hxUrVuCHH35A9+7dzVK5f/zjH9i6dSu2bduGTp06IS0tDXPmzEFAQAAmTJhglveoycKFCzFv3jzpZ51Oh8DAQIu+JxFRfVXXauMAWCwsNNSYqNrIqbWKbJNJ0+7nzp2LJ598EpcvX8b27duxfft2ZGZm4vHHH8ecOXPMVrn58+cjNjYWY8aMQVhYGMaPH4+5c+ciLi4OAODv7w8AyM3NNXhebm6utM/f3x95eXkG+8vLy3Hjxg2pTHVcXFzg4eFh8CAikrvqZrItGNbBotP95bCWkT3O4KOGZXIL0aZNm+Dk9L+nOzk54bXXXjMYq1NfRUVFcHAwzGyOjo7Q6/UAgJCQEPj7+2P//v14+OGHAdxtyUlOTsZLL70EAIiIiEBBQQFSU1PRo0cPAEBiYiL0ej169epltroSEclFda02nm7OsujasiS5tFaRbTIpEHl4eCArKwsdOnQw2H716lU0adLELBUDgCeeeAIrVqxAUFAQOnXqhFOnTuG9997D5MmTAQAqlQpz5szB22+/jbZt20rT7gMCAjBixAgAQMeOHTF06FBMnToVGzduRFlZGWbMmIExY8ZwhhkR2a37Z7IpJSxYegYf2S+TAtHo0aMxZcoUvPvuu+jTpw8A4OjRo5g/fz7Gjh1rtsqtX78eixYtwssvv4y8vDwEBATgT3/6ExYvXiyVee2113D79m1MmzYNBQUF6Nu3L/bs2SOtQQQAW7duxYwZMzB48GA4ODhg1KhRWLdundnqSURkCxgWiGpm0s1dS0tLMX/+fGzcuBHl5eUAAGdnZ7z00kuIj4+Hi4uL2Stqbby5K5HlNcRigkSkLMZ+f9frbvdFRUXIyMgAALRu3RpubvY7mp+BiMiyalpMkIioPoz9/jZ5HSIAcHNzQ1hYWH1egohIVreAYCsVkTKZFIju3LmD9evX48CBA8jLy5NmfVU6efKkWSpHRMogl0X12EpFpFwmBaIpU6bghx9+wDPPPIOePXvWetNXIqIHkcOienJqpSKihmdSIPr222/x/fffIzIy0tz1ISIFksMtIOTSSkVE1mFSIGrRooVZ1xsiIrL2OjlyaKWydxyfRXJm0q07/vznP2PBggW4cuWKuetDRApmzVtA8NYPlpWQkoXI+ESM25SMyPhEJKRkWbtKRAZMaiEKDw/HnTt30KpVK7i5ucHZ2dlg/40bN8xSOSJT8UqUTGHtVip7xfFZZAtMCkRjx47Fb7/9hpUrV8LPz4+DqklWOFOI6oOrOZsfx2eRLTApEB07dgxJSUno2rWruetDVC+8EiWSH47PIltg0hiiDh06oLi42Nx1Iaq3B12JEpF1cHwW2QKTWoji4+PxyiuvYMWKFQgLC6syhoi3tiBr4ZUokTxxfBbJnUn3MnNwuNuwdP/YISEEVCoVKioqzFM7GeG9zGxHQkpWlfVsOIaISL44CYIsyaL3Mjtw4IDJFSOytJquRPlHl0h+OAmC5KJed7uvzcsvv4zly5fD29vbUm/RYNhCZNv4R5dIfrK1xYiMT6zSxX0kdhAvWshsjP3+NmlQtbE+//xz6HQ6S74FUa1qmnmWreXEAKJ7ZWuLcSwjv8F+NzgJguTEpC4zY1mw8YnIaFwDhah21mhF5SQIkhOLthARyUHlH9178Y8u0f9YqxWV0/FJTizaQkQkB3K4kzopi60N4LdmKyqn45NcMBCRIvCPLjWU+nY9WSNMWbvrirdLITlglxkphjXvpE7KUN+uJ2vdEZ5dV0QWbiF67rnnOEWdzMrcV8+21rVB8lafridr34ePraikdCYHooKCAhw/fhx5eXnQ6/UG+55//nkAwIYNG+pXO6J7mHsWDNcmInOrT9eTHGZDsuuKlMykQPTNN98gJiYGhYWF8PDwMLiFh0qlkgIRkbmY++rZ2lfjZJ/qM4Df2uN4iJTOpED0yiuvYPLkyVi5ciXc3PjLSpZn7qtnOVyNk30yteuptjDF7l0iyzIpEP3222+YNWsWwxA1GHNfPfNqnCzJ1K6nmsIUu3ctgyGT7mXSLLPo6GicOHHC3HUhqpG5Z8FwVg3J1f2zIe351jMNfauQe1lrRh/Jl9EtRLt27ZL+PXz4cMyfPx8//vgjwsLC4OzsbFD2ySefNF8Nif6fuWfBcFYN2QJ77d61ZqsXxxBSdYwORCNGjKiybfny5VW2qVQqVFRU1KtSRDUx9ywYzqohubPH7l1rBxJ7DZlUP0Z3men1eqMeDENEROZj7u5da3ZTVbL2Xe55f0OqjkljiD777DOUlJRU2V5aWorPPvus3pUiIqL/Gf1IEI7EDsIXU3vjSOygKl1LxoYcuYybqSmQuKkdGiSscQwhVUclhBC1FzPk6OiI7Oxs+Pr6Gmz//fff4evra5etRDqdDhqNBlqtlqtvE5FsGDsWJ1tbjMj4xCpdb0diB1klCCSkZBksMTCiWwB2nPqtQccUZWuLOYZQAYz9/jZp2r0QwmAxxkq//vorNBqNKS9JRER1VJexOHIbN3PvpAY3tQOe/vBYg48p4hhCuledAlG3bt2gUqmgUqkwePBgODn97+kVFRXIzMzE0KFDzV5JIiKqqi4hR46DsysDybGMfFmFNVKmOgWiyplmaWlpiI6Ohru7u7RPrVYjODgYo0aNMmsFiYiUyJhFA+sScupzWxFLk2NYI+UxaQzRli1bMHr0aDRq1MgSdZIljiEiooZSlzV67h+Ls3Jk5weOvZHruJm6HgeRsYz9/jYpEFUqLS2t9m73QUH29yFmICKihmDK4Gc5hZz63A5DTsdB9sOig6ovXryIyZMn49ixYwbbKwdb2+MsMyKyPiXce8qUwc9yGRxc39Wn5XIcpEwmrUM0ceJEODg44Ntvv0VqaipOnjyJkydP4tSpUzh58qRZK/jbb7/hueeeQ7NmzeDq6oqwsDCD+6gJIbB48WI0b94crq6uiIqKwsWLFw1e48aNG4iJiYGHhwc8PT0xZcoUFBYWmrWeRGRZcllDx9JsddFAe77nGimDSS1EaWlpSE1NRYcOHcxdHwM3b95EZGQkBg0ahN27d8PHxwcXL15E06ZNpTKrV6/GunXrsGXLFoSEhGDRokWIjo7Gjz/+KI1xiomJQXZ2Nvbt24eysjJMmjQJ06ZNw7Zt2yxafyIyD2vf6qEhyXnw84PIbVo/UV2ZFIhCQ0ORn59v7rpUsWrVKgQGBuLTTz+VtoWEhEj/FkJgzZo1ePPNN/HUU08BuLuKtp+fH3bu3IkxY8bgwoUL2LNnD1JSUhAeHg4AWL9+PR577DG8++67CAgIsPhxkG1RQreMrVHal60t3niYM8XI1pnUZbZq1Sq89tprOHjwIH7//XfodDqDh7ns2rUL4eHh+OMf/whfX19069YNmzZtkvZnZmYiJycHUVFR0jaNRoNevXohKSkJAJCUlARPT08pDAFAVFQUHBwckJycXON7l5SUWOy4yHzMfV8mpXTL2BprdiNZ695fzTWuiGjdzCbCEMDbYZDtM6mFqDKAPProowYrVpt7UPUvv/yCDRs2YN68eXj99deRkpKCWbNmQa1WY8KECcjJyQEA+Pn5GTzPz89P2peTk1PlFiNOTk7w8vKSylQnLi4Oy5YtM8tx0IOZ2iJT3wGc1dVDKd0ytsZa3Ujm/ozZO1ts2SKqZFIgOnDggLnrUS29Xo/w8HCsXLkSwN2Vss+dO4eNGzdiwoQJFn3vhQsXYt68edLPOp0OgYGBFn1PJTL1C8cS4UVp3TKWYqkux4b+smVANg1nipGtMqnLbMCAAXBwcMCmTZsQGxuLNm3aYMCAAcjKyoKjo6PZKte8eXOEhoYabOvYsSOysu52Y/j7+wMAcnNzDcrk5uZK+/z9/ZGXl2ewv7y8HDdu3JDKVMfFxQUeHh4GD7rLXF0I9ZmV8qDwYipbnd0jJ5bucmzIbqSaPmOpl29a/L2JqOGZFIj++c9/Ijo6Gq6urjh16hRKSkoAAFqtVmrNMYfIyEikp6cbbPv555/RsmVLAHcHWPv7+2P//v3Sfp1Oh+TkZERERAAAIiIiUFBQgNTUVKlMYmIi9Ho9evXqZba6KoU5v/DqE2osEV44BqJ+7G3adXWfMQCY9eUpji0jskMmBaK3334bGzduxKZNm+Ds7Cxtj4yMNOs6RHPnzsV///tfrFy5EpcuXcK2bdvw8ccfY/r06QAAlUqFOXPm4O2338auXbtw9uxZPP/88wgICJDuu9axY0cMHToUU6dOxfHjx3H06FHMmDEDY8aM4QyzOjL3F159Qo2lwsvoR4JwJHYQvpjaG0diB3G8SB1YotXOmio/Y/f/kbT1oEdE1TNpDFF6ejr69+9fZbtGo0FBQUF96yR55JFHsGPHDixcuBDLly9HSEgI1qxZg5iYGKnMa6+9htu3b2PatGkoKChA3759sWfPHoP7rG3duhUzZszA4MGD4eDggFGjRmHdunVmq6dSmHuMTX0HylpqTAnHQJjGHqddj34kCI1dnDBj2ymD7RxbRmR/TApE/v7+uHTpEoKDgw22HzlyBK1atTJHvSSPP/44Hn/88Rr3q1QqLF++HMuXL6+xjJeXFxdhNANLfOHVN9SYGl641pD52eqCgrXp0bKp3QU9IqrKpEA0depUzJ49G5988glUKhWuXbuGpKQkvPrqq1i0aJG560gyYakvvIZukeFUasuxx2nX9hr0iMiQSXe7F0Jg5cqViIuLQ1HR3fEBLi4uePXVV/HWW2+ZvZJywLvd/48t35HalDuJEwG2/bknUjJjv79NCkSVSktLcenSJRQWFiI0NBTu7u6mvpTsMRDZh2MZ+Ri3qeoK5V9M7Y2I1s2sUCMiIrIkY7+/Teoyq6RWq6usE0QkZ/Y48JeIiOrPpGn3RLaKaw0REVF16tVCRGSL7HHgLxER1Q8DESkS1xoiIqJ7scuMiIiIFI+BiGplrpu5EhERyRW7zOiBuIgh2RquQk5EpmAgohrVdDPX/u18+EVDssQAT0SmYpcZ1cje7l5O9q2mAM+uXiIyBgMR1ahyEcN7cRFDkisGeCKqDwYiqhEXMSRbwgBPRPXBMUT0QFzEkGwF70pPRPXBQES14iKGZCsY4InIVAxERGRXGOCJyBQcQ0REssaFQUmp+NlvWGwhIiLZ4rpCpFT87Dc8thARkSxZe10hXp2TtVj7s69UbCEiIll60LpClh4jxKtzsiZrfvaVjC1ERCRL1lpXiFfnZG1cU8s6GIiISJastTAoV7wma+OiuNbBLjMiki1rrCtUeXV+byji1Tk1NK6p1fDYQkREstZc44qI1s0a7AuBV+ckFw392Vc6thCRzcrWFiMz/zZCvBvzDwaZFa/OiZSHgYhsEmcByZs9hFWueE2kLAxEZHNqmgXUv50Pv8BkoLawag9hiYjsDwMR2Ryu0SFftYVVtuwRkVxxUDVVS86r9HKNDvl6UFjl+j5EJGcMRFRFQkoWIuMTMW5TMiLjE5GQkmXtKhngLCD5elBY5fo+RCRn7DIjA7YyPoezgOSpMqy+vv0cKoSoEla5vg8RyRUDERmwpfE5nAUkTzWF1drCEhGRNTEQkQGu0kvmUFNYZcseEckVxxCRAY7PIUvj6rtEJEdsIaIqeBVP9ojrH9k//h9TfTAQUbU4PofsCdc/sn/8P6b6YpcZEdk1rn9k//h/TObAQEREdo3rH9k/U/+P5bwALTU8mwpE8fHxUKlUmDNnjrTtzp07mD59Opo1awZ3d3eMGjUKubm5Bs/LysrC8OHD4ebmBl9fX8yfPx/l5eUNXHsisgaubG7/TPk/lvsCtNTwbCYQpaSk4KOPPkKXLl0Mts+dOxfffPMNvvrqKxw6dAjXrl3DyJEjpf0VFRUYPnw4SktLcezYMWzZsgWbN2/G4sWLG/oQiMgKOHPS/tX1/5hdbFQdlRBC1F7MugoLC9G9e3d8+OGHePvtt/Hwww9jzZo10Gq18PHxwbZt2/DMM88AAH766Sd07NgRSUlJ6N27N3bv3o3HH38c165dg5+fHwBg48aNWLBgAa5fvw61Wm1UHXQ6HTQaDbRaLTw8PCx2rERkGdnaYs6ctHPG/h8fy8jHuE3JVbZ/MbU3Ilo3s2QVyQqM/f62iRai6dOnY/jw4YiKijLYnpqairKyMoPtHTp0QFBQEJKSkgAASUlJCAsLk8IQAERHR0On0+H8+fM1vmdJSQl0Op3Bg4hsF9c/sn/G/h+zG5WqI/tA9OWXX+LkyZOIi4ursi8nJwdqtRqenp4G2/38/JCTkyOVuTcMVe6v3FeTuLg4aDQa6REYGFjPI6HacIAjETUEdqNSdWS9DtHVq1cxe/Zs7Nu3D40aNWrQ9164cCHmzZsn/azT6RiKLIhriNgvLpZHcsQFaOl+sg5EqampyMvLQ/fu3aVtFRUVOHz4MP7yl79g7969KC0tRUFBgUErUW5uLvz9/QEA/v7+OH78uMHrVs5CqyxTHRcXF7i4uJjxaKgmNQ1w7N/Oh3+kbByDLsnN/QGdf2Ookqy7zAYPHoyzZ88iLS1NeoSHhyMmJkb6t7OzM/bv3y89Jz09HVlZWYiIiAAARERE4OzZs8jLy5PK7Nu3Dx4eHggNDW3wY6KquE6MfeJMHpIbTrWXLzkMmZB1C1GTJk3QuXNng22NGzdGs2bNpO1TpkzBvHnz4OXlBQ8PD8ycORMRERHo3bs3AGDIkCEIDQ3F+PHjsXr1auTk5ODNN9/E9OnT2QIkE5UDHO8NRRzgaPseFHR5VU4NjS3R8iWXlmRZtxAZ4/3338fjjz+OUaNGoX///vD398f27dul/Y6Ojvj222/h6OiIiIgIPPfcc3j++eexfPlyK9a6YckheT8IBzjaJ87kITlhS7Q8yakl2SbWIZIDW12HSC7J2xhcJ8b+JKRk4fXt51AhhBR05fr5I/uWrS1GZHxilZboI7GDbPrvja1PWmiINaGM/f6WdZcZ1Y+tNRFzgKP94UwekovKluj7A7otfybrc8ErlyAlpyETDER2jGM4SA4YdEku7Cmg1+eCV049B3IKqgxEdkxOyZuISA7sJaCbesErx54DuQRVmx9UTTXjYGUiIvtk6qQFuQ4ul8OtddhCZOfkkrzJ/sllTAKREpja1cSeg5oxECmAvTQRk3zJaUwCkVKYcsErpzE7csNp90ay1Wn3RJbWENOZ2fpEVD/3/w4paZkTTrsnogZh6dmMbH0iqp+afofsPQjVFQdVE1G9WHJFajmtYktki/g7ZDwGIiKqF0vOZpTrjBiyP3K/xZGp+DtkPHaZEVG9WWo2I2fEUEOw525ZufwO2cI4QLYQEZFZWGIdEa6lRZZm711KcvgdSkjJQmR8IsZtSkZkfCISUrIa7L3rgi1ERCRrXEuLLEkJtziy5u+QHFfGrgkDERHJHtfSIkuRS5eSpVnrd8iWAie7zIiISLHk0KVkzyw5C9Xc2EJERESKxm5Zy7GllbEZiIiISPHYLWs5thI4GYiIiIjIomwhcHIMERHsd1E2IiIyDluISPHseVE2IiIyDluISNHsfVE2IiIyDgMRKRrv80NERAADESmcLa2RQURElsNARIrGRdmIiAjgoGoim1kjg4iILIeBiAi2sUYGEdmebG0xMvNvI8S7Mf/GyBwDERERkQVwSQ/bwjFEREREZsYlPWwPAxER1QlX9SaqHZf0sD3sMiMio7ELgMg4lUt63BuKuKSHvLGFiIiMwi4AUgpztIJySQ/bwxYiIjLKg7oA+Eee7IU5W0G5pIdtYQsRERmFq3qTvbNEK2hzjSsiWjdjGLIBDEREZBR2AZC940DohiHXiRnsMiMyEyUswMYuALJnHAhteXKemMEWIiIzSEjJQmR8IsZtSkZkfCISUrKsXSWLYRcA2Su2glqW3CdmsIWIqJ5q+iXv386Hf0iJbAxbQS1H7hMzGIiI6knuv+REVDe8t6FlyL1LUvZdZnFxcXjkkUfQpEkT+Pr6YsSIEUhPTzcoc+fOHUyfPh3NmjWDu7s7Ro0ahdzcXIMyWVlZGD58ONzc3ODr64v58+ejvLy8IQ/F7OQ6ME1pOPuKiKh2cu+SlH0L0aFDhzB9+nQ88sgjKC8vx+uvv44hQ4bgxx9/ROPGjQEAc+fOxXfffYevvvoKGo0GM2bMwMiRI3H06FEAQEVFBYYPHw5/f38cO3YM2dnZeP755+Hs7IyVK1da8/BMJueBaUpT+Uv++vZzqBBCdr/kRERyIecuSZUQQtReTD6uX78OX19fHDp0CP3794dWq4WPjw+2bduGZ555BgDw008/oWPHjkhKSkLv3r2xe/duPP7447h27Rr8/PwAABs3bsSCBQtw/fp1qNXqWt9Xp9NBo9FAq9XCw8PDosdYm2xtMSLjE6s0Ox6JHSSrD5fSZGuLZflLTkRkbrY0q9bY72/Zd5ndT6vVAgC8vLwAAKmpqSgrK0NUVJRUpkOHDggKCkJSUhIAICkpCWFhYVIYAoDo6GjodDqcP3++2vcpKSmBTqczeMgF18qQJ86+IiIlsNdZtTYViPR6PebMmYPIyEh07twZAJCTkwO1Wg1PT0+Dsn5+fsjJyZHK3BuGKvdX7qtOXFwcNBqN9AgMDDTz0ZiOY1bI1nC8G5F9kPvU+fqwqUA0ffp0nDt3Dl9++aXF32vhwoXQarXS4+rVqxZ/T2PJfWAa0b3s9WqSSInsuYdC9oOqK82YMQPffvstDh8+jIceekja7u/vj9LSUhQUFBi0EuXm5sLf318qc/z4cYPXq5yFVlnmfi4uLnBxcTHzUZiPnAemEVXiGk1E9kXuU+frQ/YtREIIzJgxAzt27EBiYiJCQkIM9vfo0QPOzs7Yv3+/tC09PR1ZWVmIiIgAAERERODs2bPIy8uTyuzbtw8eHh4IDQ1tmAOxAI5ZIbmz56tJIiWy5x4K2bcQTZ8+Hdu2bcO//vUvNGnSRBrzo9Fo4OrqCo1GgylTpmDevHnw8vKCh4cHZs6ciYiICPTu3RsAMGTIEISGhmL8+PFYvXo1cnJy8Oabb2L69OmybgUisnX2fDVJpFT22kMh+2n3KpWq2u2ffvopJk6cCODuwoyvvPIKvvjiC5SUlCA6OhoffvihQXfYlStX8NJLL+HgwYNo3LgxJkyYgPj4eDg5GZcJ5TTtnsiWJKRkVVmjiWtmEVVlS1PZbYmx39+yD0RywUBEZDqu0UT04MDDxXYtx9jvb9l3mRGR7eO9oUjpHhR4OPlAHmQ/qJqIiMiW1bZ2DycfyAMDERERkQXVFni42K48MBARERFZUG2Bx56nstsSjiEiIiKyoMrAc/9sy3sDj71OZbclDEREFmLPU2jt+diILMGYwMPJB9bFQERkAfY8hdaej43Ikhh45I1jiIjMzJ7vBv2gY+Md7YnIlrGFiMjMHjSjxNavDms6tk+PXMZfj/zCViMisllsISIyM3ueQlvdsTkAUhgC7KtFjMgUbC21TQxERGZmz1Noqzu2F/qFcFE5ov+XkJKFyPhEjNuUjMj4RCSkZFm7SmQkdpkRWYA9T6G9/9gA4K9HMnlHe7J7tc2u5C04bBsDEZGF2POMkvuPrbY1VohsnTGzK+15/KASMBARmYmS1+ax5xYxImNbfirH2LG11DYxEBGZAdfmse8WMVI2Y1t+jFmR2tLMdWGmxAs8BiKierKncQNK/CNIVJu6tPxYs7XUXBdmSr3A4ywzonqq7U7WtoKzY4iqV9eZo801roho3azBW4bMsSCsPS8sWxu2EBHVkz2MG7CnVi4iS5D7ODlzDehW8sBwthAR1ZM9rDtkL61cRJZkjZYfY5lrQVh7Xli2NmwhIjIDuV891qa6Vi4AOPNrASJaN7NOpYjIaOYa0C2HgeHWohJCiNqLkU6ng0ajgVarhYeHh7WrQ2R2Hx3OQNz3Pxlsc1SpcCR2kCL+GBLZg2xtsVkuzMz1OnJg7Pc3W4iICAAQ1kJTZZtSxg4Q2QtzLX+hxGU0OIaIiAAoe+wAEREDEREBsI/B4UREpmKXGZECGLvgoq0PDiciMhUDEZGdq+uqs0ocO0BExC4zIjum5FVniYjqgoGIZCtbW4xjGfn88q4HLrhIRGQcdpmRLCn15oLmZg+3FSFSAt5Y2foYiEh2eF8t49X2R1TJq84S2Yr7LwAXDO2AsIc0DEcNjIGIZEfJNxesC2Nb0ThzjEi+qrsAjNt9d8V4to43LI4hItmx1wUCzTkmqq6DpeV8U0oiJavuArASJ0E0LAYikh17XCAwISULkfGJGLcpGZHxiUhIyarX63GwNJF9qO4C8F78vW447DIjWbKnbh5LjIniYGki+3D/OL/78fe64TAQkWzZywKBlhgTZYnB0pzlQmQd914AnvmtAKt3p3MShBUwEJFJ+OVpPEu15pizFY3LHBBZV+UFYETrZniya4BdtI7bGgYiqjMlf3maEgQtOfXdHK1oXOaASF7spXXc1jAQUZ0o+cuzPkFQzmOiuMwBEZHCZpl98MEHCA4ORqNGjdCrVy8cP37c2lWyOUqd3WSOe4LJdeq7vS5zQERUF4oJRAkJCZg3bx6WLFmCkydPomvXroiOjkZeXp61q2ZTlPrlac9B0B6XOSAiqiuVENXM87NDvXr1wiOPPIK//OUvAAC9Xo/AwEDMnDkTsbGxtT5fp9NBo9FAq9XCw8PD0tWVtYSUrCrjYex9DFG2thiR8YlVBkYfiR1kN8EhW1ssyy49IqL6MPb7WxFjiEpLS5GamoqFCxdK2xwcHBAVFYWkpCQr1sw2yXk8jKUo4Z5gHMhJREqmiECUn5+PiooK+Pn5GWz38/PDTz/9VO1zSkpKUFJSIv2s0+ksWkdbo8QvTyUGQSIipVDMGKK6iouLg0ajkR6BgYHWrhLJgFwHRhMRUf0oIhB5e3vD0dERubm5Bttzc3Ph7+9f7XMWLlwIrVYrPa5evdoQVSUiIiIrUEQgUqvV6NGjB/bv3y9t0+v12L9/PyIiIqp9jouLCzw8PAweREREZJ8UMYYIAObNm4cJEyYgPDwcPXv2xJo1a3D79m1MmjTJ2lUjIiIiK1NMIBo9ejSuX7+OxYsXIycnBw8//DD27NlTZaA1ERERKY9i1iGqL65DREREZHuM/f5WxBgiIiIiogdhICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixVPMOkT1Vbk6AW/ySkREZDsqv7drW2WIgchIt27dAgDe5JWIiMgG3bp1CxqNpsb9XJjRSHq9HteuXUOTJk2gUqmMeo5Op0NgYCCuXr2q6MUceR54DirxPNzF83AXzwPPQSVLngchBG7duoWAgAA4ONQ8UogtREZycHDAQw89ZNJzeXPYu3geeA4q8TzcxfNwF88Dz0ElS52HB7UMVeKgaiIiIlI8BiIiIiJSPAYiC3JxccGSJUvg4uJi7apYFc8Dz0Elnoe7eB7u4nngOagkh/PAQdVERESkeGwhIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjIKqjDRs2oEuXLtLiUREREdi9e7e0/86dO5g+fTqaNWsGd3d3jBo1Crm5uQavkZWVheHDh8PNzQ2+vr6YP38+ysvLG/pQzCY+Ph4qlQpz5syRtinhPCxduhQqlcrg0aFDB2m/Es5Bpd9++w3PPfccmjVrBldXV4SFheHEiRPSfiEEFi9ejObNm8PV1RVRUVG4ePGiwWvcuHEDMTEx8PDwgKenJ6ZMmYLCwsKGPhSTBQcHV/k8qFQqTJ8+HYAyPg8VFRVYtGgRQkJC4OrqitatW+Ott94yuIeUEj4LwN3bRMyZMwctW7aEq6sr+vTpg5SUFGm/PZ6Hw4cP44knnkBAQABUKhV27txpsN9cx3zmzBn069cPjRo1QmBgIFavXm2eAxBUJ7t27RLfffed+Pnnn0V6erp4/fXXhbOzszh37pwQQogXX3xRBAYGiv3794sTJ06I3r17iz59+kjPLy8vF507dxZRUVHi1KlT4vvvvxfe3t5i4cKF1jqkejl+/LgIDg4WXbp0EbNnz5a2K+E8LFmyRHTq1ElkZ2dLj+vXr0v7lXAOhBDixo0bomXLlmLixIkiOTlZ/PLLL2Lv3r3i0qVLUpn4+Hih0WjEzp07xenTp8WTTz4pQkJCRHFxsVRm6NChomvXruK///2v+M9//iPatGkjxo4da41DMkleXp7BZ2Hfvn0CgDhw4IAQQhmfhxUrVohmzZqJb7/9VmRmZoqvvvpKuLu7i7Vr10pllPBZEEKIZ599VoSGhopDhw6JixcviiVLlggPDw/x66+/CiHs8zx8//334o033hDbt28XAMSOHTsM9pvjmLVarfDz8xMxMTHi3Llz4osvvhCurq7io48+qnf9GYjMoGnTpuKvf/2rKCgoEM7OzuKrr76S9l24cEEAEElJSUKIux8YBwcHkZOTI5XZsGGD8PDwECUlJQ1e9/q4deuWaNu2rdi3b58YMGCAFIiUch6WLFkiunbtWu0+pZwDIYRYsGCB6Nu3b4379Xq98Pf3F++88460raCgQLi4uIgvvvhCCCHEjz/+KACIlJQUqczu3buFSqUSv/32m+Uqb0GzZ88WrVu3Fnq9XjGfh+HDh4vJkycbbBs5cqSIiYkRQijns1BUVCQcHR3Ft99+a7C9e/fu4o033lDEebg/EJnrmD/88EPRtGlTg9+JBQsWiPbt29e7zuwyq4eKigp8+eWXuH37NiIiIpCamoqysjJERUVJZTp06ICgoCAkJSUBAJKSkhAWFgY/Pz+pTHR0NHQ6Hc6fP9/gx1Af06dPx/Dhww2OF4CizsPFixcREBCAVq1aISYmBllZWQCUdQ527dqF8PBw/PGPf4Svry+6deuGTZs2SfszMzORk5NjcC40Gg169eplcC48PT0RHh4ulYmKioKDgwOSk5Mb7mDMpLS0FJ9//jkmT54MlUqlmM9Dnz59sH//fvz8888AgNOnT+PIkSMYNmwYAOV8FsrLy1FRUYFGjRoZbHd1dcWRI0cUcx7uZa5jTkpKQv/+/aFWq6Uy0dHRSE9Px82bN+tVR97c1QRnz55FREQE7ty5A3d3d+zYsQOhoaFIS0uDWq2Gp6enQXk/Pz/k5OQAAHJycgz+4FXur9xnK7788kucPHnSoE+8Uk5OjiLOQ69evbB582a0b98e2dnZWLZsGfr164dz584p5hwAwC+//IINGzZg3rx5eP3115GSkoJZs2ZBrVZjwoQJ0rFUd6z3ngtfX1+D/U5OTvDy8rKpc1Fp586dKCgowMSJEwEo53ciNjYWOp0OHTp0gKOjIyoqKrBixQrExMQAgGI+C02aNEFERATeeustdOzYEX5+fvjiiy+QlJSENm3aKOY83Mtcx5yTk4OQkJAqr1G5r2nTpibXkYHIBO3bt0daWhq0Wi2+/vprTJgwAYcOHbJ2tRrM1atXMXv2bOzbt6/KFZCSVF71AkCXLl3Qq1cvtGzZEv/4xz/g6upqxZo1LL1ej/DwcKxcuRIA0K1bN5w7dw4bN27EhAkTrFw76/jb3/6GYcOGISAgwNpVaVD/+Mc/sHXrVmzbtg2dOnVCWloa5syZg4CAAMV9Fv7+979j8uTJaNGiBRwdHdG9e3eMHTsWqamp1q4a1YBdZiZQq9Vo06YNevTogbi4OHTt2hVr166Fv78/SktLUVBQYFA+NzcX/v7+AAB/f/8qM0sqf64sI3epqanIy8tD9+7d4eTkBCcnJxw6dAjr1q2Dk5MT/Pz8FHEe7ufp6Yl27drh0qVLivksAEDz5s0RGhpqsK1jx45S92HlsVR3rPeei7y8PIP95eXluHHjhk2dCwC4cuUK/v3vf+OFF16Qtinl8zB//nzExsZizJgxCAsLw/jx4zF37lzExcUBUNZnoXXr1jh06BAKCwtx9epVHD9+HGVlZWjVqpWizkMlcx2zJX9PGIjMQK/Xo6SkBD169ICzszP2798v7UtPT0dWVhYiIiIAABERETh79qzBf/q+ffvg4eFR5UtFrgYPHoyzZ88iLS1NeoSHhyMmJkb6txLOw/0KCwuRkZGB5s2bK+azAACRkZFIT0832Pbzzz+jZcuWAICQkBD4+/sbnAudTofk5GSDc1FQUGBw9ZyYmAi9Xo9evXo1wFGYz6effgpfX18MHz5c2qaUz0NRUREcHAy/VhwdHaHX6wEo77MAAI0bN0bz5s1x8+ZN7N27F0899ZQiz4O5jjkiIgKHDx9GWVmZVGbfvn1o3759vbrLAHDafV3FxsaKQ4cOiczMTHHmzBkRGxsrVCqV+OGHH4QQd6fWBgUFicTERHHixAkREREhIiIipOdXTq0dMmSISEtLE3v27BE+Pj42NbW2OvfOMhNCGefhlVdeEQcPHhSZmZni6NGjIioqSnh7e4u8vDwhhDLOgRB3l15wcnISK1asEBcvXhRbt24Vbm5u4vPPP5fKxMfHC09PT/Gvf/1LnDlzRjz11FPVTrft1q2bSE5OFkeOHBFt27aV9RTj6lRUVIigoCCxYMGCKvuU8HmYMGGCaNGihTTtfvv27cLb21u89tprUhmlfBb27Nkjdu/eLX755Rfxww8/iK5du4pevXqJ0tJSIYR9nodbt26JU6dOiVOnTgkA4r333hOnTp0SV65cEUKY55gLCgqEn5+fGD9+vDh37pz48ssvhZubG6fdW8PkyZNFy5YthVqtFj4+PmLw4MFSGBJCiOLiYvHyyy+Lpk2bCjc3N/H000+L7Oxsg9e4fPmyGDZsmHB1dRXe3t7ilVdeEWVlZQ19KGZ1fyBSwnkYPXq0aN68uVCr1aJFixZi9OjRBmvvKOEcVPrmm29E586dhYuLi+jQoYP4+OOPDfbr9XqxaNEi4efnJ1xcXMTgwYNFenq6QZnff/9djB07Vri7uwsPDw8xadIkcevWrYY8jHrbu3evAFDl2IRQxudBp9OJ2bNni6CgINGoUSPRqlUr8cYbbxhMkVbKZyEhIUG0atVKqNVq4e/vL6ZPny4KCgqk/fZ4Hg4cOCAAVHlMmDBBCGG+Yz59+rTo27evcHFxES1atBDx8fFmqb9KiHuWECUiIiJSII4hIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIosZOHAg5syZY+1qWNzSpUvx8MMPW7saRFQPDERERDUoLS1t0PcTQqC8vLxB35OI7mIgIiKLmDhxIg4dOoS1a9dCpVJBpVLh8uXLOHfuHIYNGwZ3d3f4+flh/PjxyM/Pl543cOBAzJw5E3PmzEHTpk3h5+eHTZs24fbt25g0aRKaNGmCNm3aYPfu3dJzDh48CJVKhe+++w5dunRBo0aN0Lt3b5w7d86gTkeOHEG/fv3g6uqKwMBAzJo1C7dv35b2BwcH46233sLzzz8PDw8PTJs2DQCwYMECtGvXDm5ubmjVqhUWLVok3W178+bNWLZsGU6fPi0d5+bNm3H58mWoVCqkpaVJr19QUACVSoWDBw8a1Hv37t3o0aMHXFxccOTIEej1esTFxSEkJASurq7o2rUrvv76a3P/FxHRPRiIiMgi1q5di4iICEydOhXZ2dnIzs5GkyZN8Oijj6Jbt244ceIE9uzZg9zcXDz77LMGz92yZQu8vb1x/PhxzJw5Ey+99BL++Mc/ok+fPjh58iSGDBmC8ePHo6ioyOB58+fPx5///GekpKTAx8cHTzzxhBRcMjIyMHToUIwaNQpnzpxBQkICjhw5ghkzZhi8xrvvvouuXbvi1KlTWLRoEQCgSZMm2Lx5M3788UesXbsWmzZtwvvvvw8AGD16NF555RV06tRJOs7Ro0fX6VzFxsYiPj4eFy5cQJcuXRAXF4fPPvsMGzduxPnz5zF37lw899xzOHToUJ1el4jqwCy3iCUiqsaAAQPE7NmzpZ/feustMWTIEIMyV69eNbhD/IABA0Tfvn2l/eXl5aJx48Zi/Pjx0rbs7GwBQCQlJQkh/neX7S+//FIq8/vvvwtXV1eRkJAghBBiypQpYtq0aQbv/Z///Ec4ODiI4uJiIYQQLVu2FCNGjKj1uN555x3Ro0cP6eclS5aIrl27GpTJzMwUAMSpU6ekbTdv3hQAxIEDBwzqvXPnTqnMnTt3hJubmzh27JjB602ZMkWMHTu21roRkWmcrBnGiEhZTp8+jQMHDsDd3b3KvoyMDLRr1w4A0KVLF2m7o6MjmjVrhrCwMGmbn58fACAvL8/gNSIiIqR/e3l5oX379rhw4YL03mfOnMHWrVulMkII6PV6ZGZmomPHjgCA8PDwKnVLSEjAunXrkJGRgcLCQpSXl8PDw6POx1+Te9/z0qVLKCoqwh/+8AeDMqWlpejWrZvZ3pOIDDEQEVGDKSwsxBNPPIFVq1ZV2de8eXPp387Ozgb7VCqVwTaVSgUA0Ov1dXrvP/3pT5g1a1aVfUFBQdK/GzdubLAvKSkJMTExWLZsGaKjo6HRaPDll1/iz3/+8wPfz8Hh7ogEIYS0rbL77n73vmdhYSEA4LvvvkOLFi0Myrm4uDzwPYnIdAxERGQxarUaFRUV0s/du3fHP//5TwQHB8PJyfx/fv773/9K4ebmzZv4+eefpZaf7t2748cff0SbNm3q9JrHjh1Dy5Yt8cYbb0jbrly5YlDm/uMEAB8fHwBAdna21LJz7wDrmoSGhsLFxQVZWVkYMGBAnepKRKbjoGoispjg4GAkJyfj8uXLyM/Px/Tp03Hjxg2MHTsWKSkpyMjIwN69ezFp0qQqgcIUy5cvx/79+3Hu3DlMnDgR3t7eGDFiBIC7M8WOHTuGGTNmIC0tDRcvXsS//vWvKoOq79e2bVtkZWXhyy+/REZGBtatW4cdO3ZUOc7MzEykpaUhPz8fJSUlcHV1Re/evaXB0ocOHcKbb75Z6zE0adIEr776KubOnYstW7YgIyMDJ0+exPr167FlyxaTzw0RPRgDERFZzKuvvgpHR0eEhobCx8cHpaWlOHr0KCoqKjBkyBCEhYVhzpw58PT0lLqY6iM+Ph6zZ89Gjx49kJOTg2+++QZqtRrA3XFJhw4dws8//4x+/fqhW7duWLx4MQICAh74mk8++STmzp2LGTNm4OGHH8axY8ek2WeVRo0ahaFDh2LQoEHw8fHBF198AQD45JNPUF5ejh49emDOnDl4++23jTqOt956C4sWLUJcXBw6duyIoUOH4rvvvkNISIgJZ4WIjKES93ZwExHZoIMHD2LQoEG4efMmPD09rV0dIrJBbCEiIiIixWMgIiIiIsVjlxkREREpHluIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8f4PaXCA11XIDegAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABL0klEQVR4nO3deVxUZf8//tcAMoDAuLCKILhLKi64ICaaJnr7rcy6IzV37WNpamWJtrhVUN7eacutZXdSWUmWtrnnehNkoKJiZUoolKCSMcgiCnP9/vDHxMiwzDAz58yZ1/PxmMdDz7nmzHXODDPvc72vRSWEECAiIiJSCCepK0BERERkSQxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuiEgSy5Ytg0qlalRZlUqFZcuWWbU+Q4cOxdChQ2V7PCJqPAY3RA4uKSkJKpVK/3BxcUFQUBCmTp2KP/74Q+rqyU5oaKjB9fLz88Odd96Jbdu2WeT4ZWVlWLZsGQ4ePGiR4xE5IgY3RAQAWLFiBT766COsX78eo0ePxqZNmxATE4Pr169b5fWef/55lJeXW+XY1tarVy989NFH+Oijj7Bw4UJcvHgR48aNw/r165t87LKyMixfvpzBDVETuEhdASKSh9GjRyMyMhIAMHPmTPj4+ODVV1/F119/jYceesjir+fi4gIXF/v8CgoKCsIjjzyi///kyZPRsWNHvP7665g9e7aENSMigC03RFSHO++8EwCQnZ1tsP2XX37Bgw8+iFatWsHNzQ2RkZH4+uuvDcrcvHkTy5cvR6dOneDm5obWrVtj8ODB2Lt3r76MsT43FRUVePLJJ+Hr6wsvLy/ce++9+P3332vVberUqQgNDa213dgxN27ciLvuugt+fn5Qq9UIDw/HunXrTLoWDQkICEC3bt2Qk5NTb7nLly9jxowZ8Pf3h5ubGyIiIvDBBx/o958/fx6+vr4AgOXLl+tTX9bub0SkNPZ520REVnf+/HkAQMuWLfXbTp8+jejoaAQFBSE+Ph7NmzfHZ599hrFjx+KLL77A/fffD+BWkJGQkICZM2eif//+KC4uRkZGBo4dO4a77767ztecOXMmNm3ahAkTJmDQoEHYv38/xowZ06TzWLduHe644w7ce++9cHFxwTfffIPHH38cOp0Oc+bMadKxq928eRN5eXlo3bp1nWXKy8sxdOhQnDt3DnPnzkVYWBi2bNmCqVOnoqioCPPnz4evry/WrVuHxx57DPfffz/GjRsHAOjZs6dF6knkMAQRObSNGzcKAOK7774TV65cEXl5eeLzzz8Xvr6+Qq1Wi7y8PH3Z4cOHix49eojr16/rt+l0OjFo0CDRqVMn/baIiAgxZsyYel936dKlouZXUGZmpgAgHn/8cYNyEyZMEADE0qVL9dumTJki2rVr1+AxhRCirKysVrnY2FjRvn17g20xMTEiJiam3joLIUS7du3EyJEjxZUrV8SVK1fEiRMnxMMPPywAiCeeeKLO461Zs0YAEJs2bdJvu3HjhoiKihKenp6iuLhYCCHElStXap0vEZmGaSkiAgCMGDECvr6+CA4OxoMPPojmzZvj66+/Rtu2bQEAV69exf79+/HQQw/h2rVrKCwsRGFhIf7880/Exsbi7Nmz+tFVLVq0wOnTp3H27NlGv/6OHTsAAPPmzTPYvmDBgiadl7u7u/7fWq0WhYWFiImJwW+//QatVmvWMffs2QNfX1/4+voiIiICW7ZswaRJk/Dqq6/W+ZwdO3YgICAA48eP129r1qwZ5s2bh5KSEhw6dMisuhBRbUxLEREA4O2330bnzp2h1Wrx/vvv4/Dhw1Cr1fr9586dgxACL7zwAl544QWjx7h8+TKCgoKwYsUK3HfffejcuTO6d++OUaNGYdKkSfWmVy5cuAAnJyd06NDBYHuXLl2adF7ff/89li5dirS0NJSVlRns02q10Gg0Jh9zwIABeOmll6BSqeDh4YFu3bqhRYsW9T7nwoUL6NSpE5ycDO8pu3Xrpt9PRJbB4IaIAAD9+/fXj5YaO3YsBg8ejAkTJuDMmTPw9PSETqcDACxcuBCxsbFGj9GxY0cAwJAhQ5CdnY2vvvoKe/bswXvvvYfXX38d69evx8yZM5tc17om/6uqqjL4f3Z2NoYPH46uXbvi3//+N4KDg+Hq6oodO3bg9ddf15+TqXx8fDBixAiznktE1sfghohqcXZ2RkJCAoYNG4a33noL8fHxaN++PYBbqZTG/LC3atUK06ZNw7Rp01BSUoIhQ4Zg2bJldQY37dq1g06nQ3Z2tkFrzZkzZ2qVbdmyJYqKimptv73145tvvkFFRQW+/vprhISE6LcfOHCgwfpbWrt27XDy5EnodDqD1ptffvlFvx+oO3AjosZjnxsiMmro0KHo378/1qxZg+vXr8PPzw9Dhw7FO++8g/z8/Frlr1y5ov/3n3/+abDP09MTHTt2REVFRZ2vN3r0aADAG2+8YbB9zZo1tcp26NABWq0WJ0+e1G/Lz8+vNUuws7MzAEAIod+m1WqxcePGOuthLf/4xz9QUFCA5ORk/bbKykq8+eab8PT0RExMDADAw8MDAIwGb0TUOGy5IaI6PfPMM/jnP/+JpKQkzJ49G2+//TYGDx6MHj16YNasWWjfvj0uXbqEtLQ0/P777zhx4gQAIDw8HEOHDkXfvn3RqlUrZGRk4PPPP8fcuXPrfK1evXph/Pjx+M9//gOtVotBgwZh3759OHfuXK2yDz/8MBYtWoT7778f8+bNQ1lZGdatW4fOnTvj2LFj+nIjR46Eq6sr7rnnHvzf//0fSkpKsGHDBvj5+RkN0Kzp0UcfxTvvvIOpU6fi6NGjCA0Nxeeff47vv/8ea9asgZeXF4BbHaDDw8ORnJyMzp07o1WrVujevTu6d+9u0/oS2TWph2sRkbSqh4Knp6fX2ldVVSU6dOggOnToICorK4UQQmRnZ4vJkyeLgIAA0axZMxEUFCT+3//7f+Lzzz/XP++ll14S/fv3Fy1atBDu7u6ia9eu4uWXXxY3btzQlzE2bLu8vFzMmzdPtG7dWjRv3lzcc889Ii8vz+jQ6D179oju3bsLV1dX0aVLF7Fp0yajx/z6669Fz549hZubmwgNDRWvvvqqeP/99wUAkZOToy9nylDwhoa513W8S5cuiWnTpgkfHx/h6uoqevToITZu3FjruampqaJv377C1dWVw8KJzKASokZ7LREREZGdY58bIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBDREREiuJwk/jpdDpcvHgRXl5enOaciIjITgghcO3aNbRp06bWArS3c7jg5uLFiwgODpa6GkRERGSGvLw8tG3btt4yDhfcVE9xnpeXB29vb4lrQ0RERI1RXFyM4OBg/e94fRwuuKlORXl7ezO4ISIisjON6VLCDsVERESkKAxuiIiISFEY3BAREZGiOFyfGyIichxVVVW4efOm1NWgRnJ1dW1wmHdjMLghIiLFEUKgoKAARUVFUleFTODk5ISwsDC4uro26TgMboiISHGqAxs/Pz94eHhw0lY7UD3Jbn5+PkJCQpr0njG4ISIiRamqqtIHNq1bt5a6OmQCX19fXLx4EZWVlWjWrJnZx2GHYiIiUpTqPjYeHh4S14RMVZ2OqqqqatJxGNwQEZEiMRVlfyz1njG4ISIiIkVhcENEREQ2cfDgQahUKquPYmNwYwP52nKkZhciX1sudVWIiEjBli1bhl69ekldDclxtJSVJafnYvHWU9AJwEkFJIzrgbh+IVJXi4iIHNjNmzebNBpJ7thyY0X52nJ9YAMAOgEs2ZrFFhwiIjJKp9MhISEBYWFhcHd3R0REBD7//HMAf6d09u3bh8jISHh4eGDQoEE4c+YMACApKQnLly/HiRMnoFKpoFKpkJSUBOBWR91169bh3nvvRfPmzfHyyy/XW4/q19q9ezd69+4Nd3d33HXXXbh8+TJ27tyJbt26wdvbGxMmTEBZWZn+eRUVFZg3bx78/Pzg5uaGwYMHIz093ToXqx4Mbqwop7BUH9hUqxIC5wvLjD+BiIhkx5ZdCxISEvDhhx9i/fr1OH36NJ588kk88sgjOHTokL7Mc889h9WrVyMjIwMuLi6YPn06ACAuLg5PP/007rjjDuTn5yM/Px9xcXH65y1btgz3338/Tp06pX9OQ5YtW4a33noLqampyMvLw0MPPYQ1a9bgk08+wfbt27Fnzx68+eab+vLPPvssvvjiC3zwwQc4duwYOnbsiNjYWFy9etVCV6hxmJayojCf5nBSwSDAcVapEOrDuReIiOyBLbsWVFRU4JVXXsF3332HqKgoAED79u2RkpKCd955B48++igA4OWXX0ZMTAwAID4+HmPGjMH169fh7u4OT09PuLi4ICAgoNbxJ0yYgGnTpplUp5deegnR0dEAgBkzZmDx4sXIzs5G+/btAQAPPvggDhw4gEWLFqG0tBTr1q1DUlISRo8eDQDYsGED9u7di//+97945plnzLswZmDLjRUFatyRMK4HnP//cfvOKhVeGdcdgRp3iWtGREQNsXXXgnPnzqGsrAx33303PD099Y8PP/wQ2dnZ+nI9e/bU/zswMBAAcPny5QaPHxkZaXKdar6Wv78/PDw89IFN9bbq187OzsbNmzf1wRAANGvWDP3798fPP/9s8ms3BVturCyuXwiGdPbF+cIyhPp4MLAhIrIT9XUtsMZ3eUlJCQBg+/btCAoKMtinVqv1AU7NjsDVk97pdLoGj9+8eXOT63T7a93eCVmlUjXqtW2NwY0NBGrcGdQQEdkZW3ctCA8Ph1qtRm5urj7tVFPN1pu6uLq6NnnpAnN16NABrq6u+P7779GuXTsAt0ZlpaenY8GCBTatC4MbIiIiI6q7FizZmoUqIazetcDLywsLFy7Ek08+CZ1Oh8GDB0Or1eL777+Ht7e3PmCoT2hoKHJycpCZmYm2bdvCy8sLarXaKvW9XfPmzfHYY4/hmWeeQatWrRASEoLXXnsNZWVlmDFjhk3qUI3BDRERUR1s3bVg5cqV8PX1RUJCAn777Te0aNECffr0wZIlSxqV/nnggQewdetWDBs2DEVFRdi4cSOmTp1q1TrXlJiYCJ1Oh0mTJuHatWuIjIzE7t270bJlS5vVAQBUQgjRcDHlKC4uhkajgVarhbe3t9TVISIiC7t+/TpycnIQFhYGNzc3qatDJqjvvTPl95ujpYiIiEhRGNwQERE5mNmzZxsMN6/5mD17ttTVazL2uSEiInIwK1aswMKFC43uU0KXDQY3REREDsbPzw9+fn5SV8NqmJYiIiIiRWFwQ0REiiTHmXOpfpYawM20FBERKYqrqyucnJxw8eJF+Pr6wtXVVb9MAcmXEAJXrlwxusyDqRjcEBGRojg5OSEsLAz5+fm4ePGi1NUhE6hUKrRt2xbOzs5NOg6DGyIiUhxXV1eEhISgsrJSsrWWyHTNmjVrcmADMLghIiKFqk5vNDXFQfaHHYqJiIhIURjcEBERkaIwuCEiIiJFYXBDREREisLghoiIiBSFwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIUSQNbtatW4eePXvC29sb3t7eiIqKws6dO+t9zpYtW9C1a1e4ubmhR48e2LFjh41qS0RERPZA0uCmbdu2SExMxNGjR5GRkYG77roL9913H06fPm20fGpqKsaPH48ZM2bg+PHjGDt2LMaOHYusrCwb15yIiIjkSiWEEFJXoqZWrVph1apVmDFjRq19cXFxKC0txbfffqvfNnDgQPTq1Qvr169v1PGLi4uh0Wig1Wrh7e1tsXoTERGR9Zjy+y2bPjdVVVXYvHkzSktLERUVZbRMWloaRowYYbAtNjYWaWlpdR63oqICxcXFBg8iIiJSLsmDm1OnTsHT0xNqtRqzZ8/Gtm3bEB4ebrRsQUEB/P39Dbb5+/ujoKCgzuMnJCRAo9HoH8HBwRatPxEREcmL5MFNly5dkJmZiSNHjuCxxx7DlClT8NNPP1ns+IsXL4ZWq9U/8vLyLHZsIiIikh8XqSvg6uqKjh07AgD69u2L9PR0rF27Fu+8806tsgEBAbh06ZLBtkuXLiEgIKDO46vVaqjVastWmoiIiGRL8pab2+l0OlRUVBjdFxUVhX379hls27t3b519dIiIiMjxSNpys3jxYowePRohISG4du0aPvnkExw8eBC7d+8GAEyePBlBQUFISEgAAMyfPx8xMTFYvXo1xowZg82bNyMjIwPvvvuulKdBREREMiJpcHP58mVMnjwZ+fn50Gg06NmzJ3bv3o27774bAJCbmwsnp78blwYNGoRPPvkEzz//PJYsWYJOnTrhyy+/RPfu3aU6BSIiIpIZ2c1zY22c54aIiMj+2OU8N0RERESWwOCGiIiIFIXBDRERESkKgxsiIiJSFAY3REREpCgMboiIiEhRGNwQERGRojC4ISIiIkVhcENERESKwuDGgvK15UjNLkS+tlzqqhARETksSdeWUpLk9Fws3noKOgE4qYCEcT0Q1y9E6moRERE5HLbcWEC+tlwf2ACATgBLtmaxBYeIiEgCDG4sIKewVB/YVKsSAucLy6SpEBERkQNjcGMBYT7N4aQy3OasUiHUx0OaChERETkwBjcWEKhxR8K4HnBW3YpwnFUqvDKuOwI17hLXjIjkhIMOiGyDHYotJK5fCIZ09sX5wjKE+ngYBDb52nLkFJYizKc5Ax4iB8VBB0S2w+DGggI17rWCF36hEVFdgw6GdPblDQ+RFTAtZUUcRUVEAAcdENkagxsr4hcaEQEcdEBkawxurIhfaEQEcNABka2xz40VVX+hLdmahSoh+IVG5MDqG3RARJbF4MbK+IVGRNWMDTogIstjcGMD/EIjIiKyHfa5ISIiIkVhcENERESKwuCGiIiIFIXBDRERESkKgxsiIiJSFAY3REREpCgMboiIiEhRGNxYSb62HKnZhVwkk4iIyMY4iZ8VJKfn6lcDd1IBCeN6IK5fiNTVIiIicghsubGwfG25PrABAJ0AlmzNYgsOERGRjTC4sbCcwlJ9YFOtSgicLyyTpkJEREQOhsGNhYX5NIeTynCbs0qFUB8PaSpERETkYBjcWFigxh0J43rAWXUrwnFWqfDKuO5cOJOIiMhG2KHYCuL6hWBIZ1+cLyxDqI8HAxsiIiIbYnBjJYEadwY1REREEmBaioiIiBSFwQ0REREpiqTBTUJCAvr16wcvLy/4+flh7NixOHPmTL3PSUpKgkqlMni4ubnZqMZEREQkd5IGN4cOHcKcOXPwww8/YO/evbh58yZGjhyJ0tLSep/n7e2N/Px8/ePChQs2qjERERHJnaQdinft2mXw/6SkJPj5+eHo0aMYMmRInc9TqVQICAiwdvWIiIjIDsmqz41WqwUAtGrVqt5yJSUlaNeuHYKDg3Hffffh9OnTdZatqKhAcXGxwYOIiIiUSzbBjU6nw4IFCxAdHY3u3bvXWa5Lly54//338dVXX2HTpk3Q6XQYNGgQfv/9d6PlExISoNFo9I/g4GBrnQIRERHJgEoIIRouZn2PPfYYdu7ciZSUFLRt27bRz7t58ya6deuG8ePHY+XKlbX2V1RUoKKiQv//4uJiBAcHQ6vVwtvb2yJ1JyIiIusqLi6GRqNp1O+3LCbxmzt3Lr799lscPnzYpMAGAJo1a4bevXvj3LlzRver1Wqo1WpLVJOIiIjsgKRpKSEE5s6di23btmH//v0ICwsz+RhVVVU4deoUAgMDrVBDIiIisjeSttzMmTMHn3zyCb766it4eXmhoKAAAKDRaODufmvpgsmTJyMoKAgJCQkAgBUrVmDgwIHo2LEjioqKsGrVKly4cAEzZ86U7DyIiIhIPiQNbtatWwcAGDp0qMH2jRs3YurUqQCA3NxcODn93cD0119/YdasWSgoKEDLli3Rt29fpKamIjw83FbVJiIiIhmTTYdiWzGlQxIRERHJgym/37IZCk5ERERkCQxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuyCbyteVIzS5EvrZc6qoQEZHCSbq2FDmG5PRcLN56CjoBOKmAhHE9ENcvROpqERGRQrHlhqwqX1uuD2wAQCeAJVuz2IJDRERWw+CGrCqnsFQf2FSrEgLnC8ukqRARESkegxuyqjCf5nBSGW5zVqkQ6uMhTYWIiEjxGNyQVQVq3JEwrgecVbciHGeVCq+M645AjbvENSMiIqVih2Kyurh+IRjS2RfnC8sQ6uPBwIaIiKyKwQ3ZRKDGnUENERHZBNNSRKRYnF+JyDGx5YaIFInzKxE5LrbcSIh3lUTWwfmViBwbW24kwrtKIuupb34l9v0iUj623EiAd5VE1sX5lYgcG4MbCSh51l5TUm1My5G1cH4lIsfGtJQEqu8qawY4SrirNCXVxrQcWRvnVyJyXGy5kYAS7ypNSbUxLUe2EqhxR1SH1nb9t0VEpmPLjUSUdldpSgdOUzt75mvLkVNYijCf5nZ/nYiIyPoY3EhISbP2mpJqM6Us01dERGQqpqXIIkxJtTW2LNNXRERkDrbckMWYkmprTFnOVUJEROZgcEMWZUqqraGySh1VRkRE1sW0FMmWEkeVERGR9bHlhmRNaaPKiIjI+hjckOwpaVQZERFZH9NSREREpCgMboiIiEhRGNwQUZ24uCkR2SP2uSEiozg7NBHZK7bcEFEtnB2aiOwZgxuSDaZA5KO+2aHJED+3RPLDtBTJgqkpEK4Ubl2cHbpxmLojkidJW24SEhLQr18/eHl5wc/PD2PHjsWZM2cafN6WLVvQtWtXuLm5oUePHtixY4cNakvWYmoKJDk9F9GJ+zFhwxFEJ+5HcnquDWvrGDg7dMOYuiOSL0mDm0OHDmHOnDn44YcfsHfvXty8eRMjR45EaWlpnc9JTU3F+PHjMWPGDBw/fhxjx47F2LFjkZWVZcOakyWZkgLhD4rtxPULQUr8MHw6ayBS4oexReI2TN0RyZekaaldu3YZ/D8pKQl+fn44evQohgwZYvQ5a9euxahRo/DMM88AAFauXIm9e/firbfewvr1661eZ7I8U1IgXCnctjg7dN0cJXXHFDDZI1l1KNZqtQCAVq1a1VkmLS0NI0aMMNgWGxuLtLQ0q9aNrMeUFEj1D0pNSvxBUQKld7R1hNQdU8Bkr2TToVin02HBggWIjo5G9+7d6yxXUFAAf39/g23+/v4oKCgwWr6iogIVFRX6/xcXF1umwmRRjV0gs/oHZcnWLFQJocgfFCVoTEdbJbQIKHlh17pSwEM6+yrqPEmZZBPczJkzB1lZWUhJSbHocRMSErB8+XKLHpOso7EpECX/oChBY34UlTTKSKmpO6aAyZ7JIi01d+5cfPvttzhw4ADatm1bb9mAgABcunTJYNulS5cQEBBgtPzixYuh1Wr1j7y8PIvVm6QTqHFHVIfW/JKVoYY62rJTuH1gCpjsmaTBjRACc+fOxbZt27B//36EhYU1+JyoqCjs27fPYNvevXsRFRVltLxarYa3t7fBg4isp6EfRY4ysg+O0KeIlEvStNScOXPwySef4KuvvoKXl5e+34xGo4G7+60/oMmTJyMoKAgJCQkAgPnz5yMmJgarV6/GmDFjsHnzZmRkZODdd9+V7DyI6G8N9YuS2ygjJfT9AaxzHkwBk71SCSFEw8Ws9OIqldHtGzduxNSpUwEAQ4cORWhoKJKSkvT7t2zZgueffx7nz59Hp06d8Nprr+Ef//hHo16zuLgYGo0GWq2WrThEVpSvLa/zRzE5PbdW8CNFnxul9P1RynkQ1ceU329JgxspMLghkof6gh9bvX504v5aLUgp8cPsqoVCKedB1BBTfr8bnZYyZQg1gwYiaojUo4yUMhpIKedBZEmNDm5atGhRZxqpmhACKpUKVVVVTa4YEZE1ya3vj7mUch5EltTo4ObAgQPWrAcRkU0pZUJIpZwHkSWxzw0ROTSp+/5YilLOg6guVulzc7uioiL897//xc8//wwAuOOOOzB9+nRoNBpzD0lEZHNS9/1pjMYM87aH8yCyFbNabjIyMhAbGwt3d3f0798fAJCeno7y8nLs2bMHffr0sXhFLYUtN0RkTzjMm+gWqw8Fv/POO9GxY0ds2LABLi63Gn8qKysxc+ZM/Pbbbzh8+LB5NbcBBjdEZC84zJvob1ZPS2VkZBgENgDg4uKCZ599FpGRkeYckoiIbsNh3kTmMWttKW9vb+Tm5tbanpeXBy8vryZXioiI6l6ny8PVCanZhVxslKgOZgU3cXFxmDFjBpKTk5GXl4e8vDxs3rwZM2fOxPjx4y1dRyIih2Rs8cqxvdvg/v+kYsKGI4hO3I/k9No3mkSOzqy01L/+9S+oVCpMnjwZlZWVAIBmzZrhscceQ2JiokUrSJallEUCiRxFzcUrPVydcP9/UvWpKp0AlmzNwpDOvvx7JqrBrODG1dUVa9euRUJCArKzswEAHTp0gIcHZ8SUM466ILJP1cO8U7ML2QeHqBHMnucGADw8PNCjRw9L1YWsKF9brg9sAN7xEdkjLrVA1DhmBTfXr1/Hm2++iQMHDuDy5cvQ6XQG+48dO2aRypHlKHnUBVNt5Ci41AJR45gV3MyYMQN79uzBgw8+iP79+ze4oCZJT6l3fDVTbSoAs+4Mw7TBYfyyJ4uRW/Bcsw8Ol1ogMs6sSfw0Gg127NiB6Ohoa9TJqhx5Er/k9Nxad3z23OfG2ARnAPsTkeWwnxqRfFh9Er+goCDOZ2OHlHbHZyzVBrA/EVkG+6kR2S+z5rlZvXo1Fi1ahAsXLli6PmRlgRp3RHVoLasv53xtuVkTkhmb4KxadX8iInPV10+NpGPu9wU5FrNabiIjI3H9+nW0b98eHh4eaNasmcH+q1evWqRypHxNafav7ly5+ItT0N22Twn9iUhaSu2nZs+YJqTGMiu4GT9+PP744w+88sor8Pf3Z4diqqUxnTAt0exfnWrbmHIe76X8Bp0AR5CQRXBkknzka8uRcf4q04TUaGYFN6mpqUhLS0NERISl60MK0Ni7K0sNTw/UuGPJmG6YNjhUMf2JSB6U1k/NHtX8PrmdUqazIMszK7jp2rUrysuZ76TaTGmNsXSzf/UsrkSW5GifKzkNfb/9++R2TBNSXczqUJyYmIinn34aBw8exJ9//oni4mKDBzkuUzphGlsUkM3+RNJJTs9FdOJ+2SzKWdeISIDfF1Q/s1puRo0aBQAYPny4wXYhBFQqFaqqqppeM7JLprbGsNmfSB7kOPTd2PeJE4A3J/RGn3Yt+X1BdTIruDlw4ICl60EKYU4nTEdr9ieSIzku0VLX98mYnm0kqQ/ZD7OCm5iYmEaVe/zxx7FixQr4+PiY8zJkp9gaQ2R/5Dr0nd8nZA6z+tw01qZNm9gHx0HJcbJAIqqbnPvA8fuETGVWy01jmbFsFRERSYStJKQUVg1uiIjIvsipD5ychqWTfWFwQ0REssOlFqgprNrnhoiIyFR1DUvnYpnUWAxuiIisgKtXm48rslNTmRzcVFZWYsWKFfj9998bLPvII4/A29vbrIoREdkruc30a2+qh6XXJIdh6WQ/TA5uXFxcsGrVKlRWVjZYdt26dZzjhogcClMqTSfnYelkH8zqUHzXXXfh0KFDCA0NtXB1yBo44oDIduQ406894rB0agqzgpvRo0cjPj4ep06dQt++fdG8eXOD/ffee69FKkdNxxEHRLYl15l+7ZGchqWTfVEJM2bac3KqO5sl94Uzi4uLodFooNVqFd8fKF9bjujE/bW+ZFPih/ELg8iKktNza62HxJsKoqYx5ffbrJYbnU5nVsXIttg8TiQNplSIpGXWUPAPP/wQFRUVtbbfuHEDH374YZMrRZbBEQdE0uF6SETSMSu4mTZtGrRaba3t165dw7Rp05pcKbIMjjggIiJHZFZaSggBlUpVa/vvv/8OjUbT5EqR5bB5nIiIHI1JwU3v3r2hUqmgUqkwfPhwuLj8/fSqqirk5ORg1KhRjT7e4cOHsWrVKhw9ehT5+fnYtm0bxo4dW2f5gwcPYtiwYbW25+fnIyAgwJRTcSgccUB0C6dFIHIMJgU31YFHZmYmYmNj4enpqd/n6uqK0NBQPPDAA40+XmlpKSIiIjB9+nSMGzeu0c87c+aMQU9pPz+/Rj+XiBwTp0UgchwmBTdLly4FAISGhiIuLg5ubm5NevHRo0dj9OjRJj/Pz88PLVq0aNJrE5HjqGvW4CGdfdmCQ6RAZvW5mTJlCoBbo6MuX75ca2h4SIh174Z69eqFiooKdO/eHcuWLUN0dHSdZSsqKgxGdhUXF1u1bkQkP3KbFoHpMSLrMiu4OXv2LKZPn47U1FSD7dUdja01iV9gYCDWr1+PyMhIVFRU4L333sPQoUNx5MgR9OnTx+hzEhISsHz5cqvUh4isy1JBgJxmDWZ6jMj6zJqhODo6Gi4uLoiPj0dgYGCtkVMRERGmV0SlarBDsTExMTEICQnBRx99ZHS/sZab4OBgh5ihmEhuTAlWLB0EyGHWYM4aTmQ+q89QnJmZiaNHj6Jr165mVdCS+vfvj5SUlDr3q9VqqNVqG9aI5ITN/01nqWtoSrBijT4yNadF8HB1QumNKuRry236uZBbeoxIqcwKbsLDw1FYWGjpupglMzMTgYGBUleDZIjN/01nqWtoarBirSAgUOOOw79ekexzIaf0GJGSmTVD8auvvopnn30WBw8exJ9//oni4mKDR2OVlJQgMzMTmZmZAICcnBxkZmYiNzcXALB48WJMnjxZX37NmjX46quvcO7cOWRlZWHBggXYv38/5syZY85pkILV9WOary2XtmJ2xJLXsL5gxRhrLR0i9eeCs4YT2YZZLTcjRowAANx1110G/W1M7VCckZFhMCnfU089BeDWaKykpCTk5+frAx3g1uisp59+Gn/88Qc8PDzQs2dPfPfdd0Yn9iPHxub/pmvMNWxsysrUFovqIOD2PjJNfe/k8LngrOFE1mdWcHPgwAGLvPjQoUNRX3/mpKQkg/8/++yzePbZZy3y2qRsbP5vuoauoSkpK3OCFWsEAXL5XHDWcCLrMistFRMTAycnJ2zYsAHx8fHo2LEjYmJikJubC2dnZ0vXkchkbP5vuvquoTnpnbh+IUiJH4ZPZw1ESvywRvVzsfTK2vxcEDkGs1puvvjiC0yaNAkTJ07E8ePH9UOttVotXnnlFezYscOilSQyB5v/m66ua2huekcOLRb8XBApn1ktNy+99BLWr1+PDRs2oFmzZvrt0dHROHbsmMUqR9RUlr7zd0TGrqG1OvzaCj8XRMpmVnBz5swZDBkypNZ2jUaDoqKiptaJiGSO6R3K15YjNbuQIxBJlsxKSwUEBODcuXMIDQ012J6SkoL27dtbol5EJHNM7zguziFFcmdWy82sWbMwf/58HDlyBCqVChcvXsTHH3+MhQsX4rHHHrN0HYlIppjecTxSzxVEtmePrXRmtdzEx8dDp9Nh+PDhKCsrw5AhQ6BWq7Fw4UI88cQTlq4jEckEl7OwH9Z6r+QwVxDZjr220pm1cGa1Gzdu4Ny5cygpKUF4eDg8PT0tWTerMGXhLSL6m71+ycmBrYNCa75XXPzTccjtvTbl99ustFQ1V1dXhIeHo3///nYR2BCReZiKMF9yei6iE/djwoYjiE7cj+T03Iaf1ATWfq/YmdxxmLpsipyYlZYiIsfCVIR5TF0w1BItPLZ4r9iZ3DHIZUZvczC4IaIG2fOXnJRMCTQslUqy1XslhwkZybqstcabLTQpLUVEjoGpCPM0drJDS6aS+F6RJZmzbIocsOWGiBqFqQjTNfbO19KpJL5XZEn22ErH4IaIGs0ev+Sk1phAwxqpJL5X5MiYliIisrKGJjtkKonIsthyQ0QkA0pJJXGiR5IDBjdERDJh76kkTvRIcsG0FBHVYo9ryTgiOb1PnOiR5IQtN0RkgHff9kFu7xMneiQ5YcsNEenx7ts+yPF9auycPkS2wOCGiPTseS0ZRyLH94kjvkhOmJYiIj0us2Af5Po+KWXEF9k/ttwQkR7vvu2DnN+nhub0IbIFlRBCNFxMOYqLi6HRaKDVauHt7S11dYhkKV9bzrtvO8D3iRyJKb/fTEsRUS32Pt/K7ZQ6sZzS3iciS2FwQ0SKJrch00RkfexzQ0SKJcch00RkfQxuiEix5Dhkmkjp5DBzNtNSRKRYch0yTaRUckkDs+WGiBRLzkOmiZRGTmlgttwQkaJxYjki25DT+mIMbohI8Thkmsj65JQGZlqKiIiIGq2uDsNySgOz5YaIiIyyp8kP7amu9qyhDsNySQMzuCEiu8MfMuuTy6iXxrCnutqzujoMD+nsa/B3KIc0MNNSDk4O8xEQmSI5PRfRifsxYcMRRCfuR3J6rtRVUhw5jXppiD3V1d7Z07xRbLlxYLzbIXvT2DtHaho5jXppiD3V1d7JqcNwQ9hy46B4t0P2yJ7uHO1Z9Y9YTQ39iEnVCmxOXck8cuow3BC23Dgo3u2QPbKnO0d7Vv0jtmRrFqqEaPBHTMpWYFPrSk0jlw7DDWFw46D4I0H2iD9kttPYHzE5pArt5QdXKeTQYbghkqalDh8+jHvuuQdt2rSBSqXCl19+2eBzDh48iD59+kCtVqNjx45ISkqyej2VyJ6aF4lqiusXgpT4Yfh01kCkxA9jPzErCtS4I6pD63q/F+SSKmxMXclxSNpyU1paioiICEyfPh3jxo1rsHxOTg7GjBmD2bNn4+OPP8a+ffswc+ZMBAYGIjY21gY1Vhbe7ZC9soc7R0fBVmCSI5UQQjRczPpUKhW2bduGsWPH1llm0aJF2L59O7KysvTbHn74YRQVFWHXrl2Nep3i4mJoNBpotVp4e3s3tdpERA4vOT23VqpwSGdfzkVEFmXK77dd9blJS0vDiBEjDLbFxsZiwYIFdT6noqICFRUV+v8XFxdbq3pERA7p9lbgw79eQXTifk4zQZKxq6HgBQUF8Pf3N9jm7++P4uJilJcbH36YkJAAjUajfwQHB9uiqkREDqW6zwsAi0wzwQlGqSnsKrgxx+LFi6HVavWPvLw8qatERKRYluhgzFmoqansKrgJCAjApUuXDLZdunQJ3t7ecHc3ntNVq9Xw9vY2eBCRdHfGvCNXtqZOqscJRskS7KrPTVRUFHbs2GGwbe/evYiKipKoRiRHXFSxYVJNusYlP5SvqXMRcYJRsgRJg5uSkhKcO3dO//+cnBxkZmaiVatWCAkJweLFi/HHH3/gww8/BADMnj0bb731Fp599llMnz4d+/fvx2effYbt27dLdQokM/zxbJhUk67JYbI3so2mTDPBoeVkCZKmpTIyMtC7d2/07t0bAPDUU0+hd+/eePHFFwEA+fn5yM39O9caFhaG7du3Y+/evYiIiMDq1avx3nvvcY4bAsDm7MaSatI1uUz2RrZh7qR6nGCULEHSlpuhQ4eivml2jM0+PHToUBw/ftyKtSJ7xebsxpHqzph35NRYnGCUmsquOhQT1YerAzeOVHfGvCMnU3A5BWoK2cxQbCucoVjZjM2Uyj43xuVryyW5M5bqdYnIOHsZhGHK7zeDG1Ic/ngSETWOPQ3CMOX3m2kpB6fEOUfYnE1E1DAlD8Kwq3luyLLsKWInIiLLUvIgDLbcOCglR+xERNQwJQ/CYHDjoDjnCBGRbcg1/a/kEYxMSzkozjlCRGR9ck//K3VOIbbcOCglR+xERHJgL+l/JQ7CYMuNA1NqxE5EJAdK7rArdwxuHFygxp1/ZEREVsD0v3SYliIiIrICpv+lw5YbIiIiK2H6XxoMboiIyC7Zy5pITP/bHoMbIiKyO3IfYk3SYp8bIiKyK/YyxNoRyHWCQrbcEBGRXeEQa3mQc+sZW26IiMiuKHlNJHsh99YzBjdERGRXOMTaNNZIHcl9fUKmpYiIyO5wiHXjWCt1JPcJCtlyQ0REdkmJayJZkjVTR3JvPWPLDRERkQJZu+O1nFvPGNwQEZFi2MvEfrZgi9SRXCcoZFrKzsh1TgEiIqklp+ciOnE/Jmw4gujE/UhOz5W6SpKSe+rImlRCCNFwMeUoLi6GRqOBVquFt7e31NUxiZznFCAiklK+thzRiftrtVKkxA9ziB/z+uRry2WZOjKVKb/fbLmxE3KfU4CISEpyH5osJUfseM3gxk7wD5eIqG6c2I9qYnBjJ+z9D5d9hYjImhy5fwnVxtFSdqL6D3fJ1ixUCWFXf7jsK6QsHI1CciXnoclkW+xQbGfsrWMYO/kpCwNVsjcMxpXDlN9vttzYGbnOKVAXrt6rHHV1ah/S2ZfvJckSg3HHxT43ZFX23leI/sZO7WRPHGmEKfs01sbghqyKnfyUg4Eq2RNHCcY5caFxTEuR1Smhkx/z9vbdqZ0cj9xXrbYEporrxuCGbMLe+grVDGYO/3pF0Xl7UwI3JQSq5BgcIRhnn8a6Mbghus3tnRCFAKq/P5R2Z2ROh0t7C1TJcSk9GHeE1ilzsc8NUQ3GmnlvnytBKXl7R+pwSY5LyUsPsE9j3dhyQ1SDsWbe2ynlzohN2kT2T+mtU+ZicEMOy1hfE2PNvCoVoBKADsq6M2KTNimJI3f6Z6q4NgY35JDq6mtSVydEe7wzaujL3hE6XJJj4GR9dDtZLL/w9ttvY9WqVSgoKEBERATefPNN9O/f32jZpKQkTJs2zWCbWq3G9evXG/Va9r78AjVdY5aEsLdlLm5nype9vZ8rOTYu8eI4TPn9lrxDcXJyMp566iksXboUx44dQ0REBGJjY3H58uU6n+Pt7Y38/Hz948KFCzasMdm7xkzuZc+dEE3tKGzsXDnjKdkLR5msj0wjeXDz73//G7NmzcK0adMQHh6O9evXw8PDA++//36dz1GpVAgICNA//P39bVhjsndKn2m3qV/2nPGU7InS/56N4c1HwyQNbm7cuIGjR49ixIgR+m1OTk4YMWIE0tLS6nxeSUkJ2rVrh+DgYNx33304ffq0LapLCqH04ZNN+bLn8HCyN0r/e74dbz4aR9IOxYWFhaiqqqrV8uLv749ffvnF6HO6dOmC999/Hz179oRWq8W//vUvDBo0CKdPn0bbtm1rla+oqEBFRYX+/8XFxZY9CbJLSh4+2ZSOwhweTvZIyX/PNXG5hcazu9FSUVFRiIqK0v9/0KBB6NatG9555x2sXLmyVvmEhAQsX77cllUkO6Hk4ZPVX/bHLvwFnRCIDG3VqOdxeDjZKyX/PVfjzUfjSZqW8vHxgbOzMy5dumSw/dKlSwgICGjUMZo1a4bevXvj3LlzRvcvXrwYWq1W/8jLy2tyvYnsweFfr+CJT4/jiU8zG9187WhN/ET2xBH7F5lL0uDG1dUVffv2xb59+/TbdDod9u3bZ9A6U5+qqiqcOnUKgYGBRver1Wp4e3sbPIiUril9Z+L6hSAlfhg+nTUQKfHDOF8IkUzw5qPxJE9LPfXUU5gyZQoiIyPRv39/rFmzBqWlpfq5bCZPnoygoCAkJCQAAFasWIGBAweiY8eOKCoqwqpVq3DhwgXMnDlTytMgkpWmNl87QhM/kdwZm4jTUfoXNZXkwU1cXByuXLmCF198EQUFBejVqxd27dql72Scm5sLJ6e/G5j++usvzJo1CwUFBWjZsiX69u2L1NRUhIeHS3UKRLLDvjNE9q2+iTh589EwWcxQbEucoZgcRXJ6bq0RU0wxEckfZ102zpTfb8lbbojIOth8TWQ/aqagOCqq6RjcECkYm6+J5O/2FNSi0V2ZVm4iyZdfICIiclTGRja+tvMMFo3qylFRTcCWGyIiIonUlYLq2bYFUuKHMa1sJgY3REREEqlvZCPTyuZjWoqIiEginJjPOthyQ0REJCGObLQ8BjdEREQSYwrKspiWIiIiMiJfW47U7MJGrclG8sKWGyIiotvUt/wByR9bbmSAdwdERPJhbO6ZJVuz+B1tR9hyIzHeHRARyQuXP7B/bLmREO8OiIikUV+LefXcMzVx+QP7wuBGQvXdHRARkXUkp+ciOnE/Jmw4gujE/UhOzzXYz7ln7B/TUhKqb2ZKIiKyvLpazId09jUIXjj3jH1jy42EeHdARGRbprSYB2rcEdWhNb+T7RBbbiTGuwMiItthi7ljYMuNDPDuwP5w+D6RfWKLuWNgyw2RiTh8n8i+scVc+dhyQ2QCDt8nUga2mCsbgxsiE3D4PhGR/DG4ITIBJ/ciIpI/BjdEJmBnRCIi+WOHYiITsTMiEZG8MbghMkOgxp1BDRGRTDEtRURERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdEREQWxvXnpMXRUkRERBbE9eekx5YbIiOkuOuy5GvyrpFIGlx/Th7YckN0Gynuuiz5mrxrJJJOfevPcW4s22HLDVENUtx1WfI1eddIZD2NaRE1tv4cAJz8o8h6FaNaGNwQ1SDFqt+WfE2uWk5kHcnpuYhO3I8JG44gOnE/3jmcbTTQCdS4Y9GorrWe/9rOM7zJsCGmpYhqqL7rqhkgWHvVb1NfM19bjpzCUoT5NK/VzC1F/YmUzliLaMKOXwAYT/32aKupdQympmyLLTdENUix6rcpr3n73WNyeq7k9SdSOmMtotWMpX6NpaZ4k2FbKiFEHW+ZMhUXF0Oj0UCr1cLb21vq6pBM5WvLbb7qd0Ovma8tR3Ti/lqtMinxw2qVl6L+REpl7G/vdp/OGoioDq31/09Oz8WSrVmoEkJ/k8GO/U1jyu8301JERkix6ndDr2nKKAyuWk5kOdUtotXByu2MtcrE9QvBkM6+vMmQCIMbIjvB/jRE0qkZrJz8vQiv7Tpj0CpTM3ip2S+uZmsO2Q6DGyI7cfvdI/vTENlWdYtoVIfWuLdXG6OtMpxnSh5k0aH47bffRmhoKNzc3DBgwAD8+OOP9ZbfsmULunbtCjc3N/To0QM7duywUU2JpBXXLwQp8cPw6ayBSIkfxi9NIolUBzm3t9hwnil5kDy4SU5OxlNPPYWlS5fi2LFjiIiIQGxsLC5fvmy0fGpqKsaPH48ZM2bg+PHjGDt2LMaOHYusrCwb15xIGsa+VIlIepxnSj4kHy01YMAA9OvXD2+99RYAQKfTITg4GE888QTi4+NrlY+Li0NpaSm+/fZb/baBAweiV69eWL9+fYOvx9FSRERkDaaMaCTTmfL7LWnLzY0bN3D06FGMGDFCv83JyQkjRoxAWlqa0eekpaUZlAeA2NjYOstXVFSguLjY4EFERGRpnGdKPiTtUFxYWIiqqir4+/sbbPf398cvv/xi9DkFBQVGyxcUFBgtn5CQgOXLl1umwkRERPXgEHB5kLzPjbUtXrwYWq1W/8jLy5O6SkREpGDsFyc9SVtufHx84OzsjEuXLhlsv3TpEgICAow+JyAgwKTyarUaarXaMhUmIiIi2ZO05cbV1RV9+/bFvn379Nt0Oh327duHqKgoo8+JiooyKA8Ae/furbM8ERERORbJJ/F76qmnMGXKFERGRqJ///5Ys2YNSktLMW3aNADA5MmTERQUhISEBADA/PnzERMTg9WrV2PMmDHYvHkzMjIy8O6770p5GkRERCQTkgc3cXFxuHLlCl588UUUFBSgV69e2LVrl77TcG5uLpyc/m5gGjRoED755BM8//zzWLJkCTp16oQvv/wS3bt3l+oUiIiISEYkn+fG1jjPDRERkf2xm3luiIiIiCyNwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaJIPs+NrVWPfOfq4ERERPaj+ne7MTPYOFxwc+3aNQBAcHCwxDUhIiIiU127dg0ajabeMg43iZ9Op8PFixfh5eUFlUrV6OcVFxcjODgYeXl5Dj35H68Dr0E1XodbeB14DarxOtxiresghMC1a9fQpk0bg5ULjHG4lhsnJye0bdvW7Od7e3s79Ie2Gq8Dr0E1XodbeB14DarxOtxijevQUItNNXYoJiIiIkVhcENERESKwuCmkdRqNZYuXQq1Wi11VSTF68BrUI3X4RZeB16DarwOt8jhOjhch2IiIiJSNrbcEBERkaIwuCEiIiJFYXBDREREisLghoiIiBTFoYObdevWoWfPnvqJhqKiorBz5079/uvXr2POnDlo3bo1PD098cADD+DSpUsGx8jNzcWYMWPg4eEBPz8/PPPMM6isrLT1qVhMYmIiVCoVFixYoN/mCNdh2bJlUKlUBo+uXbvq9zvCNaj2xx9/4JFHHkHr1q3h7u6OHj16ICMjQ79fCIEXX3wRgYGBcHd3x4gRI3D27FmDY1y9ehUTJ06Et7c3WrRogRkzZqCkpMTWp2K20NDQWp8HlUqFOXPmAHCMz0NVVRVeeOEFhIWFwd3dHR06dMDKlSsN1vVxhM8CcGu6/wULFqBdu3Zwd3fHoEGDkJ6ert+vxOtw+PBh3HPPPWjTpg1UKhW+/PJLg/2WOueTJ0/izjvvhJubG4KDg/Haa69Z5gSEA/v666/F9u3bxa+//irOnDkjlixZIpo1ayaysrKEEELMnj1bBAcHi3379omMjAwxcOBAMWjQIP3zKysrRffu3cWIESPE8ePHxY4dO4SPj49YvHixVKfUJD/++KMIDQ0VPXv2FPPnz9dvd4TrsHTpUnHHHXeI/Px8/ePKlSv6/Y5wDYQQ4urVq6Jdu3Zi6tSp4siRI+K3334Tu3fvFufOndOXSUxMFBqNRnz55ZfixIkT4t577xVhYWGivLxcX2bUqFEiIiJC/PDDD+J///uf6Nixoxg/frwUp2SWy5cvG3wW9u7dKwCIAwcOCCEc4/Pw8ssvi9atW4tvv/1W5OTkiC1btghPT0+xdu1afRlH+CwIIcRDDz0kwsPDxaFDh8TZs2fF0qVLhbe3t/j999+FEMq8Djt27BDPPfec2Lp1qwAgtm3bZrDfEues1WqFv7+/mDhxosjKyhKffvqpcHd3F++8806T6+/QwY0xLVu2FO+9954oKioSzZo1E1u2bNHv+/nnnwUAkZaWJoS49eY7OTmJgoICfZl169YJb29vUVFRYfO6N8W1a9dEp06dxN69e0VMTIw+uHGU67B06VIRERFhdJ+jXAMhhFi0aJEYPHhwnft1Op0ICAgQq1at0m8rKioSarVafPrpp0IIIX766ScBQKSnp+vL7Ny5U6hUKvHHH39Yr/JWNH/+fNGhQweh0+kc5vMwZswYMX36dINt48aNExMnThRCOM5noaysTDg7O4tvv/3WYHufPn3Ec8895xDX4fbgxlLn/J///Ee0bNnS4G9i0aJFokuXLk2us0OnpWqqqqrC5s2bUVpaiqioKBw9ehQ3b97EiBEj9GW6du2KkJAQpKWlAQDS0tLQo0cP+Pv768vExsaiuLgYp0+ftvk5NMWcOXMwZswYg/MF4FDX4ezZs2jTpg3at2+PiRMnIjc3F4BjXYOvv/4akZGR+Oc//wk/Pz/07t0bGzZs0O/PyclBQUGBwbXQaDQYMGCAwbVo0aIFIiMj9WVGjBgBJycnHDlyxHYnYyE3btzApk2bMH36dKhUKof5PAwaNAj79u3Dr7/+CgA4ceIEUlJSMHr0aACO81morKxEVVUV3NzcDLa7u7sjJSXFYa5DTZY657S0NAwZMgSurq76MrGxsThz5gz++uuvJtXR4RbOvN2pU6cQFRWF69evw9PTE9u2bUN4eDgyMzPh6uqKFi1aGJT39/dHQUEBAKCgoMDgy6t6f/U+e7F582YcO3bMIIdcraCgwCGuw4ABA5CUlIQuXbogPz8fy5cvx5133omsrCyHuQYA8Ntvv2HdunV46qmnsGTJEqSnp2PevHlwdXXFlClT9Odi7FxrXgs/Pz+D/S4uLmjVqpVdXYtqX375JYqKijB16lQAjvM3ER8fj+LiYnTt2hXOzs6oqqrCyy+/jIkTJwKAw3wWvLy8EBUVhZUrV6Jbt27w9/fHp59+irS0NHTs2NFhrkNNljrngoIChIWF1TpG9b6WLVuaXUeHD266dOmCzMxMaLVafP7555gyZQoOHTokdbVsJi8vD/Pnz8fevXtr3Zk4kuq7UQDo2bMnBgwYgHbt2uGzzz6Du7u7hDWzLZ1Oh8jISLzyyisAgN69eyMrKwvr16/HlClTJK6dNP773/9i9OjRaNOmjdRVsanPPvsMH3/8MT755BPccccdyMzMxIIFC9CmTRuH+yx89NFHmD59OoKCguDs7Iw+ffpg/PjxOHr0qNRVozo4fFrK1dUVHTt2RN++fZGQkICIiAisXbsWAQEBuHHjBoqKigzKX7p0CQEBAQCAgICAWiMkqv9fXUbujh49isuXL6NPnz5wcXGBi4sLDh06hDfeeAMuLi7w9/d3iOtwuxYtWqBz5844d+6cw3wWACAwMBDh4eEG27p166ZP0VWfi7FzrXktLl++bLC/srISV69etatrAQAXLlzAd999h5kzZ+q3Ocrn4ZlnnkF8fDwefvhh9OjRA5MmTcKTTz6JhIQEAI71WejQoQMOHTqEkpIS5OXl4ccff8TNmzfRvn17h7oO1Sx1ztb8O3H44OZ2Op0OFRUV6Nu3L5o1a4Z9+/bp9505cwa5ubmIiooCAERFReHUqVMGb+DevXvh7e1d6wdCroYPH45Tp04hMzNT/4iMjMTEiRP1/3aE63C7kpISZGdnIzAw0GE+CwAQHR2NM2fOGGz79ddf0a5dOwBAWFgYAgICDK5FcXExjhw5YnAtioqKDO5q9+/fD51OhwEDBtjgLCxn48aN8PPzw5gxY/TbHOXzUFZWBicnw58IZ2dn6HQ6AI73WQCA5s2bIzAwEH/99Rd2796N++67zyGvg6XOOSoqCocPH8bNmzf1Zfbu3YsuXbo0KSUFwLGHgsfHx4tDhw6JnJwccfLkSREfHy9UKpXYs2ePEOLWcM+QkBCxf/9+kZGRIaKiokRUVJT++dXDPUeOHCkyMzPFrl27hK+vr10N9zSm5mgpIRzjOjz99NPi4MGDIicnR3z//fdixIgRwsfHR1y+fFkI4RjXQIhb0wG4uLiIl19+WZw9e1Z8/PHHwsPDQ2zatElfJjExUbRo0UJ89dVX4uTJk+K+++4zOgS0d+/e4siRIyIlJUV06tRJ1sNejamqqhIhISFi0aJFtfY5wudhypQpIigoSD8UfOvWrcLHx0c8++yz+jKO8lnYtWuX2Llzp/jtt9/Enj17REREhBgwYIC4ceOGEEKZ1+HatWvi+PHj4vjx4wKA+Pe//y2OHz8uLly4IISwzDkXFRUJf39/MWnSJJGVlSU2b94sPDw8OBS8qaZPny7atWsnXF1dha+vrxg+fLg+sBFCiPLycvH444+Lli1bCg8PD3H//feL/Px8g2OcP39ejB49Wri7uwsfHx/x9NNPi5s3b9r6VCzq9uDGEa5DXFycCAwMFK6uriIoKEjExcUZzO3iCNeg2jfffCO6d+8u1Gq16Nq1q3j33XcN9ut0OvHCCy8If39/oVarxfDhw8WZM2cMyvz5559i/PjxwtPTU3h7e4tp06aJa9eu2fI0mmz37t0CQK1zE8IxPg/FxcVi/vz5IiQkRLi5uYn27duL5557zmDYrqN8FpKTk0X79u2Fq6urCAgIEHPmzBFFRUX6/Uq8DgcOHBAAaj2mTJkihLDcOZ84cUIMHjxYqNVqERQUJBITEy1Sf5UQNaabJCIiIrJz7HNDREREisLghoiIiBSFwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBDRI0ydOhQLFiwQOpqWN2yZcvQq1cvqatBRE3A4IaIHMKNGzds+npCCFRWVtr0NYnoFgY3RNSgqVOn4tChQ1i7di1UKhVUKhXOnz+PrKwsjB49Gp6envD398ekSZNQWFiof97QoUPxxBNPYMGCBWjZsiX8/f2xYcMGlJaWYtq0afDy8kLHjh2xc+dO/XMOHjwIlUqF7du3o2fPnnBzc8PAgQORlZVlUKeUlBTceeedcHd3R3BwMObNm4fS0lL9/tDQUKxcuRKTJ0+Gt7c3Hn30UQDAokWL0LlzZ3h4eKB9+/Z44YUX9KsSJyUlYfny5Thx4oT+PJOSknD+/HmoVCpkZmbqj19UVASVSoWDBw8a1Hvnzp3o27cv1Go1UlJSoNPpkJCQgLCwMLi7uyMiIgKff/65pd8iIqqBwQ0RNWjt2rWIiorCrFmzkJ+fj/z8fHh5eeGuu+5C7969kZGRgV27duHSpUt46KGHDJ77wQcfwMfHBz/++COeeOIJPPbYY/jnP/+JQYMG4dixYxg5ciQmTZqEsrIyg+c988wzWL16NdLT0+Hr64t77rlHH4RkZ2dj1KhReOCBB3Dy5EkkJycjJSUFc+fONTjGv/71L0REROD48eN44YUXAABeXl5ISkrCTz/9hLVr12LDhg14/fXXAQBxcXF4+umncccdd+jPMy4uzqRrFR8fj8TERPz888/o2bMnEhIS8OGHH2L9+vU4ffo0nnzySTzyyCM4dOiQScclIhNYZPlNIlK821eLX7lypRg5cqRBmby8PIOVtGNiYsTgwYP1+ysrK0Xz5s3FpEmT9Nvy8/MFAJGWliaE+Hs14s2bN+vL/Pnnn8Ld3V0kJycLIYSYMWOGePTRRw1e+3//+59wcnIS5eXlQggh2rVrJ8aOHdvgea1atUr07dtX//+lS5eKiIgIgzI5OTkCgDh+/Lh+219//SUAiAMHDhjU+8svv9SXuX79uvDw8BCpqakGx5sxY4YYP358g3UjIvO4SBlYEZH9OnHiBA4cOABPT89a+7Kzs9G5c2cAQM+ePfXbnZ2d0bp1a/To0UO/zd/fHwBw+fJlg2NERUXp/92qVSt06dIFP//8s/61T548iY8//lhfRggBnU6HnJwcdOvWDQAQGRlZq27Jycl44403kJ2djZKSElRWVsLb29vk869Lzdc8d+4cysrKcPfddxuUuXHjBnr37m2x1yQiQwxuiMgsJSUluOeee/Dqq6/W2hcYGKj/d7NmzQz2qVQqg20qlQoAoNPpTHrt//u//8O8efNq7QsJCdH/u3nz5gb70tLSMHHiRCxfvhyxsbHQaDTYvHkzVq9eXe/rOTndyuALIfTbqlNkt6v5miUlJQCA7du3IygoyKCcWq2u9zWJyHwMboioUVxdXVFVVaX/f58+ffDFF18gNDQULi6W/yr54Ycf9IHKX3/9hV9//VXfItOnTx/89NNP6Nixo0nHTE1NRbt27fDcc8/pt124cMGgzO3nCQC+vr4AgPz8fH2LS83OxXUJDw+HWq1Gbm4uYmJiTKorEZmPHYqJqFFCQ0Nx5MgRnD9/HoWFhZgzZw6uXr2K8ePHIz09HdnZ2di9ezemTZtWKzgwx4oVK7Bv3z5kZWVh6tSp8PHxwdixYwHcGvGUmpqKuXPnIjMzE2fPnsVXX31Vq0Px7Tp16oTc3Fxs3rwZ2dnZeOONN7Bt27Za55mTk4PMzEwUFhaioqIC7u7uGDhwoL6j8KFDh/D88883eA5eXl5YuHAhnnzySXzwwQfIzs7GsWPH8Oabb+KDDz4w+9oQUf0Y3BBRoyxcuBDOzs4IDw+Hr68vbty4ge+//x5VVVUYOXIkevTogQULFqBFixb6NE5TJCYmYv78+ejbty8KCgrwzTffwNXVFcCtfjyHDh3Cr7/+ijvvvBO9e/fGiy++iDZt2tR7zHvvvRdPPvkk5s6di169eiE1NVU/iqraAw88gFGjRmHYsGHw9fXFp59+CgB4//33UVlZib59+2LBggV46aWXGnUeK1euxAsvvICEhAR069YNo0aNwvbt2xEWFmbGVSGixlCJmklkIiKJHTx4EMOGDcNff/2FFi1aSF0dIrJDbLkhIiIiRWFwQ0RERIrCtBQREREpCltuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuiIiISFH+P6mFqBfr0aimAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" } - ], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(keras_surrogate, data_validation)\n", - "surrogate_parity(keras_surrogate, data_validation)\n", - "surrogate_residual(keras_surrogate, data_validation)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding_test.ipynb](./surrogate_embedding_test.ipynb) file." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training_usr.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training_usr.ipynb index ed23d255..ca8d855c 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training_usr.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/keras_training_usr.ipynb @@ -1,1123 +1,1148 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with OMLT Surrogate Object - Training Surrogate (Part 1)\n", - "\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "\n", - "## 1. Introduction\n", - "This notebook illustrates the use of KerasSurrogate API leveraging TensorFlow Keras and OMLT package to produce an ML surrogate based on supercritical CO2 data from simulation using REFPROP package.\n", - "\n", - "There are several reasons to build surrogate models for complex processes, even when higher fidelity models already exist (e.g., reduce model size, improve convergence reliability, replace models with externally compiled code and make them fully-equation oriented).\n", - "\n", - "In this example, we intend to make a surrogate for the physical properties of S-CO2 to be embedded in the property package. This property package will be used to get the physical properties of S-CO2 in the flowsheet simulation. To learn more about property package, see the [IDAES-PSE](https://github.com/IDAES/idaes-pse) Github Page or IDAES [Read-the-docs](https://idaes-pse.readthedocs.io/en/latest/). \n", - "\n", - "### 1.1 Need for ML Surrogates\n", - "\n", - "The properties predicted by the surrogate are enthalpy and entropy of the S-CO2 based on the \n", - "pressure and temperature of the system. The analytical equation of getting the enthalpy and entropy from pressure and temperature are in the differential form and would make the problem a DAE system. To counter this problem and keep the problem algebraic, we will use the ML surrogates and relate enthalpy and entropy with the pressure and temperature as an algebraic equation.\n", - "\n", - "### 1.2 Supercritical CO2 cycle process\n", - "\n", - "The following flowsheet will be used to optimize the design for the cooling of the fusion reactor using supercritical CO2 cycle. We shall focus on training the surrogate for this notebook and move to constructing the flowsheet and the properties package in the subsequent notebooks. The take away from this flowsheet is that, 3 variables can be measured in any given unit which are flow, pressure and temperature and other properties can be calculated using them. Thus, surrogate should have pressure and temperature as the inputs.\n", - "\n", - "In this example, we will train a tanh model from our data and then demonstrate that we can solve an optimization problem with that surrogate model. " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", - "text/plain": [ - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"CO2_flowsheet.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Training and Validating Surrogate\n", - "\n", - "First, let's import the required Python and IDAES modules:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: DEPRECATED: pyomo.core.expr.current is deprecated. Please import\n", - "expression symbols from pyomo.core.expr (deprecated in 6.6.2) (called from\n", - ":241)\n" - ] - } - ], - "source": [ - "# Import statements\n", - "import os\n", - "import numpy as np\n", - "import pandas as pd\n", - "import random as rn\n", - "import tensorflow as tf\n", - "import tensorflow.keras as keras\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", - "from idaes.core.surrogate.sampling.scaling import OffsetScaler\n", - "from idaes.core.surrogate.keras_surrogate import KerasSurrogate\n", - "from idaes.core.surrogate.plotting.sm_plotter import (\n", - " surrogate_scatter2D,\n", - " surrogate_parity,\n", - " surrogate_residual,\n", - ")\n", - "\n", - "# fix environment variables to ensure consist neural network training\n", - "os.environ[\"PYTHONHASHSEED\"] = \"0\"\n", - "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"\"\n", - "np.random.seed(46)\n", - "rn.seed(1342)\n", - "tf.random.set_seed(62)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.1 Importing Training and Validation Datasets\n", - "\n", - "In this section, we read the dataset from the CSV file located in this directory. 500 data points were simulated for S-CO2 physical properties using REFPROP package. This example is trained on the entire dataset because neural network can overfit on smaller dataset. The data is separated using an 80/20 split into training and validation data using the IDAES split_training_validation() method.\n", - "\n", - "We rename the column headers because they contained \".\", which may cause errors while reading the column names in subsequent code, thus as a good practice we change them to the variable names to be used in the property package. Further, the input variables are **pressure**, **temperature** , while the output variables are **enth_mol**, **entr_mol**, hence we create two new dataframes for the input and output variables. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Import training data\n", - "np.set_printoptions(precision=6, suppress=True)\n", - "\n", - "csv_data = pd.read_csv(datafile_path(\"500_Points_DataSet.csv\"))\n", - "csv_data.columns.values[0:6] = [\n", - " \"pressure\",\n", - " \"temperature\",\n", - " \"enth_mol\",\n", - " \"entr_mol\",\n", - " \"CO2_enthalpy\",\n", - " \"CO2_entropy\",\n", - "]\n", - "data = csv_data.sample(n=500)\n", - "\n", - "# Creating input_data and output_data from data\n", - "input_data = data.iloc[:, :2]\n", - "output_data = data.iloc[:, 2:4]\n", - "\n", - "# Define labels, and split training and validation data\n", - "input_labels = input_data.columns\n", - "output_labels = output_data.columns\n", - "\n", - "n_data = data[input_labels[0]].size\n", - "data_training, data_validation = split_training_validation(data, 0.8, seed=n_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.2 Training Surrogate with TensorFlow Keras\n", - "TensorFlow Keras provides an interface to pass regression settings, build neural networks and train surrogate models. Keras enables the usage of two API formats: Sequential and Functional. While the Functional API offers more versatility, including multiple input and output layers in a single neural network, the Sequential API is more stable and user-friendly. Further, the Sequential API integrates cleanly with existing IDAES surrogate tools and will be utilized in this example.\n", - "\n", - "In the code below, we build the neural network structure based on our training data structure and desired regression settings. Offline, neural network models were trained for the list of settings below, and the options bolded and italicized were determined to have the minimum mean squared error for the dataset:\n", - "\n", - "* Activation function: sigmoid, **tanh**\n", - "* Optimizer: **Adam**\n", - "* Number of hidden layers: 3, **4**, 5, 6\n", - "* Number of neurons per layer: **20**, 40, 60\n", - "\n", - "Important thing to note here is that we do not use ReLU activation function for the training as the flowsheet we intend to solve with this surrogate model is a NLP problem and using ReLU activation function will make it an MINLP. Another thing to note here is the network is smaller (4,20) in order to avoid overfitting. \n", - "\n", - "Typically, Sequential Keras models are built vertically; the dataset is scaled and normalized. The network is defined for the input layer, hidden layers, and output layer for the passed activation functions and network/layer sizes. Then, the model is compiled using the passed optimizer and trained using a desired number of epochs. Keras internally validates while training and updates each epoch's model weight (coefficient) values.\n", - "\n", - "Finally, after training the model, we save the results and model expressions to a folder that contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/250\n", - "13/13 - 3s - loss: 0.4963 - mae: 0.5592 - mse: 0.4963 - val_loss: 0.1685 - val_mae: 0.3349 - val_mse: 0.1685 - 3s/epoch - 249ms/step\n", - "Epoch 2/250\n", - "13/13 - 0s - loss: 0.1216 - mae: 0.2839 - mse: 0.1216 - val_loss: 0.0809 - val_mae: 0.2245 - val_mse: 0.0809 - 237ms/epoch - 18ms/step\n", - "Epoch 3/250\n", - "13/13 - 0s - loss: 0.0665 - mae: 0.2043 - mse: 0.0665 - val_loss: 0.0359 - val_mae: 0.1503 - val_mse: 0.0359 - 262ms/epoch - 20ms/step\n", - "Epoch 4/250\n", - "13/13 - 0s - loss: 0.0294 - mae: 0.1329 - mse: 0.0294 - val_loss: 0.0221 - val_mae: 0.1119 - val_mse: 0.0221 - 283ms/epoch - 22ms/step\n", - "Epoch 5/250\n", - "13/13 - 0s - loss: 0.0170 - mae: 0.0964 - mse: 0.0170 - val_loss: 0.0115 - val_mae: 0.0792 - val_mse: 0.0115 - 351ms/epoch - 27ms/step\n", - "Epoch 6/250\n", - "13/13 - 0s - loss: 0.0097 - mae: 0.0734 - mse: 0.0097 - val_loss: 0.0067 - val_mae: 0.0636 - val_mse: 0.0067 - 364ms/epoch - 28ms/step\n", - "Epoch 7/250\n", - "13/13 - 0s - loss: 0.0061 - mae: 0.0610 - mse: 0.0061 - val_loss: 0.0048 - val_mae: 0.0550 - val_mse: 0.0048 - 245ms/epoch - 19ms/step\n", - "Epoch 8/250\n", - "13/13 - 0s - loss: 0.0042 - mae: 0.0521 - mse: 0.0042 - val_loss: 0.0034 - val_mae: 0.0464 - val_mse: 0.0034 - 203ms/epoch - 16ms/step\n", - "Epoch 9/250\n", - "13/13 - 0s - loss: 0.0032 - mae: 0.0458 - mse: 0.0032 - val_loss: 0.0027 - val_mae: 0.0418 - val_mse: 0.0027 - 300ms/epoch - 23ms/step\n", - "Epoch 10/250\n", - "13/13 - 0s - loss: 0.0028 - mae: 0.0420 - mse: 0.0028 - val_loss: 0.0024 - val_mae: 0.0379 - val_mse: 0.0024 - 255ms/epoch - 20ms/step\n", - "Epoch 11/250\n", - "13/13 - 0s - loss: 0.0024 - mae: 0.0384 - mse: 0.0024 - val_loss: 0.0021 - val_mae: 0.0358 - val_mse: 0.0021 - 247ms/epoch - 19ms/step\n", - "Epoch 12/250\n", - "13/13 - 0s - loss: 0.0022 - mae: 0.0358 - mse: 0.0022 - val_loss: 0.0018 - val_mae: 0.0330 - val_mse: 0.0018 - 321ms/epoch - 25ms/step\n", - "Epoch 13/250\n", - "13/13 - 0s - loss: 0.0020 - mae: 0.0338 - mse: 0.0020 - val_loss: 0.0017 - val_mae: 0.0315 - val_mse: 0.0017 - 219ms/epoch - 17ms/step\n", - "Epoch 14/250\n", - "13/13 - 0s - loss: 0.0018 - mae: 0.0323 - mse: 0.0018 - val_loss: 0.0015 - val_mae: 0.0302 - val_mse: 0.0015 - 272ms/epoch - 21ms/step\n", - "Epoch 15/250\n", - "13/13 - 0s - loss: 0.0017 - mae: 0.0311 - mse: 0.0017 - val_loss: 0.0015 - val_mae: 0.0296 - val_mse: 0.0015 - 299ms/epoch - 23ms/step\n", - "Epoch 16/250\n", - "13/13 - 0s - loss: 0.0016 - mae: 0.0303 - mse: 0.0016 - val_loss: 0.0014 - val_mae: 0.0289 - val_mse: 0.0014 - 271ms/epoch - 21ms/step\n", - "Epoch 17/250\n", - "13/13 - 0s - loss: 0.0016 - mae: 0.0293 - mse: 0.0016 - val_loss: 0.0014 - val_mae: 0.0281 - val_mse: 0.0014 - 248ms/epoch - 19ms/step\n", - "Epoch 18/250\n", - "13/13 - 0s - loss: 0.0015 - mae: 0.0287 - mse: 0.0015 - val_loss: 0.0013 - val_mae: 0.0275 - val_mse: 0.0013 - 256ms/epoch - 20ms/step\n", - "Epoch 19/250\n", - "13/13 - 0s - loss: 0.0015 - mae: 0.0285 - mse: 0.0015 - val_loss: 0.0014 - val_mae: 0.0285 - val_mse: 0.0014 - 153ms/epoch - 12ms/step\n", - "Epoch 20/250\n", - "13/13 - 0s - loss: 0.0015 - mae: 0.0282 - mse: 0.0015 - val_loss: 0.0012 - val_mae: 0.0269 - val_mse: 0.0012 - 239ms/epoch - 18ms/step\n", - "Epoch 21/250\n", - "13/13 - 0s - loss: 0.0015 - mae: 0.0278 - mse: 0.0015 - val_loss: 0.0012 - val_mae: 0.0266 - val_mse: 0.0012 - 263ms/epoch - 20ms/step\n", - "Epoch 22/250\n", - "13/13 - 0s - loss: 0.0015 - mae: 0.0279 - mse: 0.0015 - val_loss: 0.0012 - val_mae: 0.0266 - val_mse: 0.0012 - 243ms/epoch - 19ms/step\n", - "Epoch 23/250\n", - "13/13 - 0s - loss: 0.0014 - mae: 0.0274 - mse: 0.0014 - val_loss: 0.0012 - val_mae: 0.0265 - val_mse: 0.0012 - 138ms/epoch - 11ms/step\n", - "Epoch 24/250\n", - "13/13 - 0s - loss: 0.0014 - mae: 0.0264 - mse: 0.0014 - val_loss: 0.0012 - val_mae: 0.0259 - val_mse: 0.0012 - 189ms/epoch - 15ms/step\n", - "Epoch 25/250\n", - "13/13 - 0s - loss: 0.0014 - mae: 0.0268 - mse: 0.0014 - val_loss: 0.0012 - val_mae: 0.0258 - val_mse: 0.0012 - 280ms/epoch - 22ms/step\n", - "Epoch 26/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0268 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0258 - val_mse: 0.0011 - 222ms/epoch - 17ms/step\n", - "Epoch 27/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0265 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0247 - val_mse: 0.0011 - 286ms/epoch - 22ms/step\n", - "Epoch 28/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0259 - mse: 0.0013 - val_loss: 0.0012 - val_mae: 0.0259 - val_mse: 0.0012 - 116ms/epoch - 9ms/step\n", - "Epoch 29/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0259 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0252 - val_mse: 0.0011 - 157ms/epoch - 12ms/step\n", - "Epoch 30/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0256 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0248 - val_mse: 0.0011 - 267ms/epoch - 21ms/step\n", - "Epoch 31/250\n", - "13/13 - 0s - loss: 0.0013 - mae: 0.0254 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0245 - val_mse: 0.0011 - 264ms/epoch - 20ms/step\n", - "Epoch 32/250\n", - "13/13 - 0s - loss: 0.0012 - mae: 0.0254 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0243 - val_mse: 0.0010 - 269ms/epoch - 21ms/step\n", - "Epoch 33/250\n", - "13/13 - 0s - loss: 0.0012 - mae: 0.0248 - mse: 0.0012 - val_loss: 0.0012 - val_mae: 0.0251 - val_mse: 0.0012 - 353ms/epoch - 27ms/step\n", - "Epoch 34/250\n", - "13/13 - 1s - loss: 0.0012 - mae: 0.0256 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0248 - val_mse: 0.0010 - 537ms/epoch - 41ms/step\n", - "Epoch 35/250\n", - "13/13 - 0s - loss: 0.0012 - mae: 0.0254 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0243 - val_mse: 0.0010 - 330ms/epoch - 25ms/step\n", - "Epoch 36/250\n", - "13/13 - 0s - loss: 0.0012 - mae: 0.0245 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0234 - val_mse: 0.0010 - 289ms/epoch - 22ms/step\n", - "Epoch 37/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0244 - mse: 0.0011 - val_loss: 0.0010 - val_mae: 0.0239 - val_mse: 0.0010 - 155ms/epoch - 12ms/step\n", - "Epoch 38/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0243 - mse: 0.0011 - val_loss: 9.9094e-04 - val_mae: 0.0235 - val_mse: 9.9094e-04 - 289ms/epoch - 22ms/step\n", - "Epoch 39/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0243 - mse: 0.0011 - val_loss: 0.0010 - val_mae: 0.0238 - val_mse: 0.0010 - 118ms/epoch - 9ms/step\n", - "Epoch 40/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0241 - mse: 0.0011 - val_loss: 9.7491e-04 - val_mae: 0.0239 - val_mse: 9.7491e-04 - 299ms/epoch - 23ms/step\n", - "Epoch 41/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0241 - mse: 0.0011 - val_loss: 9.9821e-04 - val_mae: 0.0227 - val_mse: 9.9821e-04 - 151ms/epoch - 12ms/step\n", - "Epoch 42/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0240 - mse: 0.0011 - val_loss: 0.0010 - val_mae: 0.0235 - val_mse: 0.0010 - 192ms/epoch - 15ms/step\n", - "Epoch 43/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0238 - mse: 0.0011 - val_loss: 9.4863e-04 - val_mae: 0.0232 - val_mse: 9.4863e-04 - 237ms/epoch - 18ms/step\n", - "Epoch 44/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0236 - mse: 0.0011 - val_loss: 9.8018e-04 - val_mae: 0.0230 - val_mse: 9.8018e-04 - 154ms/epoch - 12ms/step\n", - "Epoch 45/250\n", - "13/13 - 0s - loss: 0.0011 - mae: 0.0239 - mse: 0.0011 - val_loss: 9.5093e-04 - val_mae: 0.0233 - val_mse: 9.5093e-04 - 158ms/epoch - 12ms/step\n", - "Epoch 46/250\n", - "13/13 - 0s - loss: 0.0010 - mae: 0.0230 - mse: 0.0010 - val_loss: 9.4785e-04 - val_mae: 0.0223 - val_mse: 9.4785e-04 - 218ms/epoch - 17ms/step\n", - "Epoch 47/250\n", - "13/13 - 0s - loss: 0.0010 - mae: 0.0231 - mse: 0.0010 - val_loss: 9.7827e-04 - val_mae: 0.0230 - val_mse: 9.7827e-04 - 116ms/epoch - 9ms/step\n", - "Epoch 48/250\n", - "13/13 - 0s - loss: 0.0010 - mae: 0.0232 - mse: 0.0010 - val_loss: 9.0671e-04 - val_mae: 0.0225 - val_mse: 9.0671e-04 - 288ms/epoch - 22ms/step\n", - "Epoch 49/250\n", - "13/13 - 0s - loss: 0.0010 - mae: 0.0230 - mse: 0.0010 - val_loss: 9.2521e-04 - val_mae: 0.0218 - val_mse: 9.2521e-04 - 140ms/epoch - 11ms/step\n", - "Epoch 50/250\n", - "13/13 - 0s - loss: 0.0010 - mae: 0.0231 - mse: 0.0010 - val_loss: 9.7818e-04 - val_mae: 0.0231 - val_mse: 9.7818e-04 - 149ms/epoch - 11ms/step\n", - "Epoch 51/250\n", - "13/13 - 0s - loss: 9.9977e-04 - mae: 0.0232 - mse: 9.9977e-04 - val_loss: 9.4350e-04 - val_mae: 0.0221 - val_mse: 9.4350e-04 - 146ms/epoch - 11ms/step\n", - "Epoch 52/250\n", - "13/13 - 0s - loss: 9.8599e-04 - mae: 0.0229 - mse: 9.8599e-04 - val_loss: 9.0638e-04 - val_mae: 0.0230 - val_mse: 9.0638e-04 - 265ms/epoch - 20ms/step\n", - "Epoch 53/250\n", - "13/13 - 0s - loss: 9.8295e-04 - mae: 0.0228 - mse: 9.8295e-04 - val_loss: 9.0667e-04 - val_mae: 0.0215 - val_mse: 9.0667e-04 - 179ms/epoch - 14ms/step\n", - "Epoch 54/250\n", - "13/13 - 0s - loss: 9.7266e-04 - mae: 0.0225 - mse: 9.7266e-04 - val_loss: 9.0391e-04 - val_mae: 0.0224 - val_mse: 9.0391e-04 - 287ms/epoch - 22ms/step\n", - "Epoch 55/250\n", - "13/13 - 0s - loss: 9.5234e-04 - mae: 0.0225 - mse: 9.5234e-04 - val_loss: 8.7426e-04 - val_mae: 0.0219 - val_mse: 8.7426e-04 - 284ms/epoch - 22ms/step\n", - "Epoch 56/250\n", - "13/13 - 0s - loss: 9.4315e-04 - mae: 0.0221 - mse: 9.4315e-04 - val_loss: 8.6742e-04 - val_mae: 0.0224 - val_mse: 8.6742e-04 - 297ms/epoch - 23ms/step\n", - "Epoch 57/250\n", - "13/13 - 0s - loss: 9.9226e-04 - mae: 0.0230 - mse: 9.9226e-04 - val_loss: 8.7793e-04 - val_mae: 0.0225 - val_mse: 8.7793e-04 - 206ms/epoch - 16ms/step\n", - "Epoch 58/250\n", - "13/13 - 0s - loss: 9.4137e-04 - mae: 0.0226 - mse: 9.4137e-04 - val_loss: 8.7477e-04 - val_mae: 0.0225 - val_mse: 8.7477e-04 - 160ms/epoch - 12ms/step\n", - "Epoch 59/250\n", - "13/13 - 0s - loss: 9.2474e-04 - mae: 0.0219 - mse: 9.2474e-04 - val_loss: 8.5320e-04 - val_mae: 0.0212 - val_mse: 8.5320e-04 - 274ms/epoch - 21ms/step\n", - "Epoch 60/250\n", - "13/13 - 0s - loss: 9.1133e-04 - mae: 0.0217 - mse: 9.1133e-04 - val_loss: 8.6082e-04 - val_mae: 0.0217 - val_mse: 8.6082e-04 - 160ms/epoch - 12ms/step\n", - "Epoch 61/250\n", - "13/13 - 0s - loss: 9.1801e-04 - mae: 0.0217 - mse: 9.1801e-04 - val_loss: 8.5403e-04 - val_mae: 0.0223 - val_mse: 8.5403e-04 - 143ms/epoch - 11ms/step\n", - "Epoch 62/250\n", - "13/13 - 0s - loss: 9.1987e-04 - mae: 0.0221 - mse: 9.1987e-04 - val_loss: 8.5714e-04 - val_mae: 0.0219 - val_mse: 8.5714e-04 - 128ms/epoch - 10ms/step\n", - "Epoch 63/250\n", - "13/13 - 0s - loss: 9.0862e-04 - mae: 0.0222 - mse: 9.0862e-04 - val_loss: 8.6160e-04 - val_mae: 0.0225 - val_mse: 8.6160e-04 - 154ms/epoch - 12ms/step\n", - "Epoch 64/250\n", - "13/13 - 0s - loss: 8.9349e-04 - mae: 0.0220 - mse: 8.9349e-04 - val_loss: 8.2851e-04 - val_mae: 0.0214 - val_mse: 8.2851e-04 - 284ms/epoch - 22ms/step\n", - "Epoch 65/250\n", - "13/13 - 0s - loss: 8.7848e-04 - mae: 0.0216 - mse: 8.7848e-04 - val_loss: 8.5189e-04 - val_mae: 0.0218 - val_mse: 8.5189e-04 - 168ms/epoch - 13ms/step\n", - "Epoch 66/250\n", - "13/13 - 0s - loss: 8.9773e-04 - mae: 0.0219 - mse: 8.9773e-04 - val_loss: 8.5650e-04 - val_mae: 0.0211 - val_mse: 8.5650e-04 - 113ms/epoch - 9ms/step\n", - "Epoch 67/250\n", - "13/13 - 0s - loss: 8.7443e-04 - mae: 0.0217 - mse: 8.7443e-04 - val_loss: 8.2545e-04 - val_mae: 0.0214 - val_mse: 8.2545e-04 - 264ms/epoch - 20ms/step\n", - "Epoch 68/250\n", - "13/13 - 0s - loss: 8.9141e-04 - mae: 0.0217 - mse: 8.9141e-04 - val_loss: 8.4471e-04 - val_mae: 0.0219 - val_mse: 8.4471e-04 - 189ms/epoch - 15ms/step\n", - "Epoch 69/250\n", - "13/13 - 0s - loss: 8.9507e-04 - mae: 0.0224 - mse: 8.9507e-04 - val_loss: 8.7916e-04 - val_mae: 0.0217 - val_mse: 8.7916e-04 - 175ms/epoch - 13ms/step\n", - "Epoch 70/250\n", - "13/13 - 0s - loss: 8.5737e-04 - mae: 0.0216 - mse: 8.5737e-04 - val_loss: 8.8807e-04 - val_mae: 0.0215 - val_mse: 8.8807e-04 - 322ms/epoch - 25ms/step\n", - "Epoch 71/250\n", - "13/13 - 0s - loss: 8.5560e-04 - mae: 0.0214 - mse: 8.5560e-04 - val_loss: 8.3750e-04 - val_mae: 0.0213 - val_mse: 8.3750e-04 - 207ms/epoch - 16ms/step\n", - "Epoch 72/250\n", - "13/13 - 0s - loss: 8.5576e-04 - mae: 0.0218 - mse: 8.5576e-04 - val_loss: 8.1156e-04 - val_mae: 0.0210 - val_mse: 8.1156e-04 - 257ms/epoch - 20ms/step\n", - "Epoch 73/250\n", - "13/13 - 0s - loss: 8.4688e-04 - mae: 0.0216 - mse: 8.4688e-04 - val_loss: 8.0221e-04 - val_mae: 0.0210 - val_mse: 8.0221e-04 - 233ms/epoch - 18ms/step\n", - "Epoch 74/250\n", - "13/13 - 0s - loss: 8.3636e-04 - mae: 0.0211 - mse: 8.3636e-04 - val_loss: 7.9384e-04 - val_mae: 0.0208 - val_mse: 7.9384e-04 - 250ms/epoch - 19ms/step\n", - "Epoch 75/250\n", - "13/13 - 0s - loss: 8.4758e-04 - mae: 0.0222 - mse: 8.4758e-04 - val_loss: 8.2932e-04 - val_mae: 0.0212 - val_mse: 8.2932e-04 - 119ms/epoch - 9ms/step\n", - "Epoch 76/250\n", - "13/13 - 0s - loss: 8.4142e-04 - mae: 0.0213 - mse: 8.4142e-04 - val_loss: 8.0552e-04 - val_mae: 0.0209 - val_mse: 8.0552e-04 - 150ms/epoch - 12ms/step\n", - "Epoch 77/250\n", - "13/13 - 0s - loss: 8.5035e-04 - mae: 0.0215 - mse: 8.5035e-04 - val_loss: 8.6014e-04 - val_mae: 0.0215 - val_mse: 8.6014e-04 - 126ms/epoch - 10ms/step\n", - "Epoch 78/250\n", - "13/13 - 0s - loss: 8.9015e-04 - mae: 0.0228 - mse: 8.9015e-04 - val_loss: 9.2548e-04 - val_mae: 0.0225 - val_mse: 9.2548e-04 - 242ms/epoch - 19ms/step\n", - "Epoch 79/250\n", - "13/13 - 0s - loss: 8.1577e-04 - mae: 0.0212 - mse: 8.1577e-04 - val_loss: 8.4703e-04 - val_mae: 0.0211 - val_mse: 8.4703e-04 - 165ms/epoch - 13ms/step\n", - "Epoch 80/250\n", - "13/13 - 0s - loss: 8.0555e-04 - mae: 0.0211 - mse: 8.0555e-04 - val_loss: 8.5652e-04 - val_mae: 0.0214 - val_mse: 8.5652e-04 - 131ms/epoch - 10ms/step\n", - "Epoch 81/250\n", - "13/13 - 0s - loss: 8.3478e-04 - mae: 0.0219 - mse: 8.3478e-04 - val_loss: 9.1057e-04 - val_mae: 0.0222 - val_mse: 9.1057e-04 - 166ms/epoch - 13ms/step\n", - "Epoch 82/250\n", - "13/13 - 0s - loss: 8.2593e-04 - mae: 0.0217 - mse: 8.2593e-04 - val_loss: 8.1172e-04 - val_mae: 0.0209 - val_mse: 8.1172e-04 - 143ms/epoch - 11ms/step\n", - "Epoch 83/250\n", - "13/13 - 0s - loss: 8.2887e-04 - mae: 0.0213 - mse: 8.2887e-04 - val_loss: 8.2033e-04 - val_mae: 0.0211 - val_mse: 8.2033e-04 - 115ms/epoch - 9ms/step\n", - "Epoch 84/250\n", - "13/13 - 0s - loss: 8.1454e-04 - mae: 0.0219 - mse: 8.1454e-04 - val_loss: 8.1589e-04 - val_mae: 0.0211 - val_mse: 8.1589e-04 - 148ms/epoch - 11ms/step\n", - "Epoch 85/250\n", - "13/13 - 0s - loss: 8.0777e-04 - mae: 0.0212 - mse: 8.0777e-04 - val_loss: 7.8637e-04 - val_mae: 0.0208 - val_mse: 7.8637e-04 - 282ms/epoch - 22ms/step\n", - "Epoch 86/250\n", - "13/13 - 0s - loss: 7.8107e-04 - mae: 0.0213 - mse: 7.8107e-04 - val_loss: 7.8138e-04 - val_mae: 0.0212 - val_mse: 7.8138e-04 - 246ms/epoch - 19ms/step\n", - "Epoch 87/250\n", - "13/13 - 0s - loss: 7.9729e-04 - mae: 0.0210 - mse: 7.9729e-04 - val_loss: 7.3667e-04 - val_mae: 0.0204 - val_mse: 7.3667e-04 - 237ms/epoch - 18ms/step\n", - "Epoch 88/250\n", - "13/13 - 0s - loss: 7.5931e-04 - mae: 0.0205 - mse: 7.5931e-04 - val_loss: 7.5522e-04 - val_mae: 0.0210 - val_mse: 7.5522e-04 - 208ms/epoch - 16ms/step\n", - "Epoch 89/250\n", - "13/13 - 0s - loss: 7.6036e-04 - mae: 0.0211 - mse: 7.6036e-04 - val_loss: 7.5503e-04 - val_mae: 0.0207 - val_mse: 7.5503e-04 - 193ms/epoch - 15ms/step\n", - "Epoch 90/250\n", - "13/13 - 0s - loss: 7.6322e-04 - mae: 0.0204 - mse: 7.6322e-04 - val_loss: 7.7629e-04 - val_mae: 0.0203 - val_mse: 7.7629e-04 - 168ms/epoch - 13ms/step\n", - "Epoch 91/250\n", - "13/13 - 0s - loss: 7.5436e-04 - mae: 0.0208 - mse: 7.5436e-04 - val_loss: 7.4549e-04 - val_mae: 0.0210 - val_mse: 7.4549e-04 - 156ms/epoch - 12ms/step\n", - "Epoch 92/250\n", - "13/13 - 0s - loss: 7.8479e-04 - mae: 0.0208 - mse: 7.8479e-04 - val_loss: 8.0607e-04 - val_mae: 0.0208 - val_mse: 8.0607e-04 - 137ms/epoch - 11ms/step\n", - "Epoch 93/250\n", - "13/13 - 0s - loss: 7.7194e-04 - mae: 0.0211 - mse: 7.7194e-04 - val_loss: 7.7994e-04 - val_mae: 0.0206 - val_mse: 7.7994e-04 - 174ms/epoch - 13ms/step\n", - "Epoch 94/250\n", - "13/13 - 0s - loss: 7.4802e-04 - mae: 0.0205 - mse: 7.4802e-04 - val_loss: 7.2386e-04 - val_mae: 0.0201 - val_mse: 7.2386e-04 - 303ms/epoch - 23ms/step\n", - "Epoch 95/250\n", - "13/13 - 0s - loss: 7.2616e-04 - mae: 0.0203 - mse: 7.2616e-04 - val_loss: 7.2728e-04 - val_mae: 0.0204 - val_mse: 7.2728e-04 - 129ms/epoch - 10ms/step\n", - "Epoch 96/250\n", - "13/13 - 0s - loss: 7.2310e-04 - mae: 0.0204 - mse: 7.2310e-04 - val_loss: 7.1349e-04 - val_mae: 0.0206 - val_mse: 7.1349e-04 - 218ms/epoch - 17ms/step\n", - "Epoch 97/250\n", - "13/13 - 0s - loss: 7.0905e-04 - mae: 0.0201 - mse: 7.0905e-04 - val_loss: 7.6242e-04 - val_mae: 0.0205 - val_mse: 7.6242e-04 - 128ms/epoch - 10ms/step\n", - "Epoch 98/250\n", - "13/13 - 0s - loss: 7.1839e-04 - mae: 0.0200 - mse: 7.1839e-04 - val_loss: 7.7098e-04 - val_mae: 0.0202 - val_mse: 7.7098e-04 - 147ms/epoch - 11ms/step\n", - "Epoch 99/250\n", - "13/13 - 0s - loss: 7.3924e-04 - mae: 0.0208 - mse: 7.3924e-04 - val_loss: 7.8554e-04 - val_mae: 0.0206 - val_mse: 7.8554e-04 - 130ms/epoch - 10ms/step\n", - "Epoch 100/250\n", - "13/13 - 0s - loss: 7.5556e-04 - mae: 0.0209 - mse: 7.5556e-04 - val_loss: 8.6021e-04 - val_mae: 0.0215 - val_mse: 8.6021e-04 - 174ms/epoch - 13ms/step\n", - "Epoch 101/250\n", - "13/13 - 0s - loss: 7.9288e-04 - mae: 0.0213 - mse: 7.9288e-04 - val_loss: 7.2968e-04 - val_mae: 0.0203 - val_mse: 7.2968e-04 - 125ms/epoch - 10ms/step\n", - "Epoch 102/250\n", - "13/13 - 0s - loss: 7.1861e-04 - mae: 0.0204 - mse: 7.1861e-04 - val_loss: 7.0941e-04 - val_mae: 0.0207 - val_mse: 7.0941e-04 - 260ms/epoch - 20ms/step\n", - "Epoch 103/250\n", - "13/13 - 0s - loss: 7.5092e-04 - mae: 0.0208 - mse: 7.5092e-04 - val_loss: 6.8788e-04 - val_mae: 0.0198 - val_mse: 6.8788e-04 - 275ms/epoch - 21ms/step\n", - "Epoch 104/250\n", - "13/13 - 0s - loss: 7.0460e-04 - mae: 0.0200 - mse: 7.0460e-04 - val_loss: 7.2570e-04 - val_mae: 0.0200 - val_mse: 7.2570e-04 - 125ms/epoch - 10ms/step\n", - "Epoch 105/250\n", - "13/13 - 0s - loss: 6.9255e-04 - mae: 0.0202 - mse: 6.9255e-04 - val_loss: 6.7411e-04 - val_mae: 0.0199 - val_mse: 6.7411e-04 - 275ms/epoch - 21ms/step\n", - "Epoch 106/250\n", - "13/13 - 0s - loss: 6.8175e-04 - mae: 0.0196 - mse: 6.8175e-04 - val_loss: 6.7593e-04 - val_mae: 0.0196 - val_mse: 6.7593e-04 - 157ms/epoch - 12ms/step\n", - "Epoch 107/250\n", - "13/13 - 0s - loss: 6.7018e-04 - mae: 0.0196 - mse: 6.7018e-04 - val_loss: 6.8702e-04 - val_mae: 0.0196 - val_mse: 6.8702e-04 - 183ms/epoch - 14ms/step\n", - "Epoch 108/250\n", - "13/13 - 0s - loss: 6.7955e-04 - mae: 0.0198 - mse: 6.7955e-04 - val_loss: 7.6778e-04 - val_mae: 0.0204 - val_mse: 7.6778e-04 - 192ms/epoch - 15ms/step\n", - "Epoch 109/250\n", - "13/13 - 1s - loss: 6.8953e-04 - mae: 0.0198 - mse: 6.8953e-04 - val_loss: 6.7251e-04 - val_mae: 0.0195 - val_mse: 6.7251e-04 - 516ms/epoch - 40ms/step\n", - "Epoch 110/250\n", - "13/13 - 0s - loss: 6.6819e-04 - mae: 0.0197 - mse: 6.6819e-04 - val_loss: 6.8310e-04 - val_mae: 0.0197 - val_mse: 6.8310e-04 - 146ms/epoch - 11ms/step\n", - "Epoch 111/250\n", - "13/13 - 0s - loss: 6.7136e-04 - mae: 0.0197 - mse: 6.7136e-04 - val_loss: 6.5858e-04 - val_mae: 0.0199 - val_mse: 6.5858e-04 - 208ms/epoch - 16ms/step\n", - "Epoch 112/250\n", - "13/13 - 0s - loss: 6.5784e-04 - mae: 0.0195 - mse: 6.5784e-04 - val_loss: 6.5838e-04 - val_mae: 0.0196 - val_mse: 6.5838e-04 - 215ms/epoch - 17ms/step\n", - "Epoch 113/250\n", - "13/13 - 0s - loss: 6.6861e-04 - mae: 0.0198 - mse: 6.6861e-04 - val_loss: 6.9871e-04 - val_mae: 0.0196 - val_mse: 6.9871e-04 - 149ms/epoch - 11ms/step\n", - "Epoch 114/250\n", - "13/13 - 0s - loss: 6.6345e-04 - mae: 0.0196 - mse: 6.6345e-04 - val_loss: 6.8190e-04 - val_mae: 0.0196 - val_mse: 6.8190e-04 - 141ms/epoch - 11ms/step\n", - "Epoch 115/250\n", - "13/13 - 0s - loss: 6.4121e-04 - mae: 0.0193 - mse: 6.4121e-04 - val_loss: 6.6493e-04 - val_mae: 0.0196 - val_mse: 6.6493e-04 - 166ms/epoch - 13ms/step\n", - "Epoch 116/250\n", - "13/13 - 0s - loss: 6.5036e-04 - mae: 0.0194 - mse: 6.5036e-04 - val_loss: 6.5858e-04 - val_mae: 0.0191 - val_mse: 6.5858e-04 - 107ms/epoch - 8ms/step\n", - "Epoch 117/250\n", - "13/13 - 0s - loss: 6.4983e-04 - mae: 0.0194 - mse: 6.4983e-04 - val_loss: 7.0443e-04 - val_mae: 0.0198 - val_mse: 7.0443e-04 - 109ms/epoch - 8ms/step\n", - "Epoch 118/250\n", - "13/13 - 0s - loss: 6.4994e-04 - mae: 0.0195 - mse: 6.4994e-04 - val_loss: 6.3181e-04 - val_mae: 0.0193 - val_mse: 6.3181e-04 - 296ms/epoch - 23ms/step\n", - "Epoch 119/250\n", - "13/13 - 0s - loss: 6.6252e-04 - mae: 0.0199 - mse: 6.6252e-04 - val_loss: 6.3527e-04 - val_mae: 0.0191 - val_mse: 6.3527e-04 - 165ms/epoch - 13ms/step\n", - "Epoch 120/250\n", - "13/13 - 0s - loss: 6.4578e-04 - mae: 0.0193 - mse: 6.4578e-04 - val_loss: 6.3127e-04 - val_mae: 0.0189 - val_mse: 6.3127e-04 - 190ms/epoch - 15ms/step\n", - "Epoch 121/250\n", - "13/13 - 0s - loss: 6.1375e-04 - mae: 0.0191 - mse: 6.1375e-04 - val_loss: 6.5351e-04 - val_mae: 0.0192 - val_mse: 6.5351e-04 - 125ms/epoch - 10ms/step\n", - "Epoch 122/250\n", - "13/13 - 0s - loss: 6.4650e-04 - mae: 0.0196 - mse: 6.4650e-04 - val_loss: 8.0733e-04 - val_mae: 0.0210 - val_mse: 8.0733e-04 - 142ms/epoch - 11ms/step\n", - "Epoch 123/250\n", - "13/13 - 0s - loss: 6.5887e-04 - mae: 0.0198 - mse: 6.5887e-04 - val_loss: 6.2666e-04 - val_mae: 0.0191 - val_mse: 6.2666e-04 - 278ms/epoch - 21ms/step\n", - "Epoch 124/250\n", - "13/13 - 0s - loss: 6.1387e-04 - mae: 0.0189 - mse: 6.1387e-04 - val_loss: 6.1020e-04 - val_mae: 0.0188 - val_mse: 6.1020e-04 - 246ms/epoch - 19ms/step\n", - "Epoch 125/250\n", - "13/13 - 0s - loss: 6.1348e-04 - mae: 0.0191 - mse: 6.1348e-04 - val_loss: 6.1093e-04 - val_mae: 0.0193 - val_mse: 6.1093e-04 - 135ms/epoch - 10ms/step\n", - "Epoch 126/250\n", - "13/13 - 0s - loss: 6.1374e-04 - mae: 0.0189 - mse: 6.1374e-04 - val_loss: 6.1062e-04 - val_mae: 0.0188 - val_mse: 6.1062e-04 - 174ms/epoch - 13ms/step\n", - "Epoch 127/250\n", - "13/13 - 0s - loss: 6.1279e-04 - mae: 0.0190 - mse: 6.1279e-04 - val_loss: 6.4391e-04 - val_mae: 0.0190 - val_mse: 6.4391e-04 - 142ms/epoch - 11ms/step\n", - "Epoch 128/250\n", - "13/13 - 0s - loss: 6.0951e-04 - mae: 0.0189 - mse: 6.0951e-04 - val_loss: 5.9592e-04 - val_mae: 0.0188 - val_mse: 5.9592e-04 - 249ms/epoch - 19ms/step\n", - "Epoch 129/250\n", - "13/13 - 0s - loss: 6.2194e-04 - mae: 0.0192 - mse: 6.2194e-04 - val_loss: 5.9344e-04 - val_mae: 0.0188 - val_mse: 5.9344e-04 - 279ms/epoch - 21ms/step\n", - "Epoch 130/250\n", - "13/13 - 0s - loss: 6.1795e-04 - mae: 0.0191 - mse: 6.1795e-04 - val_loss: 5.8880e-04 - val_mae: 0.0188 - val_mse: 5.8880e-04 - 356ms/epoch - 27ms/step\n", - "Epoch 131/250\n", - "13/13 - 0s - loss: 6.6297e-04 - mae: 0.0199 - mse: 6.6297e-04 - val_loss: 7.2306e-04 - val_mae: 0.0197 - val_mse: 7.2306e-04 - 151ms/epoch - 12ms/step\n", - "Epoch 132/250\n", - "13/13 - 0s - loss: 5.8788e-04 - mae: 0.0189 - mse: 5.8788e-04 - val_loss: 6.0686e-04 - val_mae: 0.0189 - val_mse: 6.0686e-04 - 102ms/epoch - 8ms/step\n", - "Epoch 133/250\n", - "13/13 - 0s - loss: 5.7425e-04 - mae: 0.0184 - mse: 5.7425e-04 - val_loss: 5.7895e-04 - val_mae: 0.0183 - val_mse: 5.7895e-04 - 239ms/epoch - 18ms/step\n", - "Epoch 134/250\n", - "13/13 - 0s - loss: 5.8783e-04 - mae: 0.0186 - mse: 5.8783e-04 - val_loss: 5.7846e-04 - val_mae: 0.0188 - val_mse: 5.7846e-04 - 285ms/epoch - 22ms/step\n", - "Epoch 135/250\n", - "13/13 - 0s - loss: 5.8541e-04 - mae: 0.0188 - mse: 5.8541e-04 - val_loss: 6.7887e-04 - val_mae: 0.0191 - val_mse: 6.7887e-04 - 178ms/epoch - 14ms/step\n", - "Epoch 136/250\n", - "13/13 - 0s - loss: 5.9158e-04 - mae: 0.0185 - mse: 5.9158e-04 - val_loss: 5.9231e-04 - val_mae: 0.0188 - val_mse: 5.9231e-04 - 113ms/epoch - 9ms/step\n", - "Epoch 137/250\n", - "13/13 - 0s - loss: 5.9616e-04 - mae: 0.0192 - mse: 5.9616e-04 - val_loss: 7.0218e-04 - val_mae: 0.0212 - val_mse: 7.0218e-04 - 138ms/epoch - 11ms/step\n", - "Epoch 138/250\n", - "13/13 - 0s - loss: 6.2132e-04 - mae: 0.0190 - mse: 6.2132e-04 - val_loss: 6.3436e-04 - val_mae: 0.0186 - val_mse: 6.3436e-04 - 144ms/epoch - 11ms/step\n", - "Epoch 139/250\n", - "13/13 - 0s - loss: 5.8416e-04 - mae: 0.0189 - mse: 5.8416e-04 - val_loss: 5.7793e-04 - val_mae: 0.0184 - val_mse: 5.7793e-04 - 279ms/epoch - 21ms/step\n", - "Epoch 140/250\n", - "13/13 - 0s - loss: 6.5695e-04 - mae: 0.0195 - mse: 6.5695e-04 - val_loss: 5.8062e-04 - val_mae: 0.0189 - val_mse: 5.8062e-04 - 174ms/epoch - 13ms/step\n", - "Epoch 141/250\n", - "13/13 - 0s - loss: 6.4168e-04 - mae: 0.0200 - mse: 6.4168e-04 - val_loss: 6.9879e-04 - val_mae: 0.0196 - val_mse: 6.9879e-04 - 118ms/epoch - 9ms/step\n", - "Epoch 142/250\n", - "13/13 - 0s - loss: 6.5517e-04 - mae: 0.0198 - mse: 6.5517e-04 - val_loss: 6.3928e-04 - val_mae: 0.0193 - val_mse: 6.3928e-04 - 120ms/epoch - 9ms/step\n", - "Epoch 143/250\n", - "13/13 - 0s - loss: 5.8456e-04 - mae: 0.0190 - mse: 5.8456e-04 - val_loss: 5.4596e-04 - val_mae: 0.0181 - val_mse: 5.4596e-04 - 304ms/epoch - 23ms/step\n", - "Epoch 144/250\n", - "13/13 - 0s - loss: 5.9458e-04 - mae: 0.0186 - mse: 5.9458e-04 - val_loss: 5.8598e-04 - val_mae: 0.0181 - val_mse: 5.8598e-04 - 178ms/epoch - 14ms/step\n", - "Epoch 145/250\n", - "13/13 - 0s - loss: 5.6787e-04 - mae: 0.0186 - mse: 5.6787e-04 - val_loss: 5.6263e-04 - val_mae: 0.0186 - val_mse: 5.6263e-04 - 131ms/epoch - 10ms/step\n", - "Epoch 146/250\n", - "13/13 - 0s - loss: 5.3545e-04 - mae: 0.0178 - mse: 5.3545e-04 - val_loss: 5.3802e-04 - val_mae: 0.0179 - val_mse: 5.3802e-04 - 396ms/epoch - 30ms/step\n", - "Epoch 147/250\n", - "13/13 - 0s - loss: 5.2310e-04 - mae: 0.0177 - mse: 5.2310e-04 - val_loss: 5.4103e-04 - val_mae: 0.0179 - val_mse: 5.4103e-04 - 151ms/epoch - 12ms/step\n", - "Epoch 148/250\n", - "13/13 - 0s - loss: 5.2826e-04 - mae: 0.0176 - mse: 5.2826e-04 - val_loss: 5.9310e-04 - val_mae: 0.0181 - val_mse: 5.9310e-04 - 155ms/epoch - 12ms/step\n", - "Epoch 149/250\n", - "13/13 - 0s - loss: 5.3295e-04 - mae: 0.0179 - mse: 5.3295e-04 - val_loss: 5.4002e-04 - val_mae: 0.0176 - val_mse: 5.4002e-04 - 120ms/epoch - 9ms/step\n", - "Epoch 150/250\n", - "13/13 - 0s - loss: 5.1491e-04 - mae: 0.0174 - mse: 5.1491e-04 - val_loss: 5.9602e-04 - val_mae: 0.0179 - val_mse: 5.9602e-04 - 137ms/epoch - 11ms/step\n", - "Epoch 151/250\n", - "13/13 - 0s - loss: 5.2334e-04 - mae: 0.0179 - mse: 5.2334e-04 - val_loss: 5.2811e-04 - val_mae: 0.0178 - val_mse: 5.2811e-04 - 315ms/epoch - 24ms/step\n", - "Epoch 152/250\n", - "13/13 - 0s - loss: 5.2768e-04 - mae: 0.0178 - mse: 5.2768e-04 - val_loss: 5.5139e-04 - val_mae: 0.0184 - val_mse: 5.5139e-04 - 198ms/epoch - 15ms/step\n", - "Epoch 153/250\n", - "13/13 - 0s - loss: 5.2962e-04 - mae: 0.0179 - mse: 5.2962e-04 - val_loss: 5.7462e-04 - val_mae: 0.0178 - val_mse: 5.7462e-04 - 129ms/epoch - 10ms/step\n", - "Epoch 154/250\n", - "13/13 - 0s - loss: 5.0260e-04 - mae: 0.0173 - mse: 5.0260e-04 - val_loss: 5.3387e-04 - val_mae: 0.0181 - val_mse: 5.3387e-04 - 131ms/epoch - 10ms/step\n", - "Epoch 155/250\n", - "13/13 - 0s - loss: 5.0501e-04 - mae: 0.0175 - mse: 5.0501e-04 - val_loss: 5.0751e-04 - val_mae: 0.0172 - val_mse: 5.0751e-04 - 267ms/epoch - 21ms/step\n", - "Epoch 156/250\n", - "13/13 - 0s - loss: 5.0518e-04 - mae: 0.0173 - mse: 5.0518e-04 - val_loss: 5.5553e-04 - val_mae: 0.0174 - val_mse: 5.5553e-04 - 182ms/epoch - 14ms/step\n", - "Epoch 157/250\n", - "13/13 - 0s - loss: 5.0064e-04 - mae: 0.0172 - mse: 5.0064e-04 - val_loss: 5.1205e-04 - val_mae: 0.0172 - val_mse: 5.1205e-04 - 160ms/epoch - 12ms/step\n", - "Epoch 158/250\n", - "13/13 - 0s - loss: 4.9541e-04 - mae: 0.0172 - mse: 4.9541e-04 - val_loss: 5.0799e-04 - val_mae: 0.0172 - val_mse: 5.0799e-04 - 131ms/epoch - 10ms/step\n", - "Epoch 159/250\n", - "13/13 - 0s - loss: 5.4153e-04 - mae: 0.0182 - mse: 5.4153e-04 - val_loss: 5.2077e-04 - val_mae: 0.0171 - val_mse: 5.2077e-04 - 172ms/epoch - 13ms/step\n", - "Epoch 160/250\n", - "13/13 - 0s - loss: 4.8280e-04 - mae: 0.0170 - mse: 4.8280e-04 - val_loss: 5.1410e-04 - val_mae: 0.0168 - val_mse: 5.1410e-04 - 164ms/epoch - 13ms/step\n", - "Epoch 161/250\n", - "13/13 - 0s - loss: 4.8993e-04 - mae: 0.0171 - mse: 4.8993e-04 - val_loss: 5.1744e-04 - val_mae: 0.0171 - val_mse: 5.1744e-04 - 169ms/epoch - 13ms/step\n", - "Epoch 162/250\n", - "13/13 - 0s - loss: 4.8044e-04 - mae: 0.0169 - mse: 4.8044e-04 - val_loss: 5.1099e-04 - val_mae: 0.0168 - val_mse: 5.1099e-04 - 188ms/epoch - 14ms/step\n", - "Epoch 163/250\n", - "13/13 - 0s - loss: 4.9657e-04 - mae: 0.0171 - mse: 4.9657e-04 - val_loss: 4.9877e-04 - val_mae: 0.0171 - val_mse: 4.9877e-04 - 258ms/epoch - 20ms/step\n", - "Epoch 164/250\n", - "13/13 - 0s - loss: 4.8858e-04 - mae: 0.0170 - mse: 4.8858e-04 - val_loss: 5.0099e-04 - val_mae: 0.0169 - val_mse: 5.0099e-04 - 150ms/epoch - 12ms/step\n", - "Epoch 165/250\n", - "13/13 - 0s - loss: 4.7747e-04 - mae: 0.0170 - mse: 4.7747e-04 - val_loss: 5.8449e-04 - val_mae: 0.0174 - val_mse: 5.8449e-04 - 158ms/epoch - 12ms/step\n", - "Epoch 166/250\n", - "13/13 - 0s - loss: 4.9897e-04 - mae: 0.0171 - mse: 4.9897e-04 - val_loss: 4.9512e-04 - val_mae: 0.0173 - val_mse: 4.9512e-04 - 265ms/epoch - 20ms/step\n", - "Epoch 167/250\n", - "13/13 - 0s - loss: 4.8695e-04 - mae: 0.0173 - mse: 4.8695e-04 - val_loss: 5.0306e-04 - val_mae: 0.0165 - val_mse: 5.0306e-04 - 151ms/epoch - 12ms/step\n", - "Epoch 168/250\n", - "13/13 - 0s - loss: 4.7948e-04 - mae: 0.0171 - mse: 4.7948e-04 - val_loss: 6.8895e-04 - val_mae: 0.0193 - val_mse: 6.8895e-04 - 128ms/epoch - 10ms/step\n", - "Epoch 169/250\n", - "13/13 - 0s - loss: 4.8055e-04 - mae: 0.0168 - mse: 4.8055e-04 - val_loss: 4.9053e-04 - val_mae: 0.0171 - val_mse: 4.9053e-04 - 234ms/epoch - 18ms/step\n", - "Epoch 170/250\n", - "13/13 - 0s - loss: 4.5980e-04 - mae: 0.0168 - mse: 4.5980e-04 - val_loss: 5.2267e-04 - val_mae: 0.0170 - val_mse: 5.2267e-04 - 167ms/epoch - 13ms/step\n", - "Epoch 171/250\n", - "13/13 - 0s - loss: 4.6495e-04 - mae: 0.0168 - mse: 4.6495e-04 - val_loss: 4.6718e-04 - val_mae: 0.0165 - val_mse: 4.6718e-04 - 243ms/epoch - 19ms/step\n", - "Epoch 172/250\n", - "13/13 - 0s - loss: 4.6046e-04 - mae: 0.0168 - mse: 4.6046e-04 - val_loss: 4.6731e-04 - val_mae: 0.0166 - val_mse: 4.6731e-04 - 148ms/epoch - 11ms/step\n", - "Epoch 173/250\n", - "13/13 - 0s - loss: 4.6993e-04 - mae: 0.0168 - mse: 4.6993e-04 - val_loss: 4.8190e-04 - val_mae: 0.0167 - val_mse: 4.8190e-04 - 143ms/epoch - 11ms/step\n", - "Epoch 174/250\n", - "13/13 - 0s - loss: 4.8411e-04 - mae: 0.0172 - mse: 4.8411e-04 - val_loss: 5.0800e-04 - val_mae: 0.0164 - val_mse: 5.0800e-04 - 131ms/epoch - 10ms/step\n", - "Epoch 175/250\n", - "13/13 - 0s - loss: 4.5295e-04 - mae: 0.0164 - mse: 4.5295e-04 - val_loss: 6.2583e-04 - val_mae: 0.0182 - val_mse: 6.2583e-04 - 136ms/epoch - 10ms/step\n", - "Epoch 176/250\n", - "13/13 - 0s - loss: 5.3742e-04 - mae: 0.0183 - mse: 5.3742e-04 - val_loss: 5.6727e-04 - val_mae: 0.0187 - val_mse: 5.6727e-04 - 141ms/epoch - 11ms/step\n", - "Epoch 177/250\n", - "13/13 - 0s - loss: 5.3634e-04 - mae: 0.0182 - mse: 5.3634e-04 - val_loss: 4.6197e-04 - val_mae: 0.0157 - val_mse: 4.6197e-04 - 316ms/epoch - 24ms/step\n", - "Epoch 178/250\n", - "13/13 - 0s - loss: 4.8847e-04 - mae: 0.0169 - mse: 4.8847e-04 - val_loss: 4.6646e-04 - val_mae: 0.0160 - val_mse: 4.6646e-04 - 214ms/epoch - 16ms/step\n", - "Epoch 179/250\n", - "13/13 - 0s - loss: 4.3622e-04 - mae: 0.0160 - mse: 4.3622e-04 - val_loss: 5.3203e-04 - val_mae: 0.0164 - val_mse: 5.3203e-04 - 181ms/epoch - 14ms/step\n", - "Epoch 180/250\n", - "13/13 - 0s - loss: 4.7108e-04 - mae: 0.0165 - mse: 4.7108e-04 - val_loss: 4.6548e-04 - val_mae: 0.0161 - val_mse: 4.6548e-04 - 144ms/epoch - 11ms/step\n", - "Epoch 181/250\n", - "13/13 - 0s - loss: 4.3932e-04 - mae: 0.0164 - mse: 4.3932e-04 - val_loss: 4.4195e-04 - val_mae: 0.0157 - val_mse: 4.4195e-04 - 302ms/epoch - 23ms/step\n", - "Epoch 182/250\n", - "13/13 - 0s - loss: 4.3340e-04 - mae: 0.0159 - mse: 4.3340e-04 - val_loss: 4.5463e-04 - val_mae: 0.0158 - val_mse: 4.5463e-04 - 216ms/epoch - 17ms/step\n", - "Epoch 183/250\n", - "13/13 - 0s - loss: 4.2639e-04 - mae: 0.0162 - mse: 4.2639e-04 - val_loss: 4.3874e-04 - val_mae: 0.0156 - val_mse: 4.3874e-04 - 296ms/epoch - 23ms/step\n", - "Epoch 184/250\n", - "13/13 - 0s - loss: 4.4119e-04 - mae: 0.0159 - mse: 4.4119e-04 - val_loss: 4.7791e-04 - val_mae: 0.0169 - val_mse: 4.7791e-04 - 195ms/epoch - 15ms/step\n", - "Epoch 185/250\n", - "13/13 - 0s - loss: 4.4805e-04 - mae: 0.0164 - mse: 4.4805e-04 - val_loss: 4.6275e-04 - val_mae: 0.0163 - val_mse: 4.6275e-04 - 119ms/epoch - 9ms/step\n", - "Epoch 186/250\n", - "13/13 - 0s - loss: 4.4495e-04 - mae: 0.0163 - mse: 4.4495e-04 - val_loss: 4.4746e-04 - val_mae: 0.0155 - val_mse: 4.4746e-04 - 115ms/epoch - 9ms/step\n", - "Epoch 187/250\n", - "13/13 - 0s - loss: 4.7030e-04 - mae: 0.0167 - mse: 4.7030e-04 - val_loss: 5.6234e-04 - val_mae: 0.0169 - val_mse: 5.6234e-04 - 147ms/epoch - 11ms/step\n", - "Epoch 188/250\n", - "13/13 - 0s - loss: 4.4920e-04 - mae: 0.0160 - mse: 4.4920e-04 - val_loss: 4.2347e-04 - val_mae: 0.0154 - val_mse: 4.2347e-04 - 451ms/epoch - 35ms/step\n", - "Epoch 189/250\n", - "13/13 - 0s - loss: 4.1850e-04 - mae: 0.0159 - mse: 4.1850e-04 - val_loss: 4.5828e-04 - val_mae: 0.0156 - val_mse: 4.5828e-04 - 110ms/epoch - 8ms/step\n", - "Epoch 190/250\n", - "13/13 - 0s - loss: 4.2816e-04 - mae: 0.0159 - mse: 4.2816e-04 - val_loss: 4.2983e-04 - val_mae: 0.0155 - val_mse: 4.2983e-04 - 121ms/epoch - 9ms/step\n", - "Epoch 191/250\n", - "13/13 - 0s - loss: 4.1442e-04 - mae: 0.0156 - mse: 4.1442e-04 - val_loss: 4.5135e-04 - val_mae: 0.0154 - val_mse: 4.5135e-04 - 173ms/epoch - 13ms/step\n", - "Epoch 192/250\n", - "13/13 - 0s - loss: 4.1126e-04 - mae: 0.0159 - mse: 4.1126e-04 - val_loss: 4.2590e-04 - val_mae: 0.0151 - val_mse: 4.2590e-04 - 149ms/epoch - 11ms/step\n", - "Epoch 193/250\n", - "13/13 - 0s - loss: 4.1197e-04 - mae: 0.0155 - mse: 4.1197e-04 - val_loss: 4.2111e-04 - val_mae: 0.0151 - val_mse: 4.2111e-04 - 243ms/epoch - 19ms/step\n", - "Epoch 194/250\n", - "13/13 - 0s - loss: 4.0958e-04 - mae: 0.0157 - mse: 4.0958e-04 - val_loss: 4.1117e-04 - val_mae: 0.0149 - val_mse: 4.1117e-04 - 272ms/epoch - 21ms/step\n", - "Epoch 195/250\n", - "13/13 - 0s - loss: 3.9243e-04 - mae: 0.0153 - mse: 3.9243e-04 - val_loss: 4.1405e-04 - val_mae: 0.0150 - val_mse: 4.1405e-04 - 136ms/epoch - 10ms/step\n", - "Epoch 196/250\n", - "13/13 - 0s - loss: 4.0300e-04 - mae: 0.0153 - mse: 4.0300e-04 - val_loss: 4.3989e-04 - val_mae: 0.0150 - val_mse: 4.3989e-04 - 151ms/epoch - 12ms/step\n", - "Epoch 197/250\n", - "13/13 - 0s - loss: 4.0142e-04 - mae: 0.0154 - mse: 4.0142e-04 - val_loss: 4.3665e-04 - val_mae: 0.0151 - val_mse: 4.3665e-04 - 160ms/epoch - 12ms/step\n", - "Epoch 198/250\n", - "13/13 - 0s - loss: 3.9936e-04 - mae: 0.0153 - mse: 3.9936e-04 - val_loss: 4.2897e-04 - val_mae: 0.0149 - val_mse: 4.2897e-04 - 114ms/epoch - 9ms/step\n", - "Epoch 199/250\n", - "13/13 - 0s - loss: 4.0143e-04 - mae: 0.0153 - mse: 4.0143e-04 - val_loss: 4.0877e-04 - val_mae: 0.0148 - val_mse: 4.0877e-04 - 209ms/epoch - 16ms/step\n", - "Epoch 200/250\n", - "13/13 - 0s - loss: 3.9668e-04 - mae: 0.0152 - mse: 3.9668e-04 - val_loss: 4.3571e-04 - val_mae: 0.0150 - val_mse: 4.3571e-04 - 198ms/epoch - 15ms/step\n", - "Epoch 201/250\n", - "13/13 - 0s - loss: 3.9516e-04 - mae: 0.0154 - mse: 3.9516e-04 - val_loss: 5.1984e-04 - val_mae: 0.0161 - val_mse: 5.1984e-04 - 147ms/epoch - 11ms/step\n", - "Epoch 202/250\n", - "13/13 - 0s - loss: 4.5166e-04 - mae: 0.0161 - mse: 4.5166e-04 - val_loss: 5.4696e-04 - val_mae: 0.0182 - val_mse: 5.4696e-04 - 128ms/epoch - 10ms/step\n", - "Epoch 203/250\n", - "13/13 - 0s - loss: 4.5904e-04 - mae: 0.0166 - mse: 4.5904e-04 - val_loss: 4.1240e-04 - val_mae: 0.0150 - val_mse: 4.1240e-04 - 137ms/epoch - 11ms/step\n", - "Epoch 204/250\n", - "13/13 - 0s - loss: 3.9851e-04 - mae: 0.0150 - mse: 3.9851e-04 - val_loss: 4.5210e-04 - val_mae: 0.0154 - val_mse: 4.5210e-04 - 141ms/epoch - 11ms/step\n", - "Epoch 205/250\n", - "13/13 - 0s - loss: 3.8760e-04 - mae: 0.0151 - mse: 3.8760e-04 - val_loss: 4.0982e-04 - val_mae: 0.0149 - val_mse: 4.0982e-04 - 121ms/epoch - 9ms/step\n", - "Epoch 206/250\n", - "13/13 - 0s - loss: 4.1937e-04 - mae: 0.0156 - mse: 4.1937e-04 - val_loss: 3.8857e-04 - val_mae: 0.0145 - val_mse: 3.8857e-04 - 294ms/epoch - 23ms/step\n", - "Epoch 207/250\n", - "13/13 - 0s - loss: 3.7173e-04 - mae: 0.0146 - mse: 3.7173e-04 - val_loss: 3.9353e-04 - val_mae: 0.0147 - val_mse: 3.9353e-04 - 146ms/epoch - 11ms/step\n", - "Epoch 208/250\n", - "13/13 - 0s - loss: 3.9673e-04 - mae: 0.0153 - mse: 3.9673e-04 - val_loss: 3.9003e-04 - val_mae: 0.0145 - val_mse: 3.9003e-04 - 115ms/epoch - 9ms/step\n", - "Epoch 209/250\n", - "13/13 - 0s - loss: 4.2359e-04 - mae: 0.0155 - mse: 4.2359e-04 - val_loss: 3.9027e-04 - val_mae: 0.0146 - val_mse: 3.9027e-04 - 150ms/epoch - 12ms/step\n", - "Epoch 210/250\n", - "13/13 - 0s - loss: 3.9302e-04 - mae: 0.0154 - mse: 3.9302e-04 - val_loss: 4.1320e-04 - val_mae: 0.0152 - val_mse: 4.1320e-04 - 167ms/epoch - 13ms/step\n", - "Epoch 211/250\n", - "13/13 - 0s - loss: 3.6641e-04 - mae: 0.0147 - mse: 3.6641e-04 - val_loss: 3.9564e-04 - val_mae: 0.0141 - val_mse: 3.9564e-04 - 167ms/epoch - 13ms/step\n", - "Epoch 212/250\n", - "13/13 - 0s - loss: 3.6259e-04 - mae: 0.0143 - mse: 3.6259e-04 - val_loss: 3.8787e-04 - val_mae: 0.0146 - val_mse: 3.8787e-04 - 309ms/epoch - 24ms/step\n", - "Epoch 213/250\n", - "13/13 - 0s - loss: 4.0665e-04 - mae: 0.0156 - mse: 4.0665e-04 - val_loss: 5.0910e-04 - val_mae: 0.0160 - val_mse: 5.0910e-04 - 158ms/epoch - 12ms/step\n", - "Epoch 214/250\n", - "13/13 - 0s - loss: 4.5758e-04 - mae: 0.0169 - mse: 4.5758e-04 - val_loss: 4.1241e-04 - val_mae: 0.0141 - val_mse: 4.1241e-04 - 125ms/epoch - 10ms/step\n", - "Epoch 215/250\n", - "13/13 - 0s - loss: 4.0666e-04 - mae: 0.0155 - mse: 4.0666e-04 - val_loss: 4.6639e-04 - val_mae: 0.0151 - val_mse: 4.6639e-04 - 177ms/epoch - 14ms/step\n", - "Epoch 216/250\n", - "13/13 - 0s - loss: 3.6615e-04 - mae: 0.0145 - mse: 3.6615e-04 - val_loss: 3.8294e-04 - val_mae: 0.0138 - val_mse: 3.8294e-04 - 253ms/epoch - 19ms/step\n", - "Epoch 217/250\n", - "13/13 - 0s - loss: 3.8135e-04 - mae: 0.0149 - mse: 3.8135e-04 - val_loss: 5.1259e-04 - val_mae: 0.0162 - val_mse: 5.1259e-04 - 136ms/epoch - 10ms/step\n", - "Epoch 218/250\n", - "13/13 - 0s - loss: 3.5877e-04 - mae: 0.0144 - mse: 3.5877e-04 - val_loss: 3.7918e-04 - val_mae: 0.0142 - val_mse: 3.7918e-04 - 254ms/epoch - 20ms/step\n", - "Epoch 219/250\n", - "13/13 - 0s - loss: 4.1097e-04 - mae: 0.0155 - mse: 4.1097e-04 - val_loss: 3.7973e-04 - val_mae: 0.0144 - val_mse: 3.7973e-04 - 167ms/epoch - 13ms/step\n", - "Epoch 220/250\n", - "13/13 - 0s - loss: 3.7840e-04 - mae: 0.0149 - mse: 3.7840e-04 - val_loss: 4.7988e-04 - val_mae: 0.0153 - val_mse: 4.7988e-04 - 157ms/epoch - 12ms/step\n", - "Epoch 221/250\n", - "13/13 - 0s - loss: 3.5545e-04 - mae: 0.0143 - mse: 3.5545e-04 - val_loss: 3.7230e-04 - val_mae: 0.0136 - val_mse: 3.7230e-04 - 218ms/epoch - 17ms/step\n", - "Epoch 222/250\n", - "13/13 - 0s - loss: 3.4610e-04 - mae: 0.0141 - mse: 3.4610e-04 - val_loss: 4.1371e-04 - val_mae: 0.0142 - val_mse: 4.1371e-04 - 141ms/epoch - 11ms/step\n", - "Epoch 223/250\n", - "13/13 - 0s - loss: 3.7775e-04 - mae: 0.0149 - mse: 3.7775e-04 - val_loss: 3.8045e-04 - val_mae: 0.0142 - val_mse: 3.8045e-04 - 176ms/epoch - 14ms/step\n", - "Epoch 224/250\n", - "13/13 - 0s - loss: 3.5911e-04 - mae: 0.0145 - mse: 3.5911e-04 - val_loss: 3.5609e-04 - val_mae: 0.0134 - val_mse: 3.5609e-04 - 421ms/epoch - 32ms/step\n", - "Epoch 225/250\n", - "13/13 - 0s - loss: 3.5933e-04 - mae: 0.0144 - mse: 3.5933e-04 - val_loss: 3.5900e-04 - val_mae: 0.0134 - val_mse: 3.5900e-04 - 159ms/epoch - 12ms/step\n", - "Epoch 226/250\n", - "13/13 - 0s - loss: 3.6466e-04 - mae: 0.0144 - mse: 3.6466e-04 - val_loss: 3.5378e-04 - val_mae: 0.0135 - val_mse: 3.5378e-04 - 307ms/epoch - 24ms/step\n", - "Epoch 227/250\n", - "13/13 - 0s - loss: 3.5876e-04 - mae: 0.0144 - mse: 3.5876e-04 - val_loss: 3.6523e-04 - val_mae: 0.0133 - val_mse: 3.6523e-04 - 193ms/epoch - 15ms/step\n", - "Epoch 228/250\n", - "13/13 - 0s - loss: 3.4559e-04 - mae: 0.0142 - mse: 3.4559e-04 - val_loss: 3.5907e-04 - val_mae: 0.0139 - val_mse: 3.5907e-04 - 133ms/epoch - 10ms/step\n", - "Epoch 229/250\n", - "13/13 - 0s - loss: 3.4162e-04 - mae: 0.0142 - mse: 3.4162e-04 - val_loss: 4.2194e-04 - val_mae: 0.0141 - val_mse: 4.2194e-04 - 107ms/epoch - 8ms/step\n", - "Epoch 230/250\n", - "13/13 - 0s - loss: 3.6967e-04 - mae: 0.0146 - mse: 3.6967e-04 - val_loss: 3.7720e-04 - val_mae: 0.0138 - val_mse: 3.7720e-04 - 165ms/epoch - 13ms/step\n", - "Epoch 231/250\n", - "13/13 - 0s - loss: 3.3735e-04 - mae: 0.0136 - mse: 3.3735e-04 - val_loss: 3.3976e-04 - val_mae: 0.0129 - val_mse: 3.3976e-04 - 276ms/epoch - 21ms/step\n", - "Epoch 232/250\n", - "13/13 - 0s - loss: 3.3844e-04 - mae: 0.0141 - mse: 3.3844e-04 - val_loss: 3.8716e-04 - val_mae: 0.0135 - val_mse: 3.8716e-04 - 134ms/epoch - 10ms/step\n", - "Epoch 233/250\n", - "13/13 - 0s - loss: 3.6741e-04 - mae: 0.0145 - mse: 3.6741e-04 - val_loss: 3.8668e-04 - val_mae: 0.0136 - val_mse: 3.8668e-04 - 146ms/epoch - 11ms/step\n", - "Epoch 234/250\n", - "13/13 - 0s - loss: 3.4129e-04 - mae: 0.0139 - mse: 3.4129e-04 - val_loss: 3.4933e-04 - val_mae: 0.0133 - val_mse: 3.4933e-04 - 165ms/epoch - 13ms/step\n", - "Epoch 235/250\n", - "13/13 - 0s - loss: 3.2338e-04 - mae: 0.0137 - mse: 3.2338e-04 - val_loss: 3.4566e-04 - val_mae: 0.0133 - val_mse: 3.4566e-04 - 153ms/epoch - 12ms/step\n", - "Epoch 236/250\n", - "13/13 - 0s - loss: 3.1652e-04 - mae: 0.0134 - mse: 3.1652e-04 - val_loss: 3.9728e-04 - val_mae: 0.0136 - val_mse: 3.9728e-04 - 187ms/epoch - 14ms/step\n", - "Epoch 237/250\n", - "13/13 - 0s - loss: 3.2047e-04 - mae: 0.0136 - mse: 3.2047e-04 - val_loss: 3.3756e-04 - val_mae: 0.0130 - val_mse: 3.3756e-04 - 209ms/epoch - 16ms/step\n", - "Epoch 238/250\n", - "13/13 - 0s - loss: 3.3167e-04 - mae: 0.0138 - mse: 3.3167e-04 - val_loss: 3.3191e-04 - val_mae: 0.0126 - val_mse: 3.3191e-04 - 175ms/epoch - 13ms/step\n", - "Epoch 239/250\n", - "13/13 - 0s - loss: 3.2033e-04 - mae: 0.0134 - mse: 3.2033e-04 - val_loss: 3.2969e-04 - val_mae: 0.0128 - val_mse: 3.2969e-04 - 234ms/epoch - 18ms/step\n", - "Epoch 240/250\n", - "13/13 - 0s - loss: 3.5224e-04 - mae: 0.0141 - mse: 3.5224e-04 - val_loss: 3.9061e-04 - val_mae: 0.0148 - val_mse: 3.9061e-04 - 130ms/epoch - 10ms/step\n", - "Epoch 241/250\n", - "13/13 - 0s - loss: 3.9777e-04 - mae: 0.0153 - mse: 3.9777e-04 - val_loss: 3.7065e-04 - val_mae: 0.0137 - val_mse: 3.7065e-04 - 122ms/epoch - 9ms/step\n", - "Epoch 242/250\n", - "13/13 - 0s - loss: 3.2502e-04 - mae: 0.0138 - mse: 3.2502e-04 - val_loss: 3.3236e-04 - val_mae: 0.0124 - val_mse: 3.3236e-04 - 128ms/epoch - 10ms/step\n", - "Epoch 243/250\n", - "13/13 - 0s - loss: 3.0734e-04 - mae: 0.0133 - mse: 3.0734e-04 - val_loss: 3.2635e-04 - val_mae: 0.0126 - val_mse: 3.2635e-04 - 321ms/epoch - 25ms/step\n", - "Epoch 244/250\n", - "13/13 - 0s - loss: 3.2928e-04 - mae: 0.0137 - mse: 3.2928e-04 - val_loss: 3.2871e-04 - val_mae: 0.0125 - val_mse: 3.2871e-04 - 167ms/epoch - 13ms/step\n", - "Epoch 245/250\n", - "13/13 - 0s - loss: 2.9711e-04 - mae: 0.0131 - mse: 2.9711e-04 - val_loss: 3.2920e-04 - val_mae: 0.0121 - val_mse: 3.2920e-04 - 129ms/epoch - 10ms/step\n", - "Epoch 246/250\n", - "13/13 - 0s - loss: 3.2661e-04 - mae: 0.0134 - mse: 3.2661e-04 - val_loss: 3.6936e-04 - val_mae: 0.0134 - val_mse: 3.6936e-04 - 191ms/epoch - 15ms/step\n", - "Epoch 247/250\n", - "13/13 - 0s - loss: 2.9618e-04 - mae: 0.0128 - mse: 2.9618e-04 - val_loss: 3.3549e-04 - val_mae: 0.0123 - val_mse: 3.3549e-04 - 119ms/epoch - 9ms/step\n", - "Epoch 248/250\n", - "13/13 - 0s - loss: 2.9979e-04 - mae: 0.0130 - mse: 2.9979e-04 - val_loss: 3.8099e-04 - val_mae: 0.0135 - val_mse: 3.8099e-04 - 122ms/epoch - 9ms/step\n", - "Epoch 249/250\n", - "13/13 - 0s - loss: 3.0599e-04 - mae: 0.0131 - mse: 3.0599e-04 - val_loss: 3.2729e-04 - val_mae: 0.0122 - val_mse: 3.2729e-04 - 150ms/epoch - 12ms/step\n", - "Epoch 250/250\n", - "13/13 - 0s - loss: 3.1256e-04 - mae: 0.0134 - mse: 3.1256e-04 - val_loss: 3.3855e-04 - val_mae: 0.0134 - val_mse: 3.3855e-04 - 127ms/epoch - 10ms/step\n" - ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTK0lEQVR4nO3deVxUVeM/8M/MIMMmmyCgILjvYoES+uCSPIKaSWihoiL6ZLmlD9q3bAG1eqj0l1halqW0uRZqi0tKUqaY5r7loz6YG4u4sKkgw/n9MXJjHJBBLnNZPu/X675kzj333jO3iflw7jn3qoQQAkRERET1hFrpBhARERHJieGGiIiI6hWGGyIiIqpXGG6IiIioXmG4ISIionqF4YaIiIjqFYYbIiIiqlcYboiIiKheYbghIiKieoXhhughjR8/Hj4+Pg+17dy5c6FSqeRtEClGpVJh7ty50uvExESoVCqcP3++0m19fHwwfvx4WdtTnc8mUX3AcEP1jkqlMmlJSUlRuqmKGD9+PFQqFezt7XH79m2j9WfOnJHO0cKFCw3WnT9/HtHR0WjdujWsrKzg7u6OPn36IC4uzqBev379KjzvHTp0qNH39yAvvPACVCoVzp49W2GdV199FSqVCkePHjVjy6ruypUrmDt3Lg4fPqx0UyTnz5+X/ju/+eab5daJjIyESqWCnZ2dQXlJSQm++OILBAQEwNnZGY0bN0a7du0wbtw47N27V6qXkpLywP+v16xZU6PvkeoGC6UbQCS3L7/80uD1F198ge3btxuVd+zYsVrHWb58OUpKSh5q29deew0vv/xytY5fHRYWFrh16xa+//57PPPMMwbrvv76a1hZWeHOnTsG5WfPnkWPHj1gbW2NCRMmwMfHB+np6Th48CDeeecdzJs3z6C+p6cn4uPjjY7t4OAg/xsyUWRkJD744AOsWrUKsbGx5dZZvXo1unbtim7duj30ccaOHYuRI0dCq9U+9D4qc+XKFcybNw8+Pj7o3r27wbrqfDblYGVlhdWrV+O1114zKC8oKMCmTZtgZWVltM0LL7yApUuXYtiwYYiMjISFhQVOnz6NLVu2oFWrVnjssceM6vfo0cNoP4GBgfK+GaqTGG6o3hkzZozB671792L79u1G5fe7desWbGxsTD5Oo0aNHqp9gD5cWFgo97+fVqtF7969sXr1aqNws2rVKgwZMgTffvutQfmiRYuQn5+Pw4cPw9vb22BdVlaW0TEcHBwqPefmFhAQgDZt2mD16tXlhpvU1FSkpaXh7bffrtZxNBoNNBpNtfZRHdX5bMph8ODBSEpKwpEjR+Dr6yuVb9q0CUVFRQgNDcXPP/8slWdmZuLDDz/Es88+i08++cRgXwkJCbh69arRMYKCgjBixIiaexNUp/GyFDVI/fr1Q5cuXXDgwAH06dMHNjY2eOWVVwDofwEPGTIEzZo1g1arRevWrfHGG29Ap9MZ7OP+cQ2lXfILFy7EJ598gtatW0Or1aJHjx7Yv3+/wbbljblRqVSYNm0aNm7ciC5dukCr1aJz587YunWrUftTUlLg7+8PKysrtG7dGh9//HGVx/GMHj0aW7Zswc2bN6Wy/fv348yZMxg9erRR/XPnzsHT09Mo2ABA06ZNTT7ug2RmZsLCwsKoFwgATp8+DZVKhSVLlgAA7t69i3nz5qFt27awsrJCkyZN8I9//APbt29/4DEiIyPx559/4uDBg0brVq1aBZVKhVGjRqGoqAixsbHw8/ODg4MDbG1tERQUhJ07d1b6PsobcyOEwJtvvglPT0/Y2Nigf//+OHHihNG2169fx+zZs9G1a1fY2dnB3t4egwYNwpEjR6Q6KSkpUq9FdHS0dEkmMTERQPljbgoKCjBr1ix4eXlBq9Wiffv2WLhwIYQQBvWq8jmsSGBgIFq2bIlVq1YZlH/99dcIDQ2Fs7OzQXlaWhqEEOjdu7fRvlQqlWyfL2o4GG6owbp27RoGDRqE7t27IyEhAf379weg/2Kys7NDTEwMFi9eDD8/P8TGxpp8GWnVqlVYsGABnnvuObz55ps4f/48wsPDcffu3Uq3/e233zBlyhSMHDkS7777Lu7cuYPhw4fj2rVrUp1Dhw4hNDQU165dw7x58zBx4kTMnz8fGzdurNL7Dw8Ph0qlQlJSkkHbO3TogEcffdSovre3Ny5evGjwF/eD6HQ6ZGdnGy0FBQUVbuPm5oa+ffti3bp1RuvWrl0LjUaDp59+GoA+IM6bNw/9+/fHkiVL8Oqrr6JFixblhpayIiMjpfd6f3vXrVuHoKAgtGjRArm5ufj000/Rr18/vPPOO5g7dy6uXr2KkJCQhxrnEhsbi9dffx2+vr5YsGABWrVqhYEDBxqdj//973/YuHEjnnjiCbz33nt48cUXcezYMfTt2xdXrlwBoL+kOn/+fADApEmT8OWXX+LLL79Enz59yj22EAJPPvkkFi1ahNDQULz33nto3749XnzxRcTExBjVN+VzWJlRo0ZhzZo1UnjKzs7GTz/9VG5wLg3M69evx61bt0zaf15eXrmfr/vDGjVQgqiemzp1qrj/o963b18BQCxbtsyo/q1bt4zKnnvuOWFjYyPu3LkjlUVFRQlvb2/pdVpamgAgmjRpIq5fvy6Vb9q0SQAQ33//vVQWFxdn1CYAwtLSUpw9e1YqO3LkiAAgPvjgA6ls6NChwsbGRly+fFkqO3PmjLCwsDDaZ3mioqKEra2tEEKIESNGiAEDBgghhNDpdMLd3V3MmzdPei8LFiyQtjt+/LiwtrYWAET37t3FjBkzxMaNG0VBQYHRMUrPb3nLc88998D2ffzxxwKAOHbsmEF5p06dxOOPPy699vX1FUOGDKn0/ZanR48ewtPTU+h0Oqls69atAoD4+OOPhRBCFBcXi8LCQoPtbty4Idzc3MSECRMMygGIuLg46fXKlSsFAJGWliaEECIrK0tYWlqKIUOGiJKSEqneK6+8IgCIqKgoqezOnTsG7RJC/9nSarVi/vz5Utn+/fsFALFy5Uqj93f/Z3Pjxo0CgHjzzTcN6o0YMUKoVCqDz5ypn8PylP3cHD9+XAAQu3btEkIIsXTpUmFnZycKCgoMPoOlxo0bJwAIJycn8dRTT4mFCxeKU6dOGR1j586dFX62AIj09PQHtpEaBvbcUIOl1WoRHR1tVG5tbS39XPrXYVBQEG7duoU///yz0v1GRETAyclJeh0UFARA/xd5ZYKDg9G6dWvpdbdu3WBvby9tq9PpsGPHDoSFhaFZs2ZSvTZt2mDQoEGV7v9+o0ePRkpKCjIyMvDzzz8jIyOj3L+sAaBz5844fPgwxowZg/Pnz2Px4sUICwuDm5sbli9fblTfx8cH27dvN1pmzpz5wDaFh4fDwsICa9eulcqOHz+OkydPIiIiQipzdHTEiRMncObMmSq/7zFjxuDSpUv49ddfpbJVq1bB0tJS6hnSaDSwtLQEoJ/Jc/36dRQXF8Pf37/S3qH77dixA0VFRZg+fbrBpcPyzoVWq4Varf/VrNPpcO3aNdjZ2aF9+/ZVPm6pzZs3Q6PR4IUXXjAonzVrFoQQ2LJli0F5ZZ9DU3Tu3BndunXD6tWrAejP77Bhwyoc17Zy5UosWbIELVu2xIYNGzB79mx07NgRAwYMwOXLl43qx8bGlvv5uv+SFzVMDDfUYDVv3lz68irrxIkTeOqpp+Dg4AB7e3u4urpKA2NzcnIq3W+LFi0MXpcGnRs3blR529LtS7fNysrC7du30aZNG6N65ZVVZvDgwWjcuDHWrl2Lr7/+Gj169Hjgftq1a4cvv/wS2dnZOHr0KP7zn//AwsICkyZNwo4dOwzq2traIjg42GipbCq4i4sLBgwYYHBpau3atbCwsEB4eLhUNn/+fNy8eRPt2rVD165d8eKLL5o8fXvkyJHQaDTSpak7d+5gw4YNGDRokEEw/fzzz9GtWzdpTI+rqyt+/PFHkz4HZf31118AgLZt2xqUu7q6GhwP0AepRYsWoW3bttBqtXBxcYGrqyuOHj1a5eOWPX6zZs3QuHFjg/LSGYOl7StV2efQVKNHj8b69etx9uxZ7Nmzp8LgDABqtRpTp07FgQMHkJ2djU2bNmHQoEH4+eefMXLkSKP6Xbt2LffzVd7/09TwMNxQg1W2h6bUzZs30bdvXxw5cgTz58/H999/j+3bt+Odd94BAJOm11Y0S0aYMBagOts+DK1Wi/DwcHz++efYsGHDA798ytJoNOjatSvmzJmDDRs2ANAPFpXLyJEj8d///lca27Ju3ToMGDAALi4uUp0+ffrg3LlzWLFiBbp06YJPP/0Ujz76KD799NNK99+0aVP885//xLfffou7d+/i+++/R15enjQeBwC++uorjB8/Hq1bt8Znn32GrVu3Yvv27Xj88cdrdJr1f/7zH8TExKBPnz746quvsG3bNmzfvh2dO3c22/RuuT6Ho0aNQnZ2Np599lk0adIEAwcONGm7Jk2a4Mknn8TmzZvRt29f/Pbbb0YBjOhBOBWcqIyUlBRcu3YNSUlJBoMz09LSFGzV35o2bQorK6tyb0L3oBvTPcjo0aOxYsUKqNXqcv9Croy/vz8AID09/aGOX56wsDA899xz0qWp//73v5gzZ45RPWdnZ0RHRyM6Ohr5+fno06cP5s6di3/961+VHiMyMhJbt27Fli1bsGrVKtjb22Po0KHS+m+++QatWrVCUlKSwaWk+29YaIrSAbNnzpxBq1atpPKrV68a9YZ888036N+/Pz777DOD8ps3bxqEu6rMjPP29saOHTuQl5dn0HtTepm1vBlwcmjRogV69+6NlJQUTJ48+aFuf+Dv749ffvkF6enpNdZOqn/Yc0NURulfrGX/Qi0qKsKHH36oVJMMaDQaBAcHY+PGjdLMGUAfbO4fN2Gq/v3744033sCSJUvg7u5eYb1du3aVO+Nr8+bNAID27ds/1PHL4+joiJCQEKxbtw5r1qyBpaUlwsLCDOrcP3PHzs4Obdq0QWFhoUnHCAsLg42NDT788ENs2bIF4eHhBjeXK++z8PvvvyM1NbXK7yc4OBiNGjXCBx98YLC/hIQEo7oajcaoh2T9+vVG405sbW0BwGAqf0UGDx4MnU4nTaMvtWjRIqhUqocar2WqN998E3FxcZg+fXqFdTIyMnDy5Emj8qKiIiQnJ0OtVj/UZVdquNhzQ1RGr1694OTkhKioKOlW/V9++WWtml46d+5c/PTTT+jduzcmT54sfWl16dLloaYoq9VqozvJluedd97BgQMHEB4eLt299+DBg/jiiy/g7OxsNDg2JycHX331Vbn7MuXmfhERERgzZgw+/PBDhISEwNHR0WB9p06d0K9fP/j5+cHZ2Rl//PEHvvnmG0ybNq3SfQP6MBQWFiaNuyl7SQoAnnjiCSQlJeGpp57CkCFDkJaWhmXLlqFTp07Iz8836RilXF1dMXv2bMTHx+OJJ57A4MGDcejQIWzZssWgN6b0uPPnz0d0dDR69eqFY8eO4euvvzbo8QGA1q1bw9HREcuWLUPjxo1ha2uLgIAAtGzZ0uj4Q4cORf/+/fHqq6/i/Pnz8PX1xU8//YRNmzZh5syZBoOH5da3b1/07dv3gXUuXbqEnj174vHHH8eAAQPg7u6OrKwsrF69GkeOHMHMmTONztOuXbuM7qIN6Ac/V+fu0lQ/MNwQldGkSRP88MMPmDVrFl577TU4OTlhzJgxGDBgAEJCQpRuHgDAz88PW7ZswezZs/H666/Dy8sL8+fPx6lTp0yazfWwXnnlFaxatQq//PILvv76a9y6dQseHh4YOXIkXn/9daMv1UuXLmHs2LHl7suUcPPkk0/C2toaeXl5BrOkSr3wwgv47rvv8NNPP6GwsBDe3t5488038eKLL5r8niIjI7Fq1Sp4eHjg8ccfN1g3fvx4ZGRk4OOPP8a2bdvQqVMnfPXVV1i/fv1DPZfszTffhJWVFZYtW4adO3ciICAAP/30E4YMGWJQ75VXXkFBQQFWrVqFtWvX4tFHH8WPP/5odJ+lRo0a4fPPP8ecOXPw/PPPo7i4GCtXriw33KjVanz33XeIjY3F2rVrsXLlSvj4+GDBggWYNWtWld+L3Nq3b4+EhARs3rwZH374ITIzM2FlZYUuXbpg+fLlmDhxotE277//frn7iouLY7ghqERt+pOUiB5aWFjYQ0+NJiKqTzjmhqgOuv9p3mfOnMHmzZvRr18/ZRpERFSLsOeGqA7y8PDA+PHj0apVK/z111/46KOPUFhYiEOHDhndS4WIqKHhmBuiOig0NBSrV69GRkYGtFotAgMD8Z///IfBhogI7LkhIiKieoZjboiIiKheYbghIiKieqXBjbkpKSnBlStX0Lhx4yrdvpyIiIiUI4RAXl4emjVrBrX6wX0zDS7cXLlyBV5eXko3g4iIiB7CxYsX4enp+cA6DS7clD407uLFi7C3t1e4NURERGSK3NxceHl5GTz8tSINLtyUXoqyt7dnuCEiIqpjTBlSwgHFREREVK8w3BAREVG9wnBDRERE9UqDG3NDRETVV1JSgqKiIqWbQfWMpaVlpdO8TcFwQ0REVVJUVIS0tDSUlJQo3RSqZ9RqNVq2bAlLS8tq7YfhhoiITCaEQHp6OjQaDby8vGT5K5sI+Psmu+np6WjRokW1brTLcENERCYrLi7GrVu30KxZM9jY2CjdHKpnXF1dceXKFRQXF6NRo0YPvZ9aEbmXLl0KHx8fWFlZISAgAPv27auwbmJiIlQqlcFiZWVlxtYSETVcOp0OAKp92YCoPKWfq9LP2cNSPNysXbsWMTExiIuLw8GDB+Hr64uQkBBkZWVVuI29vT3S09Ol5a+//jJji4mIiM/mo5og1+dK8XDz3nvv4dlnn0V0dDQ6deqEZcuWwcbGBitWrKhwG5VKBXd3d2lxc3MzY4vLp9MBKSnA6tX6f6sZOomIiOghKRpuioqKcODAAQQHB0tlarUawcHBSE1NrXC7/Px8eHt7w8vLC8OGDcOJEycqrFtYWIjc3FyDRW5JSYCPD9C/PzB6tP5fHx99ORER1U8+Pj5ISEgwuX5KSgpUKhVu3rxZY20iPUXDTXZ2NnQ6nVHPi5ubGzIyMsrdpn379lixYgU2bdqEr776CiUlJejVqxcuXbpUbv34+Hg4ODhIi9xPBE9KAkaMAO4//OXL+nIGHCIiY+bs7b5/nOb9y9y5cx9qv/v378ekSZNMrt+rVy+kp6fDwcHhoY5nqtIQ5eTkhDt37his279/v/S+y1q+fDl8fX1hZ2cHR0dHPPLII4iPj5fWz507t9xz16FDhxp9Lw+rzs2WCgwMRGBgoPS6V69e6NixIz7++GO88cYbRvXnzJmDmJgY6XXpU0XloNMBM2YAQhivEwJQqYCZM4FhwwCNRpZDEhHVeUlJ+t+dZf8o9PQEFi8GwsPlP156err089q1axEbG4vTp09LZXZ2dtLPQgjodDpYWFT+9ejq6lqldlhaWsLd3b1K21RH48aNsWHDBowaNUoq++yzz9CiRQtcuHBBKluxYgVmzpyJ999/H3379kVhYSGOHj2K48ePG+yvc+fO2LFjh0GZKedJCYr23Li4uECj0SAzM9OgPDMz0+QPQKNGjfDII4/g7Nmz5a7XarXSE8DlfhL4rl3GPTZlCQFcvKivR0REyvR2lx2j6eDgYDBu888//0Tjxo2xZcsW+Pn5QavV4rfffsO5c+cwbNgwuLm5wc7ODj169DD6Yr//spRKpcKnn36Kp556CjY2Nmjbti2+++47af39l6USExPh6OiIbdu2oWPHjrCzs0NoaKhBGCsuLsYLL7wAR0dHNGnSBC+99BKioqIQFhZW6fuOiooyGL96+/ZtrFmzBlFRUQb1vvvuOzzzzDOYOHEi2rRpg86dO2PUqFF46623DOpZWFgYnEt3d3e4uLhU2g4lKBpuLC0t4efnh+TkZKmspKQEycnJBr0zD6LT6XDs2DF4eHjUVDMrVObzJ0s9IqK6RgigoMC0JTcXeOGFinu7AX2PTm6uafsrbz8P6+WXX8bbb7+NU6dOoVu3bsjPz8fgwYORnJyMQ4cOITQ0FEOHDjXo8SjPvHnz8Mwzz+Do0aMYPHgwIiMjcf369Qrr37p1CwsXLsSXX36JX3/9FRcuXMDs2bOl9e+88w6+/vprrFy5Ert370Zubi42btxo0nsaO3Ysdu3aJbX522+/hY+PDx599FGDeu7u7ti7d2/9mnksFLZmzRqh1WpFYmKiOHnypJg0aZJwdHQUGRkZQgghxo4dK15++WWp/rx588S2bdvEuXPnxIEDB8TIkSOFlZWVOHHihEnHy8nJEQBETk5Otdu+c6cQ+v+9Hrzs3FntQxER1Qq3b98WJ0+eFLdv3xZCCJGfb9rvwZpY8vOr3v6VK1cKBwcH6fXOnTsFALFx48ZKt+3cubP44IMPpNfe3t5i0aJF0msA4rXXXpNe5+fnCwBiy5YtBse6ceOG1BYA4uzZs9I2S5cuFW5ubtJrNzc3sWDBAul1cXGxaNGihRg2bFiF7Sx7nLCwMDFv3jwhhBD9+/cXixcvFhs2bBBlv/6vXLkiHnvsMQFAtGvXTkRFRYm1a9cKnU4n1YmLixNqtVrY2toaLM8991yl560q7v98lVWV72/FL5ZFRETg6tWriI2NRUZGBrp3746tW7dKg4wvXLhgcHvvGzdu4Nlnn0VGRgacnJzg5+eHPXv2oFOnTmZve1CQ/jrx5cvl/wWhUunXBwWZvWlERFQF/v7+Bq/z8/Mxd+5c/Pjjj0hPT0dxcTFu375dac9Nt27dpJ9tbW1hb2//wPu22djYoHXr1tJrDw8PqX5OTg4yMzPRs2dPab1Go4Gfn5/Jz/WaMGECZsyYgTFjxiA1NRXr16/HrvvGSnh4eCA1NRXHjx/Hr7/+ij179iAqKgqffvoptm7dKn0Ht2/f3uAyGwBZh3rISfFwAwDTpk3DtGnTyl2XkpJi8HrRokVYtGiRGVpVOY1GPwBuxAjjdaUD0RMSOJiYiOovGxsgP9+0ur/+CgweXHm9zZuBPn1MO7ZcbG1tDV7Pnj0b27dvx8KFC9GmTRtYW1tjxIgRlT4J/f5HBqhUqgcGkfLqCxmvtw0aNAiTJk3CxIkTMXToUDRp0qTCul26dEGXLl0wZcoUPP/88wgKCsIvv/yC/v37A9APJWnTpo1sbatJit/Er64LDwe++Qa4/z6Cnp768poY+U9EVFuoVICtrWnLwIH6340V3YRWpQK8vPT1TNlfTd4keffu3Rg/fjyeeuopdO3aFe7u7jh//nzNHbAcDg4OcHNzw/79+6UynU6HgwcPmrwPCwsLjBs3DikpKZgwYYLJ25VeDSkoKDC9wbVIrei5qevCw4GWLYFHHwXs7YFNm/SXothjQ0T0t7K93SqV4eX82tbb3bZtWyQlJWHo0KFQqVR4/fXXTb4UJKfp06cjPj4ebdq0QYcOHfDBBx/gxo0bVXpMwRtvvIEXX3yxwl6byZMno1mzZnj88cfh6emJ9PR0vPnmm3B1dTWY3FNcXGx0DzqVSlUrnhJwP/bcyKR0qr9WC/TrVzv+5yQiqm1Ke7ubNzcsr2293e+99x6cnJzQq1cvDB06FCEhIUazjMzhpZdewqhRozBu3DgEBgbCzs4OISEhVXpgtKWlJVxcXCoMRMHBwdi7dy+efvpptGvXDsOHD4eVlRWSk5MNAtGJEyfg4eFhsHh7e1f7PdYElZDz4l4dkJubCwcHB+Tk5Mg6EOrECaBLF8DFBbh6VbbdEhHVKnfu3EFaWhpatmxZpS/Y++l0+nuApacDHh7s7TZVSUkJOnbsiGeeeabcG9fWdQ/6fFXl+5uXpWRSOqFLgV5LIqI6R6PR93LTg/3111/46aefpDsHL1myBGlpaRg9erTSTavVeFlKJgw3REQkN7VajcTERPTo0QO9e/fGsWPHsGPHDnTs2FHpptVq7LmRCcMNERHJzcvLC7t371a6GXUOe25kUjpOi+GGiIhIWQw3MintuWlYw7OJiIhqH4YbmfCyFBERUe3AcCMThhsiIqLageFGJgw3REREtQPDjUwYboiIiGoHhhuZcLYUEVH91q9fP8ycOVN67ePjg4SEhAduo1KpsHHjxmofW679NBQMNzLhbCkioirQ6YCUFGD1av2/Ol2NHWro0KEIDQ0td92uXbugUqlw9OjRKu93//79mDRpUnWbZ2Du3Lno3r27UXl6ejoGDRok67Hul5iYCJVKVe4NAtevXw+VSgUfHx+pTKfT4e2330aHDh1gbW0NZ2dnBAQE4NNPP5XqjB8/HiqVymip6L+HXHgTP5moy8REIf7uySEiovskJQEzZgCXLv1d5umpf2R4DTw5c+LEiRg+fDguXboET09Pg3UrV66Ev78/unXrVuX9urq6ytXESrm7u5vlOLa2tsjKykJqaqrBE8E/++wztGjRwqDuvHnz8PHHH2PJkiXw9/dHbm4u/vjjD9y4ccOgXmhoKFauXGlQptVqa+5NgD03sikbbnhpioioAklJwIgRhsEGAC5f1pcnJcl+yCeeeAKurq5ITEw0KM/Pz8f69esxceJEXLt2DaNGjULz5s1hY2ODrl27YvXq1Q/c7/2Xpc6cOYM+ffrAysoKnTp1wvbt2422eemll9CuXTvY2NigVatWeP3113H37l0A+p6TefPm4ciRI1IPR2mb778sdezYMTz++OOwtrZGkyZNMGnSJOTn50vrx48fj7CwMCxcuBAeHh5o0qQJpk6dKh2rIhYWFhg9ejRWrFghlV26dAkpKSlGz7P67rvvMGXKFDz99NNo2bIlfH19MXHiRMyePdugnlarhbu7u8Hi5OT0wHZUF8ONTBhuiKhBEgIoKDBtyc0FXnih/Ov3pWUzZujrmbI/E8cBWFhYYNy4cUhMTIQos8369euh0+kwatQo3LlzB35+fvjxxx9x/PhxTJo0CWPHjsW+fftMOkZJSQnCw8NhaWmJ33//HcuWLcNLL71kVK9x48ZITEzEyZMnsXjxYixfvhyLFi0CAERERGDWrFno3Lkz0tPTkZ6ejoiICKN9FBQUICQkBE5OTti/fz/Wr1+PHTt2YNq0aQb1du7ciXPnzmHnzp34/PPPkZiYaBTwyjNhwgSsW7cOt27dAqAPXaGhoXBzczOo5+7ujp9//hlXr1416RyZlWhgcnJyBACRk5Mj635v3hRC/3+aEHfuyLprIqJa4/bt2+LkyZPi9u3b+oL8/L9/+Zl7yc83ud2nTp0SAMTOnTulsqCgIDFmzJgKtxkyZIiYNWuW9Lpv375ixowZ0mtvb2+xaNEiIYQQ27ZtExYWFuLy5cvS+i1btggAYsOGDRUeY8GCBcLPz096HRcXJ3x9fY3qld3PJ598IpycnER+mff/448/CrVaLTIyMoQQQkRFRQlvb29RXFws1Xn66adFREREhW1ZuXKlcHBwEEII0b17d/H555+LkpIS0bp1a7Fp0yaxaNEi4e3tLdU/ceKE6Nixo1Cr1aJr167iueeeE5s3bzbYZ1RUlNBoNMLW1tZgeeutt8ptg9Hnq4yqfH+z50YmZcfYsOeGiKh26dChA3r16iVdbjl79ix27dqFiRMnAtAPjn3jjTfQtWtXODs7w87ODtu2bcOFCxdM2v+pU6fg5eWFZs2aSWVlx6yUWrt2LXr37g13d3fY2dnhtddeM/kYZY/l6+sLW1tbqax3794oKSnB6dOnpbLOnTtDo9FIrz08PJCVlWXSMSZMmICVK1fil19+QUFBAQYPHmxUp1OnTjh+/Dj27t2LCRMmICsrC0OHDsW//vUvg3r9+/fH4cOHDZbnn3++Su+5qhhuZHL/gGIiogbBxgbIzzdt2bzZtH1u3mza/mxsqtTUiRMn4ttvv0VeXh5WrlyJ1q1bo2/fvgCABQsWYPHixXjppZewc+dOHD58GCEhISgqKqrqGalQamoqIiMjMXjwYPzwww84dOgQXn31VVmPUVajRo0MXqtUKpSY+Nd3ZGQk9u7di7lz52Ls2LGwsCh//pFarUaPHj0wc+ZMJCUlITExEZ999hnS0tKkOra2tmjTpo3B4uzs/PBvzAScLSUTjrkhogZJpQLK9CA80MCB+llRly+X/1egSqVfP3AgUKbHQS7PPPMMZsyYgVWrVuGLL77A5MmTobrX7b57924MGzYMY8aMAaAfQ/Pf//4XnTp1MmnfHTt2xMWLF5Geng4PDw8AwN69ew3q7NmzB97e3nj11Velsr/++sugjqWlJXSVTIvv2LEjEhMTUVBQIPXe7N69G2q1Gu3btzepvZVxdnbGk08+iXXr1mHZsmUmb1d6vgoKCmRpx8Niz41MGG6IiCqh0einewPG98sofZ2QUCPBBgDs7OwQERGBOXPmID09HePHj5fWtW3bFtu3b8eePXtw6tQpPPfcc8jMzDR538HBwWjXrh2ioqJw5MgR7Nq1yyDElB7jwoULWLNmDc6dO4f3338fGzZsMKjj4+ODtLQ0HD58GNnZ2SgsLDQ6VmRkJKysrBAVFYXjx49j586dmD59OsaOHWs06Lc6EhMTkZ2djQ4dOpS7fsSIEVi0aBF+//13/PXXX0hJScHUqVPRrl07g20KCwuRkZFhsGRnZ8vWzvIw3MiE4YaIyATh4cA33wDNmxuWe3rqy2vgPjdlTZw4ETdu3EBISIjB+JjXXnsNjz76KEJCQtCvXz+4u7sjLCzM5P2q1Wps2LABt2/fRs+ePfGvf/0Lb731lkGdJ598Ev/+978xbdo0dO/eHXv27MHrr79uUGf48OEIDQ1F//794erqWu50dBsbG2zbtg3Xr19Hjx49MGLECAwYMABLliyp2smoROk084qEhITg+++/x9ChQ6Vg16FDB/z0008Gl7G2bt0KDw8Pg+Uf//iHrG29n0qIhjVCJDc3Fw4ODsjJyYG9vb1s+y0uBkovb167BtTw5UQiIkXcuXMHaWlpaNmyJaysrB5+RzodsGsXkJ4OeHgAQUE11mNDdceDPl9V+f7mmBuZlO1hbVhxkYjoIWg0QL9+SreC6ilelpIJL0sRERHVDgw3MuF9boiIiGoHhhsZlfbeMNwQEREph+FGRgw3RNRQNLC5KGQmcn2uGG5kxHBDRPVd6e38a+quutSwlX6uNNWcOcfZUjIqHXfDP2iIqL6ysLCAjY0Nrl69ikaNGkGt5t/IJI+SkhJcvXoVNjY2FT7uwVQMNzJizw0R1XcqlQoeHh5IS0szenQAUXWp1Wq0aNFCeizGw2K4kRHDDRE1BJaWlmjbti0vTZHsLC0tZekNZLiREcMNETUUarW6encoJqpBvFgqI4YbIiIi5THcyIjhhoiISHkMNzLibCkiIiLlMdzIiD03REREymO4kRHDDRERkfIYbmTEcENERKQ8hhsZMdwQEREpj+FGRhxQTEREpDyGGxmx54aIiEh5DDcyYrghIiJSHsONjBhuiIiIlMdwIyOGGyIiIuUx3MiI4YaIiEh5DDcy4mwpIiIi5THcyIg9N0RERMpjuJERww0REZHyGG5kxHBDRESkPIYbGTHcEBERKY/hRkYMN0RERMpjuJERZ0sREREpj+FGRuy5ISIiUh7DjYwYboiIiJRXK8LN0qVL4ePjAysrKwQEBGDfvn0mbbdmzRqoVCqEhYXVbANNxHBDRESkPMXDzdq1axETE4O4uDgcPHgQvr6+CAkJQVZW1gO3O3/+PGbPno2goCAztbRyDDdERETKUzzcvPfee3j22WcRHR2NTp06YdmyZbCxscGKFSsq3Ean0yEyMhLz5s1Dq1atzNjaB2O4ISIiUp6i4aaoqAgHDhxAcHCwVKZWqxEcHIzU1NQKt5s/fz6aNm2KiRMnVnqMwsJC5ObmGiw1hbOliIiIlKdouMnOzoZOp4Obm5tBuZubGzIyMsrd5rfffsNnn32G5cuXm3SM+Ph4ODg4SIuXl1e1210R9twQEREpT/HLUlWRl5eHsWPHYvny5XBxcTFpmzlz5iAnJ0daLl68WGPtY7ghIiJSnoWSB3dxcYFGo0FmZqZBeWZmJtzd3Y3qnzt3DufPn8fQoUOlspJ7ScLCwgKnT59G69atDbbRarXQarU10HpjDDdERETKU7TnxtLSEn5+fkhOTpbKSkpKkJycjMDAQKP6HTp0wLFjx3D48GFpefLJJ9G/f38cPny4Ri85mYLhhoiISHmK9twAQExMDKKiouDv74+ePXsiISEBBQUFiI6OBgCMGzcOzZs3R3x8PKysrNClSxeD7R0dHQHAqFwJpeGGA4qJiIiUo3i4iYiIwNWrVxEbG4uMjAx0794dW7dulQYZX7hwAWp13RgaVDpbij03REREylEJ0bD6GXJzc+Hg4ICcnBzY29vLuu/Bg4EtW4CVK4Hx42XdNRERUYNWle/vutElUkdwzA0REZHyGG5kxHBDRESkPIYbGTHcEBERKY/hRkZ8/AIREZHyGG5kxJ4bIiIi5THcyIjhhoiISHkMNzJiuCEiIlIew42MGG6IiIiUx3AjI4YbIiIi5THcyIizpYiIiJTHcCMj9twQEREpj+FGRgw3REREymO4kRHDDRERkfIYbmTEcENERKQ8hhsZlYYbDigmIiJSDsONjEpnS7HnhoiISDkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYwYboiIiJTHcCMjzpYiIiJSHsONjDhbioiISHkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYwYboiIiJTHcCMjzpYiIiJSHsONjDhbioiISHkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYwYboiIiJTHcCMjzpYiIiJSHsONjDhbioiISHkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYw4oJiIiEh5DDcy4oBiIiIi5THcyIiXpYiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYw4W4qIiEh5DDcy4mwpIiIi5THcyIiXpYiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYw4W4qIiEh5DDcy4mwpIiIi5THcyIiXpYiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MuKAYiIiIuUx3MiIPTdERETKY7iREWdLERERKa9WhJulS5fCx8cHVlZWCAgIwL59+yqsm5SUBH9/fzg6OsLW1hbdu3fHl19+acbWVow9N0RERMpTPNysXbsWMTExiIuLw8GDB+Hr64uQkBBkZWWVW9/Z2RmvvvoqUlNTcfToUURHRyM6Ohrbtm0zc8uNMdwQEREpTyWEssNfAwIC0KNHDyxZsgQAUFJSAi8vL0yfPh0vv/yySft49NFHMWTIELzxxhuV1s3NzYWDgwNycnJgb29frbbfb+tWYNAg4JFHgIMHZd01ERFRg1aV729Fe26Kiopw4MABBAcHS2VqtRrBwcFITU2tdHshBJKTk3H69Gn06dOn3DqFhYXIzc01WGoKZ0sREREpT9Fwk52dDZ1OBzc3N4NyNzc3ZGRkVLhdTk4O7OzsYGlpiSFDhuCDDz7AP//5z3LrxsfHw8HBQVq8vLxkfQ9l8bIUERGR8hQfc/MwGjdujMOHD2P//v146623EBMTg5SUlHLrzpkzBzk5OdJy8eLFGmsXZ0sREREpz0LJg7u4uECj0SAzM9OgPDMzE+7u7hVup1ar0aZNGwBA9+7dcerUKcTHx6Nfv35GdbVaLbRaraztrrhd+n8ZboiIiJSjaM+NpaUl/Pz8kJycLJWVlJQgOTkZgYGBJu+npKQEhYWFNdHEKmG4ISIiUp6iPTcAEBMTg6ioKPj7+6Nnz55ISEhAQUEBoqOjAQDjxo1D8+bNER8fD0A/hsbf3x+tW7dGYWEhNm/ejC+//BIfffSRkm8DAMMNERFRbaB4uImIiMDVq1cRGxuLjIwMdO/eHVu3bpUGGV+4cAFq9d8dTAUFBZgyZQouXboEa2trdOjQAV999RUiIiKUegsSzpYiIiJSnuL3uTG3mrzPTWoq0KsX0Lo1cPasrLsmIiJq0OrMfW7qG86WIiIiUh7DjYw45oaIiEh5DDcyYrghIiJSHsONjBhuiIiIlMdwIyPOliIiIlIew42MOKCYiIhIeQw3MuJlKSIiIuUx3MiI4YaIiEh5DDcyYrghIiJSHsONjDigmIiISHkMNzJizw0REZHyGG5kxNlSREREymO4kRF7boiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MuJsKSIiIuUx3MiIPTdERETKq1K4effdd3H79m3p9e7du1FYWCi9zsvLw5QpU+RrXR3D2VJERETKUwlh+kUUjUaD9PR0NG3aFABgb2+Pw4cPo1WrVgCAzMxMNGvWDDqdrmZaK4Pc3Fw4ODggJycH9vb2su47MxNwd9f/zEtTRERE8qnK93eVem7uz0FVyEUNgrrM2eSpISIiUgbH3MiobLjhpSkiIiJlMNzIiD03REREyrOo6gaffvop7OzsAADFxcVITEyEi4sLAP2A4oaMPTdERETKq9KAYh8fH6hKpwQ9QFpaWrUaVZNqckBxbi7g4KD/+fZtwMpK1t0TERE1WFX5/q5Sz8358+er0656jz03REREyuOYGxkx3BARESmvSuEmNTUVP/zwg0HZF198gZYtW6Jp06aYNGmSwU39GhoOKCYiIlJelcLN/PnzceLECen1sWPHMHHiRAQHB+Pll1/G999/j/j4eNkbWVew54aIiEh5VQo3hw8fxoABA6TXa9asQUBAAJYvX46YmBi8//77WLduneyNrCsYboiIiJRXpXBz48YNuLm5Sa9/+eUXDBo0SHrdo0cPXLx4Ub7W1TFlJ5Ix3BARESmjSuHGzc1NmuZdVFSEgwcP4rHHHpPW5+XloVGjRvK2sA5hzw0REZHyqhRuBg8ejJdffhm7du3CnDlzYGNjg6CgIGn90aNH0bp1a9kbWVew54aIiEh5VbrPzRtvvIHw8HD07dsXdnZ2SExMhKWlpbR+xYoVGDhwoOyNrEvUan2w4WwpIiIiZVQp3Li4uODXX39FTk4O7OzsoNFoDNavX78ejRs3lrWBdU1puGHPDRERkTKqFG4mTJhgUr0VK1Y8VGPqg9JxNww3REREyqhSuElMTIS3tzceeeQRVOGRVA1K6bgbhhsiIiJlVCncTJ48GatXr0ZaWhqio6MxZswYODs711Tb6iT23BARESmrSrOlli5divT0dPzf//0fvv/+e3h5eeGZZ57Btm3b2JNzD8MNERGRsqr84EytVotRo0Zh+/btOHnyJDp37owpU6bAx8cH+fn5NdHGOqU03DDrERERKaNaTwVXq9VQqVQQQkCn08nVpjqNPTdERETKqnK4KSwsxOrVq/HPf/4T7dq1w7Fjx7BkyRJcuHABdnZ2NdHGOoUDiomIiJRVpQHFU6ZMwZo1a+Dl5YUJEyZg9erVcHFxqam21UnsuSEiIlKWSlRhJLBarUaLFi3wyCOPQFX2WQP3SUpKkqVxNSE3NxcODg7IycmBvb297Pt3dQWys4Hjx4HOnWXfPRERUYNUle/vKvXcjBs37oGhhjigmIiISGlVvokfPRgvSxERESmrWrOlyBjDDRERkbIYbmTG2VJERETKYriRGXtuiIiIlMVwIzOGGyIiImUx3MiMs6WIiIiUxXAjM/bcEBERKYvhRmYMN0RERMpiuJEZZ0sREREpi+FGZuy5ISIiUhbDjcwYboiIiJTFcCMzzpYiIiJSVq0IN0uXLoWPjw+srKwQEBCAffv2VVh3+fLlCAoKgpOTE5ycnBAcHPzA+ubGnhsiIiJlKR5u1q5di5iYGMTFxeHgwYPw9fVFSEgIsrKyyq2fkpKCUaNGYefOnUhNTYWXlxcGDhyIy5cvm7nl5WO4ISIiUpZKCGUvoAQEBKBHjx5YsmQJAKCkpAReXl6YPn06Xn755Uq31+l0cHJywpIlSzBu3LhK6+fm5sLBwQE5OTmwt7evdvvv9+ijwKFDwJYtQGio7LsnIiJqkKry/a1oz01RUREOHDiA4OBgqUytViM4OBipqakm7ePWrVu4e/cunJ2da6qZVcKeGyIiImVZKHnw7Oxs6HQ6uLm5GZS7ubnhzz//NGkfL730Epo1a2YQkMoqLCxEYWGh9Do3N/fhG2wChhsiIiJlKT7mpjrefvttrFmzBhs2bICVlVW5deLj4+Hg4CAtXl5eNdomzpYiIiJSlqLhxsXFBRqNBpmZmQblmZmZcHd3f+C2CxcuxNtvv42ffvoJ3bp1q7DenDlzkJOTIy0XL16Upe0VYc8NERGRshQNN5aWlvDz80NycrJUVlJSguTkZAQGBla43bvvvos33ngDW7duhb+//wOPodVqYW9vb7DUJIYbIiIiZSk65gYAYmJiEBUVBX9/f/Ts2RMJCQkoKChAdHQ0AGDcuHFo3rw54uPjAQDvvPMOYmNjsWrVKvj4+CAjIwMAYGdnBzs7O8XeRyk+W4qIiEhZioebiIgIXL16FbGxscjIyED37t2xdetWaZDxhQsXoFb/3cH00UcfoaioCCNGjDDYT1xcHObOnWvOppeLPTdERETKUjzcAMC0adMwbdq0ctelpKQYvD5//nzNN6gaOKCYiIhIWXV6tlRtxJ4bIiIiZTHcyIzhhoiISFkMNzJjuCEiIlIWw43MOFuKiIhIWQw3MmPPDRERkbIYbmTG2VJERETKYriRGXtuiIiIlMVwIzOGGyIiImUx3MiMA4qJiIiUxXAjM/bcEBERKatWPH6hXtDpgF27EHQpHdfgAVEcBECjdKuIiIgaHIYbOSQlATNmAJcuYSaAmQDyYj2B5ouB8HBl20ZERNTA8LJUdSUlASNGAJcuGRTb3bysL09KUqhhREREDRPDTXXodPoem3JuaqPCvbKZM/X1iIiIyCwYbqpj1y6jHhsDQgAXL+rrERERkVkw3FRHerq89YiIiKjaGG6qw8ND3npERERUbQw31REUBHh6/n3nvvupVICXl74eERERmQXDTXVoNMDixfqf7ws4AvdeJyTo6xEREZFZMNxUV3g48M03Rpeech089eW8zw0REZFZMdzIITwcOH5cejkQ2/DBv9MYbIiIiBTAcCMXW1vpx33oCR0fvUBERKQIhhu5NGokjbuxwp3y7utHREREZsBwIxeVCrCyAqAPN3wqOBERkTIYbuR0L9xoUchwQ0REpBCGGzmx54aIiEhxDDdy0moBMNwQEREpieFGTuy5ISIiUhzDjZzKhBvOliIiIlIGw42c2HNDRESkOIYbOXG2FBERkeIYbuTEAcVERESKY7iREy9LERERKY7hRk4MN0RERIpjuJETZ0sREREpjuFGThxQTEREpDiGGznxshQREZHiGG7kxNlSREREimO4kRN7boiIiBTHcCMnDigmIiJSHMONnNhzQ0REpDiGGzlxthQREZHiGG7kVGZA8f/+B6SkADqdsk0iIiJqaBhuZLTv2N+XpfbsAfr3B3x8gKQkZdtFRETUkDDcyCQpCXgn4e9wU+ryZWDECAYcIiIic2G4kYFOB8yYAdyGcbgpnTU1cyYvUREREZkDw40Mdu0CLl0C7pQTbgB9wLl4UV+PiIiIahbDjQzS0/X/loYbLQofWI+IiIhqDsONDDw89P8W4u/ZUg+qR0RERDWH4UYGQUGApydQWMFlKZUK8PLS1yMiIqKaxXAjA40GWLy4/DE3KpX+34QEfT0iIiKqWQw3MgkPB97/xDjceHoC33yjX09EREQ1j+FGRoPD9eGmEYph1UiHnTuBtDQGGyIiInNiuJHTvccvAIDqbiGCgngpioiIyNwYbuR078GZgP7SVEGBgm0hIiJqoBhu5GRhAXGvq8YKd5Cfr3B7iIiIGiCGG5mprP4eVMxwQ0REZH6Kh5ulS5fCx8cHVlZWCAgIwL59+yqse+LECQwfPhw+Pj5QqVRISEgwX0NNVSbc5OUp3BYiIqIGSNFws3btWsTExCAuLg4HDx6Er68vQkJCkJWVVW79W7duoVWrVnj77bfh7u5u5taayOrvRzCw54aIiMj8FA037733Hp599llER0ejU6dOWLZsGWxsbLBixYpy6/fo0QMLFizAyJEjoS0zM6lW0f79CAb23BAREZmfYuGmqKgIBw4cQHBw8N+NUasRHByM1NRU2Y5TWFiI3Nxcg6VGccwNERGRohQLN9nZ2dDpdHBzczMod3NzQ0ZGhmzHiY+Ph4ODg7R4eXnJtu9yMdwQEREpSvEBxTVtzpw5yMnJkZaLFy/W7AE5oJiIiEhRFkod2MXFBRqNBpmZmQblmZmZsg4W1mq15h2fw54bIiIiRSnWc2NpaQk/Pz8kJydLZSUlJUhOTkZgYKBSzaq+e0FKi0L23BARESlAsZ4bAIiJiUFUVBT8/f3Rs2dPJCQkoKCgANHR0QCAcePGoXnz5oiPjwegH4R88uRJ6efLly/j8OHDsLOzQ5s2bRR7HwbYc0NERKQoRcNNREQErl69itjYWGRkZKB79+7YunWrNMj4woULUKv/7ly6cuUKHnnkEen1woULsXDhQvTt2xcpKSnmbn75yoSb6ww3REREZqdouAGAadOmYdq0aeWuuz+w+Pj4QAhhhlZVAwcUExERKarez5YyO16WIiIiUhTDjdwsLQEAj+AQ2l5OAXQ6ZdtDRETUwDDcyCkpCbj36Ihh+A4fnuoP+Pjoy4mIiMgsGG7kkpQEjBgBo4E2ly/ryxlwiIiIzILhRg46HTBjBlDeYOfSspkzeYmKiIjIDBhu5LBrF3DpUsXrhQAuXtTXIyIiohrFcCOH9HR56xEREdFDY7iRg4eHvPWIiIjooTHcyCEoCPD0BFSq8terVICXl74eERER1SiGGzloNMDixeWuEqWBJyFBX4+IiIhqFMONXMLDgW++Ae49F6tUUVNPfXl4uEINIyIialgYbuQUHg7s2wcA0EGFfvgZS2elQTeMwYaIiMhcGG5ktum3JgAADQT+QA/M+j8Nb1JMRERkRgw3MkpKAp6KtEEx9GNrHJADgDcpJiIiMieGG5lINymGCjlwAPB3uOFNiomIiMyH4UYmZW9SfH+4AXiTYiIiInNhuJFJ2ZsPl4YbR9x8YD0iIiKSH8ONTMrefPgmHAEY9tyUV4+IiIjkx3Ajk7I3KS7vshRvUkxERGQeDDcyKXuT4vvDDW9STEREZD4MNzIqvUmxzs4w3HjyJsVERERmY6F0A+qb8HCg5IAD8B99uGnaFEhLY48NERGRubDnpgaonR0B6GdL3brFYENERGRODDc1weHvy1L5+UBRkcLtISIiakAYbmqCg+GYm+vXlWwMERFRw8JwUxPuhRtnjT7cXLumZGOIiIgaFoabmnAv3Diq2HNDRERkbgw3NcHREQBgL9hzQ0REZG4MNzXhXs+NnS4HKpSw54aIiMiMGG5qwr1wo4aAHfLZc0NERGRGDDc1wcoKaNQIgH7GFHtuiIiIzIfhpiaoVAbTwdlzQ0REZD4MNzVBpwMsLQEA/bATN6/pFG4QERFRw8FwI7ekJMDHB7hyBQCwBC9gyY8++nIiIiKqcQw3ckpKAkaMAC5dMih2KbysL2fAISIiqnEMN3LR6YAZMwAhjFapca9s5kx9PSIiIqoxDDdy2bXLqMfGgBDAxYv6ekRERFRjGG7kkp5uUrV9m0yrR0RERA+H4UYuHh4mVXspwYNDb4iIiGoQw41cgoIAT08Ilarc1SVQ4QK8sAtBHHpDRERUgxhu5KLRAIsXA0IfZMoquffvTCRABw2H3hAREdUghhs5hYfjt5nf4DKaGxTfgi3iMBebMEwqM3GIDhEREVURw43MdMPC4YPzeB3zcAtWAAA7FOANxOE8fPAU9ANuTByiQ0RERFXEcCOzoCBgQpNNmIe5sMYdg3XNcRnfYASebZKEoCCFGkhERFTPMdzITAMdFmMGAIH7hxaX3swvATOhAUcUExER1QSGG7nt2gWba5cqPLFqCNhc44hiIiKimsJwIzfezI+IiEhRDDdy4838iIiIFMVwI7dKb+YHXIAnb+ZHRERUQxhu5PaAm/kB+hNug9t4Ept4Mz8iIqIawHBTE+7dzO86nMtd7Yzr+AYj8BSSeDM/IiIimTHc1BDdE8NwG9b3Jn8bKjsl/OxpXpciIiKSE8NNDQnCLnjhUjkXpvTUEGiBi0ietwvr15u1aURERPUaw00N0WSZdr1pCpZgdIQOa9fWcIOIiIgaCAulG1BvmTgl/Bl8i8HCHstH/gv/fvsp+M0MQvYNDVxdgebN9ZOvNJoabisREVE9ohJClDcspN7Kzc2Fg4MDcnJyYG9vX3MH0ukAHx+ISxVfmirPNThhI4ZhJx6HC67htnUT9O10FR7aaxAAVE2c0cijKXRZ16Bp2kT69276VeBa9evIvb9qHbO5OzI0zVHo1wvaA3vgVnwZxVcy9XVUamR36YeiwH7IvqFBkybAtWtAkybAVf1uAADOzkDTpn+vu3YNBsER0M9YS0/X51GzhEmdToGDEhHVbVX5/ma4qUlJSRDDh1cp3JAxHVTQlDs0G8iFLdbjaSkMZqMJXHEVTaAPSdfhjKtoKq0rW8dNrU9AmSV/17lt3QR9u1xDi0dqJui5/Hc32qZth1VRnvQe7tg44WznYbj5yOOKhMs6F3p5LngueC5q/bmw8HCFbbvm6DolCBpLef54q9L3t6gFlixZIry9vYVWqxU9e/YUv//++wPrr1u3TrRv315otVrRpUsX8eOPP5p8rJycHAFA5OTkVLfZJtHNmCkEwIULFy5cuDS45bLGU6S++K0s36dV+f5WfEDx2rVrERMTg7i4OBw8eBC+vr4ICQlBVlZWufX37NmDUaNGYeLEiTh06BDCwsIQFhaG48ePm7nlplGHDVO6CURERIpw111CzwUjsPf/zPu8IcUvSwUEBKBHjx5YsmQJAKCkpAReXl6YPn06Xn75ZaP6ERERKCgowA8//CCVPfbYY+jevTuWLVtW6fHMelkKeOixN0RERPVBCVRI13jC/VZatS5RVeX7W9Gem6KiIhw4cADBwcFSmVqtRnBwMFJTU8vdJjU11aA+AISEhFRYv7CwELm5uQaLWd17HIMKqGDUCBERUf2lhkBz3UUc+9B8zxtSNNxkZ2dDp9PBzc3NoNzNzQ0ZGRnlbpORkVGl+vHx8XBwcJAWLy8veRpfFeHhwLffQuVc/uMYiIiI6rtb58z3vCHFx9zUtDlz5iAnJ0daLl68qExDwsOBrCwgIoI9OERE1ODYtDbt/m9yUDTcuLi4QKPRIDMz06A8MzMT7u7u5W7j7u5epfparRb29vYGi2I0GmDNGqjWr4dwcVWuHURERGZSAhUua7zQdUqQ2Y6paLixtLSEn58fkpOTpbKSkhIkJycjMDCw3G0CAwMN6gPA9u3bK6xfK40YAVVGOrBzJ0q++ArpodEotOUlKyIiql9K7v17MSZBtvvdmELxxy/ExMQgKioK/v7+6NmzJxISElBQUIDo6GgAwLhx49C8eXPEx8cDAGbMmIG+ffvi//2//4chQ4ZgzZo1+OOPP/DJJ58o+TaqTqMB+vWDGoDH2Mi/71p7+TJw9SpKnJrgf/uvIbO4CYqu1O+bQpVX17XoMtqd+h7aguvSKbtj44QznYYCeflGN8Kri0qgkp4QT0RUH6VrvHAxJgGPvRtu1uMqHm4iIiJw9epVxMbGIiMjA927d8fWrVulQcMXLlyAWv13B1OvXr2watUqvPbaa3jllVfQtm1bbNy4EV26dFHqLcjjXtgppQbQJgpoo1iDaoH7HlNgFRSErqWPKbgvDFbl+QslTk1wZs9VpJ+4BiGAZl2d0TqgKc4f0IfJ4swaDnr3Hh1xNyBIeqxESebVWn/H0YZwzNraLp4LnovacsyHuUNxczP22JRS/D435mb2+9wQERFRtdWZ+9wQERERyY3hhoiIiOoVhhsiIiKqVxhuiIiIqF5huCEiIqJ6heGGiIiI6hWGGyIiIqpXGG6IiIioXmG4ISIionpF8ccvmFvpDZlzc3MVbgkRERGZqvR725QHKzS4cJOXp3/YopeXl8ItISIioqrKy8uDg4PDA+s0uGdLlZSU4MqVK2jcuDFUKpUs+8zNzYWXlxcuXrzI51XVMJ5r8+B5Nh+ea/PgeTafmjrXQgjk5eWhWbNmBg/ULk+D67lRq9Xw9PSskX3b29vzfxoz4bk2D55n8+G5Ng+eZ/OpiXNdWY9NKQ4oJiIionqF4YaIiIjqFYYbGWi1WsTFxUGr1SrdlHqP59o8eJ7Nh+faPHiezac2nOsGN6CYiIiI6jf23BAREVG9wnBDRERE9QrDDREREdUrDDdERERUrzDcyGDp0qXw8fGBlZUVAgICsG/fPqWbVKfNnTsXKpXKYOnQoYO0/s6dO5g6dSqaNGkCOzs7DB8+HJmZmQq2uG749ddfMXToUDRr1gwqlQobN240WC+EQGxsLDw8PGBtbY3g4GCcOXPGoM7169cRGRkJe3t7ODo6YuLEicjPzzfju6gbKjvX48ePN/qMh4aGGtThua5cfHw8evTogcaNG6Np06YICwvD6dOnDeqY8vviwoULGDJkCGxsbNC0aVO8+OKLKC4uNudbqfVMOdf9+vUz+lw///zzBnXMda4Zbqpp7dq1iImJQVxcHA4ePAhfX1+EhIQgKytL6abVaZ07d0Z6erq0/Pbbb9K6f//73/j++++xfv16/PLLL7hy5QrCw8MVbG3dUFBQAF9fXyxdurTc9e+++y7ef/99LFu2DL///jtsbW0REhKCO3fuSHUiIyNx4sQJbN++HT/88AN+/fVXTJo0yVxvoc6o7FwDQGhoqMFnfPXq1Qbrea4r98svv2Dq1KnYu3cvtm/fjrt372LgwIEoKCiQ6lT2+0Kn02HIkCEoKirCnj178PnnnyMxMRGxsbFKvKVay5RzDQDPPvuswef63XffldaZ9VwLqpaePXuKqVOnSq91Op1o1qyZiI+PV7BVdVtcXJzw9fUtd93NmzdFo0aNxPr166WyU6dOCQAiNTXVTC2s+wCIDRs2SK9LSkqEu7u7WLBggVR28+ZNodVqxerVq4UQQpw8eVIAEPv375fqbNmyRahUKnH58mWztb2uuf9cCyFEVFSUGDZsWIXb8Fw/nKysLAFA/PLLL0II035fbN68WajVapGRkSHV+eijj4S9vb0oLCw07xuoQ+4/10II0bdvXzFjxowKtzHnuWbPTTUUFRXhwIEDCA4OlsrUajWCg4ORmpqqYMvqvjNnzqBZs2Zo1aoVIiMjceHCBQDAgQMHcPfuXYNz3qFDB7Ro0YLnvBrS0tKQkZFhcF4dHBwQEBAgndfU1FQ4OjrC399fqhMcHAy1Wo3ff//d7G2u61JSUtC0aVO0b98ekydPxrVr16R1PNcPJycnBwDg7OwMwLTfF6mpqejatSvc3NykOiEhIcjNzcWJEyfM2Pq65f5zXerrr7+Gi4sLunTpgjlz5uDWrVvSOnOe6wb34Ew5ZWdnQ6fTGfyHAgA3Nzf8+eefCrWq7gsICEBiYiLat2+P9PR0zJs3D0FBQTh+/DgyMjJgaWkJR0dHg23c3NyQkZGhTIPrgdJzV95nuXRdRkYGmjZtarDewsICzs7OPPdVFBoaivDwcLRs2RLnzp3DK6+8gkGDBiE1NRUajYbn+iGUlJRg5syZ6N27N7p06QIAJv2+yMjIKPdzX7qOjJV3rgFg9OjR8Pb2RrNmzXD06FG89NJLOH36NJKSkgCY91wz3FCtM2jQIOnnbt26ISAgAN7e3li3bh2sra0VbBmRPEaOHCn93LVrV3Tr1g2tW7dGSkoKBgwYoGDL6q6pU6fi+PHjBuPzqGZUdK7Ljgnr2rUrPDw8MGDAAJw7dw6tW7c2axt5WaoaXFxcoNFojEbeZ2Zmwt3dXaFW1T+Ojo5o164dzp49C3d3dxQVFeHmzZsGdXjOq6f03D3os+zu7m40UL64uBjXr1/nua+mVq1awcXFBWfPngXAc11V06ZNww8//ICdO3fC09NTKjfl94W7u3u5n/vSdWSoonNdnoCAAAAw+Fyb61wz3FSDpaUl/Pz8kJycLJWVlJQgOTkZgYGBCrasfsnPz8e5c+fg4eEBPz8/NGrUyOCcnz59GhcuXOA5r4aWLVvC3d3d4Lzm5ubi999/l85rYGAgbt68iQMHDkh1fv75Z5SUlEi/xOjhXLp0CdeuXYOHhwcAnmtTCSEwbdo0bNiwAT///DNatmxpsN6U3xeBgYE4duyYQZjcvn077O3t0alTJ/O8kTqgsnNdnsOHDwOAwefabOda1uHJDdCaNWuEVqsViYmJ4uTJk2LSpEnC0dHRYDQ4Vc2sWbNESkqKSEtLE7t37xbBwcHCxcVFZGVlCSGEeP7550WLFi3Ezz//LP744w8RGBgoAgMDFW517ZeXlycOHTokDh06JACI9957Txw6dEj89ddfQggh3n77beHo6Cg2bdokjh49KoYNGyZatmwpbt++Le0jNDRUPPLII+L3338Xv/32m2jbtq0YNWqUUm+p1nrQuc7LyxOzZ88WqampIi0tTezYsUM8+uijom3btuLOnTvSPniuKzd58mTh4OAgUlJSRHp6urTcunVLqlPZ74vi4mLRpUsXMXDgQHH48GGxdetW4erqKubMmaPEW6q1KjvXZ8+eFfPnzxd//PGHSEtLE5s2bRKtWrUSffr0kfZhznPNcCODDz74QLRo0UJYWlqKnj17ir179yrdpDotIiJCeHh4CEtLS9G8eXMREREhzp49K62/ffu2mDJlinBychI2NjbiqaeeEunp6Qq2uG7YuXOnAGC0REVFCSH008Fff/114ebmJrRarRgwYIA4ffq0wT6uXbsmRo0aJezs7IS9vb2Ijo4WeXl5Cryb2u1B5/rWrVti4MCBwtXVVTRq1Eh4e3uLZ5991ugPIp7rypV3jgGIlStXSnVM+X1x/vx5MWjQIGFtbS1cXFzErFmzxN27d838bmq3ys71hQsXRJ8+fYSzs7PQarWiTZs24sUXXxQ5OTkG+zHXuVbdazQRERFRvcAxN0RERFSvMNwQERFRvcJwQ0RERPUKww0RERHVKww3REREVK8w3BAREVG9wnBDRERE9QrDDRE1SCqVChs3blS6GURUAxhuiMjsxo8fD5VKZbSEhoYq3TQiqgcslG4AETVMoaGhWLlypUGZVqtVqDVEVJ+w54aIFKHVauHu7m6wODk5AdBfMvroo48waNAgWFtbo1WrVvjmm28Mtj927Bgef/xxWFtbo0mTJpg0aRLy8/MN6qxYsQKdO3eGVquFh4cHpk2bZrA+OzsbTz31FGxsbNC2bVt899130robN24gMjISrq6usLa2Rtu2bY3CGBHVTgw3RFQrvf766xg+fDiOHDmCyMhIjBw5EqdOnQIAFBQUICQkBE5OTti/fz/Wr1+PHTt2GISXjz76CFOnTsWkSZNw7NgxfPfdd2jTpo3BMebNm4dnnnkGR48exeDBgxEZGYnr169Lxz958iS2bNmCU6dO4aOPPoKLi4v5TgARPTzZH8VJRFSJqKgoodFohK2trcHy1ltvCSH0TyB+/vnnDbYJCAgQkydPFkII8cknnwgnJyeRn58vrf/xxx+FWq2Wnq7drFkz8eqrr1bYBgDitddek17n5+cLAGLLli1CCCGGDh0qoqOj5XnDRGRWHHNDRIro378/PvroI4MyZ2dn6efAwECDdYGBgTh8+DAA4NSpU/D19YWtra20vnfv3igpKcHp06ehUqlw5coVDBgw4IFt6Natm/Szra0t7O3tkZWVBQCYPHkyhg8fjoMHD2LgwIEICwtDr169Huq9EpF5MdwQkSJsbW2NLhPJxdra2qR6jRo1MnitUqlQUlICABg0aBD++usvbN68Gdu3b8eAAQMwdepULFy4UPb2EpG8OOaGiGqlvXv3Gr3u2LEjAKBjx444cuQICgoKpPW7d++GWq1G+/bt0bhxY/j4+CA5OblabXB1dUVUVBS++uorJCQk4JNPPqnW/ojIPNhzQ0SKKCwsREZGhkGZhYWFNGh3/fr18Pf3xz/+8Q98/fXX2LdvHz777DMAQGRkJOLi4hAVFYW5c+fi6tWrmD59OsaOHQs3NzcAwNy5c/H888+jadOmGDRoEPLy8rB7925Mnz7dpPbFxsbCz88PnTt3RmFhIX744QcpXBFR7cZwQ0SK2Lp1Kzw8PAzK2rdvjz///BOAfibTmjVrMGXKFHh4eGD16tXo1KkTAMDGxgbbtm3DjBkz0KNHD9jY2GD48OF47733pH1FRUXhzp07WLRoEWbPng0XFxeMGDHC5PZZWlpizpw5OH/+PKytrREUFIQ1a9bI8M6JqKaphBBC6UYQEZWlUqmwYcMGhIWFKd0UIqqDOOaGiIiI6hWGGyIiIqpXOOaGiGodXi0noupgzw0RERHVKww3REREVK8w3BAREVG9wnBDRERE9QrDDREREdUrDDdERERUrzDcEBERUb3CcENERET1CsMNERER1Sv/H/3nbZyJcUQcAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "# selected settings for regression (best fit from options above)\n", - "activation, optimizer, n_hidden_layers, n_nodes_per_layer = \"tanh\", \"Adam\", 4, 20\n", - "loss, metrics = \"mse\", [\"mae\", \"mse\"]\n", - "\n", - "# Create data objects for training using scalar normalization\n", - "n_inputs = len(input_labels)\n", - "n_outputs = len(output_labels)\n", - "x = input_data\n", - "y = output_data\n", - "\n", - "input_scaler = None\n", - "output_scaler = None\n", - "input_scaler = OffsetScaler.create_normalizing_scaler(x)\n", - "output_scaler = OffsetScaler.create_normalizing_scaler(y)\n", - "x = input_scaler.scale(x)\n", - "y = output_scaler.scale(y)\n", - "x = x.to_numpy()\n", - "y = y.to_numpy()\n", - "\n", - "# Create Keras Sequential object and build neural network\n", - "model = tf.keras.Sequential()\n", - "model.add(\n", - " tf.keras.layers.Dense(\n", - " units=n_nodes_per_layer, input_dim=n_inputs, activation=activation\n", - " )\n", - ")\n", - "for i in range(1, n_hidden_layers):\n", - " model.add(tf.keras.layers.Dense(units=n_nodes_per_layer, activation=activation))\n", - "model.add(tf.keras.layers.Dense(units=n_outputs, activation=keras.activations.linear))\n", - "\n", - "# Train surrogate (calls optimizer on neural network and solves for weights)\n", - "model.compile(loss=loss, optimizer=optimizer, metrics=metrics)\n", - "mcp_save = tf.keras.callbacks.ModelCheckpoint(\n", - " \".mdl_co2.keras\", save_best_only=True, monitor=\"val_loss\", mode=\"min\"\n", - ")\n", - "history = model.fit(\n", - " x=x, y=y, validation_split=0.2, verbose=2, epochs=250, callbacks=[mcp_save]\n", - ")\n", - "\n", - "# Get the training and validation MSE from the history\n", - "train_mse = history.history[\"mse\"]\n", - "val_mse = history.history[\"val_mse\"]\n", - "\n", - "# Generate a plot of training MSE vs validation MSE\n", - "epochs = range(1, len(train_mse) + 1)\n", - "plt.plot(epochs, train_mse, \"bo-\", label=\"Training MSE\")\n", - "plt.plot(epochs, val_mse, \"ro-\", label=\"Validation MSE\")\n", - "plt.title(\"Training MSE vs Validation MSE\")\n", - "plt.xlabel(\"Epochs\")\n", - "plt.ylabel(\"MSE\")\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO:tensorflow:Assets written to: keras_surrogate\\assets\n" - ] - } - ], - "source": [ - "# Adding input bounds and variables along with scalers and output variable to kerasSurrogate\n", - "xmin, xmax = [7, 306], [40, 1000]\n", - "input_bounds = {input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))}\n", - "\n", - "keras_surrogate = KerasSurrogate(\n", - " model,\n", - " input_labels=list(input_labels),\n", - " output_labels=list(output_labels),\n", - " input_bounds=input_bounds,\n", - " input_scaler=input_scaler,\n", - " output_scaler=output_scaler,\n", - ")\n", - "keras_surrogate.save_to_folder(\n", - " keras_folder_name=\"sco2_keras_surr\", keras_model_name=\"sco2_keras_model\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.3 Visualizing Surrogates\n", - "\n", - "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "13/13 [==============================] - 1s 3ms/step\n" - ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChQElEQVR4nO2deXgT1f7/30m6UKBNIWVppdBSkEURBbQUFBGqRQHlC0pxA2QTLqAFZFNAwAXhKjuKXhEQqYKC/qQoCojeq5SqKCKKXOUWBNsCDTQta5fM7484IUmzTCaznJl8Xs/TB5JMJme2c97nsx0Dx3EcCIIgCIIgCEUxqt0AgiAIgiCIcIREGEEQBEEQhAqQCCMIgiAIglABEmEEQRAEQRAqQCKMIAiCIAhCBUiEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYQRAE4Zd169bBYDDg2LFjajeFIHQFiTCCIFTnu+++w4QJE3DdddehXr16aN68OQYPHoz//ve/tbbt2bMnDAYDDAYDjEYj4uLi0KZNGzz66KPYuXNnUL+7bds23H777WjcuDHq1q2Lli1bYvDgwdixY4dUh1aLF198ER999FGt9/fu3Yu5c+eirKxMtt/2ZO7cuc5zaTAYULduXbRv3x6zZs1CeXm5JL+Rm5uLpUuXSrIvgtAbJMIIglCdhQsXYsuWLejduzeWLVuGMWPG4N///jc6deqEQ4cO1dq+WbNm2LBhA95++23885//xL333ou9e/firrvuQnZ2NqqqqgL+5ssvv4x7770XBoMBM2fOxJIlSzBo0CD8/vvveO+99+Q4TAD+Rdi8efMUFWE8r732GjZs2IDFixejbdu2eOGFF9CnTx9IsbQwiTCC8E2E2g0gCIKYPHkycnNzERUV5XwvOzsbHTp0wEsvvYR33nnHbXuz2YxHHnnE7b2XXnoJTzzxBF599VWkpKRg4cKFPn+vuroazz33HO688058/vnntT4/ffp0iEfEDhcvXkTdunX9bnP//fcjISEBADB27FgMGjQIW7duxb59+5CRkaFEMwkiLCFLGEEQqtOtWzc3AQYArVu3xnXXXYfDhw8L2ofJZMLy5cvRvn17rFy5Ejabzee2paWlKC8vR/fu3b1+3rhxY7fXly9fxty5c3HttdeiTp06SExMxMCBA3H06FHnNi+//DK6desGi8WCmJgYdO7cGR988IHbfgwGAy5cuID169c7XYDDhw/H3LlzMXXqVABAamqq8zPXGKx33nkHnTt3RkxMDBo2bIghQ4bgxIkTbvvv2bMnrr/+euzfvx89evRA3bp18fTTTws6f6706tULAFBYWOh3u1dffRXXXXcdoqOjkZSUhPHjx7tZ8nr27Int27fj+PHjzmNKSUkJuj0EoVfIEkYQBJNwHIdTp07huuuuE/wdk8mEBx98ELNnz8bXX3+Nvn37et2ucePGiImJwbZt2zBx4kQ0bNjQ5z5ramrQr18/7N69G0OGDMGTTz6JiooK7Ny5E4cOHUJaWhoAYNmyZbj33nvx8MMPo7KyEu+99x4eeOAB5OXlOduxYcMGjBo1CrfccgvGjBkDAEhLS0O9evXw3//+F++++y6WLFnitEo1atQIAPDCCy9g9uzZGDx4MEaNGoUzZ85gxYoV6NGjB3788UfEx8c722u1WnH33XdjyJAheOSRR9CkSRPB54+HF5cWi8XnNnPnzsW8efOQmZmJcePG4ciRI3jttdfw3Xff4ZtvvkFkZCSeeeYZ2Gw2nDx5EkuWLAEA1K9fP+j2EIRu4QiCIBhkw4YNHABuzZo1bu/ffvvt3HXXXefzex9++CEHgFu2bJnf/c+ZM4cDwNWrV4+7++67uRdeeIHbv39/re3eeustDgC3ePHiWp/Z7Xbn/y9evOj2WWVlJXf99ddzvXr1cnu/Xr163LBhw2rt65///CcHgCssLHR7/9ixY5zJZOJeeOEFt/d//vlnLiIiwu3922+/nQPArV692udxu/Lss89yALgjR45wZ86c4QoLC7nXX3+di46O5po0acJduHCB4ziOW7t2rVvbTp8+zUVFRXF33XUXV1NT49zfypUrOQDcW2+95Xyvb9++XIsWLQS1hyDCDXJHEgTBHL/99hvGjx+PjIwMDBs2LKjv8paWiooKv9vNmzcPubm5uOmmm/DZZ5/hmWeeQefOndGpUyc3F+iWLVuQkJCAiRMn1tqHwWBw/j8mJsb5/3PnzsFms+G2227DDz/8EFT7Pdm6dSvsdjsGDx6M0tJS51/Tpk3RunVr7Nmzx2376OhoPPbYY0H9Rps2bdCoUSOkpqbi8ccfR6tWrbB9+3afsWS7du1CZWUlcnJyYDReHUZGjx6NuLg4bN++PfgDJYgwhNyRBEEwRUlJCfr27Quz2YwPPvgAJpMpqO+fP38eABAbGxtw2wcffBAPPvggysvLUVBQgHXr1iE3Nxf9+/fHoUOHUKdOHRw9ehRt2rRBRIT/7jIvLw/PP/88Dhw4gCtXrjjfdxVqYvj999/BcRxat27t9fPIyEi319dcc02t+LpAbNmyBXFxcYiMjESzZs2cLlZfHD9+HIBDvLkSFRWFli1bOj8nCMI/JMIIgmAGm82Gu+++G2VlZfjPf/6DpKSkoPfBl7Ro1aqV4O/ExcXhzjvvxJ133onIyEisX78eBQUFuP322wV9/z//+Q/uvfde9OjRA6+++ioSExMRGRmJtWvXIjc3N+hjcMVut8NgMODTTz/1Kkg9Y6xcLXJC6dGjhzMOjSAI5SARRhAEE1y+fBn9+/fHf//7X+zatQvt27cPeh81NTXIzc1F3bp1ceutt4pqR5cuXbB+/XoUFxcDcATOFxQUoKqqqpbViWfLli2oU6cOPvvsM0RHRzvfX7t2ba1tfVnGfL2flpYGjuOQmpqKa6+9NtjDkYUWLVoAAI4cOYKWLVs636+srERhYSEyMzOd74VqCSQIPUMxYQRBqE5NTQ2ys7ORn5+P999/X1RtqpqaGjzxxBM4fPgwnnjiCcTFxfnc9uLFi8jPz/f62aeffgrgqqtt0KBBKC0txcqVK2tty/1dzNRkMsFgMKCmpsb52bFjx7wWZa1Xr57Xgqz16tUDgFqfDRw4ECaTCfPmzatVPJXjOFitVu8HKSOZmZmIiorC8uXL3dq0Zs0a2Gw2t6zUevXq+S0XQhDhDFnCCIJQnSlTpuDjjz9G//79cfbs2VrFWT0Ls9psNuc2Fy9exB9//IGtW7fi6NGjGDJkCJ577jm/v3fx4kV069YNXbt2RZ8+fZCcnIyysjJ89NFH+M9//oMBAwbgpptuAgAMHToUb7/9NiZPnoxvv/0Wt912Gy5cuIBdu3bhH//4B+677z707dsXixcvRp8+ffDQQw/h9OnTWLVqFVq1aoWDBw+6/Xbnzp2xa9cuLF68GElJSUhNTUV6ejo6d+4MAHjmmWcwZMgQREZGon///khLS8Pzzz+PmTNn4tixYxgwYABiY2NRWFiIDz/8EGPGjMFTTz0V0vkPlkaNGmHmzJmYN28e+vTpg3vvvRdHjhzBq6++iptvvtntenXu3BmbNm3C5MmTcfPNN6N+/fro37+/ou0lCGZRMzWTIAiC466WVvD152/b+vXrc61bt+YeeeQR7vPPPxf0e1VVVdy//vUvbsCAAVyLFi246Ohorm7dutxNN93E/fOf/+SuXLnitv3Fixe5Z555hktNTeUiIyO5pk2bcvfffz939OhR5zZr1qzhWrduzUVHR3Nt27bl1q5d6ywB4cpvv/3G9ejRg4uJieEAuJWreO6557hrrrmGMxqNtcpVbNmyhbv11lu5evXqcfXq1ePatm3LjR8/njty5IjbufFXvsMTvn1nzpzxu51niQqelStXcm3btuUiIyO5Jk2acOPGjePOnTvnts358+e5hx56iIuPj+cAULkKgnDBwHESLA5GEARBEARBBAXFhBEEQRAEQagAiTCCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVIBEGEEQBEEQhAqQCCMIgiAIglABKtbKMHa7HUVFRYiNjaWlPwiCIAhCI3Ach4qKCiQlJcFo9G3vIhHGMEVFRUhOTla7GQRBEARBiODEiRNo1qyZz89JhDFMbGwsAMdF9LcOHkEQBEEQ7FBeXo7k5GTnOO4LEmEMw7sg4+LiSIQRBEEQhMYIFEpEgfkEQRAEQRAqQCKMIAiCIAhCBUiEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYQRAEQRCECpAIIwiCIAiCUAHNiLB7770XzZs3R506dZCYmIhHH30URUVFbttwHIeXX34Z1157LaKjo3HNNdfghRdecNvmyy+/RKdOnRAdHY1WrVph3bp1tX5r1apVSElJQZ06dZCeno5vv/3W7fPLly9j/PjxsFgsqF+/PgYNGoRTp065bfPnn3+ib9++qFu3Lho3boypU6eiurpampNBEARBEITm0YwIu+OOO7B582YcOXIEW7ZswdGjR3H//fe7bfPkk0/izTffxMsvv4zffvsNH3/8MW655Rbn54WFhejbty/uuOMOHDhwADk5ORg1ahQ+++wz5zabNm3C5MmT8eyzz+KHH35Ax44dkZWVhdOnTzu3mTRpErZt24b3338fX331FYqKijBw4EDn5zU1Nejbty8qKyuxd+9erF+/HuvWrcOcOXNkPEOEGKxWK4qLi33+Wa1WtZtIEARB6BQDx3Gc2o0Qw8cff4wBAwbgypUriIyMxOHDh3HDDTfg0KFDaNOmjdfvTJ8+Hdu3b8ehQ4ec7w0ZMgRlZWXYsWMHACA9PR0333wzVq5cCQCw2+1ITk7GxIkTMWPGDNhsNjRq1Ai5ublOEfjbb7+hXbt2yM/PR9euXfHpp5+iX79+KCoqQpMmTQAAq1evxvTp03HmzBlERUUJOsby8nKYzWbYbDZmli2yWq2orKz0+XlUVBQsFouCLRKP1Wp1Xmd/TJgwQTPHRASPnu5pgiDYQOj4rcm1I8+ePYuNGzeiW7duiIyMBABs27YNLVu2RF5eHvr06QOO45CZmYlFixahYcOGAID8/HxkZma67SsrKws5OTkAgMrKSuzfvx8zZ850fm40GpGZmYn8/HwAwP79+1FVVeW2n7Zt26J58+ZOEZafn48OHTo4BRj/O+PGjcMvv/yCm266yetxXblyBVeuXHG+Li8vD+EsSY/eRIu/gVfMdoT20Ns9TRCEttCUCJs+fTpWrlyJixcvomvXrsjLy3N+9r///Q/Hjx/H+++/j7fffhs1NTWYNGkS7r//fnzxxRcAgJKSEjdhBABNmjRBeXk5Ll26hHPnzqGmpsbrNr/99ptzH1FRUYiPj6+1TUlJid/f4T/zxYIFCzBv3rwgzoiykGjRBmTZEQ7d0wThgPoNdVBVhM2YMQMLFy70u83hw4fRtm1bAMDUqVMxcuRIHD9+HPPmzcPQoUORl5cHg8EAu92OK1eu4O2338a1114LAFizZg06d+6MI0eO+HRRssTMmTMxefJk5+vy8nIkJyer2CJCa5BlhyCIYKF+Qz1UFWFTpkzB8OHD/W7TsmVL5/8TEhKQkJCAa6+9Fu3atUNycjL27duHjIwMJCYmIiIiwinAAKBdu3YAHJmKbdq0QdOmTWtlMZ46dQpxcXGIiYmByWSCyWTyuk3Tpk0BAE2bNkVlZSXKysrcrGGe23hmVPL75LfxRnR0NKKjo/2eD4LwB1l2CIIIFuo31ENVEdaoUSM0atRI1HftdjsAOGOounfvjurqahw9ehRpaWkAgP/+978AgBYtWgAAMjIy8Mknn7jtZ+fOncjIyADgMLd27twZu3fvxoABA5y/s3v3bkyYMAEA0LlzZ0RGRmL37t0YNGgQAODIkSP4888/nfvJyMjACy+8gNOnT6Nx48bO34mLi0P79u1FHS+hf8gdIA10HrUJXTd2sNlicfasBQ0bWmE2V6jaFr3fF5qICSsoKMB3332HW2+9FQ0aNMDRo0cxe/ZspKWlOYVPZmYmOnXqhBEjRmDp0qWw2+0YP3487rzzTqd1bOzYsVi5ciWmTZuGESNG4IsvvsDmzZuxfft2529NnjwZw4YNQ5cuXXDLLbdg6dKluHDhAh577DEAgNlsxsiRIzF58mQ0bNgQcXFxmDhxIjIyMtC1a1cAwF133YX27dvj0UcfxaJFi1BSUoJZs2Zh/PjxZOkSgd4fQoDcAVJB51Gb0HVjhx9+uAnbtvUDxxlhMNjRv38eOnX6UZW2hMN9oQkRVrduXWzduhXPPvssLly4gMTERPTp0wezZs1yihqj0Yht27Zh4sSJ6NGjB+rVq4e7774br7zyinM/qamp2L59OyZNmoRly5ahWbNmePPNN5GVleXcJjs7G2fOnMGcOXNQUlKCG2+8ETt27HALtF+yZAmMRiMGDRqEK1euICsrC6+++qrzc5PJhLy8PIwbNw4ZGRmoV68ehg0bhvnz5ytwtvSFnh9CV3FZWloq6DvkDvBPqG4VliwA4QS5w9jAZot1CjAA4Dgjtm3rh7S0P1R5Hjyvt6/nU8v3hSZEWIcOHZwZjv5ISkrCli1b/G7Ts2dP/Pijf1U/YcIEp/vRG3Xq1MGqVauwatUqn9u0aNGiluuTCB45O2eh9dqEbhcMQsUloRwsWQAI/cKyZf/sWYtTgPFwnBFnzzZUfVKi1+dTEyKMYAM1RYscWCwWTJgwwdkhFhUZUVgYgdTUaiQlOWIO5eoQ5Zi5Wa1WwRY1wnG+bDYbgMAWAK3c03pBrxZJ1i37DRtaYTDY3YSYwWBHw4ZnFW+LK6xZ6KSERBghGE/R4g2txWfxbV2zBhgzBrDbAaMReOMNYORIlRsXBL46d70OZqFSVlaGzZs3O1/7sgB07DgI/frV19Q9rXX0avEA2He7ms0V6N8/r9b5F9J3yGnhY9lCFyokwoig0ONgdPLkVQEGOP59/HEgKwto1kzdtgnFW+fnbzALF8uOLxFaXV3ttp0vC8D119dR9J5n2VWlBHq2eHiDlUmSa3/QqdOPSEv7A2fPNkTDhmfd2uWr35DbwseqhU4KSIQRojl5Evj9d6B1a+2IFW/8/vtVAcZTUwP88Qd7x1VaWipoIPY1mE2Y0BqdOjXW9UDOE4xFxZcFICnpZsXay7qrSgn0bPHwhCWLX6heDrkC6MvKygCEZqFjHRJhhCi07r5zpXVrxzG4CjGTCWjVSr02+erEtm7dCiDwQOxrMCsvDw8BFsiicu7cuVrf8W4BUE6Ese6qkgvXWEY9WzxcYdHiJ1W/IJW4tFqtbiEDaWl/YNCgLQA4JCef1IUAA0iEESLQg/vOlWbNHCLy8ccdFjCTCXj99avHorSLSEgnFmgg9jWYpaRU+/mWduGvER9oH8iismfPHq/7MZsrdNO5awFP618gi4de3Oh6tfhJKS5d+7hAfaKW7wsSYUTQKOm+83y4fFmIQn0IR450iMg//nBYwFwFmBIuIv64IiOvSNKJseBekwIhAhhArWsUrEWFldgc1pB7AuJt394skgMHDkRSUpJurLh6tfjJIS4DCbvs7GxN3xckwoigUdJ95xqrkJsbg/nzzbDbDTAaOSxaZMNDD12SzBLVrFltESmXi8hVNLrO8gA7gNA7MZstFg0anMPIkW+iqipKFfdaqAgVwIMHD671XjAxJCzF5riitjBUI0bN9ZhTU487309ISND0QOuJXmOc5BCXgYSd2WwWvW8WIBFGBE0g9x2PVLNoi8WCkyeBadNcXaAGTJ8ej+zseGixb+bF5bFj1Zg/vzE4zvD3J0YAHACDc1t/nRh/jl3rg3kTFa4DmlYQKmw9Mx15/GV58bAYmwOwIQyVjlGTMpaI1QzTULMQWUcOcalXqyEPiTBCFL7cdzxSz6K1lMEoFIvFgoMHax8XYHB2Ov46MW/nmIqOuuMZ4+VpXQo0y1bjfLEqDOW0zEl1zKxnmOqx1qInQiY/waBXqyEPiTBCNN7cdzxSz6JZzGCUAm/HZTDYnW7EyMhKVFVFw2aLrdXpeDt3vkRF9+7D0LOnPuu8eeJLLHiztKSl/eF1lj18+K3o0KG/KueLxaBtuS1zUh2zFjJM9fgMek5WfCW4iJ3USC3sWIJEGKEJhLpAtUbt4+LQt28emjUrFjXweTPdm0wc0tMtmnTbuiLEEuPrnPmytOTkLPU6y27T5mbFB0t+gArkflHaOqeEZU4ul5PacXVywZrLVQkLn14zl0mEEZohkAtUCeTo1F2Py2Ipw9atvkWDq1vRW4fnzXS/cGE5mjWLl6StoSJ28BAiSP2dM3+WFrXrg/G4DmTXXFOO6dPNqKkxwGTisHBhOR566EFVXFVKWObkcDnJab1TUwR5ulx99UlKu1yl/i29rVXsCxJhhKbw5wKVGzk79avH1QBJSROwZw+wZIl/t2JxcbHb53xnnJb2B3JyljpFxUMPPQggXpJ2hoLYeB2hlhh/YsGXpSUyshKFhSm1svHUgj/uKVOA7Gx+wmH4W0THq9ImOQOj5QpUl8N6xwsvz3VHlRZBQutnKelydRWlRUVGFBZGIDW1GklJjjgLMaI0HOLnABJhBOEXvvNXMuDdYrGga1fvMXC+3IosZNMFQmy8TiBLTGRkJAD/YsFsrsD8+SV49tlE2O2OxIcbbjiINWtGMXvO1JxwuCJnYLRcA63U1jtf1qeiokTs2pWpighiJYHD9dz464fEiFKtCywhkAgjCD/wg4QQy5SUBBMDx0pnLDVCY6QaNWok2I13992nsGLFp4iMrHQKMEA/50xKlCqnIMdAG+iecS3p4oovwefL+uRaTsbbPSSn25KVBA7++AL1Q3pbbksqSIQRkuDZ2Xh2cloOkBVjmZICoTFwrHTGwRLonhATIxXIjZeUZEdq6nEUFqZo8pwpiZbdQYGsd1u3bhXlRvQUGq71/AD3e+jEiRP49NNP3b4rpduStfpZWu2H1IZEGBEygWJ9/JmotRJUqVZ2pj+XFKvZdEIQ6j4VEyMlxI3H2gDGKiwKLH8Itd6JjaXyJjRccb2HXAXYN99kSO62ZK1+Fj1T4iARRoSMv07Em4l6+/b+mDMnHSkpEZrq5FnIznSF1Wy6QIh1n0oRI8UP0movFM1aiQG94Gm98xZEf+JEMj7+uB/45cGCcUV7Exq8S9KXCPrmmwzs3Hkn/LktxcJS/SyzuQKZmbtqiU2ygvmHRBghK95mjjU1BlRUNNFk3SpWgqV5WMymC0Qgt4WnK1tKQeI5SM+ZcwbHjkUgJaX678XNb5ZdALFe1V3r+Dpn7rFc7vi6/zzvBW/iPTNzF5KSiryKIJstFjt3ZsKf2zJU1K6fVVZWBsBxfnkBBjjOC0uJLqxCIoyQFe/FQ7Vf6Z5FWBKI3iw9/OAWyG2xdevWWvuTUpC47icxEejcWZLdCsbzvPiKFaJAZumoHcvljmu5krVrd9aK2XIlGOvT2bMW8BY3z98T66ZjqX6W1WrF5s2bvZxfI3btysT11x8iS1gASIQRsuI5c9RLpXs1Yd2VFcjSIyaWRa+CRAulRfSAv1iuQOVKfBVFFiIufLkvMzN3iRYnLCVM8G1gJSj/5EnHOsOtW2tnjCERRkiO58yenzl27z4M6ekWzTwcQlFSFGnBlSVEMHXq9CMmTGiNEyeicejQR86OWstZtMGi19IiLOLL+jpo0AeIjy8LWK5EqFUpOzsbZrMZNpsNmzZtqjXhAOy4885d6N49P6TjYc1NLSQoXy7LHN//5ubGYNo0M+x2A4xGDosW2fDQQ5ec/S+rAo1EGCEpvmb2ZnMFunWrRGKiNL/DijVIaVGkhQWKPfElrK6/Ph7XXw+cOOF4L9ysQqxYD8IBX9bX668/LKhcSSjWJ5aC5+UikHU7Oztblv6Y739ttlgsXZoDjnPE3tntBkydGoe//noLZnMF4uOnYPLk+rDbHaWG3njDkWjFAiTCCMlQambPkjVIbVHEuuVIqLAKR6uQ2in9rExklMKXGBJ6HeRafJrFEjJi8Cc2zWazLL8pxB0KAPPn13PWeLTbgccf53DjjaeZyNAnEUaEDN+JBJrZS9XZqC18WIF1y1EwwiocrUJq1nlidRFoufEmhuS4DkL7ukceeYTp8xusC0+tTE1/QvrsWQvsdvfs1JoaA1as+BSpqcdVv8dJhBEhw5vqjx2rxoYNnNsNbzJxmDjxbiZmHEqglGVKC5ajYISVGlYhFixBarmqWFwEWg6EiiGprwNLwfNiWbMGGDMGTLrwPAkkpP31LWrf4yTCCEmwWBzL99SuKm9A585NZP1tVlxySlqmtGA5CkZYKW0VUtOl7SkMfFkPlHBTySHmXcVtUZERhYURSE2tRlKSwx+kpPjwJ4ZKS0vdyqFIbcVhWWD5w2q14tixaowZ09g5oVbShSc2gN6XkGZtZQFPSIQRkqJ0VXlWXHJKW6bUjicSgpDOT6lFoj1Rs1aXnFaSYK17Uot5V3Hr79mUWtyKEX4s1dtiBf76FRamwG4f5vaZNxee1OcwVOubLyHNcnIEiTBCcpQqGsqSS05pyxTLs7tghJVQQQIAxcXFfrcRO6irIeTlzBTj8RfnxSO1mOevY6BnU0pxK1b46cFlKDX8uQh0X/DbSXUOlbC+qb2ygC9IhBGCYSGGxhWWXHJyWaY8zzm/RAigrOUoGILtmIV00HK5DlkS8qEiJs5LLjGv5LMZivALJ4EVDMHcF6Gew2Ctb3qDRBghCJbKQvCw4JKTc0FoIefcbK7AmDH3uKWAszB7l/L35XQdsiTkpSJYYSmHq0aNZ1OP11JNlHLhBWt9c0UPrmISYYQgWCoLIafwCRY5F4QWKj7MZjMSpaqCyzhSuw5ZEPJSI0aMSO2qUcNdrsdrqTZKuPAcMXwpaNjQGvQ9E0ziBauQCCM0h5zCR2x7ePwtCB2KO1cq8cGaSzkY5HAdshxbJxYpl5AJZSKjdDC0Hq+l3nEE4jeG3T7Meb1ycpYGdc/46q+0knhBIowQhdplIYQKH1YIxZ0rlfhg0aUcDHK5m1jOnBKDEDEiRUC1t4xEs7msVluUPJ96u5Z65uRJPhPSEYjP92s5OUuRmno85P1rJfGCRBgRNP6sMqWlpUzc2KwRSlyTVOJDzbIMUuDLwnPhQj3YbLEoLS0FIKxjZalWlxwIESOhPKO+MxIboH//m1RduYHVLDjiKlarFfv2AXa7+z0odQyfFsYhEmFEUASyyvA+eFatKSwQrGtRjlgXVuqrBYM3Cw/HAR988AAMBjuOHs1Dp07C7j+tzJJDQU4xIjQj0RdaFbeBEFtolBWUcOG5LrptMOSEfQwfiTAiKIRaZVi1psiJv3gr3kojZtCSOtZFy2UZeAvPiRPN8MEH9wMQX4dKKoHFSoV4NWJgAvUHAwcOREJCQq3fl/J8qB37w1//3NwYTJtmht1ugNHIYdEiGx566JKmxLwSkxN+3xTD54BEGBEUvqwykZHhJ7pcERpvJda1KGWsi9ZS+b25Ds+evQRegPGocQxqVYj3hhrWvUBW2oSEBNkzd9W0arpadZYuzQHH8YVGDZg6NQ5//fUWzOYKTXkGlGxnMP2aXq2nJMLCDLHZcb7KQgAcOM6INWtGacKlJRdC462CcS3KFbektVR+10GWTztn5RjUqBDvD6UHelasGWoJHP66BprYKHX9tegO9dWvuVpRtWRNDBYSYWFEKNlx/EBYVFQEYCsaNy7Bm2+Ogi93UDjjzyISbCVqOWb4rAycweB5jKwdg9asi1Kip4xEsSKGhUlBqOsusoYSVlQWIBEWRoSaHWexWJyfVVVFgwV3kJJIFfMVzKAl1+xPDwMnS8fAwiCsJnrISAxFxEg5KQhWCCqx7mIoaNE6pyQkwsKUULPjQh10tFY0VOjiyEItImqURNBjWQZWBn/WLHOEcKQSMVJMCoIVgiysu+hPZHk7nnvukaUZmoVEWBgiRXZcoEHHX80mLRYNFbo4ciBx6i1bjEdu4alEADMrmYJqwJJlTm7UzkiUCqlFjNhJgVghGMq6i1LgTzReLcYKl+MBCgqMvncYhpAIC0NCiV9x7VQ9Bx0AzjXAXNfs8uzAtFw0NJCADSRO1Y5zkFMAKZEpyPrgz4plTm70UmdNbREDSCME1bDE+hJZWVlATIz3Yqw1NcAvv1wRtH/WBbxUkAgLQ0JxJXrLVDObK/wOuv46MK0VDRUiYMPJIuKKEpmCehn8tY7DBWXRTZyPmu5kqYSgkv2Or4r3NTXA7t3HcezYOp/FWA8c+ABmMzB48GDEx8d73X84PcMkwsKQUDscqdY2VLpoqBSuMqECVg/xVt7wdw55F7TcmYIsdc6sW+bkQG9ZeDxiRIyU118KIaiEJTZQxfufftoCsznw8cTHx4dF9mMgSISFKSwU/1QyrV8qV1mgjkXNmC+5EXoOwylTkDXLnJyZaKxn4UlBsCJG6uuvBSt6MBXvtXA8akMiLIxgrfinkoO1lK4yfx2L2jFfciL0HIZLpuBVwWNR1SWnxLI5LGThyYWvmFShSH28WoorFCKypD4evZW8IBEWRrBW/FONwVoq65uWOkqpCee4ONbWCVRq2RwWAtjlIDc35u/zpo2YVBZRsi/UoyucRFiYwVrxT6UHa7HWt3CM/fFFqHFxWoXFdQKVXjZHT1bOkyeBadPMzuuotVU/Tp4Evv++Lmy22KCy2rWKv2xMLVvESIQRkiF00FWzaKjYQYS12B810dNAHAysrRPoipKufT1YOX1l9/myigfbF8ntMrtqETLDaJzktMR6UlRkxIkTdXDpkln6RijM779fFWA8NTXAH3+QCCPCFLHWISGC5uLFi6isrERxcbHkRT/FDiLhILCEEspArPVZOYuJB0oLYy1bOQNl9/HXkS+hEGxfE6zLLNh+tLZFyIDp0+ORnR3vJkb05rpr3dpxHK5CzGQCWrVSr01SQCKMEE0o1iF/nZrVasUbb7wBQL6in1oeRPyhZNCqr3Oo5wxRgF1LoB4sVEogNLsv2BIKYrNHg+lH/dXnKiiwIibGsT8tuO6CmYxZrVaYTJVYtCgG06ebUVNjgMnEYeFCG0ymS7BatduvkAgjQkKOG1+Jop96grVgcT1niPKwKnj0OrmQC6muY6jZo0Kez0AWvG++WY9Dhxwxib//bhHkuhMzaRMqnrKzs2E2e3eDBtMneS5z98QTsc7rdf58Bf6er2syMxcgEUaoiK/Cn1FR0hf91GtgvZLB4no9h2IhwaMPpLiOSmSPCrXgnTlzBnFx1TAar1rkAMBk4hAbexpWq8MiJ9ZdqXR8rOfv+LpeWp2UkwgjVMF/4c8CdOokbeyNXgPrlQwW1+s5JAJDAtxBIMuRUq5qfxa8TZs2AQD69XPvV/v2zUNeniOUY+DAJzBmTAPR7kp6xqWDRBihCkJdjlJ2aHruOJQKFtfzOVQTsbF8SokjEuDCA92VclUHsuD5a8eRI3ZdZhpqERJhhKoEsuCwGnvDGqwGiyuFEgkJcgmeULLYlBRHehZYgQg20J0VV7WvdpjNp2E0NvTrriSUgUQYoSpCLDisdGisE66CValUfKkFTyhrMbqLThow5URIRqLW2Lt3s193pVaD3LUIiTBCVcLdgiMUoZaecBKsaiwoLdX+Qsmm01v9J6UJxqIpNCNx8ODBcjVXNvxN2rQa5K5FSIQRquOrMwi0sK5r8UI9LejKI6T0hNaQ6lppfUFpMdl0SolOvT5PPMFYNIuLiwEEnixWV1cr0napCadJG6uQCCOYwLMzcM2YdBUePHwnqVergNDSE8HOwNUcYKW8VnpZUFqoJVgp0anX58kTMefIn+UoMjJS0D5CmThpcdIlBXrPzCURRsiKmEHfM2PSsSyHGT17XnHO9q1WK/bvP6WoK0pJhJaeMBgM3r5ei6ioKNUGWDktOHpwZwuJ5fMnOgEORUVJSE09Llp0quHa1SK+A93NsidICLHglZWVYfPmzaJ/g0X0nplLIoyQDX+Dvr9Zizfh4Trbf+SRR/DOO+9o1hUVDIEsPUI6/4sXL/49wHKKD7BKWHD0kJAg1C1kNlcgM3MXdu68EwAvwA3YtSsT119/SNRva921ywpKnJtAv8GSNUhKq7ue7zsSYYTkCJ1Ve4qH0tJSbN26NaDwuHjxIoDQXVFaiH0RYukRsg6nkAH20iWL5OdDKbdhOMW2JCUV46oAc8BbR8vKyoJeMkovrl0isNWI72PlJlzc2lJgDLwJG9x7771o3rw56tSpg8TERDz66KMoKipyfj537lwYDIZaf/Xq1XPbz/vvv4+2bduiTp066NChAz755BO3zzmOw5w5c5CYmIiYmBhkZmbi999/d9vm7NmzePjhhxEXF4f4+HiMHDkS58+fd9vm4MGDuO2221CnTh0kJydj0aJFEp8RNuFn1StW7HCrQQM4Bv2XXvoKU6bk4eefz8FisaCmJhG//ZaImppE56LPvPAwGBxFeXy5mIRu5401a4AWLYBevRz/rlkjxdHLQ6dOPyInZymGDVuHnJylzgXMheA5wLriOsCuW2eS9XyEcq0Id7xdS94luXnzZlitVlH7pWukDywWCxITE73+8X2snPiqqXbypOw/rUk0Ywm744478PTTTyMxMRF//fUXnnrqKdx///3Yu3cvAOCpp57C2LFj3b7Tu3dv3Hzzzc7Xe/fuxYMPPogFCxagX79+yM3NxYABA/DDDz/g+uuvBwAsWrQIy5cvx/r165GamorZs2cjKysLv/76K+rUqQMAePjhh1FcXIydO3eiqqoKjz32GMaMGYPc3FwAQHl5Oe666y5kZmZi9erV+PnnnzFixAjEx8djzJgxSpwu1Qg0q/7gg/sBGLFhA4dHHwU2bLg6W1q06GrBHaEupmBdUVqNfQnV0uPPomazxWL+fLNHpyn9+RDjNtSCtVIO+MzgoiIjPA1bgVySZ86cCWvXLuEbJYLcf//9qgDjoWr8vtGMCJs0aZLz/y1atMCMGTMwYMAAVFVVITIyEvXr10f9+vWd2/z000/49ddfsXr1aud7y5YtQ58+fTB16lQAwHPPPYedO3di5cqVWL16NTiOw9KlSzFr1izcd999AIC3334bTZo0wUcffYQhQ4bg8OHD2LFjB7777jt06dIFALBixQrcc889ePnll5GUlISNGzeisrISb731FqKionDdddfhwIEDWLx4se5FGI+3QZ/jAN74arcbsH49B34QsduBadPMePLJWGfHH0ycjJDtwj32xdcAe/asxavVUo7zEYyY1LNLw98g55oZvGEDhzfeAO65x30bfy7JTZs2hXTNwsm1Gwi9ZeYpEeTeurXjeXUVYiYT0KqV6F3qGs2IMFfOnj2LjRs3olu3bj5Tg998801ce+21uO2225zv5efnY/LkyW7bZWVl4aOPPgIAFBYWoqSkBJmZmc7PzWYz0tPTkZ+fjyFDhiA/Px/x8fFOAQYAmZmZMBqNKCgowP/93/8hPz8fPXr0cHsws7KysHDhQpw7dw4NGjTw2uYrV67gypUrztfl5eXCTwqDuA76Fy7UwwcfPOCxhfsgYrcbnFl/ckCxL94HWNbOhxBrpdYHR2+DYVlZGU6eBObPb+tWkuTxxzl8+mmZW9081q6ZXtFjZp6cbbVarTCZKrFoUQymTzejpsYAk4nDwoU2mEyXYLVq61wpgaZE2PTp07Fy5UpcvHgRXbt2RV5entftLl++jI0bN2LGjBlu75eUlKBJkyZu7zVp0gQlJSXOz/n3/G3TuHFjt88jIiLQsGFDt21SU1Nr7YP/zJcIW7BgAebNm+f94DUKP+g7Kk7XTq13FWJyLDjtq02slzVQUmSwdD6CsVZqfXB0bZvVasXmzZv/Pu52btvV1Bgwd+5Z5OfnuF0fVq6Z3mH5HmIJ/tnleeKJWKfV/fz5CrzxhuN9tT0NrIU4qCrCZsyYgYULF/rd5vDhw2jbti0AYOrUqRg5ciSOHz+OefPmYejQocjLy6tVK+nDDz9ERUUFhg0b5m2XzDJz5kw3S115eTmSk5NVbJF0eBvob7jhIA4evEGVQYT12BelZ+CsnI9grJXBZgGyjP86YHbk52c43+M4I7Zt64ecnKXIyVmq+jUjCKC29dWXW1tNKy2LIQ6qirApU6Zg+PDhfrdp2bKl8/8JCQlISEjAtddei3bt2iE5ORn79u1DRkaG23fefPNN9OvXr5ZFq2nTpjh16pTbe6dOnULTpk2dn/PvuXbwp06dwo033ujc5vTp0277qK6uxtmzZ9324+13XH/DG9HR0YiOjvb5udJIPWPwNtD36vVF0INI3bp1BW0XyErEeuyL0rNFOc6HWIseS9Y5V+SeRXs77oyMfOzd291tOz7+KzX1eMjnROuuXYIQgq+szawsdS1iqoqwRo0aoVGjRqK+a//7TLrGUAGOuK49e/bg448/rvWdjIwM7N69Gzk5Oc73du7c6RRxqampaNq0KXbv3u0UXeXl5SgoKMC4ceOc+ygrK8P+/fvRuXNnAMAXX3wBu92O9PR05zbPPPOMM2mA/502bdr4dEWyhlwzBs+B3tfAP3DgQK/p1Lz1R+uuKKVQe+AM5VqxYp3jUWoW7XncANwsYYB41703EUnPExEOsJq1qYmYsIKCAnz33Xe49dZb0aBBAxw9ehSzZ89GWlpaLSvYW2+9hcTERNx999219vPkk0/i9ttvxyuvvIK+ffvivffew/fff483/nZWGwwG5OTk4Pnnn0fr1q2dJSqSkpIwYMAAAEC7du3Qp08fjB49GqtXr0ZVVRUmTJiAIUOGICkpCQDw0EMPYd68eRg5ciSmT5+OQ4cOYdmyZViyZIm8J0oCQi3hINWgn5CQ4NfdRAOCMPwNsEoVbgzlWrFgrVSjrInncUthFfQnItV+nliL0yG0g9B7h9WsTU2IsLp162Lr1q149tlnceHCBSQmJqJPnz6YNWuWm/vObrdj3bp1GD58OEwmU639dOvWDbm5uZg1axaefvpptG7dGh999JGzRhgATJs2DRcuXMCYMWNQVlaGW2+9FTt27HDWCAOAjRs3YsKECejduzeMRiMGDRqE5cuXOz83m834/PPPMX78eHTu3BkJCQmYM2cO8+UppCjh4DnoKzXQE75Re4DVMqyUNQnVKsiqKwZgM05HC5BwDe7eadbM8fnjjzssYCYT8Prr6p87TYiwDh064Isvvgi4ndFoxIkTJ/xu88ADD+CBBzxLJVzFYDBg/vz5mD9/vs9tGjZs6CzM6osbbrgB//nPf/w3mDGkKuHA6qBPsS/uaPl8FBUZ8dtv8g9ALJU1CcYq6HrNrFYr9u0D7Hb357KmBigosCImRr1nlmVxyDIkXIO7d6xWKyorK3HPPUBBgRHHjkUgJaUaSUl2FBer627XhAgjlIWFoGg5Bn6KfXFHq+fjhx9uwvz5jRUdgFh4JnzhGT/pes14S56jRExOLRH5zTfrcehQRUiWPLEWGZbFIcvoRbiGaskTGuPlWTqD55DHevdqlc4gEUZ4RaqgaKFiKjs7G2az2fkduR4GMfvVs9mftUEu0P1is8X+LYRcY7OUGYDkTBQIZdLhL36SF9iBRKRYS54/i4y/50YJcahXWA0wD8ayLoUlT2iMl9B7W63SGSTCCJ9IERStVWsLD5n9lcXf/VJWVoa9e6M9amgpazmRK1HA23FLHU8ptYj0Z5H57DP/z43c4lDPsBpgLrSvv3TJErIlT0+V+UmEEbJjsVhqzYpdX7P6rOjF7K81vHWefEV5PVtOPJ+TpCTpY/akEpH+XInbt5/FP/7RwCOT1Pdzw1opEpZhXXwI+e09e0Kz5GmlMr9QSIQRsuNpTXr0UWDDBratSyzFq+jZHSqUcLCc1La6KmtFFnqfBXIl7tq1G3a7e/JToOeGhVIkrKMX8RGqJU8LlfmDgUQYISverEnr11/9nBXrkusAFBPDTrwKuUNrozfLif86ZNVISZHfupGbG4Np04TdZ4EEcXLyCa+ZpK7PDRE8lZWVbou4a1F8sG7JUwMSYYQTT7eG5wPvazt/eAsi9URJ65K32b6n0Fm0yFFjTm2rC7lDfaOU5UTuMh4s1CGz2WIxf75Z1H3mSxDr1VqpJrm5MVi61H0R906dfgxqH2pa1fViyZMaEmGEE9fAytzcmL87ZgOMRg6LFtnw0EOXgnJ/WK1WxMVVw2i8OsN3wAG4+lop65I3q1JWVm2hM326GU88EQuzuUI1qwtL7tBwRu7EEhbqkJ09a/F4PoO7z7wJYr1ZK9Xm5Elg2jSzMyuYX8Q9Le0PwedWbCarVOjNjSgVxsCbEOGExWJBTU0ipk2Ld3GNGDB9ejxqahKDEmArV65EXt5q9Ou3DQaDQ+UYDHZ07PiT2+vMzF2yz5K9W5U4bN9+zkuQqAFnzzZ0vjabKyRZKFko/Lnbu3e98zzx8IJ15cqVsFqtirQn3LFYLEhMTPT5J4UY5q2urs+FFHXIhFjoeAHoihT3mdLPjZ5xeBTchTK/iLsQfFnVT550iLMWLYBevRz/rlkjdevVhfWi1GQJI2ohRR0aVzHlbVbcuPFp7NyZCY4zYteuTMTEXA7atB4M3o/JgF27dsJguF+SxZGlIhyC0InayGE9ErJ2qBr3GesDI2s4gtk5NyEWTD/lq0/Pz9d/yAPrZZJIhBFu+HIhmkwcYmNPw2oVt1ixq+nZZovFrl2Z4A2xrqZ1OfB1TAaDHcnJJ5mthA6QWyfckCPWTcjzqvR9JmRgLC2tg4MHG4R1VjBwNZh9zpwazJuXJKqf8pWRyHFsFn6VGpZDN0iEEU5cAyf79bvJTZj07ZuHvDyHpSrUuK2zZy21Cm7ypvWysjKf1b/F4O+Y+E6MdaFD6ftkORFLMLE+St9n/voQIVnB4VC6xTOYPScnNuh+yl9GYlraFS8TbvULv/pDb30BiTDCSSAXorftxOAvCHnz5s2SBucLPSYSOmzDukuBReQqbyL34CYkK1hvpVt8CUqhweyueC7e7i8jMS/PMTnNy+sPu10b5SL01heQCCN8IpcwUTPWScpj0spMSy9opVNlATnLm/gaBMvKyrB58+aA3/f33AjJCpZi2RuWkEJQ8ou4e4oPISLOc3KqhXIRLLZJLCTCCFVg3QXIw3dunsgx0+Jnw3FxlLQcLsjhWlGivIm37ycmJoZkoRC6qHdKymOw25u7fVerpVukEsv+FnEXQrDlIsS4gvXmRpQKEmGEamjBBRhq5yYU99lwY/Trd5Os2aJEcMgVfyS1a0WokJGran0oAkhoVvBPP32g+koWUiFFJrrSiLXc8ff6sWPVKCyMQGpqNZKS3A9eS25EqSARRshCuM1mQqH2bNggqBAjnWNlkDv+SMpBJ5jyJixbJgLFb3o7NgAoLEzBsWPV0MI4LiQTnTVCtdx99JFFV7F8UsDeVSZ0gbcZPl+XSEsoMQB5mw1znBHduw9Dt27eLSThOGNUA60sHeXNlR3I5c96gLM/S7nnsR092sq5pM+GDRzzg7vQTPTs7Gw1m1mLUCx3WnmWlIZEGCEbWhIJ3mK/lBiA/M2GU1KqSWypiFaWjvLnyg7k8meh/WLhj81mi3WKGMBhSWZ9cBeatV1VVaVG83ziq96YkJIWWnS9KgGJMMIJy+4JsQhta1JSkuIDklJ12YjgCSa2Ss1rI9aVrSe81R3U2uDuSyxHRAgbopXok/3VGxNS0iIUAadnSIQRTuR2T6gh8lh2uShVl40InmCXjnIN3AeUKSLqy1LHFz4OFxHmre5gqCt8SI3n/bFvXxRsttiA1yg+Pj6k/kuqvjRQvbFAJS1CFXB6hkQY4YacD4JagkjM/tSoxq2FbNFwJFBslas70PC3R5nj5A08DmSpU3PtU6XxJpRZsiR7vz8sMBhy0L9/XsAs6FDaLlVNN6FFY7317aEKOL1DIoxQFC08ZHqrxk2Ejq9Bp6jI6OYO5Lirn8kZeCzUUicGtZYDCsVqw6ol2dNd7Hp/uK6ZK+fkS46absEQioALB0iEEYQLlMEjHrkGb5bXCDxw4EKtYGNXlAjiF1P42JfgUXMCEshSHsh6wx/32bMWt9dq4i0Y3RU1XcdamBCHAyTCCMIFyuARh1yDN+tWyV9++aiWO9AVpYL4fVkXgsn6ZWEC4u/8eFpvPEve/PDDTbUsgmoWPPaV+eyKVK5jlicqQrDZYvHNN1Ho2lWb7Q8FWh+FIP7G0WmegtHIub3vCPI9BavVqlLL2MbX4H3yJJv7lRLeHWgwOBrp+Pfq/5VaE9UX/IoPrn++Aqf37bN6nYAUFFiZufctFovzOFzFpWeZCt7VZ7PFqtJOPg4qL281+vXb5rw/ALvbvRLIdSzERbtmDdCiBdCrl+PfNWukOALl+OGHm7B0aQ4eeMCiyfaHClnCCAJULkIsctXS0kqNLqC2OxAA82uiuqKVchz+8Famgnf12Ww2RZYec8Vf5rOjvbXvD0+rpZCYLBasl6FQu8abttovBSTCiIBo3dQtBDXKRWi9Lptcg3eg/e7YsQXbtkVjypR70aFDA0mPiSfYc+7pDtSC+OLxF+SfkZFfazsW8Vamgnf1bdq0SXUBKeT+ELNOrdbDJ/RQ4y1USIQRfmE9JkculCgXwXINMyEEW0tLiv3ecMNBrFkzSvblaQJdGy0uwSUEfgJSUJCOvXszsHdvd+TnZzjXZmQVqe9BLSBk7Ump+g65Jozea7xdLeAaDgYAEmGET7Ru6tYCrAqsYBGToRfsfiMjK50CDJB/eRqWr43cVtT8/AzwIcN8fNWcOWegsFfPL57HFso9qLXBXunwiVAmjP7uQU/xbDIBr7/uuAbhYgAgEUb4ROumbqkJ5wweIchlPeT3W1iY4tV1wVqMmBLIaUX1FV/1008XkJJiZeY8WywWDB482K1shZh7UIuDvRrhE2Kvu7+CsdXV1Rg4EJg06X+wWhsgJaUaSUl27N9vxJgxVy18ejYAkAgjfEJrfV2FT39fssSomY5aDCxbBHzF/WghcNwVqc6xXMfq7TwDHN577w+cOJHP1HmOj48P6ft6sfazvtqG5/1itVq91nw7dMjxb2FhCuz2YW6f6dUAQCUqCK841voqxqJFZTCZHCUbHGt9lcFkKlY9Zf3kSWDPHmXKFfjK4GGpVIIUsJ7q7q0cRDBxP1LeM2LcfFFRUcyfY8BxnjMzdwFwLdViwK5dmbDZYnUVX+XP2q8mSvZvahDoHuInAq7o1QBAljCiFqyv9SW3+8Bmi8XZsxY0bGiF2VwRFhk8WrEIiI37kfqe8XSx8K4VVyIjI2E2mwE4BNilSxZNnGMASEoqBuBeYFTNkg9yIGdgu1iRDmjTPSo1/IQrL68/7HZ9L/ZNIoyoBctrfcklFvgO0FvV7bS0P7xk8EifgaQmWor/C9b1Itc943rdA4mSq8VQ2at75k0wsF7yIVTkDmz3FOk2mw1VVVVu20RERDjdqXz8npB79eRJYN++KNhssUy7IEPFc8LFggFADkiEhSEsx/0EQi6xYLFYMHDgE5g/Px4c55gV81lhOTlLa6W/8x21zRaLHj1GoksXs+bOJY9Yi4BcGXpS1kVjoegr68VQecFQVFTkLLuhlZIPYu9BJQLbgxHpPIH6t6tWMgsMhhzVl2aSG5YMAHJBIizM0LqpW85kgdLSBrU6QN4F462j1kOwfigWAbky9Dz3K7YmFyviR656alJisVhq/b5cZUekRKp7kIXA9kCToZ9/jsKYMVf7KH6SmJb2h+ptJ8RDIiyM0Ercjy8cyQKVWLQoBtOnm1FTI12sgK8O0HWBXdeOWi/LbYRqEZBLvEixXxbFjxaEjSssiJNA6MEtJWQy5C1jkJ8k+rpGrK62QVyFRFgYoaW4H0/kTBbw1wH6WmBXr8H6Whh0xaC2+PFM9tDjOSbEI2Qy1LChFUYj5zZJNBo5PPxwOpKTuzqTQIqKjCgsjECbNkZYLNIu66XlUBZWIREWRgh15Tke4hTngMECciYLCLUGueJ9uQ19BeuzglSxZ2qIn5MngRdeiMXrr+e4CXsW43jIasIO3u5Vs7kC/fptc5sk9uuXh717r4YMfPSRRbZwEylDWeheuwqJsDBBqCvP8aA1ht0+zOuA4Tqj1ytCBmtvLi45lgsJZ67OurW5xuayZecxaVI9cFx953ssx/F4q0BPsIW/SeKxY9WyhZtIHcriK5ZPr2uy+oNEWBgg1JU3cOATfwd+umcH8gOGZ/mGFi0u4skn1TgiNlBquZBwpPas26KppIeffz6HSZPMzkxbVwLF8UhNMC6kUCvQE/Lja5JYWBghW7iJHKEsrE2a1IIq5ocB3lx5qanHaz3IR47YvWYHdu8+DP36jUVeXn+n+43jjJgypb5uKzoLxde59IXeK2FLga9Zt1bOmdVqxbffnqsVM8jjmuwhN8FW6Jd7YXBW0ONxms2nYTRybu85QiROhbTCiSNp6ZQs+/ZEj9clEGQJI5ykplZ7jRlLT7doOqifFbReHkQJWKjrFQr+ymIAtZdackXq+mgO95TnIsgcbrzxNFJSvMctyrkwOEvo8Tj37t0seeFZuYvaeuLruvDJBqmp1T7vXa1CIoxwEhV1GosWRXuNGUtIqAOjsYEs9bm0wsCBAwFAVMwCq+VBWJp5Sl3XS41j81UWA7CjW7d8pKcXuAmwgQMHIiEhQdIBnz+P3hdBNmDFik+Rmnrc53lkZYCTOxOPleOUEqlDJJQoauuJ53XR++SVRBjhhBcX3mLGbLZYDBs2DOvXN9T9Wl6+SEhIEP1dVi2JLFkEpK7rpfaxCcm0TUhIELUOoz+Bwh+vv6WHXLdjEb0PvJ5IORGQMwtY6QxjVievUkIijKiF54PmGpDvmNHvRXp6gaJreclp1Qhm32IGLjkXCpYCFgW0VHW91D42OQYtoQIlkJhlFb0NvEIsev4mDOGYMcjD6uRVSkiEEX7xrAwPGJGfn4H09AK37eSeVctp1Qhm38XFxUHtW+mYCj1BRU3dERPnpXaR2mDRekygJ8FY9Hwdl56C0INFzmXqWIFEGOEXb5XhlU6x57l0ySJbjIjQjj1Yi5waMRVax7O6PBFcnJcnWhGzrKz1KRVSWfS8TRJdA9Wjok7r0lImdpk6rVX1JxEWBoQykwoUV6IUrMSIhGqR08qAqBaetehYrS4vFUKfTT3EeQWCxbU+xSK1Rc91W8++cNGiaMnazQpil6ljZZwIBhJhYUAg4eAv5oCFuBLWYkSknIXzVp+iIiNExGdrBiGz06Iio5vrm+Xq8qEycOBAJCUlBX0vsfA8KoHW3KiuyGnR89YXTp9uxhNPxCpyjpSyUotZpo61cUIoJMLChFCEg9odol6DM12tPhs2cJqYtYlByOzUarXiwIEL4Lgmbu+r5foWi1DLlhgBxqP286gUWrUay2XR821dMwh6RkJNWvJnpWYhbk2r4wSJMEIQanaIYoIzWY8L8Ex4sNsNmpi1BYPQQPJAlgNP1zcLHb4vlCqL4e95LC2tg8LClIDWCpbPo16QSjALfUays7NhNptrfT/UpKVjx6oxf35j5zJcHGfE9u39MWdOOjPFU7UaxE8ijGC6MxYTnKmFuABvCQ9amLUJJZhAcqGWA7EuPKVRs325uTGYNi0edvswGI0cFi2y4aGHLtXaTmvV4LWMFBNYoc+I2WwWVXfOHxaLBQcPerMyGVBR0QQs3EZig/hZgEQY4XX2HmxtGjmEnJjgTKXjAsRa3LwFWLNSN0wKxAaS+7McJCQkaP68yInNFov5880u974B06eb0bPnFWasFUToKO2OZr3OodggflYgEUYAcJ+9nzwJHDkSBZstcLCnnNYJMcGZSsYFeLO4ZWW5izJf4tTbjFaPdcPEBJJrNRZIbc6etbgNkoCwZYrkhvXQAC2i1DOihTqHYsYJlhAswsrLywXvNC4uTlRjCPW5KiwsMBhyApYIYMk6oeSMzZvFbcwYgOMcf1fdoO5WRlcLY7jUDQuXQHI5EWJpZrF8RTChASytY0o4oDqH8iNYhMXHx8NgMPjdhuM4GAwG1NTUhNwwQnk8hYWWSgQoOWPzlaXkaoFzd4P6/r1wsfqEy3HKhZBlbVgqXyGmur/cSQ1kkQsdpZ5juZeSYwnBImzPnj1ytoNgAG+uPK2UCFBqxuYvS8kTPQXaE+ojRHywYHUMJinDmxCTAyWTdciiFzpyLiXHGoJF2O233y5nOwgG8JbiG6g6PqsdiVwztmPHqp3p/55WB44DAH0G2hPaQW2rI0vV/cVY5EJFqTIleidczo/owPyysjKsWbMGhw8fBgBcd911GDFihNcaJQT7eEvxNRo5zJlThIED70RkZGSta8tCR2KzxeKbb6KQmlot+285ZtONYbcPc7p6cnKWOq0OR4+2YjJwlXXIcqBNArn31HaPhmKRCxWp90fPSG34+y8urrY3Qkvrz4oSYd9//z2ysrIQExODW265BQCwePFivPDCC/j888/RqVMnSRtJyIu/FF+gAnylCtaEBF/BeckSI4xGDv363STbOoNX4+WuFivctq0fcnKWIjX1OAAKXHUlmEGDLAfawWq1orKy8u96ZGbY7Qa3emSe111N9yhLFrlQoWfEHXf3cmO3vl9r68+KEmGTJk3Cvffei3/961+IiHDsorq6GqNGjUJOTg7+/e9/S9pIQl5YTfH1N5B7qzgvVxKBr0B8b/FyaruCWCHYQYP1wYOCut3jIZcuzXFWT7fbDZg6NQ5//fUWzOYKZGdnu31P7WdCbYucVATzjOj5fq2dmX617wfgc/1ZVq2Eoi1hrgIMACIiIjBt2jR06dJFssYR4Y2/gfybb6KwZIm7GVqOJIJgl9QJRDi5FVgXVoEQYvVh4RiVuqf459Dbag+uz15VVVVIvyMHLCQsKIWUSQgs9le+Esi6dx8GjoPXceH220fCYmEzVEqUCIuLi8Off/6Jtm3bur1/4sQJxMbGStIwggC8D+RWqxWpqdUwGjm3emBiRFEghC4XIhRyK2gDoVYfFlz0St9Tgdx7rKK2RU5u5EhCYK2/8lcLMiWlGlFRUV7Xj+zcmU0BBogUYdnZ2Rg5ciRefvlldOvWDQDwzTffYOrUqXjwwQclbSBBuOKvHpgQURTKjE2q2bTagzYRGKFWH1biiZS8p/Tg3nMN3NYDciYhsNJfCa0FOW/eaMydm6iZ9SNFibCXX34ZBoMBQ4cORXW1IystMjIS48aNw0svvSRpA3nuvfdeHDhwAKdPn0aDBg2QmZmJhQsXIikpybnNZ599hmeffRa//PIL6tSpgx49euCVV15BSkqKc5svv/wSkydPxi+//ILk5GTMmjULw4cPd/utVatW4Z///CdKSkrQsWNHrFixwpmAAACXL1/GlClT8N577+HKlSvIysrCq6++iiZNmji3+fPPPzFu3Djs2bMH9evXx7Bhw7BgwQI3F64ekTsWQWg9sIEDByIhIcHtu1LM2PQ+m2YJFuJatGr1kRt/z57QPk4tl7tn4LbZXIQxY4qD6h9YuDdd0VMSgi+E9v01Nf/S1PqRohRBVFQUli1bhgULFuDo0aMAgLS0NNStW1fSxrlyxx134Omnn0ZiYiL++usvPPXUU7j//vuxd+9eAEBhYSHuu+8+TJ48GRs3boTNZsOkSZMwcOBA/PDDD85t+vbti7Fjx2Ljxo3YvXs3Ro0ahcTERGRlZQEANm3ahMmTJ2P16tVIT0/H0qVLkZWVhSNHjqBx48YAHIkJ27dvx/vvvw+z2YwJEyZg4MCB+OabbwAANTU16Nu3L5o2bYq9e/eiuLgYQ4cORWRkJF588UXZzpHaKFkQkceXKEpISEBiYqK8P+4DLaVHswZrcVhqWn1YG+g98fXsxcfHM+XCcsUzoYfjjJg3Lwk229KA7mXW7k1vSHG/sn7f8fibELOSXCaEkMwydevWRYcOHaRqi18mTZrk/H+LFi0wY8YMDBgwAFVVVYiMjMT+/ftRU1OD559/Hkaj4wF76qmncN999zm3Wb16NVJTU/HKK68AANq1a4evv/4aS5YscYqwxYsXY/To0XjssccAAKtXr8b27dvx1ltvYcaMGbDZbFizZg1yc3PRq1cvAMDatWvRrl077Nu3D127dsXnn3+OX3/9Fbt27UKTJk1w44034rnnnsP06dMxd+5cXQRde+JtLcWry/ao2zYl8ZUercdrDkjbYbMQh+Wt9pCSQd1aGOiFwEIbvT1zYt3LLNybQgnlflVjIh0KepjwihJhly9fxooVK7Bnzx6cPn0ado9UBd7yJBdnz57Fxo0b0a1bN0RGRgIAOnfuDKPRiLVr12L48OE4f/48NmzYgMzMTOc2+fn5yMzMdNtXVlYWcnJyADhU8v79+zFz5kzn50ajEZmZmcjPzwcA7N+/H1VVVW77adu2LZo3b478/Hx07doV+fn56NChg5t7MisrC+PGjcMvv/yCm266yetxXblyBVeuXHG+DmbR9FCQIgPGW8ZKOC3bM3DgQFRWNsb8+Y2dHTTHGbF9e388//xtsFgaqNxC6ZG6w1YrDsu78HGvPaSEG1pLA70WcA0q59fXFOte1lqMoJj7VWsTaa3VA/OFKBE2cuRIfP7557j//vtxyy23BFzYWyqmT5+OlStX4uLFi+jatSvy8vKcn6WmpuLzzz/H4MGD8fjjj6OmpgYZGRn45JNPnNuUlJS4CSMAaNKkCcrLy3Hp0iWcO3cONTU1Xrf57bffnPuIiopCfHx8rW1KSkr8/g7/mS8WLFiAefPmCTwb0hFqBoy/jJVwWbYnMjISR45EuB0/4AiK/e9/7UhKsurmHMi9FIyScVj+hI/Si9ezNNDzwhQAioqMKCyMQELCBUHfZcnq63kfhuqu02uMoK9aiDU1QEGBFTExbFg3eby5lZV+XqVClAjLy8vDJ598gu7du4f04zNmzMDChQv9bnP48GFnKYypU6di5MiROH78OObNm4ehQ4ciLy8PBoMBJSUlGD16NIYNG4YHH3wQFRUVmDNnDu6//37s3LlTMaEYCjNnzsTkyZOdr8vLy5GcnKzIb4t9wIRmrGh19i50QNm0aZPPWmLffLMehw7pw4KhxFIwSsZhCRU+SqL2QO/6TLtbGxqgf/+r1sHBgwfXmoxqwV0airtOD5mhngSqhchi/8XS8xoqokTYNddcI0k9sClTptTKTPSkZcuWzv8nJCQgISEB1157Ldq1a4fk5GTs27cPGRkZWLVqFcxmMxYtWuTc/p133kFycjIKCgrQtWtXNG3aFKdOnXLb/6lTpxAXF4eYmBiYTCaYTCav2zRt2hQA0LRpU1RWVqKsrMytA/Lc5ttvv621D/4zX0RHRyM6Otrv+WANoRkrrJjpg0WIlbCsrAybN28O2EFr9Ry4olQWllRxWEJj1sQKHzmsPmoP9Py1C2RtiI+PVy35JVRCcS/rrfCr0FqILPVfak9UpESUCHvllVcwffp0rF69Gi1atBD9440aNUKjRo1EfZePQ+NjqC5evOgMyOcxmUxu23q6JwFg586dyMjIAODoUDt37ozdu3djwIABzu/u3r0bEyZMAOCIPYuMjMTu3bsxaNAgAMCRI0fw559/OveTkZGBF154AadPn3ZmVO7cuRNxcXFo3769qOPVCnLHzoQavyYmkDyY2Z/eOmhfKCEUxN5LvoLbx4y5gFGjLnh1lwY6HrlKnviChftIT9YGqfF3b6qRXShVZXsW7jtfuLZd7YmKlIgSYV26dMHly5fRsmVL1K1b1xn4znP2rLRqtKCgAN999x1uvfVWNGjQAEePHsXs2bORlpbmFD59+/bFkiVLMH/+fKc78umnn0aLFi2cgfBjx47FypUrMW3aNIwYMQJffPEFNm/ejO3btzt/a/LkyRg2bBi6dOmCW265BUuXLsWFCxec2ZJmsxkjR47E5MmT0bBhQ8TFxWHixInIyMhA165dAQB33XUX2rdvj0cffRSLFi1CSUkJZs2ahfHjx2vO0sUaocSvKZX5Ey61xFjssP3FeK1eXR+rV9fFvffmYeHCa2tNAP0djxolT9S+j/RkbVCKN96owfz5nOJZrVJWtlf7vvOFxWLB4MGDsXnzZgDi+h+W4hV5RImwBx98EH/99RdefPFFNGnSRPZ4q7p162Lr1q149tlnceHCBSQmJqJPnz6YNWuWU9T06tULubm5WLRoERYtWoS6desiIyMDO3bsQExMDABH8P727dsxadIkLFu2DM2aNcObb77pLE8BOFYDOHPmDObMmYOSkhLceOON2LFjh1ug/ZIlS2A0GjFo0CC3Yq08JpMJeXl5GDduHDIyMlCvXj0MGzYM8+fPl/U8hQvBdmYnTwJ79wKjRwMc53iP9cwfVgg0q2etw/YX4+WAd6k56kINHjzY7VPWjkdN9GRtUGINRIfwT1Itq5WVeC058YxB9PW8Km25DgVRImzv3r3Iz89Hx44dpW6PVzp06IAvvvgi4HZDhgzBkCFD/G7Ts2dP/Pij/zTWCRMmON2P3qhTpw5WrVqFVatW+dymRYsWtVyfhPI4rF9craxFgN3MH7XxV6vqrrtKZftdKQdKb1YcHleXGr/iB+EdFq2dYgjVUiTknmMhq5VwoGax7mARJcLatm2LS5cuSd0WgpAUR90b7wIMYDfzR00C16raCbNMa+FK7VJxteK4wqpLTQlrDY+3EhSpqdVISrKjtNRdaPuyNpSWltb6Lt8+Fp+lUNrk794MtQYZEd6IEmEvvfQSpkyZghdeeAEdOnSoFRMWFxcnSeMIQiy+6t7wsJz5oyZql2yQcvDmrTgFBenYuzcDQG2Xmmff5QslYkmkFKH+8F2CIriCl7NmFWLbtuu8flePk5pAx6Mn9y2hHKJEWJ8+fQAAvXv3dnuf4zgYDAbU1NSE3jJCEyg5exdKoLo3gwZ9gOTkk5J1jiyeg1AJdVbPyrGazRW4665dSE8v8OpS49d+ZWWdQyV+R2gJCn8E+m64Tmq06L7VY/+lJUSJsD179kjdDkKjKDV7D4ZAdW+uv/6wpL/H4jkIFTElG3hYPFZ/AfestVUpAlk7vV1j3vVG5St8o7XkDj32X1pClAi7/fbbBW33j3/8A/Pnz/fZWRP6gOWHU6mZKcvnQCyslWwgpCWQtdPfNab4J32hlf4rGKudGvXaxCBKhAnlnXfewVNPPUUijFAVrc1MWUJr545cJsIJJYaJ4p+8Y7PF4uxZCxo2tDJ3LrQiSvwh1Gr30UcWRWpCSoGsIozjizIRBEEoAN9Jnz592lnU0R/hLtpCsRSzGv/kL/MTkN61dvHiRQCBkxzUuNf8lZtRooisHARqryMr3iHAAPZrQsoqwgiCIJTGYrFQnEsQhGLtZM1SKjTzU6rsTavVinfeeSdgosIjjzyi+L0WuNyMMkVklcRXVjzLNSFJhBEEyCLCo6dMKdY6W0J+hGZ+SpW9KbSkS926dSX5PTnappdM1kBZ8azWhCQRRoQtfPYXWUTcXTg9ejyE//3PhObNr6BpU0dF+cjISJj/rtJK50vbhCK0tSLSlc7eZDlRgeW2eUNs7FqgrHhWa0KSCCN0h9ABICkpicQElHfhEOoSiqtWLTev6yRByG8qLTxYTlRguW2eOJaZCz2gntV4RW/IKsIeeeQRqp5PKA7FAwWH0i4cQn1CXcJHSVwnCYDvDETX9X7VEB4sD/wstw1wXONjx6oxZkxj5zJzdrtj2bnExFKkpxuDvu9Yi1f0hWgRVlZWhm+//RanT5+GnU9D+JuhQ4cCAF577bXQWkcQIiGBFTxUgFMegrXiEO64njt/llrPc6yG8GB54Ge1bbzILixMgd0+zO0zu92Afv0s6N8/D2+91V2Xz4koEbZt2zY8/PDDOH/+POLi4mAwXF0g2WAwOEUYQRDaQWuxI1ogGCuOHgcYKRGzzFKwwkPp8hbEVfHsrf8Brl7nH344gk6d9DfBFiXCpkyZghEjRuDFF19UJeuDIJRCDwUOhaKl2BEe1q1MYq04UsH6+QkGuS21FBupLnz/8/HH/QDUvs4bNxZg797jujv/okTYX3/9hSeeeIIEGKFL9FjgUCi8C+fEiWYADEhOPuH8rKysjKmlilizMnkTPKWlpc62iV0sO5T2uJ4fX2hlUBNiqQ0le1NMbCTL2aIst80XnTr9iMaNS7BmzSif11lvsamiRFhWVha+//57tGzZUur2EISqhGOBQ0+OHm3l1QqwefNmpo5bbSuTK/4FoTrxdp7H7UukamVQE2KplSIpJ5hrxXISEMtt80ezZsWiLPJaFJ1AECLs448/dv6/b9++mDp1Kn799Vd06NABkZGRbtvee++90rWQIBREywUOpXA9aTFDUg0rkyeBBGFa2h+qxtsFWlJHKwgJtg9VVAQbG8maiHGF5bb5Q0xShVZFp2ARNmDAgFrvzZ8/v9Z7BoMBNTU1ITWKINQmUEdss9mc77MQwBuKa851ZqjFDEmW2uxLEObkLFUt3k4pkapU/JncWX5ajI3UI/x1ttliUViYImhRdNYElhAEizDPMhQEoWcCdcSbNm0CwE4AbyiuOYvFguzsbGzatEmTGZIstdmfIFSrVpMSIlXO+DM13Eys19UKF7z1ZaWlpUxatMQiKibs7bffRnZ2NqKjo93er6ysxHvvvUclKoiQYSErMVBHzKLrTqzVg1+SSItWAJbaHEgQqlGrSQmRGkr8mRALmhpuJlbraukNX+LZd1+2VFdxuaJE2GOPPYY+ffqgcePGbu9XVFTgscceIxFGiILFrER/HTFLbjAp26RFKwArbRYrCOUMFlZapAYTfxaMBY2lzFxCOvhYrqKiImzdutX5vhbjcsUgSoRxHOdWoJXn5MmTzhk1QQSDFrMSWXKDSd0mLVoBWGmzP0HILxrvihKTC6VEarCWWJYyOLWaXecNrdWH89YWFvtXOQhKhN10000wGAwwGAzo3bs3IiKufr2mpgaFhYXo06eP5I0k9I+aWYmuHdahQ2WCg0BZcoOx3Ca5YHnQ9CUIExISFLPoeB63rzZJeX5CscSqncGp1ew6T5Ssnydl2IinRSxc+rKgRBifIXngwAFkZWWhfv36zs+ioqKQkpKCQYMGSdpAIrxQevbjvUp2O8GDACtusFDbFIqgUWvWzdKgyaIgVOP8iH1+WSgzAmgzu84TuevnyRk2YrFY3NrFYv8qNUGJsGeffRYAkJKSguzsbNSpU0eWRhHhi9KzH6FVsl3dSGVlZdi8ebNbm1nrHIJtk9gBW+2q7KwMmiwJQlfUiKEU8/yyGF+pdeQQtnKHjZw8CezbFwWbLdbZRhb7VykRFRM2bJhjpfPKykqcPn26VvmK5s2bh94yImxRY/YTzCBQXV0taJ/8kjWuyDUQS2GJEdMulmJ61MabQHU97srKShQXFztfa8G1JQYxz2+4xP8oiRzCVo6wkdqWNQsMhhzNFhQOFlEi7Pfff8eIESOwd+9et/f5gH0q1kqEitDZj+tAF0rR1ECDwNq1O72KC3/4+o4cViEWLDFqx/SwhNoWQqUJNf5MjAVNa8HnSiOnsJVq374sa2q5o9VAlAgbPnw4IiIikJeXh8TERK+ZkgQhN97jucQVTfU3CPjbt6ubsrS01JlircZahmoOOKzE9LCC0GusFwuhFJOAYCxo4SZyxSBnaIdU+xZqWfOGFrJUhSBKhB04cAD79+9H27ZtpW4PQQhGaDyX0IHO2yAQaN/est30tkyMECimxz++3LR6Qsy9JtaCRm5wYcgZ2hHqvl3jvwJZ1jxLu+jJyilKhLVv395rvAtBiCWUmCYpBYDnICBm3ywtE5Odne2zdp+UHRnF9PgmWDctS+JabqSwoOnJDS7HtZczsD3YffuL//JnWQultAsLq6/4Q5QIW7hwIaZNm4YXX3wRHTp0QGRkpNvncXFxkjSOCB9C6YxZi30I9B0p1j4Tagng17j0hVTumnCp6RMswVpFw9HNFspx6MkNLtW1Z7FcChA4/isnZylycpZKYrVjcfUVX4gSYZmZmQCAXr16ucWDUWA+EQpiH4pQBECgjkjMvj2/A9iRkZHv/JyPG5NqIBViCVDCXRMONX2CJViraLjFkoWKntzgUrlY+QntmTNnUFVV5XUb10LrSiEk/is19XjI101rq6+IuhJ79uyRuh0EERJiBYAvC5xrkL2YffPfKShIR35+Bvbu7Y78/AzJA/SFWALkdNeoUZVdS4RqpfU1EEthTdUDenWDS/HMulrBpaqaL4WVTe5rpubqK2IQJcJuv/12/Oc//8Hrr7+Oo0eP4oMPPsA111yDDRs2IDU1Veo2EoQgxMY+COmExO47Pz9DVldJoI5GbncNC6UxWCYUK62/gVhqa6pW0aMbXIpnVq6q+VI870pdM60IdFEibMuWLXj00Ufx8MMP48cff8SVK1cAADabDS+++CI++eQTSRtJEEojZsbn+R0lXCWBOhol2hDOIsAXrveCP0uqr/tM6EDMymxeTfTmBpfymZVjEibF8x7sNRNjSdeKQBclwp5//nmsXr0aQ4cOxXvvved8v3v37nj++eclaxxB+EPOAFQxMz7PBWiVmIkF6mi0MhvUG6FaDHwNxCdONIPZfFjStmoROdzgrGSlSvnMshwzx//+2bMWt9d33nmnm0ctlPMeSOyxkDkpSoQdOXIEPXr0qPW+2WxGWVlZqG0iCEHI4QoLtSN2XYBWqZkY39GcONEMgAHJySecnwVqg5JLK4UboZxDbwMxAGzZcj8qK6+6k/jrF27XTOpnn6WsVCn7DZYnYb7cpDt37pT0PPsS6G+8UYP58znVMydFibCmTZvijz/+QEpKitv7X3/9NVq2bClFuwhCEFI+LFJ1xK4TEblcJZ4z/KNHW/mM+/DXBj62yBM9xhqFKrCVtJTwA/HHH/cDcHUA9XQnuV4/PV4zf0h5rKxlpUrVb4Qq6OS656UqsC0WR+ZkEhOZk6JE2OjRo/Hkk0/irbfegsFgQFFREfLz8/HUU09h9uzZUreRkAm5HjBWzPrBIkVHbLVasXnzZrf35CiWaLFYMHjwYGzevFlQ3EewbdBbrFGoAlspS4lnLFlU1BV88MEDbtv4cifp7ZqpiRorHMiVaSxW0Hne86FmWLq2W203KUuZk6JE2IwZM2C329G7d29cvHgRPXr0QHR0NJ566ilMnDhR6jYSMiDXoMKSWT9UxHTEwTy8oZZtiI+PBxC4Q/G1viUQHsvpAKELbKUsJZ5xhcnJJ5h1J+kVtSrwy5lpLGYiKHWGpcViQXZ2NjZt2iSrm1RIv8qSm1aUCDMYDHjmmWcwdepU/PHHHzh//jzat2+P+vXrS90+QibkWntNL2u6SdUR+zr+7OxsWCwWSayGgToUX0t+6Gm5Fz0RKK4wM3NXrWBmQhrUrsAv1cRUyqQlKc8Jv4SanPGy/sQsPwllKXMypLK5UVFRaN++vVRtIVRCrsFYq4O8VJ2Ov+M3m82SWQ3FdChqDzZqE6oF0Nf3bTab6DXuXPFV4qKoKAm7dmVq7pnSCmq7yaRCSquaXOdEztIiQo6LldImyq9dQDCFXIOxlgd5KTodIccvpYsr2A5FL4ONGEKdHPj7/qZNmyRxtbsOoq4u5LffHirqmdJqnKbSsOSmChWprqec50TOxcW18PsAibCwR67BWMuDvBSdjhLHH0ogr54Gm2AIdXIgpbgOhOcgKvae0lOcptyw5KZiBTFlbnhI3AeGRFiYI9dgrOVBXoqOWMzxB+siC8XlEK6DTajiWM3JhdhnirXyCywS6goHekdMmRseV3EvZ4FtrUIiLMyRazDW4iAvZUcc7PGLdZEFO8sM98Em1MmB9yKqwr8vxi3IX4tA95Rer5kS0BqogQnkuhOShKX2eWZRBJIII2QLUGQl8FEoUnQQwYgc/neUjJ9TuxNUi1CFjOf33YuoGnD0aKuAolmsW9Dzms2ZcwbHjkUgJaUaSUk3A7g5qGvGQlkSFmPU9HbPh0owQiSYSaSa55nF/o9EWJgiV2FAufYrBUp0/EIfcuBqLIXSLq5wHGyECJmLFy+isrISxcXFXvdx991349NPP0Va2h8wGACO4z8xCBLNobgFXa9ZYiLQubOgXdWChYxlilHTBoH6Mj5hRKlJpGv/XVRkRGFhBFJTq5GUZAcgvP9m7Z4iERamyDUjUHum4UtolZWV1apk7w2pMtv84TkIaTl+Tkv4EzJWqxVvvPGGoP1oNemElYxlilHTDmqWsHDFtc/0N5HQonAnERbGyHWzqvUQCJ1h+0OJjt/zNyjWR32Cue5aFc1aFY8E24TyPAj1TggN3dCicCcRRugGLT6APN7ixwYOHIikpCTNzez0jlSiWenYLDnFI4sxXoQyiE3CCmZtSh49TiRIhBGEyrh2Pqmpx53vJyQk0MDFGNnZ2c6lV0IJkFcyNkvu7MpQY7xYSBTQC2qJYTFJWELXpiwqKnJup1UrtD9IhBFhCSsdPwuB0kRtfN0fZrPZuSyR2AB5pWOzPOM0J036H/73PyOSk6+gadNUAKmIiIhwJiUEO1CHEuNF9790KJ3wIFUSlq/noXHjElRVRWPt2p3O/Wqx9FEgSIQRusXXQMpKx89KoDThjtz3hxouFX7QtVqt+OorRwLCiRO+t1ciwJnuf2lROuFBqiQsX8/DmjWjvD6DWit9FAgSYYQu8TWQstTx6zG+QevIeX/wFoFALhU5EzFYykyk+19elLD2SyHUvRdA5vw+gyys+SgVJMII1ZE6jsHfQMpSx6/H+AatI+f94Wo5uOaackyfbkZNjQEmE4eFC8vx0EMP6iKAPdDgH6wYpaD/4GHF2i8ETxcjYMfVQsgO9CzOSYQRqiJHHIO/gVRNKwQPLUOjLEIGcaWsVPw9PGUKkJ0N/PEH0KqVAc2axQOID2nfLCBk8A9GjFJh1+BhydovFFcXY2RkpdMVySN0cqrFPpNEGKEqUrpHhAykZnMF5s8/hblzm6pmhZB6GZpwRKh1JJhBXGkrVbNmjj+9EMzgL1SMsuQ+1QosWfuDwdXF6G9yOnDgQCQkJNT6vlb7TBJhhG4IZoY9fLi6VgiplqEJR4IRVsEM4nzWo16tVN6QMm5I7OCvNzGqNqyFOfiaMNlsNp/f8Rd8n5CQ4HxW9QCJMEJXCJ1hh1vHr6e4GiWsI+Fwf0gVN8RCwgFxFZbKOAidMA0ePBjV1dXYunWr8z09Bd/7g0RYmKOnwdmTcBhIhUBxNYQnUsYNKZlwoHZ9P5b7S1eR68+SpKQY9jxXvq5ffHy84HbpTcyTCAtjWByc1e5k9QjF1RA8/AAWyHUY7ECnRMKB2hl/LPaXrkhVt0suAl0/1tsvFyTCwhjWBme1O1lC/4S7yOcHumPHqrFhAwe73eD8zGTiMHHi3UhJiQhpoJPDAs1Cxh9r/aU3WBUoQq8fq+2XExJhREBKS0t9fialm0HtTpbQJkKFFYl8BxaLBRYL8MYbwOOPAzU1gMkEvP66AZ07N1G7eV7RasYfS6jpSqXr5xvNiLB7770XBw4cwOnTp9GgQQNkZmZi4cKFSEpKcm6zefNmvPjii/jvf/+LRo0aYcKECZg6darbfr788ktMnjwZv/zyC5KTkzFr1iwMHz7cbZtVq1bhn//8J0pKStCxY0esWLECt9xyi/Pzy5cvY8qUKXjvvfdw5coVZGVl4dVXX0WTJlc7sD///BPjxo3Dnj17UL9+fQwbNgwLFixARIRmTrkT12BJb4RifpfLPcIKLMeQ6AGhwopEfm1GjgSysnjXIZvxk2oG/Xs+u56TUS1ZVY8ePYp33nkn4HZyuVJZy9hkCc0ogjvuuANPP/00EhMT8ddff+Gpp57C/fffj7179wIAPv30Uzz88MNYsWIF7rrrLhw+fBijR49GTEwMJkyYAAAoLCxE3759MXbsWGzcuBG7d+/GqFGjkJiYiKysLADApk2bMHnyZKxevRrp6elYunQpsrKycOTIETRu3BgAMGnSJGzfvh3vv/8+zGYzJkyYgIEDB+Kbb74BANTU1KBv375o2rQp9u7di+LiYgwdOhSRkZF48cUXVTh78uJPZAgRIXK7R9SC9RgSrSNEWOld5IcK68kraq0yEOjZ1ZJV1Wq1ChJggHyuVJYyNllDMyJs0qRJzv+3aNECM2bMwIABA1BVVYXIyEhs2LABAwYMwNixYwEALVu2xMyZM7Fw4UKMHz8eBoMBq1evRmpqKl555RUAQLt27fD1119jyZIlThG2ePFijB49Go899hgAYPXq1di+fTveeustzJgxAzabDWvWrEFubi569eoFAFi7di3atWuHffv2oWvXrvj888/x66+/YteuXWjSpAluvPFGPPfcc5g+fTrmzp0bNh1+MCKkc+cmmnKPCIHVGBItzeC9EYywUiIGipAXNVYZ8PdMas2q6r1GV2h9gBgLv94W3pYKzYgwV86ePYuNGzeiW7duiIyMBABcuXIFdevWddsuJiYGJ0+exPHjx5GSkoL8/HxkZma6bZOVlYWcnBwAjpt1//79mDlzpvNzo9GIzMxM5OfnAwD279+Pqqoqt/20bdsWzZs3R35+Prp27Yr8/Hx06NDBzT2ZlZWFcePG4ZdffsFNN90k6fmQCqkH52BFiBbcI1pHSzN4XwQrrFiLgSIXtXhCtdxJce61Ht8Uah8QzOTa0+Dgq/ZXuBgmvKEpETZ9+nSsXLkSFy9eRNeuXZGXl+f8LCsrC5MmTcLw4cNxxx134I8//nBavIqLi5GSkoKSkhI3YQQATZo0QXl5OS5duoRz586hpqbG6za//fYbAKCkpARRUVGIj4+vtU1JSYlzG2/74D/zxZUrV3DlyhXn6/LyciGnRRJYGZxZd49oEb6DCzSD99cRsiYcxAgrFkQ+uajVI5hz7w8txzfZbLH4+ON+4BfIFmPFE1r7i1+FIhzLTgSDqiJsxowZWLhwod9tDh8+jLZt2wIApk6dipEjR+L48eOYN28ehg4diry8PBgMBowePRpHjx5Fv379UFVVhbi4ODz55JOYO3cujEaj399ghQULFmDevHmK/Z7QwTkQpaWlYf8gsQxvOdqzB1iypPYMvnv3YejZ03d6OMvCIVhhpbbIZ9VFHQ6Ecu49hYa/+CabzcZsf1hQkA5egPGEYsUTumA74RtVRdiUKVNqZSZ60rJlS+f/ExISkJCQgGuvvRbt2rVDcnIy9u3bh4yMDBgMBixcuBAvvvgiSkpK0KhRI+zevdttH02bNsWpU6fc9n/q1CnExcUhJiYGJpMJJpPJ6zZNmzZ17qOyshJlZWVu1jDPbb799tta++A/88XMmTMxefJk5+vy8nIkJyf7PT+hEGhwvv76AThxYoPzPV8zHj57kmbv7GKxWNC1K2A0Anb71fdNJiA93WFV8gXrwkFtYaU1WLNqso4voeErvmnTpk0A2OsPbbZY5OdnePlEnBVPa7FxrKKqCGvUqBEaNWok6rv2v0cSV/cdAJhMJlxzzTUAgHfffRcZGRnO38jIyMAnn3zitv3OnTuRkeG4MaOiotC5c2fs3r0bAwYMcP7O7t27nSbqzp07IzIyErt378agQYMAAEeOHMGff/7p3E9GRgZeeOEFnD592plRuXPnTsTFxaF9+/Y+jyk6OhrR0dGizodY/A3OHTvWw4kTjtdCZjw0e2ebZs28ue9IwIQTLFs1WSSQ0PAnNljrD73FsgFAt275okST1mPjWEETMWEFBQX47rvvcOutt6JBgwY4evQoZs+ejbS0NKfwKS0txQcffICePXvi8uXLWLt2Ld5//3189dVXzv2MHTsWK1euxLRp0zBixAh88cUX2Lx5M7Zv3+7cZvLkyRg2bBi6dOmCW265BUuXLsWFCxec2ZJmsxkjR47E5MmT0bBhQ8TFxWHixInIyMhA165dAQB33XUX2rdvj0cffRSLFi1CSUkJZs2ahfHjxysusoQQE2PFokUmj/RvG+rVOweAZjxSwUJWIgtxUYR6sG7VVBIhz6NSQkMJ66SvWLb09AK33wl1f1qIjWMJTYiwunXrYuvWrXj22Wdx4cIFJCYmok+fPpg1a5abqFm/fj2eeuopcByHjIwMfPnll25FVlNTU7F9+3ZMmjQJy5YtQ7NmzfDmm286y1MAQHZ2Ns6cOYM5c+agpKQEN954I3bs2OEWaL9kyRIYjUYMGjTIrVgrj8lkQl5eHsaNG4eMjAzUq1cPw4YNw/z582U+U8HjOjN+4olYp3n9/PkK/G1Vl6wjYkGEKIlrh+bPkqh0ZhC57/QBuRXFE8iyL7RIrBTIbZ3kjyVQLNsjjzwS1P6p9pc0aEKEdejQAV988YXfbRISEpxlJPzRs2dP/Pij/6y/CRMm+M2QqVOnDlatWoVVq1b53KZFixa1XJ8s4tqJ+zKvi+2I1BYhag9SrqUU5s9vDI5zlFLgOCO2b++POXPSqUZVmCN2YkJuRfEIsez7KxI7e3YRgAq3/YUyuZTbOum5MPacOWdw7FgEUlKqkZR0M4CbRfeFVPsrdDQhwgh1ETvjUVOEsDJIWSwWHDzoHm8HADU1BlRUNPEbEC83aovUcCeUsjDkVhSPUMu+ryKxJpMJb7zh2IaV0j6BcH2OExOBzp3F70srtb+00r+RCCMEIXbGo5YIYWmQat3ae+JDq1a+vyN3BxJKzaRwcytLiRQ124jgsVqtsNlsAMStQ+nqwi8udvwrV6ws68+Xp2XNG0oIHH99ZFlZGTZv3ux87eucsmApJhFGCCZQNpAvxIgQPRFsVqISVrxgRKrabmU9EWrNNqlhfcCXAs/nyZdlf/Tou9G4cWPB516OoH0tWtbUQGgfCfg/pyxYikmEhSGuM4jS0tKgv++r4/Y1CFNphOCyElmy4gEU2yY1odRskxKtDPih4u058WbZj4+/2es97GlxKSsrAyDOouYPykIXjtCq/Vo4pyTCwoxgZhCuZGdnw2w2Izc3BvPnm2G3G2A0cli0yIaHHroU0PxMpRG0nZXIcmwbSwh1I6s1MSF36FWEWPb99ZeeFjVHaZ9yPPTQg6LccVR3Sxz+JhNaOKckwsIMsdYTs9mMmppETJt2dSC22w2YPj0e2dnxggZhpUSI1WoVZeEj/BPubuVABOtGVmNiwpo7lHUC9Ze8Ra1792FIT7egWbN4APGifovqbgVPoMmEFs4piTBCEFFRUT4sIY5BJJQBRMogdLGWPiIw5Fb2jxg3slQTk2Biu1hxh+oFs7kC3bpVIjFRXF8mtI5XOFgngyWQpUsLtcxIhBFeGThwIBISEgBc7TjksIRIHYTOQqClniG3MhuEmiwRzoJarmQEsX2ZnHW89I4QSxfrtcxIhBFu8B1UZWVjJCY2cfssUMctZhaoVBB6sMkE4UYwA5OWY9v0ghTJEnoU1N76INfQBDmTEULpy6Ss4xVOCLV0ic3sVwISYYQT1w5qwwYOb7zh6Khd8dVxs1Ic1RveOt7nn09FUlJS2M4u9Vh2QivFGaVCimQJPQnqQH2QFJly4VDSQ2uEYulioX8jEUYAqN1B2e0GPP64Q3B5dtLeOm6hs8CioiK3beUOoPfV8c6Zc4bZAdmzY5DDiqe3shMsTwLkhJIlrhKoDwoUPxToeQrWiqYVwabFyYvQqv18Vr+vfbBwXCTCCADeOygpgu492bp1q3Q7E4CvjvfYsQhmTf6uMSJiS4II/R29lJ1grbaaUoRzbFeweIsfMpk4TJx4t9uEw1sdxWCtaP4Em7+Jp9LCQKuTF1aq9ksBibAww9dsz3sHpf0Ztb/AzeJidh9gi8WCkycRUkkQIZAlRT6UsoToMbZLDvj4oe3b+/+9GDfw+usGdO58NfbVlygRYkXjBUEgwRZoIqqk4NHy5EULAksIJMLCDH8ziGuuKcf06WaXDkr7HbqvwM1///tH/Pvf/r+r9uzv99/lKQniCllSpEPNODs9xXZJhTcR3KnTj5gzJx0VFU28ClZfYkOIFa3470UlQy0Qqqbg0YoLVU+QCAtDfAmLKVOA7Gxtz6i9DXBiAzfVnv0pZaUKZEnRYsyIGugtzk7L+BPBSUl2JCYGtz9v1fE9rWg8WigQ6o1wWcaKNUiEhTknTzosLq1bX51Nsyi+hFoPPC19RUVGFBZGIDW1GklJDjVjs9mwadMm2doqFUpaqXxdd63GjKiFnuLstIpc6wW6TuYmTry7lgATWnTVtZ2sWJ20sMaiXiERFsasWQOMGeMYMIxGeC1JoSSuBWJdCdbSwm/L2vGJQe14Hy3HjKgFxdmpi5TrBXoKJf6Pn9C5EqjoamlpqjMejDWrkxbWWNQrJMLClJMnrwoUwPGvr5IUQpAiziUhIQE1NYluljmx+Ds+kynkpioKq9ZJllHTykBxdt6R263N90GB3IFC+yoxQklI0VUWrU5adaHqARJhYYrUQd/+Av5LS0sFlabIzY1xZgOGarnyd3xt2ojbp5pQXJZ/WCs+q7YFkzWUcGu79kHuSUYcFi4sx0MPPSj4OZFTKLFoddLCGot6hURYmCKHy8RX5yZk4LPZYv+uh+V4HaplTk8uIYrLCgyLQfFkwbyKUm5t/vq6JxkZ0KxZPIB4wfuRUyixZHVy7Zv9JTDx29FkUHpIhIUpcrtM3AP+AxfWKyioiyVLDG7vhWKZ83d8f2eSawaKyxIGBcUTrogRwVK7NL3tO5DVScmldIIpekqTQXkgERbGyOUy8R4Q7/+h7NJFesuVr+MT2smxsK4YERx6soASyiOlS9PfvoHagfvAzapYkoT+nqdQ8xV3Ge6TwWAhERbmSO0yERLw71kWg2+HHJY5b8cnpIwFmdW1CQXFE6EilUvT374B34H7WoC17E4tQyKMEI23+IB9+6Jgt7uLF1e3or+yEUoGM+upjIWcKLGYuNSEa1B8oHidixcvom7duj4/V3LiwVKNLH9QXF9tWMzu1DIkwghR+IoPsNliYTDkeF2DUoiVTMlOT+oyHXpEqcXEpSbcBk+h8TqBUCKeR+tWlHAPTmcxu1PLkAgjROGrE/K1vEezZsCePfKvhRgMSqzNqAeUWkycEI9UcThyx/MItaKwKnQoOJ2t7E49QCKMkBxfy3uwFjTNWntYhgQrEQq8uzqQFSUqKoppoUOZylRTTGpIhBGywC/vERV1GsXFjtHbZAIWL47FlCn1mQia1koQNwtxWSRYiVBwreO2YQMHu/1qORqTicPEiXc767gVC6who2ehwzr+aooRwUEijJAVb5Xyf/zxCVitDZgImtZCEDcLcVlaEawEu1gsFlgs3u4jQ63FsLWCVhIMpMBzksdPtANtR/iHRBihOAkJl9Ghg9qtuIoWgrhZiMvSgmAlHAQSB4E+lzMmK9j7iFWho/UEg2AJprArIRwSYQQRBGoGDEsdlyXmWLQgWMOdQOIg0OdKxGQJvY+UEjrBPgvhWqaBBJb0kAgjCIGoHTAsZVyW2sdCyEMgcSBEPLASfK6U0AnmWeDRQ5kGVjNQww0SYYQowtHvr/bgJGVcltrHQkiL0OxDIdmJrFxzpYSOmGdB62UaaBLGDiTCCFF4iw8oLS31GojvC5qJBQ/FZRHeEJJ9GB9/HmVl9SXLTpSLsrIyAGwKHRYX4RYDrQPJDiTCCNGEIpBoJhY8vGg1mYA2bRzvuY6XJFrDm8DZh44MxGCzE5UMjLdardi8eTOAwELn4sWLfgWj2OfB3/Gyugh3KIRbggFrkAgjVEHP7rDS0lIA0ooiEq1XIQuqfwJZS4Oxpio9QHteV1/1qO655x688847AfcX7PMg5Hj1sgg3EL4JBixBIoyQhJMnge+/rwubLTbgw8tS3IkcuLpkpRJFehatwUBiVBiBsg+FZCeyMED7skrVqVNH0PeDeR5YOF6l0UOCgdYhEUaEzJo1/ELYZhiNk5wFRL3BWynUjjtRCq2IIlZrMXlCYlQ51B6g/VmlKircf1+K+1ft41UDFuPuwg0SYURInDzJCzDHa9cCohQ0rg0oJoRwhQ8qDzRAyxl8HsgqtXPnTue2Ut2/4ShIaB1I9SERRoREOC3sLHQNRy3AH0ugwU6OgVbKmC4tXwNWcQ0+v+aackyfbkZNjQEmE4eFC8vx0EMPyh53J9QqJYULUS8Zj2KhdSDVhUQYERL+CoiePOkQaa1b60OQuQ5Ob7xRg6VLk1SzHoUqPvhj2bMHWLKk9mDXvfsw9OwpfYVsKWO6yIInH/y5nzIFyM7mg/gNaNYsHkC87L8v1CpVUJAesgtRjxmPgRC6DqTNZkNRkRGFhRFITa1GUpLd+X09nQ81IRFGhISvAqKffXbVTWk0OrYZOVLt1oYOv4bj/PkcOM5Ra0npAF6pxIfFYkHXrt5FdHq6RZb1KIXGahUVFTnb6I1wDKJWCzWWqhLiJrPZYrF3b0at74pxIeop41EI/taBLCsrc5YJmT79vz77mnBPfpEKEmFEyHimvANAixaucWIOkZaVdbUzF2raZ9EF4HDBGtze4zgjfv21Pdq3/1VWESC1+JCyCr+U8Bmmvjr6cAyiDgdcn/dAbrKzZy0AjPAkIyOf7gEBBBJQgfoaNZNf9ORlIRFGSILrbHnPnsBxYv5mYjysmrwdLljOQ4hx+OyzPvj887tkcYsJXZZGjGhVswp/ILeqr/sjHIOowwEh/QJvqfF2DwB2pKcXOF+xOInTCqxNdPhY0tzcGEybZobdboDRyDmz8VkdLwJBIoyQHKELTbs+MFqa2TRrBixefAGTJtX9u5PiAHh3TUo1CAhZloZfdkYMaricXN2qgB3duuUjPb3Abwcf7kHU4YDQezjQPZCdna3JQZkVWJro8LGkNlssli7NcYaC2O0GTJ0ah7/+egtmc4UmXaQkwgjJCdbFdbXOmHbix558sj569TqHrVuNmDvX7PaZXIHtgZel0Q6erg7AiL17uyM/P8OvJTEcg6jDHc9sWn5FCsC/y9Jsdn8uieBgqXwFf/0DWee0WB+QRBghC0JdXLXrjNWOH2OVDh0aoEEDYP585QLbAX0s4u2tMwWExbiFWxB1OCMkm9ZXZh9ZQ0OHtfIVLFnnpIJEGCEbQlxcWq8zplZguxruQynxHs/jIJwC7GkdTP94nhtfMYQDBw5EQkKC83W4nzcp8SVy1YAl65xUkAgjVEVo/BjL6MEypRSeMV0ff9wPnhluWp/ZCsXTyuNLYGgxzkUO/JVmSUhIQGJiosotJJSANetcqJAII1SF1RIJwaJ1y5RS8DFdjjpgW5GW9gcKCtKRn5+hm5mtUFytPP4EhhbjXKSG6sIphxbKB7FknQsVEmGE6pAlKbxwteqYzRW4665dSE8v8DqzDYe4HhIYgWGtXIKe0XL5IC1CIoxgArIkhRfU0V+FBEZg9BiQzTLh8NyxAokwgiD8IlcNt3Dv6MvKygCQwBCCHgOyw5lg+xQtuEjFQiKMIHSKFOJJizXctIDVanWuz3f0aCtw3NXPSGB4R28B2eGKmD5Fz5ZzEmEEoUNCFU9WqxXHjlVjzJjGzur8jhpuHG688bTf6vxaWv1ALfjBhI8Hc80Q5TggLe0PlVrGFp6WDaoJpm1CqQupRYElBBJhBKEzQi2Ay5dOKCxMgd0+zO2zmhoDVqz4FKmpx72WTiDLWXB4L1pL8WA8eraAhBtWqxX79gF2u/u1qqkBCgqsiInRr9DyB4kwgvCBFi06UnR0/IAXKFbJc2DU8uoHaiEkHkwvVh6xz1M4Dsx6w3XtR4Mhp9b9/s0363HokDbXfgyV2uWqCYLAmjVAixZAr16Of9esUbtFgeE7ur1718NgcF+GgO/oVq5cCavVKmh/fDA0vy9/sUoO8Wf1uvpBQYFV8G+GG4HOsdYXobZarSguLsYrr5ShRQvu7+eJwyuvlKG4uJjuizCBn7AFut+lrol38iSwZ4/jX1YhSxhBeKBVi45nR+crkyyYjk5IMDTNckNDr4tQu94XS5fmgOP42EIDpk6Nw19/vQWzme6LcEOpBAuthEaQCCMID7S+niUgrKMT6h4KVJ1aDvEXbuipAjgPf70D1UHjt9Oi+58Qh9z3u5Ym0iTCCMIDPaxnCfjv6OSaJVIZAX0jRigJiXtj1WpBwlB7aC0BgGLCCMIDfj1Lk8nxWqvrWfqiqMjodZYoVdyE2VyB1NTjJMD8oMXik2LjJAPFAcl9P4pF7rhQLcQraQ2p42KVgCxhRMjocbYox3qWap0nmy0WZ89a0LChFWZzBQoLI0S5Wz33Q4hHa6UXQnXv+LOQHjhwwWdChxpWi1Bq5AmFVcuf1tFiaASJMCIk9NyZSLmepVrn6YcfbqrVEfXrV+3X3erN+uJtPyxZabRIsAO5WiJeKveOL/f4L798xExCRyg18oTuX26BRzjQSmgEiTCNY7fbVVP1JSXACy8AyclX33vxRaB3b6BpU1WaFDLnzp1DVVWV87XBYIDJZILB4OgwxVgn1AoS5aux84MbxxmxbVs/zJlzBm+84WhDTU1td6unlaaoyIj58xs7s9s4zojt2/vj0iWDfI0n3FBLxCuR+cqS1UJsjTwhyC3wWEYt97sWEl5IhGmYyspKFBYWwu5py1eIy5eBV1+t/f65c8ClS8q3J1RqampQUVH7gb106RK+++47XL58GQCC7iSVyrb07MB8ZaWdPFknoLvV9fh++81b+w2ayhZljWCsWmpmeinl3mHNaiHHguFyCjzW0Zr7XUk0J8KuXLmC9PR0/PTTT/jxxx9x4403Oj87ePAgxo8fj++++w6NGjXCxIkTMW3aNLfvv//++5g9ezaOHTuG1q1bY+HChbjnnnucn3Mch2effRb/+te/UFZWhu7du+O1115D69atnducPXsWEydOxLZt22A0GjFo0CAsW7YM9evXD6otocBxHIqLi2EymZCcnAyjUfkci8pKh5jwJC0N0KKnqrKyEmVlZW7vcRyHc+fOoU2bNvjpp5+c2wWDUtmW3ixYGzZwTrcHABiNHJo1u4zi4oswmYA2bRzvFxc7/vXWEQZqvxaDzNUkWKuWHCJejGszWKEU7PVmzWohlzCUQ+BpgXAUWELQnAibNm0akpKSnAMiT3l5Oe666y5kZmZi9erV+PnnnzFixAjEx8djzJgxAIC9e/fiwQcfxIIFC9CvXz/k5uZiwIAB+OGHH3D99dcDABYtWoTly5dj/fr1SE1NxezZs5GVlYVff/0VderUAQA8/PDDKC4uxs6dO1FVVYXHHnsMY8aMQW5uruC2hEp1dTUuXryIpKQk1K1bV5J9BkudOo6soePHr77XogUQF6dKc0LGaDQiIqL2I2E2m9GoUSNERUWJmqXy2Za+3H9S4trRJSZ6/i6Hvn23IS/vR7/78LT0BWq/2FmuHhM6AiHGqiW1iA/FtRmMUAp0X5SWlmLr1q1Cm60KcglD1ix/hHpoSoR9+umn+Pzzz7FlyxZ8+umnbp9t3LgRlZWVeOuttxAVFYXrrrsOBw4cwOLFi53CZ9myZejTpw+mTp0KAHjuueewc+dOrFy5EqtXrwbHcVi6dClmzZqF++67DwDw9ttvo0mTJvjoo48wZMgQHD58GDt27MB3332HLl26AABWrFiBe+65By+//DKSkpIEtSVUav42QaltXWjUCDCbgStXgOhobVrAAmE0GmE0GhEZGSnaVSBHtmWwvxsbezqgAAO8W/qCcV8KQc8JHf4I1qpltVphMlVi0aIYTJ9uRk2NASYTh4ULbTCZLsFqDc6Fo7Rrk6wfvmHN8keog2ZE2KlTpzB69Gh89NFHXi0/+fn56NGjh5soycrKwsKFC3Hu3Dk0aNAA+fn5mDx5stv3srKy8NFHHwEACgsLUVJSgszMTOfnZrMZ6enpyM/Px5AhQ5Cfn4/4+HinAAOAzMxMGI1GFBQU4P/+7/8EtUUq+IBxNYmK0qf44pHqHEuZbSnmd4uLQ4sdlKr9WqpmLTXBWLX4QG6eJ56IdVpOzp+vwBtvON4PJkZRD6tBEIQvtBgaoQkRxnEchg8fjrFjx6JLly44duxYrW1KSkqQmprq9l6TJk2cnzVo0AAlJSXO91y3KSkpcW7n+j1f2zRu3Njt84iICDRs2NBtm0Bt8caVK1dw5coV5+vy8nKv2xGElglnIRCMa9rTIunLchKMdVYvq0EQhDe0mACgasX8GTNmwGAw+P377bffsGLFClRUVGDmzJlqNld2FixYALPZ7PxLdq39oBOGDx/uvLaRkZFo0qQJ7rzzTrz11ltBZXmuW7cO8fHx8jWUAfRaUZsXAq6EkxAYORI4dsxxbY8dU84N63BtFmPRojKYTBwA/O3aLIPJVKx4FXEWrRYstokIDovFgsTERJ9/LAkwQGVL2JQpUzB8+HC/27Rs2RJffPEF8vPzER0d7fZZly5d8PDDD2P9+vVo2rQpTp065fY5/7rp30WrfG3j+jn/XmJiots2fBZm06ZNcfr0abd9VFdX4+zZswF/x/U3vDFz5kw3d2l5ebkuhVifPn2wdu1a1NTU4NSpU9ixYweefPJJfPDBB/j444+9BseHG6zETFmtVslnlUomKohBroQB13MpNDNVyt8W49qUU5SwaLWQs00k8AhvqDraNWrUCI0aNQq43fLly/H88887XxcVFSErKwubNm1Ceno6ACAjIwPPPPMMqqqqEBkZCQDYuXMn2rRp43T/ZWRkYPfu3cjJyXHua+fOncjIyAAApKamomnTpti9e7dTdJWXl6OgoADjxo1z7qOsrAz79+9H586dAQBffPEF7HZ7UG3xRnR0dC2hKRdyDK5CiY6OdorRa665Bp06dULXrl3Ru3dvrFu3DqNGjcLixYuxdu1a/O9//0PDhg3Rv39/LFq0CPXr18eXX36Jxx57DMDVeK1nn30Wc+fOxYYNG7Bs2TIcOXIE9erVQ69evbB06dJaLmRvCC3zIXcnKUXMlLfrW1paGlQ7PAduX4gpLqlWokIg5BK/cp5LIYh1bcotlFizSgDytYlF0RmusJSZrQmTQ/Pmzd1e8/W40tLS0OzvM/jQQw9h3rx5GDlyJKZPn45Dhw5h2bJlWLJkifN7Tz75JG6//Xa88sor6Nu3L9577z18//33eOPvaaDBYEBOTg6ef/55tG7d2lmiIikpCQMGDAAAtGvXDn369MHo0aOxevVqVFVVYcKECRgyZAiSkpIEt0VN1B4QvNGrVy907NgRW7duxahRo2A0GrF8+XKkpqbif//7H/7xj39g2rRpePXVV9GtWzcsXboUc+bMwZEjRwBcvSeqqqrw3HPPoU2bNjh9+jQmT56M4cOH45NPPgnYhoiICDRu3LiWW/Ty5csoLy/H4MGDUa9ePdnPSagxU0Kur5B1IIXGGonNGFUrUcEXciYMyH0u5YREgXTQuVQfVrwMPJoQYUIwm834/PPPMX78eHTu3BkJCQmYM2eOW0mIbt26ITc3F7NmzcLTTz+N1q1b46OPPnLWCAMcdcguXLiAMWPGoKysDLfeeit27NjhrBEGOMphTJgwAb1793YWa12+fHlQbVETVgeEtm3b4uDBgwDgZq1MSUnB888/j7Fjx+LVV19FVFQUzGYzDAZDLffuiBEjnP9v2bIlli9fjptvvhnnz593K6brC2+uULvdDpPJhMaNG7vdB3IRavB0oOvmbR3ITp2ulq4IV3dIOCcMEPLAksWFYDMzW5MiLCUlBRzH1Xr/hhtuwH/+8x+/333ggQfwwAMP+PzcYDBg/vz5mD9/vs9tGjZs6CzM6gshbSHc4TjO6V7ctWsXFixYgN9++w3l5eWorq7G5cuXcfHiRb/Faffv34+5c+fip59+wrlz55xWrT///BPt27dX5DhCRc6YKW/rSW7f3h9z5qQjKcke1u4QyhwkpIQ1iwvB5kRL1exIgnDl8OHDSE1NxbFjx9CvXz/ccMMN2LJlC/bv349Vq1YB8G/luXDhArKyshAXF4eNGzfiu+++w4cffhjwe3JitVpRXFzs889XRppcGXTe1pOsqTGgoqIJk5lDSsKLX5PJ8VrthAEK5NYuviwuest01hosZmZr0hJG6I8vvvgCP//8MyZNmoT9+/fDbrfjlVdecQbLb9682W37qKgo56oBPL/99husViteeuklZ1bp999/r8wBeCHU2Ds5Yqa8LR6sdifEEq4JA/XqAefPOwbOUK7DyZPAvn1RsNlig6qQToHc2oVFiwvBZmY2iTBCca5cuYKSkhK3EhX8ep5Dhw7FoUOHUFVVhRUrVqB///745ptvsHr1ard9pKSk4Pz589i9ezc6duyIunXronnz5oiKisKKFSswduxYHDp0CM8995xKR8lm7J3n4sFKd0JqZuUKpVkz4LPPpHElXXVJWWAw5NSKvwuE2ueCEAe5ttmD73vuuQcoKDDi2LEIpKRUIynJjuJi9foeEmGE4uzYsQOJiYmIiIhAgwYN0LFjRyxfvhzDhg2D0WhEx44dsXjxYixcuBAzZ85Ejx49sGDBAgwdOtS5j27dumHs2LHIzs6G1Wp1lqhYt24dnn76aSxfvhydOnXCyy+/jHvvvVfFo2UPfvHg7t2HIT3doqgAE5K12aPHSHTpYlZtdipV8K7nfjjOiG3b+iEt7Q/F1wwk16ZySL3eJxE6vvqeQ4fcXytZEYCHRBihKOvWrcO6desCbjdp0iRMmjTJ7b1HH33U7fVrr72G1157ze29Bx98EA8++KDbe96SOMIds7kC3bpVwqUmcS2kHriFZm0uWWJUNZBZKleSt/1wnBFnzzb0KcLkEkFKuTbDPRtQjvU+idBh0SvBQyIsDKFZsb6R6voqGZPkmbWpdOq4q5s0Ls4Io7Ex7ParC7ebTBxatQpuIXfvLikOEyfejaSk2kt0ye0OkXvQp2xAedb7JPQNibAwhAJ+9Y2U11epe8B71qYygczeXBX9+rnXUuvbNw8xMd0BCD8f3oOADejcuYnER6A+LNZfIggtQCIsTCGBpW+0dn3VzNr0Jlb5uDnelWQ2V6Cy8uag983q8kyBCNatSNmABCEOqhNGiKK6uhqVlZU+/6qrq9VuIqEh+KxNg8ExkrOQOm42VyA19XjIQfTNmgE9e2pHjKxZA7RoAfTq5fh3zZrA32Gx/hJBaAGyhBFBU11djdOnTwfcrnHjxl6XAQoXKPYuONTK2iSuItatyGL9JYLQAuE7QhKi8VzgOtTt9ArF3gWPkKxNQj5CcSuy7HoN96xNgl1IhBGEjJDAugpZBtkn1CKjcqzyECqUtUmw3PeQCCMIQhHIMsg+YtyKLK+CoHTWJsuDfTjDct9DIowgCMXQssAqLS0V3FGzLEwCEYxbMdT1UeVG6axNlgf7cIfVc04ijNAVX375Je644w6cO3cO8fHxgr6TkpKCnJwc5OTkyNo2gk2EWiW2bt0KILCgYF2YCEGoW5HlSuSAOms4snpNCTahEhWEogwfPhwGgwFjx46t9dn48eNhMBgwfPhw5RvGCFarFcXFxT7/rFYrk/vWMrz1YuDAgYK2DyQoWBcm4QTvXjWZHK8pa5NgDbKEEYqTnJyM9957D0uWLEFMTAwA4PLly8jNzUXz5s1Vbp16yGlB0YN1Rk4sFkvYiyItu1D9wXLWJkGQCCOCxuhZlTHI7Tp16oSjR49i69atePjhhwE4XD3NmzdHamqqc7srV65g6tSpeO+991BeXo4uXbpgyZIluPnmq5XLP/nkE+Tk5ODEiRPo2rUrhg0bVuv3vv76a8ycORPff/89EhIS8H//939YsGAB6tWrF8xhy46cFhSyzhD+0LtIZzFrkyAAckcSIoiIiEDjxo2RkJDg8y9QodYRI0Zg7dq1ztdvvfUWHnvsMbdtpk2bhi1btmD9+vX44Ycf0KpVK2RlZeHs2bMAgBMnTmDgwIHo378/Dhw4gFGjRmHGjBlu+zh69Cj69OmDQYMG4eDBg9i0aRO+/vprTJgwQcIzQhDaRo8indzvhBYgSxghqpBhqJXwH3nkEcycORPHjx8HAHzzzTd477338OWXXwIALly4gNdeew3r1q3D3XffDQD417/+hZ07d2LNmjWYOnUqXnvtNaSlpeGVV14BALRp0wY///wzFi5c6PydBQsW4OGHH3YG3bdu3RrLly/H7bffjtdeew116tQJ6TiI0NGrG4xQD71b9gj9QCIszFGrkGGjRo3Qt29frFu3DhzHoW/fvkhISHB+fvToUVRVVaF79+7O9yIjI3HLLbfg8OHDAIDDhw8jPT3dbb8ZGRlur3/66SccPHgQGzdudL7HcRzsdjsKCwvRrl07OQ6PEAgNloQc6NGyR+gTEmFhjNKFDD0ZMWKE0y24atUqWX7j/PnzePzxx/HEE0/U+iyckwBYgQZLbUPFSQkiNEiEhTFKFzL0pE+fPqisrITBYEBWVpbbZ2lpaYiKisI333yDFi1aAACqqqrw3XffOV2L7dq1w8cff+z2vX379rm97tSpE3799Ve0krMwEKELpBIU4SRMqDgpQYQGibAwRo1Chq6YTCana9HEF/L5m3r16mHcuHGYOnUqGjZsiObNm2PRokW4ePEiRv7tLx07dixeeeUVTJ06FaNGjcL+/fuxbt06t/1Mnz4dXbt2xYQJEzBq1CjUq1cPv/76K3bu3CnIDUaED1IJinATJno5DoJQAxJhYYyYdeKkJi4uzudnL730Eux2Ox599FFUVFSgS5cu+Oyzz9CgQQMADnfili1bMGnSJKxYsQK33HILXnzxRYwYMcK5jxtuuAFfffUVnnnmGdx2223gOA5paWnIzs6W/diCRU4LSjhZZ0JBKkFBwoQgCCEYOI7j1G4E4Z3y8nKYzWbYbLZaYuXy5csoLCxEampqyBl+J09SIUN/SHmuAyFnpiCLWYjFxcV44403Am43ZswYJCYmKtCi8ERvCRJ0XxFq42/8doUsYQQVMmQIOQc4LQyehDqEmwuVIFiBRBhBEAShK4FF7ndCK5AIIwhCNWiwJOSALHuEViARRhCEatBgScgF3TOEFiARRhCEqtBgSRBEuEILeGscSm6VHzrHBEEQhByQCNMofHFTWs5Ffvhz7FlQliAIgiBCgdyRGiUiIgJ169bFmTNnEBkZCaOR9LQc2O12nDlzBnXr1kVEBD0uBEEQhHTQqKJRDAYDEhMTUVhYiOPHj6vdHF1jNBrRvHlzGAwGtZtCEARB6AgSYRomKioKrVu3JpekzERFRZGlkSAIgpAcEmEax2g0yr6UDkEQBEEQ0kPTe4IgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgGLCGIYvElpeXq5ySwiCIAiCEAo/bgcq9k0ijGEqKioAAMnJySq3hCAIgiCIYKmoqIDZbPb5uYGjNVmYxW63o6ioCLGxsWFZo6q8vBzJyck4ceIE4uLi1G6OZqHzKA10HkOHzqE00HmUBjnPI8dxqKioQFJSkt8SR2QJYxij0YhmzZqp3QzViYuLo45GAug8SgOdx9ChcygNdB6lQa7z6M8CxkOB+QRBEARBECpAIowgCIIgCEIFSIQRzBIdHY1nn30W0dHRajdF09B5lAY6j6FD51Aa6DxKAwvnkQLzCYIgCIIgVIAsYQRBEARBECpAIowgCIIgCEIFSIQRBEEQBEGoAIkwgiAIgiAIFSARRqjOv//9b/Tv3x9JSUkwGAz46KOP3D7nOA5z5sxBYmIiYmJikJmZid9//12dxjJKoHM4fPhwGAwGt78+ffqo01iGWbBgAW6++WbExsaicePGGDBgAI4cOeK2zeXLlzF+/HhYLBbUr18fgwYNwqlTp1RqMZsIOY89e/asdU+OHTtWpRazyWuvvYYbbrjBWUw0IyMDn376qfNzuheFEeg8qnkvkggjVOfChQvo2LEjVq1a5fXzRYsWYfny5Vi9ejUKCgpQr149ZGVl4fLlywq3lF0CnUMA6NOnD4qLi51/7777roIt1AZfffUVxo8fj3379mHnzp2oqqrCXXfdhQsXLji3mTRpErZt24b3338fX331FYqKijBw4EAVW80eQs4jAIwePdrtnly0aJFKLWaTZs2a4aWXXsL+/fvx/fffo1evXrjvvvvwyy+/AKB7USiBziOg4r3IEQRDAOA+/PBD52u73c41bdqU++c//+l8r6ysjIuOjubeffddFVrIPp7nkOM4btiwYdx9992nSnu0zOnTpzkA3FdffcVxnOPei4yM5N5//33nNocPH+YAcPn5+Wo1k3k8zyPHcdztt9/OPfnkk+o1SqM0aNCAe/PNN+leDBH+PHKcuvciWcIIpiksLERJSQkyMzOd75nNZqSnpyM/P1/FlmmPL7/8Eo0bN0abNm0wbtw4WK1WtZvEPDabDQDQsGFDAMD+/ftRVVXldj+2bdsWzZs3p/vRD57nkWfjxo1ISEjA9ddfj5kzZ+LixYtqNE8T1NTU4L333sOFCxeQkZFB96JIPM8jj1r3Ii3gTTBNSUkJAKBJkyZu7zdp0sT5GRGYPn36YODAgUhNTcXRo0fx9NNP4+6770Z+fj5MJpPazWMSu92OnJwcdO/eHddffz0Ax/0YFRWF+Ph4t23pfvSNt/MIAA899BBatGiBpKQkHDx4ENOnT8eRI0ewdetWFVvLHj///DMyMjJw+fJl1K9fHx9++CHat2+PAwcO0L0YBL7OI6DuvUgijCDCgCFDhjj/36FDB9xwww1IS0vDl19+id69e6vYMnYZP348Dh06hK+//lrtpmgaX+dxzJgxzv936NABiYmJ6N27N44ePYq0tDSlm8ksbdq0wYEDB2Cz2fDBBx9g2LBh+Oqrr9RulubwdR7bt2+v6r1I7kiCaZo2bQoAtTJ+Tp065fyMCJ6WLVsiISEBf/zxh9pNYZIJEyYgLy8Pe/bsQbNmzZzvN23aFJWVlSgrK3Pbnu5H7/g6j95IT08HALonPYiKikKrVq3QuXNnLFiwAB07dsSyZcvoXgwSX+fRG0reiyTCCKZJTU1F06ZNsXv3bud75eXlKCgocPPnE8Fx8uRJWK1WJCYmqt0UpuA4DhMmTMCHH36IL774AqmpqW6fd+7cGZGRkW7345EjR/Dnn3/S/ehCoPPojQMHDgAA3ZMBsNvtuHLlCt2LIcKfR28oeS+SO5JQnfPnz7vNOAoLC3HgwAE0bNgQzZs3R05ODp5//nm0bt0aqampmD17NpKSkjBgwAD1Gs0Y/s5hw4YNMW/ePAwaNAhNmzbF0aNHMW3aNLRq1QpZWVkqtpo9xo8fj9zcXPy///f/EBsb64ytMZvNiImJgdlsxsiRIzF58mQ0bNgQcXFxmDhxIjIyMtC1a1eVW88Ogc7j0aNHkZubi3vuuQcWiwUHDx7EpEmT0KNHD9xwww0qt54dZs6cibvvvhvNmzdHRUUFcnNz8eWXX+Kzzz6jezEI/J1H1e9FVXIyCcKFPXv2cABq/Q0bNozjOEeZitmzZ3NNmjThoqOjud69e3NHjhxRt9GM4e8cXrx4kbvrrru4Ro0acZGRkVyLFi240aNHcyUlJWo3mzm8nUMA3Nq1a53bXLp0ifvHP/7BNWjQgKtbty73f//3f1xxcbF6jWaQQOfxzz//5Hr06ME1bNiQi46O5lq1asVNnTqVs9ls6jacMUaMGMG1aNGCi4qK4ho1asT17t2b+/zzz52f070oDH/nUe170cBxHCe/1CMIgiAIgiBcoZgwgiAIgiAIFSARRhAEQRAEoQIkwgiCIAiCIFSARBhBEARBEIQKkAgjCIIgCIJQARJhBEEQBEEQKkAijCAIgiAIQgVIhBEEQRAEQagAiTCCIAiCIAgVIBFGEAQhgsrKSrWbUAsW20QQhG9IhBEEQQDo2bMnJkyYgAkTJsBsNiMhIQGzZ88Gv7JbSkoKnnvuOQwdOhRxcXEYM2YMAODrr7/GbbfdhpiYGCQnJ+OJJ57AhQsXnPt99dVX0bp1a9SpUwdNmjTB/fff7/zsgw8+QIcOHRATEwOLxYLMzEznd3v27ImcnBy3Ng4YMADDhw93vhbbJoIg2IBEGEEQxN+sX78eERER+Pbbb7Fs2TIsXrwYb775pvPzl19+GR07dsSPP/6I2bNn4+jRo+jTpw8GDRqEgwcPYtOmTfj6668xYcIEAMD333+PJ554AvPnz8eRI0ewY8cO9OjRAwBQXFyMBx98ECNGjMDhw4fx5ZdfYuDAgQh2Od9g20QQBDvQAt4EQRBwWJ5Onz6NX375BQaDAQAwY8YMfPzxx/j111+RkpKCm266CR9++KHzO6NGjYLJZMLrr7/ufO/rr7/G7bffjgsXLuCTTz7BY489hpMnTyI2Ntbt93744Qd07twZx44dQ4sWLby258Ybb8TSpUud7w0YMADx8fFYt24dAIhqU506dUI6TwRBSAdZwgiCIP6ma9euTgEGABkZGfj9999RU1MDAOjSpYvb9j/99BPWrVuH+vXrO/+ysrJgt9tRWFiIO++8Ey1atEDLli3x6KOPYuPGjbh48SIAoGPHjujduzc6dOiABx54AP/6179w7ty5oNscbJsIgmAHEmEEQRACqVevntvr8+fP4/HHH8eBAwecfz/99BN+//13pKWlITY2Fj/88APeffddJCYmYs6cOejYsSPKyspgMpmwc+dOfPrpp2jfvj1WrFiBNm3aOIWS0Wis5ZqsqqoKuU0EQbADiTCCIIi/KSgocHu9b98+tG7dGiaTyev2nTp1wq+//opWrVrV+ouKigIAREREIDMzE4sWLcLBgwdx7NgxfPHFFwAAg8GA7t27Y968efjxxx8RFRXldC02atQIxcXFzt+qqanBoUOHAh6DkDYRBMEGJMIIgiD+5s8//8TkyZNx5MgRvPvuu1ixYgWefPJJn9tPnz4de/fuxYQJE3DgwAH8/vvv+H//7/85g+Dz8vKwfPlyHDhwAMePH8fbb78Nu92ONm3aoKCgAC+++CK+//57/Pnnn9i6dSvOnDmDdu3aAQB69eqF7du3Y/v27fjtt98wbtw4lJWVBTyGQG0iCIIdItRuAEEQBCsMHToUly5dwi233AKTyYQnn3zSWfbBGzfccAO++uorPPPMM7jtttvAcRzS0tKQnZ0NAIiPj8fWrVsxd+5cXL58Ga1bt8a7776L6667DocPH8a///1vLF26FOXl5WjRogVeeeUV3H333QCAESNG4KeffsLQoUMRERGBSZMm4Y477gh4DIHaRBAEO1B2JEEQBLxnIxIEQcgJuSMJgiAIgiBUgEQYQRAEQRCECpA7kiAIgiAIQgXIEkYQBEEQBKECJMIIgiAIgiBUgEQYQRAEQRCECpAIIwiCIAiCUAESYQRBEARBECpAIowgCIIgCEIFSIQRBEEQBEGoAIkwgiAIgiAIFSARRhAEQRAEoQL/H6+AZe06G5giAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with OMLT Surrogate Object - Training Surrogate (Part 1)\n", + "\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "\n", + "## 1. Introduction\n", + "This notebook illustrates the use of KerasSurrogate API leveraging TensorFlow Keras and OMLT package to produce an ML surrogate based on supercritical CO2 data from simulation using REFPROP package.\n", + "\n", + "There are several reasons to build surrogate models for complex processes, even when higher fidelity models already exist (e.g., reduce model size, improve convergence reliability, replace models with externally compiled code and make them fully-equation oriented).\n", + "\n", + "In this example, we intend to make a surrogate for the physical properties of S-CO2 to be embedded in the property package. This property package will be used to get the physical properties of S-CO2 in the flowsheet simulation. To learn more about property package, see the [IDAES-PSE](https://github.com/IDAES/idaes-pse) Github Page or IDAES [Read-the-docs](https://idaes-pse.readthedocs.io/en/latest/). \n", + "\n", + "### 1.1 Need for ML Surrogates\n", + "\n", + "The properties predicted by the surrogate are enthalpy and entropy of the S-CO2 based on the \n", + "pressure and temperature of the system. The analytical equation of getting the enthalpy and entropy from pressure and temperature are in the differential form and would make the problem a DAE system. To counter this problem and keep the problem algebraic, we will use the ML surrogates and relate enthalpy and entropy with the pressure and temperature as an algebraic equation.\n", + "\n", + "### 1.2 Supercritical CO2 cycle process\n", + "\n", + "The following flowsheet will be used to optimize the design for the cooling of the fusion reactor using supercritical CO2 cycle. We shall focus on training the surrogate for this notebook and move to constructing the flowsheet and the properties package in the subsequent notebooks. The take away from this flowsheet is that, 3 variables can be measured in any given unit which are flow, pressure and temperature and other properties can be calculated using them. Thus, surrogate should have pressure and temperature as the inputs.\n", + "\n", + "In this example, we will train a tanh model from our data and then demonstrate that we can solve an optimization problem with that surrogate model. " ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHjklEQVR4nO3deVhUZf8G8PsMAgLCIDsoCuKKO1g4uGWh6M8lX/EVfbU0MatXK7RcyrQ9zRa1rKy0tNLS1MolTTBbFCLXzDXlxYUAl0EG3ACZ5/fHNIdZYdgclvtzXVzKnGfOnJlIb5/ne76PJIQQICIiIqI7SmHvCyAiIiJqiBjCiIiIiOyAIYyIiIjIDhjCiIiIiOyAIYyIiIjIDhjCiIiIiOyAIYyIiIjIDhjCiIiIiOyAIYyIiIjIDhjCiIioTKtWrYIkSTh79qy9L4WoXmEIIyK727dvH6ZNm4aOHTvCzc0NLVq0wOjRo/HXX3+Zjb3nnnsgSRIkSYJCoYCHhwfatWuHBx54AElJSRV63S1btqBfv37w8/ODq6srWrVqhdGjR2PHjh3V9dbMvPbaa/j222/NHk9JScELL7yAvLy8GnttUy+88IL8WUqSBFdXV4SHh+O5555Dfn5+tbzG2rVrsWTJkmo5F1F9wxBGRHb3+uuvY+PGjbjvvvuwdOlSTJkyBb/88gsiIiJw9OhRs/HNmzfH559/js8++wxvvPEGhg8fjpSUFAwcOBDx8fEoLi4u9zXffPNNDB8+HJIk4ZlnnsHixYsRFxeH06dP46uvvqqJtwmg7BD24osv3tEQpvfBBx/g888/x9tvv4327dvj1VdfxaBBg1AdWwszhBFZ18jeF0BENGPGDKxduxZOTk7yY/Hx8ejcuTMWLlyIL774wmi8UqnE+PHjjR5buHAhnnjiCbz//vsICQnB66+/bvX1bt++jZdffhkDBgzAzp07zY5funSpiu+o9rhx4wZcXV3LHDNq1Cj4+PgAAB599FHExcVh06ZN+O2336BSqe7EZRI1SJwJIyK7i46ONgpgANCmTRt07NgRJ06csOkcDg4OeOeddxAeHo5ly5ZBo9FYHXvlyhXk5+ejV69eFo/7+fkZfX/r1i288MILaNu2LRo3bozAwECMHDkS6enp8pg333wT0dHR8Pb2houLCyIjI7Fhwwaj80iShOvXr2P16tXyEuDEiRPxwgsvYObMmQCA0NBQ+ZhhDdYXX3yByMhIuLi4wMvLC2PGjMGFCxeMzn/PPfegU6dOOHDgAPr27QtXV1c8++yzNn1+hu69914AQEZGRpnj3n//fXTs2BHOzs4ICgrC1KlTjWby7rnnHmzbtg3nzp2T31NISEiFr4eovuJMGBHVSkIIXLx4ER07drT5OQ4ODhg7dizmzZuHPXv2YMiQIRbH+fn5wcXFBVu2bMHjjz8OLy8vq+csKSnB0KFDsWvXLowZMwZPPvkkCgoKkJSUhKNHjyIsLAwAsHTpUgwfPhzjxo1DUVERvvrqK/z73//G1q1b5ev4/PPPMXnyZNx9992YMmUKACAsLAxubm7466+/8OWXX2Lx4sXyrJSvry8A4NVXX8W8efMwevRoTJ48GZcvX8a7776Lvn374tChQ/D09JSvV61WY/DgwRgzZgzGjx8Pf39/mz8/PX249Pb2tjrmhRdewIsvvoiYmBg89thjOHXqFD744APs27cPe/fuhaOjI+bOnQuNRoPMzEwsXrwYANCkSZMKXw9RvSWIiGqhzz//XAAQK1euNHq8X79+omPHjlaf98033wgAYunSpWWef/78+QKAcHNzE4MHDxavvvqqOHDggNm4Tz75RAAQb7/9ttkxrVYr//7GjRtGx4qKikSnTp3Evffea/S4m5ubmDBhgtm53njjDQFAZGRkGD1+9uxZ4eDgIF599VWjx//880/RqFEjo8f79esnAIjly5dbfd+Gnn/+eQFAnDp1Sly+fFlkZGSIDz/8UDg7Owt/f39x/fp1IYQQn376qdG1Xbp0STg5OYmBAweKkpIS+XzLli0TAMQnn3wiPzZkyBDRsmVLm66HqKHhciQR1TonT57E1KlToVKpMGHChAo9Vz/TUlBQUOa4F198EWvXrkX37t3xww8/YO7cuYiMjERERITREujGjRvh4+ODxx9/3OwckiTJv3dxcZF/f/XqVWg0GvTp0wcHDx6s0PWb2rRpE7RaLUaPHo0rV67IXwEBAWjTpg12795tNN7Z2RkPPfRQhV6jXbt28PX1RWhoKB555BG0bt0a27Zts1pLlpycjKKiIiQmJkKhKP1r5OGHH4aHhwe2bdtW8TdK1ABxOZKIapWcnBwMGTIESqUSGzZsgIODQ4Wef+3aNQCAu7t7uWPHjh2LsWPHIj8/H2lpaVi1ahXWrl2LYcOG4ejRo2jcuDHS09PRrl07NGpU9h+XW7duxSuvvILDhw+jsLBQftwwqFXG6dOnIYRAmzZtLB53dHQ0+r5Zs2Zm9XXl2bhxIzw8PODo6IjmzZvLS6zWnDt3DoAuvBlycnJCq1at5ONEVDaGMCKqNTQaDQYPHoy8vDz8+uuvCAoKqvA59C0tWrdubfNzPDw8MGDAAAwYMACOjo5YvXo10tLS0K9fP5ue/+uvv2L48OHo27cv3n//fQQGBsLR0RGffvop1q5dW+H3YEir1UKSJGzfvt1iIDWtsTKckbNV37595To0IrpzGMKIqFa4desWhg0bhr/++gvJyckIDw+v8DlKSkqwdu1auLq6onfv3pW6jh49emD16tXIzs4GoCucT0tLQ3Fxsdmsk97GjRvRuHFj/PDDD3B2dpYf//TTT83GWpsZs/Z4WFgYhBAIDQ1F27ZtK/p2akTLli0BAKdOnUKrVq3kx4uKipCRkYGYmBj5sarOBBLVZ6wJIyK7KykpQXx8PFJTU/H1119XqjdVSUkJnnjiCZw4cQJPPPEEPDw8rI69ceMGUlNTLR7bvn07gNKltri4OFy5cgXLli0zGyv+aWbq4OAASZJQUlIiHzt79qzFpqxubm4WG7K6ubkBgNmxkSNHwsHBAS+++KJZ81QhBNRqteU3WYNiYmLg5OSEd955x+iaVq5cCY1GY3RXqpubW5ntQogaMs6EEZHdPfXUU9i8eTOGDRuG3Nxcs+aspo1ZNRqNPObGjRs4c+YMNm3ahPT0dIwZMwYvv/xyma9348YNREdHo2fPnhg0aBCCg4ORl5eHb7/9Fr/++itGjBiB7t27AwAefPBBfPbZZ5gxYwZ+//139OnTB9evX0dycjL++9//4v7778eQIUPw9ttvY9CgQfjPf/6DS5cu4b333kPr1q1x5MgRo9eOjIxEcnIy3n77bQQFBSE0NBRRUVGIjIwEAMydOxdjxoyBo6Mjhg0bhrCwMLzyyit45plncPbsWYwYMQLu7u7IyMjAN998gylTpuDpp5+u0udfUb6+vnjmmWfw4osvYtCgQRg+fDhOnTqF999/H3fddZfRf6/IyEisW7cOM2bMwF133YUmTZpg2LBhd/R6iWote96aSUQkRGlrBWtfZY1t0qSJaNOmjRg/frzYuXOnTa9XXFwsPv74YzFixAjRsmVL4ezsLFxdXUX37t3FG2+8IQoLC43G37hxQ8ydO1eEhoYKR0dHERAQIEaNGiXS09PlMStXrhRt2rQRzs7Oon379uLTTz+VW0AYOnnypOjbt69wcXERAIzaVbz88suiWbNmQqFQmLWr2Lhxo+jdu7dwc3MTbm5uon379mLq1Kni1KlTRp9NWe07TOmv7/Lly2WOM21Robds2TLRvn174ejoKPz9/cVjjz0mrl69ajTm2rVr4j//+Y/w9PQUANiugsiAJEQ1bA5GRERERBXCmjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDNmutxbRaLbKysuDu7s6tP4iIiOoIIQQKCgoQFBQEhcL6fBdDWC2WlZWF4OBge18GERERVcKFCxfQvHlzq8cZwmoxd3d3ALr/iGXtg0dERES1R35+PoKDg+W/x61hCKvF9EuQHh4eDGFERER1THmlRCzMJyIiIrIDhjAiIiIiO2AIIyIiIrID1oTVcVqtFkVFRfa+jHrNycmpzFuMiYiIKoMhrA4rKipCRkYGtFqtvS+lXlMoFAgNDYWTk5O9L4WIiOoRhrA6SgiB7OxsODg4IDg4mDM1NUTfMDc7OxstWrRg01wiIqo2DGF11O3bt3Hjxg0EBQXB1dXV3pdTr/n6+iIrKwu3b9+Go6OjvS+HiIjqCU6f1FElJSUAwCWyO0D/Ges/cyIioupQZ0LY8OHD0aJFCzRu3BiBgYF44IEHkJWVZTRGCIE333wTbdu2hbOzM5o1a4ZXX33VaMxPP/2EiIgIODs7o3Xr1li1apXZa7333nsICQlB48aNERUVhd9//93o+K1btzB16lR4e3ujSZMmiIuLw8WLF43GnD9/HkOGDIGrqyv8/Pwwc+ZM3L59u3o+DANcHqt5/IyJiKgm1JkQ1r9/f6xfvx6nTp3Cxo0bkZ6ejlGjRhmNefLJJ7FixQq8+eabOHnyJDZv3oy7775bPp6RkYEhQ4agf//+OHz4MBITEzF58mT88MMP8ph169ZhxowZeP7553Hw4EF07doVsbGxuHTpkjxm+vTp2LJlC77++mv8/PPPyMrKwsiRI+XjJSUlGDJkCIqKipCSkoLVq1dj1apVmD9/fg1+QkRERFQWtVqN7Oxsq19qtfqOXo8khBB39BWryebNmzFixAgUFhbC0dERJ06cQJcuXXD06FG0a9fO4nNmz56Nbdu24ejRo/JjY8aMQV5eHnbs2AEAiIqKwl133YVly5YB0BVmBwcH4/HHH8ecOXOg0Wjg6+uLtWvXyiHw5MmT6NChA1JTU9GzZ09s374dQ4cORVZWFvz9/QEAy5cvx+zZs3H58mWblxDz8/OhVCqh0WjMti26desWMjIyEBoaisaNG1fsw6MK4WdNRFR3qdVqFBUVIS8vD+vXry93/LRp0+Dt7V2l1yzr729DdWYmzFBubi7WrFmD6OhouVB6y5YtaNWqFbZu3YrQ0FCEhIRg8uTJyM3NlZ+XmpqKmJgYo3PFxsYiNTUVgK7lw4EDB4zGKBQKxMTEyGMOHDiA4uJiozHt27dHixYt5DGpqano3LmzHMD0r5Ofn49jx45ZfV+FhYXIz883+qpvJk6cCEmSIEkSHB0d4e/vjwEDBuCTTz6pUKuNVatWwdPTs+YulIiI6jy1Wo1ly5bho48+simAAcDly5dr+KpK1akQNnv2bLi5ucHb2xvnz5/Hd999Jx/73//+h3PnzuHrr7/GZ599hlWrVuHAgQNGS5Y5OTlGwQgA/P39kZ+fj5s3b+LKlSsoKSmxOCYnJ0c+h5OTk1kAMB1j6Rz6Y9YsWLAASqVS/goODrbxk6k4e07JDho0CNnZ2Th79iy2b9+O/v3748knn8TQoUNrpG6OiIgaJsNSIlsVFxfXwJVYZtcQNmfOHHlWxNrXyZMn5fEzZ87EoUOHsHPnTjg4OODBBx+EfjVVq9WisLAQn332Gfr06YN77rkHK1euxO7du3Hq1Cl7vcUKeeaZZ6DRaOSvCxcu1MjrGP7LwNrXsmXLaiyIOTs7IyAgAM2aNUNERASeffZZfPfdd9i+fbt8o8Tbb7+Nzp07w83NDcHBwfjvf/+La9euAdDdXPHQQw9Bo9HIPycvvPACAODzzz9Hjx494O7ujoCAAPznP/+p1P+ERERUt6nVaptnv+zFrn3CnnrqKUycOLHMMa1atZJ/7+PjAx8fH7Rt2xYdOnRAcHAwfvvtN6hUKgQGBqJRo0Zo27atPL5Dhw4AdHcqtmvXDgEBAWZ3MV68eBEeHh5wcXGBg4MDHBwcLI4JCAgAAAQEBMhry4azYaZjTO+o1J9TP8YSZ2dnODs7l/l5VAdbtzm6k9sh3XvvvejatSs2bdqEyZMnQ6FQ4J133kFoaCj+97//4b///S9mzZqF999/H9HR0ViyZAnmz58vB+wmTZoA0P0L5uWXX0a7du1w6dIlzJgxAxMnTsT3339/x94LERHZX13Y0s+uIczX1xe+vr6Veq6+fqiwsBAA0KtXL9y+fRvp6ekICwsDAPz1118AgJYtWwIAVCqV2V/GSUlJUKlUAHT9oCIjI7Fr1y6MGDFCfp1du3Zh2rRpAIDIyEg4Ojpi165diIuLAwCcOnUK58+fl8+jUqnw6quv4tKlS/Dz85Nfx8PDA+Hh4ZV6vw1B+/btceTIEQBAYmKi/HhISAheeeUVPProo3j//ffh5OQEpVIJSZLMQu2kSZPk37dq1QrvvPMO7rrrLly7dk0OakREVD+lp6fj4sWLuH37ttXaLo3GHbm53vDyUkOpLLjDV2isTnTMT0tLw759+9C7d280bdoU6enpmDdvHsLCwuTgExMTg4iICEyaNAlLliyBVqvF1KlTMWDAAHl27NFHH8WyZcswa9YsTJo0CT/++CPWr1+Pbdu2ya81Y8YMTJgwAT169MDdd9+NJUuW4Pr163jooYcAAEqlEgkJCZgxYwa8vLzg4eGBxx9/HCqVCj179gQADBw4EOHh4XjggQewaNEi5OTk4LnnnsPUqVPvyExXXSWEkHtyJScnY8GCBTh58iTy8/Nx+/Zt3Lp1Czdu3Chzh4ADBw7ghRdewB9//IGrV6/KYf38+fMMwERE9ZD+7scLFy5g+/btZY49eLA7tmwZCiEUkCQthg3bioiIQ3foSs3ViRDm6uqKTZs24fnnn8f169cRGBiIQYMG4bnnnpNDjUKhwJYtW/D444+jb9++cHNzw+DBg/HWW2/J5wkNDcW2bdswffp0LF26FM2bN8eKFSsQGxsrj4mPj8fly5cxf/585OTkoFu3btixY4dRof3ixYuhUCgQFxeHwsJCxMbG4v3335ePOzg4YOvWrXjsscegUqng5uaGCRMm4KWXXroDn1bddeLECYSGhuLs2bMYOnQoHnvsMbz66qvw8vLCnj17kJCQgKKiIqsh7Pr164iNjUVsbCzWrFkDX19fnD9/HrGxsXViWpqIiComPT0dX3zxRbnjNBp3XLgQjM2bh0JfDi+EAps3D4WfXw6aN8+u4Su1rE6EsM6dO+PHH38sd1xQUBA2btxY5ph77rkHhw6VnXqnTZsmLz9a0rhxY7z33nt47733rI5p2bIl65Aq4Mcff8Sff/6J6dOn48CBA9BqtXjrrbfkjclNiyudnJzMthE6efIk1Go1Fi5cKN9Zun///jvzBoiI6I5Sq9U2BTDD2S9zCqxcOdloRqxRozsXjepUiwqqHwoLC5GTk4O///4bBw8exGuvvYb7778fQ4cOxYMPPojWrVujuLgY7777Lv73v//h888/x/Lly43OERISgmvXrmHXrl24cuUKbty4gRYtWsDJyUl+3ubNm/Hyyy/b6V0SEVFNUKvVOHnyZJl9N/UyMwOxebO1AKYjhAJbtgyFRuMOAHIt953AEEZ33I4dOxAYGIiQkBAMGjQIu3fvxjvvvIPvvvsODg4O6Nq1K95++228/vrr6NSpE9asWYMFCxYYnSM6OhqPPvoo4uPj4evri0WLFsHX1xerVq3C119/jfDwcCxcuBBvvvmmnd4lERFVN32LpXXr1mH37t1ljj14sDtWrpwMW6KOEAp06jSiWrrlV0Sd3baoIaipbYv0P8TludM/jLUVty0iIrI/tVqNrKwsbNq0yeoY/Z2Pjo6FWLHCWgDTxx7J6LGdOzUYMMCzWq7V1m2L6kRNGFUvb29vTJs2rcxidScnJwYwIiKyK/2djxqNBuvWrbM6TqNxR1paFFJSVNAFLy2sz4BJFh9zdPSs8vVWFENYA8WARUREtVl5qzb6Wa+srEAkJ8eY1H1VrNrKwQFo3bqSF1oFDGFERERUa6jValy+fBlnz561Osb4jkcBy7Nb5dE9z8EB+PBDoHnzyl1vVTCEERERUa1gS98vjcbdpOWELQHMUlCTsHgxMGqUfQIYwLsjiYiIqBawpe+XRuOOY8c6ltlywjIJkkkGc3CwbwADOBNGREREdqIvvM/Ly8O5c+fKHFuVJUgHB4GFCyXMmQOUlMCuS5CGGMKIiIjojrO1XRKgb7o6DKXBq2IB7MMPJSQkAGPGAGfO6Irw7R3AAIYwIiIisoPLly/bNG7vXhWSkmJQ0eJ7SdLi44+vITbWQw5czZvXjvClxxBGREREd9zVq1etHtNvuH3qVBv8+WdXVLT4XpIEFi++gYQE641SawOGMKpXfvrpJ/Tv3x9Xr16Fp6enTc8JCQlBYmIiEhMTa/TaiIgaMsP6r7y8POzcuVM+pu/55eWlRnp6a5Olx7Log5cWffr8Cn//ixg8eDAGDnRH8+ZNauidVB+GMLqjJk6ciNWrV+ORRx4x25R76tSpeP/99zFhwgSsWrXKPhdIRETVzlL9l362KyMjBAcPRhoU3NtWdN+37260bXsaxcVOmDixN9q1awsnp07w9navkfdQExjC6I4LDg7GV199hcWLF8PFxQWAbn/GtWvXokWLFna+OiIiqm6m2+QdPNjdymyXZOExS7SIjDyEUaN6ol27dnV2Fxj2CaM7LiIiAsHBwUabsG7atAktWrRA9+7d5ccKCwvxxBNPwM/PD40bN0bv3r2xb98+o3N9//33aNu2LVxcXNC/f3+LHZb37NmDPn36wMXFBcHBwXjiiSdw/fr1Gnt/RERUKj09HadPn5a/12jcK7DcaIkWw4dvhVJZUKcDGMAQRgAyM4Hdu3W/3imTJk3Cp59+Kn//ySef4KGHHjIaM2vWLGzcuBGrV6/GwYMH0bp1a8TGxiI3NxcAcOHCBYwcORLDhg3D4cOHMXnyZMyZM8foHOnp6Rg0aBDi4uJw5MgRrFu3Dnv27MG0adNq/k0SETUgarUa2dnZRl+7d+/GF198gd27dwPQtZrYteteVC6AafHSSyexf/9lLF9+F6ZNm1anAxjA5cgGb+VKYMoUQKsFFArgo4+AhISaf93x48fjmWeekZvz7d27F1999RV++uknAMD169fxwQcfYNWqVRg8eDAA4OOPP0ZSUhJWrlyJmTNn4oMPPkBYWBjeeustAEC7du3w559/4vXXX5dfZ8GCBRg3bpxcdN+mTRu888476NevHz744AM0bty45t8sEVE9Z0vPr/XrR+H48XBULIDp6sMkSYthw7biv//tVeeDlyGGsAYsM7M0gAG6Xx95BIiNrfk+Kr6+vhgyZAhWrVoFIQSGDBkCHx8f+Xh6ejqKi4vRq1cv+TFHR0fcfffdOHHiBADgxIkTiIqKMjqvSqUy+v6PP/7AkSNHsGbNGvkxIQS0Wi0yMjLQoUOHmnh7REQNimnNF1BaeA8A5883LyeAWSrG12LAgGTcf38zhIc7oUuX+hXAAIawBu306dIApldSousmfCea2U2aNEleFnzvvfdq5DWuXbuGRx55BE888YTZMd4EQERUdWq1GkePHjV6zLzwvrw7Hs2PjRq1AS+91Lle/2OZIawBa9NGtwRpGMQcHHTbOdwJgwYNQlFRESRJQmxsrNGxsLAwODk5Ye/evWjZsiUAoLi4GPv27ZOXFjt06IDNmzcbPe+3334z+j4iIgLHjx9H6zv1poiIGgi1Wo3Lly9j3bp1Ro/rthgaCuNgVVYA0/8lVFqmLklaBAdnws/vvuq63FqJIawBa95cVwP2yCP22dDUwcFBXlp0cHAwOubm5obHHnsMM2fOhJeXF1q0aIFFixbhxo0bSPinaO3RRx/FW2+9hZkzZ2Ly5Mk4cOCAWX+x2bNno2fPnpg2bRomT54MNzc3HD9+HElJSTbvWUZERMbS09PxxRdfyN/rm61mZQUiKWkAyq/7Mq71AiBvzi1JWrz0Ug4ee2xCvVt+NMUQ1sAlJOhqwOy1oamHh/UtJRYuXAitVosHHngABQUF6NGjB3744Qc0bdoUgG45cePGjZg+fTreffdd3H333XjttdcwadIk+RxdunTBzz//jLlz56JPnz4QQiAsLAzx8fE1/t6IiOoTw47369evB6ALX2lpUUhJUUE3k1XWsmNpd/u7705Dhw6n4OWVC6WyAAAQFnYGubleGDOmBwYN6lTzb6gWkIQQwt4XQZbl5+dDqVRCo9GYhZVbt24hIyMDoaGhvMOvhvGzJqKGzNqy48GD3eXZq/LpiuyDgrKMgpdejx490KJFC7i6uiIsLKwar94+yvr72xBnwoiIiMgia60nNBr3CgQwgbFjv0S7dmesjmjfvn29CF8VxRBGREREFhm2ntDXfTk6FuL8+ZY2BjAAkODkVGz16PDhwxtkAAMYwoiIiMiEvv7rypUrAEyXHvW1XbZttC1JWnh55Ro9Nnr0aHh6esLJyaneF9+XhSGMiIiIZIZLkLqGq+EmS4+Sya+WGN/9aFgDNnr06Hrd+6siGMLqON5XUfP4GRNRQ6FWq3Hq1CkAFS281xOIjNyP7t0PobjYyWIRvp+fXzVecd3GEFZH6ftqFRUVwcXFxc5XU7/payJMe5kREdUH+qVHjUYj3wGp0bibdLwvnyRpEROTjF69UuXHOnXqhMDAQHh5eUGpVDb45UdTDGF1VKNGjeDq6orLly/D0dERCkVF/qVCttJqtbh8+TJcXV3RqBH/dyGiuk+tVuPSpUu4ffs2CgoKkJSUZDbml1/6wNYAJklaxMVtQHBwptmsV3R0NAIDA6vjsusl/q1SR0mShMDAQGRkZODcuXP2vpx6TaFQoEWLFpAk2/9FSERUG1lrOaGn33T7wIEeNp1PX/PVqdMJi8ednJwqdZ0NBUNYHebk5IQ2bdpY3L2eqo+TkxNnGomoXrDWcqK42BlZWYFITo4ppwastOt9dHQqoqLSzGa/AGDkyJEICgri0mM5GMLqOIVCwS7uRERkleHy49WrVwFUtuWEQJ8+v6BVqwyLBfeGGMBswxBGRERUT1laftQV3Q+Fbq9HoPyWE1pERh5A376/Wgxe/fv3h6+vLzw9PQGAxfcVwBBGRERUj+jvdgQgN1vVy8wMxI4dg1AawMqixahRlgvuDbVp04bF95XEEEZERFRPlFV4v27dKJw4EY6KNFm1VnBviMX3lccQRkREVA+o1WpkZWWZPa7RuCM5+T4bAhgQGbkfnTodK7fmKyoqCi1btoSfnx+XHquAIYyIiKiOszYDtnevCklJA2DrHo/W6r5M3XXXXQxf1YAhjIiIqI4xrPsCjGu/9L2+Tp1qiz//7ILK7vE4cOBANGnSBI6OjlAqlfLjLLyvPgxhREREdYi1WS+Nxh1paVFISVHB1sL7Pn1+NWs5MXDgQLRt25ZB6w5gCCMiIqpDLl++bPR9ZmYgfv65L06fbgfbthoS6Nz5D8TE/Ghx6TEkJIQB7A5hCCMiIqrlrG2yvWnTv3DuXAhsDV+RkfttrvuimscQRkREVIulp6fjiy++MHpMV3AfA9uWHQFAiwEDktGrV2q1Xx9VHkMYERFRLaVWq40CmL7dRPkF93oC0dEpVvd4tIR9v+4chjAiIqJayvAOSNvbTehqvtq1+6vcbvcAMGDAAISGhgLgnY93GkMYERFRLaKv/8rLy8OxYxpkZITgxIl2+P33KNgSwAYMSKrQsmO7du0YvOyEIYyIiKiWMGw/cfBgd2zZMhRC9IS+n5d1Zd/xCOi63Ddr1gwA5N5fnPmyL4YwIiKiWuLs2dvIyAhBUVEjbN48DKXBy1oAKz986XXt2pUbbdcyDGFERES1wMqVwJQpftBqJ6D8mS+AdzzWfQxhREREdpaZCTz8sIAQ5c18ARWZ/TLEux5rH4YwIiIiO8nMBE6f1s2ClQawslR89is+Ph6+vr6s/aqFGMKIiIjuAMNNt7OyFFixwg0ffuj2T/gqv/C+Mt3ux48fj7CwsCpdN9UchjAiIqIaZnjXo+V+X2UHsIq2nQAYwOoChjAiIqIadunSJWg07vjllz44cKAHbCm6/7//2wZX15s2NVw1xOXHuoMhjIiIqBqZLjv++ectrF17AcnJiRDClr0eBQYMSMbddx+06fVGjhwJHx8fAOx4X9cwhBEREVUTy81WFQBaoLwlR93xihfeBwUFMXjVUQxhRERE1UQ/A6bRuBsEMKCsZquRkfvRvfshFBc7wcsr16alx9GjR8PT05MzX3UcQxgREVE10mjcsXPnQBuWHivXbJUF9/UHQxgREVE1efttCYsXJwIoO4B17PgnBg5MqlDBPaArumcAqz8YwoiIiKogMxPYv1+DH34owvLl/rDlzsfKBDAA8PX1rdQ1Uu3EEEZERFQB+/YBO3ZcQ2TkTaSmOuGVVzwAKFF2w1XdMUnSYtiwrRUOYCNHjmQBfj3EEEZERGSjiROB1asFgCYA3P55tOz9HiVJi5iYZAQFZdlceG+KAax+YggjIiIqQ2Ym8NNPf+Pq1SKsXh2C8kJXqcptNQQAPXr0QNOmTeHl5cXGq/UYQxgREZEVK1cCU6YIaLXNUP7+jqX0s18VvfNRr2fPngxeDQBDGBERkQm1Wo20NC0eftjnnw22AdsCmBajRm2o0FZDhh3vAXa9b0hs2T+hVhg+fDhatGiBxo0bIzAwEA888ACysrLk4y+88AIkSTL7cnNzMzrP119/jfbt26Nx48bo3Lkzvv/+e6PjQgjMnz8fgYGBcHFxQUxMDE6fPm00Jjc3F+PGjYOHhwc8PT2RkJCAa9euGY05cuQI+vTpg8aNGyM4OBiLFi2q5k+EiIiqU2YmsHs3kJSUh+HDT2LIEG+DAGYLLYYP34pOnU5UaPnRx8cHgYGB8hcDWMNRZ0JY//79sX79epw6dQobN25Eeno6Ro0aJR9/+umnkZ2dbfQVHh6Of//73/KYlJQUjB07FgkJCTh06BBGjBiBESNG4OjRo/KYRYsW4Z133sHy5cuRlpYGNzc3xMbG4tatW/KYcePG4dixY0hKSsLWrVvxyy+/YMqUKfLx/Px8DBw4EC1btsSBAwfwxhtv4IUXXsBHH31Uw58SERFVxsqVQMuWwL33AgMHKpGS0gu2/xWpRWTkPkyfvgQREYcq/NpOTk4Vfg7VD5IQQtj7Iipj8+bNGDFiBAoLC+Ho6Gh2/I8//kC3bt3wyy+/oE+fPgB0Te6uX7+OrVu3yuN69uyJbt26Yfny5RBCICgoCE899RSefvppAIBGo4G/vz9WrVqFMWPG4MSJEwgPD8e+ffvQo0cPAMCOHTvwf//3f8jMzERQUBA++OADzJ07Fzk5OfL/XHPmzMG3336LkydP2vwe8/PzoVQqodFo4OHhUenPioiIrMvMBFq2FNBqKzLrBURFpSA4OLNCS4+m2P2+frL17+86WROWm5uLNWvWIDo62mIAA4AVK1agbdu2cgADgNTUVMyYMcNoXGxsLL799lsAQEZGBnJychATEyMfVyqViIqKQmpqKsaMGYPU1FR4enrKAQwAYmJioFAokJaWhn/9619ITU1F3759jf51Exsbi9dffx1Xr15F06ZNLV5zYWEhCgsL5e/z8/Nt/1CIiKjC1Go1kpOvQattWaHnSZIW0dG/VSh8DRgwAF5eXlAqlQBY+0V1aDkSAGbPng03Nzd4e3vj/Pnz+O677yyOu3XrFtasWYOEhASjx3NycuDv72/0mL+/P3JycuTj+sfKGuPn52d0vFGjRvDy8jIaY+kchq9hyYIFC6BUKuWv4OBgq2OJiKhq1Go1li1bhr17fwCgtfl5lWm4On78eERHR6N9+/as/SKZXUPYnDlzLBbTG34ZLt/NnDkThw4dws6dO+Hg4IAHH3wQllZTv/nmGxQUFGDChAl38u1U2TPPPAONRiN/Xbhwwd6XRERUbxUVFeHgwe5YuXIydH8dlledo8WoUeuRmGhb7dfIkSMxZcoUTJs2jUuOZJFdlyOfeuopTJw4scwxrVq1kn/v4+MDHx8ftG3bFh06dEBwcDB+++03qFQqo+esWLECQ4cONZuNCggIwMWLF40eu3jxIgICAuTj+scCAwONxnTr1k0ec+nSJaNz3L59G7m5uUbnsfQ6hq9hibOzM5ydna0eJyKiisvMBE6fBtq0AZo3L3380KFG2LJlKITQz0dYrwnTz3516nTC5tdll3sqj11DmK+vb6U3I9VqdVPHhjVUgK6ua/fu3di8ebPZc1QqFXbt2oXExET5saSkJDnEhYaGIiAgALt27ZJDV35+PtLS0vDYY4/J58jLy8OBAwcQGRkJAPjxxx+h1WoRFRUlj5k7dy6Ki4vlmrWkpCS0a9fOaj0YERFVP12zVUCrBRQK4KOPgIQE4M03gZkzfWDLZtsV7fs1cOBAtG3blgGMylUn7o5MS0vDvn370Lt3bzRt2hTp6emYN28eLl68iGPHjhnNHs2bNw+ffPIJzp8/DwcHB6PzpKSkoF+/fli4cCGGDBmCr776Cq+99hoOHjyITp06AQBef/11LFy4EKtXr0ZoaCjmzZuHI0eO4Pjx42jcuDEAYPDgwbh48SKWL1+O4uJiPPTQQ+jRowfWrl0LQHdHZbt27TBw4EDMnj0bR48exaRJk7B48WKjVhbl4d2RRESVo1arcfbsbdx9t5/RXY8KhUC/fnnYvdsTlgOYFpIECKGQZ78q2nZi2rRpDGANXL26O9LV1RWbNm3C888/j+vXryMwMBCDBg3Cc889ZxTAtFotVq1ahYkTJ5oFMACIjo7G2rVr8dxzz+HZZ59FmzZt8O2338oBDABmzZqF69evY8qUKcjLy0Pv3r2xY8cOOYABwJo1azBt2jTcd999UCgUiIuLwzvvvCMfVyqV2LlzJ6ZOnYrIyEj4+Phg/vz5FQpgRERUOfqC+4yMEGi1xrXBWq2E3bstr0joQ1dY2Bnk5nrZvNl2//790aZNGwC845Eqpk7MhDVUnAkjIqq47OxsfPTRR8jMDMTKlZMNar7KosXkySvQvHl2hV8vPj4e7du3r/iFUr1Vr2bCiIiIKuLgwe7YvHkoSu96LKv2S2DAgORKBTAAct8vooqqU33CiIiIDOn3e8zMLH0sK0thEMCA8gJYnz6/oFev1EpfA7cdosriTBgREdVJlu58HDFCjYULG8G2OQYtBgxItjmARUVFoVmzZnB0dGTXe6oWDGFERFQnZGYCKSm634eGlgYwQPfrlCkCmzal4Pvvh5RxFi0iIw8gNDSjwns+3nXXXQxcVK0YwoiIqNZbuRJ4+GGg9FYy8zovrVbC998PK+MsFSu+HzlyJHx8fABwxotqBkMYERHVapmZpgEMKL/Jqikthg/fWqHiex8fH6PdU4iqG0MYERHVGoZbDAG6369efRNCuFTyjLrlx759f63Q0iPRncAQRkREtYJhob30z0SXbvarcVlPs0iStIiLq9h2Q0R3GkMYERHZXWamcaF91ZYeBWJikiu02bYlbD1BNY0hjIiI7G7p0tIAVjUVazthaPDgwQgODgbAQny6MxjCiIjIrv788yreessT5TVVLfu4FtHRqYiKSqvU8uPo0aPRoUOHCj+PqCoYwoiIyG7S09Px1lt7IMQEC0f1wcv011KSpIVKVfnwpefn51fp5xJVFkMYERHZhVqtxhdffAEvL3dIktZko21Lwcvw+6rNfOmNHj0afn5+XHoku2AIIyIiuygqKgIAKJUFGDZsK7ZsGfpPEDMNXoYkxMbuQHj48UqHrwEDBiA0NJR1X2R33MCbiIjuCEubbeuFhZ1BXNxGREWloKzaL0nSVimAAUC7du0QGBjIAEZ2x5kwIiKqcaabbS9cCISGOkGjccfRo52QlBQD3byAKOMsutYTFQlgAwcOREhIiPw9Z7+oNmEIIyKiGmXaA0yrBWbNAgBvAInQzXxZqvsyVLnWE23btmXoolqLIYyIiGrU6dNl9QCzVBWjK7zXHatcAf7IkSMRFBTEAEa1GkMYERHVGLVaDQ+P21Ao/KDV2tr5XovJk1eguNgJXl65lar/8vHxYQCjWo8hjIiIaoRarcayZcsAAEOHdje4+7EsAgMGJKN58+wqvTa3HKK6gCGMiIiqXWYm8NtvQGZmILKygnDtWhPcc8+P2L07xupzJEmLmJjKbTmkFx8fD19fX86CUZ3AEEZERBWWmamr9WrTBmje3PhY6Z2Q3gAeRmmRvUBprZehqjdeZdNVqosYwoiIqEJM20189BGQkKA7ZnonpPFdjvrf64JYVbccGj16NDw9Pdl2guoshjAiIrKZpXYTU6YARUVA795XsWiRE7RatzLOIKFv358QGnqu0kX3ADB+/HiEhYVV6rlEtQVDGBER2cxSuwmtFvjvfwFAibK63esItG17utKF92w9QfUJty0iIiKb6NpNXIRCYa2rvQJlhzCBrl3/qNKdjwxgVJ9wJoyIiMpVuXYTAKBF//67UFLSqFIzYCNHjoSPjw8AbjlE9Q9DGBFRA1fWnY56RUVF0GjckZvrjbCwMxgz5kt8+eV/UN7yY2TkAfTrl1Lpa/Px8UFgYGCln09UmzGEERE1YGXd6Who7VoXLFmS+M/sl0Dp/o6W9nnU06Jv31+rdH1sukr1GWvCiIgaKEt3Oj7yiO5x03GzZikNlh8llP71odvnsXPnw9AFMj0thg/fWum7HwHdHZBcfqT6jDNhREQNlKU7HUtKgDNnSpcl1Wo1fvtN33jVGgUiIg4jJuZHXLige2JwcGa5AaxDhw4ICAgAADRq1Aju7u5o1KgRe39Rg8EQRkTUQO3fb/6YQgG0bq2b/dq/X4NfflmNo0c7ARiAspYd9T2/lMoTNr9+hw4d0Llz58pcOlG9wBBGRNRAGBbgX716FXPmeMI0WGm1Ao8+ehPbt7tAq1UCSPxnjLUApttwuyrLjkQNFUMYEVEDYFyAL9Cz53Fotb0sjJSwbZsLSkNXWaXDAn36/FLpDbddXV0r9Tyi+oIhjIionsvMBB5+GBD/1M1rtRJSUqJheTNtoPyu9wCgxYAByRUKYAMGDIC7uzsAXQDjtkPU0DGEERHVA9Z6fWVm6tpOCLMm9xIiI/fjwIFIVORG+cpuuj148GDcfffdNo8naggYwoiI6jhrvb4MH7ckNDQDffv+il9+6YMDB3qg/BkwLRISVlRq26Hg4OAKP4eovmOfMCKiOsxar699+8oOYIBWbiMxbNj3GDAgCbrlScskSdf3q7L7PrLpKpE5zoQREdVh1np97dlTdgCLjDyAU6fawtX1JoKDL6BXr1S0bHkWK1dONtoTUpK0iIvbYFPfL2tGjx7Nnl9EFjCEERHVIaa1X23a6JYgDQOXg4NAu3ZXoFD4QKstXWKUJC06dTqCP//sigMH7jI4q26WKyLiEIYN2ypvzi1JWgwbthWdOtne+8sSPz+/Kj2fqL6ShDAv16TaIT8/H0qlEhqNBh4eHva+HCKyszfeAGbP1hXZKxTA229fw+jRBVi71gWzZytRUiJBoRAYOnQLwsLOIC0tCqmpKoP9Hsva61GL6dOXQKks+Gejbi+5AautBgwYgNDQUKPH2PmeGiJb//7mTBgRUR3w5pvArFml32u1wPTprjh37iMolQV44onS4JSe3tpgs20tjFtRWCu+VyA31+ufrvcFlVp6DA0NRWBgYIWfR9RQsTCfiKiWy8zUzYCZEkIh79WoVBYgNPQcAMjLiToK2PZHvW7roapg8T1RxXAmjIiolrNUfK+3ceMoFBXp6rkAIDfX26iw3jLTJUldTVhFZr969OgBLy8vNGnSBI0aNYKfnx+XHYkqiCGMiKiW8/G5CoXC06jIXk8IBbZsGYqwsDNQKgvg5aWG9U74OpGR+xEamoEbN1z+uTuy4nc+RkREcOmRqIoYwoiIaglLXe/T09OxadMXGDq0u8kyYyn9smRu7k1kZQWirKarkqRF376/VnnDbS49ElUdQxgRUS1gqev9iBFqfPHFFwCAiIhDCAs7gwsXmmPDhlEwnOmSJK3BY9bufoTccqKyAWzkyJHw8fHhHY9E1YQhjIjIzqx1ve/W7bbRON1diydQVGTcy0vXaKi8ux8rv+WQXlBQEMMXUTViCCMisrOUFMtd78+eLf0jWte7yxteXmp5Viw31wvnzzfH7t0x5bxCxbYc0s94GeLsF1H1YwgjIrIj/TKkKQcHICTkNo4eBQ4e7G7WxT4i4hB+/PFe/PFHV6vnliQtVKpUREWlVWgJ0sfHh0X3RHcAQxgRkZ3oliGF2V2PCoXA669rkJubi6NHw40K8vV3Q0rS7X8CWM0tPxJRzWIIIyKyk/37NdBqlWaPd+++H7/8ko2ZM4dCiA5mx4VQ4Lvv/oXyCvArG8B45yPRncEQRkR0h5i2oAgOvgXAHaY9vQ4ejMSBAzB7vJS1OyAF/u//tqJdu9M2LT/26tUL/v7+8veOjo7w9fVl7RfRHcIQRkR0B5i2oHj77Wu4995LiI4+g5SUXkZjy+54b60Rq0DXrn/g7rsPlnstI0eO5J2ORLUA944kIqphllpQTJ/uik8/TUJUVBokyfjWSN335vsUSZIWY8d+aTYe0GLs2LX417++s+l6fHx8GMCIagGGMCKiKsrMBHbv1v1qiaUWFEIokJvrBaWyAMOGbZWDlSRpEROTjI4dj5udRwgFnJyKzcYPH74V7dqdqdb3REQ1z+blyPz8fJtP6uHhUamLISKqayx1uk9IKD2+dOk1TJ/uBvMaLgFHxyIAMOr7lZUVhOTkmH+WJI1rvyRJCy+vXISGnpPHe3nlVnkLIiKyD5tDmKenJyTJ+n5kACCEgCRJKCkpqfKFERHVdtY63cfG6grv//zzKqZPV0IIS392SiguLr0LUaksQEFBE4MAphujD2KmWw7puudXLnzx7kei2sHmELZ79+6avA4iojrn9GnLne7PnNGFsIMHCyBEU4vP1c9q6R082B2bNw+FeZWIhNjYHQgPP17p0BUfHw+lUtcKg53viWoPm0NYv379avI6iIjqnDZtdEuQhkHMwQFo3RpQq9Vwc8uCJDU3u9vRdFZLo3HHli2WAphubGUCWP/+/dGmTRuGLqJarNItKvLy8rBy5UqcOHECANCxY0dMmjRJ/tcWEVF9plarcfHibUyZ4oYPP3STlxy1WoFVq7JRUvIxAGDYsEsGHe+1iI7WbSNUUNAEP/7YD02aXIOr602LbSlMw1pF+Pn5cesholpOEkKIij5p//79iI2NhYuLC+6++24AwL59+3Dz5k3s3LkTERER1X6hDVF+fj6USiU0Gg1vdiCqRdRqNSZN2msQrswL6BMTlxjNdBkW0X/zzf0mWw7pp9IMg5gWkydXftuhKVOmMIQR2Ymtf39XaiZs+vTpGD58OD7++GM0aqQ7xe3btzF58mQkJibil19+qdxVExHVAWfP3jbaz9H0zkd9+wkAyM31hpeXGqGh5wAAmZmBFvZ81M2S6RuxVnXbIYDF90R1QaVC2P79+40CGAA0atQIs2bNQo8ePart4oiIaqOMjEZldrWXJC2ysoLw2WcPQojSUBURcQgpKdGwvOWQAqNGrYeb240qtZ2Ij4/n1kNEdUSlQpiHhwfOnz+P9u3bGz1+4cIFuLu7V8uFERHVRmq1GkrlJUhSU5MgVtpKIiYm2ajVhBAKbNkyFH5+OThxItzKmbUIDs4sM3wNHDgQTZo0QaNGjeDp6Wl2nEX4RHVLpUJYfHw8EhIS8OabbyI6OhoAsHfvXsycORNjx46t1gskIqot1Go1li1bBgAYNqy7vCSpD15BQVnw8spFbq632UyZEAqcP9/Cygyarut9ebNfISEhrPMiqkcqtW3Rm2++iZEjR+LBBx9ESEgIQkJCMHHiRIwaNQqvv/56dV8jAGD48OFo0aIFGjdujMDAQDzwwAPIysoyGvPDDz+gZ8+ecHd3h6+vL+Li4nD27FmjMT/99BMiIiLg7OyM1q1bY9WqVWav9d577yEkJASNGzdGVFQUfv/9d6Pjt27dwtSpU+Ht7Y0mTZogLi4OFy9eNBpz/vx5DBkyBK6urvDz88PMmTNx+/btavksiKj6lbf1EAAUFRXJv4+IOITExCUYNWo94uI2olOnowgNPQelsgBeXmoL+zsK3LzpYnHfx8mTVyAi4lC518g6L6L6pVIhzMnJCUuXLsXVq1dx+PBhHD58GLm5uVi8eDGcnZ2r+xoB6HrerF+/HqdOncLGjRuRnp6OUaNGycczMjJw//33495778Xhw4fxww8/4MqVKxg5cqTRmCFDhqB///44fPgwEhMTMXnyZPzwww/ymHXr1mHGjBl4/vnncfDgQXTt2hWxsbG4dOmSPGb69OnYsmULvv76a/z888/Iysoyep2SkhIMGTIERUVFSElJwerVq7Fq1SrMnz+/Rj4bIqqalSuBli2Be+/V/bpype7x8oJZenprbNw4Chs2/BuLFydi584YaDS6kowWLc5Bt0SpJ2HPnj6IiUk22/exvAL8kSNHYtq0aVxqJKpnKtWiojbYvHkzRowYgcLCQjg6OmLDhg0YO3YsCgsLoVDosuWWLVtw//33y2Nmz56Nbdu24ejRo/J5xowZg7y8POzYsQMAEBUVhbvuuktectBqtQgODsbjjz+OOXPmQKPRwNfXF2vXrpVD4MmTJ9GhQwekpqaiZ8+e2L59O4YOHYqsrCz4+/sDAJYvX47Zs2fj8uXLNv9rli0qiGpeZqYueJk2XF2wAJgzx3hPyG7dLuLdd3fAy0uNgoImWLFiMsz/LSv++bL8b9wJE1b9s2Rp+76PDGBEdUuNtqi4desW3n33XezevRuXLl2C1mTfjoMHD1bmtDbLzc3FmjVrEB0dDUdHRwBAZGQkFAoFPv30U0ycOBHXrl3D559/jpiYGHlMamoqYmJijM4VGxuLxMREALqlhgMHDuCZZ56RjysUCsTExCA1NRUAcODAARQXFxudp3379mjRooUcwlJTU9G5c2c5gOlf57HHHsOxY8fQvXt3i++rsLAQhYWF8vcV2TSdiCrH2tZDs2cD+n+iarXAww8DkuQHrXYCyg5aEizf/QgAWjl4lRW+Ro4cCR8fHwAstieqzyoVwhISErBz506MGjUKd999d7kbe1eX2bNnY9myZbhx4wZ69uyJrVu3ysdCQ0Oxc+dOjB49Go888ghKSkqgUqnw/fffy2NycnKMghEA+Pv7Iz8/Hzdv3sTVq1dRUlJicczJkyflczg5OZndmeTv74+cnJwyX0d/zJoFCxbgxRdftPHTIKKqUqvV8PC4DYXCD1pt6Z9jCoUw+h7QBbLSjbjLClrWCAwYkGzTzJePjw8L8IkagEqFsK1bt+L7779Hr169qvTic+bMKbeQ/8SJE3IrjJkzZyIhIQHnzp3Diy++iAcffBBbt26FJEnIycnBww8/jAkTJmDs2LEoKCjA/PnzMWrUKCQlJd2xoFgVzzzzDGbMmCF/n5+fj+DgYDteEVH9ZXin49Chxnc63nefcYuJqtLfPdmrV2q1nI+I6odKhbBmzZpVSz+wp556ChMnTixzTKtWreTf+/j4wMfHB23btkWHDh0QHByM3377DSqVCu+99x6USiUWLVokj//iiy8QHByMtLQ09OzZEwEBAWZ3MV68eBEeHh5wcXGBg4MDHBwcLI4JCAgAAAQEBKCoqAh5eXlGs2GmY0zvqNSfUz/GEmdn5xq7sYGIjJne6RgWdsaoTsvF5ZbRno/lz34JC8cFIiP3o2/fXyvdfJWI6q9K/TPvrbfewuzZs3Hu3Lkqvbivry/at29f5pe1InZ9HZq+hurGjRtyQb6eg4OD0ViVSoVdu3YZjUlKSoJKpQKgq72IjIw0GqPVarFr1y55TGRkJBwdHY3GnDp1CufPn5fHqFQq/Pnnn0Z3VCYlJcHDwwPh4dYaNRLRnaC/4zEry/jPC6WyQG4xAQBhYWcQEXEApbVfwqC9hKX7mSR07Pgn9PtASpIWAwYkYdiw7yscwNiKgqhhqNRMWI8ePXDr1i20atUKrq6ucuG7Xm5ubrVcnF5aWhr27duH3r17o2nTpkhPT8e8efMQFhYmB58hQ4Zg8eLFeOmll+TlyGeffRYtW7aUC+EfffRRLFu2DLNmzcKkSZPw448/Yv369di2bZv8WjNmzMCECRPQo0cP3H333ViyZAmuX7+Ohx56CACgVCqRkJCAGTNmwMvLCx4eHnj88cehUqnQs2dPALqu1uHh4XjggQewaNEi5OTk4LnnnsPUqVM500VkRytXAlOm6O949MPQod0t9uc6eLA7Nm8eCuN/pyogROn+jpY27R44MAkDByZV6M5HU+PHj2chPlEDUakQNnbsWPz999947bXX4O/vX+P1Vq6urti0aROef/55XL9+HYGBgRg0aBCee+45OdTce++9WLt2LRYtWoRFixbB1dUVKpUKO3bsgIuLCwBd8f62bdswffp0LF26FM2bN8eKFSsQGxsrv1Z8fDwuX76M+fPnIycnB926dcOOHTuMCu0XL14MhUKBuLg4FBYWIjY2Fu+//7583MHBAVu3bsVjjz0GlUoFNzc3TJgwAS+99FKNfk5EZCwzU3f3Y5s2uu/1AQwAtFoJmzcPhZNTIYKDL8iBSaNxx5YtpgFMz/AxCYZbFQ0bVtrx3pbwNXr0aLMbfHgnJFHDUqk+Ya6urkhNTUXXrl1r4proH+wTRlR5xrNeAlOmXMfy5U0sjjXcYDsjIwSrV0+w+XViY3cgPPx4hWa9xo8fj7CwMJvHE1HdUqN9wtq3b4+bN29W+uKIiGpSZqb5rNeHH7qidCnRmH6D7bCwM3B0LISlIntJ0v7TN0xh9FhFAtjIkSMRFBTE2S4iAlDJwvyFCxfiqaeewk8//QS1Wo38/HyjLyIie1Gr1fjtN7VZA1YhFIiOTrWwd2Pp8bS0qH+64BsGMC2io/ciMXEJhg/farTlkOESpC18fHwYwIhIVqmZsEGDBgEA7rvvPqPHhRCQJAklJSVVvzIiogrS9/7SaNwhSYlGfb4kSYuoqDRERaXhwoXm2LhxlNnxlBQVLP3bNCoqDUplgcVWFhXBux6JyFClQtju3bur+zqIiKpM3/tLqSzAsGFbjRqwGhfOn0BRkfFxlSoVKSmWGlArkJvrZVR0X5m7HkePHs1ZMCIyUqkQ1q9fP5vG/fe//8VLL70k74FGRHSnlDdrZXq8oKCJxZkwSdLt91hVfn5+VT4HEdUvlQphtvriiy/w9NNPM4QRkV2UN2ulVBagoKAJdu4ciGPHwmHa/6sidV+Gm26bYusJIrKkRkNYJbpfEBHdERqNOzZvHob09NYwLsTX9f0aPHgb2rU7bfPSI+96JKKKqtEQRkRUG1nuiF9KCAV8fdVmAWzgwIEICQkxG8+ZLiKqDIYwImpQyu6Ir2OtDiwkJASBgYE1eHVE1JAwhBFRnaNWq+U7IbOyFMjIaITQ0NtwcrpS5vM0GnccO9bRqDWFOet1YGwxQUTViSGMiOoUfS8wQLesaNyGIg0REZafZzjWUkd8QCAs7AyGD99iFMD69+8PX19f+Pn5ccmRiKpVjYaw8ePHc89DIqpW+hkw/bKiflbLcOshw824c3O9UVTUyKQGrHTzbUCLjh2PQaVKRfPm2Wav16ZNGy5BElGNqHQIy8vLw++//45Lly5Ba7I/yIMPPggA+OCDD6p2dUREVuTmepstKwpR2li1/JkvqVKbbxMRVZdKhbAtW7Zg3LhxuHbtGjw8PCBJpX+4SZIkhzAiopri5aX+Z1Nt462HHB2LcPRouIWZL2MV3XybiKi6VSqEPfXUU5g0aRJee+01uLq6Vvc1EVEDk5kJnD4NtGkDNG9e+rhhAb5eRkYGAPOtiQBACGDFiodhKXQZq/jm20RE1a1SIezvv//GE088wQBGRJWmD1hr17pg1iwltFoJCoXAiy/m4P77r+DmzZv46qs9yM31hpeXGgDk3yuVunOEhZ2BcU/osu561JEkLRISVlis/yIiupMqFcJiY2Oxf/9+tGrVqrqvh4gaAP0djhqNO5YsSYQQupkrrVbC/Pn+yM39EunprbFlS6JBTZeALmRpER2diqioNFy4EAxbgpe+Jky/DVFFAhjbUhBRTbE5hG3evFn+/ZAhQzBz5kwcP34cnTt3hqOjo9HY4cOHV98VElG9o19itFZcf+FCc6NlRt3yon6JUYGUlF5ISYmGLlxZJ0laxMVtgKdnHoqLnSxu5A1Y3/eRnfCJqCbZHMJGjBhh9thLL71k9pgkSSgpKanSRRFR/WNY33X0aB4yMkLg6FhoVlwPaAFI5TRUBYyDWelzJQkGfcO2olOnE+Vem4+PD9tQENEdZ3MIM21DQURkK8sNVjtAkrTo0uUI/vijCwzvZNRolBbCWflGjdqA4OBM5OZ6WZ31IiKqLSr2J9w/PvvsMxQWFpo9XlRUhM8++6zKF0VEdVtmJrB7t+5XoOwGq3/80QWS0YSWhOTkGMTEJEOSdP/40/1a3j8EBTw986BUFiA09FyFAhjrvojIHioVwh566CFoNBqzxwsKCvDQQw9V+aKIqO5Rq9XIzs7GW2/loWVLgXvvBVq2FHjrrTxcuaLb09FSDRigsFgXFhSUhcTEJZgwYdU/gUw+auUKJBQXVyxMjRw5EtOmTWPdFxHZRaXujhRCGDVo1cvMzIRSf+84ETUYZd3tOHOmB/7+OwlKpeUGq4Z1XHqSpIWXVy4A4Pp1NyQlxcC48ap+Vszyc2wVFBTEAEZEdlOhENa9e3dIkgRJknDfffehUaPSp5eUlCAjIwODBg2q9oskotrt0qVLAMrfSsi0waq+eB6A2WO6FhVDrdSFKRAdvRepqSqj5+iXIAcMGICmTZvi9u3bAABHR0ezfyDyzkcisrcKhTD9HZKHDx9GbGwsmjRpIh9zcnJCSEgI4uLiqvUCiah2U6vVWL9+PQAgKysQpvs0ms5QRUQcQljYGbPiecPHAPwzo2a5YkKStIiKSkNUVJrFIvzQ0FDe7UhEtV6FQtjzzz8PAAgJCUF8fDwaN25cIxdFRHWHYdF9cnIMjNtGCMTEJJsVyetnxaw9dvRoeBl3Rhqfk3dAElFdVamasAkTJgDQ/eF76dIls/YVLVq0qPqVEVGtpO/3pdFoUFxcjKtXrwKwVnQvQanU9QTTbTdUfmDSt7CwTkJQUFbl3wARUS1RqRB2+vRpTJo0CSkpKUaP6wv22ayVqH7RB6+8vDx8/PF2s/0cHR0Dcf26K3QF88ZF9xs3jjKq24qIOGT1dUxbWFhSmQJ8IqLaqFIhbOLEiWjUqBG2bt2KwMBAi3dKElH9YN5o1dJ+jvo6MIHSIKbvfK/780EIBbZsGYqwsDNWZ8Qsz6aVMi3At4Z9v4ioLqhUCDt8+DAOHDiA9u3bV/f1EFEtY63RqvG2QaW/SpJAXNx6ABI2bPi30bmEUODYsXB07HgcgH4WrRDFxc7w8lJbbGEhSVoMHrwNrq43ERycaRTALO35yLseiaiuqFQICw8Pl5svElHDUN4slZ4QCri53YCXV66FnmACO3cOws6dsTCdRdPPcllqYWFtCZN7PhJRXVapEPb6669j1qxZeO2119C5c2c4OjoaHffw8KiWiyMi+9HXgen/wWW50ao5fc2WaU8w49YV5rNo+uXKxMQlSExcYtP+j1x2JKK6TBJCWNsDxCqFwnCpoLQejIX51Ss/Px9KpRIajYbBlu4owzowQLcUmZvrjaysQCQnx1gIVcazWYYzVxqNO44dC8fOnbY1cp4wYRVCQ8+VOy4+Pp4lEURUK9n693elZsJ2795d6QsjotpPXwcGlLaM0C8Ptm59GqdPt4VxQ1aBuLivjWq29MHNy0uNjh2PIylpoM2zaLbw9fWt+BsjIqpFKhXC+vXrh19//RUffvgh0tPTsWHDBjRr1gyff/45QkNDq/saichOTIvxhVCYBTD9425uN+QAZhrchg3bipiYZCQlDTB7rsFZLDZ2NaQvxGfxPRHVB+VX2VqwceNGxMbGwsXFBYcOHUJhYSEAQKPR4LXXXqvWCySiO0OtViM7OxvZ2dlyHZi1BqymDGewLAW3LVuGwtGxyOJzdbQYMCAJvXqllnmNQUFBCAwMZAAjonqhUjNhr7zyCpYvX44HH3wQX331lfx4r1698Morr1TbxRHRnWFaA6ZnuRjfeG9I/QwWAGRkhOD6dVeLm3ir1V4WX7tv392IjDxkNgNm2n6Cs19EVN9UKoSdOnUKffv2NXtcqVQiLy+vqtdERDVAf7ejKY1Gg0uXLpk8VlrPZdoyokuXIzhypMs/QUuLAQOS4eJyS95wW5K0MO+cD6SlqWBpc29LAQxg+wkiqv8qFcICAgJw5swZhISEGD2+Z88etGrVqjqui4iqkbWZLkss1XOZtoy4994f5e8ByAEMgEk3fcMZMwmAFpIkjM7NDbiJqKGqVAh7+OGH8eSTT+KTTz6BJEnIyspCamoqnn76acybN6+6r5GIrDCc3crLy8Pt27eNjjs6OkKpVNrcXNlaPVdi4hKjthFKZYEcnjIyQmyqG9NRIC5uvdzMlT3AiKghq1QImzNnDrRaLe677z7cuHEDffv2hbOzM55++mk8/vjj1X2NRGRBRWa3TBkuNxoGoQsXgi3Wc+XmelkNTNbrxvQd8UtJktZs6yFLxo8fz/ovIqr3KhXCJEnC3LlzMXPmTJw5cwbXrl1DeHg4mjRpUt3XR0RWmNZ3GQYrABZDFmC+3BgTk4xevVJx8GB3bN481Ox1TO98ND2vUlmA3r1/xa+/9oX5XpKltWHlLT/Gx8dDqVSyAJ+IGoxKhTA9JycnhIeHV9e1EFElGQYrw1ko0w72lpYbk5IG4NYtZ+zZ0wfmXWu06N37V+TmeuPo0U5yt3zT87q43IL5EqSEvn1/gp/fZQAoc/NtBi8iaoiqFMKIyP5Mg5Xhvoz6mq6wsDNQKgus9v369VdLAQwAFPj117749dd+MCy0Nz1vixbnYKl1Rdu2p9G8ebbF6+bdj0TU0FWqWSsR1R6Wg1UpfU0XUFq/ZU5h5XHAfInR/LzNm2eja9c/oAtiACDQtesfVgMYERFxJoyozrNcGF9KX9Olr+cyr9+CXBtWujl3+Uz3efzXv77DXXf9jgsXWiA4+DwDGBFRORjCiOo4pbLArKGqEIBhTVh6emuj4+Hhx3H8eAejMbqlRQ1u3GiM7duHWAlj+iVHy0X2zZtn2xy+2IKCiBo6hjCieiAi4hDCws4YNVAtq5nqiRMdMHnyChQXO8HLKxfp6a2NOt536HACJ050MCj01wUv/eyZZK0NmBX6Ox/1WIhPRMQQRlSrWdpqSKPRoLi4GAUFxrNQhg1U9d8DlpupCqFAcbETQkPPWbxj8vjxcOiDV+fORxAcfOGf2THLhfmm+zwaYuAiIrKMIYyoFlKr1bh06RLWr19fqedHR0cjJSUFgOWaMcN6Lmt3TOoo8Oef3fDnn11geh+PYRNX3ulIRFRxDGFEtUxVOuHrBQQEyL+3VDNmWM9VXmG/juGypI5pYT4REVUMQxhRLWO6/FgdTGvGlMoCo+73hiHNvN+XniSHNW6+TURUdQxhRHWYtT0gLTGsGTPusK9FdHQqEhJW4PjxjkhJibb4fEnSIiGhtJifAYyIqGoYwojqCNPAZboHpOE2QlevXrX6XAAmHfYVSEnphZQU1T/fG3e918+ADRu21Wr7CbabICKqOIYwolpOo3FHWlrUPyFJYbGxqundirt375afbxrWVKpUK/Vflh6TEBu7A+Hhx7nvIxFRNWMII6rFjJcNdXSbbsegrLsV9Sy1n0hJUdlQiK+jb+xquvTIuyGJiKqOIYyoBlnq82WorFkk8425DSnKbDuhZ7n9hAIREftw4EAkyto+lsX3REQ1iyGMqIbY2mpi2rRpFoNYWRtzmy5JWgtM1tpP6AKY5bb3kqRFXNwGBAdnWg1grAEjIqo6hjCiGmJrqwnTcfqAY71/V2kRfqdOR5Gb64URIzrhjz8OmZ3btEdYKevhbtiwrejU6YTZMX0dGGvAiIiqR/lFIUR0R3l7e2P8+PFygJIkLQBdQIqO3ovp05fId0EqlQUIDT2HsDBns/NoNO7IyAhBWNgZxMVttOGVdS0o9Oc2FRQUhMDAQAYwIqJqwpkwIju7cuWK0fdOTk5wdXUFYLnJqi1M74iMiUm2MKumhSTBaDnTtAUFZ7+IiGoOQxiRjapSZF+WTZs2mT02evRo+femG3NbYtgXzNIdkcnJMejd+1fs2dPHKHSVF/CCgoIYvoiIaghDGJENqlpkD1Ssu/3t27crdH2GfcHS0qLM6siEUODXX/tgwIBkBAVlwcsrF//+twpNmoSanatRo0bw9PTk7BcRUQ1jCCOyQWWL7PXK6m5fEeUFOY3G3aDzvSndjFhi4hIolQUICQlhry8iIjtiCCMqg34J0rRuqyIsLQ8adre39RxpaVFITVWVGeRyc71R1v02lhq6EhGRfdSZuyOHDx+OFi1aoHHjxggMDMQDDzyArKwsozHr169Ht27d4OrqipYtW+KNN94wO89PP/2EiIgIODs7o3Xr1li1apXZmPfeew8hISFo3LgxoqKi8Pvvvxsdv3XrFqZOnQpvb280adIEcXFxuHjxotGY8+fPY8iQIXB1dYWfnx9mzpxZ4SUmsi/9EuRHH31ksW7LkitXriA7OxvZ2dnQaDQALPf70ochWxw82B2LFyciJaWXWZDTaNwBlN4J6ehYKN9NaYmlhq5ERGQfdWYmrH///nj22WcRGBiIv//+G08//TRGjRqFlJQUAMD27dsxbtw4vPvuuxg4cCBOnDiBhx9+GC4uLpg2bRoAICMjA0OGDMGjjz6KNWvWYNeuXZg8eTICAwMRGxsLAFi3bh1mzJiB5cuXIyoqCkuWLEFsbCxOnToFPz8/AMD06dOxbds2fP3111AqlZg2bRpGjhyJvXv3AgBKSkowZMgQBAQEICUlBdnZ2XjwwQfh6OiI1157zQ6fHlXGpUuXKvwcS2HNUr8vW8OQfhbN0r+X9EEuPb210VJnly5HcORIF/l7IQB9h312wCciqj0kIXR/RNc1mzdvxogRI1BYWAhHR0f85z//QXFxMb7++mt5zLvvvotFixbh/PnzkCQJs2fPxrZt23D06FF5zJgxY5CXl4cdO3YAAKKionDXXXfJRdharRbBwcF4/PHHMWfOHGg0Gvj6+mLt2rUYNWoUAODkyZPo0KEDUlNT0bNnT2zfvh1Dhw5FVlYW/P39AQDLly/H7NmzcfnyZZu7jefn50OpVEKj0cDDw6NaPjeyja2F+LY6eLA7tm0bhpISyWgp0VqNV3x8PNatW4eMjBCsXj3B4jklSdfXa+XKyWYBLyFhBYqLneSgZ+kOyClTprAmjIioBtj693edWY40lJubizVr1iA6OhqOjo4AgMLCQjRu3NhonIuLCzIzM3Hu3DkAQGpqKmJiYozGxMbGIjU1FYCuqPrAgQNGYxQKBWJiYuQxBw4cQHFxsdGY9u3bo0WLFvKY1NRUdO7cWQ5g+tfJz8/HsWPHqutjoBpUXiG+fvlPvxxYnoiIQ0hLu4QNG9RITNQ1Wz14sDuWLEnE6tUTsGRJIg4e7C6PLy4uxujRozF0aDuLy4v6IHf8eEeLS53FxU4IDT0nt7fQ/94Qtx4iIrKvOrMcCQCzZ8/GsmXLcOPGDfTs2RNbt26Vj8XGxmL69OmYOHEi+vfvjzNnzuCtt94CAGRnZyMkJAQ5OTlGwQgA/P39kZ+fj5s3b+Lq1asoKSmxOObkyZMAgJycHDg5OcHT09NsTE5OjjzG0jn0x6wpLCxEYWGh/H1+fr4tHwvdYZW909HVNRfdujnh6NGCcov1DZc1hw27ZDBWi+joVISHH0NWVpDFOyENlzr1zVZNsf0EEZH92XUmbM6cOZAkqcwvffgBgJkzZ+LQoUPYuXMnHBwc8OCDD0K/mvrwww9j2rRpGDp0KJycnNCzZ0+MGTMGgG42qy5YsGABlEql/BUcHGzvS6q31Gq1XEBv6SsvL8/i86yFJ1tmxNavX4/i4mIAFSvWj4g4hMTEJZgwYRUmT14BAFixYjK+/95yrZhKlSrPeum3GjL9YgAjIrI/u86EPfXUU5g4cWKZY1q1aiX/3sfHBz4+Pmjbti06dOiA4OBg/Pbbb1CpVJAkCa+//jpee+015OTkwNfXF7t27TI6R0BAgNldjBcvXoSHhwdcXFzg4OAABwcHi2MCAgLkcxQVFSEvL89oNsx0jOkdlfpz6sdY8swzz2DGjBny9/n5+QxiNaCy9V4ajTuOHbO8/Gdr2wd9sX9Fi/WVygKkp7fG5s2Wg1cpLaKi0gDo6soYtoiIai+7hjBfX1/4+vpW6rlara5OxnD5DgAcHBzQrFkzAMCXX34JlUolv4ZKpcL3339vND4pKQkqlW5Jx8nJCZGRkdi1axdGjBghv86uXbvkOywjIyPh6OiIXbt2IS4uDgBw6tQpnD9/Xj6PSqXCq6++ikuXLsl3VCYlJcHDwwPh4eFW35OzszOcnc03YqbqZWvjVUOGS5CAACDJxxQKYXPbB31ne/3m3KbLmtaCXFl3SZbSYvjw0nMolUqbromIiOyjTtSEpaWlYd++fejduzeaNm2K9PR0zJs3D2FhYXLwuXLlCjZs2IB77rkHt27dwqeffoqvv/4aP//8s3yeRx99FMuWLcOsWbMwadIk/Pjjj1i/fj22bdsmj5kxYwYmTJiAHj164O6778aSJUtw/fp1PPTQQwB0f7ElJCRgxowZ8PLygoeHBx5//HGoVCr07NkTADBw4ECEh4fjgQcewKJFi5CTk4PnnnsOU6dOZci6wyzt91jRxqumS5C6AKYLYpKkxYsv5qCkpMBovC3bE9myObf+XNevu5rNwBnS3xFpuAE3C++JiGq3OhHCXF1dsWnTJjz//PO4fv06AgMDMWjQIDz33HNGoWb16tV4+umnIYSASqXCTz/9hLvvvls+Hhoaim3btmH69OlYunQpmjdvjhUrVsg9wgDdEs7ly5cxf/585OTkoFu3btixY4dRof3ixYuhUCgQFxeHwsJCxMbG4v3335ePOzg4YOvWrXjsscegUqng5uaGCRMm4KWXXqrhT4oMVVebCUv1W4CE2NgdmDOnNTp3bgr9y1S0aL+szblNzwVoYWkmTP86+gAWHx8PX19fLkUSEdVydbZPWEPAPmFVk52djY8++qjK59m7V4WkpAEwXIKUJC0SE5dg7twJ8Pb2xsmTJ/HRR99jyZJEszov/V6NllibNcvMDLTY/0vfeBXQIjLyAEJDMxAcnCk/Nz4+Hu3bt6/yeyYiosqz9e/vOjETRmQvERHD8dJL3WAYwACBxMQcTJnyf/IjSqWyzDseLYUwa7NmBw92t1iAL4QCo0ath5vbDavLl5WtsSQiojuPIYyoDBs3HoFW293kUQm5uTuxbp2uCbD+po2K3PFordWFm1uB1TsgJUkrz3rFx8ebFd6z9xcRUd3CEEZUBluCVVFREZycnMzueAQAIYD09NZmdWEXLgRbnDX78sv/wHjWrfQ1hw3bioceGoCgoCCGLSKieoAhjOocS3c8GqrojFBZdzPa2krC29sb06ZNw9mzt7Fli2GIMu6ED8BgudGUceuLUqV3PgYF9WIAIyKqJxjCqE6x9Y5H/RJheWy5m7G8VhKGLS8uXHCFEMZByrAuzHq/L8t3PgJAdHQqmjfPxujRoxnAiIjqEYYwqlNsbbR6+fJleYsga8rbv9FQWa0kDPd51GjcoVBMh1ZrfCelfvnScrsLwPIMmO65+g74pvuVEhFR3VY3NlUkqqB169YZhSNLKrJ/o62UygLMmpX+T18vXYiKiUlGbq43NBp3ucbMmBbWliHL6qJPRER1G2fCqMGq6P6NtmrceA0SE92Rm+uFrKwgJCfHyMudMTHJUKlSkZKiAlD6mH6M4XWYdsAnIqL6hSGM6gy1Wl3hLYcMmRbgm9/NqAtEFW2saon++GefPWi03Klv+ipJWqhUexEVlQalsgAuLrfMatMYwIiI6jeGMKoTqroFkaUC/Ndfb4spU5To0qUAr77qASEUSE6OgYvLLbPi/IpuRwRY3+4I0AWy1FSVXO9lyz6S3AuSiKh+YQijOuHSpUuVfq61Avz58y+jSRN/vPYaoN+8S3/Mzy8HxcXO8PJSA4DNBfyGLC13GjLtpm+t+J97QRIR1U8MYVTrqdVqrF+/vtLPt1aAf/ZsI+TnA1qTOnkhFFixYjL0NVsqVWqFtiPSS09vjbJ2ZpUkLf71r85o2zbK6p2P7IJPRFR/MYRRrWdrWwprrBXgh4Tchr8/oFCYBjEB/Y3D+mVD0z5ekqSFo2MRMjJCLNaIWe8HVvr8YcO2ondvNl8lImqo2KKC6j19Ab5h24hhw7YiKEiL5s2Bjz4CHByEfMy0XYQQCkRHpxo9v0uXI1i5cjJWr56AJUsScfCgbn9JjcYdGRkhOHWqrdVlSECLL75IxyefMIARETVknAmjBsFS4btG0xZOTk5ISPBGt26X8O672+HoWISVKyebzZpFRaUhKioNXbvGwdGxCOPHdzGrEbt5s7FBqwnL65D6ANi//10MYEREDRxDGNVptrSNMBwTGnpOfnzdunUAdFscBQVp5WNl7RU5cKAT9u5tYrFGLCkpBqWTy6bNV7WIjk6VW1I4OfWq8nsnIqK6jSGM6ixb2kbYMsa05qy8dhGhobct3PVYWkdmyahRG9Cp0wmMHDkSQUFBnAUjIiLWhFHdZK3tRGZmIDIyQqDRuFsdo9G42/gq5lsJ5eXlIShIa1Rjpgtglvd+BHRLkMHBmQAAHx8fBjAiIgLAmTCqo6y1ndDXc1W0tYRhI9SyZs/Wr1+P+Ph4REQcgp9fjtzKwhrT5UwiIiI9hjCq9Sx1irfcCFUYzXqlpKhs3hvS29sb8fHx+Oij78ttzKpvHFtc7IyyWlDExW1AcHCmUQBj13siItJjCKNaz9vbG9OmTTOq3dq79xzS0lKRmqqS9300D0QKqFR75THlzUoplUqrM2yGs2e7d+8GYL0jvv51OnU6AUDX8V6pVLLxKhERGWEIozrBMLysXAlMmRIArVaC7q7DvQgPP1Zma4my9mQ0ZK2xq+HsmeHdlsZ3Ugo8+OAVjBt3Bc2bt4Gn510MXkREZBVDGNUpmZnAlCn4J4ABgK6jfXj4MahUqVZnvWytydI3drXWosJSvVhi4hLk5nrh8ccHIzLSH4BvDbxzIiKqbxjCqMao1eoytxyqzCzR0qVl7/WonxnT9+MyZK2nWEZGBq5cuYKbN28CKG1RceFCcwASgoMvyM+3VC+WmLgEoaHnEBRkcmFERERlYAijGqFWq7Fs2bJyx02bNs3mIJaZCbz1lqUjhj26dDNjUVFpAIDRo0fD09MT7713E0uWhFi84zEpKcnsjOnprc1mvJo2vVqpjbyJiIgsYZ8wqhG2brpdkc25T58GhMXdgMz3eszN9QIAeHp6oqQkEAsWhNrcL8zajJejY6FBb7B/XtnK3ZZERETlYQijOqNNG0Bh9hOrLTcYnT5tWEOmYxjUTFm7Q7K42MniRuCcBSMiosrgciRVK30d2JUrV6r93M2bAx99BDzyCFBSUhqCAGDz5qHQ14QZBiMnJ6d/wpswCmJlzWCVdYdkaOi5Mrc0IiIishVDGFUbW+vAqiIhAYiNBc6cAby9NfDxuQtr17pg61YJWi2gUEjo27cv/vMf4/YQ8+f/jRdfDCqzX5i11hMKhcDQocZ3WloKX2zESkREFcEQRtWmIvVdVdG8ue4LaIrMTGDWrNI7JrVaCbNne2LgQAEfn1vIzs4GAPTv/z9oNOvlGayCgiZISekJb+8rcHK6jaysQCQnx1htPRES0gtFRXdZvSb2AyMioopiCCO7srRsqZ9RsqW9ha7ey/hYSQnw1lvfITT0nNHjSqVuFuubb+7HH390ha6gX5j8arn1BAMWERFVN4YwsqtNmzZV+rnTpk1DmzbeUCiMg5iDg7Ba75WZGWgQwGDhVx22niAioprGuyOpzioqKpKL9R0cdI85OACvv66xGp7On28J08BlCVtPEBFRTWMIoypTq9XIzs6ukTsibZGQAJw9C+zerfv1//4v2+rYFi3OQbf0aInucdPCfRbcExFRTeByJFXJnbgj0hb6Yv309HSsX7/e6JjhXY/u7tcQFnYG6emtYTgjJklaxMQkIygoC15euXj44cHcgJuIiGoUQxhVyZ26I9KSK1euGIUktVqNL774wmiM4YbbgBa64KUvxC8lBNCp01EolQWIj49H+/bt78h7ICKihovLkXRHaDTuyMgIsbpVUGVs2rQJy5Ytg1qtBmAeCE23H9L9uFsuxAdKO+grlcpqu0YiIiJrOBNGNc5wNsp082xbGC4nWiq4LyoqglqtNqtJ++WXPmbbD1nDQnwiIrrTGMKoRlnbDDss7IxN7R9sCXB5eXlmdWB796pw4ECPcs6u6w3GPSCJiMgeGMKoRlnbDFvfg6usWS5LAW7z5qHw88tB8+ald0Devn3b6HmZmYFIShoAy60oSoOXYSE+AxgREd1pDGFUYzQad1y/7gpdQbz5Ztims1y6UJQtBzJLAQ5QYOXKyVaXNA8e7P7PZt6WApgWkyevQHGxU5nBiy0piIjoTmAIoxphfFeigD6I6Zf+AJjNculnr/RjwsLOQJK0FmfSLC1p6mfOLN9vIjBgQLI8gzZy5Ej4+PiYjWJLCiIiulMYwqhKLM0amd+VKEGSBOLi1iM4OBMAcOxYRwuzXOZ7Nw4btvWfmS3rS5p6lmfOAECgT59f0KtXqvxIUFAQwxYREdkVQxhVibe3N6ZNm2bUHmLvXicsXmwemtzcbiA9vbXJDJnlLYSEUOD48XCEhx/H5MkrsHLlZKOAZXg3Y0GBLohlZQVaOaeEVq0y5O/Gjx/PAEZERHbHPmFUZd7e3ggMDERgYCBKSgKh1XpDMslBkqSFo2OR2QxZadNU062EBH74YRCWLEnEpUsBGDZsKyRJK5/L8G7GpKQkaDTuSE6OgaVQZxjY4uPjERYWVi3vm4iIqCo4E0bVZuVKYMoUQKsFJEn3JYRuU+233rqBZs3isGKF+RJkbOwOaLUKJCfHmAQ046XJxMQlaNnyPoSHOyEgIBRAKAoKCpCUlGR1KdI0sLERKxER1RYMYVQtMjNLAxhQGr6+/BJQqYDmzZsgM7MJFIrSMQDg4CAQHn4cAJCUFGPx3Pr6r9DQc8jL+xYpKeZjvLzUFor4tUhIWGHUzoKIiKi24HIkVYvTp43DFQCUlAC+vrqNtQHdrx99pAtngO7X11/XyO0orP04Gi4nWtv+SKksMFuyHD58KwMYERHVWpwJo2rRpg0szHIBrVsbj0tIAGJjgTNndMccHG7io4+szWQBQOlyYnnd8yMiDiEs7Axyc73YgJWIiGo9zoRRtbA0y/Xhh6WzYKZj77nH+JjpTJa+UF9f4G9t+yNLM2KhoefYiJWIiGo9zoRRtTGd5bIUwEwZhqKIiEPw88sxakehD1txcRvL3P6oPCNHjmRvMCIiqlUYwqhaNW9uW/jS0/cZy8rKwqZNm1Bc7GwxbAHCbLnSsFasPD4+PgxgRERUq3A5kmpcZiawe7fuV0NqtRrZ2dkoKipCTk4jZGSEwNGx0GBJUkf3vYSYmGSrvcLKw2VIIiKqbTgTRtUuM1N3t2SbNsAPP5S2rlAodHVjCQm6ALZs2TIAhvtMdoAkadGlyxEcOdJFLsAXAtiw4d8Gm3xnmRXeW9sLEuB+kEREVDsxhFG1Mm7YqiuuF0JXXa/VAo88ItCt2yW4uV0FYLng/siRLkhIWIG8PE9s2DAK+glbIXQNXRMTl5jNgLHei4iI6hqGMKo25g1bzbcQKimR8O672xEaeg6A5U23hVCguNgJbm43YWnj7k6dRkClKoSnpycAznQREVHdxJowspm12i5At7z4229qs4atpkyL6fX9wSyNsXbs6NFvsX79ejg5OSEwMJABjIiI6iSGMLLJypVAy5bAvffqfl25svSYvr4rJWW1WWgypVKlGi0lpqe3hjDau1sLlSoVgOUu+IbF+EVFRdXy3oiIiOyBy5FULtNlRl1tl64nWPPmpWFIH5pKa7wE9Btx//NMREWlyd/p68GM/y0gISWlF1JTVXJHfHbBJyKi+oghjMplbV/IM2d0v//tNydoNO5QKguMQlNWVhCSk2OMthnShyiNxh3HjnW0sE2RLrTpm7SGhZ2BUlnA8EVERPUOQxiVy9q+kPv3A/fdB2i13pCkRHnmSh+aQkPPoVOno0azWBqNO9LSopCSooJuBsx0tqxURTriExER1TUMYVQu/b6QjzyimwFzcAAWLABmzza8E9J45krPcBbLcAPuUhJKg5hxIKtIR3wiIqK6hoX5DVRZdzpaGpOQAJw9C6xfD6xdCzRpYr5EqZ+5ssS0H5gxXQDr0+eXSnfEJyIiqms4E9YAGTZUNexiX94YwLhA35ThzJVG447cXG94eamhVBZY7Adm8my0apWBHj0OsAifiIgaBIawBqa8Ox2tjZkyRfzze8v1W4YzV4bLjvrHw8LOmG3Abfp8ffDifpBERNQQMIQ1MGXd6agPYZbGWAtfeoMHb0PTpleRmRlotg3Rli1DkZi4xKR9hSGBmJjkMsOX6d6Q7JJPRER1XZ2rCSssLES3bt0gSRIOHz5sdOzIkSPo06cPGjdujODgYCxatMjs+V9//TXat2+Pxo0bo3Pnzvj++++NjgshMH/+fAQGBsLFxQUxMTE4ffq00Zjc3FyMGzcOHh4e8PT0REJCAq5du1bha7EH/Z2OhhwcgNatyx4DaK02YpUkgR07hmL16glYufJhi9sQ5eZ6ISLiEBITlyA6ei8A/bm0GDAgCb16pZZ53T4+PggMDJS/GMCIiKiuq3MhbNasWQgKCjJ7PD8/HwMHDkTLli1x4MABvPHGG3jhhRfwkb6YCUBKSgrGjh2LhIQEHDp0CCNGjMCIESNw9OhRecyiRYvwzjvvYPny5UhLS4ObmxtiY2Nx69Ytecy4ceNw7NgxJCUlYevWrfjll18wZcqUCl2LvejvdHRw0H3v4AB8+GHpLJjxGN0SpCRpMWBA8j+d7PXhSd/mXgshSmfKLO0XaVgrplQWYODAZEyfvgQTJqzC9OlLyg1gRERE9ZEkhPGmMbXZ9u3bMWPGDGzcuBEdO3bEoUOH0K1bNwDABx98gLlz5yInJ0euFZozZw6+/fZbnDx5EgAQHx+P69evY+vWrfI5e/bsiW7dumH58uUQQiAoKAhPPfUUnn76aQCARqOBv78/Vq1ahTFjxuDEiRMIDw/Hvn370KNHDwDAjh078H//93/IzMxEUFCQTddii/z8fCiVSmg0Gnh4eFT58zOUmalbgmzd2jiAGTpw4CLefXe7WdNVlSoV4eHHUFzshOvX3bBhw7+tvo5CITB06BZERByq0vVOmTIFgYGBVToHERHRnWDr3991Zibs4sWLePjhh/H555/D1dXV7Hhqair69u1rVKwdGxuLU6dO4erVq/KYmJgYo+fFxsYiNVU3E5ORkYGcnByjMUqlElFRUfKY1NRUeHp6ygEMAGJiYqBQKJCWlmbztdhb8+bAPfdYD2AAEBSkm8HSBzBAt7SYmqqCu/s1hIaeQ3DwhTL3ixw58usqBzCARfhERFT/1InCfCEEJk6ciEcffRQ9evTA2bNnzcbk5OQgNDTU6DF/f3/5WNOmTZGTkyM/ZjgmJydHHmf4PGtj/Pz8jI43atQIXl5eRmPKuxZLCgsLUVhYKH+fn59vcdydZKm1hGEne/P9IktJkhbBwWU0IrOCRfhERNQQ2HUmbM6cOZAkqcyvkydP4t1330VBQQGeeeYZe15ujVuwYAGUSqX8FRwcXKOvZ0vDVi8vtdlMl2kne0sF91VpthoUFMQifCIiqvfsOhP21FNPYeLEiWWOadWqFX788UekpqbC2dnZ6FiPHj0wbtw4rF69GgEBAbh48aLRcf33AQEB8q+Wxhge1z9mWH908eJFufYsICAAly5dMjrH7du3kZubW+7rGL6GJc888wxmzJghf5+fn19jQcyWhq2ArpA+JibZ6kbchuMGDkxGVFRalZqtjh8/nqGLiIgaBLuGMF9fX/j6+pY77p133sErr7wif5+VlYXY2FisW7cOUVFRAACVSoW5c+eiuLgYjo6OAICkpCS0a9dOXv5TqVTYtWsXEhMT5XMlJSVBpVIBAEJDQxEQEIBdu3bJoSs/Px9paWl47LHH5HPk5eXhwIEDiIyMBAD8+OOP0Gq1FboWS5ydnc2CZk2wpWEroFsGPHiwu0FNmBYxMckWa7wMO+SHhp6z+tr9+/c3+wwcHR2hVCq57EhERA1KnagJa9GihdH3TZo0AQCEhYWh+T+p4T//+Q9efPFFJCQkYPbs2Th69CiWLl2KxYsXy8978skn0a9fP7z11lsYMmQIvvrqK+zfv19uHSFJEhITE/HKK6+gTZs2CA0Nxbx58xAUFIQRI0YAADp06IBBgwbh4YcfxvLly1FcXIxp06ZhzJgxcusMW67Fnmxp2AoAN296Y+vWYQZtJxRITo5Bp05HjWa5LHXIt1aM36ZNG97lSEREhDoSwmyhVCqxc+dOTJ06FZGRkfDx8cH8+fON+ndFR0dj7dq1eO655/Dss8+iTZs2+Pbbb9GpUyd5zKxZs3D9+nVMmTIFeXl56N27N3bs2IHGjRvLY9asWYNp06bhvvvug0KhQFxcHN55550KXYs9tWkDSBJg2JxEoTBu2Arow5px3y/DonyNxh0XLgRj8+ah0JcX6jvkh4Wd4d6PREREZahTfcIamprqE5aZCbRoYRzCJAk4f954JiwzE2jZUhgFMUnSIjFxCdLTW1vZgkhnwoRVFpcl2e+LiIjqu3rXJ4yqz+nTxgEM0H1/5gygVquRnZ2N7OxsODhkY/78v+W7I/VLjQDKDGCmd08aYr8vIiIinXqzHEm20+8NaVgX5uAAFBfn4dFHfwQABAdfkJcTExPdje54zMgIKTOAWbp7cuTIkQgKCmLhPRER0T8Ywhog/d6QjzyiK8h3cADGjwdiY5UQQr8FkcDw4brthvRNWfX0vcMMg5gkaREXtwHBwZkWa8F8fHwYwIiIiAxwObIByswEWrUCUlN1zVpTU4HPPjPdfFvCli1DodG4mz1f3yXfdJmyU6cTVovxuQxJRERkjDNhDYylJq2tWpnXiAG6Ox0vXGgOpfKE2bGIiEMICztTbmPWgQMHom3btpwFIyIiMsGZsAbEWpPWJk10d0dasmHDKBw82N3iMaWyAKGh58psRRESEsIARkREZAFDWANirUnr9evAxx8DkmSpW4nC6rIkERERVR5DWAOivyvSkIMD4OamW5LcuvUK+vbdbfY8fYNWIiIiqj4MYQ2Ii4saixblwcFBN+Pl4CAwcuQN9OwpcO+9wLBhPnB2LpYL7vXK6vtFRERElcPC/AZCrVZj2bJlAIAnntD1/XJ0LMLKlZPluyK1WgnJyTGIiUmWN+221veLiIiIqoYhrIEoKiqSf6/v+2Wp6aoQCowZ0xqdOi0p985HIiIiqjyGsAYsKysQgABQemukg4NA165uuHChoFrCF/uDERERWcYQ1kBpNO5ITo6BYQADBJ54IhtOTuoqnTs+Ph5KpRJOTk5sT0FERGQFQ1gDlZvrbWH/Rwm5uTuxadM5m84xcuRI+Pj4GD3G4EVERGQbhrAGytr+jxW5C5IbchMREVUeQ1gDpd//ccuWoRW6C1I/+8UZLyIioqphCGvAbN3/0ZCPjw8CAwPvwNURERHVbwxhDYS1uxT17SqIiIjozmLH/AbC29sbAwcOtPdlEBER0T8YwhoItVqN4uJie18GERER/YPLkQ2A4ZZFREREVDtwJqwBMNyyqKrYAZ+IiKh6cCaMbBIfHw9fX1+2pSAiIqomDGFkVf/+/eHr6ws/Pz+GLyIiomrGEEZWtWnThj3BiIiIaghrwsgq1n8RERHVHIYwsig+Pp5LkERERDWIIYws8vX1tfclEBER1WusCWsAbF1WHD16NDw9Pbk5NxER0R3AENYAeHt7Y9q0aWX2C2PwIiIiurMYwhoIBiwiIqLahTVhRERERHbAEEZERERkBwxhRERERHbAEEZERERkBwxhRERERHbAEEZERERkBwxhRERERHbAEEZERERkBwxhRERERHbAjvm1mBACAJCfn2/nKyEiIiJb6f/e1v89bg1DWC1WUFAAAAgODrbzlRAREVFFFRQUQKlUWj0uifJiGtmNVqtFVlYW3N3dIUlSpc+Tn5+P4OBgXLhwAR4eHtV4hXUHPwMdfg78DAB+BgA/Az1+DjXzGQghUFBQgKCgICgU1iu/OBNWiykUCjRv3rzazufh4dFg/yfT42egw8+BnwHAzwDgZ6DHz6H6P4OyZsD0WJhPREREZAcMYURERER2wBDWADg7O+P555+Hs7OzvS/FbvgZ6PBz4GcA8DMA+Bno8XOw72fAwnwiIiIiO+BMGBEREZEdMIQRERER2QFDGBEREZEdMIQRERER2QFDWB31wQcfoEuXLnJzOZVKhe3bt8vHb926halTp8Lb2xtNmjRBXFwcLl68aHSO8+fPY8iQIXB1dYWfnx9mzpyJ27dv3+m3Um0WLlwISZKQmJgoP9YQPocXXngBkiQZfbVv314+3hA+AwD4+++/MX78eHh7e8PFxQWdO3fG/v375eNCCMyfPx+BgYFwcXFBTEwMTp8+bXSO3NxcjBs3Dh4eHvD09ERCQgKuXbt2p99KpYSEhJj9HEiShKlTpwJoGD8HJSUlmDdvHkJDQ+Hi4oKwsDC8/PLLRvv31fefA0C3VU5iYiJatmwJFxcXREdHY9++ffLx+vgZ/PLLLxg2bBiCgoIgSRK+/fZbo+PV9Z6PHDmCPn36oHHjxggODsaiRYuqduGC6qTNmzeLbdu2ib/++kucOnVKPPvss8LR0VEcPXpUCCHEo48+KoKDg8WuXbvE/v37Rc+ePUV0dLT8/Nu3b4tOnTqJmJgYcejQIfH9998LHx8f8cwzz9jrLVXJ77//LkJCQkSXLl3Ek08+KT/eED6H559/XnTs2FFkZ2fLX5cvX5aPN4TPIDc3V7Rs2VJMnDhRpKWlif/973/ihx9+EGfOnJHHLFy4UCiVSvHtt9+KP/74QwwfPlyEhoaKmzdvymMGDRokunbtKn777Tfx66+/itatW4uxY8fa4y1V2KVLl4x+BpKSkgQAsXv3biFEw/g5ePXVV4W3t7fYunWryMjIEF9//bVo0qSJWLp0qTymvv8cCCHE6NGjRXh4uPj555/F6dOnxfPPPy88PDxEZmamEKJ+fgbff/+9mDt3rti0aZMAIL755huj49XxnjUajfD39xfjxo0TR48eFV9++aVwcXERH374YaWvmyGsHmnatKlYsWKFyMvLE46OjuLrr7+Wj504cUIAEKmpqUII3Q+sQqEQOTk58pgPPvhAeHh4iMLCwjt+7VVRUFAg2rRpI5KSkkS/fv3kENZQPofnn39edO3a1eKxhvIZzJ49W/Tu3dvqca1WKwICAsQbb7whP5aXlyecnZ3Fl19+KYQQ4vjx4wKA2Ldvnzxm+/btQpIk8ffff9fcxdeQJ598UoSFhQmtVttgfg6GDBkiJk2aZPTYyJEjxbhx44QQDePn4MaNG8LBwUFs3brV6PGIiAgxd+7cBvEZmIaw6nrP77//vmjatKnR/w+zZ88W7dq1q/S1cjmyHigpKcFXX32F69evQ6VS4cCBAyguLkZMTIw8pn379mjRogVSU1MBAKmpqejcuTP8/f3lMbGxscjPz8exY8fu+HuoiqlTp2LIkCFG7xdAg/ocTp8+jaCgILRq1Qrjxo3D+fPnATScz2Dz5s3o0aMH/v3vf8PPzw/du3fHxx9/LB/PyMhATk6O0eegVCoRFRVl9Dl4enqiR48e8piYmBgoFAqkpaXduTdTDYqKivDFF19g0qRJkCSpwfwcREdHY9euXfjrr78AAH/88Qf27NmDwYMHA2gYPwe3b99GSUkJGjdubPS4i4sL9uzZ0yA+A1PV9Z5TU1PRt29fODk5yWNiY2Nx6tQpXL16tVLXxg2867A///wTKpUKt27dQpMmTfDNN98gPDwchw8fhpOTEzw9PY3G+/v7IycnBwCQk5Nj9Iet/rj+WF3x1Vdf4eDBg0b1Dno5OTkN4nOIiorCqlWr0K5dO2RnZ+PFF19Enz59cPTo0QbzGfzvf//DBx98gBkzZuDZZ5/Fvn378MQTT8DJyQkTJkyQ34el92n4Ofj5+Rkdb9SoEby8vOrM56D37bffIi8vDxMnTgTQcP5fmDNnDvLz89G+fXs4ODigpKQEr776KsaNGwcADeLnwN3dHSqVCi+//DI6dOgAf39/fPnll0hNTUXr1q0bxGdgqrrec05ODkJDQ83OoT/WtGnTCl8bQ1gd1q5dOxw+fBgajQYbNmzAhAkT8PPPP9v7su6YCxcu4Mknn0RSUpLZv/oaEv2/8gGgS5cuiIqKQsuWLbF+/Xq4uLjY8cruHK1Wix49euC1114DAHTv3h1Hjx7F8uXLMWHCBDtf3Z23cuVKDB48GEFBQfa+lDtq/fr1WLNmDdauXYuOHTvi8OHDSExMRFBQUIP6Ofj8888xadIkNGvWDA4ODoiIiMDYsWNx4MABe18ameByZB3m5OSE1q1bIzIyEgsWLEDXrl2xdOlSBAQEoKioCHl5eUbjL168iICAAABAQECA2Z1R+u/1Y2q7AwcO4NKlS4iIiECjRo3QqFEj/Pzzz3jnnXfQqFEj+Pv7N4jPwZSnpyfatm2LM2fONJifhcDAQISHhxs91qFDB3lZVv8+LL1Pw8/h0qVLRsdv376N3NzcOvM5AMC5c+eQnJyMyZMny481lJ+DmTNnYs6cORgzZgw6d+6MBx54ANOnT8eCBQsANJyfg7CwMPz888+4du0aLly4gN9//x3FxcVo1apVg/kMDFXXe66J/0cYwuoRrVaLwsJCREZGwtHREbt27ZKPnTp1CufPn4dKpQIAqFQq/Pnnn0Y/dElJSfDw8DD7y6y2uu+++/Dnn3/i8OHD8lePHj0wbtw4+fcN4XMwde3aNaSnpyMwMLDB/Cz06tULp06dMnrsr7/+QsuWLQEAoaGhCAgIMPoc8vPzkZaWZvQ55OXlGc0W/Pjjj9BqtYiKiroD76J6fPrpp/Dz88OQIUPkxxrKz8GNGzegUBj/tebg4ACtVgugYf0cAICbmxsCAwNx9epV/PDDD7j//vsb3GcAVN9/d5VKhV9++QXFxcXymKSkJLRr165SS5EA2KKirpozZ474+eefRUZGhjhy5IiYM2eOkCRJ7Ny5Uwihux29RYsW4scffxT79+8XKpVKqFQq+fn629EHDhwoDh8+LHbs2CF8fX3r1O3olhjeHSlEw/gcnnrqKfHTTz+JjIwMsXfvXhETEyN8fHzEpUuXhBAN4zP4/fffRaNGjcSrr74qTp8+LdasWSNcXV3FF198IY9ZuHCh8PT0FN999504cuSIuP/++y3eot69e3eRlpYm9uzZI9q0aVOrb8s3VVJSIlq0aCFmz55tdqwh/BxMmDBBNGvWTG5RsWnTJuHj4yNmzZolj2kIPwc7duwQ27dvF//73//Ezp07RdeuXUVUVJQoKioSQtTPz6CgoEAcOnRIHDp0SAAQb7/9tjh06JA4d+6cEKJ63nNeXp7w9/cXDzzwgDh69Kj46quvhKurK1tUNESTJk0SLVu2FE5OTsLX11fcd999cgATQoibN2+K//73v6Jp06bC1dVV/Otf/xLZ2dlG5zh79qwYPHiwcHFxET4+PuKpp54SxcXFd/qtVCvTENYQPof4+HgRGBgonJycRLNmzUR8fLxRf6yG8BkIIcSWLVtEp06dhLOzs2jfvr346KOPjI5rtVoxb9484e/vL5ydncV9990nTp06ZTRGrVaLsWPHiiZNmggPDw/x0EMPiYKCgjv5Nqrkhx9+EADM3pcQDePnID8/Xzz55JOiRYsWonHjxqJVq1Zi7ty5Ri0FGsLPwbp160SrVq2Ek5OTCAgIEFOnThV5eXny8fr4GezevVsAMPuaMGGCEKL63vMff/whevfuLZydnUWzZs3EwoULq3TdkhAGrYSJiIiI6I5gTRgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgR1Sv33HMPEhMT7X0ZNe6FF15At27d7H0ZRFQFDGFERLVIUVHRHX09IQRu3759R1+TiHQYwoio3pg4cSJ+/vlnLF26FJIkQZIknD17FkePHsXgwYPRpEkT+Pv744EHHsCVK1fk591zzz14/PHHkZiYiKZNm8Lf3x8ff/wxrl+/joceegju7u5o3bo1tm/fLj/np59+giRJ2LZtG7p06YLGjRujZ8+eOHr0qNE17dmzB3369IGLiwuCg4PxxBNP4Pr16/LxkJAQvPzyy3jwwQfh4eGBKVOmAABmz56Ntm3bwtXVFa1atcK8efNQXFwMAFi1ahVefPFF/PHHH/L7XLVqFc6ePQtJknD48GH5/Hl5eZAkCT/99JPRdW/fvh2RkZFwdnbGnj17oNVqsWDBAoSGhsLFxQVdu3bFhg0bqvs/EREZYAgjonpj6dKlUKlUePjhh5GdnY3s7Gy4u7vj3nvvRffu3bF//37s2LEDFy9exOjRo42eu3r1avj4+OD333/H448/jsceewz//ve/ER0djYMHD2LgwIF44IEHcOPGDaPnzZw5E2+99Rb27dsHX19fDBs2TA5L6enpGDRoEOLi4nDkyBGsW7cOe/bswbRp04zO8eabb6Jr1644dOgQ5s2bBwBwd3fHqlWrcPz4cSxduhQff/wxFi9eDACIj4/HU089hY4dO8rvMz4+vkKf1Zw5c7Bw4UKcOHECXbp0wYIFC/DZZ59h+fLlOHbsGKZPn47x48fj559/rtB5iagCqrT9NxFRLdOvXz/x5JNPyt+//PLLYuDAgUZjLly4IACIU6dOyc/p3bu3fPz27dvCzc1NPPDAA/Jj2dnZAoBITU0VQgixe/duAUB89dVX8hi1Wi1cXFzEunXrhBBCJCQkiClTphi99q+//ioUCoW4efOmEEKIli1bihEjRpT7vt544w0RGRkpf//888+Lrl27Go3JyMgQAMShQ4fkx65evSoAiN27dxtd97fffiuPuXXrlnB1dRUpKSlG50tISBBjx44t99qIqHIa2TMAEhHVtD/++AO7d+9GkyZNzI6lp6ejbdu2AIAuXbrIjzs4OMDb2xudO3eWH/P39wcAXLp0yegcKpVK/r2XlxfatWuHEydOyK995MgRrFmzRh4jhIBWq0VGRgY6dOgAAOjRo4fZta1btw7vvPMO0tPTce3aNdy+fRseHh4Vfv/WGL7mmTNncOPGDQwYMMBoTFFREbp3715tr0lExhjCiKheu3btGoYNG4bXX3/d7FhgYKD8e0dHR6NjkiQZPSZJEgBAq9VW6LUfeeQRPPHEE2bHWrRoIf/ezc3N6FhqairGjRuHF198EbGxsVAqlfjqq6/w1ltvlfl6CoWuwkQIIT+mXxo1Zfia165dAwBs27YNzZo1Mxrn7Oxc5msSUeUxhBFRveLk5ISSkhL5+4iICGzcuBEhISFo1Kj6/8j77bff5EB19epV/PXXX/IMV0REBI4fP47WrVtX6JwpKSlo2bIl5s6dKz927tw5ozGm7xMAfH19AQDZ2dnyDJZhkb414eHhcHZ2xvnz59GvX78KXSsRVR4L84moXgkJCUFaWhrOnj2LK1euYOrUqcjNzcXYsWOxb98+pKen44cffsBDDz1kFmIq46WXXsKuXbtw9OhRTJw4ET4+PhgxYgQA3R2OKSkpmDZtGg4fPozTp0/ju+++MyvMN9WmTRucP38eX331FdLT0/HOO+/gm2++MXufGRkZOHz4MK5cuYLCwkK4uLigZ8+ecsH9zz//jOeee67c9+Du7o6nn34a06dPx+rVq5Geno6DBw/i3XffxerVqyv92RBR2RjCiKheefrpp+Hg4IDw8HD4+vqiqKgIe/fuRUlJCQYOHIjOnTsjMTERnp6e8vJdVSxcuBBPPvkkIiMjkZOTgy1btsDJyQmArs7s559/xl9//YU+ffqge/fumD9/PoKCgso85/DhwzF9+nRMmzYN3bp1Q0pKinzXpF5cXBwGDRqE/v37w9fXF19++SUA4JNPPsHt27cRGRmJxMREvPLKKza9j5dffhnz5s3DggUL0KFDBwwaNAjbtm1DaGhoJT4VIrKFJAyLB4iIyCY//fQT+vfvj6tXr8LT09Pel0NEdRBnwoiIiIjsgCGMiIiIyA64HElERERkB5wJIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrKD/wcnjf4SfQ+W4gAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"CO2_flowsheet.png\"))" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUCUlEQVR4nO2deXxU1d3/PzOTxQSSCSQsCVvCUiyCVKKGQEWKyCJg/YFNKi6gKGpBRaggj48ouCCobFq3FsGqKFTQKqgFKloFpJVFRJEKD1FigsBgJoEACZn7+2O4kzuTu6/nznzfrxcvzcydO2fuPfecz/lux8NxHAeCIAiCIIgEwOt0AwiCIAiCIOyChA9BEARBEAkDCR+CIAiCIBIGEj4EQRAEQSQMJHwIgiAIgkgYSPgQBEEQBJEwkPAhCIIgCCJhIOFDEARBEETCQMKHIAiCIIiEgYQPQRAEgyxfvhwejwdlZWVON4Ug4goSPgSRoPznP//B5MmTccEFF6BZs2bo2LEjSkpK8N///rfJsQMHDoTH44HH44HX60VmZia6d++OG2+8ERs2bND0ve+99x4uv/xytG7dGunp6ejcuTNKSkrw4YcfmvXTmvD444/jnXfeafL6li1b8PDDD6Oqqsqy747l4YcfjlxLj8eD9PR09OjRA//7v/+L6upqU75jxYoVWLRokSnnIoh4g4QPQSQo8+bNw+rVq3HFFVdg8eLFmDhxIv71r3+hT58+2LNnT5Pj27dvj1dffRV//etf8eSTT+Lqq6/Gli1bMGTIEJSWlqK+vl7xO5966ilcffXV8Hg8mDlzJhYuXIgxY8bgu+++w5tvvmnFzwQgL3xmz55tq/Dhef755/Hqq69iwYIFOP/88/HYY49h2LBhMGP7RBI+BCFNktMNIAjCGaZOnYoVK1YgJSUl8lppaSl69eqFJ554Aq+99lrU8X6/HzfccEPUa0888QTuvvtuPPfcc8jPz8e8efMkv+/s2bN45JFHcOWVV2L9+vVN3j9y5IjBX8QOtbW1SE9Plz3m2muvRU5ODgDgjjvuwJgxY7BmzRp8/vnnKC4utqOZBJGQkMWHIBKUfv36RYkeAOjWrRsuuOAC7N27V9U5fD4flixZgh49euDZZ59FMBiUPPbYsWOorq5G//79Rd9v3bp11N+nT5/Gww8/jF/84hc477zzkJubi9GjR+PAgQORY5566in069cP2dnZSEtLQ2FhId56662o83g8Hpw8eRKvvPJKxL00fvx4PPzww7jvvvsAAAUFBZH3hDE1r732GgoLC5GWloaWLVvi97//PQ4dOhR1/oEDB6Jnz57Yvn07BgwYgPT0dPzP//yPqusnZNCgQQCAgwcPyh733HPP4YILLkBqairy8vIwadKkKIvVwIEDsW7dOnz//feR35Sfn6+5PQQRr5DFhyCICBzH4aeffsIFF1yg+jM+nw/XXXcdHnzwQXz22WcYMWKE6HGtW7dGWloa3nvvPdx1111o2bKl5DkbGhowcuRI/POf/8Tvf/973HPPPaipqcGGDRuwZ88edOnSBQCwePFiXH311bj++utRV1eHN998E7/73e+wdu3aSDteffVV3Hrrrbj00ksxceJEAECXLl3QrFkz/Pe//8Ubb7yBhQsXRqwvrVq1AgA89thjePDBB1FSUoJbb70VR48exTPPPIMBAwZg586dyMrKirQ3EAhg+PDh+P3vf48bbrgBbdq0UX39eHhBl52dLXnMww8/jNmzZ2Pw4MG48847sW/fPjz//PP4z3/+g82bNyM5ORkPPPAAgsEgysvLsXDhQgBA8+bNNbeHIOIWjiAI4hyvvvoqB4BbunRp1OuXX345d8EFF0h+7u233+YAcIsXL5Y9/6xZszgAXLNmzbjhw4dzjz32GLd9+/Ymx7388sscAG7BggVN3guFQpH/r62tjXqvrq6O69mzJzdo0KCo15s1a8aNGzeuybmefPJJDgB38ODBqNfLyso4n8/HPfbYY1Gvf/XVV1xSUlLU65dffjkHgHvhhRckf7eQhx56iAPA7du3jzt69Ch38OBB7sUXX+RSU1O5Nm3acCdPnuQ4juOWLVsW1bYjR45wKSkp3JAhQ7iGhobI+Z599lkOAPfyyy9HXhsxYgTXqVMnVe0hiESDXF0EQQAAvv32W0yaNAnFxcUYN26cps/yFoWamhrZ42bPno0VK1bgoosuwj/+8Q888MADKCwsRJ8+faLca6tXr0ZOTg7uuuuuJufweDyR/09LS4v8/88//4xgMIjLLrsMO3bs0NT+WNasWYNQKISSkhIcO3Ys8q9t27bo1q0bNm3aFHV8amoqbr75Zk3f0b17d7Rq1QoFBQW4/fbb0bVrV6xbt04yNmjjxo2oq6vDlClT4PU2Dt233XYbMjMzsW7dOu0/lCASEHJ1EQSBw4cPY8SIEfD7/Xjrrbfg8/k0ff7EiRMAgIyMDMVjr7vuOlx33XWorq7Gtm3bsHz5cqxYsQKjRo3Cnj17cN555+HAgQPo3r07kpLkh6i1a9fi0Ucfxa5du3DmzJnI60JxpIfvvvsOHMehW7duou8nJydH/d2uXbsm8VJKrF69GpmZmUhOTkb79u0j7jspvv/+ewBhwSQkJSUFnTt3jrxPEIQ8JHwIIsEJBoMYPnw4qqqq8OmnnyIvL0/zOfj0965du6r+TGZmJq688kpceeWVSE5OxiuvvIJt27bh8ssvV/X5Tz/9FFdffTUGDBiA5557Drm5uUhOTsayZcuwYsUKzb9BSCgUgsfjwQcffCAqAmNjZoSWJ7UMGDAgEldEEIR9kPAhiATm9OnTGDVqFP773/9i48aN6NGjh+ZzNDQ0YMWKFUhPT8evf/1rXe24+OKL8corr6CyshJAOPh427ZtqK+vb2Jd4Vm9ejXOO+88/OMf/0Bqamrk9WXLljU5VsoCJPV6ly5dwHEcCgoK8Itf/ELrz7GETp06AQD27duHzp07R16vq6vDwYMHMXjw4MhrRi1eBBHPUIwPQSQoDQ0NKC0txdatW/G3v/1NV+2YhoYG3H333di7dy/uvvtuZGZmSh5bW1uLrVu3ir73wQcfAGh044wZMwbHjh3Ds88+2+RY7lyBP5/PB4/Hg4aGhsh7ZWVlooUKmzVrJlqksFmzZgDQ5L3Ro0fD5/Nh9uzZTQoKchyHQCAg/iMtZPDgwUhJScGSJUui2rR06VIEg8GobLpmzZrJlhYgiESGLD4EkaBMmzYN7777LkaNGoXjx483KVgYW6wwGAxGjqmtrcX+/fuxZs0aHDhwAL///e/xyCOPyH5fbW0t+vXrh759+2LYsGHo0KEDqqqq8M477+DTTz/FNddcg4suuggAcNNNN+Gvf/0rpk6din//+9+47LLLcPLkSWzcuBF/+MMf8Nvf/hYjRozAggULMGzYMIwdOxZHjhzBn/70J3Tt2hW7d++O+u7CwkJs3LgRCxYsQF5eHgoKClBUVITCwkIAwAMPPIDf//73SE5OxqhRo9ClSxc8+uijmDlzJsrKynDNNdcgIyMDBw8exNtvv42JEyfij3/8o6Hrr5VWrVph5syZmD17NoYNG4arr74a+/btw3PPPYdLLrkk6n4VFhZi5cqVmDp1Ki655BI0b94co0aNsrW9BMEsTqaUEQThHHwattQ/uWObN2/OdevWjbvhhhu49evXq/q++vp67s9//jN3zTXXcJ06deJSU1O59PR07qKLLuKefPJJ7syZM1HH19bWcg888ABXUFDAJScnc23btuWuvfZa7sCBA5Fjli5dynXr1o1LTU3lzj//fG7ZsmWRdHEh3377LTdgwAAuLS2NAxCV2v7II49w7dq147xeb5PU9tWrV3O//vWvuWbNmnHNmjXjzj//fG7SpEncvn37oq6NXKp/LHz7jh49KntcbDo7z7PPPsudf/75XHJyMtemTRvuzjvv5H7++eeoY06cOMGNHTuWy8rK4gBQajtBCPBwnAkbwxAEQRAEQbgAivEhCIIgCCJhIOFDEARBEETCQMKHIAiCIIiEgYQPQRAEQRAJAwkfgiAIgiASBhI+BEEQBEEkDFTAMIZQKISKigpkZGRQ2XeCIAiCcAkcx6GmpgZ5eXnweqXtOiR8YqioqECHDh2cbgZBEARBEDo4dOgQ2rdvL/k+CZ8YMjIyAIQvnNy+QwRBEARBsEN1dTU6dOgQmcelIOETA+/eyszMJOFDEARBEC5DKUyFgpsJgiAIgkgYSPgQBEEQBJEwkPAhCIIgCCJhoBgfgiAIgjCBhoYG1NfXO92MuCU5ORk+n8/weUj4EARBEIQBOI7D4cOHUVVV5XRT4p6srCy0bdvWUJ09Ej4EQRAEYQBe9LRu3Rrp6elU/NYCOI5DbW0tjhw5AgDIzc3VfS4SPgRBEAShk4aGhojoyc7Odro5cU1aWhoA4MiRI2jdurVutxcFNxMEQRCETviYnvT0dIdbkhjw19lILBUJH4IgCIIwCLm37MGM60yuLhcQCARQV1cn+X5KSgqZWAmCIAhCBSR8GCcQCODZZ59VPG7y5MkkfgiCIAhCAXJ1MY6cpUfPcQRBEAQBAOPHj4fH44HH40FycjLatGmDK6+8Ei+//DJCoZDq8yxfvhxZWVnWNdRkyOJDEARBEA7hdCjDsGHDsGzZMjQ0NOCnn37Chx9+iHvuuQdvvfUW3n33XSQlxZ9McM0vmjt3LtasWYNvv/0WaWlp6NevH+bNm4fu3btHjjl9+jSmTZuGN998E2fOnMHQoUPx3HPPoU2bNg62nCAIgiCawkIoQ2pqKtq2bQsAaNeuHfr06YO+ffviiiuuwPLly3HrrbdiwYIFWLZsGf7v//4PLVu2xKhRozB//nw0b94cH3/8MW6++WYAjYHHDz30EB5++GG8+uqrWLx4Mfbt24dmzZph0KBBWLRoEVq3bm3Jb1GLa1xdn3zyCSZNmoTPP/8cGzZsQH19PYYMGYKTJ09Gjrn33nvx3nvv4W9/+xs++eQTVFRUYPTo0Q62miAIgiDEYTWUYdCgQejduzfWrFkDAPB6vViyZAm+/vprvPLKK/joo48wffp0AEC/fv2waNEiZGZmorKyEpWVlfjjH/8IIJxy/sgjj+DLL7/EO++8g7KyMowfP97W3yKGayw+H374YdTfy5cvR+vWrbF9+3YMGDAAwWAQS5cuxYoVKzBo0CAAwLJly/DLX/4Sn3/+Ofr27etEswmCIAjCdZx//vnYvXs3AGDKlCmR1/Pz8/Hoo4/ijjvuwHPPPYeUlBT4/X54PJ6I5Yjnlltuifx/586dsWTJElxyySU4ceIEmjdvbsvvEMM1Fp9YgsEgAKBly5YAgO3bt6O+vh6DBw+OHHP++eejY8eO2Lp1q+R5zpw5g+rq6qh/BEEQBJHIcBwXcV1t3LgRV1xxBdq1a4eMjAzceOONCAQCqK2tlT3H9u3bMWrUKHTs2BEZGRm4/PLLAQA//PCD5e2Xw5XCJxQKYcqUKejfvz969uwJILxXSkpKSpPI8jZt2uDw4cOS55o7dy78fn/kX4cOHaxsOkEQBEEwz969e1FQUICysjKMHDkSF154IVavXo3t27fjT3/6EwB5F9zJkycxdOhQZGZm4vXXX8d//vMfvP3224qfswPXuLqETJo0CXv27MFnn31m+FwzZ87E1KlTI39XV1czJX5SUlKi/g4GM3D8eDZatgzA76+RPM4oTmcaEARBEM7w0Ucf4auvvsK9996L7du3IxQK4emnn4bXG7aVrFq1Kur4lJQUNDQ0RL327bffIhAI4IknnojMqV988YU9P0AB1wmfyZMnY+3atfjXv/6F9u3bR15v27Yt6urqUFVVFWX1+emnn5r4HYWkpqYiNTXVyiYbIjs7G5MnT0ZdXR1WrEjDnDl+hEIeeL0c5s8PYuzYU6aLEKszDUhUEQRBsMGZM2dw+PDhqHT2uXPnYuTIkbjpppuwZ88e1NfX45lnnsGoUaOwefNmvPDCC1HnyM/Px4kTJ/DPf/4TvXv3Rnp6Ojp27IiUlBQ888wzuOOOO7Bnzx488sgjDv3KaFwjfDiOw1133YW3334bH3/8MQoKCqLeLywsRHJyMv75z39izJgxAIB9+/bhhx9+QHFxsRNNNo3s7GyUlwPTpwN8TalQyIMZM7JQWpoFoUYwQ1RYmWnAQvomQRAEEebDDz9Ebm4ukpKS0KJFC/Tu3RtLlizBuHHj4PV60bt3byxYsADz5s3DzJkzMWDAAMydOxc33XRT5Bz9+vXDHXfcgdLSUgQCgUg6+/Lly/E///M/WLJkCfr06YOnnnoKV199tYO/NoxrhM+kSZOwYsUK/P3vf0dGRkYkbsfv9yMtLQ1+vx8TJkzA1KlT0bJlS2RmZuKuu+5CcXFxXGR0ffddo+jhaWgA9u8HeMOXG0QFq+mbBEEQdqM2RMHsUAae5cuXY/ny5YrH3Xvvvbj33nujXrvxxhuj/n7++efx/PPPR7123XXX4brrrot6jeM4fY01EdcIH/6CDhw4MOr1ZcuWReoCLFy4EF6vF2PGjIkqYBgPdOsGeL3R4sfnA7p2bfybRAVBEIR7EIYySEGuf/NxjfBRoxLPO+88/OlPf4pEnMcT7dsDL70E3H572NLj8wFPP30CPl8NKivDxxw7dszZRhIEQRCaIFFjP64RPgQwYQIwdGjYvZWd/TPWrFmCl15yulUEQRAE4R5I+LiM9u3D/yorT9v2nVIp9ARBEAThNkj4xDFmCJYdOy7Ce++NBMd54fGEMGrUWvTps5OpNhIEQRCEWkj4xClGBAufQRAMZkTOAQAc58V7741Ely774ffXGM40sFpUqYFqChEEQSQWJHziBKHlBICsYFGCzzTYtAlYuDB6VxOO86J//3EYOFBfUJ5aUVVbW4tKPmpb4jxGiycGg0GsXLlS8TNq0v9JQBEEQbgDEj6MIzWhCjO4Yi0nxcVbI4KCh+O8OH68pWpLTXZ2Nvr2FU+hLyrKht45XI2o+tWvqvDaa68pnktrPSK1dY5iUUr/d0P9JIIgCCIMCR8b0GsNUDOhillOtmwphscTihI/Ph+Hu+4ajvz8JNWTr1gK/YsvNhZM1IuSqPL5rKlHZFX9IqqfRBAE4R5I+FiMEWuAmony+PHsJtYdwIvi4s3YurUYHOc9J1g8KCxso6XpAKJT6Lt2NS56eORElYyHyxGOHTsmK06pfhJBEERTPv74Y/zmN7/Bzz//HLWHphz5+fmYMmUKpkyZYlm7YmdMwmTMtAYEgxk4eDAfwWBG5LWWLQPweKL3svB4Qigq2oYpUxbhnXeCKCsLCxi9tG8PDBwIpKUFUFlZKfkvEAhoOu+ECUBZGbBpEwy30UrWrFmDZ599tsnv40XtmjVrHGoZQRCEfsaPHw+Px4M77rijyXuTJk2Cx+OJ7IwQT5DFx2b0pm9LZUD5/TUYNWpt5D2fj8O8edUYO/a6c1YKvynttiqOha9LJIddKe9K3xMrTsl1RRCE2+nQoQPefPNNLFy4EGlpaQCA06dPY8WKFejYsaPDrbMGEj42ojd9WykDqk+fnejSZT/69x+HoqJstG+fBSDL1LY7FcdiZcq7UOgcONDV8dR6giAIu+nTpw8OHDiANWvW4PrrrwcQtnJ37NgRBQUFkePOnDmD++67D2+++Saqq6tx8cUXY+HChbjkkksix7z//vuYMmUKDh06hL59+2LcuHFNvu+zzz7DzJkz8cUXXyAnJwf/7//9P8ydOxfNmjWz/seeg1xdNiElXoRuKynE4ng4zotDhxpNJX5/Dfr1qzMtBkcJMbebFd+h95opsWPHRVi0aApeeWUcFi6cgnffHaX6ewKBsMtPKrbHjmtDEET8UV4edv2Xl9v7vbfccguWLVsW+fvll1/GzTffHHXM9OnTsXr1arzyyivYsWMHunbtiqFDh+L48eMAgEOHDmH06NEYNWoUdu3ahVtvvRX3339/1DkOHDiAYcOGYcyYMdi9ezdWrlyJzz77DJMnT7b+Rwogi49NSIkXPsVcDj6OJ/bzb711Lerq7LdM2FV40Mg1kyNWUInpf15Y+v17o15XcvmxUJTRDVDdI4KIZulSYOLEcKar1xtO/rAr7vGGG27AzJkz8f333wMANm/ejDfffBMff/wxAODkyZN4/vnnsXz5cgwfPhwA8Oc//xkbNmzA0qVLcd999+H5559Hly5d8PTTTwMAunfvjq+++grz5s2LfM/cuXNx/fXXRwKXu3XrhiVLluDyyy/H888/j/POO8+W30vCxybExIvHE0LLlscVPxsbx9NItMuLt0BYOWkoud3MgK8zpHTNtFaO5o8Xz4RripiwlJusy8tzLa10zTJahAzVPSKIaMrLG0UPEP7v7beHM2rtsOK3atUKI0aMwPLly8FxHEaMGIGcnJzI+wcOHEB9fT369+8feS05ORmXXnop9u4NLw737t2LoqKiqPMWFxdH/f3ll19i9+7deP311yOvcRyHUCiEgwcP4pe//KUVP68JJHxsIla88NYAObEgnCj79NmJlJQzeOut30Udw3FefP11D1xwwTdR2UVWTRpWWWGE8EUO6+rq0K5dNWbM8KOhwRMVuF1bW4u6ujrJ6s5i4o8/b1nZWbz6KodQyCN4NwSPB7LCUo4dOy7Cu++ORKz1iOO86NnzGvz2t/64ncS1Chmqe0QQ0Xz3XXRNMyBc5mP/fnuEDxB2d/Eupz/96U+WfMeJEydw++234+67727ynp2B1CR8LCZWvHTpsh/Hj7dEy5bHoyZTMWsAP1FXVFRgzZo16NDhkIjLi8P69cOwYcOQKLeKVZOGEcuVFniRMG0aUFrK1xHyoH37LAQCDXjppZcUzyEm/rKzw1Wno2sIcRgxYq2ksFQSdbwVTMxl5vGE0Lt3s7gVPQAVcCQIo3TrJl7QtWtX+9owbNgw1NXVwePxYOjQoVHvdenSBSkpKdi8eTM6deoEAKivr8d//vOfiNvql7/8Jd59992oz33++edRf/fp0wfffPMNutr5w0Qg4WMxQuuFFHKuKeEKuanLiwMQtlqocTmZEVehx3JllNiUdzMmWmFhxuzsKqxZsxPBYIaiay32nMFgBr7++gJR1xl/bfLz+zd5L1Ghgo8E0RSrquRrwefzRdxWPp8v6r1mzZrhzjvvxH333YeWLVuiY8eOmD9/PmprazHhXCDSHXfcgaeffhr33Xcfbr31Vmzfvh3Lly+POs+MGTPQt29fTJ48GbfeeiuaNWuGb775Bhs2bNC1nZBeSPjYgNHVvpjV6Ouve2D9+mFRx8lZJ2LdEVI1a6RcZEYsV1ajt85Po6Bqgbw8da41qT3ShCIUADweDmvXBlBU1N911h6rAo+rqqqwatUqI00jiLjFqir5WsjMzJR874knnkAoFMKNN96ImpoaXHzxxfjHP/6BFi1aAAi7qlavXo17770XzzzzDC699FI8/vjjuOWWWyLnuPDCC/HJJ5/ggQcewGWXXQaO49ClSxeUlpZa/tuEkPBxAUKr0bFjx7BmzRpccME32LBhiGqXk3Aik8s8kprwjFqurMKsLCqtrrWmmWEe8OLH4wnhySercdVVrYz9OAfQEq8DoIkYlOPo0aOG2kYQ8Y6agq5mEmuRieWdd96J/P95552HJUuWYMmSJZLHjxw5EiNHjox6LTYt/pJLLsH69eslz1FWVibbJjMg4eMSYgWFXpeTkaws1iwXVmWYqXGtiWeGeTB06Ifo0eMbjB17HcwuIqkXLRYctW7Eo0ePYuXKlZrasWnTJtHX7arMTRAEAZDwcTVyLicp7MjKsgunfkswmIGTJ9MBhCAMaPZ4QujR4xumUtetSh2vr6+XfE+LkKG6RwRB2A0JH5fj99domuTtysqyAyd+S9O4nrD48XhCeOihCkyceB1TxffszrjSImSULHZ2iUcqpkgQiQUJH5ehdjKQOs6JrCyrUPNb9ExqsZ/hY1jE4no8Hg5jxqxChw7lmDjxOuTm5pr3AzUi9luNZlBpsd5odT1KWezsrHtExRQJIvEg4eMyzAgy5l1k4b2+POjQ4VDkPX6irKjw4uDBJBQUnEVeXkjVeZUoLw8X6urWzVgAn9oMs0OHDuGDDz6I/K0mk01uIpSaqJs1q3VcOKqdwKWuAX/fpbLW1FhvxNL65VyPyclnRC12dtY9SvQaRGTtMg+O45xuQkJgxnUm4eNCzBiIpHYjX7NmjeyEp3Xlyw+sK1akYfp0P0IhD7xeDvPnBzF27CnFgVU4MAvFWElJCaqqqrB+/fqIu4/fHJSf1IWiR20mm1idHl4osOwmVDMxy10DYdVvQJv1Rj6tP4Tk5Lqo+yL1Gb5NeXmXgLAesnaZQ3JyMgCgtrYWaWlpDrcm/qmtrQXQeN31QMInQRBaSeQmNQCyE56WlS8/sAaDGVi0aAo4LjwhhkIe3HdfJn788WX4/TWSA6twYG46aW+Lsj7ITep6s7/EzulWN6FZbqhY641SWv+FF+7G0qW3Rl2vLl32i3wmhAkT/oL27SuRkkIFH+0g0a1dZuHz+ZCVlYUjR44AANLT0+HxeBQ+RWiF4zjU1tbiyJEjyMrKalJkUQskfOIQMZdSdnY2SkpKsGrVKtlJDfCYlinFD5hKk6jUwMq/rjRpK72vJ/tL6pxTpizClCmLNBVvdMKdEOvS0noNlKxbSUnhoUMurb9Dhx8ioof/vvfeG4nhw98X+YwXxcWD43pPM7WQ+8l9tG3bFgAi4oewjqysrMj11gsJH8YwGgezdGnjLr9eb7gM+rmK4sjKygIgP6nV1DQ33Z1j1EWkNGkrva/n++XOWVDwPW6++cqo3YulJiMn3AlilqouXfZLXgOxuB+/vwYPPVSBRx5p16SKtVDgSV3bHj2+kbyG778/okmbWdnTzOmaQnb1F9o6xFw8Hg9yc3PRunVr2VIPhDGSk5MNWXp4SPgwhJxoUSIQCKCs7CwmTmwd2XU8FAJuv51Dbu4x1NWloEOHxkmouHgrtm4tjpochXE/sXEXRiYBo5lkSsJF6X093690zpycHFUZXHIxQ8LvN8udIGepErsGUrFeADBxog8TJniiqlgLizLyQfZi23yMGHEVKit9ePVVLtIfw0THAIVhI7aHhZpCdrif1IorQjs+n8+UiZmwFhI+jFBe3ih6AF60hPduUbL88APZwYP5CIXGRb3X0ODBiBHZALzwejPRq9dvsXv3hecmxhD69duMoqJtAHAuDkc87kKsvVosU3qKLfIoCRc1wkbr91uR9m/HxCpnqerTZycmT+6GQ4dSsWfPOwCi73lTF2IQfj/QvXv4PJUx3SAlJQW5ubmi23wAWTj/fH7jRQ4NDeH+JLaD/bXXvoWePfcCsFb4yKX7W1UFnEWkRJPT1i4rYdV9yGq74h0SPgwQCATw+edAKBTdwRsagG3bAkhLk8/k4h8cMStFeIUd/jsU8uDLL3ujccXtxdatxSgq2iYRq+FFfX3TuBW9limtxRaFKAkXNcJG6/cbEWux2DWxKlmqevbMQs+ewKFDNTh4MF/WRahmSwre5SK1x9CECcCll1bh6af/juTkuqiYH75tHTqUAwhvYmrVQK9k5VByl7JSidsqWLB2WQWr2WustisRIOHjMMLMJ49nSpNJYfPmV7Bnj3TmkxAxK4VY4KkQfnBXGwezZ08VJk5s28Sd9qtfHUF+fpKlD6iScNErrISTWuwEJ3VOrROh1dtr8O1RslSlpKTICmWt8VxqXC69erXA00+PwtGjR3HkiHTb+J3brRjoldopdi18Pg533TXc8n4thx1WGDNEOcuWC1az11htVyJAwsdh+E6tNGGp7fxCK4XYCluszgpvzVDj2nn99X8jFPpl1GsNDR4888wHKCj4nsnVSWlpKfx+v+h7sQOyVbvQW10DKLbds2YdRVlZEvLzz56Lnbkk0u5AIABAmzvP6AScnZ2Nuro6VVY0JwZ6/lqsWzfqXKwS8OKLHhQWtrG9LTx2WWEOHepgyNpFlgvCbZDwYQizXCtCK0XsxHbhhbsjMT6xE53c9//mN7/Bpk2bFCdw4aRldHsNtZ8vKSmJZKyJnUPrYGvF4GzHViHCdufmAoWF0scpiaSqqqqIBUZuAuZjZLRcZ6mCk3YiJuT69NmJWbOKUFPTBl27Gqsubkb77HCN8vc2Fo8nhOuvL0KfPqMU76vbLBesxjKx1C6WLXhmQMKHScwrfiUmZgYN+khSXEm5dlq0aBF5X+0ELmY9id0KQ+4Bssr64hRmxgwZRa1IUpqAhRWftazonYwpkfvuvLwQHNxuLYLVrlFArPgkT/ia9Ox5iWueLbWwGsukt11WCJREsOCR8GEIqx7KWDFjJMgY0DaBCx8MPUHRbn2weMyIGVIa3Gpra5Geni7bBr3XUWoC/uabHujR4xtdKflOZlA5nb2l5l4Cyq5RM4KtxRMajGfZKe0HF4tc/xRer6qqKpw9ezbq/eTk5IgbW6mfO33vzW6XVQLF7hIcTkDChxGseChjO6yZplQt4kmuxpAdQdFWILWHWOyGrkatVrGDm9I9VLMRqxakMgX/8Y9hWL9+iC5xboc1w87vVrvqVjtR3XDDDUhPTxetj8QXkDTyvPCiSUpc8Vl2esSVlv3ghIj1Tz31huT6uZP9Tg697bJKoFRVVUX+n1ULmVFI+DCCkYdSbICK7bBisT12dGClGkMsB0VLIb+HWNMNXY38LuGgpTQIqd2IVQuxrk1hcLxece7kZq9mf7eWVbfae5Ceni5bH8koQjFuprgysngTuzZ6+mxdXV0TIcpbmozee6viXszok2YJlEAgEIntY9VCZgYkfBjBSOePtSrs2VOF2bO7R3VYYf0ePR2Y35tJK2pTp1k0m0oVaVS7h5iZv8nofmVaEYpp3rX5zTc98I9/DIs6Ts+K2YxAb62TkJZ0fy0YCexVY4GVqo8Ui9brwf+/meJKzeJNjRtMSkAIP8t/X+x5Dh06hA8++EC0fUbuvRVuJbP6pJnPvrAPbdtWxKSFzAxI+DgM79NX6vz8cVIIH7bNm1NU1+8RduDRo0dH7T/FI6z9ohc7sprMgJ9AVqxIw/TpfoRCHni9HObPD2Ls2FNRg5CdpnOj+5VpRSimjx07hjVr1qBHj2+wfv0Q3StTMTGlZbNXHj2TkJZ0fyOodSeb6UIwOimrFVdKSC1ukpPrcPBgPioqcrFx42BVbrDJkydH/S28XmGrY7gwa+x5YkVP7P3g+13Pntegd+9mqu+9FW4ls/qkFeNQMJiBLVuKm7xul2XWakj4OIwwKFVuMpALXhUSCASQnX0cHk8L2fo9AIeKijwUFHwfeSUvL0821kQNcpMWS1lNYgiLSYa3cuDjkTy4775M/Pjjy/D7a1BSUgLAXpeN0f3K9BDbF4yKV7Oy9PROQmoz2fSiVsyYbZ1zOp1cznJx4YW7BbXEmrpJW7c+jPr6VNl71zT7zNPkPGLXbvPmYlGh5ffXYPjwNOTm6qvRZKZoNdIn+VgcK57948ezIba9THHxVubGbT2Q8GEMIxlXwpXfqFHRD+cvf7kX33zTA43ix4ONGwejZ889mDjxKrRq1Up2wjFr0jKaUWYl/G9TWkHxmSV2WrGUvsuuthgVr2bHcbESfKlFzFhtKbSrHozQvVZaWor6+nqMHg3ceOO/sXbttyIFVJtanfn35e6dVPaZ8Dyx127z5mJs2HAljMajxcJK3IswFsfvr8HgwRubiDwj7RFPaghF9nV0OyR84gihKImdoI4fz8Y331wQdXzjgOFXNSG5JfjYKFpWUGqEgNYNXaUwY78yPVi1jYdRWJmEAG1ixsgKXW6jVcA+IajkXisogOhecNFwqu6d+CTcSOy1CwYzsGHDYKhx72uFlcyw2KQHXvQAIQwevNHwPVezkHLz/nUkfOKY2AnKqUwaPZglFvSg1XoiJQSOHTsmGyukR0gqWcyssKixWkiSlUkI0CZm9Frn5Esb2CsE1bgbpTdN9gAIIdaVInXvxK4XxwHCGB/hZ6TcNGaMd05mJArh3VxN3YDeiCVfb8A+j9xCqrS01NULYRI+CYLcYFtVVYVcC8vVSpneY7M0ePTu/m4mZlhPli3bIBsrNHnyZJw6lS0r8MxaVRk9j5ODXGzNpF27TiEYzGBmEgK0r5D1BHcrlTZo0eJnR4SglJVJ7JoMHrwReXkVovsIxt47uesFQPLZlBJcgwdvNKV+mdNJGkI3l1LmlVGBIrWQktr70C2Q8EkgpAbbVatWWVZHZ9UqPlA4elCMHSw7darFPfeELT286AH4QofA0KHOWH7EHvrk5GRVn1eySCxf7sP06fICT421xcrKzU4jXjOpDTyeKRg1aq3jk5AWMWOW5UzKsjNhwl9sF4JKVia5a6J072Kvl1Ll5mAwiJUrVzYRJ0AIV165Ef37bzXlNzudpCEsp6GUeaVVoOjZX9FJ67xeSPgkGFKTuRUZH+XlwNSpzc+ZpcOD4rp1o3D77cWYMycnYgnhOC+mTWuOMWPCDxAvengaGsJ1Rlh5qPx+v+wExqd/y1kkgsEMzJnjjxF44pWsjYqW8nJg0yZ3DUw8SjWTpkxZhClTFjk2CWkVM2YIUClBXV+fYrsQVBL3sSUy+GcDUCcgorOe1Fullc6t1QJqdZyb2krwQqzIvNLan5Ws86yKIhI+DiP1oMS6h9wYSCYuYjzYt6+VqLjZvj2I9u1Pw+tt3NoCAHw+DhkZRxAIsLO1hZp2yJnFw5Wso4MvzaxkraYekZ7z6xmgzUBugi0o+N72YGsnd6+WE9QFBd/rro9kdlsAICcnJ0qwWCkg1J77hhtu0HxvrIxz01oJnsfMzKtogaL8G9RsQ/TOO9mOhyxIQcLHYcQeqBUr0s5ZA8KT1YIFJ5Gd3dzBVmonEAggM/NsExHj9XJo02Y/vN6uTV7/5JOl8PtrMHJk9MM/YsRarF0r/vCbiR4zrxJSK08rK1mrrUek9VrqHaDNQOl6xVoWrBQeavdPs6qvKsWZ3HzzlU0KkVp1PbTGvFghIBonbWuD8K3qT3orwZsVb6Q1plLNNkQtWx7H4sX3Mrs3IwkfBhB2gvJyROI+gPBkxbuBlEyFrFiFhBNDrIgZOXItvvtup+jr/AMrZ6a2cmsLq1Z1YitPK4Mk1dYj0notndiqg0fpesVaFqxE7f5pZlwHoWVpz54qHDyYj5YtA7LPiJ3XAtAe82LGpCdt0fRh7Fh3xrXpyVI04tLTu3m0mm2Ijh/PttSibRQSPoxhJMZFbOIuKyvD+vXrLWipNHL1hNSIG8C5Qof8w2iHb9rqIEm9WU9Kv92pNHKng0pjsTp9XNzC9ssmmVNOYNRlZcRlapVF02n0Pq9S114uo+urr37G00+vxcmT6QiFfhf1nlqBorQYYXlvRhI+NqF2Iu3WLWxuFIofnw/o2lXd97D4oEunRLJZxdnOdHorr4Eeq5Ka3+5kGrmZ18uouLVaAKq1sMVih+XXiHXUqMvUKoum05htBZbK6Ao/41kIhcbB4wkhtqaSFoEitRhhIe1fDhI+NqBlIm3fPvz+7beHLT0+H/Dii2xFxMczZqTTs+JyBNRbSdSYvXlYH9TkMDPo2y4BqCVzyk4Xj97vMctlaub1NyKCzbQOq3le9cYiij3jjQUhw+JHz7MstRhhzUIrhISPxWiZSPlB+aqrgG3bvIKdekOorNQ3qFkRsBuvBAIBfP45EApFX+OGBmDbtgDS0tQN9nKrYWE6r10oWUnUBCsWFHyP0tLSyOt2DWpm9l+zXSR2CUCtmVNuwajFzOj1NyKCrcqa5H+X3G/QY22Te8Y5zotrr12FZs1qTX+WWbXqk/CxGLUxO1J73+zZE/23Vr81q9sNsIZwUvR4pjSZZDZvfgV79qifFN10PdUEKwJAfX191OfsGNTM7L96XCRisSh+f1XkfTsEoJstbFIEgxk4eTLdsMVG7/U3IoJZiDFSqvgeW7tL6Rnv0KHc1f1JKyR8LEZtzE5Z2dlIxoZcB9Tjt3bLJGzXrtJCeDN1Zqa6HdeNxg2wbIFjdYK1OzWeRzoWpQUGDy6OVAK2QwCy7DZQCy8iX3qpIVLNHQhF7oXe/qbn+huJEzI7xkjrmKAUOiH2/lVXhd9j9Rm3GxI+FhIIBODz1WH+/DTMmOFHQ4MHPh+HefOC8PlOIRAIr1TDHbV1JNjMqh2VWUbtrtJmCoLoAaI1Ro68CH367LR0krHDAmdEXMn99mPHzlMlzll3m6od/OViUTZsuBIAZLdB0HId1MSJsOo2UENTK0njppocF8K1164ybHXQs3AyEidkVoyRljFBKXRC6v1t2xrbaHR8Y/35VgMJH4uIdV3dfXdGpKOdOFGDl14Kvz569N2YOLFFVLBZbMaG1GaerKL1wRCbWNatG4VZs4oi6a38ec1a/TcdIDxR193KScZqC5xRcSX223fsuAhz5nRFKNQtKpZBy3n1YkVpAbHBn3/OKiq8EIbMiK3sAQ82bGjcBbukpARZWVmRd9VcB6U4kWAwaM6PZQA5KwngRbNmtYaeN7GFkxq0WkDKy4HPP09BMJhhqvVEzTOjFIN45kwVdu7MEn3/yy9PRr1mZHyTG1/4/dKUcFo8kfCxCLEqm2Idbd++UJMYIKG5NPaBbteuGtOmWdlyadROQHIPBr/RoHBzwc2bU7BwYfRg2NDgQU1NG1gVsykWe2VHLRq7MFN8NArTxliGGTOyUFqaZXm2oZWlBYTPpPA5e/VVDvPnV2HIkGMApLYGAAAvtm0rwpAhG+HxeDQFGKuNE1GD05OIFvRYSWLHndjfK5Uddu+9/4eUlIDis6DWAtLYF7Mjm+RqEdBGUBuDKPX+nj3vQM+G6vy1jr0HUtc0NzfXFTGlJHwcpqDgbJMYIOFGlrEP9IwZfpSW2p/ernUCknswYunb11jtIj2IxV7ZVYvGbYit0rVmumlFb1VZPcQ+Z43iYwOA8CT2619/ik8/HQAguhrt1q3FKCrahpUrV2oKZlUbJxJrSYqFhUlEC1qsJCkpKRLjTnhhdeTIEaxatUryGi5f/pnqKsFyFhCpNPBYCzHQVECbJdT5/qJ0/YxaocRKI5g19rMECR+HycsLnavbw6GhwdNkI8umE47H9p3KzahtI4XaOCgzEftOr5eL2jaDaERqla41000tatPrzfpeqYlz27YibN1aHJlAOnUqw/ffFzQ5zkjBPCULSFZWlitT1eWQs7DwE29tbe05scFJCl9eEFq5711VVRVWrVolmQYutBCLCWixcdKo61bJQmUkhie2NIKVY7+TkPBxmGPHjuGqq4APPqjC669vi+qoyclnmjzQPh+Hrl09UqezBCPbaMihNg7KzIlV7jsTVfQouUqsznSLRW16vdbvlfqdUrtc86IHCE9yP/zQCXJVbvWQqFk2UhaWnJwcpKSk4KWXXlIUviUlJZFzWXUNz54NZ3uqcdGpsYya5bpVitHRG8MT+4xYNfY7DQkfhxEWsysQLCaFJlOAAxC2Bj39dC3at7d3p3aj22hIIZy4pDIygsEMbNoUdoeZ8aCpjb2Swk3xFGqRiskSFlt0Ip3a7Akt9nfyv0/se4qLt2LLlv5Rn+c4L/r12xxlBVLTHqUVfjykqpuJWuHLixJA+zVU+xwnJycDUNcXlSyjjYks4fecsJ4IXVmxiLlNrRr7nYaED4PEmkzDoofDm29+j8suOw+VlTW2+vat3kZDKpWdf33hQq/le2bFIjZAuC2eQgtqKxXbPSmbLQqkfmfs9wCIsvgA4UmsqGgbioq2qW6P2hW+m1PVrUKr8NVyDdVmPqrZcFlte8USWey2nmip8u1EGIJdkPBhEPGYAw/ef/8T7N37feQ1O3YftmIbDSFSGRmtWx+O8Zfbuzpy6zYA8YjVokBobSwoaHy+lIJI5VAKzk5Pr7Ls97CIltpSWsSGEdSMW5WVlVF/K/VFufb6/Ufg9baM9AcgHLqQkXEEgYB5wfpm4EQYgp3EpfD505/+hCeffBKHDx9G79698cwzz+DSSy+1tQ1GXCJqUz6t3n3Yqm00hEgFlv7wQ0dRf7nbfcsEW8gVzjS6HYJSjEoioaW2lFaxwRpS7d2yZRVGjozubyNGrMXatfK70TuB2pAAq+cgq4g74bNy5UpMnToVL7zwAoqKirBo0SIMHToU+/btQ+vWrW1rh9KDLrdZJSsBj2o7tZHOLyXyOnb8QSSwO+xbtqKgHZFYBAIB7NlTJbs7OGBsOwQzKvtKLaDMeAbsfo5YmdSdRE5MK4lCNShVr47HGEU9xJ3wWbBgAW677TbcfPPNAIAXXngB69atw8svv4z777/f1rZoedBjO2yiBDxKibz27SujXud9yytXQlDl1t64HyI+EFpkOO6XUe8ZKWIZO6koLWBKS0tx8mQLHDyYhIKCs1FVyvnziY0hZmQGWVkY0i74wGMlWJvs9YhpNRaz5ct9WLy4VZMK4DzxHKOolbgSPnV1ddi+fTtmzpwZec3r9WLw4MHYulV8T50zZ87gzJkzkb+rq6stb2csUuZ2t5l4tVJVVQVAehUU+/qPPyKmym181JQwgpWrdqc2VLX6e82wyMQGv0tNKnILmHXr2mL69CzV4kNNUUelXbvtLAxpNX6/n5l97+xA7neUlwP/+7/RW/DYVV3djcSV8Dl27BgaGhrQpk2bqNfbtGmDb7/9VvQzc+fOxezZs+1onihSwb1Cc7uTWLVjeiAQwKpVqyJ/S4k84eviBR21xf2wvDu6Vqxetduxoarc95aVndVsDdGCEZdyXl6e6u8X69vBYAbmzPGrTm1WEzf0888tsXbtKElrqN2FIfWi5RllYd87vsihk8RrvR2riCvho4eZM2di6tSpkb+rq6vRoUMHy7+Xf7iVStY7yYoVaZGdlM3eNd6sKrdaa0o4NZmbjdUVVRstSdmODJzvvJNtiytGTRXhWMzoH8ePZ0dl9wDy24AoWamSk+ti9lNrasWxqjCk2bD2jCp9DwuLpHitt2MVcSV8cnJy4PP58NNPP0W9/tNPP6Ft27ain0lNTUVqaqodzYtCuKp99VUuahBkYc+o8vJwLA0/kLJgiYpdoeutJ8SaqNHqrlLapdno/llOx3/YXSZfroqwnpIGFRVeHDyYL2sl1bsNiJSVqr4+VXR7G6EVR+kcTi+0hLD2jPKIPatGElnMwupaa0ZhLSElroRPSkoKCgsL8c9//hPXXHMNACAUCuGf//xn1IPPCtnZ2cjOju6wWgYhK1caYdNp9IqUBUsUv0Lv2fMa9O7dzLR6Qk6hVWSo3aVZr7vC6b15rBZ1VhO+n60RCo2TtZIa2QZEakdwLVacREmeMBO5Z9XJPmlFrTWluYUPgTh27DzFHeidXkiJEVfCBwCmTp2KcePG4eKLL8all16KRYsW4eTJk5EsL5aI7bBffnkSe/a8ozgIjR49WlOMgR7CplN1lii7Tb1+fw0OHXoVhw5Fvy412bO22uDRIzLU7tKs113hZKyAVlEnvK982528x433U52V1Ij4iLVS6bHixHvyhJkYWRBYGVdoVa01OSvWihVp5+LTPHj1VXkh4/RCSoq4Ez6lpaU4evQoZs2ahcOHD+NXv/oVPvzwwyYBz04j1WH9fuXP5uTkWL7CCJtOPZFd48Pp5NUYO/a6qOOEqwmnBYbYQ8riaoPHqMgwe9UeCASQmXkWXm9rxFaXra09hnfeScHFF/stu7daRJ3wvnrONZXj7L3Hwv6eliZuqeI4L3r2vAbFxWeQlZXVxO1hpvgwoz8EgxnYvDnFtL3x4gUjz6qVMUtaa61pGaOlFpHTp6sXMqwGXced8AHC6pZF15YQIwGEVltY5Eyn/PfHPhQsCgxWVxs8ZgQkmjVxCoV4bHXZnj13Y+TIC8FxXni9HF56yWP5vZWbxCsqvFH3leMaP6fmHpuxAo/u7xxGjtyMLl32i1qq9ux5B4cOhS1VUhtEmoWR/qBmbzynFzdOUF4OHD1q7FllwT1rxhitVciwGnQdl8InnlBbL8Qs9JhOWRUYrK42APY2AJTaHyk5uQ5Ll94q2DPNY9u9lZrEd+062eS+ClGKBzK6Am/a3z14772RmDJlkSXuRzuILash9gyzuLixmvBvDrv8PR4OHk9430QtzyoLYjF2saB3jNYqZFgNuibhwzh2b5apZ5sKPQJD7aq7pKQEZ8+e1ZUVwepqww0bAPKiQ6p2kpOBxl9//U4Ty4oQNUHeetstFXzNB/5bFTRshpVX7hxiZTWE9/nUqWwmFzdWEha4jXGO4QzXEK699m/o0KFc1bMqJxbtFEQHDyaZsgjUI2QmTAj3k/37w2MvC/2FhA9hGD0Cw8imhWpgzaIixE0bAOpNu7YSsRigsLvLWiuLUvA1H/hvRdCw1POiJVVa7BzBYBArV65UvM/5+TcjFOoYdT6nBbBRlISHWGYr4EWzZrVN7q9YP5OzhP/jH/ZazwoKzpq2CFQrZPiQCf67uncPv84P505m4pLwiQPsNqXGBkDqNWfq7fRK1aSVLCpPPhn+/LRpV6NXrxa62pAoGM0es6pvxlpWAFiemq02+FoOKatLbJ8WO07sedEaryT1zCn9pi+/fEtU7H344Wq8916q654lNW47LZmtYkhZwrdutT80IC8vZNjlpEXISIVMxOKUVZuEj8ux2+8eGwC5YMEJlJTUmFpDQs33y1WTlrOoCD//6quc6+IUnNhyQ6/7xuq+KZbSbRd6r4mY1UWYHuz1cliw4CSys5vrPl8sap9Bud8kJowuvHB3JP7LTc+SmphE3mI8a1YDZs/O01XoUcoSznH2xx4eO3bM0BitVcjoCZmwExI+LsbuoGKxAMh7703H99+/FDUYGK0hEQs/iUvta9a69WHU16cqFtNq2n77AnXNwqly/lrdN3r6Jgul/7Wg16UlvDdN04M9mDatOcaMUd8nzbzXcr+JlaB3oyjFJMZO8lOmZGgWuHKu9i5dzoiUjNDndlL7zMS6Q7WO0awLGa2Q8HEIM1budmct6d1XzOjDwE/2mzYBCxc2/f6lS28DxzUW07rqKvXtZyXLSwtWmobN2JRWb/VlK0v/s5BZE4sbq1SzHPSuFqWYRLUxeFIoudrXrg2XjFi3btQ5QaTO7WTldhluESxmQcLHIcxYududtaS0uaFVhB/4bHTq1PT3Any2RaNVYds28WwfMzY5jVdSUlJUuRGVMLqlhhUTJitp2MJFjNJ1+vDD1dizp9LxndKlEHuWAGeD3mMRq+ydk/MzcnJOyyY9GEWNcOrTZycmT+6G6urWqtxORrfLMGNBE0+Q8HEQIwODVVlLchamWD9/uHCbtZsbxj7wN94IvPZaeHUpJoIaGoCyMvFuLdZ+FrK8WODUqWysXTvK8Ka0Vm+poRWz6pdoQWxX99gJTeo6ARw4zou//OVWXHnlRkycyOZKnG/3u++OBMCLHw8OHOiKPn12Om5BkKrs7fH4MWrUp+jTZ6dkGYnS0lJb2rhlyyoAym4noyENZixo4g0SPi7EyjowcimvgL2bG4o98K+9xuHdd4/h1Ckv0tJCGDUqp4mvPD//bJPBhCe2/U7UzXEiQFkJKzalNbuv6LkeX311WlQcW+mS0Vp7q0+fnWjd+jD+8pdb0SgivNiw4Uo891w1HnnE9CaaQrhStbByticilp0kdtwQVvaOFfRifbK+vl7zd5r5rMaKRiMhDRUVXtG4SK0LmniDhI8LsboOjNJkYNfmhuIPvAerVq1DQcH3AKK3V+AtOCkpR2TP63TdHKcClKWQ2qNLjRtTacA3s6/EXreqqiqcPXs26pjk5GT4/X4Eg0G89NL7WLfu3wA6oFFQ6K9DZKVgra9PjWpjGA8efzwTJSU/W5YqbmTClov5cxKxcUOIUUHPw1v2rH5WjYQ0HDyYpCsuM94h4UMwi9gDHzsZi1lwdMa/2oodokZNQK8w1qRv3yJs3Vos6poqKSlBVlZW1GedKEAm/D4pq0p5ObB4cQZefHFKxH0EhGC0wKGVgrVly0CkjUJCIQ+efvrvePDBy9ClSxfN51VC6TdVVVVh1apVou/JxfwFg0FbK84LERs3hJgVl1hX1xrfftsmEkNkFUa2fSgoOOtIXCaLVm0hJHwIJhHGME2f7j+3V454HQ0pqwK/IjOSDeRW1Ab01tXVRcUAACH067cZRUXboq5pVlaWYxOZFpYuBW67DeA4YR2c8D5LY8asQocO5YZWulYJPb+/BldeuREbNlwJoKnV7bXXXrPMFSt3ztzc3ChhJHyW5OK4Vq5cqdheKzLtxMeNsK+L46THEK3s2HER5sxpbXnAvNyG0Wpq8OTlhXQX2xSip1AmS1btWEj4EJajVdXHxjDdc4/2OhqA/fucsYKWYMjYGADAi61bi1FUtM3WNhslEAigrOwsJk5sHQnQFsJx4lsNsET//lsBABs3DmZqk1O5yUkujkuuvVZk2smNG4D6yt5JSfLTYmM9sOhsUrMD5vVsGB1LSkqK5D0SZnopjdF6hAzLySIkfAjTUJPNogajdTQSHS3BkPEQA8BPEAcP5iMUGid6jB3mfTPo338revbcY0vygFnYUdxSDUrjhto2ZmVlyU7ymzenNKknJny+zHLfGC0ayFuL+I2ehaxZ0wKLF7eLVAu/4AKPovBkWchohYQPYRpSFhY7isdRnYowUoHKPh+HjIwjCASSovbT8fuPwONpYVoMgBO+fX7gF68tA9PcG1pQ6vNKZSNY7cNm3De7C6/qQW6S79tXPtjYjA1ljSK3xUQwmIFFi6YILFbRVbdZLPZpNiR8CEuxo3gc1akIIxzshNluHk8II0asxdq14WsyefJkAIgcO2pU0+und+J10rfftCZOCP36bW0Sr2Q1avo8f50qKipcFX+WnZ2NkpISyYBnJbQIc7vhF09yW9+orZ9mxoayRpB7/uQq2Nu9a7xTkPBxIXavqvV8X3k5sGULH2gafs0KX7jU/l3CWiKsZxiYhXCw0xJ7YXa9HSdN4lbWmVKzEtbixtGymSNLxGb3qUWLMLerD/HueeFGsfzWN8IJv7wc+OKLIP71r1cifUpr/TRWAn6lKtg3a2b/rvFOQcLHhdj9AGn9PuGKNxazTdpqaomwMuDYjRaXCcvuFa1o+S1qxa4aK44b996yE73C3EpycnLQ0JAbs1Fs9ITfeO/98HimRCzKeuqBsXD/Yy2jfHr8iRPsuyDNgoSPS3GyfoocsSveWMzeG0uulkhtbW3kNRYGHDfjdmuYEK2F59RYcfTuURZP11UrrIhtuZgjILYKdHxUPuaFZ//+41BUlB2J7bFz70cnEd/NkSB0Ilc1NewLr4LPV4lAIGDK9/GrF48n/KXCGJXXXnvNtO9JVEaPHs3EhpNmwgfhq/lNYStOQHLbC75/xe69JdYfhcfxZGdn44YbblDVblZEUry5jvmCh0L4CV9sPGOhOrUZ+P01+MUvKuDzVaKyshI+XyUWLDgBny/8vpZCiW6DLD6EqYQHEa7J1gdjxryFDh3KVfnCtQ6YrJjN45GcnJy4Ej1a0GLFEaI1zqhLly7MuGLVxDGx6jrWI7Rqa2uRnl4pGayck3MevN4WstXjgeisUrPgf49SxqoRgSkWWL9z590IBFqga9f4FD0ACR/CRPiMh1mzGjB7dl5UllDPnnubHC81cKoZWGNL6bNiNifsR+vAr/Z4IzvNa+2PLIhLLRmYLLQ3lthxIxgMNtlwNCkpKRKcXVtbi9deey3ynlSw8uzZt+Hhh3PR0CBe+Tk2q7Rdu2pMm2bO78nKmoY5c5pF6u3Mnx/E2LGnIsdYITBzck6jVy9TT8kcJHwIU4itGzFlir5qyzwsDqwEmwgnPLHJDmic8PROFEpWnIoKLw4ezHdtHSmrigrajZq93HgqKyuj/pYSqw0Nf44SRcJjxLJKZ8zwo7TU+HUrLwemTm0uuCcezJiRhdLSLMVzG7ECHTt2TPR88TQmk/AhTIGqLduHlDvCitgLt8Rp8IOylVuUSPXpFSv4faHGubKOFGWjKSN178Vr4nhMyYQyUuhRzGqutoCi1DHxFOtHwocgXIScO0Jr7IXYsWHLRRIKCs4iP9+5YnJuIRjMiNR/AdyX9aM3G00PdgZF21V9WLwmDoeuXZvuF6cVsV3mtWRZmf3sxlO8JAkfgnAJatwRWga72GPtqLKtBTeUzj9+PDsqkB9w115nRuKYtGJXULSd/fiaay6G31+BOXMa972KreKsl/btw22//fawpcfuLKt43gaIhA9BuAAr3RHCnc35STwsqjj86ldHHLH8sCbCpJCrIyWGXa5DPaLRyqrXPFb3IytjlcSEwKZNmwBsitoJXk3mqlomTAi3ff9+2JplJbYNUDxBwodwJfFWS0QOK90RcjubNzR48MwzH6Cg4Hvb/PssijA5lCwlfLFEwL4AUSOi0e2xeVZtgKq0H6CeKs5y8DurA2FLT/fu4df5eGwr+5LUNkCzZh2V3MPMbZDwIRzDiChhtZaIGcSu1q10R8jtbC60XNjh32dNhKntn3KWEr5Yol3ES3aWHqzaAFVuP0ArRKLczupCtD4Havuz1DZAZWVJKCxU/XVMQ8KHsBWt2wXI4UZRo4TYav2qqxrft8odoSSqrIQXepmZZwGwIcIAeXEdmyFjl6VEzoWVyNlZejZANSoErIrjiu1vUrE2Wp8Dqf4c25elnr/8/LOS53ZDPJ4QEj6EKagdRPLy8uJ28DWCnIvngw+qoo61apK1I8Yjlmih1xojR16EPn12OibCYmGpr8q5sOzMztKCXROing1Q5YRtMBjEypUrAWiP4zITJRebVtTce6lFUF7eJaLHuyUeTwgJH8IU4tn1ZDVKLp7XX9+GggJ72mKGqFIz2YkLPU/EheCECGMZJReWndlZanFyQlTbj6XGo9zcXEyePBlHjx5FfX19k8ytP/5xP9LTre2TdrnYxBatYs9fSkr/Jse51bVKwoeIYHR1RqJGH2rjbNxA7GQ3dSpwzz3R/UlO6AldCE4E2rJoslfjwhKiRTRalSTg1gkxFt7qAyAqc8tq0QPY52Izsmi1Kpjcakj4EADYMleyOPnYgZNxNkaRctU99RTw9NMcFi48iXvuaQ6APaHHZ9A0VmCO3hdJbNC3K6tQrQurtLQ06nNaLB5mW2rjJdbI6Wr0dj4f/P0QZpMJqaurQ2VlZZO+YLTIolOQ8ElwWEsfZkmAOYEbXTxyFhwA4DgP7r03Hb1770evXi0ir7Mg9ITCYtGiKeC4Rrfbffdl4scfX4bf3zQ2xi7XrloXltj+ZGox8/lmNdbIKYwIX7ufDz3ZZE4XWdQLCZ8EhqX0YdYEmJPoXVnqGWTNsFzIWXB4OM6L5cs/Q0HB9ygpKYm87rTQ49uu5FYQEzh290enr5UaWIw1shphrSYhZghfO++52nsSe5xTRRaNQMIngWGlhgtLAswp1JSHlxpgAf2DrJmWi9jJToiwP509e7bJ57QM6FYUpWTF7aaEmwoMxk7aACI72McTZtdqqq2tjfpb6p7HHuck7du7Q/DwkPAhHHc56BFg8RQHtGJF2jk3i3zKqlXF8MwUk/xkt21bEbZsKQagvz+JCT2rMgOdfgZiaaxt1NR65ib4STs2Lbtdu2pMm2be97BQyd2sMSk9Pd3U48wkGMzA5s0p6NsXSEsTjwfiYTmLl4QPAYANM7raySde4oB499706a0jsSVu291bDL+/BkOGbERR0TZD/cnuqsdOPwPiQdaNtY3kSEpSN5Q7sYWLWFr2jBl+lJZqEwhywsLpchrxMibJwYvXhQu98Ho5jBy5OapfilmtWbXSk/AhIrBgRpebfILBICoqvHERB6Q2pVuI2/YdY6E/acWpNssFWasRwllZWczW0RKLn2po8GjK8FIjLJx69sNjkvtT9+WIFa+x/VKq0CKrsVwkfAjHqajwRnz/cvVbVq5cGTdxQGrde2Zu8cEKycnJqo5zm9AzgtogazlY7R9SfVxthpdTNYHU9r9Dh85zZS0bLcj1SwCShRZZhYQP4SjhlVxrhELjVJVkdzoQ22yU3Ht2u3vswO/3M2udcBq9QdYsi0QjGV5O1gRS6z47dcpvuJaN0I3n8xlotEXI9UslUcQiJHwIQ+gN6BNLX1cT38JaEKoQvdeCd+8dOtQegAcdOhyyrI1WoGfSZUXUOBUUK9VXlPq3nQHfepC6Tnrip1ioCaR03kAgAJ+vEvPnp2HGDD8aGjzw+TjMmxeEz3cKgYDyvYl1482fnyZ7vFXI9fHYfunzcRgxorFfuiEjUggJnwRG76Cvp9Jt7Oe1xrcIcToIVYjRa8Fz4EBXUR95VVUV8xYffmV85MgRrFq1SvF4lqwTdgbFyvWVIUOORY6T6985OTloaMhlNqNReD2N7mDPek2g2IJ/d9/duKXFiRM1eOml8OtywkzMjTdjhh93351h+7im5ll49NEgAoEWyMg4EtnxnuXFqBQkfBIYPYO+3kq3QszYsoCFwFkzrgUgvxnhqlWrXBG3lJ2d7XhmjV7saI9yX9kAv7/xeKn+/dJLDZgzh9MtsO3AinYoLXacKG+hdksLuedBfK8rj6qYLisWEEr3Ljc3fK0//zwJwWCjOGNpMaoGEj42I7UXCo/dA5jW7zJS6TYWpZVCv34lCAZbo6DgLNLTj6uyJtiJWdfCjGvJCqxMvqxhRvByWDTl6RbYbkdKWIQtaO5MJZfa62ratN8iJ+e05OfsnCeEc1ajtTIbHs+UqJhMFhajaiHhYyN69kJhFbMq3UqtFHbsuAhz5pwfWdnOmqV/LyKrMXot3FI1mDCOkXsdTwLZLILBDMyZ43dtKrnUXlfCPe2cRDhnxVor1cRkslRdWoi7y4K6DL17obAIb63xeMIjjhG/rt9fg4KC7yOf5V0/jbV6PJg9Ow/BYIbiufbsqcJbbwWwfftPqKysRGVlJQIBa0vk67kWQjO1mdeSYBsj95oXTUISXSAfP54dGSd4+Iwvq597owQCAVRWVuKqqyqxbdtPeOutALZt+wlXXWXPuKUG4VykJ3vrtddeY+J3xEIWHwdRsz8Ty1jl19XrDtix4yLMnt1ddOsHq61oWq9FdnY2SktLsXLlSl2fdxKh6TtcgykJBQVnkZcXnpRZijdhEbl7LZa1xQcJuy2I1I6MOaM1gpxCyvq/Z0/03yy1X6+1ksWFPAkfh5CqdKkXp2KHrPDrqi3qBzROCnIBwna5AbReC78wmlXH551AOGDL9WGnB2zWYulikbrXSnWb3CSQ7Qh2ZzXjSwk3Wv/dJrzlIOHjAEqTtFbiKXYI0FfUz0jQKKEefiBmQWhKEfs8SFlW3fI8xOIGgcxj5PqqtQS5SQy6nXi51iR8HMDsSTp2kpEa6FlZPagZ0LQ+YBQgbC+sCE0xy86xY401ceSsUqw8D/GGWanlchYjozWCzICFHeGdwE3CWwoSPg5g5SRttgstFjMedqkBzchgFmslAkIoLt4adW6z3RtGr4WbB04WhKa8Zcd8y6oR3Hyv1WBWIc9Y1HzGqVhJt9atIjQIn+rqatUnzczM1NWYRMEqX6kdA71ZD7uVRc62bSvC1q3F2LKlP7ZuLcaoUWsBhAWVme4No9fCyOedjmFhwd8v/P1igr9Fi5+ZsEoBxu4166LJrEKeerB6oaeE0u8pLwc2bWKzynYio1r4ZGVlwePxyB7DcRw8Hg8aGhoMNyweEQ5Mcq4cvQOYXe4H1lcwW7cWWxZ7Yrbg0HMtWYlhYcXfLyX4J0z4iyNWKSv6iNOWBTn3lZlFTdUSDAaZsuiJEbsHl5sKK/JonYvckqmsWvhs2rTJynYkBFYPYCy4H4xgxsrWSvHHiuBQsnTYGcPCgr9f6p7X16fYbpWyqo84sdjQ6r6ya/wJBAJYuXIljh/PZ8aiF4vYHlxuKqzIk52djZKSElVV86XGIhbdt6qFz+WXX25lOxKGeHc/6EG4Qi4pKcHZs2ej3k9OTo6kfscOtrEPlZWDr1rBUVFRISk6zFyZs77itQu5e15Q8L2tVimWRKkRtLiveOwaf7Ts9efUpCu+Bxewf39Y+LDuvhSSlZWleEwwmIG1a0dFVXVet24UHn30MmRns1GFWoju4OaqqiosXboUe/fuBQBccMEFuOWWW5rUJiHshRX3g1qMrpB5K1pFRYVtRd6UBAcfoG21RciJzCoWB2yle+6EVcrtolSv+8rO8UfpvpeUlDhmKcvMPAuvt3VUVWmfj0NGxhEEAklMuC/NRLyCtgeBAHuiB9ApfL744gsMHToUaWlpuPTSSwEACxYswGOPPYb169ejT58+pjaSkCd2kpEa6FlYPcRixgo5Ozs76n2rB181gsOO1b4Trk1WB2w999zK54GVdH+j6OljRoSm1lR4ufuuxlJhNsKF3MiR0WPAiBFrsXYtGwU+YzFagqBlywC8Xi5G6AFdu5rYSBPRJXzuvfdeXH311fjzn/+MpKTwKc6ePYtbb70VU6ZMwb/+9S9TG0nIw+pkpAWjK+Sqqqqov61c5StNBnat9p1ybbLaj6Tuudg2EFY/D26Pt+Oxo48ZTYVnIc6MR+0CjCVXpxlB2H5/DebPD2LGjKyozVZZjWfSbfERih4ASEpKwvTp03HxxReb1jhCPaxORmoxskIOBAKqgu/MQmkysHO17zbXppmotdjk5eXZ/nzYJUrtKGtgZR9zMhXeDlgSZWKIBWFPnAhceCFwySXh19Q+Z+PHN6C0NBzH1LUru6IH0Cl8MjMz8cMPP+D888+Pev3QoUPIyFDeQZsgYjGyQlZbuRowz73BTwaHDrUH4EGHDoci79m92md9cLUK1i2dVotSO7MM5fqYkbgvJ1LhiUbEgrBDIaBv30bLj9JzVlVVBY/Hg7q6Ovh8lejePfx6ZWX4vyx6G3QJn9LSUkyYMAFPPfUU+vXrBwDYvHkz7rvvPlx33XWmNpBIDMxaIcvF1pSWlpr6AB440FX0u6xe7bMYYOwUsfcz1gJSV1eHSn4Ehv2DsJWilJUMMjMEaLy4Bt1Gt25h95aY+BGm30vdO7XWdtYsdrqEz1NPPQWPx4ObbropknqcnJyMO++8E0888YSpDSQSB6MrZKXYGj7jUK97QCgklL5L7rcI95JS+k4xWLd0OAULm/U6IUr1xJQpPQPBYFBTG8ywKKldLJDwN4dAIACfrw7z5zfGVgkRpt9L4cZd5gGdwiclJQWLFy/G3LlzceDAAQBAly5dkJ6ebmrjeMrKyvDII4/go48+wuHDh5GXl4cbbrgBDzzwQFTn3r17NyZNmoT//Oc/aNWqFe666y5Mnz7dkjYR1mBkhawmtsbI5Cgs5qXmu6R+i3A/MqXvlCLRRI0aWNis1wlRqjWmTK2LTA1migu1Cx8S/saJ7QO33JKLpUtvbWJxy84OAmAzJd0IhjYpTU9PR69evcxqiyTffvstQqEQXnzxRXTt2hV79uzBbbfdhpMnT+Kpp54CEN5LbMiQIRg8eDBeeOEFfPXVV7jllluQlZWFiRMnWt5GQh9mrt7UmMuNrlD4FFkrTPOsrYrcjJN7ONk94Wrti2pdZCUlJbIp4VaIC7ULHxI1xogda9q3rxS1uAEFCARCcXe9dQmf06dP45lnnsGmTZtw5MgRhGIchDt27DClcTzDhg3DsGHDIn937twZ+/btw/PPPx8RPq+//jrq6urw8ssvIyUlBRdccAF27dqFBQsWkPCxGDmzOR/4JlXYMiUlxbTVm57YGr2rXaXvEqZQx+4675b9bNyK24sHakVvTJnSdcrKykJubq4dPyFucLMbTmhxS06uQ319KpYt2+/qrDopdAmfCRMmYP369bj22mtx6aWXKm5eagXBYBAtW7aM/L1161YMGDAgqkMNHToU8+bNw88//4wWLeLPXMcCal1HckyePNm0AVZLnJBRq4Dcd+Xk5Ij+Jqd3k04E9JQTcHq3e6PoiY+LlyKLLOF2N5zfXyOatBFv1mhdwmft2rV4//330b9/f7Pbo4r9+/fjmWeeiVh7AODw4cMoKCiIOq5NmzaR96SEz5kzZ3DmzJnI39XV1Ra0OH4x44Eweg4tlav579JrFTBSJTvRLBFOodX1w0JQtBlojY9jIZPKzRYSKVjuI0pIjVGzZh1FPBn/dAmfdu3amVKv5/7778e8efNkj9m7d29UvaAff/wRw4YNw+9+9zvcdttthtswd+5czJ492/B5tOD21SVraFll8anNele7RlZ0tMK2B62uH7XCu6KiAgA7E5tR0cDCpsZut5BIYXQLCKeQGqPKypJQWOhQoyxAl/B5+umnMWPGDLzwwgvo1KmT7i+fNm0axo8fL3tM586dI/9fUVGB3/zmN+jXrx9eeumlqOPatm2Ln376Keo1/u+2bdtKnn/mzJmYOnVq5O/q6mp06NBB7U/QDCurS6vEl1z8ipWxLWraGggEIqnkRla7eu8LCytsu3FK5BspjSDVT/k4LVYsP2aIBq3XyYr7ycK1NAOjW2+oxUpRJTVGZWYeQSDQ9F651WKnS/hcfPHFOH36NDp37oz09HQkJydHvX/8uLqBvFWrVmjVqpWqY3/88Uf85je/QWFhIZYtWwavN1qVFhcX44EHHkB9fX2kPRs2bED37t1l43tSU1ORmpqqqg1mwELdA6vEl1z8itOxLbG/2YnVLgsrbDuxW+SbsVmvmn7KUryDGddNrYvMzkrRbsOurTfM2FdLDqkxasuWndiypem9davFTpfwue666/Djjz/i8ccfR5s2bSwPbv7xxx8xcOBAdOrUCU899RSOHj0aeY+35owdOxazZ8/GhAkTMGPGDOzZsweLFy/GwoULLW2bG7FCfMnFrwBwPLZF7LfIrXbNXKEIz2XXd7KAGf1Mi4XB6CCcKDFYelfprFSKZhE7tt4Q21dLWF1ZC3J9QOvmqqyJGjXoEj5btmzB1q1b0bt3b7PbI8qGDRuwf/9+7N+/H+1j7jDHcQAAv9+P9evXY9KkSSgsLEROTg5mzZrl2lR2seq+PCwqaLkHHvAwG9sSu9odPXq06ZtaunVV5DR6LEZGrqFUHz50qD38/r26z8saJBCtwyp3diAQwOefA6FQ9D1paAC2bQsgLU1b3+f7QEVFBZYt29DEchfv+//pEj7nn38+Tp06ZXZbJBk/frxiLBAAXHjhhfj000+tb5ANSFX35WHNnKz0wLMW2yJlps/JybHkurJ0r9yC3W5hsT4MAKtXX4u6ukaLBr8ocbNYtUIgsrCQcRor3NlCN5rHM6XJOLp58yvYs0e7Gy07OxuvvZZ6zjWXWOU1dAmfJ554AtOmTcNjjz2GXr16NYnxyczMNKVxhDSsmJN5k6nSAy/3nt0uHqfjjRIV1gs38n343XdHAmicXGItGsJFCWsLEDtIxCB9LRjdczAWfqxXGmO1zgnl5cDUqc1xzmmSUJY7XcKHr6J8xRVXRL3OcRw8Hg8aGhqMt4xwBbFm81mzjqKsLAn5+WeRl3cJqqq6wePxYOJEf5P3gEtsXzWTmd4ZzBCbUsIpGAwaKoAZG4OVknIGb731u6hjpCwarCxA7CTegvSFcWQVFV4cPJiEgoKzyMsLB9PoGaOschUZFVV8RlhOzs/Yty/UxHWWKJY7XcJn06ZNZreDcBCjK3HhoJCbi6h6D8IJKfY9JyAzvf2YITblhNPKlSsNWV6E8Q5r1qxBhw6HyKKhgNlWDacQxpHJ9TGWLHt6RZUwI8zj8WPw4I3weAZb0s9Zr2OkS/hcfvnlqo77wx/+gDlz5kT2LCLYy9xJNLcPmentx6jYVCOcjFpehJOamEVj8OCNOH48O/I+ER8BsGoruevpX2ILSqPWSb3EZoRxnBcbNw7G4MEbsXHjYFMtd1an3JuBod3ZlXjttdfwxz/+kYSPgFjXUKxpNXZDSz0opQDX1tYCUH7YWRNpRlAbixRPv9lp+GupJDaVrrldVjrhs3ns2DF06bIIx4+3REVFXpPJIZ4XB1JYUayOlSr2RvtY7G+WWlAatU7qQSojjOO8yMurwJQpi1Rb7pTurZkp91ZiqfDhU82JaPhOL6aMr7rK2LnVpgDfcMMN2LkzCwsXNn3Y+/cfh4ED4ysTSSkWyYl4o3hHeM3btavGjBl+NDR44PNxmDevGmPHXofa2lrU1dVFthIRYkaVbT1t5uEngb/+9SZdbjpWJnWzMLssAytV7AHjfSw7OxslJSVYtWqVJdYjvShlhPFiR6wvjx49Ospooebefvddo+jhaWgA9u9PIOFDSCOljLdt88p/UAG1D1V6ejr69s2G1xvdUX0+oKgoGy4aj1UjF4tEWAN/zadNA0pLwwNg164etG+fhUCgocnWM2LEWumAsOtJrbXHiADRawlgaVI3EzPbGntPpGIN7RAKZgRsZ2VlAWArjlBtRpgYOTk5mtxygUAAmZln4fW2RijUWNTY5+OQkXEEgUASM32dhI9DSCnj8vLzVH0+GAwaXjG2bx+2Mt1+e/i7fT7gxRfZUuZE/NC+fXTf0jKh9emzE6dOnRdxOW3cOBhpaacVXU5GBYheSwALW9O4CRZiDc0K2DbbQmmWi9HKgHThczZyZPS9HDFiLdauZStInISPQ3TrBlFrS2GhH7/+9WQcOXIEq1atkvz8ypUrARjvSBMmhP2v4ZU4iR6CTYLBjIjoAdS7nPQKEIoJsw+WSkyYEbBtdrq/mS5Gvg1mB+oL26a05QULGV8kfBwiLS2A+fN9MXEPQfh8pyDs30qp5masGGNX4gTBGna7DygmzD5Ycg2ZhdnWFbP6mV2WNSkBGd653vmML83C5+zZs3j88cdxyy23NNk3K5YbbriBqjiLIDQL3n13RuThOHGiBsKQBxbMvwTBAkYzw/RgZkwY61WrncTJEhNWZKrx6LUeWVFQEdBuWTP7mQoGMzBnjp+JjC/NwicpKQlPPvkkbrrpJsVjn3/+eV2NineEVhqph4Ml8y9B2IGUOCgtLYXf75fMDGPd8kILGHmcrATN2gbCVhZUVLKslZSURAK0rfjNx49nRwU9A85lfOlydQ0aNAiffPIJ8vPzTW4OwROP5t9EI97Sma1EbpD3+/3Izc0VzQwDsjR9j92WF5YWMCz3RycrQZv1m82wHllZUFHJspaVlWVpccWWLQPwejkmMr50CZ/hw4fj/vvvx1dffYXCwkI0a9Ys6v2rr77alMYlMnrNv1aabt0CCwN8vKYzW4EWcWAkHs0JywsrCxgW+2PsGCRl/XbLWGWm9cisfiO8dk7vseb312DkyPeYyPjSJXz+8Ic/AAAWLFjQ5D3apNQc9HZS1ky3dsPKAB+P6cxaBKWaY/lBWWmQN2Pis9vyYlbVarNgsT/G41hlVlvNinvKzs5GaWlpJAvY6T3WlDK+7EKX8AnFFqAhLEFvJxU+fCykDtoJiwN8PKBFUAJQfezkyZNRVnYWr77a1AR+113DkZ9vzARup7gSoqZqtdFJnQXLplFYb59TmGmd8fv9Tc5ttuDR8vywsMebLuHz17/+FaWlpUhNTY16va6uDm+++aaqwOdEQzhI8aX41aDUSeQ6nBs2iyPcgRWCsq6uDrm5ucjOFiuk6UFhYRu9zY3ACxArxZXcdwPhqtVDhvyM//43dC4dPrxwFG7VoVWksGLZJKzDaeuMFuSsd2bsP2k2uoTPzTffjGHDhqF169ZRr9fU1ODmm28m4ROD2kEqFj6bRQq5wdItm8URBGBtIc3s7GxLxZUSgUAAa9aEn/89e6SP0yJSyLKZGEgtfPnFs5np7kZxk8DWJXw4joPH42nyenl5uexEnajoHXxatWqluzO5ZbM4guCxupCmU1XKWRQpVFfI3axZs8b0dPdEQpPwueiii+DxeODxeHDFFVcgKanx4w0NDTh48CCGDRtmeiMTBeFuuEZVu9SWGF27Gm0loQeaaNiAqpRTXSGWURsroyXdnTJ9m6JJ+FxzzTUAgF27dmHo0KFo3rx55L2UlBTk5+djzJgxpjYwkZDbDVdrkLJTG5DGQ8Cl2dBEQ7ACS3WFiKYoZbrx8TJa0t3Nyp6Lp0QZTcLnoYceAgDk5+ejtLQU552nbidxwhh6g5TtNu1TwGUj/OpJaaJJpFUWYR1KFkWnstsI7agZG7Wmu+sdb/mFbHiPLT9CIQ+8Xg7z5wcxduwpVYKJRYuTrhifcePGAQj7pI8cOdIkvb1jx47GW0YAMB6kbKdpn4VYhtiHR2pCsPoh41dZmzYBCxc2nWj69x+HgQPdFRAoRIvrjtx80Zh9PdRYFLVmt5HlVj1OXCuz0t3lrDj8QjYYzMCiRVPAceE+Ewp5cN99mfjxx5fh99coLmRZrNekS/h89913uOWWW7Bly5ao1/mgZypgaB4UpKwN4UO2YkXauU3xtK9SzGpL377isVZFReFMIzlYmnyEQlFuoo0VlFqOTQTMdntqcV2pzW4jy616nLxWetPd1Vpx+LFHyUqoZiHLWj/RJXzGjx+PpKQkrF27Frm5uaIZXoR6+BVgRYUXsSE+FKSsnezsbJSXA9OnCy1lHsyYkYXS0ixFwWEmemOtWJt8hBaDOXNaR1Z/HOfFunWjMGtWUZTFQMuxiYKZ8TVGXFdKLnAWLLduwelrpbUYoBYrDo9ZVaRZQpfw2bVrF7Zv347zzz/f7PbEJXIrW+EK8NVXuSbxO04FKbsdlixlemKtnB5QxcjOzsbu3WLX1YOamjZRglLLsfGOFfE1RgszUnabNbDu1lWy4hw61B7Hj5/Cjh1H0LbtWQDO7/FlBbqET48ePTRVH050pHycFRXeqBVxKOQRjd+Rmzj1ukNYcqNYAWuWsniZaLRcV9bugVNYVT3a6cKMRDR2ZG+aFSgsZsUBQli9+lpwnBd//Svf/vA7bqoirQZdwmfevHmYPn06Hn/8cfTq1QvJyclR72dmZprSuHhCbFD79lv1VgmxiVOvO8QKN0ogEGBKDJOlzBq0XFe6B41YKVKcKsxINGJXmQCzAoVjrThACIAnyi0d234W9tgyC13CZ/DgwQCAQYMGRcX3UHCzNoyuiPW6Q8x2o+jdksNqaEKwBi3Xle5BNFZdDystiqy7b1hAS10do5hliRdacU6ebIa33vpd1PtWtZ8FdAmfTZs2md2OhCReVsRa40zszObRMiHEu/vPTLRcVxbcfCzdWxauh1pYKL7J0r2Twq0BwLwVJxjMcGX79aJL+Fx++eX49NNP8eKLL+LAgQN466230K5dO7z66qsoKCgwu41xjR0r4lgXlFMuqdGjRyMvL8/xQUoMu7Ko3DCIxxusZci5BRaqPLvl3rk9ANhI+91YlkKX8Fm9ejVuvPFGXH/99di5cyfOnDkDAAgGg3j88cfx/vvvm9rIeMfqFeCaNWusO7kGcnJymJ1Y7Mii0jKIE+bBYoYcy7BU5Zn1eye8BnIBwHaLA6kFltyiV679wn0khbh1oaZL+Dz66KN44YUXcNNNN+HNN9+MvN6/f388+uijpjWOcDcUGxCNlkGcxTLvRGJgVRZaPMJiVeLYBZaWcVgqgFluH0k3okv47Nu3DwMGDGjyut/vR1VVldE2xT3xtNmbFGKxAYR6YgfUigovDh5MQkHBWeTlhaPh3braItjHqVT5WEsFS5miUrD2DAqvn1yM1ujRowGw4xGwE13Cp23btti/fz/y8/OjXv/ss8/QuXNnM9oVt+jdcNRNSMUGzJp1tEllakIafkBNhD5DsImdWXlqXMFkRVaPUoxWTk5OwlqWdQmf2267Dffccw9efvlleDweVFRUYOvWrfjjH/+IBx980Ow2xg1GNxyNxerOqPf8UrEBZWVJKCw0o2WJg9l9hnAGNwe1G41BVPvblVzBLGSYacXJ+64mxZ5FV50d6BI+999/P0KhEK644grU1tZiwIABSE1NxR//+EfcddddZrcxbjB7GwW5Tnvs2DFVJkwzgtZiBZJUaucvfuGN/SihAEtbbxD6cEtmkhWYFdDPQoaZVg4cOIDXXntN8Tir7rvaFPt463Nq0CV8PB4PHnjgAdx3333Yv38/Tpw4gR49eqB58+Zmty+usKKEv9FOa0bQmpgAa9euGjNm+NHQ4IHPx+Hpp2uRlxdCZWWl5HnicWVhFNr2gS30rOBZz0yyErN+u50FAs0gEAioEj2AtRuYujnF3kp0CR+elJQU9OjRw6y2xD3xUrBQjNjBfto0oLSUjw3wIC3tDNOrXlZ93fHcZ+zCrHubyJYbp1GyXgSDQaYWTmJixon4pHjbY8ssDAkfQjt2BQuyMJELYwMqK9le9drh69Z7T2jbB2OYlSGXyJYbJ4gVCnLWi5UrVwJgV3SaEZ+kN14onvbYMgsSPg5gR8l6LRO52en1bk3XFw4aVvwGIxOwm7Y5YBHKkHMXUkJByXrBougMBjPw7rsjAeiPT9JibWRh0cs6JHziGDUrH7MngniYWKz8DTQBOwdlyLkDpUBmt1kvtm0rAi96eLTGJ2mxNubm5iZkppYWSPjEEVqtFGZPBHLn8/m0n88J7JgcaQI2F7UuAMqQcx65OBe1W2W4iWAwA1u3Fou8Y2wDUKV4oUQWNWog4RMn6LEgmD0RyJ2ve3ft53MCOyZHmoDNQ4sLoFu3bMqQcxClOBe5rTK8Xs70ncLtqLEjJuIAoF+/rbpFnBvrGbEGCZ84QK8FwexU6XhIvbbjN8TDdWIFLS4ApzLkYmMppFbr8Rhzwf8mJfcVf5zUVhnz5gVx4oR51h67MvSkstGKirZF/tZy391Yz4hFSPi4DLFVyuefpyAUin441VgQzJ4I5M4nU76HKeyYHOMpRd1tFYmdyJATBrWvWJGGOXP8CIU88Ho5zJ8fxNixp5i7TmbA943S0lJs3pwi6r7q338cBg5s6pqJvU8+3ym89FLj+0ZTw63O0OPFjFI22g033KDpvseTG9BJSPi4CKlVSjCYAY9nStQDEWtBkIr/MXsikDqfmzIN7Jgc4yFF3a11bfRmyBnpw3z25PTpQsusBzNmZKG0NAsMXR5TENshPHaM4qu5Z2e3ED1HdDmMxtfd4OqJzeCcNesoysqSkJ9/Fnl5lwC4RJfYVVuNmZCHhI+LkFp9xK4qfD4OL77oiQwaSvE/ZqdKi53PbXvC2JE+LvcdbrCkJFpdG6P1gBIptiv2nktZPnJyLlF1Pq0uMxYQ9oPcXJiyTyFVYzYHEj5xgrDGxV13DUdhYRsAbGUQOT1RuwW3WlISASPlCBI9tku8Do+48BET/iUlJdiyJVWTy0wtrO/6LhR0cvWMWBJ+LEPCJ47ga1zwq08gsVaZZuOU1SXRLCluQ+9iIp5iu/Sipg6PnPCXcusXFWXrdhe60XUmBgtWYLdAwifOSfRVpl7I6kJIYWQxEQ+xXVYjN7k3desbE49uypJywzjjBhc9QMInLjl27Fjk/30+YMGCDEyb1pypVSbr21qQ1cUdOBE0b3QxQduPGIN39fTvPw5FRdlISwvI7gUoN9lSlpQ25IRNVVUVVq1aFflbyn3IwmKRhE8csmbNmiav7dx5NwKBFkysMmm7BsIsnHABkMsqGrHJULj4sgK/vwb9+tUhJUWfZZYXwkpZUhQz04haKzgg7z5kYbFIwidByMk5jV69nG4FW8HWRHxg9eayYpDLKozaydCq4GG9llmhYG7XrhozZvjR0OCBz8dh3rxqjB17HTNuGVaIvYZS99QN7kMSPi4iHlYfFGwdP7BWm8luSyK5rNQJD7nVv5NjGi9qpk0DSkt5EetB+/ZZALIca5cbkLunbnAfkvBxEWJm/WPHjom6tliFgq3jB5YyTciSyCZiq/9160Zh1qwi5OcnMWNRIRGrHiWLjhuKLJLwcRmsDBR6ofgIZVizpMjhhJtJDLIksonY6r+hwYOamjaq089Zr7GTaChZdNxQZJGED2E7FB8hD0uWFLU4HbBOlkQ2EVv9i90XYYB0VVVV5HUlNxkLgbKJhhqLjlyRRRYg4UM4AuumZaetLiyJGiVYcDORJZFN+NX/unWjzgUPN70vcnsQKrnJKlXufiyXZebEIsIt9W7EUGvRUVOs0ilI+BCECCxZXVivecSKm4ksiWzSp89OzJpVhJqaNqL3ReoZ0+Mmk3KLKcVB2llbJh6Koxqx6LDgoifh43KctkzEMywMOk67kNTAkpuJdUtiopKXF0JurrbPqHGTCcc1I1tP2Okyc2tx1Ng5RMqiU1paCr/fL3kOFsZVEj4uhyXLRDzjhNWFBReSGsjNlLjEToZSFhc9C6+m21NwePFFT1S/4se/srKzmDOnNTjOA6DRLTZ5cjds2bJK4hsILcTTXEPCJw7Q0tHc7Ft2CqesLqy4kNRAbiY2sfp5F06GK1akYc4cP0IhD7xeDvPnBzF27ClD3yF0qdx113AUFrYRbcPu3WLPigfV1a11fS8hTrzMDSR8Egi3+padFGtOWl1YciGpgdxMbGHX856dnY3ycmD6dOFz4sGMGVkoLc3SvWs6D+9SycsLSR4j9azk55/Fnj3Gvt9qKF3ffkj4uBit7hc3+padFmtOWl3IhUQYwc7n3WnrpNSzIieWWMBIXBKhH6/yIQSLLF0KdOoEDBoU/u/SpU63yBqcFmv8SlKInVaXCROAsjJg06bwf1kLbCYIwNznJBjMwMGD+QgGMzR9Ts2zovfcViBVAZmFtsU7rrP4nDlzBkVFRfjyyy+xc+dO/OpXv4q8t3v3bkyaNAn/+c9/0KpVK9x1112YPn26c421CLcEvcYDLFhdyIXELhQzF8bIc6I2M0tNgLTcs8KadcUNe1rFK64TPtOnT0deXh6+/PLLqNerq6sxZMgQDB48GC+88AK++uor3HLLLcjKysLEiRMdaq01OG1WTjTMDNyliTJ+UOuGLSkpQVZWluh78XS/9T4nSplZRvb14sWS0v5Sdpb74L9LqQIylSCxDlcJnw8++ADr16/H6tWr8cEHH0S99/rrr6Ourg4vv/wyUlJScMEFF2DXrl1YsGBB3AkftwW9xgNmWF2cjlcizEWte3XVKvl06ni633qfE7nMLC37eomdd/Lkydi0CVi4sKl1pX//cRg40N5sJWEmXLt21Zgxw3+uqjWHefOqMXbsdXEliFnENcLnp59+wm233YZ33nkH6enpTd7funUrBgwYEKWShw4dinnz5uHnn39GixYtRM975swZnDlzJvJ3dXW1+Y03GTmzMutVfhMZp+OVCDah+x3GqgVddnY2+vYVP3dRUbbhrDO9bQKAadOA0lLeSuZB+/ZZALKijiUrsfm4QvhwHIfx48fjjjvuwMUXX4yysrImxxw+fBgFBQVRr7Vp0ybynpTwmTt3LmbPnm16m61GzKzshiq/VsHvxUODAEG4Eyvj6ViI1ZNrm1Q7yEpsDY4Kn/vvvx/z5s2TPWbv3r1Yv349ampqMHPmTNPbMHPmTEydOjXyd3V1NTp06GD691iB8IFRE/Acz9tbCPfiMXMQoNUW4Va0VlVmoa9bWQjTjUU2yUpsDY4Kn2nTpmH8+PGyx3Tu3BkfffQRtm7ditTU1Kj3Lr74Ylx//fV45ZVX0LZtW/z0009R7/N/t23bVvL8qampTc7rRtQEPLux5LgeEWbWIECrLcLNaKmqzFJfF7OAmCXKKEOSABwWPq1atUKrVq0Uj1uyZAkeffTRyN8VFRUYOnQoVq5ciaKiIgBAcXExHnjgAdTX1yM5ORkAsGHDBnTv3l3SzRVPqPWPu22CFg7ex44dU9xl2UxotUW4HbVVlVnu6yyJMqehKs/m4IoYn44dO0b93bx5cwBAly5d0P6cfB87dixmz56NCRMmYMaMGdizZw8WL16MhQsX2t5eJ2DZh20U4WBGDz5BaMPt5S9YFmV2wlodIjfjCuGjBr/fj/Xr12PSpEkoLCxETk4OZs2aFXep7HK40YethRUr0rBo0RR68AkmMDsWzqoYGyp/4X6U6hAR2nCl8MnPzwfHcU1ev/DCC/Hpp5860CJ20OLDdlPqe9hc748qbua2Bz+eg8sTkdiYuYoKLw4eTEJBwVnk5YUQDAaxcuVKxfOkpKRY6s6JZ2twokBVns3FlcKHMI7bUt/D5npP1Gtue/CVJkqAveByHhYyfliE/83iz1Ou6vtdWVmp6vv0unPi3Roc7yhVeSa0QcInAXHjXl9hcz0XJX7c+ODLT5QON04CCi6VR/55Yud+U0aT++Ctv35/DUaNWtskxodf9JGVWBskfBIQNwY7tm8PLFhwEvfemx558AcP3ojjx8MTi1hdErMxK7DabcKTgkvlUXqe3Ha/7UKvFTGREhxircSzZh1FWVkS8vPPIi/vEgCXJKy11QgkfBIQtwY73nNPcwwa9DP++98Qdu1KwuOPXylZl8QMzNw1WogbhSchjdLz5Ib7rbXYoVG0WBGFJGJmk3A8y80FCgsdbEycQMInAXFzsGOvXi3QogVQUiJfl8QMrNo12q3CkxBH6Xlyy/0uLS1FfX091qxpgcWL20UWFbNm/YiSkhq0bt3atEWFFisiizusE+6GhE+C4uZgRztX0FbsGu2E8KTgZGuRe55YX2gIrS/BYMa5khFhkR8KeTB7dh6CwUV44IFxjrSPxR3WCXdDwieBcWuwo90raCu+z07hScHJ9iD3PGm933bGsQgFsVzadF1dnWMCmsUd1vVACxA2IOFDuA67V9BWfZ9dwlOtW6GiogKA8so5kYJLzUTuflsVT6YVubRptXWJrBLQrFvOlKAFCDuQ8CFcid2uOje7BtXC74MmN/AmYnCpHVgVT6YVubTp+vp6VeewMrvPzc8hZUeyAwkfwrXY7apzq2tQK7EDLwWX2oMV8WR66NNnJ7p02Y/jx1uiZcvjEateTY111j0tVsREeQ4J6yDhQxCELBRcah+sZID5/TVNBMiGDRss+a5EtSKSy9g5SPgQRIKhZ8CNl+BS1mEhjsWOCTnRrYiJKvZYgYQPQSQQRgZcFiblRMDJOBa7JuREtiLSTuvOQ8KHIBIEsQH33XdHonXrw2jfXt0mmW4OLnUTdsaxqLW+xGLUMpSoVkTaad15vMqHEAThZviJTWzABbxYuvRW7NhxkerztW8PDBxIoide4K0v/fqNE52Q+/cfh5KSkqjXd+y4CIsWTcErr4zDokVTNPUfIbwV0ecL/50IVkS+ZIAQN2647GZI+BBEnMNPbNdff2mTARdoXNkHgxkOtI5ggbD1JRvemBmBt75kZWVFXpOyDPH9R2tczoQJQFkZsGlT+L9271pvF7E7rfPPIu20bj/k6iKIBCA7Oxt9+gCjRq3Fu++OROyaR2hqp4E3MZGL4aoUeELlXDUTJ16lKy4nEVLUaad1diDhQxAJQnZ2Nl5+uT+2bQtg5MicSJE8APD5ONx113BbiuQR7KImhquiIhcAB6Cx//CuGr/fb1tb3QjttM4GJHwIIoHIzs7GVVcBf/5z7Mreg8LCNk43j2AAMeuLMAB648bBEIoegMPgwRvJWmgQ2sfLPjwcx3FON4Ilqqur4ff7EQwGkZmZ6XRzCMIyyssTMzuLJhh9BAIBbNoE/O53Ta/NW28F4jb93A5oHy9zUDt/k8WHIBKURIiriIUmGHVIicOCAi+8Xg6hkNBNGt/p53YQe62lSgXQPl7mQMKHYIrycuC778Kl+904KZvVfrdfB1ahjSKVURKHI0c2FjlMhPRzu6GqztZD6ewEMyxdCnTqBAwaFP7v0qVOt0gbZrXf7deBcDdKoq9Pn52YMmUR3norENfp506gVCqAMAcSPi6lvDxc96K83OmWmEN5OTBxYmMF11AoHHzrlt9nVvvdfh3cRjCYgYMH82li0YjfX4N+/erI0mMycqUCnCae5hxydbmQpUsbJ0evN1x7w+2rru++iy5bD4Qzjvbvd4cZ3Yz2BwIBfP45EApFB0s0NADbtgWQlkbBo2ZCLgWCNfiqzkLx42RVZz7Wa8WKNEyf7kco5IHXy2H+/CDGjj3l2kQAsvi4jHi1CHTrBtGqsV27OtMerRhtPx9XsWXLK6Ll7DdvfgXPPvssAoGA6OfjaTVmB+RSUA9ZxexDqaqznfBj0pNPvoH77suMBLSHQh7cd18mnnzyDdkxiWXI4uMy3G4ZkcLNO38HAgH4fHWYPz8NM2b40dDggc/HYd68IHy+UwgElFdFfFwFP/DFWiL4gU8s/iIeLYBWUVVVBYA2ilQLWcXsp0+fnejSZT+OH295riikM/2RH2uUnhU3JgKQ8HEZvGUhdjdjt1hG5HDjzt+xGTB3350RGbBOnKjBSy+FX9eSHq1l4JOyAA4d6o7rZyeBQACrVq0CwJ5LgUW07tZO6Ce28KPfXyN6jZ0oEBmPzwoJH5fhZsuIGtxWWyZ2tSM1YGldFUmdJ5Z4tQBagfAe+P01GDx4IzZuHCxqWaMKxGQVs5PYfbzEcCqeRskK7UZI+LgQN1pGiDBm1ucJBALIzDwLr7d1TEE5DhkZRxAI0L5bUuzYcVFE9AAhDB68MeLCKS0tTejrxos+pZU+iUNzYbnPseJ+MwsSPi7FbZYRwtxYHKGLTVhQzuMJYcSItVi7NjyJJ3oFYjFiXTiAFxs3DkbPnnvOWdoSe6NNofWhXbvqmLi1aowde51rs3kI/ai1QrsBEj4EYQMVFV5TY3GEJnG51ZgbAw+thlw4yvCiZto0oLSUty570L59FoAsJ5tGEIYh4UPENaxs/XDwYJKlsTjxtBqzmngM1rQSsi4T8QbV8SHiFie3foitfVJQcFa2zo/aeAmKqzAOS7VSCIJV4nlMIosP4ThSO0Hz6IkncDLNW6z2ycSJIdlsPJazOuKReAvWJAiziecxiYQP4ShKO0HzaA3StSvNO3a1I1X75NFHg4rZeG4cQNwEy7VSCIJF4nVMIuFDOIra4FutQbp2FXqMXRVt3pyChQubBs4GAi0AaI+XYCVGKR6I5xWsECssqIT7obGkERI+RFxiZ6FH4STSt695gou2ojCfeJ/wYy2owWAGjh/PRsuWgSjrFpU5SAzidZNRo5DwIeIWJwo9miW4lGKU4jnwkNCP0NIjt88WlTmIf3gRHAxmYNGiKeC46E1Gf/zxZfj9NQkpgkn4EHGNE6m4ZggupRilRHHbEPqgfbaIeN5k1CgkfAjCAowKLjUxSiRqCCmoSCPBQ3WrmkLChyAsRk+wabxvRktYC012BE88bjJqFBI+BGEhRtL1aTNaAtCXjaM02R07dgxAeCuVgweTUFBwFnl5YfMiuUjjDzvrVrkhe4yED+Eo8R6kazRdn7YLSEzMyMaRm+zWrFkjG/yciAGv8Y4d29q4JROVhA/hKBSkay9uWI2xhBPXy8xsHKnJTin42e6AV6E7mKxQ7sTJavlaIeFDOA4NaPbgltUYKzh1vYxk46i1jLIU/Cx0B5MVyr3YVS3fDEj4EISAeLWIuGk1xgIsXC89AcpKFtRjx45hzZo1TAU/8221wwoVr8+3GHaGEQQCAWRmnoXX2xqhkCfyus/HISPjCAKBJKZEKwkfgjhHPFtE3LQaswotkx4L10tvNo6aCYbFTB+rrFCJWr3YrjACocVu5Mhoi92IEWuxdi17FjsSPgQBNlb4VmLX3mWsolXUsnK9rMzGYW2HeiusUIlevdiO3yQUVnJ9iqVCiV7lQwgi/pFb4ccDfF0gny/8dyLVBZISteXl4scHAgH4fJWYP78KPh8HIGyynzevCj5fJQKBgO52bNok/b1S+P01KCj43hJhYuW59bRl1Ki18HjCN8oMK5SaeCnhcYRxWOpTUpDFhyBg3QqfpXT9RK0LpMVtFVt36e67MyKr1xMnavDSS+HXtVoI4tmNaiZWWaFYimkinIeED0HAnErJUhWaS0pKcPbsWSQnJ8Pv9zd5P9bPrqfSs1oSsS6QFlEbe92l0sG1WAhYcqOyJMSlsKLeDIsxTYRzkPAhiHMYsYioqdAcDGZgwIAJuPhiv+S5jVR6JsRxevsPrYHSVoqTRK6bxVpME+EcJHwIQoBei4iSBYCvT7JwoVfW1WG00jMhjpNuPq1uVKvFCWuixk4rlB3Viwn2IeFDEBYTW58k3jLGzMCq+ipCt6HPB3TvHn69sjL8X6utG+FA6TrMn5+GGTP8aGjwnAuUDsLnO4VAQPz7WRMnVpLIVijCGUj4EITFiGWUJFoNHTmsCvx12m1oVaB0PJLov9/NuCFuLBYSPkTcYWVwsB7EMkoSqYaOHFYG/jrtNrQiUJrQhhsnZbfhRosdCR8irnB6lS9GbEZJItXQUYKFCslE/OLGSdmNuO36kfAh4gqnV/lS8Bkl/fuPQ1FRNk3q52ClQjIPWQjiD7dNyoT1kPAhCJvw+2vQr18dcnOdbgk7OJ1qHgtZCAgi/iHhQxAmYJalIBEtDqxVlCZRQxDxDQkfgjABsywFVlgcWAv2FiMRK0oTBOEMJHwIwiTMEg9mihAWg70JgiCchHZnJ4g4Rk0QdzCYoWvXcCvQu4O5GE67DZ3+foIgxCGLD0EkMGq30rADswsZOh2o7PT3EwQhjquEz7p16zBnzhzs3r0b5513Hi6//HK88847kfd/+OEH3Hnnndi0aROaN2+OcePGYe7cuUhKctXPlMQNsRpOQ6ts9bC0lYbZhQwbt8BwtnRAoj+PTmDV9ieEMVi6L65RBKtXr8Ztt92Gxx9/HIMGDcLZs2exZ8+eyPsNDQ0YMWIE2rZtiy1btqCyshI33XQTkpOT8fjjjzvYcnOgWA110CpbPSxtpWFmIUOrtsAg2IfuPZuwdl88HMdxzn29Os6ePYv8/HzMnj0bEySu1gcffICRI0eioqICbdq0AQC88MILmDFjBo4ePap6hV9dXQ2/349gMIjMzEzTfoNRKisr8RK/uY8MEydORC4ViiHOIddvgsEMLFo0pclWGmVlzlh8OnVqWshQa1vMOg/hPujes4md90Xt/O2K4OYdO3bgxx9/hNfrxUUXXYTc3FwMHz48yuKzdetW9OrVKyJ6AGDo0KGorq7G119/LXnuM2fOoLq6OuofQSQC/FYaHk94RLK7eGAgEEBlZSUqKyvh81Vi/vwq+HzcubZwePrpE5rbImc5IuIbuvdswuJ9cYWr6//+7/8AAA8//DAWLFiA/Px8PP300xg4cCD++9//omXLljh8+HCU6AEQ+fvw4cOS5547dy5mz55tXeMJgmGc2kpDynUr3MG8qqoGgYA21y1rW2AQ9kH3nk1YvC+OWnzuv/9+eDwe2X/ffvstQueu2AMPPIAxY8agsLAQy5Ytg8fjwd/+9jdDbZg5cyaCwWDk36FDh8z4aQTBBGpcvH5/DQYOtNcdIBWD5ffXoKDg+8gu5lr3VOO3wPD5wn87vQUGYQ+BQEDUajhvXhV8vkoEAgGHW5i4sPhMOmrxmTZtGsaPHy97TOfOnVFZWQkA6NGjR+T11NRUdO7cGT/88AMAoG3btvj3v/8d9dmffvop8p4UqampSE1N1dN8gmCeRAz2Zm0LDKthKVvGCWKth0Kr4YkTNeBD3BI98cNJWHsmHRU+rVq1QqtWrRSPKywsRGpqKvbt24df//rXAID6+nqUlZWhU6dOAIDi4mI89thjOHLkCFq3bg0A2LBhAzIzM6MEE0EkGok42CfKFhisZcs4Qayo9/trIhZDueMI6xGWYPH5gO7dw6+fs2U4tuhyRYxPZmYm7rjjDjz00EPo0KEDOnXqhCeffBIA8Lvf/Q4AMGTIEPTo0QM33ngj5s+fj8OHD+N///d/MWnSJLLoEAQRd5hd+4ggzITlEiyuED4A8OSTTyIpKQk33ngjTp06haKiInz00Udo0aIFAMDn82Ht2rW48847UVxcjGbNmmHcuHGYM2eOwy03ByrMRxCEEDNrHxGE2ai1sDlhiXON8ElOTsZTTz2Fp556SvKYTp064f3337exVfaRiLEaBJFIaI3VYTFbhiDcgGuED5GYsRoEkQjoidXhs2Vuvz1s6WEhW4Yg3IArChgSBBFfkOu2EalYHTU71E+YEK6Au2lT+L+JFthMEHogiw9BELZDrttGjMbqJEoGG0GYBQkfIuGhXe+dga5pGIrVMQZZDwmtkPAhEhqWUy4TBbOEp1sFLMXqGIOsh4RWSPgQCY3VKZdunYztwizh6XYBq7WyLfWraBLpt7oFli1xJHwIwiLcPhnbgVnCk+WaIWpRG6vjln6V6FtpJDosW+JI+BCERcTDZEywhxv6FW2lQQDsWuIonZ0gCIIwDSPp+QRhByR8CIIgCNOQS88nCBYg4UMQBEGYBp+eL4TS8wmWoBgfgiAIh4jH7CxKzydYh4QPkdCwnHJpJfE44boNt2Rn6UFrej5B2AkJHyKhYTnl0ipYmnDNEp5uFLBuyM4yAm2lQbAKCR8i4bFqcmd1MmZpwjVLeCaSgGW1XxGEWyDhQxAWkUiTsRHM+v2Jch2pXxGEMUj4EISF0ORDWAGr/Ypixwg3QMKHIAiCMAxLsWMEIQfV8SEIgiAMw1LsGEHIQcKHIAiCIIiEgYQPQRCEA1B2FkE4A8X4EESCQRMuG1B2FkE4AwkfgkgwaMJlB7rGBGE/JHwIIgGhCZcgiESFYnwIgiAIgkgYSPgQBEEQhqHYMcItkKuLIAiCMAzFjhFugYQPQRAEYQokagg3QK4ugiAIgiASBhI+BEEQBEEkDCR8CIIgCIJIGEj4EARBEASRMJDwIQiCIAgiYSDhQxAEQRBEwkDChyAIgiCIhIGED0EQBEEQCQMJH4IgCIIgEgaq3BwDx3EAgOrqaodbQhAEQRCEWvh5m5/HpSDhE0NNTQ0AoEOHDg63hCAIgiAIrdTU1MDv90u+7+GUpFGCEQqFUFFRgYyMDHg8HqebYzvV1dXo0KEDDh06hMzMTKeb41roOpoDXUfj0DU0B7qO5mDldeQ4DjU1NcjLy4PXKx3JQxafGLxeL9q3b+90MxwnMzOTHm4ToOtoDnQdjUPX0BzoOpqDVddRztLDQ8HNBEEQBEEkDCR8CIIgCIJIGEj4EFGkpqbioYceQmpqqtNNcTV0Hc2BrqNx6BqaA11Hc2DhOlJwM0EQBEEQCQNZfAiCIAiCSBhI+BAEQRAEkTCQ8CEIgiAIImEg4UMQBEEQRMJAwidB+de//oVRo0YhLy8PHo8H77zzTtT7HMdh1qxZyM3NRVpaGgYPHozvvvvOmcYyitI1HD9+PDweT9S/YcOGOdNYhpk7dy4uueQSZGRkoHXr1rjmmmuwb9++qGNOnz6NSZMmITs7G82bN8eYMWPw008/OdRiNlFzHQcOHNikT95xxx0OtZhNnn/+eVx44YWRAnvFxcX44IMPIu9TX1SH0nV0si+S8ElQTp48id69e+NPf/qT6Pvz58/HkiVL8MILL2Dbtm1o1qwZhg4ditOnT9vcUnZRuoYAMGzYMFRWVkb+vfHGGza20B188sknmDRpEj7//HNs2LAB9fX1GDJkCE6ePBk55t5778V7772Hv/3tb/jkk09QUVGB0aNHO9hq9lBzHQHgtttui+qT8+fPd6jFbNK+fXs88cQT2L59O7744gsMGjQIv/3tb/H1118DoL6oFqXrCDjYFzki4QHAvf3225G/Q6EQ17ZtW+7JJ5+MvFZVVcWlpqZyb7zxhgMtZJ/Ya8hxHDdu3Djut7/9rSPtcTNHjhzhAHCffPIJx3HhvpecnMz97W9/ixyzd+9eDgC3detWp5rJPLHXkeM47vLLL+fuuece5xrlUlq0aMH95S9/ob5oEP46cpyzfZEsPkQTDh48iMOHD2Pw4MGR1/x+P4qKirB161YHW+Y+Pv74Y7Ru3Rrdu3fHnXfeiUAg4HSTmCcYDAIAWrZsCQDYvn076uvro/rj+eefj44dO1J/lCH2OvK8/vrryMnJQc+ePTFz5kzU1tY60TxX0NDQgDfffBMnT55EcXEx9UWdxF5HHqf6Im1SSjTh8OHDAIA2bdpEvd6mTZvIe4Qyw4YNw+jRo1FQUIADBw7gf/7nfzB8+HBs3boVPp/P6eYxSSgUwpQpU9C/f3/07NkTQLg/pqSkICsrK+pY6o/SiF1HABg7diw6deqEvLw87N69GzNmzMC+ffuwZs0aB1vLHl999RWKi4tx+vRpNG/eHG+//TZ69OiBXbt2UV/UgNR1BJztiyR8CMIifv/730f+v1evXrjwwgvRpUsXfPzxx7jiiiscbBm7TJo0CXv27MFnn33mdFNcjdR1nDhxYuT/e/XqhdzcXFxxxRU4cOAAunTpYnczmaV79+7YtWsXgsEg3nrrLYwbNw6ffPKJ081yHVLXsUePHo72RXJ1EU1o27YtADTJVPjpp58i7xHa6dy5M3JycrB//36nm8IkkydPxtq1a7Fp0ya0b98+8nrbtm1RV1eHqqqqqOOpP4ojdR3FKCoqAgDqkzGkpKSga9euKCwsxNy5c9G7d28sXryY+qJGpK6jGHb2RRI+RBMKCgrQtm1b/POf/4y8Vl1djW3btkX5ZwltlJeXIxAIIDc31+mmMAXHcZg8eTLefvttfPTRRygoKIh6v7CwEMnJyVH9cd++ffjhhx+oPwpQuo5i7Nq1CwCoTyoQCoVw5swZ6osG4a+jGHb2RXJ1JSgnTpyIUtYHDx7Erl270LJlS3Ts2BFTpkzBo48+im7duqGgoAAPPvgg8vLycM011zjXaMaQu4YtW7bE7NmzMWbMGLRt2xYHDhzA9OnT0bVrVwwdOtTBVrPHpEmTsGLFCvz9739HRkZGJFbC7/cjLS0Nfr8fEyZMwNSpU9GyZUtkZmbirrvuQnFxMfr27etw69lB6ToeOHAAK1aswFVXXYXs7Gzs3r0b9957LwYMGIALL7zQ4dazw8yZMzF8+HB07NgRNTU1WLFiBT7++GP84x//oL6oAbnr6HhfdCSXjHCcTZs2cQCa/Bs3bhzHceGU9gcffJBr06YNl5qayl1xxRXcvn37nG00Y8hdw9raWm7IkCFcq1atuOTkZK5Tp07cbbfdxh0+fNjpZjOH2DUEwC1btixyzKlTp7g//OEPXIsWLbj09HTu//2//8dVVlY612gGUbqOP/zwAzdgwACuZcuWXGpqKte1a1fuvvvu44LBoLMNZ4xbbrmF69SpE5eSksK1atWKu+KKK7j169dH3qe+qA656+h0X/RwHMdZL68IgiAIgiCch2J8CIIgCIJIGEj4EARBEASRMJDwIQiCIAgiYSDhQxAEQRBEwkDChyAIgiCIhIGED0EQBEEQCQMJH4IgCIIgEgYSPgRBEARBJAwkfAiCIAiCSBhI+BAE4Rrq6uqcbkITWGwTQRDSkPAhCMIxBg4ciMmTJ2Py5Mnw+/3IycnBgw8+CH4nnfz8fDzyyCO46aabkJmZiYkTJwIAPvvsM1x22WVIS0tDhw4dcPfdd+PkyZOR8z733HPo1q0bzjvvPLRp0wbXXntt5L233noLvXr1QlpaGrKzszF48ODIZwcOHIgpU6ZEtfGaa67B+PHjI3/rbRNBEGxAwocgCEd55ZVXkJSUhH//+99YvHgxFixYgL/85S+R95966in07t0bO3fuxIMPPogDBw5g2LBhGDNmDHbv3o2VK1fis88+w+TJkwEAX3zxBe6++27MmTMH+/btw4cffogBAwYAACorK3Hdddfhlltuwd69e/Hxxx9j9OjR0LplodY2EQTBDrRJKUEQjjFw4EAcOXIEX3/9NTweDwDg/vvvx7vvvotvvvkG+fn5uOiii/D2229HPnPrrbfC5/PhxRdfjLz22Wef4fLLL8fJkyfx/vvv4+abb0Z5eTkyMjKivm/Hjh0oLCxEWVkZOnXqJNqeX/3qV1i0aFHktWuuuQZZWVlYvnw5AOhq03nnnWfoOhEEYR5k8SEIwlH69u0bET0AUFxcjO+++w4NDQ0AgIsvvjjq+C+//BLLly9H8+bNI/+GDh2KUCiEgwcP4sorr0SnTp3QuXNn3HjjjXj99ddRW1sLAOjduzeuuOIK9OrVC7/73e/w5z//GT///LPmNmttE0EQ7EDChyAIpmnWrFnU3ydOnMDtt9+OXbt2Rf59+eWX+O6779ClSxdkZGRgx44deOONN5Cbm4tZs2ahd+/eqKqqgs/nw4YNG/DBBx+gR48eeOaZZ9C9e/eIOPF6vU3cXvX19YbbRBAEO5DwIQjCUbZt2xb19+eff45u3brB5/OJHt+nTx9888036Nq1a5N/KSkpAICkpCQMHjwY8+fPx+7du1FWVoaPPvoIAODxeNC/f3/Mnj0bO3fuREpKSsRt1apVK1RWVka+q6GhAXv27FH8DWraRBAEG5DwIQjCUX744QdMnToV+/btwxtvvIFnnnkG99xzj+TxM2bMwJYtWzB58mTs2rUL3333Hf7+979HAonXrl2LJUuWYNeuXfj+++/x17/+FaFQCN27d8e2bdvw+OOP44svvsAPP/yANWvW4OjRo/jlL38JABg0aBDWrVuHdevW4dtvv8Wdd96Jqqoqxd+g1CaCINghyekGEASR2Nx00004deoULr30Uvh8Ptxzzz2RFHExLrzwQnzyySd44IEHcNlll4HjOHTp0gWlpaUAgKysLKxZswYPP/wwTp8+jW7duuGNN97ABRdcgL179+Jf//oXFi1ahOrqanTq1AlPP/00hg8fDgC45ZZb8OWXX+Kmm25CUlIS7r33XvzmN79R/A1KbSIIgh0oq4sgCMcQy6IiCIKwEnJ1EQRBEASRMJDwIQiCIAgiYSBXF0EQBEEQCQNZfAiCIAiCSBhI+BAEQRAEkTCQ8CEIgiAIImEg4UMQBEEQRMJAwocgCIIgiISBhA9BEARBEAkDCR+CIAiCIBIGEj4EQRAEQSQMJHwIgiAIgkgY/j8koO3uKDDgCwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Training and Validating Surrogate\n", + "\n", + "First, let's import the required Python and IDAES modules:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVjklEQVR4nO3deXwTdf4/8NekFy20KbQUWlpoKQhySovWgnJoOZRj/YHS9QStorugVhHQ5SuKruKJoK4HisKqrLDAuoCrUhQvWqtyiBVEwBaoLUJTmpZDemR+f4SZziQzySRNz7yejwcPaTKZTEY0b96f9+f9FkRRFEFERETkB0zNfQFERERETYWBDxEREfkNBj5ERETkNxj4EBERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RUQu0cuVKCIKAoqKi5r4UojaFgQ+Rn/ruu+8we/Zs9O/fH+3bt0f37t0xbdo0/PLLL07Hjho1CoIgQBAEmEwmREREoE+fPrj55puRk5Pj0ftu2rQJI0eORExMDMLCwtCzZ09MmzYNH3/8sa8+mpMnn3wSH3zwgdPjubm5ePTRR1FRUdFo7+3o0Ucfle+lIAgICwtDv3798H//93+orKz0yXusXr0aS5cu9cm5iNoaBj5Efurpp5/G+vXrceWVV2LZsmWYOXMmvvzyS6SkpKCgoMDp+Pj4eLzzzjv45z//iWeffRaTJ09Gbm4uxo4di8zMTNTU1Lh9z+eeew6TJ0+GIAh46KGH8MILL2Dq1Kk4cOAA3n///cb4mABcBz6LFi1q0sBH8uqrr+Kdd97BkiVL0LdvXzzxxBMYP348fDE+kYEPkb7A5r4AImoe999/P1avXo3g4GD5sczMTAwcOBBPPfUU3n33XdXxZrMZN910k+qxp556Cvfccw9eeeUVJCYm4umnn9Z9v9raWjz++OMYM2YMtmzZ4vT88ePHG/iJWo4zZ84gLCzM5THXXnstoqOjAQB33XUXpk6dig0bNuCbb75Benp6U1wmkV9ixofITw0bNkwV9ABA79690b9/f+zbt8/QOQICAvDiiy+iX79+ePnll2G1WnWPLSsrQ2VlJYYPH675fExMjOrnP/74A48++iguuOACtGvXDrGxsZgyZQoOHTokH/Pcc89h2LBhiIqKQmhoKFJTU7Fu3TrVeQRBwOnTp7Fq1Sp5eWnGjBl49NFHMXfuXABAUlKS/Jyypubdd99FamoqQkND0alTJ/z5z3/G0aNHVecfNWoUBgwYgB07dmDEiBEICwvD3/72N0P3T+mKK64AABQWFro87pVXXkH//v0REhKCuLg4zJo1S5WxGjVqFD788EMcPnxY/kyJiYkeXw9RW8WMDxHJRFHE77//jv79+xt+TUBAAK6//no8/PDD+PrrrzFhwgTN42JiYhAaGopNmzbh7rvvRqdOnXTPWVdXh4kTJ+LTTz/Fn//8Z9x7772oqqpCTk4OCgoKkJycDABYtmwZJk+ejBtvvBHV1dV4//33cd1112Hz5s3ydbzzzju4/fbbcckll2DmzJkAgOTkZLRv3x6//PIL/vWvf+GFF16Qsy+dO3cGADzxxBN4+OGHMW3aNNx+++04ceIEXnrpJYwYMQK7du1CZGSkfL0WiwVXXXUV/vznP+Omm25Cly5dDN8/iRTQRUVF6R7z6KOPYtGiRcjIyMBf/vIX7N+/H6+++iq+++47bN++HUFBQViwYAGsViuKi4vxwgsvAAA6dOjg8fUQtVkiEdF577zzjghAXLFiherxkSNHiv3799d93X/+8x8RgLhs2TKX51+4cKEIQGzfvr141VVXiU888YS4Y8cOp+PeeustEYC4ZMkSp+dsNpv8+zNnzqieq66uFgcMGCBeccUVqsfbt28vTp8+3elczz77rAhALCwsVD1eVFQkBgQEiE888YTq8R9//FEMDAxUPT5y5EgRgPjaa6/pfm6lRx55RAQg7t+/Xzxx4oRYWFgovv7662JISIjYpUsX8fTp06IoiuLbb7+turbjx4+LwcHB4tixY8W6ujr5fC+//LIIQHzrrbfkxyZMmCD26NHD0PUQ+RsudRERAODnn3/GrFmzkJ6ejunTp3v0WimjUFVV5fK4RYsWYfXq1RgyZAg++eQTLFiwAKmpqUhJSVEtr61fvx7R0dG4++67nc4hCIL8+9DQUPn3J0+ehNVqxeWXX46dO3d6dP2ONmzYAJvNhmnTpqGsrEz+1bVrV/Tu3Rvbtm1THR8SEoJbb73Vo/fo06cPOnfujKSkJNx5553o1asXPvzwQ93aoK1bt6K6uhrZ2dkwmer/133HHXcgIiICH374oecflMgPcamLiHDs2DFMmDABZrMZ69atQ0BAgEevP3XqFAAgPDzc7bHXX389rr/+elRWViI/Px8rV67E6tWrMWnSJBQUFKBdu3Y4dOgQ+vTpg8BA1/+L2rx5M/7+979j9+7dOHfunPy4MjjyxoEDByCKInr37q35fFBQkOrnbt26OdVLubN+/XpEREQgKCgI8fHx8vKdnsOHDwOwB0xKwcHB6Nmzp/w8EbnGwIfIz1mtVlx11VWoqKjAV199hbi4OI/PIW1/79Wrl+HXREREYMyYMRgzZgyCgoKwatUq5OfnY+TIkYZe/9VXX2Hy5MkYMWIEXnnlFcTGxiIoKAhvv/02Vq9e7fFnULLZbBAEAR999JFmEOhYM6PMPBk1YsQIua6IiJoOAx8iP/bHH39g0qRJ+OWXX7B161b069fP43PU1dVh9erVCAsLw2WXXebVdQwdOhSrVq1CaWkpAHvxcX5+PmpqapyyK5L169ejXbt2+OSTTxASEiI//vbbbzsdq5cB0ns8OTkZoigiKSkJF1xwgacfp1H06NEDALB//3707NlTfry6uhqFhYXIyMiQH2toxouoLWOND5GfqqurQ2ZmJvLy8vDvf//bq94xdXV1uOeee7Bv3z7cc889iIiI0D32zJkzyMvL03zuo48+AlC/jDN16lSUlZXh5ZdfdjpWPN/gLyAgAIIgoK6uTn6uqKhIs1Fh+/btNZsUtm/fHgCcnpsyZQoCAgKwaNEip4aCoijCYrFof8hGlJGRgeDgYLz44ouqa1qxYgWsVqtqN1379u1dthYg8mfM+BD5qTlz5mDjxo2YNGkSysvLnRoWOjYrtFqt8jFnzpzBwYMHsWHDBhw6dAh//vOf8fjjj7t8vzNnzmDYsGG49NJLMX78eCQkJKCiogIffPABvvrqK1xzzTUYMmQIAOCWW27BP//5T9x///349ttvcfnll+P06dPYunUr/vrXv+JPf/oTJkyYgCVLlmD8+PG44YYbcPz4cfzjH/9Ar169sGfPHtV7p6amYuvWrViyZAni4uKQlJSEtLQ0pKamAgAWLFiAP//5zwgKCsKkSZOQnJyMv//973jooYdQVFSEa665BuHh4SgsLMR//vMfzJw5Ew888ECD7r+nOnfujIceegiLFi3C+PHjMXnyZOzfvx+vvPIKLr74YtW/r9TUVKxZswb3338/Lr74YnTo0AGTJk1q0uslarGac0sZETUfaRu23i9Xx3bo0EHs3bu3eNNNN4lbtmwx9H41NTXiG2+8IV5zzTVijx49xJCQEDEsLEwcMmSI+Oyzz4rnzp1THX/mzBlxwYIFYlJSkhgUFCR27dpVvPbaa8VDhw7Jx6xYsULs3bu3GBISIvbt21d8++235e3iSj///LM4YsQIMTQ0VASg2tr++OOPi926dRNNJpPT1vb169eLl112mdi+fXuxffv2Yt++fcVZs2aJ+/fvV90bV1v9HUnXd+LECZfHOW5nl7z88sti3759xaCgILFLly7iX/7yF/HkyZOqY06dOiXecMMNYmRkpAiAW9uJFARR9MFgGCIiIqJWgDU+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNBj5ERETkNxj4EBERkd9gA0MHNpsNJSUlCA8PZ9t3IiKiVkIURVRVVSEuLg4mk35eh4GPg5KSEiQkJDT3ZRAREZEXjh49ivj4eN3nGfg4CA8PB2C/ca7mDhEREVHLUVlZiYSEBPl7XA8DHwfS8lZERAQDHyIiolbGXZkKi5uJiIjIbzDwISIiIr/BwIeIiIj8Bmt8vGCz2VBdXd3cl9GmBQcHu9yOSERE5A0GPh6qrq5GYWEhbDZbc19Km2YymZCUlITg4ODmvhQiImpDGPh4QBRFlJaWIiAgAAkJCcxINBKpiWRpaSm6d+/ORpJEROQzDHw8UFtbizNnziAuLg5hYWHNfTltWufOnVFSUoLa2loEBQU19+UQEVEbwZSFB+rq6gCAyy9NQLrH0j0nIiLyBQY+XuDSS+PjPSYiosbApS4iIiLyKYvF4nL3c3BwMKKioprwiuox8CEiIiKfsVgsePnll90eN3v27GYJfrjU5QdmzJgBQRAgCAKCgoLQpUsXjBkzBm+99ZZH2/JXrlyJyMjIxrtQIiJq9Yz2uWuufnjM+DSh5kz9jR8/Hm+//Tbq6urw+++/4+OPP8a9996LdevWYePGjQgM5B8FIiJq+1rNt93ixYuxYcMG/PzzzwgNDcWwYcPw9NNPo0+fPvIxf/zxB+bMmYP3338f586dw7hx4/DKK6+gS5cuzXjlds2d+gsJCUHXrl0BAN26dUNKSgouvfRSXHnllVi5ciVuv/12LFmyBG+//TZ+/fVXdOrUCZMmTcIzzzyDDh064PPPP8ett94KoL7w+JFHHsGjjz6Kd955B8uWLcP+/fvRvn17XHHFFVi6dCliYmJ8/jmIiIgaotUsdX3xxReYNWsWvvnmG+Tk5KCmpgZjx47F6dOn5WPuu+8+bNq0Cf/+97/xxRdfoKSkBFOmTGnGq67XElN/V1xxBQYPHowNGzYAsHdLfvHFF/HTTz9h1apV+OyzzzBv3jwAwLBhw7B06VJERESgtLQUpaWleOCBBwAANTU1ePzxx/HDDz/ggw8+QFFREWbMmNFkn4OIiMioVpPx+fjjj1U/r1y5EjExMdixYwdGjBgBq9WKFStWYPXq1bjiiisAAG+//TYuvPBCfPPNN7j00kub47JbvL59+2LPnj0AgOzsbPnxxMRE/P3vf8ddd92FV155BcHBwTCbzRAEQc4cSW677Tb59z179sSLL76Iiy++GKdOnUKHDh2a5HMQEREZ0WoyPo6sVisAoFOnTgCAHTt2oKamBhkZGfIxffv2Rffu3ZGXl6d7nnPnzqGyslL1y5+IoigvXW3duhVXXnklunXrhvDwcNx8882wWCw4c+aMy3Ps2LEDkyZNQvfu3REeHo6RI0cCAI4cOdLo109EROSJVhn42Gw2ZGdnY/jw4RgwYAAA4NixYwgODnbaddSlSxccO3ZM91yLFy+G2WyWfyUkJDTmpbc4+/btQ1JSEoqKijBx4kQMGjQI69evx44dO/CPf/wDgOvlt9OnT2PcuHGIiIjAe++9h++++w7/+c9/3L6OiIioObSapS6lWbNmoaCgAF9//XWDz/XQQw/h/vvvl3+urKz0m+Dns88+w48//oj77rsPO3bsgM1mw/PPPy8PX127dq3q+ODgYKcREj///DMsFgueeuop+b59//33TfMBiIioWbjapSytyNT/HI7y8ih06mSB2VwlP95c459aXeAze/ZsbN68GV9++SXi4+Plx7t27Yrq6mpUVFSosj6///67U02KUkhICEJCQhrzkluEc+fO4dixY6rt7IsXL8bEiRNxyy23oKCgADU1NXjppZcwadIkbN++Ha+99prqHImJiTh16hQ+/fRTDB48GGFhYejevTuCg4Px0ksv4a677kJBQQEef/zxZvqURETU2IzuUp42bRr+979YPPaYGTabAJNJxMKFv2HKlJMICgpCdXU1SktLm7yLc6sJfERRxN13343//Oc/+Pzzz5GUlKR6PjU1FUFBQfj0008xdepUAMD+/ftx5MgRpKenN8cltygff/wxYmNjERgYiI4dO2Lw4MF48cUXMX36dJhMJgwePBhLlizB008/jYceeggjRozA4sWLccstt8jnGDZsGO666y5kZmbCYrHI29lXrlyJv/3tb3jxxReRkpKC5557DpMnT27GT0tERHoa2lPOaBnDmTOdMG+ePegBAJtNwKJFcbBa16oyP0DTdnFuNYHPrFmzsHr1avz3v/9FeHi4XLdjNpsRGhoKs9mMrKws3H///ejUqRMiIiJw9913Iz09vUXs6DKa0muM1N/KlSuxcuVKt8fdd999uO+++1SP3XzzzaqfX331Vbz66quqx66//npcf/31qsdEUfTuYomIqNE0ZU+5wsJAOeiRiKIJ5eWdnAKfpqwJbTWBj/RlO2rUKNXjb7/9ttwz5oUXXoDJZMLUqVNVDQxbgqioKMyePbvFDm0jIqK2ryl7yiUl1cJkElXBjyDY0KlTeYPP3RCtJvAxkkFo164d/vGPf8i7kVoaBjVERORLLXkKelycDc88Y8XcuREQRRMEwYZJkzY7ZXuaWqsJfIiIiKhec49CMuKGG87it9/eQnl5J3TqVN7sQQ/AwIeIiKhVaimjkPS2q0vM5qoWEfBIGPgQERH5KXdBizs7dw7Bpk0TVUtZKSm7Gu39fIGBDxERkR/yNGiRSLuPrdZw+fWAfcfWpk0TkZx8EGZzFaxWK2pqahr8fr7GwIeIiKgN8CSb4i5oKSsrUx3vWCSdmZmJ7duD5ddLlNvV16xZY/j9mrKLMwMfIiKiRtbYu6+MZlOkAKO8PMpl0LJhwwan186ePRsA5IJqqzUcgpCtOo/ednW99xs+fDpGjWraXc8MfIiIiAzwNnhp7N1X7rIpSlJPuaKiWrzzjmc9dhw/u9lchUmTNjsFXFrZpk6dLBAEmyr4CQgA0tKi0NQbzhj4UIN9/vnnGD16NE6ePKmak+ZKYmIisrOzkZ2d3ajXRkTkCw0JXhp795W77I2jqCh7sLF8OXDnnUBdHQz12Dlw4IDTYykpu5CcfNDtdnXHICkgQMTrrwtQjNxsMgx8/MCMGTOwatUq3HnnnU6DR2fNmoVXXnkF06dPNzTWgojIHxkNSkpKSpyOdayXMVKLYyS7JC1baWVTlNkbvfqZrCxg3DggP9+C7dtXua0L2rZtm+bjRrerK4Oku+++CqmpXdy+pjEw8PETCQkJeP/99/HCCy8gNDQUAPDHH39g9erV6N69ezNfHRFR66IXvGjVxigZqcXxJLskjULq1q0S8+ebUVcnICBAxNNPV+KGG653WzsUHw8EBFSjoKD+MzRky7nRnj5xcTaPzutLJveHUFuQkpKChIQE1X+UGzZsQPfu3TFkyBD5sXPnzuGee+5BTEwM2rVrh8suuwzfffed6lz/+9//cMEFFyA0NBSjR49GUVGR0/t9/fXXuPzyyxEaGoqEhATcc889OH36dKN9PiKiprJz5xAsXZqNVaumY+nSbOzcOcT9i6Bfi2O1hquO82RpLCoqCrGxsZgzJxJFRQK2bQOKigTMmROJ2NhYj2uGPP1sVms4CgsTYbWGe31fmhoDn2ZSXAxs22b/Z1O57bbb8Pbbb8s/v/XWW7j11ltVx8ybNw/r16/HqlWrsHPnTvTq1Qvjxo1Debk9ZXr06FFMmTIFkyZNwu7du3H77bfjwQcfVJ3j0KFDGD9+PKZOnYo9e/ZgzZo1+Prrr+UdAURErZWR4EUZDCi5qsVx955a53MUHw+MGgXDdTMWiwWlpaXyUpzRwEyiDHReeCEbGzdOcnptcXGsoWtvSlzqagYrVgAzZwI2G2Ay2QvMsrIa/31vuukmPPTQQzh8+DAAYPv27Xj//ffx+eefAwBOnz6NV199FStXrsRVV10FAHjjjTeQk5ODFStWYO7cuXj11VeRnJyM559/HgDQp08f/Pjjj3j66afl91m8eDFuvPFGuXC5d+/eePHFFzFy5Ei8+uqraNeuXeN/WCKiRuCukNjVUpa7WhwtjdX0T2s5Te+z7d3bD/367VUtXTkGSVp5FFE0YcWK2zWvXVn31NSDVBn4NLHi4vqgB7D/88477QVmjV3d3rlzZ0yYMAErV66EKIqYMGECoqOj5ecPHTqEmpoaDB8+XH4sKCgIl1xyCfbt2wcA2LdvH9LS0lTnTU9PV/38ww8/YM+ePXjvvffkx0RRhM1mQ2FhIS688MLG+HhERD7jWFwsfVG7Cl7cbSv3ZPs34Nk2dU9pLadpfTZAxCefjMeWLWPlwMVqDcdPP/V3CpKcibrX7lgL1ZSDVBn4NLEDB+qDHkldHXDwYOMHPoB9uUtacvrHP/7RKO9x6tQp3HnnnbjnnnucnmMhNRG1dI7ZkPqC3XCXwUthYaLbbeWutn877r5yl10qKyvzabbE8bMBIgBBft9Nmybi7Nl22Lo1w+l5OxsEAeefs8ExC+Rqi31jD1JVYuDTxHr3ti9vKYOfgACgV6+mef/x48ejuroagiBg3LhxqueSk5MRHByM7du3o0ePHgCAmpoafPfdd/Ky1YUXXoiNGzeqXvfNN9+ofk5JScHevXvRq6k+FBGRDym/hPWWmrSCF3dLWVOmTFFl2ZW0Ahh355OyJr7Mlkifbe/efvjkk/Gq50TRpAh6AHvQYw9+pHsj3ZegoGp5mUvr2psTi5ubWHy8vaYnIMD+c0AA8PrrTZPtsb9fAPbt24e9e/ciQLqI89q3b4+//OUvmDt3Lj7++GPs3bsXd9xxB86cOYOs80VId911Fw4cOIC5c+di//79WL16tVP/n/nz5yM3NxezZ8/G7t27ceDAAfz3v/9lcTMRtSquin3N5irMnHkB5s69HlOmTAFQnzERBPvfbB2XsqKjoxEbG6v5SytwcXc+iS+yJcoCarO5Cv367ZXft57jMhgACBg37mNkZy9FSsoumM1VSEo6jPj4UkPX3hyY8WkGUtOogwftmZ6m7lwZERGh+9xTTz0Fm82Gm2++GVVVVRg6dCg++eQTdOzYEYB9qWr9+vW477778NJLL+GSSy7Bk08+idtuu00+x6BBg/DFF19gwYIFuPzyyyGKIpKTk5GZmdnon42IyFfcLTXl5ORg9uzZiIuLk5/3ZClLj/I45fmCgqpRUxMiBycSqf7I22UvvazWpEmbsXnzJNhsAkwmEVdeudUh42MPaBwLn43ci+YkiKIoNvdFtCSVlZUwm82wWq1OAcIff/yBwsJCJCUlcWdSI+O9JqLmUlpaiuXLl8NqDcfSpdlOxb5jxuRg+PA8AMDMmTMRGxvr8yGkFosFJSUl8nKW0d1dRpe9XH1GQbAhO3spzOaq8/VNnXDllT3w669fNtouM+k+NoSr728lZnyIiIg0mM1VyMjYipycMagv4hWwdWsGBgwoUGUwfL0jKSoqSg6kPNnd5Rh86QVkUpbIXVZL+vXrr/Y2KA3N4jSkK7SvMPAhIiLSERdXCvXOJde7kxqDJ/11lIyMvvCmt5Cr2VyuApvGyhZ5ioEPERGRDm8Cg6a4Bq3+Oo6MFD172lvIFVeBjbusldH6J19g4ENERKSg/BL2NjDQWmKyWq2oqakBAAQGBiIyMtLpfV3t7nLVX0cKICoqKjyulTFSQO2Ou8Bm0KCpmlmr4cOnY9Qo3y8VusLAxwusB298vMdE5K3iYnuz2N69gdDQ+gCkpMSEwsJAJCXVytPBtYKNs2ejkJh4K374YR3M5iqXdS1Wq9Xp/SsqKrB27VrFMcbrWpTFyVq7u/T660hLb2vXrsW0adMQExPjdG5X12E2V+HQoV6K4MWGYcPykJaWr3nNjufSW44bMOAaDBtWjZqaCM0edmlpUWjCmAcAAx+PSH1vqqurERoa2sxX07ZJ/6Ny7DVERKRFyrCsXh2KefPM8hbsiRO3IyVll8tlGKnHmPr13SEI2fJxyroW5Zf+mjVr5GtQBwP2x/TeVy8IUWaJoqKiMHv2bFRXV6OsrAwbNmxAv357sWXLWJdLb1LQNW3aNPkxd/U1WrO3cnOHIzc33SkA0jpXcvJBzSXBgoIPcPSo/XVLlszBnDkdUFfX9D3slBj4eCAwMBBhYWE4ceIEgoKCYDKx/2NjsNlsOHHiBMLCwhAYyD+iROSaVMRbvzXbvgxkswnYtGkiYmKOuVyGOX78ONauXev0eq3dU3oBhF4woPW+yrEP7op8HbNRniy91dbWAjC2K0wrY2NnD4Dy8tJdfqbs7KVur2vatCpMndqh2XrYSfit4gFBEBAbG4vCwkJ5wjk1DpPJhO7du0MQBPcHE1Gbo1yucvcFKWVJ9JZbjh7t7nLLthQguNvarRdA6AVWU6eu1zyfsgmg0cGjWsteR4/GAxCQkHDU5f1x9bmk54OCzmkUUKuPd/WZyss7GdrqHh/ffAGPhIGPh4KDg9G7d+8mHajmj4KDg5lRI2rFPAlcHK1YAcycaa8HMZnsY37GjXN/Pr0dWAkJRwztzHK3g0svgDhyRDuwAkSNYMI5uDCyPT4qKgqZmZny0pon9Th6n6ukJA7//OctcoZm0KA9+OGHQdCbZiWKJhw/Hg3HAaQmkyjfI1db3VsKBj5eMJlM7CZMRKRDK3A5P+7PiRQgdegA/PabFcHB1Zg5Mxo2m7RcBdxxh32zgygKLs+ntwwkzY1ytzzkbhlJL4Do3l07sEpIKHY632WXfYWvv77cq+3x5vOFQ3r1ONJylLRsFhQUpPu5MjK2OmWe9uwZhNtvfxN79/ZHbm46nAMgEV9+ORr2XWX24EcQbFi4sARAyw52lBj4EBGRzxQX1wc9gP2fd95pz9g4ZmqUAZL9y9QM+xeqY8PA+p/t5xNx0UXHkZgY6FQDo7fcYrTjsKvjvAmsUlJ24ezZdsjJsQcZX399OQYN2oM9ewZpBldG5m7p1eM4LpvV1NTgpptuQlhYGABg4cIT+OGH0ygo+EA3e1VTE4yxY7ciLS0f+flpyMtLd9pCb5/GLmLq1LVISCjG6NFDsW1b/Xn0CrelzybxdrZYQzHwISIin7BYLPjmG8BmU3+Z1dUB+fkWhIbWF+s6Bkj1X6qOX7LO6uoEvPTSR0hKOizvyFLSW24xugzj6jhPAyurNRxbt2ZAyp5ImZWsrDdRUxPsFFxJs7kA+64sZa8faeu8dkNDyOeXls2kc0lb5GNjgcREi7zLytWyntlcJQdAP/3UD1u2OG+hb9/+DMzmKmxTRD2udo8pP5vE6GwxX2LgQ0REDabcWSUIzkMvt29fhYKCKjlQ0QqQ6gmKL2UpA6QMhEQEBdnrLJuj3tKTwMpVZiUpyfUmGWUvIMf3mTRpMzZunAjH5SitZTO9LfLdulWqtv4/8MBBhIUpexTZMzd6S3mO7+PJTDGta2sqDHyIiKjBpC8wd3Uyyq3jjgGSRBBsckbk9On2WLfuOscjUFNj3+VktVrl2hdvSbUwjcHIyAtPGhxOmzbt/G7XNUhOPqhajjLaVVrKsMyYYcFvv70gZ6mUQY8ycwPYkJx8CL/+muzyfdztimspGPgQEZFPuaqTkbaO641hUNbNADgfIOkHDjU1NYbnPGVmZjoFSb6cEaVcmiosLEROTo7bQNDTBoeRkZGIjY3F7NmzUVJSArN5A9LS8r0aN1FdXa2ZpdIqnj50qDfsu8e2O+0ek65Va0u89O+qJUxllzDwISLycw3Zeq7HSD2N84yoYKcvbyMN+5TLN3rcFdK6e/2ZM2fkImF357dYLMjJydH8nI71P942OIyKilJl2ZTb2xs6+dxVM8O8vHSkpeXLjzgGblqF2768Nl9g4ENE5Mc82XreGJQBkl72w8iOrIYWyCqDFmUApBwseubMGafholoBlfNwUu1sh97SkKsGh8qdUVKxs7vamqKiIhQWFsrZNsA+iUD5s/I6XTUzdNfQUVm4HRRUjYqKjli3biqUxd1GGjY2JgY+RER+ysjW8+JiIDfX/vthwxqv6667L29vGuMpgxgjA0qlAm3lNSkDFr0AxtXOJFe7nLR3Z7lucKi1M8pdbc2WLVvc3iutzI1WM0PlMuPRowm6hdsnT3ZyWC7TvrbmwMCHiMhPHTignpYN2LeeHzxoD3BWrADuuAMQ7f0DIQjAG280TkbI14WxyiDG3YBSKWhRZmqMLOFI59BbIjMSzLlrLAi4b3BopIDaFb3MjdTMUFk8nZGxFeXlUSgoGHB+m76aINgQFFStG/R4em2NgYEPEZEfslgsiIiohckUI3dJBoCAABHh4cfx44/BuOOOjnLQA9gDIL1mhA3l6Ze3lH0pK9Puoi8FI+6CD62gRes1P/wwGNKWer3lGinDJC1HGQnmtJbxQkP/cArUAKCwMFGzONhdHZQyUwXYMzUAkJBwFGZzlaFmhuXlnVBSEqcIyrR6Ldnft6YmxGXQo7w2XxaXG8XAh4jIzyizIVdema4qpJ0wYTM2b96FwsJEiOJ0p9cqM0JKRr/A9LaOezJ1XJmNeecdEc88U4EbbjirWW/jTSZJu7jXsZu0+hyOy2SA+2BuypQpAOyN/ZRBSseOJ1UNDg8d6nV+arx+cbBzobi9QPzQoV6Kfj+OPZHsM7769fvJbTNDAPJcL637AQDXXrsOAwbs092JN3XqOiQkFOPWW8cgOvpidm4mIqKmIWU5du4covgbvH0ZQ11/IqrGRQD2gZSieBAWSyfVl5bRnVWuGClidszG2GwC5s6NwG+/vQWzucqp3sabZSDt2ht1hsPxHHoFzcqlK8dgLjo6WvUarSW5Tp3KDTUFlN6vpCRW9X72jF39tnS1+hlfrsZoAK52etXfj4SEYgD6QeyAAfvkzx0bG6t7rsbGwIeIyA9p9WrZujUDAwYUKOpPNqm6AwuCDRMnbsaXX+7Cl186F/Ua/du7FCBVVFTgxIkTqpEHekXMo0ePxrZt29xmcBwDEE8ySa5e4y4wUHIMYDIytiIursTljDCt5bWNGydixIgv3Was1M0G6wM0V4GK4/mUu7FuvDENAwZcDOBiWK1WrFmzxmUwqHU/jM5Gaw4MfIiI/JAn9SdHj9rXtRISilVfYN6OG5ACpNjYWERGRqoCHz0dO3aE1RqO06fDIE0Gl7jL4HjzJaz1miuu+MztObQCmK1bM5CdvdTpNRUVFee7MOtlVEz48stRcJVtcg5g9WecuaIcozFgwDinjIxeIbargE4viG2Ouh4lBj5ERH7I6BKQ/ctrn+qx+mUVE5pqxeLdd0PkOhd7IGAPfoyOafBmO7zja4ycw1VAKT0vFSgrZ3G5GjxqD2a0syvulqCMMrLTymgAqdUhW9JcdT1KDHyIiPxMRUWF7hIQUL97CFB/UQPOhcWN1fDQcSfS0qW9VFkNQRAxdepapyyUN6TdWBUVFV6NVggODpazX3oBZUlJnFwcrFWg7DzCw5GAceM+Rr9+e1XX5Tpgcj3lXnl9RoJH6Tq1jpsyZQqio6NbRGDjDgMfIiI/YrFY5EyD49/glbuH7F+aIpRZleTkg06FxQ3d3q617OFYI5OenqeZRWnf/ozul7XR5ZQzZ85g+fLlivfV3j01ZswYhIeH63ZuLi21zxYz0ptHr0A5Ofmgqn2AkiDY5KBH2g329ts5TgXUzqRlQa0p9zZce+06l8Gj0fsYFxfX4gMeCQMfIiI/olX8qzV+QPklKX1RT5263unLVW97u1HK3WAVFRUoLgYee6yvvJtMFE3IzU3XzKIEBenXGBndZWa0309SUpLhnUiOAaW7eqoxY8YgJ8cexDjvvAKkHXf1W+dDsWZNV7z2WjakwDQlZQd27LjY4XUCrr3232jf/owc2OrttHK8LxJfzEFraRj4EBE1g8YYDNoQ7mpFpCyQYwAiNTy0WAK9/vKLioqSM1GFhYmw2S50OMKE9PTtcgdhQIQomrBixe1O08wLCirkVwUHB7sNVqRMjbvgpKKiwuW5HDMjjktCruqpwsPDAbjaRm8vkA4N/QMAsGhRT9UxomjCzp2p0Cr6VmZzXNXouFqqak1BjREMfIiImlhzDwbV4rpWpP5L1HEZR2p4CLieWeWOuxqZtLR89Ov3E95883Y4DrxUTjP/5z/1R1J4+vmVwcnatWtdnksrM1JWVqa5HKVXU2M2V52fkSV1iVZvTbffd0ArKySKJgwbtl01XkLvPbSWtZq7t05TYuBDRNSEjAwGbQ5atSnSl6zyS9RV1sDb7e3urkN6b62lIFE0IScnA3rTv41ek1ZxsSgCBQUDEBdXik6dLCgpKUF1dbXu0o7jhPcNGzqqOi672/5ttYZjz55BqK/Dce4WrUcKDqXxEp72zmnuLeZNiYEPEVETcjcYtDk5BjUAVF+iyh1PSUmHff7+0vmTkw8iO3up0xe4XlbG05EUepyLi03IyRkDaRv5oUObkZJin44ubdl2nPouNfyzWsMVheL1/Xyyst48H8DVj4I4e/YsAGPdkbUzPursjqtdV1paW41OQzHwISLykjd1Or1725e3lMFPQADQq1fjXKOntHrXAK4nnPvC6tWhbudRGZ1mDrgufNajXVysPZh0zZo1Lu+JXs2QtFSnPD4iIgKA61EZynYDjjve0tLy3QZ5/rSU5Q4DHyIiL3hbpxMfbz/2zjvtmZ6AAOD115s/2+OKux1PDWGxWFBUVIt582JUO7n0zu9umrlUDCwVPpeVlRnOaLirc1JmkqzWcNU4D+maY2KOIT6+1GWhsnT85s2TcN99/QDUAjDeHdmbURD+tJTlDgMfIiIPeVunI9V+XH01kJ9vQlFRIBIT7UskpaVNs+TgzRegNxPOjZAmmtt3cqknwbs6v2NWKiVlF2JijmHFits1grOlmsNLJcr74Vznoz8qIj8/DVr1Rm++eTsmT7ZncpxrptTH22wCVq78WrVsaKQ7srsO0o7LWv62lOUOAx8iIg95U6cjfck7KihQ/9yQnVFGOO4+Kisrw4YNG1y+xpsJ50a428ll9PxWaziOHOnh0fBSSVRUFDIzM+W6nI4dT8rDOktK4px2YgFAQUE/5OYO07ma+myVMogJCqpWBWauPqM34zWUuKzlGgMfIiI3HGt5vKnTMbq7yNVx3tQUab3G08DKmwnnjXV+x5ESepPJAWPBk8ViQU1NjWa9zvDheRgwoECns7U+ZcClDGIa8x6ScQx8iIhccKzlWbLkFKZNq8Izz4Ri/nwz6uoEBASIePppKwICzsJiaZxlBW9qinzZL8jIEkxwcLDXjRldnX/YsGHIzc11CHJsSE3dgZ07Ux26TWsP89Ty448n8fzzmxEUdA6bNmktkx100dlan17A5c2UeG+wnsc1Bj5ERDqKi4E77oC8xdlmA+67LwyHDy+H2VyFe+4Jl7/ETp2qwvmRTz5frvKmpsjoazz5knQ1oDIuLg4ffBDlNtBSBkYBAdrnt1rDVYNS33uvBEFBsQ6Bh0ljRAOgN8zTkT0ojDxfW6TueAw41xi5n4JubFp8Q5exXMnMzETnzp1Zz+MGAx8iIh3LltUHPRK9ZQwl5XKV9EUfEeE+U6DHm5oio69xrPmpqKhAba19l9HJkyexbds2t9cXHR2Ns2ej3AZajhmoZ54JdTqXY1ZHmhnmareVknKYp+OEd8C+tJWfb8Mdd0TLu8jsQY/rZTLXO75suP12e11QY2Zypk2bphqQqsQCZuMY+BARaSguBpYs0XrGeNGt+os+BhMnDvGq9403NUWevEb5haksii0tLTUU+FRUVOCnn4Jhs6m/eOvqgPx8C86dq0BFRQfMnBkDm80eXNhswLx5Ztx7b7gcpBw9mqDaIq7MwmjV8DhSZlsca3a6davEjBkW3Hbb9vOPO57H9TKZ3o4v6dj4+FLNaxo9erShe+gqqAEY2PgSAx8iIg1aGRMAGDYsz9Df6J2XmgSvet9YLBYEBFR7VFPkzWsaYu3atbBawyEI2U67lrZvX4WCgirNLes2m4Dy8k6qqeGuCdBalgJsuPbadfJATq2+Q3PnmhEbe9DN+9jPn5X1pmYg47hLy0iGp2PHjm4+k11kZCR3YjURBj5E5Nf0inGjo0/CZIqUMxQAYDKJSEvLN3RercDJ0943jlvgjdQUefMaX3C3M0tvy3pQULVHRcNZWW9i797+TsM4BwzYJx+n3XdIwBNP/GHgfUyoqdGve/K0RicoKMjQcSxIbjoMfIjIb+nterJYLNiw4WVMnKheLpk40fj2Y62lJqluxHFLtpLyC9Bxa7uRmiJvXqPH0y9jV7uWzOYqzQnlNTUhLoIRGwQBquPj40sRH1/qchinvabHOTO0b19/jcc93wLvic6dOztNbXfEZaymxcCHiPySq11Pp06dANCw7cfx8cDNNwOrVtU/lplZjW7dbsO8eWbYbAJMJhHPPGPFDTfYh1S2tC9Ax8JnLdJQToleoLVz5xDFTC37KIaUlF3nl8icM0FTp9qXrgDoBlKudk4NG5aH3NzhqsdF0YRhw7arskUXXrgPe/deCCM7sowYO3YsEhMTAbS8f59kx8CHiPyS3q6nHTus2L3b/Re5KxUVFSgpMeGdd2KgzCasXRuCtWtDFAW+AubPj0RmZmSLndXl7ovbPp08UTN7JXHugWOfVD5gQIHuEply6cqbQCQtLV8OcCSCYENaWr5TtsiegfNNb53ExETW6rRwbTLw+cc//oFnn30Wx44dw+DBg/HSSy/hkksuae7LIqIWRG/XU3z8H9i9u2HnXrt2rW4xryN329JbMvtSYQxstukuJ7a7m/XVGI393NUcGckeTZkyBYGBgVi7dm2Dr4dajjYX+KxZswb3338/XnvtNaSlpWHp0qUYN24c9u/fj5iYmOa+PCJqAVztegoOPm74PI7DIAH70s/y5f/D6dNhcK4nqa9Zkbjblt4SSRPVldvTld2OAahqmLRqbhxrafSCD1f1UO40NKCKjo72uM6JRcotX5sLfJYsWYI77rgDt956KwDgtddew4cffoi33noLDz74YDNfHRH5irejEdztenIzr1NFaxjk6tWhinlOIhw7+gKQsxBNMerC19xNVM/PT3PacWWnzHYZq6XRmp8lZZS0+t441hsBDe+UrKxzUjZ3VAoKCoLZbGZNTyvRpgKf6upq7NixAw899JD8mMlkQkZGBvLy8jRfc+7cOZw7d07+ubKystGvk4gapiEzqIzuevJGcbG9KV99czwBgiBi6tS1co8ZAKoshDdbzBuSBWko6f6VlMRCa0dUbm46pMyOlAWyd79WHgc5M6RHqxfPhx9OwsKFaUhMDGzSAEN6L9butA1tKvApKytDXV0dunTponq8S5cu+PnnnzVfs3jxYixatKgpLo+IfMCbuVVaGiN4sBdMq+t4RNGE9u3PGKopcQzKtJZNtLIgyuNcLbUoP3NDlmSs1nBs3ZoBdRZHPB/gONfyODLSz0irLqiuTkBVVRfoxTxcZiIj2lTg442HHnoI999/v/xzZWUlEhISmvGKiMgVb+ZWOXK1hOIJxy9ae8G0qAp+GtIXxnE7eUmJCY89FiNnlETRhM2bJ+HsWUH3NZLVq0Px2GP12+j79xe8mtReUVGhM7BTgNY4CftWdcBVfY9WrZR9V5z6Xrqrh4qKisK0adNYjEwueT81rwWKjo5GQEAAfv/9d9Xjv//+O7p27ar5mpCQEERERKh+EVHLJe3GUvKkQLikxOS0hLJp00RYreEeXce0adOcllvi44GFC3+DINgjM3d9YaQp5K7eOyoqCrGxsQgODkZhYaBTRslmE/DEE6dgsVicXiP9qquLxbx5kapt9Hfeac+eKRUXA9u2OT8usVgsWLt2rdyF2R1BsCE9PQ9jxmx1uicA5M8u1Uopf6WmdsHy5YI8wT0gAHj9dffBrat5V0RAG8v4BAcHIzU1FZ9++imuueYaAIDNZsOnn36K2bNnN+/FEZFPxMfba3ruvNOe6TH6hSgpLAx0ubXaKMddohaLBdXV1Rg9+ldYrWvd7iTSyjrpkQqKteZhAcBrr4UhNHQ5FiyYrjm365tvoDtANDTUHigZqZuSskhaW8Wdl7nsj9mbCNqQmroDSUmFSEgoxqFDveQCcGmA6Jw5zvfy6quB/HwTiooCkZhYi7g4G0pLm64xIJfO2qY2FfgAwP3334/p06dj6NChuOSSS7B06VKcPn1a3uVFRK2XL74Qk5JqNTsFOy5H6S2/FBYGok8fE6Ki6odPOu4UM5tdN93TKtzdtGkiFi48Aa36WWXAkZ7u3JEYsAduRUW12LMH6NABOHXKPm9swwbtgEk5QHTKlHswc2ZHj+qmHLeKKweNOgdCJuzYcTF27kxVja2QPvv8+WZkZtrfy/FeSgoK1D/rFYIbDVZuuukmhIWF6T7PHVptV5sLfDIzM3HixAksXLgQx44dw0UXXYSPP/7YqeCZiFoXb78QHbe9x8XZXDa2kzhuVXeVETEy90pJr6FfUVEgUlPVxxYXA998EwyrNRxmcxXS0vJVO6cAexBTUhKHSy6JUdU/mUyRmDhxCFJSdmnOyZI+87ffnoTNpp4iXlcHrFhhxZQpNgwcqD1hXFmkLQVCR4/G4/jxGHz55Sin40XRhJycDDhWWdTVCXKNltF7qXeckTEbDGr8W5sLfAD7//i4tEXUtnjzhegYrCxZcgpjx1YYamynzBz4aieZRG9SeWKiukdM/fVHQRCy5SLsyZPVgVt9UONc/7Np00ScPdtOc06W5KefPtBYQhPx6KNmLFpkwwsvnMK993aQn9HbEafM+jhuda9ncvrsvm7iyKCGXGmTgQ8RkVawct99YcjO/kheitIKeDIzM9G5c2fVl6cvdpIp6Y1TCAvrDYvF3qPG8fqVnZEdAzftXVb1r1MuLTnOydK6HmXQIoomzJnTHlOnAr//bsKWLRlyxkm5I855HpcAreBHHajZmzi+/rrQKkd2UOvEwIeI2iStYMVIEbPZbHbKGOjN9WpIlkIr67R2rT0Lc9NNN2HXrkingmTl9TsGbo5ZlHrOj2vdh5SUXYiJOYY337wdWktRs2adwaZNMRDFLqrzSMGY3hb3/v1/xN69/Z1aBwwYUIDy8k6YM+dPuktpRI2BgQ8RtUlawYo3PXVczfWSRk0YNXr0aGzbtk3+WS/r9O677+oWJGtdv17GxjG74u48FRUdod3lRMTGjdqFwFIQpbd8N3ZsDsaOzVEFeKNHj0bHjh0RGBiIyMg/UFpaCoC7qKhpMPAhombjzbwtox2XpW3v9TU+IiZOVBcxuzuXu7le0qiJzMxMQ9fesaNzZkPvGtxNF3eUnHwQU6euByAiMrICNTXBcqARGvqH6jzp6c4jfHbuHIKNGydqnFmvVsdOCqI8mYauDP4cGb2XRN5i4ENEzcKbeVtGOy5L294rKkIBmKH1xW3kXEbnetXU1Lj9vN58HqPTxY2eJz8/Dbm56cjNHY68vHSn+hznbI/jdHk1QRAxf/6vGDmyHwBg6NA6JCcv9XoaOuD9vSQyioEPETU5b3ZJ6XVcTk4+qPqCraiowNq1a1FcHIsVK26XdzpJO5yk4Zh65/JGYKCx/5UGBQXJv9fr5eP4edwNUTV6HgDIy3MeIKpfnwNcffWH+OijCU7PSVmjtLR8tGtXhfz8+ufc9TByx+i95LIYeYuBDxE1OW92SR092s5Qka4gCIplG+3jAUH3XN6IjIzE7NmzUVRUi8LCQCQl2ZsqKgUHB6sySHq9fH76qR/6999rOHjQO4/jfXH1ft27H9Gsz+nT5wACA5W1QzYMG2YPeBprKrx0L9mHhxoLAx8ianLe7JIaOtTsNADUZBKRnv4nDB1ajbg4G4KDg1FUVKuzbKMu6jXSvdkTH3wQ5XbpTiriBbR7+QAitmwZj5ycsZpLb1r1QJ06WeC4JCUINlRXByE391J0734Y8fGlLt9PEGwYNGgP9uwZ5FSfY3S5zZcY1FBjYuBDRE3KyC4prXlTjq8RBBGiCNx1V0eYTCKWL7dPG9+2zaK5bONYbKtXiHvmzBmPP1NJicnjpTt3vXM2bZqImJhjqKkJQadOFqeREHPnHkRY2L9w6FAvqGuYbOjWrRj/+tcNkHrpDB78A/7f//uvy/fbs2cQsrLeVBVFK6+1KQIeoqbAwIeImozRXVLKsRNarzl6NB7r1l0LKcthnzYuYtw4QXMWF2BDVtabiI+vz7joZTLeffdd3TlQeuxT09WPaS3dOdalSNfw00/9sGXLeNVzomg6X6PkPPtKFE147rneuO222PPZrfrARxCA4uIExWMCfvhhMC6++FtFr5474FjwLYom1NQEIynpsOHPTdQa6ZfrExH5mNYuqaSkw07ZBOVxWq9p3/4stJrs7dhhRXX1r5g0aTMEwR6JCIINkydvVgU9nry/EWbzcZhMouqxgAAR4eG/w2KxALAXdO/ZE4WRI290uob+/ffK11tPVBUsO35em03AkSPdNet2nHexCTh6tDsAoKYmRON5AGjYUh9Ra8GMDxG1Olr1KiaTiC++WHG+LgVe16VYreHYvj0Yl14KnDzZDoWFiW57BuXmrsXEieot5RMmbMZ779l3TCUlXYvHHmt/vv4nWR4cKnFe9nK9jRywB3R6Rcn2nWzK4EZEQsIR3XsHiBgzZmuLWM7ibi1qbAx8iKjV0WqW98ADBxEW1rC6FKkfzgsvmCAIANARojgdJpOIZ56x4oYbzqqOLysrw4YNGwA4L50dOtQLS5dmK+pp7JTb6h1HRkivDwqqlpe56onnf9XXJMXHl2LQoD344YfBkOp5Bg3aAwCqxwYP/kHOeGndu4yMrRg+3LmpYWObNm0aIiMj5Z+5W4uaAgMfImqVHAMNZdDjDed+OPXP2WwC5s+PRGZmpMsO01KwpT2ws57ezDBlsKY9gkJEevp2eTu51RqOH34YBGU9z549g5CdvRQXX/wtjh7tjoSEI07LfM2xUyszMxNms1n+mUEONRcGPkTUavlyt5GrCeeAZ9PY3Z3LyNZ5raGhomhCXl460tLsHQPz89Og16soKemwZl2TxJf37uqrr0aHDh1U2RslBjnUkjDwIaJGJ83kiohwv59CWWNjdH6XL2jXvtSzFysfh8US6PZLXKu3jnJwqKuZW0r2QmT9Rov2TsyOmq5IecqUKYiLi2NQQ60KAx8ialTqmVwxToW9SsoaG6kJ4NVXN811ahUYCwJUxcqbN9uv2912d63eOmPGbEVcXImhpSWpUWFQ0DnNQuSSkjhodZ8GgGHD8pqsSJlBD7VGDHyIyKeUE9cBx5lc2oW9gHONjdQEcNeudk127Y61LwA062Ck7e4lJSanXV/1Az/VvXUGDChwO3OrvDwKJSWx2Lo1Qw64+vbdh337+kFZx7N1awayst7U3NElLYM1xJQpUxAUFISamhoEBgZqLmFx+YpaKwY+ROQzjhPX77/feSaXKJowfPh0DBum7pWzfXswXnjBsTcPYLF0lGc3KXdRNZRUbOt4TsfaF71gxf5ZY2CzTVdNRDc6O0tJOV3dsaPyvn0XQq/ZoF736YaKjo5GbGxsg89D1BIx8CEin9CauP7CCzi/XFR/XEAAkJYWBeX3qsViQVJSrdMsLqmuBgj02RfxtGnTEBMT06BsRf2ICvWIieTkg5q1Qq6KmUeMuAGPPdZLniLv3FzQpHu+pKTDTb47i6i1Y+BDRD6hN3H9rrtO4Y032uvO5FKOpNBqAqisqzFqypQpiI6OdnrcV8szu3ef1sxkSbupPMnEWCydVMGeI6nPjnL5S3k+ztEi8gwDHyLyCa2J64JgQ2joctxzD3RncinHQ7jqL1NdXW24q29jF93+9NMHEIRshyUtG06fbg+rNVz3c1it4Th6NAEAkJBw9PzIjFqn++a4AywlZRcGDChosswOuydTW8bAh4gaTHt6unNmwpHWTCxXGYyoqCinYMlRUxTdao+YELBu3XWqYEX5OXbuHIKNGyehfinLPkMsM/MkFi2qw8KFXVWdlB13gHmT2Rk9ejQ6duwIADh58iS2bdvm9jXTpk1j0TK1aQx8iKhBXE1cb4zMRFN8KUs7rFzN6JKyOkePxmP9+mvlGh1lvY+rnV6ACRs3TkRy8lKYzVXIzvb9fevdu7dcG2WxWAwFPjExMT55b6KWioEPETWI1vR0XwY89du8TWiMjUaOyzrKHVbK7I0Ws7kK5eVn3e7i0u/kXH9cY9fqtJRsGVFzY+BDRC2WMgh55x0Ry5cDWVnqXkEN7e4sBQQnTpzA0aMiHnusryp7s3nzJNx6axz69u2Ampoap+30Wk0GHXdx6XeFbtwuy45BHYMaIsde6ERELYRzQ0MBd94JPPss0KMHcMUV9n+uWKF+XXExsG2b/Z+eWLNmDd5771unHVY2m4APPijAmjVrEBQUpHpu584hiinq9j37gmBDerp60rlUEyQI9RXMgiBi8mTf9N3RwlodIm3M+BBRi6S1PFRXB8yfL8oZGXt3ZxEXXXQciYmB+OCDKFUDRSlD5E51dTWs1nCcPh3mMntTU1MDoH531saNE1H/90cBgA2iCOTmDkdeXrpqmUxZEwQACQnFjbq0pTcwlMjfMfAhomalt3VarxGgczAk4KWXPkKnTuVYtuw+OWPjGBS5yn6sXh2KpUuz5R1a0vto9eBRd1l2VP+YVpGzvY5nn7tbQkSNiIEPETUp5Y4pqZhWWXQrjZBw3DLu2MhPImVkysujnJappKAoKemw7mDR4mJg3jyzonOyCaJow7XXrnXKypSVtXMR9DhzN6qiMbEXD5E2Bj5E1CSmTJmCLVsS8NhjZthsAkwmEf37C8jK0i+61Roaevp0e+TmpkMa5aDMyLhapqqurnYqirZYLPjmG8Bmc3x/E9q3P+MUsPzyi97uLOm97a/Vev/GotWlmruziPQx8CGiBjGaWSgra4d588yKpSjB0FKUtM3bcZt5evp2pKXlq5aRXI2KWL06FPPm1df/LFlyChUVL6O4OBaCcLvLXVmAtMTVUeMKRVx77b+RkFCMQ4d6NcrQUFc4UJTIMwx8iKhB3PWHsVqtWLNmDVatyoXN1lv1nN5SlGMDQccdXqJoQl5eOtLS8lXnczUqwp5psh9nswFz5rTHFVekK5bO1GMilAFL/ftrzdQS5SUxVyM33HHM3Ej3zR0uaRF5hoEPURvhy942njKyrOJuarm0FPXEE+F4/fVsVdakY8eTmk0Cjx6NR3n5WVWHZa1GgHr1Pzk5GXDclZWV9Sbi40udXq9f16Ou4/G2EaFj5iY2NpYNB4kaAQMfojZgxQp4vI27qQMld0tRK1aIWLhQhCh2kF8j7YzKynpTM2hat+5aKGt99DosG90hBphQU+OcQdFvQKhfxzN69GgEBQVhy5Ytrm6LSwxqiHyPgQ9RK2axWFBUVIuZM2M82sbtTaDkC66WopYu7aq5lCSK9mDEMWhSFhJrbR1X8nSHmNKUKVMAAIcOKYeS6i+LSYzMxSKipsfAh6iVkoaDFhYmwmabrnpOr3bG20DJl/SWolztlurUqRxJSYfloOn06fZYt+461XHuto5rBV2hoX+4LUYOCgpCTU2N6vVBQdWoqQlutEGsRNR4GPgQtVJS7YeR2hnAu0BJj6+XyfSWkhyDESloslrDXX5mvenqjkGXkWJkZYFxYw4SZZEyUdNg4EPUyrmrnZEUFdWisDDR7VBNV8W0QOMskzl+BsCGYcPyVNvVJVJQo1yqUn7mnTuHYPPmSXKvoIkTNyElZZf8uqCgc6ipCZGDosaeii7R6rcjYZEyUdNh4EPUBrjLXNiDlRjYbNMhCDYMGrQHe/YM8qjfTGMvkxnJvjj28snI2Iq4uBL5eKs1/Pz8rPpeQZs2TcTZs+10t63rFUT7GvvtELUMDHyI2gi9zEVBQQVmzuwqByuiaMKePYOQlfWm4TqVhiyTebKE4yr7otXLZ+vWDGRnL5Vfk5+fBmXnZOVx9Rmu+vvgqiB6ypQpCAwMxNq1aw1fPxG1fAx8iNoAvZoWAHjvvW9hs12oekzaKZWUdNjQ+T2tJ1Jy1eBQmstlhFYBtLKg2WoNR15eusYrtbehO77ekd6yFBG1bgx8iFo5x+Ufx+Ubd8GKJ4zWEznyRf2Ku89x9GiCZoCTmroDO3em6gQ/jT9Li4haFgY+RK2A1i6qiooKzeUfx+UbV8GKVqaopMSEn3/W37HVkLEMelxlrCSuPsfOnUPO1/aoCYINI0Z8hU6dTiInZwykZS47EWPGbNV9v+DgYLeF3p7gri2iloGBD1ELZbFYUF1dfX64Zv1E82eeseLqq0uxdu1alJcnulz+kWgFK1qZIgB47LGY8zu27O91ww1nUVFRoXoPX+yEslgssFqtqusAbBgzZiuGD8/TfI3W55CCP8faHmVgJJ1PGlEhFUYPH56HzMxMmM1m1WulXValperRFe7o7dziri2iloOBD1ELJBUT2zsaZ8sdjW02AXPnRuC3396C2ezZMpYyWNHKFG3cOBGCAJ338u12b+Xn27QpW3H9pvOZGWD48DxcddVVCA8PxxtvfKTKCCmvR6/54dSp6zBgwD755+HD8zBgQIFTpspsNuvutvI0S8OdW0QtHwMfIg9JmRg9vvjbvXR+vYLevXv7oV+/vV7X3GgHC6bzYyDU7+WqG7K3XH0+QMDWrRkYMKAAH330EQIC7jgf/GnXMJWUxELaoi6fQbAhIaHY6X21MlVlZWW6/86kwuySkhLDRdhE1LIx8CHygJSpcMdI92MjtDsai/jkk/HYsmWsHAR4WnOjfV7b+YxPw4ugjerUyQLABq0t6OXlnQAAy5bFylkoxxomqzUcW7dmwLF2JyNDv3bHkRTQ6P078+TfI+t4iFo+Bj5EHjBa7Oqroljnjsb1mQ1peSom5hji40s9ysroZYoAeJw9UvL0i99srsKYMVudCo+lgKu8PEruPyRRZqH0MkZxcSUeXQfg+t+Zqy35EtbxELUODHyIGsDIbqSGkjI6e/f2wyefjHd41oQVK273qgOxXqZI+RgAFBYmolMnC667Lh0dOnRAYGAgIiMjnc7n7Re/VHisNX4CgMsaJl9u1XeHQQ1R28DAh8hLrvrnlJWVAfBdFsBsrkK/fnuxZctYzZofvQ7EjjuWHBsGatW8SI85fr5DhzYjJWULAGDatGlOwU91dTUsFovXwY924bHrGiZva5yIyH8x8CHygrv+Ocrgwlf1PtKXvL1fjfst7PbX6O9YcsXd51u7dq1utsvbz6u3Rd5dDVNj9BUioraLgQ+RF4zstpL4sgleSsouxMQcw4oVtxta3vG22NbdeAhX2S5Xn1dqxBgRoT1CQo+7vkFNNWGdiFo/Bj5EXjC628pT0lZ5qSuzVkYlPr7U5fKO1ERPa5nNaCCkt+srKKjaULdorc+kbMQoCDFIT89AWlo+AxYialKGA5/KykrDJ42IiPDqYohaC3e7rVwFAnqUW+XtGRX93jVGlneqq6tVnYelQEhrd5LVakVNTQ1OnjyJbdu26Xw+eyF1enqeoW7Rys/k2IhRFAXk5g5Hbm46Jk/2LkgkIvKG4cAnMjISgiC4PEYURQiCgLq6ugZfGFFLpMyYuNpt5U3jPykYMZpR0Vve2bBhg8f1N1IdUGlpKbZt2yZ/PsdlNVE0nZ+Aru69o1xqU876Cghw1agQAOxb8q++Oh4jR4bJhdieTG33FfbgIfIPhgMf6X+GRP5MmTGRvpy1dls1ZEu1q/oa6XlX2+e9rb/RUlMTonkt/fv/iL17+2sOC1XO+lq40P6XIO2lM4kJd911ESZP3oy33hreLNvGb7rpJm5XJ/IThgOfkSNHNuZ1ELUajl+Q7rZUS1vbtWjV4ej1pikpicM//3mL7vIXYDxbZJReLdNPPw0EYMOwYdvlOp36966f9bVoURyys8Nd7kizs19nUdEJREX5Nvty0003ISwsTPd5Nh4k8i9eFzdXVFRgxYoV2LfPPgSwf//+uO2225ymHBP5A1c1N9KSjdHlJ61AKiNjq9zgD3AOaEaPHo1t27a53Y3ljmPA4aqWCbAve6Wl5QNwvxNMWjp78807oB4xUX9sUVEgUlPdd0o2uhQ2bdo0JCcnuz2OiPyHV4HP999/j3HjxiE0NBSXXHIJAGDJkiV44oknsGXLFqSkpPj0IolaIq0gwVfLT46BVH5+msugomPHjgAa3slYayinkVomADh9OgxatT9BQdVy9+f4+FJMnrxJlZVSHhsVdRJAlHwtDaXVYZqI/JtXgc99992HyZMn44033kBgoP0UtbW1uP3225GdnY0vv/zSpxdJ1BIZzUq4W34qLCyUj1eSAimrNRy5uelO59cKaHzRyTgqKsrpM+l1jnZcgrNnhOzBjyDYMGjQHrk4WhnwJScfRH5+2vnPVf9cVFSS4eskIvKG1xkfZdADAIGBgZg3bx6GDh3qs4sjaumMZCXcLQHl5OS4fb1WXUx6ep5XnY7dsVgssFqtTo8bWYIDBAiCiKlT1yIoqAb/+tf18rU7Bnxjx25FWlq+w3UaC3yM1gBxpxYROfIq8ImIiMCRI0fQt29f1eNHjx5FeHi4Ty6MqK0wuvykVwOk10xQqq3R4m0nY2UvIa1rcgyq9IK6kpJu57e9u643crzOkydPGpr3xWnpROQtrwKfzMxMZGVl4bnnnsOwYcMAANu3b8fcuXNx/fXX+/QCiVo75wJhQBSBQ4d6yXU+rmqAjCxfKbOvrlRUVADQDwqUgYTeNTkGK1pBnbSE5chdvdG2bduwbds2Q/O+GNQQkTe8Cnyee+45CIKAW265BbW1tQCAoKAg/OUvf8FTTz3l0wskam2kEQ3Kmp3k5IMQReVR9cs+ANxuQXe3fBUTEyNnQKxWK9asWaN5bWvXrpV/rwwuHK/ZkyaKjkFZenoecnOHa7y78XojX843IyJS8irwCQ4OxrJly7B48WIcOnQIAJCcnOyyV0ZDFBUV4fHHH8dnn32GY8eOIS4uDjfddBMWLFigWsPfs2cPZs2ahe+++w6dO3fG3XffjXnz5jXKNRFpcVwqkmjV6dTviBIMbUHXW77KzMx0mf3QW0KTggut5a2ffurv8pqk7fOAc1AGAHl56U5ZoKysNxEfXwoioubUoCGlYWFhGDhwoK+uRdfPP/8Mm82G119/Hb169UJBQQHuuOMOnD59Gs899xwA+yyxsWPHIiMjA6+99hp+/PFH3HbbbYiMjMTMmTMb/RqJAP1Mhbs6n4ZsQe/cubPuc66W0LSuWXm8umeP+pqk7fMSx6BMa2mOQQ8RtQReBT5//PEHXnrpJWzbtg3Hjx+HzWZTPb9z506fXJxk/PjxGD++vn9Iz549sX//frz66qty4PPee++huroab731FoKDg9G/f3/s3r0bS5YsYeBDhigno0tLuEpBQUEwm80eFc0qsy16dTpWazjS0/PkLInetHUtrq7F0y7Ojsfbgx578ON4vd9+2x5Wa7juslVDd5YRETUWrwKfrKwsbNmyBddeey0uueQSt8NLG4PVakWnTp3kn/Py8jBixAjV0te4cePw9NNP4+TJk05/QyVS0lui0mOk+FYr25KdvVQVDKgzLOoREJLo6Gh5iKjetSuzNlKdjqddnLUHiQoYN+5j9Ou31+l6BSFbM4Mk8XZnGRFRY/Iq8Nm8eTP+97//YfhwrQLGxnfw4EG89NJLcrYHAI4dO4akJHUPkC5dusjP6QU+586dw7lz5+SfKysrG+GKqaXztJjW3fF62Zbs7KVISjqseYzjCAiJq140rgI2T7s46x0vBT2+ngNGRNQctKYFutWtWzef9Ot58MEHIQiCy18///yz6jW//fYbxo8fj+uuuw533HFHg69h8eLFMJvN8q+EhIQGn5N8x2KxoLS0VPeXxWJp7kvU5G7CupFjpkyZoplZUt6TkpIS3WuQdlwJgn0p2l0XZ63j09Pz3F7v8OHTMXPmTEyZMkX3WoiIWgqvMj7PP/885s+fj9deew09evTw+s3nzJmDGTNmuDymZ8+e8u9LSkowevRoDBs2DMuXL1cd17VrV/z++++qx6Sfu3btqnv+hx56CPfff7/8c2VlJYOfFsLo8pNjcOC49OPISI2OVJsTFHQONTUhTjuiHMdLOJ7TSLbFyDHV1dWqhn7u7om7hoNan0HZpVk6/ssvL8eOHanIzR2OvLx0TJq0GVOmtMc774iw2eqXtgMCRCQm1iI4OFi3Dskb7LhMRI3Fq8Bn6NCh+OOPP9CzZ0+EhYUhKChI9Xx5ufHdKK52pCj99ttvGD16NFJTU/H222/DZFL/zTM9PR0LFixATU2NfD05OTno06ePy/qekJAQhISEGLoGalpGl5+Ux3kbLClp7Wxy3BGlNRl89uzZ8u+NNB10d4zyPaTrdXVPjDQcVAZGetPNCwoGYMeOoZB2dNUvaS3FxImnVe8xYcJmbN5svyeZmZm616ZFr2ibHZeJqDF5Ffhcf/31+O233/Dkk0+iS5cujV7c/Ntvv2HUqFHo0aMHnnvuOZw4cUJ+Tsrm3HDDDVi0aBGysrIwf/58FBQUYNmyZXjhhRca9dqoZfEmWFLS3tlkrJ6lurpalakwsrPJ6O4nV0taWtetdb1GtrZbreHIycmAchu7dL7y8k4ur7empsblNTqKi4tjgENETc6rwCc3Nxd5eXkYPHiwr69HU05ODg4ePIiDBw8iPj5e9Zx4vh2u2WzGli1bMGvWLKSmpiI6OhoLFy7kVvZWSKvzcVPR3tlk52pHlMToDCkA8mfcsGGD2+JgKTszbdo01eNSBuf06TCXO7jcBUbTpk3D/v2n8eqrFrgbNdHQ3VpTpkxh0ENEzcarwKdv3744e/asr69F14wZM9zWAgHAoEGD8NVXXzX+BVGj8XRbua9pDwS1k7789TohSxrzC12Z7XTM4AA2KIMWZbDibmv7+vVmLFzYR7NxISAiI2Or22DH6LwwBj1E1Jy8CnyeeuopzJkzB0888QQGDhzoVOMTERHhk4sj/9NcM5qkLIzzQFF1jc+hQ73cLhc1hLugShoToZXBsQds9uDHsV7IVSG11RqOZctiIYpSsFPfuBCwYcyYrRg+vH53l57IyEhOTCeiFs+rwEfqonzllVeqHhdFEYIgoK6uruFXRtSElEtUFRUVmD17P44eDUG7dnU4ceIMDh/+FACwdGl2g/vYKHedKZfzHDM46el5Ts0MJXoZnGuvXYv27c9o1gspu0MD9VvVy8ujVDu17NSNC41iUENELZ1XgY/0t06ils5dBkVJ+tKOjY3FhRfWP15aWorly6tQWJjoUSdkLXpLeVoZnNzc4cjNTcfkyc5ZJb0MTkJCMczmKowZMwY5OTkAHHep2dCjRyEOH06Ut6pnZGx12biQiKgt8SrwGTlypKHj/vrXv+Kxxx7zaX8PIkd6PV+M7GLyhKedkLXoLQPpF1Xbs0rBweeQkHBUDkTcbYWXxrlodYc+fDgRyt1qW7dmICNjK7ZuzdDdek9E1FY0aDq7O++++y4eeOABBj5kWEVFhe5zyuzNrbeOQXR0tFPNiBQEudvF5EmDPL36H8cAoSFN91wVVYuiCevWXecUvM2ZEykvySUknEPXrkkAkhAUFISqKvs16c3fcjx/XFyJ0xwxT7HpIBG1Bo0a+EhbzYmMsFgsWLt2reZzjtmbbt0qMWdOpNNxUq3Otm3ACy9oj1cYNcqzWhTHLeoLF55AUVEgEhNrERd3MYCL5QDMXddovcDOuajamWPwplxyPnpU+/2Cgs7BeZeWmpS1MrJNfcyYMU4z8QAWLRNR69GogQ+RJ4w2FRRFE+bPNyMzE3Bo6wTAHqhceilgMgE2W/3jAQFAWloUvPl+Vn6px8YCqanOx3izFV+ZxZKaA+bnpyE3Nx1a/XS0aopc1THV1ITAVdBjdKu6JCkpyeWkeCKilo6BDzUZb7MhWss1dXUCDh7UDnwA++PLlwN33gnU1dmDntdf1z/eFzzdiq9XgzR27FakpeXj6NF4rFt3LfR687g6h0R7Cc3zreoSLmcRUWvHwIeaREMaE2p9eQcEAL16uX5dVhYwbhxw8KD92MYMejzlrgbJ/msfqqv1a4r0zhETcwwVFfb5dAkJR53qkjIytiIursRwLY80U4vLWUTUFjDwIZ/Tyux4O35CWsZR7joKCBDx+uuCoUAmPr5lBTwSd52UJSkpuzB7dm9UVsbINUVlZUnYsGGD7jnefPN21GeJREyevKlBhcvR0dFc3iKiNsPjwKe2thZPPvkkbrvtNqe5WY5uuukmdnH2M74cOeG4jCNlKu6++yqkpnbxyXs0F72t8adPt4fVGq4KTgYMiERsrHOmRX8ZS/mzgE2bJiI7eymSkg57da1c3iKitsTjwCcwMBDPPvssbrnlFrfHvvrqq15dFLVevho5obWMs3VrBrKzlyIuzubm1S2Dq6Jjra3xogjNbevO57XK5xg0aA9++GEw1GMm1Dxpsigta0m4vEVEbY1XS11XXHEFvvjiCyQmJvr4cojsXC0FecNdYbWvv+D1io61dnE5FjG7G4VRU1MDwB5Y7dkzCPXBjnbw40mTRS5rEVFb51Xgc9VVV+HBBx/Ejz/+iNTUVLRv3171/OTJk31yceS/XHVJlpZejAYzRpffZs+e7ZPgR6/o+OzZdk7dkVNSdqG8/Cwct667ytJIU9D1mxPWT2n3tAszl7WIqK3zKvD561//CgBYsmSJ03McUkoNkZmZCbPZDADo1q0S8+ebUVcnICBAxNNPV2LGjOkeBzNGl9+qq6vlYMpqtcqZFaXAwEBERkZqZoikoEEvWyUFPdLPUlbH3SgMx2AkMjISgH5wmJX1Jioq7MdIs7uMyMzM5LIWEbV5XgU+NlvrqLGg1sdsNstLLZmZQEICIAhAerqA+PhI+ThPghmjrFYr1qxZY/h4xwyR1OG5qKgW77wjOkw8dx5HIWV1kpIOq+p9pCDvhhuud7kEpzdCIz6+FPHxpYY/h6Rz584ev4aIqLXxKvD55z//iczMTISEhKger66uxvvvv2+o8Jlal6aqkZGyGytWADNn2jsvm0z2ZoRZWQ0+vUtaGR5XpPvheG/CwiowcWK+0440ZcYHUGd1pHqf4cOnIy0t6nyQF+n2GqTXGd2q7li8LGERMxH5C68Cn1tvvRXjx49HTEyM6vGqqirceuutDHzaGE+WlYzS+gKWvnyLi+uDHsD+zzvvtDcjbGk9efTuTUoKnAKS0NA/dJsRAvYMzrBh1YiNVQdTJSUmFBYGIimpFnFxNqeeSEZmbElYvExE/s6rwEcURQiC87bZ4uJiuT6D2g5PlpWMFsfGxcXpZhgOHFDP2ALsYydcjahoLq7ujWNAoszOBAVVo6YmxKlnD6AOptyNpCAiIs94FPgMGTIEgiBAEARceeWV8u4SAKirq0NhYSHGjx/v84uk1sNxkrkWd8sqvXtrDxh1N6LCKFf9dRqb2VyFQ4d6uQxmpHvnbqwFERF5zqPA55prrgEA7N69G+PGjUOHDh3k54KDg5GYmIipU6f69AKp9XEV1EhLODt2/K5avpEEBwcjPj6q0QaMNncGxUgwY1/aSsTp02Eux1oolwsLCwuRk5PTZJ+DiKi18ijweeSRRwAAiYmJyMzMRLt27RrloqhtkpZw3AUfs2fPRlZWlM8GjErLb+6CDmUG05eUGSZ3M7pWrAAeeSQGNtt02PvxqBsSKguilfU6wcHBhgIf9ukhIn/n1f/pp0+fDsCekj9+/LjT9vbu3bs3/MqozbH3x3Gf8ZCWelwNGHX8AtdbvpKW1WbPno1t24AXXnAOOoYPn45Ro5zrdaRzBgWdQ01NiObSWEVFhcvr0Jo35th7x2QSERRUjYKCfli3rgvqAx0TABsEQdQtiJb4YomRiMgfeBX4HDhwALfddhtyc3NVj0tFz2xgSHqMTiV3R/qiP378ONauDceyZd1gswkwmUQsXPgbpkw5iaCgINXxl16qXTuUlhaFqCh7RkqiDFikrItjdurMmTNYu3at5mu0trBLTQyVjwuCDQMH7sGKFbdrdGEGABOmTl2L9u3PuN2uzqCGiMg9rwKfGTNmIDAwEJs3b0ZsbKzmDi8iACgutu/S6t3bHmS461LsqTfe+AhLl2ZDFO1/Bm02AYsWxcFqXSsHCVKjwfh4uKwdUjYgfOyxGPmcUgZGFE3YvHkSFi5MQ2JioCq7ojdUVSvIi4srQXb2Unl3l37QY783nnRfJiIi17wKfHbv3o0dO3agb9++vr4eaoGM1oU4HufYhPCZZ0J1uw1788VeXV1tKIOkDFCysuCydigqKgp79jhvp5fYbAKqqrogKgooLa3vjqx3Hcq5WYA9kAkKqpaX0I4c6eEy6PH23hARkTavAp9+/fo5NVGjtknahZWZmanqbHzq1CnU1NQgMDAQ4eHhCAy0Z0CkYKCsrB1mzuyoakI4f74Z99wT7nG3YVe8ySC5qh0CtLfTS/S21etdR0bGVnz66RjYbPalskGDlMtaUuGycwHz1Knr3GZ6WKhMROQ5rwKfp59+GvPmzcOTTz6JgQMHqmopACAiIsInF0fNy2jHZi2FhYnndybVq6sT5EyMJ92GXfFlBkniuCQmcbWtXu86UlJ2Ye7cBLz3Xr7GspZyKU1dRzRgwD6n91BuX2ehMhGRd7wKfDIyMgAAV1xxhaq+h8XNbYsnAz4d+bqWxxVfZpAkyiWx9u2B06fdb6tPTj6IqVPXAxBV2ZquXWuRlHQYhYWJustagIBx4z5Gv357da+f4yaIiBrOq8Bn27Ztvr4OamMakomxWq3y741mNtxlkLwZsqq1JKY8j3K510hjRK1gUCIINpdBDxER+YZXgc/IkSPx1Vdf4fXXX8ehQ4ewbt06dOvWDe+88w6SkpJ8fY3UTBx71HhKKxOTmZkpz3OrqKhQbQeXrFmzRvWz8jWA58s8eu/jSNr9pUdv6c/oaAnHYNBxectd0MOaHiKihvMq8Fm/fj1uvvlm3Hjjjdi1axfOnTsHwP439SeffBL/+9//fHqR1PQsFouhYMEdx0yM2Wz2eLnGMRACPJsEX1tba+g4d0t7es+721l29uxZ+XHnQaXBLpfnpLoe1vQQEfmGXsGBS3//+9/x2muv4Y033lAVNg8fPhw7d+702cVR82lIfY9R0kwqqzXc49d6Mgnesfje16QlLCVBsOH06fawWsPx0UcfqZ4zm6uQlHQY8fGlSEo67DLTExcXh9jYWAY9REQ+4lXGZ//+/RgxYoTT42azucHLI9Ty+WK6ub3Hj30mlbfDQh3HNNgDKfXg0+DgYK+COK2aIL0WDlr1TKIIrFt3nVefjVkeIqLG41Xg07VrVxw8eBCJiYmqx7/++mv07NnTF9dFLZQvppsXF0uNDes7ImvVxBghBQaOzRKXL7fvzALUjQaNMLqNXxkASktYR4/GY926ayElU735bHFxcQx4iIgaiVeBzx133IF7770Xb731FgRBQElJCfLy8vDAAw/g4Ycf9vU1UgthtIjXnQMHnJsDejOvS1IfSNl/ttnsPXjGjQNCQy2Gm21Kxxk5Xi8ALC8/C8cVZOVncyzUdsQsDxFR4/Iq8HnwwQdhs9lw5ZVX4syZMxgxYgRCQkLwwAMP4O677/b1NVILoVfEO3z4dPTvf0KzCNlRcHCwZmfkhvT40Qqk6uqAHTus2L3beAPGDRs2GDrOVQDorn+RN8XdRETkO14FPoIgYMGCBZg7dy4OHjyIU6dOoV+/fujQoYOvr49aEK0vdZNJRGJiLcxmMzIzMyGKIiIjIzVfr8xm2Dsji6irM76dW49WIBUQICIsrMSr87njahdXUtJhn3eSJiIi3/Eq8JEEBwejX79+vroWauG0ingnTtyMzZvVNT7u+uEA9vqbSy6pwPPP/7fB3Zbj44ElS07hvvvC5OuaMGEzcnM9qz0yyl1WpzE6SRMRkW80KPChtktvq7iRL3Wju6gGDuyI55+fpDreaLNBx+ubNq0Khw8vNxRseLorzfH4Q4d6QRTrn9fK6vhqFhkREfkWAx/S5LhVHLAX/W7YsMHpS10rkCguttfe9O7ter6VMjNUXAwcOxaLKVPuQXT0HwD0t6hrZZSMBBue7kpzPP6yy77CV19dDmUBsyja53QZwe7LRETNi4EP6TKyu0grkFi9OhTz5mlvLdej3o7eEcuX2x/X26LuDU93pWkd/9VXI1A/VV1Sv2tLOUHdEXdsERE1PwY+ZJjUaVnK7GgFBhs3TsTmzYLm1nK9zI/ednSbDfKSkv0xERdddFzO/EiMZlHcjZaQSBms06fDNAaKOgY96voeTlAnImrZGPiQIVqdljt2PKkRGJg0t5YfPKgf+OhtR3dUVyfgpZc+QlLSYafnMjMz3X4Gd0XJgHMGC7DB9WQX7toiImpNvJrVRf5Fr9NyUNA5pxlVgA0mk6h6JCAA6NVL//zSdnTH1wgOyRVXvX5qamqMfBSkp+fJ1+xYlKyVwbJfg+NnrL+e229/U1UjxBoeIqKWjRmfNkZrxpSSN3Umep2Wa2qCNXvWjBgxAvPnR6Kuzh7AvP66frbHYrEgIKAazzwTivnzzairExAQIOLpp60AgHnzzLDZGt7rR53JETFs2HakpeWrznf0aILmUtiIEZ/jyy9HOZ0zPT0P8fH2cRiZmZno3Lkza3iIiFo4Bj5tiNEZU0b67Ci56rSclHTYaXv7jBnDkZlpX97q1ct10KO83nvuCZfPc+qUPSC5995wQ1vUAwP1/yg7Z3IE5OWlIy0tXz5m584h2LhxotNrBcGGCy74BV99NcIhKLLJr8/MzETfvn1135+IiFoOBj5tiNH+OZ5OK//kEzj0rRHx7LOVuOGG652OlZZ6AgJK0aeP/THHGaFS1snxOrS2oxvthxMZGSlvvy8rK8Pbb+fIW+zdFTVLgZHjyq+UZYqPL3XZjdnV7C0iImpZGPiQS1J9jzrwEZCZGYnY2Ein4z3JOvlaVFQULBYLNmzoiKVLs+UgJSNjq8uiZq0lLgBYtOgX2Gz2+h1XjRtZ10NE1How8CGXtOp7bDYgP99em+PIarUaOq+nWScjLBYLnnhilRz0APbMztatGcjI2IqtWzOcMjZS7Y8jQbDh6qs7IjFxts9rpoiIqPkw8CGX9Op7tm9fhYKClrWFu7q6WndZKy6uBNnZS1UZG8fan3r2wKh9+wsQFcXaHSKitoTb2dsAi8WC0tJSlJWV+fzc8fH2jskBAfafldkSqzUchYWJsFrDff6+njpz5gzKysrkXj1K0rKW2VyFpKTD8jKVVpAEANdeuw4pKbuwZs0aWCyWJrl+IiJqGsz4tHJGa2oaIivL3nk5P9+C7dtXqZaIjM68aohp06YhMjJS9VhFRQVqa2sBAGfPnsW7774LADCb4bIQWUmroSEgwmqtf6/GWJIjIqLmw8CnlWuqL+b4eCAgoBoFBdqjKlzNvGqoyMhIeQxEcTHw/fdWfPnlv3Tfy7EQGYBq1IbEbK46P3RUOX9LwNatGRgwoIDdmImI2iAGPn6oobuQjM688tV1SMfVDzI1QxCyXWaZpG3wrjJTO3cOwddfXw7H+VvefBYiImodGPj4CWlquC92IRmZeWVEVFSU3HtHj3S9joNMjWSZXGWmAOgUNnv3WYiIqHVg4OMnfDk13GyuMlxHo0fK4iiDsOJi+/b53r2duz3rjc1wlZnRG0FRXt4JgKAZ9HDoKBFR28bAh7ziqqGfVjGyklbWqX4Zy759fvlye1G1xL6tXpQHpQKuMzOuRlBIr9HKWmVlvSnP3yIioraHgQ8Z5liTozdOIiYmxqPlNMdlLJsNuPNO+04yKfMTGmrBxInbDWWZ9EZQmEwiFi06hro6+2u0slYMeoiI2jYGPmSYJzU5ElfLVxKtZay6OvuQU+k11dXVLrNMSnojKF59tQKTJglYvtz+s5HzcRwFEVHbwsCnlfN0Z1RDeZLJcbd8JdHqDh0QYJ/s7sjd0FJXS1zp6cazVpmZmejcuTPHURARtTGCKCrHT1JlZSXMZjOsVisiIiKa+3IMsVgszTJPylU2p7gY6NHDOZgpKtLO/KxYYV/eqquzH/f66+ogqbS0FMulVI0DqzUc5eVRCAo6hxUrbnfK9phMIpYsOY177+0AoPnuFxERNR6j39/M+LRSzf3l7S6bY2T5SmKxWHD11dXIzzehqCgQiYm1iIuzobS0/rPocezTo7fENXNmR/lnBjVERP6LgU8rZHRMxezZs+UveV8GSkaKkY0uX2l9loIC5/fMzMx0ekyrTw8gQtmQUBBsSE3l2AkiIrJj4NMKGR1TUVRUiz17gOjok9iwwbNAyRUj2RxpuKnj8pVjtsfoZ6mpqXF6THvIqAAp+JF2asXFXWzoPYiIqO3jdPY2aufOIbjkkhhccQVw0UWR2LlziNvXGA1CpGyOklY2JyvLXtOzbZv9n1qFzd6yWsNx+nQYAJvGs4Lck6exBqcSEVHr1OoCn3PnzuGiiy6CIAjYvXu36rk9e/bg8ssvR7t27ZCQkIBnnnmmeS6ymUlLQFKzP5tNwKZNE2G1hvvk/FI2JyDA/rNeNgew99/p06cUAQGlKC11/lVRUWHoPQMD65OTO3cOwdKl2Vi37jo4ztmSiKIJNTXcik5ERGqtbqlr3rx5iIuLww8//KB6vLKyEmPHjkVGRgZee+01/Pjjj7jtttsQGRmJmTNnNtPVNg9vh4harVaX51XWAWVl2Wt6Dh60Z3q0gh6jtUhGREZGYvbs2fjxx5NYtKin4vNpBz7KDs3sxUNERJJWFfh89NFH2LJlC9avX4+PPvpI9dx7772H6upqvPXWWwgODkb//v2xe/duLFmyxO8CH2+HiK5Zs8btuZV1QPHx+k0JAeDEiRPGLtigqKgoiGIU3DVgMJlEPPNMJW644XpuTSciIpVWs9T1+++/44477sA777yDsLAwp+fz8vIwYsQI1d/ux40bh/379+PkyZO65z137hwqKytVv1ozqadNRsZWBATYI4SAANFngzeN1gEB2gXJ3iorK0NpaSkiIn6HyaQd+QQEAGvXAocPC5gzJxKxsbEMeoiISKVVZHxEUcSMGTNw1113YejQoSgqKnI65tixY0hKSlI91qVLF/m5jh07Or0GABYvXoxFixb5/Jqbg2NPmzlzjuPSSwMREXEcubmtu8h3w4YN8u8nThyi2MZu38El1Rldd12zXSIREbUCzRr4PPjgg3j66addHrNv3z5s2bIFVVVVeOihh3x+DQ899BDuv/9++efKykokJCT4/H18SatmRaunzfPPd0Z29lKfZHqaipSx6tTJonvdyhlb06ZNQFhYZ906IyIiIqVmDXzmzJmDGTNmuDymZ8+e+Oyzz5CXl4eQkBDVc0OHDsWNN96IVatWoWvXrvj9999Vz0s/d+3aVff8ISEhTudt6bSGhW7fHowXXvC8oLkl+eOPG7FsWTJsNgEmk4iJEzfpbkeXZmwNGVKL2NgmvlAiImq1mjXw6dy5Mzp37uz2uBdffBF///vf5Z9LSkowbtw4rFmzBmlpaQCA9PR0LFiwADU1NQgKCgIA5OTkoE+fPrrLXK2ZY+3KpZc6d0o2UtDcUlit4Vi6tCdEUb0FPzn5IMzmKkOZICIiIndaRY1P9+7dVT936GAfNpmcnIz48+sbN9xwAxYtWoSsrCzMnz8fBQUFWLZsGV544YUmv97m4NwpWcSECdoFzS0xiHC1Bf/QoV6q2qVJkzazMSEREXmlVQQ+RpjNZmzZsgWzZs1CamoqoqOjsXDhQr/ayq7srRMefhybNzsHB44F0L4MIhzngVVVGQ+q9LbgBwVVO9UuKTNBREREnmiVgU9iYiJEjWYugwYNwldffdUMV9S8iovt87N6967vrVNa6jzKQasA2tMgQq8ZoJFmha4yTWZzFSZN2ixfn73GZzNqakK8asZIRESkpVUGPlRvxYr6Sekmk325S28mlicdnfv3HwerNQbdu59D1661AOxjI6qrq2GxWJxqjNz199m5cwg2bpwIe+soGyZPds40KXdr3XhjGnJzd8FqDfeqGSMREZEWBj6tWHFxfdAD2P9555325S5pjpaS0Y7OO3cOwaJFl7hcDjM6yR2wZ3rqgx4AMGHjRu1Mk7RbKz4+Tf5ZmQmSrkd6HcdREBGRJxj4tGIHDqh3cQH2wuaDB4GBA9UBgbKj89atGXIQkZGxFeXl9gBG2j1lZDnMkw7OR48mwLlJuAlHj8YDKNZc/pJmc0nvs3DhCRQVBSIxsRZxcRcDuJjjKIiIyGMMfFqx3r2dt7AHBNiHhip7/axeHYrHHjPL/XEyMnIQF1eCkpI4VRA0adJmdOx4sslqavbvvwDr11+rm1lSBjWxsUBqqk/fnoiI/FCrmdVFzqQt7NKyljS2QepgHBUVhbq6WMybFwmbrb4/zmefjcG0aRPw6adjVJmdDz+chLFjh0EQ1GkkIzU1FRUVus8lJByFfbSE2o8/DnbKLFmt4QC4hEVERI2DgU8rl5UFFBUB27bZ/+lY2Ky9HCZg//7OcjCkfPyPPwIwadJmOfhxrKnRYrFYsHbtWt3nzeYqTJ68CYDjTjP1+4uiCcOHT/eofoiIiMgTXOpqA6Qt7Fr0lsMuuwwwmURV8CMINhQUfICUlCp5d1WnTuVul7hOnDjh9Jjj1vWUlF0IDj6Hdev0p4gGBABpaVFgzENERI2FGZ82Tm85rGdPCxYu/E03s2M2VyEp6TAAoLAwUV6CcmSxWLBmzRrVYzt3DsHSpdlYtWo6li7Nxs6dQwDYl7wcl9GkJbCAAFG1TEdERNQYmPHxA8qOzr16AaGh9c0Gs7PDdTM7Rro8O+7ucrcrzHFrekbGVsTFleDuu69CamqXRrwLREREDHz8hnI5rLS0PliR+uY4chfABAcHw2KxoKysTPU6vSaJP/3UD/3771U1KVQGW3Fxzp2miYiIfI2BD2nSC2CGD5+OUaPsP2uNqNBqkgiI2LJlPHJyxp7P8JS2qAGpRETkPxj4kExZkKwVwCiLj0tLSzXPYTZXqZok2mt47AXUomhCTs4YAAKnrBMRUbNg4EMAtOt5lPU4jj2CXJ2nPuixwbl+vj4I4pR1IiJqatzVRSgujsXGjdr1PNnZS7FunUWzR5AjaSZXfZZIyvhokzpCExERNRVmfPyclOlxjIGloCQp6TBGjYKh3jr5+WlO55GWtRyXvQBOWScioqbHwMePOe7cUhIEG268MQ0pKZMMdVG2WsORl5eu8YwNWVlvoqYmWHM2GKesExFRU2Lg44ekIENr55adVHg83PDoiKNHEzTPNX26BQ8+eCXCwsIAACUlnLJORETNh4GPH5ImtxcV1eKdd9RjK0wmEZs2WZCWZjzo2blzCDZunOj0uCDYcPfdNiQnJ8uPcco6ERE1JxY3+6moqCikpnbB8uWCapzF8uUCrr66s9ugR8oaSctljn+UpKWsyMhTjXH5REREXhFEUdTfduOHKisrYTabYbVaERER0dyX0+gsFguKimoVy0/qDsqulqEOHTqExx//GqtWTXd67tpr12LAgH0AwGnrRETU6Ix+f3Opy49ZLBZV9+WCAu3jpk2bhsjISNVjwcHBCAsL0+nUbENCQrH8k+M8LyIioubCwKeFKy4GDhwAevd23TzQ8TgjrzMakKxdu1bz8czMTHnwqL3GRwp+BBw61ItdmYmIqMVhjU8LtmIF0KMHcMUV9n+uWGHsuBkzjL2uoWpqagAAyckHIQjKZwRs2jQRVmt447wxERGRlxj4NKHiYmDbNvs/jRw7cyZgO19yY7MBd97p/Fqt41atcv86LVZrOAoLEz0OWLS2srMrMxERtURc6moiK1bUBygmE7B8uesREAcO1Acvkro64OBB9dKV1nGO6uqA/HwLQkOhW2SsNavL3VLVyZMnXW5lZ1dmIiJqaZjxaQJGszdKvXvbAySlgACgVy/3xznOxxIEG7ZvX4WXX34ZFovF6b0cOzhLs7qkzI9eJuiDD753uZWdw0eJiKilYcanCRjN3ijFx9uzQnfeaT9Wazq6xWJBQEA1nnkmFPPmmc83IrTBcR6WMgg5fvy4XNRcVlYGQLuDs7RUdehQL91MkF7n56lT18lb2YmIiFoSBj5NQMrKKIMfreyNo6wsYNw4e4DUq5dz0KPcin7vveE4ejQe69dfC1GsD3xE0V58LNHaoaW1JV0QbAgKqtbMBCUnH4TZXKX7OuVWdoBzuIiIqOXgUlcTkLI3yg7JjtkbV68dNcr5WMet6GZzFdq3P6uRgdEvMpaWsABg0qTNEAR7ZCZldmpqQlwWLUtb2R1fJ2WXpkyZwuaFRETUojDj00RcZW88VVwMfPNNMKzWcFUdjV4GRqvIWKuYOTt7KcrLO+H//b+B2L17F6zWcLfnS0nZheTkgygv74ROncpV1xMdHc2gh4iIWhRmfJqQXvbGE1LPnuuui8LSpdnYuXOI/Jy7DIxEr5gZAJKSDuOSS+Iwe/ZszJ17PZ59thIBAfZi6YAAEc8+W4lbbx2jOp/ZXIWkpMMsZiYiohaPGZ9WxHF3mGPNDeA6AyNxVcwsHS9laubMATIzpUyVgPj4SJSWnm3ET0lERNR4GPi0MK5GTWjtDnMMWAB7BsZV9sWTJTHAfh0NyVIRERG1FFzqakH0RlRIHZ87dHDu2eNNo0CjS2J6jO7S4m4uIiJqaZjxaSG0mxyKKCqqxJNPRsBmE2AyiZg69Sw2bAhFXZ3gccAyduxYbNmyBYCxJTE9UVFRmD17tsshp8HBwSxsJiKiFoeBTwuh3eRQwBNPhMt9eWw2AevWtUNW1hsYNWoCduxY41HA0rFjR9XPektiRjI1DGqIiKg1YuDTQmg1OQRsmkXIFRWRuOIKE8aPn47q6mqUlZVhw4YNbt9DFEVkZmbKU9UdBQYGIiYmBlFRUS5rjYiIiForBj4tRP2IClFexsrI2IqtWzOcgp91667FpZdWYs6cSI/eQ9m12WoNR3l5FDp1sqiyPpmZmVi5MkAegWEyiXjmGStuuOEsl6+IiKjVE0RRFN0f5j8qKythNpthtVoRERHR5O+/Y8fveOmlj+S6G2WjQaWAABFFRQLi453HV7jjahK71RqOpUuznXZ8ZWcvhdlcxU7MRETUIhn9/mbGp4WJi7MhKemw/HNKyi4EB5/DunXXqY6rqxPkIadGio2tVivWrFmj27xQ6gXkrsePq/cgIiJq6Rj4tAIJCUed+u4EBIjo1at+GKnRLIy7wMbTHj9EREStCfv4tAJafXcefvg3BASUorTU/stisRg6lxTYKCkDm4b2+CEiImrJmPFpJRz77gBVWL5cfYxW/Y3FYkFRUS127z6L4uJY1NSEqIqmpSLq8nL768zmqgb1+CEiImrJGPi0MK566LgbRaGsv7FYLDh+/DgefPDA+ZqeLgDuAFC/YywurgQlJXGqIEgqdHb3XkRERK0RA58WRlmoXFJiQmFhIMzm48jNXev2tSUlJvz8MxAdfRIbNrx8vpBZuUPLXhMkiibk5GTg9tvfVG2X1xp6SkRE1JYw8GmBoqKisGJF/QgLk6kTJk4cIm8517Jz5xA89ljM+eMjMXHiEHTseNKpkLmeCXl56W6ntBMREbUlLG5uYtLA0eJi18eo53YJ2LRpIqzWcM3jpS3qNpugOj4o6JxTIbPS3r39AegXOmvh4FEiImrNmPFpQuosjr1Tc1aW83Fac7u0MjFS9+XTp8M0Mzc1NcGYNGmzZgNE6Zhhw7bLmR/HHVyZmZkwm83y8ezcTERErR0DnyaiPX0dGDfOeRaW1twux0yMY/dle+bGufdOUtJhxMQcw5tv3g7HBJ8g2JCWlo+0tHzNHVxmsxmxsbE+ugNERETNj0tdTUR7+jpw8KDzsdLcroAA+88BAaIqE6PVfdm+W8s+fcRkUh9fUxMCrX/V6el58u6tpKTDrOshIqI2jxmfJqKVxQkIAHr10j4+K8ueDTp4EIiKqsCGDfWFzVrdlwEBomjDsGG5SEvLVwUxWt2YAXu2h4iIyJ8w49NEnLM4wOuvOy9zSSwWCwICStGlyz4AxRgzZgxGjx6N0aNHY+LEPjCZtGbL2ndqOdLqxjx5MrsxExGR/2HGpwllZQGDBgFffw1cdhlw8cXaxxmZtj5x4nHNomW97ejsxkxERMTAp0kZ3dVlZAJ6SsouzaJlV9vR2Y2ZiIj8HZe6mojeri69fj5WazgKCxN1e/cAQHx8KSZP5kBRIiIio5jxaSKudnU51vmsXh2KpUuzneZnaWnMJSw2KyQioraGgU8TcbWry2KxyMtbJSUmzJsXA1Gsn6vlbn5WQ5ewpk2bhsjISNVjbFZIRERtEQOfJiLt6rrzTnumR9rVFRqqLmQuLEyEzTZd9dqGzs+aMmUKoqOjNZ9jgENERP6EgU8TUvbm6dXLHgyVlqoLmbV67ribn+VOXFwcgxsiIiIw8Gly8fH6vXuA+p47ynEU3hYsT5kyhUEPERGRAgOfFshXBcvR0dEMeoiIiBQY+LRQjgXLQ4cOBQB8//33zXVJRERErR4Dn1aCAQ8REVHDsYFhEykuBrZtc25YWFJictuo0Fvsw0NERKTGjE8T0BtVYX88BjbbdLeNCpWmTJmCwMBA1NbWOj0XFBQEs9nMbepEREQaWlXG58MPP0RaWhpCQ0PRsWNHXHPNNarnjxw5ggkTJiAsLAwxMTGYO3euZnDQlH788SRmzhQdRlWI+N//Tpx/vL5R4caNE91mfqzWcOzfH4fw8AvRseNAlJUNRMeOAzFwoP1X3759ERsby6CHiIhIQ6vJ+Kxfvx533HEHnnzySVxxxRWora1FQUGB/HxdXR0mTJiArl27Ijc3F6WlpbjlllsQFBSEJ598slmu2WKx4PnnNzs1JKyrE/Diiztgs413eIUJ+flpGDt2q+b5du4cgk2bJuKFF0wQ7PESRNH1wFMiIiKq1yoyPrW1tbj33nvx7LPP4q677sIFF1yAfv36Ydq0afIxW7Zswd69e/Huu+/ioosuwlVXXYXHH38c//jHPwxNO28M1dXVckNCJUGwISHhCACb02vy8tI1sz5Wa7jc2wewBzyiaH/O3cBTIiIismsVgc/OnTvx22+/wWQyYciQIYiNjcVVV12lyvjk5eVh4MCB6NKli/zYuHHjUFlZiZ9++kn33OfOnUNlZaXqly9JDQkdJ6jHx5di2LA8p+Ol8RSOysujVN2cHUkDT4mIiEhfq1jq+vXXXwEAjz76KJYsWYLExEQ8//zzGDVqFH755Rd06tQJx44dUwU9AOSfjx07pnvuxYsXY9GiRY138dBvSJiWlo+8vHRD4ym0RlkoSQNPiYiISF+zZnwefPBBCILg8tfPP/8M2/nK4AULFmDq1KlITU3F22+/DUEQ8O9//7tB1/DQQw/BarXKv44ePeqLj+bEbK5CUtJhVVNCKRsUEGBfs3I1nsI5cyRCEOyvCwgQ8frrrkdhEBERUTNnfObMmYMZM2a4PKZnz54oLS0FAPTr109+PCQkBD179sSRI0cAAF27dsW3336reu3vv/8uP6cnJCQEISEh3ly+T6Sk7MLChWkoKgrExx+vR01NCKzWcM3gxzFzBED+/TXXTAfAnVxERESuNGvg07lzZ3Tu3NntcampqQgJCcH+/ftx2WWXAQBqampQVFSEHj16AADS09PxxBNP4Pjx44iJiQEA5OTkICIiQhUwtURxcTZ8/nkAVqy4XTWYVKunj+MoC+n3JSUlqK6uZv8eIiIiF1pFjU9ERATuuusuPPLII0hISECPHj3w7LPPAgCuu+46AMDYsWPRr18/3HzzzXjmmWdw7Ngx/N///R9mzZrVrBkdI0pKTJg3zwxRrO/ps2nTRCQnHzQ8oHTDhg3y72fPns3gh4iISEOrCHwA4Nlnn0VgYCBuvvlmnD17Fmlpafjss8/QsWNHAEBAQAA2b96Mv/zlL0hPT0f79u0xffp0PPbYY812zUZHRhw92k5uZCiRdnd5M5m9ubbvExERtXSCKErdYAgAKisrYTabYbVaERER0eDzWSwWzUDEPqMrEH36mNCxY0f06CGqgh9BsCE7e6lXgc/MmTMRGxvboOsmIiJqTYx+f7eajE9rpbXkpDW765lnrJg7N0JV4+NN0ENERET6GPg0seLi+qAHqO+6vGuXiN9+W+rU64eIiIh8h4FPEztwoD7okdTVARZLRyxYMN1pWaysrExVuExERETeY+DTBJR1PhERJphMMap6noAAEb16CZrLYkYLpImIiMg9Bj6NzGKx4OWXX1Y9NnHiEHngqCDYMGHCZhw5Eo2TJ+3DSQMDAxETE4OoqChERUVh9uzZqK6uZvaHiIiogRj4NDKtHV1as7tycpxfm5mZic6dO8uZIKPZH2aJiIiItDHwaWQVFRVOj1mt4Sgvj0KnThaXRcxr1qwBUN+QUJn90cPOzURERPoY+DSy2tpa1c87d6qXufRGUygpAx0GNURERN5r1uns/sZqDZeDHqB+NIXVGt7MV0ZEROQfGPg0ofLyKDnokUijKYiIiKjxMfBpQp06WSAI6iY+gmBDp07lzXRFRERE/oWBTxMym6swadJmOfjhaAoiIqKmxeLmRmSxWHDq1CnVY1pb2YmIiKhpMPBpJFqNCyVmcxUDHiIiombApa5G4qrXjqfYkJCIiMg3mPFpYaZMmYLo6Gj5ZzYkJCIi8h0GPi1MdHQ0YmNjm/syiIiI2iQudREREZHfYOBDREREfoOBDxEREfkNBj4tDHdwERERNR4GPo3EmwAmMzOTO7iIiIgaEXd1NZKoqCjMnj0b1dXVKCsrw4YNG9y+xmw2N8GVERER+S8GPo2I2RsiIqKWhUtdRERE5DcY+DQBo/U+LGwmIiJqXFzqagLKeh89HE1BRETU+Bj4NBEGNURERM2PS11ERETkNxj4EBERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DfYudmBKIoAgMrKyma+EiIiIjJK+t6Wvsf1MPBxUFVVBQBISEho5ishIiIiT1VVVcFsNus+L4juQiM/Y7PZUFJSgvDwcAiC4PV5KisrkZCQgKNHjyIiIsKHV9h68B7Y8T7wHgC8BwDvgYT3oXHugSiKqKqqQlxcHEwm/UoeZnwcmEwmxMfH++x8ERERfvsHW8J7YMf7wHsA8B4AvAcS3gff3wNXmR4Ji5uJiIjIbzDwISIiIr/BwKeRhISE4JFHHkFISEhzX0qz4T2w433gPQB4DwDeAwnvQ/PeAxY3ExERkd9gxoeIiIj8BgMfIiIi8hsMfIiIiMhvMPAhIiIiv8HAxwOvvvoqBg0aJDdcSk9Px0cffSQ//8cff2DWrFmIiopChw4dMHXqVPz++++qcxw5cgQTJkxAWFgYYmJiMHfuXNTW1jb1R/GZp556CoIgIDs7W37MH+7Do48+CkEQVL/69u0rP+8P9wAAfvvtN9x0002IiopCaGgoBg4ciO+//15+XhRFLFy4ELGxsQgNDUVGRgYOHDigOkd5eTluvPFGREREIDIyEllZWTh16lRTfxSvJCYmOv05EAQBs2bNAuAffw7q6urw8MMPIykpCaGhoUhOTsbjjz+umpfU1v8cAPYxCdnZ2ejRowdCQ0MxbNgwfPfdd/LzbfEefPnll5g0aRLi4uIgCAI++OAD1fO++sx79uzB5Zdfjnbt2iEhIQHPPPNMwy5cJMM2btwofvjhh+Ivv/wi7t+/X/zb3/4mBgUFiQUFBaIoiuJdd90lJiQkiJ9++qn4/fffi5deeqk4bNgw+fW1tbXigAEDxIyMDHHXrl3i//73PzE6Olp86KGHmusjNci3334rJiYmioMGDRLvvfde+XF/uA+PPPKI2L9/f7G0tFT+deLECfl5f7gH5eXlYo8ePcQZM2aI+fn54q+//ip+8skn4sGDB+VjnnrqKdFsNosffPCB+MMPP4iTJ08Wk5KSxLNnz8rHjB8/Xhw8eLD4zTffiF999ZXYq1cv8frrr2+Oj+Sx48ePq/4M5OTkiADEbdu2iaLoH38OnnjiCTEqKkrcvHmzWFhYKP773/8WO3ToIC5btkw+pq3/ORBFUZw2bZrYr18/8YsvvhAPHDggPvLII2JERIRYXFwsimLbvAf/+9//xAULFogbNmwQAYj/+c9/VM/74jNbrVaxS5cu4o033igWFBSI//rXv8TQ0FDx9ddf9/q6Gfg0UMeOHcU333xTrKioEIOCgsR///vf8nP79u0TAYh5eXmiKNr/kJhMJvHYsWPyMa+++qoYEREhnjt3rsmvvSGqqqrE3r17izk5OeLIkSPlwMdf7sMjjzwiDh48WPM5f7kH8+fPFy+77DLd5202m9i1a1fx2WeflR+rqKgQQ0JCxH/961+iKIri3r17RQDid999Jx/z0UcfiYIgiL/99lvjXXwjuffee8Xk5GTRZrP5zZ+DCRMmiLfddpvqsSlTpog33nijKIr+8efgzJkzYkBAgLh582bV4ykpKeKCBQv84h44Bj6++syvvPKK2LFjR9V/D/Pnzxf79Onj9bVyqctLdXV1eP/993H69Gmkp6djx44dqKmpQUZGhnxM37590b17d+Tl5QEA8vLyMHDgQHTp0kU+Zty4caisrMRPP/3U5J+hIWbNmoUJEyaoPi8Av7oPBw4cQFxcHHr27Ikbb7wRR44cAeA/92Djxo0YOnQorrvuOsTExGDIkCF444035OcLCwtx7Ngx1X0wm81IS0tT3YfIyEgMHTpUPiYjIwMmkwn5+flN92F8oLq6Gu+++y5uu+02CILgN38Ohg0bhk8//RS//PILAOCHH37A119/jauuugqAf/w5qK2tRV1dHdq1a6d6PDQ0FF9//bVf3ANHvvrMeXl5GDFiBIKDg+Vjxo0bh/379+PkyZNeXRuHlHroxx9/RHp6Ov744w906NAB//nPf9CvXz/s3r0bwcHBiIyMVB3fpUsXHDt2DABw7Ngx1f/gpOel51qL999/Hzt37lStX0uOHTvmF/chLS0NK1euRJ8+fVBaWopFixbh8ssvR0FBgd/cg19//RWvvvoq7r//fvztb3/Dd999h3vuuQfBwcGYPn26/Dm0PqfyPsTExKieDwwMRKdOnVrNfZB88MEHqKiowIwZMwD4z38LDz74ICorK9G3b18EBASgrq4OTzzxBG688UYA8Is/B+Hh4UhPT8fjjz+OCy+8EF26dMG//vUv5OXloVevXn5xDxz56jMfO3YMSUlJTueQnuvYsaPH18bAx0N9+vTB7t27YbVasW7dOkyfPh1ffPFFc19Wkzl69Cjuvfde5OTkOP3txp9If5sFgEGDBiEtLQ09evTA2rVrERoa2oxX1nRsNhuGDh2KJ598EgAwZMgQFBQU4LXXXsP06dOb+eqa3ooVK3DVVVchLi6uuS+lSa1duxbvvfceVq9ejf79+2P37t3Izs5GXFycX/05eOedd3DbbbehW7duCAgIQEpKCq6//nrs2LGjuS+NHHCpy0PBwcHo1asXUlNTsXjxYgwePBjLli1D165dUV1djYqKCtXxv//+O7p27QoA6Nq1q9OODuln6ZiWbseOHTh+/DhSUlIQGBiIwMBAfPHFF3jxxRcRGBiILl26+MV9cBQZGYkLLrgABw8e9Js/C7GxsejXr5/qsQsvvFBe8pM+h9bnVN6H48ePq56vra1FeXl5q7kPAHD48GFs3boVt99+u/yYv/w5mDt3Lh588EH8+c9/xsCBA3HzzTfjvvvuw+LFiwH4z5+D5ORkfPHFFzh16hSOHj2Kb7/9FjU1NejZs6ff3AMlX33mxvhvhIFPA9lsNpw7dw6pqakICgrCp59+Kj+3f/9+HDlyBOnp6QCA9PR0/Pjjj6p/0Tk5OYiIiHD6AmmprrzySvz444/YvXu3/Gvo0KG48cYb5d/7w31wdOrUKRw6dAixsbF+82dh+PDh2L9/v+qxX375BT169AAAJCUloWvXrqr7UFlZifz8fNV9qKioUP2t+LPPPoPNZkNaWloTfArfePvttxETE4MJEybIj/nLn4MzZ87AZFJ/lQQEBMBmswHwrz8HANC+fXvExsbi5MmT+OSTT/CnP/3J7+4B4Lt/7+np6fjyyy9RU1MjH5OTk4M+ffp4tcwFgNvZPfHggw+KX3zxhVhYWCju2bNHfPDBB0VBEMQtW7aIomjfutq9e3fxs88+E7///nsxPT1dTE9Pl18vbV0dO3asuHv3bvHjjz8WO3fu3Kq2rmpR7uoSRf+4D3PmzBE///xzsbCwUNy+fbuYkZEhRkdHi8ePHxdF0T/uwbfffisGBgaKTzzxhHjgwAHxvffeE8PCwsR3331XPuapp54SIyMjxf/+97/inj17xD/96U+a21mHDBki5ufni19//bXYu3fvFr2F11FdXZ3YvXt3cf78+U7P+cOfg+nTp4vdunWTt7Nv2LBBjI6OFufNmycf4w9/Dj7++GPxo48+En/99Vdxy5Yt4uDBg8W0tDSxurpaFMW2eQ+qqqrEXbt2ibt27RIBiEuWLBF37dolHj58WBRF33zmiooKsUuXLuLNN98sFhQUiO+//74YFhbG7exN5bbbbhN79OghBgcHi507dxavvPJKOegRRVE8e/as+Ne//lXs2LGjGBYWJv6///f/xNLSUtU5ioqKxKuuukoMDQ0Vo6OjxTlz5og1NTVN/VF8yjHw8Yf7kJmZKcbGxorBwcFit27dxMzMTFX/Gn+4B6Ioips2bRIHDBgghoSEiH379hWXL1+uet5ms4kPP/yw2KVLFzEkJES88sorxf3796uOsVgs4vXXXy926NBBjIiIEG+99VaxqqqqKT9Gg3zyySciAKfPJYr+8eegsrJSvPfee8Xu3buL7dq1E3v27CkuWLBAtf3YH/4crFmzRuzZs6cYHBwsdu3aVZw1a5ZYUVEhP98W78G2bdtEAE6/pk+fLoqi7z7zDz/8IF522WViSEiI2K1bN/Gpp55q0HULoqhor0lERETUhrHGh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AYDHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIGmzUqFHIzs5u7stodI8++iguuuii5r4MImoABj5E5Peqq6ub9P1EUURtbW2TvicR2THwIaIGmTFjBr744gssW7YMgiBAEAQUFRWhoKAAV111FTp06IAuXbrg5ptvRllZmfy6UaNG4e6770Z2djY6duyILl264I033sDp06dx6623Ijw8HL169cJHH30kv+bzzz+HIAj48MMPMWjQILRr1w6XXnopCgoKVNf09ddf4/LLL0doaCgSEhJwzz334PTp0/LziYmJePzxx3HLLbcgIiICM2fOBADMnz8fF1xwAcLCwtCzZ088/PDD8lTolStXYtGiRfjhhx/kz7ly5UoUFRVBEATs3r1bPn9FRQUEQcDnn3+uuu6PPvoIqampCAkJwddffw2bzYbFixcjKSkJoaGhGDx4MNatW+frf0VEpMDAh4gaZNmyZUhPT8cdd9yB0tJSlJaWIjw8HFdccQWGDBmC77//Hh9//DF+//13TJs2TfXaVatWITo6Gt9++y3uvvtu/OUvf8F1112HYcOGYefOnRg7dixuvvlmnDlzRvW6uXPn4vnnn8d3332Hzp07Y9KkSXKAcujQIYwfPx5Tp07Fnj17sGbNGnz99deYPXu26hzPPfccBg8ejF27duHhhx8GAISHh2PlypXYu3cvli1bhjfeeAMvvPACACAzMxNz5sxB//795c+ZmZnp0b168MEH8dRTT2Hfvn0YNGgQFi9ejH/+85947bXX8NNPP+G+++7DTTfdhC+++MKj8xKRBxo04pSISBTFkSNHivfee6/88+OPPy6OHTtWdczRo0dVU8xHjhwpXnbZZfLztbW1Yvv27cWbb75Zfqy0tFQEIObl5YmiWD8N+v3335ePsVgsYmhoqLhmzRpRFEUxKytLnDlzpuq9v/rqK9FkMolnz54VRVEUe/ToIV5zzTVuP9ezzz4rpqamyj8/8sgj4uDBg1XHFBYWigDEXbt2yY+dPHlSBCBu27ZNdd0ffPCBfMwff/whhoWFibm5uarzZWVliddff73bayMi7wQ2Z9BFRG3TDz/8gG3btqFDhw5Ozx06dAgXXHABAGDQoEHy4wEBAYiKisLAgQPlx7p06QIAOH78uOoc6enp8u87deqEPn36YN++ffJ779mzB++99558jCiKsNlsKCwsxIUXXggAGDp0qNO1rVmzBi+++CIOHTqEU6dOoba2FhERER5/fj3K9zx48CDOnDmDMWPGqI6prq7GkCFDfPaeRKTGwIeIfO7UqVOYNGkSnn76aafnYmNj5d8HBQWpnhMEQfWYIAgAAJvN5tF733nnnbjnnnucnuvevbv8+/bt26uey8vLw4033ohFixZh3LhxMJvNeP/99/H888+7fD+TyV4xIIqi/Ji07OZI+Z6nTp0CAHz44Yfo1q2b6riQkBCX70lE3mPgQ0QNFhwcjLq6OvnnlJQUrF+/HomJiQgM9P3/Zr755hs5iDl58iR++eUXOZOTkpKCvXv3olevXh6dMzc3Fz169MCCBQvkxw4fPqw6xvFzAkDnzp0BAKWlpXKmRlnorKdfv34ICQnBkSNHMHLkSI+ulYi8x+JmImqwxMRE5Ofno6ioCGVlZZg1axbKy8tx/fXX47vvvsOhQ4fwySef4NZbb3UKHLzx2GOP4dNPP0VBQQFmzJiB6OhoXHPNNQDsO7Nyc3Mxe/Zs7N69GwcOHMB///tfp+JmR71798aRI0fw/vvv49ChQ3jxxRfxn//8x+lzFhYWYvfu3SgrK8O5c+cQGhqKSy+9VC5a/uKLL/B///d/bj9DeHg4HnjgAdx3331YtWoVDh06hJ07d+Kll17CqlWrvL43ROQaAx8iarAHHngAAQEB6NevHzp37ozq6mps374ddXV1GDt2LAYOHIjs7GxERkbKS0MN8dRTT+Hee+9Famoqjh07hk2bNiE4OBiAvW7oiy++wC+//ILLL78cQ4YMwcKFCxEXF+fynJMnT8Z9992H2bNn46KLLkJubq6820sydepUjB8/HqNHj0bnzp3xr3/9CwDw1ltvoba2FqmpqcjOzsbf//53Q5/j8ccfx8MPP4zFixfjwgsvxPjx4/Hhhx8iKSnJi7tCREYIonJhmoioBfv8888xevRonDx5EpGRkc19OUTUCjHjQ0RERH6DgQ8RERH5DS51ERERkd9gxoeIiIj8BgMfIiIi8hsMfIiIiMhvMPAhIiIiv8HAh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/Mb/ByivaIjw4Gq5AAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: DEPRECATED: pyomo.core.expr.current is deprecated. Please import\n", + "expression symbols from pyomo.core.expr (deprecated in 6.6.2) (called from\n", + ":241)\n" + ] + } + ], + "source": [ + "# Import statements\n", + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "import random as rn\n", + "import tensorflow as tf\n", + "import tensorflow.keras as keras\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", + "from idaes.core.surrogate.sampling.scaling import OffsetScaler\n", + "from idaes.core.surrogate.keras_surrogate import KerasSurrogate\n", + "from idaes.core.surrogate.plotting.sm_plotter import (\n", + " surrogate_scatter2D,\n", + " surrogate_parity,\n", + " surrogate_residual,\n", + ")\n", + "\n", + "# fix environment variables to ensure consist neural network training\n", + "os.environ[\"PYTHONHASHSEED\"] = \"0\"\n", + "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"\"\n", + "np.random.seed(46)\n", + "rn.seed(1342)\n", + "tf.random.set_seed(62)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "13/13 [==============================] - 0s 3ms/step\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzzUlEQVR4nO3deVxU1fsH8M+wbwKKKKiguAEuP9dESCuMRFPR1FIzlVzKPVcWN0RTkdxyr6+5VOZWppMbGi6VorngLmiK4oZoCIjKOuf3xzQXrqCCAjMDn/frNS+55z5z5xkmnadz7jlHIYQQICIiIiKdZqDtBIiIiIjo5Vi0EREREekBFm1EREREeoBFGxEREZEeYNFGREREpAdYtBERERHpARZtRERERHqARRsRERGRHmDRRkRERKQHWLQREb0mhUKB6dOnazsNib+/P2rVqqXtNIiomLFoI6Iyae3atVAoFNLDzMwM9evXx8iRI3Hv3r0Sfe0jR45g+vTpSE5OLtbrvvPOO7L3VKlSJbzxxhtYvXo1VCpVsbzG7NmzsW3btmK5FhEVLyNtJ0BEVJJmzJgBFxcXpKen46+//sKKFSuwa9cunD9/HhYWFsXyGk+fPoWRUe4/p0eOHEFoaCj8/f1ha2tbLK+hUaNGDcyZMwcAcP/+fXz//fcYNGgQLl++jLCwsNe+/uzZs9GzZ09069btta9FRMWLRRsRlWkdO3ZEy5YtAQCDBw+GnZ0dFixYgO3bt6NPnz6vfF2VSoXMzEyYmZnBzMysuNJ9KRsbG3zyySfS8eeffw5XV1csXboUM2fOhLGxcanlQkSli8OjRFSutGvXDgAQFxcHAJg3bx68vLxgZ2cHc3NztGjRAj///HO+5ykUCowcORLr169Hw4YNYWpqij179kjnNPe0TZ8+HRMnTgQAuLi4SEOZ169fx9tvv40mTZoUmJerqyt8fX2L/H4sLCzQunVrPH78GPfv339u3OPHjzF+/Hg4OTnB1NQUrq6umDdvHoQQsvf4+PFjrFu3Tsrb39+/yDkRUclgTxsRlStXr14FANjZ2QEAvv76a/j5+aFv377IzMzExo0b8eGHH2LHjh3o1KmT7Ln79+/H5s2bMXLkSFSuXLnAm/27d++Oy5cvY8OGDVi4cCEqV64MALC3t0e/fv0wZMgQnD9/Ho0aNZKec/z4cVy+fBlTpkx5pfd07do1GBoaPncoVggBPz8/HDhwAIMGDULTpk0RERGBiRMn4vbt21i4cCEA4IcffsDgwYPRqlUrfPbZZwCAOnXqvFJORFQCBBFRGbRmzRoBQPz+++/i/v374ubNm2Ljxo3Czs5OmJubi1u3bgkhhHjy5InseZmZmaJRo0aiXbt2snYAwsDAQFy4cCHfawEQISEh0vFXX30lAIi4uDhZXHJysjAzMxOBgYGy9tGjRwtLS0uRlpb2wvf09ttvCzc3N3H//n1x//59cenSJTF69GgBQHTp0kWKGzBggKhZs6Z0vG3bNgFAfPnll7Lr9ezZUygUCvHPP/9IbZaWlmLAgAEvzIOItIPDo0RUpvn4+MDe3h5OTk7o3bs3rKys8Ouvv6J69eoAAHNzcyn24cOHSElJQdu2bXHq1Kl813r77bfRoEGDV87FxsYGXbt2xYYNG6RhyZycHGzatAndunWDpaXlS68RExMDe3t72Nvbw93dHUuWLEGnTp2wevXq5z5n165dMDQ0xOjRo2Xt48ePhxACu3fvfuX3RESlh8OjRFSmLVu2DPXr14eRkRGqVq0KV1dXGBjk/v/qjh078OWXX+L06dPIyMiQ2hUKRb5rubi4vHY+/fv3x6ZNm/Dnn3/irbfewu+//4579+6hX79+hXp+rVq18L///U9axqRevXqoUqXKC59z48YNVKtWDRUqVJC1u7u7S+eJSPexaCOiMq1Vq1bS7NFn/fnnn/Dz88Nbb72F5cuXw9HREcbGxlizZg1++umnfPF5e+Vela+vL6pWrYoff/wRb731Fn788Uc4ODjAx8enUM+3tLQsdCwRlS0cHiWicuuXX36BmZkZIiIiMHDgQHTs2LFYCqKCeuk0DA0N8fHHH+Pnn3/Gw4cPsW3bNvTp0weGhoav/brPU7NmTdy5cwePHj2StcfExEjnNV6UOxFpF4s2Iiq3DA0NoVAokJOTI7Vdv379tXcE0Nyb9rwdEfr164eHDx/i888/R1pammzdtZLw/vvvIycnB0uXLpW1L1y4EAqFAh07dpTaLC0ti30nByIqHhweJaJyq1OnTliwYAE6dOiAjz/+GImJiVi2bBnq1q2Ls2fPvvJ1W7RoAQCYPHkyevfuDWNjY3Tp0kUq5po1a4ZGjRphy5YtcHd3R/PmzYvl/TxPly5d4O3tjcmTJ+P69eto0qQJ9u7di+3bt2PMmDGyZT1atGiB33//HQsWLEC1atXg4uICDw+PEs2PiAqHPW1EVG61a9cO3333HRISEjBmzBhs2LABc+fOxQcffPBa133jjTcwc+ZMnDlzBv7+/ujTp0++hW/79+8PAIWegPA6DAwMoFQqMWbMGOzYsQNjxozBxYsX8dVXX2HBggWy2AULFqBFixaYMmUK+vTpgxUrVpR4fkRUOAoh8iyHTUREpeLrr7/G2LFjcf36dTg7O2s7HSLSAyzaiIhKmRACTZo0gZ2dHQ4cOKDtdIhIT/CeNiKiUvL48WMolUocOHAA586dw/bt27WdEhHpEfa0ERGVkuvXr8PFxQW2trYYPnw4Zs2ape2UiEiPsGgjIiIi0gOcPUpERESkB1i0EREREekBTkTQYSqVCnfu3EGFChW4tQwREZGeEELg0aNHqFatGgwMiq9/jEWbDrtz5w6cnJy0nQYRERG9gps3b6JGjRrFdj0WbTqsQoUKANQfurW1tZazISIiosJITU2Fk5OT9D1eXFi06TDNkKi1tTWLNiIiIj1T3Lc2cSICERERkR5g0UZERESkB1i0EREREekB3tOm53JycpCVlaXtNKgUGBsbw9DQUNtpEBGRlrBo01NCCCQkJCA5OVnbqVApsrW1hYODA9ftIyIqh1i06SlNwValShVYWFjwS7yME0LgyZMnSExMBAA4OjpqOSMiIiptLNr0UE5OjlSw2dnZaTsdKiXm5uYAgMTERFSpUoVDpURE5QwnIughzT1sFhYWWs6ESpvmM+d9jERE5Y/eFG1+fn5wdnaGmZkZHB0d0a9fP9y5c0cWI4TAvHnzUL9+fZiamqJ69eqYNWuWLObgwYNo3rw5TE1NUbduXaxduzbfay1btgy1atWCmZkZPDw88Pfff8vOp6enY8SIEbCzs4OVlRV69OiBe/fuyWLi4+PRqVMnWFhYoEqVKpg4cSKys7OL55fxHw6Jlj/8zImIyi+9Kdq8vb2xefNmxMbG4pdffsHVq1fRs2dPWcwXX3yBVatWYd68eYiJiYFSqUSrVq2k83FxcejUqRO8vb1x+vRpjBkzBoMHD0ZERIQUs2nTJowbNw4hISE4deoUmjRpAl9fX+leIgAYO3YsfvvtN2zZsgWHDh3CnTt30L17d+l8Tk4OOnXqhMzMTBw5cgTr1q3D2rVrMW3atBL8DREREVGZJvTU9u3bhUKhEJmZmUIIIS5evCiMjIxETEzMc58TEBAgGjZsKGvr1auX8PX1lY5btWolRowYIR3n5OSIatWqiTlz5gghhEhOThbGxsZiy5YtUsylS5cEABEVFSWEEGLXrl3CwMBAJCQkSDErVqwQ1tbWIiMjo9DvMSUlRQAQKSkpsvanT5+KixcviqdPnxb6WlQ28LMnItJ9z/v+fl1609OWV1JSEtavXw8vLy8YGxsDAH777TfUrl0bO3bsgIuLC2rVqoXBgwcjKSlJel5UVBR8fHxk1/L19UVUVBQAIDMzEydPnpTFGBgYwMfHR4o5efIksrKyZDFubm5wdnaWYqKiotC4cWNUrVpV9jqpqam4cOHCc99XRkYGUlNTZY+yxt/fHwqFAgqFAsbGxqhatSree+89rF69GiqVqtDXWbt2LWxtbUsuUSIiIh2jV0VbYGAgLC0tYWdnh/j4eGzfvl06d+3aNdy4cQNbtmzB999/j7Vr1+LkyZOyIdSEhARZIQUAVatWRWpqKp4+fYoHDx4gJyenwJiEhATpGiYmJvkKhmdjCrqG5tzzzJkzBzY2NtLDycmpkL8Z/dKhQwfcvXsX169fx+7du+Ht7Y0vvvgCnTt3Lvb7/oiIiAqSlpaGx48fazuNItFq0RYUFCT1ujzvERMTI8VPnDgR0dHR2Lt3LwwNDdG/f38IIQAAKpUKGRkZ+P7779G2bVu88847+O6773DgwAHExsZq6y0WSXBwMFJSUqTHzZs3tZ1SiTA1NYWDgwOqV6+O5s2bY9KkSdi+fTt2794tTQxZsGABGjduDEtLSzg5OWH48OFIS0sDoJ5M8umnnyIlJUX672T69OkAgB9++AEtW7ZEhQoV4ODggI8//lh2PyIREZVvQggsW7YM8+fPx8qVK6U6Qh9odZ228ePHw9/f/4UxtWvXln6uXLkyKleujPr168Pd3R1OTk44evQoPD094ejoCCMjI9SvX1+Kd3d3B6Ceyenq6goHB4d8szzv3bsHa2trmJubw9DQEIaGhgXGODg4AAAcHByQmZmJ5ORkWW/bszHPzjjVXFMTUxBTU1OYmpq+8PfxPEIIrS0DYWxs/NqzGtu1a4cmTZpg69atGDx4MAwMDLB48WK4uLjg2rVrGD58OAICArB8+XJ4eXlh0aJFmDZtmlSQW1lZAVAvhTFz5ky4uroiMTER48aNg7+/P3bt2vXa75OIiPRbcnIyvv76a+n48ePHejUrX6tFm729Pezt7V/puZr7nzIyMgAAb775JrKzs3H16lXUqVMHAHD58mUAQM2aNQEAnp6e+b689+3bB09PTwCAiYkJWrRogcjISHTr1k16ncjISIwcORIA0KJFCxgbGyMyMhI9evQAAMTGxiI+Pl66jqenJ2bNmiUtgqp5HWtrazRo0OCV3u/LZGVlYc6cOSVy7ZcJDg6GiYnJa1/Hzc0NZ8+eBQCMGTNGaq9Vqxa+/PJLDB06FMuXL4eJiQlsbGygUCjyFcEDBw6Ufq5duzYWL16MN954A2lpaVJhR0RE5c/x48dlNYCNjQ2++OILLWZUdHqxI8KxY8dw/PhxtGnTBhUrVsTVq1cxdepU1KlTRyqUfHx80Lx5cwwcOBCLFi2CSqXCiBEj8N5770m9b0OHDsXSpUsREBCAgQMHYv/+/di8eTN27twpvda4ceMwYMAAtGzZEq1atcKiRYvw+PFjfPrppwDUH/KgQYMwbtw4VKpUCdbW1hg1ahQ8PT3RunVrAED79u3RoEED9OvXD+Hh4UhISMCUKVMwYsSIV+5JKw+EENL/8fz++++YM2cOYmJikJqaiuzsbKSnp+PJkycvXFT45MmTmD59Os6cOYOHDx9KxX18fHyJFcxERKS7hBBYvHixbK/u999/H2+88Yb2knpFelG0WVhYYOvWrQgJCcHjx4/h6OiIDh06YMqUKVIRZGBggN9++w2jRo3CW2+9BUtLS3Ts2BHz58+XruPi4oKdO3di7Nix+Prrr1GjRg2sWrUKvr6+UkyvXr1w//59TJs2DQkJCWjatCn27Nkjm1iwcOFCGBgYoEePHsjIyICvry+WL18unTc0NMSOHTswbNgweHp6wtLSEgMGDMCMGTNK7HdkbGyM4ODgErv+y167OFy6dAkuLi64fv06OnfujGHDhmHWrFmoVKkS/vrrLwwaNAiZmZnPLdoeP34MX19f+Pr6Yv369bC3t0d8fDx8fX2RmZlZLDkSEZH+SEpKwpIlS2RtDRp8gTfesNVOQq9JL4q2xo0bY//+/S+Nq1atGn755ZcXxrzzzjuIjo5+YczIkSOl4dCCmJmZYdmyZVi2bNlzY2rWrFmq91EpFIpiGaLUlv379+PcuXMYO3YsTp48CZVKhfnz58PAQD1XZvPmzbJ4ExMT5OTkyNpiYmLw77//IiwsTJp5e+LEidJ5A0REpFOioqKwd+9e6TgtrTLmzRsOT08FPvxQi4m9Br1a8oPKhoyMDCQkJOD27ds4deoUZs+eja5du6Jz587o378/6tati6ysLCxZsgTXrl3DDz/8gJUrV8quUatWLaSlpSEyMhIPHjzAkydP4OzsDBMTE+l5SqUSM2fO1NK7JCIibVCpVJg3b56sYOvSpQvath0BT08FvL0BLy9AqdRikq+IRRuVuj179sDR0RG1atVChw4dcODAASxevBjbt2+HoaEhmjRpggULFmDu3Llo1KgR1q9fn2+ShZeXF4YOHYpevXrB3t4e4eHhsLe3x9q1a7FlyxY0aNAAYWFhmDdvnpbeJRERlbYHDx5g5syZsvXXDh4ci+bNm8PPDzhyBDhwAIiKAsLCtJjoK1IIfVqgpJxJTU2FjY0NUlJSYG1tLbWnp6cjLi4OLi4uMDMz02KGVNr42RMRFezPP/+U3UqlUjliwYIhGD1agVmzcuOUSnXB5u2tLuCCggA/v+LN5Xnf36+LPW1ERESkt1QqFWbPni0r2D744APs2/cZ0tIUOHBA3aZUqodFAf3tcWPRRkRERHopMTERM2fOlC0u36jRePzf//0fvL0BKyt1jxqgLs7yFmlBQYCnp/pPfcGijYiIiPTOgQMHsGLFCuk4KckZ06dPw/z5Vv+dB9LSIPW0aYo0zUQEQN3jVtxDoyWJRRsRERHpjZycHISGzsAff/whtZ0+3RPvvvspPD0VUs/Zsz1tZWEigl6s00ZERER09+5dfPvtt7K2X3+dgPR0SwDqokzj2Z42jaAgdcGmT8OiGizaiIiISOft27cPR/JUZQ8e1MZ77/VDRARw5kxuz5lmZujDh4Cra/7izM9Pv4ZE82LRRkRERDorOzsbs/Ku2QEgK6sXTp50w3vvqQu0c+fUf2omG5w7p+5l8/TU3wKtICzaiIiISCfdunUL3333naxt7twAGBqaIy0tt3dNMwyqGfrMuwZbWcKijYiIiHTO7t278ffff0vH9+654v793jA0BDp0AG7fzi3KNPeo6fPQZ2GwaKMyyd/fH8nJydi2bRsA4J133kHTpk2xaNGiV75mcVyDiIheLCsrC7Nnz5a1HTz4MQ4erAczMyA9HdizB1i/PrdAK8uFWl5c8oNKlb+/PxQKBRQKBUxMTFC3bl3MmDED2dnZJfq6W7duLfTm8QcPHoRCoUBycvIrX4OIiIouPj4+X8H2f/8XiKNH6wEA7OzUy3jkHRotT9jTRqWuQ4cOWLNmDTIyMrBr1y6MGDECxsbGCA4OlsVlZmbCxMSkWF6zUqVKOnENIiLKT6kEfvtNiRo1oqW2u3cb4f33eyAsTN27Zm6uLtgGDCib96sVBnvaqNSZmprCwcEBNWvWxLBhw+Dj4wOlUgl/f39069YNs2bNQrVq1eDq6goAuHnzJj766CPY2tqiUqVK6Nq1K65fvy5dLycnB+PGjYOtrS3s7OwQEBAAIYTsNd955x2MGTNGOs7IyEBgYCCcnJxgamqKunXr4rvvvsP169fh/d9KjBUrVoRCoYC/v3+B13j48CH69++PihUrwsLCAh07dsSVK1ek82vXroWtrS0iIiLg7u4OKysrdOjQAXfv3pViDh48iFatWsHS0hK2trZ48803cePGjWL6TRMR6TalEmjUKBPR0aGygu348X6ws+shTSrw9AScnYHYWHXBpm87GRQXFm2kdebm5sjMzAQAREZGIjY2Fvv27cOOHTuQlZUFX19fVKhQAX/++ScOHz4sFT+a58yfPx9r167F6tWr8ddffyEpKQm//vrrC1+zf//+2LBhAxYvXoxLly7hm2++gZWVFZycnPDLL78AAGJjY3H37l18/fXXBV7D398fJ06cgFKpRFRUFIQQeP/992V74D158gTz5s3DDz/8gD/++APx8fGYMGECAPU09m7duuHtt9/G2bNnERUVhc8++wwKheK1f6dERPpg/vw4fPjhHFnb778HY+fO2li8WL18h6ZICw/Xv71CixuHR0lrhBCIjIxEREQERo0ahfv378PS0hKrVq2ShkV//PFHqFQqrFq1Sipm1qxZA1tbWxw8eBDt27fHokWLEBwcjO7duwMAVq5ciYiIiOe+7uXLl7F582bs27cPPj4+AIDatWtL5zXDoFWqVIGtrW2B17hy5QqUSiUOHz4Mr/82sVu/fj2cnJywbds2fPjhhwDUN9SuXLkSderUAQCMHDkSM2bMAACkpqYiJSUFnTt3ls67u7sX/RdJRKSHtm7dinbtzknHlSo1xahRXdGsGZCTA1Svrp5wkHcbqvLYu5YXe9oISqV681ylsnReb8eOHbCysoKZmRk6duyIXr16Yfr06QCAxo0by+5jO3PmDP755x9UqFABVlZWsLKyQqVKlZCeno6rV68iJSUFd+/ehYeHh/QcIyMjtGzZ8rmvf/r0aRgaGuLtt99+5fdw6dIlGBkZyV7Xzs4Orq6uuHTpktRmYWEhFWQA4OjoiMTERADq4tDf3x++vr7o0qULvv76a9nQKRFRWaNUAi4uGQgNDcW5c7kF2++/+6Nmza4AcvcIvX274G2oyjMWbSStIF1aM3G8vb1x+vRpXLlyBU+fPsW6detgaaneN07zp0ZaWhpatGiB06dPyx6XL1/Gxx9//Eqvb25u/trvobCMjY1lxwqFQna/3Zo1axAVFQUvLy9s2rQJ9evXx9GjR0stPyKi0rRq1T/w95d/2ezbNwl//VUz33dQUBCHQ5/Foo1K/S+GpaUl6tatC2dnZxgZvXiEvnnz5rhy5QqqVKmCunXryh42NjawsbGBo6Mjjh07Jj0nOzsbJ0+efO41GzduDJVKhUOHDhV4XtPTl5OT89xruLu7Izs7W/a6//77L2JjY9GgQYMXvqdnNWvWDMHBwThy5AgaNWqEn376qUjPJyLSZUol4O4ODB68GS1arJfac3JaIiQkBAEBxgV+B2l63Mr7kGheLNpIp/9i9O3bF5UrV0bXrl3x559/Ii4uDgcPHsTo0aNx69YtAMAXX3yBsLAwbNu2DTExMRg+fHi+NdbyqlWrFgYMGICBAwdi27Zt0jU3b94MAKhZsyYUCgV27NiB+/fvIy0tLd816tWrh65du2LIkCH466+/cObMGXzyySeoXr06unbtWqj3FhcXh+DgYERFReHGjRvYu3cvrly5wvvaiKhMmTfvKXr3DoWTU+6tI4MGDcKMGZ0A6PZ3kK5h0UY6zcLCAn/88QecnZ3RvXt3uLu7Y9CgQUhPT4e1tTUAYPz48ejXrx8GDBgAT09PVKhQAR988MELr7tixQr07NkTw4cPh5ubG4YMGYLHjx8DAKpXr47Q0FAEBQWhatWqGDlyZIHXWLNmDVq0aIHOnTvD09MTQgjs2rUr35Doi95bTEwMevTogfr16+Ozzz7DiBEj8PnnnxfhN0REpJuUSqBr11i8+264rH3y5MmoUaOGlrLSbwrx7IJWpDNSU1NhY2ODlJQUqUABgPT0dMTFxcHFxQVmZmZazJBKGz97ItJlSmXuPqD7969BxYrx0rm4OE+sXdtei9mVnud9f78u9rQRERHRK8u7AkFYGHDhQgqio0NlBdsPPwxB9+7tS321grKG67QRERHRK8u7AoG//yHcvXtQdn7v3ilYsMAQfn7qgk0Ty3vYio5FGxEREb2yoCB1EebrG4q8S03Gxzvh8OGBiInJH8tlPF4NizYiIiIqkrz3rmVkJMHXd4ns/M6d/XD8eG24ucmfx10NXg+LNj3GOSTlDz9zItIFmiHRX375HbVrH5admzlzCurVM+TCuCWARZse0iwp8eTJk1Jd3Z+078mTJwDy77RARFTS8vauVa8uMH36DNl5laoONm36BPXqAXPnsketJLBo00OGhoawtbWV9rC0sLCQNlOnskkIgSdPniAxMRG2trYwNDTUdkpEVM5oetdGjXqAgQOXyc75+/ujT5+aiI1V77DDgq1ksGjTUw4ODgAgFW5UPtja2kqfPRFRafL2Bmxtd8PD429Z+5QpU2BoaMhJBqWAi+vqsMIszpeTk4OsrKxSzoy0wdjYmD1sRKQV27cLnD4tHw51d3fHRx99pKWMdFtJLa7LnjY9Z2hoyC9yIiIqMffu3cPp0ytlbYMGDeJWVFrAHRGIiIiowN0KlEolVq6UF2xTp05lwaYl7GkjIiIi2c4GXboIzJghHw6Ni/s/rF37gZayI4BFGxEREUE9gSAgAHjy5A5mzPif7NzKlZ/D1paToLSNw6NERETl1LNDos2a/YwPPpAXbE2bToOLiwPmztVCgiTD2aM6rKRmnxAREQG5G7h7eanQvv1M2bkrV1rgxx87aykz/cbZo0RERFSsvL2Bf/+9ifbtV8va//prOEaNstdSVvQ8LNqIiIjKIaUSuHlzAz7++LKsfdq0adxlR0fxnjYiIqIy7tl713JychAdHYo6dXILtsOHPREREcKCTYexp42IiKgMUyqBvn2BtDT1ch6NG8fh+++/l8W4u49ERIQdt6DScSzaiIiIyhilUl2geXsDixerCzYrK6BHj3X4/vvrsljNcCh3pNJ9LNqIiIjKkLw9a+fOqf+0tMzGhAmzkJaWG3f16lv4/ntv7SVKRcaijYiIqAwJC1MXamZmgI0N0LDhP+jYcb0s5tChLzBmjK12EqRXxqKNiIioDAkKUhduDx8Cbdv+D9Wr35GdDwkJ0VJm9Lo4e5SIiKgM0MwQBYBDh7LQu3eorGBzdHyXBZueY08bERFRGaDZ8D0oKAbR0Ztk5xo2HIuePbmzjr5j0UZERKSnlEogMBAQAujRA2jRYikqV/5XFsPetbKDRRsREZEeyLuMx4EDufeuxcQAJiYZMDEJQ+XKufEdOnSAh4eH9hKmYseijYiISA9ohj81y3iEhakLt2XLzsPL6xdZ7Pjx42FlZaWlTKmksGgjIiLScZMnA9HRQPXqwIABuT1tV67Mh5dX7uJrBgYGmDp1qhYzpZLEoo2IiEhHaYZEo6OB9HQgJQWYNQtIT0/H3LlzZbGdO3dGixYttJQplQYWbURERDpKMyRavbq6YOvQAejZ8zQaN94ui5s4cSIsLCy0lCWVFhZtREREOiooKHd26PLlwPHjc2BklCmdNzc3R0BAgBYzpNLExXWJiIh0hGaBXKVSfeznB1SsCNy8+QTR0aGygq1bt24s2MoZ9rQRERHpCM1waFhY7vG77x6Hr+8uWVxgYCDMzMy0kCFpE4s2IiIiHaBUAklJgJtb7hpsvr6hshgbGxuMGTNGOwmS1rFoIyIi0jKlEujbV73+mqcn4O39CNHRC2QxH374IRo0aKClDEkXsGgjIiLSorwFm5UVMHBgFBYs2CuLCQ4OhomJiZYyJF3Boo2IiEgLNGuwJSXlFmwTJoTi9u3cmCpVqmDYsGHaS5J0Cos2IiIiLQgMVO8bWr064O2dgrffXiQ737t3b7i6umonOdJJLNqIiIhK0ZtvAkeOAJrJnx4ef+D//u+ALGbSpEkwNjbWQnaky1i0ERERlQKlEggIAGJj1cfp6cD06fLZoTVq1MCgQYO0kB3pAxZtREREJSzvZAMAqFjxIb74YrEs5pNPPkGdOnW0kB3pC73ZEcHPzw/Ozs4wMzODo6Mj+vXrhzt37kjnp0+fDoVCke9haWkpu86WLVvg5uYGMzMzNG7cGLt2yRcsFEJg2rRpcHR0hLm5OXx8fHDlyhVZTFJSEvr27Qtra2vY2tpi0KBBSNP8TfzP2bNn0bZtW5iZmcHJyQnh4eHF/BshIiJdlHdXA83PgYHqgs3MDPjww8h8BdvkyZNZsNFL6U3R5u3tjc2bNyM2Nha//PILrl69ip49e0rnJ0yYgLt378oeDRo0wIcffijFHDlyBH369MGgQYMQHR2Nbt26oVu3bjh//rwUEx4ejsWLF2PlypU4duwYLC0t4evri/T0dCmmb9++uHDhAvbt24cdO3bgjz/+wGeffSadT01NRfv27VGzZk2cPHkSX331FaZPn45vv/22hH9LRESkbZpdDYYPB7p1U//86BHg6SkQFBSKhg3/kmJr166NkJAQGBlx4IteTiGEENpO4lUolUp069YNGRkZBd6seebMGTRt2hR//PEH2rZtCwDo1asXHj9+jB07dkhxrVu3RtOmTbFy5UoIIVCtWjWMHz8eEyZMAACkpKSgatWqWLt2LXr37o1Lly6hQYMGOH78OFq2bAkA2LNnD95//33cunUL1apVw4oVKzB58mQkJCRI6+oEBQVh27ZtiImJKfR7TE1NhY2NDVJSUmBtbf3KvysiIio9kycDixcDGRlAVpa67Y03HqBTp2WyOH9/f9SsWVMLGVJJK6nvb73pacsrKSkJ69evh5eX13Nn16xatQr169eXCjYAiIqKgo+PjyzO19cXUVFRAIC4uDgkJCTIYmxsbODh4SHFREVFwdbWVirYAMDHxwcGBgY4duyYFPPWW2/JFkL09fVFbGwsHj58+Nz3lZGRgdTUVNmDiIj0y7p16qFQU1P1cGiPHnvyFWxTpkxhwUZFpldFW2BgICwtLWFnZ4f4+Hhs3769wLj09HSsX78+3wychIQEVK1aVdZWtWpVJCQkSOc1bS+KqVKliuy8kZERKlWqJIsp6Bp5X6Mgc+bMgY2NjfRwcnJ6biwREemmpCT1nzk56uHQxo2PSefc3NwQEhICQ0NDLWVH+kyrRVtQUFCBkwfyPvIOJ06cOBHR0dHYu3cvDA0N0b9/fxQ0uvvrr7/i0aNHGDBgQGm+ndcWHByMlJQU6XHz5k1tp0RERIWQd/LB2LFArVqJCAycIYsZNGgQevXqpaUMqSzQ6p2P48ePh7+//wtjateuLf1cuXJlVK5cGfXr14e7uzucnJxw9OhReHp6yp6zatUqdO7cOV9vl4ODA+7duydru3fvHhwcHKTzmjZHR0dZTNOmTaWYxMRE2TWys7ORlJQku05Br5P3NQpiamoKU1PT554nIiLt0Ww7FRQE+PnJz2kmH4SFAcHBv8HE5JTs/NSpU2FgoFeDW6SDtPpfkL29Pdzc3F74eN4GuSqVCoD6PrC84uLicODAgQIXJ/T09ERkZKSsbd++fVLR5+LiAgcHB1lMamoqjh07JsV4enoiOTkZJ0+elGL2798PlUoFDw8PKeaPP/5AluYO1P9ex9XVFRUrViz074eIiHRH3sIsb88aoC7kPD0FfH1DcepUbsHWuHFjhISEsGCjYqEXs0ePHTuG48ePo02bNqhYsSKuXr2KqVOn4t69e7hw4YKsd2rq1KlYvXo14uPj890zcOTIEbz99tsICwtDp06dsHHjRsyePRunTp1Co0aNAABz585FWFgY1q1bBxcXF0ydOhVnz57FxYsXYfbfniMdO3bEvXv3sHLlSmRlZeHTTz9Fy5Yt8dNPPwFQzzh1dXVF+/btERgYiPPnz2PgwIFYuHChbGmQl+HsUSIi3ZG3p02zb6ibG3DpEnD37t18yzp99tlnslEbKj9K6vtbLxaGsbCwwNatWxESEoLHjx/D0dERHTp0wJQpU2QFm0qlwtq1a+Hv71/gTZ5eXl746aefMGXKFEyaNAn16tXDtm3bpIINAAICAvD48WN89tlnSE5ORps2bbBnzx6pYAOA9evXY+TIkXj33XdhYGCAHj16YPHi3IUSbWxssHfvXowYMQItWrRA5cqVMW3atCIVbEREpFs0Q6JhYep11wBACGDr1q04d+6cLHbatGlQKBSlnCGVdXrR01ZesaeNiEh78vasAeqfk5LUe4e6ugJ2diq0bz9T9pwWLVqgc+fOWsiWdEm57mkjIiIqTXn3Cg0LU7dFRamHQz09gVGjbuLy5dWy5wwbNizfklBExYlFGxER0TPCwtQFm0IBxMcDmhWkgoKAx4834PLly7J4DodSaeB0FiIiIshnhAYFAVZW6nvWbt8GDhwA/vwzB9HRobKCrXXr1ggJCWHBRqWC97TpMN7TRkRUery81EOgBgbqos3DQz1LVAhg6tTr+OefdbL4kSNHws7OTkvZki7jPW1EREQlRKlUD4MCgEql3vD90SP1jNHvv/8e//wTJ4vncChpA4s2IiIq1z78EPj559xjAwNg9Gj1bjezZs2SxbZt2xbt2rUr5QyJ1Fi0ERFRuaRZ0uPo0dw2Nzdg7lygQYN/MGvWeln8F198AVtb29JNkigPFm1ERFSuaIq1hw/VuxpUqgQkJwPduwNbtqj3r46Ovi17TkhIiHaSJcqDRRsREZUbkycDc+aoJxdUr65ec02zAXxWVhZCQ2fL4tu1a4e2bdtqKVsiORZtRERU5imV6pmgsbHqgg0AKlQAjhxR/xwbG4uNGzfKnjN27FjO3CedwqKNiIjKvLAw9VAooF4wt1o19b1rALBs2TI8ePBAFs/hUNJFLNqIiKjMCwrKXXMtPFw9HJqRkYHQ0DBZnK+vL1q3bq2lLIlejEUbERGVSZoJB97e6h0N5s5VF2sAcP78efzyyy+y+PHjx8PKykoLmRIVDos2IiIqUzTFWny8eguq06eBp0/VbX5+wMKFC5GamirFKxQKTJs2TXsJExUSizYiIipTwsLU21GZmamPK1UCnJ2BCRPSERo6VxbbqVMntGzZUgtZEhUdizYiIipTgoLkw6JBQYCz82ls375dFjdx4kRYWFhoKUuiomPRRkREeuvZ+9Y0a65p7l0DgLCwMERHZ0jHpqamCAoK0kK2RK+HRRsREeklpRLo2xdISwOio4H0dCAgILdge/LkCb766ivZc7p164YmTZpoIVui18eijYiI9FJYmLpgMzAALCzURZtCoT534sQJ7Ny5UxYfGBgIM82NbkR6iEUbERHppaAgoFcvdbFmbp67JVVoaKgsztraGmPHjtVSlkTFh0UbERHpJT8/oFYt9U4HFSoAe/emYf78+bKYnj17omHDhtpJkKiYGWg7ASIiosJSKgEvL/WfgHrBXE9PYPz4qHwFW3BwMAs2KlPY00ZERDpNqVRPMEhLA/79Vz0cqlko188PiI4Oxe3bufH29vYYPny49hImKiEs2oiISGflnSGqYWWlvnctNTUVCxculMX37t0brq6upZwlUelg0UZERDorMFBdsJmYAPb26oItPByoWPFPLFy4XxY7adIkGBsbaylTopLHoo2IiHTShx+qJxkAgItL7s/Pzg6tXr06Bg8eXMrZEZU+Fm1ERKR1Be1ssHVr7vnwcODhw4dYvHix7HmffPIJ6tSpU8rZEmkHizYiItI6zSbv586ph0PDwoDu3dWFW/fugJXVfixe/KfsOZMnT4aREb/GqPzgkh9ERKQVeZfvCApSL90xenTuIrlbtgDZ2QKNGoXizz9zCzYXFxeEhISwYKNyh//FExGRVmh61zTDoufOqf88ckR9/t9//8XSpUtlzxkwYABq1apV+skS6QAWbUREVOqUSuDhQ8DVVd2rplnWY/FiYNYsICIiAkePHpU9Z8qUKTA0NNRSxkTapxBCCG0nQQVLTU2FjY0NUlJSYG1tre10iIiKjbu7ejaomxtw6RIwebK6YBs9WsDEZIYs1tXVFb1799ZSpkRFV1Lf37ynjYiISo3mPrbERPXxo0fqP2fNAq5eTcxXsA0aNIgFG9F/ODxKRESlQqkEevVSb0OlWQO3QgX1n7/99htOnToli586dSoMDNi3QKTBoo2IiEqUUqne2eDqVSArS91WpQrg7AwEBgqEhsp71xo1aoQePXpoIVMi3caijYiISkxBe4eamQHLlwNvvHEX3377rSz+s88+g6OjYylnSaQfWLQREVGJyFuwmZsDlSqph0PnzgWys7fi22/PyeKnTZsGhUKhpWyJdB+LNiIiKjaaoVAhAIVCXbBZWQHr1wN+foBKpcLMmTNlz2nevDm6dOmipYyJ9AeLNiIiKjZhYbkbu7u65u5u4OcH3Lp1C999950sftiwYahSpYoWMiXSPyzaiIio2Hh7A6dPq4dCw8PVxRoAbNq0CTGaau4/HA4lKpoiF22Ghoa4e/duvv8z+vfff1GlShXk5OQUW3JERKT7nh0SffpUPTPUzw/IycnBl19+KYv38PBAhw4dtJQtkf4qctH2vA0UMjIyYGJi8toJERGRflAq1cOhSUlAbKy6rXr13CHR69evY926dbLnjBw5EnZ2dlrIlkj/FbpoW7x4MQBAoVBg1apVsLKyks7l5OTgjz/+gJubW/FnSEREOuXZYs3cHDAxATIz1bNDjxwBvv/+e6xbFyd7HodDiV5PofcedXFxAQDcuHEDNWrUkG3aa2Jiglq1amHGjBnw8PAomUzLIe49SkS6yMsLiIpS7xt644Z6OLR6dfWQaEBANs6cmSWLb9OmDd59910tZUtU+krq+7vQPW1xcer/Y/L29sbWrVtRsWLFYkuCiIj0h7c3cO4c0L078Msv6t42Kyvghx+u4scff5TFjh49mt8XRMWkyJu6HThwgH8BiYjKEc0m70ql+vjAAfX6awcOqGeIenoCgwZ9l69gCwkJ4fcFUTEq8kSEgQMHvvD86tWrXzkZIiLSPWFh6uHQgAD1z97e6vagIKBjxyxER8/Gkye58d7e3njrrbe0kyxRGVbkou3hw4ey46ysLJw/fx7Jyclo165dsSVGRETapZlwoCnS4uPVQ6EPHwKXLgGxsbGYPXuj7DljxoyBjY2NFrIlKvuKXLT9+uuv+dpUKhWGDRuGOnXqFEtSRESkfZoetqQk9WK5GkIAy5cvx/3792XxISEhpZwhUflS6NmjLxMbG4t33nkHd+/eLY7LETh7lIi0S9PT9vChemsqNzegcuVM+PjMkcW1b98enp6eWsqSSPdoffboy1y9ehXZ2dnFdTkiIiplmp0NHj1SH1tZqScaAOri7fPPL+D69Z9lzxk/frxs3U4iKjlFLtrGjRsnOxZC4O7du9i5cycGDBhQbIkREVHpyrvZe962I0eAa9cW4fr1FNk5DocSla4iF23R0dGyYwMDA9jb22P+/PkvnVlKRES6afJkIDpavaNBejpgbQ1UrgxMnJiO0NC5sthOnTqhZcuWWsqUqPwqctF24MCBksiDiIi0aPFidbGWmQmoVED9+sCKFWewbds2WdzEiRNhYWGhnSSJyrkiL66rkZiYiD///BN//vknEhMTizMnIiIqBXkXze3QATAwAFq3Vi+W+/77c2UFm4mJCUJCQliwEWlRkXvaUlNTMWLECGzYsAEqlQoAYGhoiF69emHZsmVcn4eISE9olvQIC1Mfq1SAkdETtGv3FXJycuO6du2Kpk2baiVHIspV5J62IUOG4NixY9i5cyeSk5ORnJyMHTt24MSJE/j8889LIkciIipGmh42b291r1pQkPrx4Ycn0a7dV7LYwMBAFmxEOqLI67RZWloiIiICbdq0kbX/+eef6NChAx4/flysCZZnXKeNiIqDZr21oCD1cd++6r1DrayA9esBPz9gxowZyPt1UKFChXyrBRBR4ejMOm12dnYFDoHa2NhwY2AiIh307DBoWpr6/rW0NGDBgjRER8+Xxffo0QONGjXSQqZE9CJFHh6dMmUKxo0bh4SEBKktISEBEydOxNSpU4s1OSIien1BQephUG9v9ZZUbm7qtl69jsLbe/4zsUEs2Ih0VJGHR5s1a4Z//vkHGRkZcHZ2BgDEx8fD1NQU9erVk8WeOnWq+DIthzg8SkTFyctL3ePm6Qn4+obKzlWuXBkjRozQUmZEZYvODI927doVCoWi2BIgIqLipdmOSgj1NlR+fur2oCBg4cJUvPPOQll8r1694ObmpoVMiagoim3DeCp+7GkjoqLQFGvXr6sXygUAV1egUiV1wVax4p/Yv3+/7DmTJk2CsbFx6SdLVIbpTE9b7dq1cfz4cdjZ2cnak5OT0bx5c1y7dq3YkiMiosLLu3eomRlQsyagUKiHRKOj5cOh1apVw5AhQ7SQJRG9qiIXbdevX0dO3lUX/5ORkYFbt24VS1JERFR0QUHA8OFAYiJgZ6ceGs3ISMbFi1/L4vr27Yu6detqKUsielWFLtqUSqX0c0REhGzZj5ycHERGRsLFxaV4syMiokLz81P3tt2+rX78/PMB1Knzhyxm8uTJMDIq8v+vE5EOKPSSH926dUO3bt2gUCgwYMAA6bhbt27o3bs39u3bh/nz57/8Qq/Iz88Pzs7OMDMzg6OjI/r164c7d+7IYiIiItC6dWtUqFAB9vb26NGjB65fvy6LOXjwIJo3bw5TU1PUrVsXa9euzfday5YtQ61atWBmZgYPDw/8/fffsvPp6ekYMWIE7OzsYGVlhR49euDevXuymPj4eHTq1AkWFhaoUqUKJk6ciOzs7GL5XRARPU9QEODmJjB9eqisYKtVqxZCQkJYsBHpsUIXbSqVCiqVCs7OzkhMTJSOVSoVMjIyEBsbi86dO5dYot7e3ti8eTNiY2Pxyy+/4OrVq+jZs6d0Pi4uDl27dkW7du1w+vRpRERE4MGDB+jevbssplOnTvD29sbp06cxZswYDB48GBEREVLMpk2bMG7cOISEhODUqVNo0qQJfH19kZiYKMWMHTsWv/32G7Zs2YJDhw7hzp07stfJyclBp06dkJmZiSNHjmDdunVYu3Ytpk2bVmK/HyIqn5RKwN1dvfaaUgm8+ea/6N17hixmwIABGDBggJYyJKJiI/TU9u3bhUKhEJmZmUIIIbZs2SKMjIxETk6OFKNUKmUxAQEBomHDhrLr9OrVS/j6+krHrVq1EiNGjJCOc3JyRLVq1cScOXOEEEIkJycLY2NjsWXLFinm0qVLAoCIiooSQgixa9cuYWBgIBISEqSYFStWCGtra5GRkVHo95iSkiIAiJSUlEI/h4jKtu3bhfD0VP8phBBubkKoF/cQwt9/j5g+fbrskZ2drd2Eicqhkvr+LnI/+YwZM154vjR6k5KSkrB+/Xp4eXlJU9VbtGgBAwMDrFmzBv7+/khLS8MPP/wAHx8fKSYqKgo+Pj6ya/n6+mLMmDEAgMzMTJw8eRLBwcHSeQMDA/j4+CAqKgoAcPLkSWRlZcmu4+bmBmdnZ0RFRaF169aIiopC48aNUbVqVdnrDBs2DBcuXECzZs0KfF8ZGRnIyMiQjlNTU1/jt0REZZFmS6oPPgC6d1cv7wEITJ8u/7e5fv366NOnjzZSJKISUuSi7ddff5UdZ2VlIS4uDkZGRqhTp06JFm2BgYFYunQpnjx5gtatW2PHjh3SORcXF+zduxcfffQRPv/8c+Tk5MDT0xO7du2SYhISEmSFFABUrVoVqampePr0KR4+fIicnJwCY2L+m0efkJAAExMT2Nra5ovRbO31vNfRnHueOXPmIDQ09Lnniaj80mz67u2tLtpUKuDnnwF7+0QEBa2QxQ4cOBBOTk5aypSISkqR9x6Njo6WPc6fP4+7d+/i3XffxdixY4t0raCgICgUihc+NMUSAEycOBHR0dHYu3cvDA0N0b9/f4j/1gZOSEjAkCFDMGDAABw/fhyHDh2CiYkJevbsKcXouuDgYKSkpEiPmzdvajslItIRmh62rVtz27p02YERI+QF29SpU1mwEZVRxTKNyNraGqGhoejSpQv69etX6OeNHz8e/v7+L4ypXbu29HPlypVRuXJl1K9fH+7u7nBycsLRo0fh6emJZcuWwcbGBuHh4VL8jz/+CCcnJxw7dgytW7eGg4NDvlme9+7dg7W1NczNzWFoaAhDQ8MCYxwcHAAADg4OyMzMRHJysqy37dmYZ2ecaq6piSmIqakpTE1NX/j7IKLyKShIXbglJQEKhUBIiHw4tFGjRujRo4eWsiOi0lBsc781vUNFYW9vD3t7+1d6PZVKBQDSPWBPnjyBgYG849DQ0FAW++xwKQDs27cPnp6eAAATExO0aNECkZGR6Natm/TcyMhIjBw5EoD63jljY2NERkZK/0DGxsYiPj5euo6npydmzZqFxMREVKlSRXoda2trNGjQ4JXeLxGVb35+6sfGjXcRG/ut7NyQIUNQrVo1LWVGRKWlyEXb4sWLZcdCCNy9exc//PADOnbsWGyJ5XXs2DEcP34cbdq0QcWKFXH16lVMnToVderUkQqlTp06YeHChZgxYwb69OmDR48eYdKkSahZs6Z04//QoUOxdOlSBAQEYODAgdi/fz82b96MnTt3Sq81btw4DBgwAC1btkSrVq2waNEiPH78GJ9++ikAwMbGBoMGDcK4ceNQqVIlWFtbY9SoUfD09ETr1q0BAO3bt0eDBg3Qr18/hIeHIyEhAVOmTMGIESPYk0ZERaa5n61371/x8OFZ2blp06ZBoVBoKTMiKk1F3jD+2V0PDAwMYG9vj3bt2iE4OBgVKlQo1gQB4Ny5c/jiiy9w5swZPH78GI6OjujQoQOmTJmC6tWrS3EbN25EeHg4Ll++DAsLC3h6emLu3Llwc3OTYg4ePIixY8fi4sWLqFGjBqZOnZpviHbp0qX46quvkJCQgKZNm2Lx4sXw8PCQzqenp2P8+PHYsGEDMjIy4Ovri+XLl8uGPm/cuIFhw4bh4MGDsLS0xIABAxAWFlakhS25YTxR+aRUAgEBQFoaUKECoFCo0KvXTFlMs2bN4Ofnp6UMiehFSur7u8hFG5UeFm1E5ZOXl3rSAQBUr34bQ4askp0fOnRovhnqRKQ7Sur7+5XuaUtOTsY///wDAKhbt26+5S+IiKjwNMOfQUHq44cPgerVAR+fTXBxiZHFcjiUqPwqUtF2/fp1jBgxAhEREdIyGgqFAh06dMDSpUtRq1atksiRiKhM0yznERamPr58OQfTpn0pi2nVqlWJ3TdMRPqh0MOjN2/exBtvvAFjY2MMHz4c7u7uAICLFy9ixYoVyM7OxvHjx1GjRo0STbg84fAoUfmgVAKBgcCjR4CDww106bJWdn7EiBGoXLmydpIjoiLT+j1tgwYNwj///IOIiAiYmZnJzj19+hQdOnRAvXr1sGrVqudcgYqKRRtR+eHlBdSt+wPq1Lkma+dwKJH+0fo9bXv27MGmTZvyFWwAYG5ujpkzZ6J3797FlhgRUXmRnZ0NX99ZsrY2bdrg3Xff1VJGRKSLCl20PXjw4IX3rNWuXRtJSUnFkRMRUblx9epV/Pjjj7K20aNHo2LFilrKiIh0VaH3HnV0dMTFixefe/78+fMv3KKJiKg8UyrVQ6BKZW7bd999l69gCwkJYcFGRAUqdE9bt27dMGHCBERGRubbeioxMRGBgYHS1k9ERCQXEADExgK9egEbNmThzJnZsvPvvPMO3n77bS1lR0T6oNBFW0hICHbt2oU6dergk08+gZubG4QQuHTpEn766Sc4ODhg2rRpJZkrEZHe0swlcHa+jDNnNsjOjRkzBjY2NlrIioj0SaGLtooVK+LYsWOYNGkSNm7ciOTkZACAra0tPv74Y8yePRuVKlUqqTyJiPTa3LlARMQKVKmSKGsPCQnRUkZEpG9eaRsrIQTu378PALC3t+d09BLCJT+I9Jtmp4OJEzNx9uwc2bn33nsPXl5eWsqMiEqS1pf8yEuhUKBKlSrFlgQRUVmRd0uqsDAgJeUizp7dIosZN24cKlSooKUMiUhfvVLRRkREBcu7JVWXLl8jMzNZdp7DoUT0qli0EREVA00Pm7c38OhROnx95yIzM/f8+++/jzfeeEN7CRKR3mPRRkRUDDQ9bI6OZ9Gz56+ycxMnToSFhYWWMiOisoJFGxHRa1IqgYcPgaCgcJiZPZXaDQyMMXXqJC1mRkRlSaGKtsWLFxf6gqNHj37lZIiI9IlmSPTx46fo3Ttcds7Pzw/NmjXTUmZEVBYVaskPFxeXwl1MocC1a9deOylS45IfRLrNzQ2wtDwFP7/fZO2NGwege3dzLWVFRNqm1SU/4uLiiu0FiYjKio8+mglDQ5V0bGVlhfHjx2sxIyIqy175nrbMzEzExcWhTp06MDLirXFEVD4olcCCBY/h7T0Phoa57UeOdEdERGPtJUZEZZ5BUZ/w5MkTDBo0CBYWFmjYsCHi4+MBAKNGjUJYWFixJ0hEpG1KJeDurh4OXbXqGLy958nOb9kShBEjWLARUckqctEWHByMM2fO4ODBgzAzM5PafXx8sGnTpmJNjohIF4SFATExQJ8+oWjRYo/Ubmdnh5CQEJw/bwo/Py0mSETlQpHHNbdt24ZNmzahdevWsj1HGzZsiKtXrxZrckRE2pS7YG4qfH0Xys599NFHcHd311JmRFQeFblou3//foH7jj5+/JgbxxNRmRIWBhgY/AUTk0hZe3BwMExMTLSUFRGVV0UeHm3ZsiV27twpHWsKtVWrVsHT07P4MiMi0hKlEvDyAnx9Q/Hee7kFW0qKI5o1C2HBRkRaUeSettmzZ6Njx464ePEisrOz8fXXX+PixYs4cuQIDh06VBI5EhGVCqUSCAwEkpKSMXz417JzH3/8MerVq6elzIiIXqGnrU2bNjh9+jSys7PRuHFj7N27F1WqVEFUVBRatGhREjkSEZWKsDDAweFAvoKtSZPJLNiISOsKtSMCaQd3RCAqeZrJBoGBAqdPz5Cdq1mzJvz9/bWTGBHpLa3uiJCamlroC7K4ICJ9EhYGxMYm4fTpJbL2/v37F3oLPyKi0lCoos3W1rbQM0NzcnJeKyEiotIyeTJgbb0Xo0dHydqnTJkCw7zbHRAR6YBCFW0HDhyQfr5+/TqCgoLg7+8vzRaNiorCunXrMGfOnJLJkoiomAkhYGIyA3knvScm1oOv78dgvUZEuqjI97S9++67GDx4MPr06SNr/+mnn/Dtt9/i4MGDxZlfucZ72oiKl+b+tS++uI+YmOWyc1lZn+LLL521lBkRlSUl9f1d5NmjUVFRaNmyZb72li1b4u+//y6WpIiIipNm3bXAQKBSpZ35CrYZM6Zi/34WbESk24pctDk5OeF///tfvvZVq1bBycmpWJIiIipOYWHA0aMCvXuH4o03Tkjtd+82RGZmCDw8DBAUpMUEiYgKociL6y5cuBA9evTA7t274eHhAQD4+++/ceXKFfzyyy/FniAR0etQKgEhEhAS8o2sPSpqCPbsqaalrIiIiq7IPW3vv/8+rly5gi5duiApKQlJSUno0qULLl++jPfff78kciQiemU7dmxDhw7ygm3jxmkYPpwFGxHpFy6uq8M4EYHo1alUKsycOVPWdupUUyiVXeHpCRw5oqXEiKjM0+rius9KTk7Gd999h0uXLgEAGjZsiIEDB8LGxqbYEiMiKgrNzNCgIKBFi9tYtWqV7PzQoUNx7FhV3L8P3r9GRHqpyD1tJ06cgK+vL8zNzdGqVSsAwPHjx/H06VPs3bsXzZs3L5FEyyP2tBEVnrs7EBMDDBq0GU5Ol2Tnmjadhq5dC7dAOBHR6yqp7+8iF21t27ZF3bp18b///Q9GRuqOuuzsbAwePBjXrl3DH3/8UWzJlXcs2ogKz91dhd695cOhN268gTVr3udwKBGVKp0ZHj1x4oSsYAMAIyMjBAQEFLh+GxFRSbtx4wZ6914ra/vrrxEYNaoyYmI4HEpEZUORizZra2vEx8fDzc1N1n7z5k1UqFCh2BIjIiqMBQt+xKNHV2Vt8+ZNw/r1Cvj5AX5+WkqMiKiYFblo69WrFwYNGoR58+bBy8sLAHD48GFMnDgx39ZWREQlZdu2HJw586Ws7f79N3HqlA/Wr2exRkRlT5GLtnnz5kGhUKB///7Izs4GABgbG2PYsGEICwsr9gSJiJ517do1nDnzg6zt669HIT29Ep480VJSREQl7JXXaXvy5AmuXlUPSdSpUwcWFhbFmhhxIgJRQVavXo2bN2/K2qZPnwZAgerVgVu3tJMXEZGGzkxE0LCwsEDjxo2LLREiohfJzs7GrFmzZG3vvPMOOnd+GwBgYAAsX17QM4mIyoZCF20DBw4sVNzq1atfORkiooJcvnwZGzZskLU1bDgGb79tg9GjgcWLgdGjeR8bEZVthR4eNTAwQM2aNdGsWTO86Cm//vprsSVX3nF4lAhYuXIl7t27J2ubPj2Ea68Rkc7S+vDosGHDsGHDBsTFxeHTTz/FJ598gkqVKhVbIkREeWVmZmLOnDmytmrVfLBgwZtwdeXaa0RU/hgUNnDZsmW4e/cuAgIC8Ntvv8HJyQkfffQRIiIiXtjzRkRUVJcuXcpXsDVqNA7jxr2JmBigUiUOhRJR+fPKs0dv3LiBtWvX4vvvv0d2djYuXLgAKyur4s6vXOPwKJU3SiVw+PBiWFg8lLU3axaCsDAgKgqwsgLXYSMinab14dFnGRgYQKFQQAiBnJycYkuIiMqnjIwMREeHIe/qQR07dkSrVq2k47Aw9bAoCzYiKo+KVLRlZGRg69atWL16Nf766y907twZS5cuRYcOHWBgUOiRViIimbNnz+abxDRhwgRYWlpKx9ySiojKu0IXbcOHD8fGjRvh5OSEgQMHYsOGDahcuXJJ5kZE5cCsWV8hOzt3GwMjIyM0bjwZ773HXjUioryKtOSHs7MzmjVrBoVC8dy4rVu3Flty5R3vaaOy7OnTpwgPD5e1ZWf7YdGiZrCxAW7fBpf1ICK9pPV72vr37//CYo2IqLDWrDmF+PjfZG2ZmQGYM8ccQgAZGeqCjct6EBHlKnTRtnbt2hJMg4jKiy+//FI2ecnS0hL1609A376Apt+/ShX2sBERPeuVZ48SERXF48ePMW/ePFlbdnZ3TJjQGF5eQFoaYGYG1KoFzJ2rnRyJiHQZizYiKnF///03du/eLWubMycILi6miIwEvL3VbZx4QET0fCzaiKhEhYaGyo4rVqyIWrVGo3lzIClJvWAuwOFQIqKXYdFGRCXi0aNHWLBggazto48+wpUr7tIiuQBkPxMR0fO98jZWVPK45Afpq8OHD+P333+XtQUHB8PExAReXureNS7nQURlldaX/CAiKoxnh0MdHBzw+eefS8dBQexdIyJ6FSzaiKhYpKSkYNGiRbK22rU/xooV9eDomDvBgNtRERG9GhZtRPTaDh48iEOHDsna9u2bjAcPjBAbCwQEsFAjInpderPLu5+fH5ydnWFmZgZHR0f069cPd+7ckcVs3rwZTZs2hYWFBWrWrImvvvoq33UOHjyI5s2bw9TUFHXr1i1w0eBly5ahVq1aMDMzg4eHB/7++2/Z+fT0dIwYMQJ2dnawsrJCjx49cO/ePVlMfHw8OnXqBAsLC1SpUgUTJ05Ednb26/8iiHSIEAKhoaGygs3S0hkRESEICDBCWpq6TfMnERG9Or0p2ry9vbF582bExsbil19+wdWrV9GzZ0/p/O7du9G3b18MHToU58+fx/Lly7Fw4UIsXbpUiomLi0OnTp3g7e2N06dPY8yYMRg8eDAiIiKkmE2bNmHcuHEICQnBqVOn0KRJE/j6+iIxMVGKGTt2LH777Tds2bIFhw4dwp07d9C9e3fpfE5ODjp16oTMzEwcOXIE69atw9q1azFt2rQS/i0RlZ6kpCTMmDFD1tavXz9MmPCpdN+aRoUKpZwcEVEZpLezR5VKJbp164aMjAwYGxvj448/RlZWFrZs2SLFLFmyBOHh4YiPj4dCoUBgYCB27tyJ8+fPSzG9e/dGcnIy9uzZAwDw8PDAG2+8IRV7KpUKTk5OGDVqFIKCgpCSkgJ7e3v89NNPUtEYExMDd3d3REVFoXXr1ti9ezc6d+6MO3fuoGrVqgCAlStXIjAwEPfv34eJiUmh3iNnj5Ku2rdvH448M/Vz794pCAw0hJ8fpBmirq5ApUpcNJeIypeS+v7Wm562vJKSkrB+/Xp4eXnB2NgYAJCRkQEzMzNZnLm5OW7duoUbN24AAKKiouDj4yOL8fX1RdR/q3tmZmbi5MmTshgDAwP4+PhIMSdPnkRWVpYsxs3NDc7OzlJMVFQUGjduLBVsmtdJTU3FhQsXiuvXQFTqNMOheQu2unXrIiIiBEeOGEq9a0FB6iU9wsPVy3qwYCMien16VbQFBgbC0tISdnZ2iI+Px/bt26Vzvr6+2Lp1KyIjI6FSqXD58mXMnz8fAHD37l0AQEJCgqyQAoCqVasiNTUVT58+xYMHD5CTk1NgTEJCgnQNExMT2NravjCmoGtozj1PRkYGUlNTZQ8iXXH//v18w6H16n2Kvn37IigIcHNT73CgVKqLNBZrRETFS6tFW1BQEBQKxQsfMTExUvzEiRMRHR2NvXv3wtDQEP3794dmdHfIkCEYOXIkOnfuDBMTE7Ru3Rq9e/cGoO4t0wdz5syBjY2N9HByctJ2SkQAgF27dmH58uWythkzpmLpUmfp+NYtIDZWfi8bEREVH60u+TF+/Hj4+/u/MKZ27drSz5UrV0blypVRv359uLu7w8nJCUePHoWnpycUCgXmzp2L2bNnIyEhAfb29oiMjJRdw8HBId8sz3v37sHa2hrm5uYwNDSEoaFhgTEODg7SNTIzM5GcnCzrbXs25tkZp5pramIKEhwcjHHjxknHqampLNxIq4QQ+XrXLlxogHPnPoSHh3wrqrQ0wMqKi+YSEZUUrRZt9vb2sLe3f6XnqlQqAOohxbwMDQ1RvXp1AMCGDRvg6ekpvYanpyd27doli9+3bx88PT0BACYmJmjRogUiIyPRrVs36XUiIyMxcuRIAECLFi1gbGyMyMhI9OjRAwAQGxuL+Ph46Tqenp6YNWsWEhMTUaVKFel1rK2t0aBBg+e+J1NTU5iamr7S74OouCUkJOCbb76RtUVEDMbDh9UhhHxyQd5dDjgkSkRUMvRi9uixY8dw/PhxtGnTBhUrVsTVq1cxdepU3Lt3DxcuXICpqSkePHiAn3/+Ge+88w7S09OxZs0afPvttzh06BBatWoFQL3kR6NGjTBixAgMHDgQ+/fvx+jRo7Fz5074+voCUC/5MWDAAHzzzTdo1aoVFi1ahM2bNyMmJka6L23YsGHYtWsX1q5dC2tra4waNQoApJuzc3Jy0LRpU1SrVg3h4eFISEhAv379MHjwYMyePbvQ75uzR0lbtm/fjtOnT8vaIiKmIijIAGFh6pmhVlbA+vUs0oiInlVi399CD5w9e1Z4e3uLSpUqCVNTU1GrVi0xdOhQcevWLSnm/v37onXr1sLS0lJYWFiId999Vxw9ejTftQ4cOCCaNm0qTExMRO3atcWaNWvyxSxZskQ4OzsLExMT0apVq3zXefr0qRg+fLioWLGisLCwEB988IG4e/euLOb69euiY8eOwtzcXFSuXFmMHz9eZGVlFel9p6SkCAAiJSWlSM8jelU5OTli+vTpsse2bdtkMZMmCWFgIAQghKenlhIlItJhJfX9rRc9beUVe9qoNN2+fRurVq2StX3++ef4+28H2dCnZg029rQRERWspL6/WbTpMBZtVFq2bNmCixcvytqmTZsGhUIhFWlubkDFioC3N3DgAO9fIyJ6npL6/uaG8UTlmEqlwsyZM2VtLVu2RE5OJ7z5prpAS0pSF2xCqIs3QL0GGxERlS4WbUTlVHx8PNasWSNrGz58OOzt7aXetXPn1Et5eHrKZ4gSEVHpY9FGVA4tXPgTUlOvyNoiIqahWTMF/PzUhVlAgLpgq149dyiUw6FERNqjH1sFEFGx2LYtB6GhobKCzcvLCxERIYiKUiAwUD3RAFBv9H77tvpPFmtERNrHnjaiciIuLg5nznwva2vQYBTee68Snj5VD30mJamHRfv2BUaPVsdwOJSISDewaCMqB9asWYP4+HhZm2Z2KJA79KlUqgu2tDT1DFFOOCAi0h0cHiUqw7KzsxEaGior2N5++22EhIRAoVBAqVQPhyqV6nN+fuq11zQTD4iISHewaCMqo65cuYJZs2bJ2r744gukpr4jFWqaLanCwnJj/PzUPWy8j42ISLewaCMqg7755hv89NNPsraQkBDY2trKCrWgIMDVFXj4MLe3jYiIdBOLNqIyJDMzE6GhoUhISJDaqlXzQUREiFSUBQWpF8uNjwcCA9VtMTHy3jYiItI9LNqIyohLly5hzpw5srZx48ZhzZo3ZUOgfn7q7ahu31YXawoF72EjItIHnD1KVAYsWbIESUlJsraIiBA0aybfyUBzH5tmeyqFApg7l/evERHpAxZtRHosIyMDYc+Ma3bo0AFjx3pIvWt5JxVotqcC1L1sRESkPzg8SqSnzp07l69gmzBhAjw8PBAUpB7y9PaWL+mhaedQKBGR/lEIIYS2k6CCpaamwsbGBikpKbC2ttZ2OqRD5s2bh8ePH0vHKpUhsrOn4MCB3H1CgdyeNU9PLpRLRFRaSur7m8OjRHrk6dOnCA8Pl7WdP98FP//cHFZW6p0MwsJyi7a897MREZF+Y9FGpCeio6OhfGYxtf37A9Cmjbk0FKrpaQPkkw7yzhwlIiL9xKKNSA/MmjUL2dnZ0rG5uTnWrAlATAyQmAhcupT/OZpFdM+dy98DR0RE+odFG5EOe/z4MebNmydr++CDD/B///d/WL1afSxEbq+appdN08MG5O+BIyIi/cSijUhH/f3339i9e7esLTAwEGZmZgCA8PDcQu3ZPUQ1y3pw8gERUdnBoo1IB4WGhsqObW1t8cUXX8ja/Pzkw53P9rSxZ42IqGxh0UakQx49eoQFCxbI2j788EM0aNDghc/TFG+aYo09bEREZQ+LNiIdceTIEezbt0/WFhwcDBMTk0I9P+8QKSccEBGVPdwRgUgHhIaGygq2hISqiIgIkRVsSmXu7gaanydPzm3jbgdERGUbd0TQYdwRoexLSUnBokWLZG21a/fBrFn1823mnnd3A0D9s2ZBXe54QESkO7gjAlEZc+jQIRw8eFDWNmnSJBgbG2PFivxDnc/ubqBZ1oPLeRARlQ/sadNh7Gkrm4QQmDFjhqzNyckJAwcOlI7zrrvG+9OIiPQLe9qIyoC0tDTMnz9f1vbJJ5+gTp06srZnl/MgIiLiRASiUnL27Nl8BduUKVPyFWyAfNIBERERwKKNqMQJIfC///0Pv/76q9RmZ9ccEREh2LnTsMDnPLvDAREREYs2ohKUmpqKGTNm4M6dO1Kbu/twBAd3QVQU8MEH6mU7nsXlO4iI6FmciKDDOBFBv0VHR0OZZ3zT3NwcEyZMQJs2BtLeoIB62Y5Hj7SQIBERlQhORCDSE0IIrFixAvfv35fa3nvvPXh5eQHIXbqjenVgzx5g9GhtZUpERPqERRtRMSposdxRo0ahUqVK0jFnhhIR0atg0UZUTI4fP45du3ZJxzY2Nvjiiy+gUCi0mBUREZUVnIhA9JqEEPj6669lBVtkZEfcvz8Gb76p4LIdRERULNjTRvQakpKSsGTJElnbt99+gTt3bBEdrd4XNO9WVERERK+KPW1Er+jo0aOygi0trTKaNp2GFSts4empnmDwomU7uIAuEREVBXvaiIpIpVJhwYIFePz4sdR27FgX7N7dHIcP5xZpHh7ArFnPv07eBXTZE0dERC/DnjaiInjw4AFmzpwpK9gWLBiLuLjmUq9aYXcz4AK6RERUFCzaiArpr7/+wrJly6RjlcoBGzdOg6OjNebOBY4cUfeYeXurF8z19s59bkFDoX5+uc8hIiJ6GQ6PEr2AUgnMnatChw5zoVJlSu1bt3bDtWtNkJamLtDyOnBAPQHhwIHcNg6FEhHR62JPG9ELLF2aiPbtZ8oKtkaNxsPSsglGj1YXbJoZohoFDXtyKJSIiF4X9x7VYdx7tHQpleriKyhI3Rt28OBBHDp0SDrv7OwMf39/abFcpRIICAAUCmDuXPagERGRGvceJSphmiHMuXNzcPr0LOT9/5nTp3uiWbOGyLu5QVgYEBur7kFjwUZERCWNw6NE/wkKAtq3T0D79l/KCratWydg27aG+WaDaoY8vb253hoREZU8Fm1E/7Gw+B1eXt9Ixw8e1Mb06SHIzLQs8H40zezPAwcKt8QHERHR6+DwKJV727Zl48wZ+Sq4vXr1wuXLbjh5Mvcet+fRrM3GSQZERFSSOBFBh3EiQsm7ffs2Vq1aJWsLCAiAubm5ljIiIiJ9x4kIRMVs+fI9uH//mHRsY+OKMWN6azEjIiKi52PRRuVOVlYWZs+eLWv7+OOPUa9ePS1lRERE9HIs2qhciY+Px5o1a2Rt//d/gahXz0xLGRERERUOizYqN3777TecOnVKOm7UqBF69OihxYyIiIgKj0UblSnP7lIAAF99lQkfnzmyuH79+qF27dpayJCIiOjVsGijMkGzBdXDh+pdCgD1caVKcfDx+V4WGxQUBFNTUy1kSURE9OpYtJHeUyqBvn3VG7e7uqofCgXQu/evePjwrBTXtGlTdO3aVYuZEhERvToWbaT3wsLUBZuVFRAeDvj6ZiAsLAwPH+bG+Pv7o2bNmtpLkoiI6DVxGyvSaUpl/n09n23z9lYXbKNHAw0a/IOwZ/aTmjRpEgs2IiLSe9wRQYdxRwR1cRYVpd6Y/ciRgts0x0OHboaDwyXpuS1btkSnTp20lDkREZVXJfX9zZ420jl5e9KCgpBvs/Zn2yZMeIrp00NlBdugQYNYsBERUZnCe9pI54SFqXvOwsLUPWmazdonTwYWL1YPg2p63WJjY3Hu3EbZ8ydPngwjI/6nTUREZQt72kjnPNuTpul5W7BAPeFg8WJ1+08//YSNG3MLttatWyMkJIQFGxERlUm8p02H6do9bZq10IKCcnu/SoO7OxATA9jZARkZwOjRT2Bi8pUsZsiQIahWrVrpJUVERPQcvKeNtC7vsOXLFDTrU9Pu7g64ueU/9zya/62oXBk4duxivoJtypQpLNiIiKjMY9FGhVbQpIDneV6BFxam7jWLjc1/7nmFXni4+nWHDFmHLVu2SO1t27ZFSEgIDA0NX/EdERER6Q+9K9oyMjLQtGlTKBQKnD59Wnbu7NmzaNu2LczMzODk5ITw8PB8z9+yZQvc3NxgZmaGxo0bY9euXbLzQghMmzYNjo6OMDc3h4+PD65cuSKLSUpKQt++fWFtbQ1bW1sMGjQIaWlpRc5F3/j5yScGvMjzCrygIHUvm6tr/nPPK/TatUuDr28o0tKuS21Dhw5Fu3btXu2NEBER6SG9K9oCAgIKHApLTU1F+/btUbNmTZw8eRJfffUVpk+fjm+//VaKOXLkCPr06YNBgwYhOjoa3bp1Q7du3XD+/HkpJjw8HIsXL8bKlStx7NgxWFpawtfXF+np6VJM3759ceHCBezbtw87duzAH3/8gc8++6xIuZR1zyvw/PzUG7lXqpT/OQUVeufOncP8+fOlYyMjI0yZMgVVq1YtocyJiIh0lNAju3btEm5ubuLChQsCgIiOjpbOLV++XFSsWFFkZGRIbYGBgcLV1VU6/uijj0SnTp1k1/Tw8BCff/65EEIIlUolHBwcxFdffSWdT05OFqampmLDhg1CCCEuXrwoAIjjx49LMbt37xYKhULcvn270LkURkpKigAgUlJSivQ8XefpKQQghJWVENu3FxyjUqnE//73PzF9+nTpcfDgwdJNlIiI6BWU1Pe33vS03bt3D0OGDMEPP/wACwuLfOejoqLw1ltvwcTERGrz9fVFbGwsHv63CWVUVBR8fHxkz/P19UVUVBQAIC4uDgkJCbIYGxsbeHh4SDFRUVGwtbVFy5YtpRgfHx8YGBjg2LFjhc6lrHrefWl5BQWpt51KSyt4UsOjR48wY8YM3L59W2obPnw43n777RLImIiISD/oRdEmhIC/vz+GDh0qK5bySkhIyDdkpjlOSEh4YUze83mf97yYKlWqyM4bGRmhUqVKL32dvK9RkIyMDKSmpsoe+qYwM0z9/ID16wu+5y06OhoLFiyQjs3NzTF16lTY29uXUMZERET6QatFW1BQEBQKxQsfMTExWLJkCR49eoTg4GBtplvi5syZAxsbG+nh5OSk7ZSKrLAzTJ+9500IgRUrVkCZp4vOx8cHAQEBMDDQi/+3ICIiKlFaXTp+/Pjx8Pf3f2FM7dq1sX//fkRFRcHU1FR2rmXLlujbty/WrVsHBwcH3Lt3T3Zec+zg4CD9WVBM3vOaNkdHR1lM06ZNpZjExETZNbKzs5GUlPTS18n7GgUJDg7GuHHjpOPU1FS9K9z8/Iq+8G5KSgoWLVokaxs5ciTs7OyKLzEiIiI9p9UuDHt7e7i5ub3wYWJigsWLF+PMmTM4ffo0Tp8+LS3TsWnTJsyaNQsA4OnpiT/++ANZWVnS9fft2wdXV1dUrFhRiomMjJTlsG/fPnh6egIAXFxc4ODgIItJTU3FsWPHpBhPT08kJyfj5MmTUsz+/fuhUqng4eFR6FwKYmpqCmtra9mjNBXmfrTiduLECVnBZm1tjWnTprFgIyIielaxTmsoJXFxcflmjyYnJ4uqVauKfv36ifPnz4uNGzcKCwsL8c0330gxhw8fFkZGRmLevHni0qVLIiQkRBgbG4tz585JMWFhYcLW1lZs375dnD17VnTt2lW4uLiIp0+fSjEdOnQQzZo1E8eOHRN//fWXqFevnujTp0+RcimM0p49qpnV6elZuPjt29Wxz5sB+iIqlUp8/fXXstmhR48eLfqFiIiIdExJfX+XmaJNCCHOnDkj2rRpI0xNTUX16tVFWFhYvudu3rxZ1K9fX5iYmIiGDRuKnTt3ys6rVCoxdepUUbVqVWFqaireffddERsbK4v5999/RZ8+fYSVlZWwtrYWn376qXj06FGRc3mZ0i7ailqEFVTkFeYaSUlJsmJt+vTpIikp6fWSJyIi0hEl9f3NDeN1WGluGP8qm8E/+xylEujbV72Uh6eneqLBs44ePYqIiAjp2M7ODiNGjIBCoSimd0JERKRdJfX9zaJNh5Vm0eblpV6q43nFVlGuYWWlXtIjb/GnUqmwcOFC2XZfnTt3RosWLV4zcyIiIt1SUt/fXEuBABRtM/iXXePZgu3ff//FzJkzZQXbmDFjWLAREREVAXvadFhp9rSVlL/++ks2G9fBwQGfffYZh0OJiKjMKqnvb62u00a6SakEAgIAhUK9uXtR110D1MOh4eHhyMjIkNq6deuGJk2aFGOmRERE5QeLNsonLAyIjc39uahFW2JiIlasWCFrGzduHCpUqFBMGRIREZU/vKetHHrZIrpBQYCrK1C9OpCUVLTFdg8dOiQr2JycnDBt2jQWbERERK+J97TpsJIaEy/sTNGizCjNycnB7NmzoVKppLYePXqgUaNGxZQ1ERGRfuDsUSo2hZ0pWti4hIQEfPnll7KCbcKECSzYiIiIihF72nSYPswe/f3333H48GHp2MXFBf3799diRkRERNrFnjYqMa+yUXx2djZCQ0NlBdtHH33Ego2IiKiEcPYoISxMfe9aYWeK3r59G6tWrZK1BQQEwNzcvIQyJCIiIhZthKCg3D1EX2bPnj04duyYdFy/fn306dOnBLMjIiIigEVbuZZ3w/eXzQ7NysrC7NmzZW19+vRB/fr1SzBDIiIi0mDRVo4Vdlj05s2bWL16tawtMDAQZmZmJZwhERERabBoK8cKMyy6Y8cOnDx5Ujpu2LAhevbsWQrZERERUV4s2soxP7/n97BlZmZizpw5srZPPvkEderUKYXMiIiI6Fks2iif69evY926dbK2oKAgmJqaaikjIiIiYtFGMtu2bcOZM2ek4yZNmqBbt27aS4iIiIgAsGij/2RkZCAsLEzWNmDAANSqVUs7CREREZEMizbC1atX8eOPP8ragoODYWJioqWMiIiI6Fks2sq5LVu24OLFi9JxixYt0LlzZy1mRERERAVh0VZOpaenY+7cubK2gQMHwsnJSUsZERER0YuwaCuHLl++jA0bNsjaJk2aBGNjYy1lRERERC/Doq0cyluwtW7dGr6+vlrMhoiIiAqDRVs5NmTIEFSrVk3baRAREVEhKIQQQttJUMFSU1NhY2ODlJQUWFtbazsdIiIiKoSS+v42KLYrEREREVGJYdFGREREpAdYtBERERHpARZtRERERHqARRsRERGRHmDRRkRERKQHWLQRERER6QEWbURERER6gEUbERERkR5g0UZERESkB1i0EREREekBFm1EREREeoBFGxEREZEeYNFGREREpAeMtJ0APZ8QAgCQmpqq5UyIiIiosDTf25rv8eLCok2HPXr0CADg5OSk5UyIiIioqB49egQbG5tiu55CFHcZSMVGpVLhzp07qFChAhQKhbbTKVWpqalwcnLCzZs3YW1tre10KA9+NrqLn43u4mej24r78xFC4NGjR6hWrRoMDIrvTjT2tOkwAwMD1KhRQ9tpaJW1tTX/gdNR/Gx0Fz8b3cXPRrcV5+dTnD1sGpyIQERERKQHWLQRERER6QEWbaSTTE1NERISAlNTU22nQs/gZ6O7+NnoLn42uk1fPh9ORCAiIiLSA+xpIyIiItIDLNqIiIiI9ACLNiIiIiI9wKKNiIiISA+waKNil5GRgaZNm0KhUOD06dOyc2fPnkXbtm1hZmYGJycnhIeH53v+li1b4ObmBjMzMzRu3Bi7du2SnRdCYNq0aXB0dIS5uTl8fHxw5coVWUxSUhL69u0La2tr2NraYtCgQUhLSytyLmWFn58fnJ2dYWZmBkdHR/Tr1w937tyRxWzevBlNmzaFhYUFatasia+++irfdQ4ePIjmzZvD1NQUdevWxdq1a/PFLFu2DLVq1YKZmRk8PDzw999/y86np6djxIgRsLOzg5WVFXr06IF79+7JYuLj49GpUydYWFigSpUqmDhxIrKzs1//F6GDCvPZREREoHXr1qhQoQLs7e3Ro0cPXL9+XRbDz6ZkvOzzmT59OhQKRb6HpaWl7Dr8d634FebvjhAC8+bNQ/369WFqaorq1atj1qxZshi9+rsjiIrZ6NGjRceOHQUAER0dLbWnpKSIqlWrir59+4rz58+LDRs2CHNzc/HNN99IMYcPHxaGhoYiPDxcXLx4UUyZMkUYGxuLc+fOSTFhYWHCxsZGbNu2TZw5c0b4+fkJFxcX8fTpUymmQ4cOokmTJuLo0aPizz//FHXr1hV9+vQpUi5lyYIFC0RUVJS4fv26OHz4sPD09BSenp7S+V27dgkjIyOxYsUKcfXqVbFjxw7h6OgolixZIsVcu3ZNWFhYiHHjxomLFy+KJUuWCENDQ7Fnzx4pZuPGjcLExESsXr1aXLhwQQwZMkTY2tqKe/fuSTFDhw4VTk5OIjIyUpw4cUK0bt1aeHl5Seezs7NFo0aNhI+Pj4iOjha7du0SlStXFsHBwSX8W9KOl302165dE6ampiI4OFj8888/4uTJk+Ktt94SzZo1k8XwsykZL/t8Hj16JO7evSt7NGjQQAwYMECK4b9rJeNln40QQowaNUq4urqK7du3i2vXrokTJ06IvXv3Suf17e8OizYqVrt27RJubm7iwoUL+Yq25cuXi4oVK4qMjAypLTAwULi6ukrHH330kejUqZPsmh4eHuLzzz8XQgihUqmEg4OD+Oqrr6TzycnJwtTUVGzYsEEIIcTFixcFAHH8+HEpZvfu3UKhUIjbt28XOpeybPv27UKhUIjMzEwhhBB9+vQRPXv2lMUsXrxY1KhRQ6hUKiGEEAEBAaJhw4aymF69eglfX1/puFWrVmLEiBHScU5OjqhWrZqYM2eOEEL9WRkbG4stW7ZIMZcuXRIARFRUlBBC/d+QgYGBSEhIkGJWrFghrK2tZZ9XWfXsZ7NlyxZhZGQkcnJypBilUimL4WdTep79fJ51+vRpAUD88ccfUhv/XSsdz342Fy9eFEZGRiImJua5z9G3vzscHqVic+/ePQwZMgQ//PADLCws8p2PiorCW2+9BRMTE6nN19cXsbGxePjwoRTj4+Mje56vry+ioqIAAHFxcUhISJDF2NjYwMPDQ4qJioqCra0tWrZsKcX4+PjAwMAAx44dK3QuZVVSUhLWr18PLy8vGBsbA1APaZuZmcnizM3NcevWLdy4cQPAyz+bzMxMnDx5UhZjYGAAHx8fKebkyZPIysqSxbi5ucHZ2Vn2+TVu3BhVq1aVvU5qaiouXLhQXL8GnVTQZ9OiRQsYGBhgzZo1yMnJQUpKCn744Qf4+PhIMfxsSkdBn8+zVq1ahfr166Nt27ZSG/9dK3kFfTa//fYbateujR07dsDFxQW1atXC4MGDkZSUJD1P3/7usGijYiGEgL+/P4YOHSr7RyWvhIQE2X+wAKTjhISEF8bkPZ/3ec+LqVKliuy8kZERKlWq9NLXyfsaZU1gYCAsLS1hZ2eH+Ph4bN++XTrn6+uLrVu3IjIyEiqVCpcvX8b8+fMBAHfv3gXw/N9Zamoqnj59igcPHiAnJ+eln42JiQlsbW1fGMPPJvezcXFxwd69ezFp0iSYmprC1tYWt27dwubNm6UYfjYl60WfT17p6elYv349Bg0aJGvnv2sl50WfzbVr13Djxg1s2bIF33//PdauXYuTJ0+iZ8+eUoy+/d1h0UYvFBQUVOBNtnkfMTExWLJkCR49eoTg4GBtp1xuFPaz0Zg4cSKio6Oxd+9eGBoaon///hD/bYgyZMgQjBw5Ep07d4aJiQlat26N3r17A1D/XyUVTXF+NgkJCRgyZAgGDBiA48eP49ChQzAxMUHPnj2lGCqa4vx88vr111/x6NEjDBgwoDTfTplSnJ+NSqVCRkYGvv/+e7Rt2xbvvPMOvvvuOxw4cACxsbHaeouvxUjbCZBuGz9+PPz9/V8YU7t2bezfvx9RUVH59m1r2bIl+vbti3Xr1sHBwSHfbBrNsYODg/RnQTF5z2vaHB0dZTFNmzaVYhITE2XXyM7ORlJS0ktfJ+9r6LrCfjYalStXRuXKlVG/fn24u7vDyckJR48ehaenJxQKBebOnYvZs2cjISEB9vb2iIyMlF3jeb8za2trmJubw9DQEIaGhi/9/DIzM5GcnCz7v9JnY56dmVWeP5tly5bBxsZGNgvwxx9/hJOTE44dO4bWrVvzsymi4vx88lq1ahU6d+6cr0eF/64VXnF+No6OjjAyMkL9+vWleHd3dwDqmZyurq7693en0He/Eb3AjRs3xLlz56RHRESEACB+/vlncfPmTSFE7k2yeW/gDQ4OzjcRoXPnzrJre3p65rthd968edL5lJSUAm/YPXHihBQTERFR4A27L8qlLLtx44YAIA4cOPDcmH79+slmYgUEBIhGjRrJYvr06ZPvht2RI0dKxzk5OaJ69er5btj9+eefpZiYmJgCb9jNOzPrm2++EdbW1iI9Pf3V3rAeefazGTdunGjVqpUs5s6dOwKAOHz4sBCCn01pet7fnWvXrgmFQiF+++23fM/hv2ul49nPRvM99M8//0gxmokisbGxQgj9+7vDoo1KRFxcXL7Zo8nJyaJq1aqiX79+4vz582Ljxo3CwsIi35IfRkZGYt68eeLSpUsiJCSkwKnxtra2Yvv27eLs2bOia9euBU6Nb9asmTh27Jj466+/RL169WRT4wuTS1lx9OhRsWTJEhEdHS2uX78uIiMjhZeXl6hTp470j8X9+/fFihUrxKVLl0R0dLQYPXq0MDMzE8eOHZOuo5kaP3HiRHHp0iWxbNmyAqfGm5qairVr14qLFy+Kzz77TNja2spmTA0dOlQ4OzuL/fv3ixMnTuSbpq+ZGt++fXtx+vRpsWfPHmFvb18ml5UozGcTGRkpFAqFCA0NFZcvXxYnT54Uvr6+ombNmuLJkydCCH42JaUwn4/GlClTRLVq1UR2dna+6/DfteJXmM8mJydHNG/eXLz11lvi1KlT4sSJE8LDw0O899570nX07e8OizYqEQUVbUIIcebMGdGmTRthamoqqlevLsLCwvI9d/PmzaJ+/frCxMRENGzYUOzcuVN2XqVSialTp4qqVasKU1NT8e6770r/16Tx77//ij59+ggrKythbW0tPv30U/Ho0aMi51IWnD17Vnh7e4tKlSoJU1NTUatWLTF06FBx69YtKeb+/fuidevWwtLSUlhYWIh3331XHD16NN+1Dhw4IJo2bSpMTExE7dq1xZo1a/LFLFmyRDg7OwsTExPRqlWrfNd5+vSpGD58uKhYsaKwsLAQH3zwgbh7964s5vr166Jjx47C3NxcVK5cWYwfP15kZWUVzy9EhxTmsxFCiA0bNohmzZoJS0tLYW9vL/z8/MSlS5dkMfxsil9hP5+cnBxRo0YNMWnSpOdei/+uFa/Cfja3b98W3bt3F1ZWVqJq1arC399f/Pvvv7IYffq7oxCCd7ISERER6TpOCyMiIiLSAyzaiIiIiPQAizYiIiIiPcCijYiIiEgPsGgjIiIi0gMs2oiIiIj0AIs2IiIiIj3Aoo2IqAQoFAps27ZN22nIHDx4EAqFAsnJydpOhYheAYs2IqLXMH36dGlTbyKiksSijYiIiEgPsGgjonJNpVJhzpw5cHFxgbm5OZo0aYKff/4ZQO5wYmRkJFq2bAkLCwt4eXkhNjYWALB27VqEhobizJkzUCgUUCgUWLt2rXTtBw8e4IMPPoCFhQXq1asHpVJZqJw0rxsREYFmzZrB3Nwc7dq1Q2JiInbv3g13d3dYW1vj448/xpMnT6TnZWRkYPTo0ahSpQrMzMzQpk0bHD9+vPh+WUSkVSzaiKhcmzNnDr7//nusXLkSFy5cwNixY/HJJ5/g0KFDUszkyZMxf/58nDhxAkZGRhg4cCAAoFevXhg/fjwaNmyIu3fv4u7du+jVq5f0vNDQUHz00Uc4e/Ys3n//ffTt2xdJSUmFzm369OlYunQpjhw5gps3b+Kjjz7CokWL8NNPP2Hnzp3Yu3cvlixZIsUHBATgl19+wbp163Dq1CnUrVsXvr6+RXpNItJhRdpenoioDElPTxcWFhbiyJEjsvZBgwaJPn36iAMHDggA4vfff5fO7dy5UwAQT58+FUIIERISIpo0aZLv2gDElClTpOO0tDQBQOzevfuleRX0unPmzBEAxNWrV6W2zz//XPj6+krXNzY2FuvXr5fOZ2ZmimrVqonw8HDZdR8+fPjSHIhI9xhpsV4kItKqf/75B0+ePMF7770na8/MzESzZs2k4//7v/+TfnZ0dAQAJCYmwtnZ+YXXz/s8S0tLWFtbIzExsdD55X1+1apVYWFhgdq1a8va/v77bwDA1atXkZWVhTfffFM6b2xsjFatWuHSpUuFfk0i0l0s2oio3EpLSwMA7Ny5E9WrV5edMzU1xdWrVwGoix8NhUIBQH0v3MvkfZ7muYV5XkHPVygUr309ItJvvKeNiMqtBg0awNTUFPHx8ahbt67s4eTkVKhrmJiYICcnp4Qzfbk6derAxMQEhw8fltqysrJw/PhxNGjQQIuZEVFxYU8bEZVbFSpUwIQJEzB27FioVCq0adMGKSkpOHz4MKytrVGzZs2XXqNWrVqIi4vD6dOnUaNGDVSoUAGmpqalkL2cpaUlhg0bhokTJ6JSpUpwdnZGeHg4njx5gkGDBpV6PkRU/Fi0EVG5NnPmTNjb22POnDm4du0abG1t0bx5c0yaNKlQQ489evTA1q1b4e3tjeTkZKxZswb+/v4ln3gBwsLCoFKp0K9fPzx69AgtW7ZEREQEKlasqJV8iKh4KYQQQttJEBEREdGL8Z42IiIiIj3Aoo2IqJQNHToUVlZWBT6GDh2q7fSISEdxeJSIqJQlJiYiNTW1wHPW1taoUqVKKWdERPqARRsRERGRHuDwKBEREZEeYNFGREREpAdYtBERERHpARZtRERERHqARRsRERGRHmDRRkRERKQHWLQRERER6QEWbURERER64P8BmFTol2Xcs30AAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.1 Importing Training and Validation Datasets\n", + "\n", + "In this section, we read the dataset from the CSV file located in this directory. 500 data points were simulated for S-CO2 physical properties using REFPROP package. This example is trained on the entire dataset because neural network can overfit on smaller dataset. The data is separated using an 80/20 split into training and validation data using the IDAES split_training_validation() method.\n", + "\n", + "We rename the column headers because they contained \".\", which may cause errors while reading the column names in subsequent code, thus as a good practice we change them to the variable names to be used in the property package. Further, the input variables are **pressure**, **temperature** , while the output variables are **enth_mol**, **entr_mol**, hence we create two new dataframes for the input and output variables. " ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkcklEQVR4nO3deVxU1fsH8M+wDfsqiyCIS4Jb7gtqKqbiiguYpamomaZmbilmv9wyyUrLNi0V/fa1NBGV3MgFdyz33MAlEEUWUxbZYeb+/pjvjAxbIAOXmfm8X695wT33zp1nnGwez3nOORJBEAQQERER6QEDsQMgIiIiqi1MfIiIiEhvMPEhIiIivcHEh4iIiPQGEx8iIiLSG0x8iIiISG8w8SEiIiK9wcSHiIiI9AYTHyIiItIbTHyISCtJJBIsXbpU7DBUgoKC4OnpKXYYRPQvmPgQkcZs2bIFEolE9TA1NUWzZs0wc+ZMpKSk1Ohrnz17FkuXLkV6erpG79u7d2+192Rvb49OnTph8+bNkMvlGnmNTz75BHv27NHIvYioYkZiB0BEumf58uVo1KgR8vLycPr0aXz//fc4cOAArl+/DnNzc428Rm5uLoyMnv8v7OzZs1i2bBmCgoJga2urkddQatCgAVatWgUAePz4Mf7zn/9g8uTJuH37NkJCQqp9/08++QSBgYEYPnx4te9FRBVj4kNEGjdw4EB07NgRAPDWW2/BwcEBa9aswd69e/HGG2+88H3lcjkKCgpgamoKU1NTTYX7r2xsbPDmm2+qjqdOnQovLy988803WLFiBYyNjWstFiKqHg51EVGN69OnDwAgLi4OAPD555+jW7ducHBwgJmZGTp06ICwsLBSz5NIJJg5cya2bduGli1bQiqV4tChQ6pzyhqfpUuX4v333wcANGrUSDUsFR8fj169eqFNmzZlxuXl5QU/P78qvx9zc3N07doV2dnZePz4cbnXZWdnY968eXB3d4dUKoWXlxc+//xzCIKg9h6zs7OxdetWVdxBQUFVjomIKoc9PkRU4+7duwcAcHBwAAB89dVX8Pf3x9ixY1FQUIDt27dj1KhR2LdvHwYPHqz23GPHjuHXX3/FzJkzUa9evTILiEeOHInbt2/jl19+wdq1a1GvXj0AgKOjI8aNG4cpU6bg+vXraNWqleo558+fx+3bt/Hhhx++0Hv6+++/YWhoWO6wmiAI8Pf3R1RUFCZPnoy2bdsiMjIS77//PhITE7F27VoAwE8//YS33noLnTt3xttvvw0AaNKkyQvFRESVIBARaUhoaKgAQDhy5Ijw+PFj4cGDB8L27dsFBwcHwczMTHj48KEgCIKQk5Oj9ryCggKhVatWQp8+fdTaAQgGBgbCjRs3Sr0WAGHJkiWq488++0wAIMTFxaldl56eLpiamgoLFy5Ua581a5ZgYWEhZGVlVfieevXqJXh7ewuPHz8WHj9+LNy6dUuYNWuWAEAYOnSo6roJEyYIDRs2VB3v2bNHACB8/PHHavcLDAwUJBKJcPfuXVWbhYWFMGHChArjICLN4FAXEWlc37594ejoCHd3d7z++uuwtLTE7t274ebmBgAwMzNTXZuWloaMjAy88soruHTpUql79erVCy1atHjhWGxsbDBs2DD88ssvqiEmmUyGHTt2YPjw4bCwsPjXe8TExMDR0RGOjo5o3rw5vv76awwePBibN28u9zkHDhyAoaEhZs2apdY+b948CIKAgwcPvvB7IqIXx6EuItK4b7/9Fs2aNYORkRGcnZ3h5eUFA4Pn/87at28fPv74Y1y5cgX5+fmqdolEUupejRo1qnY848ePx44dO3Dq1Cn07NkTR44cQUpKCsaNG1ep53t6euLHH39UTdF/6aWX4OTkVOFz7t+/D1dXV1hZWam1N2/eXHWeiGofEx8i0rjOnTurZnWVdOrUKfj7+6Nnz5747rvvUL9+fRgbGyM0NBQ///xzqeuL9w69KD8/Pzg7O+O///0vevbsif/+979wcXFB3759K/V8CwuLSl9LRHUbh7qIqFbt2rULpqamiIyMxKRJkzBw4ECNJBVl9RYpGRoaYsyYMQgLC0NaWhr27NmDN954A4aGhtV+3fI0bNgQjx49wrNnz9TaY2JiVOeVKoqdiDSLiQ8R1SpDQ0NIJBLIZDJVW3x8fLVXLlbW6pS3cvO4ceOQlpaGqVOnIisrS21dnpowaNAgyGQyfPPNN2rta9euhUQiwcCBA1VtFhYWGl9xmojKxqEuIqpVgwcPxpo1azBgwACMGTMGqamp+Pbbb9G0aVP89ddfL3zfDh06AAAWL16M119/HcbGxhg6dKgqIWrXrh1atWqFnTt3onnz5mjfvr1G3k95hg4dCl9fXyxevBjx8fFo06YNfv/9d+zduxezZ89Wm7LeoUMHHDlyBGvWrIGrqysaNWqELl261Gh8RPqKPT5EVKv69OmDTZs2ITk5GbNnz8Yvv/yCTz/9FCNGjKjWfTt16oQVK1bg6tWrCAoKwhtvvFFqccHx48cDQKWLmqvDwMAAERERmD17Nvbt24fZs2fj5s2b+Oyzz7BmzRq1a9esWYMOHTrgww8/xBtvvIHvv/++xuMj0lcSQSi2hCgRkQ776quvMGfOHMTHx8PDw0PscIhIBEx8iEgvCIKANm3awMHBAVFRUWKHQ0QiYY0PEem07OxsREREICoqCteuXcPevXvFDomIRMQeHyLSafHx8WjUqBFsbW0xffp0rFy5UuyQiEhETHyIiIhIb3BWFxEREekNJj5ERESkN1jcXIJcLsejR49gZWXFZeSJiIi0hCAIePbsGVxdXdU2RS6JiU8Jjx49gru7u9hhEBER0Qt48OABGjRoUO55Jj4lWFlZAVD8wVlbW4scDREREVVGZmYm3N3dVd/j5WHiU4JyeMva2pqJDxERkZb5tzIVFjcTERGR3mDiQ0RERHqDiQ8RERHpDdb4vACZTIbCwkKxw6BaYGxsDENDQ7HDICIiDWHiUwWCICA5ORnp6elih0K1yNbWFi4uLlzXiYhIBzDxqQJl0uPk5ARzc3N+Eeo4QRCQk5OD1NRUAED9+vVFjoiIiKqLiU8lyWQyVdLj4OAgdjhUS8zMzAAAqampcHJy4rAXEZGWY3FzJSlreszNzUWOhGqb8jNnXRcRkfZj4lNFHN7SP/zMiYh0BxMfIiIi0htMfIiIiEhvMPHRA0FBQZBIJJBIJDA2NoazszP69euHzZs3Qy6XV/o+W7Zsga2tbc0FSkREVMOY+OiJAQMGICkpCfHx8Th48CB8fX3x3nvvYciQISgqKhI7PCIi0gNZWVnIzs4WNQatSXxWrVqFTp06wcrKCk5OThg+fDhiY2PVrsnLy8OMGTPg4OAAS0tLBAQEICUlRaSI6xapVAoXFxe4ubmhffv2+OCDD7B3714cPHgQW7ZsAQCsWbMGrVu3hoWFBdzd3TF9+nRkZWUBAI4fP46JEyciIyND1Xu0dOlSAMBPP/2Ejh07wsrKCi4uLhgzZoxq7RsiIiJBEPDtt9/iiy++wPr16yEIgmixaE3ic+LECcyYMQPnzp3D4cOHUVhYiP79+6tljnPmzMFvv/2GnTt34sSJE3j06BFGjhxZYzEJgoCCggJRHpr4j6ZPnz5o06YNwsPDAQAGBgZYt24dbty4ga1bt+LYsWNYsGABAKBbt2748ssvYW1tjaSkJCQlJWH+/PkAFNO8V6xYgatXr2LPnj2Ij49HUFBQteMjIiLtl56ejuXLl+Off/4BAGRnZ4s6W1ZrFjA8dOiQ2vGWLVvg5OSEixcvomfPnsjIyMCmTZvw888/o0+fPgCA0NBQNG/eHOfOnUPXrl01HlNhYSFWrVql8ftWxqJFi2BiYlLt+3h7e+Ovv/4CAMyePVvV7unpiY8//hjTpk3Dd999BxMTE9jY2EAikcDFxUXtHpMmTVL93rhxY6xbtw6dOnVCVlYWLC0tqx0jERFpp/Pnz+PAgQOqYxsbG7z33nsiRqRFiU9JGRkZAAB7e3sAwMWLF1FYWIi+ffuqrvH29oaHhweio6PLTXzy8/ORn5+vOs7MzKzBqOseQRBUmfeRI0ewatUqxMTEIDMzE0VFRcjLy0NOTk6FCzdevHgRS5cuxdWrV5GWlqYqmE5ISECLFi1q5X0QEVHdIQgC1q1bp7a35aBBg9CpUyfxgvofrUx85HI5Zs+eje7du6NVq1YAFPtomZiYlJp15OzsjOTk5HLvtWrVKixbtuyF4jA2NsaiRYte6LnVZWxsrJH73Lp1C40aNUJ8fDyGDBmCd955BytXroS9vT1Onz6NyZMno6CgoNzEJzs7G35+fvDz88O2bdvg6OiIhIQE+Pn5oaCgQCMxEhGR9nj69Cm+/vprtbb33nuvzswK1srEZ8aMGbh+/TpOnz5d7XstWrQIc+fOVR1nZmbC3d29Us+VSCQaGW4Sy7Fjx3Dt2jXMmTMHFy9ehFwuxxdffAEDA0Xp16+//qp2vYmJCWQymVpbTEwMnjx5gpCQENWf24ULF2rnDRARUZ0SHR2N33//XXVcr149TJ8+vU6tgK91ic/MmTOxb98+nDx5Eg0aNFC1u7i4oKCgAOnp6WpZZUpKSqmalOKkUimkUmlNhlwn5OfnIzk5GTKZDCkpKTh06BBWrVqFIUOGYPz48bh+/ToKCwvx9ddfY+jQoThz5gzWr1+vdg9PT09kZWXh6NGjaNOmDczNzeHh4QETExN8/fXXmDZtGq5fv44VK1aI9C6JiEgMcrkca9asUZtwNHToULRv317EqMqmNbO6BEHAzJkzsXv3bhw7dgyNGjVSO9+hQwcYGxvj6NGjqrbY2FgkJCTAx8entsOtcw4dOoT69evD09MTAwYMQFRUFNatW4e9e/fC0NAQbdq0wZo1a/Dpp5+iVatW2LZtW6nC7W7dumHatGkYPXo0HB0dsXr1ajg6OmLLli3YuXMnWrRogZCQEHz++ecivUsiIqpt//zzD1asWFFqlnVZSU9EBNCtm+KnWCSCmJPpq2D69On4+eefsXfvXnh5eanabWxsYGZmBgB45513cODAAWzZsgXW1tZ49913AQBnz56t9OtkZmbCxsYGGRkZsLa2VrXn5eUhLi4OjRo1gqmpqYbeFWkDfvZERGU7deoUjh07pjquX78+pkyZUu7QVrduQHQ04OMDVOGruVLK+/4uSWuGur7//nsAQO/evdXaQ0NDVWvGrF27FgYGBggICEB+fj78/Pzw3Xff1XKkREREuk0ulyMkJASFhYWqthEjRuDll1+u8HnBwUBIiOKnWLSmx6e2sMeHSuJnT0T0XGpqqqozQmnevHmir9umcz0+REREJK6oqCicPHlSdezh4aHaCFtbMPEhIiKiCslkMqxcuVJtu6TAwEC0bNlSxKheDBMfIiIiKldSUhJ++OEHtbb58+fDwsJCpIiqR2umsxMREVHtOnz4sFrS07hxYyxZskSV9NSF6elVxR4fIiIiUlNUVISVK1eqtY0ePRre3t6IiFDMzPL1BdatA7KyFMf+/iIFW0VMfIiIiEjl4cOH2LRpk1rbggULVGvmhYQo1uK5dk2R9Fhaijs9vao41EVEREQAgIMHD6olPV5eXmjXbglefdVMNZwVHKxYgHDWLMXPbdu0p7cHYI8PaVBQUBDS09OxZ88eAIrFJtu2bYsvv/zyhe+piXsQEVHFCgsL8cknn6i1jRkzBi+99JJqtWXlcJbyoa3Y46MHlGssKHeTb9q0KZYvX46ioqIafd3w8PBKb1h6/PhxSCQSpKenv/A9iIio6hISEkolPQsXLsRLL70E4HkPjzYNZ1WEPT56YsCAAQgNDUV+fj4OHDiAGTNmwNjYGIsWLVK7rqCgACYmJhp5TXt7+zpxDyIiKltERAQuX76sOm7VqhUCAgLUrtH2Hp6S2OOjJ6RSKVxcXNCwYUO888476Nu3LyIiIhAUFIThw4dj5cqVcHV1VW0A++DBA7z22muwtbWFvb09hg0bhvj4eNX9ZDIZ5s6dC1tbWzg4OGDBggUouftJ7969MXv2bNVxfn4+Fi5cCHd3d0ilUjRt2hSbNm1CfHw8fH19AQB2dnaQSCSq/ddK3iMtLQ3jx4+HnZ0dzM3NMXDgQNy5c0d1fsuWLbC1tUVkZCSaN28OS0tLDBgwAElJSaprjh8/js6dO8PCwgK2trbo3r077t+/r6E/aSKiuq+goADLli1TS3qaNBlXKunRRUx89JSZmRkKCgoAAEePHkVsbCwOHz6Mffv2obCwEH5+frCyssKpU6dw5swZVQKhfM4XX3yBLVu2YPPmzTh9+jSePn2K3bt3V/ia48ePxy+//IJ169bh1q1b2LBhAywtLeHu7o5du3YBAGJjY5GUlISvvvqqzHsEBQXhwoULiIiIQHR0NARBwKBBg9Q2ysvJycHnn3+On376CSdPnkRCQgLmz58PQDFFc/jw4ejVqxf++usvREdH4+2339aq5daJiKojLi4Oq1atUmv75JNFWLmyMZo3B7y9tWtdnqriUJeeEQQBR48eRWRkJN599108fvwYFhYW2Lhxo2qI67///S/kcjk2btyoSghCQ0Nha2uL48ePo3///vjyyy+xaNEijBw5EgCwfv16REZGlvu6t2/fxq+//orDhw+jb9++ABQLYSkph7ScnJxga2tb5j3u3LmDiIgInDlzBt26dQMAbNu2De7u7tizZw9GjRoFQFGkt379ejRp0gQAMHPmTCxfvhyAYhO7jIwMDBkyRHW+efPmVf+DJCLSQuHh4bh27Zrq+PLltoiJGYYOHYCEBCAxUdGuTevyVBV7fERS26td7tu3D5aWljA1NcXAgQMxevRoLF26FADQunVrtbqeq1ev4u7du7CysoKlpSUsLS1hb2+PvLw83Lt3DxkZGUhKSkKXLl1UzzEyMkLHjh3Lff0rV67A0NAQvXr1euH3cOvWLRgZGam9roODA7y8vHDr1i1Vm7m5uSqpAYD69esjNTUVgCLBCgoKgp+fH4YOHYqvvvpKbRiMiEgX5efnY9myZWpJz5EjQUhNHYbVqxWFy0+eKNpNTXWnkLksTHxEolwAKiSkdl7P19cXV65cwZ07d5Cbm4utW7eqlhwvud9KVlYWOnTogCtXrqg9bt++jTFjxrzQ6ysXvqoNxsbGascSiUSt/ig0NBTR0dHo1q0bduzYgWbNmuHcuXO1Fh8RUW26e/cuQkp82Xz55Qfo2bOh6jgkBMjLUyxGuGOH7vb2AEx8RFPb0wMtLCzQtGlTeHh4wMio4hHO9u3b486dO3ByckLTpk3VHjY2NrCxsUH9+vXxxx9/qJ5TVFSEixcvlnvP1q1bQy6X48SJE2WeV/Y4yWSycu/RvHlzFBUVqb3ukydPEBsbixYtWlT4nkpq164dFi1ahLNnz6JVq1b4+eefq/R8IiJt8Ouvv2Lbtm2q43r1OiIycgmmTzfGunXP/wGu/E7StsUIXwQTH5H4+wNnz9bN/8DGjh2LevXqYdiwYTh16hTi4uJw/PhxzJo1Cw8fPgQAvPfeewgJCcGePXsQExOD6dOnl1qDpzhPT09MmDABkyZNwp49e1T3/PXXXwEADRs2hEQiwb59+/D48WNkZWWVusdLL72EYcOGYcqUKTh9+jSuXr2KN998E25ubhg2bFil3ltcXBwWLVqE6Oho3L9/H7///jvu3LnDOh8i0inh4blYtmyZWhnA5MmTMWPGYJw9C0RFqW83UZe/kzSNiQ+VYm5ujpMnT8LDwwMjR45E8+bNMXnyZOTl5cHa2hoAMG/ePIwbNw4TJkyAj48PrKysMGLEiArv+/333yMwMBDTp0+Ht7c3pkyZguzsbACAm5sbli1bhuDgYDg7O2PmzJll3iM0NBQdOnTAkCFD4OPjA0EQcODAgVLDWxW9t5iYGAQEBKBZs2Z4++23MWPGDEydOrUKf0JERHVXbGwsrl1brda2ePFiNGjQQHWsTz08JUmEkouv6LnMzEzY2NggIyND9SUPAHl5eYiLi0OjRo1gamoqYoRU2/jZE5G22LZtG+7evas6dnLygZtbf9Vwli4nOeV9f5fE6exERERaLjw8B9eufabW5uU1Ba+/7lpqry19x6EuIiIiLXbz5s1SSc+KFR9i3TpXALq311Z1sceHiIhIS23ZskVtyx1n51fg6toHnTsrEp2ICOjFMFdVMPEhIiLSMllZWfjiiy/U2ry9p2H0aGfVcUgIkJYGxMRwmKs4DnVVEWvB9Q8/cyKqS65du6aW9MhkRli+/EN89ZV60hMdDQgCh7lKYuJTScrp0jk5OSJHQrVN+ZlXdso8EZGmFN/eSBAE/PjjjwgPD1ed9/X1hUy2GCYmhkhIeL4NkrKuZ/Vq/Vmfp7I4nb2EiqbDJSUlIT09HU5OTjA3N+eO3jpOEATk5OQgNTUVtra2qF+/vtghEZGeadBAsXGovX0mZs1aq3auefPpmDvXEY8eKXp2AEWyc/asCIHWAZzOXgNcXFwAQLXhJekHW1tb1WdPRFSbUlOBtm2vYPjwvaq2ggIzrFgxHz16GKh2U5dIgGbNOKRVGUx8qkAikaB+/fpwcnJCYWGh2OFQLTA2NoahoaHYYRCRHhIEAb16XUCPHgdUbceP98OcOd1gYKBIcqZPB54+BebMAVauFDFYLcLE5wUYGhryy5CIiDSq+NTz/v3z8Ntvv6FHj5uq8xs2zET37g5QbrTu78/anRfBxIeIiEgkixcD69YBs2YpNg6Njga++y4RcXFhSE9Ph4GBAW7e7Ivt27sCkCA8HJDLOT29Opj4EBER1bKICGDBAuD2bUVh8rp1wH//K+CXX/6At/dhpKfLYWJii/HjA3HxohuuXAHi44G8vOc7qtOLYeJDRERUyxYsAGJjFb8bGACzZuUiN3cvmjdXNN682RxJSf5o2dIUISHAp58qruUqzNXHxIeIiKiWKVdDMTMDNm16iJSUMMTGZsDQ0BD16/dHZGQnBAdLVAsRhoRwPR5N4QKGREREtezTTwEfHwFffXUGd++GIiMjA3Z2dpg0aRIcHTsDUGRG3GBU89jjQ0REVMv69s1BVtYe3LlzBwBga9sS7u5DERgoxdOnimEw9vLUDCY+RERENaC8ndETEhIQFhaGZ8+eQSYzxIEDA3DxYgc4OEjw5Ang7c1enprExIeIiEiDlAlP8Z4bf3/lXlunkZgYBQMDAQ4ODti2LRAXLypWhn/69HnCw16emsPEh4iISAOUCU9aGhATo95zk52djd27dyMp6R4MDIA7d1rjyJHB6NNHijt3FElPQACwc6fY70L3MfEhIiKqpogIYOxYICsL8PJSJDy+vkB4OLBiRTxOn94FC4ssFBUZYf/+Qbh1qy3y8iSQyYB//hE7ev3CxIeIiKiaQkIUSY+lJbB6tWKoqnlzOZydT6FXrxMwMBDw+HE9XLgwCqamTpg7V7FSM+t4ah8THyIiomoKDgYWLlSswgwAWVlZ8PUNh7NzHADg8uW2OHlyILZsMWH9jsi4jg8REVEVREQA3bopfir5+wN2dopi5i+++BsrVqyHs3McCgqMER4+HHv3DkNGBpOeuoA9PkRERFVQfDVlZSITEQGkp8vh738c7dqdgkQCpKQ4YefOUfjnn3qQSICRI8WNmxTY40NERFQFwcGKAua0tOe9PmvXZqJLl/+gfXtF0nPxYnv8+ONbyMiohw8+UOyozhlbdQMTHyIioirw9wfs7RVT1kNCgLt376Jv3w3w9LwPQTDBsWMjcfjwUCxYYIyCAmDlSrEjpuKY+BAREVWgrJoeX1/A2lqGZs2OYNu2bSgqyoGLiwveffdtnDjRGrm5THjqKtb4EBERlWHxYmDdOsDGBkhMVKzTs22b4lxoaAYCA3fBw+MBAODy5Y4IC/ODkRG/Vus6fkJERERlWLdOsTZPfj5gYKD4PSQEcHSMxbhxe2FunguZTIr9+/0xYEALMOfRDvyYiIiIyjBggGLlZalUkfQYGsrQt+8RGBqeAwCYm7virbcCsXy5nciRUlWwxoeIiPRayRoe5fH164rZWNnZgK1tGiZODFUlPV26dMGcORNhZ8ekR9tIBEG5ziQBQGZmJmxsbJCRkQFra2uxwyEiohrWrZtiXR4fH+Ds2efHbm7Ao0eAl9ctDB++F6am+TA0NEVg4DB4e3uLHTaVUNnvbw51ERGR3oqIUKzH4+X1fN+s4GBFLc/Dh0UYMOAwunT5EwDQoEEDBAQEwNbWVryAqdqY+BARkd4KCVGsx2NqqthrS8nc/Cn8/cPg6JgEAHBy8kFQ0KswNDQUKVLSFA51lcChLiIi3RYRoUh4lD08r78O5OYqfvf2Bry9b6B58whIpQUoKDCDt/dwjBvXTLyAqVI41EVERFSG4nttnT2rWIU5MREwMipEhw6ReOmliwAACwt3zJkTyH8E6xgmPkREpFeUNTy+vopCZgBwcPgHo0eHwckpBQDQo0cP+Pr6wsCAk591DRMfIiLSC8qVmGfNUiQ/Y8cq1ufx8/sLnTrtg5FRIczNzTFixAg0bdpU7HCphjDxISIinRMRASxYoEhsLC2B1aufr8QcEgI0awbk5xdi5MiDePnlywAAT09PjBw5ElZWViJHTzWJiQ8REemckBAgNvb58ejRUG0pIZcDVlaPMWvWTlhZPQYA9OzZE7169eLQlh7gJ0xERDqh+ArMwcGKtXkcHBTn8vIUvT0A0KXLFQwd+iOsrB7DwsIC48aNYz2PHmGPDxERab2IiOfT0hcuBD79VJHoPH36/BoTkwIMGnQAbdtehVwONG7cGCNGjIClpaV4gVOtY+JDRERaLyTk+Vo8gqA4TkxUHEskQNOmKfDzC0O9ev9AIpGgd+/e6NGjB3t59BATHyIi0krFFyL09QWuXFGsybN6teL89OnAkycC5s+/DFPTgygqKoKVlRVGjhwJT09PMUMnETHxISIirVR8IUJA0ePj4QH4+yuO/fzysW/fPly/fh1FRUDTpk0xfPhwWFhYiBc0iY6JDxERaQ3lNHWJBBg5UtEWHAz88Qdw7Zqi5wcAkpKSEBYWhqdPn0IikaBPnz7o3r07JBKJeMFTnaCTg5vffvstPD09YWpqii5duuDPP/8UOyQiItIA5TT1mBggKkqx5YS/v+L3rCwgKkrA+fPnsWnTJjx9+hTW1tYICgpCjx49mPQQAB1MfHbs2IG5c+diyZIluHTpEtq0aQM/Pz+kpqaKHRoREVWTcpq6t/fzLSeU09dfeSUPo0eH4cCBA5DJZGjWrBmmTp0KDw8PscOmOkTndmfv0qULOnXqhG+++QYAIJfL4e7ujnfffRfByq14K8Dd2YmItEO3booaHx8fICzsEcLCwpCWlgYDAwP07dsXXbt2ZS+PHqns97dO9fgUFBTg4sWL6Nu3r6pN+RcgOjq6zOfk5+cjMzNT7UFERHXD4sWAlZXiZ8nj4GDAx0fApEnnsGnTJqSlpcHGxgYTJ06Ej48Pkx4qk04VN//zzz+QyWRwdnZWa3d2dkZMTEyZz1m1ahWWLVtWG+EREVElKaeqX76sWHV5zRpFHY/yeN06IDU1F7m5Ear/v3t7e8Pf3x9mZmYiR091mU71+LyIRYsWISMjQ/V48OCB2CEREek95VR1CwvAwAAwNlYcm5srNh19772H2LBhA2JiYmBoaIgBAwbgtddeY9JD/0qnEp969erB0NAQKSkpau0pKSlwcXEp8zlSqRTW1tZqDyIiqn1l7bWVna3YVLSwUHGNo6OAyMizkEpDkZGRATs7O0yaNAldunTh0BZVik4NdZmYmKBDhw44evQohg8fDkBR3Hz06FHMnDlT3OCIiKhCyl6ehQsBOzvFWj15eYoenlmzgNOnczB8+B4cPnwHANCyZUsMGTIEpqamIkdO2kSnEh8AmDt3LiZMmICOHTuic+fO+PLLL5GdnY2JEyeKHRoRERVTfMuJP/5Q1O+4uQHPninW6XFzU8zYCg4G2rZNQL16u5CZmaka2urQoQN7eajKdC7xGT16NB4/foyPPvoIycnJaNu2LQ4dOlSq4JmIiMShTHgSEhQbiS5YoPiZlwdkZCgSHkDR03PmjIDTp09jy5YoCIIAe3t7jBo1qtzyBaJ/o3Pr+FQX1/EhIqpZ3t6K1ZeNjRW1O25uiqTn6VMgIAAYN06RGM2bl43c3N24d+8eAKB169YYPHgwpFKpyO+A6qLKfn/rXI8PERHVXRERip4eAHByUqzJc/cuUFSkaEtMVGxB8fLL8di1axeysrJgZGSEgQMHol27dhzaompj4kNERLUmJESxi7qBgaJ+59Ch50mPRAIsXCjHiROncOLECQiCgHr16mHUqFFwcnISN3DSGUx8iIioxinrenx9FbuoZ2Upkp6sLMWQl6EhMHduFjIywnHlShwAoE2bNhg0aBBMTExEjp50CRMfIiKqURERwNixiiQHALZte54ERUUpZm21avU3wsPDEReXDWNjYwwaNAht27YVNW7STUx8iIioRhSfvZWVpRjK8vVV1PD4+yuukcvlOHHiBH766SQAwMnJCYGBgXB0dBQxctJlTHyIiEjjIiKAwEDFrC1DQ0WbIABbtwIrVyqOnz17hl27duH+/fsAgPbt22PAgAEwNjYWKWrSB0x8iIhI40JCnm8zYWio2HZCEBRT1gHg7t272L17N3JycmBiYoIhQ4agdevW4gVMeoOJDxERaUzxIuaEBODJE2DuXMW5deuAWbNkOHIkCmfOnAEAODs7Y9SoUXBwcBAxatInTHyIiOiFFE9ylEXKyv22zp0DXF2BHTue1/MsWJCBXbt24cyZBwCAjh07ws/PD0ZG/Cqi2sOVm0vgys1ERJXTrZsiybG0fD5jy8pK8bvym8XHBzh7Frh9+zb27NmD3NxcSKVSDB06FC1bthQveNI5lf3+NqjFmIiISIcEBysSm1mznrc9e6bo6TE1VWxFsWCBDJGRkfjll1+Qm5uL+vXr4+2332bSQ6Jhj08J7PEhIqo6BwdF4bKREbBrl2J4Kz09HWFhYUhMTAQAdO7cGf369ePQFtUI7tVFREQ1LiJCsbu6mZli89FPP1UkPTExMdi7dy/y8vJgamqKYcOGwdvbW+xwiZj4EBFR5SkLmt3cFFtO2NgoNhYFFMNegwYV4eDBw/jzzz8BAG5ubggMDIStra14QRMVw8SHiIgqbcECIDZWsQqzICg2GPXyUhzPmfMUmzeHISkpCQDg4+ODV199FYbKFQyJ6gAWNxMRUZkiIhQztyIinrdJJIqf9vaK2Vxz5wIxMUBY2A3cu/cDkpKSYGZmhjfeeAP9+/dn0kN1DoubS2BxMxGRQvHp6tu2KWp3lENdwcGK46KiIkRGRuLChQsAAHd3dwQEBMDGxkbk6EnfsLiZiIiqpHhSAyhWXpZIFOvyLFjw/NzZs4rzT548wc6dO5GSkgIA6NGjB3r37s1eHqrTmPgQERGA56suh4QojpVFy5aWigRIec7fH7h27Rr27duHgoICmJubY8SIEWjatKl4wRNVEmt8iIgIgKI3x80NuHxZ8dPNTbEQ4axZimnqPj7AggWFiIiIQHh4OAoKCtCwYUNMmzaNSQ9pDdb4lMAaHyLSZ8otJywtgdatFb08ym0nHj9+jLCwMKSmpgIAevbsiV69esHAgP+GJvGxxoeIiKps1izlLupAly7P63quXLmCAwcOoLCwEBYWFhg5ciQaN24sdrhEVcYenxLY40NE9FxBQQEOHDiAq1evAgAaNWqEkSNHwtLSUuTIiNRxk1IiIiqTcn2exYufr9NT1po9qamp+PHHH3H16lVIJBL07t0bb775JpMe0mrs8SmBPT5EpOuKr8+jrOdxc1OsyOzjA5w5I+Dy5cs4ePAgioqKYGVlhZEjR8LT01Ps0InKxRofIiIqU3CwonbH11dRz5OVpZiu7uMDvP9+Pnbv3o9r164BAJo0aYIRI0bAwsJC5KiJNINDXUREekI5nAUokp+oKEURs4+PYrp6eHgyHj78AdeuXYNEIsGrr76KsWPHMukhncIeHyIiPaFcoHDhQuDhQ0VPD6AY2rpw4QI2boyETCaDtbU1AgIC4OHhIW7ARDWAPT5ERDqkrCJlpeBgxU7q8fHPa3vefz8PYWFhOHDgAGQyGZo1a4apU6cy6SGdxR4fIiIdUnLbCWUtT1SUIvGxt1cUMVtaAj/++AgPHoQhLS0NBgYGePXVV+Hj4wOJcgt2Ih3ExIeISIcoC5eVP6OjgWvXFD08z9sFTJr0J+7c+R1yuRw2NjYIDAxEgwYNxA6fqMYx8SEi0gHFd1ZX7p4OKOp5nj1TTFcPDgb69ctFbm4EYmJiAADe3t7w9/eHmZmZSJET1S7W+BARaani9Twlh7giIhRJT3y8Ypd1e3ugffuH2LBhA2JiYmBgYIABAwbgtddeY9JDeoU9PkREWqp4slN8bZ5u3YC0NOB/nTqwtBQwcWI0QkOPQi6Xw87ODoGBgXB1dRX3DRCJgIkPEZGWKl7P4++veChXZTY1VQxv2dvnYOLEvXj06DYAoEWLFhg6dChMTU1Fjp5IHEx8iIi0lDLZiYgAvL0VBcy5uYpVmPPygJdfTkC/fruQmZkJQ0ND+Pn5oWPHjpy1RXqtyomPoaEhkpKS4OTkpNb+5MkTODk5QSaTaSw4IiL6dyEhiinqShKJgD59zqBLl2PIzBRgb2+PUaNGwcXFRbwgieqIKic+5e1pmp+fDxMTk2oHREREVRMcDCxYoOjxMTXNxquv7oGr610AQOvWrTF48GBIpVKRoySqGyqd+Kxbtw4AIJFIsHHjRlhaWqrOyWQynDx5Et7e3pqPkIiIKqQc8oqPj0d4eDiePXsGIyMjDBw4EO3atePQFlExlU581q5dC0DR47N+/XoYGhqqzpmYmMDT0xPr16/XfIRERKQSEQFMnw48fQrMmQOsXAnI5XKcOnUKJ06cgCAIqFevHgIDA+Hs7Cx2uER1jkQob+yqHL6+vggPD4ednV1NxSSqzMxM2NjYICMjA9bW1mKHQ0R6pvhChP7+pdsWLHhez2NpCSQlZSE8PBxxcXEAgDZt2mDQoEEsPSC9U9nv7yonPrqOiQ8RiSUiAhg7VlGr4+PzfAXm5s0Va/IoqwliYhQztz744G/Y2oYjOzsbxsbGGDRoENq2bSta/ERiquz3d5WLmydNmlTh+c2bN1f1lkREBEWvjnLX9ODg5+3Kf54KArB6NRASIseECSeQnHwS2dmAo6MjRo0aBUdHR3ECJ9IiVU580tLS1I4LCwtx/fp1pKeno0+fPhoLjIhI35RckBBQ9AIBit6eTz8FfH2f4enTXbh//z4AoF27dhg4cCCMjY1FippIu1Q58dm9e3epNrlcjnfeeQdNmjTRSFBERPqmvNqe4kNfLVrcxfr1u5GTkwMTExMMGTIErVu3FjdwIi2jsRqf2NhY9O7dG0lJSZq4nWhY40NEYlBuNaGs7Rk1CggLU5yzspJj9epjSEk5AwBwdnbGqFGj4ODgIGLERHVLjdX4lOfevXsoKirS1O2IiPRK8WGuiIjnSY+1dQb+7/92ISXlAQCgY8eO8PPzg5ERdxwiehFV/pszd+5ctWNBEJCUlIT9+/djwoQJGguMiEgX/dt0deVGowDw0ku3MXr0HmRn58LExAT+/v5o2bKleMET6YAXWsenOAMDAzg6OqJPnz6YNGmS1v8rhENdRFSTSg5pFW/z9gbs7ABfXxkSE4+iUaNoAED9+vURGBgIe3t7ESMnqttqbKgrKiqqWoEREemz4kNaJduePgVu3UpHly5haNQoEQDQuXNn9OvXT+v/UUlUV7zw36TU1FTE/m/5UC8vr1K7tRMRUWnKfbWK++MP4No1YNSoGLi67oWxcR5MTU3h7++P5s2bixMokY4yqOoTMjMzMW7cOLi6uqJXr17o1asX3Nzc8OabbyIjI6MmYiQi0mnffluEHj0OoWHDHTA2zkN6uhsaN57KpIeoBlQ58ZkyZQr++OMP7N+/H+np6UhPT8e+fftw4cIFTJ06tSZiJCLSORERitqenTvT8N57m9G16x8AgLg4H3z99USsXWsrboBEOqrKQ1379u1DZGQkevTooWrz8/PDjz/+iAEDBmg0OCIiXRUSAmRk3MTVqxEwNs6HmZkZhg0bhthYL9y+rV4DRESaU+XEx8HBATY2NqXabWxsdHbHdiIiTVBOW1+woAh9+0bC0PACAMDd3R0BAQGwsbGBl1fpGiAi0pwqD3V9+OGHmDt3LpKTk1VtycnJeP/99/F///d/Gg2OiEjbKYe0IiKA6dOB2NgnOHp0kyrp+fvv7pgwYUKZ/6AkIs2r8jo+7dq1w927d5Gfnw8PDw8AQEJCAqRSKV566SW1ay9duqS5SGsJ1/EhouooazFC5bo9+fnX4Oe3D1JpAYyMzPHHHyPw1ltN2cNDpAE1to7PsGHDIJFIqhUcEZEuKGsV5pAQRaITEqI4fvoU8PAoRJMmB9G06WUAgFzeEO++OxKLF/MfV0S1TWOblOoK9vgQUWWVtQpz8WQoJAS4c+cxRo0Kg7NzKgQB6NnzFfTu3RsGBlWuNCCiCtRYj0/jxo1x/vz5UrsCp6eno3379vj777+rHi0RkRYqaxXm4gsUPnlyFXfv7oeJSSGysizQps1I9OnTWJxgiQjACyQ+8fHxkMlkpdrz8/Px8OFDjQRFRKQNylqFGQB27y7Anj0H0bjxFZiYAPfvN0L9+iPx5puWtR8kEampdOITERGh+j0yMlJtBoJMJsPRo0fRqFEjzUZHRFTH/Nvu6l27puLs2Z1o3PgfyOUS/P13L2zd+gqHtojqiErX+Cj/0kokEpR8irGxMTw9PfHFF19gyJAhmo+yFrHGh4gqUv7u6gICAy+jbduDKCoqQm6uJc6eDcD8+Z6ctUVUCzRe4yOXywEAjRo1wvnz51GvXr3qR0lEpCWUvTq+vorj4nU977+fj4iI/fD0vIaiIqBJkyYYMWIELCwsxAmWiMpV5RqfuLi4moiDiKhOU05TB5739ADA9u3JOH8+DJ6eTyCXS3D3bh989FF3LvtBVEdVOfFZvnx5hec/+uijFw6mPPHx8VixYgWOHTuG5ORkuLq64s0338TixYthYmKiuu6vv/7CjBkzcP78eTg6OuLdd9/FggULNB4PEemfkjO4BEHAxYsXcfPmIVhby5CRYY0DBwKwerUHmPMQ1V1VTnx2796tdlxYWIi4uDgYGRmhSZMmNZL4xMTEQC6XY8OGDWjatCmuX7+OKVOmIDs7G59//jkAxdhe//790bdvX6xfvx7Xrl3DpEmTYGtri7ffflvjMRGRfik+gysvLw/79u3DjRs3YGgIJCa+hD/+GI7Vq81Zz0NUx2lkAcPMzEwEBQVhxIgRGDdunCbi+lefffYZvv/+e9W6Qd9//z0WL16M5ORkVS9QcHAw9uzZg5iYmErfl8XNRFSR7dsf4fLlMJibp0EuN0CDBq/irbd8OLRFJLLKfn9rZH6ltbU1li1bVqublGZkZMDe3l51HB0djZ49e6oNffn5+SE2NhZpaWm1FhcR6SZBEPDHH3/g5s3NMDdPQ0aGDTZvnojQ0G5Meoi0iMYWlsjIyEBGRoamblehu3fv4uuvv8bUqVNVbcnJyXB2dla7TnlcfCf5kvLz85GZman2ICL9U3wX9ZJyc3Px66+/4tChQzA0lCEmxgt79kyFu3sDtdldRFT3VbnGZ926dWrHgiAgKSkJP/30EwYOHFilewUHB+PTTz+t8Jpbt27B29tbdZyYmIgBAwZg1KhRmDJlSpVeryyrVq3CsmXLqn0fItJuxTcXLV6nk5iYiLCwMKSnp0MuN0BkZD/cuNEF27ZJWM9DpIWqnPisXbtW7djAwACOjo6YMGECFi1aVKV7zZs3D0FBQRVe07jx831tHj16BF9fX3Tr1g0//PCD2nUuLi5ISUlRa1Meu7i4lHv/RYsWYe7cuarjzMxMuLu7V/YtEJGO8PUFrl17vk6PIAg4d+4cjhw5ArlcDltbWzg5BeLwYTds21b2VhVEVPeJuo6Po6MjHB0dK3VtYmIifH190aFDB4SGhpZa/t3HxweLFy9GYWEhjI2NAQCHDx+Gl5cX7Ozsyr2vVCqFVCp98TdBRDohKgrIylL8zM3NxZ49e3D79m0AgK1tC0ydOhSmpqZ44w2RAyWianmhGp/09HRcuHABFy5cQHp6uoZDKi0xMRG9e/eGh4cHPv/8czx+/BjJyclqtTtjxoyBiYkJJk+ejBs3bmDHjh346quv1HpziIiKK17XExys2IZi5swHWL9+PW7fvg2ZzBD79g3C3LmBWLHCVOxwiUgDqjSdPT4+HjNmzEBkZKRqvy6JRIIBAwbgm2++gaenZ40EuWXLFkycOLHMc8XDL76AYb169fDuu+9i4cKFVXotTmcn0h/F9906c0bAxo1n8PDhMRgYCLC3t4ej4yiMHesCuRywtASePRM7YiIqT2W/vyud+Dx48ACdOnWCsbExpk+fjubNmwMAbt68ie+//x5FRUU4f/48GjRooJl3IBImPkT6Q7n/1rx52cjL24O7d+8CAJKSWuGrr4ZAKpVi8WJg3Tpg1ixg5UqRAyaicmk88Zk8eTLu3r2LyMhImJqqd/nm5uZiwIABeOmll7Bx48bqRS4yJj5EukmZ5AQHqxcm379/H7t27cKzZ88gCEb4/fcB8PVtj5UruTYPkTbReOLj5uaGHTt2oEePHmWeP3nyJF5//XU8evToxSKuI5j4EOmm4sNaZ88Ccrkcp0+fxvHjxyEIAqTSevjuu0A8eOAMLy+gCgu+E1EdoPGVm//5558Ka3gaN26Mp0+fVilIIqLaoixeDg4GsrKysG3bNkRFRUEQBLRp0wb790/BgweKRU+5EDOR7qp04lO/fn3cvHmz3PPXr1+vcL0cIqLaVtZqzM+exWH9+vX4+++/YWxsDA+PYVi9ejh69jSBlxfg7Q38y7qqRKTFKp34DB8+HPPnz8fjx49LnUtNTcXChQsxfPhwTcZGRFQlJROd4qsxh4TIIZVG4c6d/yA7OxuOjo6YMmUKfvyxLaKjFev3rF4NVLDsFxHpgErX+KSlpaFLly5ITk7Gm2++CW9vbwiCgFu3buHnn3+Gi4sLzp07p7ZxqDZijQ+R9ipZx/N8RtYz2NuHIysrHgDQrl07yOUDsXq1MXx9FUlPcPDzREn5fCLSHpX9/q70ys12dnb4448/8MEHH2D79u2qhQttbW0xZswYfPLJJ1qf9BCRdlMmL8qNQ6OiAGfnexCEcGRl5cDY2BhDhgzByy+/rEqSAPUkZ+FC4OlTRa8Rt6Ug0j1VWsBQSRAE1ZCXo6MjJDpUCcgeHyLdIJfL8cMPUUhJOQ0AcHZ2hr39KHz5pYMqMSprenvJXiMi0g4a7/EpTiKRwMnJ6YWDIyKqSZmZmdi1axdSUhIAAPXqdcDkyX7o1ctYVfNz9mzZPTole42ISLe8UOJDRFRX3b59G3v27EFubi6Kikywe7c/rK1bYsaMyiU1/v4c4iLSZS+0SSkRkViKz9wq/rtMJsPvv/+OX375Bbm5uahfvz5efnkqrK1bqhIdf//ye3qISD+8UI2PLmOND1HdVrwGB1D87uubjrFjd+Hhw4cAgM6dO6Nfv34wMiq/U7u8LSyISDtpfOVmIqK6QLkCs68vkJYG9OkTgz59NuDhw4eQSqV47bXXUFg4ED17GqktXFhS8TV+iEh/VKrHZ926dZW+4axZs6oVkNjY40OkHbp3l8Ha+jC6dv0DAODq6orAwEB8/rkdQkIAubzimVns8SHSLRrdpLRRo0aVelGJRIK///678lHWQUx8iOq+tLQ0bNwYhpwcxabIXbt2Rd++fWFoaAgrKyArCzAwAHbvZlJDpC80Op09Li5OY4EREVXHzZs3ERERgfz8fJiammL48OHw8vJSnZ81S7laM5MeIirthYubCwoKEBcXhyZNmlRYQKht2ONDVDcVFRUhMjISFy5cAAA0aNAAgYGBsLGxETkyIqoLaqy4OScnB5MnT4a5uTlatmyJhATFAmHvvvsuQlglSEQ14MmTJ9i0aZMq6enevTuCgoIqTHrK2pmdiKjKic+iRYtw9epVHD9+HKampqr2vn37YseOHRoNjojo+vXr+OGHH5CcnAxzc3OMGTNGVc9TEc7aIqKyVHmMas+ePdixYwe6du2qtkdXy5Ytce/ePY0GR0T6KSICWL26EK+/fghPnlwCAHh4eCAgIKDSQ9DceoKIylLlHp/Hjx+XuU9Xdna2Tm1WSkTi+frrf/DyyxtVSc8rr7yCCRMm4Phx60oPX3GVZiIqS5UTn44dO2L//v2qY2Wys3HjRvgol1IlInpBV69eRc+eP8DZORVGRhZ488030adPHxgYGKiGr8aOZe0OEb2YKic+n3zyCT744AO88847KCoqwldffYX+/fsjNDQUK1eurIkYiUhHFS9ALigowN69e7Fnzx7I5YXw9PTErFlT0aRJE9X1wcGApaVinZ6yandY0ExE/+aFprPfu3cPISEhuHr1KrKystC+fXssXLgQrVu3rokYaxWnsxPVHuW+W337pmLEiDA8fvwYEokEvXr1wiuvvAIDAwPVCsu+vkBU1POfZa24XHwfr/JWbCYi3aTRlZv1CRMfopr3PJkRcPv2FbRufQCCUARLS0sEBATA09NTdd3YsYoeHiVuQ0FEZdHoys2ZmZmVfmEmC0T0b0JCgIsXC9C69T60anUNggA0adIEI0aMgIWFhdp1xZMeA4OKZ2n5+zPhIaKKVSrxsbW1rfSMLZlMVq2AiEj3zZqVjEuXwmBh8QQSiQS+vr7o0aNHqf/PKKeku7kBhw6VvQ0Fe3mIqCoqlfhERUWpfo+Pj0dwcDCCgoJUs7iio6OxdetWrFq1qmaiJCKtp0hQBLz11kU8enQIFhYy5OVZoXXrQLzyikeZz6lMD07xhQqZ+BDRv6lyjc+rr76Kt956C2+88YZa+88//4wffvgBx48f12R8tY41PkQ145VX8uHi8htatboBAHj8+CWEhg5Hmzbm1SpEZo8PEQEarvEpLjo6GuvXry/V3rFjR7z11ltVvR0R6YGkpCQMGrQTBQVpAAzQr9+rePzYB5cuSaq9sjLreoioKqq8jo+7uzt+/PHHUu0bN26Eu7u7RoIiIt0gCAL+/PNPbNq0CQUFabCxscGkSUHo1q0bV3onIlFUucdn7dq1CAgIwMGDB9GlSxcAwJ9//ok7d+5g165dGg+QiLRTXl4eIiIicOvWLQCAl5cXhg0bBjMzMwCszSEicVS5x2fQoEG4c+cOhg4diqdPn+Lp06cYOnQobt++jUGDBtVEjESkZRITE7FhwwbcunULBgYG8PPzw+jRo1VJD6CoyfHx4SaiRFS7uIBhCSxuJnpxgiDg3LlzOHLkCORyOWxtbREYGAg3NzexQyMiHVdjxc0AkJ6ejk2bNqm6sFu2bIlJkybBxsbmxaIlIq0XHp6Lo0f3wMnpNgCgefPm8Pf3h6mpaalrS87E4swsIqotVR7qunDhApo0aYK1a9eqhrrWrFmDJk2a4NKlSzURIxHVcQ8ePMCff66Hk9NtyOWGGDhwIEaNGlVm0gOo1/eUdazETUeJSNOqnPjMmTMH/v7+iI+PR3h4OMLDwxEXF4chQ4Zg9uzZNRAiEdVVgiDgzJkzCA0NhZlZJrKz7dG8+WQkJ3dG9+6SchOWkvU95dX7lJcQERG9qCrX+JiZmeHy5cvw9vZWa7958yY6duyInJwcjQZY21jjQ1Q52dnZ2LNnD+7evQsAaNWqFYYMGQKpVKqxXdI5BEZElVVjNT7W1tZISEgolfg8ePAAVlZWVY+UiLTO/fv3sWvXLjx79gxGRkYYMGAA2rdvr1qbR7nHFhcnJKK6psqJz+jRozF58mR8/vnn6NatGwDgzJkzeP/990ttY0FEukUQBJw6dQrHjx+HIAhwcHDAqFGj4OzsrHYdExYiqquqnPh8/vnnkEgkGD9+PIqKigAAxsbGeOeddxDCgXginZWVlYXdu3fj77//BgAkJr6Ml18eDGdnk1LXcoiKiOqqF17HJycnB/fu3QMANGnSBObm5hoNTCys8SEqLS4uDuHh4cjKyoKRkREuXx6EXbvawsdHojaspUxyNFXjQ0RUWTW6jg8AmJubo3Xr1i/6dCLSAnK5HCdPnsSJEycAAKamjjhyZBQ6d3ZUzcIqufVERASQkACYmQFubookyNcXiIpiDxARia/Sic+kSZMqdd3mzZtfOBgiqjuePXuG8PBwxMfHAwDs7dtix45BOHPGGNnZ6j05xQuZQ0KAxETF74cOAVlZwLVrip/cl4uIxFbpxGfLli1o2LAh2rVrB+5yQaTb7t27h/DwcOTk5KCoyBgREUNgYfGyqofH11fRk6PswSmezAQHAwsWABIJMHKkoqfHzU2RBPn6iveeiIiAKtT4zJgxA7/88gsaNmyIiRMn4s0334S9vX1Nx1frWOND+kwulyMqKgqnT58GADg7O8PePhBfflmvWjU8rPkhoppW2e/vSq/c/O233yIpKQkLFizAb7/9Bnd3d7z22muIjIxkDxCRDsjMzMTWrVtVSU+HDh0wefJkvPZaPZw9q96r4+sLWFpWvgeHO7ETUV1RpS0rpFIp3njjDRw+fBg3b95Ey5YtMX36dHh6eiIrK6umYiSiGnbnzh2sX78eCQkJMDExQUBAAIYMGQJjY+My98uKilLU7ERFlb5XWdf7+6NU8kREJIYq79WleqKBASQSCQRBgEwm02RMRFRLZDIZDh8+jJ9//hm5ubmoX78+pk6dilatWqmuKWu/rIp6cLi/FhHVZVVKfPLz8/HLL7+gX79+aNasGa5du4ZvvvkGCQkJsLS0rKkYiagGpKenY8uWLTj7v6KbTp06YdKkSaVq95RJjrKgOSKi4h4cDmsRUV1W6eLm6dOnY/v27XB3d8ekSZMwduxY1KtXr6bjq3UsbiZ9EBMTg7179yIvLw9SqRT+/v5o0aJFhSsus0CZiOqyyn5/VzrxMTAwgIeHB9q1a6faiLAs4eHhVY+2DmHiQ7pMObT1xx9/AABcXV0RGBgIOzs7ABUnN9yGgojqMo2v3Dx+/PgKEx4iqtvS0tIQFhaGR48eAQC6du2Kvn37wtDQUHWNpnZVJyKqq154ry5dxR4f0jUREUBo6E106BABmSwfpqamGD58OLy8vKp0Hw51EVFdVuN7dRFR3bdnTxG2bPkd7dqdh0wGNGjQAAEBAbC1ta3yvdgbRES64IWnsxNR3fb06VOcOrUJ7dqdBwA4OXVDUFBQqaSn+Lo7Za3Bo8S1eIhIF3CoqwQOdZEuuH79On777TcUFBSgoMAM3t4jMG7cS2VeW3wIC+BwFhFpJw51EemhwsJCHDp0CJcuXQIAeHh4ICAgoML/CZQcwuJwFhHpMiY+RDrin3/+wc6dO5GamgoAeOWVV9C7d28YGDwf0S45Jb2sKeocyiIiXcahrhI41EXa6OrVq9i/fz8KCwthYWGBESNGoEmTJqWuKzkzizO1iEhXaHx3diKqewoKCrB3717s2bMHhYWF8PT0xNSpU1VJT8li5ZLbSXB7CSLSNxzqItJSqampCAsLw+PHjwEAvXr1Qs+ePdWGtopvGOrv/3wYS7mBaPE2IiJ9wB4fIi0jCAIuX76MH3/8EY8fP4alpSXGjx9fqp4HKLtHh7unE5E+Y48PkRYpKCjA/v378ddffwEAGjdujBEjRsDS0rLUteUVMvv6Ks5zeIuI9BETHyItkZKSgp07d+LJkyeQSCTw9fVFjx49yt1Dr+Qwl/IYYCEzEekvDnUR1XGCIODixYv48ccf8eTJE1hZWWHChAlIS3sF3btLylxlGah8IXNFqzUTEekarZvOnp+fjy5duuDq1au4fPky2rZtqzr3119/YcaMGTh//jwcHR3x7rvvYsGCBVW6P6ezU12Sn5+Pffv24fr16wCApk2bYsSIETA3N4e3NxAbC3h5ATExL/4anNJORLpAZ6ezL1iwAK6urqXaMzMz0b9/fzRs2BAXL17EZ599hqVLl+KHH34QIUqi6ktKSsIPP/yA69evQyKRoG/fvhgzZgzMzc0BAMoRroSE6vXWcEo7EekTrarxOXjwIH7//Xfs2rULBw8eVDu3bds2FBQUYPPmzTAxMUHLli1x5coVrFmzBm+//bZIERNVnSAIOH/+PH7//XfIZDLY2NggICAA7u7uatd9+ikwdiyQlfW8judFcEo7EekTrenxSUlJwZQpU/DTTz+p/sVbXHR0NHr27AkTExNVm5+fH2JjY5GWllbuffPz85GZman2IBJLXl4edu7ciYMHD0Imk8HLywtTp04tlfQAimRl2zb21hARVYVW9PgIgoCgoCBMmzYNHTt2RHx8fKlrkpOT0ahRI7U2Z2dn1Tk7O7sy771q1SosW7ZM4zETVVViYiLCwsKQnp4OAwMD9OvXD126dCl31hbA3hoioqoStccnODgYEomkwkdMTAy+/vprPHv2DIsWLdJ4DIsWLUJGRobq8eDBA42/BlFFBEHAuXPnsHnzZqSnp8PW1haTJk1C165dK0x6KoMztoiI1Ina4zNv3jwEBQVVeE3jxo1x7NgxREdHQyqVqp3r2LEjxo4di61bt8LFxQUpKSlq55XHLi4u5d5fKpWWui9RbcnNzcXevXsRGxsLAGjevDn8/f1hamqqkfuXXMuHiEjfiZr4ODo6wtHR8V+vW7duHT7++GPV8aNHj+Dn54cdO3agS5cuAAAfHx8sXrwYhYWFMDY2BgAcPnwYXl5e5Q5zEYnpwYMH2LVrFzIyMmBoaIj+/fujU6dOZfbylFyFubKCg58/j4iItHAdHwCIj49Ho0aN1NbxycjIgJeXF/r374+FCxfi+vXrmDRpEtauXVulWV1cx4dqmiAIOHv2LI4dOwa5XA47OzuMGjUK9evXL/c5XGuHiKhilf3+1ori5sqwsbHB77//jhkzZqBDhw6oV68ePvroI05lpzrlyZMnOHjwIO7duwcAsLVtiZ07h8LTU1phTw57boiINEMrEx9PT0+U1VH18ssv49SpUyJERPTvTp06hWPHjgEADA0NMXDgQLz7bntER0sgk5U9hFV8iIs9PURE1ac16/gQaSu5XI5PPvlElfQAwMSJE9GhQwcEB0sqXIeneHEyERFVHxMfohqUkpKCFStWoLCwUNU2b948uLm5AVD08pw9q/gZEQE0bw54ez+ffh4crNiLKy2NU9KJiDRBK4ubaxKLm0lToqKicPLkSdWxh4cHgoKCyp21pdx+AlAvYmZhMxHRv9O74maiukImk6ktvwAAgYGBaNmyZbnPCQlRJD1mZoCHh/rQFwubiYg0hz0+JbDHh6pDuaN6cfPnz4eFhQUARc/OwoXAs2eKc5aWwOrVit9fZJ0eIiJSqOz3NxOfEpj40Is6fPgwzhYbi2rcuDHGjRundo1y2Ko4DmEREVUfh7qIaklRURFWrlyp1jZ69Gh4e3uXujY4uHSPD4ewiIhqDxMfompITEzExo0b1doWLFgAMzOzMq/nbupEROLidHaiF3Tw4EG1pMfLywtLliwplfRwh3QiorqDiQ9RFRUWFmLZsmX4888/VW1jxozB66+/rjounuxwEUIiorqDQ11EVZCQkIDQ0FC1toULF8LU1FStrXiyw+noRER1B3t8iCopIiJCLelp1aoVlixZAlNT01LDWcHBUG1FUXx1ZiIiEhd7fIj+RUFBAVatWqXWdv78OLRr11h1XLyHR1nAzESHiKjuYeJDVIG4uDj85z//UWs7cmQRTp82wb17wIIFgEQCjBypOMfhLCKiuo2JD1E5wsPDce3aNdVx27ZtMWzYMLRrB8hkwNOnQGys4lxUFBchJCLSBkx8iErIz89HSIkpWEFBQWjYsCEiIp738gQEALt2KX5nTw8RkXZg4kNUzN27d7Ft2za1tg8++ADGxsYAFDU8xXt5YmJqO0IiIqoOJj5E//Prr7/i1q1bquOOHTti8ODBatcEBz/v8WEvDxGR9mHiQ3ovNzcXq5VbpP/P5MmT0aBBAwDPFyFUTk3nbC0iIu3FxIf0WmxsLLZv367WtnjxYhgZPf+rUXKqOhERaS8mPqS3tm3bhrt376qOfXx80L9//1LXceVlIiLdwcSH9E5OTg4+++wztbYpU6bA1dW1zOs5vEVEpDuY+JBeuXnzJnbu3KnW9uGHH8LQ0FCkiIiIqDZxry6qs0ruf1XZ6xcvLv08QRCwZcsWtaTn5MlXEBm5hEkPEZEeYeKjx6qaWNS24kXFVbl+3Tr152VlZWH58uW4f/++6lpv72nIze3Duh0iIj3DxEePVTWxqG3FdzivyvWzZgHe3ootJbZsuYYvvvhCdY1EYoTff/8QZmbO3DGdiEgPSQRBEMQOoi7JzMyEjY0NMjIyYG1tLXY4Nark+jS6pFs3Aa1abYSb2yNVm6+vL4KDeyI6WpEgcW8tIiLdUdnvb/b46DF/f2htr0dFw3SZmZnw81uulvQ0bz4dwcE94etbtV4kIiLSLZzVRVqpvEUFL1++jIhi2ZCZmRnmz5+PHj0MEB2taGNPDxGR/mLiQ1qp5KKCgiDg+++/x+PHj1XX9OvXD926dSvzeiIi0k+s8SlBn2p8dEVGRga+/PJLtbZ3330X9vb24gRERES1jjU+VKdpair9+fPn1ZKe9HQbREZ+xKSHiIjKxKEuEkV1N/4UBAHr1q1Denq6qq1Bg4GIjOzM4SwiIioXe3yoUjS92GFV1+gp7unTp1i+fLla0vPee+9h8uTOWjtLjYiIagdrfEpgjU/ZunVDnVj/5ty5c4iMjFQdOzg4YMaMGZBIJOIFRUREomOND2nUv/XQ1PT2F3K5HJ9//rla0jNkyBDMnDmTSQ8REVUae3xKYI/Pi6nJHqF//vkH3377rVrbnDlz+PkQEZFKZb+/WdxMGlFT6+ScPn0aR48eVR27uLjg7bffZi8PERG9ECY+VG2a2vOr+H0EQY4LFz6FkVGB6vzw4cPRpk0bDURMRET6ikNdJXCoq+o0NcylvE+/fqno3v17tXNz586FlZVVNSMlIiJdxaEuqjWaGuYKDgZ27jyOpk1PqNosLNwxb95EDm0REZFGMPGhavP3r/7aOTKZDFeurETTps87IAMCAtCqVatqRkdERPQcEx8SXXJyMjZs2KDWNn/+fFhYWIgUERER6SomPlTrihcxm5sfwZkzZ1TnGjdujHHjxokYHRER6TImPlSjSs74iogAxo4FcnOLcPnySrVrR48eDW9vb5EiJSIifcDEh2pU8c1IAUXSY2OTiPnzN6pdt2DBApiZmYkQIRER6RNuWUFqqrv1RMnnF9/qIiQE6NHjEKZMeZ70eHl5YcmSJUx6iIioVnAdnxL0fR2f6q7JU97zCwsL8cknn6hdO2bMGLz00kvVjJiIiIiblOqsmt4M9N82I/23GIo/X3ndzz8nlEp6Fi5cyKSHiIhqHXt8SqjrPT41uRmopmPo1g1wcPgNHTteUrW1bNkSgYGBtRAlERHpE67crKNqajNQTcdQUFAAP79Vam3jxo1D48aNazg6IiKi8jHx0TKaWCW5psXFxeE///mPWltwcDCkUqlIERERESkw8aEqKz5FvWQStnv3bvz111+q47Zt22LYsGG1HCEREVHZWNysBWq6oLmqyiqAzs/Px7Jly9SSnqCgICY9RERUp7C4uYS6WNxcFwqaK3L37l1s27ZNre2DDz6AsbGxSBEREZG+YXGzDqkLBc3l+fXXX3Hr1i3VcceOHTF48GARIyIiIiofEx8toImC5pJ7ZlVXbm4uVq9erdY2efJkNGjQoPo3JyIiqiFMfPRERQXJVRUbG4vt27ertS1evBhGRvzPiYiI6jZ+U+kJTQ2X/fzzz7hz547quGvXrvDz86tmdERERLWDiY+eqO5wWU5ODj777DO1tilTpsDV1bWakREREdUeJj70r27evImdO3eqtX344YcwNDQUKSIiIqIXw8SHKrR161bEx8erjnv06IFXX31VvICIiIiqgYkPlSkrKwtffPGFWtu0adPg7OwsUkRERETVx8SHSrl27RrCw8NVx0ZGRggODubQFhERaT0mPqQiCAI2bdqExMREVVvv3r3Rq1cvEaMiIiLSHK3aq2v//v3o0qULzMzMYGdnh+HDh6udT0hIwODBg2Fubg4nJye8//77KCoqEifYSqjKHlw1vV/Xs2fPsHz5crWkZ/r06Ux6iIhIp2hN4rNr1y6MGzcOEydOxNWrV3HmzBmMGTNGdV4mk2Hw4MEoKCjA2bNnsXXrVmzZsgUfffSRiFFXrPiigpq8tqpJ0uXLl7FmzRrVsZmZGf7v//4Pjo6OlbsBERGRltCKTUqLiorg6emJZcuWYfLkyWVec/DgQQwZMgSPHj1SFeCuX78eCxcuxOPHj2FiYlKp16rNTUqrso3E4sXAunXArFnAypUVX6vc1NTLC7C3L//+giBg/fr1SE1NVbX17dsX3bt3f4F3Q0REJJ7Kfn9rRY/PpUuXkJiYCAMDA7Rr1w7169fHwIEDcf36ddU10dHRaN26tdqsIz8/P2RmZuLGjRvl3js/Px+ZmZlqj9ri76/Ybb0yCwtGRQFZWYqf/yY4WLGTu0RSfi9RRkYGli9frpb0zJw5k0kPERHpNK1IfP7++28AwNKlS/Hhhx9i3759sLOzQ+/evfH06VMAQHJycqmp1srj5OTkcu+9atUq2NjYqB7u7u419C6qR5nMVGbLCWVC9emnZT/nwoUL+PLLL1XH1tbW+Oijj+Dg4KDZoImIiOoYUROf4OBgSCSSCh8xMTGQy+UAFBthBgQEoEOHDggNDYVEIim1onBVLVq0CBkZGarHgwcPNPHWNK4qvUPlPUcQBKxbtw779+9XXTNgwADMmTMHEolEwxETERHVPaJOZ583bx6CgoIqvKZx48ZISkoCALRo0ULVLpVK0bhxYyQkJAAAXFxc8Oeff6o9NyUlRXWuPFKpFFKp9EXC1yppaWlYt26dWtusWbNgZ2cnUkRERES1T9TEx9HRsVIzhzp06ACpVIrY2Fj06NEDAFBYWIj4+Hg0bNgQAODj44OVK1ciNTUVTk5OAIDDhw/D2tpaLWHSR+fOnUNkZKTq2MHBATNmzGAvDxER6R2tWMDQ2toa06ZNw5IlS+Du7o6GDRuqdgofNWoUAKB///5o0aIFxo0bh9WrVyM5ORkffvghZsyYofU9OlWZ/VWcXC7H2rVrkZWVpWobMmQIOnToUANREhER1X1akfgAwGeffQYjIyOMGzcOubm56NKlC44dO6YaqjE0NMS+ffvwzjvvwMfHBxYWFpgwYQKWL18ucuTVV3wNn8omPk+ePME333yj1jZ79mzY2NjUQIRERETaQSvW8alNtbmOT2VVtcfn9OnTOHr0qOrYxcUFb7/9Noe2iIhIZ1X2+1trenz0mb9/5RIeuVyO1atXIz8/X9U2bNgwtG3btuaCIyIi0iJasY6PLtPUHlypqalYsWKFWtIzd+5cJj1ERETFsMdHZC9Sv1PSiRMncPz4cdWxu7s7Jk6cyKEtIiKiEpj4iCw4+Hn9TlXJZDJ88sknqgUeASAgIACtWrXSYIRERES6g4mPyCpbv1NScnIyNmzYoNY2f/58WFhYaCgyIiIi3cPERwsdOXIEZ86cUR03atQI48ePFzEiIiIi7cDER4sUFRVh5cqVam2vvfYamjdvLlJERERE2oWJj5ZITEzExo0b1doWLFgAMzMzkSIiIiLSPpzOXkuqM2390KFDaklPs2bNsGTJEiY9REREVcQen1ryItPWCwsL8cknn6i1vfHGG2jWrFkNREhERKT7mPjUkqpOW3/w4AE2b96s1rZw4UKYmprWQHRERET6gYlPLanKtPV9+/bh4sWLquOWLVsiMDCwhiIjIiLSH0x86pCCggKsWrVKre3NN99EkyZNRIqIiIhItzDxqSPi4+OxdetWtbbg4GBIpVKRIiIiItI9THzqgD179uDq1auq4zZt2mD48OHiBURERKSjmPiIKD8/HyEhIWptEyZMgKenpzgBERER6TgmPiK5d+8e/vvf/6q1LVq0CCYmJiJFREREpPuY+Ihg586duHnzpuq4Q4cOGDJkiIgRERER6QcmPrUoLy8Pn376qVrbpEmT4O7uLlJERERE+oWJTy25c+cOfv75Z7W2Dz74AMbGxiJFREREpH+Y+NSS4klP165d4efnJ2I0RERE+omJTy3p1asXzp07h/Hjx8PV1VXscIiIiPSSRBAEQewg6pLMzEzY2NggIyMD1tbWYodDRERElVDZ72+DWoyJiIiISFRMfIiIiEhvMPEhIiIivcHEh4iIiPQGEx8iIiLSG0x8iIiISG8w8SEiIiK9wcSHiIiI9AYTHyIiItIbTHyIiIhIbzDxISIiIr3BxIeIiIj0BhMfIiIi0htMfIiIiEhvGIkdQF0jCAIAxfb2REREpB2U39vK7/HyMPEp4dmzZwAAd3d3kSMhIiKiqnr27BlsbGzKPS8R/i010jNyuRyPHj2ClZUVJBKJ2OHUqMzMTLi7u+PBgwewtrYWOxwqhp9N3cTPpW7i51J31eZnIwgCnj17BldXVxgYlF/Jwx6fEgwMDNCgQQOxw6hV1tbW/J9FHcXPpm7i51I38XOpu2rrs6mop0eJxc1ERESkN5j4EBERkd5g4qPHpFIplixZAqlUKnYoVAI/m7qJn0vdxM+l7qqLnw2Lm4mIiEhvsMeHiIiI9AYTHyIiItIbTHyIiIhIbzDxISIiIr3BxEeP7d+/H126dIGZmRns7OwwfPhwtfMJCQkYPHgwzM3N4eTkhPfffx9FRUXiBKtn8vPz0bZtW0gkEly5ckXt3F9//YVXXnkFpqamcHd3x+rVq8UJUo/Ex8dj8uTJaNSoEczMzNCkSRMsWbIEBQUFatfxsxHHt99+C09PT5iamqJLly74888/xQ5Jr6xatQqdOnWClZUVnJycMHz4cMTGxqpdk5eXhxkzZsDBwQGWlpYICAhASkqKKPEy8dFTu3btwrhx4zBx4kRcvXoVZ86cwZgxY1TnZTIZBg8ejIKCApw9exZbt27Fli1b8NFHH4kYtf5YsGABXF1dS7VnZmaif//+aNiwIS5evIjPPvsMS5cuxQ8//CBClPojJiYGcrkcGzZswI0bN7B27VqsX78eH3zwgeoafjbi2LFjB+bOnYslS5bg0qVLaNOmDfz8/JCamip2aHrjxIkTmDFjBs6dO4fDhw+jsLAQ/fv3R3Z2tuqaOXPm4LfffsPOnTtx4sQJPHr0CCNHjhQnYIH0TmFhoeDm5iZs3Lix3GsOHDggGBgYCMnJyaq277//XrC2thby8/NrI0y9deDAAcHb21u4ceOGAEC4fPmy6tx3330n2NnZqX0GCxcuFLy8vESIVL+tXr1aaNSokeqYn404OnfuLMyYMUN1LJPJBFdXV2HVqlUiRqXfUlNTBQDCiRMnBEEQhPT0dMHY2FjYuXOn6ppbt24JAITo6Ohaj489Pnro0qVLSExMhIGBAdq1a4f69etj4MCBuH79uuqa6OhotG7dGs7Ozqo2Pz8/ZGZm4saNG2KErRdSUlIwZcoU/PTTTzA3Ny91Pjo6Gj179oSJiYmqzc/PD7GxsUhLS6vNUPVeRkYG7O3tVcf8bGpfQUEBLl68iL59+6raDAwM0LdvX0RHR4sYmX7LyMgAANXfj4sXL6KwsFDtc/L29oaHh4conxMTHz30999/AwCWLl2KDz/8EPv27YOdnR169+6Np0+fAgCSk5PVkh4AquPk5OTaDVhPCIKAoKAgTJs2DR07dizzGn4udcPdu3fx9ddfY+rUqao2fja1759//oFMJivzz51/5uKQy+WYPXs2unfvjlatWgFQ/PdvYmICW1tbtWvF+pyY+OiQ4OBgSCSSCh/KWgUAWLx4MQICAtChQweEhoZCIpFg586dIr8L3VPZz+Xrr7/Gs2fPsGjRIrFD1huV/WyKS0xMxIABAzBq1ChMmTJFpMiJ6qYZM2bg+vXr2L59u9ihlMtI7ABIc+bNm4egoKAKr2ncuDGSkpIAAC1atFC1S6VSNG7cGAkJCQAAFxeXUjMjlBX4Li4uGoxa91X2czl27Biio6NL7WnTsWNHjB07Flu3boWLi0upmRD8XF5cZT8bpUePHsHX1xfdunUrVbTMz6b21atXD4aGhmX+ufPPvPbNnDkT+/btw8mTJ9GgQQNVu4uLCwoKCpCenq7W6yPa51TrVUUkuoyMDEEqlaoVNxcUFAhOTk7Chg0bBEF4XtyckpKiumbDhg2CtbW1kJeXV+sx64P79+8L165dUz0iIyMFAEJYWJjw4MEDQRCeF9AWFBSonrdo0SIW0NaChw8fCi+99JLw+uuvC0VFRaXO87MRR+fOnYWZM2eqjmUymeDm5sbi5lokl8uFGTNmCK6ursLt27dLnVcWN4eFhanaYmJiRCtuZuKjp9577z3Bzc1NiIyMFGJiYoTJkycLTk5OwtOnTwVBEISioiKhVatWQv/+/YUrV64Ihw4dEhwdHYVFixaJHLn+iIuLKzWrKz09XXB2dhbGjRsnXL9+Xdi+fbtgbm6uSlipZjx8+FBo2rSp8OqrrwoPHz4UkpKSVA8lfjbi2L59uyCVSoUtW7YIN2/eFN5++23B1tZWbUYq1ax33nlHsLGxEY4fP672dyMnJ0d1zbRp0wQPDw/h2LFjwoULFwQfHx/Bx8dHlHiZ+OipgoICYd68eYKTk5NgZWUl9O3bV7h+/braNfHx8cLAgQMFMzMzoV69esK8efOEwsJCkSLWP2UlPoIgCFevXhV69OghSKVSwc3NTQgJCREnQD0SGhoqACjzURw/G3F8/fXXgoeHh2BiYiJ07txZOHfunNgh6ZXy/m6EhoaqrsnNzRWmT58u2NnZCebm5sKIESPU/uFQmyT/C5qIiIhI53FWFxEREekNJj5ERESkN5j4EBERkd5g4kNERER6g4kPERER6Q0mPkRERKQ3mPgQERGR3mDiQ0RUQ44fPw6JRIL09HSxQyGi/2HiQ0Raa+nSpWjbtq3YYRCRFmHiQ0Q6r7CwUOwQiKiOYOJDRKKRy+VYtWoVGjVqBDMzM7Rp0wZhYWEAng8THT16FB07doS5uTm6deuG2NhYAMCWLVuwbNkyXL16FRKJBBKJBFu2bAEASCQSfP/99/D394eFhQVWrlxZYRzK14qMjES7du1gZmaGPn36IDU1FQcPHkTz5s1hbW2NMWPGICcnR/W8/Px8zJo1C05OTjA1NUWPHj1w/vz5mvnDIiLNEGWHMCIiQRA+/vhjwdvbWzh06JBw7949ITQ0VJBKpcLx48eFqKgoAYDQpUsX4fjx48KNGzeEV155RejWrZsgCIKQk5MjzJs3T2jZsmWp3aABCE5OTsLmzZuFe/fuCffv368wDuVrde3aVTh9+rRw6dIloWnTpkKvXr2E/v37C5cuXRJOnjwpODg4qG08OmvWLMHV1VU4cOCAcOPGDWHChAmCnZ2d8OTJE7X7pqWl1cwfIBFVGRMfIhJFXl6eYG5uLpw9e1atffLkycIbb7yhShqOHDmiOrd//34BgJCbmysIgiAsWbJEaNOmTal7AxBmz55d6VjKeq1Vq1YJAIR79+6p2qZOnSr4+fkJgiAIWVlZgrGxsbBt2zbV+YKCAsHV1VVYvXq12n2Z+BDVHUZi9TQRkX67e/cucnJy0K9fP7X2goICtGvXTnX88ssvq36vX78+ACA1NRUeHh4V3r9jx45Vjqn4azk7O8Pc3ByNGzdWa/vzzz8BAPfu3UNhYSG6d++uOm9sbIzOnTvj1q1bVX5tIqodTHyISBRZWVkAgP3798PNzU3tnFQqxb179wAokgkliUQCQFEb9G8sLCyqHFPJ1yp+rGyrzGsTUd3F4mYiEkWLFi0glUqRkJCApk2bqj3c3d0rdQ8TExPIZLIajrRsTZo0gYmJCc6cOaNqKywsxPnz59GiRQtRYiKif8ceHyIShZWVFebPn485c+ZALpejR48eyMjIwJkzZ2BtbY2GDRv+6z08PT0RFxeHK1euoEGDBrCysoJUKq2F6BU9Su+88w7ef/992Nvbw8PDA6tXr0ZOTg4mT55cKzEQUdUx8SEi0axYsQKOjo5YtWoV/v77b9ja2qJ9+/b44IMPKjWkFBAQgPDwcPj6+iI9PR2hoaEICgqq+cD/JyQkBHK5HOPGjcOzZ8/QsWNHREZGws7OrtZiIKKqkQiCIIgdBBEREVFtYI0PERER6Q0mPkSk86ZNmwZLS8syH9OmTRM7PCKqRRzqIiKdl5qaiszMzDLPWVtbw8nJqZYjIiKxMPEhIiIivcGhLiIiItIbTHyIiIhIbzDxISIiIr3BxIeIiIj0BhMfIiIi0htMfIiIiEhvMPEhIiIivcHEh4iIiPTG/wPG2TcaySCdxgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Import training data\n", + "np.set_printoptions(precision=6, suppress=True)\n", + "\n", + "csv_data = pd.read_csv(datafile_path(\"500_Points_DataSet.csv\"))\n", + "csv_data.columns.values[0:6] = [\n", + " \"pressure\",\n", + " \"temperature\",\n", + " \"enth_mol\",\n", + " \"entr_mol\",\n", + " \"CO2_enthalpy\",\n", + " \"CO2_entropy\",\n", + "]\n", + "data = csv_data.sample(n=500)\n", + "\n", + "# Creating input_data and output_data from data\n", + "input_data = data.iloc[:, :2]\n", + "output_data = data.iloc[:, 2:4]\n", + "\n", + "# Define labels, and split training and validation data\n", + "input_labels = input_data.columns\n", + "output_labels = output_data.columns\n", + "\n", + "n_data = data[input_labels[0]].size\n", + "data_training, data_validation = split_training_validation(data, 0.8, seed=n_data)" ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "13/13 [==============================] - 0s 4ms/step\n" - ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzcUlEQVR4nO3deXwTZf4H8E9aaGmBBkpvaGkpZ6UtCKgVLCBIwXog+FsQV24UBF1g5XJFhfVHEXdX1FXwBwq6isuq4CoIyIKASEWuyqGwUgtFaTmEptKWFpr5/VEzJulMMkkmmUnzeb9e7NpkMnlm8sw833lOgyAIAoiIiIgCWJDWCSAiIiLSGgMiIiIiCngMiIiIiCjgMSAiIiKigMeAiIiIiAIeAyIiIiIKeAyIiIiIKOAxICIiIqKAx4CIiIiIAh4DIiLyG88++ywMBoOibQ0GA5599lmvpqdfv37o16+fbvdHRMoxICIil61evRoGg0H816hRI7Ru3Rpjx47FTz/9pHXydCc5OdnmfMXExOC2227D+vXrVdl/ZWUlnn32WezYsUOV/REFIgZEROS2hQsX4h//+AeWL1+OIUOG4J133kHfvn1x9epVr3zfU089haqqKq/s29u6deuGf/zjH/jHP/6BJ554AmfPnsWwYcOwfPlyj/ddWVmJBQsWMCAi8kAjrRNARP5ryJAh6NmzJwBg4sSJiIqKwvPPP4+PP/4Yv/vd71T/vkaNGqFRI/+8bbVu3Rq///3vxb9Hjx6N9u3b48UXX8TkyZM1TBkRAawhIiIV3XbbbQCAwsJCm9ePHz+O+++/H5GRkWjSpAl69uyJjz/+2Gaba9euYcGCBejQoQOaNGmCVq1aoU+fPti6dau4jVQfourqasyYMQPR0dFo3rw57rnnHvz444/10jZ27FgkJyfXe11qn6tWrcLtt9+OmJgYhIaGIi0tDcuWLXPpXDgTFxeHLl26oKioyOF258+fx4QJExAbG4smTZogMzMTb731lvj+qVOnEB0dDQBYsGCB2Czn7f5TRA2Nfz5qEZEunTp1CgDQsmVL8bVjx46hd+/eaN26NebOnYumTZviX//6F4YOHYoPP/wQ9913H4C6wCQvLw8TJ07ETTfdhPLycuzfvx8HDx7EHXfcIfudEydOxDvvvINRo0bh1ltvxfbt25Gbm+vRcSxbtgw33HAD7rnnHjRq1AiffPIJHn30UZjNZkydOtWjfVtcu3YNZ86cQatWrWS3qaqqQr9+/XDy5ElMmzYNKSkpeP/99zF27FiUlZXhD3/4A6Kjo7Fs2TJMmTIF9913H4YNGwYAyMjIUCWdRAFDICJy0apVqwQAwn/+8x/hwoULwpkzZ4QPPvhAiI6OFkJDQ4UzZ86I2w4YMEBIT08Xrl69Kr5mNpuFW2+9VejQoYP4WmZmppCbm+vwe5955hnB+rZVUFAgABAeffRRm+1GjRolABCeeeYZ8bUxY8YIbdu2dbpPQRCEysrKetvl5OQI7dq1s3mtb9++Qt++fR2mWRAEoW3btsKgQYOECxcuCBcuXBC++eYbYeTIkQIA4bHHHpPd39KlSwUAwjvvvCO+VlNTI2RlZQnNmjUTysvLBUEQhAsXLtQ7XiJyDZvMiMhtAwcORHR0NBITE3H//fejadOm+Pjjj9GmTRsAwKVLl7B9+3b87ne/wy+//IKLFy/i4sWL+Pnnn5GTk4Pvv/9eHJXWokULHDt2DN9//73i7//0008BAI8//rjN69OnT/fouMLCwsT/NplMuHjxIvr27YsffvgBJpPJrX1+9tlniI6ORnR0NDIzM/H+++/joYcewvPPPy/7mU8//RRxcXF44IEHxNcaN26Mxx9/HFeuXMHOnTvdSgsR1ccmMyJy26uvvoqOHTvCZDLhzTffxK5duxAaGiq+f/LkSQiCgPnz52P+/PmS+zh//jxat26NhQsX4t5770XHjh3RtWtXDB48GA899JDDpp/Tp08jKCgIqampNq936tTJo+P68ssv8cwzzyA/Px+VlZU275lMJhiNRpf3efPNN+O5556DwWBAeHg4unTpghYtWjj8zOnTp9GhQwcEBdk+u3bp0kV8n4jUwYCIiNx20003iaPMhg4dij59+mDUqFE4ceIEmjVrBrPZDAB44oknkJOTI7mP9u3bAwCys7NRWFiIf//73/jss8+wcuVKvPjii1i+fDkmTpzocVrlJnSsra21+buwsBADBgxA586d8be//Q2JiYkICQnBp59+ihdffFE8JldFRUVh4MCBbn2WiLyPARERqSI4OBh5eXno378//v73v2Pu3Llo164dgLpmHiXBQGRkJMaNG4dx48bhypUryM7OxrPPPisbELVt2xZmsxmFhYU2tUInTpyot23Lli1RVlZW73X7WpZPPvkE1dXV+Pjjj5GUlCS+/vnnnztNv9ratm2Lw4cPw2w229QSHT9+XHwfkA/2iEg59iEiItX069cPN910E5YuXYqrV68iJiYG/fr1w+uvv46SkpJ621+4cEH8759//tnmvWbNmqF9+/aorq6W/b4hQ4YAAF5++WWb15cuXVpv29TUVJhMJhw+fFh8raSkpN5s0cHBwQAAQRDE10wmE1atWiWbDm+58847UVpairVr14qvXb9+Ha+88gqaNWuGvn37AgDCw8MBQDLgIyJlWENERKqaNWsW/ud//gerV6/G5MmT8eqrr6JPnz5IT0/HpEmT0K5dO5w7dw75+fn48ccf8c033wAA0tLS0K9fP/To0QORkZHYv38/PvjgA0ybNk32u7p164YHHngAr732GkwmE2699VZs27YNJ0+erLftyJEjMWfOHNx33314/PHHUVlZiWXLlqFjx444ePCguN2gQYMQEhKCu+++G4888giuXLmCFStWICYmRjKo86aHH34Yr7/+OsaOHYsDBw4gOTkZH3zwAb788kssXboUzZs3B1DXCTwtLQ1r165Fx44dERkZia5du6Jr164+TS+RX9N6mBsR+R/LsPt9+/bVe6+2tlZITU0VUlNThevXrwuCIAiFhYXC6NGjhbi4OKFx48ZC69athbvuukv44IMPxM8999xzwk033SS0aNFCCAsLEzp37iz87//+r1BTUyNuIzVEvqqqSnj88ceFVq1aCU2bNhXuvvtu4cyZM5LD0D/77DOha9euQkhIiNCpUyfhnXfekdznxx9/LGRkZAhNmjQRkpOTheeff1548803BQBCUVGRuJ0rw+6dTSkgt79z584J48aNE6KiooSQkBAhPT1dWLVqVb3P7tmzR+jRo4cQEhLCIfhEbjAIglW9MBEREVEAYh8iIiIiCngMiIiIiCjgMSAiIiKigKdpQLRs2TJkZGQgIiICERERyMrKwqZNm8T3+/XrJ67cbPk3efJkm30UFxcjNzcX4eHhiImJwaxZs3D9+nWbbXbs2IEbb7wRoaGhaN++PVavXu2LwyMiIiI/oemw+zZt2mDx4sXo0KEDBEHAW2+9hXvvvReHDh3CDTfcAACYNGkSFi5cKH7GMt8GUDfDbG5uLuLi4rBnzx6UlJRg9OjRaNy4MRYtWgQAKCoqQm5uLiZPnox3330X27Ztw8SJExEfHy87cy4REREFFt2NMouMjMQLL7yACRMmoF+/fujWrZvkJGsAsGnTJtx11104e/YsYmNjAQDLly/HnDlzcOHCBYSEhGDOnDnYuHEjjh49Kn5u5MiRKCsrw+bNm31xSERERKRzupmYsba2Fu+//z4qKiqQlZUlvv7uu+/inXfeQVxcHO6++27Mnz9frCXKz89Henq6GAwBQE5ODqZMmYJjx46he/fuyM/Pr7dkQE5OjsurYZvNZpw9exbNmzfnNPlERER+QhAE/PLLL0hISKi3ULI1zQOiI0eOICsrC1evXkWzZs2wfv16pKWlAQBGjRqFtm3bIiEhAYcPH8acOXNw4sQJrFu3DgBQWlpqEwwBEP8uLS11uE15eTmqqqoQFhYmma7q6mqbJQN++uknMV1ERETkX86cOYM2bdrIvq95QNSpUycUFBTAZDLhgw8+wJgxY7Bz506kpaXh4YcfFrdLT09HfHw8BgwYgMLCQqSmpno1XXl5eViwYEG918+cOYOIiAivfjcRERGpo7y8HImJieJSN3I0D4hCQkLQvn17AECPHj2wb98+vPTSS3j99dfrbXvzzTcDAE6ePInU1FTExcXh66+/ttnm3LlzAIC4uDjx/y2vWW8TEREhWzsEAPPmzcPMmTPFvy0n1DIijoiIiPyHs+4uupuHyGw2y65uXVBQAACIj48HAGRlZeHIkSM4f/68uM3WrVsREREhNm9lZWVh27ZtNvvZunWrTT8lKaGhoWLwwyCIiIioYdO0hmjevHkYMmQIkpKS8Msvv2DNmjXYsWMHtmzZgsLCQqxZswZ33nknWrVqhcOHD2PGjBnIzs5GRkYGgLpVqdPS0vDQQw9hyZIlKC0txVNPPYWpU6ciNDQUADB58mT8/e9/x+zZszF+/Hhs374d//rXv7Bx40YtD52IiIh0RNOA6Pz58xg9ejRKSkpgNBqRkZGBLVu24I477sCZM2fwn//8B0uXLkVFRQUSExMxfPhwPPXUU+Lng4ODsWHDBkyZMgVZWVlo2rQpxowZYzNvUUpKCjZu3IgZM2bgpZdeQps2bbBy5UrOQUREREQi3c1DpFfl5eUwGo0wmUxsPiMiamBqa2tx7do1rZNBbmjcuDGCg4Nl31dafmveqZqIiEgrgiCgtLQUZWVlWieFPNCiRQvExcV5NE8gAyIiIgpYlmAoJiYG4eHhnHjXzwiCgMrKSnFwlWXQlTsYEBERUUCqra0Vg6FWrVppnRxyk2UKnfPnzyMmJsZh85kjuht2T0RE5AuWPkPWi4aTf7L8hp70A2NAREREAY3NZP5Pjd+QAREREREFPAZEREREBKCupuWjjz7SOhk2duzYAYPB4PWRgAyIGpASUxX2FF5EialK66QQEZGOPfvss+jWrZvWydAVjjJrINbuK8a8dUdgFoAgA5A3LB0jeiVpnSwiIiK/wBqiBqDEVCUGQwBgFoAn1x1lTRERUQNlNpuRl5eHlJQUhIWFITMzEx988AGA35qYtm3bhp49eyI8PBy33norTpw4AQBYvXo1FixYgG+++QYGgwEGgwGrV68W933x4kXcd999CA8PR4cOHfDxxx8rSpPle7ds2YLu3bsjLCwMt99+O86fP49NmzahS5cuiIiIwKhRo1BZWSl+rrq6Go8//jhiYmLQpEkT9OnTB/v27VPvZCnEgKgBKLpYIQZDFrWCgFMXK6U/QEREqvNlt4W8vDy8/fbbWL58OY4dO4YZM2bg97//PXbu3Clu86c//Ql//etfsX//fjRq1Ajjx48HAIwYMQJ//OMfccMNN6CkpAQlJSUYMWKE+LkFCxbgd7/7HQ4fPow777wTDz74IC5duqQ4bc8++yz+/ve/Y8+ePThz5gx+97vfYenSpVizZg02btyIzz77DK+88oq4/ezZs/Hhhx/irbfewsGDB9G+fXvk5OS49J1qYEDUAKRENUWQ3YjDYIMByVGcW4OIyBfW7itG78XbMWrFXvRevB1r9xV77buqq6uxaNEivPnmm8jJyUG7du0wduxY/P73v8frr78ubve///u/6Nu3L9LS0jB37lzs2bMHV69eRVhYGJo1a4ZGjRohLi4OcXFx4uSGADB27Fg88MADaN++PRYtWoQrV67g66+/Vpy+5557Dr1790b37t0xYcIE7Ny5E8uWLUP37t1x22234f7778fnn38OAKioqMCyZcvwwgsvYMiQIUhLS8OKFSsQFhaGN954Q72TpgADogYg3hiGvGHpCP51HoZggwGLhnVFvDHMySeJiMhTvu62cPLkSVRWVuKOO+5As2bNxH9vv/02CgsLxe0yMjLE/7YsaWFZ4sIR6881bdoUERERij4n9fnY2FiEh4ejXbt2Nq9Z9ldYWIhr166hd+/e4vuNGzfGTTfdhO+++07xd6qBnaobiBG9kpDdMRqnLlYiOSqcwRARkY846rbgjXvxlStXAAAbN25E69atbd4LDQ0Vg6LGjRuLr1smLjSbzU73b/05y2eVfE7q8waDweP9+QoDogYk3hjGQIiIyMcs3RasgyJvdltIS0tDaGgoiouL0bdv33rvW9cSyQkJCUFtba03kueS1NRUhISE4Msvv0Tbtm0B1C2/sW/fPkyfPt2naWFARERE5AFLt4Un1x1FrSB4vdtC8+bN8cQTT2DGjBkwm83o06cPTCYTvvzyS0RERIiBhSPJyckoKipCQUEB2rRpg+bNmyM0NNQr6XWkadOmmDJlCmbNmoXIyEgkJSVhyZIlqKysxIQJE3yaFgZEREREHvJ1t4U///nPiI6ORl5eHn744Qe0aNECN954I5588klFzVHDhw/HunXr0L9/f5SVlWHVqlUYO3asV9MsZ/HixTCbzXjooYfwyy+/oGfPntiyZQtatmzp03QYBEEQnG9G5eXlMBqNMJlMiIiI0Do5RETkoatXr6KoqAgpKSlo0qSJ1skhDzj6LZWW3xxlRkRERAGPARERERE5NXnyZJth/tb/Jk+erHXyPMY+REREROTUwoUL8cQTT0i+1xC6kjAgIiIiIqdiYmIQExOjdTK8hk1mREREFPAYEBERUUDT46zJ5Bo1fkM2mRERUUAKCQlBUFAQzp49i+joaISEhIhLXJB/EAQBNTU1uHDhAoKCghASEuL2vhgQERFRQAoKCkJKSgpKSkpw9uxZrZNDHggPD0dSUhKCgtxv+GJAREREASskJARJSUm4fv26Ltb2ItcFBwejUaNGHtfuMSAiIqKAZlmR3X5Vdgos7FRNREREAY8BEREREQU8BkREREQU8BgQERERUcBjQEREREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHA0zQgWrZsGTIyMhAREYGIiAhkZWVh06ZN4vtXr17F1KlT0apVKzRr1gzDhw/HuXPnbPZRXFyM3NxchIeHIyYmBrNmzcL169dtttmxYwduvPFGhIaGon379li9erUvDo+IiIj8hKYBUZs2bbB48WIcOHAA+/fvx+233457770Xx44dAwDMmDEDn3zyCd5//33s3LkTZ8+exbBhw8TP19bWIjc3FzU1NdizZw/eeustrF69Gk8//bS4TVFREXJzc9G/f38UFBRg+vTpmDhxIrZs2eLz4yUiIiJ9MgiCIGidCGuRkZF44YUXcP/99yM6Ohpr1qzB/fffDwA4fvw4unTpgvz8fNxyyy3YtGkT7rrrLpw9exaxsbEAgOXLl2POnDm4cOECQkJCMGfOHGzcuBFHjx4Vv2PkyJEoKyvD5s2bFaervLwcRqMRJpMJERER6h40EREReYXS8ls3fYhqa2vxz3/+ExUVFcjKysKBAwdw7do1DBw4UNymc+fOSEpKQn5+PgAgPz8f6enpYjAEADk5OSgvLxdrmfLz8232YdnGsg851dXVKC8vt/lHREREDZPmAdGRI0fQrFkzhIaGYvLkyVi/fj3S0tJQWlqKkJAQtGjRwmb72NhYlJaWAgBKS0ttgiHL+5b3HG1TXl6Oqqoq2XTl5eXBaDSK/xITEz09VCIiItIpzQOiTp06oaCgAHv37sWUKVMwZswYfPvtt1onC/PmzYPJZBL/nTlzRuskERERkZc00joBISEhaN++PQCgR48e2LdvH1566SWMGDECNTU1KCsrs6klOnfuHOLi4gAAcXFx+Prrr232ZxmFZr2N/ci0c+fOISIiAmFhYbLpCg0NRWhoqMfHR0RERPqneQ2RPbPZjOrqavTo0QONGzfGtm3bxPdOnDiB4uJiZGVlAQCysrJw5MgRnD9/Xtxm69atiIiIQFpamriN9T4s21j2QURERKRpDdG8efMwZMgQJCUl4ZdffsGaNWuwY8cObNmyBUajERMmTMDMmTMRGRmJiIgIPPbYY8jKysItt9wCABg0aBDS0tLw0EMPYcmSJSgtLcVTTz2FqVOnirU7kydPxt///nfMnj0b48ePx/bt2/Gvf/0LGzdu1PLQiYiISEc0DYjOnz+P0aNHo6SkBEajERkZGdiyZQvuuOMOAMCLL76IoKAgDB8+HNXV1cjJycFrr70mfj44OBgbNmzAlClTkJWVhaZNm2LMmDFYuHChuE1KSgo2btyIGTNm4KWXXkKbNm2wcuVK5OTk+Px4iYiISJ90Nw+RXnEeIiIiIv/jd/MQEREREWmFAREREREFPAZEREREFPAYEBEpUGKqwp7Ciygxyc9uTkRE/kvziRmJ9G7tvmLMW3cEZgEIMgB5w9IxoleS1skiIiIVsYaIyIESU5UYDAGAWQCeXHeUNUVERA0MAyIiB4ouVojBkEWtIODUxUptEkRERF7BgIjIgZSopggy2L4WbDAgOSpcmwQREZFXMCAiciDeGIa8YekINtRFRcEGAxYN64p4o/zCwERE5H/YqZrIiRG9kpDdMRqnLlYiOSqcwRARUQPEgIhIgXhjGAMhIqIGjE1mREREFPAYEBEREVHAY0BEREREAY8BEREREQU8BkREREQU8BgQERERUcBjQEREREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAY8BEZHGSkxV2FN4ESWmKq2TQkQUsBppnQCiQLZ2XzHmrTsCswAEGYC8YekY0StJ62QREQUc1hARaaTEVCUGQwBgFoAn1x1lTRERkQYYEBFppOhihRgMWdQKAk5drNQmQUREAYwBEZFGUqKaIshg+1qwwYDkqHBtEkREFMAYEBFpJN4Yhrxh6Qg21EVFwQYDFg3rinhjmMYpIyIKPOxUTaShEb2SkN0xGqcuViI5KpzBEBGRRhgQEWks3hjGQIiISGNsMiMiIqKAx4CIiIiIAh4DIiIiIgp4DIiIiIgo4DEgIiIiooCnaUCUl5eHXr16oXnz5oiJicHQoUNx4sQJm2369esHg8Fg82/y5Mk22xQXFyM3Nxfh4eGIiYnBrFmzcP36dZttduzYgRtvvBGhoaFo3749Vq9e7e3DIyIiIj+haUC0c+dOTJ06FV999RW2bt2Ka9euYdCgQaioqLDZbtKkSSgpKRH/LVmyRHyvtrYWubm5qKmpwZ49e/DWW29h9erVePrpp8VtioqKkJubi/79+6OgoADTp0/HxIkTsWXLFp8dKxEREemXQRAEwflmvnHhwgXExMRg586dyM7OBlBXQ9StWzcsXbpU8jObNm3CXXfdhbNnzyI2NhYAsHz5csyZMwcXLlxASEgI5syZg40bN+Lo0aPi50aOHImysjJs3rxZUdrKy8thNBphMpkQERHh2YESERGRTygtv3XVh8hkMgEAIiMjbV5/9913ERUVha5du2LevHmorPxt8cv8/Hykp6eLwRAA5OTkoLy8HMeOHRO3GThwoM0+c3JykJ+fL5uW6upqlJeX2/wjIiKihkk3M1WbzWZMnz4dvXv3RteuXcXXR40ahbZt2yIhIQGHDx/GnDlzcOLECaxbtw4AUFpaahMMARD/Li0tdbhNeXk5qqqqEBZWf5bgvLw8LFiwQNVjJCIiIn3STUA0depUHD16FLt377Z5/eGHHxb/Oz09HfHx8RgwYAAKCwuRmprqtfTMmzcPM2fOFP8uLy9HYmKi176PiIiItKOLJrNp06Zhw4YN+Pzzz9GmTRuH2958880AgJMnTwIA4uLicO7cOZttLH/HxcU53CYiIkKydggAQkNDERERYfOPiIiIGiZNAyJBEDBt2jSsX78e27dvR0pKitPPFBQUAADi4+MBAFlZWThy5AjOnz8vbrN161ZEREQgLS1N3Gbbtm02+9m6dSuysrJUOhIiIiLyZ5oGRFOnTsU777yDNWvWoHnz5igtLUVpaSmqqqoAAIWFhfjzn/+MAwcO4NSpU/j4448xevRoZGdnIyMjAwAwaNAgpKWl4aGHHsI333yDLVu24KmnnsLUqVMRGhoKAJg8eTJ++OEHzJ49G8ePH8drr72Gf/3rX5gxY4Zmx05ERET6oemwe4PBIPn6qlWrMHbsWJw5cwa///3vcfToUVRUVCAxMRH33XcfnnrqKZsmrNOnT2PKlCnYsWMHmjZtijFjxmDx4sVo1Oi3LlI7duzAjBkz8O2336JNmzaYP38+xo4dqzitHHZPRETkf5SW37qah0jPGBARERH5H7+ch4iIiIhICwyIiIiIKOAxICIiIqKAx4CIiIiIAh4DIiIiIgp4DIiIqJ4SUxX2FF5EialK66QQEfmEbtYyIyJ9WLuvGPPWHYFZAIIMQN6wdIzolaR1soiIvIo1REQkKjFVicEQAJgF4Ml1R1lTREQNHgMiIhIVXawQgyGLWkHAqYuV2iSIiMhHGBARkSglqimC7FbUCTYYkBwVrk2CiIh8hAEREYnijWHIG5aO4F/XGQw2GLBoWFfEG8M0ThkRkXexUzUR2RjRKwnZHaNx6mIlkqPCGQwRUUBgQERE9cQbwxgIEVFAYZMZERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAY8BEQWcElMV9hRe5AruREQk4kzVFFDW7ivGvHVHYBaAIAOQNywdI3olaZ0sIiLSGGuIKGCUmKrEYAgAzALw5LqjrCkiIiIGRBQ4ii5WiMGQRa0g4NTFSm0SREREusGAiAJGSlRTBBlsXws2GJAcFa5NgoiISDcYEFHAiDeGIW9YOoINdVFRsMGARcO6clV3IiJip2oKLCN6JSG7YzROXaxEclQ4gyEiIgLAgIgCULwxjIEQERHZYJMZERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAY8BEREREQU8BkREREQU8DQNiPLy8tCrVy80b94cMTExGDp0KE6cOGGzzdWrVzF16lS0atUKzZo1w/Dhw3Hu3DmbbYqLi5Gbm4vw8HDExMRg1qxZuH79us02O3bswI033ojQ0FC0b98eq1ev9vbhERERkZ/QNCDauXMnpk6diq+++gpbt27FtWvXMGjQIFRUVIjbzJgxA5988gnef/997Ny5E2fPnsWwYcPE92tra5Gbm4uamhrs2bMHb731FlavXo2nn35a3KaoqAi5ubno378/CgoKMH36dEycOBFbtmzx6fESERGRPhkEQRC0ToTFhQsXEBMTg507dyI7OxsmkwnR0dFYs2YN7r//fgDA8ePH0aVLF+Tn5+OWW27Bpk2bcNddd+Hs2bOIjY0FACxfvhxz5szBhQsXEBISgjlz5mDjxo04evSo+F0jR45EWVkZNm/erCht5eXlMBqNMJlMiIiIUP/giYiISHVKy29d9SEymUwAgMjISADAgQMHcO3aNQwcOFDcpnPnzkhKSkJ+fj4AID8/H+np6WIwBAA5OTkoLy/HsWPHxG2s92HZxrIPIiIiCmyNtE6AhdlsxvTp09G7d2907doVAFBaWoqQkBC0aNHCZtvY2FiUlpaK21gHQ5b3Le852qa8vBxVVVUICwurl57q6mpUV1eLf5eXl3t2gERERKRbuqkhmjp1Ko4ePYp//vOfWicFQF2Hb6PRKP5LTEzUOklERETkJboIiKZNm4YNGzbg888/R5s2bcTX4+LiUFNTg7KyMpvtz507h7i4OHEb+1Fnlr+dbRMRESFZOwQA8+bNg8lkEv+dOXPGo2MkIiIi/dI0IBIEAdOmTcP69euxfft2pKSk2Lzfo0cPNG7cGNu2bRNfO3HiBIqLi5GVlQUAyMrKwpEjR3D+/Hlxm61btyIiIgJpaWniNtb7sGxj2YeU0NBQRERE2PwjIiKihknxKDNX+tAoDR4effRRrFmzBv/+97/RqVMn8XWj0SjW3EyZMgWffvopVq9ejYiICDz22GMAgD179gCoG3bfrVs3JCQkYMmSJSgtLcVDDz2EiRMnYtGiRQDqht137doVU6dOxfjx47F9+3Y8/vjj2LhxI3JychSllaPMiIiI/I/S8ltxQBQUFASDweBwG0EQYDAYUFtbqyiRcvtbtWoVxo4dC6BuYsY//vGPeO+991BdXY2cnBy89tprYnMYAJw+fRpTpkzBjh070LRpU4wZMwaLFy9Go0a/9RnfsWMHZsyYgW+//RZt2rTB/Pnzxe9QggERERGR/1E9INq5c6fiL+/bt6/ibf0FAyIiIiL/o7T8VjzsviEGOURERESAB/MQlZWV4Y033sB3330HALjhhhswfvx4GI1G1RJHRERE5AtujTLbv38/UlNT8eKLL+LSpUu4dOkS/va3vyE1NRUHDx5UO41EREREXuXWWma33XYb2rdvjxUrVogdl69fv46JEyfihx9+wK5du1RPqNbYh4iIiMj/qN6p2lpYWBgOHTqEzp0727z+7bffomfPnqisrHQ9xTrHgIiIiMj/eHVx14iICBQXF9d7/cyZM2jevLk7uyQiklViqsKewosoMVVpnRQiaqDc6lQ9YsQITJgwAX/5y19w6623AgC+/PJLzJo1Cw888ICqCSSiwLZ2XzHmrTsCswAEGYC8YekY0StJ62QRUQPjVkD0l7/8BQaDAaNHj8b169cBAI0bN8aUKVOwePFiVRNIRIGrxFQlBkMAYBaAJ9cdRXbHaMQbpdchJCJyh1sBUUhICF566SXk5eWhsLAQAJCamorw8HBVE0dEga3oYoUYDFnUCgJOXaxkQEREqnJ7HiIACA8PR3p6ulppISKykRLVFEEG2ARFwQYDkqP48EVE6nIrILp69SpeeeUVfP755zh//jzMZrPN+5yLiIjUEG8MQ96wdDy57ihqBQHBBgMWDevK2iEiUp1bAdGECRPw2Wef4f7778dNN93kdNFXIiJ3jeiVhOyO0Th1sRLJUeEMhojIK9wKiDZs2IBPP/0UvXv3Vjs9RET1xBvDGAgRkVe5NQ9R69atOd8QERERNRhuBUR//etfMWfOHJw+fVrt9BCRBjjxIREFOreazHr27ImrV6+iXbt2CA8PR+PGjW3ev3TpkiqJIyLv48SHRERuBkQPPPAAfvrpJyxatAixsbHsVE3kpzjxIRFRHbcCoj179iA/Px+ZmZlqp4eIfIgTHxIR1XGrD1Hnzp1RVcW+BkT+zjLxoTVOfEhEgcitgGjx4sX44x//iB07duDnn39GeXm5zT8ikqa3zsuWiQ+Df2325sSHRBSoDIIgCM43sxUUVBdH2fcdEgQBBoMBtbW16qROR8rLy2E0GmEymRAREaF1csgP6bnzcompihMfElGDpLT8dqsP0eeff+52wogCkd47LwfKxIclpioUXaxASlTTgDheIlLOrYCob9++irZ79NFHsXDhQkRFRbnzNUQNBjsva0/PNXREpD23+hAp9c4777BPERHYeVlrcjV0eunLRUTa82pA5Eb3JKIGiZ2XteWoho6ICHCzyYyIXMdV27VjqaGzDopYQ0dE1rxaQ0REtuKNYchKbcVgyMdYQ0dEzrCGiIgCAmvoiMgRBkREpEveGCIfKNMLEJHrvBoQ/f73v+ckhkTkMg6RJyJfc2umagAoKyvD119/jfPnz8NsNtu8N3r0aFUSpyecqZrIN0pMVei9eHu9DtC75/Zn7Q4RucyrM1V/8sknePDBB3HlyhVERETYLOFhMBgaZEBERL7BSSyJSAtujTL74x//iPHjx+PKlSsoKyvD5cuXxX+XLl1SO41EFEA4iSURacGtgOinn37C448/jvBw3qCItFBiqsKewosNcqZlDpEnIi241WSWk5OD/fv3o127dmqnh4icCIQOxxwiT0S+pjgg+vjjj8X/zs3NxaxZs/Dtt98iPT0djRs3ttn2nnvuUS+FRCSSW5Mru2N0gwsaOESeiHxJcUA0dOjQeq8tXLiw3msGgwG1tbUeJYqIpLHDMRGRdygOiOyH1hOR73FNLiIi73CrU/Xbb7+N6urqeq/X1NTg7bff9jhRRCSNHY6JiLzDrYkZg4ODUVJSgpiYGJvXf/75Z8TExDTIJjNOzEh6UmKqYodjIiIFlJbfbtUQCYJgMxmjxY8//gij0ah4P7t27cLdd9+NhIQEGAwGfPTRRzbvjx07FgaDwebf4MGDbba5dOkSHnzwQURERKBFixaYMGECrly5YrPN4cOHcdttt6FJkyZITEzEkiVLlB+sH2rIQ7KpTrwxDFmprRgMERGpxKVh9927dxcDkwEDBqBRo98+Xltbi6KionoBiyMVFRXIzMzE+PHjMWzYMMltBg8ejFWrVol/h4aG2rz/4IMPoqSkBFu3bsW1a9cwbtw4PPzww1izZg2Aushw0KBBGDhwIJYvX44jR45g/PjxaNGiBR5++GFXDt8vBMKQbCIiIrW5FBBZRpoVFBQgJycHzZo1E98LCQlBcnIyhg8frnh/Q4YMwZAhQxxuExoairi4OMn3vvvuO2zevBn79u1Dz549AQCvvPIK7rzzTvzlL39BQkIC3n33XdTU1ODNN99ESEgIbrjhBhQUFOBvf/tbgwuIAmlINhERkZpcCoieeeYZAEBycjJGjBiBJk2aeCVR1nbs2IGYmBi0bNkSt99+O5577jm0atUKAJCfn48WLVqIwRAADBw4EEFBQdi7dy/uu+8+5OfnIzs7GyEhIeI2OTk5eP7553H58mW0bNlS8nurq6ttOo6Xl5d76QjVwyHZRERE7nFrpuoxY8YAqBtVJrXafVKSOk00gwcPxrBhw5CSkoLCwkI8+eSTGDJkCPLz8xEcHIzS0tJ6HbsbNWqEyMhIlJaWAgBKS0uRkpJis01sbKz4nlxAlJeXhwULFqhyHL7CIdlEDU+JqQpFFyuQEtWUDzZEXuRWQPT9999j/Pjx2LNnj83rls7Wao0yGzlypPjf6enpyMjIQGpqKnbs2IEBAwao8h1y5s2bh5kzZ4p/l5eXIzEx0avf6SnLkOwn1x1FrSBwSDaRn2OfQCLfcSsgGjt2LBo1aoQNGzYgPj5ecsSZN7Rr1w5RUVE4efIkBgwYgLi4OJw/f95mm+vXr+PSpUtiv6O4uDicO3fOZhvL33J9k4C6vkv2Hbj9AdeAImoY2CeQyLfcCogKCgpw4MABdO7cWe30OPTjjz/i559/Rnx8PAAgKysLZWVlOHDgAHr06AEA2L59O8xmM26++WZxmz/96U+4du2auOba1q1b0alTJ9nmMn/HNaCI/B/7BBL5llvzEKWlpeHixYsef/mVK1dQUFCAgoICAEBRUREKCgpQXFyMK1euYNasWfjqq69w6tQpbNu2Dffeey/at2+PnJwcAECXLl0wePBgTJo0CV9//TW+/PJLTJs2DSNHjkRCQgIAYNSoUQgJCcGECRNw7NgxrF27Fi+99JJNc1hDx3mJiPyPpU+gNfYJJPIet2aq3r59O5566iksWrRIcrV7pTM579ixA/3796/3+pgxY7Bs2TIMHToUhw4dQllZGRISEjBo0CD8+c9/FjtFA3UTM06bNg2ffPIJgoKCMHz4cLz88ss2UwIcPnwYU6dOxb59+xAVFYXHHnsMc+bMcemY/XWmavZBIPJfa/cV1+sTyOuXyDVKy2+3AqKgoN8qlqz7D6ndqVpP/DEgKjFVoffi7fVGne2e259V7kR+gsu0EHlGafntVh+izz//3O2Eke+wDwKR/2OfQCLfcKsPUd++fREUFIQVK1Zg7ty5aN++Pfr27Yvi4mIEBwernUZyE/sgEBERKeNWQPThhx8iJycHYWFhOHTokDijs8lkwqJFi1RNILnPMi9R8K/NmpyXiIiISJpbfYi6d++OGTNmYPTo0WjevDm++eYbtGvXDocOHcKQIUPEWaIbEn/sQ2TBPghERBSovNqH6MSJE8jOzq73utFoRFlZmTu7JC9iHwQiIiLH3Goyi4uLw8mTJ+u9vnv3brRr187jRBERERH5klsB0aRJk/CHP/wBe/fuhcFgwNmzZ/Huu+/iiSeewJQpU9ROIxEREZFXudVkNnfuXJjNZgwYMACVlZXIzs5GaGgonnjiCTz22GNqp5GIiIjIq9zqVG1RU1ODkydP4sqVK0hLS7OZHbqh8edO1URERIHKq52qLUJCQpCWlubJLoiIyAtKTFUouliBlKimHFRBpIBHAREREekP1zAkcp1bnarJO9xdlZ6r2RORRYmpSgyGAMAsAE+uO8r7A5ETrCHSCXef6JR8zlHVOavV9YG/A6mFaxgSuYcBkQ7IPdFld4x2eANT8jlHAROr1fWBvwOpybKGoXVQxDUMiZxjk5kOOHqi8+RzjqrOWa2uD/wdSG1cw5DIPawh0gF3n+icfc5RwCRAYLW6DrB5g7xhRK8kZHeM1uUahmweJr1iDZEOuPtE5+xzloDJmiVgcvQe+Q5/B/KWeGMYslJb6SroWLuvGL0Xb8eoFXvRe/F2rN1XrHWSiEQeTcwYSHwxMaO7q9I7+tzafcV4ct1R1AqCGDBZ9yGSe09vGvJTpT/9DkTuKjFVoffi7fVqtHfP7d/grmnSF6XlNwMihfx5pmpHAZO7QZgvBUKnY3/4HYg8safwIkat2Fvv9fcm3YKs1FYapIgChU9mqib/EG8Mky1kHb2nB+6OwPM3ev8diDzF0W+kd+xDRLrm7gg8ItIXjn4jvWMNEekanyqJGg49j34jYg0R6RqfKokaFj2OfiMCWENEDuhlZBefKomIyNsYEJEkvY3sYqdjIiLyJjaZUT3fnLmMuR9yOQkiIgocDIjIxtp9xRj62h7YT07FkV1ERNSQMSAikWXOH6mpOjmyi4iIGjIGRCSSmvMHqMskHNlFREQNGTtVk0hqzp8gA7D+0VuRmdjSJ2nQy8g2IiIKLKwhIpHUnD95w9J9FgxxJWwiItIKa4jIhlZz/kitWTZv3RF0jmvus4CMAhNrJYkIYEBEErSY80eq/5JZAIa+ugeLhze81e1JH/Q23xYRaYdNZjpWYqrCnsKLDWb+H0fHY+m/ZE8A50Ai75CqlWReIwpcrCHSqYb25OrseCz9l6wLKAvLHEhsziA1SdVKMq8RBS7WEOlQQ3tyVXo8I3olYf2jt8K+oohzIJE3SNVKMq8RBS4GRDrk6MnVH7lyPJmJLbF4OFe3J++TGlXJvEYUuNhkpkNS8wH585Orq8fD1e3JV5jXiMiCNUQ61NCeXN05nnhjGLJSW/ntMZP/YF4jIkDjgGjXrl24++67kZCQAIPBgI8++sjmfUEQ8PTTTyM+Ph5hYWEYOHAgvv/+e5ttLl26hAcffBARERFo0aIFJkyYgCtXrthsc/jwYdx2221o0qQJEhMTsWTJEm8fmsdG9ErC7rn98d6kW7B7bn+/7lANNLzjISKihkXTgKiiogKZmZl49dVXJd9fsmQJXn75ZSxfvhx79+5F06ZNkZOTg6tXr4rbPPjggzh27Bi2bt2KDRs2YNeuXXj44YfF98vLyzFo0CC0bdsWBw4cwAsvvIBnn30W//d//+f141PC0VD0hvbk2tCOh4iI3FdiqsKGw2fxyTc/6WLQkEEQpNY29z2DwYD169dj6NChAOpqhxISEvDHP/4RTzzxBADAZDIhNjYWq1evxsiRI/Hdd98hLS0N+/btQ8+ePQEAmzdvxp133okff/wRCQkJWLZsGf70pz+htLQUISEhAIC5c+fio48+wvHjxxWnr7y8HEajESaTCREREaocs5Kh9ZxFl4iIGpq1+4ox98MjsAQgBsBrk/AqLb9124eoqKgIpaWlGDhwoPia0WjEzTffjPz8fABAfn4+WrRoIQZDADBw4EAEBQVh79694jbZ2dliMAQAOTk5OHHiBC5fviz7/dXV1SgvL7f5pyYlQ9H1vrZXQ5s4koiI3Ke0TLCUf9a1MQKAeR8e0bQ80e0os9LSUgBAbGyszeuxsbHie6WlpYiJibF5v1GjRoiMjLTZJiUlpd4+LO+1bCm9TlZeXh4WLFjg+YHIcDYpnFzAlN0xWvx805BgVNTUalJ71NAmjiQiIve5UiZIlX8AYAY0nRhVtwGR1ubNm4eZM2eKf5eXlyMxMVG1/Tsbii4XMK36sggrvyiyec/XAYmjYI3NekREgcXVMkGq/APqmqy0nF5Gt01mcXFxAIBz587ZvH7u3Dnxvbi4OJw/f97m/evXr+PSpUs220jtw/o7pISGhiIiIsLmn5qcDUWXmkU3yACs2FVULxP5eiZrTyeOZFMbEZF/cXTfdrVMsJR/BqsyzgAgb3i6pg/Vuq0hSklJQVxcHLZt24Zu3boBqKul2bt3L6ZMmQIAyMrKQllZGQ4cOIAePXoAALZv3w6z2Yybb75Z3OZPf/oTrl27hsaNGwMAtm7dik6dOsk2l/mKo0nh4o1huK97a3x48Cfxtd7to/DF9xcl9+XLNZg8mTiSTW1EtjhwgrRgne8ASP63JT86u2+7UyZYyr+Dpy9DEIAeyS01z/+aBkRXrlzByZMnxb+LiopQUFCAyMhIJCUlYfr06XjuuefQoUMHpKSkYP78+UhISBBHonXp0gWDBw/GpEmTsHz5cly7dg3Tpk3DyJEjkZCQAAAYNWoUFixYgAkTJmDOnDk4evQoXnrpJbz44otaHHI98cYwyUxQYqrC+kM/2by2WyYYAuoyqa+qGi3R/ZPrjqJWEBRPHMmmNiJbfEDwHQaev7HOd5ZKGgG2/23Jj9kdo53et90tE+KNYcjN0M9voWlAtH//fvTv31/829JnZ8yYMVi9ejVmz56NiooKPPzwwygrK0OfPn2wefNmNGnSRPzMu+++i2nTpmHAgAEICgrC8OHD8fLLL4vvG41GfPbZZ5g6dSp69OiBqKgoPP300zZzFemRVBWko/kRBAHY9d8LPruZurPkQUNbXZw3WPIEHxB8h4Hnb+zznf1ILwtLflw6MlPRfbshLIOjaUDUr18/OJoGyWAwYOHChVi4cKHsNpGRkVizZo3D78nIyMAXX3zhdjq1INfpTI4A399M5Wq35DSkNdp4gyVPNbQHBL1i4GlLboSXlFpBQJDBoPi+7WqZoDe67VQd6Ow7XQcZfqvOlONKx2YtNJQ12pTMIUUNmxoDA6QGTvjrA4KeeToIRO9czYtS+U5OsMGAG9u2dPu+7W8DaHTbqZrqV0Hu+u8FsY02yFDXTGZ9nfvDzdTfq1UtU83zyT5wqVU76G6/C3JNQ6qZtudOXrTPdwYDgF/LEuv/ts6P1vft8JAgVNTUosRU5TCv+mMtum6W7tA7byzd4Y4SU5VkgGTJvHrPcP7M+gK3F2wwYPfc/izMGrgSUxV6L95er3D15Le3vqaZf7xj7b7iBnev9DQvWuc7AJL/bb8fpUGON64TTygtv1lD5Ges22j1UtsSCJ2L7ZvJrPHJPnB4o9+Pv/e78Ad6uVcqofR+6kpelNqnfb6T+2/rfSjti+Wv/eMYEPk5rW+m/lgt6g65jojzc7vgzox4XV/kpJ6G3PzS0Gl9r1TClfup0ryo1j3alSDHX68Tdqomt1j60sz9MDA6F8t1gNUyGPK3DosNQUMZGEDas79+XR2soSQvqjkAxJVBAP56nbCGiFzmqC+NVtWi3m6281UHWKXHESg1c3rkT80vpE9S129iZLjLzUzO8qKaTVeu3gP98TphQNSAeSNIcNSXBtCmWtRXwYG3L3BXOixyXhVt+UPzC+mT3PW77tEsl5qZrO/vWamtJLdRu+nK1Xugv10nbDJroNbuK0bvxdsxasVe9F68HWv3FauyX0eTemlRLerrOYHijWHISm3llZohpcfR0OdVIWrI5K7fyhqz4mYmpfd3bzRduXoP9KemfdYQNUDerEGQeuIIMgAvj+wuuzifJzVVzj7rr6MZ7AVCh0WihsSVxVGtObp+s1JbOa2BcfX+7s2abWf3Z39r2mdA1AB5M0iQa0e+KzNBcntPLghHn7VciE1Dgv0mOHB083AlyOGEfkTacmVxVPv7nbPr11kzkzv3d280Xdnfnyf0ScH4Pini9/hj0z4DIj/hSi2Lt2sQlD5xeHJBSH123odHkN0xGrv+e8HmQryve2t8dOis14IDNfpiOQsMG3KHxUCYp4oaDmf51dXFUaXud55cv3qoIZa6P6/4oggrvyjC4uF19zZ/rL1nQOQHXK1l8UUNgtQTh/2NxJMLQuqzZgCvbDuJf+4rtrkQPzp0FusezcKZS1WAAejRtqWHR/cbNap8lQaGDbHDor9VmVNgU5JfXV0cVe5+5+71q4caYrlzYL3IuB4CN1cxINI5d2tZnBWucu3fataAZHeMdvuCSIlqil+X1bFhHQxZ1AoCNh4uxcrdP6ha8KpV5etKYOgPQY5S/lhlTg2fo74/SvKrVEEvx1sBgNY1xI7OgeXelpXaSvPAzVUMiHTOk1oWucJVrv1b7RqQ3XP7u31BxBvDMOm2FPzfF0U2r1vSbH1KggAxGLL+fk8LXrWqfL35pKTn5ih/rDKnhs3RvW9CnxTJ/Hrw9GW0bPrbNWZfQ2PN8Ov/CELdNT57SCcUXawAIL0chie0fHiynAOpKVis721aB26uYkCkc2oXpo7av71RA+LJBTGuTwpW7i6qd+yzB3fCks0nxCBrQp/keoGTGgWvWufeW1Xcem+O8scqc2q4nN373thdVO9hy2AApq05VO+BcUSvJJRVXcPiTcch/Hr9TezTDuP6JAOoWxz18I9leH7Tca9dn1o/DFnu7au+LMLKXUUwQ3pYvz/VejMg0jm1C1Nn7d/eqAFRu618RK8k3NMtwWZ1ZqnAyVnBK3dDsX5drXOv9pOSPzRH6aGvA5GFs3ufWQAezk7BG1+cQq0gIOjXmh7B6n3LNQYAz/8aDFnee2N3Ecb1SRbz94Mrv3Lp+nQlwNHLw1C8MQxP3pmGcb1TcODUZdX7cPoaAyI/oGZhKtc3x0JPNSCA/LHbB1mufr/cDUXq9d1z+6ty7tV8UvKX5ii9VJlr/TRN2nPW9yfYYMC43ikY1zsFpy5W4uKVq3jsvQKbbSzXmADB4fXn6vXpSoCjx4ch+5G/equtVooBkZ9QqzD9y5YT9YIhS4AUBPi0BkRpIaXk2Ef0SkLnuObYd+oyeiW3RGai/FOK3A2lc1xz2b5QclPja8WfmqO0rjLXy9M0acv+wc2+v4/9XEAlpiqH15ij91y5Pl0NcPT2MKQ0/f7wUMKAyE+5k7m+OXMZHx78qd7r4rVlqPeWS1wp+NQupFzZn9wNZd+py7q60TjC5ihl9Pg0Tdqxf3ADIPsQ5+wacza5otLr09UAR28PQ0rS7y8PJQyI/JC7mevrU5ccvu+rwsJZIaU02LOerVquxqeiprbefo78ZKq3r2CDASkyN5TwEH0u+aeX5ig909vTdENlf816c7keT9k/uLk7fYmz608q+NpTeLHecbka4OjtYchZ+v3poYQBkZ/xJHPdlBzpdP++KCwcFVJK26Lth8/aNwPWCgKGvrqn3uiQElMVnt90vN7+Zg/uhMqaWsn0VtaY3TtQH9C6OUrv9PY07a8cBSn2D2j3dW+N9Yd+Eq/NuUM645G+qYq+R481CY6uMWfXn+V9R8flToCjp4chZ+n3p4cSBkR+xpPMlZnYEsNvbC3ZbGbhi8JCrpAKDwlS3BYtN3zWmtToELmRJj9XVOP5zfUDJS0LT39oc9c7vT1N+yNnawraX7PW9xcBQN6m44ABeCTbcVDkTzUJFkquUSXH5U6A487DkLfuKY7S708PJQyI/Iynmeuvv+uG0Vltsf/UZfRMbonjpb/4vLCQK6QqamoVBXtyQY3lvEiNJLHsR+r8BRmAFbuK6gVWnnQy95SnT8rWzYlSzYaBRElho2ZB0ZACWWeFudJlLJ7fdBz3ZCY4PB/+VJMAOF/c1ELpcalR2+tKTZ7atW9y6fenhxIGRH5GjcyVmfjbKKzMxJaaVL1KFVLORnUAdRf8pYqaes1kwQYD1j2ahcoaM8JDgnDfa3sk9yN1/sb3ScYKu4kdAeCVUd2Rm5Fg85ovCjtPn5Stb3wWeml+0IqjwkbNgkKPTT6Aa/nWeltnhbnSZSzMApwGNv5Uk6BkcVMLXx2XqzV5vqx901MTnyMMiPyQ2plLq34oUp0bHQV79v2GLEGRZTtLkFdiqsKEPil449fJGu33I9XZ8Q2JiR1vtJtgzFeFnSdPyvY3Pgu1boANqfYDULeg0LrQsaTB/vdxJd/abztncGenk67aX7ODbojFpqOlNvtVEgD4oiZBrfyrZHFTd0acucudmjxf1r75y32DAZGfaqidaeWCPal+Q0EG4JWR3dEjuaVs0PRwdt1Ea1JDaq1fc3bD8rSwc+WG4MkTpaMmDE9vgHIL+PrDjU6OmgWFs325Wktz4PRlCIKAnsmRipr55H4fpflWKo8v2XwCc4Z0xpJNJ2SvDalr9vVdheKyFa4EAK487LlayKr5QKNkcVNXRqR5yp2aPF/Vvum11lQKAyKdUnMYq17JHZNUsCd1wZsFoLT8qs3+7IOmN744hXG9U5ymxdkNy5OC01lVtv058OSJ0tGNWs018MwCMPfDIzBY9dvy1Y3O2bUgt5q51LZqFhRy0zkkR4W7XEsz98MjYpOwAcDcOzsjvbVRNviZM6SzGIAAvwU+S0dmKs63cnk8o3ULp7O121+zj2Sn4p7MBLcCACUPe64WsmrX3lmuUWeLm7p6XO5SsnySFv149FBr6goGRDrkaBir3iNspVy9ockV9M9t/A6LPv0OecPSkRgZ7tHTvqMblrsFZ4mpyqZws74hOJpiwN0nSvsbn3Va1V4DTwBs1nJSu8bMneYfR6uZS+UxRwWFqzU6ctM5AFA0T1aJqQr7T13C3HVHbPrHCQDyPq3btwHAo/1SsWxnoc3+rIMhi7r1uAyK862jPO5OYe6tAMDVQrbEVIUNh8+q3mSkdHFTX1AS8GjRj0frpjpXMSDSGWfDWPUeYTtjaQqQCxLkjkmuoLf+/LpHs7xWLezuE9abu+uPXqsVBBw4ddnpTd3dAsX6xhceEoTKGrMqa+A56zyrRo2Zo22cNf84W81cLo9JFRSuBuxyTZUZbVrIFgpDX9sjrpRu/dDjiADg1R2F9V63BIDWH7f0g1Oab7WqRXCVK4Ws1AADCzXuDfHG3xY31brDsJKAx9ddLfypozzAgEh3lAxj1XOE7Yijm5OSY7Jc8BsPl+C5jd/V+3xljdnmhh4EYEKfZNXSn90xGktHZiLo14JGSa3BG7uL6r0eBAAOpgYAHDfzKOGNG9/EPilY+UXdk3AQfq0hsno/yABFNWbOAkG5bZw1/zi7dqTymHUtkGW9Oneq+Z3d+KWCSevaNUdzgykRbDBg9uBOWLK5fl8fV2oG/GE0kNJCVm6AgWV7NYM9R9ebL2ft1lvfUn8Jsi0YEOmMkidxPUfYchzdnADlxxRvDENuRjwWffqd5A0xK7VVXTX27lNYufsH/N8XRVi5u8ina6VZyBXQE7NT0KNtS8mb+uGfyvDgyq901Txqf+wP92mHcX2Sseu/F+qadyw1MgLwccFZpLcxyt7AlTzdy23jrPlHyWrm1nlM7jd1p5rf2Y3fPlBXY+5zy7FavmtEryTc0026344rBaXeClV7SgtZuetvfm4X3JkRbxOAe6t/picdirXojOyNc+EPQbYFAyKdkbrYh3ZPwEeHzvpFhC3H0dO7q8ek5Ia4cvcPqnXkc7djoNwkkJZRb/bHMHtwJ8mOsVo2j0od+xu7izCuTzKyO0bbVBEJ+HVWYsjfwCXPCWxrluRqAOybf4IMwHirGkD7c2r4tQ1JgG0ec9Zsq6QGQqrgULruldQ8WfaCACwcegNahIXgu5Lyes1k1vNuWX+XN/vt6GlQh5JCVu53tA6GvBl0eNKhWIvOyN48F3oPsi0YEOmQ1MX+RE4nv4iw5cgFBy/bDZtXytENUe2OfO7uz1ngZn8MvuqA6ErhduD0Zdk0CRBkl02Ru4Fbzol1MCIA2PXfC4rWdrLuyLpiVxFWfFGEN6xqAB2tZg4A/7vx23pzTtkfV1Zqq3qB1+whnZwWos7Oq3WhoOShx3I+7spMQER443rD2C3zbnmbXodNOytknV1/3g46HF07zvbv687I/jYazFsYEOmU/cXuLxG2HLmb012ZCc4/7GCfrjwZutvM6Mn+nD3J2h+DtzsgujP8256zvjEWcjfw7I7RMBh+60MjwPW1nVZ+USTbKV/q2rEfyi7F+rhG9EpCWeU1LP41CHl+03G0CGss27G7rPIant983Ol5tQRN2R2j6w1ll3rosWx/T2aC28PY3WG99IsvC0q1a6I8fXByNz1Krh1HfN0Z2d9Gg3kLAyLyGV+1JavdkU/Jk6bSmgFfptueK0+Blm3tA4ggA2T7xtiTu4F7uraTqzdvuWOxT6v9b/r85uP1gq6XHugm+d2LN9Xf1v68OgtG7Y9Xq5oZm6kLrAJXC28VlN46XncfnNxNj9Jrx1mafdkZ2d9Gg3kLA6IApkW/AF/VdKkdfMntT+2buDeDRlcCCbk+X9P6t6/rOySR3sM/lTmc0di61sGTm6+rN29H/dfkmm3lzhWE+rVi9sPdLdva1zS4OneOFk0Y9aYukBmhpXZBqXT0oZr3K0dBhyfnXy6/vTyyu0s14r56gLScV2czkgcCBkQNnNxNpCEuw2BP7eDLfn/eKrS8FTS6EkjIjdh6eftJ/P3zkzaBnyW9WamtZJt1pCYbdXeggKtPz3LHYsn3UoWU3LnqkVy/Y7dU4Wc/BYGrtVpaNWHIFeaWkXHeKiidHa+3ao/kgg5Pzr+jvOMqbz9ASq1dl9GmhZh39xRebDDlgRIMiBowR50/6y3DsO6IOCJHi46TehvFooS/tbu7EkjYb2vNUeAndQOXym8fHTorOUpKKVeenu2PJQh1Ux9IrXEn9xm5eX0+/uYnvPf1mXqfn9innc2+Xa3V0qoJQ+57PfmtPPne5Khwr9eWSeVZT86/r5u73CW3dt3uuf1tZtEHgFE3JeKxAR10dwxqC9I6Ac48++yzMBgMNv86d+4svn/16lVMnToVrVq1QrNmzTB8+HCcO3fOZh/FxcXIzc1FeHg4YmJiMGvWLFy/ft3Xh+JTcjcRS+BhX5D/2hpQb1tfWLuvGL0Xb8eoFXvRe/F2rN1X7JPv9ZTlpmlNrUKrxFSFPYUXVf8NRvRKwu65/fHepFuwe25/h0GvZduncrvUe896Ekln5ALHyhozslJbedS3S+nnrY/7y3m348k705x+ztG5ijeGITkqHP+UCIYMAMbZTQhqKSSDDXUZxlkh6er2apH73szElh79Vvbs87ej43X04OEtnp5/V64zrcid14OnbWfRB4A1X5/BrXn+c292l1/UEN1www34z3/+I/7dqNFvyZ4xYwY2btyI999/H0ajEdOmTcOwYcPw5ZdfAgBqa2uRm5uLuLg47NmzByUlJRg9ejQaN26MRYsW+fxYfMXRTUTNZRg85c/DPb31JOjtzrSuVMPHGx1PhKmEXjpsKj1u+9pKuc/sP3VJsqP2AzcnSvZ7cbVPiFYT2nn7e+Xyt9z3apV/PD0Pvuov6S6582oWBMmyQQAw78Mjqtyb9doi4BcBUaNGjRAXF1fvdZPJhDfeeANr1qzB7bffDgBYtWoVunTpgq+++gq33HILPvvsM3z77bf4z3/+g9jYWHTr1g1//vOfMWfOHDz77LMICQnx9eH4hNwEeD9XVCM5KrxePwjrGiLAdwWWvzU72VO78HAWIKp5I1G6L08DP39pQgBcC0YNBoPk671To8R9WYb6GwAsHl63L1eOW+1C1ZXf3Bu/j7P8LfW9WuYfvQc1npA7rz2TIyUHCgB1/cg8vTfrdV4rwE8Cou+//x4JCQlo0qQJsrKykJeXh6SkJBw4cADXrl3DwIEDxW07d+6MpKQk5Ofn45ZbbkF+fj7S09MRGxsrbpOTk4MpU6bg2LFj6N69uxaH5HX2md2SwaetOSRmQut5UHb990K9CwPwfqc6vdQeeMKdm6ZcweQoQLRu1/f0RuLqTcnTwM8fpu93tbayR9uW9QoOgwG4sW1LlJiq6k0+OVfi6dqXT8ruTiipJlcegDypXSNl5M7r3CGdxVnnrdnPKu8qvbcI6D4guvnmm7F69Wp06tQJJSUlWLBgAW677TYcPXoUpaWlCAkJQYsWLWw+Exsbi9LSUgBAaWmpTTBked/ynpzq6mpUV1eLf5eXl6t0RL5jyewHTl3G4/88VC8T7p7bX1zQ0v7C2PXfC+i9eLvXo3h/qj1Qi6NgRC5ADA8JUu1G4u5NSUng56hw1fvTtqu1lfHGMCwenl7vt4w3huGTb36q94QtADhw6jLuyvTOlA2OyP3mZVXXxBmwvZkGV6dckDs3Ur+DXptf/IXUdflI31TAACz+9Lf5tQwA8oane3SO9d4ioPuAaMiQIeJ/Z2Rk4Oabb0bbtm3xr3/9C2Fh3juBeXl5WLBggdf27yvxxjBENnNtIjypm+e8dUcQHhKMnsmRDjOuOzcnf3v683T1amdNBlIBYkVNrWo3Em/dlPRcFa6EO7WVcnlXrjnN8rIn15g75H7zxZuOi3MNeetp3dGUC0EAJth1QHclYNdDrVdD9Uh2Ku7JTMDB05chCBCnDVDaaiD1G+i9RUD3AZG9Fi1aoGPHjjh58iTuuOMO1NTUoKyszKaW6Ny5c2Kfo7i4OHz99dc2+7CMQpPql2Qxb948zJw5U/y7vLwciYmJKh6J76gxkZ1ZAB57r8BhQedJgaj32gMLpcfoTpOYZTupQrbEVKXajcQbNyW9V4Ur4W5tpVTeddScBrh/jblLrk+ht5/WHU25sPFwKVbu/gH/90URVuwuwtwhnfFIdqrigF3rWq9AUDeowvUaTUc1fHpuEdD9sHt7V65cQWFhIeLj49GjRw80btwY27ZtE98/ceIEiouLkZWVBQDIysrCkSNHcP78eXGbrVu3IiIiAmlpabLfExoaioiICJt//srVIaRSw8kt5IbkOxrm31AoPUZH0wgoHapvP6RcyW+odKi+N4Z0e3NotLemIJCi1nBpS3Oa5bcOMgCLh6XXe1KW4uq1o+T8SP3mc4Z09tq0ERZy+eLMpSqs3P2D+J4gAHmfHsfrOwsVXyOOar0a8n1IC67c351tq+cpCXRfQ/TEE0/g7rvvRtu2bXH27Fk888wzCA4OxgMPPACj0YgJEyZg5syZiIyMREREBB577DFkZWXhlltuAQAMGjQIaWlpeOihh7BkyRKUlpbiqaeewtSpUxEaGqrx0fmOJxPZ2ZN6WtN727AalC4G6U6TmJJz5Og39GYnaSXND96qCteiGU6t2kpH59ida0yK3Eg2Z+kJDwlCRU2t15drkMsXkJn2Y/Gm47inW4Kia0SrWi+taNkM6OmyP/bb6rVFQPcB0Y8//ogHHngAP//8M6Kjo9GnTx989dVXiI6uW0/pxRdfRFBQEIYPH47q6mrk5OTgtddeEz8fHByMDRs2YMqUKcjKykLTpk0xZswYLFy4UKtD0owrmdBy8zx4+jKmrTnkdEi+3tuG1aDkGN1tElNK6jf0ZidppQGJWlXh1jd9AJLH1TmuOSpqanXfP8RZAebqNSa1fyUj2azFG8PqjVa0Xq5B7fMply96tG0puXCsAGDV7lN4MreL02tEat+zB3fC85uP6/4+5Gpwo3X/PGcziVsfiz+XBQZBkFq+j+yVl5fDaDTCZDL5dfOZO9buK653Q5PrQ6RkO3/m7BhLTFXi6DyLYIMBu+f291rhvafwIkat2Fvv9fcm3SKOInSHO8dSYqpyu3O8/U1/Qp8UrPiiqN52loJUz/1DXC3A3Ll2PvnmJzz2XkG91//+gPwiolrkT8v32ueL13cVIu9TiaHdBuDLubcrTo/9vq3PpSUfje8jv0yLr7maN7T6zexJ5VEAkscil5+1quVSWn7rvoaItKe0RsPfRou5w9kxatFp0FtPZO40g7pbFS5Vy/XG7iLJCeK8MSpK7QkvXa2xc+facTaSzZIW6+NSs2nblXMmObQ7OxWnL1Zgjd3yJ2ZB2eR/1t9vHfhbzuWqL4uwYlcRVnxRhDd2F+kieHYnb+ilO4J9HgVgE6hZH4tUfta6lksJBkSkiNKCTq9tw2pydozeCAydze/jjSDMl1XfcqOuHs5OwRtfnBKHaJvtPqfH6QLcLcBcvXacjWSTOq7sjtGq/KZqnbPHBnTAP/edUZQe62tAySSlK78oqrc+o9ajHt3JG3pqgrLOo3sKLzo8FuttlQSCepgqgQEROaWHjOpv1AwMlRQ+3gjCfFnbJXfTH9e7blV6S0fg+17bo6gfg1LemC7AVwWYZSSb1MSQcse1e25/j39TNc+Z0jxmfw1ILUZt/f16qVWx507e0OtQdVeOxdnvoZfaIwZE5JBeMqo/UiOQdKXw8UbtnK+aQZ3d9C3/L7WNJ0uaeKPg9GUBJvf7ODouT39Ttc+Zs/RIXQP2rKd4cGVGbF9zN2/osTuCK8firFO2XuYwY0BEsvSUUf2NWoGkHp50fdUMKjUsvMRUZfPdrvRjUJJmpU+5rga3vizApH4fZ8flyW/qjRowR+mRugbsBRsMOPxjGR5c+ZV4zVnPiK2XWhXA/bzh6+4ISvK80mNxFDw5a3rzJQZEJEsPhbE1bzfdqbV/NQNJPfUfcEStcxdvrD8s3D6YdKUfg5Lvc/aU625w640CzJXV6r1RS2X5/jmDO2PJZu/NX2RN6hqwFmwwYPaQTuLs1IDtjNiVNWbZAFsreu9r6UqeV3oscsGTnu5xDIjIhvUNV08Z1dtNd2ruX81AUq/9B5R0cLUvvJ39bdmvK8HkkZ9M9V5zNY86esrVUy2pNyffdOf75wzpjIzW3pm/yFq8MUx2Cob5uV1wZ0a87DVXWWNG8aUKNvu7wJt5Xip40tM9jgERiaRuuHrIqN4ulNTev9qBpN76D1jnE8sIb/sOrmWV18QJ8izNF+sP/ST7t6WQciWYLDFV4flN9eexmT24k1uBp9RnvF1LqrTGx34SRrMAzF3neBJGwPWaCLn0SF0jSzad8NlcOOP7pNiMGgPqrqk7M+IRbwzD+fKr9UbcBRsMCA8J0k1A62vu1tpq0TKgl3scAyICIB8U7J7bH7vn9tc0o3r7AlV7/9544tFLFbt9PpFqxRBXUf/1b7MAfHjwJ/F9qb8thZSnI1cAIKNNC9cPTIY3a0ldqfE5cPqy5HxMB09fFhff9GZ6tG4+t4yok7qmLOm2D4YWDeuKippaXTX7+4onNd5atQzo4R7HgIgAOL7hWS8y6i5P+ph4+wL1xv718sSjNiUdXB3195BjndfUGLmiFm/2xXGl5kJuQQG11hlwlh49NJ9LXVP26Qbq8t+6R7MQE9EEB05flqw50lsfPDV5WuOtpyYsX2NARAC0fRJ2Fix5+wL11v718MSjNql8YkDdhIBmQbqDqxLWeU2NkSuesM+P3ghuXa1x6ZkcWX8SRgA9kls6Tb8a6dFLIWl/TclN6LnxSAlWflEkNutazl1DLtwtv/ulihqXa8V8kef9AQMiAqC8cHH1ZuvsaUVp1a63L1B/vgH4cuJMuXxif+5ahDW22WZo9wSxz5C9IAPq5TVPR664S252Z7XPr6sPIJYmo3kfHoEZdau65w1Pr5ced5tKlKTHnXPt7bwpueK9AVixq8hm0dsgA/DKyO7okdxSMh2O+k75w6S09v36XKkVk8szDfGBzhku7qpQoCzu6mhxTiU3W/sbiKOFR5OjwnWxaKE/02riTCWLuNpv882Zyxj66h6bG3UQgBVjeiAspJHbhY6a0yXY50fr2i+1z687C7o6Ou+eLgKq9oKcvsqb9uke3ydZckSa3GLHcun0l0lpneVbR3lLLwvHehsXdyW3yD0VKGmXdnXtJG901PSXJzqlHB2PlkPClTw92m+TmdiyXsfYod0TMOntA24XOt6eLkGAdxaTBdyrcXF03j29ntRckNOXeVNqss43dhcpqn2TS2fnuOZ+MzpNLt++MrI7WjULdZi3tO4srzcMiEgRZxeOu2snqdlvyV+e6JRydjyuDlHXQ6BoPxu19dpkrhY6vpguwZ59nvf0nKrZLNE0JBgGg21Ha1evJ+v0eHJ+fV3Q2p9Hpf2d5NK579RlvwkU5Jo75ZoHlXy2IXc6d4QBESni7MJxZ+0kNTtq6mkCPTUoOR6lNzO9BYqWwsvTWaaVBOmuBCz2+TEIv9YQWW1jOb/eOqeeNk/ZB0OedCD2JKiR69tz8cpVn8wWrbT2Te4a6pXc0m8CBU/uo3rpLK8XDIhIEWcXjrtrJ6nVKbahVf0qOR4lNzMlgZVWtUeePp06+ry7AYt9ftz13wv1zi8ArwTfajVPAXV9s9Y9moXMxPqj0JTy5Pexz5uWmqvH3ivwWVCutFlX6hrKTGzpV4GC3H1UzfXIAgEDIlLM0YXj6VOKKyM/pDS0ql+lx+PsZuYssNKy9kiqRmZCn2S3P69WwGKdH6XOrzcWo1S7ecoMoLLG7FZaLDytPbCcu4OnL2PamkP1ZjNXs/bWk6Be7hryRqDgzYcP+/uoq+uRAXV5yfrvQMOAiFzi6KlLzRuIqwV1Q6v6deV4HP0mjgIrPTQzWvLMqt2nsHL3D/i/L4qwcneR2zU63ghY7M+vN4JvtZun1HoY8PSajjeGoWXTinqzbKtZe6tGUC93DanZx0uNdLqy1Isr17bemtW1EqR1AqhhiTeGiUNb9xReRImpyulnSkxVNtvKXczO9jWiVxJ2z+2P9ybdgnWPZiExMlzR9ytJkxasj2f33P5u3aAsgVWwoW7VMevAylEh7Gsrd//g8u9tYclz9s231tSsLXR0Tt3lSZqVpsfdPG1/fl3lzd/D3XuFr6mRzrX7itF78XaMWrEXvRdvx9p9xbLbunJt+8s59AXWEJHqXHnakNo2MTLc7afleGOY7Orr3ki/t6nxhCr3lC/X8TU8xLfPSf6wlpy1ElMVEiPDse7RLFTWmFVpTlGrecqTOcSccbe5x5u/h7/0HfQ0na7W+Hi6JqAez6EvMCBqAPQypNqSFqUXrty26x7NcrsJwNNmID00I3mDVGBlX1ABdcd732t7fBoE+tNaclKBhdRkf+5Qo3lKri+ep3na04DK02OTu8f5S99BT9PpatDiShDqadr0VP54ik1mfs6ValRfcKWqVm7byhqz200SnjYDeaMZSWlThdR23m66G9ErCesezYJ1i4avq8y90QRl2a8aCxNbeNK0oPR3VDvNgOd5Wq0mFVeOzfp8ObrHeSvvqM3TdLrT7Ki0yd2TtOmt/PEUa4j8mB5rM1x52nC0bVZqK7eeKL05lNsZqSclpU/WUtsB8EnTXUVNrVc7vSrhD0N/3W1a0LoJ1pu1E5b31awdsD5fgO26XFL3OFfzjlY1Gp7kcXebHZU2ubu7Tp3eyh9PMSDyY3ps+3V1dJSjbd3pP+NpfwV3Py+3bImSG4bUjWXeh0cAq0LMmzcbtZodPC1o1BzR4w3uzASth0LD02tCLn8c/rEMD678StVAT2pOJSXButK8Y78I6twhnfFI31SP0uwK+3QquWYs22R3jMbuuf299tDg6vWnx/LHUwyI/Jhe289dedrwRs2Ap/t054lTqtB76YFuim4YcvPI2JcE3rrZqNHpVetaEG9zdyZobxUargafatdOzB7SCc9vOq56oCd1vuy5e4+zv04FAHmbjgMG4JFs3wVFFjbBmeHX4MwuHXq+rvRa/niCAZEf8/ZoGk/T5kqtjCtpti8MpAoHT2sbXPm8XKEHQdlabZKjvQCbGiK5z6rFkwJTD7Ug3uTJTNDuFBrOgh13C0lPrgn7/CGX5w+cuozIZsoCNanjdLaeXJABbt/j5IKt5zcdxz2ZCarkVXfnCRIEIO/T44AAscZK79eVnssfdzEg8nP+0PdCTfaFwX3dW2P9oZ80fYJytLiikhuG3I0FgE9vNpYC09KhVWntQ0OsOrfmyUzQrhYazoIdXxaS9oW7fUBln+cNAB7/5yG3p9sY0StJPF/zPjwC+7MbBGD9o7e6vRxJSlRTm/5IFmYBquRVVwJVh8FZtwQAwIbDZ3V/XTW08ocBUQOg974XapEqDD48+JP4vlZPUI4KPaU3DLntfH2zcaf2oSFWnVvz9PiU5gElwY6vgk9n+cA+z1sWwvVkug3Ltvazl5uF35onPVmbLd4YhrlDOtc1k1lRI6+6Ot3IpYoayf2YAaz6sggrvyiSDJisZ5n3ZsdwJbXwFp7W8OsJAyLyG0r6F8gVDiWmKhw4fRmCIKBncqTqF6J9oQfAppZFyfdJbefLYNfd2oeGWHVuTY3jU/I7Kgl2fBF8Ks0H1nn+54pqTFtzyGHanR3nxsMlyM2IF8/Vk7ldMK5PsqoPBI/0TQUMEPs/Wf+WnhTUSgNV+07d9rezIAOwYldRvdeB39Lq6cSzznizFl7PfaIABkRkR8/Ru7P+BYB04bB2XzHmfnhEvMkYACwerv6FaLmR6/2il+OoX8hdmY7zgnXhGB4ShIqaWpSYqnSXh4Df8njTkGBU1NRK5nX768AXTQNKgh1fBJ+u1EJZN7N6Mt0GADy38Tss+vQ7m+vFWSDpzv3qkexU3JOZYPNbenrNKvntpDp1W6YWEn7dfnyfZKz4oqje/ufndsGdGfEAgN6Lt3utydSbtfB67xMFMCAiK3ovyKUKg6HdE/DRobOyhYPlIrS+9wqoG9burX4Xer7oHRUgcgXV4/88hIqa607zQrzR82VTvM1+jhugfjod9W/xdh8uJcGOt4MzpYW7dT7a9d8LNiPwDA46P9sfpzWp60Uuz8pNdaEkQLL+LdW4Zp39diWmKsk+QQKAV0d1R2TTUPH8vrG7qN65v/PXmjOlCxe7+2CrtBb+4OnLaNnUtf37Q19DBkQNlKsXhN4LcgupwuCJnE6yhYPcBW6GOh0p7en5olfaL8S+Q6uz/hCWfAZA13lIarQYYJtOQNtjUBrseDM4c1a42+ejOUM64/lNx20eOgwCxPMpxXKcGw+X4LmN39m8Z329yOVZqfvV3HVHAKEuyHAlGFfrmpX77aSCcItggwE3tm1p8z2Ozr2SYNWTB1sltfAGAzBtzSHZ8+zPy6wwIGpALBnxyE8msY1c6QWh54Lcnn1h4KhwOPKTSfL1IMArF6K7F70vOkkq7RfSNLSRov4g9jfeCX1SdJ2HHD39WtIpQND8GPQwSEKucJfKR9bzEVkoeeCIN4YhNyMeiz79TvJ6cZRnpX5L68omVwJZNQtq+99OLgi3fIerNYBKaqI8Ceid1cIH/ToxqeVw7PfvKBjzh76GDIh0yJ3CUe4pROkFoefo3d1gocRUheftRpRY5A1P98qF6M5F74umSlcC3h5tW7rcH8Is1FX123cU1WLGa7n9NQ0Jln36tU6nL64DPffVs5AKzCSnIJDoIKz0nDm6Xhw1DympyVAayCq5ZtVugrL0CXKnBtBRwHTg9GWPA3pHtfAXr1zFY+8VSO4fcF67qvdh+gyIdMadwtHRUwig7ILQa/TuSbAgdzN6dVR35GYkqJzS37hy0fuqqdKVgFdJXpArGB/OTsEbX5zSzYzXUiNmLE+7Fvbp9PZ1oPe+eo7I5aPZgzthyeYTbp0zuevFUZ61z6P2NRfW23qSBkD9JijrPkFSlARfUgGTZfCIPXcCerlaeEed55U+dOmhBlQOAyIdcbdwdNYRTukFobfo3dNgQe5mdGNb9+cyUcrRRW99w/NVU6WrAa+zvCB3bsf1TsG43im6mPFaan8fHTqLdY9mobLGjPCQIFTWmOul05vXgb/01ZMjl49G9ErCPd0S3D5nUteLszxr/zvt+u8F1adG8EYTlCcTc8qRGjwCeDaztxRnx6PXVgalGBDpiLuFo6PqY3cWN9XLjdnTYEHpzciXzRf1OqQO7uyzm4irBb2jvODs3LpzHtUODuX2V1ljRlZqK4ef9dZ1oEVfPbXzt1w+sq5FcGWmc3e+y8L6d/JGIKvG76XmxJyupBMAXh7ZHXdlqlsbbjmeA6cuA4a6JnZAv60MrmBApCPu9uORyoizB3dCRpsWuqjpcZca/Zqc3Yx82XwhdcNbsvkE5gzpjCWb3GtucJWaBb3aBZDa/dj02C/O12nyJH+7MzuxN64nV/Ks2oGsWr+XknR5Enw1DQmW7MfVI7mlVx745KbX0Fsrg6sMgiBIxJVkr7y8HEajESaTCREREarvXxwh9qOpXlu8KzcwuYzoD504pazdVyxZPe8OqenorSc5A+puIrvn9vfoHMmd6z2FFzFqxd5627836RYkR4X77U1ETWr+3t7Ynxp8lSZP8re7fRkdfR/vQY65+3tJDaixXg9R7nf0ZLCKN+6b3qS0/A6oGqJXX30VL7zwAkpLS5GZmYlXXnkFN910k9bJkpzXI6O167U7vnxq8xW1njikzkFiZLjqzReOzrWzTqJ6vZn4ktpPmK7uzxeFtq+eot2tcVCzL6Pl+/Q+Yacjvvq93GlykhpQE2QA1j2ahZiIJrKzWnvye/jTFC2uCtI6Ab6ydu1azJw5E8888wwOHjyIzMxM5OTk4Pz585qmS7IZZdMJ1S48uZtbianK4337SrwxDFmprdw+H3LnwDIM25rS6nBLPwnr8+jsXFtueMEGg/hd3mwek0qjP/D093Z3f2v3FaP34u0YtWIvei/ejrX7ilX5fk/S5AlLAG5NSf52VOC5833hIUEBfw9SakSvJOye2x/vTboFu+f2d2v+OLMAVNaYZX/Hg6cve/R7uJuv/EHABER/+9vfMGnSJIwbNw5paWlYvnw5wsPD8eabb2qaLndvPnrZvz9w1LnWnQBFruBUcq5dveG5y5eFe0PQEB4c7LkbgLtb4Ml9X0VNbcDfg1zhSvDl6LeSe88syE8+qjR9vnyw86WAaDKrqanBgQMHMG/ePPG1oKAgDBw4EPn5+ZKfqa6uRnV1tfh3eXm5V9Lm7U6WeuxY6muOzkFWaiuXm1TkmhOUnmtvN4/5+9BuLTTUZgB3mns8GS0k9X2uLPxKrnH2W0m91zM50uuDVfxVQAREFy9eRG1tLWJjY21ej42NxfHjMjMZ5+VhwYIFXk+bt4cqNoShkJ5SMkRc6flwVHBmpbbSxbluqIW7NzXkBwd3AnBPCjz77+M9yLsc/VZy76nxezTEfo8BMcrs7NmzaN26Nfbs2YOsrCzx9dmzZ2Pnzp3Yu7f+yB+pGqLExESvjjLzZrTt7f37AzXOgZIRFlqfa38cBaIHehyR1pBofV2QrUD6PTjKzEpUVBSCg4Nx7tw5m9fPnTuHuLg4yc+EhoYiNDTUF8kD4P1ouyFG865S4xwoedrV+lzzidw9DbUZQC+0vi7IFn+P+gIiIAoJCUGPHj2wbds2DB06FABgNpuxbds2TJs2TdvEkd/xh4LTH9KoRywkiAJXQAREADBz5kyMGTMGPXv2xE033YSlS5eioqIC48aN0zpp5If8oeD0hzQSEelFwAREI0aMwIULF/D000+jtLQU3bp1w+bNm+t1tCYiIqLAExCdqtXg7aU7iIiISH1Ky++AmZiRiIiISA4DIiIiIgp4DIiIiIgo4DEgIiIiooDHgIiIiIgCHgMiIiIiCngMiIiIiCjgMSAiIiKigMeAiIiIiAJewCzd4SnLhN7l5eUap4SIiIiUspTbzhbmYECk0C+//AIASExM1DglRERE5KpffvkFRqNR9n2uZaaQ2WzG2bNn0bx5cxgMBq2T43Pl5eVITEzEmTNnuJabB3gePcdzqA6eR3XwPKrDm+dREAT88ssvSEhIQFCQfE8h1hApFBQUhDZt2midDM1FRETwolcBz6PneA7VwfOoDp5HdXjrPDqqGbJgp2oiIiIKeAyIiIiIKOAxICJFQkND8cwzzyA0NFTrpPg1nkfP8Ryqg+dRHTyP6tDDeWSnaiIiIgp4rCEiIiKigMeAiIiIiAIeAyIiIiIKeAyIiIiIKOAxICLRrl27cPfddyMhIQEGgwEfffSRzfuCIODpp59GfHw8wsLCMHDgQHz//ffaJFbHnJ3HsWPHwmAw2PwbPHiwNonVsby8PPTq1QvNmzdHTEwMhg4dihMnTthsc/XqVUydOhWtWrVCs2bNMHz4cJw7d06jFOuTkvPYr1+/enly8uTJGqVYn5YtW4aMjAxx4sCsrCxs2rRJfJ950Tln51DrfMiAiEQVFRXIzMzEq6++Kvn+kiVL8PLLL2P58uXYu3cvmjZtipycHFy9etXHKdU3Z+cRAAYPHoySkhLx33vvvefDFPqHnTt3YurUqfjqq6+wdetWXLt2DYMGDUJFRYW4zYwZM/DJJ5/g/fffx86dO3H27FkMGzZMw1Trj5LzCACTJk2yyZNLlizRKMX61KZNGyxevBgHDhzA/v37cfvtt+Pee+/FsWPHADAvKuHsHAIa50OBSAIAYf369eLfZrNZiIuLE1544QXxtbKyMiE0NFR47733NEihf7A/j4IgCGPGjBHuvfdeTdLjz86fPy8AEHbu3CkIQl3+a9y4sfD++++L23z33XcCACE/P1+rZOqe/XkUBEHo27ev8Ic//EG7RPmpli1bCitXrmRe9IDlHAqC9vmQNUSkSFFREUpLSzFw4EDxNaPRiJtvvhn5+fkapsw/7dixAzExMejUqROmTJmCn3/+Wesk6Z7JZAIAREZGAgAOHDiAa9eu2eTJzp07IykpiXnSAfvzaPHuu+8iKioKXbt2xbx581BZWalF8vxCbW0t/vnPf6KiogJZWVnMi26wP4cWWuZDLu5KipSWlgIAYmNjbV6PjY0V3yNlBg8ejGHDhiElJQWFhYV48sknMWTIEOTn5yM4OFjr5OmS2WzG9OnT0bt3b3Tt2hVAXZ4MCQlBixYtbLZlnpQndR4BYNSoUWjbti0SEhJw+PBhzJkzBydOnMC6des0TK3+HDlyBFlZWbh69SqaNWuG9evXIy0tDQUFBcyLCsmdQ0D7fMiAiMjHRo4cKf53eno6MjIykJqaih07dmDAgAEapky/pk6diqNHj2L37t1aJ8WvyZ3Hhx9+WPzv9PR0xMfHY8CAASgsLERqaqqvk6lbnTp1QkFBAUwmEz744AOMGTMGO3fu1DpZfkXuHKalpWmeD9lkRorExcUBQL1RE+fOnRPfI/e0a9cOUVFROHnypNZJ0aVp06Zhw4YN+Pzzz9GmTRvx9bi4ONTU1KCsrMxme+ZJaXLnUcrNN98MAMyTdkJCQtC+fXv06NEDeXl5yMzMxEsvvcS86AK5cyjF1/mQAREpkpKSgri4OGzbtk18rby8HHv37rVp/yXX/fjjj/j5558RHx+vdVJ0RRAETJs2DevXr8f27duRkpJi836PHj3QuHFjmzx54sQJFBcXM09acXYepRQUFAAA86QTZrMZ1dXVzIsesJxDKb7Oh2wyI9GVK1dsIvGioiIUFBQgMjISSUlJmD59Op577jl06NABKSkpmD9/PhISEjB06FDtEq1Djs5jZGQkFixYgOHDhyMuLg6FhYWYPXs22rdvj5ycHA1TrT9Tp07FmjVr8O9//xvNmzcX+2IYjUaEhYXBaDRiwoQJmDlzJiIjIxEREYHHHnsMWVlZuOWWWzROvX44O4+FhYVYs2YN7rzzTrRq1QqHDx/GjBkzkJ2djYyMDI1Trx/z5s3DkCFDkJSUhF9++QVr1qzBjh07sGXLFuZFhRydQ13kQ83Gt5HufP755wKAev/GjBkjCELd0Pv58+cLsbGxQmhoqDBgwADhxIkT2iZahxydx8rKSmHQoEFCdHS00LhxY6Ft27bCpEmThNLSUq2TrTtS5xCAsGrVKnGbqqoq4dFHHxVatmwphIeHC/fdd59QUlKiXaJ1yNl5LC4uFrKzs4XIyEghNDRUaN++vTBr1izBZDJpm3CdGT9+vNC2bVshJCREiI6OFgYMGCB89tln4vvMi845Ood6yIcGQRAE34ReRERERPrEPkREREQU8BgQERERUcBjQEREREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBGR36upqdE6CfXoMU1EJI8BERHpTr9+/TBt2jRMmzYNRqMRUVFRmD9/PiwrDSUnJ+PPf/4zRo8ejYiICDz88MMAgN27d+O2225DWFgYEhMT8fjjj6OiokLc72uvvYYOHTqgSZMmiI2Nxf333y++98EHHyA9PR1hYWFo1aoVBg4cKH62X79+mD59uk0ahw4dirFjx4p/u5smItIHBkREpEtvvfUWGjVqhK+//hovvfQS/va3v2HlypXi+3/5y1+QmZmJQ4cOYf78+SgsLMTgwYMxfPhwHD58GGvXrsXu3bsxbdo0AMD+/fvx+OOPY+HChThx4gQ2b96M7OxsAEBJSQkeeOABjB8/Ht999x127NiBYcOGwdWlHl1NExHpBxd3JSLd6devH86fP49jx47BYDAAAObOnYuPP/4Y3377LZKTk9G9e3esX79e/MzEiRMRHByM119/XXxt9+7d6Nu3LyoqKvDpp59i3Lhx+PHHH9G8eXOb7zt48CB69OiBU6dOoW3btpLp6datG5YuXSq+NnToULRo0QKrV68GALfS1KRJE4/OExGphzVERKRLt9xyixgMAUBWVha+//571NbWAgB69uxps/0333yD1atXo1mzZuK/nJwcmM1mFBUV4Y477kDbtm3Rrl07PPTQQ3j33XdRWVkJAMjMzMSAAQOQnp6O//mf/8GKFStw+fJll9PsapqISD8YEBGRX2ratKnN31euXMEjjzyCgoIC8d8333yD77//HqmpqWjevDkOHjyI9957D/Hx8Xj66aeRmZmJsrIyBAcHY+vWrdi0aRPS0tLwyiuvoFOnTmLQEhQUVK/57Nq1ax6niYj0gwEREenS3r17bf7+6quv0KFDBwQHB0tuf+ONN+Lbb79F+/bt6/0LCQkBADRq1AgDBw7EkiVLcPjwYZw6dQrbt28HABgMBvTu3RsLFizAoUOHEBISIjZ/RUdHo6SkRPyu2tpaHD161OkxKEkTEekDAyIi0qXi4mLMnDkTJ06cwHvvvYdXXnkFf/jDH2S3nzNnDvbs2YNp06ahoKAA33//Pf7973+LHZg3bNiAl19+GQUFBTh9+jTefvttmM1mdOrUCXv37sWiRYuwf/9+FBcXY926dbhw4QK6dOkCALj99tuxceNGbNy4EcePH8eUKVNQVlbm9BicpYmI9KOR1gkgIpIyevRoVFVV4aabbkJwcDD+8Ic/iEPZpWRkZGDnzp3405/+hNtuuw2CICA1NRUjRowAALRo0QLr1q3Ds88+i6tXr6JDhw547733cMMNN+C7777Drl27sHTpUpSXl6Nt27b461//iiFDhgAAxo8fj2+++QajR49Go0aNMGPGDPTv39/pMThLExHpB0eZEZHuSI3qIiLyJjaZERERUcBjQEREREQBj01mREREFPBYQ0REREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAe//AZgQYx7jt1AvAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2 Training Surrogate with TensorFlow Keras\n", + "TensorFlow Keras provides an interface to pass regression settings, build neural networks and train surrogate models. Keras enables the usage of two API formats: Sequential and Functional. While the Functional API offers more versatility, including multiple input and output layers in a single neural network, the Sequential API is more stable and user-friendly. Further, the Sequential API integrates cleanly with existing IDAES surrogate tools and will be utilized in this example.\n", + "\n", + "In the code below, we build the neural network structure based on our training data structure and desired regression settings. Offline, neural network models were trained for the list of settings below, and the options bolded and italicized were determined to have the minimum mean squared error for the dataset:\n", + "\n", + "* Activation function: sigmoid, **tanh**\n", + "* Optimizer: **Adam**\n", + "* Number of hidden layers: 3, **4**, 5, 6\n", + "* Number of neurons per layer: **20**, 40, 60\n", + "\n", + "Important thing to note here is that we do not use ReLU activation function for the training as the flowsheet we intend to solve with this surrogate model is a NLP problem and using ReLU activation function will make it an MINLP. Another thing to note here is the network is smaller (4,20) in order to avoid overfitting. \n", + "\n", + "Typically, Sequential Keras models are built vertically; the dataset is scaled and normalized. The network is defined for the input layer, hidden layers, and output layer for the passed activation functions and network/layer sizes. Then, the model is compiled using the passed optimizer and trained using a desired number of epochs. Keras internally validates while training and updates each epoch's model weight (coefficient) values.\n", + "\n", + "Finally, after training the model, we save the results and model expressions to a folder that contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgtklEQVR4nO3deXgUVdo28LsTSEgCNAQCBExICJtIiMjiRJBFGCGDC4sjwoyyKC6AuHwOBN8XBQcNODMO4wYOOqDjiMwoqKPi8spmhMGwoyMIMZAgQYhCB5KQYLq+P2K1vVRVV1VXd1V17t915bqgl+rT1VWnnjrnOec4BEEQQERERGRTMWYXgIiIiCgUDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIKCIWLlwIh8Oh6rUOhwMLFy4Ma3mGDRuGYcOGWXZ7RKQegxmiRmb16tVwOByevyZNmqBTp06YOnUqvv32W7OLZzkZGRk++6tdu3a4+uqrsX79ekO2X11djYULF2Lz5s2GbI+oMWIwQ9RIPfbYY/j73/+OFStWIC8vD6+++iqGDh2KCxcuhOXz/vd//xc1NTVh2Xa4XX755fj73/+Ov//973jooYdw4sQJjB8/HitWrAh529XV1Vi0aBGDGaIQNDG7AERkjry8PPTv3x8AcMcdd6Bt27ZYunQp3nnnHdx8882Gf16TJk3QpIk9q5xOnTrht7/9ref/t912G7p27Yo///nPuPvuu00sGREBbJkhop9cffXVAIDi4mKfxw8ePIibbroJycnJaNasGfr374933nnH5zUXL17EokWL0K1bNzRr1gxt2rTB4MGD8fHHH3teI5UzU1tbiwceeAApKSlo0aIFbrjhBhw/fjygbFOnTkVGRkbA41LbXLVqFa655hq0a9cO8fHx6NWrF5YvX65pXwTToUMHXHrppSgpKVF83alTp3D77bejffv2aNasGXJycvDyyy97nj969ChSUlIAAIsWLfJ0ZYU7X4go2tjzNomIDHf06FEAQOvWrT2Pffnllxg0aBA6deqE/Px8JCUl4Z///CfGjh2LN998E+PGjQPQEFQUFBTgjjvuwMCBA1FZWYmdO3di9+7d+OUvfyn7mXfccQdeffVVTJ48GVdddRU2btyIMWPGhPQ9li9fjssuuww33HADmjRpgn//+9+YOXMm3G43Zs2aFdK2RRcvXkRZWRnatGkj+5qamhoMGzYMR44cwezZs5GZmYl//etfmDp1Ks6ePYv77rsPKSkpWL58Oe655x6MGzcO48ePBwD06dPHkHISNRoCETUqq1atEgAI//d//yecPn1aKCsrE9544w0hJSVFiI+PF8rKyjyvHTFihJCdnS1cuHDB85jb7RauuuoqoVu3bp7HcnJyhDFjxih+7qOPPip4Vzl79+4VAAgzZ870ed3kyZMFAMKjjz7qeWzKlClC586dg25TEAShuro64HWjRo0SunTp4vPY0KFDhaFDhyqWWRAEoXPnzsK1114rnD59Wjh9+rSwb98+4ZZbbhEACPfee6/s9pYtWyYAEF599VXPY3V1dUJubq7QvHlzobKyUhAEQTh9+nTA9yUibdjNRNRIjRw5EikpKUhLS8NNN92EpKQkvPPOO7jkkksAAD/88AM2btyIm2++GefOnUNFRQUqKirw/fffY9SoUTh8+LBn9FOrVq3w5Zdf4vDhw6o///333wcAzJkzx+fx+++/P6TvlZCQ4Pm3y+VCRUUFhg4dim+++QYul0vXNj/66COkpKQgJSUFOTk5+Ne//oVbb70VS5culX3P+++/jw4dOmDSpEmex5o2bYo5c+bg/Pnz2LJli66yEFEgdjMRNVLPPfccunfvDpfLhb/97W/YunUr4uPjPc8fOXIEgiBgwYIFWLBggeQ2Tp06hU6dOuGxxx7DjTfeiO7du6N3794YPXo0br31VsXukmPHjiEmJgZZWVk+j/fo0SOk7/XZZ5/h0Ucfxfbt21FdXe3znMvlgtPp1LzNK6+8EosXL4bD4UBiYiIuvfRStGrVSvE9x44dQ7du3RAT43vPeOmll3qeJyJjMJghaqQGDhzoGc00duxYDB48GJMnT8ahQ4fQvHlzuN1uAMBDDz2EUaNGSW6ja9euAIAhQ4aguLgYb7/9Nj766CO8+OKL+POf/4wVK1bgjjvuCLmscpPt1dfX+/y/uLgYI0aMQM+ePfHUU08hLS0NcXFxeP/99/HnP//Z8520atu2LUaOHKnrvUQUfgxmiAixsbEoKCjA8OHD8eyzzyI/Px9dunQB0NA1ouZCnpycjGnTpmHatGk4f/48hgwZgoULF8oGM507d4bb7UZxcbFPa8yhQ4cCXtu6dWucPXs24HH/1o1///vfqK2txTvvvIP09HTP45s2bQpafqN17twZ+/fvh9vt9mmdOXjwoOd5QD5QIyL1mDNDRAAapuMfOHAgli1bhgsXLqBdu3YYNmwYXnjhBZSXlwe8/vTp055/f//99z7PNW/eHF27dkVtba3s5+Xl5QEAnn76aZ/Hly1bFvDarKwsuFwu7N+/3/NYeXl5wCy8sbGxAABBEDyPuVwurFq1SrYc4fKrX/0KJ0+exNq1az2P/fjjj3jmmWfQvHlzDB06FACQmJgIAJLBGhGpw5YZIvL43e9+h1//+tdYvXo17r77bjz33HMYPHgwsrOzMWPGDHTp0gXfffcdtm/fjuPHj2Pfvn0AgF69emHYsGHo168fkpOTsXPnTrzxxhuYPXu27GddfvnlmDRpEp5//nm4XC5cddVV+OSTT3DkyJGA195yyy2YN28exo0bhzlz5qC6uhrLly9H9+7dsXv3bs/rrr32WsTFxeH666/HXXfdhfPnz2PlypVo166dZEAWTnfeeSdeeOEFTJ06Fbt27UJGRgbeeOMNfPbZZ1i2bBlatGgBoCFhuVevXli7di26d++O5ORk9O7dG717945oeYlszezhVEQUWeLQ7KKiooDn6uvrhaysLCErK0v48ccfBUEQhOLiYuG2224TOnToIDRt2lTo1KmTcN111wlvvPGG532LFy8WBg4cKLRq1UpISEgQevbsKTz++ONCXV2d5zVSw6hramqEOXPmCG3atBGSkpKE66+/XigrK5McqvzRRx8JvXv3FuLi4oQePXoIr776quQ233nnHaFPnz5Cs2bNhIyMDGHp0qXC3/72NwGAUFJS4nmdlqHZwYady23vu+++E6ZNmya0bdtWiIuLE7Kzs4VVq1YFvHfbtm1Cv379hLi4OA7TJtLBIQhe7bFERERENsOcGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLYW9ZPmud1unDhxAi1atOC04URERDYhCALOnTuHjh07BizYKvVi02zZskW47rrrhNTUVAGAsH79es9zdXV1wty5c4XevXsLiYmJQmpqqnDrrbcK3377rabPECfg4h//+Mc//vGPf/b7KysrC3qtN7VlpqqqCjk5OZg+fTrGjx/v81x1dTV2796NBQsWICcnB2fOnMF9992HG264ATt37lT9GeKU4WVlZWjZsqWh5SciIqLwqKysRFpamuc6rsQyMwA7HA6sX78eY8eOlX1NUVERBg4ciGPHjvmsiKuksrISTqcTLpeLwQwREZFNaLl+2ypnxuVyweFwoFWrVrKvqa2t9Vmpt7KyMgIlIyIiIrPYZjTThQsXMG/ePEyaNEkxQisoKIDT6fT8paWlRbCUREREFGm2CGYuXryIm2++GYIgYPny5YqvnT9/Plwul+evrKwsQqUkIiIiM1i+m0kMZI4dO4aNGzcG7TeLj49HfHx8hEpHRERWUl9fj4sXL5pdDFKhadOmiI2NNWRblg5mxEDm8OHD2LRpE9q0aWN2kYiIyIIEQcDJkydx9uxZs4tCGrRq1QodOnQIeR44U4OZ8+fP48iRI57/l5SUYO/evUhOTkZqaipuuukm7N69G++++y7q6+tx8uRJAEBycjLi4uLMKjYREVmMGMi0a9cOiYmJnCTV4gRBQHV1NU6dOgUASE1NDWl7pg7N3rx5M4YPHx7w+JQpU7Bw4UJkZmZKvm/Tpk0YNmyYqs/g0GwiouhWX1+Pr7/+Gu3atWMLvs18//33OHXqFLp37x7Q5WSbodnDhg2DUixlkSlwiIjIwsQcmcTERJNLQlqJv9nFixdDyp+xxWgmIiKiYNi1ZD9G/WYMZoiIiMjWGMwQERFRWGzevBkOhyPso8wYzFhEuasG24orUO6qMbsoRERkEwsXLsTll19udjFMZ+l5ZhqLtUWlmL/uANwCEOMACsZnY+IAdQtpEhERBXPx4kU0bdrU7GKEDVtmTFbuqvEEMgDgFoCH133BFhoiokbA7XajoKAAmZmZSEhIQE5ODt544w0AP3fRfPLJJ+jfvz8SExNx1VVX4dChQwCA1atXY9GiRdi3bx8cDgccDgdWr14NoCGxdvny5bjhhhuQlJSExx9/XLEc4md9+OGH6Nu3LxISEnDNNdfg1KlT2LBhAy699FK0bNkSkydPRnV1ted9tbW1mDNnDtq1a4dmzZph8ODBKCoqCs/OUsBgxmQlFVWeQEZULwg4WlEt/QYiIgqbSHf5FxQU4JVXXsGKFSvw5Zdf4oEHHsBvf/tbbNmyxfOa//mf/8Gf/vQn7Ny5E02aNMH06dMBABMnTsT/+3//D5dddhnKy8tRXl6OiRMnet63cOFCjBs3DgcOHPC8J5iFCxfi2WefxbZt21BWVoabb74Zy5Ytw2uvvYb33nsPH330EZ555hnP6+fOnYs333wTL7/8Mnbv3o2uXbti1KhR+OGHHwzaQ+qwm8lkmW2TEOOAT0AT63Agoy3nSyAiiqRId/nX1tbiiSeewP/93/8hNzcXANClSxcUFhbihRdewJ133gkAePzxxzF06FAAQH5+PsaMGYMLFy4gISEBzZs3R5MmTdChQ4eA7U+ePBnTpk3TVKbFixdj0KBBAIDbb78d8+fPR3FxMbp06QIAuOmmm7Bp0ybMmzcPVVVVWL58OVavXo28vDwAwMqVK/Hxxx/jpZdewu9+9zt9O0YHtsyYLNWZgILx2Yj9aax9rMOBJ8b3RqozweSSERE1HmZ0+R85cgTV1dX45S9/iebNm3v+XnnlFRQXF3te16dPH8+/xWn/xWUAlPTv319zmbw/q3379khMTPQEMuJj4mcXFxfj4sWLnuAHaFg8cuDAgfjqq680f3Yo2DJjARMHpGNI9xQcrahGRttEBjJERBGm1OUfrjr5/PnzAID33nsPnTp18nkuPj7eE9B4J+6Kk8y53e6g209KStJcJv/P8k8adjgcqj470hjMWESqM4FBDBGRSczo8u/Vqxfi4+NRWlrq6Uby5t06IycuLg719fXhKF5QWVlZiIuLw2effYbOnTsDaBg1VVRUhPvvvz+iZWEwQ0REjZ7Y5f/wui9QLwgR6fJv0aIFHnroITzwwANwu90YPHgwXC4XPvvsM7Rs2dITICjJyMhASUkJ9u7di0suuQQtWrRAfHx82MrsLSkpCffccw9+97vfITk5Genp6XjyySdRXV2N22+/PSJlEDGYISIigjld/r///e+RkpKCgoICfPPNN2jVqhWuuOIKPPzww6q6cyZMmIB169Zh+PDhOHv2LFatWoWpU6eGvdyiJUuWwO1249Zbb8W5c+fQv39/fPjhh2jdunXEygAADiHKl6bWsoQ4ERHZz4ULF1BSUoLMzEw0a9bM7OKQBkq/nZbrN0czERERka0xmCEiIopyd999t8/wb++/u+++2+zihYw5M0RERFHusccew0MPPST5XDSkYDCYISIiinLt2rVDu3btzC5G2LCbiYiIiGyNwQwREUUFK85MS8qM+s3YzURERLYWFxeHmJgYnDhxAikpKYiLi/NM+0/WJAgC6urqcPr0acTExCAuLi6k7TGYISIiW4uJiUFmZibKy8tx4sQJs4tDGiQmJiI9PR0xMaF1FDGYISIi24uLi0N6ejp+/PFH09YqIm1iY2PRpEkTQ1rRGMwQEVFUEFd59l/pmaIfE4CJiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjVTg5mtW7fi+uuvR8eOHeFwOPDWW2/5PC8IAh555BGkpqYiISEBI0eOxOHDh80pLBEREVmSqcFMVVUVcnJy8Nxzz0k+/+STT+Lpp5/GihUrsGPHDiQlJWHUqFG4cOFChEtKREREVtXEzA/Py8tDXl6e5HOCIGDZsmX43//9X9x4440AgFdeeQXt27fHW2+9hVtuuSWSRSUiIiKLsmzOTElJCU6ePImRI0d6HnM6nbjyyiuxfft22ffV1taisrLS54+IiIiil2WDmZMnTwIA2rdv7/N4+/btPc9JKSgogNPp9PylpaWFtZxERERkLssGM3rNnz8fLpfL81dWVmZ2kYiIiCiMLBvMdOjQAQDw3Xff+Tz+3XffeZ6TEh8fj5YtW/r8ERERUfSybDCTmZmJDh064JNPPvE8VllZiR07diA3N9fEkhEREZGVmDqa6fz58zhy5Ijn/yUlJdi7dy+Sk5ORnp6O+++/H4sXL0a3bt2QmZmJBQsWoGPHjhg7dqx5hSYiIiJLMTWY2blzJ4YPH+75/4MPPggAmDJlClavXo25c+eiqqoKd955J86ePYvBgwfjgw8+QLNmzcwqMhEREVmMQxAEwexChFNlZSWcTidcLhfzZ4iIiGxCy/XbsjkzRERERGowmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGYoqpW7arCtuALlrhqzi0JERGHSxOwCEIXL2qJSzF93AG4BiHEABeOzMXFAutnFIiIig7FlhqJSuavGE8gAgFsAHl73BVtoiIiiEIMZikolFVWeQEZULwg4WlFtToGIiChsGMxQVMpsm4QYh+9jsQ4HMtommlMgIiIKGwYzFJVSnQkoGJ+NWEdDRBPrcOCJ8b2R6kwwuWRERGQ0JgBT1Jo4IB1DuqfgaEU1MtomMpAhIopSDGYoqqU6ExjEEBFFOXYzERERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQyRTuWuGmwrrkC5q8bsohARNWpNzC4AkR2tLSrF/HUH4BaAGAdQMD4bEwekm10sIqJGiS0zRBqVu2o8gQwAuAXg4XVfsIWGiMgkDGaINCqpqPIEMqJ6QcDRimpzCkRE1MhZOpipr6/HggULkJmZiYSEBGRlZeH3v/89BEEI/maiMMlsm4QYh+9jsQ4HMtommlMgIqJGztI5M0uXLsXy5cvx8ssv47LLLsPOnTsxbdo0OJ1OzJkzx+ziUSOV6kxAwfhsPLzuC9QLAmIdDjwxvjdSnQlmF42IqFGydDCzbds23HjjjRgzZgwAICMjA2vWrMHnn39ucsmosZs4IB1DuqfgaEU1MtomMpAhIjKRpbuZrrrqKnzyySf4+uuvAQD79u1DYWEh8vLyZN9TW1uLyspKnz+icEh1JiA3qw0DGSIik1m6ZSY/Px+VlZXo2bMnYmNjUV9fj8cffxy/+c1vZN9TUFCARYsWRbCUREREZCZLt8z885//xD/+8Q+89tpr2L17N15++WX88Y9/xMsvvyz7nvnz58Plcnn+ysrKIlhiIiIiijSHYOGhQWlpacjPz8esWbM8jy1evBivvvoqDh48qGoblZWVcDqdcLlcaNmyZbiKSkRERAbScv22dMtMdXU1YmJ8ixgbGwu3221SiYiIiMhqLJ0zc/311+Pxxx9Heno6LrvsMuzZswdPPfUUpk+fbnbRiIiIyCIs3c107tw5LFiwAOvXr8epU6fQsWNHTJo0CY888gji4uJUbYPdTERERPaj5fpt6WDGCAxmiIiI7CdqcmaIiIiIgmEwQ0RERLbGYIaIiIhsjcEMERER2RqDGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIaIiIhsjcEMERER2RqDGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIYoypS7arCtuALlrhqzi0JEFBFNzC4AERlnbVEp5q87ALcAxDiAgvHZmDgg3exiERGFFVtmiKJEuavGE8gAgFsAHl73BVtoiCjqMZghihIlFVWeQEZULwg4WlFtToGIiCKEwQzZCvNB5GW2TUKMw/exWIcDGW0TzSkQEVGEMJgh21hbVIpBSzZi8sodGLRkI9YWlZpdJEtJdSagYHw2Yh0NEU2sw4EnxvdGqjPB5JIREYWXQxAEIfjL7KuyshJOpxMulwstW7Y0uzikU7mrBoOWbPTpRol1OFCYP5wXaz/lrhocrahGRttE7hsisi0t12+OZiJbUMoH4QXbV6ozgfuEiBoVdjORLTAfhIiI5DCYIVtgPggREclhNxPZxsQB6RjSPYX5IERE5IPBDNkK80GIiMif6mCmsrJS9UY5aoiIiIgiRXUw06pVKzgcDsXXCIIAh8OB+vr6kAtGREREpIbqYGbTpk3hLAcRERGRLqqDmaFDh4azHERERES66E4APnv2LF566SV89dVXAIDLLrsM06dPh9PpNKxwRERERMHommdm586dyMrKwp///Gf88MMP+OGHH/DUU08hKysLu3fvNrqMRERERLJ0rc109dVXo2vXrli5ciWaNGlo3Pnxxx9xxx134JtvvsHWrVsNL6heXJuJiIjIfrRcv3UFMwkJCdizZw969uzp8/h///tf9O/fH9XV1Vo3GTYMZoiIiOxHy/VbVzdTy5YtUVpaGvB4WVkZWrRooWeTRERERLroCmYmTpyI22+/HWvXrkVZWRnKysrw+uuv44477sCkSZOMLiMRERGRLF2jmf74xz/C4XDgtttuw48//ggAaNq0Ke655x4sWbLE0AISERERKdGVMyOqrq5GcXExACArKwuJiYmGFcwozJkhIiKyHy3X75AWmkxMTER2dnYomyAiIiIKia5g5sKFC3jmmWewadMmnDp1Cm632+d5zjVDREREkaIrmLn99tvx0Ucf4aabbsLAgQODLkBJREREFC66gpl3330X77//PgYNGmR0eYiIiIg00TU0u1OnTpxPhoiIiCxBVzDzpz/9CfPmzcOxY8eMLk+Ab7/9Fr/97W/Rpk0bJCQkIDs7Gzt37gz75xIREZE96Opm6t+/Py5cuIAuXbogMTERTZs29Xn+hx9+MKRwZ86cwaBBgzB8+HBs2LABKSkpOHz4MFq3bm3I9omIiMj+dAUzkyZNwrfffosnnngC7du3D1sC8NKlS5GWloZVq1Z5HsvMzAzLZxEREZE96Zo0LzExEdu3b0dOTk44yuTRq1cvjBo1CsePH8eWLVvQqVMnzJw5EzNmzFC9DU6aR0REZD9hX2iyZ8+eqKmp0VU4Lb755hssX74c3bp1w4cffoh77rkHc+bMwcsvvyz7ntraWlRWVvr8ERERUfTS1TLz0UcfYdGiRXj88ceRnZ0dkDNjVAtIXFwc+vfvj23btnkemzNnDoqKirB9+3bJ9yxcuBCLFi0KeJwtM0RERPahpWVGVzATE9PQoOOfKyMIAhwOB+rr67VuUlLnzp3xy1/+Ei+++KLnseXLl2Px4sX49ttvJd9TW1uL2tpaz/8rKyuRlpbGYIaIiMhGwr4206ZNm3QVTKtBgwbh0KFDPo99/fXX6Ny5s+x74uPjER8fH+6iERERkUXoCmaGDh2q6nUzZ87EY489hrZt2+r5GDzwwAO46qqr8MQTT+Dmm2/G559/jr/+9a/461//qmt7REREFH10dTOp1bJlS+zduxddunTRvY13330X8+fPx+HDh5GZmYkHH3yQo5mIiIiiXNi7mdQyIk667rrrcN111xlQGiIiIopGuoZmExEREVkFgxkiIiKyNQYzREREZGsMZoiIiMjWNAczP/74Ix577DEcP3486Gt/+9vfcgQRERERhZWuodktWrTAgQMHkJGREYYiGYtDs4mIiOwn7AtNXnPNNdiyZYuuwhEREREZSdc8M3l5ecjPz8eBAwfQr18/JCUl+Tx/ww03GFI4IiIiomBCWmhScoMGLjRpBHYzERER2U/YZwB2u926CkZERERkNF05M6+88gpqa2sDHq+rq8Mrr7wScqGIiIiI1NLVzRQbG4vy8nK0a9fO5/Hvv/8e7dq1YzcTERERhSTso5kEQYDD4Qh4/Pjx43A6nXo2SURERKSLppyZvn37wuFwwOFwYMSIEWjS5Oe319fXo6SkBKNHjza8kERERERyNAUzY8eOBQDs3bsXo0aNQvPmzT3PxcXFISMjAxMmTDC0gERERERKNAUzjz76KAAgIyMDEydORLNmzcJSKCIiIiK1dA3NnjJlCoCG0UunTp0KGKqdnp4eesmIiIiIVNAVzBw+fBjTp0/Htm3bfB4XE4OtNJqJiMxT7qpBSUUVMtsmIdWZYHZxiChK6Qpmpk6diiZNmuDdd99Famqq5MgmImrc1haVYv66A3ALQIwDKBifjYkD2GpLRMbTFczs3bsXu3btQs+ePY0uD5FlsZVBvXJXjSeQAQC3ADy87gsM6Z7CfUdEhtMVzPTq1QsVFRVGl4XIstjKoE1JRZUnkBHVCwKOVlQzmCEiw+maNG/p0qWYO3cuNm/ejO+//x6VlZU+f0TRRK6VodxVY27BLCyzbRJi/HqfYx0OZLRNNKdARBTVdLXMjBw5EgBwzTXX+OTLMAGYohFbGbRLdSagYHw2Hl73BeoFAbEOB54Y35v7i4jCQlcws2nTJqPLQWRZYiuDd0BjlVYGK+fxTByQjiHdU3C0ohoZbRMtVz4iih66upmGDh2KmJgYrFy5Evn5+ejatSuGDh2K0tJSxMbGGl1GIlOJrQyxP7VCWqWVYW1RKQYt2YjJK3dg0JKNWFtUamp5pKQ6E5Cb1cb0fUVE0U1XMPPmm29i1KhRSEhIwJ49e1BbWwsAcLlceOKJJwwtIJEVTByQjsL84Vgz4xcozB9uevIv83iIiH6mK5hZvHgxVqxYgZUrV6Jp06aexwcNGoTdu3cbVjgiK7FSK4NSHg8RUWOjK5g5dOgQhgwZEvC40+nE2bNnQy0TEQXB0UJERD/TFcx06NABR44cCXi8sLAQXbp0CblQRKTMqnk8RERm0DWaacaMGbjvvvvwt7/9DQ6HAydOnMD27dvx0EMPYcGCBUaXkYgkcLQQEVEDXcFMfn4+3G43RowYgerqagwZMgTx8fF46KGHcO+99xpdRiKSkepMYBBDRI2eQxAEIfjLpNXV1eHIkSM4f/48evXqhebNmxtZNkNUVlbC6XTC5XKhZcuWZheHiIiIVNBy/dbVMiOKi4tDr169QtkEERERUUh0JQATERERWQWDGSKyvHJXDbYVV3BSQCKSFFI3ExFRuK0tKvXMdhzjAArGZ5s+AzMRWQtbZogiiC0M2nDZBiJSgy0zFmLlFZApdGxh0E5p2QaeI0QkYjBjEbzQRTe5FoYh3VN4UVYgLtvgHdBw2QYi8sduJgtgU3r048KQ+nDZBiJSgy0zFsCm9OjHFgb9uGwDEQXDlhkL4ArI0Y8tDKFJdSYgN6sN9xcRSWLLjAWIF7qH132BekHghS5KNaYWBiazE1EkMZixiMZ0oWvMGsPCkExmJ6JIYzeThbApneyOyexEZAYGMwbhZGhEHLVFROZgN5MBwtmsztwDshOO2iIiM9iqZWbJkiVwOBy4//77zS6KRzib1dcWlWLQko2YvHIHBi3ZiLVFpSFv0wxstWo8OGqLiMxgm5aZoqIivPDCC+jTp4/ZRfERrjliomXGWCaDNj5MZieiSLNFy8z58+fxm9/8BitXrkTr1q3NLo6PcM0REw25B0wGbbyYzE5EkWSLYGbWrFkYM2YMRo4caXZRAoSrWT0aJtKLhoCMiIisz/LdTK+//jp2796NoqIiVa+vra1FbW2t5/+VlZXhKppHOJrVo2EiPSaDEhFRJFg6mCkrK8N9992Hjz/+GM2aNVP1noKCAixatCjMJQsUjsnQ7J57EA0BGRERWZ9DEAQh+MvM8dZbb2HcuHGIjY31PFZfXw+Hw4GYmBjU1tb6PAdIt8ykpaXB5XKhZcuWESs7/azcVWPbgIyIiMxRWVkJp9Op6vpt6ZaZESNG4MCBAz6PTZs2DT179sS8efMCAhkAiI+PR3x8fKSKSCo0hin8iYjIPJYOZlq0aIHevXv7PJaUlIQ2bdoEPE5EZCWc8JIociwdzBArRCI74vxKRJFlu2Bm8+bNZhchYlghEtlPtEx4SWQntphnpjFSM+Eclwkgsh7Or0QUebZrmWksgi2TwFYbImvi/EpEkceWGYtSmgGYywRYB1vHyB8X2ySKPLbMWJTShHPbiivCsrglacPWMZJj9wkvieyGwYyFyVWIbMY2H5M8KRjOr0QUOexmsjip1YfZjG0+JnkSEVkHW2Zsis3Y5mLrGBGRdbBlxsakWm0oMtg6RkRkHWyZCRPO3Bv92DpGRGQNDGbCgKNcGg8meRIRmY/dTAbjHDBERESRxWDGYFYY5cKJ3IiIqDFhN5PBzB7lwi4uIiJqbNgyYzAzR7mwi4uIiBojtsyEgVmjXIItTklERBSNGMyEiRmjXJLiYuEA4B3PcCI3IiKKduxmihJri0ox7vltAYEMJ3IjsherJvBbtVxEAFtmooJ/rgzQkPy7bmYuctJam1cwItLEqgn8Vi0XkYgtM1FAKlfGLQDVdW5zCkREmlk1gd+q5SLyxmAmCojDwb1FOleGTdBEobHCHFVSrFouIm8MZqKA2Yseri0qxaAlGzF55Q4MWrIRa4tKI/K5RNHECjclUqxaLiJvDkEQhOAvs6/Kyko4nU64XC60bNnS7OKEVbmrJuLDwctdNRi0ZGPAJIGF+cOZeEyk0dqiUjy87gvUC4LnpsQKuSlWLRdFNy3XbyYARxEzhoNzbhsi41h1JXarlotIxGCGVCl31aCkogqZbZN8KjKzl28gijZWXYndquUiApgzYxo7Jcwq5cSYna9DRETEnBkT2GnOBrU5MWbk6xARUfTScv1my0yE2W3OBrXDMlOdCcjNasNAhoiIIo7BTITZbc4GDsskIiKrYzATYXYLDpgTQ0REVsfRTBEmBgf+czZYOTjgsEwiIrIyBjMmsGNwwGGZRESNg9xUHFbGYMYkDA7MZceTlYgo3Ow02tYbgxlqdOx6shIRhZPcaNsh3VMsf9PHBGBqVOw2NJ6IKFTiJK37ys4oTtZqt9G23tgyQ6pFQ9eMVdaSioZ9SUTW590SLZJrkZZangYA9h8/i9ysNhEorX4MZkiVaOmascJaUtGyL4nIOqRukPxbokXe3UcAfN43L68nCt4/6PP6Jz84hBsu7xgw6/uuY2cgCAL6ZySbflPGYIaCsnM/qj+zh8bbaV+y9YjIHuRukKRaokX1goBVn5XgxU9LfN6X3ckp+Vrv1uu1RaXIf/MAxE07ACyZYO5NGYMZCsoqXTNGMXNovF32JVuPiOxB6QZJrtsIaDivV24t8QQk4vvWzcxVbL0WP897kwKA+W8eMPWmjAnAFJTdZi2W4r9KuVlrSdlhX9opSdpOq88ThUOwGyTvGdxFsQ4Hbh+cCf8Yp14QUF3nVpz1Xa61xw2YmijMlhkKKpxdM5HoyrBSK4PZ3VxqsPWIyNq8681geYDeLdGJcTGornN7nnupsCTgXP/7f47i+d/0k229lmvtiQFMvSlzCIIg06MWHbQsIU7Kyl01hnbNROJiVO6qwaAlGwNO9ML84aZemI3el0ay2j6TS2y0UhmJIkWq3gQQcIOkpi79wwcH8dzm4oDH3551FXLSWiuWIX/dAYjRQ7hyZrRcv9kyE2F2Tqo0ctbiSCXCRrKVQctva+UZoK3UeqQlsdGKrUdERpKrNwvzh6Mwf7jmG6RWSU0lH9959IxiMCO29uw+dgaCAPTLaG36ecdgJoLYLP6zSF2MIjUUO9p+WyusH6Y1sdFquUdERlOqN/XkAA7MSJZ8vH+GfCAjSnUmYEwf69w4MAHYYHIJiUYlVUZLwmOkEmH9E+DC0cpgp4RZLcxKkhZpSWy0Yu4RkZRQ6nCpejPGASTG6buU56S1xoQrOvk8NuGKTp5WGTtdb9gyYyClu3MjWiKi6e4/kl0Z4W5lYJdHeGhJbLRi7hGRP/86fN7onsi+xKk67cC/3gQazo9xz2/TfT34082X47bczth59Az6Z7T2BDJ2u94wAdggwRISQ01YNDLh0Up5O1ZOhFWLyajhs7aoVFdiI5HVSNUTIq3Bwr6yMxj73DafodVG1jlWqdOYAGyCYHfnobZEGHX37x9t3z44E9MHZ0puIxJBj5UTYdWyUsJstGHrC0ULpdl4tQ6AqKqrl5wjxqjWYDu2NjOYMYiahMQh3VOw7JYcuGouolViHPp1Dp5kpWX7wUjldqz8tAQrPy3BnVdnYppXUGO3Jkaz8aIbPpEMeL0DeACWacEk+0uKi1V8XkuwEO4EeDsm2Fs+mCkoKMC6detw8OBBJCQk4KqrrsLSpUvRo0cPs4vmI9jduZaVS/VsXw2lO4O/flqCFwtLUDA+G0O6p4Q8bNpKXVmREg2tTI2Z9zkq5lgKYDBPxqiqq1d8XkuwEO7WYDu2Nls+Z2b06NG45ZZbMGDAAPz44494+OGH8cUXX+C///0vkpKSgr4/0pPmeeeAAA0BRFJcLMY9v00ykNDaDxlKjolSn613eZbdkoN71+wNeG7NjF+oWgaerTrBNcZgz8qCnRtS5yl/Q/IW7HhQOsb05oOFO+fQ7JzGqMqZ+eCDD3z+v3r1arRr1w67du3CkCFDTCqVPPHu/IUtxViy4SAEAA4HIBcySjUtKp0Uodz9i9G21JLw3uWJcTh0NzGqmQzP//tZbSn5cGOwZywjggqlVktAetVg/obRS+sxpeZ4kGrtmJvXA306tdIdLIS7NdhOrc2WD2b8uVwuAEBysvRkP7W1taitrfX8v7KyMiLl8vbC1mIUbDjo+b9S25d/kBDuSlLM7Vj1WYnPiqne5bmic2vdTYzBEsf8v9+4vp2wbve3PkvJ5+cFH65oxbtiNWWK1MzHjYVR54vS6sKA9KrB3r/h/HUH0LNDC8VZU41mxXPAzsT9eeC4C0s/OKj6mNJyTuvJrePvrI6tghm32437778fgwYNQu/evSVfU1BQgEWLFkW4ZD8rd9VgiVcgo8Q/SIjUhS7VmYCHf9UL0wZlYlXhUbxY+A3cgm959Ca0Sl0UxAXIyl01yH/zgM+S82/u/tbn/QLgCQTlKhIr3hWrLZMdRwlYlZHni/9dswMAfmpRVbNqsFsAxj63LSzr00ix4jkQTkZf0P23J5XTCKhrWdZ6Tmtp7Whsv3MobBXMzJo1C1988QUKCwtlXzN//nw8+OCDnv9XVlYiLS0tLOWROsFKKqoUW2KAhtaHZyf3xRU/jWbaVlyBzLZJEb/QpToT8PCYSzFtcIZk0KKniVG8KHgHLQKArV+fRlJ8k4CWICVyFYnUXXFiXKxpXVRaLqp2HCVgVUafL/4BPABNqwYLiEwrW2Nr3dN7QZcLgPwTvWcOz8LyzcWKXe9yLcvigAmpczoxLsZTt+v5XUL5nRtja45tgpnZs2fj3XffxdatW3HJJZfIvi4+Ph7x8fFhL4/cCRasuRpoqPSSk+Kx9evTvrNB5vU05UJndL/okO4pPnlCYiX/6A2Xat6W/8VJ7q743jV7Tbtz0XJRteMoAasKR2Dofy7I3VnL5Z5FopWtMbXu6b2gy9XP/tsTADy3KXDVaG/iMaW0yKP/OT22b0fPoA+99ZLe39k/WJvhN+1GtLL82kyCIGD27NlYv349Nm7ciMzMTLOLpLgWj1jRiWvG+K+jAfwctftv48kNhzBvdE/LrzcTbL0OuZOwTVI8JHaH5GMi/4uT1NokIrPWRNK6ztTEAekozB+ONTN+gcL84Ww21sn/XIvk+TJxQDrWz7wq4PFI3HxEal0zK1C6oMtRqp+DJXr78z6mlMrifU6vm5mL9Xu+DXmtNj2/s1Sw9tdPSzBoyUasLSr1eZ1d1lxSy/ItM7NmzcJrr72Gt99+Gy1atMDJkycBAE6nEwkJ1lwAz7+5euvXpwPuxKvq6iW30eeSVrqWco+EclcNVhU2TLKnNP+G3B3zFZ1bY8mEbMx/8wDcaIikCyZko2eHFrjxuW0BnxfjAObm9Qi4U543uieWbjgIt0QZzbhD1dPaYqdRAlZm5mSFB0+egwPwSV6X+92NbPZvTK17Sq1vcvtUqX7ObJvk85t5iwHg/mn74iijxLgYVNXVo9xVE7QlUDyntxVXGNJypud3lgvWvFu0/HsEoiUPx/LBzPLlywEAw4YN83l81apVmDp1auQLBHXN294XK6kKt9xVI7sNK17opBLk5Jp8lU5CqX2xrbhC8jPdArB0w0G0SmjqOdnWFpU2jDQAJCslo+9Q1V6EOAOwebSeL0YEFuIdsPfx53A0dLH6C0cSZ6SON7NzL/zrEvEGR+qCPKR7imdeL7m6devXpyUDmViHA+tm5qK6zu3Zn1K/m5rgwsjuT62/s1KaQ70gYNfRM1Gbb2X5YMaKc/oZcSdu1N1VJCob/6ZLb3J3HEonof++UDoBvU82AAFNqA4H4BB876hKKqo8nxPseyntO60XISsGoeTLqMBCLndLas6ocF08tBxveuoJq4ykmTggHWerL2LJhobh0kvebxjt6D0qMn/dAUD4ecbmcX074a09J3zqVqCh/vAX4wCmD85Au5bNgo4sLcwfHrTl3OiWMy2/syef66fWb5/vCeDrU+eiNt/K8sGMVRlxZxTqNiJV2QTrZ97/7VnJmYHVnoT+J78/8WQTIASOIBEaRoYlJ8Vj//GzDd1PKvZHsH3X2EaMNAZG/qZq776tkKyrp56w0vEvTnfhPTrSn3e14RaAt/acCGhpker+EV+/8tMSvPTTci4TB6Qr/m65WW2C7gMzW2o9c4l5TbshtmI//cmRgNdHS76V5ROArSzVmaDqwA7HNpSS3IymlHQLNCQul7tqQkoqExPonp3UVzbpTS4h7orOrZHRNtEz0RWgvD/U7Ds9iYf+nxFtCXZ2F+pv6k1t8rHZybp66wkj91Wodh07o2lKB6ChrNV1bp+6NVg95r1vjPjdjLg+6CVOu/FZ/jV4dlLfhtGlEq+LpnwrBjM2FcnKxr/i9lcvCFj1WUPG/OSVOwIy57V8znU5HWUvEkoXEC37Q81rQ6nM1haVhrwvyHhGBxZqRqWZOeIK0F9PBNtXkQzW5VINxPLFOAJHREr9rgEjTSW26d1qZubvZpRUZwKSm8dJtkgtGHOpptGUVr9BYzeTjXj3e0tl5Yfzjk9sutx19AzmvL7H5+SIccBnaYRQm6SVmmjlntOSdKc2gVtPv7dRzfNmJ15Go3CMAlLTlWpml4PeZFSlfaXUbSV13IZ6LPfPSA6o6xwA1s+8ytONJDViVOqzvH+LxLiYgAWAvfdNtCT1yx0Dv+qTarv8KSWWXzU7VJFeNTtc1KxpFMmp1L0rjumDM7Dy05KA13mvsh2Ji7N/uZRWoVX7WqVVY6W+07biCkxeuSNgO2pXHBfLFsmKQ/weSXGxqKqrD/ob2T3QMnsl4EjTcl74899XUis/iyuKS40wAmDIsby2qDRgSgf/7ej5XUPZN3YS6jEg95uLx0S46gMt128GM2Fm1DBQuaXjRTEO4LP8ayJWOXtXHAACyhfjaLhzyklrHdGLs5YKLZSLmtIMo0onfjD7ys5g7HPbAlrcCvOHA4DhlYbUkHul38gOd2gUyKgATi5Yf3ZSX8kWW0EIbD1Wey74C1cQ2liCW73fU+kGrfSHqrDWB1qu3+xmCqNwDgP1JzUsNJz8m9f9RyO5BWDc89saJriTSMwN16gIpWZ//8BS71DqYF1Jersy1haVIt9v7hLg55ykFz8t0XwsKQXTckPu5X4jtV1odm+5iUZGDeOW67KAxNQKclM57D52Bq2TtB8f4Zr6INTt2uV41/s9k+JiJVMapGaxN3PEJ4OZMAn3MFB/Zg+vmzggHT07tPBpVRAnvfOf78CMeQ2MbFHQOgO0mu/pmYRN4jfWm5P0wtbihiGtMrkN7+4/IXtMSf1GaoYZs+XGerRcbJWOGUA+l6Zf59YBdZRUy4zDAcx+bY/iDOJWprTatlW+j5HBlfj9/AMZpVnszZqzhsFMmBg5v4RUBTK2b8eASaHMviuoqqsPaFVwAz6LTgKRD7yMnjND6wzQasi1vsUAuH1wZkBOUrBj6YUtxSjYcNDzf7fQkLvQs0MLHDx5TnYSRLnvAwT/3laam4QavLCl2DNHS7CLrdQxI/X7yQXrUkEOAJ/Ze72DG7sdH/6By7y8np55rYDwfh+1AYqRwZVUy22MA1g3Mxc5aa0VZ7E3A4OZMDF6RV+pCuShUT0s1dcr953n5vXAkxsOmRZ4GT1xWThGxUjtOzHvqF3LZnipsET1sSROMubPLQA3PrdNdm0a721LfZ9UZ4JPBe7/OitMEEc/e2GruuCk3FWDXcfO+LxWJPX7+V9Yxf8P6Z4iOTuuWG9VnL+Ae9fsDdj+rqNncF2OtY8PqUDdO5ARheN4VxugGH0zITfLdXVdQ1t7OOrBUDCYCZNIDAMNJecjHH28ct954oB03JDT0bTAK9TAUmp/GTlsU9z+vNE98eQHvkFfTlprANJ3vXKfWVJRpRisSD23YMyl6J/R2mfGVH9ri0o9FbgDwNzRPXwqVaMD+GhhRk6FXECr1C0oJcYBn99PalSluEK03IVWrKek7uQB4N41e7D/+FlMG5wpuX+skJOy69gZyQu7UdNjyH1HLQGK0TcTas5nKw1fZzATRmb+0HInR7j7eOW+c7iS99QINSlXbn8Z8Z2kmq77dGqlen4dKWpyrLwFm3NCvHPPf/OAz5TyT35wCDdc3tHnNw7HnZrU0HHA+JFdasuh5jPF1247UoHnNhfL5qCES0lFlWT+FQDZbkEp8/J6er6r1IX1zd3fel7rfaEVy+C9r8Tjw3/dIAHAXz8twYteywmI++/AcZdnAIFZOSlri0qR/2bgmk6xDgfmju4RcANi1MhIQFuAYvTNhNrz2cy63RuDmTAz44dWGjYciZwG/+9shTurUJJywzUBntT2n9xwSHboqtpjyb8S8udAQx6TVFeRP6U7d6lKNZQA3ns/AQ0V+YFvXQHN+eJsr0YkkRqRi6CUFOotkjkiagLaYKMk5+f1xF1DslS/Hgg+8m7igHQkxTfB7Nf2BLxX3D9nqy/6jID0fz6So+ekVkcHGr6Xp9X5cv2tzsHqGC0BSjhuJqzU8hIMg5koo3RyhCOnweiVp40U6lBsI/aXUXddWomV0O5jZ1B4pAJri8p8ghc1FVSwO3elSlVrd4H3fvIOVqR4Px5KgBDQKja6J7IvcWpq6vefKM4/KdRfKL+vlot2qjNBMnEc+HkKB6WAJ8YB3HB5R5/H1ARIakbeSY18EtULgs+iklLPR3L0nFwA9/QtfXFdTsP+CeWGNVgdECxA8b8BSEtODFhgM1RWaXkJhsFMBBh95yCXgJfZNknx5DC6GdLKK08bUckZkWtj1F2XHt4XWgeAO4dkYtqgn/MSgv0GSnfiWu/6grVseO8nlb1jHnoCBKnfRkyA9Q9spPIlxMRVNUmh3vxzUNTSczxPH5yJFz8tkc3pkOv2Eb+L/z5Ver343dSMvFPajv/IR39Gj54LVjfLnaP9Mlqr2n4wB467Ah5Tm5cidwMgHh9qZxyPFgxmwszoO4dgCXjzRveUvUAa2QyppiIxa3SLUUFUqPtL7vvvPnYGY/oEv+sKhVSA8NKnRzFtUKbqbciNsHr6lr7ol9Fa0wVD6fdQ032hRE8AqPSZ3oGN3MgvpYnilEaLeeegAOpudPaVnWmYTFHj8ZzqTMCSCcrH18QB6Sj9vhrPbS4O+H5S+1Spm0g8LuRG3nl/V/ECvarwKF4s/Obn4zRIIGPk6Dk1dXO4z9GlHwQmac/N6xE0L0XpBiDcN41WSBuQwmAmjIxumVCTgPfkB4cwL6+nZyh0jMP35DCqD1RNRRLp0S3iSfZDVZ1hQVQo+0uuWX72a3twvvZHTByQHrY+aSMCSbmKXGxe9ydXyQUri9aEZcdP0YIA/asZq/1MqafFfAm5ieJuGZCG1z8v82l1iEFDIOOdg6LmYiomn/qXQ82QaUD++PVOql6+pRj+pC6oIqnvLbZWyB0zUus2TRyQjofHXIoxfToELOHhvd25eT0kk+JDqV+01M2RPEcBoE+nVrrfKwrXTaMVJwkUMZgJI6NbJtQm4PXp1ApzR/fAkp+avJe8fxDfn6v1DH3Uk9PgL5wrT+vh3+Rq1JBJQH+fsac53S/vRIBvxRlqn7TU76a2og/2m6utyKUqOTFPKykuVjJw2H/8LHKz2gQcJ/7BytzRPdDnklZIjIvx5AIACOniEixJWol3voR/uQUBeO3zMsQ4gDsHd8GYPh0k8xekLqbipIbicHy55FMg8LfUMurO51yR6dZRuqAGO6/9jxnAd+02/8BBarJNALjvmq645cp02d83lPpFa90cjryRUIKxYMG4uNzAtuIKQ9MbrDwpJoOZMDKyZaLcVYMfqupUTXiWGBeDpR8c9BlG6z/00Z/WiFttRaL2YhhK06VUk6sD8Oz7ULvTQmlSnTggHYlxsZKThRlx5yT3u6n5fdT+5sEqcqlKbp7XUNYYBzD6sg54/4uTPu/zHtotdQEMdsyEeix5f+b+b896WjOV+OdLeCdai9P0i/vgpcISTBucIVkGuQnJxj63DUsmNASCcstNiC1D3q0sUheZnh1aBKyCHnCuSGxfTR0V7Lz2Pma2FVdIBg7v7S/HmD6pshfmZzYdQcfWCYr1kN5WEyvMiRRKMBbsBmBs344Y9/w2Q1tQrD4pJoOZMDKqZUJuqKfcsgZSa2YAoS8g6E9tRRLsYhhq06XUSSYAeOaWvmjTPF733buecknNidI/IzksFWew303p99HymwcLDoK1GLoF4AO/QAaQTgz1TzhVux/E8gWMLpIZoeT9GanOBORmtfFM7Ogd2Kjp0kp1JqB1UuBEhUoVvdwFXACQv+6A5zP9xeDn1ehFcheZsc9vC5jfRmnZDLfCd5SitrVC7rsufu8rPPH+VygYny2ZEKwlN0hrS3MkW42VhNKF5R1IuwUB6cmJqK5zIzEuxhPIANpbUOT2mxUCQCUMZsIs1P5WueGxDjT0a981JCtgWQO5mTYB/QsIyjGiiyTUpkulEQd6y6anXFJBp3ghCUfFqeZ3k/t91P7mUpP6ZXdy+gRravJPwrVGl9KQbp9EXgeQ75ez4k8qsJFrJfKv8LVW9HJdkIB8Eqz/rNAi2cBI4tiVK6fRw3m9KXXpiWUrzB+Opyf3DUgs9k6Y10LNjYhV5lAJpQ6VykVKS07UXZ8H6660QgAoh8FMBIRysMrdSQlomGDthpyOkne0ckMf9SwgqJWWrplwJqpKXXjEzwxWNqVySW1DLuj0rqyl1q0JhdF97v7DXv1n/XULQMH7vqMvvIM1uSG74ra91+jyT0zXQ8uQbkEsuwDcNVQ+oBEptRLJVfjBKnr/80JqpXk5C8ZcKjtLs//xL7ayeBOP3dysNpLl9A+QjCYGDu/tL8fi974KKNuuo2fQL0N6/hnvhHk1tNyISNXNSpNcWmkUj9z3XDczV1e9oGa/WSUAlMJgxuKU7nqVLvpSQx+VmsmNiri1ds0YFUjpnYtBrmxy5dr/7Vn85sX/BHw/pa4W7wuJkSe/2t9Nbl4iqbWgUp3yM9hK8Q7W1s+6ytO14S0GP8+WCgGexPSlGw6iVUJT3X35eoZ0L91w0GcJBq2UKnylil7uvMhJa+0zfNp/ZWkg+HITgO/x79/NIG5DPKfMuiClOhMwpk8qnnj/q4Dfbc7re34OioMkzAcTyg2S3O9kxVE8ct+zus6tqz5Xu99CbY0PFwYzFqe1lcX/vQ+PuRTTBmcErbiMqOD05mEYFUj5n2ShzMUgFSjMHd3DZ1K0YM33onD2K0slznqPYAg6L5HfWlBq1uvx5x2sLRnve2G+Y3AXTxKsOK+Gd0tPKKMhpPa5Az8v1SDFDXgST/V8ppoZW6WOdS25TVu/Pq07KVR8XbBzyqwLklx95h0U/+WWy0NKmNd7g6SUSG3FUTxK3zM3q03Q+jzUrlKrYTBjA1paWaSorbhCreD05mEUjM82vAtGrjzByuZtSPcU/GXS5YAA9Mtorfj9/JvvRZHoVxZ/N6np+b3XuHELEvMS+a0Fpae1Q+1dv9GjIeRapsTP//DLcqzedizgfd6Jp5GYFVrue+86egbX5QTmNum9sZCalM7IVd2N6l6Rm3hPPBZCTZhPdSY0HPsbDmpKapb7nYqOSs8AbfYonmAts0r1ud6uUitjMGMTalpZjKh0QtmGmope7u6nMH+44dNvq5mLQa6ClJs3Ren7+Tf1Hz9TA7cgoH9GsqHfS+o3ktqvYmWuRM1Eh+Ksv9+erfF0S4nEFquSiioAP1egUseO5LYBfF9Vi3JXja5jVu6ivfXr03hle2AgI/K/u1Z73Evlp8wdrZz7I3cc3rtmD6rqfvRZJVrvOmJKQ/RDEa7uFbmJ94yYqXxtUWlDEI+GVrq5eT1UlVmu/hogkctjhRaLcleNrrWY9HaVWh2DGYuSq1zlKjkjKp1Qt6GmEorkXAX+5XEAwE85CUoVpNz08YX5w1U334frIiC3Xcl5S6BtrRux/Eqz/oorBIsT2O3/9qyn6y3Y95T6PQQ0JHiGso+CdS8C0ksMiMfdO/tONCxuqPK3mjggHWdrLv6c+/PBQbRKbOqZJFAq0Xze6J6ekVUiAQ0T5XmvEq1nP0hOwPem7wR8ehg5fN9fsLoilNYp/3l0vAdK6ClTTlpry7VYSNUDam8G9XSV2oFDEDROf2kzlZWVcDqdcLlcaNmypdnFUUXrhbDcVeMzwybQcJHy7j4QXydX4ajdhhrlrhrZuU12Hv0B972+15DP0VMeQHkyNrnp4wFgzYxfIDerjez38/48o/al2u0CkHzOewSR3LxEUsdWsO8Yyvcsd9Vg19EzmPP6nrAcB9uKKzB55Y6Ax6WGht89tIvkukRK5ZD63t7z0UglmqclJ0qWCZCerVrLflD6vktCCKLltiueB6Jgi4gqBTlqjjMl/ttXW+Zg25Srv6zQYhFq/RKu+ikctFy/2TJjMXrmN1HT2hEsQDKyxUQqsg9YbkBFC4lR/MujdJFSM318sDuXcLU+acnZ8Q5UvOdMSXUmBMxLJJLq6tBbnmBdNcnNw9dCJ9dd4B/Yzc3rgSXvBy70F6wckpM0ev1fKtF83cxcydYhqZYzrftBaZ4ZoxOs1XYbD+meIrsek7dQWgH0dAWrIVcmtWWVGz1oVM5RqPVLqN14VsVgxmL0HKhq5gwJFiDJbcOI9T2kRhXFCMCzk/viis7KE9tFcm4HpeRXLXOihGtUgFw+S8X5Cyh31cg2zUsFc0rBptqujnDOcxMKucraP7DbefQH2YUklcqhdWFMcbjskgnZPq1+4kR+3iPkAH0XX7kRj0oLUnpPfCh38dbbbbzr6JmwjgBSyr0L54U6WH2kZvRgdif5GanVMOLcsXNujBwGMxaj50ANVumonSnWfxtGre8hl8+RnBSveBJpucAaEfRktk2SXftKzUq2onDd+QTknPx0V3/vmr0hJX3qnYU5lO8Zjn2kZjSPf06TlHl5PTV9b6m5Ybz5D5fddfQMHA54AvlWCU1D3g+eCfj85vlRWpBSpHRuBbvoydVXkAj2jMyNU6rTwnWhDlYfSZ1H/qMHxUknQ80RM2KSULvmxshhzowFrS0qlbyrDEapr1dtH6m4DbmJt7zfs6/sDD4/+gMGZiQrJhrq6aPV8h4jk21f2FIckKhpdO5QqMpdNQELG4ZSzlDzDPR+TzGHKsbhCNpCF4zWwNf/2AIauj/z83qqmiFY3I7U3DBSieZq1vQy4lh5YWuxp6XH/7PlvjcQWs6EVH01pHtKWPMypL5LDID1s64Ky2zGauojufNITqj7Q+qY0TpJqNVmNfbHnBmb03tnodTXq/YuWNyG3Eq34p3V//vnXp+7jglXdMKfbr5ctlxa78LVdrcZvSz9XUOzAAcCLgh6thWuO59Up/aFDZWEMsmYWBFqHVZvZACq9RhYVVgieUF/dnJfjOnTUfXnev++elb9ltuWXmuLSj3HrQMNQ8aD5cWJQmk1kaqvyl01uH1wJl76aV/HALh9cIaq7am5wPrXKUBDa++457eFZXZeNfWRnu5HqX0uLiUi/DStg9I+UKoLpXK3vM8JK85qHAoGMxZl9IVQa4CkdIHbV3bGJ5ABGppTb8vtLHtXZOTnewtHsu1dQ7ICkmatxsicE6luk2A5QqFUhEYHoHLHgNQCheWuGqz8tCRgGzE/dfuEQio3KVKkLmRPfnDIZ+mGUGapDhZgeH93/9aBId3aovBIBf76aQleLCxRPFa0HFdSXWtG5+aI1Jxvcl314uhBf1L73H80pQPAkgnqzi0tk4QafQ5aQYzZBaDISXUmqF4fSDwxYx0NjZXeLRSfH/1B8j07j56JyOd7EysZb0YkkmopqxnU7h+1Jg5Ix9zRPeDAzxPurS0qlXytXEVY7qpR9VnBFvHUSsx18jf7tT0B36GkIrBFC2hYdsGqv7Uaavap/zEjCnbsrC0qxaAlGzF55Q4MWrJR9rgApIOqrYcrVB0reo6rqrp62dFgRlJ7vomzhj87qS/WzczFhH6XYN3MXKyZ8QvMz+sZ8H6goXuq3FUjOZpSQMOcQWrOLam60Jt3vWj0OWgFbJkhWXKtKQNlZrTtn2FsX7Wa1pxwJdvagdL+0doXrmXdpFBbw0JtVVL73QSoG7UXA2Cayi4Qq1K7T/1nqQ42c6zWO3g1y2HIHSvhGslpVE6I/76rqqv3mbk6WL7KXUOzPJNOinlWYh5OwzpmmZL7zg2oOrcCBggAspOE2n0dJikMZkiRVHdXTlprTLiiU0DOjNbEO7V942KzqNwQcTsPMwy1spX6ffR0AWm5kIRaEYYSgEp9t7TkRNmRRGpG7ZkV/Bp5odWTF6eG1gBDTd6I3LFi9EjOcOSEpDoTfObPEYfX35DTUXW+ilw3z4uflkjOOxQD5akCvKnN3bLSeWAUBjOky59uvhy35XbGzqNn0D+jteZARktFo+a14Uq2DadwDD3X2xeu5UJiREUY7C5Xy3dbNzNXdS6ImvVsIjHCIxwX2nAE9VoDjGB5I8GCLD3HlVwCcjhyQqSWSyh4/yCOaVzUVm66ijsHd8HKwm98ApqCCdmayqw2d0vr8WL1kU8MZqKEGQdaTpr2IAbQvuZLtCWqAdq+l5YLXyiz8mq5kBhx4fS/yw02Fb7cd6uuc6tasVzNejZq5hIxYjHXcB3TRgf1egIMqWNDbtZpNe9VW07v10ZyFm4AWPN5maZFbeWCxGmDM9CmRRyWvH/Q00UVTmqPFzuMfGIwEwXscKB501LRRGphSnHOE4fDgX4hznmihpah596jG4Jd+ELpAtJ6IQn1wql1KnylqerFCenkckHUBBDBXmPUeRbJxVaNoCfAkGod0BuY6BHOWbiluoIEADMGd8FLhSWeCS3FtbrkFqSVChKBhuR7ted7JNjlhpLBjImsdpcXqdYdLRVNUlys5EJ8RiaqhTIcUi+1iYvv7juhaT6ZULuAjAhQ1B5DWqfCDzZVvVzZy101eHf/iaABRLARHkadZ1qOf6s07dutGzdcOSGpzgTk5/X0zOQrEltVpg3OUD3XkFSQGGx+LzPYJfhmMGMgLRWP3F2e1srLqAMtkq07wSoacR8c+Nblc5cCBB9GqmcUj/8q2QIaLlzhvPNQm7goJVhCoFkJ0VqPIT1T4Wv9bkr7Um3Tf0bbRFXnmdpjT+2FNpQ6IpJBkFGfZXSZw3Ue3DUkCxB+mlgTgXWSmnwV7+e9XxPuUUZ69rFdRj4xmDGI1mROqbu8s9UXsfSDg5oCCiMONDOaEeUqGqWLT4wDWDczVzZPR+8oHqmYwS1ID4cM11BPucRFKXcMyQx7F5BWeo4huYt6v86tFY9ptd9NaV9qafoXX6NUJq3HXrALbSh1RCRuTDw3HMddmuss/21ktk1StcK2HuE6D/yHWRv1GWoCXb11kJrjQmrb4WrlMhqDGQMYMRdDvSBgiY6+UiMONLOaEf0rmmAXcrcAVNf5rwss/V4to3ikFpeUWjnZqNY0b2oSF/3LNW1QpqbPiAS9x5DcRd2IylNuXy4Ycyl+1SdVddM/oHyehbJQp9zzeuuISNyYyN1waPks/3PJe6FOq+Zk+DM6UBLrkSHdU1CYP1wyUNIbqKo5LpS2bYfpLxjMhEhtf7w3yYm7QlhlNtQDzSrNiMEu5FJlEiuAH6rqdI/iWTIh2zdn5qcTWSnQ8twp11z0rIdjxB1lsCnnjbwjMrKVKZRjSOqiYETlKVcmuUBGqjxqVuIOx82A3joi3DcmwW441HyW1LmkZzuRYpWh+qEEqsGOCzXbtnreFIOZEGjpj/cmdZc3N6+H56KoZhtS29R7oIWzGVFLRaD1Qu4/46beRGHxIrXr6Bk4flqjx7+sinfKBt4FSx4bo3ugzyWtDL0jMrorIhzHkNQxreV4CrVMcvvI//1G3Qz4fzef9bIA3DMsC8s3Fyt+TihlUbNv1dxwJMbFyE5wqWYbWsocbkYviCq1f9UGKaEEqsGOC7sk+SphMKOT1v54f1J3ea0SmprWLxmOZkStFYGWC7nUGjAO/Hz3qmcUz3U5yt1RUtPgh6MCCHeTbri6IsJdbj0XFr1l0rKPjAjk5L7b2ZqLWPLTTc7yzcUY17eT4gR0esvi//nz8noiu5Mz4MIb7IZjbN+OGPf8Ns92bh+ciemDM4Nuw+EAHAIkE2r9RSq52cjzROnYVRtIhNr6qXRcWKV1PhQOQZBYztNinnvuOfzhD3/AyZMnkZOTg2eeeQYDBw5U9d7Kyko4nU64XC60bNnSsDJtK67A5JU7Ah5X6o+X431yAsrD+eyi3FXjWXdEFOtwoDB/eNDvVe6qCUiK9a+85Pb/s5P6ok3z+KDrzchVhkrPrS0q9akMrr2sPTZ8cdLnNWq/o5nk9t2aGb8ImETOLP6/QyjHkx569pH/cauW3HdbNzPXExj4P65mTSUtM7v6f75IKmj0Pw/m5vVAn06tkBgXE1BeQHqqA/9tPDG+t6qg84WtxZ7W0HCPujTqPAl27Co9D8DnPJDab1q+v9JxEeq2w0HL9dvyLTNr167Fgw8+iBUrVuDKK6/EsmXLMGrUKBw6dAjt2rUzrVx6++P96c0wt7pQmi29uxfk9o/c/u+XoTzhndL+DvZb+E/BP+75bQHbn5vXw/K/kVw+RmJcjHmF8iK3/pKa48moc0XvOkF6PlPuXCk6ekby8eo6d9CLqZayKHX7SLVGyLV2Sc2RAkgv+KmUaC3nhS3FKNjw8/wuRicK+x87RrVWBKsL5VpN5EZ4hdL66Z1b5f1/wB5JvkqsUXspeOqppzBjxgxMmzYNvXr1wooVK5CYmIi//e1vppZLPACDLQmvRM2S92uLSjFoyUZMXrkDg5ZsxNqiUkO/R7hILUdv1JBxcQ0frftfaXtqfgug4XfPzWqDqrp6yYq7T6dWqr+fWfz3HdDwfcc9v83040vud0iKiw16PBl5rhhxfqsld64MyGgd8jmk9/O9eU8cKBLPA6lukFC2IafcVYMlGw4GPC61XT2kjh2jjgE1deHEAekozB+ONTN+gcL84RjSPUWx7lO739R8T2+hbNtslg5m6urqsGvXLowcOdLzWExMDEaOHInt27dLvqe2thaVlZU+f+HifwBqbZILNuOo2gusFRlREQTbP1r3v9L2gn2WPyOCNTNNHJCOdTNz4f0VrHB8BVt/Se54Cse5Eur5rZbcuZKT1joiAZVUcOtNa16GVEAT6rkhNx+U1BQKWikdO0YcA2rrQu9AQmt9pIadrydqWLqbqaKiAvX19Wjfvr3P4+3bt8fBg4FROgAUFBRg0aJFkSgegNBGEUV7hnkkhoxr2f/Bthfq6sBWnEhKSVVdvaalEiJB6TfyXn/J/3gK17kSyvmthdy5Eqmmf+/P2X/8LJ784JCu41rczqrPSvDi1hJVCb1qyCUez8vrGfI+UdMNFOpnaP0dw5GQa/frSTCWDmb0mD9/Ph588EHP/ysrK5GWlmZiieQ1hgzzUCoCowOGYNszYnVgO7Hi8RXsN5I7nqz4XbSS+26RCqjEz8nNahPS7LapzgQ8/KtemDYo07Bzw/+4iEFDIHPXkKyQtgtE7tjR8juG42YpGs4RJZYezVRXV4fExES88cYbGDt2rOfxKVOm4OzZs3j77beDbiNco5mMZLcM80jTO0pEz/aM/iyrs+rxped3sOp3IeOE6/y06rFj9Pe16veUo+X6belgBgCuvPJKDBw4EM888wwAwO12Iz09HbNnz0Z+fn7Q99shmAmmsV1gKbKi6fiKpu9CkdVYjh07fc+oGpr94IMPYsqUKejfvz8GDhyIZcuWoaqqCtOmTTO7aBETqWZmapyi6fiKpu9CkdVYjp1o/Z6WD2YmTpyI06dP45FHHsHJkydx+eWX44MPPghICiYiIqLGyfLdTKGKhm4mIiKixkbL9dvS88wQERERBcNghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtmb55QxCJU5wXFlZaXJJiIiISC3xuq1moYKoD2bOnTsHAEhLSzO5JERERKTVuXPn4HQ6FV8T9Wszud1unDhxAi1atIDD4TC7OBFXWVmJtLQ0lJWVcW2qEHA/GoP70Rjcj8bgfjRGuPajIAg4d+4cOnbsiJgY5ayYqG+ZiYmJwSWXXGJ2MUzXsmVLnqwG4H40BvejMbgfjcH9aIxw7MdgLTIiJgATERGRrTGYISIiIltjMBPl4uPj8eijjyI+Pt7sotga96MxuB+Nwf1oDO5HY1hhP0Z9AjARERFFN7bMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwUyU2Lp1K66//np07NgRDocDb731ls/zgiDgkUceQWpqKhISEjBy5EgcPnzYnMJaWLD9OHXqVDgcDp+/0aNHm1NYiyooKMCAAQPQokULtGvXDmPHjsWhQ4d8XnPhwgXMmjULbdq0QfPmzTFhwgR89913JpXYmtTsx2HDhgUcj3fffbdJJbam5cuXo0+fPp4J3XJzc7FhwwbP8zwW1Qm2H80+FhnMRImqqirk5OTgueeek3z+ySefxNNPP40VK1Zgx44dSEpKwqhRo3DhwoUIl9Tagu1HABg9ejTKy8s9f2vWrIlgCa1vy5YtmDVrFv7zn//g448/xsWLF3HttdeiqqrK85oHHngA//73v/Gvf/0LW7ZswYkTJzB+/HgTS209avYjAMyYMcPneHzyySdNKrE1XXLJJViyZAl27dqFnTt34pprrsGNN96IL7/8EgCPRbWC7UfA5GNRoKgDQFi/fr3n/263W+jQoYPwhz/8wfPY2bNnhfj4eGHNmjUmlNAe/PejIAjClClThBtvvNGU8tjVqVOnBADCli1bBEFoOPaaNm0q/Otf//K85quvvhIACNu3bzermJbnvx8FQRCGDh0q3HfffeYVyqZat24tvPjiizwWQyTuR0Ew/1hky0wjUFJSgpMnT2LkyJGex5xOJ6688kps377dxJLZ0+bNm9GuXTv06NED99xzD77//nuzi2RpLpcLAJCcnAwA2LVrFy5evOhzPPbs2RPp6ek8HhX470fRP/7xD7Rt2xa9e/fG/PnzUV1dbUbxbKG+vh6vv/46qqqqkJuby2NRJ//9KDLzWIz6hSYJOHnyJACgffv2Po+3b9/e8xypM3r0aIwfPx6ZmZkoLi7Gww8/jLy8PGzfvh2xsbFmF89y3G437r//fgwaNAi9e/cG0HA8xsXFoVWrVj6v5fEoT2o/AsDkyZPRuXNndOzYEfv378e8efNw6NAhrFu3zsTSWs+BAweQm5uLCxcuoHnz5li/fj169eqFvXv38ljUQG4/AuYfiwxmiDS45ZZbPP/Ozs5Gnz59kJWVhc2bN2PEiBEmlsyaZs2ahS+++AKFhYVmF8XW5PbjnXfe6fl3dnY2UlNTMWLECBQXFyMrKyvSxbSsHj16YO/evXC5XHjjjTcwZcoUbNmyxexi2Y7cfuzVq5fpxyK7mRqBDh06AEBAhv53333neY706dKlC9q2bYsjR46YXRTLmT17Nt59911s2rQJl1xyiefxDh06oK6uDmfPnvV5PY9HaXL7UcqVV14JADwe/cTFxaFr167o168fCgoKkJOTg7/85S88FjWS249SIn0sMphpBDIzM9GhQwd88sknnscqKyuxY8cOn/5O0u748eP4/vvvkZqaanZRLEMQBMyePRvr16/Hxo0bkZmZ6fN8v3790LRpU5/j8dChQygtLeXx6CXYfpSyd+9eAODxGITb7UZtbS2PxRCJ+1FKpI9FdjNFifPnz/tEwCUlJdi7dy+Sk5ORnp6O+++/H4sXL0a3bt2QmZmJBQsWoGPHjhg7dqx5hbYgpf2YnJyMRYsWYcKECejQoQOKi4sxd+5cdO3aFaNGjTKx1NYya9YsvPbaa3j77bfRokULT+6B0+lEQkICnE4nbr/9djz44INITk5Gy5Ytce+99yI3Nxe/+MUvTC69dQTbj8XFxXjttdfwq1/9Cm3atMH+/fvxwAMPYMiQIejTp4/JpbeO+fPnIy8vD+np6Th37hxee+01bN68GR9++CGPRQ2U9qMljkXTxlGRoTZt2iQACPibMmWKIAgNw7MXLFggtG/fXoiPjxdGjBghHDp0yNxCW5DSfqyurhauvfZaISUlRWjatKnQuXNnYcaMGcLJkyfNLralSO0/AMKqVas8r6mpqRFmzpwptG7dWkhMTBTGjRsnlJeXm1doCwq2H0tLS4UhQ4YIycnJQnx8vNC1a1fhd7/7neByucwtuMVMnz5d6Ny5sxAXFyekpKQII0aMED766CPP8zwW1VHaj1Y4Fh2CIAiRCZuIiIiIjMecGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIaIiIhsjcEMERER2RqDGSIiIrI1BjNEZJq6ujqzixDAimUiImUMZojIMMOGDcPs2bMxe/ZsOJ1OtG3bFgsWLIC4akpGRgZ+//vf47bbbkPLli1x5513AgAKCwtx9dVXIyEhAWlpaZgzZw6qqqo8233++efRrVs3NGvWDO3bt8dNN93kee6NN95AdnY2EhIS0KZNG4wcOdLz3mHDhuH+++/3KePYsWMxdepUz//1lomIrIPBDBEZ6uWXX0aTJk3w+eef4y9/+QueeuopvPjii57n//jHPyInJwd79uzBggULUFxcjNGjR2PChAnYv38/1q5di8LCQsyePRsAsHPnTsyZMwePPfYYDh06hA8++ABDhgwBAJSXl2PSpEmYPn06vvrqK2zevBnjx4+H1iXntJaJiKyFC00SkWGGDRuGU6dO4csvv4TD4QAA5Ofn45133sF///tfZGRkoG/fvli/fr3nPXfccQdiY2PxwgsveB4rLCzE0KFDUVVVhffffx/Tpk3D8ePH0aJFC5/P2717N/r164ejR4+ic+fOkuW5/PLLsWzZMs9jY8eORatWrbB69WoA0FWmZs2ahbSfiMhYbJkhIkP94he/8AQyAJCbm4vDhw+jvr4eANC/f3+f1+/btw+rV69G8+bNPX+jRo2C2+1GSUkJfvnLX6Jz587o0qULbr31VvzjH/9AdXU1ACAnJwcjRoxAdnY2fv3rX2PlypU4c+aM5jJrLRMRWQuDGSKKqKSkJJ//nz9/HnfddRf27t3r+du3bx8OHz6MrKwstGjRArt378aaNWuQmpqKRx55BDk5OTh79ixiY2Px8ccfY8OGDejVqxeeeeYZ9OjRwxNwxMTEBHQ5Xbx4MeQyEZG1MJghIkPt2LHD5///+c9/0K1bN8TGxkq+/oorrsB///tfdO3aNeAvLi4OANCkSROMHDkSTz75JPbv34+jR49i48aNAACHw4FBgwZh0aJF2LNnD+Li4jxdRikpKSgvL/d8Vn19Pb744oug30FNmYjIOhjMEJGhSktL8eCDD+LQoUNYs2YNnnnmGdx3332yr583bx62bduG2bNnY+/evTh8+DDefvttT7Ltu+++i6effhp79+7FsWPH8Morr8DtdqNHjx7YsWMHnnjiCezcuROlpaVYt24dTp8+jUsvvRQAcM011+C9997De++9h4MHD+Kee+7B2bNng36HYGUiImtpYnYBiCi63HbbbaipqcHAgQMRGxuL++67zzPcWUqfPn2wZcsW/M///A+uvvpqCIKArKwsTJw4EQDQqlUrrFu3DgsXLsSFCxfQrVs3rFmzBpdddhm++uorbN26FcuWLUNlZSU6d+6MP/3pT8jLywMATJ8+Hfv27cNtt92GJk2a4IEHHsDw4cODfodgZSIia+FoJiIyjNToISKicGM3ExEREdkagxkiIiKyNXYzERERka2xZYaIiIhsjcEMERER2RqDGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIaIiIhs7f8D+wfn2xM8vM8AAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/250\n", + "13/13 - 3s - loss: 0.4963 - mae: 0.5592 - mse: 0.4963 - val_loss: 0.1685 - val_mae: 0.3349 - val_mse: 0.1685 - 3s/epoch - 249ms/step\n", + "Epoch 2/250\n", + "13/13 - 0s - loss: 0.1216 - mae: 0.2839 - mse: 0.1216 - val_loss: 0.0809 - val_mae: 0.2245 - val_mse: 0.0809 - 237ms/epoch - 18ms/step\n", + "Epoch 3/250\n", + "13/13 - 0s - loss: 0.0665 - mae: 0.2043 - mse: 0.0665 - val_loss: 0.0359 - val_mae: 0.1503 - val_mse: 0.0359 - 262ms/epoch - 20ms/step\n", + "Epoch 4/250\n", + "13/13 - 0s - loss: 0.0294 - mae: 0.1329 - mse: 0.0294 - val_loss: 0.0221 - val_mae: 0.1119 - val_mse: 0.0221 - 283ms/epoch - 22ms/step\n", + "Epoch 5/250\n", + "13/13 - 0s - loss: 0.0170 - mae: 0.0964 - mse: 0.0170 - val_loss: 0.0115 - val_mae: 0.0792 - val_mse: 0.0115 - 351ms/epoch - 27ms/step\n", + "Epoch 6/250\n", + "13/13 - 0s - loss: 0.0097 - mae: 0.0734 - mse: 0.0097 - val_loss: 0.0067 - val_mae: 0.0636 - val_mse: 0.0067 - 364ms/epoch - 28ms/step\n", + "Epoch 7/250\n", + "13/13 - 0s - loss: 0.0061 - mae: 0.0610 - mse: 0.0061 - val_loss: 0.0048 - val_mae: 0.0550 - val_mse: 0.0048 - 245ms/epoch - 19ms/step\n", + "Epoch 8/250\n", + "13/13 - 0s - loss: 0.0042 - mae: 0.0521 - mse: 0.0042 - val_loss: 0.0034 - val_mae: 0.0464 - val_mse: 0.0034 - 203ms/epoch - 16ms/step\n", + "Epoch 9/250\n", + "13/13 - 0s - loss: 0.0032 - mae: 0.0458 - mse: 0.0032 - val_loss: 0.0027 - val_mae: 0.0418 - val_mse: 0.0027 - 300ms/epoch - 23ms/step\n", + "Epoch 10/250\n", + "13/13 - 0s - loss: 0.0028 - mae: 0.0420 - mse: 0.0028 - val_loss: 0.0024 - val_mae: 0.0379 - val_mse: 0.0024 - 255ms/epoch - 20ms/step\n", + "Epoch 11/250\n", + "13/13 - 0s - loss: 0.0024 - mae: 0.0384 - mse: 0.0024 - val_loss: 0.0021 - val_mae: 0.0358 - val_mse: 0.0021 - 247ms/epoch - 19ms/step\n", + "Epoch 12/250\n", + "13/13 - 0s - loss: 0.0022 - mae: 0.0358 - mse: 0.0022 - val_loss: 0.0018 - val_mae: 0.0330 - val_mse: 0.0018 - 321ms/epoch - 25ms/step\n", + "Epoch 13/250\n", + "13/13 - 0s - loss: 0.0020 - mae: 0.0338 - mse: 0.0020 - val_loss: 0.0017 - val_mae: 0.0315 - val_mse: 0.0017 - 219ms/epoch - 17ms/step\n", + "Epoch 14/250\n", + "13/13 - 0s - loss: 0.0018 - mae: 0.0323 - mse: 0.0018 - val_loss: 0.0015 - val_mae: 0.0302 - val_mse: 0.0015 - 272ms/epoch - 21ms/step\n", + "Epoch 15/250\n", + "13/13 - 0s - loss: 0.0017 - mae: 0.0311 - mse: 0.0017 - val_loss: 0.0015 - val_mae: 0.0296 - val_mse: 0.0015 - 299ms/epoch - 23ms/step\n", + "Epoch 16/250\n", + "13/13 - 0s - loss: 0.0016 - mae: 0.0303 - mse: 0.0016 - val_loss: 0.0014 - val_mae: 0.0289 - val_mse: 0.0014 - 271ms/epoch - 21ms/step\n", + "Epoch 17/250\n", + "13/13 - 0s - loss: 0.0016 - mae: 0.0293 - mse: 0.0016 - val_loss: 0.0014 - val_mae: 0.0281 - val_mse: 0.0014 - 248ms/epoch - 19ms/step\n", + "Epoch 18/250\n", + "13/13 - 0s - loss: 0.0015 - mae: 0.0287 - mse: 0.0015 - val_loss: 0.0013 - val_mae: 0.0275 - val_mse: 0.0013 - 256ms/epoch - 20ms/step\n", + "Epoch 19/250\n", + "13/13 - 0s - loss: 0.0015 - mae: 0.0285 - mse: 0.0015 - val_loss: 0.0014 - val_mae: 0.0285 - val_mse: 0.0014 - 153ms/epoch - 12ms/step\n", + "Epoch 20/250\n", + "13/13 - 0s - loss: 0.0015 - mae: 0.0282 - mse: 0.0015 - val_loss: 0.0012 - val_mae: 0.0269 - val_mse: 0.0012 - 239ms/epoch - 18ms/step\n", + "Epoch 21/250\n", + "13/13 - 0s - loss: 0.0015 - mae: 0.0278 - mse: 0.0015 - val_loss: 0.0012 - val_mae: 0.0266 - val_mse: 0.0012 - 263ms/epoch - 20ms/step\n", + "Epoch 22/250\n", + "13/13 - 0s - loss: 0.0015 - mae: 0.0279 - mse: 0.0015 - val_loss: 0.0012 - val_mae: 0.0266 - val_mse: 0.0012 - 243ms/epoch - 19ms/step\n", + "Epoch 23/250\n", + "13/13 - 0s - loss: 0.0014 - mae: 0.0274 - mse: 0.0014 - val_loss: 0.0012 - val_mae: 0.0265 - val_mse: 0.0012 - 138ms/epoch - 11ms/step\n", + "Epoch 24/250\n", + "13/13 - 0s - loss: 0.0014 - mae: 0.0264 - mse: 0.0014 - val_loss: 0.0012 - val_mae: 0.0259 - val_mse: 0.0012 - 189ms/epoch - 15ms/step\n", + "Epoch 25/250\n", + "13/13 - 0s - loss: 0.0014 - mae: 0.0268 - mse: 0.0014 - val_loss: 0.0012 - val_mae: 0.0258 - val_mse: 0.0012 - 280ms/epoch - 22ms/step\n", + "Epoch 26/250\n", + "13/13 - 0s - loss: 0.0013 - mae: 0.0268 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0258 - val_mse: 0.0011 - 222ms/epoch - 17ms/step\n", + "Epoch 27/250\n", + "13/13 - 0s - loss: 0.0013 - mae: 0.0265 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0247 - val_mse: 0.0011 - 286ms/epoch - 22ms/step\n", + "Epoch 28/250\n", + "13/13 - 0s - loss: 0.0013 - mae: 0.0259 - mse: 0.0013 - val_loss: 0.0012 - val_mae: 0.0259 - val_mse: 0.0012 - 116ms/epoch - 9ms/step\n", + "Epoch 29/250\n", + "13/13 - 0s - loss: 0.0013 - mae: 0.0259 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0252 - val_mse: 0.0011 - 157ms/epoch - 12ms/step\n", + "Epoch 30/250\n", + "13/13 - 0s - loss: 0.0013 - mae: 0.0256 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0248 - val_mse: 0.0011 - 267ms/epoch - 21ms/step\n", + "Epoch 31/250\n", + "13/13 - 0s - loss: 0.0013 - mae: 0.0254 - mse: 0.0013 - val_loss: 0.0011 - val_mae: 0.0245 - val_mse: 0.0011 - 264ms/epoch - 20ms/step\n", + "Epoch 32/250\n", + "13/13 - 0s - loss: 0.0012 - mae: 0.0254 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0243 - val_mse: 0.0010 - 269ms/epoch - 21ms/step\n", + "Epoch 33/250\n", + "13/13 - 0s - loss: 0.0012 - mae: 0.0248 - mse: 0.0012 - val_loss: 0.0012 - val_mae: 0.0251 - val_mse: 0.0012 - 353ms/epoch - 27ms/step\n", + "Epoch 34/250\n", + "13/13 - 1s - loss: 0.0012 - mae: 0.0256 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0248 - val_mse: 0.0010 - 537ms/epoch - 41ms/step\n", + "Epoch 35/250\n", + "13/13 - 0s - loss: 0.0012 - mae: 0.0254 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0243 - val_mse: 0.0010 - 330ms/epoch - 25ms/step\n", + "Epoch 36/250\n", + "13/13 - 0s - loss: 0.0012 - mae: 0.0245 - mse: 0.0012 - val_loss: 0.0010 - val_mae: 0.0234 - val_mse: 0.0010 - 289ms/epoch - 22ms/step\n", + "Epoch 37/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0244 - mse: 0.0011 - val_loss: 0.0010 - val_mae: 0.0239 - val_mse: 0.0010 - 155ms/epoch - 12ms/step\n", + "Epoch 38/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0243 - mse: 0.0011 - val_loss: 9.9094e-04 - val_mae: 0.0235 - val_mse: 9.9094e-04 - 289ms/epoch - 22ms/step\n", + "Epoch 39/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0243 - mse: 0.0011 - val_loss: 0.0010 - val_mae: 0.0238 - val_mse: 0.0010 - 118ms/epoch - 9ms/step\n", + "Epoch 40/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0241 - mse: 0.0011 - val_loss: 9.7491e-04 - val_mae: 0.0239 - val_mse: 9.7491e-04 - 299ms/epoch - 23ms/step\n", + "Epoch 41/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0241 - mse: 0.0011 - val_loss: 9.9821e-04 - val_mae: 0.0227 - val_mse: 9.9821e-04 - 151ms/epoch - 12ms/step\n", + "Epoch 42/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0240 - mse: 0.0011 - val_loss: 0.0010 - val_mae: 0.0235 - val_mse: 0.0010 - 192ms/epoch - 15ms/step\n", + "Epoch 43/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0238 - mse: 0.0011 - val_loss: 9.4863e-04 - val_mae: 0.0232 - val_mse: 9.4863e-04 - 237ms/epoch - 18ms/step\n", + "Epoch 44/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0236 - mse: 0.0011 - val_loss: 9.8018e-04 - val_mae: 0.0230 - val_mse: 9.8018e-04 - 154ms/epoch - 12ms/step\n", + "Epoch 45/250\n", + "13/13 - 0s - loss: 0.0011 - mae: 0.0239 - mse: 0.0011 - val_loss: 9.5093e-04 - val_mae: 0.0233 - val_mse: 9.5093e-04 - 158ms/epoch - 12ms/step\n", + "Epoch 46/250\n", + "13/13 - 0s - loss: 0.0010 - mae: 0.0230 - mse: 0.0010 - val_loss: 9.4785e-04 - val_mae: 0.0223 - val_mse: 9.4785e-04 - 218ms/epoch - 17ms/step\n", + "Epoch 47/250\n", + "13/13 - 0s - loss: 0.0010 - mae: 0.0231 - mse: 0.0010 - val_loss: 9.7827e-04 - val_mae: 0.0230 - val_mse: 9.7827e-04 - 116ms/epoch - 9ms/step\n", + "Epoch 48/250\n", + "13/13 - 0s - loss: 0.0010 - mae: 0.0232 - mse: 0.0010 - val_loss: 9.0671e-04 - val_mae: 0.0225 - val_mse: 9.0671e-04 - 288ms/epoch - 22ms/step\n", + "Epoch 49/250\n", + "13/13 - 0s - loss: 0.0010 - mae: 0.0230 - mse: 0.0010 - val_loss: 9.2521e-04 - val_mae: 0.0218 - val_mse: 9.2521e-04 - 140ms/epoch - 11ms/step\n", + "Epoch 50/250\n", + "13/13 - 0s - loss: 0.0010 - mae: 0.0231 - mse: 0.0010 - val_loss: 9.7818e-04 - val_mae: 0.0231 - val_mse: 9.7818e-04 - 149ms/epoch - 11ms/step\n", + "Epoch 51/250\n", + "13/13 - 0s - loss: 9.9977e-04 - mae: 0.0232 - mse: 9.9977e-04 - val_loss: 9.4350e-04 - val_mae: 0.0221 - val_mse: 9.4350e-04 - 146ms/epoch - 11ms/step\n", + "Epoch 52/250\n", + "13/13 - 0s - loss: 9.8599e-04 - mae: 0.0229 - mse: 9.8599e-04 - val_loss: 9.0638e-04 - val_mae: 0.0230 - val_mse: 9.0638e-04 - 265ms/epoch - 20ms/step\n", + "Epoch 53/250\n", + "13/13 - 0s - loss: 9.8295e-04 - mae: 0.0228 - mse: 9.8295e-04 - val_loss: 9.0667e-04 - val_mae: 0.0215 - val_mse: 9.0667e-04 - 179ms/epoch - 14ms/step\n", + "Epoch 54/250\n", + "13/13 - 0s - loss: 9.7266e-04 - mae: 0.0225 - mse: 9.7266e-04 - val_loss: 9.0391e-04 - val_mae: 0.0224 - val_mse: 9.0391e-04 - 287ms/epoch - 22ms/step\n", + "Epoch 55/250\n", + "13/13 - 0s - loss: 9.5234e-04 - mae: 0.0225 - mse: 9.5234e-04 - val_loss: 8.7426e-04 - val_mae: 0.0219 - val_mse: 8.7426e-04 - 284ms/epoch - 22ms/step\n", + "Epoch 56/250\n", + "13/13 - 0s - loss: 9.4315e-04 - mae: 0.0221 - mse: 9.4315e-04 - val_loss: 8.6742e-04 - val_mae: 0.0224 - val_mse: 8.6742e-04 - 297ms/epoch - 23ms/step\n", + "Epoch 57/250\n", + "13/13 - 0s - loss: 9.9226e-04 - mae: 0.0230 - mse: 9.9226e-04 - val_loss: 8.7793e-04 - val_mae: 0.0225 - val_mse: 8.7793e-04 - 206ms/epoch - 16ms/step\n", + "Epoch 58/250\n", + "13/13 - 0s - loss: 9.4137e-04 - mae: 0.0226 - mse: 9.4137e-04 - val_loss: 8.7477e-04 - val_mae: 0.0225 - val_mse: 8.7477e-04 - 160ms/epoch - 12ms/step\n", + "Epoch 59/250\n", + "13/13 - 0s - loss: 9.2474e-04 - mae: 0.0219 - mse: 9.2474e-04 - val_loss: 8.5320e-04 - val_mae: 0.0212 - val_mse: 8.5320e-04 - 274ms/epoch - 21ms/step\n", + "Epoch 60/250\n", + "13/13 - 0s - loss: 9.1133e-04 - mae: 0.0217 - mse: 9.1133e-04 - val_loss: 8.6082e-04 - val_mae: 0.0217 - val_mse: 8.6082e-04 - 160ms/epoch - 12ms/step\n", + "Epoch 61/250\n", + "13/13 - 0s - loss: 9.1801e-04 - mae: 0.0217 - mse: 9.1801e-04 - val_loss: 8.5403e-04 - val_mae: 0.0223 - val_mse: 8.5403e-04 - 143ms/epoch - 11ms/step\n", + "Epoch 62/250\n", + "13/13 - 0s - loss: 9.1987e-04 - mae: 0.0221 - mse: 9.1987e-04 - val_loss: 8.5714e-04 - val_mae: 0.0219 - val_mse: 8.5714e-04 - 128ms/epoch - 10ms/step\n", + "Epoch 63/250\n", + "13/13 - 0s - loss: 9.0862e-04 - mae: 0.0222 - mse: 9.0862e-04 - val_loss: 8.6160e-04 - val_mae: 0.0225 - val_mse: 8.6160e-04 - 154ms/epoch - 12ms/step\n", + "Epoch 64/250\n", + "13/13 - 0s - loss: 8.9349e-04 - mae: 0.0220 - mse: 8.9349e-04 - val_loss: 8.2851e-04 - val_mae: 0.0214 - val_mse: 8.2851e-04 - 284ms/epoch - 22ms/step\n", + "Epoch 65/250\n", + "13/13 - 0s - loss: 8.7848e-04 - mae: 0.0216 - mse: 8.7848e-04 - val_loss: 8.5189e-04 - val_mae: 0.0218 - val_mse: 8.5189e-04 - 168ms/epoch - 13ms/step\n", + "Epoch 66/250\n", + "13/13 - 0s - loss: 8.9773e-04 - mae: 0.0219 - mse: 8.9773e-04 - val_loss: 8.5650e-04 - val_mae: 0.0211 - val_mse: 8.5650e-04 - 113ms/epoch - 9ms/step\n", + "Epoch 67/250\n", + "13/13 - 0s - loss: 8.7443e-04 - mae: 0.0217 - mse: 8.7443e-04 - val_loss: 8.2545e-04 - val_mae: 0.0214 - val_mse: 8.2545e-04 - 264ms/epoch - 20ms/step\n", + "Epoch 68/250\n", + "13/13 - 0s - loss: 8.9141e-04 - mae: 0.0217 - mse: 8.9141e-04 - val_loss: 8.4471e-04 - val_mae: 0.0219 - val_mse: 8.4471e-04 - 189ms/epoch - 15ms/step\n", + "Epoch 69/250\n", + "13/13 - 0s - loss: 8.9507e-04 - mae: 0.0224 - mse: 8.9507e-04 - val_loss: 8.7916e-04 - val_mae: 0.0217 - val_mse: 8.7916e-04 - 175ms/epoch - 13ms/step\n", + "Epoch 70/250\n", + "13/13 - 0s - loss: 8.5737e-04 - mae: 0.0216 - mse: 8.5737e-04 - val_loss: 8.8807e-04 - val_mae: 0.0215 - val_mse: 8.8807e-04 - 322ms/epoch - 25ms/step\n", + "Epoch 71/250\n", + "13/13 - 0s - loss: 8.5560e-04 - mae: 0.0214 - mse: 8.5560e-04 - val_loss: 8.3750e-04 - val_mae: 0.0213 - val_mse: 8.3750e-04 - 207ms/epoch - 16ms/step\n", + "Epoch 72/250\n", + "13/13 - 0s - loss: 8.5576e-04 - mae: 0.0218 - mse: 8.5576e-04 - val_loss: 8.1156e-04 - val_mae: 0.0210 - val_mse: 8.1156e-04 - 257ms/epoch - 20ms/step\n", + "Epoch 73/250\n", + "13/13 - 0s - loss: 8.4688e-04 - mae: 0.0216 - mse: 8.4688e-04 - val_loss: 8.0221e-04 - val_mae: 0.0210 - val_mse: 8.0221e-04 - 233ms/epoch - 18ms/step\n", + "Epoch 74/250\n", + "13/13 - 0s - loss: 8.3636e-04 - mae: 0.0211 - mse: 8.3636e-04 - val_loss: 7.9384e-04 - val_mae: 0.0208 - val_mse: 7.9384e-04 - 250ms/epoch - 19ms/step\n", + "Epoch 75/250\n", + "13/13 - 0s - loss: 8.4758e-04 - mae: 0.0222 - mse: 8.4758e-04 - val_loss: 8.2932e-04 - val_mae: 0.0212 - val_mse: 8.2932e-04 - 119ms/epoch - 9ms/step\n", + "Epoch 76/250\n", + "13/13 - 0s - loss: 8.4142e-04 - mae: 0.0213 - mse: 8.4142e-04 - val_loss: 8.0552e-04 - val_mae: 0.0209 - val_mse: 8.0552e-04 - 150ms/epoch - 12ms/step\n", + "Epoch 77/250\n", + "13/13 - 0s - loss: 8.5035e-04 - mae: 0.0215 - mse: 8.5035e-04 - val_loss: 8.6014e-04 - val_mae: 0.0215 - val_mse: 8.6014e-04 - 126ms/epoch - 10ms/step\n", + "Epoch 78/250\n", + "13/13 - 0s - loss: 8.9015e-04 - mae: 0.0228 - mse: 8.9015e-04 - val_loss: 9.2548e-04 - val_mae: 0.0225 - val_mse: 9.2548e-04 - 242ms/epoch - 19ms/step\n", + "Epoch 79/250\n", + "13/13 - 0s - loss: 8.1577e-04 - mae: 0.0212 - mse: 8.1577e-04 - val_loss: 8.4703e-04 - val_mae: 0.0211 - val_mse: 8.4703e-04 - 165ms/epoch - 13ms/step\n", + "Epoch 80/250\n", + "13/13 - 0s - loss: 8.0555e-04 - mae: 0.0211 - mse: 8.0555e-04 - val_loss: 8.5652e-04 - val_mae: 0.0214 - val_mse: 8.5652e-04 - 131ms/epoch - 10ms/step\n", + "Epoch 81/250\n", + "13/13 - 0s - loss: 8.3478e-04 - mae: 0.0219 - mse: 8.3478e-04 - val_loss: 9.1057e-04 - val_mae: 0.0222 - val_mse: 9.1057e-04 - 166ms/epoch - 13ms/step\n", + "Epoch 82/250\n", + "13/13 - 0s - loss: 8.2593e-04 - mae: 0.0217 - mse: 8.2593e-04 - val_loss: 8.1172e-04 - val_mae: 0.0209 - val_mse: 8.1172e-04 - 143ms/epoch - 11ms/step\n", + "Epoch 83/250\n", + "13/13 - 0s - loss: 8.2887e-04 - mae: 0.0213 - mse: 8.2887e-04 - val_loss: 8.2033e-04 - val_mae: 0.0211 - val_mse: 8.2033e-04 - 115ms/epoch - 9ms/step\n", + "Epoch 84/250\n", + "13/13 - 0s - loss: 8.1454e-04 - mae: 0.0219 - mse: 8.1454e-04 - val_loss: 8.1589e-04 - val_mae: 0.0211 - val_mse: 8.1589e-04 - 148ms/epoch - 11ms/step\n", + "Epoch 85/250\n", + "13/13 - 0s - loss: 8.0777e-04 - mae: 0.0212 - mse: 8.0777e-04 - val_loss: 7.8637e-04 - val_mae: 0.0208 - val_mse: 7.8637e-04 - 282ms/epoch - 22ms/step\n", + "Epoch 86/250\n", + "13/13 - 0s - loss: 7.8107e-04 - mae: 0.0213 - mse: 7.8107e-04 - val_loss: 7.8138e-04 - val_mae: 0.0212 - val_mse: 7.8138e-04 - 246ms/epoch - 19ms/step\n", + "Epoch 87/250\n", + "13/13 - 0s - loss: 7.9729e-04 - mae: 0.0210 - mse: 7.9729e-04 - val_loss: 7.3667e-04 - val_mae: 0.0204 - val_mse: 7.3667e-04 - 237ms/epoch - 18ms/step\n", + "Epoch 88/250\n", + "13/13 - 0s - loss: 7.5931e-04 - mae: 0.0205 - mse: 7.5931e-04 - val_loss: 7.5522e-04 - val_mae: 0.0210 - val_mse: 7.5522e-04 - 208ms/epoch - 16ms/step\n", + "Epoch 89/250\n", + "13/13 - 0s - loss: 7.6036e-04 - mae: 0.0211 - mse: 7.6036e-04 - val_loss: 7.5503e-04 - val_mae: 0.0207 - val_mse: 7.5503e-04 - 193ms/epoch - 15ms/step\n", + "Epoch 90/250\n", + "13/13 - 0s - loss: 7.6322e-04 - mae: 0.0204 - mse: 7.6322e-04 - val_loss: 7.7629e-04 - val_mae: 0.0203 - val_mse: 7.7629e-04 - 168ms/epoch - 13ms/step\n", + "Epoch 91/250\n", + "13/13 - 0s - loss: 7.5436e-04 - mae: 0.0208 - mse: 7.5436e-04 - val_loss: 7.4549e-04 - val_mae: 0.0210 - val_mse: 7.4549e-04 - 156ms/epoch - 12ms/step\n", + "Epoch 92/250\n", + "13/13 - 0s - loss: 7.8479e-04 - mae: 0.0208 - mse: 7.8479e-04 - val_loss: 8.0607e-04 - val_mae: 0.0208 - val_mse: 8.0607e-04 - 137ms/epoch - 11ms/step\n", + "Epoch 93/250\n", + "13/13 - 0s - loss: 7.7194e-04 - mae: 0.0211 - mse: 7.7194e-04 - val_loss: 7.7994e-04 - val_mae: 0.0206 - val_mse: 7.7994e-04 - 174ms/epoch - 13ms/step\n", + "Epoch 94/250\n", + "13/13 - 0s - loss: 7.4802e-04 - mae: 0.0205 - mse: 7.4802e-04 - val_loss: 7.2386e-04 - val_mae: 0.0201 - val_mse: 7.2386e-04 - 303ms/epoch - 23ms/step\n", + "Epoch 95/250\n", + "13/13 - 0s - loss: 7.2616e-04 - mae: 0.0203 - mse: 7.2616e-04 - val_loss: 7.2728e-04 - val_mae: 0.0204 - val_mse: 7.2728e-04 - 129ms/epoch - 10ms/step\n", + "Epoch 96/250\n", + "13/13 - 0s - loss: 7.2310e-04 - mae: 0.0204 - mse: 7.2310e-04 - val_loss: 7.1349e-04 - val_mae: 0.0206 - val_mse: 7.1349e-04 - 218ms/epoch - 17ms/step\n", + "Epoch 97/250\n", + "13/13 - 0s - loss: 7.0905e-04 - mae: 0.0201 - mse: 7.0905e-04 - val_loss: 7.6242e-04 - val_mae: 0.0205 - val_mse: 7.6242e-04 - 128ms/epoch - 10ms/step\n", + "Epoch 98/250\n", + "13/13 - 0s - loss: 7.1839e-04 - mae: 0.0200 - mse: 7.1839e-04 - val_loss: 7.7098e-04 - val_mae: 0.0202 - val_mse: 7.7098e-04 - 147ms/epoch - 11ms/step\n", + "Epoch 99/250\n", + "13/13 - 0s - loss: 7.3924e-04 - mae: 0.0208 - mse: 7.3924e-04 - val_loss: 7.8554e-04 - val_mae: 0.0206 - val_mse: 7.8554e-04 - 130ms/epoch - 10ms/step\n", + "Epoch 100/250\n", + "13/13 - 0s - loss: 7.5556e-04 - mae: 0.0209 - mse: 7.5556e-04 - val_loss: 8.6021e-04 - val_mae: 0.0215 - val_mse: 8.6021e-04 - 174ms/epoch - 13ms/step\n", + "Epoch 101/250\n", + "13/13 - 0s - loss: 7.9288e-04 - mae: 0.0213 - mse: 7.9288e-04 - val_loss: 7.2968e-04 - val_mae: 0.0203 - val_mse: 7.2968e-04 - 125ms/epoch - 10ms/step\n", + "Epoch 102/250\n", + "13/13 - 0s - loss: 7.1861e-04 - mae: 0.0204 - mse: 7.1861e-04 - val_loss: 7.0941e-04 - val_mae: 0.0207 - val_mse: 7.0941e-04 - 260ms/epoch - 20ms/step\n", + "Epoch 103/250\n", + "13/13 - 0s - loss: 7.5092e-04 - mae: 0.0208 - mse: 7.5092e-04 - val_loss: 6.8788e-04 - val_mae: 0.0198 - val_mse: 6.8788e-04 - 275ms/epoch - 21ms/step\n", + "Epoch 104/250\n", + "13/13 - 0s - loss: 7.0460e-04 - mae: 0.0200 - mse: 7.0460e-04 - val_loss: 7.2570e-04 - val_mae: 0.0200 - val_mse: 7.2570e-04 - 125ms/epoch - 10ms/step\n", + "Epoch 105/250\n", + "13/13 - 0s - loss: 6.9255e-04 - mae: 0.0202 - mse: 6.9255e-04 - val_loss: 6.7411e-04 - val_mae: 0.0199 - val_mse: 6.7411e-04 - 275ms/epoch - 21ms/step\n", + "Epoch 106/250\n", + "13/13 - 0s - loss: 6.8175e-04 - mae: 0.0196 - mse: 6.8175e-04 - val_loss: 6.7593e-04 - val_mae: 0.0196 - val_mse: 6.7593e-04 - 157ms/epoch - 12ms/step\n", + "Epoch 107/250\n", + "13/13 - 0s - loss: 6.7018e-04 - mae: 0.0196 - mse: 6.7018e-04 - val_loss: 6.8702e-04 - val_mae: 0.0196 - val_mse: 6.8702e-04 - 183ms/epoch - 14ms/step\n", + "Epoch 108/250\n", + "13/13 - 0s - loss: 6.7955e-04 - mae: 0.0198 - mse: 6.7955e-04 - val_loss: 7.6778e-04 - val_mae: 0.0204 - val_mse: 7.6778e-04 - 192ms/epoch - 15ms/step\n", + "Epoch 109/250\n", + "13/13 - 1s - loss: 6.8953e-04 - mae: 0.0198 - mse: 6.8953e-04 - val_loss: 6.7251e-04 - val_mae: 0.0195 - val_mse: 6.7251e-04 - 516ms/epoch - 40ms/step\n", + "Epoch 110/250\n", + "13/13 - 0s - loss: 6.6819e-04 - mae: 0.0197 - mse: 6.6819e-04 - val_loss: 6.8310e-04 - val_mae: 0.0197 - val_mse: 6.8310e-04 - 146ms/epoch - 11ms/step\n", + "Epoch 111/250\n", + "13/13 - 0s - loss: 6.7136e-04 - mae: 0.0197 - mse: 6.7136e-04 - val_loss: 6.5858e-04 - val_mae: 0.0199 - val_mse: 6.5858e-04 - 208ms/epoch - 16ms/step\n", + "Epoch 112/250\n", + "13/13 - 0s - loss: 6.5784e-04 - mae: 0.0195 - mse: 6.5784e-04 - val_loss: 6.5838e-04 - val_mae: 0.0196 - val_mse: 6.5838e-04 - 215ms/epoch - 17ms/step\n", + "Epoch 113/250\n", + "13/13 - 0s - loss: 6.6861e-04 - mae: 0.0198 - mse: 6.6861e-04 - val_loss: 6.9871e-04 - val_mae: 0.0196 - val_mse: 6.9871e-04 - 149ms/epoch - 11ms/step\n", + "Epoch 114/250\n", + "13/13 - 0s - loss: 6.6345e-04 - mae: 0.0196 - mse: 6.6345e-04 - val_loss: 6.8190e-04 - val_mae: 0.0196 - val_mse: 6.8190e-04 - 141ms/epoch - 11ms/step\n", + "Epoch 115/250\n", + "13/13 - 0s - loss: 6.4121e-04 - mae: 0.0193 - mse: 6.4121e-04 - val_loss: 6.6493e-04 - val_mae: 0.0196 - val_mse: 6.6493e-04 - 166ms/epoch - 13ms/step\n", + "Epoch 116/250\n", + "13/13 - 0s - loss: 6.5036e-04 - mae: 0.0194 - mse: 6.5036e-04 - val_loss: 6.5858e-04 - val_mae: 0.0191 - val_mse: 6.5858e-04 - 107ms/epoch - 8ms/step\n", + "Epoch 117/250\n", + "13/13 - 0s - loss: 6.4983e-04 - mae: 0.0194 - mse: 6.4983e-04 - val_loss: 7.0443e-04 - val_mae: 0.0198 - val_mse: 7.0443e-04 - 109ms/epoch - 8ms/step\n", + "Epoch 118/250\n", + "13/13 - 0s - loss: 6.4994e-04 - mae: 0.0195 - mse: 6.4994e-04 - val_loss: 6.3181e-04 - val_mae: 0.0193 - val_mse: 6.3181e-04 - 296ms/epoch - 23ms/step\n", + "Epoch 119/250\n", + "13/13 - 0s - loss: 6.6252e-04 - mae: 0.0199 - mse: 6.6252e-04 - val_loss: 6.3527e-04 - val_mae: 0.0191 - val_mse: 6.3527e-04 - 165ms/epoch - 13ms/step\n", + "Epoch 120/250\n", + "13/13 - 0s - loss: 6.4578e-04 - mae: 0.0193 - mse: 6.4578e-04 - val_loss: 6.3127e-04 - val_mae: 0.0189 - val_mse: 6.3127e-04 - 190ms/epoch - 15ms/step\n", + "Epoch 121/250\n", + "13/13 - 0s - loss: 6.1375e-04 - mae: 0.0191 - mse: 6.1375e-04 - val_loss: 6.5351e-04 - val_mae: 0.0192 - val_mse: 6.5351e-04 - 125ms/epoch - 10ms/step\n", + "Epoch 122/250\n", + "13/13 - 0s - loss: 6.4650e-04 - mae: 0.0196 - mse: 6.4650e-04 - val_loss: 8.0733e-04 - val_mae: 0.0210 - val_mse: 8.0733e-04 - 142ms/epoch - 11ms/step\n", + "Epoch 123/250\n", + "13/13 - 0s - loss: 6.5887e-04 - mae: 0.0198 - mse: 6.5887e-04 - val_loss: 6.2666e-04 - val_mae: 0.0191 - val_mse: 6.2666e-04 - 278ms/epoch - 21ms/step\n", + "Epoch 124/250\n", + "13/13 - 0s - loss: 6.1387e-04 - mae: 0.0189 - mse: 6.1387e-04 - val_loss: 6.1020e-04 - val_mae: 0.0188 - val_mse: 6.1020e-04 - 246ms/epoch - 19ms/step\n", + "Epoch 125/250\n", + "13/13 - 0s - loss: 6.1348e-04 - mae: 0.0191 - mse: 6.1348e-04 - val_loss: 6.1093e-04 - val_mae: 0.0193 - val_mse: 6.1093e-04 - 135ms/epoch - 10ms/step\n", + "Epoch 126/250\n", + "13/13 - 0s - loss: 6.1374e-04 - mae: 0.0189 - mse: 6.1374e-04 - val_loss: 6.1062e-04 - val_mae: 0.0188 - val_mse: 6.1062e-04 - 174ms/epoch - 13ms/step\n", + "Epoch 127/250\n", + "13/13 - 0s - loss: 6.1279e-04 - mae: 0.0190 - mse: 6.1279e-04 - val_loss: 6.4391e-04 - val_mae: 0.0190 - val_mse: 6.4391e-04 - 142ms/epoch - 11ms/step\n", + "Epoch 128/250\n", + "13/13 - 0s - loss: 6.0951e-04 - mae: 0.0189 - mse: 6.0951e-04 - val_loss: 5.9592e-04 - val_mae: 0.0188 - val_mse: 5.9592e-04 - 249ms/epoch - 19ms/step\n", + "Epoch 129/250\n", + "13/13 - 0s - loss: 6.2194e-04 - mae: 0.0192 - mse: 6.2194e-04 - val_loss: 5.9344e-04 - val_mae: 0.0188 - val_mse: 5.9344e-04 - 279ms/epoch - 21ms/step\n", + "Epoch 130/250\n", + "13/13 - 0s - loss: 6.1795e-04 - mae: 0.0191 - mse: 6.1795e-04 - val_loss: 5.8880e-04 - val_mae: 0.0188 - val_mse: 5.8880e-04 - 356ms/epoch - 27ms/step\n", + "Epoch 131/250\n", + "13/13 - 0s - loss: 6.6297e-04 - mae: 0.0199 - mse: 6.6297e-04 - val_loss: 7.2306e-04 - val_mae: 0.0197 - val_mse: 7.2306e-04 - 151ms/epoch - 12ms/step\n", + "Epoch 132/250\n", + "13/13 - 0s - loss: 5.8788e-04 - mae: 0.0189 - mse: 5.8788e-04 - val_loss: 6.0686e-04 - val_mae: 0.0189 - val_mse: 6.0686e-04 - 102ms/epoch - 8ms/step\n", + "Epoch 133/250\n", + "13/13 - 0s - loss: 5.7425e-04 - mae: 0.0184 - mse: 5.7425e-04 - val_loss: 5.7895e-04 - val_mae: 0.0183 - val_mse: 5.7895e-04 - 239ms/epoch - 18ms/step\n", + "Epoch 134/250\n", + "13/13 - 0s - loss: 5.8783e-04 - mae: 0.0186 - mse: 5.8783e-04 - val_loss: 5.7846e-04 - val_mae: 0.0188 - val_mse: 5.7846e-04 - 285ms/epoch - 22ms/step\n", + "Epoch 135/250\n", + "13/13 - 0s - loss: 5.8541e-04 - mae: 0.0188 - mse: 5.8541e-04 - val_loss: 6.7887e-04 - val_mae: 0.0191 - val_mse: 6.7887e-04 - 178ms/epoch - 14ms/step\n", + "Epoch 136/250\n", + "13/13 - 0s - loss: 5.9158e-04 - mae: 0.0185 - mse: 5.9158e-04 - val_loss: 5.9231e-04 - val_mae: 0.0188 - val_mse: 5.9231e-04 - 113ms/epoch - 9ms/step\n", + "Epoch 137/250\n", + "13/13 - 0s - loss: 5.9616e-04 - mae: 0.0192 - mse: 5.9616e-04 - val_loss: 7.0218e-04 - val_mae: 0.0212 - val_mse: 7.0218e-04 - 138ms/epoch - 11ms/step\n", + "Epoch 138/250\n", + "13/13 - 0s - loss: 6.2132e-04 - mae: 0.0190 - mse: 6.2132e-04 - val_loss: 6.3436e-04 - val_mae: 0.0186 - val_mse: 6.3436e-04 - 144ms/epoch - 11ms/step\n", + "Epoch 139/250\n", + "13/13 - 0s - loss: 5.8416e-04 - mae: 0.0189 - mse: 5.8416e-04 - val_loss: 5.7793e-04 - val_mae: 0.0184 - val_mse: 5.7793e-04 - 279ms/epoch - 21ms/step\n", + "Epoch 140/250\n", + "13/13 - 0s - loss: 6.5695e-04 - mae: 0.0195 - mse: 6.5695e-04 - val_loss: 5.8062e-04 - val_mae: 0.0189 - val_mse: 5.8062e-04 - 174ms/epoch - 13ms/step\n", + "Epoch 141/250\n", + "13/13 - 0s - loss: 6.4168e-04 - mae: 0.0200 - mse: 6.4168e-04 - val_loss: 6.9879e-04 - val_mae: 0.0196 - val_mse: 6.9879e-04 - 118ms/epoch - 9ms/step\n", + "Epoch 142/250\n", + "13/13 - 0s - loss: 6.5517e-04 - mae: 0.0198 - mse: 6.5517e-04 - val_loss: 6.3928e-04 - val_mae: 0.0193 - val_mse: 6.3928e-04 - 120ms/epoch - 9ms/step\n", + "Epoch 143/250\n", + "13/13 - 0s - loss: 5.8456e-04 - mae: 0.0190 - mse: 5.8456e-04 - val_loss: 5.4596e-04 - val_mae: 0.0181 - val_mse: 5.4596e-04 - 304ms/epoch - 23ms/step\n", + "Epoch 144/250\n", + "13/13 - 0s - loss: 5.9458e-04 - mae: 0.0186 - mse: 5.9458e-04 - val_loss: 5.8598e-04 - val_mae: 0.0181 - val_mse: 5.8598e-04 - 178ms/epoch - 14ms/step\n", + "Epoch 145/250\n", + "13/13 - 0s - loss: 5.6787e-04 - mae: 0.0186 - mse: 5.6787e-04 - val_loss: 5.6263e-04 - val_mae: 0.0186 - val_mse: 5.6263e-04 - 131ms/epoch - 10ms/step\n", + "Epoch 146/250\n", + "13/13 - 0s - loss: 5.3545e-04 - mae: 0.0178 - mse: 5.3545e-04 - val_loss: 5.3802e-04 - val_mae: 0.0179 - val_mse: 5.3802e-04 - 396ms/epoch - 30ms/step\n", + "Epoch 147/250\n", + "13/13 - 0s - loss: 5.2310e-04 - mae: 0.0177 - mse: 5.2310e-04 - val_loss: 5.4103e-04 - val_mae: 0.0179 - val_mse: 5.4103e-04 - 151ms/epoch - 12ms/step\n", + "Epoch 148/250\n", + "13/13 - 0s - loss: 5.2826e-04 - mae: 0.0176 - mse: 5.2826e-04 - val_loss: 5.9310e-04 - val_mae: 0.0181 - val_mse: 5.9310e-04 - 155ms/epoch - 12ms/step\n", + "Epoch 149/250\n", + "13/13 - 0s - loss: 5.3295e-04 - mae: 0.0179 - mse: 5.3295e-04 - val_loss: 5.4002e-04 - val_mae: 0.0176 - val_mse: 5.4002e-04 - 120ms/epoch - 9ms/step\n", + "Epoch 150/250\n", + "13/13 - 0s - loss: 5.1491e-04 - mae: 0.0174 - mse: 5.1491e-04 - val_loss: 5.9602e-04 - val_mae: 0.0179 - val_mse: 5.9602e-04 - 137ms/epoch - 11ms/step\n", + "Epoch 151/250\n", + "13/13 - 0s - loss: 5.2334e-04 - mae: 0.0179 - mse: 5.2334e-04 - val_loss: 5.2811e-04 - val_mae: 0.0178 - val_mse: 5.2811e-04 - 315ms/epoch - 24ms/step\n", + "Epoch 152/250\n", + "13/13 - 0s - loss: 5.2768e-04 - mae: 0.0178 - mse: 5.2768e-04 - val_loss: 5.5139e-04 - val_mae: 0.0184 - val_mse: 5.5139e-04 - 198ms/epoch - 15ms/step\n", + "Epoch 153/250\n", + "13/13 - 0s - loss: 5.2962e-04 - mae: 0.0179 - mse: 5.2962e-04 - val_loss: 5.7462e-04 - val_mae: 0.0178 - val_mse: 5.7462e-04 - 129ms/epoch - 10ms/step\n", + "Epoch 154/250\n", + "13/13 - 0s - loss: 5.0260e-04 - mae: 0.0173 - mse: 5.0260e-04 - val_loss: 5.3387e-04 - val_mae: 0.0181 - val_mse: 5.3387e-04 - 131ms/epoch - 10ms/step\n", + "Epoch 155/250\n", + "13/13 - 0s - loss: 5.0501e-04 - mae: 0.0175 - mse: 5.0501e-04 - val_loss: 5.0751e-04 - val_mae: 0.0172 - val_mse: 5.0751e-04 - 267ms/epoch - 21ms/step\n", + "Epoch 156/250\n", + "13/13 - 0s - loss: 5.0518e-04 - mae: 0.0173 - mse: 5.0518e-04 - val_loss: 5.5553e-04 - val_mae: 0.0174 - val_mse: 5.5553e-04 - 182ms/epoch - 14ms/step\n", + "Epoch 157/250\n", + "13/13 - 0s - loss: 5.0064e-04 - mae: 0.0172 - mse: 5.0064e-04 - val_loss: 5.1205e-04 - val_mae: 0.0172 - val_mse: 5.1205e-04 - 160ms/epoch - 12ms/step\n", + "Epoch 158/250\n", + "13/13 - 0s - loss: 4.9541e-04 - mae: 0.0172 - mse: 4.9541e-04 - val_loss: 5.0799e-04 - val_mae: 0.0172 - val_mse: 5.0799e-04 - 131ms/epoch - 10ms/step\n", + "Epoch 159/250\n", + "13/13 - 0s - loss: 5.4153e-04 - mae: 0.0182 - mse: 5.4153e-04 - val_loss: 5.2077e-04 - val_mae: 0.0171 - val_mse: 5.2077e-04 - 172ms/epoch - 13ms/step\n", + "Epoch 160/250\n", + "13/13 - 0s - loss: 4.8280e-04 - mae: 0.0170 - mse: 4.8280e-04 - val_loss: 5.1410e-04 - val_mae: 0.0168 - val_mse: 5.1410e-04 - 164ms/epoch - 13ms/step\n", + "Epoch 161/250\n", + "13/13 - 0s - loss: 4.8993e-04 - mae: 0.0171 - mse: 4.8993e-04 - val_loss: 5.1744e-04 - val_mae: 0.0171 - val_mse: 5.1744e-04 - 169ms/epoch - 13ms/step\n", + "Epoch 162/250\n", + "13/13 - 0s - loss: 4.8044e-04 - mae: 0.0169 - mse: 4.8044e-04 - val_loss: 5.1099e-04 - val_mae: 0.0168 - val_mse: 5.1099e-04 - 188ms/epoch - 14ms/step\n", + "Epoch 163/250\n", + "13/13 - 0s - loss: 4.9657e-04 - mae: 0.0171 - mse: 4.9657e-04 - val_loss: 4.9877e-04 - val_mae: 0.0171 - val_mse: 4.9877e-04 - 258ms/epoch - 20ms/step\n", + "Epoch 164/250\n", + "13/13 - 0s - loss: 4.8858e-04 - mae: 0.0170 - mse: 4.8858e-04 - val_loss: 5.0099e-04 - val_mae: 0.0169 - val_mse: 5.0099e-04 - 150ms/epoch - 12ms/step\n", + "Epoch 165/250\n", + "13/13 - 0s - loss: 4.7747e-04 - mae: 0.0170 - mse: 4.7747e-04 - val_loss: 5.8449e-04 - val_mae: 0.0174 - val_mse: 5.8449e-04 - 158ms/epoch - 12ms/step\n", + "Epoch 166/250\n", + "13/13 - 0s - loss: 4.9897e-04 - mae: 0.0171 - mse: 4.9897e-04 - val_loss: 4.9512e-04 - val_mae: 0.0173 - val_mse: 4.9512e-04 - 265ms/epoch - 20ms/step\n", + "Epoch 167/250\n", + "13/13 - 0s - loss: 4.8695e-04 - mae: 0.0173 - mse: 4.8695e-04 - val_loss: 5.0306e-04 - val_mae: 0.0165 - val_mse: 5.0306e-04 - 151ms/epoch - 12ms/step\n", + "Epoch 168/250\n", + "13/13 - 0s - loss: 4.7948e-04 - mae: 0.0171 - mse: 4.7948e-04 - val_loss: 6.8895e-04 - val_mae: 0.0193 - val_mse: 6.8895e-04 - 128ms/epoch - 10ms/step\n", + "Epoch 169/250\n", + "13/13 - 0s - loss: 4.8055e-04 - mae: 0.0168 - mse: 4.8055e-04 - val_loss: 4.9053e-04 - val_mae: 0.0171 - val_mse: 4.9053e-04 - 234ms/epoch - 18ms/step\n", + "Epoch 170/250\n", + "13/13 - 0s - loss: 4.5980e-04 - mae: 0.0168 - mse: 4.5980e-04 - val_loss: 5.2267e-04 - val_mae: 0.0170 - val_mse: 5.2267e-04 - 167ms/epoch - 13ms/step\n", + "Epoch 171/250\n", + "13/13 - 0s - loss: 4.6495e-04 - mae: 0.0168 - mse: 4.6495e-04 - val_loss: 4.6718e-04 - val_mae: 0.0165 - val_mse: 4.6718e-04 - 243ms/epoch - 19ms/step\n", + "Epoch 172/250\n", + "13/13 - 0s - loss: 4.6046e-04 - mae: 0.0168 - mse: 4.6046e-04 - val_loss: 4.6731e-04 - val_mae: 0.0166 - val_mse: 4.6731e-04 - 148ms/epoch - 11ms/step\n", + "Epoch 173/250\n", + "13/13 - 0s - loss: 4.6993e-04 - mae: 0.0168 - mse: 4.6993e-04 - val_loss: 4.8190e-04 - val_mae: 0.0167 - val_mse: 4.8190e-04 - 143ms/epoch - 11ms/step\n", + "Epoch 174/250\n", + "13/13 - 0s - loss: 4.8411e-04 - mae: 0.0172 - mse: 4.8411e-04 - val_loss: 5.0800e-04 - val_mae: 0.0164 - val_mse: 5.0800e-04 - 131ms/epoch - 10ms/step\n", + "Epoch 175/250\n", + "13/13 - 0s - loss: 4.5295e-04 - mae: 0.0164 - mse: 4.5295e-04 - val_loss: 6.2583e-04 - val_mae: 0.0182 - val_mse: 6.2583e-04 - 136ms/epoch - 10ms/step\n", + "Epoch 176/250\n", + "13/13 - 0s - loss: 5.3742e-04 - mae: 0.0183 - mse: 5.3742e-04 - val_loss: 5.6727e-04 - val_mae: 0.0187 - val_mse: 5.6727e-04 - 141ms/epoch - 11ms/step\n", + "Epoch 177/250\n", + "13/13 - 0s - loss: 5.3634e-04 - mae: 0.0182 - mse: 5.3634e-04 - val_loss: 4.6197e-04 - val_mae: 0.0157 - val_mse: 4.6197e-04 - 316ms/epoch - 24ms/step\n", + "Epoch 178/250\n", + "13/13 - 0s - loss: 4.8847e-04 - mae: 0.0169 - mse: 4.8847e-04 - val_loss: 4.6646e-04 - val_mae: 0.0160 - val_mse: 4.6646e-04 - 214ms/epoch - 16ms/step\n", + "Epoch 179/250\n", + "13/13 - 0s - loss: 4.3622e-04 - mae: 0.0160 - mse: 4.3622e-04 - val_loss: 5.3203e-04 - val_mae: 0.0164 - val_mse: 5.3203e-04 - 181ms/epoch - 14ms/step\n", + "Epoch 180/250\n", + "13/13 - 0s - loss: 4.7108e-04 - mae: 0.0165 - mse: 4.7108e-04 - val_loss: 4.6548e-04 - val_mae: 0.0161 - val_mse: 4.6548e-04 - 144ms/epoch - 11ms/step\n", + "Epoch 181/250\n", + "13/13 - 0s - loss: 4.3932e-04 - mae: 0.0164 - mse: 4.3932e-04 - val_loss: 4.4195e-04 - val_mae: 0.0157 - val_mse: 4.4195e-04 - 302ms/epoch - 23ms/step\n", + "Epoch 182/250\n", + "13/13 - 0s - loss: 4.3340e-04 - mae: 0.0159 - mse: 4.3340e-04 - val_loss: 4.5463e-04 - val_mae: 0.0158 - val_mse: 4.5463e-04 - 216ms/epoch - 17ms/step\n", + "Epoch 183/250\n", + "13/13 - 0s - loss: 4.2639e-04 - mae: 0.0162 - mse: 4.2639e-04 - val_loss: 4.3874e-04 - val_mae: 0.0156 - val_mse: 4.3874e-04 - 296ms/epoch - 23ms/step\n", + "Epoch 184/250\n", + "13/13 - 0s - loss: 4.4119e-04 - mae: 0.0159 - mse: 4.4119e-04 - val_loss: 4.7791e-04 - val_mae: 0.0169 - val_mse: 4.7791e-04 - 195ms/epoch - 15ms/step\n", + "Epoch 185/250\n", + "13/13 - 0s - loss: 4.4805e-04 - mae: 0.0164 - mse: 4.4805e-04 - val_loss: 4.6275e-04 - val_mae: 0.0163 - val_mse: 4.6275e-04 - 119ms/epoch - 9ms/step\n", + "Epoch 186/250\n", + "13/13 - 0s - loss: 4.4495e-04 - mae: 0.0163 - mse: 4.4495e-04 - val_loss: 4.4746e-04 - val_mae: 0.0155 - val_mse: 4.4746e-04 - 115ms/epoch - 9ms/step\n", + "Epoch 187/250\n", + "13/13 - 0s - loss: 4.7030e-04 - mae: 0.0167 - mse: 4.7030e-04 - val_loss: 5.6234e-04 - val_mae: 0.0169 - val_mse: 5.6234e-04 - 147ms/epoch - 11ms/step\n", + "Epoch 188/250\n", + "13/13 - 0s - loss: 4.4920e-04 - mae: 0.0160 - mse: 4.4920e-04 - val_loss: 4.2347e-04 - val_mae: 0.0154 - val_mse: 4.2347e-04 - 451ms/epoch - 35ms/step\n", + "Epoch 189/250\n", + "13/13 - 0s - loss: 4.1850e-04 - mae: 0.0159 - mse: 4.1850e-04 - val_loss: 4.5828e-04 - val_mae: 0.0156 - val_mse: 4.5828e-04 - 110ms/epoch - 8ms/step\n", + "Epoch 190/250\n", + "13/13 - 0s - loss: 4.2816e-04 - mae: 0.0159 - mse: 4.2816e-04 - val_loss: 4.2983e-04 - val_mae: 0.0155 - val_mse: 4.2983e-04 - 121ms/epoch - 9ms/step\n", + "Epoch 191/250\n", + "13/13 - 0s - loss: 4.1442e-04 - mae: 0.0156 - mse: 4.1442e-04 - val_loss: 4.5135e-04 - val_mae: 0.0154 - val_mse: 4.5135e-04 - 173ms/epoch - 13ms/step\n", + "Epoch 192/250\n", + "13/13 - 0s - loss: 4.1126e-04 - mae: 0.0159 - mse: 4.1126e-04 - val_loss: 4.2590e-04 - val_mae: 0.0151 - val_mse: 4.2590e-04 - 149ms/epoch - 11ms/step\n", + "Epoch 193/250\n", + "13/13 - 0s - loss: 4.1197e-04 - mae: 0.0155 - mse: 4.1197e-04 - val_loss: 4.2111e-04 - val_mae: 0.0151 - val_mse: 4.2111e-04 - 243ms/epoch - 19ms/step\n", + "Epoch 194/250\n", + "13/13 - 0s - loss: 4.0958e-04 - mae: 0.0157 - mse: 4.0958e-04 - val_loss: 4.1117e-04 - val_mae: 0.0149 - val_mse: 4.1117e-04 - 272ms/epoch - 21ms/step\n", + "Epoch 195/250\n", + "13/13 - 0s - loss: 3.9243e-04 - mae: 0.0153 - mse: 3.9243e-04 - val_loss: 4.1405e-04 - val_mae: 0.0150 - val_mse: 4.1405e-04 - 136ms/epoch - 10ms/step\n", + "Epoch 196/250\n", + "13/13 - 0s - loss: 4.0300e-04 - mae: 0.0153 - mse: 4.0300e-04 - val_loss: 4.3989e-04 - val_mae: 0.0150 - val_mse: 4.3989e-04 - 151ms/epoch - 12ms/step\n", + "Epoch 197/250\n", + "13/13 - 0s - loss: 4.0142e-04 - mae: 0.0154 - mse: 4.0142e-04 - val_loss: 4.3665e-04 - val_mae: 0.0151 - val_mse: 4.3665e-04 - 160ms/epoch - 12ms/step\n", + "Epoch 198/250\n", + "13/13 - 0s - loss: 3.9936e-04 - mae: 0.0153 - mse: 3.9936e-04 - val_loss: 4.2897e-04 - val_mae: 0.0149 - val_mse: 4.2897e-04 - 114ms/epoch - 9ms/step\n", + "Epoch 199/250\n", + "13/13 - 0s - loss: 4.0143e-04 - mae: 0.0153 - mse: 4.0143e-04 - val_loss: 4.0877e-04 - val_mae: 0.0148 - val_mse: 4.0877e-04 - 209ms/epoch - 16ms/step\n", + "Epoch 200/250\n", + "13/13 - 0s - loss: 3.9668e-04 - mae: 0.0152 - mse: 3.9668e-04 - val_loss: 4.3571e-04 - val_mae: 0.0150 - val_mse: 4.3571e-04 - 198ms/epoch - 15ms/step\n", + "Epoch 201/250\n", + "13/13 - 0s - loss: 3.9516e-04 - mae: 0.0154 - mse: 3.9516e-04 - val_loss: 5.1984e-04 - val_mae: 0.0161 - val_mse: 5.1984e-04 - 147ms/epoch - 11ms/step\n", + "Epoch 202/250\n", + "13/13 - 0s - loss: 4.5166e-04 - mae: 0.0161 - mse: 4.5166e-04 - val_loss: 5.4696e-04 - val_mae: 0.0182 - val_mse: 5.4696e-04 - 128ms/epoch - 10ms/step\n", + "Epoch 203/250\n", + "13/13 - 0s - loss: 4.5904e-04 - mae: 0.0166 - mse: 4.5904e-04 - val_loss: 4.1240e-04 - val_mae: 0.0150 - val_mse: 4.1240e-04 - 137ms/epoch - 11ms/step\n", + "Epoch 204/250\n", + "13/13 - 0s - loss: 3.9851e-04 - mae: 0.0150 - mse: 3.9851e-04 - val_loss: 4.5210e-04 - val_mae: 0.0154 - val_mse: 4.5210e-04 - 141ms/epoch - 11ms/step\n", + "Epoch 205/250\n", + "13/13 - 0s - loss: 3.8760e-04 - mae: 0.0151 - mse: 3.8760e-04 - val_loss: 4.0982e-04 - val_mae: 0.0149 - val_mse: 4.0982e-04 - 121ms/epoch - 9ms/step\n", + "Epoch 206/250\n", + "13/13 - 0s - loss: 4.1937e-04 - mae: 0.0156 - mse: 4.1937e-04 - val_loss: 3.8857e-04 - val_mae: 0.0145 - val_mse: 3.8857e-04 - 294ms/epoch - 23ms/step\n", + "Epoch 207/250\n", + "13/13 - 0s - loss: 3.7173e-04 - mae: 0.0146 - mse: 3.7173e-04 - val_loss: 3.9353e-04 - val_mae: 0.0147 - val_mse: 3.9353e-04 - 146ms/epoch - 11ms/step\n", + "Epoch 208/250\n", + "13/13 - 0s - loss: 3.9673e-04 - mae: 0.0153 - mse: 3.9673e-04 - val_loss: 3.9003e-04 - val_mae: 0.0145 - val_mse: 3.9003e-04 - 115ms/epoch - 9ms/step\n", + "Epoch 209/250\n", + "13/13 - 0s - loss: 4.2359e-04 - mae: 0.0155 - mse: 4.2359e-04 - val_loss: 3.9027e-04 - val_mae: 0.0146 - val_mse: 3.9027e-04 - 150ms/epoch - 12ms/step\n", + "Epoch 210/250\n", + "13/13 - 0s - loss: 3.9302e-04 - mae: 0.0154 - mse: 3.9302e-04 - val_loss: 4.1320e-04 - val_mae: 0.0152 - val_mse: 4.1320e-04 - 167ms/epoch - 13ms/step\n", + "Epoch 211/250\n", + "13/13 - 0s - loss: 3.6641e-04 - mae: 0.0147 - mse: 3.6641e-04 - val_loss: 3.9564e-04 - val_mae: 0.0141 - val_mse: 3.9564e-04 - 167ms/epoch - 13ms/step\n", + "Epoch 212/250\n", + "13/13 - 0s - loss: 3.6259e-04 - mae: 0.0143 - mse: 3.6259e-04 - val_loss: 3.8787e-04 - val_mae: 0.0146 - val_mse: 3.8787e-04 - 309ms/epoch - 24ms/step\n", + "Epoch 213/250\n", + "13/13 - 0s - loss: 4.0665e-04 - mae: 0.0156 - mse: 4.0665e-04 - val_loss: 5.0910e-04 - val_mae: 0.0160 - val_mse: 5.0910e-04 - 158ms/epoch - 12ms/step\n", + "Epoch 214/250\n", + "13/13 - 0s - loss: 4.5758e-04 - mae: 0.0169 - mse: 4.5758e-04 - val_loss: 4.1241e-04 - val_mae: 0.0141 - val_mse: 4.1241e-04 - 125ms/epoch - 10ms/step\n", + "Epoch 215/250\n", + "13/13 - 0s - loss: 4.0666e-04 - mae: 0.0155 - mse: 4.0666e-04 - val_loss: 4.6639e-04 - val_mae: 0.0151 - val_mse: 4.6639e-04 - 177ms/epoch - 14ms/step\n", + "Epoch 216/250\n", + "13/13 - 0s - loss: 3.6615e-04 - mae: 0.0145 - mse: 3.6615e-04 - val_loss: 3.8294e-04 - val_mae: 0.0138 - val_mse: 3.8294e-04 - 253ms/epoch - 19ms/step\n", + "Epoch 217/250\n", + "13/13 - 0s - loss: 3.8135e-04 - mae: 0.0149 - mse: 3.8135e-04 - val_loss: 5.1259e-04 - val_mae: 0.0162 - val_mse: 5.1259e-04 - 136ms/epoch - 10ms/step\n", + "Epoch 218/250\n", + "13/13 - 0s - loss: 3.5877e-04 - mae: 0.0144 - mse: 3.5877e-04 - val_loss: 3.7918e-04 - val_mae: 0.0142 - val_mse: 3.7918e-04 - 254ms/epoch - 20ms/step\n", + "Epoch 219/250\n", + "13/13 - 0s - loss: 4.1097e-04 - mae: 0.0155 - mse: 4.1097e-04 - val_loss: 3.7973e-04 - val_mae: 0.0144 - val_mse: 3.7973e-04 - 167ms/epoch - 13ms/step\n", + "Epoch 220/250\n", + "13/13 - 0s - loss: 3.7840e-04 - mae: 0.0149 - mse: 3.7840e-04 - val_loss: 4.7988e-04 - val_mae: 0.0153 - val_mse: 4.7988e-04 - 157ms/epoch - 12ms/step\n", + "Epoch 221/250\n", + "13/13 - 0s - loss: 3.5545e-04 - mae: 0.0143 - mse: 3.5545e-04 - val_loss: 3.7230e-04 - val_mae: 0.0136 - val_mse: 3.7230e-04 - 218ms/epoch - 17ms/step\n", + "Epoch 222/250\n", + "13/13 - 0s - loss: 3.4610e-04 - mae: 0.0141 - mse: 3.4610e-04 - val_loss: 4.1371e-04 - val_mae: 0.0142 - val_mse: 4.1371e-04 - 141ms/epoch - 11ms/step\n", + "Epoch 223/250\n", + "13/13 - 0s - loss: 3.7775e-04 - mae: 0.0149 - mse: 3.7775e-04 - val_loss: 3.8045e-04 - val_mae: 0.0142 - val_mse: 3.8045e-04 - 176ms/epoch - 14ms/step\n", + "Epoch 224/250\n", + "13/13 - 0s - loss: 3.5911e-04 - mae: 0.0145 - mse: 3.5911e-04 - val_loss: 3.5609e-04 - val_mae: 0.0134 - val_mse: 3.5609e-04 - 421ms/epoch - 32ms/step\n", + "Epoch 225/250\n", + "13/13 - 0s - loss: 3.5933e-04 - mae: 0.0144 - mse: 3.5933e-04 - val_loss: 3.5900e-04 - val_mae: 0.0134 - val_mse: 3.5900e-04 - 159ms/epoch - 12ms/step\n", + "Epoch 226/250\n", + "13/13 - 0s - loss: 3.6466e-04 - mae: 0.0144 - mse: 3.6466e-04 - val_loss: 3.5378e-04 - val_mae: 0.0135 - val_mse: 3.5378e-04 - 307ms/epoch - 24ms/step\n", + "Epoch 227/250\n", + "13/13 - 0s - loss: 3.5876e-04 - mae: 0.0144 - mse: 3.5876e-04 - val_loss: 3.6523e-04 - val_mae: 0.0133 - val_mse: 3.6523e-04 - 193ms/epoch - 15ms/step\n", + "Epoch 228/250\n", + "13/13 - 0s - loss: 3.4559e-04 - mae: 0.0142 - mse: 3.4559e-04 - val_loss: 3.5907e-04 - val_mae: 0.0139 - val_mse: 3.5907e-04 - 133ms/epoch - 10ms/step\n", + "Epoch 229/250\n", + "13/13 - 0s - loss: 3.4162e-04 - mae: 0.0142 - mse: 3.4162e-04 - val_loss: 4.2194e-04 - val_mae: 0.0141 - val_mse: 4.2194e-04 - 107ms/epoch - 8ms/step\n", + "Epoch 230/250\n", + "13/13 - 0s - loss: 3.6967e-04 - mae: 0.0146 - mse: 3.6967e-04 - val_loss: 3.7720e-04 - val_mae: 0.0138 - val_mse: 3.7720e-04 - 165ms/epoch - 13ms/step\n", + "Epoch 231/250\n", + "13/13 - 0s - loss: 3.3735e-04 - mae: 0.0136 - mse: 3.3735e-04 - val_loss: 3.3976e-04 - val_mae: 0.0129 - val_mse: 3.3976e-04 - 276ms/epoch - 21ms/step\n", + "Epoch 232/250\n", + "13/13 - 0s - loss: 3.3844e-04 - mae: 0.0141 - mse: 3.3844e-04 - val_loss: 3.8716e-04 - val_mae: 0.0135 - val_mse: 3.8716e-04 - 134ms/epoch - 10ms/step\n", + "Epoch 233/250\n", + "13/13 - 0s - loss: 3.6741e-04 - mae: 0.0145 - mse: 3.6741e-04 - val_loss: 3.8668e-04 - val_mae: 0.0136 - val_mse: 3.8668e-04 - 146ms/epoch - 11ms/step\n", + "Epoch 234/250\n", + "13/13 - 0s - loss: 3.4129e-04 - mae: 0.0139 - mse: 3.4129e-04 - val_loss: 3.4933e-04 - val_mae: 0.0133 - val_mse: 3.4933e-04 - 165ms/epoch - 13ms/step\n", + "Epoch 235/250\n", + "13/13 - 0s - loss: 3.2338e-04 - mae: 0.0137 - mse: 3.2338e-04 - val_loss: 3.4566e-04 - val_mae: 0.0133 - val_mse: 3.4566e-04 - 153ms/epoch - 12ms/step\n", + "Epoch 236/250\n", + "13/13 - 0s - loss: 3.1652e-04 - mae: 0.0134 - mse: 3.1652e-04 - val_loss: 3.9728e-04 - val_mae: 0.0136 - val_mse: 3.9728e-04 - 187ms/epoch - 14ms/step\n", + "Epoch 237/250\n", + "13/13 - 0s - loss: 3.2047e-04 - mae: 0.0136 - mse: 3.2047e-04 - val_loss: 3.3756e-04 - val_mae: 0.0130 - val_mse: 3.3756e-04 - 209ms/epoch - 16ms/step\n", + "Epoch 238/250\n", + "13/13 - 0s - loss: 3.3167e-04 - mae: 0.0138 - mse: 3.3167e-04 - val_loss: 3.3191e-04 - val_mae: 0.0126 - val_mse: 3.3191e-04 - 175ms/epoch - 13ms/step\n", + "Epoch 239/250\n", + "13/13 - 0s - loss: 3.2033e-04 - mae: 0.0134 - mse: 3.2033e-04 - val_loss: 3.2969e-04 - val_mae: 0.0128 - val_mse: 3.2969e-04 - 234ms/epoch - 18ms/step\n", + "Epoch 240/250\n", + "13/13 - 0s - loss: 3.5224e-04 - mae: 0.0141 - mse: 3.5224e-04 - val_loss: 3.9061e-04 - val_mae: 0.0148 - val_mse: 3.9061e-04 - 130ms/epoch - 10ms/step\n", + "Epoch 241/250\n", + "13/13 - 0s - loss: 3.9777e-04 - mae: 0.0153 - mse: 3.9777e-04 - val_loss: 3.7065e-04 - val_mae: 0.0137 - val_mse: 3.7065e-04 - 122ms/epoch - 9ms/step\n", + "Epoch 242/250\n", + "13/13 - 0s - loss: 3.2502e-04 - mae: 0.0138 - mse: 3.2502e-04 - val_loss: 3.3236e-04 - val_mae: 0.0124 - val_mse: 3.3236e-04 - 128ms/epoch - 10ms/step\n", + "Epoch 243/250\n", + "13/13 - 0s - loss: 3.0734e-04 - mae: 0.0133 - mse: 3.0734e-04 - val_loss: 3.2635e-04 - val_mae: 0.0126 - val_mse: 3.2635e-04 - 321ms/epoch - 25ms/step\n", + "Epoch 244/250\n", + "13/13 - 0s - loss: 3.2928e-04 - mae: 0.0137 - mse: 3.2928e-04 - val_loss: 3.2871e-04 - val_mae: 0.0125 - val_mse: 3.2871e-04 - 167ms/epoch - 13ms/step\n", + "Epoch 245/250\n", + "13/13 - 0s - loss: 2.9711e-04 - mae: 0.0131 - mse: 2.9711e-04 - val_loss: 3.2920e-04 - val_mae: 0.0121 - val_mse: 3.2920e-04 - 129ms/epoch - 10ms/step\n", + "Epoch 246/250\n", + "13/13 - 0s - loss: 3.2661e-04 - mae: 0.0134 - mse: 3.2661e-04 - val_loss: 3.6936e-04 - val_mae: 0.0134 - val_mse: 3.6936e-04 - 191ms/epoch - 15ms/step\n", + "Epoch 247/250\n", + "13/13 - 0s - loss: 2.9618e-04 - mae: 0.0128 - mse: 2.9618e-04 - val_loss: 3.3549e-04 - val_mae: 0.0123 - val_mse: 3.3549e-04 - 119ms/epoch - 9ms/step\n", + "Epoch 248/250\n", + "13/13 - 0s - loss: 2.9979e-04 - mae: 0.0130 - mse: 2.9979e-04 - val_loss: 3.8099e-04 - val_mae: 0.0135 - val_mse: 3.8099e-04 - 122ms/epoch - 9ms/step\n", + "Epoch 249/250\n", + "13/13 - 0s - loss: 3.0599e-04 - mae: 0.0131 - mse: 3.0599e-04 - val_loss: 3.2729e-04 - val_mae: 0.0122 - val_mse: 3.2729e-04 - 150ms/epoch - 12ms/step\n", + "Epoch 250/250\n", + "13/13 - 0s - loss: 3.1256e-04 - mae: 0.0134 - mse: 3.1256e-04 - val_loss: 3.3855e-04 - val_mae: 0.0134 - val_mse: 3.3855e-04 - 127ms/epoch - 10ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTK0lEQVR4nO3deVxUVeM/8M/MIMMmmyCgILjvYoES+uCSPIKaSWihoiL6ZLmlD9q3bAG1eqj0l1halqW0uRZqi0tKUqaY5r7loz6YG4u4sKkgw/n9MXJjHJBBLnNZPu/X675kzj333jO3iflw7jn3qoQQAkRERET1hFrpBhARERHJieGGiIiI6hWGGyIiIqpXGG6IiIioXmG4ISIionqF4YaIiIjqFYYbIiIiqlcYboiIiKheYbghIiKieoXhhughjR8/Hj4+Pg+17dy5c6FSqeRtEClGpVJh7ty50uvExESoVCqcP3++0m19fHwwfvx4WdtTnc8mUX3AcEP1jkqlMmlJSUlRuqmKGD9+PFQqFezt7XH79m2j9WfOnJHO0cKFCw3WnT9/HtHR0WjdujWsrKzg7u6OPn36IC4uzqBev379KjzvHTp0qNH39yAvvPACVCoVzp49W2GdV199FSqVCkePHjVjy6ruypUrmDt3Lg4fPqx0UyTnz5+X/ju/+eab5daJjIyESqWCnZ2dQXlJSQm++OILBAQEwNnZGY0bN0a7du0wbtw47N27V6qXkpLywP+v16xZU6PvkeoGC6UbQCS3L7/80uD1F198ge3btxuVd+zYsVrHWb58OUpKSh5q29deew0vv/xytY5fHRYWFrh16xa+//57PPPMMwbrvv76a1hZWeHOnTsG5WfPnkWPHj1gbW2NCRMmwMfHB+np6Th48CDeeecdzJs3z6C+p6cn4uPjjY7t4OAg/xsyUWRkJD744AOsWrUKsbGx5dZZvXo1unbtim7duj30ccaOHYuRI0dCq9U+9D4qc+XKFcybNw8+Pj7o3r27wbrqfDblYGVlhdWrV+O1114zKC8oKMCmTZtgZWVltM0LL7yApUuXYtiwYYiMjISFhQVOnz6NLVu2oFWrVnjssceM6vfo0cNoP4GBgfK+GaqTGG6o3hkzZozB671792L79u1G5fe7desWbGxsTD5Oo0aNHqp9gD5cWFgo97+fVqtF7969sXr1aqNws2rVKgwZMgTffvutQfmiRYuQn5+Pw4cPw9vb22BdVlaW0TEcHBwqPefmFhAQgDZt2mD16tXlhpvU1FSkpaXh7bffrtZxNBoNNBpNtfZRHdX5bMph8ODBSEpKwpEjR+Dr6yuVb9q0CUVFRQgNDcXPP/8slWdmZuLDDz/Es88+i08++cRgXwkJCbh69arRMYKCgjBixIiaexNUp/GyFDVI/fr1Q5cuXXDgwAH06dMHNjY2eOWVVwDofwEPGTIEzZo1g1arRevWrfHGG29Ap9MZ7OP+cQ2lXfILFy7EJ598gtatW0Or1aJHjx7Yv3+/wbbljblRqVSYNm0aNm7ciC5dukCr1aJz587YunWrUftTUlLg7+8PKysrtG7dGh9//HGVx/GMHj0aW7Zswc2bN6Wy/fv348yZMxg9erRR/XPnzsHT09Mo2ABA06ZNTT7ug2RmZsLCwsKoFwgATp8+DZVKhSVLlgAA7t69i3nz5qFt27awsrJCkyZN8I9//APbt29/4DEiIyPx559/4uDBg0brVq1aBZVKhVGjRqGoqAixsbHw8/ODg4MDbG1tERQUhJ07d1b6PsobcyOEwJtvvglPT0/Y2Nigf//+OHHihNG2169fx+zZs9G1a1fY2dnB3t4egwYNwpEjR6Q6KSkpUq9FdHS0dEkmMTERQPljbgoKCjBr1ix4eXlBq9Wiffv2WLhwIYQQBvWq8jmsSGBgIFq2bIlVq1YZlH/99dcIDQ2Fs7OzQXlaWhqEEOjdu7fRvlQqlWyfL2o4GG6owbp27RoGDRqE7t27IyEhAf379weg/2Kys7NDTEwMFi9eDD8/P8TGxpp8GWnVqlVYsGABnnvuObz55ps4f/48wsPDcffu3Uq3/e233zBlyhSMHDkS7777Lu7cuYPhw4fj2rVrUp1Dhw4hNDQU165dw7x58zBx4kTMnz8fGzdurNL7Dw8Ph0qlQlJSkkHbO3TogEcffdSovre3Ny5evGjwF/eD6HQ6ZGdnGy0FBQUVbuPm5oa+ffti3bp1RuvWrl0LjUaDp59+GoA+IM6bNw/9+/fHkiVL8Oqrr6JFixblhpayIiMjpfd6f3vXrVuHoKAgtGjRArm5ufj000/Rr18/vPPOO5g7dy6uXr2KkJCQhxrnEhsbi9dffx2+vr5YsGABWrVqhYEDBxqdj//973/YuHEjnnjiCbz33nt48cUXcezYMfTt2xdXrlwBoL+kOn/+fADApEmT8OWXX+LLL79Enz59yj22EAJPPvkkFi1ahNDQULz33nto3749XnzxRcTExBjVN+VzWJlRo0ZhzZo1UnjKzs7GTz/9VG5wLg3M69evx61bt0zaf15eXrmfr/vDGjVQgqiemzp1qrj/o963b18BQCxbtsyo/q1bt4zKnnvuOWFjYyPu3LkjlUVFRQlvb2/pdVpamgAgmjRpIq5fvy6Vb9q0SQAQ33//vVQWFxdn1CYAwtLSUpw9e1YqO3LkiAAgPvjgA6ls6NChwsbGRly+fFkqO3PmjLCwsDDaZ3mioqKEra2tEEKIESNGiAEDBgghhNDpdMLd3V3MmzdPei8LFiyQtjt+/LiwtrYWAET37t3FjBkzxMaNG0VBQYHRMUrPb3nLc88998D2ffzxxwKAOHbsmEF5p06dxOOPPy699vX1FUOGDKn0/ZanR48ewtPTU+h0Oqls69atAoD4+OOPhRBCFBcXi8LCQoPtbty4Idzc3MSECRMMygGIuLg46fXKlSsFAJGWliaEECIrK0tYWlqKIUOGiJKSEqneK6+8IgCIqKgoqezOnTsG7RJC/9nSarVi/vz5Utn+/fsFALFy5Uqj93f/Z3Pjxo0CgHjzzTcN6o0YMUKoVCqDz5ypn8PylP3cHD9+XAAQu3btEkIIsXTpUmFnZycKCgoMPoOlxo0bJwAIJycn8dRTT4mFCxeKU6dOGR1j586dFX62AIj09PQHtpEaBvbcUIOl1WoRHR1tVG5tbS39XPrXYVBQEG7duoU///yz0v1GRETAyclJeh0UFARA/xd5ZYKDg9G6dWvpdbdu3WBvby9tq9PpsGPHDoSFhaFZs2ZSvTZt2mDQoEGV7v9+o0ePRkpKCjIyMvDzzz8jIyOj3L+sAaBz5844fPgwxowZg/Pnz2Px4sUICwuDm5sbli9fblTfx8cH27dvN1pmzpz5wDaFh4fDwsICa9eulcqOHz+OkydPIiIiQipzdHTEiRMncObMmSq/7zFjxuDSpUv49ddfpbJVq1bB0tJS6hnSaDSwtLQEoJ/Jc/36dRQXF8Pf37/S3qH77dixA0VFRZg+fbrBpcPyzoVWq4Varf/VrNPpcO3aNdjZ2aF9+/ZVPm6pzZs3Q6PR4IUXXjAonzVrFoQQ2LJli0F5ZZ9DU3Tu3BndunXD6tWrAejP77Bhwyoc17Zy5UosWbIELVu2xIYNGzB79mx07NgRAwYMwOXLl43qx8bGlvv5uv+SFzVMDDfUYDVv3lz68irrxIkTeOqpp+Dg4AB7e3u4urpKA2NzcnIq3W+LFi0MXpcGnRs3blR529LtS7fNysrC7du30aZNG6N65ZVVZvDgwWjcuDHWrl2Lr7/+Gj169Hjgftq1a4cvv/wS2dnZOHr0KP7zn//AwsICkyZNwo4dOwzq2traIjg42GipbCq4i4sLBgwYYHBpau3atbCwsEB4eLhUNn/+fNy8eRPt2rVD165d8eKLL5o8fXvkyJHQaDTSpak7d+5gw4YNGDRokEEw/fzzz9GtWzdpTI+rqyt+/PFHkz4HZf31118AgLZt2xqUu7q6GhwP0AepRYsWoW3bttBqtXBxcYGrqyuOHj1a5eOWPX6zZs3QuHFjg/LSGYOl7StV2efQVKNHj8b69etx9uxZ7Nmzp8LgDABqtRpTp07FgQMHkJ2djU2bNmHQoEH4+eefMXLkSKP6Xbt2LffzVd7/09TwMNxQg1W2h6bUzZs30bdvXxw5cgTz58/H999/j+3bt+Odd94BAJOm11Y0S0aYMBagOts+DK1Wi/DwcHz++efYsGHDA798ytJoNOjatSvmzJmDDRs2ANAPFpXLyJEj8d///lca27Ju3ToMGDAALi4uUp0+ffrg3LlzWLFiBbp06YJPP/0Ujz76KD799NNK99+0aVP885//xLfffou7d+/i+++/R15enjQeBwC++uorjB8/Hq1bt8Znn32GrVu3Yvv27Xj88cdrdJr1f/7zH8TExKBPnz746quvsG3bNmzfvh2dO3c22/RuuT6Ho0aNQnZ2Np599lk0adIEAwcONGm7Jk2a4Mknn8TmzZvRt29f/Pbbb0YBjOhBOBWcqIyUlBRcu3YNSUlJBoMz09LSFGzV35o2bQorK6tyb0L3oBvTPcjo0aOxYsUKqNXqcv9Croy/vz8AID09/aGOX56wsDA899xz0qWp//73v5gzZ45RPWdnZ0RHRyM6Ohr5+fno06cP5s6di3/961+VHiMyMhJbt27Fli1bsGrVKtjb22Po0KHS+m+++QatWrVCUlKSwaWk+29YaIrSAbNnzpxBq1atpPKrV68a9YZ888036N+/Pz777DOD8ps3bxqEu6rMjPP29saOHTuQl5dn0HtTepm1vBlwcmjRogV69+6NlJQUTJ48+aFuf+Dv749ffvkF6enpNdZOqn/Yc0NURulfrGX/Qi0qKsKHH36oVJMMaDQaBAcHY+PGjdLMGUAfbO4fN2Gq/v3744033sCSJUvg7u5eYb1du3aVO+Nr8+bNAID27ds/1PHL4+joiJCQEKxbtw5r1qyBpaUlwsLCDOrcP3PHzs4Obdq0QWFhoUnHCAsLg42NDT788ENs2bIF4eHhBjeXK++z8PvvvyM1NbXK7yc4OBiNGjXCBx98YLC/hIQEo7oajcaoh2T9+vVG405sbW0BwGAqf0UGDx4MnU4nTaMvtWjRIqhUqocar2WqN998E3FxcZg+fXqFdTIyMnDy5Emj8qKiIiQnJ0OtVj/UZVdquNhzQ1RGr1694OTkhKioKOlW/V9++WWtml46d+5c/PTTT+jduzcmT54sfWl16dLloaYoq9VqozvJluedd97BgQMHEB4eLt299+DBg/jiiy/g7OxsNDg2JycHX331Vbn7MuXmfhERERgzZgw+/PBDhISEwNHR0WB9p06d0K9fP/j5+cHZ2Rl//PEHvvnmG0ybNq3SfQP6MBQWFiaNuyl7SQoAnnjiCSQlJeGpp57CkCFDkJaWhmXLlqFTp07Iz8836RilXF1dMXv2bMTHx+OJJ57A4MGDcejQIWzZssWgN6b0uPPnz0d0dDR69eqFY8eO4euvvzbo8QGA1q1bw9HREcuWLUPjxo1ha2uLgIAAtGzZ0uj4Q4cORf/+/fHqq6/i/Pnz8PX1xU8//YRNmzZh5syZBoOH5da3b1/07dv3gXUuXbqEnj174vHHH8eAAQPg7u6OrKwsrF69GkeOHMHMmTONztOuXbuM7qIN6Ac/V+fu0lQ/MNwQldGkSRP88MMPmDVrFl577TU4OTlhzJgxGDBgAEJCQpRuHgDAz88PW7ZswezZs/H666/Dy8sL8+fPx6lTp0yazfWwXnnlFaxatQq//PILvv76a9y6dQseHh4YOXIkXn/9daMv1UuXLmHs2LHl7suUcPPkk0/C2toaeXl5BrOkSr3wwgv47rvv8NNPP6GwsBDe3t5488038eKLL5r8niIjI7Fq1Sp4eHjg8ccfN1g3fvx4ZGRk4OOPP8a2bdvQqVMnfPXVV1i/fv1DPZfszTffhJWVFZYtW4adO3ciICAAP/30E4YMGWJQ75VXXkFBQQFWrVqFtWvX4tFHH8WPP/5odJ+lRo0a4fPPP8ecOXPw/PPPo7i4GCtXriw33KjVanz33XeIjY3F2rVrsXLlSvj4+GDBggWYNWtWld+L3Nq3b4+EhARs3rwZH374ITIzM2FlZYUuXbpg+fLlmDhxotE277//frn7iouLY7ghqERt+pOUiB5aWFjYQ0+NJiKqTzjmhqgOuv9p3mfOnMHmzZvRr18/ZRpERFSLsOeGqA7y8PDA+PHj0apVK/z111/46KOPUFhYiEOHDhndS4WIqKHhmBuiOig0NBSrV69GRkYGtFotAgMD8Z///IfBhogI7LkhIiKieoZjboiIiKheYbghIiKieqXBjbkpKSnBlStX0Lhx4yrdvpyIiIiUI4RAXl4emjVrBrX6wX0zDS7cXLlyBV5eXko3g4iIiB7CxYsX4enp+cA6DS7clD407uLFi7C3t1e4NURERGSK3NxceHl5GTz8tSINLtyUXoqyt7dnuCEiIqpjTBlSwgHFREREVK8w3BAREVG9wnBDRERE9UqDG3NDRETVV1JSgqKiIqWbQfWMpaVlpdO8TcFwQ0REVVJUVIS0tDSUlJQo3RSqZ9RqNVq2bAlLS8tq7YfhhoiITCaEQHp6OjQaDby8vGT5K5sI+Psmu+np6WjRokW1brTLcENERCYrLi7GrVu30KxZM9jY2CjdHKpnXF1dceXKFRQXF6NRo0YPvZ9aEbmXLl0KHx8fWFlZISAgAPv27auwbmJiIlQqlcFiZWVlxtYSETVcOp0OAKp92YCoPKWfq9LP2cNSPNysXbsWMTExiIuLw8GDB+Hr64uQkBBkZWVVuI29vT3S09Ol5a+//jJji4mIiM/mo5og1+dK8XDz3nvv4dlnn0V0dDQ6deqEZcuWwcbGBitWrKhwG5VKBXd3d2lxc3MzY4vLp9MBKSnA6tX6f6sZOomIiOghKRpuioqKcODAAQQHB0tlarUawcHBSE1NrXC7/Px8eHt7w8vLC8OGDcOJEycqrFtYWIjc3FyDRW5JSYCPD9C/PzB6tP5fHx99ORER1U8+Pj5ISEgwuX5KSgpUKhVu3rxZY20iPUXDTXZ2NnQ6nVHPi5ubGzIyMsrdpn379lixYgU2bdqEr776CiUlJejVqxcuXbpUbv34+Hg4ODhIi9xPBE9KAkaMAO4//OXL+nIGHCIiY+bs7b5/nOb9y9y5cx9qv/v378ekSZNMrt+rVy+kp6fDwcHhoY5nqtIQ5eTkhDt37his279/v/S+y1q+fDl8fX1hZ2cHR0dHPPLII4iPj5fWz507t9xz16FDhxp9Lw+rzs2WCgwMRGBgoPS6V69e6NixIz7++GO88cYbRvXnzJmDmJgY6XXpU0XloNMBM2YAQhivEwJQqYCZM4FhwwCNRpZDEhHVeUlJ+t+dZf8o9PQEFi8GwsPlP156err089q1axEbG4vTp09LZXZ2dtLPQgjodDpYWFT+9ejq6lqldlhaWsLd3b1K21RH48aNsWHDBowaNUoq++yzz9CiRQtcuHBBKluxYgVmzpyJ999/H3379kVhYSGOHj2K48ePG+yvc+fO2LFjh0GZKedJCYr23Li4uECj0SAzM9OgPDMz0+QPQKNGjfDII4/g7Nmz5a7XarXSE8DlfhL4rl3GPTZlCQFcvKivR0REyvR2lx2j6eDgYDBu888//0Tjxo2xZcsW+Pn5QavV4rfffsO5c+cwbNgwuLm5wc7ODj169DD6Yr//spRKpcKnn36Kp556CjY2Nmjbti2+++47af39l6USExPh6OiIbdu2oWPHjrCzs0NoaKhBGCsuLsYLL7wAR0dHNGnSBC+99BKioqIQFhZW6fuOiooyGL96+/ZtrFmzBlFRUQb1vvvuOzzzzDOYOHEi2rRpg86dO2PUqFF46623DOpZWFgYnEt3d3e4uLhU2g4lKBpuLC0t4efnh+TkZKmspKQEycnJBr0zD6LT6XDs2DF4eHjUVDMrVObzJ0s9IqK6RgigoMC0JTcXeOGFinu7AX2PTm6uafsrbz8P6+WXX8bbb7+NU6dOoVu3bsjPz8fgwYORnJyMQ4cOITQ0FEOHDjXo8SjPvHnz8Mwzz+Do0aMYPHgwIiMjcf369Qrr37p1CwsXLsSXX36JX3/9FRcuXMDs2bOl9e+88w6+/vprrFy5Ert370Zubi42btxo0nsaO3Ysdu3aJbX522+/hY+PDx599FGDeu7u7ti7d2/9mnksFLZmzRqh1WpFYmKiOHnypJg0aZJwdHQUGRkZQgghxo4dK15++WWp/rx588S2bdvEuXPnxIEDB8TIkSOFlZWVOHHihEnHy8nJEQBETk5Otdu+c6cQ+v+9Hrzs3FntQxER1Qq3b98WJ0+eFLdv3xZCCJGfb9rvwZpY8vOr3v6VK1cKBwcH6fXOnTsFALFx48ZKt+3cubP44IMPpNfe3t5i0aJF0msA4rXXXpNe5+fnCwBiy5YtBse6ceOG1BYA4uzZs9I2S5cuFW5ubtJrNzc3sWDBAul1cXGxaNGihRg2bFiF7Sx7nLCwMDFv3jwhhBD9+/cXixcvFhs2bBBlv/6vXLkiHnvsMQFAtGvXTkRFRYm1a9cKnU4n1YmLixNqtVrY2toaLM8991yl560q7v98lVWV72/FL5ZFRETg6tWriI2NRUZGBrp3746tW7dKg4wvXLhgcHvvGzdu4Nlnn0VGRgacnJzg5+eHPXv2oFOnTmZve1CQ/jrx5cvl/wWhUunXBwWZvWlERFQF/v7+Bq/z8/Mxd+5c/Pjjj0hPT0dxcTFu375dac9Nt27dpJ9tbW1hb2//wPu22djYoHXr1tJrDw8PqX5OTg4yMzPRs2dPab1Go4Gfn5/Jz/WaMGECZsyYgTFjxiA1NRXr16/HrvvGSnh4eCA1NRXHjx/Hr7/+ij179iAqKgqffvoptm7dKn0Ht2/f3uAyGwBZh3rISfFwAwDTpk3DtGnTyl2XkpJi8HrRokVYtGiRGVpVOY1GPwBuxAjjdaUD0RMSOJiYiOovGxsgP9+0ur/+CgweXHm9zZuBPn1MO7ZcbG1tDV7Pnj0b27dvx8KFC9GmTRtYW1tjxIgRlT4J/f5HBqhUqgcGkfLqCxmvtw0aNAiTJk3CxIkTMXToUDRp0qTCul26dEGXLl0wZcoUPP/88wgKCsIvv/yC/v37A9APJWnTpo1sbatJit/Er64LDwe++Qa4/z6Cnp768poY+U9EVFuoVICtrWnLwIH6340V3YRWpQK8vPT1TNlfTd4keffu3Rg/fjyeeuopdO3aFe7u7jh//nzNHbAcDg4OcHNzw/79+6UynU6HgwcPmrwPCwsLjBs3DikpKZgwYYLJ25VeDSkoKDC9wbVIrei5qevCw4GWLYFHHwXs7YFNm/SXothjQ0T0t7K93SqV4eX82tbb3bZtWyQlJWHo0KFQqVR4/fXXTb4UJKfp06cjPj4ebdq0QYcOHfDBBx/gxo0bVXpMwRtvvIEXX3yxwl6byZMno1mzZnj88cfh6emJ9PR0vPnmm3B1dTWY3FNcXGx0DzqVSlUrnhJwP/bcyKR0qr9WC/TrVzv+5yQiqm1Ke7ubNzcsr2293e+99x6cnJzQq1cvDB06FCEhIUazjMzhpZdewqhRozBu3DgEBgbCzs4OISEhVXpgtKWlJVxcXCoMRMHBwdi7dy+efvpptGvXDsOHD4eVlRWSk5MNAtGJEyfg4eFhsHh7e1f7PdYElZDz4l4dkJubCwcHB+Tk5Mg6EOrECaBLF8DFBbh6VbbdEhHVKnfu3EFaWhpatmxZpS/Y++l0+nuApacDHh7s7TZVSUkJOnbsiGeeeabcG9fWdQ/6fFXl+5uXpWRSOqFLgV5LIqI6R6PR93LTg/3111/46aefpDsHL1myBGlpaRg9erTSTavVeFlKJgw3REQkN7VajcTERPTo0QO9e/fGsWPHsGPHDnTs2FHpptVq7LmRCcMNERHJzcvLC7t371a6GXUOe25kUjpOi+GGiIhIWQw3MintuWlYw7OJiIhqH4YbmfCyFBERUe3AcCMThhsiIqLageFGJgw3REREtQPDjUwYboiIiGoHhhuZcLYUEVH91q9fP8ycOVN67ePjg4SEhAduo1KpsHHjxmofW679NBQMNzLhbCkioirQ6YCUFGD1av2/Ol2NHWro0KEIDQ0td92uXbugUqlw9OjRKu93//79mDRpUnWbZ2Du3Lno3r27UXl6ejoGDRok67Hul5iYCJVKVe4NAtevXw+VSgUfHx+pTKfT4e2330aHDh1gbW0NZ2dnBAQE4NNPP5XqjB8/HiqVymip6L+HXHgTP5moy8REIf7uySEiovskJQEzZgCXLv1d5umpf2R4DTw5c+LEiRg+fDguXboET09Pg3UrV66Ev78/unXrVuX9urq6ytXESrm7u5vlOLa2tsjKykJqaqrBE8E/++wztGjRwqDuvHnz8PHHH2PJkiXw9/dHbm4u/vjjD9y4ccOgXmhoKFauXGlQptVqa+5NgD03sikbbnhpioioAklJwIgRhsEGAC5f1pcnJcl+yCeeeAKurq5ITEw0KM/Pz8f69esxceJEXLt2DaNGjULz5s1hY2ODrl27YvXq1Q/c7/2Xpc6cOYM+ffrAysoKnTp1wvbt2422eemll9CuXTvY2NigVatWeP3113H37l0A+p6TefPm4ciRI1IPR2mb778sdezYMTz++OOwtrZGkyZNMGnSJOTn50vrx48fj7CwMCxcuBAeHh5o0qQJpk6dKh2rIhYWFhg9ejRWrFghlV26dAkpKSlGz7P67rvvMGXKFDz99NNo2bIlfH19MXHiRMyePdugnlarhbu7u8Hi5OT0wHZUF8ONTBhuiKhBEgIoKDBtyc0FXnih/Ov3pWUzZujrmbI/E8cBWFhYYNy4cUhMTIQos8369euh0+kwatQo3LlzB35+fvjxxx9x/PhxTJo0CWPHjsW+fftMOkZJSQnCw8NhaWmJ33//HcuWLcNLL71kVK9x48ZITEzEyZMnsXjxYixfvhyLFi0CAERERGDWrFno3Lkz0tPTkZ6ejoiICKN9FBQUICQkBE5OTti/fz/Wr1+PHTt2YNq0aQb1du7ciXPnzmHnzp34/PPPkZiYaBTwyjNhwgSsW7cOt27dAqAPXaGhoXBzczOo5+7ujp9//hlXr1416RyZlWhgcnJyBACRk5Mj635v3hRC/3+aEHfuyLprIqJa4/bt2+LkyZPi9u3b+oL8/L9/+Zl7yc83ud2nTp0SAMTOnTulsqCgIDFmzJgKtxkyZIiYNWuW9Lpv375ixowZ0mtvb2+xaNEiIYQQ27ZtExYWFuLy5cvS+i1btggAYsOGDRUeY8GCBcLPz096HRcXJ3x9fY3qld3PJ598IpycnER+mff/448/CrVaLTIyMoQQQkRFRQlvb29RXFws1Xn66adFREREhW1ZuXKlcHBwEEII0b17d/H555+LkpIS0bp1a7Fp0yaxaNEi4e3tLdU/ceKE6Nixo1Cr1aJr167iueeeE5s3bzbYZ1RUlNBoNMLW1tZgeeutt8ptg9Hnq4yqfH+z50YmZcfYsOeGiKh26dChA3r16iVdbjl79ix27dqFiRMnAtAPjn3jjTfQtWtXODs7w87ODtu2bcOFCxdM2v+pU6fg5eWFZs2aSWVlx6yUWrt2LXr37g13d3fY2dnhtddeM/kYZY/l6+sLW1tbqax3794oKSnB6dOnpbLOnTtDo9FIrz08PJCVlWXSMSZMmICVK1fil19+QUFBAQYPHmxUp1OnTjh+/Dj27t2LCRMmICsrC0OHDsW//vUvg3r9+/fH4cOHDZbnn3++Su+5qhhuZHL/gGIiogbBxgbIzzdt2bzZtH1u3mza/mxsqtTUiRMn4ttvv0VeXh5WrlyJ1q1bo2/fvgCABQsWYPHixXjppZewc+dOHD58GCEhISgqKqrqGalQamoqIiMjMXjwYPzwww84dOgQXn31VVmPUVajRo0MXqtUKpSY+Nd3ZGQk9u7di7lz52Ls2LGwsCh//pFarUaPHj0wc+ZMJCUlITExEZ999hnS0tKkOra2tmjTpo3B4uzs/PBvzAScLSUTjrkhogZJpQLK9CA80MCB+llRly+X/1egSqVfP3AgUKbHQS7PPPMMZsyYgVWrVuGLL77A5MmTobrX7b57924MGzYMY8aMAaAfQ/Pf//4XnTp1MmnfHTt2xMWLF5Geng4PDw8AwN69ew3q7NmzB97e3nj11Velsr/++sugjqWlJXSVTIvv2LEjEhMTUVBQIPXe7N69G2q1Gu3btzepvZVxdnbGk08+iXXr1mHZsmUmb1d6vgoKCmRpx8Niz41MGG6IiCqh0einewPG98sofZ2QUCPBBgDs7OwQERGBOXPmID09HePHj5fWtW3bFtu3b8eePXtw6tQpPPfcc8jMzDR538HBwWjXrh2ioqJw5MgR7Nq1yyDElB7jwoULWLNmDc6dO4f3338fGzZsMKjj4+ODtLQ0HD58GNnZ2SgsLDQ6VmRkJKysrBAVFYXjx49j586dmD59OsaOHWs06Lc6EhMTkZ2djQ4dOpS7fsSIEVi0aBF+//13/PXXX0hJScHUqVPRrl07g20KCwuRkZFhsGRnZ8vWzvIw3MiE4YaIyATh4cA33wDNmxuWe3rqy2vgPjdlTZw4ETdu3EBISIjB+JjXXnsNjz76KEJCQtCvXz+4u7sjLCzM5P2q1Wps2LABt2/fRs+ePfGvf/0Lb731lkGdJ598Ev/+978xbdo0dO/eHXv27MHrr79uUGf48OEIDQ1F//794erqWu50dBsbG2zbtg3Xr19Hjx49MGLECAwYMABLliyp2smoROk084qEhITg+++/x9ChQ6Vg16FDB/z0008Gl7G2bt0KDw8Pg+Uf//iHrG29n0qIhjVCJDc3Fw4ODsjJyYG9vb1s+y0uBkovb167BtTw5UQiIkXcuXMHaWlpaNmyJaysrB5+RzodsGsXkJ4OeHgAQUE11mNDdceDPl9V+f7mmBuZlO1hbVhxkYjoIWg0QL9+SreC6ilelpIJL0sRERHVDgw3MuF9boiIiGoHhhsZlfbeMNwQEREph+FGRgw3RNRQNLC5KGQmcn2uGG5kxHBDRPVd6e38a+quutSwlX6uNNWcOcfZUjIqHXfDP2iIqL6ysLCAjY0Nrl69ikaNGkGt5t/IJI+SkhJcvXoVNjY2FT7uwVQMNzJizw0R1XcqlQoeHh5IS0szenQAUXWp1Wq0aNFCeizGw2K4kRHDDRE1BJaWlmjbti0vTZHsLC0tZekNZLiREcMNETUUarW6encoJqpBvFgqI4YbIiIi5THcyIjhhoiISHkMNzLibCkiIiLlMdzIiD03REREymO4kRHDDRERkfIYbmTEcENERKQ8hhsZMdwQEREpj+FGRhxQTEREpDyGGxmx54aIiEh5DDcyYrghIiJSHsONjBhuiIiIlMdwIyOGGyIiIuUx3MiI4YaIiEh5DDcy4mwpIiIi5THcyIg9N0RERMpjuJERww0REZHyGG5kxHBDRESkPIYbGTHcEBERKY/hRkYMN0RERMpjuJERZ0sREREpj+FGRuy5ISIiUh7DjYwYboiIiJRXK8LN0qVL4ePjAysrKwQEBGDfvn0mbbdmzRqoVCqEhYXVbANNxHBDRESkPMXDzdq1axETE4O4uDgcPHgQvr6+CAkJQVZW1gO3O3/+PGbPno2goCAztbRyDDdERETKUzzcvPfee3j22WcRHR2NTp06YdmyZbCxscGKFSsq3Ean0yEyMhLz5s1Dq1atzNjaB2O4ISIiUp6i4aaoqAgHDhxAcHCwVKZWqxEcHIzU1NQKt5s/fz6aNm2KiRMnVnqMwsJC5ObmGiw1hbOliIiIlKdouMnOzoZOp4Obm5tBuZubGzIyMsrd5rfffsNnn32G5cuXm3SM+Ph4ODg4SIuXl1e1210R9twQEREpT/HLUlWRl5eHsWPHYvny5XBxcTFpmzlz5iAnJ0daLl68WGPtY7ghIiJSnoWSB3dxcYFGo0FmZqZBeWZmJtzd3Y3qnzt3DufPn8fQoUOlspJ7ScLCwgKnT59G69atDbbRarXQarU10HpjDDdERETKU7TnxtLSEn5+fkhOTpbKSkpKkJycjMDAQKP6HTp0wLFjx3D48GFpefLJJ9G/f38cPny4Ri85mYLhhoiISHmK9twAQExMDKKiouDv74+ePXsiISEBBQUFiI6OBgCMGzcOzZs3R3x8PKysrNClSxeD7R0dHQHAqFwJpeGGA4qJiIiUo3i4iYiIwNWrVxEbG4uMjAx0794dW7dulQYZX7hwAWp13RgaVDpbij03REREylEJ0bD6GXJzc+Hg4ICcnBzY29vLuu/Bg4EtW4CVK4Hx42XdNRERUYNWle/vutElUkdwzA0REZHyGG5kxHBDRESkPIYbGTHcEBERKY/hRkZ8/AIREZHyGG5kxJ4bIiIi5THcyIjhhoiISHkMNzJiuCEiIlIew42MGG6IiIiUx3AjI4YbIiIi5THcyIizpYiIiJTHcCMj9twQEREpj+FGRgw3REREymO4kRHDDRERkfIYbmTEcENERKQ8hhsZlYYbDigmIiJSDsONjEpnS7HnhoiISDkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYwYboiIiJTHcCMjzpYiIiJSHsONjDhbioiISHkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYwYboiIiJTHcCMjzpYiIiJSHsONjDhbioiISHkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYwYboiIiJTHcCMjzpYiIiJSHsONjDhbioiISHkMNzLiZSkiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYw4oJiIiEh5DDcy4oBiIiIi5THcyIiXpYiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYw4W4qIiEh5DDcy4mwpIiIi5THcyIiXpYiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MmK4ISIiUh7DjYw4W4qIiEh5DDcy4mwpIiIi5THcyIiXpYiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MuKAYiIiIuUx3MiIPTdERETKY7iREWdLERERKa9WhJulS5fCx8cHVlZWCAgIwL59+yqsm5SUBH9/fzg6OsLW1hbdu3fHl19+acbWVow9N0RERMpTPNysXbsWMTExiIuLw8GDB+Hr64uQkBBkZWWVW9/Z2RmvvvoqUlNTcfToUURHRyM6Ohrbtm0zc8uNMdwQEREpTyWEssNfAwIC0KNHDyxZsgQAUFJSAi8vL0yfPh0vv/yySft49NFHMWTIELzxxhuV1s3NzYWDgwNycnJgb29frbbfb+tWYNAg4JFHgIMHZd01ERFRg1aV729Fe26Kiopw4MABBAcHS2VqtRrBwcFITU2tdHshBJKTk3H69Gn06dOn3DqFhYXIzc01WGoKZ0sREREpT9Fwk52dDZ1OBzc3N4NyNzc3ZGRkVLhdTk4O7OzsYGlpiSFDhuCDDz7AP//5z3LrxsfHw8HBQVq8vLxkfQ9l8bIUERGR8hQfc/MwGjdujMOHD2P//v146623EBMTg5SUlHLrzpkzBzk5OdJy8eLFGmsXZ0sREREpz0LJg7u4uECj0SAzM9OgPDMzE+7u7hVup1ar0aZNGwBA9+7dcerUKcTHx6Nfv35GdbVaLbRaraztrrhd+n8ZboiIiJSjaM+NpaUl/Pz8kJycLJWVlJQgOTkZgYGBJu+npKQEhYWFNdHEKmG4ISIiUp6iPTcAEBMTg6ioKPj7+6Nnz55ISEhAQUEBoqOjAQDjxo1D8+bNER8fD0A/hsbf3x+tW7dGYWEhNm/ejC+//BIfffSRkm8DAMMNERFRbaB4uImIiMDVq1cRGxuLjIwMdO/eHVu3bpUGGV+4cAFq9d8dTAUFBZgyZQouXboEa2trdOjQAV999RUiIiKUegsSzpYiIiJSnuL3uTG3mrzPTWoq0KsX0Lo1cPasrLsmIiJq0OrMfW7qG86WIiIiUh7DjYw45oaIiEh5DDcyYrghIiJSHsONjBhuiIiIlMdwIyPOliIiIlIew42MOKCYiIhIeQw3MuJlKSIiIuUx3MiI4YaIiEh5DDcyYrghIiJSHsONjDigmIiISHkMNzJizw0REZHyGG5kxNlSREREymO4kRF7boiIiJTHcCMjhhsiIiLlMdzIiOGGiIhIeQw3MuJsKSIiIuUx3MiIPTdERETKq1K4effdd3H79m3p9e7du1FYWCi9zsvLw5QpU+RrXR3D2VJERETKUwlh+kUUjUaD9PR0NG3aFABgb2+Pw4cPo1WrVgCAzMxMNGvWDDqdrmZaK4Pc3Fw4ODggJycH9vb2su47MxNwd9f/zEtTRERE8qnK93eVem7uz0FVyEUNgrrM2eSpISIiUgbH3MiobLjhpSkiIiJlMNzIiD03REREyrOo6gaffvop7OzsAADFxcVITEyEi4sLAP2A4oaMPTdERETKq9KAYh8fH6hKpwQ9QFpaWrUaVZNqckBxbi7g4KD/+fZtwMpK1t0TERE1WFX5/q5Sz8358+er0656jz03REREyuOYGxkx3BARESmvSuEmNTUVP/zwg0HZF198gZYtW6Jp06aYNGmSwU39GhoOKCYiIlJelcLN/PnzceLECen1sWPHMHHiRAQHB+Pll1/G999/j/j4eNkbWVew54aIiEh5VQo3hw8fxoABA6TXa9asQUBAAJYvX46YmBi8//77WLduneyNrCsYboiIiJRXpXBz48YNuLm5Sa9/+eUXDBo0SHrdo0cPXLx4Ub7W1TFlJ5Ix3BARESmjSuHGzc1NmuZdVFSEgwcP4rHHHpPW5+XloVGjRvK2sA5hzw0REZHyqhRuBg8ejJdffhm7du3CnDlzYGNjg6CgIGn90aNH0bp1a9kbWVew54aIiEh5VbrPzRtvvIHw8HD07dsXdnZ2SExMhKWlpbR+xYoVGDhwoOyNrEvUan2w4WwpIiIiZVQp3Li4uODXX39FTk4O7OzsoNFoDNavX78ejRs3lrWBdU1puGHPDRERkTKqFG4mTJhgUr0VK1Y8VGPqg9JxNww3REREyqhSuElMTIS3tzceeeQRVOGRVA1K6bgbhhsiIiJlVCncTJ48GatXr0ZaWhqio6MxZswYODs711Tb6iT23BARESmrSrOlli5divT0dPzf//0fvv/+e3h5eeGZZ57Btm3b2JNzD8MNERGRsqr84EytVotRo0Zh+/btOHnyJDp37owpU6bAx8cH+fn5NdHGOqU03DDrERERKaNaTwVXq9VQqVQQQkCn08nVpjqNPTdERETKqnK4KSwsxOrVq/HPf/4T7dq1w7Fjx7BkyRJcuHABdnZ2NdHGOoUDiomIiJRVpQHFU6ZMwZo1a+Dl5YUJEyZg9erVcHFxqam21UnsuSEiIlKWSlRhJLBarUaLFi3wyCOPQFX2WQP3SUpKkqVxNSE3NxcODg7IycmBvb297Pt3dQWys4Hjx4HOnWXfPRERUYNUle/vKvXcjBs37oGhhjigmIiISGlVvokfPRgvSxERESmrWrOlyBjDDRERkbIYbmTG2VJERETKYriRGXtuiIiIlMVwIzOGGyIiImUx3MiMs6WIiIiUxXAjM/bcEBERKYvhRmYMN0RERMpiuJEZZ0sREREpi+FGZuy5ISIiUhbDjcwYboiIiJTFcCMzzpYiIiJSVq0IN0uXLoWPjw+srKwQEBCAffv2VVh3+fLlCAoKgpOTE5ycnBAcHPzA+ubGnhsiIiJlKR5u1q5di5iYGMTFxeHgwYPw9fVFSEgIsrKyyq2fkpKCUaNGYefOnUhNTYWXlxcGDhyIy5cvm7nl5WO4ISIiUpZKCGUvoAQEBKBHjx5YsmQJAKCkpAReXl6YPn06Xn755Uq31+l0cHJywpIlSzBu3LhK6+fm5sLBwQE5OTmwt7evdvvv9+ijwKFDwJYtQGio7LsnIiJqkKry/a1oz01RUREOHDiA4OBgqUytViM4OBipqakm7ePWrVu4e/cunJ2da6qZVcKeGyIiImVZKHnw7Oxs6HQ6uLm5GZS7ubnhzz//NGkfL730Epo1a2YQkMoqLCxEYWGh9Do3N/fhG2wChhsiIiJlKT7mpjrefvttrFmzBhs2bICVlVW5deLj4+Hg4CAtXl5eNdomzpYiIiJSlqLhxsXFBRqNBpmZmQblmZmZcHd3f+C2CxcuxNtvv42ffvoJ3bp1q7DenDlzkJOTIy0XL16Upe0VYc8NERGRshQNN5aWlvDz80NycrJUVlJSguTkZAQGBla43bvvvos33ngDW7duhb+//wOPodVqYW9vb7DUJIYbIiIiZSk65gYAYmJiEBUVBX9/f/Ts2RMJCQkoKChAdHQ0AGDcuHFo3rw54uPjAQDvvPMOYmNjsWrVKvj4+CAjIwMAYGdnBzs7O8XeRyk+W4qIiEhZioebiIgIXL16FbGxscjIyED37t2xdetWaZDxhQsXoFb/3cH00UcfoaioCCNGjDDYT1xcHObOnWvOppeLPTdERETKUjzcAMC0adMwbdq0ctelpKQYvD5//nzNN6gaOKCYiIhIWXV6tlRtxJ4bIiIiZTHcyIzhhoiISFkMNzJjuCEiIlIWw43MOFuKiIhIWQw3MmPPDRERkbIYbmTG2VJERETKYriRGXtuiIiIlMVwIzOGGyIiImUx3MiMA4qJiIiUxXAjM/bcEBERKatWPH6hXtDpgF27EHQpHdfgAVEcBECjdKuIiIgaHIYbOSQlATNmAJcuYSaAmQDyYj2B5ouB8HBl20ZERNTA8LJUdSUlASNGAJcuGRTb3bysL09KUqhhREREDRPDTXXodPoem3JuaqPCvbKZM/X1iIiIyCwYbqpj1y6jHhsDQgAXL+rrERERkVkw3FRHerq89YiIiKjaGG6qw8ND3npERERUbQw31REUBHh6/n3nvvupVICXl74eERERmQXDTXVoNMDixfqf7ws4AvdeJyTo6xEREZFZMNxUV3g48M03Rpeech089eW8zw0REZFZMdzIITwcOH5cejkQ2/DBv9MYbIiIiBTAcCMXW1vpx33oCR0fvUBERKQIhhu5NGokjbuxwp3y7utHREREZsBwIxeVCrCyAqAPN3wqOBERkTIYbuR0L9xoUchwQ0REpBCGGzmx54aIiEhxDDdy0moBMNwQEREpieFGTuy5ISIiUhzDjZzKhBvOliIiIlIGw42c2HNDRESkOIYbOXG2FBERkeIYbuTEAcVERESKY7iREy9LERERKY7hRk4MN0RERIpjuJETZ0sREREpjuFGThxQTEREpDiGGznxshQREZHiGG7kxNlSREREimO4kRN7boiIiBTHcCMnDigmIiJSHMONnNhzQ0REpDiGGzlxthQREZHiGG7kVGZA8f/+B6SkADqdsk0iIiJqaBhuZLTv2N+XpfbsAfr3B3x8gKQkZdtFRETUkDDcyCQpCXgn4e9wU+ryZWDECAYcIiIic2G4kYFOB8yYAdyGcbgpnTU1cyYvUREREZkDw40Mdu0CLl0C7pQTbgB9wLl4UV+PiIiIahbDjQzS0/X/loYbLQofWI+IiIhqDsONDDw89P8W4u/ZUg+qR0RERDWH4UYGQUGApydQWMFlKZUK8PLS1yMiIqKaxXAjA40GWLy4/DE3KpX+34QEfT0iIiKqWQw3MgkPB97/xDjceHoC33yjX09EREQ1j+FGRoPD9eGmEYph1UiHnTuBtDQGGyIiInNiuJHTvccvAIDqbiGCgngpioiIyNwYbuR078GZgP7SVEGBgm0hIiJqoBhu5GRhAXGvq8YKd5Cfr3B7iIiIGiCGG5mprP4eVMxwQ0REZH6Kh5ulS5fCx8cHVlZWCAgIwL59+yqse+LECQwfPhw+Pj5QqVRISEgwX0NNVSbc5OUp3BYiIqIGSNFws3btWsTExCAuLg4HDx6Er68vQkJCkJWVVW79W7duoVWrVnj77bfh7u5u5taayOrvRzCw54aIiMj8FA037733Hp599llER0ejU6dOWLZsGWxsbLBixYpy6/fo0QMLFizAyJEjoS0zM6lW0f79CAb23BAREZmfYuGmqKgIBw4cQHBw8N+NUasRHByM1NRU2Y5TWFiI3Nxcg6VGccwNERGRohQLN9nZ2dDpdHBzczMod3NzQ0ZGhmzHiY+Ph4ODg7R4eXnJtu9yMdwQEREpSvEBxTVtzpw5yMnJkZaLFy/W7AE5oJiIiEhRFkod2MXFBRqNBpmZmQblmZmZsg4W1mq15h2fw54bIiIiRSnWc2NpaQk/Pz8kJydLZSUlJUhOTkZgYKBSzaq+e0FKi0L23BARESlAsZ4bAIiJiUFUVBT8/f3Rs2dPJCQkoKCgANHR0QCAcePGoXnz5oiPjwegH4R88uRJ6efLly/j8OHDsLOzQ5s2bRR7HwbYc0NERKQoRcNNREQErl69itjYWGRkZKB79+7YunWrNMj4woULUKv/7ly6cuUKHnnkEen1woULsXDhQvTt2xcpKSnmbn75yoSb6ww3REREZqdouAGAadOmYdq0aeWuuz+w+Pj4QAhhhlZVAwcUExERKarez5YyO16WIiIiUhTDjdwsLQEAj+AQ2l5OAXQ6ZdtDRETUwDDcyCkpCbj36Ihh+A4fnuoP+Pjoy4mIiMgsGG7kkpQEjBgBo4E2ly/ryxlwiIiIzILhRg46HTBjBlDeYOfSspkzeYmKiIjIDBhu5LBrF3DpUsXrhQAuXtTXIyIiohrFcCOH9HR56xEREdFDY7iRg4eHvPWIiIjooTHcyCEoCPD0BFSq8terVICXl74eERER1SiGGzloNMDixeWuEqWBJyFBX4+IiIhqFMONXMLDgW++Ae49F6tUUVNPfXl4uEINIyIialgYbuQUHg7s2wcA0EGFfvgZS2elQTeMwYaIiMhcGG5ktum3JgAADQT+QA/M+j8Nb1JMRERkRgw3MkpKAp6KtEEx9GNrHJADgDcpJiIiMieGG5lINymGCjlwAPB3uOFNiomIiMyH4UYmZW9SfH+4AXiTYiIiInNhuJFJ2ZsPl4YbR9x8YD0iIiKSH8ONTMrefPgmHAEY9tyUV4+IiIjkx3Ajk7I3KS7vshRvUkxERGQeDDcyKXuT4vvDDW9STEREZD4MNzIqvUmxzs4w3HjyJsVERERmY6F0A+qb8HCg5IAD8B99uGnaFEhLY48NERGRubDnpgaonR0B6GdL3brFYENERGRODDc1weHvy1L5+UBRkcLtISIiakAYbmqCg+GYm+vXlWwMERFRw8JwUxPuhRtnjT7cXLumZGOIiIgaFoabmnAv3Diq2HNDRERkbgw3NcHREQBgL9hzQ0REZG4MNzXhXs+NnS4HKpSw54aIiMiMGG5qwr1wo4aAHfLZc0NERGRGDDc1wcoKaNQIgH7GFHtuiIiIzIfhpiaoVAbTwdlzQ0REZD4MNzVBpwMsLQEA/bATN6/pFG4QERFRw8FwI7ekJMDHB7hyBQCwBC9gyY8++nIiIiKqcQw3ckpKAkaMAC5dMih2KbysL2fAISIiqnEMN3LR6YAZMwAhjFapca9s5kx9PSIiIqoxDDdy2bXLqMfGgBDAxYv6ekRERFRjGG7kkp5uUrV9m0yrR0RERA+H4UYuHh4mVXspwYNDb4iIiGoQw41cgoIAT08Ilarc1SVQ4QK8sAtBHHpDRERUgxhu5KLRAIsXA0IfZMoquffvTCRABw2H3hAREdUghhs5hYfjt5nf4DKaGxTfgi3iMBebMEwqM3GIDhEREVURw43MdMPC4YPzeB3zcAtWAAA7FOANxOE8fPAU9ANuTByiQ0RERFXEcCOzoCBgQpNNmIe5sMYdg3XNcRnfYASebZKEoCCFGkhERFTPMdzITAMdFmMGAIH7hxaX3swvATOhAUcUExER1QSGG7nt2gWba5cqPLFqCNhc44hiIiKimsJwIzfezI+IiEhRDDdy4838iIiIFMVwI7dKb+YHXIAnb+ZHRERUQxhu5PaAm/kB+hNug9t4Ept4Mz8iIqIawHBTE+7dzO86nMtd7Yzr+AYj8BSSeDM/IiIimTHc1BDdE8NwG9b3Jn8bKjsl/OxpXpciIiKSE8NNDQnCLnjhUjkXpvTUEGiBi0ietwvr15u1aURERPUaw00N0WSZdr1pCpZgdIQOa9fWcIOIiIgaCAulG1BvmTgl/Bl8i8HCHstH/gv/fvsp+M0MQvYNDVxdgebN9ZOvNJoabisREVE9ohJClDcspN7Kzc2Fg4MDcnJyYG9vX3MH0ukAHx+ISxVfmirPNThhI4ZhJx6HC67htnUT9O10FR7aaxAAVE2c0cijKXRZ16Bp2kT69276VeBa9evIvb9qHbO5OzI0zVHo1wvaA3vgVnwZxVcy9XVUamR36YeiwH7IvqFBkybAtWtAkybAVf1uAADOzkDTpn+vu3YNBsER0M9YS0/X51GzhEmdToGDEhHVbVX5/ma4qUlJSRDDh1cp3JAxHVTQlDs0G8iFLdbjaSkMZqMJXHEVTaAPSdfhjKtoKq0rW8dNrU9AmSV/17lt3QR9u1xDi0dqJui5/Hc32qZth1VRnvQe7tg44WznYbj5yOOKhMs6F3p5LngueC5q/bmw8HCFbbvm6DolCBpLef54q9L3t6gFlixZIry9vYVWqxU9e/YUv//++wPrr1u3TrRv315otVrRpUsX8eOPP5p8rJycHAFA5OTkVLfZJtHNmCkEwIULFy5cuDS45bLGU6S++K0s36dV+f5WfEDx2rVrERMTg7i4OBw8eBC+vr4ICQlBVlZWufX37NmDUaNGYeLEiTh06BDCwsIQFhaG48ePm7nlplGHDVO6CURERIpw111CzwUjsPf/zPu8IcUvSwUEBKBHjx5YsmQJAKCkpAReXl6YPn06Xn75ZaP6ERERKCgowA8//CCVPfbYY+jevTuWLVtW6fHMelkKeOixN0RERPVBCVRI13jC/VZatS5RVeX7W9Gem6KiIhw4cADBwcFSmVqtRnBwMFJTU8vdJjU11aA+AISEhFRYv7CwELm5uQaLWd17HIMKqGDUCBERUf2lhkBz3UUc+9B8zxtSNNxkZ2dDp9PBzc3NoNzNzQ0ZGRnlbpORkVGl+vHx8XBwcJAWLy8veRpfFeHhwLffQuVc/uMYiIiI6rtb58z3vCHFx9zUtDlz5iAnJ0daLl68qExDwsOBrCwgIoI9OERE1ODYtDbt/m9yUDTcuLi4QKPRIDMz06A8MzMT7u7u5W7j7u5epfparRb29vYGi2I0GmDNGqjWr4dwcVWuHURERGZSAhUua7zQdUqQ2Y6paLixtLSEn58fkpOTpbKSkhIkJycjMDCw3G0CAwMN6gPA9u3bK6xfK40YAVVGOrBzJ0q++ArpodEotOUlKyIiql9K7v17MSZBtvvdmELxxy/ExMQgKioK/v7+6NmzJxISElBQUIDo6GgAwLhx49C8eXPEx8cDAGbMmIG+ffvi//2//4chQ4ZgzZo1+OOPP/DJJ58o+TaqTqMB+vWDGoDH2Mi/71p7+TJw9SpKnJrgf/uvIbO4CYqu1O+bQpVX17XoMtqd+h7aguvSKbtj44QznYYCeflGN8Kri0qgkp4QT0RUH6VrvHAxJgGPvRtu1uMqHm4iIiJw9epVxMbGIiMjA927d8fWrVulQcMXLlyAWv13B1OvXr2watUqvPbaa3jllVfQtm1bbNy4EV26dFHqLcjjXtgppQbQJgpoo1iDaoH7HlNgFRSErqWPKbgvDFbl+QslTk1wZs9VpJ+4BiGAZl2d0TqgKc4f0IfJ4swaDnr3Hh1xNyBIeqxESebVWn/H0YZwzNraLp4LnovacsyHuUNxczP22JRS/D435mb2+9wQERFRtdWZ+9wQERERyY3hhoiIiOoVhhsiIiKqVxhuiIiIqF5huCEiIqJ6heGGiIiI6hWGGyIiIqpXGG6IiIioXmG4ISIionpF8ccvmFvpDZlzc3MVbgkRERGZqvR725QHKzS4cJOXp3/YopeXl8ItISIioqrKy8uDg4PDA+s0uGdLlZSU4MqVK2jcuDFUKpUs+8zNzYWXlxcuXrzI51XVMJ5r8+B5Nh+ea/PgeTafmjrXQgjk5eWhWbNmBg/ULk+D67lRq9Xw9PSskX3b29vzfxoz4bk2D55n8+G5Ng+eZ/OpiXNdWY9NKQ4oJiIionqF4YaIiIjqFYYbGWi1WsTFxUGr1SrdlHqP59o8eJ7Nh+faPHiezac2nOsGN6CYiIiI6jf23BAREVG9wnBDRERE9QrDDREREdUrDDdERERUrzDcyGDp0qXw8fGBlZUVAgICsG/fPqWbVKfNnTsXKpXKYOnQoYO0/s6dO5g6dSqaNGkCOzs7DB8+HJmZmQq2uG749ddfMXToUDRr1gwqlQobN240WC+EQGxsLDw8PGBtbY3g4GCcOXPGoM7169cRGRkJe3t7ODo6YuLEicjPzzfju6gbKjvX48ePN/qMh4aGGtThua5cfHw8evTogcaNG6Np06YICwvD6dOnDeqY8vviwoULGDJkCGxsbNC0aVO8+OKLKC4uNudbqfVMOdf9+vUz+lw///zzBnXMda4Zbqpp7dq1iImJQVxcHA4ePAhfX1+EhIQgKytL6abVaZ07d0Z6erq0/Pbbb9K6f//73/j++++xfv16/PLLL7hy5QrCw8MVbG3dUFBQAF9fXyxdurTc9e+++y7ef/99LFu2DL///jtsbW0REhKCO3fuSHUiIyNx4sQJbN++HT/88AN+/fVXTJo0yVxvoc6o7FwDQGhoqMFnfPXq1Qbrea4r98svv2Dq1KnYu3cvtm/fjrt372LgwIEoKCiQ6lT2+0Kn02HIkCEoKirCnj178PnnnyMxMRGxsbFKvKVay5RzDQDPPvuswef63XffldaZ9VwLqpaePXuKqVOnSq91Op1o1qyZiI+PV7BVdVtcXJzw9fUtd93NmzdFo0aNxPr166WyU6dOCQAiNTXVTC2s+wCIDRs2SK9LSkqEu7u7WLBggVR28+ZNodVqxerVq4UQQpw8eVIAEPv375fqbNmyRahUKnH58mWztb2uuf9cCyFEVFSUGDZsWIXb8Fw/nKysLAFA/PLLL0II035fbN68WajVapGRkSHV+eijj4S9vb0oLCw07xuoQ+4/10II0bdvXzFjxowKtzHnuWbPTTUUFRXhwIEDCA4OlsrUajWCg4ORmpqqYMvqvjNnzqBZs2Zo1aoVIiMjceHCBQDAgQMHcPfuXYNz3qFDB7Ro0YLnvBrS0tKQkZFhcF4dHBwQEBAgndfU1FQ4OjrC399fqhMcHAy1Wo3ff//d7G2u61JSUtC0aVO0b98ekydPxrVr16R1PNcPJycnBwDg7OwMwLTfF6mpqejatSvc3NykOiEhIcjNzcWJEyfM2Pq65f5zXerrr7+Gi4sLunTpgjlz5uDWrVvSOnOe6wb34Ew5ZWdnQ6fTGfyHAgA3Nzf8+eefCrWq7gsICEBiYiLat2+P9PR0zJs3D0FBQTh+/DgyMjJgaWkJR0dHg23c3NyQkZGhTIPrgdJzV95nuXRdRkYGmjZtarDewsICzs7OPPdVFBoaivDwcLRs2RLnzp3DK6+8gkGDBiE1NRUajYbn+iGUlJRg5syZ6N27N7p06QIAJv2+yMjIKPdzX7qOjJV3rgFg9OjR8Pb2RrNmzXD06FG89NJLOH36NJKSkgCY91wz3FCtM2jQIOnnbt26ISAgAN7e3li3bh2sra0VbBmRPEaOHCn93LVrV3Tr1g2tW7dGSkoKBgwYoGDL6q6pU6fi+PHjBuPzqGZUdK7Ljgnr2rUrPDw8MGDAAJw7dw6tW7c2axt5WaoaXFxcoNFojEbeZ2Zmwt3dXaFW1T+Ojo5o164dzp49C3d3dxQVFeHmzZsGdXjOq6f03D3os+zu7m40UL64uBjXr1/nua+mVq1awcXFBWfPngXAc11V06ZNww8//ICdO3fC09NTKjfl94W7u3u5n/vSdWSoonNdnoCAAAAw+Fyb61wz3FSDpaUl/Pz8kJycLJWVlJQgOTkZgYGBCrasfsnPz8e5c+fg4eEBPz8/NGrUyOCcnz59GhcuXOA5r4aWLVvC3d3d4Lzm5ubi999/l85rYGAgbt68iQMHDkh1fv75Z5SUlEi/xOjhXLp0CdeuXYOHhwcAnmtTCSEwbdo0bNiwAT///DNatmxpsN6U3xeBgYE4duyYQZjcvn077O3t0alTJ/O8kTqgsnNdnsOHDwOAwefabOda1uHJDdCaNWuEVqsViYmJ4uTJk2LSpEnC0dHRYDQ4Vc2sWbNESkqKSEtLE7t37xbBwcHCxcVFZGVlCSGEeP7550WLFi3Ezz//LP744w8RGBgoAgMDFW517ZeXlycOHTokDh06JACI9957Txw6dEj89ddfQggh3n77beHo6Cg2bdokjh49KoYNGyZatmwpbt++Le0jNDRUPPLII+L3338Xv/32m2jbtq0YNWqUUm+p1nrQuc7LyxOzZ88WqampIi0tTezYsUM8+uijom3btuLOnTvSPniuKzd58mTh4OAgUlJSRHp6urTcunVLqlPZ74vi4mLRpUsXMXDgQHH48GGxdetW4erqKubMmaPEW6q1KjvXZ8+eFfPnzxd//PGHSEtLE5s2bRKtWrUSffr0kfZhznPNcCODDz74QLRo0UJYWlqKnj17ir179yrdpDotIiJCeHh4CEtLS9G8eXMREREhzp49K62/ffu2mDJlinBychI2NjbiqaeeEunp6Qq2uG7YuXOnAGC0REVFCSH008Fff/114ebmJrRarRgwYIA4ffq0wT6uXbsmRo0aJezs7IS9vb2Ijo4WeXl5Cryb2u1B5/rWrVti4MCBwtXVVTRq1Eh4e3uLZ5991ugPIp7rypV3jgGIlStXSnVM+X1x/vx5MWjQIGFtbS1cXFzErFmzxN27d838bmq3ys71hQsXRJ8+fYSzs7PQarWiTZs24sUXXxQ5OTkG+zHXuVbdazQRERFRvcAxN0RERFSvMNwQERFRvcJwQ0RERPUKww0RERHVKww3REREVK8w3BAREVG9wnBDRERE9QrDDRE1SCqVChs3blS6GURUAxhuiMjsxo8fD5VKZbSEhoYq3TQiqgcslG4AETVMoaGhWLlypUGZVqtVqDVEVJ+w54aIFKHVauHu7m6wODk5AdBfMvroo48waNAgWFtbo1WrVvjmm28Mtj927Bgef/xxWFtbo0mTJpg0aRLy8/MN6qxYsQKdO3eGVquFh4cHpk2bZrA+OzsbTz31FGxsbNC2bVt899130robN24gMjISrq6usLa2Rtu2bY3CGBHVTgw3RFQrvf766xg+fDiOHDmCyMhIjBw5EqdOnQIAFBQUICQkBE5OTti/fz/Wr1+PHTt2GISXjz76CFOnTsWkSZNw7NgxfPfdd2jTpo3BMebNm4dnnnkGR48exeDBgxEZGYnr169Lxz958iS2bNmCU6dO4aOPPoKLi4v5TgARPTzZH8VJRFSJqKgoodFohK2trcHy1ltvCSH0TyB+/vnnDbYJCAgQkydPFkII8cknnwgnJyeRn58vrf/xxx+FWq2Wnq7drFkz8eqrr1bYBgDitddek17n5+cLAGLLli1CCCGGDh0qoqOj5XnDRGRWHHNDRIro378/PvroI4MyZ2dn6efAwECDdYGBgTh8+DAA4NSpU/D19YWtra20vnfv3igpKcHp06ehUqlw5coVDBgw4IFt6Natm/Szra0t7O3tkZWVBQCYPHkyhg8fjoMHD2LgwIEICwtDr169Huq9EpF5MdwQkSJsbW2NLhPJxdra2qR6jRo1MnitUqlQUlICABg0aBD++usvbN68Gdu3b8eAAQMwdepULFy4UPb2EpG8OOaGiGqlvXv3Gr3u2LEjAKBjx444cuQICgoKpPW7d++GWq1G+/bt0bhxY/j4+CA5OblabXB1dUVUVBS++uorJCQk4JNPPqnW/ojIPNhzQ0SKKCwsREZGhkGZhYWFNGh3/fr18Pf3xz/+8Q98/fXX2LdvHz777DMAQGRkJOLi4hAVFYW5c+fi6tWrmD59OsaOHQs3NzcAwNy5c/H888+jadOmGDRoEPLy8rB7925Mnz7dpPbFxsbCz88PnTt3RmFhIX744QcpXBFR7cZwQ0SK2Lp1Kzw8PAzK2rdvjz///BOAfibTmjVrMGXKFHh4eGD16tXo1KkTAMDGxgbbtm3DjBkz0KNHD9jY2GD48OF47733pH1FRUXhzp07WLRoEWbPng0XFxeMGDHC5PZZWlpizpw5OH/+PKytrREUFIQ1a9bI8M6JqKaphBBC6UYQEZWlUqmwYcMGhIWFKd0UIqqDOOaGiIiI6hWGGyIiIqpXOOaGiGodXi0noupgzw0RERHVKww3REREVK8w3BAREVG9wnBDRERE9QrDDREREdUrDDdERERUrzDcEBERUb3CcENERET1CsMNERER1Sv/H/3nbZyJcUQcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# selected settings for regression (best fit from options above)\n", + "activation, optimizer, n_hidden_layers, n_nodes_per_layer = \"tanh\", \"Adam\", 4, 20\n", + "loss, metrics = \"mse\", [\"mae\", \"mse\"]\n", + "\n", + "# Create data objects for training using scalar normalization\n", + "n_inputs = len(input_labels)\n", + "n_outputs = len(output_labels)\n", + "x = input_data\n", + "y = output_data\n", + "\n", + "input_scaler = None\n", + "output_scaler = None\n", + "input_scaler = OffsetScaler.create_normalizing_scaler(x)\n", + "output_scaler = OffsetScaler.create_normalizing_scaler(y)\n", + "x = input_scaler.scale(x)\n", + "y = output_scaler.scale(y)\n", + "x = x.to_numpy()\n", + "y = y.to_numpy()\n", + "\n", + "# Create Keras Sequential object and build neural network\n", + "model = tf.keras.Sequential()\n", + "model.add(\n", + " tf.keras.layers.Dense(\n", + " units=n_nodes_per_layer, input_dim=n_inputs, activation=activation\n", + " )\n", + ")\n", + "for i in range(1, n_hidden_layers):\n", + " model.add(tf.keras.layers.Dense(units=n_nodes_per_layer, activation=activation))\n", + "model.add(tf.keras.layers.Dense(units=n_outputs, activation=keras.activations.linear))\n", + "\n", + "# Train surrogate (calls optimizer on neural network and solves for weights)\n", + "model.compile(loss=loss, optimizer=optimizer, metrics=metrics)\n", + "mcp_save = tf.keras.callbacks.ModelCheckpoint(\n", + " \".mdl_co2.keras\", save_best_only=True, monitor=\"val_loss\", mode=\"min\"\n", + ")\n", + "history = model.fit(\n", + " x=x, y=y, validation_split=0.2, verbose=2, epochs=250, callbacks=[mcp_save]\n", + ")\n", + "\n", + "# Get the training and validation MSE from the history\n", + "train_mse = history.history[\"mse\"]\n", + "val_mse = history.history[\"val_mse\"]\n", + "\n", + "# Generate a plot of training MSE vs validation MSE\n", + "epochs = range(1, len(train_mse) + 1)\n", + "plt.plot(epochs, train_mse, \"bo-\", label=\"Training MSE\")\n", + "plt.plot(epochs, val_mse, \"ro-\", label=\"Validation MSE\")\n", + "plt.title(\"Training MSE vs Validation MSE\")\n", + "plt.xlabel(\"Epochs\")\n", + "plt.ylabel(\"MSE\")\n", + "plt.legend()\n", + "plt.show()" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6gUlEQVR4nO3de1wU5f4H8M+CgqACKncFQU2RBLxmeEFNj0h0Me2Xt7xbR1NLK0MrK7sI2TmnrFPa0dLOKcsu1ilNzeNdIUMTb6UlYViCSsqSgKDs8/uDdtrLzN6X3WU/79eLc3JmdvaZ2ZlnvvNcVUIIASIiIiIv5uPqBBARERG5GgMiIiIi8noMiIiIiMjrMSAiIiIir8eAiIiIiLweAyIiIiLyegyIiIiIyOsxICIiIiKvx4CIiIiIvB4DIiLyGM888wxUKpVF26pUKjzzzDNOTc/gwYMxePBgt90fEVmOARERWW3t2rVQqVTSX5MmTdC2bVtMmTIFv/76q6uT53bi4uL0zld4eDgGDhyITz/91CH7r6qqwjPPPINdu3Y5ZH9E3ogBERHZ7Nlnn8V//vMfrFy5EhkZGXj33XcxaNAgXL161Snf9+STT6K6utop+3a27t274z//+Q/+85//4NFHH8W5c+cwatQorFy50u59V1VVYcmSJQyIiOzQxNUJICLPlZGRgd69ewMAZsyYgdDQULz44ov4/PPPcc899zj8+5o0aYImTTwz22rbti3uvfde6d+TJk1Cp06d8PLLL2PmzJkuTBkRASwhIiIHGjhwIACgsLBQb/nJkydx9913o3Xr1mjWrBl69+6Nzz//XG+ba9euYcmSJbjhhhvQrFkztGnTBgMGDMC2bdukbeTaENXU1GD+/PkICwtDy5Ytcccdd+CXX34xStuUKVMQFxdntFxun2vWrMEtt9yC8PBw+Pv7IzExEStWrLDqXJgTGRmJrl27oqioyOR2Fy5cwPTp0xEREYFmzZohJSUF77zzjrT+zJkzCAsLAwAsWbJEqpZzdvsposbGM1+1iMgtnTlzBgDQqlUradmJEyfQv39/tG3bFgsXLkTz5s3x4YcfYuTIkfjkk09w1113AagPTLKzszFjxgzcdNNNqKiowMGDB/Htt9/iL3/5i+J3zpgxA++++y7Gjx+Pfv36YceOHcjMzLTrOFasWIEbb7wRd9xxB5o0aYIvvvgCDzzwADQaDWbPnm3XvrWuXbuGs2fPok2bNorbVFdXY/DgwTh9+jTmzJmD+Ph4fPTRR5gyZQrKy8vx0EMPISwsDCtWrMCsWbNw1113YdSoUQCA5ORkh6STyGsIIiIrrVmzRgAQ//vf/8TFixfF2bNnxccffyzCwsKEv7+/OHv2rLTt0KFDRVJSkrh69aq0TKPRiH79+okbbrhBWpaSkiIyMzNNfu/TTz8tdLOtgoICAUA88MADetuNHz9eABBPP/20tGzy5Mmiffv2ZvcphBBVVVVG26Wnp4sOHTroLRs0aJAYNGiQyTQLIUT79u3F8OHDxcWLF8XFixfFkSNHxNixYwUAMXfuXMX9vfLKKwKAePfdd6VltbW1IjU1VbRo0UJUVFQIIYS4ePGi0fESkXVYZUZENhs2bBjCwsIQExODu+++G82bN8fnn3+Odu3aAQAuXbqEHTt24J577sHvv/+OsrIylJWV4bfffkN6ejp+/PFHqVdaSEgITpw4gR9//NHi7//yyy8BAA8++KDe8nnz5tl1XAEBAdJ/q9VqlJWVYdCgQfjpp5+gVqtt2udXX32FsLAwhIWFISUlBR999BEmTpyIF198UfEzX375JSIjIzFu3DhpWdOmTfHggw/iypUr2L17t01pISJjrDIjIpu9/vrr6Ny5M9RqNd5++23s2bMH/v7+0vrTp09DCIHFixdj8eLFsvu4cOEC2rZti2effRZ33nknOnfujG7dumHEiBGYOHGiyaqfn3/+GT4+PujYsaPe8i5duth1XPv378fTTz+NvLw8VFVV6a1Tq9UIDg62ep99+/bF888/D5VKhcDAQHTt2hUhISEmP/Pzzz/jhhtugI+P/rtr165dpfVE5BgMiIjIZjfddJPUy2zkyJEYMGAAxo8fj1OnTqFFixbQaDQAgEcffRTp6emy++jUqRMAIC0tDYWFhfjvf/+Lr776CqtXr8bLL7+MlStXYsaMGXanVWlAx7q6Or1/FxYWYujQoUhISMA//vEPxMTEwM/PD19++SVefvll6ZisFRoaimHDhtn0WSJyPgZEROQQvr6+yM7OxpAhQ/DPf/4TCxcuRIcOHQDUV/NYEgy0bt0aU6dOxdSpU3HlyhWkpaXhmWeeUQyI2rdvD41Gg8LCQr1SoVOnThlt26pVK5SXlxstNyxl+eKLL1BTU4PPP/8csbGx0vKdO3eaTb+jtW/fHkePHoVGo9ErJTp58qS0HlAO9ojIcmxDREQOM3jwYNx000145ZVXcPXqVYSHh2Pw4MF48803UVJSYrT9xYsXpf/+7bff9Na1aNECnTp1Qk1NjeL3ZWRkAABeffVVveWvvPKK0bYdO3aEWq3G0aNHpWUlJSVGo0X7+voCAIQQ0jK1Wo01a9YopsNZbr31VpSWlmL9+vXSsuvXr+O1115DixYtMGjQIABAYGAgAMgGfERkGZYQEZFDLViwAP/3f/+HtWvXYubMmXj99dcxYMAAJCUl4b777kOHDh1w/vx55OXl4ZdffsGRI0cAAImJiRg8eDB69eqF1q1b4+DBg/j4448xZ84cxe/q3r07xo0bhzfeeANqtRr9+vXD9u3bcfr0aaNtx44di6ysLNx111148MEHUVVVhRUrVqBz58749ttvpe2GDx8OPz8/3H777fjrX/+KK1euYNWqVQgPD5cN6pzp/vvvx5tvvokpU6bg0KFDiIuLw8cff4z9+/fjlVdeQcuWLQHUNwJPTEzE+vXr0blzZ7Ru3RrdunVDt27dGjS9RB7N1d3ciMjzaLvd5+fnG62rq6sTHTt2FB07dhTXr18XQghRWFgoJk2aJCIjI0XTpk1F27ZtxW233SY+/vhj6XPPP/+8uOmmm0RISIgICAgQCQkJ4oUXXhC1tbXSNnJd5Kurq8WDDz4o2rRpI5o3by5uv/12cfbsWdlu6F999ZXo1q2b8PPzE126dBHvvvuu7D4///xzkZycLJo1aybi4uLEiy++KN5++20BQBQVFUnbWdPt3tyQAkr7O3/+vJg6daoIDQ0Vfn5+IikpSaxZs8bos7m5uaJXr17Cz8+PXfCJbKASQqdcmIiIiMgLsQ0REREReT0GREREROT1GBARERGR13NpQLRixQokJycjKCgIQUFBSE1NxebNm6X1gwcPlmZu1v7NnDlTbx/FxcXIzMxEYGAgwsPDsWDBAly/fl1vm127dqFnz57w9/dHp06dsHbt2oY4PCIiIvIQLu12365dO+Tk5OCGG26AEALvvPMO7rzzThw+fBg33ngjAOC+++7Ds88+K31GO94GUD/CbGZmJiIjI5Gbm4uSkhJMmjQJTZs2xdKlSwEARUVFyMzMxMyZM/Hee+9h+/btmDFjBqKiohRHziUiIiLv4na9zFq3bo2XXnoJ06dPx+DBg9G9e3fZQdYAYPPmzbjttttw7tw5REREAABWrlyJrKwsXLx4EX5+fsjKysKmTZtw/Phx6XNjx45FeXk5tmzZ0hCHRERERG7ObQZmrKurw0cffYTKykqkpqZKy9977z28++67iIyMxO23347FixdLpUR5eXlISkqSgiEASE9Px6xZs3DixAn06NEDeXl5RlMGpKenWz0btkajwblz59CyZUsOk09EROQhhBD4/fffER0dbTRRsi6XB0THjh1Damoqrl69ihYtWuDTTz9FYmIiAGD8+PFo3749oqOjcfToUWRlZeHUqVPYsGEDAKC0tFQvGAIg/bu0tNTkNhUVFaiurkZAQIBsumpqavSmDPj111+ldBEREZFnOXv2LNq1a6e43uUBUZcuXVBQUAC1Wo2PP/4YkydPxu7du5GYmIj7779f2i4pKQlRUVEYOnQoCgsL0bFjR6emKzs7G0uWLDFafvbsWQQFBTn1u4mIiMgxKioqEBMTI011o8TlAZGfnx86deoEAOjVqxfy8/OxfPlyvPnmm0bb9u3bFwBw+vRpdOzYEZGRkfjmm2/0tjl//jwAIDIyUvp/7TLdbYKCghRLhwBg0aJFePjhh6V/a0+otkccEREReQ5zzV3cbhwijUajOLt1QUEBACAqKgoAkJqaimPHjuHChQvSNtu2bUNQUJBUvZWamort27fr7Wfbtm167ZTk+Pv7S8EPgyAiIqLGzaUlRIsWLUJGRgZiY2Px+++/Y926ddi1axe2bt2KwsJCrFu3DrfeeivatGmDo0ePYv78+UhLS0NycjKA+lmpExMTMXHiRCxbtgylpaV48sknMXv2bPj7+wMAZs6ciX/+85947LHHMG3aNOzYsQMffvghNm3a5MpDJyIiIjfi0oDowoULmDRpEkpKShAcHIzk5GRs3boVf/nLX3D27Fn873//wyuvvILKykrExMRg9OjRePLJJ6XP+/r6YuPGjZg1axZSU1PRvHlzTJ48WW/covj4eGzatAnz58/H8uXL0a5dO6xevZpjEBEREZHE7cYhclcVFRUIDg6GWq1m9RkRUSNTV1eHa9euuToZZIOmTZvC19dXcb2lz2+XN6omIiJyFSEESktLUV5e7uqkkB1CQkIQGRlp1ziBDIiIiMhraYOh8PBwBAYGcuBdDyOEQFVVldS5StvpyhYMiIiIyCvV1dVJwVCbNm1cnRyykXYInQsXLiA8PNxk9ZkpbtftnoiIqCFo2wzpThpOnkn7G9rTDowBEREReTVWk3k+R/yGDIiIiIjI6zEgIiIiIgD1JS2fffaZq5OhZ9euXVCpVE7vCciAyMVK1NXILSxDibra1UkhIiIv8cwzz6B79+6uToZbYS8zF1qfX4xFG45BIwAfFZA9Kglj+sS6OllERERehyVELlKirpaCIQDQCODxDcdZUkRERGZpNBpkZ2cjPj4eAQEBSElJwccffwzgzyqm7du3o3fv3ggMDES/fv1w6tQpAMDatWuxZMkSHDlyBCqVCiqVCmvXrpX2XVZWhrvuuguBgYG44YYb8Pnnn1uUJu33bt26FT169EBAQABuueUWXLhwAZs3b0bXrl0RFBSE8ePHo6qqSvpcTU0NHnzwQYSHh6NZs2YYMGAA8vPzHXeyLMSAyEWKyiqlYEirTgicKauS/wAREbm1hmwCkZ2djX//+99YuXIlTpw4gfnz5+Pee+/F7t27pW2eeOIJ/P3vf8fBgwfRpEkTTJs2DQAwZswYPPLII7jxxhtRUlKCkpISjBkzRvrckiVLcM899+Do0aO49dZbMWHCBFy6dMnitD3zzDP45z//idzcXJw9exb33HMPXnnlFaxbtw6bNm3CV199hddee03a/rHHHsMnn3yCd955B99++y06deqE9PR0q77TERgQuUh8aHP4GPQS9FWpEBfK8TCIiDzN+vxi9M/ZgfGrDqB/zg6szy922nfV1NRg6dKlePvtt5Geno4OHTpgypQpuPfee/Hmm29K273wwgsYNGgQEhMTsXDhQuTm5uLq1asICAhAixYt0KRJE0RGRiIyMlIa3BAApkyZgnHjxqFTp05YunQprly5gm+++cbi9D3//PPo378/evTogenTp2P37t1YsWIFevTogYEDB+Luu+/Gzp07AQCVlZVYsWIFXnrpJWRkZCAxMRGrVq1CQEAA3nrrLcedNAswIHKRqOAAZI9Kgu8fYyf4qlRYOqobooIDzHySiIjcSUM3gTh9+jSqqqrwl7/8BS1atJD+/v3vf6OwsFDaLjk5Wfpv7ZQW2ikuTNH9XPPmzREUFGTR5+Q+HxERgcDAQHTo0EFvmXZ/hYWFuHbtGvr37y+tb9q0KW666SZ8//33Fn+nI7BRtQuN6ROLtM5hOFNWhbjQQAZDREQeyFQTCGfk61euXAEAbNq0CW3bttVb5+/vLwVFTZs2lZZrBy7UaDRm96/7Oe1nLfmc3OdVKpXd+2soDIhcLCo4gIEQEZEH0zaB0A2KnNkEIjExEf7+/iguLsagQYOM1uuWEinx8/NDXV2dM5JnlY4dO8LPzw/79+9H+/btAdRPv5Gfn4958+Y1aFoYEBEREdlB2wTi8Q3HUSeE05tAtGzZEo8++ijmz58PjUaDAQMGQK1WY//+/QgKCpICC1Pi4uJQVFSEgoICtGvXDi1btoS/v79T0mtK8+bNMWvWLCxYsACtW7dGbGwsli1bhqqqKkyfPr1B08KAiIiIyE4N3QTiueeeQ1hYGLKzs/HTTz8hJCQEPXv2xOOPP25RddTo0aOxYcMGDBkyBOXl5VizZg2mTJni1DQrycnJgUajwcSJE/H777+jd+/e2Lp1K1q1atWg6VAJIYT5zaiiogLBwcFQq9UICgpydXKIiMhOV69eRVFREeLj49GsWTNXJ4fsYOq3tPT5zV5mRERE5PUYEBEREZFZM2fO1Ovmr/s3c+ZMVyfPbmxDRERERGY9++yzePTRR2XXNYamJAyIiIiIyKzw8HCEh4e7OhlOwyozIiIi8noMiIiIyKu546jJZB1H/IasMiMiIq/k5+cHHx8fnDt3DmFhYfDz85OmuCDPIIRAbW0tLl68CB8fH/j5+dm8LwZERETklXx8fBAfH4+SkhKcO3fO1ckhOwQGBiI2NhY+PrZXfDEgIiIir+Xn54fY2Fhcv37dLeb2Iuv5+vqiSZMmdpfuMSAiIiKvpp2R3XBWdvIubFRNREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GREREROT1GBARERGR12NARERERF6PARERERF5PQZERERE5PUYEBEREZHXc2lAtGLFCiQnJyMoKAhBQUFITU3F5s2bpfVXr17F7Nmz0aZNG7Ro0QKjR4/G+fPn9fZRXFyMzMxMBAYGIjw8HAsWLMD169f1ttm1axd69uwJf39/dOrUCWvXrm2IwyMiIiIP4dKAqF27dsjJycGhQ4dw8OBB3HLLLbjzzjtx4sQJAMD8+fPxxRdf4KOPPsLu3btx7tw5jBo1Svp8XV0dMjMzUVtbi9zcXLzzzjtYu3YtnnrqKWmboqIiZGZmYsiQISgoKMC8efMwY8YMbN26tcGPl4iIiNyTSgghXJ0IXa1bt8ZLL72Eu+++G2FhYVi3bh3uvvtuAMDJkyfRtWtX5OXl4eabb8bmzZtx22234dy5c4iIiAAArFy5EllZWbh48SL8/PyQlZWFTZs24fjx49J3jB07FuXl5diyZYvF6aqoqEBwcDDUajWCgoIce9BERETkFJY+v92mDVFdXR0++OADVFZWIjU1FYcOHcK1a9cwbNgwaZuEhATExsYiLy8PAJCXl4ekpCQpGAKA9PR0VFRUSKVMeXl5evvQbqPdh5KamhpUVFTo/REREVHj5PKA6NixY2jRogX8/f0xc+ZMfPrpp0hMTERpaSn8/PwQEhKit31ERARKS0sBAKWlpXrBkHa9dp2pbSoqKlBdXa2YruzsbAQHB0t/MTEx9h4qERERuSmXB0RdunRBQUEBDhw4gFmzZmHy5Mn47rvvXJ0sLFq0CGq1Wvo7e/asq5NERERETtLE1Qnw8/NDp06dAAC9evVCfn4+li9fjjFjxqC2thbl5eV6pUTnz59HZGQkACAyMhLffPON3v60vdB0tzHsmXb+/HkEBQUhICBAMV3+/v7w9/e3+/iIiIjI/bm8hMiQRqNBTU0NevXqhaZNm2L79u3SulOnTqG4uBipqakAgNTUVBw7dgwXLlyQttm2bRuCgoKQmJgobaO7D+022n0QERERubSEaNGiRcjIyEBsbCx+//13rFu3Drt27cLWrVsRHByM6dOn4+GHH0br1q0RFBSEuXPnIjU1FTfffDMAYPjw4UhMTMTEiROxbNkylJaW4sknn8Ts2bOl0p2ZM2fin//8Jx577DFMmzYNO3bswIcffohNmza58tCJiIjIjbg0ILpw4QImTZqEkpISBAcHIzk5GVu3bsVf/vIXAMDLL78MHx8fjB49GjU1NUhPT8cbb7whfd7X1xcbN27ErFmzkJqaiubNm2Py5Ml49tlnpW3i4+OxadMmzJ8/H8uXL0e7du2wevVqpKenN/jxEhERkXtyu3GI3BXHISIiIvI8HjcOEREREZGrMCAiIiIir8eAiIiIiLweAyI3UaKuRm5hGUrUyqNnExERkXO4fGBGAtbnF2PRhmPQCMBHBWSPSsKYPrGuThYREZHXYAmRi5Woq6VgCAA0Anh8w3GWFBERETUgBkQuVlRWKQVDWnVC4ExZlWsSRERE5IUYELlYfGhz+Kj0l/mqVIgLDXRNgoiIiLwQAyIXiwoOQPaoJPiq6qMiX5UKS0d1Q1Sw8sSzRERE5FhsVO0GxvSJRVrnMJwpq0JcaCCDISIiogbGgMhNRAUHMBAiIiJyEVaZERERkddjQERERERejwEREREReT0GREREROT1GBARERGR12NARERERF6PARERERF5PQZERERE5PUYEBEREZHXY0BEREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GRG6iRF2N3MIylKirXZ0UIiIir9PE1QkgYH1+MRZtOAaNAHxUQPaoJIzpE+vqZBEREXkNlhC5WIm6WgqGAEAjgMc3HGdJERERUQNiQORiRWWVUjCkVScEzpRVuSZBREREXogBkYvFhzaHj0p/ma9KhbjQQNckiIiIyAsxIHKxqOAAZI9Kgq+qPiryVamwdFQ3RAUHuDhlRERE3oONqt3AmD6xSOschjNlVYgLDWQwRERE1MAYELmJqOAABkJEREQuwiozIiIi8noMiIiIiMjrMSAiIiIir8eAiIiIiLweAyIiIiLyei4NiLKzs9GnTx+0bNkS4eHhGDlyJE6dOqW3zeDBg6FSqfT+Zs6cqbdNcXExMjMzERgYiPDwcCxYsADXr1/X22bXrl3o2bMn/P390alTJ6xdu9bZh0dEREQewqUB0e7duzF79mx8/fXX2LZtG65du4bhw4ejsrJSb7v77rsPJSUl0t+yZcukdXV1dcjMzERtbS1yc3PxzjvvYO3atXjqqaekbYqKipCZmYkhQ4agoKAA8+bNw4wZM7B169YGO1YiIiJyXyohhDC/WcO4ePEiwsPDsXv3bqSlpQGoLyHq3r07XnnlFdnPbN68GbfddhvOnTuHiIgIAMDKlSuRlZWFixcvws/PD1lZWdi0aROOHz8ufW7s2LEoLy/Hli1bLEpbRUUFgoODoVarERQUZN+BEhERUYOw9PntVm2I1Go1AKB169Z6y9977z2EhoaiW7duWLRoEaqq/pz4NC8vD0lJSVIwBADp6emoqKjAiRMnpG2GDRumt8/09HTk5eUppqWmpgYVFRV6f0RERNQ4uc1I1RqNBvPmzUP//v3RrVs3afn48ePRvn17REdH4+jRo8jKysKpU6ewYcMGAEBpaaleMARA+ndpaanJbSoqKlBdXY2AAOMRorOzs7FkyRKHHiMRERG5J7cJiGbPno3jx49j3759esvvv/9+6b+TkpIQFRWFoUOHorCwEB07dnRaehYtWoSHH35Y+ndFRQViYmKc9n1ERETkOm5RZTZnzhxs3LgRO3fuRLt27Uxu27dvXwDA6dOnAQCRkZE4f/683jbaf0dGRprcJigoSLZ0CAD8/f0RFBSk90dERESNk0sDIiEE5syZg08//RQ7duxAfHy82c8UFBQAAKKiogAAqampOHbsGC5cuCBts23bNgQFBSExMVHaZvv27Xr72bZtG1JTUx10JEREROTJXBoQzZ49G++++y7WrVuHli1borS0FKWlpaiurgYAFBYW4rnnnsOhQ4dw5swZfP7555g0aRLS0tKQnJwMABg+fDgSExMxceJEHDlyBFu3bsWTTz6J2bNnw9/fHwAwc+ZM/PTTT3jsscdw8uRJvPHGG/jwww8xf/58lx07ERERuQ+XdrtXqVSyy9esWYMpU6bg7NmzuPfee3H8+HFUVlYiJiYGd911F5588km9Kqyff/4Zs2bNwq5du9C8eXNMnjwZOTk5aNLkzyZSu3btwvz58/Hdd9+hXbt2WLx4MaZMmWJxWtntnoiIyPNY+vx2q3GI3BkDIiIiIs/jkeMQEREREbkCAyIiIiLyegyIiIiIyOsxICIiIiKvx4CIiIiIvB4DIhcrUVcjt7AMJepqVyeFiIjIa7nNXGbeaH1+MRZtOAaNAHxUQPaoJIzpE+vqZBEREXkdlhC5SIm6WgqGAEAjgMc3HGdJERERkQswIHKRorJKKRjSqhMCZ8qqXJMgIiIiL8aAyEXiQ5vDx2DmEl+VCnGhga5JEBERkRdjQOQiUcEByB6VBN8/5nPzVamwdFQ3RAUHuDhlRERE3oeNql1oTJ9YpHUOw5myKsSFBjIYIiIichEGRC4WFRzAQIiIiMjFWGVGREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GREREROT1GBARERGR12NA5CFK1NXILSxDibra1UkhIiJqdDhStQdYn1+MRRuOQSMAHxWQPSoJY/rEujpZREREjQZLiNxcibpaCoYAQCOAxzccZ0kRERGRAzEgcnNFZZVSMKRVJwTOlFW5JkFERESNEAMiNxcf2hw+Kv1lvioV4kIDXZMgIiKiRogBkZuLCg5A9qgk+KrqoyJflQpLR3VDVHCAi1NGRETUeLBRtQcY0ycWaZ3DcKasCnGhgQyGiIiIHIwBkYeICg5gIEREROQkrDIjIiIir8eAiIiIiLweAyIiIiLyegyIiIiIyOsxICIiIiKvx4CIiIiIvB4DIiIiIvJ6DIiIiIjI6zEgIiIiIq/HgIiIiIi8nksDouzsbPTp0wctW7ZEeHg4Ro4ciVOnTultc/XqVcyePRtt2rRBixYtMHr0aJw/f15vm+LiYmRmZiIwMBDh4eFYsGABrl+/rrfNrl270LNnT/j7+6NTp05Yu3atsw+PiIiIPIRLA6Ldu3dj9uzZ+Prrr7Ft2zZcu3YNw4cPR2VlpbTN/Pnz8cUXX+Cjjz7C7t27ce7cOYwaNUpaX1dXh8zMTNTW1iI3NxfvvPMO1q5di6eeekrapqioCJmZmRgyZAgKCgowb948zJgxA1u3bm3Q4yUiIiL3pBJCCFcnQuvixYsIDw/H7t27kZaWBrVajbCwMKxbtw533303AODkyZPo2rUr8vLycPPNN2Pz5s247bbbcO7cOURERAAAVq5ciaysLFy8eBF+fn7IysrCpk2bcPz4cem7xo4di/LycmzZssWitFVUVCA4OBhqtRpBQUGOP3giIiJyOEuf327VhkitVgMAWrduDQA4dOgQrl27hmHDhknbJCQkIDY2Fnl5eQCAvLw8JCUlScEQAKSnp6OiogInTpyQttHdh3Yb7T6IiIjIuzVxdQK0NBoN5s2bh/79+6Nbt24AgNLSUvj5+SEkJERv24iICJSWlkrb6AZD2vXadaa2qaioQHV1NQICAozSU1NTg5qaGunfFRUV9h0gERERuS23KSGaPXs2jh8/jg8++MDVSQFQ3+A7ODhY+ouJiXF1koiIiMhJ3CIgmjNnDjZu3IidO3eiXbt20vLIyEjU1taivLxcb/vz588jMjJS2saw15n23+a2CQoKki0dAoBFixZBrVZLf2fPnrXrGImIiMh9uTQgEkJgzpw5+PTTT7Fjxw7Ex8frre/VqxeaNm2K7du3S8tOnTqF4uJipKamAgBSU1Nx7NgxXLhwQdpm27ZtCAoKQmJiorSN7j6022j3Icff3x9BQUF6f0RERNQ4WdzLzJo2NJYGDw888ADWrVuH//73v+jSpYu0PDg4WCq5mTVrFr788kusXbsWQUFBmDt3LgAgNzcXQH23++7duyM6OhrLli1DaWkpJk6ciBkzZmDp0qUA6rvdd+vWDbNnz8a0adOwY8cOPPjgg9i0aRPS09MtSit7mREREXkeS5/fFgdEPj4+UKlUJrcRQkClUqGurs6iRCrtb82aNZgyZQqA+oEZH3nkEbz//vuoqalBeno63njjDak6DAB+/vlnzJo1C7t27ULz5s0xefJk5OTkoEmTP9uM79q1C/Pnz8d3332Hdu3aYfHixdJ3WIIBERERkedxeEC0e/dui7980KBBFm/rKRgQEREReR5Ln98Wd7tvjEEOEREREWDHOETl5eV466238P333wMAbrzxRkybNg3BwcEOSxwRERFRQ7Cpl9nBgwfRsWNHvPzyy7h06RIuXbqEf/zjH+jYsSO+/fZbR6eRiIiIyKlsmsts4MCB6NSpE1atWiU1XL5+/TpmzJiBn376CXv27HF4Ql2NbYiIiIg8j8MbVesKCAjA4cOHkZCQoLf8u+++Q+/evVFVVWV9it0cAyIiIiLP49TJXYOCglBcXGy0/OzZs2jZsqUtuyQDJepq5BaWoURd7eqkEBERNXo2NaoeM2YMpk+fjr/97W/o168fAGD//v1YsGABxo0b59AEeqP1+cVYtOEYNALwUQHZo5Iwpk+sq5NFRETUaNkUEP3tb3+DSqXCpEmTcP36dQBA06ZNMWvWLOTk5Dg0gd6mRF0tBUMAoBHA4xuOI61zGKKC5eddIyIiIvvYFBD5+flh+fLlyM7ORmFhIQCgY8eOCAwMdGjivFFRWaUUDGnVCYEzZVUMiIiIiJzE5nGIACAwMBBJSUmOSgsBiA9tDh8V9IIiX5UKcaEMNomIiJzFpoDo6tWreO2117Bz505cuHABGo1Gbz3HIrJdVHAAskcl4fENx1EnBHxVKiwd1Y2lQ0RERE5kU0A0ffp0fPXVV7j77rtx0003mZ30lawzpk8s0jqH4UxZFeJCAxkMEREROZlNAdHGjRvx5Zdfon///o5OD/0hKjiAgRAREVEDsWkcorZt23K8ISIiImo0bAqI/v73vyMrKws///yzo9NDFuCgjURERI5lU5VZ7969cfXqVXTo0AGBgYFo2rSp3vpLly45JHFkjIM2EhEROZ5NAdG4cePw66+/YunSpYiIiGCj6gbCQRuJiIicw6aAKDc3F3l5eUhJSXF0esgEDtpIRETkHDa1IUpISEB1NduvNDTtoI26OGgjERGR/WwKiHJycvDII49g165d+O2331BRUaH3R86hHbTR948qSh8VMG1AnGsTRURE1AiohBDC/Gb6fHzq4yjDtkNCCKhUKtTV1TkmdW6koqICwcHBUKvVCAoKcmlaStTVWLO/CKv2FEGAjauJiIiUWPr8tqkN0c6dO21OGFmuRF2NorJKxIc2N2ojtHpvfTAEsHE1ERGRvWwKiAYNGmTRdg888ACeffZZhIaG2vI1Xs1U93o2riYiInIsm9oQWerdd99lmyIbKHWv1w7EyMbVREREjuXUgMiG5kkE0yVAgHHjal+VCktHdWPpEBERkY1sqjIj59KWAOkGRYYlQGP6xCKtcxjOlFUhLjSQwRAREZEdnFpCRLaxtAQoKjgAqR3bMBgiIiKyE0uI3BRLgIiIiBoOAyI3FhUcYBQImeqKT0RERLZxakB07733unwQw8aEM90TERE5h00jVQNAeXk5vvnmG1y4cAEajUZv3aRJkxySOHfi6pGqS9TV6J+zw6ih9b6FQ1hSREREpMCpI1V/8cUXmDBhAq5cuYKgoCC9KTxUKlWjDIhcjYMxEhEROY9NvcweeeQRTJs2DVeuXEF5eTkuX74s/V26dMnRaSRwMEYiIiJnsikg+vXXX/Hggw8iMJAP44ai1BUfAHILy6RRrImIiMh6NlWZpaen4+DBg+jQoYOj00MmGHbF3/PDRaldERtZExER2c7igOjzzz+X/jszMxMLFizAd999h6SkJDRt2lRv2zvuuMNxKSQ92q74SvOdccZ7IiIi61kcEI0cOdJo2bPPPmu0TKVSoa6uzq5EkXlsZE1EROQ4FgdEhl3rybUsme+MiIiILGNTo+p///vfqKmpMVpeW1uLf//733YniszjjPdERESOY9PAjL6+vigpKUF4eLje8t9++w3h4eGNssrM1QMzKilRV3O+MyIiIgWWPr9tKiESQugNxqj1yy+/IDg42OL97NmzB7fffjuio6OhUqnw2Wef6a2fMmUKVCqV3t+IESP0trl06RImTJiAoKAghISEYPr06bhy5YreNkePHsXAgQPRrFkzxMTEYNmyZZYfrJuzZcb7EnU1u+oTERHpsKrbfY8ePaTAZOjQoWjS5M+P19XVoaioyChgMaWyshIpKSmYNm0aRo0aJbvNiBEjsGbNGunf/v7+eusnTJiAkpISbNu2DdeuXcPUqVNx//33Y926dQDqI8Phw4dj2LBhWLlyJY4dO4Zp06YhJCQE999/vzWH3yhwPjQiIiJjVgVE2p5mBQUFSE9PR4sWLaR1fn5+iIuLw+jRoy3eX0ZGBjIyMkxu4+/vj8jISNl133//PbZs2YL8/Hz07t0bAPDaa6/h1ltvxd/+9jdER0fjvffeQ21tLd5++234+fnhxhtvREFBAf7xj394XUDErvpERETyrAqInn76aQBAXFwcxowZg2bNmjklUbp27dqF8PBwtGrVCrfccguef/55tGnTBgCQl5eHkJAQKRgCgGHDhsHHxwcHDhzAXXfdhby8PKSlpcHPz0/aJj09HS+++CIuX76MVq1ayX5vTU2NXsPxiooKJx1hw2FXfSIiInk2jVQ9efJkAPW9yuRmu4+NdUwVzIgRIzBq1CjEx8ejsLAQjz/+ODIyMpCXlwdfX1+UlpYaNexu0qQJWrdujdLSUgBAaWkp4uPj9baJiIiQ1ikFRNnZ2ViyZIlDjsMaJepqFJVVIj60ucODFHbVJyIikmdTQPTjjz9i2rRpyM3N1VuubWztqF5mY8eOlf47KSkJycnJ6NixI3bt2oWhQ4c65DuULFq0CA8//LD074qKCsTExDj1O53dvkfbVf/xDcdRJwS76hMREf3BpoBoypQpaNKkCTZu3IioqCjZHmfO0KFDB4SGhuL06dMYOnQoIiMjceHCBb1trl+/jkuXLkntjiIjI3H+/Hm9bbT/VmqbBNS3XTJswO1MDdW+x3A+NAZDRERENgZEBQUFOHToEBISEhydHpN++eUX/Pbbb4iKigIApKamory8HIcOHUKvXr0AADt27IBGo0Hfvn2lbZ544glcu3ZNmnNt27Zt6NKli2J1mSs0ZPse7XxoREREVM+mcYgSExNRVlZm95dfuXIFBQUFKCgoAAAUFRWhoKAAxcXFuHLlChYsWICvv/4aZ86cwfbt23HnnXeiU6dOSE9PBwB07doVI0aMwH333YdvvvkG+/fvx5w5czB27FhER0cDAMaPHw8/Pz9Mnz4dJ06cwPr167F8+XK96jB3oG3fo8uR7Xs49hAREZEym0aq3rFjB5588kksXbpUdrZ7S0dy3rVrF4YMGWK0fPLkyVixYgVGjhyJw4cPo7y8HNHR0Rg+fDiee+45qVE0UD8w45w5c/DFF1/Ax8cHo0ePxquvvqo3JMDRo0cxe/Zs5OfnIzQ0FHPnzkVWVpZVx9wQI1Wvzy82at/jiDZEHHuIiIi8laXPb5sCIh+fPwuWdNsPObpRtTtpqKk7HD0VR4m6Gv1zdhj1LNu3cAirzYiIqNGz9PltUxuinTt32pwwMs3R7Xs49hAREZF5NrUhGjRoEHx8fLBq1SosXLgQnTp1wqBBg1BcXAxfX19Hp5Hs4Oy2SURERI2BTQHRJ598gvT0dAQEBODw4cPSiM5qtRpLly51aALJPtqxh3z/qNrk2ENERETGbGpD1KNHD8yfPx+TJk1Cy5YtceTIEXTo0AGHDx9GRkaGNEp0Y9JQbYicxdFtk4iIiDyBU9sQnTp1CmlpaUbLg4ODUV5ebssuyck49hAREZEym6rMIiMjcfr0aaPl+/btQ4cOHexOFBEREVFDsikguu+++/DQQw/hwIEDUKlUOHfuHN577z08+uijmDVrlqPTSERERORUNlWZLVy4EBqNBkOHDkVVVRXS0tLg7++PRx99FHPnznV0GomIiIicyqZG1Vq1tbU4ffo0rly5gsTERL3RoRsbT29UTURE5I2c2qhay8/PD4mJifbsgixQoq5GUVkl4kObs2E0ERGRE9gVEJHzcR4yIiIi57OpUTU1jBJ1tRQMAYBGAI9vOO62M9aXqKuRW1jmtukjIiL34W7PDJYQuTFr5yFzRdVaiboaB89cQt5Pl/DBN8UsySIiIrPcsfaDAZEb085DZjhTvdw8ZK64uNbnF2PhJ8dg2CpfW5KV1jmMbZ6IiEiPUu2Hq58ZrDJzY5bOQ+aKqrUSdbVsMKSlLckiIiLSZar2w5VYQuRG5Kq8xvSJRVrnMJPzkFlbteYIRWWVisEQoFySRURE3s2a2o+GxIDITZiq8jI3D5krLq740OZQAbJBkY8KsiVZRERE2tqPxzccR50QirUfDc2ugRm9iTMHZixRV6N/zg6jgGbfwiGKF4hhadL6/GKji8sVbYjuT4vH1P7xLr+wiYjIvZWoq03WfjhKgwzMSI5hbZWXUmmSuao1R9N+56Ezl6FSAT3bt2IgREREFjFX+9HQGBC5AWuqvMy1zm/oiysqOAC3pbjPBU1ERGQL9jJzA5b2JgPct3U+ERGRJ2MJkZuwtMrLXVvnExEReTKWELmRqOAApHZsY7Lay5rSJCIiIrIMS4g8kCsaUFvLFdOIEBER2YoBkYdyt9b5utxxjhoiIiJTWGXWiLliJmFXTCNCRERkL5YQNVKuKqVxxTQiRERE9mIJUSPkylIabS84XewFR0RE7o4BUSPkyrGK2AuOiIg8EavMGiFXjlVUoq5GTOtAbHggFVW1GrftBUdERKSLJUSNkKtKadbnF6N/zg6MX3UAd72Ri+JLlQyGiIjII7CEqBFyRSmNuTnWiIiIlLjD2HUMiBoZud5lqR3bOP172buMiIhs4S5j17HKrBHxhN5lJepqbDx6Dl8c+ZVjExEReTl3GruOJUSNiCtLabTtlh7fcBx1Qsi2W1qfX4yFnxyDNokqADmjOYo1EZG3cqfaBQZEjYgre5cBpudY074F6F73AsCiT46xnRERkZdy9XNLF6vMGhF3GAMoKjgAqR3bGH2n3FsAAGiABhkfiYiI3I87PLe0WELUyJgqpXElubcAoD4i5yjWRETey12eWywhaoSUSmlcSfsWoNJpeK0CkD06ya3SSUREDc8dnlsuDYj27NmD22+/HdHR0VCpVPjss8/01gsh8NRTTyEqKgoBAQEYNmwYfvzxR71tLl26hAkTJiAoKAghISGYPn06rly5orfN0aNHMXDgQDRr1gwxMTFYtmyZsw+NZIzpE4vchbfg9fE98M9xPZC76BY2qCYiIrfg0oCosrISKSkpeP3112XXL1u2DK+++ipWrlyJAwcOoHnz5khPT8fVq1elbSZMmIATJ05g27Zt2LhxI/bs2YP7779fWl9RUYHhw4ejffv2OHToEF566SU888wz+Ne//uX043OVEnU1cgvL3LJbe1RwADKTo3FbSjRLhqjRcud70N3x3JGrqIQQMk1dG55KpcKnn36KkSNHAqgvHYqOjsYjjzyCRx99FACgVqsRERGBtWvXYuzYsfj++++RmJiI/Px89O7dGwCwZcsW3Hrrrfjll18QHR2NFStW4IknnkBpaSn8/PwAAAsXLsRnn32GkydPWpy+iooKBAcHQ61WIygoyLEH70DuMsAVkTeQG12X96DteO7IGSx9frttG6KioiKUlpZi2LBh0rLg4GD07dsXeXl5AIC8vDyEhIRIwRAADBs2DD4+Pjhw4IC0TVpamhQMAUB6ejpOnTqFy5cvK35/TU0NKioq9P7cnTsNcEXU2OnO3dc/ZwfW5xfzHrSSbmkQz13j42mlfW7by6y0tBQAEBERobc8IiJCWldaWorw8HC99U2aNEHr1q31tomPjzfah3Zdq1atZL8/OzsbS5Yssf9AGpA7DXBF5MnMzatUoq7WG2RU+/B+ZWwK70ELGZYGzRgQz3PXiHhiaZ/blhC52qJFi6BWq6W/s2fPujpJZlk6fQYRKZMr+TH09r4iGLY1qBMCPioV70ELyJUGrd5bxHPXSHhqaZ/bBkSRkZEAgPPnz+stP3/+vLQuMjISFy5c0Ft//fp1XLp0SW8buX3ofoccf39/BAUF6f25O3ca4MoenlbMSu7FnuvHkoy8RF2Nt/YVGX3WB0DP9q0a/B70xPtFrjRbA2DGgA4en3+R6doKd+a2VWbx8fGIjIzE9u3b0b17dwD1DaMOHDiAWbNmAQBSU1NRXl6OQ4cOoVevXgCAHTt2QKPRoG/fvtI2TzzxBK5du4amTZsCALZt24YuXbooVpd5Mt0BrgL9fFBZW4cSdbXHZCqeWMxK7sPe68eSamelUddnpMUjKjjA7kHmzFXX6VI6Xmv2Yc/327pfpekapg6Iw9QBcS4foI/s407TcVjDpQHRlStXcPr0aenfRUVFKCgoQOvWrREbG4t58+bh+eefxw033ID4+HgsXrwY0dHRUk+0rl27YsSIEbjvvvuwcuVKXLt2DXPmzMHYsWMRHR0NABg/fjyWLFmC6dOnIysrC8ePH8fy5cvx8ssvu+KQncYwE9vzw0WPCyyU3s451xlZwhHXjyUZudw2Pipgav8/2ypGBQfYdM1aE9ApHW959TW8uPmkTfe+s15I5PZrajJo3u+ezZLJvt2RS7vd79q1C0OGDDFaPnnyZKxduxZCCDz99NP417/+hfLycgwYMABvvPEGOnfuLG176dIlzJkzB1988QV8fHwwevRovPrqq2jRooW0zdGjRzF79mzk5+cjNDQUc+fORVZWllVpdedu94aZTVZGgpQhavmqVNi3cEiDXJC2vmEu3fQd/rXXuCri/ftuRmrHNo5MIjVCuYVlGL/qgNFya6+f9fnFRhm5YVBgyTbWKlFXo3/ODovvW6XjVakAYcO9b+33W8rUfgGwNKgRK1FXu8Xva+nz26UlRIMHD4apeEylUuHZZ5/Fs88+q7hN69atsW7dOpPfk5ycjL1799qcTncm95ZoGAwBDddbw9Y3zBJ1NVbJBEM+Ks51RpZxVDG9JVVezph7ydpeorIlVTCeL9DSe99ZvVRN7dfVUzWQc9laUuoqbtuomiwj2zhR1M8TpssHQKCfc39ue3oWFJVVGvXaAeobWXrSDUWu48hOBZbMq2S4jb2Nm63tJSp3vFkZCTb31HJWL1X2fiVP4baNqskySm/Fj43ogmVbTqHujxI4DYC73sh1alsie94wld52pw6Ic1ojT2p8XDVrtiUlo+auY1vaXcgdb0hgU5vabkQFB+CuHm3xybe/SstG9rB/ih1PbU9C3sdtpu5wd+7ehkiuPcORs5cx8o1cm9oT2MLeNghyxwHA4xqHk3ex5Lq3trG0vQGdLftwVhsie9JE5Age0YaIHEPprbiytg6G4a4z2xLZ+yZoeBwA9DJo9jojd2SuZFSpKjkhsiUqa+uMSowc0e7Cln3YUsJrTemto9uTsOSYHI0BUSMhl9m4YiwIe6ssdI8jt7CMQ/mT2zN3nykFGtrSW3cp+bQ2v3DlmGEcr4ycgY2qGzFXjVxtSYNUSxqgsjEmNTRbGkabu8/krmPgz67x7jKtgTX5hVyp16JPjuHIWeUJsx3FU6eFIPfHEqJGzpoSm4Yqgrb07c5UFRyLy8nR7Cl1MHWfGV7HPqjv5KDLXUo+Lc0vlKbeGPlGLnKcXFrDSazJWRgQeQFL6u4bqgja2tGE5TJoFpc3fg0d8DpilGtT95nhlDp3vZFrVDUV6OeD3MIylwf5luQXctVrQH2pl7Pb+XnqtBDk/lhlRg1aBG3LpH+6VXAsLm/8LJlt3tEO/XzZ6ZNRaq/jlBjjCWBH9ojGXW/kNugx20Nb6iX3AHH2JJ6NZRJrcj8sIaIGLYK29+2OxeWNW0POZ6cthTr2ixo5m08arXdmqcOYPrFIiGyJ/DOXER8aiPv+fcjhx+zsUjbtMRgO7eGjMj8IrL1pa6jxplg1710YEFGDFkHb2zWfxeWNW0MFvLrVrnJ8VHBqqYPu9xvOPQbYf8wNVa2cEtMKOTr3M1B/b5oaBNZRaXP2tBCsmncudww2GRBRg48ka+3bneGNw1FvG6+GCHgNS6HkjL0pxmkPP8PvVxoa9+iv5RZPSqt7jwBwWCmbdr/N/Xxlx0wCdEqKXs+Vpt9R+s6GLAG0h6ek05PoXqN7frjolsEmAyIC0PBTHlj6dqf0luaK6RnI+ewJeC1945QrhTL0wYGzmHvLDU6pptt49JzZ7weAZZtP4Y4U81NnGN4j0wfEO6SUTa4UTenhVVlbZzQXodx3ekqVt6ek01PolYj+scxc8OwKDIhI4m4zE1s7wi81DrYEvNZUbyj1kNKlARq0ms7Wrvhy98hb+4qgAvQCFN1StiNnL+ObM5dwU1xrpMS0smi/WkoPL0tL9jylyttT0ukJjEpEZbZxl2CTvczIbSmO8Pu6db1x7J2FnBqeJYN7alnb89Cwl5LcoIkNWU3nq1Jh1uCOMEyGNg2616/htSw7HpAA7kuLl+2F9ciHBbjz9Vy8sOkk7nw9F498WCCb3jX7ihQDRrleZJb2/PKUHmKekk5PYEmJrLsEmywhIrelONbJH/9vSVErG0Y2frZUbxiWQu354aLN7dIsqapTeigszuyK60Lgxc0njUp0lo7qptfWQreqQXstp3UOky3JmNo/HlP7x+uVsh05e1lvJnsA+OTbXzEptb1eSVGJuhqr9hYpHq/Sw8vSkj1PqfL2lHS6O7l8XIX6zgQa4V7BJgMicltGI/zKBEemHnxsGOkdlKo3zA10qFtFbOvDz7C32MKMBPw1raPFaewd18pokEYfFbDhgVSEBzXTm9xY99LXXsv7Fg4x2eZK9zi+OXNJ9hgOnrmsFxAVlVXKVmto02zq4WVptbs7VM9bEsi6Qzo9le75lbtG3THYZEBEbs2SEX611QqGmRsbRnoHuYbY2oEOrSkZtPbhJ9dbLPvLk4AA/jpIPyhSaixeWVsnW+VVVasxW9WgvZYtDeZuimstu7x3nH47IqU3+n+O74Ge7VtJ+3fHbtOWYsmxefb8vnLnd9/CIUbXqLtdNwyISJG7ZHi6Dyq5h4pSF042jPQepgJnU13A7bm+lQKWFzefxB3djXuHyQUuJepqk9eoqcbfuttZEsylxLTC6J5t9arNBt4QivCgZnrbKQVvPdu3QlFZJQAYVeUtzEgwCgLdFUuOzbMnYFQ6v/sWDrF4GAlXYUBEstz1DUr7UDl05jKgAmJaBZh8+GWNSMCLm09CA/eqqybH0wYFuYVlZksGHXF9x4c2lx1U0VQPNcPAxdwwA7rrVH90HROw/Vr++z3dMSm1PVbt/Qkbj5Zi749l6J+zw+j45dpYaavvfP44Zu1hCwDZm08CKshWF7oblhybZm/A6MnnlwERGXH3Nyi9t1MTo/zu+eEiXtxSHwypVMBjGV3cIqgj5zJXMnjk7GUs3HBMum5svb6jggOwMCOhvppMh7WlkKaqvAzXAdD7b1smgw0PaoYvj5VK/1YazkL7J5cfyHlx80mLxk1yNVPXh7uUiruSvQGNJ5fMMyAiI+4c4Vsyyq+2Qa3hdpYOdEeebc8PF/WuC5XONBzr84ux8JNjZgcRtPTB+Ne0joCA3aWQpqq85EqVLC3hsqZtnXakacP9WdJtGqh/ALpDHmGOUqmcu46e3NDsDWg8eTYBBkRkxJ0jfKXMWTuwnanGqu4S1JHzaANm3Z9eJYC0zmGy67R0r29rq9P+Oqgj7ugeLbVfqqytQ4m62q7rzFRAZmkJrtJxWDuchSUDWQLuk0dYQq7kTbdHnyOmO/HUUiZHBDSeOmQBAyIvYumN6s4RvlKwtuGBVFTVasw2VlXqiu3pmRjVkx2oEPUlFwJCPpjWKUGytbo4KjjAYSUM5gIyUyW42vXN/XxNHoc1w1lEBQdg+oB4k2MTOXsyXGfQLXlTane26WgJMpOjLB4gdM2+IqzaWyRb0uZJHBHQeOKQBQyIvIS1b73uGuErBWuGUxBY0xXbXRuQk/XMlW4arvMB8OkD/aTrx9bqYke1u7NkP0rHePSXckxY/bXU88tUtaClw1loTTMTEC2540apFE7uxcJciZerX0aUSsGe3/Q9ln75vdk8QW5aFndre2ktTwxo7MWAyAuYymQBKGZG7npD2DIirlJX7ITIlm7dgNxb2fqQtKbXllwwbWt1sVIgZU0Jg6n96AZkcsf4WEaX+nZM2jZzMvs2PA5zw1kYtltalJFQ35vMgArA4v+ewFP/PSF9t9ILhwrAfQPjMXVAvFVtoZzN8JzqMpcnmJqWhdX0noUBUSOnNLt2nRB4YdN32HS01COLdy0N1sx1xc4/c5ltjdyMvQ9Ja3ptyb0E2FJdbG8Jg6n9yAVkY/rEIiGyJfLPXEafuFaybeaAP0uKfP7oZan0QI9pHWhU7Wy4TVK7YMwZ0hFv7Co0mkpE9/+B+vQv2nAMoS38jCb2/NfeIqzeV4SsjAS9IK4hX0bkAm7ttbHpaAme3/S93vam8gRTjc49qV0VMSBq1EzNrg0AG48ad731xJIRS0oTlB40feJaGVejqMBMrIEY/naOqnqypteWIVuqi+0pYTC1H6WAzDBofOCPyWENb3WB+sBFI4CcL0+iovoa+ncKlc63YenNwowEo8HzDL8ra0QCktuF4LfKGsxZd1jxWDQCmP7OIcV1OV+eNNvbzxlMBdxRwQHITI7C0i+/t7iUUCkY9oHntasyxx2qN52JAVEjZaoYV4knloxYWppgqu1RVkaCXuYsRH3XbU8pLfNUcr9dTOtAtyixs6W62NYSBqX9fPvzZWiEQG+DKTdK1NV6QwdoBPDPnYWK+9MtwXl9ZyFe31koBTYvbtGvZjMcYFEuQF225RT2LRyCuNBAi3qfmUuXLme/jFgScEcFB+iVXlkyf5thI/UZAzpg6oA4j8pLzbEkr7UnYHKHYIsBUSOlVIw7sW8s/nOgWPYznla8a21pgtyb//r8YqM3VQHPLS1zZ7oZHgDZ327DA6luO+SDJWwpYZBjqsfa2/uKFCdftZRG/Dl2kiHdARZNtWlK7dhGcSRtSxmWajn7ZcSSNlrr84ulYEgF4LER5gd0dddOKI5iSV5rT1W3u7Ql82nwb6QGoS3G1eWrUuHu3u2MlgOWF++WqKuRW1iGEnW14xJrI3Pdj+VEBQcgtWMbveoZuQzc3H7IOuvzi9E/ZwfGrzqA/jk78Pa+ItnfrqpWg+xRSfBV1V+kum/ntl57pj7njOtZW2KgewyPjeiCorJKi75H7uGz6JNj2Hj0HI6cvYy39in39tJlLnOXC4a036e99pXyEW1wN6ZPLPYtHIL377sZuQtvwWez+8mnRQX0l5nHSq6K7/ENx52Wv5g7HqOBX1FfImZJenTzlsbGVKeBEnW1YsBk6/XuzGvAFJYQNVKmqogMi3fH9olFv05t0Kt9K5P7dJcoXsveASRtaQzpDsW6nkYuw3trX5FR6YD2nKd2bCNbkmfLtWfqc868nnVLDI7+Wi6VOFjyPUpjKc1Zd1i2nZAhHxXw6tge6BXXCp8XnJPtGQbUn++ZgzvgdYPqNsNJYy3pgaZb3XT/wHj8y6CLvkYA+wt/k01rQ1aRmjseV47S7855i7lOAzMGxNt83txpZgQGRI2YUjGuXmb9Szle3HIS674pNjsFgLt1T7d3AEnFxpAKg8zJNS5NahfslhmYO5F9wAvg/rR4vLX3jOxvp/uQtfXaMzfchLOv56jgAFyouKpXJWv4PXIPQVMjQ8sFQ6o//nRHar8tJRpA/SjaUEGvNxd0thvTJxZBAU1Ntpextjpo6oB4rJYpATTko4JRTzOgvmRLt8TG0UGCqeNx1Sj97vayachcp4HVe4tsPm/uNDMCA6JGTqlxqHaZdiA3wPRDwZ2ieF321N0bNYYEMCMtHlP7x8t2OzZ8gGrfvN0xA3MnShne1P7159rcb2frtWfqc3KjVpvap1xvOHMP6vX5xfWTyBosrxMC3/58GQVni/DWH4GD7jVk6uGjpT2f2gDG1D3w17SOuCPlz6lFDLvW665X+h2saWQu18hYLjh6dWwP3JYSjZCApnqNxAXq2xEBMAoS0jqH6bVDszVYMpUvOnqUfnPXiju+bMox1WlAA+D+AR3w1r4iq8+bM865rRgQeTFrHjTuFMUbsqVHkJalAZWp6jV3zcDchbkMz5Yxfiy59qwdtVppn4Zv73f1aItPD/9qtrfNog3HZCcfVgGYbdBd3fAa0l6Xh85cxoMfHDZKp9yYQabOo7l7xJ57SI4lI2H3iquvok/rHAaV6s+JmgXq20xB5/fRCGDhhmNSo23dMZAMfwN7S5Xk8gRr96nd/tgvaqknn9K14q4vm3JMdRqYOiAOUwfE2fRy6i6N0hkQebH40OZGbRJUqC+uNswA3CmKdzRLHgbmJrh01wzMXTiyJM/Sa8/c5yzZp9zb+yff/iqtVwqGTQXQSjVJciNS35YSgMra62anqnFHuveVte12NIDRidINLnVXaX+DhMiW2Hi0RLbUzZ60W1udpTT+m9K14s4vm3LsfcExtV9X558MiEiPAPD5kXOyjUDTOofhlbEp8FGp0LN9K5dfvA3JXDWGO2dg7qIhSvKs+Zwl+zQV2GjJBcNyDzlzY/YoXUPu8vZsD2vb7fgAECrIlrDJqRMCd76eq7fMESW31lZnmRv/Te5a8cSXTVuuSXduNK7FgMiLFZVVyr6tZn/5Z68UbQZQXnXNbNFvY2fYc2jZ5lMek4G5I2szSFsDKlOfM7dPcyWDgHIgM31AvFRa4atSYdqAOMUJUs3NFu8Ob8/2sqbdzsge0digUxJnK3tLbq2tzjIXQLsq6HVGMGLNNenujca1GBB5MbkqMzl1QiBns3JPGW+izQRSO7Yx2xCVjFnTtsIdKD2sPzt8TjEYNpwO4/4/GuoDkAIkXeNvisHcoTd49TUk1+bIXL6kbXdkKmD1AfBbZQ1K1NU2nV9rq7NMBdCWjHhtLo22BDauDkY8pdE44AEDMz7zzDNQqVR6fwkJCdL6q1evYvbs2WjTpg1atGiB0aNH4/z583r7KC4uRmZmJgIDAxEeHo4FCxbg+vXrDX0obicqOAD3DYw3u52Pyjho4sCFjXsgNmfQHZwxW2ZST3cY7FOXdtDGtM5h0uCD+xYOwd/v6a73b92Hi9zAfm/tPQPAeMBGHxWw6NYELB2VzGsIf95PShPV6hqaEIbPHuiH9++7GZ8+0E92sFnty96cdYfRP2cH1ufLj9BvLk1KA4Vauv2iWxNkrxVrGQ5uasnxuMOgh7YMoOsqHlFCdOONN+J///uf9O8mTf5M9vz587Fp0yZ89NFHCA4Oxpw5czBq1Cjs378fAFBXV4fMzExERkYiNzcXJSUlmDRpEpo2bYqlS5c2+LG4G7kxQ1QqQCX+HNfksYwusuOYOKLNjCfUK5P9bGlb4Urm3qqV3ubNVbE0hvZAzmZJNeX2kxex4+RF5Iyu/10Mh88Y2zcGH3xzVi8QWLThGAL9fNE7rrVTe0A54ze2tJTFMD91hx5sntRo3CMCoiZNmiAyMtJouVqtxltvvYV169bhlltuAQCsWbMGXbt2xddff42bb74ZX331Fb777jv873//Q0REBLp3747nnnsOWVlZeOaZZ+Dn59fQh+MycsGHUoM+wxs6JKCpwxv9uboolxqOrW0rXEFp6oyEyJYID2pmMoC3JPNvDO2BnEmbJ5mbnFrgz6BAd5gCbZ/8dQfO6m2vEcDc9wtsymus/c0c/RtbOgeb3LhNrg5GPKnRuEcERD/++COio6PRrFkzpKamIjs7G7GxsTh06BCuXbuGYcOGSdsmJCQgNjYWeXl5uPnmm5GXl4ekpCRERERI26Snp2PWrFk4ceIEevTo4YpDanCmgg+lNxpre+RYQ+mhY6r3hiNLklgy1bDsaVvR0JS6gd/5eq5UDaP0UPWkzN+dafObNfuLsGqP8mS2ulUva/YVYdXeImmcIqX2kQ3VhsWReYy5QFupBGnfwiFucT16Ssmo2wdEffv2xdq1a9GlSxeUlJRgyZIlGDhwII4fP47S0lL4+fkhJCRE7zMREREoLS0FAJSWluoFQ9r12nVKampqUFNTI/27oqLCQUfU8CwpbrXkjcaRbz1KD501+87g8cyuesttKUkylRmxZKrhyQUKj2V0QXLbkAbLIC19QFkydYaph6qnZP7uLio4AI/fmoip/eOxZt8ZrNr7k2yAs//0RUxYXaj3e2mDIqXf0dnVRo7OY8wF2qZKkNzlevSEklG3D4gyMjKk/05OTkbfvn3Rvn17fPjhhwgIcN7Jzc7OxpIlS5y2/4bkDvXIhpR6uK3e9xOmDoiT0mVLDwVTmZFsydQG5ZIpR/GGEilzx+jKjNmaB5RUZfPJMcUZ4QHT95AnZP6eIio4AI9ndkVyTDDmGIzwDQCv7yyUDZQEgHE3xRhVnQHOrTaytb2POVaP5aQCAv3q+03xerSM2/cyMxQSEoLOnTvj9OnTiIyMRG1tLcrLy/W2OX/+vNTmKDIy0qjXmfbfcu2StBYtWgS1Wi39nT1rfFN5Cu3NosvVbTaUerhpBPR6H1jbQ8FcrwqliUbX7JcfH8YRbOkd4mksPUZX9MxTCoJN9bQZ0ycWn87uB5VM7yUtV99D3qZX+1ayvclMdUiTC4bMjflkL0vyLFvzBKX7x7B3G1B/nd/1Rq7d+Y22t6W79QJ1Bo8LiK5cuYLCwkJERUWhV69eaNq0KbZv3y6tP3XqFIqLi5GamgoASE1NxbFjx3DhwgVpm23btiEoKAiJiYmK3+Pv74+goCC9P09lbdfRhjJ1QLzZQM3aYM5cZiS3PwBYvafIKTe80sP4iyO/NpoMxhVde63JpG0NglNiWiFH575RAVKA5C73kDcxzMdMxKomvTq2h0OqyJWuQXN5lrPulzF9YrHhgVS982Lvvr3hZU6X21eZPfroo7j99tvRvn17nDt3Dk8//TR8fX0xbtw4BAcHY/r06Xj44YfRunVrBAUFYe7cuUhNTcXNN98MABg+fDgSExMxceJELFu2DKWlpXjyyScxe/Zs+Pv7u/joGo6l1RUNWbVjSQNUaxupmmt8GBUcgOkD4o1GDNYAZqsQbTk3Sg9jW3u7uKOGrpI1VyVq+BsptQlavacIU/vHIypYefJOw/sGgMvbYngz3d8jt/AiXttRaNXndSeVtYepa9Ce9j7WXFNy12xlbZ3imHHWXq+eNKCio7h9QPTLL79g3Lhx+O233xAWFoYBAwbg66+/RlhYGADg5Zdfho+PD0aPHo2amhqkp6fjjTfekD7v6+uLjRs3YtasWUhNTUXz5s0xefJkPPvss646JJcxV4/s6IaAlgQQlgRq1rQ9sSSAmjYgHqv36vdcMVf9Yeu5MdVAt7FkMI4cZ8TcNWMqk97zw0XZ38hcEKz0OS3D+8aTf6vGQPt7BPr5mA2ItKV62ulT7C3VK1FX4+CZS2YDBWvb+1h7vyjlR468F20N3Dy5vaRKCEunz/NuFRUVCA4Ohlqt9ujqMyUl6mr0z9lhdCPtWzjEpova1T25StTVJgOo9fnFRkGTUvrsPTe63yXn/ftuRmrHNpYdmBPZk5FZcz5N7cPcNZNbWIbxqw4Yffb5kTfiqf+eUPyN3txTqDdHn3b9hgdScdcbuQ677qlhPfJhAT7RmfOsZ2wIjpxVmxxTzVZKs9hrWXMf23O/mMuPHHEvWvI9Ssfljj14LX1+u30JETUMR1Z7uENRq6nSsBJ1NWJaB2LDA6moqtWYzSjtPTdpncPwytgUqKuvYfFnJ/RKprQ9QVz9VmVvRmZvDzJLrxmlErcnPzthtE/dtmMvbj5ptP6xEV1kp4lwdQ9Mstzf7+mOSantcfDMZfSOa4WUmFayL0OOHjfNkLWlMPbcLw01Grq1zRXcId+3FwMiAuDYag9XdvM3F1jIPfjNvdXZc24Mv29Uz7bSxKBA/T5Hvp4LwPSAf46gdG4clZHZ07XX0mtG6hJvZhRj4M/fSGmU7OR29WMguXokX7JPSkx9IKTljC7mpkZat7UqztZ0NuRo6NYEV+44vIu1PK6XGTmHI3uiuaqbv7keEbb27rD13Mh932eHz+Ffk3rq9QQRMB7wz5E9tErU1Xhh03eK58YdJl889ovaaJnSNTOmTyyWj+0uux/tdaf7G5m6Ht21Bya5F+24abp8ALw+vofdk7Zaq6GvWUuHynDH4V2sxRIikriqqNURLCnlsKeRoFwVm7nSKKXvKyqrMjl2iiPfqtbnF2PhJ8f0vs/w3Lh68sUSdTVe3CJTpZXRRfEc9I5rLZtmuWpQc9eju4zkS65hSXX1nh8u6v1bBSB7dBIyk6MbIIXG3PGadUW+72gMiEiPK4paHcGSYMeWB79SFZslbW6Uvq9PXCuTs3k7KhjRBolyX6N7bsxlZM5u36RYpdU2RPEzhmn2ATB9QBzCg5pJwWpuYZmUZnPXozOqWcj9WXIfy91HKlV920BXcsdr1h0DNWswICKbWPKQlLthTX3OngevpcHO9AHxeGtfkUXdcJVKnRIiWyour6ytk9KvFGikxLTSW64CABUgdNIEQO+Bbgtz7R50z41uRhbo54PK2jqUqKvNdkl3BFtLqKQJQPedwep9P+Ffe4uwel8R7urRFp8e/lW2+72nZdDkPJa2nVMaS8yT2sY0JE++zxgQkdVs7ZFk6nP29nIyV8qhu38VgPvT4qVB+ZQolTrln7ksu3zkG7kQBulXemMyNeDfnh8uSt1d7QlClHpkKU1dEBUcoBcAaZsDGLZvcnSvEWuK2uWC5tX7ftJ7qOl2w/bEni7kPLrXj6VV6K6uUnYX2nPX3M8XlbV10v974nhDShgQkVVs7ZFk6nMAHNLLSSn4MPxuAeCtvWcwtb/xXGq6rK3yEjrpX7ThGBIiWyIlppXiG5Ph8qjgABw5exkLNxxT3Jc15KqVZpgIBOXOkyFn9RqxpKhdLmiOaR1otreZp/V0IecwvH6yMhIsCnQaQ9sYwP5xxpR6drrTeEP2YkBEVrG1YbKpzwkIh3XXlAs+bE2zpVVePoDRrOja7vQ5oy3PKOQaQNu6Ly17u80acuabsamidrlA8fENx7HhgVST7bEA73ybJ31yL2TLNp9C1ogELNtyymyg4+ltY+wpgTc3BlNjKoVlQERWsbX42NznnFkkbU+Rt1zVVm5hGdI6h2HfwiFSmxvD0Y6B+hIWSzMKUw2grd2XIUvr9OXOk6OnPjBH7i1WKVCsEwJVtRrZaTm0PPVtnhxL6aUouV2IdB9bMi2QJ15H9o4zZsmLUmMpheU4RGTE1Ezito6BYepzzh5Xw979a8fh0Lbt0Y7l8/a+IsSFBkolRoZjcACWj+djTabjLFHBAcgakSBlCr4qFXJGJ2H/wlvw/n03Y9/CIUjrHGbxLPPWkhtHylSgqA1qpw2Id5sxYsg9mRuLypJxdpzJVJ5rL3vHGZM7d4YaSyksS4hIjyVFq7YWH5v6nKOLpA1LGmzZv+4+AON2Tqv2FmH13iKpKishsiVGvp5r1aSxWqYmgbV2X7Zan1+MF7echAb1pUKPZXTRm8HbmfMUKb3FvjI2RbHdgm5QmzPauGrTVWPEkPtx5NASjh6Gwpr7ypbvtrdRuOG5M+SrUuGxEV1QVFYpbe+pOLmrhRr75K6A4yd4dRVHPLgN9zFjQDz+ZaJaxhETKxp+dmSPaGmaDx8AMwbGIzM5yik9O8z99s6+NpQmbX19fA/Mff+w3vf6APh0dj+jRubmJvQlkrtGrMkvHP1SYM19JffdaZ3DLAqQHDHhq/bcBfr5oKpWI/3/0V/L8eLmk04L6ByBk7uS1RrDXDSOmJdLbh+r9xYpluA4amJFuc8+mt5Fb5wdbVDmyBKaEnU1Nh49Z/K3t/TasDXDU3qL7dm+lWLDdkOe2saDGo7hNWJNfuGMyUutua8Mv3vhhmOAsGwOREeUwCuNKzdh9dcWnRNnljA7CgMikjSG8TYcEdTJDsQG4P4BHfTGvNFy5MSKcp+V+05td/xAP1/0jmtt8/eZ6k6re1yWXBv2ZHimqjTSOofhlbEp8PkjQGLQQ45iTX5hri2OI18EDPNcue/WrduxJDhzxguDPQGdO/ZMY6Nqkji7cXNDcMQEg0r7mDogDvsX3oL70+L1Gh478xyZamytEcDc9wtkJ7K1hKnutIbHZe7asHXiXN20aOeL0zbgHtMnFm/uKUS/nB2Y+34B5r5/2GhOKSJ7WJNfKG179Ndyk5NKG9JtQG1pnmtJw+aGnpAZsPz8ucME0pZgCRHp8fTxNhwxiJq5fTx+ayKm9o9vkHNkSWNrW9+2lIKtxZldcWtylNG+TF0b9pTMKc0X9+buQmRv/nPSV3d9qyTPZU1+IbftYyO6SO1nAPPXqFIpqrk812iQ1T+m+rGlA4ecEnU1Dp65BJVKhV5WlMJaev48pfaBAREZcYe2GPY0vnNEUOcuk4Ga6+GhpRR8GPaU0z2nSpmUXDCkmx7tfnT/bWuGZ2q+uBydYMjccRLZypr8wnBba14EzFUbmbumDb97zw8XHTJ6tuE4XyrU99q0tMG2LQGdu9Y+MCAip7M2uHFE4ztHBCzuEBgCxhOv/nK5GnPWHTb7dmg4fxtg3ADT2kxK6bexNcMzNV+cXPjno4LbvVWS57PmXjfc1tIXAUe0b9T9bke8+JWoq40GPRUAFn5yTPpvS/JgWwI6d8hbDTEgIqeyNrjxlMZ39rI2SNTNcFJiWuFKzXW9qUMeG9HFZCNG3QxP95xak0mZ+21syfCsnS8uKyOhUV0H5FkM71trXgQcWW2km47Ujm2kdknWlqgXlVXKvngo5ReN5SVTCQMiMsmeqiu5B6i5iUobQ9d/cxxRAjamTyzKq68h54/2Cy9uOYmQwKYY0ydWsRu9Lt1zamkmZclvY22Gp/RAkZsvLisjAX9N62jxvokcSem+tfRFwFHVRobpuKtHW3x6+Feb8pP40OZQQX4iZ12NLQ9WwoCIFNn74Jbtvi5MT1TqKY3vbGVPCZhhe6AXN580muy0vOpa/WjTZnI4W86pLb+NJQG10gPFE4rYyTtY0v7HkuvT3DVt7n6RS8cn3/4qrbe2NCcqOAA5o5OM2hABjmuw7UkYEJEsR1RdKfWQElDel6c0vrOVtY0wtZnjnh8uGo2cLbefnM0nZd/2VH/8jxDmhwqQy5S1yyydHRywLqBWeqC4exE7eQdHllwrXdPm7hdLSn7l0mUuyNIGaYfOXIZKBfRs38phDbY9DQMikuWoBoDZo5Jkx7qpEwKHzlxG6xbGN2pjLhmwtJTFMHPU7WKrNHK2Uvd8bTd6AGbPqVymDEBvWVZGApLbhpjcj1J1qb0DSRK5grNLrs29gJoaQNWQjwoou3IVJepqoxcp3SDLMFC6LcU78mBTOJeZhbxhLjNdjpy76sjZy0aTnqpQP4GoOw/jbg1r2lqZm1dI7tzLuX9gB7y1r+jPMVEy9MdEAf78zQDzI+nKfa8PAMg8CMxdB0pzkwGN4/cm7+OI+cAMafONS5W1mLPusNH69++7GXGhgYr5geGch6o/GgQJKFd97Vs4RC9QUgFYmJGAvw5yTfu8hpjfjHOZkV0cWXWVEtNKbzZyH9TfpI2lJ5lhqcr0AfGYNiDe6jYzWqZGp9bSjpw9dUCc3n5CApoa/Wam3hLNfa8GMGpxaUlJoakBJT399ybv5OhSE8NhMQwbN2tLoCwZQPXR9C749ufLesNxyGUhdULg258vG/VAzd58ElDB4k4Ljgpi3G1+MwZEpMiRGUBa5zAsH9ddenUxfBvy1F4MckXdq/YWYfXeIsWG44DptjFywYRKBahEfYAiN62GNi3a6S+qajVScb7u26WpYETue5VKiMxVFZgbUNJTf2/ybubatFkaKMgNi6HCn9Xehve4qQFUtd+pEcJsbzEfFXCytEI2wHpx80nckRKtt0+543BUEOOOQ6wwICJFznoLyMpIaNCeZM4sklV6ezPVcNwcpdI5U8Gp0vQXuYVlFrcFU/pe/HEs1pYUagNqwzdXwHt6rZD3sCZQkJ2sFcBrY3ugTQt/vXvcVGm94XcaljLpNk1Q/dEW8bUdhbJp0oj6Nobm2h0ZtQ38xPRQKkrccYgVBkQky5lvAcs2n7Kqt5I97D0Oc8GUqaohW29u3ZKeXy5XQyOE1BDZ0q642ukvLlXWKhbFyx2bUqmgrSWFUcEByEwO0BtI0pt6rZB3sLa0Q6mRdq84+XnE5O5Lue9UqQAfg5JkpZcSQ74qFQL9fEweh1K1+sg3cpFjZd7qjkOsMCAiI44sylR6C0huF4J9C4c4tReDvcdhSTBlqiedNTe3Njg59qtaahit2yjSVMNHpXOsbciu2z7BknZFcoGXvd3fvbXXCnkHa0s7bGmjaXgPypYyCeCf43ugdXP9UqZWzeVHpNbmCz4qYOmobqisrTN5HIpDqSjkraZeKN1xiBUGRGRE6eY+dOayXtdMSzT385WKarW0gYKzx5ixp0jWmmBK+7Bfs78Iq/cUybbzMUWpS60w+G+lho+mxnvS/r+Pqr44vldcfbG2pe2KlJjK6JTWcUwhaoxK1NX47UqN1aUd9r4kKJWw9NSZrV57Lzb385Vtl6g7sGvhhStIiGxp8jikF8BPjtV3uNBhmLda8kLpbi9KDIjIiNID9sEPDqOy9rriOBaGtDeEYTDUUG8B9hTJ2vLG9/itiZjaP96qm9sw8DJHqeGjUialpRFAmxb+iAoOsKpdkRxTGZ279RohciajnmIWDn6qZc9Lgqk2f7mFZXqlzdopPrTd830MXlIB4F97i7BqXxEGdArF/tNlso27gfogJiGyJUa+kau3D93xjwBY/ELpTi9KDIjIiNJbgO5Fba4rt9yD3gfAhgdSrW58Z+9x2FIk29zPV7HtjbnvtObmtqSLvS5TDR9fHd9DdiwToD6j1qa9uZ+v7DaBfj5mv99UyRlgeSZI5OkMZ4oXqG+/88/xPfRKabTb2tKxw9JRprUvYXt+uCg7ZpFGAJ8dPif1QC27chVz3y8w2p8QwN4fywAA96fFY2p/+eFDUmJaIUcnb9UGgnPfLzA5kr679yxlQESyxvSJRXP/JrLd4w+duWz2wafU+K6qVqkMwzlsKZKVSrZ0ljmrZMvU5Ipyy001fNzwQKpiA2/dHVXW1smmxZLfxlTJmYDwyEyQyBZv7ysyuj81AFo399e73s2NU6YU9Fha2qp9CTNX2lwnBKpqNUjt2AYl6mrlvOIPb+09g6n94xXXK/Ui1Qj5kfRd3WDaEuZfCclr9WrfCj4q/WW+KpXRuDTAnw8+LW11leFnXXFDRAUHILVjG5ursHxU9SVbSlU/Jepq5BaWSUXFSsuU0jbuphjZda+N64FFtyZI51EblCk1fKyq1SB7VJLsTS0A6feR+218dEqQTJH9LICq2mtSOwpdnpAJElmrRF2Nt/YVGS33gf59pDROWb/sHVifX4z1+cXon7MD41cdQP+c+mVKn3t8w3GUqKsV8xZzpc1ybYFMBQCGebqcqOAAtGruJxsYzhjQof55gYZtKmEPlhCRIqUqJ22gZCr6t7a6qiGGb7eEbMmWUC49sWTuL1PtaNbnF+OD/LNGy7VdcG8LjsYdKdFG3W2Vzn9qxzay9ftymeFCnfZdQgB7frhotr2P3ICLGgDT3zkEwLZ2FESeRin4mJGmX8VkapyyRZ8c03u51C1pVyqJXbPvDFbv+0k2bzE1BIhSW6C0zmF6+zT8jDUvSYb5kdxI+u6OARGZpFTlZEmwY2l1lTs1xLWmIbbSIGVKmZxcbyy5Im4fwGgkasPeWrrn30cFTBsQJ603rN+X+33SOofpVaMJWN7eR6lRpXY/Su0oiBoL2VHdVTCqYjI5hQ2gOC2O0qjxuoGLYd4i9xL62IguSG6nPBFzVHAAHs/siqkD4mzuJWvu5deT8gAGRGSWXENhS4Mdc42M3W34dmtKtuyd+0vp7fG18T2QmRxtMp26Xf1X7SnCqr1FeGtfkRRMWjJfmuFXWzO0wtnL1UbBkJZcOwqixsTSfMLUOGXaOR3lOm7I7X/6gDj8a69+NZ1h3mJrN3Zbe8lqWfu97lIjYIgBEdnMEd0l7R2+3Rk3lqU3t71zf5kaR8RSq/cW6TVmNHxjtCbtgPHQCrqkwSN/USNn80nFNLHdEHkDS/MJpXHKRvaIxoZvf5W2U0G/ZNhw/wCwel+R2bzF3q78jvhsQ8yF5gwMiMil7BkryJk3liUZg6lxQPSKrTO6oKisUvqcbkZhy7AA2szmtys1NgeTlgytoNTjxRS2GyJvIpdPyAUDhiUwgX4+uOuNXP15x1SQhq9Q2r+rRna25sXTVL7sbjUChrwqIHr99dfx0ksvobS0FCkpKXjttddw0003uTpZXs2eoMAdbixzc38d/aVcdioO3YzCmqJmc5M5AsDRX8uR2rGNRWlXGlpBN6iyZPDI5+68EZ3CW3pM40kiZzD3kqYNcOQGR9WOMWbq/rG1SsyeknRrXjzN5cvuOKGrLq8JiNavX4+HH34YK1euRN++ffHKK68gPT0dp06dQnh4uKuT59Vsucnd6caSe0vU/nvC6q+ldOomV656yxzZyRxltlu2+ZQ0mrXcPnQzRkt6DFrSnXdYYoRbZGhErmLNS5qpknFzwYu11Vr2lKRb++JpLl92xwlddXnNOET/+Mc/cN9992Hq1KlITEzEypUrERgYiLffftvVSSNYN1YQ4F7jHCkxF0hYMs6Huf3J7V5pv3JjnmhL6EyNFyJ3rrVYRUZUz1QwYEjpvtOONG04LpGtTI1n5OhjAszny5bkN67kFSVEtbW1OHToEBYtWiQt8/HxwbBhw5CXlyf7mZqaGtTU1Ej/rqiocHo6yXK2VrU1JFNdbgHrAzilrr5CmJ9ixNSbnrkSOtnuvBldkNxWuTsvkbextvRDrtG0vZMuG7K3JN3aY7IkX3a3CV11eUVAVFZWhrq6OkREROgtj4iIwMmT8r1lsrOzsWTJkoZIHtnInW8swDhzUAGAHYMWWtqIW26/5jJGc8Xw7n6uiVzNlpc03fvO3kmX5dhbRWXLMVmSVziih7IzeEVAZItFixbh4Ycflv5dUVGBmBj5KRbIddz1xtKSewu0J6gw14hbab+OqLt393NN5Gr2vDg4o32NI0rSbTkmT80rvCIgCg0Nha+vL86fP6+3/Pz584iMjJT9jL+/P/z9/RsiedTIGWYO9mYUSo24zb2JunsVI1FjYGsw4Kx71BGlu54a4FjLKwIiPz8/9OrVC9u3b8fIkSMBABqNBtu3b8ecOXNcmziiBsJqLyL35qx71FsCGnt5RUAEAA8//DAmT56M3r1746abbsIrr7yCyspKTJ061dVJI2owzBiJ3BvvUdfxmoBozJgxuHjxIp566imUlpaie/fu2LJli1FDayIiIvI+KiGUpmgkXRUVFQgODoZarUZQUJCrk0NEREQWsPT57TUDMxIREREpYUBEREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GREREROT1GBARERGR1/OaqTvspR3Qu6KiwsUpISIiIktpn9vmJuZgQGSh33//HQAQExPj4pQQERGRtX7//XcEBwcrrudcZhbSaDQ4d+4cWrZsCZVKZfN+KioqEBMTg7Nnz3rtnGg8B/V4HngOAJ4DgOdAi+fBOedACIHff/8d0dHR8PFRbinEEiIL+fj4oF27dg7bX1BQkNde8Fo8B/V4HngOAJ4DgOdAi+fB8efAVMmQFhtVExERkddjQERERERejwFRA/P398fTTz8Nf39/VyfFZXgO6vE88BwAPAcAz4EWz4NrzwEbVRMREZHXYwkREREReT0GREREROT1GBARERGR12NARERERF6PAZEDrFixAsnJydJAUqmpqdi8ebO0/urVq5g9ezbatGmDFi1aYPTo0Th//rzePoqLi5GZmYnAwECEh4djwYIFuH79ekMfisPk5ORApVJh3rx50rLGfh6eeeYZqFQqvb+EhARpfWM/fl2//vor7r33XrRp0wYBAQFISkrCwYMHpfVCCDz11FOIiopCQEAAhg0bhh9//FFvH5cuXcKECRMQFBSEkJAQTJ8+HVeuXGnoQ7FJXFyc0bWgUqkwe/ZsAN5xLdTV1WHx4sWIj49HQEAAOnbsiOeee05vPqnGfh0A9dNFzJs3D+3bt0dAQAD69euH/Px8aX1jPAd79uzB7bffjujoaKhUKnz22Wd66x11zEePHsXAgQPRrFkzxMTEYNmyZfYlXJDdPv/8c7Fp0ybxww8/iFOnTonHH39cNG3aVBw/flwIIcTMmTNFTEyM2L59uzh48KC4+eabRb9+/aTPX79+XXTr1k0MGzZMHD58WHz55ZciNDRULFq0yFWHZJdvvvlGxMXFieTkZPHQQw9Jyxv7eXj66afFjTfeKEpKSqS/ixcvSusb+/FrXbp0SbRv315MmTJFHDhwQPz0009i69at4vTp09I2OTk5Ijg4WHz22WfiyJEj4o477hDx8fGiurpa2mbEiBEiJSVFfP3112Lv3r2iU6dOYty4ca44JKtduHBB7zrYtm2bACB27twphPCOa+GFF14Qbdq0ERs3bhRFRUXio48+Ei1atBDLly+Xtmns14EQQtxzzz0iMTFR7N69W/z444/i6aefFkFBQeKXX34RQjTOc/Dll1+KJ554QmzYsEEAEJ9++qneekccs1qtFhEREWLChAni+PHj4v333xcBAQHizTfftDndDIicpFWrVmL16tWivLxcNG3aVHz00UfSuu+//14AEHl5eUKI+ovHx8dHlJaWStusWLFCBAUFiZqamgZPuz1+//13ccMNN4ht27aJQYMGSQGRN5yHp59+WqSkpMiu84bj18rKyhIDBgxQXK/RaERkZKR46aWXpGXl5eXC399fvP/++0IIIb777jsBQOTn50vbbN68WahUKvHrr786L/FO8tBDD4mOHTsKjUbjNddCZmammDZtmt6yUaNGiQkTJgghvOM6qKqqEr6+vmLjxo16y3v27CmeeOIJrzgHhgGRo475jTfeEK1atdK7H7KyskSXLl1sTiurzBysrq4OH3zwASorK5GamopDhw7h2rVrGDZsmLRNQkICYmNjkZeXBwDIy8tDUlISIiIipG3S09NRUVGBEydONPgx2GP27NnIzMzUO14AXnMefvzxR0RHR6NDhw6YMGECiouLAXjP8QPA559/jt69e+P//u//EB4ejh49emDVqlXS+qKiIpSWluqdi+DgYPTt21fvXISEhKB3797SNsOGDYOPjw8OHDjQcAfjALW1tXj33Xcxbdo0qFQqr7kW+vXrh+3bt+OHH34AABw5cgT79u1DRkYGAO+4Dq5fv466ujo0a9ZMb3lAQAD27dvnFefAkKOOOS8vD2lpafDz85O2SU9Px6lTp3D58mWb0sbJXR3k2LFjSE1NxdWrV9GiRQt8+umnSExMREFBAfz8/BASEqK3fUREBEpLSwEApaWlehmfdr12naf44IMP8O233+rVj2uVlpY2+vPQt29frF27Fl26dEFJSQmWLFmCgQMH4vjx415x/Fo//fQTVqxYgYcffhiPP/448vPz8eCDD8LPzw+TJ0+WjkXuWHXPRXh4uN76Jk2aoHXr1h51LgDgs88+Q3l5OaZMmQLAO+4FAFi4cCEqKiqQkJAAX19f1NXV4YUXXsCECRMAwCuug5YtWyI1NRXPPfccunbtioiICLz//vvIy8tDp06dvOIcGHLUMZeWliI+Pt5oH9p1rVq1sjptDIgcpEuXLigoKIBarcbHH3+MyZMnY/fu3a5OVoM5e/YsHnroIWzbts3obchbaN98ASA5ORl9+/ZF+/bt8eGHHyIgIMCFKWtYGo0GvXv3xtKlSwEAPXr0wPHjx7Fy5UpMnjzZxalreG+99RYyMjIQHR3t6qQ0qA8//BDvvfce1q1bhxtvvBEFBQWYN28eoqOjveo6+M9//oNp06ahbdu28PX1Rc+ePTFu3DgcOnTI1UkjA6wycxA/Pz906tQJvXr1QnZ2NlJSUrB8+XJERkaitrYW5eXletufP38ekZGRAIDIyEijHibaf2u3cXeHDh3ChQsX0LNnTzRp0gRNmjTB7t278eqrr6JJkyaIiIjwivOgKyQkBJ07d8bp06e95joAgKioKCQmJuot69q1q1R9qD0WuWPVPRcXLlzQW3/9+nVcunTJo87Fzz//jP/973+YMWOGtMxbroUFCxZg4cKFGDt2LJKSkjBx4kTMnz8f2dnZALznOujYsSN2796NK1eu4OzZs/jmm29w7do1dOjQwWvOgS5HHbMz7hEGRE6i0WhQU1ODXr16oWnTpti+fbu07tSpUyguLkZqaioAIDU1FceOHdO7ALZt24agoCCjB4u7Gjp0KI4dO4aCggLpr3fv3pgwYYL0395wHnRduXIFhYWFiIqK8prrAAD69++PU6dO6S374Ycf0L59ewBAfHw8IiMj9c5FRUUFDhw4oHcuysvL9d6id+zYAY1Gg759+zbAUTjGmjVrEB4ejszMTGmZt1wLVVVV8PHRf8T4+vpCo9EA8K7rAACaN2+OqKgoXL58GVu3bsWdd97pdecAcNzvnpqaij179uDatWvSNtu2bUOXLl1sqi4DwG73jrBw4UKxe/duUVRUJI4ePSoWLlwoVCqV+Oqrr4QQ9V1sY2NjxY4dO8TBgwdFamqqSE1NlT6v7WI7fPhwUVBQILZs2SLCwsI8qoutHN1eZkI0/vPwyCOPiF27domioiKxf/9+MWzYMBEaGiouXLgghGj8x6/1zTffiCZNmogXXnhB/Pjjj+K9994TgYGB4t1335W2ycnJESEhIeK///2vOHr0qLjzzjtlu9326NFDHDhwQOzbt0/ccMMNbt3V2FBdXZ2IjY0VWVlZRuu84VqYPHmyaNu2rdTtfsOGDSI0NFQ89thj0jbecB1s2bJFbN68Wfz000/iq6++EikpKaJv376itrZWCNE4z8Hvv/8uDh8+LA4fPiwAiH/84x/i8OHD4ueffxZCOOaYy8vLRUREhJg4caI4fvy4+OCDD0RgYCC73bvatGnTRPv27YWfn58ICwsTQ4cOlYIhIYSorq4WDzzwgGjVqpUIDAwUd911lygpKdHbx5kzZ0RGRoYICAgQoaGh4pFHHhHXrl1r6ENxKMOAqLGfhzFjxoioqCjh5+cn2rZtK8aMGaM39k5jP35dX3zxhejWrZvw9/cXCQkJ4l//+pfeeo1GIxYvXiwiIiKEv7+/GDp0qDh16pTeNr/99psYN26caNGihQgKChJTp04Vv//+e0Mehl22bt0qABgdlxDecS1UVFSIhx56SMTGxopmzZqJDh06iCeeeEKvm7Q3XAfr168XHTp0EH5+fiIyMlLMnj1blJeXS+sb4znYuXOnAGD0N3nyZCGE4475yJEjYsCAAcLf31+0bdtW5OTk2JVulRA6w4YSEREReSG2ISIiIiKvx4CIiIiIvB4DIiIiIvJ6DIiIiIjI6zEgIiIiIq/HgIiIiIi8HgMiIiIi8noMiIiIiMjrMSAiIqcZPHgw5s2b5+pkON0zzzyD7t27uzoZRGQHBkRERApqa2sb9PuEELh+/XqDficR1WNAREROMWXKFOzevRvLly+HSqWCSqXCmTNncPz4cWRkZKBFixaIiIjAxIkTUVZWJn1u8ODBmDt3LubNm4dWrVohIiICq1atQmVlJaZOnYqWLVuiU6dO2Lx5s/SZXbt2QaVSYdOmTUhOTkazZs1w88034/jx43pp2rdvHwYOHIiAgADExMTgwQcfRGVlpbQ+Li4Ozz33HCZNmoSgoCDcf//9AICsrCx07twZgYGB6NChAxYvXizNsr127VosWbIER44ckY5z7dq1OHPmDFQqFQoKCqT9l5eXQ6VSYdeuXXrp3rx5M3r16gV/f3/s27cPGo0G2dnZiI+PR0BAAFJSUvDxxx87+iciIh0MiIjIKZYvX47U1FTcd999KCkpQUlJCVq2bIlbbrkFPXr0wMGDB7FlyxacP38e99xzj95n33nnHYSGhuKbb77B3LlzMWvWLPzf//0f+vXrh2+//RbDhw/HxIkTUVVVpfe5BQsW4O9//zvy8/MRFhaG22+/XQpcCgsLMWLECIwePRpHjx7F+vXrsW/fPsyZM0dvH3/729+QkpKCw4cPY/HixQCAli1bYu3atfjuu++wfPlyrFq1Ci+//DIAYMyYMXjkkUdw4403Ssc5ZswYq87VwoULkZOTg++//x7JycnIzs7Gv//9b6xcuRInTpzA/Pnzce+992L37t1W7ZeIrGDX1LBERCYMGjRIPPTQQ9K/n3vuOTF8+HC9bc6ePas3K/ygQYPEgAEDpPXXr18XzZs3FxMnTpSWlZSUCAAiLy9PCPHn7NoffPCBtM1vv/0mAgICxPr164UQQkyfPl3cf//9et+9d+9e4ePjI6qrq4UQQrRv316MHDnS7HG99NJLolevXtK/n376aZGSkqK3TVFRkQAgDh8+LC27fPmyACB27typl+7PPvtM2ubq1asiMDBQ5Obm6u1v+vTpYty4cWbTRkS2aeLKYIyIvMuRI0ewc+dOtGjRwmhdYWEhOnfuDABITk6Wlvv6+qJNmzZISkqSlkVERAAALly4oLeP1NRU6b9bt26NLl264Pvvv5e+++jRo3jvvfekbYQQ0Gg0KCoqQteuXQEAvXv3Nkrb+vXr8eqrr6KwsBBXrlzB9evXERQUZPXxK9H9ztOnT6Oqqgp/+ctf9Lapra1Fjx49HPadRKSPARERNZgrV67g9ttvx4svvmi0LioqSvrvpk2b6q1TqVR6y1QqFQBAo9FY9d1//etf8eCDDxqti42Nlf67efPmeuvy8vIwYcIELFmyBOnp6QgODsYHH3yAv//97ya/z8envkWCEEJapq2+M6T7nVeuXAEAbNq0CW3bttXbzt/f3+R3EpHtGBARkdP4+fmhrq5O+nfPnj3xySefIC4uDk2aOD77+frrr6Xg5vLly/jhhx+kkp+ePXviu+++Q6dOnazaZ25uLtq3b48nnnhCWvbzzz/rbWN4nAAQFhYGACgpKZFKdnQbWCtJTEyEv78/iouLMWjQIKvSSkS2Y6NqInKauLg4HDhwAGfOnEFZWRlmz56NS5cuYdy4ccjPz0dhYSG2bt2KqVOnGgUUtnj22Wexfft2HD9+HFOmTEFoaChGjhwJoL6nWG5uLubMmYOCggL8+OOP+O9//2vUqNrQDTfcgOLiYnzwwQcoLCzEq6++ik8//dToOIuKilBQUICysjLU1NQgICAAN998s9RYevfu3XjyySfNHkPLli3x6KOPYv78+XjnnXdQWFiIb7/9Fq+99hreeecdm88NEZnGgIiInObRRx+Fr68vEhMTERYWhtraWuzfvx91dXUYPnw4kpKSMG/ePISEhEhVTPbIycnBQw89hF69eqG0tBRffPEF/Pz8ANS3S9q9ezd++OEHDBw4ED169MBTTz2F6Ohok/u84447MH/+fMyZMwfdu3dHbm6u1PtMa/To0RgxYgSGDBmCsLAwvP/++wCAt99+G9evX0evXr0wb948PP/88xYdx3PPPYfFixcjOzsbXbt2xYgRI7Bp0ybEx8fbcFaIyBIqoVvBTUTkgXbt2oUhQ4bg8uXLCAkJcXVyiMgDsYSIiIiIvB4DIiIiIvJ6rDIjIiIir8cSIiIiIvJ6DIiIiIjI6zEgIiIiIq/HgIiIiIi8HgMiIiIi8noMiIiIiMjrMSAiIiIir8eAiIiIiLweAyIiIiLyev8PBcjMfq1Q8SEAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO:tensorflow:Assets written to: keras_surrogate\\assets\n" + ] + } + ], + "source": [ + "# Adding input bounds and variables along with scalers and output variable to kerasSurrogate\n", + "xmin, xmax = [7, 306], [40, 1000]\n", + "input_bounds = {input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))}\n", + "\n", + "keras_surrogate = KerasSurrogate(\n", + " model,\n", + " input_labels=list(input_labels),\n", + " output_labels=list(output_labels),\n", + " input_bounds=input_bounds,\n", + " input_scaler=input_scaler,\n", + " output_scaler=output_scaler,\n", + ")\n", + "keras_surrogate.save_to_folder(\n", + " keras_folder_name=\"sco2_keras_surr\", keras_model_name=\"sco2_keras_model\"\n", + ")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmYUlEQVR4nO3deXwU5f0H8M9sIGETkuVIAgETEoIQkBCRywAGECqkKCJYEY9yqhUU0SoELQIqBmzrWQUEBa0VaBXUCnhULmP4QbhB5YoBIgQhQjZAQgLZ5/dHnGWPmb2vST7v1yutzM7OPDM788x3nlMSQggQERERaZQu2AkgIiIi8gaDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIKiNmzZ0OSJJfWlSQJs2fP9mt6+vfvj/79+4fs9ojIdQxmiOqZZcuWQZIk81+DBg3QunVrjB07FidOnAh28kJOcnKy1fmKj4/HTTfdhNWrV/tk+xUVFZg9ezY2btzok+0R1UcMZojqqeeeew7//Oc/sXDhQmRnZ+ODDz5Av379cOnSJb/s7y9/+QsqKyv9sm1/u/766/HPf/4T//znP/Hkk0/i5MmTGDFiBBYuXOj1tisqKjBnzhwGM0ReaBDsBBBRcGRnZ6N79+4AgIkTJyI2Nhbz58/HZ599hrvuusvn+2vQoAEaNNBmltO6dWvcd9995n//8Y9/RLt27fDKK6/gT3/6UxBTRkQAS2aI6Dc33XQTAKCwsNBq+YEDB3DnnXeiWbNmaNSoEbp3747PPvvMap3Lly9jzpw5uPbaa9GoUSM0b94cffv2xddff21eR6nNTFVVFR5//HHExcUhOjoaw4YNw88//2yXtrFjxyI5OdluudI2ly5diptvvhnx8fGIiIhAp06dsGDBArfOhTMtW7ZEx44dUVRU5HC906dPY8KECWjRogUaNWqEjIwMvPfee+bPjx49iri4OADAnDlzzFVZ/m4vRFTXaPM1iYh87ujRowCApk2bmpd9//336NOnD1q3bo2cnBxERUXh3//+N4YPH46PP/4Yd9xxB4DaoCI3NxcTJ05Ez549UV5eju3bt2Pnzp343e9+p7rPiRMn4oMPPsA999yD3r17Y/369Rg6dKhXx7FgwQJcd911GDZsGBo0aID//ve/mDRpEkwmEyZPnuzVtmWXL19GcXExmjdvrrpOZWUl+vfvjyNHjuCRRx5BSkoK/vOf/2Ds2LEoKyvDY489hri4OCxYsAAPP/ww7rjjDowYMQIA0KVLF5+kk6jeEERUryxdulQAEP/73//EmTNnRHFxsfjoo49EXFyciIiIEMXFxeZ1Bw4cKNLT08WlS5fMy0wmk+jdu7e49tprzcsyMjLE0KFDHe531qxZwjLL2b17twAgJk2aZLXePffcIwCIWbNmmZeNGTNGtGnTxuk2hRCioqLCbr3BgweLtm3bWi3r16+f6Nevn8M0CyFEmzZtxC233CLOnDkjzpw5I/bs2SPuvvtuAUA8+uijqtt79dVXBQDxwQcfmJdVV1eLzMxM0bhxY1FeXi6EEOLMmTN2x0tE7mE1E1E9NWjQIMTFxSExMRF33nknoqKi8Nlnn+Gaa64BAJw9exbr16/HXXfdhfPnz6O0tBSlpaX49ddfMXjwYBw+fNjc+6lJkyb4/vvvcfjwYZf3v3btWgDAlClTrJZPnTrVq+PS6/Xm/zYajSgtLUW/fv3w008/wWg0erTNr776CnFxcYiLi0NGRgb+85//4P7778f8+fNVv7N27Vq0bNkSo0ePNi9r2LAhpkyZggsXLmDTpk0epYWI7LGaiaieevPNN9G+fXsYjUa8++672Lx5MyIiIsyfHzlyBEIIzJw5EzNnzlTcxunTp9G6dWs899xzuP3229G+fXt07twZQ4YMwf333++wuuTYsWPQ6XRITU21Wt6hQwevjuu7777DrFmzsGXLFlRUVFh9ZjQaYTAY3N5mr1698MILL0CSJERGRqJjx45o0qSJw+8cO3YM1157LXQ663fGjh07mj8nIt9gMENUT/Xs2dPcm2n48OHo27cv7rnnHhw8eBCNGzeGyWQCADz55JMYPHiw4jbatWsHAMjKykJhYSE+/fRTfPXVV1iyZAleeeUVLFy4EBMnTvQ6rWqD7dXU1Fj9u7CwEAMHDkRaWhpefvllJCYmIjw8HGvXrsUrr7xiPiZ3xcbGYtCgQR59l4j8j8EMESEsLAy5ubkYMGAA/vGPfyAnJwdt27YFUFs14sqDvFmzZhg3bhzGjRuHCxcuICsrC7Nnz1YNZtq0aQOTyYTCwkKr0piDBw/ardu0aVOUlZXZLbct3fjvf/+LqqoqfPbZZ0hKSjIv37Bhg9P0+1qbNm2wd+9emEwmq9KZAwcOmD8H1AM1InId28wQEYDa4fh79uyJV199FZcuXUJ8fDz69++PRYsWoaSkxG79M2fOmP/7119/tfqscePGaNeuHaqqqlT3l52dDQB4/fXXrZa/+uqrduumpqbCaDRi79695mUlJSV2o/CGhYUBAIQQ5mVGoxFLly5VTYe//P73v8epU6ewcuVK87IrV67gjTfeQOPGjdGvXz8AQGRkJAAoBmtE5BqWzBCR2VNPPYU//OEPWLZsGf70pz/hzTffRN++fZGeno4HHngAbdu2xS+//IItW7bg559/xp49ewAAnTp1Qv/+/dGtWzc0a9YM27dvx0cffYRHHnlEdV/XX389Ro8ejbfeegtGoxG9e/fGN998gyNHjtite/fdd2P69Om44447MGXKFFRUVGDBggVo3749du7caV7vlltuQXh4OG677TY89NBDuHDhAhYvXoz4+HjFgMyfHnzwQSxatAhjx47Fjh07kJycjI8++gjfffcdXn31VURHRwOobbDcqVMnrFy5Eu3bt0ezZs3QuXNndO7cOaDpJdK0YHenIqLAkrtmFxQU2H1WU1MjUlNTRWpqqrhy5YoQQojCwkLxxz/+UbRs2VI0bNhQtG7dWtx6663io48+Mn/vhRdeED179hRNmjQRer1epKWliblz54rq6mrzOkrdqCsrK8WUKVNE8+bNRVRUlLjttttEcXGxYlflr776SnTu3FmEh4eLDh06iA8++EBxm5999pno0qWLaNSokUhOThbz588X7777rgAgioqKzOu50zXbWbdzte398ssvYty4cSI2NlaEh4eL9PR0sXTpUrvv5ufni27duonw8HB20ybygCSERXksERERkcawzQwRERFpGoMZIiIi0jQGM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNq/OD5plMJpw8eRLR0dEcNpyIiEgjhBA4f/48WrVqZTdhq9LKQbNp0yZx6623ioSEBAFArF692vxZdXW1mDZtmujcubOIjIwUCQkJ4v777xcnTpxwax/yAFz84x//+Mc//vFPe3/FxcVOn/VBLZm5ePEiMjIyMH78eIwYMcLqs4qKCuzcuRMzZ85ERkYGzp07h8ceewzDhg3D9u3bXd6HPGR4cXExYmJifJp+IiIi8o/y8nIkJiaan+OOhMwIwJIkYfXq1Rg+fLjqOgUFBejZsyeOHTtmNSOuI+Xl5TAYDDAajQxmiIiINMKd57em2swYjUZIkoQmTZqorlNVVWU1U295eXkAUkZERETBopneTJcuXcL06dMxevRohxFabm4uDAaD+S8xMTGAqSQiIqJA00Qwc/nyZdx1110QQmDBggUO150xYwaMRqP5r7i4OECpJCIiomAI+WomOZA5duwY1q9f77TeLCIiAhEREQFKHRERhZKamhpcvnw52MkgFzRs2BBhYWE+2VZIBzNyIHP48GFs2LABzZs3D3aSiIgoBAkhcOrUKZSVlQU7KeSGJk2aoGXLll6PAxfUYObChQs4cuSI+d9FRUXYvXs3mjVrhoSEBNx5553YuXMnPv/8c9TU1ODUqVMAgGbNmiE8PDxYySYiohAjBzLx8fGIjIzkIKkhTgiBiooKnD59GgCQkJDg1faC2jV748aNGDBggN3yMWPGYPbs2UhJSVH83oYNG9C/f3+X9sGu2UREdVtNTQ0OHTqE+Ph4luBrzK+//orTp0+jffv2dlVOmuma3b9/fziKpUJkCBwiIgphchuZyMjIIKeE3CX/ZpcvX/aq/YwmejMRERE5w6ol7fHVb8ZghoiIiDSNwQwRERH5xcaNGyFJkt97mTGY8UKJsRL5haUoMVYGOylERFQPzZ49G9dff32wkxF0IT3OTChbWXAcM1btg0kAOgnIHZGOUT1cm/ySiIgokC5fvoyGDRsGOxl+w5IZD5QYK82BDACYBPD0qv0soSEiIreYTCbk5uYiJSUFer0eGRkZ+OijjwBcraL55ptv0L17d0RGRqJ37944ePAgAGDZsmWYM2cO9uzZA0mSIEkSli1bBqC2Ye2CBQswbNgwREVFYe7cuQ7TIe/ryy+/RNeuXaHX63HzzTfj9OnTWLduHTp27IiYmBjcc889qKioMH+vqqoKU6ZMQXx8PBo1aoS+ffuioKDAPyfLAQYzHigqvWgOZGQ1QuBoaYXyF4iISBMC3XwgNzcX77//PhYuXIjvv/8ejz/+OO677z5s2rTJvM4zzzyDv//979i+fTsaNGiA8ePHAwBGjRqFP//5z7juuutQUlKCkpISjBo1yvy92bNn44477sC+ffvM33Fm9uzZ+Mc//oH8/HwUFxfjrrvuwquvvooPP/wQa9aswVdffYU33njDvP60adPw8ccf47333sPOnTvRrl07DB48GGfPnvXRGXINq5k8kBIbBZ0Eq4AmTJKQHMsxDoiItCrQzQeqqqrw4osv4n//+x8yMzMBAG3btkVeXh4WLVqEBx98EAAwd+5c9OvXDwCQk5ODoUOH4tKlS9Dr9WjcuDEaNGiAli1b2m3/nnvuwbhx49xK0wsvvIA+ffoAACZMmIAZM2agsLAQbdu2BQDceeed2LBhA6ZPn46LFy9iwYIFWLZsGbKzswEAixcvxtdff4133nkHTz31lGcnxgMsmfFAgkGP3BHpCPutf3yYJOHFEZ2RYNAHOWVEROSJYDQfOHLkCCoqKvC73/0OjRs3Nv+9//77KCwsNK/XpUsX83/Lw/7L0wA40r17d7fTZLmvFi1aIDIy0hzIyMvkfRcWFuLy5cvm4AeonTyyZ8+e+PHHH93etzdYMuOhUT2SkNU+DkdLK5AcG8lAhohIwxw1H/BX/n7hwgUAwJo1a9C6dWurzyIiIswBjWXDXXmQOZPJ5HT7UVFRbqfJdl+2jYYlSXJp34HGYMYLCQY9gxgiojogGM0HOnXqhIiICBw/ftxcjWTJsnRGTXh4OGpqavyRPKdSU1MRHh6O7777Dm3atAFQ22uqoKAAU6dODWhaGMwQEVG9JzcfeHrVftQIEZDmA9HR0XjyySfx+OOPw2QyoW/fvjAajfjuu+8QExNjDhAcSU5ORlFREXbv3o1rrrkG0dHRiIiI8FuaLUVFReHhhx/GU089hWbNmiEpKQkvvfQSKioqMGHChICkQcZghoiICMFpPvD8888jLi4Oubm5+Omnn9CkSRPccMMNePrpp12qzhk5ciRWrVqFAQMGoKysDEuXLsXYsWP9nm7ZvHnzYDKZcP/99+P8+fPo3r07vvzySzRt2jRgaQAASdTxqandmUKciIi059KlSygqKkJKSgoaNWoU7OSQGxz9du48v9mbiYiIiDSNwQwREVEd96c//cmq+7fl35/+9KdgJ89rbDNDRERUxz333HN48sknFT+rC00wGMwQERHVcfHx8YiPjw92MvyG1UxERESkaQxmiIioTgjFkWnJMV/9ZqxmIiIiTQsPD4dOp8PJkycRFxeH8PBw87D/FJqEEKiursaZM2eg0+kQHh7u1fYYzBARkabpdDqkpKSgpKQEJ0+eDHZyyA2RkZFISkqCTuddRRGDGSIi0rzw8HAkJSXhypUrQZuriNwTFhaGBg0a+KQUjcEMERHVCfIsz7YzPVPdxwbAREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk1jMENERESaxmCGiIiINI3BDBEREWkagxkiIiLSNAYzREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk1jMENERESaxmCGiIiINI3BDBEREWkagxkiIiLSNAYzREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk1jMENERESaxmCGiIiINI3BDBEREWlaUIOZzZs347bbbkOrVq0gSRI++eQTq8+FEHj22WeRkJAAvV6PQYMG4fDhw8FJLBEREYWkoAYzFy9eREZGBt58803Fz1966SW8/vrrWLhwIbZu3YqoqCgMHjwYly5dCnBKiYiIKFQ1CObOs7OzkZ2drfiZEAKvvvoq/vKXv+D2228HALz//vto0aIFPvnkE9x9992BTCoRERGFqJBtM1NUVIRTp05h0KBB5mUGgwG9evXCli1bVL9XVVWF8vJyqz8iIiKqu0I2mDl16hQAoEWLFlbLW7RoYf5MSW5uLgwGg/kvMTHRr+kkIiKi4ArZYMZTM2bMgNFoNP8VFxcHO0lERETkRyEbzLRs2RIA8Msvv1gt/+WXX8yfKYmIiEBMTIzVHxEREdVdIRvMpKSkoGXLlvjmm2/My8rLy7F161ZkZmYGMWVEREQUSoLam+nChQs4cuSI+d9FRUXYvXs3mjVrhqSkJEydOhUvvPACrr32WqSkpGDmzJlo1aoVhg8fHrxEExERUUgJajCzfft2DBgwwPzvJ554AgAwZswYLFu2DNOmTcPFixfx4IMPoqysDH379sUXX3yBRo0aBSvJREREFGIkIYQIdiL8qby8HAaDAUajke1niIiINMKd53fItpkhIiIicgWDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYMZLJcZK5BeWosRYGeykEBER1UsNgp0ALVtZcBwzVu2DSQA6CcgdkY5RPZKCnSwiIqJ6hSUzHioxVpoDGQAwCeDpVftZQkNERBRgDGY8VFR60RzIyGqEwNHSiuAkiIiIqJ5iMOOhlNgo6CTrZWGShOTYyOAkiIiIqJ5iMOOhBIMeuSPSESbVRjRhkoQXR3RGgkEf5JQRERHVL2wA7IVRPZKQ1T4OR0srkBwbyUCGiIgoCBjMeCnBoGcQQ0REFESsZiIiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZHygxViK/sBQlxspgJ4WIiKjeaRDsBGjdyoLjmLFqH0wC0ElA7oh0jOqRFOxkERER1RssmfFCibHSHMgAgEkAT6/azxIaIiKiAGIw44Wi0ovmQEZWIwSOllYEJ0FERET1UEgHMzU1NZg5cyZSUlKg1+uRmpqK559/HkII518OgJTYKOgk62VhkoTk2MjgJIiIiKgeCuk2M/Pnz8eCBQvw3nvv4brrrsP27dsxbtw4GAwGTJkyJdjJQ4JBj9wR6Xh61X7UCIEwScKLIzojwaAPdtKIiIjqjZAOZvLz83H77bdj6NChAIDk5GQsX74c27ZtC3LKrhrVIwlZ7eNwtLQCybGRDGSIiIgCLKSrmXr37o1vvvkGhw4dAgDs2bMHeXl5yM7OVv1OVVUVysvLrf78LcGgR2ZqcwYyREREQRDSJTM5OTkoLy9HWloawsLCUFNTg7lz5+Lee+9V/U5ubi7mzJkTwFQSERFRMIV0ycy///1v/Otf/8KHH36InTt34r333sPf/vY3vPfee6rfmTFjBoxGo/mvuLg4gCkmIiKiQJNEqHQNUpCYmIicnBxMnjzZvOyFF17ABx98gAMHDri0jfLychgMBhiNRsTExPgrqURERORD7jy/Q7pkpqKiAjqddRLDwsJgMpmClCIiIiIKNSHdZua2227D3LlzkZSUhOuuuw67du3Cyy+/jPHjxwc7aURERBQiQrqa6fz585g5cyZWr16N06dPo1WrVhg9ejSeffZZhIeHu7QNVjMRERFpjzvP75AOZnyBwQwREZH21Jk2M0RERETOMJghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMw44USYyXyC0tRYqwMdlKIiIjqrQbBToBWrSw4jhmr9sEkAJ0E5I5Ix6geScFOFhERUb3DkhkPlBgrzYEMAJgE8PSq/SyhISIiCgIGMx4oKr1oDmRkNULgaGlFcBJERERUjzGY8UBKbBR0kvWyMElCcmyk4vpsW0NEROQ/DGY8kGDQI3dEOsKk2ogmTJLw4ojOSDDo7dZdWXAcfeatxz2Lt6LPvPVYWXA80MklIiKq0yQhhHC+mnaVl5fDYDDAaDQiJibGp9suMVbiaGkFkmMjFQOZEmMl+sxbb1UlFSZJyMsZoLg+ERER1XLn+c3eTF5IMOgdBiWO2tYwmCEiIvINVjP5kbtta4iIiMh9DGb8yJ22NUREROQZVjP52ageSchqH+ewbQ0RERF5jsFMADhrW0NERESeczmYKS8vd3mjvu41RERERKTG5WCmSZMmkCTJ4TpCCEiShJqaGq8TRkREROQKl4OZDRs2+DMdRERERB5xOZjp16+fP9NBRERE5BGPGwCXlZXhnXfewY8//ggAuO666zB+/HgYDAafJY6IiIjIGY/Gmdm+fTtSU1Pxyiuv4OzZszh79ixefvllpKamYufOnb5OIxEREZEqj+Zmuummm9CuXTssXrwYDRrUFu5cuXIFEydOxE8//YTNmzf7PKGe8ufcTEREROQf7jy/PQpm9Ho9du3ahbS0NKvlP/zwA7p3746Kigp3N+k3DGaIiIi0x53nt0fVTDExMTh+/Ljd8uLiYkRHR3uySSIiIiKPeBTMjBo1ChMmTMDKlStRXFyM4uJirFixAhMnTsTo0aN9nUYiIiIiVR71Zvrb3/4GSZLwxz/+EVeuXAEANGzYEA8//DDmzZvn0wQSEREROeJRmxlZRUUFCgsLAQCpqamIjIz0WcJ8hW1miIiItMed57dXE01GRkYiPT3dm00QERERecWjYObSpUt44403sGHDBpw+fRomk8nqc441Q0RERIHiUTAzYcIEfPXVV7jzzjvRs2dPpxNQEhEREfmLR8HM559/jrVr16JPnz6+Tg8RERGRWzzqmt26dWuOJ0NEREQhwaNg5u9//zumT5+OY8eO+To9dk6cOIH77rsPzZs3h16vR3p6OrZv3+73/RIREZE2eFTN1L17d1y6dAlt27ZFZGQkGjZsaPX52bNnfZK4c+fOoU+fPhgwYADWrVuHuLg4HD58GE2bNvXJ9omIiEj7PApmRo8ejRMnTuDFF19EixYt/NYAeP78+UhMTMTSpUvNy1JSUvyyLyIiItImjwbNi4yMxJYtW5CRkeGPNJl16tQJgwcPxs8//4xNmzahdevWmDRpEh544AGXt8FB84iIiLTH7xNNpqWlobKy0qPEueOnn37CggULcO211+LLL7/Eww8/jClTpuC9995T/U5VVRXKy8ut/oiIiKju8qhk5quvvsKcOXMwd+5cpKen27WZ8VUJSHh4OLp37478/HzzsilTpqCgoABbtmxR/M7s2bMxZ84cu+UsmSEiItIOd0pmPApmdLraAh3btjJCCEiShJqaGnc3qahNmzb43e9+hyVLlpiXLViwAC+88AJOnDih+J2qqipUVVWZ/11eXo7ExEQGM0RERBri97mZNmzY4FHC3NWnTx8cPHjQatmhQ4fQpk0b1e9EREQgIiLC30kjIiKiEOFRMNOvXz+X1ps0aRKee+45xMbGerIbPP744+jduzdefPFF3HXXXdi2bRvefvttvP322x5tj4iIiOoej6qZXBUTE4Pdu3ejbdu2Hm/j888/x4wZM3D48GGkpKTgiSeeYG8mIiKiOs7v1Uyu8kWcdOutt+LWW2/1QWqIiIioLvKoazYRERFRqGAwQ0RERJrGYIaIiIg0jcEMERERaZrbwcyVK1fw3HPP4eeff3a67n333cceRERERORXHnXNjo6Oxr59+5CcnOyHJPkWu2YTERFpj98nmrz55puxadMmjxJHRERE5EsejTOTnZ2NnJwc7Nu3D926dUNUVJTV58OGDfNJ4oiIiIic8WqiScUN+nCiSV9gNRMREZH2+H0EYJPJ5FHCiIiIiHzNozYz77//PqqqquyWV1dX4/333/c6UURERESu8qiaKSwsDCUlJYiPj7da/uuvvyI+Pp7VTEREROQVv/dmEkJAkiS75T///DMMBoMnmyQiIiLyiFttZrp27QpJkiBJEgYOHIgGDa5+vaamBkVFRRgyZIjPE0lERESkxq1gZvjw4QCA3bt3Y/DgwWjcuLH5s/DwcCQnJ2PkyJE+TSARERGRI24FM7NmzQIAJCcnY9SoUWjUqJFfEkVERETkKo+6Zo8ZMwZAbe+l06dP23XVTkpK8j5lRERERC7wKJg5fPgwxo8fj/z8fKvlcsPgUOrNFGglxkoUlV5ESmwUEgz6YCeHiIiozvMomBk7diwaNGiAzz//HAkJCYo9m+qjlQXHMWPVPpgEoJOA3BHpGNWDpVRERET+5FEws3v3buzYsQNpaWm+To9mlRgrzYEMAJgE8PSq/chqH2dXQsPSGyIiIt/xKJjp1KkTSktLfZ0WTSsqvWgOZGQ1QuBoaYVVwMLSGyIiIt/yaNC8+fPnY9q0adi4cSN+/fVXlJeXW/3VRymxUdDZ1LaFSRKSYyPN/1YrvSkxVgYwpURERHWLRyUzgwYNAgDcfPPNVu1l6nMD4ASDHrkj0vH0qv2oEQJhkoQXR3S2KpVxtfSGiIiIXOdRMLNhwwZfp6NOGNUjCVnt43C0tALJsZF2AUpKbBQkAJbxjG3pDREREbnHo2qmfv36QafTYfHixcjJyUG7du3Qr18/HD9+HGFhYb5Oo6YkGPTITG2uWNKy+dAZq39LgF3pDREREbnHo2Dm448/xuDBg6HX67Fr1y5UVVUBAIxGI1588UWfJrCukNvLWJbKSBKQ1T4uaGkiIiKqCzwKZl544QUsXLgQixcvRsOGDc3L+/Tpg507d/oscXWJUnsZkwCOllYEJ0FERER1hEfBzMGDB5GVlWW33GAwoKyszNs01Umu9HYiIiIi93kUzLRs2RJHjhyxW56Xl4e2bdt6nai6SO7tFPZb7y+l3k5ERETkPo96Mz3wwAN47LHH8O6770KSJJw8eRJbtmzBk08+iZkzZ/o6jXWGs95ORERE5D6PgpmcnByYTCYMHDgQFRUVyMrKQkREBJ588kk8+uijvk5jnZJg0DOIISIi8iFJCCGcr6asuroaR44cwYULF9CpUyc0btzYl2nzifLychgMBhiNRsTExAQ7OUREROQCd57fHpXMyMLDw9GpUydvNkFERETkFY8aABMRERGFCgYzflBirER+YSknkCQiIgoAr6qZyN7KguPmmbF1EpA7Ih2jeiQFO1lERER1FktmfEieskAe6dckgKdX7VctoWEJDhERkfdYMuNDSlMW1AiBo6UVdt2xPS3BKTFWoqj0IlJio9jFm4iICAxmfEqessAyoFGaskCtBCerfZzDAIVVWERERPZYzeRDrk5Z4KgER427VVhERET1BUtmfMyVKQtcLcGx5E4VFhERUX3Ckhk/SDDokZnaXDXI8GTSSc66TUREpIwlMwFk2XjX3Ukn5QDo6VX7USMEZ90mIiL6DYOZAFFrvOtOMMJZt4mIiOyxmikAfNl411kVFhERUX3DYCYAPOm9FGgcwI+IiLSK1UwB4EnvJUv+HiiP49cQEZGWaapkZt68eZAkCVOnTg12Utxi23tJJwHj+ya79N2VBcfRZ9563LN4K/rMW4+VBcd9mjaOX0NERFqnmWCmoKAAixYtQpcuXYKdFI+M6pGEvJwBeDArBUIAi78tchqcBCLQ0EIVGBERkSOaCGYuXLiAe++9F4sXL0bTpk2DnRyvLPm2CHLs4Cw4CUSgwfFriIhI6zQRzEyePBlDhw7FoEGDgp0Ur7gbnAQi0PBkAD8iIqJQEvINgFesWIGdO3eioKDApfWrqqpQVVVl/nd5ebm/kuY2dxsCB2qgPI5fQ0REWhbSwUxxcTEee+wxfP3112jUqJFL38nNzcWcOXP8nDLPeBKcBCrQSDDoGcQQEZEmSUII4Xy14Pjkk09wxx13ICwszLyspqYGkiRBp9OhqqrK6jNAuWQmMTERRqMRMTExAUu7IyXGSpaCEBEROVBeXg6DweDS8zukS2YGDhyIffv2WS0bN24c0tLSMH36dLtABgAiIiIQERERqCR6hKUgREREvhPSwUx0dDQ6d+5stSwqKgrNmze3Wx4K/D24HREREdkL6WBGS7Q6ii4DMCIi0jrNBTMbN24MdhLsqA1ul9U+LqQDBK0GYERERJY0Mc5MqNPiKLp7is8hh9MYEBFRHcBgxge0NoruyoLjGP5mPmz7sYV6AEZERKSEwYwP+GIU3RJjJfILS/1eMiJXiSn1xw/lAIyIiEiN5trMhCpvBrcLZNsVpSoxoHa/nMaAiIi0iMGMD3kyfkygGw8rTamgA7B6Um9kJGp7Ek8iIqqfWM0UZIFuPKxUJZY7Mp2BDBERaRZLZoLM3cknfYETSxIRUV3Ckpkg80XjYU/3m5nanIEMERFpHktmQoCWSko4YjAREYUaBjMhQguTT3LEYCIiCkWsZiKXqPW64ojBREQUbAxmyI7SAH5anLKBiIjqB1YzkRW1qqRg9LoiIiJyBUtmyMxRVVKwel0RERE5w5IZMnNUlZRg0Guq1xUREdUfDGZCULC6P7tSlaSFXldERFS/sJrJR5QazXoyE/bKguPoM2897lm8FX3mrcfKguP+SK4iViUREZEWSUIIhTmU647y8nIYDAYYjUbExMT4ZR9KjWYBuD0mS4mxEn3mrbcrGcnLGRDQgKLEWMmqJCIiCip3nt+sZvKSUqPZGav2QQhAjklcnQnbWZuVQGFVEhERaQmrmbykFICYLAIZmStjsshtViwFsvuzJ9ViREREwcZgxktKAYhOAmwWuRSUBLPNSjDb6hAREXmDbWZ8YGXBcTy9aj9qhDAHIADslrk6j1Gg26yESlsdIiIiGdvMBJja+CuejskS6DYrodJWh4iIyBMMZnxEKQDRSkNaV8aXCdbYN0RERM6wzQw5bavjansaNiAmIqJgYJsZMlNqq+Nqexq1CSqJiIg84c7zmyUzZJZg0CMztblVkOKoPY3M0QSVRERE/sZghhxyZewbVwIeIiIif2EwQw65MvZNsAf7IyKi+o29mcgpta7nMjngsR1Xh72eiIgoEBjMkEucdTN3FvAQhTIOPUCkbQxmyIo3mbpWxtUhssSeeETax2CGzJipU32j1hPP2Qz3RBRa2ACYALB7NWmXN4M1ujr0gL8Gg+RAk0S+wZIZAuDe/ExqVVFsd0CB5m1porOpPPxZWsmSUCLfYclMCAnmW5qr3avVpjZwdcoDIl9RKk2csWqfW/ePo6EH/Fla6WjbWi6t0XLaSdtYMhMigv2W5kr3arUMOK1ltGq7AwAsrSG/UCpNNAlg6XdFePr3nVzejlpPPH/OJq+27aV5R7Ek7ydNltYEOw+j+o3BTAgIlUaIzrpXq2XABUfPKWfM3xVhybdFzNzIL5SqiABgyeYijOuT4ta9o9QTz5XZ5D2ltG0dYA5kAG01Rg6VPIzqL1YzhYBQmg5AaX4mmVpVVI/kpnbLdRKweHMRGxSTR1yprkgw6DGhb4rdchPgk3vHldGvfbntiTelhEw+4ArL3yiU8jCqn1gyEwLU3jD3nihDZmpzl7YRiMa3alVRGYlN7Zb3adccmw+XWn3fV0X0VLe5U10xvm8KlnxbBMtbx5dTafhzMEjbbQPAkrwij0uCAtkA3/Y3mj4kzW+lWESukIQQwvlq2uXOFOLBtGhTIXLXHbBaFiZJyMsZ4DRjCnRddYmxUjFzl5dHhusw/M182F5YOgn4Ludml3tHUf1TYqxEn3nr7R6Kju6DlQXH7QJsrVZnenosgcwD1H6jadkd8NK6g3Xid6DQ4M7zmyUzISL9GoPdMldKMoJRV6020q+8PL+w1C6QAYCJfdsiwaDHnuJz2Hb0LHomN8OBU+fZaJDMPGl0W5em0vDkWAKdB6j9Rl1aN0FezoA68TuQ9jCYCRGeNjb0Z48LT6k1bhzXNxl//vdufLzzhOL32GiQPL0P6tJUGu4eS6DzAEe/UV36HUhb2AA4RHja2NDV8WECSelYckem43T5JdVARsZGg9rm7Tgj/mx06y/BHlvF33mA7fFp8Teiuo9tZkKMWnsUR0K1zYDtsUz+1w6s2XfK4XdcbSdEoceX7TY8uQ+CIVTGVrHMA3QSMD07DQ9lpfpku2rHp5XfiLTLnec3g5k6ItQzlhJjJXrnrldsS2Npxu99kwlTYHnScNcfaXC3Ibk3jc9D4ZgtLdpUiHnrDkDAN4FVqB0f1T9sAFwPhXpddVHpRaeBDAB0ad3E30khPwh0uw3bIMSTEhJPS1Xkff96oSpk2quVGCsx/4sD5nvMF+3PQrE9HpEaBjPkMXfeatXG0rHkrJ6fXbhDlzej5br7u9qNcZKdhvnrDtjN0ZTWMhoZiU0Vt7Gn+BxyVu2DsPiOKw9/231LgN/GuHGHPwIPf46ATORrId8AODc3Fz169EB0dDTi4+MxfPhwHDx4MNjJqvfcnVhSqdHgyBtau9yIkBNZhjZPG4W6+7sqdUO2DGRkJgEMfzNfcXsrC47XjoPk5oi1SvsGrmaiwWwI649GwGzoS1oS8m1mhgwZgrvvvhs9evTAlStX8PTTT2P//v344YcfEBUV5fT79aXNTCB5U5du27bHUVsf+Y09KjwMd7yVz7p7DXCn7ZYn11F+YSnuWbzVbrltCYna9pT26e2+7+mViNu6tA56ezV3OwK4WiIW6u3xqO6qU21mvvjiC6t/L1u2DPHx8dixYweysrKClKr6zZsibdu2PWptfSyL8yUJqm/RckDE6qfQIVxqHaV+Ha3ZW4KhXRJU5wdTqtqZNqQD5n9hX0Jje10q7ROoDYYclTqUGCtx9mK1YtC0fGsxBqbFo6j0IgAE7Rp0Z8A9d9oLhXp7PCJAA8GMLaPRCABo1qyZ4udVVVWoqqoy/7u8vDwg6dICXz30o8LDFJdHhtvXWnraw8SyOF+p7FAuQl+0+bceHBxBOOjcbVCr1o7qhTU/Yu7aH5Fj0724xFiJd/OKrNaVg5BRPZJwY9tmdtNo2Fa1qO1TAEhrGe30uCSFzwWACe/tMKfngZtSMK6ve7N22/L0XnUl8Aj2DNd8+SB/CPk2M5ZMJhOmTp2KPn36oHPnzorr5ObmwmAwmP8SExMDnEr3BGrALV+2OblYXaO4vKLa5JN9qr0927ZN+Gz3SeSuPWDXiJMzcwee2gPS2azXlm0yLAkB5K49gEWbCgHUXku9c9djsc2kkpIEZLWPAwBkJDbFvJGO23iozbQNAMPfsm9jYxdYOzwLtZ+//W0R+sxbj0WbCl26t23zAH+3D1MrEdtx9JxP96OEbd/IXzRVMjN58mTs378feXl5quvMmDEDTzzxhPnf5eXlIRvQBGrALV+/ibnSy8Gbfaptf9WkTFRUm8z76Z273u677DoaGLZv155WPcpVI2v2luCFNT/afT5v3QFERoRh1qffKwYSJgGrfWS1j8Nro68HBNAtuanivpVm2gZqA6gZH+9DbONw6MMbICU2ymG1lKPAxiRgnjhW7nGV3tpgVxrhSs8sX5eaqJVOTVmxCxerr/h1gspglgiRb4VaCZtmSmYeeeQRfP7559iwYQOuueYa1fUiIiIQExNj9ReKPHmTtf2+qyU6jh40nnCll4M3+1TbfkZiU2SmNjc/PJUeJjoJ7DrqJ/I1t2hTod3btTe9aRIMegztkgCFAhoIADM/+V61S7/lPuS3/kc+3IUpK3Zh86EzqvubNzJdMfMzobbKSD62fSeMise1ZEw3xfQqMf1WymRbGuFqzyxfT/Eh31+2x+/vkk1f50MUPKFYwhbyJTNCCDz66KNYvXo1Nm7ciJQU5SJirXH2Juso6vVF2wRvu206a2zo7T492T5Q+2YbCm8JdY3lNWdJfgDm5QxA7oh0u940rv4WCQY9crLTkLv2gMtp0klXG+26+9Y/qkcS0lpGY/hb9l20LY/tpXUHMX1IGl764qDVcQ3s2BLzLI7XVZbpUsoD5HY5/h67ZlSPJERFNMAjH+6yWh6sCSr9IdRKDuqKUC1hC/lgZvLkyfjwww/x6aefIjo6GqdO1c7tYzAYoNdr9wJ1dGM7mw/F3QtJfhPz9EEjs80cHDU29NU+1XrG2G5fB9/NR0PWSoyVyPl4n2q1ivwAVAtAXX2oPJSVCsilEw7SowMwMSsFQ9MTcLG6xrx9d6u5MhKbYt6IdMz4eJ/q/mqEQJdrmiAvZ4DdcVkeb2S4Dmv2nsKSvJ8cDgxpmS61PGDakA52wZO759IV3do0tZ/d3o8lm77KE1wRKnNm1UWhOjJ0yI8zI6mU5S5duhRjx451+v1QHmdGaVyIrPZxduNgSADyZ9yMBINedayL5Q/ciMzU5g735814Ed4M/e7uPuVeK+/kFTndH8fA8L+5a37A4m+LHK7z6eTeiqPtenLdlBgrsePoOUxZscv6QQvgjXu64oY2TbH50BmHbU0A18ci2lN8TrWExt3xjOTrce+JMry07qBiqY3lNtXGhlG6rj3tueeslNdyJGQJwLyR/n3w+/ue5ZxS/hXI81unxpkJ8VjLK0pvsvmFpYrdRqd/tBfvT+jltKjWUcbl6XgRzkqDfLnPlQXH7UoBHJU+cQwM7zn6/UqMlXgnz3EgA9j3ZJO/60lxdIJBj1sz9LhYfcXuQT+0SyvF7apVB7lybcglNLZVRjoJmJbdwaOu0ZmpzTEso1VtYPNzmWq61EqzbK/rRZsKzQ2K5WN2NGWD/JvuO2HEvLW1czYpBSpZ7eOs6rQEnP9G3pYO+fueDdWSg7oikCVs7gj5YKaus72xlQYFA4DNh0uxp/gcMhKbql5I/ipadZQ52L4he7NP+SGlFL4yM/IPZ9eMWm8eS2rtHrx9qKg96NW2q1Yd5ArLfeUdPoO3NhaaG+Q20Tf06Jq2Cmyub6WaLmcP9xJjJeats29LJE/ZYBugqLVvEgByPt5nFagoNaR39BtpofqGc0r5nzsDNAaKZnoz1RcJBj1+n95S8bPtv40DMapHEvJyBmD5AzciL2eAuVjam95Rjqj1VIkM1/l0n44enMyMfM+Va0bpt5fg2nxEvpgvSA4GbAN+te0qre/OvpJjI7FgU6Hd7NPe9jL0Jl2OZpyXS1Lk/dn+pkrrL9963Ly+O7+RP/MYX3KltyV5z5tr2h8YzISgB7PaKi7vnny1ONn2QvJnt0e1zOFidY1P96mUsQLWvVZkgRpsUCs8OR+uXDNKv/28ken4bsbNVsG0En89VPz5sPLmPvJXd1W1+0Ipfa6UpL2+/og5fe6cSy11rVZ64aO6jdVMISgjsSlG3tAaH+88YV6WdW0s4mMaqX7H30WrSsWKJcZKn+1Troe3bPcg91oZ18d6aHgtFHUHkqfnw9VrxlG7Dmf8VRztr+16eh+52z7InXYntm0UbFmmT23IAlsmUVvllNYy2uVzqbXqG7anq19CvjeTt0K5N5Mze4rPYfHmIqzZVwIB5w8qV2fN9WX3Tndn6lXbhm3PlC6tm6jOpK3Ukn7VpExcrK5xeEyWs3A7WzfUqP1m3vYs8MXvV9d4ck7c6WXobc9ApQbFtm1m5PTLBTpqmbxlo2BX8gVeLxRI7jy/GcyEME8eVM66PfqjVMObrpbuHqPaQ0OeWVvtmJQaRWqlVMfRb+ZNV31ZXe/e7ulkp+6cE1evY2+CcXfSt6f4HAqOnkOP5KaIj2mEncfOYbLNAHky267tzu6Lun69kHv8OThhneqaXZ950hvEsg2N5b8B/43c6E1xrrvHGBUeZg5cLNlONml5TGqNIkNl5EpHnP1mvij6r8vF8Z4G7/I5kdsiOcuoXe2uqna9y7N9W6bR0yEP1I55T3EZ3lYYL0iebsHy347ui1C4Xji6b2iwHEojEGMUOcJgJoR58qBylHl72lXWnxmHO8coH5tlIKMD7EZvtT0mR40iQ73Lt7PfzNlDNJCZfqg9YJQCwRkf70NURAN0a6M8CaUldwMhV9qeqA29YNt7qqzyslslJfJ5B6Aa/I7rm2I367iaUL4v2GYuNNiODK7U9T+QGMyEMHcHJ/LHW7y/Mw5Xj1GpdEUHYPGYbnjg/R0Oj8lRo8hQbsAIuBbsqT1EA5nph+IDRnHuIwCPfLjLpQDBMqN2Z8A/R5/bTn6pFNjUCGEe6M7Zvm3P+8S+KarBb2Zqc8wbme5wagpZqN4X/pwXKNSC8VC3/ehZxaB8x9FzuDUj8OePXbNDnDtdDJ11nXS3S2ugxpVw5RjVHkyR4Q1dOqaJfVPsLnYtjD/h6m9m21U/kGOC+Htf7nY7l9ePCg9T7dLsLI3v5tmXYLjaDVktvUqDQkoSoJREV/atdN6XfFukOiZUfmEpstrHIX/GzZhyczvV9IfyfeGv7uGhOAt0qFObasjV2eR9jSUzGuBqHbU3b/FKAlkt5ewYldrKyMeWmdpc9Zhs31wf7NsWQ7u0REW1STMNGD3phhzIId3d3Zc714e7JT6269/RtTU+2XVSsUuzWhrVpnDQwfkkjO5W85oE8GBWCpZ8W+SwO7VSSYlagP9g37Z4J6/IXNI5vGsr3PFWPkyiNnDKyU7D6F5J+MeGI3YN4l+/uyu6JTuvggsWR3mcpyUre4rPeVQKV5c5O5clxkqI33rL2QbnN7Sxn14jEBjM1CGuVtn4IjhSu9j9Ud2g1lZm2pCr8+YoHZPSm+s7eUUY1zdZc5mUu40uAzkmiCftnuTrY0LfFIzvm6KaYbo7dovt+p/sOolVkzJRfLbSbuJKd6ZhAIC7eyVix7FzEOIsuic3M68r3wPO2ujsO2G026ZOAtJbGzB7WCc8++kP9juF+hxRaud9XN9kjOubbJ7NWw5kgNoHT+66A8Bv96ZtXnFrRivFNIQKtTzO02lVzBNt2iwP5TZD/qaUh2e1jzNf65bnWsLVqlJ53WCdMwYzdYwvBxNLMOhxR1frwfuGd22lmnH4oj7bNkhS7YkEYP4XB9AkUn3eHF+UTmitHt0yvYGaDC7BoLfq2utquyeTABZ/W4Ql3xYp9oJw9/dTW7+i2oRbM1opTlyplMZfL1TZBQkSgA+3FuPDrcVWyywz8cRmkaptdNRK3k0CeHT5bugk5fYz0m/rzFt7AEdLL2LKwGutAnhHv3GCQXniWqB2zqnvcm72eC6rYLLN4wBYdXd3Nd8xV/tpsC2dvyjdozmr9gHi6rUuBKwa/eoA/OO32eyDeQ0xmKmDfNV1ssRYidW7TlgtW73rBFbtPKFYJOtt8KD0RqD0gJA5y7S8LZ0IxUatjizaVIh56w5YPWDlh1VkuA4Xq2tQYqz0eYazsuC4OZCRUFti5mq7J6A2Q1TqZaTWcHvvz2WKY+gora8DEBle21rKWaBv+XtLsB67SOmBZ3sPrJqUqdrQ3FmDW5Oo3Z9O1AZAut++Y/nQWL6tGMu3FWO+ReCX1T4Os2/vhDPlVRjYMd5uBm213lMmAXOjYC32crPM45QCNlfyHbXrUQf76VMc0doLjyNK58Ty2lc6XyYAzaIign7sbABMikqMlfh870nFOn61IllvJhZUK9Vx1IjTct9K5BID+fvulE5oZVI92aLNhchdZ98DBgCOn72IO97K90vjRtvzJAC89MVBxfPkaI4huQTDMn3y72dLbfu2jaXl7d7xVj4WbSpEfmEpACg+wJWOQxLAm/d0xWt3X+80GJFLgGz37w4hgDfu6YrlD9yI1+/pqrrPGR/vQ4mxEisLjqN37nrM/OR7vL7+CIa/ma/4297dM9FumSclD+40xJbzj6dX7fV7w1ql60onXQ1i3f3e6sm9XX5pqWsNh53NA6YkVEqxGMxoRCAnVpRv0LlrDth9JheHW7KcsdjTCQAdVRE4ekA4upEclRg4O59amlSvxFiJeevsf6saIbDz2Dm/BmXunCf5+nCUWdqmL721wW4dy+3b/o6jeiRh1aRMqx4VJlHbTsTRA0etMW2zqAh0T27mNIOXr0O5Z94/RndVnm38t2Vq99ENbZoiM7U5urVpql41hdrur7ZdrAVqx5iRz4V8Hy/fVmzev7wfd4L6/MJSLNpc6PJDWw6yHvlwFz7cVuz3FwLFIFbUBrGO0qmUX+WOSLcr3VLjyxeeUJk4V+lc2pJwNXAIpZ5vrGbSgEBWd6i1UQGuXrgAVOvpPW2z46hKyLK30t4TZXhp3UGn7UDUSgyGXa/e5sfV9ASSK0XYRaUXFatBdABMQvi1V5O750m+PpZ+V4Qlm4vsBjy0TZ+j7avdFxeraxTPB6BeNeloP3IGn2PTvkKuhlJqq3Jrhl6xjY7lvbH50BmH7V1ystNqG+va0AGApFx1JVcfAbC7jyU4b9tgeb1Z3idK5zCtZbTdFAxK3c8t+ath7ageSUhrGW0eSdkynY7aznjTxtBXPQZDpTpb/u3TWkbj1bszcPj0Bbz+zRG79R64qa25gXkotbViMBPivGlU60ldrlo98syhHfH7Lgnm7TjKADxps+NKY0Z5LJVhGa2c3khqGc2Oo8olFbbnc/OhM3YPrmnZHRSnifAXVzM5tbYl07PTzKUK/grK5N/NMp3O3tQSDHo8/ftOGNcnBTuOnnPYy0itETqgPtKts5mjlR44zq4/+aG389g5CAF0S659e3d0HTqbbdzZg/ShfqmABKsB9CQAuSPTzSU3toeok2q7jzsqaVL7bWyvN8uGnkrnUGkKBkejbQPWv22JsRLbj56FJEkujcjszMXqGo96JXnaxtDdQF4pP/bnIIDuUJq7zrKnkkwHmHuDhkoQI2MwE+I8jf49jfbVblDLQAbwz/wsrr4lubJvteOAwkPO9nwqvV0KcfWh4qxLsS+4ksmp9VySJw58KCsVgHIXXF+nWw783Jm2NsGgR7fk2gENl3xbW0qjNB2DbSP0T3adxIC0eNXfMTO1udUx21J74Di7/hIMegztYr/M2TF68yB9KCsVwzJaWQVR8vq2o/lKNl1j3X3Q2l5vziiVgDgKJCUAE/omA7Ce00f+zJV5fRy9oAW6NNVZAGxJLT8O5HhQatRK4wWuVo2aRG0gMz07LeSCGBmDmRDnyQ3qTbTvzg3qD74IkuQMb/qQNLz0hXWVVLc2TZ2eT0e9bgDrLsU52WlIv8bg854MzjI5pcxRrZutK0Gipz0ybAM/AeVrTWn7SgMa2o4BpHYeIBw/rC2P2dWqSSA0JlG0pRREAVePccfRc+bByixLf9y5j52VqDhjG0jaVsllXRuLvCOlePvbIsX5oeT2Po7yKGcvaMHIu1y9t9wpRdRJQOmFSx73PHTnXlbr6CETAEb3SMLyguMwCefDYQQTg5kQ58kN6m2078uxagLNNsObnp2GLq2bWB2Hs/PprJpCJgBzmwZf13U76pacHBupmDnm5QxQ7LIMeDbLsitcudYWbf6ty7jF9rPaxykOaDi0S0urjFgtmO+W3NTp7+hu1aQWye1zlLhzH6t14XaVXL1luV+5NCmxmd5u4D4lcnsfdwMCy/Wz2sfh1bszoPutMXUgfmtnAbCje8S2FFFuhyWPPeRunuLKvSwHO/tOGM0dJNToAKwoOG4OTINVDeYKBjMa4G5w4Yvi1lB8Q3VGKcN7ad1B5OUMcKmkwlG1jaP2A/K+fHmTJxj0mNQ/Ff/YUGi1/KUvDqJ1U71Hwao/6uydXWuLNhVaNWKVt//a6OsVj0GpHYZa0OLOfaHF69kXXD3uBIMeD9yUgre/LXJpu7aBj0kAn+0+WdvOB9alSWoD99lyVCLhStDs64a0vho/xtk9Yhn8PfLhLo+nVXB2L5cYK/FuXhHeyXM8dYZMnrjU9poI1dGRGcxohDuZcbCrioLFnRIp2/PprNpGrWeHK/vyxMqC43jTJpCR9+GsikVte/6os3d0rTnqMq50DIByOwxHQUt9DVL8YVzfFCyxedCFSRKmDelgHowRqG2bk5OdZtUwGbg6TYLcVksWFR7m0v5NDkoknAUEvm5I68vAyJX8OMGgR9Ooi15Nq+DoXv5sz0nkrrW/F9XoAKye1BvxMY0Ur4lQGFfGFoOZOiqrfRxeG309YNNosC7ztERKLSO0rLZxpUuxuz0ZnKVHKW5ytYrFleNTq7N3N7NSCzaKSu0zZ6D24SAfg6MA0TIjZ9Dif2oP3VE9kjDs+lZWbXPUftv56w5gWEYru5IAdygFIs4CAl82pPVHDyNXShG9vRfVvp93+Aze3Gj/YqRGPrfyeDtaeTFmMKNBzh6MoTJuQaB5WiLlakaYYLjapdi2YakOV3tq2HL391AdZt2i27MrVWWuZPS2dfaeZFZq16OjLuPyMUSGh+HR5bsVtxuqb4B1maPu5LZtcxxNk7D50Bm7Qf0s6QDFFwKZ0v3nKCDwVU8mtQaxvih1dRaQe1uirvT9adkdXCqRUWtfCGinDSWDGY1x9mBUe6tQGuCqLvLkxnM3I7RtWLo07yiW5P2Et78twpK8IkwfUtvDKSo8DMfPVrj9e6jNMbR6Um+r0UldqSob1SMJUeFhdg8etZ4/7mZWjq7HBIP1BJRy107LagilcXAA18arIf9wpRQswaA8qF+YJCEyXOdw4LyBafHonxaHWZ9+r1oqp3T/OXqJ80XVutJYK47S4w/eBg6WPdwgAecqqp1+RylvsaWFklFJCHdGhtCe8vJyGAwGGI1GxMTEBDs5XikxVlrNDgv8Voxo0cA1v7AU9yzeavddy0nz6ktJjTtWFhxXLF53Ruk3cYWz38Pd9KhdG9OyO9j1WHDn+Bxxdj1a9mKSUNvOQm4gqnasOgATs1Iwro//xvAh31m0udButvTEZpGKeZAt6bf/sX0CKV0rrpZulhgrrQIBV6t3Hd3HvrpfPOVuQ2TbCVMdZU2uju8TLO48v1kyoyFq1QVr9pZg6G+D2qkV7Wuha10wefpG5On4HJa/x4xV+xAZHobuyc3M+3U3PWrXhhxMyHQSsGpSpkvzzzjLRB02ONx90uqtXeDqdBK229JKMTbZkwf1sw0gXB3aQOlJKwDMW3d1PBNHpc3Hz1ZYjSBsWYLgTvWuqyOfB5q7VdRK07jUFwxmNEQtUHlhzY94ce2Pil1ZleqmQ7VrnRJfdY90hSdFqa6OSSNT+j3UenG4kx61qinbdJkEUFHtqLVCLVcyUbXquchwnWovJrXrTgvF2KTM9rezrfLxhMDVgGXb0bOKQfPtb+ab/21bwuBuI15XRz73FVfyNU8aIrv7ciWf57rwcstZszVEziSUZjSVL/QSY6V55t7lD9yI1ZN7283eKz9wQmGWVkfkWX9dmanXGX/NSuvoN7GkA/DmPV0Vfw+ZSQAzPt6HPcXnnKbX9nPbdIRJEqZnpyn+9p707pqxqjZdjo5dLo5XmiMHsB5Yjeo2yzxoRnaa0/tDiRywzF3jvAGrgPWM4e7Oeq92LfvjAe9qvubKMdjmAymxUVA71bemJyjOxO7ovGgJS2Y0Ri6SX7O3BC+s+dHqM7WurLYN44Z3bWUekTNU29D4snukO6NielICZFlN8t2RM3hrY6FiG5WhXWonSHT01moCcPub+ea6bqX0qh2PUnVNk8iGPundZRLA8Dfz7erXlfapVs0QyvO6kO9ZNZS/vpV9D0AXBqNUolYSKvekUqtudxbIB6K60518zdkxqOUDOdlpdj2YwiQJz9zaEQ9kpWD4W/lWVc91pdcgS2Y0KMGgx9Au9lG2own05LekVZMysXrXCbubybYEwF8lGa5y981KjSulDL4oAUow6HH87EW7QEaebTurfZz5fI7qkYRVkzIxZWA71e3Jm7D9fdQyQ8sSmszU5lZtb+TfPi9ngFuTjSqlSelasd2n7VuuDsAMm15MVL/I18hDWanm6/G7nJsxb6TzUk1bD/dPVSxhsCz5U7oG1YZOUEqnv4Jud/I1R6VFjvKBh7JSMSM7zfxwt/xeRmJTzHOxBCrYzwB3sWRGozYfOmO3zJUJ9JSGFvf3sOCe8NW4Ec5KGZTmCPKkBEh15lkB5K49YH5T0knA4Ota4ov9p8yz0jp7M7X8fTwZHMzd9ihyJqp0PK62t2KjXlJjeT3aXicAFEudLS3c+FPtCMQ2oxJbzhhuuW3boRNcyc8cldR6U4rrbr5mOdWBSQh0T24GwPnYWA/1SzWXhnkybkwoPAPcxWBGg9RGiC2rvKy4risT9/lrWHBP+WLcCEC9ga5cyqA2R5C7DaRdbXhnEsC6/aes0iFZ/LcSy9/HF0GeK5nxqB5JSGsZbZ4ryZN9sVEvucL2OhnaJQEvrv3R4cjQXa5pgvwZNyvOGG5rSd5PbuVnjh7k3j7k3c3XbOdTspyo1Vk+IG+zqPSi1b/l//Zlw+NQwGomDVJ7cM5fd8CqSFCp+sRZQzd3q3c8LYp05XueVJHYko9XqdrEco4gS56UAKlVzbhCAHjgprbm30QCzI34bH8fbxsqulOllpHY1KoaIJSHMqe6w1mjevn+TDDocWtGKwztYt/dX+ZJfqZWfeOsitdVruZrKwuOo3fueiz+tshunwCc5gOeVp+7c85CqSqKJTMalBIb5XAocUd1qs4m7nPnzd/TtxR3vueLt3tHpQyJzfSY0DfF/Obj6QPbm+6oOgDj+iZjXN9kq+J2tWJgtaJnZ1yZVde2xIbVRRQMltfd3p/L8NIXBz0qoXW3JNPRg1xA+KQUF3Cerzman03ep6N705vSFVfPWahVRTGY0aAEg/pQ4vIF56xOVe1mcrUY1NObJVhFmHIpg1qvLgnA0PSWeDCrrUsDyimxzFwiw3UoPluJKSt2Oa1+suzlY1sUrMZyFm9XMxJH14Sj7bG6iIJBqTeUuwG1bX6mk4C7elyDHcfOoVubq/eYHMhHhYc5fJD7oh2fK5bazFRtyXKfavemNxNvuvIMCMWqKAYzGvVQv1RAgt1Q4vKF5E3bClfexj29WXw5u60jzkoZIsN15kAGqC3lWrPvFNbuO+XV8N6WmUtGYlNcrL5izhRsS9MkADm/t+7l46/BtADHg9yFWsZEZMmbgDqrfRxm394JGw+cxjcHzmD5tmIs31ZsHmgPgFUgf0fX1vhk10nFB7m/Z5AuMVZi+9GzWPxtkeLnanOWuds20hlnz4BA5ePuYDCjYUpDicu8bUDrLPPw9GbxVS8lR5xNfqjWqwvw/YiYllVCj3y4y+ozCcCwjFYupduSpxmJ3VsqgGlDOqD4XGXIZUxEvrCy4Ljq7N0CwPSP95nnSQNq86VPdp3EqkmZqKg2BXQGaUcTXQK1g949c2tHu32q5RveBl6OngGByMfdxWBG4xxdcP688TwNlnzVS0mNq6UWjqYh8PWDPMGgR9Ooi/ZtnADsPHYOTaNqi7d9NZiWI6N6JKGs8jLm/VaiZ9m91VKwMyYibzlqd2LJtolbjRCoqDYhM7W54vr+qHYtMVaqBl1Abbs6pUDG07aR3vJ3Pu4JBjN1nD/bO3h6s/jzJnO11EK+GZXehPzxIFcKQCQJeOTDXarjzdQIYQ52UmKjAMBclOxpRrKn+JzV5JNKmadaUTaRlng6Cazt/e9q1a+rs3PLbXMuVteY1383r8jh0Axq96OnbSN9IdQ6BzCYqUMCOSmjzNObxV83mTulFuZBtb4rwpLNRTD9tu607A6KYzMAnp9jpYaIlkO5K2VktsGOvJ5clJyXM8DljKTEWImleUV4W6Uu3tLrd3fFrRbVX0Ra5O4ksIB9IO9K1a+r1cNq1Ui3X98Kn+0+abe+BOAf93RVHEPHUYNlT+ZA8yZfC3YQI5OE8HBaU40oLy+HwWCA0WhETExMsJPjN6HWTS5Y5If2km+vBicvjujs0oifcjfQ+V8csDuPaoNXuXuO5f2UXriER5fvtvtczpiczVsTJknIyxngUkbirC7e0+0ShbqVBceRs2qfuSRSAjD8+lZYrRA8AMA/Rl8N5EuMlegzb73di5Hl/eHKOmrrOfNgVgqe/n0nq20UlV7Evp+NVnnUkOtaYt1vI4rLx+hOJ4ZQfna48/xmyUwdEIrd5ILB9qZ8sG9bjOub7FbR8L1L/s/uPJZVXsa8tdZtS5ydY7U3HflNpsRYad+7SQJWT+qNimqTarAjc7Vdj9o0C+Z9/vb/AhwUj+oeywb4QgDdkmuHXVAKZnTS1c8B16qsXa3WdrfKSycB4/qkmP+t9kJiEsBaixHFAfc6MdSlZweDmTogFLvJBZrSTflOXhHGqUwup/Q2ktgsUvE8qjWStRwV0zJw8fhNRwDxMY3MwY6jInJX2/U4ykR1AFZP7o34mEYhU+9N5GsJBj2Gdrl6XecXliquN7FvW/PnKbFRLk398uuFKtV1LKuClNZTY/tS4eyFRImr+X9denYwmKkD/NlNLhjtcDzhzk2p9jayalKmff0z1DMgnQT8d88JLN9WbG7LMn1ImrkI2HLbtm86RaX2vZsEYNVwz7KNjfRbMY6A/QzAjn4jtXYDOgC5I9PNAwSG8m9L5EtK94QOQPPocHNVkPwSotbQXq2kRF7HchBKmQTHE8vqpNr2at2Sm1oFMp/vPel2Q2ZX8/9Q7GLtKQYzdYC/usmFcl2qLXduSrXAp6LaZHcepw3pYBWcyCTUtmn5cFuxeZlJ/DaIoc3+lIIqR+mVg5Os9nFWjXwB2M0AfEfX1li964Tqb6TU8Hiik+o3orpMKb+cNqSDeQBS4OpLSF7OALuG9molJRKAadkdkNU+TrF9jKN4RJ71+1aVcafcoYPrvRFDsYu1pzQRzLz55pv461//ilOnTiEjIwNvvPEGevbsGexkhRRfd5PTWl2qOzelo0AiM7W53XlsEtnQaqC5u3smmktjbJkAq0G4gNrMJTLcek5XtfQ6mlagxFhpNwPwxztPXN23ym8Ual0oiYLN9p5wVLIrjzdTVHoRp8svYdvRs6oDbs5fdwAXLl12KQDRScCcYdehWVS4XY8lR1VLlqU70m//I37LLzx5UbEdGf1idQ1KjJWayydCPphZuXIlnnjiCSxcuBC9evXCq6++isGDB+PgwYOIj48PdvJCjnA6RJRrtFiX6upD21ngY9ndsMRYicRmkVYjghaVXrQqkbEkd+1+ad1B84STJgB3vJVvV2pim14AVm90tsGJK40I1X6jUOpCSRQKbO8JtRccd0pITAJ4Y32hS/s3CaBdfLTi4Hxq9/rAtHh8c+C0+d8CgE5c7cItf1c+PlclGPQuzfcWys0OQj6Yefnll/HAAw9g3LhxAICFCxdizZo1ePfdd5GTkxPk1IUOX1cJabUu1dWHtiuBj9I5lTMetcZ807I74KGsVNyY0gzD38q3GiZdqdTEMr1KUyxYBieujJuhhd+IKNSoveAA8KiqxxWO7lXFdj0SrAIZmQlAs6gIjyaflblSEh/qzQ50zlcJnurqauzYsQODBg0yL9PpdBg0aBC2bNmi+J2qqiqUl5db/dV1ahdiibHS423KN3eYVNt5V8t1qWoSDLUz8qp1rVY7pwkGPSb0TbH7DgB0ad0EAHCxukZxmHS595MSOQOzZDtDru1vMvKG1nX6NyIKlFE9kpCXMwDLH7gReTkDMKpHksejCMseG9hOcbmzUbaV7nW1PEcnQXWyWFefAY5K4gH/PGN8LaRLZkpLS1FTU4MWLVpYLW/RogUOHDig+J3c3FzMmTMnEMkLGf6qEqrPbS2cndPxfVOw5FvrIcgtAw9PSrZcafej9Js8ObhDvfyNiHzNtmTXk1GEZWGShLt7JqFVE71Vm7uJWSkY1yfF6b2qVA0tD9ppaXp2Gi5W13j1DHCWX2mh2UFIBzOemDFjBp544gnzv8vLy5GYmBjEFPmfP6uE6mtbC2fnNMGgx7yRjtvdeNJLwJUA0vY3qa+/EZG/2d7HSuTxmg6cOq94v3vzUmh7b9vOej89Ow0PZaUqjkvlzjPAWX6lhWYHIT2dQXV1NSIjI/HRRx9h+PDh5uVjxoxBWVkZPv30U6fbqE/TGdheiKFUn6lFrpxTeXoCtUzK2edEFPrk+zgyXIc1+0qs5nKzzBcCcb+r7cMXzwBH6Q/GM8ad53dIBzMA0KtXL/Ts2RNvvPEGAMBkMiEpKQmPPPKISw2A60swA/DB6Q88p0RkK1TzBX+nK9DHXafmZnriiScwZswYdO/eHT179sSrr76Kixcvmns30VWsbvA9nlMishWq+YK/0xWqxw1oIJgZNWoUzpw5g2effRanTp3C9ddfjy+++MKuUTARERHVTyFfzeSt+lTNREREVFe48/wO6XFmiIiIiJxhMENERESaxmCGiIiINI3BDBEREWkagxkiIiLSNAYzREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk0L+ekMvCUPcFxeXh7klBAREZGr5Oe2KxMV1Plg5vz58wCAxMTEIKeEiIiI3HX+/HkYDAaH69T5uZlMJhNOnjyJ6OhoSJLk1bbKy8uRmJiI4uLiejvPE88BzwHAcyDjeeA5AHgOAP+cAyEEzp8/j1atWkGnc9wqps6XzOh0OlxzzTU+3WZMTEy9vWBlPAc8BwDPgYzngecA4DkAfH8OnJXIyNgAmIiIiDSNwQwRERFpGoMZN0RERGDWrFmIiIgIdlKChueA5wDgOZDxPPAcADwHQPDPQZ1vAExERER1G0tmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJpWr4OZBQsWoEuXLuZBfjIzM7Fu3Trz55cuXcLkyZPRvHlzNG7cGCNHjsQvv/xitY3jx49j6NChiIyMRHx8PJ566ilcuXIl0IfiM/PmzYMkSZg6dap5WX04D7Nnz4YkSVZ/aWlp5s/rwzkAgBMnTuC+++5D8+bNodfrkZ6eju3bt5s/F0Lg2WefRUJCAvR6PQYNGoTDhw9bbePs2bO49957ERMTgyZNmmDChAm4cOFCoA/FY8nJyXbXgiRJmDx5MoD6cS3U1NRg5syZSElJgV6vR2pqKp5//nmrOXLqw7Vw/vx5TJ06FW3atIFer0fv3r1RUFBg/ryunYPNmzfjtttuQ6tWrSBJEj755BOrz311vHv37sVNN92ERo0aITExES+99JL3iRf12GeffSbWrFkjDh06JA4ePCiefvpp0bBhQ7F//34hhBB/+tOfRGJiovjmm2/E9u3bxY033ih69+5t/v6VK1dE586dxaBBg8SuXbvE2rVrRWxsrJgxY0awDskr27ZtE8nJyaJLly7iscceMy+vD+dh1qxZ4rrrrhMlJSXmvzNnzpg/rw/n4OzZs6JNmzZi7NixYuvWreKnn34SX375pThy5Ih5nXnz5gmDwSA++eQTsWfPHjFs2DCRkpIiKisrzesMGTJEZGRkiP/7v/8T3377rWjXrp0YPXp0MA7JI6dPn7a6Dr7++msBQGzYsEEIUT+uhblz54rmzZuLzz//XBQVFYn//Oc/onHjxuK1114zr1MfroW77rpLdOrUSWzatEkcPnxYzJo1S8TExIiff/5ZCFH3zsHatWvFM888I1atWiUAiNWrV1t97ovjNRqNokWLFuLee+8V+/fvF8uXLxd6vV4sWrTIq7TX62BGSdOmTcWSJUtEWVmZaNiwofjPf/5j/uzHH38UAMSWLVuEELU/vE6nE6dOnTKvs2DBAhETEyOqqqoCnnZvnD9/Xlx77bXi66+/Fv369TMHM/XlPMyaNUtkZGQoflZfzsH06dNF3759VT83mUyiZcuW4q9//at5WVlZmYiIiBDLly8XQgjxww8/CACioKDAvM66deuEJEnixIkT/ku8Hz322GMiNTVVmEymenMtDB06VIwfP95q2YgRI8S9994rhKgf10JFRYUICwsTn3/+udXyG264QTzzzDN1/hzYBjO+Ot633npLNG3a1OpemD59uujQoYNX6a3X1UyWampqsGLFCly8eBGZmZnYsWMHLl++jEGDBpnXSUtLQ1JSErZs2QIA2LJlC9LT09GiRQvzOoMHD0Z5eTm+//77gB+DNyZPnoyhQ4daHS+AenUeDh8+jFatWqFt27a49957cfz4cQD15xx89tln6N69O/7whz8gPj4eXbt2xeLFi82fFxUV4dSpU1bnwWAwoFevXlbnoUmTJujevbt5nUGDBkGn02Hr1q2BOxgfqa6uxgcffIDx48dDkqR6cy307t0b33zzDQ4dOgQA2LNnD/Ly8pCdnQ2gflwLV65cQU1NDRo1amS1XK/XIy8vr16cA0u+Ot4tW7YgKysL4eHh5nUGDx6MgwcP4ty5cx6nr85PNOnMvn37kJmZiUuXLqFx48ZYvXo1OnXqhN27dyM8PBxNmjSxWr9FixY4deoUAODUqVNWGZb8ufyZVqxYsQI7d+60qguWnTp1ql6ch169emHZsmXo0KEDSkpKMGfOHNx0003Yv39/vTkHP/30ExYsWIAnnngCTz/9NAoKCjBlyhSEh4djzJgx5uNQOk7L8xAfH2/1eYMGDdCsWTPNnAdLn3zyCcrKyjB27FgA9ed+yMnJQXl5OdLS0hAWFoaamhrMnTsX9957LwDUi2shOjoamZmZeP7559GxY0e0aNECy5cvx5YtW9CuXbt6cQ4s+ep4T506hZSUFLttyJ81bdrUo/TV+2CmQ4cO2L17N4xGIz766COMGTMGmzZtCnayAqa4uBiPPfYYvv76a7s3kPpEfuMEgC5duqBXr15o06YN/v3vf0Ov1wcxZYFjMpnQvXt3vPjiiwCArl27Yv/+/Vi4cCHGjBkT5NQFxzvvvIPs7Gy0atUq2EkJqH//+9/417/+hQ8//BDXXXcddu/ejalTp6JVq1b16lr45z//ifHjx6N169YICwvDDTfcgNGjR2PHjh3BThrZqPfVTOHh4WjXrh26deuG3NxcZGRk4LXXXkPLli1RXV2NsrIyq/V/+eUXtGzZEgDQsmVLu14M8r/ldULdjh07cPr0adxwww1o0KABGjRogE2bNuH1119HgwYN0KJFi3pxHmw1adIE7du3x5EjR+rNtZCQkIBOnTpZLevYsaO5uk0+DqXjtDwPp0+ftvr8ypUrOHv2rGbOg+zYsWP43//+h4kTJ5qX1Zdr4amnnkJOTg7uvvtupKen4/7778fjjz+O3NxcAPXnWkhNTcWmTZtw4cIFFBcXY9u2bbh8+TLatm1bb86BzFfH66/7o94HM7ZMJhOqqqrQrVs3NGzYEN988435s4MHD+L48ePIzMwEAGRmZmLfvn1WP97XX3+NmJgYu4dCqBo4cCD27duH3bt3m/+6d++Oe++91/zf9eE82Lpw4QIKCwuRkJBQb66FPn364ODBg1bLDh06hDZt2gAAUlJS0LJlS6vzUF5ejq1bt1qdh7KyMqs31/Xr18NkMqFXr14BOArfWbp0KeLj4zF06FDzsvpyLVRUVECns348hIWFwWQyAah/10JUVBQSEhJw7tw5fPnll7j99tvr3Tnw1fFmZmZi8+bNuHz5snmdr7/+Gh06dPC4iglA/e6anZOTIzZt2iSKiorE3r17RU5OjpAkSXz11VdCiNoumElJSWL9+vVi+/btIjMzU2RmZpq/L3fBvOWWW8Tu3bvFF198IeLi4jTVBVOJZW8mIerHefjzn/8sNm7cKIqKisR3330nBg0aJGJjY8Xp06eFEPXjHGzbtk00aNBAzJ07Vxw+fFj861//EpGRkeKDDz4wrzNv3jzRpEkT8emnn4q9e/eK22+/XbFrZteuXcXWrVtFXl6euPbaa0O2K6qampoakZSUJKZPn273WX24FsaMGSNat25t7pq9atUqERsbK6ZNm2Zepz5cC1988YVYt26d+Omnn8RXX30lMjIyRK9evUR1dbUQou6dg/Pnz4tdu3aJXbt2CQDi5ZdfFrt27RLHjh0TQvjmeMvKykSLFi3E/fffL/bv3y9WrFghIiMj2TXbG+PHjxdt2rQR4eHhIi4uTgwcONAcyAghRGVlpZg0aZJo2rSpiIyMFHfccYcoKSmx2sbRo0dFdna20Ov1IjY2Vvz5z38Wly9fDvSh+JRtMFMfzsOoUaNEQkKCCA8PF61btxajRo2yGl+lPpwDIYT473//Kzp37iwiIiJEWlqaePvtt60+N5lMYubMmaJFixYiIiJCDBw4UBw8eNBqnV9//VWMHj1aNG7cWMTExIhx48aJ8+fPB/IwvPbll18KAHbHJkT9uBbKy8vFY489JpKSkkSjRo1E27ZtxTPPPGPVnbY+XAsrV64Ubdu2FeHh4aJly5Zi8uTJoqyszPx5XTsHGzZsEADs/saMGSOE8N3x7tmzR/Tt21dERESI1q1bi3nz5nmddkkIiyEdiYiIiDSGbWaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRpDGaISFH//v0xderUYCfD72bPno3rr78+2MkgIi8wmCGiOqm6ujqg+xNC4MqVKwHdJxHVYjBDRHbGjh2LTZs24bXXXoMkSZAkCUePHsX+/fuRnZ2Nxo0bo0WLFrj//vtRWlpq/l7//v3x6KOPYurUqWjatClatGiBxYsX4+LFixg3bhyio6PRrl07rFu3zvydjRs3QpIkrFmzBl26dEGjRo1w4403Yv/+/VZpysvLw0033QS9Xo/ExERMmTIFFy9eNH+enJyM559/Hn/84x8RExODBx98EAAwffp0tG/fHpGRkWjbti1mzpxpnrF32bJlmDNnDvbs2WM+zmXLluHo0aOQJAm7d+82b7+srAySJGHjxo1W6V63bh26deuGiIgI5OXlwWQyITc3FykpKdDr9cjIyMBHH33k65+IiCwwmCEiO6+99hoyMzPxwAMPoKSkBCUlJYiOjsbNN9+Mrl27Yvv27fjiiy/wyy+/4K677rL67nvvvYfY2Fhs27YNjz76KB5++GH84Q9/QO/evbFz507ccsstuP/++1FRUWH1vaeeegp///vfUVBQgLi4ONx2223moKOwsBBDhgzByJEjsXfvXqxcuRJ5eXl45JFHrLbxt7/9DRkZGdi1axdmzpwJAIiOjsayZcvwww8/4LXXXsPixYvxyiuvAABGjRqFP//5z7juuuvMxzlq1Ci3zlVOTg7mzZuHH3/8EV26dEFubi7ef/99LFy4EN9//z0ef/xx3Hfffdi0aZNb2yUiN3g9VSUR1Um2s6c///zz4pZbbrFap7i42Gp26X79+om+ffuaP79y5YqIiooS999/v3lZSUmJACC2bNkihLg6U++KFSvM6/z6669Cr9eLlStXCiGEmDBhgnjwwQet9v3tt98KnU4nKisrhRBCtGnTRgwfPtzpcf31r38V3bp1M/971qxZIiMjw2qdoqIiAUDs2rXLvOzcuXMCgNiwYYNVuj/55BPzOpcuXRKRkZEiPz/fansTJkwQo0ePdpo2IvJMg2AGUkSkHXv27MGGDRvQuHFju88KCwvRvn17AECXLl3My8PCwtC8eXOkp6ebl7Vo0QIAcPr0aattZGZmmv+7WbNm6NChA3788Ufzvvfu3Yt//etf5nWEEDCZTCgqKkLHjh0BAN27d7dL28qVK/H666+jsLAQFy5cwJUrVxATE+P28aux3OeRI0dQUVGB3/3ud1brVFdXo2vXrj7bJxFZYzBDRC65cOECbrvtNsyfP9/us4SEBPN/N2zY0OozSZKslkmSBAAwmUxu7fuhhx7ClClT7D5LSkoy/3dUVJTVZ1u2bMG9996LOXPmYPDgwTAYDFixYgX+/ve/O9yfTldbAy+EMC+Tq7xsWe7zwoULAIA1a9agdevWVutFREQ43CcReY7BDBEpCg8PR01NjfnfN9xwAz7++GMkJyejQQPfZx3/93//Zw5Mzp07h0OHDplLXG644Qb88MMPaNeunVvbzM/PR5s2bfDMM8+Ylx07dsxqHdvjBIC4uDgAQElJiblExbIxsJpOnTohIiICx48fR79+/dxKKxF5jg2AiUhRcnIytm7diqNHj6K0tBSTJ0/G2bNnMXr0aBQUFKCwsBBffvklxo0bZxcMeOK5557DN998g/3792Ps2LGIjY3F8OHDAdT2SMrPz8cjjzyC3bt34/Dhw/j000/tGgDbuvbaa3H8+HGsWLEChYWFeP3117F69Wq74ywqKsLu3btRWlqKqqoq6PV63HjjjeaGvZs2bcJf/vIXp8cQHR2NJ598Eo8//jjee+89FBYWYufOnXjjjTfw3nvveXxuiMgxBjNEpOjJJ59EWFgYOnXqhLi4OFRXV+O7775DTU0NbrnlFqSnp2Pq1Klo0qSJuVrGG/PmzcNjjz2Gbt264dSpU/jvf/+L8PBwALXtcDZt2oRDhw7hpptuQteuXfHss8+iVatWDrc5bNgwPP7443jkkUdw/fXXIz8/39zLSTZy5EgMGTIEAwYMQFxcHJYvXw4AePfdd3HlyhV069YNU6dOxQsvvODScTz//POYOXMmcnNz0bFjRwwZMgRr1qxBSkqKB2eFiFwhCctKYSKiANu4cSMGDBiAc+fOoUmTJsFODhFpEEtmiIiISNMYzBAREZGmsZqJiIiINI0lM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRp/w8ekd4YKrY9/QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.3 Visualizing Surrogates\n", + "\n", + "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "surrogate_scatter2D(keras_surrogate, data_training)\n", - "surrogate_parity(keras_surrogate, data_training)\n", - "surrogate_residual(keras_surrogate, data_training)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.4 Model Validation\n", - "\n", - "We check the fit on the validation set to see if the surrogate is fitting well. This step can be used to check for overfitting on the training set." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "4/4 [==============================] - 0s 5ms/step\n" - ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABosUlEQVR4nO3deVzU1f4/8NfMCAgIQyyyuADill4zl1SszIWCQs2r3tTKvUy/YrnkdsutrrlUrrjUzdK6WmnaIpZlLnVNpFLRTOUqP3AJkRhkwA105vz+oPnIsA4w8Pl8Zl7Px2MeOvM5M3Pm4zjznvc55300QggBIiIiIqpTWrk7QEREROSMGIQRERERyYBBGBEREZEMGIQRERERyYBBGBEREZEMGIQRERERyYBBGBEREZEMGIQRERERyYBBGBEREZEMGIQREVGFNm7cCI1Gg/T0dLm7QuRQGIQRkex++eUXxMXFoW3btvD09ETTpk3x1FNP4X//+1+ptj179oRGo4FGo4FWq4W3tzdatWqF4cOHY8+ePVV63p07d+KRRx5Bw4YN4eHhgWbNmuGpp57C7t277fXSSnnjjTfwxRdflLr90KFDmD9/PnJzc2vtuUuaP3++dC41Gg08PDzQpk0bvPrqq8jLy7PLc2zZsgUrVqywy2MRORoGYUQkuyVLlmD79u3o06cPVq5ciXHjxuHHH39Ex44dcfLkyVLtGzdujI8++ggffvgh3nzzTfTv3x+HDh3CY489hiFDhuD27duVPudbb72F/v37Q6PRYPbs2Vi+fDkGDRqEs2fP4pNPPqmNlwmg4iBswYIFdRqEWaxbtw4fffQRli1bhtatW2PhwoWIiYmBPbYWZhBGVL56cneAiGjq1KnYsmULXF1dpduGDBmCdu3aYfHixfjPf/5j1V6v1+PZZ5+1um3x4sV48cUXsXbtWoSFhWHJkiXlPt+dO3fw+uuv49FHH8V3331X6nhWVlYNX5Fy3LhxAx4eHhW2GTx4MPz9/QEA48ePx6BBg7Bjxw4cPnwYkZGRddFNIqfETBgRya579+5WARgAtGjRAm3btsXp06dtegydTodVq1ahTZs2iI+Ph9FoLLdtdnY28vLy8OCDD5Z5vGHDhlbXb926hfnz56Nly5aoX78+goODMXDgQKSmpkpt3nrrLXTv3h1+fn5wd3dHp06d8Nlnn1k9jkajwfXr17Fp0yZpCHDUqFGYP38+pk+fDgAIDw+XjhWfg/Wf//wHnTp1gru7O3x9fTF06FBcvHjR6vF79uyJv/3tbzhy5Ah69OgBDw8P/POf/7Tp/BXXu3dvAEBaWlqF7dauXYu2bdvCzc0NISEhmDhxolUmr2fPnti1axfOnz8vvaawsLAq94fIUTETRkSKJITAlStX0LZtW5vvo9PpMGzYMMyZMwcHDx5EbGxsme0aNmwId3d37Ny5E5MmTYKvr2+5j2kymdC3b1/s3bsXQ4cOxUsvvYT8/Hzs2bMHJ0+eREREBABg5cqV6N+/P5555hkUFhbik08+wT/+8Q8kJCRI/fjoo4/w3HPPoUuXLhg3bhwAICIiAp6envjf//6Hjz/+GMuXL5eyUgEBAQCAhQsXYs6cOXjqqafw3HPP4c8//8Tq1avRo0cPHDt2DD4+PlJ/DQYDHn/8cQwdOhTPPvssAgMDbT5/Fpbg0s/Pr9w28+fPx4IFCxAVFYUJEyYgJSUF69atwy+//IKffvoJLi4ueOWVV2A0GnHp0iUsX74cANCgQYMq94fIYQkiIgX66KOPBACxYcMGq9sfeeQR0bZt23Lv9/nnnwsAYuXKlRU+/ty5cwUA4enpKR5//HGxcOFCceTIkVLt3n//fQFALFu2rNQxs9ks/f3GjRtWxwoLC8Xf/vY30bt3b6vbPT09xciRI0s91ptvvikAiLS0NKvb09PThU6nEwsXLrS6/bfffhP16tWzuv2RRx4RAMT69evLfd3FzZs3TwAQKSkp4s8//xRpaWninXfeEW5ubiIwMFBcv35dCCHEBx98YNW3rKws4erqKh577DFhMpmkx4uPjxcAxPvvvy/dFhsbK0JDQ23qD5Gz4XAkESnOmTNnMHHiRERGRmLkyJFVuq8l05Kfn19huwULFmDLli3o0KEDvv32W7zyyivo1KkTOnbsaDUEun37dvj7+2PSpEmlHkOj0Uh/d3d3l/5+9epVGI1GPPzwwzh69GiV+l/Sjh07YDab8dRTTyE7O1u6BAUFoUWLFti/f79Vezc3N4wePbpKz9GqVSsEBAQgPDwcL7zwApo3b45du3aVO5fs+++/R2FhISZPngyt9u7XyPPPPw9vb2/s2rWr6i+UyAlxOJKIFCUzMxOxsbHQ6/X47LPPoNPpqnT/a9euAQC8vLwqbTts2DAMGzYMeXl5SEpKwsaNG7Flyxb069cPJ0+eRP369ZGamopWrVqhXr2KPy4TEhLwr3/9C8nJySgoKJBuLx6oVcfZs2chhECLFi3KPO7i4mJ1vVGjRqXm11Vm+/bt8Pb2houLCxo3biwNsZbn/PnzAIqCt+JcXV3RrFkz6TgRVYxBGBEphtFoxOOPP47c3Fz897//RUhISJUfw1LSonnz5jbfx9vbG48++igeffRRuLi4YNOmTUhKSsIjjzxi0/3/+9//on///ujRowfWrl2L4OBguLi44IMPPsCWLVuq/BqKM5vN0Gg0+Oabb8oMSEvOsSqekbNVjx49pHloRFR3GIQRkSLcunUL/fr1w//+9z98//33aNOmTZUfw2QyYcuWLfDw8MBDDz1UrX507twZmzZtwuXLlwEUTZxPSkrC7du3S2WdLLZv34769evj22+/hZubm3T7Bx98UKpteZmx8m6PiIiAEALh4eFo2bJlVV9OrQgNDQUApKSkoFmzZtLthYWFSEtLQ1RUlHRbTTOBRI6Mc8KISHYmkwlDhgxBYmIitm3bVq3aVCaTCS+++CJOnz6NF198Ed7e3uW2vXHjBhITE8s89s033wC4O9Q2aNAgZGdnIz4+vlRb8VcxU51OB41GA5PJJB1LT08vsyirp6dnmQVZPT09AaDUsYEDB0Kn02HBggWliqcKIWAwGMp+kbUoKioKrq6uWLVqlVWfNmzYAKPRaLUq1dPTs8JyIUTOjJkwIpLdtGnT8NVXX6Ffv37IyckpVZy1ZGFWo9Eotblx4wbOnTuHHTt2IDU1FUOHDsXrr79e4fPduHED3bt3R7du3RATE4MmTZogNzcXX3zxBf773/9iwIAB6NChAwBgxIgR+PDDDzF16lT8/PPPePjhh3H9+nV8//33+L//+z88+eSTiI2NxbJlyxATE4Onn34aWVlZWLNmDZo3b44TJ05YPXenTp3w/fffY9myZQgJCUF4eDi6du2KTp06AQBeeeUVDB06FC4uLujXrx8iIiLwr3/9C7Nnz0Z6ejoGDBgALy8vpKWl4fPPP8e4cePw8ssv1+j8V1VAQABmz56NBQsWICYmBv3790dKSgrWrl2LBx54wOrfq1OnTvj0008xdepUPPDAA2jQoAH69etXp/0lUiw5l2YSEQlxt7RCeZeK2jZo0EC0aNFCPPvss+K7776z6flu374t/v3vf4sBAwaI0NBQ4ebmJjw8PESHDh3Em2++KQoKCqza37hxQ7zyyisiPDxcuLi4iKCgIDF48GCRmpoqtdmwYYNo0aKFcHNzE61btxYffPCBVAKiuDNnzogePXoId3d3AcCqXMXrr78uGjVqJLRabalyFdu3bxcPPfSQ8PT0FJ6enqJ169Zi4sSJIiUlxercVFS+oyRL//78888K25UsUWERHx8vWrduLVxcXERgYKCYMGGCuHr1qlWba9euiaefflr4+PgIACxXQVSMRgg7bA5GRERERFXCOWFEREREMmAQRkRERCQDBmFEREREMmAQRkRERCQDBmFEREREMmAQRkRERCQDFmtVMLPZjIyMDHh5eXHrDyIiIpUQQiA/Px8hISHQasvPdzEIU7CMjAw0adJE7m4QERFRNVy8eBGNGzcu9ziDMAXz8vICUPSPWNE+eERERKQceXl5aNKkifQ9Xh4GYQpmGYL09vZmEEZERKQylU0l4sR8IiIiIhkwCCMiIiKSAYMwIiIiIhlwThgREZGDMZlMuH37ttzdcFguLi7Q6XQ1fhwGYURERA5CCIHMzEzk5ubK3RWH5+Pjg6CgoBrV8WQQRkRE5CAsAVjDhg3h4eHBQt+1QAiBGzduICsrCwAQHBxc7cdiEEZEROQATCaTFID5+fnJ3R2H5u7uDgDIyspCw4YNqz00qZqJ+f3790fTpk1Rv359BAcHY/jw4cjIyLBqI4TAW2+9hZYtW8LNzQ2NGjXCwoULrdocOHAAHTt2hJubG5o3b46NGzeWeq41a9YgLCwM9evXR9euXfHzzz9bHb916xYmTpwIPz8/NGjQAIMGDcKVK1es2ly4cAGxsbHw8PBAw4YNMX36dNy5c8c+J4OIiKgEyxwwDw8PmXviHCznuSZz71QThPXq1Qtbt25FSkoKtm/fjtTUVAwePNiqzUsvvYT33nsPb731Fs6cOYOvvvoKXbp0kY6npaUhNjYWvXr1QnJyMiZPnoznnnsO3377rdTm008/xdSpUzFv3jwcPXoU7du3R3R0tJR2BIApU6Zg586d2LZtG3744QdkZGRg4MCB0nGTyYTY2FgUFhbi0KFD2LRpEzZu3Ii5c+fW4hkiIiKqvEAo2YddzrNQqS+//FJoNBpRWFgohBDi1KlTol69euLMmTPl3mfGjBmibdu2VrcNGTJEREdHS9e7dOkiJk6cKF03mUwiJCRELFq0SAghRG5urnBxcRHbtm2T2pw+fVoAEImJiUIIIb7++muh1WpFZmam1GbdunXC29tbFBQU2PwajUajACCMRqPN9yEiIiGys7NFRkZGuZfs7Gy5u2h3N2/eFKdOnRI3b96UuytOoaLzbev3tyrnhOXk5GDz5s3o3r07XFxcAAA7d+5Es2bNkJCQgJiYGAghEBUVhaVLl8LX1xcAkJiYiKioKKvHio6OxuTJkwEAhYWFOHLkCGbPni0d12q1iIqKQmJiIgDgyJEjuH37ttXjtG7dGk2bNkViYiK6deuGxMREtGvXDoGBgVbPM2HCBPz+++/o0KFDma+roKAABQUF0vW8vLwanCUiIudkMBgQHx9fabu4uDjOnSJZqWY4EgBmzpwJT09P+Pn54cKFC/jyyy+lY//v//0/nD9/Htu2bcOHH36IjRs34siRI1ZDlpmZmVaBEQAEBgYiLy8PN2/eRHZ2NkwmU5ltMjMzpcdwdXWFj49PhW3KegzLsfIsWrQIer1eujRp0sTGM0NERBaFhYV2bUe1b9SoUdBoNNBoNHBxcUFgYCAeffRRvP/++zCbzTY/zsaNG0t9PyuZrEHYrFmzpJNe3uXMmTNS++nTp+PYsWP47rvvoNPpMGLECAghAABmsxkFBQX48MMP8fDDD6Nnz57YsGED9u/fj5SUFLleYpXMnj0bRqNRuly8eFHuLhERUS0xGAy4fPlyuReDweBU/YmJicHly5eRnp6Ob775Br169cJLL72Evn37OuzCNlmHI6dNm4ZRo0ZV2KZZs2bS3/39/eHv74+WLVvi3nvvRZMmTXD48GFERkYiODgY9erVQ8uWLaX29957L4CilYqtWrVCUFBQqVWMV65cgbe3N9zd3aHT6aDT6cpsExQUBAAICgpCYWEhcnNzraLtkm1Krqi0PKalTVnc3Nzg5uZW4fkgIiL1U9qQqRL64+bmJn1HNmrUCB07dkS3bt3Qp08fbNy4Ec899xyWLVuGDz74AP/v//0/+Pr6ol+/fli6dCkaNGiAAwcOYPTo0QDuTpqfN28e5s+fj48++ggrV65ESkoKPD090bt3b6xYsQINGzaslddiK1kzYQEBAWjdunWFF1dX1zLva0lPWuZQPfjgg7hz5w5SU1OlNv/73/8AAKGhoQCAyMhI7N271+px9uzZg8jISACAq6srOnXqZNXGbDZj7969UptOnTrBxcXFqk1KSgouXLggtYmMjMRvv/1mtaJyz5498Pb2Rps2bapxpoiIHEddZ1yMRi+kpYXBaPSy6+PWhNKGTJXWH4vevXujffv22LFjB4CiedqrVq3C77//jk2bNmHfvn2YMWMGAKB79+5YsWIFvL29pffSyy+/DKCojMTrr7+O48eP44svvkB6enqlSaC6oIqJ+UlJSfjll1/w0EMP4Z577kFqairmzJmDiIgIKfCJiopCx44dMWbMGKxYsQJmsxkTJ07Eo48+KmXHxo8fj/j4eMyYMQNjxozBvn37sHXrVuzatUt6rqlTp2LkyJHo3LkzunTpghUrVuD69etSdK3X6zF27FhMnToVvr6+8Pb2xqRJkxAZGYlu3boBAB577DG0adMGw4cPx9KlS5GZmYlXX30VEydOZKbLRgaDocL/7K6urpxQS6RCdZ1xOXq0A3bu7AshtNBozOjXLwEdOx6r8eNS3WndujVOnDgBANJCOgAICwvDv/71L4wfPx5r166Fq6sr9Ho9NBpNqVGnMWPGSH9v1qwZVq1ahQceeADXrl1DgwYN6uR1lEUVQZiHhwd27NiBefPm4fr16wgODkZMTAxeffVVKajRarXYuXMnJk2ahB49esDT0xOPP/443n77belxwsPDsWvXLkyZMgUrV65E48aN8d577yE6OlpqM2TIEPz555+YO3cuMjMzcf/992P37t1WE+2XL18OrVaLQYMGoaCgANHR0Vi7dq10XKfTISEhARMmTEBkZCQ8PT0xcuRIvPbaa3VwttRPCWlxIqoddZlxMRq9pAAMAITQYufOvoiIOAe9Pr/Gj29PRqMXcnL84OtrUFzf5CaEkIYXv//+eyxatAhnzpxBXl4e7ty5g1u3buHGjRsVFqk9cuQI5s+fj+PHj+Pq1avSaNqFCxdkHaFSRRDWrl077Nu3r9J2ISEh2L59e4VtevbsiWPHKv4VFBcXh7i4uHKP169fH2vWrMGaNWvKbRMaGoqvv/664g5TmZSaFicidcnJ8ZMCMAshtMjJ8VVUoMNsXcVOnz6N8PBwpKeno2/fvpgwYQIWLlwIX19fHDx4EGPHjkVhYWG5Qdj169cRHR2N6OhobN68GQEBAbhw4QKio6Nl/x5RRRBGRESOqTYyQJa5xL6+Bmg0ZqtATKMxw9c3x6qdnNSUrZPDvn378Ntvv2HKlCk4cuQIzGYz3n77bWi1Redr69atVu1dXV1hMpmsbjtz5gwMBgMWL14slX769ddf6+YFVIJBGBERyaK2MkB+fn6Ii4tDYWEhGjXKw8yZephMGuh0AkuW5OHpp4cpZl6pWrJ1daGgoACZmZkwmUy4cuUKdu/ejUWLFqFv374YMWIETp48idu3b2P16tXo168ffvrpJ6xfv97qMcLCwnDt2jXs3bsX7du3h4eHB5o2bQpXV1esXr0a48ePx8mTJ/H666/L9CqtqapYKxEROYbyMkD2WsHo5+eH4OBgTJvmg/R0DfbvB9LTNZg2zQfBwcGKCMCAu9m64opn65zJ7t27ERwcjLCwMMTExGD//v1YtWoVvvzyS+h0OrRv3x7Lli3DkiVL8Le//Q2bN2/GokWLrB6je/fuGD9+PIYMGYKAgAAsXboUAQEB2LhxI7Zt24Y2bdpg8eLFeOutt2R6ldaYCSMiojpXlxmgxo2LLkpiGQrV6/PRr19CqYyg5RzU1ZCprc9TW/3ZuHEjNm7cWGm7KVOmYMqUKVa3DR8+3Or6unXrsG7dOqvbhg0bhmHDhlndZin2LicGYUREVCl7l42pbL6Woys+ZAoAc+f+ifT0eggLu4OQkAcAPFCnQ6Yl+1MWpQzhOhIGYUREVCF7lo1RWgZITsXPVXAw0KmTjJ0BGGDJgEEYKU7JD9/yVk85w4c0kRLYs2yM0jJARHJiEEaKU/xDessWd7z2mh5mswZarcDSpUY8/fRNfkgTyaimZSWUlgEikguDMFIkPz8/XLoEzJgB/FXYGGazBjNn+mDIEB8w/iKSBwuLEtkPS1SQYp09ezcAszCZgHPn5OkPkbOxbLSdnZ0NoPbLShA5G2bCSLFatAC0WutATKcDmjeXr09EzqKsyfgsLEpkX8yEkWI1bgy8+25R4AUU/fnOO8qr90PkiMqaZM/CokT2xSCMFG3sWCA9HX9Vuy66TkR1zzIZPyrqeykQK1lWgoiqhsORpHhKrHYtJ3sXzSSqTMnJ+FFR3yMkJAO+vjksG0OqcODAAfTq1QtXr16Fj4+PTfcJCwvD5MmTMXny5FrrF4MwIhWxZ9FMIluUNRn/+++jMHnyCuj1+Rg4cCD8/f0Z/FONjBo1Cps2bcILL7xQalPuiRMnYu3atRg5cqRNWxupCYMwIhlVNatlz6KZRLaobDK+v78/goODZeodOZImTZrgk08+wfLly+Hu7g4AuHXrFrZs2YKmTZvK3LvawSCMSCbMapEaOPsej1R3OnbsiNTUVOzYsQPPPPMMAGDHjh1o2rQpwsPDpXYFBQWYPn06PvnkE+Tl5aFz585Yvnw5HnjgAanN119/jcmTJ+PixYvo1q0bRo4cWer5Dh48iNmzZ+PXX3+Fv78//v73v2PRokXw9PSs/Rf7F07MJ5IJs1qkBpY9HjkZ37lculS0IOrSpbp93jFjxuCDDz6Qrr///vsYPXq0VZsZM2Zg+/bt2LRpE44ePYrmzZsjOjoaOTlFPwwuXryIgQMHol+/fkhOTsZzzz2HWbNmWT1GamoqYmJiMGjQIJw4cQKffvopDh48iLi4uNp/kcUwE0akYjXdPoaoPMUn2XfseAwREeeQk+PLyfhOYMMGYNy4ohqNWm1RqaC6Wpn+7LPPYvbs2Th//jwA4KeffsInn3yCAwcOAACuX7+OdevWYePGjXj88ccBAP/+97+xZ88ebNiwAdOnT8e6desQERGBt99+GwDQqlUr/Pbbb1iyZIn0PIsWLcIzzzwjTbpv0aIFVq1ahUceeQTr1q1D/fr16+T1MggjUiluH0O1qeRG22XhZHzHc+nS3QAMKPrzhReA6Oi6WaUeEBCA2NhYbNy4EUIIxMbGwt/fXzqempqK27dv48EHH5Ruc3FxQZcuXXD69GkAwOnTp9G1a1erx42MjLS6fvz4cZw4cQKbN2+WbhNCwGw2Iy0tDffee29tvLxSGIQRKURVslrlbR8TEXFONRkxltpQPp5/51PRdnF1VSpozJgx0rDgmjVrauU5rl27hhdeeAEvvvhiqWN1uQiAQRiRAlQ1q6X27WO4KIFImZSwXVxMTAwKCwuh0WgQHR1tdSwiIgKurq746aefEBoaCgC4ffs2fvnlF2lo8d5778VXX31ldb/Dhw9bXe/YsSNOnTqF5jLvg8eJ+SQrywbB5V0MBoPcXax1VdkU2TL/prLtY5Q+T4eLEoiUSQnbxel0Opw+fRqnTp2CztKRv3h6emLChAmYPn06du/ejVOnTuH555/HjRs3MPaviWvjx4/H2bNnMX36dKSkpGDLli2l6ovNnDkThw4dQlxcHJKTk3H27Fl8+eWXnJhPzoPZkCJVyWoVn6fTqFEeZs7Uw2TSQKcTWLIkD08/PUyVw3hcYECkHGPHFs0BO3euKAMmx44l3t7e5R5bvHgxzGYzhg8fjvz8fHTu3Bnffvst7rnnHgBFw4nbt2/HlClTsHr1anTp0gVvvPEGxowZIz3Gfffdhx9++AGvvPIKHn74YQghEBERgSFDhtT6ayuOQRjJxtmzISWzWuXVYSqZ1bIEWNOmAUOGWD4oNWjc2AeAT1103a64wIBIeep6u7jKKuF/8cUX0t/r16+PVatWYdWqVeW279u3L/r27Wt1W8lSFw888AC+++67ch8jPT29wj7ZA4MwIpnYI6ul9n01HWGBARFRdTEII8VwxiEpR8tqVZXaFxgQEdUEgzBSBA5JqT+rVR3cEoeInBlXR5LsqrI6kBwLt8QhImfGTBjJjkNSzodb4hDVHiFErT5+YSFw6xZQvz7gzP9F7XGeGYSR7DgkpU41qXjPLXGI7M/FxQUAcOPGDbi7u9fKc/z5J/DXto4AgNBQICCgVp5K8W7cuAHg7nmvDgZhJBtLlsMyJFVyTpglI8JsSN2oSlBljxpvDLCI7Eun08HHxwdZWVkAAA8PD2g0Grs89p07d1BYKHD+fD0Adx/z/HkBne4OXF01qFfPOUIKIQRu3LiBrKws+Pj4lCooWxXOccZIkUpmQ+bO/RPp6fUQFnYHISEPAHiA2ZA6UtWgqmSwVt7KVket8WZRPHDNyNAiLa0ewsPvICSkaI4b379U14KCggBACsTswWQyIT8/H3fu1MP16w1KHb958xrq1bsDLy+vGgUkauPj4yOd7+piEEayKv4FFRwMdOokY2ecWE2CKmdd2Vo8cK3oHDj6jg+kLBqNBsHBwWjYsCFu375tl8fMysrC7t27ce2aJzZtGllq6sjIkZvQoMF1PPXUU2jYsKFdnlPpXFxc7BJwMggjIitVCaqcudiqJSCt7Bw4ejaQlEmn09ktK+Xi4oLr169Do7mO++77vtTng0aThevXi9rVr1/fLs/pLBiEEZGkqkEVV7byHJBzqWg1M1UdgzAiklQ1oODKVp4Dcj56fT6DLzthsVYiklgCiuIqCihsLbZqMBhw+fJlXL58GUeOXMFnnxlw5MgV6TaDwVA7L6gOsOAsEVUXM2FEJKmsXEhZKhuecIYJ7ByiIaLqYBBGRFZsCShK1m4rb3jC1dVV1RPYKypBkZ2dbdWWQzREVFUMwojsrCaV5OVSlaAKqFrF+8uXLwNQ3wR2WzN4RI7O1oLZLKxddQzCiOyoZNHT8uptKW3orTrbCFW1/2qbwG5rBq8y/GIiteM2Y7WHQRiRHRX/kKooe6LEobfa/gCtznwzJagsgzdw4ED4+/uXeV9+MZGj4Pu4djAII6oFzlzEtCJqnMBeWQbP398fwcHBcnWPiFSMJSqIakFF2RNnp9fnIzz8vCoCMIAlKIio9jATRtWixsnndUlt85+oYmrM4BGR8jEIoypT6+TzuqTW+U+1wVFWVrEEBRHZG4MwqjI1Tz6vS8yeFOHKKiKisjEIo2rj5PPKMXtSRI0BlqNk8IhIuRiEUbUpofhmRRXNgbrPsPCL23Ewg0dEtY1BGFWb3JPPlbgnIb+4HQv/nYioNjEIo2qTe/K5UvcktOWL+9Il4OxZoEULoHHjOugUEREpDoMwqhElTD5XwrCoLSxDp1u2uGPGDD3MZg20WoGlS414+umbzJARETkZBmFUY3JPPpd7WNQWlqFTo9ELK1ZMhhAaAIDZrMH06d7444/3odfnO3VZj8owe0hEjoYV86nKlDb5XA0VzS1DopVV0nf2sh4lGQwGXL58GW+/nYvQUIHevYHQUIG3387F5cuXYTAY5O4iUZVcugTs31/0JxEzYVRlSpx8roRhUVvYkrVjxqcIs4fkaDZsAMaNA8xmQKsF3n0XGDtW7l6RnBiEUbUo8UtP7mFRW1S2mOHdd0147TXB+WKwLXsox8ILouq4dOluAAYU/fnCC0B0tHP/2HJ2DMKI6lh5WbuijE8IMz4lqGHOH1FFDAYDDh8GzGbr/78mE5CUZIC7uzJ/2NoLs/vl45wwUi2lzU2rCr0+H+Hh560yd5wvVjY1zPkjKo9lWP3QoU3Se9hCozHjp582IT4+3mHnN27YAISG4q/5nEXX6S5mwki1is9NK6taPqCuwqjM+JRPLXP+iEqy/HiqbCqCo/zIKp71AjgEWxkGYaRajlZ3S+7it0qnhjl/RBVR44+Jqgwlllx4MHXq3QDMwmQCzp1jEGbBIIxUSW0r52wdElXjhzQR2U5NPyaqspqzrIUHy5YJaLVFn8sWOp2Al1cWDIZ6ivhslhuDMFIlta2cq6isR3Z2Nnbs2CFdV9OHNBE5pqqu5jx7tnTWy2zWoHv3n5CYGCll92NjE5CQUPf7+ioVgzBSNTXNo3L2D5uqUvPCCyK1KyuoKm8o0WAwwNv7DrTahlZZL43GjK5dk9C1a1KZ2X2l/EiWE4MwUjXOo3JcSiwKTOQsWrTAX0OJd2/T6YDmza3bWaaGAEDfvh3K/SzmZ3LZGISR6ql9HhUzPuVjgEVU9wwGA3S6Qixd6o6ZM/UwmTTQ6QSWLDFCp7sJg+Huj5/iP5LU/lksBwZh5BDUPI+KGR8ix6W2H1nFM1sA8OKLXlJQde1aPt59t+j28uZzqfmzWA6qCcL69++P5ORkZGVl4Z577kFUVBSWLFmCkJAQAMD8+fOxYMGCUvfz8PDA9evXpevbtm3DnDlzkJ6ejhYtWmDJkiV44oknpONCCMybNw///ve/kZubiwcffBDr1q1DC0vREwA5OTmYNGkSdu7cCa1Wi0GDBmHlypVo0KCB1ObEiROYOHEifvnlFwQEBGDSpEmYMWNGbZwacgAMsIgck9p+ZJXsZ3lBFedz2YdqKub36tULW7duRUpKCrZv347U1FQMHjxYOv7yyy/j8uXLVpc2bdrgH//4h9Tm0KFDGDZsGMaOHYtjx45hwIABGDBgAE6ePCm1Wbp0KVatWoX169cjKSkJnp6eiI6Oxq1bt6Q2zzzzDH7//Xfs2bMHCQkJ+PHHHzFu3DjpeF5eHh577DGEhobiyJEjePPNNzF//ny8a/kJQURETsPPzw/BwcHlXpQSgFHdU00mbMqUKdLfQ0NDMWvWLAwYMAC3b9+Gi4sLGjRoYJWJOn78OE6dOoX169dLt61cuRIxMTGYPn06AOD111/Hnj17EB8fj/Xr10MIgRUrVuDVV1/Fk08+CQD48MMPERgYiC+++AJDhw7F6dOnsXv3bvzyyy/o3LkzAGD16tV44okn8NZbbyEkJASbN29GYWEh3n//fbi6uqJt27ZITk7GsmXLrII1qj61pfiJiIhKUk0QVlxOTg42b96M7t27w8XFpcw27733Hlq2bImHH35Yui0xMRFTp061ahcdHY0vvvgCAJCWlobMzExERUVJx/V6Pbp27YrExEQMHToUiYmJ8PHxkQIwAIiKioJWq0VSUhL+/ve/IzExET169LAKAKKjo7FkyRJcvXoV99xzT5l9LigoQEFBgXQ9Ly/P9pPiZNSW4iciImv8kayyIGzmzJmIj4/HjRs30K1bNyQkJJTZ7tatW9i8eTNmzZpldXtmZiYCAwOtbgsMDERmZqZ03HJbRW0aNmxodbxevXrw9fW1ahMeHl7qMSzHygvCFi1aVOa8NiobAywi5anKNjfkPAYOHAh/f3/pOn8kF5F1TtisWbOg0WgqvJw5c0ZqP336dBw7dgzfffcddDodRowYASFEqcf9/PPPkZ+fj5EjR9bly6mx2bNnw2g0SpeLFy/K3SUiIptt2ACEhgK9exf9uWGD3D2y3aVLwP79RX+S7WzNZoWEhHAeXBlkzYRNmzYNo0aNqrBNs2bNpL/7+/vD398fLVu2xL333osmTZrg8OHDiIyMtLrPe++9h759+5bKaAUFBeHKlStWt125cgVBQUHSccttwcHBVm3uv/9+qU1WVpbVY9y5cwc5OTlWj1PW8xR/jrK4ubnBzc2t3ONEREpV1W1ulKQqeySSNU4NqRlZg7CAgAAEBARU677mv/6nF59DBRTN69q/fz+++uqrUveJjIzE3r17MXnyZOm2PXv2SEFceHg4goKCsHfvXinoysvLQ1JSEiZMmCA9Rm5uLo4cOYJOnToBAPbt2wez2YyuXbtKbV555RVp0YDleVq1alXuUCQRkVoZDAYcPgyYzdZftCYTkJRkwNWrWmRn36PIIUo1B4+1oTqLnhhg1YBQgcOHD4vVq1eLY8eOifT0dLF3717RvXt3ERERIW7dumXV9tVXXxUhISHizp07pR7np59+EvXq1RNvvfWWOH36tJg3b55wcXERv/32m9Rm8eLFwsfHR3z55ZfixIkT4sknnxTh4eHi5s2bUpuYmBjRoUMHkZSUJA4ePChatGghhg0bJh3Pzc0VgYGBYvjw4eLkyZPik08+ER4eHuKdd96p0us2Go0CgDAajVW6HxFRXcnOzhbz588XU6a8LTQakwCEdNFoTOLRR7+VbtdqhXjvPbl7bG3fPmHVZ8tl/365eyaf7OxskZGRUe4lOztb7i4qnq3f36oIwk6cOCF69eolfH19hZubmwgLCxPjx48Xly5dsmpnMplE48aNxT//+c9yH2vr1q2iZcuWwtXVVbRt21bs2rXL6rjZbBZz5swRgYGBws3NTfTp00ekpKRYtTEYDGLYsGGiQYMGwtvbW4wePVrk5+dbtTl+/Lh46KGHhJubm2jUqJFYvHhxlV83gzAiUrqMjAwxf/58MX/+fNG//5dSwFUyALNcdDohLl6Uu9dFsrOzxa+/Zgqt1lyij2bx66+ZpYKNixeLgjal9J+Uy9bvb40QZcxsJ0XIy8uDXq+H0WiEt7e33N0hIirl8uXLVoWojca729zk5Phh06bSC6Q++8yAnj3lHcYqvj3P0aOlN57u2PEYgLvb83DeGFWFrd/fqipRQUREylZymxuNxgwhtFbXf/ppE06ezC93/8G6YOvG04WFhZw3RrVGNdsWERGRuuj1+ejXLwEaTVH0YskyWYIcJe0/qNfnIzz8fJn7JJ49ezcAszCZgHPn6qhz5LCYCSMih8biofKqKMukBkXDSVpotQ1hNmuk23U6AS+vLBgM9Rx+dSD/D9UeZsKIyGGpuXioI6koy6R0n376KRIS1qNv351WGb3Y2J1ISFiP+Ph4GAwGmXtZe/h/qHYxE0ZEDsdgMCA9/Q7GjbubvSiaxyNw//1ZCAtz/OwF2Vdl88YcEefC1T4GYUTkUCyr3tLSwmA2W6/MM5k0WL36G4SHn5d1UrgjcaZNmEsuOqgLcg4FVjQXjkGYfTAIIyKHYslK+PoaylyZ5+ubY9WOaqasbWuys7OxY8cOGXvlGOQui9GiRdHzFg/EdDqgefO664Oj45wwInJIla3MI/vx8/Oz2pzZ399f7i5VSukZvPKGAutqg3GDwQCd7jKWLs2FTldUTlSnE1iyJBc63WWHngdXl5gJIyKHpfaVeWpVnf0H65otG0/n5uZi69atddiru+QcCixeyBYAXnzxbgHea9fyYanNyyH9mmMQRkQOTY55PM7OlgDH1dVV9i9wuZ+/PAaDAd7ed2Qri1Hy3628/0Mc0q85BmFERGR3Sg1wlK54FqpvX+vtlGJjE5CQYL2dEqkbgzAiIqIyyDGsWpXtlEj9GIQRERGVQQnDqhxOd2wMwkiVuI0GlUcNk8JJPTjkR7WJQRipjty1c0jZlJC9IPvjDy9yRAzCSFW4jQbZggGWY+EPL3JULNZKqlJR7RyLS5eA/fvrrqghEdUeuYuWqlVNPgc5pF93mAkjValsGw3+YiZ74hCYvAwGAw4fBsxm68ymyQQkJRng7s6sZ1lq+jnIIf26w0wYqUZl22j89ttV/mImu9mwAQgNBXr3Lvpzwwa5e+RcLPWyDh3aJG09ZaHRmPHTT5sQHx/vcNvn1DQLZa/MYcmtqEpeGIDZBzNhpAq2bKORlhYGs3mk1f3qapsPciyceyg/SxbGsgdo8aKlxfcAdbR6WTXNQsm53RFVHYMwUgVbttHw9TVAqxUltvm4O1RJZAsOgSmPs+0BWpP3V2VTNkhZOBxJDkOvz8fcuX+UOVTpaEMWVDucdQhMDfT6fISHn3f4AKwmKpuywfet8jATRg5mQ5lDlQD3WqPKOesQGKmfLVM2AH4OKg2DMHI45W3zwS9OqgpnGwIjdbNlykZZ7UheDMKIyOnYWnqC+/YRUW3inDAiciosPUFESsEgjIicBquvqwertpMz4HAkqQI/aKmmbCk9QcrBqu3kDBiEkSpU9IGcnZ2NHTt2yNArspXc2/9YVo4ZjV7QaCZDiLuDAJbSEydP5mPIkCF13zkqFwMscnQMwkg1+IGsTkrYz9PW0hNCCJsej5lZIrIHBmGkepw7olxK3P6notITPj4+HAIjVeLnoDoxCCPV49yR2lOTYUQlb/9jKT1hNHohLS0Mvr4GKRjj+4TUiJ+DFZN7SkR5GISRQ6jOB4tS/1MqRU2GEW2dgyVn9e6jRzuUGpYkUjNnDbAqo4QpEeVhiQpySqwVVbGalnIoOQfLsg+jUrb/MRq9pAAMAITQYufOvsjI4EcikSNRelkaZsLI6ShxnpKS2HsYUYnb/+Tk+Fll54CiQOz48esICzMwo0DkIM6evftZb2EyAefOKePznj/7yOlU9J/S2VmGEQ8d2iRlrywsw4jx8fEwGAxVely9Ph/h4ecVEYABgK+voczXd/LkF9V6fUSkTC1aFA1BFqfTAc2by9OfkhiEkVMxGAzw9r4Crda6FIFOJ+DldcXpv3yVPoxYXSVXhDna6yOisjVuXDQHTKcruq7TAe+8o4wsGMDhSHIiliwPAPTtaz0pOzY2AQkJxwBA1sniSqLEYcTqsqwcy8jIkAr7OtLrI6LSDAYDCgsL8cQTQFKSFunp9RAWdgchIWZcvqyM1aIMwshpFM9uVPQFzCzIXZZSDo7Az8+v1L+tI70+Irqr+I/u4k6etL4u949uBmFOzNlLNPALmIjIMdn6Y1ruH92cE+akWKKBahOrdxMRVY6ZMCfEEg1U21i9m4iocgzCnJDS66aQY2CARURUMQ5HOiGl100h+Tj6MKKjvz4iUhdmwpyMwWCATleIpUvdMXOmHiaTBjqdwJIlRuh0N2EwcIjImTn6MKKjvz4iUhcGYU6k5JLdF1/0kko0XLuWj3ffLbpd7iW7tYVZENs44r99cY7++ki9nH3FujNiEOZEbK2RJPeS3drCLAgRKdWGDXcXTGm1RVXex46Vu1fqpZYf3QzCyKkwwCIipeGKdftTy49uBmFEJBsOv5CzMxgMOHwYMJutgwGTCUhKMsDdnT8eq0sN542rI4nI7i5dAvbvL/qzPCwYTM7OMk/30KFN0mbyFhqNGT/9tAnx8fEwGAwy9ZBqG4MwIrIrW4Kr8oZfKgraiByNZahMr89Hv34JUiCm0ZjRr1+CNGfXUefpEocjiciObJnbwuEXotI6djyGiIhz0op17mvrHBiEEZFd2BJcAUB8fDyMRi9oNJMhxN1kvGX45eTJfIctk0JUkfJWrJPj4nCkE1HLkl1SH1vntmRlZQHg8AsREcBMmFNRy5JdUp+Sc1t27uwLIbSlgqs7d+5I9+HwS93hKlQiZWIQ5mQYYFFtq0pwxeGX2scioETKZXMQlpeXZ/ODent7V6szROQYGFzJz2AwID39DsaNawizWQPAslBC4P77sxAWVo8/yohkZnMQ5uPjA41GU2EbIQQ0Gg1MJlONO0ZERNVjmaOXlhYGs3mk1TGTSYPVq79BePh5LoCQmTPN0+WQeNlsDsL2799fm/0gIiI7sczR8/U1QKMxl1qF6uubY9WO5OEs83Q5JF4+m4OwRx55pDb7QUREdlbZQgmSn9oDrMpwX8yKVXtifm5uLjZs2IDTp08DANq2bYsxY8ZAr9fbrXNE5FhcXFxsaucIwy9KwVWoJKezZ+8GYBYmE3DuHIMwoJpB2K+//oro6Gi4u7ujS5cuAIBly5Zh4cKF+O6779CxY0e7dpKIlM3WoCkgIMAphl+UhgslSA4GgwHe3neg1d5dHAIAOp2Al1cWDAYuDqlWEDZlyhT0798f//73v1GvXtFD3LlzB8899xwmT56MH3/80a6dJCJ5VTap1lnmtsiBE5pJjSyLQwCgb98OVkPisbEJSEg4BgBOvzik2pmw4gEYANSrVw8zZsxA586d7dY5IpKfrZNqnfmD1N4MBgMKCwuxZYs7ZszQw2zWQKsVWLrUiKefvsmAlhSv+A+yiobEnX1xSLWCMG9vb1y4cAGtW7e2uv3ixYvw8vKyS8eISF6sMyUPSwbBaPTCihWTIYTl3Gswfbo3/vjjfej13F+T1IVD4mWr1t6RQ4YMwdixY/Hpp5/i4sWLuHjxIj755BM899xzGDZsmL37SER1zBIIrF6922ouB3C3zlR8fDwMBoNMPXRclsxATo6fVWkJABBCi5wcX6t2ZXGm+lNEalatIOytt97CwIEDMWLECISFhSEsLAyjRo3C4MGDsWTJEnv3EQDQv39/NG3aFPXr10dwcDCGDx+OjIwMqzbffvstunXrBi8vLwQEBGDQoEFIT0+3anPgwAF07NgRbm5uaN68OTZu3FjqudasWYOwsDDUr18fXbt2xc8//2x1/NatW5g4cSL8/PzQoEEDDBo0CFeuXLFqc+HCBcTGxsLDwwMNGzbE9OnTrfbNI1KyknWmimOdqbpR2bmviGWO3rhx48q9MJNGJL9qBWGurq5YuXIlrl69iuTkZCQnJyMnJwfLly+Hm5ubvfsIAOjVqxe2bt2KlJQUbN++HampqRg8eLB0PC0tDU8++SR69+6N5ORkfPvtt8jOzsbAgQOt2sTGxqJXr15ITk7G5MmT8dxzz+Hbb7+V2nz66aeYOnUq5s2bh6NHj6J9+/aIjo5GVlaW1GbKlCnYuXMntm3bhh9++AEZGRlWz2MymRAbG4vCwkIcOnQImzZtwsaNGzF37txaOTeO6NIlYP/+oj9JPpY6U5ZggHWm6k5Nz72fnx+Cg4PLvTAAI5KfRggh5O5EdXz11VcYMGAACgoK4OLigs8++wzDhg1DQUEBtNqi2HLnzp148sknpTYzZ87Erl27cPLkSelxhg4ditzcXOzevRsA0LVrVzzwwAPSqg6z2YwmTZpg0qRJmDVrFoxGIwICArBlyxYpCDxz5gzuvfdeJCYmolu3bvjmm2/Qt29fZGRkIDAwEACwfv16zJw5E3/++afNQwB5eXnQ6/UwGo1OtR8nqyvL7/Lly3j33Xel60ajV5mTaseNG4fg4GA5uuiweO7JEZR8H5fHUd/Htn5/VysTduvWLbz55pt44okn0LlzZ3Ts2NHqUttycnKwefNmdO/eXSr+2KlTJ2i1WnzwwQcwmUwwGo346KOPEBUVJbVJTExEVFSU1WNFR0cjMTERQNHQypEjR6zaaLVaREVFSW2OHDmC27dvW7Vp3bo1mjZtKrVJTExEu3btpADM8jx5eXn4/fffa+GMOI7yqiszI1YzNc0s6vX5CA8/zwyYDHjuiRxXtVZHjh07Ft999x0GDx6MLl26VLqxt73MnDkT8fHxuHHjBrp164aEhATpWHh4OL777js89dRTeOGFF2AymRAZGYmvv/5aapOZmWkVGAFAYGAg8vLycPPmTVy9ehUmk6nMNmfOnJEew9XVFT4+PqXaZGZmVvg8lmPlKSgoQEFBgXQ9Ly+vslPicFhd2f6YWSSiusbFIbapVhCWkJCAr7/+Gg8++GCNnnzWrFmVTuQ/ffq0VApj+vTpGDt2LM6fP48FCxZgxIgRSEhIgEajQWZmJp5//nmMHDkSw4YNQ35+PubOnYvBgwdjz549dRYo1sSiRYuwYMECubshG1ZXti+WmCAiubCAs22qFYQ1atTILvXApk2bhlGjRlXYplmzZtLf/f394e/vj5YtW+Lee+9FkyZNcPjwYURGRmLNmjXQ6/VYunSp1P4///kPmjRpgqSkJHTr1g1BQUGlVjFeuXIF3t7ecHd3h06ng06nK7NNUFAQACAoKAiFhYXIzc21yoaVbFNyRaXlMS1tyjJ79mxMnTpVup6Xl4cmTZpUeH4cBasr25flfKalhcFsHml1zFJiIjz8PM9nJeSoVs8MAjkKfrZUrlpB2Ntvv42ZM2di/fr1CA0NrfaTBwQEICAgoFr3Nf81ZmUZvrtx44Y0Id9Cp9NZtS05PAkAe/bsQWRkJICiD7VOnTph7969GDBggHTfvXv3Ii4uDkDR3DMXFxfs3bsXgwYNAgCkpKTgwoUL0uNERkZi4cKFyMrKQsOGDaXn8fb2Rps2bcp9TW5ubrW2ulTpWF3ZvkqWmCheb8qWEhPOHAjIXa2eGQQi51GtIKxz5864desWmjVrBg8PD2niu0VOTuV1bKoiKSkJv/zyCx566CHcc889SE1NxZw5cxARESEFPrGxsVi+fDlee+01aTjyn//8J0JDQ9GhQwcAwPjx4xEfH48ZM2ZgzJgx2LdvH7Zu3Ypdu3ZJzzV16lSMHDkSnTt3RpcuXbBixQpcv34do0ePBgDo9XqMHTsWU6dOha+vL7y9vTFp0iRERkaiW7duAIDHHnsMbdq0wfDhw7F06VJkZmbi1VdfxcSJE502yKoqVle2D0uZg+KZRVvKHDhrIKCUavWOdl6JqGzVCsKGDRuGP/74A2+88QYCAwNrfb6Vh4cHduzYgXnz5uH69esIDg5GTEwMXn31VSmo6d27N7Zs2YKlS5di6dKl8PDwQGRkJHbv3g13d3cARZP3d+3ahSlTpmDlypVo3Lgx3nvvPURHR0vPNWTIEPz555+YO3cuMjMzcf/992P37t1WE+2XL18OrVaLQYMGoaCgANHR0Vi7dq10XKfTISEhARMmTEBkZCQ8PT0xcuRIvPbaa7V6nojKUlFmsSLOGAjYUq1er89nRpaomrghvbVqBWGHDh1CYmIi2rdvb+/+lKldu3bYt29fpe2GDh2KoUOHVtimZ8+eOHbsWIVt4uLipOHHstSvXx9r1qzBmjVrym0TGhpaauiTyF6q+kHGzGLVVDaMS0RVx5XapVWrTljr1q1x8+ZNe/eFiGywYQMQGgr07l3054YNcvfI8XCnACL7Yg3IslUrE7Z48WJMmzYNCxcuRLt27UrNCXOm6u5EdYUlJ+pWdYdxiciawWDA4cOA2Wz9+WQyAUlJBri7O+f0B6CaQVhMTAwAoE+fPla3CyGg0WhgMplq3jMikrDkhDw4jEtUM8UXu2g0k0sN8f/00yacPFn7i12UqlpB2P79++3dD3JyzlISobqTUqtacsJZzicRKZvlM6myldrOutilWkHYI488YlO7//u//8Nrr70Gf3//6jwNORFnKIlgj0mptpaccIbzSUTqwiH+0qoVhNnqP//5D15++WUGYWQTRw0I7D2Xy9YPMkc9n7WJGUSi2sUhfmu1GoQJIWrz4YkUr7bmcvGDrHYwg0hEdalWgzAiZ1fT7YOo7tk7wLJsgwQAGRlapKXVQ3j4HYSEFK3VZ1BH5LwYhBHVgepuH0TqVnxj+qNHO5T69+/YkRvTEzkzBmFEdYSTUp2PJQNmNHpJARhQtAXSzp19ERFxjtsgETkxBmFEdai6c7k4YVzdKtuLkshR8bOrYrUahD377LOsnk9kB5wwrlzF53yVlJ2dDYB7UZIy1cVm2vzsqli1g7Dc3Fz8/PPPyMrKgtmyGdRfRowYAQBYt25dzXpHRBJn/ZBSsuJzvoCiYcecHD/4+hqsMlycE0hKYfnRsGWLO2bM0MNs1kCrFVi61Iinn75ZKwERP7vKV60gbOfOnXjmmWdw7do1eHt7Q6PRSMc0Go0UhBER1aaKslBA7f/CLv7cFU28BzgnkORXfAuhFSsmQwhL3UINpk/3xh9/vA+93nm3EJJDtYKwadOmYcyYMXjjjTfg4eFh7z4ROQzOh6g9tmah6uILpbKJ9xas70ZysvxoqGyOoqMvFKmLYVhbVSsI++OPP/Diiy8yACOqBOdD1B5bs1B18YXCifekJs48R9Ee28fZk7byJqVFR0fj119/tXdfiBySn58fgoODy70wAKuZ8rJQRqNXnfXB8qVWXFW+1JgJpbpkmaNoec9qNGZERibK3Kvad+nS3QAMsGwfV3S7XGzOhH311VfS32NjYzF9+nScOnUK7dq1g4uLi1Xb/v3726+HREQVUEIWqrKJ9wMHDix3D11mQkkOljmKSUldcehQJA4dehCJiZHo1y8B2dnZDve+NBgMOHwYMJutX5PJBCQlGeDuLs8CApuDsAEDBpS67bXXXit1m0ajgclkqlGniEj96mrSvFKGViqaeO/v74/g4OA67Q+RLRITI2EZFLs7l3GFQ03QL74gQaOZXOqz4qefNuHkSXler81BWMkyFERE5Sk5ab489vjQU1L5B068JzVxlgn6ltdR2WeFHK+3WhPzP/zwQwwZMgRubm5WtxcWFuKTTz5hiQoiJ1fyw6y8lYv2+tCTq/wDV7+Smikli1yXlFYqplpB2OjRoxETE4OGDRta3Z6fn4/Ro0czCCMiSWX1s+xFjiwUV7+SEhQf+s/I0CItrR7Cw+8gJKRoBMvyHiz5Y0BJWeS6pKSMdbWCMCGEVYFWi0uXLkGv19e4U0TkGGytn1UdSslCMcAiORUf+q/oB49l6D8uLg4ZGRnYsWMHAOVlhpxNlYKwDh06QKPRQKPRoE+fPqhX7+7dTSYT0tLSEBMTY/dOEpE61ebKRWahiO4O6Vf2g8fSzs/Pr9T/GSVlhpxNlYIwywrJ5ORkREdHo0GDBtIxV1dXhIWFYdCgQXbtIBGpV23POWGApWxybyvlTJRQqoWqrkpB2Lx58wAAYWFhGDJkCOrXr18rnSIix+Csc06oblfIykkpgaYzTrJ3BNWaEzZy5EgARWnQrKysUuUrmjZtWvOeEZFDqKs5J0r5MqQitq58VXMZBCXtX1qVHzxKmU9ZV5T8eqsVhJ09exZjxozBoUOHrG63TNhnsVYi51bWKqyafBlUxlmyLmpWXoCiZkravxSw/QePs82nVPLrrVYQNmrUKNSrVw8JCQkIDg4uc6UkETmvuv7Qq+u6ZFQ1dVWmRC61uQq4qmydZO8oAZatlPp6qxWEJScn48iRI2jdurW9+0NEDkKuDz1H/8JXGyUFKLWFk+KpurSVNymtTZs2yM7OtndfiIhqpLwvfKPRS+aeOa+KAhRHYZkUX1xdTYpX8nwnqly1MmFLlizBjBkz8MYbb6Bdu3ZwcXGxOu7t7W2XzhERVQUzEsrjDKv25FwFrOT5TlS5agVhUVFRAIDevXtbzQfjxHwikpMzfOGrjbOUKZGz8jwDLPWqVhC2f/9+e/eDiKjGnOULXw2KD39VFKA40jAZK89TVVUrCHvkkUfw3//+F++88w5SU1Px2WefoVGjRvjoo48QHh5u7z4SEdmMe+EpgzMMk3E+FtVUtYKw7du3Y/jw4XjmmWdw7NgxFBQUAACMRiPeeOMNfP3113btJBFRReq6LhnZRs0Bli2cIdCk2qURQoiq3qlDhw6YMmUKRowYAS8vLxw/fhzNmjXDsWPH8PjjjyMzM7M2+up08vLyoNfrYTQaudiBqBKsmE9ESmHr93e1MmEpKSno0aNHqdv1ej1yc3Or85BERDXCAIuI1KZaQVhQUBDOnTuHsLAwq9sPHjyIZs2a2aNf5KSYzSAiImdRrSDs+eefx0svvYT3338fGo0GGRkZSExMxMsvv4w5c+bYu4/kJJS0GS4REVFtq1YQNmvWLJjNZvTp0wc3btxAjx494ObmhpdffhmTJk2ydx/JSShtM1wiorrAEQDnVa0gTKPR4JVXXsH06dNx7tw5XLt2DW3atEGDBg3s3T9yQs6w1xwREVB6BKA8HAFwTNUKwixcXV3Rpk0be/WFCAC3niEi51EyA1beNAyOADimGgVhRLWhsq1nSm4ez1Q9ETmCiqZhkGNiEOYk1DTnoLKtZ3bs2FHqPkzVE5GacRqGc2IQ5gTUOOegqlvPMFVPRGrGaRjOiUGYE1DrnIOytp4pr+9ERGpW2TQMckwMwpyMkuccVLavn5L7TkRUE5VNwyDHxCDMiSh9zkFZm+FmZ2djx44diu87EVFNVXUaBqkfgzAnooY5B+XNSVND34mIqqrkCEBZ0zDKakeOgUGYE1HznAM1952IqDxljQCUpKTV62RfDMKciJrnHKi570REFWGA5bwYhDkZtc05KJ6Cr6jvTNUTEZHaMAhzAmqec8BUPREROSqNEELI3QkqW15eHvR6PYxGI7y9vWv0WGqqmE9ERKRmtn5/MxPmJBhgERERKYu28iZEREREZG8MwoiIiIhkwCCMiIiISAacE0ZENcaFH0REVccgjIhqxGAwID4+vtJ2cXFxDMSIiIrhcCQR1UhFGbDqtCMichbMhBERESkUh/orV/wcZWRokZZWD+HhdxASYgag7HPEIIyIiEiBONRfueLn6OjRDqX2F+7Y8RgA5Z4jBmEk4S8uIiLl4FB/5Syv3Wj0kgIwABBCi507+yIi4hz0+nzFniMGYQSAv7hIefijgMia0eiFnBw/+Poaytz/15nl5PhJAZiFEFrk5Pgq+lwxCCMA/MVF9mOPLwr+KCCyVtFQGwG+vgZoNGarQEyjMcPXN0fGXlVONasj+/fvj6ZNm6J+/foIDg7G8OHDkZGRYdVm69atuP/+++Hh4YHQ0FC8+eabpR7nwIED6NixI9zc3NC8eXNs3LixVJs1a9YgLCwM9evXR9euXfHzzz9bHb916xYmTpwIPz8/NGjQAIMGDcKVK1es2ly4cAGxsbHw8PBAw4YNMX36dNy5c6fmJ4JIwY4e7YAVKyZj06aRWLFiMo4e7VCtx+GPAqK7yhtqMxq9ZO6Zcuj1+ejXLwEaTdFkfEugquQsGKCiIKxXr17YunUrUlJSsH37dqSmpmLw4MHS8W+++QbPPPMMxo8fj5MnT2Lt2rVYvny51a/ptLQ0xMbGolevXkhOTsbkyZPx3HPP4dtvv5XafPrpp5g6dSrmzZuHo0ePon379oiOjkZWVpbUZsqUKdi5cye2bduGH374ARkZGRg4cKB03GQyITY2FoWFhTh06BA2bdqEjRs3Yu7cubV8lojqnqurK4DKvygs7YioaioaaqO7OnY8hsmTV2DkyI2YPHmFKjKFqgnCpkyZgm7duiE0NBTdu3fHrFmzcPjwYdy+fRsA8NFHH2HAgAEYP348mjVrhtjYWMyePRtLliyBEAIAsH79eoSHh+Ptt9/Gvffei7i4OAwePBjLly+XnmfZsmV4/vnnMXr0aLRp0wbr16+Hh4cH3n//fQCA0WjEhg0bsGzZMvTu3RudOnXCBx98gEOHDuHw4cMAgO+++w6nTp3Cf/7zH9x///14/PHH8frrr2PNmjX85U4Ox8/PD3FxcejefWSZXxQPPjiSw4ZENWAZaitODUNtctDr8xEefl7xGTAL1QRhxeXk5GDz5s3o3r07XFxcAAAFBQWoX7++VTt3d3dcunQJ58+fBwAkJiYiKirKqk10dDQSExMBFA1tHDlyxKqNVqtFVFSU1ObIkSO4ffu2VZvWrVujadOmUpvExES0a9cOgYGBVs+Tl5eH33//vdzXVVBQgLy8PKsLkRr4+fmhWzc/aEt8ouh0QNeufgzAiGpArUNtVDlVTcyfOXMm4uPjcePGDXTr1g0JCQnSsejoaEyZMgWjRo1Cr169cO7cObz99tsAgMuXLyMsLAyZmZlWgREABAYGIi8vDzdv3sTVq1dhMpnKbHPmzBkAQGZmJlxdXeHj41OqTWZmptSmrMewHCvPokWLsGDBgiqckdrDVThUVY0bA+++C7zwAmAyFQVg77xTdLvacaUmyaH4EH7HjscQEXEOOTm+8PXNsfpcduahfltfu1LPkaxB2KxZs7BkyZIK25w+fRqtW7cGAEyfPh1jx47F+fPnsWDBAowYMQIJCQnQaDR4/vnnkZqair59++L27dvw9vbGSy+9hPnz50Nb8ue5Qs2ePRtTp06Vrufl5aFJkyZ13g+uwqHqGjsWiI4Gzp0Dmje3XwAm548CrtQkuViG+vkDoHxqP0eyBmHTpk3DqFGjKmzTrFkz6e/+/v7w9/dHy5Ytce+996JJkyY4fPgwIiMjodFosGTJErzxxhvIzMxEQEAA9u7da/UYQUFBpVYxXrlyBd7e3nB3d4dOp4NOpyuzTVBQkPQYhYWFyM3NtcqGlWxTckWl5TEtbcri5uYGNze3Cs9HbalscrWl4J1Sf02QcjRubN/sl9w/CrhSk+Sk1OBBSdR8jmQNwgICAhAQEFCt+5rNRWPjBQUFVrfrdDo0atQIAPDxxx8jMjJSeo7IyEh8/fXXVu337NmDyMhIAEWBSKdOnbB3714MGDBAep69e/ciLi4OANCpUye4uLhg7969GDRoEAAgJSUFFy5ckB4nMjISCxcuRFZWFho2bCg9j7e3N9q0aVOt11vbLL8m9u8Hli8ve3J1z57qfrOTevBHgWPhcC5R2VQxJywpKQm//PILHnroIdxzzz1ITU3FnDlzEBERIQU+2dnZ+Oyzz9CzZ0/cunULH3zwgVRCwmL8+PGIj4/HjBkzMGbMGOzbtw9bt27Frl27pDZTp07FyJEj0blzZ3Tp0gUrVqzA9evXMXr0aACAXq/H2LFjMXXqVPj6+sLb2xuTJk1CZGQkunXrBgB47LHH0KZNGwwfPhxLly5FZmYmXn31VUycOFG2TJctiiZXA1otYC62EOfu5Gr5+kbORY0/CrKzs6W/M6i4i8O51cPA1TmoIgjz8PDAjh07MG/ePFy/fh3BwcGIiYnBq6++ahXUbNq0CS+//DKEEIiMjMSBAwfQpUsX6Xh4eDh27dqFKVOmYOXKlWjcuDHee+89REdHS22GDBmCP//8E3PnzkVmZibuv/9+7N6922qi/fLly6HVajFo0CAUFBQgOjoaa9eulY7rdDokJCRgwoQJiIyMhKenJ0aOHInXXnutls9UzTny5GpSF7X9KNixY4fVdQYVRTicW3UMXJ2HRliKaJHi5OXlQa/Xw2g0wtvbu06f+9Il+0+uJqqODRtK/ygYO7bunv/y5ct49913q3y/cePGITg4uBZ6pC62nj+er7t4ztTP1u9vVWTCqO7Ze3I11YwzD03U1orL6mL5FiKyFwZhRArHoQnl/CiQe6UmOScG/o6LQRiRwnFOjbxsXalJVBsY+Ds2dVQxJSKSSWV7Y3IT5aoxGr2QlhYmbexO5Ssv8Oe5cxzMhBERVaK8lZrcRLlqmNWpmpwcv3IDf2ZfHQMzYURENrCUb9HpihaUW4IIAMzsVKCy4VzLeWPh3dJ8fQ3Spt0WDPwdCzNhREQ2GjsW6NIlF2+//SV8fXOQmtocK1ZMLjOz4wxBha2rdtVWeFdulveOXp+Pfv0SSmUPLVkwZ3iPOTrWCVMwOeuEkXKwZpDyGAwGpKffQZcuDWE2a6TbdTqBpKQshIXVc/igoqqrdi9dAkJDSxfeTU9XxspXpSke4GZkaJGeXg9hYXcQElJ0Ah25LI0jYJ0wIgfF5ery8/Pzw4kT1gEFAJhMGuTnByqumn9tqOqqXe7GUTXFA6zgYKBTJxk7Q7WGQRiRwhUfcqhoYjOHJupWixZlb6nUvLl8fVI6pRXeJZIbgzAihbPMqUlPv4PXXmsIIYqGv4TQYteufpg7t6tTDH8pDTM71aOUwrtESsAgjEgFOPylTMzsKIszb+9F6sQgjEglOPylTMzsKAO39yI1Yp0wIpW4W6eq6DqHv0hJ5K6Ez+29SI2YCSNSEQ5/kRKxEj5R9TAII1IZDn+REti6sTlX7RKVj0EYERFVmdIr4bOeHqkBgzAiIqqW8jY21+mArl39ZFu1y+FRUgsGYUREKqSUcgxKq5dW2fAokZIwCCMiUhmllWNQ0oKRnBw/KQCzEEKLnBxfBmGkOAzCiIhURonlGOReMGJZAODra4BGY7YKxDQaM3x9c6zaESkBgzAiIlKFyoZgn332WXh4eKBRozzMnKmHyaSBTiewZEkenn56GCvmk+IwCCMiIsWryhDstGk+GDLEMjyqQePGPgB8aruLqqWU+YXOiEEYEREpXlWHYOUeHlULpc0vdDbctoiISOXk3jKI1KtkcFvee4nbPdUOZsKIiFSMNbHIXvheqnvMhBERqVR5NbGcISPG7J99OfN7SU7MhBERqYylzEJlNbEctRwDMzb2x/pq8mAQRkSkMpZ9G9PT7+CjjwTMZo10TKcTmDTpcYSF1XPIidSsiF87KquvRrWDw5FERCrk5+eHTp0C8e67Guh0RbcVbRmkQadOgQ4ZgAEVZ2yo+vT6fPTrlwCNpmgTUEuGkYFt7WImjIhIxZS0ZVBtYkX82tex4zFERJxDTo4vfH1zGIDVAQZhRFRlLO6oLM5QE8syBFtYWMiK+HZUMmjV6/PLDL4Y3NYOjRBCyN0JKlteXh70ej2MRiO8vb3l7g4RABZ3JGW4dMnxs391hT+q7M/W729mwoioSpS4eTQ5H2fI/tUVBljyYRBGRJUq/ks5Oztb5t4QETkGBmFEVCFbhx+JiKhqWKKCiCrEYUUiotrBIIyIaoTbxxARVQ+HI4mo2rh9DBFR9TETRkTVwg1/iYhqhpkwIqoSo9ELOTl+uH7dwyk3jyYishcGYURks+LDj4AZgADgPJtHExHZE4MwIrJJyeHHotkMZmg0AkJoodMJafNoInthNXdyZAzCiKhClmHFnBy/UsOPgBaDBm2Fp+cNTJv2JNq1u6fuO0gOi1tkkaNjEEZEFbJsnJyefgcffSRgNlsPP86a9chfw48MwMi+SmbALPMRfX0NVptMs5YdqRWDMCKqlJ+fH/z8gHffBV54ATCZAJ0OHH6kOsNyKOSIGIQRkc3GjgWio4Fz54DmzbmBMtWN8sqhREScs8qIEakNgzByWJzQWzsaN2bwRXWrrPmIxcuhEFXHpUvA2bNAixbyfaYxCCOHxAm9RI7D19cAjcZsFYhpNGb4+ubI2CtSsw0bgHHjALMZ0GqLplqMHVv3/WDFfHJItk7U5YReIuXT6/PRr18CNBozAEhzwpgFo6oyGAw4cuQKxo0TMBe9nWA2Ay+8IHDkyBUYDIY67Q8zYeQUyltVRUTq0LHjMUREnENOji98fXP4/5iqzDJCkpYWBrN5pNUxk0mD1au/QXj4+TodIWEQRg6Pq6pqjxLmVJDjKrn1lV6fX2bwxS2yyBaWkY/KhrfrcoSEQRg5NK6qsj/LgoctW9wxY4YeZrMGWq3A0qVGPP30TS54ILux1KjjAhuyJ8vwdskf53J8JzAII4fGVVX2ZUnnG41eWLFiMoQoKtxqNmswfbo3/vjjfej1+VzwQHbD9xHVBqUMbzMII4fGVVX2ZclIVBbccsEDESldecPbdYmrI8mhcVVV7bAEt8UxuCUiqhpmwsghFZ+oW1HamRN6q0dJcyqIiNSKQRg5JE7orX1KmVNBRKRWDMLIYTHAqn1KmFNBRGQLW0c+6nKEhEEYEREROTwljpAwCCMiIiKnoLQREq6OJCKbKTGdT0SkVsyEEZHNlJjOJyJSKwZhRFQlDLCIiOyDw5FEREREMmAQRkRERCQDBmFEREREMlBdEFZQUID7778fGo0GycnJVsdOnDiBhx9+GPXr10eTJk2wdOnSUvfftm0bWrdujfr166Ndu3b4+uuvrY4LITB37lwEBwfD3d0dUVFROHv2rFWbnJwcPPPMM/D29oaPjw/Gjh2La9euVbkvRERE5LxUF4TNmDEDISEhpW7Py8vDY489htDQUBw5cgRvvvkm5s+fj3fffVdqc+jQIQwbNgxjx47FsWPHMGDAAAwYMAAnT56U2ixduhSrVq3C+vXrkZSUBE9PT0RHR+PWrVtSm2eeeQa///479uzZg4SEBPz4448YN25clfpCRERETk6oyNdffy1at24tfv/9dwFAHDt2TDq2du1acc8994iCggLptpkzZ4pWrVpJ15966ikRGxtr9Zhdu3YVL7zwghBCCLPZLIKCgsSbb74pHc/NzRVubm7i448/FkIIcerUKQFA/PLLL1Kbb775Rmg0GvHHH3/Y3BdbGI1GAUAYjcYq3Y+IiIjkY+v3t2oyYVeuXMHzzz+Pjz76CB4eHqWOJyYmokePHlZFIqOjo5GSkoKrV69KbaKioqzuFx0djcTERABAWloaMjMzrdro9Xp07dpVapOYmAgfHx907txZahMVFQWtVoukpCSb+1KWgoIC5OXlWV2IiIjIMakiCBNCYNSoURg/frxV8FNcZmYmAgMDrW6zXM/MzKywTfHjxe9XXpuGDRtaHa9Xrx58fX0rfZ7iz1GWRYsWQa/XS5cmTZqU25aIiIjUTdYgbNasWdBoNBVezpw5g9WrVyM/Px+zZ8+Ws7u1bvbs2TAajdLl4sWLcneJiIiIaomsFfOnTZuGUaNGVdimWbNm2LdvHxITE+Hm5mZ1rHPnznjmmWewadMmBAUF4cqVK1bHLdeDgoKkP8tqU/y45bbg4GCrNvfff7/UJisry+ox7ty5g5ycnEqfp/hzlMXNza3UayQiIiLHJGsmLCAgAK1bt67w4urqilWrVuH48eNITk5GcnKyVFbi008/xcKFCwEAkZGR+PHHH3H79m3p8ffs2YNWrVrhnnvukdrs3bvXqg979uxBZGQkACA8PBxBQUFWbfLy8pCUlCS1iYyMRG5uLo4cOSK12bdvH8xmM7p27WpzX4iInNWlS8D+/UV/Ejm1ulknYF9paWmlVkfm5uaKwMBAMXz4cHHy5EnxySefCA8PD/HOO+9IbX766SdRr1498dZbb4nTp0+LefPmCRcXF/Hbb79JbRYvXix8fHzEl19+KU6cOCGefPJJER4eLm7evCm1iYmJER06dBBJSUni4MGDokWLFmLYsGFV6ostuDqSiBzNe+8JodUKART9+d57cveIyP5s/f52mCBMCCGOHz8uHnroIeHm5iYaNWokFi9eXOq+W7duFS1bthSurq6ibdu2YteuXVbHzWazmDNnjggMDBRubm6iT58+IiUlxaqNwWAQw4YNEw0aNBDe3t5i9OjRIj8/v8p9qQyDMCJyJBcv3g3ALBedruh2Ikdi6/e3Rggh5MzEUfny8vKg1+thNBrh7e0td3eISEUuXQLOngVatAAaN5a7N0X27wd69y779p4967w7RLXG1u9vVZSoICIi223YAISGFgU8oaFF15WgRQtAW+JbR6cDmjeXpz9EcmMQRkTkQC5dAsaNA8zmoutmM/DCC8qYBN+4MfDuu0WBF1D055Qp8vaJSE4MwoiIHMjZs3cDMAuTCTh3Tp7+WBgMBly+fBlPPHEZSUlXMH78NZjNAm+9BYSGCqxceU3eDhLJQNY6YUREZF+WIb/igZjcQ34GgwHx8fHSdaPRC++8MxlCaAAAZrMGU6Z4oHfvq2jXjmV8yHkwE0ZE5EDKGvJ75x15J+cXFhZaXc/J8UPJrYuF0OJ//yuRwiNycMyEERE5mLFjgejooiHI5s2VszrSwtfXAI3GbBWIaTRmhIXdkbFXRHWPmTAiIgfUuHFR2QelBWAAoNfno1+/BGg0RZkvjcaMfv0SEBLCTBg5F2bCiIgchMFgKDX0V5yrqyv8/PzqsEfl69jxGCIiziEnxxe+vjnQ6/MBPCB3txRNibXfqGYYhBEROYCSk9/LExcXp5hATK/P/yv4KpKdna2oQFFJNmy4W3pEqy2a9zd2rNy9opricCQRkQOoKANWnXZy2LFjB+Lj42EwGOTuiqJUVvuNG6KrF4MwIiJSFCUHinKoqPabUndHINswCCMiolrl6uoqdxdUrbztnjw9lbs7AtmGQRgREdUqPz8/xMXFYeDAgXJ3RZXKq/127Zoyd0cg23FiPhER1To/Pz8OM1aDZcXrE08ASUlapKfXQ1jYHYSEmJGRoYVW2xBms0ZqL/fuCFQ1DMKIiIgUqLwVrydP3v17374dsGtXP5hMGkXsjkBVwyCMiIhIgWzJHHbseAxz53ZFfn6gIndHoIoxCCMicgC2Tn7nJHnH4+qahVatiiaHXb5suY311tSAQRgRkQOwTH5XcsV8Boq1Y8eOHWXerqTCvFQ2BmFERA5C6V+4aggUHQkXQigfgzAiIqozDLCI7mKdMCIiIiIZMAgjIiIikgGDMCIiIgXiAgXHxzlhREREClTeQobs7OxyV0SSujAIIyIiUiguZHBsHI4kIiJSEdZbcxzMhBEREakI6605DgZhREREKsMAyzFwOJKIiIhIBgzCiIiIiGTAIIyIiIhIBgzCiIiIiGTAIIyIiIhIBgzCiIiIiGTAIIyIiIhIBgzCiIiIiGTAIIyIiIhIBqyYr2BCCABAXl6ezD0hIiIiW1m+ty3f4+VhEKZg+fn5AIAmTZrI3BMiIiKqqvz8fOj1+nKPa0RlYRrJxmw2IyMjA15eXtBoNHJ3p87k5eWhSZMmuHjxIry9veXujqrxXNoHz6P98FzaD8+lfdTGeRRCID8/HyEhIdBqy5/5xUyYgmm1WjRu3FjubsjG29ubHyx2wnNpHzyP9sNzaT88l/Zh7/NYUQbMghPziYiIiGTAIIyIiIhIBgzCSHHc3Nwwb948uLm5yd0V1eO5tA+eR/vhubQfnkv7kPM8cmI+ERERkQyYCSMiIiKSAYMwIiIiIhkwCCMiIiKSAYMwIiIiIhkwCCPZ/Pjjj+jXrx9CQkKg0WjwxRdfWB0XQmDu3LkIDg6Gu7s7oqKicPbsWXk6q3CVnctRo0ZBo9FYXWJiYuTprIItWrQIDzzwALy8vNCwYUMMGDAAKSkpVm1u3bqFiRMnws/PDw0aNMCgQYNw5coVmXqsTLacx549e5Z6T44fP16mHivXunXrcN9990mFRCMjI/HNN99Ix/l+tF1l51KO9ySDMJLN9evX0b59e6xZs6bM40uXLsWqVauwfv16JCUlwdPTE9HR0bh161Yd91T5KjuXABATE4PLly9Ll48//rgOe6gOP/zwAyZOnIjDhw9jz549uH37Nh577DFcv35dajNlyhTs3LkT27Ztww8//ICMjAwMHDhQxl4rjy3nEQCef/55q/fk0qVLZeqxcjVu3BiLFy/GkSNH8Ouvv6J379548skn8fvvvwPg+7EqKjuXgAzvSUGkAADE559/Ll03m80iKChIvPnmm9Jtubm5ws3NTXz88ccy9FA9Sp5LIYQYOXKkePLJJ2Xpj5plZWUJAOKHH34QQhS9B11cXMS2bdukNqdPnxYARGJiolzdVLyS51EIIR555BHx0ksvydcpFbvnnnvEe++9x/ejHVjOpRDyvCeZCSNFSktLQ2ZmJqKioqTb9Ho9unbtisTERBl7pl4HDhxAw4YN0apVK0yYMAEGg0HuLime0WgEAPj6+gIAjhw5gtu3b1u9L1u3bo2mTZvyfVmBkufRYvPmzfD398ff/vY3zJ49Gzdu3JCje6phMpnwySef4Pr164iMjOT7sQZKnkuLun5PcgNvUqTMzEwAQGBgoNXtgYGB0jGyXUxMDAYOHIjw8HCkpqbin//8Jx5//HEkJiZCp9PJ3T1FMpvNmDx5Mh588EH87W9/A1D0vnR1dYWPj49VW74vy1fWeQSAp59+GqGhoQgJCcGJEycwc+ZMpKSkYMeOHTL2Vpl+++03REZG4tatW2jQoAE+//xztGnTBsnJyXw/VlF55xKQ5z3JIIzICQwdOlT6e7t27XDfffchIiICBw4cQJ8+fWTsmXJNnDgRJ0+exMGDB+XuiqqVdx7HjRsn/b1du3YIDg5Gnz59kJqaioiIiLrupqK1atUKycnJMBqN+OyzzzBy5Ej88MMPcndLlco7l23atJHlPcnhSFKkoKAgACi1yufKlSvSMaq+Zs2awd/fH+fOnZO7K4oUFxeHhIQE7N+/H40bN5ZuDwoKQmFhIXJzc63a831ZtvLOY1m6du0KAHxPlsHV1RXNmzdHp06dsGjRIrRv3x4rV67k+7EayjuXZamL9ySDMFKk8PBwBAUFYe/evdJteXl5SEpKshq/p+q5dOkSDAYDgoOD5e6KogghEBcXh88//xz79u1DeHi41fFOnTrBxcXF6n2ZkpKCCxcu8H1ZTGXnsSzJyckAwPekDcxmMwoKCvh+tAPLuSxLXbwnORxJsrl27ZrVL4y0tDQkJyfD19cXTZs2xeTJk/Gvf/0LLVq0QHh4OObMmYOQkBAMGDBAvk4rVEXn0tfXFwsWLMCgQYMQFBSE1NRUzJgxA82bN0d0dLSMvVaeiRMnYsuWLfjyyy/h5eUlzavR6/Vwd3eHXq/H2LFjMXXqVPj6+sLb2xuTJk1CZGQkunXrJnPvlaOy85iamootW7bgiSeegJ+fH06cOIEpU6agR48euO+++2TuvbLMnj0bjz/+OJo2bYr8/Hxs2bIFBw4cwLfffsv3YxVVdC5le0/W6VpMomL2798vAJS6jBw5UghRVKZizpw5IjAwULi5uYk+ffqIlJQUeTutUBWdyxs3bojHHntMBAQECBcXFxEaGiqef/55kZmZKXe3FaescwhAfPDBB1Kbmzdviv/7v/8T99xzj/Dw8BB///vfxeXLl+XrtAJVdh4vXLggevToIXx9fYWbm5to3ry5mD59ujAajfJ2XIHGjBkjQkNDhaurqwgICBB9+vQR3333nXSc70fbVXQu5XpPaoQQovZCPCIiIiIqC+eEEREREcmAQRgRERGRDBiEEREREcmAQRgRERGRDBiEEREREcmAQRgRERGRDBiEEREREcmAQRgRERGRDBiEEREREcmAQRgRUTUUFhbK3YVSlNgnIiofgzAiIgA9e/ZEXFwc4uLioNfr4e/vjzlz5sCys1tYWBhef/11jBgxAt7e3hg3bhwA4ODBg3j44Yfh7u6OJk2a4MUXX8T169elx127di1atGiB+vXrIzAwEIMHD5aOffbZZ2jXrh3c3d3h5+eHqKgo6b49e/bE5MmTrfo4YMAAjBo1Srpe3T4RkTIwCCMi+sumTZtQr149/Pzzz1i5ciWWLVuG9957Tzr+1ltvoX379jh27BjmzJmD1NRUxMTEYNCgQThx4gQ+/fRTHDx4EHFxcQCAX3/9FS+++CJee+01pKSkYPfu3ejRowcA4PLlyxg2bBjGjBmD06dP48CBAxg4cCCqup1vVftERMrBDbyJiFCUecrKysLvv/8OjUYDAJg1axa++uornDp1CmFhYejQoQM+//xz6T7PPfccdDod3nnnHem2gwcP4pFHHsH169fx9ddfY/To0bh06RK8vLysnu/o0aPo1KkT0tPTERoaWmZ/7r//fqxYsUK6bcCAAfDx8cHGjRsBoFp9ql+/fo3OExHZDzNhRER/6datmxSAAUBkZCTOnj0Lk8kEAOjcubNV++PHj2Pjxo1o0KCBdImOjobZbEZaWhoeffRRhIaGolmzZhg+fDg2b96MGzduAADat2+PPn36oF27dvjHP/6Bf//737h69WqV+1zVPhGRcjAIIyKykaenp9X1a9eu4YUXXkBycrJ0OX78OM6ePYuIiAh4eXnh6NGj+PjjjxEcHIy5c+eiffv2yM3NhU6nw549e/DNN9+gTZs2WL16NVq1aiUFSlqtttTQ5O3bt2vcJyJSDgZhRER/SUpKsrp++PBhtGjRAjqdrsz2HTt2xKlTp9C8efNSF1dXVwBAvXr1EBUVhaVLl+LEiRNIT0/Hvn37AAAajQYPPvggFixYgGPHjsHV1VUaWgwICMDly5el5zKZTDh58mSlr8GWPhGRMjAIIyL6y4ULFzB16lSkpKTg448/xurVq/HSSy+V237mzJk4dOgQ4uLikJycjLNnz+LLL7+UJsEnJCRg1apVSE5Oxvnz5/Hhhx/CbDajVatWSEpKwhtvvIFff/0VFy5cwI4dO/Dnn3/i3nvvBQD07t0bu3btwq5du3DmzBlMmDABubm5lb6GyvpERMpRT+4OEBEpxYgRI3Dz5k106dIFOp0OL730klT2oSz33XcffvjhB7zyyit4+OGHIYRAREQEhgwZAgDw8fHBjh07MH/+fNy6dQstWrTAxx9/jLZt2+L06dP48ccfsWLFCuTl5SE0NBRvv/02Hn/8cQDAmDFjcPz4cYwYMQL16tXDlClT0KtXr0pfQ2V9IiLl4OpIIiKUvRqRiKg2cTiSiIiISAYMwoiIiIhkwOFIIiIiIhkwE0ZEREQkAwZhRERERDJgEEZEREQkAwZhRERERDJgEEZEREQkAwZhRERERDJgEEZEREQkAwZhRERERDJgEEZEREQkg/8PWOYDR7Ixe24AAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 [==============================] - 1s 3ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChQElEQVR4nO2deXgT1f7/30m6UKBNIWVppdBSkEURBbQUFBGqRQHlC0pxA2QTLqAFZFNAwAXhKjuKXhEQqYKC/qQoCojeq5SqKCKKXOUWBNsCDTQta5fM7484IUmzTCaznJl8Xs/TB5JMJme2c97nsx0Dx3EcCIIgCIIgCEUxqt0AgiAIgiCIcIREGEEQBEEQhAqQCCMIgiAIglABEmEEQRAEQRAqQCKMIAiCIAhCBUiEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYQRAE4Zd169bBYDDg2LFjajeFIHQFiTCCIFTnu+++w4QJE3DdddehXr16aN68OQYPHoz//ve/tbbt2bMnDAYDDAYDjEYj4uLi0KZNGzz66KPYuXNnUL+7bds23H777WjcuDHq1q2Lli1bYvDgwdixY4dUh1aLF198ER999FGt9/fu3Yu5c+eirKxMtt/2ZO7cuc5zaTAYULduXbRv3x6zZs1CeXm5JL+Rm5uLpUuXSrIvgtAbJMIIglCdhQsXYsuWLejduzeWLVuGMWPG4N///jc6deqEQ4cO1dq+WbNm2LBhA95++23885//xL333ou9e/firrvuQnZ2NqqqqgL+5ssvv4x7770XBoMBM2fOxJIlSzBo0CD8/vvveO+99+Q4TAD+Rdi8efMUFWE8r732GjZs2IDFixejbdu2eOGFF9CnTx9IsbQwiTCC8E2E2g0gCIKYPHkycnNzERUV5XwvOzsbHTp0wEsvvYR33nnHbXuz2YxHHnnE7b2XXnoJTzzxBF599VWkpKRg4cKFPn+vuroazz33HO688058/vnntT4/ffp0iEfEDhcvXkTdunX9bnP//fcjISEBADB27FgMGjQIW7duxb59+5CRkaFEMwkiLCFLGEEQqtOtWzc3AQYArVu3xnXXXYfDhw8L2ofJZMLy5cvRvn17rFy5Ejabzee2paWlKC8vR/fu3b1+3rhxY7fXly9fxty5c3HttdeiTp06SExMxMCBA3H06FHnNi+//DK6desGi8WCmJgYdO7cGR988IHbfgwGAy5cuID169c7XYDDhw/H3LlzMXXqVABAamqq8zPXGKx33nkHnTt3RkxMDBo2bIghQ4bgxIkTbvvv2bMnrr/+euzfvx89evRA3bp18fTTTws6f6706tULAFBYWOh3u1dffRXXXXcdoqOjkZSUhPHjx7tZ8nr27Int27fj+PHjzmNKSUkJuj0EoVfIEkYQBJNwHIdTp07huuuuE/wdk8mEBx98ELNnz8bXX3+Nvn37et2ucePGiImJwbZt2zBx4kQ0bNjQ5z5ramrQr18/7N69G0OGDMGTTz6JiooK7Ny5E4cOHUJaWhoAYNmyZbj33nvx8MMPo7KyEu+99x4eeOAB5OXlOduxYcMGjBo1CrfccgvGjBkDAEhLS0O9evXw3//+F++++y6WLFnitEo1atQIAPDCCy9g9uzZGDx4MEaNGoUzZ85gxYoV6NGjB3788UfEx8c722u1WnH33XdjyJAheOSRR9CkSRPB54+HF5cWi8XnNnPnzsW8efOQmZmJcePG4ciRI3jttdfw3Xff4ZtvvkFkZCSeeeYZ2Gw2nDx5EkuWLAEA1K9fP+j2EIRu4QiCIBhkw4YNHABuzZo1bu/ffvvt3HXXXefzex9++CEHgFu2bJnf/c+ZM4cDwNWrV4+7++67uRdeeIHbv39/re3eeustDgC3ePHiWp/Z7Xbn/y9evOj2WWVlJXf99ddzvXr1cnu/Xr163LBhw2rt65///CcHgCssLHR7/9ixY5zJZOJeeOEFt/d//vlnLiIiwu3922+/nQPArV692udxu/Lss89yALgjR45wZ86c4QoLC7nXX3+di46O5po0acJduHCB4ziOW7t2rVvbTp8+zUVFRXF33XUXV1NT49zfypUrOQDcW2+95Xyvb9++XIsWLQS1hyDCDXJHEgTBHL/99hvGjx+PjIwMDBs2LKjv8paWiooKv9vNmzcPubm5uOmmm/DZZ5/hmWeeQefOndGpUyc3F+iWLVuQkJCAiRMn1tqHwWBw/j8mJsb5/3PnzsFms+G2227DDz/8EFT7Pdm6dSvsdjsGDx6M0tJS51/Tpk3RunVr7Nmzx2376OhoPPbYY0H9Rps2bdCoUSOkpqbi8ccfR6tWrbB9+3afsWS7du1CZWUlcnJyYDReHUZGjx6NuLg4bN++PfgDJYgwhNyRBEEwRUlJCfr27Quz2YwPPvgAJpMpqO+fP38eABAbGxtw2wcffBAPPvggysvLUVBQgHXr1iE3Nxf9+/fHoUOHUKdOHRw9ehRt2rRBRIT/7jIvLw/PP/88Dhw4gCtXrjjfdxVqYvj999/BcRxat27t9fPIyEi319dcc02t+LpAbNmyBXFxcYiMjESzZs2cLlZfHD9+HIBDvLkSFRWFli1bOj8nCMI/JMIIgmAGm82Gu+++G2VlZfjPf/6DpKSkoPfBl7Ro1aqV4O/ExcXhzjvvxJ133onIyEisX78eBQUFuP322wV9/z//+Q/uvfde9OjRA6+++ioSExMRGRmJtWvXIjc3N+hjcMVut8NgMODTTz/1Kkg9Y6xcLXJC6dGjhzMOjSAI5SARRhAEE1y+fBn9+/fHf//7X+zatQvt27cPeh81NTXIzc1F3bp1ceutt4pqR5cuXbB+/XoUFxcDcATOFxQUoKqqqpbViWfLli2oU6cOPvvsM0RHRzvfX7t2ba1tfVnGfL2flpYGjuOQmpqKa6+9NtjDkYUWLVoAAI4cOYKWLVs636+srERhYSEyMzOd74VqCSQIPUMxYQRBqE5NTQ2ys7ORn5+P999/X1RtqpqaGjzxxBM4fPgwnnjiCcTFxfnc9uLFi8jPz/f62aeffgrgqqtt0KBBKC0txcqVK2tty/1dzNRkMsFgMKCmpsb52bFjx7wWZa1Xr57Xgqz16tUDgFqfDRw4ECaTCfPmzatVPJXjOFitVu8HKSOZmZmIiorC8uXL3dq0Zs0a2Gw2t6zUevXq+S0XQhDhDFnCCIJQnSlTpuDjjz9G//79cfbs2VrFWT0Ls9psNuc2Fy9exB9//IGtW7fi6NGjGDJkCJ577jm/v3fx4kV069YNXbt2RZ8+fZCcnIyysjJ89NFH+M9//oMBAwbgpptuAgAMHToUb7/9NiZPnoxvv/0Wt912Gy5cuIBdu3bhH//4B+677z707dsXixcvRp8+ffDQQw/h9OnTWLVqFVq1aoWDBw+6/Xbnzp2xa9cuLF68GElJSUhNTUV6ejo6d+4MAHjmmWcwZMgQREZGon///khLS8Pzzz+PmTNn4tixYxgwYABiY2NRWFiIDz/8EGPGjMFTTz0V0vkPlkaNGmHmzJmYN28e+vTpg3vvvRdHjhzBq6++iptvvtntenXu3BmbNm3C5MmTcfPNN6N+/fro37+/ou0lCGZRMzWTIAiC466WVvD152/b+vXrc61bt+YeeeQR7vPPPxf0e1VVVdy//vUvbsCAAVyLFi246Ohorm7dutxNN93E/fOf/+SuXLnitv3Fixe5Z555hktNTeUiIyO5pk2bcvfffz939OhR5zZr1qzhWrduzUVHR3Nt27bl1q5d6ywB4cpvv/3G9ejRg4uJieEAuJWreO6557hrrrmGMxqNtcpVbNmyhbv11lu5evXqcfXq1ePatm3LjR8/njty5IjbufFXvsMTvn1nzpzxu51niQqelStXcm3btuUiIyO5Jk2acOPGjePOnTvnts358+e5hx56iIuPj+cAULkKgnDBwHESLA5GEARBEARBBAXFhBEEQRAEQagAiTCCIAiCIAgVIBFGEARBEAShAiTCCIIgCIIgVIBEGEEQBEEQhAqQCCMIgiAIglABKtbKMHa7HUVFRYiNjaWlPwiCIAhCI3Ach4qKCiQlJcFo9G3vIhHGMEVFRUhOTla7GQRBEARBiODEiRNo1qyZz89JhDFMbGwsAMdF9LcOHkEQBEEQ7FBeXo7k5GTnOO4LEmEMw7sg4+LiSIQRBEEQhMYIFEpEgfkEQRAEQRAqQCKMIAiCIAhCBUiEEQRBEARBqACJMIIgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgEQYQRAEQRCECpAIIwiCIAiCUAHNiLB7770XzZs3R506dZCYmIhHH30URUVFbttwHIeXX34Z1157LaKjo3HNNdfghRdecNvmyy+/RKdOnRAdHY1WrVph3bp1tX5r1apVSElJQZ06dZCeno5vv/3W7fPLly9j/PjxsFgsqF+/PgYNGoRTp065bfPnn3+ib9++qFu3Lho3boypU6eiurpampNBEARBEITm0YwIu+OOO7B582YcOXIEW7ZswdGjR3H//fe7bfPkk0/izTffxMsvv4zffvsNH3/8MW655Rbn54WFhejbty/uuOMOHDhwADk5ORg1ahQ+++wz5zabNm3C5MmT8eyzz+KHH35Ax44dkZWVhdOnTzu3mTRpErZt24b3338fX331FYqKijBw4EDn5zU1Nejbty8qKyuxd+9erF+/HuvWrcOcOXNkPEOEGKxWK4qLi33+Wa1WtZtIEARB6BQDx3Gc2o0Qw8cff4wBAwbgypUriIyMxOHDh3HDDTfg0KFDaNOmjdfvTJ8+Hdu3b8ehQ4ec7w0ZMgRlZWXYsWMHACA9PR0333wzVq5cCQCw2+1ITk7GxIkTMWPGDNhsNjRq1Ai5ublOEfjbb7+hXbt2yM/PR9euXfHpp5+iX79+KCoqQpMmTQAAq1evxvTp03HmzBlERUUJOsby8nKYzWbYbDZmli2yWq2orKz0+XlUVBQsFouCLRKP1Wp1Xmd/TJgwQTPHRASPnu5pgiDYQOj4rcm1I8+ePYuNGzeiW7duiIyMBABs27YNLVu2RF5eHvr06QOO45CZmYlFixahYcOGAID8/HxkZma67SsrKws5OTkAgMrKSuzfvx8zZ850fm40GpGZmYn8/HwAwP79+1FVVeW2n7Zt26J58+ZOEZafn48OHTo4BRj/O+PGjcMvv/yCm266yetxXblyBVeuXHG+Li8vD+EsSY/eRIu/gVfMdoT20Ns9TRCEttCUCJs+fTpWrlyJixcvomvXrsjLy3N+9r///Q/Hjx/H+++/j7fffhs1NTWYNGkS7r//fnzxxRcAgJKSEjdhBABNmjRBeXk5Ll26hHPnzqGmpsbrNr/99ptzH1FRUYiPj6+1TUlJid/f4T/zxYIFCzBv3rwgzoiykGjRBmTZEQ7d0wThgPoNdVBVhM2YMQMLFy70u83hw4fRtm1bAMDUqVMxcuRIHD9+HPPmzcPQoUORl5cHg8EAu92OK1eu4O2338a1114LAFizZg06d+6MI0eO+HRRssTMmTMxefJk5+vy8nIkJyer2CJCa5BlhyCIYKF+Qz1UFWFTpkzB8OHD/W7TsmVL5/8TEhKQkJCAa6+9Fu3atUNycjL27duHjIwMJCYmIiIiwinAAKBdu3YAHJmKbdq0QdOmTWtlMZ46dQpxcXGIiYmByWSCyWTyuk3Tpk0BAE2bNkVlZSXKysrcrGGe23hmVPL75LfxRnR0NKKjo/2eD4LwB1l2CIIIFuo31ENVEdaoUSM0atRI1HftdjsAOGOounfvjurqahw9ehRpaWkAgP/+978AgBYtWgAAMjIy8Mknn7jtZ+fOncjIyADgMLd27twZu3fvxoABA5y/s3v3bkyYMAEA0LlzZ0RGRmL37t0YNGgQAODIkSP4888/nfvJyMjACy+8gNOnT6Nx48bO34mLi0P79u1FHS+hf8gdIA10HrUJXTd2sNlicfasBQ0bWmE2V6jaFr3fF5qICSsoKMB3332HW2+9FQ0aNMDRo0cxe/ZspKWlOYVPZmYmOnXqhBEjRmDp0qWw2+0YP3487rzzTqd1bOzYsVi5ciWmTZuGESNG4IsvvsDmzZuxfft2529NnjwZw4YNQ5cuXXDLLbdg6dKluHDhAh577DEAgNlsxsiRIzF58mQ0bNgQcXFxmDhxIjIyMtC1a1cAwF133YX27dvj0UcfxaJFi1BSUoJZs2Zh/PjxZOkSgd4fQoDcAVJB51Gb0HVjhx9+uAnbtvUDxxlhMNjRv38eOnX6UZW2hMN9oQkRVrduXWzduhXPPvssLly4gMTERPTp0wezZs1yihqj0Yht27Zh4sSJ6NGjB+rVq4e7774br7zyinM/qamp2L59OyZNmoRly5ahWbNmePPNN5GVleXcJjs7G2fOnMGcOXNQUlKCG2+8ETt27HALtF+yZAmMRiMGDRqEK1euICsrC6+++qrzc5PJhLy8PIwbNw4ZGRmoV68ehg0bhvnz5ytwtvSFnh9CV3FZWloq6DvkDvBPqG4VliwA4QS5w9jAZot1CjAA4Dgjtm3rh7S0P1R5Hjyvt6/nU8v3hSZEWIcOHZwZjv5ISkrCli1b/G7Ts2dP/Pijf1U/YcIEp/vRG3Xq1MGqVauwatUqn9u0aNGiluuTCB45O2eh9dqEbhcMQsUloRwsWQAI/cKyZf/sWYtTgPFwnBFnzzZUfVKi1+dTEyKMYAM1RYscWCwWTJgwwdkhFhUZUVgYgdTUaiQlOWIO5eoQ5Zi5Wa1WwRY1wnG+bDYbgMAWAK3c03pBrxZJ1i37DRtaYTDY3YSYwWBHw4ZnFW+LK6xZ6KSERBghGE/R4g2txWfxbV2zBhgzBrDbAaMReOMNYORIlRsXBL46d70OZqFSVlaGzZs3O1/7sgB07DgI/frV19Q9rXX0avEA2He7ms0V6N8/r9b5F9J3yGnhY9lCFyokwoig0ONgdPLkVQEGOP59/HEgKwto1kzdtgnFW+fnbzALF8uOLxFaXV3ttp0vC8D119dR9J5n2VWlBHq2eHiDlUmSa3/QqdOPSEv7A2fPNkTDhmfd2uWr35DbwseqhU4KSIQRojl5Evj9d6B1a+2IFW/8/vtVAcZTUwP88Qd7x1VaWipoIPY1mE2Y0BqdOjXW9UDOE4xFxZcFICnpZsXay7qrSgn0bPHwhCWLX6heDrkC6MvKygCEZqFjHRJhhCi07r5zpXVrxzG4CjGTCWjVSr02+erEtm7dCiDwQOxrMCsvDw8BFsiicu7cuVrf8W4BUE6Ese6qkgvXWEY9WzxcYdHiJ1W/IJW4tFqtbiEDaWl/YNCgLQA4JCef1IUAA0iEESLQg/vOlWbNHCLy8ccdFjCTCXj99avHorSLSEgnFmgg9jWYpaRU+/mWduGvER9oH8iismfPHq/7MZsrdNO5awFP618gi4de3Oh6tfhJKS5d+7hAfaKW7wsSYUTQKOm+83y4fFmIQn0IR450iMg//nBYwFwFmBIuIv64IiOvSNKJseBekwIhAhhArWsUrEWFldgc1pB7AuJt394skgMHDkRSUpJurLh6tfjJIS4DCbvs7GxN3xckwoigUdJ95xqrkJsbg/nzzbDbDTAaOSxaZMNDD12SzBLVrFltESmXi8hVNLrO8gA7gNA7MZstFg0anMPIkW+iqipKFfdaqAgVwIMHD671XjAxJCzF5riitjBUI0bN9ZhTU487309ISND0QOuJXmOc5BCXgYSd2WwWvW8WIBFGBE0g9x2PVLNoi8WCkyeBadNcXaAGTJ8ej+zseGixb+bF5bFj1Zg/vzE4zvD3J0YAHACDc1t/nRh/jl3rg3kTFa4DmlYQKmw9Mx15/GV58bAYmwOwIQyVjlGTMpaI1QzTULMQWUcOcalXqyEPiTBCFL7cdzxSz6K1lMEoFIvFgoMHax8XYHB2Ov46MW/nmIqOuuMZ4+VpXQo0y1bjfLEqDOW0zEl1zKxnmOqx1qInQiY/waBXqyEPiTBCNN7cdzxSz6JZzGCUAm/HZTDYnW7EyMhKVFVFw2aLrdXpeDt3vkRF9+7D0LOnPuu8eeJLLHiztKSl/eF1lj18+K3o0KG/KueLxaBtuS1zUh2zFjJM9fgMek5WfCW4iJ3USC3sWIJEGKEJhLpAtUbt4+LQt28emjUrFjXweTPdm0wc0tMtmnTbuiLEEuPrnPmytOTkLPU6y27T5mbFB0t+gArkflHaOqeEZU4ul5PacXVywZrLVQkLn14zl0mEEZohkAtUCeTo1F2Py2Ipw9atvkWDq1vRW4fnzXS/cGE5mjWLl6StoSJ28BAiSP2dM3+WFrXrg/G4DmTXXFOO6dPNqKkxwGTisHBhOR566EFVXFVKWObkcDnJab1TUwR5ulx99UlKu1yl/i29rVXsCxJhhKbw5wKVGzk79avH1QBJSROwZw+wZIl/t2JxcbHb53xnnJb2B3JyljpFxUMPPQggXpJ2hoLYeB2hlhh/YsGXpSUyshKFhSm1svHUgj/uKVOA7Gx+wmH4W0THq9ImOQOj5QpUl8N6xwsvz3VHlRZBQutnKelydRWlRUVGFBZGIDW1GklJjjgLMaI0HOLnABJhBOEXvvNXMuDdYrGga1fvMXC+3IosZNMFQmy8TiBLTGRkJAD/YsFsrsD8+SV49tlE2O2OxIcbbjiINWtGMXvO1JxwuCJnYLRcA63U1jtf1qeiokTs2pWpighiJYHD9dz464fEiFKtCywhkAgjCD/wg4QQy5SUBBMDx0pnLDVCY6QaNWok2I13992nsGLFp4iMrHQKMEA/50xKlCqnIMdAG+iecS3p4oovwefL+uRaTsbbPSSn25KVBA7++AL1Q3pbbksqSIQRkuDZ2Xh2cloOkBVjmZICoTFwrHTGwRLonhATIxXIjZeUZEdq6nEUFqZo8pwpiZbdQYGsd1u3bhXlRvQUGq71/AD3e+jEiRP49NNP3b4rpduStfpZWu2H1IZEGBEygWJ9/JmotRJUqVZ2pj+XFKvZdEIQ6j4VEyMlxI3H2gDGKiwKLH8Itd6JjaXyJjRccb2HXAXYN99kSO62ZK1+Fj1T4iARRoSMv07Em4l6+/b+mDMnHSkpEZrq5FnIznSF1Wy6QIh1n0oRI8UP0movFM1aiQG94Gm98xZEf+JEMj7+uB/45cGCcUV7Exq8S9KXCPrmmwzs3Hkn/LktxcJS/SyzuQKZmbtqiU2ygvmHRBghK95mjjU1BlRUNNFk3SpWgqV5WMymC0Qgt4WnK1tKQeI5SM+ZcwbHjkUgJaX678XNb5ZdALFe1V3r+Dpn7rFc7vi6/zzvBW/iPTNzF5KSiryKIJstFjt3ZsKf2zJU1K6fVVZWBsBxfnkBBjjOC0uJLqxCIoyQFe/FQ7Vf6Z5FWBKI3iw9/OAWyG2xdevWWvuTUpC47icxEejcWZLdCsbzvPiKFaJAZumoHcvljmu5krVrd9aK2XIlGOvT2bMW8BY3z98T66ZjqX6W1WrF5s2bvZxfI3btysT11x8iS1gASIQRsuI5c9RLpXs1Yd2VFcjSIyaWRa+CRAulRfSAv1iuQOVKfBVFFiIufLkvMzN3iRYnLCVM8G1gJSj/5EnHOsOtW2tnjCERRkiO58yenzl27z4M6ekWzTwcQlFSFGnBlSVEMHXq9CMmTGiNEyeicejQR86OWstZtMGi19IiLOLL+jpo0AeIjy8LWK5EqFUpOzsbZrMZNpsNmzZtqjXhAOy4885d6N49P6TjYc1NLSQoXy7LHN//5ubGYNo0M+x2A4xGDosW2fDQQ5ec/S+rAo1EGCEpvmb2ZnMFunWrRGKiNL/DijVIaVGkhQWKPfElrK6/Ph7XXw+cOOF4L9ysQqxYD8IBX9bX668/LKhcSSjWJ5aC5+UikHU7Oztblv6Y739ttlgsXZoDjnPE3tntBkydGoe//noLZnMF4uOnYPLk+rDbHaWG3njDkWjFAiTCCMlQambPkjVIbVHEuuVIqLAKR6uQ2in9rExklMKXGBJ6HeRafJrFEjJi8Cc2zWazLL8pxB0KAPPn13PWeLTbgccf53DjjaeZyNAnEUaEDN+JBJrZS9XZqC18WIF1y1EwwiocrUJq1nlidRFoufEmhuS4DkL7ukceeYTp8xusC0+tTE1/QvrsWQvsdvfs1JoaA1as+BSpqcdVv8dJhBEhw5vqjx2rxoYNnNsNbzJxmDjxbiZmHEqglGVKC5ajYISVGlYhFixBarmqWFwEWg6EiiGprwNLwfNiWbMGGDMGTLrwPAkkpP31LWrf4yTCCEmwWBzL99SuKm9A585NZP1tVlxySlqmtGA5CkZYKW0VUtOl7SkMfFkPlHBTySHmXcVtUZERhYURSE2tRlKSwx+kpPjwJ4ZKS0vdyqFIbcVhWWD5w2q14tixaowZ09g5oVbShSc2gN6XkGZtZQFPSIQRkqJ0VXlWXHJKW6bUjicSgpDOT6lFoj1Rs1aXnFaSYK17Uot5V3Hr79mUWtyKEX4s1dtiBf76FRamwG4f5vaZNxee1OcwVOubLyHNcnIEiTBCcpQqGsqSS05pyxTLs7tghJVQQQIAxcXFfrcRO6irIeTlzBTj8RfnxSO1mOevY6BnU0pxK1b46cFlKDX8uQh0X/DbSXUOlbC+qb2ygC9IhBGCYSGGxhWWXHJyWaY8zzm/RAigrOUoGILtmIV00HK5DlkS8qEiJs5LLjGv5LMZivALJ4EVDMHcF6Gew2Ctb3qDRBghCJbKQvCw4JKTc0FoIefcbK7AmDH3uKWAszB7l/L35XQdsiTkpSJYYSmHq0aNZ1OP11JNlHLhBWt9c0UPrmISYYQgWCoLIafwCRY5F4QWKj7MZjMSpaqCyzhSuw5ZEPJSI0aMSO2qUcNdrsdrqTZKuPAcMXwpaNjQGvQ9E0ziBauQCCM0h5zCR2x7ePwtCB2KO1cq8cGaSzkY5HAdshxbJxYpl5AJZSKjdDC0Hq+l3nEE4jeG3T7Meb1ycpYGdc/46q+0knhBIowQhdplIYQKH1YIxZ0rlfhg0aUcDHK5m1jOnBKDEDEiRUC1t4xEs7msVluUPJ96u5Z65uRJPhPSEYjP92s5OUuRmno85P1rJfGCRBgRNP6sMqWlpUzc2KwRSlyTVOJDzbIMUuDLwnPhQj3YbLEoLS0FIKxjZalWlxwIESOhPKO+MxIboH//m1RduYHVLDjiKlarFfv2AXa7+z0odQyfFsYhEmFEUASyyvA+eFatKSwQrGtRjlgXVuqrBYM3Cw/HAR988AAMBjuOHs1Dp07C7j+tzJJDQU4xIjQj0RdaFbeBEFtolBWUcOG5LrptMOSEfQwfiTAiKIRaZVi1psiJv3gr3kojZtCSOtZFy2UZeAvPiRPN8MEH9wMQX4dKKoHFSoV4NWJgAvUHAwcOREJCQq3fl/J8qB37w1//3NwYTJtmht1ugNHIYdEiGx566JKmxLwSkxN+3xTD54BEGBEUvqwykZHhJ7pcERpvJda1KGWsi9ZS+b25Ds+evQRegPGocQxqVYj3hhrWvUBW2oSEBNkzd9W0arpadZYuzQHH8YVGDZg6NQ5//fUWzOYKTXkGlGxnMP2aXq2nJMLCDLHZcb7KQgAcOM6INWtGacKlJRdC462CcS3KFbektVR+10GWTztn5RjUqBDvD6UHelasGWoJHP66BprYKHX9tegO9dWvuVpRtWRNDBYSYWFEKNlx/EBYVFQEYCsaNy7Bm2+Ogi93UDjjzyISbCVqOWb4rAycweB5jKwdg9asi1Kip4xEsSKGhUlBqOsusoYSVlQWIBEWRoSaHWexWJyfVVVFgwV3kJJIFfMVzKAl1+xPDwMnS8fAwiCsJnrISAxFxEg5KQhWCCqx7mIoaNE6pyQkwsKUULPjQh10tFY0VOjiyEItImqURNBjWQZWBn/WLHOEcKQSMVJMCoIVgiysu+hPZHk7nnvukaUZmoVEWBgiRXZcoEHHX80mLRYNFbo4ciBx6i1bjEdu4alEADMrmYJqwJJlTm7UzkiUCqlFjNhJgVghGMq6i1LgTzReLcYKl+MBCgqMvncYhpAIC0NCiV9x7VQ9Bx0AzjXAXNfs8uzAtFw0NJCADSRO1Y5zkFMAKZEpyPrgz4plTm70UmdNbREDSCME1bDE+hJZWVlATIz3Yqw1NcAvv1wRtH/WBbxUkAgLQ0JxJXrLVDObK/wOuv46MK0VDRUiYMPJIuKKEpmCehn8tY7DBWXRTZyPmu5kqYSgkv2Or4r3NTXA7t3HcezYOp/FWA8c+ABmMzB48GDEx8d73X84PcMkwsKQUDscqdY2VLpoqBSuMqECVg/xVt7wdw55F7TcmYIsdc6sW+bkQG9ZeDxiRIyU118KIaiEJTZQxfufftoCsznw8cTHx4dF9mMgSISFKSwU/1QyrV8qV1mgjkXNmC+5EXoOwylTkDXLnJyZaKxn4UlBsCJG6uuvBSt6MBXvtXA8akMiLIxgrfinkoO1lK4yfx2L2jFfciL0HIZLpuBVwWNR1SWnxLI5LGThyYWvmFShSH28WoorFCKypD4evZW8IBEWRrBW/FONwVoq65uWOkqpCee4ONbWCVRq2RwWAtjlIDc35u/zpo2YVBZRsi/UoyucRFiYwVrxT6UHa7HWt3CM/fFFqHFxWoXFdQKVXjZHT1bOkyeBadPMzuuotVU/Tp4Evv++Lmy22KCy2rWKv2xMLVvESIQRkiF00FWzaKjYQYS12B810dNAHAysrRPoipKufT1YOX1l9/myigfbF8ntMrtqETLDaJzktMR6UlRkxIkTdXDpkln6RijM779fFWA8NTXAH3+QCCPCFLHWISGC5uLFi6isrERxcbHkRT/FDiLhILCEEspArPVZOYuJB0oLYy1bOQNl9/HXkS+hEGxfE6zLLNh+tLZFyIDp0+ORnR3vJkb05rpr3dpxHK5CzGQCWrVSr01SQCKMEE0o1iF/nZrVasUbb7wBQL6in1oeRPyhZNCqr3Oo5wxRgF1LoB4sVEogNLsv2BIKYrNHg+lH/dXnKiiwIibGsT8tuO6CmYxZrVaYTJVYtCgG06ebUVNjgMnEYeFCG0ymS7BatduvkAgjQkKOG1+Jop96grVgcT1niPKwKnj0OrmQC6muY6jZo0Kez0AWvG++WY9Dhxwxib//bhHkuhMzaRMqnrKzs2E2e3eDBtMneS5z98QTsc7rdf58Bf6er2syMxcgEUaoiK/Cn1FR0hf91GtgvZLB4no9h2IhwaMPpLiOSmSPCrXgnTlzBnFx1TAar1rkAMBk4hAbexpWq8MiJ9ZdqXR8rOfv+LpeWp2UkwgjVMF/4c8CdOokbeyNXgPrlQwW1+s5JAJDAtxBIMuRUq5qfxa8TZs2AQD69XPvV/v2zUNeniOUY+DAJzBmTAPR7kp6xqWDRBihCkJdjlJ2aHruOJQKFtfzOVQTsbF8SokjEuDCA92VclUHsuD5a8eRI3ZdZhpqERJhhKoEsuCwGnvDGqwGiyuFEgkJcgmeULLYlBRHehZYgQg20J0VV7WvdpjNp2E0NvTrriSUgUQYoSpCLDisdGisE66CValUfKkFTyhrMbqLThow5URIRqLW2Lt3s193pVaD3LUIiTBCVcLdgiMUoZaecBKsaiwoLdX+Qsmm01v9J6UJxqIpNCNx8ODBcjVXNvxN2rQa5K5FSIQRquOrMwi0sK5r8UI9LejKI6T0hNaQ6lppfUFpMdl0SolOvT5PPMFYNIuLiwEEnixWV1cr0napCadJG6uQCCOYwLMzcM2YdBUePHwnqVergNDSE8HOwNUcYKW8VnpZUFqoJVgp0anX58kTMefIn+UoMjJS0D5CmThpcdIlBXrPzCURRsiKmEHfM2PSsSyHGT17XnHO9q1WK/bvP6WoK0pJhJaeMBgM3r5ei6ioKNUGWDktOHpwZwuJ5fMnOgEORUVJSE09Llp0quHa1SK+A93NsidICLHglZWVYfPmzaJ/g0X0nplLIoyQDX+Dvr9Zizfh4Trbf+SRR/DOO+9o1hUVDIEsPUI6/4sXL/49wHKKD7BKWHD0kJAg1C1kNlcgM3MXdu68EwAvwA3YtSsT119/SNRva921ywpKnJtAv8GSNUhKq7ue7zsSYYTkCJ1Ve4qH0tJSbN26NaDwuHjxIoDQXVFaiH0RYukRsg6nkAH20iWL5OdDKbdhOMW2JCUV46oAc8BbR8vKyoJeMkovrl0isNWI72PlJlzc2lJgDLwJG9x7771o3rw56tSpg8TERDz66KMoKipyfj537lwYDIZaf/Xq1XPbz/vvv4+2bduiTp066NChAz755BO3zzmOw5w5c5CYmIiYmBhkZmbi999/d9vm7NmzePjhhxEXF4f4+HiMHDkS58+fd9vm4MGDuO2221CnTh0kJydj0aJFEp8RNuFn1StW7HCrQQM4Bv2XXvoKU6bk4eefz8FisaCmJhG//ZaImppE56LPvPAwGBxFeXy5mIRu5401a4AWLYBevRz/rlkjxdHLQ6dOPyInZymGDVuHnJylzgXMheA5wLriOsCuW2eS9XyEcq0Id7xdS94luXnzZlitVlH7pWukDywWCxITE73+8X2snPiqqXbypOw/rUk0Ywm744478PTTTyMxMRF//fUXnnrqKdx///3Yu3cvAOCpp57C2LFj3b7Tu3dv3Hzzzc7Xe/fuxYMPPogFCxagX79+yM3NxYABA/DDDz/g+uuvBwAsWrQIy5cvx/r165GamorZs2cjKysLv/76K+rUqQMAePjhh1FcXIydO3eiqqoKjz32GMaMGYPc3FwAQHl5Oe666y5kZmZi9erV+PnnnzFixAjEx8djzJgxSpwu1Qg0q/7gg/sBGLFhA4dHHwU2bLg6W1q06GrBHaEupmBdUVqNfQnV0uPPomazxWL+fLNHpyn9+RDjNtSCtVIO+MzgoiIjPA1bgVySZ86cCWvXLuEbJYLcf//9qgDjoWr8vtGMCJs0aZLz/y1atMCMGTMwYMAAVFVVITIyEvXr10f9+vWd2/z000/49ddfsXr1aud7y5YtQ58+fTB16lQAwHPPPYedO3di5cqVWL16NTiOw9KlSzFr1izcd999AIC3334bTZo0wUcffYQhQ4bg8OHD2LFjB7777jt06dIFALBixQrcc889ePnll5GUlISNGzeisrISb731FqKionDdddfhwIEDWLx4se5FGI+3QZ/jAN74arcbsH49B34QsduBadPMePLJWGfHH0ycjJDtwj32xdcAe/asxavVUo7zEYyY1LNLw98g55oZvGEDhzfeAO65x30bfy7JTZs2hXTNwsm1Gwi9ZeYpEeTeurXjeXUVYiYT0KqV6F3qGs2IMFfOnj2LjRs3olu3bj5Tg998801ce+21uO2225zv5efnY/LkyW7bZWVl4aOPPgIAFBYWoqSkBJmZmc7PzWYz0tPTkZ+fjyFDhiA/Px/x8fFOAQYAmZmZMBqNKCgowP/93/8hPz8fPXr0cHsws7KysHDhQpw7dw4NGjTw2uYrV67gypUrztfl5eXCTwqDuA76Fy7UwwcfPOCxhfsgYrcbnFl/ckCxL94HWNbOhxBrpdYHR2+DYVlZGU6eBObPb+tWkuTxxzl8+mmZW9081q6ZXtFjZp6cbbVarTCZKrFoUQymTzejpsYAk4nDwoU2mEyXYLVq61wpgaZE2PTp07Fy5UpcvHgRXbt2RV5entftLl++jI0bN2LGjBlu75eUlKBJkyZu7zVp0gQlJSXOz/n3/G3TuHFjt88jIiLQsGFDt21SU1Nr7YP/zJcIW7BgAebNm+f94DUKP+g7Kk7XTq13FWJyLDjtq02slzVQUmSwdD6CsVZqfXB0bZvVasXmzZv/Pu52btvV1Bgwd+5Z5OfnuF0fVq6Z3mH5HmIJ/tnleeKJWKfV/fz5CrzxhuN9tT0NrIU4qCrCZsyYgYULF/rd5vDhw2jbti0AYOrUqRg5ciSOHz+OefPmYejQocjLy6tVK+nDDz9ERUUFhg0b5m2XzDJz5kw3S115eTmSk5NVbJF0eBvob7jhIA4evEGVQYT12BelZ+CsnI9grJXBZgGyjP86YHbk52c43+M4I7Zt64ecnKXIyVmq+jUjCKC29dWXW1tNKy2LIQ6qirApU6Zg+PDhfrdp2bKl8/8JCQlISEjAtddei3bt2iE5ORn79u1DRkaG23fefPNN9OvXr5ZFq2nTpjh16pTbe6dOnULTpk2dn/PvuXbwp06dwo033ujc5vTp0277qK6uxtmzZ9324+13XH/DG9HR0YiOjvb5udJIPWPwNtD36vVF0INI3bp1BW0XyErEeuyL0rNFOc6HWIseS9Y5V+SeRXs77oyMfOzd291tOz7+KzX1eMjnROuuXYIQgq+szawsdS1iqoqwRo0aoVGjRqK+a//7TLrGUAGOuK49e/bg448/rvWdjIwM7N69Gzk5Oc73du7c6RRxqampaNq0KXbv3u0UXeXl5SgoKMC4ceOc+ygrK8P+/fvRuXNnAMAXX3wBu92O9PR05zbPPPOMM2mA/502bdr4dEWyhlwzBs+B3tfAP3DgQK/p1Lz1R+uuKKVQe+AM5VqxYp3jUWoW7XncANwsYYB41703EUnPExEOsJq1qYmYsIKCAnz33Xe49dZb0aBBAxw9ehSzZ89GWlpaLSvYW2+9hcTERNx999219vPkk0/i9ttvxyuvvIK+ffvivffew/fff483/nZWGwwG5OTk4Pnnn0fr1q2dJSqSkpIwYMAAAEC7du3Qp08fjB49GqtXr0ZVVRUmTJiAIUOGICkpCQDw0EMPYd68eRg5ciSmT5+OQ4cOYdmyZViyZIm8J0oCQi3hINWgn5CQ4NfdRAOCMPwNsEoVbgzlWrFgrVSjrInncUthFfQnItV+nliL0yG0g9B7h9WsTU2IsLp162Lr1q149tlnceHCBSQmJqJPnz6YNWuWm/vObrdj3bp1GD58OEwmU639dOvWDbm5uZg1axaefvpptG7dGh999JGzRhgATJs2DRcuXMCYMWNQVlaGW2+9FTt27HDWCAOAjRs3YsKECejduzeMRiMGDRqE5cuXOz83m834/PPPMX78eHTu3BkJCQmYM2cO8+UppCjh4DnoKzXQE75Re4DVMqyUNQnVKsiqKwZgM05HC5BwDe7eadbM8fnjjzssYCYT8Prr6p87TYiwDh064Isvvgi4ndFoxIkTJ/xu88ADD+CBBzxLJVzFYDBg/vz5mD9/vs9tGjZs6CzM6osbbrgB//nPf/w3mDGkKuHA6qBPsS/uaPl8FBUZ8dtv8g9ALJU1CcYq6HrNrFYr9u0D7Hb357KmBigosCImRr1nlmVxyDIkXIO7d6xWKyorK3HPPUBBgRHHjkUgJaUaSUl2FBer627XhAgjlIWFoGg5Bn6KfXFHq+fjhx9uwvz5jRUdgFh4JnzhGT/pes14S56jRExOLRH5zTfrcehQRUiWPLEWGZbFIcvoRbiGaskTGuPlWTqD55DHevdqlc4gEUZ4RaqgaKFiKjs7G2az2fkduR4GMfvVs9mftUEu0P1is8X+LYRcY7OUGYDkTBQIZdLhL36SF9iBRKRYS54/i4y/50YJcahXWA0wD8ayLoUlT2iMl9B7W63SGSTCCJ9IERStVWsLD5n9lcXf/VJWVoa9e6M9amgpazmRK1HA23FLHU8ptYj0Z5H57DP/z43c4lDPsBpgLrSvv3TJErIlT0+V+UmEEbJjsVhqzYpdX7P6rOjF7K81vHWefEV5PVtOPJ+TpCTpY/akEpH+XInbt5/FP/7RwCOT1Pdzw1opEpZhXXwI+e09e0Kz5GmlMr9QSIQRsuNpTXr0UWDDBratSyzFq+jZHSqUcLCc1La6KmtFFnqfBXIl7tq1G3a7e/JToOeGhVIkrKMX8RGqJU8LlfmDgUQYISverEnr11/9nBXrkusAFBPDTrwKuUNrozfLif86ZNVISZHfupGbG4Np04TdZ4EEcXLyCa+ZpK7PDRE8lZWVbou4a1F8sG7JUwMSYYQTT7eG5wPvazt/eAsi9URJ65K32b6n0Fm0yFFjTm2rC7lDfaOU5UTuMh4s1CGz2WIxf75Z1H3mSxDr1VqpJrm5MVi61H0R906dfgxqH2pa1fViyZMaEmGEE9fAytzcmL87ZgOMRg6LFtnw0EOXgnJ/WK1WxMVVw2i8OsN3wAG4+lop65I3q1JWVm2hM326GU88EQuzuUI1qwtL7tBwRu7EEhbqkJ09a/F4PoO7z7wJYr1ZK9Xm5Elg2jSzMyuYX8Q9Le0PwedWbCarVOjNjSgVxsCbEOGExWJBTU0ipk2Ld3GNGDB9ejxqahKDEmArV65EXt5q9Ou3DQaDQ+UYDHZ07PiT2+vMzF2yz5K9W5U4bN9+zkuQqAFnzzZ0vjabKyRZKFko/Lnbu3e98zzx8IJ15cqVsFqtirQn3LFYLEhMTPT5J4UY5q2urs+FFHXIhFjoeAHoihT3mdLPjZ5xeBTchTK/iLsQfFnVT550iLMWLYBevRz/rlkjdevVhfWi1GQJI2ohRR0aVzHlbVbcuPFp7NyZCY4zYteuTMTEXA7atB4M3o/JgF27dsJguF+SxZGlIhyC0InayGE9ErJ2qBr3GesDI2s4gtk5NyEWTD/lq0/Pz9d/yAPrZZJIhBFu+HIhmkwcYmNPw2oVt1ixq+nZZovFrl2Z4A2xrqZ1OfB1TAaDHcnJJ5mthA6QWyfckCPWTcjzqvR9JmRgLC2tg4MHG4R1VjBwNZh9zpwazJuXJKqf8pWRyHFsFn6VGpZDN0iEEU5cAyf79bvJTZj07ZuHvDyHpSrUuK2zZy21Cm7ypvWysjKf1b/F4O+Y+E6MdaFD6ftkORFLMLE+St9n/voQIVnB4VC6xTOYPScnNuh+yl9GYlraFS8TbvULv/pDb30BiTDCSSAXorftxOAvCHnz5s2SBucLPSYSOmzDukuBReQqbyL34CYkK1hvpVt8CUqhweyueC7e7i8jMS/PMTnNy+sPu10b5SL01heQCCN8IpcwUTPWScpj0spMSy9opVNlATnLm/gaBMvKyrB58+aA3/f33AjJCpZi2RuWkEJQ8ou4e4oPISLOc3KqhXIRLLZJLCTCCFVg3QXIw3dunsgx0+Jnw3FxlLQcLsjhWlGivIm37ycmJoZkoRC6qHdKymOw25u7fVerpVukEsv+FnEXQrDlIsS4gvXmRpQKEmGEamjBBRhq5yYU99lwY/Trd5Os2aJEcMgVfyS1a0WokJGran0oAkhoVvBPP32g+koWUiFFJrrSiLXc8ff6sWPVKCyMQGpqNZKS3A9eS25EqSARRshCuM1mQqH2bNggqBAjnWNlkDv+SMpBJ5jyJixbJgLFb3o7NgAoLEzBsWPV0MI4LiQTnTVCtdx99JFFV7F8UsDeVSZ0gbcZPl+XSEsoMQB5mw1znBHduw9Dt27eLSThOGNUA60sHeXNlR3I5c96gLM/S7nnsR092sq5pM+GDRzzg7vQTPTs7Gw1m1mLUCx3WnmWlIZEGCEbWhIJ3mK/lBiA/M2GU1KqSWypiFaWjvLnyg7k8meh/WLhj81mi3WKGMBhSWZ9cBeatV1VVaVG83ziq96YkJIWWnS9KgGJMMIJy+4JsQhta1JSkuIDklJ12YjgCSa2Ss1rI9aVrSe81R3U2uDuSyxHRAgbopXok/3VGxNS0iIUAadnSIQRTuR2T6gh8lh2uShVl40InmCXjnIN3AeUKSLqy1LHFz4OFxHmre5gqCt8SI3n/bFvXxRsttiA1yg+Pj6k/kuqvjRQvbFAJS1CFXB6hkQY4YacD4JagkjM/tSoxq2FbNFwJFBslas70PC3R5nj5A08DmSpU3PtU6XxJpRZsiR7vz8sMBhy0L9/XsAs6FDaLlVNN6FFY7317aEKOL1DIoxQFC08ZHqrxk2Ejq9Bp6jI6OYO5Lirn8kZeCzUUicGtZYDCsVqw6ol2dNd7Hp/uK6ZK+fkS46absEQioALB0iEEYQLlMEjHrkGb5bXCDxw4EKtYGNXlAjiF1P42JfgUXMCEshSHsh6wx/32bMWt9dq4i0Y3RU1XcdamBCHAyTCCMIFyuARh1yDN+tWyV9++aiWO9AVpYL4fVkXgsn6ZWEC4u/8eFpvPEve/PDDTbUsgmoWPPaV+eyKVK5jlicqQrDZYvHNN1Ho2lWb7Q8FWh+FIP7G0WmegtHIub3vCPI9BavVqlLL2MbX4H3yJJv7lRLeHWgwOBrp+Pfq/5VaE9UX/IoPrn++Aqf37bN6nYAUFFiZufctFovzOFzFpWeZCt7VZ7PFqtJOPg4qL281+vXb5rw/ALvbvRLIdSzERbtmDdCiBdCrl+PfNWukOALl+OGHm7B0aQ4eeMCiyfaHClnCCAJULkIsctXS0kqNLqC2OxAA82uiuqKVchz+8Famgnf12Ww2RZYec8Vf5rOjvbXvD0+rpZCYLBasl6FQu8abttovBSTCiIBo3dQtBDXKRWi9Lptcg3eg/e7YsQXbtkVjypR70aFDA0mPiSfYc+7pDtSC+OLxF+SfkZFfazsW8Vamgnf1bdq0SXUBKeT+ELNOrdbDJ/RQ4y1USIQRfmE9JkculCgXwXINMyEEW0tLiv3ecMNBrFkzSvblaQJdGy0uwSUEfgJSUJCOvXszsHdvd+TnZzjXZmQVqe9BLSBk7Ump+g65Jozea7xdLeAaDgYAEmGET7Ru6tYCrAqsYBGToRfsfiMjK50CDJB/eRqWr43cVtT8/AzwIcN8fNWcOWegsFfPL57HFso9qLXBXunwiVAmjP7uQU/xbDIBr7/uuAbhYgAgEUb4ROumbqkJ5wweIchlPeT3W1iY4tV1wVqMmBLIaUX1FV/1008XkJJiZeY8WywWDB482K1shZh7UIuDvRrhE2Kvu7+CsdXV1Rg4EJg06X+wWhsgJaUaSUl27N9vxJgxVy18ejYAkAgjfEJrfV2FT39fssSomY5aDCxbBHzF/WghcNwVqc6xXMfq7TwDHN577w+cOJHP1HmOj48P6ft6sfazvtqG5/1itVq91nw7dMjxb2FhCuz2YW6f6dUAQCUqCK841voqxqJFZTCZHCUbHGt9lcFkKlY9Zf3kSWDPHmXKFfjK4GGpVIIUsJ7q7q0cRDBxP1LeM2LcfFFRUcyfY8BxnjMzdwFwLdViwK5dmbDZYnUVX+XP2q8mSvZvahDoHuInAq7o1QBAljCiFqyv9SW3+8Bmi8XZsxY0bGiF2VwRFhk8WrEIiI37kfqe8XSx8K4VVyIjI2E2mwE4BNilSxZNnGMASEoqBuBeYFTNkg9yIGdgu1iRDmjTPSo1/IQrL68/7HZ9L/ZNIoyoBctrfcklFvgO0FvV7bS0P7xk8EifgaQmWor/C9b1Itc943rdA4mSq8VQ2at75k0wsF7yIVTkDmz3FOk2mw1VVVVu20RERDjdqXz8npB79eRJYN++KNhssUy7IEPFc8LFggFADkiEhSEsx/0EQi6xYLFYMHDgE5g/Px4c55gV81lhOTlLa6W/8x21zRaLHj1GoksXs+bOJY9Yi4BcGXpS1kVjoegr68VQecFQVFTkLLuhlZIPYu9BJQLbgxHpPIH6t6tWMgsMhhzVl2aSG5YMAHJBIizM0LqpW85kgdLSBrU6QN4F462j1kOwfigWAbky9Dz3K7YmFyviR656alJisVhq/b5cZUekRKp7kIXA9kCToZ9/jsKYMVf7KH6SmJb2h+ptJ8RDIiyM0Ercjy8cyQKVWLQoBtOnm1FTI12sgK8O0HWBXdeOWi/LbYRqEZBLvEixXxbFjxaEjSssiJNA6MEtJWQy5C1jkJ8k+rpGrK62QVyFRFgYoaW4H0/kTBbw1wH6WmBXr8H6Whh0xaC2+PFM9tDjOSbEI2Qy1LChFUYj5zZJNBo5PPxwOpKTuzqTQIqKjCgsjECbNkZYLNIu66XlUBZWIREWRgh15Tke4hTngMECciYLCLUGueJ9uQ19BeuzglSxZ2qIn5MngRdeiMXrr+e4CXsW43jIasIO3u5Vs7kC/fptc5sk9uuXh717r4YMfPSRRbZwEylDWeheuwqJsDBBqCvP8aA1ht0+zOuA4Tqj1ytCBmtvLi45lgsJZ67OurW5xuayZecxaVI9cFx953ssx/F4q0BPsIW/SeKxY9WyhZtIHcriK5ZPr2uy+oNEWBgg1JU3cOATfwd+umcH8gOGZ/mGFi0u4skn1TgiNlBquZBwpPas26KppIeffz6HSZPMzkxbVwLF8UhNMC6kUCvQE/Lja5JYWBghW7iJHKEsrE2a1IIq5ocB3lx5qanHaz3IR47YvWYHdu8+DP36jUVeXn+n+43jjJgypb5uKzoLxde59IXeK2FLga9Zt1bOmdVqxbffnqsVM8jjmuwhN8FW6Jd7YXBW0ONxms2nYTRybu85QiROhbTCiSNp6ZQs+/ZEj9clEGQJI5ykplZ7jRlLT7doOqifFbReHkQJWKjrFQr+ymIAtZdackXq+mgO95TnIsgcbrzxNFJSvMctyrkwOEvo8Tj37t0seeFZuYvaeuLruvDJBqmp1T7vXa1CIoxwEhV1GosWRXuNGUtIqAOjsYEs9bm0wsCBAwFAVMwCq+VBWJp5Sl3XS41j81UWA7CjW7d8pKcXuAmwgQMHIiEhQdIBnz+P3hdBNmDFik+Rmnrc53lkZYCTOxOPleOUEqlDJJQoauuJ53XR++SVRBjhhBcX3mLGbLZYDBs2DOvXN9T9Wl6+SEhIEP1dVi2JLFkEpK7rpfaxCcm0TUhIELUOoz+Bwh+vv6WHXLdjEb0PvJ5IORGQMwtY6QxjVievUkIijKiF54PmGpDvmNHvRXp6gaJreclp1Qhm32IGLjkXCpYCFgW0VHW91D42OQYtoQIlkJhlFb0NvEIsev4mDOGYMcjD6uRVSkiEEX7xrAwPGJGfn4H09AK37eSeVctp1Qhm38XFxUHtW+mYCj1BRU3dERPnpXaR2mDRekygJ8FY9Hwdl56C0INFzmXqWIFEGOEXb5XhlU6x57l0ySJbjIjQjj1Yi5waMRVax7O6PBFcnJcnWhGzrKz1KRVSWfS8TRJdA9Wjok7r0lImdpk6rVX1JxEWBoQykwoUV6IUrMSIhGqR08qAqBaetehYrS4vFUKfTT3EeQWCxbU+xSK1Rc91W8++cNGiaMnazQpil6ljZZwIBhJhYUAg4eAv5oCFuBLWYkSknIXzVp+iIiNExGdrBiGz06Iio5vrm+Xq8qEycOBAJCUlBX0vsfA8KoHW3KiuyGnR89YXTp9uxhNPxCpyjpSyUotZpo61cUIoJMLChFCEg9odol6DM12tPhs2cJqYtYlByOzUarXiwIEL4Lgmbu+r5foWi1DLlhgBxqP286gUWrUay2XR821dMwh6RkJNWvJnpWYhbk2r4wSJMEIQanaIYoIzWY8L8Ex4sNsNmpi1BYPQQPJAlgNP1zcLHb4vlCqL4e95LC2tg8LClIDWCpbPo16QSjALfUays7NhNptrfT/UpKVjx6oxf35j5zJcHGfE9u39MWdOOjPFU7UaxE8ijGC6MxYTnKmFuABvCQ9amLUJJZhAcqGWA7EuPKVRs325uTGYNi0edvswGI0cFi2y4aGHLtXaTmvV4LWMFBNYoc+I2WwWVXfOHxaLBQcPerMyGVBR0QQs3EZig/hZgEQY4XX2HmxtGjmEnJjgTKXjAsRa3LwFWLNSN0wKxAaS+7McJCQkaP68yInNFov5880u974B06eb0bPnFWasFUToKO2OZr3OodggflYgEUYAcJ+9nzwJHDkSBZstcLCnnNYJMcGZSsYFeLO4ZWW5izJf4tTbjFaPdcPEBJJrNRZIbc6etbgNkoCwZYrkhvXQAC2i1DOihTqHYsYJlhAswsrLywXvNC4uTlRjCPW5KiwsMBhyApYIYMk6oeSMzZvFbcwYgOMcf1fdoO5WRlcLY7jUDQuXQHI5EWJpZrF8RTChASytY0o4oDqH8iNYhMXHx8NgMPjdhuM4GAwG1NTUhNwwQnk8hYWWSgQoOWPzlaXkaoFzd4P6/r1wsfqEy3HKhZBlbVgqXyGmur/cSQ1kkQsdpZ5juZeSYwnBImzPnj1ytoNgAG+uPK2UCFBqxuYvS8kTPQXaE+ojRHywYHUMJinDmxCTAyWTdciiFzpyLiXHGoJF2O233y5nOwgG8JbiG6g6PqsdiVwztmPHqp3p/55WB44DAH0G2hPaQW2rI0vV/cVY5EJFqTIleidczo/owPyysjKsWbMGhw8fBgBcd911GDFihNcaJQT7eEvxNRo5zJlThIED70RkZGSta8tCR2KzxeKbb6KQmlot+285ZtONYbcPc7p6cnKWOq0OR4+2YjJwlXXIcqBNArn31HaPhmKRCxWp90fPSG34+y8urrY3Qkvrz4oSYd9//z2ysrIQExODW265BQCwePFivPDCC/j888/RqVMnSRtJyIu/FF+gAnylCtaEBF/BeckSI4xGDv363STbOoNX4+WuFivctq0fcnKWIjX1OAAKXHUlmEGDLAfawWq1orKy8u96ZGbY7Qa3emSe111N9yhLFrlQoWfEHXf3cmO3vl9r68+KEmGTJk3Cvffei3/961+IiHDsorq6GqNGjUJOTg7+/e9/S9pIQl5YTfH1N5B7qzgvVxKBr0B8b/FyaruCWCHYQYP1wYOCut3jIZcuzXFWT7fbDZg6NQ5//fUWzOYKZGdnu31P7WdCbYucVATzjOj5fq2dmX617wfgc/1ZVq2Eoi1hrgIMACIiIjBt2jR06dJFssYR4Y2/gfybb6KwZIm7GVqOJIJgl9QJRDi5FVgXVoEQYvVh4RiVuqf459Dbag+uz15VVVVIvyMHLCQsKIWUSQgs9le+Esi6dx8GjoPXceH220fCYmEzVEqUCIuLi8Off/6Jtm3bur1/4sQJxMbGStIwggC8D+RWqxWpqdUwGjm3emBiRFEghC4XIhRyK2gDoVYfFlz0St9Tgdx7rKK2RU5u5EhCYK2/8lcLMiWlGlFRUV7Xj+zcmU0BBogUYdnZ2Rg5ciRefvlldOvWDQDwzTffYOrUqXjwwQclbSBBuOKvHpgQURTKjE2q2bTagzYRGKFWH1biiZS8p/Tg3nMN3NYDciYhsNJfCa0FOW/eaMydm6iZ9SNFibCXX34ZBoMBQ4cORXW1IystMjIS48aNw0svvSRpA3nuvfdeHDhwAKdPn0aDBg2QmZmJhQsXIikpybnNZ599hmeffRa//PIL6tSpgx49euCVV15BSkqKc5svv/wSkydPxi+//ILk5GTMmjULw4cPd/utVatW4Z///CdKSkrQsWNHrFixwpmAAACXL1/GlClT8N577+HKlSvIysrCq6++iiZNmji3+fPPPzFu3Djs2bMH9evXx7Bhw7BgwQI3F64ekTsWQWg9sIEDByIhIcHtu1LM2PQ+m2YJFuJatGr1kRt/z57QPk4tl7tn4LbZXIQxY4qD6h9YuDdd0VMSgi+E9v01Nf/S1PqRohRBVFQUli1bhgULFuDo0aMAgLS0NNStW1fSxrlyxx134Omnn0ZiYiL++usvPPXUU7j//vuxd+9eAEBhYSHuu+8+TJ48GRs3boTNZsOkSZMwcOBA/PDDD85t+vbti7Fjx2Ljxo3YvXs3Ro0ahcTERGRlZQEANm3ahMmTJ2P16tVIT0/H0qVLkZWVhSNHjqBx48YAHIkJ27dvx/vvvw+z2YwJEyZg4MCB+OabbwAANTU16Nu3L5o2bYq9e/eiuLgYQ4cORWRkJF588UXZzpHaKFkQkceXKEpISEBiYqK8P+4DLaVHswZrcVhqWn1YG+g98fXsxcfHM+XCcsUzoYfjjJg3Lwk229KA7mXW7k1vSHG/sn7f8fibELOSXCaEkMwydevWRYcOHaRqi18mTZrk/H+LFi0wY8YMDBgwAFVVVYiMjMT+/ftRU1OD559/Hkaj4wF76qmncN999zm3Wb16NVJTU/HKK68AANq1a4evv/4aS5YscYqwxYsXY/To0XjssccAAKtXr8b27dvx1ltvYcaMGbDZbFizZg1yc3PRq1cvAMDatWvRrl077Nu3D127dsXnn3+OX3/9Fbt27UKTJk1w44034rnnnsP06dMxd+5cXQRde+JtLcWry/ao2zYl8ZUercdrDkjbYbMQh+Wt9pCSQd1aGOiFwEIbvT1zYt3LLNybQgnlflVjIh0KepjwihJhly9fxooVK7Bnzx6cPn0ado9UBd7yJBdnz57Fxo0b0a1bN0RGRgIAOnfuDKPRiLVr12L48OE4f/48NmzYgMzMTOc2+fn5yMzMdNtXVlYWcnJyADhU8v79+zFz5kzn50ajEZmZmcjPzwcA7N+/H1VVVW77adu2LZo3b478/Hx07doV+fn56NChg5t7MisrC+PGjcMvv/yCm266yetxXblyBVeuXHG+DmbR9FCQIgPGW8ZKOC3bM3DgQFRWNsb8+Y2dHTTHGbF9e388//xtsFgaqNxC6ZG6w1YrDsu78HGvPaSEG1pLA70WcA0q59fXFOte1lqMoJj7VWsTaa3VA/OFKBE2cuRIfP7557j//vtxyy23BFzYWyqmT5+OlStX4uLFi+jatSvy8vKcn6WmpuLzzz/H4MGD8fjjj6OmpgYZGRn45JNPnNuUlJS4CSMAaNKkCcrLy3Hp0iWcO3cONTU1Xrf57bffnPuIiopCfHx8rW1KSkr8/g7/mS8WLFiAefPmCTwb0hFqBoy/jJVwWbYnMjISR45EuB0/4AiK/e9/7UhKsurmHMi9FIyScVj+hI/Si9ezNNDzwhQAioqMKCyMQELCBUHfZcnq63kfhuqu02uMoK9aiDU1QEGBFTExbFg3eby5lZV+XqVClAjLy8vDJ598gu7du4f04zNmzMDChQv9bnP48GFnKYypU6di5MiROH78OObNm4ehQ4ciLy8PBoMBJSUlGD16NIYNG4YHH3wQFRUVmDNnDu6//37s3LlTMaEYCjNnzsTkyZOdr8vLy5GcnKzIb4t9wIRmrGh19i50QNm0aZPPWmLffLMehw7pw4KhxFIwSsZhCRU+SqL2QO/6TLtbGxqgf/+r1sHBgwfXmoxqwV0airtOD5mhngSqhchi/8XS8xoqokTYNddcI0k9sClTptTKTPSkZcuWzv8nJCQgISEB1157Ldq1a4fk5GTs27cPGRkZWLVqFcxmMxYtWuTc/p133kFycjIKCgrQtWtXNG3aFKdOnXLb/6lTpxAXF4eYmBiYTCaYTCav2zRt2hQA0LRpU1RWVqKsrMytA/Lc5ttvv621D/4zX0RHRyM6Otrv+WANoRkrrJjpg0WIlbCsrAybN28O2EFr9Ry4olQWllRxWEJj1sQKHzmsPmoP9Py1C2RtiI+PVy35JVRCcS/rrfCr0FqILPVfak9UpESUCHvllVcwffp0rF69Gi1atBD9440aNUKjRo1EfZePQ+NjqC5evOgMyOcxmUxu23q6JwFg586dyMjIAODoUDt37ozdu3djwIABzu/u3r0bEyZMAOCIPYuMjMTu3bsxaNAgAMCRI0fw559/OveTkZGBF154AadPn3ZmVO7cuRNxcXFo3769qOPVCnLHzoQavyYmkDyY2Z/eOmhfKCEUxN5LvoLbx4y5gFGjLnh1lwY6HrlKnviChftIT9YGqfF3b6qRXShVZXsW7jtfuLZd7YmKlIgSYV26dMHly5fRsmVL1K1b1xn4znP2rLRqtKCgAN999x1uvfVWNGjQAEePHsXs2bORlpbmFD59+/bFkiVLMH/+fKc78umnn0aLFi2cgfBjx47FypUrMW3aNIwYMQJffPEFNm/ejO3btzt/a/LkyRg2bBi6dOmCW265BUuXLsWFCxec2ZJmsxkjR47E5MmT0bBhQ8TFxWHixInIyMhA165dAQB33XUX2rdvj0cffRSLFi1CSUkJZs2ahfHjx2vO0sUaocSvKZX5Ey61xFjssP3FeK1eXR+rV9fFvffmYeHCa2tNAP0djxolT9S+j/RkbVCKN96owfz5nOJZrVJWtlf7vvOFxWLB4MGDsXnzZgDi+h+W4hV5RImwBx98EH/99RdefPFFNGnSRPZ4q7p162Lr1q149tlnceHCBSQmJqJPnz6YNWuWU9T06tULubm5WLRoERYtWoS6desiIyMDO3bsQExMDABH8P727dsxadIkLFu2DM2aNcObb77pLE8BOFYDOHPmDObMmYOSkhLceOON2LFjh1ug/ZIlS2A0GjFo0CC3Yq08JpMJeXl5GDduHDIyMlCvXj0MGzYM8+fPl/U8hQvBdmYnTwJ79wKjRwMc53iP9cwfVgg0q2etw/YX4+WAd6k56kINHjzY7VPWjkdN9GRtUGINRIfwT1Itq5WVeC058YxB9PW8Km25DgVRImzv3r3Iz89Hx44dpW6PVzp06IAvvvgi4HZDhgzBkCFD/G7Ts2dP/Pij/zTWCRMmON2P3qhTpw5WrVqFVatW+dymRYsWtVyfhPI4rF9craxFgN3MH7XxV6vqrrtKZftdKQdKb1YcHleXGr/iB+EdFq2dYgjVUiTknmMhq5VwoGax7mARJcLatm2LS5cuSd0WgpAUR90b7wIMYDfzR00C16raCbNMa+FK7VJxteK4wqpLTQlrDY+3EhSpqdVISrKjtNRdaPuyNpSWltb6Lt8+Fp+lUNrk794MtQYZEd6IEmEvvfQSpkyZghdeeAEdOnSoFRMWFxcnSeMIQiy+6t7wsJz5oyZql2yQcvDmrTgFBenYuzcDQG2Xmmff5QslYkmkFKH+8F2CIriCl7NmFWLbtuu8flePk5pAx6Mn9y2hHKJEWJ8+fQAAvXv3dnuf4zgYDAbU1NSE3jJCEyg5exdKoLo3gwZ9gOTkk5J1jiyeg1AJdVbPyrGazRW4665dSE8v8OpS49d+ZWWdQyV+R2gJCn8E+m64Tmq06L7VY/+lJUSJsD179kjdDkKjKDV7D4ZAdW+uv/6wpL/H4jkIFTElG3hYPFZ/AfestVUpAlk7vV1j3vVG5St8o7XkDj32X1pClAi7/fbbBW33j3/8A/Pnz/fZWRP6gOWHU6mZKcvnQCyslWwgpCWQtdPfNab4J32hlf4rGKudGvXaxCBKhAnlnXfewVNPPUUijFAVrc1MWUJr545cJsIJJYaJ4p+8Y7PF4uxZCxo2tDJ3LrQiSvwh1Gr30UcWRWpCSoGsIozjizIRBEEoAN9Jnz592lnU0R/hLtpCsRSzGv/kL/MTkN61dvHiRQCBkxzUuNf8lZtRooisHARqryMr3iHAAPZrQsoqwgiCIJTGYrFQnEsQhGLtZM1SKjTzU6rsTavVinfeeSdgosIjjzyi+L0WuNyMMkVklcRXVjzLNSFJhBEEyCLCo6dMKdY6W0J+hGZ+SpW9KbSkS926dSX5PTnappdM1kBZ8azWhCQRRoQtfPYXWUTcXTg9ejyE//3PhObNr6BpU0dF+cjISJj/rtJK50vbhCK0tSLSlc7eZDlRgeW2eUNs7FqgrHhWa0KSCCN0h9ABICkpicQElHfhEOoSiqtWLTev6yRByG8qLTxYTlRguW2eOJaZCz2gntV4RW/IKsIeeeQRqp5PKA7FAwWH0i4cQn1CXcJHSVwnCYDvDETX9X7VEB4sD/wstw1wXONjx6oxZkxj5zJzdrtj2bnExFKkpxuDvu9Yi1f0hWgRVlZWhm+//RanT5+GnU9D+JuhQ4cCAF577bXQWkcQIiGBFTxUgFMegrXiEO64njt/llrPc6yG8GB54Ge1bbzILixMgd0+zO0zu92Afv0s6N8/D2+91V2Xz4koEbZt2zY8/PDDOH/+POLi4mAwXF0g2WAwOEUYQRDaQWuxI1ogGCuOHgcYKRGzzFKwwkPp8hbEVfHsrf8Brl7nH344gk6d9DfBFiXCpkyZghEjRuDFF19UJeuDIJRCDwUOhaKl2BEe1q1MYq04UsH6+QkGuS21FBupLnz/8/HH/QDUvs4bNxZg797jujv/okTYX3/9hSeeeIIEGKFL9FjgUCi8C+fEiWYADEhOPuH8rKysjKmlilizMnkTPKWlpc62iV0sO5T2uJ4fX2hlUBNiqQ0le1NMbCTL2aIst80XnTr9iMaNS7BmzSif11lvsamiRFhWVha+//57tGzZUur2EISqhGOBQ0+OHm3l1QqwefNmpo5bbSuTK/4FoTrxdp7H7UukamVQE2KplSIpJ5hrxXISEMtt80ezZsWiLPJaFJ1AECLs448/dv6/b9++mDp1Kn799Vd06NABkZGRbtvee++90rWQIBREywUOpXA9aTFDUg0rkyeBBGFa2h+qxtsFWlJHKwgJtg9VVAQbG8maiHGF5bb5Q0xShVZFp2ARNmDAgFrvzZ8/v9Z7BoMBNTU1ITWKINQmUEdss9mc77MQwBuKa851ZqjFDEmW2uxLEObkLFUt3k4pkapU/JncWX5ajI3UI/x1ttliUViYImhRdNYElhAEizDPMhQEoWcCdcSbNm0CwE4AbyiuOYvFguzsbGzatEmTGZIstdmfIFSrVpMSIlXO+DM13Eys19UKF7z1ZaWlpUxatMQiKibs7bffRnZ2NqKjo93er6ysxHvvvUclKoiQYSErMVBHzKLrTqzVg1+SSItWAJbaHEgQqlGrSQmRGkr8mRALmhpuJlbraukNX+LZd1+2VFdxuaJE2GOPPYY+ffqgcePGbu9XVFTgscceIxFGiILFrER/HTFLbjAp26RFKwArbRYrCOUMFlZapAYTfxaMBY2lzFxCOvhYrqKiImzdutX5vhbjcsUgSoRxHOdWoJXn5MmTzhk1QQSDFrMSWXKDSd0mLVoBWGmzP0HILxrvihKTC6VEarCWWJYyOLWaXecNrdWH89YWFvtXOQhKhN10000wGAwwGAzo3bs3IiKufr2mpgaFhYXo06eP5I0k9I+aWYmuHdahQ2WCg0BZcoOx3Ca5YHnQ9CUIExISFLPoeB63rzZJeX5CscSqncGp1ew6T5Ssnydl2IinRSxc+rKgRBifIXngwAFkZWWhfv36zs+ioqKQkpKCQYMGSdpAIrxQevbjvUp2O8GDACtusFDbFIqgUWvWzdKgyaIgVOP8iH1+WSgzAmgzu84TuevnyRk2YrFY3NrFYv8qNUGJsGeffRYAkJKSguzsbNSpU0eWRhHhi9KzH6FVsl3dSGVlZdi8ebNbm1nrHIJtk9gBW+2q7KwMmiwJQlfUiKEU8/yyGF+pdeQQtnKHjZw8CezbFwWbLdbZRhb7VykRFRM2bJhjpfPKykqcPn26VvmK5s2bh94yImxRY/YTzCBQXV0taJ/8kjWuyDUQS2GJEdMulmJ61MabQHU97srKShQXFztfa8G1JQYxz2+4xP8oiRzCVo6wkdqWNQsMhhzNFhQOFlEi7Pfff8eIESOwd+9et/f5gH0q1kqEitDZj+tAF0rR1ECDwNq1O72KC3/4+o4cViEWLDFqx/SwhNoWQqUJNf5MjAVNa8HnSiOnsJVq374sa2q5o9VAlAgbPnw4IiIikJeXh8TERK+ZkgQhN97jucQVTfU3CPjbt6ubsrS01JlircZahmoOOKzE9LCC0GusFwuhFJOAYCxo4SZyxSBnaIdU+xZqWfOGFrJUhSBKhB04cAD79+9H27ZtpW4PQQhGaDyX0IHO2yAQaN/est30tkyMECimxz++3LR6Qsy9JtaCRm5wYcgZ2hHqvl3jvwJZ1jxLu+jJyilKhLVv395rvAtBiCWUmCYpBYDnICBm3ywtE5Odne2zdp+UHRnF9PgmWDctS+JabqSwoOnJDS7HtZczsD3YffuL//JnWQultAsLq6/4Q5QIW7hwIaZNm4YXX3wRHTp0QGRkpNvncXFxkjSOCB9C6YxZi30I9B0p1j4Tagng17j0hVTumnCp6RMswVpFw9HNFspx6MkNLtW1Z7FcChA4/isnZylycpZKYrVjcfUVX4gSYZmZmQCAXr16ucWDUWA+EQpiH4pQBECgjkjMvj2/A9iRkZHv/JyPG5NqIBViCVDCXRMONX2CJViraLjFkoWKntzgUrlY+QntmTNnUFVV5XUb10LrSiEk/is19XjI101rq6+IuhJ79uyRuh0EERJiBYAvC5xrkL2YffPfKShIR35+Bvbu7Y78/AzJA/SFWALkdNeoUZVdS4RqpfU1EEthTdUDenWDS/HMulrBpaqaL4WVTe5rpubqK2IQJcJuv/12/Oc//8Hrr7+Oo0eP4oMPPsA111yDDRs2IDU1Veo2EoQgxMY+COmExO47Pz9DVldJoI5GbncNC6UxWCYUK62/gVhqa6pW0aMbXIpnVq6q+VI870pdM60IdFEibMuWLXj00Ufx8MMP48cff8SVK1cAADabDS+++CI++eQTSRtJEEojZsbn+R0lXCWBOhol2hDOIsAXrveCP0uqr/tM6EDMymxeTfTmBpfymZVjEibF8x7sNRNjSdeKQBclwp5//nmsXr0aQ4cOxXvvved8v3v37nj++eclaxxB+EPOAFQxMz7PBWiVmIkF6mi0MhvUG6FaDHwNxCdONIPZfFjStmoROdzgrGSlSvnMshwzx//+2bMWt9d33nmnm0ctlPMeSOyxkDkpSoQdOXIEPXr0qPW+2WxGWVlZqG0iCEHI4QoLtSN2XYBWqZkY39GcONEMgAHJySecnwVqg5JLK4UboZxDbwMxAGzZcj8qK6+6k/jrF27XTOpnn6WsVCn7DZYnYb7cpDt37pT0PPsS6G+8UYP58znVMydFibCmTZvijz/+QEpKitv7X3/9NVq2bClFuwhCEFI+LFJ1xK4TEblcJZ4z/KNHW/mM+/DXBj62yBM9xhqFKrCVtJTwA/HHH/cDcHUA9XQnuV4/PV4zf0h5rKxlpUrVb4Qq6OS656UqsC0WR+ZkEhOZk6JE2OjRo/Hkk0/irbfegsFgQFFREfLz8/HUU09h9uzZUreRkAm5HjBWzPrBIkVHbLVasXnzZrf35CiWaLFYMHjwYGzevFlQ3EewbdBbrFGoAlspS4lnLFlU1BV88MEDbtv4cifp7ZqpiRorHMiVaSxW0Hne86FmWLq2W203KUuZk6JE2IwZM2C329G7d29cvHgRPXr0QHR0NJ566ilMnDhR6jYSMiDXoMKSWT9UxHTEwTy8oZZtiI+PBxC4Q/G1viUQHsvpAKELbKUsJZ5xhcnJJ5h1J+kVtSrwy5lpLGYiKHWGpcViQXZ2NjZt2iSrm1RIv8qSm1aUCDMYDHjmmWcwdepU/PHHHzh//jzat2+P+vXrS90+QibkWntNL2u6SdUR+zr+7OxsWCwWSayGgToUX0t+6Gm5Fz0RKK4wM3NXrWBmQhrUrsAv1cRUyqQlKc8Jv4SanPGy/sQsPwllKXMypLK5UVFRaN++vVRtIVRCrsFYq4O8VJ2Ov+M3m82SWQ3FdChqDzZqE6oF0Nf3bTab6DXuXPFV4qKoKAm7dmVq7pnSCmq7yaRCSquaXOdEztIiQo6LldImyq9dQDCFXIOxlgd5KTodIccvpYsr2A5FL4ONGEKdHPj7/qZNmyRxtbsOoq4u5LffHirqmdJqnKbSsOSmChWprqec50TOxcW18PsAibCwR67BWMuDvBSdjhLHH0ogr54Gm2AIdXIgpbgOhOcgKvae0lOcptyw5KZiBTFlbnhI3AeGRFiYI9dgrOVBXoqOWMzxB+siC8XlEK6DTajiWM3JhdhnirXyCywS6goHekdMmRseV3EvZ4FtrUIiLMyRazDW4iAvZUcc7PGLdZEFO8sM98Em1MmB9yKqwr8vxi3IX4tA95Rer5kS0BqogQnkuhOShKX2eWZRBJIII2QLUGQl8FEoUnQQwYgc/neUjJ9TuxNUi1CFjOf33YuoGnD0aKuAolmsW9Dzms2ZcwbHjkUgJaUaSUk3A7g5qGvGQlkSFmPU9HbPh0owQiSYSaSa55nF/o9EWJgiV2FAufYrBUp0/EIfcuBqLIXSLq5wHGyECJmLFy+isrISxcXFXvdx991349NPP0Va2h8wGACO4z8xCBLNobgFXa9ZYiLQubOgXdWChYxlilHTBoH6Mj5hRKlJpGv/XVRkRGFhBFJTq5GUZAcgvP9m7Z4iERamyDUjUHum4UtolZWV1apk7w2pMtv84TkIaTl+Tkv4EzJWqxVvvPGGoP1oNemElYxlilHTDmqWsHDFtc/0N5HQonAnERbGyHWzqvUQCJ1h+0OJjt/zNyjWR32Cue5aFc1aFY8E24TyPAj1TggN3dCicCcRRugGLT6APN7ixwYOHIikpCTNzez0jlSiWenYLDnFI4sxXoQyiE3CCmZtSh49TiRIhBGEyrh2Pqmpx53vJyQk0MDFGNnZ2c6lV0IJkFcyNkvu7MpQY7xYSBTQC2qJYTFJWELXpiwqKnJup1UrtD9IhBFhCSsdPwuB0kRtfN0fZrPZuSyR2AB5pWOzPOM0J036H/73PyOSk6+gadNUAKmIiIhwJiUEO1CHEuNF9790KJ3wIFUSlq/noXHjElRVRWPt2p3O/Wqx9FEgSIQRusXXQMpKx89KoDThjtz3hxouFX7QtVqt+OorRwLCiRO+t1ciwJnuf2lROuFBqiQsX8/DmjWjvD6DWit9FAgSYYQu8TWQstTx6zG+QevIeX/wFoFALhU5EzFYykyk+19elLD2SyHUvRdA5vw+gyys+SgVJMII1ZE6jsHfQMpSx6/H+AatI+f94Wo5uOaackyfbkZNjQEmE4eFC8vx0EMP6iKAPdDgH6wYpaD/4GHF2i8ETxcjYMfVQsgO9CzOSYQRqiJHHIO/gVRNKwQPLUOjLEIGcaWsVPw9PGUKkJ0N/PEH0KqVAc2axQOID2nfLCBk8A9GjFJh1+BhydovFFcXY2RkpdMVySN0cqrFPpNEGKEqUrpHhAykZnMF5s8/hblzm6pmhZB6GZpwRKh1JJhBXGkrVbNmjj+9EMzgL1SMsuQ+1QosWfuDwdXF6G9yOnDgQCQkJNT6vlb7TBJhhG4IZoY9fLi6VgiplqEJR4IRVsEM4nzWo16tVN6QMm5I7OCvNzGqNqyFOfiaMNlsNp/f8Rd8n5CQ4HxW9QCJMEJXCJ1hh1vHr6e4GiWsI+Fwf0gVN8RCwgFxFZbKOAidMA0ePBjV1dXYunWr8z09Bd/7g0RYmKOnwdmTcBhIhUBxNYQnUsYNKZlwoHZ9P5b7S1eR68+SpKQY9jxXvq5ffHy84HbpTcyTCAtjWByc1e5k9QjF1RA8/AAWyHUY7ECnRMKB2hl/LPaXrkhVt0suAl0/1tsvFyTCwhjWBme1O1lC/4S7yOcHumPHqrFhAwe73eD8zGTiMHHi3UhJiQhpoJPDAs1Cxh9r/aU3WBUoQq8fq+2XExJhREBKS0t9fialm0HtTpbQJkKFFYl8BxaLBRYL8MYbwOOPAzU1gMkEvP66AZ07N1G7eV7RasYfS6jpSqXr5xvNiLB7770XBw4cwOnTp9GgQQNkZmZi4cKFSEpKcm6zefNmvPjii/jvf/+LRo0aYcKECZg6darbfr788ktMnjwZv/zyC5KTkzFr1iwMHz7cbZtVq1bhn//8J0pKStCxY0esWLECt9xyi/Pzy5cvY8qUKXjvvfdw5coVZGVl4dVXX0WTJlc7sD///BPjxo3Dnj17UL9+fQwbNgwLFixARIRmTrkT12BJb4RifpfLPcIKLMeQ6AGhwopEfm1GjgSysnjXIZvxk2oG/Xs+u56TUS1ZVY8ePYp33nkn4HZyuVJZy9hkCc0ogjvuuANPP/00EhMT8ddff+Gpp57C/fffj7179wIAPv30Uzz88MNYsWIF7rrrLhw+fBijR49GTEwMJkyYAAAoLCxE3759MXbsWGzcuBG7d+/GqFGjkJiYiKysLADApk2bMHnyZKxevRrp6elYunQpsrKycOTIETRu3BgAMGnSJGzfvh3vv/8+zGYzJkyYgIEDB+Kbb74BANTU1KBv375o2rQp9u7di+LiYgwdOhSRkZF48cUXVTh78uJPZAgRIXK7R9SC9RgSrSNEWOld5IcK68kraq0yEOjZ1ZJV1Wq1ChJggHyuVJYyNllDMyJs0qRJzv+3aNECM2bMwIABA1BVVYXIyEhs2LABAwYMwNixYwEALVu2xMyZM7Fw4UKMHz8eBoMBq1evRmpqKl555RUAQLt27fD1119jyZIlThG2ePFijB49Go899hgAYPXq1di+fTveeustzJgxAzabDWvWrEFubi569eoFAFi7di3atWuHffv2oWvXrvj888/x66+/YteuXWjSpAluvPFGPPfcc5g+fTrmzp0bNh1+MCKkc+cmmnKPCIHVGBItzeC9EYywUiIGipAXNVYZ8PdMas2q6r1GV2h9gBgLv94W3pYKzYgwV86ePYuNGzeiW7duiIyMBABcuXIFdevWddsuJiYGJ0+exPHjx5GSkoL8/HxkZma6bZOVlYWcnBwAjpt1//79mDlzpvNzo9GIzMxM5OfnAwD279+Pqqoqt/20bdsWzZs3R35+Prp27Yr8/Hx06NDBzT2ZlZWFcePG4ZdffsFNN90k6fmQCqkH52BFiBbcI1pHSzN4XwQrrFiLgSIXtXhCtdxJce61Ht8Uah8QzOTa0+Dgq/ZXuBgmvKEpETZ9+nSsXLkSFy9eRNeuXZGXl+f8LCsrC5MmTcLw4cNxxx134I8//nBavIqLi5GSkoKSkhI3YQQATZo0QXl5OS5duoRz586hpqbG6za//fYbAKCkpARRUVGIj4+vtU1JSYlzG2/74D/zxZUrV3DlyhXn6/LyciGnRRJYGZxZd49oEb6DCzSD99cRsiYcxAgrFkQ+uajVI5hz7w8txzfZbLH4+ON+4BfIFmPFE1r7i1+FIhzLTgSDqiJsxowZWLhwod9tDh8+jLZt2wIApk6dipEjR+L48eOYN28ehg4diry8PBgMBowePRpHjx5Fv379UFVVhbi4ODz55JOYO3cujEaj399ghQULFmDevHmK/Z7QwTkQpaWlYf8gsQxvOdqzB1iypPYMvnv3YejZ03d6OMvCIVhhpbbIZ9VFHQ6Ecu49hYa/+CabzcZsf1hQkA5egPGEYsUTumA74RtVRdiUKVNqZSZ60rJlS+f/ExISkJCQgGuvvRbt2rVDcnIy9u3bh4yMDBgMBixcuBAvvvgiSkpK0KhRI+zevdttH02bNsWpU6fc9n/q1CnExcUhJiYGJpMJJpPJ6zZNmzZ17qOyshJlZWVu1jDPbb799tta++A/88XMmTMxefJk5+vy8nIkJyf7PT+hEGhwvv76AThxYoPzPV8zHj57kmbv7GKxWNC1K2A0Anb71fdNJiA93WFV8gXrwkFtYaU1WLNqso4voeErvmnTpk0A2OsPbbZY5OdnePlEnBVPa7FxrKKqCGvUqBEaNWok6rv2v0cSV/cdAJhMJlxzzTUAgHfffRcZGRnO38jIyMAnn3zitv3OnTuRkeG4MaOiotC5c2fs3r0bAwYMcP7O7t27nSbqzp07IzIyErt378agQYMAAEeOHMGff/7p3E9GRgZeeOEFnD592plRuXPnTsTFxaF9+/Y+jyk6OhrR0dGizodY/A3OHTvWw4kTjtdCZjw0e2ebZs28ue9IwIQTLFs1WSSQ0PAnNljrD73FsgFAt275okST1mPjWEETMWEFBQX47rvvcOutt6JBgwY4evQoZs+ejbS0NKfwKS0txQcffICePXvi8uXLWLt2Ld5//3189dVXzv2MHTsWK1euxLRp0zBixAh88cUX2Lx5M7Zv3+7cZvLkyRg2bBi6dOmCW265BUuXLsWFCxec2ZJmsxkjR47E5MmT0bBhQ8TFxWHixInIyMhA165dAQB33XUX2rdvj0cffRSLFi1CSUkJZs2ahfHjxysusoQQE2PFokUmj/RvG+rVOweAZjxSwUJWIgtxUYR6sG7VVBIhz6NSQkMJ66SvWLb09AK33wl1f1qIjWMJTYiwunXrYuvWrXj22Wdx4cIFJCYmok+fPpg1a5abqFm/fj2eeuopcByHjIwMfPnll25FVlNTU7F9+3ZMmjQJy5YtQ7NmzfDmm286y1MAQHZ2Ns6cOYM5c+agpKQEN954I3bs2OEWaL9kyRIYjUYMGjTIrVgrj8lkQl5eHsaNG4eMjAzUq1cPw4YNw/z582U+U8HjOjN+4olYp3n9/PkK/G1Vl6wjYkGEKIlrh+bPkqh0ZhC57/QBuRXFE8iyL7RIrBTIbZ3kjyVQLNsjjzwS1P6p9pc0aEKEdejQAV988YXfbRISEpxlJPzRs2dP/Pij/6y/CRMm+M2QqVOnDlatWoVVq1b53KZFixa1XJ8s4tqJ+zKvi+2I1BYhag9SrqUU5s9vDI5zlFLgOCO2b++POXPSqUZVmCN2YkJuRfEIsez7KxI7e3YRgAq3/YUyuZTbOum5MPacOWdw7FgEUlKqkZR0M4CbRfeFVPsrdDQhwgh1ETvjUVOEsDJIWSwWHDzoHm8HADU1BlRUNPEbEC83aovUcCeUsjDkVhSPUMu+ryKxJpMJb7zh2IaV0j6BcH2OExOBzp3F70srtb+00r+RCCMEIXbGo5YIYWmQat3ae+JDq1a+vyN3BxJKzaRwcytLiRQ124jgsVqtsNlsAMStQ+nqwi8udvwrV6ws68+Xp2XNG0oIHH99ZFlZGTZv3ux87eucsmApJhFGCCZQNpAvxIgQPRFsVqISVrxgRKrabmU9EWrNNqlhfcCXAs/nyZdlf/Tou9G4cWPB516OoH0tWtbUQGgfCfg/pyxYikmEhSGuM4jS0tKgv++r4/Y1CFNphOCyElmy4gEU2yY1odRskxKtDPih4u058WbZj4+/2es97GlxKSsrAyDOouYPykIXjtCq/Vo4pyTCwoxgZhCuZGdnw2w2Izc3BvPnm2G3G2A0cli0yIaHHroU0PxMpRG0nZXIcmwbSwh1I6s1MSF36FWEWPb99ZeeFjVHaZ9yPPTQg6LccVR3Sxz+JhNaOKckwsIMsdYTs9mMmppETJt2dSC22w2YPj0e2dnxggZhpUSI1WoVZeEj/BPubuVABOtGVmNiwpo7lHUC9Ze8Ra1792FIT7egWbN4APGifovqbgVPoMmEFs4piTBCEFFRUT4sIY5BJJQBRMogdLGWPiIw5Fb2jxg3slQTk2Biu1hxh+oFs7kC3bpVIjFRXF8mtI5XOFgngyWQpUsLtcxIhBFeGThwIBISEgBc7TjksIRIHYTOQqClniG3MhuEmiwRzoJarmQEsX2ZnHW89I4QSxfrtcxIhBFu8B1UZWVjJCY2cfssUMctZhaoVBB6sMkE4UYwA5OWY9v0ghTJEnoU1N76INfQBDmTEULpy6Ss4xVOCLV0ic3sVwISYYQT1w5qwwYOb7zh6Khd8dVxs1Ic1RveOt7nn09FUlJS2M4u9Vh2QivFGaVCimQJPQnqQH2QFJly4VDSQ2uEYulioX8jEUYAqN1B2e0GPP64Q3B5dtLeOm6hs8CioiK3beUOoPfV8c6Zc4bZAdmzY5DDiqe3shMsTwLkhJIlrhKoDwoUPxToeQrWiqYVwabFyYvQqv18Vr+vfbBwXCTCCADeOygpgu492bp1q3Q7E4CvjvfYsQhmTf6uMSJiS4II/R29lJ1grbaaUoRzbFeweIsfMpk4TJx4t9uEw1sdxWCtaP4Em7+Jp9LCQKuTF1aq9ksBibAww9dsz3sHpf0Ztb/AzeJidh9gi8WCkycRUkkQIZAlRT6UsoToMbZLDvj4oe3b+/+9GDfw+usGdO58NfbVlygRYkXjBUEgwRZoIqqk4NHy5EULAksIJMLCDH8ziGuuKcf06WaXDkr7HbqvwM1///tH/Pvf/r+r9uzv99/lKQniCllSpEPNODs9xXZJhTcR3KnTj5gzJx0VFU28ClZfYkOIFa3470UlQy0Qqqbg0YoLVU+QCAtDfAmLKVOA7Gxtz6i9DXBiAzfVnv0pZaUKZEnRYsyIGugtzk7L+BPBSUl2JCYGtz9v1fE9rWg8WigQ6o1wWcaKNUiEhTknTzosLq1bX51Nsyi+hFoPPC19RUVGFBZGIDW1GklJDjVjs9mwadMm2doqFUpaqXxdd63GjKiFnuLstIpc6wW6TuYmTry7lgATWnTVtZ2sWJ20sMaiXiERFsasWQOMGeMYMIxGeC1JoSSuBWJdCdbSwm/L2vGJQe14Hy3HjKgFxdmpi5TrBXoKJf6Pn9C5EqjoamlpqjMejDWrkxbWWNQrJMLClJMnrwoUwPGvr5IUQpAiziUhIQE1NYluljmx+Ds+kynkpioKq9ZJllHTykBxdt6R263N90GB3IFC+yoxQklI0VUWrU5adaHqARJhYYrUQd/+Av5LS0sFlabIzY1xZgOGarnyd3xt2ojbp5pQXJZ/WCs+q7YFkzWUcGu79kHuSUYcFi4sx0MPPSj4OZFTKLFoddLCGot6hURYmCKHy8RX5yZk4LPZYv+uh+V4HaplTk8uIYrLCgyLQfFkwbyKUm5t/vq6JxkZ0KxZPIB4wfuRUyixZHVy7Zv9JTDx29FkUHpIhIUpcrtM3AP+AxfWKyioiyVLDG7vhWKZ83d8f2eSawaKyxIGBcUTrogRwVK7NL3tO5DVScmldIIpekqTQXkgERbGyOUy8R4Q7/+h7NJFesuVr+MT2smxsK4YERx6soASyiOlS9PfvoHagfvAzapYkoT+nqdQ8xV3Ge6TwWAhERbmSO0yERLw71kWg2+HHJY5b8cnpIwFmdW1CQXFE6EilUvT374B34H7WoC17E4tQyKMEI23+IB9+6Jgt7uLF1e3or+yEUoGM+upjIWcKLGYuNSEa1B8oHidixcvom7duj4/V3LiwVKNLH9QXF9tWMzu1DIkwghR+IoPsNliYTDkeF2DUoiVTMlOT+oyHXpEqcXEpSbcBk+h8TqBUCKeR+tWlHAPTmcxu1PLkAgjROGrE/K1vEezZsCePfKvhRgMSqzNqAeUWkycEI9UcThyx/MItaKwKnQoOJ2t7E49QCKMkBxfy3uwFjTNWntYhgQrEQq8uzqQFSUqKoppoUOZylRTTGpIhBGywC/vERV1GsXFjtHbZAIWL47FlCn1mQia1koQNwtxWSRYiVBwreO2YQMHu/1qORqTicPEiXc767gVC6who2ehwzr+aooRwUEijJAVb5Xyf/zxCVitDZgImtZCEDcLcVlaEawEu1gsFlgs3u4jQ63FsLWCVhIMpMBzksdPtANtR/iHRBihOAkJl9Ghg9qtuIoWgrhZiMvSgmAlHAQSB4E+lzMmK9j7iFWho/UEg2AJprArIRwSYQQRBGoGDEsdlyXmWLQgWMOdQOIg0OdKxGQJvY+UEjrBPgvhWqaBBJb0kAgjCIGoHTAsZVyW2sdCyEMgcSBEPLASfK6U0AnmWeDRQ5kGVjNQww0SYYQowtHvr/bgJGVcltrHQkiL0OxDIdmJrFxzpYSOmGdB62UaaBLGDiTCCFF4iw8oLS31GojvC5qJBQ/FZRHeEJJ9GB9/HmVl9SXLTpSLsrIyAGwKHRYX4RYDrQPJDiTCCNGEIpBoJhY8vGg1mYA2bRzvuY6XJFrDm8DZh44MxGCzE5UMjLdardi8eTOAwELn4sWLfgWj2OfB3/Gyugh3KIRbggFrkAgjVEHP7rDS0lIA0ooiEq1XIQuqfwJZS4Oxpio9QHteV1/1qO655x688847AfcX7PMg5Hj1sgg3EL4JBixBIoyQhJMnge+/rwubLTbgw8tS3IkcuLpkpRJFehatwUBiVBiBsg+FZCeyMED7skrVqVNH0PeDeR5YOF6l0UOCgdYhEUaEzJo1/ELYZhiNk5wFRL3BWynUjjtRCq2IIlZrMXlCYlQ51B6g/VmlKircf1+K+1ft41UDFuPuwg0SYURInDzJCzDHa9cCohQ0rg0oJoRwhQ8qDzRAyxl8HsgqtXPnTue2Ut2/4ShIaB1I9SERRoREOC3sLHQNRy3AH0ugwU6OgVbKmC4tXwNWcQ0+v+aackyfbkZNjQEmE4eFC8vx0EMPyh53J9QqJYULUS8Zj2KhdSDVhUQYERL+CoiePOkQaa1b60OQuQ5Ob7xRg6VLk1SzHoUqPvhj2bMHWLKk9mDXvfsw9OwpfYVsKWO6yIInH/y5nzIFyM7mg/gNaNYsHkC87L8v1CpVUJAesgtRjxmPgRC6DqTNZkNRkRGFhRFITa1GUpLd+X09nQ81IRFGhISvAqKffXbVTWk0OrYZOVLt1oYOv4bj/PkcOM5Ra0npAF6pxIfFYkHXrt5FdHq6RZb1KIXGahUVFTnb6I1wDKJWCzWWqhLiJrPZYrF3b0at74pxIeop41EI/taBLCsrc5YJmT79vz77mnBPfpEKEmFEyHimvANAixaucWIOkZaVdbUzF2raZ9EF4HDBGtze4zgjfv21Pdq3/1VWESC1+JCyCr+U8Bmmvjr6cAyiDgdcn/dAbrKzZy0AjPAkIyOf7gEBBBJQgfoaNZNf9ORlIRFGSILrbHnPnsBxYv5mYjysmrwdLljOQ4hx+OyzPvj887tkcYsJXZZGjGhVswp/ILeqr/sjHIOowwEh/QJvqfF2DwB2pKcXOF+xOInTCqxNdPhY0tzcGEybZobdboDRyDmz8VkdLwJBIoyQHKELTbs+MFqa2TRrBixefAGTJtX9u5PiAHh3TUo1CAhZloZfdkYMaricXN2qgB3duuUjPb3Abwcf7kHU4YDQezjQPZCdna3JQZkVWJro8LGkNlssli7NcYaC2O0GTJ0ah7/+egtmc4UmXaQkwgjJCdbFdbXOmHbix558sj569TqHrVuNmDvX7PaZXIHtgZel0Q6erg7AiL17uyM/P8OvJTEcg6jDHc9sWn5FCsC/y9Jsdn8uieBgqXwFf/0DWee0WB+QRBghC0JdXLXrjNWOH2OVDh0aoEEDYP585QLbAX0s4u2tMwWExbiFWxB1OCMkm9ZXZh9ZQ0OHtfIVLFnnpIJEGCEbQlxcWq8zplZguxruQynxHs/jIJwC7GkdTP94nhtfMYQDBw5EQkKC83W4nzcp8SVy1YAl65xUkAgjVEVo/BjL6MEypRSeMV0ff9wPnhluWp/ZCsXTyuNLYGgxzkUO/JVmSUhIQGJiosotJJSANetcqJAII1SF1RIJwaJ1y5RS8DFdjjpgW5GW9gcKCtKRn5+hm5mtUFytPP4EhhbjXKSG6sIphxbKB7FknQsVEmGE6pAlKbxwteqYzRW4665dSE8v8DqzDYe4HhIYgWGtXIKe0XL5IC1CIoxgArIkhRfU0V+FBEZg9BiQzTLh8NyxAokwgiD8IlcNt3Dv6MvKygCQwBCCHgOyw5lg+xQtuEjFQiKMIHSKFOJJizXctIDVanWuz3f0aCtw3NXPSGB4R28B2eGKmD5Fz5ZzEmEEoUNCFU9WqxXHjlVjzJjGzur8jhpuHG688bTf6vxaWv1ALfjBhI8Hc80Q5TggLe0PlVrGFp6WDaoJpm1CqQupRYElBBJhBKEzQi2Ay5dOKCxMgd0+zO2zmhoDVqz4FKmpx72WTiDLWXB4L1pL8WA8eraAhBtWqxX79gF2u/u1qqkBCgqsiInRr9DyB4kwgvCBFi06UnR0/IAXKFbJc2DU8uoHaiEkHkwvVh6xz1M4Dsx6w3XtR4Mhp9b9/s0363HokDbXfgyV2uWqCYLAmjVAixZAr16Of9esUbtFgeE7ur1718NgcF+GgO/oVq5cCavVKmh/fDA0vy9/sUoO8Wf1uvpBQYFV8G+GG4HOsdYXobZarSguLsYrr5ShRQvu7+eJwyuvlKG4uJjuizCBn7AFut+lrol38iSwZ4/jX1YhSxhBeKBVi45nR+crkyyYjk5IMDTNckNDr4tQu94XS5fmgOP42EIDpk6Nw19/vQWzme6LcEOpBAuthEaQCCMID7S+niUgrKMT6h4KVJ1aDvEXbuipAjgPf70D1UHjt9Oi+58Qh9z3u5Ym0iTCCMIDPaxnCfjv6OSaJVIZAX0jRigJiXtj1WpBwlB7aC0BgGLCCMIDfj1Lk8nxWqvrWfqiqMjodZYoVdyE2VyB1NTjJMD8oMXik2LjJAPFAcl9P4pF7rhQLcQraQ2p42KVgCxhRMjocbYox3qWap0nmy0WZ89a0LChFWZzBQoLI0S5Wz33Q4hHa6UXQnXv+LOQHjhwwWdChxpWi1Bq5AmFVcuf1tFiaASJMCIk9NyZSLmepVrn6YcfbqrVEfXrV+3X3erN+uJtPyxZabRIsAO5WiJeKveOL/f4L798xExCRyg18oTuX26BRzjQSmgEiTCNY7fbVVP1JSXACy8AyclX33vxRaB3b6BpU1WaFDLnzp1DVVWV87XBYIDJZILB4OgwxVgn1AoS5aux84MbxxmxbVs/zJlzBm+84WhDTU1td6unlaaoyIj58xs7s9s4zojt2/vj0iWDfI0n3FBLxCuR+cqS1UJsjTwhyC3wWEYt97sWEl5IhGmYyspKFBYWwu5py1eIy5eBV1+t/f65c8ClS8q3J1RqampQUVH7gb106RK+++47XL58GQCC7iSVyrb07MB8ZaWdPFknoLvV9fh++81b+w2ayhZljWCsWmpmeinl3mHNaiHHguFyCjzW0Zr7XUk0J8KuXLmC9PR0/PTTT/jxxx9x4403Oj87ePAgxo8fj++++w6NGjXCxIkTMW3aNLfvv//++5g9ezaOHTuG1q1bY+HChbjnnnucn3Mch2effRb/+te/UFZWhu7du+O1115D69atnducPXsWEydOxLZt22A0GjFo0CAsW7YM9evXD6otocBxHIqLi2EymZCcnAyjUfkci8pKh5jwJC0N0KKnqrKyEmVlZW7vcRyHc+fOoU2bNvjpp5+c2wWDUtmW3ixYGzZwTrcHABiNHJo1u4zi4oswmYA2bRzvFxc7/vXWEQZqvxaDzNUkWKuWHCJejGszWKEU7PVmzWohlzCUQ+BpgXAUWELQnAibNm0akpKSnAMiT3l5Oe666y5kZmZi9erV+PnnnzFixAjEx8djzJgxAIC9e/fiwQcfxIIFC9CvXz/k5uZiwIAB+OGHH3D99dcDABYtWoTly5dj/fr1SE1NxezZs5GVlYVff/0VderUAQA8/PDDKC4uxs6dO1FVVYXHHnsMY8aMQW5uruC2hEp1dTUuXryIpKQk1K1bV5J9BkudOo6soePHr77XogUQF6dKc0LGaDQiIqL2I2E2m9GoUSNERUWJmqXy2Za+3H9S4trRJSZ6/i6Hvn23IS/vR7/78LT0BWq/2FmuHhM6AiHGqiW1iA/FtRmMUAp0X5SWlmLr1q1Cm60KcglD1ix/hHpoSoR9+umn+Pzzz7FlyxZ8+umnbp9t3LgRlZWVeOuttxAVFYXrrrsOBw4cwOLFi53CZ9myZejTpw+mTp0KAHjuueewc+dOrFy5EqtXrwbHcVi6dClmzZqF++67DwDw9ttvo0mTJvjoo48wZMgQHD58GDt27MB3332HLl26AABWrFiBe+65By+//DKSkpIEtSVUav42QaltXWjUCDCbgStXgOhobVrAAmE0GmE0GhEZGSnaVSBHtmWwvxsbezqgAAO8W/qCcV8KQc8JHf4I1qpltVphMlVi0aIYTJ9uRk2NASYTh4ULbTCZLsFqDc6Fo7Rrk6wfvmHN8keog2ZE2KlTpzB69Gh89NFHXi0/+fn56NGjh5soycrKwsKFC3Hu3Dk0aNAA+fn5mDx5stv3srKy8NFHHwEACgsLUVJSgszMTOfnZrMZ6enpyM/Px5AhQ5Cfn4/4+HinAAOAzMxMGI1GFBQU4P/+7/8EtUUq+IBxNYmK0qf44pHqHEuZbSnmd4uLQ4sdlKr9WqpmLTXBWLX4QG6eJ56IdVpOzp+vwBtvON4PJkZRD6tBEIQvtBgaoQkRxnEchg8fjrFjx6JLly44duxYrW1KSkqQmprq9l6TJk2cnzVo0AAlJSXO91y3KSkpcW7n+j1f2zRu3Njt84iICDRs2NBtm0Bt8caVK1dw5coV5+vy8nKv2xGElglnIRCMa9rTIunLchKMdVYvq0EQhDe0mACgasX8GTNmwGAw+P377bffsGLFClRUVGDmzJlqNld2FixYALPZ7PxLdq39oBOGDx/uvLaRkZFo0qQJ7rzzTrz11ltBZXmuW7cO8fHx8jWUAfRaUZsXAq6EkxAYORI4dsxxbY8dU84N63BtFmPRojKYTBwA/O3aLIPJVKx4FXEWrRYstokIDovFgsTERJ9/LAkwQGVL2JQpUzB8+HC/27Rs2RJffPEF8vPzER0d7fZZly5d8PDDD2P9+vVo2rQpTp065fY5/7rp30WrfG3j+jn/XmJiots2fBZm06ZNcfr0abd9VFdX4+zZswF/x/U3vDFz5kw3d2l5ebkuhVifPn2wdu1a1NTU4NSpU9ixYweefPJJfPDBB/j444+9BseHG6zETFmtVslnlUomKohBroQB13MpNDNVyt8W49qUU5SwaLWQs00k8AhvqDraNWrUCI0aNQq43fLly/H88887XxcVFSErKwubNm1Ceno6ACAjIwPPPPMMqqqqEBkZCQDYuXMn2rRp43T/ZWRkYPfu3cjJyXHua+fOncjIyAAApKamomnTpti9e7dTdJWXl6OgoADjxo1z7qOsrAz79+9H586dAQBffPEF7HZ7UG3xRnR0dC2hKRdyDK5CiY6OdorRa665Bp06dULXrl3Ru3dvrFu3DqNGjcLixYuxdu1a/O9//0PDhg3Rv39/LFq0CPXr18eXX36Jxx57DMDVeK1nn30Wc+fOxYYNG7Bs2TIcOXIE9erVQ69evbB06dJaLmRvCC3zIXcnKUXMlLfrW1paGlQ7PAduX4gpLqlWokIg5BK/cp5LIYh1bcotlFizSgDytYlF0RmusJSZrQmTQ/Pmzd1e8/W40tLS0OzvM/jQQw9h3rx5GDlyJKZPn45Dhw5h2bJlWLJkifN7Tz75JG6//Xa88sor6Nu3L9577z18//33eOPvaaDBYEBOTg6ef/55tG7d2lmiIikpCQMGDAAAtGvXDn369MHo0aOxevVqVFVVYcKECRgyZAiSkpIEt0VN1B4QvNGrVy907NgRW7duxahRo2A0GrF8+XKkpqbif//7H/7xj39g2rRpePXVV9GtWzcsXboUc+bMwZEjRwBcvSeqqqrw3HPPoU2bNjh9+jQmT56M4cOH45NPPgnYhoiICDRu3LiWW/Ty5csoLy/H4MGDUa9ePdnPSagxU0Kur5B1IIXGGonNGFUrUcEXciYMyH0u5YREgXTQuVQfVrwMPJoQYUIwm834/PPPMX78eHTu3BkJCQmYM2eOW0mIbt26ITc3F7NmzcLTTz+N1q1b46OPPnLWCAMcdcguXLiAMWPGoKysDLfeeit27NjhrBEGOMphTJgwAb1793YWa12+fHlQbVETVgeEtm3b4uDBgwDgZq1MSUnB888/j7Fjx+LVV19FVFQUzGYzDAZDLffuiBEjnP9v2bIlli9fjptvvhnnz593K6brC2+uULvdDpPJhMaNG7vdB3IRavB0oOvmbR3ITp2ulq4IV3dIOCcMEPLAksWFYDMzW5MiLCUlBRzH1Xr/hhtuwH/+8x+/333ggQfwwAMP+PzcYDBg/vz5mD9/vs9tGjZs6CzM6gshbSHc4TjO6V7ctWsXFixYgN9++w3l5eWorq7G5cuXcfHiRb/Faffv34+5c+fip59+wrlz55xWrT///BPt27dX5DhCRc6YKW/rSW7f3h9z5qQjKcke1u4QyhwkpIQ1iwvB5kRL1exIgnDl8OHDSE1NxbFjx9CvXz/ccMMN2LJlC/bv349Vq1YB8G/luXDhArKyshAXF4eNGzfiu+++w4cffhjwe3JitVpRXFzs889XRppcGXTe1pOsqTGgoqIJk5lDSsKLX5PJ8VrthAEK5NYuviwuest01hosZmZr0hJG6I8vvvgCP//8MyZNmoT9+/fDbrfjlVdecQbLb9682W37qKgo56oBPL/99husViteeuklZ1bp999/r8wBeCHU2Ds5Yqa8LR6sdifEEq4JA/XqAefPOwbOUK7DyZPAvn1RsNlig6qQToHc2oVFiwvBZmY2iTBCca5cuYKSkhK3EhX8ep5Dhw7FoUOHUFVVhRUrVqB///745ptvsHr1ard9pKSk4Pz589i9ezc6duyIunXronnz5oiKisKKFSswduxYHDp0CM8995xKR8lm7J3n4sFKd0JqZuUKpVkz4LPPpHElXXVJWWAw5NSKvwuE2ueCEAe5ttmD73vuuQcoKDDi2LEIpKRUIynJjuJi9foeEmGE4uzYsQOJiYmIiIhAgwYN0LFjRyxfvhzDhg2D0WhEx44dsXjxYixcuBAzZ85Ejx49sGDBAgwdOtS5j27dumHs2LHIzs6G1Wp1lqhYt24dnn76aSxfvhydOnXCyy+/jHvvvVfFo2UPfvHg7t2HIT3doqgAE5K12aPHSHTpYlZtdipV8K7nfjjOiG3b+iEt7Q/F1wwk16ZySL3eJxE6vvqeQ4fcXytZEYCHRBihKOvWrcO6desCbjdp0iRMmjTJ7b1HH33U7fVrr72G1157ze29Bx98EA8++KDbe96SOMIds7kC3bpVwqUmcS2kHriFZm0uWWJUNZBZKleSt/1wnBFnzzb0KcLkEkFKuTbDPRtQjvU+idBh0SvBQyIsDKFZsb6R6voqGZPkmbWpdOq4q5s0Ls4Io7Ex7ParC7ebTBxatQpuIXfvLikOEyfejaSk2kt0ye0OkXvQp2xAedb7JPQNibAwhAJ+9Y2U11epe8B71qYygczeXBX9+rnXUuvbNw8xMd0BCD8f3oOADejcuYnER6A+LNZfIggtQCIsTCGBpW+0dn3VzNr0Jlb5uDnelWQ2V6Cy8uag983q8kyBCNatSNmABCEOqhNGiKK6uhqVlZU+/6qrq9VuIqEh+KxNg8ExkrOQOm42VyA19XjIQfTNmgE9e2pHjKxZA7RoAfTq5fh3zZrA32Gx/hJBaAGyhBFBU11djdOnTwfcrnHjxl6XAQoXKPYuONTK2iSuItatyGL9JYLQAuE7QhKi8VzgOtTt9ArF3gWPkKxNQj5CcSuy7HoN96xNgl1IhBGEjJDAugpZBtkn1CKjcqzyECqUtUmw3PeQCCMIQhHIMsg+YtyKLK+CoHTWJsuDfTjDct9DIowgCMXQssAqLS0V3FGzLEwCEYxbMdT1UeVG6axNlgf7cIfVc04ijNAVX375Je644w6cO3cO8fHxgr6TkpKCnJwc5OTkyNo2gk2EWiW2bt0KILCgYF2YCEGoW5HlSuSAOms4snpNCTahEhWEogwfPhwGgwFjx46t9dn48eNhMBgwfPhw5RvGCFarFcXFxT7/rFYrk/vWMrz1YuDAgYK2DyQoWBcm4QTvXjWZHK8pa5NgDbKEEYqTnJyM9957D0uWLEFMTAwA4PLly8jNzUXz5s1Vbp16yGlB0YN1Rk4sFkvYiyItu1D9wXLWJkGQCCOCxuhZlTHI7Tp16oSjR49i69atePjhhwE4XD3NmzdHamqqc7srV65g6tSpeO+991BeXo4uXbpgyZIluPnmq5XLP/nkE+Tk5ODEiRPo2rUrhg0bVuv3vv76a8ycORPff/89EhIS8H//939YsGAB6tWrF8xhy46cFhSyzhD+0LtIZzFrkyAAckcSIoiIiEDjxo2RkJDg8y9QodYRI0Zg7dq1ztdvvfUWHnvsMbdtpk2bhi1btmD9+vX44Ycf0KpVK2RlZeHs2bMAgBMnTmDgwIHo378/Dhw4gFGjRmHGjBlu+zh69Cj69OmDQYMG4eDBg9i0aRO+/vprTJgwQcIzQhDaRo8indzvhBYgSxghqpBhqJXwH3nkEcycORPHjx8HAHzzzTd477338OWXXwIALly4gNdeew3r1q3D3XffDQD417/+hZ07d2LNmjWYOnUqXnvtNaSlpeGVV14BALRp0wY///wzFi5c6PydBQsW4OGHH3YG3bdu3RrLly/H7bffjtdeew116tQJ6TiI0NGrG4xQD71b9gj9QCIszFGrkGGjRo3Qt29frFu3DhzHoW/fvkhISHB+fvToUVRVVaF79+7O9yIjI3HLLbfg8OHDAIDDhw8jPT3dbb8ZGRlur3/66SccPHgQGzdudL7HcRzsdjsKCwvRrl07OQ6PEAgNloQc6NGyR+gTEmFhjNKFDD0ZMWKE0y24atUqWX7j/PnzePzxx/HEE0/U+iyckwBYgQZLbUPFSQkiNEiEhTFKFzL0pE+fPqisrITBYEBWVpbbZ2lpaYiKisI333yDFi1aAACqqqrw3XffOV2L7dq1w8cff+z2vX379rm97tSpE3799Ve0krMwEKELpBIU4SRMqDgpQYQGibAwRo1Chq6YTCana9HEF/L5m3r16mHcuHGYOnUqGjZsiObNm2PRokW4ePEiRv7tLx07dixeeeUVTJ06FaNGjcL+/fuxbt06t/1Mnz4dXbt2xYQJEzBq1CjUq1cPv/76K3bu3CnIDUaED1IJinATJno5DoJQAxJhYYyYdeKkJi4uzudnL730Eux2Ox599FFUVFSgS5cu+Oyzz9CgQQMADnfili1bMGnSJKxYsQK33HILXnzxRYwYMcK5jxtuuAFfffUVnnnmGdx2223gOA5paWnIzs6W/diCRU4LSjhZZ0JBKkFBwoQgCCEYOI7j1G4E4Z3y8nKYzWbYbLZaYuXy5csoLCxEampqyBl+J09SIUN/SHmuAyFnpiCLWYjFxcV44403Am43ZswYJCYmKtCi8ERvCRJ0XxFq42/8doUsYQQVMmQIOQc4LQyehDqEmwuVIFiBRBhBEAShK4FF7ndCK5AIIwhCNWiwJOSALHuEViARRhCEatBgScgF3TOEFiARRhCEqtBgSRBEuEILeGscSm6VHzrHBEEQhByQCNMofHFTWs5Ffvhz7FlQliAIgiBCgdyRGiUiIgJ169bFmTNnEBkZCaOR9LQc2O12nDlzBnXr1kVEBD0uBEEQhHTQqKJRDAYDEhMTUVhYiOPHj6vdHF1jNBrRvHlzGAwGtZtCEARB6AgSYRomKioKrVu3JpekzERFRZGlkSAIgpAcEmEax2g0yr6UDkEQBEEQ0kPTe4IgCIIgCBUgEUYQBEEQBKECJMIIgiAIgiBUgGLCGIYvElpeXq5ySwiCIAiCEAo/bgcq9k0ijGEqKioAAMnJySq3hCAIgiCIYKmoqIDZbPb5uYGjNVmYxW63o6ioCLGxsWFZo6q8vBzJyck4ceIE4uLi1G6OZqHzKA10HkOHzqE00HmUBjnPI8dxqKioQFJSkt8SR2QJYxij0YhmzZqp3QzViYuLo45GAug8SgOdx9ChcygNdB6lQa7z6M8CxkOB+QRBEARBECpAIowgCIIgCEIFSIQRzBIdHY1nn30W0dHRajdF09B5lAY6j6FD51Aa6DxKAwvnkQLzCYIgCIIgVIAsYQRBEARBECpAIowgCIIgCEIFSIQRBEEQBEGoAIkwgiAIgiAIFSARRqjOv//9b/Tv3x9JSUkwGAz46KOP3D7nOA5z5sxBYmIiYmJikJmZid9//12dxjJKoHM4fPhwGAwGt78+ffqo01iGWbBgAW6++WbExsaicePGGDBgAI4cOeK2zeXLlzF+/HhYLBbUr18fgwYNwqlTp1RqMZsIOY89e/asdU+OHTtWpRazyWuvvYYbbrjBWUw0IyMDn376qfNzuheFEeg8qnkvkggjVOfChQvo2LEjVq1a5fXzRYsWYfny5Vi9ejUKCgpQr149ZGVl4fLlywq3lF0CnUMA6NOnD4qLi51/7777roIt1AZfffUVxo8fj3379mHnzp2oqqrCXXfdhQsXLji3mTRpErZt24b3338fX331FYqKijBw4EAVW80eQs4jAIwePdrtnly0aJFKLWaTZs2a4aWXXsL+/fvx/fffo1evXrjvvvvwyy+/AKB7USiBziOg4r3IEQRDAOA+/PBD52u73c41bdqU++c//+l8r6ysjIuOjubeffddFVrIPp7nkOM4btiwYdx9992nSnu0zOnTpzkA3FdffcVxnOPei4yM5N5//33nNocPH+YAcPn5+Wo1k3k8zyPHcdztt9/OPfnkk+o1SqM0aNCAe/PNN+leDBH+PHKcuvciWcIIpiksLERJSQkyMzOd75nNZqSnpyM/P1/FlmmPL7/8Eo0bN0abNm0wbtw4WK1WtZvEPDabDQDQsGFDAMD+/ftRVVXldj+2bdsWzZs3p/vRD57nkWfjxo1ISEjA9ddfj5kzZ+LixYtqNE8T1NTU4L333sOFCxeQkZFB96JIPM8jj1r3Ii3gTTBNSUkJAKBJkyZu7zdp0sT5GRGYPn36YODAgUhNTcXRo0fx9NNP4+6770Z+fj5MJpPazWMSu92OnJwcdO/eHddffz0Ax/0YFRWF+Ph4t23pfvSNt/MIAA899BBatGiBpKQkHDx4ENOnT8eRI0ewdetWFVvLHj///DMyMjJw+fJl1K9fHx9++CHat2+PAwcO0L0YBL7OI6DuvUgijCDCgCFDhjj/36FDB9xwww1IS0vDl19+id69e6vYMnYZP348Dh06hK+//lrtpmgaX+dxzJgxzv936NABiYmJ6N27N44ePYq0tDSlm8ksbdq0wYEDB2Cz2fDBBx9g2LBh+Oqrr9RulubwdR7bt2+v6r1I7kiCaZo2bQoAtTJ+Tp065fyMCJ6WLVsiISEBf/zxh9pNYZIJEyYgLy8Pe/bsQbNmzZzvN23aFJWVlSgrK3Pbnu5H7/g6j95IT08HALonPYiKikKrVq3QuXNnLFiwAB07dsSyZcvoXgwSX+fRG0reiyTCCKZJTU1F06ZNsXv3bud75eXlKCgocPPnE8Fx8uRJWK1WJCYmqt0UpuA4DhMmTMCHH36IL774AqmpqW6fd+7cGZGRkW7345EjR/Dnn3/S/ehCoPPojQMHDgAA3ZMBsNvtuHLlCt2LIcKfR28oeS+SO5JQnfPnz7vNOAoLC3HgwAE0bNgQzZs3R05ODp5//nm0bt0aqampmD17NpKSkjBgwAD1Gs0Y/s5hw4YNMW/ePAwaNAhNmzbF0aNHMW3aNLRq1QpZWVkqtpo9xo8fj9zcXPy///f/EBsb64ytMZvNiImJgdlsxsiRIzF58mQ0bNgQcXFxmDhxIjIyMtC1a1eVW88Ogc7j0aNHkZubi3vuuQcWiwUHDx7EpEmT0KNHD9xwww0qt54dZs6cibvvvhvNmzdHRUUFcnNz8eWXX+Kzzz6jezEI/J1H1e9FVXIyCcKFPXv2cABq/Q0bNozjOEeZitmzZ3NNmjThoqOjud69e3NHjhxRt9GM4e8cXrx4kbvrrru4Ro0acZGRkVyLFi240aNHcyUlJWo3mzm8nUMA3Nq1a53bXLp0ifvHP/7BNWjQgKtbty73f//3f1xxcbF6jWaQQOfxzz//5Hr06ME1bNiQi46O5lq1asVNnTqVs9ls6jacMUaMGMG1aNGCi4qK4ho1asT17t2b+/zzz52f070oDH/nUe170cBxHCe/1CMIgiAIgiBcoZgwgiAIgiAIFSARRhAEQRAEoQIkwgiCIAiCIFSARBhBEARBEIQKkAgjCIIgCIJQARJhBEEQBEEQKkAijCAIgiAIQgVIhBEEQRAEQagAiTCCIAiCIAgVIBFGEAQhgsrKSrWbUAsW20QQhG9IhBEEQQDo2bMnJkyYgAkTJsBsNiMhIQGzZ88Gv7JbSkoKnnvuOQwdOhRxcXEYM2YMAODrr7/GbbfdhpiYGCQnJ+OJJ57AhQsXnPt99dVX0bp1a9SpUwdNmjTB/fff7/zsgw8+QIcOHRATEwOLxYLMzEznd3v27ImcnBy3Ng4YMADDhw93vhbbJoIg2IBEGEEQxN+sX78eERER+Pbbb7Fs2TIsXrwYb775pvPzl19+GR07dsSPP/6I2bNn4+jRo+jTpw8GDRqEgwcPYtOmTfj6668xYcIEAMD333+PJ554AvPnz8eRI0ewY8cO9OjRAwBQXFyMBx98ECNGjMDhw4fx5ZdfYuDAgQh2Od9g20QQBDvQAt4EQRBwWJ5Onz6NX375BQaDAQAwY8YMfPzxx/j111+RkpKCm266CR9++KHzO6NGjYLJZMLrr7/ufO/rr7/G7bffjgsXLuCTTz7BY489hpMnTyI2Ntbt93744Qd07twZx44dQ4sWLby258Ybb8TSpUud7w0YMADx8fFYt24dAIhqU506dUI6TwRBSAdZwgiCIP6ma9euTgEGABkZGfj9999RU1MDAOjSpYvb9j/99BPWrVuH+vXrO/+ysrJgt9tRWFiIO++8Ey1atEDLli3x6KOPYuPGjbh48SIAoGPHjujduzc6dOiABx54AP/6179w7ty5oNscbJsIgmAHEmEEQRACqVevntvr8+fP4/HHH8eBAwecfz/99BN+//13pKWlITY2Fj/88APeffddJCYmYs6cOejYsSPKyspgMpmwc+dOfPrpp2jfvj1WrFiBNm3aOIWS0Wis5ZqsqqoKuU0EQbADiTCCIIi/KSgocHu9b98+tG7dGiaTyev2nTp1wq+//opWrVrV+ouKigIAREREIDMzE4sWLcLBgwdx7NgxfPHFFwAAg8GA7t27Y968efjxxx8RFRXldC02atQIxcXFzt+qqanBoUOHAh6DkDYRBMEGJMIIgiD+5s8//8TkyZNx5MgRvPvuu1ixYgWefPJJn9tPnz4de/fuxYQJE3DgwAH8/vvv+H//7/85g+Dz8vKwfPlyHDhwAMePH8fbb78Nu92ONm3aoKCgAC+++CK+//57/Pnnn9i6dSvOnDmDdu3aAQB69eqF7du3Y/v27fjtt98wbtw4lJWVBTyGQG0iCIIdItRuAEEQBCsMHToUly5dwi233AKTyYQnn3zSWfbBGzfccAO++uorPPPMM7jtttvAcRzS0tKQnZ0NAIiPj8fWrVsxd+5cXL58Ga1bt8a7776L6667DocPH8a///1vLF26FOXl5WjRogVeeeUV3H333QCAESNG4KeffsLQoUMRERGBSZMm4Y477gh4DIHaRBAEO1B2JEEQBLxnIxIEQcgJuSMJgiAIgiBUgEQYQRAEQRCECpA7kiAIgiAIQgXIEkYQBEEQBKECJMIIgiAIgiBUgEQYQRAEQRCECpAIIwiCIAiCUAESYQRBEARBECpAIowgCIIgCEIFSIQRBEEQBEGoAIkwgiAIgiAIFSARRhAEQRAEoQL/H6+AZe06G5giAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHjklEQVR4nO3deVhUZf8G8PsMAgLCIDsoCuKKO1g4uGWh6M8lX/EVfbU0MatXK7RcyrQ9zRa1rKy0tNLS1MolTTBbFCLXzDXlxYUAl0EG3ACZ5/fHNIdZYdgclvtzXVzKnGfOnJlIb5/ne76PJIQQICIiIqI7SmHvCyAiIiJqiBjCiIiIiOyAIYyIiIjIDhjCiIiIiOyAIYyIiIjIDhjCiIiIiOyAIYyIiIjIDhjCiIiIiOyAIYyIiIjIDhjCiIioTKtWrYIkSTh79qy9L4WoXmEIIyK727dvH6ZNm4aOHTvCzc0NLVq0wOjRo/HXX3+Zjb3nnnsgSRIkSYJCoYCHhwfatWuHBx54AElJSRV63S1btqBfv37w8/ODq6srWrVqhdGjR2PHjh3V9dbMvPbaa/j222/NHk9JScELL7yAvLy8GnttUy+88IL8WUqSBFdXV4SHh+O5555Dfn5+tbzG2rVrsWTJkmo5F1F9wxBGRHb3+uuvY+PGjbjvvvuwdOlSTJkyBb/88gsiIiJw9OhRs/HNmzfH559/js8++wxvvPEGhg8fjpSUFAwcOBDx8fEoLi4u9zXffPNNDB8+HJIk4ZlnnsHixYsRFxeH06dP46uvvqqJtwmg7BD24osv3tEQpvfBBx/g888/x9tvv4327dvj1VdfxaBBg1AdWwszhBFZ18jeF0BENGPGDKxduxZOTk7yY/Hx8ejcuTMWLlyIL774wmi8UqnE+PHjjR5buHAhnnjiCbz//vsICQnB66+/bvX1bt++jZdffhkDBgzAzp07zY5funSpiu+o9rhx4wZcXV3LHDNq1Cj4+PgAAB599FHExcVh06ZN+O2336BSqe7EZRI1SJwJIyK7i46ONgpgANCmTRt07NgRJ06csOkcDg4OeOeddxAeHo5ly5ZBo9FYHXvlyhXk5+ejV69eFo/7+fkZfX/r1i288MILaNu2LRo3bozAwECMHDkS6enp8pg333wT0dHR8Pb2houLCyIjI7Fhwwaj80iShOvXr2P16tXyEuDEiRPxwgsvYObMmQCA0NBQ+ZhhDdYXX3yByMhIuLi4wMvLC2PGjMGFCxeMzn/PPfegU6dOOHDgAPr27QtXV1c8++yzNn1+hu69914AQEZGRpnj3n//fXTs2BHOzs4ICgrC1KlTjWby7rnnHmzbtg3nzp2T31NISEiFr4eovuJMGBHVSkIIXLx4ER07drT5OQ4ODhg7dizmzZuHPXv2YMiQIRbH+fn5wcXFBVu2bMHjjz8OLy8vq+csKSnB0KFDsWvXLowZMwZPPvkkCgoKkJSUhKNHjyIsLAwAsHTpUgwfPhzjxo1DUVERvvrqK/z73//G1q1b5ev4/PPPMXnyZNx9992YMmUKACAsLAxubm7466+/8OWXX2Lx4sXyrJSvry8A4NVXX8W8efMwevRoTJ48GZcvX8a7776Lvn374tChQ/D09JSvV61WY/DgwRgzZgzGjx8Pf39/mz8/PX249Pb2tjrmhRdewIsvvoiYmBg89thjOHXqFD744APs27cPe/fuhaOjI+bOnQuNRoPMzEwsXrwYANCkSZMKXw9RvSWIiGqhzz//XAAQK1euNHq8X79+omPHjlaf98033wgAYunSpWWef/78+QKAcHNzE4MHDxavvvqqOHDggNm4Tz75RAAQb7/9ttkxrVYr//7GjRtGx4qKikSnTp3Evffea/S4m5ubmDBhgtm53njjDQFAZGRkGD1+9uxZ4eDgIF599VWjx//880/RqFEjo8f79esnAIjly5dbfd+Gnn/+eQFAnDp1Sly+fFlkZGSIDz/8UDg7Owt/f39x/fp1IYQQn376qdG1Xbp0STg5OYmBAweKkpIS+XzLli0TAMQnn3wiPzZkyBDRsmVLm66HqKHhciQR1TonT57E1KlToVKpMGHChAo9Vz/TUlBQUOa4F198EWvXrkX37t3xww8/YO7cuYiMjERERITREujGjRvh4+ODxx9/3OwckiTJv3dxcZF/f/XqVWg0GvTp0wcHDx6s0PWb2rRpE7RaLUaPHo0rV67IXwEBAWjTpg12795tNN7Z2RkPPfRQhV6jXbt28PX1RWhoKB555BG0bt0a27Zts1pLlpycjKKiIiQmJkKhKP1r5OGHH4aHhwe2bdtW8TdK1ABxOZKIapWcnBwMGTIESqUSGzZsgIODQ4Wef+3aNQCAu7t7uWPHjh2LsWPHIj8/H2lpaVi1ahXWrl2LYcOG4ejRo2jcuDHS09PRrl07NGpU9h+XW7duxSuvvILDhw+jsLBQftwwqFXG6dOnIYRAmzZtLB53dHQ0+r5Zs2Zm9XXl2bhxIzw8PODo6IjmzZvLS6zWnDt3DoAuvBlycnJCq1at5ONEVDaGMCKqNTQaDQYPHoy8vDz8+uuvCAoKqvA59C0tWrdubfNzPDw8MGDAAAwYMACOjo5YvXo10tLS0K9fP5ue/+uvv2L48OHo27cv3n//fQQGBsLR0RGffvop1q5dW+H3YEir1UKSJGzfvt1iIDWtsTKckbNV37595To0IrpzGMKIqFa4desWhg0bhr/++gvJyckIDw+v8DlKSkqwdu1auLq6onfv3pW6jh49emD16tXIzs4GoCucT0tLQ3Fxsdmsk97GjRvRuHFj/PDDD3B2dpYf//TTT83GWpsZs/Z4WFgYhBAIDQ1F27ZtK/p2akTLli0BAKdOnUKrVq3kx4uKipCRkYGYmBj5sarOBBLVZ6wJIyK7KykpQXx8PFJTU/H1119XqjdVSUkJnnjiCZw4cQJPPPEEPDw8rI69ceMGUlNTLR7bvn07gNKltri4OFy5cgXLli0zGyv+aWbq4OAASZJQUlIiHzt79qzFpqxubm4WG7K6ubkBgNmxkSNHwsHBAS+++KJZ81QhBNRqteU3WYNiYmLg5OSEd955x+iaVq5cCY1GY3RXqpubW5ntQogaMs6EEZHdPfXUU9i8eTOGDRuG3Nxcs+aspo1ZNRqNPObGjRs4c+YMNm3ahPT0dIwZMwYvv/xyma9348YNREdHo2fPnhg0aBCCg4ORl5eHb7/9Fr/++itGjBiB7t27AwAefPBBfPbZZ5gxYwZ+//139OnTB9evX0dycjL++9//4v7778eQIUPw9ttvY9CgQfjPf/6DS5cu4b333kPr1q1x5MgRo9eOjIxEcnIy3n77bQQFBSE0NBRRUVGIjIwEAMydOxdjxoyBo6Mjhg0bhrCwMLzyyit45plncPbsWYwYMQLu7u7IyMjAN998gylTpuDpp5+u0udfUb6+vnjmmWfw4osvYtCgQRg+fDhOnTqF999/H3fddZfRf6/IyEisW7cOM2bMwF133YUmTZpg2LBhd/R6iWote96aSUQkRGlrBWtfZY1t0qSJaNOmjRg/frzYuXOnTa9XXFwsPv74YzFixAjRsmVL4ezsLFxdXUX37t3FG2+8IQoLC43G37hxQ8ydO1eEhoYKR0dHERAQIEaNGiXS09PlMStXrhRt2rQRzs7Oon379uLTTz+VW0AYOnnypOjbt69wcXERAIzaVbz88suiWbNmQqFQmLWr2Lhxo+jdu7dwc3MTbm5uon379mLq1Kni1KlTRp9NWe07TOmv7/Lly2WOM21Robds2TLRvn174ejoKPz9/cVjjz0mrl69ajTm2rVr4j//+Y/w9PQUANiugsiAJEQ1bA5GRERERBXCmjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDNmutxbRaLbKysuDu7s6tP4iIiOoIIQQKCgoQFBQEhcL6fBdDWC2WlZWF4OBge18GERERVcKFCxfQvHlzq8cZwmoxd3d3ALr/iGXtg0dERES1R35+PoKDg+W/x61hCKvF9EuQHh4eDGFERER1THmlRCzMJyIiIrIDhjAiIiIiO2AIIyIiIrID1oTVcVqtFkVFRfa+jHrNycmpzFuMiYiIKoMhrA4rKipCRkYGtFqtvS+lXlMoFAgNDYWTk5O9L4WIiOoRhrA6SgiB7OxsODg4IDg4mDM1NUTfMDc7OxstWrRg01wiIqo2DGF11O3bt3Hjxg0EBQXB1dXV3pdTr/n6+iIrKwu3b9+Go6OjvS+HiIjqCU6f1FElJSUAwCWyO0D/Ges/cyIioupQZ0LY8OHD0aJFCzRu3BiBgYF44IEHkJWVZTRGCIE333wTbdu2hbOzM5o1a4ZXX33VaMxPP/2EiIgIODs7o3Xr1li1apXZa7333nsICQlB48aNERUVhd9//93o+K1btzB16lR4e3ujSZMmiIuLw8WLF43GnD9/HkOGDIGrqyv8/Pwwc+ZM3L59u3o+DANcHqt5/IyJiKgm1JkQ1r9/f6xfvx6nTp3Cxo0bkZ6ejlGjRhmNefLJJ7FixQq8+eabOHnyJDZv3oy7775bPp6RkYEhQ4agf//+OHz4MBITEzF58mT88MMP8ph169ZhxowZeP7553Hw4EF07doVsbGxuHTpkjxm+vTp2LJlC77++mv8/PPPyMrKwsiRI+XjJSUlGDJkCIqKipCSkoLVq1dj1apVmD9/fg1+QkRERFQWtVqN7Oxsq19qtfqOXo8khBB39BWryebNmzFixAgUFhbC0dERJ06cQJcuXXD06FG0a9fO4nNmz56Nbdu24ejRo/JjY8aMQV5eHnbs2AEAiIqKwl133YVly5YB0BVmBwcH4/HHH8ecOXOg0Wjg6+uLtWvXyiHw5MmT6NChA1JTU9GzZ09s374dQ4cORVZWFvz9/QEAy5cvx+zZs3H58mWblxDz8/OhVCqh0WjMti26desWMjIyEBoaisaNG1fsw6MK4WdNRFR3qdVqFBUVIS8vD+vXry93/LRp0+Dt7V2l1yzr729DdWYmzFBubi7WrFmD6OhouVB6y5YtaNWqFbZu3YrQ0FCEhIRg8uTJyM3NlZ+XmpqKmJgYo3PFxsYiNTUVgK7lw4EDB4zGKBQKxMTEyGMOHDiA4uJiozHt27dHixYt5DGpqano3LmzHMD0r5Ofn49jx45ZfV+FhYXIz883+qpvJk6cCEmSIEkSHB0d4e/vjwEDBuCTTz6pUKuNVatWwdPTs+YulIiI6jy1Wo1ly5bho48+simAAcDly5dr+KpK1akQNnv2bLi5ucHb2xvnz5/Hd999Jx/73//+h3PnzuHrr7/GZ599hlWrVuHAgQNGS5Y5OTlGwQgA/P39kZ+fj5s3b+LKlSsoKSmxOCYnJ0c+h5OTk1kAMB1j6Rz6Y9YsWLAASqVS/goODrbxk6k4e07JDho0CNnZ2Th79iy2b9+O/v3748knn8TQoUNrpG6OiIgaJsNSIlsVFxfXwJVYZtcQNmfOHHlWxNrXyZMn5fEzZ87EoUOHsHPnTjg4OODBBx+EfjVVq9WisLAQn332Gfr06YN77rkHK1euxO7du3Hq1Cl7vcUKeeaZZ6DRaOSvCxcu1MjrGP7LwNrXsmXLaiyIOTs7IyAgAM2aNUNERASeffZZfPfdd9i+fbt8o8Tbb7+Nzp07w83NDcHBwfjvf/+La9euAdDdXPHQQw9Bo9HIPycvvPACAODzzz9Hjx494O7ujoCAAPznP/+p1P+ERERUt6nVaptnv+zFrn3CnnrqKUycOLHMMa1atZJ/7+PjAx8fH7Rt2xYdOnRAcHAwfvvtN6hUKgQGBqJRo0Zo27atPL5Dhw4AdHcqtmvXDgEBAWZ3MV68eBEeHh5wcXGBg4MDHBwcLI4JCAgAAAQEBMhry4azYaZjTO+o1J9TP8YSZ2dnODs7l/l5VAdbtzm6k9sh3XvvvejatSs2bdqEyZMnQ6FQ4J133kFoaCj+97//4b///S9mzZqF999/H9HR0ViyZAnmz58vB+wmTZoA0P0L5uWXX0a7du1w6dIlzJgxAxMnTsT3339/x94LERHZX13Y0s+uIczX1xe+vr6Veq6+fqiwsBAA0KtXL9y+fRvp6ekICwsDAPz1118AgJYtWwIAVCqV2V/GSUlJUKlUAHT9oCIjI7Fr1y6MGDFCfp1du3Zh2rRpAIDIyEg4Ojpi165diIuLAwCcOnUK58+fl8+jUqnw6quv4tKlS/Dz85Nfx8PDA+Hh4ZV6vw1B+/btceTIEQBAYmKi/HhISAheeeUVPProo3j//ffh5OQEpVIJSZLMQu2kSZPk37dq1QrvvPMO7rrrLly7dk0OakREVD+lp6fj4sWLuH37ttXaLo3GHbm53vDyUkOpLLjDV2isTnTMT0tLw759+9C7d280bdoU6enpmDdvHsLCwuTgExMTg4iICEyaNAlLliyBVqvF1KlTMWDAAHl27NFHH8WyZcswa9YsTJo0CT/++CPWr1+Pbdu2ya81Y8YMTJgwAT169MDdd9+NJUuW4Pr163jooYcAAEqlEgkJCZgxYwa8vLzg4eGBxx9/HCqVCj179gQADBw4EOHh4XjggQewaNEi5OTk4LnnnsPUqVPvyExXXSWEkHtyJScnY8GCBTh58iTy8/Nx+/Zt3Lp1Czdu3Chzh4ADBw7ghRdewB9//IGrV6/KYf38+fMMwERE9ZD+7scLFy5g+/btZY49eLA7tmwZCiEUkCQthg3bioiIQ3foSs3ViRDm6uqKTZs24fnnn8f169cRGBiIQYMG4bnnnpNDjUKhwJYtW/D444+jb9++cHNzw+DBg/HWW2/J5wkNDcW2bdswffp0LF26FM2bN8eKFSsQGxsrj4mPj8fly5cxf/585OTkoFu3btixY4dRof3ixYuhUCgQFxeHwsJCxMbG4v3335ePOzg4YOvWrXjsscegUqng5uaGCRMm4KWXXroDn1bddeLECYSGhuLs2bMYOnQoHnvsMbz66qvw8vLCnj17kJCQgKKiIqsh7Pr164iNjUVsbCzWrFkDX19fnD9/HrGxsXViWpqIiComPT0dX3zxRbnjNBp3XLgQjM2bh0JfDi+EAps3D4WfXw6aN8+u4Su1rE6EsM6dO+PHH38sd1xQUBA2btxY5ph77rkHhw6VnXqnTZsmLz9a0rhxY7z33nt47733rI5p2bIl65Aq4Mcff8Sff/6J6dOn48CBA9BqtXjrrbfkjclNiyudnJzMthE6efIk1Go1Fi5cKN9Zun///jvzBoiI6I5Sq9U2BTDD2S9zCqxcOdloRqxRozsXjepUiwqqHwoLC5GTk4O///4bBw8exGuvvYb7778fQ4cOxYMPPojWrVujuLgY7777Lv73v//h888/x/Lly43OERISgmvXrmHXrl24cuUKbty4gRYtWsDJyUl+3ubNm/Hyyy/b6V0SEVFNUKvVOHnyZJl9N/UyMwOxebO1AKYjhAJbtgyFRuMOAHIt953AEEZ33I4dOxAYGIiQkBAMGjQIu3fvxjvvvIPvvvsODg4O6Nq1K95++228/vrr6NSpE9asWYMFCxYYnSM6OhqPPvoo4uPj4evri0WLFsHX1xerVq3C119/jfDwcCxcuBBvvvmmnd4lERFVN32LpXXr1mH37t1ljj14sDtWrpwMW6KOEAp06jSiWrrlV0Sd3baoIaipbYv0P8TludM/jLUVty0iIrI/tVqNrKwsbNq0yeoY/Z2Pjo6FWLHCWgDTxx7J6LGdOzUYMMCzWq7V1m2L6kRNGFUvb29vTJs2rcxidScnJwYwIiKyK/2djxqNBuvWrbM6TqNxR1paFFJSVNAFLy2sz4BJFh9zdPSs8vVWFENYA8WARUREtVl5qzb6Wa+srEAkJ8eY1H1VrNrKwQFo3bqSF1oFDGFERERUa6jValy+fBlnz561Osb4jkcBy7Nb5dE9z8EB+PBDoHnzyl1vVTCEERERUa1gS98vjcbdpOWELQHMUlCTsHgxMGqUfQIYwLsjiYiIqBawpe+XRuOOY8c6ltlywjIJkkkGc3CwbwADOBNGREREdqIvvM/Ly8O5c+fKHFuVJUgHB4GFCyXMmQOUlMCuS5CGGMKIiIjojrO1XRKgb7o6DKXBq2IB7MMPJSQkAGPGAGfO6Irw7R3AAIYwIiIisoPLly/bNG7vXhWSkmJQ0eJ7SdLi44+vITbWQw5czZvXjvClxxBGREREd9zVq1etHtNvuH3qVBv8+WdXVLT4XpIEFi++gYQE641SawOGMKpXfvrpJ/Tv3x9Xr16Fp6enTc8JCQlBYmIiEhMTa/TaiIgaMsP6r7y8POzcuVM+pu/55eWlRnp6a5Olx7Log5cWffr8Cn//ixg8eDAGDnRH8+ZNauidVB+GMLqjJk6ciNWrV+ORRx4x25R76tSpeP/99zFhwgSsWrXKPhdIRETVzlL9l362KyMjBAcPRhoU3NtWdN+37260bXsaxcVOmDixN9q1awsnp07w9navkfdQExjC6I4LDg7GV199hcWLF8PFxQWAbn/GtWvXokWLFna+OiIiqm6m2+QdPNjdymyXZOExS7SIjDyEUaN6ol27dnV2Fxj2CaM7LiIiAsHBwUabsG7atAktWrRA9+7d5ccKCwvxxBNPwM/PD40bN0bv3r2xb98+o3N9//33aNu2LVxcXNC/f3+LHZb37NmDPn36wMXFBcHBwXjiiSdw/fr1Gnt/RERUKj09HadPn5a/12jcK7DcaIkWw4dvhVJZUKcDGMAQRgAyM4Hdu3W/3imTJk3Cp59+Kn//ySef4KGHHjIaM2vWLGzcuBGrV6/GwYMH0bp1a8TGxiI3NxcAcOHCBYwcORLDhg3D4cOHMXnyZMyZM8foHOnp6Rg0aBDi4uJw5MgRrFu3Dnv27MG0adNq/k0SETUgarUa2dnZRl+7d+/GF198gd27dwPQtZrYteteVC6AafHSSyexf/9lLF9+F6ZNm1anAxjA5cgGb+VKYMoUQKsFFArgo4+AhISaf93x48fjmWeekZvz7d27F1999RV++uknAMD169fxwQcfYNWqVRg8eDAA4OOPP0ZSUhJWrlyJmTNn4oMPPkBYWBjeeustAEC7du3w559/4vXXX5dfZ8GCBRg3bpxcdN+mTRu888476NevHz744AM0bty45t8sEVE9Z0vPr/XrR+H48XBULIDp6sMkSYthw7biv//tVeeDlyGGsAYsM7M0gAG6Xx95BIiNrfk+Kr6+vhgyZAhWrVoFIQSGDBkCHx8f+Xh6ejqKi4vRq1cv+TFHR0fcfffdOHHiBADgxIkTiIqKMjqvSqUy+v6PP/7AkSNHsGbNGvkxIQS0Wi0yMjLQoUOHmnh7REQNimnNF1BaeA8A5883LyeAWSrG12LAgGTcf38zhIc7oUuX+hXAAIawBu306dIApldSousmfCea2U2aNEleFnzvvfdq5DWuXbuGRx55BE888YTZMd4EQERUdWq1GkePHjV6zLzwvrw7Hs2PjRq1AS+91Lle/2OZIawBa9NGtwRpGMQcHHTbOdwJgwYNQlFRESRJQmxsrNGxsLAwODk5Ye/evWjZsiUAoLi4GPv27ZOXFjt06IDNmzcbPe+3334z+j4iIgLHjx9H6zv1poiIGgi1Wo3Lly9j3bp1Ro/rthgaCuNgVVYA0/8lVFqmLklaBAdnws/vvuq63FqJIawBa95cVwP2yCP22dDUwcFBXlp0cHAwOubm5obHHnsMM2fOhJeXF1q0aIFFixbhxo0bSPinaO3RRx/FW2+9hZkzZ2Ly5Mk4cOCAWX+x2bNno2fPnpg2bRomT54MNzc3HD9+HElJSTbvWUZERMbS09PxxRdfyN/rm61mZQUiKWkAyq/7Mq71AiBvzi1JWrz0Ug4ee2xCvVt+NMUQ1sAlJOhqwOy1oamHh/UtJRYuXAitVosHHngABQUF6NGjB3744Qc0bdoUgG45cePGjZg+fTreffdd3H333XjttdcwadIk+RxdunTBzz//jLlz56JPnz4QQiAsLAzx8fE1/t6IiOoTw47369evB6ALX2lpUUhJUUE3k1XWsmNpd/u7705Dhw6n4OWVC6WyAAAQFnYGubleGDOmBwYN6lTzb6gWkIQQwt4XQZbl5+dDqVRCo9GYhZVbt24hIyMDoaGhvMOvhvGzJqKGzNqy48GD3eXZq/LpiuyDgrKMgpdejx490KJFC7i6uiIsLKwar94+yvr72xBnwoiIiMgia60nNBr3CgQwgbFjv0S7dmesjmjfvn29CF8VxRBGREREFhm2ntDXfTk6FuL8+ZY2BjAAkODkVGz16PDhwxtkAAMYwoiIiMiEvv7rypUrAEyXHvW1XbZttC1JWnh55Ro9Nnr0aHh6esLJyaneF9+XhSGMiIiIZIZLkLqGq+EmS4+Sya+WGN/9aFgDNnr06Hrd+6siGMLqON5XUfP4GRNRQ6FWq3Hq1CkAFS281xOIjNyP7t0PobjYyWIRvp+fXzVecd3GEFZH6ftqFRUVwcXFxc5XU7/payJMe5kREdUH+qVHjUYj3wGp0bibdLwvnyRpEROTjF69UuXHOnXqhMDAQHh5eUGpVDb45UdTDGF1VKNGjeDq6orLly/D0dERCkVF/qVCttJqtbh8+TJcXV3RqBH/dyGiuk+tVuPSpUu4ffs2CgoKkJSUZDbml1/6wNYAJklaxMVtQHBwptmsV3R0NAIDA6vjsusl/q1SR0mShMDAQGRkZODcuXP2vpx6TaFQoEWLFpAk2/9FSERUG1lrOaGn33T7wIEeNp1PX/PVqdMJi8ednJwqdZ0NBUNYHebk5IQ2bdpY3L2eqo+TkxNnGomoXrDWcqK42BlZWYFITo4ppwastOt9dHQqoqLSzGa/AGDkyJEICgri0mM5GMLqOIVCwS7uRERkleHy49WrVwFUtuWEQJ8+v6BVqwyLBfeGGMBswxBGRERUT1laftQV3Q+Fbq9HoPyWE1pERh5A376/Wgxe/fv3h6+vLzw9PQGAxfcVwBBGRERUj+jvdgQgN1vVy8wMxI4dg1AawMqixahRlgvuDbVp04bF95XEEEZERFRPlFV4v27dKJw4EY6KNFm1VnBviMX3lccQRkREVA+o1WpkZWWZPa7RuCM5+T4bAhgQGbkfnTodK7fmKyoqCi1btoSfnx+XHquAIYyIiKiOszYDtnevCklJA2DrHo/W6r5M3XXXXQxf1YAhjIiIqI4xrPsCjGu/9L2+Tp1qiz//7ILK7vE4cOBANGnSBI6OjlAqlfLjLLyvPgxhREREdYi1WS+Nxh1paVFISVHB1sL7Pn1+NWs5MXDgQLRt25ZB6w5gCCMiIqpDLl++bPR9ZmYgfv65L06fbgfbthoS6Nz5D8TE/Ghx6TEkJIQB7A5hCCMiIqrlrG2yvWnTv3DuXAhsDV+RkfttrvuimscQRkREVIulp6fjiy++MHpMV3AfA9uWHQFAiwEDktGrV2q1Xx9VHkMYERFRLaVWq40CmL7dRPkF93oC0dEpVvd4tIR9v+4chjAiIqJayvAOSNvbTehqvtq1+6vcbvcAMGDAAISGhgLgnY93GkMYERFRLaKv/8rLy8OxYxpkZITgxIl2+P33KNgSwAYMSKrQsmO7du0YvOyEIYyIiKiWMGw/cfBgd2zZMhRC9IS+n5d1Zd/xCOi63Ddr1gwA5N5fnPmyL4YwIiKiWuLs2dvIyAhBUVEjbN48DKXBy1oAKz986XXt2pUbbdcyDGFERES1wMqVwJQpftBqJ6D8mS+AdzzWfQxhREREdpaZCTz8sIAQ5c18ARWZ/TLEux5rH4YwIiIiO8nMBE6f1s2ClQawslR89is+Ph6+vr6s/aqFGMKIiIjuAMNNt7OyFFixwg0ffuj2T/gqv/C+Mt3ux48fj7CwsCpdN9UchjAiIqIaZnjXo+V+X2UHsIq2nQAYwOoChjAiIqIadunSJWg07vjllz44cKAHbCm6/7//2wZX15s2NVw1xOXHuoMhjIiIqBqZLjv++ectrF17AcnJiRDClr0eBQYMSMbddx+06fVGjhwJHx8fAOx4X9cwhBEREVUTy81WFQBaoLwlR93xihfeBwUFMXjVUQxhRERE1UQ/A6bRuBsEMKCsZquRkfvRvfshFBc7wcsr16alx9GjR8PT05MzX3UcQxgREVE10mjcsXPnQBuWHivXbJUF9/UHQxgREVE1efttCYsXJwIoO4B17PgnBg5MqlDBPaArumcAqz8YwoiIiKogMxPYv1+DH34owvLl/rDlzsfKBDAA8PX1rdQ1Uu3EEEZERFQB+/YBO3ZcQ2TkTaSmOuGVVzwAKFF2w1XdMUnSYtiwrRUOYCNHjmQBfj3EEEZERGSjiROB1asFgCYA3P55tOz9HiVJi5iYZAQFZdlceG+KAax+YggjIiIqQ2Ym8NNPf+Pq1SKsXh2C8kJXqcptNQQAPXr0QNOmTeHl5cXGq/UYQxgREZEVK1cCU6YIaLXNUP7+jqX0s18VvfNRr2fPngxeDQBDGBERkQm1Wo20NC0eftjnnw22AdsCmBajRm2o0FZDhh3vAXa9b0hs2T+hVhg+fDhatGiBxo0bIzAwEA888ACysrLk4y+88AIkSTL7cnNzMzrP119/jfbt26Nx48bo3Lkzvv/+e6PjQgjMnz8fgYGBcHFxQUxMDE6fPm00Jjc3F+PGjYOHhwc8PT2RkJCAa9euGY05cuQI+vTpg8aNGyM4OBiLFi2q5k+EiIiqU2YmsHs3kJSUh+HDT2LIEG+DAGYLLYYP34pOnU5UaPnRx8cHgYGB8hcDWMNRZ0JY//79sX79epw6dQobN25Eeno6Ro0aJR9/+umnkZ2dbfQVHh6Of//73/KYlJQUjB07FgkJCTh06BBGjBiBESNG4OjRo/KYRYsW4Z133sHy5cuRlpYGNzc3xMbG4tatW/KYcePG4dixY0hKSsLWrVvxyy+/YMqUKfLx/Px8DBw4EC1btsSBAwfwxhtv4IUXXsBHH31Uw58SERFVxsqVQMuWwL33AgMHKpGS0gu2/xWpRWTkPkyfvgQREYcq/NpOTk4Vfg7VD5IQQtj7Iipj8+bNGDFiBAoLC+Ho6Gh2/I8//kC3bt3wyy+/oE+fPgB0Te6uX7+OrVu3yuN69uyJbt26Yfny5RBCICgoCE899RSefvppAIBGo4G/vz9WrVqFMWPG4MSJEwgPD8e+ffvQo0cPAMCOHTvwf//3f8jMzERQUBA++OADzJ07Fzk5OfL/XHPmzMG3336LkydP2vwe8/PzoVQqodFo4OHhUenPioiIrMvMBFq2FNBqKzLrBURFpSA4OLNCS4+m2P2+frL17+86WROWm5uLNWvWIDo62mIAA4AVK1agbdu2cgADgNTUVMyYMcNoXGxsLL799lsAQEZGBnJychATEyMfVyqViIqKQmpqKsaMGYPU1FR4enrKAQwAYmJioFAokJaWhn/9619ITU1F3759jf51Exsbi9dffx1Xr15F06ZNLV5zYWEhCgsL5e/z8/Nt/1CIiKjC1Go1kpOvQattWaHnSZIW0dG/VSh8DRgwAF5eXlAqlQBY+0V1aDkSAGbPng03Nzd4e3vj/Pnz+O677yyOu3XrFtasWYOEhASjx3NycuDv72/0mL+/P3JycuTj+sfKGuPn52d0vFGjRvDy8jIaY+kchq9hyYIFC6BUKuWv4OBgq2OJiKhq1Go1li1bhr17fwCgtfl5lWm4On78eERHR6N9+/as/SKZXUPYnDlzLBbTG34ZLt/NnDkThw4dws6dO+Hg4IAHH3wQllZTv/nmGxQUFGDChAl38u1U2TPPPAONRiN/Xbhwwd6XRERUbxUVFeHgwe5YuXIydH8dlledo8WoUeuRmGhb7dfIkSMxZcoUTJs2jUuOZJFdlyOfeuopTJw4scwxrVq1kn/v4+MDHx8ftG3bFh06dEBwcDB+++03qFQqo+esWLECQ4cONZuNCggIwMWLF40eu3jxIgICAuTj+scCAwONxnTr1k0ec+nSJaNz3L59G7m5uUbnsfQ6hq9hibOzM5ydna0eJyKiisvMBE6fBtq0AZo3L3380KFG2LJlKITQz0dYrwnTz3516nTC5tdll3sqj11DmK+vb6U3I9VqdVPHhjVUgK6ua/fu3di8ebPZc1QqFXbt2oXExET5saSkJDnEhYaGIiAgALt27ZJDV35+PtLS0vDYY4/J58jLy8OBAwcQGRkJAPjxxx+h1WoRFRUlj5k7dy6Ki4vlmrWkpCS0a9fOaj0YERFVP12zVUCrBRQK4KOPgIQE4M03gZkzfWDLZtsV7fs1cOBAtG3blgGMylUn7o5MS0vDvn370Lt3bzRt2hTp6emYN28eLl68iGPHjhnNHs2bNw+ffPIJzp8/DwcHB6PzpKSkoF+/fli4cCGGDBmCr776Cq+99hoOHjyITp06AQBef/11LFy4EKtXr0ZoaCjmzZuHI0eO4Pjx42jcuDEAYPDgwbh48SKWL1+O4uJiPPTQQ+jRowfWrl0LQHdHZbt27TBw4EDMnj0bR48exaRJk7B48WKjVhbl4d2RRESVo1arcfbsbdx9t5/RXY8KhUC/fnnYvdsTlgOYFpIECKGQZ78q2nZi2rRpDGANXL26O9LV1RWbNm3C888/j+vXryMwMBCDBg3Cc889ZxTAtFotVq1ahYkTJ5oFMACIjo7G2rVr8dxzz+HZZ59FmzZt8O2338oBDABmzZqF69evY8qUKcjLy0Pv3r2xY8cOOYABwJo1azBt2jTcd999UCgUiIuLwzvvvCMfVyqV2LlzJ6ZOnYrIyEj4+Phg/vz5FQpgRERUOfqC+4yMEGi1xrXBWq2E3bstr0joQ1dY2Bnk5nrZvNl2//790aZNGwC845Eqpk7MhDVUnAkjIqq47OxsfPTRR8jMDMTKlZMNar7KosXkySvQvHl2hV8vPj4e7du3r/iFUr1Vr2bCiIiIKuLgwe7YvHkoSu96LKv2S2DAgORKBTAAct8vooqqU33CiIiIDOn3e8zMLH0sK0thEMCA8gJYnz6/oFev1EpfA7cdosriTBgREdVJlu58HDFCjYULG8G2OQYtBgxItjmARUVFoVmzZnB0dGTXe6oWDGFERFQnZGYCKSm634eGlgYwQPfrlCkCmzal4Pvvh5RxFi0iIw8gNDSjwns+3nXXXQxcVK0YwoiIqNZbuRJ4+GGg9FYy8zovrVbC998PK+MsFSu+HzlyJHx8fABwxotqBkMYERHVapmZpgEMKL/Jqikthg/fWqHiex8fH6PdU4iqG0MYERHVGoZbDAG6369efRNCuFTyjLrlx759f63Q0iPRncAQRkREtYJhob30z0SXbvarcVlPs0iStIiLq9h2Q0R3GkMYERHZXWamcaF91ZYeBWJikiu02bYlbD1BNY0hjIiI7G7p0tIAVjUVazthaPDgwQgODgbAQny6MxjCiIjIrv788yreessT5TVVLfu4FtHRqYiKSqvU8uPo0aPRoUOHCj+PqCoYwoiIyG7S09Px1lt7IMQEC0f1wcv011KSpIVKVfnwpefn51fp5xJVFkMYERHZhVqtxhdffAEvL3dIktZko21Lwcvw+6rNfOmNHj0afn5+XHoku2AIIyIiuygqKgIAKJUFGDZsK7ZsGfpPEDMNXoYkxMbuQHj48UqHrwEDBiA0NJR1X2R33MCbiIjuCEubbeuFhZ1BXNxGREWloKzaL0nSVimAAUC7du0QGBjIAEZ2x5kwIiKqcaabbS9cCISGOkGjccfRo52QlBQD3byAKOMsutYTFQlgAwcOREhIiPw9Z7+oNmEIIyKiGmXaA0yrBWbNAgBvAInQzXxZqvsyVLnWE23btmXoolqLIYyIiGrU6dNl9QCzVBWjK7zXHatcAf7IkSMRFBTEAEa1GkMYERHVGLVaDQ+P21Ao/KDV2tr5XovJk1eguNgJXl65lar/8vHxYQCjWo8hjIiIaoRarcayZcsAAEOHdje4+7EsAgMGJKN58+wqvTa3HKK6gCGMiIiqXWYm8NtvQGZmILKygnDtWhPcc8+P2L07xupzJEmLmJjKbTmkFx8fD19fX86CUZ3AEEZERBWWmamr9WrTBmje3PhY6Z2Q3gAeRmmRvUBprZehqjdeZdNVqosYwoiIqEJM20189BGQkKA7ZnonpPFdjvrf64JYVbccGj16NDw9Pdl2guoshjAiIrKZpXYTU6YARUVA795XsWiRE7RatzLOIKFv358QGnqu0kX3ADB+/HiEhYVV6rlEtQVDGBER2cxSuwmtFvjvfwFAibK63esItG17utKF92w9QfUJty0iIiKb6NpNXIRCYa2rvQJlhzCBrl3/qNKdjwxgVJ9wJoyIiMpVuXYTAKBF//67UFLSqFIzYCNHjoSPjw8AbjlE9Q9DGBFRA1fWnY56RUVF0GjckZvrjbCwMxgz5kt8+eV/UN7yY2TkAfTrl1Lpa/Px8UFgYGCln09UmzGEERE1YGXd6Who7VoXLFmS+M/sl0Dp/o6W9nnU06Jv31+rdH1sukr1GWvCiIgaKEt3Oj7yiO5x03GzZikNlh8llP71odvnsXPnw9AFMj0thg/fWum7HwHdHZBcfqT6jDNhREQNlKU7HUtKgDNnSpcl1Wo1fvtN33jVGgUiIg4jJuZHXLige2JwcGa5AaxDhw4ICAgAADRq1Aju7u5o1KgRe39Rg8EQRkTUQO3fb/6YQgG0bq2b/dq/X4NfflmNo0c7ARiAspYd9T2/lMoTNr9+hw4d0Llz58pcOlG9wBBGRNRAGBbgX716FXPmeMI0WGm1Ao8+ehPbt7tAq1UCSPxnjLUApttwuyrLjkQNFUMYEVEDYFyAL9Cz53Fotb0sjJSwbZsLSkNXWaXDAn36/FLpDbddXV0r9Tyi+oIhjIionsvMBB5+GBD/1M1rtRJSUqJheTNtoPyu9wCgxYAByRUKYAMGDIC7uzsAXQDjtkPU0DGEERHVA9Z6fWVm6tpOCLMm9xIiI/fjwIFIVORG+cpuuj148GDcfffdNo8naggYwoiI6jhrvb4MH7ckNDQDffv+il9+6YMDB3qg/BkwLRISVlRq26Hg4OAKP4eovmOfMCKiOsxar699+8oOYIBWbiMxbNj3GDAgCbrlScskSdf3q7L7PrLpKpE5zoQREdVh1np97dlTdgCLjDyAU6fawtX1JoKDL6BXr1S0bHkWK1dONtoTUpK0iIvbYFPfL2tGjx7Nnl9EFjCEERHVIaa1X23a6JYgDQOXg4NAu3ZXoFD4QKstXWKUJC06dTqCP//sigMH7jI4q26WKyLiEIYN2ypvzi1JWgwbthWdOtne+8sSPz+/Kj2fqL6ShDAv16TaIT8/H0qlEhqNBh4eHva+HCKyszfeAGbP1hXZKxTA229fw+jRBVi71gWzZytRUiJBoRAYOnQLwsLOIC0tCqmpKoP9Hsva61GL6dOXQKks+Gejbi+5AautBgwYgNDQUKPH2PmeGiJb//7mTBgRUR3w5pvArFml32u1wPTprjh37iMolQV44onS4JSe3tpgs20tjFtRWCu+VyA31+ufrvcFlVp6DA0NRWBgYIWfR9RQsTCfiKiWy8zUzYCZEkIh79WoVBYgNPQcAMjLiToK2PZHvW7roapg8T1RxXAmjIiolrNUfK+3ceMoFBXp6rkAIDfX26iw3jLTJUldTVhFZr969OgBLy8vNGnSBI0aNYKfnx+XHYkqiCGMiKiW8/G5CoXC06jIXk8IBbZsGYqwsDNQKgvg5aWG9U74OpGR+xEamoEbN1z+uTuy4nc+RkREcOmRqIoYwoiIaglLXe/T09OxadMXGDq0u8kyYyn9smRu7k1kZQWirKarkqRF376/VnnDbS49ElUdQxgRUS1gqev9iBFqfPHFFwCAiIhDCAs7gwsXmmPDhlEwnOmSJK3BY9bufoTccqKyAWzkyJHw8fHhHY9E1YQhjIjIzqx1ve/W7bbRON1diydQVGTcy0vXaKi8ux8rv+WQXlBQEMMXUTViCCMisrOUFMtd78+eLf0jWte7yxteXmp5Viw31wvnzzfH7t0x5bxCxbYc0s94GeLsF1H1YwgjIrIj/TKkKQcHICTkNo4eBQ4e7G7WxT4i4hB+/PFe/PFHV6vnliQtVKpUREWlVWgJ0sfHh0X3RHcAQxgRkZ3oliGF2V2PCoXA669rkJubi6NHw40K8vV3Q0rS7X8CWM0tPxJRzWIIIyKyk/37NdBqlWaPd+++H7/8ko2ZM4dCiA5mx4VQ4Lvv/oXyCvArG8B45yPRncEQRkR0h5i2oAgOvgXAHaY9vQ4ejMSBAzB7vJS1OyAF/u//tqJdu9M2LT/26tUL/v7+8veOjo7w9fVl7RfRHcIQRkR0B5i2oHj77Wu4995LiI4+g5SUXkZjy+54b60Rq0DXrn/g7rsPlnstI0eO5J2ORLUA944kIqphllpQTJ/uik8/TUJUVBokyfjWSN335vsUSZIWY8d+aTYe0GLs2LX417++s+l6fHx8GMCIagGGMCKiKsrMBHbv1v1qiaUWFEIokJvrBaWyAMOGbZWDlSRpEROTjI4dj5udRwgFnJyKzcYPH74V7dqdqdb3REQ1z+blyPz8fJtP6uHhUamLISKqayx1uk9IKD2+dOk1TJ/uBvMaLgFHxyIAMOr7lZUVhOTkmH+WJI1rvyRJCy+vXISGnpPHe3nlVnkLIiKyD5tDmKenJyTJ+n5kACCEgCRJKCkpqfKFERHVdtY63cfG6grv//zzKqZPV0IIS392SiguLr0LUaksQEFBE4MAphujD2KmWw7puudXLnzx7kei2sHmELZ79+6avA4iojrn9GnLne7PnNGFsIMHCyBEU4vP1c9q6R082B2bNw+FeZWIhNjYHQgPP17p0BUfHw+lUtcKg53viWoPm0NYv379avI6iIjqnDZtdEuQhkHMwQFo3RpQq9Vwc8uCJDU3u9vRdFZLo3HHli2WAphubGUCWP/+/dGmTRuGLqJarNItKvLy8rBy5UqcOHECANCxY0dMmjRJ/tcWEVF9plarcfHibUyZ4oYPP3STlxy1WoFVq7JRUvIxAGDYsEsGHe+1iI7WbSNUUNAEP/7YD02aXIOr602LbSlMw1pF+Pn5cesholpOEkKIij5p//79iI2NhYuLC+6++24AwL59+3Dz5k3s3LkTERER1X6hDVF+fj6USiU0Gg1vdiCqRdRqNSZN2msQrswL6BMTlxjNdBkW0X/zzf0mWw7pp9IMg5gWkydXftuhKVOmMIQR2Ymtf39XaiZs+vTpGD58OD7++GM0aqQ7xe3btzF58mQkJibil19+qdxVExHVAWfP3jbaz9H0zkd9+wkAyM31hpeXGqGh5wAAmZmBFvZ81M2S6RuxVnXbIYDF90R1QaVC2P79+40CGAA0atQIs2bNQo8ePart4oiIaqOMjEZldrWXJC2ysoLw2WcPQojSUBURcQgpKdGwvOWQAqNGrYeb240qtZ2Ij4/n1kNEdUSlQpiHhwfOnz+P9u3bGz1+4cIFuLu7V8uFERHVRmq1GkrlJUhSU5MgVtpKIiYm2ajVhBAKbNkyFH5+OThxItzKmbUIDs4sM3wNHDgQTZo0QaNGjeDp6Wl2nEX4RHVLpUJYfHw8EhIS8OabbyI6OhoAsHfvXsycORNjx46t1gskIqot1Go1li1bBgAYNqy7vCSpD15BQVnw8spFbq632UyZEAqcP9/Cygyarut9ebNfISEhrPMiqkcqtW3Rm2++iZEjR+LBBx9ESEgIQkJCMHHiRIwaNQqvv/56dV8jAGD48OFo0aIFGjdujMDAQDzwwAPIysoyGvPDDz+gZ8+ecHd3h6+vL+Li4nD27FmjMT/99BMiIiLg7OyM1q1bY9WqVWav9d577yEkJASNGzdGVFQUfv/9d6Pjt27dwtSpU+Ht7Y0mTZogLi4OFy9eNBpz/vx5DBkyBK6urvDz88PMmTNx+/btavksiKj6lbf1EAAUFRXJv4+IOITExCUYNWo94uI2olOnowgNPQelsgBeXmoL+zsK3LzpYnHfx8mTVyAi4lC518g6L6L6pVIhzMnJCUuXLsXVq1dx+PBhHD58GLm5uVi8eDGcnZ2r+xoB6HrerF+/HqdOncLGjRuRnp6OUaNGycczMjJw//33495778Xhw4fxww8/4MqVKxg5cqTRmCFDhqB///44fPgwEhMTMXnyZPzwww/ymHXr1mHGjBl4/vnncfDgQXTt2hWxsbG4dOmSPGb69OnYsmULvv76a/z888/Iysoyep2SkhIMGTIERUVFSElJwerVq7Fq1SrMnz+/Rj4bIqqalSuBli2Be+/V/bpype7x8oJZenprbNw4Chs2/BuLFydi584YaDS6kowWLc5Bt0SpJ2HPnj6IiUk22/exvAL8kSNHYtq0aVxqJKpnKtWiojbYvHkzRowYgcLCQjg6OmLDhg0YO3YsCgsLoVDosuWWLVtw//33y2Nmz56Nbdu24ejRo/J5xowZg7y8POzYsQMAEBUVhbvuuktectBqtQgODsbjjz+OOXPmQKPRwNfXF2vXrpVD4MmTJ9GhQwekpqaiZ8+e2L59O4YOHYqsrCz4+/sDAJYvX47Zs2fj8uXLNv9rli0qiGpeZqYueJk2XF2wAJgzx3hPyG7dLuLdd3fAy0uNgoImWLFiMsz/LSv++bL8b9wJE1b9s2Rp+76PDGBEdUuNtqi4desW3n33XezevRuXLl2C1mTfjoMHD1bmtDbLzc3FmjVrEB0dDUdHRwBAZGQkFAoFPv30U0ycOBHXrl3D559/jpiYGHlMamoqYmJijM4VGxuLxMREALqlhgMHDuCZZ56RjysUCsTExCA1NRUAcODAARQXFxudp3379mjRooUcwlJTU9G5c2c5gOlf57HHHsOxY8fQvXt3i++rsLAQhYWF8vcV2TSdiCrH2tZDs2cD+n+iarXAww8DkuQHrXYCyg5aEizf/QgAWjl4lRW+Ro4cCR8fHwAstieqzyoVwhISErBz506MGjUKd999d7kbe1eX2bNnY9myZbhx4wZ69uyJrVu3ysdCQ0Oxc+dOjB49Go888ghKSkqgUqnw/fffy2NycnKMghEA+Pv7Iz8/Hzdv3sTVq1dRUlJicczJkyflczg5OZndmeTv74+cnJwyX0d/zJoFCxbgxRdftPHTIKKqUqvV8PC4DYXCD1pt6Z9jCoUw+h7QBbLSjbjLClrWCAwYkGzTzJePjw8L8IkagEqFsK1bt+L7779Hr169qvTic+bMKbeQ/8SJE3IrjJkzZyIhIQHnzp3Diy++iAcffBBbt26FJEnIycnBww8/jAkTJmDs2LEoKCjA/PnzMWrUKCQlJd2xoFgVzzzzDGbMmCF/n5+fj+DgYDteEVH9ZXin49Chxnc63nefcYuJqtLfPdmrV2q1nI+I6odKhbBmzZpVSz+wp556ChMnTixzTKtWreTf+/j4wMfHB23btkWHDh0QHByM3377DSqVCu+99x6USiUWLVokj//iiy8QHByMtLQ09OzZEwEBAWZ3MV68eBEeHh5wcXGBg4MDHBwcLI4JCAgAAAQEBKCoqAh5eXlGs2GmY0zvqNSfUz/GEmdn5xq7sYGIjJne6RgWdsaoTsvF5ZbRno/lz34JC8cFIiP3o2/fXyvdfJWI6q9K/TPvrbfewuzZs3Hu3Lkqvbivry/at29f5pe1InZ9HZq+hurGjRtyQb6eg4OD0ViVSoVdu3YZjUlKSoJKpQKgq72IjIw0GqPVarFr1y55TGRkJBwdHY3GnDp1CufPn5fHqFQq/Pnnn0Z3VCYlJcHDwwPh4dYaNRLRnaC/4zEry/jPC6WyQG4xAQBhYWcQEXEApbVfwqC9hKX7mSR07Pgn9PtASpIWAwYkYdiw7yscwNiKgqhhqNRMWI8ePXDr1i20atUKrq6ucuG7Xm5ubrVcnF5aWhr27duH3r17o2nTpkhPT8e8efMQFhYmB58hQ4Zg8eLFeOmll+TlyGeffRYtW7aUC+EfffRRLFu2DLNmzcKkSZPw448/Yv369di2bZv8WjNmzMCECRPQo0cP3H333ViyZAmuX7+Ohx56CACgVCqRkJCAGTNmwMvLCx4eHnj88cehUqnQs2dPALqu1uHh4XjggQewaNEi5OTk4LnnnsPUqVM500VkRytXAlOm6O949MPQod0t9uc6eLA7Nm8eCuN/pyogROn+jpY27R44MAkDByZV6M5HU+PHj2chPlEDUakQNnbsWPz999947bXX4O/vX+P1Vq6urti0aROef/55XL9+HYGBgRg0aBCee+45OdTce++9WLt2LRYtWoRFixbB1dUVKpUKO3bsgIuLCwBd8f62bdswffp0LF26FM2bN8eKFSsQGxsrv1Z8fDwuX76M+fPnIycnB926dcOOHTuMCu0XL14MhUKBuLg4FBYWIjY2Fu+//7583MHBAVu3bsVjjz0GlUoFNzc3TJgwAS+99FKNfk5EZCwzU3f3Y5s2uu/1AQwAtFoJmzcPhZNTIYKDL8iBSaNxx5YtpgFMz/AxCYZbFQ0bVtrx3pbwNXr0aLMbfHgnJFHDUqk+Ya6urkhNTUXXrl1r4proH+wTRlR5xrNeAlOmXMfy5U0sjjXcYDsjIwSrV0+w+XViY3cgPPx4hWa9xo8fj7CwMJvHE1HdUqN9wtq3b4+bN29W+uKIiGpSZqb5rNeHH7qidCnRmH6D7bCwM3B0LISlIntJ0v7TN0xh9FhFAtjIkSMRFBTE2S4iAlDJwvyFCxfiqaeewk8//QS1Wo38/HyjLyIie1Gr1fjtN7VZA1YhFIiOTrWwd2Pp8bS0qH+64BsGMC2io/ciMXEJhg/farTlkOESpC18fHwYwIhIVqmZsEGDBgEA7rvvPqPHhRCQJAklJSVVvzIiogrS9/7SaNwhSYlGfb4kSYuoqDRERaXhwoXm2LhxlNnxlBQVLP3bNCoqDUplgcVWFhXBux6JyFClQtju3bur+zqIiKpM3/tLqSzAsGFbjRqwGhfOn0BRkfFxlSoVKSmWGlArkJvrZVR0X5m7HkePHs1ZMCIyUqkQ1q9fP5vG/fe//8VLL70k74FGRHSnlDdrZXq8oKCJxZkwSdLt91hVfn5+VT4HEdUvlQphtvriiy/w9NNPM4QRkV2UN2ulVBagoKAJdu4ciGPHwmHa/6sidV+Gm26bYusJIrKkRkNYJbpfEBHdERqNOzZvHob09NYwLsTX9f0aPHgb2rU7bfPSI+96JKKKqtEQRkRUG1nuiF9KCAV8fdVmAWzgwIEICQkxG8+ZLiKqDIYwImpQyu6Ir2OtDiwkJASBgYE1eHVE1JAwhBFRnaNWq+U7IbOyFMjIaITQ0NtwcrpS5vM0GnccO9bRqDWFOet1YGwxQUTViSGMiOoUfS8wQLesaNyGIg0REZafZzjWUkd8QCAs7AyGD99iFMD69+8PX19f+Pn5ccmRiKpVjYaw8ePHc89DIqpW+hkw/bKiflbLcOshw824c3O9UVTUyKQGrHTzbUCLjh2PQaVKRfPm2Wav16ZNGy5BElGNqHQIy8vLw++//45Lly5Ba7I/yIMPPggA+OCDD6p2dUREVuTmepstKwpR2li1/JkvqVKbbxMRVZdKhbAtW7Zg3LhxuHbtGjw8PCBJpX+4SZIkhzAiopri5aX+Z1Nt462HHB2LcPRouIWZL2MV3XybiKi6VSqEPfXUU5g0aRJee+01uLq6Vvc1EVEDk5kJnD4NtGkDNG9e+rhhAb5eRkYGAPOtiQBACGDFiodhKXQZq/jm20RE1a1SIezvv//GE088wQBGRJWmD1hr17pg1iwltFoJCoXAiy/m4P77r+DmzZv46qs9yM31hpeXGgDk3yuVunOEhZ2BcU/osu561JEkLRISVlis/yIiupMqFcJiY2Oxf/9+tGrVqrqvh4gaAP0djhqNO5YsSYQQupkrrVbC/Pn+yM39EunprbFlS6JBTZeALmRpER2diqioNFy4EAxbgpe+Jky/DVFFAhjbUhBRTbE5hG3evFn+/ZAhQzBz5kwcP34cnTt3hqOjo9HY4cOHV98VElG9o19itFZcf+FCc6NlRt3yon6JUYGUlF5ISYmGLlxZJ0laxMVtgKdnHoqLnSxu5A1Y3/eRnfCJqCbZHMJGjBhh9thLL71k9pgkSSgpKanSRRFR/WNY33X0aB4yMkLg6FhoVlwPaAFI5TRUBYyDWelzJQkGfcO2olOnE+Vem4+PD9tQENEdZ3MIM21DQURkK8sNVjtAkrTo0uUI/vijCwzvZNRolBbCWflGjdqA4OBM5OZ6WZ31IiKqLSr2J9w/PvvsMxQWFpo9XlRUhM8++6zKF0VEdVtmJrB7t+5XoOwGq3/80QWS0YSWhOTkGMTEJEOSdP/40/1a3j8EBTw986BUFiA09FyFAhjrvojIHioVwh566CFoNBqzxwsKCvDQQw9V+aKIqO5Rq9XIzs7GW2/loWVLgXvvBVq2FHjrrTxcuaLb09FSDRigsFgXFhSUhcTEJZgwYdU/gUw+auUKJBQXVyxMjRw5EtOmTWPdFxHZRaXujhRCGDVo1cvMzIRSf+84ETUYZd3tOHOmB/7+OwlKpeUGq4Z1XHqSpIWXVy4A4Pp1NyQlxcC48ap+Vszyc2wVFBTEAEZEdlOhENa9e3dIkgRJknDfffehUaPSp5eUlCAjIwODBg2q9oskotrt0qVLAMrfSsi0waq+eB6A2WO6FhVDrdSFKRAdvRepqSqj5+iXIAcMGICmTZvi9u3bAABHR0ezfyDyzkcisrcKhTD9HZKHDx9GbGwsmjRpIh9zcnJCSEgI4uLiqvUCiah2U6vVWL9+PQAgKysQpvs0ms5QRUQcQljYGbPiecPHAPwzo2a5YkKStIiKSkNUVJrFIvzQ0FDe7UhEtV6FQtjzzz8PAAgJCUF8fDwaN25cIxdFRHWHYdF9cnIMjNtGCMTEJJsVyetnxaw9dvRoeBl3Rhqfk3dAElFdVamasAkTJgDQ/eF76dIls/YVLVq0qPqVEVGtpO/3pdFoUFxcjKtXrwKwVnQvQanU9QTTbTdUfmDSt7CwTkJQUFbl3wARUS1RqRB2+vRpTJo0CSkpKUaP6wv22ayVqH7RB6+8vDx8/PF2s/0cHR0Dcf26K3QF88ZF9xs3jjKq24qIOGT1dUxbWFhSmQJ8IqLaqFIhbOLEiWjUqBG2bt2KwMBAi3dKElH9YN5o1dJ+jvo6MIHSIKbvfK/780EIBbZsGYqwsDNWZ8Qsz6aVMi3At4Z9v4ioLqhUCDt8+DAOHDiA9u3bV/f1EFEtY63RqvG2QaW/SpJAXNx6ABI2bPi30bmEUODYsXB07HgcgH4WrRDFxc7w8lJbbGEhSVoMHrwNrq43ERycaRTALO35yLseiaiuqFQICw8Pl5svElHDUN4slZ4QCri53YCXV66FnmACO3cOws6dsTCdRdPPcllqYWFtCZN7PhJRXVapEPb6669j1qxZeO2119C5c2c4OjoaHffw8KiWiyMi+9HXgen/wWW50ao5fc2WaU8w49YV5rNo+uXKxMQlSExcYtP+j1x2JKK6TBJCWNsDxCqFwnCpoLQejIX51Ss/Px9KpRIajYbBlu4owzowQLcUmZvrjaysQCQnx1gIVcazWYYzVxqNO44dC8fOnbY1cp4wYRVCQ8+VOy4+Pp4lEURUK9n693elZsJ2795d6QsjotpPXwcGlLaM0C8Ptm59GqdPt4VxQ1aBuLivjWq29MHNy0uNjh2PIylpoM2zaLbw9fWt+BsjIqpFKhXC+vXrh19//RUffvgh0tPTsWHDBjRr1gyff/45QkNDq/saichOTIvxhVCYBTD9425uN+QAZhrchg3bipiYZCQlDTB7rsFZLDZ2NaQvxGfxPRHVB+VX2VqwceNGxMbGwsXFBYcOHUJhYSEAQKPR4LXXXqvWCySiO0OtViM7OxvZ2dlyHZi1BqymDGewLAW3LVuGwtGxyOJzdbQYMCAJvXqllnmNQUFBCAwMZAAjonqhUjNhr7zyCpYvX44HH3wQX331lfx4r1698Morr1TbxRHRnWFaA6ZnuRjfeG9I/QwWAGRkhOD6dVeLm3ir1V4WX7tv392IjDxkNgNm2n6Cs19EVN9UKoSdOnUKffv2NXtcqVQiLy+vqtdERDVAf7ejKY1Gg0uXLpk8VlrPZdoyokuXIzhypMs/QUuLAQOS4eJyS95wW5K0MO+cD6SlqWBpc29LAQxg+wkiqv8qFcICAgJw5swZhISEGD2+Z88etGrVqjqui4iqkbWZLkss1XOZtoy4994f5e8ByAEMgEk3fcMZMwmAFpIkjM7NDbiJqKGqVAh7+OGH8eSTT+KTTz6BJEnIyspCamoqnn76acybN6+6r5GIrDCc3crLy8Pt27eNjjs6OkKpVNrcXNlaPVdi4hKjthFKZYEcnjIyQmyqG9NRIC5uvdzMlT3AiKghq1QImzNnDrRaLe677z7cuHEDffv2hbOzM55++mk8/vjj1X2NRGRBRWa3TBkuNxoGoQsXgi3Wc+XmelkNTNbrxvQd8UtJktZs6yFLxo8fz/ovIqr3KhXCJEnC3LlzMXPmTJw5cwbXrl1DeHg4mjRpUt3XR0RWmNZ3GQYrABZDFmC+3BgTk4xevVJx8GB3bN481Ox1TO98ND2vUlmA3r1/xa+/9oX5XpKltWHlLT/Gx8dDqVSyAJ+IGoxKhTA9JycnhIeHV9e1EFElGQYrw1ko0w72lpYbk5IG4NYtZ+zZ0wfmXWu06N37V+TmeuPo0U5yt3zT87q43IL5EqSEvn1/gp/fZQAoc/NtBi8iaoiqFMKIyP5Mg5Xhvoz6mq6wsDNQKgus9v369VdLAQwAFPj117749dd+MCy0Nz1vixbnYKl1Rdu2p9G8ebbF6+bdj0TU0FWqWSsR1R6Wg1UpfU0XUFq/ZU5h5XHAfInR/LzNm2eja9c/oAtiACDQtesfVgMYERFxJoyozrNcGF9KX9Olr+cyr9+CXBtWujl3+Uz3efzXv77DXXf9jgsXWiA4+DwDGBFRORjCiOo4pbLArKGqEIBhTVh6emuj4+Hhx3H8eAejMbqlRQ1u3GiM7duHWAlj+iVHy0X2zZtn2xy+2IKCiBo6hjCieiAi4hDCws4YNVAtq5nqiRMdMHnyChQXO8HLKxfp6a2NOt536HACJ050MCj01wUv/eyZZK0NmBX6Ox/1WIhPRMQQRlSrWdpqSKPRoLi4GAUFxrNQhg1U9d8DlpupCqFAcbETQkPPWbxj8vjxcOiDV+fORxAcfOGf2THLhfmm+zwaYuAiIrKMIYyoFlKr1bh06RLWr19fqedHR0cjJSUFgOWaMcN6Lmt3TOoo8Oef3fDnn11geh+PYRNX3ulIRFRxDGFEtUxVOuHrBQQEyL+3VDNmWM9VXmG/juGypI5pYT4REVUMQxhRLWO6/FgdTGvGlMoCo+73hiHNvN+XniSHNW6+TURUdQxhRHWYtT0gLTGsGTPusK9FdHQqEhJW4PjxjkhJibb4fEnSIiGhtJifAYyIqGoYwojqCNPAZboHpOE2QlevXrX6XAAmHfYVSEnphZQU1T/fG3e918+ADRu21Wr7CbabICKqOIYwolpOo3FHWlrUPyFJYbGxqundirt375afbxrWVKpUK/Vflh6TEBu7A+Hhx7nvIxFRNWMII6rFjJcNdXSbbsegrLsV9Sy1n0hJUdlQiK+jb+xquvTIuyGJiKqOIYyoBlnq82WorFkk8425DSnKbDuhZ7n9hAIREftw4EAkyto+lsX3REQ1iyGMqIbY2mpi2rRpFoNYWRtzmy5JWgtM1tpP6AKY5bb3kqRFXNwGBAdnWg1grAEjIqo6hjCiGmJrqwnTcfqAY71/V2kRfqdOR5Gb64URIzrhjz8OmZ3btEdYKevhbtiwrejU6YTZMX0dGGvAiIiqR/lFIUR0R3l7e2P8+PFygJIkLQBdQIqO3ovp05fId0EqlQUIDT2HsDBns/NoNO7IyAhBWNgZxMVttOGVdS0o9Oc2FRQUhMDAQAYwIqJqwpkwIju7cuWK0fdOTk5wdXUFYLnJqi1M74iMiUm2MKumhSTBaDnTtAUFZ7+IiGoOQxiRjapSZF+WTZs2mT02evRo+femG3NbYtgXzNIdkcnJMejd+1fs2dPHKHSVF/CCgoIYvoiIaghDGJENqlpkD1Ssu/3t27crdH2GfcHS0qLM6siEUODXX/tgwIBkBAVlwcsrF//+twpNmoSanatRo0bw9PTk7BcRUQ1jCCOyQWWL7PXK6m5fEeUFOY3G3aDzvSndjFhi4hIolQUICQlhry8iIjtiCCMqg34J0rRuqyIsLQ8adre39RxpaVFITVWVGeRyc71R1v02lhq6EhGRfdSZuyOHDx+OFi1aoHHjxggMDMQDDzyArKwsozHr169Ht27d4OrqipYtW+KNN94wO89PP/2EiIgIODs7o3Xr1li1apXZmPfeew8hISFo3LgxoqKi8Pvvvxsdv3XrFqZOnQpvb280adIEcXFxuHjxotGY8+fPY8iQIXB1dYWfnx9mzpxZ4SUmsi/9EuRHH31ksW7LkitXriA7OxvZ2dnQaDQALPf70ochWxw82B2LFyciJaWXWZDTaNwBlN4J6ehYKN9NaYmlhq5ERGQfdWYmrH///nj22WcRGBiIv//+G08//TRGjRqFlJQUAMD27dsxbtw4vPvuuxg4cCBOnDiBhx9+GC4uLpg2bRoAICMjA0OGDMGjjz6KNWvWYNeuXZg8eTICAwMRGxsLAFi3bh1mzJiB5cuXIyoqCkuWLEFsbCxOnToFPz8/AMD06dOxbds2fP3111AqlZg2bRpGjhyJvXv3AgBKSkowZMgQBAQEICUlBdnZ2XjwwQfh6OiI1157zQ6fHlXGpUuXKvwcS2HNUr8vW8OQfhbN0r+X9EEuPb210VJnly5HcORIF/l7IQB9h312wCciqj0kIXR/RNc1mzdvxogRI1BYWAhHR0f85z//QXFxMb7++mt5zLvvvotFixbh/PnzkCQJs2fPxrZt23D06FF5zJgxY5CXl4cdO3YAAKKionDXXXfJRdharRbBwcF4/PHHMWfOHGg0Gvj6+mLt2rUYNWoUAODkyZPo0KEDUlNT0bNnT2zfvh1Dhw5FVlYW/P39AQDLly/H7NmzcfnyZZu7jefn50OpVEKj0cDDw6NaPjeyja2F+LY6eLA7tm0bhpISyWgp0VqNV3x8PNatW4eMjBCsXj3B4jklSdfXa+XKyWYBLyFhBYqLneSgZ+kOyClTprAmjIioBtj693edWY40lJubizVr1iA6OhqOjo4AgMLCQjRu3NhonIuLCzIzM3Hu3DkAQGpqKmJiYozGxMbGIjU1FYCuqPrAgQNGYxQKBWJiYuQxBw4cQHFxsdGY9u3bo0WLFvKY1NRUdO7cWQ5g+tfJz8/HsWPHqutjoBpUXiG+fvlPvxxYnoiIQ0hLu4QNG9RITNQ1Wz14sDuWLEnE6tUTsGRJIg4e7C6PLy4uxujRozF0aDuLy4v6IHf8eEeLS53FxU4IDT0nt7fQ/94Qtx4iIrKvOrMcCQCzZ8/GsmXLcOPGDfTs2RNbt26Vj8XGxmL69OmYOHEi+vfvjzNnzuCtt94CAGRnZyMkJAQ5OTlGwQgA/P39kZ+fj5s3b+Lq1asoKSmxOObkyZMAgJycHDg5OcHT09NsTE5OjjzG0jn0x6wpLCxEYWGh/H1+fr4tHwvdYZW909HVNRfdujnh6NGCcov1DZc1hw27ZDBWi+joVISHH0NWVpDFOyENlzr1zVZNsf0EEZH92XUmbM6cOZAkqcwvffgBgJkzZ+LQoUPYuXMnHBwc8OCDD0K/mvrwww9j2rRpGDp0KJycnNCzZ0+MGTMGgG42qy5YsGABlEql/BUcHGzvS6q31Gq1XEBv6SsvL8/i86yFJ1tmxNavX4/i4mIAFSvWj4g4hMTEJZgwYRUmT14BAFixYjK+/95yrZhKlSrPeum3GjL9YgAjIrI/u86EPfXUU5g4cWKZY1q1aiX/3sfHBz4+Pmjbti06dOiA4OBg/Pbbb1CpVJAkCa+//jpee+015OTkwNfXF7t27TI6R0BAgNldjBcvXoSHhwdcXFzg4OAABwcHi2MCAgLkcxQVFSEvL89oNsx0jOkdlfpz6sdY8swzz2DGjBny9/n5+QxiNaCy9V4ajTuOHbO8/Gdr2wd9sX9Fi/WVygKkp7fG5s2Wg1cpLaKi0gDo6soYtoiIai+7hjBfX1/4+vpW6rlara5OxnD5DgAcHBzQrFkzAMCXX34JlUolv4ZKpcL3339vND4pKQkqlW5Jx8nJCZGRkdi1axdGjBghv86uXbvkOywjIyPh6OiIXbt2IS4uDgBw6tQpnD9/Xj6PSqXCq6++ikuXLsl3VCYlJcHDwwPh4eFW35OzszOcnc03YqbqZWvjVUOGS5CAACDJxxQKYXPbB31ne/3m3KbLmtaCXFl3SZbSYvjw0nMolUqbromIiOyjTtSEpaWlYd++fejduzeaNm2K9PR0zJs3D2FhYXLwuXLlCjZs2IB77rkHt27dwqeffoqvv/4aP//8s3yeRx99FMuWLcOsWbMwadIk/Pjjj1i/fj22bdsmj5kxYwYmTJiAHj164O6778aSJUtw/fp1PPTQQwB0f7ElJCRgxowZ8PLygoeHBx5//HGoVCr07NkTADBw4ECEh4fjgQcewKJFi5CTk4PnnnsOU6dOZci6wyzt91jRxqumS5C6AKYLYpKkxYsv5qCkpMBovC3bE9myObf+XNevu5rNwBnS3xFpuAE3C++JiGq3OhHCXF1dsWnTJjz//PO4fv06AgMDMWjQIDz33HNGoWb16tV4+umnIYSASqXCTz/9hLvvvls+Hhoaim3btmH69OlYunQpmjdvjhUrVsg9wgDdEs7ly5cxf/585OTkoFu3btixY4dRof3ixYuhUCgQFxeHwsJCxMbG4v3335ePOzg4YOvWrXjsscegUqng5uaGCRMm4KWXXqrhT4oMVVebCUv1W4CE2NgdmDOnNTp3bgr9y1S0aL+szblNzwVoYWkmTP86+gAWHx8PX19fLkUSEdVydbZPWEPAPmFVk52djY8++qjK59m7V4WkpAEwXIKUJC0SE5dg7twJ8Pb2xsmTJ/HRR99jyZJEszov/V6NllibNcvMDLTY/0vfeBXQIjLyAEJDMxAcnCk/Nz4+Hu3bt6/yeyYiosqz9e/vOjETRmQvERHD8dJL3WAYwACBxMQcTJnyf/IjSqWyzDseLYUwa7NmBw92t1iAL4QCo0ath5vbDavLl5WtsSQiojuPIYyoDBs3HoFW293kUQm5uTuxbp2uCbD+po2K3PFordWFm1uB1TsgJUkrz3rFx8ebFd6z9xcRUd3CEEZUBluCVVFREZycnMzueAQAIYD09NZmdWEXLgRbnDX78sv/wHjWrfQ1hw3bioceGoCgoCCGLSKieoAhjOocS3c8GqrojFBZdzPa2krC29sb06ZNw9mzt7Fli2GIMu6ED8BgudGUceuLUqV3PgYF9WIAIyKqJxjCqE6x9Y5H/RJheWy5m7G8VhKGLS8uXHCFEMZByrAuzHq/L8t3PgJAdHQqmjfPxujRoxnAiIjqEYYwqlNsbbR6+fJleYsga8rbv9FQWa0kDPd51GjcoVBMh1ZrfCelfvnScrsLwPIMmO65+g74pvuVEhFR3VY3NlUkqqB169YZhSNLKrJ/o62UygLMmpX+T18vXYiKiUlGbq43NBp3ucbMmBbWliHL6qJPRER1G2fCqMGq6P6NtmrceA0SE92Rm+uFrKwgJCfHyMudMTHJUKlSkZKiAlD6mH6M4XWYdsAnIqL6hSGM6gy1Wl3hLYcMmRbgm9/NqAtEFW2saon++GefPWi03Klv+ipJWqhUexEVlQalsgAuLrfMatMYwIiI6jeGMKoTqroFkaUC/Ndfb4spU5To0qUAr77qASEUSE6OgYvLLbPi/IpuRwRY3+4I0AWy1FSVXO9lyz6S3AuSiKh+YQijOuHSpUuVfq61Avz58y+jSRN/vPYaoN+8S3/Mzy8HxcXO8PJSA4DNBfyGLC13GjLtpm+t+J97QRIR1U8MYVTrqdVqrF+/vtLPt1aAf/ZsI+TnA1qTOnkhFFixYjL0NVsqVWqFtiPSS09vjbJ2ZpUkLf71r85o2zbK6p2P7IJPRFR/MYRRrWdrWwprrBXgh4Tchr8/oFCYBjEB/Y3D+mVD0z5ekqSFo2MRMjJCLNaIWe8HVvr8YcO2ondvNl8lImqo2KKC6j19Ab5h24hhw7YiKEiL5s2Bjz4CHByEfMy0XYQQCkRHpxo9v0uXI1i5cjJWr56AJUsScfCgbn9JjcYdGRkhOHWqrdVlSECLL75IxyefMIARETVknAmjBsFS4btG0xZOTk5ISPBGt26X8O672+HoWISVKyebzZpFRaUhKioNXbvGwdGxCOPHdzGrEbt5s7FBqwnL65D6ANi//10MYEREDRxDGNVptrSNMBwTGnpOfnzdunUAdFscBQVp5WNl7RU5cKAT9u5tYrFGLCkpBqWTy6bNV7WIjk6VW1I4OfWq8nsnIqK6jSGM6ixb2kbYMsa05qy8dhGhobct3PVYWkdmyahRG9Cp0wmMHDkSQUFBnAUjIiLWhFHdZK3tRGZmIDIyQqDRuFsdo9G42/gq5lsJ5eXlIShIa1Rjpgtglvd+BHRLkMHBmQAAHx8fBjAiIgLAmTCqo6y1ndDXc1W0tYRhI9SyZs/Wr1+P+Ph4REQcgp9fjtzKwhrT5UwiIiI9hjCq9Sx1irfcCFUYzXqlpKhs3hvS29sb8fHx+Oij78ttzKpvHFtc7IyyWlDExW1AcHCmUQBj13siItJjCKNaz9vbG9OmTTOq3dq79xzS0lKRmqqS9300D0QKqFR75THlzUoplUqrM2yGs2e7d+8GYL0jvv51OnU6AUDX8V6pVLLxKhERGWEIozrBMLysXAlMmRIArVaC7q7DvQgPP1Zma4my9mQ0ZK2xq+HsmeHdlsZ3Ugo8+OAVjBt3Bc2bt4Gn510MXkREZBVDGNUpmZnAlCn4J4ABgK6jfXj4MahUqVZnvWytydI3drXWosJSvVhi4hLk5nrh8ccHIzLSH4BvDbxzIiKqbxjCqMao1eoytxyqzCzR0qVl7/WonxnT9+MyZK2nWEZGBq5cuYKbN28CKG1RceFCcwASgoMvyM+3VC+WmLgEoaHnEBRkcmFERERlYAijGqFWq7Fs2bJyx02bNs3mIJaZCbz1lqUjhj26dDNjUVFpAIDRo0fD09MT7713E0uWhFi84zEpKcnsjOnprc1mvJo2vVqpjbyJiIgsYZ8wqhG2brpdkc25T58GhMXdgMz3eszN9QIAeHp6oqQkEAsWhNrcL8zajJejY6FBb7B/XtnK3ZZERETlYQijOqNNG0Bh9hOrLTcYnT5tWEOmYxjUTFm7Q7K42MniRuCcBSMiosrgciRVK30d2JUrV6r93M2bAx99BDzyCFBSUhqCAGDz5qHQ14QZBiMnJ6d/wpswCmJlzWCVdYdkaOi5Mrc0IiIishVDGFUbW+vAqiIhAYiNBc6cAby9NfDxuQtr17pg61YJWi2gUEjo27cv/vMf4/YQ8+f/jRdfDCqzX5i11hMKhcDQocZ3WloKX2zESkREFcEQRtWmIvVdVdG8ue4LaIrMTGDWrNI7JrVaCbNne2LgQAEfn1vIzs4GAPTv/z9oNOvlGayCgiZISekJb+8rcHK6jaysQCQnx1htPRES0gtFRXdZvSb2AyMioopiCCO7srRsqZ9RsqW9ha7ey/hYSQnw1lvfITT0nNHjSqVuFuubb+7HH390ha6gX5j8arn1BAMWERFVN4YwsqtNmzZV+rnTpk1DmzbeUCiMg5iDg7Ba75WZGWgQwGDhVx22niAioprGuyOpzioqKpKL9R0cdI85OACvv66xGp7On28J08BlCVtPEBFRTWMIoypTq9XIzs6ukTsibZGQAJw9C+zerfv1//4v2+rYFi3OQbf0aInucdPCfRbcExFRTeByJFXJnbgj0hb6Yv309HSsX7/e6JjhXY/u7tcQFnYG6emtYTgjJklaxMQkIygoC15euXj44cHcgJuIiGoUQxhVyZ26I9KSK1euGIUktVqNL774wmiM4YbbgBa64KUvxC8lBNCp01EolQWIj49H+/bt78h7ICKihovLkXRHaDTuyMgIsbpVUGVs2rQJy5Ytg1qtBmAeCE23H9L9uFsuxAdKO+grlcpqu0YiIiJrOBNGNc5wNsp082xbGC4nWiq4LyoqglqtNqtJ++WXPmbbD1nDQnwiIrrTGMKoRlnbDDss7IxN7R9sCXB5eXlmdWB796pw4ECPcs6u6w3GPSCJiMgeGMKoRlnbDFvfg6usWS5LAW7z5qHw88tB8+ald0Devn3b6HmZmYFIShoAy60oSoOXYSE+AxgREd1pDGFUYzQad1y/7gpdQbz5Ztims1y6UJQtBzJLAQ5QYOXKyVaXNA8e7P7PZt6WApgWkyevQHGxU5nBiy0piIjoTmAIoxphfFeigD6I6Zf+AJjNculnr/RjwsLOQJK0FmfSLC1p6mfOLN9vIjBgQLI8gzZy5Ej4+PiYjWJLCiIiulMYwqhKLM0amd+VKEGSBOLi1iM4OBMAcOxYRwuzXOZ7Nw4btvWfmS3rS5p6lmfOAECgT59f0KtXqvxIUFAQwxYREdkVQxhVibe3N6ZNm2bUHmLvXicsXmwemtzcbiA9vbXJDJnlLYSEUOD48XCEhx/H5MkrsHLlZKOAZXg3Y0GBLohlZQVaOaeEVq0y5O/Gjx/PAEZERHbHPmFUZd7e3ggMDERgYCBKSgKh1XpDMslBkqSFo2OR2QxZadNU062EBH74YRCWLEnEpUsBGDZsKyRJK5/L8G7GpKQkaDTuSE6OgaVQZxjY4uPjERYWVi3vm4iIqCo4E0bVZuVKYMoUQKsFJEn3JYRuU+233rqBZs3isGKF+RJkbOwOaLUKJCfHmAQ046XJxMQlaNnyPoSHOyEgIBRAKAoKCpCUlGR1KdI0sLERKxER1RYMYVQtMjNLAxhQGr6+/BJQqYDmzZsgM7MJFIrSMQDg4CAQHn4cAJCUFGPx3Pr6r9DQc8jL+xYpKeZjvLzUFor4tUhIWGHUzoKIiKi24HIkVYvTp43DFQCUlAC+vrqNtQHdrx99pAtngO7X11/XyO0orP04Gi4nWtv+SKksMFuyHD58KwMYERHVWpwJo2rRpg0szHIBrVsbj0tIAGJjgTNndMccHG7io4+szWQBQOlyYnnd8yMiDiEs7Axyc73YgJWIiGo9zoRRtbA0y/Xhh6WzYKZj77nH+JjpTJa+UF9f4G9t+yNLM2KhoefYiJWIiGo9zoRRtTGd5bIUwEwZhqKIiEPw88sxakehD1txcRvL3P6oPCNHjmRvMCIiqlUYwqhaNW9uW/jS0/cZy8rKwqZNm1Bc7GwxbAHCbLnSsFasPD4+PgxgRERUq3A5kmpcZiawe7fuV0NqtRrZ2dkoKipCTk4jZGSEwNGx0GBJUkf3vYSYmGSrvcLKw2VIIiKqbTgTRtUuM1N3t2SbNsAPP5S2rlAodHVjCQm6ALZs2TIAhvtMdoAkadGlyxEcOdJFLsAXAtiw4d8Gm3xnmRXeW9sLEuB+kEREVDsxhFG1Mm7YqiuuF0JXXa/VAo88ItCt2yW4uV0FYLng/siRLkhIWIG8PE9s2DAK+glbIXQNXRMTl5jNgLHei4iI6hqGMKo25g1bzbcQKimR8O672xEaeg6A5U23hVCguNgJbm43YWnj7k6dRkClKoSnpycAznQREVHdxJowspm12i5At7z4229qs4atpkyL6fX9wSyNsXbs6NFvsX79ejg5OSEwMJABjIiI6iSGMLLJypVAy5bAvffqfl25svSYvr4rJWW1WWgypVKlGi0lpqe3hjDau1sLlSoVgOUu+IbF+EVFRdXy3oiIiOyBy5FULtNlRl1tl64nWPPmpWFIH5pKa7wE9Btx//NMREWlyd/p68GM/y0gISWlF1JTVXJHfHbBJyKi+oghjMplbV/IM2d0v//tNydoNO5QKguMQlNWVhCSk2OMthnShyiNxh3HjnW0sE2RLrTpm7SGhZ2BUlnA8EVERPUOQxiVy9q+kPv3A/fdB2i13pCkRHnmSh+aQkPPoVOno0azWBqNO9LSopCSooJuBsx0tqxURTriExER1TUMYVQu/b6QjzyimwFzcAAWLABmzza8E9J45krPcBbLcAPuUhJKg5hxIKtIR3wiIqK6hoX5DVRZdzpaGpOQAJw9C6xfD6xdCzRpYr5EqZ+5ssS0H5gxXQDr0+eXSnfEJyIiqms4E9YAGTZUNexiX94YwLhA35ThzJVG447cXG94eamhVBZY7Adm8my0apWBHj0OsAifiIgaBIawBqa8Ox2tjZkyRfzze8v1W4YzV4bLjvrHw8LOmG3Abfp8ffDifpBERNQQMIQ1MGXd6agPYZbGWAtfeoMHb0PTpleRmRlotg3Rli1DkZi4xKR9hSGBmJjkMsOX6d6Q7JJPRER1XZ2rCSssLES3bt0gSRIOHz5sdOzIkSPo06cPGjdujODgYCxatMjs+V9//TXat2+Pxo0bo3Pnzvj++++NjgshMH/+fAQGBsLFxQUxMTE4ffq00Zjc3FyMGzcOHh4e8PT0REJCAq5du1bha7EH/Z2OhhwcgNatyx4DaK02YpUkgR07hmL16glYufJhi9sQ5eZ6ISLiEBITlyA6ei8A/bm0GDAgCb16pZZ53T4+PggMDJS/GMCIiKiuq3MhbNasWQgKCjJ7PD8/HwMHDkTLli1x4MABvPHGG3jhhRfwkb6YCUBKSgrGjh2LhIQEHDp0CCNGjMCIESNw9OhRecyiRYvwzjvvYPny5UhLS4ObmxtiY2Nx69Ytecy4ceNw7NgxJCUlYevWrfjll18wZcqUCl2LvejvdHRw0H3v4AB8+GHpLJjxGN0SpCRpMWBA8j+d7PXhSd/mXgshSmfKLO0XaVgrplQWYODAZEyfvgQTJqzC9OlLyg1gRERE9ZEkhPGmMbXZ9u3bMWPGDGzcuBEdO3bEoUOH0K1bNwDABx98gLlz5yInJ0euFZozZw6+/fZbnDx5EgAQHx+P69evY+vWrfI5e/bsiW7dumH58uUQQiAoKAhPPfUUnn76aQCARqOBv78/Vq1ahTFjxuDEiRMIDw/Hvn370KNHDwDAjh078H//93/IzMxEUFCQTddii/z8fCiVSmg0Gnh4eFT58zOUmalbgmzd2jiAGTpw4CLefXe7WdNVlSoV4eHHUFzshOvX3bBhw7+tvo5CITB06BZERByq0vVOmTIFgYGBVToHERHRnWDr3991Zibs4sWLePjhh/H555/D1dXV7Hhqair69u1rVKwdGxuLU6dO4erVq/KYmJgYo+fFxsYiNVU3E5ORkYGcnByjMUqlElFRUfKY1NRUeHp6ygEMAGJiYqBQKJCWlmbztdhb8+bAPfdYD2AAEBSkm8HSBzBAt7SYmqqCu/s1hIaeQ3DwhTL3ixw58usqBzCARfhERFT/1InCfCEEJk6ciEcffRQ9evTA2bNnzcbk5OQgNDTU6DF/f3/5WNOmTZGTkyM/ZjgmJydHHmf4PGtj/Pz8jI43atQIXl5eRmPKuxZLCgsLUVhYKH+fn59vcdydZKm1hGEne/P9IktJkhbBwWU0IrOCRfhERNQQ2HUmbM6cOZAkqcyvkydP4t1330VBQQGeeeYZe15ujVuwYAGUSqX8FRwcXKOvZ0vDVi8vtdlMl2kne0sF91VpthoUFMQifCIiqvfsOhP21FNPYeLEiWWOadWqFX788UekpqbC2dnZ6FiPHj0wbtw4rF69GgEBAbh48aLRcf33AQEB8q+Wxhge1z9mWH908eJFufYsICAAly5dMjrH7du3kZubW+7rGL6GJc888wxmzJghf5+fn19jQcyWhq2ArpA+JibZ6kbchuMGDkxGVFRalZqtjh8/nqGLiIgaBLuGMF9fX/j6+pY77p133sErr7wif5+VlYXY2FisW7cOUVFRAACVSoW5c+eiuLgYjo6OAICkpCS0a9dOXv5TqVTYtWsXEhMT5XMlJSVBpVIBAEJDQxEQEIBdu3bJoSs/Px9paWl47LHH5HPk5eXhwIEDiIyMBAD8+OOP0Gq1FboWS5ydnc2CZk2wpWEroFsGPHiwu0FNmBYxMckWa7wMO+SHhp6z+tr9+/c3+wwcHR2hVCq57EhERA1KnagJa9GihdH3TZo0AQCEhYWh+T+p4T//+Q9efPFFJCQkYPbs2Th69CiWLl2KxYsXy8978skn0a9fP7z11lsYMmQIvvrqK+zfv19uHSFJEhITE/HKK6+gTZs2CA0Nxbx58xAUFIQRI0YAADp06IBBgwbh4YcfxvLly1FcXIxp06ZhzJgxcusMW67Fnmxp2AoAN296Y+vWYQZtJxRITo5Bp05HjWa5LHXIt1aM36ZNG97lSEREhDoSwmyhVCqxc+dOTJ06FZGRkfDx8cH8+fON+ndFR0dj7dq1eO655/Dss8+iTZs2+Pbbb9GpUyd5zKxZs3D9+nVMmTIFeXl56N27N3bs2IHGjRvLY9asWYNp06bhvvvug0KhQFxcHN55550KXYs9tWkDSBJg2JxEoTBu2Arow5px3y/DonyNxh0XLgRj8+ah0JcX6jvkh4Wd4d6PREREZahTfcIamprqE5aZCbRoYRzCJAk4f954JiwzE2jZUhgFMUnSIjFxCdLTW1vZgkhnwoRVFpcl2e+LiIjqu3rXJ4yqz+nTxgEM0H1/5gygVquRnZ2N7OxsODhkY/78v+W7I/VLjQDKDGCmd08aYr8vIiIinXqzHEm20+8NaVgX5uAAFBfn4dFHfwQABAdfkJcTExPdje54zMgIKTOAWbp7cuTIkQgKCmLhPRER0T8Ywhog/d6QjzyiK8h3cADGjwdiY5UQQr8FkcDw4brthvRNWfX0vcMMg5gkaREXtwHBwZkWa8F8fHwYwIiIiAxwObIByswEWrUCUlN1zVpTU4HPPjPdfFvCli1DodG4mz1f3yXfdJmyU6cTVovxuQxJRERkjDNhDYylJq2tWpnXiAG6Ox0vXGgOpfKE2bGIiEMICztTbmPWgQMHom3btpwFIyIiMsGZsAbEWpPWJk10d0dasmHDKBw82N3iMaWyAKGh58psRRESEsIARkREZAFDWANirUnr9evAxx8DkmSpW4nC6rIkERERVR5DWAOivyvSkIMD4OamW5LcuvUK+vbdbfY8fYNWIiIiqj4MYQ2Ii4saixblwcFBN+Pl4CAwcuQN9OwpcO+9wLBhPnB2LpYL7vXK6vtFRERElcPC/AZCrVZj2bJlAIAnntD1/XJ0LMLKlZPluyK1WgnJyTGIiUmWN+221veLiIiIqoYhrIEoKiqSf6/v+2Wp6aoQCowZ0xqdOi0p985HIiIiqjyGsAYsKysQgABQemukg4NA165uuHChoFrCF/uDERERWcYQ1kBpNO5ITo6BYQADBJ54IhtOTuoqnTs+Ph5KpRJOTk5sT0FERGQFQ1gDlZvrbWH/Rwm5uTuxadM5m84xcuRI+Pj4GD3G4EVERGQbhrAGytr+jxW5C5IbchMREVUeQ1gDpd//ccuWoRW6C1I/+8UZLyIioqphCGvAbN3/0ZCPjw8CAwPvwNURERHVbwxhDYS1uxT17SqIiIjozmLH/AbC29sbAwcOtPdlEBER0T8YwhoItVqN4uJie18GERER/YPLkQ2A4ZZFREREVDtwJqwBMNyyqKrYAZ+IiKh6cCaMbBIfHw9fX1+2pSAiIqomDGFkVf/+/eHr6ws/Pz+GLyIiomrGEEZWtWnThj3BiIiIaghrwsgq1n8RERHVHIYwsig+Pp5LkERERDWIIYws8vX1tfclEBER1WusCWsAbF1WHD16NDw9Pbk5NxER0R3AENYAeHt7Y9q0aWX2C2PwIiIiurMYwhoIBiwiIqLahTVhRERERHbAEEZERERkBwxhRERERHbAEEZERERkBwxhRERERHbAEEZERERkBwxhRERERHbAEEZERERkBwxhRERERHbAjvm1mBACAJCfn2/nKyEiIiJb6f/e1v89bg1DWC1WUFAAAAgODrbzlRAREVFFFRQUQKlUWj0uifJiGtmNVqtFVlYW3N3dIUlSpc+Tn5+P4OBgXLhwAR4eHtV4hXUHPwMdfg78DAB+BgA/Az1+DjXzGQghUFBQgKCgICgU1iu/OBNWiykUCjRv3rzazufh4dFg/yfT42egw8+BnwHAzwDgZ6DHz6H6P4OyZsD0WJhPREREZAcMYURERER2wBDWADg7O+P555+Hs7OzvS/FbvgZ6PBz4GcA8DMA+Bno8XOw72fAwnwiIiIiO+BMGBEREZEdMIQRERER2QFDGBEREZEdMIQRERER2QFDWB31wQcfoEuXLnJzOZVKhe3bt8vHb926halTp8Lb2xtNmjRBXFwcLl68aHSO8+fPY8iQIXB1dYWfnx9mzpyJ27dv3+m3Um0WLlwISZKQmJgoP9YQPocXXngBkiQZfbVv314+3hA+AwD4+++/MX78eHh7e8PFxQWdO3fG/v375eNCCMyfPx+BgYFwcXFBTEwMTp8+bXSO3NxcjBs3Dh4eHvD09ERCQgKuXbt2p99KpYSEhJj9HEiShKlTpwJoGD8HJSUlmDdvHkJDQ+Hi4oKwsDC8/PLLRvv31fefA0C3VU5iYiJatmwJFxcXREdHY9++ffLx+vgZ/PLLLxg2bBiCgoIgSRK+/fZbo+PV9Z6PHDmCPn36oHHjxggODsaiRYuqduGC6qTNmzeLbdu2ib/++kucOnVKPPvss8LR0VEcPXpUCCHEo48+KoKDg8WuXbvE/v37Rc+ePUV0dLT8/Nu3b4tOnTqJmJgYcejQIfH9998LHx8f8cwzz9jrLVXJ77//LkJCQkSXLl3Ek08+KT/eED6H559/XnTs2FFkZ2fLX5cvX5aPN4TPIDc3V7Rs2VJMnDhRpKWlif/973/ihx9+EGfOnJHHLFy4UCiVSvHtt9+KP/74QwwfPlyEhoaKmzdvymMGDRokunbtKn777Tfx66+/itatW4uxY8fa4y1V2KVLl4x+BpKSkgQAsXv3biFEw/g5ePXVV4W3t7fYunWryMjIEF9//bVo0qSJWLp0qTymvv8cCCHE6NGjRXh4uPj555/F6dOnxfPPPy88PDxEZmamEKJ+fgbff/+9mDt3rti0aZMAIL755huj49XxnjUajfD39xfjxo0TR48eFV9++aVwcXERH374YaWvmyGsHmnatKlYsWKFyMvLE46OjuLrr7+Wj504cUIAEKmpqUII3Q+sQqEQOTk58pgPPvhAeHh4iMLCwjt+7VVRUFAg2rRpI5KSkkS/fv3kENZQPofnn39edO3a1eKxhvIZzJ49W/Tu3dvqca1WKwICAsQbb7whP5aXlyecnZ3Fl19+KYQQ4vjx4wKA2Ldvnzxm+/btQpIk8ffff9fcxdeQJ598UoSFhQmtVttgfg6GDBkiJk2aZPTYyJEjxbhx44QQDePn4MaNG8LBwUFs3brV6PGIiAgxd+7cBvEZmIaw6nrP77//vmjatKnR/w+zZ88W7dq1q/S1cjmyHigpKcFXX32F69evQ6VS4cCBAyguLkZMTIw8pn379mjRogVSU1MBAKmpqejcuTP8/f3lMbGxscjPz8exY8fu+HuoiqlTp2LIkCFG7xdAg/ocTp8+jaCgILRq1Qrjxo3D+fPnATScz2Dz5s3o0aMH/v3vf8PPzw/du3fHxx9/LB/PyMhATk6O0eegVCoRFRVl9Dl4enqiR48e8piYmBgoFAqkpaXduTdTDYqKivDFF19g0qRJkCSpwfwcREdHY9euXfjrr78AAH/88Qf27NmDwYMHA2gYPwe3b99GSUkJGjdubPS4i4sL9uzZ0yA+A1PV9Z5TU1PRt29fODk5yWNiY2Nx6tQpXL16tVLXxg2867A///wTKpUKt27dQpMmTfDNN98gPDwchw8fhpOTEzw9PY3G+/v7IycnBwCQk5Nj9Iet/rj+WF3x1Vdf4eDBg0b1Dno5OTkN4nOIiorCqlWr0K5dO2RnZ+PFF19Enz59cPTo0QbzGfzvf//DBx98gBkzZuDZZ5/Fvn378MQTT8DJyQkTJkyQ34el92n4Ofj5+Rkdb9SoEby8vOrM56D37bffIi8vDxMnTgTQcP5fmDNnDvLz89G+fXs4ODigpKQEr776KsaNGwcADeLnwN3dHSqVCi+//DI6dOgAf39/fPnll0hNTUXr1q0bxGdgqrrec05ODkJDQ83OoT/WtGnTCl8bQ1gd1q5dOxw+fBgajQYbNmzAhAkT8PPPP9v7su6YCxcu4Mknn0RSUpLZv/oaEv2/8gGgS5cuiIqKQsuWLbF+/Xq4uLjY8cruHK1Wix49euC1114DAHTv3h1Hjx7F8uXLMWHCBDtf3Z23cuVKDB48GEFBQfa+lDtq/fr1WLNmDdauXYuOHTvi8OHDSExMRFBQUIP6Ofj8888xadIkNGvWDA4ODoiIiMDYsWNx4MABe18ameByZB3m5OSE1q1bIzIyEgsWLEDXrl2xdOlSBAQEoKioCHl5eUbjL168iICAAABAQECA2Z1R+u/1Y2q7AwcO4NKlS4iIiECjRo3QqFEj/Pzzz3jnnXfQqFEj+Pv7N4jPwZSnpyfatm2LM2fONJifhcDAQISHhxs91qFDB3lZVv8+LL1Pw8/h0qVLRsdv376N3NzcOvM5AMC5c+eQnJyMyZMny481lJ+DmTNnYs6cORgzZgw6d+6MBx54ANOnT8eCBQsANJyfg7CwMPz888+4du0aLly4gN9//x3FxcVo1apVg/kMDFXXe66J/0cYwuoRrVaLwsJCREZGwtHREbt27ZKPnTp1CufPn4dKpQIAqFQq/Pnnn0Y/dElJSfDw8DD7y6y2uu+++/Dnn3/i8OHD8lePHj0wbtw4+fcN4XMwde3aNaSnpyMwMLDB/Cz06tULp06dMnrsr7/+QsuWLQEAoaGhCAgIMPoc8vPzkZaWZvQ55OXlGc0W/Pjjj9BqtYiKiroD76J6fPrpp/Dz88OQIUPkxxrKz8GNGzegUBj/tebg4ACtVgugYf0cAICbmxsCAwNx9epV/PDDD7j//vsb3GcAVN9/d5VKhV9++QXFxcXymKSkJLRr165SS5EA2KKirpozZ474+eefRUZGhjhy5IiYM2eOkCRJ7Ny5Uwihux29RYsW4scffxT79+8XKpVKqFQq+fn629EHDhwoDh8+LHbs2CF8fX3r1O3olhjeHSlEw/gcnnrqKfHTTz+JjIwMsXfvXhETEyN8fHzEpUuXhBAN4zP4/fffRaNGjcSrr74qTp8+LdasWSNcXV3FF198IY9ZuHCh8PT0FN999504cuSIuP/++y3eot69e3eRlpYm9uzZI9q0aVOrb8s3VVJSIlq0aCFmz55tdqwh/BxMmDBBNGvWTG5RsWnTJuHj4yNmzZolj2kIPwc7duwQ27dvF//73//Ezp07RdeuXUVUVJQoKioSQtTPz6CgoEAcOnRIHDp0SAAQb7/9tjh06JA4d+6cEKJ63nNeXp7w9/cXDzzwgDh69Kj46quvhKurK1tUNESTJk0SLVu2FE5OTsLX11fcd999cgATQoibN2+K//73v6Jp06bC1dVV/Otf/xLZ2dlG5zh79qwYPHiwcHFxET4+PuKpp54SxcXFd/qtVCvTENYQPof4+HgRGBgonJycRLNmzUR8fLxRf6yG8BkIIcSWLVtEp06dhLOzs2jfvr346KOPjI5rtVoxb9484e/vL5ydncV9990nTp06ZTRGrVaLsWPHiiZNmggPDw/x0EMPiYKCgjv5Nqrkhx9+EADM3pcQDePnID8/Xzz55JOiRYsWonHjxqJVq1Zi7ty5Ri0FGsLPwbp160SrVq2Ek5OTCAgIEFOnThV5eXny8fr4GezevVsAMPuaMGGCEKL63vMff/whevfuLZydnUWzZs3EwoULq3TdkhAGrYSJiIiI6I5gTRgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgR1Sv33HMPEhMT7X0ZNe6FF15At27d7H0ZRFQFDGFERLVIUVHRHX09IQRu3759R1+TiHQYwoio3pg4cSJ+/vlnLF26FJIkQZIknD17FkePHsXgwYPRpEkT+Pv744EHHsCVK1fk591zzz14/PHHkZiYiKZNm8Lf3x8ff/wxrl+/joceegju7u5o3bo1tm/fLj/np59+giRJ2LZtG7p06YLGjRujZ8+eOHr0qNE17dmzB3369IGLiwuCg4PxxBNP4Pr16/LxkJAQvPzyy3jwwQfh4eGBKVOmAABmz56Ntm3bwtXVFa1atcK8efNQXFwMAFi1ahVefPFF/PHHH/L7XLVqFc6ePQtJknD48GH5/Hl5eZAkCT/99JPRdW/fvh2RkZFwdnbGnj17oNVqsWDBAoSGhsLFxQVdu3bFhg0bqvs/EREZYAgjonpj6dKlUKlUePjhh5GdnY3s7Gy4u7vj3nvvRffu3bF//37s2LEDFy9exOjRo42eu3r1avj4+OD333/H448/jsceewz//ve/ER0djYMHD2LgwIF44IEHcOPGDaPnzZw5E2+99Rb27dsHX19fDBs2TA5L6enpGDRoEOLi4nDkyBGsW7cOe/bswbRp04zO8eabb6Jr1644dOgQ5s2bBwBwd3fHqlWrcPz4cSxduhQff/wxFi9eDACIj4/HU089hY4dO8rvMz4+vkKf1Zw5c7Bw4UKcOHECXbp0wYIFC/DZZ59h+fLlOHbsGKZPn47x48fj559/rtB5iagCqrT9NxFRLdOvXz/x5JNPyt+//PLLYuDAgUZjLly4IACIU6dOyc/p3bu3fPz27dvCzc1NPPDAA/Jj2dnZAoBITU0VQgixe/duAUB89dVX8hi1Wi1cXFzEunXrhBBCJCQkiClTphi99q+//ioUCoW4efOmEEKIli1bihEjRpT7vt544w0RGRkpf//888+Lrl27Go3JyMgQAMShQ4fkx65evSoAiN27dxtd97fffiuPuXXrlnB1dRUpKSlG50tISBBjx44t99qIqHIa2TMAEhHVtD/++AO7d+9GkyZNzI6lp6ejbdu2AIAuXbrIjzs4OMDb2xudO3eWH/P39wcAXLp0yegcKpVK/r2XlxfatWuHEydOyK995MgRrFmzRh4jhIBWq0VGRgY6dOgAAOjRo4fZta1btw7vvPMO0tPTce3aNdy+fRseHh4Vfv/WGL7mmTNncOPGDQwYMMBoTFFREbp3715tr0lExhjCiKheu3btGoYNG4bXX3/d7FhgYKD8e0dHR6NjkiQZPSZJEgBAq9VW6LUfeeQRPPHEE2bHWrRoIf/ezc3N6FhqairGjRuHF198EbGxsVAqlfjqq6/w1ltvlfl6CoWuwkQIIT+mXxo1Zfia165dAwBs27YNzZo1Mxrn7Oxc5msSUeUxhBFRveLk5ISSkhL5+4iICGzcuBEhISFo1Kj6/8j77bff5EB19epV/PXXX/IMV0REBI4fP47WrVtX6JwpKSlo2bIl5s6dKz927tw5ozGm7xMAfH19AQDZ2dnyDJZhkb414eHhcHZ2xvnz59GvX78KXSsRVR4L84moXgkJCUFaWhrOnj2LK1euYOrUqcjNzcXYsWOxb98+pKen44cffsBDDz1kFmIq46WXXsKuXbtw9OhRTJw4ET4+PhgxYgQA3R2OKSkpmDZtGg4fPozTp0/ju+++MyvMN9WmTRucP38eX331FdLT0/HOO+/gm2++MXufGRkZOHz4MK5cuYLCwkK4uLigZ8+ecsH9zz//jOeee67c9+Du7o6nn34a06dPx+rVq5Geno6DBw/i3XffxerVqyv92RBR2RjCiKheefrpp+Hg4IDw8HD4+vqiqKgIe/fuRUlJCQYOHIjOnTsjMTERnp6e8vJdVSxcuBBPPvkkIiMjkZOTgy1btsDJyQmArs7s559/xl9//YU+ffqge/fumD9/PoKCgso85/DhwzF9+nRMmzYN3bp1Q0pKinzXpF5cXBwGDRqE/v37w9fXF19++SUA4JNPPsHt27cRGRmJxMREvPLKKza9j5dffhnz5s3DggUL0KFDBwwaNAjbtm1DaGhoJT4VIrKFJAyLB4iIyCY//fQT+vfvj6tXr8LT09Pel0NEdRBnwoiIiIjsgCGMiIiIyA64HElERERkB5wJIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrKD/wcnjf4SfQ+W4gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUCUlEQVR4nO2deXxU1d3/PzOTxQSSCSQsCVvCUiyCVKKGQEWKyCJg/YFNKi6gKGpBRaggj48ouCCobFq3FsGqKFTQKqgFKloFpJVFRJEKD1FigsBgJoEACZn7+2O4kzuTu6/nznzfrxcvzcydO2fuPfecz/lux8NxHAeCIAiCIIgEwOt0AwiCIAiCIOyChA9BEARBEAkDCR+CIAiCIBIGEj4EQRAEQSQMJHwIgiAIgkgYSPgQBEEQBJEwkPAhCIIgCCJhIOFDEARBEETCQMKHIAiCIIiEgYQPQRAEgyxfvhwejwdlZWVON4Ug4goSPgSRoPznP//B5MmTccEFF6BZs2bo2LEjSkpK8N///rfJsQMHDoTH44HH44HX60VmZia6d++OG2+8ERs2bND0ve+99x4uv/xytG7dGunp6ejcuTNKSkrw4YcfmvXTmvD444/jnXfeafL6li1b8PDDD6Oqqsqy747l4YcfjlxLj8eD9PR09OjRA//7v/+L6upqU75jxYoVWLRokSnnIoh4g4QPQSQo8+bNw+rVq3HFFVdg8eLFmDhxIv71r3+hT58+2LNnT5Pj27dvj1dffRV//etf8eSTT+Lqq6/Gli1bMGTIEJSWlqK+vl7xO5966ilcffXV8Hg8mDlzJhYuXIgxY8bgu+++w5tvvmnFzwQgL3xmz55tq/Dhef755/Hqq69iwYIFOP/88/HYY49h2LBhMGP7RBI+BCFNktMNIAjCGaZOnYoVK1YgJSUl8lppaSl69eqFJ554Aq+99lrU8X6/HzfccEPUa0888QTuvvtuPPfcc8jPz8e8efMkv+/s2bN45JFHcOWVV2L9+vVN3j9y5IjBX8QOtbW1SE9Plz3m2muvRU5ODgDgjjvuwJgxY7BmzRp8/vnnKC4utqOZBJGQkMWHIBKUfv36RYkeAOjWrRsuuOAC7N27V9U5fD4flixZgh49euDZZ59FMBiUPPbYsWOorq5G//79Rd9v3bp11N+nT5/Gww8/jF/84hc477zzkJubi9GjR+PAgQORY5566in069cP2dnZSEtLQ2FhId56662o83g8Hpw8eRKvvPJKxL00fvx4PPzww7jvvvsAAAUFBZH3hDE1r732GgoLC5GWloaWLVvi97//PQ4dOhR1/oEDB6Jnz57Yvn07BgwYgPT0dPzP//yPqusnZNCgQQCAgwcPyh733HPP4YILLkBqairy8vIwadKkKIvVwIEDsW7dOnz//feR35Sfn6+5PQQRr5DFhyCICBzH4aeffsIFF1yg+jM+nw/XXXcdHnzwQXz22WcYMWKE6HGtW7dGWloa3nvvPdx1111o2bKl5DkbGhowcuRI/POf/8Tvf/973HPPPaipqcGGDRuwZ88edOnSBQCwePFiXH311bj++utRV1eHN998E7/73e+wdu3aSDteffVV3Hrrrbj00ksxceJEAECXLl3QrFkz/Pe//8Ubb7yBhQsXRqwvrVq1AgA89thjePDBB1FSUoJbb70VR48exTPPPIMBAwZg586dyMrKirQ3EAhg+PDh+P3vf48bbrgBbdq0UX39eHhBl52dLXnMww8/jNmzZ2Pw4MG48847sW/fPjz//PP4z3/+g82bNyM5ORkPPPAAgsEgysvLsXDhQgBA8+bNNbeHIOIWjiAI4hyvvvoqB4BbunRp1OuXX345d8EFF0h+7u233+YAcIsXL5Y9/6xZszgAXLNmzbjhw4dzjz32GLd9+/Ymx7388sscAG7BggVN3guFQpH/r62tjXqvrq6O69mzJzdo0KCo15s1a8aNGzeuybmefPJJDgB38ODBqNfLyso4n8/HPfbYY1Gvf/XVV1xSUlLU65dffjkHgHvhhRckf7eQhx56iAPA7du3jzt69Ch38OBB7sUXX+RSU1O5Nm3acCdPnuQ4juOWLVsW1bYjR45wKSkp3JAhQ7iGhobI+Z599lkOAPfyyy9HXhsxYgTXqVMnVe0hiESDXF0EQQAAvv32W0yaNAnFxcUYN26cps/yFoWamhrZ42bPno0VK1bgoosuwj/+8Q888MADKCwsRJ8+faLca6tXr0ZOTg7uuuuuJufweDyR/09LS4v8/88//4xgMIjLLrsMO3bs0NT+WNasWYNQKISSkhIcO3Ys8q9t27bo1q0bNm3aFHV8amoqbr75Zk3f0b17d7Rq1QoFBQW4/fbb0bVrV6xbt04yNmjjxo2oq6vDlClT4PU2Dt233XYbMjMzsW7dOu0/lCASEHJ1EQSBw4cPY8SIEfD7/Xjrrbfg8/k0ff7EiRMAgIyMDMVjr7vuOlx33XWorq7Gtm3bsHz5cqxYsQKjRo3Cnj17cN555+HAgQPo3r07kpLkh6i1a9fi0Ucfxa5du3DmzJnI60JxpIfvvvsOHMehW7duou8nJydH/d2uXbsm8VJKrF69GpmZmUhOTkb79u0j7jspvv/+ewBhwSQkJSUFnTt3jrxPEIQ8JHwIIsEJBoMYPnw4qqqq8OmnnyIvL0/zOfj0965du6r+TGZmJq688kpceeWVSE5OxiuvvIJt27bh8ssvV/X5Tz/9FFdffTUGDBiA5557Drm5uUhOTsayZcuwYsUKzb9BSCgUgsfjwQcffCAqAmNjZoSWJ7UMGDAgEldEEIR9kPAhiATm9OnTGDVqFP773/9i48aN6NGjh+ZzNDQ0YMWKFUhPT8evf/1rXe24+OKL8corr6CyshJAOPh427ZtqK+vb2Jd4Vm9ejXOO+88/OMf/0Bqamrk9WXLljU5VsoCJPV6ly5dwHEcCgoK8Itf/ELrz7GETp06AQD27duHzp07R16vq6vDwYMHMXjw4MhrRi1eBBHPUIwPQSQoDQ0NKC0txdatW/G3v/1NV+2YhoYG3H333di7dy/uvvtuZGZmSh5bW1uLrVu3ir73wQcfAGh044wZMwbHjh3Ds88+2+RY7lyBP5/PB4/Hg4aGhsh7ZWVlooUKmzVrJlqksFmzZgDQ5L3Ro0fD5/Nh9uzZTQoKchyHQCAg/iMtZPDgwUhJScGSJUui2rR06VIEg8GobLpmzZrJlhYgiESGLD4EkaBMmzYN7777LkaNGoXjx483KVgYW6wwGAxGjqmtrcX+/fuxZs0aHDhwAL///e/xyCOPyH5fbW0t+vXrh759+2LYsGHo0KEDqqqq8M477+DTTz/FNddcg4suuggAcNNNN+Gvf/0rpk6din//+9+47LLLcPLkSWzcuBF/+MMf8Nvf/hYjRozAggULMGzYMIwdOxZHjhzBn/70J3Tt2hW7d++O+u7CwkJs3LgRCxYsQF5eHgoKClBUVITCwkIAwAMPPIDf//73SE5OxqhRo9ClSxc8+uijmDlzJsrKynDNNdcgIyMDBw8exNtvv42JEyfij3/8o6Hrr5VWrVph5syZmD17NoYNG4arr74a+/btw3PPPYdLLrkk6n4VFhZi5cqVmDp1Ki655BI0b94co0aNsrW9BMEsTqaUEQThHHwattQ/uWObN2/OdevWjbvhhhu49evXq/q++vp67s9//jN3zTXXcJ06deJSU1O59PR07qKLLuKefPJJ7syZM1HH19bWcg888ABXUFDAJScnc23btuWuvfZa7sCBA5Fjli5dynXr1o1LTU3lzj//fG7ZsmWRdHEh3377LTdgwAAuLS2NAxCV2v7II49w7dq147xeb5PU9tWrV3O//vWvuWbNmnHNmjXjzj//fG7SpEncvn37oq6NXKp/LHz7jh49KntcbDo7z7PPPsudf/75XHJyMtemTRvuzjvv5H7++eeoY06cOMGNHTuWy8rK4gBQajtBCPBwnAkbwxAEQRAEQbgAivEhCIIgCCJhIOFDEARBEETCQMKHIAiCIIiEgYQPQRAEQRAJAwkfgiAIgiASBhI+BEEQBEEkDFTAMIZQKISKigpkZGRQ2XeCIAiCcAkcx6GmpgZ5eXnweqXtOiR8YqioqECHDh2cbgZBEARBEDo4dOgQ2rdvL/k+CZ8YMjIyAIQvnNy+QwRBEARBsEN1dTU6dOgQmcelIOETA+/eyszMJOFDEARBEC5DKUyFgpsJgiAIgkgYSPgQBEEQBJEwkPAhCIIgCCJhoBgfgiAIgjCBhoYG1NfXO92MuCU5ORk+n8/weUj4EARBEIQBOI7D4cOHUVVV5XRT4p6srCy0bdvWUJ09Ej4EQRAEYQBe9LRu3Rrp6elU/NYCOI5DbW0tjhw5AgDIzc3VfS4SPgRBEAShk4aGhojoyc7Odro5cU1aWhoA4MiRI2jdurVutxcFNxMEQRCETviYnvT0dIdbkhjw19lILBUJH4IgCIIwCLm37MGM60yuLhcQCARQV1cn+X5KSgqZWAmCIAhCBSR8GCcQCODZZ59VPG7y5MkkfgiCIAhCAXJ1MY6cpUfPcQRBEAQBAOPHj4fH44HH40FycjLatGmDK6+8Ei+//DJCoZDq8yxfvhxZWVnWNdRkyOJDEARBEA7hdCjDsGHDsGzZMjQ0NOCnn37Chx9+iHvuuQdvvfUW3n33XSQlxZ9McM0vmjt3LtasWYNvv/0WaWlp6NevH+bNm4fu3btHjjl9+jSmTZuGN998E2fOnMHQoUPx3HPPoU2bNg62nCAIgiCawkIoQ2pqKtq2bQsAaNeuHfr06YO+ffviiiuuwPLly3HrrbdiwYIFWLZsGf7v//4PLVu2xKhRozB//nw0b94cH3/8MW6++WYAjYHHDz30EB5++GG8+uqrWLx4Mfbt24dmzZph0KBBWLRoEVq3bm3Jb1GLa1xdn3zyCSZNmoTPP/8cGzZsQH19PYYMGYKTJ09Gjrn33nvx3nvv4W9/+xs++eQTVFRUYPTo0Q62miAIgiDEYTWUYdCgQejduzfWrFkDAPB6vViyZAm+/vprvPLKK/joo48wffp0AEC/fv2waNEiZGZmorKyEpWVlfjjH/8IIJxy/sgjj+DLL7/EO++8g7KyMowfP97W3yKGayw+H374YdTfy5cvR+vWrbF9+3YMGDAAwWAQS5cuxYoVKzBo0CAAwLJly/DLX/4Sn3/+Ofr27etEswmCIAjCdZx//vnYvXs3AGDKlCmR1/Pz8/Hoo4/ijjvuwHPPPYeUlBT4/X54PJ6I5Yjnlltuifx/586dsWTJElxyySU4ceIEmjdvbsvvEMM1Fp9YgsEgAKBly5YAgO3bt6O+vh6DBw+OHHP++eejY8eO2Lp1q+R5zpw5g+rq6qh/BEEQBJHIcBwXcV1t3LgRV1xxBdq1a4eMjAzceOONCAQCqK2tlT3H9u3bMWrUKHTs2BEZGRm4/PLLAQA//PCD5e2Xw5XCJxQKYcqUKejfvz969uwJILxXSkpKSpPI8jZt2uDw4cOS55o7dy78fn/kX4cOHaxsOkEQBEEwz969e1FQUICysjKMHDkSF154IVavXo3t27fjT3/6EwB5F9zJkycxdOhQZGZm4vXXX8d//vMfvP3224qfswPXuLqETJo0CXv27MFnn31m+FwzZ87E1KlTI39XV1czJX5SUlKi/g4GM3D8eDZatgzA76+RPM4oTmcaEARBEM7w0Ucf4auvvsK9996L7du3IxQK4emnn4bXG7aVrFq1Kur4lJQUNDQ0RL327bffIhAI4IknnojMqV988YU9P0AB1wmfyZMnY+3atfjXv/6F9u3bR15v27Yt6urqUFVVFWX1+emnn5r4HYWkpqYiNTXVyiYbIjs7G5MnT0ZdXR1WrEjDnDl+hEIeeL0c5s8PYuzYU6aLEKszDUhUEQRBsMGZM2dw+PDhqHT2uXPnYuTIkbjpppuwZ88e1NfX45lnnsGoUaOwefNmvPDCC1HnyM/Px4kTJ/DPf/4TvXv3Rnp6Ojp27IiUlBQ888wzuOOOO7Bnzx488sgjDv3KaFwjfDiOw1133YW3334bH3/8MQoKCqLeLywsRHJyMv75z39izJgxAIB9+/bhhx9+QHFxsRNNNo3s7GyUlwPTpwN8TalQyIMZM7JQWpoFoUYwQ1RYmWnAQvomQRAEEebDDz9Ebm4ukpKS0KJFC/Tu3RtLlizBuHHj4PV60bt3byxYsADz5s3DzJkzMWDAAMydOxc33XRT5Bz9+vXDHXfcgdLSUgQCgUg6+/Lly/E///M/WLJkCfr06YOnnnoKV199tYO/NoxrhM+kSZOwYsUK/P3vf0dGRkYkbsfv9yMtLQ1+vx8TJkzA1KlT0bJlS2RmZuKuu+5CcXFxXGR0ffddo+jhaWgA9u8HeMOXG0QFq+mbBEEQdqM2RMHsUAae5cuXY/ny5YrH3Xvvvbj33nujXrvxxhuj/n7++efx/PPPR7123XXX4brrrot6jeM4fY01EdcIH/6CDhw4MOr1ZcuWReoCLFy4EF6vF2PGjIkqYBgPdOsGeL3R4sfnA7p2bfybRAVBEIR7EIYySEGuf/NxjfBRoxLPO+88/OlPf4pEnMcT7dsDL70E3H572NLj8wFPP30CPl8NKivDxxw7dszZRhIEQRCaIFFjP64RPgQwYQIwdGjYvZWd/TPWrFmCl15yulUEQRAE4R5I+LiM9u3D/yorT9v2nVIp9ARBEAThNkj4xDFmCJYdOy7Ce++NBMd54fGEMGrUWvTps5OpNhIEQRCEWkj4xClGBAufQRAMZkTOAQAc58V7741Ely774ffXGM40sFpUqYFqChEEQSQWJHziBKHlBICsYFGCzzTYtAlYuDB6VxOO86J//3EYOFBfUJ5aUVVbW4tKPmpb4jxGiycGg0GsXLlS8TNq0v9JQBEEQbgDEj6MIzWhCjO4Yi0nxcVbI4KCh+O8OH68pWpLTXZ2Nvr2FU+hLyrKht45XI2o+tWvqvDaa68pnktrPSK1dY5iUUr/d0P9JIIgCCIMCR8b0GsNUDOhillOtmwphscTihI/Ph+Hu+4ajvz8JNWTr1gK/YsvNhZM1IuSqPL5rKlHZFX9IqqfRBAE4R5I+FiMEWuAmony+PHsJtYdwIvi4s3YurUYHOc9J1g8KCxso6XpAKJT6Lt2NS56eORElYyHyxGOHTsmK06pfhJBEERTPv74Y/zmN7/Bzz//HLWHphz5+fmYMmUKpkyZYlm7YmdMwmTMtAYEgxk4eDAfwWBG5LWWLQPweKL3svB4Qigq2oYpUxbhnXeCKCsLCxi9tG8PDBwIpKUFUFlZKfkvEAhoOu+ECUBZGbBpEwy30UrWrFmDZ599tsnv40XtmjVrHGoZQRCEfsaPHw+Px4M77rijyXuTJk2Cx+OJ7IwQT5DFx2b0pm9LZUD5/TUYNWpt5D2fj8O8edUYO/a6c1YKvynttiqOha9LJIddKe9K3xMrTsl1RRCE2+nQoQPefPNNLFy4EGlpaQCA06dPY8WKFejYsaPDrbMGEj42ojd9WykDqk+fnejSZT/69x+HoqJstG+fBSDL1LY7FcdiZcq7UOgcONDV8dR6giAIu+nTpw8OHDiANWvW4PrrrwcQtnJ37NgRBQUFkePOnDmD++67D2+++Saqq6tx8cUXY+HChbjkkksix7z//vuYMmUKDh06hL59+2LcuHFNvu+zzz7DzJkz8cUXXyAnJwf/7//9P8ydOxfNmjWz/seeg1xdNiElXoRuKynE4ng4zotDhxpNJX5/Dfr1qzMtBkcJMbebFd+h95opsWPHRVi0aApeeWUcFi6cgnffHaX6ewKBsMtPKrbHjmtDEET8UV4edv2Xl9v7vbfccguWLVsW+fvll1/GzTffHHXM9OnTsXr1arzyyivYsWMHunbtiqFDh+L48eMAgEOHDmH06NEYNWoUdu3ahVtvvRX3339/1DkOHDiAYcOGYcyYMdi9ezdWrlyJzz77DJMnT7b+Rwogi49NSIkXPsVcDj6OJ/bzb711Lerq7LdM2FV40Mg1kyNWUInpf15Y+v17o15XcvmxUJTRDVDdI4KIZulSYOLEcKar1xtO/rAr7vGGG27AzJkz8f333wMANm/ejDfffBMff/wxAODkyZN4/vnnsXz5cgwfPhwA8Oc//xkbNmzA0qVLcd999+H5559Hly5d8PTTTwMAunfvjq+++grz5s2LfM/cuXNx/fXXRwKXu3XrhiVLluDyyy/H888/j/POO8+W30vCxybExIvHE0LLlscVPxsbx9NItMuLt0BYOWkoud3MgK8zpHTNtFaO5o8Xz4RripiwlJusy8tzLa10zTJahAzVPSKIaMrLG0UPEP7v7beHM2rtsOK3atUKI0aMwPLly8FxHEaMGIGcnJzI+wcOHEB9fT369+8feS05ORmXXnop9u4NLw737t2LoqKiqPMWFxdH/f3ll19i9+7deP311yOvcRyHUCiEgwcP4pe//KUVP68JJHxsIla88NYAObEgnCj79NmJlJQzeOut30Udw3FefP11D1xwwTdR2UVWTRpWWWGE8EUO6+rq0K5dNWbM8KOhwRMVuF1bW4u6ujrJ6s5i4o8/b1nZWbz6KodQyCN4NwSPB7LCUo4dOy7Cu++ORKz1iOO86NnzGvz2t/64ncS1Chmqe0QQ0Xz3XXRNMyBc5mP/fnuEDxB2d/Eupz/96U+WfMeJEydw++234+67727ynp2B1CR8LCZWvHTpsh/Hj7dEy5bHoyZTMWsAP1FXVFRgzZo16NDhkIjLi8P69cOwYcOQKLeKVZOGEcuVFniRMG0aUFrK1xHyoH37LAQCDXjppZcUzyEm/rKzw1Wno2sIcRgxYq2ksFQSdbwVTMxl5vGE0Lt3s7gVPQAVcCQIo3TrJl7QtWtX+9owbNgw1NXVwePxYOjQoVHvdenSBSkpKdi8eTM6deoEAKivr8d//vOfiNvql7/8Jd59992oz33++edRf/fp0wfffPMNutr5w0Qg4WMxQuuFFHKuKeEKuanLiwMQtlqocTmZEVehx3JllNiUdzMmWmFhxuzsKqxZsxPBYIaiay32nMFgBr7++gJR1xl/bfLz+zd5L1Ghgo8E0RSrquRrwefzRdxWPp8v6r1mzZrhzjvvxH333YeWLVuiY8eOmD9/PmprazHhXCDSHXfcgaeffhr33Xcfbr31Vmzfvh3Lly+POs+MGTPQt29fTJ48GbfeeiuaNWuGb775Bhs2bNC1nZBeSPjYgNHVvpjV6Ouve2D9+mFRx8lZJ2LdEVI1a6RcZEYsV1ajt85Po6Bqgbw8da41qT3ShCIUADweDmvXBlBU1N911h6rAo+rqqqwatUqI00jiLjFqir5WsjMzJR874knnkAoFMKNN96ImpoaXHzxxfjHP/6BFi1aAAi7qlavXo17770XzzzzDC699FI8/vjjuOWWWyLnuPDCC/HJJ5/ggQcewGWXXQaO49ClSxeUlpZa/tuEkPBxAUKr0bFjx7BmzRpccME32LBhiGqXk3Aik8s8kprwjFqurMKsLCqtrrWmmWEe8OLH4wnhySercdVVrYz9OAfQEq8DoIkYlOPo0aOG2kYQ8Y6agq5mEmuRieWdd96J/P95552HJUuWYMmSJZLHjxw5EiNHjox6LTYt/pJLLsH69eslz1FWVibbJjMg4eMSYgWFXpeTkaws1iwXVmWYqXGtiWeGeTB06Ifo0eMbjB17HcwuIqkXLRYctW7Eo0ePYuXKlZrasWnTJtHX7arMTRAEAZDwcTVyLicp7MjKsgunfkswmIGTJ9MBhCAMaPZ4QujR4xumUtetSh2vr6+XfE+LkKG6RwRB2A0JH5fj99domuTtysqyAyd+S9O4nrD48XhCeOihCkyceB1TxffszrjSImSULHZ2iUcqpkgQiQUJH5ehdjKQOs6JrCyrUPNb9ExqsZ/hY1jE4no8Hg5jxqxChw7lmDjxOuTm5pr3AzUi9luNZlBpsd5odT1KWezsrHtExRQJIvEg4eMyzAgy5l1k4b2+POjQ4VDkPX6irKjw4uDBJBQUnEVeXkjVeZUoLw8X6urWzVgAn9oMs0OHDuGDDz6I/K0mk01uIpSaqJs1q3VcOKqdwKWuAX/fpbLW1FhvxNL65VyPyclnRC12dtY9SvQaRGTtMg+O45xuQkJgxnUm4eNCzBiIpHYjX7NmjeyEp3Xlyw+sK1akYfp0P0IhD7xeDvPnBzF27CnFgVU4MAvFWElJCaqqqrB+/fqIu4/fHJSf1IWiR20mm1idHl4osOwmVDMxy10DYdVvQJv1Rj6tP4Tk5Lqo+yL1Gb5NeXmXgLAesnaZQ3JyMgCgtrYWaWlpDrcm/qmtrQXQeN31QMInQRBaSeQmNQCyE56WlS8/sAaDGVi0aAo4LjwhhkIe3HdfJn788WX4/TWSA6twYG46aW+Lsj7ITep6s7/EzulWN6FZbqhY641SWv+FF+7G0qW3Rl2vLl32i3wmhAkT/oL27SuRkkIFH+0g0a1dZuHz+ZCVlYUjR44AANLT0+HxeBQ+RWiF4zjU1tbiyJEjyMrKalJkUQskfOIQMZdSdnY2SkpKsGrVKtlJDfCYlinFD5hKk6jUwMq/rjRpK72vJ/tL6pxTpizClCmLNBVvdMKdEOvS0noNlKxbSUnhoUMurb9Dhx8ioof/vvfeG4nhw98X+YwXxcWD43pPM7WQ+8l9tG3bFgAi4oewjqysrMj11gsJH8YwGgezdGnjLr9eb7gM+rmK4sjKygIgP6nV1DQ33Z1j1EWkNGkrva/n++XOWVDwPW6++cqo3YulJiMn3AlilqouXfZLXgOxuB+/vwYPPVSBRx5p16SKtVDgSV3bHj2+kbyG778/okmbWdnTzOmaQnb1F9o6xFw8Hg9yc3PRunVr2VIPhDGSk5MNWXp4SPgwhJxoUSIQCKCs7CwmTmwd2XU8FAJuv51Dbu4x1NWloEOHxkmouHgrtm4tjpochXE/sXEXRiYBo5lkSsJF6X093690zpycHFUZXHIxQ8LvN8udIGepErsGUrFeADBxog8TJniiqlgLizLyQfZi23yMGHEVKit9ePVVLtIfw0THAIVhI7aHhZpCdrif1IorQjs+n8+UiZmwFhI+jFBe3ih6AF60hPduUbL88APZwYP5CIXGRb3X0ODBiBHZALzwejPRq9dvsXv3hecmxhD69duMoqJtAHAuDkc87kKsvVosU3qKLfIoCRc1wkbr91uR9m/HxCpnqerTZycmT+6GQ4dSsWfPOwCi73lTF2IQfj/QvXv4PJUx3SAlJQW5ubmi23wAWTj/fH7jRQ4NDeH+JLaD/bXXvoWePfcCsFb4yKX7W1UFnEWkRJPT1i4rYdV9yGq74h0SPgwQCATw+edAKBTdwRsagG3bAkhLk8/k4h8cMStFeIUd/jsU8uDLL3ujccXtxdatxSgq2iYRq+FFfX3TuBW9limtxRaFKAkXNcJG6/cbEWux2DWxKlmqevbMQs+ewKFDNTh4MF/WRahmSwre5SK1x9CECcCll1bh6af/juTkuqiYH75tHTqUAwhvYmrVQK9k5VByl7JSidsqWLB2WQWr2WustisRIOHjMMLMJ49nSpNJYfPmV7Bnj3TmkxAxK4VY4KkQfnBXGwezZ08VJk5s28Sd9qtfHUF+fpKlD6iScNErrISTWuwEJ3VOrROh1dtr8O1RslSlpKTICmWt8VxqXC69erXA00+PwtGjR3HkiHTb+J3brRjoldopdi18Pg533TXc8n4thx1WGDNEOcuWC1az11htVyJAwsdh+E6tNGGp7fxCK4XYCluszgpvzVDj2nn99X8jFPpl1GsNDR4888wHKCj4nsnVSWlpKfx+v+h7sQOyVbvQW10DKLbds2YdRVlZEvLzz56Lnbkk0u5AIABAmzvP6AScnZ2Nuro6VVY0JwZ6/lqsWzfqXKwS8OKLHhQWtrG9LTx2WWEOHepgyNpFlgvCbZDwYQizXCtCK0XsxHbhhbsjMT6xE53c9//mN7/Bpk2bFCdw4aRldHsNtZ8vKSmJZKyJnUPrYGvF4GzHViHCdufmAoWF0scpiaSqqqqIBUZuAuZjZLRcZ6mCk3YiJuT69NmJWbOKUFPTBl27Gqsubkb77HCN8vc2Fo8nhOuvL0KfPqMU76vbLBesxjKx1C6WLXhmQMKHScwrfiUmZgYN+khSXEm5dlq0aBF5X+0ELmY9id0KQ+4Bssr64hRmxgwZRa1IUpqAhRWftazonYwpkfvuvLwQHNxuLYLVrlFArPgkT/ia9Ox5iWueLbWwGsukt11WCJREsOCR8GEIqx7KWDFjJMgY0DaBCx8MPUHRbn2weMyIGVIa3Gpra5Geni7bBr3XUWoC/uabHujR4xtdKflOZlA5nb2l5l4Cyq5RM4KtxRMajGfZKe0HF4tc/xRer6qqKpw9ezbq/eTk5IgbW6mfO33vzW6XVQLF7hIcTkDChxGseChjO6yZplQt4kmuxpAdQdFWILWHWOyGrkatVrGDm9I9VLMRqxakMgX/8Y9hWL9+iC5xboc1w87vVrvqVjtR3XDDDUhPTxetj8QXkDTyvPCiSUpc8Vl2esSVlv3ghIj1Tz31huT6uZP9Tg697bJKoFRVVUX+n1ULmVFI+DCCkYdSbICK7bBisT12dGClGkMsB0VLIb+HWNMNXY38LuGgpTQIqd2IVQuxrk1hcLxece7kZq9mf7eWVbfae5Ceni5bH8koQjFuprgysngTuzZ6+mxdXV0TIcpbmozee6viXszok2YJlEAgEIntY9VCZgYkfBjBSOePtSrs2VOF2bO7R3VYYf0ePR2Y35tJK2pTp1k0m0oVaVS7h5iZv8nofmVaEYpp3rX5zTc98I9/DIs6Ts+K2YxAb62TkJZ0fy0YCexVY4GVqo8Ui9brwf+/meJKzeJNjRtMSkAIP8t/X+x5Dh06hA8++EC0fUbuvRVuJbP6pJnPvrAPbdtWxKSFzAxI+DgM79NX6vz8cVIIH7bNm1NU1+8RduDRo0dH7T/FI6z9ohc7sprMgJ9AVqxIw/TpfoRCHni9HObPD2Ls2FNRg5CdpnOj+5VpRSimjx07hjVr1qBHj2+wfv0Q3StTMTGlZbNXHj2TkJZ0fyOodSeb6UIwOimrFVdKSC1ukpPrcPBgPioqcrFx42BVbrDJkydH/S28XmGrY7gwa+x5YkVP7P3g+13Pntegd+9mqu+9FW4ls/qkFeNQMJiBLVuKm7xul2XWakj4OIwwKFVuMpALXhUSCASQnX0cHk8L2fo9AIeKijwUFHwfeSUvL0821kQNcpMWS1lNYgiLSYa3cuDjkTy4775M/Pjjy/D7a1BSUgLAXpeN0f3K9BDbF4yKV7Oy9PROQmoz2fSiVsyYbZ1zOp1cznJx4YW7BbXEmrpJW7c+jPr6VNl71zT7zNPkPGLXbvPmYlGh5ffXYPjwNOTm6qvRZKZoNdIn+VgcK57948ezIba9THHxVubGbT2Q8GEMIxlXwpXfqFHRD+cvf7kX33zTA43ix4ONGwejZ889mDjxKrRq1Up2wjFr0jKaUWYl/G9TWkHxmSV2WrGUvsuuthgVr2bHcbESfKlFzFhtKbSrHozQvVZaWor6+nqMHg3ceOO/sXbttyIFVJtanfn35e6dVPaZ8Dyx127z5mJs2HAljMajxcJK3IswFsfvr8HgwRubiDwj7RFPaghF9nV0OyR84gihKImdoI4fz8Y331wQdXzjgOFXNSG5JfjYKFpWUGqEgNYNXaUwY78yPVi1jYdRWJmEAG1ixsgKXW6jVcA+IajkXisogOhecNFwqu6d+CTcSOy1CwYzsGHDYKhx72uFlcyw2KQHXvQAIQwevNHwPVezkHLz/nUkfOKY2AnKqUwaPZglFvSg1XoiJQSOHTsmGyukR0gqWcyssKixWkiSlUkI0CZm9Frn5Esb2CsE1bgbpTdN9gAIIdaVInXvxK4XxwHCGB/hZ6TcNGaMd05mJArh3VxN3YDeiCVfb8A+j9xCqrS01NULYRI+CYLcYFtVVYVcC8vVSpneY7M0ePTu/m4mZlhPli3bIBsrNHnyZJw6lS0r8MxaVRk9j5ODXGzNpF27TiEYzGBmEgK0r5D1BHcrlTZo0eJnR4SglJVJ7JoMHrwReXkVovsIxt47uesFQPLZlBJcgwdvNKV+mdNJGkI3l1LmlVGBIrWQktr70C2Q8EkgpAbbVatWWVZHZ9UqPlA4elCMHSw7darFPfeELT286AH4QofA0KHOWH7EHvrk5GRVn1eySCxf7sP06fICT421xcrKzU4jXjOpDTyeKRg1aq3jk5AWMWOW5UzKsjNhwl9sF4JKVia5a6J072Kvl1Ll5mAwiJUrVzYRJ0AIV165Ef37bzXlNzudpCEsp6GUeaVVoOjZX9FJ67xeSPgkGFKTuRUZH+XlwNSpzc+ZpcOD4rp1o3D77cWYMycnYgnhOC+mTWuOMWPCDxAvengaGsJ1Rlh5qPx+v+wExqd/y1kkgsEMzJnjjxF44pWsjYqW8nJg0yZ3DUw8SjWTpkxZhClTFjk2CWkVM2YIUClBXV+fYrsQVBL3sSUy+GcDUCcgorOe1Fullc6t1QJqdZyb2krwQqzIvNLan5Ws86yKIhI+DiP1oMS6h9wYSCYuYjzYt6+VqLjZvj2I9u1Pw+tt3NoCAHw+DhkZRxAIsLO1hZp2yJnFw5Wso4MvzaxkraYekZ7z6xmgzUBugi0o+N72YGsnd6+WE9QFBd/rro9kdlsAICcnJ0qwWCkg1J77hhtu0HxvrIxz01oJnsfMzKtogaL8G9RsQ/TOO9mOhyxIQcLHYcQeqBUr0s5ZA8KT1YIFJ5Gd3dzBVmonEAggM/NsExHj9XJo02Y/vN6uTV7/5JOl8PtrMHJk9MM/YsRarF0r/vCbiR4zrxJSK08rK1mrrUek9VrqHaDNQOl6xVoWrBQeavdPs6qvKsWZ3HzzlU0KkVp1PbTGvFghIBonbWuD8K3qT3orwZsVb6Q1plLNNkQtWx7H4sX3Mrs3IwkfBhB2gvJyROI+gPBkxbuBlEyFrFiFhBNDrIgZOXItvvtup+jr/AMrZ6a2cmsLq1Z1YitPK4Mk1dYj0notndiqg0fpesVaFqxE7f5pZlwHoWVpz54qHDyYj5YtA7LPiJ3XAtAe82LGpCdt0fRh7Fh3xrXpyVI04tLTu3m0mm2Ijh/PttSibRQSPoxhJMZFbOIuKyvD+vXrLWipNHL1hNSIG8C5Qof8w2iHb9rqIEm9WU9Kv92pNHKng0pjsTp9XNzC9ssmmVNOYNRlZcRlapVF02n0Pq9S114uo+urr37G00+vxcmT6QiFfhf1nlqBorQYYXlvRhI+NqF2Iu3WLWxuFIofnw/o2lXd97D4oEunRLJZxdnOdHorr4Eeq5Ka3+5kGrmZ18uouLVaAKq1sMVih+XXiHXUqMvUKoum05htBZbK6Ao/41kIhcbB4wkhtqaSFoEitRhhIe1fDhI+NqBlIm3fPvz+7beHLT0+H/Dii2xFxMczZqTTs+JyBNRbSdSYvXlYH9TkMDPo2y4BqCVzyk4Xj97vMctlaub1NyKCzbQOq3le9cYiij3jjQUhw+JHz7MstRhhzUIrhISPxWiZSPlB+aqrgG3bvIKdekOorNQ3qFkRsBuvBAIBfP45EApFX+OGBmDbtgDS0tQN9nKrYWE6r10oWUnUBCsWFHyP0tLSyOt2DWpm9l+zXSR2CUCtmVNuwajFzOj1NyKCrcqa5H+X3G/QY22Te8Y5zotrr12FZs1qTX+WWbXqk/CxGLUxO1J73+zZE/23Vr81q9sNsIZwUvR4pjSZZDZvfgV79qifFN10PdUEKwJAfX191OfsGNTM7L96XCRisSh+f1XkfTsEoJstbFIEgxk4eTLdsMVG7/U3IoJZiDFSqvgeW7tL6Rnv0KHc1f1JKyR8LEZtzE5Z2dlIxoZcB9Tjt3bLJGzXrtJCeDN1Zqa6HdeNxg2wbIFjdYK1OzWeRzoWpQUGDy6OVAK2QwCy7DZQCy8iX3qpIVLNHQhF7oXe/qbn+huJEzI7xkjrmKAUOiH2/lVXhd9j9Rm3GxI+FhIIBODz1WH+/DTMmOFHQ4MHPh+HefOC8PlOIRAIr1TDHbV1JNjMqh2VWUbtrtJmCoLoAaI1Ro68CH367LR0krHDAmdEXMn99mPHzlMlzll3m6od/OViUTZsuBIAZLdB0HId1MSJsOo2UENTK0njppocF8K1164ybHXQs3AyEidkVoyRljFBKXRC6v1t2xrbaHR8Y/35VgMJH4uIdV3dfXdGpKOdOFGDl14Kvz569N2YOLFFVLBZbMaG1GaerKL1wRCbWNatG4VZs4oi6a38ec1a/TcdIDxR193KScZqC5xRcSX223fsuAhz5nRFKNQtKpZBy3n1YkVpAbHBn3/OKiq8EIbMiK3sAQ82bGjcBbukpARZWVmRd9VcB6U4kWAwaM6PZQA5KwngRbNmtYaeN7GFkxq0WkDKy4HPP09BMJhhqvVEzTOjFIN45kwVdu7MEn3/yy9PRr1mZHyTG1/4/dKUcFo8kfCxCLEqm2Idbd++UJMYIKG5NPaBbteuGtOmWdlyadROQHIPBr/RoHBzwc2bU7BwYfRg2NDgQU1NG1gVsykWe2VHLRq7MFN8NArTxliGGTOyUFqaZXm2oZWlBYTPpPA5e/VVDvPnV2HIkGMApLYGAAAvtm0rwpAhG+HxeDQFGKuNE1GD05OIFvRYSWLHndjfK5Uddu+9/4eUlIDis6DWAtLYF7Mjm+RqEdBGUBuDKPX+nj3vQM+G6vy1jr0HUtc0NzfXFTGlJHwcpqDgbJMYIOFGlrEP9IwZfpSW2p/ernUCknswYunb11jtIj2IxV7ZVYvGbYit0rVmumlFb1VZPcQ+Z43iYwOA8CT2619/ik8/HQAguhrt1q3FKCrahpUrV2oKZlUbJxJrSYqFhUlEC1qsJCkpKRLjTnhhdeTIEaxatUryGi5f/pnqKsFyFhCpNPBYCzHQVECbJdT5/qJ0/YxaocRKI5g19rMECR+HycsLnavbw6GhwdNkI8umE47H9p3KzahtI4XaOCgzEftOr5eL2jaDaERqla41000tatPrzfpeqYlz27YibN1aHJlAOnUqw/ffFzQ5zkjBPCULSFZWlitT1eWQs7DwE29tbe05scFJCl9eEFq5711VVRVWrVolmQYutBCLCWixcdKo61bJQmUkhie2NIKVY7+TkPBxmGPHjuGqq4APPqjC669vi+qoyclnmjzQPh+Hrl09UqezBCPbaMihNg7KzIlV7jsTVfQouUqsznSLRW16vdbvlfqdUrtc86IHCE9yP/zQCXJVbvWQqFk2UhaWnJwcpKSk4KWXXlIUviUlJZFzWXUNz54NZ3uqcdGpsYya5bpVitHRG8MT+4xYNfY7DQkfhxEWsysQLCaFJlOAAxC2Bj39dC3at7d3p3aj22hIIZy4pDIygsEMbNoUdoeZ8aCpjb2Swk3xFGqRiskSFlt0Ip3a7Akt9nfyv0/se4qLt2LLlv5Rn+c4L/r12xxlBVLTHqUVfjykqpuJWuHLixJA+zVU+xwnJycDUNcXlSyjjYks4fecsJ4IXVmxiLlNrRr7nYaED4PEmkzDoofDm29+j8suOw+VlTW2+vat3kZDKpWdf33hQq/le2bFIjZAuC2eQgtqKxXbPSmbLQqkfmfs9wCIsvgA4UmsqGgbioq2qW6P2hW+m1PVrUKr8NVyDdVmPqrZcFlte8USWey2nmip8u1EGIJdkPBhEPGYAw/ef/8T7N37feQ1O3YftmIbDSFSGRmtWx+O8Zfbuzpy6zYA8YjVokBobSwoaHy+lIJI5VAKzk5Pr7Ls97CIltpSWsSGEdSMW5WVlVF/K/VFufb6/Ufg9baM9AcgHLqQkXEEgYB5wfpm4EQYgp3EpfD505/+hCeffBKHDx9G79698cwzz+DSSy+1tQ1GXCJqUz6t3n3Yqm00hEgFlv7wQ0dRf7nbfcsEW8gVzjS6HYJSjEoioaW2lFaxwRpS7d2yZRVGjozubyNGrMXatfK70TuB2pAAq+cgq4g74bNy5UpMnToVL7zwAoqKirBo0SIMHToU+/btQ+vWrW1rh9KDLrdZJSsBj2o7tZHOLyXyOnb8QSSwO+xbtqKgHZFYBAIB7NlTJbs7OGBsOwQzKvtKLaDMeAbsfo5YmdSdRE5MK4lCNShVr47HGEU9xJ3wWbBgAW677TbcfPPNAIAXXngB69atw8svv4z777/f1rZoedBjO2yiBDxKibz27SujXud9yytXQlDl1t64HyI+EFpkOO6XUe8ZKWIZO6koLWBKS0tx8mQLHDyYhIKCs1FVyvnziY0hZmQGWVkY0i74wGMlWJvs9YhpNRaz5ct9WLy4VZMK4DzxHKOolbgSPnV1ddi+fTtmzpwZec3r9WLw4MHYulV8T50zZ87gzJkzkb+rq6stb2csUuZ2t5l4tVJVVQVAehUU+/qPPyKmym181JQwgpWrdqc2VLX6e82wyMQGv0tNKnILmHXr2mL69CzV4kNNUUelXbvtLAxpNX6/n5l97+xA7neUlwP/+7/RW/DYVV3djcSV8Dl27BgaGhrQpk2bqNfbtGmDb7/9VvQzc+fOxezZs+1onihSwb1Cc7uTWLVjeiAQwKpVqyJ/S4k84eviBR21xf2wvDu6Vqxetduxoarc95aVndVsDdGCEZdyXl6e6u8X69vBYAbmzPGrTm1WEzf0888tsXbtKElrqN2FIfWi5RllYd87vsihk8RrvR2riCvho4eZM2di6tSpkb+rq6vRoUMHy7+Xf7iVStY7yYoVaZGdlM3eNd6sKrdaa0o4NZmbjdUVVRstSdmODJzvvJNtiytGTRXhWMzoH8ePZ0dl9wDy24AoWamSk+ti9lNrasWxqjCk2bD2jCp9DwuLpHitt2MVcSV8cnJy4PP58NNPP0W9/tNPP6Ft27ain0lNTUVqaqodzYtCuKp99VUuahBkYc+o8vJwLA0/kLJgiYpdoeutJ8SaqNHqrlLapdno/llOx3/YXSZfroqwnpIGFRVeHDyYL2sl1bsNiJSVqr4+VXR7G6EVR+kcTi+0hLD2jPKIPatGElnMwupaa0ZhLSElroRPSkoKCgsL8c9//hPXXHMNACAUCuGf//xn1IPPCtnZ2cjOju6wWgYhK1caYdNp9IqUBUsUv0Lv2fMa9O7dzLR6Qk6hVWSo3aVZr7vC6b15rBZ1VhO+n60RCo2TtZIa2QZEakdwLVacREmeMBO5Z9XJPmlFrTWluYUPgTh27DzFHeidXkiJEVfCBwCmTp2KcePG4eKLL8all16KRYsW4eTJk5EsL5aI7bBffnkSe/a8ozgIjR49WlOMgR7CplN1lii7Tb1+fw0OHXoVhw5Fvy412bO22uDRIzLU7tKs113hZKyAVlEnvK982528x433U52V1Ij4iLVS6bHixHvyhJkYWRBYGVdoVa01OSvWihVp5+LTPHj1VXkh4/RCSoq4Ez6lpaU4evQoZs2ahcOHD+NXv/oVPvzwwyYBz04j1WH9fuXP5uTkWL7CCJtOPZFd48Pp5NUYO/a6qOOEqwmnBYbYQ8riaoPHqMgwe9UeCASQmXkWXm9rxFaXra09hnfeScHFF/stu7daRJ3wvnrONZXj7L3Hwv6eliZuqeI4L3r2vAbFxWeQlZXVxO1hpvgwoz8EgxnYvDnFtL3x4gUjz6qVMUtaa61pGaOlFpHTp6sXMqwGXced8AHC6pZF15YQIwGEVltY5Eyn/PfHPhQsCgxWVxs8ZgQkmjVxCoV4bHXZnj13Y+TIC8FxXni9HF56yWP5vZWbxCsqvFH3leMaP6fmHpuxAo/u7xxGjtyMLl32i1qq9ux5B4cOhS1VUhtEmoWR/qBmbzynFzdOUF4OHD1q7FllwT1rxhitVciwGnQdl8InnlBbL8Qs9JhOWRUYrK42APY2AJTaHyk5uQ5Ll94q2DPNY9u9lZrEd+062eS+ClGKBzK6Am/a3z14772RmDJlkSXuRzuILash9gyzuLixmvBvDrv8PR4OHk9430QtzyoLYjF2saB3jNYqZFgNuibhwzh2b5apZ5sKPQJD7aq7pKQEZ8+e1ZUVwepqww0bAPKiQ6p2kpOBxl9//U4Ty4oQNUHeetstFXzNB/5bFTRshpVX7hxiZTWE9/nUqWwmFzdWEha4jXGO4QzXEK699m/o0KFc1bMqJxbtFEQHDyaZsgjUI2QmTAj3k/37w2MvC/2FhA9hGD0Cw8imhWpgzaIixE0bAOpNu7YSsRigsLvLWiuLUvA1H/hvRdCw1POiJVVa7BzBYBArV65UvM/5+TcjFOoYdT6nBbBRlISHWGYr4EWzZrVN7q9YP5OzhP/jH/ZazwoKzpq2CFQrZPiQCf67uncPv84P505m4pLwiQPsNqXGBkDqNWfq7fRK1aSVLCpPPhn+/LRpV6NXrxa62pAoGM0es6pvxlpWAFiemq02+FoOKatLbJ8WO07sedEaryT1zCn9pi+/fEtU7H344Wq8916q654lNW47LZmtYkhZwrdutT80IC8vZNjlpEXISIVMxOKUVZuEj8ux2+8eGwC5YMEJlJTUmFpDQs33y1WTlrOoCD//6quc6+IUnNhyQ6/7xuq+KZbSbRd6r4mY1UWYHuz1cliw4CSys5vrPl8sap9Bud8kJowuvHB3JP7LTc+SmphE3mI8a1YDZs/O01XoUcoSznH2xx4eO3bM0BitVcjoCZmwExI+LsbuoGKxAMh7703H99+/FDUYGK0hEQs/iUvta9a69WHU16cqFtNq2n77AnXNwqly/lrdN3r6Jgul/7Wg16UlvDdN04M9mDatOcaMUd8nzbzXcr+JlaB3oyjFJMZO8lOmZGgWuHKu9i5dzoiUjNDndlL7zMS6Q7WO0awLGa2Q8HEIM1budmct6d1XzOjDwE/2mzYBCxc2/f6lS28DxzUW07rqKvXtZyXLSwtWmobN2JRWb/VlK0v/s5BZE4sbq1SzHPSuFqWYRLUxeFIoudrXrg2XjFi3btQ5QaTO7WTldhluESxmQcLHIcxYududtaS0uaFVhB/4bHTq1PT3Any2RaNVYds28WwfMzY5jVdSUlJUuRGVMLqlhhUTJitp2MJFjNJ1+vDD1dizp9LxndKlEHuWAGeD3mMRq+ydk/MzcnJOyyY9GEWNcOrTZycmT+6G6urWqtxORrfLMGNBE0+Q8HEQIwODVVlLchamWD9/uHCbtZsbxj7wN94IvPZaeHUpJoIaGoCyMvFuLdZ+FrK8WODUqWysXTvK8Ka0Vm+poRWz6pdoQWxX99gJTeo6ARw4zou//OVWXHnlRkycyOZKnG/3u++OBMCLHw8OHOiKPn12Om5BkKrs7fH4MWrUp+jTZ6dkGYnS0lJb2rhlyyoAym4noyENZixo4g0SPi7EyjowcimvgL2bG4o98K+9xuHdd4/h1Ckv0tJCGDUqp4mvPD//bJPBhCe2/U7UzXEiQFkJKzalNbuv6LkeX311WlQcW+mS0Vp7q0+fnWjd+jD+8pdb0SgivNiw4Uo891w1HnnE9CaaQrhStbByticilp0kdtwQVvaOFfRifbK+vl7zd5r5rMaKRiMhDRUVXtG4SK0LmniDhI8LsboOjNJkYNfmhuIPvAerVq1DQcH3AKK3V+AtOCkpR2TP63TdHKcClKWQ2qNLjRtTacA3s6/EXreqqiqcPXs26pjk5GT4/X4Eg0G89NL7WLfu3wA6oFFQ6K9DZKVgra9PjWpjGA8efzwTJSU/W5YqbmTClov5cxKxcUOIUUHPw1v2rH5WjYQ0HDyYpCsuM94h4UMwi9gDHzsZi1lwdMa/2oodokZNQK8w1qRv3yJs3Vos6poqKSlBVlZW1GedKEAm/D4pq0p5ObB4cQZefHFKxH0EhGC0wKGVgrVly0CkjUJCIQ+efvrvePDBy9ClSxfN51VC6TdVVVVh1apVou/JxfwFg0FbK84LERs3hJgVl1hX1xrfftsmEkNkFUa2fSgoOOtIXCaLVm0hJHwIJhHGME2f7j+3V454HQ0pqwK/IjOSDeRW1Ab01tXVRcUAACH067cZRUXboq5pVlaWYxOZFpYuBW67DeA4YR2c8D5LY8asQocO5YZWulYJPb+/BldeuREbNlwJoKnV7bXXXrPMFSt3ztzc3ChhJHyW5OK4Vq5cqdheKzLtxMeNsK+L46THEK3s2HER5sxpbXnAvNyG0Wpq8OTlhXQX2xSip1AmS1btWEj4EJajVdXHxjDdc4/2OhqA/fucsYKWYMjYGADAi61bi1FUtM3WNhslEAigrOwsJk5sHQnQFsJx4lsNsET//lsBABs3DmZqk1O5yUkujkuuvVZk2smNG4D6yt5JSfLTYmM9sOhsUrMD5vVsGB1LSkqK5D0SZnopjdF6hAzLySIkfAjTUJPNogajdTQSHS3BkPEQA8BPEAcP5iMUGid6jB3mfTPo338revbcY0vygFnYUdxSDUrjhto2ZmVlyU7ymzenNKknJny+zHLfGC0ayFuL+I2ehaxZ0wKLF7eLVAu/4AKPovBkWchohYQPYRpSFhY7isdRnYowUoHKPh+HjIwjCASSovbT8fuPwONpYVoMgBO+fX7gF68tA9PcG1pQ6vNKZSNY7cNm3De7C6/qQW6S79tXPtjYjA1ljSK3xUQwmIFFi6YILFbRVbdZLPZpNiR8CEuxo3gc1akIIxzshNluHk8II0asxdq14WsyefJkAIgcO2pU0+und+J10rfftCZOCP36bW0Sr2Q1avo8f50qKipcFX+WnZ2NkpISyYBnJbQIc7vhF09yW9+orZ9mxoayRpB7/uQq2Nu9a7xTkPBxIXavqvV8X3k5sGULH2gafs0KX7jU/l3CWiKsZxiYhXCw0xJ7YXa9HSdN4lbWmVKzEtbixtGymSNLxGb3qUWLMLerD/HueeFGsfzWN8IJv7wc+OKLIP71r1cifUpr/TRWAn6lKtg3a2b/rvFOQcLHhdj9AGn9PuGKNxazTdpqaomwMuDYjRaXCcvuFa1o+S1qxa4aK44b996yE73C3EpycnLQ0JAbs1Fs9ITfeO/98HimRCzKeuqBsXD/Yy2jfHr8iRPsuyDNgoSPS3GyfoocsSveWMzeG0uulkhtbW3kNRYGHDfjdmuYEK2F59RYcfTuURZP11UrrIhtuZgjILYKdHxUPuaFZ//+41BUlB2J7bFz70cnEd/NkSB0Ilc1NewLr4LPV4lAIGDK9/GrF48n/KXCGJXXXnvNtO9JVEaPHs3EhpNmwgfhq/lNYStOQHLbC75/xe69JdYfhcfxZGdn44YbblDVblZEUry5jvmCh0L4CV9sPGOhOrUZ+P01+MUvKuDzVaKyshI+XyUWLDgBny/8vpZCiW6DLD6EqYQHEa7J1gdjxryFDh3KVfnCtQ6YrJjN45GcnJy4Ej1a0GLFEaI1zqhLly7MuGLVxDGx6jrWI7Rqa2uRnl4pGayck3MevN4WstXjgeisUrPgf49SxqoRgSkWWL9z590IBFqga9f4FD0ACR/CRPiMh1mzGjB7dl5UllDPnnubHC81cKoZWGNL6bNiNifsR+vAr/Z4IzvNa+2PLIhLLRmYLLQ3lthxIxgMNtlwNCkpKRKcXVtbi9deey3ynlSw8uzZt+Hhh3PR0CBe+Tk2q7Rdu2pMm2bO78nKmoY5c5pF6u3Mnx/E2LGnIsdYITBzck6jVy9TT8kcJHwIU4itGzFlir5qyzwsDqwEmwgnPLHJDmic8PROFEpWnIoKLw4ezHdtHSmrigrajZq93HgqKyuj/pYSqw0Nf44SRcJjxLJKZ8zwo7TU+HUrLwemTm0uuCcezJiRhdLSLMVzG7ECHTt2TPR88TQmk/AhTIGqLduHlDvCitgLt8Rp8IOylVuUSPXpFSv4faHGubKOFGWjKSN178Vr4nhMyYQyUuhRzGqutoCi1DHxFOtHwocgXIScO0Jr7IXYsWHLRRIKCs4iP9+5YnJuIRjMiNR/AdyX9aM3G00PdgZF21V9WLwmDoeuXZvuF6cVsV3mtWRZmf3sxlO8JAkfgnAJatwRWga72GPtqLKtBTeUzj9+PDsqkB9w115nRuKYtGJXULSd/fiaay6G31+BOXMa972KreKsl/btw22//fawpcfuLKt43gaIhA9BuAAr3RHCnc35STwsqjj86ldHHLH8sCbCpJCrIyWGXa5DPaLRyqrXPFb3IytjlcSEwKZNmwBsitoJXk3mqlomTAi3ff9+2JplJbYNUDxBwodwJfFWS0QOK90RcjubNzR48MwzH6Cg4Hvb/PssijA5lCwlfLFEwL4AUSOi0e2xeVZtgKq0H6CeKs5y8DurA2FLT/fu4df5eGwr+5LUNkCzZh2V3MPMbZDwIRzDiChhtZaIGcSu1q10R8jtbC60XNjh32dNhKntn3KWEr5Yol3ES3aWHqzaAFVuP0ArRKLczupCtD4Havuz1DZAZWVJKCxU/XVMQ8KHsBWt2wXI4UZRo4TYav2qqxrft8odoSSqrIQXepmZZwGwIcIAeXEdmyFjl6VEzoWVyNlZejZANSoErIrjiu1vUrE2Wp8Dqf4c25elnr/8/LOS53ZDPJ4QEj6EKagdRPLy8uJ28DWCnIvngw+qoo61apK1I8Yjlmih1xojR16EPn12OibCYmGpr8q5sOzMztKCXROing1Q5YRtMBjEypUrAWiP4zITJRebVtTce6lFUF7eJaLHuyUeTwgJH8IU4tn1ZDVKLp7XX9+GggJ72mKGqFIz2YkLPU/EheCECGMZJReWndlZanFyQlTbj6XGo9zcXEyePBlHjx5FfX19k8ytP/5xP9LTre2TdrnYxBatYs9fSkr/Jse51bVKwoeIYHR1RqJGH2rjbNxA7GQ3dSpwzz3R/UlO6AldCE4E2rJoslfjwhKiRTRalSTg1gkxFt7qAyAqc8tq0QPY52Izsmi1Kpjcakj4EADYMleyOPnYgZNxNkaRctU99RTw9NMcFi48iXvuaQ6APaHHZ9A0VmCO3hdJbNC3K6tQrQurtLQ06nNaLB5mW2rjJdbI6Wr0dj4f/P0QZpMJqaurQ2VlZZO+YLTIolOQ8ElwWEsfZkmAOYEbXTxyFhwA4DgP7r03Hb1770evXi0ir7Mg9ITCYtGiKeC4Rrfbffdl4scfX4bf3zQ2xi7XrloXltj+ZGox8/lmNdbIKYwIX7ufDz3ZZE4XWdQLCZ8EhqX0YdYEmJPoXVnqGWTNsFzIWXB4OM6L5cs/Q0HB9ygpKYm87rTQ49uu5FYQEzh290enr5UaWIw1shphrSYhZghfO++52nsSe5xTRRaNQMIngWGlhgtLAswp1JSHlxpgAf2DrJmWi9jJToiwP509e7bJ57QM6FYUpWTF7aaEmwoMxk7aACI72McTZtdqqq2tjfpb6p7HHuck7du7Q/DwkPAhHHc56BFg8RQHtGJF2jk3i3zKqlXF8MwUk/xkt21bEbZsKQagvz+JCT2rMgOdfgZiaaxt1NR65ib4STs2Lbtdu2pMm2be97BQyd2sMSk9Pd3U48wkGMzA5s0p6NsXSEsTjwfiYTmLl4QPAYANM7raySde4oB499706a0jsSVu291bDL+/BkOGbERR0TZD/cnuqsdOPwPiQdaNtY3kSEpSN5Q7sYWLWFr2jBl+lJZqEwhywsLpchrxMibJwYvXhQu98Ho5jBy5OapfilmtWbXSk/AhIrBgRpebfILBICoqvHERB6Q2pVuI2/YdY6E/acWpNssFWasRwllZWczW0RKLn2po8GjK8FIjLJx69sNjkvtT9+WIFa+x/VKq0CKrsVwkfAjHqajwRnz/cvVbVq5cGTdxQGrde2Zu8cEKycnJqo5zm9AzgtogazlY7R9SfVxthpdTNYHU9r9Dh85zZS0bLcj1SwCShRZZhYQP4SjhlVxrhELjVJVkdzoQ22yU3Ht2u3vswO/3M2udcBq9QdYsi0QjGV5O1gRS6z47dcpvuJaN0I3n8xlotEXI9UslUcQiJHwIQ+gN6BNLX1cT38JaEKoQvdeCd+8dOtQegAcdOhyyrI1WoGfSZUXUOBUUK9VXlPq3nQHfepC6Tnrip1ioCaR03kAgAJ+vEvPnp2HGDD8aGjzw+TjMmxeEz3cKgYDyvYl1482fnyZ7vFXI9fHYfunzcRgxorFfuiEjUggJnwRG76Cvp9Jt7Oe1xrcIcToIVYjRa8Fz4EBXUR95VVUV8xYffmV85MgRrFq1SvF4lqwTdgbFyvWVIUOORY6T6985OTloaMhlNqNReD2N7mDPek2g2IJ/d9/duKXFiRM1eOml8OtywkzMjTdjhh93351h+7im5ll49NEgAoEWyMg4EtnxnuXFqBQkfBIYPYO+3kq3QszYsoCFwFkzrgUgvxnhqlWrXBG3lJ2d7XhmjV7saI9yX9kAv7/xeKn+/dJLDZgzh9MtsO3AinYoLXacKG+hdksLuedBfK8rj6qYLisWEEr3Ljc3fK0//zwJwWCjOGNpMaoGEj42I7UXCo/dA5jW7zJS6TYWpZVCv34lCAZbo6DgLNLTj6uyJtiJWdfCjGvJCqxMvqxhRvByWDTl6RbYbkdKWIQtaO5MJZfa62ratN8iJ+e05OfsnCeEc1ajtTIbHs+UqJhMFhajaiHhYyN69kJhFbMq3UqtFHbsuAhz5pwfWdnOmqV/LyKrMXot3FI1mDCOkXsdTwLZLILBDMyZ43dtKrnUXlfCPe2cRDhnxVor1cRkslRdWoi7y4K6DL17obAIb63xeMIjjhG/rt9fg4KC7yOf5V0/jbV6PJg9Ow/BYIbiufbsqcJbbwWwfftPqKysRGVlJQIBa0vk67kWQjO1mdeSYBsj95oXTUISXSAfP54dGSd4+Iwvq597owQCAVRWVuKqqyqxbdtPeOutALZt+wlXXWXPuKUG4VykJ3vrtddeY+J3xEIWHwdRsz8Ty1jl19XrDtix4yLMnt1ddOsHq61oWq9FdnY2SktLsXLlSl2fdxKh6TtcgykJBQVnkZcXnpRZijdhEbl7LZa1xQcJuy2I1I6MOaM1gpxCyvq/Z0/03yy1X6+1ksWFPAkfh5CqdKkXp2KHrPDrqi3qBzROCnIBwna5AbReC78wmlXH551AOGDL9WGnB2zWYulikbrXSnWb3CSQ7Qh2ZzXjSwk3Wv/dJrzlIOHjAEqTtFbiKXYI0FfUz0jQKKEefiBmQWhKEfs8SFlW3fI8xOIGgcxj5PqqtQS5SQy6nXi51iR8HMDsSTp2kpEa6FlZPagZ0LQ+YBQgbC+sCE0xy86xY401ceSsUqw8D/GGWanlchYjozWCzICFHeGdwE3CWwoSPg5g5SRttgstFjMedqkBzchgFmslAkIoLt4adW6z3RtGr4WbB04WhKa8Zcd8y6oR3Hyv1WBWIc9Y1HzGqVhJt9atIjQIn+rqatUnzczM1NWYRMEqX6kdA71ZD7uVRc62bSvC1q3F2LKlP7ZuLcaoUWsBhAWVme4No9fCyOedjmFhwd8v/P1igr9Fi5+ZsEoBxu4166LJrEKeerB6oaeE0u8pLwc2bWKzynYio1r4ZGVlwePxyB7DcRw8Hg8aGhoMNyweEQ5Mcq4cvQOYXe4H1lcwW7cWWxZ7Yrbg0HMtWYlhYcXfLyX4J0z4iyNWKSv6iNOWBTn3lZlFTdUSDAaZsuiJEbsHl5sKK/JonYvckqmsWvhs2rTJynYkBFYPYCy4H4xgxsrWSvHHiuBQsnTYGcPCgr9f6p7X16fYbpWyqo84sdjQ6r6ya/wJBAJYuXIljh/PZ8aiF4vYHlxuKqzIk52djZKSElVV86XGIhbdt6qFz+WXX25lOxKGeHc/6EG4Qi4pKcHZs2ej3k9OTo6kfscOtrEPlZWDr1rBUVFRISk6zFyZs77itQu5e15Q8L2tVimWRKkRtLiveOwaf7Ts9efUpCu+Bxewf39Y+LDuvhSSlZWleEwwmIG1a0dFVXVet24UHn30MmRns1GFWoju4OaqqiosXboUe/fuBQBccMEFuOWWW5rUJiHshRX3g1qMrpB5K1pFRYVtRd6UBAcfoG21RciJzCoWB2yle+6EVcrtolSv+8rO8UfpvpeUlDhmKcvMPAuvt3VUVWmfj0NGxhEEAklMuC/NRLyCtgeBAHuiB9ApfL744gsMHToUaWlpuPTSSwEACxYswGOPPYb169ejT58+pjaSkCd2kpEa6FlYPcRixgo5Ozs76n2rB181gsOO1b4Trk1WB2w999zK54GVdH+j6OljRoSm1lR4ufuuxlJhNsKF3MiR0WPAiBFrsXYtGwU+YzFagqBlywC8Xi5G6AFdu5rYSBPRJXzuvfdeXH311fjzn/+MpKTwKc6ePYtbb70VU6ZMwb/+9S9TG0nIw+pkpAWjK+Sqqqqov61c5StNBnat9p1ybbLaj6Tuudg2EFY/D26Pt+Oxo48ZTYVnIc6MR+0CjCVXpxlB2H5/DebPD2LGjKyozVZZjWfSbfERih4ASEpKwvTp03HxxReb1jhCPaxORmoxskIOBAKqgu/MQmkysHO17zbXppmotdjk5eXZ/nzYJUrtKGtgZR9zMhXeDlgSZWKIBWFPnAhceCFwySXh19Q+Z+PHN6C0NBzH1LUru6IH0Cl8MjMz8cMPP+D888+Pev3QoUPIyFDeQZsgYjGyQlZbuRowz73BTwaHDrUH4EGHDoci79m92md9cLUK1i2dVotSO7MM5fqYkbgvJ1LhiUbEgrBDIaBv30bLj9JzVlVVBY/Hg7q6Ovh8lejePfx6ZWX4vyx6G3QJn9LSUkyYMAFPPfUU+vXrBwDYvHkz7rvvPlx33XWmNpBIDMxaIcvF1pSWlpr6AB440FX0u6xe7bMYYOwUsfcz1gJSV1eHSn4Ehv2DsJWilJUMMjMEaLy4Bt1Gt25h95aY+BGm30vdO7XWdtYsdrqEz1NPPQWPx4ObbropknqcnJyMO++8E0888YSpDSQSB6MrZKXYGj7jUK97QCgklL5L7rcI95JS+k4xWLd0OAULm/U6IUr1xJQpPQPBYFBTG8ywKKldLJDwN4dAIACfrw7z5zfGVgkRpt9L4cZd5gGdwiclJQWLFy/G3LlzceDAAQBAly5dkJ6ebmrjeMrKyvDII4/go48+wuHDh5GXl4cbbrgBDzzwQFTn3r17NyZNmoT//Oc/aNWqFe666y5Mnz7dkjYR1mBkhawmtsbI5Cgs5qXmu6R+i3A/MqXvlCLRRI0aWNis1wlRqjWmTK2LTA1migu1Cx8S/saJ7QO33JKLpUtvbWJxy84OAmAzJd0IhjYpTU9PR69evcxqiyTffvstQqEQXnzxRXTt2hV79uzBbbfdhpMnT+Kpp54CEN5LbMiQIRg8eDBeeOEFfPXVV7jllluQlZWFiRMnWt5GQh9mrt7UmMuNrlD4FFkrTPOsrYrcjJN7ONk94Wrti2pdZCUlJbIp4VaIC7ULHxI1xogda9q3rxS1uAEFCARCcXe9dQmf06dP45lnnsGmTZtw5MgRhGIchDt27DClcTzDhg3DsGHDIn937twZ+/btw/PPPx8RPq+//jrq6urw8ssvIyUlBRdccAF27dqFBQsWkPCxGDmzOR/4JlXYMiUlxbTVm57YGr2rXaXvEqZQx+4675b9bNyK24sHakVvTJnSdcrKykJubq4dPyFucLMbTmhxS06uQ319KpYt2+/qrDopdAmfCRMmYP369bj22mtx6aWXKm5eagXBYBAtW7aM/L1161YMGDAgqkMNHToU8+bNw88//4wWLeLPXMcCal1HckyePNm0AVZLnJBRq4Dcd+Xk5Ij+Jqd3k04E9JQTcHq3e6PoiY+LlyKLLOF2N5zfXyOatBFv1mhdwmft2rV4//330b9/f7Pbo4r9+/fjmWeeiVh7AODw4cMoKCiIOq5NmzaR96SEz5kzZ3DmzJnI39XV1Ra0OH4x44Eweg4tlav579JrFTBSJTvRLBFOodX1w0JQtBlojY9jIZPKzRYSKVjuI0pIjVGzZh1FPBn/dAmfdu3amVKv5/7778e8efNkj9m7d29UvaAff/wRw4YNw+9+9zvcdttthtswd+5czJ492/B5tOD21SVraFll8anNele7RlZ0tMK2B62uH7XCu6KiAgA7E5tR0cDCpsZut5BIYXQLCKeQGqPKypJQWOhQoyxAl/B5+umnMWPGDLzwwgvo1KmT7i+fNm0axo8fL3tM586dI/9fUVGB3/zmN+jXrx9eeumlqOPatm2Ln376Keo1/u+2bdtKnn/mzJmYOnVq5O/q6mp06NBB7U/QDCurS6vEl1z8ipWxLWraGggEIqnkRla7eu8LCytsu3FK5BspjSDVT/k4LVYsP2aIBq3XyYr7ycK1NAOjW2+oxUpRJTVGZWYeQSDQ9F651WKnS/hcfPHFOH36NDp37oz09HQkJydHvX/8uLqBvFWrVmjVqpWqY3/88Uf85je/QWFhIZYtWwavN1qVFhcX44EHHkB9fX2kPRs2bED37t1l43tSU1ORmpqqqg1mwELdA6vEl1z8itOxLbG/2YnVLgsrbDuxW+SbsVmvmn7KUryDGddNrYvMzkrRbsOurTfM2FdLDqkxasuWndiypem9davFTpfwue666/Djjz/i8ccfR5s2bSwPbv7xxx8xcOBAdOrUCU899RSOHj0aeY+35owdOxazZ8/GhAkTMGPGDOzZsweLFy/GwoULLW2bG7FCfMnFrwBwPLZF7LfIrXbNXKEIz2XXd7KAGf1Mi4XB6CCcKDFYelfprFSKZhE7tt4Q21dLWF1ZC3J9QOvmqqyJGjXoEj5btmzB1q1b0bt3b7PbI8qGDRuwf/9+7N+/H+1j7jDHcQAAv9+P9evXY9KkSSgsLEROTg5mzZrl2lR2seq+PCwqaLkHHvAwG9sSu9odPXq06ZtaunVV5DR6LEZGrqFUHz50qD38/r26z8saJBCtwyp3diAQwOefA6FQ9D1paAC2bQsgLU1b3+f7QEVFBZYt29DEchfv+//pEj7nn38+Tp06ZXZbJBk/frxiLBAAXHjhhfj000+tb5ANSFX35WHNnKz0wLMW2yJlps/JybHkurJ0r9yC3W5hsT4MAKtXX4u6ukaLBr8ocbNYtUIgsrCQcRor3NlCN5rHM6XJOLp58yvYs0e7Gy07OxuvvZZ6zjWXWOU1dAmfJ554AtOmTcNjjz2GXr16NYnxyczMNKVxhDSsmJN5k6nSAy/3nt0uHqfjjRIV1gs38n343XdHAmicXGItGsJFCWsLEDtIxCB9LRjdczAWfqxXGmO1zgnl5cDUqc1xzmmSUJY7XcKHr6J8xRVXRL3OcRw8Hg8aGhqMt4xwBbFm81mzjqKsLAn5+WeRl3cJqqq6wePxYOJEf5P3gEtsXzWTmd4ZzBCbUsIpGAwaKoAZG4OVknIGb731u6hjpCwarCxA7CTegvSFcWQVFV4cPJiEgoKzyMsLB9PoGaOschUZFVV8RlhOzs/Yty/UxHWWKJY7XcJn06ZNZreDcBCjK3HhoJCbi6h6D8IJKfY9JyAzvf2YITblhNPKlSsNWV6E8Q5r1qxBhw6HyKKhgNlWDacQxpHJ9TGWLHt6RZUwI8zj8WPw4I3weAZb0s9Zr2OkS/hcfvnlqo77wx/+gDlz5kT2LCLYy9xJNLcPmentx6jYVCOcjFpehJOamEVj8OCNOH48O/I+ER8BsGoruevpX2ILSqPWSb3EZoRxnBcbNw7G4MEbsXHjYFMtd1an3JuBod3ZlXjttdfwxz/+kYSPgFjXUKxpNXZDSz0opQDX1tYCUH7YWRNpRlAbixRPv9lp+GupJDaVrrldVjrhs3ns2DF06bIIx4+3REVFXpPJIZ4XB1JYUayOlSr2RvtY7G+WWlAatU7qQSojjOO8yMurwJQpi1Rb7pTurZkp91ZiqfDhU82JaPhOL6aMr7rK2LnVpgDfcMMN2LkzCwsXNn3Y+/cfh4ED4ysTSSkWyYl4o3hHeM3btavGjBl+NDR44PNxmDevGmPHXofa2lrU1dVFthIRYkaVbT1t5uEngb/+9SZdbjpWJnWzMLssAytV7AHjfSw7OxslJSVYtWqVJdYjvShlhPFiR6wvjx49Ospooebefvddo+jhaWgA9u9PIOFDSCOljLdt88p/UAG1D1V6ejr69s2G1xvdUX0+oKgoGy4aj1UjF4tEWAN/zadNA0pLwwNg164etG+fhUCgocnWM2LEWumAsOtJrbXHiADRawlgaVI3EzPbGntPpGIN7RAKZgRsZ2VlAWArjlBtRpgYOTk5mtxygUAAmZln4fW2RijUWNTY5+OQkXEEgUASM32dhI9DSCnj8vLzVH0+GAwaXjG2bx+2Mt1+e/i7fT7gxRfZUuZE/NC+fXTf0jKh9emzE6dOnRdxOW3cOBhpaacVXU5GBYheSwALW9O4CRZiDc0K2DbbQmmWi9HKgHThczZyZPS9HDFiLdauZStInISPQ3TrBlFrS2GhH7/+9WQcOXIEq1atkvz8ypUrARjvSBMmhP2v4ZU4iR6CTYLBjIjoAdS7nPQKEIoJsw+WSkyYEbBtdrq/mS5Gvg1mB+oL26a05QULGV8kfBwiLS2A+fN9MXEPQfh8pyDs30qp5masGGNX4gTBGna7DygmzD5Ycg2ZhdnWFbP6mV2WNSkBGd653vmML83C5+zZs3j88cdxyy23NNk3K5YbbriBqjiLIDQL3n13RuThOHGiBsKQBxbMvwTBAkYzw/RgZkwY61WrncTJEhNWZKrx6LUeWVFQEdBuWTP7mQoGMzBnjp+JjC/NwicpKQlPPvkkbrrpJsVjn3/+eV2NineEVhqph4Ml8y9B2IGUOCgtLYXf75fMDGPd8kILGHmcrATN2gbCVhZUVLKslZSURAK0rfjNx49nRwU9A85lfOlydQ0aNAiffPIJ8vPzTW4OwROP5t9EI97Sma1EbpD3+/3Izc0VzQwDsjR9j92WF5YWMCz3RycrQZv1m82wHllZUFHJspaVlWVpccWWLQPwejkmMr50CZ/hw4fj/vvvx1dffYXCwkI0a9Ys6v2rr77alMYlMnrNv1aabt0CCwN8vKYzW4EWcWAkHs0JywsrCxgW+2PsGCRl/XbLWGWm9cisfiO8dk7vseb312DkyPeYyPjSJXz+8Ic/AAAWLFjQ5D3apNQc9HZS1ky3dsPKAB+P6cxaBKWaY/lBWWmQN2Pis9vyYlbVarNgsT/G41hlVlvNinvKzs5GaWlpJAvY6T3WlDK+7EKX8AnFFqAhLEFvJxU+fCykDtoJiwN8PKBFUAJQfezkyZNRVnYWr77a1AR+113DkZ9vzARup7gSoqZqtdFJnQXLplFYb59TmGmd8fv9Tc5ttuDR8vywsMebLuHz17/+FaWlpUhNTY16va6uDm+++aaqwOdEQzhI8aX41aDUSeQ6nBs2iyPcgRWCsq6uDrm5ucjOFiuk6UFhYRu9zY3ACxArxZXcdwPhqtVDhvyM//43dC4dPrxwFG7VoVWksGLZJKzDaeuMFuSsd2bsP2k2uoTPzTffjGHDhqF169ZRr9fU1ODmm28m4ROD2kEqFj6bRQq5wdItm8URBGBtIc3s7GxLxZUSgUAAa9aEn/89e6SP0yJSyLKZGEgtfPnFs5np7kZxk8DWJXw4joPH42nyenl5uexEnajoHXxatWqluzO5ZbM4guCxupCmU1XKWRQpVFfI3axZs8b0dPdEQpPwueiii+DxeODxeHDFFVcgKanx4w0NDTh48CCGDRtmeiMTBeFuuEZVu9SWGF27Gm0loQeaaNiAqpRTXSGWURsroyXdnTJ9m6JJ+FxzzTUAgF27dmHo0KFo3rx55L2UlBTk5+djzJgxpjYwkZDbDVdrkLJTG5DGQ8Cl2dBEQ7ACS3WFiKYoZbrx8TJa0t3Nyp6Lp0QZTcLnoYceAgDk5+ejtLQU552nbidxwhh6g5TtNu1TwGUj/OpJaaJJpFUWYR1KFkWnstsI7agZG7Wmu+sdb/mFbHiPLT9CIQ+8Xg7z5wcxduwpVYKJRYuTrhifcePGAQj7pI8cOdIkvb1jx47GW0YAMB6kbKdpn4VYhtiHR2pCsPoh41dZmzYBCxc2nWj69x+HgQPdFRAoRIvrjtx80Zh9PdRYFLVmt5HlVj1OXCuz0t3lrDj8QjYYzMCiRVPAceE+Ewp5cN99mfjxx5fh99coLmRZrNekS/h89913uOWWW7Bly5ao1/mgZypgaB4UpKwN4UO2YkXauU3xtK9SzGpL377isVZFReFMIzlYmnyEQlFuoo0VlFqOTQTMdntqcV2pzW4jy616nLxWetPd1Vpx+LFHyUqoZiHLWj/RJXzGjx+PpKQkrF27Frm5uaIZXoR6+BVgRYUXsSE+FKSsnezsbJSXA9OnCy1lHsyYkYXS0ixFwWEmemOtWJt8hBaDOXNaR1Z/HOfFunWjMGtWUZTFQMuxiYKZ8TVGXFdKLnAWLLduwelrpbUYoBYrDo9ZVaRZQpfw2bVrF7Zv347zzz/f7PbEJXIrW+EK8NVXuSbxO04FKbsdlixlemKtnB5QxcjOzsbu3WLX1YOamjZRglLLsfGOFfE1RgszUnabNbDu1lWy4hw61B7Hj5/Cjh1H0LbtWQDO7/FlBbqET48ePTRVH050pHycFRXeqBVxKOQRjd+Rmzj1ukNYcqNYAWuWsniZaLRcV9bugVNYVT3a6cKMRDR2ZG+aFSgsZsUBQli9+lpwnBd//Svf/vA7bqoirQZdwmfevHmYPn06Hn/8cfTq1QvJyclR72dmZprSuHhCbFD79lv1VgmxiVOvO8QKN0ogEGBKDJOlzBq0XFe6B41YKVKcKsxINGJXmQCzAoVjrThACIAnyi0d234W9tgyC13CZ/DgwQCAQYMGRcX3UHCzNoyuiPW6Q8x2o+jdksNqaEKwBi3Xle5BNFZdDystiqy7b1hAS10do5hliRdacU6ebIa33vpd1PtWtZ8FdAmfTZs2md2OhCReVsRa40zszObRMiHEu/vPTLRcVxbcfCzdWxauh1pYKL7J0r2Twq0BwLwVJxjMcGX79aJL+Fx++eX49NNP8eKLL+LAgQN466230K5dO7z66qsoKCgwu41xjR0r4lgXlFMuqdGjRyMvL8/xQUoMu7Ko3DCIxxusZci5BRaqPLvl3rk9ANhI+91YlkKX8Fm9ejVuvPFGXH/99di5cyfOnDkDAAgGg3j88cfx/vvvm9rIeMfqFeCaNWusO7kGcnJymJ1Y7Mii0jKIE+bBYoYcy7BU5Zn1eye8BnIBwHaLA6kFltyiV679wn0khbh1oaZL+Dz66KN44YUXcNNNN+HNN9+MvN6/f388+uijpjWOcDcUGxCNlkGcxTLvRGJgVRZaPMJiVeLYBZaWcVgqgFluH0k3okv47Nu3DwMGDGjyut/vR1VVldE2xT3xtNmbFGKxAYR6YgfUigovDh5MQkHBWeTlhaPh3braItjHqVT5WEsFS5miUrD2DAqvn1yM1ujRowGw4xGwE13Cp23btti/fz/y8/OjXv/ss8/QuXNnM9oVt+jdcNRNSMUGzJp1tEllakIafkBNhD5DsImdWXlqXMFkRVaPUoxWTk5OwlqWdQmf2267Dffccw9efvlleDweVFRUYOvWrfjjH/+IBx980Ow2xg1GNxyNxerOqPf8UrEBZWVJKCw0o2WJg9l9hnAGNwe1G41BVPvblVzBLGSYacXJ+64mxZ5FV50d6BI+999/P0KhEK644grU1tZiwIABSE1NxR//+EfcddddZrcxbjB7GwW5Tnvs2DFVJkwzgtZiBZJUaucvfuGN/SihAEtbbxD6cEtmkhWYFdDPQoaZVg4cOIDXXntN8Tir7rvaFPt463Nq0CV8PB4PHnjgAdx3333Yv38/Tpw4gR49eqB58+Zmty+usKKEv9FOa0bQmpgAa9euGjNm+NHQ4IHPx+Hpp2uRlxdCZWWl5HnicWVhFNr2gS30rOBZz0yyErN+u50FAs0gEAioEj2AtRuYujnF3kp0CR+elJQU9OjRw6y2xD3xUrBQjNjBfto0oLSUjw3wIC3tDNOrXlZ93fHcZ+zCrHubyJYbp1GyXgSDQaYWTmJixon4pHjbY8ssDAkfQjt2BQuyMJELYwMqK9le9drh69Z7T2jbB2OYlSGXyJYbJ4gVCnLWi5UrVwJgV3SaEZ+kN14onvbYMgsSPg5gR8l6LRO52en1bk3XFw4aVvwGIxOwm7Y5YBHKkHMXUkJByXrBougMBjPw7rsjAeiPT9JibWRh0cs6JHziGDUrH7MngniYWKz8DTQBOwdlyLkDpUBmt1kvtm0rAi96eLTGJ2mxNubm5iZkppYWSPjEEVqtFGZPBHLn8/m0n88J7JgcaQI2F7UuAMqQcx65OBe1W2W4iWAwA1u3Fou8Y2wDUKV4oUQWNWog4RMn6LEgmD0RyJ2ve3ft53MCOyZHmoDNQ4sLoFu3bMqQcxClOBe5rTK8Xs70ncLtqLEjJuIAoF+/rbpFnBvrGbEGCZ84QK8FwexU6XhIvbbjN8TDdWIFLS4ApzLkYmMppFbr8Rhzwf8mJfcVf5zUVhnz5gVx4oR51h67MvSkstGKirZF/tZy391Yz4hFSPi4DLFVyuefpyAUin441VgQzJ4I5M4nU76HKeyYHOMpRd1tFYmdyJATBrWvWJGGOXP8CIU88Ho5zJ8fxNixp5i7TmbA943S0lJs3pwi6r7q338cBg5s6pqJvU8+3ym89FLj+0ZTw63O0OPFjFI22g033KDpvseTG9BJSPi4CKlVSjCYAY9nStQDEWtBkIr/MXsikDqfmzIN7Jgc4yFF3a11bfRmyBnpw3z25PTpQsusBzNmZKG0NAsMXR5TENshPHaM4qu5Z2e3ED1HdDmMxtfd4OqJzeCcNesoysqSkJ9/Fnl5lwC4RJfYVVuNmZCHhI+LkFp9xK4qfD4OL77oiQwaSvE/ZqdKi53PbXvC2JE+LvcdbrCkJFpdG6P1gBIptiv2nktZPnJyLlF1Pq0uMxYQ9oPcXJiyTyFVYzYHEj5xgrDGxV13DUdhYRsAbGUQOT1RuwW3WlISASPlCBI9tku8Do+48BET/iUlJdiyJVWTy0wtrO/6LhR0cvWMWBJ+LEPCJ47ga1zwq08gsVaZZuOU1SXRLCluQ+9iIp5iu/Sipg6PnPCXcusXFWXrdhe60XUmBgtWYLdAwifOSfRVpl7I6kJIYWQxEQ+xXVYjN7k3desbE49uypJywzjjBhc9QMInLjl27Fjk/30+YMGCDEyb1pypVSbr21qQ1cUdOBE0b3QxQduPGIN39fTvPw5FRdlISwvI7gUoN9lSlpQ25IRNVVUVVq1aFflbyn3IwmKRhE8csmbNmiav7dx5NwKBFkysMmm7BsIsnHABkMsqGrHJULj4sgK/vwb9+tUhJUWfZZYXwkpZUhQz04haKzgg7z5kYbFIwidByMk5jV69nG4FW8HWRHxg9eayYpDLKozaydCq4GG9llmhYG7XrhozZvjR0OCBz8dh3rxqjB17HTNuGVaIvYZS99QN7kMSPi4iHlYfFGwdP7BWm8luSyK5rNQJD7nVv5NjGi9qpk0DSkt5EetB+/ZZALIca5cbkLunbnAfkvBxEWJm/WPHjom6tliFgq3jB5YyTciSyCZiq/9160Zh1qwi5OcnMWNRIRGrHiWLjhuKLJLwcRmsDBR6ofgIZVizpMjhhJtJDLIksonY6r+hwYOamjaq089Zr7GTaChZdNxQZJGED2E7FB8hD0uWFLU4HbBOlkQ2EVv9i90XYYB0VVVV5HUlNxkLgbKJhhqLjlyRRRYg4UM4AuumZaetLiyJGiVYcDORJZFN+NX/unWjzgUPN70vcnsQKrnJKlXufiyXZebEIsIt9W7EUGvRUVOs0ilI+BCECCxZXVivecSKm4ksiWzSp89OzJpVhJqaNqL3ReoZ0+Mmk3KLKcVB2llbJh6Koxqx6LDgoifh43KctkzEMywMOk67kNTAkpuJdUtiopKXF0JurrbPqHGTCcc1I1tP2Okyc2tx1Ng5RMqiU1paCr/fL3kOFsZVEj4uhyXLRDzjhNWFBReSGsjNlLjEToZSFhc9C6+m21NwePFFT1S/4se/srKzmDOnNTjOA6DRLTZ5cjds2bJK4hsILcTTXEPCJw7Q0tHc7Ft2CqesLqy4kNRAbiY2sfp5F06GK1akYc4cP0IhD7xeDvPnBzF27ClD3yF0qdx113AUFrYRbcPu3WLPigfV1a11fS8hTrzMDSR8Egi3+padFGtOWl1YciGpgdxMbGHX856dnY3ycmD6dOFz4sGMGVkoLc3SvWs6D+9SycsLSR4j9azk55/Fnj3Gvt9qKF3ffkj4uBit7hc3+padFmtOWl3IhUQYwc7n3WnrpNSzIieWWMBIXBKhH6/yIQSLLF0KdOoEDBoU/u/SpU63yBqcFmv8SlKInVaXCROAsjJg06bwf1kLbCYIwNznJBjMwMGD+QgGMzR9Ts2zovfcViBVAZmFtsU7rrP4nDlzBkVFRfjyyy+xc+dO/OpXv4q8t3v3bkyaNAn/+c9/0KpVK9x1112YPn26c421CLcEvcYDLFhdyIXELhQzF8bIc6I2M0tNgLTcs8KadcUNe1rFK64TPtOnT0deXh6+/PLLqNerq6sxZMgQDB48GC+88AK++uor3HLLLcjKysLEiRMdaq01OG1WTjTMDNyliTJ+UOuGLSkpQVZWluh78XS/9T4nSplZRvb14sWS0v5Sdpb74L9LqQIylSCxDlcJnw8++ADr16/H6tWr8cEHH0S99/rrr6Ourg4vv/wyUlJScMEFF2DXrl1YsGBB3AkftwW9xgNmWF2cjlcizEWte3XVKvl06ni633qfE7nMLC37eomdd/Lkydi0CVi4sKl1pX//cRg40N5sJWEmXLt21Zgxw3+uqjWHefOqMXbsdXEliFnENcLnp59+wm233YZ33nkH6enpTd7funUrBgwYEKWShw4dinnz5uHnn39GixYtRM975swZnDlzJvJ3dXW1+Y03GTmzMutVfhMZp+OVCDah+x3GqgVddnY2+vYVP3dRUbbhrDO9bQKAadOA0lLeSuZB+/ZZALKijiUrsfm4QvhwHIfx48fjjjvuwMUXX4yysrImxxw+fBgFBQVRr7Vp0ybynpTwmTt3LmbPnm16m61GzKzshiq/VsHvxUODAEG4Eyvj6ViI1ZNrm1Q7yEpsDY4Kn/vvvx/z5s2TPWbv3r1Yv349ampqMHPmTNPbMHPmTEydOjXyd3V1NTp06GD691iB8IFRE/Acz9tbCPfiMXMQoNUW4Va0VlVmoa9bWQjTjUU2yUpsDY4Kn2nTpmH8+PGyx3Tu3BkfffQRtm7ditTU1Kj3Lr74Ylx//fV45ZVX0LZtW/z0009R7/N/t23bVvL8qampTc7rRtQEPLux5LgeEWbWIECrLcLNaKmqzFJfF7OAmCXKKEOSABwWPq1atUKrVq0Uj1uyZAkeffTRyN8VFRUYOnQoVq5ciaKiIgBAcXExHnjgAdTX1yM5ORkAsGHDBnTv3l3SzRVPqPWPu22CFg7ex44dU9xl2UxotUW4HbVVlVnu6yyJMqehKs/m4IoYn44dO0b93bx5cwBAly5d0P6cfB87dixmz56NCRMmYMaMGdizZw8WL16MhQsX2t5eJ2DZh20U4WBGDz5BaMPt5S9YFmV2wlodIjfjCuGjBr/fj/Xr12PSpEkoLCxETk4OZs2aFXep7HK40YethRUr0rBo0RR68AkmMDsWzqoYGyp/4X6U6hAR2nCl8MnPzwfHcU1ev/DCC/Hpp5860CJ20OLDdlPqe9hc748qbua2Bz+eg8sTkdiYuYoKLw4eTEJBwVnk5YUQDAaxcuVKxfOkpKRY6s6JZ2twokBVns3FlcKHMI7bUt/D5npP1Gtue/CVJkqAveByHhYyfliE/83iz1Ou6vtdWVmp6vv0unPi3Roc7yhVeSa0QcInAXHjXl9hcz0XJX7c+ODLT5QON04CCi6VR/55Yud+U0aT++Ctv35/DUaNWtskxodf9JGVWBskfBIQNwY7tm8PLFhwEvfemx558AcP3ojjx8MTi1hdErMxK7DabcKTgkvlUXqe3Ha/7UKvFTGREhxircSzZh1FWVkS8vPPIi/vEgCXJKy11QgkfBIQtwY73nNPcwwa9DP++98Qdu1KwuOPXylZl8QMzNw1WogbhSchjdLz5Ib7rbXYoVG0WBGFJGJmk3A8y80FCgsdbEycQMInAXFzsGOvXi3QogVQUiJfl8QMrNo12q3CkxBH6Xlyy/0uLS1FfX091qxpgcWL20UWFbNm/YiSkhq0bt3atEWFFisiizusE+6GhE+C4uZgRztX0FbsGu2E8KTgZGuRe55YX2gIrS/BYMa5khFhkR8KeTB7dh6CwUV44IFxjrSPxR3WCXdDwieBcWuwo90raCu+z07hScHJ9iD3PGm933bGsQgFsVzadF1dnWMCmsUd1vVACxA2IOFDuA67V9BWfZ9dwlOtW6GiogKA8so5kYJLzUTuflsVT6YVubRptXWJrBLQrFvOlKAFCDuQ8CFcid2uOje7BtXC74MmN/AmYnCpHVgVT6YVubTp+vp6VeewMrvPzc8hZUeyAwkfwrXY7apzq2tQK7EDLwWX2oMV8WR66NNnJ7p02Y/jx1uiZcvjEateTY111j0tVsREeQ4J6yDhQxCELBRcah+sZID5/TVNBMiGDRss+a5EtSKSy9g5SPgQRIKhZ8CNl+BS1mEhjsWOCTnRrYiJKvZYgYQPQSQQRgZcFiblRMDJOBa7JuREtiLSTuvOQ8KHIBIEsQH33XdHonXrw2jfXt0mmW4OLnUTdsaxqLW+xGLUMpSoVkTaad15vMqHEAThZviJTWzABbxYuvRW7NhxkerztW8PDBxIoide4K0v/fqNE52Q+/cfh5KSkqjXd+y4CIsWTcErr4zDokVTNPUfIbwV0ecL/50IVkS+ZIAQN2647GZI+BBEnMNPbNdff2mTARdoXNkHgxkOtI5ggbD1JRvemBmBt75kZWVFXpOyDPH9R2tczoQJQFkZsGlT+L9271pvF7E7rfPPIu20bj/k6iKIBCA7Oxt9+gCjRq3Fu++OROyaR2hqp4E3MZGL4aoUeELlXDUTJ16lKy4nEVLUaad1diDhQxAJQnZ2Nl5+uT+2bQtg5MicSJE8APD5ONx113BbiuQR7KImhquiIhcAB6Cx//CuGr/fb1tb3QjttM4GJHwIIoHIzs7GVVcBf/5z7Mreg8LCNk43j2AAMeuLMAB648bBEIoegMPgwRvJWmgQ2sfLPjwcx3FON4Ilqqur4ff7EQwGkZmZ6XRzCMIyyssTMzuLJhh9BAIBbNoE/O53Ta/NW28F4jb93A5oHy9zUDt/k8WHIBKURIiriIUmGHVIicOCAi+8Xg6hkNBNGt/p53YQe62lSgXQPl7mQMKHYIrycuC778Kl+904KZvVfrdfB1ahjSKVURKHI0c2FjlMhPRzu6GqztZD6ewEMyxdCnTqBAwaFP7v0qVOt0gbZrXf7deBcDdKoq9Pn52YMmUR3norENfp506gVCqAMAcSPi6lvDxc96K83OmWmEN5OTBxYmMF11AoHHzrlt9nVvvdfh3cRjCYgYMH82li0YjfX4N+/erI0mMycqUCnCae5hxydbmQpUsbJ0evN1x7w+2rru++iy5bD4Qzjvbvd4cZ3Yz2BwIBfP45EApFB0s0NADbtgWQlkbBo2ZCLgWCNfiqzkLx42RVZz7Wa8WKNEyf7kco5IHXy2H+/CDGjj3l2kQAsvi4jHi1CHTrBtGqsV27OtMerRhtPx9XsWXLK6Ll7DdvfgXPPvssAoGA6OfjaTVmB+RSUA9ZxexDqaqznfBj0pNPvoH77suMBLSHQh7cd18mnnzyDdkxiWXI4uMy3G4ZkcLNO38HAgH4fHWYPz8NM2b40dDggc/HYd68IHy+UwgElFdFfFwFP/DFWiL4gU8s/iIeLYBWUVVVBYA2ilQLWcXsp0+fnejSZT+OH295riikM/2RH2uUnhU3JgKQ8HEZvGUhdjdjt1hG5HDjzt+xGTB3350RGbBOnKjBSy+FX9eSHq1l4JOyAA4d6o7rZyeBQACrVq0CwJ5LgUW07tZO6Ce28KPfXyN6jZ0oEBmPzwoJH5fhZsuIGtxWWyZ2tSM1YGldFUmdJ5Z4tQBagfAe+P01GDx4IzZuHCxqWaMKxGQVs5PYfbzEcCqeRskK7UZI+LgQN1pGiDBm1ucJBALIzDwLr7d1TEE5DhkZRxAI0L5bUuzYcVFE9AAhDB68MeLCKS0tTejrxos+pZU+iUNzYbnPseJ+MwsSPi7FbZYRwtxYHKGLTVhQzuMJYcSItVi7NjyJJ3oFYjFiXTiAFxs3DkbPnnvOWdoSe6NNofWhXbvqmLi1aowde51rs3kI/ai1QrsBEj4EYQMVFV5TY3GEJnG51ZgbAw+thlw4yvCiZto0oLSUty570L59FoAsJ5tGEIYh4UPENaxs/XDwYJKlsTjxtBqzmngM1rQSsi4T8QbV8SHiFie3foitfVJQcFa2zo/aeAmKqzAOS7VSCIJV4nlMIosP4ThSO0Hz6IkncDLNW6z2ycSJIdlsPJazOuKReAvWJAiziecxiYQP4ShKO0HzaA3StSvNO3a1I1X75NFHg4rZeG4cQNwEy7VSCIJF4nVMIuFDOIra4FutQbp2FXqMXRVt3pyChQubBs4GAi0AaI+XYCVGKR6I5xWsECssqIT7obGkERI+RFxiZ6FH4STSt695gou2ojCfeJ/wYy2owWAGjh/PRsuWgSjrFpU5SAzidZNRo5DwIeIWJwo9miW4lGKU4jnwkNCP0NIjt88WlTmIf3gRHAxmYNGiKeC46E1Gf/zxZfj9NQkpgkn4EHGNE6m4ZggupRilRHHbEPqgfbaIeN5k1CgkfAjCAowKLjUxSiRqCCmoSCPBQ3WrmkLChyAsRk+wabxvRktYC012BE88bjJqFBI+BGEhRtL1aTNaAtCXjaM02R07dgxAeCuVgweTUFBwFnl5YfMiuUjjDzvrVrkhe4yED+Eo8R6kazRdn7YLSEzMyMaRm+zWrFkjG/yciAGv8Y4d29q4JROVhA/hKBSkay9uWI2xhBPXy8xsHKnJTin42e6AV6E7mKxQ7sTJavlaIeFDOA4NaPbgltUYKzh1vYxk46i1jLIU/Cx0B5MVyr3YVS3fDEj4EISAeLWIuGk1xgIsXC89AcpKFtRjx45hzZo1TAU/8221wwoVr8+3GHaGEQQCAWRmnoXX2xqhkCfyus/HISPjCAKBJKZEKwkfgjhHPFtE3LQaswotkx4L10tvNo6aCYbFTB+rrFCJWr3YrjACocVu5Mhoi92IEWuxdi17FjsSPgQBNlb4VmLX3mWsolXUsnK9rMzGYW2HeiusUIlevdiO3yQUVnJ9iqVCiV7lQwgi/pFb4ccDfF0gny/8dyLVBZISteXl4scHAgH4fJWYP78KPh8HIGyynzevCj5fJQKBgO52bNok/b1S+P01KCj43hJhYuW59bRl1Ki18HjCN8oMK5SaeCnhcYRxWOpTUpDFhyBg3QqfpXT9RK0LpMVtFVt36e67MyKr1xMnavDSS+HXtVoI4tmNaiZWWaFYimkinIeED0HAnErJUhWaS0pKcPbsWSQnJ8Pv9zd5P9bPrqfSs1oSsS6QFlEbe92l0sG1WAhYcqOyJMSlsKLeDIsxTYRzkPAhiHMYsYioqdAcDGZgwIAJuPhiv+S5jVR6JsRxevsPrYHSVoqTRK6bxVpME+EcJHwIQoBei4iSBYCvT7JwoVfW1WG00jMhjpNuPq1uVKvFCWuixk4rlB3Viwn2IeFDEBYTW58k3jLGzMCq+ipCt6HPB3TvHn69sjL8X6utG+FA6TrMn5+GGTP8aGjwnAuUDsLnO4VAQPz7WRMnVpLIVijCGUj4EITFiGWUJFoNHTmsCvx12m1oVaB0PJLov9/NuCFuLBYSPkTcYWVwsB7EMkoSqYaOHFYG/jrtNrQiUJrQhhsnZbfhRosdCR8irnB6lS9GbEZJItXQUYKFCslE/OLGSdmNuO36kfAh4gqnV/lS8Bkl/fuPQ1FRNk3q52ClQjIPWQjiD7dNyoT1kPAhCJvw+2vQr18dcnOdbgk7OJ1qHgtZCAgi/iHhQxAmYJalIBEtDqxVlCZRQxDxDQkfgjABsywFVlgcWAv2FiMRK0oTBOEMJHwIwiTMEg9mihAWg70JgiCchHZnJ4g4Rk0QdzCYoWvXcCvQu4O5GE67DZ3+foIgxCGLD0EkMGq30rADswsZOh2o7PT3EwQhjquEz7p16zBnzhzs3r0b5513Hi6//HK88847kfd/+OEH3Hnnndi0aROaN2+OcePGYe7cuUhKctXPlMQNsRpOQ6ts9bC0lYbZhQwbt8BwtnRAoj+PTmDV9ieEMVi6L65RBKtXr8Ztt92Gxx9/HIMGDcLZs2exZ8+eyPsNDQ0YMWIE2rZtiy1btqCyshI33XQTkpOT8fjjjzvYcnOgWA110CpbPSxtpWFmIUOrtsAg2IfuPZuwdl88HMdxzn29Os6ePYv8/HzMnj0bEySu1gcffICRI0eioqICbdq0AQC88MILmDFjBo4ePap6hV9dXQ2/349gMIjMzEzTfoNRKisr8RK/uY8MEydORC4ViiHOIddvgsEMLFo0pclWGmVlzlh8OnVqWshQa1vMOg/hPujes4md90Xt/O2K4OYdO3bgxx9/hNfrxUUXXYTc3FwMHz48yuKzdetW9OrVKyJ6AGDo0KGorq7G119/LXnuM2fOoLq6OuofQSQC/FYaHk94RLK7eGAgEEBlZSUqKyvh81Vi/vwq+HzcubZwePrpE5rbImc5IuIbuvdswuJ9cYWr6//+7/8AAA8//DAWLFiA/Px8PP300xg4cCD++9//omXLljh8+HCU6AEQ+fvw4cOS5547dy5mz55tXeMJgmGc2kpDynUr3MG8qqoGgYA21y1rW2AQ9kH3nk1YvC+OWnzuv/9+eDwe2X/ffvstQueu2AMPPIAxY8agsLAQy5Ytg8fjwd/+9jdDbZg5cyaCwWDk36FDh8z4aQTBBGpcvH5/DQYOtNcdIBWD5ffXoKDg+8gu5lr3VOO3wPD5wn87vQUGYQ+BQEDUajhvXhV8vkoEAgGHW5i4sPhMOmrxmTZtGsaPHy97TOfOnVFZWQkA6NGjR+T11NRUdO7cGT/88AMAoG3btvj3v/8d9dmffvop8p4UqampSE1N1dN8gmCeRAz2Zm0LDKthKVvGCWKth0Kr4YkTNeBD3BI98cNJWHsmHRU+rVq1QqtWrRSPKywsRGpqKvbt24df//rXAID6+nqUlZWhU6dOAIDi4mI89thjOHLkCFq3bg0A2LBhAzIzM6MEE0EkGok42CfKFhisZcs4Qayo9/trIhZDueMI6xGWYPH5gO7dw6+fs2U4tuhyRYxPZmYm7rjjDjz00EPo0KEDOnXqhCeffBIA8Lvf/Q4AMGTIEPTo0QM33ngj5s+fj8OHD+N///d/MWnSJLLoEAQRd5hd+4ggzITlEiyuED4A8OSTTyIpKQk33ngjTp06haKiInz00Udo0aIFAMDn82Ht2rW48847UVxcjGbNmmHcuHGYM2eOwy03ByrMRxCEEDNrHxGE2ai1sDlhiXON8ElOTsZTTz2Fp556SvKYTp064f3337exVfaRiLEaBJFIaI3VYTFbhiDcgGuED5GYsRoEkQjoidXhs2Vuvz1s6WEhW4Yg3IArChgSBBFfkOu2EalYHTU71E+YEK6Au2lT+L+JFthMEHogiw9BELZDrttGjMbqJEoGG0GYBQkfIuGhXe+dga5pGIrVMQZZDwmtkPAhEhqWUy4TBbOEp1sFLMXqGIOsh4RWSPgQCY3VKZdunYztwizh6XYBq7WyLfWraBLpt7oFli1xJHwIwiLcPhnbgVnCk+WaIWpRG6vjln6V6FtpJDosW+JI+BCERcTDZEywhxv6FW2lQQDsWuIonZ0gCIIwDSPp+QRhByR8CIIgCNOQS88nCBYg4UMQBEGYBp+eL4TS8wmWoBgfgiAIh4jH7CxKzydYh4QPkdCwnHJpJfE44boNt2Rn6UFrej5B2AkJHyKhYTnl0ipYmnDNEp5uFLBuyM4yAm2lQbAKCR8i4bFqcmd1MmZpwjVLeCaSgGW1XxGEWyDhQxAWkUiTsRHM+v2Jch2pXxGEMUj4EISF0ORDWAGr/Ypixwg3QMKHIAiCMAxLsWMEIQfV8SEIgiAMw1LsGEHIQcKHIAiCIIiEgYQPQRCEA1B2FkE4A8X4EESCQRMuG1B2FkE4AwkfgkgwaMJlB7rGBGE/JHwIIgGhCZcgiESFYnwIgiAIgkgYSPgQBEEQhqHYMcItkKuLIAiCMAzFjhFugYQPQRAEYQokagg3QK4ugiAIgiASBhI+BEEQBEEkDCR8CIIgCIJIGEj4EARBEASRMJDwIQiCIAgiYSDhQxAEQRBEwkDChyAIgiCIhIGED0EQBEEQCQMJH4IgCIIgEgaq3BwDx3EAgOrqaodbQhAEQRCEWvh5m5/HpSDhE0NNTQ0AoEOHDg63hCAIgiAIrdTU1MDv90u+7+GUpFGCEQqFUFFRgYyMDHg8HqebYzvV1dXo0KEDDh06hMzMTKeb41roOpoDXUfj0DU0B7qO5mDldeQ4DjU1NcjLy4PXKx3JQxafGLxeL9q3b+90MxwnMzOTHm4ToOtoDnQdjUPX0BzoOpqDVddRztLDQ8HNBEEQBEEkDCR8CIIgCIJIGEj4EFGkpqbioYceQmpqqtNNcTV0Hc2BrqNx6BqaA11Hc2DhOlJwM0EQBEEQCQNZfAiCIAiCSBhI+BAEQRAEkTCQ8CEIgiAIImEg4UMQBEEQRMJAwidB+de//oVRo0YhLy8PHo8H77zzTtT7HMdh1qxZyM3NRVpaGgYPHozvvvvOmcYyitI1HD9+PDweT9S/YcOGOdNYhpk7dy4uueQSZGRkoHXr1rjmmmuwb9++qGNOnz6NSZMmITs7G82bN8eYMWPw008/OdRiNlFzHQcOHNikT95xxx0OtZhNnn/+eVx44YWRAnvFxcX44IMPIu9TX1SH0nV0si+S8ElQTp48id69e+NPf/qT6Pvz58/HkiVL8MILL2Dbtm1o1qwZhg4ditOnT9vcUnZRuoYAMGzYMFRWVkb+vfHGGza20B188sknmDRpEj7//HNs2LAB9fX1GDJkCE6ePBk55t5778V7772Hv/3tb/jkk09QUVGB0aNHO9hq9lBzHQHgtttui+qT8+fPd6jFbNK+fXs88cQT2L59O7744gsMGjQIv/3tb/H1118DoL6oFqXrCDjYFzki4QHAvf3225G/Q6EQ17ZtW+7JJ5+MvFZVVcWlpqZyb7zxhgMtZJ/Ya8hxHDdu3Djut7/9rSPtcTNHjhzhAHCffPIJx3HhvpecnMz97W9/ixyzd+9eDgC3detWp5rJPLHXkeM47vLLL+fuuece5xrlUlq0aMH95S9/ob5oEP46cpyzfZEsPkQTDh48iMOHD2Pw4MGR1/x+P4qKirB161YHW+Y+Pv74Y7Ru3Rrdu3fHnXfeiUAg4HSTmCcYDAIAWrZsCQDYvn076uvro/rj+eefj44dO1J/lCH2OvK8/vrryMnJQc+ePTFz5kzU1tY60TxX0NDQgDfffBMnT55EcXEx9UWdxF5HHqf6Im1SSjTh8OHDAIA2bdpEvd6mTZvIe4Qyw4YNw+jRo1FQUIADBw7gf/7nfzB8+HBs3boVPp/P6eYxSSgUwpQpU9C/f3/07NkTQLg/pqSkICsrK+pY6o/SiF1HABg7diw6deqEvLw87N69GzNmzMC+ffuwZs0aB1vLHl999RWKi4tx+vRpNG/eHG+//TZ69OiBXbt2UV/UgNR1BJztiyR8CMIifv/730f+v1evXrjwwgvRpUsXfPzxx7jiiiscbBm7TJo0CXv27MFnn33mdFNcjdR1nDhxYuT/e/XqhdzcXFxxxRU4cOAAunTpYnczmaV79+7YtWsXgsEg3nrrLYwbNw6ffPKJ081yHVLXsUePHo72RXJ1EU1o27YtADTJVPjpp58i7xHa6dy5M3JycrB//36nm8IkkydPxtq1a7Fp0ya0b98+8nrbtm1RV1eHqqqqqOOpP4ojdR3FKCoqAgDqkzGkpKSga9euKCwsxNy5c9G7d28sXryY+qJGpK6jGHb2RRI+RBMKCgrQtm1b/POf/4y8Vl1djW3btkX5ZwltlJeXIxAIIDc31+mmMAXHcZg8eTLefvttfPTRRygoKIh6v7CwEMnJyVH9cd++ffjhhx+oPwpQuo5i7Nq1CwCoTyoQCoVw5swZ6osG4a+jGHb2RXJ1JSgnTpyIUtYHDx7Erl270LJlS3Ts2BFTpkzBo48+im7duqGgoAAPPvgg8vLycM011zjXaMaQu4YtW7bE7NmzMWbMGLRt2xYHDhzA9OnT0bVrVwwdOtTBVrPHpEmTsGLFCvz9739HRkZGJFbC7/cjLS0Nfr8fEyZMwNSpU9GyZUtkZmbirrvuQnFxMfr27etw69lB6ToeOHAAK1aswFVXXYXs7Gzs3r0b9957LwYMGIALL7zQ4dazw8yZMzF8+HB07NgRNTU1WLFiBT7++GP84x//oL6oAbnr6HhfdCSXjHCcTZs2cQCa/Bs3bhzHceGU9gcffJBr06YNl5qayl1xxRXcvn37nG00Y8hdw9raWm7IkCFcq1atuOTkZK5Tp07cbbfdxh0+fNjpZjOH2DUEwC1btixyzKlTp7g//OEPXIsWLbj09HTu//2//8dVVlY612gGUbqOP/zwAzdgwACuZcuWXGpqKte1a1fuvvvu44LBoLMNZ4xbbrmF69SpE5eSksK1atWKu+KKK7j169dH3qe+qA656+h0X/RwHMdZL68IgiAIgiCch2J8CIIgCIJIGEj4EARBEASRMJDwIQiCIAgiYSDhQxAEQRBEwkDChyAIgiCIhIGED0EQBEEQCQMJH4IgCIIgEgYSPgRBEARBJAwkfAiCIAiCSBhI+BAE4Rrq6uqcbkITWGwTQRDSkPAhCMIxBg4ciMmTJ2Py5Mnw+/3IycnBgw8+CH4nnfz8fDzyyCO46aabkJmZiYkTJwIAPvvsM1x22WVIS0tDhw4dcPfdd+PkyZOR8z733HPo1q0bzjvvPLRp0wbXXntt5L233noLvXr1QlpaGrKzszF48ODIZwcOHIgpU6ZEtfGaa67B+PHjI3/rbRNBEGxAwocgCEd55ZVXkJSUhH//+99YvHgxFixYgL/85S+R95966in07t0bO3fuxIMPPogDBw5g2LBhGDNmDHbv3o2VK1fis88+w+TJkwEAX3zxBe6++27MmTMH+/btw4cffogBAwYAACorK3Hdddfhlltuwd69e/Hxxx9j9OjR0LplodY2EQTBDrRJKUEQjjFw4EAcOXIEX3/9NTweDwDg/vvvx7vvvotvvvkG+fn5uOiii/D2229HPnPrrbfC5/PhxRdfjLz22Wef4fLLL8fJkyfx/vvv4+abb0Z5eTkyMjKivm/Hjh0oLCxEWVkZOnXqJNqeX/3qV1i0aFHktWuuuQZZWVlYvnw5AOhq03nnnWfoOhEEYR5k8SEIwlH69u0bET0AUFxcjO+++w4NDQ0AgIsvvjjq+C+//BLLly9H8+bNI/+GDh2KUCiEgwcP4sorr0SnTp3QuXNn3HjjjXj99ddRW1sLAOjduzeuuOIK9OrVC7/73e/w5z//GT///LPmNmttE0EQ7EDChyAIpmnWrFnU3ydOnMDtt9+OXbt2Rf59+eWX+O6779ClSxdkZGRgx44deOONN5Cbm4tZs2ahd+/eqKqqgs/nw4YNG/DBBx+gR48eeOaZZ9C9e/eIOPF6vU3cXvX19YbbRBAEO5DwIQjCUbZt2xb19+eff45u3brB5/OJHt+nTx9888036Nq1a5N/KSkpAICkpCQMHjwY8+fPx+7du1FWVoaPPvoIAODxeNC/f3/Mnj0bO3fuREpKSsRt1apVK1RWVka+q6GhAXv27FH8DWraRBAEG5DwIQjCUX744QdMnToV+/btwxtvvIFnnnkG99xzj+TxM2bMwJYtWzB58mTs2rUL3333Hf7+979HAonXrl2LJUuWYNeuXfj+++/x17/+FaFQCN27d8e2bdvw+OOP44svvsAPP/yANWvW4OjRo/jlL38JABg0aBDWrVuHdevW4dtvv8Wdd96Jqqoqxd+g1CaCINghyekGEASR2Nx00004deoULr30Uvh8Ptxzzz2RFHExLrzwQnzyySd44IEHcNlll4HjOHTp0gWlpaUAgKysLKxZswYPP/wwTp8+jW7duuGNN97ABRdcgL179+Jf//oXFi1ahOrqanTq1AlPP/00hg8fDgC45ZZb8OWXX+Kmm25CUlIS7r33XvzmN79R/A1KbSIIgh0oq4sgCMcQy6IiCIKwEnJ1EQRBEASRMJDwIQiCIAgiYSBXF0EQBEEQCQNZfAiCIAiCSBhI+BAEQRAEkTCQ8CEIgiAIImEg4UMQBEEQRMJAwocgCIIgiISBhA9BEARBEAkDCR+CIAiCIBIGEj4EQRAEQSQMJHwIgiAIgkgY/j8koO3uKDDgCwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVjklEQVR4nO3deXwTdf4/8NekFy20KbQUWlpoKQhySovWgnJoOZRj/YHS9QStorugVhHQ5SuKruKJoK4HisKqrLDAuoCrUhQvWqtyiBVEwBaoLUJTmpZDemR+f4SZziQzySRNz7yejwcPaTKZTEY0b96f9+f9FkRRFEFERETkB0zNfQFERERETYWBDxEREfkNBj5ERETkNxj4EBERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RUQu0cuVKCIKAoqKi5r4UojaFgQ+Rn/ruu+8we/Zs9O/fH+3bt0f37t0xbdo0/PLLL07Hjho1CoIgQBAEmEwmREREoE+fPrj55puRk5Pj0ftu2rQJI0eORExMDMLCwtCzZ09MmzYNH3/8sa8+mpMnn3wSH3zwgdPjubm5ePTRR1FRUdFo7+3o0Ucfle+lIAgICwtDv3798H//93+orKz0yXusXr0aS5cu9cm5iNoaBj5Efurpp5/G+vXrceWVV2LZsmWYOXMmvvzyS6SkpKCgoMDp+Pj4eLzzzjv45z//iWeffRaTJ09Gbm4uxo4di8zMTNTU1Lh9z+eeew6TJ0+GIAh46KGH8MILL2Dq1Kk4cOAA3n///cb4mABcBz6LFi1q0sBH8uqrr+Kdd97BkiVL0LdvXzzxxBMYP348fDE+kYEPkb7A5r4AImoe999/P1avXo3g4GD5sczMTAwcOBBPPfUU3n33XdXxZrMZN910k+qxp556Cvfccw9eeeUVJCYm4umnn9Z9v9raWjz++OMYM2YMtmzZ4vT88ePHG/iJWo4zZ84gLCzM5THXXnstoqOjAQB33XUXpk6dig0bNuCbb75Benp6U1wmkV9ixofITw0bNkwV9ABA79690b9/f+zbt8/QOQICAvDiiy+iX79+ePnll2G1WnWPLSsrQ2VlJYYPH675fExMjOrnP/74A48++iguuOACtGvXDrGxsZgyZQoOHTokH/Pcc89h2LBhiIqKQmhoKFJTU7Fu3TrVeQRBwOnTp7Fq1Sp5eWnGjBl49NFHMXfuXABAUlKS/Jyypubdd99FamoqQkND0alTJ/z5z3/G0aNHVecfNWoUBgwYgB07dmDEiBEICwvD3/72N0P3T+mKK64AABQWFro87pVXXkH//v0REhKCuLg4zJo1S5WxGjVqFD788EMcPnxY/kyJiYkeXw9RW8WMDxHJRFHE77//jv79+xt+TUBAAK6//no8/PDD+PrrrzFhwgTN42JiYhAaGopNmzbh7rvvRqdOnXTPWVdXh4kTJ+LTTz/Fn//8Z9x7772oqqpCTk4OCgoKkJycDABYtmwZJk+ejBtvvBHV1dV4//33cd1112Hz5s3ydbzzzju4/fbbcckll2DmzJkAgOTkZLRv3x6//PIL/vWvf+GFF16Qsy+dO3cGADzxxBN4+OGHMW3aNNx+++04ceIEXnrpJYwYMQK7du1CZGSkfL0WiwVXXXUV/vznP+Omm25Cly5dDN8/iRTQRUVF6R7z6KOPYtGiRcjIyMBf/vIX7N+/H6+++iq+++47bN++HUFBQViwYAGsViuKi4vxwgsvAAA6dOjg8fUQtVkiEdF577zzjghAXLFiherxkSNHiv3799d93X/+8x8RgLhs2TKX51+4cKEIQGzfvr141VVXiU888YS4Y8cOp+PeeustEYC4ZMkSp+dsNpv8+zNnzqieq66uFgcMGCBeccUVqsfbt28vTp8+3elczz77rAhALCwsVD1eVFQkBgQEiE888YTq8R9//FEMDAxUPT5y5EgRgPjaa6/pfm6lRx55RAQg7t+/Xzxx4oRYWFgovv7662JISIjYpUsX8fTp06IoiuLbb7+turbjx4+LwcHB4tixY8W6ujr5fC+//LIIQHzrrbfkxyZMmCD26NHD0PUQ+RsudRERAODnn3/GrFmzkJ6ejunTp3v0WimjUFVV5fK4RYsWYfXq1RgyZAg++eQTLFiwAKmpqUhJSVEtr61fvx7R0dG4++67nc4hCIL8+9DQUPn3J0+ehNVqxeWXX46dO3d6dP2ONmzYAJvNhmnTpqGsrEz+1bVrV/Tu3Rvbtm1THR8SEoJbb73Vo/fo06cPOnfujKSkJNx5553o1asXPvzwQ93aoK1bt6K6uhrZ2dkwmer/133HHXcgIiICH374oecflMgPcamLiHDs2DFMmDABZrMZ69atQ0BAgEevP3XqFAAgPDzc7bHXX389rr/+elRWViI/Px8rV67E6tWrMWnSJBQUFKBdu3Y4dOgQ+vTpg8BA1/+L2rx5M/7+979j9+7dOHfunPy4MjjyxoEDByCKInr37q35fFBQkOrnbt26OdVLubN+/XpEREQgKCgI8fHx8vKdnsOHDwOwB0xKwcHB6Nmzp/w8EbnGwIfIz1mtVlx11VWoqKjAV199hbi4OI/PIW1/79Wrl+HXREREYMyYMRgzZgyCgoKwatUq5OfnY+TIkYZe/9VXX2Hy5MkYMWIEXnnlFcTGxiIoKAhvv/02Vq9e7fFnULLZbBAEAR999JFmEOhYM6PMPBk1YsQIua6IiJoOAx8iP/bHH39g0qRJ+OWXX7B161b069fP43PU1dVh9erVCAsLw2WXXebVdQwdOhSrVq1CaWkpAHvxcX5+PmpqapyyK5L169ejXbt2+OSTTxASEiI//vbbbzsdq5cB0ns8OTkZoigiKSkJF1xwgacfp1H06NEDALB//3707NlTfry6uhqFhYXIyMiQH2toxouoLWOND5GfqqurQ2ZmJvLy8vDvf//bq94xdXV1uOeee7Bv3z7cc889iIiI0D32zJkzyMvL03zuo48+AlC/jDN16lSUlZXh5ZdfdjpWPN/gLyAgAIIgoK6uTn6uqKhIs1Fh+/btNZsUtm/fHgCcnpsyZQoCAgKwaNEip4aCoijCYrFof8hGlJGRgeDgYLz44ouqa1qxYgWsVqtqN1379u1dthYg8mfM+BD5qTlz5mDjxo2YNGkSysvLnRoWOjYrtFqt8jFnzpzBwYMHsWHDBhw6dAh//vOf8fjjj7t8vzNnzmDYsGG49NJLMX78eCQkJKCiogIffPABvvrqK1xzzTUYMmQIAOCWW27BP//5T9x///349ttvcfnll+P06dPYunUr/vrXv+JPf/oTJkyYgCVLlmD8+PG44YYbcPz4cfzjH/9Ar169sGfPHtV7p6amYuvWrViyZAni4uKQlJSEtLQ0pKamAgAWLFiAP//5zwgKCsKkSZOQnJyMv//973jooYdQVFSEa665BuHh4SgsLMR//vMfzJw5Ew888ECD7r+nOnfujIceegiLFi3C+PHjMXnyZOzfvx+vvPIKLr74YtW/r9TUVKxZswb3338/Lr74YnTo0AGTJk1q0uslarGac0sZETUfaRu23i9Xx3bo0EHs3bu3eNNNN4lbtmwx9H41NTXiG2+8IV5zzTVijx49xJCQEDEsLEwcMmSI+Oyzz4rnzp1THX/mzBlxwYIFYlJSkhgUFCR27dpVvPbaa8VDhw7Jx6xYsULs3bu3GBISIvbt21d8++235e3iSj///LM4YsQIMTQ0VASg2tr++OOPi926dRNNJpPT1vb169eLl112mdi+fXuxffv2Yt++fcVZs2aJ+/fvV90bV1v9HUnXd+LECZfHOW5nl7z88sti3759xaCgILFLly7iX/7yF/HkyZOqY06dOiXecMMNYmRkpAiAW9uJFARR9MFgGCIiIqJWgDU+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNBj5ERETkNxj4EBERkd9gA0MHNpsNJSUlCA8PZ9t3IiKiVkIURVRVVSEuLg4mk35eh4GPg5KSEiQkJDT3ZRAREZEXjh49ivj4eN3nGfg4CA8PB2C/ca7mDhEREVHLUVlZiYSEBPl7XA8DHwfS8lZERAQDHyIiolbGXZkKi5uJiIjIbzDwISIiIr/BwIeIiIj8Bmt8vGCz2VBdXd3cl9GmBQcHu9yOSERE5A0GPh6qrq5GYWEhbDZbc19Km2YymZCUlITg4ODmvhQiImpDGPh4QBRFlJaWIiAgAAkJCcxINBKpiWRpaSm6d+/ORpJEROQzDHw8UFtbizNnziAuLg5hYWHNfTltWufOnVFSUoLa2loEBQU19+UQEVEbwZSFB+rq6gCAyy9NQLrH0j0nIiLyBQY+XuDSS+PjPSYiosbApS4iIiLyKYvF4nL3c3BwMKKioprwiuox8CEiIiKfsVgsePnll90eN3v27GYJfrjU5QdmzJgBQRAgCAKCgoLQpUsXjBkzBm+99ZZH2/JXrlyJyMjIxrtQIiJq9Yz2uWuufnjM+DSh5kz9jR8/Hm+//Tbq6urw+++/4+OPP8a9996LdevWYePGjQgM5B8FIiJq+1rNt93ixYuxYcMG/PzzzwgNDcWwYcPw9NNPo0+fPvIxf/zxB+bMmYP3338f586dw7hx4/DKK6+gS5cuzXjlds2d+gsJCUHXrl0BAN26dUNKSgouvfRSXHnllVi5ciVuv/12LFmyBG+//TZ+/fVXdOrUCZMmTcIzzzyDDh064PPPP8ett94KoL7w+JFHHsGjjz6Kd955B8uWLcP+/fvRvn17XHHFFVi6dCliYmJ8/jmIiIgaotUsdX3xxReYNWsWvvnmG+Tk5KCmpgZjx47F6dOn5WPuu+8+bNq0Cf/+97/xxRdfoKSkBFOmTGnGq67XElN/V1xxBQYPHowNGzYAsHdLfvHFF/HTTz9h1apV+OyzzzBv3jwAwLBhw7B06VJERESgtLQUpaWleOCBBwAANTU1ePzxx/HDDz/ggw8+QFFREWbMmNFkn4OIiMioVpPx+fjjj1U/r1y5EjExMdixYwdGjBgBq9WKFStWYPXq1bjiiisAAG+//TYuvPBCfPPNN7j00kub47JbvL59+2LPnj0AgOzsbPnxxMRE/P3vf8ddd92FV155BcHBwTCbzRAEQc4cSW677Tb59z179sSLL76Iiy++GKdOnUKHDh2a5HMQEREZ0WoyPo6sVisAoFOnTgCAHTt2oKamBhkZGfIxffv2Rffu3ZGXl6d7nnPnzqGyslL1y5+IoigvXW3duhVXXnklunXrhvDwcNx8882wWCw4c+aMy3Ps2LEDkyZNQvfu3REeHo6RI0cCAI4cOdLo109EROSJVhn42Gw2ZGdnY/jw4RgwYAAA4NixYwgODnbaddSlSxccO3ZM91yLFy+G2WyWfyUkJDTmpbc4+/btQ1JSEoqKijBx4kQMGjQI69evx44dO/CPf/wDgOvlt9OnT2PcuHGIiIjAe++9h++++w7/+c9/3L6OiIioObSapS6lWbNmoaCgAF9//XWDz/XQQw/h/vvvl3+urKz0m+Dns88+w48//oj77rsPO3bsgM1mw/PPPy8PX127dq3q+ODgYKcREj///DMsFgueeuop+b59//33TfMBiIioWbjapSytyNT/HI7y8ih06mSB2VwlP95c459aXeAze/ZsbN68GV9++SXi4+Plx7t27Yrq6mpUVFSosj6///67U02KUkhICEJCQhrzkluEc+fO4dixY6rt7IsXL8bEiRNxyy23oKCgADU1NXjppZcwadIkbN++Ha+99prqHImJiTh16hQ+/fRTDB48GGFhYejevTuCg4Px0ksv4a677kJBQQEef/zxZvqURETU2IzuUp42bRr+979YPPaYGTabAJNJxMKFv2HKlJMICgpCdXU1SktLm7yLc6sJfERRxN13343//Oc/+Pzzz5GUlKR6PjU1FUFBQfj0008xdepUAMD+/ftx5MgRpKenN8cltygff/wxYmNjERgYiI4dO2Lw4MF48cUXMX36dJhMJgwePBhLlizB008/jYceeggjRozA4sWLccstt8jnGDZsGO666y5kZmbCYrHI29lXrlyJv/3tb3jxxReRkpKC5557DpMnT27GT0tERHoa2lPOaBnDmTOdMG+ePegBAJtNwKJFcbBa16oyP0DTdnFuNYHPrFmzsHr1avz3v/9FeHi4XLdjNpsRGhoKs9mMrKws3H///ejUqRMiIiJw9913Iz09vUXs6DKa0muM1N/KlSuxcuVKt8fdd999uO+++1SP3XzzzaqfX331Vbz66quqx66//npcf/31qsdEUfTuYomIqNE0ZU+5wsJAOeiRiKIJ5eWdnAKfpqwJbTWBj/RlO2rUKNXjb7/9ttwz5oUXXoDJZMLUqVNVDQxbgqioKMyePbvFDm0jIqK2ryl7yiUl1cJkElXBjyDY0KlTeYPP3RCtJvAxkkFo164d/vGPf8i7kVoaBjVERORLLXkKelycDc88Y8XcuREQRRMEwYZJkzY7ZXuaWqsJfIiIiKhec49CMuKGG87it9/eQnl5J3TqVN7sQQ/AwIeIiKhVaimjkPS2q0vM5qoWEfBIGPgQERH5KXdBizs7dw7Bpk0TVUtZKSm7Gu39fIGBDxERkR/yNGiRSLuPrdZw+fWAfcfWpk0TkZx8EGZzFaxWK2pqahr8fr7GwIeIiKgN8CSb4i5oKSsrUx3vWCSdmZmJ7duD5ddLlNvV16xZY/j9mrKLMwMfIiKiRtbYu6+MZlOkAKO8PMpl0LJhwwan186ePRsA5IJqqzUcgpCtOo/ednW99xs+fDpGjWraXc8MfIiIiAzwNnhp7N1X7rIpSlJPuaKiWrzzjmc9dhw/u9lchUmTNjsFXFrZpk6dLBAEmyr4CQgA0tKi0NQbzhj4UIN9/vnnGD16NE6ePKmak+ZKYmIisrOzkZ2d3ajXRkTkCw0JXhp795W77I2jqCh7sLF8OXDnnUBdHQz12Dlw4IDTYykpu5CcfNDtdnXHICkgQMTrrwtQjNxsMgx8/MCMGTOwatUq3HnnnU6DR2fNmoVXXnkF06dPNzTWgojIHxkNSkpKSpyOdayXMVKLYyS7JC1baWVTlNkbvfqZrCxg3DggP9+C7dtXua0L2rZtm+bjRrerK4Oku+++CqmpXdy+pjEw8PETCQkJeP/99/HCCy8gNDQUAPDHH39g9erV6N69ezNfHRFR66IXvGjVxigZqcXxJLskjULq1q0S8+ebUVcnICBAxNNPV+KGG653WzsUHw8EBFSjoKD+MzRky7nRnj5xcTaPzutLJveHUFuQkpKChIQE1X+UGzZsQPfu3TFkyBD5sXPnzuGee+5BTEwM2rVrh8suuwzfffed6lz/+9//cMEFFyA0NBSjR49GUVGR0/t9/fXXuPzyyxEaGoqEhATcc889OH36dKN9PiKiprJz5xAsXZqNVaumY+nSbOzcOcT9i6Bfi2O1hquO82RpLCoqCrGxsZgzJxJFRQK2bQOKigTMmROJ2NhYj2uGPP1sVms4CgsTYbWGe31fmhoDn2ZSXAxs22b/Z1O57bbb8Pbbb8s/v/XWW7j11ltVx8ybNw/r16/HqlWrsHPnTvTq1Qvjxo1Debk9ZXr06FFMmTIFkyZNwu7du3H77bfjwQcfVJ3j0KFDGD9+PKZOnYo9e/ZgzZo1+Prrr+UdAURErZWR4EUZDCi5qsVx955a53MUHw+MGgXDdTMWiwWlpaXyUpzRwEyiDHReeCEbGzdOcnptcXGsoWtvSlzqagYrVgAzZwI2G2Ay2QvMsrIa/31vuukmPPTQQzh8+DAAYPv27Xj//ffx+eefAwBOnz6NV199FStXrsRVV10FAHjjjTeQk5ODFStWYO7cuXj11VeRnJyM559/HgDQp08f/Pjjj3j66afl91m8eDFuvPFGuXC5d+/eePHFFzFy5Ei8+uqraNeuXeN/WCKiRuCukNjVUpa7WhwtjdX0T2s5Te+z7d3bD/367VUtXTkGSVp5FFE0YcWK2zWvXVn31NSDVBn4NLHi4vqgB7D/88477QVmjV3d3rlzZ0yYMAErV66EKIqYMGECoqOj5ecPHTqEmpoaDB8+XH4sKCgIl1xyCfbt2wcA2LdvH9LS0lTnTU9PV/38ww8/YM+ePXjvvffkx0RRhM1mQ2FhIS688MLG+HhERD7jWFwsfVG7Cl7cbSv3ZPs34Nk2dU9pLadpfTZAxCefjMeWLWPlwMVqDcdPP/V3CpKcibrX7lgL1ZSDVBn4NLEDB+qDHkldHXDwYOMHPoB9uUtacvrHP/7RKO9x6tQp3HnnnbjnnnucnmMhNRG1dI7ZkPqC3XCXwUthYaLbbeWutn877r5yl10qKyvzabbE8bMBIgBBft9Nmybi7Nl22Lo1w+l5OxsEAeefs8ExC+Rqi31jD1JVYuDTxHr3ti9vKYOfgACgV6+mef/x48ejuroagiBg3LhxqueSk5MRHByM7du3o0ePHgCAmpoafPfdd/Ky1YUXXoiNGzeqXvfNN9+ofk5JScHevXvRq6k+FBGRDym/hPWWmrSCF3dLWVOmTFFl2ZW0Ahh355OyJr7Mlkifbe/efvjkk/Gq50TRpAh6AHvQYw9+pHsj3ZegoGp5mUvr2psTi5ubWHy8vaYnIMD+c0AA8PrrTZPtsb9fAPbt24e9e/ciQLqI89q3b4+//OUvmDt3Lj7++GPs3bsXd9xxB86cOYOs80VId911Fw4cOIC5c+di//79WL16tVP/n/nz5yM3NxezZ8/G7t27ceDAAfz3v/9lcTMRtSquin3N5irMnHkB5s69HlOmTAFQnzERBPvfbB2XsqKjoxEbG6v5SytwcXc+iS+yJcoCarO5Cv367ZXft57jMhgACBg37mNkZy9FSsoumM1VSEo6jPj4UkPX3hyY8WkGUtOogwftmZ6m7lwZERGh+9xTTz0Fm82Gm2++GVVVVRg6dCg++eQTdOzYEYB9qWr9+vW477778NJLL+GSSy7Bk08+idtuu00+x6BBg/DFF19gwYIFuPzyyyGKIpKTk5GZmdnon42IyFfcLTXl5ORg9uzZiIuLk5/3ZClLj/I45fmCgqpRUxMiBycSqf7I22UvvazWpEmbsXnzJNhsAkwmEVdeudUh42MPaBwLn43ci+YkiKIoNvdFtCSVlZUwm82wWq1OAcIff/yBwsJCJCUlcWdSI+O9JqLmUlpaiuXLl8NqDcfSpdlOxb5jxuRg+PA8AMDMmTMRGxvr8yGkFosFJSUl8nKW0d1dRpe9XH1GQbAhO3spzOaq8/VNnXDllT3w669fNtouM+k+NoSr728lZnyIiIg0mM1VyMjYipycMagv4hWwdWsGBgwoUGUwfL0jKSoqSg6kPNnd5Rh86QVkUpbIXVZL+vXrr/Y2KA3N4jSkK7SvMPAhIiLSERdXCvXOJde7kxqDJ/11lIyMvvCmt5Cr2VyuApvGyhZ5ioEPERGRDm8Cg6a4Bq3+Oo6MFD172lvIFVeBjbusldH6J19g4ENERKSg/BL2NjDQWmKyWq2oqakBAAQGBiIyMtLpfV3t7nLVX0cKICoqKjyulTFSQO2Ou8Bm0KCpmlmr4cOnY9Qo3y8VusLAxwusB298vMdE5K3iYnuz2N69gdDQ+gCkpMSEwsJAJCXVytPBtYKNs2ejkJh4K374YR3M5iqXdS1Wq9Xp/SsqKrB27VrFMcbrWpTFyVq7u/T660hLb2vXrsW0adMQExPjdG5X12E2V+HQoV6K4MWGYcPykJaWr3nNjufSW44bMOAaDBtWjZqaCM0edmlpUWjCmAcAAx+PSH1vqqurERoa2sxX07ZJ/6Ny7DVERKRFyrCsXh2KefPM8hbsiRO3IyVll8tlGKnHmPr13SEI2fJxyroW5Zf+mjVr5GtQBwP2x/TeVy8IUWaJoqKiMHv2bFRXV6OsrAwbNmxAv357sWXLWJdLb1LQNW3aNPkxd/U1WrO3cnOHIzc33SkA0jpXcvJBzSXBgoIPcPSo/XVLlszBnDkdUFfX9D3slBj4eCAwMBBhYWE4ceIEgoKCYDKx/2NjsNlsOHHiBMLCwhAYyD+iROSaVMRbvzXbvgxkswnYtGkiYmKOuVyGOX78ONauXev0eq3dU3oBhF4woPW+yrEP7op8HbNRniy91dbWAjC2K0wrY2NnD4Dy8tJdfqbs7KVur2vatCpMndqh2XrYSfit4gFBEBAbG4vCwkJ5wjk1DpPJhO7du0MQBPcHE1Gbo1yucvcFKWVJ9JZbjh7t7nLLthQguNvarRdA6AVWU6eu1zyfsgmg0cGjWsteR4/GAxCQkHDU5f1x9bmk54OCzmkUUKuPd/WZyss7GdrqHh/ffAGPhIGPh4KDg9G7d+8mHajmj4KDg5lRI2rFPAlcHK1YAcycaa8HMZnsY37GjXN/Pr0dWAkJRwztzHK3g0svgDhyRDuwAkSNYMI5uDCyPT4qKgqZmZny0pon9Th6n6ukJA7//OctcoZm0KA9+OGHQdCbZiWKJhw/Hg3HAaQmkyjfI1db3VsKBj5eMJlM7CZMRKRDK3A5P+7PiRQgdegA/PabFcHB1Zg5Mxo2m7RcBdxxh32zgygKLs+ntwwkzY1ytzzkbhlJL4Do3l07sEpIKHY632WXfYWvv77cq+3x5vOFQ3r1ONJylLRsFhQUpPu5MjK2OmWe9uwZhNtvfxN79/ZHbm46nAMgEV9+ORr2XWX24EcQbFi4sARAyw52lBj4EBGRzxQX1wc9gP2fd95pz9g4ZmqUAZL9y9QM+xeqY8PA+p/t5xNx0UXHkZgY6FQDo7fcYrTjsKvjvAmsUlJ24ezZdsjJsQcZX399OQYN2oM9ewZpBldG5m7p1eM4LpvV1NTgpptuQlhYGABg4cIT+OGH0ygo+EA3e1VTE4yxY7ciLS0f+flpyMtLd9pCb5/GLmLq1LVISCjG6NFDsW1b/Xn0CrelzybxdrZYQzHwISIin7BYLPjmG8BmU3+Z1dUB+fkWhIbWF+s6Bkj1X6qOX7LO6uoEvPTSR0hKOizvyFLSW24xugzj6jhPAyurNRxbt2ZAyp5ImZWsrDdRUxPsFFxJs7kA+64sZa8faeu8dkNDyOeXls2kc0lb5GNjgcREi7zLytWyntlcJQdAP/3UD1u2OG+hb9/+DMzmKmxTRD2udo8pP5vE6GwxX2LgQ0REDabcWSUIzkMvt29fhYKCKjlQ0QqQ6gmKL2UpA6QMhEQEBdnrLJuj3tKTwMpVZiUpyfUmGWUvIMf3mTRpMzZunAjH5SitZTO9LfLdulWqtv4/8MBBhIUpexTZMzd6S3mO7+PJTDGta2sqDHyIiKjBpC8wd3Uyyq3jjgGSRBBsckbk9On2WLfuOscjUFNj3+VktVrl2hdvSbUwjcHIyAtPGhxOmzbt/G7XNUhOPqhajjLaVVrKsMyYYcFvv70gZ6mUQY8ycwPYkJx8CL/+muzyfdztimspGPgQEZFPuaqTkbaO641hUNbNADgfIOkHDjU1NYbnPGVmZjoFSb6cEaVcmiosLEROTo7bQNDTBoeRkZGIjY3F7NmzUVJSArN5A9LS8r0aN1FdXa2ZpdIqnj50qDfsu8e2O+0ek65Va0u89O+qJUxllzDwISLycw3Zeq7HSD2N84yoYKcvbyMN+5TLN3rcFdK6e/2ZM2fkImF357dYLMjJydH8nI71P942OIyKilJl2ZTb2xs6+dxVM8O8vHSkpeXLjzgGblqF2768Nl9g4ENE5Mc82XreGJQBkl72w8iOrIYWyCqDFmUApBwseubMGafholoBlfNwUu1sh97SkKsGh8qdUVKxs7vamqKiIhQWFsrZNsA+iUD5s/I6XTUzdNfQUVm4HRRUjYqKjli3biqUxd1GGjY2JgY+RER+ysjW8+JiIDfX/vthwxqv6667L29vGuMpgxgjA0qlAm3lNSkDFr0AxtXOJFe7nLR3Z7lucKi1M8pdbc2WLVvc3iutzI1WM0PlMuPRowm6hdsnT3ZyWC7TvrbmwMCHiMhPHTignpYN2LeeHzxoD3BWrADuuAMQ7f0DIQjAG280TkbI14WxyiDG3YBSKWhRZmqMLOFI59BbIjMSzLlrLAi4b3BopIDaFb3MjdTMUFk8nZGxFeXlUSgoGHB+m76aINgQFFStG/R4em2NgYEPEZEfslgsiIiohckUI3dJBoCAABHh4cfx44/BuOOOjnLQA9gDIL1mhA3l6Ze3lH0pK9Puoi8FI+6CD62gRes1P/wwGNKWer3lGinDJC1HGQnmtJbxQkP/cArUAKCwMFGzONhdHZQyUwXYMzUAkJBwFGZzlaFmhuXlnVBSEqcIyrR6Ldnft6YmxGXQo7w2XxaXG8XAh4jIzyizIVdema4qpJ0wYTM2b96FwsJEiOJ0p9cqM0JKRr/A9LaOezJ1XJmNeecdEc88U4EbbjirWW/jTSZJu7jXsZu0+hyOy2SA+2BuypQpAOyN/ZRBSseOJ1UNDg8d6nV+arx+cbBzobi9QPzQoV6Kfj+OPZHsM7769fvJbTNDAPJcL637AQDXXrsOAwbs092JN3XqOiQkFOPWW8cgOvpidm4mIqKmIWU5du4covgbvH0ZQ11/IqrGRQD2gZSieBAWSyfVl5bRnVWuGClidszG2GwC5s6NwG+/vQWzucqp3sabZSDt2ht1hsPxHHoFzcqlK8dgLjo6WvUarSW5Tp3KDTUFlN6vpCRW9X72jF39tnS1+hlfrsZoAK52etXfj4SEYgD6QeyAAfvkzx0bG6t7rsbGwIeIyA9p9WrZujUDAwYUKOpPNqm6AwuCDRMnbsaXX+7Cl186F/Ua/du7FCBVVFTgxIkTqpEHekXMo0ePxrZt29xmcBwDEE8ySa5e4y4wUHIMYDIytiIursTljDCt5bWNGydixIgv3Was1M0G6wM0V4GK4/mUu7FuvDENAwZcDOBiWK1WrFmzxmUwqHU/jM5Gaw4MfIiI/JAn9SdHj9rXtRISilVfYN6OG5ACpNjYWERGRqoCHz0dO3aE1RqO06fDIE0Gl7jL4HjzJaz1miuu+MztObQCmK1bM5CdvdTpNRUVFee7MOtlVEz48stRcJVtcg5g9WecuaIcozFgwDinjIxeIbargE4viG2Ouh4lBj5ERH7I6BKQ/ctrn+qx+mUVE5pqxeLdd0PkOhd7IGAPfoyOafBmO7zja4ycw1VAKT0vFSgrZ3G5GjxqD2a0syvulqCMMrLTymgAqdUhW9JcdT1KDHyIiPxMRUWF7hIQUL97CFB/UQPOhcWN1fDQcSfS0qW9VFkNQRAxdepapyyUN6TdWBUVFV6NVggODpazX3oBZUlJnFwcrFWg7DzCw5GAceM+Rr9+e1XX5Tpgcj3lXnl9RoJH6Tq1jpsyZQqio6NbRGDjDgMfIiI/YrFY5EyD49/glbuH7F+aIpRZleTkg06FxQ3d3q617OFYI5OenqeZRWnf/ozul7XR5ZQzZ85g+fLlivfV3j01ZswYhIeH63ZuLi21zxYz0ptHr0A5Ofmgqn2AkiDY5KBH2g329ts5TgXUzqRlQa0p9zZce+06l8Gj0fsYFxfX4gMeCQMfIiI/olX8qzV+QPklKX1RT5263unLVW97u1HK3WAVFRUoLgYee6yvvJtMFE3IzU3XzKIEBenXGBndZWa0309SUpLhnUiOAaW7eqoxY8YgJ8cexDjvvAKkHXf1W+dDsWZNV7z2WjakwDQlZQd27LjY4XUCrr3232jf/owc2OrttHK8LxJfzEFraRj4EBE1g8YYDNoQ7mpFpCyQYwAiNTy0WAK9/vKLioqSM1GFhYmw2S50OMKE9PTtcgdhQIQomrBixe1O08wLCirkVwUHB7sNVqRMjbvgpKKiwuW5HDMjjktCruqpwsPDAbjaRm8vkA4N/QMAsGhRT9UxomjCzp2p0Cr6VmZzXNXouFqqak1BjREMfIiImlhzDwbV4rpWpP5L1HEZR2p4CLieWeWOuxqZtLR89Ov3E95883Y4DrxUTjP/5z/1R1J4+vmVwcnatWtdnksrM1JWVqa5HKVXU2M2V52fkSV1iVZvTbffd0ArKySKJgwbtl01XkLvPbSWtZq7t05TYuBDRNSEjAwGbQ5atSnSl6zyS9RV1sDb7e3urkN6b62lIFE0IScnA3rTv41ek1ZxsSgCBQUDEBdXik6dLCgpKUF1dbXu0o7jhPcNGzqqOi672/5ttYZjz55BqK/Dce4WrUcKDqXxEp72zmnuLeZNiYEPEVETcjcYtDk5BjUAVF+iyh1PSUmHff7+0vmTkw8iO3up0xe4XlbG05EUepyLi03IyRkDaRv5oUObkZJin44ubdl2nPouNfyzWsMVheL1/Xyyst48H8DVj4I4e/YsAGPdkbUzPursjqtdV1paW41OQzHwISLykjd1Or1725e3lMFPQADQq1fjXKOntHrXAK4nnPvC6tWhbudRGZ1mDrgufNajXVysPZh0zZo1Lu+JXs2QtFSnPD4iIgKA61EZynYDjjve0tLy3QZ5/rSU5Q4DHyIiL3hbpxMfbz/2zjvtmZ6AAOD115s/2+OKux1PDWGxWFBUVIt582JUO7n0zu9umrlUDCwVPpeVlRnOaLirc1JmkqzWcNU4D+maY2KOIT6+1GWhsnT85s2TcN99/QDUAjDeHdmbURD+tJTlDgMfIiIPeVunI9V+XH01kJ9vQlFRIBIT7UskpaVNs+TgzRegNxPOjZAmmtt3cqknwbs6v2NWKiVlF2JijmHFits1grOlmsNLJcr74Vznoz8qIj8/DVr1Rm++eTsmT7ZncpxrptTH22wCVq78WrVsaKQ7srsO0o7LWv62lOUOAx8iIg95U6cjfck7KihQ/9yQnVFGOO4+Kisrw4YNG1y+xpsJ50a428ll9PxWaziOHOnh0fBSSVRUFDIzM+W6nI4dT8rDOktK4px2YgFAQUE/5OYO07ma+myVMogJCqpWBWauPqM34zWUuKzlGgMfIiI3HGt5vKnTMbq7yNVx3tQUab3G08DKmwnnjXV+x5ESepPJAWPBk8ViQU1NjWa9zvDheRgwoECns7U+ZcClDGIa8x6ScQx8iIhccKzlWbLkFKZNq8Izz4Ri/nwz6uoEBASIePppKwICzsJiaZxlBW9qinzZL8jIEkxwcLDXjRldnX/YsGHIzc11CHJsSE3dgZ07Ux26TWsP89Ty448n8fzzmxEUdA6bNmktkx100dlan17A5c2UeG+wnsc1Bj5ERDqKi4E77oC8xdlmA+67LwyHDy+H2VyFe+4Jl7/ETp2qwvmRTz5frvKmpsjoazz5knQ1oDIuLg4ffBDlNtBSBkYBAdrnt1rDVYNS33uvBEFBsQ6Bh0ljRAOgN8zTkT0ojDxfW6TueAw41xi5n4JubFp8Q5exXMnMzETnzp1Zz+MGAx8iIh3LltUHPRK9ZQwl5XKV9EUfEeE+U6DHm5oio69xrPmpqKhAba19l9HJkyexbds2t9cXHR2Ns2ej3AZajhmoZ54JdTqXY1ZHmhnmareVknKYp+OEd8C+tJWfb8Mdd0TLu8jsQY/rZTLXO75suP12e11QY2Zypk2bphqQqsQCZuMY+BARaSguBpYs0XrGeNGt+os+BhMnDvGq9403NUWevEb5haksii0tLTUU+FRUVOCnn4Jhs6m/eOvqgPx8C86dq0BFRQfMnBkDm80eXNhswLx5Ztx7b7gcpBw9mqDaIq7MwmjV8DhSZlsca3a6davEjBkW3Hbb9vOPO57H9TKZ3o4v6dj4+FLNaxo9erShe+gqqAEY2PgSAx8iIg1aGRMAGDYsz9Df6J2XmgSvet9YLBYEBFR7VFPkzWsaYu3atbBawyEI2U67lrZvX4WCgirNLes2m4Dy8k6qqeGuCdBalgJsuPbadfJATq2+Q3PnmhEbe9DN+9jPn5X1pmYg47hLy0iGp2PHjm4+k11kZCR3YjURBj5E5Nf0inGjo0/CZIqUMxQAYDKJSEvLN3RercDJ0943jlvgjdQUefMaX3C3M0tvy3pQULVHRcNZWW9i797+TsM4BwzYJx+n3XdIwBNP/GHgfUyoqdGve/K0RicoKMjQcSxIbjoMfIjIb+nterJYLNiw4WVMnKheLpk40fj2Y62lJqluxHFLtpLyC9Bxa7uRmiJvXqPH0y9jV7uWzOYqzQnlNTUhLoIRGwQBquPj40sRH1/qchinvabHOTO0b19/jcc93wLvic6dOztNbXfEZaymxcCHiPySq11Pp06dANCw7cfx8cDNNwOrVtU/lplZjW7dbsO8eWbYbAJMJhHPPGPFDTfYh1S2tC9Ax8JnLdJQToleoLVz5xDFTC37KIaUlF3nl8icM0FTp9qXrgDoBlKudk4NG5aH3NzhqsdF0YRhw7arskUXXrgPe/deCCM7sowYO3YsEhMTAbS8f59kx8CHiPyS3q6nHTus2L3b/Re5KxUVFSgpMeGdd2KgzCasXRuCtWtDFAW+AubPj0RmZmSLndXl7ovbPp08UTN7JXHugWOfVD5gQIHuEply6cqbQCQtLV8OcCSCYENaWr5TtsiegfNNb53ExETW6rRwbTLw+cc//oFnn30Wx44dw+DBg/HSSy/hkksuae7LIqIWRG/XU3z8H9i9u2HnXrt2rW4xryN329JbMvtSYQxstukuJ7a7m/XVGI393NUcGckeTZkyBYGBgVi7dm2Dr4dajjYX+KxZswb3338/XnvtNaSlpWHp0qUYN24c9u/fj5iYmOa+PCJqAVztegoOPm74PI7DIAH70s/y5f/D6dNhcK4nqa9Zkbjblt4SSRPVldvTld2OAahqmLRqbhxrafSCD1f1UO40NKCKjo72uM6JRcotX5sLfJYsWYI77rgDt956KwDgtddew4cffoi33noLDz74YDNfHRH5irejEdztenIzr1NFaxjk6tWhinlOIhw7+gKQsxBNMerC19xNVM/PT3PacWWnzHYZq6XRmp8lZZS0+t441hsBDe+UrKxzUjZ3VAoKCoLZbGZNTyvRpgKf6upq7NixAw899JD8mMlkQkZGBvLy8jRfc+7cOZw7d07+ubKystGvk4gapiEzqIzuevJGcbG9KV99czwBgiBi6tS1co8ZAKoshDdbzBuSBWko6f6VlMRCa0dUbm46pMyOlAWyd79WHgc5M6RHqxfPhx9OwsKFaUhMDGzSAEN6L9butA1tKvApKytDXV0dunTponq8S5cu+PnnnzVfs3jxYixatKgpLo+IfMCbuVVaGiN4sBdMq+t4RNGE9u3PGKopcQzKtJZNtLIgyuNcLbUoP3NDlmSs1nBs3ZoBdRZHPB/gONfyODLSz0irLqiuTkBVVRfoxTxcZiIj2lTg442HHnoI999/v/xzZWUlEhISmvGKiMgVb+ZWOXK1hOIJxy9ae8G0qAp+GtIXxnE7eUmJCY89FiNnlETRhM2bJ+HsWUH3NZLVq0Px2GP12+j79xe8mtReUVGhM7BTgNY4CftWdcBVfY9WrZR9V5z6Xrqrh4qKisK0adNYjEwueT81rwWKjo5GQEAAfv/9d9Xjv//+O7p27ar5mpCQEERERKh+EVHLJe3GUvKkQLikxOS0hLJp00RYreEeXce0adOcllvi44GFC3+DINgjM3d9YaQp5K7eOyoqCrGxsQgODkZhYaBTRslmE/DEE6dgsVicXiP9qquLxbx5kapt9Hfeac+eKRUXA9u2OT8usVgsWLt2rdyF2R1BsCE9PQ9jxmx1uicA5M8u1Uopf6WmdsHy5YI8wT0gAHj9dffBrat5V0RAG8v4BAcHIzU1FZ9++imuueYaAIDNZsOnn36K2bNnN+/FEZFPxMfba3ruvNOe6TH6hSgpLAx0ubXaKMddohaLBdXV1Rg9+ldYrWvd7iTSyjrpkQqKteZhAcBrr4UhNHQ5FiyYrjm365tvoDtANDTUHigZqZuSskhaW8Wdl7nsj9mbCNqQmroDSUmFSEgoxqFDveQCcGmA6Jw5zvfy6quB/HwTiooCkZhYi7g4G0pLm64xIJfO2qY2FfgAwP3334/p06dj6NChuOSSS7B06VKcPn1a3uVFRK2XL74Qk5JqNTsFOy5H6S2/FBYGok8fE6Ki6odPOu4UM5tdN93TKtzdtGkiFi48Aa36WWXAkZ7u3JEYsAduRUW12LMH6NABOHXKPm9swwbtgEk5QHTKlHswc2ZHj+qmHLeKKweNOgdCJuzYcTF27kxVja2QPvv8+WZkZtrfy/FeSgoK1D/rFYIbDVZuuukmhIWF6T7PHVptV5sLfDIzM3HixAksXLgQx44dw0UXXYSPP/7YqeCZiFoXb78QHbe9x8XZXDa2kzhuVXeVETEy90pJr6FfUVEgUlPVxxYXA998EwyrNRxmcxXS0vJVO6cAexBTUhKHSy6JUdU/mUyRmDhxCFJSdmnOyZI+87ffnoTNpp4iXlcHrFhhxZQpNgwcqD1hXFmkLQVCR4/G4/jxGHz55Sin40XRhJycDDhWWdTVCXKNltF7qXeckTEbDGr8W5sLfAD7//i4tEXUtnjzhegYrCxZcgpjx1YYamynzBz4aieZRG9SeWKiukdM/fVHQRCy5SLsyZPVgVt9UONc/7Np00ScPdtOc06W5KefPtBYQhPx6KNmLFpkwwsvnMK993aQn9HbEafM+jhuda9ncvrsvm7iyKCGXGmTgQ8RkVawct99YcjO/kheitIKeDIzM9G5c2fVl6cvdpIp6Y1TCAvrDYvF3qPG8fqVnZEdAzftXVb1r1MuLTnOydK6HmXQIoomzJnTHlOnAr//bsKWLRlyxkm5I855HpcAreBHHajZmzi+/rrQKkd2UOvEwIeI2iStYMVIEbPZbHbKGOjN9WpIlkIr67R2rT0Lc9NNN2HXrkingmTl9TsGbo5ZlHrOj2vdh5SUXYiJOYY337wdWktRs2adwaZNMRDFLqrzSMGY3hb3/v1/xN69/Z1aBwwYUIDy8k6YM+dPuktpRI2BgQ8RtUlawYo3PXVczfWSRk0YNXr0aGzbtk3+WS/r9O677+oWJGtdv17GxjG74u48FRUdod3lRMTGjdqFwFIQpbd8N3ZsDsaOzVEFeKNHj0bHjh0RGBiIyMg/UFpaCoC7qKhpMPAhombjzbwtox2XpW3v9TU+IiZOVBcxuzuXu7le0qiJzMxMQ9fesaNzZkPvGtxNF3eUnHwQU6euByAiMrICNTXBcqARGvqH6jzp6c4jfHbuHIKNGydqnFmvVsdOCqI8mYauDP4cGb2XRN5i4ENEzcKbeVtGOy5L294rKkIBmKH1xW3kXEbnetXU1Lj9vN58HqPTxY2eJz8/Dbm56cjNHY68vHSn+hznbI/jdHk1QRAxf/6vGDmyHwBg6NA6JCcv9XoaOuD9vSQyioEPETU5b3ZJ6XVcTk4+qPqCraiowNq1a1FcHIsVK26XdzpJO5yk4Zh65/JGYKCx/5UGBQXJv9fr5eP4edwNUTV6HgDIy3MeIKpfnwNcffWH+OijCU7PSVmjtLR8tGtXhfz8+ufc9TByx+i95LIYeYuBDxE1OW92SR092s5Qka4gCIplG+3jAUH3XN6IjIzE7NmzUVRUi8LCQCQl2ZsqKgUHB6sySHq9fH76qR/6999rOHjQO4/jfXH1ft27H9Gsz+nT5wACA5W1QzYMG2YPeBprKrx0L9mHhxoLAx8ianLe7JIaOtTsNADUZBKRnv4nDB1ajbg4G4KDg1FUVKuzbKMu6jXSvdkTH3wQ5XbpTiriBbR7+QAitmwZj5ycsZpLb1r1QJ06WeC4JCUINlRXByE391J0734Y8fGlLt9PEGwYNGgP9uwZ5FSfY3S5zZcY1FBjYuBDRE3KyC4prXlTjq8RBBGiCNx1V0eYTCKWL7dPG9+2zaK5bONYbKtXiHvmzBmPP1NJicnjpTt3vXM2bZqImJhjqKkJQadOFqeREHPnHkRY2L9w6FAvqGuYbOjWrRj/+tcNkHrpDB78A/7f//uvy/fbs2cQsrLeVBVFK6+1KQIeoqbAwIeImozRXVLKsRNarzl6NB7r1l0LKcthnzYuYtw4QXMWF2BDVtabiI+vz7joZTLeffdd3TlQeuxT09WPaS3dOdalSNfw00/9sGXLeNVzomg6X6PkPPtKFE147rneuO222PPZrfrARxCA4uIExWMCfvhhMC6++FtFr5474FjwLYom1NQEIynpsOHPTdQa6ZfrExH5mNYuqaSkw07ZBOVxWq9p3/4stJrs7dhhRXX1r5g0aTMEwR6JCIINkydvVgU9nry/EWbzcZhMouqxgAAR4eG/w2KxALAXdO/ZE4WRI290uob+/ffK11tPVBUsO35em03AkSPdNet2nHexCTh6tDsAoKYmRON5AGjYUh9Ra8GMDxG1Olr1KiaTiC++WHG+LgVe16VYreHYvj0Yl14KnDzZDoWFiW57BuXmrsXEieot5RMmbMZ779l3TCUlXYvHHmt/vv4nWR4cKnFe9nK9jRywB3R6Rcn2nWzK4EZEQsIR3XsHiBgzZmuLWM7ibi1qbAx8iKjV0WqW98ADBxEW1rC6FKkfzgsvmCAIANARojgdJpOIZ56x4oYbzqqOLysrw4YNGwA4L50dOtQLS5dmK+pp7JTb6h1HRkivDwqqlpe56onnf9XXJMXHl2LQoD344YfBkOp5Bg3aAwCqxwYP/kHOeGndu4yMrRg+3LmpYWObNm0aIiMj5Z+5W4uaAgMfImqVHAMNZdDjDed+OPXP2WwC5s+PRGZmpMsO01KwpT2ws57ezDBlsKY9gkJEevp2eTu51RqOH34YBGU9z549g5CdvRQXX/wtjh7tjoSEI07LfM2xUyszMxNms1n+mUEONRcGPkTUavlyt5GrCeeAZ9PY3Z3LyNZ5raGhomhCXl460tLsHQPz89Og16soKemwZl2TxJf37uqrr0aHDh1U2RslBjnUkjDwIaJGJ83kiohwv59CWWNjdH6XL2jXvtSzFysfh8US6PZLXKu3jnJwqKuZW0r2QmT9Rov2TsyOmq5IecqUKYiLi2NQQ60KAx8ialTqmVwxToW9SsoaG6kJ4NVXN811ahUYCwJUxcqbN9uv2912d63eOmPGbEVcXImhpSWpUWFQ0DnNQuSSkjhodZ8GgGHD8pqsSJlBD7VGDHyIyKeUE9cBx5lc2oW9gHONjdQEcNeudk127Y61LwA062Ck7e4lJSanXV/1Az/VvXUGDChwO3OrvDwKJSWx2Lo1Qw64+vbdh337+kFZx7N1awayst7U3NElLYM1xJQpUxAUFISamhoEBgZqLmFx+YpaKwY+ROQzjhPX77/feSaXKJowfPh0DBum7pWzfXswXnjBsTcPYLF0lGc3KXdRNZRUbOt4TsfaF71gxf5ZY2CzTVdNRDc6O0tJOV3dsaPyvn0XQq/ZoF736YaKjo5GbGxsg89D1BIx8CEin9CauP7CCzi/XFR/XEAAkJYWBeX3qsViQVJSrdMsLqmuBgj02RfxtGnTEBMT06BsRf2ICvWIieTkg5q1Qq6KmUeMuAGPPdZLniLv3FzQpHu+pKTDTb47i6i1Y+BDRD6hN3H9rrtO4Y032uvO5FKOpNBqAqisqzFqypQpiI6OdnrcV8szu3ef1sxkSbupPMnEWCydVMGeI6nPjnL5S3k+ztEi8gwDHyLyCa2J64JgQ2joctxzD3RncinHQ7jqL1NdXW24q29jF93+9NMHEIRshyUtG06fbg+rNVz3c1it4Th6NAEAkJBw9PzIjFqn++a4AywlZRcGDChosswOuydTW8bAh4gaTHt6unNmwpHWTCxXGYyoqCinYMlRUxTdao+YELBu3XWqYEX5OXbuHIKNGyehfinLPkMsM/MkFi2qw8KFXVWdlB13gHmT2Rk9ejQ6duwIADh58iS2bdvm9jXTpk1j0TK1aQx8iKhBXE1cb4zMRFN8KUs7rFzN6JKyOkePxmP9+mvlGh1lvY+rnV6ACRs3TkRy8lKYzVXIzvb9fevdu7dcG2WxWAwFPjExMT55b6KWioEPETWI1vR0XwY89du8TWiMjUaOyzrKHVbK7I0Ws7kK5eVn3e7i0u/kXH9cY9fqtJRsGVFzY+BDRC2WMgh55x0Ry5cDWVnqXkEN7e4sBQQnTpzA0aMiHnusryp7s3nzJNx6axz69u2Ampoap+30Wk0GHXdx6XeFbtwuy45BHYMaIsde6ERELYRzQ0MBd94JPPss0KMHcMUV9n+uWKF+XXExsG2b/Z+eWLNmDd5771unHVY2m4APPijAmjVrEBQUpHpu584hiinq9j37gmBDerp60rlUEyQI9RXMgiBi8mTf9N3RwlodIm3M+BBRi6S1PFRXB8yfL8oZGXt3ZxEXXXQciYmB+OCDKFUDRSlD5E51dTWs1nCcPh3mMntTU1MDoH531saNE1H/90cBgA2iCOTmDkdeXrpqmUxZEwQACQnFjbq0pTcwlMjfMfAhomalt3VarxGgczAk4KWXPkKnTuVYtuw+OWPjGBS5yn6sXh2KpUuz5R1a0vto9eBRd1l2VP+YVpGzvY5nn7tbQkSNiIEPETUp5Y4pqZhWWXQrjZBw3DLu2MhPImVkysujnJappKAoKemw7mDR4mJg3jyzonOyCaJow7XXrnXKypSVtXMR9DhzN6qiMbEXD5E2Bj5E1CSmTJmCLVsS8NhjZthsAkwmEf37C8jK0i+61Roaevp0e+TmpkMa5aDMyLhapqqurnYqirZYLPjmG8Bmc3x/E9q3P+MUsPzyi97uLOm97a/Vev/GotWlmruziPQx8CGiBjGaWSgra4d588yKpSjB0FKUtM3bcZt5evp2pKXlq5aRXI2KWL06FPPm1df/LFlyChUVL6O4OBaCcLvLXVmAtMTVUeMKRVx77b+RkFCMQ4d6NcrQUFc4UJTIMwx8iKhB3PWHsVqtWLNmDVatyoXN1lv1nN5SlGMDQccdXqJoQl5eOtLS8lXnczUqwp5psh9nswFz5rTHFVekK5bO1GMilAFL/ftrzdQS5SUxVyM33HHM3Ej3zR0uaRF5hoEPURvhy942njKyrOJuarm0FPXEE+F4/fVsVdakY8eTmk0Cjx6NR3n5WVWHZa1GgHr1Pzk5GXDclZWV9Sbi40udXq9f16Ou4/G2EaFj5iY2NpYNB4kaAQMfojZgxQp4vI27qQMld0tRK1aIWLhQhCh2kF8j7YzKynpTM2hat+5aKGt99DosG90hBphQU+OcQdFvQKhfxzN69GgEBQVhy5Ytrm6LSwxqiHyPgQ9RK2axWFBUVIuZM2M82sbtTaDkC66WopYu7aq5lCSK9mDEMWhSFhJrbR1X8nSHmNKUKVMAAIcOKYeS6i+LSYzMxSKipsfAh6iVkoaDFhYmwmabrnpOr3bG20DJl/SWolztlurUqRxJSYfloOn06fZYt+461XHuto5rBV2hoX+4LUYOCgpCTU2N6vVBQdWoqQlutEGsRNR4GPgQtVJS7YeR2hnAu0BJj6+XyfSWkhyDESloslrDXX5mvenqjkGXkWJkZYFxYw4SZZEyUdNg4EPUyrmrnZEUFdWisDDR7VBNV8W0QOMskzl+BsCGYcPyVNvVJVJQo1yqUn7mnTuHYPPmSXKvoIkTNyElZZf8uqCgc6ipCZGDosaeii7R6rcjYZEyUdNh4EPUBrjLXNiDlRjYbNMhCDYMGrQHe/YM8qjfTGMvkxnJvjj28snI2Iq4uBL5eKs1/Pz8rPpeQZs2TcTZs+10t63rFUT7GvvtELUMDHyI2gi9zEVBQQVmzuwqByuiaMKePYOQlfWm4TqVhiyTebKE4yr7otXLZ+vWDGRnL5Vfk5+fBmXnZOVx9Rmu+vvgqiB6ypQpCAwMxNq1aw1fPxG1fAx8iNoAvZoWAHjvvW9hs12oekzaKZWUdNjQ+T2tJ1Jy1eBQmstlhFYBtLKg2WoNR15eusYrtbehO77ekd6yFBG1bgx8iFo5x+Ufx+Ubd8GKJ4zWEznyRf2Ku89x9GiCZoCTmroDO3em6gQ/jT9Li4haFgY+RK2A1i6qiooKzeUfx+UbV8GKVqaopMSEn3/W37HVkLEMelxlrCSuPsfOnUPO1/aoCYINI0Z8hU6dTiInZwykZS47EWPGbNV9v+DgYLeF3p7gri2iloGBD1ELZbFYUF1dfX64Zv1E82eeseLqq0uxdu1alJcnulz+kWgFK1qZIgB47LGY8zu27O91ww1nUVFRoXoPX+yEslgssFqtqusAbBgzZiuGD8/TfI3W55CCP8faHmVgJJ1PGlEhFUYPH56HzMxMmM1m1WulXValperRFe7o7dziri2iloOBD1ELJBUT2zsaZ8sdjW02AXPnRuC3396C2ezZMpYyWNHKFG3cOBGCAJ338u12b+Xn27QpW3H9pvOZGWD48DxcddVVCA8PxxtvfKTKCCmvR6/54dSp6zBgwD755+HD8zBgQIFTpspsNuvutvI0S8OdW0QtHwMfIg9JmRg9vvjbvXR+vYLevXv7oV+/vV7X3GgHC6bzYyDU7+WqG7K3XH0+QMDWrRkYMKAAH330EQIC7jgf/GnXMJWUxELaoi6fQbAhIaHY6X21MlVlZWW6/86kwuySkhLDRdhE1LIx8CHygJSpcMdI92MjtDsai/jkk/HYsmWsHAR4WnOjfV7b+YxPw4ugjerUyQLABq0t6OXlnQAAy5bFylkoxxomqzUcW7dmwLF2JyNDv3bHkRTQ6P078+TfI+t4iFo+Bj5EHjBa7Oqroljnjsb1mQ1peSom5hji40s9ysroZYoAeJw9UvL0i99srsKYMVudCo+lgKu8PEruPyRRZqH0MkZxcSUeXQfg+t+Zqy35EtbxELUODHyIGsDIbqSGkjI6e/f2wyefjHd41oQVK273qgOxXqZI+RgAFBYmolMnC667Lh0dOnRAYGAgIiMjnc7n7Re/VHisNX4CgMsaJl9u1XeHQQ1R28DAh8hLrvrnlJWVAfBdFsBsrkK/fnuxZctYzZofvQ7EjjuWHBsGatW8SI85fr5DhzYjJWULAGDatGlOwU91dTUsFovXwY924bHrGiZva5yIyH8x8CHygrv+Ocrgwlf1PtKXvL1fjfst7PbX6O9YcsXd51u7dq1utsvbz6u3Rd5dDVNj9BUioraLgQ+RF4zstpL4sgleSsouxMQcw4oVtxta3vG22NbdeAhX2S5Xn1dqxBgRoT1CQo+7vkFNNWGdiFo/Bj5EXjC628pT0lZ5qSuzVkYlPr7U5fKO1ERPa5nNaCCkt+srKKjaULdorc+kbMQoCDFIT89AWlo+AxYialKGA5/KykrDJ42IiPDqYohaC3e7rVwFAnqUW+XtGRX93jVGlneqq6tVnYelQEhrd5LVakVNTQ1OnjyJbdu26Xw+eyF1enqeoW7Rys/k2IhRFAXk5g5Hbm46Jk/2LkgkIvKG4cAnMjISgiC4PEYURQiCgLq6ugZfGFFLpMyYuNpt5U3jPykYMZpR0Vve2bBhg8f1N1IdUGlpKbZt2yZ/PsdlNVE0nZ+Aru69o1xqU876Cghw1agQAOxb8q++Oh4jR4bJhdieTG33FfbgIfIPhgMf6X+GRP5MmTGRvpy1dls1ZEu1q/oa6XlX2+e9rb/RUlMTonkt/fv/iL17+2sOC1XO+lq40P6XIO2lM4kJd911ESZP3oy33hreLNvGb7rpJm5XJ/IThgOfkSNHNuZ1ELUajl+Q7rZUS1vbtWjV4ej1pikpicM//3mL7vIXYDxbZJReLdNPPw0EYMOwYdvlOp36966f9bVoURyys8Nd7kizs19nUdEJREX5Nvty0003ISwsTPd5Nh4k8i9eFzdXVFRgxYoV2LfPPgSwf//+uO2225ymHBP5A1c1N9KSjdHlJ61AKiNjq9zgD3AOaEaPHo1t27a53Y3ljmPA4aqWCbAve6Wl5QNwvxNMWjp78807oB4xUX9sUVEgUlPdd0o2uhQ2bdo0JCcnuz2OiPyHV4HP999/j3HjxiE0NBSXXHIJAGDJkiV44oknsGXLFqSkpPj0IolaIq0gwVfLT46BVH5+msugomPHjgAa3slYayinkVomADh9OgxatT9BQdVy9+f4+FJMnrxJlZVSHhsVdRJAlHwtDaXVYZqI/JtXgc99992HyZMn44033kBgoP0UtbW1uP3225GdnY0vv/zSpxdJ1BIZzUq4W34qLCyUj1eSAimrNRy5uelO59cKaHzRyTgqKsrpM+l1jnZcgrNnhOzBjyDYMGjQHrk4WhnwJScfRH5+2vnPVf9cVFSS4eskIvKG1xkfZdADAIGBgZg3bx6GDh3qs4sjaumMZCXcLQHl5OS4fb1WXUx6ep5XnY7dsVgssFqtTo8bWYIDBAiCiKlT1yIoqAb/+tf18rU7Bnxjx25FWlq+w3UaC3yM1gBxpxYROfIq8ImIiMCRI0fQt29f1eNHjx5FeHi4Ty6MqK0wuvykVwOk10xQqq3R4m0nY2UvIa1rcgyq9IK6kpJu57e9u643crzOkydPGpr3xWnpROQtrwKfzMxMZGVl4bnnnsOwYcMAANu3b8fcuXNx/fXX+/QCiVo75wJhQBSBQ4d6yXU+rmqAjCxfKbOvrlRUVADQDwqUgYTeNTkGK1pBnbSE5chdvdG2bduwbds2Q/O+GNQQkTe8Cnyee+45CIKAW265BbW1tQCAoKAg/OUvf8FTTz3l0wskam2kEQ3Kmp3k5IMQReVR9cs+ANxuQXe3fBUTEyNnQKxWK9asWaN5bWvXrpV/rwwuHK/ZkyaKjkFZenoecnOHa7y78XojX843IyJS8irwCQ4OxrJly7B48WIcOnQIAJCcnOyyV0ZDFBUV4fHHH8dnn32GY8eOIS4uDjfddBMWLFigWsPfs2cPZs2ahe+++w6dO3fG3XffjXnz5jXKNRFpcVwqkmjV6dTviBIMbUHXW77KzMx0mf3QW0KTggut5a2ffurv8pqk7fOAc1AGAHl56U5ZoKysNxEfXwoioubUoCGlYWFhGDhwoK+uRdfPP/8Mm82G119/Hb169UJBQQHuuOMOnD59Gs899xwA+yyxsWPHIiMjA6+99hp+/PFH3HbbbYiMjMTMmTMb/RqJAP1Mhbs6n4ZsQe/cubPuc66W0LSuWXm8umeP+pqk7fMSx6BMa2mOQQ8RtQReBT5//PEHXnrpJWzbtg3Hjx+HzWZTPb9z506fXJxk/PjxGD++vn9Iz549sX//frz66qty4PPee++huroab731FoKDg9G/f3/s3r0bS5YsYeBDhigno0tLuEpBQUEwm80eFc0qsy16dTpWazjS0/PkLInetHUtrq7F0y7Ojsfbgx578ON4vd9+2x5Wa7juslVDd5YRETUWrwKfrKwsbNmyBddeey0uueQSt8NLG4PVakWnTp3kn/Py8jBixAjV0te4cePw9NNP4+TJk05/QyVS0lui0mOk+FYr25KdvVQVDKgzLOoREJLo6Gh5iKjetSuzNlKdjqddnLUHiQoYN+5j9Ou31+l6BSFbM4Mk8XZnGRFRY/Iq8Nm8eTP+97//YfhwrQLGxnfw4EG89NJLcrYHAI4dO4akJHUPkC5dusjP6QU+586dw7lz5+SfKysrG+GKqaXztJjW3fF62Zbs7KVISjqseYzjCAiJq140rgI2T7s46x0vBT2+ngNGRNQctKYFutWtWzef9Ot58MEHIQiCy18///yz6jW//fYbxo8fj+uuuw533HFHg69h8eLFMJvN8q+EhIQGn5N8x2KxoLS0VPeXxWJp7kvU5G7CupFjpkyZoplZUt6TkpIS3WuQdlwJgn0p2l0XZ63j09Pz3F7v8OHTMXPmTEyZMkX3WoiIWgqvMj7PP/885s+fj9deew09evTw+s3nzJmDGTNmuDymZ8+e8u9LSkowevRoDBs2DMuXL1cd17VrV/z++++qx6Sfu3btqnv+hx56CPfff7/8c2VlJYOfFsLo8pNjcOC49OPISI2OVJsTFHQONTUhTjuiHMdLOJ7TSLbFyDHV1dWqhn7u7om7hoNan0HZpVk6/ssvL8eOHanIzR2OvLx0TJq0GVOmtMc774iw2eqXtgMCRCQm1iI4OFi3Dskb7LhMRI3Fq8Bn6NCh+OOPP9CzZ0+EhYUhKChI9Xx5ufHdKK52pCj99ttvGD16NFJTU/H222/DZFL/zTM9PR0LFixATU2NfD05OTno06ePy/qekJAQhISEGLoGalpGl5+Ux3kbLClp7Wxy3BGlNRl89uzZ8u+NNB10d4zyPaTrdXVPjDQcVAZGetPNCwoGYMeOoZB2dNUvaS3FxImnVe8xYcJmbN5svyeZmZm616ZFr2ibHZeJqDF5Ffhcf/31+O233/Dkk0+iS5cujV7c/Ntvv2HUqFHo0aMHnnvuOZw4cUJ+Tsrm3HDDDVi0aBGysrIwf/58FBQUYNmyZXjhhRca9dqoZfEmWFLS3tlkrJ6lurpalakwsrPJ6O4nV0taWtetdb1GtrZbreHIycmAchu7dL7y8k4ur7empsblNTqKi4tjgENETc6rwCc3Nxd5eXkYPHiwr69HU05ODg4ePIiDBw8iPj5e9Zx4vh2u2WzGli1bMGvWLKSmpiI6OhoLFy7kVvZWSKvzcVPR3tlk52pHlMToDCkA8mfcsGGD2+JgKTszbdo01eNSBuf06TCXO7jcBUbTpk3D/v2n8eqrFrgbNdHQ3VpTpkxh0ENEzcarwKdv3744e/asr69F14wZM9zWAgHAoEGD8NVXXzX+BVGj8XRbua9pDwS1k7789TohSxrzC12Z7XTM4AA2KIMWZbDibmv7+vVmLFzYR7NxISAiI2Or22DH6LwwBj1E1Jy8CnyeeuopzJkzB0888QQGDhzoVOMTERHhk4sj/9NcM5qkLIzzQFF1jc+hQ73cLhc1hLugShoToZXBsQds9uDHsV7IVSG11RqOZctiIYpSsFPfuBCwYcyYrRg+vH53l57IyEhOTCeiFs+rwEfqonzllVeqHhdFEYIgoK6uruFXRtSElEtUFRUVmD17P44eDUG7dnU4ceIMDh/+FACwdGl2g/vYKHedKZfzHDM46el5Ts0MJXoZnGuvXYv27c9o1gspu0MD9VvVy8ujVDu17NSNC41iUENELZ1XgY/0t06ils5dBkVJ+tKOjY3FhRfWP15aWorly6tQWJjoUSdkLXpLeVoZnNzc4cjNTcfkyc5ZJb0MTkJCMczmKowZMwY5OTkAHHep2dCjRyEOH06Ut6pnZGx12biQiKgt8SrwGTlypKHj/vrXv+Kxxx7zaX8PIkd6PV+M7GLyhKedkLXoLQPpF1Xbs0rBweeQkHBUDkTcbYWXxrlodYc+fDgRyt1qW7dmICNjK7ZuzdDdek9E1FY0aDq7O++++y4eeOABBj5kWEVFhe5zyuzNrbeOQXR0tFPNiBQEudvF5EmDPL36H8cAoSFN91wVVYuiCevWXecUvM2ZEykvySUknEPXrkkAkhAUFISqKvs16c3fcjx/XFyJ0xwxT7HpIBG1Bo0a+EhbzYmMsFgsWLt2reZzjtmbbt0qMWdOpNNxUq3Otm3ACy9oj1cYNcqzWhTHLeoLF55AUVEgEhNrERd3MYCL5QDMXddovcDOuajamWPwplxyPnpU+/2Cgs7BeZeWmpS1MrJNfcyYMU4z8QAWLRNR69GogQ+RJ4w2FRRFE+bPNyMzE3Bo6wTAHqhceilgMgE2W/3jAQFAWloUvPl+Vn6px8YCqanOx3izFV+ZxZKaA+bnpyE3Nx1a/XS0aopc1THV1ITAVdBjdKu6JCkpyeWkeCKilo6BDzUZb7MhWss1dXUCDh7UDnwA++PLlwN33gnU1dmDntdf1z/eFzzdiq9XgzR27FakpeXj6NF4rFt3LfR687g6h0R7Cc3zreoSLmcRUWvHwIeaREMaE2p9eQcEAL16uX5dVhYwbhxw8KD92MYMejzlrgbJ/msfqqv1a4r0zhETcwwVFfb5dAkJR53qkjIytiIursRwLY80U4vLWUTUFjDwIZ/Tyux4O35CWsZR7joKCBDx+uuCoUAmPr5lBTwSd52UJSkpuzB7dm9UVsbINUVlZUnYsGGD7jnefPN21GeJREyevKlBhcvR0dFc3iKiNsPjwKe2thZPPvkkbrvtNqe5WY5uuukmdnH2M74cOeG4jCNlKu6++yqkpnbxyXs0F72t8adPt4fVGq4KTgYMiERsrHOmRX8ZS/mzgE2bJiI7eymSkg57da1c3iKitsTjwCcwMBDPPvssbrnlFrfHvvrqq15dFLVevho5obWMs3VrBrKzlyIuzubm1S2Dq6Jjra3xogjNbevO57XK5xg0aA9++GEw1GMm1Dxpsigta0m4vEVEbY1XS11XXHEFvvjiCyQmJvr4cojsXC0FecNdYbWvv+D1io61dnE5FjG7G4VRU1MDwB5Y7dkzCPXBjnbw40mTRS5rEVFb51Xgc9VVV+HBBx/Ejz/+iNTUVLRv3171/OTJk31yceS/XHVJlpZejAYzRpffZs+e7ZPgR6/o+OzZdk7dkVNSdqG8/Cwct667ytJIU9D1mxPWT2n3tAszl7WIqK3zKvD561//CgBYsmSJ03McUkoNkZmZCbPZDADo1q0S8+ebUVcnICBAxNNPV2LGjOkeBzNGl9+qq6vlYMpqtcqZFaXAwEBERkZqZoikoEEvWyUFPdLPUlbH3SgMx2AkMjISgH5wmJX1Jioq7MdIs7uMyMzM5LIWEbV5XgU+NlvrqLGg1sdsNstLLZmZQEICIAhAerqA+PhI+ThPghmjrFYr1qxZY/h4xwyR1OG5qKgW77wjOkw8dx5HIWV1kpIOq+p9pCDvhhuud7kEpzdCIz6+FPHxpYY/h6Rz584ev4aIqLXxKvD55z//iczMTISEhKger66uxvvvv2+o8Jlal6aqkZGyGytWADNn2jsvm0z2ZoRZWQ0+vUtaGR5XpPvheG/CwiowcWK+0440ZcYHUGd1pHqf4cOnIy0t6nyQF+n2GqTXGd2q7li8LGERMxH5C68Cn1tvvRXjx49HTEyM6vGqqirceuutDHzaGE+WlYzS+gKWvnyLi+uDHsD+zzvvtDcjbGk9efTuTUoKnAKS0NA/dJsRAvYMzrBh1YiNVQdTJSUmFBYGIimpFnFxNqeeSEZmbElYvExE/s6rwEcURQiC87bZ4uJiuT6D2g5PlpWMFsfGxcXpZhgOHFDP2ALsYydcjahoLq7ujWNAoszOBAVVo6YmxKlnD6AOptyNpCAiIs94FPgMGTIEgiBAEARceeWV8u4SAKirq0NhYSHGjx/v84uk1sNxkrkWd8sqvXtrDxh1N6LCKFf9dRqb2VyFQ4d6uQxmpHvnbqwFERF5zqPA55prrgEA7N69G+PGjUOHDh3k54KDg5GYmIipU6f69AKp9XEV1EhLODt2/K5avpEEBwcjPj6q0QaMNncGxUgwY1/aSsTp02Eux1oolwsLCwuRk5PTZJ+DiKi18ijweeSRRwAAiYmJyMzMRLt27RrloqhtkpZw3AUfs2fPRlZWlM8GjErLb+6CDmUG05eUGSZ3M7pWrAAeeSQGNtt02PvxqBsSKguilfU6wcHBhgIf9ukhIn/n1f/pp0+fDsCekj9+/LjT9vbu3bs3/MqozbH3x3Gf8ZCWelwNGHX8AtdbvpKW1WbPno1t24AXXnAOOoYPn45Ro5zrdaRzBgWdQ01NiObSWEVFhcvr0Jo35th7x2QSERRUjYKCfli3rgvqAx0TABsEQdQtiJb4YomRiMgfeBX4HDhwALfddhtyc3NVj0tFz2xgSHqMTiV3R/qiP378ONauDceyZd1gswkwmUQsXPgbpkw5iaCgINXxl16qXTuUlhaFqCh7RkqiDFikrItjdurMmTNYu3at5mu0trBLTQyVjwuCDQMH7sGKFbdrdGEGABOmTl2L9u3PuN2uzqCGiMg9rwKfGTNmIDAwEJs3b0ZsbKzmDi8iACgutu/S6t3bHmS461LsqTfe+AhLl2ZDFO1/Bm02AYsWxcFqXSsHCVKjwfh4uKwdUjYgfOyxGPmcUgZGFE3YvHkSFi5MQ2JioCq7ojdUVSvIi4srQXb2Unl3l37QY783nnRfJiIi17wKfHbv3o0dO3agb9++vr4eaoGM1oU4HufYhPCZZ0J1uw1788VeXV1tKIOkDFCysuCydigqKgp79jhvp5fYbAKqqrogKgooLa3vjqx3Hcq5WYA9kAkKqpaX0I4c6eEy6PH23hARkTavAp9+/fo5NVGjtknahZWZmanqbHzq1CnU1NQgMDAQ4eHhCAy0Z0CkYKCsrB1mzuyoakI4f74Z99wT7nG3YVe8ySC5qh0CtLfTS/S21etdR0bGVnz66RjYbPalskGDlMtaUuGycwHz1Knr3GZ6WKhMROQ5rwKfp59+GvPmzcOTTz6JgQMHqmopACAiIsInF0fNy2jHZi2FhYnndybVq6sT5EyMJ92GXfFlBkniuCQmcbWtXu86UlJ2Ye7cBLz3Xr7GspZyKU1dRzRgwD6n91BuX2ehMhGRd7wKfDIyMgAAV1xxhaq+h8XNbYsnAz4d+bqWxxVfZpAkyiWx9u2B06fdb6tPTj6IqVPXAxBV2ZquXWuRlHQYhYWJustagIBx4z5Gv357da+f4yaIiBrOq8Bn27Ztvr4OamMakomxWq3y741mNtxlkLwZsqq1JKY8j3K510hjRK1gUCIINpdBDxER+YZXgc/IkSPx1Vdf4fXXX8ehQ4ewbt06dOvWDe+88w6SkpJ8fY3UTBx71HhKKxOTmZkpz3OrqKhQbQeXrFmzRvWz8jWA58s8eu/jSNr9pUdv6c/oaAnHYNBxectd0MOaHiKihvMq8Fm/fj1uvvlm3Hjjjdi1axfOnTsHwP439SeffBL/+9//fHqR1PQsFouhYMEdx0yM2Wz2eLnGMRACPJsEX1tba+g4d0t7es+721l29uxZ+XHnQaXBLpfnpLoe1vQQEfmGXsGBS3//+9/x2muv4Y033lAVNg8fPhw7d+702cVR82lIfY9R0kwqqzXc49d6Mgnesfje16QlLCVBsOH06fawWsPx0UcfqZ4zm6uQlHQY8fGlSEo67DLTExcXh9jYWAY9REQ+4lXGZ//+/RgxYoTT42azucHLI9Ty+WK6ub3Hj30mlbfDQh3HNNgDKfXg0+DgYK+COK2aIL0WDlr1TKIIrFt3nVefjVkeIqLG41Xg07VrVxw8eBCJiYmqx7/++mv07NnTF9dFLZQvppsXF0uNDes7ImvVxBghBQaOzRKXL7fvzALUjQaNMLqNXxkASktYR4/GY926ayElU735bHFxcQx4iIgaiVeBzx133IF7770Xb731FgRBQElJCfLy8vDAAw/g4Ycf9vU1UgthtIjXnQMHnJsDejOvS1IfSNl/ttnsPXjGjQNCQy2Gm21Kxxk5Xi8ALC8/C8cVZOVncyzUdsQsDxFR4/Iq8HnwwQdhs9lw5ZVX4syZMxgxYgRCQkLwwAMP4O677/b1NVILoVfEO3z4dPTvf0KzCNlRcHCwZmfkhvT40Qqk6uqAHTus2L3beAPGDRs2GDrOVQDorn+RN8XdRETkO14FPoIgYMGCBZg7dy4OHjyIU6dOoV+/fujQoYOvr49aEK0vdZNJRGJiLcxmMzIzMyGKIiIjIzVfr8xm2Dsji6irM76dW49WIBUQICIsrMSr87njahdXUtJhn3eSJiIi3/Eq8JEEBwejX79+vroWauG0ingnTtyMzZvVNT7u+uEA9vqbSy6pwPPP/7fB3Zbj44ElS07hvvvC5OuaMGEzcnM9qz0yyl1WpzE6SRMRkW80KPChtktvq7iRL3Wju6gGDuyI55+fpDreaLNBx+ubNq0Khw8vNxRseLorzfH4Q4d6QRTrn9fK6vhqFhkREfkWAx/S5LhVHLAX/W7YsMHpS10rkCguttfe9O7ter6VMjNUXAwcOxaLKVPuQXT0HwD0t6hrZZSMBBue7kpzPP6yy77CV19dDmUBsyja53QZwe7LRETNi4EP6TKyu0grkFi9OhTz5mlvLdej3o7eEcuX2x/X26LuDU93pWkd/9VXI1A/VV1Sv2tLOUHdEXdsERE1PwY+ZJjUaVnK7GgFBhs3TsTmzYLm1nK9zI/ednSbDfKSkv0xERdddFzO/EiMZlHcjZaQSBms06fDNAaKOgY96voeTlAnImrZGPiQIVqdljt2PKkRGJg0t5YfPKgf+OhtR3dUVyfgpZc+QlLSYafnMjMz3X4Gd0XJgHMGC7DB9WQX7toiImpNvJrVRf5Fr9NyUNA5pxlVgA0mk6h6JCAA6NVL//zSdnTH1wgOyRVXvX5qamqMfBSkp+fJ1+xYlKyVwbJfg+NnrL+e229/U1UjxBoeIqKWjRmfNkZrxpSSN3Umep2Wa2qCNXvWjBgxAvPnR6Kuzh7AvP66frbHYrEgIKAazzwTivnzzairExAQIOLpp60AgHnzzLDZGt7rR53JETFs2HakpeWrznf0aILmUtiIEZ/jyy9HOZ0zPT0P8fH2cRiZmZno3Lkza3iIiFo4Bj5tiNEZU0b67Ci56rSclHTYaXv7jBnDkZlpX97q1ct10KO83nvuCZfPc+qUPSC5995wQ1vUAwP1/yg7Z3IE5OWlIy0tXz5m584h2LhxotNrBcGGCy74BV99NcIhKLLJr8/MzETfvn1135+IiFoOBj5tiNH+OZ5OK//kEzj0rRHx7LOVuOGG652OlZZ6AgJK0aeP/THHGaFS1snxOrS2oxvthxMZGSlvvy8rK8Pbb+fIW+zdFTVLgZHjyq+UZYqPL3XZjdnV7C0iImpZGPiQS1J9jzrwEZCZGYnY2Ein4z3JOvlaVFQULBYLNmzoiKVLs+UgJSNjq8uiZq0lLgBYtOgX2Gz2+h1XjRtZ10NE1How8CGXtOp7bDYgP99em+PIarUaOq+nWScjLBYLnnhilRz0APbMztatGcjI2IqtWzOcMjZS7Y8jQbDh6qs7IjFxts9rpoiIqPkw8CGX9Op7tm9fhYKClrWFu7q6WndZKy6uBNnZS1UZG8fan3r2wKh9+wsQFcXaHSKitoTb2dsAi8WC0tJSlJWV+fzc8fH2jskBAfafldkSqzUchYWJsFrDff6+njpz5gzKysrkXj1K0rKW2VyFpKTD8jKVVpAEANdeuw4pKbuwZs0aWCyWJrl+IiJqGsz4tHJGa2oaIivL3nk5P9+C7dtXqZaIjM68aohp06YhMjJS9VhFRQVqa2sBAGfPnsW7774LADCb4bIQWUmroSEgwmqtf6/GWJIjIqLmw8CnlWuqL+b4eCAgoBoFBdqjKlzNvGqoyMhIeQxEcTHw/fdWfPnlv3Tfy7EQGYBq1IbEbK46P3RUOX9LwNatGRgwoIDdmImI2iAGPn6oobuQjM688tV1SMfVDzI1QxCyXWaZpG3wrjJTO3cOwddfXw7H+VvefBYiImodGPj4CWlquC92IRmZeWVEVFSU3HtHj3S9joNMjWSZXGWmAOgUNnv3WYiIqHVg4OMnfDk13GyuMlxHo0fK4iiDsOJi+/b53r2duz3rjc1wlZnRG0FRXt4JgKAZ9HDoKBFR28bAh7ziqqGfVjGyklbWqX4Zy759fvlye1G1xL6tXpQHpQKuMzOuRlBIr9HKWmVlvSnP3yIioraHgQ8Z5liTozdOIiYmxqPlNMdlLJsNuPNO+04yKfMTGmrBxInbDWWZ9EZQmEwiFi06hro6+2u0slYMeoiI2jYGPmSYJzU5ElfLVxKtZay6OvuQU+k11dXVLrNMSnojKF59tQKTJglYvtz+s5HzcRwFEVHbwsCnlfN0Z1RDeZLJcbd8JdHqDh0QYJ/s7sjd0FJXS1zp6cazVpmZmejcuTPHURARtTGCKCrHT1JlZSXMZjOsVisiIiKa+3IMsVgszTJPylU2p7gY6NHDOZgpKtLO/KxYYV/eqquzH/f66+ogqbS0FMulVI0DqzUc5eVRCAo6hxUrbnfK9phMIpYsOY177+0AoPnuFxERNR6j39/M+LRSzf3l7S6bY2T5SmKxWHD11dXIzzehqCgQiYm1iIuzobS0/rPocezTo7fENXNmR/lnBjVERP6LgU8rZHRMxezZs+UveV8GSkaKkY0uX2l9loIC5/fMzMx0ekyrTw8gQtmQUBBsSE3l2AkiIrJj4NMKGR1TUVRUiz17gOjok9iwwbNAyRUj2RxpuKnj8pVjtsfoZ6mpqXF6THvIqAAp+JF2asXFXWzoPYiIqO3jdPY2aufOIbjkkhhccQVw0UWR2LlziNvXGA1CpGyOklY2JyvLXtOzbZv9n1qFzd6yWsNx+nQYAJvGs4Lck6exBqcSEVHr1OoCn3PnzuGiiy6CIAjYvXu36rk9e/bg8ssvR7t27ZCQkIBnnnmmeS6ymUlLQFKzP5tNwKZNE2G1hvvk/FI2JyDA/rNeNgew99/p06cUAQGlKC11/lVRUWHoPQMD65OTO3cOwdKl2Vi37jo4ztmSiKIJNTXcik5ERGqtbqlr3rx5iIuLww8//KB6vLKyEmPHjkVGRgZee+01/Pjjj7jtttsQGRmJmTNnNtPVNg9vh4harVaX51XWAWVl2Wt6Dh60Z3q0gh6jtUhGREZGYvbs2fjxx5NYtKin4vNpBz7KDs3sxUNERJJWFfh89NFH2LJlC9avX4+PPvpI9dx7772H6upqvPXWWwgODkb//v2xe/duLFmyxO8CH2+HiK5Zs8btuZV1QPHx+k0JAeDEiRPGLtigqKgoiGIU3DVgMJlEPPNMJW644XpuTSciIpVWs9T1+++/44477sA777yDsLAwp+fz8vIwYsQI1d/ux40bh/379+PkyZO65z137hwqKytVv1ozqadNRsZWBATYI4SAANFngzeN1gEB2gXJ3iorK0NpaSkiIn6HyaQd+QQEAGvXAocPC5gzJxKxsbEMeoiISKVVZHxEUcSMGTNw1113YejQoSgqKnI65tixY0hKSlI91qVLF/m5jh07Or0GABYvXoxFixb5/Jqbg2NPmzlzjuPSSwMREXEcubmtu8h3w4YN8u8nThyi2MZu38El1Rldd12zXSIREbUCzRr4PPjgg3j66addHrNv3z5s2bIFVVVVeOihh3x+DQ899BDuv/9++efKykokJCT4/H18SatmRaunzfPPd0Z29lKfZHqaipSx6tTJonvdyhlb06ZNQFhYZ906IyIiIqVmDXzmzJmDGTNmuDymZ8+e+Oyzz5CXl4eQkBDVc0OHDsWNN96IVatWoWvXrvj9999Vz0s/d+3aVff8ISEhTudt6bSGhW7fHowXXvC8oLkl+eOPG7FsWTJsNgEmk4iJEzfpbkeXZmwNGVKL2NgmvlAiImq1mjXw6dy5Mzp37uz2uBdffBF///vf5Z9LSkowbtw4rFmzBmlpaQCA9PR0LFiwADU1NQgKCgIA5OTkoE+fPrrLXK2ZY+3KpZc6d0o2UtDcUlit4Vi6tCdEUb0FPzn5IMzmKkOZICIiIndaRY1P9+7dVT936GAfNpmcnIz48+sbN9xwAxYtWoSsrCzMnz8fBQUFWLZsGV544YUmv97m4NwpWcSECdoFzS0xiHC1Bf/QoV6q2qVJkzazMSEREXmlVQQ+RpjNZmzZsgWzZs1CamoqoqOjsXDhQr/ayq7srRMefhybNzsHB44F0L4MIhzngVVVGQ+q9LbgBwVVO9UuKTNBREREnmiVgU9iYiJEjWYugwYNwldffdUMV9S8iovt87N6967vrVNa6jzKQasA2tMgQq8ZoJFmha4yTWZzFSZN2ixfn73GZzNqakK8asZIRESkpVUGPlRvxYr6Sekmk325S28mlicdnfv3HwerNQbdu59D1661AOxjI6qrq2GxWJxqjNz199m5cwg2bpwIe+soGyZPds40KXdr3XhjGnJzd8FqDfeqGSMREZEWBj6tWHFxfdAD2P9555325S5pjpaS0Y7OO3cOwaJFl7hcDjM6yR2wZ3rqgx4AMGHjRu1Mk7RbKz4+Tf5ZmQmSrkd6HcdREBGRJxj4tGIHDqh3cQH2wuaDB4GBA9UBgbKj89atGXIQkZGxFeXl9gBG2j1lZDnMkw7OR48mwLlJuAlHj8YDKNZc/pJmc0nvs3DhCRQVBSIxsRZxcRcDuJjjKIiIyGMMfFqx3r2dt7AHBNiHhip7/axeHYrHHjPL/XEyMnIQF1eCkpI4VRA0adJmdOx4sslqavbvvwDr11+rm1lSBjWxsUBqqk/fnoiI/FCrmdVFzqQt7NKyljS2QepgHBUVhbq6WMybFwmbrb4/zmefjcG0aRPw6adjVJmdDz+chLFjh0EQ1GkkIzU1FRUVus8lJByFfbSE2o8/DnbKLFmt4QC4hEVERI2DgU8rl5UFFBUB27bZ/+lY2Ky9HCZg//7OcjCkfPyPPwIwadJmOfhxrKnRYrFYsHbtWt3nzeYqTJ68CYDjTjP1+4uiCcOHT/eofoiIiMgTXOpqA6Qt7Fr0lsMuuwwwmURV8CMINhQUfICUlCp5d1WnTuVul7hOnDjh9Jjj1vWUlF0IDj6Hdev0p4gGBABpaVFgzENERI2FGZ82Tm85rGdPCxYu/E03s2M2VyEp6TAAoLAwUV6CcmSxWLBmzRrVYzt3DsHSpdlYtWo6li7Nxs6dQwDYl7wcl9GkJbCAAFG1TEdERNQYmPHxA8qOzr16AaGh9c0Gs7PDdTM7Rro8O+7ucrcrzHFrekbGVsTFleDuu69CamqXRrwLREREDHz8hnI5rLS0PliR+uY4chfABAcHw2KxoKysTPU6vSaJP/3UD/3771U1KVQGW3Fxzp2miYiIfI2BD2nSC2CGD5+OUaPsP2uNqNBqkgiI2LJlPHJyxp7P8JS2qAGpRETkPxj4kExZkKwVwCiLj0tLSzXPYTZXqZok2mt47AXUomhCTs4YAAKnrBMRUbNg4EMAtOt5lPU4jj2CXJ2nPuixwbl+vj4I4pR1IiJqatzVRSgujsXGjdr1PNnZS7FunUWzR5AjaSZXfZZIyvhokzpCExERNRVmfPyclOlxjIGloCQp6TBGjYKh3jr5+WlO55GWtRyXvQBOWScioqbHwMePOe7cUhIEG268MQ0pKZMMdVG2WsORl5eu8YwNWVlvoqYmWHM2GKesExFRU2Lg44ekIENr55adVHg83PDoiKNHEzTPNX26BQ8+eCXCwsIAACUlnLJORETNh4GPH5ImtxcV1eKdd9RjK0wmEZs2WZCWZjzo2blzCDZunOj0uCDYcPfdNiQnJ8uPcco6ERE1JxY3+6moqCikpnbB8uWCapzF8uUCrr66s9ugR8oaSctljn+UpKWsyMhTjXH5REREXhFEUdTfduOHKisrYTabYbVaERER0dyX0+gsFguKimoVy0/qDsqulqEOHTqExx//GqtWTXd67tpr12LAgH0AwGnrRETU6Ix+f3Opy49ZLBZV9+WCAu3jpk2bhsjISNVjwcHBCAsL0+nUbENCQrH8k+M8LyIioubCwKeFKy4GDhwAevd23TzQ8TgjrzMakKxdu1bz8czMTHnwqL3GRwp+BBw61ItdmYmIqMVhjU8LtmIF0KMHcMUV9n+uWGHsuBkzjL2uoWpqagAAyckHIQjKZwRs2jQRVmt447wxERGRlxj4NKHiYmDbNvs/jRw7cyZgO19yY7MBd97p/Fqt41atcv86LVZrOAoLEz0OWLS2srMrMxERtURc6moiK1bUBygmE7B8uesREAcO1Acvkro64OBB9dKV1nGO6uqA/HwLQkOhW2SsNavL3VLVyZMnXW5lZ1dmIiJqaZjxaQJGszdKvXvbAySlgACgVy/3xznOxxIEG7ZvX4WXX34ZFovF6b0cOzhLs7qkzI9eJuiDD753uZWdw0eJiKilYcanCRjN3ijFx9uzQnfeaT9Wazq6xWJBQEA1nnkmFPPmmc83IrTBcR6WMgg5fvy4XNRcVlYGQLuDs7RUdehQL91MkF7n56lT18lb2YmIiFoSBj5NQMrKKIMfreyNo6wsYNw4e4DUq5dz0KPcin7vveE4ejQe69dfC1GsD3xE0V58LNHaoaW1JV0QbAgKqtbMBCUnH4TZXKX7OuVWdoBzuIiIqOXgUlcTkLI3yg7JjtkbV68dNcr5WMet6GZzFdq3P6uRgdEvMpaWsABg0qTNEAR7ZCZldmpqQlwWLUtb2R1fJ2WXpkyZwuaFRETUojDj00RcZW88VVwMfPNNMKzWcFUdjV4GRqvIWKuYOTt7KcrLO+H//b+B2L17F6zWcLfnS0nZheTkgygv74ROncpV1xMdHc2gh4iIWhRmfJqQXvbGE1LPnuuui8LSpdnYuXOI/Jy7DIxEr5gZAJKSDuOSS+Iwe/ZszJ17PZ59thIBAfZi6YAAEc8+W4lbbx2jOp/ZXIWkpMMsZiYiohaPGZ9WxHF3mGPNDeA6AyNxVcwsHS9laubMATIzpUyVgPj4SJSWnm3ET0lERNR4GPi0MK5GTWjtDnMMWAB7BsZV9sWTJTHAfh0NyVIRERG1FFzqakH0RlRIHZ87dHDu2eNNo0CjS2J6jO7S4m4uIiJqaZjxaSG0mxyKKCqqxJNPRsBmE2AyiZg69Sw2bAhFXZ3gccAyduxYbNmyBYCxJTE9UVFRmD17tsshp8HBwSxsJiKiFoeBTwuh3eRQwBNPhMt9eWw2AevWtUNW1hsYNWoCduxY41HA0rFjR9XPektiRjI1DGqIiKg1YuDTQmg1OQRsmkXIFRWRuOIKE8aPn47q6mqUlZVhw4YNbt9DFEVkZmbKU9UdBQYGIiYmBlFRUS5rjYiIiForBj4tRP2IClFexsrI2IqtWzOcgp91667FpZdWYs6cSI/eQ9m12WoNR3l5FDp1sqiyPpmZmVi5MkAegWEyiXjmGStuuOEsl6+IiKjVE0RRFN0f5j8qKythNpthtVoRERHR5O+/Y8fveOmlj+S6G2WjQaWAABFFRQLi453HV7jjahK71RqOpUuznXZ8ZWcvhdlcxU7MRETUIhn9/mbGp4WJi7MhKemw/HNKyi4EB5/DunXXqY6rqxPkIadGio2tVivWrFmj27xQ6gXkrsePq/cgIiJq6Rj4tAIJCUed+u4EBIjo1at+GKnRLIy7wMbTHj9EREStCfv4tAJafXcefvg3BASUorTU/stisRg6lxTYKCkDm4b2+CEiImrJmPFpJRz77gBVWL5cfYxW/Y3FYkFRUS127z6L4uJY1NSEqIqmpSLq8nL768zmqgb1+CEiImrJGPi0MK566LgbRaGsv7FYLDh+/DgefPDA+ZqeLgDuAFC/YywurgQlJXGqIEgqdHb3XkRERK0RA58WRlmoXFJiQmFhIMzm48jNXev2tSUlJvz8MxAdfRIbNrx8vpBZuUPLXhMkiibk5GTg9tvfVG2X1xp6SkRE1JYw8GmBoqKisGJF/QgLk6kTJk4cIm8517Jz5xA89ljM+eMjMXHiEHTseNKpkLmeCXl56W6ntBMREbUlLG5uYtLA0eJi18eo53YJ2LRpIqzWcM3jpS3qNpugOj4o6JxTIbPS3r39AegXOmvh4FEiImrNmPFpQuosjr1Tc1aW83Fac7u0MjFS9+XTp8M0Mzc1NcGYNGmzZgNE6Zhhw7bLmR/HHVyZmZkwm83y8ezcTERErR0DnyaiPX0dGDfOeRaW1twux0yMY/dle+bGufdOUtJhxMQcw5tv3g7HBJ8g2JCWlo+0tHzNHVxmsxmxsbE+ugNERETNj0tdTUR7+jpw8KDzsdLcroAA+88BAaIqE6PVfdm+W8s+fcRkUh9fUxMCrX/V6el58u6tpKTDrOshIqI2jxmfJqKVxQkIAHr10j4+K8ueDTp4EIiKqsCGDfWFzVrdlwEBomjDsGG5SEvLVwUxWt2YAXu2h4iIyJ8w49NEnLM4wOuvOy9zSSwWCwICStGlyz4AxRgzZgxGjx6N0aNHY+LEPjCZtGbL2ndqOdLqxjx5MrsxExGR/2HGpwllZQGDBgFffw1cdhlw8cXaxxmZtj5x4nHNomW97ejsxkxERMTAp0kZ3dVlZAJ6SsouzaJlV9vR2Y2ZiIj8HZe6mojeri69fj5WazgKCxN1e/cAQHx8KSZP5kBRIiIio5jxaSKudnU51vmsXh2KpUuzneZnaWnMJSw2KyQioraGgU8TcbWry2KxyMtbJSUmzJsXA1Gsn6vlbn5WQ5ewpk2bhsjISNVjbFZIRERtEQOfJiLt6rrzTnumR9rVFRqqLmQuLEyEzTZd9dqGzs+aMmUKoqOjNZ9jgENERP6EgU8TUvbm6dXLHgyVlqoLmbV67ribn+VOXFwcgxsiIiIw8Gly8fH6vXuA+p47ynEU3hYsT5kyhUEPERGRAgOfFshXBcvR0dEMeoiIiBQY+LRQjgXLQ4cOBQB8//33zXVJRERErR4Dn1aCAQ8REVHDsYFhEykuBrZtc25YWFJictuo0Fvsw0NERKTGjE8T0BtVYX88BjbbdLeNCpWmTJmCwMBA1NbWOj0XFBQEs9nMbepEREQaWlXG58MPP0RaWhpCQ0PRsWNHXHPNNarnjxw5ggkTJiAsLAwxMTGYO3euZnDQlH788SRmzhQdRlWI+N//Tpx/vL5R4caNE91mfqzWcOzfH4fw8AvRseNAlJUNRMeOAzFwoP1X3759ERsby6CHiIhIQ6vJ+Kxfvx533HEHnnzySVxxxRWora1FQUGB/HxdXR0mTJiArl27Ijc3F6WlpbjlllsQFBSEJ598slmu2WKx4PnnNzs1JKyrE/Diiztgs413eIUJ+flpGDt2q+b5du4cgk2bJuKFF0wQ7PESRNH1wFMiIiKq1yoyPrW1tbj33nvx7LPP4q677sIFF1yAfv36Ydq0afIxW7Zswd69e/Huu+/ioosuwlVXXYXHH38c//jHPwxNO28M1dXVckNCJUGwISHhCACb02vy8tI1sz5Wa7jc2wewBzyiaH/O3cBTIiIismsVgc/OnTvx22+/wWQyYciQIYiNjcVVV12lyvjk5eVh4MCB6NKli/zYuHHjUFlZiZ9++kn33OfOnUNlZaXqly9JDQkdJ6jHx5di2LA8p+Ol8RSOysujVN2cHUkDT4mIiEhfq1jq+vXXXwEAjz76KJYsWYLExEQ8//zzGDVqFH755Rd06tQJx44dUwU9AOSfjx07pnvuxYsXY9GiRY138dBvSJiWlo+8vHRD4ym0RlkoSQNPiYiISF+zZnwefPBBCILg8tfPP/8M2/nK4AULFmDq1KlITU3F22+/DUEQ8O9//7tB1/DQQw/BarXKv44ePeqLj+bEbK5CUtJhVVNCKRsUEGBfs3I1nsI5cyRCEOyvCwgQ8frrrkdhEBERUTNnfObMmYMZM2a4PKZnz54oLS0FAPTr109+PCQkBD179sSRI0cAAF27dsW3336reu3vv/8uP6cnJCQEISEh3ly+T6Sk7MLChWkoKgrExx+vR01NCKzWcM3gxzFzBED+/TXXTAfAnVxERESuNGvg07lzZ3Tu3NntcampqQgJCcH+/ftx2WWXAQBqampQVFSEHj16AADS09PxxBNP4Pjx44iJiQEA5OTkICIiQhUwtURxcTZ8/nkAVqy4XTWYVKunj+MoC+n3JSUlqK6uZv8eIiIiF1pFjU9ERATuuusuPPLII0hISECPHj3w7LPPAgCuu+46AMDYsWPRr18/3HzzzXjmmWdw7Ngx/N///R9mzZrVrBkdI0pKTJg3zwxRrO/ps2nTRCQnHzQ8oHTDhg3y72fPns3gh4iISEOrCHwA4Nlnn0VgYCBuvvlmnD17Fmlpafjss8/QsWNHAEBAQAA2b96Mv/zlL0hPT0f79u0xffp0PPbYY812zUZHRhw92k5uZCiRdnd5M5m9ubbvExERtXSCKErdYAgAKisrYTabYbVaERER0eDzWSwWzUDEPqMrEH36mNCxY0f06CGqgh9BsCE7e6lXgc/MmTMRGxvboOsmIiJqTYx+f7eajE9rpbXkpDW765lnrJg7N0JV4+NN0ENERET6GPg0seLi+qAHqO+6vGuXiN9+W+rU64eIiIh8h4FPEztwoD7okdTVARZLRyxYMN1pWaysrExVuExERETeY+DTBJR1PhERJphMMap6noAAEb16CZrLYkYLpImIiMg9Bj6NzGKx4OWXX1Y9NnHiEHngqCDYMGHCZhw5Eo2TJ+3DSQMDAxETE4OoqChERUVh9uzZqK6uZvaHiIiogRj4NDKtHV1as7tycpxfm5mZic6dO8uZIKPZH2aJiIiItDHwaWQVFRVOj1mt4Sgvj0KnThaXRcxr1qwBUN+QUJn90cPOzURERPoY+DSy2tpa1c87d6qXufRGUygpAx0GNURERN5r1uns/sZqDZeDHqB+NIXVGt7MV0ZEROQfGPg0ofLyKDnokUijKYiIiKjxMfBpQp06WSAI6iY+gmBDp07lzXRFRERE/oWBTxMym6swadJmOfjhaAoiIqKmxeLmRmSxWHDq1CnVY1pb2YmIiKhpMPBpJFqNCyVmcxUDHiIiombApa5G4qrXjqfYkJCIiMg3mPFpYaZMmYLo6Gj5ZzYkJCIi8h0GPi1MdHQ0YmNjm/syiIiI2iQudREREZHfYOBDREREfoOBDxEREfkNBj4tDHdwERERNR4GPo3EmwAmMzOTO7iIiIgaEXd1NZKoqCjMnj0b1dXVKCsrw4YNG9y+xmw2N8GVERER+S8GPo2I2RsiIqKWhUtdRERE5DcY+DQBo/U+LGwmIiJqXFzqagLKeh89HE1BRETU+Bj4NBEGNURERM2PS11ERETkNxj4EBERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DfYudmBKIoAgMrKyma+EiIiIjJK+t6Wvsf1MPBxUFVVBQBISEho5ishIiIiT1VVVcFsNus+L4juQiM/Y7PZUFJSgvDwcAiC4PV5KisrkZCQgKNHjyIiIsKHV9h68B7Y8T7wHgC8BwDvgYT3oXHugSiKqKqqQlxcHEwm/UoeZnwcmEwmxMfH++x8ERERfvsHW8J7YMf7wHsA8B4AvAcS3gff3wNXmR4Ji5uJiIjIbzDwISIiIr/BwKeRhISE4JFHHkFISEhzX0qz4T2w433gPQB4DwDeAwnvQ/PeAxY3ExERkd9gxoeIiIj8BgMfIiIi8hsMfIiIiMhvMPAhIiIiv8HAxwOvvvoqBg0aJDdcSk9Px0cffSQ//8cff2DWrFmIiopChw4dMHXqVPz++++qcxw5cgQTJkxAWFgYYmJiMHfuXNTW1jb1R/GZp556CoIgIDs7W37MH+7Do48+CkEQVL/69u0rP+8P9wAAfvvtN9x0002IiopCaGgoBg4ciO+//15+XhRFLFy4ELGxsQgNDUVGRgYOHDigOkd5eTluvPFGREREIDIyEllZWTh16lRTfxSvJCYmOv05EAQBs2bNAuAffw7q6urw8MMPIykpCaGhoUhOTsbjjz+umpfU1v8cAPYxCdnZ2ejRowdCQ0MxbNgwfPfdd/LzbfEefPnll5g0aRLi4uIgCAI++OAD1fO++sx79uzB5Zdfjnbt2iEhIQHPPPNMwy5cJMM2btwofvjhh+Ivv/wi7t+/X/zb3/4mBgUFiQUFBaIoiuJdd90lJiQkiJ9++qn4/fffi5deeqk4bNgw+fW1tbXigAEDxIyMDHHXrl3i//73PzE6Olp86KGHmusjNci3334rJiYmioMGDRLvvfde+XF/uA+PPPKI2L9/f7G0tFT+deLECfl5f7gH5eXlYo8ePcQZM2aI+fn54q+//ip+8skn4sGDB+VjnnrqKdFsNosffPCB+MMPP4iTJ08Wk5KSxLNnz8rHjB8/Xhw8eLD4zTffiF999ZXYq1cv8frrr2+Oj+Sx48ePq/4M5OTkiADEbdu2iaLoH38OnnjiCTEqKkrcvHmzWFhYKP773/8WO3ToIC5btkw+pq3/ORBFUZw2bZrYr18/8YsvvhAPHDggPvLII2JERIRYXFwsimLbvAf/+9//xAULFogbNmwQAYj/+c9/VM/74jNbrVaxS5cu4o033igWFBSI//rXv8TQ0FDx9ddf9/q6Gfg0UMeOHcU333xTrKioEIOCgsR///vf8nP79u0TAYh5eXmiKNr/kJhMJvHYsWPyMa+++qoYEREhnjt3rsmvvSGqqqrE3r17izk5OeLIkSPlwMdf7sMjjzwiDh48WPM5f7kH8+fPFy+77DLd5202m9i1a1fx2WeflR+rqKgQQ0JCxH/961+iKIri3r17RQDid999Jx/z0UcfiYIgiL/99lvjXXwjuffee8Xk5GTRZrP5zZ+DCRMmiLfddpvqsSlTpog33nijKIr+8efgzJkzYkBAgLh582bV4ykpKeKCBQv84h44Bj6++syvvPKK2LFjR9V/D/Pnzxf79Onj9bVyqctLdXV1eP/993H69Gmkp6djx44dqKmpQUZGhnxM37590b17d+Tl5QEA8vLyMHDgQHTp0kU+Zty4caisrMRPP/3U5J+hIWbNmoUJEyaoPi8Av7oPBw4cQFxcHHr27Ikbb7wRR44cAeA/92Djxo0YOnQorrvuOsTExGDIkCF444035OcLCwtx7Ngx1X0wm81IS0tT3YfIyEgMHTpUPiYjIwMmkwn5+flN92F8oLq6Gu+++y5uu+02CILgN38Ohg0bhk8//RS//PILAOCHH37A119/jauuugqAf/w5qK2tRV1dHdq1a6d6PDQ0FF9//bVf3ANHvvrMeXl5GDFiBIKDg+Vjxo0bh/379+PkyZNeXRuHlHroxx9/RHp6Ov744w906NAB//nPf9CvXz/s3r0bwcHBiIyMVB3fpUsXHDt2DABw7Ngx1f/gpOel51qL999/Hzt37lStX0uOHTvmF/chLS0NK1euRJ8+fVBaWopFixbh8ssvR0FBgd/cg19//RWvvvoq7r//fvztb3/Dd999h3vuuQfBwcGYPn26/Dm0PqfyPsTExKieDwwMRKdOnVrNfZB88MEHqKiowIwZMwD4z38LDz74ICorK9G3b18EBASgrq4OTzzxBG688UYA8Is/B+Hh4UhPT8fjjz+OCy+8EF26dMG//vUv5OXloVevXn5xDxz56jMfO3YMSUlJTueQnuvYsaPH18bAx0N9+vTB7t27YbVasW7dOkyfPh1ffPFFc19Wkzl69Cjuvfde5OTkOP3txp9If5sFgEGDBiEtLQ09evTA2rVrERoa2oxX1nRsNhuGDh2KJ598EgAwZMgQFBQU4LXXXsP06dOb+eqa3ooVK3DVVVchLi6uuS+lSa1duxbvvfceVq9ejf79+2P37t3Izs5GXFycX/05eOedd3DbbbehW7duCAgIQEpKCq6//nrs2LGjuS+NHHCpy0PBwcHo1asXUlNTsXjxYgwePBjLli1D165dUV1djYqKCtXxv//+O7p27QoA6Nq1q9OODuln6ZiWbseOHTh+/DhSUlIQGBiIwMBAfPHFF3jxxRcRGBiILl26+MV9cBQZGYkLLrgABw8e9Js/C7GxsejXr5/qsQsvvFBe8pM+h9bnVN6H48ePq56vra1FeXl5q7kPAHD48GFs3boVt99+u/yYv/w5mDt3Lh588EH8+c9/xsCBA3HzzTfjvvvuw+LFiwH4z5+D5ORkfPHFFzh16hSOHj2Kb7/9FjU1NejZs6ff3AMlX33mxvhvhIFPA9lsNpw7dw6pqakICgrCp59+Kj+3f/9+HDlyBOnp6QCA9PR0/Pjjj6p/0Tk5OYiIiHD6AmmprrzySvz444/YvXu3/Gvo0KG48cYb5d/7w31wdOrUKRw6dAixsbF+82dh+PDh2L9/v+qxX375BT169AAAJCUloWvXrqr7UFlZifz8fNV9qKioUP2t+LPPPoPNZkNaWloTfArfePvttxETE4MJEybIj/nLn4MzZ87AZFJ/lQQEBMBmswHwrz8HANC+fXvExsbi5MmT+OSTT/CnP/3J7+4B4Lt/7+np6fjyyy9RU1MjH5OTk4M+ffp4tcwFgNvZPfHggw+KX3zxhVhYWCju2bNHfPDBB0VBEMQtW7aIomjfutq9e3fxs88+E7///nsxPT1dTE9Pl18vbV0dO3asuHv3bvHjjz8WO3fu3Kq2rmpR7uoSRf+4D3PmzBE///xzsbCwUNy+fbuYkZEhRkdHi8ePHxdF0T/uwbfffisGBgaKTzzxhHjgwAHxvffeE8PCwsR3331XPuapp54SIyMjxf/+97/inj17xD/96U+a21mHDBki5ufni19//bXYu3fvFr2F11FdXZ3YvXt3cf78+U7P+cOfg+nTp4vdunWTt7Nv2LBBjI6OFufNmycf4w9/Dj7++GPxo48+En/99Vdxy5Yt4uDBg8W0tDSxurpaFMW2eQ+qqqrEXbt2ibt27RIBiEuWLBF37dolHj58WBRF33zmiooKsUuXLuLNN98sFhQUiO+//74YFhbG7exN5bbbbhN79OghBgcHi507dxavvPJKOegRRVE8e/as+Ne//lXs2LGjGBYWJv6///f/xNLSUtU5ioqKxKuuukoMDQ0Vo6OjxTlz5og1NTVN/VF8yjHw8Yf7kJmZKcbGxorBwcFit27dxMzMTFX/Gn+4B6Ioips2bRIHDBgghoSEiH379hWXL1+uet5ms4kPP/yw2KVLFzEkJES88sorxf3796uOsVgs4vXXXy926NBBjIiIEG+99VaxqqqqKT9Gg3zyySciAKfPJYr+8eegsrJSvPfee8Xu3buL7dq1E3v27CkuWLBAtf3YH/4crFmzRuzZs6cYHBwsdu3aVZw1a5ZYUVEhP98W78G2bdtEAE6/pk+fLoqi7z7zDz/8IF522WViSEiI2K1bN/Gpp55q0HULoqhor0lERETUhrHGh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AYDHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIGmzUqFHIzs5u7stodI8++iguuuii5r4MImoABj5E5Peqq6ub9P1EUURtbW2TvicR2THwIaIGmTFjBr744gssW7YMgiBAEAQUFRWhoKAAV111FTp06IAuXbrg5ptvRllZmfy6UaNG4e6770Z2djY6duyILl264I033sDp06dx6623Ijw8HL169cJHH30kv+bzzz+HIAj48MMPMWjQILRr1w6XXnopCgoKVNf09ddf4/LLL0doaCgSEhJwzz334PTp0/LziYmJePzxx3HLLbcgIiICM2fOBADMnz8fF1xwAcLCwtCzZ088/PDD8lTolStXYtGiRfjhhx/kz7ly5UoUFRVBEATs3r1bPn9FRQUEQcDnn3+uuu6PPvoIqampCAkJwddffw2bzYbFixcjKSkJoaGhGDx4MNatW+frf0VEpMDAh4gaZNmyZUhPT8cdd9yB0tJSlJaWIjw8HFdccQWGDBmC77//Hh9//DF+//13TJs2TfXaVatWITo6Gt9++y3uvvtu/OUvf8F1112HYcOGYefOnRg7dixuvvlmnDlzRvW6uXPn4vnnn8d3332Hzp07Y9KkSXKAcujQIYwfPx5Tp07Fnj17sGbNGnz99deYPXu26hzPPfccBg8ejF27duHhhx8GAISHh2PlypXYu3cvli1bhjfeeAMvvPACACAzMxNz5sxB//795c+ZmZnp0b168MEH8dRTT2Hfvn0YNGgQFi9ejH/+85947bXX8NNPP+G+++7DTTfdhC+++MKj8xKRBxo04pSISBTFkSNHivfee6/88+OPPy6OHTtWdczRo0dVU8xHjhwpXnbZZfLztbW1Yvv27cWbb75Zfqy0tFQEIObl5YmiWD8N+v3335ePsVgsYmhoqLhmzRpRFEUxKytLnDlzpuq9v/rqK9FkMolnz54VRVEUe/ToIV5zzTVuP9ezzz4rpqamyj8/8sgj4uDBg1XHFBYWigDEXbt2yY+dPHlSBCBu27ZNdd0ffPCBfMwff/whhoWFibm5uarzZWVliddff73bayMi7wQ2Z9BFRG3TDz/8gG3btqFDhw5Ozx06dAgXXHABAGDQoEHy4wEBAYiKisLAgQPlx7p06QIAOH78uOoc6enp8u87deqEPn36YN++ffJ779mzB++99558jCiKsNlsKCwsxIUXXggAGDp0qNO1rVmzBi+++CIOHTqEU6dOoba2FhERER5/fj3K9zx48CDOnDmDMWPGqI6prq7GkCFDfPaeRKTGwIeIfO7UqVOYNGkSnn76aafnYmNj5d8HBQWpnhMEQfWYIAgAAJvN5tF733nnnbjnnnucnuvevbv8+/bt26uey8vLw4033ohFixZh3LhxMJvNeP/99/H888+7fD+TyV4xIIqi/Ji07OZI+Z6nTp0CAHz44Yfo1q2b6riQkBCX70lE3mPgQ0QNFhwcjLq6OvnnlJQUrF+/HomJiQgM9P3/Zr755hs5iDl58iR++eUXOZOTkpKCvXv3olevXh6dMzc3Fz169MCCBQvkxw4fPqw6xvFzAkDnzp0BAKWlpXKmRlnorKdfv34ICQnBkSNHMHLkSI+ulYi8x+JmImqwxMRE5Ofno6ioCGVlZZg1axbKy8tx/fXX47vvvsOhQ4fwySef4NZbb3UKHLzx2GOP4dNPP0VBQQFmzJiB6OhoXHPNNQDsO7Nyc3Mxe/Zs7N69GwcOHMB///tfp+JmR71798aRI0fw/vvv49ChQ3jxxRfxn//8x+lzFhYWYvfu3SgrK8O5c+cQGhqKSy+9VC5a/uKLL/B///d/bj9DeHg4HnjgAdx3331YtWoVDh06hJ07d+Kll17CqlWrvL43ROQaAx8iarAHHngAAQEB6NevHzp37ozq6mps374ddXV1GDt2LAYOHIjs7GxERkbKS0MN8dRTT+Hee+9Famoqjh07hk2bNiE4OBiAvW7oiy++wC+//ILLL78cQ4YMwcKFCxEXF+fynJMnT8Z9992H2bNn46KLLkJubq6820sydepUjB8/HqNHj0bnzp3xr3/9CwDw1ltvoba2FqmpqcjOzsbf//53Q5/j8ccfx8MPP4zFixfjwgsvxPjx4/Hhhx8iKSnJi7tCREYIonJhmoioBfv8888xevRonDx5EpGRkc19OUTUCjHjQ0RERH6DgQ8RERH5DS51ERERkd9gxoeIiIj8BgMfIiIi8hsMfIiIiMhvMPAhIiIiv8HAh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/Mb/ByivaIjw4Gq5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 [==============================] - 0s 3ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzzUlEQVR4nO3deVxU1fsH8M+wbwKKKKiguAEuP9dESCuMRFPR1FIzlVzKPVcWN0RTkdxyr6+5VOZWppMbGi6VorngLmiK4oZoCIjKOuf3xzQXrqCCAjMDn/frNS+55z5z5xkmnadz7jlHIYQQICIiIiKdZqDtBIiIiIjo5Vi0EREREekBFm1EREREeoBFGxEREZEeYNFGREREpAdYtBERERHpARZtRERERHqARRsRERGRHmDRRkRERKQHWLQREb0mhUKB6dOnazsNib+/P2rVqqXtNIiomLFoI6Iyae3atVAoFNLDzMwM9evXx8iRI3Hv3r0Sfe0jR45g+vTpSE5OLtbrvvPOO7L3VKlSJbzxxhtYvXo1VCpVsbzG7NmzsW3btmK5FhEVLyNtJ0BEVJJmzJgBFxcXpKen46+//sKKFSuwa9cunD9/HhYWFsXyGk+fPoWRUe4/p0eOHEFoaCj8/f1ha2tbLK+hUaNGDcyZMwcAcP/+fXz//fcYNGgQLl++jLCwsNe+/uzZs9GzZ09069btta9FRMWLRRsRlWkdO3ZEy5YtAQCDBw+GnZ0dFixYgO3bt6NPnz6vfF2VSoXMzEyYmZnBzMysuNJ9KRsbG3zyySfS8eeffw5XV1csXboUM2fOhLGxcanlQkSli8OjRFSutGvXDgAQFxcHAJg3bx68vLxgZ2cHc3NztGjRAj///HO+5ykUCowcORLr169Hw4YNYWpqij179kjnNPe0TZ8+HRMnTgQAuLi4SEOZ169fx9tvv40mTZoUmJerqyt8fX2L/H4sLCzQunVrPH78GPfv339u3OPHjzF+/Hg4OTnB1NQUrq6umDdvHoQQsvf4+PFjrFu3Tsrb39+/yDkRUclgTxsRlStXr14FANjZ2QEAvv76a/j5+aFv377IzMzExo0b8eGHH2LHjh3o1KmT7Ln79+/H5s2bMXLkSFSuXLnAm/27d++Oy5cvY8OGDVi4cCEqV64MALC3t0e/fv0wZMgQnD9/Ho0aNZKec/z4cVy+fBlTpkx5pfd07do1GBoaPncoVggBPz8/HDhwAIMGDULTpk0RERGBiRMn4vbt21i4cCEA4IcffsDgwYPRqlUrfPbZZwCAOnXqvFJORFQCBBFRGbRmzRoBQPz+++/i/v374ubNm2Ljxo3Czs5OmJubi1u3bgkhhHjy5InseZmZmaJRo0aiXbt2snYAwsDAQFy4cCHfawEQISEh0vFXX30lAIi4uDhZXHJysjAzMxOBgYGy9tGjRwtLS0uRlpb2wvf09ttvCzc3N3H//n1x//59cenSJTF69GgBQHTp0kWKGzBggKhZs6Z0vG3bNgFAfPnll7Lr9ezZUygUCvHPP/9IbZaWlmLAgAEvzIOItIPDo0RUpvn4+MDe3h5OTk7o3bs3rKys8Ouvv6J69eoAAHNzcyn24cOHSElJQdu2bXHq1Kl813r77bfRoEGDV87FxsYGXbt2xYYNG6RhyZycHGzatAndunWDpaXlS68RExMDe3t72Nvbw93dHUuWLEGnTp2wevXq5z5n165dMDQ0xOjRo2Xt48ePhxACu3fvfuX3RESlh8OjRFSmLVu2DPXr14eRkRGqVq0KV1dXGBjk/v/qjh078OWXX+L06dPIyMiQ2hUKRb5rubi4vHY+/fv3x6ZNm/Dnn3/irbfewu+//4579+6hX79+hXp+rVq18L///U9axqRevXqoUqXKC59z48YNVKtWDRUqVJC1u7u7S+eJSPexaCOiMq1Vq1bS7NFn/fnnn/Dz88Nbb72F5cuXw9HREcbGxlizZg1++umnfPF5e+Vela+vL6pWrYoff/wRb731Fn788Uc4ODjAx8enUM+3tLQsdCwRlS0cHiWicuuXX36BmZkZIiIiMHDgQHTs2LFYCqKCeuk0DA0N8fHHH+Pnn3/Gw4cPsW3bNvTp0weGhoav/brPU7NmTdy5cwePHj2StcfExEjnNV6UOxFpF4s2Iiq3DA0NoVAokJOTI7Vdv379tXcE0Nyb9rwdEfr164eHDx/i888/R1pammzdtZLw/vvvIycnB0uXLpW1L1y4EAqFAh07dpTaLC0ti30nByIqHhweJaJyq1OnTliwYAE6dOiAjz/+GImJiVi2bBnq1q2Ls2fPvvJ1W7RoAQCYPHkyevfuDWNjY3Tp0kUq5po1a4ZGjRphy5YtcHd3R/PmzYvl/TxPly5d4O3tjcmTJ+P69eto0qQJ9u7di+3bt2PMmDGyZT1atGiB33//HQsWLEC1atXg4uICDw+PEs2PiAqHPW1EVG61a9cO3333HRISEjBmzBhs2LABc+fOxQcffPBa133jjTcwc+ZMnDlzBv7+/ujTp0++hW/79+8PAIWegPA6DAwMoFQqMWbMGOzYsQNjxozBxYsX8dVXX2HBggWy2AULFqBFixaYMmUK+vTpgxUrVpR4fkRUOAoh8iyHTUREpeLrr7/G2LFjcf36dTg7O2s7HSLSAyzaiIhKmRACTZo0gZ2dHQ4cOKDtdIhIT/CeNiKiUvL48WMolUocOHAA586dw/bt27WdEhHpEfa0ERGVkuvXr8PFxQW2trYYPnw4Zs2ape2UiEiPsGgjIiIi0gOcPUpERESkB1i0EREREekBTkTQYSqVCnfu3EGFChW4tQwREZGeEELg0aNHqFatGgwMiq9/jEWbDrtz5w6cnJy0nQYRERG9gps3b6JGjRrFdj0WbTqsQoUKANQfurW1tZazISIiosJITU2Fk5OT9D1eXFi06TDNkKi1tTWLNiIiIj1T3Lc2cSICERERkR5g0UZERESkB1i0EREREekB3tOm53JycpCVlaXtNKgUGBsbw9DQUNtpEBGRlrBo01NCCCQkJCA5OVnbqVApsrW1hYODA9ftIyIqh1i06SlNwValShVYWFjwS7yME0LgyZMnSExMBAA4OjpqOSMiIiptLNr0UE5OjlSw2dnZaTsdKiXm5uYAgMTERFSpUoVDpURE5QwnIughzT1sFhYWWs6ESpvmM+d9jERE5Y/eFG1+fn5wdnaGmZkZHB0d0a9fP9y5c0cWI4TAvHnzUL9+fZiamqJ69eqYNWuWLObgwYNo3rw5TE1NUbduXaxduzbfay1btgy1atWCmZkZPDw88Pfff8vOp6enY8SIEbCzs4OVlRV69OiBe/fuyWLi4+PRqVMnWFhYoEqVKpg4cSKys7OL55fxHw6Jlj/8zImIyi+9Kdq8vb2xefNmxMbG4pdffsHVq1fRs2dPWcwXX3yBVatWYd68eYiJiYFSqUSrVq2k83FxcejUqRO8vb1x+vRpjBkzBoMHD0ZERIQUs2nTJowbNw4hISE4deoUmjRpAl9fX+leIgAYO3YsfvvtN2zZsgWHDh3CnTt30L17d+l8Tk4OOnXqhMzMTBw5cgTr1q3D2rVrMW3atBL8DREREVGZJvTU9u3bhUKhEJmZmUIIIS5evCiMjIxETEzMc58TEBAgGjZsKGvr1auX8PX1lY5btWolRowYIR3n5OSIatWqiTlz5gghhEhOThbGxsZiy5YtUsylS5cEABEVFSWEEGLXrl3CwMBAJCQkSDErVqwQ1tbWIiMjo9DvMSUlRQAQKSkpsvanT5+KixcviqdPnxb6WlQ28LMnItJ9z/v+fl1609OWV1JSEtavXw8vLy8YGxsDAH777TfUrl0bO3bsgIuLC2rVqoXBgwcjKSlJel5UVBR8fHxk1/L19UVUVBQAIDMzEydPnpTFGBgYwMfHR4o5efIksrKyZDFubm5wdnaWYqKiotC4cWNUrVpV9jqpqam4cOHCc99XRkYGUlNTZY+yxt/fHwqFAgqFAsbGxqhatSree+89rF69GiqVqtDXWbt2LWxtbUsuUSIiIh2jV0VbYGAgLC0tYWdnh/j4eGzfvl06d+3aNdy4cQNbtmzB999/j7Vr1+LkyZOyIdSEhARZIQUAVatWRWpqKp4+fYoHDx4gJyenwJiEhATpGiYmJvkKhmdjCrqG5tzzzJkzBzY2NtLDycmpkL8Z/dKhQwfcvXsX169fx+7du+Ht7Y0vvvgCnTt3Lvb7/oiIiAqSlpaGx48fazuNItFq0RYUFCT1ujzvERMTI8VPnDgR0dHR2Lt3LwwNDdG/f38IIQAAKpUKGRkZ+P7779G2bVu88847+O6773DgwAHExsZq6y0WSXBwMFJSUqTHzZs3tZ1SiTA1NYWDgwOqV6+O5s2bY9KkSdi+fTt2794tTQxZsGABGjduDEtLSzg5OWH48OFIS0sDoJ5M8umnnyIlJUX672T69OkAgB9++AEtW7ZEhQoV4ODggI8//lh2PyIREZVvQggsW7YM8+fPx8qVK6U6Qh9odZ228ePHw9/f/4UxtWvXln6uXLkyKleujPr168Pd3R1OTk44evQoPD094ejoCCMjI9SvX1+Kd3d3B6Ceyenq6goHB4d8szzv3bsHa2trmJubw9DQEIaGhgXGODg4AAAcHByQmZmJ5ORkWW/bszHPzjjVXFMTUxBTU1OYmpq+8PfxPEIIrS0DYWxs/NqzGtu1a4cmTZpg69atGDx4MAwMDLB48WK4uLjg2rVrGD58OAICArB8+XJ4eXlh0aJFmDZtmlSQW1lZAVAvhTFz5ky4uroiMTER48aNg7+/P3bt2vXa75OIiPRbcnIyvv76a+n48ePHejUrX6tFm729Pezt7V/puZr7nzIyMgAAb775JrKzs3H16lXUqVMHAHD58mUAQM2aNQEAnp6e+b689+3bB09PTwCAiYkJWrRogcjISHTr1k16ncjISIwcORIA0KJFCxgbGyMyMhI9evQAAMTGxiI+Pl66jqenJ2bNmiUtgqp5HWtrazRo0OCV3u/LZGVlYc6cOSVy7ZcJDg6GiYnJa1/Hzc0NZ8+eBQCMGTNGaq9Vqxa+/PJLDB06FMuXL4eJiQlsbGygUCjyFcEDBw6Ufq5duzYWL16MN954A2lpaVJhR0RE5c/x48dlNYCNjQ2++OILLWZUdHqxI8KxY8dw/PhxtGnTBhUrVsTVq1cxdepU1KlTRyqUfHx80Lx5cwwcOBCLFi2CSqXCiBEj8N5770m9b0OHDsXSpUsREBCAgQMHYv/+/di8eTN27twpvda4ceMwYMAAtGzZEq1atcKiRYvw+PFjfPrppwDUH/KgQYMwbtw4VKpUCdbW1hg1ahQ8PT3RunVrAED79u3RoEED9OvXD+Hh4UhISMCUKVMwYsSIV+5JKw+EENL/8fz++++YM2cOYmJikJqaiuzsbKSnp+PJkycvXFT45MmTmD59Os6cOYOHDx9KxX18fHyJFcxERKS7hBBYvHixbK/u999/H2+88Yb2knpFelG0WVhYYOvWrQgJCcHjx4/h6OiIDh06YMqUKVIRZGBggN9++w2jRo3CW2+9BUtLS3Ts2BHz58+XruPi4oKdO3di7Nix+Prrr1GjRg2sWrUKvr6+UkyvXr1w//59TJs2DQkJCWjatCn27Nkjm1iwcOFCGBgYoEePHsjIyICvry+WL18unTc0NMSOHTswbNgweHp6wtLSEgMGDMCMGTNK7HdkbGyM4ODgErv+y167OFy6dAkuLi64fv06OnfujGHDhmHWrFmoVKkS/vrrLwwaNAiZmZnPLdoeP34MX19f+Pr6Yv369bC3t0d8fDx8fX2RmZlZLDkSEZH+SEpKwpIlS2RtDRp8gTfesNVOQq9JL4q2xo0bY//+/S+Nq1atGn755ZcXxrzzzjuIjo5+YczIkSOl4dCCmJmZYdmyZVi2bNlzY2rWrFmq91EpFIpiGaLUlv379+PcuXMYO3YsTp48CZVKhfnz58PAQD1XZvPmzbJ4ExMT5OTkyNpiYmLw77//IiwsTJp5e+LEidJ5A0REpFOioqKwd+9e6TgtrTLmzRsOT08FPvxQi4m9Br1a8oPKhoyMDCQkJOD27ds4deoUZs+eja5du6Jz587o378/6tati6ysLCxZsgTXrl3DDz/8gJUrV8quUatWLaSlpSEyMhIPHjzAkydP4OzsDBMTE+l5SqUSM2fO1NK7JCIibVCpVJg3b56sYOvSpQvath0BT08FvL0BLy9AqdRikq+IRRuVuj179sDR0RG1atVChw4dcODAASxevBjbt2+HoaEhmjRpggULFmDu3Llo1KgR1q9fn2+ShZeXF4YOHYpevXrB3t4e4eHhsLe3x9q1a7FlyxY0aNAAYWFhmDdvnpbeJRERlbYHDx5g5syZsvXXDh4ci+bNm8PPDzhyBDhwAIiKAsLCtJjoK1IIfVqgpJxJTU2FjY0NUlJSYG1tLbWnp6cjLi4OLi4uMDMz02KGVNr42RMRFezPP/+U3UqlUjliwYIhGD1agVmzcuOUSnXB5u2tLuCCggA/v+LN5Xnf36+LPW1ERESkt1QqFWbPni0r2D744APs2/cZ0tIUOHBA3aZUqodFAf3tcWPRRkRERHopMTERM2fOlC0u36jRePzf//0fvL0BKyt1jxqgLs7yFmlBQYCnp/pPfcGijYiIiPTOgQMHsGLFCuk4KckZ06dPw/z5Vv+dB9LSIPW0aYo0zUQEQN3jVtxDoyWJRRsRERHpjZycHISGzsAff/whtZ0+3RPvvvspPD0VUs/Zsz1tZWEigl6s00ZERER09+5dfPvtt7K2X3+dgPR0SwDqokzj2Z42jaAgdcGmT8OiGizaiIiISOft27cPR/JUZQ8e1MZ77/VDRARw5kxuz5lmZujDh4Cra/7izM9Pv4ZE82LRRkRERDorOzsbs/Ku2QEgK6sXTp50w3vvqQu0c+fUf2omG5w7p+5l8/TU3wKtICzaiIiISCfdunUL3333naxt7twAGBqaIy0tt3dNMwyqGfrMuwZbWcKijYiIiHTO7t278ffff0vH9+654v793jA0BDp0AG7fzi3KNPeo6fPQZ2GwaKMyyd/fH8nJydi2bRsA4J133kHTpk2xaNGiV75mcVyDiIheLCsrC7Nnz5a1HTz4MQ4erAczMyA9HdizB1i/PrdAK8uFWl5c8oNKlb+/PxQKBRQKBUxMTFC3bl3MmDED2dnZJfq6W7duLfTm8QcPHoRCoUBycvIrX4OIiIouPj4+X8H2f/8XiKNH6wEA7OzUy3jkHRotT9jTRqWuQ4cOWLNmDTIyMrBr1y6MGDECxsbGCA4OlsVlZmbCxMSkWF6zUqVKOnENIiLKT6kEfvtNiRo1oqW2u3cb4f33eyAsTN27Zm6uLtgGDCib96sVBnvaqNSZmprCwcEBNWvWxLBhw+Dj4wOlUgl/f39069YNs2bNQrVq1eDq6goAuHnzJj766CPY2tqiUqVK6Nq1K65fvy5dLycnB+PGjYOtrS3s7OwQEBAAIYTsNd955x2MGTNGOs7IyEBgYCCcnJxgamqKunXr4rvvvsP169fh/d9KjBUrVoRCoYC/v3+B13j48CH69++PihUrwsLCAh07dsSVK1ek82vXroWtrS0iIiLg7u4OKysrdOjQAXfv3pViDh48iFatWsHS0hK2trZ48803cePGjWL6TRMR6TalEmjUKBPR0aGygu348X6ws+shTSrw9AScnYHYWHXBpm87GRQXFm2kdebm5sjMzAQAREZGIjY2Fvv27cOOHTuQlZUFX19fVKhQAX/++ScOHz4sFT+a58yfPx9r167F6tWr8ddffyEpKQm//vrrC1+zf//+2LBhAxYvXoxLly7hm2++gZWVFZycnPDLL78AAGJjY3H37l18/fXXBV7D398fJ06cgFKpRFRUFIQQeP/992V74D158gTz5s3DDz/8gD/++APx8fGYMGECAPU09m7duuHtt9/G2bNnERUVhc8++wwKheK1f6dERPpg/vw4fPjhHFnb778HY+fO2li8WL18h6ZICw/Xv71CixuHR0lrhBCIjIxEREQERo0ahfv378PS0hKrVq2ShkV//PFHqFQqrFq1Sipm1qxZA1tbWxw8eBDt27fHokWLEBwcjO7duwMAVq5ciYiIiOe+7uXLl7F582bs27cPPj4+AIDatWtL5zXDoFWqVIGtrW2B17hy5QqUSiUOHz4Mr/82sVu/fj2cnJywbds2fPjhhwDUN9SuXLkSderUAQCMHDkSM2bMAACkpqYiJSUFnTt3ls67u7sX/RdJRKSHtm7dinbtzknHlSo1xahRXdGsGZCTA1Svrp5wkHcbqvLYu5YXe9oISqV681ylsnReb8eOHbCysoKZmRk6duyIXr16Yfr06QCAxo0by+5jO3PmDP755x9UqFABVlZWsLKyQqVKlZCeno6rV68iJSUFd+/ehYeHh/QcIyMjtGzZ8rmvf/r0aRgaGuLtt99+5fdw6dIlGBkZyV7Xzs4Orq6uuHTpktRmYWEhFWQA4OjoiMTERADq4tDf3x++vr7o0qULvv76a9nQKRFRWaNUAi4uGQgNDcW5c7kF2++/+6Nmza4AcvcIvX274G2oyjMWbSStIF1aM3G8vb1x+vRpXLlyBU+fPsW6detgaaneN07zp0ZaWhpatGiB06dPyx6XL1/Gxx9//Eqvb25u/trvobCMjY1lxwqFQna/3Zo1axAVFQUvLy9s2rQJ9evXx9GjR0stPyKi0rRq1T/w95d/2ezbNwl//VUz33dQUBCHQ5/Foo1K/S+GpaUl6tatC2dnZxgZvXiEvnnz5rhy5QqqVKmCunXryh42NjawsbGBo6Mjjh07Jj0nOzsbJ0+efO41GzduDJVKhUOHDhV4XtPTl5OT89xruLu7Izs7W/a6//77L2JjY9GgQYMXvqdnNWvWDMHBwThy5AgaNWqEn376qUjPJyLSZUol4O4ODB68GS1arJfac3JaIiQkBAEBxgV+B2l63Mr7kGheLNpIp/9i9O3bF5UrV0bXrl3x559/Ii4uDgcPHsTo0aNx69YtAMAXX3yBsLAwbNu2DTExMRg+fHi+NdbyqlWrFgYMGICBAwdi27Zt0jU3b94MAKhZsyYUCgV27NiB+/fvIy0tLd816tWrh65du2LIkCH466+/cObMGXzyySeoXr06unbtWqj3FhcXh+DgYERFReHGjRvYu3cvrly5wvvaiKhMmTfvKXr3DoWTU+6tI4MGDcKMGZ0A6PZ3kK5h0UY6zcLCAn/88QecnZ3RvXt3uLu7Y9CgQUhPT4e1tTUAYPz48ejXrx8GDBgAT09PVKhQAR988MELr7tixQr07NkTw4cPh5ubG4YMGYLHjx8DAKpXr47Q0FAEBQWhatWqGDlyZIHXWLNmDVq0aIHOnTvD09MTQgjs2rUr35Doi95bTEwMevTogfr16+Ozzz7DiBEj8PnnnxfhN0REpJuUSqBr11i8+264rH3y5MmoUaOGlrLSbwrx7IJWpDNSU1NhY2ODlJQUqUABgPT0dMTFxcHFxQVmZmZazJBKGz97ItJlSmXuPqD7969BxYrx0rm4OE+sXdtei9mVnud9f78u9rQRERHRK8u7AkFYGHDhQgqio0NlBdsPPwxB9+7tS321grKG67QRERHRK8u7AoG//yHcvXtQdn7v3ilYsMAQfn7qgk0Ty3vYio5FGxEREb2yoCB1EebrG4q8S03Gxzvh8OGBiInJH8tlPF4NizYiIiIqkrz3rmVkJMHXd4ns/M6d/XD8eG24ucmfx10NXg+LNj3GOSTlDz9zItIFmiHRX375HbVrH5admzlzCurVM+TCuCWARZse0iwp8eTJk1Jd3Z+078mTJwDy77RARFTS8vauVa8uMH36DNl5laoONm36BPXqAXPnsketJLBo00OGhoawtbWV9rC0sLCQNlOnskkIgSdPniAxMRG2trYwNDTUdkpEVM5oetdGjXqAgQOXyc75+/ujT5+aiI1V77DDgq1ksGjTUw4ODgAgFW5UPtja2kqfPRFRafL2Bmxtd8PD429Z+5QpU2BoaMhJBqWAi+vqsMIszpeTk4OsrKxSzoy0wdjYmD1sRKQV27cLnD4tHw51d3fHRx99pKWMdFtJLa7LnjY9Z2hoyC9yIiIqMffu3cPp0ytlbYMGDeJWVFrAHRGIiIiowN0KlEolVq6UF2xTp05lwaYl7GkjIiIi2c4GXboIzJghHw6Ni/s/rF37gZayI4BFGxEREUE9gSAgAHjy5A5mzPif7NzKlZ/D1paToLSNw6NERETl1LNDos2a/YwPPpAXbE2bToOLiwPmztVCgiTD2aM6rKRmnxAREQG5G7h7eanQvv1M2bkrV1rgxx87aykz/cbZo0RERFSsvL2Bf/+9ifbtV8va//prOEaNstdSVvQ8LNqIiIjKIaUSuHlzAz7++LKsfdq0adxlR0fxnjYiIqIy7tl713JychAdHYo6dXILtsOHPREREcKCTYexp42IiKgMUyqBvn2BtDT1ch6NG8fh+++/l8W4u49ERIQdt6DScSzaiIiIyhilUl2geXsDixerCzYrK6BHj3X4/vvrsljNcCh3pNJ9LNqIiIjKkLw9a+fOqf+0tMzGhAmzkJaWG3f16lv4/ntv7SVKRcaijYiIqAwJC1MXamZmgI0N0LDhP+jYcb0s5tChLzBmjK12EqRXxqKNiIioDAkKUhduDx8Cbdv+D9Wr35GdDwkJ0VJm9Lo4e5SIiKgM0MwQBYBDh7LQu3eorGBzdHyXBZueY08bERFRGaDZ8D0oKAbR0Ztk5xo2HIuePbmzjr5j0UZERKSnlEogMBAQAujRA2jRYikqV/5XFsPetbKDRRsREZEeyLuMx4EDufeuxcQAJiYZMDEJQ+XKufEdOnSAh4eH9hKmYseijYiISA9ohj81y3iEhakLt2XLzsPL6xdZ7Pjx42FlZaWlTKmksGgjIiLScZMnA9HRQPXqwIABuT1tV67Mh5dX7uJrBgYGmDp1qhYzpZLEoo2IiEhHaYZEo6OB9HQgJQWYNQtIT0/H3LlzZbGdO3dGixYttJQplQYWbURERDpKMyRavbq6YOvQAejZ8zQaN94ui5s4cSIsLCy0lCWVFhZtREREOiooKHd26PLlwPHjc2BklCmdNzc3R0BAgBYzpNLExXWJiIh0hGaBXKVSfeznB1SsCNy8+QTR0aGygq1bt24s2MoZ9rQRERHpCM1waFhY7vG77x6Hr+8uWVxgYCDMzMy0kCFpE4s2IiIiHaBUAklJgJtb7hpsvr6hshgbGxuMGTNGOwmS1rFoIyIi0jKlEujbV73+mqcn4O39CNHRC2QxH374IRo0aKClDEkXsGgjIiLSorwFm5UVMHBgFBYs2CuLCQ4OhomJiZYyJF3Boo2IiEgLNGuwJSXlFmwTJoTi9u3cmCpVqmDYsGHaS5J0Cos2IiIiLQgMVO8bWr064O2dgrffXiQ737t3b7i6umonOdJJLNqIiIhK0ZtvAkeOAJrJnx4ef+D//u+ALGbSpEkwNjbWQnaky1i0ERERlQKlEggIAGJj1cfp6cD06fLZoTVq1MCgQYO0kB3pAxZtREREJSzvZAMAqFjxIb74YrEs5pNPPkGdOnW0kB3pC73ZEcHPzw/Ozs4wMzODo6Mj+vXrhzt37kjnp0+fDoVCke9haWkpu86WLVvg5uYGMzMzNG7cGLt2yRcsFEJg2rRpcHR0hLm5OXx8fHDlyhVZTFJSEvr27Qtra2vY2tpi0KBBSNP8TfzP2bNn0bZtW5iZmcHJyQnh4eHF/BshIiJdlHdXA83PgYHqgs3MDPjww8h8BdvkyZNZsNFL6U3R5u3tjc2bNyM2Nha//PILrl69ip49e0rnJ0yYgLt378oeDRo0wIcffijFHDlyBH369MGgQYMQHR2Nbt26oVu3bjh//rwUEx4ejsWLF2PlypU4duwYLC0t4evri/T0dCmmb9++uHDhAvbt24cdO3bgjz/+wGeffSadT01NRfv27VGzZk2cPHkSX331FaZPn45vv/22hH9LRESkbZpdDYYPB7p1U//86BHg6SkQFBSKhg3/kmJr166NkJAQGBlx4IteTiGEENpO4lUolUp069YNGRkZBd6seebMGTRt2hR//PEH2rZtCwDo1asXHj9+jB07dkhxrVu3RtOmTbFy5UoIIVCtWjWMHz8eEyZMAACkpKSgatWqWLt2LXr37o1Lly6hQYMGOH78OFq2bAkA2LNnD95//33cunUL1apVw4oVKzB58mQkJCRI6+oEBQVh27ZtiImJKfR7TE1NhY2NDVJSUmBtbf3KvysiIio9kycDixcDGRlAVpa67Y03HqBTp2WyOH9/f9SsWVMLGVJJK6nvb73pacsrKSkJ69evh5eX13Nn16xatQr169eXCjYAiIqKgo+PjyzO19cXUVFRAIC4uDgkJCTIYmxsbODh4SHFREVFwdbWVirYAMDHxwcGBgY4duyYFPPWW2/JFkL09fVFbGwsHj58+Nz3lZGRgdTUVNmDiIj0y7p16qFQU1P1cGiPHnvyFWxTpkxhwUZFpldFW2BgICwtLWFnZ4f4+Hhs3769wLj09HSsX78+3wychIQEVK1aVdZWtWpVJCQkSOc1bS+KqVKliuy8kZERKlWqJIsp6Bp5X6Mgc+bMgY2NjfRwcnJ6biwREemmpCT1nzk56uHQxo2PSefc3NwQEhICQ0NDLWVH+kyrRVtQUFCBkwfyPvIOJ06cOBHR0dHYu3cvDA0N0b9/fxQ0uvvrr7/i0aNHGDBgQGm+ndcWHByMlJQU6XHz5k1tp0RERIWQd/LB2LFArVqJCAycIYsZNGgQevXqpaUMqSzQ6p2P48ePh7+//wtjateuLf1cuXJlVK5cGfXr14e7uzucnJxw9OhReHp6yp6zatUqdO7cOV9vl4ODA+7duydru3fvHhwcHKTzmjZHR0dZTNOmTaWYxMRE2TWys7ORlJQku05Br5P3NQpiamoKU1PT554nIiLt0Ww7FRQE+PnJz2kmH4SFAcHBv8HE5JTs/NSpU2FgoFeDW6SDtPpfkL29Pdzc3F74eN4GuSqVCoD6PrC84uLicODAgQIXJ/T09ERkZKSsbd++fVLR5+LiAgcHB1lMamoqjh07JsV4enoiOTkZJ0+elGL2798PlUoFDw8PKeaPP/5AluYO1P9ex9XVFRUrViz074eIiHRH3sIsb88aoC7kPD0FfH1DcepUbsHWuHFjhISEsGCjYqEXs0ePHTuG48ePo02bNqhYsSKuXr2KqVOn4t69e7hw4YKsd2rq1KlYvXo14uPj890zcOTIEbz99tsICwtDp06dsHHjRsyePRunTp1Co0aNAABz585FWFgY1q1bBxcXF0ydOhVnz57FxYsXYfbfniMdO3bEvXv3sHLlSmRlZeHTTz9Fy5Yt8dNPPwFQzzh1dXVF+/btERgYiPPnz2PgwIFYuHChbGmQl+HsUSIi3ZG3p02zb6ibG3DpEnD37t18yzp99tlnslEbKj9K6vtbLxaGsbCwwNatWxESEoLHjx/D0dERHTp0wJQpU2QFm0qlwtq1a+Hv71/gTZ5eXl746aefMGXKFEyaNAn16tXDtm3bpIINAAICAvD48WN89tlnSE5ORps2bbBnzx6pYAOA9evXY+TIkXj33XdhYGCAHj16YPHi3IUSbWxssHfvXowYMQItWrRA5cqVMW3atCIVbEREpFs0Q6JhYep11wBACGDr1q04d+6cLHbatGlQKBSlnCGVdXrR01ZesaeNiEh78vasAeqfk5LUe4e6ugJ2diq0bz9T9pwWLVqgc+fOWsiWdEm57mkjIiIqTXn3Cg0LU7dFRamHQz09gVGjbuLy5dWy5wwbNizfklBExYlFGxER0TPCwtQFm0IBxMcDmhWkgoKAx4834PLly7J4DodSaeB0FiIiIshnhAYFAVZW6nvWbt8GDhwA/vwzB9HRobKCrXXr1ggJCWHBRqWC97TpMN7TRkRUery81EOgBgbqos3DQz1LVAhg6tTr+OefdbL4kSNHws7OTkvZki7jPW1EREQlRKlUD4MCgEql3vD90SP1jNHvv/8e//wTJ4vncChpA4s2IiIq1z78EPj559xjAwNg9Gj1bjezZs2SxbZt2xbt2rUr5QyJ1Fi0ERFRuaRZ0uPo0dw2Nzdg7lygQYN/MGvWeln8F198AVtb29JNkigPFm1ERFSuaIq1hw/VuxpUqgQkJwPduwNbtqj3r46Ovi17TkhIiHaSJcqDRRsREZUbkycDc+aoJxdUr65ec02zAXxWVhZCQ2fL4tu1a4e2bdtqKVsiORZtRERU5imV6pmgsbHqgg0AKlQAjhxR/xwbG4uNGzfKnjN27FjO3CedwqKNiIjKvLAw9VAooF4wt1o19b1rALBs2TI8ePBAFs/hUNJFLNqIiKjMCwrKXXMtPFw9HJqRkYHQ0DBZnK+vL1q3bq2lLIlejEUbERGVSZoJB97e6h0N5s5VF2sAcP78efzyyy+y+PHjx8PKykoLmRIVDos2IiIqUzTFWny8eguq06eBp0/VbX5+wMKFC5GamirFKxQKTJs2TXsJExUSizYiIipTwsLU21GZmamPK1UCnJ2BCRPSERo6VxbbqVMntGzZUgtZEhUdizYiIipTgoLkw6JBQYCz82ls375dFjdx4kRYWFhoKUuiomPRRkREeuvZ+9Y0a65p7l0DgLCwMERHZ0jHpqamCAoK0kK2RK+HRRsREeklpRLo2xdISwOio4H0dCAgILdge/LkCb766ivZc7p164YmTZpoIVui18eijYiI9FJYmLpgMzAALCzURZtCoT534sQJ7Ny5UxYfGBgIM82NbkR6iEUbERHppaAgoFcvdbFmbp67JVVoaKgsztraGmPHjtVSlkTFh0UbERHpJT8/oFYt9U4HFSoAe/emYf78+bKYnj17omHDhtpJkKiYGWg7ASIiosJSKgEvL/WfgHrBXE9PYPz4qHwFW3BwMAs2KlPY00ZERDpNqVRPMEhLA/79Vz0cqlko188PiI4Oxe3bufH29vYYPny49hImKiEs2oiISGflnSGqYWWlvnctNTUVCxculMX37t0brq6upZwlUelg0UZERDorMFBdsJmYAPb26oItPByoWPFPLFy4XxY7adIkGBsbaylTopLHoo2IiHTShx+qJxkAgItL7s/Pzg6tXr06Bg8eXMrZEZU+Fm1ERKR1Be1ssHVr7vnwcODhw4dYvHix7HmffPIJ6tSpU8rZEmkHizYiItI6zSbv586ph0PDwoDu3dWFW/fugJXVfixe/KfsOZMnT4aREb/GqPzgkh9ERKQVeZfvCApSL90xenTuIrlbtgDZ2QKNGoXizz9zCzYXFxeEhISwYKNyh//FExGRVmh61zTDoufOqf88ckR9/t9//8XSpUtlzxkwYABq1apV+skS6QAWbUREVOqUSuDhQ8DVVd2rplnWY/FiYNYsICIiAkePHpU9Z8qUKTA0NNRSxkTapxBCCG0nQQVLTU2FjY0NUlJSYG1tre10iIiKjbu7ejaomxtw6RIwebK6YBs9WsDEZIYs1tXVFb1799ZSpkRFV1Lf37ynjYiISo3mPrbERPXxo0fqP2fNAq5eTcxXsA0aNIgFG9F/ODxKRESlQqkEevVSb0OlWQO3QgX1n7/99htOnToli586dSoMDNi3QKTBoo2IiEqUUqne2eDqVSArS91WpQrg7AwEBgqEhsp71xo1aoQePXpoIVMi3caijYiISkxBe4eamQHLlwNvvHEX3377rSz+s88+g6OjYylnSaQfWLQREVGJyFuwmZsDlSqph0PnzgWys7fi22/PyeKnTZsGhUKhpWyJdB+LNiIiKjaaoVAhAIVCXbBZWQHr1wN+foBKpcLMmTNlz2nevDm6dOmipYyJ9AeLNiIiKjZhYbkbu7u65u5u4OcH3Lp1C999950sftiwYahSpYoWMiXSPyzaiIio2Hh7A6dPq4dCw8PVxRoAbNq0CTGaau4/HA4lKpoiF22Ghoa4e/duvv8z+vfff1GlShXk5OQUW3JERKT7nh0SffpUPTPUzw/IycnBl19+KYv38PBAhw4dtJQtkf4qctH2vA0UMjIyYGJi8toJERGRflAq1cOhSUlAbKy6rXr13CHR69evY926dbLnjBw5EnZ2dlrIlkj/FbpoW7x4MQBAoVBg1apVsLKyks7l5OTgjz/+gJubW/FnSEREOuXZYs3cHDAxATIz1bNDjxwBvv/+e6xbFyd7HodDiV5PofcedXFxAQDcuHEDNWrUkG3aa2Jiglq1amHGjBnw8PAomUzLIe49SkS6yMsLiIpS7xt644Z6OLR6dfWQaEBANs6cmSWLb9OmDd59910tZUtU+krq+7vQPW1xcer/Y/L29sbWrVtRsWLFYkuCiIj0h7c3cO4c0L078Msv6t42Kyvghx+u4scff5TFjh49mt8XRMWkyJu6HThwgH8BiYjKEc0m70ql+vjAAfX6awcOqGeIenoCgwZ9l69gCwkJ4fcFUTEq8kSEgQMHvvD86tWrXzkZIiLSPWFh6uHQgAD1z97e6vagIKBjxyxER8/Gkye58d7e3njrrbe0kyxRGVbkou3hw4ey46ysLJw/fx7Jyclo165dsSVGRETapZlwoCnS4uPVQ6EPHwKXLgGxsbGYPXuj7DljxoyBjY2NFrIlKvuKXLT9+uuv+dpUKhWGDRuGOnXqFEtSRESkfZoetqQk9WK5GkIAy5cvx/3792XxISEhpZwhUflS6NmjLxMbG4t33nkHd+/eLY7LETh7lIi0S9PT9vChemsqNzegcuVM+PjMkcW1b98enp6eWsqSSPdoffboy1y9ehXZ2dnFdTkiIiplmp0NHj1SH1tZqScaAOri7fPPL+D69Z9lzxk/frxs3U4iKjlFLtrGjRsnOxZC4O7du9i5cycGDBhQbIkREVHpyrvZe962I0eAa9cW4fr1FNk5DocSla4iF23R0dGyYwMDA9jb22P+/PkvnVlKRES6afJkIDpavaNBejpgbQ1UrgxMnJiO0NC5sthOnTqhZcuWWsqUqPwqctF24MCBksiDiIi0aPFidbGWmQmoVED9+sCKFWewbds2WdzEiRNhYWGhnSSJyrkiL66rkZiYiD///BN//vknEhMTizMnIiIqBXkXze3QATAwAFq3Vi+W+/77c2UFm4mJCUJCQliwEWlRkXvaUlNTMWLECGzYsAEqlQoAYGhoiF69emHZsmVcn4eISE9olvQIC1Mfq1SAkdETtGv3FXJycuO6du2Kpk2baiVHIspV5J62IUOG4NixY9i5cyeSk5ORnJyMHTt24MSJE/j8889LIkciIipGmh42b291r1pQkPrx4Ycn0a7dV7LYwMBAFmxEOqLI67RZWloiIiICbdq0kbX/+eef6NChAx4/flysCZZnXKeNiIqDZr21oCD1cd++6r1DrayA9esBPz9gxowZyPt1UKFChXyrBRBR4ejMOm12dnYFDoHa2NhwY2AiIh307DBoWpr6/rW0NGDBgjRER8+Xxffo0QONGjXSQqZE9CJFHh6dMmUKxo0bh4SEBKktISEBEydOxNSpU4s1OSIien1BQephUG9v9ZZUbm7qtl69jsLbe/4zsUEs2Ih0VJGHR5s1a4Z//vkHGRkZcHZ2BgDEx8fD1NQU9erVk8WeOnWq+DIthzg8SkTFyctL3ePm6Qn4+obKzlWuXBkjRozQUmZEZYvODI927doVCoWi2BIgIqLipdmOSgj1NlR+fur2oCBg4cJUvPPOQll8r1694ObmpoVMiagoim3DeCp+7GkjoqLQFGvXr6sXygUAV1egUiV1wVax4p/Yv3+/7DmTJk2CsbFx6SdLVIbpTE9b7dq1cfz4cdjZ2cnak5OT0bx5c1y7dq3YkiMiosLLu3eomRlQsyagUKiHRKOj5cOh1apVw5AhQ7SQJRG9qiIXbdevX0dO3lUX/5ORkYFbt24VS1JERFR0QUHA8OFAYiJgZ6ceGs3ISMbFi1/L4vr27Yu6detqKUsielWFLtqUSqX0c0REhGzZj5ycHERGRsLFxaV4syMiokLz81P3tt2+rX78/PMB1Knzhyxm8uTJMDIq8v+vE5EOKPSSH926dUO3bt2gUCgwYMAA6bhbt27o3bs39u3bh/nz57/8Qq/Iz88Pzs7OMDMzg6OjI/r164c7d+7IYiIiItC6dWtUqFAB9vb26NGjB65fvy6LOXjwIJo3bw5TU1PUrVsXa9euzfday5YtQ61atWBmZgYPDw/8/fffsvPp6ekYMWIE7OzsYGVlhR49euDevXuymPj4eHTq1AkWFhaoUqUKJk6ciOzs7GL5XRARPU9QEODmJjB9eqisYKtVqxZCQkJYsBHpsUIXbSqVCiqVCs7OzkhMTJSOVSoVMjIyEBsbi86dO5dYot7e3ti8eTNiY2Pxyy+/4OrVq+jZs6d0Pi4uDl27dkW7du1w+vRpRERE4MGDB+jevbssplOnTvD29sbp06cxZswYDB48GBEREVLMpk2bMG7cOISEhODUqVNo0qQJfH19kZiYKMWMHTsWv/32G7Zs2YJDhw7hzp07stfJyclBp06dkJmZiSNHjmDdunVYu3Ytpk2bVmK/HyIqn5RKwN1dvfaaUgm8+ea/6N17hixmwIABGDBggJYyJKJiI/TU9u3bhUKhEJmZmUIIIbZs2SKMjIxETk6OFKNUKmUxAQEBomHDhrLr9OrVS/j6+krHrVq1EiNGjJCOc3JyRLVq1cScOXOEEEIkJycLY2NjsWXLFinm0qVLAoCIiooSQgixa9cuYWBgIBISEqSYFStWCGtra5GRkVHo95iSkiIAiJSUlEI/h4jKtu3bhfD0VP8phBBubkKoF/cQwt9/j5g+fbrskZ2drd2Eicqhkvr+LnI/+YwZM154vjR6k5KSkrB+/Xp4eXlJU9VbtGgBAwMDrFmzBv7+/khLS8MPP/wAHx8fKSYqKgo+Pj6ya/n6+mLMmDEAgMzMTJw8eRLBwcHSeQMDA/j4+CAqKgoAcPLkSWRlZcmu4+bmBmdnZ0RFRaF169aIiopC48aNUbVqVdnrDBs2DBcuXECzZs0KfF8ZGRnIyMiQjlNTU1/jt0REZZFmS6oPPgC6d1cv7wEITJ8u/7e5fv366NOnjzZSJKISUuSi7ddff5UdZ2VlIS4uDkZGRqhTp06JFm2BgYFYunQpnjx5gtatW2PHjh3SORcXF+zduxcfffQRPv/8c+Tk5MDT0xO7du2SYhISEmSFFABUrVoVqampePr0KR4+fIicnJwCY2L+m0efkJAAExMT2Nra5ovRbO31vNfRnHueOXPmIDQ09Lnniaj80mz67u2tLtpUKuDnnwF7+0QEBa2QxQ4cOBBOTk5aypSISkqR9x6Njo6WPc6fP4+7d+/i3XffxdixY4t0raCgICgUihc+NMUSAEycOBHR0dHYu3cvDA0N0b9/f4j/1gZOSEjAkCFDMGDAABw/fhyHDh2CiYkJevbsKcXouuDgYKSkpEiPmzdvajslItIRmh62rVtz27p02YERI+QF29SpU1mwEZVRxTKNyNraGqGhoejSpQv69etX6OeNHz8e/v7+L4ypXbu29HPlypVRuXJl1K9fH+7u7nBycsLRo0fh6emJZcuWwcbGBuHh4VL8jz/+CCcnJxw7dgytW7eGg4NDvlme9+7dg7W1NczNzWFoaAhDQ8MCYxwcHAAADg4OyMzMRHJysqy37dmYZ2ecaq6piSmIqakpTE1NX/j7IKLyKShIXbglJQEKhUBIiHw4tFGjRujRo4eWsiOi0lBsc781vUNFYW9vD3t7+1d6PZVKBQDSPWBPnjyBgYG849DQ0FAW++xwKQDs27cPnp6eAAATExO0aNECkZGR6Natm/TcyMhIjBw5EoD63jljY2NERkZK/0DGxsYiPj5euo6npydmzZqFxMREVKlSRXoda2trNGjQ4JXeLxGVb35+6sfGjXcRG/ut7NyQIUNQrVo1LWVGRKWlyEXb4sWLZcdCCNy9exc//PADOnbsWGyJ5XXs2DEcP34cbdq0QcWKFXH16lVMnToVderUkQqlTp06YeHChZgxYwb69OmDR48eYdKkSahZs6Z04//QoUOxdOlSBAQEYODAgdi/fz82b96MnTt3Sq81btw4DBgwAC1btkSrVq2waNEiPH78GJ9++ikAwMbGBoMGDcK4ceNQqVIlWFtbY9SoUfD09ETr1q0BAO3bt0eDBg3Qr18/hIeHIyEhAVOmTMGIESPYk0ZERaa5n61371/x8OFZ2blp06ZBoVBoKTMiKk1F3jD+2V0PDAwMYG9vj3bt2iE4OBgVKlQo1gQB4Ny5c/jiiy9w5swZPH78GI6OjujQoQOmTJmC6tWrS3EbN25EeHg4Ll++DAsLC3h6emLu3Llwc3OTYg4ePIixY8fi4sWLqFGjBqZOnZpviHbp0qX46quvkJCQgKZNm2Lx4sXw8PCQzqenp2P8+PHYsGEDMjIy4Ovri+XLl8uGPm/cuIFhw4bh4MGDsLS0xIABAxAWFlakhS25YTxR+aRUAgEBQFoaUKECoFCo0KvXTFlMs2bN4Ofnp6UMiehFSur7u8hFG5UeFm1E5ZOXl3rSAQBUr34bQ4askp0fOnRovhnqRKQ7Sur7+5XuaUtOTsY///wDAKhbt26+5S+IiKjwNMOfQUHq44cPgerVAR+fTXBxiZHFcjiUqPwqUtF2/fp1jBgxAhEREdIyGgqFAh06dMDSpUtRq1atksiRiKhM0yznERamPr58OQfTpn0pi2nVqlWJ3TdMRPqh0MOjN2/exBtvvAFjY2MMHz4c7u7uAICLFy9ixYoVyM7OxvHjx1GjRo0STbg84fAoUfmgVAKBgcCjR4CDww106bJWdn7EiBGoXLmydpIjoiLT+j1tgwYNwj///IOIiAiYmZnJzj19+hQdOnRAvXr1sGrVqudcgYqKRRtR+eHlBdSt+wPq1Lkma+dwKJH+0fo9bXv27MGmTZvyFWwAYG5ujpkzZ6J3797FlhgRUXmRnZ0NX99ZsrY2bdrg3Xff1VJGRKSLCl20PXjw4IX3rNWuXRtJSUnFkRMRUblx9epV/Pjjj7K20aNHo2LFilrKiIh0VaH3HnV0dMTFixefe/78+fMv3KKJiKg8UyrVQ6BKZW7bd999l69gCwkJYcFGRAUqdE9bt27dMGHCBERGRubbeioxMRGBgYHS1k9ERCQXEADExgK9egEbNmThzJnZsvPvvPMO3n77bS1lR0T6oNBFW0hICHbt2oU6dergk08+gZubG4QQuHTpEn766Sc4ODhg2rRpJZkrEZHe0swlcHa+jDNnNsjOjRkzBjY2NlrIioj0SaGLtooVK+LYsWOYNGkSNm7ciOTkZACAra0tPv74Y8yePRuVKlUqqTyJiPTa3LlARMQKVKmSKGsPCQnRUkZEpG9eaRsrIQTu378PALC3t+d09BLCJT+I9Jtmp4OJEzNx9uwc2bn33nsPXl5eWsqMiEqS1pf8yEuhUKBKlSrFlgQRUVmRd0uqsDAgJeUizp7dIosZN24cKlSooKUMiUhfvVLRRkREBcu7JVWXLl8jMzNZdp7DoUT0qli0EREVA00Pm7c38OhROnx95yIzM/f8+++/jzfeeEN7CRKR3mPRRkRUDDQ9bI6OZ9Gz56+ycxMnToSFhYWWMiOisoJFGxHRa1IqgYcPgaCgcJiZPZXaDQyMMXXqJC1mRkRlSaGKtsWLFxf6gqNHj37lZIiI9IlmSPTx46fo3Ttcds7Pzw/NmjXTUmZEVBYVaskPFxeXwl1MocC1a9deOylS45IfRLrNzQ2wtDwFP7/fZO2NGwege3dzLWVFRNqm1SU/4uLiiu0FiYjKio8+mglDQ5V0bGVlhfHjx2sxIyIqy175nrbMzEzExcWhTp06MDLirXFEVD4olcCCBY/h7T0Phoa57UeOdEdERGPtJUZEZZ5BUZ/w5MkTDBo0CBYWFmjYsCHi4+MBAKNGjUJYWFixJ0hEpG1KJeDurh4OXbXqGLy958nOb9kShBEjWLARUckqctEWHByMM2fO4ODBgzAzM5PafXx8sGnTpmJNjohIF4SFATExQJ8+oWjRYo/Ubmdnh5CQEJw/bwo/Py0mSETlQpHHNbdt24ZNmzahdevWsj1HGzZsiKtXrxZrckRE2pS7YG4qfH0Xys599NFHcHd311JmRFQeFblou3//foH7jj5+/JgbxxNRmRIWBhgY/AUTk0hZe3BwMExMTLSUFRGVV0UeHm3ZsiV27twpHWsKtVWrVsHT07P4MiMi0hKlEvDyAnx9Q/Hee7kFW0qKI5o1C2HBRkRaUeSettmzZ6Njx464ePEisrOz8fXXX+PixYs4cuQIDh06VBI5EhGVCqUSCAwEkpKSMXz417JzH3/8MerVq6elzIiIXqGnrU2bNjh9+jSys7PRuHFj7N27F1WqVEFUVBRatGhREjkSEZWKsDDAweFAvoKtSZPJLNiISOsKtSMCaQd3RCAqeZrJBoGBAqdPz5Cdq1mzJvz9/bWTGBHpLa3uiJCamlroC7K4ICJ9EhYGxMYm4fTpJbL2/v37F3oLPyKi0lCoos3W1rbQM0NzcnJeKyEiotIyeTJgbb0Xo0dHydqnTJkCw7zbHRAR6YBCFW0HDhyQfr5+/TqCgoLg7+8vzRaNiorCunXrMGfOnJLJkoiomAkhYGIyA3knvScm1oOv78dgvUZEuqjI97S9++67GDx4MPr06SNr/+mnn/Dtt9/i4MGDxZlfucZ72oiKl+b+tS++uI+YmOWyc1lZn+LLL521lBkRlSUl9f1d5NmjUVFRaNmyZb72li1b4u+//y6WpIiIipNm3bXAQKBSpZ35CrYZM6Zi/34WbESk24pctDk5OeF///tfvvZVq1bBycmpWJIiIipOYWHA0aMCvXuH4o03Tkjtd+82RGZmCDw8DBAUpMUEiYgKociL6y5cuBA9evTA7t274eHhAQD4+++/ceXKFfzyyy/FniAR0etQKgEhEhAS8o2sPSpqCPbsqaalrIiIiq7IPW3vv/8+rly5gi5duiApKQlJSUno0qULLl++jPfff78kciQiemU7dmxDhw7ygm3jxmkYPpwFGxHpFy6uq8M4EYHo1alUKsycOVPWdupUUyiVXeHpCRw5oqXEiKjM0+rius9KTk7Gd999h0uXLgEAGjZsiIEDB8LGxqbYEiMiKgrNzNCgIKBFi9tYtWqV7PzQoUNx7FhV3L8P3r9GRHqpyD1tJ06cgK+vL8zNzdGqVSsAwPHjx/H06VPs3bsXzZs3L5FEyyP2tBEVnrs7EBMDDBq0GU5Ol2Tnmjadhq5dC7dAOBHR6yqp7+8iF21t27ZF3bp18b///Q9GRuqOuuzsbAwePBjXrl3DH3/8UWzJlXcs2ogKz91dhd695cOhN268gTVr3udwKBGVKp0ZHj1x4oSsYAMAIyMjBAQEFLh+GxFRSbtx4wZ6914ra/vrrxEYNaoyYmI4HEpEZUORizZra2vEx8fDzc1N1n7z5k1UqFCh2BIjIiqMBQt+xKNHV2Vt8+ZNw/r1Cvj5AX5+WkqMiKiYFblo69WrFwYNGoR58+bBy8sLAHD48GFMnDgx39ZWREQlZdu2HJw586Ws7f79N3HqlA/Wr2exRkRlT5GLtnnz5kGhUKB///7Izs4GABgbG2PYsGEICwsr9gSJiJ517do1nDnzg6zt669HIT29Ep480VJSREQl7JXXaXvy5AmuXlUPSdSpUwcWFhbFmhhxIgJRQVavXo2bN2/K2qZPnwZAgerVgVu3tJMXEZGGzkxE0LCwsEDjxo2LLREiohfJzs7GrFmzZG3vvPMOOnd+GwBgYAAsX17QM4mIyoZCF20DBw4sVNzq1atfORkiooJcvnwZGzZskLU1bDgGb79tg9GjgcWLgdGjeR8bEZVthR4eNTAwQM2aNdGsWTO86Cm//vprsSVX3nF4lAhYuXIl7t27J2ubPj2Ea68Rkc7S+vDosGHDsGHDBsTFxeHTTz/FJ598gkqVKhVbIkREeWVmZmLOnDmytmrVfLBgwZtwdeXaa0RU/hgUNnDZsmW4e/cuAgIC8Ntvv8HJyQkfffQRIiIiXtjzRkRUVJcuXcpXsDVqNA7jxr2JmBigUiUOhRJR+fPKs0dv3LiBtWvX4vvvv0d2djYuXLgAKyur4s6vXOPwKJU3SiVw+PBiWFg8lLU3axaCsDAgKgqwsgLXYSMinab14dFnGRgYQKFQQAiBnJycYkuIiMqnjIwMREeHIe/qQR07dkSrVq2k47Aw9bAoCzYiKo+KVLRlZGRg69atWL16Nf766y907twZS5cuRYcOHWBgUOiRViIimbNnz+abxDRhwgRYWlpKx9ySiojKu0IXbcOHD8fGjRvh5OSEgQMHYsOGDahcuXJJ5kZE5cCsWV8hOzt3GwMjIyM0bjwZ773HXjUioryKtOSHs7MzmjVrBoVC8dy4rVu3Flty5R3vaaOy7OnTpwgPD5e1ZWf7YdGiZrCxAW7fBpf1ICK9pPV72vr37//CYo2IqLDWrDmF+PjfZG2ZmQGYM8ccQgAZGeqCjct6EBHlKnTRtnbt2hJMg4jKiy+//FI2ecnS0hL1609A376Apt+/ShX2sBERPeuVZ48SERXF48ePMW/ePFlbdnZ3TJjQGF5eQFoaYGYG1KoFzJ2rnRyJiHQZizYiKnF///03du/eLWubMycILi6miIwEvL3VbZx4QET0fCzaiKhEhYaGyo4rVqyIWrVGo3lzIClJvWAuwOFQIqKXYdFGRCXi0aNHWLBggazto48+wpUr7tIiuQBkPxMR0fO98jZWVPK45Afpq8OHD+P333+XtQUHB8PExAReXureNS7nQURlldaX/CAiKoxnh0MdHBzw+eefS8dBQexdIyJ6FSzaiKhYpKSkYNGiRbK22rU/xooV9eDomDvBgNtRERG9GhZtRPTaDh48iEOHDsna9u2bjAcPjBAbCwQEsFAjInpderPLu5+fH5ydnWFmZgZHR0f069cPd+7ckcVs3rwZTZs2hYWFBWrWrImvvvoq33UOHjyI5s2bw9TUFHXr1i1w0eBly5ahVq1aMDMzg4eHB/7++2/Z+fT0dIwYMQJ2dnawsrJCjx49cO/ePVlMfHw8OnXqBAsLC1SpUgUTJ05Ednb26/8iiHSIEAKhoaGygs3S0hkRESEICDBCWpq6TfMnERG9Or0p2ry9vbF582bExsbil19+wdWrV9GzZ0/p/O7du9G3b18MHToU58+fx/Lly7Fw4UIsXbpUiomLi0OnTp3g7e2N06dPY8yYMRg8eDAiIiKkmE2bNmHcuHEICQnBqVOn0KRJE/j6+iIxMVGKGTt2LH777Tds2bIFhw4dwp07d9C9e3fpfE5ODjp16oTMzEwcOXIE69atw9q1azFt2rQS/i0RlZ6kpCTMmDFD1tavXz9MmPCpdN+aRoUKpZwcEVEZpLezR5VKJbp164aMjAwYGxvj448/RlZWFrZs2SLFLFmyBOHh4YiPj4dCoUBgYCB27tyJ8+fPSzG9e/dGcnIy9uzZAwDw8PDAG2+8IRV7KpUKTk5OGDVqFIKCgpCSkgJ7e3v89NNPUtEYExMDd3d3REVFoXXr1ti9ezc6d+6MO3fuoGrVqgCAlStXIjAwEPfv34eJiUmh3iNnj5Ku2rdvH448M/Vz794pCAw0hJ8fpBmirq5ApUpcNJeIypeS+v7Wm562vJKSkrB+/Xp4eXnB2NgYAJCRkQEzMzNZnLm5OW7duoUbN24AAKKiouDj4yOL8fX1RdR/q3tmZmbi5MmTshgDAwP4+PhIMSdPnkRWVpYsxs3NDc7OzlJMVFQUGjduLBVsmtdJTU3FhQsXiuvXQFTqNMOheQu2unXrIiIiBEeOGEq9a0FB6iU9wsPVy3qwYCMien16VbQFBgbC0tISdnZ2iI+Px/bt26Vzvr6+2Lp1KyIjI6FSqXD58mXMnz8fAHD37l0AQEJCgqyQAoCqVasiNTUVT58+xYMHD5CTk1NgTEJCgnQNExMT2NravjCmoGtozj1PRkYGUlNTZQ8iXXH//v18w6H16n2Kvn37IigIcHNT73CgVKqLNBZrRETFS6tFW1BQEBQKxQsfMTExUvzEiRMRHR2NvXv3wtDQEP3794dmdHfIkCEYOXIkOnfuDBMTE7Ru3Rq9e/cGoO4t0wdz5syBjY2N9HByctJ2SkQAgF27dmH58uWythkzpmLpUmfp+NYtIDZWfi8bEREVH60u+TF+/Hj4+/u/MKZ27drSz5UrV0blypVRv359uLu7w8nJCUePHoWnpycUCgXmzp2L2bNnIyEhAfb29oiMjJRdw8HBId8sz3v37sHa2hrm5uYwNDSEoaFhgTEODg7SNTIzM5GcnCzrbXs25tkZp5pramIKEhwcjHHjxknHqampLNxIq4QQ+XrXLlxogHPnPoSHh3wrqrQ0wMqKi+YSEZUUrRZt9vb2sLe3f6XnqlQqAOohxbwMDQ1RvXp1AMCGDRvg6ekpvYanpyd27doli9+3bx88PT0BACYmJmjRogUiIyPRrVs36XUiIyMxcuRIAECLFi1gbGyMyMhI9OjRAwAQGxuL+Ph46Tqenp6YNWsWEhMTUaVKFel1rK2t0aBBg+e+J1NTU5iamr7S74OouCUkJOCbb76RtUVEDMbDh9UhhHxyQd5dDjgkSkRUMvRi9uixY8dw/PhxtGnTBhUrVsTVq1cxdepU3Lt3DxcuXICpqSkePHiAn3/+Ge+88w7S09OxZs0afPvttzh06BBatWoFQL3kR6NGjTBixAgMHDgQ+/fvx+jRo7Fz5074+voCUC/5MWDAAHzzzTdo1aoVFi1ahM2bNyMmJka6L23YsGHYtWsX1q5dC2tra4waNQoApJuzc3Jy0LRpU1SrVg3h4eFISEhAv379MHjwYMyePbvQ75uzR0lbtm/fjtOnT8vaIiKmIijIAGFh6pmhVlbA+vUs0oiInlVi399CD5w9e1Z4e3uLSpUqCVNTU1GrVi0xdOhQcevWLSnm/v37onXr1sLS0lJYWFiId999Vxw9ejTftQ4cOCCaNm0qTExMRO3atcWaNWvyxSxZskQ4OzsLExMT0apVq3zXefr0qRg+fLioWLGisLCwEB988IG4e/euLOb69euiY8eOwtzcXFSuXFmMHz9eZGVlFel9p6SkCAAiJSWlSM8jelU5OTli+vTpsse2bdtkMZMmCWFgIAQghKenlhIlItJhJfX9rRc9beUVe9qoNN2+fRurVq2StX3++ef4+28H2dCnZg029rQRERWspL6/WbTpMBZtVFq2bNmCixcvytqmTZsGhUIhFWlubkDFioC3N3DgAO9fIyJ6npL6/uaG8UTlmEqlwsyZM2VtLVu2RE5OJ7z5prpAS0pSF2xCqIs3QL0GGxERlS4WbUTlVHx8PNasWSNrGz58OOzt7aXetXPn1Et5eHrKZ4gSEVHpY9FGVA4tXPgTUlOvyNoiIqahWTMF/PzUhVlAgLpgq149dyiUw6FERNqjH1sFEFGx2LYtB6GhobKCzcvLCxERIYiKUiAwUD3RAFBv9H77tvpPFmtERNrHnjaiciIuLg5nznwva2vQYBTee68Snj5VD30mJamHRfv2BUaPVsdwOJSISDewaCMqB9asWYP4+HhZm2Z2KJA79KlUqgu2tDT1DFFOOCAi0h0cHiUqw7KzsxEaGior2N5++22EhIRAoVBAqVQPhyqV6nN+fuq11zQTD4iISHewaCMqo65cuYJZs2bJ2r744gukpr4jFWqaLanCwnJj/PzUPWy8j42ISLewaCMqg7755hv89NNPsraQkBDY2trKCrWgIMDVFXj4MLe3jYiIdBOLNqIyJDMzE6GhoUhISJDaqlXzQUREiFSUBQWpF8uNjwcCA9VtMTHy3jYiItI9LNqIyohLly5hzpw5srZx48ZhzZo3ZUOgfn7q7ahu31YXawoF72EjItIHnD1KVAYsWbIESUlJsraIiBA0aybfyUBzH5tmeyqFApg7l/evERHpAxZtRHosIyMDYc+Ma3bo0AFjx3pIvWt5JxVotqcC1L1sRESkPzg8SqSnzp07l69gmzBhAjw8PBAUpB7y9PaWL+mhaedQKBGR/lEIIYS2k6CCpaamwsbGBikpKbC2ttZ2OqRD5s2bh8ePH0vHKpUhsrOn4MCB3H1CgdyeNU9PLpRLRFRaSur7m8OjRHrk6dOnCA8Pl7WdP98FP//cHFZW6p0MwsJyi7a897MREZF+Y9FGpCeio6OhfGYxtf37A9Cmjbk0FKrpaQPkkw7yzhwlIiL9xKKNSA/MmjUL2dnZ0rG5uTnWrAlATAyQmAhcupT/OZpFdM+dy98DR0RE+odFG5EOe/z4MebNmydr++CDD/B///d/WL1afSxEbq+appdN08MG5O+BIyIi/cSijUhH/f3339i9e7esLTAwEGZmZgCA8PDcQu3ZPUQ1y3pw8gERUdnBoo1IB4WGhsqObW1t8cUXX8ja/Pzkw53P9rSxZ42IqGxh0UakQx49eoQFCxbI2j788EM0aNDghc/TFG+aYo09bEREZQ+LNiIdceTIEezbt0/WFhwcDBMTk0I9P+8QKSccEBGVPdwRgUgHhIaGygq2hISqiIgIkRVsSmXu7gaanydPzm3jbgdERGUbd0TQYdwRoexLSUnBokWLZG21a/fBrFn1823mnnd3A0D9s2ZBXe54QESkO7gjAlEZc+jQIRw8eFDWNmnSJBgbG2PFivxDnc/ubqBZ1oPLeRARlQ/sadNh7Gkrm4QQmDFjhqzNyckJAwcOlI7zrrvG+9OIiPQLe9qIyoC0tDTMnz9f1vbJJ5+gTp06srZnl/MgIiLiRASiUnL27Nl8BduUKVPyFWyAfNIBERERwKKNqMQJIfC///0Pv/76q9RmZ9ccEREh2LnTsMDnPLvDAREREYs2ohKUmpqKGTNm4M6dO1Kbu/twBAd3QVQU8MEH6mU7nsXlO4iI6FmciKDDOBFBv0VHR0OZZ3zT3NwcEyZMQJs2BtLeoIB62Y5Hj7SQIBERlQhORCDSE0IIrFixAvfv35fa3nvvPXh5eQHIXbqjenVgzx5g9GhtZUpERPqERRtRMSposdxRo0ahUqVK0jFnhhIR0atg0UZUTI4fP45du3ZJxzY2Nvjiiy+gUCi0mBUREZUVnIhA9JqEEPj6669lBVtkZEfcvz8Gb76p4LIdRERULNjTRvQakpKSsGTJElnbt99+gTt3bBEdrd4XNO9WVERERK+KPW1Er+jo0aOygi0trTKaNp2GFSts4empnmDwomU7uIAuEREVBXvaiIpIpVJhwYIFePz4sdR27FgX7N7dHIcP5xZpHh7ArFnPv07eBXTZE0dERC/DnjaiInjw4AFmzpwpK9gWLBiLuLjmUq9aYXcz4AK6RERUFCzaiArpr7/+wrJly6RjlcoBGzdOg6OjNebOBY4cUfeYeXurF8z19s59bkFDoX5+uc8hIiJ6GQ6PEr2AUgnMnatChw5zoVJlSu1bt3bDtWtNkJamLtDyOnBAPQHhwIHcNg6FEhHR62JPG9ELLF2aiPbtZ8oKtkaNxsPSsglGj1YXbJoZohoFDXtyKJSIiF4X9x7VYdx7tHQpleriKyhI3Rt28OBBHDp0SDrv7OwMf39/abFcpRIICAAUCmDuXPagERGRGvceJSphmiHMuXNzcPr0LOT9/5nTp3uiWbOGyLu5QVgYEBur7kFjwUZERCWNw6NE/wkKAtq3T0D79l/KCratWydg27aG+WaDaoY8vb253hoREZU8Fm1E/7Gw+B1eXt9Ixw8e1Mb06SHIzLQs8H40zezPAwcKt8QHERHR6+DwKJV727Zl48wZ+Sq4vXr1wuXLbjh5Mvcet+fRrM3GSQZERFSSOBFBh3EiQsm7ffs2Vq1aJWsLCAiAubm5ljIiIiJ9x4kIRMVs+fI9uH//mHRsY+OKMWN6azEjIiKi52PRRuVOVlYWZs+eLWv7+OOPUa9ePS1lRERE9HIs2qhciY+Px5o1a2Rt//d/gahXz0xLGRERERUOizYqN3777TecOnVKOm7UqBF69OihxYyIiIgKj0UblSnP7lIAAF99lQkfnzmyuH79+qF27dpayJCIiOjVsGijMkGzBdXDh+pdCgD1caVKcfDx+V4WGxQUBFNTUy1kSURE9OpYtJHeUyqBvn3VG7e7uqofCgXQu/evePjwrBTXtGlTdO3aVYuZEhERvToWbaT3wsLUBZuVFRAeDvj6ZiAsLAwPH+bG+Pv7o2bNmtpLkoiI6DVxGyvSaUpl/n09n23z9lYXbKNHAw0a/IOwZ/aTmjRpEgs2IiLSe9wRQYdxRwR1cRYVpd6Y/ciRgts0x0OHboaDwyXpuS1btkSnTp20lDkREZVXJfX9zZ420jl5e9KCgpBvs/Zn2yZMeIrp00NlBdugQYNYsBERUZnCe9pI54SFqXvOwsLUPWmazdonTwYWL1YPg2p63WJjY3Hu3EbZ8ydPngwjI/6nTUREZQt72kjnPNuTpul5W7BAPeFg8WJ1+08//YSNG3MLttatWyMkJIQFGxERlUm8p02H6do9bZq10IKCcnu/SoO7OxATA9jZARkZwOjRT2Bi8pUsZsiQIahWrVrpJUVERPQcvKeNtC7vsOXLFDTrU9Pu7g64ueU/9zya/62oXBk4duxivoJtypQpLNiIiKjMY9FGhVbQpIDneV6BFxam7jWLjc1/7nmFXni4+nWHDFmHLVu2SO1t27ZFSEgIDA0NX/EdERER6Q+9K9oyMjLQtGlTKBQKnD59Wnbu7NmzaNu2LczMzODk5ITw8PB8z9+yZQvc3NxgZmaGxo0bY9euXbLzQghMmzYNjo6OMDc3h4+PD65cuSKLSUpKQt++fWFtbQ1bW1sMGjQIaWlpRc5F3/j5yScGvMjzCrygIHUvm6tr/nPPK/TatUuDr28o0tKuS21Dhw5Fu3btXu2NEBER6SG9K9oCAgIKHApLTU1F+/btUbNmTZw8eRJfffUVpk+fjm+//VaKOXLkCPr06YNBgwYhOjoa3bp1Q7du3XD+/HkpJjw8HIsXL8bKlStx7NgxWFpawtfXF+np6VJM3759ceHCBezbtw87duzAH3/8gc8++6xIuZR1zyvw/PzUG7lXqpT/OQUVeufOncP8+fOlYyMjI0yZMgVVq1YtocyJiIh0lNAju3btEm5ubuLChQsCgIiOjpbOLV++XFSsWFFkZGRIbYGBgcLV1VU6/uijj0SnTp1k1/Tw8BCff/65EEIIlUolHBwcxFdffSWdT05OFqampmLDhg1CCCEuXrwoAIjjx49LMbt37xYKhULcvn270LkURkpKigAgUlJSivQ8XefpKQQghJWVENu3FxyjUqnE//73PzF9+nTpcfDgwdJNlIiI6BWU1Pe33vS03bt3D0OGDMEPP/wACwuLfOejoqLw1ltvwcTERGrz9fVFbGwsHv63CWVUVBR8fHxkz/P19UVUVBQAIC4uDgkJCbIYGxsbeHh4SDFRUVGwtbVFy5YtpRgfHx8YGBjg2LFjhc6lrHrefWl5BQWpt51KSyt4UsOjR48wY8YM3L59W2obPnw43n777RLImIiISD/oRdEmhIC/vz+GDh0qK5bySkhIyDdkpjlOSEh4YUze83mf97yYKlWqyM4bGRmhUqVKL32dvK9RkIyMDKSmpsoe+qYwM0z9/ID16wu+5y06OhoLFiyQjs3NzTF16lTY29uXUMZERET6QatFW1BQEBQKxQsfMTExWLJkCR49eoTg4GBtplvi5syZAxsbG+nh5OSk7ZSKrLAzTJ+9500IgRUrVkCZp4vOx8cHAQEBMDDQi/+3ICIiKlFaXTp+/Pjx8Pf3f2FM7dq1sX//fkRFRcHU1FR2rmXLlujbty/WrVsHBwcH3Lt3T3Zec+zg4CD9WVBM3vOaNkdHR1lM06ZNpZjExETZNbKzs5GUlPTS18n7GgUJDg7GuHHjpOPU1FS9K9z8/Iq+8G5KSgoWLVokaxs5ciTs7OyKLzEiIiI9p9UuDHt7e7i5ub3wYWJigsWLF+PMmTM4ffo0Tp8+LS3TsWnTJsyaNQsA4OnpiT/++ANZWVnS9fft2wdXV1dUrFhRiomMjJTlsG/fPnh6egIAXFxc4ODgIItJTU3FsWPHpBhPT08kJyfj5MmTUsz+/fuhUqng4eFR6FwKYmpqCmtra9mjNBXmfrTiduLECVnBZm1tjWnTprFgIyIielaxTmsoJXFxcflmjyYnJ4uqVauKfv36ifPnz4uNGzcKCwsL8c0330gxhw8fFkZGRmLevHni0qVLIiQkRBgbG4tz585JMWFhYcLW1lZs375dnD17VnTt2lW4uLiIp0+fSjEdOnQQzZo1E8eOHRN//fWXqFevnujTp0+RcimM0p49qpnV6elZuPjt29Wxz5sB+iIqlUp8/fXXstmhR48eLfqFiIiIdExJfX+XmaJNCCHOnDkj2rRpI0xNTUX16tVFWFhYvudu3rxZ1K9fX5iYmIiGDRuKnTt3ys6rVCoxdepUUbVqVWFqaireffddERsbK4v5999/RZ8+fYSVlZWwtrYWn376qXj06FGRc3mZ0i7ailqEFVTkFeYaSUlJsmJt+vTpIikp6fWSJyIi0hEl9f3NDeN1WGluGP8qm8E/+xylEujbV72Uh6eneqLBs44ePYqIiAjp2M7ODiNGjIBCoSimd0JERKRdJfX9zaJNh5Vm0eblpV6q43nFVlGuYWWlXtIjb/GnUqmwcOFC2XZfnTt3RosWLV4zcyIiIt1SUt/fXEuBABRtM/iXXePZgu3ff//FzJkzZQXbmDFjWLAREREVAXvadFhp9rSVlL/++ks2G9fBwQGfffYZh0OJiKjMKqnvb62u00a6SakEAgIAhUK9uXtR110D1MOh4eHhyMjIkNq6deuGJk2aFGOmRERE5QeLNsonLAyIjc39uahFW2JiIlasWCFrGzduHCpUqFBMGRIREZU/vKetHHrZIrpBQYCrK1C9OpCUVLTFdg8dOiQr2JycnDBt2jQWbERERK+J97TpsJIaEy/sTNGizCjNycnB7NmzoVKppLYePXqgUaNGxZQ1ERGRfuDsUSo2hZ0pWti4hIQEfPnll7KCbcKECSzYiIiIihF72nSYPswe/f3333H48GHp2MXFBf3799diRkRERNrFnjYqMa+yUXx2djZCQ0NlBdtHH33Ego2IiKiEcPYoISxMfe9aYWeK3r59G6tWrZK1BQQEwNzcvIQyJCIiIhZthKCg3D1EX2bPnj04duyYdFy/fn306dOnBLMjIiIigEVbuZZ3w/eXzQ7NysrC7NmzZW19+vRB/fr1SzBDIiIi0mDRVo4Vdlj05s2bWL16tawtMDAQZmZmJZwhERERabBoK8cKMyy6Y8cOnDx5Ujpu2LAhevbsWQrZERERUV4s2soxP7/n97BlZmZizpw5srZPPvkEderUKYXMiIiI6Fks2iif69evY926dbK2oKAgmJqaaikjIiIiYtFGMtu2bcOZM2ek4yZNmqBbt27aS4iIiIgAsGij/2RkZCAsLEzWNmDAANSqVUs7CREREZEMizbC1atX8eOPP8ragoODYWJioqWMiIiI6Fks2sq5LVu24OLFi9JxixYt0LlzZy1mRERERAVh0VZOpaenY+7cubK2gQMHwsnJSUsZERER0YuwaCuHLl++jA0bNsjaJk2aBGNjYy1lRERERC/Doq0cyluwtW7dGr6+vlrMhoiIiAqDRVs5NmTIEFSrVk3baRAREVEhKIQQQttJUMFSU1NhY2ODlJQUWFtbazsdIiIiKoSS+v42KLYrEREREVGJYdFGREREpAdYtBERERHpARZtRERERHqARRsRERGRHmDRRkRERKQHWLQRERER6QEWbURERER6gEUbERERkR5g0UZERESkB1i0EREREekBFm1EREREeoBFGxEREZEeYNFGREREpAeMtJ0APZ8QAgCQmpqq5UyIiIiosDTf25rv8eLCok2HPXr0CADg5OSk5UyIiIioqB49egQbG5tiu55CFHcZSMVGpVLhzp07qFChAhQKhbbTKVWpqalwcnLCzZs3YW1tre10KA9+NrqLn43u4mej24r78xFC4NGjR6hWrRoMDIrvTjT2tOkwAwMD1KhRQ9tpaJW1tTX/gdNR/Gx0Fz8b3cXPRrcV5+dTnD1sGpyIQERERKQHWLQRERER6QEWbaSTTE1NERISAlNTU22nQs/gZ6O7+NnoLn42uk1fPh9ORCAiIiLSA+xpIyIiItIDLNqIiIiI9ACLNiIiIiI9wKKNiIiISA+waKNil5GRgaZNm0KhUOD06dOyc2fPnkXbtm1hZmYGJycnhIeH53v+li1b4ObmBjMzMzRu3Bi7du2SnRdCYNq0aXB0dIS5uTl8fHxw5coVWUxSUhL69u0La2tr2NraYtCgQUhLSytyLmWFn58fnJ2dYWZmBkdHR/Tr1w937tyRxWzevBlNmzaFhYUFatasia+++irfdQ4ePIjmzZvD1NQUdevWxdq1a/PFLFu2DLVq1YKZmRk8PDzw999/y86np6djxIgRsLOzg5WVFXr06IF79+7JYuLj49GpUydYWFigSpUqmDhxIrKzs1//F6GDCvPZREREoHXr1qhQoQLs7e3Ro0cPXL9+XRbDz6ZkvOzzmT59OhQKRb6HpaWl7Dr8d634FebvjhAC8+bNQ/369WFqaorq1atj1qxZshi9+rsjiIrZ6NGjRceOHQUAER0dLbWnpKSIqlWrir59+4rz58+LDRs2CHNzc/HNN99IMYcPHxaGhoYiPDxcXLx4UUyZMkUYGxuLc+fOSTFhYWHCxsZGbNu2TZw5c0b4+fkJFxcX8fTpUymmQ4cOokmTJuLo0aPizz//FHXr1hV9+vQpUi5lyYIFC0RUVJS4fv26OHz4sPD09BSenp7S+V27dgkjIyOxYsUKcfXqVbFjxw7h6OgolixZIsVcu3ZNWFhYiHHjxomLFy+KJUuWCENDQ7Fnzx4pZuPGjcLExESsXr1aXLhwQQwZMkTY2tqKe/fuSTFDhw4VTk5OIjIyUpw4cUK0bt1aeHl5Seezs7NFo0aNhI+Pj4iOjha7du0SlStXFsHBwSX8W9KOl302165dE6ampiI4OFj8888/4uTJk+Ktt94SzZo1k8XwsykZL/t8Hj16JO7evSt7NGjQQAwYMECK4b9rJeNln40QQowaNUq4urqK7du3i2vXrokTJ06IvXv3Suf17e8OizYqVrt27RJubm7iwoUL+Yq25cuXi4oVK4qMjAypLTAwULi6ukrHH330kejUqZPsmh4eHuLzzz8XQgihUqmEg4OD+Oqrr6TzycnJwtTUVGzYsEEIIcTFixcFAHH8+HEpZvfu3UKhUIjbt28XOpeybPv27UKhUIjMzEwhhBB9+vQRPXv2lMUsXrxY1KhRQ6hUKiGEEAEBAaJhw4aymF69eglfX1/puFWrVmLEiBHScU5OjqhWrZqYM2eOEEL9WRkbG4stW7ZIMZcuXRIARFRUlBBC/d+QgYGBSEhIkGJWrFghrK2tZZ9XWfXsZ7NlyxZhZGQkcnJypBilUimL4WdTep79fJ51+vRpAUD88ccfUhv/XSsdz342Fy9eFEZGRiImJua5z9G3vzscHqVic+/ePQwZMgQ//PADLCws8p2PiorCW2+9BRMTE6nN19cXsbGxePjwoRTj4+Mje56vry+ioqIAAHFxcUhISJDF2NjYwMPDQ4qJioqCra0tWrZsKcX4+PjAwMAAx44dK3QuZVVSUhLWr18PLy8vGBsbA1APaZuZmcnizM3NcevWLdy4cQPAyz+bzMxMnDx5UhZjYGAAHx8fKebkyZPIysqSxbi5ucHZ2Vn2+TVu3BhVq1aVvU5qaiouXLhQXL8GnVTQZ9OiRQsYGBhgzZo1yMnJQUpKCn744Qf4+PhIMfxsSkdBn8+zVq1ahfr166Nt27ZSG/9dK3kFfTa//fYbateujR07dsDFxQW1atXC4MGDkZSUJD1P3/7usGijYiGEgL+/P4YOHSr7RyWvhIQE2X+wAKTjhISEF8bkPZ/3ec+LqVKliuy8kZERKlWq9NLXyfsaZU1gYCAsLS1hZ2eH+Ph4bN++XTrn6+uLrVu3IjIyEiqVCpcvX8b8+fMBAHfv3gXw/N9Zamoqnj59igcPHiAnJ+eln42JiQlsbW1fGMPPJvezcXFxwd69ezFp0iSYmprC1tYWt27dwubNm6UYfjYl60WfT17p6elYv349Bg0aJGvnv2sl50WfzbVr13Djxg1s2bIF33//PdauXYuTJ0+iZ8+eUoy+/d1h0UYvFBQUVOBNtnkfMTExWLJkCR49eoTg4GBtp1xuFPaz0Zg4cSKio6Oxd+9eGBoaon///hD/bYgyZMgQjBw5Ep07d4aJiQlat26N3r17A1D/XyUVTXF+NgkJCRgyZAgGDBiA48eP49ChQzAxMUHPnj2lGCqa4vx88vr111/x6NEjDBgwoDTfTplSnJ+NSqVCRkYGvv/+e7Rt2xbvvPMOvvvuOxw4cACxsbHaeouvxUjbCZBuGz9+PPz9/V8YU7t2bezfvx9RUVH59m1r2bIl+vbti3Xr1sHBwSHfbBrNsYODg/RnQTF5z2vaHB0dZTFNmzaVYhITE2XXyM7ORlJS0ktfJ+9r6LrCfjYalStXRuXKlVG/fn24u7vDyckJR48ehaenJxQKBebOnYvZs2cjISEB9vb2iIyMlF3jeb8za2trmJubw9DQEIaGhi/9/DIzM5GcnCz7v9JnY56dmVWeP5tly5bBxsZGNgvwxx9/hJOTE44dO4bWrVvzsymi4vx88lq1ahU6d+6cr0eF/64VXnF+No6OjjAyMkL9+vWleHd3dwDqmZyurq7693en0He/Eb3AjRs3xLlz56RHRESEACB+/vlncfPmTSFE7k2yeW/gDQ4OzjcRoXPnzrJre3p65rthd968edL5lJSUAm/YPXHihBQTERFR4A27L8qlLLtx44YAIA4cOPDcmH79+slmYgUEBIhGjRrJYvr06ZPvht2RI0dKxzk5OaJ69er5btj9+eefpZiYmJgCb9jNOzPrm2++EdbW1iI9Pf3V3rAeefazGTdunGjVqpUs5s6dOwKAOHz4sBCCn01pet7fnWvXrgmFQiF+++23fM/hv2ul49nPRvM99M8//0gxmokisbGxQgj9+7vDoo1KRFxcXL7Zo8nJyaJq1aqiX79+4vz582Ljxo3CwsIi35IfRkZGYt68eeLSpUsiJCSkwKnxtra2Yvv27eLs2bOia9euBU6Nb9asmTh27Jj466+/RL169WRT4wuTS1lx9OhRsWTJEhEdHS2uX78uIiMjhZeXl6hTp470j8X9+/fFihUrxKVLl0R0dLQYPXq0MDMzE8eOHZOuo5kaP3HiRHHp0iWxbNmyAqfGm5qairVr14qLFy+Kzz77TNja2spmTA0dOlQ4OzuL/fv3ixMnTuSbpq+ZGt++fXtx+vRpsWfPHmFvb18ml5UozGcTGRkpFAqFCA0NFZcvXxYnT54Uvr6+ombNmuLJkydCCH42JaUwn4/GlClTRLVq1UR2dna+6/DfteJXmM8mJydHNG/eXLz11lvi1KlT4sSJE8LDw0O899570nX07e8OizYqEQUVbUIIcebMGdGmTRthamoqqlevLsLCwvI9d/PmzaJ+/frCxMRENGzYUOzcuVN2XqVSialTp4qqVasKU1NT8e6770r/16Tx77//ij59+ggrKythbW0tPv30U/Ho0aMi51IWnD17Vnh7e4tKlSoJU1NTUatWLTF06FBx69YtKeb+/fuidevWwtLSUlhYWIh3331XHD16NN+1Dhw4IJo2bSpMTExE7dq1xZo1a/LFLFmyRDg7OwsTExPRqlWrfNd5+vSpGD58uKhYsaKwsLAQH3zwgbh7964s5vr166Jjx47C3NxcVK5cWYwfP15kZWUVzy9EhxTmsxFCiA0bNohmzZoJS0tLYW9vL/z8/MSlS5dkMfxsil9hP5+cnBxRo0YNMWnSpOdei/+uFa/Cfja3b98W3bt3F1ZWVqJq1arC399f/Pvvv7IYffq7oxCCd7ISERER6TpOCyMiIiLSAyzaiIiIiPQAizYiIiIiPcCijYiIiEgPsGgjIiIi0gMs2oiIiIj0AIs2IiIiIj3Aoo2IqAQoFAps27ZN22nIHDx4EAqFAsnJydpOhYheAYs2IqLXMH36dGlTbyKiksSijYiIiEgPsGgjonJNpVJhzpw5cHFxgbm5OZo0aYKff/4ZQO5wYmRkJFq2bAkLCwt4eXkhNjYWALB27VqEhobizJkzUCgUUCgUWLt2rXTtBw8e4IMPPoCFhQXq1asHpVJZqJw0rxsREYFmzZrB3Nwc7dq1Q2JiInbv3g13d3dYW1vj448/xpMnT6TnZWRkYPTo0ahSpQrMzMzQpk0bHD9+vPh+WUSkVSzaiKhcmzNnDr7//nusXLkSFy5cwNixY/HJJ5/g0KFDUszkyZMxf/58nDhxAkZGRhg4cCAAoFevXhg/fjwaNmyIu3fv4u7du+jVq5f0vNDQUHz00Uc4e/Ys3n//ffTt2xdJSUmFzm369OlYunQpjhw5gps3b+Kjjz7CokWL8NNPP2Hnzp3Yu3cvlixZIsUHBATgl19+wbp163Dq1CnUrVsXvr6+RXpNItJhRdpenoioDElPTxcWFhbiyJEjsvZBgwaJPn36iAMHDggA4vfff5fO7dy5UwAQT58+FUIIERISIpo0aZLv2gDElClTpOO0tDQBQOzevfuleRX0unPmzBEAxNWrV6W2zz//XPj6+krXNzY2FuvXr5fOZ2ZmimrVqonw8HDZdR8+fPjSHIhI9xhpsV4kItKqf/75B0+ePMF7770na8/MzESzZs2k4//7v/+TfnZ0dAQAJCYmwtnZ+YXXz/s8S0tLWFtbIzExsdD55X1+1apVYWFhgdq1a8va/v77bwDA1atXkZWVhTfffFM6b2xsjFatWuHSpUuFfk0i0l0s2oio3EpLSwMA7Ny5E9WrV5edMzU1xdWrVwGoix8NhUIBQH0v3MvkfZ7muYV5XkHPVygUr309ItJvvKeNiMqtBg0awNTUFPHx8ahbt67s4eTkVKhrmJiYICcnp4Qzfbk6derAxMQEhw8fltqysrJw/PhxNGjQQIuZEVFxYU8bEZVbFSpUwIQJEzB27FioVCq0adMGKSkpOHz4MKytrVGzZs2XXqNWrVqIi4vD6dOnUaNGDVSoUAGmpqalkL2cpaUlhg0bhokTJ6JSpUpwdnZGeHg4njx5gkGDBpV6PkRU/Fi0EVG5NnPmTNjb22POnDm4du0abG1t0bx5c0yaNKlQQ489evTA1q1b4e3tjeTkZKxZswb+/v4ln3gBwsLCoFKp0K9fPzx69AgtW7ZEREQEKlasqJV8iKh4KYQQQttJEBEREdGL8Z42IiIiIj3Aoo2IqJQNHToUVlZWBT6GDh2q7fSISEdxeJSIqJQlJiYiNTW1wHPW1taoUqVKKWdERPqARRsRERGRHuDwKBEREZEeYNFGREREpAdYtBERERHpARZtRERERHqARRsRERGRHmDRRkRERKQHWLQRERER6QEWbURERER64P8BmFTol2Xcs30AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkcklEQVR4nO3deVxU1fsH8M+wDfsqiyCIS4Jb7gtqKqbiiguYpamomaZmbilmv9wyyUrLNi0V/fa1NBGV3MgFdyz33MAlEEUWUxbZYeb+/pjvjAxbIAOXmfm8X695wT33zp1nnGwez3nOORJBEAQQERER6QEDsQMgIiIiqi1MfIiIiEhvMPEhIiIivcHEh4iIiPQGEx8iIiLSG0x8iIiISG8w8SEiIiK9wcSHiIiI9AYTHyIiItIbTHyISCtJJBIsXbpU7DBUgoKC4OnpKXYYRPQvmPgQkcZs2bIFEolE9TA1NUWzZs0wc+ZMpKSk1Ohrnz17FkuXLkV6erpG79u7d2+192Rvb49OnTph8+bNkMvlGnmNTz75BHv27NHIvYioYkZiB0BEumf58uVo1KgR8vLycPr0aXz//fc4cOAArl+/DnNzc428Rm5uLoyMnv8v7OzZs1i2bBmCgoJga2urkddQatCgAVatWgUAePz4Mf7zn/9g8uTJuH37NkJCQqp9/08++QSBgYEYPnx4te9FRBVj4kNEGjdw4EB07NgRAPDWW2/BwcEBa9aswd69e/HGG2+88H3lcjkKCgpgamoKU1NTTYX7r2xsbPDmm2+qjqdOnQovLy988803WLFiBYyNjWstFiKqHg51EVGN69OnDwAgLi4OAPD555+jW7ducHBwgJmZGTp06ICwsLBSz5NIJJg5cya2bduGli1bQiqV4tChQ6pzyhqfpUuX4v333wcANGrUSDUsFR8fj169eqFNmzZlxuXl5QU/P78qvx9zc3N07doV2dnZePz4cbnXZWdnY968eXB3d4dUKoWXlxc+//xzCIKg9h6zs7OxdetWVdxBQUFVjomIKoc9PkRU4+7duwcAcHBwAAB89dVX8Pf3x9ixY1FQUIDt27dj1KhR2LdvHwYPHqz23GPHjuHXX3/FzJkzUa9evTILiEeOHInbt2/jl19+wdq1a1GvXj0AgKOjI8aNG4cpU6bg+vXraNWqleo558+fx+3bt/Hhhx++0Hv6+++/YWhoWO6wmiAI8Pf3R1RUFCZPnoy2bdsiMjIS77//PhITE7F27VoAwE8//YS33noLnTt3xttvvw0AaNKkyQvFRESVIBARaUhoaKgAQDhy5Ijw+PFj4cGDB8L27dsFBwcHwczMTHj48KEgCIKQk5Oj9ryCggKhVatWQp8+fdTaAQgGBgbCjRs3Sr0WAGHJkiWq488++0wAIMTFxaldl56eLpiamgoLFy5Ua581a5ZgYWEhZGVlVfieevXqJXh7ewuPHz8WHj9+LNy6dUuYNWuWAEAYOnSo6roJEyYIDRs2VB3v2bNHACB8/PHHavcLDAwUJBKJcPfuXVWbhYWFMGHChArjICLN4FAXEWlc37594ejoCHd3d7z++uuwtLTE7t274ebmBgAwMzNTXZuWloaMjAy88soruHTpUql79erVCy1atHjhWGxsbDBs2DD88ssvqiEmmUyGHTt2YPjw4bCwsPjXe8TExMDR0RGOjo5o3rw5vv76awwePBibN28u9zkHDhyAoaEhZs2apdY+b948CIKAgwcPvvB7IqIXx6EuItK4b7/9Fs2aNYORkRGcnZ3h5eUFA4Pn/87at28fPv74Y1y5cgX5+fmqdolEUupejRo1qnY848ePx44dO3Dq1Cn07NkTR44cQUpKCsaNG1ep53t6euLHH39UTdF/6aWX4OTkVOFz7t+/D1dXV1hZWam1N2/eXHWeiGofEx8i0rjOnTurZnWVdOrUKfj7+6Nnz5747rvvUL9+fRgbGyM0NBQ///xzqeuL9w69KD8/Pzg7O+O///0vevbsif/+979wcXFB3759K/V8CwuLSl9LRHUbh7qIqFbt2rULpqamiIyMxKRJkzBw4ECNJBVl9RYpGRoaYsyYMQgLC0NaWhr27NmDN954A4aGhtV+3fI0bNgQjx49wrNnz9TaY2JiVOeVKoqdiDSLiQ8R1SpDQ0NIJBLIZDJVW3x8fLVXLlbW6pS3cvO4ceOQlpaGqVOnIisrS21dnpowaNAgyGQyfPPNN2rta9euhUQiwcCBA1VtFhYWGl9xmojKxqEuIqpVgwcPxpo1azBgwACMGTMGqamp+Pbbb9G0aVP89ddfL3zfDh06AAAWL16M119/HcbGxhg6dKgqIWrXrh1atWqFnTt3onnz5mjfvr1G3k95hg4dCl9fXyxevBjx8fFo06YNfv/9d+zduxezZ89Wm7LeoUMHHDlyBGvWrIGrqysaNWqELl261Gh8RPqKPT5EVKv69OmDTZs2ITk5GbNnz8Yvv/yCTz/9FCNGjKjWfTt16oQVK1bg6tWrCAoKwhtvvFFqccHx48cDQKWLmqvDwMAAERERmD17Nvbt24fZs2fj5s2b+Oyzz7BmzRq1a9esWYMOHTrgww8/xBtvvIHvv/++xuMj0lcSQSi2hCgRkQ776quvMGfOHMTHx8PDw0PscIhIBEx8iEgvCIKANm3awMHBAVFRUWKHQ0QiYY0PEem07OxsREREICoqCteuXcPevXvFDomIRMQeHyLSafHx8WjUqBFsbW0xffp0rFy5UuyQiEhETHyIiIhIb3BWFxEREekNJj5ERESkN1jcXIJcLsejR49gZWXFZeSJiIi0hCAIePbsGVxdXdU2RS6JiU8Jjx49gru7u9hhEBER0Qt48OABGjRoUO55Jj4lWFlZAVD8wVlbW4scDREREVVGZmYm3N3dVd/j5WHiU4JyeMva2pqJDxERkZb5tzIVFjcTERGR3mDiQ0RERHqDiQ8RERHpDdb4vACZTIbCwkKxw6BaYGxsDENDQ7HDICIiDWHiUwWCICA5ORnp6elih0K1yNbWFi4uLlzXiYhIBzDxqQJl0uPk5ARzc3N+Eeo4QRCQk5OD1NRUAED9+vVFjoiIiKqLiU8lyWQyVdLj4OAgdjhUS8zMzAAAqampcHJy4rAXEZGWY3FzJSlreszNzUWOhGqb8jNnXRcRkfZj4lNFHN7SP/zMiYh0BxMfIiIi0htMfIiIiEhvMPHRA0FBQZBIJJBIJDA2NoazszP69euHzZs3Qy6XV/o+W7Zsga2tbc0FSkREVMOY+OiJAQMGICkpCfHx8Th48CB8fX3x3nvvYciQISgqKhI7PCIi0gNZWVnIzs4WNQatSXxWrVqFTp06wcrKCk5OThg+fDhiY2PVrsnLy8OMGTPg4OAAS0tLBAQEICUlRaSI6xapVAoXFxe4ubmhffv2+OCDD7B3714cPHgQW7ZsAQCsWbMGrVu3hoWFBdzd3TF9+nRkZWUBAI4fP46JEyciIyND1Xu0dOlSAMBPP/2Ejh07wsrKCi4uLhgzZoxq7RsiIiJBEPDtt9/iiy++wPr16yEIgmixaE3ic+LECcyYMQPnzp3D4cOHUVhYiP79+6tljnPmzMFvv/2GnTt34sSJE3j06BFGjhxZYzEJgoCCggJRHpr4j6ZPnz5o06YNwsPDAQAGBgZYt24dbty4ga1bt+LYsWNYsGABAKBbt2748ssvYW1tjaSkJCQlJWH+/PkAFNO8V6xYgatXr2LPnj2Ij49HUFBQteMjIiLtl56ejuXLl+Off/4BAGRnZ4s6W1ZrFjA8dOiQ2vGWLVvg5OSEixcvomfPnsjIyMCmTZvw888/o0+fPgCA0NBQNG/eHOfOnUPXrl01HlNhYSFWrVql8ftWxqJFi2BiYlLt+3h7e+Ovv/4CAMyePVvV7unpiY8//hjTpk3Dd999BxMTE9jY2EAikcDFxUXtHpMmTVL93rhxY6xbtw6dOnVCVlYWLC0tqx0jERFpp/Pnz+PAgQOqYxsbG7z33nsiRqRFiU9JGRkZAAB7e3sAwMWLF1FYWIi+ffuqrvH29oaHhweio6PLTXzy8/ORn5+vOs7MzKzBqOseQRBUmfeRI0ewatUqxMTEIDMzE0VFRcjLy0NOTk6FCzdevHgRS5cuxdWrV5GWlqYqmE5ISECLFi1q5X0QEVHdIQgC1q1bp7a35aBBg9CpUyfxgvofrUx85HI5Zs+eje7du6NVq1YAFPtomZiYlJp15OzsjOTk5HLvtWrVKixbtuyF4jA2NsaiRYte6LnVZWxsrJH73Lp1C40aNUJ8fDyGDBmCd955BytXroS9vT1Onz6NyZMno6CgoNzEJzs7G35+fvDz88O2bdvg6OiIhIQE+Pn5oaCgQCMxEhGR9nj69Cm+/vprtbb33nuvzswK1srEZ8aMGbh+/TpOnz5d7XstWrQIc+fOVR1nZmbC3d29Us+VSCQaGW4Sy7Fjx3Dt2jXMmTMHFy9ehFwuxxdffAEDA0Xp16+//qp2vYmJCWQymVpbTEwMnjx5gpCQENWf24ULF2rnDRARUZ0SHR2N33//XXVcr149TJ8+vU6tgK91ic/MmTOxb98+nDx5Eg0aNFC1u7i4oKCgAOnp6WpZZUpKSqmalOKkUimkUmlNhlwn5OfnIzk5GTKZDCkpKTh06BBWrVqFIUOGYPz48bh+/ToKCwvx9ddfY+jQoThz5gzWr1+vdg9PT09kZWXh6NGjaNOmDczNzeHh4QETExN8/fXXmDZtGq5fv44VK1aI9C6JiEgMcrkca9asUZtwNHToULRv317EqMqmNbO6BEHAzJkzsXv3bhw7dgyNGjVSO9+hQwcYGxvj6NGjqrbY2FgkJCTAx8entsOtcw4dOoT69evD09MTAwYMQFRUFNatW4e9e/fC0NAQbdq0wZo1a/Dpp5+iVatW2LZtW6nC7W7dumHatGkYPXo0HB0dsXr1ajg6OmLLli3YuXMnWrRogZCQEHz++ecivUsiIqpt//zzD1asWFFqlnVZSU9EBNCtm+KnWCSCmJPpq2D69On4+eefsXfvXnh5eanabWxsYGZmBgB45513cODAAWzZsgXW1tZ49913AQBnz56t9OtkZmbCxsYGGRkZsLa2VrXn5eUhLi4OjRo1gqmpqYbeFWkDfvZERGU7deoUjh07pjquX78+pkyZUu7QVrduQHQ04OMDVOGruVLK+/4uSWuGur7//nsAQO/evdXaQ0NDVWvGrF27FgYGBggICEB+fj78/Pzw3Xff1XKkREREuk0ulyMkJASFhYWqthEjRuDll1+u8HnBwUBIiOKnWLSmx6e2sMeHSuJnT0T0XGpqqqozQmnevHmir9umcz0+REREJK6oqCicPHlSdezh4aHaCFtbMPEhIiKiCslkMqxcuVJtu6TAwEC0bNlSxKheDBMfIiIiKldSUhJ++OEHtbb58+fDwsJCpIiqR2umsxMREVHtOnz4sFrS07hxYyxZskSV9NSF6elVxR4fIiIiUlNUVISVK1eqtY0ePRre3t6IiFDMzPL1BdatA7KyFMf+/iIFW0VMfIiIiEjl4cOH2LRpk1rbggULVGvmhYQo1uK5dk2R9Fhaijs9vao41EVEREQAgIMHD6olPV5eXmjXbglefdVMNZwVHKxYgHDWLMXPbdu0p7cHYI8PaVBQUBDS09OxZ88eAIrFJtu2bYsvv/zyhe+piXsQEVHFCgsL8cknn6i1jRkzBi+99JJqtWXlcJbyoa3Y46MHlGssKHeTb9q0KZYvX46ioqIafd3w8PBKb1h6/PhxSCQSpKenv/A9iIio6hISEkolPQsXLsRLL70E4HkPjzYNZ1WEPT56YsCAAQgNDUV+fj4OHDiAGTNmwNjYGIsWLVK7rqCgACYmJhp5TXt7+zpxDyIiKltERAQuX76sOm7VqhUCAgLUrtH2Hp6S2OOjJ6RSKVxcXNCwYUO888476Nu3LyIiIhAUFIThw4dj5cqVcHV1VW0A++DBA7z22muwtbWFvb09hg0bhvj4eNX9ZDIZ5s6dC1tbWzg4OGDBggUouftJ7969MXv2bNVxfn4+Fi5cCHd3d0ilUjRt2hSbNm1CfHw8fH19AQB2dnaQSCSq/ddK3iMtLQ3jx4+HnZ0dzM3NMXDgQNy5c0d1fsuWLbC1tUVkZCSaN28OS0tLDBgwAElJSaprjh8/js6dO8PCwgK2trbo3r077t+/r6E/aSKiuq+goADLli1TS3qaNBlXKunRRUx89JSZmRkKCgoAAEePHkVsbCwOHz6Mffv2obCwEH5+frCyssKpU6dw5swZVQKhfM4XX3yBLVu2YPPmzTh9+jSePn2K3bt3V/ia48ePxy+//IJ169bh1q1b2LBhAywtLeHu7o5du3YBAGJjY5GUlISvvvqqzHsEBQXhwoULiIiIQHR0NARBwKBBg9Q2ysvJycHnn3+On376CSdPnkRCQgLmz58PQDFFc/jw4ejVqxf++usvREdH4+2339aq5daJiKojLi4Oq1atUmv75JNFWLmyMZo3B7y9tWtdnqriUJeeEQQBR48eRWRkJN599108fvwYFhYW2Lhxo2qI67///S/kcjk2btyoSghCQ0Nha2uL48ePo3///vjyyy+xaNEijBw5EgCwfv16REZGlvu6t2/fxq+//orDhw+jb9++ABQLYSkph7ScnJxga2tb5j3u3LmDiIgInDlzBt26dQMAbNu2De7u7tizZw9GjRoFQFGkt379ejRp0gQAMHPmTCxfvhyAYhO7jIwMDBkyRHW+efPmVf+DJCLSQuHh4bh27Zrq+PLltoiJGYYOHYCEBCAxUdGuTevyVBV7fERS26td7tu3D5aWljA1NcXAgQMxevRoLF26FADQunVrtbqeq1ev4u7du7CysoKlpSUsLS1hb2+PvLw83Lt3DxkZGUhKSkKXLl1UzzEyMkLHjh3Lff0rV67A0NAQvXr1euH3cOvWLRgZGam9roODA7y8vHDr1i1Vm7m5uSqpAYD69esjNTUVgCLBCgoKgp+fH4YOHYqvvvpKbRiMiEgX5efnY9myZWpJz5EjQUhNHYbVqxWFy0+eKNpNTXWnkLksTHxEolwAKiSkdl7P19cXV65cwZ07d5Cbm4utW7eqlhwvud9KVlYWOnTogCtXrqg9bt++jTFjxrzQ6ysXvqoNxsbGascSiUSt/ig0NBTR0dHo1q0bduzYgWbNmuHcuXO1Fh8RUW26e/cuQkp82Xz55Qfo2bOh6jgkBMjLUyxGuGOH7vb2AEx8RFPb0wMtLCzQtGlTeHh4wMio4hHO9u3b486dO3ByckLTpk3VHjY2NrCxsUH9+vXxxx9/qJ5TVFSEixcvlnvP1q1bQy6X48SJE2WeV/Y4yWSycu/RvHlzFBUVqb3ukydPEBsbixYtWlT4nkpq164dFi1ahLNnz6JVq1b4+eefq/R8IiJt8Ouvv2Lbtm2q43r1OiIycgmmTzfGunXP/wGu/E7StsUIXwQTH5H4+wNnz9bN/8DGjh2LevXqYdiwYTh16hTi4uJw/PhxzJo1Cw8fPgQAvPfeewgJCcGePXsQExOD6dOnl1qDpzhPT09MmDABkyZNwp49e1T3/PXXXwEADRs2hEQiwb59+/D48WNkZWWVusdLL72EYcOGYcqUKTh9+jSuXr2KN998E25ubhg2bFil3ltcXBwWLVqE6Oho3L9/H7///jvu3LnDOh8i0inh4blYtmyZWhnA5MmTMWPGYJw9C0RFqW83UZe/kzSNiQ+VYm5ujpMnT8LDwwMjR45E8+bNMXnyZOTl5cHa2hoAMG/ePIwbNw4TJkyAj48PrKysMGLEiArv+/333yMwMBDTp0+Ht7c3pkyZguzsbACAm5sbli1bhuDgYDg7O2PmzJll3iM0NBQdOnTAkCFD4OPjA0EQcODAgVLDWxW9t5iYGAQEBKBZs2Z4++23MWPGDEydOrUKf0JERHVXbGwsrl1brda2ePFiNGjQQHWsTz08JUmEkouv6LnMzEzY2NggIyND9SUPAHl5eYiLi0OjRo1gamoqYoRU2/jZE5G22LZtG+7evas6dnLygZtbf9Vwli4nOeV9f5fE6exERERaLjw8B9eufabW5uU1Ba+/7lpqry19x6EuIiIiLXbz5s1SSc+KFR9i3TpXALq311Z1sceHiIhIS23ZskVtyx1n51fg6toHnTsrEp2ICOjFMFdVMPEhIiLSMllZWfjiiy/U2ry9p2H0aGfVcUgIkJYGxMRwmKs4DnVVEWvB9Q8/cyKqS65du6aW9MhkRli+/EN89ZV60hMdDQgCh7lKYuJTScrp0jk5OSJHQrVN+ZlXdso8EZGmFN/eSBAE/PjjjwgPD1ed9/X1hUy2GCYmhkhIeL4NkrKuZ/Vq/Vmfp7I4nb2EiqbDJSUlIT09HU5OTjA3N+eO3jpOEATk5OQgNTUVtra2qF+/vtghEZGeadBAsXGovX0mZs1aq3auefPpmDvXEY8eKXp2AEWyc/asCIHWAZzOXgNcXFwAQLXhJekHW1tb1WdPRFSbUlOBtm2vYPjwvaq2ggIzrFgxHz16GKh2U5dIgGbNOKRVGUx8qkAikaB+/fpwcnJCYWGh2OFQLTA2NoahoaHYYRCRHhIEAb16XUCPHgdUbceP98OcOd1gYKBIcqZPB54+BebMAVauFDFYLcLE5wUYGhryy5CIiDSq+NTz/v3z8Ntvv6FHj5uq8xs2zET37g5QbrTu78/anRfBxIeIiEgkixcD69YBs2YpNg6Njga++y4RcXFhSE9Ph4GBAW7e7Ivt27sCkCA8HJDLOT29Opj4EBER1bKICGDBAuD2bUVh8rp1wH//K+CXX/6At/dhpKfLYWJii/HjA3HxohuuXAHi44G8vOc7qtOLYeJDRERUyxYsAGJjFb8bGACzZuUiN3cvmjdXNN682RxJSf5o2dIUISHAp58qruUqzNXHxIeIiKiWKVdDMTMDNm16iJSUMMTGZsDQ0BD16/dHZGQnBAdLVAsRhoRwPR5N4QKGREREtezTTwEfHwFffXUGd++GIiMjA3Z2dpg0aRIcHTsDUGRG3GBU89jjQ0REVMv69s1BVtYe3LlzBwBga9sS7u5DERgoxdOnimEw9vLUDCY+RERENaC8ndETEhIQFhaGZ8+eQSYzxIEDA3DxYgc4OEjw5Ang7c1enprExIeIiEiDlAlP8Z4bf3/lXlunkZgYBQMDAQ4ODti2LRAXLypWhn/69HnCw16emsPEh4iISAOUCU9aGhATo95zk52djd27dyMp6R4MDIA7d1rjyJHB6NNHijt3FElPQACwc6fY70L3MfEhIiKqpogIYOxYICsL8PJSJDy+vkB4OLBiRTxOn94FC4ssFBUZYf/+Qbh1qy3y8iSQyYB//hE7ev3CxIeIiKiaQkIUSY+lJbB6tWKoqnlzOZydT6FXrxMwMBDw+HE9XLgwCqamTpg7V7FSM+t4ah8THyIiomoKDgYWLlSswgwAWVlZ8PUNh7NzHADg8uW2OHlyILZsMWH9jsi4jg8REVEVREQA3bopfir5+wN2dopi5i+++BsrVqyHs3McCgqMER4+HHv3DkNGBpOeuoA9PkRERFVQfDVlZSITEQGkp8vh738c7dqdgkQCpKQ4YefOUfjnn3qQSICRI8WNmxTY40NERFQFwcGKAua0tOe9PmvXZqJLl/+gfXtF0nPxYnv8+ONbyMiohw8+UOyozhlbdQMTHyIioirw9wfs7RVT1kNCgLt376Jv3w3w9LwPQTDBsWMjcfjwUCxYYIyCAmDlSrEjpuKY+BAREVWgrJoeX1/A2lqGZs2OYNu2bSgqyoGLiwveffdtnDjRGrm5THjqKtb4EBERlWHxYmDdOsDGBkhMVKzTs22b4lxoaAYCA3fBw+MBAODy5Y4IC/ODkRG/Vus6fkJERERlWLdOsTZPfj5gYKD4PSQEcHSMxbhxe2FunguZTIr9+/0xYEALMOfRDvyYiIiIyjBggGLlZalUkfQYGsrQt+8RGBqeAwCYm7virbcCsXy5nciRUlWwxoeIiPRayRoe5fH164rZWNnZgK1tGiZODFUlPV26dMGcORNhZ8ekR9tIBEG5ziQBQGZmJmxsbJCRkQFra2uxwyEiohrWrZtiXR4fH+Ds2efHbm7Ao0eAl9ctDB++F6am+TA0NEVg4DB4e3uLHTaVUNnvbw51ERGR3oqIUKzH4+X1fN+s4GBFLc/Dh0UYMOAwunT5EwDQoEEDBAQEwNbWVryAqdqY+BARkd4KCVGsx2NqqthrS8nc/Cn8/cPg6JgEAHBy8kFQ0KswNDQUKVLSFA51lcChLiIi3RYRoUh4lD08r78O5OYqfvf2Bry9b6B58whIpQUoKDCDt/dwjBvXTLyAqVI41EVERFSG4nttnT2rWIU5MREwMipEhw6ReOmliwAACwt3zJkTyH8E6xgmPkREpFeUNTy+vopCZgBwcPgHo0eHwckpBQDQo0cP+Pr6wsCAk591DRMfIiLSC8qVmGfNUiQ/Y8cq1ufx8/sLnTrtg5FRIczNzTFixAg0bdpU7HCphjDxISIinRMRASxYoEhsLC2B1aufr8QcEgI0awbk5xdi5MiDePnlywAAT09PjBw5ElZWViJHTzWJiQ8REemckBAgNvb58ejRUG0pIZcDVlaPMWvWTlhZPQYA9OzZE7169eLQlh7gJ0xERDqh+ArMwcGKtXkcHBTn8vIUvT0A0KXLFQwd+iOsrB7DwsIC48aNYz2PHmGPDxERab2IiOfT0hcuBD79VJHoPH36/BoTkwIMGnQAbdtehVwONG7cGCNGjIClpaV4gVOtY+JDRERaLyTk+Vo8gqA4TkxUHEskQNOmKfDzC0O9ev9AIpGgd+/e6NGjB3t59BATHyIi0krFFyL09QWuXFGsybN6teL89OnAkycC5s+/DFPTgygqKoKVlRVGjhwJT09PMUMnETHxISIirVR8IUJA0ePj4QH4+yuO/fzysW/fPly/fh1FRUDTpk0xfPhwWFhYiBc0iY6JDxERaQ3lNHWJBBg5UtEWHAz88Qdw7Zqi5wcAkpKSEBYWhqdPn0IikaBPnz7o3r07JBKJeMFTnaCTg5vffvstPD09YWpqii5duuDPP/8UOyQiItIA5TT1mBggKkqx5YS/v+L3rCwgKkrA+fPnsWnTJjx9+hTW1tYICgpCjx49mPQQAB1MfHbs2IG5c+diyZIluHTpEtq0aQM/Pz+kpqaKHRoREVWTcpq6t/fzLSeU09dfeSUPo0eH4cCBA5DJZGjWrBmmTp0KDw8PscOmOkTndmfv0qULOnXqhG+++QYAIJfL4e7ujnfffRfByq14K8Dd2YmItEO3booaHx8fICzsEcLCwpCWlgYDAwP07dsXXbt2ZS+PHqns97dO9fgUFBTg4sWL6Nu3r6pN+RcgOjq6zOfk5+cjMzNT7UFERHXD4sWAlZXiZ8nj4GDAx0fApEnnsGnTJqSlpcHGxgYTJ06Ej48Pkx4qk04VN//zzz+QyWRwdnZWa3d2dkZMTEyZz1m1ahWWLVtWG+EREVElKaeqX76sWHV5zRpFHY/yeN06IDU1F7m5Ear/v3t7e8Pf3x9mZmYiR091mU71+LyIRYsWISMjQ/V48OCB2CEREek95VR1CwvAwAAwNlYcm5srNh19772H2LBhA2JiYmBoaIgBAwbgtddeY9JD/0qnEp969erB0NAQKSkpau0pKSlwcXEp8zlSqRTW1tZqDyIiqn1l7bWVna3YVLSwUHGNo6OAyMizkEpDkZGRATs7O0yaNAldunTh0BZVik4NdZmYmKBDhw44evQohg8fDkBR3Hz06FHMnDlT3OCIiKhCyl6ehQsBOzvFWj15eYoenlmzgNOnczB8+B4cPnwHANCyZUsMGTIEpqamIkdO2kSnEh8AmDt3LiZMmICOHTuic+fO+PLLL5GdnY2JEyeKHRoRERVTfMuJP/5Q1O+4uQHPninW6XFzU8zYCg4G2rZNQL16u5CZmaka2urQoQN7eajKdC7xGT16NB4/foyPPvoIycnJaNu2LQ4dOlSq4JmIiMShTHgSEhQbiS5YoPiZlwdkZCgSHkDR03PmjIDTp09jy5YoCIIAe3t7jBo1qtzyBaJ/o3Pr+FQX1/EhIqpZ3t6K1ZeNjRW1O25uiqTn6VMgIAAYN06RGM2bl43c3N24d+8eAKB169YYPHgwpFKpyO+A6qLKfn/rXI8PERHVXRERip4eAHByUqzJc/cuUFSkaEtMVGxB8fLL8di1axeysrJgZGSEgQMHol27dhzaompj4kNERLUmJESxi7qBgaJ+59Ch50mPRAIsXCjHiROncOLECQiCgHr16mHUqFFwcnISN3DSGUx8iIioxinrenx9FbuoZ2Upkp6sLMWQl6EhMHduFjIywnHlShwAoE2bNhg0aBBMTExEjp50CRMfIiKqURERwNixiiQHALZte54ERUUpZm21avU3wsPDEReXDWNjYwwaNAht27YVNW7STUx8iIioRhSfvZWVpRjK8vVV1PD4+yuukcvlOHHiBH766SQAwMnJCYGBgXB0dBQxctJlTHyIiEjjIiKAwEDFrC1DQ0WbIABbtwIrVyqOnz17hl27duH+/fsAgPbt22PAgAEwNjYWKWrSB0x8iIhI40JCnm8zYWio2HZCEBRT1gHg7t272L17N3JycmBiYoIhQ4agdevW4gVMeoOJDxERaUzxIuaEBODJE2DuXMW5deuAWbNkOHIkCmfOnAEAODs7Y9SoUXBwcBAxatInTHyIiOiFFE9ylEXKyv22zp0DXF2BHTue1/MsWJCBXbt24cyZBwCAjh07ws/PD0ZG/Cqi2sOVm0vgys1ERJXTrZsiybG0fD5jy8pK8bvym8XHBzh7Frh9+zb27NmD3NxcSKVSDB06FC1bthQveNI5lf3+NqjFmIiISIcEBysSm1mznrc9e6bo6TE1VWxFsWCBDJGRkfjll1+Qm5uL+vXr4+2332bSQ6Jhj08J7PEhIqo6BwdF4bKREbBrl2J4Kz09HWFhYUhMTAQAdO7cGf369ePQFtUI7tVFREQ1LiJCsbu6mZli89FPP1UkPTExMdi7dy/y8vJgamqKYcOGwdvbW+xwiZj4EBFR5SkLmt3cFFtO2NgoNhYFFMNegwYV4eDBw/jzzz8BAG5ubggMDIStra14QRMVw8SHiIgqbcECIDZWsQqzICg2GPXyUhzPmfMUmzeHISkpCQDg4+ODV199FYbKFQyJ6gAWNxMRUZkiIhQztyIinrdJJIqf9vaK2Vxz5wIxMUBY2A3cu/cDkpKSYGZmhjfeeAP9+/dn0kN1DoubS2BxMxGRQvHp6tu2KWp3lENdwcGK46KiIkRGRuLChQsAAHd3dwQEBMDGxkbk6EnfsLiZiIiqpHhSAyhWXpZIFOvyLFjw/NzZs4rzT548wc6dO5GSkgIA6NGjB3r37s1eHqrTmPgQERGA56suh4QojpVFy5aWigRIec7fH7h27Rr27duHgoICmJubY8SIEWjatKl4wRNVEmt8iIgIgKI3x80NuHxZ8dPNTbEQ4axZimnqPj7AggWFiIiIQHh4OAoKCtCwYUNMmzaNSQ9pDdb4lMAaHyLSZ8otJywtgdatFb08ym0nHj9+jLCwMKSmpgIAevbsiV69esHAgP+GJvGxxoeIiKps1izlLupAly7P63quXLmCAwcOoLCwEBYWFhg5ciQaN24sdrhEVcYenxLY40NE9FxBQQEOHDiAq1evAgAaNWqEkSNHwtLSUuTIiNRxk1IiIiqTcn2exYufr9NT1po9qamp+PHHH3H16lVIJBL07t0bb775JpMe0mrs8SmBPT5EpOuKr8+jrOdxc1OsyOzjA5w5I+Dy5cs4ePAgioqKYGVlhZEjR8LT01Ps0InKxRofIiIqU3CwonbH11dRz5OVpZiu7uMDvP9+Pnbv3o9r164BAJo0aYIRI0bAwsJC5KiJNINDXUREekI5nAUokp+oKEURs4+PYrp6eHgyHj78AdeuXYNEIsGrr76KsWPHMukhncIeHyIiPaFcoHDhQuDhQ0VPD6AY2rpw4QI2boyETCaDtbU1AgIC4OHhIW7ARDWAPT5ERDqkrCJlpeBgxU7q8fHPa3vefz8PYWFhOHDgAGQyGZo1a4apU6cy6SGdxR4fIiIdUnLbCWUtT1SUIvGxt1cUMVtaAj/++AgPHoQhLS0NBgYGePXVV+Hj4wOJcgt2Ih3ExIeISIcoC5eVP6OjgWvXFD08z9sFTJr0J+7c+R1yuRw2NjYIDAxEgwYNxA6fqMYx8SEi0gHFd1ZX7p4OKOp5nj1TTFcPDgb69ctFbm4EYmJiAADe3t7w9/eHmZmZSJET1S7W+BARaani9Twlh7giIhRJT3y8Ypd1e3ugffuH2LBhA2JiYmBgYIABAwbgtddeY9JDeoU9PkREWqp4slN8bZ5u3YC0NOB/nTqwtBQwcWI0QkOPQi6Xw87ODoGBgXB1dRX3DRCJgIkPEZGWKl7P4++veChXZTY1VQxv2dvnYOLEvXj06DYAoEWLFhg6dChMTU1Fjp5IHEx8iIi0lDLZiYgAvL0VBcy5uYpVmPPygJdfTkC/fruQmZkJQ0ND+Pn5oWPHjpy1RXqtyomPoaEhkpKS4OTkpNb+5MkTODk5QSaTaSw4IiL6dyEhiinqShKJgD59zqBLl2PIzBRgb2+PUaNGwcXFRbwgieqIKic+5e1pmp+fDxMTk2oHREREVRMcDCxYoOjxMTXNxquv7oGr610AQOvWrTF48GBIpVKRoySqGyqd+Kxbtw4AIJFIsHHjRlhaWqrOyWQynDx5Et7e3pqPkIiIKqQc8oqPj0d4eDiePXsGIyMjDBw4EO3atePQFlExlU581q5dC0DR47N+/XoYGhqqzpmYmMDT0xPr16/XfIRERKQSEQFMnw48fQrMmQOsXAnI5XKcOnUKJ06cgCAIqFevHgIDA+Hs7Cx2uER1jkQob+yqHL6+vggPD4ednV1NxSSqzMxM2NjYICMjA9bW1mKHQ0R6pvhChP7+pdsWLHhez2NpCSQlZSE8PBxxcXEAgDZt2mDQoEEsPSC9U9nv7yonPrqOiQ8RiSUiAhg7VlGr4+PzfAXm5s0Va/IoqwliYhQztz744G/Y2oYjOzsbxsbGGDRoENq2bSta/ERiquz3d5WLmydNmlTh+c2bN1f1lkREBEWvjnLX9ODg5+3Kf54KArB6NRASIseECSeQnHwS2dmAo6MjRo0aBUdHR3ECJ9IiVU580tLS1I4LCwtx/fp1pKeno0+fPhoLjIhI35RckBBQ9AIBit6eTz8FfH2f4enTXbh//z4AoF27dhg4cCCMjY1FippIu1Q58dm9e3epNrlcjnfeeQdNmjTRSFBERPqmvNqe4kNfLVrcxfr1u5GTkwMTExMMGTIErVu3FjdwIi2jsRqf2NhY9O7dG0lJSZq4nWhY40NEYlBuNaGs7Rk1CggLU5yzspJj9epjSEk5AwBwdnbGqFGj4ODgIGLERHVLjdX4lOfevXsoKirS1O2IiPRK8WGuiIjnSY+1dQb+7/92ISXlAQCgY8eO8PPzg5ERdxwiehFV/pszd+5ctWNBEJCUlIT9+/djwoQJGguMiEgX/dt0deVGowDw0ku3MXr0HmRn58LExAT+/v5o2bKleMET6YAXWsenOAMDAzg6OqJPnz6YNGmS1v8rhENdRFSTSg5pFW/z9gbs7ABfXxkSE4+iUaNoAED9+vURGBgIe3t7ESMnqttqbKgrKiqqWoEREemz4kNaJduePgVu3UpHly5haNQoEQDQuXNn9OvXT+v/UUlUV7zw36TU1FTE/m/5UC8vr1K7tRMRUWnKfbWK++MP4No1YNSoGLi67oWxcR5MTU3h7++P5s2bixMokY4yqOoTMjMzMW7cOLi6uqJXr17o1asX3Nzc8OabbyIjI6MmYiQi0mnffluEHj0OoWHDHTA2zkN6uhsaN57KpIeoBlQ58ZkyZQr++OMP7N+/H+np6UhPT8e+fftw4cIFTJ06tSZiJCLSORERitqenTvT8N57m9G16x8AgLg4H3z99USsXWsrboBEOqrKQ1379u1DZGQkevTooWrz8/PDjz/+iAEDBmg0OCIiXRUSAmRk3MTVqxEwNs6HmZkZhg0bhthYL9y+rV4DRESaU+XEx8HBATY2NqXabWxsdHbHdiIiTVBOW1+woAh9+0bC0PACAMDd3R0BAQGwsbGBl1fpGiAi0pwqD3V9+OGHmDt3LpKTk1VtycnJeP/99/F///d/Gg2OiEjbKYe0IiKA6dOB2NgnOHp0kyrp+fvv7pgwYUKZ/6AkIs2r8jo+7dq1w927d5Gfnw8PDw8AQEJCAqRSKV566SW1ay9duqS5SGsJ1/EhouooazFC5bo9+fnX4Oe3D1JpAYyMzPHHHyPw1ltN2cNDpAE1to7PsGHDIJFIqhUcEZEuKGsV5pAQRaITEqI4fvoU8PAoRJMmB9G06WUAgFzeEO++OxKLF/MfV0S1TWOblOoK9vgQUWWVtQpz8WQoJAS4c+cxRo0Kg7NzKgQB6NnzFfTu3RsGBlWuNCCiCtRYj0/jxo1x/vz5UrsCp6eno3379vj777+rHi0RkRYqaxXm4gsUPnlyFXfv7oeJSSGysizQps1I9OnTWJxgiQjACyQ+8fHxkMlkpdrz8/Px8OFDjQRFRKQNylqFGQB27y7Anj0H0bjxFZiYAPfvN0L9+iPx5puWtR8kEampdOITERGh+j0yMlJtBoJMJsPRo0fRqFEjzUZHRFTH/Nvu6l27puLs2Z1o3PgfyOUS/P13L2zd+gqHtojqiErX+Cj/0kokEpR8irGxMTw9PfHFF19gyJAhmo+yFrHGh4gqUv7u6gICAy+jbduDKCoqQm6uJc6eDcD8+Z6ctUVUCzRe4yOXywEAjRo1wvnz51GvXr3qR0lEpCWUvTq+vorj4nU977+fj4iI/fD0vIaiIqBJkyYYMWIELCwsxAmWiMpV5RqfuLi4moiDiKhOU05TB5739ADA9u3JOH8+DJ6eTyCXS3D3bh989FF3LvtBVEdVOfFZvnx5hec/+uijFw6mPPHx8VixYgWOHTuG5ORkuLq64s0338TixYthYmKiuu6vv/7CjBkzcP78eTg6OuLdd9/FggULNB4PEemfkjO4BEHAxYsXcfPmIVhby5CRYY0DBwKwerUHmPMQ1V1VTnx2796tdlxYWIi4uDgYGRmhSZMmNZL4xMTEQC6XY8OGDWjatCmuX7+OKVOmIDs7G59//jkAxdhe//790bdvX6xfvx7Xrl3DpEmTYGtri7ffflvjMRGRfik+gysvLw/79u3DjRs3YGgIJCa+hD/+GI7Vq81Zz0NUx2lkAcPMzEwEBQVhxIgRGDdunCbi+lefffYZvv/+e9W6Qd9//z0WL16M5ORkVS9QcHAw9uzZg5iYmErfl8XNRFSR7dsf4fLlMJibp0EuN0CDBq/irbd8OLRFJLLKfn9rZH6ltbU1li1bVqublGZkZMDe3l51HB0djZ49e6oNffn5+SE2NhZpaWm1FhcR6SZBEPDHH3/g5s3NMDdPQ0aGDTZvnojQ0G5Meoi0iMYWlsjIyEBGRoamblehu3fv4uuvv8bUqVNVbcnJyXB2dla7TnlcfCf5kvLz85GZman2ICL9U3wX9ZJyc3Px66+/4tChQzA0lCEmxgt79kyFu3sDtdldRFT3VbnGZ926dWrHgiAgKSkJP/30EwYOHFilewUHB+PTTz+t8Jpbt27B29tbdZyYmIgBAwZg1KhRmDJlSpVeryyrVq3CsmXLqn0fItJuxTcXLV6nk5iYiLCwMKSnp0MuN0BkZD/cuNEF27ZJWM9DpIWqnPisXbtW7djAwACOjo6YMGECFi1aVKV7zZs3D0FBQRVe07jx831tHj16BF9fX3Tr1g0//PCD2nUuLi5ISUlRa1Meu7i4lHv/RYsWYe7cuarjzMxMuLu7V/YtEJGO8PUFrl17vk6PIAg4d+4cjhw5ArlcDltbWzg5BeLwYTds21b2VhVEVPeJuo6Po6MjHB0dK3VtYmIifH190aFDB4SGhpZa/t3HxweLFy9GYWEhjI2NAQCHDx+Gl5cX7Ozsyr2vVCqFVCp98TdBRDohKgrIylL8zM3NxZ49e3D79m0AgK1tC0ydOhSmpqZ44w2RAyWianmhGp/09HRcuHABFy5cQHp6uoZDKi0xMRG9e/eGh4cHPv/8czx+/BjJyclqtTtjxoyBiYkJJk+ejBs3bmDHjh346quv1HpziIiKK17XExys2IZi5swHWL9+PW7fvg2ZzBD79g3C3LmBWLHCVOxwiUgDqjSdPT4+HjNmzEBkZKRqvy6JRIIBAwbgm2++gaenZ40EuWXLFkycOLHMc8XDL76AYb169fDuu+9i4cKFVXotTmcn0h/F9906c0bAxo1n8PDhMRgYCLC3t4ej4yiMHesCuRywtASePRM7YiIqT2W/vyud+Dx48ACdOnWCsbExpk+fjubNmwMAbt68ie+//x5FRUU4f/48GjRooJl3IBImPkT6Q7n/1rx52cjL24O7d+8CAJKSWuGrr4ZAKpVi8WJg3Tpg1ixg5UqRAyaicmk88Zk8eTLu3r2LyMhImJqqd/nm5uZiwIABeOmll7Bx48bqRS4yJj5EukmZ5AQHqxcm379/H7t27cKzZ88gCEb4/fcB8PVtj5UruTYPkTbReOLj5uaGHTt2oEePHmWeP3nyJF5//XU8evToxSKuI5j4EOmm4sNaZ88Ccrkcp0+fxvHjxyEIAqTSevjuu0A8eOAMLy+gCgu+E1EdoPGVm//5558Ka3gaN26Mp0+fVilIIqLaoixeDg4GsrKysG3bNkRFRUEQBLRp0wb790/BgweKRU+5EDOR7qp04lO/fn3cvHmz3PPXr1+vcL0cIqLaVtZqzM+exWH9+vX4+++/YWxsDA+PYVi9ejh69jSBlxfg7Q38y7qqRKTFKp34DB8+HPPnz8fjx49LnUtNTcXChQsxfPhwTcZGRFQlJROd4qsxh4TIIZVG4c6d/yA7OxuOjo6YMmUKfvyxLaKjFev3rF4NVLDsFxHpgErX+KSlpaFLly5ITk7Gm2++CW9vbwiCgFu3buHnn3+Gi4sLzp07p7ZxqDZijQ+R9ipZx/N8RtYz2NuHIysrHgDQrl07yOUDsXq1MXx9FUlPcPDzREn5fCLSHpX9/q70ys12dnb4448/8MEHH2D79u2qhQttbW0xZswYfPLJJ1qf9BCRdlMmL8qNQ6OiAGfnexCEcGRl5cDY2BhDhgzByy+/rEqSAPUkZ+FC4OlTRa8Rt6Ug0j1VWsBQSRAE1ZCXo6MjJDpUCcgeHyLdIJfL8cMPUUhJOQ0AcHZ2hr39KHz5pYMqMSprenvJXiMi0g4a7/EpTiKRwMnJ6YWDIyKqSZmZmdi1axdSUhIAAPXqdcDkyX7o1ctYVfNz9mzZPTole42ISLe8UOJDRFRX3b59G3v27EFubi6Kikywe7c/rK1bYsaMyiU1/v4c4iLSZS+0SSkRkViKz9wq/rtMJsPvv/+OX375Bbm5uahfvz5efnkqrK1bqhIdf//ye3qISD+8UI2PLmOND1HdVrwGB1D87uubjrFjd+Hhw4cAgM6dO6Nfv34wMiq/U7u8LSyISDtpfOVmIqK6QLkCs68vkJYG9OkTgz59NuDhw4eQSqV47bXXUFg4ED17GqktXFhS8TV+iEh/VKrHZ926dZW+4axZs6oVkNjY40OkHbp3l8Ha+jC6dv0DAODq6orAwEB8/rkdQkIAubzimVns8SHSLRrdpLRRo0aVelGJRIK///678lHWQUx8iOq+tLQ0bNwYhpwcxabIXbt2Rd++fWFoaAgrKyArCzAwAHbvZlJDpC80Op09Li5OY4EREVXHzZs3ERERgfz8fJiammL48OHw8vJSnZ81S7laM5MeIirthYubCwoKEBcXhyZNmlRYQKht2ONDVDcVFRUhMjISFy5cAAA0aNAAgYGBsLGxETkyIqoLaqy4OScnB5MnT4a5uTlatmyJhATFAmHvvvsuQlglSEQ14MmTJ9i0aZMq6enevTuCgoIqTHrK2pmdiKjKic+iRYtw9epVHD9+HKampqr2vn37YseOHRoNjojo+vXr+OGHH5CcnAxzc3OMGTNGVc9TEc7aIqKyVHmMas+ePdixYwe6du2qtkdXy5Ytce/ePY0GR0T6KSICWL26EK+/fghPnlwCAHh4eCAgIKDSQ9DceoKIylLlHp/Hjx+XuU9Xdna2Tm1WSkTi+frrf/DyyxtVSc8rr7yCCRMm4Phx60oPX3GVZiIqS5UTn44dO2L//v2qY2Wys3HjRvgol1IlInpBV69eRc+eP8DZORVGRhZ488030adPHxgYGKiGr8aOZe0OEb2YKic+n3zyCT744AO88847KCoqwldffYX+/fsjNDQUK1eurIkYiUhHFS9ALigowN69e7Fnzx7I5YXw9PTErFlT0aRJE9X1wcGApaVinZ6yandY0ExE/+aFprPfu3cPISEhuHr1KrKystC+fXssXLgQrVu3rokYaxWnsxPVHuW+W337pmLEiDA8fvwYEokEvXr1wiuvvAIDAwPVCsu+vkBU1POfZa24XHwfr/JWbCYi3aTRlZv1CRMfopr3PJkRcPv2FbRufQCCUARLS0sEBATA09NTdd3YsYoeHiVuQ0FEZdHoys2ZmZmVfmEmC0T0b0JCgIsXC9C69T60anUNggA0adIEI0aMgIWFhdp1xZMeA4OKZ2n5+zPhIaKKVSrxsbW1rfSMLZlMVq2AiEj3zZqVjEuXwmBh8QQSiQS+vr7o0aNHqf/PKKeku7kBhw6VvQ0Fe3mIqCoqlfhERUWpfo+Pj0dwcDCCgoJUs7iio6OxdetWrFq1qmaiJCKtp0hQBLz11kU8enQIFhYy5OVZoXXrQLzyikeZz6lMD07xhQqZ+BDRv6lyjc+rr76Kt956C2+88YZa+88//4wffvgBx48f12R8tY41PkQ145VX8uHi8htatboBAHj8+CWEhg5Hmzbm1SpEZo8PEQEarvEpLjo6GuvXry/V3rFjR7z11ltVvR0R6YGkpCQMGrQTBQVpAAzQr9+rePzYB5cuSaq9sjLreoioKqq8jo+7uzt+/PHHUu0bN26Eu7u7RoIiIt0gCAL+/PNPbNq0CQUFabCxscGkSUHo1q0bV3onIlFUucdn7dq1CAgIwMGDB9GlSxcAwJ9//ok7d+5g165dGg+QiLRTXl4eIiIicOvWLQCAl5cXhg0bBjMzMwCszSEicVS5x2fQoEG4c+cOhg4diqdPn+Lp06cYOnQobt++jUGDBtVEjESkZRITE7FhwwbcunULBgYG8PPzw+jRo1VJD6CoyfHx4SaiRFS7uIBhCSxuJnpxgiDg3LlzOHLkCORyOWxtbREYGAg3NzexQyMiHVdjxc0AkJ6ejk2bNqm6sFu2bIlJkybBxsbmxaIlIq0XHp6Lo0f3wMnpNgCgefPm8Pf3h6mpaalrS87E4swsIqotVR7qunDhApo0aYK1a9eqhrrWrFmDJk2a4NKlSzURIxHVcQ8ePMCff66Hk9NtyOWGGDhwIEaNGlVm0gOo1/eUdazETUeJSNOqnPjMmTMH/v7+iI+PR3h4OMLDwxEXF4chQ4Zg9uzZNRAiEdVVgiDgzJkzCA0NhZlZJrKz7dG8+WQkJ3dG9+6SchOWkvU95dX7lJcQERG9qCrX+JiZmeHy5cvw9vZWa7958yY6duyInJwcjQZY21jjQ1Q52dnZ2LNnD+7evQsAaNWqFYYMGQKpVKqxXdI5BEZElVVjNT7W1tZISEgolfg8ePAAVlZWVY+UiLTO/fv3sWvXLjx79gxGRkYYMGAA2rdvr1qbR7nHFhcnJKK6psqJz+jRozF58mR8/vnn6NatGwDgzJkzeP/990ttY0FEukUQBJw6dQrHjx+HIAhwcHDAqFGj4OzsrHYdExYiqquqnPh8/vnnkEgkGD9+PIqKigAAxsbGeOeddxDCgXginZWVlYXdu3fj77//BgAkJr6Ml18eDGdnk1LXcoiKiOqqF17HJycnB/fu3QMANGnSBObm5hoNTCys8SEqLS4uDuHh4cjKyoKRkREuXx6EXbvawsdHojaspUxyNFXjQ0RUWTW6jg8AmJubo3Xr1i/6dCLSAnK5HCdPnsSJEycAAKamjjhyZBQ6d3ZUzcIqufVERASQkACYmQFubookyNcXiIpiDxARia/Sic+kSZMqdd3mzZtfOBgiqjuePXuG8PBwxMfHAwDs7dtix45BOHPGGNnZ6j05xQuZQ0KAxETF74cOAVlZwLVrip/cl4uIxFbpxGfLli1o2LAh2rVrB+5yQaTb7t27h/DwcOTk5KCoyBgREUNgYfGyqofH11fRk6PswSmezAQHAwsWABIJMHKkoqfHzU2RBPn6iveeiIiAKtT4zJgxA7/88gsaNmyIiRMn4s0334S9vX1Nx1frWOND+kwulyMqKgqnT58GADg7O8PePhBfflmvWjU8rPkhoppW2e/vSq/c/O233yIpKQkLFizAb7/9Bnd3d7z22muIjIxkDxCRDsjMzMTWrVtVSU+HDh0wefJkvPZaPZw9q96r4+sLWFpWvgeHO7ETUV1RpS0rpFIp3njjDRw+fBg3b95Ey5YtMX36dHh6eiIrK6umYiSiGnbnzh2sX78eCQkJMDExQUBAAIYMGQJjY+My98uKilLU7ERFlb5XWdf7+6NU8kREJIYq79WleqKBASQSCQRBgEwm02RMRFRLZDIZDh8+jJ9//hm5ubmoX78+pk6dilatWqmuKWu/rIp6cLi/FhHVZVVKfPLz8/HLL7+gX79+aNasGa5du4ZvvvkGCQkJsLS0rKkYiagGpKenY8uWLTj7v6KbTp06YdKkSaVq95RJjrKgOSKi4h4cDmsRUV1W6eLm6dOnY/v27XB3d8ekSZMwduxY1KtXr6bjq3UsbiZ9EBMTg7179yIvLw9SqRT+/v5o0aJFhSsus0CZiOqyyn5/VzrxMTAwgIeHB9q1a6faiLAs4eHhVY+2DmHiQ7pMObT1xx9/AABcXV0RGBgIOzs7ABUnN9yGgojqMo2v3Dx+/PgKEx4iqtvS0tIQFhaGR48eAQC6du2Kvn37wtDQUHWNpnZVJyKqq154ry5dxR4f0jUREUBo6E106BABmSwfpqamGD58OLy8vKp0Hw51EVFdVuN7dRFR3bdnTxG2bPkd7dqdh0wGNGjQAAEBAbC1ta3yvdgbRES64IWnsxNR3fb06VOcOrUJ7dqdBwA4OXVDUFBQqaSn+Lo7Za3Bo8S1eIhIF3CoqwQOdZEuuH79On777TcUFBSgoMAM3t4jMG7cS2VeW3wIC+BwFhFpJw51EemhwsJCHDp0CJcuXQIAeHh4ICAgoML/CZQcwuJwFhHpMiY+RDrin3/+wc6dO5GamgoAeOWVV9C7d28YGDwf0S45Jb2sKeocyiIiXcahrhI41EXa6OrVq9i/fz8KCwthYWGBESNGoEmTJqWuKzkzizO1iEhXaHx3diKqewoKCrB3717s2bMHhYWF8PT0xNSpU1VJT8li5ZLbSXB7CSLSNxzqItJSqampCAsLw+PHjwEAvXr1Qs+ePdWGtopvGOrv/3wYS7mBaPE2IiJ9wB4fIi0jCAIuX76MH3/8EY8fP4alpSXGjx9fqp4HKLtHh7unE5E+Y48PkRYpKCjA/v378ddffwEAGjdujBEjRsDS0rLUteUVMvv6Ks5zeIuI9BETHyItkZKSgp07d+LJkyeQSCTw9fVFjx49yt1Dr+Qwl/IYYCEzEekvDnUR1XGCIODixYv48ccf8eTJE1hZWWHChAlIS3sF3btLylxlGah8IXNFqzUTEekarZvOnp+fjy5duuDq1au4fPky2rZtqzr3119/YcaMGTh//jwcHR3x7rvvYsGCBVW6P6ezU12Sn5+Pffv24fr16wCApk2bYsSIETA3N4e3NxAbC3h5ATExL/4anNJORLpAZ6ezL1iwAK6urqXaMzMz0b9/fzRs2BAXL17EZ599hqVLl+KHH34QIUqi6ktKSsIPP/yA69evQyKRoG/fvhgzZgzMzc0BAMoRroSE6vXWcEo7EekTrarxOXjwIH7//Xfs2rULBw8eVDu3bds2FBQUYPPmzTAxMUHLli1x5coVrFmzBm+//bZIERNVnSAIOH/+PH7//XfIZDLY2NggICAA7u7uatd9+ikwdiyQlfW8judFcEo7EekTrenxSUlJwZQpU/DTTz+p/sVbXHR0NHr27AkTExNVm5+fH2JjY5GWllbuffPz85GZman2IBJLXl4edu7ciYMHD0Imk8HLywtTp04tlfQAimRl2zb21hARVYVW9PgIgoCgoCBMmzYNHTt2RHx8fKlrkpOT0ahRI7U2Z2dn1Tk7O7sy771q1SosW7ZM4zETVVViYiLCwsKQnp4OAwMD9OvXD126dCl31hbA3hoioqoStccnODgYEomkwkdMTAy+/vprPHv2DIsWLdJ4DIsWLUJGRobq8eDBA42/BlFFBEHAuXPnsHnzZqSnp8PW1haTJk1C165dK0x6KoMztoiI1Ina4zNv3jwEBQVVeE3jxo1x7NgxREdHQyqVqp3r2LEjxo4di61bt8LFxQUpKSlq55XHLi4u5d5fKpWWui9RbcnNzcXevXsRGxsLAGjevDn8/f1hamqqkfuXXMuHiEjfiZr4ODo6wtHR8V+vW7duHT7++GPV8aNHj+Dn54cdO3agS5cuAAAfHx8sXrwYhYWFMDY2BgAcPnwYXl5e5Q5zEYnpwYMH2LVrFzIyMmBoaIj+/fujU6dOZfbylFyFubKCg58/j4iItHAdHwCIj49Ho0aN1NbxycjIgJeXF/r374+FCxfi+vXrmDRpEtauXVulWV1cx4dqmiAIOHv2LI4dOwa5XA47OzuMGjUK9evXL/c5XGuHiKhilf3+1ori5sqwsbHB77//jhkzZqBDhw6oV68ePvroI05lpzrlyZMnOHjwIO7duwcAsLVtiZ07h8LTU1phTw57boiINEMrEx9PT0+U1VH18ssv49SpUyJERPTvTp06hWPHjgEADA0NMXDgQLz7bntER0sgk5U9hFV8iIs9PURE1ac16/gQaSu5XI5PPvlElfQAwMSJE9GhQwcEB0sqXIeneHEyERFVHxMfohqUkpKCFStWoLCwUNU2b948uLm5AVD08pw9q/gZEQE0bw54ez+ffh4crNiLKy2NU9KJiDRBK4ubaxKLm0lToqKicPLkSdWxh4cHgoKCyp21pdx+AlAvYmZhMxHRv9O74maiukImk6ktvwAAgYGBaNmyZbnPCQlRJD1mZoCHh/rQFwubiYg0hz0+JbDHh6pDuaN6cfPnz4eFhQUARc/OwoXAs2eKc5aWwOrVit9fZJ0eIiJSqOz3NxOfEpj40Is6fPgwzhYbi2rcuDHGjRundo1y2Ko4DmEREVUfh7qIaklRURFWrlyp1jZ69Gh4e3uXujY4uHSPD4ewiIhqDxMfompITEzExo0b1doWLFgAMzOzMq/nbupEROLidHaiF3Tw4EG1pMfLywtLliwplfRwh3QiorqDiQ9RFRUWFmLZsmX4888/VW1jxozB66+/rjounuxwEUIiorqDQ11EVZCQkIDQ0FC1toULF8LU1FStrXiyw+noRER1B3t8iCopIiJCLelp1aoVlixZAlNT01LDWcHBUG1FUXx1ZiIiEhd7fIj+RUFBAVatWqXWdv78OLRr11h1XLyHR1nAzESHiKjuYeJDVIG4uDj85z//UWs7cmQRTp82wb17wIIFgEQCjBypOMfhLCKiuo2JD1E5wsPDce3aNdVx27ZtMWzYMLRrB8hkwNOnQGys4lxUFBchJCLSBkx8iErIz89HSIkpWEFBQWjYsCEiIp738gQEALt2KX5nTw8RkXZg4kNUzN27d7Ft2za1tg8++ADGxsYAFDU8xXt5YmJqO0IiIqoOJj5E//Prr7/i1q1bquOOHTti8ODBatcEBz/v8WEvDxGR9mHiQ3ovNzcXq5VbpP/P5MmT0aBBAwDPFyFUTk3nbC0iIu3FxIf0WmxsLLZv367WtnjxYhgZPf+rUXKqOhERaS8mPqS3tm3bhrt376qOfXx80L9//1LXceVlIiLdwcSH9E5OTg4+++wztbYpU6bA1dW1zOs5vEVEpDuY+JBeuXnzJnbu3KnW9uGHH8LQ0FCkiIiIqDZxry6qs0ruf1XZ6xcvLv08QRCwZcsWtaTn5MlXEBm5hEkPEZEeYeKjx6qaWNS24kXFVbl+3Tr152VlZWH58uW4f/++6lpv72nIze3Duh0iIj3DxEePVTWxqG3FdzivyvWzZgHe3ootJbZsuYYvvvhCdY1EYoTff/8QZmbO3DGdiEgPSQRBEMQOoi7JzMyEjY0NMjIyYG1tLXY4Nark+jS6pFs3Aa1abYSb2yNVm6+vL4KDeyI6WpEgcW8tIiLdUdnvb/b46DF/f2htr0dFw3SZmZnw81uulvQ0bz4dwcE94etbtV4kIiLSLZzVRVqpvEUFL1++jIhi2ZCZmRnmz5+PHj0MEB2taGNPDxGR/mLiQ1qp5KKCgiDg+++/x+PHj1XX9OvXD926dSvzeiIi0k+s8SlBn2p8dEVGRga+/PJLtbZ3330X9vb24gRERES1jjU+VKdpair9+fPn1ZKe9HQbREZ+xKSHiIjKxKEuEkV1N/4UBAHr1q1Denq6qq1Bg4GIjOzM4SwiIioXe3yoUjS92GFV1+gp7unTp1i+fLla0vPee+9h8uTOWjtLjYiIagdrfEpgjU/ZunVDnVj/5ty5c4iMjFQdOzg4YMaMGZBIJOIFRUREomOND2nUv/XQ1PT2F3K5HJ9//rla0jNkyBDMnDmTSQ8REVUae3xKYI/Pi6nJHqF//vkH3377rVrbnDlz+PkQEZFKZb+/WdxMGlFT6+ScPn0aR48eVR27uLjg7bffZi8PERG9ECY+VG2a2vOr+H0EQY4LFz6FkVGB6vzw4cPRpk0bDURMRET6ikNdJXCoq+o0NcylvE+/fqno3v17tXNz586FlZVVNSMlIiJdxaEuqjWaGuYKDgZ27jyOpk1PqNosLNwxb95EDm0REZFGMPGhavP3r/7aOTKZDFeurETTps87IAMCAtCqVatqRkdERPQcEx8SXXJyMjZs2KDWNn/+fFhYWIgUERER6SomPlTrihcxm5sfwZkzZ1TnGjdujHHjxokYHRER6TImPlSjSs74iogAxo4FcnOLcPnySrVrR48eDW9vb5EiJSIifcDEh2pU8c1IAUXSY2OTiPnzN6pdt2DBApiZmYkQIRER6RNuWUFqqrv1RMnnF9/qIiQE6NHjEKZMeZ70eHl5YcmSJUx6iIioVnAdnxL0fR2f6q7JU97zCwsL8cknn6hdO2bMGLz00kvVjJiIiIiblOqsmt4M9N82I/23GIo/X3ndzz8nlEp6Fi5cyKSHiIhqHXt8SqjrPT41uRmopmPo1g1wcPgNHTteUrW1bNkSgYGBtRAlERHpE67crKNqajNQTcdQUFAAP79Vam3jxo1D48aNazg6IiKi8jHx0TKaWCW5psXFxeE///mPWltwcDCkUqlIERERESkw8aEqKz5FvWQStnv3bvz111+q47Zt22LYsGG1HCEREVHZWNysBWq6oLmqyiqAzs/Px7Jly9SSnqCgICY9RERUp7C4uYS6WNxcFwqaK3L37l1s27ZNre2DDz6AsbGxSBEREZG+YXGzDqkLBc3l+fXXX3Hr1i3VcceOHTF48GARIyIiIiofEx8toImC5pJ7ZlVXbm4uVq9erdY2efJkNGjQoPo3JyIiqiFMfPRERQXJVRUbG4vt27ertS1evBhGRvzPiYiI6jZ+U+kJTQ2X/fzzz7hz547quGvXrvDz86tmdERERLWDiY+eqO5wWU5ODj777DO1tilTpsDV1bWakREREdUeJj70r27evImdO3eqtX344YcwNDQUKSIiIqIXw8SHKrR161bEx8erjnv06IFXX31VvICIiIiqgYkPlSkrKwtffPGFWtu0adPg7OwsUkRERETVx8SHSrl27RrCw8NVx0ZGRggODubQFhERaT0mPqQiCAI2bdqExMREVVvv3r3Rq1cvEaMiIiLSHK3aq2v//v3o0qULzMzMYGdnh+HDh6udT0hIwODBg2Fubg4nJye8//77KCoqEifYSqjKHlw1vV/Xs2fPsHz5crWkZ/r06Ux6iIhIp2hN4rNr1y6MGzcOEydOxNWrV3HmzBmMGTNGdV4mk2Hw4MEoKCjA2bNnsXXrVmzZsgUfffSRiFFXrPiigpq8tqpJ0uXLl7FmzRrVsZmZGf7v//4Pjo6OlbsBERGRltCKTUqLiorg6emJZcuWYfLkyWVec/DgQQwZMgSPHj1SFeCuX78eCxcuxOPHj2FiYlKp16rNTUqrso3E4sXAunXArFnAypUVX6vc1NTLC7C3L//+giBg/fr1SE1NVbX17dsX3bt3f4F3Q0REJJ7Kfn9rRY/PpUuXkJiYCAMDA7Rr1w7169fHwIEDcf36ddU10dHRaN26tdqsIz8/P2RmZuLGjRvl3js/Px+ZmZlqj9ri76/Ybb0yCwtGRQFZWYqf/yY4WLGTu0RSfi9RRkYGli9frpb0zJw5k0kPERHpNK1IfP7++28AwNKlS/Hhhx9i3759sLOzQ+/evfH06VMAQHJycqmp1srj5OTkcu+9atUq2NjYqB7u7u419C6qR5nMVGbLCWVC9emnZT/nwoUL+PLLL1XH1tbW+Oijj+Dg4KDZoImIiOoYUROf4OBgSCSSCh8xMTGQy+UAFBthBgQEoEOHDggNDYVEIim1onBVLVq0CBkZGarHgwcPNPHWNK4qvUPlPUcQBKxbtw779+9XXTNgwADMmTMHEolEwxETERHVPaJOZ583bx6CgoIqvKZx48ZISkoCALRo0ULVLpVK0bhxYyQkJAAAXFxc8Oeff6o9NyUlRXWuPFKpFFKp9EXC1yppaWlYt26dWtusWbNgZ2cnUkRERES1T9TEx9HRsVIzhzp06ACpVIrY2Fj06NEDAFBYWIj4+Hg0bNgQAODj44OVK1ciNTUVTk5OAIDDhw/D2tpaLWHSR+fOnUNkZKTq2MHBATNmzGAvDxER6R2tWMDQ2toa06ZNw5IlS+Du7o6GDRuqdgofNWoUAKB///5o0aIFxo0bh9WrVyM5ORkffvghZsyYofU9OlWZ/VWcXC7H2rVrkZWVpWobMmQIOnToUANREhER1X1akfgAwGeffQYjIyOMGzcOubm56NKlC44dO6YaqjE0NMS+ffvwzjvvwMfHBxYWFpgwYQKWL18ucuTVV3wNn8omPk+ePME333yj1jZ79mzY2NjUQIRERETaQSvW8alNtbmOT2VVtcfn9OnTOHr0qOrYxcUFb7/9Noe2iIhIZ1X2+1trenz0mb9/5RIeuVyO1atXIz8/X9U2bNgwtG3btuaCIyIi0iJasY6PLtPUHlypqalYsWKFWtIzd+5cJj1ERETFsMdHZC9Sv1PSiRMncPz4cdWxu7s7Jk6cyKEtIiKiEpj4iCw4+Hn9TlXJZDJ88sknqgUeASAgIACtWrXSYIRERES6g4mPyCpbv1NScnIyNmzYoNY2f/58WFhYaCgyIiIi3cPERwsdOXIEZ86cUR03atQI48ePFzEiIiIi7cDER4sUFRVh5cqVam2vvfYamjdvLlJERERE2oWJj5ZITEzExo0b1doWLFgAMzMzkSIiIiLSPpzOXkuqM2390KFDaklPs2bNsGTJEiY9REREVcQen1ryItPWCwsL8cknn6i1vfHGG2jWrFkNREhERKT7mPjUkqpOW3/w4AE2b96s1rZw4UKYmprWQHRERET6gYlPLanKtPV9+/bh4sWLquOWLVsiMDCwhiIjIiLSH0x86pCCggKsWrVKre3NN99EkyZNRIqIiIhItzDxqSPi4+OxdetWtbbg4GBIpVKRIiIiItI9THzqgD179uDq1auq4zZt2mD48OHiBURERKSjmPiIKD8/HyEhIWptEyZMgKenpzgBERER6TgmPiK5d+8e/vvf/6q1LVq0CCYmJiJFREREpPuY+Ihg586duHnzpuq4Q4cOGDJkiIgRERER6QcmPrUoLy8Pn376qVrbpEmT4O7uLlJERERE+oWJTy25c+cOfv75Z7W2Dz74AMbGxiJFREREpH+Y+NSS4klP165d4efnJ2I0RERE+omJTy3p1asXzp07h/Hjx8PV1VXscIiIiPSSRBAEQewg6pLMzEzY2NggIyMD1tbWYodDRERElVDZ72+DWoyJiIiISFRMfIiIiEhvMPEhIiIivcHEh4iIiPQGEx8iIiLSG0x8iIiISG8w8SEiIiK9wcSHiIiI9AYTHyIiItIbTHyIiIhIbzDxISIiIr3BxIeIiIj0BhMfIiIi0htMfIiIiEhvGIkdQF0jCAIAxfb2REREpB2U39vK7/HyMPEp4dmzZwAAd3d3kSMhIiKiqnr27BlsbGzKPS8R/i010jNyuRyPHj2ClZUVJBKJ2OHUqMzMTLi7u+PBgwewtrYWOxwqhp9N3cTPpW7i51J31eZnIwgCnj17BldXVxgYlF/Jwx6fEgwMDNCgQQOxw6hV1tbW/J9FHcXPpm7i51I38XOpu2rrs6mop0eJxc1ERESkN5j4EBERkd5g4qPHpFIplixZAqlUKnYoVAI/m7qJn0vdxM+l7qqLnw2Lm4mIiEhvsMeHiIiI9AYTHyIiItIbTHyIiIhIbzDxISIiIr3BxEeP7d+/H126dIGZmRns7OwwfPhwtfMJCQkYPHgwzM3N4eTkhPfffx9FRUXiBKtn8vPz0bZtW0gkEly5ckXt3F9//YVXXnkFpqamcHd3x+rVq8UJUo/Ex8dj8uTJaNSoEczMzNCkSRMsWbIEBQUFatfxsxHHt99+C09PT5iamqJLly74888/xQ5Jr6xatQqdOnWClZUVnJycMHz4cMTGxqpdk5eXhxkzZsDBwQGWlpYICAhASkqKKPEy8dFTu3btwrhx4zBx4kRcvXoVZ86cwZgxY1TnZTIZBg8ejIKCApw9exZbt27Fli1b8NFHH4kYtf5YsGABXF1dS7VnZmaif//+aNiwIS5evIjPPvsMS5cuxQ8//CBClPojJiYGcrkcGzZswI0bN7B27VqsX78eH3zwgeoafjbi2LFjB+bOnYslS5bg0qVLaNOmDfz8/JCamip2aHrjxIkTmDFjBs6dO4fDhw+jsLAQ/fv3R3Z2tuqaOXPm4LfffsPOnTtx4sQJPHr0CCNHjhQnYIH0TmFhoeDm5iZs3Lix3GsOHDggGBgYCMnJyaq277//XrC2thby8/NrI0y9deDAAcHb21u4ceOGAEC4fPmy6tx3330n2NnZqX0GCxcuFLy8vESIVL+tXr1aaNSokeqYn404OnfuLMyYMUN1LJPJBFdXV2HVqlUiRqXfUlNTBQDCiRMnBEEQhPT0dMHY2FjYuXOn6ppbt24JAITo6Ohaj489Pnro0qVLSExMhIGBAdq1a4f69etj4MCBuH79uuqa6OhotG7dGs7Ozqo2Pz8/ZGZm4saNG2KErRdSUlIwZcoU/PTTTzA3Ny91Pjo6Gj179oSJiYmqzc/PD7GxsUhLS6vNUPVeRkYG7O3tVcf8bGpfQUEBLl68iL59+6raDAwM0LdvX0RHR4sYmX7LyMgAANXfj4sXL6KwsFDtc/L29oaHh4conxMTHz30999/AwCWLl2KDz/8EPv27YOdnR169+6Np0+fAgCSk5PVkh4AquPk5OTaDVhPCIKAoKAgTJs2DR07dizzGn4udcPdu3fx9ddfY+rUqao2fja1759//oFMJivzz51/5uKQy+WYPXs2unfvjlatWgFQ/PdvYmICW1tbtWvF+pyY+OiQ4OBgSCSSCh/KWgUAWLx4MQICAtChQweEhoZCIpFg586dIr8L3VPZz+Xrr7/Gs2fPsGjRIrFD1huV/WyKS0xMxIABAzBq1ChMmTJFpMiJ6qYZM2bg+vXr2L59u9ihlMtI7ABIc+bNm4egoKAKr2ncuDGSkpIAAC1atFC1S6VSNG7cGAkJCQAAFxeXUjMjlBX4Li4uGoxa91X2czl27Biio6NL7WnTsWNHjB07Flu3boWLi0upmRD8XF5cZT8bpUePHsHX1xfdunUrVbTMz6b21atXD4aGhmX+ufPPvPbNnDkT+/btw8mTJ9GgQQNVu4uLCwoKCpCenq7W6yPa51TrVUUkuoyMDEEqlaoVNxcUFAhOTk7Chg0bBEF4XtyckpKiumbDhg2CtbW1kJeXV+sx64P79+8L165dUz0iIyMFAEJYWJjw4MEDQRCeF9AWFBSonrdo0SIW0NaChw8fCi+99JLw+uuvC0VFRaXO87MRR+fOnYWZM2eqjmUymeDm5sbi5lokl8uFGTNmCK6ursLt27dLnVcWN4eFhanaYmJiRCtuZuKjp9577z3Bzc1NiIyMFGJiYoTJkycLTk5OwtOnTwVBEISioiKhVatWQv/+/YUrV64Ihw4dEhwdHYVFixaJHLn+iIuLKzWrKz09XXB2dhbGjRsnXL9+Xdi+fbtgbm6uSlipZjx8+FBo2rSp8OqrrwoPHz4UkpKSVA8lfjbi2L59uyCVSoUtW7YIN2/eFN5++23B1tZWbUYq1ax33nlHsLGxEY4fP672dyMnJ0d1zbRp0wQPDw/h2LFjwoULFwQfHx/Bx8dHlHiZ+OipgoICYd68eYKTk5NgZWUl9O3bV7h+/braNfHx8cLAgQMFMzMzoV69esK8efOEwsJCkSLWP2UlPoIgCFevXhV69OghSKVSwc3NTQgJCREnQD0SGhoqACjzURw/G3F8/fXXgoeHh2BiYiJ07txZOHfunNgh6ZXy/m6EhoaqrsnNzRWmT58u2NnZCebm5sKIESPU/uFQmyT/C5qIiIhI53FWFxEREekNJj5ERESkN5j4EBERkd5g4kNERER6g4kPERER6Q0mPkRERKQ3mPgQERGR3mDiQ0RUQ44fPw6JRIL09HSxQyGi/2HiQ0Raa+nSpWjbtq3YYRCRFmHiQ0Q6r7CwUOwQiKiOYOJDRKKRy+VYtWoVGjVqBDMzM7Rp0wZhYWEAng8THT16FB07doS5uTm6deuG2NhYAMCWLVuwbNkyXL16FRKJBBKJBFu2bAEASCQSfP/99/D394eFhQVWrlxZYRzK14qMjES7du1gZmaGPn36IDU1FQcPHkTz5s1hbW2NMWPGICcnR/W8/Px8zJo1C05OTjA1NUWPHj1w/vz5mvnDIiLNEGWHMCIiQRA+/vhjwdvbWzh06JBw7949ITQ0VJBKpcLx48eFqKgoAYDQpUsX4fjx48KNGzeEV155RejWrZsgCIKQk5MjzJs3T2jZsmWp3aABCE5OTsLmzZuFe/fuCffv368wDuVrde3aVTh9+rRw6dIloWnTpkKvXr2E/v37C5cuXRJOnjwpODg4qG08OmvWLMHV1VU4cOCAcOPGDWHChAmCnZ2d8OTJE7X7pqWl1cwfIBFVGRMfIhJFXl6eYG5uLpw9e1atffLkycIbb7yhShqOHDmiOrd//34BgJCbmysIgiAsWbJEaNOmTal7AxBmz55d6VjKeq1Vq1YJAIR79+6p2qZOnSr4+fkJgiAIWVlZgrGxsbBt2zbV+YKCAsHV1VVYvXq12n2Z+BDVHUZi9TQRkX67e/cucnJy0K9fP7X2goICtGvXTnX88ssvq36vX78+ACA1NRUeHh4V3r9jx45Vjqn4azk7O8Pc3ByNGzdWa/vzzz8BAPfu3UNhYSG6d++uOm9sbIzOnTvj1q1bVX5tIqodTHyISBRZWVkAgP3798PNzU3tnFQqxb179wAokgkliUQCQFEb9G8sLCyqHFPJ1yp+rGyrzGsTUd3F4mYiEkWLFi0glUqRkJCApk2bqj3c3d0rdQ8TExPIZLIajrRsTZo0gYmJCc6cOaNqKywsxPnz59GiRQtRYiKif8ceHyIShZWVFebPn485c+ZALpejR48eyMjIwJkzZ2BtbY2GDRv+6z08PT0RFxeHK1euoEGDBrCysoJUKq2F6BU9Su+88w7ef/992Nvbw8PDA6tXr0ZOTg4mT55cKzEQUdUx8SEi0axYsQKOjo5YtWoV/v77b9ja2qJ9+/b44IMPKjWkFBAQgPDwcPj6+iI9PR2hoaEICgqq+cD/JyQkBHK5HOPGjcOzZ8/QsWNHREZGws7OrtZiIKKqkQiCIIgdBBEREVFtYI0PERER6Q0mPkSk86ZNmwZLS8syH9OmTRM7PCKqRRzqIiKdl5qaiszMzDLPWVtbw8nJqZYjIiKxMPEhIiIivcGhLiIiItIbTHyIiIhIbzDxISIiIr3BxIeIiIj0BhMfIiIi0htMfIiIiEhvMPEhIiIivcHEh4iIiPTG/wPG2TcaySCdxgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13/13 [==============================] - 0s 4ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzcUlEQVR4nO3deXwTZf4H8E9aaGmBBkpvaGkpZ6UtCKgVLCBIwXog+FsQV24UBF1g5XJFhfVHEXdX1FXwBwq6isuq4CoIyIKASEWuyqGwUgtFaTmEptKWFpr5/VEzJulMMkkmmUnzeb9e7NpkMnlm8sw833lOgyAIAoiIiIgCWJDWCSAiIiLSGgMiIiIiCngMiIiIiCjgMSAiIiKigMeAiIiIiAIeAyIiIiIKeAyIiIiIKOAxICIiIqKAx4CIiIiIAh4DIiLyG88++ywMBoOibQ0GA5599lmvpqdfv37o16+fbvdHRMoxICIil61evRoGg0H816hRI7Ru3Rpjx47FTz/9pHXydCc5OdnmfMXExOC2227D+vXrVdl/ZWUlnn32WezYsUOV/REFIgZEROS2hQsX4h//+AeWL1+OIUOG4J133kHfvn1x9epVr3zfU089haqqKq/s29u6deuGf/zjH/jHP/6BJ554AmfPnsWwYcOwfPlyj/ddWVmJBQsWMCAi8kAjrRNARP5ryJAh6NmzJwBg4sSJiIqKwvPPP4+PP/4Yv/vd71T/vkaNGqFRI/+8bbVu3Rq///3vxb9Hjx6N9u3b48UXX8TkyZM1TBkRAawhIiIV3XbbbQCAwsJCm9ePHz+O+++/H5GRkWjSpAl69uyJjz/+2Gaba9euYcGCBejQoQOaNGmCVq1aoU+fPti6dau4jVQfourqasyYMQPR0dFo3rw57rnnHvz444/10jZ27FgkJyfXe11qn6tWrcLtt9+OmJgYhIaGIi0tDcuWLXPpXDgTFxeHLl26oKioyOF258+fx4QJExAbG4smTZogMzMTb731lvj+qVOnEB0dDQBYsGCB2Czn7f5TRA2Nfz5qEZEunTp1CgDQsmVL8bVjx46hd+/eaN26NebOnYumTZviX//6F4YOHYoPP/wQ9913H4C6wCQvLw8TJ07ETTfdhPLycuzfvx8HDx7EHXfcIfudEydOxDvvvINRo0bh1ltvxfbt25Gbm+vRcSxbtgw33HAD7rnnHjRq1AiffPIJHn30UZjNZkydOtWjfVtcu3YNZ86cQatWrWS3qaqqQr9+/XDy5ElMmzYNKSkpeP/99zF27FiUlZXhD3/4A6Kjo7Fs2TJMmTIF9913H4YNGwYAyMjIUCWdRAFDICJy0apVqwQAwn/+8x/hwoULwpkzZ4QPPvhAiI6OFkJDQ4UzZ86I2w4YMEBIT08Xrl69Kr5mNpuFW2+9VejQoYP4WmZmppCbm+vwe5955hnB+rZVUFAgABAeffRRm+1GjRolABCeeeYZ8bUxY8YIbdu2dbpPQRCEysrKetvl5OQI7dq1s3mtb9++Qt++fR2mWRAEoW3btsKgQYOECxcuCBcuXBC++eYbYeTIkQIA4bHHHpPd39KlSwUAwjvvvCO+VlNTI2RlZQnNmjUTysvLBUEQhAsXLtQ7XiJyDZvMiMhtAwcORHR0NBITE3H//fejadOm+Pjjj9GmTRsAwKVLl7B9+3b87ne/wy+//IKLFy/i4sWL+Pnnn5GTk4Pvv/9eHJXWokULHDt2DN9//73i7//0008BAI8//rjN69OnT/fouMLCwsT/NplMuHjxIvr27YsffvgBJpPJrX1+9tlniI6ORnR0NDIzM/H+++/joYcewvPPPy/7mU8//RRxcXF44IEHxNcaN26Mxx9/HFeuXMHOnTvdSgsR1ccmMyJy26uvvoqOHTvCZDLhzTffxK5duxAaGiq+f/LkSQiCgPnz52P+/PmS+zh//jxat26NhQsX4t5770XHjh3RtWtXDB48GA899JDDpp/Tp08jKCgIqampNq936tTJo+P68ssv8cwzzyA/Px+VlZU275lMJhiNRpf3efPNN+O5556DwWBAeHg4unTpghYtWjj8zOnTp9GhQwcEBdk+u3bp0kV8n4jUwYCIiNx20003iaPMhg4dij59+mDUqFE4ceIEmjVrBrPZDAB44oknkJOTI7mP9u3bAwCys7NRWFiIf//73/jss8+wcuVKvPjii1i+fDkmTpzocVrlJnSsra21+buwsBADBgxA586d8be//Q2JiYkICQnBp59+ihdffFE8JldFRUVh4MCBbn2WiLyPARERqSI4OBh5eXno378//v73v2Pu3Llo164dgLpmHiXBQGRkJMaNG4dx48bhypUryM7OxrPPPisbELVt2xZmsxmFhYU2tUInTpyot23Lli1RVlZW73X7WpZPPvkE1dXV+Pjjj5GUlCS+/vnnnztNv9ratm2Lw4cPw2w229QSHT9+XHwfkA/2iEg59iEiItX069cPN910E5YuXYqrV68iJiYG/fr1w+uvv46SkpJ621+4cEH8759//tnmvWbNmqF9+/aorq6W/b4hQ4YAAF5++WWb15cuXVpv29TUVJhMJhw+fFh8raSkpN5s0cHBwQAAQRDE10wmE1atWiWbDm+58847UVpairVr14qvXb9+Ha+88gqaNWuGvn37AgDCw8MBQDLgIyJlWENERKqaNWsW/ud//gerV6/G5MmT8eqrr6JPnz5IT0/HpEmT0K5dO5w7dw75+fn48ccf8c033wAA0tLS0K9fP/To0QORkZHYv38/PvjgA0ybNk32u7p164YHHngAr732GkwmE2699VZs27YNJ0+erLftyJEjMWfOHNx33314/PHHUVlZiWXLlqFjx444ePCguN2gQYMQEhKCu+++G4888giuXLmCFStWICYmRjKo86aHH34Yr7/+OsaOHYsDBw4gOTkZH3zwAb788kssXboUzZs3B1DXCTwtLQ1r165Fx44dERkZia5du6Jr164+TS+RX9N6mBsR+R/LsPt9+/bVe6+2tlZITU0VUlNThevXrwuCIAiFhYXC6NGjhbi4OKFx48ZC69athbvuukv44IMPxM8999xzwk033SS0aNFCCAsLEzp37iz87//+r1BTUyNuIzVEvqqqSnj88ceFVq1aCU2bNhXuvvtu4cyZM5LD0D/77DOha9euQkhIiNCpUyfhnXfekdznxx9/LGRkZAhNmjQRkpOTheeff1548803BQBCUVGRuJ0rw+6dTSkgt79z584J48aNE6KiooSQkBAhPT1dWLVqVb3P7tmzR+jRo4cQEhLCIfhEbjAIglW9MBEREVEAYh8iIiIiCngMiIiIiCjgMSAiIiKigKdpQLRs2TJkZGQgIiICERERyMrKwqZNm8T3+/XrJ67cbPk3efJkm30UFxcjNzcX4eHhiImJwaxZs3D9+nWbbXbs2IEbb7wRoaGhaN++PVavXu2LwyMiIiI/oemw+zZt2mDx4sXo0KEDBEHAW2+9hXvvvReHDh3CDTfcAACYNGkSFi5cKH7GMt8GUDfDbG5uLuLi4rBnzx6UlJRg9OjRaNy4MRYtWgQAKCoqQm5uLiZPnox3330X27Ztw8SJExEfHy87cy4REREFFt2NMouMjMQLL7yACRMmoF+/fujWrZvkJGsAsGnTJtx11104e/YsYmNjAQDLly/HnDlzcOHCBYSEhGDOnDnYuHEjjh49Kn5u5MiRKCsrw+bNm31xSERERKRzupmYsba2Fu+//z4qKiqQlZUlvv7uu+/inXfeQVxcHO6++27Mnz9frCXKz89Henq6GAwBQE5ODqZMmYJjx46he/fuyM/Pr7dkQE5OjsurYZvNZpw9exbNmzfnNPlERER+QhAE/PLLL0hISKi3ULI1zQOiI0eOICsrC1evXkWzZs2wfv16pKWlAQBGjRqFtm3bIiEhAYcPH8acOXNw4sQJrFu3DgBQWlpqEwwBEP8uLS11uE15eTmqqqoQFhYmma7q6mqbJQN++uknMV1ERETkX86cOYM2bdrIvq95QNSpUycUFBTAZDLhgw8+wJgxY7Bz506kpaXh4YcfFrdLT09HfHw8BgwYgMLCQqSmpno1XXl5eViwYEG918+cOYOIiAivfjcRERGpo7y8HImJieJSN3I0D4hCQkLQvn17AECPHj2wb98+vPTSS3j99dfrbXvzzTcDAE6ePInU1FTExcXh66+/ttnm3LlzAIC4uDjx/y2vWW8TEREhWzsEAPPmzcPMmTPFvy0n1DIijoiIiPyHs+4uupuHyGw2y65uXVBQAACIj48HAGRlZeHIkSM4f/68uM3WrVsREREhNm9lZWVh27ZtNvvZunWrTT8lKaGhoWLwwyCIiIioYdO0hmjevHkYMmQIkpKS8Msvv2DNmjXYsWMHtmzZgsLCQqxZswZ33nknWrVqhcOHD2PGjBnIzs5GRkYGgLpVqdPS0vDQQw9hyZIlKC0txVNPPYWpU6ciNDQUADB58mT8/e9/x+zZszF+/Hhs374d//rXv7Bx40YtD52IiIh0RNOA6Pz58xg9ejRKSkpgNBqRkZGBLVu24I477sCZM2fwn//8B0uXLkVFRQUSExMxfPhwPPXUU+Lng4ODsWHDBkyZMgVZWVlo2rQpxowZYzNvUUpKCjZu3IgZM2bgpZdeQps2bbBy5UrOQUREREQi3c1DpFfl5eUwGo0wmUxsPiMiamBqa2tx7do1rZNBbmjcuDGCg4Nl31dafmveqZqIiEgrgiCgtLQUZWVlWieFPNCiRQvExcV5NE8gAyIiIgpYlmAoJiYG4eHhnHjXzwiCgMrKSnFwlWXQlTsYEBERUUCqra0Vg6FWrVppnRxyk2UKnfPnzyMmJsZh85kjuht2T0RE5AuWPkPWi4aTf7L8hp70A2NAREREAY3NZP5Pjd+QAREREREFPAZEREREBKCupuWjjz7SOhk2duzYAYPB4PWRgAyIGpASUxX2FF5EialK66QQEZGOPfvss+jWrZvWydAVjjJrINbuK8a8dUdgFoAgA5A3LB0jeiVpnSwiIiK/wBqiBqDEVCUGQwBgFoAn1x1lTRERUQNlNpuRl5eHlJQUhIWFITMzEx988AGA35qYtm3bhp49eyI8PBy33norTpw4AQBYvXo1FixYgG+++QYGgwEGgwGrV68W933x4kXcd999CA8PR4cOHfDxxx8rSpPle7ds2YLu3bsjLCwMt99+O86fP49NmzahS5cuiIiIwKhRo1BZWSl+rrq6Go8//jhiYmLQpEkT9OnTB/v27VPvZCnEgKgBKLpYIQZDFrWCgFMXK6U/QEREqvNlt4W8vDy8/fbbWL58OY4dO4YZM2bg97//PXbu3Clu86c//Ql//etfsX//fjRq1Ajjx48HAIwYMQJ//OMfccMNN6CkpAQlJSUYMWKE+LkFCxbgd7/7HQ4fPow777wTDz74IC5duqQ4bc8++yz+/ve/Y8+ePThz5gx+97vfYenSpVizZg02btyIzz77DK+88oq4/ezZs/Hhhx/irbfewsGDB9G+fXvk5OS49J1qYEDUAKRENUWQ3YjDYIMByVGcW4OIyBfW7itG78XbMWrFXvRevB1r9xV77buqq6uxaNEivPnmm8jJyUG7du0wduxY/P73v8frr78ubve///u/6Nu3L9LS0jB37lzs2bMHV69eRVhYGJo1a4ZGjRohLi4OcXFx4uSGADB27Fg88MADaN++PRYtWoQrV67g66+/Vpy+5557Dr1790b37t0xYcIE7Ny5E8uWLUP37t1x22234f7778fnn38OAKioqMCyZcvwwgsvYMiQIUhLS8OKFSsQFhaGN954Q72TpgADogYg3hiGvGHpCP51HoZggwGLhnVFvDHMySeJiMhTvu62cPLkSVRWVuKOO+5As2bNxH9vv/02CgsLxe0yMjLE/7YsaWFZ4sIR6881bdoUERERij4n9fnY2FiEh4ejXbt2Nq9Z9ldYWIhr166hd+/e4vuNGzfGTTfdhO+++07xd6qBnaobiBG9kpDdMRqnLlYiOSqcwRARkY846rbgjXvxlStXAAAbN25E69atbd4LDQ0Vg6LGjRuLr1smLjSbzU73b/05y2eVfE7q8waDweP9+QoDogYk3hjGQIiIyMcs3RasgyJvdltIS0tDaGgoiouL0bdv33rvW9cSyQkJCUFtba03kueS1NRUhISE4Msvv0Tbtm0B1C2/sW/fPkyfPt2naWFARERE5AFLt4Un1x1FrSB4vdtC8+bN8cQTT2DGjBkwm83o06cPTCYTvvzyS0RERIiBhSPJyckoKipCQUEB2rRpg+bNmyM0NNQr6XWkadOmmDJlCmbNmoXIyEgkJSVhyZIlqKysxIQJE3yaFgZEREREHvJ1t4U///nPiI6ORl5eHn744Qe0aNECN954I5588klFzVHDhw/HunXr0L9/f5SVlWHVqlUYO3asV9MsZ/HixTCbzXjooYfwyy+/oGfPntiyZQtatmzp03QYBEEQnG9G5eXlMBqNMJlMiIiI0Do5RETkoatXr6KoqAgpKSlo0qSJ1skhDzj6LZWW3xxlRkRERAGPARERERE5NXnyZJth/tb/Jk+erHXyPMY+REREROTUwoUL8cQTT0i+1xC6kjAgIiIiIqdiYmIQExOjdTK8hk1mREREFPAYEBERUUDT46zJ5Bo1fkM2mRERUUAKCQlBUFAQzp49i+joaISEhIhLXJB/EAQBNTU1uHDhAoKCghASEuL2vhgQERFRQAoKCkJKSgpKSkpw9uxZrZNDHggPD0dSUhKCgtxv+GJAREREASskJARJSUm4fv26Ltb2ItcFBwejUaNGHtfuMSAiIqKAZlmR3X5Vdgos7FRNREREAY8BEREREQU8BkREREQU8BgQERERUcBjQEREREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHA0zQgWrZsGTIyMhAREYGIiAhkZWVh06ZN4vtXr17F1KlT0apVKzRr1gzDhw/HuXPnbPZRXFyM3NxchIeHIyYmBrNmzcL169dtttmxYwduvPFGhIaGon379li9erUvDo+IiIj8hKYBUZs2bbB48WIcOHAA+/fvx+233457770Xx44dAwDMmDEDn3zyCd5//33s3LkTZ8+exbBhw8TP19bWIjc3FzU1NdizZw/eeustrF69Gk8//bS4TVFREXJzc9G/f38UFBRg+vTpmDhxIrZs2eLz4yUiIiJ9MgiCIGidCGuRkZF44YUXcP/99yM6Ohpr1qzB/fffDwA4fvw4unTpgvz8fNxyyy3YtGkT7rrrLpw9exaxsbEAgOXLl2POnDm4cOECQkJCMGfOHGzcuBFHjx4Vv2PkyJEoKyvD5s2bFaervLwcRqMRJpMJERER6h40EREReYXS8ls3fYhqa2vxz3/+ExUVFcjKysKBAwdw7do1DBw4UNymc+fOSEpKQn5+PgAgPz8f6enpYjAEADk5OSgvLxdrmfLz8232YdnGsg851dXVKC8vt/lHREREDZPmAdGRI0fQrFkzhIaGYvLkyVi/fj3S0tJQWlqKkJAQtGjRwmb72NhYlJaWAgBKS0ttgiHL+5b3HG1TXl6Oqqoq2XTl5eXBaDSK/xITEz09VCIiItIpzQOiTp06oaCgAHv37sWUKVMwZswYfPvtt1onC/PmzYPJZBL/nTlzRuskERERkZc00joBISEhaN++PQCgR48e2LdvH1566SWMGDECNTU1KCsrs6klOnfuHOLi4gAAcXFx+Prrr232ZxmFZr2N/ci0c+fOISIiAmFhYbLpCg0NRWhoqMfHR0RERPqneQ2RPbPZjOrqavTo0QONGzfGtm3bxPdOnDiB4uJiZGVlAQCysrJw5MgRnD9/Xtxm69atiIiIQFpamriN9T4s21j2QURERKRpDdG8efMwZMgQJCUl4ZdffsGaNWuwY8cObNmyBUajERMmTMDMmTMRGRmJiIgIPPbYY8jKysItt9wCABg0aBDS0tLw0EMPYcmSJSgtLcVTTz2FqVOnirU7kydPxt///nfMnj0b48ePx/bt2/Gvf/0LGzdu1PLQiYiISEc0DYjOnz+P0aNHo6SkBEajERkZGdiyZQvuuOMOAMCLL76IoKAgDB8+HNXV1cjJycFrr70mfj44OBgbNmzAlClTkJWVhaZNm2LMmDFYuHChuE1KSgo2btyIGTNm4KWXXkKbNm2wcuVK5OTk+Px4iYiISJ90Nw+RXnEeIiIiIv/jd/MQEREREWmFAREREREFPAZEREREFPAYEBEpUGKqwp7Ciygxyc9uTkRE/kvziRmJ9G7tvmLMW3cEZgEIMgB5w9IxoleS1skiIiIVsYaIyIESU5UYDAGAWQCeXHeUNUVERA0MAyIiB4ouVojBkEWtIODUxUptEkRERF7BgIjIgZSopggy2L4WbDAgOSpcmwQREZFXMCAiciDeGIa8YekINtRFRcEGAxYN64p4o/zCwERE5H/YqZrIiRG9kpDdMRqnLlYiOSqcwRARUQPEgIhIgXhjGAMhIqIGjE1mREREFPAYEBEREVHAY0BEREREAY8BEREREQU8BkREREQU8BgQERERUcBjQEREREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAY8BEZHGSkxV2FN4ESWmKq2TQkQUsBppnQCiQLZ2XzHmrTsCswAEGYC8YekY0StJ62QREQUc1hARaaTEVCUGQwBgFoAn1x1lTRERkQYYEBFppOhihRgMWdQKAk5drNQmQUREAYwBEZFGUqKaIshg+1qwwYDkqHBtEkREFMAYEBFpJN4Yhrxh6Qg21EVFwQYDFg3rinhjmMYpIyIKPOxUTaShEb2SkN0xGqcuViI5KpzBEBGRRhgQEWks3hjGQIiISGNsMiMiIqKAx4CIiIiIAh4DIiIiIgp4DIiIiIgo4DEgIiIiooCnaUCUl5eHXr16oXnz5oiJicHQoUNx4sQJm2369esHg8Fg82/y5Mk22xQXFyM3Nxfh4eGIiYnBrFmzcP36dZttduzYgRtvvBGhoaFo3749Vq9e7e3DIyIiIj+haUC0c+dOTJ06FV999RW2bt2Ka9euYdCgQaioqLDZbtKkSSgpKRH/LVmyRHyvtrYWubm5qKmpwZ49e/DWW29h9erVePrpp8VtioqKkJubi/79+6OgoADTp0/HxIkTsWXLFp8dKxEREemXQRAEwflmvnHhwgXExMRg586dyM7OBlBXQ9StWzcsXbpU8jObNm3CXXfdhbNnzyI2NhYAsHz5csyZMwcXLlxASEgI5syZg40bN+Lo0aPi50aOHImysjJs3rxZUdrKy8thNBphMpkQERHh2YESERGRTygtv3XVh8hkMgEAIiMjbV5/9913ERUVha5du2LevHmorPxt8cv8/Hykp6eLwRAA5OTkoLy8HMeOHRO3GThwoM0+c3JykJ+fL5uW6upqlJeX2/wjIiKihkk3M1WbzWZMnz4dvXv3RteuXcXXR40ahbZt2yIhIQGHDx/GnDlzcOLECaxbtw4AUFpaahMMARD/Li0tdbhNeXk5qqqqEBZWf5bgvLw8LFiwQNVjJCIiIn3STUA0depUHD16FLt377Z5/eGHHxb/Oz09HfHx8RgwYAAKCwuRmprqtfTMmzcPM2fOFP8uLy9HYmKi176PiIiItKOLJrNp06Zhw4YN+Pzzz9GmTRuH2958880AgJMnTwIA4uLicO7cOZttLH/HxcU53CYiIkKydggAQkNDERERYfOPiIiIGiZNAyJBEDBt2jSsX78e27dvR0pKitPPFBQUAADi4+MBAFlZWThy5AjOnz8vbrN161ZEREQgLS1N3Gbbtm02+9m6dSuysrJUOhIiIiLyZ5oGRFOnTsU777yDNWvWoHnz5igtLUVpaSmqqqoAAIWFhfjzn/+MAwcO4NSpU/j4448xevRoZGdnIyMjAwAwaNAgpKWl4aGHHsI333yDLVu24KmnnsLUqVMRGhoKAJg8eTJ++OEHzJ49G8ePH8drr72Gf/3rX5gxY4Zmx05ERET6oemwe4PBIPn6qlWrMHbsWJw5cwa///3vcfToUVRUVCAxMRH33XcfnnrqKZsmrNOnT2PKlCnYsWMHmjZtijFjxmDx4sVo1Oi3LlI7duzAjBkz8O2336JNmzaYP38+xo4dqzitHHZPRETkf5SW37qah0jPGBARERH5H7+ch4iIiIhICwyIiIiIKOAxICIiIqKAx4CIiIiIAh4DIiIiIgp4DIiIqJ4SUxX2FF5EialK66QQEfmEbtYyIyJ9WLuvGPPWHYFZAIIMQN6wdIzolaR1soiIvIo1REQkKjFVicEQAJgF4Ml1R1lTREQNHgMiIhIVXawQgyGLWkHAqYuV2iSIiMhHGBARkSglqimC7FbUCTYYkBwVrk2CiIh8hAEREYnijWHIG5aO4F/XGQw2GLBoWFfEG8M0ThkRkXexUzUR2RjRKwnZHaNx6mIlkqPCGQwRUUBgQERE9cQbwxgIEVFAYZMZERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAY8BEQWcElMV9hRe5AruREQk4kzVFFDW7ivGvHVHYBaAIAOQNywdI3olaZ0sIiLSGGuIKGCUmKrEYAgAzALw5LqjrCkiIiIGRBQ4ii5WiMGQRa0g4NTFSm0SREREusGAiAJGSlRTBBlsXws2GJAcFa5NgoiISDcYEFHAiDeGIW9YOoINdVFRsMGARcO6clV3IiJip2oKLCN6JSG7YzROXaxEclQ4gyEiIgLAgIgCULwxjIEQERHZYJMZERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAY8BEREREQU8BkREREQU8DQNiPLy8tCrVy80b94cMTExGDp0KE6cOGGzzdWrVzF16lS0atUKzZo1w/Dhw3Hu3DmbbYqLi5Gbm4vw8HDExMRg1qxZuH79us02O3bswI033ojQ0FC0b98eq1ev9vbhERERkZ/QNCDauXMnpk6diq+++gpbt27FtWvXMGjQIFRUVIjbzJgxA5988gnef/997Ny5E2fPnsWwYcPE92tra5Gbm4uamhrs2bMHb731FlavXo2nn35a3KaoqAi5ubno378/CgoKMH36dEycOBFbtmzx6fESERGRPhkEQRC0ToTFhQsXEBMTg507dyI7OxsmkwnR0dFYs2YN7r//fgDA8ePH0aVLF+Tn5+OWW27Bpk2bcNddd+Hs2bOIjY0FACxfvhxz5szBhQsXEBISgjlz5mDjxo04evSo+F0jR45EWVkZNm/erCht5eXlMBqNMJlMiIiIUP/giYiISHVKy29d9SEymUwAgMjISADAgQMHcO3aNQwcOFDcpnPnzkhKSkJ+fj4AID8/H+np6WIwBAA5OTkoLy/HsWPHxG2s92HZxrIPIiIiCmyNtE6AhdlsxvTp09G7d2907doVAFBaWoqQkBC0aNHCZtvY2FiUlpaK21gHQ5b3Le852qa8vBxVVVUICwurl57q6mpUV1eLf5eXl3t2gERERKRbuqkhmjp1Ko4ePYp//vOfWicFQF2Hb6PRKP5LTEzUOklERETkJboIiKZNm4YNGzbg888/R5s2bcTX4+LiUFNTg7KyMpvtz507h7i4OHEb+1Fnlr+dbRMRESFZOwQA8+bNg8lkEv+dOXPGo2MkIiIi/dI0IBIEAdOmTcP69euxfft2pKSk2Lzfo0cPNG7cGNu2bRNfO3HiBIqLi5GVlQUAyMrKwpEjR3D+/Hlxm61btyIiIgJpaWniNtb7sGxj2YeU0NBQRERE2PwjIiKihknxKDNX+tAoDR4effRRrFmzBv/+97/RqVMn8XWj0SjW3EyZMgWffvopVq9ejYiICDz22GMAgD179gCoG3bfrVs3JCQkYMmSJSgtLcVDDz2EiRMnYtGiRQDqht137doVU6dOxfjx47F9+3Y8/vjj2LhxI3JychSllaPMiIiI/I/S8ltxQBQUFASDweBwG0EQYDAYUFtbqyiRcvtbtWoVxo4dC6BuYsY//vGPeO+991BdXY2cnBy89tprYnMYAJw+fRpTpkzBjh070LRpU4wZMwaLFy9Go0a/9RnfsWMHZsyYgW+//RZt2rTB/Pnzxe9QggERERGR/1E9INq5c6fiL+/bt6/ibf0FAyIiIiL/o7T8VjzsviEGOURERESAB/MQlZWV4Y033sB3330HALjhhhswfvx4GI1G1RJHRERE5AtujTLbv38/UlNT8eKLL+LSpUu4dOkS/va3vyE1NRUHDx5UO41EREREXuXWWma33XYb2rdvjxUrVogdl69fv46JEyfihx9+wK5du1RPqNbYh4iIiMj/qN6p2lpYWBgOHTqEzp0727z+7bffomfPnqisrHQ9xTrHgIiIiMj/eHVx14iICBQXF9d7/cyZM2jevLk7uyQiklViqsKewosoMVVpnRQiaqDc6lQ9YsQITJgwAX/5y19w6623AgC+/PJLzJo1Cw888ICqCSSiwLZ2XzHmrTsCswAEGYC8YekY0StJ62QRUQPjVkD0l7/8BQaDAaNHj8b169cBAI0bN8aUKVOwePFiVRNIRIGrxFQlBkMAYBaAJ9cdRXbHaMQbpdchJCJyh1sBUUhICF566SXk5eWhsLAQAJCamorw8HBVE0dEga3oYoUYDFnUCgJOXaxkQEREqnJ7HiIACA8PR3p6ulppISKykRLVFEEG2ARFwQYDkqP48EVE6nIrILp69SpeeeUVfP755zh//jzMZrPN+5yLiIjUEG8MQ96wdDy57ihqBQHBBgMWDevK2iEiUp1bAdGECRPw2Wef4f7778dNN93kdNFXIiJ3jeiVhOyO0Th1sRLJUeEMhojIK9wKiDZs2IBPP/0UvXv3Vjs9RET1xBvDGAgRkVe5NQ9R69atOd8QERERNRhuBUR//etfMWfOHJw+fVrt9BCRBjjxIREFOreazHr27ImrV6+iXbt2CA8PR+PGjW3ev3TpkiqJIyLv48SHRERuBkQPPPAAfvrpJyxatAixsbHsVE3kpzjxIRFRHbcCoj179iA/Px+ZmZlqp4eIfIgTHxIR1XGrD1Hnzp1RVcW+BkT+zjLxoTVOfEhEgcitgGjx4sX44x//iB07duDnn39GeXm5zT8ikqa3zsuWiQ+Df2325sSHRBSoDIIgCM43sxUUVBdH2fcdEgQBBoMBtbW16qROR8rLy2E0GmEymRAREaF1csgP6bnzcompihMfElGDpLT8dqsP0eeff+52wogCkd47LwfKxIclpioUXaxASlTTgDheIlLOrYCob9++irZ79NFHsXDhQkRFRbnzNUQNBjsva0/PNXREpD23+hAp9c4777BPERHYeVlrcjV0eunLRUTa82pA5Eb3JKIGiZ2XteWoho6ICHCzyYyIXMdV27VjqaGzDopYQ0dE1rxaQ0REtuKNYchKbcVgyMdYQ0dEzrCGiIgCAmvoiMgRBkREpEveGCIfKNMLEJHrvBoQ/f73v+ckhkTkMg6RJyJfc2umagAoKyvD119/jfPnz8NsNtu8N3r0aFUSpyecqZrIN0pMVei9eHu9DtC75/Zn7Q4RucyrM1V/8sknePDBB3HlyhVERETYLOFhMBgaZEBERL7BSSyJSAtujTL74x//iPHjx+PKlSsoKyvD5cuXxX+XLl1SO41EFEA4iSURacGtgOinn37C448/jvBw3qCItFBiqsKewosNcqZlDpEnIi241WSWk5OD/fv3o127dmqnh4icCIQOxxwiT0S+pjgg+vjjj8X/zs3NxaxZs/Dtt98iPT0djRs3ttn2nnvuUS+FRCSSW5Mru2N0gwsaOESeiHxJcUA0dOjQeq8tXLiw3msGgwG1tbUeJYqIpLHDMRGRdygOiOyH1hOR73FNLiIi73CrU/Xbb7+N6urqeq/X1NTg7bff9jhRRCSNHY6JiLzDrYkZg4ODUVJSgpiYGJvXf/75Z8TExDTIJjNOzEh6UmKqYodjIiIFlJbfbtUQCYJgMxmjxY8//gij0ah4P7t27cLdd9+NhIQEGAwGfPTRRzbvjx07FgaDwebf4MGDbba5dOkSHnzwQURERKBFixaYMGECrly5YrPN4cOHcdttt6FJkyZITEzEkiVLlB+sH2rIQ7KpTrwxDFmprRgMERGpxKVh9927dxcDkwEDBqBRo98+Xltbi6KionoBiyMVFRXIzMzE+PHjMWzYMMltBg8ejFWrVol/h4aG2rz/4IMPoqSkBFu3bsW1a9cwbtw4PPzww1izZg2Aushw0KBBGDhwIJYvX44jR45g/PjxaNGiBR5++GFXDt8vBMKQbCIiIrW5FBBZRpoVFBQgJycHzZo1E98LCQlBcnIyhg8frnh/Q4YMwZAhQxxuExoairi4OMn3vvvuO2zevBn79u1Dz549AQCvvPIK7rzzTvzlL39BQkIC3n33XdTU1ODNN99ESEgIbrjhBhQUFOBvf/tbgwuIAmlINhERkZpcCoieeeYZAEBycjJGjBiBJk2aeCVR1nbs2IGYmBi0bNkSt99+O5577jm0atUKAJCfn48WLVqIwRAADBw4EEFBQdi7dy/uu+8+5OfnIzs7GyEhIeI2OTk5eP7553H58mW0bNlS8nurq6ttOo6Xl5d76QjVwyHZRERE7nFrpuoxY8YAqBtVJrXafVKSOk00gwcPxrBhw5CSkoLCwkI8+eSTGDJkCPLz8xEcHIzS0tJ6HbsbNWqEyMhIlJaWAgBKS0uRkpJis01sbKz4nlxAlJeXhwULFqhyHL7CIdlEDU+JqQpFFyuQEtWUDzZEXuRWQPT9999j/Pjx2LNnj83rls7Wao0yGzlypPjf6enpyMjIQGpqKnbs2IEBAwao8h1y5s2bh5kzZ4p/l5eXIzEx0avf6SnLkOwn1x1FrSBwSDaRn2OfQCLfcSsgGjt2LBo1aoQNGzYgPj5ecsSZN7Rr1w5RUVE4efIkBgwYgLi4OJw/f95mm+vXr+PSpUtiv6O4uDicO3fOZhvL33J9k4C6vkv2Hbj9AdeAImoY2CeQyLfcCogKCgpw4MABdO7cWe30OPTjjz/i559/Rnx8PAAgKysLZWVlOHDgAHr06AEA2L59O8xmM26++WZxmz/96U+4du2auOba1q1b0alTJ9nmMn/HNaCI/B/7BBL5llvzEKWlpeHixYsef/mVK1dQUFCAgoICAEBRUREKCgpQXFyMK1euYNasWfjqq69w6tQpbNu2Dffeey/at2+PnJwcAECXLl0wePBgTJo0CV9//TW+/PJLTJs2DSNHjkRCQgIAYNSoUQgJCcGECRNw7NgxrF27Fi+99JJNc1hDx3mJiPyPpU+gNfYJJPIet2aq3r59O5566iksWrRIcrV7pTM579ixA/3796/3+pgxY7Bs2TIMHToUhw4dQllZGRISEjBo0CD8+c9/FjtFA3UTM06bNg2ffPIJgoKCMHz4cLz88ss2UwIcPnwYU6dOxb59+xAVFYXHHnsMc+bMcemY/XWmavZBIPJfa/cV1+sTyOuXyDVKy2+3AqKgoN8qlqz7D6ndqVpP/DEgKjFVoffi7fVGne2e259V7kR+gsu0EHlGafntVh+izz//3O2Eke+wDwKR/2OfQCLfcKsPUd++fREUFIQVK1Zg7ty5aN++Pfr27Yvi4mIEBwernUZyE/sgEBERKeNWQPThhx8iJycHYWFhOHTokDijs8lkwqJFi1RNILnPMi9R8K/NmpyXiIiISJpbfYi6d++OGTNmYPTo0WjevDm++eYbtGvXDocOHcKQIUPEWaIbEn/sQ2TBPghERBSovNqH6MSJE8jOzq73utFoRFlZmTu7JC9iHwQiIiLH3Goyi4uLw8mTJ+u9vnv3brRr187jRBERERH5klsB0aRJk/CHP/wBe/fuhcFgwNmzZ/Huu+/iiSeewJQpU9ROIxEREZFXudVkNnfuXJjNZgwYMACVlZXIzs5GaGgonnjiCTz22GNqp5GIiIjIq9zqVG1RU1ODkydP4sqVK0hLS7OZHbqh8edO1URERIHKq52qLUJCQpCWlubJLoiIyAtKTFUouliBlKimHFRBpIBHAREREekP1zAkcp1bnarJO9xdlZ6r2RORRYmpSgyGAMAsAE+uO8r7A5ETrCHSCXef6JR8zlHVOavV9YG/A6mFaxgSuYcBkQ7IPdFld4x2eANT8jlHAROr1fWBvwOpybKGoXVQxDUMiZxjk5kOOHqi8+RzjqrOWa2uD/wdSG1cw5DIPawh0gF3n+icfc5RwCRAYLW6DrB5g7xhRK8kZHeM1uUahmweJr1iDZEOuPtE5+xzloDJmiVgcvQe+Q5/B/KWeGMYslJb6SroWLuvGL0Xb8eoFXvRe/F2rN1XrHWSiEQeTcwYSHwxMaO7q9I7+tzafcV4ct1R1AqCGDBZ9yGSe09vGvJTpT/9DkTuKjFVoffi7fVqtHfP7d/grmnSF6XlNwMihfx5pmpHAZO7QZgvBUKnY3/4HYg8safwIkat2Fvv9fcm3YKs1FYapIgChU9mqib/EG8Mky1kHb2nB+6OwPM3ev8diDzF0W+kd+xDRLrm7gg8ItIXjn4jvWMNEekanyqJGg49j34jYg0R6RqfKokaFj2OfiMCWENEDuhlZBefKomIyNsYEJEkvY3sYqdjIiLyJjaZUT3fnLmMuR9yOQkiIgocDIjIxtp9xRj62h7YT07FkV1ERNSQMSAikWXOH6mpOjmyi4iIGjIGRCSSmvMHqMskHNlFREQNGTtVk0hqzp8gA7D+0VuRmdjSJ2nQy8g2IiIKLKwhIpHUnD95w9J9FgxxJWwiItIKa4jIhlZz/kitWTZv3RF0jmvus4CMAhNrJYkIYEBEErSY80eq/5JZAIa+ugeLhze81e1JH/Q23xYRaYdNZjpWYqrCnsKLDWb+H0fHY+m/ZE8A50Ai75CqlWReIwpcrCHSqYb25OrseCz9l6wLKAvLHEhsziA1SdVKMq8RBS7WEOlQQ3tyVXo8I3olYf2jt8K+oohzIJE3SNVKMq8RBS4GRDrk6MnVH7lyPJmJLbF4OFe3J++TGlXJvEYUuNhkpkNS8wH585Orq8fD1e3JV5jXiMiCNUQ61NCeXN05nnhjGLJSW/ntMZP/YF4jIkDjgGjXrl24++67kZCQAIPBgI8++sjmfUEQ8PTTTyM+Ph5hYWEYOHAgvv/+e5ttLl26hAcffBARERFo0aIFJkyYgCtXrthsc/jwYdx2221o0qQJEhMTsWTJEm8fmsdG9ErC7rn98d6kW7B7bn+/7lANNLzjISKihkXTgKiiogKZmZl49dVXJd9fsmQJXn75ZSxfvhx79+5F06ZNkZOTg6tXr4rbPPjggzh27Bi2bt2KDRs2YNeuXXj44YfF98vLyzFo0CC0bdsWBw4cwAsvvIBnn30W//d//+f141PC0VD0hvbk2tCOh4iI3FdiqsKGw2fxyTc/6WLQkEEQpNY29z2DwYD169dj6NChAOpqhxISEvDHP/4RTzzxBADAZDIhNjYWq1evxsiRI/Hdd98hLS0N+/btQ8+ePQEAmzdvxp133okff/wRCQkJWLZsGf70pz+htLQUISEhAIC5c+fio48+wvHjxxWnr7y8HEajESaTCREREaocs5Kh9ZxFl4iIGpq1+4ox98MjsAQgBsBrk/AqLb9124eoqKgIpaWlGDhwoPia0WjEzTffjPz8fABAfn4+WrRoIQZDADBw4EAEBQVh79694jbZ2dliMAQAOTk5OHHiBC5fviz7/dXV1SgvL7f5pyYlQ9H1vrZXQ5s4koiI3Ke0TLCUf9a1MQKAeR8e0bQ80e0os9LSUgBAbGyszeuxsbHie6WlpYiJibF5v1GjRoiMjLTZJiUlpd4+LO+1bCm9TlZeXh4WLFjg+YHIcDYpnFzAlN0xWvx805BgVNTUalJ71NAmjiQiIve5UiZIlX8AYAY0nRhVtwGR1ubNm4eZM2eKf5eXlyMxMVG1/Tsbii4XMK36sggrvyiyec/XAYmjYI3NekREgcXVMkGq/APqmqy0nF5Gt01mcXFxAIBz587ZvH7u3Dnxvbi4OJw/f97m/evXr+PSpUs220jtw/o7pISGhiIiIsLmn5qcDUWXmkU3yACs2FVULxP5eiZrTyeOZFMbEZF/cXTfdrVMsJR/BqsyzgAgb3i6pg/Vuq0hSklJQVxcHLZt24Zu3boBqKul2bt3L6ZMmQIAyMrKQllZGQ4cOIAePXoAALZv3w6z2Yybb75Z3OZPf/oTrl27hsaNGwMAtm7dik6dOsk2l/mKo0nh4o1huK97a3x48Cfxtd7to/DF9xcl9+XLNZg8mTiSTW1EtjhwgrRgne8ASP63JT86u2+7UyZYyr+Dpy9DEIAeyS01z/+aBkRXrlzByZMnxb+LiopQUFCAyMhIJCUlYfr06XjuuefQoUMHpKSkYP78+UhISBBHonXp0gWDBw/GpEmTsHz5cly7dg3Tpk3DyJEjkZCQAAAYNWoUFixYgAkTJmDOnDk4evQoXnrpJbz44otaHHI98cYwyUxQYqrC+kM/2by2WyYYAuoyqa+qGi3R/ZPrjqJWEBRPHMmmNiJbfEDwHQaev7HOd5ZKGgG2/23Jj9kdo53et90tE+KNYcjN0M9voWlAtH//fvTv31/829JnZ8yYMVi9ejVmz56NiooKPPzwwygrK0OfPn2wefNmNGnSRPzMu+++i2nTpmHAgAEICgrC8OHD8fLLL4vvG41GfPbZZ5g6dSp69OiBqKgoPP300zZzFemRVBWko/kRBAHY9d8LPruZurPkQUNbXZw3WPIEHxB8h4Hnb+zznf1ILwtLflw6MlPRfbshLIOjaUDUr18/OJoGyWAwYOHChVi4cKHsNpGRkVizZo3D78nIyMAXX3zhdjq1INfpTI4A399M5Wq35DSkNdp4gyVPNbQHBL1i4GlLboSXlFpBQJDBoPi+7WqZoDe67VQd6Ow7XQcZfqvOlONKx2YtNJQ12pTMIUUNmxoDA6QGTvjrA4KeeToIRO9czYtS+U5OsMGAG9u2dPu+7W8DaHTbqZrqV0Hu+u8FsY02yFDXTGZ9nfvDzdTfq1UtU83zyT5wqVU76G6/C3JNQ6qZtudOXrTPdwYDgF/LEuv/ts6P1vft8JAgVNTUosRU5TCv+mMtum6W7tA7byzd4Y4SU5VkgGTJvHrPcP7M+gK3F2wwYPfc/izMGrgSUxV6L95er3D15Le3vqaZf7xj7b7iBnev9DQvWuc7AJL/bb8fpUGON64TTygtv1lD5Ges22j1UtsSCJ2L7ZvJrPHJPnB4o9+Pv/e78Ad6uVcqofR+6kpelNqnfb6T+2/rfSjti+Wv/eMYEPk5rW+m/lgt6g65jojzc7vgzox4XV/kpJ6G3PzS0Gl9r1TClfup0ryo1j3alSDHX68Tdqomt1j60sz9MDA6F8t1gNUyGPK3DosNQUMZGEDas79+XR2soSQvqjkAxJVBAP56nbCGiFzmqC+NVtWi3m6281UHWKXHESg1c3rkT80vpE9S129iZLjLzUzO8qKaTVeu3gP98TphQNSAeSNIcNSXBtCmWtRXwYG3L3BXOixyXhVt+UPzC+mT3PW77tEsl5qZrO/vWamtJLdRu+nK1Xugv10nbDJroNbuK0bvxdsxasVe9F68HWv3FauyX0eTemlRLerrOYHijWHISm3llZohpcfR0OdVIWrI5K7fyhqz4mYmpfd3bzRduXoP9KemfdYQNUDerEGQeuIIMgAvj+wuuzifJzVVzj7rr6MZ7AVCh0WihsSVxVGtObp+s1JbOa2BcfX+7s2abWf3Z39r2mdA1AB5M0iQa0e+KzNBcntPLghHn7VciE1Dgv0mOHB083AlyOGEfkTacmVxVPv7nbPr11kzkzv3d280Xdnfnyf0ScH4Pini9/hj0z4DIj/hSi2Lt2sQlD5xeHJBSH123odHkN0xGrv+e8HmQryve2t8dOis14IDNfpiOQsMG3KHxUCYp4oaDmf51dXFUaXud55cv3qoIZa6P6/4oggrvyjC4uF19zZ/rL1nQOQHXK1l8UUNgtQTh/2NxJMLQuqzZgCvbDuJf+4rtrkQPzp0FusezcKZS1WAAejRtqWHR/cbNap8lQaGDbHDor9VmVNgU5JfXV0cVe5+5+71q4caYrlzYL3IuB4CN1cxINI5d2tZnBWucu3fataAZHeMdvuCSIlqil+X1bFhHQxZ1AoCNh4uxcrdP6ha8KpV5etKYOgPQY5S/lhlTg2fo74/SvKrVEEvx1sBgNY1xI7OgeXelpXaSvPAzVUMiHTOk1oWucJVrv1b7RqQ3XP7u31BxBvDMOm2FPzfF0U2r1vSbH1KggAxGLL+fk8LXrWqfL35pKTn5ih/rDKnhs3RvW9CnxTJ/Hrw9GW0bPrbNWZfQ2PN8Ov/CELdNT57SCcUXawAIL0chie0fHiynAOpKVis721aB26uYkCkc2oXpo7av71RA+LJBTGuTwpW7i6qd+yzB3fCks0nxCBrQp/keoGTGgWvWufeW1Xcem+O8scqc2q4nN373thdVO9hy2AApq05VO+BcUSvJJRVXcPiTcch/Hr9TezTDuP6JAOoWxz18I9leH7Tca9dn1o/DFnu7au+LMLKXUUwQ3pYvz/VejMg0jm1C1Nn7d/eqAFRu618RK8k3NMtwWZ1ZqnAyVnBK3dDsX5drXOv9pOSPzRH6aGvA5GFs3ufWQAezk7BG1+cQq0gIOjXmh7B6n3LNQYAz/8aDFnee2N3Ecb1SRbz94Mrv3Lp+nQlwNHLw1C8MQxP3pmGcb1TcODUZdX7cPoaAyI/oGZhKtc3x0JPNSCA/LHbB1mufr/cDUXq9d1z+6ty7tV8UvKX5ii9VJlr/TRN2nPW9yfYYMC43ikY1zsFpy5W4uKVq3jsvQKbbSzXmADB4fXn6vXpSoCjx4ch+5G/equtVooBkZ9QqzD9y5YT9YIhS4AUBPi0BkRpIaXk2Ef0SkLnuObYd+oyeiW3RGai/FOK3A2lc1xz2b5QclPja8WfmqO0rjLXy9M0acv+wc2+v4/9XEAlpiqH15ij91y5Pl0NcPT2MKQ0/f7wUMKAyE+5k7m+OXMZHx78qd7r4rVlqPeWS1wp+NQupFzZn9wNZd+py7q60TjC5ihl9Pg0Tdqxf3ADIPsQ5+wacza5otLr09UAR28PQ0rS7y8PJQyI/JC7mevrU5ccvu+rwsJZIaU02LOerVquxqeiprbefo78ZKq3r2CDASkyN5TwEH0u+aeX5ig909vTdENlf816c7keT9k/uLk7fYmz608q+NpTeLHecbka4OjtYchZ+v3poYQBkZ/xJHPdlBzpdP++KCwcFVJK26Lth8/aNwPWCgKGvrqn3uiQElMVnt90vN7+Zg/uhMqaWsn0VtaY3TtQH9C6OUrv9PY07a8cBSn2D2j3dW+N9Yd+Eq/NuUM645G+qYq+R481CY6uMWfXn+V9R8flToCjp4chZ+n3p4cSBkR+xpPMlZnYEsNvbC3ZbGbhi8JCrpAKDwlS3BYtN3zWmtToELmRJj9XVOP5zfUDJS0LT39oc9c7vT1N+yNnawraX7PW9xcBQN6m44ABeCTbcVDkTzUJFkquUSXH5U6A487DkLfuKY7S708PJQyI/Iynmeuvv+uG0Vltsf/UZfRMbonjpb/4vLCQK6QqamoVBXtyQY3lvEiNJLHsR+r8BRmAFbuK6gVWnnQy95SnT8rWzYlSzYaBRElho2ZB0ZACWWeFudJlLJ7fdBz3ZCY4PB/+VJMAOF/c1ELpcalR2+tKTZ7atW9y6fenhxIGRH5GjcyVmfjbKKzMxJaaVL1KFVLORnUAdRf8pYqaes1kwQYD1j2ahcoaM8JDgnDfa3sk9yN1/sb3ScYKu4kdAeCVUd2Rm5Fg85ovCjtPn5Stb3wWeml+0IqjwkbNgkKPTT6Aa/nWeltnhbnSZSzMApwGNv5Uk6BkcVMLXx2XqzV5vqx901MTnyMMiPyQ2plLq34oUp0bHQV79v2GLEGRZTtLkFdiqsKEPil449fJGu33I9XZ8Q2JiR1vtJtgzFeFnSdPyvY3Pgu1boANqfYDULeg0LrQsaTB/vdxJd/abztncGenk67aX7ODbojFpqOlNvtVEgD4oiZBrfyrZHFTd0acucudmjxf1r75y32DAZGfaqidaeWCPal+Q0EG4JWR3dEjuaVs0PRwdt1Ea1JDaq1fc3bD8rSwc+WG4MkTpaMmDE9vgHIL+PrDjU6OmgWFs325Wktz4PRlCIKAnsmRipr55H4fpflWKo8v2XwCc4Z0xpJNJ2SvDalr9vVdheKyFa4EAK487LlayKr5QKNkcVNXRqR5yp2aPF/Vvum11lQKAyKdUnMYq17JHZNUsCd1wZsFoLT8qs3+7IOmN744hXG9U5ymxdkNy5OC01lVtv058OSJ0tGNWs018MwCMPfDIzBY9dvy1Y3O2bUgt5q51LZqFhRy0zkkR4W7XEsz98MjYpOwAcDcOzsjvbVRNviZM6SzGIAAvwU+S0dmKs63cnk8o3ULp7O121+zj2Sn4p7MBLcCACUPe64WsmrX3lmuUWeLm7p6XO5SsnySFv149FBr6goGRDrkaBir3iNspVy9ockV9M9t/A6LPv0OecPSkRgZ7tHTvqMblrsFZ4mpyqZws74hOJpiwN0nSvsbn3Va1V4DTwBs1nJSu8bMneYfR6uZS+UxRwWFqzU6ctM5AFA0T1aJqQr7T13C3HVHbPrHCQDyPq3btwHAo/1SsWxnoc3+rIMhi7r1uAyK862jPO5OYe6tAMDVQrbEVIUNh8+q3mSkdHFTX1AS8GjRj0frpjpXMSDSGWfDWPUeYTtjaQqQCxLkjkmuoLf+/LpHs7xWLezuE9abu+uPXqsVBBw4ddnpTd3dAsX6xhceEoTKGrMqa+A56zyrRo2Zo22cNf84W81cLo9JFRSuBuxyTZUZbVrIFgpDX9sjrpRu/dDjiADg1R2F9V63BIDWH7f0g1Oab7WqRXCVK4Ws1AADCzXuDfHG3xY31brDsJKAx9ddLfypozzAgEh3lAxj1XOE7Yijm5OSY7Jc8BsPl+C5jd/V+3xljdnmhh4EYEKfZNXSn90xGktHZiLo14JGSa3BG7uL6r0eBAAOpgYAHDfzKOGNG9/EPilY+UXdk3AQfq0hsno/yABFNWbOAkG5bZw1/zi7dqTymHUtkGW9Oneq+Z3d+KWCSevaNUdzgykRbDBg9uBOWLK5fl8fV2oG/GE0kNJCVm6AgWV7NYM9R9ebL2ft1lvfUn8Jsi0YEOmMkidxPUfYchzdnADlxxRvDENuRjwWffqd5A0xK7VVXTX27lNYufsH/N8XRVi5u8ina6VZyBXQE7NT0KNtS8mb+uGfyvDgyq901Txqf+wP92mHcX2Sseu/F+qadyw1MgLwccFZpLcxyt7AlTzdy23jrPlHyWrm1nlM7jd1p5rf2Y3fPlBXY+5zy7FavmtEryTc0026344rBaXeClV7SgtZuetvfm4X3JkRbxOAe6t/picdirXojOyNc+EPQbYFAyKdkbrYh3ZPwEeHzvpFhC3H0dO7q8ek5Ia4cvcPqnXkc7djoNwkkJZRb/bHMHtwJ8mOsVo2j0od+xu7izCuTzKyO0bbVBEJ+HVWYsjfwCXPCWxrluRqAOybf4IMwHirGkD7c2r4tQ1JgG0ec9Zsq6QGQqrgULruldQ8WfaCACwcegNahIXgu5Lyes1k1vNuWX+XN/vt6GlQh5JCVu53tA6GvBl0eNKhWIvOyN48F3oPsi0YEOmQ1MX+RE4nv4iw5cgFBy/bDZtXytENUe2OfO7uz1ngZn8MvuqA6ErhduD0Zdk0CRBkl02Ru4Fbzol1MCIA2PXfC4rWdrLuyLpiVxFWfFGEN6xqAB2tZg4A/7vx23pzTtkfV1Zqq3qB1+whnZwWos7Oq3WhoOShx3I+7spMQER443rD2C3zbnmbXodNOytknV1/3g46HF07zvbv687I/jYazFsYEOmU/cXuLxG2HLmb012ZCc4/7GCfrjwZutvM6Mn+nD3J2h+DtzsgujP8256zvjEWcjfw7I7RMBh+60MjwPW1nVZ+USTbKV/q2rEfyi7F+rhG9EpCWeU1LP41CHl+03G0CGss27G7rPIant983Ol5tQRN2R2j6w1ll3rosWx/T2aC28PY3WG99IsvC0q1a6I8fXByNz1Krh1HfN0Z2d9Gg3kLAyLyGV+1JavdkU/Jk6bSmgFfptueK0+Blm3tA4ggA2T7xtiTu4F7uraTqzdvuWOxT6v9b/r85uP1gq6XHugm+d2LN9Xf1v68OgtG7Y9Xq5oZm6kLrAJXC28VlN46XncfnNxNj9Jrx1mafdkZ2d9Gg3kLA6IApkW/AF/VdKkdfMntT+2buDeDRlcCCbk+X9P6t6/rOySR3sM/lTmc0di61sGTm6+rN29H/dfkmm3lzhWE+rVi9sPdLdva1zS4OneOFk0Y9aYukBmhpXZBqXT0oZr3K0dBhyfnXy6/vTyyu0s14r56gLScV2czkgcCBkQNnNxNpCEuw2BP7eDLfn/eKrS8FTS6EkjIjdh6eftJ/P3zkzaBnyW9WamtZJt1pCYbdXeggKtPz3LHYsn3UoWU3LnqkVy/Y7dU4Wc/BYGrtVpaNWHIFeaWkXHeKiidHa+3ao/kgg5Pzr+jvOMqbz9ASq1dl9GmhZh39xRebDDlgRIMiBowR50/6y3DsO6IOCJHi46TehvFooS/tbu7EkjYb2vNUeAndQOXym8fHTorOUpKKVeenu2PJQh1Ux9IrXEn9xm5eX0+/uYnvPf1mXqfn9innc2+Xa3V0qoJQ+57PfmtPPne5Khwr9eWSeVZT86/r5u73CW3dt3uuf1tZtEHgFE3JeKxAR10dwxqC9I6Ac48++yzMBgMNv86d+4svn/16lVMnToVrVq1QrNmzTB8+HCcO3fOZh/FxcXIzc1FeHg4YmJiMGvWLFy/ft3Xh+JTcjcRS+BhX5D/2hpQb1tfWLuvGL0Xb8eoFXvRe/F2rN1X7JPv9ZTlpmlNrUKrxFSFPYUXVf8NRvRKwu65/fHepFuwe25/h0GvZduncrvUe896Ekln5ALHyhozslJbedS3S+nnrY/7y3m348k705x+ztG5ijeGITkqHP+UCIYMAMbZTQhqKSSDDXUZxlkh6er2apH73szElh79Vvbs87ej43X04OEtnp5/V64zrcid14OnbWfRB4A1X5/BrXn+c292l1/UEN1www34z3/+I/7dqNFvyZ4xYwY2btyI999/H0ajEdOmTcOwYcPw5ZdfAgBqa2uRm5uLuLg47NmzByUlJRg9ejQaN26MRYsW+fxYfMXRTUTNZRg85c/DPb31JOjtzrSuVMPHGx1PhKmEXjpsKj1u+9pKuc/sP3VJsqP2AzcnSvZ7cbVPiFYT2nn7e+Xyt9z3apV/PD0Pvuov6S6582oWBMmyQQAw78Mjqtyb9doi4BcBUaNGjRAXF1fvdZPJhDfeeANr1qzB7bffDgBYtWoVunTpgq+++gq33HILPvvsM3z77bf4z3/+g9jYWHTr1g1//vOfMWfOHDz77LMICQnx9eH4hNwEeD9XVCM5KrxePwjrGiLAdwWWvzU72VO78HAWIKp5I1G6L08DP39pQgBcC0YNBoPk671To8R9WYb6GwAsHl63L1eOW+1C1ZXf3Bu/j7P8LfW9WuYfvQc1npA7rz2TIyUHCgB1/cg8vTfrdV4rwE8Cou+//x4JCQlo0qQJsrKykJeXh6SkJBw4cADXrl3DwIEDxW07d+6MpKQk5Ofn45ZbbkF+fj7S09MRGxsrbpOTk4MpU6bg2LFj6N69uxaH5HX2md2SwaetOSRmQut5UHb990K9CwPwfqc6vdQeeMKdm6ZcweQoQLRu1/f0RuLqTcnTwM8fpu93tbayR9uW9QoOgwG4sW1LlJiq6k0+OVfi6dqXT8ruTiipJlcegDypXSNl5M7r3CGdxVnnrdnPKu8qvbcI6D4guvnmm7F69Wp06tQJJSUlWLBgAW677TYcPXoUpaWlCAkJQYsWLWw+Exsbi9LSUgBAaWmpTTBked/ynpzq6mpUV1eLf5eXl6t0RL5jyewHTl3G4/88VC8T7p7bX1zQ0v7C2PXfC+i9eLvXo3h/qj1Qi6NgRC5ADA8JUu1G4u5NSUng56hw1fvTtqu1lfHGMCwenl7vt4w3huGTb36q94QtADhw6jLuyvTOlA2OyP3mZVXXxBmwvZkGV6dckDs3Ur+DXptf/IXUdflI31TAACz+9Lf5tQwA8oane3SO9d4ioPuAaMiQIeJ/Z2Rk4Oabb0bbtm3xr3/9C2Fh3juBeXl5WLBggdf27yvxxjBENnNtIjypm+e8dUcQHhKMnsmRDjOuOzcnf3v683T1amdNBlIBYkVNrWo3Em/dlPRcFa6EO7WVcnlXrjnN8rIn15g75H7zxZuOi3MNeetp3dGUC0EAJth1QHclYNdDrVdD9Uh2Ku7JTMDB05chCBCnDVDaaiD1G+i9RUD3AZG9Fi1aoGPHjjh58iTuuOMO1NTUoKyszKaW6Ny5c2Kfo7i4OHz99dc2+7CMQpPql2Qxb948zJw5U/y7vLwciYmJKh6J76gxkZ1ZAB57r8BhQedJgaj32gMLpcfoTpOYZTupQrbEVKXajcQbNyW9V4Ur4W5tpVTeddScBrh/jblLrk+ht5/WHU25sPFwKVbu/gH/90URVuwuwtwhnfFIdqrigF3rWq9AUDeowvUaTUc1fHpuEdD9sHt7V65cQWFhIeLj49GjRw80btwY27ZtE98/ceIEiouLkZWVBQDIysrCkSNHcP78eXGbrVu3IiIiAmlpabLfExoaioiICJt//srVIaRSw8kt5IbkOxrm31AoPUZH0wgoHapvP6RcyW+odKi+N4Z0e3NotLemIJCi1nBpS3Oa5bcOMgCLh6XXe1KW4uq1o+T8SP3mc4Z09tq0ERZy+eLMpSqs3P2D+J4gAHmfHsfrOwsVXyOOar0a8n1IC67c351tq+cpCXRfQ/TEE0/g7rvvRtu2bXH27Fk888wzCA4OxgMPPACj0YgJEyZg5syZiIyMREREBB577DFkZWXhlltuAQAMGjQIaWlpeOihh7BkyRKUlpbiqaeewtSpUxEaGqrx0fmOJxPZ2ZN6WtN727AalC4G6U6TmJJz5Og39GYnaSXND96qCteiGU6t2kpH59ida0yK3Eg2Z+kJDwlCRU2t15drkMsXkJn2Y/Gm47inW4Kia0SrWi+taNkM6OmyP/bb6rVFQPcB0Y8//ogHHngAP//8M6Kjo9GnTx989dVXiI6uW0/pxRdfRFBQEIYPH47q6mrk5OTgtddeEz8fHByMDRs2YMqUKcjKykLTpk0xZswYLFy4UKtD0owrmdBy8zx4+jKmrTnkdEi+3tuG1aDkGN1tElNK6jf0ZidppQGJWlXh1jd9AJLH1TmuOSpqanXfP8RZAebqNSa1fyUj2azFG8PqjVa0Xq5B7fMply96tG0puXCsAGDV7lN4MreL02tEat+zB3fC85uP6/4+5Gpwo3X/PGcziVsfiz+XBQZBkFq+j+yVl5fDaDTCZDL5dfOZO9buK653Q5PrQ6RkO3/m7BhLTFXi6DyLYIMBu+f291rhvafwIkat2Fvv9fcm3SKOInSHO8dSYqpyu3O8/U1/Qp8UrPiiqN52loJUz/1DXC3A3Ll2PvnmJzz2XkG91//+gPwiolrkT8v32ueL13cVIu9TiaHdBuDLubcrTo/9vq3PpSUfje8jv0yLr7maN7T6zexJ5VEAkscil5+1quVSWn7rvoaItKe0RsPfRou5w9kxatFp0FtPZO40g7pbFS5Vy/XG7iLJCeK8MSpK7QkvXa2xc+facTaSzZIW6+NSs2nblXMmObQ7OxWnL1Zgjd3yJ2ZB2eR/1t9vHfhbzuWqL4uwYlcRVnxRhDd2F+kieHYnb+ilO4J9HgVgE6hZH4tUfta6lksJBkSkiNKCTq9tw2pydozeCAydze/jjSDMl1XfcqOuHs5OwRtfnBKHaJvtPqfH6QLcLcBcvXacjWSTOq7sjtGq/KZqnbPHBnTAP/edUZQe62tAySSlK78oqrc+o9ajHt3JG3pqgrLOo3sKLzo8FuttlQSCepgqgQEROaWHjOpv1AwMlRQ+3gjCfFnbJXfTH9e7blV6S0fg+17bo6gfg1LemC7AVwWYZSSb1MSQcse1e25/j39TNc+Z0jxmfw1ILUZt/f16qVWx507e0OtQdVeOxdnvoZfaIwZE5JBeMqo/UiOQdKXw8UbtnK+aQZ3d9C3/L7WNJ0uaeKPg9GUBJvf7ODouT39Ttc+Zs/RIXQP2rKd4cGVGbF9zN2/osTuCK8firFO2XuYwY0BEsvSUUf2NWoGkHp50fdUMKjUsvMRUZfPdrvRjUJJmpU+5rga3vizApH4fZ8flyW/qjRowR+mRugbsBRsMOPxjGR5c+ZV4zVnPiK2XWhXA/bzh6+4ISvK80mNxFDw5a3rzJQZEJEsPhbE1bzfdqbV/NQNJPfUfcEStcxdvrD8s3D6YdKUfg5Lvc/aU625w640CzJXV6r1RS2X5/jmDO2PJZu/NX2RN6hqwFmwwYPaQTuLs1IDtjNiVNWbZAFsreu9r6UqeV3oscsGTnu5xDIjIhvUNV08Z1dtNd2ruX81AUq/9B5R0cLUvvJ39bdmvK8HkkZ9M9V5zNY86esrVUy2pNyffdOf75wzpjIzW3pm/yFq8MUx2Cob5uV1wZ0a87DVXWWNG8aUKNvu7wJt5Xip40tM9jgERiaRuuHrIqN4ulNTev9qBpN76D1jnE8sIb/sOrmWV18QJ8izNF+sP/ST7t6WQciWYLDFV4flN9eexmT24k1uBp9RnvF1LqrTGx34SRrMAzF3neBJGwPWaCLn0SF0jSzad8NlcOOP7pNiMGgPqrqk7M+IRbwzD+fKr9UbcBRsMCA8J0k1A62vu1tpq0TKgl3scAyICIB8U7J7bH7vn9tc0o3r7AlV7/9544tFLFbt9PpFqxRBXUf/1b7MAfHjwJ/F9qb8thZSnI1cAIKNNC9cPTIY3a0ldqfE5cPqy5HxMB09fFhff9GZ6tG4+t4yok7qmLOm2D4YWDeuKippaXTX7+4onNd5atQzo4R7HgIgAOL7hWS8y6i5P+ph4+wL1xv718sSjNiUdXB3195BjndfUGLmiFm/2xXGl5kJuQQG11hlwlh49NJ9LXVP26Qbq8t+6R7MQE9EEB05flqw50lsfPDV5WuOtpyYsX2NARAC0fRJ2Fix5+wL11v718MSjNql8YkDdhIBmQbqDqxLWeU2NkSuesM+P3ghuXa1x6ZkcWX8SRgA9kls6Tb8a6dFLIWl/TclN6LnxSAlWflEkNutazl1DLtwtv/ulihqXa8V8kef9AQMiAqC8cHH1ZuvsaUVp1a63L1B/vgH4cuJMuXxif+5ahDW22WZo9wSxz5C9IAPq5TVPR664S252Z7XPr6sPIJYmo3kfHoEZdau65w1Pr5ced5tKlKTHnXPt7bwpueK9AVixq8hm0dsgA/DKyO7okdxSMh2O+k75w6S09v36XKkVk8szDfGBzhku7qpQoCzu6mhxTiU3W/sbiKOFR5OjwnWxaKE/02riTCWLuNpv882Zyxj66h6bG3UQgBVjeiAspJHbhY6a0yXY50fr2i+1z687C7o6Ou+eLgKq9oKcvsqb9uke3ydZckSa3GLHcun0l0lpneVbR3lLLwvHehsXdyW3yD0VKGmXdnXtJG901PSXJzqlHB2PlkPClTw92m+TmdiyXsfYod0TMOntA24XOt6eLkGAdxaTBdyrcXF03j29ntRckNOXeVNqss43dhcpqn2TS2fnuOZ+MzpNLt++MrI7WjULdZi3tO4srzcMiEgRZxeOu2snqdlvyV+e6JRydjyuDlHXQ6BoPxu19dpkrhY6vpguwZ59nvf0nKrZLNE0JBgGg21Ha1evJ+v0eHJ+fV3Q2p9Hpf2d5NK579RlvwkU5Jo75ZoHlXy2IXc6d4QBESni7MJxZ+0kNTtq6mkCPTUoOR6lNzO9BYqWwsvTWaaVBOmuBCz2+TEIv9YQWW1jOb/eOqeeNk/ZB0OedCD2JKiR69tz8cpVn8wWrbT2Te4a6pXc0m8CBU/uo3rpLK8XDIhIEWcXjrtrJ6nVKbahVf0qOR4lNzMlgZVWtUeePp06+ry7AYt9ftz13wv1zi8ArwTfajVPAXV9s9Y9moXMxPqj0JTy5Pexz5uWmqvH3ivwWVCutFlX6hrKTGzpV4GC3H1UzfXIAgEDIlLM0YXj6VOKKyM/pDS0ql+lx+PsZuYssNKy9kiqRmZCn2S3P69WwGKdH6XOrzcWo1S7ecoMoLLG7FZaLDytPbCcu4OnL2PamkP1ZjNXs/bWk6Be7hryRqDgzYcP+/uoq+uRAXV5yfrvQMOAiFzi6KlLzRuIqwV1Q6v6deV4HP0mjgIrPTQzWvLMqt2nsHL3D/i/L4qwcneR2zU63ghY7M+vN4JvtZun1HoY8PSajjeGoWXTinqzbKtZe6tGUC93DanZx0uNdLqy1Isr17bemtW1EqR1AqhhiTeGiUNb9xReRImpyulnSkxVNtvKXczO9jWiVxJ2z+2P9ybdgnWPZiExMlzR9ytJkxasj2f33P5u3aAsgVWwoW7VMevAylEh7Gsrd//g8u9tYclz9s231tSsLXR0Tt3lSZqVpsfdPG1/fl3lzd/D3XuFr6mRzrX7itF78XaMWrEXvRdvx9p9xbLbunJt+8s59AXWEJHqXHnakNo2MTLc7afleGOY7Orr3ki/t6nxhCr3lC/X8TU8xLfPSf6wlpy1ElMVEiPDse7RLFTWmFVpTlGrecqTOcSccbe5x5u/h7/0HfQ0na7W+Hi6JqAez6EvMCBqAPQypNqSFqUXrty26x7NcrsJwNNmID00I3mDVGBlX1ABdcd732t7fBoE+tNaclKBhdRkf+5Qo3lKri+ep3na04DK02OTu8f5S99BT9PpatDiShDqadr0VP54ik1mfs6ValRfcKWqVm7byhqz200SnjYDeaMZSWlThdR23m66G9ErCesezYJ1i4avq8y90QRl2a8aCxNbeNK0oPR3VDvNgOd5Wq0mFVeOzfp8ObrHeSvvqM3TdLrT7Ki0yd2TtOmt/PEUa4j8mB5rM1x52nC0bVZqK7eeKL05lNsZqSclpU/WUtsB8EnTXUVNrVc7vSrhD0N/3W1a0LoJ1pu1E5b31awdsD5fgO26XFL3OFfzjlY1Gp7kcXebHZU2ubu7Tp3eyh9PMSDyY3ps+3V1dJSjbd3pP+NpfwV3Py+3bImSG4bUjWXeh0cAq0LMmzcbtZodPC1o1BzR4w3uzASth0LD02tCLn8c/rEMD678StVAT2pOJSXButK8Y78I6twhnfFI31SP0uwK+3QquWYs22R3jMbuuf299tDg6vWnx/LHUwyI/Jhe289dedrwRs2Ap/t054lTqtB76YFuim4YcvPI2JcE3rrZqNHpVetaEG9zdyZobxUargafatdOzB7SCc9vOq56oCd1vuy5e4+zv04FAHmbjgMG4JFs3wVFFjbBmeHX4MwuHXq+rvRa/niCAZEf8/ZoGk/T5kqtjCtpti8MpAoHT2sbXPm8XKEHQdlabZKjvQCbGiK5z6rFkwJTD7Ug3uTJTNDuFBrOgh13C0lPrgn7/CGX5w+cuozIZsoCNanjdLaeXJABbt/j5IKt5zcdxz2ZCarkVXfnCRIEIO/T44AAscZK79eVnssfdzEg8nP+0PdCTfaFwX3dW2P9oZ80fYJytLiikhuG3I0FgE9vNpYC09KhVWntQ0OsOrfmyUzQrhYazoIdXxaS9oW7fUBln+cNAB7/5yG3p9sY0StJPF/zPjwC+7MbBGD9o7e6vRxJSlRTm/5IFmYBquRVVwJVh8FZtwQAwIbDZ3V/XTW08ocBUQOg974XapEqDD48+JP4vlZPUI4KPaU3DLntfH2zcaf2oSFWnVvz9PiU5gElwY6vgk9n+cA+z1sWwvVkug3Ltvazl5uF35onPVmbLd4YhrlDOtc1k1lRI6+6Ot3IpYoayf2YAaz6sggrvyiSDJisZ5n3ZsdwJbXwFp7W8OsJAyLyG0r6F8gVDiWmKhw4fRmCIKBncqTqF6J9oQfAppZFyfdJbefLYNfd2oeGWHVuTY3jU/I7Kgl2fBF8Ks0H1nn+54pqTFtzyGHanR3nxsMlyM2IF8/Vk7ldMK5PsqoPBI/0TQUMEPs/Wf+WnhTUSgNV+07d9rezIAOwYldRvdeB39Lq6cSzznizFl7PfaIABkRkR8/Ru7P+BYB04bB2XzHmfnhEvMkYACwerv6FaLmR6/2il+OoX8hdmY7zgnXhGB4ShIqaWpSYqnSXh4Df8njTkGBU1NRK5nX768AXTQNKgh1fBJ+u1EJZN7N6Mt0GADy38Tss+vQ7m+vFWSDpzv3qkexU3JOZYPNbenrNKvntpDp1W6YWEn7dfnyfZKz4oqje/ufndsGdGfEAgN6Lt3utydSbtfB67xMFMCAiK3ovyKUKg6HdE/DRobOyhYPlIrS+9wqoG9burX4Xer7oHRUgcgXV4/88hIqa607zQrzR82VTvM1+jhugfjod9W/xdh8uJcGOt4MzpYW7dT7a9d8LNiPwDA46P9sfpzWp60Uuz8pNdaEkQLL+LdW4Zp39diWmKsk+QQKAV0d1R2TTUPH8vrG7qN65v/PXmjOlCxe7+2CrtBb+4OnLaNnUtf37Q19DBkQNlKsXhN4LcgupwuCJnE6yhYPcBW6GOh0p7en5olfaL8S+Q6uz/hCWfAZA13lIarQYYJtOQNtjUBrseDM4c1a42+ejOUM64/lNx20eOgwCxPMpxXKcGw+X4LmN39m8Z329yOVZqfvV3HVHAKEuyHAlGFfrmpX77aSCcItggwE3tm1p8z2Ozr2SYNWTB1sltfAGAzBtzSHZ8+zPy6wwIGpALBnxyE8msY1c6QWh54Lcnn1h4KhwOPKTSfL1IMArF6K7F70vOkkq7RfSNLSRov4g9jfeCX1SdJ2HHD39WtIpQND8GPQwSEKucJfKR9bzEVkoeeCIN4YhNyMeiz79TvJ6cZRnpX5L68omVwJZNQtq+99OLgi3fIerNYBKaqI8Ceid1cIH/ToxqeVw7PfvKBjzh76GDIh0yJ3CUe4pROkFoefo3d1gocRUheftRpRY5A1P98qF6M5F74umSlcC3h5tW7rcH8Is1FX123cU1WLGa7n9NQ0Jln36tU6nL64DPffVs5AKzCSnIJDoIKz0nDm6Xhw1DympyVAayCq5ZtVugrL0CXKnBtBRwHTg9GWPA3pHtfAXr1zFY+8VSO4fcF67qvdh+gyIdMadwtHRUwig7ILQa/TuSbAgdzN6dVR35GYkqJzS37hy0fuqqdKVgFdJXpArGB/OTsEbX5zSzYzXUiNmLE+7Fvbp9PZ1oPe+eo7I5aPZgzthyeYTbp0zuevFUZ61z6P2NRfW23qSBkD9JijrPkFSlARfUgGTZfCIPXcCerlaeEed55U+dOmhBlQOAyIdcbdwdNYRTukFobfo3dNgQe5mdGNb9+cyUcrRRW99w/NVU6WrAa+zvCB3bsf1TsG43im6mPFaan8fHTqLdY9mobLGjPCQIFTWmOul05vXgb/01ZMjl49G9ErCPd0S3D5nUteLszxr/zvt+u8F1adG8EYTlCcTc8qRGjwCeDaztxRnx6PXVgalGBDpiLuFo6PqY3cWN9XLjdnTYEHpzciXzRf1OqQO7uyzm4irBb2jvODs3LpzHtUODuX2V1ljRlZqK4ef9dZ1oEVfPbXzt1w+sq5FcGWmc3e+y8L6d/JGIKvG76XmxJyupBMAXh7ZHXdlqlsbbjmeA6cuA4a6JnZAv60MrmBApCPu9uORyoizB3dCRpsWuqjpcZca/Zqc3Yx82XwhdcNbsvkE5gzpjCWb3GtucJWaBb3aBZDa/dj02C/O12nyJH+7MzuxN64nV/Ks2oGsWr+XknR5Enw1DQmW7MfVI7mlVx745KbX0Fsrg6sMgiBIxJVkr7y8HEajESaTCREREarvXxwh9qOpXlu8KzcwuYzoD504pazdVyxZPe8OqenorSc5A+puIrvn9vfoHMmd6z2FFzFqxd5627836RYkR4X77U1ETWr+3t7Ynxp8lSZP8re7fRkdfR/vQY65+3tJDaixXg9R7nf0ZLCKN+6b3qS0/A6oGqJXX30VL7zwAkpLS5GZmYlXXnkFN910k9bJkpzXI6O167U7vnxq8xW1njikzkFiZLjqzReOzrWzTqJ6vZn4ktpPmK7uzxeFtq+eot2tcVCzL6Pl+/Q+Yacjvvq93GlykhpQE2QA1j2ahZiIJrKzWnvye/jTFC2uCtI6Ab6ydu1azJw5E8888wwOHjyIzMxM5OTk4Pz585qmS7IZZdMJ1S48uZtbianK4337SrwxDFmprdw+H3LnwDIM25rS6nBLPwnr8+jsXFtueMEGg/hd3mwek0qjP/D093Z3f2v3FaP34u0YtWIvei/ejrX7ilX5fk/S5AlLAG5NSf52VOC5833hIUEBfw9SakSvJOye2x/vTboFu+f2d2v+OLMAVNaYZX/Hg6cve/R7uJuv/EHABER/+9vfMGnSJIwbNw5paWlYvnw5wsPD8eabb2qaLndvPnrZvz9w1LnWnQBFruBUcq5dveG5y5eFe0PQEB4c7LkbgLtb4Ml9X0VNbcDfg1zhSvDl6LeSe88syE8+qjR9vnyw86WAaDKrqanBgQMHMG/ePPG1oKAgDBw4EPn5+ZKfqa6uRnV1tfh3eXm5V9Lm7U6WeuxY6muOzkFWaiuXm1TkmhOUnmtvN4/5+9BuLTTUZgB3mns8GS0k9X2uLPxKrnH2W0m91zM50uuDVfxVQAREFy9eRG1tLWJjY21ej42NxfHjMjMZ5+VhwYIFXk+bt4cqNoShkJ5SMkRc6flwVHBmpbbSxbluqIW7NzXkBwd3AnBPCjz77+M9yLsc/VZy76nxezTEfo8BMcrs7NmzaN26Nfbs2YOsrCzx9dmzZ2Pnzp3Yu7f+yB+pGqLExESvjjLzZrTt7f37AzXOgZIRFlqfa38cBaIHehyR1pBofV2QrUD6PTjKzEpUVBSCg4Nx7tw5m9fPnTuHuLg4yc+EhoYiNDTUF8kD4P1ouyFG865S4xwoedrV+lzzidw9DbUZQC+0vi7IFn+P+gIiIAoJCUGPHj2wbds2DB06FABgNpuxbds2TJs2TdvEkd/xh4LTH9KoRywkiAJXQAREADBz5kyMGTMGPXv2xE033YSlS5eioqIC48aN0zpp5If8oeD0hzQSEelFwAREI0aMwIULF/D000+jtLQU3bp1w+bNm+t1tCYiIqLAExCdqtXg7aU7iIiISH1Ky++AmZiRiIiISA4DIiIiIgp4DIiIiIgo4DEgIiIiooDHgIiIiIgCHgMiIiIiCngMiIiIiCjgMSAiIiKigMeAiIiIiAJewCzd4SnLhN7l5eUap4SIiIiUspTbzhbmYECk0C+//AIASExM1DglRERE5KpffvkFRqNR9n2uZaaQ2WzG2bNn0bx5cxgMBq2T43Pl5eVITEzEmTNnuJabB3gePcdzqA6eR3XwPKrDm+dREAT88ssvSEhIQFCQfE8h1hApFBQUhDZt2midDM1FRETwolcBz6PneA7VwfOoDp5HdXjrPDqqGbJgp2oiIiIKeAyIiIiIKOAxICJFQkND8cwzzyA0NFTrpPg1nkfP8Ryqg+dRHTyP6tDDeWSnaiIiIgp4rCEiIiKigMeAiIiIiAIeAyIiIiIKeAyIiIiIKOAxICLRrl27cPfddyMhIQEGgwEfffSRzfuCIODpp59GfHw8wsLCMHDgQHz//ffaJFbHnJ3HsWPHwmAw2PwbPHiwNonVsby8PPTq1QvNmzdHTEwMhg4dihMnTthsc/XqVUydOhWtWrVCs2bNMHz4cJw7d06jFOuTkvPYr1+/enly8uTJGqVYn5YtW4aMjAxx4sCsrCxs2rRJfJ950Tln51DrfMiAiEQVFRXIzMzEq6++Kvn+kiVL8PLLL2P58uXYu3cvmjZtipycHFy9etXHKdU3Z+cRAAYPHoySkhLx33vvvefDFPqHnTt3YurUqfjqq6+wdetWXLt2DYMGDUJFRYW4zYwZM/DJJ5/g/fffx86dO3H27FkMGzZMw1Trj5LzCACTJk2yyZNLlizRKMX61KZNGyxevBgHDhzA/v37cfvtt+Pee+/FsWPHADAvKuHsHAIa50OBSAIAYf369eLfZrNZiIuLE1544QXxtbKyMiE0NFR47733NEihf7A/j4IgCGPGjBHuvfdeTdLjz86fPy8AEHbu3CkIQl3+a9y4sfD++++L23z33XcCACE/P1+rZOqe/XkUBEHo27ev8Ic//EG7RPmpli1bCitXrmRe9IDlHAqC9vmQNUSkSFFREUpLSzFw4EDxNaPRiJtvvhn5+fkapsw/7dixAzExMejUqROmTJmCn3/+Wesk6Z7JZAIAREZGAgAOHDiAa9eu2eTJzp07IykpiXnSAfvzaPHuu+8iKioKXbt2xbx581BZWalF8vxCbW0t/vnPf6KiogJZWVnMi26wP4cWWuZDLu5KipSWlgIAYmNjbV6PjY0V3yNlBg8ejGHDhiElJQWFhYV48sknMWTIEOTn5yM4OFjr5OmS2WzG9OnT0bt3b3Tt2hVAXZ4MCQlBixYtbLZlnpQndR4BYNSoUWjbti0SEhJw+PBhzJkzBydOnMC6des0TK3+HDlyBFlZWbh69SqaNWuG9evXIy0tDQUFBcyLCsmdQ0D7fMiAiMjHRo4cKf53eno6MjIykJqaih07dmDAgAEapky/pk6diqNHj2L37t1aJ8WvyZ3Hhx9+WPzv9PR0xMfHY8CAASgsLERqaqqvk6lbnTp1QkFBAUwmEz744AOMGTMGO3fu1DpZfkXuHKalpWmeD9lkRorExcUBQL1RE+fOnRPfI/e0a9cOUVFROHnypNZJ0aVp06Zhw4YN+Pzzz9GmTRvx9bi4ONTU1KCsrMxme+ZJaXLnUcrNN98MAMyTdkJCQtC+fXv06NEDeXl5yMzMxEsvvcS86AK5cyjF1/mQAREpkpKSgri4OGzbtk18rby8HHv37rVp/yXX/fjjj/j5558RHx+vdVJ0RRAETJs2DevXr8f27duRkpJi836PHj3QuHFjmzx54sQJFBcXM09acXYepRQUFAAA86QTZrMZ1dXVzIsesJxDKb7Oh2wyI9GVK1dsIvGioiIUFBQgMjISSUlJmD59Op577jl06NABKSkpmD9/PhISEjB06FDtEq1Djs5jZGQkFixYgOHDhyMuLg6FhYWYPXs22rdvj5ycHA1TrT9Tp07FmjVr8O9//xvNmzcX+2IYjUaEhYXBaDRiwoQJmDlzJiIjIxEREYHHHnsMWVlZuOWWWzROvX44O4+FhYVYs2YN7rzzTrRq1QqHDx/GjBkzkJ2djYyMDI1Trx/z5s3DkCFDkJSUhF9++QVr1qzBjh07sGXLFuZFhRydQ13kQ83Gt5HufP755wKAev/GjBkjCELd0Pv58+cLsbGxQmhoqDBgwADhxIkT2iZahxydx8rKSmHQoEFCdHS00LhxY6Ft27bCpEmThNLSUq2TrTtS5xCAsGrVKnGbqqoq4dFHHxVatmwphIeHC/fdd59QUlKiXaJ1yNl5LC4uFrKzs4XIyEghNDRUaN++vTBr1izBZDJpm3CdGT9+vNC2bVshJCREiI6OFgYMGCB89tln4vvMi845Ood6yIcGQRAE34ReRERERPrEPkREREQU8BgQERERUcBjQEREREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBGR36upqdE6CfXoMU1EJI8BERHpTr9+/TBt2jRMmzYNRqMRUVFRmD9/PiwrDSUnJ+PPf/4zRo8ejYiICDz88MMAgN27d+O2225DWFgYEhMT8fjjj6OiokLc72uvvYYOHTqgSZMmiI2Nxf333y++98EHHyA9PR1hYWFo1aoVBg4cKH62X79+mD59uk0ahw4dirFjx4p/u5smItIHBkREpEtvvfUWGjVqhK+//hovvfQS/va3v2HlypXi+3/5y1+QmZmJQ4cOYf78+SgsLMTgwYMxfPhwHD58GGvXrsXu3bsxbdo0AMD+/fvx+OOPY+HChThx4gQ2b96M7OxsAEBJSQkeeOABjB8/Ht999x127NiBYcOGwdWlHl1NExHpBxd3JSLd6devH86fP49jx47BYDAAAObOnYuPP/4Y3377LZKTk9G9e3esX79e/MzEiRMRHByM119/XXxt9+7d6Nu3LyoqKvDpp59i3Lhx+PHHH9G8eXOb7zt48CB69OiBU6dOoW3btpLp6datG5YuXSq+NnToULRo0QKrV68GALfS1KRJE4/OExGphzVERKRLt9xyixgMAUBWVha+//571NbWAgB69uxps/0333yD1atXo1mzZuK/nJwcmM1mFBUV4Y477kDbtm3Rrl07PPTQQ3j33XdRWVkJAMjMzMSAAQOQnp6O//mf/8GKFStw+fJll9PsapqISD8YEBGRX2ratKnN31euXMEjjzyCgoIC8d8333yD77//HqmpqWjevDkOHjyI9957D/Hx8Xj66aeRmZmJsrIyBAcHY+vWrdi0aRPS0tLwyiuvoFOnTmLQEhQUVK/57Nq1ax6niYj0gwEREenS3r17bf7+6quv0KFDBwQHB0tuf+ONN+Lbb79F+/bt6/0LCQkBADRq1AgDBw7EkiVLcPjwYZw6dQrbt28HABgMBvTu3RsLFizAoUOHEBISIjZ/RUdHo6SkRPyu2tpaHD161OkxKEkTEekDAyIi0qXi4mLMnDkTJ06cwHvvvYdXXnkFf/jDH2S3nzNnDvbs2YNp06ahoKAA33//Pf7973+LHZg3bNiAl19+GQUFBTh9+jTefvttmM1mdOrUCXv37sWiRYuwf/9+FBcXY926dbhw4QK6dOkCALj99tuxceNGbNy4EcePH8eUKVNQVlbm9BicpYmI9KOR1gkgIpIyevRoVFVV4aabbkJwcDD+8Ic/iEPZpWRkZGDnzp3405/+hNtuuw2CICA1NRUjRowAALRo0QLr1q3Ds88+i6tXr6JDhw547733cMMNN+C7777Drl27sHTpUpSXl6Nt27b461//iiFDhgAAxo8fj2+++QajR49Go0aNMGPGDPTv39/pMThLExHpB0eZEZHuSI3qIiLyJjaZERERUcBjQEREREQBj01mREREFPBYQ0REREQBjwERERERBTwGRERERBTwGBARERFRwGNARERERAGPAREREREFPAZEREREFPAYEBEREVHAY0BEREREAe//AZgQYx7jt1AvAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgtklEQVR4nO3deXgUVdo28LsTSEgCNAQCBExICJtIiMjiRJBFGCGDC4sjwoyyKC6AuHwOBN8XBQcNODMO4wYOOqDjiMwoqKPi8spmhMGwoyMIMZAgQYhCB5KQYLq+P2K1vVRVV1VXd1V17t915bqgl+rT1VWnnjrnOec4BEEQQERERGRTMWYXgIiIiCgUDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIKCIWLlwIh8Oh6rUOhwMLFy4Ma3mGDRuGYcOGWXZ7RKQegxmiRmb16tVwOByevyZNmqBTp06YOnUqvv32W7OLZzkZGRk++6tdu3a4+uqrsX79ekO2X11djYULF2Lz5s2GbI+oMWIwQ9RIPfbYY/j73/+OFStWIC8vD6+++iqGDh2KCxcuhOXz/vd//xc1NTVh2Xa4XX755fj73/+Ov//973jooYdw4sQJjB8/HitWrAh529XV1Vi0aBGDGaIQNDG7AERkjry8PPTv3x8AcMcdd6Bt27ZYunQp3nnnHdx8882Gf16TJk3QpIk9q5xOnTrht7/9ref/t912G7p27Yo///nPuPvuu00sGREBbJkhop9cffXVAIDi4mKfxw8ePIibbroJycnJaNasGfr374933nnH5zUXL17EokWL0K1bNzRr1gxt2rTB4MGD8fHHH3teI5UzU1tbiwceeAApKSlo0aIFbrjhBhw/fjygbFOnTkVGRkbA41LbXLVqFa655hq0a9cO8fHx6NWrF5YvX65pXwTToUMHXHrppSgpKVF83alTp3D77bejffv2aNasGXJycvDyyy97nj969ChSUlIAAIsWLfJ0ZYU7X4go2tjzNomIDHf06FEAQOvWrT2Pffnllxg0aBA6deqE/Px8JCUl4Z///CfGjh2LN998E+PGjQPQEFQUFBTgjjvuwMCBA1FZWYmdO3di9+7d+OUvfyn7mXfccQdeffVVTJ48GVdddRU2btyIMWPGhPQ9li9fjssuuww33HADmjRpgn//+9+YOXMm3G43Zs2aFdK2RRcvXkRZWRnatGkj+5qamhoMGzYMR44cwezZs5GZmYl//etfmDp1Ks6ePYv77rsPKSkpWL58Oe655x6MGzcO48ePBwD06dPHkHISNRoCETUqq1atEgAI//d//yecPn1aKCsrE9544w0hJSVFiI+PF8rKyjyvHTFihJCdnS1cuHDB85jb7RauuuoqoVu3bp7HcnJyhDFjxih+7qOPPip4Vzl79+4VAAgzZ870ed3kyZMFAMKjjz7qeWzKlClC586dg25TEAShuro64HWjRo0SunTp4vPY0KFDhaFDhyqWWRAEoXPnzsK1114rnD59Wjh9+rSwb98+4ZZbbhEACPfee6/s9pYtWyYAEF599VXPY3V1dUJubq7QvHlzobKyUhAEQTh9+nTA9yUibdjNRNRIjRw5EikpKUhLS8NNN92EpKQkvPPOO7jkkksAAD/88AM2btyIm2++GefOnUNFRQUqKirw/fffY9SoUTh8+LBn9FOrVq3w5Zdf4vDhw6o///333wcAzJkzx+fx+++/P6TvlZCQ4Pm3y+VCRUUFhg4dim+++QYul0vXNj/66COkpKQgJSUFOTk5+Ne//oVbb70VS5culX3P+++/jw4dOmDSpEmex5o2bYo5c+bg/Pnz2LJli66yEFEgdjMRNVLPPfccunfvDpfLhb/97W/YunUr4uPjPc8fOXIEgiBgwYIFWLBggeQ2Tp06hU6dOuGxxx7DjTfeiO7du6N3794YPXo0br31VsXukmPHjiEmJgZZWVk+j/fo0SOk7/XZZ5/h0Ucfxfbt21FdXe3znMvlgtPp1LzNK6+8EosXL4bD4UBiYiIuvfRStGrVSvE9x44dQ7du3RAT43vPeOmll3qeJyJjMJghaqQGDhzoGc00duxYDB48GJMnT8ahQ4fQvHlzuN1uAMBDDz2EUaNGSW6ja9euAIAhQ4aguLgYb7/9Nj766CO8+OKL+POf/4wVK1bgjjvuCLmscpPt1dfX+/y/uLgYI0aMQM+ePfHUU08hLS0NcXFxeP/99/HnP//Z8520atu2LUaOHKnrvUQUfgxmiAixsbEoKCjA8OHD8eyzzyI/Px9dunQB0NA1ouZCnpycjGnTpmHatGk4f/48hgwZgoULF8oGM507d4bb7UZxcbFPa8yhQ4cCXtu6dWucPXs24HH/1o1///vfqK2txTvvvIP09HTP45s2bQpafqN17twZ+/fvh9vt9mmdOXjwoOd5QD5QIyL1mDNDRAAapuMfOHAgli1bhgsXLqBdu3YYNmwYXnjhBZSXlwe8/vTp055/f//99z7PNW/eHF27dkVtba3s5+Xl5QEAnn76aZ/Hly1bFvDarKwsuFwu7N+/3/NYeXl5wCy8sbGxAABBEDyPuVwurFq1SrYc4fKrX/0KJ0+exNq1az2P/fjjj3jmmWfQvHlzDB06FACQmJgIAJLBGhGpw5YZIvL43e9+h1//+tdYvXo17r77bjz33HMYPHgwsrOzMWPGDHTp0gXfffcdtm/fjuPHj2Pfvn0AgF69emHYsGHo168fkpOTsXPnTrzxxhuYPXu27GddfvnlmDRpEp5//nm4XC5cddVV+OSTT3DkyJGA195yyy2YN28exo0bhzlz5qC6uhrLly9H9+7dsXv3bs/rrr32WsTFxeH666/HXXfdhfPnz2PlypVo166dZEAWTnfeeSdeeOEFTJ06Fbt27UJGRgbeeOMNfPbZZ1i2bBlatGgBoCFhuVevXli7di26d++O5ORk9O7dG717945oeYlszezhVEQUWeLQ7KKiooDn6uvrhaysLCErK0v48ccfBUEQhOLiYuG2224TOnToIDRt2lTo1KmTcN111wlvvPGG532LFy8WBg4cKLRq1UpISEgQevbsKTz++ONCXV2d5zVSw6hramqEOXPmCG3atBGSkpKE66+/XigrK5McqvzRRx8JvXv3FuLi4oQePXoIr776quQ233nnHaFPnz5Cs2bNhIyMDGHp0qXC3/72NwGAUFJS4nmdlqHZwYady23vu+++E6ZNmya0bdtWiIuLE7Kzs4VVq1YFvHfbtm1Cv379hLi4OA7TJtLBIQhe7bFERERENsOcGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLYW9ZPmud1unDhxAi1atOC04URERDYhCALOnTuHjh07BizYKvVi02zZskW47rrrhNTUVAGAsH79es9zdXV1wty5c4XevXsLiYmJQmpqqnDrrbcK3377rabPECfg4h//+Mc//vGPf/b7KysrC3qtN7VlpqqqCjk5OZg+fTrGjx/v81x1dTV2796NBQsWICcnB2fOnMF9992HG264ATt37lT9GeKU4WVlZWjZsqWh5SciIqLwqKysRFpamuc6rsQyMwA7HA6sX78eY8eOlX1NUVERBg4ciGPHjvmsiKuksrISTqcTLpeLwQwREZFNaLl+2ypnxuVyweFwoFWrVrKvqa2t9Vmpt7KyMgIlIyIiIrPYZjTThQsXMG/ePEyaNEkxQisoKIDT6fT8paWlRbCUREREFGm2CGYuXryIm2++GYIgYPny5YqvnT9/Plwul+evrKwsQqUkIiIiM1i+m0kMZI4dO4aNGzcG7TeLj49HfHx8hEpHRERWUl9fj4sXL5pdDFKhadOmiI2NNWRblg5mxEDm8OHD2LRpE9q0aWN2kYiIyIIEQcDJkydx9uxZs4tCGrRq1QodOnQIeR44U4OZ8+fP48iRI57/l5SUYO/evUhOTkZqaipuuukm7N69G++++y7q6+tx8uRJAEBycjLi4uLMKjYREVmMGMi0a9cOiYmJnCTV4gRBQHV1NU6dOgUASE1NDWl7pg7N3rx5M4YPHx7w+JQpU7Bw4UJkZmZKvm/Tpk0YNmyYqs/g0GwiouhWX1+Pr7/+Gu3atWMLvs18//33OHXqFLp37x7Q5WSbodnDhg2DUixlkSlwiIjIwsQcmcTERJNLQlqJv9nFixdDyp+xxWgmIiKiYNi1ZD9G/WYMZoiIiMjWGMwQERFRWGzevBkOhyPso8wYzFhEuasG24orUO6qMbsoRERkEwsXLsTll19udjFMZ+l5ZhqLtUWlmL/uANwCEOMACsZnY+IAdQtpEhERBXPx4kU0bdrU7GKEDVtmTFbuqvEEMgDgFoCH133BFhoiokbA7XajoKAAmZmZSEhIQE5ODt544w0AP3fRfPLJJ+jfvz8SExNx1VVX4dChQwCA1atXY9GiRdi3bx8cDgccDgdWr14NoCGxdvny5bjhhhuQlJSExx9/XLEc4md9+OGH6Nu3LxISEnDNNdfg1KlT2LBhAy699FK0bNkSkydPRnV1ted9tbW1mDNnDtq1a4dmzZph8ODBKCoqCs/OUsBgxmQlFVWeQEZULwg4WlEt/QYiIgqbSHf5FxQU4JVXXsGKFSvw5Zdf4oEHHsBvf/tbbNmyxfOa//mf/8Gf/vQn7Ny5E02aNMH06dMBABMnTsT/+3//D5dddhnKy8tRXl6OiRMnet63cOFCjBs3DgcOHPC8J5iFCxfi2WefxbZt21BWVoabb74Zy5Ytw2uvvYb33nsPH330EZ555hnP6+fOnYs333wTL7/8Mnbv3o2uXbti1KhR+OGHHwzaQ+qwm8lkmW2TEOOAT0AT63Agoy3nSyAiiqRId/nX1tbiiSeewP/93/8hNzcXANClSxcUFhbihRdewJ133gkAePzxxzF06FAAQH5+PsaMGYMLFy4gISEBzZs3R5MmTdChQ4eA7U+ePBnTpk3TVKbFixdj0KBBAIDbb78d8+fPR3FxMbp06QIAuOmmm7Bp0ybMmzcPVVVVWL58OVavXo28vDwAwMqVK/Hxxx/jpZdewu9+9zt9O0YHtsyYLNWZgILx2Yj9aax9rMOBJ8b3RqozweSSERE1HmZ0+R85cgTV1dX45S9/iebNm3v+XnnlFRQXF3te16dPH8+/xWn/xWUAlPTv319zmbw/q3379khMTPQEMuJj4mcXFxfj4sWLnuAHaFg8cuDAgfjqq680f3Yo2DJjARMHpGNI9xQcrahGRttEBjJERBGm1OUfrjr5/PnzAID33nsPnTp18nkuPj7eE9B4J+6Kk8y53e6g209KStJcJv/P8k8adjgcqj470hjMWESqM4FBDBGRSczo8u/Vqxfi4+NRWlrq6Uby5t06IycuLg719fXhKF5QWVlZiIuLw2effYbOnTsDaBg1VVRUhPvvvz+iZWEwQ0REjZ7Y5f/wui9QLwgR6fJv0aIFHnroITzwwANwu90YPHgwXC4XPvvsM7Rs2dITICjJyMhASUkJ9u7di0suuQQtWrRAfHx82MrsLSkpCffccw9+97vfITk5Genp6XjyySdRXV2N22+/PSJlEDGYISIigjld/r///e+RkpKCgoICfPPNN2jVqhWuuOIKPPzww6q6cyZMmIB169Zh+PDhOHv2LFatWoWpU6eGvdyiJUuWwO1249Zbb8W5c+fQv39/fPjhh2jdunXEygAADiHKl6bWsoQ4ERHZz4ULF1BSUoLMzEw0a9bM7OKQBkq/nZbrN0czERERka0xmCEiIopyd999t8/wb++/u+++2+zihYw5M0RERFHusccew0MPPST5XDSkYDCYISIiinLt2rVDu3btzC5G2LCbiYiIiGyNwQwREUUFK85MS8qM+s3YzURERLYWFxeHmJgYnDhxAikpKYiLi/NM+0/WJAgC6urqcPr0acTExCAuLi6k7TGYISIiW4uJiUFmZibKy8tx4sQJs4tDGiQmJiI9PR0xMaF1FDGYISIi24uLi0N6ejp+/PFH09YqIm1iY2PRpEkTQ1rRGMwQEVFUEFd59l/pmaIfE4CJiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjVTg5mtW7fi+uuvR8eOHeFwOPDWW2/5PC8IAh555BGkpqYiISEBI0eOxOHDh80pLBEREVmSqcFMVVUVcnJy8Nxzz0k+/+STT+Lpp5/GihUrsGPHDiQlJWHUqFG4cOFChEtKREREVtXEzA/Py8tDXl6e5HOCIGDZsmX43//9X9x4440AgFdeeQXt27fHW2+9hVtuuSWSRSUiIiKLsmzOTElJCU6ePImRI0d6HnM6nbjyyiuxfft22ffV1taisrLS54+IiIiil2WDmZMnTwIA2rdv7/N4+/btPc9JKSgogNPp9PylpaWFtZxERERkLssGM3rNnz8fLpfL81dWVmZ2kYiIiCiMLBvMdOjQAQDw3Xff+Tz+3XffeZ6TEh8fj5YtW/r8ERERUfSybDCTmZmJDh064JNPPvE8VllZiR07diA3N9fEkhEREZGVmDqa6fz58zhy5Ijn/yUlJdi7dy+Sk5ORnp6O+++/H4sXL0a3bt2QmZmJBQsWoGPHjhg7dqx5hSYiIiJLMTWY2blzJ4YPH+75/4MPPggAmDJlClavXo25c+eiqqoKd955J86ePYvBgwfjgw8+QLNmzcwqMhEREVmMQxAEwexChFNlZSWcTidcLhfzZ4iIiGxCy/XbsjkzRERERGowmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGYoqpW7arCtuALlrhqzi0JERGHSxOwCEIXL2qJSzF93AG4BiHEABeOzMXFAutnFIiIig7FlhqJSuavGE8gAgFsAHl73BVtoiIiiEIMZikolFVWeQEZULwg4WlFtToGIiChsGMxQVMpsm4QYh+9jsQ4HMtommlMgIiIKGwYzFJVSnQkoGJ+NWEdDRBPrcOCJ8b2R6kwwuWRERGQ0JgBT1Jo4IB1DuqfgaEU1MtomMpAhIopSDGYoqqU6ExjEEBFFOXYzERERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwQyRTuWuGmwrrkC5q8bsohARNWpNzC4AkR2tLSrF/HUH4BaAGAdQMD4bEwekm10sIqJGiS0zRBqVu2o8gQwAuAXg4XVfsIWGiMgkDGaINCqpqPIEMqJ6QcDRimpzCkRE1MhZOpipr6/HggULkJmZiYSEBGRlZeH3v/89BEEI/maiMMlsm4QYh+9jsQ4HMtommlMgIqJGztI5M0uXLsXy5cvx8ssv47LLLsPOnTsxbdo0OJ1OzJkzx+ziUSOV6kxAwfhsPLzuC9QLAmIdDjwxvjdSnQlmF42IqFGydDCzbds23HjjjRgzZgwAICMjA2vWrMHnn39ucsmosZs4IB1DuqfgaEU1MtomMpAhIjKRpbuZrrrqKnzyySf4+uuvAQD79u1DYWEh8vLyZN9TW1uLyspKnz+icEh1JiA3qw0DGSIik1m6ZSY/Px+VlZXo2bMnYmNjUV9fj8cffxy/+c1vZN9TUFCARYsWRbCUREREZCZLt8z885//xD/+8Q+89tpr2L17N15++WX88Y9/xMsvvyz7nvnz58Plcnn+ysrKIlhiIiIiijSHYOGhQWlpacjPz8esWbM8jy1evBivvvoqDh48qGoblZWVcDqdcLlcaNmyZbiKSkRERAbScv22dMtMdXU1YmJ8ixgbGwu3221SiYiIiMhqLJ0zc/311+Pxxx9Heno6LrvsMuzZswdPPfUUpk+fbnbRiIiIyCIs3c107tw5LFiwAOvXr8epU6fQsWNHTJo0CY888gji4uJUbYPdTERERPaj5fpt6WDGCAxmiIiI7CdqcmaIiIiIgmEwQ0RERLbGYIaIiIhsjcEMERER2RqDGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIaIiIhsjcEMERER2RqDGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIYoypS7arCtuALlrhqzi0JEFBFNzC4AERlnbVEp5q87ALcAxDiAgvHZmDgg3exiERGFFVtmiKJEuavGE8gAgFsAHl73BVtoiCjqMZghihIlFVWeQEZULwg4WlFtToGIiCKEwQzZCvNB5GW2TUKMw/exWIcDGW0TzSkQEVGEMJgh21hbVIpBSzZi8sodGLRkI9YWlZpdJEtJdSagYHw2Yh0NEU2sw4EnxvdGqjPB5JIREYWXQxAEIfjL7KuyshJOpxMulwstW7Y0uzikU7mrBoOWbPTpRol1OFCYP5wXaz/lrhocrahGRttE7hsisi0t12+OZiJbUMoH4QXbV6ozgfuEiBoVdjORLTAfhIiI5DCYIVtgPggREclhNxPZxsQB6RjSPYX5IERE5IPBDNkK80GIiMif6mCmsrJS9UY5aoiIiIgiRXUw06pVKzgcDsXXCIIAh8OB+vr6kAtGREREpIbqYGbTpk3hLAcRERGRLqqDmaFDh4azHERERES66E4APnv2LF566SV89dVXAIDLLrsM06dPh9PpNKxwRERERMHommdm586dyMrKwp///Gf88MMP+OGHH/DUU08hKysLu3fvNrqMRERERLJ0rc109dVXo2vXrli5ciWaNGlo3Pnxxx9xxx134JtvvsHWrVsNL6heXJuJiIjIfrRcv3UFMwkJCdizZw969uzp8/h///tf9O/fH9XV1Vo3GTYMZoiIiOxHy/VbVzdTy5YtUVpaGvB4WVkZWrRooWeTRERERLroCmYmTpyI22+/HWvXrkVZWRnKysrw+uuv44477sCkSZOMLiMRERGRLF2jmf74xz/C4XDgtttuw48//ggAaNq0Ke655x4sWbLE0AISERERKdGVMyOqrq5GcXExACArKwuJiYmGFcwozJkhIiKyHy3X75AWmkxMTER2dnYomyAiIiIKia5g5sKFC3jmmWewadMmnDp1Cm632+d5zjVDREREkaIrmLn99tvx0Ucf4aabbsLAgQODLkBJREREFC66gpl3330X77//PgYNGmR0eYiIiIg00TU0u1OnTpxPhoiIiCxBVzDzpz/9CfPmzcOxY8eMLk+Ab7/9Fr/97W/Rpk0bJCQkIDs7Gzt37gz75xIREZE96Opm6t+/Py5cuIAuXbogMTERTZs29Xn+hx9+MKRwZ86cwaBBgzB8+HBs2LABKSkpOHz4MFq3bm3I9omIiMj+dAUzkyZNwrfffosnnngC7du3D1sC8NKlS5GWloZVq1Z5HsvMzAzLZxEREZE96Zo0LzExEdu3b0dOTk44yuTRq1cvjBo1CsePH8eWLVvQqVMnzJw5EzNmzFC9DU6aR0REZD9hX2iyZ8+eqKmp0VU4Lb755hssX74c3bp1w4cffoh77rkHc+bMwcsvvyz7ntraWlRWVvr8ERERUfTS1TLz0UcfYdGiRXj88ceRnZ0dkDNjVAtIXFwc+vfvj23btnkemzNnDoqKirB9+3bJ9yxcuBCLFi0KeJwtM0RERPahpWVGVzATE9PQoOOfKyMIAhwOB+rr67VuUlLnzp3xy1/+Ei+++KLnseXLl2Px4sX49ttvJd9TW1uL2tpaz/8rKyuRlpbGYIaIiMhGwr4206ZNm3QVTKtBgwbh0KFDPo99/fXX6Ny5s+x74uPjER8fH+6iERERkUXoCmaGDh2q6nUzZ87EY489hrZt2+r5GDzwwAO46qqr8MQTT+Dmm2/G559/jr/+9a/461//qmt7REREFH10dTOp1bJlS+zduxddunTRvY13330X8+fPx+HDh5GZmYkHH3yQo5mIiIiiXNi7mdQyIk667rrrcN111xlQGiIiIopGuoZmExEREVkFgxkiIiKyNQYzREREZGsMZoiIiMjWNAczP/74Ix577DEcP3486Gt/+9vfcgQRERERhZWuodktWrTAgQMHkJGREYYiGYtDs4mIiOwn7AtNXnPNNdiyZYuuwhEREREZSdc8M3l5ecjPz8eBAwfQr18/JCUl+Tx/ww03GFI4IiIiomBCWmhScoMGLjRpBHYzERER2U/YZwB2u926CkZERERkNF05M6+88gpqa2sDHq+rq8Mrr7wScqGIiIiI1NLVzRQbG4vy8nK0a9fO5/Hvv/8e7dq1YzcTERERhSTso5kEQYDD4Qh4/Pjx43A6nXo2SURERKSLppyZvn37wuFwwOFwYMSIEWjS5Oe319fXo6SkBKNHjza8kERERERyNAUzY8eOBQDs3bsXo0aNQvPmzT3PxcXFISMjAxMmTDC0gERERERKNAUzjz76KAAgIyMDEydORLNmzcJSKCIiIiK1dA3NnjJlCoCG0UunTp0KGKqdnp4eesmIiIiIVNAVzBw+fBjTp0/Htm3bfB4XE4OtNJqJiMxT7qpBSUUVMtsmIdWZYHZxiChK6Qpmpk6diiZNmuDdd99Famqq5MgmImrc1haVYv66A3ALQIwDKBifjYkD2GpLRMbTFczs3bsXu3btQs+ePY0uD5FlsZVBvXJXjSeQAQC3ADy87gsM6Z7CfUdEhtMVzPTq1QsVFRVGl4XIstjKoE1JRZUnkBHVCwKOVlQzmCEiw+maNG/p0qWYO3cuNm/ejO+//x6VlZU+f0TRRK6VodxVY27BLCyzbRJi/HqfYx0OZLRNNKdARBTVdLXMjBw5EgBwzTXX+OTLMAGYohFbGbRLdSagYHw2Hl73BeoFAbEOB54Y35v7i4jCQlcws2nTJqPLQWRZYiuDd0BjlVYGK+fxTByQjiHdU3C0ohoZbRMtVz4iih66upmGDh2KmJgYrFy5Evn5+ejatSuGDh2K0tJSxMbGGl1GIlOJrQyxP7VCWqWVYW1RKQYt2YjJK3dg0JKNWFtUamp5pKQ6E5Cb1cb0fUVE0U1XMPPmm29i1KhRSEhIwJ49e1BbWwsAcLlceOKJJwwtIJEVTByQjsL84Vgz4xcozB9uevIv83iIiH6mK5hZvHgxVqxYgZUrV6Jp06aexwcNGoTdu3cbVjgiK7FSK4NSHg8RUWOjK5g5dOgQhgwZEvC40+nE2bNnQy0TEQXB0UJERD/TFcx06NABR44cCXi8sLAQXbp0CblQRKTMqnk8RERm0DWaacaMGbjvvvvwt7/9DQ6HAydOnMD27dvx0EMPYcGCBUaXkYgkcLQQEVEDXcFMfn4+3G43RowYgerqagwZMgTx8fF46KGHcO+99xpdRiKSkepMYBBDRI2eQxAEIfjLpNXV1eHIkSM4f/48evXqhebNmxtZNkNUVlbC6XTC5XKhZcuWZheHiIiIVNBy/dbVMiOKi4tDr169QtkEERERUUh0JQATERERWQWDGSKyvHJXDbYVV3BSQCKSFFI3ExFRuK0tKvXMdhzjAArGZ5s+AzMRWQtbZogiiC0M2nDZBiJSgy0zFmLlFZApdGxh0E5p2QaeI0QkYjBjEbzQRTe5FoYh3VN4UVYgLtvgHdBw2QYi8sduJgtgU3r048KQ+nDZBiJSgy0zFsCm9OjHFgb9uGwDEQXDlhkL4ArI0Y8tDKFJdSYgN6sN9xcRSWLLjAWIF7qH132BekHghS5KNaYWBiazE1EkMZixiMZ0oWvMGsPCkExmJ6JIYzeThbApneyOyexEZAYGMwbhZGhEHLVFROZgN5MBwtmsztwDshOO2iIiM9iqZWbJkiVwOBy4//77zS6KRzib1dcWlWLQko2YvHIHBi3ZiLVFpSFv0wxstWo8OGqLiMxgm5aZoqIivPDCC+jTp4/ZRfERrjliomXGWCaDNj5MZieiSLNFy8z58+fxm9/8BitXrkTr1q3NLo6PcM0REw25B0wGbbyYzE5EkWSLYGbWrFkYM2YMRo4caXZRAoSrWT0aJtKLhoCMiIisz/LdTK+//jp2796NoqIiVa+vra1FbW2t5/+VlZXhKppHOJrVo2EiPSaDEhFRJFg6mCkrK8N9992Hjz/+GM2aNVP1noKCAixatCjMJQsUjsnQ7J57EA0BGRERWZ9DEAQh+MvM8dZbb2HcuHGIjY31PFZfXw+Hw4GYmBjU1tb6PAdIt8ykpaXB5XKhZcuWESs7/azcVWPbgIyIiMxRWVkJp9Op6vpt6ZaZESNG4MCBAz6PTZs2DT179sS8efMCAhkAiI+PR3x8fKSKSCo0hin8iYjIPJYOZlq0aIHevXv7PJaUlIQ2bdoEPE5EZCWc8JIociwdzBArRCI74vxKRJFlu2Bm8+bNZhchYlghEtlPtEx4SWQntphnpjFSM+Eclwkgsh7Or0QUebZrmWksgi2TwFYbImvi/EpEkceWGYtSmgGYywRYB1vHyB8X2ySKPLbMWJTShHPbiivCsrglacPWMZJj9wkvieyGwYyFyVWIbMY2H5M8KRjOr0QUOexmsjip1YfZjG0+JnkSEVkHW2Zsis3Y5mLrGBGRdbBlxsakWm0oMtg6RkRkHWyZCRPO3Bv92DpGRGQNDGbCgKNcGg8meRIRmY/dTAbjHDBERESRxWDGYFYY5cKJ3IiIqDFhN5PBzB7lwi4uIiJqbNgyYzAzR7mwi4uIiBojtsyEgVmjXIItTklERBSNGMyEiRmjXJLiYuEA4B3PcCI3IiKKduxmihJri0ox7vltAYEMJ3IjsherJvBbtVxEAFtmooJ/rgzQkPy7bmYuctJam1cwItLEqgn8Vi0XkYgtM1FAKlfGLQDVdW5zCkREmlk1gd+q5SLyxmAmCojDwb1FOleGTdBEobHCHFVSrFouIm8MZqKA2Yseri0qxaAlGzF55Q4MWrIRa4tKI/K5RNHECjclUqxaLiJvDkEQhOAvs6/Kyko4nU64XC60bNnS7OKEVbmrJuLDwctdNRi0ZGPAJIGF+cOZeEyk0dqiUjy87gvUC4LnpsQKuSlWLRdFNy3XbyYARxEzhoNzbhsi41h1JXarlotIxGCGVCl31aCkogqZbZN8KjKzl28gijZWXYndquUiApgzYxo7Jcwq5cSYna9DRETEnBkT2GnOBrU5MWbk6xARUfTScv1my0yE2W3OBrXDMlOdCcjNasNAhoiIIo7BTITZbc4GDsskIiKrYzATYXYLDpgTQ0REVsfRTBEmBgf+czZYOTjgsEwiIrIyBjMmsGNwwGGZRESNg9xUHFbGYMYkDA7MZceTlYgo3Ow02tYbgxlqdOx6shIRhZPcaNsh3VMsf9PHBGBqVOw2NJ6IKFTiJK37ys4oTtZqt9G23tgyQ6pFQ9eMVdaSioZ9SUTW590SLZJrkZZangYA9h8/i9ysNhEorX4MZkiVaOmascJaUtGyL4nIOqRukPxbokXe3UcAfN43L68nCt4/6PP6Jz84hBsu7xgw6/uuY2cgCAL6ZySbflPGYIaCsnM/qj+zh8bbaV+y9YjIHuRukKRaokX1goBVn5XgxU9LfN6X3ckp+Vrv1uu1RaXIf/MAxE07ACyZYO5NGYMZCsoqXTNGMXNovF32JVuPiOxB6QZJrtsIaDivV24t8QQk4vvWzcxVbL0WP897kwKA+W8eMPWmjAnAFJTdZi2W4r9KuVlrSdlhX9opSdpOq88ThUOwGyTvGdxFsQ4Hbh+cCf8Yp14QUF3nVpz1Xa61xw2YmijMlhkKKpxdM5HoyrBSK4PZ3VxqsPWIyNq8681geYDeLdGJcTGornN7nnupsCTgXP/7f47i+d/0k229lmvtiQFMvSlzCIIg06MWHbQsIU7Kyl01hnbNROJiVO6qwaAlGwNO9ML84aZemI3el0ay2j6TS2y0UhmJIkWq3gQQcIOkpi79wwcH8dzm4oDH3551FXLSWiuWIX/dAYjRQ7hyZrRcv9kyE2F2Tqo0ctbiSCXCRrKVQctva+UZoK3UeqQlsdGKrUdERpKrNwvzh6Mwf7jmG6RWSU0lH9959IxiMCO29uw+dgaCAPTLaG36ecdgJoLYLP6zSF2MIjUUO9p+WyusH6Y1sdFquUdERlOqN/XkAA7MSJZ8vH+GfCAjSnUmYEwf69w4MAHYYHIJiUYlVUZLwmOkEmH9E+DC0cpgp4RZLcxKkhZpSWy0Yu4RkZRQ6nCpejPGASTG6buU56S1xoQrOvk8NuGKTp5WGTtdb9gyYyClu3MjWiKi6e4/kl0Z4W5lYJdHeGhJbLRi7hGRP/86fN7onsi+xKk67cC/3gQazo9xz2/TfT34082X47bczth59Az6Z7T2BDJ2u94wAdggwRISQ01YNDLh0Up5O1ZOhFWLyajhs7aoVFdiI5HVSNUTIq3Bwr6yMxj73DafodVG1jlWqdOYAGyCYHfnobZEGHX37x9t3z44E9MHZ0puIxJBj5UTYdWyUsJstGHrC0ULpdl4tQ6AqKqrl5wjxqjWYDu2NjOYMYiahMQh3VOw7JYcuGouolViHPp1Dp5kpWX7wUjldqz8tAQrPy3BnVdnYppXUGO3Jkaz8aIbPpEMeL0DeACWacEk+0uKi1V8XkuwEO4EeDsm2Fs+mCkoKMC6detw8OBBJCQk4KqrrsLSpUvRo0cPs4vmI9jduZaVS/VsXw2lO4O/flqCFwtLUDA+G0O6p4Q8bNpKXVmREg2tTI2Z9zkq5lgKYDBPxqiqq1d8XkuwEO7WYDu2Nls+Z2b06NG45ZZbMGDAAPz44494+OGH8cUXX+C///0vkpKSgr4/0pPmeeeAAA0BRFJcLMY9v00ykNDaDxlKjolSn613eZbdkoN71+wNeG7NjF+oWgaerTrBNcZgz8qCnRtS5yl/Q/IW7HhQOsb05oOFO+fQ7JzGqMqZ+eCDD3z+v3r1arRr1w67du3CkCFDTCqVPPHu/IUtxViy4SAEAA4HIBcySjUtKp0Uodz9i9G21JLw3uWJcTh0NzGqmQzP//tZbSn5cGOwZywjggqlVktAetVg/obRS+sxpeZ4kGrtmJvXA306tdIdLIS7NdhOrc2WD2b8uVwuAEBysvRkP7W1taitrfX8v7KyMiLl8vbC1mIUbDjo+b9S25d/kBDuSlLM7Vj1WYnPiqne5bmic2vdTYzBEsf8v9+4vp2wbve3PkvJ5+cFH65oxbtiNWWK1MzHjYVR54vS6sKA9KrB3r/h/HUH0LNDC8VZU41mxXPAzsT9eeC4C0s/OKj6mNJyTuvJrePvrI6tghm32437778fgwYNQu/evSVfU1BQgEWLFkW4ZD8rd9VgiVcgo8Q/SIjUhS7VmYCHf9UL0wZlYlXhUbxY+A3cgm959Ca0Sl0UxAXIyl01yH/zgM+S82/u/tbn/QLgCQTlKhIr3hWrLZMdRwlYlZHni/9dswMAfmpRVbNqsFsAxj63LSzr00ix4jkQTkZf0P23J5XTCKhrWdZ6Tmtp7Whsv3MobBXMzJo1C1988QUKCwtlXzN//nw8+OCDnv9XVlYiLS0tLOWROsFKKqoUW2KAhtaHZyf3xRU/jWbaVlyBzLZJEb/QpToT8PCYSzFtcIZk0KKniVG8KHgHLQKArV+fRlJ8k4CWICVyFYnUXXFiXKxpXVRaLqp2HCVgVUafL/4BPABNqwYLiEwrW2Nr3dN7QZcLgPwTvWcOz8LyzcWKXe9yLcvigAmpczoxLsZTt+v5XUL5nRtja45tgpnZs2fj3XffxdatW3HJJZfIvi4+Ph7x8fFhL4/cCRasuRpoqPSSk+Kx9evTvrNB5vU05UJndL/okO4pPnlCYiX/6A2Xat6W/8VJ7q743jV7Tbtz0XJRteMoAasKR2Dofy7I3VnL5Z5FopWtMbXu6b2gy9XP/tsTADy3KXDVaG/iMaW0yKP/OT22b0fPoA+99ZLe39k/WJvhN+1GtLL82kyCIGD27NlYv349Nm7ciMzMTLOLpLgWj1jRiWvG+K+jAfwctftv48kNhzBvdE/LrzcTbL0OuZOwTVI8JHaH5GMi/4uT1NokIrPWRNK6ztTEAekozB+ONTN+gcL84Ww21sn/XIvk+TJxQDrWz7wq4PFI3HxEal0zK1C6oMtRqp+DJXr78z6mlMrifU6vm5mL9Xu+DXmtNj2/s1Sw9tdPSzBoyUasLSr1eZ1d1lxSy/ItM7NmzcJrr72Gt99+Gy1atMDJkycBAE6nEwkJ1lwAz7+5euvXpwPuxKvq6iW30eeSVrqWco+EclcNVhU2TLKnNP+G3B3zFZ1bY8mEbMx/8wDcaIikCyZko2eHFrjxuW0BnxfjAObm9Qi4U543uieWbjgIt0QZzbhD1dPaYqdRAlZm5mSFB0+egwPwSV6X+92NbPZvTK17Sq1vcvtUqX7ObJvk85t5iwHg/mn74iijxLgYVNXVo9xVE7QlUDyntxVXGNJypud3lgvWvFu0/HsEoiUPx/LBzPLlywEAw4YN83l81apVmDp1auQLBHXN294XK6kKt9xVI7sNK17opBLk5Jp8lU5CqX2xrbhC8jPdArB0w0G0SmjqOdnWFpU2jDQAJCslo+9Q1V6EOAOwebSeL0YEFuIdsPfx53A0dLH6C0cSZ6SON7NzL/zrEvEGR+qCPKR7imdeL7m6devXpyUDmViHA+tm5qK6zu3Zn1K/m5rgwsjuT62/s1KaQ70gYNfRM1Gbb2X5YMaKc/oZcSdu1N1VJCob/6ZLb3J3HEonof++UDoBvU82AAFNqA4H4BB876hKKqo8nxPseyntO60XISsGoeTLqMBCLndLas6ocF08tBxveuoJq4ykmTggHWerL2LJhobh0kvebxjt6D0qMn/dAUD4ecbmcX074a09J3zqVqCh/vAX4wCmD85Au5bNgo4sLcwfHrTl3OiWMy2/syef66fWb5/vCeDrU+eiNt/K8sGMVRlxZxTqNiJV2QTrZ97/7VnJmYHVnoT+J78/8WQTIASOIBEaRoYlJ8Vj//GzDd1PKvZHsH3X2EaMNAZG/qZq776tkKyrp56w0vEvTnfhPTrSn3e14RaAt/acCGhpker+EV+/8tMSvPTTci4TB6Qr/m65WW2C7gMzW2o9c4l5TbshtmI//cmRgNdHS76V5ROArSzVmaDqwA7HNpSS3IymlHQLNCQul7tqQkoqExPonp3UVzbpTS4h7orOrZHRNtEz0RWgvD/U7Ds9iYf+nxFtCXZ2F+pv6k1t8rHZybp66wkj91Wodh07o2lKB6ChrNV1bp+6NVg95r1vjPjdjLg+6CVOu/FZ/jV4dlLfhtGlEq+LpnwrBjM2FcnKxr/i9lcvCFj1WUPG/OSVOwIy57V8znU5HWUvEkoXEC37Q81rQ6nM1haVhrwvyHhGBxZqRqWZOeIK0F9PBNtXkQzW5VINxPLFOAJHREr9rgEjTSW26d1qZubvZpRUZwKSm8dJtkgtGHOpptGUVr9BYzeTjXj3e0tl5Yfzjk9sutx19AzmvL7H5+SIccBnaYRQm6SVmmjlntOSdKc2gVtPv7dRzfNmJ15Go3CMAlLTlWpml4PeZFSlfaXUbSV13IZ6LPfPSA6o6xwA1s+8ytONJDViVOqzvH+LxLiYgAWAvfdNtCT1yx0Dv+qTarv8KSWWXzU7VJFeNTtc1KxpFMmp1L0rjumDM7Dy05KA13mvsh2Ji7N/uZRWoVX7WqVVY6W+07biCkxeuSNgO2pXHBfLFsmKQ/weSXGxqKqrD/ob2T3QMnsl4EjTcl74899XUis/iyuKS40wAmDIsby2qDRgSgf/7ej5XUPZN3YS6jEg95uLx0S46gMt128GM2Fm1DBQuaXjRTEO4LP8ayJWOXtXHAACyhfjaLhzyklrHdGLs5YKLZSLmtIMo0onfjD7ys5g7HPbAlrcCvOHA4DhlYbUkHul38gOd2gUyKgATi5Yf3ZSX8kWW0EIbD1Wey74C1cQ2liCW73fU+kGrfSHqrDWB1qu3+xmCqNwDgP1JzUsNJz8m9f9RyO5BWDc89saJriTSMwN16gIpWZ//8BS71DqYF1Jersy1haVIt9v7hLg55ykFz8t0XwsKQXTckPu5X4jtV1odm+5iUZGDeOW67KAxNQKclM57D52Bq2TtB8f4Zr6INTt2uV41/s9k+JiJVMapGaxN3PEJ4OZMAn3MFB/Zg+vmzggHT07tPBpVRAnvfOf78CMeQ2MbFHQOgO0mu/pmYRN4jfWm5P0wtbihiGtMrkN7+4/IXtMSf1GaoYZs+XGerRcbJWOGUA+l6Zf59YBdZRUy4zDAcx+bY/iDOJWprTatlW+j5HBlfj9/AMZpVnszZqzhsFMmBg5v4RUBTK2b8eASaHMviuoqqsPaFVwAz6LTgKRD7yMnjND6wzQasi1vsUAuH1wZkBOUrBj6YUtxSjYcNDzf7fQkLvQs0MLHDx5TnYSRLnvAwT/3laam4QavLCl2DNHS7CLrdQxI/X7yQXrUkEOAJ/Ze72DG7sdH/6By7y8np55rYDwfh+1AYqRwZVUy22MA1g3Mxc5aa0VZ7E3A4OZMDF6RV+pCuShUT0s1dcr953n5vXAkxsOmRZ4GT1xWThGxUjtOzHvqF3LZnipsET1sSROMubPLQA3PrdNdm0a721LfZ9UZ4JPBe7/OitMEEc/e2GruuCk3FWDXcfO+LxWJPX7+V9Yxf8P6Z4iOTuuWG9VnL+Ae9fsDdj+rqNncF2OtY8PqUDdO5ARheN4VxugGH0zITfLdXVdQ1t7OOrBUDCYCZNIDAMNJecjHH28ct954oB03JDT0bTAK9TAUmp/GTlsU9z+vNE98eQHvkFfTlprANJ3vXKfWVJRpRisSD23YMyl6J/R2mfGVH9ri0o9FbgDwNzRPXwqVaMD+GhhRk6FXECr1C0oJcYBn99PalSluEK03IVWrKek7uQB4N41e7D/+FlMG5wpuX+skJOy69gZyQu7UdNjyH1HLQGK0TcTas5nKw1fZzATRmb+0HInR7j7eOW+c7iS99QINSlXbn8Z8Z2kmq77dGqlen4dKWpyrLwFm3NCvHPPf/OAz5TyT35wCDdc3tHnNw7HnZrU0HHA+JFdasuh5jPF1247UoHnNhfL5qCES0lFlWT+FQDZbkEp8/J6er6r1IX1zd3fel7rfaEVy+C9r8Tjw3/dIAHAXz8twYteywmI++/AcZdnAIFZOSlri0qR/2bgmk6xDgfmju4RcANi1MhIQFuAYvTNhNrz2cy63RuDmTAz44dWGjYciZwG/+9shTurUJJywzUBntT2n9xwSHboqtpjyb8S8udAQx6TVFeRP6U7d6lKNZQA3ns/AQ0V+YFvXQHN+eJsr0YkkRqRi6CUFOotkjkiagLaYKMk5+f1xF1DslS/Hgg+8m7igHQkxTfB7Nf2BLxX3D9nqy/6jID0fz6So+ekVkcHGr6Xp9X5cv2tzsHqGC0BSjhuJqzU8hIMg5koo3RyhCOnweiVp40U6lBsI/aXUXddWomV0O5jZ1B4pAJri8p8ghc1FVSwO3elSlVrd4H3fvIOVqR4Px5KgBDQKja6J7IvcWpq6vefKM4/KdRfKL+vlot2qjNBMnEc+HkKB6WAJ8YB3HB5R5/H1ARIakbeSY18EtULgs+iklLPR3L0nFwA9/QtfXFdTsP+CeWGNVgdECxA8b8BSEtODFhgM1RWaXkJhsFMBBh95yCXgJfZNknx5DC6GdLKK08bUckZkWtj1F2XHt4XWgeAO4dkYtqgn/MSgv0GSnfiWu/6grVseO8nlb1jHnoCBKnfRkyA9Q9spPIlxMRVNUmh3vxzUNTSczxPH5yJFz8tkc3pkOv2Eb+L/z5Ver343dSMvFPajv/IR39Gj54LVjfLnaP9Mlqr2n4wB467Ah5Tm5cidwMgHh9qZxyPFgxmwszoO4dgCXjzRveUvUAa2QyppiIxa3SLUUFUqPtL7vvvPnYGY/oEv+sKhVSA8NKnRzFtUKbqbciNsHr6lr7ol9Fa0wVD6fdQ032hRE8AqPSZ3oGN3MgvpYnilEaLeeegAOpudPaVnWmYTFHj8ZzqTMCSCcrH18QB6Sj9vhrPbS4O+H5S+1Spm0g8LuRG3nl/V/ECvarwKF4s/Obn4zRIIGPk6Dk1dXO4z9GlHwQmac/N6xE0L0XpBiDcN41WSBuQwmAmjIxumVCTgPfkB4cwL6+nZyh0jMP35DCqD1RNRRLp0S3iSfZDVZ1hQVQo+0uuWX72a3twvvZHTByQHrY+aSMCSbmKXGxe9ydXyQUri9aEZcdP0YIA/asZq/1MqafFfAm5ieJuGZCG1z8v82l1iEFDIOOdg6LmYiomn/qXQ82QaUD++PVOql6+pRj+pC6oIqnvLbZWyB0zUus2TRyQjofHXIoxfToELOHhvd25eT0kk+JDqV+01M2RPEcBoE+nVrrfKwrXTaMVJwkUMZgJI6NbJtQm4PXp1ApzR/fAkp+avJe8fxDfn6v1DH3Uk9PgL5wrT+vh3+Rq1JBJQH+fsac53S/vRIBvxRlqn7TU76a2og/2m6utyKUqOTFPKykuVjJw2H/8LHKz2gQcJ/7BytzRPdDnklZIjIvx5AIACOniEixJWol3voR/uQUBeO3zMsQ4gDsHd8GYPh0k8xekLqbipIbicHy55FMg8LfUMurO51yR6dZRuqAGO6/9jxnAd+02/8BBarJNALjvmq645cp02d83lPpFa90cjryRUIKxYMG4uNzAtuIKQ9MbrDwpJoOZMDKyZaLcVYMfqupUTXiWGBeDpR8c9BlG6z/00Z/WiFttRaL2YhhK06VUk6sD8Oz7ULvTQmlSnTggHYlxsZKThRlx5yT3u6n5fdT+5sEqcqlKbp7XUNYYBzD6sg54/4uTPu/zHtotdQEMdsyEeix5f+b+b896WjOV+OdLeCdai9P0i/vgpcISTBucIVkGuQnJxj63DUsmNASCcstNiC1D3q0sUheZnh1aBKyCHnCuSGxfTR0V7Lz2Pma2FVdIBg7v7S/HmD6pshfmZzYdQcfWCYr1kN5WEyvMiRRKMBbsBmBs344Y9/w2Q1tQrD4pJoOZMDKqZUJuqKfcsgZSa2YAoS8g6E9tRRLsYhhq06XUSSYAeOaWvmjTPF733buecknNidI/IzksFWew303p99HymwcLDoK1GLoF4AO/QAaQTgz1TzhVux/E8gWMLpIZoeT9GanOBORmtfFM7Ogd2Kjp0kp1JqB1UuBEhUoVvdwFXACQv+6A5zP9xeDn1ehFcheZsc9vC5jfRmnZDLfCd5SitrVC7rsufu8rPPH+VygYny2ZEKwlN0hrS3MkW42VhNKF5R1IuwUB6cmJqK5zIzEuxhPIANpbUOT2mxUCQCUMZsIs1P5WueGxDjT0a981JCtgWQO5mTYB/QsIyjGiiyTUpkulEQd6y6anXFJBp3ghCUfFqeZ3k/t91P7mUpP6ZXdy+gRravJPwrVGl9KQbp9EXgeQ75ez4k8qsJFrJfKv8LVW9HJdkIB8Eqz/rNAi2cBI4tiVK6fRw3m9KXXpiWUrzB+Opyf3DUgs9k6Y10LNjYhV5lAJpQ6VykVKS07UXZ8H6660QgAoh8FMBIRysMrdSQlomGDthpyOkne0ckMf9SwgqJWWrplwJqpKXXjEzwxWNqVySW1DLuj0rqyl1q0JhdF97v7DXv1n/XULQMH7vqMvvIM1uSG74ra91+jyT0zXQ8uQbkEsuwDcNVQ+oBEptRLJVfjBKnr/80JqpXk5C8ZcKjtLs//xL7ayeBOP3dysNpLl9A+QjCYGDu/tL8fi974KKNuuo2fQL0N6/hnvhHk1tNyISNXNSpNcWmkUj9z3XDczV1e9oGa/WSUAlMJgxuKU7nqVLvpSQx+VmsmNiri1ds0YFUjpnYtBrmxy5dr/7Vn85sX/BHw/pa4W7wuJkSe/2t9Nbl4iqbWgUp3yM9hK8Q7W1s+6ytO14S0GP8+WCgGexPSlGw6iVUJT3X35eoZ0L91w0GcJBq2UKnylil7uvMhJa+0zfNp/ZWkg+HITgO/x79/NIG5DPKfMuiClOhMwpk8qnnj/q4Dfbc7re34OioMkzAcTyg2S3O9kxVE8ct+zus6tqz5Xu99CbY0PFwYzFqe1lcX/vQ+PuRTTBmcErbiMqOD05mEYFUj5n2ShzMUgFSjMHd3DZ1K0YM33onD2K0slznqPYAg6L5HfWlBq1uvx5x2sLRnve2G+Y3AXTxKsOK+Gd0tPKKMhpPa5Az8v1SDFDXgST/V8ppoZW6WOdS25TVu/Pq07KVR8XbBzyqwLklx95h0U/+WWy0NKmNd7g6SUSG3FUTxK3zM3q03Q+jzUrlKrYTBjA1paWaSorbhCreD05mEUjM82vAtGrjzByuZtSPcU/GXS5YAA9Mtorfj9/JvvRZHoVxZ/N6np+b3XuHELEvMS+a0Fpae1Q+1dv9GjIeRapsTP//DLcqzedizgfd6Jp5GYFVrue+86egbX5QTmNum9sZCalM7IVd2N6l6Rm3hPPBZCTZhPdSY0HPsbDmpKapb7nYqOSs8AbfYonmAts0r1ud6uUitjMGMTalpZjKh0QtmGmope7u6nMH+44dNvq5mLQa6ClJs3Ren7+Tf1Hz9TA7cgoH9GsqHfS+o3ktqvYmWuRM1Eh+Ksv9+erfF0S4nEFquSiioAP1egUseO5LYBfF9Vi3JXja5jVu6ivfXr03hle2AgI/K/u1Z73Evlp8wdrZz7I3cc3rtmD6rqfvRZJVrvOmJKQ/RDEa7uFbmJ94yYqXxtUWlDEI+GVrq5eT1UlVmu/hogkctjhRaLcleNrrWY9HaVWh2DGYuSq1zlKjkjKp1Qt6GmEorkXAX+5XEAwE85CUoVpNz08YX5w1U334frIiC3Xcl5S6BtrRux/Eqz/oorBIsT2O3/9qyn6y3Y95T6PQQ0JHiGso+CdS8C0ksMiMfdO/tONCxuqPK3mjggHWdrLv6c+/PBQbRKbOqZJFAq0Xze6J6ekVUiAQ0T5XmvEq1nP0hOwPem7wR8ehg5fN9fsLoilNYp/3l0vAdK6ClTTlpry7VYSNUDam8G9XSV2oFDEDROf2kzlZWVcDqdcLlcaNmypdnFUUXrhbDcVeMzwybQcJHy7j4QXydX4ajdhhrlrhrZuU12Hv0B972+15DP0VMeQHkyNrnp4wFgzYxfIDerjez38/48o/al2u0CkHzOewSR3LxEUsdWsO8Yyvcsd9Vg19EzmPP6nrAcB9uKKzB55Y6Ax6WGht89tIvkukRK5ZD63t7z0UglmqclJ0qWCZCerVrLflD6vktCCKLltiueB6Jgi4gqBTlqjjMl/ttXW+Zg25Srv6zQYhFq/RKu+ikctFy/2TJjMXrmN1HT2hEsQDKyxUQqsg9YbkBFC4lR/MujdJFSM318sDuXcLU+acnZ8Q5UvOdMSXUmBMxLJJLq6tBbnmBdNcnNw9dCJ9dd4B/Yzc3rgSXvBy70F6wckpM0ev1fKtF83cxcydYhqZYzrftBaZ4ZoxOs1XYbD+meIrsek7dQWgH0dAWrIVcmtWWVGz1oVM5RqPVLqN14VsVgxmL0HKhq5gwJFiDJbcOI9T2kRhXFCMCzk/viis7KE9tFcm4HpeRXLXOihGtUgFw+S8X5Cyh31cg2zUsFc0rBptqujnDOcxMKucraP7DbefQH2YUklcqhdWFMcbjskgnZPq1+4kR+3iPkAH0XX7kRj0oLUnpPfCh38dbbbbzr6JmwjgBSyr0L54U6WH2kZvRgdif5GanVMOLcsXNujBwGMxaj50ANVumonSnWfxtGre8hl8+RnBSveBJpucAaEfRktk2SXftKzUq2onDd+QTknPx0V3/vmr0hJX3qnYU5lO8Zjn2kZjSPf06TlHl5PTV9b6m5Ybz5D5fddfQMHA54AvlWCU1D3g+eCfj85vlRWpBSpHRuBbvoydVXkAj2jMyNU6rTwnWhDlYfSZ1H/qMHxUknQ80RM2KSULvmxshhzowFrS0qlbyrDEapr1dtH6m4DbmJt7zfs6/sDD4/+gMGZiQrJhrq6aPV8h4jk21f2FIckKhpdO5QqMpdNQELG4ZSzlDzDPR+TzGHKsbhCNpCF4zWwNf/2AIauj/z83qqmiFY3I7U3DBSieZq1vQy4lh5YWuxp6XH/7PlvjcQWs6EVH01pHtKWPMypL5LDID1s64Ky2zGauojufNITqj7Q+qY0TpJqNVmNfbHnBmb03tnodTXq/YuWNyG3Eq34p3V//vnXp+7jglXdMKfbr5ctlxa78LVdrcZvSz9XUOzAAcCLgh6thWuO59Up/aFDZWEMsmYWBFqHVZvZACq9RhYVVgieUF/dnJfjOnTUfXnev++elb9ltuWXmuLSj3HrQMNQ8aD5cWJQmk1kaqvyl01uH1wJl76aV/HALh9cIaq7am5wPrXKUBDa++457eFZXZeNfWRnu5HqX0uLiUi/DStg9I+UKoLpXK3vM8JK85qHAoGMxZl9IVQa4CkdIHbV3bGJ5ABGppTb8vtLHtXZOTnewtHsu1dQ7ICkmatxsicE6luk2A5QqFUhEYHoHLHgNQCheWuGqz8tCRgGzE/dfuEQio3KVKkLmRPfnDIZ+mGUGapDhZgeH93/9aBId3aovBIBf76aQleLCxRPFa0HFdSXWtG5+aI1Jxvcl314uhBf1L73H80pQPAkgnqzi0tk4QafQ5aQYzZBaDISXUmqF4fSDwxYx0NjZXeLRSfH/1B8j07j56JyOd7EysZb0YkkmopqxnU7h+1Jg5Ix9zRPeDAzxPurS0qlXytXEVY7qpR9VnBFvHUSsx18jf7tT0B36GkIrBFC2hYdsGqv7Uaavap/zEjCnbsrC0qxaAlGzF55Q4MWrJR9rgApIOqrYcrVB0reo6rqrp62dFgRlJ7vomzhj87qS/WzczFhH6XYN3MXKyZ8QvMz+sZ8H6goXuq3FUjOZpSQMOcQWrOLam60Jt3vWj0OWgFbJkhWXKtKQNlZrTtn2FsX7Wa1pxwJdvagdL+0doXrmXdpFBbw0JtVVL73QSoG7UXA2Cayi4Qq1K7T/1nqQ42c6zWO3g1y2HIHSvhGslpVE6I/76rqqv3mbk6WL7KXUOzPJNOinlWYh5OwzpmmZL7zg2oOrcCBggAspOE2n0dJikMZkiRVHdXTlprTLiiU0DOjNbEO7V942KzqNwQcTsPMwy1spX6ffR0AWm5kIRaEYYSgEp9t7TkRNmRRGpG7ZkV/Bp5odWTF6eG1gBDTd6I3LFi9EjOcOSEpDoTfObPEYfX35DTUXW+ilw3z4uflkjOOxQD5akCvKnN3bLSeWAUBjOky59uvhy35XbGzqNn0D+jteZARktFo+a14Uq2DadwDD3X2xeu5UJiREUY7C5Xy3dbNzNXdS6ImvVsIjHCIxwX2nAE9VoDjGB5I8GCLD3HlVwCcjhyQqSWSyh4/yCOaVzUVm66ijsHd8HKwm98ApqCCdmayqw2d0vr8WL1kU8MZqKEGQdaTpr2IAbQvuZLtCWqAdq+l5YLXyiz8mq5kBhx4fS/yw02Fb7cd6uuc6tasVzNejZq5hIxYjHXcB3TRgf1egIMqWNDbtZpNe9VW07v10ZyFm4AWPN5maZFbeWCxGmDM9CmRRyWvH/Q00UVTmqPFzuMfGIwEwXscKB501LRRGphSnHOE4fDgX4hznmihpah596jG4Jd+ELpAtJ6IQn1wql1KnylqerFCenkckHUBBDBXmPUeRbJxVaNoCfAkGod0BuY6BHOWbiluoIEADMGd8FLhSWeCS3FtbrkFqSVChKBhuR7ted7JNjlhpLBjImsdpcXqdYdLRVNUlys5EJ8RiaqhTIcUi+1iYvv7juhaT6ZULuAjAhQ1B5DWqfCDzZVvVzZy101eHf/iaABRLARHkadZ1qOf6s07dutGzdcOSGpzgTk5/X0zOQrEltVpg3OUD3XkFSQGGx+LzPYJfhmMGMgLRWP3F2e1srLqAMtkq07wSoacR8c+Nblc5cCBB9GqmcUj/8q2QIaLlzhvPNQm7goJVhCoFkJ0VqPIT1T4Wv9bkr7Um3Tf0bbRFXnmdpjT+2FNpQ6IpJBkFGfZXSZw3Ue3DUkCxB+mlgTgXWSmnwV7+e9XxPuUUZ69rFdRj4xmDGI1mROqbu8s9UXsfSDg5oCCiMONDOaEeUqGqWLT4wDWDczVzZPR+8oHqmYwS1ID4cM11BPucRFKXcMyQx7F5BWeo4huYt6v86tFY9ptd9NaV9qafoXX6NUJq3HXrALbSh1RCRuTDw3HMddmuss/21ktk1StcK2HuE6D/yHWRv1GWoCXb11kJrjQmrb4WrlMhqDGQMYMRdDvSBgiY6+UiMONLOaEf0rmmAXcrcAVNf5rwss/V4to3ikFpeUWjnZqNY0b2oSF/3LNW1QpqbPiAS9x5DcRd2IylNuXy4Ycyl+1SdVddM/oHyehbJQp9zzeuuISNyYyN1waPks/3PJe6FOq+Zk+DM6UBLrkSHdU1CYP1wyUNIbqKo5LpS2bYfpLxjMhEhtf7w3yYm7QlhlNtQDzSrNiMEu5FJlEiuAH6rqdI/iWTIh2zdn5qcTWSnQ8twp11z0rIdjxB1lsCnnjbwjMrKVKZRjSOqiYETlKVcmuUBGqjxqVuIOx82A3joi3DcmwW441HyW1LmkZzuRYpWh+qEEqsGOCzXbtnreFIOZEGjpj/cmdZc3N6+H56KoZhtS29R7oIWzGVFLRaD1Qu4/46beRGHxIrXr6Bk4flqjx7+sinfKBt4FSx4bo3ugzyWtDL0jMrorIhzHkNQxreV4CrVMcvvI//1G3Qz4fzef9bIA3DMsC8s3Fyt+TihlUbNv1dxwJMbFyE5wqWYbWsocbkYviCq1f9UGKaEEqsGOC7sk+SphMKOT1v54f1J3ea0SmprWLxmOZkStFYGWC7nUGjAO/Hz3qmcUz3U5yt1RUtPgh6MCCHeTbri6IsJdbj0XFr1l0rKPjAjk5L7b2ZqLWPLTTc7yzcUY17eT4gR0esvi//nz8noiu5Mz4MIb7IZjbN+OGPf8Ns92bh+ciemDM4Nuw+EAHAIkE2r9RSq52cjzROnYVRtIhNr6qXRcWKV1PhQOQZBYztNinnvuOfzhD3/AyZMnkZOTg2eeeQYDBw5U9d7Kyko4nU64XC60bNnSsDJtK67A5JU7Ah5X6o+X431yAsrD+eyi3FXjWXdEFOtwoDB/eNDvVe6qCUiK9a+85Pb/s5P6ok3z+KDrzchVhkrPrS0q9akMrr2sPTZ8cdLnNWq/o5nk9t2aGb8ImETOLP6/QyjHkx569pH/cauW3HdbNzPXExj4P65mTSUtM7v6f75IKmj0Pw/m5vVAn06tkBgXE1BeQHqqA/9tPDG+t6qg84WtxZ7W0HCPujTqPAl27Co9D8DnPJDab1q+v9JxEeq2w0HL9dvyLTNr167Fgw8+iBUrVuDKK6/EsmXLMGrUKBw6dAjt2rUzrVx6++P96c0wt7pQmi29uxfk9o/c/u+XoTzhndL+DvZb+E/BP+75bQHbn5vXw/K/kVw+RmJcjHmF8iK3/pKa48moc0XvOkF6PlPuXCk6ekby8eo6d9CLqZayKHX7SLVGyLV2Sc2RAkgv+KmUaC3nhS3FKNjw8/wuRicK+x87RrVWBKsL5VpN5EZ4hdL66Z1b5f1/wB5JvkqsUXspeOqppzBjxgxMmzYNvXr1wooVK5CYmIi//e1vppZLPACDLQmvRM2S92uLSjFoyUZMXrkDg5ZsxNqiUkO/R7hILUdv1JBxcQ0frftfaXtqfgug4XfPzWqDqrp6yYq7T6dWqr+fWfz3HdDwfcc9v83040vud0iKiw16PBl5rhhxfqsld64MyGgd8jmk9/O9eU8cKBLPA6lukFC2IafcVYMlGw4GPC61XT2kjh2jjgE1deHEAekozB+ONTN+gcL84RjSPUWx7lO739R8T2+hbNtslg5m6urqsGvXLowcOdLzWExMDEaOHInt27dLvqe2thaVlZU+f+HifwBqbZILNuOo2gusFRlREQTbP1r3v9L2gn2WPyOCNTNNHJCOdTNz4f0VrHB8BVt/Se54Cse5Eur5rZbcuZKT1joiAZVUcOtNa16GVEAT6rkhNx+U1BQKWikdO0YcA2rrQu9AQmt9pIadrydqWLqbqaKiAvX19Wjfvr3P4+3bt8fBg4FROgAUFBRg0aJFkSgegNBGEUV7hnkkhoxr2f/Bthfq6sBWnEhKSVVdvaalEiJB6TfyXn/J/3gK17kSyvmthdy5Eqmmf+/P2X/8LJ784JCu41rczqrPSvDi1hJVCb1qyCUez8vrGfI+UdMNFOpnaP0dw5GQa/frSTCWDmb0mD9/Ph588EHP/ysrK5GWlmZiieQ1hgzzUCoCowOGYNszYnVgO7Hi8RXsN5I7nqz4XbSS+26RCqjEz8nNahPS7LapzgQ8/KtemDYo07Bzw/+4iEFDIHPXkKyQtgtE7tjR8juG42YpGs4RJZYezVRXV4fExES88cYbGDt2rOfxKVOm4OzZs3j77beDbiNco5mMZLcM80jTO0pEz/aM/iyrs+rxped3sOp3IeOE6/y06rFj9Pe16veUo+X6belgBgCuvPJKDBw4EM888wwAwO12Iz09HbNnz0Z+fn7Q99shmAmmsV1gKbKi6fiKpu9CkdVYjh07fc+oGpr94IMPYsqUKejfvz8GDhyIZcuWoaqqCtOmTTO7aBETqWZmapyi6fiKpu9CkdVYjp1o/Z6WD2YmTpyI06dP45FHHsHJkydx+eWX44MPPghICiYiIqLGyfLdTKGKhm4mIiKixkbL9dvS88wQERERBcNghoiIiGyNwQwRERHZGoMZIiIisjUGM0RERGRrDGaIiIjI1hjMEBERka0xmCEiIiJbYzBDREREtmb55QxCJU5wXFlZaXJJiIiISC3xuq1moYKoD2bOnTsHAEhLSzO5JERERKTVuXPn4HQ6FV8T9Wszud1unDhxAi1atIDD4TC7OBFXWVmJtLQ0lJWVcW2qEHA/GoP70Rjcj8bgfjRGuPajIAg4d+4cOnbsiJgY5ayYqG+ZiYmJwSWXXGJ2MUzXsmVLnqwG4H40BvejMbgfjcH9aIxw7MdgLTIiJgATERGRrTGYISIiIltjMBPl4uPj8eijjyI+Pt7sotga96MxuB+Nwf1oDO5HY1hhP0Z9AjARERFFN7bMEBERka0xmCEiIiJbYzBDREREtsZghoiIiGyNwUyU2Lp1K66//np07NgRDocDb731ls/zgiDgkUceQWpqKhISEjBy5EgcPnzYnMJaWLD9OHXqVDgcDp+/0aNHm1NYiyooKMCAAQPQokULtGvXDmPHjsWhQ4d8XnPhwgXMmjULbdq0QfPmzTFhwgR89913JpXYmtTsx2HDhgUcj3fffbdJJbam5cuXo0+fPp4J3XJzc7FhwwbP8zwW1Qm2H80+FhnMRImqqirk5OTgueeek3z+ySefxNNPP40VK1Zgx44dSEpKwqhRo3DhwoUIl9Tagu1HABg9ejTKy8s9f2vWrIlgCa1vy5YtmDVrFv7zn//g448/xsWLF3HttdeiqqrK85oHHngA//73v/Gvf/0LW7ZswYkTJzB+/HgTS209avYjAMyYMcPneHzyySdNKrE1XXLJJViyZAl27dqFnTt34pprrsGNN96IL7/8EgCPRbWC7UfA5GNRoKgDQFi/fr3n/263W+jQoYPwhz/8wfPY2bNnhfj4eGHNmjUmlNAe/PejIAjClClThBtvvNGU8tjVqVOnBADCli1bBEFoOPaaNm0q/Otf//K85quvvhIACNu3bzermJbnvx8FQRCGDh0q3HfffeYVyqZat24tvPjiizwWQyTuR0Ew/1hky0wjUFJSgpMnT2LkyJGex5xOJ6688kps377dxJLZ0+bNm9GuXTv06NED99xzD77//nuzi2RpLpcLAJCcnAwA2LVrFy5evOhzPPbs2RPp6ek8HhX470fRP/7xD7Rt2xa9e/fG/PnzUV1dbUbxbKG+vh6vv/46qqqqkJuby2NRJ//9KDLzWIz6hSYJOHnyJACgffv2Po+3b9/e8xypM3r0aIwfPx6ZmZkoLi7Gww8/jLy8PGzfvh2xsbFmF89y3G437r//fgwaNAi9e/cG0HA8xsXFoVWrVj6v5fEoT2o/AsDkyZPRuXNndOzYEfv378e8efNw6NAhrFu3zsTSWs+BAweQm5uLCxcuoHnz5li/fj169eqFvXv38ljUQG4/AuYfiwxmiDS45ZZbPP/Ozs5Gnz59kJWVhc2bN2PEiBEmlsyaZs2ahS+++AKFhYVmF8XW5PbjnXfe6fl3dnY2UlNTMWLECBQXFyMrKyvSxbSsHj16YO/evXC5XHjjjTcwZcoUbNmyxexi2Y7cfuzVq5fpxyK7mRqBDh06AEBAhv53333neY706dKlC9q2bYsjR46YXRTLmT17Nt59911s2rQJl1xyiefxDh06oK6uDmfPnvV5PY9HaXL7UcqVV14JADwe/cTFxaFr167o168fCgoKkJOTg7/85S88FjWS249SIn0sMphpBDIzM9GhQwd88sknnscqKyuxY8cOn/5O0u748eP4/vvvkZqaanZRLEMQBMyePRvr16/Hxo0bkZmZ6fN8v3790LRpU5/j8dChQygtLeXx6CXYfpSyd+9eAODxGITb7UZtbS2PxRCJ+1FKpI9FdjNFifPnz/tEwCUlJdi7dy+Sk5ORnp6O+++/H4sXL0a3bt2QmZmJBQsWoGPHjhg7dqx5hbYgpf2YnJyMRYsWYcKECejQoQOKi4sxd+5cdO3aFaNGjTKx1NYya9YsvPbaa3j77bfRokULT+6B0+lEQkICnE4nbr/9djz44INITk5Gy5Ytce+99yI3Nxe/+MUvTC69dQTbj8XFxXjttdfwq1/9Cm3atMH+/fvxwAMPYMiQIejTp4/JpbeO+fPnIy8vD+np6Th37hxee+01bN68GR9++CGPRQ2U9qMljkXTxlGRoTZt2iQACPibMmWKIAgNw7MXLFggtG/fXoiPjxdGjBghHDp0yNxCW5DSfqyurhauvfZaISUlRWjatKnQuXNnYcaMGcLJkyfNLralSO0/AMKqVas8r6mpqRFmzpwptG7dWkhMTBTGjRsnlJeXm1doCwq2H0tLS4UhQ4YIycnJQnx8vNC1a1fhd7/7neByucwtuMVMnz5d6Ny5sxAXFyekpKQII0aMED766CPP8zwW1VHaj1Y4Fh2CIAiRCZuIiIiIjMecGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIaIiIhsjcEMERER2RqDGSIiIrI1BjNEZJq6ujqzixDAimUiImUMZojIMMOGDcPs2bMxe/ZsOJ1OtG3bFgsWLIC4akpGRgZ+//vf47bbbkPLli1x5513AgAKCwtx9dVXIyEhAWlpaZgzZw6qqqo8233++efRrVs3NGvWDO3bt8dNN93kee6NN95AdnY2EhIS0KZNG4wcOdLz3mHDhuH+++/3KePYsWMxdepUz//1lomIrIPBDBEZ6uWXX0aTJk3w+eef4y9/+QueeuopvPjii57n//jHPyInJwd79uzBggULUFxcjNGjR2PChAnYv38/1q5di8LCQsyePRsAsHPnTsyZMwePPfYYDh06hA8++ABDhgwBAJSXl2PSpEmYPn06vvrqK2zevBnjx4+H1iXntJaJiKyFC00SkWGGDRuGU6dO4csvv4TD4QAA5Ofn45133sF///tfZGRkoG/fvli/fr3nPXfccQdiY2PxwgsveB4rLCzE0KFDUVVVhffffx/Tpk3D8ePH0aJFC5/P2717N/r164ejR4+ic+fOkuW5/PLLsWzZMs9jY8eORatWrbB69WoA0FWmZs2ahbSfiMhYbJkhIkP94he/8AQyAJCbm4vDhw+jvr4eANC/f3+f1+/btw+rV69G8+bNPX+jRo2C2+1GSUkJfvnLX6Jz587o0qULbr31VvzjH/9AdXU1ACAnJwcjRoxAdnY2fv3rX2PlypU4c+aM5jJrLRMRWQuDGSKKqKSkJJ//nz9/HnfddRf27t3r+du3bx8OHz6MrKwstGjRArt378aaNWuQmpqKRx55BDk5OTh79ixiY2Px8ccfY8OGDejVqxeeeeYZ9OjRwxNwxMTEBHQ5Xbx4MeQyEZG1MJghIkPt2LHD5///+c9/0K1bN8TGxkq+/oorrsB///tfdO3aNeAvLi4OANCkSROMHDkSTz75JPbv34+jR49i48aNAACHw4FBgwZh0aJF2LNnD+Li4jxdRikpKSgvL/d8Vn19Pb744oug30FNmYjIOhjMEJGhSktL8eCDD+LQoUNYs2YNnnnmGdx3332yr583bx62bduG2bNnY+/evTh8+DDefvttT7Ltu+++i6effhp79+7FsWPH8Morr8DtdqNHjx7YsWMHnnjiCezcuROlpaVYt24dTp8+jUsvvRQAcM011+C9997De++9h4MHD+Kee+7B2bNng36HYGUiImtpYnYBiCi63HbbbaipqcHAgQMRGxuL++67zzPcWUqfPn2wZcsW/M///A+uvvpqCIKArKwsTJw4EQDQqlUrrFu3DgsXLsSFCxfQrVs3rFmzBpdddhm++uorbN26FcuWLUNlZSU6d+6MP/3pT8jLywMATJ8+Hfv27cNtt92GJk2a4IEHHsDw4cODfodgZSIia+FoJiIyjNToISKicGM3ExEREdkagxkiIiKyNXYzERERka2xZYaIiIhsjcEMERER2RqDGSIiIrI1BjNERERkawxmiIiIyNYYzBAREZGtMZghIiIiW2MwQ0RERLbGYIaIiIhs7f8D+wfn2xM8vM8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6gUlEQVR4nO3de1wU5f4H8M+CgqACKncFQU2RBLxmeEFNj0h0Me2Xt7xbR1NLK0MrK7sI2TmnrFPa0dLOKcsu1ilNzeNdIUMTb6UlYViCSsqSgKDs8/uDdtrLzN6X3WU/79eLc3JmdvaZ2ZlnvvNcVUIIASIiIiIv5uPqBBARERG5GgMiIiIi8noMiIiIiMjrMSAiIiIir8eAiIiIiLweAyIiIiLyegyIiIiIyOsxICIiIiKvx4CIiIiIvB4DIiLyGM888wxUKpVF26pUKjzzzDNOTc/gwYMxePBgt90fEVmOARERWW3t2rVQqVTSX5MmTdC2bVtMmTIFv/76q6uT53bi4uL0zld4eDgGDhyITz/91CH7r6qqwjPPPINdu3Y5ZH9E3ogBERHZ7Nlnn8V//vMfrFy5EhkZGXj33XcxaNAgXL161Snf9+STT6K6utop+3a27t274z//+Q/+85//4NFHH8W5c+cwatQorFy50u59V1VVYcmSJQyIiOzQxNUJICLPlZGRgd69ewMAZsyYgdDQULz44ov4/PPPcc899zj8+5o0aYImTTwz22rbti3uvfde6d+TJk1Cp06d8PLLL2PmzJkuTBkRASwhIiIHGjhwIACgsLBQb/nJkydx9913o3Xr1mjWrBl69+6Nzz//XG+ba9euYcmSJbjhhhvQrFkztGnTBgMGDMC2bdukbeTaENXU1GD+/PkICwtDy5Ytcccdd+CXX34xStuUKVMQFxdntFxun2vWrMEtt9yC8PBw+Pv7IzExEStWrLDqXJgTGRmJrl27oqioyOR2Fy5cwPTp0xEREYFmzZohJSUF77zzjrT+zJkzCAsLAwAsWbJEqpZzdvsposbGM1+1iMgtnTlzBgDQqlUradmJEyfQv39/tG3bFgsXLkTz5s3x4YcfYuTIkfjkk09w1113AagPTLKzszFjxgzcdNNNqKiowMGDB/Htt9/iL3/5i+J3zpgxA++++y7Gjx+Pfv36YceOHcjMzLTrOFasWIEbb7wRd9xxB5o0aYIvvvgCDzzwADQaDWbPnm3XvrWuXbuGs2fPok2bNorbVFdXY/DgwTh9+jTmzJmD+Ph4fPTRR5gyZQrKy8vx0EMPISwsDCtWrMCsWbNw1113YdSoUQCA5ORkh6STyGsIIiIrrVmzRgAQ//vf/8TFixfF2bNnxccffyzCwsKEv7+/OHv2rLTt0KFDRVJSkrh69aq0TKPRiH79+okbbrhBWpaSkiIyMzNNfu/TTz8tdLOtgoICAUA88MADetuNHz9eABBPP/20tGzy5Mmiffv2ZvcphBBVVVVG26Wnp4sOHTroLRs0aJAYNGiQyTQLIUT79u3F8OHDxcWLF8XFixfFkSNHxNixYwUAMXfuXMX9vfLKKwKAePfdd6VltbW1IjU1VbRo0UJUVFQIIYS4ePGi0fESkXVYZUZENhs2bBjCwsIQExODu+++G82bN8fnn3+Odu3aAQAuXbqEHTt24J577sHvv/+OsrIylJWV4bfffkN6ejp+/PFHqVdaSEgITpw4gR9//NHi7//yyy8BAA8++KDe8nnz5tl1XAEBAdJ/q9VqlJWVYdCgQfjpp5+gVqtt2udXX32FsLAwhIWFISUlBR999BEmTpyIF198UfEzX375JSIjIzFu3DhpWdOmTfHggw/iypUr2L17t01pISJjrDIjIpu9/vrr6Ny5M9RqNd5++23s2bMH/v7+0vrTp09DCIHFixdj8eLFsvu4cOEC2rZti2effRZ33nknOnfujG7dumHEiBGYOHGiyaqfn3/+GT4+PujYsaPe8i5duth1XPv378fTTz+NvLw8VFVV6a1Tq9UIDg62ep99+/bF888/D5VKhcDAQHTt2hUhISEmP/Pzzz/jhhtugI+P/rtr165dpfVE5BgMiIjIZjfddJPUy2zkyJEYMGAAxo8fj1OnTqFFixbQaDQAgEcffRTp6emy++jUqRMAIC0tDYWFhfjvf/+Lr776CqtXr8bLL7+MlStXYsaMGXanVWlAx7q6Or1/FxYWYujQoUhISMA//vEPxMTEwM/PD19++SVefvll6ZisFRoaimHDhtn0WSJyPgZEROQQvr6+yM7OxpAhQ/DPf/4TCxcuRIcOHQDUV/NYEgy0bt0aU6dOxdSpU3HlyhWkpaXhmWeeUQyI2rdvD41Gg8LCQr1SoVOnThlt26pVK5SXlxstNyxl+eKLL1BTU4PPP/8csbGx0vKdO3eaTb+jtW/fHkePHoVGo9ErJTp58qS0HlAO9ojIcmxDREQOM3jwYNx000145ZVXcPXqVYSHh2Pw4MF48803UVJSYrT9xYsXpf/+7bff9Na1aNECnTp1Qk1NjeL3ZWRkAABeffVVveWvvPKK0bYdO3aEWq3G0aNHpWUlJSVGo0X7+voCAIQQ0jK1Wo01a9YopsNZbr31VpSWlmL9+vXSsuvXr+O1115DixYtMGjQIABAYGAgAMgGfERkGZYQEZFDLViwAP/3f/+HtWvXYubMmXj99dcxYMAAJCUl4b777kOHDh1w/vx55OXl4ZdffsGRI0cAAImJiRg8eDB69eqF1q1b4+DBg/j4448xZ84cxe/q3r07xo0bhzfeeANqtRr9+vXD9u3bcfr0aaNtx44di6ysLNx111148MEHUVVVhRUrVqBz58749ttvpe2GDx8OPz8/3H777fjrX/+KK1euYNWqVQgPD5cN6pzp/vvvx5tvvokpU6bg0KFDiIuLw8cff4z9+/fjlVdeQcuWLQHUNwJPTEzE+vXr0blzZ7Ru3RrdunVDt27dGjS9RB7N1d3ciMjzaLvd5+fnG62rq6sTHTt2FB07dhTXr18XQghRWFgoJk2aJCIjI0XTpk1F27ZtxW233SY+/vhj6XPPP/+8uOmmm0RISIgICAgQCQkJ4oUXXhC1tbXSNnJd5Kurq8WDDz4o2rRpI5o3by5uv/12cfbsWdlu6F999ZXo1q2b8PPzE126dBHvvvuu7D4///xzkZycLJo1aybi4uLEiy++KN5++20BQBQVFUnbWdPt3tyQAkr7O3/+vJg6daoIDQ0Vfn5+IikpSaxZs8bos7m5uaJXr17Cz8+PXfCJbKASQqdcmIiIiMgLsQ0REREReT0GREREROT1GBARERGR13NpQLRixQokJycjKCgIQUFBSE1NxebNm6X1gwcPlmZu1v7NnDlTbx/FxcXIzMxEYGAgwsPDsWDBAly/fl1vm127dqFnz57w9/dHp06dsHbt2oY4PCIiIvIQLu12365dO+Tk5OCGG26AEALvvPMO7rzzThw+fBg33ngjAOC+++7Ds88+K31GO94GUD/CbGZmJiIjI5Gbm4uSkhJMmjQJTZs2xdKlSwEARUVFyMzMxMyZM/Hee+9h+/btmDFjBqKiohRHziUiIiLv4na9zFq3bo2XXnoJ06dPx+DBg9G9e3fZQdYAYPPmzbjttttw7tw5REREAABWrlyJrKwsXLx4EX5+fsjKysKmTZtw/Phx6XNjx45FeXk5tmzZ0hCHRERERG7ObQZmrKurw0cffYTKykqkpqZKy9977z28++67iIyMxO23347FixdLpUR5eXlISkqSgiEASE9Px6xZs3DixAn06NEDeXl5RlMGpKenWz0btkajwblz59CyZUsOk09EROQhhBD4/fffER0dbTRRsi6XB0THjh1Damoqrl69ihYtWuDTTz9FYmIiAGD8+PFo3749oqOjcfToUWRlZeHUqVPYsGEDAKC0tFQvGAIg/bu0tNTkNhUVFaiurkZAQIBsumpqavSmDPj111+ldBEREZFnOXv2LNq1a6e43uUBUZcuXVBQUAC1Wo2PP/4YkydPxu7du5GYmIj7779f2i4pKQlRUVEYOnQoCgsL0bFjR6emKzs7G0uWLDFafvbsWQQFBTn1u4mIiMgxKioqEBMTI011o8TlAZGfnx86deoEAOjVqxfy8/OxfPlyvPnmm0bb9u3bFwBw+vRpdOzYEZGRkfjmm2/0tjl//jwAIDIyUvp/7TLdbYKCghRLhwBg0aJFePjhh6V/a0+otkccEREReQ5zzV3cbhwijUajOLt1QUEBACAqKgoAkJqaimPHjuHChQvSNtu2bUNQUJBUvZWamort27fr7Wfbtm167ZTk+Pv7S8EPgyAiIqLGzaUlRIsWLUJGRgZiY2Px+++/Y926ddi1axe2bt2KwsJCrFu3DrfeeivatGmDo0ePYv78+UhLS0NycjKA+lmpExMTMXHiRCxbtgylpaV48sknMXv2bPj7+wMAZs6ciX/+85947LHHMG3aNOzYsQMffvghNm3a5MpDJyIiIjfi0oDowoULmDRpEkpKShAcHIzk5GRs3boVf/nLX3D27Fn873//wyuvvILKykrExMRg9OjRePLJJ6XP+/r6YuPGjZg1axZSU1PRvHlzTJ48WW/covj4eGzatAnz58/H8uXL0a5dO6xevZpjEBEREZHE7cYhclcVFRUIDg6GWq1m9RkRUSNTV1eHa9euuToZZIOmTZvC19dXcb2lz2+XN6omIiJyFSEESktLUV5e7uqkkB1CQkIQGRlp1ziBDIiIiMhraYOh8PBwBAYGcuBdDyOEQFVVldS5StvpyhYMiIiIyCvV1dVJwVCbNm1cnRyykXYInQsXLiA8PNxk9ZkpbtftnoiIqCFo2wzpThpOnkn7G9rTDowBEREReTVWk3k+R/yGDIiIiIjI6zEgIiIiIgD1JS2fffaZq5OhZ9euXVCpVE7vCciAyMVK1NXILSxDibra1UkhIiIv8cwzz6B79+6uToZbYS8zF1qfX4xFG45BIwAfFZA9Kglj+sS6OllERERehyVELlKirpaCIQDQCODxDcdZUkRERGZpNBpkZ2cjPj4eAQEBSElJwccffwzgzyqm7du3o3fv3ggMDES/fv1w6tQpAMDatWuxZMkSHDlyBCqVCiqVCmvXrpX2XVZWhrvuuguBgYG44YYb8Pnnn1uUJu33bt26FT169EBAQABuueUWXLhwAZs3b0bXrl0RFBSE8ePHo6qqSvpcTU0NHnzwQYSHh6NZs2YYMGAA8vPzHXeyLMSAyEWKyiqlYEirTgicKauS/wAREbm1hmwCkZ2djX//+99YuXIlTpw4gfnz5+Pee+/F7t27pW2eeOIJ/P3vf8fBgwfRpEkTTJs2DQAwZswYPPLII7jxxhtRUlKCkpISjBkzRvrckiVLcM899+Do0aO49dZbMWHCBFy6dMnitD3zzDP45z//idzcXJw9exb33HMPXnnlFaxbtw6bNm3CV199hddee03a/rHHHsMnn3yCd955B99++y06deqE9PR0q77TERgQuUh8aHP4GPQS9FWpEBfK8TCIiDzN+vxi9M/ZgfGrDqB/zg6szy922nfV1NRg6dKlePvtt5Geno4OHTpgypQpuPfee/Hmm29K273wwgsYNGgQEhMTsXDhQuTm5uLq1asICAhAixYt0KRJE0RGRiIyMlIa3BAApkyZgnHjxqFTp05YunQprly5gm+++cbi9D3//PPo378/evTogenTp2P37t1YsWIFevTogYEDB+Luu+/Gzp07AQCVlZVYsWIFXnrpJWRkZCAxMRGrVq1CQEAA3nrrLcedNAswIHKRqOAAZI9Kgu8fYyf4qlRYOqobooIDzHySiIjcSUM3gTh9+jSqqqrwl7/8BS1atJD+/v3vf6OwsFDaLjk5Wfpv7ZQW2ikuTNH9XPPmzREUFGTR5+Q+HxERgcDAQHTo0EFvmXZ/hYWFuHbtGvr37y+tb9q0KW666SZ8//33Fn+nI7BRtQuN6ROLtM5hOFNWhbjQQAZDREQeyFQTCGfk61euXAEAbNq0CW3bttVb5+/vLwVFTZs2lZZrBy7UaDRm96/7Oe1nLfmc3OdVKpXd+2soDIhcLCo4gIEQEZEH0zaB0A2KnNkEIjExEf7+/iguLsagQYOM1uuWEinx8/NDXV2dM5JnlY4dO8LPzw/79+9H+/btAdRPv5Gfn4958+Y1aFoYEBEREdlB2wTi8Q3HUSeE05tAtGzZEo8++ijmz58PjUaDAQMGQK1WY//+/QgKCpICC1Pi4uJQVFSEgoICtGvXDi1btoS/v79T0mtK8+bNMWvWLCxYsACtW7dGbGwsli1bhqqqKkyfPr1B08KAiIiIyE4N3QTiueeeQ1hYGLKzs/HTTz8hJCQEPXv2xOOPP25RddTo0aOxYcMGDBkyBOXl5VizZg2mTJni1DQrycnJgUajwcSJE/H777+jd+/e2Lp1K1q1atWg6VAJIYT5zaiiogLBwcFQq9UICgpydXKIiMhOV69eRVFREeLj49GsWTNXJ4fsYOq3tPT5zV5mRERE5PUYEBEREZFZM2fO1Ovmr/s3c+ZMVyfPbmxDRERERGY9++yzePTRR2XXNYamJAyIiIiIyKzw8HCEh4e7OhlOwyozIiIi8noMiIiIyKu546jJZB1H/IasMiMiIq/k5+cHHx8fnDt3DmFhYfDz85OmuCDPIIRAbW0tLl68CB8fH/j5+dm8LwZERETklXx8fBAfH4+SkhKcO3fO1ckhOwQGBiI2NhY+PrZXfDEgIiIir+Xn54fY2Fhcv37dLeb2Iuv5+vqiSZMmdpfuMSAiIiKvpp2R3XBWdvIubFRNREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GREREROT1GBARERGR12NARERERF6PARERERF5PQZERERE5PUYEBEREZHXc2lAtGLFCiQnJyMoKAhBQUFITU3F5s2bpfVXr17F7Nmz0aZNG7Ro0QKjR4/G+fPn9fZRXFyMzMxMBAYGIjw8HAsWLMD169f1ttm1axd69uwJf39/dOrUCWvXrm2IwyMiIiIP4dKAqF27dsjJycGhQ4dw8OBB3HLLLbjzzjtx4sQJAMD8+fPxxRdf4KOPPsLu3btx7tw5jBo1Svp8XV0dMjMzUVtbi9zcXLzzzjtYu3YtnnrqKWmboqIiZGZmYsiQISgoKMC8efMwY8YMbN26tcGPl4iIiNyTSgghXJ0IXa1bt8ZLL72Eu+++G2FhYVi3bh3uvvtuAMDJkyfRtWtX5OXl4eabb8bmzZtx22234dy5c4iIiAAArFy5EllZWbh48SL8/PyQlZWFTZs24fjx49J3jB07FuXl5diyZYvF6aqoqEBwcDDUajWCgoIce9BERETkFJY+v92mDVFdXR0++OADVFZWIjU1FYcOHcK1a9cwbNgwaZuEhATExsYiLy8PAJCXl4ekpCQpGAKA9PR0VFRUSKVMeXl5evvQbqPdh5KamhpUVFTo/REREVHj5PKA6NixY2jRogX8/f0xc+ZMfPrpp0hMTERpaSn8/PwQEhKit31ERARKS0sBAKWlpXrBkHa9dp2pbSoqKlBdXa2YruzsbAQHB0t/MTEx9h4qERERuSmXB0RdunRBQUEBDhw4gFmzZmHy5Mn47rvvXJ0sLFq0CGq1Wvo7e/asq5NERERETtLE1Qnw8/NDp06dAAC9evVCfn4+li9fjjFjxqC2thbl5eV6pUTnz59HZGQkACAyMhLffPON3v60vdB0tzHsmXb+/HkEBQUhICBAMV3+/v7w9/e3+/iIiIjI/bm8hMiQRqNBTU0NevXqhaZNm2L79u3SulOnTqG4uBipqakAgNTUVBw7dgwXLlyQttm2bRuCgoKQmJgobaO7D+022n0QERERubSEaNGiRcjIyEBsbCx+//13rFu3Drt27cLWrVsRHByM6dOn4+GHH0br1q0RFBSEuXPnIjU1FTfffDMAYPjw4UhMTMTEiROxbNkylJaW4sknn8Ts2bOl0p2ZM2fin//8Jx577DFMmzYNO3bswIcffohNmza58tCJiIjIjbg0ILpw4QImTZqEkpISBAcHIzk5GVu3bsVf/vIXAMDLL78MHx8fjB49GjU1NUhPT8cbb7whfd7X1xcbN27ErFmzkJqaiubNm2Py5Ml49tlnpW3i4+OxadMmzJ8/H8uXL0e7du2wevVqpKenN/jxEhERkXtyu3GI3BXHISIiIvI8HjcOEREREZGrMCAiIiIir8eAiIiIiLweAyI3UaKuRm5hGUrUyqNnExERkXO4fGBGAtbnF2PRhmPQCMBHBWSPSsKYPrGuThYREZHXYAmRi5Woq6VgCAA0Anh8w3GWFBERETUgBkQuVlRWKQVDWnVC4ExZlWsSRERE5IUYELlYfGhz+Kj0l/mqVIgLDXRNgoiIiLwQAyIXiwoOQPaoJPiq6qMiX5UKS0d1Q1Sw8sSzRERE5FhsVO0GxvSJRVrnMJwpq0JcaCCDISIiogbGgMhNRAUHMBAiIiJyEVaZERERkddjQERERERejwEREREReT0GREREROT1GBARERGR12NARERERF6PARERERF5PQZERERE5PUYEBEREZHXY0BEREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GRG6iRF2N3MIylKirXZ0UIiIir9PE1QkgYH1+MRZtOAaNAHxUQPaoJIzpE+vqZBEREXkNlhC5WIm6WgqGAEAjgMc3HGdJERERUQNiQORiRWWVUjCkVScEzpRVuSZBREREXogBkYvFhzaHj0p/ma9KhbjQQNckiIiIyAsxIHKxqOAAZI9Kgq+qPiryVamwdFQ3RAUHuDhlRERE3oONqt3AmD6xSOschjNlVYgLDWQwRERE1MAYELmJqOAABkJEREQuwiozIiIi8noMiIiIiMjrMSAiIiIir8eAiIiIiLweAyIiIiLyei4NiLKzs9GnTx+0bNkS4eHhGDlyJE6dOqW3zeDBg6FSqfT+Zs6cqbdNcXExMjMzERgYiPDwcCxYsADXr1/X22bXrl3o2bMn/P390alTJ6xdu9bZh0dEREQewqUB0e7duzF79mx8/fXX2LZtG65du4bhw4ejsrJSb7v77rsPJSUl0t+yZcukdXV1dcjMzERtbS1yc3PxzjvvYO3atXjqqaekbYqKipCZmYkhQ4agoKAA8+bNw4wZM7B169YGO1YiIiJyXyohhDC/WcO4ePEiwsPDsXv3bqSlpQGoLyHq3r07XnnlFdnPbN68GbfddhvOnTuHiIgIAMDKlSuRlZWFixcvws/PD1lZWdi0aROOHz8ufW7s2LEoLy/Hli1bLEpbRUUFgoODoVarERQUZN+BEhERUYOw9PntVm2I1Go1AKB169Z6y9977z2EhoaiW7duWLRoEaqq/pz4NC8vD0lJSVIwBADp6emoqKjAiRMnpG2GDRumt8/09HTk5eUppqWmpgYVFRV6f0RERNQ4uc1I1RqNBvPmzUP//v3RrVs3afn48ePRvn17REdH4+jRo8jKysKpU6ewYcMGAEBpaaleMARA+ndpaanJbSoqKlBdXY2AAOMRorOzs7FkyRKHHiMRERG5J7cJiGbPno3jx49j3759esvvv/9+6b+TkpIQFRWFoUOHorCwEB07dnRaehYtWoSHH35Y+ndFRQViYmKc9n1ERETkOm5RZTZnzhxs3LgRO3fuRLt27Uxu27dvXwDA6dOnAQCRkZE4f/683jbaf0dGRprcJigoSLZ0CAD8/f0RFBSk90dERESNk0sDIiEE5syZg08//RQ7duxAfHy82c8UFBQAAKKiogAAqampOHbsGC5cuCBts23bNgQFBSExMVHaZvv27Xr72bZtG1JTUx10JEREROTJXBoQzZ49G++++y7WrVuHli1borS0FKWlpaiurgYAFBYW4rnnnsOhQ4dw5swZfP7555g0aRLS0tKQnJwMABg+fDgSExMxceJEHDlyBFu3bsWTTz6J2bNnw9/fHwAwc+ZM/PTTT3jsscdw8uRJvPHGG/jwww8xf/58lx07ERERuQ+XdrtXqVSyy9esWYMpU6bg7NmzuPfee3H8+HFUVlYiJiYGd911F5588km9Kqyff/4Zs2bNwq5du9C8eXNMnjwZOTk5aNLkzyZSu3btwvz58/Hdd9+hXbt2WLx4MaZMmWJxWtntnoiIyPNY+vx2q3GI3BkDIiIiIs/jkeMQEREREbkCAyIiIiLyegyIiIiIyOsxICIiIiKvx4CIiIiIvB4DIhcrUVcjt7AMJepqVyeFiIjIa7nNXGbeaH1+MRZtOAaNAHxUQPaoJIzpE+vqZBEREXkdlhC5SIm6WgqGAEAjgMc3HGdJERERkQswIHKRorJKKRjSqhMCZ8qqXJMgIiIiL8aAyEXiQ5vDx2DmEl+VCnGhga5JEBERkRdjQOQiUcEByB6VBN8/5nPzVamwdFQ3RAUHuDhlRERE3oeNql1oTJ9YpHUOw5myKsSFBjIYIiIichEGRC4WFRzAQIiIiMjFWGVGREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GREREROT1GBARERGR12NA5CFK1NXILSxDibra1UkhIiJqdDhStQdYn1+MRRuOQSMAHxWQPSoJY/rEujpZREREjQZLiNxcibpaCoYAQCOAxzccZ0kRERGRAzEgcnNFZZVSMKRVJwTOlFW5JkFERESNEAMiNxcf2hw+Kv1lvioV4kIDXZMgIiKiRogBkZuLCg5A9qgk+KrqoyJflQpLR3VDVHCAi1NGRETUeLBRtQcY0ycWaZ3DcKasCnGhgQyGiIiIHIwBkYeICg5gIEREROQkrDIjIiIir8eAiIiIiLweAyIiIiLyegyIiIiIyOsxICIiIiKvx4CIiIiIvB4DIiIiIvJ6DIiIiIjI6zEgIiIiIq/HgIiIiIi8nksDouzsbPTp0wctW7ZEeHg4Ro4ciVOnTultc/XqVcyePRtt2rRBixYtMHr0aJw/f15vm+LiYmRmZiIwMBDh4eFYsGABrl+/rrfNrl270LNnT/j7+6NTp05Yu3atsw+PiIiIPIRLA6Ldu3dj9uzZ+Prrr7Ft2zZcu3YNw4cPR2VlpbTN/Pnz8cUXX+Cjjz7C7t27ce7cOYwaNUpaX1dXh8zMTNTW1iI3NxfvvPMO1q5di6eeekrapqioCJmZmRgyZAgKCgowb948zJgxA1u3bm3Q4yUiIiL3pBJCCFcnQuvixYsIDw/H7t27kZaWBrVajbCwMKxbtw533303AODkyZPo2rUr8vLycPPNN2Pz5s247bbbcO7cOURERAAAVq5ciaysLFy8eBF+fn7IysrCpk2bcPz4cem7xo4di/LycmzZssWitFVUVCA4OBhqtRpBQUGOP3giIiJyOEuf327VhkitVgMAWrduDQA4dOgQrl27hmHDhknbJCQkIDY2Fnl5eQCAvLw8JCUlScEQAKSnp6OiogInTpyQttHdh3Yb7T6IiIjIuzVxdQK0NBoN5s2bh/79+6Nbt24AgNLSUvj5+SEkJERv24iICJSWlkrb6AZD2vXadaa2qaioQHV1NQICAozSU1NTg5qaGunfFRUV9h0gERERuS23KSGaPXs2jh8/jg8++MDVSQFQ3+A7ODhY+ouJiXF1koiIiMhJ3CIgmjNnDjZu3IidO3eiXbt20vLIyEjU1taivLxcb/vz588jMjJS2saw15n23+a2CQoKki0dAoBFixZBrVZLf2fPnrXrGImIiMh9uTQgEkJgzpw5+PTTT7Fjxw7Ex8frre/VqxeaNm2K7du3S8tOnTqF4uJipKamAgBSU1Nx7NgxXLhwQdpm27ZtCAoKQmJiorSN7j6022j3Icff3x9BQUF6f0RERNQ4WdzLzJo2NJYGDw888ADWrVuH//73v+jSpYu0PDg4WCq5mTVrFr788kusXbsWQUFBmDt3LgAgNzcXQH23++7duyM6OhrLli1DaWkpJk6ciBkzZmDp0qUA6rvdd+vWDbNnz8a0adOwY8cOPPjgg9i0aRPS09MtSit7mREREXkeS5/fFgdEPj4+UKlUJrcRQkClUqGurs6iRCrtb82aNZgyZQqA+oEZH3nkEbz//vuoqalBeno63njjDak6DAB+/vlnzJo1C7t27ULz5s0xefJk5OTkoEmTP9uM79q1C/Pnz8d3332Hdu3aYfHixdJ3WIIBERERkedxeEC0e/dui7980KBBFm/rKRgQEREReR5Ln98Wd7tvjEEOEREREWDHOETl5eV466238P333wMAbrzxRkybNg3BwcEOSxwRERFRQ7Cpl9nBgwfRsWNHvPzyy7h06RIuXbqEf/zjH+jYsSO+/fZbR6eRiIiIyKlsmsts4MCB6NSpE1atWiU1XL5+/TpmzJiBn376CXv27HF4Ql2NbYiIiIg8j8MbVesKCAjA4cOHkZCQoLf8u+++Q+/evVFVVWV9it0cAyIiIiLP49TJXYOCglBcXGy0/OzZs2jZsqUtuyQDJepq5BaWoURd7eqkEBERNXo2NaoeM2YMpk+fjr/97W/o168fAGD//v1YsGABxo0b59AEeqP1+cVYtOEYNALwUQHZo5Iwpk+sq5NFRETUaNkUEP3tb3+DSqXCpEmTcP36dQBA06ZNMWvWLOTk5Dg0gd6mRF0tBUMAoBHA4xuOI61zGKKC5eddIyIiIvvYFBD5+flh+fLlyM7ORmFhIQCgY8eOCAwMdGjivFFRWaUUDGnVCYEzZVUMiIiIiJzE5nGIACAwMBBJSUmOSgsBiA9tDh8V9IIiX5UKcaEMNomIiJzFpoDo6tWreO2117Bz505cuHABGo1Gbz3HIrJdVHAAskcl4fENx1EnBHxVKiwd1Y2lQ0RERE5kU0A0ffp0fPXVV7j77rtx0003mZ30lawzpk8s0jqH4UxZFeJCAxkMEREROZlNAdHGjRvx5Zdfon///o5OD/0hKjiAgRAREVEDsWkcorZt23K8ISIiImo0bAqI/v73vyMrKws///yzo9NDFuCgjURERI5lU5VZ7969cfXqVXTo0AGBgYFo2rSp3vpLly45JHFkjIM2EhEROZ5NAdG4cePw66+/YunSpYiIiGCj6gbCQRuJiIicw6aAKDc3F3l5eUhJSXF0esgEDtpIRETkHDa1IUpISEB1NduvNDTtoI26OGgjERGR/WwKiHJycvDII49g165d+O2331BRUaH3R86hHbTR948qSh8VMG1AnGsTRURE1AiohBDC/Gb6fHzq4yjDtkNCCKhUKtTV1TkmdW6koqICwcHBUKvVCAoKcmlaStTVWLO/CKv2FEGAjauJiIiUWPr8tqkN0c6dO21OGFmuRF2NorJKxIc2N2ojtHpvfTAEsHE1ERGRvWwKiAYNGmTRdg888ACeffZZhIaG2vI1Xs1U93o2riYiInIsm9oQWerdd99lmyIbKHWv1w7EyMbVREREjuXUgMiG5kkE0yVAgHHjal+VCktHdWPpEBERkY1sqjIj59KWAOkGRYYlQGP6xCKtcxjOlFUhLjSQwRAREZEdnFpCRLaxtAQoKjgAqR3bMBgiIiKyE0uI3BRLgIiIiBoOAyI3FhUcYBQImeqKT0RERLZxakB07733unwQw8aEM90TERE5h00jVQNAeXk5vvnmG1y4cAEajUZv3aRJkxySOHfi6pGqS9TV6J+zw6ih9b6FQ1hSREREpMCpI1V/8cUXmDBhAq5cuYKgoCC9KTxUKlWjDIhcjYMxEhEROY9NvcweeeQRTJs2DVeuXEF5eTkuX74s/V26dMnRaSRwMEYiIiJnsikg+vXXX/Hggw8iMJAP44ai1BUfAHILy6RRrImIiMh6NlWZpaen4+DBg+jQoYOj00MmGHbF3/PDRaldERtZExER2c7igOjzzz+X/jszMxMLFizAd999h6SkJDRt2lRv2zvuuMNxKSQ92q74SvOdccZ7IiIi61kcEI0cOdJo2bPPPmu0TKVSoa6uzq5EkXlsZE1EROQ4FgdEhl3rybUsme+MiIiILGNTo+p///vfqKmpMVpeW1uLf//733YniszjjPdERESOY9PAjL6+vigpKUF4eLje8t9++w3h4eGNssrM1QMzKilRV3O+MyIiIgWWPr9tKiESQugNxqj1yy+/IDg42OL97NmzB7fffjuio6OhUqnw2Wef6a2fMmUKVCqV3t+IESP0trl06RImTJiAoKAghISEYPr06bhy5YreNkePHsXAgQPRrFkzxMTEYNmyZZYfrJuzZcb7EnU1u+oTERHpsKrbfY8ePaTAZOjQoWjS5M+P19XVoaioyChgMaWyshIpKSmYNm0aRo0aJbvNiBEjsGbNGunf/v7+eusnTJiAkpISbNu2DdeuXcPUqVNx//33Y926dQDqI8Phw4dj2LBhWLlyJY4dO4Zp06YhJCQE999/vzWH3yhwPjQiIiJjVgVE2p5mBQUFSE9PR4sWLaR1fn5+iIuLw+jRoy3eX0ZGBjIyMkxu4+/vj8jISNl133//PbZs2YL8/Hz07t0bAPDaa6/h1ltvxd/+9jdER0fjvffeQ21tLd5++234+fnhxhtvREFBAf7xj394XUDErvpERETyrAqInn76aQBAXFwcxowZg2bNmjklUbp27dqF8PBwtGrVCrfccguef/55tGnTBgCQl5eHkJAQKRgCgGHDhsHHxwcHDhzAXXfdhby8PKSlpcHPz0/aJj09HS+++CIuX76MVq1ayX5vTU2NXsPxiooKJx1hw2FXfSIiInk2jVQ9efJkAPW9yuRmu4+NdUwVzIgRIzBq1CjEx8ejsLAQjz/+ODIyMpCXlwdfX1+UlpYaNexu0qQJWrdujdLSUgBAaWkp4uPj9baJiIiQ1ikFRNnZ2ViyZIlDjsMaJepqFJVVIj60ucODFHbVJyIikmdTQPTjjz9i2rRpyM3N1VuubWztqF5mY8eOlf47KSkJycnJ6NixI3bt2oWhQ4c65DuULFq0CA8//LD074qKCsTExDj1O53dvkfbVf/xDcdRJwS76hMREf3BpoBoypQpaNKkCTZu3IioqCjZHmfO0KFDB4SGhuL06dMYOnQoIiMjceHCBb1trl+/jkuXLkntjiIjI3H+/Hm9bbT/VmqbBNS3XTJswO1MDdW+x3A+NAZDRERENgZEBQUFOHToEBISEhydHpN++eUX/Pbbb4iKigIApKamory8HIcOHUKvXr0AADt27IBGo0Hfvn2lbZ544glcu3ZNmnNt27Zt6NKli2J1mSs0ZPse7XxoREREVM+mcYgSExNRVlZm95dfuXIFBQUFKCgoAAAUFRWhoKAAxcXFuHLlChYsWICvv/4aZ86cwfbt23HnnXeiU6dOSE9PBwB07doVI0aMwH333YdvvvkG+/fvx5w5czB27FhER0cDAMaPHw8/Pz9Mnz4dJ06cwPr167F8+XK96jB3oG3fo8uR7Xs49hAREZEym0aq3rFjB5588kksXbpUdrZ7S0dy3rVrF4YMGWK0fPLkyVixYgVGjhyJw4cPo7y8HNHR0Rg+fDiee+45qVE0UD8w45w5c/DFF1/Ax8cHo0ePxquvvqo3JMDRo0cxe/Zs5OfnIzQ0FHPnzkVWVpZVx9wQI1Wvzy82at/jiDZEHHuIiIi8laXPb5sCIh+fPwuWdNsPObpRtTtpqKk7HD0VR4m6Gv1zdhj1LNu3cAirzYiIqNGz9PltUxuinTt32pwwMs3R7Xs49hAREZF5NrUhGjRoEHx8fLBq1SosXLgQnTp1wqBBg1BcXAxfX19Hp5Hs4Oy2SURERI2BTQHRJ598gvT0dAQEBODw4cPSiM5qtRpLly51aALJPtqxh3z/qNrk2ENERETGbGpD1KNHD8yfPx+TJk1Cy5YtceTIEXTo0AGHDx9GRkaGNEp0Y9JQbYicxdFtk4iIiDyBU9sQnTp1CmlpaUbLg4ODUV5ebssuyck49hAREZEym6rMIiMjcfr0aaPl+/btQ4cOHexOFBEREVFDsikguu+++/DQQw/hwIEDUKlUOHfuHN577z08+uijmDVrlqPTSERERORUNlWZLVy4EBqNBkOHDkVVVRXS0tLg7++PRx99FHPnznV0GomIiIicyqZG1Vq1tbU4ffo0rly5gsTERL3RoRsbT29UTURE5I2c2qhay8/PD4mJifbsgixQoq5GUVkl4kObs2E0ERGRE9gVEJHzcR4yIiIi57OpUTU1jBJ1tRQMAYBGAI9vOO62M9aXqKuRW1jmtukjIiL34W7PDJYQuTFr5yFzRdVaiboaB89cQt5Pl/DBN8UsySIiIrPcsfaDAZEb085DZjhTvdw8ZK64uNbnF2PhJ8dg2CpfW5KV1jmMbZ6IiEiPUu2Hq58ZrDJzY5bOQ+aKqrUSdbVsMKSlLckiIiLSZar2w5VYQuRG5Kq8xvSJRVrnMJPzkFlbteYIRWWVisEQoFySRURE3s2a2o+GxIDITZiq8jI3D5krLq740OZQAbJBkY8KsiVZRERE2tqPxzccR50QirUfDc2ugRm9iTMHZixRV6N/zg6jgGbfwiGKF4hhadL6/GKji8sVbYjuT4vH1P7xLr+wiYjIvZWoq03WfjhKgwzMSI5hbZWXUmmSuao1R9N+56Ezl6FSAT3bt2IgREREFjFX+9HQGBC5AWuqvMy1zm/oiysqOAC3pbjPBU1ERGQL9jJzA5b2JgPct3U+ERGRJ2MJkZuwtMrLXVvnExEReTKWELmRqOAApHZsY7Lay5rSJCIiIrIMS4g8kCsaUFvLFdOIEBER2YoBkYdyt9b5utxxjhoiIiJTWGXWiLliJmFXTCNCRERkL5YQNVKuKqVxxTQiRERE9mIJUSPkylIabS84XewFR0RE7o4BUSPkyrGK2AuOiIg8EavMGiFXjlVUoq5GTOtAbHggFVW1GrftBUdERKSLJUSNkKtKadbnF6N/zg6MX3UAd72Ri+JLlQyGiIjII7CEqBFyRSmNuTnWiIiIlLjD2HUMiBoZud5lqR3bOP172buMiIhs4S5j17HKrBHxhN5lJepqbDx6Dl8c+ZVjExEReTl3GruOJUSNiCtLabTtlh7fcBx1Qsi2W1qfX4yFnxyDNokqADmjOYo1EZG3cqfaBQZEjYgre5cBpudY074F6F73AsCiT46xnRERkZdy9XNLF6vMGhF3GAMoKjgAqR3bGH2n3FsAAGiABhkfiYiI3I87PLe0WELUyJgqpXElubcAoD4i5yjWRETey12eWywhaoSUSmlcSfsWoNJpeK0CkD06ya3SSUREDc8dnlsuDYj27NmD22+/HdHR0VCpVPjss8/01gsh8NRTTyEqKgoBAQEYNmwYfvzxR71tLl26hAkTJiAoKAghISGYPn06rly5orfN0aNHMXDgQDRr1gwxMTFYtmyZsw+NZIzpE4vchbfg9fE98M9xPZC76BY2qCYiIrfg0oCosrISKSkpeP3112XXL1u2DK+++ipWrlyJAwcOoHnz5khPT8fVq1elbSZMmIATJ05g27Zt2LhxI/bs2YP7779fWl9RUYHhw4ejffv2OHToEF566SU888wz+Ne//uX043OVEnU1cgvL3LJbe1RwADKTo3FbSjRLhqjRcud70N3x3JGrqIQQMk1dG55KpcKnn36KkSNHAqgvHYqOjsYjjzyCRx99FACgVqsRERGBtWvXYuzYsfj++++RmJiI/Px89O7dGwCwZcsW3Hrrrfjll18QHR2NFStW4IknnkBpaSn8/PwAAAsXLsRnn32GkydPWpy+iooKBAcHQ61WIygoyLEH70DuMsAVkTeQG12X96DteO7IGSx9frttG6KioiKUlpZi2LBh0rLg4GD07dsXeXl5AIC8vDyEhIRIwRAADBs2DD4+Pjhw4IC0TVpamhQMAUB6ejpOnTqFy5cvK35/TU0NKioq9P7cnTsNcEXU2OnO3dc/ZwfW5xfzHrSSbmkQz13j42mlfW7by6y0tBQAEBERobc8IiJCWldaWorw8HC99U2aNEHr1q31tomPjzfah3Zdq1atZL8/OzsbS5Yssf9AGpA7DXBF5MnMzatUoq7WG2RU+/B+ZWwK70ELGZYGzRgQz3PXiHhiaZ/blhC52qJFi6BWq6W/s2fPujpJZlk6fQYRKZMr+TH09r4iGLY1qBMCPioV70ELyJUGrd5bxHPXSHhqaZ/bBkSRkZEAgPPnz+stP3/+vLQuMjISFy5c0Ft//fp1XLp0SW8buX3ofoccf39/BAUF6f25O3ca4MoenlbMSu7FnuvHkoy8RF2Nt/YVGX3WB0DP9q0a/B70xPtFrjRbA2DGgA4en3+R6doKd+a2VWbx8fGIjIzE9u3b0b17dwD1DaMOHDiAWbNmAQBSU1NRXl6OQ4cOoVevXgCAHTt2QKPRoG/fvtI2TzzxBK5du4amTZsCALZt24YuXbooVpd5Mt0BrgL9fFBZW4cSdbXHZCqeWMxK7sPe68eSamelUddnpMUjKjjA7kHmzFXX6VI6Xmv2Yc/327pfpekapg6Iw9QBcS4foI/s407TcVjDpQHRlStXcPr0aenfRUVFKCgoQOvWrREbG4t58+bh+eefxw033ID4+HgsXrwY0dHRUk+0rl27YsSIEbjvvvuwcuVKXLt2DXPmzMHYsWMRHR0NABg/fjyWLFmC6dOnIysrC8ePH8fy5cvx8ssvu+KQncYwE9vzw0WPCyyU3s451xlZwhHXjyUZudw2Pipgav8/2ypGBQfYdM1aE9ApHW959TW8uPmkTfe+s15I5PZrajJo3u+ezZLJvt2RS7vd79q1C0OGDDFaPnnyZKxduxZCCDz99NP417/+hfLycgwYMABvvPEGOnfuLG176dIlzJkzB1988QV8fHwwevRovPrqq2jRooW0zdGjRzF79mzk5+cjNDQUc+fORVZWllVpdedu94aZTVZGgpQhavmqVNi3cEiDXJC2vmEu3fQd/rXXuCri/ftuRmrHNo5MIjVCuYVlGL/qgNFya6+f9fnFRhm5YVBgyTbWKlFXo3/ODovvW6XjVakAYcO9b+33W8rUfgGwNKgRK1FXu8Xva+nz26UlRIMHD4apeEylUuHZZ5/Fs88+q7hN69atsW7dOpPfk5ycjL1799qcTncm95ZoGAwBDddbw9Y3zBJ1NVbJBEM+Ks51RpZxVDG9JVVezph7ydpeorIlVTCeL9DSe99ZvVRN7dfVUzWQc9laUuoqbtuomiwj2zhR1M8TpssHQKCfc39ue3oWFJVVGvXaAeobWXrSDUWu48hOBZbMq2S4jb2Nm63tJSp3vFkZCTb31HJWL1X2fiVP4baNqskySm/Fj43ogmVbTqHujxI4DYC73sh1alsie94wld52pw6Ic1ojT2p8XDVrtiUlo+auY1vaXcgdb0hgU5vabkQFB+CuHm3xybe/SstG9rB/ih1PbU9C3sdtpu5wd+7ehkiuPcORs5cx8o1cm9oT2MLeNghyxwHA4xqHk3ex5Lq3trG0vQGdLftwVhsie9JE5Age0YaIHEPprbiytg6G4a4z2xLZ+yZoeBwA9DJo9jojd2SuZFSpKjkhsiUqa+uMSowc0e7Cln3YUsJrTemto9uTsOSYHI0BUSMhl9m4YiwIe6ssdI8jt7CMQ/mT2zN3nykFGtrSW3cp+bQ2v3DlmGEcr4ycgY2qGzFXjVxtSYNUSxqgsjEmNTRbGkabu8/krmPgz67x7jKtgTX5hVyp16JPjuHIWeUJsx3FU6eFIPfHEqJGzpoSm4Yqgrb07c5UFRyLy8nR7Cl1MHWfGV7HPqjv5KDLXUo+Lc0vlKbeGPlGLnKcXFrDSazJWRgQeQFL6u4bqgja2tGE5TJoFpc3fg0d8DpilGtT95nhlDp3vZFrVDUV6OeD3MIylwf5luQXctVrQH2pl7Pb+XnqtBDk/lhlRg1aBG3LpH+6VXAsLm/8LJlt3tEO/XzZ6ZNRaq/jlBjjCWBH9ojGXW/kNugx20Nb6iX3AHH2JJ6NZRJrcj8sIaIGLYK29+2OxeWNW0POZ6cthTr2ixo5m08arXdmqcOYPrFIiGyJ/DOXER8aiPv+fcjhx+zsUjbtMRgO7eGjMj8IrL1pa6jxplg1710YEFGDFkHb2zWfxeWNW0MFvLrVrnJ8VHBqqYPu9xvOPQbYf8wNVa2cEtMKOTr3M1B/b5oaBNZRaXP2tBCsmncudww2GRBRg48ka+3bneGNw1FvG6+GCHgNS6HkjL0pxmkPP8PvVxoa9+iv5RZPSqt7jwBwWCmbdr/N/Xxlx0wCdEqKXs+Vpt9R+s6GLAG0h6ek05PoXqN7frjolsEmAyIC0PBTHlj6dqf0luaK6RnI+ewJeC1945QrhTL0wYGzmHvLDU6pptt49JzZ7weAZZtP4Y4U81NnGN4j0wfEO6SUTa4UTenhVVlbZzQXodx3ekqVt6ek01PolYj+scxc8OwKDIhI4m4zE1s7wi81DrYEvNZUbyj1kNKlARq0ms7Wrvhy98hb+4qgAvQCFN1StiNnL+ObM5dwU1xrpMS0smi/WkoPL0tL9jylyttT0ukJjEpEZbZxl2CTvczIbSmO8Pu6db1x7J2FnBqeJYN7alnb89Cwl5LcoIkNWU3nq1Jh1uCOMEyGNg2616/htSw7HpAA7kuLl+2F9ciHBbjz9Vy8sOkk7nw9F498WCCb3jX7ihQDRrleZJb2/PKUHmKekk5PYEmJrLsEmywhIrelONbJH/9vSVErG0Y2frZUbxiWQu354aLN7dIsqapTeigszuyK60Lgxc0njUp0lo7qptfWQreqQXstp3UOky3JmNo/HlP7x+uVsh05e1lvJnsA+OTbXzEptb1eSVGJuhqr9hYpHq/Sw8vSkj1PqfL2lHS6O7l8XIX6zgQa4V7BJgMicltGI/zKBEemHnxsGOkdlKo3zA10qFtFbOvDz7C32MKMBPw1raPFaewd18pokEYfFbDhgVSEBzXTm9xY99LXXsv7Fg4x2eZK9zi+OXNJ9hgOnrmsFxAVlVXKVmto02zq4WVptbs7VM9bEsi6Qzo9le75lbtG3THYZEBEbs2SEX611QqGmRsbRnoHuYbY2oEOrSkZtPbhJ9dbLPvLk4AA/jpIPyhSaixeWVsnW+VVVasxW9WgvZYtDeZuimstu7x3nH47IqU3+n+O74Ge7VtJ+3fHbtOWYsmxefb8vnLnd9/CIUbXqLtdNwyISJG7ZHi6Dyq5h4pSF042jPQepgJnU13A7bm+lQKWFzefxB3djXuHyQUuJepqk9eoqcbfuttZEsylxLTC6J5t9arNBt4QivCgZnrbKQVvPdu3QlFZJQAYVeUtzEgwCgLdFUuOzbMnYFQ6v/sWDrF4GAlXYUBEstz1DUr7UDl05jKgAmJaBZh8+GWNSMCLm09CA/eqqybH0wYFuYVlZksGHXF9x4c2lx1U0VQPNcPAxdwwA7rrVH90HROw/Vr++z3dMSm1PVbt/Qkbj5Zi749l6J+zw+j45dpYaavvfP44Zu1hCwDZm08CKshWF7oblhybZm/A6MnnlwERGXH3Nyi9t1MTo/zu+eEiXtxSHwypVMBjGV3cIqgj5zJXMnjk7GUs3HBMum5svb6jggOwMCOhvppMh7WlkKaqvAzXAdD7b1smgw0PaoYvj5VK/1YazkL7J5cfyHlx80mLxk1yNVPXh7uUiruSvQGNJ5fMMyAiI+4c4Vsyyq+2Qa3hdpYOdEeebc8PF/WuC5XONBzr84ux8JNjZgcRtPTB+Ne0joCA3aWQpqq85EqVLC3hsqZtnXakacP9WdJtGqh/ALpDHmGOUqmcu46e3NDsDWg8eTYBBkRkxJ0jfKXMWTuwnanGqu4S1JHzaANm3Z9eJYC0zmGy67R0r29rq9P+Oqgj7ugeLbVfqqytQ4m62q7rzFRAZmkJrtJxWDuchSUDWQLuk0dYQq7kTbdHnyOmO/HUUiZHBDSeOmQBAyIvYumN6s4RvlKwtuGBVFTVasw2VlXqiu3pmRjVkx2oEPUlFwJCPpjWKUGytbo4KjjAYSUM5gIyUyW42vXN/XxNHoc1w1lEBQdg+oB4k2MTOXsyXGfQLXlTane26WgJMpOjLB4gdM2+IqzaWyRb0uZJHBHQeOKQBQyIvIS1b73uGuErBWuGUxBY0xXbXRuQk/XMlW4arvMB8OkD/aTrx9bqYke1u7NkP0rHePSXckxY/bXU88tUtaClw1loTTMTEC2540apFE7uxcJciZerX0aUSsGe3/Q9ln75vdk8QW5aFndre2ktTwxo7MWAyAuYymQBKGZG7npD2DIirlJX7ITIlm7dgNxb2fqQtKbXllwwbWt1sVIgZU0Jg6n96AZkcsf4WEaX+nZM2jZzMvs2PA5zw1kYtltalJFQ35vMgArA4v+ewFP/PSF9t9ILhwrAfQPjMXVAvFVtoZzN8JzqMpcnmJqWhdX0noUBUSOnNLt2nRB4YdN32HS01COLdy0N1sx1xc4/c5ltjdyMvQ9Ja3ptyb0E2FJdbG8Jg6n9yAVkY/rEIiGyJfLPXEafuFaybeaAP0uKfP7oZan0QI9pHWhU7Wy4TVK7YMwZ0hFv7Co0mkpE9/+B+vQv2nAMoS38jCb2/NfeIqzeV4SsjAS9IK4hX0bkAm7ttbHpaAme3/S93vam8gRTjc49qV0VMSBq1EzNrg0AG48ad731xJIRS0oTlB40feJaGVejqMBMrIEY/naOqnqypteWIVuqi+0pYTC1H6WAzDBofOCPyWENb3WB+sBFI4CcL0+iovoa+ncKlc63YenNwowEo8HzDL8ra0QCktuF4LfKGsxZd1jxWDQCmP7OIcV1OV+eNNvbzxlMBdxRwQHITI7C0i+/t7iUUCkY9oHntasyxx2qN52JAVEjZaoYV4knloxYWppgqu1RVkaCXuYsRH3XbU8pLfNUcr9dTOtAtyixs6W62NYSBqX9fPvzZWiEQG+DKTdK1NV6QwdoBPDPnYWK+9MtwXl9ZyFe31koBTYvbtGvZjMcYFEuQF225RT2LRyCuNBAi3qfmUuXLme/jFgScEcFB+iVXlkyf5thI/UZAzpg6oA4j8pLzbEkr7UnYHKHYIsBUSOlVIw7sW8s/nOgWPYznla8a21pgtyb//r8YqM3VQHPLS1zZ7oZHgDZ327DA6luO+SDJWwpYZBjqsfa2/uKFCdftZRG/Dl2kiHdARZNtWlK7dhGcSRtSxmWajn7ZcSSNlrr84ulYEgF4LER5gd0dddOKI5iSV5rT1W3u7Ql82nwb6QGoS3G1eWrUuHu3u2MlgOWF++WqKuRW1iGEnW14xJrI3Pdj+VEBQcgtWMbveoZuQzc3H7IOuvzi9E/ZwfGrzqA/jk78Pa+ItnfrqpWg+xRSfBV1V+kum/ntl57pj7njOtZW2KgewyPjeiCorJKi75H7uGz6JNj2Hj0HI6cvYy39in39tJlLnOXC4a036e99pXyEW1wN6ZPLPYtHIL377sZuQtvwWez+8mnRQX0l5nHSq6K7/ENx52Wv5g7HqOBX1FfImZJenTzlsbGVKeBEnW1YsBk6/XuzGvAFJYQNVKmqogMi3fH9olFv05t0Kt9K5P7dJcoXsveASRtaQzpDsW6nkYuw3trX5FR6YD2nKd2bCNbkmfLtWfqc868nnVLDI7+Wi6VOFjyPUpjKc1Zd1i2nZAhHxXw6tge6BXXCp8XnJPtGQbUn++ZgzvgdYPqNsNJYy3pgaZb3XT/wHj8y6CLvkYA+wt/k01rQ1aRmjseV47S7855i7lOAzMGxNt83txpZgQGRI2YUjGuXmb9Szle3HIS674pNjsFgLt1T7d3AEnFxpAKg8zJNS5NahfslhmYO5F9wAvg/rR4vLX3jOxvp/uQtfXaMzfchLOv56jgAFyouKpXJWv4PXIPQVMjQ8sFQ6o//nRHar8tJRpA/SjaUEGvNxd0thvTJxZBAU1Ntpextjpo6oB4rJYpATTko4JRTzOgvmRLt8TG0UGCqeNx1Sj97vayachcp4HVe4tsPm/uNDMCA6JGTqlxqHaZdiA3wPRDwZ2ieF321N0bNYYEMCMtHlP7x8t2OzZ8gGrfvN0xA3MnShne1P7159rcb2frtWfqc3KjVpvap1xvOHMP6vX5xfWTyBosrxMC3/58GQVni/DWH4GD7jVk6uGjpT2f2gDG1D3w17SOuCPlz6lFDLvW665X+h2saWQu18hYLjh6dWwP3JYSjZCApnqNxAXq2xEBMAoS0jqH6bVDszVYMpUvOnqUfnPXiju+bMox1WlAA+D+AR3w1r4iq8+bM865rRgQeTFrHjTuFMUbsqVHkJalAZWp6jV3zcDchbkMz5Yxfiy59qwdtVppn4Zv73f1aItPD/9qtrfNog3HZCcfVgGYbdBd3fAa0l6Xh85cxoMfHDZKp9yYQabOo7l7xJ57SI4lI2H3iquvok/rHAaV6s+JmgXq20xB5/fRCGDhhmNSo23dMZAMfwN7S5Xk8gRr96nd/tgvaqknn9K14q4vm3JMdRqYOiAOUwfE2fRy6i6N0hkQebH40OZGbRJUqC+uNswA3CmKdzRLHgbmJrh01wzMXTiyJM/Sa8/c5yzZp9zb+yff/iqtVwqGTQXQSjVJciNS35YSgMra62anqnFHuveVte12NIDRidINLnVXaX+DhMiW2Hi0RLbUzZ60W1udpTT+m9K14s4vm3LsfcExtV9X558MiEiPAPD5kXOyjUDTOofhlbEp8FGp0LN9K5dfvA3JXDWGO2dg7qIhSvKs+Zwl+zQV2GjJBcNyDzlzY/YoXUPu8vZsD2vb7fgAECrIlrDJqRMCd76eq7fMESW31lZnmRv/Te5a8cSXTVuuSXduNK7FgMiLFZVVyr6tZn/5Z68UbQZQXnXNbNFvY2fYc2jZ5lMek4G5I2szSFsDKlOfM7dPcyWDgHIgM31AvFRa4atSYdqAOMUJUs3NFu8Ob8/2sqbdzsge0digUxJnK3tLbq2tzjIXQLsq6HVGMGLNNenujca1GBB5MbkqMzl1QiBns3JPGW+izQRSO7Yx2xCVjFnTtsIdKD2sPzt8TjEYNpwO4/4/GuoDkAIkXeNvisHcoTd49TUk1+bIXL6kbXdkKmD1AfBbZQ1K1NU2nV9rq7NMBdCWjHhtLo22BDauDkY8pdE44AEDMz7zzDNQqVR6fwkJCdL6q1evYvbs2WjTpg1atGiB0aNH4/z583r7KC4uRmZmJgIDAxEeHo4FCxbg+vXrDX0obicqOAD3DYw3u52Pyjho4sCFjXsgNmfQHZwxW2ZST3cY7FOXdtDGtM5h0uCD+xYOwd/v6a73b92Hi9zAfm/tPQPAeMBGHxWw6NYELB2VzGsIf95PShPV6hqaEIbPHuiH9++7GZ8+0E92sFnty96cdYfRP2cH1ufLj9BvLk1KA4Vauv2iWxNkrxVrGQ5uasnxuMOgh7YMoOsqHlFCdOONN+J///uf9O8mTf5M9vz587Fp0yZ89NFHCA4Oxpw5czBq1Cjs378fAFBXV4fMzExERkYiNzcXJSUlmDRpEpo2bYqlS5c2+LG4G7kxQ1QqQCX+HNfksYwusuOYOKLNjCfUK5P9bGlb4Urm3qqV3ubNVbE0hvZAzmZJNeX2kxex4+RF5Iyu/10Mh88Y2zcGH3xzVi8QWLThGAL9fNE7rrVTe0A54ze2tJTFMD91hx5sntRo3CMCoiZNmiAyMtJouVqtxltvvYV169bhlltuAQCsWbMGXbt2xddff42bb74ZX331Fb777jv873//Q0REBLp3747nnnsOWVlZeOaZZ+Dn59fQh+MycsGHUoM+wxs6JKCpwxv9uboolxqOrW0rXEFp6oyEyJYID2pmMoC3JPNvDO2BnEmbJ5mbnFrgz6BAd5gCbZ/8dQfO6m2vEcDc9wtsymus/c0c/RtbOgeb3LhNrg5GPKnRuEcERD/++COio6PRrFkzpKamIjs7G7GxsTh06BCuXbuGYcOGSdsmJCQgNjYWeXl5uPnmm5GXl4ekpCRERERI26Snp2PWrFk4ceIEevTo4YpDanCmgg+lNxpre+RYQ+mhY6r3hiNLklgy1bDsaVvR0JS6gd/5eq5UDaP0UPWkzN+dafObNfuLsGqP8mS2ulUva/YVYdXeImmcIqX2kQ3VhsWReYy5QFupBGnfwiFucT16Ssmo2wdEffv2xdq1a9GlSxeUlJRgyZIlGDhwII4fP47S0lL4+fkhJCRE7zMREREoLS0FAJSWluoFQ9r12nVKampqUFNTI/27oqLCQUfU8CwpbrXkjcaRbz1KD501+87g8cyuesttKUkylRmxZKrhyQUKj2V0QXLbkAbLIC19QFkydYaph6qnZP7uLio4AI/fmoip/eOxZt8ZrNr7k2yAs//0RUxYXaj3e2mDIqXf0dnVRo7OY8wF2qZKkNzlevSEklG3D4gyMjKk/05OTkbfvn3Rvn17fPjhhwgIcN7Jzc7OxpIlS5y2/4bkDvXIhpR6uK3e9xOmDoiT0mVLDwVTmZFsydQG5ZIpR/GGEilzx+jKjNmaB5RUZfPJMcUZ4QHT95AnZP6eIio4AI9ndkVyTDDmGIzwDQCv7yyUDZQEgHE3xRhVnQHOrTaytb2POVaP5aQCAv3q+03xerSM2/cyMxQSEoLOnTvj9OnTiIyMRG1tLcrLy/W2OX/+vNTmKDIy0qjXmfbfcu2StBYtWgS1Wi39nT1rfFN5Cu3NosvVbTaUerhpBPR6H1jbQ8FcrwqliUbX7JcfH8YRbOkd4mksPUZX9MxTCoJN9bQZ0ycWn87uB5VM7yUtV99D3qZX+1ayvclMdUiTC4bMjflkL0vyLFvzBKX7x7B3G1B/nd/1Rq7d+Y22t6W79QJ1Bo8LiK5cuYLCwkJERUWhV69eaNq0KbZv3y6tP3XqFIqLi5GamgoASE1NxbFjx3DhwgVpm23btiEoKAiJiYmK3+Pv74+goCC9P09lbdfRhjJ1QLzZQM3aYM5cZiS3PwBYvafIKTe80sP4iyO/NpoMxhVde63JpG0NglNiWiFH575RAVKA5C73kDcxzMdMxKomvTq2h0OqyJWuQXN5lrPulzF9YrHhgVS982Lvvr3hZU6X21eZPfroo7j99tvRvn17nDt3Dk8//TR8fX0xbtw4BAcHY/r06Xj44YfRunVrBAUFYe7cuUhNTcXNN98MABg+fDgSExMxceJELFu2DKWlpXjyyScxe/Zs+Pv7u/joGo6l1RUNWbVjSQNUaxupmmt8GBUcgOkD4o1GDNYAZqsQbTk3Sg9jW3u7uKOGrpI1VyVq+BsptQlavacIU/vHIypYefJOw/sGgMvbYngz3d8jt/AiXttRaNXndSeVtYepa9Ce9j7WXFNy12xlbZ3imHHWXq+eNKCio7h9QPTLL79g3Lhx+O233xAWFoYBAwbg66+/RlhYGADg5Zdfho+PD0aPHo2amhqkp6fjjTfekD7v6+uLjRs3YtasWUhNTUXz5s0xefJkPPvss646JJcxV4/s6IaAlgQQlgRq1rQ9sSSAmjYgHqv36vdcMVf9Yeu5MdVAt7FkMI4cZ8TcNWMqk97zw0XZ38hcEKz0OS3D+8aTf6vGQPt7BPr5mA2ItKV62ulT7C3VK1FX4+CZS2YDBWvb+1h7vyjlR468F20N3Dy5vaRKCEunz/NuFRUVCA4Ohlqt9ujqMyUl6mr0z9lhdCPtWzjEpova1T25StTVJgOo9fnFRkGTUvrsPTe63yXn/ftuRmrHNpYdmBPZk5FZcz5N7cPcNZNbWIbxqw4Yffb5kTfiqf+eUPyN3txTqDdHn3b9hgdScdcbuQ677qlhPfJhAT7RmfOsZ2wIjpxVmxxTzVZKs9hrWXMf23O/mMuPHHEvWvI9Ssfljj14LX1+u30JETUMR1Z7uENRq6nSsBJ1NWJaB2LDA6moqtWYzSjtPTdpncPwytgUqKuvYfFnJ/RKprQ9QVz9VmVvRmZvDzJLrxmlErcnPzthtE/dtmMvbj5ptP6xEV1kp4lwdQ9Mstzf7+mOSantcfDMZfSOa4WUmFayL0OOHjfNkLWlMPbcLw01Grq1zRXcId+3FwMiAuDYag9XdvM3F1jIPfjNvdXZc24Mv29Uz7bSxKBA/T5Hvp4LwPSAf46gdG4clZHZ07XX0mtG6hJvZhRj4M/fSGmU7OR29WMguXokX7JPSkx9IKTljC7mpkZat7UqztZ0NuRo6NYEV+44vIu1PK6XGTmHI3uiuaqbv7keEbb27rD13Mh932eHz+Ffk3rq9QQRMB7wz5E9tErU1Xhh03eK58YdJl889ovaaJnSNTOmTyyWj+0uux/tdaf7G5m6Ht21Bya5F+24abp8ALw+vofdk7Zaq6GvWUuHynDH4V2sxRIikriqqNURLCnlsKeRoFwVm7nSKKXvKyqrMjl2iiPfqtbnF2PhJ8f0vs/w3Lh68sUSdTVe3CJTpZXRRfEc9I5rLZtmuWpQc9eju4zkS65hSXX1nh8u6v1bBSB7dBIyk6MbIIXG3PGadUW+72gMiEiPK4paHcGSYMeWB79SFZslbW6Uvq9PXCuTs3k7KhjRBolyX6N7bsxlZM5u36RYpdU2RPEzhmn2ATB9QBzCg5pJwWpuYZmUZnPXozOqWcj9WXIfy91HKlV920BXcsdr1h0DNWswICKbWPKQlLthTX3OngevpcHO9AHxeGtfkUXdcJVKnRIiWyour6ytk9KvFGikxLTSW64CABUgdNIEQO+Bbgtz7R50z41uRhbo54PK2jqUqKvNdkl3BFtLqKQJQPedwep9P+Ffe4uwel8R7urRFp8e/lW2+72nZdDkPJa2nVMaS8yT2sY0JE++zxgQkdVs7ZFk6nP29nIyV8qhu38VgPvT4qVB+ZQolTrln7ksu3zkG7kQBulXemMyNeDfnh8uSt1d7QlClHpkKU1dEBUcoBcAaZsDGLZvcnSvEWuK2uWC5tX7ftJ7qOl2w/bEni7kPLrXj6VV6K6uUnYX2nPX3M8XlbV10v974nhDShgQkVVs7ZFk6nMAHNLLSSn4MPxuAeCtvWcwtb/xXGq6rK3yEjrpX7ThGBIiWyIlppXiG5Ph8qjgABw5exkLNxxT3Jc15KqVZpgIBOXOkyFn9RqxpKhdLmiOaR1otreZp/V0IecwvH6yMhIsCnQaQ9sYwP5xxpR6drrTeEP2YkBEVrG1YbKpzwkIh3XXlAs+bE2zpVVePoDRrOja7vQ5oy3PKOQaQNu6Ly17u80acuabsamidrlA8fENx7HhgVST7bEA73ybJ31yL2TLNp9C1ogELNtyymyg4+ltY+wpgTc3BlNjKoVlQERWsbX42NznnFkkbU+Rt1zVVm5hGdI6h2HfwiFSmxvD0Y6B+hIWSzMKUw2grd2XIUvr9OXOk6OnPjBH7i1WKVCsEwJVtRrZaTm0PPVtnhxL6aUouV2IdB9bMi2QJ15H9o4zZsmLUmMpheU4RGTE1Ezito6BYepzzh5Xw979a8fh0Lbt0Y7l8/a+IsSFBkolRoZjcACWj+djTabjLFHBAcgakSBlCr4qFXJGJ2H/wlvw/n03Y9/CIUjrHGbxLPPWkhtHylSgqA1qpw2Id5sxYsg9mRuLypJxdpzJVJ5rL3vHGZM7d4YaSyksS4hIjyVFq7YWH5v6nKOLpA1LGmzZv+4+AON2Tqv2FmH13iKpKishsiVGvp5r1aSxWqYmgbV2X7Zan1+MF7echAb1pUKPZXTRm8HbmfMUKb3FvjI2RbHdgm5QmzPauGrTVWPEkPtx5NASjh6Gwpr7ypbvtrdRuOG5M+SrUuGxEV1QVFYpbe+pOLmrhRr75K6A4yd4dRVHPLgN9zFjQDz+ZaJaxhETKxp+dmSPaGmaDx8AMwbGIzM5yik9O8z99s6+NpQmbX19fA/Mff+w3vf6APh0dj+jRubmJvQlkrtGrMkvHP1SYM19JffdaZ3DLAqQHDHhq/bcBfr5oKpWI/3/0V/L8eLmk04L6ByBk7uS1RrDXDSOmJdLbh+r9xYpluA4amJFuc8+mt5Fb5wdbVDmyBKaEnU1Nh49Z/K3t/TasDXDU3qL7dm+lWLDdkOe2saDGo7hNWJNfuGMyUutua8Mv3vhhmOAsGwOREeUwCuNKzdh9dcWnRNnljA7CgMikjSG8TYcEdTJDsQG4P4BHfTGvNFy5MSKcp+V+05td/xAP1/0jmtt8/eZ6k6re1yWXBv2ZHimqjTSOofhlbEp8PkjQGLQQ45iTX5hri2OI18EDPNcue/WrduxJDhzxguDPQGdO/ZMY6Nqkji7cXNDcMQEg0r7mDogDvsX3oL70+L1Gh478xyZamytEcDc9wtkJ7K1hKnutIbHZe7asHXiXN20aOeL0zbgHtMnFm/uKUS/nB2Y+34B5r5/2GhOKSJ7WJNfKG179Ndyk5NKG9JtQG1pnmtJw+aGnpAZsPz8ucME0pZgCRHp8fTxNhwxiJq5fTx+ayKm9o9vkHNkSWNrW9+2lIKtxZldcWtylNG+TF0b9pTMKc0X9+buQmRv/nPSV3d9qyTPZU1+IbftYyO6SO1nAPPXqFIpqrk812iQ1T+m+rGlA4ecEnU1Dp65BJVKhV5WlMJaev48pfaBAREZcYe2GPY0vnNEUOcuk4Ga6+GhpRR8GPaU0z2nSpmUXDCkmx7tfnT/bWuGZ2q+uBydYMjccRLZypr8wnBba14EzFUbmbumDb97zw8XHTJ6tuE4XyrU99q0tMG2LQGdu9Y+MCAip7M2uHFE4ztHBCzuEBgCxhOv/nK5GnPWHTb7dmg4fxtg3ADT2kxK6bexNcMzNV+cXPjno4LbvVWS57PmXjfc1tIXAUe0b9T9bke8+JWoq40GPRUAFn5yTPpvS/JgWwI6d8hbDTEgIqeyNrjxlMZ39rI2SNTNcFJiWuFKzXW9qUMeG9HFZCNG3QxP95xak0mZ+21syfCsnS8uKyOhUV0H5FkM71trXgQcWW2km47Ujm2kdknWlqgXlVXKvngo5ReN5SVTCQMiMsmeqiu5B6i5iUobQ9d/cxxRAjamTyzKq68h54/2Cy9uOYmQwKYY0ydWsRu9Lt1zamkmZclvY22Gp/RAkZsvLisjAX9N62jxvokcSem+tfRFwFHVRobpuKtHW3x6+Feb8pP40OZQQX4iZ12NLQ9WwoCIFNn74Jbtvi5MT1TqKY3vbGVPCZhhe6AXN580muy0vOpa/WjTZnI4W86pLb+NJQG10gPFE4rYyTtY0v7HkuvT3DVt7n6RS8cn3/4qrbe2NCcqOAA5o5OM2hABjmuw7UkYEJEsR1RdKfWQElDel6c0vrOVtY0wtZnjnh8uGo2cLbefnM0nZd/2VH/8jxDmhwqQy5S1yyydHRywLqBWeqC4exE7eQdHllwrXdPm7hdLSn7l0mUuyNIGaYfOXIZKBfRs38phDbY9DQMikuWoBoDZo5Jkx7qpEwKHzlxG6xbGN2pjLhmwtJTFMHPU7WKrNHK2Uvd8bTd6AGbPqVymDEBvWVZGApLbhpjcj1J1qb0DSRK5grNLrs29gJoaQNWQjwoou3IVJepqoxcp3SDLMFC6LcU78mBTOJeZhbxhLjNdjpy76sjZy0aTnqpQP4GoOw/jbg1r2lqZm1dI7tzLuX9gB7y1r+jPMVEy9MdEAf78zQDzI+nKfa8PAMg8CMxdB0pzkwGN4/cm7+OI+cAMafONS5W1mLPusNH69++7GXGhgYr5geGch6o/GgQJKFd97Vs4RC9QUgFYmJGAvw5yTfu8hpjfjHOZkV0cWXWVEtNKbzZyH9TfpI2lJ5lhqcr0AfGYNiDe6jYzWqZGp9bSjpw9dUCc3n5CApoa/Wam3hLNfa8GMGpxaUlJoakBJT399ybv5OhSE8NhMQwbN2tLoCwZQPXR9C749ufLesNxyGUhdULg258vG/VAzd58ElDB4k4Ljgpi3G1+MwZEpMiRGUBa5zAsH9ddenUxfBvy1F4MckXdq/YWYfXeIsWG44DptjFywYRKBahEfYAiN62GNi3a6S+qajVScb7u26WpYETue5VKiMxVFZgbUNJTf2/ybubatFkaKMgNi6HCn9Xehve4qQFUtd+pEcJsbzEfFXCytEI2wHpx80nckRKtt0+543BUEOOOQ6wwICJFznoLyMpIaNCeZM4sklV6ezPVcNwcpdI5U8Gp0vQXuYVlFrcFU/pe/HEs1pYUagNqwzdXwHt6rZD3sCZQkJ2sFcBrY3ugTQt/vXvcVGm94XcaljLpNk1Q/dEW8bUdhbJp0oj6Nobm2h0ZtQ38xPRQKkrccYgVBkQky5lvAcs2n7Kqt5I97D0Oc8GUqaohW29u3ZKeXy5XQyOE1BDZ0q642ukvLlXWKhbFyx2bUqmgrSWFUcEByEwO0BtI0pt6rZB3sLa0Q6mRdq84+XnE5O5Lue9UqQAfg5JkpZcSQ74qFQL9fEweh1K1+sg3cpFjZd7qjkOsMCAiI44sylR6C0huF4J9C4c4tReDvcdhSTBlqiedNTe3Njg59qtaahit2yjSVMNHpXOsbciu2z7BknZFcoGXvd3fvbXXCnkHa0s7bGmjaXgPypYyCeCf43ugdXP9UqZWzeVHpNbmCz4qYOmobqisrTN5HIpDqSjkraZeKN1xiBUGRGRE6eY+dOayXtdMSzT385WKarW0gYKzx5ixp0jWmmBK+7Bfs78Iq/cUybbzMUWpS60w+G+lho+mxnvS/r+Pqr44vldcfbG2pe2KlJjK6JTWcUwhaoxK1NX47UqN1aUd9r4kKJWw9NSZrV57Lzb385Vtl6g7sGvhhStIiGxp8jikF8BPjtV3uNBhmLda8kLpbi9KDIjIiNID9sEPDqOy9rriOBaGtDeEYTDUUG8B9hTJ2vLG9/itiZjaP96qm9sw8DJHqeGjUialpRFAmxb+iAoOsKpdkRxTGZ279RohciajnmIWDn6qZc9Lgqk2f7mFZXqlzdopPrTd830MXlIB4F97i7BqXxEGdArF/tNlso27gfogJiGyJUa+kau3D93xjwBY/ELpTi9KDIjIiNJbgO5Fba4rt9yD3gfAhgdSrW58Z+9x2FIk29zPV7HtjbnvtObmtqSLvS5TDR9fHd9DdiwToD6j1qa9uZ+v7DaBfj5mv99UyRlgeSZI5OkMZ4oXqG+/88/xPfRKabTb2tKxw9JRprUvYXt+uCg7ZpFGAJ8dPif1QC27chVz3y8w2p8QwN4fywAA96fFY2p/+eFDUmJaIUcnb9UGgnPfLzA5kr679yxlQESyxvSJRXP/JrLd4w+duWz2wafU+K6qVqkMwzlsKZKVSrZ0ljmrZMvU5Ipyy001fNzwQKpiA2/dHVXW1smmxZLfxlTJmYDwyEyQyBZv7ysyuj81AFo399e73s2NU6YU9Fha2qp9CTNX2lwnBKpqNUjt2AYl6mrlvOIPb+09g6n94xXXK/Ui1Qj5kfRd3WDaEuZfCclr9WrfCj4q/WW+KpXRuDTAnw8+LW11leFnXXFDRAUHILVjG5ursHxU9SVbSlU/Jepq5BaWSUXFSsuU0jbuphjZda+N64FFtyZI51EblCk1fKyq1SB7VJLsTS0A6feR+218dEqQTJH9LICq2mtSOwpdnpAJElmrRF2Nt/YVGS33gf59pDROWb/sHVifX4z1+cXon7MD41cdQP+c+mVKn3t8w3GUqKsV8xZzpc1ybYFMBQCGebqcqOAAtGruJxsYzhjQof55gYZtKmEPlhCRIqUqJ22gZCr6t7a6qiGGb7eEbMmWUC49sWTuL1PtaNbnF+OD/LNGy7VdcG8LjsYdKdFG3W2Vzn9qxzay9ftymeFCnfZdQgB7frhotr2P3ICLGgDT3zkEwLZ2FESeRin4mJGmX8VkapyyRZ8c03u51C1pVyqJXbPvDFbv+0k2bzE1BIhSW6C0zmF6+zT8jDUvSYb5kdxI+u6OARGZpFTlZEmwY2l1lTs1xLWmIbbSIGVKmZxcbyy5Im4fwGgkasPeWrrn30cFTBsQJ603rN+X+33SOofpVaMJWN7eR6lRpXY/Su0oiBoL2VHdVTCqYjI5hQ2gOC2O0qjxuoGLYd4i9xL62IguSG6nPBFzVHAAHs/siqkD4mzuJWvu5deT8gAGRGSWXENhS4Mdc42M3W34dmtKtuyd+0vp7fG18T2QmRxtMp26Xf1X7SnCqr1FeGtfkRRMWjJfmuFXWzO0wtnL1UbBkJZcOwqixsTSfMLUOGXaOR3lOm7I7X/6gDj8a69+NZ1h3mJrN3Zbe8lqWfu97lIjYIgBEdnMEd0l7R2+3Rk3lqU3t71zf5kaR8RSq/cW6TVmNHxjtCbtgPHQCrqkwSN/USNn80nFNLHdEHkDS/MJpXHKRvaIxoZvf5W2U0G/ZNhw/wCwel+R2bzF3q78jvhsQ8yF5gwMiMil7BkryJk3liUZg6lxQPSKrTO6oKisUvqcbkZhy7AA2szmtys1NgeTlgytoNTjxRS2GyJvIpdPyAUDhiUwgX4+uOuNXP15x1SQhq9Q2r+rRna25sXTVL7sbjUChrwqIHr99dfx0ksvobS0FCkpKXjttddw0003uTpZXs2eoMAdbixzc38d/aVcdioO3YzCmqJmc5M5AsDRX8uR2rGNRWlXGlpBN6iyZPDI5+68EZ3CW3pM40kiZzD3kqYNcOQGR9WOMWbq/rG1SsyeknRrXjzN5cvuOKGrLq8JiNavX4+HH34YK1euRN++ffHKK68gPT0dp06dQnh4uKuT59Vsucnd6caSe0vU/nvC6q+ldOomV656yxzZyRxltlu2+ZQ0mrXcPnQzRkt6DFrSnXdYYoRbZGhErmLNS5qpknFzwYu11Vr2lKRb++JpLl92xwlddXnNOET/+Mc/cN9992Hq1KlITEzEypUrERgYiLffftvVSSNYN1YQ4F7jHCkxF0hYMs6Huf3J7V5pv3JjnmhL6EyNFyJ3rrVYRUZUz1QwYEjpvtOONG04LpGtTI1n5OhjAszny5bkN67kFSVEtbW1OHToEBYtWiQt8/HxwbBhw5CXlyf7mZqaGtTU1Ej/rqiocHo6yXK2VrU1JFNdbgHrAzilrr5CmJ9ixNSbnrkSOtnuvBldkNxWuTsvkbextvRDrtG0vZMuG7K3JN3aY7IkX3a3CV11eUVAVFZWhrq6OkREROgtj4iIwMmT8r1lsrOzsWTJkoZIHtnInW8swDhzUAGAHYMWWtqIW26/5jJGc8Xw7n6uiVzNlpc03fvO3kmX5dhbRWXLMVmSVziih7IzeEVAZItFixbh4Ycflv5dUVGBmBj5KRbIddz1xtKSewu0J6gw14hbab+OqLt393NN5Gr2vDg4o32NI0rSbTkmT80rvCIgCg0Nha+vL86fP6+3/Pz584iMjJT9jL+/P/z9/RsiedTIGWYO9mYUSo24zb2JunsVI1FjYGsw4Kx71BGlu54a4FjLKwIiPz8/9OrVC9u3b8fIkSMBABqNBtu3b8ecOXNcmziiBsJqLyL35qx71FsCGnt5RUAEAA8//DAmT56M3r1746abbsIrr7yCyspKTJ061dVJI2owzBiJ3BvvUdfxmoBozJgxuHjxIp566imUlpaie/fu2LJli1FDayIiIvI+KiGUpmgkXRUVFQgODoZarUZQUJCrk0NEREQWsPT57TUDMxIREREpYUBEREREXo8BEREREXk9BkRERETk9RgQERERkddjQERERERejwEREREReT0GREREROT1GBARERGR1/OaqTvspR3Qu6KiwsUpISIiIktpn9vmJuZgQGSh33//HQAQExPj4pQQERGRtX7//XcEBwcrrudcZhbSaDQ4d+4cWrZsCZVKZfN+KioqEBMTg7Nnz3rtnGg8B/V4HngOAJ4DgOdAi+fBOedACIHff/8d0dHR8PFRbinEEiIL+fj4oF27dg7bX1BQkNde8Fo8B/V4HngOAJ4DgOdAi+fB8efAVMmQFhtVExERkddjQERERERejwFRA/P398fTTz8Nf39/VyfFZXgO6vE88BwAPAcAz4EWz4NrzwEbVRMREZHXYwkREREReT0GREREROT1GBARERGR12NARERERF6PAZEDrFixAsnJydJAUqmpqdi8ebO0/urVq5g9ezbatGmDFi1aYPTo0Th//rzePoqLi5GZmYnAwECEh4djwYIFuH79ekMfisPk5ORApVJh3rx50rLGfh6eeeYZqFQqvb+EhARpfWM/fl2//vor7r33XrRp0wYBAQFISkrCwYMHpfVCCDz11FOIiopCQEAAhg0bhh9//FFvH5cuXcKECRMQFBSEkJAQTJ8+HVeuXGnoQ7FJXFyc0bWgUqkwe/ZsAN5xLdTV1WHx4sWIj49HQEAAOnbsiOeee05vPqnGfh0A9dNFzJs3D+3bt0dAQAD69euH/Px8aX1jPAd79uzB7bffjujoaKhUKnz22Wd66x11zEePHsXAgQPRrFkzxMTEYNmyZfYlXJDdPv/8c7Fp0ybxww8/iFOnTonHH39cNG3aVBw/flwIIcTMmTNFTEyM2L59uzh48KC4+eabRb9+/aTPX79+XXTr1k0MGzZMHD58WHz55ZciNDRULFq0yFWHZJdvvvlGxMXFieTkZPHQQw9Jyxv7eXj66afFjTfeKEpKSqS/ixcvSusb+/FrXbp0SbRv315MmTJFHDhwQPz0009i69at4vTp09I2OTk5Ijg4WHz22WfiyJEj4o477hDx8fGiurpa2mbEiBEiJSVFfP3112Lv3r2iU6dOYty4ca44JKtduHBB7zrYtm2bACB27twphPCOa+GFF14Qbdq0ERs3bhRFRUXio48+Ei1atBDLly+Xtmns14EQQtxzzz0iMTFR7N69W/z444/i6aefFkFBQeKXX34RQjTOc/Dll1+KJ554QmzYsEEAEJ9++qneekccs1qtFhEREWLChAni+PHj4v333xcBAQHizTfftDndDIicpFWrVmL16tWivLxcNG3aVHz00UfSuu+//14AEHl5eUKI+ovHx8dHlJaWStusWLFCBAUFiZqamgZPuz1+//13ccMNN4ht27aJQYMGSQGRN5yHp59+WqSkpMiu84bj18rKyhIDBgxQXK/RaERkZKR46aWXpGXl5eXC399fvP/++0IIIb777jsBQOTn50vbbN68WahUKvHrr786L/FO8tBDD4mOHTsKjUbjNddCZmammDZtmt6yUaNGiQkTJgghvOM6qKqqEr6+vmLjxo16y3v27CmeeOIJrzgHhgGRo475jTfeEK1atdK7H7KyskSXLl1sTiurzBysrq4OH3zwASorK5GamopDhw7h2rVrGDZsmLRNQkICYmNjkZeXBwDIy8tDUlISIiIipG3S09NRUVGBEydONPgx2GP27NnIzMzUO14AXnMefvzxR0RHR6NDhw6YMGECiouLAXjP8QPA559/jt69e+P//u//EB4ejh49emDVqlXS+qKiIpSWluqdi+DgYPTt21fvXISEhKB3797SNsOGDYOPjw8OHDjQcAfjALW1tXj33Xcxbdo0qFQqr7kW+vXrh+3bt+OHH34AABw5cgT79u1DRkYGAO+4Dq5fv466ujo0a9ZMb3lAQAD27dvnFefAkKOOOS8vD2lpafDz85O2SU9Px6lTp3D58mWb0sbJXR3k2LFjSE1NxdWrV9GiRQt8+umnSExMREFBAfz8/BASEqK3fUREBEpLSwEApaWlehmfdr12naf44IMP8O233+rVj2uVlpY2+vPQt29frF27Fl26dEFJSQmWLFmCgQMH4vjx415x/Fo//fQTVqxYgYcffhiPP/448vPz8eCDD8LPzw+TJ0+WjkXuWHXPRXh4uN76Jk2aoHXr1h51LgDgs88+Q3l5OaZMmQLAO+4FAFi4cCEqKiqQkJAAX19f1NXV4YUXXsCECRMAwCuug5YtWyI1NRXPPfccunbtioiICLz//vvIy8tDp06dvOIcGHLUMZeWliI+Pt5oH9p1rVq1sjptDIgcpEuXLigoKIBarcbHH3+MyZMnY/fu3a5OVoM5e/YsHnroIWzbts3obchbaN98ASA5ORl9+/ZF+/bt8eGHHyIgIMCFKWtYGo0GvXv3xtKlSwEAPXr0wPHjx7Fy5UpMnjzZxalreG+99RYyMjIQHR3t6qQ0qA8//BDvvfce1q1bhxtvvBEFBQWYN28eoqOjveo6+M9//oNp06ahbdu28PX1Rc+ePTFu3DgcOnTI1UkjA6wycxA/Pz906tQJvXr1QnZ2NlJSUrB8+XJERkaitrYW5eXletufP38ekZGRAIDIyEijHibaf2u3cXeHDh3ChQsX0LNnTzRp0gRNmjTB7t278eqrr6JJkyaIiIjwivOgKyQkBJ07d8bp06e95joAgKioKCQmJuot69q1q1R9qD0WuWPVPRcXLlzQW3/9+nVcunTJo87Fzz//jP/973+YMWOGtMxbroUFCxZg4cKFGDt2LJKSkjBx4kTMnz8f2dnZALznOujYsSN2796NK1eu4OzZs/jmm29w7do1dOjQwWvOgS5HHbMz7hEGRE6i0WhQU1ODXr16oWnTpti+fbu07tSpUyguLkZqaioAIDU1FceOHdO7ALZt24agoCCjB4u7Gjp0KI4dO4aCggLpr3fv3pgwYYL0395wHnRduXIFhYWFiIqK8prrAAD69++PU6dO6S374Ycf0L59ewBAfHw8IiMj9c5FRUUFDhw4oHcuysvL9d6id+zYAY1Gg759+zbAUTjGmjVrEB4ejszMTGmZt1wLVVVV8PHRf8T4+vpCo9EA8K7rAACaN2+OqKgoXL58GVu3bsWdd97pdecAcNzvnpqaij179uDatWvSNtu2bUOXLl1sqi4DwG73jrBw4UKxe/duUVRUJI4ePSoWLlwoVCqV+Oqrr4QQ9V1sY2NjxY4dO8TBgwdFamqqSE1NlT6v7WI7fPhwUVBQILZs2SLCwsI8qoutHN1eZkI0/vPwyCOPiF27domioiKxf/9+MWzYMBEaGiouXLgghGj8x6/1zTffiCZNmogXXnhB/Pjjj+K9994TgYGB4t1335W2ycnJESEhIeK///2vOHr0qLjzzjtlu9326NFDHDhwQOzbt0/ccMMNbt3V2FBdXZ2IjY0VWVlZRuu84VqYPHmyaNu2rdTtfsOGDSI0NFQ89thj0jbecB1s2bJFbN68Wfz000/iq6++EikpKaJv376itrZWCNE4z8Hvv/8uDh8+LA4fPiwAiH/84x/i8OHD4ueffxZCOOaYy8vLRUREhJg4caI4fvy4+OCDD0RgYCC73bvatGnTRPv27YWfn58ICwsTQ4cOlYIhIYSorq4WDzzwgGjVqpUIDAwUd911lygpKdHbx5kzZ0RGRoYICAgQoaGh4pFHHhHXrl1r6ENxKMOAqLGfhzFjxoioqCjh5+cn2rZtK8aMGaM39k5jP35dX3zxhejWrZvw9/cXCQkJ4l//+pfeeo1GIxYvXiwiIiKEv7+/GDp0qDh16pTeNr/99psYN26caNGihQgKChJTp04Vv//+e0Mehl22bt0qABgdlxDecS1UVFSIhx56SMTGxopmzZqJDh06iCeeeEKvm7Q3XAfr168XHTp0EH5+fiIyMlLMnj1blJeXS+sb4znYuXOnAGD0N3nyZCGE4475yJEjYsCAAcLf31+0bdtW5OTk2JVulRA6w4YSEREReSG2ISIiIiKvx4CIiIiIvB4DIiIiIvJ6DIiIiIjI6zEgIiIiIq/HgIiIiIi8HgMiIiIi8noMiIiIiMjrMSAiIqcZPHgw5s2b5+pkON0zzzyD7t27uzoZRGQHBkRERApqa2sb9PuEELh+/XqDficR1WNAREROMWXKFOzevRvLly+HSqWCSqXCmTNncPz4cWRkZKBFixaIiIjAxIkTUVZWJn1u8ODBmDt3LubNm4dWrVohIiICq1atQmVlJaZOnYqWLVuiU6dO2Lx5s/SZXbt2QaVSYdOmTUhOTkazZs1w88034/jx43pp2rdvHwYOHIiAgADExMTgwQcfRGVlpbQ+Li4Ozz33HCZNmoSgoCDcf//9AICsrCx07twZgYGB6NChAxYvXizNsr127VosWbIER44ckY5z7dq1OHPmDFQqFQoKCqT9l5eXQ6VSYdeuXXrp3rx5M3r16gV/f3/s27cPGo0G2dnZiI+PR0BAAFJSUvDxxx87+iciIh0MiIjIKZYvX47U1FTcd999KCkpQUlJCVq2bIlbbrkFPXr0wMGDB7FlyxacP38e99xzj95n33nnHYSGhuKbb77B3LlzMWvWLPzf//0f+vXrh2+//RbDhw/HxIkTUVVVpfe5BQsW4O9//zvy8/MRFhaG22+/XQpcCgsLMWLECIwePRpHjx7F+vXrsW/fPsyZM0dvH3/729+QkpKCw4cPY/HixQCAli1bYu3atfjuu++wfPlyrFq1Ci+//DIAYMyYMXjkkUdw4403Ssc5ZswYq87VwoULkZOTg++//x7JycnIzs7Gv//9b6xcuRInTpzA/Pnzce+992L37t1W7ZeIrGDX1LBERCYMGjRIPPTQQ9K/n3vuOTF8+HC9bc6ePas3K/ygQYPEgAEDpPXXr18XzZs3FxMnTpSWlZSUCAAiLy9PCPHn7NoffPCBtM1vv/0mAgICxPr164UQQkyfPl3cf//9et+9d+9e4ePjI6qrq4UQQrRv316MHDnS7HG99NJLolevXtK/n376aZGSkqK3TVFRkQAgDh8+LC27fPmyACB27typl+7PPvtM2ubq1asiMDBQ5Obm6u1v+vTpYty4cWbTRkS2aeLKYIyIvMuRI0ewc+dOtGjRwmhdYWEhOnfuDABITk6Wlvv6+qJNmzZISkqSlkVERAAALly4oLeP1NRU6b9bt26NLl264Pvvv5e+++jRo3jvvfekbYQQ0Gg0KCoqQteuXQEAvXv3Nkrb+vXr8eqrr6KwsBBXrlzB9evXERQUZPXxK9H9ztOnT6Oqqgp/+ctf9Lapra1Fjx49HPadRKSPARERNZgrV67g9ttvx4svvmi0LioqSvrvpk2b6q1TqVR6y1QqFQBAo9FY9d1//etf8eCDDxqti42Nlf67efPmeuvy8vIwYcIELFmyBOnp6QgODsYHH3yAv//97ya/z8envkWCEEJapq2+M6T7nVeuXAEAbNq0CW3bttXbzt/f3+R3EpHtGBARkdP4+fmhrq5O+nfPnj3xySefIC4uDk2aOD77+frrr6Xg5vLly/jhhx+kkp+ePXviu+++Q6dOnazaZ25uLtq3b48nnnhCWvbzzz/rbWN4nAAQFhYGACgpKZFKdnQbWCtJTEyEv78/iouLMWjQIKvSSkS2Y6NqInKauLg4HDhwAGfOnEFZWRlmz56NS5cuYdy4ccjPz0dhYSG2bt2KqVOnGgUUtnj22Wexfft2HD9+HFOmTEFoaChGjhwJoL6nWG5uLubMmYOCggL8+OOP+O9//2vUqNrQDTfcgOLiYnzwwQcoLCzEq6++ik8//dToOIuKilBQUICysjLU1NQgICAAN998s9RYevfu3XjyySfNHkPLli3x6KOPYv78+XjnnXdQWFiIb7/9Fq+99hreeecdm88NEZnGgIiInObRRx+Fr68vEhMTERYWhtraWuzfvx91dXUYPnw4kpKSMG/ePISEhEhVTPbIycnBQw89hF69eqG0tBRffPEF/Pz8ANS3S9q9ezd++OEHDBw4ED169MBTTz2F6Ohok/u84447MH/+fMyZMwfdu3dHbm6u1PtMa/To0RgxYgSGDBmCsLAwvP/++wCAt99+G9evX0evXr0wb948PP/88xYdx3PPPYfFixcjOzsbXbt2xYgRI7Bp0ybEx8fbcFaIyBIqoVvBTUTkgXbt2oUhQ4bg8uXLCAkJcXVyiMgDsYSIiIiIvB4DIiIiIvJ6rDIjIiIir8cSIiIiIvJ6DIiIiIjI6zEgIiIiIq/HgIiIiIi8HgMiIiIi8noMiIiIiMjrMSAiIiIir8eAiIiIiLweAyIiIiLyev8PBcjMfq1Q8SEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmYUlEQVR4nO3deXwU5f0H8M9sIGETkuVIAgETEoIQkBCRywAGECqkKCJYEY9yqhUU0SoELQIqBmzrWQUEBa0VaBXUCnhULmP4QbhB5YoBIgQhQjZAQgLZ5/dHnGWPmb2vST7v1yutzM7OPDM788x3nlMSQggQERERaZQu2AkgIiIi8gaDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIKiNmzZ0OSJJfWlSQJs2fP9mt6+vfvj/79+4fs9ojIdQxmiOqZZcuWQZIk81+DBg3QunVrjB07FidOnAh28kJOcnKy1fmKj4/HTTfdhNWrV/tk+xUVFZg9ezY2btzok+0R1UcMZojqqeeeew7//Oc/sXDhQmRnZ+ODDz5Av379cOnSJb/s7y9/+QsqKyv9sm1/u/766/HPf/4T//znP/Hkk0/i5MmTGDFiBBYuXOj1tisqKjBnzhwGM0ReaBDsBBBRcGRnZ6N79+4AgIkTJyI2Nhbz58/HZ599hrvuusvn+2vQoAEaNNBmltO6dWvcd9995n//8Y9/RLt27fDKK6/gT3/6UxBTRkQAS2aI6Dc33XQTAKCwsNBq+YEDB3DnnXeiWbNmaNSoEbp3747PPvvMap3Lly9jzpw5uPbaa9GoUSM0b94cffv2xddff21eR6nNTFVVFR5//HHExcUhOjoaw4YNw88//2yXtrFjxyI5OdluudI2ly5diptvvhnx8fGIiIhAp06dsGDBArfOhTMtW7ZEx44dUVRU5HC906dPY8KECWjRogUaNWqEjIwMvPfee+bPjx49iri4OADAnDlzzFVZ/m4vRFTXaPM1iYh87ujRowCApk2bmpd9//336NOnD1q3bo2cnBxERUXh3//+N4YPH46PP/4Yd9xxB4DaoCI3NxcTJ05Ez549UV5eju3bt2Pnzp343e9+p7rPiRMn4oMPPsA999yD3r17Y/369Rg6dKhXx7FgwQJcd911GDZsGBo0aID//ve/mDRpEkwmEyZPnuzVtmWXL19GcXExmjdvrrpOZWUl+vfvjyNHjuCRRx5BSkoK/vOf/2Ds2LEoKyvDY489hri4OCxYsAAPP/ww7rjjDowYMQIA0KVLF5+kk6jeEERUryxdulQAEP/73//EmTNnRHFxsfjoo49EXFyciIiIEMXFxeZ1Bw4cKNLT08WlS5fMy0wmk+jdu7e49tprzcsyMjLE0KFDHe531qxZwjLL2b17twAgJk2aZLXePffcIwCIWbNmmZeNGTNGtGnTxuk2hRCioqLCbr3BgweLtm3bWi3r16+f6Nevn8M0CyFEmzZtxC233CLOnDkjzpw5I/bs2SPuvvtuAUA8+uijqtt79dVXBQDxwQcfmJdVV1eLzMxM0bhxY1FeXi6EEOLMmTN2x0tE7mE1E1E9NWjQIMTFxSExMRF33nknoqKi8Nlnn+Gaa64BAJw9exbr16/HXXfdhfPnz6O0tBSlpaX49ddfMXjwYBw+fNjc+6lJkyb4/vvvcfjwYZf3v3btWgDAlClTrJZPnTrVq+PS6/Xm/zYajSgtLUW/fv3w008/wWg0erTNr776CnFxcYiLi0NGRgb+85//4P7778f8+fNVv7N27Vq0bNkSo0ePNi9r2LAhpkyZggsXLmDTpk0epYWI7LGaiaieevPNN9G+fXsYjUa8++672Lx5MyIiIsyfHzlyBEIIzJw5EzNnzlTcxunTp9G6dWs899xzuP3229G+fXt07twZQ4YMwf333++wuuTYsWPQ6XRITU21Wt6hQwevjuu7777DrFmzsGXLFlRUVFh9ZjQaYTAY3N5mr1698MILL0CSJERGRqJjx45o0qSJw+8cO3YM1157LXQ663fGjh07mj8nIt9gMENUT/Xs2dPcm2n48OHo27cv7rnnHhw8eBCNGzeGyWQCADz55JMYPHiw4jbatWsHAMjKykJhYSE+/fRTfPXVV1iyZAleeeUVLFy4EBMnTvQ6rWqD7dXU1Fj9u7CwEAMHDkRaWhpefvllJCYmIjw8HGvXrsUrr7xiPiZ3xcbGYtCgQR59l4j8j8EMESEsLAy5ubkYMGAA/vGPfyAnJwdt27YFUFs14sqDvFmzZhg3bhzGjRuHCxcuICsrC7Nnz1YNZtq0aQOTyYTCwkKr0piDBw/ardu0aVOUlZXZLbct3fjvf/+LqqoqfPbZZ0hKSjIv37Bhg9P0+1qbNm2wd+9emEwmq9KZAwcOmD8H1AM1InId28wQEYDa4fh79uyJV199FZcuXUJ8fDz69++PRYsWoaSkxG79M2fOmP/7119/tfqscePGaNeuHaqqqlT3l52dDQB4/fXXrZa/+uqrduumpqbCaDRi79695mUlJSV2o/CGhYUBAIQQ5mVGoxFLly5VTYe//P73v8epU6ewcuVK87IrV67gjTfeQOPGjdGvXz8AQGRkJAAoBmtE5BqWzBCR2VNPPYU//OEPWLZsGf70pz/hzTffRN++fZGeno4HHngAbdu2xS+//IItW7bg559/xp49ewAAnTp1Qv/+/dGtWzc0a9YM27dvx0cffYRHHnlEdV/XX389Ro8ejbfeegtGoxG9e/fGN998gyNHjtite/fdd2P69Om44447MGXKFFRUVGDBggVo3749du7caV7vlltuQXh4OG677TY89NBDuHDhAhYvXoz4+HjFgMyfHnzwQSxatAhjx47Fjh07kJycjI8++gjfffcdXn31VURHRwOobbDcqVMnrFy5Eu3bt0ezZs3QuXNndO7cOaDpJdK0YHenIqLAkrtmFxQU2H1WU1MjUlNTRWpqqrhy5YoQQojCwkLxxz/+UbRs2VI0bNhQtG7dWtx6663io48+Mn/vhRdeED179hRNmjQRer1epKWliblz54rq6mrzOkrdqCsrK8WUKVNE8+bNRVRUlLjttttEcXGxYlflr776SnTu3FmEh4eLDh06iA8++EBxm5999pno0qWLaNSokUhOThbz588X7777rgAgioqKzOu50zXbWbdzte398ssvYty4cSI2NlaEh4eL9PR0sXTpUrvv5ufni27duonw8HB20ybygCSERXksERERkcawzQwRERFpGoMZIiIi0jQGM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNq/OD5plMJpw8eRLR0dEcNpyIiEgjhBA4f/48WrVqZTdhq9LKQbNp0yZx6623ioSEBAFArF692vxZdXW1mDZtmujcubOIjIwUCQkJ4v777xcnTpxwax/yAFz84x//+Mc//vFPe3/FxcVOn/VBLZm5ePEiMjIyMH78eIwYMcLqs4qKCuzcuRMzZ85ERkYGzp07h8ceewzDhg3D9u3bXd6HPGR4cXExYmJifJp+IiIi8o/y8nIkJiaan+OOhMwIwJIkYfXq1Rg+fLjqOgUFBejZsyeOHTtmNSOuI+Xl5TAYDDAajQxmiIiINMKd57em2swYjUZIkoQmTZqorlNVVWU1U295eXkAUkZERETBopneTJcuXcL06dMxevRohxFabm4uDAaD+S8xMTGAqSQiIqJA00Qwc/nyZdx1110QQmDBggUO150xYwaMRqP5r7i4OECpJCIiomAI+WomOZA5duwY1q9f77TeLCIiAhEREQFKHRERhZKamhpcvnw52MkgFzRs2BBhYWE+2VZIBzNyIHP48GFs2LABzZs3D3aSiIgoBAkhcOrUKZSVlQU7KeSGJk2aoGXLll6PAxfUYObChQs4cuSI+d9FRUXYvXs3mjVrhoSEBNx5553YuXMnPv/8c9TU1ODUqVMAgGbNmiE8PDxYySYiohAjBzLx8fGIjIzkIKkhTgiBiooKnD59GgCQkJDg1faC2jV748aNGDBggN3yMWPGYPbs2UhJSVH83oYNG9C/f3+X9sGu2UREdVtNTQ0OHTqE+Ph4luBrzK+//orTp0+jffv2dlVOmuma3b9/fziKpUJkCBwiIgphchuZyMjIIKeE3CX/ZpcvX/aq/YwmejMRERE5w6ol7fHVb8ZghoiIiDSNwQwRERH5xcaNGyFJkt97mTGY8UKJsRL5haUoMVYGOylERFQPzZ49G9dff32wkxF0IT3OTChbWXAcM1btg0kAOgnIHZGOUT1cm/ySiIgokC5fvoyGDRsGOxl+w5IZD5QYK82BDACYBPD0qv0soSEiIreYTCbk5uYiJSUFer0eGRkZ+OijjwBcraL55ptv0L17d0RGRqJ37944ePAgAGDZsmWYM2cO9uzZA0mSIEkSli1bBqC2Ye2CBQswbNgwREVFYe7cuQ7TIe/ryy+/RNeuXaHX63HzzTfj9OnTWLduHTp27IiYmBjcc889qKioMH+vqqoKU6ZMQXx8PBo1aoS+ffuioKDAPyfLAQYzHigqvWgOZGQ1QuBoaYXyF4iISBMC3XwgNzcX77//PhYuXIjvv/8ejz/+OO677z5s2rTJvM4zzzyDv//979i+fTsaNGiA8ePHAwBGjRqFP//5z7juuutQUlKCkpISjBo1yvy92bNn44477sC+ffvM33Fm9uzZ+Mc//oH8/HwUFxfjrrvuwquvvooPP/wQa9aswVdffYU33njDvP60adPw8ccf47333sPOnTvRrl07DB48GGfPnvXRGXINq5k8kBIbBZ0Eq4AmTJKQHMsxDoiItCrQzQeqqqrw4osv4n//+x8yMzMBAG3btkVeXh4WLVqEBx98EAAwd+5c9OvXDwCQk5ODoUOH4tKlS9Dr9WjcuDEaNGiAli1b2m3/nnvuwbhx49xK0wsvvIA+ffoAACZMmIAZM2agsLAQbdu2BQDceeed2LBhA6ZPn46LFy9iwYIFWLZsGbKzswEAixcvxtdff4133nkHTz31lGcnxgMsmfFAgkGP3BHpCPutf3yYJOHFEZ2RYNAHOWVEROSJYDQfOHLkCCoqKvC73/0OjRs3Nv+9//77KCwsNK/XpUsX83/Lw/7L0wA40r17d7fTZLmvFi1aIDIy0hzIyMvkfRcWFuLy5cvm4AeonTyyZ8+e+PHHH93etzdYMuOhUT2SkNU+DkdLK5AcG8lAhohIwxw1H/BX/n7hwgUAwJo1a9C6dWurzyIiIswBjWXDXXmQOZPJ5HT7UVFRbqfJdl+2jYYlSXJp34HGYMYLCQY9gxgiojogGM0HOnXqhIiICBw/ftxcjWTJsnRGTXh4OGpqavyRPKdSU1MRHh6O7777Dm3atAFQ22uqoKAAU6dODWhaGMwQEVG9JzcfeHrVftQIEZDmA9HR0XjyySfx+OOPw2QyoW/fvjAajfjuu+8QExNjDhAcSU5ORlFREXbv3o1rrrkG0dHRiIiI8FuaLUVFReHhhx/GU089hWbNmiEpKQkvvfQSKioqMGHChICkQcZghoiICMFpPvD8888jLi4Oubm5+Omnn9CkSRPccMMNePrpp12qzhk5ciRWrVqFAQMGoKysDEuXLsXYsWP9nm7ZvHnzYDKZcP/99+P8+fPo3r07vvzySzRt2jRgaQAASdTxqandmUKciIi059KlSygqKkJKSgoaNWoU7OSQGxz9du48v9mbiYiIiDSNwQwREVEd96c//cmq+7fl35/+9KdgJ89rbDNDRERUxz333HN48sknFT+rC00wGMwQERHVcfHx8YiPjw92MvyG1UxERESkaQxmiIioTgjFkWnJMV/9ZqxmIiIiTQsPD4dOp8PJkycRFxeH8PBw87D/FJqEEKiursaZM2eg0+kQHh7u1fYYzBARkabpdDqkpKSgpKQEJ0+eDHZyyA2RkZFISkqCTuddRRGDGSIi0rzw8HAkJSXhypUrQZuriNwTFhaGBg0a+KQUjcEMERHVCfIsz7YzPVPdxwbAREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk1jMENERESaxmCGiIiINI3BDBEREWkagxkiIiLSNAYzREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk1jMENERESaxmCGiIiINI3BDBEREWkagxkiIiLSNAYzREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk1jMENERESaxmCGiIiINI3BDBEREWlaUIOZzZs347bbbkOrVq0gSRI++eQTq8+FEHj22WeRkJAAvV6PQYMG4fDhw8FJLBEREYWkoAYzFy9eREZGBt58803Fz1966SW8/vrrWLhwIbZu3YqoqCgMHjwYly5dCnBKiYiIKFQ1CObOs7OzkZ2drfiZEAKvvvoq/vKXv+D2228HALz//vto0aIFPvnkE9x9992BTCoRERGFqJBtM1NUVIRTp05h0KBB5mUGgwG9evXCli1bVL9XVVWF8vJyqz8iIiKqu0I2mDl16hQAoEWLFlbLW7RoYf5MSW5uLgwGg/kvMTHRr+kkIiKi4ArZYMZTM2bMgNFoNP8VFxcHO0lERETkRyEbzLRs2RIA8Msvv1gt/+WXX8yfKYmIiEBMTIzVHxEREdVdIRvMpKSkoGXLlvjmm2/My8rLy7F161ZkZmYGMWVEREQUSoLam+nChQs4cuSI+d9FRUXYvXs3mjVrhqSkJEydOhUvvPACrr32WqSkpGDmzJlo1aoVhg8fHrxEExERUUgJajCzfft2DBgwwPzvJ554AgAwZswYLFu2DNOmTcPFixfx4IMPoqysDH379sUXX3yBRo0aBSvJREREFGIkIYQIdiL8qby8HAaDAUajke1niIiINMKd53fItpkhIiIicgWDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYMZLJcZK5BeWosRYGeykEBER1UsNgp0ALVtZcBwzVu2DSQA6CcgdkY5RPZKCnSwiIqJ6hSUzHioxVpoDGQAwCeDpVftZQkNERBRgDGY8VFR60RzIyGqEwNHSiuAkiIiIqJ5iMOOhlNgo6CTrZWGShOTYyOAkiIiIqJ5iMOOhBIMeuSPSESbVRjRhkoQXR3RGgkEf5JQRERHVL2wA7IVRPZKQ1T4OR0srkBwbyUCGiIgoCBjMeCnBoGcQQ0REFESsZiIiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZHygxViK/sBQlxspgJ4WIiKjeaRDsBGjdyoLjmLFqH0wC0ElA7oh0jOqRFOxkERER1RssmfFCibHSHMgAgEkAT6/azxIaIiKiAGIw44Wi0ovmQEZWIwSOllYEJ0FERET1UEgHMzU1NZg5cyZSUlKg1+uRmpqK559/HkII518OgJTYKOgk62VhkoTk2MjgJIiIiKgeCuk2M/Pnz8eCBQvw3nvv4brrrsP27dsxbtw4GAwGTJkyJdjJQ4JBj9wR6Xh61X7UCIEwScKLIzojwaAPdtKIiIjqjZAOZvLz83H77bdj6NChAIDk5GQsX74c27ZtC3LKrhrVIwlZ7eNwtLQCybGRDGSIiIgCLKSrmXr37o1vvvkGhw4dAgDs2bMHeXl5yM7OVv1OVVUVysvLrf78LcGgR2ZqcwYyREREQRDSJTM5OTkoLy9HWloawsLCUFNTg7lz5+Lee+9V/U5ubi7mzJkTwFQSERFRMIV0ycy///1v/Otf/8KHH36InTt34r333sPf/vY3vPfee6rfmTFjBoxGo/mvuLg4gCkmIiKiQJNEqHQNUpCYmIicnBxMnjzZvOyFF17ABx98gAMHDri0jfLychgMBhiNRsTExPgrqURERORD7jy/Q7pkpqKiAjqddRLDwsJgMpmClCIiIiIKNSHdZua2227D3LlzkZSUhOuuuw67du3Cyy+/jPHjxwc7aURERBQiQrqa6fz585g5cyZWr16N06dPo1WrVhg9ejSeffZZhIeHu7QNVjMRERFpjzvP75AOZnyBwQwREZH21Jk2M0RERETOMJghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJrGYIaIiIg0jcEMERERaRqDGSIiItI0BjNERESkaQxmiIiISNMYzBAREZGmMZghIiIiTWMw44USYyXyC0tRYqwMdlKIiIjqrQbBToBWrSw4jhmr9sEkAJ0E5I5Ix6geScFOFhERUb3DkhkPlBgrzYEMAJgE8PSq/SyhISIiCgIGMx4oKr1oDmRkNULgaGlFcBJERERUjzGY8UBKbBR0kvWyMElCcmyk4vpsW0NEROQ/DGY8kGDQI3dEOsKk2ogmTJLw4ojOSDDo7dZdWXAcfeatxz2Lt6LPvPVYWXA80MklIiKq0yQhhHC+mnaVl5fDYDDAaDQiJibGp9suMVbiaGkFkmMjFQOZEmMl+sxbb1UlFSZJyMsZoLg+ERER1XLn+c3eTF5IMOgdBiWO2tYwmCEiIvINVjP5kbtta4iIiMh9DGb8yJ22NUREROQZVjP52ageSchqH+ewbQ0RERF5jsFMADhrW0NERESeczmYKS8vd3mjvu41RERERKTG5WCmSZMmkCTJ4TpCCEiShJqaGq8TRkREROQKl4OZDRs2+DMdRERERB5xOZjp16+fP9NBRERE5BGPGwCXlZXhnXfewY8//ggAuO666zB+/HgYDAafJY6IiIjIGY/Gmdm+fTtSU1Pxyiuv4OzZszh79ixefvllpKamYufOnb5OIxEREZEqj+Zmuummm9CuXTssXrwYDRrUFu5cuXIFEydOxE8//YTNmzf7PKGe8ufcTEREROQf7jy/PQpm9Ho9du3ahbS0NKvlP/zwA7p3746Kigp3N+k3DGaIiIi0x53nt0fVTDExMTh+/Ljd8uLiYkRHR3uySSIiIiKPeBTMjBo1ChMmTMDKlStRXFyM4uJirFixAhMnTsTo0aN9nUYiIiIiVR71Zvrb3/4GSZLwxz/+EVeuXAEANGzYEA8//DDmzZvn0wQSEREROeJRmxlZRUUFCgsLAQCpqamIjIz0WcJ8hW1miIiItMed57dXE01GRkYiPT3dm00QERERecWjYObSpUt44403sGHDBpw+fRomk8nqc441Q0RERIHiUTAzYcIEfPXVV7jzzjvRs2dPpxNQEhEREfmLR8HM559/jrVr16JPnz6+Tg8RERGRWzzqmt26dWuOJ0NEREQhwaNg5u9//zumT5+OY8eO+To9dk6cOIH77rsPzZs3h16vR3p6OrZv3+73/RIREZE2eFTN1L17d1y6dAlt27ZFZGQkGjZsaPX52bNnfZK4c+fOoU+fPhgwYADWrVuHuLg4HD58GE2bNvXJ9omIiEj7PApmRo8ejRMnTuDFF19EixYt/NYAeP78+UhMTMTSpUvNy1JSUvyyLyIiItImjwbNi4yMxJYtW5CRkeGPNJl16tQJgwcPxs8//4xNmzahdevWmDRpEh544AGXt8FB84iIiLTH7xNNpqWlobKy0qPEueOnn37CggULcO211+LLL7/Eww8/jClTpuC9995T/U5VVRXKy8ut/oiIiKju8qhk5quvvsKcOXMwd+5cpKen27WZ8VUJSHh4OLp37478/HzzsilTpqCgoABbtmxR/M7s2bMxZ84cu+UsmSEiItIOd0pmPApmdLraAh3btjJCCEiShJqaGnc3qahNmzb43e9+hyVLlpiXLViwAC+88AJOnDih+J2qqipUVVWZ/11eXo7ExEQGM0RERBri97mZNmzY4FHC3NWnTx8cPHjQatmhQ4fQpk0b1e9EREQgIiLC30kjIiKiEOFRMNOvXz+X1ps0aRKee+45xMbGerIbPP744+jduzdefPFF3HXXXdi2bRvefvttvP322x5tj4iIiOoej6qZXBUTE4Pdu3ejbdu2Hm/j888/x4wZM3D48GGkpKTgiSeeYG8mIiKiOs7v1Uyu8kWcdOutt+LWW2/1QWqIiIioLvKoazYRERFRqGAwQ0RERJrGYIaIiIg0jcEMERERaZrbwcyVK1fw3HPP4eeff3a67n333cceRERERORXHnXNjo6Oxr59+5CcnOyHJPkWu2YTERFpj98nmrz55puxadMmjxJHRERE5EsejTOTnZ2NnJwc7Nu3D926dUNUVJTV58OGDfNJ4oiIiIic8WqiScUN+nCiSV9gNRMREZH2+H0EYJPJ5FHCiIiIiHzNozYz77//PqqqquyWV1dX4/333/c6UURERESu8qiaKSwsDCUlJYiPj7da/uuvvyI+Pp7VTEREROQVv/dmEkJAkiS75T///DMMBoMnmyQiIiLyiFttZrp27QpJkiBJEgYOHIgGDa5+vaamBkVFRRgyZIjPE0lERESkxq1gZvjw4QCA3bt3Y/DgwWjcuLH5s/DwcCQnJ2PkyJE+TSARERGRI24FM7NmzQIAJCcnY9SoUWjUqJFfEkVERETkKo+6Zo8ZMwZAbe+l06dP23XVTkpK8j5lRERERC7wKJg5fPgwxo8fj/z8fKvlcsPgUOrNFGglxkoUlV5ESmwUEgz6YCeHiIiozvMomBk7diwaNGiAzz//HAkJCYo9m+qjlQXHMWPVPpgEoJOA3BHpGNWDpVRERET+5FEws3v3buzYsQNpaWm+To9mlRgrzYEMAJgE8PSq/chqH2dXQsPSGyIiIt/xKJjp1KkTSktLfZ0WTSsqvWgOZGQ1QuBoaYVVwMLSGyIiIt/yaNC8+fPnY9q0adi4cSN+/fVXlJeXW/3VRymxUdDZ1LaFSRKSYyPN/1YrvSkxVgYwpURERHWLRyUzgwYNAgDcfPPNVu1l6nMD4ASDHrkj0vH0qv2oEQJhkoQXR3S2KpVxtfSGiIiIXOdRMLNhwwZfp6NOGNUjCVnt43C0tALJsZF2AUpKbBQkAJbxjG3pDREREbnHo2qmfv36QafTYfHixcjJyUG7du3Qr18/HD9+HGFhYb5Oo6YkGPTITG2uWNKy+dAZq39LgF3pDREREbnHo2Dm448/xuDBg6HX67Fr1y5UVVUBAIxGI1588UWfJrCukNvLWJbKSBKQ1T4uaGkiIiKqCzwKZl544QUsXLgQixcvRsOGDc3L+/Tpg507d/oscXWJUnsZkwCOllYEJ0FERER1hEfBzMGDB5GVlWW33GAwoKyszNs01Umu9HYiIiIi93kUzLRs2RJHjhyxW56Xl4e2bdt6nai6SO7tFPZb7y+l3k5ERETkPo96Mz3wwAN47LHH8O6770KSJJw8eRJbtmzBk08+iZkzZ/o6jXWGs95ORERE5D6PgpmcnByYTCYMHDgQFRUVyMrKQkREBJ588kk8+uijvk5jnZJg0DOIISIi8iFJCCGcr6asuroaR44cwYULF9CpUyc0btzYl2nzifLychgMBhiNRsTExAQ7OUREROQCd57fHpXMyMLDw9GpUydvNkFERETkFY8aABMRERGFCgYzflBirER+YSknkCQiIgoAr6qZyN7KguPmmbF1EpA7Ih2jeiQFO1lERER1FktmfEieskAe6dckgKdX7VctoWEJDhERkfdYMuNDSlMW1AiBo6UVdt2xPS3BKTFWoqj0IlJio9jFm4iICAxmfEqessAyoFGaskCtBCerfZzDAIVVWERERPZYzeRDrk5Z4KgER427VVhERET1BUtmfMyVKQtcLcGx5E4VFhERUX3Ckhk/SDDokZnaXDXI8GTSSc66TUREpIwlMwFk2XjX3Ukn5QDo6VX7USMEZ90mIiL6DYOZAFFrvOtOMMJZt4mIiOyxmikAfNl411kVFhERUX3DYCYAPOm9FGgcwI+IiLSK1UwB4EnvJUv+HiiP49cQEZGWaapkZt68eZAkCVOnTg12Utxi23tJJwHj+ya79N2VBcfRZ9563LN4K/rMW4+VBcd9mjaOX0NERFqnmWCmoKAAixYtQpcuXYKdFI+M6pGEvJwBeDArBUIAi78tchqcBCLQ0EIVGBERkSOaCGYuXLiAe++9F4sXL0bTpk2DnRyvLPm2CHLs4Cw4CUSgwfFriIhI6zQRzEyePBlDhw7FoEGDgp0Ur7gbnAQi0PBkAD8iIqJQEvINgFesWIGdO3eioKDApfWrqqpQVVVl/nd5ebm/kuY2dxsCB2qgPI5fQ0REWhbSwUxxcTEee+wxfP3112jUqJFL38nNzcWcOXP8nDLPeBKcBCrQSDDoGcQQEZEmSUII4Xy14Pjkk09wxx13ICwszLyspqYGkiRBp9OhqqrK6jNAuWQmMTERRqMRMTExAUu7IyXGSpaCEBEROVBeXg6DweDS8zukS2YGDhyIffv2WS0bN24c0tLSMH36dLtABgAiIiIQERERqCR6hKUgREREvhPSwUx0dDQ6d+5stSwqKgrNmze3Wx4K/D24HREREdkL6WBGS7Q6ii4DMCIi0jrNBTMbN24MdhLsqA1ul9U+LqQDBK0GYERERJY0Mc5MqNPiKLp7is8hh9MYEBFRHcBgxge0NoruyoLjGP5mPmz7sYV6AEZERKSEwYwP+GIU3RJjJfILS/1eMiJXiSn1xw/lAIyIiEiN5trMhCpvBrcLZNsVpSoxoHa/nMaAiIi0iMGMD3kyfkygGw8rTamgA7B6Um9kJGp7Ek8iIqqfWM0UZIFuPKxUJZY7Mp2BDBERaRZLZoLM3cknfYETSxIRUV3Ckpkg80XjYU/3m5nanIEMERFpHktmQoCWSko4YjAREYUaBjMhQguTT3LEYCIiCkWsZiKXqPW64ojBREQUbAxmyI7SAH5anLKBiIjqB1YzkRW1qqRg9LoiIiJyBUtmyMxRVVKwel0RERE5w5IZMnNUlZRg0Guq1xUREdUfDGZCULC6P7tSlaSFXldERFS/sJrJR5QazXoyE/bKguPoM2897lm8FX3mrcfKguP+SK4iViUREZEWSUIIhTmU647y8nIYDAYYjUbExMT4ZR9KjWYBuD0mS4mxEn3mrbcrGcnLGRDQgKLEWMmqJCIiCip3nt+sZvKSUqPZGav2QQhAjklcnQnbWZuVQGFVEhERaQmrmbykFICYLAIZmStjsshtViwFsvuzJ9ViREREwcZgxktKAYhOAmwWuRSUBLPNSjDb6hAREXmDbWZ8YGXBcTy9aj9qhDAHIADslrk6j1Gg26yESlsdIiIiGdvMBJja+CuejskS6DYrodJWh4iIyBMMZnxEKQDRSkNaV8aXCdbYN0RERM6wzQw5bavjansaNiAmIqJgYJsZMlNqq+Nqexq1CSqJiIg84c7zmyUzZJZg0CMztblVkOKoPY3M0QSVRERE/sZghhxyZewbVwIeIiIif2EwQw65MvZNsAf7IyKi+o29mcgpta7nMjngsR1Xh72eiIgoEBjMkEucdTN3FvAQhTIOPUCkbQxmyIo3mbpWxtUhssSeeETax2CGzJipU32j1hPP2Qz3RBRa2ACYALB7NWmXN4M1ujr0gL8Gg+RAk0S+wZIZAuDe/ExqVVFsd0CB5m1porOpPPxZWsmSUCLfYclMCAnmW5qr3avVpjZwdcoDIl9RKk2csWqfW/ePo6EH/Fla6WjbWi6t0XLaSdtYMhMigv2W5kr3arUMOK1ltGq7AwAsrSG/UCpNNAlg6XdFePr3nVzejlpPPH/OJq+27aV5R7Ek7ydNltYEOw+j+o3BTAgIlUaIzrpXq2XABUfPKWfM3xVhybdFzNzIL5SqiABgyeYijOuT4ta9o9QTz5XZ5D2ltG0dYA5kAG01Rg6VPIzqL1YzhYBQmg5AaX4mmVpVVI/kpnbLdRKweHMRGxSTR1yprkgw6DGhb4rdchPgk3vHldGvfbntiTelhEw+4ArL3yiU8jCqn1gyEwLU3jD3nihDZmpzl7YRiMa3alVRGYlN7Zb3adccmw+XWn3fV0X0VLe5U10xvm8KlnxbBMtbx5dTafhzMEjbbQPAkrwij0uCAtkA3/Y3mj4kzW+lWESukIQQwvlq2uXOFOLBtGhTIXLXHbBaFiZJyMsZ4DRjCnRddYmxUjFzl5dHhusw/M182F5YOgn4Ludml3tHUf1TYqxEn3nr7R6Kju6DlQXH7QJsrVZnenosgcwD1H6jadkd8NK6g3Xid6DQ4M7zmyUzISL9GoPdMldKMoJRV6020q+8PL+w1C6QAYCJfdsiwaDHnuJz2Hb0LHomN8OBU+fZaJDMPGl0W5em0vDkWAKdB6j9Rl1aN0FezoA68TuQ9jCYCRGeNjb0Z48LT6k1bhzXNxl//vdufLzzhOL32GiQPL0P6tJUGu4eS6DzAEe/UV36HUhb2AA4RHja2NDV8WECSelYckem43T5JdVARsZGg9rm7Tgj/mx06y/BHlvF33mA7fFp8Teiuo9tZkKMWnsUR0K1zYDtsUz+1w6s2XfK4XdcbSdEoceX7TY8uQ+CIVTGVrHMA3QSMD07DQ9lpfpku2rHp5XfiLTLnec3g5k6ItQzlhJjJXrnrldsS2Npxu99kwlTYHnScNcfaXC3Ibk3jc9D4ZgtLdpUiHnrDkDAN4FVqB0f1T9sAFwPhXpddVHpRaeBDAB0ad3E30khPwh0uw3bIMSTEhJPS1Xkff96oSpk2quVGCsx/4sD5nvMF+3PQrE9HpEaBjPkMXfeatXG0rHkrJ6fXbhDlzej5br7u9qNcZKdhvnrDtjN0ZTWMhoZiU0Vt7Gn+BxyVu2DsPiOKw9/231LgN/GuHGHPwIPf46ATORrId8AODc3Fz169EB0dDTi4+MxfPhwHDx4MNjJqvfcnVhSqdHgyBtau9yIkBNZhjZPG4W6+7sqdUO2DGRkJgEMfzNfcXsrC47XjoPk5oi1SvsGrmaiwWwI649GwGzoS1oS8m1mhgwZgrvvvhs9evTAlStX8PTTT2P//v344YcfEBUV5fT79aXNTCB5U5du27bHUVsf+Y09KjwMd7yVz7p7DXCn7ZYn11F+YSnuWbzVbrltCYna9pT26e2+7+mViNu6tA56ezV3OwK4WiIW6u3xqO6qU21mvvjiC6t/L1u2DPHx8dixYweysrKClKr6zZsibdu2PWptfSyL8yUJqm/RckDE6qfQIVxqHaV+Ha3ZW4KhXRJU5wdTqtqZNqQD5n9hX0Jje10q7ROoDYYclTqUGCtx9mK1YtC0fGsxBqbFo6j0IgAE7Rp0Z8A9d9oLhXp7PCJAA8GMLaPRCABo1qyZ4udVVVWoqqoy/7u8vDwg6dICXz30o8LDFJdHhtvXWnraw8SyOF+p7FAuQl+0+bceHBxBOOjcbVCr1o7qhTU/Yu7aH5Fj0724xFiJd/OKrNaVg5BRPZJwY9tmdtNo2Fa1qO1TAEhrGe30uCSFzwWACe/tMKfngZtSMK6ve7N22/L0XnUl8Aj2DNd8+SB/CPk2M5ZMJhOmTp2KPn36oHPnzorr5ObmwmAwmP8SExMDnEr3BGrALV+2OblYXaO4vKLa5JN9qr0927ZN+Gz3SeSuPWDXiJMzcwee2gPS2azXlm0yLAkB5K49gEWbCgHUXku9c9djsc2kkpIEZLWPAwBkJDbFvJGO23iozbQNAMPfsm9jYxdYOzwLtZ+//W0R+sxbj0WbCl26t23zAH+3D1MrEdtx9JxP96OEbd/IXzRVMjN58mTs378feXl5quvMmDEDTzzxhPnf5eXlIRvQBGrALV+/ibnSy8Gbfaptf9WkTFRUm8z76Z273u677DoaGLZv155WPcpVI2v2luCFNT/afT5v3QFERoRh1qffKwYSJgGrfWS1j8Nro68HBNAtuanivpVm2gZqA6gZH+9DbONw6MMbICU2ymG1lKPAxiRgnjhW7nGV3tpgVxrhSs8sX5eaqJVOTVmxCxerr/h1gspglgiRb4VaCZtmSmYeeeQRfP7559iwYQOuueYa1fUiIiIQExNj9ReKPHmTtf2+qyU6jh40nnCll4M3+1TbfkZiU2SmNjc/PJUeJjoJ7DrqJ/I1t2hTod3btTe9aRIMegztkgCFAhoIADM/+V61S7/lPuS3/kc+3IUpK3Zh86EzqvubNzJdMfMzobbKSD62fSeMise1ZEw3xfQqMf1WymRbGuFqzyxfT/Eh31+2x+/vkk1f50MUPKFYwhbyJTNCCDz66KNYvXo1Nm7ciJQU5SJirXH2Juso6vVF2wRvu206a2zo7T492T5Q+2YbCm8JdY3lNWdJfgDm5QxA7oh0u940rv4WCQY9crLTkLv2gMtp0klXG+26+9Y/qkcS0lpGY/hb9l20LY/tpXUHMX1IGl764qDVcQ3s2BLzLI7XVZbpUsoD5HY5/h67ZlSPJERFNMAjH+6yWh6sCSr9IdRKDuqKUC1hC/lgZvLkyfjwww/x6aefIjo6GqdO1c7tYzAYoNdr9wJ1dGM7mw/F3QtJfhPz9EEjs80cHDU29NU+1XrG2G5fB9/NR0PWSoyVyPl4n2q1ivwAVAtAXX2oPJSVCsilEw7SowMwMSsFQ9MTcLG6xrx9d6u5MhKbYt6IdMz4eJ/q/mqEQJdrmiAvZ4DdcVkeb2S4Dmv2nsKSvJ8cDgxpmS61PGDakA52wZO759IV3do0tZ/d3o8lm77KE1wRKnNm1UWhOjJ0yI8zI6mU5S5duhRjx451+v1QHmdGaVyIrPZxduNgSADyZ9yMBINedayL5Q/ciMzU5g735814Ed4M/e7uPuVeK+/kFTndH8fA8L+5a37A4m+LHK7z6eTeiqPtenLdlBgrsePoOUxZscv6QQvgjXu64oY2TbH50BmHbU0A18ci2lN8TrWExt3xjOTrce+JMry07qBiqY3lNtXGhlG6rj3tueeslNdyJGQJwLyR/n3w+/ue5ZxS/hXI81unxpkJ8VjLK0pvsvmFpYrdRqd/tBfvT+jltKjWUcbl6XgRzkqDfLnPlQXH7UoBHJU+cQwM7zn6/UqMlXgnz3EgA9j3ZJO/60lxdIJBj1sz9LhYfcXuQT+0SyvF7apVB7lybcglNLZVRjoJmJbdwaOu0ZmpzTEso1VtYPNzmWq61EqzbK/rRZsKzQ2K5WN2NGWD/JvuO2HEvLW1czYpBSpZ7eOs6rQEnP9G3pYO+fueDdWSg7oikCVs7gj5YKaus72xlQYFA4DNh0uxp/gcMhKbql5I/ipadZQ52L4he7NP+SGlFL4yM/IPZ9eMWm8eS2rtHrx9qKg96NW2q1Yd5ArLfeUdPoO3NhaaG+Q20Tf06Jq2Cmyub6WaLmcP9xJjJeats29LJE/ZYBugqLVvEgByPt5nFagoNaR39BtpofqGc0r5nzsDNAaKZnoz1RcJBj1+n95S8bPtv40DMapHEvJyBmD5AzciL2eAuVjam95Rjqj1VIkM1/l0n44enMyMfM+Va0bpt5fg2nxEvpgvSA4GbAN+te0qre/OvpJjI7FgU6Hd7NPe9jL0Jl2OZpyXS1Lk/dn+pkrrL9963Ly+O7+RP/MYX3KltyV5z5tr2h8YzISgB7PaKi7vnny1ONn2QvJnt0e1zOFidY1P96mUsQLWvVZkgRpsUCs8OR+uXDNKv/28ken4bsbNVsG0En89VPz5sPLmPvJXd1W1+0Ipfa6UpL2+/og5fe6cSy11rVZ64aO6jdVMISgjsSlG3tAaH+88YV6WdW0s4mMaqX7H30WrSsWKJcZKn+1Troe3bPcg91oZ18d6aHgtFHUHkqfnw9VrxlG7Dmf8VRztr+16eh+52z7InXYntm0UbFmmT23IAlsmUVvllNYy2uVzqbXqG7anq19CvjeTt0K5N5Mze4rPYfHmIqzZVwIB5w8qV2fN9WX3Tndn6lXbhm3PlC6tm6jOpK3Ukn7VpExcrK5xeEyWs3A7WzfUqP1m3vYs8MXvV9d4ck7c6WXobc9ApQbFtm1m5PTLBTpqmbxlo2BX8gVeLxRI7jy/GcyEME8eVM66PfqjVMObrpbuHqPaQ0OeWVvtmJQaRWqlVMfRb+ZNV31ZXe/e7ulkp+6cE1evY2+CcXfSt6f4HAqOnkOP5KaIj2mEncfOYbLNAHky267tzu6Lun69kHv8OThhneqaXZ950hvEsg2N5b8B/43c6E1xrrvHGBUeZg5cLNlONml5TGqNIkNl5EpHnP1mvij6r8vF8Z4G7/I5kdsiOcuoXe2uqna9y7N9W6bR0yEP1I55T3EZ3lYYL0iebsHy347ui1C4Xji6b2iwHEojEGMUOcJgJoR58qBylHl72lXWnxmHO8coH5tlIKMD7EZvtT0mR40iQ73Lt7PfzNlDNJCZfqg9YJQCwRkf70NURAN0a6M8CaUldwMhV9qeqA29YNt7qqzyslslJfJ5B6Aa/I7rm2I367iaUL4v2GYuNNiODK7U9T+QGMyEMHcHJ/LHW7y/Mw5Xj1GpdEUHYPGYbnjg/R0Oj8lRo8hQbsAIuBbsqT1EA5nph+IDRnHuIwCPfLjLpQDBMqN2Z8A/R5/bTn6pFNjUCGEe6M7Zvm3P+8S+KarBb2Zqc8wbme5wagpZqN4X/pwXKNSC8VC3/ehZxaB8x9FzuDUj8OePXbNDnDtdDJ11nXS3S2ugxpVw5RjVHkyR4Q1dOqaJfVPsLnYtjD/h6m9m21U/kGOC+Htf7nY7l9ePCg9T7dLsLI3v5tmXYLjaDVktvUqDQkoSoJREV/atdN6XfFukOiZUfmEpstrHIX/GzZhyczvV9IfyfeGv7uGhOAt0qFObasjV2eR9jSUzGuBqHbU3b/FKAlkt5ewYldrKyMeWmdpc9Zhs31wf7NsWQ7u0REW1STMNGD3phhzIId3d3Zc714e7JT6269/RtTU+2XVSsUuzWhrVpnDQwfkkjO5W85oE8GBWCpZ8W+SwO7VSSYlagP9g37Z4J6/IXNI5vGsr3PFWPkyiNnDKyU7D6F5J+MeGI3YN4l+/uyu6JTuvggsWR3mcpyUre4rPeVQKV5c5O5clxkqI33rL2QbnN7Sxn14jEBjM1CGuVtn4IjhSu9j9Ud2g1lZm2pCr8+YoHZPSm+s7eUUY1zdZc5mUu40uAzkmiCftnuTrY0LfFIzvm6KaYbo7dovt+p/sOolVkzJRfLbSbuJKd6ZhAIC7eyVix7FzEOIsuic3M68r3wPO2ujsO2G026ZOAtJbGzB7WCc8++kP9juF+hxRaud9XN9kjOubbJ7NWw5kgNoHT+66A8Bv96ZtXnFrRivFNIQKtTzO02lVzBNt2iwP5TZD/qaUh2e1jzNf65bnWsLVqlJ53WCdMwYzdYwvBxNLMOhxR1frwfuGd22lmnH4oj7bNkhS7YkEYP4XB9AkUn3eHF+UTmitHt0yvYGaDC7BoLfq2utquyeTABZ/W4Ql3xYp9oJw9/dTW7+i2oRbM1opTlyplMZfL1TZBQkSgA+3FuPDrcVWyywz8cRmkaptdNRK3k0CeHT5bugk5fYz0m/rzFt7AEdLL2LKwGutAnhHv3GCQXniWqB2zqnvcm72eC6rYLLN4wBYdXd3Nd8xV/tpsC2dvyjdozmr9gHi6rUuBKwa/eoA/OO32eyDeQ0xmKmDfNV1ssRYidW7TlgtW73rBFbtPKFYJOtt8KD0RqD0gJA5y7S8LZ0IxUatjizaVIh56w5YPWDlh1VkuA4Xq2tQYqz0eYazsuC4OZCRUFti5mq7J6A2Q1TqZaTWcHvvz2WKY+gora8DEBle21rKWaBv+XtLsB67SOmBZ3sPrJqUqdrQ3FmDW5Oo3Z9O1AZAut++Y/nQWL6tGMu3FWO+ReCX1T4Os2/vhDPlVRjYMd5uBm213lMmAXOjYC32crPM45QCNlfyHbXrUQf76VMc0doLjyNK58Ty2lc6XyYAzaIign7sbABMikqMlfh870nFOn61IllvJhZUK9Vx1IjTct9K5BID+fvulE5oZVI92aLNhchdZ98DBgCOn72IO97K90vjRtvzJAC89MVBxfPkaI4huQTDMn3y72dLbfu2jaXl7d7xVj4WbSpEfmEpACg+wJWOQxLAm/d0xWt3X+80GJFLgGz37w4hgDfu6YrlD9yI1+/pqrrPGR/vQ4mxEisLjqN37nrM/OR7vL7+CIa/ma/4297dM9FumSclD+40xJbzj6dX7fV7w1ql60onXQ1i3f3e6sm9XX5pqWsNh53NA6YkVEqxGMxoRCAnVpRv0LlrDth9JheHW7KcsdjTCQAdVRE4ekA4upEclRg4O59amlSvxFiJeevsf6saIbDz2Dm/BmXunCf5+nCUWdqmL721wW4dy+3b/o6jeiRh1aRMqx4VJlHbTsTRA0etMW2zqAh0T27mNIOXr0O5Z94/RndVnm38t2Vq99ENbZoiM7U5urVpql41hdrur7ZdrAVqx5iRz4V8Hy/fVmzev7wfd4L6/MJSLNpc6PJDWw6yHvlwFz7cVuz3FwLFIFbUBrGO0qmUX+WOSLcr3VLjyxeeUJk4V+lc2pJwNXAIpZ5vrGbSgEBWd6i1UQGuXrgAVOvpPW2z46hKyLK30t4TZXhp3UGn7UDUSgyGXa/e5sfV9ASSK0XYRaUXFatBdABMQvi1V5O750m+PpZ+V4Qlm4vsBjy0TZ+j7avdFxeraxTPB6BeNeloP3IGn2PTvkKuhlJqq3Jrhl6xjY7lvbH50BmH7V1ystNqG+va0AGApFx1JVcfAbC7jyU4b9tgeb1Z3idK5zCtZbTdFAxK3c8t+ath7ageSUhrGW0eSdkynY7aznjTxtBXPQZDpTpb/u3TWkbj1bszcPj0Bbz+zRG79R64qa25gXkotbViMBPivGlU60ldrlo98syhHfH7Lgnm7TjKADxps+NKY0Z5LJVhGa2c3khqGc2Oo8olFbbnc/OhM3YPrmnZHRSnifAXVzM5tbYl07PTzKUK/grK5N/NMp3O3tQSDHo8/ftOGNcnBTuOnnPYy0itETqgPtKts5mjlR44zq4/+aG389g5CAF0S659e3d0HTqbbdzZg/ShfqmABKsB9CQAuSPTzSU3toeok2q7jzsqaVL7bWyvN8uGnkrnUGkKBkejbQPWv22JsRLbj56FJEkujcjszMXqGo96JXnaxtDdQF4pP/bnIIDuUJq7zrKnkkwHmHuDhkoQI2MwE+I8jf49jfbVblDLQAbwz/wsrr4lubJvteOAwkPO9nwqvV0KcfWh4qxLsS+4ksmp9VySJw58KCsVgHIXXF+nWw783Jm2NsGgR7fk2gENl3xbW0qjNB2DbSP0T3adxIC0eNXfMTO1udUx21J74Di7/hIMegztYr/M2TF68yB9KCsVwzJaWQVR8vq2o/lKNl1j3X3Q2l5vziiVgDgKJCUAE/omA7Ce00f+zJV5fRy9oAW6NNVZAGxJLT8O5HhQatRK4wWuVo2aRG0gMz07LeSCGBmDmRDnyQ3qTbTvzg3qD74IkuQMb/qQNLz0hXWVVLc2TZ2eT0e9bgDrLsU52WlIv8bg854MzjI5pcxRrZutK0Gipz0ybAM/AeVrTWn7SgMa2o4BpHYeIBw/rC2P2dWqSSA0JlG0pRREAVePccfRc+bByixLf9y5j52VqDhjG0jaVsllXRuLvCOlePvbIsX5oeT2Po7yKGcvaMHIu1y9t9wpRdRJQOmFSx73PHTnXlbr6CETAEb3SMLyguMwCefDYQQTg5kQ58kN6m2078uxagLNNsObnp2GLq2bWB2Hs/PprJpCJgBzmwZf13U76pacHBupmDnm5QxQ7LIMeDbLsitcudYWbf6ty7jF9rPaxykOaDi0S0urjFgtmO+W3NTp7+hu1aQWye1zlLhzH6t14XaVXL1luV+5NCmxmd5u4D4lcnsfdwMCy/Wz2sfh1bszoPutMXUgfmtnAbCje8S2FFFuhyWPPeRunuLKvSwHO/tOGM0dJNToAKwoOG4OTINVDeYKBjMa4G5w4Yvi1lB8Q3VGKcN7ad1B5OUMcKmkwlG1jaP2A/K+fHmTJxj0mNQ/Ff/YUGi1/KUvDqJ1U71Hwao/6uydXWuLNhVaNWKVt//a6OsVj0GpHYZa0OLOfaHF69kXXD3uBIMeD9yUgre/LXJpu7aBj0kAn+0+WdvOB9alSWoD99lyVCLhStDs64a0vho/xtk9Yhn8PfLhLo+nVXB2L5cYK/FuXhHeyXM8dYZMnrjU9poI1dGRGcxohDuZcbCrioLFnRIp2/PprNpGrWeHK/vyxMqC43jTJpCR9+GsikVte/6os3d0rTnqMq50DIByOwxHQUt9DVL8YVzfFCyxedCFSRKmDelgHowRqG2bk5OdZtUwGbg6TYLcVksWFR7m0v5NDkoknAUEvm5I68vAyJX8OMGgR9Ooi15Nq+DoXv5sz0nkrrW/F9XoAKye1BvxMY0Ur4lQGFfGFoOZOiqrfRxeG309YNNosC7ztERKLSO0rLZxpUuxuz0ZnKVHKW5ytYrFleNTq7N3N7NSCzaKSu0zZ6D24SAfg6MA0TIjZ9Dif2oP3VE9kjDs+lZWbXPUftv56w5gWEYru5IAdygFIs4CAl82pPVHDyNXShG9vRfVvp93+Aze3Gj/YqRGPrfyeDtaeTFmMKNBzh6MoTJuQaB5WiLlakaYYLjapdi2YakOV3tq2HL391AdZt2i27MrVWWuZPS2dfaeZFZq16OjLuPyMUSGh+HR5bsVtxuqb4B1maPu5LZtcxxNk7D50Bm7Qf0s6QDFFwKZ0v3nKCDwVU8mtQaxvih1dRaQe1uirvT9adkdXCqRUWtfCGinDSWDGY1x9mBUe6tQGuCqLvLkxnM3I7RtWLo07yiW5P2Et78twpK8IkwfUtvDKSo8DMfPVrj9e6jNMbR6Um+r0UldqSob1SMJUeFhdg8etZ4/7mZWjq7HBIP1BJRy107LagilcXAA18arIf9wpRQswaA8qF+YJCEyXOdw4LyBafHonxaHWZ9+r1oqp3T/OXqJ80XVutJYK47S4w/eBg6WPdwgAecqqp1+RylvsaWFklFJCHdGhtCe8vJyGAwGGI1GxMTEBDs5XikxVlrNDgv8Voxo0cA1v7AU9yzeavddy0nz6ktJjTtWFhxXLF53Ruk3cYWz38Pd9KhdG9OyO9j1WHDn+Bxxdj1a9mKSUNvOQm4gqnasOgATs1Iwro//xvAh31m0udButvTEZpGKeZAt6bf/sX0CKV0rrpZulhgrrQIBV6t3Hd3HvrpfPOVuQ2TbCVMdZU2uju8TLO48v1kyoyFq1QVr9pZg6G+D2qkV7Wuha10wefpG5On4HJa/x4xV+xAZHobuyc3M+3U3PWrXhhxMyHQSsGpSpkvzzzjLRB02ONx90uqtXeDqdBK229JKMTbZkwf1sw0gXB3aQOlJKwDMW3d1PBNHpc3Hz1ZYjSBsWYLgTvWuqyOfB5q7VdRK07jUFwxmNEQtUHlhzY94ce2Pil1ZleqmQ7VrnRJfdY90hSdFqa6OSSNT+j3UenG4kx61qinbdJkEUFHtqLVCLVcyUbXquchwnWovJrXrTgvF2KTM9rezrfLxhMDVgGXb0bOKQfPtb+ab/21bwuBuI15XRz73FVfyNU8aIrv7ciWf57rwcstZszVEziSUZjSVL/QSY6V55t7lD9yI1ZN7283eKz9wQmGWVkfkWX9dmanXGX/NSuvoN7GkA/DmPV0Vfw+ZSQAzPt6HPcXnnKbX9nPbdIRJEqZnpyn+9p707pqxqjZdjo5dLo5XmiMHsB5Yjeo2yzxoRnaa0/tDiRywzF3jvAGrgPWM4e7Oeq92LfvjAe9qvubKMdjmAymxUVA71bemJyjOxO7ovGgJS2Y0Ri6SX7O3BC+s+dHqM7WurLYN44Z3bWUekTNU29D4snukO6NielICZFlN8t2RM3hrY6FiG5WhXWonSHT01moCcPub+ea6bqX0qh2PUnVNk8iGPundZRLA8Dfz7erXlfapVs0QyvO6kO9ZNZS/vpV9D0AXBqNUolYSKvekUqtudxbIB6K60518zdkxqOUDOdlpdj2YwiQJz9zaEQ9kpWD4W/lWVc91pdcgS2Y0KMGgx9Au9lG2own05LekVZMysXrXCbubybYEwF8lGa5y981KjSulDL4oAUow6HH87EW7QEaebTurfZz5fI7qkYRVkzIxZWA71e3Jm7D9fdQyQ8sSmszU5lZtb+TfPi9ngFuTjSqlSelasd2n7VuuDsAMm15MVL/I18hDWanm6/G7nJsxb6TzUk1bD/dPVSxhsCz5U7oG1YZOUEqnv4Jud/I1R6VFjvKBh7JSMSM7zfxwt/xeRmJTzHOxBCrYzwB3sWRGozYfOmO3zJUJ9JSGFvf3sOCe8NW4Ec5KGZTmCPKkBEh15lkB5K49YH5T0knA4Ota4ov9p8yz0jp7M7X8fTwZHMzd9ihyJqp0PK62t2KjXlJjeT3aXicAFEudLS3c+FPtCMQ2oxJbzhhuuW3boRNcyc8cldR6U4rrbr5mOdWBSQh0T24GwPnYWA/1SzWXhnkybkwoPAPcxWBGg9RGiC2rvKy4risT9/lrWHBP+WLcCEC9ga5cyqA2R5C7DaRdbXhnEsC6/aes0iFZ/LcSy9/HF0GeK5nxqB5JSGsZbZ4ryZN9sVEvucL2OhnaJQEvrv3R4cjQXa5pgvwZNyvOGG5rSd5PbuVnjh7k3j7k3c3XbOdTspyo1Vk+IG+zqPSi1b/l//Zlw+NQwGomDVJ7cM5fd8CqSFCp+sRZQzd3q3c8LYp05XueVJHYko9XqdrEco4gS56UAKlVzbhCAHjgprbm30QCzI34bH8fbxsqulOllpHY1KoaIJSHMqe6w1mjevn+TDDocWtGKwztYt/dX+ZJfqZWfeOsitdVruZrKwuOo3fueiz+tshunwCc5gOeVp+7c85CqSqKJTMalBIb5XAocUd1qs4m7nPnzd/TtxR3vueLt3tHpQyJzfSY0DfF/Obj6QPbm+6oOgDj+iZjXN9kq+J2tWJgtaJnZ1yZVde2xIbVRRQMltfd3p/L8NIXBz0qoXW3JNPRg1xA+KQUF3Cerzman03ep6N705vSFVfPWahVRTGY0aAEg/pQ4vIF56xOVe1mcrUY1NObJVhFmHIpg1qvLgnA0PSWeDCrrUsDyimxzFwiw3UoPluJKSt2Oa1+suzlY1sUrMZyFm9XMxJH14Sj7bG6iIJBqTeUuwG1bX6mk4C7elyDHcfOoVubq/eYHMhHhYc5fJD7oh2fK5bazFRtyXKfavemNxNvuvIMCMWqKAYzGvVQv1RAgt1Q4vKF5E3bClfexj29WXw5u60jzkoZIsN15kAGqC3lWrPvFNbuO+XV8N6WmUtGYlNcrL5izhRsS9MkADm/t+7l46/BtADHg9yFWsZEZMmbgDqrfRxm394JGw+cxjcHzmD5tmIs31ZsHmgPgFUgf0fX1vhk10nFB7m/Z5AuMVZi+9GzWPxtkeLnanOWuds20hlnz4BA5ePuYDCjYUpDicu8bUDrLPPw9GbxVS8lR5xNfqjWqwvw/YiYllVCj3y4y+ozCcCwjFYupduSpxmJ3VsqgGlDOqD4XGXIZUxEvrCy4Ljq7N0CwPSP95nnSQNq86VPdp3EqkmZqKg2BXQGaUcTXQK1g949c2tHu32q5RveBl6OngGByMfdxWBG4xxdcP688TwNlnzVS0mNq6UWjqYh8PWDPMGgR9Ooi/ZtnADsPHYOTaNqi7d9NZiWI6N6JKGs8jLm/VaiZ9m91VKwMyYibzlqd2LJtolbjRCoqDYhM7W54vr+qHYtMVaqBl1Abbs6pUDG07aR3vJ3Pu4JBjN1nD/bO3h6s/jzJnO11EK+GZXehPzxIFcKQCQJeOTDXarjzdQIYQ52UmKjAMBclOxpRrKn+JzV5JNKmadaUTaRlng6Cazt/e9q1a+rs3PLbXMuVteY1383r8jh0Axq96OnbSN9IdQ6BzCYqUMCOSmjzNObxV83mTulFuZBtb4rwpLNRTD9tu607A6KYzMAnp9jpYaIlkO5K2VktsGOvJ5clJyXM8DljKTEWImleUV4W6Uu3tLrd3fFrRbVX0Ra5O4ksIB9IO9K1a+r1cNq1Ui3X98Kn+0+abe+BOAf93RVHEPHUYNlT+ZA8yZfC3YQI5OE8HBaU40oLy+HwWCA0WhETExMsJPjN6HWTS5Y5If2km+vBicvjujs0oifcjfQ+V8csDuPaoNXuXuO5f2UXriER5fvtvtczpiczVsTJknIyxngUkbirC7e0+0ShbqVBceRs2qfuSRSAjD8+lZYrRA8AMA/Rl8N5EuMlegzb73di5Hl/eHKOmrrOfNgVgqe/n0nq20UlV7Evp+NVnnUkOtaYt1vI4rLx+hOJ4ZQfna48/xmyUwdEIrd5ILB9qZ8sG9bjOub7FbR8L1L/s/uPJZVXsa8tdZtS5ydY7U3HflNpsRYad+7SQJWT+qNimqTarAjc7Vdj9o0C+Z9/vb/AhwUj+oeywb4QgDdkmuHXVAKZnTS1c8B16qsXa3WdrfKSycB4/qkmP+t9kJiEsBaixHFAfc6MdSlZweDmTogFLvJBZrSTflOXhHGqUwup/Q2ktgsUvE8qjWStRwV0zJw8fhNRwDxMY3MwY6jInJX2/U4ykR1AFZP7o34mEYhU+9N5GsJBj2Gdrl6XecXliquN7FvW/PnKbFRLk398uuFKtV1LKuClNZTY/tS4eyFRImr+X9denYwmKkD/NlNLhjtcDzhzk2p9jayalKmff0z1DMgnQT8d88JLN9WbG7LMn1ImrkI2HLbtm86RaX2vZsEYNVwz7KNjfRbMY6A/QzAjn4jtXYDOgC5I9PNAwSG8m9L5EtK94QOQPPocHNVkPwSotbQXq2kRF7HchBKmQTHE8vqpNr2at2Sm1oFMp/vPel2Q2ZX8/9Q7GLtKQYzdYC/usmFcl2qLXduSrXAp6LaZHcepw3pYBWcyCTUtmn5cFuxeZlJ/DaIoc3+lIIqR+mVg5Os9nFWjXwB2M0AfEfX1li964Tqb6TU8Hiik+o3orpMKb+cNqSDeQBS4OpLSF7OALuG9molJRKAadkdkNU+TrF9jKN4RJ71+1aVcafcoYPrvRFDsYu1pzQRzLz55pv461//ilOnTiEjIwNvvPEGevbsGexkhRRfd5PTWl2qOzelo0AiM7W53XlsEtnQaqC5u3smmktjbJkAq0G4gNrMJTLcek5XtfQ6mlagxFhpNwPwxztPXN23ym8Ual0oiYLN9p5wVLIrjzdTVHoRp8svYdvRs6oDbs5fdwAXLl12KQDRScCcYdehWVS4XY8lR1VLlqU70m//I37LLzx5UbEdGf1idQ1KjJWayydCPphZuXIlnnjiCSxcuBC9evXCq6++isGDB+PgwYOIj48PdvJCjnA6RJRrtFiX6upD21ngY9ndsMRYicRmkVYjghaVXrQqkbEkd+1+ad1B84STJgB3vJVvV2pim14AVm90tsGJK40I1X6jUOpCSRQKbO8JtRccd0pITAJ4Y32hS/s3CaBdfLTi4Hxq9/rAtHh8c+C0+d8CgE5c7cItf1c+PlclGPQuzfcWys0OQj6Yefnll/HAAw9g3LhxAICFCxdizZo1ePfdd5GTkxPk1IUOX1cJabUu1dWHtiuBj9I5lTMetcZ807I74KGsVNyY0gzD38q3GiZdqdTEMr1KUyxYBieujJuhhd+IKNSoveAA8KiqxxWO7lXFdj0SrAIZmQlAs6gIjyaflblSEh/qzQ50zlcJnurqauzYsQODBg0yL9PpdBg0aBC2bNmi+J2qqiqUl5db/dV1ahdiibHS423KN3eYVNt5V8t1qWoSDLUz8qp1rVY7pwkGPSb0TbH7DgB0ad0EAHCxukZxmHS595MSOQOzZDtDru1vMvKG1nX6NyIKlFE9kpCXMwDLH7gReTkDMKpHksejCMseG9hOcbmzUbaV7nW1PEcnQXWyWFefAY5K4gH/PGN8LaRLZkpLS1FTU4MWLVpYLW/RogUOHDig+J3c3FzMmTMnEMkLGf6qEqrPbS2cndPxfVOw5FvrIcgtAw9PSrZcafej9Js8ObhDvfyNiHzNtmTXk1GEZWGShLt7JqFVE71Vm7uJWSkY1yfF6b2qVA0tD9ppaXp2Gi5W13j1DHCWX2mh2UFIBzOemDFjBp544gnzv8vLy5GYmBjEFPmfP6uE6mtbC2fnNMGgx7yRjtvdeNJLwJUA0vY3qa+/EZG/2d7HSuTxmg6cOq94v3vzUmh7b9vOej89Ow0PZaUqjkvlzjPAWX6lhWYHIT2dQXV1NSIjI/HRRx9h+PDh5uVjxoxBWVkZPv30U6fbqE/TGdheiKFUn6lFrpxTeXoCtUzK2edEFPrk+zgyXIc1+0qs5nKzzBcCcb+r7cMXzwBH6Q/GM8ad53dIBzMA0KtXL/Ts2RNvvPEGAMBkMiEpKQmPPPKISw2A60swA/DB6Q88p0RkK1TzBX+nK9DHXafmZnriiScwZswYdO/eHT179sSrr76Kixcvmns30VWsbvA9nlMishWq+YK/0xWqxw1oIJgZNWoUzpw5g2effRanTp3C9ddfjy+++MKuUTARERHVTyFfzeSt+lTNREREVFe48/wO6XFmiIiIiJxhMENERESaxmCGiIiINI3BDBEREWkagxkiIiLSNAYzREREpGkMZoiIiEjTGMwQERGRpjGYISIiIk0L+ekMvCUPcFxeXh7klBAREZGr5Oe2KxMV1Plg5vz58wCAxMTEIKeEiIiI3HX+/HkYDAaH69T5uZlMJhNOnjyJ6OhoSJLk1bbKy8uRmJiI4uLiejvPE88BzwHAcyDjeeA5AHgOAP+cAyEEzp8/j1atWkGnc9wqps6XzOh0OlxzzTU+3WZMTEy9vWBlPAc8BwDPgYzngecA4DkAfH8OnJXIyNgAmIiIiDSNwQwRERFpGoMZN0RERGDWrFmIiIgIdlKChueA5wDgOZDxPPAcADwHQPDPQZ1vAExERER1G0tmiIiISNMYzBAREZGmMZghIiIiTWMwQ0RERJpWr4OZBQsWoEuXLuZBfjIzM7Fu3Trz55cuXcLkyZPRvHlzNG7cGCNHjsQvv/xitY3jx49j6NChiIyMRHx8PJ566ilcuXIl0IfiM/PmzYMkSZg6dap5WX04D7Nnz4YkSVZ/aWlp5s/rwzkAgBMnTuC+++5D8+bNodfrkZ6eju3bt5s/F0Lg2WefRUJCAvR6PQYNGoTDhw9bbePs2bO49957ERMTgyZNmmDChAm4cOFCoA/FY8nJyXbXgiRJmDx5MoD6cS3U1NRg5syZSElJgV6vR2pqKp5//nmrOXLqw7Vw/vx5TJ06FW3atIFer0fv3r1RUFBg/ryunYPNmzfjtttuQ6tWrSBJEj755BOrz311vHv37sVNN92ERo0aITExES+99JL3iRf12GeffSbWrFkjDh06JA4ePCiefvpp0bBhQ7F//34hhBB/+tOfRGJiovjmm2/E9u3bxY033ih69+5t/v6VK1dE586dxaBBg8SuXbvE2rVrRWxsrJgxY0awDskr27ZtE8nJyaJLly7iscceMy+vD+dh1qxZ4rrrrhMlJSXmvzNnzpg/rw/n4OzZs6JNmzZi7NixYuvWreKnn34SX375pThy5Ih5nXnz5gmDwSA++eQTsWfPHjFs2DCRkpIiKisrzesMGTJEZGRkiP/7v/8T3377rWjXrp0YPXp0MA7JI6dPn7a6Dr7++msBQGzYsEEIUT+uhblz54rmzZuLzz//XBQVFYn//Oc/onHjxuK1114zr1MfroW77rpLdOrUSWzatEkcPnxYzJo1S8TExIiff/5ZCFH3zsHatWvFM888I1atWiUAiNWrV1t97ovjNRqNokWLFuLee+8V+/fvF8uXLxd6vV4sWrTIq7TX62BGSdOmTcWSJUtEWVmZaNiwofjPf/5j/uzHH38UAMSWLVuEELU/vE6nE6dOnTKvs2DBAhETEyOqqqoCnnZvnD9/Xlx77bXi66+/Fv369TMHM/XlPMyaNUtkZGQoflZfzsH06dNF3759VT83mUyiZcuW4q9//at5WVlZmYiIiBDLly8XQgjxww8/CACioKDAvM66deuEJEnixIkT/ku8Hz322GMiNTVVmEymenMtDB06VIwfP95q2YgRI8S9994rhKgf10JFRYUICwsTn3/+udXyG264QTzzzDN1/hzYBjO+Ot633npLNG3a1OpemD59uujQoYNX6a3X1UyWampqsGLFCly8eBGZmZnYsWMHLl++jEGDBpnXSUtLQ1JSErZs2QIA2LJlC9LT09GiRQvzOoMHD0Z5eTm+//77gB+DNyZPnoyhQ4daHS+AenUeDh8+jFatWqFt27a49957cfz4cQD15xx89tln6N69O/7whz8gPj4eXbt2xeLFi82fFxUV4dSpU1bnwWAwoFevXlbnoUmTJujevbt5nUGDBkGn02Hr1q2BOxgfqa6uxgcffIDx48dDkqR6cy307t0b33zzDQ4dOgQA2LNnD/Ly8pCdnQ2gflwLV65cQU1NDRo1amS1XK/XIy8vr16cA0u+Ot4tW7YgKysL4eHh5nUGDx6MgwcP4ty5cx6nr85PNOnMvn37kJmZiUuXLqFx48ZYvXo1OnXqhN27dyM8PBxNmjSxWr9FixY4deoUAODUqVNWGZb8ufyZVqxYsQI7d+60qguWnTp1ql6ch169emHZsmXo0KEDSkpKMGfOHNx0003Yv39/vTkHP/30ExYsWIAnnngCTz/9NAoKCjBlyhSEh4djzJgx5uNQOk7L8xAfH2/1eYMGDdCsWTPNnAdLn3zyCcrKyjB27FgA9ed+yMnJQXl5OdLS0hAWFoaamhrMnTsX9957LwDUi2shOjoamZmZeP7559GxY0e0aNECy5cvx5YtW9CuXbt6cQ4s+ep4T506hZSUFLttyJ81bdrUo/TV+2CmQ4cO2L17N4xGIz766COMGTMGmzZtCnayAqa4uBiPPfYYvv76a7s3kPpEfuMEgC5duqBXr15o06YN/v3vf0Ov1wcxZYFjMpnQvXt3vPjiiwCArl27Yv/+/Vi4cCHGjBkT5NQFxzvvvIPs7Gy0atUq2EkJqH//+9/417/+hQ8//BDXXXcddu/ejalTp6JVq1b16lr45z//ifHjx6N169YICwvDDTfcgNGjR2PHjh3BThrZqPfVTOHh4WjXrh26deuG3NxcZGRk4LXXXkPLli1RXV2NsrIyq/V/+eUXtGzZEgDQsmVLu14M8r/ldULdjh07cPr0adxwww1o0KABGjRogE2bNuH1119HgwYN0KJFi3pxHmw1adIE7du3x5EjR+rNtZCQkIBOnTpZLevYsaO5uk0+DqXjtDwPp0+ftvr8ypUrOHv2rGbOg+zYsWP43//+h4kTJ5qX1Zdr4amnnkJOTg7uvvtupKen4/7778fjjz+O3NxcAPXnWkhNTcWmTZtw4cIFFBcXY9u2bbh8+TLatm1bb86BzFfH66/7o94HM7ZMJhOqqqrQrVs3NGzYEN988435s4MHD+L48ePIzMwEAGRmZmLfvn1WP97XX3+NmJgYu4dCqBo4cCD27duH3bt3m/+6d++Oe++91/zf9eE82Lpw4QIKCwuRkJBQb66FPn364ODBg1bLDh06hDZt2gAAUlJS0LJlS6vzUF5ejq1bt1qdh7KyMqs31/Xr18NkMqFXr14BOArfWbp0KeLj4zF06FDzsvpyLVRUVECns348hIWFwWQyAah/10JUVBQSEhJw7tw5fPnll7j99tvr3Tnw1fFmZmZi8+bNuHz5snmdr7/+Gh06dPC4iglA/e6anZOTIzZt2iSKiorE3r17RU5OjpAkSXz11VdCiNoumElJSWL9+vVi+/btIjMzU2RmZpq/L3fBvOWWW8Tu3bvFF198IeLi4jTVBVOJZW8mIerHefjzn/8sNm7cKIqKisR3330nBg0aJGJjY8Xp06eFEPXjHGzbtk00aNBAzJ07Vxw+fFj861//EpGRkeKDDz4wrzNv3jzRpEkT8emnn4q9e/eK22+/XbFrZteuXcXWrVtFXl6euPbaa0O2K6qampoakZSUJKZPn273WX24FsaMGSNat25t7pq9atUqERsbK6ZNm2Zepz5cC1988YVYt26d+Omnn8RXX30lMjIyRK9evUR1dbUQou6dg/Pnz4tdu3aJXbt2CQDi5ZdfFrt27RLHjh0TQvjmeMvKykSLFi3E/fffL/bv3y9WrFghIiMj2TXbG+PHjxdt2rQR4eHhIi4uTgwcONAcyAghRGVlpZg0aZJo2rSpiIyMFHfccYcoKSmx2sbRo0dFdna20Ov1IjY2Vvz5z38Wly9fDvSh+JRtMFMfzsOoUaNEQkKCCA8PF61btxajRo2yGl+lPpwDIYT473//Kzp37iwiIiJEWlqaePvtt60+N5lMYubMmaJFixYiIiJCDBw4UBw8eNBqnV9//VWMHj1aNG7cWMTExIhx48aJ8+fPB/IwvPbll18KAHbHJkT9uBbKy8vFY489JpKSkkSjRo1E27ZtxTPPPGPVnbY+XAsrV64Ubdu2FeHh4aJly5Zi8uTJoqyszPx5XTsHGzZsEADs/saMGSOE8N3x7tmzR/Tt21dERESI1q1bi3nz5nmddkkIiyEdiYiIiDSGbWaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRpDGaISFH//v0xderUYCfD72bPno3rr78+2MkgIi8wmCGiOqm6ujqg+xNC4MqVKwHdJxHVYjBDRHbGjh2LTZs24bXXXoMkSZAkCUePHsX+/fuRnZ2Nxo0bo0WLFrj//vtRWlpq/l7//v3x6KOPYurUqWjatClatGiBxYsX4+LFixg3bhyio6PRrl07rFu3zvydjRs3QpIkrFmzBl26dEGjRo1w4403Yv/+/VZpysvLw0033QS9Xo/ExERMmTIFFy9eNH+enJyM559/Hn/84x8RExODBx98EAAwffp0tG/fHpGRkWjbti1mzpxpnrF32bJlmDNnDvbs2WM+zmXLluHo0aOQJAm7d+82b7+srAySJGHjxo1W6V63bh26deuGiIgI5OXlwWQyITc3FykpKdDr9cjIyMBHH33k65+IiCwwmCEiO6+99hoyMzPxwAMPoKSkBCUlJYiOjsbNN9+Mrl27Yvv27fjiiy/wyy+/4K677rL67nvvvYfY2Fhs27YNjz76KB5++GH84Q9/QO/evbFz507ccsstuP/++1FRUWH1vaeeegp///vfUVBQgLi4ONx2223moKOwsBBDhgzByJEjsXfvXqxcuRJ5eXl45JFHrLbxt7/9DRkZGdi1axdmzpwJAIiOjsayZcvwww8/4LXXXsPixYvxyiuvAABGjRqFP//5z7juuuvMxzlq1Ci3zlVOTg7mzZuHH3/8EV26dEFubi7ef/99LFy4EN9//z0ef/xx3Hfffdi0aZNb2yUiN3g9VSUR1Um2s6c///zz4pZbbrFap7i42Gp26X79+om+ffuaP79y5YqIiooS999/v3lZSUmJACC2bNkihLg6U++KFSvM6/z6669Cr9eLlStXCiGEmDBhgnjwwQet9v3tt98KnU4nKisrhRBCtGnTRgwfPtzpcf31r38V3bp1M/971qxZIiMjw2qdoqIiAUDs2rXLvOzcuXMCgNiwYYNVuj/55BPzOpcuXRKRkZEiPz/fansTJkwQo0ePdpo2IvJMg2AGUkSkHXv27MGGDRvQuHFju88KCwvRvn17AECXLl3My8PCwtC8eXOkp6ebl7Vo0QIAcPr0aattZGZmmv+7WbNm6NChA3788Ufzvvfu3Yt//etf5nWEEDCZTCgqKkLHjh0BAN27d7dL28qVK/H666+jsLAQFy5cwJUrVxATE+P28aux3OeRI0dQUVGB3/3ud1brVFdXo2vXrj7bJxFZYzBDRC65cOECbrvtNsyfP9/us4SEBPN/N2zY0OozSZKslkmSBAAwmUxu7fuhhx7ClClT7D5LSkoy/3dUVJTVZ1u2bMG9996LOXPmYPDgwTAYDFixYgX+/ve/O9yfTldbAy+EMC+Tq7xsWe7zwoULAIA1a9agdevWVutFREQ43CcReY7BDBEpCg8PR01NjfnfN9xwAz7++GMkJyejQQPfZx3/93//Zw5Mzp07h0OHDplLXG644Qb88MMPaNeunVvbzM/PR5s2bfDMM8+Ylx07dsxqHdvjBIC4uDgAQElJiblExbIxsJpOnTohIiICx48fR79+/dxKKxF5jg2AiUhRcnIytm7diqNHj6K0tBSTJ0/G2bNnMXr0aBQUFKCwsBBffvklxo0bZxcMeOK5557DN998g/3792Ps2LGIjY3F8OHDAdT2SMrPz8cjjzyC3bt34/Dhw/j000/tGgDbuvbaa3H8+HGsWLEChYWFeP3117F69Wq74ywqKsLu3btRWlqKqqoq6PV63HjjjeaGvZs2bcJf/vIXp8cQHR2NJ598Eo8//jjee+89FBYWYufOnXjjjTfw3nvveXxuiMgxBjNEpOjJJ59EWFgYOnXqhLi4OFRXV+O7775DTU0NbrnlFqSnp2Pq1Klo0qSJuVrGG/PmzcNjjz2Gbt264dSpU/jvf/+L8PBwALXtcDZt2oRDhw7hpptuQteuXfHss8+iVatWDrc5bNgwPP7443jkkUdw/fXXIz8/39zLSTZy5EgMGTIEAwYMQFxcHJYvXw4AePfdd3HlyhV069YNU6dOxQsvvODScTz//POYOXMmcnNz0bFjRwwZMgRr1qxBSkqKB2eFiFwhCctKYSKiANu4cSMGDBiAc+fOoUmTJsFODhFpEEtmiIiISNMYzBAREZGmsZqJiIiINI0lM0RERKRpDGaIiIhI0xjMEBERkaYxmCEiIiJNYzBDREREmsZghoiIiDSNwQwRERFpGoMZIiIi0jQGM0RERKRp/w8ekd4YKrY9/QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "surrogate_scatter2D(keras_surrogate, data_training)\n", + "surrogate_parity(keras_surrogate, data_training)\n", + "surrogate_residual(keras_surrogate, data_training)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABt7klEQVR4nO3deVxU1f8/8NcddhAGWWQRFMR9SUUTsaw0Evso5k/9aGamSVl9RUXNLXOpPubSpmZmloWV5t4ibpFbqUTmGqakhAsBKoMMuIEw5/fHNNcZZoABgQHm9Xw85gHce+bOufdD8v6c8z7vIwkhBIiIiIioRiks3QEiIiIia8QgjIiIiMgCGIQRERERWQCDMCIiIiILYBBGREREZAEMwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiMoUFxcHSZJw4cIFS3eFqF5hEEZEFnfkyBHExMSgXbt2cHFxQZMmTTB06FD89ddfRm0fe+wxSJIESZKgUCjg5uaGVq1aYeTIkUhISKjQ527btg2PPvooGjVqBGdnZzRr1gxDhw7Frl27qurWjLz99tv47rvvjI4fPnwY8+bNQ25ubrV9dknz5s2Tn6UkSXB2dkbbtm3x+uuvIy8vr0o+Y926dViyZEmVXIuovmEQRkQWt2jRImzZsgWPP/44li5dirFjx+Lnn39GaGgokpOTjdoHBATgq6++wpdffol33nkHAwYMwOHDh9GnTx8MGzYMd+/eLfcz3333XQwYMACSJGHmzJn44IMPMHjwYJw7dw7r16+vjtsEUHYQ9sYbb9RoEKbz8ccf46uvvsL777+P1q1bY/78+ejbty+qYmthBmFEpbO1dAeIiCZPnox169bB3t5ePjZs2DB06NABCxcuxNdff23QXqlU4tlnnzU4tnDhQkyYMAErVqxAUFAQFi1aVOrnFRUV4a233sITTzyBH3/80ej81atX7/OOao9bt27B2dm5zDZDhgyBl5cXAODll1/G4MGDsXXrVvz6668IDw+viW4SWSWOhBGRxfXo0cMgAAOAFi1aoF27djhz5oxZ17CxscGyZcvQtm1bLF++HGq1utS22dnZyMvLw0MPPWTyfKNGjQx+vnPnDubNm4eWLVvC0dERfn5+GDRoEFJTU+U27777Lnr06AFPT084OTmhS5cu2Lx5s8F1JEnCzZs3sWbNGnkKcPTo0Zg3bx6mTp0KAAgODpbP6edgff311+jSpQucnJzg4eGBp59+GpcvXza4/mOPPYb27dvj6NGjeOSRR+Ds7IzXXnvNrOenr3fv3gCAtLS0MtutWLEC7dq1g4ODA/z9/TFu3DiDkbzHHnsM27dvx8WLF+V7CgoKqnB/iOorjoQRUa0khMCVK1fQrl07s99jY2OD4cOHY/bs2Th48CD69etnsl2jRo3g5OSEbdu2Yfz48fDw8Cj1msXFxejfvz/27NmDp59+GhMnTkR+fj4SEhKQnJyMkJAQAMDSpUsxYMAAjBgxAoWFhVi/fj3++9//Ij4+Xu7HV199hRdeeAHdunXD2LFjAQAhISFwcXHBX3/9hW+++QYffPCBPCrl7e0NAJg/fz5mz56NoUOH4oUXXsC1a9fw4Ycf4pFHHsHx48fh7u4u91elUuHJJ5/E008/jWeffRY+Pj5mPz8dXXDp6elZapt58+bhjTfeQEREBF555RWkpKTg448/xpEjR3Do0CHY2dlh1qxZUKvVSE9PxwcffAAAaNCgQYX7Q1RvCSKiWuirr74SAMTq1asNjj/66KOiXbt2pb7v22+/FQDE0qVLy7z+nDlzBADh4uIinnzySTF//nxx9OhRo3aff/65ACDef/99o3MajUb+/tatWwbnCgsLRfv27UXv3r0Njru4uIhRo0YZXeudd94RAERaWprB8QsXLggbGxsxf/58g+N//PGHsLW1NTj+6KOPCgBi5cqVpd63vrlz5woAIiUlRVy7dk2kpaWJTz75RDg4OAgfHx9x8+ZNIYQQX3zxhUHfrl69Kuzt7UWfPn1EcXGxfL3ly5cLAOLzzz+Xj/Xr1080bdrUrP4QWRtORxJRrXP27FmMGzcO4eHhGDVqVIXeqxtpyc/PL7PdG2+8gXXr1qFz587YvXs3Zs2ahS5duiA0NNRgCnTLli3w8vLC+PHjja4hSZL8vZOTk/z99evXoVar0bNnTxw7dqxC/S9p69at0Gg0GDp0KLKzs+WXr68vWrRogX379hm0d3BwwPPPP1+hz2jVqhW8vb0RHByMl156Cc2bN8f27dtLzSX76aefUFhYiNjYWCgU9/6MvPjii3Bzc8P27dsrfqNEVojTkURUq2RlZaFfv35QKpXYvHkzbGxsKvT+GzduAABcXV3LbTt8+HAMHz4ceXl5SEpKQlxcHNatW4eoqCgkJyfD0dERqampaNWqFWxty/7nMj4+Hv/73/9w4sQJFBQUyMf1A7XKOHfuHIQQaNGihcnzdnZ2Bj83btzYKL+uPFu2bIGbmxvs7OwQEBAgT7GW5uLFiwC0wZs+e3t7NGvWTD5PRGVjEEZEtYZarcaTTz6J3Nxc/PLLL/D396/wNXQlLZo3b272e9zc3PDEE0/giSeegJ2dHdasWYOkpCQ8+uijZr3/l19+wYABA/DII49gxYoV8PPzg52dHb744gusW7euwvegT6PRQJIk7Ny502RAWjLHSn9EzlyPPPKInIdGRDWHQRgR1Qp37txBVFQU/vrrL/z0009o27Ztha9RXFyMdevWwdnZGQ8//HCl+tG1a1esWbMGmZmZALSJ80lJSbh7967RqJPOli1b4OjoiN27d8PBwUE+/sUXXxi1LW1krLTjISEhEEIgODgYLVu2rOjtVIumTZsCAFJSUtCsWTP5eGFhIdLS0hARESEfu9+RQKL6jDlhRGRxxcXFGDZsGBITE7Fp06ZK1aYqLi7GhAkTcObMGUyYMAFubm6ltr116xYSExNNntu5cyeAe1NtgwcPRnZ2NpYvX27UVvxbzNTGxgaSJKG4uFg+d+HCBZNFWV1cXEwWZHVxcQEAo3ODBg2CjY0N3njjDaPiqUIIqFQq0zdZjSIiImBvb49ly5YZ9Gn16tVQq9UGq1JdXFzKLBdCZM04EkZEFjdlyhT88MMPiIqKQk5OjlFx1pKFWdVqtdzm1q1bOH/+PLZu3YrU1FQ8/fTTeOutt8r8vFu3bqFHjx7o3r07+vbti8DAQOTm5uK7777DL7/8goEDB6Jz584AgOeeew5ffvklJk+ejN9++w09e/bEzZs38dNPP+H//u//8NRTT6Ffv354//330bdvXzzzzDO4evUqPvroIzRv3hynTp0y+OwuXbrgp59+wvvvvw9/f38EBwcjLCwMXbp0AQDMmjULTz/9NOzs7BAVFYWQkBD873//w8yZM3HhwgUMHDgQrq6uSEtLw7fffouxY8fi1Vdfva/nX1He3t6YOXMm3njjDfTt2xcDBgxASkoKVqxYgQcffNDgf68uXbpgw4YNmDx5Mh588EE0aNAAUVFRNdpfolrLkksziYiEuFdaobRXWW0bNGggWrRoIZ599lnx448/mvV5d+/eFZ9++qkYOHCgaNq0qXBwcBDOzs6ic+fO4p133hEFBQUG7W/duiVmzZolgoODhZ2dnfD19RVDhgwRqampcpvVq1eLFi1aCAcHB9G6dWvxxRdfyCUg9J09e1Y88sgjwsnJSQAwKFfx1ltvicaNGwuFQmFUrmLLli3i4YcfFi4uLsLFxUW0bt1ajBs3TqSkpBg8m7LKd5Sk69+1a9fKbFeyRIXO8uXLRevWrYWdnZ3w8fERr7zyirh+/bpBmxs3bohnnnlGuLu7CwAsV0GkRxKiCjYHIyIiIqIKYU4YERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2Cx1lpMo9EgIyMDrq6u3PqDiIiojhBCID8/H/7+/lAoSh/vYhBWi2VkZCAwMNDS3SAiIqJKuHz5MgICAko9zyCsFnN1dQWg/R+xrH3wiIiIqPbIy8tDYGCg/He8NAzCajHdFKSbmxuDMCIiojqmvFQiJuYTERERWQCDMCIiIiILYBBGREREZAHMCavjNBoNCgsLLd2Nes3e3r7MJcZERESVwSCsDissLERaWho0Go2lu1KvKRQKBAcHw97e3tJdISKieoRBWB0lhEBmZiZsbGwQGBjIkZpqoiuYm5mZiSZNmrBoLhERVRkGYXVUUVERbt26BX9/fzg7O1u6O/Wat7c3MjIyUFRUBDs7O0t3h4iI6ok6M3wyYMAANGnSBI6OjvDz88PIkSORkZFh0EYIgXfffRctW7aEg4MDGjdujPnz5xu02b9/P0JDQ+Hg4IDmzZsjLi7O6LM++ugjBAUFwdHREWFhYfjtt98Mzt+5cwfjxo2Dp6cnGjRogMGDB+PKlSsGbS5duoR+/frB2dkZjRo1wtSpU1FUVFQ1DwNAcXExAHCKrAbonrHumRMREVWFOhOE9erVCxs3bkRKSgq2bNmC1NRUDBkyxKDNxIkT8dlnn+Hdd9/F2bNn8cMPP6Bbt27y+bS0NPTr1w+9evXCiRMnEBsbixdeeAG7d++W22zYsAGTJ0/G3LlzcezYMXTs2BGRkZG4evWq3GbSpEnYtm0bNm3ahAMHDiAjIwODBg2SzxcXF6Nfv34oLCzE4cOHsWbNGsTFxWHOnDlV/lw4PVb9+IyJiKhaiDrq+++/F5IkicLCQiGEEH/++aewtbUVZ8+eLfU906ZNE+3atTM4NmzYMBEZGSn/3K1bNzFu3Dj55+LiYuHv7y8WLFgghBAiNzdX2NnZiU2bNsltzpw5IwCIxMREIYQQO3bsEAqFQmRlZcltPv74Y+Hm5iYKCgrMvke1Wi0ACLVabXTu9u3b4s8//xS3b982+3pUOXzWRET1Q3Z2tsjIyCj1lZ2dXSWfU9bfb311MicsJycHa9euRY8ePeQcnW3btqFZs2aIj49H3759IYRAREQEFi9eDA8PDwBAYmIiIiIiDK4VGRmJ2NhYANrVhkePHsXMmTPl8wqFAhEREUhMTAQAHD16FHfv3jW4TuvWrdGkSRMkJiaie/fuSExMRIcOHeDj42PwOa+88gpOnz6Nzp07m7yvgoICFBQUyD/n5eXdx1MiIiIiHZVKheXLl5fbLiYmBp6enjXQozo0HQkA06dPh4uLCzw9PXHp0iV8//338rm///4bFy9exKZNm/Dll18iLi4OR48eNZiyzMrKMgiMAMDHxwd5eXm4ffs2srOzUVxcbLJNVlaWfA17e3u4u7uX2cbUNXTnSrNgwQIolUr5FRgYaOaTqTtGjx4NSZIgSRLs7Ozg4+ODJ554Ap9//nmFSm3ExcUZ/W9ARERUGnNratZk7U2LBmEzZsyQ/yCX9jp79qzcfurUqTh+/Dh+/PFH2NjY4LnnnoMQAoC2lEBBQQG+/PJL9OzZE4899hhWr16Nffv2ISUlxVK3WCEzZ86EWq2WX5cvX662z1KpVMjMzCz1pVKpqu2z+/bti8zMTFy4cAE7d+5Er169MHHiRPTv379KFy8QEZF10/9bl52dbenuGLHodOSUKVMwevToMts0a9ZM/t7LywteXl5o2bIl2rRpg8DAQPz6668IDw+Hn58fbG1t0bJlS7l9mzZtAGhXKrZq1Qq+vr5GqxivXLkCNzc3ODk5wcbGBjY2Nibb+Pr6AgB8fX1RWFiI3Nxcg5GYkm1KrqjUXVPXxhQHBwc4ODiU+TyqgqWHZB0cHOTn0LhxY4SGhqJ79+54/PHHERcXhxdeeAHvv/8+vvjiC/z999/w8PBAVFQUFi9ejAYNGmD//v14/vnnAdxLmp87dy7mzZuHr776CkuXLkVKSgpcXFzQu3dvLFmyBI0aNary+yAiotrL3L91lmTRkTBvb2+0bt26zFdpJRh0U1e6HKqHHnoIRUVFSE1Nldv89ddfAICmTZsCAMLDw7Fnzx6D6yQkJCA8PByAthRBly5dDNpoNBrs2bNHbtOlSxfY2dkZtElJScGlS5fkNuHh4fjjjz8MVlQmJCTAzc0Nbdu2rcSTqlq1cUi2d+/e6NixI7Zu3QpAm4u3bNkynD59GmvWrMHevXsxbdo0AECPHj2wZMkSuLm5yf8P59VXXwUA3L17F2+99RZOnjyJ7777DhcuXCg30CciovpBf+SrZBmrktRqV6SlBUGtdq2h3hmrE4n5SUlJOHLkCB5++GE0bNgQqampmD17NkJCQuTAJyIiAqGhoRgzZgyWLFkCjUaDcePG4YknnpBHx15++WUsX74c06ZNw5gxY7B3715s3LgR27dvlz9r8uTJGDVqFLp27Ypu3bphyZIluHnzpjzyolQqER0djcmTJ8PDwwNubm4YP348wsPD0b17dwBAnz590LZtW4wcORKLFy9GVlYWXn/9dYwbN65GRrrqqtatW+PUqVMAIC+WAICgoCD873//w8svv4wVK1bA3t4eSqUSkiQZjSyOGTNG/r5Zs2ZYtmwZHnzwQdy4cQMNGjSokfsgIqKao1KpUFhYCLVajQ0bNpj1nmPHOmPbtv4QQgFJ0iAqKh6hoceruafG6kQQ5uzsjK1bt2Lu3Lm4efMm/Pz80LdvX7z++utyUKNQKLBt2zaMHz8ejzzyCFxcXPDkk0/ivffek68THByM7du3Y9KkSVi6dCkCAgLw2WefITIyUm4zbNgwXLt2DXPmzEFWVhY6deqEXbt2GSTaf/DBB1AoFBg8eDAKCgoQGRmJFStWyOdtbGwQHx+PV155BeHh4XBxccGoUaPw5ptv1sDTqruEEPL04k8//YQFCxbg7NmzyMvLQ1FREe7cuYNbt26VuUPA0aNHMW/ePJw8eRLXr1+XR0wvXbpUK0YhiYio6lRkylGtdkVOjifs7ArkAAwAhFBg27b+CAk5D6Uyvzq7a6ROBGEdOnTA3r17y23n7++PLVu2lNnmsccew/HjZUe7MTExiImJKfW8o6MjPvroI3z00UeltmnatCl27NhRdofJwJkzZxAcHIwLFy6gf//+eOWVVzB//nx4eHjg4MGDiI6ORmFhYalB2M2bNxEZGYnIyEisXbsW3t7euHTpEiIjI2t0apWIiGqGuf+26498ARqUzMYSQoGcHA8GYWSd9u7diz/++AOTJk3C0aNHodFo8N5778kbk2/cuNGgvb29vdE2QmfPnoVKpcLChQvl8h6///57zdwAERHVKqWNfGkDMAHg3m4okqSBh0cOgJrdDpBBGNW4goICZGVlobi4GFeuXMGuXbuwYMEC9O/fH8899xySk5Nx9+5dfPjhh4iKisKhQ4ewcuVKg2sEBQXhxo0b2LNnDzp27AhnZ2c0adIE9vb2+PDDD/Hyyy8jOTkZb731loXukoiILKVkzte9AExHko8rFAKLF+fhmWeGw97evsYKtQJ1rFgr1Q+7du2Cn58fgoKC0LdvX+zbtw/Lli3D999/DxsbG3Ts2BHvv/8+Fi1ahPbt22Pt2rVYsGCBwTV69OiBl19+GcOGDYO3tzcWL14Mb29vxMXFYdOmTWjbti0WLlyId99910J3SURElqBWuxrlfGlHvu6RJA2ioz/DqFFx+O23q5gyxR1+fn41GoABgCR01U6p1snLy4NSqYRarYabm5vBuTt37iAtLQ3BwcFwdHSs0HUtXSesrrmfZ01ERNUnMzMTq1atMjiWlhaENWtGmWitzQUruRqyOv7WlfX3Wx+nI62Qp6cnYmJiykxorOkhWSIiopJ05SdKo1arjY55eKiMpiB1I19379pjxIgwtG//IIAHLf63jkGYlWKARUREtVllK94rlfmIioo3qgMWEJAJAAgNjao1fwMZhBEREVGtU5nSQroVkSEh5xEbuwQ5OR7w8MjBiy8+CXd3y498lcQgjIiIiGo9XYDl4aEyqOc1dOhQuLu7Y906J7z5phIajfTvikc1pk69XesCL30MwoiIiKhWK2ubIXd3dxQX+2HaNODfTVKg0UiYPt0dw4a5o5bGXwAYhBEREZGFlJV4n52dDcB0yYmS2wydO3cvANMpLgbOnwcCAqqv//eLQRgRERHVOHMT73NyPI2KrZbcZqhFC0ChMAzEbGyA5s2rtMtVjsVaiYiIqMaZm3ivKzmhT3+bIUA72rVqlTbwArRfP/mkdo+CAQzCiIiIqBZQq12RlhYEtdrV4Liu5IQuENPlhJXcbDs6GrhwAdi3T/s1OrqGOn4fOB1J9cr+/fvRq1cvXL9+He7u7ma9JygoCLGxsYiNja3WvhERWRtzcr6AshPvASA09DhCQs7LJSf0AzD9DbcDAmr/6Jc+BmFUo0aPHo01a9bgpZdeMtqUe9y4cVixYgVGjRqFuLg4y3SQiIiqhLk5X+Ul3g8aNAheXl4m31uby0+Yg0EY1bjAwECsX78eH3zwAZycnABo92dct24dmjRpYuHeERFRZemPfOmPdJWlvMR7Ly8v+Pn5VXlfawPmhFGNCw0NRWBgILZu3Sof27p1K5o0aYLOnTvLxwoKCjBhwgQ0atQIjo6OePjhh3HkyBGDa+3YsQMtW7aEk5MTevXqhQsXLhh93sGDB9GzZ084OTkhMDAQEyZMwM2bN6vt/oiIrJFu5GvVqlVYtWqVwb/xZTEn8b6+YhBGSE/XJjKmp9fcZ44ZMwZffPGF/PPnn3+O559/3qDNtGnTsGXLFqxZswbHjh1D8+bNERkZiZwc7X+Yly9fxqBBgxAVFYUTJ07ghRdewIwZMwyukZqair59+2Lw4ME4deoUNmzYgIMHDyImJqb6b5KIyIpUZpshwPzE+/qI05FWbvVqYOxYbW0VhUK7xLcmVpQ8++yzmDlzJi5evAgAOHToENavX4/9+/cDAG7evImPP/4YcXFxePLJJwEAn376KRISErB69WpMnToVH3/8MUJCQvDee+8BAFq1aoU//vgDixYtkj9nwYIFGDFihJx036JFCyxbtgyPPvooPv74Yzg6Olb/zRIRUanbDgHmJ97XNwzCrFh6+r0ADNB+feklIDKy+leXeHt7o1+/foiLi4MQAv369TNIvExNTcXdu3fx0EMPycfs7OzQrVs3nDlzBgBw5swZhIWFGVw3PDzc4OeTJ0/i1KlTWLt2rXxMCAGNRoO0tDS0adOmOm6PiIj0lLX6sT4n3peHQZgVs/Q2D2PGjJGnBT/66KNq+YwbN27gpZdewoQJE4zOcREAEVHlmCo9UTIRXzfyZWdXUObqx/qceF8eBmFWzNLbPPTt2xeFhYWQJAmRkZEG50JCQmBvb49Dhw6hadOmAIC7d+/iyJEj8tRimzZt8MMPPxi879dffzX4OTQ0FH/++Sea1/a9K4iI6ghzSk+UHPkqb9sha8XEfCtm6W0ebGxscObMGfz555+w0XXiXy4uLnjllVcwdepU7Nq1C3/++SdefPFF3Lp1C9H/Jq29/PLLOHfuHKZOnYqUlBSsW7fOqL7Y9OnTcfjwYcTExODEiRM4d+4cvv/+eybmExFVgEqlQmZmJjIzM5GRkVFmW1N1vwBh0EZ/9WN9zvkqD0fCrFx0tDYH7Px57QhYTVcadnNzK/XcwoULodFoMHLkSOTn56Nr167YvXs3GjZsCEA7nbhlyxZMmjQJH374Ibp164a3334bY8aMka/xwAMP4MCBA5g1axZ69uwJIQRCQkIwbNiwar83IqL6oLyRr5IJ96bqfgESAA0ABRQKgcWL8/DMM8Prfc5XeSQhhCi/GVlCXl4elEol1Gq1UbBy584dpKWlITg4mCv8qhmfNRFZs8zMTKxatcrkOVMJ9yEh57FkSaxBICZJGkRHf4a7d+0xZcpT6NChYU113yLK+vutj9ORREREVGGlbTcEAFFR8VAotGM8NjYC77yThzffjMJ770XV+wCsIjgdSURERGbTTT/evOlcasJ9aOhxzJkThvx8HzRvLiEgwB2AuyW6W6sxCCMiIiKzlJx+1OV56egn3Pv7a2CllSfMxulIIiIiKpep6UdJArSBmHVtN1RVOBJWx3FdRfXjMyYia5Geri3k3aKF8Wp5U6sehVBgyJCNcHG5ZVXbDVUVBmF1lK6uVmFhIZycnCzcm/pNVxW6ZC0zIqK6rGTV+3XrnDBtmhIajQSFQuD9929i4sQG8nkPD5VR4VVJ0iAwMB1KZb7B9kPWXnrCXAzC6ihbW1s4Ozvj2rVrsLOzg0LBmeXqoNFocO3aNTg7O8PWlv+5EFHdp1KpcO3aNWzYsEE+pla7/ltWQgIAaDQSJk1yRseO5xEYqD2mVOYjKireqCSFbvTL39+fgVcF8a9KHSVJEvz8/JCWloaLFy9aujv1mkKhQJMmTSBpkx+IiOqskoVXdSsdr10zPdUYF3cQwcEX8eyzz8LZ2RkAMGfONVy4YIugoCL4+z8I4EGOfFUSg7A6zN7eHi1atDDaRJWqlr29PUcaiaheuHr1qvz9sWOd8cMP/aFdo2ec+6q/0tHZ2VneZNvPD+jSpSZ6W/8xCKvjFAoFq7gTEZFZioqKAGhHwO4FYIB2WyF9XOlYExiEERERWZnLlwNRVpWqIUM2o337MzXXISvFORYiIiKS6VY8UvXjSBgREVE9ol96IiNDgbQ0WwQHF8HfX4Pr168DAAIDL0ObB2Y4DcmCqzWLQRgREVE9ob/6seQWQ1FR8QgNPQ5AW25iwIBtehXwNejRIxFhYUkMwGoQgzAiIqI6Tjf6lZ2dDbXaFZcvBxok3guhwLZt/REScl4OskJDjyMk5DxycjyMqt1TzWAQRkREVAfpAi+1Wi0XXtWOfsUa1fwCtIFYTo6HQbClVOabFXxxC6LqwSCMiIiojjFVdPXy5UCDDbZL0q/7VZ6hQ4fC3d0dALcgqk4MwoiIiOoY/SLd+rlfpSmZcK+/z2NJDLpqDoMwIiKiOkqtdi139Gvw4M3yJts6Xl5ecgV8shwGYURERHVUTo7xno86utEvFl2tvRiEERER1SL6db5M0U+S9/BQQZI0JQIxDYYMMR79otqHQRgREVEtYSrhPifHEx4eKoOAaujQoQC0qxujouKN6oGVN/rF1Y61A4MwIiKiWqK0hPuSxVZ1G3ED5tf70iXjM/G+9mAQRkREVMuUTLg3VWxVnzn1vvz9/Rl81TIMwoiIiCzA1B6PSmUuANMJ9/rFVu3s7Mz6DF29L45+1U4MwoiIiGpY6Xs8NkRUVGeEhJw3SrjXL7aqVCoRExNTbgI/A6/ajUEYERFRDdNuN2Rc5V437Rgbu8Rkwr3+lCMDrLqPQRgREVEN0U1BrlpVjCVLyt7jkRts138MwoiIiGqAbgoyPd0Pq1e/YNYej+ZusE11E4MwIiKiaqZSqZCRkYFDh8KRkBABoOwq9+UFXqzzVT8wCCMiIqpGf/xxHe+9F4+//w7CL788AUAy0cp0lXtTG20z4b7+YBBGRERUxXS5X+vWOWHaNHdoNKMACJgKwMqqcs+Ntus3BmFERERVSKVSYf78Nbh8ORCbNw/GvcDL9AhYdPRnCAjIrMEeUm3BIIyIiKgKxcXZlLry0ZDAE0/8VGYAxtyv+o1BGBERUSWlpwPnzgEtWgABAcCRI8DUqUoIYWrUC9BNSUqSBhERP+GhhxKNWnCPR+vBIIyIiKgCDPO9lNBoJEiSwH/+cxs7djiVGoDpAi9//4wy634xD8x6MAgjIiIyk67Wl1rt+u+UozbgEkLC9u1OKC3xfvBg45WPpeEUpPVgEEZERGQm3V6NpjbYrujKx5IGDRoEf39/TkFaEQZhREREFeThoTLaYNtYxVY+MgCzPuUt3SAiIqISlMp8RET8BG2ivT7tz5KkwYAB8WYHYEOHDmUAZoU4EkZERFQJupWNum2IzE28N8Xd3b16Okm1GoMwIiKiSnrooUS0b5+MnByPCgde+piMb53qzHTkgAED0KRJEzg6OsLPzw8jR45ERkaGfH7evHmQJMno5eLiYnCdTZs2oXXr1nB0dESHDh2wY8cOg/NCCMyZMwd+fn5wcnJCREQEzp07Z9AmJycHI0aMgJubG9zd3REdHY0bN24YtDl16hR69uwJR0dHBAYGYvHixVX8RIiIqDZQKvMRHHzRrABs0KBBGDt2rMErJiaGU5FWqs4EYb169cLGjRuRkpKCLVu2IDU1FUOGDJHPv/rqq8jMzDR4tW3bFv/973/lNocPH8bw4cMRHR2N48ePY+DAgRg4cCCSk5PlNosXL8ayZcuwcuVKJCUlwcXFBZGRkbhz547cZsSIETh9+jQSEhIQHx+Pn3/+GWPHjpXP5+XloU+fPmjatCmOHj2Kd955B/PmzcOqVauq+SkREVFtpqsBpv9iAGa9JCFEyazCOuGHH37AwIEDUVBQADs7O6PzJ0+eRKdOnfDzzz+jZ8+eAIBhw4bh5s2biI+Pl9t1794dnTp1wsqVKyGEgL+/P6ZMmYJXX30VAKBWq+Hj44O4uDg8/fTTOHPmDNq2bYsjR46ga9euAIBdu3bhP//5D9LT0+Hv74+PP/4Ys2bNQlZWljzEPGPGDHz33Xc4e/as2feYl5cHpVIJtVoNNze3Sj8rIiKqGro6YZU1duxYFmK1Aub+/a4zI2H6cnJysHbtWvTo0cNkAAYAn332GVq2bCkHYACQmJiIiIgIg3aRkZFITNQmV6alpSErK8ugjVKpRFhYmNwmMTER7u7ucgAGABEREVAoFEhKSpLbPPLIIwZz/JGRkUhJScH169dLva+CggLk5eUZvIiIqPbw9PTEsGHDKv1+5n6RvjoVhE2fPh0uLi7w9PTEpUuX8P3335tsd+fOHaxduxbR0dEGx7OysuDj42NwzMfHB1lZWfJ53bGy2jRq1MjgvK2tLTw8PAzamLqG/meYsmDBAiiVSvkVGBhYalsiIrp/6enAvn3ar+ZSKpUV/pxBgwYx94uMWDQImzFjhslkev2X/vTd1KlTcfz4cfz444+wsbHBc889B1Ozqd9++y3y8/MxatSomryd+zZz5kyo1Wr5dfnyZUt3iYioXkpPB6ZOBZo0AXr3Bpo2BVavrr7PYyFWMsWiJSqmTJmC0aNHl9mmWbNm8vdeXl7w8vJCy5Yt0aZNGwQGBuLXX39FeHi4wXs+++wz9O/f32g0ytfXF1euXDE4duXKFfj6+srndcf05+yvXLmCTp06yW2uXr1qcI2ioiLk5OQYXMfU5+h/hikODg5wcHAo9TwREd2/1auBsWMBjebeMY0GeOklIDISCAioms8ZNGgQvLy8YG9vzwCMTLJoEObt7Q1vb+9KvVfz7389BQUFBsfT0tKwb98+/PDDD0bvCQ8Px549exAbGysfS0hIkIO44OBg+Pr6Ys+ePXLQlZeXh6SkJLzyyivyNXJzc3H06FF06dIFALB3715oNBqEhYXJbWbNmoW7d+/KOWsJCQlo1aoVGjZsWKn7JSKi+5eeDrz4opA33tZXXAwkJang5IQygyZz87o4+kXlEnXAr7/+Kj788ENx/PhxceHCBbFnzx7Ro0cPERISIu7cuWPQ9vXXXxf+/v6iqKjI6DqHDh0Stra24t133xVnzpwRc+fOFXZ2duKPP/6Q2yxcuFC4u7uL77//Xpw6dUo89dRTIjg4WNy+fVtu07dvX9G5c2eRlJQkDh48KFq0aCGGDx8un8/NzRU+Pj5i5MiRIjk5Waxfv144OzuLTz75pEL3rVarBQChVqsr9D4iIjJt3LibAhAmX5JULCZNek/MmzdPZGdnl3md7OxskZGRUeqrvPdT/Wbu3+86EYSdOnVK9OrVS3h4eAgHBwcRFBQkXn75ZZGenm7Qrri4WAQEBIjXXnut1Gtt3LhRtGzZUtjb24t27dqJ7du3G5zXaDRi9uzZwsfHRzg4OIjHH39cpKSkGLRRqVRi+PDhokGDBsLNzU08//zzIj8/36DNyZMnxcMPPywcHBxE48aNxcKFCyt83wzCiIjuz+XLQuzdq/166lSOUCg0pQRhxWLAgO/FvHnzxLx580RGRoalu051mLl/v+tsnTBrwDphRESVp5/7pVAIdO9+GIcPP2TUrl27P9CnT4JBxXvW86L7Ua/rhBEREZUlPd0w+V6jkZCYGA5AY9BOkjRGARhRTWEQRkRE9c65c4arHwFACAV69EiEJGlPSJIGUVHxDMDIYiy6OpKIiOh+pacDhw9rv+/RA3ByUsHNrQgKRSNoNPdWQUqSBmFhSQgLS0JOjgc8PHIYgJFFMQgjIqI6a/Vq4MUXtan1ACBJAlFRhxAaehz9+3fGtm39IYTCaNSLwRfVBgzCiIiozlGpVLhwoQgvvtjIoOaXEBK2beuPkJDzCA09jpCQ8xz1olqLQRgREdUpKpUK8+evwenT7SBEpNF5IRTIyfGAUpkvvyqKG21TTWAQRkREdUpcnA2WLImFEAoAAoBh9XtJ0sDDI6dS1x40aBAr3VON4epIIiKqM9LTgWnTlP8GYIA2ALtX7vJ+VzwyAKOaxJEwIiKqM7SlJ0ru+yjhkUf2oVGjawgMTK90APbss88yAKMaxSCMiIjqBJWq9NITXbocr1DwNWjQIHh5eck/29vbMwCjGscgjIiIaj2VSoXly5cDQJmlJ8zl5eXFbYnI4hiEERFRrVdYWCh/XxWlJ7j6kWoDBmFERFTnmFt6ouS0I8CpR6o9GIQREVG1SU/XJtO3aAEEBNT853PakWozlqggIqJqsXo10LQp0Lu39uvq1cZt0tOBffu0X4msDYMwIiKqcunpwNixgEaj/VmjAV56yTDYMidII6rPOB1JRERVQn/qUVvPy/B8cTFw/rz2+8OHTQdpkZFVO23JBHyqzRiEERHRfVu9+l5QpVAACxdqv+oHYjY2wJEjwOOPCxMFV7VBWlKSCk5OqHTivH4iPhPwqbbjdCQREd0XU1OPM2cKvPaaGpJ0b0uh4mKB6dNNB2CAtujqoUNrsHz5cqhUKoNz5o5o+fv7w8/PD35+fgzAqNbjSBgREd0X01OPEs6e3Q0hhuDeBtsShCj57n/PlCi6ql8XDNCOjMXExBgd18eRL6prGIQREdF9adHCeOpRkjTQBl/lTbhoMGTIZrP2fGSARfUNpyOJiKjSVCoVbGwysXhxLmxstMNculGtwMDL/wZj+jTyMUnSYMCAeLRvf6bSm24T1WUcCSMiokrR388RACZMcDXaSigqKt5on8f73XKIqL5gEEZERJVSMj/L1FZCpe3zyOCLiEEYERFVQno68Ouv9lCrXcsNqMzd55HI2jAIIyKiCrlXE8wTkhSLqKh4hIYet3S3iOocJuYTEZHZStYEE0KBbdv6Q612rdLPYaV7sgYcCSMiIrOoVCr8+qt2BEyfEArk5Hjc95Sjrto9632RtWAQRkREJunvBenkpF0JqVa7QpJiIcS9iRRJ0sDDI+e+P8/Lywt+fn73fR2iuoLTkUREZGT1aqBpU6B3b+3XuDgbANok+6ioeINaX/qV7onIfBwJIyIiA6b2gpw+XYkJE7QrIUsrO1Ga//znP9ixY0e5n8s8MLI2DMKIiKycbtqxQQPgn3/UOHNGQKNxN2hTXCwZ5H2VVnZCl9elo8vvatasGfd9JCqBQRgRkRXQz+8KCLh3/F65CQAQAJT/fjVkbt5XaXldDLCIjDEnjIioniuZ37V6tfZ4yWlH7Ybb+l///Yl5X0TVgiNhRET1mKn8rpdeArp1u46UFI1RuQlTBg/ejPbtz1RzT4msD4MwIqJ67Nw5/ZEureJi4L33voeHR45RuYmSJEmDwMD0au4lkXXidCQRUT2lUqng5nYFCoVhjpdCIeRVjfrlJu7lgmm/VmYakisciczHkTAionpIpdIWVwWA/v07Y9u2/hBCAUnSoH//e4GVfrkJO7tC3L1rL38trfxEyRWQOlzhSFQxDMKIiOoh/XIQ5dX1Kq3cRGlY2Z6oajAIIyKqA0orMWGuigZaRFT9mBNGRFTLlVZiwlKY90VUNTgSRkRUi5VWYiIysnIjYvdj0KBB8Pf3Z94XURXhSBgRUS1WWomJ8+drvi9eXl4MwIiqEIMwIqJarEULQFHiX2obG6B5c8v0h4iqDoMwIqJaSqVSwcYmE4sX58LGRlu7y8ZGYNGiXNjYZEKlUt33ZzzxxBPo1avXfV+HiCqOOWFERLWQfp0vAJgwwVUuMXHjRj5WrdIej4mJgaenp9HqSXOT51u1aoXCwkLs27evOm6DiMrAIIyIqBbSr/MFlF5iorCwEKtX30veVyiAVauA6GhPxMTEGF1Hn664qrkjalwVSVS1GIQREdVhGRmKMlZPmpdE7+lpfsBGRFWHQRgRUS2lVrsiJ8cTHh6qUgutnjhx0+TqyaQkFZycYHbgxACLqOYxCCMiqmXS04H5813xySex8n6PUVHxCA09btT29OnvIEnadjqSpMGhQ2uQnJwv54wRUe3D1ZFERLXI6tVAkybAypUN5MBKCAW2besPtdrVqL1SmY+oqHhIknY4TBew6UbOyppiJCLL4kgYEVEtoa2OLyCEZHROCAVycjxMTkuWt0E3EdVODMKIiGoBlUqFPXtuQqNpYvK8JGng4ZFT6vu5QTdR3cMgjIjIwnQ1wdRqV6P8LsB4ipGI6gcGYUREFqaftxUenojExPB/AzENevRIRFhYkkEANmjQIADA1q1ba7qrRFSFGIQREdUCx451xrZt/fWCr0NGwZeOl5dXzXeQiKqc2UFYXl6e2Rd1c3OrVGeIiKyNSqVCcnKuXgAGAAokJoYjLCzJon0joupldhDm7u4OSTJesaNPCAFJklBcXHzfHSMiqu90uWDJyW0hRBuDc2WthgTM30KIWw0R1V5mB2Hc3JWIqGoVFhbK05AllbcaklsNEdV9Zgdhjz76aHX2g4jI6mRkKEpMQ+qYtxqSARZR3VbpxPzc3FysXr0aZ86cAQC0a9cOY8aMgVKprLLOERHVZ2lptiYCMGDIkM1o3/5Mqe/jFCNR/VCpbYt+//13hISE4IMPPkBOTg5ycnLw/vvvIyQkBMeOHavqPhIR1TsqlQpK5VV5uyEdSdIgMDDd5HuGDh3KvSCJ6hFJCCEq+qaePXuiefPm+PTTT2Frqx1MKyoqwgsvvIC///4bP//8c5V31Brl5eVBqVRCrVZzxSlRLZaeDpw7B7RoAQQElH9cl5APGJamKG2j7kGDBsHf35/BF1EdYe7f70pNR/7+++8GARgA2NraYtq0aejatWtlLklEVCetXg2MHQtoNIBCAbz//g0MHZqPdeucMG2aEhqNBIVCYPFiNZ555jbs7e0NkunN2ffRy8uLARhRPVSpIMzNzQ2XLl1C69atDY5fvnwZrq6uVdIxIqLaTKVS4cKFIowd2wgajbZ8j0YDTJrkjOTkdVi9+gV5I26NRsLUqW7455/PoVTmY+jQoQbX4r6PRNapUkHYsGHDEB0djXfffRc9evQAABw6dAhTp07F8OHDq7SDRES1jW46MS0tCBrNKINzQihw6VITo4R7/bpfRUVFFfo8JuIT1U+VSsx/9913MWjQIDz33HMICgpCUFAQRo8ejSFDhmDRokVV3UcAwIABA9CkSRM4OjrCz88PI0eOREZGhkGb3bt3o3v37nB1dYW3tzcGDx6MCxcuGLTZv38/QkND4eDggObNmyMuLs7osz766CMEBQXB0dERYWFh+O233wzO37lzB+PGjYOnpycaNGiAwYMH48qVKwZtLl26hH79+sHZ2RmNGjXC1KlTK/wPLxHVTrrpRA8PlcnE+iZNLpk8XlbdL1MGDRrERHyieqxSQZi9vT2WLl2K69ev48SJEzhx4gRycnLwwQcfwMHBoar7CADo1asXNm7ciJSUFGzZsgWpqakYMmSIfD4tLQ1PPfUUevfujRMnTmD37t3Izs6WN7rVtenXrx969eqFEydOIDY2Fi+88AJ2794tt9mwYQMmT56MuXPn4tixY+jYsSMiIyNx9epVuc2kSZOwbds2bNq0CQcOHEBGRobB5xQXF6Nfv34oLCzE4cOHsWbNGsTFxWHOnDnV8myIqPLS04F9+7RfK0qpzEdUVLwccOkS6wMCMk0er+iUI3PBiOq3Sq2OrA1++OEHDBw4EAUFBbCzs8PmzZsxfPhwFBQUQKHQxpbbtm3DU089JbeZPn06tm/fjuTkZPk6Tz/9NHJzc7Fr1y4AQFhYGB588EF55ZJGo0FgYCDGjx+PGTNmQK1Ww9vbG+vWrZODwLNnz6JNmzZITExE9+7dsXPnTvTv3x8ZGRnw8fEBAKxcuRLTp0/HtWvXzJ5a4OpIoupVMql+1SogOrr892VmZmLVqlXyz2q1q8nE+tKODxo0CFu3bi33c8aOHQs/P7+K3RQRWZy5f78rNRJ2584dvPPOO/jPf/6Drl27IjQ01OBV3XJycrB27Vr06NEDdnZ2AIAuXbpAoVDgiy++QHFxMdRqNb766itERETIbRITExEREWFwrcjISCQmJgLQTjEcPXrUoI1CoUBERITc5ujRo7h7965Bm9atW6NJkyZym8TERHTo0EEOwHSfk5eXh9OnT1fDEyGiikpPvxeAAdqvL72kPV7R0TGlMh/BwReNRrpKO05EBFQyMT86Oho//vgjhgwZgm7dupW7sXdVmT59OpYvX45bt26he/fuiI+Pl88FBwfjxx9/xNChQ/HSSy+huLgY4eHh2LFjh9wmKyvLIDACAB8fH+Tl5eH27du4fv06iouLTbY5e/asfA17e3u4u7sbtcnKyirzc3TnSlNQUICCggL557y8vPIeCRFV0rlz9wIwneJiYOlS4P33Kz46VhG6/2NYHibkE9VvlQrC4uPjsWPHDjz00EP39eEzZswoN5H/zJkzcimMqVOnIjo6GhcvXsQbb7yB5557DvHx8ZAkCVlZWXjxxRcxatQoDB8+HPn5+ZgzZw6GDBmChISEGgsU78eCBQvwxhtvWLobRPWeSqWCm1sRFIp75SUAQKEQeO896JWWAF56SaBTp6sICrKtsvwspVLJzbeJqHJBWOPGjaukHtiUKVMwevToMts0a9ZM/t7LywteXl5o2bIl2rRpg8DAQPz6668IDw/HRx99BKVSicWLF8vtv/76awQGBiIpKQndu3eHr6+v0SrGK1euwM3NDU5OTrCxsYGNjY3JNr6+vgAAX19fFBYWIjc312A0rGSbkisqddfUtTFl5syZmDx5svxzXl4eAgMDy3w+RFQx+tXq+/c3rFbfvXsiDh82/D+XxcUSPvxwJ4KDL1bZSkUGWEQEVDIIe++99zB9+nSsXLkSTZs2rfSHe3t7w9vbu1Lv1fw7j6Cbvrt165ackK9jY2Nj0Lbk9CQAJCQkIDw8HID2H8YuXbpgz549GDhwoPzePXv2ICYmBoA298zOzg579uzB4MGDAQApKSm4dOmSfJ3w8HDMnz8fV69eRaNGjeTPcXNzQ9u2bUu9JwcHh2pbXUpEWmVVqweAxMTwEjW+BDIy/BEcfBHXrl2Dp6en2dOEQ4cONUpdYABGRDqVWh157do1DB06FD///DOcnZ2N8htycipWC6c8SUlJOHLkCB5++GE0bNgQqampmD17Nq5cuYLTp0/DwcEBe/fuRUREBObNmydPR7722ms4e/Yszpw5AycnJ6SlpaF9+/YYN24cxowZg71792LChAnYvn07IiMjAWhLVIwaNQqffPIJunXrhiVLlmDjxo04e/asnNf1yiuvYMeOHYiLi4ObmxvGjx8PADh8+DAAbYmKTp06wd/fH4sXL0ZWVhZGjhyJF154AW+//bbZ983VkURVr+TKxpIOHQpHQsITAO5NU0qSBrGxS6BU5sujYSqVitOJRGRSte4dOXz4cPzzzz94++234ePjU+35Vs7Ozti6dSvmzp2Lmzdvws/PD3379sXrr78ujxz17t0b69atw+LFi7F48WI4OzsjPDwcu3btgpOTEwBt8v727dsxadIkLF26FAEBAfjss8/kAAzQ7gZw7do1zJkzB1lZWejUqRN27dplkGj/wQcfQKFQYPDgwSgoKEBkZCRWrFghn7exsUF8fDxeeeUVhIeHw8XFBaNGjcKbb75Zrc+JiO6fv38m9AMwQFvt/vLlACiVZ+TAiwEWEd2vSo2EOTs7IzExER07dqyOPtG/OBJGVHXS07UrIt3criA+fmWp7dRqVyxZEmu07ZCu4OrKlQ+ydhcRlala64S1bt0at2/frnTniIhq0urVQNOmQO/eQLdujXDsWOdS2+qq4AOG9SuEUGDbtv7IyKjUP5tEREYq9a/JwoULMWXKFOzfvx8qlQp5eXkGLyKi2kClUuHo0SsYO1boFWWVsG1bf6jVpa/wDg09jiFDthgdF0KBkydvQqVSVVeXiciKVConrG/fvgCAxx9/3OC4EAKSJKG4uPj+e0ZEdB90pSjS0oKg0YwyOCeEAjk5HmVWsg8MvAxJ0hhMS0qSBsnJ3+Hy5XxurE1E961SQdi+ffuquh9ERPdFl/PVogUQEHCvFIWHh8pkMKUrSVEa3bSkfh0x/U24y1oZSURkjkoFYY8++qhZ7f7v//4Pb775Jry8vCrzMUREZjG1Efd//qM9V14wNWjQIHh5eSEtLQ0JCQkG1y1ZR4x7QBJRVapUEGaur7/+Gq+++iqDMCKqFiqVChcuFGHs2HvbD+m2Gtq5M1duV1Yw5eXlBT8/P9jb2xsFYYA2iGPwRUTVoVqDsEpUvyAiMktZOV/FxRLWrk1CcPC9Y+UFU56enoiJiUFGRga2bt1aXd0mIpJVaxBGRFRdzMn5UqtdkZPjCQ8PlVmjWZ6ensz1IqIawyCMiOq00nK+UlObGx0LDT1u6e4SEckYhBFRnWdqI279qve6QqshIeeZ30VEtQaDMCKqF/RzvtLSgoy2HSqtNpi9vX2ZP5fG3HZERKWp1iDs2Wef5Z6HRFSlVCoVCgsLkZ2dXWobDw8VtNsOma4NpitLYW9vb1RwVZegX1ZumKn3ERFVVKWDsNzcXPz222+4evUqNBrDPdaee+45AMDHH398f70jItKjWxGpU1rifWpqcwCS3jsNa4PpylKUhgEWEdWESgVh27Ztw4gRI3Djxg24ublBku79YydJkhyEERHdD92ol47+6NexY51NJt6r1a7Ytq0/9IMwSQJCQs7XZNeJiMpVqSBsypQpGDNmDN5++204OztXdZ+IiMoY9dJuvK0LwIB7iff29gXyz/rM2SuSiKimVSoI++effzBhwgQGYERUbfRHwEqOeoWHJ5oMtDZv/i8kSYOy8sGIiGoLRflNjEVGRuL333+v6r4QERnRTS/qj3odPhz+b7BlTBuoAdpADEZ7RQJc2UhEtYPZI2E//PCD/H2/fv0wdepU/Pnnn+jQoQPs7OwM2g4YMKDqekhEVi0nx9No1AtQoFmzcyYS8LWEUGDIkI1wcblltFfk0KFDmXhPRLWC2UHYwIEDjY69+eabRsckSUJxcfF9dYqI6reSCfcl6Y9UlbYtUWpqCEwFYLrzgYHpJnPA3N3dK91vIqKqZHYQVrIMBRFRZZRMuC/NsGHDAJjelig8PBGHDz9k8n2mph+JiGqjSiXmf/nllxg2bBgcHBwMjhcWFmL9+vUsUUFEpSo5AlZara+7d+/K35valigxMbzENKUGQ4ZsLnUEjIiotqlUYv7zzz8PtVptdDw/Px/PP//8fXeKiKzDsWOdsWRJLNasGYUlS2Jx7Fhn+Vx+/r1A6l6gliNvTxQVFS8n50uSBgMGxKN9+zPlBmBMyiei2qJSI2FCCIMCrTrp6elQKpX33Skiqv9MrXrU32Q7ISEBQOlFWUuOjpUWfOm2KAK43RAR1S4VCsI6d+4MSZIgSRIef/xx2Nree3txcTHS0tLQt2/fKu8kEdU/plY9liyqWl6gpr9pd2nK26KIiMhSKhSE6VZInjhxApGRkWjQoIF8zt7eHkFBQRg8eHCVdpCI6pfc3FwApa961C+qak6gRkRUV1UoCJs7dy4AICgoCMOGDYOjo2O1dIqI6ieVSoWNGzcCML3qseSqRnMCNSKiuqpSOWGjRo0CoF3ldPXqVaPyFU2aNLn/nhFRnVNe/S/dKJiOLq/r8uUAABICAy8bnDcnUCsPE/GJqLaqVBB27tw5jBkzBocPHzY4rkvYZ7FWIutjbv0vfWq1K5KSwnD4cDgAw8R7nbIS8Pv06WOQFgEAtra2ckFWJuITUW1WqSBs9OjRsLW1RXx8PPz8/EyulCQi62Ju/S8d/VWPOiUT73VKS8APCgpi0j0R1VmVCsJOnDiBo0ePonXr1lXdHyKqB0orK6FTctWjPibeE5G1qFSx1rZt2yI7O7uq+0JE9UBpZSXUale5jelNubUqknjPfC8iqssqNRK2aNEiTJs2DW+//TY6dOgAOzs7g/Nubm5V0jkiqnvMKSthatWjlmHivX6h1ZKY70VEdV2lgrCIiAgAQO/evQ3ywZiYT0TmlJUobVPusLAkg2lIFlolovqsUkHYvn37qrofRFRPmFtWwtxth4iI6qtKBWGPPvoofvnlF3zyySdITU3F5s2b0bhxY3z11VcIDg6u6j4SUR1TVoA1bNgwCCGwcePGcrcdYs4XEdVnlQrCtmzZgpEjR2LEiBE4fvw4CgoKAABqtRpvv/02duzYUaWdJKLar2TAVFqA5e3tDU9PT8TExJRZ2JU5X0RU30lCCFHRN3Xu3BmTJk3Cc889B1dXV5w8eRLNmjXD8ePH8eSTTyIrK6s6+mp18vLyoFQqoVarudiB6oTyKuYzsCIia2Du3+9KjYSlpKTgkUceMTquVCqNtiUhIuvBAIuIyHyVCsJ8fX1x/vx5BAUFGRw/ePAgmjVrVhX9IqJK4mgUEVHdUKkg7MUXX8TEiRPx+eefQ5IkZGRkIDExEa+++ipmz55d1X0kIjOV3L+xtK2DYmJiGIgREVlYpYKwGTNmQKPR4PHHH8etW7fwyCOPwMHBAa+++irGjx9f1X0kIjPpj4CVtXVQWSNlpnB0jYio6lUqCJMkCbNmzcLUqVNx/vx53LhxA23btkWDBg2qun9EVAmlbR1UcmNsc5QcXSsNR9eIiCqmUkGYjr29Pdq2bVtVfSGiKmLO1kHmKjkCVtoUZ0VH14iIrN19BWFEVPPKmhrMzs4GYN7WQZVR1hQnERFVDIMwolqotEBLrVZjw4YN5b7f3K2DKqIqpziJiIhBGFGtY24OVnmqem/GqpziJCIiBmFEtY65OVjlnQNK3zqoMqpripOIyFoxCCOqxcrKwbqf/KzKbIxdHVOcRETWjEEYUS1VVg4WgDLzswYNGgQvLy+T172fml5VPcVJRGTNGIQR1VJl5WABUpn5WV5eXvDz86uSfpQcNSttirMyo2tERNaMQRhRLVVeDlZN5Wd5enoiJiaGFfOJiKoYgzCiWqq8HKyazM9igEVEVPUYhBHVYmXlYJV1jlODRES1H4MwolrG3BysoUOHwt3d3eT7OXJFRFT7MQgjqmWYg0VEZB0YhBHVQgywiIjqP0X5TYiIiIioqjEIIyIiIrIABmFEREREFsCcMCILUqlUTMAnIrJSDMKILESlUmH58uXltouJiWEgRkRUD3E6kshCyhoBq0w7IiKqWzgSRlTHlJzCzM3NRVFREQAgK8sWGRkuaN/eAf7+GgCc0iQiqq0YhBHVIWVNYR471tloL8nQ0OMAOKVJRFQbMQgjMqG2JsyX1ie12lUOwABACAW2beuPkJDzUCrzOaVJRFQLMQgjKqE6EuZNBXXZ2dmV6p8+tdoVOTmeuHnTWQ7AdIRQICfHw+S+k0REZHkMwohKqOqEeXODOl1A5eGhMitwKjn9CGigv9ZGkjTw8Mgxq49ERFTz6szqyAEDBqBJkyZwdHSEn58fRo4ciYyMDIM2GzduRKdOneDs7IymTZvinXfeMbrO/v37ERoaCgcHBzRv3hxxcXFGbT766CMEBQXB0dERYWFh+O233wzO37lzB+PGjYOnpycaNGiAwYMH48qVKwZtLl26hH79+sHZ2RmNGjXC1KlT5eRpsi7mBGvHjnXGkiWxWLNmFJYsicWxY53LbG9q+lGSAG0gBjknjKNgRES1V50Jwnr16oWNGzciJSUFW7ZsQWpqKoYMGSKf37lzJ0aMGIGXX34ZycnJWLFiBT744AODEYi0tDT069cPvXr1wokTJxAbG4sXXngBu3fvltts2LABkydPxty5c3Hs2DF07NgRkZGRuHr1qtxm0qRJ2LZtGzZt2oQDBw4gIyMDgwYNks8XFxejX79+KCwsxOHDh7FmzRrExcVhzpw51fyUqC4qLZ9LrXYFoM0/Kyknx9Pk9OOQIZsxalQcYmOXyEn5RERUO0lCCGHpTlTGDz/8gIEDB6KgoAB2dnZ45plncPfuXWzatElu8+GHH2Lx4sW4dOkSJEnC9OnTsX37diQnJ8ttnn76aeTm5mLXrl0AgLCwMDz44INy8KbRaBAYGIjx48djxowZUKvV8Pb2xrp16+Qg8OzZs2jTpg0SExPRvXt37Ny5E/3790dGRgZ8fHwAACtXrsT06dNx7do1k39UTcnLy4NSqYRarYabm1uVPDcqX2ZmJlatWlVuu7Fjx8LPz+++r5eWFoQ1a0YZHd+8WYXHHoNB3pnuWmq1K5YsiTUIxCRJg9jYJSZHv8ztKxER3T9z/37XmZEwfTk5OVi7di169OgBOzs7AEBBQQEcHR0N2jk5OSE9PR0XL14EACQmJiIiIsKgTWRkJBITEwFop42OHj1q0EahUCAiIkJuc/ToUdy9e9egTevWrdGkSRO5TWJiIjp06CAHYLrPycvLw+nTp0u9r4KCAuTl5Rm8qP7z8FD9m9N1j40NEBbmWWriv1KZj6ioePl9nH4kIqp76lQQNn36dLi4uMDT0xOXLl3C999/L5+LjIzE1q1bsWfPHmg0Gvz111947733AGhHDwAgKyvLIDACAB8fH+Tl5eH27dvIzs5GcXGxyTZZWVnyNezt7eHu7l5mG1PX0J0rzYIFC6BUKuVXYGCguY+GqpFa7Yq0tCB5erA8KpUKmZmZ8qu8VZC6gMrGRjsobWMDfPIJEBBg3FZ/FDU09DhiY5eYNf1o7ugrERHVHIuujpwxYwYWLVpUZpszZ86gdevWAICpU6ciOjoaFy9exBtvvIHnnnsO8fHxkCQJL774IlJTU9G/f3/cvXsXbm5umDhxIubNmweFom7EmjNnzsTkyZPln/Py8hiIWVhZBVBNMWclpKlVkKGhxzFnThjy833QvLnpAAzQTk3GxMSUWjEfAOzs7KBUKuWfWTGfiKh2smgQNmXKFIwePbrMNs2aNZO/9/LygpeXF1q2bIk2bdogMDAQv/76K8LDwyFJEhYtWoS3334bWVlZ8Pb2xp49ewyu4evra7SK8cqVK3Bzc4OTkxNsbGxgY2Njso2vr698jcLCQuTm5hqMhpVsU3JFpe6aujamODg4wMHBocznQdVPN2pUXgFUU6NL5a2ELCuo8/fXwJy0rZIBFXO9iIjqJosOEXl7e6N169ZlvkqbRtFotLkwBQUFBsdtbGzQuHFj2Nvb45tvvkF4eDi8vb0BAOHh4XJgppOQkIDw8HAA2j++Xbp0MWij0WiwZ88euU2XLl1gZ2dn0CYlJQWXLl2S24SHh+OPP/4wWFGZkJAANzc3tG3btlLPimqObrSpR49RJlcgPvTQqEptA1SZVZBERFR/1YlirUlJSThy5AgefvhhNGzYEKmpqZg9ezZCQkLkwCc7OxubN2/GY489hjt37uCLL76QS0jovPzyy1i+fDmmTZuGMWPGYO/evdi4cSO2b98ut5k8eTJGjRqFrl27olu3bliyZAlu3ryJ559/HgCgVCoRHR2NyZMnw8PDA25ubhg/fjzCw8PRvXt3AECfPn3Qtm1bjBw5EosXL0ZWVhZef/11jBs3jiNddYSnpye6dwcUCkCjlzN/L2Fe+3PJSvhl5X+VVlaiWbM+iIiwRWFhITIzMzl9SERkJepEEObs7IytW7di7ty5uHnzJvz8/NC3b1+8/vrrBkHNmjVr8Oqrr0IIgfDwcOzfvx/dunWTzwcHB2P79u2YNGkSli5dioCAAHz22WeIjIyU2wwbNgzXrl3DnDlzkJWVhU6dOmHXrl0GifYffPABFAoFBg8ejIKCAkRGRmLFihXyeRsbG8THx+OVV15BeHg4XFxcMGrUKLz55pvV/KSoKgUEAKtWAS+9BBQXGyfMm1sJX0e3CrJkWYm///4RGzYYrmrkhttERPVfna0TZg1YJ6x2SE8Hzp+HUcK8ufXE9Jmb6M+6XkREdZe5f7/rxEgYUXUytbm2Picnezz2WOVGpUquhAwNPY6QkPPIyfGAh0cO63oREVkxBmFk1cydUqzM9GBpo15KZb4cfFV0024iIqo/GISRVTNnc+2KtNMpr7wFUPEaZEREVL/UjSqmRHVMaSsh//yzLdRq13LLVRARUf3HkTCiamBqJSQgsHt3X/z4Yx+EhyeaDNJycjw4LUlEZCU4EkZURfT3mCy5wTYgAEja74QCiYnhAAw37ZYkDTw8cmq0z0REZDkcCSMyU8lVlLm5ufL3peV3hYSch739M1i0yHC7KiEU6NHjEBITww3eoxsFY/V8IqL6j0EYkRlyc3OxceNGk+dM5Xdt3x6FOXPCEBRki9u3PfHOOyUr7wssW9YcwDVcuGCLoKAi+Ps/COBBVswnIrISDMKI9JRWMqKoqKjU95hKwi8ulpCf7yNvb2RceV9Cly7aXRi6dKn6+yAiotqPQRhZNf1pv7JKRtjZ2ZV6DVNJ+DY22gr7OtHRQGSk6cr7RERknbhtUS3GbYtqhkqlwoULRejWrRE0Gkk+bmMjkJR0FUFB2s21y9qiSD+A0+0xGR1dE70nIqLahtsWEZnJ09MTp04Z5mwB96YUARWys7PLvIYuCf+hh0YhLMyTI11ERFQuBmFEAFq0ABSKksnzgKfndbO2NQIApTIfPXoUgvtuExGROVgnjAjaHK1Vq7SBFwB5StHL647J9vo1wYiIiCqDI2FE/zKVPJ+ZadyOez4SEVFVYBBGpCcgoOyVi+VtzM0iq0REZC4GYUQVcPlyoMk9H9u3H4innlKyyCoREZmNQRiRmXTTkCVJkgYdO7owACMiogphEEZWo+TejyWVtV1QyWnIe7Q5Ydoth4iIiMzHIIysgkqlMqvURExMjMlAzNTWRAAwZMhmtG9/BgCDMCIiqhiWqCCrUNYIWFntdIn2uq2J9EmSBoGB6QbtiIiIzMWRMCI92dnZBtOSnp6eiImJQWFhIRo3zsP06UoUF0uwsRFYtCgPzzwzvMxpTCIiotIwCCPSs3XrVgDA0KFD4e7uDkA7yuXn54cpU4Bhw3R1xCQEBLgDcLdUV4mIqI5jEEZkwsaNGw1+1uWKlVdHjIiIyFzMCSOrVNq2Q6UdNzenjIiIyFwcCSOrU9q2Q9yOiIiIahJHwsiqmNp26Icf+iMlpbnJ7Yi4QTcREVUXBmFkFXQlJEzX+1Lgm2+Gm9yOKCfHo4Z6SERE1oZBGFkFXamJESO6GdX70lIAEAZHJEkDD4+cGukfERFZHwZhZDU8PT3Rvr07oqLiAZgKxCQ5QNPlhCmV+TXaRyIish5MzCerYm9vj9DQ42jUKAurV79gMAUpSRpER3+Gu3ft4eGRwwCMiIiqFYMwqjXuZ4Ntc+lXwG/dOg/Tpimh0UjyyFdAQGapn01ERFSVJCGEKL8ZWUJeXh6USiXUajXc3Nws3Z1qdb8bbFdWejpw9KgaAQF34O9vaoqyaoI/IiKyHub+/eZIGNUKld1g+35pK+ArASir9LpERETlYRBGFqWbgszOzrZ0V4iIiGoUgzCyGHOnIImIiOojlqggi+F+jEREZM0YhFGtVNpG2kRERPUFpyOp1uFG2kREZA04Eka1iqkNtrmRNhER1UcMwqjWUKtdcfp0uzI30mbRVCIiqi84HUm1gv4UpHYjbUk+p1AIjB//JIKCbFk0lYiI6g0GYWRxJacgtQGYNhCTJA3mzMmAv78NCgsLkZlpuK0Qq9kTEVFdxSCMLEY3tZiT42k0BQlIiIzchbZt/wSQj1WrSr9OVW9lREREVBOYE0YWo9tMe/z4vlAoDLcwtbERmDKlKZTKfPlYaWUrWG+MiIjqIo6EkUV5enrC0xNYtQp46SWguBiwsQE++URC+/buOHxY245lK4iIqL7hSBjVCtHRwIULwL592q/R0ffOsWwFERHVRxwJo3LpNtkuTVUlxwcEaF8lmcoZ05Wt0J+uJCIiqksYhFGZzN1kuzqT4zMy/FCybIUkaeDhkVMtn0dERFQTOB1JZTI36b06kuPVajXUalf89FME9AMwQCAi4ieOghERUZ3GIIwqpKY21lapVNiwYUOp5Sv8/TOq9fOJiIiqG6cjyWwVWaGYng6cOwe0aGE6z6s8upE1Dw8VJEljEIiVnIrkVkZERFQXcSSMzGLOCkWVSoXMzEy8914umjYV6N0baNpU4L33cpGZmQmVSlXhz1Uq8xEVFQ9J0gCAHPzppiKHDh3KQq1ERFQncSSMzFLeCsXc3Fxs3LgRarUrliyJhRDaHC6NRsLUqW7455/PoVTmVyqBPzT0OEJCziMnxwMeHjkGuWDu7u73fW9ERESWwCCMzFLetGBRURGA8oO1yibwK5X5TMQnIqJ6hdORZJbypgV1dMGaPpaTICIiMsaRMCqTftJ7WdOCdnZ2AO4FayUT+DmKRUREZIhBGJVJt8l2eRXz9c+XFawRERGRFoMwKpc5ifSZmZkGP99vDpe5ZSdYnoKIiOoqBmFUK5k7AsfyFEREVFcxCKNaiwEWERHVZ1wdSVWC04dEREQVw5EwqhKcPiQiIqoYBmFUZRhgERERmY/TkUREREQWwCCMiIiIyAIYhBERERFZQJ0LwgoKCtCpUydIkoQTJ04YnDt16hR69uwJR0dHBAYGYvHixUbv37RpE1q3bg1HR0d06NABO3bsMDgvhMCcOXPg5+cHJycnRERE4Ny5cwZtcnJyMGLECLi5ucHd3R3R0dG4ceNGhftCRERE1qvOBWHTpk2Dv7+/0fG8vDz06dMHTZs2xdGjR/HOO+9g3rx5WLVqldzm8OHDGD58OKKjo3H8+HEMHDgQAwcORHJystxm8eLFWLZsGVauXImkpCS4uLggMjISd+7ckduMGDECp0+fRkJCAuLj4/Hzzz9j7NixFeoLERERWTlRh+zYsUO0bt1anD59WgAQx48fl8+tWLFCNGzYUBQUFMjHpk+fLlq1aiX/PHToUNGvXz+Da4aFhYmXXnpJCCGERqMRvr6+4p133pHP5+bmCgcHB/HNN98IIYT4888/BQBx5MgRuc3OnTuFJEnin3/+Mbsv5lCr1QKAUKvVFXofERERWY65f7/rzEjYlStX8OKLL+Krr76Cs7Oz0fnExEQ88sgjBsVAIyMjkZKSguvXr8ttIiIiDN4XGRmJxMREAEBaWhqysrIM2iiVSoSFhcltEhMT4e7ujq5du8ptIiIioFAokJSUZHZfTCkoKEBeXp7Bi4iIiOqnOhGECSEwevRovPzyywbBj76srCz4+PgYHNP9nJWVVWYb/fP67yutTaNGjQzO29rawsPDo9zP0f8MUxYsWAClUim/AgMDS21LREREdZtFg7AZM2ZAkqQyX2fPnsWHH36I/Px8zJw505LdrXYzZ86EWq2WX5cvX7Z0l4iIiKiaWLRi/pQpUzB69Ogy2zRr1gx79+5FYmIiHBwcDM517doVI0aMwJo1a+Dr64srV64YnNf97OvrK3811Ub/vO6Yn5+fQZtOnTrJba5evWpwjaKiIuTk5JT7OfqfYYqDg4PRPRIREVH9ZNGRMG9vb7Ru3brMl729PZYtW4aTJ0/ixIkTOHHihFxWYsOGDZg/fz4AIDw8HD///DPu3r0rXz8hIQGtWrVCw4YN5TZ79uwx6ENCQgLCw8MBAMHBwfD19TVok5eXh6SkJLlNeHg4cnNzcfToUbnN3r17odFoEBYWZnZf6pL0dGDfPu1XIiIiqiI1s06gaqWlpRmtjszNzRU+Pj5i5MiRIjk5Waxfv144OzuLTz75RG5z6NAhYWtrK959911x5swZMXfuXGFnZyf++OMPuc3ChQuFu7u7+P7778WpU6fEU089JYKDg8Xt27flNn379hWdO3cWSUlJ4uDBg6JFixZi+PDhFeqLOWrD6sjPPhNCoRAC0H797DOLdYWIiKhOMPfvd70JwoQQ4uTJk+Lhhx8WDg4OonHjxmLhwoVG7924caNo2bKlsLe3F+3atRPbt283OK/RaMTs2bOFj4+PcHBwEI8//rhISUkxaKNSqcTw4cNFgwYNhJubm3j++edFfn5+hftSHksHYZcv3wvAdC8bG+1xIiIiMs3cv9+SEEJYciSOSpeXlwelUgm1Wg03N7ca+cz0dODcOaBFC+3X3r2N2+zbBzz2WI10h4iIqM4x9+93nShRQTVj9WqgaVNt4NW0KfD774CixG+IjQ3QvLll+kdERFSfMAgjANoRsBdfBDQa7c8aDTBzJrBokTbwArRfP/kECAiwXD+JiIjqC4uWqKDaY+lSbdaXvuJiIDhYhaSkIly4YIugoCL4+2uQmQnY29vD09PTMp0lIiKqBxiEEdLTgfffN3VGg0OH1iA5OR8AoLfPOQAgJiaGgRgREVElcTqScO7cvWlIfT16JEKpzC/1fYWFhdXYKyIiovqNQRihRQvjBHxJ0iAsLMkyHSIiIrICDMIIAQHAqlX6CfgCUVHxZY6CERER0f1hTpiVS08Hfv9djU6d7iApCbhwwRZubldx+PBxS3eNiIioXmMQZsVWrwbGjhXQaJSQJFdERcUjNJTBFxERUU3gdKQVSk8HNm4EXnxRQKORAABCKLBtW3+o1a4W7h0REZF1YBBmZXRV8YcNA4SQDM4JoUBOjoeFekZERGRdGIRZkfR0YOxY0+UoAO2KSA+PHLOvZ29vX0U9IyIisj7MCbMipdUDA7QBWFkrIgcNGgQvLy/5Z1bMJyIiuj8MwqyIrh6YfiAmSRoMHrwZgYHpZZak8PLygp+fXw30koiIyDpwOtKKBAQA779/A5KkjcJ0o1/t259hTTAiIqIaxpEwKzN0aD4uXlyFnBwPeHjkMPgiIiKyEAZhVkKlUqGwsBDZ2dlQKvMrHHwxCZ+IiKhqMQizAiqVCsuXL6/0+5999lkm4RMREVUxBmFWoLCwsMLv0a2G5CpIIiKi6sEgjEziakgiIqLqxdWRRERERBbAIIyIiIjIAhiEkUlcDUlERFS9mBNGMibjExER1RwGYSRjMj4REVHN4XSkFTB3apFTkERERDWHI2FWwNPTEzExMWXWC+MUJBERUc1iEGYlGGARERHVLpyOJCIiIrIABmFEREREFsAgjIiIiMgCGIQRERERWQCDMCIiIiILYBBGREREZAEMwoiIiIgsgEEYERERkQUwCCMiIiKyAFbMr8WEEACAvLw8C/eEiIiIzKX7u637O14aBmG1WH5+PgAgMDDQwj0hIiKiisrPz4dSqSz1vCTKC9PIYjQaDTIyMuDq6gpJksx6T15eHgIDA3H58mW4ublVcw9rLz4HLT4HPgMdPgctPgc+A53qfA5CCOTn58Pf3x8KRemZXxwJq8UUCgUCAgIq9V43Nzer/o9Lh89Bi8+Bz0CHz0GLz4HPQKe6nkNZI2A6TMwnIiIisgAGYUREREQWwCCsnnFwcMDcuXPh4OBg6a5YFJ+DFp8Dn4EOn4MWnwOfgU5teA5MzCciIiKyAI6EEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBWB3w8ccf44EHHpALyoWHh2Pnzp3y+Tt37mDcuHHw9PREgwYNMHjwYFy5csXgGpcuXUK/fv3g7OyMRo0aYerUqSgqKqrpW6kyCxcuhCRJiI2NlY9Zy3OYN28eJEkyeLVu3Vo+by3P4Z9//sGzzz4LT09PODk5oUOHDvj999/l80IIzJkzB35+fnByckJERATOnTtncI2cnByMGDECbm5ucHd3R3R0NG7cuFHTt1JpQUFBRr8LkiRh3LhxAKznd6G4uBizZ89GcHAwnJycEBISgrfeestg3z5r+H3Iz89HbGwsmjZtCicnJ/To0QNHjhyRz9fHZ/Dzzz8jKioK/v7+kCQJ3333ncH5qrrnU6dOoWfPnnB0dERgYCAWL15cNTcgqNb74YcfxPbt28Vff/0lUlJSxGuvvSbs7OxEcnKyEEKIl19+WQQGBoo9e/aI33//XXTv3l306NFDfn9RUZFo3769iIiIEMePHxc7duwQXl5eYubMmZa6pfvy22+/iaCgIPHAAw+IiRMnyset5TnMnTtXtGvXTmRmZsqva9euyeet4Tnk5OSIpk2bitGjR4ukpCTx999/i927d4vz58/LbRYuXCiUSqX47rvvxMmTJ8WAAQNEcHCwuH37ttymb9++omPHjuLXX38Vv/zyi2jevLkYPny4JW6pUq5evWrwe5CQkCAAiH379gkhrON3QQgh5s+fLzw9PUV8fLxIS0sTmzZtEg0aNBBLly6V21jD78PQoUNF27ZtxYEDB8S5c+fE3LlzhZubm0hPTxdC1M9nsGPHDjFr1iyxdetWAUB8++23Buer4p7VarXw8fERI0aMEMnJyeKbb74RTk5O4pNPPrnv/jMIq6MaNmwoPvvsM5Gbmyvs7OzEpk2b5HNnzpwRAERiYqIQQvtLqlAoRFZWltzm448/Fm5ubqKgoKDG+34/8vPzRYsWLURCQoJ49NFH5SDMmp7D3LlzRceOHU2es5bnMH36dPHwww+Xel6j0QhfX1/xzjvvyMdyc3OFg4OD+Oabb4QQQvz5558CgDhy5IjcZufOnUKSJPHPP/9UX+er0cSJE0VISIjQaDRW87sghBD9+vUTY8aMMTg2aNAgMWLECCGEdfw+3Lp1S9jY2Ij4+HiD46GhoWLWrFlW8QxKBmFVdc8rVqwQDRs2NPhvYvr06aJVq1b33WdOR9YxxcXFWL9+PW7evInw8HAcPXoUd+/eRUREhNymdevWaNKkCRITEwEAiYmJ6NChA3x8fOQ2kZGRyMvLw+nTp2v8Hu7HuHHj0K9fP4P7BWB1z+HcuXPw9/dHs2bNMGLECFy6dAmA9TyHH374AV27dsV///tfNGrUCJ07d8ann34qn09LS0NWVpbBc1AqlQgLCzN4Du7u7ujatavcJiIiAgqFAklJSTV3M1WksLAQX3/9NcaMGQNJkqzmdwEAevTogT179uCvv/4CAJw8eRIHDx7Ek08+CcA6fh+KiopQXFwMR0dHg+NOTk44ePCgVTyDkqrqnhMTE/HII4/A3t5ebhMZGYmUlBRcv379vvrIDbzriD/++APh4eG4c+cOGjRogG+//RZt27bFiRMnYG9vD3d3d4P2Pj4+yMrKAgBkZWUZ/COrO687V1esX78ex44dM8hx0MnKyrKa5xAWFoa4uDi0atUKmZmZeOONN9CzZ08kJydbzXP4+++/8fHHH2Py5Ml47bXXcOTIEUyYMAH29vYYNWqUfB+m7lP/OTRq1MjgvK2tLTw8POrMc9D33XffITc3F6NHjwZgXf9NzJgxA3l5eWjdujVsbGxQXFyM+fPnY8SIEQBgFb8Prq6uCA8Px1tvvYU2bdrAx8cH33zzDRITE9G8eXOreAYlVdU9Z2VlITg42OgaunMNGzasdB8ZhNURrVq1wokTJ6BWq7F582aMGjUKBw4csHS3aszly5cxceJEJCQkGP0/PWuj+3/3APDAAw8gLCwMTZs2xcaNG+Hk5GTBntUcjUaDrl274u233wYAdO7cGcnJyVi5ciVGjRpl4d5ZxurVq/Hkk0/C39/f0l2pcRs3bsTatWuxbt06tGvXDidOnEBsbCz8/f2t6vfhq6++wpgxY9C4cWPY2NggNDQUw4cPx9GjRy3dNSoFpyPrCHt7ezRv3hxdunTBggUL0LFjRyxduhS+vr4oLCxEbm6uQfsrV67A19cXAODr62u0Ikr3s65NbXf06FFcvXoVoaGhsLW1ha2tLQ4cOIBly5bB1tYWPj4+VvEcTHF3d0fLli1x/vx5q/l98PPzQ9u2bQ2OtWnTRp6W1d2HqfvUfw5Xr141OF9UVIScnJw68xx0Ll68iJ9++gkvvPCCfMxafhcAYOrUqZgxYwaefvppdOjQASNHjsSkSZOwYMECANbz+xASEoIDBw7gxo0buHz5Mn777TfcvXsXzZo1s5pnoK+q7rk6/zthEFZHaTQaFBQUoEuXLrCzs8OePXvkcykpKbh06RLCw8MBAOHh4fjjjz8MftESEhLg5uZm9Iestnr88cfxxx9/4MSJE/Kra9euGDFihPy9NTwHU27cuIHU1FT4+flZze/DQw89hJSUFINjf/31F5o2bQoACA4Ohq+vr8FzyMvLQ1JSksFzyM3NNRgl2Lt3LzQaDcLCwmrgLqrOF198gUaNGqFfv37yMWv5XQCAW7duQaEw/HNmY2MDjUYDwPp+H1xcXODn54fr169j9+7deOqpp6zuGQBV9797eHg4fv75Z9y9e1duk5CQgFatWt3XVCQAlqioC2bMmCEOHDgg0tLSxKlTp8SMGTOEJEnixx9/FEJol6E3adJE7N27V/z+++8iPDxchIeHy+/XLUPv06ePOHHihNi1a5fw9vauc8vQS9JfHSmE9TyHKVOmiP3794u0tDRx6NAhERERIby8vMTVq1eFENbxHH777Tdha2sr5s+fL86dOyfWrl0rnJ2dxddffy23WbhwoXB3dxfff/+9OHXqlHjqqadMLk3v3LmzSEpKEgcPHhQtWrSo1cvxTSkuLhZNmjQR06dPNzpnDb8LQggxatQo0bhxY7lExdatW4WXl5eYNm2a3MYafh927doldu7cKf7++2/x448/io4dO4qwsDBRWFgohKifzyA/P18cP35cHD9+XAAQ77//vjh+/Li4ePGiEKJq7jk3N1f4+PiIkSNHiuTkZLF+/Xrh7OzMEhXWYsyYMaJp06bC3t5eeHt7i8cff1wOwIQQ4vbt2+L//u//RMOGDYWzs7P4f//v/4nMzEyDa1y4cEE8+eSTwsnJSXh5eYkpU6aIu3fv1vStVKmSQZi1PIdhw4YJPz8/YW9vLxo3biyGDRtmUB/LWp7Dtm3bRPv27YWDg4No3bq1WLVqlcF5jUYjZs+eLXx8fISDg4N4/PHHRUpKikEblUolhg8fLho0aCDc3NzE888/L/Lz82vyNu7b7t27BQCjexPCen4X8vLyxMSJE0WTJk2Eo6OjaNasmZg1a5ZBSQFr+H3YsGGDaNasmbC3txe+vr5i3LhxIjc3Vz5fH5/Bvn37BACj16hRo4QQVXfPJ0+eFA8//LBwcHAQjRs3FgsXLqyS/ktC6JUUJiIiIqIawZwwIiIiIgtgEEZERERkAQzCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsAgjIiIiMgCGIQRERERWQCDMCKqVx577DHExsZauhvVbt68eejUqZOlu0FE94FBGBFRLVJYWFijnyeEQFFRUY1+JhFpMQgjonpj9OjROHDgAJYuXQpJkiBJEi5cuIDk5GQ8+eSTaNCgAXx8fDBy5EhkZ2fL73vssccwfvx4xMbGomHDhvDx8cGnn36Kmzdv4vnnn4erqyuaN2+OnTt3yu/Zv38/JEnC9u3b8cADD8DR0RHdu3dHcnKyQZ8OHjyInj17wsnJCYGBgZgwYQJu3rwpnw8KCsJbb72F5557Dm5ubhg7diwAYPr06WjZsiWcnZ3RrFkzzJ49G3fv3gUAxMXF4Y033sDJkyfl+4yLi8OFCxcgSRJOnDghXz83NxeSJGH//v0G/d65cye6dOkCBwcHHDx4EBqNBgsWLEBwcDCcnJzQsWNHbN68uar/JyIiPQzCiKjeWLp0KcLDw/Hiiy8iMzMTmZmZcHV1Re/evdG5c2f8/vvv2LVrF65cuYKhQ4cavHfNmjXw8vLCb7/9hvHjx+OVV17Bf//7X/To0QPHjh1Dnz59MHLkSNy6dcvgfVOnTsV7772HI0eOwNvbG1FRUXKwlJqair59+2Lw4ME4deoUNmzYgIMHDyImJsbgGu+++y46duyI48ePY/bs2QAAV1dXxMXF4c8//8TSpUvx6aef4oMPPgAADBs2DFOmTEG7du3k+xw2bFiFntWMGTOwcOFCnDlzBg888AAWLFiAL7/8EitXrsTp06cxadIkPPvsszhw4ECFrktEFVAl24ATEdUSjz76qJg4caL881tvvSX69Olj0Oby5csCgEhJSZHf8/DDD8vni4qKhIuLixg5cqR8LDMzUwAQiYmJQggh9u3bJwCI9evXy21UKpVwcnISGzZsEEIIER0dLcaOHWvw2b/88otQKBTi9u3bQgghmjZtKgYOHFjufb3zzjuiS5cu8s9z584VHTt2NGiTlpYmAIjjx4/Lx65fvy4AiH379hn0+7vvvpPb3LlzRzg7O4vDhw8bXC86OloMHz683L4RUeXYWjIAJCKqbidPnsS+ffvQoEEDo3Opqalo2bIlAOCBBx6Qj9vY2MDT0xMdOnSQj/n4+AAArl69anCN8PBw+XsPDw+0atUKZ86ckT/71KlTWLt2rdxGCAGNRoO0tDS0adMGANC1a1ejvm3YsAHLli1Damoqbty4gaKiIri5uVX4/kuj/5nnz5/HrVu38MQTTxi0KSwsROfOnavsM4nIEIMwIqrXbty4gaioKCxatMjonJ+fn/y9nZ2dwTlJkgyOSZIEANBoNBX67JdeegkTJkwwOtekSRP5excXF4NziYmJGDFiBN544w1ERkZCqVRi/fr1eO+998r8PIVCm2EihJCP6aZGS9L/zBs3bgAAtm/fjsaNGxu0c3BwKPMziajyGIQRUb1ib2+P4uJi+efQ0FBs2bIFQUFBsLWt+n/yfv31Vzmgun79Ov766y95hCs0NBR//vknmjdvXqFrHj58GE2bNsWsWbPkYxcvXjRoU/I+AcDb2xsAkJmZKY9g6Sfpl6Zt27ZwcHDApUuX8Oijj1aor0RUeUzMJ6J6JSgoCElJSbhw4QKys7Mxbtw45OTkYPjw4Thy5AhSU1Oxe/duPP/880ZBTGW8+eab2LNnD5KTkzF69Gh4eXlh4MCBALQrHA8fPoyYmBicOHEC586dw/fff2+UmF9SixYtcOnSJaxfvx6pqalYtmwZvv32W6P7TEtLw4kTJ5CdnY2CggI4OTmhe/fucsL9gQMH8Prrr5d7D66urnj11VcxadIkrFmzBqmpqTh27Bg+/PBDrFmzptLPhojKxiCMiOqVV199FTY2Nmjbti28vb1RWFiIQ4cOobi4GH369EGHDh0QGxsLd3d3efrufixcuBATJ05Ely5dkJWVhW3btsHe3h6ANs/swIED+Ouvv9CzZ0907twZc+bMgb+/f5nXHDBgACZNmoSYmBh06tQJhw8flldN6gwePBh9+/ZFr1694O3tjW+++QYA8Pnnn6OoqAhdunRBbGws/ve//5l1H2+99RZmz56NBQsWoE2bNujbty+2b9+O4ODgSjwVIjKHJPSTB4iIyCz79+9Hr169cP36dbi7u1u6O0RUB3EkjIiIiMgCGIQRERERWQCnI4mIiIgsgCNhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjIiIisgAGYUREREQW8P8B6JPQbxtY+lcAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.4 Model Validation\n", + "\n", + "We check the fit on the validation set to see if the surrogate is fitting well. This step can be used to check for overfitting on the training set." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYbUlEQVR4nO3deXgTdeI/8HeSHpTSpjb0tNCWtoIgIlREYAUEpCDU5QeuKKIgxYJLRcTlWr4ieHHJ7QVuOWTFk+oKLC6oiAIVlYLYFRDYFiyUK7VpodJCMr8/YkLTNmmSJpmZzPv1PDwlk0n6yTSZeedzqgRBEEBERESkAGqxC0BERETkKww+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERBK0bt06qFQqFBcXi10UIr/C4EOkUN9//z1ycnLQoUMHhIaGonXr1njggQfwyy+/1Nu3T58+UKlUUKlUUKvVCA8PR9u2bfHII49gx44dLv3ezZs3o3fv3oiOjkbz5s3Rpk0bPPDAA/jss8889dLqefnll/HJJ5/U2753717MmTMH5eXlXvvddc2ZM8d6LFUqFZo3b4727dvj//7v/1BRUeGR37Fx40YsW7bMI89F5G8YfIgUasGCBdi0aRP69euH5cuXIzs7G19//TW6dOmCwsLCevsnJCRgw4YNePvtt7Fo0SLcd9992Lt3LwYMGIARI0bg6tWrjf7OV155Bffddx9UKhVmzpyJpUuXYvjw4Th27Bjee+89b7xMAI6Dz9y5c30afCzeeOMNbNiwAUuWLEG7du3w0ksvYeDAgfDE8okMPkT2BYhdACISx5QpU7Bx40YEBQVZt40YMQIdO3bE/Pnz8c9//tNmf61Wi1GjRtlsmz9/PiZNmoTXX38dSUlJWLBggd3fd+3aNbzwwgu45557sH379nr3nz9/vomvSDqqqqrQvHlzh/vcf//9aNmyJQBgwoQJGD58OPLy8vDtt9+ie/fuvigmkSKxxodIoXr06GETegAgLS0NHTp0wOHDh516Do1GgxUrVqB9+/Z49dVXYTAY7O578eJFVFRUoGfPng3eHx0dbXP7ypUrmDNnDm666SY0a9YMcXFxGDZsGE6cOGHd55VXXkGPHj2g0+kQEhKC9PR0fPTRRzbPo1KpcPnyZaxfv97avDRmzBjMmTMHU6dOBQAkJydb76vdp+af//wn0tPTERISgsjISDz44IP49ddfbZ6/T58+uOWWW7B//3706tULzZs3x9///nenjl9tffv2BQAUFRU53O/1119Hhw4dEBwcjPj4eEycONGmxqpPnz7YunUrTp48aX1NSUlJLpeHyF+xxoeIrARBwLlz59ChQwenH6PRaPDQQw/h2Wefxe7duzF48OAG94uOjkZISAg2b96MJ598EpGRkXaf02g0YsiQIfjiiy/w4IMP4qmnnkJlZSV27NiBwsJCpKSkAACWL1+O++67Dw8//DBqamrw3nvv4S9/+Qu2bNliLceGDRswbtw43HHHHcjOzgYApKSkIDQ0FL/88gveffddLF261Fr7EhUVBQB46aWX8Oyzz+KBBx7AuHHjcOHCBaxcuRK9evXCgQMHEBERYS2vXq/HoEGD8OCDD2LUqFGIiYlx+vhZWAKdTqezu8+cOXMwd+5c9O/fH0888QSOHj2KN954A99//z327NmDwMBAzJo1CwaDASUlJVi6dCkAoEWLFi6Xh8hvCUREf9iwYYMAQMjNzbXZ3rt3b6FDhw52H/fxxx8LAITly5c7fP7Zs2cLAITQ0FBh0KBBwksvvSTs37+/3n5r1qwRAAhLliypd5/JZLL+v6qqyua+mpoa4ZZbbhH69u1rsz00NFQYPXp0vedatGiRAEAoKiqy2V5cXCxoNBrhpZdestn+008/CQEBATbbe/fuLQAQ3nzzTbuvu7bnnntOACAcPXpUuHDhglBUVCSsWrVKCA4OFmJiYoTLly8LgiAIa9eutSnb+fPnhaCgIGHAgAGC0Wi0Pt+rr74qABDWrFlj3TZ48GAhMTHRqfIQKQ2buogIAHDkyBFMnDgR3bt3x+jRo116rKVGobKy0uF+c+fOxcaNG9G5c2f85z//waxZs5Ceno4uXbrYNK9t2rQJLVu2xJNPPlnvOVQqlfX/ISEh1v//9ttvMBgMuOuuu1BQUOBS+evKy8uDyWTCAw88gIsXL1r/xcbGIi0tDTt37rTZPzg4GI899phLv6Nt27aIiopCcnIyxo8fj9TUVGzdutVu36DPP/8cNTU1mDx5MtTq66fuxx9/HOHh4di6davrL5RIgdjURUQ4e/YsBg8eDK1Wi48++ggajcalx1+6dAkAEBYW1ui+Dz30EB566CFUVFRg3759WLduHTZu3IjMzEwUFhaiWbNmOHHiBNq2bYuAAMenqC1btuDFF1/EwYMHUV1dbd1eOxy549ixYxAEAWlpaQ3eHxgYaHP7xhtvrNdfqjGbNm1CeHg4AgMDkZCQYG2+s+fkyZMAzIGptqCgILRp08Z6PxE5xuBDpHAGgwGDBg1CeXk5vvnmG8THx7v8HJbh76mpqU4/Jjw8HPfccw/uueceBAYGYv369di3bx969+7t1OO/+eYb3HfffejVqxdef/11xMXFITAwEGvXrsXGjRtdfg21mUwmqFQqbNu2rcEQWLfPTO2aJ2f16tXL2q+IiHyHwYdIwa5cuYLMzEz88ssv+Pzzz9G+fXuXn8NoNGLjxo1o3rw5/vSnP7lVjttvvx3r169HaWkpAHPn43379uHq1av1alcsNm3ahGbNmuE///kPgoODrdvXrl1bb197NUD2tqekpEAQBCQnJ+Omm25y9eV4RWJiIgDg6NGjaNOmjXV7TU0NioqK0L9/f+u2ptZ4Efkz9vEhUiij0YgRI0YgPz8fH374oVtzxxiNRkyaNAmHDx/GpEmTEB4ebnffqqoq5OfnN3jftm3bAFxvxhk+fDguXryIV199td6+wh8T/Gk0GqhUKhiNRut9xcXFDU5UGBoa2uAkhaGhoQBQ775hw4ZBo9Fg7ty59SYUFAQBer2+4RfpRf3790dQUBBWrFhhU6bc3FwYDAab0XShoaEOpxYgUjLW+BAp1DPPPINPP/0UmZmZKCsrqzdhYd3JCg0Gg3WfqqoqHD9+HHl5eThx4gQefPBBvPDCCw5/X1VVFXr06IE777wTAwcORKtWrVBeXo5PPvkE33zzDYYOHYrOnTsDAB599FG8/fbbmDJlCr777jvcdddduHz5Mj7//HP89a9/xZ///GcMHjwYS5YswcCBAzFy5EicP38er732GlJTU3Ho0CGb352eno7PP/8cS5YsQXx8PJKTk9GtWzekp6cDAGbNmoUHH3wQgYGByMzMREpKCl588UXMnDkTxcXFGDp0KMLCwlBUVISPP/4Y2dnZ+Nvf/tak4++qqKgozJw5E3PnzsXAgQNx33334ejRo3j99dfRtWtXm79Xeno63n//fUyZMgVdu3ZFixYtkJmZ6dPyEkmWmEPKiEg8lmHY9v452rdFixZCWlqaMGrUKGH79u1O/b6rV68Kb731ljB06FAhMTFRCA4OFpo3by507txZWLRokVBdXW2zf1VVlTBr1iwhOTlZCAwMFGJjY4X7779fOHHihHWf3NxcIS0tTQgODhbatWsnrF271jpcvLYjR44IvXr1EkJCQgQANkPbX3jhBeHGG28U1Gp1vaHtmzZtEv70pz8JoaGhQmhoqNCuXTth4sSJwtGjR22OjaOh/nVZynfhwgWH+9Udzm7x6quvCu3atRMCAwOFmJgY4YknnhB+++03m30uXbokjBw5UoiIiBAAcGg7US0qQfDAwjBEREREMsA+PkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGAw+REREpBicwLAOk8mEM2fOICwsjNO+ExERyYQgCKisrER8fDzUavv1Ogw+dZw5cwatWrUSuxhERETkhl9//RUJCQl272fwqSMsLAyA+cA5WneIiIiIpKOiogKtWrWyXsftYfCpw9K8FR4ezuBDREQkM411U2HnZiIiIlIMBh8iIiJSDAYfIiIiUgz28SEiIvIAo9GIq1evil0MvxUYGAiNRtPk55FN8Jk3bx7y8vJw5MgRhISEoEePHliwYAHatm1r3efKlSt45pln8N5776G6uhoZGRl4/fXXERMTI2LJiYjInwmCgLNnz6K8vFzsovi9iIgIxMbGNmmePdkEn127dmHixIno2rUrrl27hr///e8YMGAAfv75Z4SGhgIAnn76aWzduhUffvghtFotcnJyMGzYMOzZs0fk0hMRkb+yhJ7o6Gg0b96ck996gSAIqKqqwvnz5wEAcXFxbj+XShAEwVMF86ULFy4gOjoau3btQq9evWAwGBAVFYWNGzfi/vvvBwAcOXIEN998M/Lz83HnnXc69bwVFRXQarUwGAwczk5ERA4ZjUb88ssviI6Ohk6nE7s4fk+v1+P8+fO46aab6jV7OXv9lm3nZoPBAACIjIwEAOzfvx9Xr15F//79rfu0a9cOrVu3Rn5+vihlJCIi/2bp09O8eXORS6IMluPclL5Usmnqqs1kMmHy5Mno2bMnbrnlFgDmqsagoCBERETY7BsTE4OzZ8/afa7q6mpUV1dbb1dUVHilzERE5L/YvOUbnjjOsgw+EydORGFhIXbv3t3k55o3bx7mzp3rgVLJn16vR01Njd37g4KCWJVLRESyJrvgk5OTgy1btuDrr7+2WYQsNjYWNTU1KC8vt6n1OXfuHGJjY+0+38yZMzFlyhTrbctaH0qj1+vx6quvNrpfTk4Oww8REcmWbPr4CIKAnJwcfPzxx/jyyy+RnJxsc396ejoCAwPxxRdfWLcdPXoUp06dQvfu3e0+b3BwsHVdLiWvz+Wopsed/YiISNrGjBkDlUoFlUqFwMBAxMTE4J577sGaNWtgMpmcfp5169bV62YiZbKp8Zk4cSI2btyIf/3rXwgLC7P229FqtQgJCYFWq0VWVhamTJmCyMhIhIeH48knn0T37t2dHtFFRETkS2J3MRg4cCDWrl0Lo9GIc+fO4bPPPsNTTz2Fjz76CJ9++ikCAmQTE5wmm1f0xhtvAAD69Oljs33t2rUYM2YMAGDp0qVQq9UYPny4zQSGREREUiOFLgbBwcHW7iA33ngjunTpgjvvvBP9+vXDunXrMG7cOCxZsgRr167F//73P0RGRiIzMxMLFy5EixYt8NVXX+Gxxx4DcL3j8XPPPYc5c+Zgw4YNWL58OY4ePYrQ0FD07dsXy5YtQ3R0tFdei7Nk1dTV0D9L6AGAZs2a4bXXXkNZWRkuX76MvLw8h/17iIiIxCLVLgZ9+/ZFp06dkJeXBwBQq9VYsWIF/vvf/2L9+vX48ssvMW3aNABAjx49sGzZMoSHh6O0tBSlpaX429/+BsA85PyFF17Ajz/+iE8++QTFxcU212yxyKbGh4iIiHyjXbt2OHToEABg8uTJ1u1JSUl48cUXMWHCBLz++usICgqCVquFSqWqV9EwduxY6//btGmDFStWoGvXrrh06RJatGjhk9fRENnU+JBvGQxhKCpKgsEQJnZRiIjIxwRBsDZdff755+jXrx9uvPFGhIWF4ZFHHoFer0dVVZXD59i/fz8yMzPRunVrhIWFoXfv3gCAU6dOeb38jjD4UD0FBZ2xbNlkrF8/GsuWTUZBQWexi0RERD50+PBhJCcno7i4GEOGDMGtt96KTZs2Yf/+/XjttdcAOG6Cu3z5MjIyMhAeHo533nkH33//PT7++ONGH+cLbOoiAOaRA4C5pmfz5iEQBHMmFgQ1Nm8egpSU49BqK637ERGRf/ryyy/x008/4emnn8b+/fthMpmwePFiqNXm68IHH3xgs39QUBCMRqPNtiNHjkCv12P+/PnWufF++OEH37yARrDGhwAAOp0OOTk56NFjtDX0WAiCGj17jubkhUREfqa6uhpnz57F6dOnUVBQgJdffhl//vOfMWTIEDz66KNITU3F1atXsXLlSvzvf//Dhg0b8Oabb9o8R1JSEi5duoQvvvgCFy9eRFVVFVq3bo2goCDr4z799FO88MILIr1KWww+ZKXT6XDnnTqo67wrNBqgWzcdQw8RkZ/57LPPEBcXh6SkJAwcOBA7d+7EihUr8K9//QsajQadOnXCkiVLsGDBAtxyyy145513MG/ePJvn6NGjByZMmIARI0YgKioKCxcuRFRUFNatW4cPP/wQ7du3x/z58/HKK6+I9CptqQRBEMQuhJQ4u6y9nDU2YdYHH4ThmWdawGg0h55Vq4CsLB8WkIhIJq5cuYKioiIkJyejWbNmLj1WCvP4yI2j4+3s9Zt9fBTG2Q/agQOToNffgNRUoNaSaERE5CGWLgZcHNq3GHwUxtne9C1bXkHHjl4uDBGRwjHU+B77+BAREZFiMPgoHCcqJCIiJWFTl4IVFHS2ztmjUpmQmbkFXbocELtYREREXsMaH4WyN1Eha36IiMifMfgoVFmZrsGJCsvKIkUqERERkfexqUuhIiP1UKlMNuFHpTIhMrJMxFL5RmPzGDU0fNSdxxARkfQw+MiIJy6+lrW2tNpKZGZuqdfHR6uttNnP37gzYRgnGSMi8h8MPjJR9+JrMIShrEyHyEi9NawAjV98606YNXv2BRQXByAp6Rri47sC6OrXtRfOzmNUez93HkNEpHRfffUV7r77bvz222+IiIhw6jFJSUmYPHkyJk+e7LVysY+PTNS+qBYUdMayZZOxfv1oLFs2GQUFnRvczx6dToe4uDjExcUhPT0Gw4frkJ4eY93mr6GHiIiuGzNmDFQqFSZMmFDvvokTJ0KlUmHMmDG+L5iXMfjIDEdjeZY78xhx7iMi8hetWrXCe++9h99//9267cqVK9i4cSNat24tYsm8h8FHZjgay3Mc1Zx58jFERFLVpUsXtGrVCnl5edZteXl5aN26NTp3vn5+q66uxqRJkxAdHY1mzZrhT3/6E77//nub5/r3v/+Nm266CSEhIbj77rtRXFxc7/ft3r0bd911F0JCQtCqVStMmjQJly9f9trrawiDj8xYRmPVppTRWJ7kTs0Za9uIyJtKSoCdO80/fWns2LFYu3at9faaNWvw2GOP2ewzbdo0bNq0CevXr0dBQQFSU1ORkZGBsjLztefXX3/FsGHDkJmZiYMHD2LcuHGYMWOGzXOcOHECAwcOxPDhw3Ho0CG8//772L17N3Jycrz/Imth8JEZy2gsS/ipOxqLnONOzRlr24jIW3JzgcREoG9f88/cXN/97lGjRmH37t04efIkTp48iT179mDUqFHW+y9fvow33ngDixYtwqBBg9C+fXu89dZbCAkJQe4fBX3jjTeQkpKCxYsXo23btnj44Yfr9Q+aN28eHn74YUyePBlpaWno0aMHVqxYgbfffhtXrlzx2evlqC4Z6tLlAFJSjqOsLBKRkWUMPW5wZx4jJc99RETeU1ICZGcDpj8q800mYPx4ICMDSEjw/u+PiorC4MGDsW7dOgiCgMGDB6Nly5bW+0+cOIGrV6+iZ8+e1m2BgYG44447cPjwYQDA4cOH0a1bN5vn7d69u83tH3/8EYcOHcI777xj3SYIAkwmE4qKinDzzTd74+XVw+AjU1ptJQOPG9yZx0jpcx8ROYsTfbrn2LHrocfCaASOH/dN8AHMzV2WJqfXXnvNK7/j0qVLGD9+PCZNmlTvPl92pGbwkQlnL6q+uPjWPrmdOaNGUVEAkpOvIT7eZC2DVE9u7sxj5E9zH/HCpFze/ttzok/3paUBarVt+NFogNRU35Vh4MCBqKmpgUqlQkZGhs19KSkpCAoKwp49e5CYmAgAuHr1Kr7//nvrfDs333wzPv30U5vHffvttza3u3Tpgp9//hmpvnxhDWDwkYm6F9+G+OKiVfvk5mh1d1+f3Fw5qdcuV1wckJ7e+PO78xip4YVJuXzxt+dEn+5LSABWrzY3bxmN5tCzapXvansAQKPRWJutNBqNzX2hoaF44oknMHXqVERGRqJ169ZYuHAhqqqqkJWVBQCYMGECFi9ejKlTp2LcuHHYv38/1q1bZ/M806dPx5133omcnByMGzcOoaGh+Pnnn7Fjxw6n3p+ewuAjI1K4GFlOWvZGOKWkHIdWW+nTk5unZrX2d7wwyY+namn4t5e+rCxzn57jx801Pb4MPRbh4eF275s/fz5MJhMeeeQRVFZW4vbbb8d//vMf3HDDDQDMTVWbNm3C008/jZUrV+KOO+7Ayy+/jLFjx1qf49Zbb8WuXbswa9Ys3HXXXRAEASkpKRgxYoTXX1ttDD7kFkcjnHzd96jurNb2aqGkeFJn0xPZwxo65UlI8G3gqVsjU9cnn3xi/X+zZs2wYsUKrFixwu7+Q4YMwZAhQ2y21R0W37VrV2zfvt3uczQ094+nMfiQW6Q4wqmxWiipcXfBVE8FJXs1YyQNrKXxDn7ZIAYfcotWW4n+/T/H55/3b3CEkxikVAvljLonX3tBxLKfJ2sAHNWMkbgsF+aLFy+KXRS/w1o0Ahh8yE0FBZ2toQcwoX//z0W/cEqxFspZzgQRV4OSPXKrGVMSZy/MTeWL2j4p1iiyFo0ABh9yUXl5eb0LJ6DG55/3xy23FIp6gmtsnh2pcieINKXGRm41Y0riiwuuL2r7WKNIUsbgQ07T6/X44IMPUFaWJNkLpxxntXY1iDS1xkbONWNK5okaFG/W9lnmEGvsd/jrRJ+CIIhdBEXwxHFm8CGnWb6NOnPhFPPkZm9W68LCcuzZEyS5yRZdDSLOBqW6nTgNBgMAzkAtR02tQbH8TRt77zTlb2+Za2znTmDp0vq/o2fP0ejTRxrTclh4IkwGBgYCAKqqqhASEuLJ4lEDqqqqAFw/7u5g8CGXNXbhHDFihE9Pbs6crAsKOmPu3LaSmGyxLleb6JwJSo31FbHUjHXqNBy33NJMdjNQK4XBEIZff23V5FoaSygpLr6GDRsEmEwq630ajYAnnxyEpKSAJv/tdTod7ryz4VmIu3XTQUpvLU81x2k0GkREROD8+fMAgObNm0OlUjXyKHKVIAioqqrC+fPnERERUW+SRVcw+JBbHDUpabVan5bF3qzWFy9eRF5enqQmW7THlSY6Z4KSMx2htdpKDBgQhLi4GO+8KGqS2hfmutyppdHpzMGj/gzBKqSne+49IIVZiBvj6Sa/2NhYALCGH/KeiIgI6/F2F4MPuU1KC6U6+qbqTNNQSYl5ocC0NN+doOtesOwdz4YubK4EJX/raKqEeVjqDyCwpVa7X0vjixmCpTALsSOe7uCvUqkQFxeH6OhoXL161VPFpDoCAwObVNNjweBDfq+xpqHVq414/nlz9b9aLWDhQgNGjvzd6xdQV9dfcyUoObu0iNwoZR6Whi7MFiqVCQsXVjSplsYXMwT7ehZiZ1g+Q42dE9zt66TRaDxyYSbvYvAhv+eoachgCMOyZfEQBHObvMmkwtSp4Th9eg202kqvX0BdeW5XglJpaSkA/xu67qm5jKTK0YUZMOH++z9Cq1YlGDNmtDgFlLnan6Ebb6zA9OlaGI0qaDQCFiyowMiRD/lFjSE5xuBDimCvaaixYCC1C6irJ2Q5Dl131JRVezZjf2vCA5y5MN/FC3MTWY7dM88AI0ZYmuNUSEiIABAhZtHIRxh8yGnOVv9KdTh0Q01DcgwGrpDbpI7ONmX5WxNebbww+44Um+PI+xh8yGmu9kmRA7kFA3fIaVJHZ5uy/K0Jzx5emIk8j8GHXCKnUONszZOcgoGzmjJiTCocNWX5e00dEXkPgw/5LUc1VJY5fiykNDTfE+ReO9dYU5YSauqIyDsYfMivSfXC7gtyfu3ONGX5Y00dEXkfgw8R2ag9qurMGTWKigJ8vr6Zs01ZcmzCIyJxMfiQIsl9hJq31B5V5aiPjbfnN2qsKWvYsGFo2bJlg4+VchMeEYmPwYcUSe59YLzF2RmffTG/kaOmrJYtWyIuLs7rZSAi/8PgQ04TYz0rb1JaqHGFWMPF/WE0GhFJG4MPOSU3F8jOBkwmQK02r76clSV2qchbxBouzpo4oob52xdPMTH4UKNKSq6HHsD8c/x48+rL/AD6JzGHizPUENniF0/PYvChRh07dj30WBiN5qn0LcGH30b8D4eLE4lLr9ejuPgasrOjYTJZFlIGxo8XcNtt55GUFMAvCm5QN74LKV1amvlbRm0aDZCaav5/bi6QmAj07Wv+mZvr+zKSd2i1lUhOPsnQQ+RjlhGWK1d+Zg09FkajCitXbsOrr74KvV4vUgnli8GHHNLr9dBoSrFwYTk0GgEA/lgpuhwaTSl++um3BpvBSkpELDQRkcxZ+rlZ+tvVVru/nS9GWPobNnWRXXVXyp40Kcza7HHpUiVWrwaKipJgMo22eVzdZjCSD85vRCQtXJ7F8xh8yK663yQaGlocGamHWi3YVMXWbgYjeeGoKiLpYX87z2Lw8TF/6wSs1VZi9uzTeOGFG2E0qv5oBjNAo/kdej0vkHLEvxmR9PjbQspiYvDxIf8dkpjbYDMY4P2lDYiIiFzBzs0+Ym8uHH/pBGxv9A873hERkZQw+PiIo7lwiIiIyDcYfHyksblwiIjIO0pKgJ075VXDzhGW3sM+Pj6SkGDu0zN+vLmmR6MBVq3yjw7ORHX5Wyd+ki+59q3kCEvvYfDxAb1ej5qaGtx7L7BvnxrFxQFISrqG+HgTSkul++blNwlyh1wvNORf/GG5B6mXT64YfLys7iSAFoWFtrelOPrJ0TeOixcvIi8vz+XnZE2Af+OCtiQFlvNuwxOsmpd7SE4+KcnzLnkfg4+XOTuqSaqjnzx5UmBNgH/T6/X49lvAZLJ9zxiNwL59eoSE8Bss+Ubd5R4E4XoHS6Us98AvmfaxczO5xdWOd/4+nF/pLN+w9+5d3+C6Qnv2rOeCil4kx867vmBZ7sHynpTLcg+u/j3r7s+Fox1jjQ+5xdWOd46G8/PbiPxZ3geNrSvkz9+wxcKaVMfkttyDq3/PuvvPnw/MmMHmZkcYfMhtrjRbWIbz1w4/HM7vn+R2oZGrxjrvBgUF4eLFG9jUAfks9+BqH7mG9q8deiz4JdOWXzZ1vfbaa0hKSkKzZs3QrVs3fPfdd2IXSfEsw/k1GvNtDuf3b/Zm8ibPsDQtrlz5mc0CwYC58+6kScfRqZOWTR0y4+pEtw3tb6n5qY1fMm35XfB5//33MWXKFDz33HMoKChAp06dkJGRgfPnz4tdNMXS6/UoLS3FvfeWYt++c/joIz327TuHe+8tRWlpKft9ELmobuddWybk53e3dui11ALt339Ocp819k2y5epEtw3vL+DvfzdAoxGstxcsKIdGw3Othd81dS1ZsgSPP/44HnvsMQDAm2++ia1bt2LNmjWYMWOGyKVTHjkP5yeSuob6VHXvno+9e3va7CfFIdzsm2RLr9dDo6nBwoUhmD5dC6NR9UdoMUCj+R16ve18bw3tr1KZMHjwFgQEHODC0Q74VfCpqanB/v37MXPmTOs2tVqN/v37Iz8/v8HHVFdXo7q62nq7oqLCo2VS+rTjch/OTyR1dftUAbCp8QGkN4Tb2/M9ye28W/cLYmOhxdH+luZle/2apPD3F5tfBZ+LFy/CaDQiJibGZntMTAyOHDnS4GPmzZuHuXPneq1MnHaciLyt7kXO0cg6sbk635M789HI7bxbt5yNhRZn96eG+VXwccfMmTMxZcoU6+2Kigq0atXKo79DKh8uIm/x5DdsTrzWdFIdWWepqTAYwqBSTa5XK7Vnz3oUFlZaazaa0hzG8y7Z41fBp2XLltBoNDh37pzN9nPnziE2NrbBxwQHByM4ONgXxSNyiqcu/L4MEJ76hs1+H54jxVoAV+Z74vIn5C1+FXyCgoKQnp6OL774AkOHDgUAmEwmfPHFF8jJyRG3cERO8NSFX4wA0dRv2LzQKYujWimDwYDCwiAuf0Je4XfD2adMmYK33noL69evx+HDh/HEE0/g8uXL1lFeRFLlqWU9pLo8iKOhy+Z+H/oG5zDZt0/PYbh1SKVTblPZm+/p/fff5/In5DV+VeMDACNGjMCFCxcwe/ZsnD17Frfddhs+++yzeh2eiaTGU8t6SHF5EEc1UK72+6CGmxYvXryIvLw8EUvlWWIufyKFfmYGQxjKynSIjNRLrslS7vwu+ADmIX9s2pIGuQ0rFYter0d4+DWo1dE2M/FqNALCws5Drw9w6qLvqefxpMaasLjOl3vq/h398bMmRidtKfQzKyjoXO9z0KXLAY88t5z+/t7il8GHpENuw0rFUHtOjiFDbE94gwdvwZYt5hNeYzUennoeT3Jm6HJtUh2NJAfe+KxJoebDl520xepnVjuMGAxh1s8uAAiCGps3D0FKynHrfs6GlwceeAARERE2v0fJ51oLBh/yOn7QHKt9oXJ04W+sxsNTz+MpzjZhjRgxwuZxUhyNJBee/KxJoebD18RqJq4dWvfsCcLSpbbdbwVBjd69s6DTaevtbw9Djn0MPkQS46kLv9gBwl4TFmBeVsHi6tWrIpWQ7PFWzYfUm1ksa1/VDj++WuDTElLuvLPhMqSnaxvcn1zH4ENEXmepgdq3rxvy87tj796eyM/vjszMLRg2TOzSUW2uzqzsCmdqKsrLy/HBBx+49fxN4epaWd6SkGCuXRs/3nzMNRpg1SpO6eBJDD5E5DO115Cy9F3IyTkqcqnIwhcj7KRYU+HqWlneLEdNTQ3uvRfYt0+N4uIAJCVdQ3y8CaWlbL7yFAYfIvKJsjKdzYUUMIefn3/maC2pkMIIOzFGp7m6VpY31A1fFoWFtrc5rUPTMfiQlRRGcJD/iozUQ6Uy1atFOHnyC2i1Dh74B6n3D/E3Yo2wk3PH3aacQ50NVZzWoekYfAiAMkdwkG81VoswbNgwtGzZssHHSvVC5+/E6iAvx781z6HyweBDXCNJZJ6q2pfDBHaOahFatmyJuLg40cpG5C6eQ+WFwYckucSBkniqal9qTQT2ApbYw+yJPI3nUHlh8CFR564gM0+EEXP/Al2j/Qt81ZfLEsTOnDnjV2tIEdXFc6i8+N3q7OQ6y7wRGo35NueNkJ/cXCAxEejb1/wzN7dp+3mKTqez22+HyB+Y5/8pxcKF5dBoBAD4Y/6fcmg0pVxFXoJY46NwnDdC/pztX8B+CNQYOfQT8wZ3X7dU5v8h1zD4KBjnjfAPzvYvYD8EaozU+on5iruv25Pz/yg1dIqBwUfBOG+E/On1eoSHX4NaHQ2TSWXdrtEICAs7D70+ADqdzun9vIEndHnxt1DjLLFft1JDpxgYfIhkqnaN3ZAhnW3mxxk8eAu2bDkAABg1ahT++c9/Nrqft2r2eEIncg4/A77B4EMkU7WDhKP5caqqqpzaz5s1ezyhE5FUMPgQ+Qln58fhPDpEpGQczk4kUSUlwM6d5p9ERHIj1XMYgw+RBPl6vh0iIk+S8jmMwYdIYuzNtyO1b01ESscRiw2T+jmMfXwUjB9a6dHr9fj2W8Bksu0MbDQC+/bpERLCjsJEUsERiw2T+pxhDD4Kxg+td7m6JpZleLrBEAaVajIE4XqFrEplwp4961FYWMkJJYkkhJ/F+qS+dhmbuhROp9MhLi7O7j9+qN3jTvu2JYBqtZXIzNwClcp81lCpTMjM3GIdiWXZz9mauObNmzu1H2v2iMgTpL7+o0oQBEHsQkhJRUUFtFotDAYDwsPDxS4OyVBJiTns1P22U1zs+INfWlqK1ZbFfQAYDGENzreTnZ2NuLg4ANfXWrPHUmPn7H7kOa7W+BH5m5ISc/NWaqpvPgPOXr/Z1EXkQZ7so+PMfDvOPhdDjW/l5l7v3KlWm7/9ZmWJXSpqCAOq9yQkSPOYsqmL/J6n5pJo7HksfXT27l1vbaaysPTRefXVV6HX65tWEJI0qY9ooeukPOSavIfBh/yap05szjyPq310yP+Ya/z0DY5o2bdPz9ArIQyo3qHX61FaWmr3nxQ+A2zqIr9l78SWkeFa9as7z+NoTSzyTxyVJy9SH3ItR7UXTnZE7M8Aa3zIbzk6sTmrKd/gtdpKJCefZOiRIXeaR1njJx96vR7h4eegVtuO7dFoBISFnZNErYQcOfveFvszwBof8kvmE9s1qNXRMJlU1u3mE9t56PUBjX7j8PU3eE4oKQ2e6JjMGj/pql0rMWRIZ2zePASCoIZKZcLgwVuwZcsBAOLXSpD3MPiQ3/HUia3uN/jaz+ONb/CcUFJcer0excXXkJ19PSybmzUF3HbbeSQlNR6Wa3NmVB75Xu3Pl6OAKnatBHkPgw/5HW+c2Hz1DZ6hRhyWsFxUlASTabTNfUajCitXbkNy8knWAvghBlTlYfAhv+epExtPkP7LEoIjI/VQqUz1mjUjI8ts9iMi+WLnZiIPYR8dz/DUvEvuaKxjMhHJH2t8iDyEfXSaTgozHrNjMpF/Y/Ah8iCGGvd4umNxU7nTrMkaP5IaXy/HIZfPAIMPEYnKXzoWs8aPpESM2lO5fAYYfIjskMu3F7nzp47FYp/QqXFK+Fx7atZ6d8jhM8DgQ37HUyc2uXx78ReNzZdE5AlK+FxzOQ7HGHzI73jyxCbnk58cidWxWAm1AHSdv3+u09LMzVu1w49GA6SmilcmKWHwIb/k7yc2fybGfElKqAUg5UhIMPfpGT/eXNOj0QCrVrG2x4LBh4gIDMvkH/R6PWpqanDvvcC+fWoUFwcgKeka4uNNKC1lgAcYfIiIiPxC7XUKaysstL0t9RGS3saZm4mIiPyAsyMf5TBC0psYfIhIVOxYTES+xKYuIhKVNzoWW/o5AMCZM2oUFQUgOdncz8Gd5yMi/8HgQ0Ru89SU+J4MIbX7ORQUdK43L1CXLgcAsJ8DkVKxqYuIXKLX61FaWorFi8uRmCigb18gMVHA4sXlKC0thV6vF7V8lpoegyHMGnoAQBDU2Lx5CAyGMJv9iEhZWOPjRbWr2xvC6naSG0ttisEQhmXLJkMQLAuKqjB1ajhOn14DrbbS67Upjj5bFy9eBACUlelslr8AzOGnrCySs0ETKRiDj5fYG1ZYF6vbyZO83bfF8tyNhQpv1qbU/WwZDGEoK9MhMlJvE2gaW/uLSCnsfUaUisHHSziskHzNl31bxAwVtT8zjl4n1/4ipWlo5GNDnxGlj5Bk8CE2yfmJxvq2pKQc91htjBRCRWOvExBv7S8iMdQdIXnmjBrPPx9tbZIWBDW2bs3E77+rxCym6Bh8FM7ZZgM2ycmHr/q2iB0qnH2dYqz9RSSW2ufpI0caWqVdpfhV2hl8fESqbazONhuwSU4+fNkMJWaoYB8eIse4SnvDOJzdBwoKOmPZsslYv340li2bjIKCzmIXqZ7Ghv6SfFiaoVQq89nOX/u2NPV1Kr2fA/k/yyrtGo35NldpN2ONj5c50w9BCjj017+I3QzlK45e57Bhw9CyZcsGH8d+a+TvuEq7fQw+XiaXQMFmA//jjWYoKa6rZe91tmzZEnFxcT4rB5FUcJV2xxh8vMRy4m8sUEilur2xUTqWSeEslPxtQcm8sa6Wq6QYvoikhNOpOMbg4yW1LxA33liB6dO1MBpV0GgELFhQgZEjH5JceHDUbJCXl1dvf6V+W5AqXwUCsf/mUghfRCRfTgefiooKp580PDzcrcL4G8uJ95lngBEjgOPHgdRUFRISIgBEiFk0u1xpHlHqtwWpEiMQiDUHFEMNyZWnFvYl9zkdfCIiIqBSOZ70SBAEqFQqGI3GJhfM3yQkSPNN7sy3f6kOxaf6fBkIOAcUkWtyc4HsbPPwcrXaPOIqK0vsUimP08Fn586d3iwHiaShWoKLFy9am7Ycze1DysY5oIicV1JyPfQA5p/jxwMZGdL8UuzPnA4+vXv39mY5SET2vo3LZSg+iYvvEyLH9Ho9vv0WMJlsz7VGI7Bvnx4hIWy+9SW3OzeXl5cjNzcXhw8fBgB06NABY8eOhVar9VjhSFxyGYpP4uL7hMg+S5OwwRAGlWpyvRG+n322CYWFpWwS9iG3Zm7+4YcfkJKSgqVLl6KsrAxlZWVYsmQJUlJSUFBQ4OkykkgsQ/Fr49w+VBffJ0T2WZp66840DggQBDVyc8ehoKCzR5uEpTjlQ0kJsHOn+afY3Krxefrpp3HffffhrbfeQkCA+SmuXbuGcePGYfLkyfj66689WkgShxRW4Cbp4/uEyDlduhxAdPRZ/OMf42Cpd7A0Dc+efQGemm9TalM+SK1Tt1vB54cffrAJPQAQEBCAadOm4fbbb/dY4SyKi4vxwgsv4Msvv8TZs2cRHx+PUaNGYdasWTaJ9dChQ5g4cSK+//57REVF4cknn8S0adM8Xh5/V/uYOprbhxPEkYVSlsiQA7GmGCDnXL0ajLqNLYKgxo8/XkZSkt5jfxup/I2l2KnbreATHh6OU6dOoV27djbbf/31V4SFeX5RyyNHjsBkMmHVqlVITU1FYWEhHn/8cVy+fBmvvPIKAPM8QwMGDED//v3x5ptv4qeffsLYsWMRERGB7Oxsj5fJn0nt2wLJg5grtZOZvaUK6mJ/Es9yZW4ee7P5FxZ+gl9/rfS7v82xY7arwwPmTt3Hj8ss+IwYMQJZWVl45ZVX0KNHDwDAnj17MHXqVDz00EMeLSAADBw4EAMHDrTebtOmDY4ePYo33njDGnzeeecd1NTUYM2aNQgKCkKHDh1w8OBBLFmyhMHHDf70wSPvkGI/AqWr+2XF3txKnGLAc1xtxmmsadjf/jZpaebjUjv8aDRAaqp4ZXIr+LzyyitQqVR49NFHce3aNQBAYGAgnnjiCcyfP9+jBbTHYDAgMjLSejs/Px+9evWyOclmZGRgwYIF+O2333DDDTc0+DzV1dWorq623nZlhmoiJWPNoLRxDi7v0uv1KC6+huzsaJhM5sl9zc04Am677TySkgLsvveV1DSckGAOg+PHm2t6NBpg1Spx5y5yK/gEBQVh+fLlmDdvHk6cOAEASElJQfPmzT1aOHuOHz+OlStXWmt7AODs2bNITk622S8mJsZ6n73gM2/ePMydO9d7hSXyYww10sS5lbzL0qRYVJQEk2m0zX1GoworV25DcvJJ5OTk2H0OJTQNW/qb3XsvsG+fGsXFAUhKuob4eBNKS8X7YtSkRUqbN2+Ojh07uv34GTNmYMGCBQ73OXz4sE1fotOnT2PgwIH4y1/+gscff9zt320xc+ZMTJkyxXq7oqICrVq1avLzEhGJxd/nVqrdgfvMGTWKigKQnGy+oALev6Bafre9/jqWqRxqamoU29Rrr79ZYaHtbTH6NLkVfK5cuYKVK1di586dOH/+PEx1ei45O5fPM888gzFjxjjcp02bNtb/nzlzBnfffTd69OiB1atX2+wXGxuLc+fO2Wyz3I6NjbX7/MHBwQgODnaqvEREctDYBVnOal9QHTXn+eKC6sxUDpYm4TNnzliXAlICZ/sqidGnya3gk5WVhe3bt+P+++/HHXfc0ejipfZERUUhKirKqX1Pnz6Nu+++G+np6Vi7di3UattvM927d8esWbNw9epVBAYGAgB27NiBtm3b2m3mkgIOPSUiT/PnuZUs58vGmvN8dUF1pr+OTqfzu07LcuZW8NmyZQv+/e9/o2fPnp4uT4NOnz6NPn36IDExEa+88gouXLhgvc9SmzNy5EjMnTsXWVlZmD59OgoLC7F8+XIsXbrUJ2V0B4eeEpG3+HsHWik15ymhv44/cSv43HjjjV6Zr8eeHTt24Pjx4zh+/DgS6nQFFwQBAKDVarF9+3ZMnDgR6enpaNmyJWbPni3poexSrgokIvmp25/E3gXZH/qdyK05j9M/SIdbwWfx4sWYPn063nzzTSQmJnq6TPWMGTOm0b5AAHDrrbfim2++8Xp5iIikSElTDMitOU9Jfxupcyv43H777bhy5QratGmD5s2bW/vUWJSVSTNxExH5OyVdOOXWnKekv42UuRV8HnroIZw+fRovv/wyYmJi3O7cTERE1BRi9K9hs5W8uRV89u7di/z8fHTq1MnT5SEiIpI0Nls1Tsrh0K3g065dO/z++++eLgsREZFDUrmgKjnUOEPK4dCt4DN//nw888wzeOmll9CxY8d6fXzCw8M9UjgiIqLapHxBJVtS/Ru4FXwsK6X369fPZrsgCFCpVDAajU0vmQJI5ZsLEZGcSPWCSvLgVvDZuXOnp8uhSHW/uYix5gwREZGSuBV8evfu7dR+f/3rX/H888+jZcuW7vwaRbCEmtxcIDsbMJkAtRpYvRrIyhK5cERERH5G3fgu7vvnP/+JiooKb/4Kv1BScj30AOaf48ebtxMREZHnuFXj4yzLchLk2LFj10OPhdEIHD8O1Fmhg4iIPIALRCuXV4MPOSctzdy8VTv8aDRAaqp4ZSIi8ld1F4g2GMJQVqZDZKTeZjJELhDtnxh8JCAhwdynZ/x4c02PRgOsWsXaHnKM31iJ3FP7c1NQ0Lneel9duhyotx/5DwYficjKAjIyzM1bqakMPeRY3W+s9vAbK5F9BkOYNfQAgCCosXnzEKSkHJf8ul/kPgYfCUlIYOAh5zj7TZTfWInsKyvTWUOPhSCoUVYWyeDjx1we1XXt2jU8//zzKHFiyNGoUaM4izMREUlSZKQeKpXtyBKVyoTIyDKRSkS+4HLwCQgIwKJFi3Dt2rVG933jjTc4hw8REUmSVluJzMwt1vBj6ePD2h7/5lZTV9++fbFr1y4kJSV5uDhERES+06XLAaSkHEdZWSQiI8sYehTAreAzaNAgzJgxAz/99BPS09MRGhpqc/99993nkcIRERF5m1ZbycCjIG4Fn7/+9a8AgCVLltS7j4uUEhGRlHGBaGVzK/iY6k4zTESisjcBm6s4NxApQd0FohvC97r/civ4vP322xgxYgSCg4NtttfU1OC9997Do48+6pHCEVHDan8TdTQBmyvfWDk3ECkJ38PKpRLcWFBLo9GgtLQU0dHRNtv1ej2io6Nl3dRVUVEBrVYLg8HAofgkaXq9HsXF13DHHdEwmVTW7RqNgH37ziMpKcClk3tpaSlWr17d6H7Z2dmIi4tzq8xERN7i7PXbrdXZBUGASqWqt72kpARardadpyQiF+l0OlRUxNiEHgAwGlWorIzhN1oioga41NTVuXNnqFQqqFQq9OvXDwEB1x9uNBpRVFSEgQMHeryQRNQwLnBLROQal4LP0KFDAQAHDx5ERkYGWrRoYb0vKCgISUlJGD58uEcLSET2cYFbIiLXuBR8nnvuOQBAUlISRowYgWbNmnmlUETkPC5wS0TkPLdGdY0ePRqAeRTX+fPn6w1vb926ddNLRkRO4wK3RETOcSv4HDt2DGPHjsXevXtttls6Pct5VBcRERH5L7eCz5gxYxAQEIAtW7YgLi6uwRFeRHKntMn86s75Y29SRM5mS0Ry5tY8PqGhodi/fz/atWvnjTKJivP4EKDcyfwsYW/jxhBMm6aFyaSCWi1g4UIDRo783adhT2nBk4iaxtnrt1s1Pu3bt8fFixfdLhyR1Dm64Lqzn1zodDqUlADTpl0fIm8yqTB9egRGjIiAr3KGUoMnSQNDt39zK/gsWLAA06ZNw8svv4yOHTsiMDDQ5n7WlBDJ17FjtvMCAeah8seP+64DtVKDJ4mPodv/uRV8+vfvDwDo27evTf8edm4mkj9OikhKxtDt/9wKPjt37vR0OYhIIjgpIhH5M7eCT+/evfHNN99g1apVOHHiBD766CPceOON2LBhA5KTkz1dRiLyMblMili7ryH7XZA32BvdqHS1+0GdOaNGUVEAkpOvIT7eXFUs5c+jW8Fn06ZNeOSRR/Dwww/jwIEDqK6uBgAYDAa8/PLL+Pe//+3RQhKR78lhUsS8vDyb2+x3QZ5UUNAZmzcPgSCooVKZkJm5BV26HBC7WKKr3Q/K0TGS6ufRrdXZX3zxRbz55pt46623bDo29+zZEwUFBR4rHBGRK9jvgjzFYAizXtABQBDU2Lx5CAyGMJFLJj7L56yxYyTVz6Nbwefo0aPo1atXve1arRbl5eVNLROR6JydpI+T+RH5p7IynfWCbiEIapSVRYpUIumR6zFyq6krNjYWx48fR1JSks323bt3o02bNp4oF5GodDodcnJyOJeHSBgoSWyRkXqoVCabC7tKZUJkZJmIpZIWuR4jt4LP448/jqeeegpr1qyBSqXCmTNnkJ+fj7/97W949tlnPV1GIlHUDjUlJeb5bdLSpN/vxR/UDZ6FheV4553v2MHUBZyEzz2W0K3VViIzc0u9/iuW9x/DeePHSKrcCj4zZsyAyWRCv379UFVVhV69eiE4OBh/+9vf8OSTT3q6jESiys0FsrPN89qo1eah3llZYpfK/1kuyubjHwuT6WZ2MHUSJ+FzX93QPXv2BRQXByAp6Rri47sC6MrQWEuXLgeQknIcZWWRiIwsk3zoAdwMPiqVCrNmzcLUqVNx/PhxXLp0Ce3bt0eLFi08XT4iUZWUXA89gPnn+PHmod6s+fG+68ffPFGqpfNkSspxWZxgxcJJ+JqmdqiJiwPS00UsjAxotZWy+jy6FXwsgoKC0L59e0+VhUhypLB8g5I1dPwtnSfldKIlIulwa1QXkVJYlm+ojcs3+E5Dx99R50n2uyDyPrmPem1SjQ+Rv+PyDeKqf/wFLFhQgZEjH6q3L/tdUFOxQ7hz5D7qlcGHqBFyWb7BX9kefxUSEiJQUhLBUXbkUewQ7ho5HwMGHyInyGH5Bn9W+/hzlB15AzuEKwf7+BCRbNgbZVdSIm65iEg+GHyISDYcjbKj6+p2KjUYwlBUlFRvnSmpdj4l8iY2dRGRbFhGedUOPxxlV1/tzqcbN4bg+ee1MJlUUKsFLFxowMiRv0u68ymRNzH4EJFscJSd8yOPdDodSkqAadNqNw2qMH16BEaMiAAzj2MGQxjKynRcJsUPMfgQkawoeZSdqyOPOAGnewoKOtdbf4rLpPgPBh8ikh2ljrJzdeQRmwZdZzCEWUMPwGVS/BE7NxMR+SlL06BGY76txKZBZ1k6epeV6ayhx8KyTErt/Ui+WONDROTHlNw06ApLh/Di4mvYsEGwLowLmGcMf/LJQUhKCmCHcD/A4ENE5OeU2jToKnOn8IY60KuQnh4jdvHIQxh8iIiIamEtmX9j8CEiIrf568KerCXzXww+RETkFi7sSXLEUV1ERDLh7IgiX4084sKeJEes8SEikonaS1EAwJkzahQVBSA5+Rri482T9ci1aYnIVxh8iIicJIX+LJbnz829vlK9Wm0eiZSV5dVfTeQXGHyIiJwgpf4sJSXXQw9g/jl+vHkkEjvkEjnGPj5ERE6QUn8WR2twEZFjDD5ERDJjWYOrNq7BReQcBh8iIpmR6hpcBkMYioqSYDCEiVsQIgfYx4eISIakMLtw7WHzBQWdrauaq1QmZGZuQZcuB+rtRyQ22dX4VFdX47bbboNKpcLBgwdt7jt06BDuuusuNGvWDK1atcLChQvFKSQRkQ8kJAB9+ohX02MZXj9kyARs2ZJpXdVcENTYujUTQ4ZM4OSFJDmyCz7Tpk1DfHx8ve0VFRUYMGAAEhMTsX//fixatAhz5szB6tWrRSglEZEy6HQ6VFTE2KxmDgBGowqVlTEMPSQ5smrq2rZtG7Zv345NmzZh27ZtNve98847qKmpwZo1axAUFIQOHTrg4MGDWLJkCbKzs0UqMRGRvDkzd1Famg5qte1IM3a2JqmSTfA5d+4cHn/8cXzyySdo3rx5vfvz8/PRq1cvm7bkjIwMLFiwAL/99htuuOGGBp+3uroa1dXV1tsVFRWeLzwRyZ7UlovwBVfmLlq9Wofx483D6qXS2ZqoIbIIPoIgYMyYMZgwYQJuv/12FBcX19vn7NmzSE5OttkWExNjvc9e8Jk3bx7mzp3r8TITkX+pu1xEQ/xtuQhX5i6SQmdrImeIGnxmzJiBBQsWONzn8OHD2L59OyorKzFz5kyPl2HmzJmYMmWK9XZFRQVatWrl8d9D1FRSWC5B6Wof35IS80SCaWm8yFskJPBYkPSJGnyeeeYZjBkzxuE+bdq0wZdffon8/HwEBwfb3Hf77bfj4Ycfxvr16xEbG4tz587Z3G+5HRsba/f5g4OD6z0vkdRIabkE4jpZRHImavCJiopCVFRUo/utWLECL774ovX2mTNnkJGRgffffx/dunUDAHTv3h2zZs3C1atXERgYCADYsWMH2rZta7eZi0gupLRcgtJxnSzyBNbgikcWfXxat25tc7tFixYAgJSUFCT8caYZOXIk5s6di6ysLEyfPh2FhYVYvnw5li5d6vPyEnlC7RPjxYsXRS4NWThaJ4vBh5zBGlxxySL4OEOr1WL79u2YOHEi0tPT0bJlS8yePZtD2UmWnD0xku9Z1sni0G1yF2twxSXL4JOUlARBEOptv/XWW/HNN9+IUCIiz+IJT7os62Qpcei2wRCGsjIdIiP10GorxS4OkVtkGXyIiMSklKHbXIvLNxgofYvBh4jIDUoYum2Zu6i4+Bqefz4agmBelsKyFtfs2d2QlBTAfihN4ChQknfIbq0uIiLyHa7F5T0GQ5g19ADmQLl58xAYDGEil8y/MfgQyZDBEIaioqR6J0g2OZA3WDp018YO3U1XVqazhh4LQVCjrCxSpBIpA5u6iGSmdtW4Wi1g4UIDRo78nfN+kNcouUO3N0VG6qFSmWzCj0plQmRkmYil8n+s8SGSAUsNT0lJnE3VuMmkwvTpETAa4xh6yKuysoDiYmDnTvNPzlTtPkvNrFZbiczMLVCpzHMjWPr4WDo4swbXO1jjQyRB9kbTACbU/b7CyfPIV5TQodsX6i54O3v2BRQXByAp6Rri47sC6MoaXC9SCQ1NiKNgFRUV0Gq1MBgMCA8PF7s4pGB6vR7Fxddwxx3RdTqWCgCu39ZozN/AeUEiIiVz9vrNGh/yKK4/4zk6nQ6HDtVfHgFQWWcOZl8LIiLXMPiQx3D9Gc+ztzxCfj5w+bJ/T55HROQN7NxMHsP1ZzzPMppGozHfttTwdO0K9OnD0ENE5CrW+BBJnFKWRyAi8gUGH/Iarj/jORxNQ0TkGQw+5BVcf4aIiKSIfXzI47j+DBERSRWDD3kc158hIiKpYvAhj7OsP1Mb158hIiIpYB8f8pi668/U7ePD9WeI5IETkZI/45IVdXDJiqapfcI8c0Zda/0Zcw0QT5hE0saJSEmuuGQFiaL2iTAuDkhPF7EwROQyTkRK/o59fIiIiEgxGHyIZKakBNi50/yTiIhcw+BDJAN6vR6lpaVYvLgciYkC+vYFEhMFLF5cjtLSUuj1erGLSEQkC+zjQyRxls6mBkMYli2bDEFQAQBMJhWmTg3H6dNroNVWsrMpeQWXniF/w+BDJHGWTqSOJobUaivZ2ZQ8jkvPkD9iUxeRTHBiSPIlLj1D/orBh0gmLBNDWsJP3YkhiTzBMsFoY0vPcCJSkis2dRHJSJcuB5CSchxlZZGIjCxj6CGP0+l0yMnJQXHxNWzYIMBkUlnv02gEPPnkICQlBbA/GckWgw+RzGi1lQw85FU6nQ46HbB6NTB+PGA0AhoNsGqVCunpMWIXj6hJGHyIiKhBWVlARgZw/DiQmgokJIhdIqKmY/AhIiK7EhIYeMi/sHMzkcQ524mUnU2JSOqkMPM8a3yIJM7S2dTRPD1c9Z6IpC43F8jOBkwmQK029yHLyvJ9ORh8iGSAoYaI5Eqv16O4+Bqys6OtowRNJmD8eAG33Xbe56MEGXyIiIjIKyxL7hQVJcFkGm1zn9GowsqV25CcfNKnS+6wjw8RERF5haWJvrGZ53255A6DDxEREXmVlGaeZ1MXEREReZ1UZp5n8CEiIiKfkMLM82zqIiIiIsVg8CEiIiLFYPAhIiIixWDwISIiIq+Q4pI77NxMREREXiHFJXcYfIiIiMhrpLbkDpu6iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIgUoKQE2LnT/JNIyRh8iIj8XG4ukJgI9O1r/pmbK3aJiMTD4ENE5MdKSoDsbMBkMt82mYDx41nzQ8rF4ENE5CFSbE46dux66LEwGoHjx8UpD5HYZBV8tm7dim7duiEkJAQ33HADhg4danP/qVOnMHjwYDRv3hzR0dGYOnUqrl27Jk5hiUhRpNqclJYGqOuc6TUaIDVVnPIQiU02wWfTpk145JFH8Nhjj+HHH3/Enj17MHLkSOv9RqMRgwcPRk1NDfbu3Yv169dj3bp1mD17toilJiIlkHJzUkICsHq1OewA5p+rVpm3EymRShAEQexCNObatWtISkrC3LlzkZWV1eA+27Ztw5AhQ3DmzBnExMQAAN58801Mnz4dFy5cQFBQkFO/q6KiAlqtFgaDAeHh4R57DUTkv3buNNf0NLS9Tx+fF6dBJSXm5q3UVIYe8k/OXr9lUeNTUFCA06dPQ61Wo3PnzoiLi8OgQYNQWFho3Sc/Px8dO3a0hh4AyMjIQEVFBf773//afe7q6mpUVFTY/CMicoVUm5P0ej1KS0tRWloKjaYUbduaf1q26fV6cQtIJIIAsQvgjP/9738AgDlz5mDJkiVISkrC4sWL0adPH/zyyy+IjIzE2bNnbUIPAOvts2fP2n3uefPmYe7cud4rPBH5PUtz0vjx5o7DUmhO0uv1ePXVV+ttNxjCUFamQ2SkHlptJXJycqDT6UQoIZE4RK3xmTFjBlQqlcN/R44cgemPhvNZs2Zh+PDhSE9Px9q1a6FSqfDhhx82qQwzZ86EwWCw/vv111898dKISGGysoDiYnPzVnGx+baYampq6m0rKOiMZcsmY/360Vi2bDIKCjo3uB+RPxO1xueZZ57BmDFjHO7Tpk0blJaWAgDat29v3R4cHIw2bdrg1KlTAIDY2Fh89913No89d+6c9T57goODERwc7E7xiYhsJCRIt/+MwRCGzZuHQBDM33cFQY3Nm4dg9uwLiIsTuXBEPiRq8ImKikJUVFSj+6WnpyM4OBhHjx7Fn/70JwDA1atXUVxcjMTERABA9+7d8dJLL+H8+fOIjo4GAOzYsQPh4eE2gYmISInKynTW0GMhCGoUFwcgPV2kQhGJQBZ9fMLDwzFhwgQ899xzaNWqFRITE7Fo0SIAwF/+8hcAwIABA9C+fXs88sgjWLhwIc6ePYv/+7//w8SJE1mjQ0SKFxmph0plsgk/KpUJSUmc64yURRajugBg0aJFePDBB/HII4+ga9euOHnyJL788kvccMMNAACNRoMtW7ZAo9Gge/fuGDVqFB599FE8//zzIpeciEh8Wm0lMjO3QKUy95lUqUzIzNyC+HhTI48k8i+ymMfHlziPDxG5Qq/XO+wgHBQUJMqoqdLSUqxevbredvOorkhERpZBq61EdnY24tjJh/yAs9dvWTR1ERFJkb0h43VJaci4VlsJrbZS7GIQiUY2TV1ERFLj7FBwMYaMOztbvbP7EfkL1vgQEfkhnU6HnJwc1NTUoLy8vMEFmwMDA1FTUwO9Xi+ZGikib2PwISLyUzqdDnq9Hh988EGj+0qpOY7Im9jURUTkx6TcHCcHJSXm2bhLSsQuCXkKgw8REVEDcnOBxESgb1/zz9xcsUtEnsDgQ0REVEdJCZCdDfyxVCRMJvMitKz5kT8GHyIiojqOHbseeiyMRuD4cXHKQ57D4ENE5CYOGfdfaWmAus4VUqMBUlPN/2ffH/niqC4iIjfVHjJuj1gzN1PTJCQAq1ebm7eMRnPoWbXKvD0393ozmFpt3i8rS+wSk7MYfIiImoChxn9lZQEZGebmrdRUc+ix1/cnI8N8P0kfgw8RkR9jc1zTJCTYBhpHfX8YfOSBwYeIyI+xOc51jhaeDQ9XQ62Ohsmksm6r3feHpI/Bh4jIzzHUOM+ZhWeHDOmMrVszYTSqbPr+kDww+BAREf3BmRmsu3Q5gNmzu6GyMsba94fkg8GHiIjIRfHxJsTFiV0Kcgfn8SEiIiLFYI0PERGRiy5evFhvGzuJywODDxERkYvy8vIa3J6Tk8PwI3Fs6iIiIvIQZzpHk7gYfIiIiEgxGHyIiIj+wBms/R/7+BAREf3B3kzXFy9etNuvh+SFwYeIiKgWdk72b2zqIiIiIsVg8CEiIiLFYPAhIiJqhLOdntk5WvrYx4eIiKgR9jo918aZm+WBwYeIiMgJDDX+gU1dREREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGJy5uQ5BEAAAFRUVIpeEiIiInGW5bluu4/Yw+NRRWVkJAGjVqpXIJSEiIiJXVVZWQqvV2r1fJTQWjRTGZDLhzJkzCAsLg0qlErs4PlNRUYFWrVrh119/RXh4uNjFkTUeS8/gcfQcHkvP4bH0DG8cR0EQUFlZifj4eKjV9nvysManDrVajYSEBLGLIZrw8HB+mD2Ex9IzeBw9h8fSc3gsPcPTx9FRTY8FOzcTERGRYjD4EBERkWIw+BAAIDg4GM899xyCg4PFLors8Vh6Bo+j5/BYeg6PpWeIeRzZuZmIiIgUgzU+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPgrz9ddfIzMzE/Hx8VCpVPjkk09s7hcEAbNnz0ZcXBxCQkLQv39/HDt2TJzCSlxjx3LMmDFQqVQ2/wYOHChOYSVs3rx56Nq1K8LCwhAdHY2hQ4fi6NGjNvtcuXIFEydOhE6nQ4sWLTB8+HCcO3dOpBJLkzPHsU+fPvXekxMmTBCpxNL1xhtv4NZbb7VOrte9e3ds27bNej/fj85r7FiK8Z5k8FGYy5cvo1OnTnjttdcavH/hwoVYsWIF3nzzTezbtw+hoaHIyMjAlStXfFxS6WvsWALAwIEDUVpaav337rvv+rCE8rBr1y5MnDgR3377LXbs2IGrV69iwIABuHz5snWfp59+Gps3b8aHH36IXbt24cyZMxg2bJiIpZYeZ44jADz++OM278mFCxeKVGLpSkhIwPz587F//3788MMP6Nu3L/785z/jv//9LwC+H13R2LEERHhPCqRYAISPP/7YettkMgmxsbHCokWLrNvKy8uF4OBg4d133xWhhPJR91gKgiCMHj1a+POf/yxKeeTs/PnzAgBh165dgiCY34OBgYHChx9+aN3n8OHDAgAhPz9frGJKXt3jKAiC0Lt3b+Gpp54Sr1AydsMNNwj/+Mc/+H70AMuxFARx3pOs8SGroqIinD17Fv3797du02q16NatG/Lz80UsmXx99dVXiI6ORtu2bfHEE09Ar9eLXSTJMxgMAIDIyEgAwP79+3H16lWb92W7du3QunVrvi8dqHscLd555x20bNkSt9xyC2bOnImqqioxiicbRqMR7733Hi5fvozu3bvz/dgEdY+lha/fk1yklKzOnj0LAIiJibHZHhMTY72PnDdw4EAMGzYMycnJOHHiBP7+979j0KBByM/Ph0ajEbt4kmQymTB58mT07NkTt9xyCwDz+zIoKAgRERE2+/J9aV9DxxEARo4cicTERMTHx+PQoUOYPn06jh49iry8PBFLK00//fQTunfvjitXrqBFixb4+OOP0b59exw8eJDvRxfZO5aAOO9JBh8iL3nwwQet/+/YsSNuvfVWpKSk4KuvvkK/fv1ELJl0TZw4EYWFhdi9e7fYRZE1e8cxOzvb+v+OHTsiLi4O/fr1w4kTJ5CSkuLrYkpa27ZtcfDgQRgMBnz00UcYPXo0du3aJXaxZMnesWzfvr0o70k2dZFVbGwsANQbnXDu3DnrfeS+Nm3aoGXLljh+/LjYRZGknJwcbNmyBTt37kRCQoJ1e2xsLGpqalBeXm6zP9+XDbN3HBvSrVs3AOB7sgFBQUFITU1Feno65s2bh06dOmH58uV8P7rB3rFsiC/ekww+ZJWcnIzY2Fh88cUX1m0VFRXYt2+fTXssuaekpAR6vR5xcXFiF0VSBEFATk4OPv74Y3z55ZdITk62uT89PR2BgYE278ujR4/i1KlTfF/W0thxbMjBgwcBgO9JJ5hMJlRXV/P96AGWY9kQX7wn2dSlMJcuXbJJ0kVFRTh48CAiIyPRunVrTJ48GS+++CLS0tKQnJyMZ599FvHx8Rg6dKh4hZYoR8cyMjISc+fOxfDhwxEbG4sTJ05g2rRpSE1NRUZGhoillp6JEydi48aN+Ne//oWwsDBrPwmtVouQkBBotVpkZWVhypQpiIyMRHh4OJ588kl0794dd955p8ill47GjuOJEyewceNG3HvvvdDpdDh06BCefvpp9OrVC7feeqvIpZeWmTNnYtCgQWjdujUqKyuxceNGfPXVV/jPf/7D96OLHB1L0d6TPh1DRqLbuXOnAKDev9GjRwuCYB7S/uyzzwoxMTFCcHCw0K9fP+Ho0aPiFlqiHB3LqqoqYcCAAUJUVJQQGBgoJCYmCo8//rhw9uxZsYstOQ0dQwDC2rVrrfv8/vvvwl//+lfhhhtuEJo3by78v//3/4TS0lLxCi1BjR3HU6dOCb169RIiIyOF4OBgITU1VZg6dapgMBjELbgEjR07VkhMTBSCgoKEqKgooV+/fsL27dut9/P96DxHx1Ks96RKEATBe7GKiIiISDrYx4eIiIgUg8GHiIiIFIPBh4iIiBSDwYeIiIgUg8GHiIiIFIPBh4iIiBSDwYeIiIgUg8GHiIiIFIPBh4iIiBSDwYeIZKOmpkbsItQjxTIRkX0MPkQkmj59+iAnJwc5OTnQarVo2bIlnn32WVhW0klKSsILL7yARx99FOHh4cjOzgYA7N69G3fddRdCQkLQqlUrTJo0CZcvX7Y+7+uvv460tDQ0a9YMMTExuP/++633ffTRR+jYsSNCQkKg0+nQv39/62P79OmDyZMn25Rx6NChGDNmjPW2u2UiImlg8CEiUa1fvx4BAQH47rvvsHz5cixZsgT/+Mc/rPe/8sor6NSpEw4cOIBnn30WJ06cwMCBAzF8+HAcOnQI77//Pnbv3o2cnBwAwA8//IBJkybh+eefx9GjR/HZZ5+hV69eAIDS0lI89NBDGDt2LA4fPoyvvvoKw4YNg6tLFrpaJiKSDi5SSkSi6dOnD86fP4///ve/UKlUAIAZM2bg008/xc8//4ykpCR07twZH3/8sfUx48aNg0ajwapVq6zbdu/ejd69e+Py5cv497//jcceewwlJSUICwuz+X0FBQVIT09HcXExEhMTGyzPbbfdhmXLllm3DR06FBEREVi3bh0AuFWmZs2aNek4EZHnsMaHiER15513WkMPAHTv3h3Hjh2D0WgEANx+++02+//4449Yt24dWrRoYf2XkZEBk8mEoqIi3HPPPUhMTESbNm3wyCOP4J133kFVVRUAoFOnTujXrx86duyIv/zlL3jrrbfw22+/uVxmV8tERNLB4ENEkhYaGmpz+9KlSxg/fjwOHjxo/ffjjz/i2LFjSElJQVhYGAoKCvDuu+8iLi4Os2fPRqdOnVBeXg6NRoMdO3Zg27ZtaN++PVauXIm2bdtaw4lara7X7HX16tUml4mIpIPBh4hEtW/fPpvb3377LdLS0qDRaBrcv0uXLvj555+Rmppa719QUBAAICAgAP3798fChQtx6NAhFBcX48svvwQAqFQq9OzZE3PnzsWBAwcQFBRkbbaKiopCaWmp9XcZjUYUFhY2+hqcKRMRSQODDxGJ6tSpU5gyZQqOHj2Kd999FytXrsRTTz1ld//p06dj7969yMnJwcGDB3Hs2DH861//snYk3rJlC1asWIGDBw/i5MmTePvtt2EymdC2bVvs27cPL7/8Mn744QecOnUKeXl5uHDhAm6++WYAQN++fbF161Zs3boVR44cwRNPPIHy8vJGX0NjZSIi6QgQuwBEpGyPPvoofv/9d9xxxx3QaDR46qmnrEPEG3Lrrbdi165dmDVrFu666y4IgoCUlBSMGDECABAREYG8vDzMmTMHV65cQVpaGt5991106NABhw8fxtdff41ly5ahoqICiYmJWLx4MQYNGgQAGDt2LH788Uc8+uijCAgIwNNPP42777670dfQWJmISDo4qouIRNPQKCoiIm9iUxcREREpBoMPERERKQabuoiIiEgxWONDREREisHgQ0RERIrB4ENERESKweBDREREisHgQ0RERIrB4ENERESKweBDREREisHgQ0RERIrB4ENERESK8f8BKTkfuivYzxoAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4/4 [==============================] - 0s 5ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABosUlEQVR4nO3deVzU1f4/8NfMCAgIQyyyuADill4zl1SszIWCQs2r3tTKvUy/YrnkdsutrrlUrrjUzdK6WmnaIpZlLnVNpFLRTOUqP3AJkRhkwA105vz+oPnIsA4w8Pl8Zl7Px2MeOvM5M3Pm4zjznvc55300QggBIiIiIqpTWrk7QEREROSMGIQRERERyYBBGBEREZEMGIQRERERyYBBGBEREZEMGIQRERERyYBBGBEREZEMGIQRERERyYBBGBEREZEMGIQREVGFNm7cCI1Gg/T0dLm7QuRQGIQRkex++eUXxMXFoW3btvD09ETTpk3x1FNP4X//+1+ptj179oRGo4FGo4FWq4W3tzdatWqF4cOHY8+ePVV63p07d+KRRx5Bw4YN4eHhgWbNmuGpp57C7t277fXSSnnjjTfwxRdflLr90KFDmD9/PnJzc2vtuUuaP3++dC41Gg08PDzQpk0bvPrqq8jLy7PLc2zZsgUrVqywy2MRORoGYUQkuyVLlmD79u3o06cPVq5ciXHjxuHHH39Ex44dcfLkyVLtGzdujI8++ggffvgh3nzzTfTv3x+HDh3CY489hiFDhuD27duVPudbb72F/v37Q6PRYPbs2Vi+fDkGDRqEs2fP4pNPPqmNlwmg4iBswYIFdRqEWaxbtw4fffQRli1bhtatW2PhwoWIiYmBPbYWZhBGVL56cneAiGjq1KnYsmULXF1dpduGDBmCdu3aYfHixfjPf/5j1V6v1+PZZ5+1um3x4sV48cUXsXbtWoSFhWHJkiXlPt+dO3fw+uuv49FHH8V3331X6nhWVlYNX5Fy3LhxAx4eHhW2GTx4MPz9/QEA48ePx6BBg7Bjxw4cPnwYkZGRddFNIqfETBgRya579+5WARgAtGjRAm3btsXp06dtegydTodVq1ahTZs2iI+Ph9FoLLdtdnY28vLy8OCDD5Z5vGHDhlbXb926hfnz56Nly5aoX78+goODMXDgQKSmpkpt3nrrLXTv3h1+fn5wd3dHp06d8Nlnn1k9jkajwfXr17Fp0yZpCHDUqFGYP38+pk+fDgAIDw+XjhWfg/Wf//wHnTp1gru7O3x9fTF06FBcvHjR6vF79uyJv/3tbzhy5Ah69OgBDw8P/POf/7Tp/BXXu3dvAEBaWlqF7dauXYu2bdvCzc0NISEhmDhxolUmr2fPnti1axfOnz8vvaawsLAq94fIUTETRkSKJITAlStX0LZtW5vvo9PpMGzYMMyZMwcHDx5EbGxsme0aNmwId3d37Ny5E5MmTYKvr2+5j2kymdC3b1/s3bsXQ4cOxUsvvYT8/Hzs2bMHJ0+eREREBABg5cqV6N+/P5555hkUFhbik08+wT/+8Q8kJCRI/fjoo4/w3HPPoUuXLhg3bhwAICIiAp6envjf//6Hjz/+GMuXL5eyUgEBAQCAhQsXYs6cOXjqqafw3HPP4c8//8Tq1avRo0cPHDt2DD4+PlJ/DQYDHn/8cQwdOhTPPvssAgMDbT5/Fpbg0s/Pr9w28+fPx4IFCxAVFYUJEyYgJSUF69atwy+//IKffvoJLi4ueOWVV2A0GnHp0iUsX74cANCgQYMq94fIYQkiIgX66KOPBACxYcMGq9sfeeQR0bZt23Lv9/nnnwsAYuXKlRU+/ty5cwUA4enpKR5//HGxcOFCceTIkVLt3n//fQFALFu2rNQxs9ks/f3GjRtWxwoLC8Xf/vY30bt3b6vbPT09xciRI0s91ptvvikAiLS0NKvb09PThU6nEwsXLrS6/bfffhP16tWzuv2RRx4RAMT69evLfd3FzZs3TwAQKSkp4s8//xRpaWninXfeEW5ubiIwMFBcv35dCCHEBx98YNW3rKws4erqKh577DFhMpmkx4uPjxcAxPvvvy/dFhsbK0JDQ23qD5Gz4XAkESnOmTNnMHHiRERGRmLkyJFVuq8l05Kfn19huwULFmDLli3o0KEDvv32W7zyyivo1KkTOnbsaDUEun37dvj7+2PSpEmlHkOj0Uh/d3d3l/5+9epVGI1GPPzwwzh69GiV+l/Sjh07YDab8dRTTyE7O1u6BAUFoUWLFti/f79Vezc3N4wePbpKz9GqVSsEBAQgPDwcL7zwApo3b45du3aVO5fs+++/R2FhISZPngyt9u7XyPPPPw9vb2/s2rWr6i+UyAlxOJKIFCUzMxOxsbHQ6/X47LPPoNPpqnT/a9euAQC8vLwqbTts2DAMGzYMeXl5SEpKwsaNG7Flyxb069cPJ0+eRP369ZGamopWrVqhXr2KPy4TEhLwr3/9C8nJySgoKJBuLx6oVcfZs2chhECLFi3KPO7i4mJ1vVGjRqXm11Vm+/bt8Pb2houLCxo3biwNsZbn/PnzAIqCt+JcXV3RrFkz6TgRVYxBGBEphtFoxOOPP47c3Fz897//RUhISJUfw1LSonnz5jbfx9vbG48++igeffRRuLi4YNOmTUhKSsIjjzxi0/3/+9//on///ujRowfWrl2L4OBguLi44IMPPsCWLVuq/BqKM5vN0Gg0+Oabb8oMSEvOsSqekbNVjx49pHloRFR3GIQRkSLcunUL/fr1w//+9z98//33aNOmTZUfw2QyYcuWLfDw8MBDDz1UrX507twZmzZtwuXLlwEUTZxPSkrC7du3S2WdLLZv34769evj22+/hZubm3T7Bx98UKpteZmx8m6PiIiAEALh4eFo2bJlVV9OrQgNDQUApKSkoFmzZtLthYWFSEtLQ1RUlHRbTTOBRI6Mc8KISHYmkwlDhgxBYmIitm3bVq3aVCaTCS+++CJOnz6NF198Ed7e3uW2vXHjBhITE8s89s033wC4O9Q2aNAgZGdnIz4+vlRb8VcxU51OB41GA5PJJB1LT08vsyirp6dnmQVZPT09AaDUsYEDB0Kn02HBggWliqcKIWAwGMp+kbUoKioKrq6uWLVqlVWfNmzYAKPRaLUq1dPTs8JyIUTOjJkwIpLdtGnT8NVXX6Ffv37IyckpVZy1ZGFWo9Eotblx4wbOnTuHHTt2IDU1FUOHDsXrr79e4fPduHED3bt3R7du3RATE4MmTZogNzcXX3zxBf773/9iwIAB6NChAwBgxIgR+PDDDzF16lT8/PPPePjhh3H9+nV8//33+L//+z88+eSTiI2NxbJlyxATE4Onn34aWVlZWLNmDZo3b44TJ05YPXenTp3w/fffY9myZQgJCUF4eDi6du2KTp06AQBeeeUVDB06FC4uLujXrx8iIiLwr3/9C7Nnz0Z6ejoGDBgALy8vpKWl4fPPP8e4cePw8ssv1+j8V1VAQABmz56NBQsWICYmBv3790dKSgrWrl2LBx54wOrfq1OnTvj0008xdepUPPDAA2jQoAH69etXp/0lUiw5l2YSEQlxt7RCeZeK2jZo0EC0aNFCPPvss+K7776z6flu374t/v3vf4sBAwaI0NBQ4ebmJjw8PESHDh3Em2++KQoKCqza37hxQ7zyyisiPDxcuLi4iKCgIDF48GCRmpoqtdmwYYNo0aKFcHNzE61btxYffPCBVAKiuDNnzogePXoId3d3AcCqXMXrr78uGjVqJLRabalyFdu3bxcPPfSQ8PT0FJ6enqJ169Zi4sSJIiUlxercVFS+oyRL//78888K25UsUWERHx8vWrduLVxcXERgYKCYMGGCuHr1qlWba9euiaefflr4+PgIACxXQVSMRgg7bA5GRERERFXCOWFEREREMmAQRkRERCQDBmFEREREMmAQRkRERCQDBmFEREREMmAQRkRERCQDFmtVMLPZjIyMDHh5eXHrDyIiIpUQQiA/Px8hISHQasvPdzEIU7CMjAw0adJE7m4QERFRNVy8eBGNGzcu9ziDMAXz8vICUPSPWNE+eERERKQceXl5aNKkifQ9Xh4GYQpmGYL09vZmEEZERKQylU0l4sR8IiIiIhkwCCMiIiKSAYMwIiIiIhlwThgREZGDMZlMuH37ttzdcFguLi7Q6XQ1fhwGYURERA5CCIHMzEzk5ubK3RWH5+Pjg6CgoBrV8WQQRkRE5CAsAVjDhg3h4eHBQt+1QAiBGzduICsrCwAQHBxc7cdiEEZEROQATCaTFID5+fnJ3R2H5u7uDgDIyspCw4YNqz00qZqJ+f3790fTpk1Rv359BAcHY/jw4cjIyLBqI4TAW2+9hZYtW8LNzQ2NGjXCwoULrdocOHAAHTt2hJubG5o3b46NGzeWeq41a9YgLCwM9evXR9euXfHzzz9bHb916xYmTpwIPz8/NGjQAIMGDcKVK1es2ly4cAGxsbHw8PBAw4YNMX36dNy5c8c+J4OIiKgEyxwwDw8PmXviHCznuSZz71QThPXq1Qtbt25FSkoKtm/fjtTUVAwePNiqzUsvvYT33nsPb731Fs6cOYOvvvoKXbp0kY6npaUhNjYWvXr1QnJyMiZPnoznnnsO3377rdTm008/xdSpUzFv3jwcPXoU7du3R3R0tJR2BIApU6Zg586d2LZtG3744QdkZGRg4MCB0nGTyYTY2FgUFhbi0KFD2LRpEzZu3Ii5c+fW4hkiIiKqvEAo2YddzrNQqS+//FJoNBpRWFgohBDi1KlTol69euLMmTPl3mfGjBmibdu2VrcNGTJEREdHS9e7dOkiJk6cKF03mUwiJCRELFq0SAghRG5urnBxcRHbtm2T2pw+fVoAEImJiUIIIb7++muh1WpFZmam1GbdunXC29tbFBQU2PwajUajACCMRqPN9yEiIiGys7NFRkZGuZfs7Gy5u2h3N2/eFKdOnRI3b96UuytOoaLzbev3tyrnhOXk5GDz5s3o3r07XFxcAAA7d+5Es2bNkJCQgJiYGAghEBUVhaVLl8LX1xcAkJiYiKioKKvHio6OxuTJkwEAhYWFOHLkCGbPni0d12q1iIqKQmJiIgDgyJEjuH37ttXjtG7dGk2bNkViYiK6deuGxMREtGvXDoGBgVbPM2HCBPz+++/o0KFDma+roKAABQUF0vW8vLwanCUiIudkMBgQHx9fabu4uDjOnSJZqWY4EgBmzpwJT09P+Pn54cKFC/jyyy+lY//v//0/nD9/Htu2bcOHH36IjRs34siRI1ZDlpmZmVaBEQAEBgYiLy8PN2/eRHZ2NkwmU5ltMjMzpcdwdXWFj49PhW3KegzLsfIsWrQIer1eujRp0sTGM0NERBaFhYV2bUe1b9SoUdBoNNBoNHBxcUFgYCAeffRRvP/++zCbzTY/zsaNG0t9PyuZrEHYrFmzpJNe3uXMmTNS++nTp+PYsWP47rvvoNPpMGLECAghAABmsxkFBQX48MMP8fDDD6Nnz57YsGED9u/fj5SUFLleYpXMnj0bRqNRuly8eFHuLhERUS0xGAy4fPlyuReDweBU/YmJicHly5eRnp6Ob775Br169cJLL72Evn37OuzCNlmHI6dNm4ZRo0ZV2KZZs2bS3/39/eHv74+WLVvi3nvvRZMmTXD48GFERkYiODgY9erVQ8uWLaX29957L4CilYqtWrVCUFBQqVWMV65cgbe3N9zd3aHT6aDT6cpsExQUBAAICgpCYWEhcnNzraLtkm1Krqi0PKalTVnc3Nzg5uZW4fkgIiL1U9qQqRL64+bmJn1HNmrUCB07dkS3bt3Qp08fbNy4Ec899xyWLVuGDz74AP/v//0/+Pr6ol+/fli6dCkaNGiAAwcOYPTo0QDuTpqfN28e5s+fj48++ggrV65ESkoKPD090bt3b6xYsQINGzaslddiK1kzYQEBAWjdunWFF1dX1zLva0lPWuZQPfjgg7hz5w5SU1OlNv/73/8AAKGhoQCAyMhI7N271+px9uzZg8jISACAq6srOnXqZNXGbDZj7969UptOnTrBxcXFqk1KSgouXLggtYmMjMRvv/1mtaJyz5498Pb2Rps2bapxpoiIHEddZ1yMRi+kpYXBaPSy6+PWhNKGTJXWH4vevXujffv22LFjB4CiedqrVq3C77//jk2bNmHfvn2YMWMGAKB79+5YsWIFvL29pffSyy+/DKCojMTrr7+O48eP44svvkB6enqlSaC6oIqJ+UlJSfjll1/w0EMP4Z577kFqairmzJmDiIgIKfCJiopCx44dMWbMGKxYsQJmsxkTJ07Eo48+KmXHxo8fj/j4eMyYMQNjxozBvn37sHXrVuzatUt6rqlTp2LkyJHo3LkzunTpghUrVuD69etSdK3X6zF27FhMnToVvr6+8Pb2xqRJkxAZGYlu3boBAB577DG0adMGw4cPx9KlS5GZmYlXX30VEydOZKbLRgaDocL/7K6urpxQS6RCdZ1xOXq0A3bu7AshtNBozOjXLwEdOx6r8eNS3WndujVOnDgBANJCOgAICwvDv/71L4wfPx5r166Fq6sr9Ho9NBpNqVGnMWPGSH9v1qwZVq1ahQceeADXrl1DgwYN6uR1lEUVQZiHhwd27NiBefPm4fr16wgODkZMTAxeffVVKajRarXYuXMnJk2ahB49esDT0xOPP/443n77belxwsPDsWvXLkyZMgUrV65E48aN8d577yE6OlpqM2TIEPz555+YO3cuMjMzcf/992P37t1WE+2XL18OrVaLQYMGoaCgANHR0Vi7dq10XKfTISEhARMmTEBkZCQ8PT0xcuRIvPbaa3VwttRPCWlxIqoddZlxMRq9pAAMAITQYufOvoiIOAe9Pr/Gj29PRqMXcnL84OtrUFzf5CaEkIYXv//+eyxatAhnzpxBXl4e7ty5g1u3buHGjRsVFqk9cuQI5s+fj+PHj+Pq1avSaNqFCxdkHaFSRRDWrl077Nu3r9J2ISEh2L59e4VtevbsiWPHKv4VFBcXh7i4uHKP169fH2vWrMGaNWvKbRMaGoqvv/664g5TmZSaFicidcnJ8ZMCMAshtMjJ8VVUoMNsXcVOnz6N8PBwpKeno2/fvpgwYQIWLlwIX19fHDx4EGPHjkVhYWG5Qdj169cRHR2N6OhobN68GQEBAbhw4QKio6Nl/x5RRRBGRESOqTYyQJa5xL6+Bmg0ZqtATKMxw9c3x6qdnNSUrZPDvn378Ntvv2HKlCk4cuQIzGYz3n77bWi1Redr69atVu1dXV1hMpmsbjtz5gwMBgMWL14slX769ddf6+YFVIJBGBERyaK2MkB+fn6Ii4tDYWEhGjXKw8yZephMGuh0AkuW5OHpp4cpZl6pWrJ1daGgoACZmZkwmUy4cuUKdu/ejUWLFqFv374YMWIETp48idu3b2P16tXo168ffvrpJ6xfv97qMcLCwnDt2jXs3bsX7du3h4eHB5o2bQpXV1esXr0a48ePx8mTJ/H666/L9CqtqapYKxEROYbyMkD2WsHo5+eH4OBgTJvmg/R0DfbvB9LTNZg2zQfBwcGKCMCAu9m64opn65zJ7t27ERwcjLCwMMTExGD//v1YtWoVvvzyS+h0OrRv3x7Lli3DkiVL8Le//Q2bN2/GokWLrB6je/fuGD9+PIYMGYKAgAAsXboUAQEB2LhxI7Zt24Y2bdpg8eLFeOutt2R6ldaYCSMiojpXlxmgxo2LLkpiGQrV6/PRr19CqYyg5RzU1ZCprc9TW/3ZuHEjNm7cWGm7KVOmYMqUKVa3DR8+3Or6unXrsG7dOqvbhg0bhmHDhlndZin2LicGYUREVCl7l42pbL6Woys+ZAoAc+f+ifT0eggLu4OQkAcAPFCnQ6Yl+1MWpQzhOhIGYUREVCF7lo1RWgZITsXPVXAw0KmTjJ0BGGDJgEEYKU7JD9/yVk85w4c0kRLYs2yM0jJARHJiEEaKU/xDessWd7z2mh5mswZarcDSpUY8/fRNfkgTyaimZSWUlgEikguDMFIkPz8/XLoEzJgB/FXYGGazBjNn+mDIEB8w/iKSBwuLEtkPS1SQYp09ezcAszCZgHPn5OkPkbOxbLSdnZ0NoPbLShA5G2bCSLFatAC0WutATKcDmjeXr09EzqKsyfgsLEpkX8yEkWI1bgy8+25R4AUU/fnOO8qr90PkiMqaZM/CokT2xSCMFG3sWCA9HX9Vuy66TkR1zzIZPyrqeykQK1lWgoiqhsORpHhKrHYtJ3sXzSSqTMnJ+FFR3yMkJAO+vjksG0OqcODAAfTq1QtXr16Fj4+PTfcJCwvD5MmTMXny5FrrF4MwIhWxZ9FMIluUNRn/+++jMHnyCuj1+Rg4cCD8/f0Z/FONjBo1Cps2bcILL7xQalPuiRMnYu3atRg5cqRNWxupCYMwIhlVNatlz6KZRLaobDK+v78/goODZeodOZImTZrgk08+wfLly+Hu7g4AuHXrFrZs2YKmTZvK3LvawSCMSCbMapEaOPsej1R3OnbsiNTUVOzYsQPPPPMMAGDHjh1o2rQpwsPDpXYFBQWYPn06PvnkE+Tl5aFz585Yvnw5HnjgAanN119/jcmTJ+PixYvo1q0bRo4cWer5Dh48iNmzZ+PXX3+Fv78//v73v2PRokXw9PSs/Rf7F07MJ5IJs1qkBpY9HjkZ37lculS0IOrSpbp93jFjxuCDDz6Qrr///vsYPXq0VZsZM2Zg+/bt2LRpE44ePYrmzZsjOjoaOTlFPwwuXryIgQMHol+/fkhOTsZzzz2HWbNmWT1GamoqYmJiMGjQIJw4cQKffvopDh48iLi4uNp/kcUwE0akYjXdPoaoPMUn2XfseAwREeeQk+PLyfhOYMMGYNy4ohqNWm1RqaC6Wpn+7LPPYvbs2Th//jwA4KeffsInn3yCAwcOAACuX7+OdevWYePGjXj88ccBAP/+97+xZ88ebNiwAdOnT8e6desQERGBt99+GwDQqlUr/Pbbb1iyZIn0PIsWLcIzzzwjTbpv0aIFVq1ahUceeQTr1q1D/fr16+T1MggjUiluH0O1qeRG22XhZHzHc+nS3QAMKPrzhReA6Oi6WaUeEBCA2NhYbNy4EUIIxMbGwt/fXzqempqK27dv48EHH5Ruc3FxQZcuXXD69GkAwOnTp9G1a1erx42MjLS6fvz4cZw4cQKbN2+WbhNCwGw2Iy0tDffee29tvLxSGIQRKURVslrlbR8TEXFONRkxltpQPp5/51PRdnF1VSpozJgx0rDgmjVrauU5rl27hhdeeAEvvvhiqWN1uQiAQRiRAlQ1q6X27WO4KIFImZSwXVxMTAwKCwuh0WgQHR1tdSwiIgKurq746aefEBoaCgC4ffs2fvnlF2lo8d5778VXX31ldb/Dhw9bXe/YsSNOnTqF5jLvg8eJ+SQrywbB5V0MBoPcXax1VdkU2TL/prLtY5Q+T4eLEoiUSQnbxel0Opw+fRqnTp2CztKRv3h6emLChAmYPn06du/ejVOnTuH555/HjRs3MPaviWvjx4/H2bNnMX36dKSkpGDLli2l6ovNnDkThw4dQlxcHJKTk3H27Fl8+eWXnJhPzoPZkCJVyWoVn6fTqFEeZs7Uw2TSQKcTWLIkD08/PUyVw3hcYECkHGPHFs0BO3euKAMmx44l3t7e5R5bvHgxzGYzhg8fjvz8fHTu3Bnffvst7rnnHgBFw4nbt2/HlClTsHr1anTp0gVvvPEGxowZIz3Gfffdhx9++AGvvPIKHn74YQghEBERgSFDhtT6ayuOQRjJxtmzISWzWuXVYSqZ1bIEWNOmAUOGWD4oNWjc2AeAT1103a64wIBIeep6u7jKKuF/8cUX0t/r16+PVatWYdWqVeW279u3L/r27Wt1W8lSFw888AC+++67ch8jPT29wj7ZA4MwIpnYI6ul9n01HWGBARFRdTEII8VwxiEpR8tqVZXaFxgQEdUEgzBSBA5JqT+rVR3cEoeInBlXR5LsqrI6kBwLt8QhImfGTBjJjkNSzodb4hDVHiFErT5+YSFw6xZQvz7gzP9F7XGeGYSR7DgkpU41qXjPLXGI7M/FxQUAcOPGDbi7u9fKc/z5J/DXto4AgNBQICCgVp5K8W7cuAHg7nmvDgZhJBtLlsMyJFVyTpglI8JsSN2oSlBljxpvDLCI7Eun08HHxwdZWVkAAA8PD2g0Grs89p07d1BYKHD+fD0Adx/z/HkBne4OXF01qFfPOUIKIQRu3LiBrKws+Pj4lCooWxXOccZIkUpmQ+bO/RPp6fUQFnYHISEPAHiA2ZA6UtWgqmSwVt7KVket8WZRPHDNyNAiLa0ewsPvICSkaI4b379U14KCggBACsTswWQyIT8/H3fu1MP16w1KHb958xrq1bsDLy+vGgUkauPj4yOd7+piEEayKv4FFRwMdOokY2ecWE2CKmdd2Vo8cK3oHDj6jg+kLBqNBsHBwWjYsCFu375tl8fMysrC7t27ce2aJzZtGllq6sjIkZvQoMF1PPXUU2jYsKFdnlPpXFxc7BJwMggjIitVCaqcudiqJSCt7Bw4ejaQlEmn09ktK+Xi4oLr169Do7mO++77vtTng0aThevXi9rVr1/fLs/pLBiEEZGkqkEVV7byHJBzqWg1M1UdgzAiklQ1oODKVp4Dcj56fT6DLzthsVYiklgCiuIqCihsLbZqMBhw+fJlXL58GUeOXMFnnxlw5MgV6TaDwVA7L6gOsOAsEVUXM2FEJKmsXEhZKhuecIYJ7ByiIaLqYBBGRFZsCShK1m4rb3jC1dVV1RPYKypBkZ2dbdWWQzREVFUMwojsrCaV5OVSlaAKqFrF+8uXLwNQ3wR2WzN4RI7O1oLZLKxddQzCiOyoZNHT8uptKW3orTrbCFW1/2qbwG5rBq8y/GIiteM2Y7WHQRiRHRX/kKooe6LEobfa/gCtznwzJagsgzdw4ED4+/uXeV9+MZGj4Pu4djAII6oFzlzEtCJqnMBeWQbP398fwcHBcnWPiFSMJSqIakFF2RNnp9fnIzz8vCoCMIAlKIio9jATRtWixsnndUlt85+oYmrM4BGR8jEIoypT6+TzuqTW+U+1wVFWVrEEBRHZG4MwqjI1Tz6vS8yeFOHKKiKisjEIo2rj5PPKMXtSRI0BlqNk8IhIuRiEUbUpofhmRRXNgbrPsPCL23Ewg0dEtY1BGFWb3JPPlbgnIb+4HQv/nYioNjEIo2qTe/K5UvcktOWL+9Il4OxZoEULoHHjOugUEREpDoMwqhElTD5XwrCoLSxDp1u2uGPGDD3MZg20WoGlS414+umbzJARETkZBmFUY3JPPpd7WNQWlqFTo9ELK1ZMhhAaAIDZrMH06d7444/3odfnO3VZj8owe0hEjoYV86nKlDb5XA0VzS1DopVV0nf2sh4lGQwGXL58GW+/nYvQUIHevYHQUIG3387F5cuXYTAY5O4iUZVcugTs31/0JxEzYVRlSpx8roRhUVvYkrVjxqcIs4fkaDZsAMaNA8xmQKsF3n0XGDtW7l6RnBiEUbUo8UtP7mFRW1S2mOHdd0147TXB+WKwLXsox8ILouq4dOluAAYU/fnCC0B0tHP/2HJ2DMKI6lh5WbuijE8IMz4lqGHOH1FFDAYDDh8GzGbr/78mE5CUZIC7uzJ/2NoLs/vl45wwUi2lzU2rCr0+H+Hh560yd5wvVjY1zPkjKo9lWP3QoU3Se9hCozHjp582IT4+3mHnN27YAISG4q/5nEXX6S5mwki1is9NK6taPqCuwqjM+JRPLXP+iEqy/HiqbCqCo/zIKp71AjgEWxkGYaRajlZ3S+7it0qnhjl/RBVR44+Jqgwlllx4MHXq3QDMwmQCzp1jEGbBIIxUSW0r52wdElXjhzQR2U5NPyaqspqzrIUHy5YJaLVFn8sWOp2Al1cWDIZ6ivhslhuDMFIlta2cq6isR3Z2Nnbs2CFdV9OHNBE5pqqu5jx7tnTWy2zWoHv3n5CYGCll92NjE5CQUPf7+ioVgzBSNTXNo3L2D5uqUvPCCyK1KyuoKm8o0WAwwNv7DrTahlZZL43GjK5dk9C1a1KZ2X2l/EiWE4MwUjXOo3JcSiwKTOQsWrTAX0OJd2/T6YDmza3bWaaGAEDfvh3K/SzmZ3LZGISR6ql9HhUzPuVjgEVU9wwGA3S6Qixd6o6ZM/UwmTTQ6QSWLDFCp7sJg+Huj5/iP5LU/lksBwZh5BDUPI+KGR8ix6W2H1nFM1sA8OKLXlJQde1aPt59t+j28uZzqfmzWA6qCcL69++P5ORkZGVl4Z577kFUVBSWLFmCkJAQAMD8+fOxYMGCUvfz8PDA9evXpevbtm3DnDlzkJ6ejhYtWmDJkiV44oknpONCCMybNw///ve/kZubiwcffBDr1q1DC0vREwA5OTmYNGkSdu7cCa1Wi0GDBmHlypVo0KCB1ObEiROYOHEifvnlFwQEBGDSpEmYMWNGbZwacgAMsIgck9p+ZJXsZ3lBFedz2YdqKub36tULW7duRUpKCrZv347U1FQMHjxYOv7yyy/j8uXLVpc2bdrgH//4h9Tm0KFDGDZsGMaOHYtjx45hwIABGDBgAE6ePCm1Wbp0KVatWoX169cjKSkJnp6eiI6Oxq1bt6Q2zzzzDH7//Xfs2bMHCQkJ+PHHHzFu3DjpeF5eHh577DGEhobiyJEjePPNNzF//ny8a/kJQURETsPPzw/BwcHlXpQSgFHdU00mbMqUKdLfQ0NDMWvWLAwYMAC3b9+Gi4sLGjRoYJWJOn78OE6dOoX169dLt61cuRIxMTGYPn06AOD111/Hnj17EB8fj/Xr10MIgRUrVuDVV1/Fk08+CQD48MMPERgYiC+++AJDhw7F6dOnsXv3bvzyyy/o3LkzAGD16tV44okn8NZbbyEkJASbN29GYWEh3n//fbi6uqJt27ZITk7GsmXLrII1qj61pfiJiIhKUk0QVlxOTg42b96M7t27w8XFpcw27733Hlq2bImHH35Yui0xMRFTp061ahcdHY0vvvgCAJCWlobMzExERUVJx/V6Pbp27YrExEQMHToUiYmJ8PHxkQIwAIiKioJWq0VSUhL+/ve/IzExET169LAKAKKjo7FkyRJcvXoV99xzT5l9LigoQEFBgXQ9Ly/P9pPiZNSW4iciImv8kayyIGzmzJmIj4/HjRs30K1bNyQkJJTZ7tatW9i8eTNmzZpldXtmZiYCAwOtbgsMDERmZqZ03HJbRW0aNmxodbxevXrw9fW1ahMeHl7qMSzHygvCFi1aVOa8NiobAywi5anKNjfkPAYOHAh/f3/pOn8kF5F1TtisWbOg0WgqvJw5c0ZqP336dBw7dgzfffcddDodRowYASFEqcf9/PPPkZ+fj5EjR9bly6mx2bNnw2g0SpeLFy/K3SUiIptt2ACEhgK9exf9uWGD3D2y3aVLwP79RX+S7WzNZoWEhHAeXBlkzYRNmzYNo0aNqrBNs2bNpL/7+/vD398fLVu2xL333osmTZrg8OHDiIyMtLrPe++9h759+5bKaAUFBeHKlStWt125cgVBQUHSccttwcHBVm3uv/9+qU1WVpbVY9y5cwc5OTlWj1PW8xR/jrK4ubnBzc2t3ONEREpV1W1ulKQqeySSNU4NqRlZg7CAgAAEBARU677mv/6nF59DBRTN69q/fz+++uqrUveJjIzE3r17MXnyZOm2PXv2SEFceHg4goKCsHfvXinoysvLQ1JSEiZMmCA9Rm5uLo4cOYJOnToBAPbt2wez2YyuXbtKbV555RVp0YDleVq1alXuUCQRkVoZDAYcPgyYzdZftCYTkJRkwNWrWmRn36PIIUo1B4+1oTqLnhhg1YBQgcOHD4vVq1eLY8eOifT0dLF3717RvXt3ERERIW7dumXV9tVXXxUhISHizp07pR7np59+EvXq1RNvvfWWOH36tJg3b55wcXERv/32m9Rm8eLFwsfHR3z55ZfixIkT4sknnxTh4eHi5s2bUpuYmBjRoUMHkZSUJA4ePChatGghhg0bJh3Pzc0VgYGBYvjw4eLkyZPik08+ER4eHuKdd96p0us2Go0CgDAajVW6HxFRXcnOzhbz588XU6a8LTQakwCEdNFoTOLRR7+VbtdqhXjvPbl7bG3fPmHVZ8tl/365eyaf7OxskZGRUe4lOztb7i4qnq3f36oIwk6cOCF69eolfH19hZubmwgLCxPjx48Xly5dsmpnMplE48aNxT//+c9yH2vr1q2iZcuWwtXVVbRt21bs2rXL6rjZbBZz5swRgYGBws3NTfTp00ekpKRYtTEYDGLYsGGiQYMGwtvbW4wePVrk5+dbtTl+/Lh46KGHhJubm2jUqJFYvHhxlV83gzAiUrqMjAwxf/58MX/+fNG//5dSwFUyALNcdDohLl6Uu9dFsrOzxa+/Zgqt1lyij2bx66+ZpYKNixeLgjal9J+Uy9bvb40QZcxsJ0XIy8uDXq+H0WiEt7e33N0hIirl8uXLVoWojca729zk5Phh06bSC6Q++8yAnj3lHcYqvj3P0aOlN57u2PEYgLvb83DeGFWFrd/fqipRQUREylZymxuNxgwhtFbXf/ppE06ezC93/8G6YOvG04WFhZw3RrVGNdsWERGRuuj1+ejXLwEaTVH0YskyWYIcJe0/qNfnIzz8fJn7JJ49ezcAszCZgHPn6qhz5LCYCSMih8biofKqKMukBkXDSVpotQ1hNmuk23U6AS+vLBgM9Rx+dSD/D9UeZsKIyGGpuXioI6koy6R0n376KRIS1qNv351WGb3Y2J1ISFiP+Ph4GAwGmXtZe/h/qHYxE0ZEDsdgMCA9/Q7GjbubvSiaxyNw//1ZCAtz/OwF2Vdl88YcEefC1T4GYUTkUCyr3tLSwmA2W6/MM5k0WL36G4SHn5d1UrgjcaZNmEsuOqgLcg4FVjQXjkGYfTAIIyKHYslK+PoaylyZ5+ubY9WOaqasbWuys7OxY8cOGXvlGOQui9GiRdHzFg/EdDqgefO664Oj45wwInJIla3MI/vx8/Oz2pzZ399f7i5VSukZvPKGAutqg3GDwQCd7jKWLs2FTldUTlSnE1iyJBc63WWHngdXl5gJIyKHpfaVeWpVnf0H65otG0/n5uZi69atddiru+QcCixeyBYAXnzxbgHea9fyYanNyyH9mmMQRkQOTY55PM7OlgDH1dVV9i9wuZ+/PAaDAd7ed2Qri1Hy3628/0Mc0q85BmFERGR3Sg1wlK54FqpvX+vtlGJjE5CQYL2dEqkbgzAiIqIyyDGsWpXtlEj9GIQRERGVQQnDqhxOd2wMwkiVuI0GlUcNk8JJPTjkR7WJQRipjty1c0jZlJC9IPvjDy9yRAzCSFW4jQbZggGWY+EPL3JULNZKqlJR7RyLS5eA/fvrrqghEdUeuYuWqlVNPgc5pF93mAkjValsGw3+YiZ74hCYvAwGAw4fBsxm68ymyQQkJRng7s6sZ1lq+jnIIf26w0wYqUZl22j89ttV/mImu9mwAQgNBXr3Lvpzwwa5e+RcLPWyDh3aJG09ZaHRmPHTT5sQHx/vcNvn1DQLZa/MYcmtqEpeGIDZBzNhpAq2bKORlhYGs3mk1f3qapsPciyceyg/SxbGsgdo8aKlxfcAdbR6WTXNQsm53RFVHYMwUgVbttHw9TVAqxUltvm4O1RJZAsOgSmPs+0BWpP3V2VTNkhZOBxJDkOvz8fcuX+UOVTpaEMWVDucdQhMDfT6fISHn3f4AKwmKpuywfet8jATRg5mQ5lDlQD3WqPKOesQGKmfLVM2AH4OKg2DMHI45W3zwS9OqgpnGwIjdbNlykZZ7UheDMKIyOnYWnqC+/YRUW3inDAiciosPUFESsEgjIicBquvqwertpMz4HAkqQI/aKmmbCk9QcrBqu3kDBiEkSpU9IGcnZ2NHTt2yNArspXc2/9YVo4ZjV7QaCZDiLuDAJbSEydP5mPIkCF13zkqFwMscnQMwkg1+IGsTkrYz9PW0hNCCJsej5lZIrIHBmGkepw7olxK3P6notITPj4+HAIjVeLnoDoxCCPV49yR2lOTYUQlb/9jKT1hNHohLS0Mvr4GKRjj+4TUiJ+DFZN7SkR5GISRQ6jOB4tS/1MqRU2GEW2dgyVn9e6jRzuUGpYkUjNnDbAqo4QpEeVhiQpySqwVVbGalnIoOQfLsg+jUrb/MRq9pAAMAITQYufOvsjI4EcikSNRelkaZsLI6ShxnpKS2HsYUYnb/+Tk+Fll54CiQOz48esICzMwo0DkIM6evftZb2EyAefOKePznj/7yOlU9J/S2VmGEQ8d2iRlrywsw4jx8fEwGAxVely9Ph/h4ecVEYABgK+voczXd/LkF9V6fUSkTC1aFA1BFqfTAc2by9OfkhiEkVMxGAzw9r4Crda6FIFOJ+DldcXpv3yVPoxYXSVXhDna6yOisjVuXDQHTKcruq7TAe+8o4wsGMDhSHIiliwPAPTtaz0pOzY2AQkJxwBA1sniSqLEYcTqsqwcy8jIkAr7OtLrI6LSDAYDCgsL8cQTQFKSFunp9RAWdgchIWZcvqyM1aIMwshpFM9uVPQFzCzIXZZSDo7Az8+v1L+tI70+Irqr+I/u4k6etL4u949uBmFOzNlLNPALmIjIMdn6Y1ruH92cE+akWKKBahOrdxMRVY6ZMCfEEg1U21i9m4iocgzCnJDS66aQY2CARURUMQ5HOiGl100h+Tj6MKKjvz4iUhdmwpyMwWCATleIpUvdMXOmHiaTBjqdwJIlRuh0N2EwcIjImTn6MKKjvz4iUhcGYU6k5JLdF1/0kko0XLuWj3ffLbpd7iW7tYVZENs44r99cY7++ki9nH3FujNiEOZEbK2RJPeS3drCLAgRKdWGDXcXTGm1RVXex46Vu1fqpZYf3QzCyKkwwCIipeGKdftTy49uBmFEJBsOv5CzMxgMOHwYMJutgwGTCUhKMsDdnT8eq0sN542rI4nI7i5dAvbvL/qzPCwYTM7OMk/30KFN0mbyFhqNGT/9tAnx8fEwGAwy9ZBqG4MwIrIrW4Kr8oZfKgraiByNZahMr89Hv34JUiCm0ZjRr1+CNGfXUefpEocjiciObJnbwuEXotI6djyGiIhz0op17mvrHBiEEZFd2BJcAUB8fDyMRi9oNJMhxN1kvGX45eTJfIctk0JUkfJWrJPj4nCkE1HLkl1SH1vntmRlZQHg8AsREcBMmFNRy5JdUp+Sc1t27uwLIbSlgqs7d+5I9+HwS93hKlQiZWIQ5mQYYFFtq0pwxeGX2scioETKZXMQlpeXZ/ODent7V6szROQYGFzJz2AwID39DsaNawizWQPAslBC4P77sxAWVo8/yohkZnMQ5uPjA41GU2EbIQQ0Gg1MJlONO0ZERNVjmaOXlhYGs3mk1TGTSYPVq79BePh5LoCQmTPN0+WQeNlsDsL2799fm/0gIiI7sczR8/U1QKMxl1qF6uubY9WO5OEs83Q5JF4+m4OwRx55pDb7QUREdlbZQgmSn9oDrMpwX8yKVXtifm5uLjZs2IDTp08DANq2bYsxY8ZAr9fbrXNE5FhcXFxsaucIwy9KwVWoJKezZ+8GYBYmE3DuHIMwoJpB2K+//oro6Gi4u7ujS5cuAIBly5Zh4cKF+O6779CxY0e7dpKIlM3WoCkgIMAphl+UhgslSA4GgwHe3neg1d5dHAIAOp2Al1cWDAYuDqlWEDZlyhT0798f//73v1GvXtFD3LlzB8899xwmT56MH3/80a6dJCJ5VTap1lnmtsiBE5pJjSyLQwCgb98OVkPisbEJSEg4BgBOvzik2pmw4gEYANSrVw8zZsxA586d7dY5IpKfrZNqnfmD1N4MBgMKCwuxZYs7ZszQw2zWQKsVWLrUiKefvsmAlhSv+A+yiobEnX1xSLWCMG9vb1y4cAGtW7e2uv3ixYvw8vKyS8eISF6sMyUPSwbBaPTCihWTIYTl3Gswfbo3/vjjfej13F+T1IVD4mWr1t6RQ4YMwdixY/Hpp5/i4sWLuHjxIj755BM899xzGDZsmL37SER1zBIIrF6922ouB3C3zlR8fDwMBoNMPXRclsxATo6fVWkJABBCi5wcX6t2ZXGm+lNEalatIOytt97CwIEDMWLECISFhSEsLAyjRo3C4MGDsWTJEnv3EQDQv39/NG3aFPXr10dwcDCGDx+OjIwMqzbffvstunXrBi8vLwQEBGDQoEFIT0+3anPgwAF07NgRbm5uaN68OTZu3FjqudasWYOwsDDUr18fXbt2xc8//2x1/NatW5g4cSL8/PzQoEEDDBo0CFeuXLFqc+HCBcTGxsLDwwMNGzbE9OnTrfbNI1KyknWmimOdqbpR2bmviGWO3rhx48q9MJNGJL9qBWGurq5YuXIlrl69iuTkZCQnJyMnJwfLly+Hm5ubvfsIAOjVqxe2bt2KlJQUbN++HampqRg8eLB0PC0tDU8++SR69+6N5ORkfPvtt8jOzsbAgQOt2sTGxqJXr15ITk7G5MmT8dxzz+Hbb7+V2nz66aeYOnUq5s2bh6NHj6J9+/aIjo5GVlaW1GbKlCnYuXMntm3bhh9++AEZGRlWz2MymRAbG4vCwkIcOnQImzZtwsaNGzF37txaOTeO6NIlYP/+oj9JPpY6U5ZggHWm6k5Nz72fnx+Cg4PLvTAAI5KfRggh5O5EdXz11VcYMGAACgoK4OLigs8++wzDhg1DQUEBtNqi2HLnzp148sknpTYzZ87Erl27cPLkSelxhg4ditzcXOzevRsA0LVrVzzwwAPSqg6z2YwmTZpg0qRJmDVrFoxGIwICArBlyxYpCDxz5gzuvfdeJCYmolu3bvjmm2/Qt29fZGRkIDAwEACwfv16zJw5E3/++afNQwB5eXnQ6/UwGo1OtR8nqyvL7/Lly3j33Xel60ajV5mTaseNG4fg4GA5uuiweO7JEZR8H5fHUd/Htn5/VysTduvWLbz55pt44okn0LlzZ3Ts2NHqUttycnKwefNmdO/eXSr+2KlTJ2i1WnzwwQcwmUwwGo346KOPEBUVJbVJTExEVFSU1WNFR0cjMTERQNHQypEjR6zaaLVaREVFSW2OHDmC27dvW7Vp3bo1mjZtKrVJTExEu3btpADM8jx5eXn4/fffa+GMOI7yqiszI1YzNc0s6vX5CA8/zwyYDHjuiRxXtVZHjh07Ft999x0GDx6MLl26VLqxt73MnDkT8fHxuHHjBrp164aEhATpWHh4OL777js89dRTeOGFF2AymRAZGYmvv/5aapOZmWkVGAFAYGAg8vLycPPmTVy9ehUmk6nMNmfOnJEew9XVFT4+PqXaZGZmVvg8lmPlKSgoQEFBgXQ9Ly+vslPicFhd2f6YWSSiusbFIbapVhCWkJCAr7/+Gg8++GCNnnzWrFmVTuQ/ffq0VApj+vTpGDt2LM6fP48FCxZgxIgRSEhIgEajQWZmJp5//nmMHDkSw4YNQ35+PubOnYvBgwdjz549dRYo1sSiRYuwYMECubshG1ZXti+WmCAiubCAs22qFYQ1atTILvXApk2bhlGjRlXYplmzZtLf/f394e/vj5YtW+Lee+9FkyZNcPjwYURGRmLNmjXQ6/VYunSp1P4///kPmjRpgqSkJHTr1g1BQUGlVjFeuXIF3t7ecHd3h06ng06nK7NNUFAQACAoKAiFhYXIzc21yoaVbFNyRaXlMS1tyjJ79mxMnTpVup6Xl4cmTZpUeH4cBasr25flfKalhcFsHml1zFJiIjz8PM9nJeSoVs8MAjkKfrZUrlpB2Ntvv42ZM2di/fr1CA0NrfaTBwQEICAgoFr3Nf81ZmUZvrtx44Y0Id9Cp9NZtS05PAkAe/bsQWRkJICiD7VOnTph7969GDBggHTfvXv3Ii4uDkDR3DMXFxfs3bsXgwYNAgCkpKTgwoUL0uNERkZi4cKFyMrKQsOGDaXn8fb2Rps2bcp9TW5ubrW2ulTpWF3ZvkqWmCheb8qWEhPOHAjIXa2eGQQi51GtIKxz5864desWmjVrBg8PD2niu0VOTuV1bKoiKSkJv/zyCx566CHcc889SE1NxZw5cxARESEFPrGxsVi+fDlee+01aTjyn//8J0JDQ9GhQwcAwPjx4xEfH48ZM2ZgzJgx2LdvH7Zu3Ypdu3ZJzzV16lSMHDkSnTt3RpcuXbBixQpcv34do0ePBgDo9XqMHTsWU6dOha+vL7y9vTFp0iRERkaiW7duAIDHHnsMbdq0wfDhw7F06VJkZmbi1VdfxcSJE502yKoqVle2D0uZg+KZRVvKHDhrIKCUavWOdl6JqGzVCsKGDRuGP/74A2+88QYCAwNrfb6Vh4cHduzYgXnz5uH69esIDg5GTEwMXn31VSmo6d27N7Zs2YKlS5di6dKl8PDwQGRkJHbv3g13d3cARZP3d+3ahSlTpmDlypVo3Lgx3nvvPURHR0vPNWTIEPz555+YO3cuMjMzcf/992P37t1WE+2XL18OrVaLQYMGoaCgANHR0Vi7dq10XKfTISEhARMmTEBkZCQ8PT0xcuRIvPbaa7V6nojKUlFmsSLOGAjYUq1er89nRpaomrghvbVqBWGHDh1CYmIi2rdvb+/+lKldu3bYt29fpe2GDh2KoUOHVtimZ8+eOHbsWIVt4uLipOHHstSvXx9r1qzBmjVrym0TGhpaauiTyF6q+kHGzGLVVDaMS0RVx5XapVWrTljr1q1x8+ZNe/eFiGywYQMQGgr07l3054YNcvfI8XCnACL7Yg3IslUrE7Z48WJMmzYNCxcuRLt27UrNCXOm6u5EdYUlJ+pWdYdxiciawWDA4cOA2Wz9+WQyAUlJBri7O+f0B6CaQVhMTAwAoE+fPla3CyGg0WhgMplq3jMikrDkhDw4jEtUM8UXu2g0k0sN8f/00yacPFn7i12UqlpB2P79++3dD3JyzlISobqTUqtacsJZzicRKZvlM6myldrOutilWkHYI488YlO7//u//8Nrr70Gf3//6jwNORFnKIlgj0mptpaccIbzSUTqwiH+0qoVhNnqP//5D15++WUGYWQTRw0I7D2Xy9YPMkc9n7WJGUSi2sUhfmu1GoQJIWrz4YkUr7bmcvGDrHYwg0hEdalWgzAiZ1fT7YOo7tk7wLJsgwQAGRlapKXVQ3j4HYSEFK3VZ1BH5LwYhBHVgepuH0TqVnxj+qNHO5T69+/YkRvTEzkzBmFEdYSTUp2PJQNmNHpJARhQtAXSzp19ERFxjtsgETkxBmFEdai6c7k4YVzdKtuLkshR8bOrYrUahD377LOsnk9kB5wwrlzF53yVlJ2dDYB7UZIy1cVm2vzsqli1g7Dc3Fz8/PPPyMrKgtmyGdRfRowYAQBYt25dzXpHRBJn/ZBSsuJzvoCiYcecHD/4+hqsMlycE0hKYfnRsGWLO2bM0MNs1kCrFVi61Iinn75ZKwERP7vKV60gbOfOnXjmmWdw7do1eHt7Q6PRSMc0Go0UhBER1aaKslBA7f/CLv7cFU28BzgnkORXfAuhFSsmQwhL3UINpk/3xh9/vA+93nm3EJJDtYKwadOmYcyYMXjjjTfg4eFh7z4ROQzOh6g9tmah6uILpbKJ9xas70ZysvxoqGyOoqMvFKmLYVhbVSsI++OPP/Diiy8yACOqBOdD1B5bs1B18YXCifekJs48R9Ee28fZk7byJqVFR0fj119/tXdfiBySn58fgoODy70wAKuZ8rJQRqNXnfXB8qVWXFW+1JgJpbpkmaNoec9qNGZERibK3Kvad+nS3QAMsGwfV3S7XGzOhH311VfS32NjYzF9+nScOnUK7dq1g4uLi1Xb/v3726+HREQVUEIWqrKJ9wMHDix3D11mQkkOljmKSUldcehQJA4dehCJiZHo1y8B2dnZDve+NBgMOHwYMJutX5PJBCQlGeDuLs8CApuDsAEDBpS67bXXXit1m0ajgclkqlGniEj96mrSvFKGViqaeO/v74/g4OA67Q+RLRITI2EZFLs7l3GFQ03QL74gQaOZXOqz4qefNuHkSXler81BWMkyFERE5Sk5ab489vjQU1L5B068JzVxlgn6ltdR2WeFHK+3WhPzP/zwQwwZMgRubm5WtxcWFuKTTz5hiQoiJ1fyw6y8lYv2+tCTq/wDV7+Smikli1yXlFYqplpB2OjRoxETE4OGDRta3Z6fn4/Ro0czCCMiSWX1s+xFjiwUV7+SEhQf+s/I0CItrR7Cw+8gJKRoBMvyHiz5Y0BJWeS6pKSMdbWCMCGEVYFWi0uXLkGv19e4U0TkGGytn1UdSslCMcAiORUf+q/oB49l6D8uLg4ZGRnYsWMHAOVlhpxNlYKwDh06QKPRQKPRoE+fPqhX7+7dTSYT0tLSEBMTY/dOEpE61ebKRWahiO4O6Vf2g8fSzs/Pr9T/GSVlhpxNlYIwywrJ5ORkREdHo0GDBtIxV1dXhIWFYdCgQXbtIBGpV23POWGApWxybyvlTJRQqoWqrkpB2Lx58wAAYWFhGDJkCOrXr18rnSIix+Csc06oblfIykkpgaYzTrJ3BNWaEzZy5EgARWnQrKysUuUrmjZtWvOeEZFDqKs5J0r5MqQitq58VXMZBCXtX1qVHzxKmU9ZV5T8eqsVhJ09exZjxozBoUOHrG63TNhnsVYi51bWKqyafBlUxlmyLmpWXoCiZkravxSw/QePs82nVPLrrVYQNmrUKNSrVw8JCQkIDg4uc6UkETmvuv7Qq+u6ZFQ1dVWmRC61uQq4qmydZO8oAZatlPp6qxWEJScn48iRI2jdurW9+0NEDkKuDz1H/8JXGyUFKLWFk+KpurSVNymtTZs2yM7OtndfiIhqpLwvfKPRS+aeOa+KAhRHYZkUX1xdTYpX8nwnqly1MmFLlizBjBkz8MYbb6Bdu3ZwcXGxOu7t7W2XzhERVQUzEsrjDKv25FwFrOT5TlS5agVhUVFRAIDevXtbzQfjxHwikpMzfOGrjbOUKZGz8jwDLPWqVhC2f/9+e/eDiKjGnOULXw2KD39VFKA40jAZK89TVVUrCHvkkUfw3//+F++88w5SU1Px2WefoVGjRvjoo48QHh5u7z4SEdmMe+EpgzMMk3E+FtVUtYKw7du3Y/jw4XjmmWdw7NgxFBQUAACMRiPeeOMNfP3113btJBFRReq6LhnZRs0Bli2cIdCk2qURQoiq3qlDhw6YMmUKRowYAS8vLxw/fhzNmjXDsWPH8PjjjyMzM7M2+up08vLyoNfrYTQaudiBqBKsmE9ESmHr93e1MmEpKSno0aNHqdv1ej1yc3Or85BERDXCAIuI1KZaQVhQUBDOnTuHsLAwq9sPHjyIZs2a2aNf5KSYzSAiImdRrSDs+eefx0svvYT3338fGo0GGRkZSExMxMsvv4w5c+bYu4/kJJS0GS4REVFtq1YQNmvWLJjNZvTp0wc3btxAjx494ObmhpdffhmTJk2ydx/JSShtM1wiorrAEQDnVa0gTKPR4JVXXsH06dNx7tw5XLt2DW3atEGDBg3s3T9yQs6w1xwREVB6BKA8HAFwTNUKwixcXV3Rpk0be/WFCAC3niEi51EyA1beNAyOADimGgVhRLWhsq1nSm4ez1Q9ETmCiqZhkGNiEOYk1DTnoLKtZ3bs2FHqPkzVE5GacRqGc2IQ5gTUOOegqlvPMFVPRGrGaRjOiUGYE1DrnIOytp4pr+9ERGpW2TQMckwMwpyMkuccVLavn5L7TkRUE5VNwyDHxCDMiSh9zkFZm+FmZ2djx44diu87EVFNVXUaBqkfgzAnooY5B+XNSVND34mIqqrkCEBZ0zDKakeOgUGYE1HznAM1952IqDxljQCUpKTV62RfDMKciJrnHKi570REFWGA5bwYhDkZtc05KJ6Cr6jvTNUTEZHaMAhzAmqec8BUPREROSqNEELI3QkqW15eHvR6PYxGI7y9vWv0WGqqmE9ERKRmtn5/MxPmJBhgERERKYu28iZEREREZG8MwoiIiIhkwCCMiIiISAacE0ZENcaFH0REVccgjIhqxGAwID4+vtJ2cXFxDMSIiIrhcCQR1UhFGbDqtCMichbMhBERESkUh/orV/wcZWRokZZWD+HhdxASYgag7HPEIIyIiEiBONRfueLn6OjRDqX2F+7Y8RgA5Z4jBmEk4S8uIiLl4FB/5Syv3Wj0kgIwABBCi507+yIi4hz0+nzFniMGYQSAv7hIefijgMia0eiFnBw/+Poaytz/15nl5PhJAZiFEFrk5Pgq+lwxCCMA/MVF9mOPLwr+KCCyVtFQGwG+vgZoNGarQEyjMcPXN0fGXlVONasj+/fvj6ZNm6J+/foIDg7G8OHDkZGRYdVm69atuP/+++Hh4YHQ0FC8+eabpR7nwIED6NixI9zc3NC8eXNs3LixVJs1a9YgLCwM9evXR9euXfHzzz9bHb916xYmTpwIPz8/NGjQAIMGDcKVK1es2ly4cAGxsbHw8PBAw4YNMX36dNy5c6fmJ4JIwY4e7YAVKyZj06aRWLFiMo4e7VCtx+GPAqK7yhtqMxq9ZO6Zcuj1+ejXLwEaTdFkfEugquQsGKCiIKxXr17YunUrUlJSsH37dqSmpmLw4MHS8W+++QbPPPMMxo8fj5MnT2Lt2rVYvny51a/ptLQ0xMbGolevXkhOTsbkyZPx3HPP4dtvv5XafPrpp5g6dSrmzZuHo0ePon379oiOjkZWVpbUZsqUKdi5cye2bduGH374ARkZGRg4cKB03GQyITY2FoWFhTh06BA2bdqEjRs3Yu7cubV8lojqnqurK4DKvygs7YioaioaaqO7OnY8hsmTV2DkyI2YPHmFKjKFqgnCpkyZgm7duiE0NBTdu3fHrFmzcPjwYdy+fRsA8NFHH2HAgAEYP348mjVrhtjYWMyePRtLliyBEAIAsH79eoSHh+Ptt9/Gvffei7i4OAwePBjLly+XnmfZsmV4/vnnMXr0aLRp0wbr16+Hh4cH3n//fQCA0WjEhg0bsGzZMvTu3RudOnXCBx98gEOHDuHw4cMAgO+++w6nTp3Cf/7zH9x///14/PHH8frrr2PNmjX85U4Ox8/PD3FxcejefWSZXxQPPjiSw4ZENWAZaitODUNtctDr8xEefl7xGTAL1QRhxeXk5GDz5s3o3r07XFxcAAAFBQWoX7++VTt3d3dcunQJ58+fBwAkJiYiKirKqk10dDQSExMBFA1tHDlyxKqNVqtFVFSU1ObIkSO4ffu2VZvWrVujadOmUpvExES0a9cOgYGBVs+Tl5eH33//vdzXVVBQgLy8PKsLkRr4+fmhWzc/aEt8ouh0QNeufgzAiGpArUNtVDlVTcyfOXMm4uPjcePGDXTr1g0JCQnSsejoaEyZMgWjRo1Cr169cO7cObz99tsAgMuXLyMsLAyZmZlWgREABAYGIi8vDzdv3sTVq1dhMpnKbHPmzBkAQGZmJlxdXeHj41OqTWZmptSmrMewHCvPokWLsGDBgiqckdrDVThUVY0bA+++C7zwAmAyFQVg77xTdLvacaUmyaH4EH7HjscQEXEOOTm+8PXNsfpcduahfltfu1LPkaxB2KxZs7BkyZIK25w+fRqtW7cGAEyfPh1jx47F+fPnsWDBAowYMQIJCQnQaDR4/vnnkZqair59++L27dvw9vbGSy+9hPnz50Nb8ue5Qs2ePRtTp06Vrufl5aFJkyZ13g+uwqHqGjsWiI4Gzp0Dmje3XwAm548CrtQkuViG+vkDoHxqP0eyBmHTpk3DqFGjKmzTrFkz6e/+/v7w9/dHy5Ytce+996JJkyY4fPgwIiMjodFosGTJErzxxhvIzMxEQEAA9u7da/UYQUFBpVYxXrlyBd7e3nB3d4dOp4NOpyuzTVBQkPQYhYWFyM3NtcqGlWxTckWl5TEtbcri5uYGNze3Cs9HbalscrWl4J1Sf02QcjRubN/sl9w/CrhSk+Sk1OBBSdR8jmQNwgICAhAQEFCt+5rNRWPjBQUFVrfrdDo0atQIAPDxxx8jMjJSeo7IyEh8/fXXVu337NmDyMhIAEWBSKdOnbB3714MGDBAep69e/ciLi4OANCpUye4uLhg7969GDRoEAAgJSUFFy5ckB4nMjISCxcuRFZWFho2bCg9j7e3N9q0aVOt11vbLL8m9u8Hli8ve3J1z57qfrOTevBHgWPhcC5R2VQxJywpKQm//PILHnroIdxzzz1ITU3FnDlzEBERIQU+2dnZ+Oyzz9CzZ0/cunULH3zwgVRCwmL8+PGIj4/HjBkzMGbMGOzbtw9bt27Frl27pDZTp07FyJEj0blzZ3Tp0gUrVqzA9evXMXr0aACAXq/H2LFjMXXqVPj6+sLb2xuTJk1CZGQkunXrBgB47LHH0KZNGwwfPhxLly5FZmYmXn31VUycOFG2TJctiiZXA1otYC62EOfu5Gr5+kbORY0/CrKzs6W/M6i4i8O51cPA1TmoIgjz8PDAjh07MG/ePFy/fh3BwcGIiYnBq6++ahXUbNq0CS+//DKEEIiMjMSBAwfQpUsX6Xh4eDh27dqFKVOmYOXKlWjcuDHee+89REdHS22GDBmCP//8E3PnzkVmZibuv/9+7N6922qi/fLly6HVajFo0CAUFBQgOjoaa9eulY7rdDokJCRgwoQJiIyMhKenJ0aOHInXXnutls9UzTny5GpSF7X9KNixY4fVdQYVRTicW3UMXJ2HRliKaJHi5OXlQa/Xw2g0wtvbu06f+9Il+0+uJqqODRtK/ygYO7bunv/y5ct49913q3y/cePGITg4uBZ6pC62nj+er7t4ztTP1u9vVWTCqO7Ze3I11YwzD03U1orL6mL5FiKyFwZhRArHoQnl/CiQe6UmOScG/o6LQRiRwnFOjbxsXalJVBsY+Ds2dVQxJSKSSWV7Y3IT5aoxGr2QlhYmbexO5Ssv8Oe5cxzMhBERVaK8lZrcRLlqmNWpmpwcv3IDf2ZfHQMzYURENrCUb9HpihaUW4IIAMzsVKCy4VzLeWPh3dJ8fQ3Spt0WDPwdCzNhREQ2GjsW6NIlF2+//SV8fXOQmtocK1ZMLjOz4wxBha2rdtVWeFdulveOXp+Pfv0SSmUPLVkwZ3iPOTrWCVMwOeuEkXKwZpDyGAwGpKffQZcuDWE2a6TbdTqBpKQshIXVc/igoqqrdi9dAkJDSxfeTU9XxspXpSke4GZkaJGeXg9hYXcQElJ0Ah25LI0jYJ0wIgfF5ery8/Pzw4kT1gEFAJhMGuTnByqumn9tqOqqXe7GUTXFA6zgYKBTJxk7Q7WGQRiRwhUfcqhoYjOHJupWixZlb6nUvLl8fVI6pRXeJZIbgzAihbPMqUlPv4PXXmsIIYqGv4TQYteufpg7t6tTDH8pDTM71aOUwrtESsAgjEgFOPylTMzsKIszb+9F6sQgjEglOPylTMzsKAO39yI1Yp0wIpW4W6eq6DqHv0hJ5K6Ez+29SI2YCSNSEQ5/kRKxEj5R9TAII1IZDn+REti6sTlX7RKVj0EYERFVmdIr4bOeHqkBgzAiIqqW8jY21+mArl39ZFu1y+FRUgsGYUREKqSUcgxKq5dW2fAokZIwCCMiUhmllWNQ0oKRnBw/KQCzEEKLnBxfBmGkOAzCiIhURonlGOReMGJZAODra4BGY7YKxDQaM3x9c6zaESkBgzAiIlKFyoZgn332WXh4eKBRozzMnKmHyaSBTiewZEkenn56GCvmk+IwCCMiIsWryhDstGk+GDLEMjyqQePGPgB8aruLqqWU+YXOiEEYEREpXlWHYOUeHlULpc0vdDbctoiISOXk3jKI1KtkcFvee4nbPdUOZsKIiFSMNbHIXvheqnvMhBERqVR5NbGcISPG7J99OfN7SU7MhBERqYylzEJlNbEctRwDMzb2x/pq8mAQRkSkMpZ9G9PT7+CjjwTMZo10TKcTmDTpcYSF1XPIidSsiF87KquvRrWDw5FERCrk5+eHTp0C8e67Guh0RbcVbRmkQadOgQ4ZgAEVZ2yo+vT6fPTrlwCNpmgTUEuGkYFt7WImjIhIxZS0ZVBtYkX82tex4zFERJxDTo4vfH1zGIDVAQZhRFRlLO6oLM5QE8syBFtYWMiK+HZUMmjV6/PLDL4Y3NYOjRBCyN0JKlteXh70ej2MRiO8vb3l7g4RABZ3JGW4dMnxs391hT+q7M/W729mwoioSpS4eTQ5H2fI/tUVBljyYRBGRJUq/ks5Oztb5t4QETkGBmFEVCFbhx+JiKhqWKKCiCrEYUUiotrBIIyIaoTbxxARVQ+HI4mo2rh9DBFR9TETRkTVwg1/iYhqhpkwIqoSo9ELOTl+uH7dwyk3jyYishcGYURks+LDj4AZgADgPJtHExHZE4MwIrJJyeHHotkMZmg0AkJoodMJafNoInthNXdyZAzCiKhClmHFnBy/UsOPgBaDBm2Fp+cNTJv2JNq1u6fuO0gOi1tkkaNjEEZEFbJsnJyefgcffSRgNlsPP86a9chfw48MwMi+SmbALPMRfX0NVptMs5YdqRWDMCKqlJ+fH/z8gHffBV54ATCZAJ0OHH6kOsNyKOSIGIQRkc3GjgWio4Fz54DmzbmBMtWN8sqhREScs8qIEakNgzByWJzQWzsaN2bwRXWrrPmIxcuhEFXHpUvA2bNAixbyfaYxCCOHxAm9RI7D19cAjcZsFYhpNGb4+ubI2CtSsw0bgHHjALMZ0GqLplqMHVv3/WDFfHJItk7U5YReIuXT6/PRr18CNBozAEhzwpgFo6oyGAw4cuQKxo0TMBe9nWA2Ay+8IHDkyBUYDIY67Q8zYeQUyltVRUTq0LHjMUREnENOji98fXP4/5iqzDJCkpYWBrN5pNUxk0mD1au/QXj4+TodIWEQRg6Pq6pqjxLmVJDjKrn1lV6fX2bwxS2yyBaWkY/KhrfrcoSEQRg5NK6qsj/LgoctW9wxY4YeZrMGWq3A0qVGPP30TS54ILux1KjjAhuyJ8vwdskf53J8JzAII4fGVVX2ZUnnG41eWLFiMoQoKtxqNmswfbo3/vjjfej1+VzwQHbD9xHVBqUMbzMII4fGVVX2ZclIVBbccsEDESldecPbdYmrI8mhcVVV7bAEt8UxuCUiqhpmwsghFZ+oW1HamRN6q0dJcyqIiNSKQRg5JE7orX1KmVNBRKRWDMLIYTHAqn1KmFNBRGQLW0c+6nKEhEEYEREROTwljpAwCCMiIiKnoLQREq6OJCKbKTGdT0SkVsyEEZHNlJjOJyJSKwZhRFQlDLCIiOyDw5FEREREMmAQRkRERCQDBmFEREREMlBdEFZQUID7778fGo0GycnJVsdOnDiBhx9+GPXr10eTJk2wdOnSUvfftm0bWrdujfr166Ndu3b4+uuvrY4LITB37lwEBwfD3d0dUVFROHv2rFWbnJwcPPPMM/D29oaPjw/Gjh2La9euVbkvRERE5LxUF4TNmDEDISEhpW7Py8vDY489htDQUBw5cgRvvvkm5s+fj3fffVdqc+jQIQwbNgxjx47FsWPHMGDAAAwYMAAnT56U2ixduhSrVq3C+vXrkZSUBE9PT0RHR+PWrVtSm2eeeQa///479uzZg4SEBPz4448YN25clfpCRERETk6oyNdffy1at24tfv/9dwFAHDt2TDq2du1acc8994iCggLptpkzZ4pWrVpJ15966ikRGxtr9Zhdu3YVL7zwghBCCLPZLIKCgsSbb74pHc/NzRVubm7i448/FkIIcerUKQFA/PLLL1Kbb775Rmg0GvHHH3/Y3BdbGI1GAUAYjcYq3Y+IiIjkY+v3t2oyYVeuXMHzzz+Pjz76CB4eHqWOJyYmokePHlZFIqOjo5GSkoKrV69KbaKioqzuFx0djcTERABAWloaMjMzrdro9Xp07dpVapOYmAgfHx907txZahMVFQWtVoukpCSb+1KWgoIC5OXlWV2IiIjIMakiCBNCYNSoURg/frxV8FNcZmYmAgMDrW6zXM/MzKywTfHjxe9XXpuGDRtaHa9Xrx58fX0rfZ7iz1GWRYsWQa/XS5cmTZqU25aIiIjUTdYgbNasWdBoNBVezpw5g9WrVyM/Px+zZ8+Ws7u1bvbs2TAajdLl4sWLcneJiIiIaomsFfOnTZuGUaNGVdimWbNm2LdvHxITE+Hm5mZ1rHPnznjmmWewadMmBAUF4cqVK1bHLdeDgoKkP8tqU/y45bbg4GCrNvfff7/UJisry+ox7ty5g5ycnEqfp/hzlMXNza3UayQiIiLHJGsmLCAgAK1bt67w4urqilWrVuH48eNITk5GcnKyVFbi008/xcKFCwEAkZGR+PHHH3H79m3p8ffs2YNWrVrhnnvukdrs3bvXqg979uxBZGQkACA8PBxBQUFWbfLy8pCUlCS1iYyMRG5uLo4cOSK12bdvH8xmM7p27WpzX4iInNWlS8D+/UV/Ejm1ulknYF9paWmlVkfm5uaKwMBAMXz4cHHy5EnxySefCA8PD/HOO+9IbX766SdRr1498dZbb4nTp0+LefPmCRcXF/Hbb79JbRYvXix8fHzEl19+KU6cOCGefPJJER4eLm7evCm1iYmJER06dBBJSUni4MGDokWLFmLYsGFV6ostuDqSiBzNe+8JodUKART9+d57cveIyP5s/f52mCBMCCGOHz8uHnroIeHm5iYaNWokFi9eXOq+W7duFS1bthSurq6ibdu2YteuXVbHzWazmDNnjggMDBRubm6iT58+IiUlxaqNwWAQw4YNEw0aNBDe3t5i9OjRIj8/v8p9qQyDMCJyJBcv3g3ALBedruh2Ikdi6/e3Rggh5MzEUfny8vKg1+thNBrh7e0td3eISEUuXQLOngVatAAaN5a7N0X27wd69y779p4967w7RLXG1u9vVZSoICIi223YAISGFgU8oaFF15WgRQtAW+JbR6cDmjeXpz9EcmMQRkTkQC5dAsaNA8zmoutmM/DCC8qYBN+4MfDuu0WBF1D055Qp8vaJSE4MwoiIHMjZs3cDMAuTCTh3Tp7+WBgMBly+fBlPPHEZSUlXMH78NZjNAm+9BYSGCqxceU3eDhLJQNY6YUREZF+WIb/igZjcQ34GgwHx8fHSdaPRC++8MxlCaAAAZrMGU6Z4oHfvq2jXjmV8yHkwE0ZE5EDKGvJ75x15J+cXFhZaXc/J8UPJrYuF0OJ//yuRwiNycMyEERE5mLFjgejooiHI5s2VszrSwtfXAI3GbBWIaTRmhIXdkbFXRHWPmTAiIgfUuHFR2QelBWAAoNfno1+/BGg0RZkvjcaMfv0SEBLCTBg5F2bCiIgchMFgKDX0V5yrqyv8/PzqsEfl69jxGCIiziEnxxe+vjnQ6/MBPCB3txRNibXfqGYYhBEROYCSk9/LExcXp5hATK/P/yv4KpKdna2oQFFJNmy4W3pEqy2a9zd2rNy9opricCQRkQOoKANWnXZy2LFjB+Lj42EwGOTuiqJUVvuNG6KrF4MwIiJSFCUHinKoqPabUndHINswCCMiolrl6uoqdxdUrbztnjw9lbs7AtmGQRgREdUqPz8/xMXFYeDAgXJ3RZXKq/127Zoyd0cg23FiPhER1To/Pz8OM1aDZcXrE08ASUlapKfXQ1jYHYSEmJGRoYVW2xBms0ZqL/fuCFQ1DMKIiIgUqLwVrydP3v17374dsGtXP5hMGkXsjkBVwyCMiIhIgWzJHHbseAxz53ZFfn6gIndHoIoxCCMicgC2Tn7nJHnH4+qahVatiiaHXb5suY311tSAQRgRkQOwTH5XcsV8Boq1Y8eOHWXerqTCvFQ2BmFERA5C6V+4aggUHQkXQigfgzAiIqozDLCI7mKdMCIiIiIZMAgjIiIikgGDMCIiIgXiAgXHxzlhREREClTeQobs7OxyV0SSujAIIyIiUiguZHBsHI4kIiJSEdZbcxzMhBEREakI6605DgZhREREKsMAyzFwOJKIiIhIBgzCiIiIiGTAIIyIiIhIBgzCiIiIiGTAIIyIiIhIBgzCiIiIiGTAIIyIiIhIBgzCiIiIiGTAIIyIiIhIBqyYr2BCCABAXl6ezD0hIiIiW1m+ty3f4+VhEKZg+fn5AIAmTZrI3BMiIiKqqvz8fOj1+nKPa0RlYRrJxmw2IyMjA15eXtBoNHJ3p87k5eWhSZMmuHjxIry9veXujqrxXNoHz6P98FzaD8+lfdTGeRRCID8/HyEhIdBqy5/5xUyYgmm1WjRu3FjubsjG29ubHyx2wnNpHzyP9sNzaT88l/Zh7/NYUQbMghPziYiIiGTAIIyIiIhIBgzCSHHc3Nwwb948uLm5yd0V1eO5tA+eR/vhubQfnkv7kPM8cmI+ERERkQyYCSMiIiKSAYMwIiIiIhkwCCMiIiKSAYMwIiIiIhkwCCPZ/Pjjj+jXrx9CQkKg0WjwxRdfWB0XQmDu3LkIDg6Gu7s7oqKicPbsWXk6q3CVnctRo0ZBo9FYXWJiYuTprIItWrQIDzzwALy8vNCwYUMMGDAAKSkpVm1u3bqFiRMnws/PDw0aNMCgQYNw5coVmXqsTLacx549e5Z6T44fP16mHivXunXrcN9990mFRCMjI/HNN99Ix/l+tF1l51KO9ySDMJLN9evX0b59e6xZs6bM40uXLsWqVauwfv16JCUlwdPTE9HR0bh161Yd91T5KjuXABATE4PLly9Ll48//rgOe6gOP/zwAyZOnIjDhw9jz549uH37Nh577DFcv35dajNlyhTs3LkT27Ztww8//ICMjAwMHDhQxl4rjy3nEQCef/55q/fk0qVLZeqxcjVu3BiLFy/GkSNH8Ouvv6J379548skn8fvvvwPg+7EqKjuXgAzvSUGkAADE559/Ll03m80iKChIvPnmm9Jtubm5ws3NTXz88ccy9FA9Sp5LIYQYOXKkePLJJ2Xpj5plZWUJAOKHH34QQhS9B11cXMS2bdukNqdPnxYARGJiolzdVLyS51EIIR555BHx0ksvydcpFbvnnnvEe++9x/ejHVjOpRDyvCeZCSNFSktLQ2ZmJqKioqTb9Ho9unbtisTERBl7pl4HDhxAw4YN0apVK0yYMAEGg0HuLime0WgEAPj6+gIAjhw5gtu3b1u9L1u3bo2mTZvyfVmBkufRYvPmzfD398ff/vY3zJ49Gzdu3JCje6phMpnwySef4Pr164iMjOT7sQZKnkuLun5PcgNvUqTMzEwAQGBgoNXtgYGB0jGyXUxMDAYOHIjw8HCkpqbin//8Jx5//HEkJiZCp9PJ3T1FMpvNmDx5Mh588EH87W9/A1D0vnR1dYWPj49VW74vy1fWeQSAp59+GqGhoQgJCcGJEycwc+ZMpKSkYMeOHTL2Vpl+++03REZG4tatW2jQoAE+//xztGnTBsnJyXw/VlF55xKQ5z3JIIzICQwdOlT6e7t27XDfffchIiICBw4cQJ8+fWTsmXJNnDgRJ0+exMGDB+XuiqqVdx7HjRsn/b1du3YIDg5Gnz59kJqaioiIiLrupqK1atUKycnJMBqN+OyzzzBy5Ej88MMPcndLlco7l23atJHlPcnhSFKkoKAgACi1yufKlSvSMaq+Zs2awd/fH+fOnZO7K4oUFxeHhIQE7N+/H40bN5ZuDwoKQmFhIXJzc63a831ZtvLOY1m6du0KAHxPlsHV1RXNmzdHp06dsGjRIrRv3x4rV67k+7EayjuXZamL9ySDMFKk8PBwBAUFYe/evdJteXl5SEpKshq/p+q5dOkSDAYDgoOD5e6KogghEBcXh88//xz79u1DeHi41fFOnTrBxcXF6n2ZkpKCCxcu8H1ZTGXnsSzJyckAwPekDcxmMwoKCvh+tAPLuSxLXbwnORxJsrl27ZrVL4y0tDQkJyfD19cXTZs2xeTJk/Gvf/0LLVq0QHh4OObMmYOQkBAMGDBAvk4rVEXn0tfXFwsWLMCgQYMQFBSE1NRUzJgxA82bN0d0dLSMvVaeiRMnYsuWLfjyyy/h5eUlzavR6/Vwd3eHXq/H2LFjMXXqVPj6+sLb2xuTJk1CZGQkunXrJnPvlaOy85iamootW7bgiSeegJ+fH06cOIEpU6agR48euO+++2TuvbLMnj0bjz/+OJo2bYr8/Hxs2bIFBw4cwLfffsv3YxVVdC5le0/W6VpMomL2798vAJS6jBw5UghRVKZizpw5IjAwULi5uYk+ffqIlJQUeTutUBWdyxs3bojHHntMBAQECBcXFxEaGiqef/55kZmZKXe3FaescwhAfPDBB1Kbmzdviv/7v/8T99xzj/Dw8BB///vfxeXLl+XrtAJVdh4vXLggevToIXx9fYWbm5to3ry5mD59ujAajfJ2XIHGjBkjQkNDhaurqwgICBB9+vQR3333nXSc70fbVXQu5XpPaoQQovZCPCIiIiIqC+eEEREREcmAQRgRERGRDBiEEREREcmAQRgRERGRDBiEEREREcmAQRgRERGRDBiEEREREcmAQRgRERGRDBiEEREREcmAQRgRUTUUFhbK3YVSlNgnIiofgzAiIgA9e/ZEXFwc4uLioNfr4e/vjzlz5sCys1tYWBhef/11jBgxAt7e3hg3bhwA4ODBg3j44Yfh7u6OJk2a4MUXX8T169elx127di1atGiB+vXrIzAwEIMHD5aOffbZZ2jXrh3c3d3h5+eHqKgo6b49e/bE5MmTrfo4YMAAjBo1Srpe3T4RkTIwCCMi+sumTZtQr149/Pzzz1i5ciWWLVuG9957Tzr+1ltvoX379jh27BjmzJmD1NRUxMTEYNCgQThx4gQ+/fRTHDx4EHFxcQCAX3/9FS+++CJee+01pKSkYPfu3ejRowcA4PLlyxg2bBjGjBmD06dP48CBAxg4cCCqup1vVftERMrBDbyJiFCUecrKysLvv/8OjUYDAJg1axa++uornDp1CmFhYejQoQM+//xz6T7PPfccdDod3nnnHem2gwcP4pFHHsH169fx9ddfY/To0bh06RK8vLysnu/o0aPo1KkT0tPTERoaWmZ/7r//fqxYsUK6bcCAAfDx8cHGjRsBoFp9ql+/fo3OExHZDzNhRER/6datmxSAAUBkZCTOnj0Lk8kEAOjcubNV++PHj2Pjxo1o0KCBdImOjobZbEZaWhoeffRRhIaGolmzZhg+fDg2b96MGzduAADat2+PPn36oF27dvjHP/6Bf//737h69WqV+1zVPhGRcjAIIyKykaenp9X1a9eu4YUXXkBycrJ0OX78OM6ePYuIiAh4eXnh6NGj+PjjjxEcHIy5c+eiffv2yM3NhU6nw549e/DNN9+gTZs2WL16NVq1aiUFSlqtttTQ5O3bt2vcJyJSDgZhRER/SUpKsrp++PBhtGjRAjqdrsz2HTt2xKlTp9C8efNSF1dXVwBAvXr1EBUVhaVLl+LEiRNIT0/Hvn37AAAajQYPPvggFixYgGPHjsHV1VUaWgwICMDly5el5zKZTDh58mSlr8GWPhGRMjAIIyL6y4ULFzB16lSkpKTg448/xurVq/HSSy+V237mzJk4dOgQ4uLikJycjLNnz+LLL7+UJsEnJCRg1apVSE5Oxvnz5/Hhhx/CbDajVatWSEpKwhtvvIFff/0VFy5cwI4dO/Dnn3/i3nvvBQD07t0bu3btwq5du3DmzBlMmDABubm5lb6GyvpERMpRT+4OEBEpxYgRI3Dz5k106dIFOp0OL730klT2oSz33XcffvjhB7zyyit4+OGHIYRAREQEhgwZAgDw8fHBjh07MH/+fNy6dQstWrTAxx9/jLZt2+L06dP48ccfsWLFCuTl5SE0NBRvv/02Hn/8cQDAmDFjcPz4cYwYMQL16tXDlClT0KtXr0pfQ2V9IiLl4OpIIiKUvRqRiKg2cTiSiIiISAYMwoiIiIhkwOFIIiIiIhkwE0ZEREQkAwZhRERERDJgEEZEREQkAwZhRERERDJgEEZEREQkAwZhRERERDJgEEZEREQkAwZhRERERDJgEEZEREQkg/8PWOYDR7Ixe24AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABt7klEQVR4nO3deVxU1f8/8NcddhAGWWQRFMR9SUUTsaw0Evso5k/9aGamSVl9RUXNLXOpPubSpmZmloWV5t4ibpFbqUTmGqakhAsBKoMMuIEw5/fHNNcZZoABgQHm9Xw85gHce+bOufdD8v6c8z7vIwkhBIiIiIioRiks3QEiIiIia8QgjIiIiMgCGIQRERERWQCDMCIiIiILYBBGREREZAEMwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiMoUFxcHSZJw4cIFS3eFqF5hEEZEFnfkyBHExMSgXbt2cHFxQZMmTTB06FD89ddfRm0fe+wxSJIESZKgUCjg5uaGVq1aYeTIkUhISKjQ527btg2PPvooGjVqBGdnZzRr1gxDhw7Frl27qurWjLz99tv47rvvjI4fPnwY8+bNQ25ubrV9dknz5s2Tn6UkSXB2dkbbtm3x+uuvIy8vr0o+Y926dViyZEmVXIuovmEQRkQWt2jRImzZsgWPP/44li5dirFjx+Lnn39GaGgokpOTjdoHBATgq6++wpdffol33nkHAwYMwOHDh9GnTx8MGzYMd+/eLfcz3333XQwYMACSJGHmzJn44IMPMHjwYJw7dw7r16+vjtsEUHYQ9sYbb9RoEKbz8ccf46uvvsL777+P1q1bY/78+ejbty+qYmthBmFEpbO1dAeIiCZPnox169bB3t5ePjZs2DB06NABCxcuxNdff23QXqlU4tlnnzU4tnDhQkyYMAErVqxAUFAQFi1aVOrnFRUV4a233sITTzyBH3/80ej81atX7/OOao9bt27B2dm5zDZDhgyBl5cXAODll1/G4MGDsXXrVvz6668IDw+viW4SWSWOhBGRxfXo0cMgAAOAFi1aoF27djhz5oxZ17CxscGyZcvQtm1bLF++HGq1utS22dnZyMvLw0MPPWTyfKNGjQx+vnPnDubNm4eWLVvC0dERfn5+GDRoEFJTU+U27777Lnr06AFPT084OTmhS5cu2Lx5s8F1JEnCzZs3sWbNGnkKcPTo0Zg3bx6mTp0KAAgODpbP6edgff311+jSpQucnJzg4eGBp59+GpcvXza4/mOPPYb27dvj6NGjeOSRR+Ds7IzXXnvNrOenr3fv3gCAtLS0MtutWLEC7dq1g4ODA/z9/TFu3DiDkbzHHnsM27dvx8WLF+V7CgoKqnB/iOorjoQRUa0khMCVK1fQrl07s99jY2OD4cOHY/bs2Th48CD69etnsl2jRo3g5OSEbdu2Yfz48fDw8Cj1msXFxejfvz/27NmDp59+GhMnTkR+fj4SEhKQnJyMkJAQAMDSpUsxYMAAjBgxAoWFhVi/fj3++9//Ij4+Xu7HV199hRdeeAHdunXD2LFjAQAhISFwcXHBX3/9hW+++QYffPCBPCrl7e0NAJg/fz5mz56NoUOH4oUXXsC1a9fw4Ycf4pFHHsHx48fh7u4u91elUuHJJ5/E008/jWeffRY+Pj5mPz8dXXDp6elZapt58+bhjTfeQEREBF555RWkpKTg448/xpEjR3Do0CHY2dlh1qxZUKvVSE9PxwcffAAAaNCgQYX7Q1RvCSKiWuirr74SAMTq1asNjj/66KOiXbt2pb7v22+/FQDE0qVLy7z+nDlzBADh4uIinnzySTF//nxx9OhRo3aff/65ACDef/99o3MajUb+/tatWwbnCgsLRfv27UXv3r0Njru4uIhRo0YZXeudd94RAERaWprB8QsXLggbGxsxf/58g+N//PGHsLW1NTj+6KOPCgBi5cqVpd63vrlz5woAIiUlRVy7dk2kpaWJTz75RDg4OAgfHx9x8+ZNIYQQX3zxhUHfrl69Kuzt7UWfPn1EcXGxfL3ly5cLAOLzzz+Xj/Xr1080bdrUrP4QWRtORxJRrXP27FmMGzcO4eHhGDVqVIXeqxtpyc/PL7PdG2+8gXXr1qFz587YvXs3Zs2ahS5duiA0NNRgCnTLli3w8vLC+PHjja4hSZL8vZOTk/z99evXoVar0bNnTxw7dqxC/S9p69at0Gg0GDp0KLKzs+WXr68vWrRogX379hm0d3BwwPPPP1+hz2jVqhW8vb0RHByMl156Cc2bN8f27dtLzSX76aefUFhYiNjYWCgU9/6MvPjii3Bzc8P27dsrfqNEVojTkURUq2RlZaFfv35QKpXYvHkzbGxsKvT+GzduAABcXV3LbTt8+HAMHz4ceXl5SEpKQlxcHNatW4eoqCgkJyfD0dERqampaNWqFWxty/7nMj4+Hv/73/9w4sQJFBQUyMf1A7XKOHfuHIQQaNGihcnzdnZ2Bj83btzYKL+uPFu2bIGbmxvs7OwQEBAgT7GW5uLFiwC0wZs+e3t7NGvWTD5PRGVjEEZEtYZarcaTTz6J3Nxc/PLLL/D396/wNXQlLZo3b272e9zc3PDEE0/giSeegJ2dHdasWYOkpCQ8+uijZr3/l19+wYABA/DII49gxYoV8PPzg52dHb744gusW7euwvegT6PRQJIk7Ny502RAWjLHSn9EzlyPPPKInIdGRDWHQRgR1Qp37txBVFQU/vrrL/z0009o27Ztha9RXFyMdevWwdnZGQ8//HCl+tG1a1esWbMGmZmZALSJ80lJSbh7967RqJPOli1b4OjoiN27d8PBwUE+/sUXXxi1LW1krLTjISEhEEIgODgYLVu2rOjtVIumTZsCAFJSUtCsWTP5eGFhIdLS0hARESEfu9+RQKL6jDlhRGRxxcXFGDZsGBITE7Fp06ZK1aYqLi7GhAkTcObMGUyYMAFubm6ltr116xYSExNNntu5cyeAe1NtgwcPRnZ2NpYvX27UVvxbzNTGxgaSJKG4uFg+d+HCBZNFWV1cXEwWZHVxcQEAo3ODBg2CjY0N3njjDaPiqUIIqFQq0zdZjSIiImBvb49ly5YZ9Gn16tVQq9UGq1JdXFzKLBdCZM04EkZEFjdlyhT88MMPiIqKQk5OjlFx1pKFWdVqtdzm1q1bOH/+PLZu3YrU1FQ8/fTTeOutt8r8vFu3bqFHjx7o3r07+vbti8DAQOTm5uK7777DL7/8goEDB6Jz584AgOeeew5ffvklJk+ejN9++w09e/bEzZs38dNPP+H//u//8NRTT6Ffv354//330bdvXzzzzDO4evUqPvroIzRv3hynTp0y+OwuXbrgp59+wvvvvw9/f38EBwcjLCwMXbp0AQDMmjULTz/9NOzs7BAVFYWQkBD873//w8yZM3HhwgUMHDgQrq6uSEtLw7fffouxY8fi1Vdfva/nX1He3t6YOXMm3njjDfTt2xcDBgxASkoKVqxYgQcffNDgf68uXbpgw4YNmDx5Mh588EE0aNAAUVFRNdpfolrLkksziYiEuFdaobRXWW0bNGggWrRoIZ599lnx448/mvV5d+/eFZ9++qkYOHCgaNq0qXBwcBDOzs6ic+fO4p133hEFBQUG7W/duiVmzZolgoODhZ2dnfD19RVDhgwRqampcpvVq1eLFi1aCAcHB9G6dWvxxRdfyCUg9J09e1Y88sgjwsnJSQAwKFfx1ltvicaNGwuFQmFUrmLLli3i4YcfFi4uLsLFxUW0bt1ajBs3TqSkpBg8m7LKd5Sk69+1a9fKbFeyRIXO8uXLRevWrYWdnZ3w8fERr7zyirh+/bpBmxs3bohnnnlGuLu7CwAsV0GkRxKiCjYHIyIiIqIKYU4YERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2Cx1lpMo9EgIyMDrq6u3PqDiIiojhBCID8/H/7+/lAoSh/vYhBWi2VkZCAwMNDS3SAiIqJKuHz5MgICAko9zyCsFnN1dQWg/R+xrH3wiIiIqPbIy8tDYGCg/He8NAzCajHdFKSbmxuDMCIiojqmvFQiJuYTERERWQCDMCIiIiILYBBGREREZAHMCavjNBoNCgsLLd2Nes3e3r7MJcZERESVwSCsDissLERaWho0Go2lu1KvKRQKBAcHw97e3tJdISKieoRBWB0lhEBmZiZsbGwQGBjIkZpqoiuYm5mZiSZNmrBoLhERVRkGYXVUUVERbt26BX9/fzg7O1u6O/Wat7c3MjIyUFRUBDs7O0t3h4iI6ok6M3wyYMAANGnSBI6OjvDz88PIkSORkZFh0EYIgXfffRctW7aEg4MDGjdujPnz5xu02b9/P0JDQ+Hg4IDmzZsjLi7O6LM++ugjBAUFwdHREWFhYfjtt98Mzt+5cwfjxo2Dp6cnGjRogMGDB+PKlSsGbS5duoR+/frB2dkZjRo1wtSpU1FUVFQ1DwNAcXExAHCKrAbonrHumRMREVWFOhOE9erVCxs3bkRKSgq2bNmC1NRUDBkyxKDNxIkT8dlnn+Hdd9/F2bNn8cMPP6Bbt27y+bS0NPTr1w+9evXCiRMnEBsbixdeeAG7d++W22zYsAGTJ0/G3LlzcezYMXTs2BGRkZG4evWq3GbSpEnYtm0bNm3ahAMHDiAjIwODBg2SzxcXF6Nfv34oLCzE4cOHsWbNGsTFxWHOnDlV/lw4PVb9+IyJiKhaiDrq+++/F5IkicLCQiGEEH/++aewtbUVZ8+eLfU906ZNE+3atTM4NmzYMBEZGSn/3K1bNzFu3Dj55+LiYuHv7y8WLFgghBAiNzdX2NnZiU2bNsltzpw5IwCIxMREIYQQO3bsEAqFQmRlZcltPv74Y+Hm5iYKCgrMvke1Wi0ACLVabXTu9u3b4s8//xS3b982+3pUOXzWRET1Q3Z2tsjIyCj1lZ2dXSWfU9bfb311MicsJycHa9euRY8ePeQcnW3btqFZs2aIj49H3759IYRAREQEFi9eDA8PDwBAYmIiIiIiDK4VGRmJ2NhYANrVhkePHsXMmTPl8wqFAhEREUhMTAQAHD16FHfv3jW4TuvWrdGkSRMkJiaie/fuSExMRIcOHeDj42PwOa+88gpOnz6Nzp07m7yvgoICFBQUyD/n5eXdx1MiIiIiHZVKheXLl5fbLiYmBp6enjXQozo0HQkA06dPh4uLCzw9PXHp0iV8//338rm///4bFy9exKZNm/Dll18iLi4OR48eNZiyzMrKMgiMAMDHxwd5eXm4ffs2srOzUVxcbLJNVlaWfA17e3u4u7uX2cbUNXTnSrNgwQIolUr5FRgYaOaTqTtGjx4NSZIgSRLs7Ozg4+ODJ554Ap9//nmFSm3ExcUZ/W9ARERUGnNratZk7U2LBmEzZsyQ/yCX9jp79qzcfurUqTh+/Dh+/PFH2NjY4LnnnoMQAoC2lEBBQQG+/PJL9OzZE4899hhWr16Nffv2ISUlxVK3WCEzZ86EWq2WX5cvX662z1KpVMjMzCz1pVKpqu2z+/bti8zMTFy4cAE7d+5Er169MHHiRPTv379KFy8QEZF10/9bl52dbenuGLHodOSUKVMwevToMts0a9ZM/t7LywteXl5o2bIl2rRpg8DAQPz6668IDw+Hn58fbG1t0bJlS7l9mzZtAGhXKrZq1Qq+vr5GqxivXLkCNzc3ODk5wcbGBjY2Nibb+Pr6AgB8fX1RWFiI3Nxcg5GYkm1KrqjUXVPXxhQHBwc4ODiU+TyqgqWHZB0cHOTn0LhxY4SGhqJ79+54/PHHERcXhxdeeAHvv/8+vvjiC/z999/w8PBAVFQUFi9ejAYNGmD//v14/vnnAdxLmp87dy7mzZuHr776CkuXLkVKSgpcXFzQu3dvLFmyBI0aNary+yAiotrL3L91lmTRkTBvb2+0bt26zFdpJRh0U1e6HKqHHnoIRUVFSE1Nldv89ddfAICmTZsCAMLDw7Fnzx6D6yQkJCA8PByAthRBly5dDNpoNBrs2bNHbtOlSxfY2dkZtElJScGlS5fkNuHh4fjjjz8MVlQmJCTAzc0Nbdu2rcSTqlq1cUi2d+/e6NixI7Zu3QpAm4u3bNkynD59GmvWrMHevXsxbdo0AECPHj2wZMkSuLm5yf8P59VXXwUA3L17F2+99RZOnjyJ7777DhcuXCg30CciovpBf+SrZBmrktRqV6SlBUGtdq2h3hmrE4n5SUlJOHLkCB5++GE0bNgQqampmD17NkJCQuTAJyIiAqGhoRgzZgyWLFkCjUaDcePG4YknnpBHx15++WUsX74c06ZNw5gxY7B3715s3LgR27dvlz9r8uTJGDVqFLp27Ypu3bphyZIluHnzpjzyolQqER0djcmTJ8PDwwNubm4YP348wsPD0b17dwBAnz590LZtW4wcORKLFy9GVlYWXn/9dYwbN65GRrrqqtatW+PUqVMAIC+WAICgoCD873//w8svv4wVK1bA3t4eSqUSkiQZjSyOGTNG/r5Zs2ZYtmwZHnzwQdy4cQMNGjSokfsgIqKao1KpUFhYCLVajQ0bNpj1nmPHOmPbtv4QQgFJ0iAqKh6hoceruafG6kQQ5uzsjK1bt2Lu3Lm4efMm/Pz80LdvX7z++utyUKNQKLBt2zaMHz8ejzzyCFxcXPDkk0/ivffek68THByM7du3Y9KkSVi6dCkCAgLw2WefITIyUm4zbNgwXLt2DXPmzEFWVhY6deqEXbt2GSTaf/DBB1AoFBg8eDAKCgoQGRmJFStWyOdtbGwQHx+PV155BeHh4XBxccGoUaPw5ptv1sDTqruEEPL04k8//YQFCxbg7NmzyMvLQ1FREe7cuYNbt26VuUPA0aNHMW/ePJw8eRLXr1+XR0wvXbpUK0YhiYio6lRkylGtdkVOjifs7ArkAAwAhFBg27b+CAk5D6Uyvzq7a6ROBGEdOnTA3r17y23n7++PLVu2lNnmsccew/HjZUe7MTExiImJKfW8o6MjPvroI3z00UeltmnatCl27NhRdofJwJkzZxAcHIwLFy6gf//+eOWVVzB//nx4eHjg4MGDiI6ORmFhYalB2M2bNxEZGYnIyEisXbsW3t7euHTpEiIjI2t0apWIiGqGuf+26498ARqUzMYSQoGcHA8GYWSd9u7diz/++AOTJk3C0aNHodFo8N5778kbk2/cuNGgvb29vdE2QmfPnoVKpcLChQvl8h6///57zdwAERHVKqWNfGkDMAHg3m4okqSBh0cOgJrdDpBBGNW4goICZGVlobi4GFeuXMGuXbuwYMEC9O/fH8899xySk5Nx9+5dfPjhh4iKisKhQ4ewcuVKg2sEBQXhxo0b2LNnDzp27AhnZ2c0adIE9vb2+PDDD/Hyyy8jOTkZb731loXukoiILKVkzte9AExHko8rFAKLF+fhmWeGw97evsYKtQJ1rFgr1Q+7du2Cn58fgoKC0LdvX+zbtw/Lli3D999/DxsbG3Ts2BHvv/8+Fi1ahPbt22Pt2rVYsGCBwTV69OiBl19+GcOGDYO3tzcWL14Mb29vxMXFYdOmTWjbti0WLlyId99910J3SURElqBWuxrlfGlHvu6RJA2ioz/DqFFx+O23q5gyxR1+fn41GoABgCR01U6p1snLy4NSqYRarYabm5vBuTt37iAtLQ3BwcFwdHSs0HUtXSesrrmfZ01ERNUnMzMTq1atMjiWlhaENWtGmWitzQUruRqyOv7WlfX3Wx+nI62Qp6cnYmJiykxorOkhWSIiopJ05SdKo1arjY55eKiMpiB1I19379pjxIgwtG//IIAHLf63jkGYlWKARUREtVllK94rlfmIioo3qgMWEJAJAAgNjao1fwMZhBEREVGtU5nSQroVkSEh5xEbuwQ5OR7w8MjBiy8+CXd3y498lcQgjIiIiGo9XYDl4aEyqOc1dOhQuLu7Y906J7z5phIajfTvikc1pk69XesCL30MwoiIiKhWK2ubIXd3dxQX+2HaNODfTVKg0UiYPt0dw4a5o5bGXwAYhBEREZGFlJV4n52dDcB0yYmS2wydO3cvANMpLgbOnwcCAqqv//eLQRgRERHVOHMT73NyPI2KrZbcZqhFC0ChMAzEbGyA5s2rtMtVjsVaiYiIqMaZm3ivKzmhT3+bIUA72rVqlTbwArRfP/mkdo+CAQzCiIiIqBZQq12RlhYEtdrV4Liu5IQuENPlhJXcbDs6GrhwAdi3T/s1OrqGOn4fOB1J9cr+/fvRq1cvXL9+He7u7ma9JygoCLGxsYiNja3WvhERWRtzcr6AshPvASA09DhCQs7LJSf0AzD9DbcDAmr/6Jc+BmFUo0aPHo01a9bgpZdeMtqUe9y4cVixYgVGjRqFuLg4y3SQiIiqhLk5X+Ul3g8aNAheXl4m31uby0+Yg0EY1bjAwECsX78eH3zwAZycnABo92dct24dmjRpYuHeERFRZemPfOmPdJWlvMR7Ly8v+Pn5VXlfawPmhFGNCw0NRWBgILZu3Sof27p1K5o0aYLOnTvLxwoKCjBhwgQ0atQIjo6OePjhh3HkyBGDa+3YsQMtW7aEk5MTevXqhQsXLhh93sGDB9GzZ084OTkhMDAQEyZMwM2bN6vt/oiIrJFu5GvVqlVYtWqVwb/xZTEn8b6+YhBGSE/XJjKmp9fcZ44ZMwZffPGF/PPnn3+O559/3qDNtGnTsGXLFqxZswbHjh1D8+bNERkZiZwc7X+Yly9fxqBBgxAVFYUTJ07ghRdewIwZMwyukZqair59+2Lw4ME4deoUNmzYgIMHDyImJqb6b5KIyIpUZpshwPzE+/qI05FWbvVqYOxYbW0VhUK7xLcmVpQ8++yzmDlzJi5evAgAOHToENavX4/9+/cDAG7evImPP/4YcXFxePLJJwEAn376KRISErB69WpMnToVH3/8MUJCQvDee+8BAFq1aoU//vgDixYtkj9nwYIFGDFihJx036JFCyxbtgyPPvooPv74Yzg6Olb/zRIRUanbDgHmJ97XNwzCrFh6+r0ADNB+feklIDKy+leXeHt7o1+/foiLi4MQAv369TNIvExNTcXdu3fx0EMPycfs7OzQrVs3nDlzBgBw5swZhIWFGVw3PDzc4OeTJ0/i1KlTWLt2rXxMCAGNRoO0tDS0adOmOm6PiIj0lLX6sT4n3peHQZgVs/Q2D2PGjJGnBT/66KNq+YwbN27gpZdewoQJE4zOcREAEVHlmCo9UTIRXzfyZWdXUObqx/qceF8eBmFWzNLbPPTt2xeFhYWQJAmRkZEG50JCQmBvb49Dhw6hadOmAIC7d+/iyJEj8tRimzZt8MMPPxi879dffzX4OTQ0FH/++Sea1/a9K4iI6ghzSk+UHPkqb9sha8XEfCtm6W0ebGxscObMGfz555+w0XXiXy4uLnjllVcwdepU7Nq1C3/++SdefPFF3Lp1C9H/Jq29/PLLOHfuHKZOnYqUlBSsW7fOqL7Y9OnTcfjwYcTExODEiRM4d+4cvv/+eybmExFVgEqlQmZmJjIzM5GRkVFmW1N1vwBh0EZ/9WN9zvkqD0fCrFx0tDYH7Px57QhYTVcadnNzK/XcwoULodFoMHLkSOTn56Nr167YvXs3GjZsCEA7nbhlyxZMmjQJH374Ibp164a3334bY8aMka/xwAMP4MCBA5g1axZ69uwJIQRCQkIwbNiwar83IqL6oLyRr5IJ96bqfgESAA0ABRQKgcWL8/DMM8Prfc5XeSQhhCi/GVlCXl4elEol1Gq1UbBy584dpKWlITg4mCv8qhmfNRFZs8zMTKxatcrkOVMJ9yEh57FkSaxBICZJGkRHf4a7d+0xZcpT6NChYU113yLK+vutj9ORREREVGGlbTcEAFFR8VAotGM8NjYC77yThzffjMJ770XV+wCsIjgdSURERGbTTT/evOlcasJ9aOhxzJkThvx8HzRvLiEgwB2AuyW6W6sxCCMiIiKzlJx+1OV56egn3Pv7a2CllSfMxulIIiIiKpep6UdJArSBmHVtN1RVOBJWx3FdRfXjMyYia5Geri3k3aKF8Wp5U6sehVBgyJCNcHG5ZVXbDVUVBmF1lK6uVmFhIZycnCzcm/pNVxW6ZC0zIqK6rGTV+3XrnDBtmhIajQSFQuD9929i4sQG8nkPD5VR4VVJ0iAwMB1KZb7B9kPWXnrCXAzC6ihbW1s4Ozvj2rVrsLOzg0LBmeXqoNFocO3aNTg7O8PWlv+5EFHdp1KpcO3aNWzYsEE+pla7/ltWQgIAaDQSJk1yRseO5xEYqD2mVOYjKireqCSFbvTL39+fgVcF8a9KHSVJEvz8/JCWloaLFy9aujv1mkKhQJMmTSBpkx+IiOqskoVXdSsdr10zPdUYF3cQwcEX8eyzz8LZ2RkAMGfONVy4YIugoCL4+z8I4EGOfFUSg7A6zN7eHi1atDDaRJWqlr29PUcaiaheuHr1qvz9sWOd8cMP/aFdo2ec+6q/0tHZ2VneZNvPD+jSpSZ6W/8xCKvjFAoFq7gTEZFZioqKAGhHwO4FYIB2WyF9XOlYExiEERERWZnLlwNRVpWqIUM2o337MzXXISvFORYiIiKS6VY8UvXjSBgREVE9ol96IiNDgbQ0WwQHF8HfX4Pr168DAAIDL0ObB2Y4DcmCqzWLQRgREVE9ob/6seQWQ1FR8QgNPQ5AW25iwIBtehXwNejRIxFhYUkMwGoQgzAiIqI6Tjf6lZ2dDbXaFZcvBxok3guhwLZt/REScl4OskJDjyMk5DxycjyMqt1TzWAQRkREVAfpAi+1Wi0XXtWOfsUa1fwCtIFYTo6HQbClVOabFXxxC6LqwSCMiIiojjFVdPXy5UCDDbZL0q/7VZ6hQ4fC3d0dALcgqk4MwoiIiOoY/SLd+rlfpSmZcK+/z2NJDLpqDoMwIiKiOkqtdi139Gvw4M3yJts6Xl5ecgV8shwGYURERHVUTo7xno86utEvFl2tvRiEERER1SL6db5M0U+S9/BQQZI0JQIxDYYMMR79otqHQRgREVEtYSrhPifHEx4eKoOAaujQoQC0qxujouKN6oGVN/rF1Y61A4MwIiKiWqK0hPuSxVZ1G3ED5tf70iXjM/G+9mAQRkREVMuUTLg3VWxVnzn1vvz9/Rl81TIMwoiIiCzA1B6PSmUuANMJ9/rFVu3s7Mz6DF29L45+1U4MwoiIiGpY6Xs8NkRUVGeEhJw3SrjXL7aqVCoRExNTbgI/A6/ajUEYERFRDdNuN2Rc5V437Rgbu8Rkwr3+lCMDrLqPQRgREVEN0U1BrlpVjCVLyt7jkRts138MwoiIiGqAbgoyPd0Pq1e/YNYej+ZusE11E4MwIiKiaqZSqZCRkYFDh8KRkBABoOwq9+UFXqzzVT8wCCMiIqpGf/xxHe+9F4+//w7CL788AUAy0cp0lXtTG20z4b7+YBBGRERUxXS5X+vWOWHaNHdoNKMACJgKwMqqcs+Ntus3BmFERERVSKVSYf78Nbh8ORCbNw/GvcDL9AhYdPRnCAjIrMEeUm3BIIyIiKgKxcXZlLry0ZDAE0/8VGYAxtyv+o1BGBERUSWlpwPnzgEtWgABAcCRI8DUqUoIYWrUC9BNSUqSBhERP+GhhxKNWnCPR+vBIIyIiKgCDPO9lNBoJEiSwH/+cxs7djiVGoDpAi9//4wy634xD8x6MAgjIiIyk67Wl1rt+u+UozbgEkLC9u1OKC3xfvBg45WPpeEUpPVgEEZERGQm3V6NpjbYrujKx5IGDRoEf39/TkFaEQZhREREFeThoTLaYNtYxVY+MgCzPuUt3SAiIqISlMp8RET8BG2ivT7tz5KkwYAB8WYHYEOHDmUAZoU4EkZERFQJupWNum2IzE28N8Xd3b16Okm1GoMwIiKiSnrooUS0b5+MnByPCgde+piMb53qzHTkgAED0KRJEzg6OsLPzw8jR45ERkaGfH7evHmQJMno5eLiYnCdTZs2oXXr1nB0dESHDh2wY8cOg/NCCMyZMwd+fn5wcnJCREQEzp07Z9AmJycHI0aMgJubG9zd3REdHY0bN24YtDl16hR69uwJR0dHBAYGYvHixVX8RIiIqDZQKvMRHHzRrABs0KBBGDt2rMErJiaGU5FWqs4EYb169cLGjRuRkpKCLVu2IDU1FUOGDJHPv/rqq8jMzDR4tW3bFv/973/lNocPH8bw4cMRHR2N48ePY+DAgRg4cCCSk5PlNosXL8ayZcuwcuVKJCUlwcXFBZGRkbhz547cZsSIETh9+jQSEhIQHx+Pn3/+GWPHjpXP5+XloU+fPmjatCmOHj2Kd955B/PmzcOqVauq+SkREVFtpqsBpv9iAGa9JCFEyazCOuGHH37AwIEDUVBQADs7O6PzJ0+eRKdOnfDzzz+jZ8+eAIBhw4bh5s2biI+Pl9t1794dnTp1wsqVKyGEgL+/P6ZMmYJXX30VAKBWq+Hj44O4uDg8/fTTOHPmDNq2bYsjR46ga9euAIBdu3bhP//5D9LT0+Hv74+PP/4Ys2bNQlZWljzEPGPGDHz33Xc4e/as2feYl5cHpVIJtVoNNze3Sj8rIiKqGro6YZU1duxYFmK1Aub+/a4zI2H6cnJysHbtWvTo0cNkAAYAn332GVq2bCkHYACQmJiIiIgIg3aRkZFITNQmV6alpSErK8ugjVKpRFhYmNwmMTER7u7ucgAGABEREVAoFEhKSpLbPPLIIwZz/JGRkUhJScH169dLva+CggLk5eUZvIiIqPbw9PTEsGHDKv1+5n6RvjoVhE2fPh0uLi7w9PTEpUuX8P3335tsd+fOHaxduxbR0dEGx7OysuDj42NwzMfHB1lZWfJ53bGy2jRq1MjgvK2tLTw8PAzamLqG/meYsmDBAiiVSvkVGBhYalsiIrp/6enAvn3ar+ZSKpUV/pxBgwYx94uMWDQImzFjhslkev2X/vTd1KlTcfz4cfz444+wsbHBc889B1Ozqd9++y3y8/MxatSomryd+zZz5kyo1Wr5dfnyZUt3iYioXkpPB6ZOBZo0AXr3Bpo2BVavrr7PYyFWMsWiJSqmTJmC0aNHl9mmWbNm8vdeXl7w8vJCy5Yt0aZNGwQGBuLXX39FeHi4wXs+++wz9O/f32g0ytfXF1euXDE4duXKFfj6+srndcf05+yvXLmCTp06yW2uXr1qcI2ioiLk5OQYXMfU5+h/hikODg5wcHAo9TwREd2/1auBsWMBjebeMY0GeOklIDISCAioms8ZNGgQvLy8YG9vzwCMTLJoEObt7Q1vb+9KvVfz7389BQUFBsfT0tKwb98+/PDDD0bvCQ8Px549exAbGysfS0hIkIO44OBg+Pr6Ys+ePXLQlZeXh6SkJLzyyivyNXJzc3H06FF06dIFALB3715oNBqEhYXJbWbNmoW7d+/KOWsJCQlo1aoVGjZsWKn7JSKi+5eeDrz4opA33tZXXAwkJang5IQygyZz87o4+kXlEnXAr7/+Kj788ENx/PhxceHCBbFnzx7Ro0cPERISIu7cuWPQ9vXXXxf+/v6iqKjI6DqHDh0Stra24t133xVnzpwRc+fOFXZ2duKPP/6Q2yxcuFC4u7uL77//Xpw6dUo89dRTIjg4WNy+fVtu07dvX9G5c2eRlJQkDh48KFq0aCGGDx8un8/NzRU+Pj5i5MiRIjk5Waxfv144OzuLTz75pEL3rVarBQChVqsr9D4iIjJt3LibAhAmX5JULCZNek/MmzdPZGdnl3md7OxskZGRUeqrvPdT/Wbu3+86EYSdOnVK9OrVS3h4eAgHBwcRFBQkXn75ZZGenm7Qrri4WAQEBIjXXnut1Gtt3LhRtGzZUtjb24t27dqJ7du3G5zXaDRi9uzZwsfHRzg4OIjHH39cpKSkGLRRqVRi+PDhokGDBsLNzU08//zzIj8/36DNyZMnxcMPPywcHBxE48aNxcKFCyt83wzCiIjuz+XLQuzdq/166lSOUCg0pQRhxWLAgO/FvHnzxLx580RGRoalu051mLl/v+tsnTBrwDphRESVp5/7pVAIdO9+GIcPP2TUrl27P9CnT4JBxXvW86L7Ua/rhBEREZUlPd0w+V6jkZCYGA5AY9BOkjRGARhRTWEQRkRE9c65c4arHwFACAV69EiEJGlPSJIGUVHxDMDIYiy6OpKIiOh+pacDhw9rv+/RA3ByUsHNrQgKRSNoNPdWQUqSBmFhSQgLS0JOjgc8PHIYgJFFMQgjIqI6a/Vq4MUXtan1ACBJAlFRhxAaehz9+3fGtm39IYTCaNSLwRfVBgzCiIiozlGpVLhwoQgvvtjIoOaXEBK2beuPkJDzCA09jpCQ8xz1olqLQRgREdUpKpUK8+evwenT7SBEpNF5IRTIyfGAUpkvvyqKG21TTWAQRkREdUpcnA2WLImFEAoAAoBh9XtJ0sDDI6dS1x40aBAr3VON4epIIiKqM9LTgWnTlP8GYIA2ALtX7vJ+VzwyAKOaxJEwIiKqM7SlJ0ru+yjhkUf2oVGjawgMTK90APbss88yAKMaxSCMiIjqBJWq9NITXbocr1DwNWjQIHh5eck/29vbMwCjGscgjIiIaj2VSoXly5cDQJmlJ8zl5eXFbYnI4hiEERFRrVdYWCh/XxWlJ7j6kWoDBmFERFTnmFt6ouS0I8CpR6o9GIQREVG1SU/XJtO3aAEEBNT853PakWozlqggIqJqsXo10LQp0Lu39uvq1cZt0tOBffu0X4msDYMwIiKqcunpwNixgEaj/VmjAV56yTDYMidII6rPOB1JRERVQn/qUVvPy/B8cTFw/rz2+8OHTQdpkZFVO23JBHyqzRiEERHRfVu9+l5QpVAACxdqv+oHYjY2wJEjwOOPCxMFV7VBWlKSCk5OqHTivH4iPhPwqbbjdCQREd0XU1OPM2cKvPaaGpJ0b0uh4mKB6dNNB2CAtujqoUNrsHz5cqhUKoNz5o5o+fv7w8/PD35+fgzAqNbjSBgREd0X01OPEs6e3Q0hhuDeBtsShCj57n/PlCi6ql8XDNCOjMXExBgd18eRL6prGIQREdF9adHCeOpRkjTQBl/lTbhoMGTIZrP2fGSARfUNpyOJiKjSVCoVbGwysXhxLmxstMNculGtwMDL/wZj+jTyMUnSYMCAeLRvf6bSm24T1WUcCSMiokrR388RACZMcDXaSigqKt5on8f73XKIqL5gEEZERJVSMj/L1FZCpe3zyOCLiEEYERFVQno68Ouv9lCrXcsNqMzd55HI2jAIIyKiCrlXE8wTkhSLqKh4hIYet3S3iOocJuYTEZHZStYEE0KBbdv6Q612rdLPYaV7sgYcCSMiIrOoVCr8+qt2BEyfEArk5Hjc95Sjrto9632RtWAQRkREJunvBenkpF0JqVa7QpJiIcS9iRRJ0sDDI+e+P8/Lywt+fn73fR2iuoLTkUREZGT1aqBpU6B3b+3XuDgbANok+6ioeINaX/qV7onIfBwJIyIiA6b2gpw+XYkJE7QrIUsrO1Ga//znP9ixY0e5n8s8MLI2DMKIiKycbtqxQQPgn3/UOHNGQKNxN2hTXCwZ5H2VVnZCl9elo8vvatasGfd9JCqBQRgRkRXQz+8KCLh3/F65CQAQAJT/fjVkbt5XaXldDLCIjDEnjIioniuZ37V6tfZ4yWlH7Ybb+l///Yl5X0TVgiNhRET1mKn8rpdeArp1u46UFI1RuQlTBg/ejPbtz1RzT4msD4MwIqJ67Nw5/ZEureJi4L33voeHR45RuYmSJEmDwMD0au4lkXXidCQRUT2lUqng5nYFCoVhjpdCIeRVjfrlJu7lgmm/VmYakisciczHkTAionpIpdIWVwWA/v07Y9u2/hBCAUnSoH//e4GVfrkJO7tC3L1rL38trfxEyRWQOlzhSFQxDMKIiOoh/XIQ5dX1Kq3cRGlY2Z6oajAIIyKqA0orMWGuigZaRFT9mBNGRFTLlVZiwlKY90VUNTgSRkRUi5VWYiIysnIjYvdj0KBB8Pf3Z94XURXhSBgRUS1WWomJ8+drvi9eXl4MwIiqEIMwIqJarEULQFHiX2obG6B5c8v0h4iqDoMwIqJaSqVSwcYmE4sX58LGRlu7y8ZGYNGiXNjYZEKlUt33ZzzxxBPo1avXfV+HiCqOOWFERLWQfp0vAJgwwVUuMXHjRj5WrdIej4mJgaenp9HqSXOT51u1aoXCwkLs27evOm6DiMrAIIyIqBbSr/MFlF5iorCwEKtX30veVyiAVauA6GhPxMTEGF1Hn664qrkjalwVSVS1GIQREdVhGRmKMlZPmpdE7+lpfsBGRFWHQRgRUS2lVrsiJ8cTHh6qUgutnjhx0+TqyaQkFZycYHbgxACLqOYxCCMiqmXS04H5813xySex8n6PUVHxCA09btT29OnvIEnadjqSpMGhQ2uQnJwv54wRUe3D1ZFERLXI6tVAkybAypUN5MBKCAW2besPtdrVqL1SmY+oqHhIknY4TBew6UbOyppiJCLL4kgYEVEtoa2OLyCEZHROCAVycjxMTkuWt0E3EdVODMKIiGoBlUqFPXtuQqNpYvK8JGng4ZFT6vu5QTdR3cMgjIjIwnQ1wdRqV6P8LsB4ipGI6gcGYUREFqaftxUenojExPB/AzENevRIRFhYkkEANmjQIADA1q1ba7qrRFSFGIQREdUCx451xrZt/fWCr0NGwZeOl5dXzXeQiKqc2UFYXl6e2Rd1c3OrVGeIiKyNSqVCcnKuXgAGAAokJoYjLCzJon0joupldhDm7u4OSTJesaNPCAFJklBcXHzfHSMiqu90uWDJyW0hRBuDc2WthgTM30KIWw0R1V5mB2Hc3JWIqGoVFhbK05AllbcaklsNEdV9Zgdhjz76aHX2g4jI6mRkKEpMQ+qYtxqSARZR3VbpxPzc3FysXr0aZ86cAQC0a9cOY8aMgVKprLLOERHVZ2lptiYCMGDIkM1o3/5Mqe/jFCNR/VCpbYt+//13hISE4IMPPkBOTg5ycnLw/vvvIyQkBMeOHavqPhIR1TsqlQpK5VV5uyEdSdIgMDDd5HuGDh3KvSCJ6hFJCCEq+qaePXuiefPm+PTTT2Frqx1MKyoqwgsvvIC///4bP//8c5V31Brl5eVBqVRCrVZzxSlRLZaeDpw7B7RoAQQElH9cl5APGJamKG2j7kGDBsHf35/BF1EdYe7f70pNR/7+++8GARgA2NraYtq0aejatWtlLklEVCetXg2MHQtoNIBCAbz//g0MHZqPdeucMG2aEhqNBIVCYPFiNZ555jbs7e0NkunN2ffRy8uLARhRPVSpIMzNzQ2XLl1C69atDY5fvnwZrq6uVdIxIqLaTKVS4cKFIowd2wgajbZ8j0YDTJrkjOTkdVi9+gV5I26NRsLUqW7455/PoVTmY+jQoQbX4r6PRNapUkHYsGHDEB0djXfffRc9evQAABw6dAhTp07F8OHDq7SDRES1jW46MS0tCBrNKINzQihw6VITo4R7/bpfRUVFFfo8JuIT1U+VSsx/9913MWjQIDz33HMICgpCUFAQRo8ejSFDhmDRokVV3UcAwIABA9CkSRM4OjrCz88PI0eOREZGhkGb3bt3o3v37nB1dYW3tzcGDx6MCxcuGLTZv38/QkND4eDggObNmyMuLs7osz766CMEBQXB0dERYWFh+O233wzO37lzB+PGjYOnpycaNGiAwYMH48qVKwZtLl26hH79+sHZ2RmNGjXC1KlTK/wPLxHVTrrpRA8PlcnE+iZNLpk8XlbdL1MGDRrERHyieqxSQZi9vT2WLl2K69ev48SJEzhx4gRycnLwwQcfwMHBoar7CADo1asXNm7ciJSUFGzZsgWpqakYMmSIfD4tLQ1PPfUUevfujRMnTmD37t3Izs6WN7rVtenXrx969eqFEydOIDY2Fi+88AJ2794tt9mwYQMmT56MuXPn4tixY+jYsSMiIyNx9epVuc2kSZOwbds2bNq0CQcOHEBGRobB5xQXF6Nfv34oLCzE4cOHsWbNGsTFxWHOnDnV8myIqPLS04F9+7RfK0qpzEdUVLwccOkS6wMCMk0er+iUI3PBiOq3Sq2OrA1++OEHDBw4EAUFBbCzs8PmzZsxfPhwFBQUQKHQxpbbtm3DU089JbeZPn06tm/fjuTkZPk6Tz/9NHJzc7Fr1y4AQFhYGB588EF55ZJGo0FgYCDGjx+PGTNmQK1Ww9vbG+vWrZODwLNnz6JNmzZITExE9+7dsXPnTvTv3x8ZGRnw8fEBAKxcuRLTp0/HtWvXzJ5a4OpIoupVMql+1SogOrr892VmZmLVqlXyz2q1q8nE+tKODxo0CFu3bi33c8aOHQs/P7+K3RQRWZy5f78rNRJ2584dvPPOO/jPf/6Drl27IjQ01OBV3XJycrB27Vr06NEDdnZ2AIAuXbpAoVDgiy++QHFxMdRqNb766itERETIbRITExEREWFwrcjISCQmJgLQTjEcPXrUoI1CoUBERITc5ujRo7h7965Bm9atW6NJkyZym8TERHTo0EEOwHSfk5eXh9OnT1fDEyGiikpPvxeAAdqvL72kPV7R0TGlMh/BwReNRrpKO05EBFQyMT86Oho//vgjhgwZgm7dupW7sXdVmT59OpYvX45bt26he/fuiI+Pl88FBwfjxx9/xNChQ/HSSy+huLgY4eHh2LFjh9wmKyvLIDACAB8fH+Tl5eH27du4fv06iouLTbY5e/asfA17e3u4u7sbtcnKyirzc3TnSlNQUICCggL557y8vPIeCRFV0rlz9wIwneJiYOlS4P33Kz46VhG6/2NYHibkE9VvlQrC4uPjsWPHDjz00EP39eEzZswoN5H/zJkzcimMqVOnIjo6GhcvXsQbb7yB5557DvHx8ZAkCVlZWXjxxRcxatQoDB8+HPn5+ZgzZw6GDBmChISEGgsU78eCBQvwxhtvWLobRPWeSqWCm1sRFIp75SUAQKEQeO896JWWAF56SaBTp6sICrKtsvwspVLJzbeJqHJBWOPGjaukHtiUKVMwevToMts0a9ZM/t7LywteXl5o2bIl2rRpg8DAQPz6668IDw/HRx99BKVSicWLF8vtv/76awQGBiIpKQndu3eHr6+v0SrGK1euwM3NDU5OTrCxsYGNjY3JNr6+vgAAX19fFBYWIjc312A0rGSbkisqddfUtTFl5syZmDx5svxzXl4eAgMDy3w+RFQx+tXq+/c3rFbfvXsiDh82/D+XxcUSPvxwJ4KDL1bZSkUGWEQEVDIIe++99zB9+nSsXLkSTZs2rfSHe3t7w9vbu1Lv1fw7j6Cbvrt165ackK9jY2Nj0Lbk9CQAJCQkIDw8HID2H8YuXbpgz549GDhwoPzePXv2ICYmBoA298zOzg579uzB4MGDAQApKSm4dOmSfJ3w8HDMnz8fV69eRaNGjeTPcXNzQ9u2bUu9JwcHh2pbXUpEWmVVqweAxMTwEjW+BDIy/BEcfBHXrl2Dp6en2dOEQ4cONUpdYABGRDqVWh157do1DB06FD///DOcnZ2N8htycipWC6c8SUlJOHLkCB5++GE0bNgQqampmD17Nq5cuYLTp0/DwcEBe/fuRUREBObNmydPR7722ms4e/Yszpw5AycnJ6SlpaF9+/YYN24cxowZg71792LChAnYvn07IiMjAWhLVIwaNQqffPIJunXrhiVLlmDjxo04e/asnNf1yiuvYMeOHYiLi4ObmxvGjx8PADh8+DAAbYmKTp06wd/fH4sXL0ZWVhZGjhyJF154AW+//bbZ983VkURVr+TKxpIOHQpHQsITAO5NU0qSBrGxS6BU5sujYSqVitOJRGRSte4dOXz4cPzzzz94++234ePjU+35Vs7Ozti6dSvmzp2Lmzdvws/PD3379sXrr78ujxz17t0b69atw+LFi7F48WI4OzsjPDwcu3btgpOTEwBt8v727dsxadIkLF26FAEBAfjss8/kAAzQ7gZw7do1zJkzB1lZWejUqRN27dplkGj/wQcfQKFQYPDgwSgoKEBkZCRWrFghn7exsUF8fDxeeeUVhIeHw8XFBaNGjcKbb75Zrc+JiO6fv38m9AMwQFvt/vLlACiVZ+TAiwEWEd2vSo2EOTs7IzExER07dqyOPtG/OBJGVHXS07UrIt3criA+fmWp7dRqVyxZEmu07ZCu4OrKlQ+ydhcRlala64S1bt0at2/frnTniIhq0urVQNOmQO/eQLdujXDsWOdS2+qq4AOG9SuEUGDbtv7IyKjUP5tEREYq9a/JwoULMWXKFOzfvx8qlQp5eXkGLyKi2kClUuHo0SsYO1boFWWVsG1bf6jVpa/wDg09jiFDthgdF0KBkydvQqVSVVeXiciKVConrG/fvgCAxx9/3OC4EAKSJKG4uPj+e0ZEdB90pSjS0oKg0YwyOCeEAjk5HmVWsg8MvAxJ0hhMS0qSBsnJ3+Hy5XxurE1E961SQdi+ffuquh9ERPdFl/PVogUQEHCvFIWHh8pkMKUrSVEa3bSkfh0x/U24y1oZSURkjkoFYY8++qhZ7f7v//4Pb775Jry8vCrzMUREZjG1Efd//qM9V14wNWjQIHh5eSEtLQ0JCQkG1y1ZR4x7QBJRVapUEGaur7/+Gq+++iqDMCKqFiqVChcuFGHs2HvbD+m2Gtq5M1duV1Yw5eXlBT8/P9jb2xsFYYA2iGPwRUTVoVqDsEpUvyAiMktZOV/FxRLWrk1CcPC9Y+UFU56enoiJiUFGRga2bt1aXd0mIpJVaxBGRFRdzMn5UqtdkZPjCQ8PlVmjWZ6ensz1IqIawyCMiOq00nK+UlObGx0LDT1u6e4SEckYhBFRnWdqI279qve6QqshIeeZ30VEtQaDMCKqF/RzvtLSgoy2HSqtNpi9vX2ZP5fG3HZERKWp1iDs2Wef5Z6HRFSlVCoVCgsLkZ2dXWobDw8VtNsOma4NpitLYW9vb1RwVZegX1ZumKn3ERFVVKWDsNzcXPz222+4evUqNBrDPdaee+45AMDHH398f70jItKjWxGpU1rifWpqcwCS3jsNa4PpylKUhgEWEdWESgVh27Ztw4gRI3Djxg24ublBku79YydJkhyEERHdD92ol47+6NexY51NJt6r1a7Ytq0/9IMwSQJCQs7XZNeJiMpVqSBsypQpGDNmDN5++204OztXdZ+IiMoY9dJuvK0LwIB7iff29gXyz/rM2SuSiKimVSoI++effzBhwgQGYERUbfRHwEqOeoWHJ5oMtDZv/i8kSYOy8sGIiGoLRflNjEVGRuL333+v6r4QERnRTS/qj3odPhz+b7BlTBuoAdpADEZ7RQJc2UhEtYPZI2E//PCD/H2/fv0wdepU/Pnnn+jQoQPs7OwM2g4YMKDqekhEVi0nx9No1AtQoFmzcyYS8LWEUGDIkI1wcblltFfk0KFDmXhPRLWC2UHYwIEDjY69+eabRsckSUJxcfF9dYqI6reSCfcl6Y9UlbYtUWpqCEwFYLrzgYHpJnPA3N3dK91vIqKqZHYQVrIMBRFRZZRMuC/NsGHDAJjelig8PBGHDz9k8n2mph+JiGqjSiXmf/nllxg2bBgcHBwMjhcWFmL9+vUsUUFEpSo5AlZara+7d+/K35valigxMbzENKUGQ4ZsLnUEjIiotqlUYv7zzz8PtVptdDw/Px/PP//8fXeKiKzDsWOdsWRJLNasGYUlS2Jx7Fhn+Vx+/r1A6l6gliNvTxQVFS8n50uSBgMGxKN9+zPlBmBMyiei2qJSI2FCCIMCrTrp6elQKpX33Skiqv9MrXrU32Q7ISEBQOlFWUuOjpUWfOm2KAK43RAR1S4VCsI6d+4MSZIgSRIef/xx2Nree3txcTHS0tLQt2/fKu8kEdU/plY9liyqWl6gpr9pd2nK26KIiMhSKhSE6VZInjhxApGRkWjQoIF8zt7eHkFBQRg8eHCVdpCI6pfc3FwApa961C+qak6gRkRUV1UoCJs7dy4AICgoCMOGDYOjo2O1dIqI6ieVSoWNGzcCML3qseSqRnMCNSKiuqpSOWGjRo0CoF3ldPXqVaPyFU2aNLn/nhFRnVNe/S/dKJiOLq/r8uUAABICAy8bnDcnUCsPE/GJqLaqVBB27tw5jBkzBocPHzY4rkvYZ7FWIutjbv0vfWq1K5KSwnD4cDgAw8R7nbIS8Pv06WOQFgEAtra2ckFWJuITUW1WqSBs9OjRsLW1RXx8PPz8/EyulCQi62Ju/S8d/VWPOiUT73VKS8APCgpi0j0R1VmVCsJOnDiBo0ePonXr1lXdHyKqB0orK6FTctWjPibeE5G1qFSx1rZt2yI7O7uq+0JE9UBpZSXUale5jelNubUqknjPfC8iqssqNRK2aNEiTJs2DW+//TY6dOgAOzs7g/Nubm5V0jkiqnvMKSthatWjlmHivX6h1ZKY70VEdV2lgrCIiAgAQO/evQ3ywZiYT0TmlJUobVPusLAkg2lIFlolovqsUkHYvn37qrofRFRPmFtWwtxth4iI6qtKBWGPPvoofvnlF3zyySdITU3F5s2b0bhxY3z11VcIDg6u6j4SUR1TVoA1bNgwCCGwcePGcrcdYs4XEdVnlQrCtmzZgpEjR2LEiBE4fvw4CgoKAABqtRpvv/02duzYUaWdJKLar2TAVFqA5e3tDU9PT8TExJRZ2JU5X0RU30lCCFHRN3Xu3BmTJk3Cc889B1dXV5w8eRLNmjXD8ePH8eSTTyIrK6s6+mp18vLyoFQqoVarudiB6oTyKuYzsCIia2Du3+9KjYSlpKTgkUceMTquVCqNtiUhIuvBAIuIyHyVCsJ8fX1x/vx5BAUFGRw/ePAgmjVrVhX9IqJK4mgUEVHdUKkg7MUXX8TEiRPx+eefQ5IkZGRkIDExEa+++ipmz55d1X0kIjOV3L+xtK2DYmJiGIgREVlYpYKwGTNmQKPR4PHHH8etW7fwyCOPwMHBAa+++irGjx9f1X0kIjPpj4CVtXVQWSNlpnB0jYio6lUqCJMkCbNmzcLUqVNx/vx53LhxA23btkWDBg2qun9EVAmlbR1UcmNsc5QcXSsNR9eIiCqmUkGYjr29Pdq2bVtVfSGiKmLO1kHmKjkCVtoUZ0VH14iIrN19BWFEVPPKmhrMzs4GYN7WQZVR1hQnERFVDIMwolqotEBLrVZjw4YN5b7f3K2DKqIqpziJiIhBGFGtY24OVnmqem/GqpziJCIiBmFEtY65OVjlnQNK3zqoMqpripOIyFoxCCOqxcrKwbqf/KzKbIxdHVOcRETWjEEYUS1VVg4WgDLzswYNGgQvLy+T172fml5VPcVJRGTNGIQR1VJl5WABUpn5WV5eXvDz86uSfpQcNSttirMyo2tERNaMQRhRLVVeDlZN5Wd5enoiJiaGFfOJiKoYgzCiWqq8HKyazM9igEVEVPUYhBHVYmXlYJV1jlODRES1H4MwolrG3BysoUOHwt3d3eT7OXJFRFT7MQgjqmWYg0VEZB0YhBHVQgywiIjqP0X5TYiIiIioqjEIIyIiIrIABmFEREREFsCcMCILUqlUTMAnIrJSDMKILESlUmH58uXltouJiWEgRkRUD3E6kshCyhoBq0w7IiKqWzgSRlTHlJzCzM3NRVFREQAgK8sWGRkuaN/eAf7+GgCc0iQiqq0YhBHVIWVNYR471tloL8nQ0OMAOKVJRFQbMQgjMqG2JsyX1ie12lUOwABACAW2beuPkJDzUCrzOaVJRFQLMQgjKqE6EuZNBXXZ2dmV6p8+tdoVOTmeuHnTWQ7AdIRQICfHw+S+k0REZHkMwohKqOqEeXODOl1A5eGhMitwKjn9CGigv9ZGkjTw8Mgxq49ERFTz6szqyAEDBqBJkyZwdHSEn58fRo4ciYyMDIM2GzduRKdOneDs7IymTZvinXfeMbrO/v37ERoaCgcHBzRv3hxxcXFGbT766CMEBQXB0dERYWFh+O233wzO37lzB+PGjYOnpycaNGiAwYMH48qVKwZtLl26hH79+sHZ2RmNGjXC1KlT5eRpsi7mBGvHjnXGkiWxWLNmFJYsicWxY53LbG9q+lGSAG0gBjknjKNgRES1V50Jwnr16oWNGzciJSUFW7ZsQWpqKoYMGSKf37lzJ0aMGIGXX34ZycnJWLFiBT744AODEYi0tDT069cPvXr1wokTJxAbG4sXXngBu3fvltts2LABkydPxty5c3Hs2DF07NgRkZGRuHr1qtxm0qRJ2LZtGzZt2oQDBw4gIyMDgwYNks8XFxejX79+KCwsxOHDh7FmzRrExcVhzpw51fyUqC4qLZ9LrXYFoM0/Kyknx9Pk9OOQIZsxalQcYmOXyEn5RERUO0lCCGHpTlTGDz/8gIEDB6KgoAB2dnZ45plncPfuXWzatElu8+GHH2Lx4sW4dOkSJEnC9OnTsX37diQnJ8ttnn76aeTm5mLXrl0AgLCwMDz44INy8KbRaBAYGIjx48djxowZUKvV8Pb2xrp16+Qg8OzZs2jTpg0SExPRvXt37Ny5E/3790dGRgZ8fHwAACtXrsT06dNx7do1k39UTcnLy4NSqYRarYabm1uVPDcqX2ZmJlatWlVuu7Fjx8LPz+++r5eWFoQ1a0YZHd+8WYXHHoNB3pnuWmq1K5YsiTUIxCRJg9jYJSZHv8ztKxER3T9z/37XmZEwfTk5OVi7di169OgBOzs7AEBBQQEcHR0N2jk5OSE9PR0XL14EACQmJiIiIsKgTWRkJBITEwFop42OHj1q0EahUCAiIkJuc/ToUdy9e9egTevWrdGkSRO5TWJiIjp06CAHYLrPycvLw+nTp0u9r4KCAuTl5Rm8qP7z8FD9m9N1j40NEBbmWWriv1KZj6ioePl9nH4kIqp76lQQNn36dLi4uMDT0xOXLl3C999/L5+LjIzE1q1bsWfPHmg0Gvz111947733AGhHDwAgKyvLIDACAB8fH+Tl5eH27dvIzs5GcXGxyTZZWVnyNezt7eHu7l5mG1PX0J0rzYIFC6BUKuVXYGCguY+GqpFa7Yq0tCB5erA8KpUKmZmZ8qu8VZC6gMrGRjsobWMDfPIJEBBg3FZ/FDU09DhiY5eYNf1o7ugrERHVHIuujpwxYwYWLVpUZpszZ86gdevWAICpU6ciOjoaFy9exBtvvIHnnnsO8fHxkCQJL774IlJTU9G/f3/cvXsXbm5umDhxIubNmweFom7EmjNnzsTkyZPln/Py8hiIWVhZBVBNMWclpKlVkKGhxzFnThjy833QvLnpAAzQTk3GxMSUWjEfAOzs7KBUKuWfWTGfiKh2smgQNmXKFIwePbrMNs2aNZO/9/LygpeXF1q2bIk2bdogMDAQv/76K8LDwyFJEhYtWoS3334bWVlZ8Pb2xp49ewyu4evra7SK8cqVK3Bzc4OTkxNsbGxgY2Njso2vr698jcLCQuTm5hqMhpVsU3JFpe6aujamODg4wMHBocznQdVPN2pUXgFUU6NL5a2ELCuo8/fXwJy0rZIBFXO9iIjqJosOEXl7e6N169ZlvkqbRtFotLkwBQUFBsdtbGzQuHFj2Nvb45tvvkF4eDi8vb0BAOHh4XJgppOQkIDw8HAA2j++Xbp0MWij0WiwZ88euU2XLl1gZ2dn0CYlJQWXLl2S24SHh+OPP/4wWFGZkJAANzc3tG3btlLPimqObrSpR49RJlcgPvTQqEptA1SZVZBERFR/1YlirUlJSThy5AgefvhhNGzYEKmpqZg9ezZCQkLkwCc7OxubN2/GY489hjt37uCLL76QS0jovPzyy1i+fDmmTZuGMWPGYO/evdi4cSO2b98ut5k8eTJGjRqFrl27olu3bliyZAlu3ryJ559/HgCgVCoRHR2NyZMnw8PDA25ubhg/fjzCw8PRvXt3AECfPn3Qtm1bjBw5EosXL0ZWVhZef/11jBs3jiNddYSnpye6dwcUCkCjlzN/L2Fe+3PJSvhl5X+VVlaiWbM+iIiwRWFhITIzMzl9SERkJepEEObs7IytW7di7ty5uHnzJvz8/NC3b1+8/vrrBkHNmjVr8Oqrr0IIgfDwcOzfvx/dunWTzwcHB2P79u2YNGkSli5dioCAAHz22WeIjIyU2wwbNgzXrl3DnDlzkJWVhU6dOmHXrl0GifYffPABFAoFBg8ejIKCAkRGRmLFihXyeRsbG8THx+OVV15BeHg4XFxcMGrUKLz55pvV/KSoKgUEAKtWAS+9BBQXGyfMm1sJX0e3CrJkWYm///4RGzYYrmrkhttERPVfna0TZg1YJ6x2SE8Hzp+HUcK8ufXE9Jmb6M+6XkREdZe5f7/rxEgYUXUytbm2Picnezz2WOVGpUquhAwNPY6QkPPIyfGAh0cO63oREVkxBmFk1cydUqzM9GBpo15KZb4cfFV0024iIqo/GISRVTNnc+2KtNMpr7wFUPEaZEREVL/UjSqmRHVMaSsh//yzLdRq13LLVRARUf3HkTCiamBqJSQgsHt3X/z4Yx+EhyeaDNJycjw4LUlEZCU4EkZURfT3mCy5wTYgAEja74QCiYnhAAw37ZYkDTw8cmq0z0REZDkcCSMyU8lVlLm5ufL3peV3hYSch739M1i0yHC7KiEU6NHjEBITww3eoxsFY/V8IqL6j0EYkRlyc3OxceNGk+dM5Xdt3x6FOXPCEBRki9u3PfHOOyUr7wssW9YcwDVcuGCLoKAi+Ps/COBBVswnIrISDMKI9JRWMqKoqKjU95hKwi8ulpCf7yNvb2RceV9Cly7aXRi6dKn6+yAiotqPQRhZNf1pv7JKRtjZ2ZV6DVNJ+DY22gr7OtHRQGSk6cr7RERknbhtUS3GbYtqhkqlwoULRejWrRE0Gkk+bmMjkJR0FUFB2s21y9qiSD+A0+0xGR1dE70nIqLahtsWEZnJ09MTp04Z5mwB96YUARWys7PLvIYuCf+hh0YhLMyTI11ERFQuBmFEAFq0ABSKksnzgKfndbO2NQIApTIfPXoUgvtuExGROVgnjAjaHK1Vq7SBFwB5StHL647J9vo1wYiIiCqDI2FE/zKVPJ+ZadyOez4SEVFVYBBGpCcgoOyVi+VtzM0iq0REZC4GYUQVcPlyoMk9H9u3H4innlKyyCoREZmNQRiRmXTTkCVJkgYdO7owACMiogphEEZWo+TejyWVtV1QyWnIe7Q5Ydoth4iIiMzHIIysgkqlMqvURExMjMlAzNTWRAAwZMhmtG9/BgCDMCIiqhiWqCCrUNYIWFntdIn2uq2J9EmSBoGB6QbtiIiIzMWRMCI92dnZBtOSnp6eiImJQWFhIRo3zsP06UoUF0uwsRFYtCgPzzwzvMxpTCIiotIwCCPSs3XrVgDA0KFD4e7uDkA7yuXn54cpU4Bhw3R1xCQEBLgDcLdUV4mIqI5jEEZkwsaNGw1+1uWKlVdHjIiIyFzMCSOrVNq2Q6UdNzenjIiIyFwcCSOrU9q2Q9yOiIiIahJHwsiqmNp26Icf+iMlpbnJ7Yi4QTcREVUXBmFkFXQlJEzX+1Lgm2+Gm9yOKCfHo4Z6SERE1oZBGFkFXamJESO6GdX70lIAEAZHJEkDD4+cGukfERFZHwZhZDU8PT3Rvr07oqLiAZgKxCQ5QNPlhCmV+TXaRyIish5MzCerYm9vj9DQ42jUKAurV79gMAUpSRpER3+Gu3ft4eGRwwCMiIiqFYMwqjXuZ4Ntc+lXwG/dOg/Tpimh0UjyyFdAQGapn01ERFSVJCGEKL8ZWUJeXh6USiXUajXc3Nws3Z1qdb8bbFdWejpw9KgaAQF34O9vaoqyaoI/IiKyHub+/eZIGNUKld1g+35pK+ArASir9LpERETlYRBGFqWbgszOzrZ0V4iIiGoUgzCyGHOnIImIiOojlqggi+F+jEREZM0YhFGtVNpG2kRERPUFpyOp1uFG2kREZA04Eka1iqkNtrmRNhER1UcMwqjWUKtdcfp0uzI30mbRVCIiqi84HUm1gv4UpHYjbUk+p1AIjB//JIKCbFk0lYiI6g0GYWRxJacgtQGYNhCTJA3mzMmAv78NCgsLkZlpuK0Qq9kTEVFdxSCMLEY3tZiT42k0BQlIiIzchbZt/wSQj1WrSr9OVW9lREREVBOYE0YWo9tMe/z4vlAoDLcwtbERmDKlKZTKfPlYaWUrWG+MiIjqIo6EkUV5enrC0xNYtQp46SWguBiwsQE++URC+/buOHxY245lK4iIqL7hSBjVCtHRwIULwL592q/R0ffOsWwFERHVRxwJo3LpNtkuTVUlxwcEaF8lmcoZ05Wt0J+uJCIiqksYhFGZzN1kuzqT4zMy/FCybIUkaeDhkVMtn0dERFQTOB1JZTI36b06kuPVajXUalf89FME9AMwQCAi4ieOghERUZ3GIIwqpKY21lapVNiwYUOp5Sv8/TOq9fOJiIiqG6cjyWwVWaGYng6cOwe0aGE6z6s8upE1Dw8VJEljEIiVnIrkVkZERFQXcSSMzGLOCkWVSoXMzEy8914umjYV6N0baNpU4L33cpGZmQmVSlXhz1Uq8xEVFQ9J0gCAHPzppiKHDh3KQq1ERFQncSSMzFLeCsXc3Fxs3LgRarUrliyJhRDaHC6NRsLUqW7455/PoVTmVyqBPzT0OEJCziMnxwMeHjkGuWDu7u73fW9ERESWwCCMzFLetGBRURGA8oO1yibwK5X5TMQnIqJ6hdORZJbypgV1dMGaPpaTICIiMsaRMCqTftJ7WdOCdnZ2AO4FayUT+DmKRUREZIhBGJVJt8l2eRXz9c+XFawRERGRFoMwKpc5ifSZmZkGP99vDpe5ZSdYnoKIiOoqBmFUK5k7AsfyFEREVFcxCKNaiwEWERHVZ1wdSVWC04dEREQVw5EwqhKcPiQiIqoYBmFUZRhgERERmY/TkUREREQWwCCMiIiIyAIYhBERERFZQJ0LwgoKCtCpUydIkoQTJ04YnDt16hR69uwJR0dHBAYGYvHixUbv37RpE1q3bg1HR0d06NABO3bsMDgvhMCcOXPg5+cHJycnRERE4Ny5cwZtcnJyMGLECLi5ucHd3R3R0dG4ceNGhftCRERE1qvOBWHTpk2Dv7+/0fG8vDz06dMHTZs2xdGjR/HOO+9g3rx5WLVqldzm8OHDGD58OKKjo3H8+HEMHDgQAwcORHJystxm8eLFWLZsGVauXImkpCS4uLggMjISd+7ckduMGDECp0+fRkJCAuLj4/Hzzz9j7NixFeoLERERWTlRh+zYsUO0bt1anD59WgAQx48fl8+tWLFCNGzYUBQUFMjHpk+fLlq1aiX/PHToUNGvXz+Da4aFhYmXXnpJCCGERqMRvr6+4p133pHP5+bmCgcHB/HNN98IIYT4888/BQBx5MgRuc3OnTuFJEnin3/+Mbsv5lCr1QKAUKvVFXofERERWY65f7/rzEjYlStX8OKLL+Krr76Cs7Oz0fnExEQ88sgjBsVAIyMjkZKSguvXr8ttIiIiDN4XGRmJxMREAEBaWhqysrIM2iiVSoSFhcltEhMT4e7ujq5du8ptIiIioFAokJSUZHZfTCkoKEBeXp7Bi4iIiOqnOhGECSEwevRovPzyywbBj76srCz4+PgYHNP9nJWVVWYb/fP67yutTaNGjQzO29rawsPDo9zP0f8MUxYsWAClUim/AgMDS21LREREdZtFg7AZM2ZAkqQyX2fPnsWHH36I/Px8zJw505LdrXYzZ86EWq2WX5cvX7Z0l4iIiKiaWLRi/pQpUzB69Ogy2zRr1gx79+5FYmIiHBwcDM517doVI0aMwJo1a+Dr64srV64YnNf97OvrK3811Ub/vO6Yn5+fQZtOnTrJba5evWpwjaKiIuTk5JT7OfqfYYqDg4PRPRIREVH9ZNGRMG9vb7Ru3brMl729PZYtW4aTJ0/ixIkTOHHihFxWYsOGDZg/fz4AIDw8HD///DPu3r0rXz8hIQGtWrVCw4YN5TZ79uwx6ENCQgLCw8MBAMHBwfD19TVok5eXh6SkJLlNeHg4cnNzcfToUbnN3r17odFoEBYWZnZf6pL0dGDfPu1XIiIiqiI1s06gaqWlpRmtjszNzRU+Pj5i5MiRIjk5Waxfv144OzuLTz75RG5z6NAhYWtrK959911x5swZMXfuXGFnZyf++OMPuc3ChQuFu7u7+P7778WpU6fEU089JYKDg8Xt27flNn379hWdO3cWSUlJ4uDBg6JFixZi+PDhFeqLOWrD6sjPPhNCoRAC0H797DOLdYWIiKhOMPfvd70JwoQQ4uTJk+Lhhx8WDg4OonHjxmLhwoVG7924caNo2bKlsLe3F+3atRPbt283OK/RaMTs2bOFj4+PcHBwEI8//rhISUkxaKNSqcTw4cNFgwYNhJubm3j++edFfn5+hftSHksHYZcv3wvAdC8bG+1xIiIiMs3cv9+SEEJYciSOSpeXlwelUgm1Wg03N7ca+cz0dODcOaBFC+3X3r2N2+zbBzz2WI10h4iIqM4x9+93nShRQTVj9WqgaVNt4NW0KfD774CixG+IjQ3QvLll+kdERFSfMAgjANoRsBdfBDQa7c8aDTBzJrBokTbwArRfP/kECAiwXD+JiIjqC4uWqKDaY+lSbdaXvuJiIDhYhaSkIly4YIugoCL4+2uQmQnY29vD09PTMp0lIiKqBxiEEdLTgfffN3VGg0OH1iA5OR8AoLfPOQAgJiaGgRgREVElcTqScO7cvWlIfT16JEKpzC/1fYWFhdXYKyIiovqNQRihRQvjBHxJ0iAsLMkyHSIiIrICDMIIAQHAqlX6CfgCUVHxZY6CERER0f1hTpiVS08Hfv9djU6d7iApCbhwwRZubldx+PBxS3eNiIioXmMQZsVWrwbGjhXQaJSQJFdERcUjNJTBFxERUU3gdKQVSk8HNm4EXnxRQKORAABCKLBtW3+o1a4W7h0REZF1YBBmZXRV8YcNA4SQDM4JoUBOjoeFekZERGRdGIRZkfR0YOxY0+UoAO2KSA+PHLOvZ29vX0U9IyIisj7MCbMipdUDA7QBWFkrIgcNGgQvLy/5Z1bMJyIiuj8MwqyIrh6YfiAmSRoMHrwZgYHpZZak8PLygp+fXw30koiIyDpwOtKKBAQA779/A5KkjcJ0o1/t259hTTAiIqIaxpEwKzN0aD4uXlyFnBwPeHjkMPgiIiKyEAZhVkKlUqGwsBDZ2dlQKvMrHHwxCZ+IiKhqMQizAiqVCsuXL6/0+5999lkm4RMREVUxBmFWoLCwsMLv0a2G5CpIIiKi6sEgjEziakgiIqLqxdWRRERERBbAIIyIiIjIAhiEkUlcDUlERFS9mBNGMibjExER1RwGYSRjMj4REVHN4XSkFTB3apFTkERERDWHI2FWwNPTEzExMWXWC+MUJBERUc1iEGYlGGARERHVLpyOJCIiIrIABmFEREREFsAgjIiIiMgCGIQRERERWQCDMCIiIiILYBBGREREZAEMwoiIiIgsgEEYERERkQUwCCMiIiKyAFbMr8WEEACAvLw8C/eEiIiIzKX7u637O14aBmG1WH5+PgAgMDDQwj0hIiKiisrPz4dSqSz1vCTKC9PIYjQaDTIyMuDq6gpJksx6T15eHgIDA3H58mW4ublVcw9rLz4HLT4HPgMdPgctPgc+A53qfA5CCOTn58Pf3x8KRemZXxwJq8UUCgUCAgIq9V43Nzer/o9Lh89Bi8+Bz0CHz0GLz4HPQKe6nkNZI2A6TMwnIiIisgAGYUREREQWwCCsnnFwcMDcuXPh4OBg6a5YFJ+DFp8Dn4EOn4MWnwOfgU5teA5MzCciIiKyAI6EEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBWB3w8ccf44EHHpALyoWHh2Pnzp3y+Tt37mDcuHHw9PREgwYNMHjwYFy5csXgGpcuXUK/fv3g7OyMRo0aYerUqSgqKqrpW6kyCxcuhCRJiI2NlY9Zy3OYN28eJEkyeLVu3Vo+by3P4Z9//sGzzz4LT09PODk5oUOHDvj999/l80IIzJkzB35+fnByckJERATOnTtncI2cnByMGDECbm5ucHd3R3R0NG7cuFHTt1JpQUFBRr8LkiRh3LhxAKznd6G4uBizZ89GcHAwnJycEBISgrfeestg3z5r+H3Iz89HbGwsmjZtCicnJ/To0QNHjhyRz9fHZ/Dzzz8jKioK/v7+kCQJ3333ncH5qrrnU6dOoWfPnnB0dERgYCAWL15cNTcgqNb74YcfxPbt28Vff/0lUlJSxGuvvSbs7OxEcnKyEEKIl19+WQQGBoo9e/aI33//XXTv3l306NFDfn9RUZFo3769iIiIEMePHxc7duwQXl5eYubMmZa6pfvy22+/iaCgIPHAAw+IiRMnyset5TnMnTtXtGvXTmRmZsqva9euyeet4Tnk5OSIpk2bitGjR4ukpCTx999/i927d4vz58/LbRYuXCiUSqX47rvvxMmTJ8WAAQNEcHCwuH37ttymb9++omPHjuLXX38Vv/zyi2jevLkYPny4JW6pUq5evWrwe5CQkCAAiH379gkhrON3QQgh5s+fLzw9PUV8fLxIS0sTmzZtEg0aNBBLly6V21jD78PQoUNF27ZtxYEDB8S5c+fE3LlzhZubm0hPTxdC1M9nsGPHDjFr1iyxdetWAUB8++23Buer4p7VarXw8fERI0aMEMnJyeKbb74RTk5O4pNPPrnv/jMIq6MaNmwoPvvsM5Gbmyvs7OzEpk2b5HNnzpwRAERiYqIQQvtLqlAoRFZWltzm448/Fm5ubqKgoKDG+34/8vPzRYsWLURCQoJ49NFH5SDMmp7D3LlzRceOHU2es5bnMH36dPHwww+Xel6j0QhfX1/xzjvvyMdyc3OFg4OD+Oabb4QQQvz5558CgDhy5IjcZufOnUKSJPHPP/9UX+er0cSJE0VISIjQaDRW87sghBD9+vUTY8aMMTg2aNAgMWLECCGEdfw+3Lp1S9jY2Ij4+HiD46GhoWLWrFlW8QxKBmFVdc8rVqwQDRs2NPhvYvr06aJVq1b33WdOR9YxxcXFWL9+PW7evInw8HAcPXoUd+/eRUREhNymdevWaNKkCRITEwEAiYmJ6NChA3x8fOQ2kZGRyMvLw+nTp2v8Hu7HuHHj0K9fP4P7BWB1z+HcuXPw9/dHs2bNMGLECFy6dAmA9TyHH374AV27dsV///tfNGrUCJ07d8ann34qn09LS0NWVpbBc1AqlQgLCzN4Du7u7ujatavcJiIiAgqFAklJSTV3M1WksLAQX3/9NcaMGQNJkqzmdwEAevTogT179uCvv/4CAJw8eRIHDx7Ek08+CcA6fh+KiopQXFwMR0dHg+NOTk44ePCgVTyDkqrqnhMTE/HII4/A3t5ebhMZGYmUlBRcv379vvrIDbzriD/++APh4eG4c+cOGjRogG+//RZt27bFiRMnYG9vD3d3d4P2Pj4+yMrKAgBkZWUZ/COrO687V1esX78ex44dM8hx0MnKyrKa5xAWFoa4uDi0atUKmZmZeOONN9CzZ08kJydbzXP4+++/8fHHH2Py5Ml47bXXcOTIEUyYMAH29vYYNWqUfB+m7lP/OTRq1MjgvK2tLTw8POrMc9D33XffITc3F6NHjwZgXf9NzJgxA3l5eWjdujVsbGxQXFyM+fPnY8SIEQBgFb8Prq6uCA8Px1tvvYU2bdrAx8cH33zzDRITE9G8eXOreAYlVdU9Z2VlITg42OgaunMNGzasdB8ZhNURrVq1wokTJ6BWq7F582aMGjUKBw4csHS3aszly5cxceJEJCQkGP0/PWuj+3/3APDAAw8gLCwMTZs2xcaNG+Hk5GTBntUcjUaDrl274u233wYAdO7cGcnJyVi5ciVGjRpl4d5ZxurVq/Hkk0/C39/f0l2pcRs3bsTatWuxbt06tGvXDidOnEBsbCz8/f2t6vfhq6++wpgxY9C4cWPY2NggNDQUw4cPx9GjRy3dNSoFpyPrCHt7ezRv3hxdunTBggUL0LFjRyxduhS+vr4oLCxEbm6uQfsrV67A19cXAODr62u0Ikr3s65NbXf06FFcvXoVoaGhsLW1ha2tLQ4cOIBly5bB1tYWPj4+VvEcTHF3d0fLli1x/vx5q/l98PPzQ9u2bQ2OtWnTRp6W1d2HqfvUfw5Xr141OF9UVIScnJw68xx0Ll68iJ9++gkvvPCCfMxafhcAYOrUqZgxYwaefvppdOjQASNHjsSkSZOwYMECANbz+xASEoIDBw7gxo0buHz5Mn777TfcvXsXzZo1s5pnoK+q7rk6/zthEFZHaTQaFBQUoEuXLrCzs8OePXvkcykpKbh06RLCw8MBAOHh4fjjjz8MftESEhLg5uZm9Iestnr88cfxxx9/4MSJE/Kra9euGDFihPy9NTwHU27cuIHU1FT4+flZze/DQw89hJSUFINjf/31F5o2bQoACA4Ohq+vr8FzyMvLQ1JSksFzyM3NNRgl2Lt3LzQaDcLCwmrgLqrOF198gUaNGqFfv37yMWv5XQCAW7duQaEw/HNmY2MDjUYDwPp+H1xcXODn54fr169j9+7deOqpp6zuGQBV9797eHg4fv75Z9y9e1duk5CQgFatWt3XVCQAlqioC2bMmCEOHDgg0tLSxKlTp8SMGTOEJEnixx9/FEJol6E3adJE7N27V/z+++8iPDxchIeHy+/XLUPv06ePOHHihNi1a5fw9vauc8vQS9JfHSmE9TyHKVOmiP3794u0tDRx6NAhERERIby8vMTVq1eFENbxHH777Tdha2sr5s+fL86dOyfWrl0rnJ2dxddffy23WbhwoXB3dxfff/+9OHXqlHjqqadMLk3v3LmzSEpKEgcPHhQtWrSo1cvxTSkuLhZNmjQR06dPNzpnDb8LQggxatQo0bhxY7lExdatW4WXl5eYNm2a3MYafh927doldu7cKf7++2/x448/io4dO4qwsDBRWFgohKifzyA/P18cP35cHD9+XAAQ77//vjh+/Li4ePGiEKJq7jk3N1f4+PiIkSNHiuTkZLF+/Xrh7OzMEhXWYsyYMaJp06bC3t5eeHt7i8cff1wOwIQQ4vbt2+L//u//RMOGDYWzs7P4f//v/4nMzEyDa1y4cEE8+eSTwsnJSXh5eYkpU6aIu3fv1vStVKmSQZi1PIdhw4YJPz8/YW9vLxo3biyGDRtmUB/LWp7Dtm3bRPv27YWDg4No3bq1WLVqlcF5jUYjZs+eLXx8fISDg4N4/PHHRUpKikEblUolhg8fLho0aCDc3NzE888/L/Lz82vyNu7b7t27BQCjexPCen4X8vLyxMSJE0WTJk2Eo6OjaNasmZg1a5ZBSQFr+H3YsGGDaNasmbC3txe+vr5i3LhxIjc3Vz5fH5/Bvn37BACj16hRo4QQVXfPJ0+eFA8//LBwcHAQjRs3FgsXLqyS/ktC6JUUJiIiIqIawZwwIiIiIgtgEEZERERkAQzCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsAgjIiIiMgCGIQRERERWQCDMCKqVx577DHExsZauhvVbt68eejUqZOlu0FE94FBGBFRLVJYWFijnyeEQFFRUY1+JhFpMQgjonpj9OjROHDgAJYuXQpJkiBJEi5cuIDk5GQ8+eSTaNCgAXx8fDBy5EhkZ2fL73vssccwfvx4xMbGomHDhvDx8cGnn36Kmzdv4vnnn4erqyuaN2+OnTt3yu/Zv38/JEnC9u3b8cADD8DR0RHdu3dHcnKyQZ8OHjyInj17wsnJCYGBgZgwYQJu3rwpnw8KCsJbb72F5557Dm5ubhg7diwAYPr06WjZsiWcnZ3RrFkzzJ49G3fv3gUAxMXF4Y033sDJkyfl+4yLi8OFCxcgSRJOnDghXz83NxeSJGH//v0G/d65cye6dOkCBwcHHDx4EBqNBgsWLEBwcDCcnJzQsWNHbN68uar/JyIiPQzCiKjeWLp0KcLDw/Hiiy8iMzMTmZmZcHV1Re/evdG5c2f8/vvv2LVrF65cuYKhQ4cavHfNmjXw8vLCb7/9hvHjx+OVV17Bf//7X/To0QPHjh1Dnz59MHLkSNy6dcvgfVOnTsV7772HI0eOwNvbG1FRUXKwlJqair59+2Lw4ME4deoUNmzYgIMHDyImJsbgGu+++y46duyI48ePY/bs2QAAV1dXxMXF4c8//8TSpUvx6aef4oMPPgAADBs2DFOmTEG7du3k+xw2bFiFntWMGTOwcOFCnDlzBg888AAWLFiAL7/8EitXrsTp06cxadIkPPvsszhw4ECFrktEFVAl24ATEdUSjz76qJg4caL881tvvSX69Olj0Oby5csCgEhJSZHf8/DDD8vni4qKhIuLixg5cqR8LDMzUwAQiYmJQggh9u3bJwCI9evXy21UKpVwcnISGzZsEEIIER0dLcaOHWvw2b/88otQKBTi9u3bQgghmjZtKgYOHFjufb3zzjuiS5cu8s9z584VHTt2NGiTlpYmAIjjx4/Lx65fvy4AiH379hn0+7vvvpPb3LlzRzg7O4vDhw8bXC86OloMHz683L4RUeXYWjIAJCKqbidPnsS+ffvQoEEDo3Opqalo2bIlAOCBBx6Qj9vY2MDT0xMdOnSQj/n4+AAArl69anCN8PBw+XsPDw+0atUKZ86ckT/71KlTWLt2rdxGCAGNRoO0tDS0adMGANC1a1ejvm3YsAHLli1Damoqbty4gaKiIri5uVX4/kuj/5nnz5/HrVu38MQTTxi0KSwsROfOnavsM4nIEIMwIqrXbty4gaioKCxatMjonJ+fn/y9nZ2dwTlJkgyOSZIEANBoNBX67JdeegkTJkwwOtekSRP5excXF4NziYmJGDFiBN544w1ERkZCqVRi/fr1eO+998r8PIVCm2EihJCP6aZGS9L/zBs3bgAAtm/fjsaNGxu0c3BwKPMziajyGIQRUb1ib2+P4uJi+efQ0FBs2bIFQUFBsLWt+n/yfv31Vzmgun79Ov766y95hCs0NBR//vknmjdvXqFrHj58GE2bNsWsWbPkYxcvXjRoU/I+AcDb2xsAkJmZKY9g6Sfpl6Zt27ZwcHDApUuX8Oijj1aor0RUeUzMJ6J6JSgoCElJSbhw4QKys7Mxbtw45OTkYPjw4Thy5AhSU1Oxe/duPP/880ZBTGW8+eab2LNnD5KTkzF69Gh4eXlh4MCBALQrHA8fPoyYmBicOHEC586dw/fff2+UmF9SixYtcOnSJaxfvx6pqalYtmwZvv32W6P7TEtLw4kTJ5CdnY2CggI4OTmhe/fucsL9gQMH8Prrr5d7D66urnj11VcxadIkrFmzBqmpqTh27Bg+/PBDrFmzptLPhojKxiCMiOqVV199FTY2Nmjbti28vb1RWFiIQ4cOobi4GH369EGHDh0QGxsLd3d3efrufixcuBATJ05Ely5dkJWVhW3btsHe3h6ANs/swIED+Ouvv9CzZ0907twZc+bMgb+/f5nXHDBgACZNmoSYmBh06tQJhw8flldN6gwePBh9+/ZFr1694O3tjW+++QYA8Pnnn6OoqAhdunRBbGws/ve//5l1H2+99RZmz56NBQsWoE2bNujbty+2b9+O4ODgSjwVIjKHJPSTB4iIyCz79+9Hr169cP36dbi7u1u6O0RUB3EkjIiIiMgCGIQRERERWQCnI4mIiIgsgCNhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjIiIisgAGYUREREQW8P8B6JPQbxtY+lcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYbUlEQVR4nO3deXgTdeI/8HeSHpTSpjb0tNCWtoIgIlREYAUEpCDU5QeuKKIgxYJLRcTlWr4ieHHJ7QVuOWTFk+oKLC6oiAIVlYLYFRDYFiyUK7VpodJCMr8/YkLTNmmSJpmZzPv1PDwlk0n6yTSZeedzqgRBEEBERESkAGqxC0BERETkKww+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERBK0bt06qFQqFBcXi10UIr/C4EOkUN9//z1ycnLQoUMHhIaGonXr1njggQfwyy+/1Nu3T58+UKlUUKlUUKvVCA8PR9u2bfHII49gx44dLv3ezZs3o3fv3oiOjkbz5s3Rpk0bPPDAA/jss8889dLqefnll/HJJ5/U2753717MmTMH5eXlXvvddc2ZM8d6LFUqFZo3b4727dvj//7v/1BRUeGR37Fx40YsW7bMI89F5G8YfIgUasGCBdi0aRP69euH5cuXIzs7G19//TW6dOmCwsLCevsnJCRgw4YNePvtt7Fo0SLcd9992Lt3LwYMGIARI0bg6tWrjf7OV155Bffddx9UKhVmzpyJpUuXYvjw4Th27Bjee+89b7xMAI6Dz9y5c30afCzeeOMNbNiwAUuWLEG7du3w0ksvYeDAgfDE8okMPkT2BYhdACISx5QpU7Bx40YEBQVZt40YMQIdO3bE/Pnz8c9//tNmf61Wi1GjRtlsmz9/PiZNmoTXX38dSUlJWLBggd3fd+3aNbzwwgu45557sH379nr3nz9/vomvSDqqqqrQvHlzh/vcf//9aNmyJQBgwoQJGD58OPLy8vDtt9+ie/fuvigmkSKxxodIoXr06GETegAgLS0NHTp0wOHDh516Do1GgxUrVqB9+/Z49dVXYTAY7O578eJFVFRUoGfPng3eHx0dbXP7ypUrmDNnDm666SY0a9YMcXFxGDZsGE6cOGHd55VXXkGPHj2g0+kQEhKC9PR0fPTRRzbPo1KpcPnyZaxfv97avDRmzBjMmTMHU6dOBQAkJydb76vdp+af//wn0tPTERISgsjISDz44IP49ddfbZ6/T58+uOWWW7B//3706tULzZs3x9///nenjl9tffv2BQAUFRU53O/1119Hhw4dEBwcjPj4eEycONGmxqpPnz7YunUrTp48aX1NSUlJLpeHyF+xxoeIrARBwLlz59ChQwenH6PRaPDQQw/h2Wefxe7duzF48OAG94uOjkZISAg2b96MJ598EpGRkXaf02g0YsiQIfjiiy/w4IMP4qmnnkJlZSV27NiBwsJCpKSkAACWL1+O++67Dw8//DBqamrw3nvv4S9/+Qu2bNliLceGDRswbtw43HHHHcjOzgYApKSkIDQ0FL/88gveffddLF261Fr7EhUVBQB46aWX8Oyzz+KBBx7AuHHjcOHCBaxcuRK9evXCgQMHEBERYS2vXq/HoEGD8OCDD2LUqFGIiYlx+vhZWAKdTqezu8+cOXMwd+5c9O/fH0888QSOHj2KN954A99//z327NmDwMBAzJo1CwaDASUlJVi6dCkAoEWLFi6Xh8hvCUREf9iwYYMAQMjNzbXZ3rt3b6FDhw52H/fxxx8LAITly5c7fP7Zs2cLAITQ0FBh0KBBwksvvSTs37+/3n5r1qwRAAhLliypd5/JZLL+v6qqyua+mpoa4ZZbbhH69u1rsz00NFQYPXp0vedatGiRAEAoKiqy2V5cXCxoNBrhpZdestn+008/CQEBATbbe/fuLQAQ3nzzTbuvu7bnnntOACAcPXpUuHDhglBUVCSsWrVKCA4OFmJiYoTLly8LgiAIa9eutSnb+fPnhaCgIGHAgAGC0Wi0Pt+rr74qABDWrFlj3TZ48GAhMTHRqfIQKQ2buogIAHDkyBFMnDgR3bt3x+jRo116rKVGobKy0uF+c+fOxcaNG9G5c2f85z//waxZs5Ceno4uXbrYNK9t2rQJLVu2xJNPPlnvOVQqlfX/ISEh1v//9ttvMBgMuOuuu1BQUOBS+evKy8uDyWTCAw88gIsXL1r/xcbGIi0tDTt37rTZPzg4GI899phLv6Nt27aIiopCcnIyxo8fj9TUVGzdutVu36DPP/8cNTU1mDx5MtTq66fuxx9/HOHh4di6davrL5RIgdjURUQ4e/YsBg8eDK1Wi48++ggajcalx1+6dAkAEBYW1ui+Dz30EB566CFUVFRg3759WLduHTZu3IjMzEwUFhaiWbNmOHHiBNq2bYuAAMenqC1btuDFF1/EwYMHUV1dbd1eOxy549ixYxAEAWlpaQ3eHxgYaHP7xhtvrNdfqjGbNm1CeHg4AgMDkZCQYG2+s+fkyZMAzIGptqCgILRp08Z6PxE5xuBDpHAGgwGDBg1CeXk5vvnmG8THx7v8HJbh76mpqU4/Jjw8HPfccw/uueceBAYGYv369di3bx969+7t1OO/+eYb3HfffejVqxdef/11xMXFITAwEGvXrsXGjRtdfg21mUwmqFQqbNu2rcEQWLfPTO2aJ2f16tXL2q+IiHyHwYdIwa5cuYLMzEz88ssv+Pzzz9G+fXuXn8NoNGLjxo1o3rw5/vSnP7lVjttvvx3r169HaWkpAHPn43379uHq1av1alcsNm3ahGbNmuE///kPgoODrdvXrl1bb197NUD2tqekpEAQBCQnJ+Omm25y9eV4RWJiIgDg6NGjaNOmjXV7TU0NioqK0L9/f+u2ptZ4Efkz9vEhUiij0YgRI0YgPz8fH374oVtzxxiNRkyaNAmHDx/GpEmTEB4ebnffqqoq5OfnN3jftm3bAFxvxhk+fDguXryIV199td6+wh8T/Gk0GqhUKhiNRut9xcXFDU5UGBoa2uAkhaGhoQBQ775hw4ZBo9Fg7ty59SYUFAQBer2+4RfpRf3790dQUBBWrFhhU6bc3FwYDAab0XShoaEOpxYgUjLW+BAp1DPPPINPP/0UmZmZKCsrqzdhYd3JCg0Gg3WfqqoqHD9+HHl5eThx4gQefPBBvPDCCw5/X1VVFXr06IE777wTAwcORKtWrVBeXo5PPvkE33zzDYYOHYrOnTsDAB599FG8/fbbmDJlCr777jvcdddduHz5Mj7//HP89a9/xZ///GcMHjwYS5YswcCBAzFy5EicP38er732GlJTU3Ho0CGb352eno7PP/8cS5YsQXx8PJKTk9GtWzekp6cDAGbNmoUHH3wQgYGByMzMREpKCl588UXMnDkTxcXFGDp0KMLCwlBUVISPP/4Y2dnZ+Nvf/tak4++qqKgozJw5E3PnzsXAgQNx33334ejRo3j99dfRtWtXm79Xeno63n//fUyZMgVdu3ZFixYtkJmZ6dPyEkmWmEPKiEg8lmHY9v452rdFixZCWlqaMGrUKGH79u1O/b6rV68Kb731ljB06FAhMTFRCA4OFpo3by507txZWLRokVBdXW2zf1VVlTBr1iwhOTlZCAwMFGJjY4X7779fOHHihHWf3NxcIS0tTQgODhbatWsnrF271jpcvLYjR44IvXr1EkJCQgQANkPbX3jhBeHGG28U1Gp1vaHtmzZtEv70pz8JoaGhQmhoqNCuXTth4sSJwtGjR22OjaOh/nVZynfhwgWH+9Udzm7x6quvCu3atRMCAwOFmJgY4YknnhB+++03m30uXbokjBw5UoiIiBAAcGg7US0qQfDAwjBEREREMsA+PkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGAw+REREpBicwLAOk8mEM2fOICwsjNO+ExERyYQgCKisrER8fDzUavv1Ogw+dZw5cwatWrUSuxhERETkhl9//RUJCQl272fwqSMsLAyA+cA5WneIiIiIpKOiogKtWrWyXsftYfCpw9K8FR4ezuBDREQkM411U2HnZiIiIlIMBh8iIiJSDAYfIiIiUgz28SEiIvIAo9GIq1evil0MvxUYGAiNRtPk55FN8Jk3bx7y8vJw5MgRhISEoEePHliwYAHatm1r3efKlSt45pln8N5776G6uhoZGRl4/fXXERMTI2LJiYjInwmCgLNnz6K8vFzsovi9iIgIxMbGNmmePdkEn127dmHixIno2rUrrl27hr///e8YMGAAfv75Z4SGhgIAnn76aWzduhUffvghtFotcnJyMGzYMOzZs0fk0hMRkb+yhJ7o6Gg0b96ck996gSAIqKqqwvnz5wEAcXFxbj+XShAEwVMF86ULFy4gOjoau3btQq9evWAwGBAVFYWNGzfi/vvvBwAcOXIEN998M/Lz83HnnXc69bwVFRXQarUwGAwczk5ERA4ZjUb88ssviI6Ohk6nE7s4fk+v1+P8+fO46aab6jV7OXv9lm3nZoPBAACIjIwEAOzfvx9Xr15F//79rfu0a9cOrVu3Rn5+vihlJCIi/2bp09O8eXORS6IMluPclL5Usmnqqs1kMmHy5Mno2bMnbrnlFgDmqsagoCBERETY7BsTE4OzZ8/afa7q6mpUV1dbb1dUVHilzERE5L/YvOUbnjjOsgw+EydORGFhIXbv3t3k55o3bx7mzp3rgVLJn16vR01Njd37g4KCWJVLRESyJrvgk5OTgy1btuDrr7+2WYQsNjYWNTU1KC8vt6n1OXfuHGJjY+0+38yZMzFlyhTrbctaH0qj1+vx6quvNrpfTk4Oww8REcmWbPr4CIKAnJwcfPzxx/jyyy+RnJxsc396ejoCAwPxxRdfWLcdPXoUp06dQvfu3e0+b3BwsHVdLiWvz+Wopsed/YiISNrGjBkDlUoFlUqFwMBAxMTE4J577sGaNWtgMpmcfp5169bV62YiZbKp8Zk4cSI2btyIf/3rXwgLC7P229FqtQgJCYFWq0VWVhamTJmCyMhIhIeH48knn0T37t2dHtFFRETkS2J3MRg4cCDWrl0Lo9GIc+fO4bPPPsNTTz2Fjz76CJ9++ikCAmQTE5wmm1f0xhtvAAD69Oljs33t2rUYM2YMAGDp0qVQq9UYPny4zQSGREREUiOFLgbBwcHW7iA33ngjunTpgjvvvBP9+vXDunXrMG7cOCxZsgRr167F//73P0RGRiIzMxMLFy5EixYt8NVXX+Gxxx4DcL3j8XPPPYc5c+Zgw4YNWL58OY4ePYrQ0FD07dsXy5YtQ3R0tFdei7Nk1dTV0D9L6AGAZs2a4bXXXkNZWRkuX76MvLw8h/17iIiIxCLVLgZ9+/ZFp06dkJeXBwBQq9VYsWIF/vvf/2L9+vX48ssvMW3aNABAjx49sGzZMoSHh6O0tBSlpaX429/+BsA85PyFF17Ajz/+iE8++QTFxcU212yxyKbGh4iIiHyjXbt2OHToEABg8uTJ1u1JSUl48cUXMWHCBLz++usICgqCVquFSqWqV9EwduxY6//btGmDFStWoGvXrrh06RJatGjhk9fRENnU+JBvGQxhKCpKgsEQJnZRiIjIxwRBsDZdff755+jXrx9uvPFGhIWF4ZFHHoFer0dVVZXD59i/fz8yMzPRunVrhIWFoXfv3gCAU6dOeb38jjD4UD0FBZ2xbNlkrF8/GsuWTUZBQWexi0RERD50+PBhJCcno7i4GEOGDMGtt96KTZs2Yf/+/XjttdcAOG6Cu3z5MjIyMhAeHo533nkH33//PT7++ONGH+cLbOoiAOaRA4C5pmfz5iEQBHMmFgQ1Nm8egpSU49BqK637ERGRf/ryyy/x008/4emnn8b+/fthMpmwePFiqNXm68IHH3xgs39QUBCMRqPNtiNHjkCv12P+/PnWufF++OEH37yARrDGhwAAOp0OOTk56NFjtDX0WAiCGj17jubkhUREfqa6uhpnz57F6dOnUVBQgJdffhl//vOfMWTIEDz66KNITU3F1atXsXLlSvzvf//Dhg0b8Oabb9o8R1JSEi5duoQvvvgCFy9eRFVVFVq3bo2goCDr4z799FO88MILIr1KWww+ZKXT6XDnnTqo67wrNBqgWzcdQw8RkZ/57LPPEBcXh6SkJAwcOBA7d+7EihUr8K9//QsajQadOnXCkiVLsGDBAtxyyy145513MG/ePJvn6NGjByZMmIARI0YgKioKCxcuRFRUFNatW4cPP/wQ7du3x/z58/HKK6+I9CptqQRBEMQuhJQ4u6y9nDU2YdYHH4ThmWdawGg0h55Vq4CsLB8WkIhIJq5cuYKioiIkJyejWbNmLj1WCvP4yI2j4+3s9Zt9fBTG2Q/agQOToNffgNRUoNaSaERE5CGWLgZcHNq3GHwUxtne9C1bXkHHjl4uDBGRwjHU+B77+BAREZFiMPgoHCcqJCIiJWFTl4IVFHS2ztmjUpmQmbkFXbocELtYREREXsMaH4WyN1Eha36IiMifMfgoVFmZrsGJCsvKIkUqERERkfexqUuhIiP1UKlMNuFHpTIhMrJMxFL5RmPzGDU0fNSdxxARkfQw+MiIJy6+lrW2tNpKZGZuqdfHR6uttNnP37gzYRgnGSMi8h8MPjJR9+JrMIShrEyHyEi9NawAjV98606YNXv2BRQXByAp6Rri47sC6OrXtRfOzmNUez93HkNEpHRfffUV7r77bvz222+IiIhw6jFJSUmYPHkyJk+e7LVysY+PTNS+qBYUdMayZZOxfv1oLFs2GQUFnRvczx6dToe4uDjExcUhPT0Gw4frkJ4eY93mr6GHiIiuGzNmDFQqFSZMmFDvvokTJ0KlUmHMmDG+L5iXMfjIDEdjeZY78xhx7iMi8hetWrXCe++9h99//9267cqVK9i4cSNat24tYsm8h8FHZjgay3Mc1Zx58jFERFLVpUsXtGrVCnl5edZteXl5aN26NTp3vn5+q66uxqRJkxAdHY1mzZrhT3/6E77//nub5/r3v/+Nm266CSEhIbj77rtRXFxc7/ft3r0bd911F0JCQtCqVStMmjQJly9f9trrawiDj8xYRmPVppTRWJ7kTs0Za9uIyJtKSoCdO80/fWns2LFYu3at9faaNWvw2GOP2ewzbdo0bNq0CevXr0dBQQFSU1ORkZGBsjLztefXX3/FsGHDkJmZiYMHD2LcuHGYMWOGzXOcOHECAwcOxPDhw3Ho0CG8//772L17N3Jycrz/Imth8JEZy2gsS/ipOxqLnONOzRlr24jIW3JzgcREoG9f88/cXN/97lGjRmH37t04efIkTp48iT179mDUqFHW+y9fvow33ngDixYtwqBBg9C+fXu89dZbCAkJQe4fBX3jjTeQkpKCxYsXo23btnj44Yfr9Q+aN28eHn74YUyePBlpaWno0aMHVqxYgbfffhtXrlzx2evlqC4Z6tLlAFJSjqOsLBKRkWUMPW5wZx4jJc99RETeU1ICZGcDpj8q800mYPx4ICMDSEjw/u+PiorC4MGDsW7dOgiCgMGDB6Nly5bW+0+cOIGrV6+iZ8+e1m2BgYG44447cPjwYQDA4cOH0a1bN5vn7d69u83tH3/8EYcOHcI777xj3SYIAkwmE4qKinDzzTd74+XVw+AjU1ptJQOPG9yZx0jpcx8ROYsTfbrn2LHrocfCaASOH/dN8AHMzV2WJqfXXnvNK7/j0qVLGD9+PCZNmlTvPl92pGbwkQlnL6q+uPjWPrmdOaNGUVEAkpOvIT7eZC2DVE9u7sxj5E9zH/HCpFze/ttzok/3paUBarVt+NFogNRU35Vh4MCBqKmpgUqlQkZGhs19KSkpCAoKwp49e5CYmAgAuHr1Kr7//nvrfDs333wzPv30U5vHffvttza3u3Tpgp9//hmpvnxhDWDwkYm6F9+G+OKiVfvk5mh1d1+f3Fw5qdcuV1wckJ7e+PO78xip4YVJuXzxt+dEn+5LSABWrzY3bxmN5tCzapXvansAQKPRWJutNBqNzX2hoaF44oknMHXqVERGRqJ169ZYuHAhqqqqkJWVBQCYMGECFi9ejKlTp2LcuHHYv38/1q1bZ/M806dPx5133omcnByMGzcOoaGh+Pnnn7Fjxw6n3p+ewuAjI1K4GFlOWvZGOKWkHIdWW+nTk5unZrX2d7wwyY+namn4t5e+rCxzn57jx801Pb4MPRbh4eF275s/fz5MJhMeeeQRVFZW4vbbb8d//vMf3HDDDQDMTVWbNm3C008/jZUrV+KOO+7Ayy+/jLFjx1qf49Zbb8WuXbswa9Ys3HXXXRAEASkpKRgxYoTXX1ttDD7kFkcjnHzd96jurNb2aqGkeFJn0xPZwxo65UlI8G3gqVsjU9cnn3xi/X+zZs2wYsUKrFixwu7+Q4YMwZAhQ2y21R0W37VrV2zfvt3uczQ094+nMfiQW6Q4wqmxWiipcXfBVE8FJXs1YyQNrKXxDn7ZIAYfcotWW4n+/T/H55/3b3CEkxikVAvljLonX3tBxLKfJ2sAHNWMkbgsF+aLFy+KXRS/w1o0Ahh8yE0FBZ2toQcwoX//z0W/cEqxFspZzgQRV4OSPXKrGVMSZy/MTeWL2j4p1iiyFo0ABh9yUXl5eb0LJ6DG55/3xy23FIp6gmtsnh2pcieINKXGRm41Y0riiwuuL2r7WKNIUsbgQ07T6/X44IMPUFaWJNkLpxxntXY1iDS1xkbONWNK5okaFG/W9lnmEGvsd/jrRJ+CIIhdBEXwxHFm8CGnWb6NOnPhFPPkZm9W68LCcuzZEyS5yRZdDSLOBqW6nTgNBgMAzkAtR02tQbH8TRt77zTlb2+Za2znTmDp0vq/o2fP0ejTRxrTclh4IkwGBgYCAKqqqhASEuLJ4lEDqqqqAFw/7u5g8CGXNXbhHDFihE9Pbs6crAsKOmPu3LaSmGyxLleb6JwJSo31FbHUjHXqNBy33NJMdjNQK4XBEIZff23V5FoaSygpLr6GDRsEmEwq630ajYAnnxyEpKSAJv/tdTod7ryz4VmIu3XTQUpvLU81x2k0GkREROD8+fMAgObNm0OlUjXyKHKVIAioqqrC+fPnERERUW+SRVcw+JBbHDUpabVan5bF3qzWFy9eRF5enqQmW7THlSY6Z4KSMx2htdpKDBgQhLi4GO+8KGqS2hfmutyppdHpzMGj/gzBKqSne+49IIVZiBvj6Sa/2NhYALCGH/KeiIgI6/F2F4MPuU1KC6U6+qbqTNNQSYl5ocC0NN+doOtesOwdz4YubK4EJX/raKqEeVjqDyCwpVa7X0vjixmCpTALsSOe7uCvUqkQFxeH6OhoXL161VPFpDoCAwObVNNjweBDfq+xpqHVq414/nlz9b9aLWDhQgNGjvzd6xdQV9dfcyUoObu0iNwoZR6Whi7MFiqVCQsXVjSplsYXMwT7ehZiZ1g+Q42dE9zt66TRaDxyYSbvYvAhv+eoachgCMOyZfEQBHObvMmkwtSp4Th9eg202kqvX0BdeW5XglJpaSkA/xu67qm5jKTK0YUZMOH++z9Cq1YlGDNmtDgFlLnan6Ebb6zA9OlaGI0qaDQCFiyowMiRD/lFjSE5xuBDimCvaaixYCC1C6irJ2Q5Dl131JRVezZjf2vCA5y5MN/FC3MTWY7dM88AI0ZYmuNUSEiIABAhZtHIRxh8yGnOVv9KdTh0Q01DcgwGrpDbpI7ONmX5WxNebbww+44Um+PI+xh8yGmu9kmRA7kFA3fIaVJHZ5uy/K0Jzx5emIk8j8GHXCKnUONszZOcgoGzmjJiTCocNWX5e00dEXkPgw/5LUc1VJY5fiykNDTfE+ReO9dYU5YSauqIyDsYfMivSfXC7gtyfu3ONGX5Y00dEXkfgw8R2ag9qurMGTWKigJ8vr6Zs01ZcmzCIyJxMfiQIsl9hJq31B5V5aiPjbfnN2qsKWvYsGFo2bJlg4+VchMeEYmPwYcUSe59YLzF2RmffTG/kaOmrJYtWyIuLs7rZSAi/8PgQ04TYz0rb1JaqHGFWMPF/WE0GhFJG4MPOSU3F8jOBkwmQK02r76clSV2qchbxBouzpo4oob52xdPMTH4UKNKSq6HHsD8c/x48+rL/AD6JzGHizPUENniF0/PYvChRh07dj30WBiN5qn0LcGH30b8D4eLE4lLr9ejuPgasrOjYTJZFlIGxo8XcNtt55GUFMAvCm5QN74LKV1amvlbRm0aDZCaav5/bi6QmAj07Wv+mZvr+zKSd2i1lUhOPsnQQ+RjlhGWK1d+Zg09FkajCitXbsOrr74KvV4vUgnli8GHHNLr9dBoSrFwYTk0GgEA/lgpuhwaTSl++um3BpvBSkpELDQRkcxZ+rlZ+tvVVru/nS9GWPobNnWRXXVXyp40Kcza7HHpUiVWrwaKipJgMo22eVzdZjCSD85vRCQtXJ7F8xh8yK663yQaGlocGamHWi3YVMXWbgYjeeGoKiLpYX87z2Lw8TF/6wSs1VZi9uzTeOGFG2E0qv5oBjNAo/kdej0vkHLEvxmR9PjbQspiYvDxIf8dkpjbYDMY4P2lDYiIiFzBzs0+Ym8uHH/pBGxv9A873hERkZQw+PiIo7lwiIiIyDcYfHyksblwiIjIO0pKgJ075VXDzhGW3sM+Pj6SkGDu0zN+vLmmR6MBVq3yjw7ORHX5Wyd+ki+59q3kCEvvYfDxAb1ej5qaGtx7L7BvnxrFxQFISrqG+HgTSkul++blNwlyh1wvNORf/GG5B6mXT64YfLys7iSAFoWFtrelOPrJ0TeOixcvIi8vz+XnZE2Af+OCtiQFlvNuwxOsmpd7SE4+KcnzLnkfg4+XOTuqSaqjnzx5UmBNgH/T6/X49lvAZLJ9zxiNwL59eoSE8Bss+Ubd5R4E4XoHS6Us98AvmfaxczO5xdWOd/4+nF/pLN+w9+5d3+C6Qnv2rOeCil4kx867vmBZ7sHynpTLcg+u/j3r7s+Fox1jjQ+5xdWOd46G8/PbiPxZ3geNrSvkz9+wxcKaVMfkttyDq3/PuvvPnw/MmMHmZkcYfMhtrjRbWIbz1w4/HM7vn+R2oZGrxjrvBgUF4eLFG9jUAfks9+BqH7mG9q8deiz4JdOWXzZ1vfbaa0hKSkKzZs3QrVs3fPfdd2IXSfEsw/k1GvNtDuf3b/Zm8ibPsDQtrlz5mc0CwYC58+6kScfRqZOWTR0y4+pEtw3tb6n5qY1fMm35XfB5//33MWXKFDz33HMoKChAp06dkJGRgfPnz4tdNMXS6/UoLS3FvfeWYt++c/joIz327TuHe+8tRWlpKft9ELmobuddWybk53e3dui11ALt339Ocp819k2y5epEtw3vL+DvfzdAoxGstxcsKIdGw3Othd81dS1ZsgSPP/44HnvsMQDAm2++ia1bt2LNmjWYMWOGyKVTHjkP5yeSuob6VHXvno+9e3va7CfFIdzsm2RLr9dDo6nBwoUhmD5dC6NR9UdoMUCj+R16ve18bw3tr1KZMHjwFgQEHODC0Q74VfCpqanB/v37MXPmTOs2tVqN/v37Iz8/v8HHVFdXo7q62nq7oqLCo2VS+rTjch/OTyR1dftUAbCp8QGkN4Tb2/M9ye28W/cLYmOhxdH+luZle/2apPD3F5tfBZ+LFy/CaDQiJibGZntMTAyOHDnS4GPmzZuHuXPneq1MnHaciLyt7kXO0cg6sbk635M789HI7bxbt5yNhRZn96eG+VXwccfMmTMxZcoU6+2Kigq0atXKo79DKh8uIm/x5DdsTrzWdFIdWWepqTAYwqBSTa5XK7Vnz3oUFlZaazaa0hzG8y7Z41fBp2XLltBoNDh37pzN9nPnziE2NrbBxwQHByM4ONgXxSNyiqcu/L4MEJ76hs1+H54jxVoAV+Z74vIn5C1+FXyCgoKQnp6OL774AkOHDgUAmEwmfPHFF8jJyRG3cERO8NSFX4wA0dRv2LzQKYujWimDwYDCwiAuf0Je4XfD2adMmYK33noL69evx+HDh/HEE0/g8uXL1lFeRFLlqWU9pLo8iKOhy+Z+H/oG5zDZt0/PYbh1SKVTblPZm+/p/fff5/In5DV+VeMDACNGjMCFCxcwe/ZsnD17Frfddhs+++yzeh2eiaTGU8t6SHF5EEc1UK72+6CGmxYvXryIvLw8EUvlWWIufyKFfmYGQxjKynSIjNRLrslS7vwu+ADmIX9s2pIGuQ0rFYter0d4+DWo1dE2M/FqNALCws5Drw9w6qLvqefxpMaasLjOl3vq/h398bMmRidtKfQzKyjoXO9z0KXLAY88t5z+/t7il8GHpENuw0rFUHtOjiFDbE94gwdvwZYt5hNeYzUennoeT3Jm6HJtUh2NJAfe+KxJoebDl520xepnVjuMGAxh1s8uAAiCGps3D0FKynHrfs6GlwceeAARERE2v0fJ51oLBh/yOn7QHKt9oXJ04W+sxsNTz+MpzjZhjRgxwuZxUhyNJBee/KxJoebD18RqJq4dWvfsCcLSpbbdbwVBjd69s6DTaevtbw9Djn0MPkQS46kLv9gBwl4TFmBeVsHi6tWrIpWQ7PFWzYfUm1ksa1/VDj++WuDTElLuvLPhMqSnaxvcn1zH4ENEXmepgdq3rxvy87tj796eyM/vjszMLRg2TOzSUW2uzqzsCmdqKsrLy/HBBx+49fxN4epaWd6SkGCuXRs/3nzMNRpg1SpO6eBJDD5E5DO115Cy9F3IyTkqcqnIwhcj7KRYU+HqWlneLEdNTQ3uvRfYt0+N4uIAJCVdQ3y8CaWlbL7yFAYfIvKJsjKdzYUUMIefn3/maC2pkMIIOzFGp7m6VpY31A1fFoWFtrc5rUPTMfiQlRRGcJD/iozUQ6Uy1atFOHnyC2i1Dh74B6n3D/E3Yo2wk3PH3aacQ50NVZzWoekYfAiAMkdwkG81VoswbNgwtGzZssHHSvVC5+/E6iAvx781z6HyweBDXCNJZJ6q2pfDBHaOahFatmyJuLg40cpG5C6eQ+WFwYckucSBkniqal9qTQT2ApbYw+yJPI3nUHlh8CFR564gM0+EEXP/Al2j/Qt81ZfLEsTOnDnjV2tIEdXFc6i8+N3q7OQ6y7wRGo35NueNkJ/cXCAxEejb1/wzN7dp+3mKTqez22+HyB+Y5/8pxcKF5dBoBAD4Y/6fcmg0pVxFXoJY46NwnDdC/pztX8B+CNQYOfQT8wZ3X7dU5v8h1zD4KBjnjfAPzvYvYD8EaozU+on5iruv25Pz/yg1dIqBwUfBOG+E/On1eoSHX4NaHQ2TSWXdrtEICAs7D70+ADqdzun9vIEndHnxt1DjLLFft1JDpxgYfIhkqnaN3ZAhnW3mxxk8eAu2bDkAABg1ahT++c9/Nrqft2r2eEIncg4/A77B4EMkU7WDhKP5caqqqpzaz5s1ezyhE5FUMPgQ+Qln58fhPDpEpGQczk4kUSUlwM6d5p9ERHIj1XMYgw+RBPl6vh0iIk+S8jmMwYdIYuzNtyO1b01ESscRiw2T+jmMfXwUjB9a6dHr9fj2W8Bksu0MbDQC+/bpERLCjsJEUsERiw2T+pxhDD4Kxg+td7m6JpZleLrBEAaVajIE4XqFrEplwp4961FYWMkJJYkkhJ/F+qS+dhmbuhROp9MhLi7O7j9+qN3jTvu2JYBqtZXIzNwClcp81lCpTMjM3GIdiWXZz9mauObNmzu1H2v2iMgTpL7+o0oQBEHsQkhJRUUFtFotDAYDwsPDxS4OyVBJiTns1P22U1zs+INfWlqK1ZbFfQAYDGENzreTnZ2NuLg4ANfXWrPHUmPn7H7kOa7W+BH5m5ISc/NWaqpvPgPOXr/Z1EXkQZ7so+PMfDvOPhdDjW/l5l7v3KlWm7/9ZmWJXSpqCAOq9yQkSPOYsqmL/J6n5pJo7HksfXT27l1vbaaysPTRefXVV6HX65tWEJI0qY9ooeukPOSavIfBh/yap05szjyPq310yP+Ya/z0DY5o2bdPz9ArIQyo3qHX61FaWmr3nxQ+A2zqIr9l78SWkeFa9as7z+NoTSzyTxyVJy9SH3ItR7UXTnZE7M8Aa3zIbzk6sTmrKd/gtdpKJCefZOiRIXeaR1njJx96vR7h4eegVtuO7dFoBISFnZNErYQcOfveFvszwBof8kvmE9s1qNXRMJlU1u3mE9t56PUBjX7j8PU3eE4oKQ2e6JjMGj/pql0rMWRIZ2zePASCoIZKZcLgwVuwZcsBAOLXSpD3MPiQ3/HUia3uN/jaz+ONb/CcUFJcer0excXXkJ19PSybmzUF3HbbeSQlNR6Wa3NmVB75Xu3Pl6OAKnatBHkPgw/5HW+c2Hz1DZ6hRhyWsFxUlASTabTNfUajCitXbkNy8knWAvghBlTlYfAhv+epExtPkP7LEoIjI/VQqUz1mjUjI8ts9iMi+WLnZiIPYR8dz/DUvEvuaKxjMhHJH2t8iDyEfXSaTgozHrNjMpF/Y/Ah8iCGGvd4umNxU7nTrMkaP5IaXy/HIZfPAIMPEYnKXzoWs8aPpESM2lO5fAYYfIjskMu3F7nzp47FYp/QqXFK+Fx7atZ6d8jhM8DgQ37HUyc2uXx78ReNzZdE5AlK+FxzOQ7HGHzI73jyxCbnk58cidWxWAm1AHSdv3+u09LMzVu1w49GA6SmilcmKWHwIb/k7yc2fybGfElKqAUg5UhIMPfpGT/eXNOj0QCrVrG2x4LBh4gIDMvkH/R6PWpqanDvvcC+fWoUFwcgKeka4uNNKC1lgAcYfIiIiPxC7XUKaysstL0t9RGS3saZm4mIiPyAsyMf5TBC0psYfIhIVOxYTES+xKYuIhKVNzoWW/o5AMCZM2oUFQUgOdncz8Gd5yMi/8HgQ0Ru89SU+J4MIbX7ORQUdK43L1CXLgcAsJ8DkVKxqYuIXKLX61FaWorFi8uRmCigb18gMVHA4sXlKC0thV6vF7V8lpoegyHMGnoAQBDU2Lx5CAyGMJv9iEhZWOPjRbWr2xvC6naSG0ttisEQhmXLJkMQLAuKqjB1ajhOn14DrbbS67Upjj5bFy9eBACUlelslr8AzOGnrCySs0ETKRiDj5fYG1ZYF6vbyZO83bfF8tyNhQpv1qbU/WwZDGEoK9MhMlJvE2gaW/uLSCnsfUaUisHHSziskHzNl31bxAwVtT8zjl4n1/4ipWlo5GNDnxGlj5Bk8CE2yfmJxvq2pKQc91htjBRCRWOvExBv7S8iMdQdIXnmjBrPPx9tbZIWBDW2bs3E77+rxCym6Bh8FM7ZZgM2ycmHr/q2iB0qnH2dYqz9RSSW2ufpI0caWqVdpfhV2hl8fESqbazONhuwSU4+fNkMJWaoYB8eIse4SnvDOJzdBwoKOmPZsslYv340li2bjIKCzmIXqZ7Ghv6SfFiaoVQq89nOX/u2NPV1Kr2fA/k/yyrtGo35NldpN2ONj5c50w9BCjj017+I3QzlK45e57Bhw9CyZcsGH8d+a+TvuEq7fQw+XiaXQMFmA//jjWYoKa6rZe91tmzZEnFxcT4rB5FUcJV2xxh8vMRy4m8sUEilur2xUTqWSeEslPxtQcm8sa6Wq6QYvoikhNOpOMbg4yW1LxA33liB6dO1MBpV0GgELFhQgZEjH5JceHDUbJCXl1dvf6V+W5AqXwUCsf/mUghfRCRfTgefiooKp580PDzcrcL4G8uJ95lngBEjgOPHgdRUFRISIgBEiFk0u1xpHlHqtwWpEiMQiDUHFEMNyZWnFvYl9zkdfCIiIqBSOZ70SBAEqFQqGI3GJhfM3yQkSPNN7sy3f6kOxaf6fBkIOAcUkWtyc4HsbPPwcrXaPOIqK0vsUimP08Fn586d3iwHiaShWoKLFy9am7Ycze1DysY5oIicV1JyPfQA5p/jxwMZGdL8UuzPnA4+vXv39mY5SET2vo3LZSg+iYvvEyLH9Ho9vv0WMJlsz7VGI7Bvnx4hIWy+9SW3OzeXl5cjNzcXhw8fBgB06NABY8eOhVar9VjhSFxyGYpP4uL7hMg+S5OwwRAGlWpyvRG+n322CYWFpWwS9iG3Zm7+4YcfkJKSgqVLl6KsrAxlZWVYsmQJUlJSUFBQ4OkykkgsQ/Fr49w+VBffJ0T2WZp66840DggQBDVyc8ehoKCzR5uEpTjlQ0kJsHOn+afY3Krxefrpp3HffffhrbfeQkCA+SmuXbuGcePGYfLkyfj66689WkgShxRW4Cbp4/uEyDlduhxAdPRZ/OMf42Cpd7A0Dc+efQGemm9TalM+SK1Tt1vB54cffrAJPQAQEBCAadOm4fbbb/dY4SyKi4vxwgsv4Msvv8TZs2cRHx+PUaNGYdasWTaJ9dChQ5g4cSK+//57REVF4cknn8S0adM8Xh5/V/uYOprbhxPEkYVSlsiQA7GmGCDnXL0ajLqNLYKgxo8/XkZSkt5jfxup/I2l2KnbreATHh6OU6dOoV27djbbf/31V4SFeX5RyyNHjsBkMmHVqlVITU1FYWEhHn/8cVy+fBmvvPIKAPM8QwMGDED//v3x5ptv4qeffsLYsWMRERGB7Oxsj5fJn0nt2wLJg5grtZOZvaUK6mJ/Es9yZW4ee7P5FxZ+gl9/rfS7v82xY7arwwPmTt3Hj8ss+IwYMQJZWVl45ZVX0KNHDwDAnj17MHXqVDz00EMeLSAADBw4EAMHDrTebtOmDY4ePYo33njDGnzeeecd1NTUYM2aNQgKCkKHDh1w8OBBLFmyhMHHDf70wSPvkGI/AqWr+2XF3txKnGLAc1xtxmmsadjf/jZpaebjUjv8aDRAaqp4ZXIr+LzyyitQqVR49NFHce3aNQBAYGAgnnjiCcyfP9+jBbTHYDAgMjLSejs/Px+9evWyOclmZGRgwYIF+O2333DDDTc0+DzV1dWorq623nZlhmoiJWPNoLRxDi7v0uv1KC6+huzsaJhM5sl9zc04Am677TySkgLsvveV1DSckGAOg+PHm2t6NBpg1Spx5y5yK/gEBQVh+fLlmDdvHk6cOAEASElJQfPmzT1aOHuOHz+OlStXWmt7AODs2bNITk622S8mJsZ6n73gM2/ePMydO9d7hSXyYww10sS5lbzL0qRYVJQEk2m0zX1GoworV25DcvJJ5OTk2H0OJTQNW/qb3XsvsG+fGsXFAUhKuob4eBNKS8X7YtSkRUqbN2+Ojh07uv34GTNmYMGCBQ73OXz4sE1fotOnT2PgwIH4y1/+gscff9zt320xc+ZMTJkyxXq7oqICrVq1avLzEhGJxd/nVqrdgfvMGTWKigKQnGy+oALev6Bafre9/jqWqRxqamoU29Rrr79ZYaHtbTH6NLkVfK5cuYKVK1di586dOH/+PEx1ei45O5fPM888gzFjxjjcp02bNtb/nzlzBnfffTd69OiB1atX2+wXGxuLc+fO2Wyz3I6NjbX7/MHBwQgODnaqvEREctDYBVnOal9QHTXn+eKC6sxUDpYm4TNnzliXAlICZ/sqidGnya3gk5WVhe3bt+P+++/HHXfc0ejipfZERUUhKirKqX1Pnz6Nu+++G+np6Vi7di3UattvM927d8esWbNw9epVBAYGAgB27NiBtm3b2m3mkgIOPSUiT/PnuZUs58vGmvN8dUF1pr+OTqfzu07LcuZW8NmyZQv+/e9/o2fPnp4uT4NOnz6NPn36IDExEa+88gouXLhgvc9SmzNy5EjMnTsXWVlZmD59OgoLC7F8+XIsXbrUJ2V0B4eeEpG3+HsHWik15ymhv44/cSv43HjjjV6Zr8eeHTt24Pjx4zh+/DgS6nQFFwQBAKDVarF9+3ZMnDgR6enpaNmyJWbPni3poexSrgokIvmp25/E3gXZH/qdyK05j9M/SIdbwWfx4sWYPn063nzzTSQmJnq6TPWMGTOm0b5AAHDrrbfim2++8Xp5iIikSElTDMitOU9Jfxupcyv43H777bhy5QratGmD5s2bW/vUWJSVSTNxExH5OyVdOOXWnKekv42UuRV8HnroIZw+fRovv/wyYmJi3O7cTERE1BRi9K9hs5W8uRV89u7di/z8fHTq1MnT5SEiIpI0Nls1Tsrh0K3g065dO/z++++eLgsREZFDUrmgKjnUOEPK4dCt4DN//nw888wzeOmll9CxY8d6fXzCw8M9UjgiIqLapHxBJVtS/Ru4FXwsK6X369fPZrsgCFCpVDAajU0vmQJI5ZsLEZGcSPWCSvLgVvDZuXOnp8uhSHW/uYix5gwREZGSuBV8evfu7dR+f/3rX/H888+jZcuW7vwaRbCEmtxcIDsbMJkAtRpYvRrIyhK5cERERH5G3fgu7vvnP/+JiooKb/4Kv1BScj30AOaf48ebtxMREZHnuFXj4yzLchLk2LFj10OPhdEIHD8O1Fmhg4iIPIALRCuXV4MPOSctzdy8VTv8aDRAaqp4ZSIi8ld1F4g2GMJQVqZDZKTeZjJELhDtnxh8JCAhwdynZ/x4c02PRgOsWsXaHnKM31iJ3FP7c1NQ0Lneel9duhyotx/5DwYficjKAjIyzM1bqakMPeRY3W+s9vAbK5F9BkOYNfQAgCCosXnzEKSkHJf8ul/kPgYfCUlIYOAh5zj7TZTfWInsKyvTWUOPhSCoUVYWyeDjx1we1XXt2jU8//zzKHFiyNGoUaM4izMREUlSZKQeKpXtyBKVyoTIyDKRSkS+4HLwCQgIwKJFi3Dt2rVG933jjTc4hw8REUmSVluJzMwt1vBj6ePD2h7/5lZTV9++fbFr1y4kJSV5uDhERES+06XLAaSkHEdZWSQiI8sYehTAreAzaNAgzJgxAz/99BPS09MRGhpqc/99993nkcIRERF5m1ZbycCjIG4Fn7/+9a8AgCVLltS7j4uUEhGRlHGBaGVzK/iY6k4zTESisjcBm6s4NxApQd0FohvC97r/civ4vP322xgxYgSCg4NtttfU1OC9997Do48+6pHCEVHDan8TdTQBmyvfWDk3ECkJ38PKpRLcWFBLo9GgtLQU0dHRNtv1ej2io6Nl3dRVUVEBrVYLg8HAofgkaXq9HsXF13DHHdEwmVTW7RqNgH37ziMpKcClk3tpaSlWr17d6H7Z2dmIi4tzq8xERN7i7PXbrdXZBUGASqWqt72kpARardadpyQiF+l0OlRUxNiEHgAwGlWorIzhN1oioga41NTVuXNnqFQqqFQq9OvXDwEB1x9uNBpRVFSEgQMHeryQRNQwLnBLROQal4LP0KFDAQAHDx5ERkYGWrRoYb0vKCgISUlJGD58uEcLSET2cYFbIiLXuBR8nnvuOQBAUlISRowYgWbNmnmlUETkPC5wS0TkPLdGdY0ePRqAeRTX+fPn6w1vb926ddNLRkRO4wK3RETOcSv4HDt2DGPHjsXevXtttls6Pct5VBcRERH5L7eCz5gxYxAQEIAtW7YgLi6uwRFeRHKntMn86s75Y29SRM5mS0Ry5tY8PqGhodi/fz/atWvnjTKJivP4EKDcyfwsYW/jxhBMm6aFyaSCWi1g4UIDRo783adhT2nBk4iaxtnrt1s1Pu3bt8fFixfdLhyR1Dm64Lqzn1zodDqUlADTpl0fIm8yqTB9egRGjIiAr3KGUoMnSQNDt39zK/gsWLAA06ZNw8svv4yOHTsiMDDQ5n7WlBDJ17FjtvMCAeah8seP+64DtVKDJ4mPodv/uRV8+vfvDwDo27evTf8edm4mkj9OikhKxtDt/9wKPjt37vR0OYhIIjgpIhH5M7eCT+/evfHNN99g1apVOHHiBD766CPceOON2LBhA5KTkz1dRiLyMblMili7ryH7XZA32BvdqHS1+0GdOaNGUVEAkpOvIT7eXFUs5c+jW8Fn06ZNeOSRR/Dwww/jwIEDqK6uBgAYDAa8/PLL+Pe//+3RQhKR78lhUsS8vDyb2+x3QZ5UUNAZmzcPgSCooVKZkJm5BV26HBC7WKKr3Q/K0TGS6ufRrdXZX3zxRbz55pt46623bDo29+zZEwUFBR4rHBGRK9jvgjzFYAizXtABQBDU2Lx5CAyGMJFLJj7L56yxYyTVz6Nbwefo0aPo1atXve1arRbl5eVNLROR6JydpI+T+RH5p7IynfWCbiEIapSVRYpUIumR6zFyq6krNjYWx48fR1JSks323bt3o02bNp4oF5GodDodcnJyOJeHSBgoSWyRkXqoVCabC7tKZUJkZJmIpZIWuR4jt4LP448/jqeeegpr1qyBSqXCmTNnkJ+fj7/97W949tlnPV1GIlHUDjUlJeb5bdLSpN/vxR/UDZ6FheV4553v2MHUBZyEzz2W0K3VViIzc0u9/iuW9x/DeePHSKrcCj4zZsyAyWRCv379UFVVhV69eiE4OBh/+9vf8OSTT3q6jESiys0FsrPN89qo1eah3llZYpfK/1kuyubjHwuT6WZ2MHUSJ+FzX93QPXv2BRQXByAp6Rri47sC6MrQWEuXLgeQknIcZWWRiIwsk3zoAdwMPiqVCrNmzcLUqVNx/PhxXLp0Ce3bt0eLFi08XT4iUZWUXA89gPnn+PHmod6s+fG+68ffPFGqpfNkSspxWZxgxcJJ+JqmdqiJiwPS00UsjAxotZWy+jy6FXwsgoKC0L59e0+VhUhypLB8g5I1dPwtnSfldKIlIulwa1QXkVJYlm+ojcs3+E5Dx99R50n2uyDyPrmPem1SjQ+Rv+PyDeKqf/wFLFhQgZEjH6q3L/tdUFOxQ7hz5D7qlcGHqBFyWb7BX9kefxUSEiJQUhLBUXbkUewQ7ho5HwMGHyInyGH5Bn9W+/hzlB15AzuEKwf7+BCRbNgbZVdSIm65iEg+GHyISDYcjbKj6+p2KjUYwlBUlFRvnSmpdj4l8iY2dRGRbFhGedUOPxxlV1/tzqcbN4bg+ee1MJlUUKsFLFxowMiRv0u68ymRNzH4EJFscJSd8yOPdDodSkqAadNqNw2qMH16BEaMiAAzj2MGQxjKynRcJsUPMfgQkawoeZSdqyOPOAGnewoKOtdbf4rLpPgPBh8ikh2ljrJzdeQRmwZdZzCEWUMPwGVS/BE7NxMR+SlL06BGY76txKZBZ1k6epeV6ayhx8KyTErt/Ui+WONDROTHlNw06ApLh/Di4mvYsEGwLowLmGcMf/LJQUhKCmCHcD/A4ENE5OeU2jToKnOn8IY60KuQnh4jdvHIQxh8iIiIamEtmX9j8CEiIrf568KerCXzXww+RETkFi7sSXLEUV1ERDLh7IgiX4084sKeJEes8SEikonaS1EAwJkzahQVBSA5+Rri482T9ci1aYnIVxh8iIicJIX+LJbnz829vlK9Wm0eiZSV5dVfTeQXGHyIiJwgpf4sJSXXQw9g/jl+vHkkEjvkEjnGPj5ERE6QUn8WR2twEZFjDD5ERDJjWYOrNq7BReQcBh8iIpmR6hpcBkMYioqSYDCEiVsQIgfYx4eISIakMLtw7WHzBQWdrauaq1QmZGZuQZcuB+rtRyQ22dX4VFdX47bbboNKpcLBgwdt7jt06BDuuusuNGvWDK1atcLChQvFKSQRkQ8kJAB9+ohX02MZXj9kyARs2ZJpXdVcENTYujUTQ4ZM4OSFJDmyCz7Tpk1DfHx8ve0VFRUYMGAAEhMTsX//fixatAhz5szB6tWrRSglEZEy6HQ6VFTE2KxmDgBGowqVlTEMPSQ5smrq2rZtG7Zv345NmzZh27ZtNve98847qKmpwZo1axAUFIQOHTrg4MGDWLJkCbKzs0UqMRGRvDkzd1Famg5qte1IM3a2JqmSTfA5d+4cHn/8cXzyySdo3rx5vfvz8/PRq1cvm7bkjIwMLFiwAL/99htuuOGGBp+3uroa1dXV1tsVFRWeLzwRyZ7UlovwBVfmLlq9Wofx483D6qXS2ZqoIbIIPoIgYMyYMZgwYQJuv/12FBcX19vn7NmzSE5OttkWExNjvc9e8Jk3bx7mzp3r8TITkX+pu1xEQ/xtuQhX5i6SQmdrImeIGnxmzJiBBQsWONzn8OHD2L59OyorKzFz5kyPl2HmzJmYMmWK9XZFRQVatWrl8d9D1FRSWC5B6Wof35IS80SCaWm8yFskJPBYkPSJGnyeeeYZjBkzxuE+bdq0wZdffon8/HwEBwfb3Hf77bfj4Ycfxvr16xEbG4tz587Z3G+5HRsba/f5g4OD6z0vkdRIabkE4jpZRHImavCJiopCVFRUo/utWLECL774ovX2mTNnkJGRgffffx/dunUDAHTv3h2zZs3C1atXERgYCADYsWMH2rZta7eZi0gupLRcgtJxnSzyBNbgikcWfXxat25tc7tFixYAgJSUFCT8caYZOXIk5s6di6ysLEyfPh2FhYVYvnw5li5d6vPyEnlC7RPjxYsXRS4NWThaJ4vBh5zBGlxxySL4OEOr1WL79u2YOHEi0tPT0bJlS8yePZtD2UmWnD0xku9Z1sni0G1yF2twxSXL4JOUlARBEOptv/XWW/HNN9+IUCIiz+IJT7os62Qpcei2wRCGsjIdIiP10GorxS4OkVtkGXyIiMSklKHbXIvLNxgofYvBh4jIDUoYum2Zu6i4+Bqefz4agmBelsKyFtfs2d2QlBTAfihN4ChQknfIbq0uIiLyHa7F5T0GQ5g19ADmQLl58xAYDGEil8y/MfgQyZDBEIaioqR6J0g2OZA3WDp018YO3U1XVqazhh4LQVCjrCxSpBIpA5u6iGSmdtW4Wi1g4UIDRo78nfN+kNcouUO3N0VG6qFSmWzCj0plQmRkmYil8n+s8SGSAUsNT0lJnE3VuMmkwvTpETAa4xh6yKuysoDiYmDnTvNPzlTtPkvNrFZbiczMLVCpzHMjWPr4WDo4swbXO1jjQyRB9kbTACbU/b7CyfPIV5TQodsX6i54O3v2BRQXByAp6Rri47sC6MoaXC9SCQ1NiKNgFRUV0Gq1MBgMCA8PF7s4pGB6vR7Fxddwxx3RdTqWCgCu39ZozN/AeUEiIiVz9vrNGh/yKK4/4zk6nQ6HDtVfHgFQWWcOZl8LIiLXMPiQx3D9Gc+ztzxCfj5w+bJ/T55HROQN7NxMHsP1ZzzPMppGozHfttTwdO0K9OnD0ENE5CrW+BBJnFKWRyAi8gUGH/Iarj/jORxNQ0TkGQw+5BVcf4aIiKSIfXzI47j+DBERSRWDD3kc158hIiKpYvAhj7OsP1Mb158hIiIpYB8f8pi668/U7ePD9WeI5IETkZI/45IVdXDJiqapfcI8c0Zda/0Zcw0QT5hE0saJSEmuuGQFiaL2iTAuDkhPF7EwROQyTkRK/o59fIiIiEgxGHyIZKakBNi50/yTiIhcw+BDJAN6vR6lpaVYvLgciYkC+vYFEhMFLF5cjtLSUuj1erGLSEQkC+zjQyRxls6mBkMYli2bDEFQAQBMJhWmTg3H6dNroNVWsrMpeQWXniF/w+BDJHGWTqSOJobUaivZ2ZQ8jkvPkD9iUxeRTHBiSPIlLj1D/orBh0gmLBNDWsJP3YkhiTzBMsFoY0vPcCJSkis2dRHJSJcuB5CSchxlZZGIjCxj6CGP0+l0yMnJQXHxNWzYIMBkUlnv02gEPPnkICQlBbA/GckWgw+RzGi1lQw85FU6nQ46HbB6NTB+PGA0AhoNsGqVCunpMWIXj6hJGHyIiKhBWVlARgZw/DiQmgokJIhdIqKmY/AhIiK7EhIYeMi/sHMzkcQ524mUnU2JSOqkMPM8a3yIJM7S2dTRPD1c9Z6IpC43F8jOBkwmQK029yHLyvJ9ORh8iGSAoYaI5Eqv16O4+Bqys6OtowRNJmD8eAG33Xbe56MEGXyIiIjIKyxL7hQVJcFkGm1zn9GowsqV25CcfNKnS+6wjw8RERF5haWJvrGZ53255A6DDxEREXmVlGaeZ1MXEREReZ1UZp5n8CEiIiKfkMLM82zqIiIiIsVg8CEiIiLFYPAhIiIixWDwISIiIq+Q4pI77NxMREREXiHFJXcYfIiIiMhrpLbkDpu6iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIiISDEYfIiIiEgxGHyIiIhIMRh8iIgUoKQE2LnT/JNIyRh8iIj8XG4ukJgI9O1r/pmbK3aJiMTD4ENE5MdKSoDsbMBkMt82mYDx41nzQ8rF4ENE5CFSbE46dux66LEwGoHjx8UpD5HYZBV8tm7dim7duiEkJAQ33HADhg4danP/qVOnMHjwYDRv3hzR0dGYOnUqrl27Jk5hiUhRpNqclJYGqOuc6TUaIDVVnPIQiU02wWfTpk145JFH8Nhjj+HHH3/Enj17MHLkSOv9RqMRgwcPRk1NDfbu3Yv169dj3bp1mD17toilJiIlkHJzUkICsHq1OewA5p+rVpm3EymRShAEQexCNObatWtISkrC3LlzkZWV1eA+27Ztw5AhQ3DmzBnExMQAAN58801Mnz4dFy5cQFBQkFO/q6KiAlqtFgaDAeHh4R57DUTkv3buNNf0NLS9Tx+fF6dBJSXm5q3UVIYe8k/OXr9lUeNTUFCA06dPQ61Wo3PnzoiLi8OgQYNQWFho3Sc/Px8dO3a0hh4AyMjIQEVFBf773//afe7q6mpUVFTY/CMicoVUm5P0ej1KS0tRWloKjaYUbduaf1q26fV6cQtIJIIAsQvgjP/9738AgDlz5mDJkiVISkrC4sWL0adPH/zyyy+IjIzE2bNnbUIPAOvts2fP2n3uefPmYe7cud4rPBH5PUtz0vjx5o7DUmhO0uv1ePXVV+ttNxjCUFamQ2SkHlptJXJycqDT6UQoIZE4RK3xmTFjBlQqlcN/R44cgemPhvNZs2Zh+PDhSE9Px9q1a6FSqfDhhx82qQwzZ86EwWCw/vv111898dKISGGysoDiYnPzVnGx+baYampq6m0rKOiMZcsmY/360Vi2bDIKCjo3uB+RPxO1xueZZ57BmDFjHO7Tpk0blJaWAgDat29v3R4cHIw2bdrg1KlTAIDY2Fh89913No89d+6c9T57goODERwc7E7xiYhsJCRIt/+MwRCGzZuHQBDM33cFQY3Nm4dg9uwLiIsTuXBEPiRq8ImKikJUVFSj+6WnpyM4OBhHjx7Fn/70JwDA1atXUVxcjMTERABA9+7d8dJLL+H8+fOIjo4GAOzYsQPh4eE2gYmISInKynTW0GMhCGoUFwcgPV2kQhGJQBZ9fMLDwzFhwgQ899xzaNWqFRITE7Fo0SIAwF/+8hcAwIABA9C+fXs88sgjWLhwIc6ePYv/+7//w8SJE1mjQ0SKFxmph0plsgk/KpUJSUmc64yURRajugBg0aJFePDBB/HII4+ga9euOHnyJL788kvccMMNAACNRoMtW7ZAo9Gge/fuGDVqFB599FE8//zzIpeciEh8Wm0lMjO3QKUy95lUqUzIzNyC+HhTI48k8i+ymMfHlziPDxG5Qq/XO+wgHBQUJMqoqdLSUqxevbredvOorkhERpZBq61EdnY24tjJh/yAs9dvWTR1ERFJkb0h43VJaci4VlsJrbZS7GIQiUY2TV1ERFLj7FBwMYaMOztbvbP7EfkL1vgQEfkhnU6HnJwc1NTUoLy8vMEFmwMDA1FTUwO9Xi+ZGikib2PwISLyUzqdDnq9Hh988EGj+0qpOY7Im9jURUTkx6TcHCcHJSXm2bhLSsQuCXkKgw8REVEDcnOBxESgb1/zz9xcsUtEnsDgQ0REVEdJCZCdDfyxVCRMJvMitKz5kT8GHyIiojqOHbseeiyMRuD4cXHKQ57D4ENE5CYOGfdfaWmAus4VUqMBUlPN/2ffH/niqC4iIjfVHjJuj1gzN1PTJCQAq1ebm7eMRnPoWbXKvD0393ozmFpt3i8rS+wSk7MYfIiImoChxn9lZQEZGebmrdRUc+ix1/cnI8N8P0kfgw8RkR9jc1zTJCTYBhpHfX8YfOSBwYeIyI+xOc51jhaeDQ9XQ62Ohsmksm6r3feHpI/Bh4jIzzHUOM+ZhWeHDOmMrVszYTSqbPr+kDww+BAREf3BmRmsu3Q5gNmzu6GyMsba94fkg8GHiIjIRfHxJsTFiV0Kcgfn8SEiIiLFYI0PERGRiy5evFhvGzuJywODDxERkYvy8vIa3J6Tk8PwI3Fs6iIiIvIQZzpHk7gYfIiIiEgxGHyIiIj+wBms/R/7+BAREf3B3kzXFy9etNuvh+SFwYeIiKgWdk72b2zqIiIiIsVg8CEiIiLFYPAhIiJqhLOdntk5WvrYx4eIiKgR9jo918aZm+WBwYeIiMgJDDX+gU1dREREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPkRERKQYDD5ERESkGJy5uQ5BEAAAFRUVIpeEiIiInGW5bluu4/Yw+NRRWVkJAGjVqpXIJSEiIiJXVVZWQqvV2r1fJTQWjRTGZDLhzJkzCAsLg0qlErs4PlNRUYFWrVrh119/RXh4uNjFkTUeS8/gcfQcHkvP4bH0DG8cR0EQUFlZifj4eKjV9nvysManDrVajYSEBLGLIZrw8HB+mD2Ex9IzeBw9h8fSc3gsPcPTx9FRTY8FOzcTERGRYjD4EBERkWIw+BAAIDg4GM899xyCg4PFLors8Vh6Bo+j5/BYeg6PpWeIeRzZuZmIiIgUgzU+REREpBgMPkRERKQYDD5ERESkGAw+REREpBgMPgrz9ddfIzMzE/Hx8VCpVPjkk09s7hcEAbNnz0ZcXBxCQkLQv39/HDt2TJzCSlxjx3LMmDFQqVQ2/wYOHChOYSVs3rx56Nq1K8LCwhAdHY2hQ4fi6NGjNvtcuXIFEydOhE6nQ4sWLTB8+HCcO3dOpBJLkzPHsU+fPvXekxMmTBCpxNL1xhtv4NZbb7VOrte9e3ds27bNej/fj85r7FiK8Z5k8FGYy5cvo1OnTnjttdcavH/hwoVYsWIF3nzzTezbtw+hoaHIyMjAlStXfFxS6WvsWALAwIEDUVpaav337rvv+rCE8rBr1y5MnDgR3377LXbs2IGrV69iwIABuHz5snWfp59+Gps3b8aHH36IXbt24cyZMxg2bJiIpZYeZ44jADz++OM278mFCxeKVGLpSkhIwPz587F//3788MMP6Nu3L/785z/jv//9LwC+H13R2LEERHhPCqRYAISPP/7YettkMgmxsbHCokWLrNvKy8uF4OBg4d133xWhhPJR91gKgiCMHj1a+POf/yxKeeTs/PnzAgBh165dgiCY34OBgYHChx9+aN3n8OHDAgAhPz9frGJKXt3jKAiC0Lt3b+Gpp54Sr1AydsMNNwj/+Mc/+H70AMuxFARx3pOs8SGroqIinD17Fv3797du02q16NatG/Lz80UsmXx99dVXiI6ORtu2bfHEE09Ar9eLXSTJMxgMAIDIyEgAwP79+3H16lWb92W7du3QunVrvi8dqHscLd555x20bNkSt9xyC2bOnImqqioxiicbRqMR7733Hi5fvozu3bvz/dgEdY+lha/fk1yklKzOnj0LAIiJibHZHhMTY72PnDdw4EAMGzYMycnJOHHiBP7+979j0KBByM/Ph0ajEbt4kmQymTB58mT07NkTt9xyCwDz+zIoKAgRERE2+/J9aV9DxxEARo4cicTERMTHx+PQoUOYPn06jh49iry8PBFLK00//fQTunfvjitXrqBFixb4+OOP0b59exw8eJDvRxfZO5aAOO9JBh8iL3nwwQet/+/YsSNuvfVWpKSk4KuvvkK/fv1ELJl0TZw4EYWFhdi9e7fYRZE1e8cxOzvb+v+OHTsiLi4O/fr1w4kTJ5CSkuLrYkpa27ZtcfDgQRgMBnz00UcYPXo0du3aJXaxZMnesWzfvr0o70k2dZFVbGwsANQbnXDu3DnrfeS+Nm3aoGXLljh+/LjYRZGknJwcbNmyBTt37kRCQoJ1e2xsLGpqalBeXm6zP9+XDbN3HBvSrVs3AOB7sgFBQUFITU1Feno65s2bh06dOmH58uV8P7rB3rFsiC/ekww+ZJWcnIzY2Fh88cUX1m0VFRXYt2+fTXssuaekpAR6vR5xcXFiF0VSBEFATk4OPv74Y3z55ZdITk62uT89PR2BgYE278ujR4/i1KlTfF/W0thxbMjBgwcBgO9JJ5hMJlRXV/P96AGWY9kQX7wn2dSlMJcuXbJJ0kVFRTh48CAiIyPRunVrTJ48GS+++CLS0tKQnJyMZ599FvHx8Rg6dKh4hZYoR8cyMjISc+fOxfDhwxEbG4sTJ05g2rRpSE1NRUZGhoillp6JEydi48aN+Ne//oWwsDBrPwmtVouQkBBotVpkZWVhypQpiIyMRHh4OJ588kl0794dd955p8ill47GjuOJEyewceNG3HvvvdDpdDh06BCefvpp9OrVC7feeqvIpZeWmTNnYtCgQWjdujUqKyuxceNGfPXVV/jPf/7D96OLHB1L0d6TPh1DRqLbuXOnAKDev9GjRwuCYB7S/uyzzwoxMTFCcHCw0K9fP+Ho0aPiFlqiHB3LqqoqYcCAAUJUVJQQGBgoJCYmCo8//rhw9uxZsYstOQ0dQwDC2rVrrfv8/vvvwl//+lfhhhtuEJo3by78v//3/4TS0lLxCi1BjR3HU6dOCb169RIiIyOF4OBgITU1VZg6dapgMBjELbgEjR07VkhMTBSCgoKEqKgooV+/fsL27dut9/P96DxHx1Ks96RKEATBe7GKiIiISDrYx4eIiIgUg8GHiIiIFIPBh4iIiBSDwYeIiIgUg8GHiIiIFIPBh4iIiBSDwYeIiIgUg8GHiIiIFIPBh4iIiBSDwYeIZKOmpkbsItQjxTIRkX0MPkQkmj59+iAnJwc5OTnQarVo2bIlnn32WVhW0klKSsILL7yARx99FOHh4cjOzgYA7N69G3fddRdCQkLQqlUrTJo0CZcvX7Y+7+uvv460tDQ0a9YMMTExuP/++633ffTRR+jYsSNCQkKg0+nQv39/62P79OmDyZMn25Rx6NChGDNmjPW2u2UiImlg8CEiUa1fvx4BAQH47rvvsHz5cixZsgT/+Mc/rPe/8sor6NSpEw4cOIBnn30WJ06cwMCBAzF8+HAcOnQI77//Pnbv3o2cnBwAwA8//IBJkybh+eefx9GjR/HZZ5+hV69eAIDS0lI89NBDGDt2LA4fPoyvvvoKw4YNg6tLFrpaJiKSDi5SSkSi6dOnD86fP4///ve/UKlUAIAZM2bg008/xc8//4ykpCR07twZH3/8sfUx48aNg0ajwapVq6zbdu/ejd69e+Py5cv497//jcceewwlJSUICwuz+X0FBQVIT09HcXExEhMTGyzPbbfdhmXLllm3DR06FBEREVi3bh0AuFWmZs2aNek4EZHnsMaHiER15513WkMPAHTv3h3Hjh2D0WgEANx+++02+//4449Yt24dWrRoYf2XkZEBk8mEoqIi3HPPPUhMTESbNm3wyCOP4J133kFVVRUAoFOnTujXrx86duyIv/zlL3jrrbfw22+/uVxmV8tERNLB4ENEkhYaGmpz+9KlSxg/fjwOHjxo/ffjjz/i2LFjSElJQVhYGAoKCvDuu+8iLi4Os2fPRqdOnVBeXg6NRoMdO3Zg27ZtaN++PVauXIm2bdtaw4lara7X7HX16tUml4mIpIPBh4hEtW/fPpvb3377LdLS0qDRaBrcv0uXLvj555+Rmppa719QUBAAICAgAP3798fChQtx6NAhFBcX48svvwQAqFQq9OzZE3PnzsWBAwcQFBRkbbaKiopCaWmp9XcZjUYUFhY2+hqcKRMRSQODDxGJ6tSpU5gyZQqOHj2Kd999FytXrsRTTz1ld//p06dj7969yMnJwcGDB3Hs2DH861//snYk3rJlC1asWIGDBw/i5MmTePvtt2EymdC2bVvs27cPL7/8Mn744QecOnUKeXl5uHDhAm6++WYAQN++fbF161Zs3boVR44cwRNPPIHy8vJGX0NjZSIi6QgQuwBEpGyPPvoofv/9d9xxxx3QaDR46qmnrEPEG3Lrrbdi165dmDVrFu666y4IgoCUlBSMGDECABAREYG8vDzMmTMHV65cQVpaGt5991106NABhw8fxtdff41ly5ahoqICiYmJWLx4MQYNGgQAGDt2LH788Uc8+uijCAgIwNNPP42777670dfQWJmISDo4qouIRNPQKCoiIm9iUxcREREpBoMPERERKQabuoiIiEgxWONDREREisHgQ0RERIrB4ENERESKweBDREREisHgQ0RERIrB4ENERESKweBDREREisHgQ0RERIrB4ENERESK8f8BKTkfuivYzxoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABg+klEQVR4nO3dfVzT5f4/8Ndn40ZAGHIPooBgmqYmWIaVllnqUTv9tCQz06S0jmikeXc8mWalZpqaZdrX1CzTSuukZmlllkpm3sbJTAxUErwZMlBTYLt+f6zNbWxjjN2y1/Px4KH7fD7brn2i9uq63td1SUIIASIiIiIfIHN3A4iIiIhchcGHiIiIfAaDDxEREfkMBh8iIiLyGQw+RERE5DMYfIiIiMhnMPgQERGRz2DwISIiIp/B4ENEREQ+g8GHiMgDrVq1CpIkoaioyN1NIWpUGHyIfNS+ffuQk5OD9u3bIyQkBC1btsTgwYPx+++/17r2rrvugiRJkCQJMpkMYWFhaNOmDYYNG4bt27fX6303bdqEHj16ICYmBsHBwWjVqhUGDx6ML7/80lEfrZZXXnkFn332Wa3je/bswYwZM1BeXu609zY1Y8YM/b2UJAnBwcFo164d/vOf/6CiosIh77F27VosXLjQIa9F1Ngw+BD5qLlz52LDhg245557sGjRIowaNQrff/890tPTkZ+fX+v6xMRErFmzBu+99x7mzZuH+++/H3v27MF9992HrKwsVFdX1/mer732Gu6//35IkoSpU6fi9ddfx6BBg3D8+HGsW7fOGR8TgPXgM3PmTJcGH52lS5dizZo1WLBgAdq2bYuXX34Zffr0gSO2T2TwIbLMz90NICL3GD9+PNauXYuAgAD9saysLHTo0AFz5szB+++/b3S9QqHAo48+anRszpw5GDduHN566y0kJydj7ty5Ft+vpqYGs2bNwr333ott27bVOn/u3LkGfiLPceXKFQQHB1u95sEHH0RUVBQA4KmnnsKgQYOwceNG/Pjjj8jMzHRFM4l8Ent8iHxUt27djEIPALRu3Rrt27fH0aNHbXoNuVyOxYsXo127dliyZAlUKpXFay9cuICKigrcfvvtZs/HxMQYPb569SpmzJiBG264AU2aNEF8fDwGDhyIEydO6K957bXX0K1bN0RGRiIoKAgZGRn45JNPjF5HkiRcvnwZq1ev1g8vjRgxAjNmzMDEiRMBACkpKfpzhjU177//PjIyMhAUFISIiAg8/PDDOH36tNHr33XXXbjpppuwf/9+dO/eHcHBwfj3v/9t0/0z1LNnTwBAYWGh1eveeusttG/fHoGBgUhISMCYMWOMeqzuuusubNmyBSdPntR/puTk5Hq3h6ixYo8PEekJIXD27Fm0b9/e5ufI5XIMGTIEzz//PHbt2oV+/fqZvS4mJgZBQUHYtGkTxo4di4iICIuvqVar0b9/f3zzzTd4+OGH8cwzz6CyshLbt29Hfn4+UlNTAQCLFi3C/fffj6FDh6Kqqgrr1q3DQw89hM2bN+vbsWbNGjzxxBO49dZbMWrUKABAamoqQkJC8Pvvv+PDDz/E66+/ru99iY6OBgC8/PLLeP755zF48GA88cQTOH/+PN544w10794dBw8eRHh4uL69SqUSffv2xcMPP4xHH30UsbGxNt8/HV2gi4yMtHjNjBkzMHPmTPTq1QtPP/00jh07hqVLl2Lfvn3YvXs3/P39MW3aNKhUKhQXF+P1118HADRt2rTe7SFqtAQR0d/WrFkjAIgVK1YYHe/Ro4do3769xed9+umnAoBYtGiR1defPn26ACBCQkJE3759xcsvvyz2799f67p3331XABALFiyodU6j0ej/fuXKFaNzVVVV4qabbhI9e/Y0Oh4SEiKGDx9e67XmzZsnAIjCwkKj40VFRUIul4uXX37Z6Pgvv/wi/Pz8jI736NFDABBvv/22xc9t6IUXXhAAxLFjx8T58+dFYWGhWLZsmQgMDBSxsbHi8uXLQgghVq5cadS2c+fOiYCAAHHfffcJtVqtf70lS5YIAOLdd9/VH+vXr59ISkqyqT1EvoZDXUQEAPjtt98wZswYZGZmYvjw4fV6rq5HobKy0up1M2fOxNq1a9G5c2d89dVXmDZtGjIyMpCenm40vLZhwwZERUVh7NixtV5DkiT934OCgvR/v3jxIlQqFe68804cOHCgXu03tXHjRmg0GgwePBgXLlzQ/8TFxaF169bYsWOH0fWBgYF4/PHH6/Uebdq0QXR0NFJSUjB69GikpaVhy5YtFmuDvv76a1RVVSE3Nxcy2fX/dD/55JMICwvDli1b6v9BiXwQh7qICKWlpejXrx8UCgU++eQTyOXyej3/0qVLAIDQ0NA6rx0yZAiGDBmCiooK7N27F6tWrcLatWsxYMAA5Ofno0mTJjhx4gTatGkDPz/r/4navHkzXnrpJRw6dAjXrl3THzcMR/Y4fvw4hBBo3bq12fP+/v5Gj5s3b16rXqouGzZsQFhYGPz9/ZGYmKgfvrPk5MmTALSByVBAQABatWqlP09E1jH4EPk4lUqFvn37ory8HD/88AMSEhLq/Rq66e9paWk2PycsLAz33nsv7r33Xvj7+2P16tXYu3cvevToYdPzf/jhB9x///3o3r073nrrLcTHx8Pf3x8rV67E2rVr6/0ZDGk0GkiShK1bt5oNgaY1M4Y9T7bq3r27vq6IiFyHwYfIh129ehUDBgzA77//jq+//hrt2rWr92uo1WqsXbsWwcHBuOOOO+xqR5cuXbB69WqUlJQA0BYf7927F9XV1bV6V3Q2bNiAJk2a4KuvvkJgYKD++MqVK2tda6kHyNLx1NRUCCGQkpKCG264ob4fxymSkpIAAMeOHUOrVq30x6uqqlBYWIhevXrpjzW0x4uoMWOND5GPUqvVyMrKQl5eHj7++GO71o5Rq9UYN24cjh49inHjxiEsLMzitVeuXEFeXp7Zc1u3bgVwfRhn0KBBuHDhApYsWVLrWvH3An9yuRySJEGtVuvPFRUVmV2oMCQkxOwihSEhIQBQ69zAgQMhl8sxc+bMWgsKCiGgVCrNf0gn6tWrFwICArB48WKjNq1YsQIqlcpoNl1ISIjVpQWIfBl7fIh81IQJE/D5559jwIABKCsrq7VgoelihSqVSn/NlStXUFBQgI0bN+LEiRN4+OGHMWvWLKvvd+XKFXTr1g233XYb+vTpgxYtWqC8vByfffYZfvjhBzzwwAPo3LkzAOCxxx7De++9h/Hjx+Onn37CnXfeicuXL+Prr7/Gv/71L/zzn/9Ev379sGDBAvTp0wePPPIIzp07hzfffBNpaWk4cuSI0XtnZGTg66+/xoIFC5CQkICUlBR07doVGRkZAIBp06bh4Ycfhr+/PwYMGIDU1FS89NJLmDp1KoqKivDAAw8gNDQUhYWF+PTTTzFq1Cg899xzDbr/9RUdHY2pU6di5syZ6NOnD+6//34cO3YMb731Fm655Rajf14ZGRlYv349xo8fj1tuuQVNmzbFgAEDXNpeIo/lzillROQ+umnYln6sXdu0aVPRunVr8eijj4pt27bZ9H7V1dXinXfeEQ888IBISkoSgYGBIjg4WHTu3FnMmzdPXLt2zej6K1euiGnTpomUlBTh7+8v4uLixIMPPihOnDihv2bFihWidevWIjAwULRt21asXLlSP13c0G+//Sa6d+8ugoKCBACjqe2zZs0SzZs3FzKZrNbU9g0bNog77rhDhISEiJCQENG2bVsxZswYcezYMaN7Y22qvyld+86fP2/1OtPp7DpLliwRbdu2Ff7+/iI2NlY8/fTT4uLFi0bXXLp0STzyyCMiPDxcAODUdiIDkhAO2BiGiIiIyAuwxoeIiIh8BoMPERER+QwGHyIiIvIZDD5ERETkMxh8iIiIyGcw+BAREZHP4AKGJjQaDc6cOYPQ0FAu+05EROQlhBCorKxEQkICZDLL/ToMPibOnDmDFi1auLsZREREZIfTp08jMTHR4nkGHxOhoaEAtDfO2r5DRERE5DkqKirQokUL/fe4JQw+JnTDW2FhYQw+REREXqauMhUWNxMREZHPYPAhIiIin8HgQ0RERD6DNT520Gg0qKqqcnczGrWAgACr0xGJiIjs4TXBZ/bs2di4cSN+++03BAUFoVu3bpg7dy7atGmjv+bq1auYMGEC1q1bh2vXrqF379546623EBsb67B2VFVVobCwEBqNxmGvSbXJZDKkpKQgICDA3U0hIqJGRBJCCHc3whZ9+vTBww8/jFtuuQU1NTX497//jfz8fPz6668ICQkBADz99NPYsmULVq1aBYVCgZycHMhkMuzevdvm96moqIBCoYBKpao1q0sIgVOnTqG6urrOBZLIfrpFJP39/dGyZUsuJElERHWy9v1tyGuCj6nz588jJiYGO3fuRPfu3aFSqRAdHY21a9fiwQcfBAD89ttvuPHGG5GXl4fbbrvNpte1duOqq6tRUFCAhIQEKBQKh38muk6lUuHMmTNIS0uDv7+/u5tDREQeztbg47VdFiqVCgAQEREBANi/fz+qq6vRq1cv/TVt27ZFy5YtkZeX55D3VKvVAMDhFxfQ3WPdPSciInIEr6nxMaTRaJCbm4vbb78dN910EwCgtLQUAQEBCA8PN7o2NjYWpaWlFl/r2rVruHbtmv5xRUVFne/PoRfn4z0mIiJn8MrgM2bMGOTn52PXrl0Nfq3Zs2dj5syZDmgVERGRb1AqlVZnNwcEBCAyMtKFLbKd1wWfnJwcbN68Gd9//73RJmRxcXGoqqpCeXm5Ua/P2bNnERcXZ/H1pk6divHjx+sf6/b6ICIiotqUSiWWLFlS53U5OTkeGX68psZHCIGcnBx8+umn+Pbbb5GSkmJ0PiMjA/7+/vjmm2/0x44dO4ZTp04hMzPT4usGBgbq9+VqrPtzjRgxApIkQZIk+Pv7IzY2Fvfeey/efffdek3LX7VqVa2hRCIi8i22rmPnqevdeU2Pz5gxY7B27Vr897//RWhoqL5uR6FQICgoCAqFAtnZ2Rg/fjwiIiIQFhaGsWPHIjMz0+YZXc7mzq7BPn36YOXKlVCr1Th79iy+/PJLPPPMM/jkk0/w+eefw8/Pa34ViIiI7OY133ZLly4FANx1111Gx1euXIkRI0YAAF5//XXIZDIMGjTIaAFDT+DursHAwED9kF/z5s2Rnp6O2267Dffccw9WrVqFJ554AgsWLMDKlSvxxx9/ICIiAgMGDMCrr76Kpk2b4rvvvsPjjz8O4Hrh8QsvvIAZM2ZgzZo1WLRoEY4dO4aQkBD07NkTCxcuRExMjMM/BxERUUN41VCXuR9d6AGAJk2a4M0330RZWRkuX76MjRs3Wq3vcSVP7Brs2bMnOnXqhI0bNwLQrpa8ePFi/O9//8Pq1avx7bffYtKkSQCAbt26YeHChQgLC0NJSQlKSkrw3HPPAdCubzRr1iwcPnwYn332GYqKioz+uRAREXkKr+nxIedo27Ytjhw5AgDIzc3VH09OTsZLL72Ep556Cm+99RYCAgKgUCggSVKtMDly5Ej931u1aoXFixfjlltuwaVLl9C0aVOXfA4iIiJbeE2PDzmHEEI/dPX111/jnnvuQfPmzREaGophw4ZBqVTiypUrVl9j//79GDBgAFq2bInQ0FD06NEDAHDq1Cmnt5+IiNxLpQpFYWEyVKpQdzfFJgw+Pu7o0aNISUlBUVER+vfvj44dO2LDhg3Yv38/3nzzTQDWh98uX76M3r17IywsDB988AH27duHTz/9tM7nERGR9ztwoDMWLszF6tXDsXBhLg4c6OzuJtWJQ10+7Ntvv8Uvv/yCZ599Fvv374dGo8H8+fP1m69+9NFHRtcHBATU2kLit99+g1KpxJw5c/TrH/3888+u+QBERORyui2FVKpQbNrUH0JovzOEkGHTpv5ITS2AQlHpsds7scfHR1y7dg2lpaX4888/ceDAAbzyyiv45z//if79++Oxxx5DWloaqqur8cYbb+CPP/7AmjVr8Pbbbxu9RnJyMi5duoRvvvkGFy5cwJUrV9CyZUsEBATon/f5559j1qxZbvqURETkbJGRkcjJyUG3bsP1oUdHCBluv324xy5eCDD4+Iwvv/wS8fHxSE5ORp8+fbBjxw4sXrwY//3vfyGXy9GpUycsWLAAc+fOxU033YQPPvgAs2fPNnqNbt264amnnkJWVhaio6Px6quvIjo6GqtWrcLHH3+Mdu3aYc6cOXjttdfc9CmJiMgVIiMjcdttkZCZpAi5HOjaNdJjQw8ASEII4e5GeBJr29pfvXoVhYWFSElJQZMmTer1uu5ex8fbNOReExE1Bt6wH9aKFcDo0YBarQ09y5YB2dnuaYu1729DrPFxEV3XoKf/EhMRkft5y/8sZ2cDvXsDBQVAWhpgsIWmx2LwcSGGGiIisoUnLnprSWKidwQeHdb4EBERkc9g8CEiIvJw3rZIoCfjUBcREZEHO3Cgs369HEnSYMCAzUhPP+juZnkt9vgQERF5KEuLBLLnx34MPkRERB6qrCzS7CKBZWURbmqR9+NQFxERkYeKiFBCkjRG4UeSNIiIKNM/Nl3vp7y8HDU1NfrH/v7+UCgU+se+vnQKgw8REfk8T1ssULfPlUJRiQEDNteq8VEoKgEAV65cwfLly+v9+u5e/8edGHyowb777jvcfffduHjxIsLDw216TnJyMnJzc5Gbm+vUthER1cV0sUCVKhRlZZGIiFDqAwbg2rBguujt9OnnUVTkh+TkGiQk3ALgFgQEBNi9jo8nrP/jLqzx8QEjRoyAJEl46qmnap0bM2YMJEnCiBEjXN8wIiIPYBgCDhzojIULc7F69XAsXJiLAwc6m73OFSIjIxEfH4/4+HhkZMRi0KBIZGTE6o/5ao9NQzH4+IgWLVpg3bp1+Ouvv/THrl69irVr16Jly5ZubBkRkWdoDDOoTNf74fo/tTH4+Ij09HS0aNECGzdu1B/buHEjWrZsic6dr/8fzbVr1zBu3DjExMSgSZMmuOOOO7Bv3z6j1/riiy9www03ICgoCHfffTeKiopqvd+uXbtw5513IigoCC1atMC4ceNw+fJlp30+IqKG8vYZVKa9VZ9++k+LvVe+jMHHTYqLgR07tH+6ysiRI7Fy5Ur943fffRePP/640TWTJk3Chg0bsHr1ahw4cABpaWno3bs3ysq0MwhOnz6NgQMHYsCAATh06BCeeOIJTJkyxeg1Tpw4gT59+mDQoEE4cuQI1q9fj127diEnJ8f5H5KIyE66GVSGTGdQeSpzvVWHD3fy6t4rZ2HwcYMVK4CkJKBnT+2fK1a45n0fffRR7Nq1CydPnsTJkyexe/duPProo/rzly9fxtKlSzFv3jz07dsX7dq1wzvvvIOgoCCs+LuRS5cuRWpqKubPn482bdpg6NChteqDZs+ejaFDhyI3NxetW7dGt27dsHjxYrz33nu4evWqaz4sEVE96WZQ6cKP6QwqT2autwqQjB55U++VM3FWl4sVFwOjRgGav/+nQqMBRo8Gevd2/u620dHR6NevH1atWgUhBPr164eoqCj9+RMnTqC6uhq33367/pi/vz9uvfVWHD16FABw9OhRdO3a1eh1MzMzjR4fPnwYR44cwQcffKA/JoSARqNBYWEhbrzxRmd8PCKiBktPP4jU1AKUlUUgIqLMK0IPYH69H0DAMPx4S++VszH4uNjx49dDj45aDRQUOD/4ANrhLt2Q05tvvumU97h06RJGjx6NcePG1TrHQmoi8nQKRaXXBB5r6/107HgER450NLv+j+55ruBpayQx+LhY69aATGYcfuRyIC3NNe/fp08fVFVVQZIk9O7d2+hcamoqAgICsHv3biQlJQEAqqursW/fPv16OzfeeCM+//xzo+f9+OOPRo/T09Px66+/Is1VH4qIyEaGX8JnzshQWOiHyMhLNj3XlWHBHEsBIisrC9XV1Rg82A/Tp59Hfv5VJCRcQVycHKWlx1BSEoL27QON1v9xZNCwFmzKy8vx0Ucf1fkarlwjicHHxRITgeXLtcNbarU29Cxb5preHgCQy+X6YSu5XG50LiQkBE8//TQmTpyIiIgItGzZEq+++iquXLmC7OxsAMBTTz2F+fPnY+LEiXjiiSewf/9+rFq1yuh1Jk+ejNtuuw05OTl44oknEBISgl9//RXbt283WiSMiMiVDBcqNN7xvBkGDOis3/E8KyvLaIsH4HqvhLt6L0wXWbQkJycHGRlJ+scdOji8KUZsbVddXLlGEoOPG2Rna2t6Cgq0PT2uCj06YWFhFs/NmTMHGo0Gw4YNQ2VlJbp06YKvvvoKzZo1A6AdqtqwYQOeffZZvPHGG7j11lvxyiuvYOTIkfrX6NixI3bu3Ilp06bhzjvvhBACqampyMrKcvpnIyKyRPflamm9ntTUgr+HuRSIj4+v9Xx3rvBsazBwRICoT7jzxhWgGXzcJDHRdYHHtEfG1Geffab/e5MmTbB48WIsXrzY4vX9+/dH//79jY6ZTou/5ZZbsG3bNouvYW7tHyIiV7C2Xo+12h7TFZ5N98/S9RiZCwOeVudiSX16ljyhvfZg8CEiIp9iy47n1tTVY2TK1jAxePBgxMTE2BQoLPU2NZQre5bchcGHiIi8SnGxdoZs69b29ZzXteN5XerbY2QaEiyFFl0RcF29KdZ6m2xhrffpwoULNr+Ot2LwISIir7FixfW10GQy7WSRv+de1EtD1utpSI+RYWgBNOjWLQ9du+41en9rvSn17W0y5ahiZGvts9YT5ayeqvpg8CEiIo+nVCpRVFSDUaNioNFoF+XTLgArcPPN55Cc7FfvmhN71+uxt8fINLQAMuzZczvy8jJt7rWxtz5Jx5lDVHX1RDW0p8pRGHzsIIRwdxMaPd5jItLR9VIUFiZDoxludE6tlvDGG1uRknLSpQW39vQYmd9Won69Ng2tT6ovW3to6uqJquu8K9dIYvCpB926N1VVVQgKCnJzaxo33f+VmK41RES+R/ffg7q+9C31ZuhqWlQqlU1f5LZ+CVvqMTKtk9E9Nr+thFZdvTbWVmh21orMtvTQ6N7PUk/U6dOJKCv7C5cvB5s9f/vtw3HXXeDKzZ7Kz88PwcHBOH/+PPz9/SGTcY9XZ9BoNDh//jyCg4Ph58dfUSLSsmeIqfaihblmv8gHDx6M8PBwq9PKbQ0VGzdutNr+zz/vD9M9wuvqtYmMjEROTo4+3E2ffh5FRX5ITq5p0IrMloKgrbVEunYVFdVgzRqhH4bUfaZPPnnw78+qgeneYXI50LVrJFw9K57fKvUgSRLi4+NRWFiIkydPurs5jZpMJkPLli0hSVLdFxORz6jvEJOtixaGh4ebXbTQkGn40Llw4YJR2LHWq6Rr/969XZGXl1mvGiHDUBMfD2RkWL28TtZ6dOqqJTIMgZGR2vCi3ZVAQK2W/u7ZAq4HPG34kSQBIWSQywWWLZNcvoAvwOBTbwEBAWjdurVXr2HgDQICAtijRkRm2VKUrJvyHham/e9IQ4uCderqUbFleEihqMR9932Nrl33um0X+LqC4NCht9bqwZHLBcaO7WuxkDw7G7j55nN4442tuHw5BJ988pDJFTIMGvQRQkKuYOzYvsjIiHXmR7SIwccOMpkMTZo0cXcziIjIQHl5OQBg7dogTJqkgEYjQSaLQf/+nZGaWuD0ouD6TjW3FOBcUehbVxC86aZwLF8umewrKdUZVpKT/ZCSchIqVajZ+92iRTEUikokJ7svfjD4EBFRo/DRRx9BpQrFwoW5EEI35V3Cpk39kZu7sEGLFtrC1l4lS0NhAwcOREJCglMLfXWhqq5C8YCAALv2lTQcDmzevAKTJyugVkuQywXmzq3AI48Mcfv2HAw+RETUaFgLHw1ZtNAc3Wwxa7O2THuVrA2FRUVFOT0Q1DeY2LOvpO65EyYAWVm64CQhMTEcQLhDP489GHyIiMij1Wfop67wYe+ihabMrYBc16yzhq667CiuDCau3JDbVgw+RETk0SzNpjKkUqmwfv36Bu/DZStL+2+lphYgN3eh2V4lRxVYO5InBhNnY/AhIiKPV58hIHuGtBpSUGzrVgyuXnWZzGPwISKiRsfSkNbAgQMRFRVldKwhxbZ1DV8NHDgQgHZRQ1f1RpF1DD5EROQzoqKi6lyosD7qGr4yDVmOLrCm+mPwISKiRk9Xg5OfX64/5ohp1bYMX5kOo7lz/R5i8CEiokbAWmgwrMF57z3jGpyG7uhuy/CVLcXZ7l7bxpcw+BARkdczDRe6/bPqqsFxxPZDtgxfMdR4DgYfIqJGRrdPVevWvjVV2Vy4cNYUcg5feS8GHyKiRmTFCmDUKECjAWQy7Y7Z2dnubpX7OGsKuSOHr3w1qLoLgw8RUSNRXHw99ADaP0eP1u635KtfqM6cQu6I4SsGVddj8CEi8mKGvQXHj18PPTpqtXZLAl8NPoBnTiFXKpUoKqrBqFEx0Gh0G6oCo0cL3HzzOSQn+7EuyEkYfIiIvJRpb8GcOdo/DcOPXK7dWdvXOWqPLkfQ7fNVWJgMjWa40Tm1WsIbb2xFSsrJBs84I/NkdV9CRESextyw1tSpAv/+twpyuQCAv3fcLodcXgKlUunG1pIhXV2Qrv7IkGH9kSNmnFFt7PEhIvJC5oe1JJw+/SnGjSvTD+tculSJ5cu1532pB8HW2VTunHXFLSzcg8GHiMgLtW5de1hL11tgaVjHl3oQvGXRQE+sP2rsGHyIiCzw1GnGSqUScnkVXn01CJMnK6BWS+wtMMPdocZWnlR/5AsYfIiIzPDUaca6wlidceNC2VtAVA8sbiYiMmFpPZziYve2C6g9XKVQVCIl5SRDD5GNGHyIiExYWw+HiLwbgw8RkQld4bAhrofjvYqLgR07PKPHDvCOGWeNGWt8iIhMJCZqa3pGj9b29MjlwLJlnlXg7G6eWvhtyhNrtbxlxlljxeBDRGRAqVSiqqoK//gHsHevDEVFfkhOrkFCggYlJd79heSoHgRPDBOmPH1LCG/9HWoMGHyIiP5mOmNKJz/f+LGtCwG6s1dk4MCBiIqK0j92VGDzho1QuSUEWcPgQ0T0N1sX+LPlOnf3ikRFRSE+Pt6hr6lUKvHjj4BGYxwW1Gpg714lgoLc25OhC5phYTUArm8JIcT1gi1uCUEsbiYicjBnTod3V2Gsrhdlz57VZveX2r17NZYsWWLTnmCOKDY2fI3iYmDiRCApCejZE7j11hgcONBZvyWErr1c5JEA9vgQETmctenwDR0OcldhrO796tpfqq5eFEf0hBm+hiQBQhif12gkbNrUH6mpBdwSgmph8CEicjBz+2g5cjq8u+tS7AkTv/xyEXv2CDz9dDMIYX+xsWlvmmno0RFChrKyCP12EAw8pNMoh7refPNNJCcno0mTJujatSt++ukndzeJiHyIbjq8XK593Binw9dnxehFiy6hUycFnnoqQh96dHTFxrYOk5nrTTPHsJaHyFCj6/FZv349xo8fj7fffhtdu3bFwoUL0bt3bxw7dgwxMTHubh4RNXKNeTp8femmlI8fH1Mr8OjUt9jYXG+aKZlMoH9/1vKQeY0u+CxYsABPPvkkHn/8cQDA22+/jS1btuDdd9/FlClT3Nw6ImrMHD0d3ptZm1KuU99iY8Nd6SdNUvy9Po/m7zofGQANunXLQ9euexl6yKJGFXyqqqqwf/9+TJ06VX9MJpOhV69eyMvLM/uca9eu4dq1a/rHFRUVTm8nEXmmhs6YcuR0eG+n+4zmppRraZCd/X9ITCyx6fVMQ+Uzz1zflR6AXcXL3BLCNzWq4HPhwgWo1WrExsYaHY+NjcVvv/1m9jmzZ8/GzJkzXdE8IvJw3ErAMYqLgR9/DIBKFQqFohKZmXnYs+d2k6tkqK62PXiY25XeMORYCzymizkC/OfoyxpV8LHH1KlTMX78eP3jiooKtGjRwo0tIiJ3aixfho5eNdrW3pGPPgrF+PHaRQ4lKRcDBmxG1657sWdPJgzn07iy+NgZizmS92pUwScqKgpyuRxnz541On727FnExcWZfU5gYCACAwNd0TwiIj1LwcQRgcUZq0bb0ht24UIT3HxzU4Op5jJs2tQfubkLcf/9ltf+IXKlRhV8AgICkJGRgW+++QYPPPAAAECj0eCbb75BTk6OextHRPS3tWuDMGlS7WDiiMDizL20rPWGKZVKHDumqTXbSreeDhcSJE/RqIIPAIwfPx7Dhw9Hly5dcOutt2LhwoW4fPmyfpYXEZE7qVShePFFRa1g0rFj3YGlrt4gd+2lpSs8VqlCIUm5FvfGqmshQRYbkys0uuCTlZWF8+fPY/r06SgtLcXNN9+ML7/8slbBMxGRO5SVRf49Dfs6tRrYtcv6Nhd19QbVFT52716N/PzKBk2lNw1eppuC1rWdhSUDBw5EQkJCo6mvIs/W6IIPoF0jg0NbRORqtvRYREQoIZMJo/AjkwnExhZAJkszOi6XC4SGnsMvvwRg1KhmVnuDHLWXliWmwWvYMGDNGt3jGPTv3xnp6QftGtKKiopyauhhTxIZapTBh4jIHawVAJeXl+Ojjz6CQlGJ/v03GQWT/v034/jxg+jfv7PR8X79NmPz5oNmFwG0NnxVV/iobwG1ubqh1auvnzfcFNRZe2PZE14GDx6MmJgY9iSREQYfIiIHsuVL1lIwsXTc3CKApsNXpiyFD0uF1dbYsj+W4aagzmAaKlUqFaqrq42u8fPzQ3h4OACu00OWMfgQEbmBLpioVKEoLExGRITSYm+Jo4avLBVW1zXjy5b9sRqyLo+tvTmGQYbr8pC9GHyIiNzkwIHOtcJMevpBs9c6Yjq4pcJqazO+DPfHmjxZAbVaglwuMHDgX9i4MUj/uF8/24qYuYIyuRuDDxGRG6hUofrQA1xf7E9XJ2NOQ2tnbBkyMwwhpvtjjRsXahS8EhO1jx944CYcPmw+sBniCsrkCUx3jSMiIhcoK4ustXGnrk7GWXRDZpKkHbOqa8jM3P5YKSkn9dfrHh8+vMWm9+fsKvIE7PEhIpdz9D5S3shS74uz6mRUqlCUlUUiNbUAubkLnbqCMoe0yJMx+BCRSzljHylvZO9if5ZYm0q/fLkaCxcm2FRL5Agc0iJPxuBDRC7jzH2kPJ25HhlH719lrkeluBh48UUBIbRFzbbUEhE1ZqzxISKXMbcejG5bhsZO1yMzcOBAo+OmdTM6AwcOxODBg216bWvDXNp7bjyTy9m1RESejD0+ROQy5taDkcuBtDT3tUlHV3fUtClw6ZJz6o8iIyNtXnNHN1xkafhKp67aGe09N94ioyG1RETejsGHiFwmMVFb0zN6tLanRy4Hli1z/zCXYd2RjqfUHzWkIFi3Bs/06WrMnJngkFoiIm/H4ENELqFUKlFVVYV//APYu1eGoiI/JCfXICFBg5IS9836Ma070vH2+iPTNXhyc0PrrCUyHTLj9HNqjBh8iMjpTL+EdfLzjR+bLqDnCtb2odLVH3lj8DG3Bo+5wKObem4ueJrOFNNttFoXBibyZAw+ROR0tta12HqdoyiVSoSF1UAmi6lVAAxoa2NCQ89BqfRzWCCzNRS4KjzUNfXcdH+shtYcEbkbgw8R+STDXqj+/TsbbB8hAEiQJA3699+MzZu16904qjfK2no7Op4cHjy1XUS2YvAhIp9kGDwM19Px969CdXVArVoYR/ZGMTwQuQ+DDxERGr4BKBF5By5gSEReqbgY2LFD+2dj0Ng+D5GnYvAhIq+zYgWQlAT07Kn9c8UKd7eoYRrb5yHyZAw+RORVLO335a09Jc76PJ42e4zIU7DGh4iczlFfwkqlEj/+CGg0xsXBajWwd68SQUHeVzhsbf+yhqwf5O2zx4ichcGHiJzOli/hCxea4MiRZhb3yNJNP1epQiFJuX9PPdeSJA12716N/PxKtyyC2BDO3L/Mm+4DkatwqIuIXCIyMhLx8fFmf774Ih4339zMao2LLjQpFJUYMGAzJEmbFEz3nrJ12nl9h3icNSSk279MLtc+9pT9y4gaK0kIIdzdCE9SUVEBhUIBlUqFsLAwdzeHqNErLtaGHdMej6Ii4y//kpISLF++XP9YpTK/99SoUaOsrkRsSKlUoqioBvn515CQcBlxcTVG5/38/BAeHu6SIaHiYu3wVloaQw+RPWz9/uZQFxG5TUNqdhyx7s5nn0XqC4vt2Y29uFhbo2NpeK4+EhMZeIhcgUNdRGS3utaesXZeV7OzZ89q/bCVjq5mZ8mSJVAqlU5oecNnU3EKOpF3YvAhIrvU9cVf13lH1+zUh7anSWl2NtXevco6w5ajpqArlUqUlJRY/HFW6CPyZRzqIqJ6s/TF37u3drimrvOmDPfKMq3ZcTRHzA5zxBR0w01SrfG2WWpEno49PkRUb9a++O3tTVEoKpGScrLBoefMGZnV4beG9jQplUqEhZ2FTGY8L0QuFwgNPWtzL42tPVnO6PEi8mXs8SGietF+8ddAJouBRiPpj8vlAkIUYMmStTb1ptSXLdPJDxzojBdfjLG5WLm+PU2GvTT9+3fGpk39IYQMkqRBv36bsXnzQQDspSHyZAw+RGSzur74v/9e+8Wv600xPN/Quh1riyCqVCqcPi3w4ott9WFMO7wmcPPN55Cc7OeQ2WGG720tNLGXhshzMfgQkc1s/eK35bw9zIUXpVKJ9evXo7AwGRrNjUbn1GoJb7yxFSkpJ53SC+OIKfVE5FoMPkRkt7q++F0RDHRhLCJCCUnS1Bpei4goM7qOiHwbi5uJyC3M1eyoVKEoLEyGShVq9Tpz6ipWJiIC2ONDRG5iWrOzdm0QXnxRAY1Ggkwm8OqrKowYoa7X8JQrp8UTkXdijw8RuU1kZCQCAgJw5owMkyYpDAqTJUyerEBRUU29F/Gra1q8rgfJXO+SueucxdbXd3Y7iHwNe3yIyG10s8S0hcnDjc45qzA5MjIS4eET8OKLIUa9S4888pf+GldsSmptlpor20Hkaxh8iMjldL0Y7ihMLi4Gxo9varCqtITJk8ORlRVe56rLju6lYaghcj0GHyKyma1f6FlZWVAoFBZfw/QLv651fxypIdtNsJeGyPsx+BCRzZz5xW9vYXJ9e2Fat9au6mwYfuRyIC3NtnYy1BB5NwYfIqoXZ37x27PuT33DWGKidiuL0aO1PT1yObBsme2bixKRd2PwISKvZ2sYUyqVqKqqwj/+AezdK0NRkR+Sk2uQkKBBSQmHqYh8AYMPEfkEw33GDOXnGz/mBqNEjRvX8SEin2DrzDBubUHUuDH4EJHbcBE/InI1DnURUYPpamcA4MwZGQoL/ZCSoq2dASzXznB6OBG5GoMPEVlUXKxd96Z1a8uzngxrZw4c6FxrLZ709IMALNfOMNQQkStxqIuIjCiVSpSUlGD+/HIkJQn07AkkJQnMn1+OkpKSWntn6XprVKpQfegBACFk2LSpv34vLNbOEJEnYI8P0d8Mh2vM8YUhF13vjUoVioULcyHE9U1DJ04Mw59/vguFohKDBw9GeHg4AODChQsAgLKySKMtJwBt+Ckri+Au6UTkMRh8iGB5qrMpb57qbEsdju68tRADAHPn/oSICKVRoKlrv636sGWIjYjIHgw+RGj8U51trcPJysoCYDnEnDmTgPfee8zscx2139aKFcCoUdotJWQy7SrL2dkNvwecQUZEAIMPkUN4+jBZXXU4qakFUCgqUV1dDcB8iOnV62t8/XUvi88F7N9vS6e4+HroAbR/jh4N9O7d8J4fziAjIoDBh6jBTIfJVKpQlJVF1hoK8oRhsvrU4ZiGGFufa89+WzoN2TndFu6+/0Tkfgw+RGZYCi/mGPYgWBtG8oRhsvrW4ZiGGEfV8FjS0J3TiYjqwunsRCYOHOiMhQtzsXr1cCxcmIsDBzrb9Ly6pnN7At0QliRpk0V96nAa8lzAttoZ3c7pcrn2MXdOJyJHY48PkYG6amCs8Zbp3A2pw7H23IEDByIqKsrs82ypneHO6UTkCgw+RAYaEl4cOZ3b2SzV4fj51f2fBEvPjYqKQnx8vF3t4c7pROQqDD5EuD4MU1d4KS8vr/Vc3QJ+jprO7U7h4eG1Zj6pVCqsX7++zuc2ZBp4Y19OgIg8B4MPEYynOjdvXoHJkxVQqyXI5QIzZpyFWq0NLx999JHV12nodG5nqc8aNqY9KvHx8ZwGTkSNhs3Bp6KiwuYXDQsLs6sxRO6k++KeMAHIytJOoU5LkyCXawtubdWQ6dz2sHUNoYaEF1tDDVdcJiJPZ3PwCQ8PhyRJVq8RQkCSJKjV6gY3jMidEhOvf3GXlBifq89Ud0POWBHYk9YQctaKy0REjmRz8NmxY4cz20HkFayt09PQWU328JQ1hJy54jIRkSPZHHx69OjhzHYQeby6pro3ZFaTs9vmTEqlEj/+CGg0xsFOrQb27lUiKIgrJhOR57C7uLm8vBwrVqzA0aNHAQDt27fHyJEjoVAoHNY4Ik/iyev0uLJthnU8QUHaoTaVKhSSlFtrNtzu3auRn1/JaehE5DHsWrn5559/RmpqKl5//XWUlZWhrKwMCxYsQGpqKg4cOODoNhJ5BN1Ud0Oesk6Pq9q2YgWQlAT07Kn9c+FCPxQWJgOA1VWd6xpq487pROQqdvX4PPvss7j//vvxzjvv6Bc8q6mpwRNPPIHc3Fx8//33Dm0kkSfw5HV6XNE2c3U8L70UBmC4/v1ycxfaNZWfO6cTkavYFXx+/vlno9ADaFd8nTRpErp06eKwxukUFRVh1qxZ+Pbbb1FaWoqEhAQ8+uijmDZtmtH/AR45cgRjxozBvn37EB0djbFjx2LSpEkObw/5FsPfMWvr9Li7N8Ja21QqldXn1hUqLNXxANqZnrqaotzchUhJOWlX+xlqiMgV7Ao+YWFhOHXqFNq2bWt0/PTp0wgNdfyGjL/99hs0Gg2WLVuGtLQ05Ofn48knn8Tly5fx2muvAdCuM3TfffehV69eePvtt/HLL79g5MiRCA8Px6hRoxzeJvId3tQbYWkNIVtWXjatw9HV8kRFXcTGjebreAx5Sr0TEZE1dgWfrKwsZGdn47XXXkO3bt0AALt378bEiRMxZMgQhzYQAPr06YM+ffroH7dq1QrHjh3D0qVL9cHngw8+QFVVFd59910EBASgffv2OHToEBYsWMDgQw3mCaHGHHt6mSyt9WMY7IzX5AlH//6dkZ5+0Gg4DRDQ9fgAnlPvRERkjV3B57XXXoMkSXjsscdQU1MDAPD398fTTz+NOXPmOLSBlqhUKkREROgf5+XloXv37kZfBL1798bcuXNx8eJFNGvWzOzrXLt2DdeuXdM/rs8K1UTuZktvVHl5uX6rDWtr/QDaIa2iohqMGhUDjUYbajQaST813nA47cyZBHz9dS+Pq3ciIrLGruATEBCARYsWYfbs2Thx4gQAIDU1FcHBwQ5tnCUFBQV444039L09AFBaWoqUlBSj62JjY/XnLAWf2bNnY+bMmc5rLJGT2dobVddaP7qAVFiYDI1muNFzDYexdD8pKSdx0035HrcvGRGRNXZNZ9cJDg5Ghw4d0KFDB7tCz5QpUyBJktWf3377zeg5f/75J/r06YOHHnoITz75ZEOaDwCYOnUqVCqV/uf06dMNfk0iT2RprZ/Tp7VLK58/fx5A/abG6wJQXaHH3YXfREQ6dvX4XL16FW+88QZ27NiBc+fOQaMx/o+krWv5TJgwASNGjLB6TatWrfR/P3PmDO6++25069YNy012jYyLi8PZs2eNjukex8XFWXz9wMBABAYG2tReIm+mCzSm4eeTTx5EVdVmANptaRwxNd5w+w5PKfwmIgLsDD7Z2dnYtm0bHnzwQdx66611bl5qSXR0NKKjo2269s8//8Tdd9+NjIwMrFy5EjKZ8X+8MzMzMW3aNFRXV8Pf3x8AsH37drRp08biMBd5Flt3GSf7mAaa62pvb2Ftarwt3Ll9BxGRNXYFn82bN+OLL77A7bff7uj2mPXnn3/irrvuQlJSEl577TV9lzxwvTfnkUcewcyZM5GdnY3JkycjPz8fixYtwuuvv+6SNlLDmO4ybgm3PmiY9PSDCAi4hk8+ecjouLmp6JamxhMReTO7gk/z5s2dsl6PJdu3b0dBQQEKCgqQaLLVsxACAKBQKLBt2zaMGTMGGRkZiIqKwvTp0zmV3UvYunu4s3cZb4xM62tatDhda8iLU9GJyFfYVdw8f/58TJ48GSdP2rdCa32NGDECQgizP4Y6duyIH374AVevXkVxcTEmT57skvYReTLdlPeBAwcCuD7kZWlfLSKixsyuHp8uXbrg6tWraNWqFYKDg/U1NTplZfw/RyJPEhkZadRb1tAaHiIib2VX8BkyZAj+/PNPvPLKK4iNjbW7uJmI3Ic1PETki+wKPnv27EFeXh46derk6PYQkZsZTkU3deXKFbz//vt1vgbX7SEiT2VX8Gnbti3++usvR7eFiJzI1jCSkJBgdeact2zYSkRkjl3BZ86cOZgwYQJefvlldOjQoVaNT1hYmEMaR0SO46hd5hlqiMib2RV8dDul33PPPUbHhRCQJAlqtbrhLSOfYmtvBIdQGoahhYh8nV3BZ8eOHY5uB/k4096IM2dkKCz0Q0pKDRIStNOuOYRCREQNZVfw6dGjh03X/etf/8KLL75osVCSyJAu1KxYAYwaBWg0gEwGLF8OZGe7uXFERNQoNGh39rq8//77qKiocOZbUCNTXHw99ADaP0eP1h4nIiJqKLt6fGxlurIyUV2OH78eenTUaqCgADDZraTR46atRESO59TgQ1RfrVtrh7cMw49cDqSlua9N7mC6aatKFYqyskhERCiNFh3kpq1ERPXD4EMeJTFRW9MzerS2p0cuB5Ytc2xvjzf0pBi278CBzti0qT+EkOn31UpPP1jrOiIiqhuDD3mc7Gygd2/t8FZamuNDj2FPiiWe0pOiUoXqQw8ACCHDpk39kZpawO0miIjswOBDHikx0Tk1Pbb2kHhKT0pZWaQ+9OgIIUNZWQSDDxGRHeo9q6umpgYvvvgiim2YZvPoo49yFWeiBoiIUEKSjKu9JUmDiIgyN7WIiMi71Tv4+Pn5Yd68eaipqanz2qVLl3INH6IGUCgqMWDAZn340dX4sLeHiMg+dg119ezZEzt37kRycrKDm0NEptLTDyI1tQBlZRGIiChj6CEiagC7gk/fvn0xZcoU/PLLL8jIyEBISIjR+fvvv98hjSMiLYWikoGHiMgB7Ao+//rXvwAACxYsqHWOm5QSNRw3bSUicg67go/GdGldIg9kbr2eCxcuGD22tDCgu5lu2mqOJ6w3RETkbewKPu+99x6ysrIQGBhodLyqqgrr1q3DY4895pDGEdnLlvV6rC0M6Ak9KQw1RESOJwk7NtSSy+UoKSlBTEyM0XGlUomYmBivHuqqqKiAQqGASqXiVHwvVlJSguXLl1s8r1KFYuHCXKM1cuRygb17zyE52Y+hg4jIy9j6/W1Xj48QApIk1TpeXFwMhUJhz0sSuZS5hQHVagmVlbFg5iEiarzqFXw6d+4MSZIgSRLuuece+Pldf7parUZhYSH69Onj8EYSOZpuYUDjHh/f2wyViMjX1Cv4PPDAAwCAQ4cOoXfv3mjatKn+XEBAAJKTkzFo0CCHNpDIGXQLA27ZMgBqteSUzVCJiMjz1Cv4vPDCCwCA5ORkZGVloUmTJk5pFJErpKcfxPTpXVFZGevwzVCJiMgz2VXjM3z4cADaWVznzp2rNb29ZcuWDW8ZkQskJGgQH+/uVhARkavYFXyOHz+OkSNHYs+ePUbHdUXP3jyri4iIiBovu4LPiBEj4Ofnh82bNyM+Pt7sDC8ia8wtLmiooYvzma7DY2mhQk9Yr4eIiFzHruBz6NAh7N+/H23btnV0e8gH2LK4IADk5OTYHH7MBamsrCxUV1dj48ZmWLSoOTQaCTKZwKuvqvDII39x5WMiIh9kV/Bp165draX/iWxlrafHnuusBanrCxVqeyU1GgmTJ4cjKyu8Xuv1OLuHioiIXMOu4DN37lxMmjQJr7zyCjp06AB/f3+j81zxmFzJWiAxv1AhUFBg+ywuZ/RQERGRe9gVfHr16gUA6Nmzp1F9D4ubydM4YqFCR/dQERGR+9gVfHbs2OHodhA5hW6hQt1mpFyokIjIt9kVfHr06IEffvgBy5Ytw4kTJ/DJJ5+gefPmWLNmDVJSUhzdRiIjpvU2ddWbpacfRGpqAW6/fTi6do1scOgxnSGme5yfX66/hjU/RESeya7gs2HDBgwbNgxDhw7FwYMHce3aNQCASqXCK6+8gi+++MKhjSTSsbXexpRCUYlu3aoavFjhgQOd9b1HkqRBx45HcORIRwghw3vvaTBgwGakpx8EwJofIiJPJKv7ktpeeuklvP3223jnnXeMCptvv/12HDhwwGGNIzLlzjoalSpUH3oAQAgZDh/uZPR406b+UKlC3d5WIiIyz67gc+zYMXTv3r3WcYVCgfLy8oa2iRo5WxcN9LTFBc3NEAOMF+8UQoaysgjXNYqIiOrFrqGuuLg4FBQUIDk52ej4rl270KpVK0e0ixqxyMhI5OTkuHxdnIYGKXMzxAABw/AjSRpERJQ16H2IiMh57Ao+Tz75JJ555hm8++67kCQJZ86cQV5eHp577jk8//zzjm4jNUKGoaa4GDh+HGjd2jGzrVSqULRseQ/atw9AXFwNAMDf3x9VVVUoKSmpd6jSBSbTGWKmNT6SpK3xMdwSg4iIPItdwWfKlCnQaDS45557cOXKFXTv3h2BgYF47rnnMHbsWEe3kRqxFSuAUaMAjQaQyYDly4HsbPtfz7T42LDY2FB9Co9Ne6hyco7hgw/2IiKiDApFJXr2/BZlZRH6x0RE5LnsCj6SJGHatGmYOHEiCgoKcOnSJbRr1w5NmzZ1dPuoESsuvh56AO2fo0cDvXvb1/Njrvh406b+SE0tqBVI6lt4bBqSUlJO6v+uUFQy8BAReQm7go9OQEAA2rVr56i2kI85fvx66NGp73YShswVH+uKjRlMiIgIsHNWF5EjtG6tHd4yVNd2EtYKlHXFx4acUWzsrbPSiIiogT0+RA2RmKit6Rk9WtvTY8t2EnXNCFMozmDmzIQ6i41NV3uuT8Gzu2alERFRw0lCCOHuRniSiooKKBQKqFQq7jLvIsXF2uGttLT6D3GZzggrKSnBvHkf2lVszJWWiYi8l63f3+zxIbdLTLSvpsfcjLB//MP+YmOutExE1Pixxoe8kqUZYWfO8FeaiIgs47cEeSVLM8KKi5sYHVOpQlFYmKzfP4uIiHwbh7rIK+lmhBmGH7kcyMhQ4I47tIXHa9cG4cUXFdBoJKuLGRIRke9g8CGPplQqzdbeyOXAq68GYfJkBdRqyWRGWCSKi4FJk64HI8PFDAHtmj8REUqu70NE5GMYfMhjKZVKLFmyxOo148aFokePbGRkKIwKpM0NhQkhw969XZGXl1nnlhZERNQ4scaHPJYts6wUikrceuuVWrPCzC2OKEka7NmTWWtLC9b/EBH5DgYfapR0iyPK5drHkqRBZmYeTH/ldVtaAFxpmYjIF3Coixqt7GzthqcFBUBkpApVVWm49VYBjUbSXyOXC4wd2xfJyX5cvJCIyAcw+FCjdn1xxGYAzG2RISEjI9atbSQiItdh8CGfYtgLZM8WGURE5N0YfMgjKZXKWhuJOoq9W2QQEZH3Y/Ahj2PLNHYiIiJ7cFYXeZz6bhbK2VhERGQr9viQ11CpQo1WXB44cCASEhI4G4uIiGzG4ENOZWnLCZ2AgACbgsuBA52xaVN/oxWXR42KYughIqJ6YfAhp7G1VicnJ8dqgFGpQvWhB7i+4vL06ecRH++w5hIRkQ9gjQ85ja21OnVdV1YWqQ89OkLIUFTE3E5ERPXD4EMeLyJCCUky3nFUkjRITq5xU4uIiMhbMfiQV9Dus6UNP7oan4QEjfUnERERmeBYAXkcw+nppkXNmZm70bXrXigUlQgIuN2NrSQiIm/kdT0+165dw8033wxJknDo0CGjc0eOHMGdd96JJk2aoEWLFnj11Vfd00hqkMjISOTk5KB//6ewefMAo6LmvXu7YejQoXUWRBMREZnjdcFn0qRJSEhIqHW8oqIC9913H5KSkrB//37MmzcPM2bMwPLly93QSmqoyMhIVFTEGu2kDgBqtYTKyliGHiIisotXBZ+tW7di27ZteO2112qd++CDD1BVVYV3330X7du3x8MPP4xx48ZhwYIFbmgp1ceFCxegVCprHW/dGpCZ/IbK5drNRYmIiOzhNcHn7NmzePLJJ7FmzRoEBwfXOp+Xl4fu3bsb1Yf07t0bx44dw8WLFy2+7rVr11BRUWH0Q45h61YSGzduxJIlS2qFn8REYPlybdgBtH8uW8YNRomIyH5eEXyEEBgxYgSeeuopdOnSxew1paWliI2NNTqme1xaWmrxtWfPng2FQqH/adGiheMa7uN0tToDBw606Xpz6/lkZwNFRcCOHdo/s7Md20YiIvItbp3VNWXKFMydO9fqNUePHsW2bdtQWVmJqVOnOrwNU6dOxfjx4/WPKyoqfCr8OGpLCUsiIyP1r2+615atEhPZy0NERI7h1uAzYcIEjBgxwuo1rVq1wrfffou8vDwEBgYanevSpQuGDh2K1atXIy4uDmfPnjU6r3scFxdn8fUDAwNrva6vcNSWErYwt9dWevrBBr0mERFRfbk1+ERHRyM6OrrO6xYvXoyXXnpJ//jMmTPo3bs31q9fj65duwIAMjMzMW3aNFRXV8Pf3x8AsH37drRp0wbNmjVzzgfwco7aUqIuZ87IzO61lZpaYNTzc+HCBf3fG9rTREREZI5XLGDYsmVLo8dNmzYFAKSmpiLx7zGQRx55BDNnzkR2djYmT56M/Px8LFq0CK+//rrL2+vpdMNbhkHDmQoL/czutVVWFmEUfDZu3Gh0DdfqISIiR/OK4GMLhUKBbdu2YcyYMcjIyEBUVBSmT5+OUaNGubtpHsXW4S1HSkmpgSRpjMKPJGkQEVFm9XkN7WkiIiIy5ZXBJzk5GUKIWsc7duyIH374wQ0t8h7uCBMJCdqanuvDXZq/994iIiJyLa8MPuRdAgICkJ5+EKmpBdi7tyvy8jKxZ8/tyMvLxIABm5GaWmDXbC8iIqL6YvAhp9Ot51NUVINFi2IghHYbCiFk+Pzz/pAkcLYXERG5hFcsYEjez9LeW4Cs1mwvlSrU9Q0kIiKfwOBDeipVKAoLk2sFD1u3nqiLub23TOlmexERETkDh7oIQO0FBl944QxGjZI7dD0d3d5bo0cLqNUSAA0A6e8fLVtmexEREdmLwcfHqVShOH26Ra0FBmfNao7sbAmOXkYnOxu49dZyzJ//X0RElOHEibRaKzrrCpwd1dNERESkw+DjYwzDhGEvjym1WkJBgXP2yOrQoRnmzx+gn1o/ffp5FBX5ITm5BgkJtwC4hSs3ExGRU0jC3II4PqyiogIKhQIqlQphYWHubo5TKJVKFBXV4NZbY8wUG2vJ5drd0Lk5KBEReQNbv7/Z4+OhnLlremRkJI4cATQa8+flcmDZMoYeIiJqfBh8PJArdk3XzbAyDD8yGbBuHZCZydBDRESNE6ezeyBX7Jqum2Ell2sfy+Xaxw89xNBDRESNF3t8fFh2NtC7N1BQAKSlMfAQEVHjx+DjBVSqUKftZZWYyMBDRES+g8HHw5kuLMi9rIiIiOzHGh8PplKF1lpYkHtZERER2Y/Bx4OVlUXWWlyQe1kRERHZj8HHg0VEKCFJxovtcC8rIiIi+7HGxwPptpVQKCoxYMBml+9l5czFE4mIiNyJW1aY8JQtKwzDx5kzMoO9rLQ9QM4KH65YPJGIiMjRuGWFlzMMFfHxQEaGa97XFYsnEhERuQtrfIiIiMhnMPg0IsXFwI4d2j+JiIioNgYfL6dUKlFSUoL588uRlCTQsyeQlCQwf345SkpKoFQq3d1EIiIij8EaHy+mK0RWqUKxcGEuhJAAABqNhIkTw/Dnn+9CoahsUCGyM7fLICIicjUGHy+mKzC2ttChQlFpdyEyt8sgIqLGhkNdjYAzFjrkdhlERNQYMfg0ArqFDnXhx3Shw/rQLYpY13YZzlo8kYiIyJk41NVIpKcfRGpqAcrKIhARUWZ3PU5kZCRycnJQVFSDNWsENBpJf04uFxg7ti+Sk/24eCEREXklBp9GRKGodEgBcmRkJCIjgeXLgdGjAbUakMuBZcskZGTEOqClRERE7sHgQxZlZwO9ewMFBUBaGpCY6O4WERERNQyDD1mVmMjAQ0REjQeLm72YrQXG9hYicyVoIiJqbNjj48V0hcjW1umxdxf3FSuAUaMAjQaQybT1PtnZDWktERGR+zH4eDlHz65SKpUoKqrBqFEx+hldGg0werTAzTef44wuIiLyagw+pKfbAqOwMBkazXCjc2q1hDfe2IqUlJMN2gKDiIjInVjjQ3q6IbO6VoK2dwsMIiIid2PwoVocuRI0ERGRJ+FQF5nlqJWgiYiIPAmDD1nkqJWgiYiIPAWHuoiIiMhnMPgQERGRz2DwISIiIp/B4EN6zt4Cg4iIyN1Y3Ex6ztwCg4iIyBMw+JARhhoiImrMONRFREREPoPBh4iIiHwGgw8RERH5DAYfIiIi8hkMPkREROQzGHyIiIjIZzD4EBERkc9g8CEiIiKfweBDREREPoPBh4iIiHwGgw8RERH5DAYfIiIi8hkMPkREROQzGHyIiIjIZzD4EBERkc9g8CEiIiKfweBDREREPoPBh4iIiHwGg4+HKi4GduzQ/klERESOweDjgVasAJKSgJ49tX+uWOHuFhERETUODD4eprgYGDUK0Gi0jzUaYPRo9vwQERE5AoOPBzAc1jp+/Hro0VGrgYIC97SNiIioMfGq4LNlyxZ07doVQUFBaNasGR544AGj86dOnUK/fv0QHByMmJgYTJw4ETU1Ne5prI1Mh7V+/hmQmfxTkcuBtDT3tI+IiKgx8XN3A2y1YcMGPPnkk3jllVfQs2dP1NTUID8/X39erVajX79+iIuLw549e1BSUoLHHnsM/v7+eOWVV9zYcsvMDWtNnQrMnQtMmaLt6ZHLgWXLgMRE97aViIioMZCEEMLdjahLTU0NkpOTMXPmTGRnZ5u9ZuvWrejfvz/OnDmD2NhYAMDbb7+NyZMn4/z58wgICLDpvSoqKqBQKKBSqRAWFuawz2DOjh3anh5zx9PStMNbaWkMPURERHWx9fvbK4a6Dhw4gD///BMymQydO3dGfHw8+vbta9Tjk5eXhw4dOuhDDwD07t0bFRUV+N///mfxta9du4aKigqjH1dp3drcsJZAaOhZyOUlaNOmBHJ5CUpKtD9KpdJlbSMiImqMvGKo648//gAAzJgxAwsWLEBycjLmz5+Pu+66C7///jsiIiJQWlpqFHoA6B+XlpZafO3Zs2dj5syZzmu8FYmJwJw52mEtjQaQJA369duMzZsPWnxOTk4OIiMjXdhKIiKixsOtPT5TpkyBJElWf3777Tdo/i6CmTZtGgYNGoSMjAysXLkSkiTh448/blAbpk6dCpVKpf85ffq0Iz6aTVasMAw9Ar16fY30dMuhBwCqqqpc1DoiIqLGx609PhMmTMCIESOsXtOqVSuUlJQAANq1a6c/HhgYiFatWuHUqVMAgLi4OPz0009Gzz179qz+nCWBgYEIDAy0p/kNYlrYLISEr7/uhZtuyodCUeny9hAREfkCtwaf6OhoREdH13ldRkYGAgMDcezYMdxxxx0AgOrqahQVFSEpKQkAkJmZiZdffhnnzp1DTEwMAGD79u0ICwszCkyewtx6PULIUFYWweBDRETkJF5R4xMWFoannnoKL7zwAlq0aIGkpCTMmzcPAPDQQw8BAO677z60a9cOw4YNw6uvvorS0lL85z//wZgxY9zSo1MXXWGzYfiRJA0iIsrc1ygiIqJGziuCDwDMmzcPfn5+GDZsGP766y907doV3377LZo1awYAkMvl2Lx5M55++mlkZmYiJCQEw4cPx4svvujmlpuXmAgsX67djkK7Xo9Av36b2dtDRETkRF6xjo8ruWodH6VSiaqqKpw5I0NRkR/Cws5hz56P6nzeqFGjEB8f77R2EREReSNbv7+9psenMVEqlViyZIm7m0FERORzvGIBw8amIVPSbV2BmoiIiGpjj48bqFQqm64bOHAgoqKi9I8DAgK4eCEREVEDMPi4mFKpxPr16226NioqivU8REREDsShLherqqqCShWKwsJkqFSh7m4OERGRT2GPj4utXRuEhQtzIYQMkqTBgAGb69ymgoiIiByDPT4uVFwMTJqkgBDa2y6EDJs29WfPDxERkYsw+LiQdpsKyeiYbpsKIiIicj4GHxcpLgbOn9fuwm7I2jYVnLpORETkWKzxcYEVK67vxC5JAKABcL3Gx9w2FYMHD+bUdSIiIgdj8HGy4uLroQcAhJAgSQKDBn2EFi2KLe7NFR4e7rpGEhER+QgOdTmZtq7H+JgQMoSEXLG6ISmHuYiIiByPPT5O1ro1IJMZhx+ZTGDo0K6Ii8vQH/Pz89P38nCFZiIiIudg8HGyxERgwYJLePbZYP3aPf37b8aePbXX7snJyWHgISIiciIGHxcYPLgSJ08uR1lZBCIiyiwOcTVk81IiIiKqG4OPiygUlVZreoiIiMj5WNxMREREPoM9Pk6kVCpRVVWFCxcuuLspREREBAYfp1EqlViyZIm7m0FEREQGONTlJCxUJiIi8jwMPkREROQzGHw8CFdrJiIici7W+LjZwIEDERUVxdWaiYiIXIDBx82ioqIQHx/v7mYQERH5BA51ERERkc9g8CEiIiKfweDjJLYWKrOgmYiIyHVY4+MkkZGRyMnJsbqeDwuaiYiIXIvBx4kYaoiIiDwLh7qIiIjIZzD4EBERkc9g8CEiIiKfweBDREREPoPBh4iIiHwGgw8RERH5DAYfIiIi8hkMPkREROQzGHyIiIjIZ3DlZhNCCABARUWFm1tCREREttJ9b+u+xy1h8DFRWVkJAGjRooWbW0JERET1VVlZCYVCYfG8JOqKRj5Go9HgzJkzCA0NhSRJNj2noqICLVq0wOnTpxEWFubkFnou3gct3gfeAx3eBy3eB94DHWfeByEEKisrkZCQAJnMciUPe3xMyGQyJCYm2vXcsLAwn/6F1uF90OJ94D3Q4X3Q4n3gPdBx1n2w1tOjw+JmIiIi8hkMPkREROQzGHwcIDAwEC+88AICAwPd3RS34n3Q4n3gPdDhfdDifeA90PGE+8DiZiIiIvIZ7PEhIiIin8HgQ0RERD6DwYeIiIh8BoMPERER+QwGHwuWLl2Kjh076hdZyszMxNatW/Xnr169ijFjxiAyMhJNmzbFoEGDcPbsWaPXOHXqFPr164fg4GDExMRg4sSJqKmpcfVHcZg5c+ZAkiTk5ubqj/nKfZgxYwYkSTL6adu2rf68r9yHP//8E48++igiIyMRFBSEDh064Oeff9afF0Jg+vTpiI+PR1BQEHr16oXjx48bvUZZWRmGDh2KsLAwhIeHIzs7G5cuXXL1R7FbcnJyrd8FSZIwZswYAL7zu6BWq/H8888jJSUFQUFBSE1NxaxZs4z2SfKF34fKykrk5uYiKSkJQUFB6NatG/bt26c/3xjvwffff48BAwYgISEBkiThs88+MzrvqM985MgR3HnnnWjSpAlatGiBV1991TEfQJBZn3/+udiyZYv4/fffxbFjx8S///1v4e/vL/Lz84UQQjz11FOiRYsW4ptvvhE///yzuO2220S3bt30z6+pqRE33XST6NWrlzh48KD44osvRFRUlJg6daq7PlKD/PTTTyI5OVl07NhRPPPMM/rjvnIfXnjhBdG+fXtRUlKi/zl//rz+vC/ch7KyMpGUlCRGjBgh9u7dK/744w/x1VdfiYKCAv01c+bMEQqFQnz22Wfi8OHD4v777xcpKSnir7/+0l/Tp08f0alTJ/Hjjz+KH374QaSlpYkhQ4a44yPZ5dy5c0a/B9u3bxcAxI4dO4QQvvG7IIQQL7/8soiMjBSbN28WhYWF4uOPPxZNmzYVixYt0l/jC78PgwcPFu3atRM7d+4Ux48fFy+88IIICwsTxcXFQojGeQ+++OILMW3aNLFx40YBQHz66adG5x3xmVUqlYiNjRVDhw4V+fn54sMPPxRBQUFi2bJlDW4/g089NGvWTPzf//2fKC8vF/7+/uLjjz/Wnzt69KgAIPLy8oQQ2l8MmUwmSktL9dcsXbpUhIWFiWvXrrm87Q1RWVkpWrduLbZv3y569OihDz6+dB9eeOEF0alTJ7PnfOU+TJ48Wdxxxx0Wz2s0GhEXFyfmzZunP1ZeXi4CAwPFhx9+KIQQ4tdffxUAxL59+/TXbN26VUiSJP7880/nNd6JnnnmGZGamio0Go3P/C4IIUS/fv3EyJEjjY4NHDhQDB06VAjhG78PV65cEXK5XGzevNnoeHp6upg2bZpP3APT4OOoz/zWW2+JZs2aGf07MXnyZNGmTZsGt5lDXTZQq9VYt24dLl++jMzMTOzfvx/V1dXo1auX/pq2bduiZcuWyMvLAwDk5eWhQ4cOiI2N1V/Tu3dvVFRU4H//+5/LP0NDjBkzBv369TP6vAB87j4cP34cCQkJaNWqFYYOHYpTp04B8J378Pnnn6NLly546KGHEBMTg86dO+Odd97Rny8sLERpaanRfVAoFOjatavRfQgPD0eXLl301/Tq1QsymQx79+513YdxkKqqKrz//vsYOXIkJEnymd8FAOjWrRu++eYb/P777wCAw4cPY9euXejbty8A3/h9qKmpgVqtRpMmTYyOBwUFYdeuXT5xD0w56jPn5eWhe/fuCAgI0F/Tu3dvHDt2DBcvXmxQG7lJqRW//PILMjMzcfXqVTRt2hSffvop2rVrh0OHDiEgIADh4eFG18fGxqK0tBQAUFpaavQfNt153TlvsW7dOhw4cMBozFqntLTUZ+5D165dsWrVKrRp0wYlJSWYOXMm7rzzTuTn5/vMffjjjz+wdOlSjB8/Hv/+97+xb98+jBs3DgEBARg+fLj+c5j7nIb3ISYmxui8n58fIiIivOY+GPrss89QXl6OESNGAPCtfyemTJmCiooKtG3bFnK5HGq1Gi+//DKGDh0KAD7x+xAaGorMzEzMmjULN954I2JjY/Hhhx8iLy8PaWlpPnEPTDnqM5eWliIlJaXWa+jONWvWzO42MvhY0aZNGxw6dAgqlQqffPIJhg8fjp07d7q7WS5z+vRpPPPMM9i+fXut/6PxNbr/iwWAjh07omvXrkhKSsJHH32EoKAgN7bMdTQaDbp06YJXXnkFANC5c2fk5+fj7bffxvDhw93cOvdYsWIF+vbti4SEBHc3xeU++ugjfPDBB1i7di3at2+PQ4cOITc3FwkJCT71+7BmzRqMHDkSzZs3h1wuR3p6OoYMGYL9+/e7u2lkAYe6rAgICEBaWhoyMjIwe/ZsdOrUCYsWLUJcXByqqqpQXl5udP3Zs2cRFxcHAIiLi6s1k0P3WHeNp9u/fz/OnTuH9PR0+Pn5wc/PDzt37sTixYvh5+eH2NhYn7gP5oSHh+OGG25AQUGBz/w+xMfHo127dkbHbrzxRv2Qn+5zmPuchvfh3LlzRudrampQVlbmNfdB5+TJk/j666/xxBNP6I/5yu8CAEycOBFTpkzBww8/jA4dOmDYsGF49tlnMXv2bAC+8/uQmpqKnTt34tKlSzh9+jR++uknVFdXo1WrVj5zDww56jM7898TBp960Gg0uHbtGjIyMuDv749vvvlGf+7YsWM4deoUMjMzAQCZmZn45ZdfjP7hbt++HWFhYbW+PDzVPffcg19++QWHDh3S/3Tp0gVDhw7V/90X7oM5ly5dwokTJxAfH+8zvw+33347jh07ZnTs999/R1JSEgAgJSUFcXFxRvehoqICe/fuNboP5eXlRv83/O2330Kj0aBr164u+BSOs3LlSsTExKBfv376Y77yuwAAV65cgUxm/BUil8uh0WgA+N7vQ0hICOLj43Hx4kV89dVX+Oc//+lz9wBw3D/3zMxMfP/996iurtZfs337drRp06ZBw1wAOJ3dkilTpoidO3eKwsJCceTIETFlyhQhSZLYtm2bEEI7ZbVly5bi22+/FT///LPIzMwUmZmZ+ufrpqzed9994tChQ+LLL78U0dHRXjdl1ZThrC4hfOc+TJgwQXz33XeisLBQ7N69W/Tq1UtERUWJc+fOCSF84z789NNPws/PT7z88svi+PHj4oMPPhDBwcHi/fff118zZ84cER4eLv773/+KI0eOiH/+859mp7F27txZ7N27V+zatUu0bt3ao6fumqNWq0XLli3F5MmTa53zhd8FIYQYPny4aN68uX46+8aNG0VUVJSYNGmS/hpf+H348ssvxdatW8Uff/whtm3bJjp16iS6du0qqqqqhBCN8x5UVlaKgwcPioMHDwoAYsGCBeLgwYPi5MmTQgjHfOby8nIRGxsrhg0bJvLz88W6detEcHAwp7M708iRI0VSUpIICAgQ0dHR4p577tGHHiGE+Ouvv8S//vUv0axZMxEcHCz+3//7f6KkpMToNYqKikTfvn1FUFCQiIqKEhMmTBDV1dWu/igOZRp8fOU+ZGVlifj4eBEQECCaN28usrKyjNav8ZX7sGnTJnHTTTeJwMBA0bZtW7F8+XKj8xqNRjz//PMiNjZWBAYGinvuuUccO3bM6BqlUimGDBkimjZtKsLCwsTjjz8uKisrXfkxGuyrr74SAGp9NiF853ehoqJCPPPMM6Jly5aiSZMmolWrVmLatGlG04994fdh/fr1olWrViIgIEDExcWJMWPGiPLycv35xngPduzYIQDU+hk+fLgQwnGf+fDhw+KOO+4QgYGBonnz5mLOnDkOab8khMEym0RERESNGGt8iIiIyGcw+BAREZHPYPAhIiIin8HgQ0RERD6DwYeIiIh8BoMPERER+QwGHyIiIvIZDD5ERETkMxh8iKjB7rrrLuTm5rq7GU43Y8YM3Hzzze5uBhE1AIMPEfm8qqoql76fEAI1NTUufU8i0mLwIaIGGTFiBHbu3IlFixZBkiRIkoSioiLk5+ejb9++aNq0KWJjYzFs2DBcuHBB/7y77roLY8eORW5uLpo1a4bY2Fi88847uHz5Mh5//HGEhoYiLS0NW7du1T/nu+++gyRJ2LJlCzp27IgmTZrgtttuQ35+vlGbdu3ahTvvvBNBQUFo0aIFxo0bh8uXL+vPJycnY9asWXjssccQFhaGUaNGAQAmT56MG264AcHBwWjVqhWef/55/e7Qq1atwsyZM3H48GH951y1ahWKioogSRIOHTqkf/3y8nJIkoTvvvvOqN1bt25FRkYGAgMDsWvXLmg0GsyePRspKSkICgpCp06d8Mknnzj6HxERGWDwIaIGWbRoETIzM/Hkk0+ipKQEJSUlCA0NRc+ePdG5c2f8/PPP+PLLL3H27FkMHjzY6LmrV69GVFQUfvrpJ4wdOxZPP/00HnroIXTr1g0HDhzAfffdh2HDhuHKlStGz5s4cSLmz5+Pffv2ITo6GgMGDNAHlBMnTqBPnz4YNGgQjhw5gvXr12PXrl3Iyckxeo3XXnsNnTp1wsGDB/H8888DAEJDQ7Fq1Sr8+uuvWLRoEd555x28/vrrAICsrCxMmDAB7du313/OrKyset2rKVOmYM6cOTh69Cg6duyI2bNn47333sPbb7+N//3vf3j22Wfx6KOPYufOnfV6XSKqB4dsdUpEPq1Hjx7imWee0T+eNWuWuO+++4yuOX36tNGO5j169BB33HGH/nxNTY0ICQkRw4YN0x8rKSkRAEReXp4Q4vqu0OvWrdNfo1QqRVBQkFi/fr0QQojs7GwxatQoo/f+4YcfhEwmE3/99ZcQQoikpCTxwAMP1Pm55s2bJzIyMvSPX3jhBdGpUyejawoLCwUAcfDgQf2xixcvCgBix44dRu3+7LPP9NdcvXpVBAcHiz179hi9XnZ2thgyZEidbSMi+/i5M3QRUeN0+PBh7NixA02bNq117sSJE7jhhhsAAB07dtQfl8vliIyMRIcOHfTHYmNjAQDnzp0zeo3MzEz93yMiItCmTRscPXpU/95HjhzBBx98oL9GCAGNRoPCwkLceOONAIAuXbrUatv69euxePFinDhxApcuXUJNTQ3CwsLq/fktMXzPgoICXLlyBffee6/RNVVVVejcubPD3pOIjDH4EJHDXbp0CQMGDMDcuXNrnYuPj9f/3d/f3+icJElGxyRJAgBoNJp6vffo0aMxbty4Wudatmyp/3tISIjRuby8PAwdOhQzZ85E7969oVAosG7dOsyfP9/q+8lk2ooBIYT+mG7YzZThe166dAkAsGXLFjRv3tzousDAQKvvSUT2Y/AhogYLCAiAWq3WP05PT8eGDRuQnJwMPz/H/2fmxx9/1IeYixcv4vfff9f35KSnp+PXX39FWlpavV5zz549SEpKwrRp0/THTp48aXSN6ecEgOjoaABASUmJvqfGsNDZknbt2iEwMBCnTp1Cjx496tVWIrIfi5uJqMGSk5Oxd+9eFBUV4cKFCxgzZgzKysowZMgQ7Nu3DydOnMBXX32Fxx9/vFZwsMeLL76Ib775Bvn5+RgxYgSioqLwwAMPANDOzNqzZw9ycnJw6NAhHD9+HP/9739rFTebat26NU6dOoV169bhxIkTWLx4MT799NNan7OwsBCHDh3ChQsXcO3aNQQFBeG2227TFy3v3LkT//nPf+r8DKGhoXjuuefw7LPPYvXq1Thx4gQOHDiAN954A6tXr7b73hCRdQw+RNRgzz33HORyOdq1a4fo6GhUVVVh9+7dUKvVuO+++9ChQwfk5uYiPDxcPzTUEHPmzMEzzzyDjIwMlJaWYtOmTQgICACgrRvauXMnfv/9d9x5553o3Lkzpk+fjoSEBKuvef/99+PZZ59FTk4Obr75ZuzZs0c/20tn0KBB6NOnD+6++25ER0fjww8/BAC8++67qKmpQUZGBnJzc/HSSy/Z9DlmzZqF559/HrNnz8aNN96IPn36YMuWLUhJSbHjrhCRLSRhODBNROTBvvvuO9x99924ePEiwsPD3d0cIvJC7PEhIiIin8HgQ0RERD6DQ11ERETkM9jjQ0RERD6DwYeIiIh8BoMPERER+QwGHyIiIvIZDD5ERETkMxh8iIiIyGcw+BAREZHPYPAhIiIin8HgQ0RERD7j/wNMvoG13BwBoAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4/4 [==============================] - 0s 4ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAHHCAYAAAAGU9SoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf+ElEQVR4nO3dfVzN5+M/8Nfp/oYKpUKR23IzoqnTsJnmsCw2PsMM0WyMmftiSLYRwzY34/v52MTmfjZyG8vNbspdwtyUjRIjMSpF99fvj369dZwTxTmdczqv5+NxHpzrfZ33uU7v6bx2Xe/rumRCCAEiIiIi0nsmum4AEREREVUOgxsRERGRgWBwIyIiIjIQDG5EREREBoLBjYiIiMhAMLgRERERGQgGNyIiIiIDweBGREREZCAY3IiIiIgMBIMbEdFzkslkmDNnjq6bIQkODkaTJk103Qwi0gIGNyKqkaKioiCTyaSHlZUVWrZsiXHjxuHWrVtafe+4uDjMmTMHmZmZGj3vK6+8ovSZ6tatixdffBHfffcdSkpKNPIe8+bNw/bt2zVyLiLSPDNdN4CISJvmzp0LDw8P5OXl4ffff8fKlSuxZ88enDt3DjY2Nhp5j4cPH8LM7NGv07i4OERERCA4OBgODg4aeY8yjRo1wvz58wEAt2/fxrp16xASEoJLly4hMjLyuc8/b948DBgwAP369XvucxGR5jG4EVGN1rt3b/j4+AAA3nvvPdSrVw9LlizBjh07MHjw4Gc+b0lJCQoKCmBlZQUrKytNNfep7O3t8e6770rPP/jgA7Rq1QrLly/Hp59+CnNz82prCxFVPw6VEpFRefXVVwEAKSkpAIBFixbB398f9erVg7W1NTp16oQff/xR5XUymQzjxo3D+vXr0aZNG1haWmLfvn3SsbJ73ObMmYOpU6cCADw8PKRhzdTUVLz88sto37692na1atUKCoWiyp/HxsYGfn5+yM3Nxe3btyusl5ubi8mTJ8PNzQ2WlpZo1aoVFi1aBCGE0mfMzc3F2rVrpXYHBwdXuU1EpD3scSMio3L58mUAQL169QAAX3/9NYKCgjBkyBAUFBRg06ZN+M9//oNdu3YhMDBQ6bUHDx7Eli1bMG7cODg6OqqdAPDWW2/h0qVL2LhxI7788ks4OjoCAJycnDB06FCMGjUK586dQ9u2baXXnDhxApcuXcLMmTOf6TNduXIFpqamFQ7LCiEQFBSEQ4cOISQkBB06dEBMTAymTp2Kf/75B19++SUA4Pvvv8d7772Hzp074/333wcANGvW7JnaRERaIoiIaqA1a9YIAOKXX34Rt2/fFteuXRObNm0S9erVE9bW1uL69etCCCEePHig9LqCggLRtm1b8eqrryqVAxAmJibi/PnzKu8FQISHh0vPv/jiCwFApKSkKNXLzMwUVlZWIjQ0VKl8/PjxwtbWVuTk5DzxM7388svC09NT3L59W9y+fVtcvHhRjB8/XgAQb7zxhlRv+PDhonHjxtLz7du3CwDis88+UzrfgAEDhEwmE3///bdUZmtrK4YPH/7EdhCR7nColIhqtICAADg5OcHNzQ2DBg1CrVq18PPPP6Nhw4YAAGtra6nuvXv3kJWVha5du+LUqVMq53r55ZfRunXrZ26Lvb09+vbti40bN0pDlMXFxdi8eTP69esHW1vbp54jKSkJTk5OcHJygpeXF5YtW4bAwEB89913Fb5mz549MDU1xfjx45XKJ0+eDCEE9u7d+8yfiYiqF4dKiahGW7FiBVq2bAkzMzM4OzujVatWMDF59P+su3btwmeffYbTp08jPz9fKpfJZCrn8vDweO72DBs2DJs3b8Zvv/2Gbt264ZdffsGtW7cwdOjQSr2+SZMm+N///ictcdKiRQvUr1//ia+5evUqGjRogNq1ayuVe3l5SceJyDAwuBFRjda5c2dpVunjfvvtNwQFBaFbt2745ptv4OrqCnNzc6xZswYbNmxQqV++d+5ZKRQKODs744cffkC3bt3www8/wMXFBQEBAZV6va2tbaXrElHNw6FSIjJa27Ztg5WVFWJiYjBy5Ej07t1bI6FIXW9dGVNTU7zzzjv48ccfce/ePWzfvh2DBw+Gqanpc79vRRo3bowbN27g/v37SuVJSUnS8TJPajsR6R6DGxEZLVNTU8hkMhQXF0tlqampz71zQNm9ahXtnDB06FDcu3cPH3zwAXJycpTWZdOG119/HcXFxVi+fLlS+ZdffgmZTIbevXtLZba2thrf8YGINIdDpURktAIDA7FkyRL06tUL77zzDjIyMrBixQo0b94cZ8+efebzdurUCQDwySefYNCgQTA3N8cbb7whBTpvb2+0bdsWW7duhZeXFzp27KiRz1ORN954A927d8cnn3yC1NRUtG/fHvv378eOHTswYcIEpSU/OnXqhF9++QVLlixBgwYN4OHhAV9fX622j4gqjz1uRGS0Xn31VXz77bdIT0/HhAkTsHHjRixYsABvvvnmc533xRdfxKeffoozZ84gODgYgwcPVlkcd9iwYQBQ6UkJz8PExATR0dGYMGECdu3ahQkTJuDChQv44osvsGTJEqW6S5YsQadOnTBz5kwMHjwYK1eu1Hr7iKjyZEKUWzabiIiqxddff42JEyciNTUV7u7uum4OERkIBjciomomhED79u1Rr149HDp0SNfNISIDwnvciIiqSW5uLqKjo3Ho0CH8+eef2LFjh66bREQGhj1uRETVJDU1FR4eHnBwcMCHH36Izz//XNdNIiIDw+BGREREZCA4q5SIiIjIQDC4ERERERkITk7QYyUlJbhx4wZq167NbWiIiIgMhBAC9+/fR4MGDWBiotk+MgY3PXbjxg24ubnpuhlERET0DK5du4ZGjRpp9JwMbnqsdu3aAEovvJ2dnY5bQ0RERJWRnZ0NNzc36Xtckxjc9FjZ8KidnR2DGxERkYHRxm1OnJxAREREZCAY3IiIiIgMBIMbERERkYHgPW4Grri4GIWFhbpuBlUDc3NzmJqa6roZRESkQwxuBkoIgfT0dGRmZuq6KVSNHBwc4OLiwnX9iIiMFIObgSoLbfXr14eNjQ2/yGs4IQQePHiAjIwMAICrq6uOW0RERLrA4GaAiouLpdBWr149XTeHqom1tTUAICMjA/Xr1+ewKRGRETKYyQlBQUFwd3eHlZUVXF1dMXToUNy4cUOpjhACixYtQsuWLWFpaYmGDRvi888/V6pz+PBhdOzYEZaWlmjevDmioqJU3mvFihVo0qQJrKys4Ovri+PHjysdz8vLw9ixY1GvXj3UqlUL/fv3x61bt5TqpKWlITAwEDY2Nqhfvz6mTp2KoqIijfwsyu5ps7Gx0cj5yHCUXXPe10hEZJwMJrh1794dW7ZsQXJyMrZt24bLly9jwIABSnU+/vhjrF69GosWLUJSUhKio6PRuXNn6XhKSgoCAwPRvXt3nD59GhMmTMB7772HmJgYqc7mzZsxadIkhIeH49SpU2jfvj0UCoU0RAUAEydOxM6dO7F161YcOXIEN27cwFtvvSUdLy4uRmBgIAoKChAXF4e1a9ciKioKs2fP1ujPhMOjxofXnIjIyAkDtWPHDiGTyURBQYEQQogLFy4IMzMzkZSUVOFrpk2bJtq0aaNUNnDgQKFQKKTnnTt3FmPHjpWeFxcXiwYNGoj58+cLIYTIzMwU5ubmYuvWrVKdixcvCgAiPj5eCCHEnj17hImJiUhPT5fqrFy5UtjZ2Yn8/PxKf8asrCwBQGRlZSmVP3z4UFy4cEE8fPiw0ueimoHXnohI/1X0/a0JBtPjVt7du3exfv16+Pv7w9zcHACwc+dONG3aFLt27YKHhweaNGmC9957D3fv3pVeFx8fj4CAAKVzKRQKxMfHAwAKCgqQkJCgVMfExAQBAQFSnYSEBBQWFirV8fT0hLu7u1QnPj4e7dq1g7Ozs9L7ZGdn4/z58xV+rvz8fGRnZys9iIiIiMoYVHALDQ2Fra0t6tWrh7S0NOzYsUM6duXKFVy9ehVbt27FunXrEBUVhYSEBKXh1PT0dKUwBQDOzs7Izs7Gw4cPcefOHRQXF6utk56eLp3DwsICDg4OT6yj7hxlxyoyf/582NvbSw83N7dK/mQMR3BwMGQyGWQyGczNzeHs7IzXXnsN3333HUpKSip9nqioKJVrQEREVNPpNLiFhYVJX+IVPZKSkqT6U6dORWJiIvbv3w9TU1MMGzYMQggAQElJCfLz87Fu3Tp07doVr7zyCr799lscOnQIycnJuvqIVTJ9+nRkZWVJj2vXrum6SVrRq1cv3Lx5E6mpqdi7dy+6d++Ojz/+GH369NHYBA4iIqInycnJQW5urq6bUWU6DW6TJ0/GxYsXn/ho2rSpVN/R0REtW7bEa6+9hk2bNmHPnj04evQogNJ1rczMzNCyZUupvpeXF4DSGZ4A4OLiojL789atW7Czs4O1tTUcHR1hamqqto6Li4t0joKCApWFbx+vo+4cZccqYmlpCTs7O6VHTWRpaQkXFxc0bNgQHTt2xIwZM7Bjxw7s3btXmuW7ZMkStGvXDra2tnBzc8OHH36InJwcAKUzg0eMGIGsrCwp4M+ZMwcA8P3338PHxwe1a9eGi4sL3nnnHaWJJUREZNyEEFixYgUWL16MVatWSR1AhkKnwc3JyQmenp5PfFhYWKh9bdmwWn5+PgDgpZdeQlFRES5fvizVuXTpEgCgcePGAAC5XI7Y2Fil8xw4cAByuRwAYGFhgU6dOinVKSkpQWxsrFSnU6dOMDc3V6qTnJyMtLQ0qY5cLseff/6pFBgOHDgAOzs7tG7d+hl+Uk8nhEBBQYFOHpr4j/7VV19F+/bt8dNPPwEovbdw6dKlOH/+PNauXYuDBw9i2rRpAAB/f3989dVXsLOzw82bN3Hz5k1MmTIFQOkyGZ9++inOnDmD7du3IzU1FcHBwc/dPiIiMnyZmZmYO3cu7ty5AwDIzc01uNn6BrEA77Fjx3DixAl06dIFderUweXLlzFr1iw0a9ZMCksBAQHo2LEjRo4cia+++golJSUYO3YsXnvtNakXbvTo0Vi+fDmmTZuGkSNH4uDBg9iyZQt2794tvdekSZMwfPhw+Pj4oHPnzvjqq6+Qm5uLESNGAADs7e0REhKCSZMmoW7durCzs8NHH30EuVwOPz8/AEDPnj3RunVrDB06FAsXLkR6ejpmzpyJsWPHwtLSUis/o8LCQsyfP18r536a6dOnVxiwq8LT0xNnz54FAEyYMEEqb9KkCT777DOMHj0a33zzDSwsLGBvbw+ZTKbSgzly5Ejp702bNsXSpUvx4osvIicnB7Vq1XruNhIRkWE6ceIE9uzZIz23t7fHxx9/rMMWPRuDmJxgY2ODn376CT169ECrVq0QEhKCF154AUeOHJGCkImJCXbu3AlHR0d069YNgYGB8PLywqZNm6TzeHh4YPfu3Thw4ADat2+PxYsXY/Xq1VAoFFKdgQMHYtGiRZg9ezY6dOiA06dPY9++fUqTDb788kv06dMH/fv3R7du3eDi4iL1FAGAqakpdu3aBVNTU8jlcrz77rsYNmwY5s6dWw0/LcMlhJD+z+eXX35Bjx490LBhQ9SuXRtDhw7Fv//+iwcPHjzxHAkJCXjjjTfg7u6O2rVr4+WXXwbwaLiciIiMS0lJCSIiIpRC2+uvv46mTSfgpZdkiI7WYeOegUwY2uCuEcnOzoa9vT2ysrKU7nfLy8tDSkoKPDw8YGVlBaA09OhqNX1zc/NKdzUHBwcjMzMT27dvVzn2wgsvwN3dHcuXL4enpyfGjBmDgQMHom7duvj9998REhKCe/fuwcHBAVFRUZgwYYLSvYa5ublo3LgxFAoFRo8eDScnJ6SlpUGhUCAxMREdOnTQzAfWIXXXnoiI1EtKSsLmzZuVyj7++GM4ODjA3x+IjwfkciAuTrPvW9H3tyYYxFApPZ1MJtPIcKWuHDx4EH/++ScmTpyIhIQElJSUYPHixTAxKe0U3rJli1J9CwsLFBcXK5UlJSXh33//RWRkpLSUysmTJ6vnAxARkV6JiIhQKYuJmQ1vbxmCgoCwMCAysvRPQ2IQQ6VUs+Tn5yM9PR3//PMPTp06hXnz5qFv377o06cPhg0bhubNm6OwsBDLli3DlStX8P3332PVqlVK52jSpAlycnIQGxuLO3fu4MGDB3B3d4eFhYX0uujoaHz66ac6+pRERKQLhYWFKqHNyckJMTHhiI+XITKytCwoqLSnLShIB418DgxuVO327dsHV1dXNGnSBL169cKhQ4ewdOlS7NixA6ampmjfvj2WLFmCBQsWoG3btli/fr3KxAt/f3+MHj0aAwcOhJOTExYuXAgnJydERUVh69ataN26NSIjI7Fo0SIdfUoiIqpu0dHRmDdvnlLZ2bNvolGjDxEWVjosamg9bI/jPW56rCr3uJFx4LUnIlKvoqHR+HiZVu5jexLe40ZERESkRl5eHhYsWKBSHh4eDm9vw7yP7UkY3IiIiMggbd68WWlrTADo27evtIpAUJDh3cP2NAxuREREZHDUDY3Onj3b4HZCqCoGNyIiIjIY9+/fx5IlS1TKw8PDddCa6sfgRkRERAYhMjJS2qO8zNtvvw0vLy+VutHRj+5vq0nDpVwOhIiIiPReRESESmjz9g5XG9qA0tAWHw9p3baagsGNiIiI9Na9e/fU3s82Z074E0NZTVm37XEcKiUiIiK9pC6w9e/fH1eutH1qKKuJM0oBBjciIiLSQ+pCW9kEhLZta2YoqwwOlVKNFBwcjH79+knPX3nlFUyYMOG5zqmJcxAR0ZNlZGQ8MbQZO/a4UbUKDg7G2rVrAQDm5uZwd3fHsGHDMGPGDJiZae8/x59++gnm5uaVqnv48GF0794d9+7dg4ODwzOdg4iIqk5dYGvWbAjefbe5DlqjnxjcqNr16tULa9asQX5+Pvbs2YOxY8fC3Nwc06dPV6pXUFAACwsLjbxn3bp19eIcRESkXkUTEORy4N13ddAgPcWhUqp2lpaWcHFxQePGjTFmzBgEBAQgOjpaGt78/PPP0aBBA7Rq1QoAcO3aNbz99ttwcHBA3bp10bdvX6SmpkrnKy4uxqRJk+Dg4IB69eph2rRpEEIovefjw5z5+fkIDQ2Fm5sbLC0t0bx5c3z77bdITU1F9+7dAQB16tSBTCZDcHCw2nPcu3cPw4YNQ506dWBjY4PevXvjr7/+ko5HRUXBwcEBMTEx8PLyQq1atdCrVy/cvHlTqnP48GF07twZtra2cHBwwEsvvYSrV69q6CdNRKT/0tLS1IY2b+/wGjkr9Hmxx410ztraGv/++y8AIDY2FnZ2djhw4AAAoLCwEAqFAnK5HL/99hvMzMzw2WefoVevXjh79iwsLCywePFiREVF4bvvvoOXlxcWL16Mn3/+Ga+++mqF7zls2DDEx8dj6dKlaN++PVJSUnDnzh24ublh27Zt6N+/P5KTk2FnZwdra2u15wgODsZff/2F6Oho2NnZITQ0FK+//jouXLggDak+ePAAixYtwvfffw8TExO8++67mDJlCtavX4+ioiL069cPo0aNwsaNG1FQUIDjx4/X+O1aiIjKqAtsI0aMgLu7OwDjnYDwJAxupDNCCMTGxiImJgYfffQRbt++DVtbW6xevVoaIv3hhx9QUlKC1atXS4FmzZo1cHBwwOHDh9GzZ0989dVXmD59Ot566y0AwKpVqxATE1Ph+166dAlbtmzBgQMHEBAQAABo2rSpdLxsSLR+/fpK97iVVxbY/vjjD/j7+wMA1q9fDzc3N2zfvh3/+c9/AJQGz1WrVqFZs2YAgHHjxmHu3LkAgOzsbGRlZaFPnz7S8YoWkiQiqmk4AeHZcKiUEB0N+PuX/lkddu3ahVq1asHKygq9e/fGwIEDMWfOHABAu3btlO5rO3PmDP7++2/Url0btWrVQq1atVC3bl3k5eXh8uXLyMrKws2bN+Hr6yu9xszMDD4+PhW+/+nTp2FqaoqXX375mT/DxYsXYWZmpvS+9erVQ6tWrXDx4kWpzMbGRgplAODq6oqMjAwApQExODgYCoUCb7zxBr7++mulYVQioprozJkzDG3PgT1upLQtSHV0S3fv3h0rV66EhYUFGjRooDSb1NbWVqluTk4OOnXqhPXr16ucx8nJ6Znev6KhT214fBaqTCZTuv9uzZo1GD9+PPbt24fNmzdj5syZOHDgAPz8/KqtjURE1UVdYGvZciSWLXODtzeHRiuDPW5U7duC2Nraonnz5nB3d3/qEiAdO3bEX3/9hfr166N58+ZKD3t7e9jb28PV1RXHjh2TXlNUVISEhIQKz9muXTuUlJTgyJEjao+X9fgVFxdXeA4vLy8UFRUpve+///6L5ORktG7d+omf6XHe3t6YPn064uLi0LZtW2zYsKFKryciMgQV9bItW+ZWI/cU1RYGN0JQEBAXp5//pzNkyBA4Ojqib9+++O2335CSkoLDhw9j/PjxuH79OgDg448/RmRkJLZv346kpCR8+OGHyMzMrPCcTZo0wfDhwzFy5Ehs375dOueWLVsAAI0bN4ZMJsOuXbtw+/Zt5OTkqJyjRYsW6Nu3L0aNGoXff/8dZ86cwbvvvouGDRuib9++lfpsKSkpmD59OuLj43H16lXs378ff/31F+9zI6IaJT4+Xm1oi4kJR3R0zd1TVFsY3Eiv2djY4Ndff4W7uzveeusteHl5ISQkBHl5ebCzswMATJ48GUOHDsXw4cMhl8tRu3ZtvPnmm08878qVKzFgwAB8+OGH8PT0xKhRo5CbmwsAaNiwISIiIhAWFgZnZ2eMGzdO7TnWrFmDTp06oU+fPpDL5RBCYM+ePZVepNfGxgZJSUno378/WrZsiffffx9jx47FBx98UIWfEBGR/oqIiMD+/fuVykaNGoWYmHClW3T0tfNAH8nE4wtekd7Izs6Gvb09srKypJACAHl5eUhJSYGHhwesrKx02EKqbrz2RGQonjQBITq6NLSFhdXMwFbR97cmcHICERERacyWLVuUZteXKT9rNCioZga26sDgRkRERBqhrpftm2/GoFmz+uBqH5rB4EZERETPraJtq5o148QDTWJwIyIiome2evVq/PPPPyrlMTHh8PYunXhAmsPgZsA4r8T48JoTkT5R18v20UcfoU+futW6sLsx4XIgBqj8BuZkXMqueWWXHCEi0gYhRIWzRuvWrcu12bSIPW4GyNTUFA4ODtKelzY2NtIG7FQzCSHw4MEDZGRkwMHBAaamprpuEhEZiceX7li0aJG07mV5nDVaPRjcDJSLiwsASOGNjIODg4N07YmIqkP5/awTE1V72SZNmoTatWvroGXGicHNQMlkMri6uqJ+/fooLCzUdXOoGpibm7OnjYiqXVgYsGBBMXr2/EzlWDjX+Kh2DG4GztTUlF/mRESkFdHRpb1sPXuqHmNo0w0GNyIiIlJL3dBobGwofv2VW+7pCoMbERERKcnPz0dkZKRKeUxMOGeK6hiDGxEREUnULfMBlO6CwNFR3WNwIyIiIgDqQ9uMGTO4dqQeYXAjIiIyctu25eDcucUq5ZyAoH8Y3IiIiIxYRUOjDG36icGNiIjIyJTthqBQqIa2WbNmwcSEO2LqKwY3IiIiI7N06R0oFCtUytnLpv8Y3IiIiIxIREQEunZVLWdoMwwMbkREREZC3f1ss2fPhkwm00Fr6FkwuBEREdVwKSkpWLdunUq5t3c4mNkMC4MbERFRDcZZozULgxsREVENpS60MbAZNgY3IiKiGub06dPYsWOHSjlDm+FjcCMiIqpB1PWymZqaYubMmTpoDWkagxsREVENoS60eXuHIyhIB40hrWBwIyIiMmDR0cCWLUfQosVhlWMcGq15GNyIiIgMWGJiBFq0UC6rU6cOxo8fr5sGkVYxuBERERmQsn1Gw8JKQ9vj2MtWszG4ERERGZDISKBhwx+RmHhe5RhDW83H4EZERKTnyveyKRSqvWzu7u4YMWKEDlpG1c1E1w0gIiIiZdHRgL9/6Z9AaWiLj694aJShzXjIhBBC140g9bKzs2Fvb4+srCzY2dnpujlERFRN/P1Lg5qnJ1CnDtCz51LIZPdU6nFoVD9p8/ubPW5ERER6JiwMkMsBIUqHRh8PbW3btmVoM1IMbkRERDr0+LAoAAQFAXFxwODB6odG+/fvX40tJH3CyQlERETVrPxkg7L71yIjIe1woG4HBIBDo8TgRkREVO3Kh7WwMCA0FLh7tzTQqZuA4O/vj9dee00HLSV9w6FSIiKialI2LNq9e+k9bGFhpb1sdeoAyckVzxplaKMy7HEjIiKqJmU9bUDpPWxlFIoIKBSq9Tk0So9jcCMiIqomZfe0hYU9KlN3P1uvXr3g6+tbjS0jQ8HgRkREVE2Cgh5NQADUhzb2stGTMLgRERFVM84apWdlMJMTgoKC4O7uDisrK7i6umLo0KG4ceOGdHzOnDmQyWQqD1tbW6XzbN26FZ6enrCyskK7du2wZ88epeNCCMyePRuurq6wtrZGQEAA/vrrL6U6d+/exZAhQ2BnZwcHBweEhIQgJydHqc7Zs2fRtWtXWFlZwc3NDQsXLtTwT4SIiAyRutD2n//8h6GNKsVgglv37t2xZcsWJCcnY9u2bbh8+TIGDBggHZ8yZQpu3ryp9GjdujX+85//SHXi4uIwePBghISEIDExEf369UO/fv1w7tw5qc7ChQuxdOlSrFq1CseOHYOtrS0UCgXy8vKkOkOGDMH58+dx4MAB7Nq1C7/++ivef/996Xh2djZ69uyJxo0bIyEhAV988QXmzJmD//73v1r+KRERkb4SQlQ4NNq6dWsdtIgMkcHuVRodHY1+/fohPz8f5ubmKsfPnDmDDh064Ndff0XXrl0BAAMHDkRubi527dol1fPz80OHDh2watUqCCHQoEEDTJ48GVOmTAEAZGVlwdnZGVFRURg0aBAuXryI1q1b48SJE/Dx8QEA7Nu3D6+//jquX7+OBg0aYOXKlfjkk0+Qnp4OCwsLAEBYWBi2b9+OpKSkSn9G7lVKRFQzcGjUuHCv0sfcvXsX69evh7+/v9rQBgCrV69Gy5YtpdAGAPHx8QgICFCqp1AoEP//52anpKQgPT1dqY69vT18fX2lOvHx8XBwcJBCGwAEBATAxMQEx44dk+p069ZNCm1l75OcnIx791Q3CS6Tn5+P7OxspQcRERk2daFtxIgRDG30TAwquIWGhsLW1hb16tVDWloaduzYobZeXl4e1q9fj5CQEKXy9PR0ODs7K5U5OzsjPT1dOl5W9qQ69evXVzpuZmaGunXrKtVRd47y76HO/PnzYW9vLz3c3NwqrEtERPqtsLCwwqFRd3d3HbSIagKdBrewsDC1EwrKP8oPLU6dOhWJiYnYv38/TE1NMWzYMKgb6f35559x//59DB8+vDo/znObPn06srKypMe1a9d03SQiInoGERERmDdvnko5e9noeel0OZDJkycjODj4iXWaNm0q/d3R0RGOjo5o2bIlvLy84ObmhqNHj0Iulyu9ZvXq1ejTp49Kr5eLiwtu3bqlVHbr1i24uLhIx8vKXF1dlep06NBBqpORkaF0jqKiIty9e1fpPOrep/x7qGNpaQlLS8sKjxMRkf4ov1H809ZmGzt2LBwdHauxdVRT6TS4OTk5wcnJ6ZleW1JSAqD0vrDyUlJScOjQIURHR6u8Ri6XIzY2FhMmTJDKDhw4IAU/Dw8PuLi4IDY2Vgpq2dnZOHbsGMaMGSOdIzMzEwkJCejUqRMA4ODBgygpKZFWuZbL5fjkk09QWFgo3YN34MABtGrVCnXq1Hmmz0tERPqhLLDdvVu6v2hkZGlwy8nJweLFi1Xqs5eNNMkgZpUeO3YMJ06cQJcuXVCnTh1cvnwZs2bNwq1bt3D+/HmlXqpZs2bhu+++Q1paGkxNTZXOExcXh5dffhmRkZEIDAzEpk2bMG/ePJw6dQpt27YFACxYsACRkZFYu3YtPDw8MGvWLJw9exYXLlyAlZUVAKB37964desWVq1ahcLCQowYMQI+Pj7YsGEDgNKZqK1atULPnj0RGhqKc+fOYeTIkfjyyy+Vlg15Gs4qJSLSL9HRwJAhQE4O4OlZujl8WJj6zeEBhjZjpc3vb4PYOcHGxgY//fQTwsPDkZubC1dXV/Tq1QszZ85UCm0lJSWIiopCcHCwSmgDAH9/f2zYsAEzZ87EjBkz0KJFC2zfvl0KbQAwbdo05Obm4v3330dmZia6dOmCffv2SaENANavX49x48ahR48eMDExQf/+/bF06VLpuL29Pfbv34+xY8eiU6dOcHR0xOzZs6sU2oiISP9ERpaGtlq1gAULSnva1A2NTpkyRWUBeCJNMIgeN2PFHjciIv1S/r42ufw2vvnmG5U67GUjruNGRERUzaKjAX//0j/LBAUBcXGlQ6MMbaQLBjFUSkREVN0iI4H4+EeTD8qoGxr95JNPYGbGr1TSPva4ERERqVE6HFr6JwBcuXKlwgV1GdqouvC/NCIiIjWCgh71tHGvUdIX7HEjIiKjVv5eNnX3takLbbNnz2ZoI51gjxsRERm18veyAY/+3qjRKezcuVOlPgMb6RKDGxERGbWwsEdLfAClf1coIqAmszG0kc4xuBERkdF5fJ/R8rNG1e2CwMBG+oLBjYiIjI66pT727t2L48ePq9RlaCN9wuBGRERG5/HhUc4aJUPB4EZEREbnaUt9MLCRvmJwIyIio7R27VqkpqaqlDO0kT5jcCMiIqPDoVEyVAxuRERkVDg0SoaMwY2IiIzCokWLkJubq1LO0EaGhFteERGRwVO3VVV5ERERDG1UI7DHjYiIDF7ZumxDhgDr1ysvqMuhUapJGNyIiMjghYWVhracnEeL6nICAtVEHColIiKD88knQO3apX8CpUFt/XpALi8NcepCm62tLUMbGTyZEELouhGkXnZ2Nuzt7ZGVlQU7OztdN4eISG/Url3au2ZiAvz8M4dGSb9o8/ubPW5ERGRwxo8vDW0lJaVDo0BpYGNoo5qOPW56jD1uREQVi45+tN9oYqJqYGvevDmGDBmig5aRsdPm9zcnJxARkUEq22+UvWxkTBjciIjIIHHWKBkjBjciIjI46kJbly5d0KNHDx20hqj6MLgREZFB4dAoGTMGNyIi0jvlJx6ULfXBoVEiBjciItJDZVtYPWkXhL59+6JDhw7V3zgiHWJwIyIivRMWVhraQkMFIiLmqhxnLxsZKy7AS0REOhUdDfj7l/5ZJigIUCgicPo0QxtReexxIyIinXp8WBRQPzQ6bNgweHh4VHPriPQLe9yIiEinwsIebQ5fWFhY4axRhjYibnml17jlFREZE84apZqCm8wTEZFBevz+tehowNMT8PJSvqdNXWgbM2YMQxvRY9jjpsfY40ZEhs7fv/T+tVq1gPXrH93PBpQOjx44kItFixapvI6BjQwZe9yIiMgghYWVhracnEcL6rZqVdrrplBEMLQRVRFnlRIRkdYEBT3qaSvbBaGiBXUnT56MWrVq6aCVRIaDwY2IiLSqLKwBwJ07d7BixQqVOuxlI6ocBjciIqoWnDVK9PwY3IiISOvUhbYZM2bA3NxcB60hMlxVnpxgamqKjIwMlfJ///0XpqamGmkUERHpP3VbVT3uypUrFS6oy9BGVHVV7nGraPWQ/Px8WFhYPHeDiIjIMKjbqqo8Do0SaV6lg9vSpUsBADKZDKtXr1aa+VNcXIxff/0Vnp6emm8hERHppbCwR7NFH6cutM2aNQsmJlyFiuh5VHoB3rI94q5evYpGjRopDYtaWFigSZMmmDt3Lnx9fbXTUiPEBXiJyNCcOnUKO3fuVClnLxsZE21+f1e6xy0lJQUA0L17d/z000+oU6eORhtCRESGjUOjRNpX5XvcDh06pI12EBGRAatoAgIRaVaVg9vIkSOfePy777575sYQEZFh+eWXX/DHH3+olDO0EWlHlYPbvXv3lJ4XFhbi3LlzyMzMxKuvvqqxhhERkX6IjlbesqoMh0aJql+Vg9vPP/+sUlZSUoIxY8agWbNmGmkUERHpD3XLfnBolEg3Kj2r9GmSk5Pxyiuv4ObNm5o4HYGzSolIP5TvccvP34oLFy6o1GFoI3pEm9/fGltQ5/LlyygqKtLU6YiISIfK74oQFATExQGJiREMbUQ6VuWh0kmTJik9F0Lg5s2b2L17N4YPH66xhhERkW5ERwNDhgA5OY+GRzk0SqQfqhzcEhMTlZ6bmJjAyckJixcvfuqMUyIi0n+RkaWhrVYt4I03liIi4p5KHYY2It3gOm5ERKSkbCsrhSICBQWqxxnaiHSnysGtTEZGBpKTkwEArVq1Qv369TXWKCIi0p2goNL72R7HwEake1UObtnZ2Rg7diw2btyIkpISAICpqSkGDhyIFStWwN7eXuONJCKi6sG12Yj0W5VnlY4aNQrHjh3D7t27kZmZiczMTOzatQsnT57EBx98oI02EhGRFpSfOQqoD202NjYMbUR6pMrruNna2iImJgZdunRRKv/tt9/Qq1cv5ObmarSBxozruBGRNvn7ly6sK5eX3s/2OAY2omejze/vKg+V1qtXT+1wqL29PerUqaORRhERkfaFham/lw1gaCPSV1UeKp05cyYmTZqE9PR0qSw9PR1Tp07FrFmzNNo4IiJ6Po8Ph5anLrS1aNGCoY1Ij1V5qNTb2xt///038vPz4e7uDgBIS0uDpaUlWrRooVT31KlTmmupEeJQKRE9r/LDoXFxj8q5oC6R9ujVUGnfvn0hk8k02ggiItKOsjXZwsJKn3PWKJFh09gm86R57HEjIk1SF9p8fX3Rq1cvHbSGqObSq03mmzZtin///VelPDMzE02bNtVIo4iISLMqGhplaCMyLFUeKk1NTUVxcbFKeX5+Pq5fv66RRhER0bOLjgamTQNkMmDQIA6NEtUklQ5u0eWmJMXExCgtCVJcXIzY2Fh4eHhotnVERFRlkZFAcjIwZ45qaAsMDISPj48OWkVEmlDpodJ+/fqhX79+kMlkGD58uPS8X79+GDRoEA4cOIDFixdrraFBQUFwd3eHlZUVXF1dMXToUNy4cUOpTkxMDPz8/FC7dm04OTmhf//+SE1NVapz+PBhdOzYEZaWlmjevDmioqJU3mvFihVo0qQJrKys4Ovri+PHjysdz8vLw9ixY1GvXj3UqlUL/fv3x61bt5TqpKWlITAwEDY2Nqhfvz6mTp2KoqIijfwsiIieJDRUqA1t4eHhDG1EBq7Swa2kpAQlJSVwd3dHRkaG9LykpAT5+flITk5Gnz59tNbQ7t27Y8uWLUhOTsa2bdtw+fJlDBgwQDqekpKCvn374tVXX8Xp06cRExODO3fu4K233lKqExgYiO7du+P06dOYMGEC3nvvPcTExEh1Nm/ejEmTJiE8PBynTp1C+/btoVAokJGRIdWZOHEidu7cia1bt+LIkSO4ceOG0vsUFxcjMDAQBQUFiIuLw9q1axEVFYXZs2dr7edDRASU3st2+vRclXIOjRLVDAY7qzQ6Ohr9+vVDfn4+zM3N8eOPP2Lw4MHIz8+HiUlpHt25cyf69u0r1QkNDcXu3btx7tw56TyDBg1CZmYm9u3bB6B0htWLL76I5cuXAygNrG5ubvjoo48QFhaGrKwsODk5YcOGDVJwTEpKgpeXF+Lj4+Hn54e9e/eiT58+uHHjBpydnQEAq1atQmhoKG7fvg0LC4tKfUbOKiWiqlA3AWHQoEFo1aqVDlpDZLz0ah23uXNV/0+uvOroVbp79y7Wr18Pf39/mJubAwA6deoEExMTrFmzBsHBwcjJycH333+PgIAAqU58fDwCAgKUzqVQKDBhwgQAQEFBARISEjB9+nTpuImJCQICAhAfHw8ASEhIQGFhodJ5PD094e7uLgW3+Ph4tGvXTgptZe8zZswYnD9/Ht7e3lr5uRBRzRYd/WhNtqCgR+VFRUX4/PPPVeqzl42o5qlycPv555+VnhcWFiIlJQVmZmZo1qyZVoNbaGgoli9fjgcPHsDPzw+7du2Sjnl4eGD//v14++238cEHH6C4uBhyuRx79uyR6qSnpyuFKQBwdnZGdnY2Hj58iHv37qG4uFhtnaSkJOkcFhYWcHBwUKlTtg1YRe9Tdqwi+fn5yM/Pl55nZ2c/7UdCREYkMrJ0F4TIyEfBjQvqEhmXKq/jlpiYqPQ4d+4cbt68iR49emDixIlVOldYWBhkMtkTH2WBCQCmTp2KxMRE7N+/H6amphg2bBjKRnrT09MxatQoDB8+HCdOnMCRI0dgYWGBAQMGwFBGg+fPnw97e3vp4ebmpusmEZEe6d4dqFWr9E9AfWgbNWoUQxtRDVblHjd17OzsEBERgTfeeANDhw6t9OsmT56M4ODgJ9Ypv6ivo6MjHB0d0bJlS3h5ecHNzQ1Hjx6FXC7HihUrYG9vj4ULF0r1f/jhB7i5ueHYsWPw8/ODi4uLyuzPW7duwc7ODtbW1jA1NYWpqanaOi4uLgAAFxcXFBQUIDMzU6nX7fE6j89ELTtnWR11pk+fjkmTJknPs7OzGd6ISHLoEJCTA/z++wNERHyhcpyBjajm00hwA4CsrCxkZWVV6TVOTk5wcnJ6pvcrKSkBAGlo8cGDB9KkhDKmpqZKdR8fOgWAAwcOQC6XAwAsLCzQqVMnxMbGol+/ftJrY2NjMW7cOACl99KZm5sjNjYW/fv3BwAkJycjLS1NOo9cLsfnn3+OjIwM1K9fX3ofOzs7tG7dusLPZGlpCUtLy2f6eRBRzRcWBiQmcmiUyJhVObgtXbpU6bkQAjdv3sT333+P3r17a6xh5R07dgwnTpxAly5dUKdOHVy+fBmzZs1Cs2bNpLAUGBiIL7/8EnPnzsXgwYNx//59zJgxA40bN5YmA4wePRrLly/HtGnTMHLkSBw8eBBbtmzB7t27pfeaNGkShg8fDh8fH3Tu3BlfffUVcnNzMWLECACAvb09QkJCMGnSJNStWxd2dnb46KOPIJfL4efnBwDo2bMnWrdujaFDh2LhwoVIT0/HzJkzMXbsWAYzIqqS8hMS1IW2CRMmKC2ITkQ1W5WXA3l8dwQTExM4OTnh1VdfxfTp01G7dm2NNhAA/vzzT3z88cc4c+YMcnNz4erqil69emHmzJlo2LChVG/Tpk1YuHAhLl26BBsbG8jlcixYsACenp5SncOHD2PixIm4cOECGjVqhFmzZqkM1y5fvhxffPEF0tPT0aFDByxduhS+vr7S8by8PEyePBkbN25Efn4+FAoFvvnmG6Vh0KtXr2LMmDE4fPgwbG1tMXz4cERGRsLMrPJZmcuBEJG/P/DXX3cwbtwKlWPsZSPST9r8/jbYddyMAYMbEXHWKJHh0at13AAgMzMTf//9NwCgefPmKktjEBFR1ahbo01daAsLC+MtF0RGrErLgaSmpiIwMBCOjo7w9fWFr68vHB0d0adPH5U9QYmIqPJCQ0vXaAsNLd2eT11oCw8PZ2gjMnKV7nG7du0a/Pz8YG5ujk8//RReXl4AgAsXLmDlypWQy+U4ceIEGjVqpLXGEhHVVGU3rQwaFIF161SPc2iUiIAq3OMWEhKCv//+GzExMbCyslI69vDhQ/Tq1QstWrTA6tWrtdJQY8R73IiMR3S0+lmjs2bNUlnqiIj0m17c47Zv3z5s3rxZJbQBgLW1NT799FMMGjRIo40jIjIGp0+fRmLiDpVy9rIR0eMqHdzu3LmDJk2aVHi8adOmuHv3ribaRERUoz1tbTaAoY2I1Kt0cHN1dZXWPlPn3LlzT9zOiYiISpVtFq8utDGwEdGTVPrGiX79+mHKlCm4ffu2yrGMjAyEhoZK20QREVHFhg37BXPmMLQRUdVVenLCvXv34Ovri/T0dLz77rvw9PSEEAIXL17Ehg0b4OLigqNHj6Ju3brabrPR4OQEopqHC+oS1Xx6MTmhTp06OHbsGGbMmIFNmzYhMzMTAODg4IB33nkH8+bNY2gjIqpARbNGGdiIqCqeacsrIYQ0ZOrk5ASZTKbxhhF73Ihqiu+++w7Xrl1TKWdoI6qZ9KLHrTyZTIb69etrtCFERDURh0aJSJOeKbgREdHTVbRtFRHRs2JwIyLSgPJrs509+xmKi4tV6jC0EdHzYnAjItKAJ63NBjC0EZFmMLgREWlARbsgMLARkSZVKrgtXbq00iccP378MzeGiEjflR8SDQoqLeMEBCKqLpVaDsTDw6NyJ5PJcOXKleduFJXiciBE+sffv3RIVC4H4uIY2ohIlc6XA0lJSdHomxIRGaqwMCA0FLh7l7NGiaj6PfM9bgUFBUhJSUGzZs1gZsZb5YjIOAQFcQICEelOpTeZL/PgwQOEhITAxsYGbdq0QVpaGgDgo48+QmRkpMYbSESkT9T1sllZWTG0EVG1qHJwmz59Os6cOYPDhw/DyspKKg8ICMDmzZs12jgiIn0RHV3x0GhoaKgOWkRExqjKY5zbt2/H5s2b4efnp7RHaZs2bXD58mWNNo6ISB9wAgIR6YsqB7fbt2+r3ac0NzeXm80TUY0SHa3+frY2bdpgwIABOmgRERm7Kg+V+vj4YPfu3dLzsrC2evVqyOVyzbWMiEjHKlpQl6GNiHSlyj1u8+bNQ+/evXHhwgUUFRXh66+/xoULFxAXF4cjR45oo41ERNWKQ6NEpK+q3OPWpUsXnD59GkVFRWjXrh3279+P+vXrIz4+Hp06ddJGG4mIqo260PbKK68wtBGRXqjUzgmkG9w5gaj6CCEwd+5clXIGNiKqKp3vnJCdnV3pEzJgEJGh4dAoERmKSgU3BweHSs8YLS4ufq4GERFVJ3Wh7c0338QLL7ygg9YQET1ZpYLboUOHpL+npqYiLCwMwcHB0izS+Ph4rF27FvPnz9dOK4mINKy4uBifffaZSrm3dziY2YhIX1X5HrcePXrgvffew+DBg5XKN2zYgP/+9784fPiwJttn1HiPG5F2cGiUiLRJm9/fVZ5VGh8fDx8fH5VyHx8fHD9+XCONIiLSFnWhLT7+PXh7M7QRkf6rcnBzc3PD//73P5Xy1atXw83NTSONIiLStIcPH1a41+i+fQ0RFKSDRhERVVGVF+D98ssv0b9/f+zduxe+vr4AgOPHj+Ovv/7Ctm3bNN5AIqLnxaFRIqopnmkdt+vXr+Obb75BUlISAMDLywujR49mj5uG8R43ouenLrR9/PHHcHBwqP7GEJFR0Ob3Nxfg1WMMbkTP7u7du1i2bJlKOXvZiEjbdL4A7+MyMzPx7bff4uLFiwCANm3aYOTIkbC3t9do44iIngWHRomopqpyj9vJkyehUChgbW2Nzp07AwBOnDiBhw8fYv/+/ejYsaNWGmqM2ONGVHXqQltoaCisrKx00BoiMkZ6NVTatWtXNG/eHP/73/9gZlbaYVdUVIT33nsPV65cwa+//qrRBhozBjeiyrt27Rq+++47lXL2shFRddOr4GZtbY3ExER4enoqlV+4cAE+Pj548OCBRhtozBjciCqHQ6NEpE/06h43Ozs7pKWlqQS3a9euoXbt2hprGBFRZagLbTNnzoSpqakOWkNEpF1VDm4DBw5ESEgIFi1aBH9/fwDAH3/8galTp6psg0VEpC0XLlzA1q1bVcrZy0ZENVmVg9uiRYsgk8kwbNgwFBUVAQDMzc0xZswYREZGaryBRESP49AoERmrZ17H7cGDB7h8+TIAoFmzZrCxsdFow4j3uBGpoy60zZ49GzKZTAetISJSpVf3uJWxsbFBu3btNNkWIqIK/f7774iNjVUpZy8bERmTSge3kSNHVqqeuun4RETPo6KhUW9vhjYiMi6VDm5RUVFo3LgxvL29wV2yiKi6qAtt7GUjImNV6eA2ZswYbNy4ESkpKRgxYgTeffdd1K1bV5ttIyIjtmvXLiQkJKiUM7QRkTEzqWzFFStW4ObNm5g2bRp27twJNzc3vP3224iJiWEPHBFpVEREhNrQFhPD0EZExu2ZZ5VevXoVUVFRWLduHYqKinD+/HnUqlVL0+0zapxVSsZI3dDoxo3hkMmABQuAoCAdNIqIqAr0clapiYkJZDIZhBAoLi7WZJuIyAitWbMGaWlpKuXh4eHg6CgRUalKD5UCQH5+PjZu3IjXXnsNLVu2xJ9//only5cjLS2NvW1E9MwiIiIqDG1ERPRIpXvcPvzwQ2zatAlubm4YOXIkNm7cCEdHR222jYiMAGeNEhFVXqXvcTMxMYG7uzu8vb2fuEL5Tz/9pLHGGTve40Y12bx581BYWKhSztBGRIZOL+5xGzZsGLeUISKNUNfLZmFhgenTp+ugNUREhqNKC/ASET0vDo0SET27Z55VSkRUFRVtW8XQRkRUeQxuRKR16kKbu7s7RowYoYPWEBEZLgY3ItIqDo0SEWkOgxsRaQWHRomINI/BjYg0Tl1o8/HxQWBgoA5aQ0RUczC4EZFGcWiUiEh7GNyISCM4NEpEpH0MbkT0XKKjgcRE1dDWs2dPyOVyHbSIiKjmYnAjomcmhEBi4lyVcvayERFpB4MbET0TDo0SEVU/E103oLKCgoLg7u4OKysruLq6YujQobhx44ZSnS1btqBDhw6wsbFB48aN8cUXX6ic5/Dhw+jYsSMsLS3RvHlztVt5rVixAk2aNIGVlRV8fX1x/PhxpeN5eXkYO3Ys6tWrh1q1aqF///64deuWUp20tDQEBgbCxsYG9evXx9SpU1FUVPT8PwgiPaAutDVtOpihjYhIywwmuHXv3h1btmxBcnIytm3bhsuXL2PAgAHS8b1792LIkCEYPXo0zp07h2+++QZffvklli9fLtVJSUlBYGAgunfvjtOnT2PChAl47733EBMTI9XZvHkzJk2ahPDwcJw6dQrt27eHQqFARkaGVGfixInYuXMntm7diiNHjuDGjRt46623pOPFxcUIDAxEQUEB4uLisHbtWkRFRWH27Nla/ikRaVdJSYna0DZnTjhWrmyJ6GjA37/0vjciItI8mRBC6LoRzyI6Ohr9+vVDfn4+zM3N8c4776CwsBBbt26V6ixbtgwLFy5EWloaZDIZQkNDsXv3bpw7d06qM2jQIGRmZmLfvn0AAF9fX7z44otS4CspKYGbmxs++ugjhIWFISsrC05OTtiwYYMUHJOSkuDl5YX4+Hj4+flh79696NOnD27cuAFnZ2cAwKpVqxAaGorbt2/DwsKiUp8xOzsb9vb2yMrKgp2dnUZ+bkTPqqKhUW/vcERGAmFhQGQkEB8PyOVAXFw1N5CISE9o8/vbYHrcyrt79y7Wr18Pf39/mJubAwDy8/NhZWWlVM/a2hrXr1/H1atXAQDx8fEICAhQqqNQKBAfHw8AKCgoQEJCglIdExMTBAQESHUSEhJQWFioVMfT0xPu7u5Snfj4eLRr104KbWXvk52djfPnz1f4ufLz85Gdna30INIH6kLbBx98gPDwcAQFlYa0oKDS8CaXl/5JRESaZ1DBLTQ0FLa2tqhXrx7S0tKwY8cO6ZhCocBPP/2E2NhYlJSU4NKlS1i8eDEA4ObNmwCA9PR0pTAFAM7OzsjOzsbDhw9x584dFBcXq62Tnp4uncPCwgIODg5PrKPuHGXHKjJ//nzY29tLDzc3t8r+aIi0oqCgoMIFdV1cXFTKy4c4IiLSPJ0Gt7CwMMhksic+kpKSpPpTp05FYmIi9u/fD1NTUwwbNgxlI72jRo3CuHHj0KdPH1hYWMDPzw+DBg0CUNprZgimT5+OrKws6XHt2jVdN4mMWEREBObPn69SzgkIRES6o9PlQCZPnozg4OAn1mnatKn0d0dHRzg6OqJly5bw8vKCm5sbjh49CrlcDplMhgULFmDevHlIT0+Hk5MTYmNjlc7h4uKiMvvz1q1bsLOzg7W1NUxNTWFqaqq2TlnvgouLCwoKCpCZmanU6/Z4ncdnopadU10vRRlLS0tYWlo+8edBVB3U9bJNnDhRulcjOhrSfW3sXSMiqj467YpycnKCp6fnEx8V3chfUlICoPS+sPJMTU3RsGFDWFhYYOPGjZDL5XBycgIAyOVyKcyVOXDggLS6u4WFBTp16qRUp6SkBLGxsVKdTp06wdzcXKlOcnIy0tLSpDpyuRx//vmn0kzUAwcOwM7ODq1bt36mnxVRdcjJyalwaLR8aBsypHQSQmRkdbeQiMi4GcQCvMeOHcOJEyfQpUsX1KlTB5cvX8asWbPQrFkzKSzduXMHP/74I1555RXk5eVhzZo10nIdZUaPHo3ly5dj2rRpGDlyJA4ePIgtW7Zg9+7dUp1JkyZh+PDh8PHxQefOnfHVV18hNzcXI0aMAADY29sjJCQEkyZNQt26dWFnZ4ePPvoIcrkcfn5+AEq3+mndujWGDh2KhQsXIj09HTNnzsTYsWPZo0Z6q7IL6kZGAjk5QK1anIRARFTthAE4e/as6N69u6hbt66wtLQUTZo0EaNHjxbXr1+X6ty+fVv4+fkJW1tbYWNjI3r06CGOHj2qcq5Dhw6JDh06CAsLC9G0aVOxZs0alTrLli0T7u7uwsLCQnTu3FnlPA8fPhQffvihqFOnjrCxsRFvvvmmuHnzplKd1NRU0bt3b2FtbS0cHR3F5MmTRWFhYZU+d1ZWlgAgsrKyqvQ6oqqaM2eOyiMvL09t3R07hJDLS/8kIiJV2vz+Nth13IwB13Ejbbt9+za++eYblXJOQCAienba/P42iKFSItI87jVKRGR4GNyIjJC60DZz5kyYmprqoDVERFRZhrHAGRFpxLVr1yqcNVoW2rjfKBGR/mKPG5GRqGhoNCYmHN7ej9ZjK9tvNDKSa7QREekb9rgRGQF1oW327NnYuDEc8fHAtGmPyrnfKBGR/mKPG1ENdunSJWzcuFGlvGwCgkwGpT+B0l429rQREeknBjeiGqoys0YXLHi0dRUREek/BjeiGqiiCQjlcb9RIiLDw3vciGqQhISESoU2QHkSAhERGQb2uBHVEFVdUDcsjMOkRESGhsGNqAaobC/b48OjHCIlIjIsDG5EBuy3337DwYMHVcor6mXjGm1ERIaNwY3IQKnrZXN0dMTYsWMrfA2HR4mIDBuDG5EBquzQ6OM4PEpEZNgY3IgMyM6dO3Hq1CmV8sqENiIiMnxcDoTIQERERKiEtnbt2iE8PJwbwxMRGQn2uBEZgKcNjXLSARGRcWBwI9Jj69atQ0pKikr540OjnHRARGQcGNyI9JS6XrauXbsiJ+dV+Psrb1XFSQdERMaBwY1IDz1paNTfn8OiRETGisGNSI8sWbIE9+/fVykvPzTKYVEiIuPF4EakJ9T1svXp0wedOnVSKuOwKBGR8WJwI9IDz7qgLhERGRcGNyId+vTTT1FSUqJSztBGRETqMLgR6Yi6XrYhQ4agefPmOmgNEREZAgY3omomhMDcuXNVytnLRkRET8PgRlSNPvvsMxQXF6uUl21bVTZblJMPiIhIHQY3omqibmg0Lu4DxMS4AOC2VURE9HTcZJ5Iy4QQakPbpk3huHrVRdoYPiwMkMu5PhsREVVMJoQQum4EqZednQ17e3tkZWXBzs5O182hZ6AusAGlQ6NlOyDI5UBcXDU3jIiItEab398cKiXSEnWhbcKECbC3twfAHRCIiKjqGNyINKyoqAiff/65Svnjs0a5AwIREVUVgxuRBj1paJSIiOh5MbgRaYi60DZt2jRYW1vroDVERFQTMbgRPaf8/HxERkaqlLOXjYiINI3Bjeg5cGiUiIiqE4Mb0TNSF9pmzJgBc3NzHbSGiIiMAYMbURXl5uZi0aJFKuXsZSMiIm1jcCOqAg6NEhGRLnHLK6JKUhfaZs2aBW/v0l0QyrauIiIi0hYGN6KnyMzMVBvawsPDYWJiorQ5PBERkTZxqJToCdQFNkvLeoiOHgdv79KdD7h1FRERVRduMq/HuMm8bqkLbbNnz8ZLL8m4OTwREVVIm9/fHColekxGRkaFQ6MymQxhYaWhjT1sRERU3ThUSlSOusDm4eGBYcOGSc+5OTwREekKgxvR/1dRLxsREZG+YHAjo3fjxg3873//UylnaCMiIn3D4EZGTV0vW/v27dGvX7/qbwwREdFTMLiR0VIX2ry9w3n/GhER6S3OKqUaLzoaSjsbXLlypcL72RjaiIhIn7HHjWq88jsbJCaqBraAgAC89NJLOmgZERFR1TC4UY1XtrOBQsFZo0REZNgY3KjG8/L6CwrFBpVyb2+GNiIiMiwMblQjRUdX3Mt2+vQAbN/eBnI5F9IlIiLDwuBGNdKThkajo4Fbt7hlFRERGR4GN6pxLl++DIXiB5XysvvZuGUVEREZKgY3qlHULfMxYsQIuLu766A1REREmsXgRjUG9xolIqKajsGNDF5SUhI2b96sUs7QRkRENQ2DGxk0db1sY8eOhaOjow5aQ0REpF0MbmSwODRKRETGhsGNDM6ZM2ewfft2lXKGNiIiqukY3MigqOtlmzBhAuzt7XXQGiIiourF4EYGg0OjRERk7BjcSO8dPXoUMTExSmW1atXC5MmTddQiIiIi3WBwI72mrpdtypQpsLW11UFriIiIdIvBjfSSEAJz585VKefQKBERGTMTXTegqvLz89GhQwfIZDKcPn1a6djZs2fRtWtXWFlZwc3NDQsXLlR5/datW+Hp6QkrKyu0a9cOe/bsUTouhMDs2bPh6uoKa2trBAQE4K+//lKqc/fuXQwZMgR2dnZwcHBASEgIcnJyqtwWUu/w4cMqoc3FxYWhjYiIjJ7BBbdp06ahQYMGKuXZ2dno2bMnGjdujISEBHzxxReYM2cO/vvf/0p14uLiMHjwYISEhCAxMRH9+vVDv379cO7cOanOwoULsXTpUqxatQrHjh2Dra0tFAoF8vLypDpDhgzB+fPnceDAAezatQu//vor3n///Sq1hdSLiIjAkSNHlMpCQ0PxwQcf6KhFRERE+kMmhBC6bkRl7d27F5MmTcK2bdvQpk0bJCYmokOHDgCAlStX4pNPPkF6ejosLCwAAGFhYdi+fTuSkpIAAAMHDkRubi527dolndPPzw8dOnTAqlWrIIRAgwYNMHnyZEyZMgUAkJWVBWdnZ0RFRWHQoEG4ePEiWrdujRMnTsDHxwcAsG/fPrz++uu4fv06GjRoUKm2VEZ2djbs7e2RlZUFOzu75/756bOSkhJ8+umnKuXsZSMiIkOjze9vg+lxu3XrFkaNGoXvv/8eNjY2Ksfj4+PRrVs3KSgBgEKhQHJyMu7duyfVCQgIUHqdQqFAfHw8ACAlJQXp6elKdezt7eHr6yvViY+Ph4ODgxTaACAgIAAmJiY4duxYpduiTn5+PrKzs5UexmDv3r0qoa1Zs2YMbURERI8xiMkJQggEBwdj9OjR8PHxQWpqqkqd9PR0eHh4KJU5OztLx+rUqYP09HSprHyd9PR0qV7511VUp379+krHzczMULduXaU6T2uLOvPnz1c7i7ImU/d5Z8yYAXNzcx20hoiISL/ptMctLCwMMpnsiY+kpCQsW7YM9+/fx/Tp03XZXK2bPn06srKypMe1a9d03SStKS4urnBBXYY2IiIi9XTa4zZ58mQEBwc/sU7Tpk1x8OBBxMfHw9LSUumYj48PhgwZgrVr18LFxQW3bt1SOl723MXFRfpTXZ3yx8vKXF1dleqU3Uvn4uKCjIwMpXMUFRXh7t27T32f8u+hjqWlpcpnrIm2bdumNCEEAF544QW8+eabOmoRERGRYdBpcHNycoKTk9NT6y1duhSfffaZ9PzGjRtQKBTYvHkzfH19AQByuRyffPIJCgsLpR6bAwcOoFWrVtLQpFwuR2xsLCZMmCCd68CBA5DL5QAADw8PuLi4IDY2Vgpq2dnZOHbsGMaMGSOdIzMzEwkJCejUqRMA4ODBgygpKalSW4yVul62mTNnwtTUVAetISIiMiwGMTnB3d0dbdu2lR4tW7YEUHoDe6NGjQAA77zzDiwsLBASEoLz589j8+bN+PrrrzFp0iTpPB9//DH27duHxYsXIykpCXPmzMHJkycxbtw4AIBMJsOECRPw2WefITo6Gn/++SeGDRuGBg0aoF+/fgAALy8v9OrVC6NGjcLx48fxxx9/YNy4cRg0aJC0TEll2mJsCgsLKxwaZWgjIiKqHIOYnFAZ9vb22L9/P8aOHYtOnTrB0dERs2fPVlpfzd/fHxs2bMDMmTMxY8YMtGjRAtu3b0fbtm2lOtOmTUNubi7ef/99ZGZmokuXLti3bx+srKykOuvXr8e4cePQo0cPmJiYoH///li6dGmV2lJTREcDkZFAWBgQFKS+zrp165CSkqJU5ufnB4VCUQ0tJCIiqjkMah03Y2MI67j5+wPx8YBcDsTFqR5X18s2e/ZsyGSyamgdERFR9eM6bqRT0dGlAS06WvVYWFhpaAsLUy7Py8urcGiUoY2IiOjZsMdNj+lLj9vTetUet3LlSpWZt6+88gpefvllLbWQiIhIf2jz+7vG3ONG2hMW9ug+tqfh0CgREZH2cKiUKlQ2RAqU9rRVNPkAAHJycjg0SkREpGXscaMKRUaWDpFGRj45tH3xxRd48OCBUlnv3r3RuXNnLbeQiIjIuDC4UYUqM0RaUS8bERERaR6DG1UoKKjinrb79+9jyZIlKuUMbURERNrD4EZVtmrVKpW9WN9880288MILOmoRERGRceDkBHriOm2Pi4iIUAlt4eHhDG1ERETVgMGNlCYhVOTevXu8n42IiEjHOFRKT52EsGTJEty/f1+pLDg4GI0bN66G1hEREVEZ9rgZoceHRoOCKl6nLSIiQiW0hYeHM7QRERHpAIObEarM0Ghubi6HRomIiPQMh0qN0NOGRg8fPowjR44olY0dOxaOjo7V0DoiIiKqCIObEXrS+mzsZSMiItJfDG4EQP2Cuq+88gpefvllHbWIiIiIHsfgRjhw4ADi4uKUyqZMmQJbW1sdtYiIiIjUYXAzclu3bsWFCxeUyjg0SkREpJ8Y3IxUXl4eFixYoFTWs2dPyOVyHbWIiIiInobBzQhdunQJGzduVCqbMWMGzM3NddQiIiIiqgwGNyNUPrT5+flBoVDosDVERERUWQxuRmzUqFFo0KCBrptBRERElSQTQghdN4LUy87Ohr29PbKysmBnZ6fr5hAREVElaPP7m1teERERERkIBjciIiIiA8HgRkRERGQgGNyIiIiIDASDGxEREZGBYHAjIiIiMhAMbkREREQGgsGNiIiIyEAwuBEREREZCAY3IiIiIgPB4EZERERkIBjciIiIiAwEgxsRERGRgWBwIyIiIjIQZrpuAFVMCAEAyM7O1nFLiIiIqLLKvrfLvsc1icFNj92/fx8A4ObmpuOWEBERUVXdv38f9vb2Gj2nTGgjDpJGlJSU4MaNG6hduzZkMpmum6N12dnZcHNzw7Vr12BnZ6fr5tBjeH30G6+PfuP10W+avj5CCNy/fx8NGjSAiYlm70pjj5seMzExQaNGjXTdjGpnZ2fHX2x6jNdHv/H66DdeH/2myeuj6Z62MpycQERERGQgGNyIiIiIDASDG+kNS0tLhIeHw9LSUtdNITV4ffQbr49+4/XRb4Z0fTg5gYiIiMhAsMeNiIiIyEAwuBEREREZCAY3IiIiIgPB4EZERERkIBjcSCPy8/PRoUMHyGQynD59WunY2bNn0bVrV1hZWcHNzQ0LFy5Uef3WrVvh6ekJKysrtGvXDnv27FE6LoTA7Nmz4erqCmtrawQEBOCvv/5SqnP37l0MGTIEdnZ2cHBwQEhICHJycqrclpokKCgI7u7usLKygqurK4YOHYobN24o1dmyZQs6dOgAGxsbNG7cGF988YXKeQ4fPoyOHTvC0tISzZs3R1RUlEqdFStWoEmTJrCysoKvry+OHz+udDwvLw9jx45FvXr1UKtWLfTv3x+3bt1SqpOWlobAwEDY2Nigfv36mDp1KoqKip7/B6GnKnN9YmJi4Ofnh9q1a8PJyQn9+/dHamqqUh1eH+152jWaM2cOZDKZysPW1lbpPPwdpx2V+TckhMCiRYvQsmVLWFpaomHDhvj888+V6hjUvyFBpAHjx48XvXv3FgBEYmKiVJ6VlSWcnZ3FkCFDxLlz58TGjRuFtbW1+L//+z+pzh9//CFMTU3FwoULxYULF8TMmTOFubm5+PPPP6U6kZGRwt7eXmzfvl2cOXNGBAUFCQ8PD/Hw4UOpTq9evUT79u3F0aNHxW+//SaaN28uBg8eXKW21DRLliwR8fHxIjU1Vfzxxx9CLpcLuVwuHd+zZ48wMzMTK1euFJcvXxa7du0Srq6uYtmyZVKdK1euCBsbGzFp0iRx4cIFsWzZMmFqair27dsn1dm0aZOwsLAQ3333nTh//rwYNWqUcHBwELdu3ZLqjB49Wri5uYnY2Fhx8uRJ4efnJ/z9/aXjRUVFom3btiIgIEAkJiaKPXv2CEdHRzF9+nQt/5R052nX58qVK8LS0lJMnz5d/P333yIhIUF069ZNeHt7K9Xh9dGep12j+/fvi5s3byo9WrduLYYPHy7V4e847Xna9RFCiI8++ki0atVK7NixQ1y5ckWcPHlS7N+/XzpuaP+GGNzoue3Zs0d4enqK8+fPqwS3b775RtSpU0fk5+dLZaGhoaJVq1bS87ffflsEBgYqndPX11d88MEHQgghSkpKhIuLi/jiiy+k45mZmcLS0lJs3LhRCCHEhQsXBABx4sQJqc7evXuFTCYT//zzT6XbUtPt2LFDyGQyUVBQIIQQYvDgwWLAgAFKdZYuXSoaNWokSkpKhBBCTJs2TbRp00apzsCBA4VCoZCed+7cWYwdO1Z6XlxcLBo0aCDmz58vhCi9Xubm5mLr1q1SnYsXLwoAIj4+XghR+t+RiYmJSE9Pl+qsXLlS2NnZKV2zmuzx67N161ZhZmYmiouLpTrR0dFKdXh9qtfj1+hxp0+fFgDEr7/+KpXxd1z1efz6XLhwQZiZmYmkpKQKX2No/4Y4VErP5datWxg1ahS+//572NjYqByPj49Ht27dYGFhIZUpFAokJyfj3r17Up2AgACl1ykUCsTHxwMAUlJSkJ6erlTH3t4evr6+Up34+Hg4ODjAx8dHqhMQEAATExMcO3as0m2pye7evYv169fD398f5ubmAEqHuK2srJTqWVtb4/r167h69SqAp1+fgoICJCQkKNUxMTFBQECAVCchIQGFhYVKdTw9PeHu7q50Ddu1awdnZ2el98nOzsb58+c19WPQW+quT6dOnWBiYoI1a9aguLgYWVlZ+P777xEQECDV4fWpPuqu0eNWr16Nli1bomvXrlIZf8dVD3XXZ+fOnWjatCl27doFDw8PNGnSBO+99x7u3r0rvc7Q/g0xuNEzE0IgODgYo0ePVvplUl56errSf6QApOfp6elPrFP+ePnXVVSnfv36SsfNzMxQt27dp75P+feoiUJDQ2Fra4t69eohLS0NO3bskI4pFAr89NNPiI2NRUlJCS5duoTFixcDAG7evAmg4p9bdnY2Hj58iDt37qC4uPip18fCwgIODg5PrMPro3x9PDw8sH//fsyYMQOWlpZwcHDA9evXsWXLFqkOr4/2PekalZeXl4f169cjJCREqZy/47TrSdfnypUruHr1KrZu3Yp169YhKioKCQkJGDBggFTH0P4NMbiRirCwMLU325Z/JCUlYdmyZbh//z6mT5+u6yYblcpenzJTp05FYmIi9u/fD1NTUwwbNgzi/2+YMmrUKIwbNw59+vSBhYUF/Pz8MGjQIACl/0dJVafJ65Oeno5Ro0Zh+PDhOHHiBI4cOQILCwsMGDBAqkNVp8lrVN7PP/+M+/fvY/jw4dX5cWocTV6fkpIS5OfnY926dejatSteeeUVfPvttzh06BCSk5N19RGfi5muG0D6Z/LkyQgODn5inaZNm+LgwYOIj49X2dvNx8cHQ4YMwdq1a+Hi4qIyq6bsuYuLi/Snujrlj5eVubq6KtXp0KGDVCcjI0PpHEVFRbh79+5T36f8exiCyl6fMo6OjnB0dETLli3h5eUFNzc3HD16FHK5HDKZDAsWLMC8efOQnp4OJycnxMbGKp2jop+bnZ0drK2tYWpqClNT06dew4KCAmRmZir9H+njdR6fpWXs12fFihWwt7dXmhn4ww8/wM3NDceOHYOfnx+vzzPQ5DUqb/Xq1ejTp49Krwp/x1WNJq+Pq6srzMzM0LJlS6m+l5cXgNIZnq1atTK8f0OVvhuO6DFXr14Vf/75p/SIiYkRAMSPP/4orl27JoR4dLNs+Rt5p0+frjI5oU+fPkrnlsvlKjfuLlq0SDqelZWl9sbdkydPSnViYmLU3rj7pLbUdFevXhUAxKFDhyqsM3ToUKVZWdOmTRNt27ZVqjN48GCVG3fHjRsnPS8uLhYNGzZUuXH3xx9/lOokJSWpvXG3/Cyt//u//xN2dnYiLy/v2T6wgXn8+kyaNEl07txZqc6NGzcEAPHHH38IIXh9qltF/4auXLkiZDKZ2Llzp8pr+Duu+jx+fcq+l/7++2+pTtkEkuTkZCGE4f0bYnAjjUlJSVGZVZqZmSmcnZ3F0KFDxblz58SmTZuEjY2NynIgZmZmYtGiReLixYsiPDxc7VR5BwcHsWPHDnH27FnRt29ftVPlvb29xbFjx8Tvv/8uWrRooTRVvjJtqUmOHj0qli1bJhITE0VqaqqIjY0V/v7+olmzZtIvidu3b4uVK1eKixcvisTERDF+/HhhZWUljh07Jp2nbKr81KlTxcWLF8WKFSvUTpW3tLQUUVFR4sKFC+L9998XDg4OSrOnRo8eLdzd3cXBgwfFyZMnVabtl02V79mzpzh9+rTYt2+fcHJyqrHLTVTm+sTGxgqZTCYiIiLEpUuXREJCglAoFKJx48biwYMHQgheH22qzDUqM3PmTNGgQQNRVFSkch7+jtOOylyf4uJi0bFjR9GtWzdx6tQpcfLkSeHr6ytee+016TyG9m+IwY00Rl1wE0KIM2fOiC5dughLS0vRsGFDERkZqfLaLVu2iJYtWwoLCwvRpk0bsXv3bqXjJSUlYtasWcLZ2VlYWlqKHj16SP+3VObff/8VgwcPFrVq1RJ2dnZixIgR4v79+1VuS01x9uxZ0b17d1G3bl1haWkpmjRpIkaPHi2uX78u1bl9+7bw8/MTtra2wsbGRvTo0UMcPXpU5VyHDh0SHTp0EBYWFqJp06ZizZo1KnWWLVsm3N3dhYWFhejcubPKeR4+fCg+/PBDUadOHWFjYyPefPNNcfPmTaU6qamponfv3sLa2lo4OjqKyZMni8LCQs38QPRMZa6PEEJs3LhReHt7C1tbW+Hk5CSCgoLExYsXlerw+mhHZa9RcXGxaNSokZgxY0aF5+LvOM2r7PX5559/xFtvvSVq1aolnJ2dRXBwsPj333+V6hjSvyGZELzDlYiIiMgQcNoYERERkYFgcCMiIiIyEAxuRERERAaCwY2IiIjIQDC4ERERERkIBjciIiIiA8HgRkRERGQgGNyIiLRAJpNh+/btum6GksOHD0MmkyEzM1PXTSGiZ8TgRkT0HObMmSNtBE5EpG0MbkREREQGgsGNiIxaSUkJ5s+fDw8PD1hbW6N9+/b48ccfATwaWoyNjYWPjw9sbGzg7++P5ORkAEBUVBQiIiJw5swZyGQyyGQyREVFSee+c+cO3nzzTdjY2KBFixaIjo6uVJvK3jcmJgbe3t6wtrbGq6++ioyMDOzduxdeXl6ws7PDO++8gwcPHkivy8/Px/jx41G/fn1YWVmhS5cuOHHihOZ+WESkcwxuRGTU5s+fj3Xr1mHVqlU4f/48Jk6ciHfffRdHjhyR6nzyySdYvHgxTp48CTMzM4wcORIAMHDgQEyePBlt2rTBzZs3cfPmTQwcOFB6XUREBN5++22cPXsWr7/+OoYMGYK7d+9Wum1z5szB8uXLERcXh2vXruHtt9/GV199hQ0bNmD37t3Yv38/li1bJtWfNm0atm3bhrVr1+LUqVNo3rw5FApFld6TiPRclbakJyKqQfLy8oSNjY2Ii4tTKg8JCRGDBw8Whw4dEgDEL7/8Ih3bvXu3ACAePnwohBAiPDxctG/fXuXcAMTMmTOl5zk5OQKA2Lt371Pbpe5958+fLwCIy5cvS2UffPCBUCgU0vnNzc3F+vXrpeMFBQWiQYMGYuHChUrnvXfv3lPbQET6yUyHmZGISKf+/vtvPHjwAK+99ppSeUFBAby9vaXnL7zwgvR3V1dXAEBGRgbc3d2feP7yr7O1tYWdnR0yMjIq3b7yr3d2doaNjQ2aNm2qVHb8+HEAwOXLl1FYWIiXXnpJOm5ubo7OnTvj4sWLlX5PItJvDG5EZLRycnIAALt370bDhg2VjllaWuLy5csASgNQGZlMBqD03rinKf+6stdW5nXqXi+TyZ77fERk+HiPGxEZrdatW8PS0hJpaWlo3ry50sPNza1S57CwsEBxcbGWW/p0zZo1g4WFBf744w+prLCwECdOnEDr1q112DIi0iT2uBGR0apduzamTJmCiRMnoqSkBF26dEFWVhb++OMP2NnZoXHjxk89R5MmTZCSkoLTp0+jUaNGqF27NiwtLauh9cpsbW0xZswYTJ06FXXr1oW7uzsWLlyIBw8eICQkpNrbQ0TaweBGREbt008/hZOTE+bPn48rV67AwcEBHTt2xIwZMyo1DNm/f3/89NNP6N69OzIzM7FmzRoEBwdrv+FqREZGoqSkBEOHDsX9+/fh4+ODmJgY1KlTRyftISLNkwkhhK4bQURERERPx3vciIiIiAwEgxsRUTUbPXo0atWqpfYxevRoXTePiPQYh0qJiKpZRkYGsrOz1R6zs7ND/fr1q7lFRGQoGNyIiIiIDASHSomIiIgMBIMbERERkYFgcCMiIiIyEAxuRERERAaCwY2IiIjIQDC4ERERERkIBjciIiIiA8HgRkRERGQg/h8Bu7sJt+ciGQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLyUlEQVR4nO3deVzU1f7H8feALKIsLiBq4Fou2TXSNLgt6s9EK8m2X6tKmWVqZtoCZiJZiWZ202vavaV2y9QsM35qmZXaIvdmapYLmqZpJWqp4Mr6/f3BZXScQQcY+M7yej4e88A53+9854Nzu/P2nPM9x2IYhiEAAAAf4Gd2AQAAADWF4AMAAHwGwQcAAPgMgg8AAPAZBB8AAOAzCD4AAMBnEHwAAIDPIPgAAACfQfABAAA+g+ADwCNZLBaNHz/e7DKskpOT1bx5c7PLAHABBB8ALjN37lxZLBbrIzg4WJdccomGDx+uAwcOVOt7r127VuPHj9fRo0ddet1u3brZ/E7169fXlVdeqdmzZ6ukpMQl7/Hiiy9qyZIlLrkWgPOrZXYBALzPc889pxYtWuj06dP6+uuvNXPmTC1fvlybN29WSEiIS97j1KlTqlXrzP+FrV27Vunp6UpOTlZERIRL3qPMRRddpIkTJ0qSDh06pH/9618aNGiQduzYoYyMjCpf/8UXX9Ttt9+ufv36VflaAM6P4APA5fr06aPOnTtLkh588EE1aNBAU6dO1UcffaS777670tctKSlRQUGBgoODFRwc7KpyLyg8PFz33Xef9fnDDz+sNm3a6O9//7smTJiggICAGqsFQNUw1AWg2vXo0UOStHv3bknSlClTlJCQoAYNGqh27drq1KmT3n//fbvXWSwWDR8+XPPmzdOll16qoKAgffLJJ9ZjZXN8xo8fryeffFKS1KJFC+uw1J49e3TdddepY8eODutq06aNEhMTK/z7hISE6KqrrtKJEyd06NChcs87ceKERo8erZiYGAUFBalNmzaaMmWKDMOw+R1PnDiht956y1p3cnJyhWsC4Bx6fABUu127dkmSGjRoIEl69dVXlZSUpHvvvVcFBQVasGCB7rjjDi1dulQ33nijzWu/+OILvffeexo+fLgaNmzocALxrbfeqh07dmj+/Pl65ZVX1LBhQ0lSZGSk+vfvr8GDB2vz5s3q0KGD9TXr1q3Tjh07NHbs2Er9Tj///LP8/f3LHVYzDENJSUlatWqVBg0apMsvv1wrVqzQk08+qd9++02vvPKKJOntt9/Wgw8+qC5duuihhx6SJLVq1apSNQFwggEALjJnzhxDkvHZZ58Zhw4dMvbt22csWLDAaNCggVG7dm3j119/NQzDME6ePGnzuoKCAqNDhw5Gjx49bNolGX5+fsaWLVvs3kuSkZaWZn3+0ksvGZKM3bt325x39OhRIzg42Hj66adt2keMGGHUqVPHOH78+Hl/p+uuu85o27atcejQIePQoUPGtm3bjBEjRhiSjL59+1rPGzhwoNGsWTPr8yVLlhiSjOeff97merfffrthsViMnTt3Wtvq1KljDBw48Lx1AHANhroAuFzPnj0VGRmpmJgY3XXXXapbt64+/PBDNW3aVJJUu3Zt67lHjhxRbm6urrnmGm3YsMHuWtddd53at29f6VrCw8N18803a/78+dYhpuLiYi1cuFD9+vVTnTp1LniN7OxsRUZGKjIyUu3atdP06dN14403avbs2eW+Zvny5fL399eIESNs2kePHi3DMPTxxx9X+ncCUHkMdQFwuRkzZuiSSy5RrVq11KhRI7Vp00Z+fmf+nbV06VI9//zz+v7775Wfn29tt1gsdtdq0aJFlesZMGCAFi5cqK+++krXXnutPvvsMx04cED9+/d36vXNmzfXP//5T+st+hdffLGioqLO+5pffvlFTZo0UWhoqE17u3btrMcB1DyCDwCX69Kli/WurnN99dVXSkpK0rXXXqvXXntNjRs3VkBAgObMmaN3333X7vyze4cqKzExUY0aNdI777yja6+9Vu+8846io6PVs2dPp15fp04dp88F4N4Y6gJQoz744AMFBwdrxYoVeuCBB9SnTx+XhApHvUVl/P39dc899+j999/XkSNHtGTJEt19993y9/ev8vuWp1mzZvr999917Ngxm/bs7Gzr8TLnqx2AaxF8ANQof39/WSwWFRcXW9v27NlT5ZWLy+bqlLdyc//+/XXkyBE9/PDDOn78uM26PNXhhhtuUHFxsf7+97/btL/yyiuyWCzq06ePta1OnTouX3EagGMMdQGoUTfeeKOmTp2q3r1765577tHBgwc1Y8YMtW7dWj/88EOlr9upUydJ0jPPPKO77rpLAQEB6tu3rzUQxcXFqUOHDlq0aJHatWunK664wiW/T3n69u2r7t2765lnntGePXvUsWNHffrpp/roo480cuRIm1vWO3XqpM8++0xTp05VkyZN1KJFC3Xt2rVa6wN8FT0+AGpUjx499OabbyonJ0cjR47U/PnzNWnSJN1yyy1Vuu6VV16pCRMmaNOmTUpOTtbdd99tt7jggAEDJMnpSc1V4efnp8zMTI0cOVJLly7VyJEjtXXrVr300kuaOnWqzblTp05Vp06dNHbsWN19992aOXNmtdcH+CqLYZy1hCgAeLFXX31Vjz/+uPbs2aPY2FizywFgAoIPAJ9gGIY6duyoBg0aaNWqVWaXA8AkzPEB4NVOnDihzMxMrVq1Sj/++KM++ugjs0sCYCJ6fAB4tT179qhFixaKiIjQ0KFD9cILL5hdEgATEXwAAIDP4K4uAADgMwg+AADAZzC5+RwlJSX6/fffFRoayjLyAAB4CMMwdOzYMTVp0sRmU+RzEXzO8fvvvysmJsbsMgAAQCXs27dPF110UbnHCT7nCA0NlVT6FxcWFmZyNQAAwBl5eXmKiYmxfo+Xh+BzjrLhrbCwMIIPAAAe5kLTVJjcDAAAfAbBBwAA+AyCDwAA8BnM8amE4uJiFRYWml0GakBAQID8/f3NLgMA4CIeE3wmTpyoxYsXKzs7W7Vr11ZCQoImTZqkNm3aWM85ffq0Ro8erQULFig/P1+JiYl67bXX1KhRI5fUYBiGcnJydPToUZdcD54hIiJC0dHRrOsEAF7AY4LPmjVrNGzYMF155ZUqKirSmDFj1KtXL23dulV16tSRJD3++ONatmyZFi1apPDwcA0fPly33nqrvvnmG5fUUBZ6oqKiFBISwhehlzMMQydPntTBgwclSY0bNza5IgBAVXnsJqWHDh1SVFSU1qxZo2uvvVa5ubmKjIzUu+++q9tvv12SlJ2drXbt2ikrK0tXXXWVU9fNy8tTeHi4cnNzbW5nLy4u1o4dOxQVFaUGDRpUy+8E9/Tnn3/q4MGDuuSSSxj2AgA3Vd7397k8dnJzbm6uJKl+/fqSpPXr16uwsFA9e/a0ntO2bVvFxsYqKyuryu9XNqcnJCSkyteCZyn7zJnXBQCez2OGus5WUlKikSNH6q9//as6dOggqXQYKjAwUBERETbnNmrUSDk5OeVeKz8/X/n5+dbneXl5531vhrd8D585AHgPj+zxGTZsmDZv3qwFCxZU+VoTJ05UeHi49cE+XQAAeC+PCz7Dhw/X0qVLtWrVKptNyKKjo1VQUGB3x9WBAwcUHR1d7vVSU1OVm5trfezbt6+6SgcAACbzmOBjGIaGDx+uDz/8UF988YVatGhhc7xTp04KCAjQ559/bm3bvn279u7dq/j4+HKvGxQUZN2Xy1v350pOTpbFYpHFYlFAQIAaNWqk66+/XrNnz1ZJSYnT15k7d67dUCIAAJ7EY+b4DBs2TO+++64++ugjhYaGWufthIeHq3bt2goPD9egQYM0atQo1a9fX2FhYXr00UcVHx/v9B1d3qx3796aM2eOiouLdeDAAX3yySd67LHH9P777yszM1O1annM/xQAAB7q+PHjslgs1mVozOAxPT4zZ85Ubm6uunXrpsaNG1sfCxcutJ7zyiuv6KabbtJtt92ma6+9VtHR0Vq8eLGJVbuPoKAgRUdHq2nTprriiis0ZswYffTRR/r44481d+5cSdLUqVN12WWXqU6dOoqJidHQoUN1/PhxSdLq1at1//33Kzc319p7NH78eEnS22+/rc6dOys0NFTR0dG65557rGvfAABgGIZmzJihl19+WbNmzZKZK+l4zD/znflLCg4O1owZMzRjxowaqKi0JrNucQ4ICKjy3UY9evRQx44dtXjxYj344IPy8/PTtGnT1KJFC/38888aOnSonnrqKb322mtKSEjQ3/72N40bN07bt2+XJNWtW1dS6W3eEyZMUJs2bXTw4EGNGjVKycnJWr58eZV/TwCAZzt69KheffVV6/MTJ06YeresxwQfd1RYWKiJEyea8t6pqakKDAys8nXatm2rH374QZI0cuRIa3vz5s31/PPPa8iQIXrttdcUGBio8PBwWSwWu8niDzzwgPXPLVu21LRp03TllVfq+PHj1nAEAPA969ats/lHcHh4uB577DETKyL4+DzDMKzJ+7PPPtPEiROVnZ2tvLw8FRUV6fTp0zp58uR5F25cv369xo8fr02bNunIkSPWCdN79+5V+/bta+T3AAC4D8MwNG3aNJs7rW+44QZdeeWV5hX1XwSfKggICFBqaqpp7+0K27ZtU4sWLbRnzx7ddNNNeuSRR/TCCy+ofv36+vrrrzVo0CAVFBSUG3xOnDihxMREJSYmat68eYqMjNTevXuVmJiogoICl9QIAPAchw8f1vTp023aHnvsMbe5K5jgUwUWi8Ulw01m+eKLL/Tjjz/q8ccf1/r161VSUqKXX35Zfn6lc97fe+89m/MDAwNVXFxs05adna0///xTGRkZ1sUfv/vuu5r5BQAAbiUrK0uffvqp9XnDhg01dOhQ68hCZqaUkSGlpEhJSebUSPDxEfn5+crJybG5nX3ixIm66aabNGDAAG3evFmFhYWaPn26+vbtq2+++UazZs2yuUbz5s11/Phxff755+rYsaNCQkIUGxurwMBATZ8+XUOGDNHmzZs1YcIEk35LAIAZSkpKNHXqVJ04ccLa1rdvX11xxRU252VkSFlZpT/NCj4eczs7quaTTz5R48aN1bx5c/Xu3VurVq3StGnT9NFHH8nf318dO3bU1KlTNWnSJHXo0EHz5s2zm7idkJCgIUOG6M4771RkZKQmT56syMhIzZ07V4sWLVL79u2VkZGhKVOmmPRbAgBq2h9//KEJEybYhJ7HH3/cLvRIpT098fGlP81iMcy8md4Nlbet/enTp7V79261aNFCwcHBJlaImsZnDwCOffXVV/riiy+szxs3bqzBgwebcrt6ed/f52KoCwAAVEhJSYkyMjJs1rK75ZZb9Je//MXEqpxD8AEAAE47ePCgZs6cadM2evRoj1m3jeADAACcsnTpUq1fv976PDY21roRtqcg+AAAgPMqLCzUiy++aNN2++2369JLLzWposoj+AAAgHJt3LhRmZmZNm0dOjyhSy81b4f1qiD4AAAAh9LT0+3axo9PU3y8dNttJhTkAgQfAABgIz8/XxkZGTZtl19+uSyWm01fh6eqCD4AAMDq22+/1ccff2zT9uijj6p+/fqSzFtx2VUIPgAAQJLjoa20tDQTKqk+bFkBl0lOTla/fv2sz7t166aRI0dW6ZquuAYA4PxOnTplF3q6dOnidaFHosfHJyQnJ+utt96SJAUEBCg2NlYDBgzQmDFjVKtW9f1PYPHixQoICHDq3NWrV6t79+46cuSIIiIiKnUNAEDFLV68WD/++KNN28iRIxUeHm5SRdWL4OMjevfurTlz5ig/P1/Lly/XsGHDFBAQoNTUVJvzCgoKFBgY6JL3LBsPNvsaAADHfGFo61wMdfmIoKAgRUdHq1mzZnrkkUfUs2dPZWZmWoenXnjhBTVp0kRt2rSRJO3bt0//+7//q4iICNWvX18333yz9uzZY71ecXGxRo0apYiICDVo0EBPPfWUzt3v9txhqvz8fD399NOKiYlRUFCQWrdurTfffFN79uxR9+7dJUn16tWTxWJRcnKyw2scOXJEAwYMUL169RQSEqI+ffrop59+sh6fO3euIiIitGLFCrVr105169ZV7969tX//fus5q1evVpcuXVSnTh1FRETor3/9q3755RcX/U0DgPv79ddf7UJPp06dvD70SAQfn1W7dm0VFBRIkj7//HNt375dK1eu1NKlS1VYWKjExESFhobqq6++0jfffGMNEGWvefnllzV37lzNnj1bX3/9tQ4fPqwPP/zwvO85YMAAzZ8/X9OmTdO2bdv0+uuvq27duoqJidEHH3wgSdq+fbv279+vV1991eE1kpOT9d133ykzM1NZWVkyDEM33HCDzUZ5J0+e1JQpU/T222/ryy+/1N69e/XEE09IkoqKitSvXz9dd911+uGHH5SVlaWHHnrIo5ZbB4CqSE9P15tvvmnTNnv2w8rKusmkimoWQ10+xjAMff7551qxYoUeffRRHTp0SHXq1NEbb7xhHeJ65513VFJSojfeeMMaCObMmaOIiAitXr1avXr10t/+9jelpqbq1ltvlSTNmjVLK1asKPd9d+zYoffee08rV65Uz549JUktW7a0Hi8b0oqKirKZ43O2n376SZmZmfrmm2+UkJAgSZo3b55iYmK0ZMkS3XHHHZJKl1afNWuWWrVqJUkaPny4nnvuOUlSXl6ecnNzddNNN1mPt2vXruJ/kQDggRwNbU2Zkqbjx6Vp06QXXjChqBpGj49JMjOlhITSnzVh6dKlqlu3roKDg9WnTx/deeedGj9+vCTpsssus5nXs2nTJu3cuVOhoaGqW7eu6tatq/r16+v06dPatWuXcnNztX//fnXt2tX6mlq1aqlz587lvv/3338vf39/XXfddZX+HbZt26ZatWrZvG+DBg3Upk0bbdu2zdoWEhJiDTWS1LhxYx08eFBSacBKTk5WYmKi+vbtq1dffdVmGAwAvNHPP/9c7nyeESOkunWlESNMKMwE9PiYJCNDysoq/VkTi0F1795dM2fOVGBgoJo0aWJzN1edOrb7rRw/flydOnXSvHnz7K4TGRlZqfevXbt2pV5XGefeBWaxWGzmH82ZM0cjRozQJ598ooULF2rs2LFauXKlrrrqqhqrEQBqiqPA8/DDDys6OlpSaS+PL/T0lKHHxyQpKarRZb/r1Kmj1q1bKzY29oK3sF9xxRX66aefFBUVpdatW9s8wsPDFR4ersaNG+s///mP9TVFRUVav359ude87LLLVFJSojVr1jg8XtbjVFxcXO412rVrp6KiIpv3/fPPP7V9+3a1b9/+vL/TueLi4pSamqq1a9eqQ4cOevfddyv0egDwBOX18pSFHl9E8DFJUpK0dq17Lv197733qmHDhrr55pv11Vdfaffu3Vq9erVGjBihX3/9VZL02GOPKSMjQ0uWLFF2draGDh2qo0ePlnvN5s2ba+DAgXrggQe0ZMkS6zXfe+89SVKzZs1ksVi0dOlSHTp0SMePH7e7xsUXX6ybb75ZgwcP1tdff61NmzbpvvvuU9OmTXXzzTc79bvt3r1bqampysrK0i+//KJPP/1UP/30E/N8AHiVbdu2+eSt6s4g+MBOSEiIvvzyS8XGxurWW29Vu3btNGjQIJ0+fVphYWGSpNGjR6t///4aOHCg4uPjFRoaqltuueW81505c6Zuv/12DR06VG3bttXgwYN14sQJSVLTpk2Vnp6ulJQUNWrUSMOHD3d4jTlz5qhTp0666aabFB8fL8MwtHz5cqcXOQwJCVF2drZuu+02XXLJJXrooYc0bNgwPfzwwxX4GwIA91M2dzQ9Pd36j8oyw4cPJ/T8l8U4d/EVH5eXl6fw8HDl5uZav+Ql6fTp09q9e7datGih4OBgEytETeOzB+AJEhKkxETf7eUp7/v7XExuBgDAw/3tbwuVmJht0+bn56dnn33WpIrcF8EHAAAP5mguz+OPP37eXg9fRvABAMADGYZhXZz1bHFxaSLzlI/JzQAAuLlzF71NT093GHrGj09TRkYNF+dhCD4VxFxw38NnDsBsZy9662hoa9iwYYqLS1PTptL330vPPFPzNXoKgo+Tym6XPnnypMmVoKaVfebO3jIPAK5Wuuit4fCurbi4NDVs2FBJSVJurnTqVOm+W3CMOT5O8vf3V0REhHXPp5CQEHb09nKGYejkyZM6ePCgIiIi5O/vb3ZJAHzUxo3pSky0by8oODO0lZRUut/WtGm+s+9WZbCOzznOtw6AYRjKyck57wrF8D4RERGKjo4m6AKoUZmZpUNbjnp52rd/VK+8Ul9HjkjZ2aVbIK1da0KRboR1fKqBxWJR48aNFRUVpcLCQrPLQQ0ICAigpweAKSZPLlJiov3uoXFxabr3Xun4calNm5rd99EbEHwqwd/fny9DAIBLlfXwpKSUDm1df739OWlpaUpIKA09detKkye7556P7ozgAwCAGyi7c2vjRvuhrQ4dRuu22+pKKg1GZQGJ0FNxzPE5h7NjhAAAuNLixSf1448v2bX7yl5bVcUcHwAAPISjtXkkQk91IPgAAGAiR6Hns89S9NVXQSZU4/0IPgAAmODw4cOaPn26XfuKFWncpVWNCD4AANSw8w1tMbpVvQg+AADUIEehZ+zYsSyTUkMIPgAA1IBff/1Vb775pl17XFyayDw1h+ADAEA1464t90HwAQCgmmRmOl6QcNy4cez/ZxKCDwAA1WDr1q3auHGRXTu9POYi+AAA4GIMbbkvgg8AABVw9maijvbKchR6CDzug+ADAEAFlG0mmpFx5nlKitSw4VqtXLnS7nxCj3sh+AAAUAFn745+vh3VJUKPOyL4AABQDkfDWklJtkNcjkIPgcd9+ZldAAAA7urcYa2zLVu2jNDjgejxAQCgHGcPa52Nu7Y8F8EHAIBynDusJXHXlqcj+AAA4IR//etf2r17t107ocezMMcHAODTMjOlhITSn+VJT0+3Cz3169cn9HggenwAAD7t7AnMLEjo/Qg+AACfVt4E5hdeeEFFRUV25xN6PBvBBwDg05ydwNymTRvdddddNVQVqgtzfAAAPsvR/J7yhrYIPd6BHh8AgM8pW5H5yBEpO7v0z2w74RsIPgAAn1M2oblNGyk+XkpMtA89Xbp0UZ8+fUyoDtWJoS4AgFc6323qKSmlgWfyZMehJy0tjdDjpSyGYRhmF+FO8vLyFB4ertzcXIWFhZldDgCgktq1Kx3GattW2rbN/jjbTngXZ7+/6fEBAHidZ56Rtm8v/bNh2Pf+OAo9vXv3JvT4AK8MPjNmzFDz5s0VHBysrl276ttvvzW7JABADZo2rTTw+PmVDmedvUhheXdtde3a1YRKUdO8LvgsXLhQo0aNUlpamjZs2KCOHTsqMTFRBw8eNLs0AEANGTFCCg6WGjcufZ6SIo0fn17ufB74Dq+b49O1a1ddeeWV+vvf/y5JKikpUUxMjB599FGlnLsspwPM8QEA75CQUNrLU95dW7feeqsuu+wyEypDdfDJOT4FBQVav369evbsaW3z8/NTz549lZWV5fA1+fn5ysvLs3kAADzPufN4Su/cKim3l4fQ45u8Kvj88ccfKi4uVqNGjWzaGzVqpJycHIevmThxosLDw62PmJiYmigVAOBiZ8/jkUoXJExMnGB3HkNbvs2rgk9lpKamKjc31/rYt2+f2SUBACqhbG2elBTHE5jvv/9+Qg+8K/g0bNhQ/v7+OnDggE37gQMHFB0d7fA1QUFBCgsLs3kAANzfuUNbSUnS6tUFDreeSEtLU2xsbA1XCHfkVcEnMDBQnTp10ueff25tKykp0eeff674+HgTKwMAuFJmpnTvvbZDW+np6Zo4caLdufTy4Gxet1fXqFGjNHDgQHXu3FldunTR3/72N504cUL333+/2aUBAKrgmWdK1+cZMUJatUo6flyqW7f8oa2hQ4cqMjLShErhzrwu+Nx55506dOiQxo0bp5ycHF1++eX65JNP7CY8AwA8y7RppWFn2jRp3rzSnp7Ro49p48apdufSy4PyeN06PlXFOj4A4F4yM0tDTtOm0ieflPb4vPACe23BlrPf317X4wMA8GyZmdJTT0kWizRp0pnb1OPjpWPHSs9xFHqeeOIJ1alTp4arhach+AAA3EpGxpkNRjMySufwlP08cOCAZs2aZfcaenngLK+6qwsA4Pm6dy/dZ6tp09Kwk5QkrV1buiAhoQdVRY8PAMCtrFolnT4txcaWhh7J8dDWmDFjFBAQUMPVwdMRfAAAbqFsEnP37qXPU1KknTt3at68eXbn0suDyiL4AADcQtkkZql0aCs9PV0bN9qfR+hBVRB8AABu4exJzI6GtsaNGyeLxWJCZfAmBB8AgFtISpKaNl2vpUuX2h2jlweuwl1dAIBql5kptW0rtWt3ZlPRc6WnpxN6UO3o8QEAVLtz1+Ypu1urjKOhLQIPqgPBBwBQ7VJSzqzGnJJypn3lypVau3at3fmEHlQXgg8AoNolJTnXyyMRelC9CD4AgGqRmSk9/bRkGNLkybbBh6EtmIXgAwCoFhkZUnb2mT8nJUnz58/Xjh077M4l9KCmEHwAANUiJeVMj095a/NIhB7ULIIPAKBanD2vh6EtuAuCDwCg2kyaNEmnT5+2ayf0wCwEHwBAtWBoC+6I4AMAcDmGtuCuCD4AAJehlwfujr26AAB2MjOlhATH+2qVd8xR6AkNDSX0wK1YDMMwzC7CneTl5Sk8PFy5ubkKCwszuxwAMEVCgpSVJcXHS+fuKOHoGENbMJuz398MdQEA7KSklC46ePa+Wo6OMbQFT8NQFwDATlLSmd6cc4e1yo5t3Ggfei6++GJCD9waPT4AgHJlZJQOa5VtOVGGoS14KoIPAKBc5w55MbQFT8dQFwDA7k6tsudS6bBWUpLj0JOQkEDogUfhrq5zcFcXAF9UdqdW3brSvHlnhrjK7txiaAvujru6AABOycyUDh+WgoOl48fPDG1lZEiJielyNLpF6IGnIvgAgI/LyJC2b5fatpXq1SsNPUlJju/auuGGG3TllVeaUCXgGgQfAPBhmZnSkSNSmzbSpEmlgccwDKWnP2d3Lr088AYEHwDwYRkZUnZ26Vye8iYwS4QeeA+CDwD4sAutwnzfffepVatWJlQGVA9uZwcAH5aUJK1ZU+hwPk9aWhqhB16HHh8A8GEMbcHXEHwAwEc5Cj1DhgxRo0aNTKgGqBkMdQGADzh7Zebjx4+XuyAhoQfejuADAB7u3O0mHClbiXnjxnS9/PLLdscZ2oKvYMuKc7BlBQBPU7bdRNn2Eo5kZjpekHDUqFEKDQ2t5gqB6ufs9zc9PgDg4VJSSkNP2Q7q5zp48GC5d20ReuBrmNwMAB4uKan04Qh3bQG2CD4A4KUchZ7U1FQFBgaaUA3gHio81OXv76+DBw/atf/555/y9/d3SVEAgMrbuXNnuXdtEXrg6yrc41PeXOj8/Hz+gwIAkzG0BZyf08Fn2rRpkiSLxaI33nhDdevWtR4rLi7Wl19+qbZt27q+QgCAUxyFnmeffVZ+ftzHApRxOvi88sorkkp7fGbNmmUzrBUYGKjmzZtr1qxZrq8QAHBe3333nZYtW2bXTi8PYM/p4LN7925JUvfu3bV48WLVq1ev2ooCADiHoS2gYio8x2fVqlXVUQcAoILKm8AMoHwVDj4PPPDAeY/Pnj270sUAAM4vM1P66KPlio1dZ3eM0ANcWIWDz5EjR2yeFxYWavPmzTp69Kh69OjhssIAAGdkZpbut5WYmK7YWPvjhB7AORUOPh9++KFdW0lJiR555BG1atXKJUUBAGyVhZ5zEXiAinHZJqXbt29Xt27dtH//fldczjRsUgrAXZT18tx880ydPm2/cCyhBzijxjcp3bVrl4qKilx1OQDwepmZpTurZ2Y6Pv7006W9PIQewHUqPNQ1atQom+eGYWj//v1atmyZBg4c6LLCAMDbZWRIWVmlPx1tMnrXXQxtAa5W4eCzceNGm+d+fn6KjIzUyy+/fME7vgAAZ6SklIaelBTb9gkTJqikpMTufEIPUHWs4wMAJklKsu/pKW9Bwrg4Qg/gChUOPmUOHjyo7du3S5LatGmjqKgolxUFAL7IUehZsSJNWVlSfLzj4TAAFVPh4JOXl6dhw4Zp/vz51q5Yf39/3XnnnZoxY4bCw8NdXiQAeLPzbTsRF+d4OAxA5VT4rq7BgwfrP//5j5YtW6ajR4/q6NGjWrp0qb777js9/PDD1VEjAHitC+21lZQkrV1Lbw/gKhVex6dOnTpasWKFrr76apv2r776Sr1799aJEydcWmBNYx0fADWFvbYA13H2+7vCQ10NGjRwOJwVHh7Oju0A4AR2VAfMU+GhrrFjx2rUqFHKycmxtuXk5OjJJ5/Us88+69LiAMDbOAo9jRs3JvQANaTCQ11xcXHauXOn8vPzFfvfnfL27t2roKAgXXzxxTbnbtiwwXWV1hCGugBUVdlWEykptnNzGNoCqk+1DXXdfPPNslgsVSoOALzZuSsyM7QFuA+XbVLqLejxAVBVZ/f4bNxoH3o2bIjToUNJWrvWhOIAL1Vtm5S2bNlSf/75p1370aNH1bJly4peDgC8Ttkt6I5CT0FBmg4dSmJdHsAkFR7q2rNnj4qLi+3a8/Pz9euvv7qkKADwFI7m8zC0Bbgvp3t8MjMzlZmZKUlasWKF9XlmZqY+/PBDTZgwQS1atKiWIvfs2aNBgwapRYsWql27tlq1aqW0tDQVFBTYnPfDDz/ommuuUXBwsGJiYjR58uRqqQeAb8rMlBISSn+WOXs+j+Q49PTu3ZvQA7gJp3t8+vXrJ0myWCwaOHCgzbGAgAA1b95cL7/8skuLK5Odna2SkhK9/vrrat26tTZv3qzBgwfrxIkTmjJliqTSsb1evXqpZ8+emjVrln788Uc98MADioiI0EMPPVQtdQHwLedOWpbO7LD+9NOG0tOfs3sNgQdwLxWe3NyiRQutW7dODRs2rK6anPLSSy9p5syZ+vnnnyVJM2fO1DPPPKOcnBwFBgZKklJSUrRkyRJlZ2c7fV0mNwMoT0VuU5cIPUBNqrbb2Xfv3l2lwlwlNzdX9evXtz7PysrStddeaw09kpSYmKhJkybpyJEj5a4qnZ+fr/z8fOvzvLy86isagEcrCztlw1rl3ap+5513qm3btjVYGQBnVTj4PPecfVfu2caNG1fpYpy1c+dOTZ8+3TrMJZWuHn3uHKNGjRpZj5UXfCZOnFjuv9YA4Fxlw12TJxdp48YX7I7TywO4twoHnw8//NDmeWFhoXbv3q1atWqpVatWFQo+KSkpmjRp0nnP2bZtm82/nH777Tf17t1bd9xxhwYPHlyx4h1ITU3VqFGjrM/z8vIUExNT5esC8E7lrc0jEXoAT1Dh4LNx40a7try8PCUnJ+uWW26p0LVGjx6t5OTk855z9tpAv//+u7p3766EhAT94x//sDkvOjpaBw4csGkrex4dHV3u9YOCghQUFFShugH4Lkeh56GHHlLjxo1NqAZARVU4+DgSFham9PR09e3bV/3793f6dZGRkYqMjHTq3N9++03du3dXp06dNGfOHPn52d6JHx8fr2eeeUaFhYUKCAiQJK1cuVJt2rRh13gAVbZ48Un9+ONLdu308gCepcIrN5cnNzdXubm5rrqcjd9++03dunVTbGyspkyZokOHDiknJ8dmh/h77rlHgYGBGjRokLZs2aKFCxfq1VdftRnGAoDKSE9PJ/QAXqLCPT7Tpk2zeW4Yhvbv36+3335bffr0cVlhZ1u5cqV27typnTt36qKLLrJ7f0kKDw/Xp59+qmHDhqlTp05q2LChxo0bxxo+AKrE0c0Pjz/+OMtdAB6qUuv4nM3Pz0+RkZHq0aOHUlNTFRoa6tICaxrr+ACQpMOHD2v69Ol27fTyAO7J69fxAYDqwoKEgPeq1OTmo0ePaufOnZKk1q1bKyIiwpU1AYBpHIWe1NRUm8VRAXiuCk1u3rNnj2688UY1bNhQXbt2VdeuXdWwYUPddNNN2rNnTzWVCADV79dff3UYetLS0gg9gBdxusdn3759uuqqqxQQEKAJEyaoXbt2kqStW7dq5syZio+P17p16+wmHwOAu2NoC/AdTk9uHjRokHbu3KkVK1YoODjY5tipU6fUu3dvXXzxxXrjjTeqpdCawuRmwLc4Cj3PPvus3VphANybyyc3f/LJJ1q4cKFd6JGk2rVra8KECbrrrrsqVy0A1LBt27bpvffes2unlwfwbk4Hnz/++EPNmzcv93jLli11+PBhV9QEANWKoS3AdzkdfBo3bqytW7eWO4dn8+bN590TCwDcQXkTmAH4BqcHsfv166cnnnhChw4dsjt28OBBPf300+rXr58rawMAl1m7dm2FQ09mppSQUPoTgHdwenLzkSNH1LVrV+Xk5Oi+++5T27ZtZRiGtm3bpnfffVfR0dH697//rfr161d3zdWKyc2A96ns0FZCgpSVJcXHS2vXVkdlAFzF5ZOb69Wrp//85z8aM2aMFixYoKNHj0qSIiIidM899+jFF1/0+NADwPtUZWgrJUXKyCj9CcA7VHivLql0Y9CyIa/IyEhZLBaXF2YWenwA7/B///d/2rBhg10783kA71Rte3VJksViUVRUVKWLA4DqxF1bAMpTqeADAO6Ku7YAnA/BB4BXmD17tvbt22fXHhdH6AFwBsEHgMdjaAuAswg+ADwaQ1sAKsKp4DNt2jSnLzhixIhKFwMAznrppZd08uRJu3ZCD4Dzcep29hYtWjh3MYtFP//8c5WLMhO3swPuz1EvT/369fXoo4+aUA0Ad+DS29l3797tssIAoCoY2gJQFZWe41NQUKDdu3erVatWqlWLqUIAqhcTmAG4gtOblJY5efKkBg0apJCQEF166aXau3evJOnRRx9VRkaGywsEAEehp127djahhw1FATijwsEnNTVVmzZt0urVqxUcHGxt79mzpxYuXOjS4gCgvKGt//3f/7Vpy8go3VCUf38BOJ8Kj1EtWbJECxcu1FVXXWWzR9ell16qXbt2ubQ4AL6rokNbbCgKwBkVDj6HDh1yuE/XiRMnvGqzUgDmcRR6rrnmGvXo0aPc1yQllT4A4HwqPNTVuXNnLVu2zPq8LOy88cYbio+Pd11lAHxSeUNb5ws9AOCsCvf4vPjii+rTp4+2bt2qoqIivfrqq9q6davWrl2rNWvWVEeNAHwAd20BqAkV7vG5+uqr9f3336uoqEiXXXaZPv30U0VFRSkrK0udOnWqjhoBeDlHoefmm28m9ABwOadWbvYlrNwM1BzDMPTcc8/ZtRN4AFSUS1duzsvLc/qNCQsAnMHQFgAzOBV8IiIinL5jq7i4uEoFAfB+jkJP//791bJlS5u2zMwzt6hzxxYAV3Aq+Kxatcr65z179iglJUXJycnWu7iysrL01ltvaeLEidVTJQCvUFxcrOeff96uvbxenrMXJST4AHCFCs/x+Z//+R89+OCDuvvuu23a3333Xf3jH//Q6tWrXVlfjWOOD1A9KjO0RY8PAGc5+/1d4eATEhKiTZs26eKLL7Zp37Fjhy6//HKdPHmychW7CYIP4HqOQs8jjzzicDFUAKgMZ7+/K3w7e0xMjP75z3/atb/xxhuKiYmp6OUAeLH8/PxyFyQk9AAwQ4UXMHzllVd022236eOPP1bXrl0lSd9++61++uknffDBBy4vEIBn4q4tAO6owj0+N9xwg3766Sf17dtXhw8f1uHDh9W3b1/t2LFDN9xwQ3XUCMBDZGZKCQmOQ8+qVaMVF0foAWAuFjA8B3N8gMrr1u2Yunefate+YkWasrKk+Hhp7VoTCgPg9Vy6gOG5jh49qjfffFPbtm2TJF166aV64IEHFB4eXrlqAXi89PR0de9u356Wlqa4uDN3ZwGAmSrc4/Pdd98pMTFRtWvXVpcuXSRJ69at06lTp/Tpp5/qiiuuqJZCawo9PkDFORraSk1NVWBgoAnVAPBF1XY7+zXXXKPWrVvrn//8p2rVKu0wKioq0oMPPqiff/5ZX375ZdUqNxnBB3DeH3/8oRkzZti1M4EZQE2rtuBTu3Ztbdy4UW3btrVp37p1qzp37sw6PoCPqOhdW5mZ0lNPSRaLNGkSCxICcK1qm+MTFhamvXv32gWfffv2KTQ0tOKVAvA4jkLPs88+Kz+/8m8UzciQtm8/82eCDwAzVPh29jvvvFODBg3SwoULtW/fPu3bt08LFixwuI0FAO+yd+/echckPF/okUonNrdpI7VtyyRnAOapcI/PlClTZLFYNGDAABUVFUmSAgIC9MgjjygjI8PlBQJwD1VdkDApiV4eAOar9Do+J0+e1K5duyRJrVq1UkhIiEsLMwtzfAB7jkLPuHHjZLFYTKgGAOxV6zo+UulmpZdddlllXw7AA2zdulWLFi2ya+euLQCeyung88ADDzh13uzZsytdDAD3UZmhrczMMwsVMqwFwB05HXzmzp2rZs2aKS4uTuxyAXi38iYwX0hGhpSVxV1bANyX08HnkUce0fz587V7927df//9uu+++1S/fv3qrA1ADVu3bp2WL19u135u6CmvZyclha0pALi3Ck1uzs/P1+LFizV79mytXbtWN954owYNGqRevXp5zSRHJjfDVznq5fH399fYsWPt2hMSxKajANxKta3cXOaXX37R3Llz9a9//UtFRUXasmWL6tatW+mC3QXBB76ookNbzOUB4G6c/f6u8AKG1hf6+cliscgwDBUXF1f2MgBM9Nlnn5UbejIzS3t2MjPtX5eUVNrTQ+gB4GkqFHzy8/M1f/58XX/99brkkkv0448/6u9//7v27t3rFb09gC9JT0/XN998Y9PWqFEja0/P2ROVAcBbOD25eejQoVqwYIFiYmL0wAMPaP78+WrYsGF11gagmjgztMVEZQDeyOk5Pn5+foqNjVVcXNx5JzIvXrzYZcWZgTk+8GYfffSRvv/+e7t2FiQE4OlcvnLzgAEDvObOLcAXOerlufzyy3XzzTebUA0AmKNCCxgC8EyVXZAQALxNpffqAuD+5syZo71799q1E3oA+CqCD+ClHPXydOvWTdddd50J1QCAeyD4AF6IoS0AcIzgA3iRKVOm6MSJE3bthB4AKFXplZsBuJf09HS70JOUlFRu6DnfyswA4K0IPoAXKG9oKy4urtzXsDIzAF/EUBfgwRwFHsm5oS1WZgbgiwg+gIdyFHruvvtuXXLJJU69PimJTUYB+B6CD+BhDMPQc889Z9fOBGYAuDCPm+OTn5+vyy+/XBaLxW7PoR9++EHXXHONgoODFRMTo8mTJ5tTJFBN0tPTnQo9TFwGAMc8Lvg89dRTatKkiV17Xl6eevXqpWbNmmn9+vV66aWXNH78eP3jH/8woUrA9RwNbT388MMOe3qYuAwAjnlU8Pn444/16aefasqUKXbH5s2bp4KCAs2ePVuXXnqp7rrrLo0YMUJTp041oVLAdUpKSsq9ays6Otrha1JSpPh4Ji4DwLk8Zo7PgQMHNHjwYC1ZskQhISF2x7OysnTttdcqMDDQ2paYmKhJkybpyJEjqlevnsPr5ufnKz8/3/o8Ly/P9cUDlVTZu7aYuAwAjnlEj49hGEpOTtaQIUPUuXNnh+fk5OSoUaNGNm1lz3Nycsq99sSJExUeHm59xMTEuK5woAochZ7HHnuMScwAUAWmBp+UlBRZLJbzPrKzszV9+nQdO3ZMqampLq8hNTVVubm51se+fftc/h5ARRQVFZU7tBUREVHzBQGAFzF1qGv06NFKTk4+7zktW7bUF198oaysLAUFBdkc69y5s+6991699dZbio6O1oEDB2yOlz0vbx6EJAUFBdldFzBLVRYkBABcmKnBJzIyUpGRkRc8b9q0aXr++eetz3///XclJiZq4cKF6tq1qyQpPj5ezzzzjAoLCxUQECBJWrlypdq0aVPu/B7AnTgKPU8++aTDOW1lMjPPrL7MnB4AuDCPmOMTGxurDh06WB9lK9O2atVKF110kSTpnnvuUWBgoAYNGqQtW7Zo4cKFevXVVzVq1CgzSwcu6PTp0+UObZ0v9Ejctg4AFeUxd3VdSHh4uD799FMNGzZMnTp1UsOGDTVu3Dg99NBDZpcGlKuqQ1vstwUAFWMxDMMwuwh3kpeXp/DwcOXm5iosLMzscuDFHIWeMWPGWIdqAQDOc/b722t6fABPcfz4cb388st27UxgBoDq5xFzfABvkZ6e7lToYa8tAKgeBB+ghjga2lqx4lnFxbHXFgDUFIIPUM2OHj1aTuhJU1aWn8Nww15bAFA9mOMDVCNHgScyMlJDhw5VXFz5d2Sx1xYAVA+CD1BNHIWecePGyWKxSLINNyxECAA1g6EuwMUOHDhQ7oKEZaHnXMzpAYCaQfABXCg9PV2zZs2yaWvdurXNXVuO7thiTg8A1AwWMDwHCxiissrr5TlXQkJp7058vLR2bU1UBgDez9nvb3p8gCrau3ev06FHoncHAMzE5GagChwFnri4OCWdZ4Yyd2wBgHkIPkAlVaSXBwDgHgg+QAXt2rVL77zzjl07oQcA3B/BB6gAR7081157rbp3725CNQCAimJyM+Ck8radIPQAgOegxwe4gM2bN+uDDz6wa1+xIo07swDAwxB8gPNw1MvTr18/dezYUUzpAQDPQ/ABysFdWwDgfQg+wDm+/fZbffzxx3bthB4A8HwEH+Asjnp57r77bl1yySUmVAMAcDWCD/BfDG0BgPcj+MDnZWVl6dNPP7VrJ/QAgPch+MCnOerluf/++xUbG2tCNQCA6kbwgU/JzJQyMkp3Rt+4kaEtAPA1BB/4lIwMKSTkM23c+I3dMUIPAHg/gg98SmKifS/PsGHDtHZtQyUklPYEJSWZUBgAoEawVxd8gmEY5d611bBhQ2VkSFlZpT1CAADvRY8PvN5nn32mb745/9BWSsqZuT8AAO9F8IFXc9TLM3r0aNWtW9emLSmJIS4A8AUEH3glwzD03HPP2bUzgRkAfBvBB17no48+0vfff2/TFhgYqNTUVHMKAgC4DYIPvIqjoa2nn35awcHBJlQDAHA3BB94hZKSEk2YMMGunaEtAMDZuJ0dHiczU0pIKP0pSe+++65d6GnYsCGhBwBghx4feJyz19xxtO3EmDFjFBAQYEJlAAB3R48PPE5KivTXvxY5XIU5LS2N0AMAKBc9PvA4Bw++oeuv/82mrXnz5ho4cKBJFQEAPAXBBx7F0V1bY8eOlb+/vwnVAAA8DcEHHqGgoEATJ060a2cCMwCgIgg+cHtz587VL7/8YtMWHx+vXr16mVQRAMBTEXzg1hwNbY0bN04Wi8WEagAAno7gA7d06tQpTZ482a6doS0AQFUQfOB2ZsyYoT/++MOmrUePHrrmmmtMqggA4C0IPnArDG0BAKoTwQdu4fjx43r55Zft2hnaAgC4EsEHpps0aZJOnz5t03bDDTfoyiuvNKkiAIC3IvjAVI6GtujlAQBUF4IPTHHkyBFNmzbNrp3QAwCoTgQf1DhHvTy33nqrLrvsMhOqAQD4EoIPahRDWwAAMxF8UCMOHTqk1157za6d0AMAqEkEH1Q7R70899xzjy6++GITqgEA+DKCD6oVQ1sAAHdC8EG1+O233/TGG2/YtRN6AABmIvjA5Rz18iQnJ6tZs2YmVAMAwBkEH7gUQ1sAAHdG8IFL7N69W//617/s2gk9AAB3QvBBlTnq5XnooYfUuHFjE6oBAKB8BB9UCUNbAABPQvBBpWRnZ2vhwoV27YQeAIA7I/igwhz18gwbNkwNGzY0oRoAAJxH8EGFMLQFAPBkBB84ZdOmTVqyZIldO6EHAOBJCD64IEe9PCNHjlR4eLgJ1QAAUHkEH5wXQ1sAAG/iZ3YBqFmZmVJCQunP8/nPf/5jF3pCQ0MJPQAAj0aPj4/JyJCyskp/JiU5PsdRL88TTzyhOnXqVHN1AABUL4/q8Vm2bJm6du2q2rVrq169eurXr5/N8b179+rGG29USEiIoqKi9OSTT6qoqMicYt1USooUH1/681yGYZQ7tEXoAQB4A4/p8fnggw80ePBgvfjii+rRo4eKioq0efNm6/Hi4mLdeOONio6O1tq1a7V//34NGDBAAQEBevHFF02svOZkZpb25KSklN+bk5Tk+Njq1au1Zs0am7bGjRvroYceqoZKAQAwh8UwDMPsIi6kqKhIzZs3V3p6ugYNGuTwnI8//lg33XSTfv/9dzVq1EiSNGvWLD399NM6dOiQAgMDnXqvvLw8hYeHKzc3V2FhYS77HWpCQkLpMFZ8vLR2rfOvc9TL8/TTTys4ONiF1QEAUH2c/f72iKGuDRs26LfffpOfn5/i4uLUuHFj9enTx6bHJysrS5dddpk19EhSYmKi8vLytGXLlnKvnZ+fr7y8PJuHpzrfMJYjJSUl5Q5tEXoAAN7II4a6fv75Z0nS+PHjNXXqVDVv3lwvv/yyunXrph07dqh+/frKycmxCT2SrM9zcnLKvfbEiRMdfvl7ovKGsRz5+OOP9e2339q0tWrVSvfdd181VAYAgHswtccnJSVFFovlvI/s7GyVlJRIkp555hnddttt6tSpk+bMmSOLxaJFixZVqYbU1FTl5uZaH/v27XPFr+bW0tPT7ULPmDFjCD0AAK9nao/P6NGjlZycfN5zWrZsqf3790uS2rdvb20PCgpSy5YttXfvXklSdHS03Zf5gQMHrMfKExQUpKCgoMqUbypnJjKfq7i4WM8//7xdO2vzAAB8hanBJzIyUpGRkRc8r1OnTgoKCtL27dt19dVXS5IKCwu1Z88eNWvWTJIUHx+vF154QQcPHlRUVJQkaeXKlQoLC7MJTN7CmfV4zvb555/r66+/tmn7y1/+oltuuaWaKgQAwP14xByfsLAwDRkyRGlpaYqJiVGzZs300ksvSZLuuOMOSVKvXr3Uvn179e/fX5MnT1ZOTo7Gjh2rYcOGeWSPzoWkpJzp8bkQR3OYxo4dK39//2qoDAAA9+URwUeSXnrpJdWqVUv9+/fXqVOn1LVrV33xxReqV6+eJMnf319Lly7VI488ovj4eNWpU0cDBw7Uc889Z3Ll1cOZicxFRUV64YUX7NoZ2gIA+CqPWMenJnnyOj5nW7Zsmb777jubtl69eik+Pt6kigAAqD7Ofn97TI8PnOdoaGvcuHGyWCwmVAMAgPsg+HiR/Px8ZWRk2LUztAUAQCmCj5dwdNdW3759dcUVV5hUEQAA7ofg4wUY2gIAwDkEHw/G0BYAABVD8PFQK1as0L///W+btgEDBqhFixYmVQQAgPvziN3ZvV1mppSQUPrTGenp6XahJy0tjdADAMAFEHzcwNnbT5xPfn6+3XyewMBAhrYAAHASQ11uwJntJ9atW6fly5fbtA0fPlwNGjSo5uoAAPAeBB83cKHtJxzdtUUvDwAAFcdQVw2p6DweSTp16pRd6OncuTOhBwCASqLHp4acPY/nQpuLStLatWu1cuVKm7bHHntMERER1VMgAAA+gOBTQ5yZx1OGoS0AAKoHwaeGXGgejySdOHFCU6ZMsWlLSEjQ9ddfX42VAQDgOwg+bmL16tVas2aNTduoUaMUGhpqUkUAAHgfgo8bYGgLAICaQfAxkaO9trp166brrrvOpIoAAPBuBB+T7Nq1S++8845N2xNPPKE6deqYVBEAAN6P4GOCRYsWaevWrdbnnTp10k033WRiRQAA+AaCTw06ffq0Jk2aZNP2wAMPKCYmxqSKAADwLQSfGrJjxw7Nnz/fpm3MmDEKCAgwqSIAAHwPwaeGnB16rrrqKiUmJppYDQAAvongU8MGDx6sJk2amF0GAAA+yWIYhmF2Ee4kLy9P4eHhys3NVVhYmNnlAAAAJzj7/c3u7AAAwGcQfAAAgM8g+AAAAJ9B8AEAAD6D4AMAAHwGwQcAAPgMgg8AAPAZBB8AAOAzCD4AAMBnEHwAAIDPIPgAAACfQfABAAA+g+ADAAB8BsEHAAD4jFpmF+BuDMOQVLq9PQAA8Axl39tl3+PlIfic49ixY5KkmJgYkysBAAAVdezYMYWHh5d73GJcKBr5mJKSEv3+++8KDQ2VxWIxu5xql5eXp5iYGO3bt09hYWFmlwMH+IzcH5+R++Mzcn9V/YwMw9CxY8fUpEkT+fmVP5OHHp9z+Pn56aKLLjK7jBoXFhbG/xm4OT4j98dn5P74jNxfVT6j8/X0lGFyMwAA8BkEHwAA4DMIPj4uKChIaWlpCgoKMrsUlIPPyP3xGbk/PiP3V1OfEZObAQCAz6DHBwAA+AyCDwAA8BkEHwAA4DMIPgAAwGcQfHzcsmXL1LVrV9WuXVv16tVTv379bI7v3btXN954o0JCQhQVFaUnn3xSRUVF5hTrw/Lz83X55ZfLYrHo+++/tzn2ww8/6JprrlFwcLBiYmI0efJkc4r0QXv27NGgQYPUokUL1a5dW61atVJaWpoKCgpszuMzMt+MGTPUvHlzBQcHq2vXrvr222/NLsknTZw4UVdeeaVCQ0MVFRWlfv36afv27TbnnD59WsOGDVODBg1Ut25d3XbbbTpw4IDLaiD4+LAPPvhA/fv31/33369Nmzbpm2++0T333GM9XlxcrBtvvFEFBQVau3at3nrrLc2dO1fjxo0zsWrf9NRTT6lJkyZ27Xl5eerVq5eaNWum9evX66WXXtL48eP1j3/8w4QqfU92drZKSkr0+uuva8uWLXrllVc0a9YsjRkzxnoOn5H5Fi5cqFGjRiktLU0bNmxQx44dlZiYqIMHD5pdms9Zs2aNhg0bpn//+99auXKlCgsL1atXL504ccJ6zuOPP67/+7//06JFi7RmzRr9/vvvuvXWW11XhAGfVFhYaDRt2tR44403yj1n+fLlhp+fn5GTk2NtmzlzphEWFmbk5+fXRJkwSj+Htm3bGlu2bDEkGRs3brQee+2114x69erZfB5PP/200aZNGxMqhWEYxuTJk40WLVpYn/MZma9Lly7GsGHDrM+Li4uNJk2aGBMnTjSxKhiGYRw8eNCQZKxZs8YwDMM4evSoERAQYCxatMh6zrZt2wxJRlZWlkvekx4fH7Vhwwb99ttv8vPzU1xcnBo3bqw+ffpo8+bN1nOysrJ02WWXqVGjRta2xMRE5eXlacuWLWaU7XMOHDigwYMH6+2331ZISIjd8aysLF177bUKDAy0tiUmJmr79u06cuRITZaK/8rNzVX9+vWtz/mMzFVQUKD169erZ8+e1jY/Pz/17NlTWVlZJlYGqfS/F0nW/2bWr1+vwsJCm8+rbdu2io2NddnnRfDxUT///LMkafz48Ro7dqyWLl2qevXqqVu3bjp8+LAkKScnxyb0SLI+z8nJqdmCfZBhGEpOTtaQIUPUuXNnh+fwGbmXnTt3avr06Xr44YetbXxG5vrjjz9UXFzs8DPg799cJSUlGjlypP7617+qQ4cOkkr/mwgMDFRERITNua78vAg+XiYlJUUWi+W8j7J5CZL0zDPP6LbbblOnTp00Z84cWSwWLVq0yOTfwrs5+xlNnz5dx44dU2pqqtkl+xxnP6Oz/fbbb+rdu7fuuOMODR482KTKAc8xbNgwbd68WQsWLKjR961Vo++Gajd69GglJyef95yWLVtq//79kqT27dtb24OCgtSyZUvt3btXkhQdHW1350PZzPro6GgXVu1bnP2MvvjiC2VlZdntW9O5c2fde++9euuttxQdHW13twOfUdU5+xmV+f3339W9e3clJCTYTVrmMzJXw4YN5e/v7/Az4O/fPMOHD9fSpUv15Zdf6qKLLrK2R0dHq6CgQEePHrXp9XHp5+WSmULwOLm5uUZQUJDN5OaCggIjKirKeP311w3DODO5+cCBA9ZzXn/9dSMsLMw4ffp0jdfsa3755Rfjxx9/tD5WrFhhSDLef/99Y9++fYZhnJk4W1BQYH1damoqE2dr0K+//mpcfPHFxl133WUUFRXZHeczMl+XLl2M4cOHW58XFxcbTZs2ZXKzCUpKSoxhw4YZTZo0MXbs2GF3vGxy8/vvv29ty87OdunkZoKPD3vssceMpk2bGitWrDCys7ONQYMGGVFRUcbhw4cNwzCMoqIio0OHDkavXr2M77//3vjkk0+MyMhIIzU11eTKfdPu3bvt7uo6evSo0ahRI6N///7G5s2bjQULFhghISHW8Irq9euvvxqtW7c2/ud//sf49ddfjf3791sfZfiMzLdgwQIjKCjImDt3rrF161bjoYceMiIiImzuWEXNeOSRR4zw8HBj9erVNv+9nDx50nrOkCFDjNjYWOOLL74wvvvuOyM+Pt6Ij493WQ0EHx9WUFBgjB492oiKijJCQ0ONnj17Gps3b7Y5Z8+ePUafPn2M2rVrGw0bNjRGjx5tFBYWmlSxb3MUfAzDMDZt2mRcffXVRlBQkNG0aVMjIyPDnAJ90Jw5cwxJDh9n4zMy3/Tp043Y2FgjMDDQ6NKli/Hvf//b7JJ8Unn/vcyZM8d6zqlTp4yhQ4ca9erVM0JCQoxbbrnF5h8TVWX5byEAAABej7u6AACAzyD4AAAAn0HwAQAAPoPgAwAAfAbBBwAA+AyCDwAA8BkEHwAA4DMIPgBQTVavXi2LxaKjR4+aXQqA/yL4APBY48eP1+WXX252GQA8CMEHgNcrLCw0uwQAboLgA8A0JSUlmjhxolq0aKHatWurY8eOev/99yWdGSb6/PPP1blzZ4WEhCghIUHbt2+XJM2dO1fp6enatGmTLBaLLBaL5s6dK0myWCyaOXOmkpKSVKdOHb3wwgvnraPsvVasWKG4uDjVrl1bPXr00MGDB/Xxxx+rXbt2CgsL0z333KOTJ09aX5efn68RI0YoKipKwcHBuvrqq7Vu3brq+csC4Bou2/ULACro+eefN9q2bWt88sknxq5du4w5c+YYQUFBxurVq41Vq1YZkoyuXbsaq1evNrZs2WJcc801RkJCgmEYhnHy5Elj9OjRxqWXXmq3w7MkIyoqypg9e7axa9cu45dffjlvHWXvddVVVxlff/21sWHDBqN169bGddddZ/Tq1cvYsGGD8eWXXxoNGjSw2WB0xIgRRpMmTYzly5cbW7ZsMQYOHGjUq1fP+PPPP22ue+TIker5CwRQYQQfAKY4ffq0ERISYqxdu9amfdCgQcbdd99tDQ2fffaZ9diyZcsMScapU6cMwzCMtLQ0o2PHjnbXlmSMHDnS6VocvdfEiRMNScauXbusbQ8//LCRmJhoGIZhHD9+3AgICDDmzZtnPV5QUGA0adLEmDx5ss11CT6A+6hlVk8TAN+2c+dOnTx5Utdff71Ne0FBgeLi4qzP//KXv1j/3LhxY0nSwYMHFRsbe97rd+7cucI1nf1ejRo1UkhIiFq2bGnT9u2330qSdu3apcLCQv31r3+1Hg8ICFCXLl20bdu2Cr83gJpB8AFgiuPHj0uSli1bpqZNm9ocCwoK0q5duySVhokyFotFUuncoAupU6dOhWs6973Ofl7W5sx7A3BfTG4GYIr27dsrKChIe/fuVevWrW0eMTExTl0jMDBQxcXF1VypY61atVJgYKC++eYba1thYaHWrVun9u3bm1ITgAujxweAKUJDQ/XEE0/o8ccfV0lJia6++mrl5ubqm2++UVhYmJo1a3bBazRv3ly7d+/W999/r4suukihoaEKCgqqgepLe5QeeeQRPfnkk6pfv75iY2M1efJknTx5UoMGDaqRGgBUHMEHgGkmTJigyMhITZw4UT///LMiIiJ0xRVXaMyYMU4NKd12221avHixunfvrqNHj2rOnDlKTk6u/sL/KyMjQyUlJerfv7+OHTumzp07a8WKFapXr16N1QCgYiyGYRhmFwEAAFATmOMDAAB8BsEHgNcbMmSI6tat6/AxZMgQs8sDUIMY6gLg9Q4ePKi8vDyHx8LCwhQVFVXDFQEwC8EHAAD4DIa6AACAzyD4AAAAn0HwAQAAPoPgAwAAfAbBBwAA+AyCDwAA8BkEHwAA4DMIPgAAwGf8PyZ6NzE4vB44AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4/4 [==============================] - 0s 5ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOD0lEQVR4nO3de1xUZf4H8M9wlYsMch0wUMQrimaiRhhqsuKtMnXzlve0DDS1TG3T1EzQWjOttNxNbVNza7XMynLFy6qEiOEtZZVFseSiGTMiCMic3x/+ODlyG4aZOWfmfN6v17xecM4zM88cDme+53m+z/OoBEEQQERERKRgDlJXgIiIiEhqDIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIyGYsXrwYKpXKqLIqlQqLFy+2aH369OmDPn36yPb1iMh4DIiIqME2bdoElUolPpycnNC8eXNMnDgRv/76q9TVk52WLVsaHK+AgAA8+uij2Llzp1lev6SkBIsXL8aBAwfM8npESsSAiIhMtnTpUvzjH//A+vXrMXDgQHz66afo3bs3bt++bZH3e+2111BaWmqR17a0Bx98EP/4xz/wj3/8Ay+//DKuXr2KYcOGYf369Y1+7ZKSEixZsoQBEVEjOEldASKyXQMHDkRUVBQA4Nlnn4Wfnx9WrFiBXbt24emnnzb7+zk5OcHJyTYvW82bN8czzzwj/j5+/Hi0bt0a77zzDp5//nkJa0ZEAFuIiMiMHn30UQBAdna2wfbz589jxIgR8PHxQZMmTRAVFYVdu3YZlKmoqMCSJUvQpk0bNGnSBL6+vujVqxf27t0rlqkph6isrAyzZ8+Gv78/mjZtiieeeAK//PJLtbpNnDgRLVu2rLa9ptfcuHEjHnvsMQQEBMDV1RURERFYt25dg45FfTQaDTp06ICcnJw6yxUWFmLKlCkIDAxEkyZN0KVLF2zevFncf+nSJfj7+wMAlixZInbLWTp/isje2OatFhHJ0qVLlwAAzZo1E7edPXsWMTExaN68OebPnw8PDw/885//xNChQ/Gvf/0LTz31FIC7gUlSUhKeffZZ9OjRAzqdDsePH8eJEyfwpz/9qdb3fPbZZ/Hpp59izJgxeOSRR5CSkoLBgwc36nOsW7cOHTt2xBNPPAEnJyd8/fXXeOGFF6DX65GQkNCo165SUVGBK1euwNfXt9YypaWl6NOnDy5evIjExESEhYXh888/x8SJE1FUVIQXX3wR/v7+WLduHaZPn46nnnoKw4YNAwB07tzZLPUkUgyBiKiBNm7cKAAQ/v3vfwvXrl0Trly5InzxxReCv7+/4OrqKly5ckUs269fPyEyMlK4ffu2uE2v1wuPPPKI0KZNG3Fbly5dhMGDB9f5vq+//rpw72UrMzNTACC88MILBuXGjBkjABBef/11cduECROEFi1a1PuagiAIJSUl1crFx8cLrVq1MtjWu3dvoXfv3nXWWRAEoUWLFkL//v2Fa9euCdeuXRNOnjwpjBo1SgAgzJgxo9bXW716tQBA+PTTT8Vt5eXlQnR0tODp6SnodDpBEATh2rVr1T4vETUMu8yIyGRxcXHw9/dHSEgIRowYAQ8PD+zatQsPPPAAAODGjRtISUnB008/jZs3b+L69eu4fv06fvvtN8THx+PChQviqDRvb2+cPXsWFy5cMPr9v/32WwDAzJkzDbbPmjWrUZ/Lzc1N/Fmr1eL69evo3bs3/ve//0Gr1Zr0mj/88AP8/f3h7++PLl264PPPP8e4ceOwYsWKWp/z7bffQqPRYPTo0eI2Z2dnzJw5E8XFxTh48KBJdSGi6thlRkQme//999G2bVtotVp8/PHHOHToEFxdXcX9Fy9ehCAIWLhwIRYuXFjjaxQWFqJ58+ZYunQpnnzySbRt2xadOnXCgAEDMG7cuDq7fi5fvgwHBweEh4cbbG/Xrl2jPteRI0fw+uuvIzU1FSUlJQb7tFot1Gp1g1+zZ8+eWLZsGVQqFdzd3dGhQwd4e3vX+ZzLly+jTZs2cHAwvHft0KGDuJ+IzIMBERGZrEePHuIos6FDh6JXr14YM2YMsrKy4OnpCb1eDwB4+eWXER8fX+NrtG7dGgAQGxuL7OxsfPXVV/jhhx/wt7/9De+88w7Wr1+PZ599ttF1rW1Cx8rKSoPfs7Oz0a9fP7Rv3x6rVq1CSEgIXFxc8O233+Kdd94RP1ND+fn5IS4uzqTnEpHlMSAiIrNwdHREUlIS+vbti/feew/z589Hq1atANzt5jEmGPDx8cGkSZMwadIkFBcXIzY2FosXL641IGrRogX0ej2ys7MNWoWysrKqlW3WrBmKioqqbb+/leXrr79GWVkZdu3ahdDQUHH7/v37662/ubVo0QKnTp2CXq83aCU6f/68uB+oPdgjIuMxh4iIzKZPnz7o0aMHVq9ejdu3byMgIAB9+vTBhx9+iLy8vGrlr127Jv7822+/Gezz9PRE69atUVZWVuv7DRw4EACwZs0ag+2rV6+uVjY8PBxarRanTp0St+Xl5VWbLdrR0REAIAiCuE2r1WLjxo211sNSBg0ahPz8fGzfvl3cdufOHaxduxaenp7o3bs3AMDd3R0Aagz4iMg4bCEiIrOaO3cu/vznP2PTpk14/vnn8f7776NXr16IjIzE1KlT0apVKxQUFCA1NRW//PILTp48CQCIiIhAnz590K1bN/j4+OD48eP44osvkJiYWOt7Pfjggxg9ejQ++OADaLVaPPLII9i3bx8uXrxYreyoUaMwb948PPXUU5g5cyZKSkqwbt06tG3bFidOnBDL9e/fHy4uLnj88cfx3HPPobi4GBs2bEBAQECNQZ0lTZs2DR9++CEmTpyIjIwMtGzZEl988QWOHDmC1atXo2nTpgDuJoFHRERg+/btaNu2LXx8fNCpUyd06tTJqvUlsmlSD3MjIttTNew+PT292r7KykohPDxcCA8PF+7cuSMIgiBkZ2cL48ePFzQajeDs7Cw0b95cGDJkiPDFF1+Iz1u2bJnQo0cPwdvbW3BzcxPat28vvPnmm0J5eblYpqYh8qWlpcLMmTMFX19fwcPDQ3j88ceFK1eu1DgM/YcffhA6deokuLi4CO3atRM+/fTTGl9z165dQufOnYUmTZoILVu2FFasWCF8/PHHAgAhJydHLNeQYff1TSlQ2+sVFBQIkyZNEvz8/AQXFxchMjJS2LhxY7XnHj16VOjWrZvg4uLCIfhEJlAJwj3twkREREQKxBwiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseJGY2k1+tx9epVNG3alNPkExER2QhBEHDz5k0EBwdXWyj5XgyIjHT16lWEhIRIXQ0iIiIywZUrV/DAAw/Uup8BkZGqpsi/cuUKvLy8JK4NERERGUOn0yEkJET8Hq8NAyIjVXWTeXl5MSAiIiKyMfWluzCpmoiIiBSPAREREREpHgMiIiIiUjzmEBERkeJVVlaioqJC6mqQCZydneHo6Njo15E0IDp06BDeeustZGRkIC8vDzt37sTQoUNrLPv888/jww8/xDvvvINZs2aJ22/cuIEZM2bg66+/hoODA4YPH453330Xnp6eYplTp04hISEB6enp8Pf3x4wZM/DKK69Y+NMREZHcCYKA/Px8FBUVSV0VagRvb29oNJpGzRMoaUB069YtdOnSBZMnT8awYcNqLbdz5078+OOPCA4OrrZv7NixyMvLw969e1FRUYFJkyZh2rRp2Lp1K4C7w+369++PuLg4rF+/HqdPn8bkyZPh7e2NadOmWeyzERGR/FUFQwEBAXB3d+fEuzZGEASUlJSgsLAQABAUFGTya0kaEA0cOBADBw6ss8yvv/6KGTNm4Pvvv8fgwYMN9p07dw579uxBeno6oqKiAABr167FoEGD8PbbbyM4OBhbtmxBeXk5Pv74Y7i4uKBjx47IzMzEqlWrGBARESlYZWWlGAz5+vpKXR0ykZubGwCgsLAQAQEBJnefyTqpWq/XY9y4cZg7dy46duxYbX9qaiq8vb3FYAgA4uLi4ODggLS0NLFMbGwsXFxcxDLx8fHIysrC77//Xut7l5WVQafTGTyIiMh+VOUMubu7S1wTaqyqv2Fj8sBkHRCtWLECTk5OmDlzZo378/PzERAQYLDNyckJPj4+yM/PF8sEBgYalKn6vapMTZKSkqBWq8UHl+0gIrJP7Cazfeb4G8o2IMrIyMC7776LTZs2SXKyLliwAFqtVnxcuXLF6nUgIiIi65BtQPSf//wHhYWFCA0NhZOTE5ycnHD58mW89NJLaNmyJQBAo9GIiVRV7ty5gxs3bkCj0YhlCgoKDMpU/V5Vpiaurq7iMh1croOIiJRApVLhyy+/lLoaBg4cOACVSmXxkYCyDYjGjRuHU6dOITMzU3wEBwdj7ty5+P777wEA0dHRKCoqQkZGhvi8lJQU6PV69OzZUyxz6NAhg37FvXv3ol27dmjWrJl1PxQRKVKethRHs68jT1sqdVWIAACLFy/Ggw8+KHU1ZEXSUWbFxcW4ePGi+HtOTg4yMzPh4+OD0NDQaln/zs7O0Gg0aNeuHQCgQ4cOGDBgAKZOnYr169ejoqICiYmJGDVqlDhEf8yYMViyZAmmTJmCefPm4cyZM3j33XfxzjvvWO+DEpFibU/PxYIdp6EXAAcVkDQsEiO7h0pdLSK6j6QtRMePH0fXrl3RtWtXAMCcOXPQtWtXLFq0yOjX2LJlC9q3b49+/fph0KBB6NWrFz766CNxv1qtxg8//ICcnBx069YNL730EhYtWsQh90RkcXnaUjEYAgC9ALy64wxbiqjR9Ho9kpKSEBYWBjc3N3Tp0gVffPEFgD+6mPbt24eoqCi4u7vjkUceQVZWFgBg06ZNWLJkCU6ePAmVSgWVSoVNmzaJr339+nU89dRTcHd3R5s2bbBr1y6j6lT1vt9//z26du0KNzc3PPbYYygsLMR3332HDh06wMvLC2PGjEFJSYn4vLKyMsycORMBAQFo0qQJevXqhfT0dPMdLCNJ2kLUp08fCIJgdPlLly5V2+bj4yNOwlibzp074z//+U9Dq0dE1Cg512+JwVCVSkHApeslCFK7SVMpspg8bSlyrt9CmJ+Hxf++SUlJ+PTTT7F+/Xq0adMGhw4dwjPPPAN/f3+xzF/+8hf89a9/hb+/P55//nlMnjwZR44cwciRI3HmzBns2bMH//73vwHcbTyosmTJEqxcuRJvvfUW1q5di7Fjx+Ly5cvw8fExqm6LFy/Ge++9B3d3dzz99NN4+umn4erqiq1bt6K4uBhPPfUU1q5di3nz5gEAXnnlFfzrX//C5s2b0aJFC6xcuRLx8fG4ePGi0e9pDrLNISIisnVhfh5wuG+QrKNKhZZ+nPfG3mxPz0VMcgrGbEhDTHIKtqfnWuy9ysrKsHz5cnz88ceIj49Hq1atMHHiRDzzzDP48MMPxXJvvvkmevfujYiICMyfPx9Hjx7F7du34ebmBk9PTzg5OUGj0UCj0YiTGwLAxIkTMXr0aLRu3RrLly9HcXExjh07ZnT9li1bhpiYGHTt2hVTpkzBwYMHsW7dOnTt2hWPPvooRowYgf379wO4u2LFunXr8NZbb2HgwIGIiIjAhg0b4Obmhr///e/mO2hGYEBERGQhQWo3JA2LhOP/Tx3iqFJh+bBObB2yM9buGr148SJKSkrwpz/9CZ6enuLjk08+QXZ2tliuc+fO4s9VS1rcPzK7Jvc+z8PDA15eXkY9r6bnBwYGwt3dHa1atTLYVvV62dnZqKioQExMjLjf2dkZPXr0wLlz54x+T3PgavdERBY0snsoYtv649L1ErT0c2cwZIes3TVaXFwMAPjmm2/QvHlzg32urq5iUOTs7Cxur5rPT6/X1/v69z6v6rnGPK+m56tUqka/nrUwICIisrAgtRsDITtW1TV6b1Bkya7RiIgIuLq6Ijc3F7179662/95Wotq4uLigsrLSEtVrkPDwcLi4uODIkSNo0aIFgLvLb6Snp2PWrFlWrQsDIiIiokao6hp9dccZVAqCxbtGmzZtipdffhmzZ8+GXq9Hr169oNVqceTIEXh5eYmBRV1atmwpTnXzwAMPoGnTpnB1dbVIfevi4eGB6dOnY+7cueKUOytXrkRJSQmmTJli1bowICIiImoka3eNvvHGG/D390dSUhL+97//wdvbGw899BBeffVVo7qjhg8fjh07dqBv374oKirCxo0bMXHiRIvWuTbJycniYu43b95EVFQUvv/+e6tPnqwSGjLuXcF0Oh3UajW0Wi2X8SAisgO3b99GTk4OwsLC0KRJE6mrQ41Q19/S2O9vjjIjIiIixWNARERERPV6/vnnDYb53/t4/vnnpa5eozGHiIiIiOq1dOlSvPzyyzXus4dUEgZEREREVK+AgAAEBARIXQ2LYZcZERERKR4DIiIiUjQ5zppMDWOOvyG7zIiISJFcXFzg4OCAq1evwt/fHy4uLuISF2QbBEFAeXk5rl27BgcHB7i4uJj8WgyIiIhIkRwcHBAWFoa8vDxcvXpV6upQI7i7uyM0NBQODqZ3fDEgIiIixXJxcUFoaCju3Lkji7W9qOEcHR3h5OTU6NY9BkRERKRoVSuy378qOykLk6qJiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBRP0oDo0KFDePzxxxEcHAyVSoUvv/xS3FdRUYF58+YhMjISHh4eCA4Oxvjx43H16lWD17hx4wbGjh0LLy8veHt7Y8qUKSguLjYoc+rUKTz66KNo0qQJQkJCsHLlSmt8PCIim5GnLcXR7OvI05ZKXRUiSUgaEN26dQtdunTB+++/X21fSUkJTpw4gYULF+LEiRPYsWMHsrKy8MQTTxiUGzt2LM6ePYu9e/di9+7dOHToEKZNmybu1+l06N+/P1q0aIGMjAy89dZbWLx4MT766COLfz4iIluwPT0XMckpGLMhDTHJKdienit1lYisTiUIgiB1JQBApVJh586dGDp0aK1l0tPT0aNHD1y+fBmhoaE4d+4cIiIikJ6ejqioKADAnj17MGjQIPzyyy8IDg7GunXr8Je//AX5+flwcXEBAMyfPx9ffvklzp8/b3T9dDod1Go1tFotvLy8GvVZiYjkIk9bipjkFOjv+SZwVKlweH5fBKndpKsYkZkY+/1tUzlEWq0WKpUK3t7eAIDU1FR4e3uLwRAAxMXFwcHBAWlpaWKZ2NhYMRgCgPj4eGRlZeH333+v9b3Kysqg0+kMHkRE9ibn+i2DYAgAKgUBl66XSFMhIonYTEB0+/ZtzJs3D6NHjxYjvPz8fAQEBBiUc3Jygo+PD/Lz88UygYGBBmWqfq8qU5OkpCSo1WrxERISYs6PQ0QkC2F+HnBQGW5zVKnQ0s9dmgoRScQmAqKKigo8/fTTEAQB69ats8p7LliwAFqtVnxcuXLFKu9LRGRNQWo3JA2LhKPqblTkqFJh+bBO7C4jxXGSugL1qQqGLl++jJSUFIP+P41Gg8LCQoPyd+7cwY0bN6DRaMQyBQUFBmWqfq8qUxNXV1e4urqa62MQEcnWyO6hiG3rj0vXS9DSz53BECmSrFuIqoKhCxcu4N///jd8fX0N9kdHR6OoqAgZGRnitpSUFOj1evTs2VMsc+jQIVRUVIhl9u7di3bt2qFZs2bW+SBERDIXpHZDdLgvgyFSLEkDouLiYmRmZiIzMxMAkJOTg8zMTOTm5qKiogIjRozA8ePHsWXLFlRWViI/Px/5+fkoLy8HAHTo0AEDBgzA1KlTcezYMRw5cgSJiYkYNWoUgoODAQBjxoyBi4sLpkyZgrNnz2L79u149913MWfOHKk+NhEREcmMpMPuDxw4gL59+1bbPmHCBCxevBhhYWE1Pm///v3o06cPgLsTMyYmJuLrr7+Gg4MDhg8fjjVr1sDT01Msf+rUKSQkJCA9PR1+fn6YMWMG5s2b16C6ctg9ERGR7TH2+1s28xDJHQMiIiIi22OX8xARERERWQIDIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIykzxtKY5mX0eetlTqqlADOUldASIiInuwPT0XC3achl4AHFRA0rBIjOweKnW1yEhsISIiImqkPG2pGAwBgF4AXt1xhi1FNoQBERERUSPlXL8lBkNVKgUBl66XSFMhajAGRERERI0U5ucBB5XhNkeVCi393KWpEDUYAyIiIqJGClK7IWlYJBxVd6MiR5UKy4d1QpDaTeKakbGYVE1ERGQGI7uHIratPy5dL0FLP3cGQzaGAREREVED5WlLkXP9FsL8PAwCnyC1GwMhG8WAiIiIqAE4vN4+MYeIiIjISBxeb78YEBERKRhnVm4YDq+3X+wyIyJSKHb9NFzV8Pp7gyIOr7cPbCEiIlIgdv2YhsPr7RdbiIiIFKiurh9+udeNw+vtEwMiIiIFYtdP43B4vf1hlxkRkQKx64fIEFuIiIgUil0/RH9gQEREpGDs+iG6i11mREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIGoQLQRIRkT3isHsyGheCJCIieyVpC9GhQ4fw+OOPIzg4GCqVCl9++aXBfkEQsGjRIgQFBcHNzQ1xcXG4cOGCQZkbN25g7Nix8PLygre3N6ZMmYLi4mKDMqdOncKjjz6KJk2aICQkBCtXrrT0R7M7XAiSiIjsmaQB0a1bt9ClSxe8//77Ne5fuXIl1qxZg/Xr1yMtLQ0eHh6Ij4/H7du3xTJjx47F2bNnsXfvXuzevRuHDh3CtGnTxP06nQ79+/dHixYtkJGRgbfeeguLFy/GRx99ZPHP1xBy74qqayFIIiIiWydpl9nAgQMxcODAGvcJgoDVq1fjtddew5NPPgkA+OSTTxAYGIgvv/wSo0aNwrlz57Bnzx6kp6cjKioKALB27VoMGjQIb7/9NoKDg7FlyxaUl5fj448/houLCzp27IjMzEysWrXKIHCSki10RXEhSCIiaqw8bSlyrt9CmJ+H7GZIl21SdU5ODvLz8xEXFyduU6vV6NmzJ1JTUwEAqamp8Pb2FoMhAIiLi4ODgwPS0tLEMrGxsXBxcRHLxMfHIysrC7///ruVPk3tbKUrigtBEhFRY2xPz0VMcgrGbEhDTHIKtqfnSl0lA7JNqs7PzwcABAYGGmwPDAwU9+Xn5yMgIMBgv5OTE3x8fAzKhIWFVXuNqn3NmjWr8f3LyspQVlYm/q7T6RrxaWpXV1eU3IINLgRJRESmqO3mP7atv2y+S2TbQiS1pKQkqNVq8RESEmKR96nqirqXnLuigtRuiA73lc0JTERE8mcLeaiyDYg0Gg0AoKCgwGB7QUGBuE+j0aCwsNBg/507d3Djxg2DMjW9xr3vUZMFCxZAq9WKjytXrjTuA9WCXVFERGTvbOHmX7YBUVhYGDQaDfbt2ydu0+l0SEtLQ3R0NAAgOjoaRUVFyMjIEMukpKRAr9ejZ8+eYplDhw6hoqJCLLN37160a9eu1u4yAHB1dYWXl5fBw1JGdg/F4fl9sW3qwzg8v6/sEqqJiIgawxZu/lWCIAj1F7OM4uJiXLx4EQDQtWtXrFq1Cn379oWPjw9CQ0OxYsUKJCcnY/PmzQgLC8PChQtx6tQp/Pzzz2jSpAmAuyPVCgoKsH79elRUVGDSpEmIiorC1q1bAQBarRbt2rVD//79MW/ePJw5cwaTJ0/GO++806BRZjqdDmq1Glqt1qLBERERkb3K05ZaPQ/V6O9vQUL79+8XAFR7TJgwQRAEQdDr9cLChQuFwMBAwdXVVejXr5+QlZVl8Bq//fabMHr0aMHT01Pw8vISJk2aJNy8edOgzMmTJ4VevXoJrq6uQvPmzYXk5OQG11Wr1QoABK1Wa/LnJSIiIusy9vtb0hYiW8IWIiIiIttj7Pe3bHOIiIiIiKyFAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERDYiT1uKo9nXkactlboqdsdJ6goQERFR/ban52LBjtPQC4CDCkgaFomR3UOlrpbdYAsRUSPwbo2IrCFPWyoGQwCgF4BXd5zhtceM2EJEZCLerRGRteRcvyUGQ1UqBQGXrpcgSO0mTaXsDFuIiEzAuzUisqYwPw84qAy3OapUaOnnLk2F7BADIiIT1HW3RkRkbkFqNyQNi4Sj6m5U5KhSYfmwTmwdMiN2mRGZoOpu7d6giHdrRGRJI7uHIratPy5dL0FLP3cGQ2bGFiIiE/BujYikEKR2Q3S4L681FsAWIiIT8W6NiMh+MCAiaoQgtRsDISIiO8AuMyIiIlI8BkREREQWxAlcbQO7zIiIiCyEE7jaDrYQERERWQAncLUtDIiIiIgsgBO42hYGRCQL7GMnInvD5TZsCwMiktz29FzEJKdgzIY0xCSnYHt6rtRVIiJqNKkncK3pRpM3n7VTCYIg1F+MdDod1Go1tFotvLy8pK6O3cjTliImOaXaEhiH5/fl/D5EZBfytKVWn8C1pmRuAIpM8Db2+5ujzEhSdfWxMyAiIntg7Qlca0rmXvCv08A96y9WJXjHtvXntfb/scuMJMU+diKyFbbS3VTTjaYeYIJ3PYwOiHQ6ndEPc6msrMTChQsRFhYGNzc3hIeH44033sC9vXyCIGDRokUICgqCm5sb4uLicOHCBYPXuXHjBsaOHQsvLy94e3tjypQpKC4uNls9yXRS97ETERnDlnIda7rRdAB481kPo7vMvL29oVKp6iwjCAJUKhUqKysbXTEAWLFiBdatW4fNmzejY8eOOH78OCZNmgS1Wo2ZM2cCAFauXIk1a9Zg8+bNCAsLw8KFCxEfH4+ff/4ZTZo0AQCMHTsWeXl52Lt3LyoqKjBp0iRMmzYNW7duNUs9qXZ52lLkXL+FMD+PWoMcLpJKRHJW23xC1u5uMuZ6Cvxxo/nqjjOoFATxRhNAtW283v7B6KTqgwcPGv2ivXv3NrlC9xoyZAgCAwPx97//Xdw2fPhwuLm54dNPP4UgCAgODsZLL72El19+GQCg1WoRGBiITZs2YdSoUTh37hwiIiKQnp6OqKgoAMCePXswaNAg/PLLLwgODjaqLkyqrl1t/6ScoZWI7MHR7OsYsyGt2vZtUx9GdLivVepgyvW0pmRuKRK8pWb2pGpzBTkN8cgjj+Cjjz7Cf//7X7Rt2xYnT57E4cOHsWrVKgBATk4O8vPzERcXJz5HrVajZ8+eSE1NxahRo5Camgpvb28xGAKAuLg4ODg4IC0tDU899VSN711WVoaysjLxd3N2BdqT2v5J5XJHRUTUWFVdUPePhrVWd5Op19OakrmtneBtS0weZVZUVIS///3vOHfuHACgY8eOmDx5MtRqtdkqN3/+fOh0OrRv3x6Ojo6orKzEm2++ibFjxwIA8vPzAQCBgYEGzwsMDBT35efnIyAgwGC/k5MTfHx8xDI1SUpKwpIlS8z2WexRXf+kHD1GRPaiti4oa13LeD21DpMCouPHjyM+Ph5ubm7o0aMHAGDVqlV488038cMPP+Chhx4yS+X++c9/YsuWLdi6dSs6duyIzMxMzJo1C8HBwZgwYYJZ3qM2CxYswJw5c8TfdTodQkJCLPqetqauf1Kp76iIiMxJylxHXk+tw6Rh97Nnz8YTTzyBS5cuYceOHdixYwdycnIwZMgQzJo1y2yVmzt3LubPn49Ro0YhMjIS48aNw+zZs5GUlAQA0Gg0AICCggKD5xUUFIj7NBoNCgsLDfbfuXMHN27cEMvUxNXVFV5eXgYPMlTXkHmOHiMiexOkdkN0uK/Vr2O8nlqHyS1EGzZsgJPTH093cnLCK6+8YpCr01glJSVwcDCM2RwdHaHX6wEAYWFh0Gg02LdvHx588EEAd1ty0tLSMH36dABAdHQ0ioqKkJGRgW7dugEAUlJSoNfr0bNnT7PVVYnqa0bm6DEiIvPg9dTyTAqIvLy8kJubi/bt2xtsv3LlCpo2bWqWigHA448/jjfffBOhoaHo2LEjfvrpJ6xatQqTJ08GAKhUKsyaNQvLli1DmzZtxGH3wcHBGDp0KACgQ4cOGDBgAKZOnYr169ejoqICiYmJGDVqlNEjzKh29f2TMoGPiMg8eD21LJMCopEjR2LKlCl4++238cgjjwAAjhw5grlz52L06NFmq9zatWuxcOFCvPDCCygsLERwcDCee+45LFq0SCzzyiuv4NatW5g2bRqKiorQq1cv7NmzR5yDCAC2bNmCxMRE9OvXDw4ODhg+fDjWrFljtnoqHf9JiYjI1pm0uGt5eTnmzp2L9evX486dOwAAZ2dnTJ8+HcnJyXB1dTV7RaWm5HmIjJ0MjIiISG6M/f5u1Gr3JSUlyM7OBgCEh4fD3d1+M96VGhBxckUiIrJlVlnt3t3dHZGRkY15CZIxTq5IRGR/2OpfM5MCotu3b2Pt2rXYv38/CgsLxVFfVU6cOGGWypG0OBkYEZF9Yat/7UwKiKZMmYIffvgBI0aMQI8ePepd9JVsEycDIyKyH2z1r5tJAdHu3bvx7bffIiYmxtz1IRmRerp6IiIyH7b6182kgKh58+ZmnW+I5IuTgRGR3DAHxjRs9a+bSUt3/PWvf8W8efNw+fJlc9eHZEiq6eqJiO63PT0XMckpGLMhDTHJKdienit1lWwGlwCpm0ktRFFRUbh9+zZatWoFd3d3ODs7G+y/ceOGWSpHRGQsthrYP+bANB5b/WtnUkA0evRo/Prrr1i+fDkCAwOZVE1EkuLIGWVgDox5cHWBmpkUEB09ehSpqano0qWLuetDRNQgbDVQDubAkCWZlEPUvn17lJaWmrsuREQNVlerAdkX5sCQJZnUQpScnIyXXnoJb775JiIjI6vlEClpaQsikhZbDZSFOTBkKSatZebgcLdh6f7cIUEQoFKpUFlZaZ7ayYhS1zIjsgXb03OrzZfFHCLbxQR5MieLrmW2f/9+kytGRGQuVV+csW39cXh+X7Ya2AEmyJNUTAqIevfubVS5F154AUuXLoWfn58pb0NEVCt+cdofJsiTlExKqjbWp59+Cp1OZ8m3ICIFqu2LM0/LwR6WlqctxdHs6xY51kyQJymZ1EJkLBPSk4iI6sX5aKRh6VY5JsiTlCzaQkREZAlVX5z34henZVmjVY7D6klKFm0hIiKyhKovzvtHlvGL03Ks1Sonl2H1HOmmPAyIiGwEL9CG5PLFqRTW7M6SemkJJuwrE7vMiGwAV/iuWZDaDdHhvgyGrEAp3VlM2Fcui7YQPfPMM5zE0AzYMqBschuKzPNRuZTQKseEfeUyOSAqKirCsWPHUFhYCL1eb7Bv/PjxAIB169Y1rnbEpluS1QWa5yNJ3Z1laRzpplwmBURff/01xo4di+LiYnh5eRks4aFSqcSAiBpHbi0DJA25XKB5PpISMGFfuUwKiF566SVMnjwZy5cvh7s7o2ZLkVPLAEnH3BdoU7u8eD6SUiiha5CqMykg+vXXXzFz5kwGQxYml5YBkp65LtCN6fLi+Uj2pq6bA3vvGqTqTBplFh8fj+PHj5u7LnQfpYzqIOM0dkRVY0fP8Hy0D5ZcesOWcOQm3c/oFqJdu3aJPw8ePBhz587Fzz//jMjISDg7OxuUfeKJJ8xXQ4Vj0y2Zizm6vHg+2jYmxd/FfDiqidEB0dChQ6ttW7p0abVtKpUKlZWVjaoUGWLTLZmDubq8eD7aJgYBf2A+HNXE6C4zvV5v1IPBEJE82XqXF7t6Gocryf+Ba+FRTUxKqv7kk08wcuRIuLq6GmwvLy/HZ599xmH3RDIlxy4vY0a9savHNPceWybF/4FD66kmKkEQhPqLGXJ0dEReXh4CAgIMtv/2228ICAiwy1YinU4HtVoNrVbL2beJzMSYQCdPW4qY5JRqX+SH5/flF1gdajq2AKoFAUoOLPO0pbK6OSDLMPb726QWIkEQDCZjrPLLL79ArVab8pJEpDDG5rQw36Phaju2h+f3xeH5fRkE/D/mw9G9GhQQde3aFSqVCiqVCv369YOT0x9Pr6ysRE5ODgYMGGD2ShKR/TE20GFXT8PVdWy5GC5RzRoUEFWNNMvMzER8fDw8PT3FfS4uLmjZsiWGDx9u1goSkX2qKdBxAODuYjjWg/keDccgkqjhTMoh2rx5M0aOHIkmTZpYok6yxBwiIvPbnp4rBjpV6solYleP8e49tswXIiUz9vvbpICoSnl5eY2r3YeG2t8/HQMiosaraUTZySu/Y+gHRyEwadrsGEQSWTip+sKFC5g8eTKOHj1qsL0q2doeR5kRUePUNqLsVnkl7r8tY9K0eTBpmGpj6iLP9syktcwmTpwIBwcH7N69GxkZGThx4gROnDiBn376CSdOnDBrBX/99Vc888wz8PX1hZubGyIjIw3WURMEAYsWLUJQUBDc3NwQFxeHCxcuGLzGjRs3MHbsWHh5ecHb2xtTpkxBcXGxWetJRLWrax01TpJHZF1cx61mJrUQZWZmIiMjA+3btzd3fQz8/vvviImJQd++ffHdd9/B398fFy5cQLNmzcQyK1euxJo1a7B582aEhYVh4cKFiI+Px88//yzmOI0dOxZ5eXnYu3cvKioqMGnSJEybNg1bt261aP2J6K76Rj0xaZrIOriES+1MCogiIiJw/fp1c9elmhUrViAkJAQbN24Ut4WFhYk/C4KA1atX47XXXsOTTz4J4O4s2oGBgfjyyy8xatQonDt3Dnv27EF6ejqioqIAAGvXrsWgQYPw9ttvIzg42OKfg0gqcmkWr2/Ukxxn0CayR5zXq3YmdZmtWLECr7zyCg4cOIDffvsNOp3O4GEuu3btQlRUFP785z8jICAAXbt2xYYNG8T9OTk5yM/PR1xcnLhNrVajZ8+eSE1NBQCkpqbC29tbDIYAIC4uDg4ODkhLS6v1vcvKyiz2uYis4d5m8UeSUvDhwWzJ6mLMOmpBajfOkWMmXPeNasMu6tqZ1EJUFYA89thjBjNWmzup+n//+x/WrVuHOXPm4NVXX0V6ejpmzpwJFxcXTJgwAfn5+QCAwMBAg+cFBgaK+/Lz86stMeLk5AQfHx+xTE2SkpKwZMkSs3wOImu7v1lcAJD03XlABTwXGy5JnZTSCiR1qxzXfaO6cF6v2pkUEO3fv9/c9aiRXq9HVFQUli9fDuDuTNlnzpzB+vXrMWHCBIu+94IFCzBnzhzxd51Oh5CQEIu+J5G51NQsDgArvjuPJ7oES3bxs/dRT1IHI8wPIWPI6eZE6huIe5nUZda7d284ODhgw4YNmD9/Plq3bo3evXsjNzcXjo6OZqtcUFAQIiIiDLZ16NABubl3M+I1Gg0AoKCgwKBMQUGBuE+j0aCwsNBg/507d3Djxg2xTE1cXV3h5eVl8CCyFWF+Hqi+2uDdL8hL10tqfA67WRqnrpF01lJXfgjRveTQRX1/t/7yb36W9PpjUkD0r3/9C/Hx8XBzc8NPP/2EsrIyAIBWqxVbc8whJiYGWVlZBtv++9//okWLFgDuJlhrNBrs27dP3K/T6ZCWlobo6GgAQHR0NIqKipCRkSGWSUlJgV6vR8+ePc1WVyI5CVK7Yf7A6qNAa8sV4DDcxpNDMML8ELIVNXXrf/SfHEmvPyYFRMuWLcP69euxYcMGODs7i9tjYmLMOg/R7Nmz8eOPP2L58uW4ePEitm7dio8++ggJCQkAAJVKhVmzZmHZsmXYtWsXTp8+jfHjxyM4OFhcd61Dhw4YMGAApk6dimPHjuHIkSNITEzEqFGjOMKM7NpzvcOxYFB78QuytlwBObRs2AM5BCPGJK8TyUFt3fpSXn9MyiHKyspCbGxste1qtRpFRUWNrZOoe/fu2LlzJxYsWIClS5ciLCwMq1evxtixY8Uyr7zyCm7duoVp06ahqKgIvXr1wp49ewzWWduyZQsSExPRr18/ODg4YPjw4VizZo3Z6kkkV8/FhuOJLsF15gpwGK55yCVZVU75IUS1qWkqjipSXX9MCog0Gg0uXryIli1bGmw/fPgwWrVqZY56iYYMGYIhQ4bUul+lUmHp0qVYunRprWV8fHw4CSMpVn2JzFwZ3XzkEowYk7wup2RWUp6qG4gF/zoN/X37pLr+mNRlNnXqVLz44otIS0uDSqXC1atXsWXLFrz88suYPn26uetIRBbEbhbzkkOyan2YM0ZyMLJ7KI4seAzTHm1Vb9e+NZi02r0gCFi+fDmSkpJQUnI3YdDV1RUvv/wy3njjDbNXUg642j3ZO66Mrgx52lLEJKdUaxE8PL8v/+4kGUtef4z9/jYpIKpSXl6Oixcvori4GBEREfD09DT1pWSPARER2YOj2dcxZkP1Wfq3TX0Y0eG+EtSIyLKM/f42KYeoiouLS7V5goiISL6YM0ZUM5NyiIiIyDYxZ4yoZo1qISIiItsjl9FwRHLCgIiISIHsfV05ooZilxkREREpHgMiIjvCBVqJiEzDLjMiG1PbDMPb03PFNckcVEDSsEiM7B4qYU2JiGwHAyIiG1Jb0FPbAq2xbf2ZJ0JEZAR2mRHZiLpWpa9rgVYiIqofAyIiG1FX0FM12d69ONkeEZHxGBAR2Yi6gh5OtkdE1DjMISKyEVVBz6s7zqBSEKoFPZxsj4jIdAyIiGxIfUEPJ9sjIjINAyIiG8Ogh4jI/JhDRGRlnDyRiMyF1xPzYQsRkRVx8kQiMhdeT8yLLUREVlLXPEKkHLyjJ3Pg9cT82EJEZCV1zSPEnCBl4B09mQuvJ+bHFiIiK+HkicrGO3oyJ15PzI8BEZGVcPJEZePyKmROvJ6YH7vMiKyIkycqV9Ud/b1BEe/oqTF4PTEvthARWVmQ2g3R4b68eCkM7+jJEng9MR+2EBERWYkS7+jztKXIuX4LYX4eivi8ZLsYEJFi8UJNUlDSTOMcVUe2hAERKZI5L9QMrIiqq21UXWxbf/6fkCwxICLFMeeFmnfARDXjPDlka5hUTYpjruHPcphXhrMek1xxnhyyNQyISHHMdaGWel6Z7em5iElOwZgNaYhJTsH29FyrvC+RMTiqjmwNu8xIcaou1K/uOINKQTD5Qi3lvDLMzyBboMRRdWS7GBCRIpnjQm2uwMoUzM8gW6GkUXVk2xgQkWKZ40It1R0wZz0mIjIv5hARNZIUM8UyP4OIyLzYQkRmx3l5rIP5GdbHc5vIfjEgIrPivDzWxfwM6+G5TWTf2GVGZiOHeXmILIHnNpH9Y0BEZiP1vDxkPUqbEJLnNpH9s6mAKDk5GSqVCrNmzRK33b59GwkJCfD19YWnpyeGDx+OgoICg+fl5uZi8ODBcHd3R0BAAObOnYs7d+5Yufb2jzPTKoMSJ4TkuU1k/2wmIEpPT8eHH36Izp07G2yfPXs2vv76a3z++ec4ePAgrl69imHDhon7KysrMXjwYJSXl+Po0aPYvHkzNm3ahEWLFln7I9g9jnyyf0rtOuK5TWT/VIIgCPUXk1ZxcTEeeughfPDBB1i2bBkefPBBrF69GlqtFv7+/ti6dStGjBgBADh//jw6dOiA1NRUPPzww/juu+8wZMgQXL16FYGBgQCA9evXY968ebh27RpcXFyMqoNOp4NarYZWq4WXl5fFPqs9yNOWcuSTnTqafR1jNqRV275t6sOIDveVoEbWxXObyPYY+/1tEy1ECQkJGDx4MOLi4gy2Z2RkoKKiwmB7+/btERoaitTUVABAamoqIiMjxWAIAOLj46HT6XD27Nla37OsrAw6nc7gQcaRYl4esg6ldx3x3CayX7IPiD777DOcOHECSUlJ1fbl5+fDxcUF3t7eBtsDAwORn58vlrk3GKraX7WvNklJSVCr1eIjJCSkkZ+EyPax64hqorQke7JPsp6H6MqVK3jxxRexd+9eNGnSxKrvvWDBAsyZM0f8XafTMSgiAieEJEOcn8k8OOmn9GQdEGVkZKCwsBAPPfSQuK2yshKHDh3Ce++9h++//x7l5eUoKioyaCUqKCiARqMBAGg0Ghw7dszgdatGoVWVqYmrqytcXV3N+GnIFvEiVTNOCElA7Un2sW39eX40AINKeZB1l1m/fv1w+vRpZGZmio+oqCiMHTtW/NnZ2Rn79u0Tn5OVlYXc3FxER0cDAKKjo3H69GkUFhaKZfbu3QsvLy9ERERY/TOR7VDi8HKihjBlfiZ2rxlS6shNOZJ1C1HTpk3RqVMng20eHh7w9fUVt0+ZMgVz5syBj48PvLy8MGPGDERHR+Phhx8GAPTv3x8REREYN24cVq5cifz8fLz22mtISEhgCxDVine+RPWrSrK/NyiqK8meLSHV1RVU8lpjXbJuITLGO++8gyFDhmD48OGIjY2FRqPBjh07xP2Ojo7YvXs3HB0dER0djWeeeQbjx4/H0qVLJaw1yZ0tzkzMO2+ytoYk2bMlpGZKH7kpJzYxD5EcKG0eIqXnzuRpSxGTnFLtzvfw/L6yPB688yYpGTM/k9LnsKrL9vRcvLrjDCoFQQwq+f9rPsZ+f8u6y4ykwS/XP+58779I1RUMSRVEsnuPpGZMkn1Du9eUhCM35YEBERngl+sfGnKRkjKIZA4C2QJTbjKUhCM3pceAiAzwy9WQMRcpqYNI3nmTrWBLCMmZzSdVk3kxwa/hpE7A5uzRZEu4/AnJFVuIyACbtRtODi00vPMmsg9KH9AiJQZEVA2/XBtGLkEkcxCIbBsHtEiLw+6NpLRh90pnyl2aMUOPyXS8cyZ7ZmtTfdgSDrsnMpGpd2lsobEc3jmTveOAFukxqZroHpxNV374NyEl4IAW6TEgIsW7d8kLqUeMUXX8m5AScLSo9NhlRop2f1fMvAHtJR8xRobkMIpPKZinJS0OaJEWW4hIsWrqilm5JwvzBrbnXZqM8M7ZOran5yImOQVjNqQhJjkF29Nzpa6SInGeJumwhYgUq7aumM7NvXF4fl/epckI75wtS+rZ1onkgAERKVZdXTEcMSY//JtYDkc4EbHLjBSMXTFEd3GEExFbiEjh2BVDJJ/Z1omkxICIFI9dMUS8OSBiQERERAB4c0DKxhwiIiIiI907kSvZF7YQERERGYFr6tk3thARERHVg2vq2T8GRERERPXgmnr2jwERERFRPThXk/1jQERERFQPTuRq/5hUTUREZATO1WTfGBARkc3J05Yi5/othPl58EuJrIpzNdkvBkREZFM49JmILIE5RERkMzj0mYgshQEREdkMDn0mW8EZrW0Pu8yIyGZUDX2+Nyji0GeSG3br2ia2EJFF8O6ILIFDn0nu2K1ru9hCRGbHuyOyJA59Jjmrq1uX56q8sYWIzIp3R2QNQWo3RIf78guGZIczWtsuBkRkVkx6JSJb1tjufnbr2i52mZFZMemViGxVQ7r765oclN26toktRGRWvDsiIlvUkO7+7em5iElOwZgNaYhJTsH29NxqZdita3vYQkRmx7sjIrI1xiZD1xY4xbb157XOxjEgIovgej9EZEuM7e7nKDL7Jfsus6SkJHTv3h1NmzZFQEAAhg4diqysLIMyt2/fRkJCAnx9feHp6Ynhw4ejoKDAoExubi4GDx4Md3d3BAQEYO7cubhz5441Pwr9P85RRERyY2x3P0eR2S/ZtxAdPHgQCQkJ6N69O+7cuYNXX30V/fv3x88//wwPDw8AwOzZs/HNN9/g888/h1qtRmJiIoYNG4YjR44AACorKzF48GBoNBocPXoUeXl5GD9+PJydnbF8+XIpP57icI4iIpIrY7r7qwKnV3ecQaUgME/SjqgEQRDqLyYf165dQ0BAAA4ePIjY2FhotVr4+/tj69atGDFiBADg/Pnz6NChA1JTU/Hwww/ju+++w5AhQ3D16lUEBgYCANavX4958+bh2rVrcHFxqfd9dTod1Go1tFotvLy8LPoZ7VWethQxySnVmqQPz+/LiwmRieoa7USWk6ctZZ6kjTD2+1v2XWb302q1AAAfHx8AQEZGBioqKhAXFyeWad++PUJDQ5GamgoASE1NRWRkpBgMAUB8fDx0Oh3Onj1b4/uUlZVBp9MZPKhxOEcRkXkZM9qJLIOjyOyPTQVEer0es2bNQkxMDDp16gQAyM/Ph4uLC7y9vQ3KBgYGIj8/XyxzbzBUtb9qX02SkpKgVqvFR0hIiJk/jfKw753kxNZz2TgrPJF52VRAlJCQgDNnzuCzzz6z+HstWLAAWq1WfFy5csXi72nvOEcRyYU9tKywxZXIvGSfVF0lMTERu3fvxqFDh/DAAw+I2zUaDcrLy1FUVGTQSlRQUACNRiOWOXbsmMHrVY1CqypzP1dXV7i6upr5UxDnKCKp2cs8MpwVnsi8ZN9CJAgCEhMTsXPnTqSkpCAsLMxgf7du3eDs7Ix9+/aJ27KyspCbm4vo6GgAQHR0NE6fPo3CwkKxzN69e+Hl5YWIiAjrfBASse+dpGQvLStscSUyL9m3ECUkJGDr1q346quv0LRpUzHnR61Ww83NDWq1GlOmTMGcOXPg4+MDLy8vzJgxA9HR0Xj44YcBAP3790dERATGjRuHlStXIj8/H6+99hoSEhLYCkSkMPbUssIWVyLzkf2we5VKVeP2jRs3YuLEiQDuTsz40ksvYdu2bSgrK0N8fDw++OADg+6wy5cvY/r06Thw4AA8PDwwYcIEJCcnw8nJuJiQw+6JbIMxw9C3p+dWm0eG82ER2Sdjv79lHxDJBQMiskf2NodNQ1crZ8sKkf0z9vtb9l1mRGQZ9jZreEOTpbneHhHdS/ZJ1URkfvY4h429JEsTkTQYEBEpkD0GD5z4k4gagwERkQLZY/DAYehE1BjMISJSIHtdsZvD0InIVAyIiBTKksGDlKPXmCxNJA+2NoqVARGRglkieLC30WtE1HC2eB1gDhERmY2cRq/Z+mr2RLZKTteBhmALERGZTV2j16zZZG6Ld6dE9kIu14GGYgsRKQZbDCxPDqPXbPXulMheyOE6YAoGRKQI29NzEZOcgjEb0hCTnILt6blSV8kuyWHouz3OsURkS+RwHTAFu8zsjK1l9VtDQ5d0oMaReui7Pa1mT2SrpL4OmIIBkR1h3kTNbLU/25ZJOfTdXudYIrI1tjYFBgMiOyFFK4ittEaxxUB5bPHulIikxYDITli7FcSWWqPYYtAwthLo1sfW7k4bwl7+RkRywoDITlizFcQWc3LYYvCHur5MbSnQVSr+jYgsg6PM7IQ1s/ptdRRPkNoN0eG+ig6G6hptx+Hq8se/EZHlsIXIjlirFYQ5ObapvpY9Jp/LH/9GRJbDFiI7Y41WEFudY0Lp6mvZs9XJ1JSEfyPjcBJWMgVbiMgkzMmxPfW17DH5XP74N6ofc6zIVCpBEIT6i5FOp4NarYZWq4WXl5fU1SEyyfb03Gpfpvd/WeRpSxnoyhz/RjXL05YiJjmlWtB/eH5fHicFM/b7my1ERApiTMuePQ9Xtxf8G9WMOVbUGAyIiBSGX6ZkrzjggxqDSdVERGQXOOCDGoMtRERkUZxVmayJAz7IVAyIiMhiOOKHpMBuYTIFu8yIyCI4qzIR2RIGRERkEba6xAuRXHCCSetilxmRzNlqDg5H/BCZjt3N1scWIiIZq2sx1trI5a6SI37I1kn1v8TuZmmwhYhIpupbjLUmcrur5IgfslVS/i9xgklpsIWIjCKXVgclaWgOjlzvKq2x4DCROUn9v8RFfKXBgIjqZUq3DTVeQy+KTGImMg+p/5fY3SwNdplRnUzptiHzaOjK5kxiJjIPOfwvsbvZ+hgQUZ3Yly2thlwUGxpAkXLZ6shFa5HL/xInmLQuBkRUJzncKSldQy6KvKuk+pgrWdjegyr+LykPAyKJyf2iIpc7JTIe7yqpNubqApfbaEZL4f+SsjAgkpCtXFR4p0RkH8zRBc68QrJXihpl9v7776Nly5Zo0qQJevbsiWPHjklWF6mHdTYUh04T2T5zDOeWegQWkaUoJiDavn075syZg9dffx0nTpxAly5dEB8fj8LCQknqw4sKEVmbOYZzc44cslcqQRCE+ovZvp49e6J79+547733AAB6vR4hISGYMWMG5s+fX+/zdTod1Go1tFotvLy8Gl2fPG0pYpJTqiUrH57fl60wRGRRedrSRnWBb0/PrZZXKMfufiLA+O9vReQQlZeXIyMjAwsWLBC3OTg4IC4uDqmpqZLUicnKRCSVxiYLM6+Q7JEiAqLr16+jsrISgYGBBtsDAwNx/vz5Gp9TVlaGsrIy8XedTmf2evGiQkS2iiOwyN4oJoeooZKSkqBWq8VHSEiIRd6HycpERETSU0RA5OfnB0dHRxQUFBhsLygogEajqfE5CxYsgFarFR9XrlyxRlWJiIhIAooIiFxcXNCtWzfs27dP3KbX67Fv3z5ER0fX+BxXV1d4eXkZPIiIiMg+KSKHCADmzJmDCRMmICoqCj169MDq1atx69YtTJo0SeqqERERkcQUExCNHDkS165dw6JFi5Cfn48HH3wQe/bsqZZoTURERMqjmHmIGsvc8xARERGR5Rn7/a2IHCIiIiKiujAgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPMXMQ9RYVbMTWGKRVyIiIrKMqu/t+mYZYkBkpJs3bwKAxRZ5JSIiIsu5efMm1Gp1rfs5MaOR9Ho9rl69iqZNm0KlUkldHavR6XQICQnBlStXOCFlI/FYmgePo/nwWJoHj6P5WOJYCoKAmzdvIjg4GA4OtWcKsYXISA4ODnjggQekroZkuMCt+fBYmgePo/nwWJoHj6P5mPtY1tUyVIVJ1URERKR4DIiIiIhI8RgQUZ1cXV3x+uuvw9XVVeqq2DweS/PgcTQfHkvz4HE0HymPJZOqiYiISPHYQkRERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEBAA4dOgQHn/8cQQHB0OlUuHLL7802C8IAhYtWoSgoCC4ubkhLi4OFy5ckKayMlbfcZw4cSJUKpXBY8CAAdJUVuaSkpLQvXt3NG3aFAEBARg6dCiysrIMyty+fRsJCQnw9fWFp6cnhg8fjoKCAolqLE/GHMc+ffpUOy+ff/55iWosX+vWrUPnzp3FSQOjo6Px3Xffift5PhqnvuMo1fnIgIgAALdu3UKXLl3w/vvv17h/5cqVWLNmDdavX4+0tDR4eHggPj4et2/ftnJN5a2+4wgAAwYMQF5envjYtm2bFWtoOw4ePIiEhAT8+OOP2Lt3LyoqKtC/f3/cunVLLDN79mx8/fXX+Pzzz3Hw4EFcvXoVw4YNk7DW8mPMcQSAqVOnGpyXK1eulKjG8vXAAw8gOTkZGRkZOH78OB577DE8+eSTOHv2LACej8aq7zgCEp2PAtF9AAg7d+4Uf9fr9YJGoxHeeustcVtRUZHg6uoqbNu2TYIa2ob7j6MgCMKECROEJ598UpL62LrCwkIBgHDw4EFBEO6eg87OzsLnn38uljl37pwAQEhNTZWqmrJ3/3EUBEHo3bu38OKLL0pXKRvWrFkz4W9/+xvPx0aqOo6CIN35yBYiqldOTg7y8/MRFxcnblOr1ejZsydSU1MlrJltOnDgAAICAtCuXTtMnz4dv/32m9RVsglarRYA4OPjAwDIyMhARUWFwXnZvn17hIaG8rysw/3HscqWLVvg5+eHTp06YcGCBSgpKZGiejajsrISn332GW7duoXo6Giejya6/zhWkeJ85OKuVK/8/HwAQGBgoMH2wMBAcR8ZZ8CAARg2bBjCwsKQnZ2NV199FQMHDkRqaiocHR2lrp5s6fV6zJo1CzExMejUqROAu+eli4sLvL29DcryvKxdTccRAMaMGYMWLVogODgYp06dwrx585CVlYUdO3ZIWFt5On36NKKjo3H79m14enpi586diIiIQGZmJs/HBqjtOALSnY8MiIisaNSoUeLPkZGR6Ny5M8LDw3HgwAH069dPwprJW0JCAs6cOYPDhw9LXRWbVttxnDZtmvhzZGQkgoKC0K9fP2RnZyM8PNza1ZS1du3aITMzE1qtFl988QUmTJiAgwcPSl0tm1PbcYyIiJDsfGSXGdVLo9EAQLXREgUFBeI+Mk2rVq3g5+eHixcvSl0V2UpMTMTu3buxf/9+PPDAA+J2jUaD8vJyFBUVGZTneVmz2o5jTXr27AkAPC9r4OLigtatW6Nbt25ISkpCly5d8O677/J8bKDajmNNrHU+MiCieoWFhUGj0WDfvn3iNp1Oh7S0NIM+X2q4X375Bb/99huCgoKkrorsCIKAxMRE7Ny5EykpKQgLCzPY361bNzg7Oxucl1lZWcjNzeV5eY/6jmNNMjMzAYDnpRH0ej3Kysp4PjZS1XGsibXOR3aZEQCguLjYIPrOyclBZmYmfHx8EBoailmzZmHZsmVo06YNwsLCsHDhQgQHB2Po0KHSVVqG6jqOPj4+WLJkCYYPHw6NRoPs7Gy88soraN26NeLj4yWstTwlJCRg69at+Oqrr9C0aVMxD0OtVsPNzQ1qtRpTpkzBnDlz4OPjAy8vL8yYMQPR0dF4+OGHJa69fNR3HLOzs7F161YMGjQIvr6+OHXqFGbPno3Y2Fh07txZ4trLy4IFCzBw4ECEhobi5s2b2Lp1Kw4cOIDvv/+e52MD1HUcJT0frT6ujWRp//79AoBqjwkTJgiCcHfo/cKFC4XAwEDB1dVV6Nevn5CVlSVtpWWoruNYUlIi9O/fX/D39xecnZ2FFi1aCFOnThXy8/OlrrYs1XQcAQgbN24Uy5SWlgovvPCC0KxZM8Hd3V146qmnhLy8POkqLUP1Hcfc3FwhNjZW8PHxEVxdXYXWrVsLc+fOFbRarbQVl6HJkycLLVq0EFxcXAR/f3+hX79+wg8//CDu5/lonLqOo5Tno0oQBMGyIRcRERGRvDGHiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPARER2bzy8nKpq1CNHOtERLVjQEREstOnTx8kJiYiMTERarUafn5+WLhwIapWGmrZsiXeeOMNjB8/Hl5eXpg2bRoA4PDhw3j00Ufh5uaGkJAQzJw5E7du3RJf94MPPkCbNm3QpEkTBAYGYsSIEeK+L774ApGRkXBzc4Ovry/i4uLE5/bp0wezZs0yqOPQoUMxceJE8XdT60RE8sCAiIhkafPmzXBycsKxY8fw7rvvYtWqVfjb3/4m7n/77bfRpUsX/PTTT1i4cCGys7MxYMAADB8+HKdOncL27dtx+PBhJCYmAgCOHz+OmTNnYunSpcjKysKePXsQGxsLAMjLy8Po0aMxefJknDt3DgcOHMCwYcPQ0KUeG1onIpIPLu5KRLLTp08fFBYW4uzZs1CpVACA+fPnY9euXfj555/RsmVLdO3aFTt37hSf8+yzz8LR0REffvihuO3w4cPo3bs3bt26hW+//RaTJk3CL7/8gqZNmxq834kTJ9CtWzdcunQJLVq0qLE+Dz74IFavXi1uGzp0KLy9vbFp0yYAMKlOTZo0adRxIiLzYQsREcnSww8/LAZDABAdHY0LFy6gsrISABAVFWVQ/uTJk9i0aRM8PT3FR3x8PPR6PXJycvCnP/0JLVq0QKtWrTBu3Dhs2bIFJSUlAIAuXbqgX79+iIyMxJ///Gds2LABv//+e4Pr3NA6EZF8MCAiIpvk4eFh8HtxcTGee+45ZGZmio+TJ0/iwoULCA8PR9OmTXHixAls27YNQUFBWLRoEbp06YKioiI4Ojpi7969+O677xAREYG1a9eiXbt2YtDi4OBQrfusoqKi0XUiIvlgQEREspSWlmbw+48//og2bdrA0dGxxvIPPfQQfv75Z7Ru3braw8XFBQDg5OSEuLg4rFy5EqdOncKlS5eQkpICAFCpVIiJicGSJUvw008/wcXFRez+8vf3R15envhelZWVOHPmTL2fwZg6EZE8MCAiIlnKzc3FnDlzkJWVhW3btmHt2rV48cUXay0/b948HD16FImJicjMzMSFCxfw1VdfiQnMu3fvxpo1a5CZmYnLly/jk08+gV6vR7t27ZCWlobly5fj+PHjyM3NxY4dO3Dt2jV06NABAPDYY4/hm2++wTfffIPz589j+vTpKCoqqvcz1FcnIpIPJ6krQERUk/Hjx6O0tBQ9evSAo6MjXnzxRXEoe006d+6MgwcP4i9/+QseffRRCIKA8PBwjBw5EgDg7e2NHTt2YPHixbh9+zbatGmDbdu2oWPHjjh37hwOHTqE1atXQ6fToUWLFvjrX/+KgQMHAgAmT56MkydPYvz48XBycsLs2bPRt2/fej9DfXUiIvngKDMikp2aRnUREVkSu8yIiIhI8RgQERERkeKxy4yIiIgUjy1EREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHj/BxuX9VtXNomyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABELElEQVR4nO3deXRU9f3/8dckkBCWDFs2IRB2RCAgi4QoBEED9adGtEX4VnYsCApSF7AugNag1harFixWqAtKsaBWcaFsHgQpi1GhypEUSJSExZYJhBAgub8/aKaErDOZmXvnzvNxzpwDd+7MvOfmztz3vD+bwzAMQwAAADYRZnYAAAAAvkRyAwAAbIXkBgAA2ArJDQAAsBWSGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgPAFPPmzZPD4ajVvg6HQ/PmzfNrPGlpaUpLS7Ps8wGoPZIbIMQtX75cDofDfatXr55atWql8ePH64cffjA7PMtJSkoqd7xiY2N1zTXXaM2aNT55/tOnT2vevHnatGmTT54PCEUkNwAkSQsWLNBrr72mJUuWaMSIEXr99dc1ePBgnTlzxi+v9/DDD6uoqMgvz+1vvXr10muvvabXXntN9913nw4fPqyRI0dqyZIldX7u06dPa/78+SQ3QB3UMzsAANYwYsQI9e3bV5I0efJktWzZUk899ZTee+89/exnP/P569WrV0/16gXnV1CrVq3085//3P3/sWPHqmPHjvrd736nqVOnmhgZAInKDYAqXHPNNZKk7Ozsctu//fZb3XbbbWrevLkaNGigvn376r333iu3z7lz5zR//nx16tRJDRo0UIsWLXT11Vdr3bp17n0q63NTXFyse++9VzExMWrSpIluuukmff/99xViGz9+vJKSkipsr+w5ly1bpmuvvVaxsbGKjIxUt27dtHjxYo+ORU3i4+N1+eWX68CBA9Xud/ToUU2aNElxcXFq0KCBkpOT9ec//9l9/8GDBxUTEyNJmj9/vrvpy9/9jQC7Cc6fTQD87uDBg5KkZs2aubft3btXqampatWqlebMmaNGjRrpL3/5izIyMvTXv/5Vt9xyi6QLSUZmZqYmT56s/v37q6CgQDt37tTu3bt13XXXVfmakydP1uuvv64xY8Zo4MCB2rBhg2644YY6vY/Fixfriiuu0E033aR69erpb3/7m+666y6VlpZq+vTpdXruMufOnVNubq5atGhR5T5FRUVKS0vT/v37NWPGDLVr106rVq3S+PHjdeLECc2cOVMxMTFavHixpk2bpltuuUUjR46UJPXs2dMncQIhwwAQ0pYtW2ZIMv7+978bx44dM3Jzc423337biImJMSIjI43c3Fz3vkOHDjV69OhhnDlzxr2ttLTUGDhwoNGpUyf3tuTkZOOGG26o9nUfe+wx4+KvoKysLEOScdddd5Xbb8yYMYYk47HHHnNvGzdunNG2bdsan9MwDOP06dMV9ktPTzfat29fbtvgwYONwYMHVxuzYRhG27Ztjeuvv944duyYcezYMePLL780br/9dkOScffdd1f5fIsWLTIkGa+//rp729mzZ42UlBSjcePGRkFBgWEYhnHs2LEK7xeAZ2iWAiBJGjZsmGJiYpSYmKjbbrtNjRo10nvvvafWrVtLkv79739rw4YN+tnPfqaTJ0/q+PHjOn78uH788Uelp6fru+++c4+uatq0qfbu3avvvvuu1q+/du1aSdI999xTbvusWbPq9L6ioqLc/3a5XDp+/LgGDx6sf/3rX3K5XF495yeffKKYmBjFxMQoOTlZq1at0h133KGnnnqqysesXbtW8fHxGj16tHtb/fr1dc899+jUqVPavHmzV7EAqIhmKQCSpBdffFGdO3eWy+XSK6+8ok8//VSRkZHu+/fv3y/DMPTII4/okUceqfQ5jh49qlatWmnBggW6+eab1blzZ3Xv3l3Dhw/XHXfcUW3zyqFDhxQWFqYOHTqU296lS5c6va/PPvtMjz32mLZt26bTp0+Xu8/lcsnpdHr8nFdddZWeeOIJORwONWzYUJdffrmaNm1a7WMOHTqkTp06KSys/G/Kyy+/3H0/AN8guQEgSerfv797tFRGRoauvvpqjRkzRvv27VPjxo1VWloqSbrvvvuUnp5e6XN07NhRkjRo0CBlZ2fr3Xff1SeffKKXX35Zv/vd77RkyRJNnjy5zrFWNflfSUlJuf9nZ2dr6NCh6tq1q377298qMTFRERERWrt2rX73u9+535OnWrZsqWHDhnn1WAD+R3IDoILw8HBlZmZqyJAheuGFFzRnzhy1b99e0oWmlNpc2Js3b64JEyZowoQJOnXqlAYNGqR58+ZVmdy0bdtWpaWlys7OLlet2bdvX4V9mzVrphMnTlTYfmn1429/+5uKi4v13nvvqU2bNu7tGzdurDF+X2vbtq2++uorlZaWlqvefPvtt+77paoTNwC1R58bAJVKS0tT//79tWjRIp05c0axsbFKS0vTSy+9pLy8vAr7Hzt2zP3vH3/8sdx9jRs3VseOHVVcXFzl640YMUKS9Pvf/77c9kWLFlXYt0OHDnK5XPrqq6/c2/Ly8irMEhweHi5JMgzDvc3lcmnZsmVVxuEvP/nJT5Sfn6+VK1e6t50/f17PP/+8GjdurMGDB0uSGjZsKEmVJm8AaofKDYAq3X///frpT3+q5cuXa+rUqXrxxRd19dVXq0ePHpoyZYrat2+vI0eOaNu2bfr+++/15ZdfSpK6deumtLQ09enTR82bN9fOnTv19ttva8aMGVW+Vq9evTR69Gj94Q9/kMvl0sCBA7V+/Xrt37+/wr633367HnzwQd1yyy265557dPr0aS1evFidO3fW7t273ftdf/31ioiI0I033qhf/OIXOnXqlJYuXarY2NhKEzR/uvPOO/XSSy9p/Pjx2rVrl5KSkvT222/rs88+06JFi9SkSRNJFzpAd+vWTStXrlTnzp3VvHlzde/eXd27dw9ovEBQM3u4FgBzlQ0F37FjR4X7SkpKjA4dOhgdOnQwzp8/bxiGYWRnZxtjx4414uPjjfr16xutWrUy/t//+3/G22+/7X7cE088YfTv399o2rSpERUVZXTt2tX49a9/bZw9e9a9T2XDtouKiox77rnHaNGihdGoUSPjxhtvNHJzcysdGv3JJ58Y3bt3NyIiIowuXboYr7/+eqXP+d577xk9e/Y0GjRoYCQlJRlPPfWU8corrxiSjAMHDrj382QoeE3D3Kt6viNHjhgTJkwwWrZsaURERBg9evQwli1bVuGxW7duNfr06WNEREQwLBzwgsMwLqrXAgAABDn63AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGArITeJX2lpqQ4fPqwmTZowzTkAAEHCMAydPHlSl112WYUFaC8VcsnN4cOHlZiYaHYYAADAC7m5uWrdunW1+4RcclM2xXlubq6io6NNjgYAANRGQUGBEhMT3dfx6oRcclPWFBUdHU1yAwBAkKlNlxI6FAMAAFshuQEAALZCcgMAAGwl5PrcAABCR0lJic6dO2d2GKiliIiIGod51wbJDQDAdgzDUH5+vk6cOGF2KPBAWFiY2rVrp4iIiDo9D8kNAMB2yhKb2NhYNWzYkElbg0DZJLt5eXlq06ZNnf5mJDcAAFspKSlxJzYtWrQwOxx4ICYmRocPH9b58+dVv359r5+HDsUAAFsp62PTsGFDkyOBp8qao0pKSur0PCQ3AABboikq+Pjqb0ZyAwAAbIXkBgAABMSmTZvkcDj8PoqN5AYAPJDnKtLW7OPKcxWZHQpQwbx589SrVy+zwzAdo6UAoJZW7sjR3NVfq9SQwhxS5sgeGtWvjdlhAR47d+5cnUYjWR2VGwCohTxXkTuxkaRSQ3po9R4qOPCp0tJSZWZmql27doqKilJycrLefvttSf9r0lm/fr369u2rhg0bauDAgdq3b58kafny5Zo/f76+/PJLORwOORwOLV++XNKFjrqLFy/WTTfdpEaNGunXv/51tXGUvdbHH3+s3r17KyoqStdee62OHj2qDz/8UJdffrmio6M1ZswYnT592v244uJi3XPPPYqNjVWDBg109dVXa8eOHf45WNUguQGAWjhwvNCd2JQpMQwdPH668gfANgLZFJmZmalXX31VS5Ys0d69e3Xvvffq5z//uTZv3uze51e/+pWeffZZ7dy5U/Xq1dPEiRMlSaNGjdIvf/lLXXHFFcrLy1NeXp5GjRrlfty8efN0yy236Ouvv3Y/pibz5s3TCy+8oK1btyo3N1c/+9nPtGjRIq1YsUIffPCBPvnkEz3//PPu/R944AH99a9/1Z///Gft3r1bHTt2VHp6uv7973/76AjVDs1SAFAL7Vo2UphD5RKccIdDSS2ZS8XOAtkUWVxcrCeffFJ///vflZKSIklq3769tmzZopdeekl33nmnJOnXv/61Bg8eLEmaM2eObrjhBp05c0ZRUVFq3Lix6tWrp/j4+ArPP2bMGE2YMMGjmJ544gmlpqZKkiZNmqS5c+cqOztb7du3lyTddttt2rhxox588EEVFhZq8eLFWr58uUaMGCFJWrp0qdatW6c//elPuv/++707MF6gcgMAtZDgjFLmyB4K/+88HOEOh54c2V0JziiTI4O/BLopcv/+/Tp9+rSuu+46NW7c2H179dVXlZ2d7d6vZ8+e7n8nJCRIko4ePVrj8/ft29fjmC5+rbi4ODVs2NCd2JRtK3vt7OxsnTt3zp0MSVL9+vXVv39/ffPNNx6/dl1QuQGAWhrVr40GdY7RweOnldSyIYmNzVXXFOmPv/2pU6ckSR988IFatWpV7r7IyEh3gnNxR+CySe9KS0trfP5GjRp5HNOlr3VpJ2SHw1Gr1w40khsA8ECCM4qkJkQEuimyW7duioyMVE5OjrvZ6WIXV2+qEhERUeelC7zVoUMHRURE6LPPPlPbtm0lXRiVtWPHDs2aNSugsZDcAABQibKmyIdW71GJYfi9KbJJkya67777dO+996q0tFRXX321XC6XPvvsM0VHR7sThuokJSXpwIEDysrKUuvWrdWkSRNFRkb6Jd5LNWrUSNOmTdP999+v5s2bq02bNnr66ad1+vRpTZo0KSAxlCG5AQCgCoFuinz88ccVExOjzMxM/etf/1LTpk115ZVX6qGHHqpV88+tt96q1atXa8iQITpx4oSWLVum8ePH+zXmiy1cuFClpaW64447dPLkSfXt21cff/yxmjVrFrAYJMlhGIZR8272UVBQIKfTKZfLpejoaLPDAQD42JkzZ3TgwAG1a9dODRo0MDsceKC6v50n129GSwEAAFshuQEAIMRMnTq13HDzi29Tp041O7w6o88NAAAhZsGCBbrvvvsqvc8OXTZIbgAACDGxsbGKjY01Owy/oVkKAADYCskNAMCWrDhzLqrnqwHcNEsBAGwlIiJCYWFhOnz4sGJiYhQREeFepgDWZRiGjh07VukyD54iuQEA2EpYWJjatWunvLw8HT582Oxw4AGHw6HWrVsrPDy8Ts9DcgMAsJ2IiAi1adNG58+fN22tJXiufv36dU5sJJIbAIBNlTVv1LWJA8GHDsUAAMBWSG4AAICtkNwAAABbIbkBAAC2QnIDAABsheQGAADYCskNAACwFZIbAABgKyQ3AADAVkxNbhYvXqyePXsqOjpa0dHRSklJ0YcffljtY1atWqWuXbuqQYMG6tGjh9auXRugaAEAQDAwNblp3bq1Fi5cqF27dmnnzp269tprdfPNN2vv3r2V7r9161aNHj1akyZN0hdffKGMjAxlZGRoz549AY4cAABYlcMwDMPsIC7WvHlzPfPMM5o0aVKF+0aNGqXCwkK9//777m0DBgxQr169tGTJklo9f0FBgZxOp1wul6Kjo30WNwAA8B9Prt+W6XNTUlKit956S4WFhUpJSal0n23btmnYsGHltqWnp2vbtm1VPm9xcbEKCgrK3QAAgH2Zntx8/fXXaty4sSIjIzV16lStWbNG3bp1q3Tf/Px8xcXFldsWFxen/Pz8Kp8/MzNTTqfTfUtMTPRp/AAAwFpMT266dOmirKwsbd++XdOmTdO4ceP0z3/+02fPP3fuXLlcLvctNzfXZ88NAACsp57ZAURERKhjx46SpD59+mjHjh167rnn9NJLL1XYNz4+XkeOHCm37ciRI4qPj6/y+SMjIxUZGenboAEAgGWZXrm5VGlpqYqLiyu9LyUlRevXry+3bd26dVX20QEAAKHH1MrN3LlzNWLECLVp00YnT57UihUrtGnTJn388ceSpLFjx6pVq1bKzMyUJM2cOVODBw/Ws88+qxtuuEFvvfWWdu7cqT/+8Y9mvg0AAGAhpiY3R48e1dixY5WXlyen06mePXvq448/1nXXXSdJysnJUVjY/4pLAwcO1IoVK/Twww/roYceUqdOnfTOO++oe/fuZr0FAABgMZab58bfmOcGAIDgE5Tz3AAAAPgCyQ0AALAVkhsAAGArJDcAAMBWSG4AAICtkNwAAABbIbkBAAC2QnIDAABsheQGAADYCskNAACVyHMVaWv2ceW5iswOBR4ydW0pAACsaOWOHM1d/bVKDSnMIWWO7KFR/dqYHRZqicoNAAAXyXMVuRMbSSo1pIdW76GCE0RIbgAAuMiB44XuxKZMiWHo4PHT5gQEj5HcAABwkXYtGynMUX5buMOhpJYNzQkIHiO5AQDgIgnOKGWO7KFwx4UMJ9zh0JMjuyvBGWVyZNZi5Q7XdCgGAJvJcxXpwPFCtWvZiAuyl0b1a6NBnWN08PhpJbVsyHG8hNU7XJPcAICNWP2iE0wSnFEkNZWoqsP1oM4xljleNEsBgE0wygeBEAwdrkluAMAmguGig+AXDB2uSW4AwCaC4aKD4BcMHa7pcwMANlF20Xlo9R6VGIYlLzqwB6t3uCa5AQAbsfpFB/Zh5Q7XJDcAYDNWvugAgUCfGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AIGTluYq0Nfs4i4vaDJP4AQBC0sodOe5V1MMcUubIHhrVr43ZYcEHqNwAAEJOnqvIndhIUqkhPbR6DxUcmyC5AQCEnAPHC92JTZkSw9DB46fNCQg+RXIDAAg57Vo2Upij/LZwh0NJLRuaExB8iuQGABByEpxRyhzZQ+GOCxlOuMOhJ0d2Z8FRm6BDMQAgJI3q10aDOsfo4PHTSmrZkMTGRkhuAAAhK8EZRVJjQzRLAQAAWyG5AQAAtmJqcpOZmal+/fqpSZMmio2NVUZGhvbt21ftY5YvXy6Hw1Hu1qBBgwBFDAAArM7U5Gbz5s2aPn26Pv/8c61bt07nzp3T9ddfr8LCwmofFx0drby8PPft0KFDAYoYAABYnakdij/66KNy/1++fLliY2O1a9cuDRo0qMrHORwOxcfH+zs8AAAQhCzV58blckmSmjdvXu1+p06dUtu2bZWYmKibb75Ze/furXLf4uJiFRQUlLsBAAD7skxyU1paqlmzZik1NVXdu3evcr8uXbrolVde0bvvvqvXX39dpaWlGjhwoL7//vtK98/MzJTT6XTfEhMT/fUWAACABTgMwzBq3s3/pk2bpg8//FBbtmxR69ata/24c+fO6fLLL9fo0aP1+OOPV7i/uLhYxcXF7v8XFBQoMTFRLpdL0dHRPokdAAD4V0FBgZxOZ62u35aYxG/GjBl6//339emnn3qU2EhS/fr11bt3b+3fv7/S+yMjIxUZGemLMAEAQBAwtVnKMAzNmDFDa9as0YYNG9SuXTuPn6OkpERff/21EhIS/BAhAAAINqZWbqZPn64VK1bo3XffVZMmTZSfny9Jcjqdioq6MB322LFj1apVK2VmZkqSFixYoAEDBqhjx446ceKEnnnmGR06dEiTJ0827X0AAADrMDW5Wbx4sSQpLS2t3PZly5Zp/PjxkqScnByFhf2vwPSf//xHU6ZMUX5+vpo1a6Y+ffpo69at6tatW6DCBgAAFmaZDsWB4kmHJAAAYA2eXL8tMxQcAADAF0huAACArZDcAAAAWyG5AQAAtkJyAwAAbIXkBgAA2ArJDQAAsBWSGwAAYCskNwAAwFZIboD/ynMVaWv2ceW5iswOBQBQB6auLQVYxcodOZq7+muVGlKYQ8oc2UOj+rUxOywAgBeo3CDk5bmK3ImNJJUa0kOr91DBAYAgRXKDkHfgeKE7sSlTYhg6ePy0OQEBAOqE5AYhr13LRgpzlN8W7nAoqWVDcwICANQJyQ1CXoIzSpkjeyjccSHDCXc49OTI7kpwRpkcGQDAG3QoBiSN6tdGgzrH6ODx00pq2ZDEBgCCGMkN8F8JziiSGgCwAZqlAAAIUszPVTkqNwAABCHm56oalRsAsAl+xYcO5ueqHpUbALABfsWHlurm56LvIJUbAAh6/IoPPczPVT2SmwCjbAwEj2D5vDLLduhhfq7q0SwVQJSNgeARTJ/Xsl/xFyc4/Iq3P+bnqhqVmwChbAwEj2D7vPIrPnQlOKOU0qEFf+tLULkJEDp/AbWX5yrSgeOFateykSmfj2D8vPIrHvgfkpsAoWwM1I4VmoOC9fPKLNvABTRLBQhlY6BmVmkO4vMKBDcqNwFE2RionpWag/i8AsGL5CbAKBsDVbNacxCfVyA40SwFwDJoDgLgC1RuAFgKzUEA6orkBoDl0BwEoC5olgIAALZCcgMAAGyF5AYAANSZlRaapc8NAACoEyvMLH4xKjcAAMBrVplZ/GIkN/A5K5UmgWDH5wlWV93M4mahWQo+ZbXSJIKH2SuBWxGfJwQDq80sLplcucnMzFS/fv3UpEkTxcbGKiMjQ/v27avxcatWrVLXrl3VoEED9ejRQ2vXrg1AtKiJFUuTCA4rd+QodeEGjVm6XakLN2jljhyzQzIdnycECyvOLG5qcrN582ZNnz5dn3/+udatW6dz587p+uuvV2FhYZWP2bp1q0aPHq1Jkybpiy++UEZGhjIyMrRnz54ARo7KWLE0CevjIl45Pk8IJqP6tdGWOUP05pQB2jJniOkVRlObpT766KNy/1++fLliY2O1a9cuDRo0qNLHPPfccxo+fLjuv/9+SdLjjz+udevW6YUXXtCSJUv8HjOqZsXSJKzPSiuBWwmfJ/uzW1OslWYWt1SHYpfLJUlq3rx5lfts27ZNw4YNK7ctPT1d27Zt82tsduHPzolWLE3C+sou4hfjIs7nye5oivUvy3QoLi0t1axZs5Samqru3btXuV9+fr7i4uLKbYuLi1N+fn6l+xcXF6u4uNj9/4KCAt8EHIQC0TmRRQ/hqbKL+EOr96jEMLiIX4TPkz1V1RQ7qHOMV39ju1WAfMEyyc306dO1Z88ebdmyxafPm5mZqfnz5/v0OYORrz9M1bFSaRLBgYt41fg82Y8vm2IZUVc5SzRLzZgxQ++//742btyo1q1bV7tvfHy8jhw5Um7bkSNHFB8fX+n+c+fOlcvlct9yc3N9FncwoXMirC7BGaWUDi24kMP2fNUUS2f8qpma3BiGoRkzZmjNmjXasGGD2rVrV+NjUlJStH79+nLb1q1bp5SUlEr3j4yMVHR0dLlbKKJfAwBYg6/6U/GjtWqmNktNnz5dK1as0LvvvqsmTZq4+804nU5FRV34I48dO1atWrVSZmamJGnmzJkaPHiwnn32Wd1www166623tHPnTv3xj3807X1cyortn/RrAIC689X3uy+aYhlRVzWHYRhGzbv56cUdjkq3L1u2TOPHj5ckpaWlKSkpScuXL3ffv2rVKj388MM6ePCgOnXqpKefflo/+clPavWaBQUFcjqdcrlcfqniWL39M89VRL8GAPCCFb/fV+7IqfCj1eyY/MWT67epyY0Z/Jnc5LmKlLpwQ4UsesucISQSABDErPz9Hio/Wj25fte6WcqTIdSh2q+FycgAwJ6s/P3OiLqKap3cNG3atMpmpDKGYcjhcKikpKTOgQUj2j8BwJ74fg8utU5uNm7c6M84bIFOuwBgT3y/Bxf63PhBqLR/AkCo4fvdPH7pc3OpEydO6E9/+pO++eYbSdIVV1yhiRMnyul0evuUtmHH9k8rDm8HgECz4/e7HXlVudm5c6fS09MVFRWl/v37S5J27NihoqIiffLJJ7ryyit9HqivBKJyYzdWHP4IAAgtfh8Kfs0116hjx45aunSp6tW7UPw5f/68Jk+erH/961/69NNPvYs8AEhuPGPl4Y8AgNDh92apnTt3lktsJKlevXp64IEH1LdvX2+eEhZl5eGPAABUxqu1paKjo5WTk1Nhe25urpo0aVLnoGCePFeRtmYfdy+8xppUAIBg41VyM2rUKE2aNEkrV65Ubm6ucnNz9dZbb2ny5MkaPXq0r2NEgKzckaPUhRs0Zul2pS7coJU7cny2wBsAAIHiVbPUb37zGzkcDo0dO1bnz5+XJNWvX1/Tpk3TwoULfRogAiPPVeTuNCxdmKjqodV7NKhzjE8WeIPnGKEGAN7xKrmJiIjQc889p8zMTGVnZ0uSOnTooIYNaaoIVjX1rWH4Y2AxQg0AvOf1PDeS1LBhQ/Xo0cNXscBETC1uHdVV0UgwAaBmXiU3Z86c0fPPP6+NGzfq6NGjKi0tLXf/7t27fRIcAoepxa2DEWrwFE2YQHleJTeTJk3SJ598ottuu039+/evcUFNBAf61lhDIKtoXBSDH02YNeM8Dz1eTeLndDq1du1apaam+iMmv2ISPwSDlTtyKlTRfH3B4qIY/Jhks2ac5/bh90n8WrVqxXw2gB/5u4pGvx57oAmzepznocureW6effZZPfjggzp06JCv4wHwXwnOKKV0aOGXL+HqLooIHoGeZPPSST6tzu7nebD9PQLJq8pN3759debMGbVv314NGzZU/fr1y93/73//2yfBAfAPRsfZQyAHAgRj846dz/Ng/HsEklfJzejRo/XDDz/oySefVFxcHB2KgSDD6Dj78HUTZmWdb4O1eccu5/mlf5Ng/XsEklfJzdatW7Vt2zYlJyf7Oh4AAcLoOPvw1SSbVVUDgrlvT7Cf55X9TRKbNwzav0egeNXnpmvXrioqoo0PCHb+7NeD4FJVNSDPVRT0C+hWdp4HQ3+Vqv4mjSLCg/rvEQheJTcLFy7UL3/5S23atEk//vijCgoKyt0AAMGlpuqMnRbQrWyRYCuq6m9y+myprf4e/uBVs9Tw4cMlSUOHDi233TAMORwOlZSU1D0yAEDA1NT5Ntibd8oEU3+V6v4mKR1a2OLv4S9eJTcbN270dRwAABPVpvOtHRbQDab+QzX9Tezw9/AXr5KbwYMH12q/u+66SwsWLFDLli29eRkAQADZpTpTnWAbHh4KfxN/8KrPTW29/vrr9MEBgCBi907mwdh/yO5/E3/wqnJTW14sWwUAgF9RDbE/vyY3AABYkZn9VVil3P9IbgAACBCWTQgMv/a5AQAAF1Q3USJ8i+QGMEEwzI4KwLfsvkq5lXic3Jw/f14LFizQ999/X+O+P//5zxUdHe1VYIBdBcvsqAB8K9iXsQgmHic39erV0zPPPKPz58/XuO/ixYuZ4wa4CGVpIHQF4zD0YOVVh+Jrr71WmzdvVlJSko/DAeytprI0IygAe2MYemB4ldyMGDFCc+bM0ddff60+ffqoUaNG5e6/6aabfBIcYDdVzY761fcn9H8vf84ICiAEsGyC/zkML2baCwurujXL6gtnFhQUyOl0yuVy0R8Ipli5I6fcWjEPjOiipz78tkLCs2XOEL4AAeC/PLl+e1W5KS0t9SowABXL0sG0kB8ABAOvhoK/+uqrKi4urrD97NmzevXVV+scFGB3F68VwwgKAPAtr5KbCRMmyOVyVdh+8uRJTZgwoc5BAaGEERQA4FteNUsZhiGHw1Fh+/fffy+n01nnoIBQwwgKAPAdj5Kb3r17y+FwyOFwaOjQoapX738PLykp0YEDBzR8+PBaP9+nn36qZ555Rrt27VJeXp7WrFmjjIyMKvfftGmThgwZUmF7Xl6e4uPjPXkrgOXUZgQFC+4BQM08Sm7KEo+srCylp6ercePG7vsiIiKUlJSkW2+9tdbPV1hYqOTkZE2cOFEjR46s9eP27dtXrqd0bGxsrR8LBCsW3AOA2vEouXnsscckSUlJSRo1apQaNGhQpxcfMWKERowY4fHjYmNj1bRp0zq9NhBMqprZeFDnGCo4AHAJr/rcjBs3TtKF0VFHjx6tMDS8TRv//prs1auXiouL1b17d82bN0+pqalV7ltcXFxuZFdBQYFfYwP8oarh4rsP/UfNGtFMBQAX8yq5+e677zRx4kRt3bq13Payjsb+msQvISFBS5YsUd++fVVcXKyXX35ZaWlp2r59u6688spKH5OZman58+f7JR6grmrbh6aymY0dDmnGii9kiGYqALiYVzMUp6amql69epozZ44SEhIqjJxKTk72PBCHo8YOxZUZPHiw2rRpo9dee63S+yur3CQmJjJDMXyiLh18Pe1Dc/HMxmEOyTCkiz+8zGoMwM78PkNxVlaWdu3apa5du3oVoC/1799fW7ZsqfL+yMhIRUZGBjAimMGMUUR16eDrTR+aQZ1jtOj2ZIU5HCo1DN39Zla5+y+e1ZhRVQBCmVfJTbdu3XT8+HFfx+KVrKwsJSQkmB0GTGTGKKK6dvD1dMmFS9/jg8O7VroAZ1LLhoyqAhDyvJqh+KmnntIDDzygTZs26ccff1RBQUG5W22dOnVKWVlZysrKkiQdOHBAWVlZysnJkSTNnTtXY8eOde+/aNEivfvuu9q/f7/27NmjWbNmacOGDZo+fbo3bwM2UFWSkecq8uvrVpec1IYnSy5U9h6f/mifHhzRtcKsxpJMOR4AYCVeVW6GDRsmSbr22mvL9bfxtEPxzp07y03KN3v2bEkXRmMtX75ceXl57kRHujA665e//KV++OEHNWzYUD179tTf//73Sif2Q2jw9aKTdeng68l6UGVLLly8OnhVSy5U9R57tmqqLXOGlJvVeGv2cRbhBBDyvEpuNm7c6JMXT0tLU3X9mZcvX17u/w888IAeeOABn7w27KGuScbFPGnO8SQ5qUptl1yo7j1eOquxL48HAAQrr5qlBg8erLCwMC1dulRz5sxRx44dNXjwYOXk5Cg8PNzXMQJV8tWik940b43q10Zb5gzRm1MGaMucIV71a7l4dfDq9qnte2QRTgDwsnLz17/+VXfccYf+7//+T1988YV7qLXL5dKTTz6ptWvX+jRIoDq+WHTS2+at2qwH5QuevEcW4QQQ6ryq3DzxxBNasmSJli5dqvr167u3p6amavfu3T4LDqit2lRAquNJB1+zePIe63o8ACCYeZXc7Nu3T4MGDaqw3el06sSJE3WNCQg4mnMAc+S5irQ1+zgj+uBTXjVLxcfHa//+/UpKSiq3fcuWLWrfvr0v4gICjuYcILCYkwn+4lXlZsqUKZo5c6a2b98uh8Ohw4cP64033tB9992nadOm+TpG+Am/mCqiOQcIDLPmqEJo8KpyM2fOHJWWlmro0KE6ffq0Bg0apMjISN133326++67fR0j/IBfTADMXKbD13NUWQnLn5jPq4Uzy5w9e1b79+/XqVOn1K1bNzVu3NiXsfmFJwtv2VWeq0ipCzdUmAuFRRfhK3y5W5/ZP3Ds+j1k9nG1M0+u3141S5WJiIhQt27d1L9//6BIbHBBXZcOAKqzckeOUhdu0Jil25W6cINW7sip+UEIKCs0CdmxE78Vjisu8KpZCsGNWWzhL1/m/kdzVn8t45Iv99ouKIrAsEqTkN068VvluKKOlRsEJzv+YoL5Vu7IUcaLW3VpQzdVQeux0rxOdurEb6XjGuqo3IQou/1igrnKyvGVdeDjy916fLE2GiriuFoHyU0IC9TSAbC/ysrx0oUOlXy5WxM/cPyD42oNJDcA6qyyflxhktbcNVDJic1MiwvV4weOf3BczUefGwB1Vlk/rsxbe5DYADAFlRsAPkE5HpVhziOYgeQGgM9QjsfFmNAOZqFZCkDAsa6Z/TGhHee5majcAAgofs2HhlCf0I7z3FxUbgAEDL/mQ0coT2jHeW4+khsAAcO6ZqEjlGdC5zw3H81SAAKGdc1CS6iOoOM8Nx+VGwABE8q/5kOVndaOqi3Oc/M5DOPSZe7sraCgQE6nUy6XS9HR0WaHA4SkPFdRyP2aR+jhPPctT67fNEsBCDi7zIfDBHWojl3O82BEcgMAXmCoL2Bd9LkBAA8x1BewNpIbAPAQQ30vYAZeWBXNUgDgIYb60iwHa6NyAwAeCvWhvjTLweqo3ACAF0J1gjqJdaNgfSQ3AOClUB3qS7McrI5mKQCwIX929g31ZjlYH5UbAF5hAjvrCkRnX6s1y3E+4mIkNwA8ZoeRMna9GFbV2XdQ5xifv0+rNMvZ4XyEb9EsBcAjdhgps3JHjlIXbtCYpduVunCDVu7IMTsknwm1OXjscD7ajRXmP6JyA8AjwT5SJpCVDTOEWmffYD8f7cYqVTQqNwA8UnbxvFgwXTztVNmo7BdyqHX2Dfbz0U6sVEWjcgPAI2UXz4dW71GJYQTdxdMulY3qfiFbrbOvPwX7+WgnVqqikdwA8FgwXzztcDGsTdOaVTr7BkIwn492YqUfDqY2S3366ae68cYbddlll8nhcOidd96p8TGbNm3SlVdeqcjISHXs2FHLly/3e5wAKkpwRimlQ4ugvJCM6tdGW+YM0ZtTBmjLnCFBN7LGTk1rvhLM56NdWKlJ1NTKTWFhoZKTkzVx4kSNHDmyxv0PHDigG264QVOnTtUbb7yh9evXa/LkyUpISFB6enoAIgZgF8Fc2bDSL2TgYlapojkMwzBq3s3/HA6H1qxZo4yMjCr3efDBB/XBBx9oz5497m233367Tpw4oY8++qhWr1NQUCCn0ymXy6Xo6Oi6hg0AAXHpvDwrd+RUaFoLtgoU4AlPrt9B1edm27ZtGjZsWLlt6enpmjVrVpWPKS4uVnFxsfv/BQUF/goPAPyiqs7DVviFDFhRUA0Fz8/PV1xcXLltcXFxKigoUFFR5UPNMjMz5XQ63bfExMRAhGobVpiMCQhl1Q2vpZ8JULmgSm68MXfuXLlcLvctNzfX7JCChp1ncQWCBZ2HAc8FVXITHx+vI0eOlNt25MgRRUdHKyqq8l8ukZGRio6OLndDzaw0GRPshWqgZ5ikznycs8EnqPrcpKSkaO3ateW2rVu3TikpKSZFZF9WmowJ9mGVqdmDiR3m5bGq2iyeyjkbnExNbk6dOqX9+/e7/3/gwAFlZWWpefPmatOmjebOnasffvhBr776qiRp6tSpeuGFF/TAAw9o4sSJ2rBhg/7yl7/ogw8+MOst2BZDTeFrdl/TyZ/oPOx7tUlaOGeDl6nNUjt37lTv3r3Vu3dvSdLs2bPVu3dvPfroo5KkvLw85eT8r59Hu3bt9MEHH2jdunVKTk7Ws88+q5dffpk5bvzASpMxwR7oO1I3dB72ndo2u3POBi9TKzdpaWmqbpqdymYfTktL0xdffOHHqFCGX4vwJaqBsIraNrtzzgavoOpQjMDj1yJ8hWogrKK2nbQ5Z4OXZWYoDhRmKAbMlecqohpYhdp0cIVveDLDM+esNXhy/Sa5AQALYFRO4JG0BBdPrt80SwGAycycVyqU53Ch2d2+gmqeGwCwI7PmlaJaBLuicgMAJjNjFmJmIYedkdwAgMnMGJXDHC7WE8pNhL5GsxQAWECg55ViDhdroYnQt6jcAIBFBLKDK3O4WAdNhL5H5QYAQhSzkFsDCxX7HskNAISwBGcUF1CT0UToezRLAQBgIpoIfY/KDQAAJqOJ0LdIbhAyWLcHgJXRROg7JDcICQyzBIDQQZ8b2B7DLIHQxKR4oYvKDWyPYZZA6KFaG9qo3MD2zFi3B4B5qNaC5Aa2xzBLWBXNJv7BulmgWQohgWGWsBqaTfyHSfFA5QYhI5Dr9gDVodnEv6jWgsoNAAQYndz9j2ptaCO5ga0wUR+CAc0mgcGkeKGLZinYxsodOUpduEFjlm5X6sINWrkjx+yQvEZHU3uj2QTwL4dhGEbNu9lHQUGBnE6nXC6XoqOjzQ4HPpLnKlLqwg0VfglvmTMk6C4YdDQNHXmuIppNgFry5PpN5Qa2YJehn3Q0DS10cgf8g+QGtmCXifrskqQBgJlIbmALdunDYJckDUB59KMLLEZLwTbsMPSzLEl7aPUelRhG0CZpgcYoOVgZ/egCjw7FqBEXjsCjo2ntceGAldlpsIPZPLl+U7lBtbhwmIP5OWqnqg7YgzrHcPxgCUzYaA763KBKoTxyh/bx4EAHbFgd/ejMQXKDKoXqhcNOkwHaHRcOWJ1dBjsEG5qlUKVQnCKeZo7gQgdsBAM7DHYItr6XJDeoUiheOGgfr8jqX2p2uHDAXIE4x4O5H10w9r0kuUG1Qu3CEYrVquoEy5daMF84YK5gOcfNEqzVbPrcoEahNEU87eP/E8odyhEaOMdrFqx9L6ncAJcItWpVVWiig91xjtcsWKvZVG58iOHD9hFK1aqqzltGIsHuOMdrFqzVbCo3PkK7LcxQ146Q1Z23odihHKGFc7x2grGabYnlF1588UU988wzys/PV3Jysp5//nn179+/0n2XL1+uCRMmlNsWGRmpM2fO1Oq1/LH8AtNrwwx1Tahre96yFATsjnM8OHhy/Ta9WWrlypWaPXu2HnvsMe3evVvJyclKT0/X0aNHq3xMdHS08vLy3LdDhw4FMOKKgrXDFYKXLzpC1va8NbuJjuZe+JvZ5zh8z/Tk5re//a2mTJmiCRMmqFu3blqyZIkaNmyoV155pcrHOBwOxcfHu29xcXEBjLgi2m2tzY4XR18k1MFw3jJbNABvmJrcnD17Vrt27dKwYcPc28LCwjRs2DBt27atysedOnVKbdu2VWJiom6++Wbt3bs3EOFWKVg7XIUCu14cfZGYWP28ZZguAG+Z2qH4+PHjKikpqVB5iYuL07ffflvpY7p06aJXXnlFPXv2lMvl0m9+8xsNHDhQe/fuVevWrSvsX1xcrOLiYvf/CwoKfPsm/isYO1zZXbBOPlUbvuoIaeXzlmG6ALwVdKOlUlJSlJKS4v7/wIEDdfnll+ull17S448/XmH/zMxMzZ8/PyCxMUuqtdj94uirxMSq522wzq8B37L68h+wJlObpVq2bKnw8HAdOXKk3PYjR44oPj6+Vs9Rv3599e7dW/v376/0/rlz58rlcrlvubm5dY4bwSEY+pTUlZ07Qlq92Qz+Z9dmZfifqclNRESE+vTpo/Xr17u3lZaWav369eWqM9UpKSnR119/rYSEhErvj4yMVHR0dLkbQgMXx+A3ql8bbZkzRG9OGaAtc4Ywd1QIoc8V6sL0ZqnZs2dr3Lhx6tu3r/r3769FixapsLDQPZfN2LFj1apVK2VmZkqSFixYoAEDBqhjx446ceKEnnnmGR06dEiTJ082823AoqzcpyQQ7FDSt2qzGfzL7s3K8C/Tk5tRo0bp2LFjevTRR5Wfn69evXrpo48+cncyzsnJUVjY/wpM//nPfzRlyhTl5+erWbNm6tOnj7Zu3apu3bqZ9RZgcaF6cWTWbAQz+lyhLiwxQ3Eg+WOGYsBqmDUbdrByR06FEYEk6KHLk+u36ZUb+J8dmibgGUr6sINQb1aG90hubI6midBESR92EarNyqgb05dfgP8w2iB0MVIMQCijcmNjNE2ENkr6AEIVyY2N0TQBSvoAQhHNUjZG0wQAIBRRubE5miYAAKGG5CYE0DQBAAglNEshKOW5irQ1+zgjvwAAFVC5QdBh7h4AQHWo3KBOAl1BYe4eAEBNqNzAa2ZUUJi7BwBQEyo3FmblfiVmVVDK5u65GHP3AAAuRnJjUSt35Ch14QaNWbpdqQs3aOWOHLNDKqe6Coo/MXcPAKAmNEtZUFVVkUGdYyxzETdz9mPm7gEAVIfKjQWZVRXxhNkVlARnlFI6tCCxAQBUQOXGgoJlTSgqKAAAK6JyY0H+ror4sqMyFRQAgNVQubEof1VFmAAPAGB3VG4szNdVESbAAwCEApKbEBIMHZUBAKgrkpsQwgR4AIBQQHITQswevg0AQCDQoTjEMHwbAGB3JDchKMEZRVIDALAtmqUAAICtkNwAAABbIbkBAAC2QnIDAABsheQGgGX5ch00AKGD0VIALIl10AB4i8oNJPELGdbCOmi1x2e3djhOoYXKDfiFbGF5riIdOF6odi0bhdTcRNWtgxZKx6EmfHZrh+MUeqjchDh+IVvXyh05Sl24QWOWblfqwg1auSPH7JD8orJf1KyDVjM+u7XDcQpNJDchjpXCrcnTL+RgLblXlcCxDlrN+OzWDscpNNEsFeLKfiFf/OHnF7L5PGmWCWTJ3ZfNZFUlcIM6xyjBGcU6aDXgs1s7HKfQROUmxPEL2Zpq2ywTyJK7r5vJavOLOsEZpZQOLTgfK8Fnt3Y4TqGJyg34hWxBZV/ID63eoxLDqPILOVAdb2uqsniDX9R1x2e3djhOoYfkBpJYKdyKavOFHKgEwR9JVG0TOFSPz27tcJxCC8kNEECe9lmp6Qs5UAmCv5IoflED8AeSGyBA/NXxNxAJgj+TKH5RA/A1S3QofvHFF5WUlKQGDRroqquu0j/+8Y9q91+1apW6du2qBg0aqEePHlq7dm2AIgW84++Ov4HoeDuqXxttmTNEb04ZoC1zhjAJGgDLMj25WblypWbPnq3HHntMu3fvVnJystLT03X06NFK99+6datGjx6tSZMm6YsvvlBGRoYyMjK0Z8+eAEcO1J5d5tpg9BKAYOAwDMOoeTf/ueqqq9SvXz+98MILkqTS0lIlJibq7rvv1pw5cyrsP2rUKBUWFur99993bxswYIB69eqlJUuW1Ph6BQUFcjqdcrlcio6O9t0bAaqR5ypS6sINFfqsbJkzhEQBAGrBk+u3qZWbs2fPateuXRo2bJh7W1hYmIYNG6Zt27ZV+pht27aV21+S0tPTq9y/uLhYBQUF5W5AoDHXBgAEjqkdio8fP66SkhLFxcWV2x4XF6dvv/220sfk5+dXun9+fn6l+2dmZmr+/Pm+CRioA0YGAUBgmN7nxt/mzp0rl8vlvuXm5podEkIYfVYAwP9Mrdy0bNlS4eHhOnLkSLntR44cUXx8fKWPiY+P92j/yMhIRUZG+iZgAABgeaZWbiIiItSnTx+tX7/eva20tFTr169XSkpKpY9JSUkpt78krVu3rsr9AQBAaDF9Er/Zs2dr3Lhx6tu3r/r3769FixapsLBQEyZMkCSNHTtWrVq1UmZmpiRp5syZGjx4sJ599lndcMMNeuutt7Rz50798Y9/NPNtAAAAizA9uRk1apSOHTumRx99VPn5+erVq5c++ugjd6fhnJwchYX9r8A0cOBArVixQg8//LAeeughderUSe+88466d+9u1lsAAAAWYvo8N4HGPDcAAASfoJnnBgAAwNdIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANiK6fPcBFrZyHdWBwcAIHiUXbdrM4NNyCU3J0+elCQlJiaaHAkAAPDUyZMn5XQ6q90n5CbxKy0t1eHDh9WkSRM5HA6zwwmogoICJSYmKjc3lwkM64hj6RscR9/hWPoGx9F3fH0sDcPQyZMnddlll5VbuaAyIVe5CQsLU+vWrc0Ow1TR0dF8aH2EY+kbHEff4Vj6BsfRd3x5LGuq2JShQzEAALAVkhsAAGArJDchJDIyUo899pgiIyPNDiXocSx9g+PoOxxL3+A4+o6ZxzLkOhQDAAB7o3IDAABsheQGAADYCskNAACwFZIbAABgKyQ3NvTpp5/qxhtv1GWXXSaHw6F33nmn3P2GYejRRx9VQkKCoqKiNGzYMH333XfmBGthNR3H8ePHy+FwlLsNHz7cnGAtLDMzU/369VOTJk0UGxurjIwM7du3r9w+Z86c0fTp09WiRQs1btxYt956q44cOWJSxNZVm2OZlpZW4bycOnWqSRFb1+LFi9WzZ0/3BHMpKSn68MMP3fdzTtZOTcfRrPOR5MaGCgsLlZycrBdffLHS+59++mn9/ve/15IlS7R9+3Y1atRI6enpOnPmTIAjtbaajqMkDR8+XHl5ee7bm2++GcAIg8PmzZs1ffp0ff7551q3bp3OnTun66+/XoWFhe597r33Xv3tb3/TqlWrtHnzZh0+fFgjR440MWprqs2xlKQpU6aUOy+ffvppkyK2rtatW2vhwoXatWuXdu7cqWuvvVY333yz9u7dK4lzsrZqOo6SSeejAVuTZKxZs8b9/9LSUiM+Pt545pln3NtOnDhhREZGGm+++aYJEQaHS4+jYRjGuHHjjJtvvtmUeILZ0aNHDUnG5s2bDcO4cP7Vr1/fWLVqlXufb775xpBkbNu2zawwg8Klx9IwDGPw4MHGzJkzzQsqiDVr1sx4+eWXOSfrqOw4GoZ55yOVmxBz4MAB5efna9iwYe5tTqdTV111lbZt22ZiZMFp06ZNio2NVZcuXTRt2jT9+OOPZodkeS6XS5LUvHlzSdKuXbt07ty5cudk165d1aZNG87JGlx6LMu88cYbatmypbp37665c+fq9OnTZoQXNEpKSvTWW2+psLBQKSkpnJNeuvQ4ljHjfAy5hTNDXX5+viQpLi6u3Pa4uDj3faid4cOHa+TIkWrXrp2ys7P10EMPacSIEdq2bZvCw8PNDs+SSktLNWvWLKWmpqp79+6SLpyTERERatq0abl9OSerV9mxlKQxY8aobdu2uuyyy/TVV1/pwQcf1L59+7R69WoTo7Wmr7/+WikpKTpz5owaN26sNWvWqFu3bsrKyuKc9EBVx1Ey73wkuQG8dPvtt7v/3aNHD/Xs2VMdOnTQpk2bNHToUBMjs67p06drz5492rJli9mhBL2qjuWdd97p/nePHj2UkJCgoUOHKjs7Wx06dAh0mJbWpUsXZWVlyeVy6e2339a4ceO0efNms8MKOlUdx27dupl2PtIsFWLi4+MlqUKv/yNHjrjvg3fat2+vli1bav/+/WaHYkkzZszQ+++/r40bN6p169bu7fHx8Tp79qxOnDhRbn/OyapVdSwrc9VVV0kS52UlIiIi1LFjR/Xp00eZmZlKTk7Wc889xznpoaqOY2UCdT6S3ISYdu3aKT4+XuvXr3dvKygo0Pbt28u1kcJz33//vX788UclJCSYHYqlGIahGTNmaM2aNdqwYYPatWtX7v4+ffqofv365c7Jffv2KScnh3PyEjUdy8pkZWVJEudlLZSWlqq4uJhzso7KjmNlAnU+0ixlQ6dOnSqXFR84cEBZWVlq3ry52rRpo1mzZumJJ55Qp06d1K5dOz3yyCO67LLLlJGRYV7QFlTdcWzevLnmz5+vW2+9VfHx8crOztYDDzygjh07Kj093cSorWf69OlasWKF3n33XTVp0sTdZ8HpdCoqKkpOp1OTJk3S7Nmz1bx5c0VHR+vuu+9WSkqKBgwYYHL01lLTsczOztaKFSv0k5/8RC1atNBXX32le++9V4MGDVLPnj1Njt5a5s6dqxEjRqhNmzY6efKkVqxYoU2bNunjjz/mnPRAdcfR1PMx4OOz4HcbN240JFW4jRs3zjCMC8PBH3nkESMuLs6IjIw0hg4dauzbt8/coC2ouuN4+vRp4/rrrzdiYmKM+vXrG23btjWmTJli5Ofnmx225VR2DCUZy5Ytc+9TVFRk3HXXXUazZs2Mhg0bGrfccouRl5dnXtAWVdOxzMnJMQYNGmQ0b97ciIyMNDp27Gjcf//9hsvlMjdwC5o4caLRtm1bIyIiwoiJiTGGDh1qfPLJJ+77OSdrp7rjaOb56DAMw/Bv+gQAABA49LkBAAC2QnIDAABsheQGAADYCskNAACwFZIbAABgKyQ3AADAVkhuAACArZDcAAAAWyG5AQAAtkJyA8BSzp49a3YIFVgxJgBVI7kB4FdpaWmaMWOGZsyYIafTqZYtW+qRRx5R2covSUlJevzxxzV27FhFR0frzjvvlCRt2bJF11xzjaKiopSYmKh77rlHhYWF7uf9wx/+oE6dOqlBgwaKi4vTbbfd5r7v7bffVo8ePRQVFaUWLVpo2LBh7sempaVp1qxZ5WLMyMjQ+PHj3f/3NiYA1kByA8Dv/vznP6tevXr6xz/+oeeee06//e1v9fLLL7vv/81vfqPk5GR98cUXeuSRR5Sdna3hw4fr1ltv1VdffaWVK1dqy5YtmjFjhiRp586duueee7RgwQLt27dPH330kQYNGiRJysvL0+jRozVx4kR988032rRpk0aOHClPl9HzNCYA1sHCmQD8Ki0tTUePHtXevXvlcDgkSXPmzNF7772nf/7zn0pKSlLv3r21Zs0a92MmT56s8PBwvfTSS+5tW7Zs0eDBg1VYWKi1a9dqwoQJ+v7779WkSZNyr7d792716dNHBw8eVNu2bSuNp1evXlq0aJF7W0ZGhpo2barly5dLklcxNWjQoE7HCYDvULkB4HcDBgxwJzaSlJKSou+++04lJSWSpL59+5bb/8svv9Ty5cvVuHFj9y09PV2lpaU6cOCArrvuOrVt21bt27fXHXfcoTfeeEOnT5+WJCUnJ2vo0KHq0aOHfvrTn2rp0qX6z3/+43HMnsYEwDpIbgCYrlGjRuX+f+rUKf3iF79QVlaW+/bll1/qu+++U4cOHdSkSRPt3r1bb775phISEvToo48qOTlZJ06cUHh4uNatW6cPP/xQ3bp10/PPP68uXbq4E5CwsLAKTVTnzp2rc0wArIPkBoDfbd++vdz/P//8c3Xq1Enh4eGV7n/llVfqn//8pzp27FjhFhERIUmqV6+ehg0bpqefflpfffWVDh48qA0bNkiSHA6HUlNTNX/+fH3xxReKiIhwNzHFxMQoLy/P/VolJSXas2dPje+hNjEBsAaSGwB+l5OTo9mzZ2vfvn1688039fzzz2vmzJlV7v/ggw9q69atmjFjhrKysvTdd9/p3XffdXfeff/99/X73/9eWVlZOnTokF599VWVlpaqS5cu2r59u5588knt3LlTOTk5Wr16tY4dO6bLL79cknTttdfqgw8+0AcffKBvv/1W06ZN04kTJ2p8DzXFBMA66pkdAAD7Gzt2rIqKitS/f3+Fh4dr5syZ7uHVlenZs6c2b96sX/3qV7rmmmtkGIY6dOigUaNGSZKaNm2q1atXa968eTpz5ow6deqkN998U1dccYW++eYbffrpp1q0aJEKCgrUtm1bPfvssxoxYoQkaeLEifryyy81duxY1atXT/fee6+GDBlS43uoKSYA1sFoKQB+VdnoJADwJ5qlAACArZDcAAAAW6FZCgAA2AqVGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGAr/x+FoOgGs8heLQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVMUlEQVR4nO3deVhU5eIH8O+wDILIILKJgeAuiqaSirgmVzRbTLu5kLmlt3K3TKxcS0HrlsstLe8t7abFrateW9S84nJVLiKKW0ZKKJYskjIjgmzz/v7wx7mOgAzDDHNmzvfzPPM8cs47M+85Dsz3vNtRCSEEiIiIiBTMwdoVICIiIrI2BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiKyGUuXLoVKpTKqrEqlwtKlSy1an4EDB2LgwIGyfT0iMh4DERHV2ebNm6FSqaSHk5MTWrRogYkTJ+K3336zdvVkJzg42OB8+fr6ol+/ftixY4dZXr+oqAhLly7FwYMHzfJ6RErEQEREJlu+fDn+/ve/Y+PGjRg2bBg+//xzDBgwAHfu3LHI+7355psoLi62yGtb2sMPP4y///3v+Pvf/45XX30V165dw8iRI7Fx48Z6v3ZRURGWLVvGQERUD07WrgAR2a5hw4YhPDwcAPDCCy/A29sbq1atwq5du/Dss8+a/f2cnJzg5GSbf7ZatGiB5557Tvr5+eefR5s2bfD+++/jxRdftGLNiAhgCxERmVG/fv0AABkZGQbbf/rpJzzzzDPw8vJCo0aNEB4ejl27dhmUKSsrw7Jly9C2bVs0atQIzZo1Q9++fbFv3z6pTHVjiEpKSjB37lz4+PigSZMmePLJJ/Hrr79WqdvEiRMRHBxcZXt1r/npp5/i0Ucfha+vL1xcXBAaGooNGzbU6VzUxt/fHx07dkRmZuYDy+Xl5WHKlCnw8/NDo0aN0LVrV2zZskXaf/nyZfj4+AAAli1bJnXLWXr8FJG9sc1LLSKSpcuXLwMAmjZtKm07f/48IiMj0aJFC8TGxqJx48b4xz/+gREjRuCf//wnnn76aQB3g0lcXBxeeOEF9OzZEzqdDidOnMDJkyfxhz/8ocb3fOGFF/D5559j3Lhx6NOnDxITEzF8+PB6HceGDRvQqVMnPPnkk3BycsI333yDl19+GXq9HtOnT6/Xa1cqKyvD1atX0axZsxrLFBcXY+DAgbh06RJmzJiBkJAQfPXVV5g4cSIKCgowe/Zs+Pj4YMOGDXjppZfw9NNPY+TIkQCALl26mKWeRIohiIjq6NNPPxUAxL///W9x/fp1cfXqVfH1118LHx8f4eLiIq5evSqVHTx4sAgLCxN37tyRtun1etGnTx/Rtm1baVvXrl3F8OHDH/i+S5YsEff+2UpLSxMAxMsvv2xQbty4cQKAWLJkibRtwoQJomXLlrW+phBCFBUVVSkXHR0tWrVqZbBtwIABYsCAAQ+ssxBCtGzZUgwZMkRcv35dXL9+XZw+fVqMGTNGABAzZ86s8fXWrFkjAIjPP/9c2lZaWioiIiKEu7u70Ol0Qgghrl+/XuV4iahu2GVGRCaLioqCj48PAgMD8cwzz6Bx48bYtWsXHnroIQDAjRs3kJiYiGeffRa3bt1Cfn4+8vPz8fvvvyM6OhoXL16UZqV5enri/PnzuHjxotHv//333wMAZs2aZbB9zpw59TouV1dX6d9arRb5+fkYMGAAfvnlF2i1WpNe84cffoCPjw98fHzQtWtXfPXVVxg/fjxWrVpV43O+//57+Pv7Y+zYsdI2Z2dnzJo1C4WFhTh06JBJdSGiqthlRkQm++CDD9CuXTtotVp88sknOHz4MFxcXKT9ly5dghACixYtwqJFi6p9jby8PLRo0QLLly/HU089hXbt2qFz584YOnQoxo8f/8CunytXrsDBwQGtW7c22N6+fft6HdfRo0exZMkSJCUloaioyGCfVquFRqOp82v26tULb7/9NlQqFdzc3NCxY0d4eno+8DlXrlxB27Zt4eBgeO3asWNHaT8RmQcDERGZrGfPntIssxEjRqBv374YN24c0tPT4e7uDr1eDwB49dVXER0dXe1rtGnTBgDQv39/ZGRk4F//+hd++OEH/PWvf8X777+PjRs34oUXXqh3XWta0LGiosLg54yMDAwePBgdOnTAe++9h8DAQKjVanz//fd4//33pWOqK29vb0RFRZn0XCKyPAYiIjILR0dHxMXFYdCgQfjLX/6C2NhYtGrVCsDdbh5jwoCXlxcmTZqESZMmobCwEP3798fSpUtrDEQtW7aEXq9HRkaGQatQenp6lbJNmzZFQUFBle33t7J88803KCkpwa5duxAUFCRtP3DgQK31N7eWLVvizJkz0Ov1Bq1EP/30k7QfqDnsEZHxOIaIiMxm4MCB6NmzJ9asWYM7d+7A19cXAwcOxEcffYTs7Owq5a9fvy79+/fffzfY5+7ujjZt2qCkpKTG9xs2bBgAYN26dQbb16xZU6Vs69atodVqcebMGWlbdnZ2ldWiHR0dAQBCCGmbVqvFp59+WmM9LOWxxx5DTk4OEhISpG3l5eVYv3493N3dMWDAAACAm5sbAFQb+IjIOGwhIiKzmj9/Pv74xz9i8+bNePHFF/HBBx+gb9++CAsLw9SpU9GqVSvk5uYiKSkJv/76K06fPg0ACA0NxcCBA9GjRw94eXnhxIkT+PrrrzFjxowa3+vhhx/G2LFj8eGHH0Kr1aJPnz7Yv38/Ll26VKXsmDFjsGDBAjz99NOYNWsWioqKsGHDBrRr1w4nT56Uyg0ZMgRqtRpPPPEE/vSnP6GwsBCbNm2Cr69vtaHOkqZNm4aPPvoIEydORGpqKoKDg/H111/j6NGjWLNmDZo0aQLg7iDw0NBQJCQkoF27dvDy8kLnzp3RuXPnBq0vkU2z9jQ3IrI9ldPuU1JSquyrqKgQrVu3Fq1btxbl5eVCCCEyMjLE888/L/z9/YWzs7No0aKFePzxx8XXX38tPe/tt98WPXv2FJ6ensLV1VV06NBBrFixQpSWlkplqpsiX1xcLGbNmiWaNWsmGjduLJ544glx9erVaqeh//DDD6Jz585CrVaL9u3bi88//7za19y1a5fo0qWLaNSokQgODharVq0Sn3zyiQAgMjMzpXJ1mXZf25ICNb1ebm6umDRpkvD29hZqtVqEhYWJTz/9tMpzjx07Jnr06CHUajWn4BOZQCXEPe3CRERERArEMURERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4XJjRSHq9HteuXUOTJk24TD4REZGNEELg1q1bCAgIqHKj5HsxEBnp2rVrCAwMtHY1iIiIyARXr17FQw89VON+BiIjVS6Rf/XqVXh4eFi5NkRERGQMnU6HwMBA6Xu8JgxERqrsJvPw8GAgIiIisjG1DXfhoGoiIiJSPAYiIiIiUjwGIiIiIlI8jiEiIiLFq6ioQFlZmbWrQSZwdnaGo6NjvV/HqoHo8OHDeOedd5Camors7Gzs2LEDI0aMqLbsiy++iI8++gjvv/8+5syZI22/ceMGZs6ciW+++QYODg4YNWoU1q5dC3d3d6nMmTNnMH36dKSkpMDHxwczZ87Ea6+9ZuGjIyIiuRNCICcnBwUFBdauCtWDp6cn/P3967VOoFUD0e3bt9G1a1dMnjwZI0eOrLHcjh078N///hcBAQFV9sXExCA7Oxv79u1DWVkZJk2ahGnTpmHbtm0A7k63GzJkCKKiorBx40acPXsWkydPhqenJ6ZNm2axYyMiIvmrDEO+vr5wc3Pjwrs2RgiBoqIi5OXlAQCaN29u8mtZNRANGzYMw4YNe2CZ3377DTNnzsTevXsxfPhwg30XLlzAnj17kJKSgvDwcADA+vXr8dhjj+Hdd99FQEAAtm7ditLSUnzyySdQq9Xo1KkT0tLS8N577zEQEREpWEVFhRSGmjVrZu3qkIlcXV0BAHl5efD19TW5+0zWg6r1ej3Gjx+P+fPno1OnTlX2JyUlwdPTUwpDABAVFQUHBwckJydLZfr37w+1Wi2ViY6ORnp6Om7evFnje5eUlECn0xk8iIjIflSOGXJzc7NyTai+Kv8P6zMOTNaBaNWqVXBycsKsWbOq3Z+TkwNfX1+DbU5OTvDy8kJOTo5Uxs/Pz6BM5c+VZaoTFxcHjUYjPXjbDiIi+8RuMttnjv9D2Qai1NRUrF27Fps3b7bKh3XhwoXQarXS4+rVqw1eByIiImoYsg1E//nPf5CXl4egoCA4OTnByckJV65cwSuvvILg4GAAgL+/vzSQqlJ5eTlu3LgBf39/qUxubq5BmcqfK8tUx8XFRbpNB2/XQURESqBSqbBz505rV8PAwYMHoVKpLD4TULaBaPz48Thz5gzS0tKkR0BAAObPn4+9e/cCACIiIlBQUIDU1FTpeYmJidDr9ejVq5dU5vDhwwb9ivv27UP79u3RtGnThj2oOsjWFuNYRj6ytcXWrgoREdmZpUuX4uGHH7Z2NWTFqrPMCgsLcenSJennzMxMpKWlwcvLC0FBQVVG/Ts7O8Pf3x/t27cHAHTs2BFDhw7F1KlTsXHjRpSVlWHGjBkYM2aMNEV/3LhxWLZsGaZMmYIFCxbg3LlzWLt2Ld5///2GO9A6SkjJwsLtZ6EXgIMKiBsZhtGPBFm7WkRERHbLqi1EJ06cQLdu3dCtWzcAwLx589CtWzcsXrzY6NfYunUrOnTogMGDB+Oxxx5D37598fHHH0v7NRoNfvjhB2RmZqJHjx545ZVXsHjxYtlOuc/WFkthCAD0Anh9+zm2FBERkUSv1yMuLg4hISFwdXVF165d8fXXXwP4XxfT/v37ER4eDjc3N/Tp0wfp6ekAgM2bN2PZsmU4ffo0VCoVVCoVNm/eLL12fn4+nn76abi5uaFt27bYtWuXUXWqfN+9e/eiW7ducHV1xaOPPoq8vDzs3r0bHTt2hIeHB8aNG4eioiLpeSUlJZg1axZ8fX3RqFEj9O3bFykpKeY7WUayagvRwIEDIYQwuvzly5erbPPy8pIWYaxJly5d8J///Keu1bOKzPzbUhiqVCEELucXobnG1TqVIiKiWmVri5GZfxsh3o0t/vc6Li4On3/+OTZu3Ii2bdvi8OHDeO655+Dj4yOVeeONN/DnP/8ZPj4+ePHFFzF58mQcPXoUo0ePxrlz57Bnzx78+9//BnC38aDSsmXLsHr1arzzzjtYv349YmJicOXKFXh5eRlVt6VLl+Ivf/kL3Nzc8Oyzz+LZZ5+Fi4sLtm3bhsLCQjz99NNYv349FixYAAB47bXX8M9//hNbtmxBy5YtsXr1akRHR+PSpUtGv6c5yHYMkVKFeDeGw32T6hxVKgR7c50MIiK5SkjJQmR8IsZtSkZkfCISUrIs9l4lJSVYuXIlPvnkE0RHR6NVq1aYOHEinnvuOXz00UdSuRUrVmDAgAEIDQ1FbGwsjh07hjt37sDV1RXu7u5wcnKCv78//P39pcUNAWDixIkYO3Ys2rRpg5UrV6KwsBDHjx83un5vv/02IiMj0a1bN0yZMgWHDh3Chg0b0K1bN/Tr1w/PPPMMDhw4AODuHSs2bNiAd955B8OGDUNoaCg2bdoEV1dX/O1vfzPfSTMCA5HMNNe4Im5kGBz/f6kBR5UKK0d2ZusQEZFMNfRQh0uXLqGoqAh/+MMf4O7uLj0+++wzZGRkSOW6dOki/bvylhb3z8yuzr3Pa9y4MTw8PIx6XnXP9/Pzg5ubG1q1amWwrfL1MjIyUFZWhsjISGm/s7MzevbsiQsXLhj9nubAu93L0OhHgtC/nQ8u5xch2NuNYYiISMYaeqhDYWEhAOC7775DixYtDPa5uLhIocjZ2VnaXrmen16vr/X1731e5XONeV51z1epVPV+vYbCQCRTzTWuDEJERDagcqjDvaHIkkMdQkND4eLigqysLAwYMKDK/ntbiWqiVqtRUVFhierVSevWraFWq3H06FG0bNkSwN3bb6SkpGDOnDkNWhcGIiIionqoHOrw+vZzqBDC4kMdmjRpgldffRVz586FXq9H3759odVqcfToUXh4eEjB4kGCg4OlpW4eeughNGnSBC4uLhap74M0btwYL730EubPny8tubN69WoUFRVhypQpDVoXBiIiIqJ6auihDm+99RZ8fHwQFxeHX375BZ6enujevTtef/11o7qjRo0ahe3bt2PQoEEoKCjAp59+iokTJ1q0zjWJj4+XbuZ+69YthIeHY+/evQ2+eLJK1GXeu4LpdDpoNBpotVrexoOIyA7cuXMHmZmZCAkJQaNGjaxdHaqHB/1fGvv9zVlmREREpHgMRERERFSrF1980WCa/72PF1980drVqzeOISIiIqJaLV++HK+++mq1++xhKAkDEREREdXK19cXvr6+1q6GxbDLjIiIiBSPgYiIiBRNjqsmU92Y4/+QXWZERKRIarUaDg4OuHbtGnx8fKBWq6VbXJBtEEKgtLQU169fh4ODA9RqtcmvxUBERESK5ODggJCQEGRnZ+PatWvWrg7Vg5ubG4KCguDgYHrHFwMREREpllqtRlBQEMrLy2Vxby+qO0dHRzg5OdW7dY+BiIiIFK3yjuz335WdlIWDqomIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPGsGogOHz6MJ554AgEBAVCpVNi5c6e0r6ysDAsWLEBYWBgaN26MgIAAPP/887h27ZrBa9y4cQMxMTHw8PCAp6cnpkyZgsLCQoMyZ86cQb9+/dCoUSMEBgZi9erVDXF49ZKtLcaxjHxka4utXRUiIiK7Z9VAdPv2bXTt2hUffPBBlX1FRUU4efIkFi1ahJMnT2L79u1IT0/Hk08+aVAuJiYG58+fx759+/Dtt9/i8OHDmDZtmrRfp9NhyJAhaNmyJVJTU/HOO+9g6dKl+Pjjjy1+fKZKSMlCZHwixm1KRmR8IhJSsqxdJSIiIrumEkIIa1cCAFQqFXbs2IERI0bUWCYlJQU9e/bElStXEBQUhAsXLiA0NBQpKSkIDw8HAOzZswePPfYYfv31VwQEBGDDhg144403kJOTA7VaDQCIjY3Fzp078dNPPxldP51OB41GA61WCw8Pj3od64Nka4sRGZ8I/T3/K44qFY7EDkJzjavF3peIiMgeGfv9bVNjiLRaLVQqFTw9PQEASUlJ8PT0lMIQAERFRcHBwQHJyclSmf79+0thCACio6ORnp6Omzdv1vheJSUl0Ol0Bo+GkJl/2yAMAUCFELicX9Qg709ERKRENhOI7ty5gwULFmDs2LFSwsvJyYGvr69BOScnJ3h5eSEnJ0cq4+fnZ1Cm8ufKMtWJi4uDRqORHoGBgeY8nBqFeDeGg8pwm6NKhWBvtwZ5fyIiIiWyiUBUVlaGZ599FkIIbNiwoUHec+HChdBqtdLj6tWrDfK+zTWuiBsZBkfV3VTkqFJh5cjO7C4jIiKyICdrV6A2lWHoypUrSExMNOj/8/f3R15enkH58vJy3LhxA/7+/lKZ3NxcgzKVP1eWqY6LiwtcXFzMdRh1MvqRIPRv54PL+UUI9nZjGCIiIrIwWbcQVYahixcv4t///jeaNWtmsD8iIgIFBQVITU2VtiUmJkKv16NXr15SmcOHD6OsrEwqs2/fPrRv3x5NmzZtmAMxQXONKyJaN2MYIiIiagBWDUSFhYVIS0tDWloaACAzMxNpaWnIyspCWVkZnnnmGZw4cQJbt25FRUUFcnJykJOTg9LSUgBAx44dMXToUEydOhXHjx/H0aNHMWPGDIwZMwYBAQEAgHHjxkGtVmPKlCk4f/48EhISsHbtWsybN89ah01EREQyY9Vp9wcPHsSgQYOqbJ8wYQKWLl2KkJCQap934MABDBw4EMDdhRlnzJiBb775Bg4ODhg1ahTWrVsHd3d3qfyZM2cwffp0pKSkwNvbGzNnzsSCBQvqVNeGmnZPRERE5mPs97ds1iGSOwYiIiIi22OX6xARERERWQIDERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DkZVla4txLCMf2dpia1eFiIhIsZysXQElS0jJwsLtZ6EXgIMKiBsZhtGPBFm7WkRERIrDFiIrydYWS2EIAPQCeH37ObYUERERWQEDkZVk5t+WwlClCiFwOb/IOhUiIiJSMAYiKwnxbgwHleE2R5UKwd5u1qkQERGRgjEQWUlzjSviRobBUXU3FTmqVFg5sjOaa1ytXDMiIiLl4aBqKxr9SBD6t/PB5fwiBHu7MQwRERFZCQORlTXXuEpBKFtbjMz82wjxbsxwRERE1IAYiGSCU/CJiIish2OIZIBT8ImIiKyLgUgG6jIFnytbExERmR+7zGSgcgr+vaGouin47FYjIiKyDLYQyYAxU/DZrUZERGQ5bCGSidqm4D+oW40z0oiIiOqHgUhG7p2Cfz9ju9WIiIio7thlZiO4sjUREZHlsIXIhnBlayIiIstgILIxD+pWIyIiItOwy4yIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiMzKFm9Ezmn3REREZDa2eiNyq7YQHT58GE888QQCAgKgUqmwc+dOg/1CCCxevBjNmzeHq6sroqKicPHiRYMyN27cQExMDDw8PODp6YkpU6agsLDQoMyZM2fQr18/NGrUCIGBgVi9erWlD42IiEhxbPlG5FYNRLdv30bXrl3xwQcfVLt/9erVWLduHTZu3Ijk5GQ0btwY0dHRuHPnjlQmJiYG58+fx759+/Dtt9/i8OHDmDZtmrRfp9NhyJAhaNmyJVJTU/HOO+9g6dKl+Pjjjy1+fERkn2yxO4CoITzoRuRyZ9Uus2HDhmHYsGHV7hNCYM2aNXjzzTfx1FNPAQA+++wz+Pn5YefOnRgzZgwuXLiAPXv2ICUlBeHh4QCA9evX47HHHsO7776LgIAAbN26FaWlpfjkk0+gVqvRqVMnpKWl4b333jMITkRExmjo7oBsbTEy828jxLsxV6kn2bPlG5HLdlB1ZmYmcnJyEBUVJW3TaDTo1asXkpKSAABJSUnw9PSUwhAAREVFwcHBAcnJyVKZ/v37Q61WS2Wio6ORnp6OmzdvNtDREJE9aOjugISULETGJ2LcpmRExiciISXLIu9DZC62fCNy2Q6qzsnJAQD4+fkZbPfz85P25eTkwNfX12C/k5MTvLy8DMqEhIRUeY3KfU2bNq32/UtKSlBSUiL9rNPp6nE0RGQPHtQdYO4/+DWFr/7tfGziy4WUy1ZvRC7bFiJri4uLg0ajkR6BgYHWrhIRWVlld8C9LNUdYMtjMYiaa1wR0bqZzYQhQMaByN/fHwCQm5trsD03N1fa5+/vj7y8PIP95eXluHHjhkGZ6l7j3veozsKFC6HVaqXH1atX63dARGTzGrI7oCHDFxHJOBCFhITA398f+/fvl7bpdDokJycjIiICABAREYGCggKkpqZKZRITE6HX69GrVy+pzOHDh1FWViaV2bdvH9q3b19jdxkAuLi4wMPDw+BBRDT6kSAciR2EL6b2xpHYQRYbUG3LYzGIbJFKCCFqL2YZhYWFuHTpEgCgW7dueO+99zBo0CB4eXkhKCgIq1atQnx8PLZs2YKQkBAsWrQIZ86cwY8//ohGjRoBuDtTLTc3Fxs3bkRZWRkmTZqE8PBwbNu2DQCg1WrRvn17DBkyBAsWLMC5c+cwefJkvP/++3WaZabT6aDRaKDVahmOiKjBZGuLbW4sBpGcGP39LazowIEDAkCVx4QJE4QQQuj1erFo0SLh5+cnXFxcxODBg0V6errBa/z+++9i7Nixwt3dXXh4eIhJkyaJW7duGZQ5ffq06Nu3r3BxcREtWrQQ8fHxda6rVqsVAIRWqzX5eImIiKhhGfv9bdUWIlvCFiIiIiLbY+z3t2zHEBERERE1FAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIyq2xtMY5l5CNbW2ztqhAZzcnaFSAiIvuRkJKFhdvPQi8ABxUQNzIMox8Jsna1iGrFFiKSLV5lEtmWbG2xFIYAQC+A17ef4+8w2QS2EJEs8SqTyPZk5t+WwlClCiFwOb8IzTWu1qkUkZHYQkSyw6tMItsU4t0YDirDbY4qFYK93axTIaI6YCAi2XnQVSYRyVdzjSviRobBUXU3FTmqVFg5sjNbh8gmsMuMZKfyKvPeUMSrTCLbMPqRIPRv54PL+UUI9nZjGCKbwRYikh1eZRLZtuYaV0S0bsbfWbIpbCEiWeJVJhERNSQGIpKt5hpXBiEiImoQ7DIjIiIixWMgIiJSMC6ASnQXu8yIiBSKC6AS/Q9biIiIFIgLoBIZYiAiIlIgLoBKZIiBiIiogclh3A5vs0FkiGOIiIgakFzG7VQugPr69nOoEMIuF0DN1hYjM/82Gqsdcbu0AiHeje3q+Mi8VEIIUXsx0ul00Gg00Gq18PDwsHZ1iMgGZWuLERmfWOW2NEdiB1ntizpbW2yXC6DeGzwrceC4Mhn7/c0uMyKiBiLHcTv2eJuN+weMV+LAcXoQBiIiogZir+N25DAm6l7VBc9K1g6gJF9GByKdTmf0w1wqKiqwaNEihISEwNXVFa1bt8Zbb72Fe3v5hBBYvHgxmjdvDldXV0RFReHixYsGr3Pjxg3ExMTAw8MDnp6emDJlCgoLC81WTyIiY9jjjYsTUrIQGZ+IcZuSERmfiISULGtXqdrgWckeAihZhtGDqj09PaFS1fAJ+39CCKhUKlRUVNS7YgCwatUqbNiwAVu2bEGnTp1w4sQJTJo0CRqNBrNmzQIArF69GuvWrcOWLVsQEhKCRYsWITo6Gj/++CMaNWoEAIiJiUF2djb27duHsrIyTJo0CdOmTcO2bdvMUk8iImM11I2LKwcUW3IgcU1rGfVv52PVMVGZ+bexYFgHrN6djop7LqDtIYCS5RgdiA4cOGDJelTr2LFjeOqppzB8+HAAQHBwML744gscP34cwN0AtmbNGrz55pt46qmnAACfffYZ/Pz8sHPnTowZMwYXLlzAnj17kJKSgvDwcADA+vXr8dhjj+Hdd99FQEBAgx8XESmbpW9cXNNMNnOHpAeNibJG6Lj/uBcM7YAuD3nCTe2AolK93Q0cJ/MyOhANGDDAkvWoVp8+ffDxxx/j559/Rrt27XD69GkcOXIE7733HgAgMzMTOTk5iIqKkp6j0WjQq1cvJCUlYcyYMUhKSoKnp6cUhgAgKioKDg4OSE5OxtNPP13te5eUlKCkpET62ZxdgUREllJTq01BcRlW7f7JrNP9K7um7p81Z40uqeqOe/WedKvO4CPbYvI6RAUFBfjb3/6GCxcuAAA6deqEyZMnQ6PRmK1ysbGx0Ol06NChAxwdHVFRUYEVK1YgJiYGAJCTkwMA8PPzM3ien5+ftC8nJwe+vr4G+52cnODl5SWVqU5cXByWLVtmtmMhImoINbXaxO/+CcLMXVtyWstIbq1VZHtMCkQnTpxAdHQ0XF1d0bNnTwDAe++9hxUrVuCHH35A9+7dzVK5f/zjH9i6dSu2bduGTp06IS0tDXPmzEFAQAAmTJhglveoycKFCzFv3jzpZ51Oh8DAQIu+JxFRfVXXauMAWCwsNNSYqNrIqbWKbJNJ0+7nzp2LJ598EpcvX8b27duxfft2ZGZm4vHHH8ecOXPMVrn58+cjNjYWY8aMQVhYGMaPH4+5c+ciLi4OAODv7w8AyM3NNXhebm6utM/f3x95eXkG+8vLy3Hjxg2pTHVcXFzg4eFh8CAikrvqZrItGNbBotP95bCWkT3O4KOGZXIL0aZNm+Dk9L+nOzk54bXXXjMYq1NfRUVFcHAwzGyOjo7Q6/UAgJCQEPj7+2P//v14+OGHAdxtyUlOTsZLL70EAIiIiEBBQQFSU1PRo0cPAEBiYiL0ej169epltroSEclFda02nm7OsujasiS5tFaRbTIpEHl4eCArKwsdOnQw2H716lU0adLELBUDgCeeeAIrVqxAUFAQOnXqhFOnTuG9997D5MmTAQAqlQpz5szB22+/jbZt20rT7gMCAjBixAgAQMeOHTF06FBMnToVGzduRFlZGWbMmIExY8ZwhhkR2a37Z7IpJSxYegYf2S+TAtHo0aMxZcoUvPvuu+jTpw8A4OjRo5g/fz7Gjh1rtsqtX78eixYtwssvv4y8vDwEBATgT3/6ExYvXiyVee2113D79m1MmzYNBQUF6Nu3L/bs2SOtQQQAW7duxYwZMzB48GA4ODhg1KhRWLdundnqSURkCxgWiGpm0s1dS0tLMX/+fGzcuBHl5eUAAGdnZ7z00kuIj4+Hi4uL2Stqbby5K5HlNcRigkSkLMZ+f9frbvdFRUXIyMgAALRu3RpubvY7mp+BiMiyalpMkIioPoz9/jZ5HSIAcHNzQ1hYWH1egohIVreAYCsVkTKZFIju3LmD9evX48CBA8jLy5NmfVU6efKkWSpHRMogl0X12EpFpFwmBaIpU6bghx9+wDPPPIOePXvWetNXIqIHkcOienJqpSKihmdSIPr222/x/fffIzIy0tz1ISIFksMtIOTSSkVE1mFSIGrRooVZ1xsiIrL2OjlyaKWydxyfRXJm0q07/vznP2PBggW4cuWKuetDRApmzVtA8NYPlpWQkoXI+ESM25SMyPhEJKRkWbtKRAZMaiEKDw/HnTt30KpVK7i5ucHZ2dlg/40bN8xSOSJT8UqUTGHtVip7xfFZZAtMCkRjx47Fb7/9hpUrV8LPz4+DqklWOFOI6oOrOZsfx2eRLTApEB07dgxJSUno2rWruetDVC+8EiWSH47PIltg0hiiDh06oLi42Nx1Iaq3B12JEpF1cHwW2QKTWoji4+PxyiuvYMWKFQgLC6syhoi3tiBr4ZUokTxxfBbJnUn3MnNwuNuwdP/YISEEVCoVKioqzFM7GeG9zGxHQkpWlfVsOIaISL44CYIsyaL3Mjtw4IDJFSOytJquRPlHl0h+OAmC5KJed7uvzcsvv4zly5fD29vbUm/RYNhCZNv4R5dIfrK1xYiMT6zSxX0kdhAvWshsjP3+NmlQtbE+//xz6HQ6S74FUa1qmnmWreXEAKJ7ZWuLcSwjv8F+NzgJguTEpC4zY1mw8YnIaFwDhah21mhF5SQIkhOLthARyUHlH9178Y8u0f9YqxWV0/FJTizaQkQkB3K4kzopi60N4LdmKyqn45NcMBCRIvCPLjWU+nY9WSNMWbvrirdLITlglxkphjXvpE7KUN+uJ2vdEZ5dV0QWbiF67rnnOEWdzMrcV8+21rVB8lafridr34ePraikdCYHooKCAhw/fhx5eXnQ6/UG+55//nkAwIYNG+pXO6J7mHsWDNcmInOrT9eTHGZDsuuKlMykQPTNN98gJiYGhYWF8PDwMLiFh0qlkgIRkbmY++rZ2lfjZJ/qM4Df2uN4iJTOpED0yiuvYPLkyVi5ciXc3PjLSpZn7qtnOVyNk30yteuptjDF7l0iyzIpEP3222+YNWsWwxA1GHNfPfNqnCzJ1K6nmsIUu3ctgyGT7mXSLLPo6GicOHHC3HUhqpG5Z8FwVg3J1f2zIe351jMNfauQe1lrRh/Jl9EtRLt27ZL+PXz4cMyfPx8//vgjwsLC4OzsbFD2ySefNF8Nif6fuWfBcFYN2QJ77d61ZqsXxxBSdYwORCNGjKiybfny5VW2qVQqVFRU1KtSRDUx9ywYzqohubPH7l1rBxJ7DZlUP0Z3men1eqMeDENEROZj7u5da3ZTVbL2Xe55f0OqjkljiD777DOUlJRU2V5aWorPPvus3pUiIqL/Gf1IEI7EDsIXU3vjSOygKl1LxoYcuYybqSmQuKkdGiSscQwhVUclhBC1FzPk6OiI7Oxs+Pr6Gmz//fff4evra5etRDqdDhqNBlqtlqtvE5FsGDsWJ1tbjMj4xCpdb0diB1klCCSkZBksMTCiWwB2nPqtQccUZWuLOYZQAYz9/jZp2r0QwmAxxkq//vorNBqNKS9JRER1VJexOHIbN3PvpAY3tQOe/vBYg48p4hhCuledAlG3bt2gUqmgUqkwePBgODn97+kVFRXIzMzE0KFDzV5JIiKqqi4hR46DsysDybGMfFmFNVKmOgWiyplmaWlpiI6Ohru7u7RPrVYjODgYo0aNMmsFiYiUyJhFA+sScupzWxFLk2NYI+UxaQzRli1bMHr0aDRq1MgSdZIljiEiooZSlzV67h+Ls3Jk5weOvZHruJm6HgeRsYz9/jYpEFUqLS2t9m73QUH29yFmICKihmDK4Gc5hZz63A5DTsdB9sOig6ovXryIyZMn49ixYwbbKwdb2+MsMyKyPiXce8qUwc9yGRxc39Wn5XIcpEwmrUM0ceJEODg44Ntvv0VqaipOnjyJkydP4tSpUzh58qRZK/jbb7/hueeeQ7NmzeDq6oqwsDCD+6gJIbB48WI0b94crq6uiIqKwsWLFw1e48aNG4iJiYGHhwc8PT0xZcoUFBYWmrWeRGRZcllDx9JsddFAe77nGimDSS1EaWlpSE1NRYcOHcxdHwM3b95EZGQkBg0ahN27d8PHxwcXL15E06ZNpTKrV6/GunXrsGXLFoSEhGDRokWIjo7Gjz/+KI1xiomJQXZ2Nvbt24eysjJMmjQJ06ZNw7Zt2yxafyIyD2vf6qEhyXnw84PIbVo/UV2ZFIhCQ0ORn59v7rpUsWrVKgQGBuLTTz+VtoWEhEj/FkJgzZo1ePPNN/HUU08BuLuKtp+fH3bu3IkxY8bgwoUL2LNnD1JSUhAeHg4AWL9+PR577DG8++67CAgIsPhxkG1RQreMrVHal60t3niYM8XI1pnUZbZq1Sq89tprOHjwIH7//XfodDqDh7ns2rUL4eHh+OMf/whfX19069YNmzZtkvZnZmYiJycHUVFR0jaNRoNevXohKSkJAJCUlARPT08pDAFAVFQUHBwckJycXON7l5SUWOy4yHzMfV8mpXTL2BprdiNZ695fzTWuiGjdzCbCEMDbYZDtM6mFqDKAPProowYrVpt7UPUvv/yCDRs2YN68eXj99deRkpKCWbNmQa1WY8KECcjJyQEA+Pn5GTzPz89P2peTk1PlFiNOTk7w8vKSylQnLi4Oy5YtM8tx0IOZ2iJT3wGc1dVDKd0ytsZa3Ujm/ozZO1ts2SKqZFIgOnDggLnrUS29Xo/w8HCsXLkSwN2Vss+dO4eNGzdiwoQJFn3vhQsXYt68edLPOp0OgYGBFn1PJTL1C8cS4UVp3TKWYqkux4b+smVANg1nipGtMqnLbMCAAXBwcMCmTZsQGxuLNm3aYMCAAcjKyoKjo6PZKte8eXOEhoYabOvYsSOysu52Y/j7+wMAcnNzDcrk5uZK+/z9/ZGXl2ewv7y8HDdu3JDKVMfFxQUeHh4GD7rLXF0I9ZmV8qDwYipbnd0jJ5bucmzIbqSaPmOpl29a/L2JqOGZFIj++c9/Ijo6Gq6urjh16hRKSkoAAFqtVmrNMYfIyEikp6cbbPv555/RsmVLAHcHWPv7+2P//v3Sfp1Oh+TkZERERAAAIiIiUFBQgNTUVKlMYmIi9Ho9evXqZba6KoU5v/DqE2osEV44BqJ+7G3adXWfMQCY9eUpji0jskMmBaK3334bGzduxKZNm+Ds7Cxtj4yMNOs6RHPnzsV///tfrFy5EpcuXcK2bdvw8ccfY/r06QAAlUqFOXPm4O2338auXbtw9uxZPP/88wgICJDuu9axY0cMHToUU6dOxfHjx3H06FHMmDEDY8aM4QyzOjL3F159Qo2lwsvoR4JwJHYQvpjaG0diB3G8SB1YotXOmio/Y/f/kbT1oEdE1TNpDFF6ejr69+9fZbtGo0FBQUF96yR55JFHsGPHDixcuBDLly9HSEgI1qxZg5iYGKnMa6+9htu3b2PatGkoKChA3759sWfPHoP7rG3duhUzZszA4MGD4eDggFGjRmHdunVmq6dSmHuMTX0HylpqTAnHQJjGHqddj34kCI1dnDBj2ymD7RxbRmR/TApE/v7+uHTpEoKDgw22HzlyBK1atTJHvSSPP/44Hn/88Rr3q1QqLF++HMuXL6+xjJeXFxdhNANLfOHVN9SYGl641pD52eqCgrXp0bKp3QU9IqrKpEA0depUzJ49G5988glUKhWuXbuGpKQkvPrqq1i0aJG560gyYakvvIZukeFUasuxx2nX9hr0iMiQSXe7F0Jg5cqViIuLQ1HR3fEBLi4uePXVV/HWW2+ZvZJywLvd/48t35HalDuJEwG2/bknUjJjv79NCkSVSktLcenSJRQWFiI0NBTu7u6mvpTsMRDZh2MZ+Ri3qeoK5V9M7Y2I1s2sUCMiIrIkY7+/Teoyq6RWq6usE0QkZ/Y48JeIiOrPpGn3RLaKaw0REVF16tVCRGSL7HHgLxER1Q8DESkS1xoiIqJ7scuMiIiIFI+BiGplrpu5EhERyRW7zOiBuIgh2RquQk5EpmAgohrVdDPX/u18+EVDssQAT0SmYpcZ1cje7l5O9q2mAM+uXiIyBgMR1ahyEcN7cRFDkisGeCKqDwYiqhEXMSRbwgBPRPXBMUT0QFzEkGwF70pPRPXBQES14iKGZCsY4InIVAxERGRXGOCJyBQcQ0REssaFQUmp+NlvWGwhIiLZ4rpCpFT87Dc8thARkSxZe10hXp2TtVj7s69UbCEiIll60LpClh4jxKtzsiZrfvaVjC1ERCRL1lpXiFfnZG1cU8s6GIiISJastTAoV7wma+OiuNbBLjMiki1rrCtUeXV+byji1Tk1NK6p1fDYQkREstZc44qI1s0a7AuBV+ckFw392Vc6thCRzcrWFiMz/zZCvBvzDwaZFa/OiZSHgYhsEmcByZs9hFWueE2kLAxEZHNqmgXUv50Pv8BkoLawag9hiYjsDwMR2Ryu0SFftYVVtuwRkVxxUDVVS86r9HKNDvl6UFjl+j5EJGcMRFRFQkoWIuMTMW5TMiLjE5GQkmXtKhngLCD5elBY5fo+RCRn7DIjA7YyPoezgOSpMqy+vv0cKoSoEla5vg8RyRUDERmwpfE5nAUkTzWF1drCEhGRNTEQkQGu0kvmUFNYZcseEckVxxCRAY7PIUvj6rtEJEdsIaIqeBVP9ojrH9k//h9TfTAQUbU4PofsCdc/sn/8P6b6YpcZEdk1rn9k//h/TObAQEREdo3rH9k/U/+P5bwALTU8mwpE8fHxUKlUmDNnjrTtzp07mD59Opo1awZ3d3eMGjUKubm5Bs/LysrC8OHD4ebmBl9fX8yfPx/l5eUNXHsisgaubG7/TPk/lvsCtNTwbCYQpaSk4KOPPkKXLl0Mts+dOxfffPMNvvrqKxw6dAjXrl3DyJEjpf0VFRUYPnw4SktLcezYMWzZsgWbN2/G4sWLG/oQiMgKOHPS/tX1/5hdbFQdlRBC1F7MugoLC9G9e3d8+OGHePvtt/Hwww9jzZo10Gq18PHxwbZt2/DMM88AAH766Sd07NgRSUlJ6N27N3bv3o3HH38c165dg5+fHwBg48aNWLBgAa5fvw61Wm1UHXQ6HTQaDbRaLTw8PCx2rERkGdnaYs6ctHPG/h8fy8jHuE3JVbZ/MbU3Ilo3s2QVyQqM/f62iRai6dOnY/jw4YiKijLYnpqairKyMoPtHTp0QFBQEJKSkgAASUlJCAsLk8IQAERHR0On0+H8+fM1vmdJSQl0Op3Bg4hsF9c/sn/G/h+zG5WqI/tA9OWXX+LkyZOIi4ursi8nJwdqtRqenp4G2/38/JCTkyOVuTcMVe6v3FeTuLg4aDQa6REYGFjPI6HacIAjETUEdqNSdWS9DtHVq1cxe/Zs7Nu3D40aNWrQ9164cCHmzZsn/azT6RiKLIhriNgvLpZHcsQFaOl+sg5EqampyMvLQ/fu3aVtFRUVOHz4MP7yl79g7969KC0tRUFBgUErUW5uLvz9/QEA/v7+OH78uMHrVs5CqyxTHRcXF7i4uJjxaKgmNQ1w7N/Oh3+kbByDLsnN/QGdf2Ookqy7zAYPHoyzZ88iLS1NeoSHhyMmJkb6t7OzM/bv3y89Jz09HVlZWYiIiAAARERE4OzZs8jLy5PK7Nu3Dx4eHggNDW3wY6KquE6MfeJMHpIbTrWXLzkMmZB1C1GTJk3QuXNng22NGzdGs2bNpO1TpkzBvHnz4OXlBQ8PD8ycORMRERHo3bs3AGDIkCEIDQ3F+PHjsXr1auTk5ODNN9/E9OnT2QIkE5UDHO8NRRzgaPseFHR5VU4NjS3R8iWXlmRZtxAZ4/3338fjjz+OUaNGoX///vD398f27dul/Y6Ojvj222/h6OiIiIgIPPfcc3j++eexfPlyK9a6YckheT8IBzjaJ87kITlhS7Q8yakl2SbWIZIDW12HSC7J2xhcJ8b+JKRk4fXt51AhhBR05fr5I/uWrS1GZHxilZboI7GDbPrvja1PWmiINaGM/f6WdZcZ1Y+tNRFzgKP94UwekovKluj7A7otfybrc8ErlyAlpyETDER2jGM4SA4YdEku7Cmg1+eCV049B3IKqgxEdkxOyZuISA7sJaCbesErx54DuQRVmx9UTTXjYGUiIvtk6qQFuQ4ul8OtddhCZOfkkrzJ/sllTAKREpja1cSeg5oxECmAvTQRk3zJaUwCkVKYcsErpzE7csNp90ay1Wn3RJbWENOZ2fpEVD/3/w4paZkTTrsnogZh6dmMbH0iqp+afofsPQjVFQdVE1G9WHJFajmtYktki/g7ZDwGIiKqF0vOZpTrjBiyP3K/xZGp+DtkPHaZEVG9WWo2I2fEUEOw525ZufwO2cI4QLYQEZFZWGIdEa6lRZZm711KcvgdSkjJQmR8IsZtSkZkfCISUrIa7L3rgi1ERCRrXEuLLEkJtziy5u+QHFfGrgkDERHJHtfSIkuRS5eSpVnrd8iWAie7zIiISLHk0KVkzyw5C9Xc2EJERESKxm5Zy7GllbEZiIiISPHYLWs5thI4GYiIiIjIomwhcHIMERHsd1E2IiIyDluISPHseVE2IiIyDluISNHsfVE2IiIyDgMRKRrv80NERAADESmcLa2RQURElsNARIrGRdmIiAjgoGoim1kjg4iILIeBiAi2sUYGEdmebG0xMvNvI8S7Mf/GyBwDERERkQVwSQ/bwjFEREREZsYlPWwPAxER1QlX9SaqHZf0sD3sMiMio7ELgMg4lUt63BuKuKSHvLGFiIiMwi4AUgpztIJySQ/bwxYiIjLKg7oA+Eee7IU5W0G5pIdtYQsRERmFq3qTvbNEK2hzjSsiWjdjGLIBDEREZBR2AZC940DohiHXiRnsMiMyEyUswMYuALJnHAhteXKemMEWIiIzSEjJQmR8IsZtSkZkfCISUrKsXSWLYRcA2Su2glqW3CdmsIWIqJ5q+iXv386Hf0iJbAxbQS1H7hMzGIiI6knuv+REVDe8t6FlyL1LUvZdZnFxcXjkkUfQpEkT+Pr6YsSIEUhPTzcoc+fOHUyfPh3NmjWDu7s7Ro0ahdzcXIMyWVlZGD58ONzc3ODr64v58+ejvLy8IQ/F7OQ6ME1pOPuKiKh2cu+SlH0L0aFDhzB9+nQ88sgjKC8vx+uvv44hQ4bgxx9/ROPGjQEAc+fOxXfffYevvvoKGo0GM2bMwMiRI3H06FEAQEVFBYYPHw5/f38cO3YM2dnZeP755+Hs7IyVK1da8/BMJueBaUpT+Uv++vZzqBBCdr/kRERyIecuSZUQQtReTD6uX78OX19fHDp0CP3794dWq4WPjw+2bduGZ555BgDw008/oWPHjkhKSkLv3r2xe/duPP7447h27Rr8/PwAABs3bsSCBQtw/fp1qNXqWt9Xp9NBo9FAq9XCw8PDosdYm2xtMSLjE6s0Ox6JHSSrD5fSZGuLZflLTkRkbrY0q9bY72/Zd5ndT6vVAgC8vLwAAKmpqSgrK0NUVJRUpkOHDggKCkJSUhIAICkpCWFhYVIYAoDo6GjodDqcP3++2vcpKSmBTqczeMgF18qQJ86+IiIlsNdZtTYViPR6PebMmYPIyEh07twZAJCTkwO1Wg1PT0+Dsn5+fsjJyZHK3BuGKvdX7qtOXFwcNBqN9AgMDDTz0ZiOY1bI1nC8G5F9kPvU+fqwqUA0ffp0nDt3Dl9++aXF32vhwoXQarXS4+rVqxZ/T2PJfWAa0b3s9WqSSInsuYdC9oOqK82YMQPffvstDh8+jIceekja7u/vj9LSUhQUFBi0EuXm5sLf318qc/z4cYPXq5yFVlnmfi4uLnBxcTHzUZiPnAemEVXiGk1E9kXuU+frQ/YtREIIzJgxAzt27EBiYiJCQkIM9vfo0QPOzs7Yv3+/tC09PR1ZWVmIiIgAAERERODs2bPIy8uTyuzbtw8eHh4IDQ1tmAOxAI5ZIbmz56tJIiWy5x4K2bcQTZ8+Hdu2bcO//vUvNGnSRBrzo9Fo4OrqCo1GgylTpmDevHnw8vKCh4cHZs6ciYiICPTu3RsAMGTIEISGhmL8+PFYvXo1cnJy8Oabb2L69OmybgUisnX2fDVJpFT22kMh+2n3KpWq2u2ffvopJk6cCODuwoyvvPIKvvjiC5SUlCA6OhoffvihQXfYlStX8NJLL+HgwYNo3LgxJkyYgPj4eDg5GZcJ5TTtnsiWJKRkVVmjiWtmEVVlS1PZbYmx39+yD0RywUBEZDqu0UT04MDDxXYtx9jvb9l3mRGR7eO9oUjpHhR4OPlAHmQ/qJqIiMiW1bZ2DycfyAMDERERkQXVFni42K48MBARERFZUG2Bx56nstsSjiEiIiKyoMrAc/9sy3sDj71OZbclDEREFmLPU2jt+diILMGYwMPJB9bFQERkAfY8hdaej43Ikhh45I1jiIjMzJ7vBv2gY+Md7YnIlrGFiMjMHjSjxNavDms6tk+PXMZfj/zCViMisllsISIyM3ueQlvdsTkAUhgC7KtFjMgUbC21TQxERGZmz1Noqzu2F/qFcFE5ov+XkJKFyPhEjNuUjMj4RCSkZFm7SmQkdpkRWYA9T6G9/9gA4K9HMnlHe7J7tc2u5C04bBsDEZGF2POMkvuPrbY1VohsnTGzK+15/KASMBARmYmS1+ax5xYxImNbfirH2LG11DYxEBGZAdfmse8WMVI2Y1t+jFmR2tLMdWGmxAs8BiKierKncQNK/CNIVJu6tPxYs7XUXBdmSr3A4ywzonqq7U7WtoKzY4iqV9eZo801roho3azBW4bMsSCsPS8sWxu2EBHVkz2MG7CnVi4iS5D7ODlzDehW8sBwthAR1ZM9rDtkL61cRJZkjZYfY5lrQVh7Xli2NmwhIjIDuV891qa6Vi4AOPNrASJaN7NOpYjIaOYa0C2HgeHWohJCiNqLkU6ng0ajgVarhYeHh7WrQ2R2Hx3OQNz3Pxlsc1SpcCR2kCL+GBLZg2xtsVkuzMz1OnJg7Pc3W4iICAAQ1kJTZZtSxg4Q2QtzLX+hxGU0OIaIiAAoe+wAEREDEREBsI/B4UREpmKXGZECGLvgoq0PDiciMhUDEZGdq+uqs0ocO0BExC4zIjum5FVniYjqgoGIZCtbW4xjGfn88q4HLrhIRGQcdpmRLCn15oLmZg+3FSFSAt5Y2foYiEh2eF8t49X2R1TJq84S2Yr7LwAXDO2AsIc0DEcNjIGIZEfJNxesC2Nb0ThzjEi+qrsAjNt9d8V4to43LI4hItmx1wUCzTkmqq6DpeV8U0oiJavuArASJ0E0LAYikh17XCAwISULkfGJGLcpGZHxiUhIyarX63GwNJF9qO4C8F78vW447DIjWbKnbh5LjIniYGki+3D/OL/78fe64TAQkWzZywKBlhgTZYnB0pzlQmQd914AnvmtAKt3p3MShBUwEJFJ+OVpPEu15pizFY3LHBBZV+UFYETrZniya4BdtI7bGgYiqjMlf3maEgQtOfXdHK1oXOaASF7spXXc1jAQUZ0o+cuzPkFQzmOiuMwBEZHCZpl98MEHCA4ORqNGjdCrVy8cP37c2lWyOUqd3WSOe4LJdeq7vS5zQERUF4oJRAkJCZg3bx6WLFmCkydPomvXroiOjkZeXp61q2ZTlPrlac9B0B6XOSAiqiuVENXM87NDvXr1wiOPPIK//OUvAAC9Xo/AwEDMnDkTsbGxtT5fp9NBo9FAq9XCw8PD0tWVtYSUrCrjYex9DFG2thiR8YlVBkYfiR1kN8EhW1ssyy49IqL6MPb7WxFjiEpLS5GamoqFCxdK2xwcHBAVFYWkpCQr1sw2yXk8jKUo4Z5gHMhJREqmiECUn5+PiooK+Pn5GWz38/PDTz/9VO1zSkpKUFJSIv2s0+ksWkdbo8QvTyUGQSIipVDMGKK6iouLg0ajkR6BgYHWrhLJgFwHRhMRUf0oIhB5e3vD0dERubm5Bttzc3Ph7+9f7XMWLlwIrVYrPa5evdoQVSUiIiIrUEQgUqvV6NGjB/bv3y9t0+v12L9/PyIiIqp9jouLCzw8PAweREREZJ8UMYYIAObNm4cJEyYgPDwcPXv2xJo1a3D79m1MmjTJ2lUjIiIiK1NMIBo9ejSuX7+OxYsXIycnBw8//DD27NlTZaA1ERERKY9i1iGqL65DREREZHuM/f5WxBgiIiIiogdhICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixVPMOkT1Vbk6AW/ySkREZDsqv7drW2WIgchIt27dAgDe5JWIiMgG3bp1CxqNpsb9XJjRSHq9HteuXUOTJk2gUqmMeo5Op0NgYCCuXr2q6MUceR54DirxPNzF83AXzwPPQSVLngchBG7duoWAgAA4ONQ8UogtREZycHDAQw89ZNJzeXPYu3geeA4q8TzcxfNwF88Dz0ElS52HB7UMVeKgaiIiIlI8BiIiIiJSPAYiC3JxccGSJUvg4uJi7apYFc8Dz0Elnoe7eB7u4nngOagkh/PAQdVERESkeGwhIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjIKqjDRs2oEuXLtLiUREREdi9e7e0/86dO5g+fTqaNWsGd3d3jBo1Crm5uQavkZWVheHDh8PNzQ2+vr6YP38+ysvLG/pQzCY+Ph4qlQpz5syRtinhPCxduhQqlcrg0aFDB2m/Es5Bpd9++w3PPfccmjVrBldXV4SFheHEiRPSfiEEFi9ejObNm8PV1RVRUVG4ePGiwWvcuHEDMTEx8PDwgKenJ6ZMmYLCwsKGPhSTBQcHV/k8qFQqTJ8+HYAyPg8VFRVYtGgRQkJC4OrqitatW+Ott94yuIeUEj4LwN3bRMyZMwctW7aEq6sr+vTpg5SUFGm/PZ6Hw4cP44knnkBAQABUKhV27txpsN9cx3zmzBn069cPjRo1QmBgIFavXm2eAxBUJ7t27RLfffed+Pnnn0V6erp4/fXXhbOzszh37pwQQogXX3xRBAYGiv3794sTJ06I3r17iz59+kjPLy8vF507dxZRUVHi1KlT4vvvvxfe3t5i4cKF1jqkejl+/LgIDg4WXbp0EbNnz5a2K+E8LFmyRHTq1ElkZ2dLj+vXr0v7lXAOhBDixo0bomXLlmLixIkiOTlZ/PLLL2Lv3r3i0qVLUpn4+Hih0WjEzp07xenTp8WTTz4pQkJCRHFxsVRm6NChomvXruK///2v+M9//iPatGkjxo4da41DMkleXp7BZ2Hfvn0CgDhw4IAQQhmfhxUrVohmzZqJb7/9VmRmZoqvvvpKuLu7i7Vr10pllPBZEEKIZ599VoSGhopDhw6JixcviiVLlggPDw/x66+/CiHs8zx8//334o033hDbt28XAMSOHTsM9pvjmLVarfDz8xMxMTHi3Llz4osvvhCurq7io48+qnf9GYjMoGnTpuKvf/2rKCgoEM7OzuKrr76S9l24cEEAEElJSUKIux8YBwcHkZOTI5XZsGGD8PDwECUlJQ1e9/q4deuWaNu2rdi3b58YMGCAFIiUch6WLFkiunbtWu0+pZwDIYRYsGCB6Nu3b4379Xq98Pf3F++88460raCgQLi4uIgvvvhCCCHEjz/+KACIlJQUqczu3buFSqUSv/32m+Uqb0GzZ88WrVu3Fnq9XjGfh+HDh4vJkycbbBs5cqSIiYkRQijns1BUVCQcHR3Ft99+a7C9e/fu4o033lDEebg/EJnrmD/88EPRtGlTg9+JBQsWiPbt29e7zuwyq4eKigp8+eWXuH37NiIiIpCamoqysjJERUVJZTp06ICgoCAkJSUBAJKSkhAWFgY/Pz+pTHR0NHQ6Hc6fP9/gx1Af06dPx/Dhww2OF4CizsPFixcREBCAVq1aISYmBllZWQCUdQ527dqF8PBw/PGPf4Svry+6deuGTZs2SfszMzORk5NjcC40Gg169eplcC48PT0RHh4ulYmKioKDgwOSk5Mb7mDMpLS0FJ9//jkmT54MlUqlmM9Dnz59sH//fvz8888AgNOnT+PIkSMYNmwYAOV8FsrLy1FRUYFGjRoZbHd1dcWRI0cUcx7uZa5jTkpKQv/+/aFWq6Uy0dHRSE9Px82bN+tVR97c1QRnz55FREQE7ty5A3d3d+zYsQOhoaFIS0uDWq2Gp6enQXk/Pz/k5OQAAHJycgz+4FXur9xnK7788kucPHnSoE+8Uk5OjiLOQ69evbB582a0b98e2dnZWLZsGfr164dz584p5hwAwC+//IINGzZg3rx5eP3115GSkoJZs2ZBrVZjwoQJ0rFUd6z3ngtfX1+D/U5OTvDy8rKpc1Fp586dKCgowMSJEwEo53ciNjYWOp0OHTp0gKOjIyoqKrBixQrExMQAgGI+C02aNEFERATeeustdOzYEX5+fvjiiy+QlJSENm3aKOY83Mtcx5yTk4OQkJAqr1G5r2nTpibXkYHIBO3bt0daWhq0Wi2+/vprTJgwAYcOHbJ2tRrM1atXMXv2bOzbt6/KFZCSVF71AkCXLl3Qq1cvtGzZEv/4xz/g6upqxZo1LL1ej/DwcKxcuRIA0K1bN5w7dw4bN27EhAkTrFw76/jb3/6GYcOGISAgwNpVaVD/+Mc/sHXrVmzbtg2dOnVCWloa5syZg4CAAMV9Fv7+979j8uTJaNGiBRwdHdG9e3eMHTsWqamp1q4a1YBdZiZQq9Vo06YNevTogbi4OHTt2hVr166Fv78/SktLUVBQYFA+NzcX/v7+AAB/f/8qM0sqf64sI3epqanIy8tD9+7d4eTkBCcnJxw6dAjr1q2Dk5MT/Pz8FHEe7ufp6Yl27drh0qVLivksAEDz5s0RGhpqsK1jx45S92HlsVR3rPeei7y8PIP95eXluHHjhk2dCwC4cuUK/v3vf+OFF16Qtinl8zB//nzExsZizJgxCAsLw/jx4zF37lzExcUBUNZnoXXr1jh06BAKCwtx9epVHD9+HGVlZWjVqpWizkMlcx2zJX9PGIjMQK/Xo6SkBD169ICzszP2798v7UtPT0dWVhYiIiIAABERETh79qzBf/q+ffvg4eFR5UtFrgYPHoyzZ88iLS1NeoSHhyMmJkb6txLOw/0KCwuRkZGB5s2bK+azAACRkZFIT0832Pbzzz+jZcuWAICQkBD4+/sbnAudTofk5GSDc1FQUGBw9ZyYmAi9Xo9evXo1wFGYz6effgpfX18MHz5c2qaUz0NRUREcHAy/VhwdHaHX6wEo77MAAI0bN0bz5s1x8+ZN7N27F0899ZQiz4O5jjkiIgKHDx9GWVmZVGbfvn1o3759vbrLAHDafV3FxsaKQ4cOiczMTHHmzBkRGxsrVCqV+OGHH4QQd6fWBgUFicTERHHixAkREREhIiIipOdXTq0dMmSISEtLE3v27BE+Pj42NbW2OvfOMhNCGefhlVdeEQcPHhSZmZni6NGjIioqSnh7e4u8vDwhhDLOgRB3l15wcnISK1asEBcvXhRbt24Vbm5u4vPPP5fKxMfHC09PT/Gvf/1LnDlzRjz11FPVTrft1q2bSE5OFkeOHBFt27aV9RTj6lRUVIigoCCxYMGCKvuU8HmYMGGCaNGihTTtfvv27cLb21u89tprUhmlfBb27Nkjdu/eLX755Rfxww8/iK5du4pevXqJ0tJSIYR9nodbt26JU6dOiVOnTgkA4r333hOnTp0SV65cEUKY55gLCgqEn5+fGD9+vDh37pz48ssvhZubG6fdW8PkyZNFy5YthVqtFj4+PmLw4MFSGBJCiOLiYvHyyy+Lpk2bCjc3N/H000+L7Oxsg9e4fPmyGDZsmHB1dRXe3t7ilVdeEWVlZQ19KGZ1fyBSwnkYPXq0aN68uVCr1aJFixZi9OjRBmvvKOEcVPrmm29E586dhYuLi+jQoYP4+OOPDfbr9XqxaNEi4efnJ1xcXMTgwYNFenq6QZnff/9djB07Vri7uwsPDw8xadIkcevWrYY8jHrbu3evAFDl2IRQxudBp9OJ2bNni6CgINGoUSPRqlUr8cYbbxhMkVbKZyEhIUG0atVKqNVq4e/vL6ZPny4KCgqk/fZ4Hg4cOCAAVHlMmDBBCGG+Yz59+rTo27evcHFxES1atBDx8fFmqb9KiHuWECUiIiJSII4hIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIosZOHAg5syZY+1qWNzSpUvx8MMPW7saRFQPDERERDUoLS1t0PcTQqC8vLxB35OI7mIgIiKLmDhxIg4dOoS1a9dCpVJBpVLh8uXLOHfuHIYNGwZ3d3f4+flh/PjxyM/Pl543cOBAzJw5E3PmzEHTpk3h5+eHTZs24fbt25g0aRKaNGmCNm3aYPfu3dJzDh48CJVKhe+++w5dunRBo0aN0Lt3b5w7d86gTkeOHEG/fv3g6uqKwMBAzJo1C7dv35b2BwcH46233sLzzz8PDw8PTJs2DQCwYMECtGvXDm5ubmjVqhUWLVok3W178+bNWLZsGU6fPi0d5+bNm3H58mWoVCqkpaVJr19QUACVSoWDBw8a1Hv37t3o0aMHXFxccOTIEej1esTFxSEkJASurq7o2rUrvv76a3P/FxHRPRiIiMgi1q5di4iICEydOhXZ2dnIzs5GkyZN8Oijj6Jbt244ceIE9uzZg9zcXDz77LMGz92yZQu8vb1x/PhxzJw5Ey+99BL++Mc/ok+fPjh58iSGDBmC8ePHo6ioyOB58+fPx5///GekpKTAx8cHTzzxhBRcMjIyMHToUIwaNQpnzpxBQkICjhw5ghkzZhi8xrvvvouuXbvi1KlTWLRoEQCgSZMm2Lx5M3788UesXbsWmzZtwvvvvw8AGD16NF555RV06tRJOs7Ro0fX6VzFxsYiPj4eFy5cQJcuXRAXF4fPPvsMGzduxPnz5zF37lw899xzOHToUJ1el4jqwCy3iCUiqsaAAQPE7NmzpZ/feustMWTIEIMyV69eNbhD/IABA0Tfvn2l/eXl5aJx48Zi/Pjx0rbs7GwBQCQlJQkh/neX7S+//FIq8/vvvwtXV1eRkJAghBBiypQpYtq0aQbv/Z///Ec4ODiI4uJiIYQQLVu2FCNGjKj1uN555x3Ro0cP6eclS5aIrl27GpTJzMwUAMSpU6ekbTdv3hQAxIEDBwzqvXPnTqnMnTt3hJubmzh27JjB602ZMkWMHTu21roRkWmcrBnGiEhZTp8+jQMHDsDd3b3KvoyMDLRr1w4A0KVLF2m7o6MjmjVrhrCwMGmbn58fACAvL8/gNSIiIqR/e3l5oX379rhw4YL03mfOnMHWrVulMkII6PV6ZGZmomPHjgCA8PDwKnVLSEjAunXrkJGRgcLCQpSXl8PDw6POx1+Te9/z0qVLKCoqwh/+8AeDMqWlpejWrZvZ3pOIDDEQEVGDKSwsxBNPPIFVq1ZV2de8eXPp387Ozgb7VCqVwTaVSgUA0Ov1dXrvP/3pT5g1a1aVfUFBQdK/GzdubLAvKSkJMTExWLZsGaKjo6HRaPDll1/iz3/+8wPfz8Hh7ogEIYS0rbL77n73vmdhYSEA4LvvvkOLFi0Myrm4uDzwPYnIdAxERGQxarUaFRUV0s/du3fHP//5TwQHB8PJyfx/fv773/9K4ebmzZv4+eefpZaf7t2748cff0SbNm3q9JrHjh1Dy5Yt8cYbb0jbrly5YlDm/uMEAB8fHwBAdna21LJz7wDrmoSGhsLFxQVZWVkYMGBAnepKRKbjoGoispjg4GAkJyfj8uXLyM/Px/Tp03Hjxg2MHTsWKSkpyMjIwN69ezFp0qQqgcIUy5cvx/79+3Hu3DlMnDgR3t7eGDFiBIC7M8WOHTuGGTNmIC0tDRcvXsS//vWvKoOq79e2bVtkZWXhyy+/REZGBtatW4cdO3ZUOc7MzEykpaUhPz8fJSUlcHV1Re/evaXB0ocOHcKbb75Z6zE0adIEr776KubOnYstW7YgIyMDJ0+exPr167FlyxaTzw0RPRgDERFZzKuvvgpHR0eEhobCx8cHpaWlOHr0KCoqKjBkyBCEhYVhzpw58PT0lLqY6iM+Ph6zZ89Gjx49kJOTg2+++QZqtRrA3XFJhw4dws8//4x+/fqhW7duWLx4MQICAh74mk8++STmzp2LGTNm4OGHH8axY8ek2WeVRo0ahaFDh2LQoEHw8fHBF198AQD45JNPUF5ejh49emDOnDl4++23jTqOt956C4sWLUJcXBw6duyIoUOH4rvvvkNISIgJZ4WIjKES93ZwExHZoIMHD2LQoEG4efMmPD09rV0dIrJBbCEiIiIixWMgIiIiIsVjlxkREREpHluIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8f4PaXCA11XIDegAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABL0klEQVR4nO3deVxUZf8//tcAMoDAuLCKILhLKi64ICaaJnr7rcy6IzV37WNpamWJtrhVUN7eacutZXdSWUmWtrnnehNkoKJiZUoolKCSMcgiCnP9/vDHxMiwzDAz58yZ1/PxmMdDz7nmzHXODDPvc72vRSWEECAiIiJSCCepK0BERERkSQxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuiEgSy5Ytg0qlalRZlUqFZcuWWbU+Q4cOxdChQ2V7PCJqPAY3RA4uKSkJKpVK/3BxcUFQUBCmTp2KP/74Q+rqyU5oaKjB9fLz88Odd96Jbdu2WeT4ZWVlWLZsGQ4ePGiR4xE5IgY3RAQAWLFiBT766COsX78eo0ePxqZNmxATE4Pr169b5fWef/55lJeXW+XY1tarVy989NFH+Oijj7Bw4UJcvHgR48aNw/r165t87LKyMixfvpzBDVETuEhdASKSh9GjRyMyMhIAMHPmTPj4+ODVV1/F119/jYceesjir+fi4gIXF/v8CgoKCsIjjzyi///kyZPRsWNHvP7665g9e7aENSMigC03RFSHO++8EwCQnZ1tsP2XX37Bgw8+iFatWsHNzQ2RkZH4+uuvDcrcvHkTy5cvR6dOneDm5obWrVtj8ODB2Lt3r76MsT43FRUVePLJJ+Hr6wsvLy/ce++9+P3332vVberUqQgNDa213dgxN27ciLvuugt+fn5Qq9UIDw/HunXrTLoWDQkICEC3bt2Qk5NTb7nLly9jxowZ8Pf3h5ubGyIiIvDBBx/o958/fx6+vr4AgOXLl+tTX9bub0SkNPZ520REVnf+/HkAQMuWLfXbTp8+jejoaAQFBSE+Ph7NmzfHZ599hrFjx+KLL77A/fffD+BWkJGQkICZM2eif//+KC4uRkZGBo4dO4a77767ztecOXMmNm3ahAkTJmDQoEHYv38/xowZ06TzWLduHe644w7ce++9cHFxwTfffIPHH38cOp0Oc+bMadKxq928eRN5eXlo3bp1nWXKy8sxdOhQnDt3DnPnzkVYWBi2bNmCqVOnoqioCPPnz4evry/WrVuHxx57DPfffz/GjRsHAOjZs6dF6knkMAQRObSNGzcKAOK7774TV65cEXl5eeLzzz8Xvr6+Qq1Wi7y8PH3Z4cOHix49eojr16/rt+l0OjFo0CDRqVMn/baIiAgxZsyYel936dKlouZXUGZmpgAgHn/8cYNyEyZMEADE0qVL9dumTJki2rVr1+AxhRCirKysVrnY2FjRvn17g20xMTEiJiam3joLIUS7du3EyJEjxZUrV8SVK1fEiRMnxMMPPywAiCeeeKLO461Zs0YAEJs2bdJvu3HjhoiKihKenp6iuLhYCCHElStXap0vEZmGaSkiAgCMGDECvr6+CA4OxoMPPojmzZvj66+/Rtu2bQEAV69exf79+/HQQw/h2rVrKCwsRGFhIf7880/Exsbi7Nmz+tFVLVq0wOnTp3H27NlGv/6OHTsAAPPmzTPYvmDBgiadl7u7u/7fWq0WhYWFiImJwW+//QatVmvWMffs2QNfX1/4+voiIiICW7ZswaRJk/Dqq6/W+ZwdO3YgICAA48eP129r1qwZ5s2bh5KSEhw6dMisuhBRbUxLEREA4O2330bnzp2h1Wrx/vvv4/Dhw1Cr1fr9586dgxACL7zwAl544QWjx7h8+TKCgoKwYsUK3HfffejcuTO6d++OUaNGYdKkSfWmVy5cuAAnJyd06NDBYHuXLl2adF7ff/89li5dirS0NJSVlRns02q10Gg0Jh9zwIABeOmll6BSqeDh4YFu3bqhRYsW9T7nwoUL6NSpE5ycDO8pu3Xrpt9PRJbB4IaIAAD9+/fXj5YaO3YsBg8ejAkTJuDMmTPw9PSETqcDACxcuBCxsbFGj9GxY0cAwJAhQ5CdnY2vvvoKe/bswXvvvYfXX38d69evx8yZM5tc17om/6uqqjL4f3Z2NoYPH46uXbvi3//+N4KDg+Hq6oodO3bg9ddf15+TqXx8fDBixAiznktE1sfghohqcXZ2RkJCAoYNG4a33noL8fHxaN++PYBbqZTG/LC3atUK06ZNw7Rp01BSUoIhQ4Zg2bJldQY37dq1g06nQ3Z2tkFrzZkzZ2qVbdmyJYqKimptv73145tvvkFFRQW+/vprhISE6LcfOHCgwfpbWrt27XDy5EnodDqD1ptffvlFvx+oO3AjosZjnxsiMmro0KHo378/1qxZg+vXr8PPzw9Dhw7FO++8g/z8/Frlr1y5ov/3n3/+abDP09MTHTt2REVFRZ2vN3r0aADAG2+8YbB9zZo1tcp26NABWq0WJ0+e1G/Lz8+vNUuws7MzAEAIod+m1WqxcePGOuthLf/4xz9QUFCA5ORk/bbKykq8+eab8PT0RExMDADAw8MDAIwGb0TUOGy5IaI6PfPMM/jnP/+JpKQkzJ49G2+//TYGDx6MHj16YNasWWjfvj0uXbqEtLQ0/P777zhx4gQAIDw8HEOHDkXfvn3RqlUrZGRk4PPPP8fcuXPrfK1evXph/Pjx+M9//gOtVotBgwZh3759OHfuXK2yDz/8MBYtWoT7778f8+bNQ1lZGdatW4fOnTvj2LFj+nIjR46Eq6sr7rnnHvzf//0fSkpKsGHDBvj5+RkN0Kzp0UcfxTvvvIOpU6fi6NGjCA0Nxeeff47vv/8ea9asgZeXF4BbHaDDw8ORnJyMzp07o1WrVujevTu6d+9u0/oS2TWph2sRkbSqh4Knp6fX2ldVVSU6dOggOnToICorK4UQQmRnZ4vJkyeLgIAA0axZMxEUFCT+3//7f+Lzzz/XP++ll14S/fv3Fy1atBDu7u6ia9eu4uWXXxY3btzQlzE2bLu8vFzMmzdPtG7dWjRv3lzcc889Ii8vz+jQ6D179oju3bsLV1dX0aVLF7Fp0yajx/z6669Fz549hZubmwgNDRWvvvqqeP/99wUAkZOToy9nylDwhoa513W8S5cuiWnTpgkfHx/h6uoqevToITZu3FjruampqaJv377C1dWVw8KJzKASokZ7LREREZGdY58bIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBDREREiuJwk/jpdDpcvHgRXl5enOaciIjITgghcO3aNbRp06bWArS3c7jg5uLFiwgODpa6GkRERGSGvLw8tG3btt4yDhfcVE9xnpeXB29vb4lrQ0RERI1RXFyM4OBg/e94fRwuuKlORXl7ezO4ISIisjON6VLCDsVERESkKAxuiIiISFEY3BAREZGiOFyfGyIichxVVVW4efOm1NWgRnJ1dW1wmHdjMLghIiLFEUKgoKAARUVFUleFTODk5ISwsDC4uro26TgMboiISHGqAxs/Pz94eHhw0lY7UD3Jbn5+PkJCQpr0njG4ISIiRamqqtIHNq1bt5a6OmQCX19fXLx4EZWVlWjWrJnZx2GHYiIiUpTqPjYeHh4S14RMVZ2OqqqqatJxGNwQEZEiMRVlfyz1njG4ISIiIkVhcENEREQ2cfDgQahUKquPYmNwYwP52nKkZhciX1sudVWIiEjBli1bhl69ekldDclxtJSVJafnYvHWU9AJwEkFJIzrgbh+IVJXi4iIHNjNmzebNBpJ7thyY0X52nJ9YAMAOgEs2ZrFFhwiIjJKp9MhISEBYWFhcHd3R0REBD7//HMAf6d09u3bh8jISHh4eGDQoEE4c+YMACApKQnLly/HiRMnoFKpoFKpkJSUBOBWR91169bh3nvvRfPmzfHyyy/XW4/q19q9ezd69+4Nd3d33HXXXbh8+TJ27tyJbt26wdvbGxMmTEBZWZn+eRUVFZg3bx78/Pzg5uaGwYMHIz093ToXqx4Mbqwop7BUH9hUqxIC5wvLjD+BiIhkx5ZdCxISEvDhhx9i/fr1OH36NJ588kk88sgjOHTokL7Mc889h9WrVyMjIwMuLi6YPn06ACAuLg5PP/007rjjDuTn5yM/Px9xcXH65y1btgz3338/Tp06pX9OQ5YtW4a33noLqampyMvLw0MPPYQ1a9bgk08+wfbt27Fnzx68+eab+vLPPvssvvjiC3zwwQc4duwYOnbsiNjYWFy9etVCV6hxmJayojCf5nBSwSDAcVapEOrDuReIiOyBLbsWVFRU4JVXXsF3332HqKgoAED79u2RkpKCd955B48++igA4OWXX0ZMTAwAID4+HmPGjMH169fh7u4OT09PuLi4ICAgoNbxJ0yYgGnTpplUp5deegnR0dEAgBkzZmDx4sXIzs5G+/btAQAPPvggDhw4gEWLFqG0tBTr1q1DUlISRo8eDQDYsGED9u7di//+97945plnzLswZmDLjRUFatyRMK4HnP//cfvOKhVeGdcdgRp3iWtGREQNsXXXgnPnzqGsrAx33303PD099Y8PP/wQ2dnZ+nI9e/bU/zswMBAAcPny5QaPHxkZaXKdar6Wv78/PDw89IFN9bbq187OzsbNmzf1wRAANGvWDP3798fPP/9s8ms3BVturCyuXwiGdPbF+cIyhPp4MLAhIrIT9XUtsMZ3eUlJCQBg+/btCAoKMtinVqv1AU7NjsDVk97pdLoGj9+8eXOT63T7a93eCVmlUjXqtW2NwY0NBGrcGdQQEdkZW3ctCA8Ph1qtRm5urj7tVFPN1pu6uLq6NnnpAnN16NABrq6u+P7779GuXTsAt0ZlpaenY8GCBTatC4MbIiIiI6q7FizZmoUqIazetcDLywsLFy7Ek08+CZ1Oh8GDB0Or1eL777+Ht7e3PmCoT2hoKHJycpCZmYm2bdvCy8sLarXaKvW9XfPmzfHYY4/hmWeeQatWrRASEoLXXnsNZWVlmDFjhk3qUI3BDRERUR1s3bVg5cqV8PX1RUJCAn777Te0aNECffr0wZIlSxqV/nnggQewdetWDBs2DEVFRdi4cSOmTp1q1TrXlJiYCJ1Oh0mTJuHatWuIjIzE7t270bJlS5vVAQBUQgjRcDHlKC4uhkajgVarhbe3t9TVISIiC7t+/TpycnIQFhYGNzc3qatDJqjvvTPl95ujpYiIiEhRGNwQERE5mNmzZxsMN6/5mD17ttTVazL2uSEiInIwK1aswMKFC43uU0KXDQY3REREDsbPzw9+fn5SV8NqmJYiIiIiRWFwQ0REiiTHmXOpfpYawM20FBERKYqrqyucnJxw8eJF+Pr6wtXVVb9MAcmXEAJXrlwxusyDqRjcEBGRojg5OSEsLAz5+fm4ePGi1NUhE6hUKrRt2xbOzs5NOg6DGyIiUhxXV1eEhISgsrJSsrWWyHTNmjVrcmADMLghIiKFqk5vNDXFQfaHHYqJiIhIURjcEBERkaIwuCEiIiJFYXBDREREisLghoiIiBSFwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIUSQNbtatW4eePXvC29sb3t7eiIqKws6dO+t9zpYtW9C1a1e4ubmhR48e2LFjh41qS0RERPZA0uCmbdu2SExMxNGjR5GRkYG77roL9913H06fPm20fGpqKsaPH48ZM2bg+PHjGDt2LMaOHYusrCwb15yIiIjkSiWEEFJXoqZWrVph1apVmDFjRq19cXFxKC0txbfffqvfNnDgQPTq1Qvr169v1PGLi4uh0Wig1Wrh7e1tsXoTERGR9Zjy+y2bPjdVVVXYvHkzSktLERUVZbRMWloaRowYYbAtNjYWaWlpdR63oqICxcXFBg8iIiJSLsmDm1OnTsHT0xNqtRqzZ8/Gtm3bEB4ebrRsQUEB/P39Dbb5+/ujoKCgzuMnJCRAo9HoH8HBwRatPxEREcmL5MFNly5dkJmZiSNHjuCxxx7DlClT8NNPP1ns+IsXL4ZWq9U/8vLyLHZsIiIikh8XqSvg6uqKjh07AgD69u2L9PR0rF27Fu+8806tsgEBAbh06ZLBtkuXLiEgIKDO46vVaqjVastWmoiIiGRL8pab2+l0OlRUVBjdFxUVhX379hls27t3b519dIiIiMjxSNpys3jxYowePRohISG4du0aPvnkExw8eBC7d+8GAEyePBlBQUFISEgAAMyfPx8xMTFYvXo1xowZg82bNyMjIwPvvvuulKdBREREMiJpcHP58mVMnjwZ+fn50Gg06NmzJ3bv3o27774bAJCbmwsnp78blwYNGoRPPvkEzz//PJYsWYJOnTrhyy+/RPfu3aU6BSIiIpIZ2c1zY22c54aIiMj+2OU8N0RERESWwOCGiIiIFIXBDRERESkKgxsiIiJSFAY3REREpCgMboiIiEhRGNwQERGRojC4ISIiIkVhcENERESKwuDGgvK15UjNLkS+tlzqqhARETksSdeWUpLk9Fws3noKOgE4qYCEcT0Q1y9E6moRERE5HLbcWEC+tlwf2ACATgBLtmaxBYeIiEgCDG4sIKewVB/YVKsSAucLy6SpEBERkQNjcGMBYT7N4aQy3OasUiHUx0OaChERETkwBjcWEKhxR8K4HnBW3YpwnFUqvDKuOwI17hLXjIjkhIMOiGyDHYotJK5fCIZ09sX5wjKE+ngYBDb52nLkFJYizKc5Ax4iB8VBB0S2w+DGggI17rWCF36hEVFdgw6GdPblDQ+RFTAtZUUcRUVEAAcdENkagxsr4hcaEQEcdEBkawxurIhfaEQEcNABka2xz40VVX+hLdmahSoh+IVG5MDqG3RARJbF4MbK+IVGRNWMDTogIstjcGMD/EIjIiKyHfa5ISIiIkVhcENERESKwuCGiIiIFIXBDRERESkKgxsiIiJSFAY3REREpCgMboiIiEhRGNxYSb62HKnZhVwkk4iIyMY4iZ8VJKfn6lcDd1IBCeN6IK5fiNTVIiIicghsubGwfG25PrABAJ0AlmzNYgsOERGRjTC4sbCcwlJ9YFOtSgicLyyTpkJEREQOhsGNhYX5NIeTynCbs0qFUB8PaSpERETkYBjcWFigxh0J43rAWXUrwnFWqfDKuO5cOJOIiMhG2KHYCuL6hWBIZ1+cLyxDqI8HAxsiIiIbYnBjJYEadwY1REREEmBaioiIiBSFwQ0REREpiqTBTUJCAvr16wcvLy/4+flh7NixOHPmTL3PSUpKgkqlMni4ubnZqMZEREQkd5IGN4cOHcKcOXPwww8/YO/evbh58yZGjhyJ0tLSep/n7e2N/Px8/ePChQs2qjERERHJnaQdinft2mXw/6SkJPj5+eHo0aMYMmRInc9TqVQICAiwdvWIiIjIDsmqz41WqwUAtGrVqt5yJSUlaNeuHYKDg3Hffffh9OnTdZatqKhAcXGxwYOIiIiUSzbBjU6nw4IFCxAdHY3u3bvXWa5Lly54//338dVXX2HTpk3Q6XQYNGgQfv/9d6PlExISoNFo9I/g4GBrnQIRERHJgEoIIRouZn2PPfYYdu7ciZSUFLRt27bRz7t58ya6deuG8ePHY+XKlbX2V1RUoKKiQv//4uJiBAcHQ6vVwtvb2yJ1JyIiIusqLi6GRqNp1O+3LCbxmzt3Lr799lscPnzYpMAGAJo1a4bevXvj3LlzRver1Wqo1WpLVJOIiIjsgKRpKSEE5s6di23btmH//v0ICwsz+RhVVVU4deoUAgMDrVBDIiIisjeSttzMmTMHn3zyCb766it4eXmhoKAAAKDRaODufmvpgsmTJyMoKAgJCQkAgBUrVmDgwIHo2LEjioqKsGrVKly4cAEzZ86U7DyIiIhIPiQNbtatWwcAGDp0qMH2jRs3YurUqQCA3NxcODn93cD0119/YdasWSgoKEDLli3Rt29fpKamIjw83FbVJiIiIhmTTYdiWzGlQxIRERHJgym/37IZCk5ERERkCQxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuyCbyteVIzS5EvrZc6qoQEZHCSbq2FDmG5PRcLN56CjoBOKmAhHE9ENcvROpqERGRQrHlhqwqX1uuD2wAQCeAJVuz2IJDRERWw+CGrCqnsFQf2FSrEgLnC8ukqRARESkegxuyqjCf5nBSGW5zVqkQ6uMhTYWIiEjxGNyQVQVq3JEwrgecVbciHGeVCq+M645AjbvENSMiIqVih2Kyurh+IRjS2RfnC8sQ6uPBwIaIiKyKwQ3ZRKDGnUENERHZBNNSRKRYnF+JyDGx5YaIFInzKxE5LrbcSIh3lUTWwfmViBwbW24kwrtKIuupb34l9v0iUj623EiAd5VE1sX5lYgcG4MbCSh51l5TUm1My5G1cH4lIsfGtJQEqu8qawY4SrirNCXVxrQcWRvnVyJyXGy5kYAS7ypNSbUxLUe2EqhxR1SH1nb9t0VEpmPLjUSUdldpSgdOUzt75mvLkVNYijCf5nZ/nYiIyPoY3EhISbP2mpJqM6Us01dERGQqpqXIIkxJtTW2LNNXRERkDrbckMWYkmprTFnOVUJEROZgcEMWZUqqraGySh1VRkRE1sW0FMmWEkeVERGR9bHlhmRNaaPKiIjI+hjckOwpaVQZERFZH9NSREREpCgMboiIiEhRGNwQUZ24uCkR2SP2uSEiozg7NBHZK7bcEFEtnB2aiOwZgxuSDaZA5KO+2aHJED+3RPLDtBTJgqkpEK4Ubl2cHbpxmLojkidJW24SEhLQr18/eHl5wc/PD2PHjsWZM2cafN6WLVvQtWtXuLm5oUePHtixY4cNakvWYmoKJDk9F9GJ+zFhwxFEJ+5HcnquDWvrGDg7dMOYuiOSL0mDm0OHDmHOnDn44YcfsHfvXty8eRMjR45EaWlpnc9JTU3F+PHjMWPGDBw/fhxjx47F2LFjkZWVZcOakyWZkgLhD4rtxPULQUr8MHw6ayBS4oexReI2TN0RyZekaaldu3YZ/D8pKQl+fn44evQohgwZYvQ5a9euxahRo/DMM88AAFauXIm9e/firbfewvr1661eZ7I8U1IgXCnctjg7dN0cJXXHFDDZI1l1KNZqtQCAVq1a1VkmLS0NI0aMMNgWGxuLtLQ0q9aNrMeUFEj1D0pNSvxBUQKld7R1hNQdU8Bkr2TToVin02HBggWIjo5G9+7d6yxXUFAAf39/g23+/v4oKCgwWr6iogIVFRX6/xcXF1umwmRRjV0gs/oHZcnWLFQJocgfFCVoTEdbJbQIKHlh17pSwEM6+yrqPEmZZBPczJkzB1lZWUhJSbHocRMSErB8+XKLHpOso7EpECX/oChBY34UlTTKSKmpO6aAyZ7JIi01d+5cfPvttzhw4ADatm1bb9mAgABcunTJYNulS5cQEBBgtPzixYuh1Wr1j7y8PIvVm6QTqHFHVIfW/JKVoYY62rJTuH1gCpjsmaTBjRACc+fOxbZt27B//36EhYU1+JyoqCjs27fPYNvevXsRFRVltLxarYa3t7fBg4isp6EfRY4ysg+O0KeIlEvStNScOXPwySef4KuvvoKXl5e+34xGo4G7+60/oMmTJyMoKAgJCQkAgPnz5yMmJgarV6/GmDFjsHnzZmRkZODdd9+V7DyI6G8N9YuS2ygjJfT9AaxzHkwBk71SCSFEw8Ws9OIqldHtGzduxNSpUwEAQ4cORWhoKJKSkvT7t2zZgueffx7nz59Hp06d8Nprr+Ef//hHo16zuLgYGo0GWq2WrThEVpSvLa/zRzE5PbdW8CNFnxul9P1RynkQ1ceU329JgxspMLghkof6gh9bvX504v5aLUgp8cPsqoVCKedB1BBTfr8bnZYyZQg1gwYiaojUo4yUMhpIKedBZEmNDm5atGhRZxqpmhACKpUKVVVVTa4YEZE1ya3vj7mUch5EltTo4ObAgQPWrAcRkU0pZUJIpZwHkSWxzw0ROTSp+/5YilLOg6guVulzc7uioiL897//xc8//wwAuOOOOzB9+nRoNBpzD0lEZHNS9/1pjMYM87aH8yCyFbNabjIyMhAbGwt3d3f0798fAJCeno7y8nLs2bMHffr0sXhFLYUtN0RkTzjMm+gWqw8Fv/POO9GxY0ds2LABLi63Gn8qKysxc+ZM/Pbbbzh8+LB5NbcBBjdEZC84zJvob1ZPS2VkZBgENgDg4uKCZ599FpGRkeYckoiIbsNh3kTmMWttKW9vb+Tm5tbanpeXBy8vryZXioiI6l6ny8PVCanZhVxslKgOZgU3cXFxmDFjBpKTk5GXl4e8vDxs3rwZM2fOxPjx4y1dRyIih2Rs8cqxvdvg/v+kYsKGI4hO3I/k9No3mkSOzqy01L/+9S+oVCpMnjwZlZWVAIBmzZrhscceQ2JiokUrSJallEUCiRxFzcUrPVydcP9/UvWpKp0AlmzNwpDOvvx7JqrBrODG1dUVa9euRUJCArKzswEAHTp0gIcHZ8SUM466ILJP1cO8U7ML2QeHqBHMnucGADw8PNCjRw9L1YWsKF9brg9sAN7xEdkjLrVA1DhmBTfXr1/Hm2++iQMHDuDy5cvQ6XQG+48dO2aRypHlKHnUBVNt5Ci41AJR45gV3MyYMQN79uzBgw8+iP79+ze4oCZJT6l3fDVTbSoAs+4Mw7TBYfyyJ4uRW/Bcsw8Ol1ogMs6sSfw0Gg127NiB6Ohoa9TJqhx5Er/k9Nxad3z23OfG2ARnAPsTkeWwnxqRfFh9Er+goCDOZ2OHlHbHZyzVBrA/EVkG+6kR2S+z5rlZvXo1Fi1ahAsXLli6PmRlgRp3RHVoLasv53xtuVkTkhmb4KxadX8iInPV10+NpGPu9wU5FrNabiIjI3H9+nW0b98eHh4eaNasmcH+q1evWqRypHxNafav7ly5+ItT0N22Twn9iUhaSu2nZs+YJqTGMiu4GT9+PP744w+88sor8Pf3Z4diqqUxnTAt0exfnWrbmHIe76X8Bp0AR5CQRXBkknzka8uRcf4q04TUaGYFN6mpqUhLS0NERISl60MK0Ni7K0sNTw/UuGPJmG6YNjhUMf2JSB6U1k/NHtX8PrmdUqazIMszK7jp2rUrysuZ76TaTGmNsXSzf/UsrkSW5GifKzkNfb/9++R2TBNSXczqUJyYmIinn34aBw8exJ9//oni4mKDBzkuUzphGlsUkM3+RNJJTs9FdOJ+2SzKWdeISIDfF1Q/s1puRo0aBQAYPny4wXYhBFQqFaqqqppeM7JLprbGsNmfSB7kOPTd2PeJE4A3J/RGn3Yt+X1BdTIruDlw4ICl60EKYU4nTEdr9ieSIzku0VLX98mYnm0kqQ/ZD7OCm5iYmEaVe/zxx7FixQr4+PiY8zJkp9gaQ2R/5Dr0nd8nZA6z+tw01qZNm9gHx0HJcbJAIqqbnPvA8fuETGVWy01jmbFsFRERSYStJKQUVg1uiIjIvsipD5ychqWTfWFwQ0REssOlFqgprNrnhoiIyFR1DUvnYpnUWAxuiIisgKtXm48rslNTmRzcVFZWYsWKFfj9998bLPvII4/A29vbrIoREdkruc30a2+qh6XXJIdh6WQ/TA5uXFxcsGrVKlRWVjZYdt26dZzjhogcClMqTSfnYelkH8zqUHzXXXfh0KFDCA0NtXB1yBo44oDIduQ406894rB0agqzgpvRo0cjPj4ep06dQt++fdG8eXOD/ffee69FKkdNxxEHRLYl15l+7ZGchqWTfVEJM2bac3KqO5sl94Uzi4uLodFooNVqFd8fKF9bjujE/bW+ZFPih/ELg8iKktNza62HxJsKoqYx5ffbrJYbnU5nVsXIttg8TiQNplSIpGXWUPAPP/wQFRUVtbbfuHEDH374YZMrRZbBEQdE0uF6SETSMSu4mTZtGrRaba3t165dw7Rp05pcKbIMjjggIiJHZFZaSggBlUpVa/vvv/8OjUbT5EqR5bB5nIiIHI1JwU3v3r2hUqmgUqkwfPhwuLj8/fSqqirk5ORg1KhRjT7e4cOHsWrVKhw9ehT5+fnYtm0bxo4dW2f5gwcPYtiwYbW25+fnIyAgwJRTcSgccUB0C6dFIHIMJgU31YFHZmYmYmNj4enpqd/n6uqK0NBQPPDAA40+XmlpKSIiIjB9+nSMGzeu0c87c+aMQU9pPz+/Rj+XiBwTp0UgchwmBTdLly4FAISGhiIuLg5ubm5NevHRo0dj9OjRJj/Pz88PLVq0aNJrE5HjqGvW4CGdfdmCQ6RAZvW5mTJlCoBbo6MuX75ca2h4SIh174Z69eqFiooKdO/eHcuWLUN0dHSdZSsqKgxGdhUXF1u1bkQkP3KbFoHpMSLrMiu4OXv2LKZPn47U1FSD7dUdja01iV9gYCDWr1+PyMhIVFRU4L333sPQoUNx5MgR9OnTx+hzEhISsHz5cqvUh4isy1JBgJxmDWZ6jMj6zJqhODo6Gi4uLoiPj0dgYGCtkVMRERGmV0SlarBDsTExMTEICQnBRx99ZHS/sZab4OBgh5ihmEhuTAlWLB0EyGHWYM4aTmQ+q89QnJmZiaNHj6Jr165mVdCS+vfvj5SUlDr3q9VqqNVqG9aI5ITN/01nqWtoSrBijT4yNadF8HB1QumNKuRry236uZBbeoxIqcwKbsLDw1FYWGjpupglMzMTgYGBUleDZIjN/01nqWtoarBirSAgUOOOw79ekexzIaf0GJGSmTVD8auvvopnn30WBw8exJ9//oni4mKDR2OVlJQgMzMTmZmZAICcnBxkZmYiNzcXALB48WJMnjxZX37NmjX46quvcO7cOWRlZWHBggXYv38/5syZY85pkILV9WOary2XtmJ2xJLXsL5gxRhrLR0i9eeCs4YT2YZZLTcjRowAANx1110G/W1M7VCckZFhMCnfU089BeDWaKykpCTk5+frAx3g1uisp59+Gn/88Qc8PDzQs2dPfPfdd0Yn9iPHxub/pmvMNWxsysrUFovqIOD2PjJNfe/k8LngrOFE1mdWcHPgwAGLvPjQoUNRX3/mpKQkg/8/++yzePbZZy3y2qRsbP5vuoauoSkpK3OCFWsEAXL5XHDWcCLrMistFRMTAycnJ2zYsAHx8fHo2LEjYmJikJubC2dnZ0vXkchkbP5vuvquoTnpnbh+IUiJH4ZPZw1ESvywRvVzsfTK2vxcEDkGs1puvvjiC0yaNAkTJ07E8ePH9UOttVotXnnlFezYscOilSQyB5v/m66ua2huekcOLRb8XBApn1ktNy+99BLWr1+PDRs2oFmzZvrt0dHROHbsmMUqR9RUlr7zd0TGrqG1OvzaCj8XRMpmVnBz5swZDBkypNZ2jUaDoqKiptaJiGSO6R3K15YjNbuQIxBJlsxKSwUEBODcuXMIDQ012J6SkoL27dtbol5EJHNM7zguziFFcmdWy82sWbMwf/58HDlyBCqVChcvXsTHH3+MhQsX4rHHHrN0HYlIppjecTxSzxVEtmePrXRmtdzEx8dDp9Nh+PDhKCsrw5AhQ6BWq7Fw4UI88cQTlq4jEckEl7OwH9Z6r+QwVxDZjr220pm1cGa1Gzdu4Ny5cygpKUF4eDg8PT0tWTerMGXhLSL6m71+ycmBrYNCa75XXPzTccjtvTbl99ustFQ1V1dXhIeHo3///nYR2BCReZiKMF9yei6iE/djwoYjiE7cj+T03Iaf1ATWfq/YmdxxmLpsipyYlZYiIsfCVIR5TF0w1BItPLZ4r9iZ3DHIZUZvczC4IaIG2fOXnJRMCTQslUqy1XslhwkZybqstcabLTQpLUVEjoGpCPM0drJDS6aS+F6RJZmzbIocsOWGiBqFqQjTNfbO19KpJL5XZEn22ErH4IaIGs0ev+Sk1phAwxqpJL5X5MiYliIisrKGJjtkKonIsthyQ0QkA0pJJXGiR5IDBjdERDJh76kkTvRIcsG0FBHVYo9ryTgiOb1PnOiR5IQtN0RkgHff9kFu7xMneiQ5YcsNEenx7ts+yPF9auycPkS2wOCGiPTseS0ZRyLH94kjvkhOmJYiIj0us2Af5Po+KWXEF9k/ttwQkR7vvu2DnN+nhub0IbIFlRBCNFxMOYqLi6HRaKDVauHt7S11dYhkKV9bzrtvO8D3iRyJKb/fTEsRUS32Pt/K7ZQ6sZzS3iciS2FwQ0SKJrch00RkfexzQ0SKJcch00RkfQxuiEix5Dhkmkjp5DBzNtNSRKRYch0yTaRUckkDs+WGiBRLzkOmiZRGTmlgttwQkaJxYjki25DT+mIMbohI8Thkmsj65JQGZlqKiIiIGq2uDsNySgOz5YaIiIyyp8kP7amu9qyhDsNySQMzuCEiu8MfMuuTy6iXxrCnutqzujoMD+nsa/B3KIc0MNNSDk4O8xEQmSI5PRfRifsxYcMRRCfuR3J6rtRVUhw5jXppiD3V1d7Z07xRbLlxYLzbIXvT2DtHaho5jXppiD3V1d7JqcNwQ9hy46B4t0P2yJ7uHO1Z9Y9YTQ39iEnVCmxOXck8cuow3BC23Dgo3u2QPbKnO0d7Vv0jtmRrFqqEaPBHTMpWYFPrSk0jlw7DDWFw46D4I0H2iD9kttPYHzE5pArt5QdXKeTQYbghkqalDh8+jHvuuQdt2rSBSqXCl19+2eBzDh48iD59+kCtVqNjx45ISkqyej2VyJ6aF4lqiusXgpT4Yfh01kCkxA9jPzErCtS4I6pD63q/F+SSKmxMXclxSNpyU1paioiICEyfPh3jxo1rsHxOTg7GjBmD2bNn4+OPP8a+ffswc+ZMBAYGIjY21gY1Vhbe7ZC9soc7R0fBVmCSI5UQQjRczPpUKhW2bduGsWPH1llm0aJF2L59O7KysvTbHn74YRQVFWHXrl2Nep3i4mJoNBpotVp4e3s3tdpERA4vOT23VqpwSGdfzkVEFmXK77dd9blJS0vDiBEjDLbFxsZiwYIFdT6noqICFRUV+v8XFxdbq3pERA7p9lbgw79eQXTifk4zQZKxq6HgBQUF8Pf3N9jm7++P4uJilJcbH36YkJAAjUajfwQHB9uiqkREDqW6zwsAi0wzwQlGqSnsKrgxx+LFi6HVavWPvLw8qatERKRYluhgzFmoqansKrgJCAjApUuXDLZdunQJ3t7ecHc3ntNVq9Xw9vY2eBCRdHfGvCNXtqZOqscJRskS7KrPTVRUFHbs2GGwbe/evYiKipKoRiRHXFSxYVJNusYlP5SvqXMRcYJRsgRJg5uSkhKcO3dO//+cnBxkZmaiVatWCAkJweLFi/HHH3/gww8/BADMnj0bb731Fp599llMnz4d+/fvx2effYbt27dLdQokM/zxbJhUk67JYbI3so2mTDPBoeVkCZKmpTIyMtC7d2/07t0bAPDUU0+hd+/eePHFFwEA+fn5yM39O9caFhaG7du3Y+/evYiIiMDq1avx3nvvcY4bAsDm7MaSatI1uUz2RrZh7qR6nGCULEHSlpuhQ4eivml2jM0+PHToUBw/ftyKtSJ7xebsxpHqzph35NRYnGCUmsquOhQT1YerAzeOVHfGvCMnU3A5BWoK2cxQbCucoVjZjM2Uyj43xuVryyW5M5bqdYnIOHsZhGHK7zeDG1Ic/ngSETWOPQ3CMOX3m2kpB6fEOUfYnE1E1DAlD8Kwq3luyLLsKWInIiLLUvIgDLbcOCglR+xERNQwJQ/CYHDjoDjnCBGRbcg1/a/kEYxMSzkozjlCRGR9ck//K3VOIbbcOCglR+xERHJgL+l/JQ7CYMuNA1NqxE5EJAdK7rArdwxuHFygxp1/ZEREVsD0v3SYliIiIrICpv+lw5YbIiIiK2H6XxoMboiIyC7Zy5pITP/bHoMbIiKyO3IfYk3SYp8bIiKyK/YyxNoRyHWCQrbcEBGRXeEQa3mQc+sZW26IiMiuKHlNJHsh99YzBjdERGRXOMTaNNZIHcl9fUKmpYiIyO5wiHXjWCt1JPcJCtlyQ0REdkmJayJZkjVTR3JvPWPLDRERkQJZu+O1nFvPGNwQEZFi2MvEfrZgi9SRXCcoZFrKzsh1TgEiIqklp+ciOnE/Jmw4gujE/UhOz5W6SpKSe+rImlRCCNFwMeUoLi6GRqOBVquFt7e31NUxiZznFCAiklK+thzRiftrtVKkxA9ziB/z+uRry2WZOjKVKb/fbLmxE3KfU4CISEpyH5osJUfseM3gxk7wD5eIqG6c2I9qYnBjJ+z9D5d9hYjImhy5fwnVxtFSdqL6D3fJ1ixUCWFXf7jsK6QsHI1CciXnoclkW+xQbGfsrWMYO/kpCwNVsjcMxpXDlN9vttzYGbnOKVAXrt6rHHV1ah/S2ZfvJckSg3HHxT43ZFX23leI/sZO7WRPHGmEKfs01sbghqyKnfyUg4Eq2RNHCcY5caFxTEuR1Smhkx/z9vbdqZ0cj9xXrbYEporrxuCGbMLe+grVDGYO/3pF0Xl7UwI3JQSq5BgcIRhnn8a6Mbghus3tnRCFAKq/P5R2Z2ROh0t7C1TJcSk9GHeE1ilzsc8NUQ3GmnlvnytBKXl7R+pwSY5LyUsPsE9j3dhyQ1SDsWbe2ynlzohN2kT2T+mtU+ZicEMOy1hfE2PNvCoVoBKADsq6M2KTNimJI3f6Z6q4NgY35JDq6mtSVydEe7wzaujL3hE6XJJj4GR9dDtZLL/w9ttvY9WqVSgoKEBERATefPNN9O/f32jZpKQkTJs2zWCbWq3G9evXG/Va9r78AjVdY5aEsLdlLm5nype9vZ8rOTYu8eI4TPn9lrxDcXJyMp566iksXboUx44dQ0REBGJjY3H58uU6n+Pt7Y38/Hz948KFCzasMdm7xkzuZc+dEE3tKGzsXDnjKdkLR5msj0wjeXDz73//G7NmzcK0adMQHh6O9evXw8PDA++//36dz1GpVAgICNA//P39bVhjsndKn2m3qV/2nPGU7InS/56N4c1HwyQNbm7cuIGjR49ixIgR+m1OTk4YMWIE0tLS6nxeSUkJ2rVrh+DgYNx33304ffq0LapLCqH04ZNN+bLn8HCyN0r/e74dbz4aR9IOxYWFhaiqqqrV8uLv749ffvnF6HO6dOmC999/Hz179oRWq8W//vUvDBo0CKdPn0bbtm1rla+oqEBFRYX+/8XFxZY9CbJLSh4+2ZSOwhweTvZIyX/PNXG5hcazu9FSUVFRiIqK0v9/0KBB6NatG9555x2sXLmyVvmEhAQsX77cllUkO6Hk4ZPVX/bHLvwFnRCIDG3VqOdxeDjZKyX/PVfjzUfjSZqW8vHxgbOzMy5dumSw/dKlSwgICGjUMZo1a4bevXvj3LlzRvcvXrwYWq1W/8jLy2tyvYnsweFfr+CJT4/jiU8zG9187WhN/ET2xBH7F5lL0uDG1dUVffv2xb59+/TbdDod9u3bZ9A6U5+qqiqcOnUKgYGBRver1Wp4e3sbPIiUril9Z+L6hSAlfhg+nTUQKfHDOF8IkUzw5qPxJE9LPfXUU5gyZQoiIyPRv39/rFmzBqWlpfq5bCZPnoygoCAkJCQAAFasWIGBAweiY8eOKCoqwqpVq3DhwgXMnDlTytMgkpWmNl87QhM/kdwZm4jTUfoXNZXkwU1cXByuXLmCF198EQUFBejVqxd27dql72Scm5sLJ6e/G5j++usvzJo1CwUFBWjZsiX69u2L1NRUhIeHS3UKRLLDvjNE9q2+iTh589EwWcxQbEucoZgcRXJ6bq0RU0wxEckfZ102zpTfb8lbbojIOth8TWQ/aqagOCqq6RjcECkYm6+J5O/2FNSi0V2ZVm4iyZdfICIiclTGRja+tvMMFo3qylFRTcCWGyIiIonUlYLq2bYFUuKHMa1sJgY3REREEqlvZCPTyuZjWoqIiEginJjPOthyQ0REJCGObLQ8BjdEREQSYwrKspiWIiIiMiJfW47U7MJGrclG8sKWGyIiotvUt/wByR9bbmSAdwdERPJhbO6ZJVuz+B1tR9hyIzHeHRARyQuXP7B/bLmREO8OiIikUV+LefXcMzVx+QP7wuBGQvXdHRARkXUkp+ciOnE/Jmw4gujE/UhOzzXYz7ln7B/TUhKqb2ZKIiKyvLpazId09jUIXjj3jH1jy42EeHdARGRbprSYB2rcEdWhNb+T7RBbbiTGuwMiItthi7ljYMuNDPDuwP5w+D6RfWKLuWNgyw2RiTh8n8i+scVc+dhyQ2QCDt8nUga2mCsbgxsiE3D4PhGR/DG4ITIBJ/ciIpI/BjdEJmBnRCIi+WOHYiITsTMiEZG8MbghMkOgxp1BDRGRTDEtRURERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdEREQWxvXnpMXRUkRERBbE9eekx5YbIiOkuOuy5GvyrpFIGlx/Th7YckN0Gynuuiz5mrxrJJJOfevPcW4s22HLDVENUtx1WfI1eddIZD2NaRE1tv4cAJz8o8h6FaNaGNwQ1SDFqt+WfE2uWk5kHcnpuYhO3I8JG44gOnE/3jmcbTTQCdS4Y9GorrWe/9rOM7zJsCGmpYhqqL7rqhkgWHvVb1NfM19bjpzCUoT5NK/VzC1F/YmUzliLaMKOXwAYT/32aKupdQympmyLLTdENUix6rcpr3n73WNyeq7k9SdSOmMtotWMpX6NpaZ4k2FbKiFEHW+ZMhUXF0Oj0UCr1cLb21vq6pBM5WvLbb7qd0Ovma8tR3Ti/lqtMinxw2qVl6L+REpl7G/vdp/OGoioDq31/09Oz8WSrVmoEkJ/k8GO/U1jyu8301JERkix6ndDr2nKKAyuWk5kOdUtotXByu2MtcrE9QvBkM6+vMmQCIMbIjvB/jRE0qkZrJz8vQiv7Tpj0CpTM3ip2S+uZmsO2Q6DGyI7cfvdI/vTENlWdYtoVIfWuLdXG6OtMpxnSh5k0aH47bffRmhoKNzc3DBgwAD8+OOP9ZbfsmULunbtCjc3N/To0QM7duywUU2JpBXXLwQp8cPw6ayBSIkfxi9NIolUBzm3t9hwnil5kDy4SU5OxlNPPYWlS5fi2LFjiIiIQGxsLC5fvmy0fGpqKsaPH48ZM2bg+PHjGDt2LMaOHYusrCwb15xIGsa+VIlIepxnSj4kHy01YMAA9OvXD2+99RYAQKfTITg4GE888QTi4+NrlY+Li0NpaSm+/fZb/baBAweiV69eWL9+fYOvx9FSRERkDaaMaCTTmfL7LWnLzY0bN3D06FGMGDFCv83JyQkjRoxAWlqa0eekpaUZlAeA2NjYOstXVFSguLjY4EFERGRpnGdKPiTtUFxYWIiqqir4+/sbbPf398cvv/xi9DkFBQVGyxcUFBgtn5CQgOXLl1umwkRERPXgEHB5kLzPjbUtXrwYWq1W/8jLy5O6SkREpGDsFyc9SVtufHx84OzsjEuXLhlsv3TpEgICAow+JyAgwKTyarUaarXaMhUmIiIi2ZO05cbV1RV9+/bFvn379Nt0Oh327duHqKgoo8+JiooyKA8Ae/furbM8ERERORbJJ/F76qmnMGXKFERGRqJ///5Ys2YNSktLMW3aNADA5MmTERQUhISEBADA/PnzERMTg9WrV2PMmDHYvHkzMjIy8O6770p5GkRERCQTkgc3cXFxuHLlCl588UUUFBSgV69e2LVrl77TcG5uLpyc/m5gGjRoED755BM8//zzWLJkCTp16oQvv/wS3bt3l+oUiIiISEYkn+fG1jjPDRERkf2xm3luiIiIiCyNwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaJIPs+NrVWPfOfq4ERERPaj+ne7MTPYOFxwc+3aNQBAcHCwxDUhIiIiU127dg0ajabeMg43iZ9Op8PFixfh5eUFlUrV6OcVFxcjODgYeXl5Dj35H68Dr0E1XodbeB14DarxOtxiresghMC1a9fQpk0bg5ULjHG4lhsnJye0bdvW7Od7e3s79Ie2Gq8Dr0E1XodbeB14DarxOtxijevQUItNNXYoJiIiIkVhcENERESKwuCmkdRqNZYuXQq1Wi11VSTF68BrUI3X4RZeB16DarwOt8jhOjhch2IiIiJSNrbcEBERkaIwuCEiIiJFYXBDREREisLghoiIiBTFoYObdevWoWfPnvqJhqKiorBz5079/uvXr2POnDlo3bo1PD098cADD+DSpUsGx8jNzcWYMWPg4eEBPz8/PPPMM6isrLT1qVhMYmIiVCoVFixYoN/mCNdh2bJlUKlUBo+uXbvq9zvCNaj2xx9/4JFHHkHr1q3h7u6OHj16ICMjQ79fCIEXX3wRgYGBcHd3x4gRI3D27FmDY1y9ehUTJ06Et7c3WrRogRkzZqCkpMTWp2K20NDQWp8HlUqFOXPmAHCMz0NVVRVeeOEFhIWFwd3dHR06dMDKlSsN1vVxhM8CcGu6/wULFqBdu3Zwd3fHoEGDkJ6ert+vxOtw+PBh3HPPPWjTpg1UKhW+/PJLg/2WOueTJ0/izjvvhJubG4KDg/Haa69Z5gSEA/v666/F9u3bxa+//irOnDkjlixZIpo1ayaysrKEEELMnj1bBAcHi3379omMjAwxcOBAMWjQIP3zKysrRffu3cWIESPE8ePHxY4dO4SPj49YvHixVKfUJD/++KMIDQ0VPXv2FPPnz9dvd4TrsHTpUnHHHXeI/Px8/ePKlSv6/Y5wDYQQ4urVq6Jdu3Zi6tSp4siRI+K3334Tu3fvFufOndOXSUxMFBqNRnz55ZfixIkT4t577xVhYWGivLxcX2bUqFEiIiJC/PDDD+J///uf6Nixoxg/frwUp2SWy5cvG3wW9u7dKwCIAwcOCCEc4/Pw8ssvi9atW4tvv/1W5OTkiC1btghPT0+xdu1afRlH+CwIIcRDDz0kwsPDxaFDh8TZs2fF0qVLhbe3t/j999+FEMq8Djt27BDPPfec2Lp1qwAgtm3bZrDfEues1WqFv7+/mDhxosjKyhKffvqpcHd3F++8806T6+/QwY0xLVu2FO+9954oKioSzZo1E1u2bNHv+/nnnwUAkZaWJoS49eY7OTmJgoICfZl169YJb29vUVFRYfO6N8W1a9dEp06dxN69e0VMTIw+uHGU67B06VIRERFhdJ+jXAMhhFi0aJEYPHhwnft1Op0ICAgQq1at0m8rKioSarVafPrpp0IIIX766ScBQKSnp+vL7Ny5U6hUKvHHH39Yr/JWNH/+fNGhQweh0+kc5vMwZswYMX36dINt48aNExMnThRCOM5noaysTDg7O4tvv/3WYHufPn3Ec8895xDX4fbgxlLn/J///Ee0bNnS4G9i0aJFokuXLk2us0OnpWqqqqrC5s2bUVpaiqioKBw9ehQ3b97EiBEj9GW6du2KkJAQpKWlAQDS0tLQo0cP+Pv768vExsaiuLgYp0+ftvk5NMWcOXMwZswYg/MF4FDX4ezZs2jTpg3at2+PiRMnIjc3F4BjXYOvv/4akZGR+Oc//wk/Pz/07t0bGzZs0O/PyclBQUGBwbXQaDQYMGCAwbVo0aIFIiMj9WVGjBgBJycnHDlyxHYnYyE3btzApk2bMH36dKhUKof5PAwaNAj79u3Dr7/+CgA4ceIEUlJSMHr0aACO81morKxEVVUV3NzcDLa7u7sjJSXFYa5DTZY657S0NAwZMgSurq76MrGxsThz5gz++uuvJtXR4RbOvN2pU6cQFRWF69evw9PTE9u2bUN4eDgyMzPh6uqKFi1aGJT39/dHQUEBAKCgoMDgy6t6f/U+e7F582YcO3bMIIdcraCgwCGuw4ABA5CUlIQuXbogPz8fy5cvx5133omsrCyHuQYA8Ntvv2HdunV46qmnsGTJEqSnp2PevHlwdXXFlClT9Odi7FxrXgs/Pz+D/S4uLmjVqpVdXYtqX375JYqKijB16lQAjvM3ER8fj+LiYnTt2hXOzs6oqqrCyy+/jIkTJwKAw3wWvLy8EBUVhZUrV6Jbt27w9/fHp59+irS0NHTs2NFhrkNNljrngoIChIWF1TpG9b6WLVuaXUeHD266dOmCzMxMaLVafP7555gyZQoOHTokdbVsJi8vD/Pnz8fevXtr3Zk4kuq7UQDo2bMnBgwYgHbt2uGzzz6Du7u7hDWzLZ1Oh8jISLzyyisAgN69eyMrKwvr16/HlClTJK6dNP773/9i9OjRaNOmjdRVsanPPvsMH3/8MT755BPccccdyMzMxIIFC9CmTRuH+yx89NFHmD59OoKCguDs7Iw+ffpg/PjxOHr0qNRVozo4fFrK1dUVHTt2RN++fZGQkICIiAisXbsWAQEBuHHjBoqKigzKX7p0CQEBAQCAgICAWiMkqv9fXUbujh49isuXL6NPnz5wcXGBi4sLDh06hDfeeAMuLi7w9/d3iOtwuxYtWqBz5844d+6cw3wWACAwMBDh4eEG27p166ZP0VWfi7FzrXktLl++bLC/srISV69etatrAQAXLlzAd999h5kzZ+q3Ocrn4ZlnnkF8fDwefvhh9OjRA5MmTcKTTz6JhIQEAI71WejQoQMOHTqEkpIS5OXl4ccff8TNmzfRvn17h7oO1Sx1ztb8O3H44OZ2Op0OFRUV6Nu3L5o1a4Z9+/bp9505cwa5ubmIiooCAERFReHUqVMGb+DevXvh7e1d6wdCroYPH45Tp04hMzNT/4iMjMTEiRP1/3aE63C7kpISZGdnIzAw0GE+CwAQHR2NM2fOGGz79ddf0a5dOwBAWFgYAgICDK5FcXExjhw5YnAtioqKDO5q9+/fD51OhwEDBtjgLCxn48aN8PPzw5gxY/TbHOXzUFZWBicnw58IZ2dn6HQ6AI73WQCA5s2bIzAwEH/99Rd2796N++67zyGvg6XOOSoqCocPH8bNmzf1Zfbu3YsuXbo0KSUFwLGHgsfHx4tDhw6JnJwccfLkSREfHy9UKpXYs2ePEOLWcM+QkBCxf/9+kZGRIaKiokRUVJT++dXDPUeOHCkyMzPFrl27hK+vr10N9zSm5mgpIRzjOjz99NPi4MGDIicnR3z//fdixIgRwsfHR1y+fFkI4RjXQIhb0wG4uLiIl19+WZw9e1Z8/PHHwsPDQ2zatElfJjExUbRo0UJ89dVX4uTJk+K+++4zOgS0d+/e4siRIyIlJUV06tRJ1sNejamqqhIhISFi0aJFtfY5wudhypQpIigoSD8UfOvWrcLHx0c8++yz+jKO8lnYtWuX2Llzp/jtt9/Enj17REREhBgwYIC4ceOGEEKZ1+HatWvi+PHj4vjx4wKA+Pe//y2OHz8uLly4IISwzDkXFRUJf39/MWnSJJGVlSU2b94sPDw8OBS8qaZPny7atWsnXF1dha+vrxg+fLg+sBFCiPLycvH444+Lli1bCg8PD3H//feL/Px8g2OcP39ejB49Wri7uwsfHx/x9NNPi5s3b9r6VCzq9uDGEa5DXFycCAwMFK6uriIoKEjExcUZzO3iCNeg2jfffCO6d+8u1Gq16Nq1q3j33XcN9ut0OvHCCy8If39/oVarxfDhw8WZM2cMyvz5559i/PjxwtPTU3h7e4tp06aJa9eu2fI0mmz37t0CQK1zE8IxPg/FxcVi/vz5IiQkRLi5uYn27duL5557zmDYrqN8FpKTk0X79u2Fq6urCAgIEHPmzBFFRUX6/Uq8DgcOHBAAaj2mTJkihLDcOZ84cUIMHjxYqNVqERQUJBITEy1Sf5UQNaabJCIiIrJz7HNDREREisLghoiIiBSFwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBDRI0ydOhQLFiwQOpqWN2yZcvQq1cvqatBRE3A4IaIHMKNGzds+npCCFRWVtr0NYnoFgY3RNSgqVOn4tChQ1i7di1UKhVUKhXOnz+PrKwsjB49Gp6envD398ekSZNQWFiof97QoUPxxBNPYMGCBWjZsiX8/f2xYcMGlJaWYtq0afDy8kLHjh2xc+dO/XMOHjwIlUqF7du3o2fPnnBzc8PAgQORlZVlUKeUlBTceeedcHd3R3BwMObNm4fS0lL9/tDQUKxcuRKTJ0+Gt7c3Hn30UQDAokWL0LlzZ3h4eKB9+/Z44YUX9KsSJyUlYfny5Thx4oT+PJOSknD+/HmoVCpkZmbqj19UVASVSoWDBw8a1Hvnzp3o27cv1Go1UlJSoNPpkJCQgLCwMLi7uyMiIgKff/65pd8iIqqBwQ0RNWjt2rWIiorCrFmzkJ+fj/z8fHh5eeGuu+5C7969kZGRgV27duHSpUt46KGHDJ77wQcfwMfHBz/++COeeOIJPPbYY/jnP/+JQYMG4dixYxg5ciQmTZqEsrIyg+c988wzWL16NdLT0+Hr64t77rlHH4RkZ2dj1KhReOCBB3Dy5EkkJycjJSUFc+fONTjGv/71L0REROD48eN44YUXAABeXl5ISkrCTz/9hLVr12LDhg14/fXXAQBxcXF4+umncccdd+jPMy4uzqRrFR8fj8TERPz888/o2bMnEhIS8OGHH2L9+vU4ffo0nnzySTzyyCM4dOiQScclIhNYZPlNIlK821eLX7lypRg5cqRBmby8PIOVtGNiYsTgwYP1+ysrK0Xz5s3FpEmT9Nvy8/MFAJGWliaE+Hs14s2bN+vL/Pnnn8Ld3V0kJycLIYSYMWOGePTRRw1e+3//+59wcnIS5eXlQggh2rVrJ8aOHdvgea1atUr07dtX//+lS5eKiIgIgzI5OTkCgDh+/Lh+219//SUAiAMHDhjU+8svv9SXuX79uvDw8BCpqakGx5sxY4YYP358g3UjIvO4SBlYEZH9OnHiBA4cOABPT89a+7Kzs9G5c2cAQM+ePfXbnZ2d0bp1a/To0UO/zd/fHwBw+fJlg2NERUXp/92qVSt06dIFP//8s/61T548iY8//lhfRggBnU6HnJwcdOvWDQAQGRlZq27Jycl44403kJ2djZKSElRWVsLb29vk869Lzdc8d+4cysrKcPfddxuUuXHjBnr37m2x1yQiQwxuiMgsJSUluOeee/Dqq6/W2hcYGKj/d7NmzQz2qVQqg20qlQoAoNPpTHrt//u//8O8efNq7QsJCdH/u3nz5gb70tLSMHHiRCxfvhyxsbHQaDTYvHkzVq9eXe/rOTndyuALIfTbqlNkt6v5miUlJQCA7du3IygoyKCcWq2u9zWJyHwMboioUVxdXVFVVaX/f58+ffDFF18gNDQULi6W/yr54Ycf9IHKX3/9hV9//VXfItOnTx/89NNP6Nixo0nHTE1NRbt27fDcc8/pt124cMGgzO3nCQC+vr4AgPz8fH2LS83OxXUJDw+HWq1Gbm4uYmJiTKorEZmPHYqJqFFCQ0Nx5MgRnD9/HoWFhZgzZw6uXr2K8ePHIz09HdnZ2di9ezemTZtWKzgwx4oVK7Bv3z5kZWVh6tSp8PHxwdixYwHcGvGUmpqKuXPnIjMzE2fPnsVXX31Vq0Px7Tp16oTc3Fxs3rwZ2dnZeOONN7Bt27Za55mTk4PMzEwUFhaioqIC7u7uGDhwoL6j8KFDh/D88883eA5eXl5YuHAhnnzySXzwwQfIzs7GsWPH8Oabb+KDDz4w+9oQUf0Y3BBRoyxcuBDOzs4IDw+Hr68vbty4ge+//x5VVVUYOXIkevTogQULFqBFixb6NE5TJCYmYv78+ejbty8KCgrwzTffwNXVFcCtfjyHDh3Cr7/+ijvvvBO9e/fGiy++iDZt2tR7zHvvvRdPPvkk5s6di169eiE1NVU/iqraAw88gFGjRmHYsGHw9fXFp59+CgB4//33UVlZib59+2LBggV46aWXGnUeK1euxAsvvICEhAR069YNo0aNwvbt2xEWFmbGVSGixlCJmklkIiKJHTx4EMOGDcNff/2FFi1aSF0dIrJDbLkhIiIiRWFwQ0RERIrCtBQREREpCltuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuiIiISFH+P6mFqBfr0aimAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(keras_surrogate, data_validation)\n", + "surrogate_parity(keras_surrogate, data_validation)\n", + "surrogate_residual(keras_surrogate, data_validation)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABg+klEQVR4nO3dfVzT5f4/8Ndn40ZAGHIPooBgmqYmWIaVllnqUTv9tCQz06S0jmikeXc8mWalZpqaZdrX1CzTSuukZmlllkpm3sbJTAxUErwZMlBTYLt+f6zNbWxjjN2y1/Px4KH7fD7brn2i9uq63td1SUIIASIiIiIfIHN3A4iIiIhchcGHiIiIfAaDDxEREfkMBh8iIiLyGQw+RERE5DMYfIiIiMhnMPgQERGRz2DwISIiIp/B4ENEREQ+g8GHiMgDrVq1CpIkoaioyN1NIWpUGHyIfNS+ffuQk5OD9u3bIyQkBC1btsTgwYPx+++/17r2rrvugiRJkCQJMpkMYWFhaNOmDYYNG4bt27fX6303bdqEHj16ICYmBsHBwWjVqhUGDx6ML7/80lEfrZZXXnkFn332Wa3je/bswYwZM1BeXu609zY1Y8YM/b2UJAnBwcFo164d/vOf/6CiosIh77F27VosXLjQIa9F1Ngw+BD5qLlz52LDhg245557sGjRIowaNQrff/890tPTkZ+fX+v6xMRErFmzBu+99x7mzZuH+++/H3v27MF9992HrKwsVFdX1/mer732Gu6//35IkoSpU6fi9ddfx6BBg3D8+HGsW7fOGR8TgPXgM3PmTJcGH52lS5dizZo1WLBgAdq2bYuXX34Zffr0gSO2T2TwIbLMz90NICL3GD9+PNauXYuAgAD9saysLHTo0AFz5szB+++/b3S9QqHAo48+anRszpw5GDduHN566y0kJydj7ty5Ft+vpqYGs2bNwr333ott27bVOn/u3LkGfiLPceXKFQQHB1u95sEHH0RUVBQA4KmnnsKgQYOwceNG/Pjjj8jMzHRFM4l8Ent8iHxUt27djEIPALRu3Rrt27fH0aNHbXoNuVyOxYsXo127dliyZAlUKpXFay9cuICKigrcfvvtZs/HxMQYPb569SpmzJiBG264AU2aNEF8fDwGDhyIEydO6K957bXX0K1bN0RGRiIoKAgZGRn45JNPjF5HkiRcvnwZq1ev1g8vjRgxAjNmzMDEiRMBACkpKfpzhjU177//PjIyMhAUFISIiAg8/PDDOH36tNHr33XXXbjpppuwf/9+dO/eHcHBwfj3v/9t0/0z1LNnTwBAYWGh1eveeusttG/fHoGBgUhISMCYMWOMeqzuuusubNmyBSdPntR/puTk5Hq3h6ixYo8PEekJIXD27Fm0b9/e5ufI5XIMGTIEzz//PHbt2oV+/fqZvS4mJgZBQUHYtGkTxo4di4iICIuvqVar0b9/f3zzzTd4+OGH8cwzz6CyshLbt29Hfn4+UlNTAQCLFi3C/fffj6FDh6Kqqgrr1q3DQw89hM2bN+vbsWbNGjzxxBO49dZbMWrUKABAamoqQkJC8Pvvv+PDDz/E66+/ru99iY6OBgC8/PLLeP755zF48GA88cQTOH/+PN544w10794dBw8eRHh4uL69SqUSffv2xcMPP4xHH30UsbGxNt8/HV2gi4yMtHjNjBkzMHPmTPTq1QtPP/00jh07hqVLl2Lfvn3YvXs3/P39MW3aNKhUKhQXF+P1118HADRt2rTe7SFqtAQR0d/WrFkjAIgVK1YYHe/Ro4do3769xed9+umnAoBYtGiR1defPn26ACBCQkJE3759xcsvvyz2799f67p3331XABALFiyodU6j0ej/fuXKFaNzVVVV4qabbhI9e/Y0Oh4SEiKGDx9e67XmzZsnAIjCwkKj40VFRUIul4uXX37Z6Pgvv/wi/Pz8jI736NFDABBvv/22xc9t6IUXXhAAxLFjx8T58+dFYWGhWLZsmQgMDBSxsbHi8uXLQgghVq5cadS2c+fOiYCAAHHfffcJtVqtf70lS5YIAOLdd9/VH+vXr59ISkqyqT1EvoZDXUQEAPjtt98wZswYZGZmYvjw4fV6rq5HobKy0up1M2fOxNq1a9G5c2d89dVXmDZtGjIyMpCenm40vLZhwwZERUVh7NixtV5DkiT934OCgvR/v3jxIlQqFe68804cOHCgXu03tXHjRmg0GgwePBgXLlzQ/8TFxaF169bYsWOH0fWBgYF4/PHH6/Uebdq0QXR0NFJSUjB69GikpaVhy5YtFmuDvv76a1RVVSE3Nxcy2fX/dD/55JMICwvDli1b6v9BiXwQh7qICKWlpejXrx8UCgU++eQTyOXyej3/0qVLAIDQ0NA6rx0yZAiGDBmCiooK7N27F6tWrcLatWsxYMAA5Ofno0mTJjhx4gTatGkDPz/r/4navHkzXnrpJRw6dAjXrl3THzcMR/Y4fvw4hBBo3bq12fP+/v5Gj5s3b16rXqouGzZsQFhYGPz9/ZGYmKgfvrPk5MmTALSByVBAQABatWqlP09E1jH4EPk4lUqFvn37ory8HD/88AMSEhLq/Rq66e9paWk2PycsLAz33nsv7r33Xvj7+2P16tXYu3cvevToYdPzf/jhB9x///3o3r073nrrLcTHx8Pf3x8rV67E2rVr6/0ZDGk0GkiShK1bt5oNgaY1M4Y9T7bq3r27vq6IiFyHwYfIh129ehUDBgzA77//jq+//hrt2rWr92uo1WqsXbsWwcHBuOOOO+xqR5cuXbB69WqUlJQA0BYf7927F9XV1bV6V3Q2bNiAJk2a4KuvvkJgYKD++MqVK2tda6kHyNLx1NRUCCGQkpKCG264ob4fxymSkpIAAMeOHUOrVq30x6uqqlBYWIhevXrpjzW0x4uoMWOND5GPUqvVyMrKQl5eHj7++GO71o5Rq9UYN24cjh49inHjxiEsLMzitVeuXEFeXp7Zc1u3bgVwfRhn0KBBuHDhApYsWVLrWvH3An9yuRySJEGtVuvPFRUVmV2oMCQkxOwihSEhIQBQ69zAgQMhl8sxc+bMWgsKCiGgVCrNf0gn6tWrFwICArB48WKjNq1YsQIqlcpoNl1ISIjVpQWIfBl7fIh81IQJE/D5559jwIABKCsrq7VgoelihSqVSn/NlStXUFBQgI0bN+LEiRN4+OGHMWvWLKvvd+XKFXTr1g233XYb+vTpgxYtWqC8vByfffYZfvjhBzzwwAPo3LkzAOCxxx7De++9h/Hjx+Onn37CnXfeicuXL+Prr7/Gv/71L/zzn/9Ev379sGDBAvTp0wePPPIIzp07hzfffBNpaWk4cuSI0XtnZGTg66+/xoIFC5CQkICUlBR07doVGRkZAIBp06bh4Ycfhr+/PwYMGIDU1FS89NJLmDp1KoqKivDAAw8gNDQUhYWF+PTTTzFq1Cg899xzDbr/9RUdHY2pU6di5syZ6NOnD+6//34cO3YMb731Fm655Rajf14ZGRlYv349xo8fj1tuuQVNmzbFgAEDXNpeIo/lzillROQ+umnYln6sXdu0aVPRunVr8eijj4pt27bZ9H7V1dXinXfeEQ888IBISkoSgYGBIjg4WHTu3FnMmzdPXLt2zej6K1euiGnTpomUlBTh7+8v4uLixIMPPihOnDihv2bFihWidevWIjAwULRt21asXLlSP13c0G+//Sa6d+8ugoKCBACjqe2zZs0SzZs3FzKZrNbU9g0bNog77rhDhISEiJCQENG2bVsxZswYcezYMaN7Y22qvyld+86fP2/1OtPp7DpLliwRbdu2Ff7+/iI2NlY8/fTT4uLFi0bXXLp0STzyyCMiPDxcAODUdiIDkhAO2BiGiIiIyAuwxoeIiIh8BoMPERER+QwGHyIiIvIZDD5ERETkMxh8iIiIyGcw+BAREZHP4AKGJjQaDc6cOYPQ0FAu+05EROQlhBCorKxEQkICZDLL/ToMPibOnDmDFi1auLsZREREZIfTp08jMTHR4nkGHxOhoaEAtDfO2r5DRERE5DkqKirQokUL/fe4JQw+JnTDW2FhYQw+REREXqauMhUWNxMREZHPYPAhIiIin8HgQ0RERD6DNT520Gg0qKqqcnczGrWAgACr0xGJiIjs4TXBZ/bs2di4cSN+++03BAUFoVu3bpg7dy7atGmjv+bq1auYMGEC1q1bh2vXrqF379546623EBsb67B2VFVVobCwEBqNxmGvSbXJZDKkpKQgICDA3U0hIqJGRBJCCHc3whZ9+vTBww8/jFtuuQU1NTX497//jfz8fPz6668ICQkBADz99NPYsmULVq1aBYVCgZycHMhkMuzevdvm96moqIBCoYBKpao1q0sIgVOnTqG6urrOBZLIfrpFJP39/dGyZUsuJElERHWy9v1tyGuCj6nz588jJiYGO3fuRPfu3aFSqRAdHY21a9fiwQcfBAD89ttvuPHGG5GXl4fbbrvNpte1duOqq6tRUFCAhIQEKBQKh38muk6lUuHMmTNIS0uDv7+/u5tDREQeztbg47VdFiqVCgAQEREBANi/fz+qq6vRq1cv/TVt27ZFy5YtkZeX55D3VKvVAMDhFxfQ3WPdPSciInIEr6nxMaTRaJCbm4vbb78dN910EwCgtLQUAQEBCA8PN7o2NjYWpaWlFl/r2rVruHbtmv5xRUVFne/PoRfn4z0mIiJn8MrgM2bMGOTn52PXrl0Nfq3Zs2dj5syZDmgVERGRb1AqlVZnNwcEBCAyMtKFLbKd1wWfnJwcbN68Gd9//73RJmRxcXGoqqpCeXm5Ua/P2bNnERcXZ/H1pk6divHjx+sf6/b6ICIiotqUSiWWLFlS53U5OTkeGX68psZHCIGcnBx8+umn+Pbbb5GSkmJ0PiMjA/7+/vjmm2/0x44dO4ZTp04hMzPT4usGBgbq9+VqrPtzjRgxApIkQZIk+Pv7IzY2Fvfeey/efffdek3LX7VqVa2hRCIi8i22rmPnqevdeU2Pz5gxY7B27Vr897//RWhoqL5uR6FQICgoCAqFAtnZ2Rg/fjwiIiIQFhaGsWPHIjMz0+YZXc7mzq7BPn36YOXKlVCr1Th79iy+/PJLPPPMM/jkk0/w+eefw8/Pa34ViIiI7OY133ZLly4FANx1111Gx1euXIkRI0YAAF5//XXIZDIMGjTIaAFDT+DursHAwED9kF/z5s2Rnp6O2267Dffccw9WrVqFJ554AgsWLMDKlSvxxx9/ICIiAgMGDMCrr76Kpk2b4rvvvsPjjz8O4Hrh8QsvvIAZM2ZgzZo1WLRoEY4dO4aQkBD07NkTCxcuRExMjMM/BxERUUN41VCXuR9d6AGAJk2a4M0330RZWRkuX76MjRs3Wq3vcSVP7Brs2bMnOnXqhI0bNwLQrpa8ePFi/O9//8Pq1avx7bffYtKkSQCAbt26YeHChQgLC0NJSQlKSkrw3HPPAdCubzRr1iwcPnwYn332GYqKioz+uRAREXkKr+nxIedo27Ytjhw5AgDIzc3VH09OTsZLL72Ep556Cm+99RYCAgKgUCggSVKtMDly5Ej931u1aoXFixfjlltuwaVLl9C0aVOXfA4iIiJbeE2PDzmHEEI/dPX111/jnnvuQfPmzREaGophw4ZBqVTiypUrVl9j//79GDBgAFq2bInQ0FD06NEDAHDq1Cmnt5+IiNxLpQpFYWEyVKpQdzfFJgw+Pu7o0aNISUlBUVER+vfvj44dO2LDhg3Yv38/3nzzTQDWh98uX76M3r17IywsDB988AH27duHTz/9tM7nERGR9ztwoDMWLszF6tXDsXBhLg4c6OzuJtWJQ10+7Ntvv8Uvv/yCZ599Fvv374dGo8H8+fP1m69+9NFHRtcHBATU2kLit99+g1KpxJw5c/TrH/3888+u+QBERORyui2FVKpQbNrUH0JovzOEkGHTpv5ITS2AQlHpsds7scfHR1y7dg2lpaX4888/ceDAAbzyyiv45z//if79++Oxxx5DWloaqqur8cYbb+CPP/7AmjVr8Pbbbxu9RnJyMi5duoRvvvkGFy5cwJUrV9CyZUsEBATon/f5559j1qxZbvqURETkbJGRkcjJyUG3bsP1oUdHCBluv324xy5eCDD4+Iwvv/wS8fHxSE5ORp8+fbBjxw4sXrwY//3vfyGXy9GpUycsWLAAc+fOxU033YQPPvgAs2fPNnqNbt264amnnkJWVhaio6Px6quvIjo6GqtWrcLHH3+Mdu3aYc6cOXjttdfc9CmJiMgVIiMjcdttkZCZpAi5HOjaNdJjQw8ASEII4e5GeBJr29pfvXoVhYWFSElJQZMmTer1uu5ex8fbNOReExE1Bt6wH9aKFcDo0YBarQ09y5YB2dnuaYu1729DrPFxEV3XoKf/EhMRkft5y/8sZ2cDvXsDBQVAWhpgsIWmx2LwcSGGGiIisoUnLnprSWKidwQeHdb4EBERkc9g8CEiIvJw3rZIoCfjUBcREZEHO3Cgs369HEnSYMCAzUhPP+juZnkt9vgQERF5KEuLBLLnx34MPkRERB6qrCzS7CKBZWURbmqR9+NQFxERkYeKiFBCkjRG4UeSNIiIKNM/Nl3vp7y8HDU1NfrH/v7+UCgU+se+vnQKgw8REfk8T1ssULfPlUJRiQEDNteq8VEoKgEAV65cwfLly+v9+u5e/8edGHyowb777jvcfffduHjxIsLDw216TnJyMnJzc5Gbm+vUthER1cV0sUCVKhRlZZGIiFDqAwbg2rBguujt9OnnUVTkh+TkGiQk3ALgFgQEBNi9jo8nrP/jLqzx8QEjRoyAJEl46qmnap0bM2YMJEnCiBEjXN8wIiIPYBgCDhzojIULc7F69XAsXJiLAwc6m73OFSIjIxEfH4/4+HhkZMRi0KBIZGTE6o/5ao9NQzH4+IgWLVpg3bp1+Ouvv/THrl69irVr16Jly5ZubBkRkWdoDDOoTNf74fo/tTH4+Ij09HS0aNECGzdu1B/buHEjWrZsic6dr/8fzbVr1zBu3DjExMSgSZMmuOOOO7Bv3z6j1/riiy9www03ICgoCHfffTeKiopqvd+uXbtw5513IigoCC1atMC4ceNw+fJlp30+IqKG8vYZVKa9VZ9++k+LvVe+jMHHTYqLgR07tH+6ysiRI7Fy5Ur943fffRePP/640TWTJk3Chg0bsHr1ahw4cABpaWno3bs3ysq0MwhOnz6NgQMHYsCAATh06BCeeOIJTJkyxeg1Tpw4gT59+mDQoEE4cuQI1q9fj127diEnJ8f5H5KIyE66GVSGTGdQeSpzvVWHD3fy6t4rZ2HwcYMVK4CkJKBnT+2fK1a45n0fffRR7Nq1CydPnsTJkyexe/duPProo/rzly9fxtKlSzFv3jz07dsX7dq1wzvvvIOgoCCs+LuRS5cuRWpqKubPn482bdpg6NChteqDZs+ejaFDhyI3NxetW7dGt27dsHjxYrz33nu4evWqaz4sEVE96WZQ6cKP6QwqT2autwqQjB55U++VM3FWl4sVFwOjRgGav/+nQqMBRo8Gevd2/u620dHR6NevH1atWgUhBPr164eoqCj9+RMnTqC6uhq33367/pi/vz9uvfVWHD16FABw9OhRdO3a1eh1MzMzjR4fPnwYR44cwQcffKA/JoSARqNBYWEhbrzxRmd8PCKiBktPP4jU1AKUlUUgIqLMK0IPYH69H0DAMPx4S++VszH4uNjx49dDj45aDRQUOD/4ANrhLt2Q05tvvumU97h06RJGjx6NcePG1TrHQmoi8nQKRaXXBB5r6/107HgER450NLv+j+55ruBpayQx+LhY69aATGYcfuRyIC3NNe/fp08fVFVVQZIk9O7d2+hcamoqAgICsHv3biQlJQEAqqursW/fPv16OzfeeCM+//xzo+f9+OOPRo/T09Px66+/Is1VH4qIyEaGX8JnzshQWOiHyMhLNj3XlWHBHEsBIisrC9XV1Rg82A/Tp59Hfv5VJCRcQVycHKWlx1BSEoL27QON1v9xZNCwFmzKy8vx0Ucf1fkarlwjicHHxRITgeXLtcNbarU29Cxb5preHgCQy+X6YSu5XG50LiQkBE8//TQmTpyIiIgItGzZEq+++iquXLmC7OxsAMBTTz2F+fPnY+LEiXjiiSewf/9+rFq1yuh1Jk+ejNtuuw05OTl44oknEBISgl9//RXbt283WiSMiMiVDBcqNN7xvBkGDOis3/E8KyvLaIsH4HqvhLt6L0wXWbQkJycHGRlJ+scdOji8KUZsbVddXLlGEoOPG2Rna2t6Cgq0PT2uCj06YWFhFs/NmTMHGo0Gw4YNQ2VlJbp06YKvvvoKzZo1A6AdqtqwYQOeffZZvPHGG7j11lvxyiuvYOTIkfrX6NixI3bu3Ilp06bhzjvvhBACqampyMrKcvpnIyKyRPflamm9ntTUgr+HuRSIj4+v9Xx3rvBsazBwRICoT7jzxhWgGXzcJDHRdYHHtEfG1Geffab/e5MmTbB48WIsXrzY4vX9+/dH//79jY6ZTou/5ZZbsG3bNouvYW7tHyIiV7C2Xo+12h7TFZ5N98/S9RiZCwOeVudiSX16ljyhvfZg8CEiIp9iy47n1tTVY2TK1jAxePBgxMTE2BQoLPU2NZQre5bchcGHiIi8SnGxdoZs69b29ZzXteN5XerbY2QaEiyFFl0RcF29KdZ6m2xhrffpwoULNr+Ot2LwISIir7FixfW10GQy7WSRv+de1EtD1utpSI+RYWgBNOjWLQ9du+41en9rvSn17W0y5ahiZGvts9YT5ayeqvpg8CEiIo+nVCpRVFSDUaNioNFoF+XTLgArcPPN55Cc7FfvmhN71+uxt8fINLQAMuzZczvy8jJt7rWxtz5Jx5lDVHX1RDW0p8pRGHzsIIRwdxMaPd5jItLR9VIUFiZDoxludE6tlvDGG1uRknLSpQW39vQYmd9Won69Ng2tT6ovW3to6uqJquu8K9dIYvCpB926N1VVVQgKCnJzaxo33f+VmK41RES+R/ffg7q+9C31ZuhqWlQqlU1f5LZ+CVvqMTKtk9E9Nr+thFZdvTbWVmh21orMtvTQ6N7PUk/U6dOJKCv7C5cvB5s9f/vtw3HXXeDKzZ7Kz88PwcHBOH/+PPz9/SGTcY9XZ9BoNDh//jyCg4Ph58dfUSLSsmeIqfaihblmv8gHDx6M8PBwq9PKbQ0VGzdutNr+zz/vD9M9wuvqtYmMjEROTo4+3E2ffh5FRX5ITq5p0IrMloKgrbVEunYVFdVgzRqhH4bUfaZPPnnw78+qgeneYXI50LVrJFw9K57fKvUgSRLi4+NRWFiIkydPurs5jZpMJkPLli0hSVLdFxORz6jvEJOtixaGh4ebXbTQkGn40Llw4YJR2LHWq6Rr/969XZGXl1mvGiHDUBMfD2RkWL28TtZ6dOqqJTIMgZGR2vCi3ZVAQK2W/u7ZAq4HPG34kSQBIWSQywWWLZNcvoAvwOBTbwEBAWjdurVXr2HgDQICAtijRkRm2VKUrJvyHham/e9IQ4uCderqUbFleEihqMR9932Nrl33um0X+LqC4NCht9bqwZHLBcaO7WuxkDw7G7j55nN4442tuHw5BJ988pDJFTIMGvQRQkKuYOzYvsjIiHXmR7SIwccOMpkMTZo0cXcziIjIQHl5OQBg7dogTJqkgEYjQSaLQf/+nZGaWuD0ouD6TjW3FOBcUehbVxC86aZwLF8umewrKdUZVpKT/ZCSchIqVajZ+92iRTEUikokJ7svfjD4EBFRo/DRRx9BpQrFwoW5EEI35V3Cpk39kZu7sEGLFtrC1l4lS0NhAwcOREJCglMLfXWhqq5C8YCAALv2lTQcDmzevAKTJyugVkuQywXmzq3AI48Mcfv2HAw+RETUaFgLHw1ZtNAc3Wwxa7O2THuVrA2FRUVFOT0Q1DeY2LOvpO65EyYAWVm64CQhMTEcQLhDP489GHyIiMij1Wfop67wYe+ihabMrYBc16yzhq667CiuDCau3JDbVgw+RETk0SzNpjKkUqmwfv36Bu/DZStL+2+lphYgN3eh2V4lRxVYO5InBhNnY/AhIiKPV58hIHuGtBpSUGzrVgyuXnWZzGPwISKiRsfSkNbAgQMRFRVldKwhxbZ1DV8NHDgQgHZRQ1f1RpF1DD5EROQzoqKi6lyosD7qGr4yDVmOLrCm+mPwISKiRk9Xg5OfX64/5ohp1bYMX5kOo7lz/R5i8CEiokbAWmgwrMF57z3jGpyG7uhuy/CVLcXZ7l7bxpcw+BARkdczDRe6/bPqqsFxxPZDtgxfMdR4DgYfIqJGRrdPVevWvjVV2Vy4cNYUcg5feS8GHyKiRmTFCmDUKECjAWQy7Y7Z2dnubpX7OGsKuSOHr3w1qLoLgw8RUSNRXHw99ADaP0eP1u635KtfqM6cQu6I4SsGVddj8CEi8mKGvQXHj18PPTpqtXZLAl8NPoBnTiFXKpUoKqrBqFEx0Gh0G6oCo0cL3HzzOSQn+7EuyEkYfIiIvJRpb8GcOdo/DcOPXK7dWdvXOWqPLkfQ7fNVWJgMjWa40Tm1WsIbb2xFSsrJBs84I/NkdV9CRESextyw1tSpAv/+twpyuQCAv3fcLodcXgKlUunG1pIhXV2Qrv7IkGH9kSNmnFFt7PEhIvJC5oe1JJw+/SnGjSvTD+tculSJ5cu1532pB8HW2VTunHXFLSzcg8GHiMgLtW5de1hL11tgaVjHl3oQvGXRQE+sP2rsGHyIiCzw1GnGSqUScnkVXn01CJMnK6BWS+wtMMPdocZWnlR/5AsYfIiIzPDUaca6wlidceNC2VtAVA8sbiYiMmFpPZziYve2C6g9XKVQVCIl5SRDD5GNGHyIiExYWw+HiLwbgw8RkQld4bAhrofjvYqLgR07PKPHDvCOGWeNGWt8iIhMJCZqa3pGj9b29MjlwLJlnlXg7G6eWvhtyhNrtbxlxlljxeBDRGRAqVSiqqoK//gHsHevDEVFfkhOrkFCggYlJd79heSoHgRPDBOmPH1LCG/9HWoMGHyIiP5mOmNKJz/f+LGtCwG6s1dk4MCBiIqK0j92VGDzho1QuSUEWcPgQ0T0N1sX+LPlOnf3ikRFRSE+Pt6hr6lUKvHjj4BGYxwW1Gpg714lgoLc25OhC5phYTUArm8JIcT1gi1uCUEsbiYicjBnTod3V2Gsrhdlz57VZveX2r17NZYsWWLTnmCOKDY2fI3iYmDiRCApCejZE7j11hgcONBZvyWErr1c5JEA9vgQETmctenwDR0OcldhrO796tpfqq5eFEf0hBm+hiQBQhif12gkbNrUH6mpBdwSgmph8CEicjBz+2g5cjq8u+tS7AkTv/xyEXv2CDz9dDMIYX+xsWlvmmno0RFChrKyCP12EAw8pNMoh7refPNNJCcno0mTJujatSt++ukndzeJiHyIbjq8XK593Binw9dnxehFiy6hUycFnnoqQh96dHTFxrYOk5nrTTPHsJaHyFCj6/FZv349xo8fj7fffhtdu3bFwoUL0bt3bxw7dgwxMTHubh4RNXKNeTp8femmlI8fH1Mr8OjUt9jYXG+aKZlMoH9/1vKQeY0u+CxYsABPPvkkHn/8cQDA22+/jS1btuDdd9/FlClT3Nw6ImrMHD0d3ptZm1KuU99iY8Nd6SdNUvy9Po/m7zofGQANunXLQ9euexl6yKJGFXyqqqqwf/9+TJ06VX9MJpOhV69eyMvLM/uca9eu4dq1a/rHFRUVTm8nEXmmhs6YcuR0eG+n+4zmppRraZCd/X9ITCyx6fVMQ+Uzz1zflR6AXcXL3BLCNzWq4HPhwgWo1WrExsYaHY+NjcVvv/1m9jmzZ8/GzJkzXdE8IvJw3ErAMYqLgR9/DIBKFQqFohKZmXnYs+d2k6tkqK62PXiY25XeMORYCzymizkC/OfoyxpV8LHH1KlTMX78eP3jiooKtGjRwo0tIiJ3aixfho5eNdrW3pGPPgrF+PHaRQ4lKRcDBmxG1657sWdPJgzn07iy+NgZizmS92pUwScqKgpyuRxnz541On727FnExcWZfU5gYCACAwNd0TwiIj1LwcQRgcUZq0bb0ht24UIT3HxzU4Op5jJs2tQfubkLcf/9ltf+IXKlRhV8AgICkJGRgW+++QYPPPAAAECj0eCbb75BTk6OextHRPS3tWuDMGlS7WDiiMDizL20rPWGKZVKHDumqTXbSreeDhcSJE/RqIIPAIwfPx7Dhw9Hly5dcOutt2LhwoW4fPmyfpYXEZE7qVShePFFRa1g0rFj3YGlrt4gd+2lpSs8VqlCIUm5FvfGqmshQRYbkys0uuCTlZWF8+fPY/r06SgtLcXNN9+ML7/8slbBMxGRO5SVRf49Dfs6tRrYtcv6Nhd19QbVFT52716N/PzKBk2lNw1eppuC1rWdhSUDBw5EQkJCo6mvIs/W6IIPoF0jg0NbRORqtvRYREQoIZMJo/AjkwnExhZAJkszOi6XC4SGnsMvvwRg1KhmVnuDHLWXliWmwWvYMGDNGt3jGPTv3xnp6QftGtKKiopyauhhTxIZapTBh4jIHawVAJeXl+Ojjz6CQlGJ/v03GQWT/v034/jxg+jfv7PR8X79NmPz5oNmFwG0NnxVV/iobwG1ubqh1auvnzfcFNRZe2PZE14GDx6MmJgY9iSREQYfIiIHsuVL1lIwsXTc3CKApsNXpiyFD0uF1dbYsj+W4aagzmAaKlUqFaqrq42u8fPzQ3h4OACu00OWMfgQEbmBLpioVKEoLExGRITSYm+Jo4avLBVW1zXjy5b9sRqyLo+tvTmGQYbr8pC9GHyIiNzkwIHOtcJMevpBs9c6Yjq4pcJqazO+DPfHmjxZAbVaglwuMHDgX9i4MUj/uF8/24qYuYIyuRuDDxGRG6hUofrQA1xf7E9XJ2NOQ2tnbBkyMwwhpvtjjRsXahS8EhO1jx944CYcPmw+sBniCsrkCUx3jSMiIhcoK4ustXGnrk7GWXRDZpKkHbOqa8jM3P5YKSkn9dfrHh8+vMWm9+fsKvIE7PEhIpdz9D5S3shS74uz6mRUqlCUlUUiNbUAubkLnbqCMoe0yJMx+BCRSzljHylvZO9if5ZYm0q/fLkaCxcm2FRL5Agc0iJPxuBDRC7jzH2kPJ25HhlH719lrkeluBh48UUBIbRFzbbUEhE1ZqzxISKXMbcejG5bhsZO1yMzcOBAo+OmdTM6AwcOxODBg216bWvDXNp7bjyTy9m1RESejD0+ROQy5taDkcuBtDT3tUlHV3fUtClw6ZJz6o8iIyNtXnNHN1xkafhKp67aGe09N94ioyG1RETejsGHiFwmMVFb0zN6tLanRy4Hli1z/zCXYd2RjqfUHzWkIFi3Bs/06WrMnJngkFoiIm/H4ENELqFUKlFVVYV//APYu1eGoiI/JCfXICFBg5IS9836Ma070vH2+iPTNXhyc0PrrCUyHTLj9HNqjBh8iMjpTL+EdfLzjR+bLqDnCtb2odLVH3lj8DG3Bo+5wKObem4ueJrOFNNttFoXBibyZAw+ROR0tta12HqdoyiVSoSF1UAmi6lVAAxoa2NCQ89BqfRzWCCzNRS4KjzUNfXcdH+shtYcEbkbgw8R+STDXqj+/TsbbB8hAEiQJA3699+MzZu16904qjfK2no7Op4cHjy1XUS2YvAhIp9kGDwM19Px969CdXVArVoYR/ZGMTwQuQ+DDxERGr4BKBF5By5gSEReqbgY2LFD+2dj0Ng+D5GnYvAhIq+zYgWQlAT07Kn9c8UKd7eoYRrb5yHyZAw+RORVLO335a09Jc76PJ42e4zIU7DGh4iczlFfwkqlEj/+CGg0xsXBajWwd68SQUHeVzhsbf+yhqwf5O2zx4ichcGHiJzOli/hCxea4MiRZhb3yNJNP1epQiFJuX9PPdeSJA12716N/PxKtyyC2BDO3L/Mm+4DkatwqIuIXCIyMhLx8fFmf774Ih4339zMao2LLjQpFJUYMGAzJEmbFEz3nrJ12nl9h3icNSSk279MLtc+9pT9y4gaK0kIIdzdCE9SUVEBhUIBlUqFsLAwdzeHqNErLtaGHdMej6Ii4y//kpISLF++XP9YpTK/99SoUaOsrkRsSKlUoqioBvn515CQcBlxcTVG5/38/BAeHu6SIaHiYu3wVloaQw+RPWz9/uZQFxG5TUNqdhyx7s5nn0XqC4vt2Y29uFhbo2NpeK4+EhMZeIhcgUNdRGS3utaesXZeV7OzZ89q/bCVjq5mZ8mSJVAqlU5oecNnU3EKOpF3YvAhIrvU9cVf13lH1+zUh7anSWl2NtXevco6w5ajpqArlUqUlJRY/HFW6CPyZRzqIqJ6s/TF37u3drimrvOmDPfKMq3ZcTRHzA5zxBR0w01SrfG2WWpEno49PkRUb9a++O3tTVEoKpGScrLBoefMGZnV4beG9jQplUqEhZ2FTGY8L0QuFwgNPWtzL42tPVnO6PEi8mXs8SGietF+8ddAJouBRiPpj8vlAkIUYMmStTb1ptSXLdPJDxzojBdfjLG5WLm+PU2GvTT9+3fGpk39IYQMkqRBv36bsXnzQQDspSHyZAw+RGSzur74v/9e+8Wv600xPN/Quh1riyCqVCqcPi3w4ott9WFMO7wmcPPN55Cc7OeQ2WGG720tNLGXhshzMfgQkc1s/eK35bw9zIUXpVKJ9evXo7AwGRrNjUbn1GoJb7yxFSkpJ53SC+OIKfVE5FoMPkRkt7q++F0RDHRhLCJCCUnS1Bpei4goM7qOiHwbi5uJyC3M1eyoVKEoLEyGShVq9Tpz6ipWJiIC2ONDRG5iWrOzdm0QXnxRAY1Ggkwm8OqrKowYoa7X8JQrp8UTkXdijw8RuU1kZCQCAgJw5owMkyYpDAqTJUyerEBRUU29F/Gra1q8rgfJXO+SueucxdbXd3Y7iHwNe3yIyG10s8S0hcnDjc45qzA5MjIS4eET8OKLIUa9S4888pf+GldsSmptlpor20Hkaxh8iMjldL0Y7ihMLi4Gxo9varCqtITJk8ORlRVe56rLju6lYaghcj0GHyKyma1f6FlZWVAoFBZfw/QLv651fxypIdtNsJeGyPsx+BCRzZz5xW9vYXJ9e2Fat9au6mwYfuRyIC3NtnYy1BB5NwYfIqoXZ37x27PuT33DWGKidiuL0aO1PT1yObBsme2bixKRd2PwISKvZ2sYUyqVqKqqwj/+AezdK0NRkR+Sk2uQkKBBSQmHqYh8AYMPEfkEw33GDOXnGz/mBqNEjRvX8SEin2DrzDBubUHUuDH4EJHbcBE/InI1DnURUYPpamcA4MwZGQoL/ZCSoq2dASzXznB6OBG5GoMPEVlUXKxd96Z1a8uzngxrZw4c6FxrLZ709IMALNfOMNQQkStxqIuIjCiVSpSUlGD+/HIkJQn07AkkJQnMn1+OkpKSWntn6XprVKpQfegBACFk2LSpv34vLNbOEJEnYI8P0d8Mh2vM8YUhF13vjUoVioULcyHE9U1DJ04Mw59/vguFohKDBw9GeHg4AODChQsAgLKySKMtJwBt+Ckri+Au6UTkMRh8iGB5qrMpb57qbEsdju68tRADAHPn/oSICKVRoKlrv636sGWIjYjIHgw+RGj8U51trcPJysoCYDnEnDmTgPfee8zscx2139aKFcCoUdotJWQy7SrL2dkNvwecQUZEAIMPkUN4+jBZXXU4qakFUCgqUV1dDcB8iOnV62t8/XUvi88F7N9vS6e4+HroAbR/jh4N9O7d8J4fziAjIoDBh6jBTIfJVKpQlJVF1hoK8oRhsvrU4ZiGGFufa89+WzoN2TndFu6+/0Tkfgw+RGZYCi/mGPYgWBtG8oRhsvrW4ZiGGEfV8FjS0J3TiYjqwunsRCYOHOiMhQtzsXr1cCxcmIsDBzrb9Ly6pnN7At0QliRpk0V96nAa8lzAttoZ3c7pcrn2MXdOJyJHY48PkYG6amCs8Zbp3A2pw7H23IEDByIqKsrs82ypneHO6UTkCgw+RAYaEl4cOZ3b2SzV4fj51f2fBEvPjYqKQnx8vF3t4c7pROQqDD5EuD4MU1d4KS8vr/Vc3QJ+jprO7U7h4eG1Zj6pVCqsX7++zuc2ZBp4Y19OgIg8B4MPEYynOjdvXoHJkxVQqyXI5QIzZpyFWq0NLx999JHV12nodG5nqc8aNqY9KvHx8ZwGTkSNhs3Bp6KiwuYXDQsLs6sxRO6k++KeMAHIytJOoU5LkyCXawtubdWQ6dz2sHUNoYaEF1tDDVdcJiJPZ3PwCQ8PhyRJVq8RQkCSJKjV6gY3jMidEhOvf3GXlBifq89Ud0POWBHYk9YQctaKy0REjmRz8NmxY4cz20HkFayt09PQWU328JQ1hJy54jIRkSPZHHx69OjhzHYQeby6pro3ZFaTs9vmTEqlEj/+CGg0xsFOrQb27lUiKIgrJhOR57C7uLm8vBwrVqzA0aNHAQDt27fHyJEjoVAoHNY4Ik/iyev0uLJthnU8QUHaoTaVKhSSlFtrNtzu3auRn1/JaehE5DHsWrn5559/RmpqKl5//XWUlZWhrKwMCxYsQGpqKg4cOODoNhJ5BN1Ud0Oesk6Pq9q2YgWQlAT07Kn9c+FCPxQWJgOA1VWd6xpq487pROQqdvX4PPvss7j//vvxzjvv6Bc8q6mpwRNPPIHc3Fx8//33Dm0kkSfw5HV6XNE2c3U8L70UBmC4/v1ycxfaNZWfO6cTkavYFXx+/vlno9ADaFd8nTRpErp06eKwxukUFRVh1qxZ+Pbbb1FaWoqEhAQ8+uijmDZtmtH/AR45cgRjxozBvn37EB0djbFjx2LSpEkObw/5FsPfMWvr9Li7N8Ja21QqldXn1hUqLNXxANqZnrqaotzchUhJOWlX+xlqiMgV7Ao+YWFhOHXqFNq2bWt0/PTp0wgNdfyGjL/99hs0Gg2WLVuGtLQ05Ofn48knn8Tly5fx2muvAdCuM3TfffehV69eePvtt/HLL79g5MiRCA8Px6hRoxzeJvId3tQbYWkNIVtWXjatw9HV8kRFXcTGjebreAx5Sr0TEZE1dgWfrKwsZGdn47XXXkO3bt0AALt378bEiRMxZMgQhzYQAPr06YM+ffroH7dq1QrHjh3D0qVL9cHngw8+QFVVFd59910EBASgffv2OHToEBYsWMDgQw3mCaHGHHt6mSyt9WMY7IzX5AlH//6dkZ5+0Gg4DRDQ9fgAnlPvRERkjV3B57XXXoMkSXjsscdQU1MDAPD398fTTz+NOXPmOLSBlqhUKkREROgf5+XloXv37kZfBL1798bcuXNx8eJFNGvWzOzrXLt2DdeuXdM/rs8K1UTuZktvVHl5uX6rDWtr/QDaIa2iohqMGhUDjUYbajQaST813nA47cyZBHz9dS+Pq3ciIrLGruATEBCARYsWYfbs2Thx4gQAIDU1FcHBwQ5tnCUFBQV444039L09AFBaWoqUlBSj62JjY/XnLAWf2bNnY+bMmc5rLJGT2dobVddaP7qAVFiYDI1muNFzDYexdD8pKSdx0035HrcvGRGRNXZNZ9cJDg5Ghw4d0KFDB7tCz5QpUyBJktWf3377zeg5f/75J/r06YOHHnoITz75ZEOaDwCYOnUqVCqV/uf06dMNfk0iT2RprZ/Tp7VLK58/fx5A/abG6wJQXaHH3YXfREQ6dvX4XL16FW+88QZ27NiBc+fOQaMx/o+krWv5TJgwASNGjLB6TatWrfR/P3PmDO6++25069YNy012jYyLi8PZs2eNjukex8XFWXz9wMBABAYG2tReIm+mCzSm4eeTTx5EVdVmANptaRwxNd5w+w5PKfwmIgLsDD7Z2dnYtm0bHnzwQdx66611bl5qSXR0NKKjo2269s8//8Tdd9+NjIwMrFy5EjKZ8X+8MzMzMW3aNFRXV8Pf3x8AsH37drRp08biMBd5Flt3GSf7mAaa62pvb2Ftarwt3Ll9BxGRNXYFn82bN+OLL77A7bff7uj2mPXnn3/irrvuQlJSEl577TV9lzxwvTfnkUcewcyZM5GdnY3JkycjPz8fixYtwuuvv+6SNlLDmO4ybgm3PmiY9PSDCAi4hk8+ecjouLmp6JamxhMReTO7gk/z5s2dsl6PJdu3b0dBQQEKCgqQaLLVsxACAKBQKLBt2zaMGTMGGRkZiIqKwvTp0zmV3UvYunu4s3cZb4xM62tatDhda8iLU9GJyFfYVdw8f/58TJ48GSdP2rdCa32NGDECQgizP4Y6duyIH374AVevXkVxcTEmT57skvYReTLdlPeBAwcCuD7kZWlfLSKixsyuHp8uXbrg6tWraNWqFYKDg/U1NTplZfw/RyJPEhkZadRb1tAaHiIib2VX8BkyZAj+/PNPvPLKK4iNjbW7uJmI3Ic1PETki+wKPnv27EFeXh46derk6PYQkZsZTkU3deXKFbz//vt1vgbX7SEiT2VX8Gnbti3++usvR7eFiJzI1jCSkJBgdeact2zYSkRkjl3BZ86cOZgwYQJefvlldOjQoVaNT1hYmEMaR0SO46hd5hlqiMib2RV8dDul33PPPUbHhRCQJAlqtbrhLSOfYmtvBIdQGoahhYh8nV3BZ8eOHY5uB/k4096IM2dkKCz0Q0pKDRIStNOuOYRCREQNZVfw6dGjh03X/etf/8KLL75osVCSyJAu1KxYAYwaBWg0gEwGLF8OZGe7uXFERNQoNGh39rq8//77qKiocOZbUCNTXHw99ADaP0eP1h4nIiJqKLt6fGxlurIyUV2OH78eenTUaqCgADDZraTR46atRESO59TgQ1RfrVtrh7cMw49cDqSlua9N7mC6aatKFYqyskhERCiNFh3kpq1ERPXD4EMeJTFRW9MzerS2p0cuB5Ytc2xvjzf0pBi278CBzti0qT+EkOn31UpPP1jrOiIiqhuDD3mc7Gygd2/t8FZamuNDj2FPiiWe0pOiUoXqQw8ACCHDpk39kZpawO0miIjswOBDHikx0Tk1Pbb2kHhKT0pZWaQ+9OgIIUNZWQSDDxGRHeo9q6umpgYvvvgiim2YZvPoo49yFWeiBoiIUEKSjKu9JUmDiIgyN7WIiMi71Tv4+Pn5Yd68eaipqanz2qVLl3INH6IGUCgqMWDAZn340dX4sLeHiMg+dg119ezZEzt37kRycrKDm0NEptLTDyI1tQBlZRGIiChj6CEiagC7gk/fvn0xZcoU/PLLL8jIyEBISIjR+fvvv98hjSMiLYWikoGHiMgB7Ao+//rXvwAACxYsqHWOm5QSNRw3bSUicg67go/GdGldIg9kbr2eCxcuGD22tDCgu5lu2mqOJ6w3RETkbewKPu+99x6ysrIQGBhodLyqqgrr1q3DY4895pDGEdnLlvV6rC0M6Ak9KQw1RESOJwk7NtSSy+UoKSlBTEyM0XGlUomYmBivHuqqqKiAQqGASqXiVHwvVlJSguXLl1s8r1KFYuHCXKM1cuRygb17zyE52Y+hg4jIy9j6/W1Xj48QApIk1TpeXFwMhUJhz0sSuZS5hQHVagmVlbFg5iEiarzqFXw6d+4MSZIgSRLuuece+Pldf7parUZhYSH69Onj8EYSOZpuYUDjHh/f2wyViMjX1Cv4PPDAAwCAQ4cOoXfv3mjatKn+XEBAAJKTkzFo0CCHNpDIGXQLA27ZMgBqteSUzVCJiMjz1Cv4vPDCCwCA5ORkZGVloUmTJk5pFJErpKcfxPTpXVFZGevwzVCJiMgz2VXjM3z4cADaWVznzp2rNb29ZcuWDW8ZkQskJGgQH+/uVhARkavYFXyOHz+OkSNHYs+ePUbHdUXP3jyri4iIiBovu4LPiBEj4Ofnh82bNyM+Pt7sDC8ia8wtLmiooYvzma7DY2mhQk9Yr4eIiFzHruBz6NAh7N+/H23btnV0e8gH2LK4IADk5OTYHH7MBamsrCxUV1dj48ZmWLSoOTQaCTKZwKuvqvDII39x5WMiIh9kV/Bp165draX/iWxlrafHnuusBanrCxVqeyU1GgmTJ4cjKyu8Xuv1OLuHioiIXMOu4DN37lxMmjQJr7zyCjp06AB/f3+j81zxmFzJWiAxv1AhUFBg+ywuZ/RQERGRe9gVfHr16gUA6Nmzp1F9D4ubydM4YqFCR/dQERGR+9gVfHbs2OHodhA5hW6hQt1mpFyokIjIt9kVfHr06IEffvgBy5Ytw4kTJ/DJJ5+gefPmWLNmDVJSUhzdRiIjpvU2ddWbpacfRGpqAW6/fTi6do1scOgxnSGme5yfX66/hjU/RESeya7gs2HDBgwbNgxDhw7FwYMHce3aNQCASqXCK6+8gi+++MKhjSTSsbXexpRCUYlu3aoavFjhgQOd9b1HkqRBx45HcORIRwghw3vvaTBgwGakpx8EwJofIiJPJKv7ktpeeuklvP3223jnnXeMCptvv/12HDhwwGGNIzLlzjoalSpUH3oAQAgZDh/uZPR406b+UKlC3d5WIiIyz67gc+zYMXTv3r3WcYVCgfLy8oa2iRo5WxcN9LTFBc3NEAOMF+8UQoaysgjXNYqIiOrFrqGuuLg4FBQUIDk52ej4rl270KpVK0e0ixqxyMhI5OTkuHxdnIYGKXMzxAABw/AjSRpERJQ16H2IiMh57Ao+Tz75JJ555hm8++67kCQJZ86cQV5eHp577jk8//zzjm4jNUKGoaa4GDh+HGjd2jGzrVSqULRseQ/atw9AXFwNAMDf3x9VVVUoKSmpd6jSBSbTGWKmNT6SpK3xMdwSg4iIPItdwWfKlCnQaDS45557cOXKFXTv3h2BgYF47rnnMHbsWEe3kRqxFSuAUaMAjQaQyYDly4HsbPtfz7T42LDY2FB9Co9Ne6hyco7hgw/2IiKiDApFJXr2/BZlZRH6x0RE5LnsCj6SJGHatGmYOHEiCgoKcOnSJbRr1w5NmzZ1dPuoESsuvh56AO2fo0cDvXvb1/Njrvh406b+SE0tqBVI6lt4bBqSUlJO6v+uUFQy8BAReQm7go9OQEAA2rVr56i2kI85fvx66NGp73YShswVH+uKjRlMiIgIsHNWF5EjtG6tHd4yVNd2EtYKlHXFx4acUWzsrbPSiIiogT0+RA2RmKit6Rk9WtvTY8t2EnXNCFMozmDmzIQ6i41NV3uuT8Gzu2alERFRw0lCCOHuRniSiooKKBQKqFQq7jLvIsXF2uGttLT6D3GZzggrKSnBvHkf2lVszJWWiYi8l63f3+zxIbdLTLSvpsfcjLB//MP+YmOutExE1Pixxoe8kqUZYWfO8FeaiIgs47cEeSVLM8KKi5sYHVOpQlFYmKzfP4uIiHwbh7rIK+lmhBmGH7kcyMhQ4I47tIXHa9cG4cUXFdBoJKuLGRIRke9g8CGPplQqzdbeyOXAq68GYfJkBdRqyWRGWCSKi4FJk64HI8PFDAHtmj8REUqu70NE5GMYfMhjKZVKLFmyxOo148aFokePbGRkKIwKpM0NhQkhw969XZGXl1nnlhZERNQ4scaHPJYts6wUikrceuuVWrPCzC2OKEka7NmTWWtLC9b/EBH5DgYfapR0iyPK5drHkqRBZmYeTH/ldVtaAFxpmYjIF3Coixqt7GzthqcFBUBkpApVVWm49VYBjUbSXyOXC4wd2xfJyX5cvJCIyAcw+FCjdn1xxGYAzG2RISEjI9atbSQiItdh8CGfYtgLZM8WGURE5N0YfMgjKZXKWhuJOoq9W2QQEZH3Y/Ahj2PLNHYiIiJ7cFYXeZz6bhbK2VhERGQr9viQ11CpQo1WXB44cCASEhI4G4uIiGzG4ENOZWnLCZ2AgACbgsuBA52xaVN/oxWXR42KYughIqJ6YfAhp7G1VicnJ8dqgFGpQvWhB7i+4vL06ecRH++w5hIRkQ9gjQ85ja21OnVdV1YWqQ89OkLIUFTE3E5ERPXD4EMeLyJCCUky3nFUkjRITq5xU4uIiMhbMfiQV9Dus6UNP7oan4QEjfUnERERmeBYAXkcw+nppkXNmZm70bXrXigUlQgIuN2NrSQiIm/kdT0+165dw8033wxJknDo0CGjc0eOHMGdd96JJk2aoEWLFnj11Vfd00hqkMjISOTk5KB//6ewefMAo6LmvXu7YejQoXUWRBMREZnjdcFn0qRJSEhIqHW8oqIC9913H5KSkrB//37MmzcPM2bMwPLly93QSmqoyMhIVFTEGu2kDgBqtYTKyliGHiIisotXBZ+tW7di27ZteO2112qd++CDD1BVVYV3330X7du3x8MPP4xx48ZhwYIFbmgp1ceFCxegVCprHW/dGpCZ/IbK5drNRYmIiOzhNcHn7NmzePLJJ7FmzRoEBwfXOp+Xl4fu3bsb1Yf07t0bx44dw8WLFy2+7rVr11BRUWH0Q45h61YSGzduxJIlS2qFn8REYPlybdgBtH8uW8YNRomIyH5eEXyEEBgxYgSeeuopdOnSxew1paWliI2NNTqme1xaWmrxtWfPng2FQqH/adGiheMa7uN0tToDBw606Xpz6/lkZwNFRcCOHdo/s7Md20YiIvItbp3VNWXKFMydO9fqNUePHsW2bdtQWVmJqVOnOrwNU6dOxfjx4/WPKyoqfCr8OGpLCUsiIyP1r2+615atEhPZy0NERI7h1uAzYcIEjBgxwuo1rVq1wrfffou8vDwEBgYanevSpQuGDh2K1atXIy4uDmfPnjU6r3scFxdn8fUDAwNrva6vcNSWErYwt9dWevrBBr0mERFRfbk1+ERHRyM6OrrO6xYvXoyXXnpJ//jMmTPo3bs31q9fj65duwIAMjMzMW3aNFRXV8Pf3x8AsH37drRp0wbNmjVzzgfwco7aUqIuZ87IzO61lZpaYNTzc+HCBf3fG9rTREREZI5XLGDYsmVLo8dNmzYFAKSmpiLx7zGQRx55BDNnzkR2djYmT56M/Px8LFq0CK+//rrL2+vpdMNbhkHDmQoL/czutVVWFmEUfDZu3Gh0DdfqISIiR/OK4GMLhUKBbdu2YcyYMcjIyEBUVBSmT5+OUaNGubtpHsXW4S1HSkmpgSRpjMKPJGkQEVFm9XkN7WkiIiIy5ZXBJzk5GUKIWsc7duyIH374wQ0t8h7uCBMJCdqanuvDXZq/994iIiJyLa8MPuRdAgICkJ5+EKmpBdi7tyvy8jKxZ8/tyMvLxIABm5GaWmDXbC8iIqL6YvAhp9Ot51NUVINFi2IghHYbCiFk+Pzz/pAkcLYXERG5hFcsYEjez9LeW4Cs1mwvlSrU9Q0kIiKfwOBDeipVKAoLk2sFD1u3nqiLub23TOlmexERETkDh7oIQO0FBl944QxGjZI7dD0d3d5bo0cLqNUSAA0A6e8fLVtmexEREdmLwcfHqVShOH26Ra0FBmfNao7sbAmOXkYnOxu49dZyzJ//X0RElOHEibRaKzrrCpwd1dNERESkw+DjYwzDhGEvjym1WkJBgXP2yOrQoRnmzx+gn1o/ffp5FBX5ITm5BgkJtwC4hSs3ExGRU0jC3II4PqyiogIKhQIqlQphYWHubo5TKJVKFBXV4NZbY8wUG2vJ5drd0Lk5KBEReQNbv7/Z4+OhnLlremRkJI4cATQa8+flcmDZMoYeIiJqfBh8PJArdk3XzbAyDD8yGbBuHZCZydBDRESNE6ezeyBX7Jqum2Ell2sfy+Xaxw89xNBDRESNF3t8fFh2NtC7N1BQAKSlMfAQEVHjx+DjBVSqUKftZZWYyMBDRES+g8HHw5kuLMi9rIiIiOzHGh8PplKF1lpYkHtZERER2Y/Bx4OVlUXWWlyQe1kRERHZj8HHg0VEKCFJxovtcC8rIiIi+7HGxwPptpVQKCoxYMBml+9l5czFE4mIiNyJW1aY8JQtKwzDx5kzMoO9rLQ9QM4KH65YPJGIiMjRuGWFlzMMFfHxQEaGa97XFYsnEhERuQtrfIiIiMhnMPg0IsXFwI4d2j+JiIioNgYfL6dUKlFSUoL588uRlCTQsyeQlCQwf345SkpKoFQq3d1EIiIij8EaHy+mK0RWqUKxcGEuhJAAABqNhIkTw/Dnn+9CoahsUCGyM7fLICIicjUGHy+mKzC2ttChQlFpdyEyt8sgIqLGhkNdjYAzFjrkdhlERNQYMfg0ArqFDnXhx3Shw/rQLYpY13YZzlo8kYiIyJk41NVIpKcfRGpqAcrKIhARUWZ3PU5kZCRycnJQVFSDNWsENBpJf04uFxg7ti+Sk/24eCEREXklBp9GRKGodEgBcmRkJCIjgeXLgdGjAbUakMuBZcskZGTEOqClRERE7sHgQxZlZwO9ewMFBUBaGpCY6O4WERERNQyDD1mVmMjAQ0REjQeLm72YrQXG9hYicyVoIiJqbNjj48V0hcjW1umxdxf3FSuAUaMAjQaQybT1PtnZDWktERGR+zH4eDlHz65SKpUoKqrBqFEx+hldGg0werTAzTef44wuIiLyagw+pKfbAqOwMBkazXCjc2q1hDfe2IqUlJMN2gKDiIjInVjjQ3q6IbO6VoK2dwsMIiIid2PwoVocuRI0ERGRJ+FQF5nlqJWgiYiIPAmDD1nkqJWgiYiIPAWHuoiIiMhnMPgQERGRz2DwISIiIp/B4EN6zt4Cg4iIyN1Y3Ex6ztwCg4iIyBMw+JARhhoiImrMONRFREREPoPBh4iIiHwGgw8RERH5DAYfIiIi8hkMPkREROQzGHyIiIjIZzD4EBERkc9g8CEiIiKfweBDREREPoPBh4iIiHwGgw8RERH5DAYfIiIi8hkMPkREROQzGHyIiIjIZzD4EBERkc9g8CEiIiKfweBDREREPoPBh4iIiHwGg4+HKi4GduzQ/klERESOweDjgVasAJKSgJ49tX+uWOHuFhERETUODD4eprgYGDUK0Gi0jzUaYPRo9vwQERE5AoOPBzAc1jp+/Hro0VGrgYIC97SNiIioMfGq4LNlyxZ07doVQUFBaNasGR544AGj86dOnUK/fv0QHByMmJgYTJw4ETU1Ne5prI1Mh7V+/hmQmfxTkcuBtDT3tI+IiKgx8XN3A2y1YcMGPPnkk3jllVfQs2dP1NTUID8/X39erVajX79+iIuLw549e1BSUoLHHnsM/v7+eOWVV9zYcsvMDWtNnQrMnQtMmaLt6ZHLgWXLgMRE97aViIioMZCEEMLdjahLTU0NkpOTMXPmTGRnZ5u9ZuvWrejfvz/OnDmD2NhYAMDbb7+NyZMn4/z58wgICLDpvSoqKqBQKKBSqRAWFuawz2DOjh3anh5zx9PStMNbaWkMPURERHWx9fvbK4a6Dhw4gD///BMymQydO3dGfHw8+vbta9Tjk5eXhw4dOuhDDwD07t0bFRUV+N///mfxta9du4aKigqjH1dp3drcsJZAaOhZyOUlaNOmBHJ5CUpKtD9KpdJlbSMiImqMvGKo648//gAAzJgxAwsWLEBycjLmz5+Pu+66C7///jsiIiJQWlpqFHoA6B+XlpZafO3Zs2dj5syZzmu8FYmJwJw52mEtjQaQJA369duMzZsPWnxOTk4OIiMjXdhKIiKixsOtPT5TpkyBJElWf3777Tdo/i6CmTZtGgYNGoSMjAysXLkSkiTh448/blAbpk6dCpVKpf85ffq0Iz6aTVasMAw9Ar16fY30dMuhBwCqqqpc1DoiIqLGx609PhMmTMCIESOsXtOqVSuUlJQAANq1a6c/HhgYiFatWuHUqVMAgLi4OPz0009Gzz179qz+nCWBgYEIDAy0p/kNYlrYLISEr7/uhZtuyodCUeny9hAREfkCtwaf6OhoREdH13ldRkYGAgMDcezYMdxxxx0AgOrqahQVFSEpKQkAkJmZiZdffhnnzp1DTEwMAGD79u0ICwszCkyewtx6PULIUFYWweBDRETkJF5R4xMWFoannnoKL7zwAlq0aIGkpCTMmzcPAPDQQw8BAO677z60a9cOw4YNw6uvvorS0lL85z//wZgxY9zSo1MXXWGzYfiRJA0iIsrc1ygiIqJGziuCDwDMmzcPfn5+GDZsGP766y907doV3377LZo1awYAkMvl2Lx5M55++mlkZmYiJCQEw4cPx4svvujmlpuXmAgsX67djkK7Xo9Av36b2dtDRETkRF6xjo8ruWodH6VSiaqqKpw5I0NRkR/Cws5hz56P6nzeqFGjEB8f77R2EREReSNbv7+9psenMVEqlViyZIm7m0FERORzvGIBw8amIVPSbV2BmoiIiGpjj48bqFQqm64bOHAgoqKi9I8DAgK4eCEREVEDMPi4mFKpxPr16226NioqivU8REREDsShLherqqqCShWKwsJkqFSh7m4OERGRT2GPj4utXRuEhQtzIYQMkqTBgAGb69ymgoiIiByDPT4uVFwMTJqkgBDa2y6EDJs29WfPDxERkYsw+LiQdpsKyeiYbpsKIiIicj4GHxcpLgbOn9fuwm7I2jYVnLpORETkWKzxcYEVK67vxC5JAKABcL3Gx9w2FYMHD+bUdSIiIgdj8HGy4uLroQcAhJAgSQKDBn2EFi2KLe7NFR4e7rpGEhER+QgOdTmZtq7H+JgQMoSEXLG6ISmHuYiIiByPPT5O1ro1IJMZhx+ZTGDo0K6Ii8vQH/Pz89P38nCFZiIiIudg8HGyxERgwYJLePbZYP3aPf37b8aePbXX7snJyWHgISIiciIGHxcYPLgSJ08uR1lZBCIiyiwOcTVk81IiIiKqG4OPiygUlVZreoiIiMj5WNxMREREPoM9Pk6kVCpRVVWFCxcuuLspREREBAYfp1EqlViyZIm7m0FEREQGONTlJCxUJiIi8jwMPkREROQzGHw8CFdrJiIici7W+LjZwIEDERUVxdWaiYiIXIDBx82ioqIQHx/v7mYQERH5BA51ERERkc9g8CEiIiKfweDjJLYWKrOgmYiIyHVY4+MkkZGRyMnJsbqeDwuaiYiIXIvBx4kYaoiIiDwLh7qIiIjIZzD4EBERkc9g8CEiIiKfweBDREREPoPBh4iIiHwGgw8RERH5DAYfIiIi8hkMPkREROQzGHyIiIjIZ3DlZhNCCABARUWFm1tCREREttJ9b+u+xy1h8DFRWVkJAGjRooWbW0JERET1VVlZCYVCYfG8JOqKRj5Go9HgzJkzCA0NhSRJNj2noqICLVq0wOnTpxEWFubkFnou3gct3gfeAx3eBy3eB94DHWfeByEEKisrkZCQAJnMciUPe3xMyGQyJCYm2vXcsLAwn/6F1uF90OJ94D3Q4X3Q4n3gPdBx1n2w1tOjw+JmIiIi8hkMPkREROQzGHwcIDAwEC+88AICAwPd3RS34n3Q4n3gPdDhfdDifeA90PGE+8DiZiIiIvIZ7PEhIiIin8HgQ0RERD6DwYeIiIh8BoMPERER+QwGHwuWLl2Kjh076hdZyszMxNatW/Xnr169ijFjxiAyMhJNmzbFoEGDcPbsWaPXOHXqFPr164fg4GDExMRg4sSJqKmpcfVHcZg5c+ZAkiTk5ubqj/nKfZgxYwYkSTL6adu2rf68r9yHP//8E48++igiIyMRFBSEDh064Oeff9afF0Jg+vTpiI+PR1BQEHr16oXjx48bvUZZWRmGDh2KsLAwhIeHIzs7G5cuXXL1R7FbcnJyrd8FSZIwZswYAL7zu6BWq/H8888jJSUFQUFBSE1NxaxZs4z2SfKF34fKykrk5uYiKSkJQUFB6NatG/bt26c/3xjvwffff48BAwYgISEBkiThs88+MzrvqM985MgR3HnnnWjSpAlatGiBV1991TEfQJBZn3/+udiyZYv4/fffxbFjx8S///1v4e/vL/Lz84UQQjz11FOiRYsW4ptvvhE///yzuO2220S3bt30z6+pqRE33XST6NWrlzh48KD44osvRFRUlJg6daq7PlKD/PTTTyI5OVl07NhRPPPMM/rjvnIfXnjhBdG+fXtRUlKi/zl//rz+vC/ch7KyMpGUlCRGjBgh9u7dK/744w/x1VdfiYKCAv01c+bMEQqFQnz22Wfi8OHD4v777xcpKSnir7/+0l/Tp08f0alTJ/Hjjz+KH374QaSlpYkhQ4a44yPZ5dy5c0a/B9u3bxcAxI4dO4QQvvG7IIQQL7/8soiMjBSbN28WhYWF4uOPPxZNmzYVixYt0l/jC78PgwcPFu3atRM7d+4Ux48fFy+88IIICwsTxcXFQojGeQ+++OILMW3aNLFx40YBQHz66adG5x3xmVUqlYiNjRVDhw4V+fn54sMPPxRBQUFi2bJlDW4/g089NGvWTPzf//2fKC8vF/7+/uLjjz/Wnzt69KgAIPLy8oQQ2l8MmUwmSktL9dcsXbpUhIWFiWvXrrm87Q1RWVkpWrduLbZv3y569OihDz6+dB9eeOEF0alTJ7PnfOU+TJ48Wdxxxx0Wz2s0GhEXFyfmzZunP1ZeXi4CAwPFhx9+KIQQ4tdffxUAxL59+/TXbN26VUiSJP7880/nNd6JnnnmGZGamio0Go3P/C4IIUS/fv3EyJEjjY4NHDhQDB06VAjhG78PV65cEXK5XGzevNnoeHp6upg2bZpP3APT4OOoz/zWW2+JZs2aGf07MXnyZNGmTZsGt5lDXTZQq9VYt24dLl++jMzMTOzfvx/V1dXo1auX/pq2bduiZcuWyMvLAwDk5eWhQ4cOiI2N1V/Tu3dvVFRU4H//+5/LP0NDjBkzBv369TP6vAB87j4cP34cCQkJaNWqFYYOHYpTp04B8J378Pnnn6NLly546KGHEBMTg86dO+Odd97Rny8sLERpaanRfVAoFOjatavRfQgPD0eXLl301/Tq1QsymQx79+513YdxkKqqKrz//vsYOXIkJEnymd8FAOjWrRu++eYb/P777wCAw4cPY9euXejbty8A3/h9qKmpgVqtRpMmTYyOBwUFYdeuXT5xD0w56jPn5eWhe/fuCAgI0F/Tu3dvHDt2DBcvXmxQG7lJqRW//PILMjMzcfXqVTRt2hSffvop2rVrh0OHDiEgIADh4eFG18fGxqK0tBQAUFpaavQfNt153TlvsW7dOhw4cMBozFqntLTUZ+5D165dsWrVKrRp0wYlJSWYOXMm7rzzTuTn5/vMffjjjz+wdOlSjB8/Hv/+97+xb98+jBs3DgEBARg+fLj+c5j7nIb3ISYmxui8n58fIiIivOY+GPrss89QXl6OESNGAPCtfyemTJmCiooKtG3bFnK5HGq1Gi+//DKGDh0KAD7x+xAaGorMzEzMmjULN954I2JjY/Hhhx8iLy8PaWlpPnEPTDnqM5eWliIlJaXWa+jONWvWzO42MvhY0aZNGxw6dAgqlQqffPIJhg8fjp07d7q7WS5z+vRpPPPMM9i+fXut/6PxNbr/iwWAjh07omvXrkhKSsJHH32EoKAgN7bMdTQaDbp06YJXXnkFANC5c2fk5+fj7bffxvDhw93cOvdYsWIF+vbti4SEBHc3xeU++ugjfPDBB1i7di3at2+PQ4cOITc3FwkJCT71+7BmzRqMHDkSzZs3h1wuR3p6OoYMGYL9+/e7u2lkAYe6rAgICEBaWhoyMjIwe/ZsdOrUCYsWLUJcXByqqqpQXl5udP3Zs2cRFxcHAIiLi6s1k0P3WHeNp9u/fz/OnTuH9PR0+Pn5wc/PDzt37sTixYvh5+eH2NhYn7gP5oSHh+OGG25AQUGBz/w+xMfHo127dkbHbrzxRv2Qn+5zmPuchvfh3LlzRudrampQVlbmNfdB5+TJk/j666/xxBNP6I/5yu8CAEycOBFTpkzBww8/jA4dOmDYsGF49tlnMXv2bAC+8/uQmpqKnTt34tKlSzh9+jR++uknVFdXo1WrVj5zDww56jM7898TBp960Gg0uHbtGjIyMuDv749vvvlGf+7YsWM4deoUMjMzAQCZmZn45ZdfjP7hbt++HWFhYbW+PDzVPffcg19++QWHDh3S/3Tp0gVDhw7V/90X7oM5ly5dwokTJxAfH+8zvw+33347jh07ZnTs999/R1JSEgAgJSUFcXFxRvehoqICe/fuNboP5eXlRv83/O2330Kj0aBr164u+BSOs3LlSsTExKBfv376Y77yuwAAV65cgUxm/BUil8uh0WgA+N7vQ0hICOLj43Hx4kV89dVX+Oc//+lz9wBw3D/3zMxMfP/996iurtZfs337drRp06ZBw1wAOJ3dkilTpoidO3eKwsJCceTIETFlyhQhSZLYtm2bEEI7ZbVly5bi22+/FT///LPIzMwUmZmZ+ufrpqzed9994tChQ+LLL78U0dHRXjdl1ZThrC4hfOc+TJgwQXz33XeisLBQ7N69W/Tq1UtERUWJc+fOCSF84z789NNPws/PT7z88svi+PHj4oMPPhDBwcHi/fff118zZ84cER4eLv773/+KI0eOiH/+859mp7F27txZ7N27V+zatUu0bt3ao6fumqNWq0XLli3F5MmTa53zhd8FIYQYPny4aN68uX46+8aNG0VUVJSYNGmS/hpf+H348ssvxdatW8Uff/whtm3bJjp16iS6du0qqqqqhBCN8x5UVlaKgwcPioMHDwoAYsGCBeLgwYPi5MmTQgjHfOby8nIRGxsrhg0bJvLz88W6detEcHAwp7M708iRI0VSUpIICAgQ0dHR4p577tGHHiGE+Ouvv8S//vUv0axZMxEcHCz+3//7f6KkpMToNYqKikTfvn1FUFCQiIqKEhMmTBDV1dWu/igOZRp8fOU+ZGVlifj4eBEQECCaN28usrKyjNav8ZX7sGnTJnHTTTeJwMBA0bZtW7F8+XKj8xqNRjz//PMiNjZWBAYGinvuuUccO3bM6BqlUimGDBkimjZtKsLCwsTjjz8uKisrXfkxGuyrr74SAGp9NiF853ehoqJCPPPMM6Jly5aiSZMmolWrVmLatGlG04994fdh/fr1olWrViIgIEDExcWJMWPGiPLycv35xngPduzYIQDU+hk+fLgQwnGf+fDhw+KOO+4QgYGBonnz5mLOnDkOab8khMEym0RERESNGGt8iIiIyGcw+BAREZHPYPAhIiIin8HgQ0RERD6DwYeIiIh8BoMPERER+QwGHyIiIvIZDD5ERETkMxh8iKjB7rrrLuTm5rq7GU43Y8YM3Hzzze5uBhE1AIMPEfm8qqoql76fEAI1NTUufU8i0mLwIaIGGTFiBHbu3IlFixZBkiRIkoSioiLk5+ejb9++aNq0KWJjYzFs2DBcuHBB/7y77roLY8eORW5uLpo1a4bY2Fi88847uHz5Mh5//HGEhoYiLS0NW7du1T/nu+++gyRJ2LJlCzp27IgmTZrgtttuQ35+vlGbdu3ahTvvvBNBQUFo0aIFxo0bh8uXL+vPJycnY9asWXjssccQFhaGUaNGAQAmT56MG264AcHBwWjVqhWef/55/e7Qq1atwsyZM3H48GH951y1ahWKioogSRIOHTqkf/3y8nJIkoTvvvvOqN1bt25FRkYGAgMDsWvXLmg0GsyePRspKSkICgpCp06d8Mknnzj6HxERGWDwIaIGWbRoETIzM/Hkk0+ipKQEJSUlCA0NRc+ePdG5c2f8/PPP+PLLL3H27FkMHjzY6LmrV69GVFQUfvrpJ4wdOxZPP/00HnroIXTr1g0HDhzAfffdh2HDhuHKlStGz5s4cSLmz5+Pffv2ITo6GgMGDNAHlBMnTqBPnz4YNGgQjhw5gvXr12PXrl3Iyckxeo3XXnsNnTp1wsGDB/H8888DAEJDQ7Fq1Sr8+uuvWLRoEd555x28/vrrAICsrCxMmDAB7du313/OrKyset2rKVOmYM6cOTh69Cg6duyI2bNn47333sPbb7+N//3vf3j22Wfx6KOPYufOnfV6XSKqB4dsdUpEPq1Hjx7imWee0T+eNWuWuO+++4yuOX36tNGO5j169BB33HGH/nxNTY0ICQkRw4YN0x8rKSkRAEReXp4Q4vqu0OvWrdNfo1QqRVBQkFi/fr0QQojs7GwxatQoo/f+4YcfhEwmE3/99ZcQQoikpCTxwAMP1Pm55s2bJzIyMvSPX3jhBdGpUyejawoLCwUAcfDgQf2xixcvCgBix44dRu3+7LPP9NdcvXpVBAcHiz179hi9XnZ2thgyZEidbSMi+/i5M3QRUeN0+PBh7NixA02bNq117sSJE7jhhhsAAB07dtQfl8vliIyMRIcOHfTHYmNjAQDnzp0zeo3MzEz93yMiItCmTRscPXpU/95HjhzBBx98oL9GCAGNRoPCwkLceOONAIAuXbrUatv69euxePFinDhxApcuXUJNTQ3CwsLq/fktMXzPgoICXLlyBffee6/RNVVVVejcubPD3pOIjDH4EJHDXbp0CQMGDMDcuXNrnYuPj9f/3d/f3+icJElGxyRJAgBoNJp6vffo0aMxbty4Wudatmyp/3tISIjRuby8PAwdOhQzZ85E7969oVAosG7dOsyfP9/q+8lk2ooBIYT+mG7YzZThe166dAkAsGXLFjRv3tzousDAQKvvSUT2Y/AhogYLCAiAWq3WP05PT8eGDRuQnJwMPz/H/2fmxx9/1IeYixcv4vfff9f35KSnp+PXX39FWlpavV5zz549SEpKwrRp0/THTp48aXSN6ecEgOjoaABASUmJvqfGsNDZknbt2iEwMBCnTp1Cjx496tVWIrIfi5uJqMGSk5Oxd+9eFBUV4cKFCxgzZgzKysowZMgQ7Nu3DydOnMBXX32Fxx9/vFZwsMeLL76Ib775Bvn5+RgxYgSioqLwwAMPANDOzNqzZw9ycnJw6NAhHD9+HP/9739rFTebat26NU6dOoV169bhxIkTWLx4MT799NNan7OwsBCHDh3ChQsXcO3aNQQFBeG2227TFy3v3LkT//nPf+r8DKGhoXjuuefw7LPPYvXq1Thx4gQOHDiAN954A6tXr7b73hCRdQw+RNRgzz33HORyOdq1a4fo6GhUVVVh9+7dUKvVuO+++9ChQwfk5uYiPDxcPzTUEHPmzMEzzzyDjIwMlJaWYtOmTQgICACgrRvauXMnfv/9d9x5553o3Lkzpk+fjoSEBKuvef/99+PZZ59FTk4Obr75ZuzZs0c/20tn0KBB6NOnD+6++25ER0fjww8/BAC8++67qKmpQUZGBnJzc/HSSy/Z9DlmzZqF559/HrNnz8aNN96IPn36YMuWLUhJSbHjrhCRLSRhODBNROTBvvvuO9x99924ePEiwsPD3d0cIvJC7PEhIiIin8HgQ0RERD6DQ11ERETkM9jjQ0RERD6DwYeIiIh8BoMPERER+QwGHyIiIvIZDD5ERETkMxh8iIiIyGcw+BAREZHPYPAhIiIin8HgQ0RERD7j/wNMvoG13BwBoAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding_usr.ipynb](./surrogate_embedding_usr.ipynb) file." ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "4/4 [==============================] - 0s 4ms/step\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAHHCAYAAAAGU9SoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf+ElEQVR4nO3dfVzN5+M/8Nfp/oYKpUKR23IzoqnTsJnmsCw2PsMM0WyMmftiSLYRwzY34/v52MTmfjZyG8vNbspdwtyUjRIjMSpF99fvj369dZwTxTmdczqv5+NxHpzrfZ33uU7v6bx2Xe/rumRCCAEiIiIi0nsmum4AEREREVUOgxsRERGRgWBwIyIiIjIQDG5EREREBoLBjYiIiMhAMLgRERERGQgGNyIiIiIDweBGREREZCAY3IiIiIgMBIMbEdFzkslkmDNnjq6bIQkODkaTJk103Qwi0gIGNyKqkaKioiCTyaSHlZUVWrZsiXHjxuHWrVtafe+4uDjMmTMHmZmZGj3vK6+8ovSZ6tatixdffBHfffcdSkpKNPIe8+bNw/bt2zVyLiLSPDNdN4CISJvmzp0LDw8P5OXl4ffff8fKlSuxZ88enDt3DjY2Nhp5j4cPH8LM7NGv07i4OERERCA4OBgODg4aeY8yjRo1wvz58wEAt2/fxrp16xASEoJLly4hMjLyuc8/b948DBgwAP369XvucxGR5jG4EVGN1rt3b/j4+AAA3nvvPdSrVw9LlizBjh07MHjw4Gc+b0lJCQoKCmBlZQUrKytNNfep7O3t8e6770rPP/jgA7Rq1QrLly/Hp59+CnNz82prCxFVPw6VEpFRefXVVwEAKSkpAIBFixbB398f9erVg7W1NTp16oQff/xR5XUymQzjxo3D+vXr0aZNG1haWmLfvn3SsbJ73ObMmYOpU6cCADw8PKRhzdTUVLz88sto37692na1atUKCoWiyp/HxsYGfn5+yM3Nxe3btyusl5ubi8mTJ8PNzQ2WlpZo1aoVFi1aBCGE0mfMzc3F2rVrpXYHBwdXuU1EpD3scSMio3L58mUAQL169QAAX3/9NYKCgjBkyBAUFBRg06ZN+M9//oNdu3YhMDBQ6bUHDx7Eli1bMG7cODg6OqqdAPDWW2/h0qVL2LhxI7788ks4OjoCAJycnDB06FCMGjUK586dQ9u2baXXnDhxApcuXcLMmTOf6TNduXIFpqamFQ7LCiEQFBSEQ4cOISQkBB06dEBMTAymTp2Kf/75B19++SUA4Pvvv8d7772Hzp074/333wcANGvW7JnaRERaIoiIaqA1a9YIAOKXX34Rt2/fFteuXRObNm0S9erVE9bW1uL69etCCCEePHig9LqCggLRtm1b8eqrryqVAxAmJibi/PnzKu8FQISHh0vPv/jiCwFApKSkKNXLzMwUVlZWIjQ0VKl8/PjxwtbWVuTk5DzxM7388svC09NT3L59W9y+fVtcvHhRjB8/XgAQb7zxhlRv+PDhonHjxtLz7du3CwDis88+UzrfgAEDhEwmE3///bdUZmtrK4YPH/7EdhCR7nColIhqtICAADg5OcHNzQ2DBg1CrVq18PPPP6Nhw4YAAGtra6nuvXv3kJWVha5du+LUqVMq53r55ZfRunXrZ26Lvb09+vbti40bN0pDlMXFxdi8eTP69esHW1vbp54jKSkJTk5OcHJygpeXF5YtW4bAwEB89913Fb5mz549MDU1xfjx45XKJ0+eDCEE9u7d+8yfiYiqF4dKiahGW7FiBVq2bAkzMzM4OzujVatWMDF59P+su3btwmeffYbTp08jPz9fKpfJZCrn8vDweO72DBs2DJs3b8Zvv/2Gbt264ZdffsGtW7cwdOjQSr2+SZMm+N///ictcdKiRQvUr1//ia+5evUqGjRogNq1ayuVe3l5SceJyDAwuBFRjda5c2dpVunjfvvtNwQFBaFbt2745ptv4OrqCnNzc6xZswYbNmxQqV++d+5ZKRQKODs744cffkC3bt3www8/wMXFBQEBAZV6va2tbaXrElHNw6FSIjJa27Ztg5WVFWJiYjBy5Ej07t1bI6FIXW9dGVNTU7zzzjv48ccfce/ePWzfvh2DBw+Gqanpc79vRRo3bowbN27g/v37SuVJSUnS8TJPajsR6R6DGxEZLVNTU8hkMhQXF0tlqampz71zQNm9ahXtnDB06FDcu3cPH3zwAXJycpTWZdOG119/HcXFxVi+fLlS+ZdffgmZTIbevXtLZba2thrf8YGINIdDpURktAIDA7FkyRL06tUL77zzDjIyMrBixQo0b94cZ8+efebzdurUCQDwySefYNCgQTA3N8cbb7whBTpvb2+0bdsWW7duhZeXFzp27KiRz1ORN954A927d8cnn3yC1NRUtG/fHvv378eOHTswYcIEpSU/OnXqhF9++QVLlixBgwYN4OHhAV9fX622j4gqjz1uRGS0Xn31VXz77bdIT0/HhAkTsHHjRixYsABvvvnmc533xRdfxKeffoozZ84gODgYgwcPVlkcd9iwYQBQ6UkJz8PExATR0dGYMGECdu3ahQkTJuDChQv44osvsGTJEqW6S5YsQadOnTBz5kwMHjwYK1eu1Hr7iKjyZEKUWzabiIiqxddff42JEyciNTUV7u7uum4OERkIBjciomomhED79u1Rr149HDp0SNfNISIDwnvciIiqSW5uLqKjo3Ho0CH8+eef2LFjh66bREQGhj1uRETVJDU1FR4eHnBwcMCHH36Izz//XNdNIiIDw+BGREREZCA4q5SIiIjIQDC4ERERERkITk7QYyUlJbhx4wZq167NbWiIiIgMhBAC9+/fR4MGDWBiotk+MgY3PXbjxg24ubnpuhlERET0DK5du4ZGjRpp9JwMbnqsdu3aAEovvJ2dnY5bQ0RERJWRnZ0NNzc36Xtckxjc9FjZ8KidnR2DGxERkYHRxm1OnJxAREREZCAY3IiIiIgMBIMbERERkYHgPW4Grri4GIWFhbpuBlUDc3NzmJqa6roZRESkQwxuBkoIgfT0dGRmZuq6KVSNHBwc4OLiwnX9iIiMFIObgSoLbfXr14eNjQ2/yGs4IQQePHiAjIwMAICrq6uOW0RERLrA4GaAiouLpdBWr149XTeHqom1tTUAICMjA/Xr1+ewKRGRETKYyQlBQUFwd3eHlZUVXF1dMXToUNy4cUOpjhACixYtQsuWLWFpaYmGDRvi888/V6pz+PBhdOzYEZaWlmjevDmioqJU3mvFihVo0qQJrKys4Ovri+PHjysdz8vLw9ixY1GvXj3UqlUL/fv3x61bt5TqpKWlITAwEDY2Nqhfvz6mTp2KoqIijfwsyu5ps7Gx0cj5yHCUXXPe10hEZJwMJrh1794dW7ZsQXJyMrZt24bLly9jwIABSnU+/vhjrF69GosWLUJSUhKio6PRuXNn6XhKSgoCAwPRvXt3nD59GhMmTMB7772HmJgYqc7mzZsxadIkhIeH49SpU2jfvj0UCoU0RAUAEydOxM6dO7F161YcOXIEN27cwFtvvSUdLy4uRmBgIAoKChAXF4e1a9ciKioKs2fP1ujPhMOjxofXnIjIyAkDtWPHDiGTyURBQYEQQogLFy4IMzMzkZSUVOFrpk2bJtq0aaNUNnDgQKFQKKTnnTt3FmPHjpWeFxcXiwYNGoj58+cLIYTIzMwU5ubmYuvWrVKdixcvCgAiPj5eCCHEnj17hImJiUhPT5fqrFy5UtjZ2Yn8/PxKf8asrCwBQGRlZSmVP3z4UFy4cEE8fPiw0ueimoHXnohI/1X0/a0JBtPjVt7du3exfv16+Pv7w9zcHACwc+dONG3aFLt27YKHhweaNGmC9957D3fv3pVeFx8fj4CAAKVzKRQKxMfHAwAKCgqQkJCgVMfExAQBAQFSnYSEBBQWFirV8fT0hLu7u1QnPj4e7dq1g7Ozs9L7ZGdn4/z58xV+rvz8fGRnZys9iIiIiMoYVHALDQ2Fra0t6tWrh7S0NOzYsUM6duXKFVy9ehVbt27FunXrEBUVhYSEBKXh1PT0dKUwBQDOzs7Izs7Gw4cPcefOHRQXF6utk56eLp3DwsICDg4OT6yj7hxlxyoyf/582NvbSw83N7dK/mQMR3BwMGQyGWQyGczNzeHs7IzXXnsN3333HUpKSip9nqioKJVrQEREVNPpNLiFhYVJX+IVPZKSkqT6U6dORWJiIvbv3w9TU1MMGzYMQggAQElJCfLz87Fu3Tp07doVr7zyCr799lscOnQIycnJuvqIVTJ9+nRkZWVJj2vXrum6SVrRq1cv3Lx5E6mpqdi7dy+6d++Ojz/+GH369NHYBA4iIqInycnJQW5urq6bUWU6DW6TJ0/GxYsXn/ho2rSpVN/R0REtW7bEa6+9hk2bNmHPnj04evQogNJ1rczMzNCyZUupvpeXF4DSGZ4A4OLiojL789atW7Czs4O1tTUcHR1hamqqto6Li4t0joKCApWFbx+vo+4cZccqYmlpCTs7O6VHTWRpaQkXFxc0bNgQHTt2xIwZM7Bjxw7s3btXmuW7ZMkStGvXDra2tnBzc8OHH36InJwcAKUzg0eMGIGsrCwp4M+ZMwcA8P3338PHxwe1a9eGi4sL3nnnHaWJJUREZNyEEFixYgUWL16MVatWSR1AhkKnwc3JyQmenp5PfFhYWKh9bdmwWn5+PgDgpZdeQlFRES5fvizVuXTpEgCgcePGAAC5XI7Y2Fil8xw4cAByuRwAYGFhgU6dOinVKSkpQWxsrFSnU6dOMDc3V6qTnJyMtLQ0qY5cLseff/6pFBgOHDgAOzs7tG7d+hl+Uk8nhEBBQYFOHpr4j/7VV19F+/bt8dNPPwEovbdw6dKlOH/+PNauXYuDBw9i2rRpAAB/f3989dVXsLOzw82bN3Hz5k1MmTIFQOkyGZ9++inOnDmD7du3IzU1FcHBwc/dPiIiMnyZmZmYO3cu7ty5AwDIzc01uNn6BrEA77Fjx3DixAl06dIFderUweXLlzFr1iw0a9ZMCksBAQHo2LEjRo4cia+++golJSUYO3YsXnvtNakXbvTo0Vi+fDmmTZuGkSNH4uDBg9iyZQt2794tvdekSZMwfPhw+Pj4oHPnzvjqq6+Qm5uLESNGAADs7e0REhKCSZMmoW7durCzs8NHH30EuVwOPz8/AEDPnj3RunVrDB06FAsXLkR6ejpmzpyJsWPHwtLSUis/o8LCQsyfP18r536a6dOnVxiwq8LT0xNnz54FAEyYMEEqb9KkCT777DOMHj0a33zzDSwsLGBvbw+ZTKbSgzly5Ejp702bNsXSpUvx4osvIicnB7Vq1XruNhIRkWE6ceIE9uzZIz23t7fHxx9/rMMWPRuDmJxgY2ODn376CT169ECrVq0QEhKCF154AUeOHJGCkImJCXbu3AlHR0d069YNgYGB8PLywqZNm6TzeHh4YPfu3Thw4ADat2+PxYsXY/Xq1VAoFFKdgQMHYtGiRZg9ezY6dOiA06dPY9++fUqTDb788kv06dMH/fv3R7du3eDi4iL1FAGAqakpdu3aBVNTU8jlcrz77rsYNmwY5s6dWw0/LcMlhJD+z+eXX35Bjx490LBhQ9SuXRtDhw7Fv//+iwcPHjzxHAkJCXjjjTfg7u6O2rVr4+WXXwbwaLiciIiMS0lJCSIiIpRC2+uvv46mTSfgpZdkiI7WYeOegUwY2uCuEcnOzoa9vT2ysrKU7nfLy8tDSkoKPDw8YGVlBaA09OhqNX1zc/NKdzUHBwcjMzMT27dvVzn2wgsvwN3dHcuXL4enpyfGjBmDgQMHom7duvj9998REhKCe/fuwcHBAVFRUZgwYYLSvYa5ublo3LgxFAoFRo8eDScnJ6SlpUGhUCAxMREdOnTQzAfWIXXXnoiI1EtKSsLmzZuVyj7++GM4ODjA3x+IjwfkciAuTrPvW9H3tyYYxFApPZ1MJtPIcKWuHDx4EH/++ScmTpyIhIQElJSUYPHixTAxKe0U3rJli1J9CwsLFBcXK5UlJSXh33//RWRkpLSUysmTJ6vnAxARkV6JiIhQKYuJmQ1vbxmCgoCwMCAysvRPQ2IQQ6VUs+Tn5yM9PR3//PMPTp06hXnz5qFv377o06cPhg0bhubNm6OwsBDLli3DlStX8P3332PVqlVK52jSpAlycnIQGxuLO3fu4MGDB3B3d4eFhYX0uujoaHz66ac6+pRERKQLhYWFKqHNyckJMTHhiI+XITKytCwoqLSnLShIB418DgxuVO327dsHV1dXNGnSBL169cKhQ4ewdOlS7NixA6ampmjfvj2WLFmCBQsWoG3btli/fr3KxAt/f3+MHj0aAwcOhJOTExYuXAgnJydERUVh69ataN26NSIjI7Fo0SIdfUoiIqpu0dHRmDdvnlLZ2bNvolGjDxEWVjosamg9bI/jPW56rCr3uJFx4LUnIlKvoqHR+HiZVu5jexLe40ZERESkRl5eHhYsWKBSHh4eDm9vw7yP7UkY3IiIiMggbd68WWlrTADo27evtIpAUJDh3cP2NAxuREREZHDUDY3Onj3b4HZCqCoGNyIiIjIY9+/fx5IlS1TKw8PDddCa6sfgRkRERAYhMjJS2qO8zNtvvw0vLy+VutHRj+5vq0nDpVwOhIiIiPReRESESmjz9g5XG9qA0tAWHw9p3baagsGNiIiI9Na9e/fU3s82Z074E0NZTVm37XEcKiUiIiK9pC6w9e/fH1eutH1qKKuJM0oBBjciIiLSQ+pCW9kEhLZta2YoqwwOlVKNFBwcjH79+knPX3nlFUyYMOG5zqmJcxAR0ZNlZGQ8MbQZO/a4UbUKDg7G2rVrAQDm5uZwd3fHsGHDMGPGDJiZae8/x59++gnm5uaVqnv48GF0794d9+7dg4ODwzOdg4iIqk5dYGvWbAjefbe5DlqjnxjcqNr16tULa9asQX5+Pvbs2YOxY8fC3Nwc06dPV6pXUFAACwsLjbxn3bp19eIcRESkXkUTEORy4N13ddAgPcWhUqp2lpaWcHFxQePGjTFmzBgEBAQgOjpaGt78/PPP0aBBA7Rq1QoAcO3aNbz99ttwcHBA3bp10bdvX6SmpkrnKy4uxqRJk+Dg4IB69eph2rRpEEIovefjw5z5+fkIDQ2Fm5sbLC0t0bx5c3z77bdITU1F9+7dAQB16tSBTCZDcHCw2nPcu3cPw4YNQ506dWBjY4PevXvjr7/+ko5HRUXBwcEBMTEx8PLyQq1atdCrVy/cvHlTqnP48GF07twZtra2cHBwwEsvvYSrV69q6CdNRKT/0tLS1IY2b+/wGjkr9Hmxx410ztraGv/++y8AIDY2FnZ2djhw4AAAoLCwEAqFAnK5HL/99hvMzMzw2WefoVevXjh79iwsLCywePFiREVF4bvvvoOXlxcWL16Mn3/+Ga+++mqF7zls2DDEx8dj6dKlaN++PVJSUnDnzh24ublh27Zt6N+/P5KTk2FnZwdra2u15wgODsZff/2F6Oho2NnZITQ0FK+//jouXLggDak+ePAAixYtwvfffw8TExO8++67mDJlCtavX4+ioiL069cPo0aNwsaNG1FQUIDjx4/X+O1aiIjKqAtsI0aMgLu7OwDjnYDwJAxupDNCCMTGxiImJgYfffQRbt++DVtbW6xevVoaIv3hhx9QUlKC1atXS4FmzZo1cHBwwOHDh9GzZ0989dVXmD59Ot566y0AwKpVqxATE1Ph+166dAlbtmzBgQMHEBAQAABo2rSpdLxsSLR+/fpK97iVVxbY/vjjD/j7+wMA1q9fDzc3N2zfvh3/+c9/AJQGz1WrVqFZs2YAgHHjxmHu3LkAgOzsbGRlZaFPnz7S8YoWkiQiqmk4AeHZcKiUEB0N+PuX/lkddu3ahVq1asHKygq9e/fGwIEDMWfOHABAu3btlO5rO3PmDP7++2/Url0btWrVQq1atVC3bl3k5eXh8uXLyMrKws2bN+Hr6yu9xszMDD4+PhW+/+nTp2FqaoqXX375mT/DxYsXYWZmpvS+9erVQ6tWrXDx4kWpzMbGRgplAODq6oqMjAwApQExODgYCoUCb7zxBr7++mulYVQioprozJkzDG3PgT1upLQtSHV0S3fv3h0rV66EhYUFGjRooDSb1NbWVqluTk4OOnXqhPXr16ucx8nJ6Znev6KhT214fBaqTCZTuv9uzZo1GD9+PPbt24fNmzdj5syZOHDgAPz8/KqtjURE1UVdYGvZciSWLXODtzeHRiuDPW5U7duC2Nraonnz5nB3d3/qEiAdO3bEX3/9hfr166N58+ZKD3t7e9jb28PV1RXHjh2TXlNUVISEhIQKz9muXTuUlJTgyJEjao+X9fgVFxdXeA4vLy8UFRUpve+///6L5ORktG7d+omf6XHe3t6YPn064uLi0LZtW2zYsKFKryciMgQV9bItW+ZWI/cU1RYGN0JQEBAXp5//pzNkyBA4Ojqib9+++O2335CSkoLDhw9j/PjxuH79OgDg448/RmRkJLZv346kpCR8+OGHyMzMrPCcTZo0wfDhwzFy5Ehs375dOueWLVsAAI0bN4ZMJsOuXbtw+/Zt5OTkqJyjRYsW6Nu3L0aNGoXff/8dZ86cwbvvvouGDRuib9++lfpsKSkpmD59OuLj43H16lXs378ff/31F+9zI6IaJT4+Xm1oi4kJR3R0zd1TVFsY3Eiv2djY4Ndff4W7uzveeusteHl5ISQkBHl5ebCzswMATJ48GUOHDsXw4cMhl8tRu3ZtvPnmm08878qVKzFgwAB8+OGH8PT0xKhRo5CbmwsAaNiwISIiIhAWFgZnZ2eMGzdO7TnWrFmDTp06oU+fPpDL5RBCYM+ePZVepNfGxgZJSUno378/WrZsiffffx9jx47FBx98UIWfEBGR/oqIiMD+/fuVykaNGoWYmHClW3T0tfNAH8nE4wtekd7Izs6Gvb09srKypJACAHl5eUhJSYGHhwesrKx02EKqbrz2RGQonjQBITq6NLSFhdXMwFbR97cmcHICERERacyWLVuUZteXKT9rNCioZga26sDgRkRERBqhrpftm2/GoFmz+uBqH5rB4EZERETPraJtq5o148QDTWJwIyIiome2evVq/PPPPyrlMTHh8PYunXhAmsPgZsA4r8T48JoTkT5R18v20UcfoU+futW6sLsx4XIgBqj8BuZkXMqueWWXHCEi0gYhRIWzRuvWrcu12bSIPW4GyNTUFA4ODtKelzY2NtIG7FQzCSHw4MEDZGRkwMHBAaamprpuEhEZiceX7li0aJG07mV5nDVaPRjcDJSLiwsASOGNjIODg4N07YmIqkP5/awTE1V72SZNmoTatWvroGXGicHNQMlkMri6uqJ+/fooLCzUdXOoGpibm7OnjYiqXVgYsGBBMXr2/EzlWDjX+Kh2DG4GztTUlF/mRESkFdHRpb1sPXuqHmNo0w0GNyIiIlJL3dBobGwofv2VW+7pCoMbERERKcnPz0dkZKRKeUxMOGeK6hiDGxEREUnULfMBlO6CwNFR3WNwIyIiIgDqQ9uMGTO4dqQeYXAjIiIyctu25eDcucUq5ZyAoH8Y3IiIiIxYRUOjDG36icGNiIjIyJTthqBQqIa2WbNmwcSEO2LqKwY3IiIiI7N06R0oFCtUytnLpv8Y3IiIiIxIREQEunZVLWdoMwwMbkREREZC3f1ss2fPhkwm00Fr6FkwuBEREdVwKSkpWLdunUq5t3c4mNkMC4MbERFRDcZZozULgxsREVENpS60MbAZNgY3IiKiGub06dPYsWOHSjlDm+FjcCMiIqpB1PWymZqaYubMmTpoDWkagxsREVENoS60eXuHIyhIB40hrWBwIyIiMmDR0cCWLUfQosVhlWMcGq15GNyIiIgMWGJiBFq0UC6rU6cOxo8fr5sGkVYxuBERERmQsn1Gw8JKQ9vj2MtWszG4ERERGZDISKBhwx+RmHhe5RhDW83H4EZERKTnyveyKRSqvWzu7u4YMWKEDlpG1c1E1w0gIiIiZdHRgL9/6Z9AaWiLj694aJShzXjIhBBC140g9bKzs2Fvb4+srCzY2dnpujlERFRN/P1Lg5qnJ1CnDtCz51LIZPdU6nFoVD9p8/ubPW5ERER6JiwMkMsBIUqHRh8PbW3btmVoM1IMbkRERDr0+LAoAAQFAXFxwODB6odG+/fvX40tJH3CyQlERETVrPxkg7L71yIjIe1woG4HBIBDo8TgRkREVO3Kh7WwMCA0FLh7tzTQqZuA4O/vj9dee00HLSV9w6FSIiKialI2LNq9e+k9bGFhpb1sdeoAyckVzxplaKMy7HEjIiKqJmU9bUDpPWxlFIoIKBSq9Tk0So9jcCMiIqomZfe0hYU9KlN3P1uvXr3g6+tbjS0jQ8HgRkREVE2Cgh5NQADUhzb2stGTMLgRERFVM84apWdlMJMTgoKC4O7uDisrK7i6umLo0KG4ceOGdHzOnDmQyWQqD1tbW6XzbN26FZ6enrCyskK7du2wZ88epeNCCMyePRuurq6wtrZGQEAA/vrrL6U6d+/exZAhQ2BnZwcHBweEhIQgJydHqc7Zs2fRtWtXWFlZwc3NDQsXLtTwT4SIiAyRutD2n//8h6GNKsVgglv37t2xZcsWJCcnY9u2bbh8+TIGDBggHZ8yZQpu3ryp9GjdujX+85//SHXi4uIwePBghISEIDExEf369UO/fv1w7tw5qc7ChQuxdOlSrFq1CseOHYOtrS0UCgXy8vKkOkOGDMH58+dx4MAB7Nq1C7/++ivef/996Xh2djZ69uyJxo0bIyEhAV988QXmzJmD//73v1r+KRERkb4SQlQ4NNq6dWsdtIgMkcHuVRodHY1+/fohPz8f5ubmKsfPnDmDDh064Ndff0XXrl0BAAMHDkRubi527dol1fPz80OHDh2watUqCCHQoEEDTJ48GVOmTAEAZGVlwdnZGVFRURg0aBAuXryI1q1b48SJE/Dx8QEA7Nu3D6+//jquX7+OBg0aYOXKlfjkk0+Qnp4OCwsLAEBYWBi2b9+OpKSkSn9G7lVKRFQzcGjUuHCv0sfcvXsX69evh7+/v9rQBgCrV69Gy5YtpdAGAPHx8QgICFCqp1AoEP//52anpKQgPT1dqY69vT18fX2lOvHx8XBwcJBCGwAEBATAxMQEx44dk+p069ZNCm1l75OcnIx791Q3CS6Tn5+P7OxspQcRERk2daFtxIgRDG30TAwquIWGhsLW1hb16tVDWloaduzYobZeXl4e1q9fj5CQEKXy9PR0ODs7K5U5OzsjPT1dOl5W9qQ69evXVzpuZmaGunXrKtVRd47y76HO/PnzYW9vLz3c3NwqrEtERPqtsLCwwqFRd3d3HbSIagKdBrewsDC1EwrKP8oPLU6dOhWJiYnYv38/TE1NMWzYMKgb6f35559x//59DB8+vDo/znObPn06srKypMe1a9d03SQiInoGERERmDdvnko5e9noeel0OZDJkycjODj4iXWaNm0q/d3R0RGOjo5o2bIlvLy84ObmhqNHj0Iulyu9ZvXq1ejTp49Kr5eLiwtu3bqlVHbr1i24uLhIx8vKXF1dlep06NBBqpORkaF0jqKiIty9e1fpPOrep/x7qGNpaQlLS8sKjxMRkf4ov1H809ZmGzt2LBwdHauxdVRT6TS4OTk5wcnJ6ZleW1JSAqD0vrDyUlJScOjQIURHR6u8Ri6XIzY2FhMmTJDKDhw4IAU/Dw8PuLi4IDY2Vgpq2dnZOHbsGMaMGSOdIzMzEwkJCejUqRMA4ODBgygpKZFWuZbL5fjkk09QWFgo3YN34MABtGrVCnXq1Hmmz0tERPqhLLDdvVu6v2hkZGlwy8nJweLFi1Xqs5eNNMkgZpUeO3YMJ06cQJcuXVCnTh1cvnwZs2bNwq1bt3D+/HmlXqpZs2bhu+++Q1paGkxNTZXOExcXh5dffhmRkZEIDAzEpk2bMG/ePJw6dQpt27YFACxYsACRkZFYu3YtPDw8MGvWLJw9exYXLlyAlZUVAKB37964desWVq1ahcLCQowYMQI+Pj7YsGEDgNKZqK1atULPnj0RGhqKc+fOYeTIkfjyyy+Vlg15Gs4qJSLSL9HRwJAhQE4O4OlZujl8WJj6zeEBhjZjpc3vb4PYOcHGxgY//fQTwsPDkZubC1dXV/Tq1QszZ85UCm0lJSWIiopCcHCwSmgDAH9/f2zYsAEzZ87EjBkz0KJFC2zfvl0KbQAwbdo05Obm4v3330dmZia6dOmCffv2SaENANavX49x48ahR48eMDExQf/+/bF06VLpuL29Pfbv34+xY8eiU6dOcHR0xOzZs6sU2oiISP9ERpaGtlq1gAULSnva1A2NTpkyRWUBeCJNMIgeN2PFHjciIv1S/r42ufw2vvnmG5U67GUjruNGRERUzaKjAX//0j/LBAUBcXGlQ6MMbaQLBjFUSkREVN0iI4H4+EeTD8qoGxr95JNPYGbGr1TSPva4ERERqVE6HFr6JwBcuXKlwgV1GdqouvC/NCIiIjWCgh71tHGvUdIX7HEjIiKjVv5eNnX3takLbbNnz2ZoI51gjxsRERm18veyAY/+3qjRKezcuVOlPgMb6RKDGxERGbWwsEdLfAClf1coIqAmszG0kc4xuBERkdF5fJ/R8rNG1e2CwMBG+oLBjYiIjI66pT727t2L48ePq9RlaCN9wuBGRERG5/HhUc4aJUPB4EZEREbnaUt9MLCRvmJwIyIio7R27VqkpqaqlDO0kT5jcCMiIqPDoVEyVAxuRERkVDg0SoaMwY2IiIzCokWLkJubq1LO0EaGhFteERGRwVO3VVV5ERERDG1UI7DHjYiIDF7ZumxDhgDr1ysvqMuhUapJGNyIiMjghYWVhracnEeL6nICAtVEHColIiKD88knQO3apX8CpUFt/XpALi8NcepCm62tLUMbGTyZEELouhGkXnZ2Nuzt7ZGVlQU7OztdN4eISG/Url3au2ZiAvz8M4dGSb9o8/ubPW5ERGRwxo8vDW0lJaVDo0BpYGNoo5qOPW56jD1uREQVi45+tN9oYqJqYGvevDmGDBmig5aRsdPm9zcnJxARkUEq22+UvWxkTBjciIjIIHHWKBkjBjciIjI46kJbly5d0KNHDx20hqj6MLgREZFB4dAoGTMGNyIi0jvlJx6ULfXBoVEiBjciItJDZVtYPWkXhL59+6JDhw7V3zgiHWJwIyIivRMWVhraQkMFIiLmqhxnLxsZKy7AS0REOhUdDfj7l/5ZJigIUCgicPo0QxtReexxIyIinXp8WBRQPzQ6bNgweHh4VHPriPQLe9yIiEinwsIebQ5fWFhY4axRhjYibnml17jlFREZE84apZqCm8wTEZFBevz+tehowNMT8PJSvqdNXWgbM2YMQxvRY9jjpsfY40ZEhs7fv/T+tVq1gPXrH93PBpQOjx44kItFixapvI6BjQwZe9yIiMgghYWVhracnEcL6rZqVdrrplBEMLQRVRFnlRIRkdYEBT3qaSvbBaGiBXUnT56MWrVq6aCVRIaDwY2IiLSqLKwBwJ07d7BixQqVOuxlI6ocBjciIqoWnDVK9PwY3IiISOvUhbYZM2bA3NxcB60hMlxVnpxgamqKjIwMlfJ///0XpqamGmkUERHpP3VbVT3uypUrFS6oy9BGVHVV7nGraPWQ/Px8WFhYPHeDiIjIMKjbqqo8Do0SaV6lg9vSpUsBADKZDKtXr1aa+VNcXIxff/0Vnp6emm8hERHppbCwR7NFH6cutM2aNQsmJlyFiuh5VHoB3rI94q5evYpGjRopDYtaWFigSZMmmDt3Lnx9fbXTUiPEBXiJyNCcOnUKO3fuVClnLxsZE21+f1e6xy0lJQUA0L17d/z000+oU6eORhtCRESGjUOjRNpX5XvcDh06pI12EBGRAatoAgIRaVaVg9vIkSOfePy777575sYQEZFh+eWXX/DHH3+olDO0EWlHlYPbvXv3lJ4XFhbi3LlzyMzMxKuvvqqxhhERkX6IjlbesqoMh0aJql+Vg9vPP/+sUlZSUoIxY8agWbNmGmkUERHpD3XLfnBolEg3Kj2r9GmSk5Pxyiuv4ObNm5o4HYGzSolIP5TvccvP34oLFy6o1GFoI3pEm9/fGltQ5/LlyygqKtLU6YiISIfK74oQFATExQGJiREMbUQ6VuWh0kmTJik9F0Lg5s2b2L17N4YPH66xhhERkW5ERwNDhgA5OY+GRzk0SqQfqhzcEhMTlZ6bmJjAyckJixcvfuqMUyIi0n+RkaWhrVYt4I03liIi4p5KHYY2It3gOm5ERKSkbCsrhSICBQWqxxnaiHSnysGtTEZGBpKTkwEArVq1Qv369TXWKCIi0p2goNL72R7HwEake1UObtnZ2Rg7diw2btyIkpISAICpqSkGDhyIFStWwN7eXuONJCKi6sG12Yj0W5VnlY4aNQrHjh3D7t27kZmZiczMTOzatQsnT57EBx98oI02EhGRFpSfOQqoD202NjYMbUR6pMrruNna2iImJgZdunRRKv/tt9/Qq1cv5ObmarSBxozruBGRNvn7ly6sK5eX3s/2OAY2omejze/vKg+V1qtXT+1wqL29PerUqaORRhERkfaFham/lw1gaCPSV1UeKp05cyYmTZqE9PR0qSw9PR1Tp07FrFmzNNo4IiJ6Po8Ph5anLrS1aNGCoY1Ij1V5qNTb2xt///038vPz4e7uDgBIS0uDpaUlWrRooVT31KlTmmupEeJQKRE9r/LDoXFxj8q5oC6R9ujVUGnfvn0hk8k02ggiItKOsjXZwsJKn3PWKJFh09gm86R57HEjIk1SF9p8fX3Rq1cvHbSGqObSq03mmzZtin///VelPDMzE02bNtVIo4iISLMqGhplaCMyLFUeKk1NTUVxcbFKeX5+Pq5fv66RRhER0bOLjgamTQNkMmDQIA6NEtUklQ5u0eWmJMXExCgtCVJcXIzY2Fh4eHhotnVERFRlkZFAcjIwZ45qaAsMDISPj48OWkVEmlDpodJ+/fqhX79+kMlkGD58uPS8X79+GDRoEA4cOIDFixdrraFBQUFwd3eHlZUVXF1dMXToUNy4cUOpTkxMDPz8/FC7dm04OTmhf//+SE1NVapz+PBhdOzYEZaWlmjevDmioqJU3mvFihVo0qQJrKys4Ovri+PHjysdz8vLw9ixY1GvXj3UqlUL/fv3x61bt5TqpKWlITAwEDY2Nqhfvz6mTp2KoqIijfwsiIieJDRUqA1t4eHhDG1EBq7Swa2kpAQlJSVwd3dHRkaG9LykpAT5+flITk5Gnz59tNbQ7t27Y8uWLUhOTsa2bdtw+fJlDBgwQDqekpKCvn374tVXX8Xp06cRExODO3fu4K233lKqExgYiO7du+P06dOYMGEC3nvvPcTExEh1Nm/ejEmTJiE8PBynTp1C+/btoVAokJGRIdWZOHEidu7cia1bt+LIkSO4ceOG0vsUFxcjMDAQBQUFiIuLw9q1axEVFYXZs2dr7edDRASU3st2+vRclXIOjRLVDAY7qzQ6Ohr9+vVDfn4+zM3N8eOPP2Lw4MHIz8+HiUlpHt25cyf69u0r1QkNDcXu3btx7tw56TyDBg1CZmYm9u3bB6B0htWLL76I5cuXAygNrG5ubvjoo48QFhaGrKwsODk5YcOGDVJwTEpKgpeXF+Lj4+Hn54e9e/eiT58+uHHjBpydnQEAq1atQmhoKG7fvg0LC4tKfUbOKiWiqlA3AWHQoEFo1aqVDlpDZLz0ah23uXNV/0+uvOroVbp79y7Wr18Pf39/mJubAwA6deoEExMTrFmzBsHBwcjJycH333+PgIAAqU58fDwCAgKUzqVQKDBhwgQAQEFBARISEjB9+nTpuImJCQICAhAfHw8ASEhIQGFhodJ5PD094e7uLgW3+Ph4tGvXTgptZe8zZswYnD9/Ht7e3lr5uRBRzRYd/WhNtqCgR+VFRUX4/PPPVeqzl42o5qlycPv555+VnhcWFiIlJQVmZmZo1qyZVoNbaGgoli9fjgcPHsDPzw+7du2Sjnl4eGD//v14++238cEHH6C4uBhyuRx79uyR6qSnpyuFKQBwdnZGdnY2Hj58iHv37qG4uFhtnaSkJOkcFhYWcHBwUKlTtg1YRe9Tdqwi+fn5yM/Pl55nZ2c/7UdCREYkMrJ0F4TIyEfBjQvqEhmXKq/jlpiYqPQ4d+4cbt68iR49emDixIlVOldYWBhkMtkTH2WBCQCmTp2KxMRE7N+/H6amphg2bBjKRnrT09MxatQoDB8+HCdOnMCRI0dgYWGBAQMGwFBGg+fPnw97e3vp4ebmpusmEZEe6d4dqFWr9E9AfWgbNWoUQxtRDVblHjd17OzsEBERgTfeeANDhw6t9OsmT56M4ODgJ9Ypv6ivo6MjHB0d0bJlS3h5ecHNzQ1Hjx6FXC7HihUrYG9vj4ULF0r1f/jhB7i5ueHYsWPw8/ODi4uLyuzPW7duwc7ODtbW1jA1NYWpqanaOi4uLgAAFxcXFBQUIDMzU6nX7fE6j89ELTtnWR11pk+fjkmTJknPs7OzGd6ISHLoEJCTA/z++wNERHyhcpyBjajm00hwA4CsrCxkZWVV6TVOTk5wcnJ6pvcrKSkBAGlo8cGDB9KkhDKmpqZKdR8fOgWAAwcOQC6XAwAsLCzQqVMnxMbGol+/ftJrY2NjMW7cOACl99KZm5sjNjYW/fv3BwAkJycjLS1NOo9cLsfnn3+OjIwM1K9fX3ofOzs7tG7dusLPZGlpCUtLy2f6eRBRzRcWBiQmcmiUyJhVObgtXbpU6bkQAjdv3sT333+P3r17a6xh5R07dgwnTpxAly5dUKdOHVy+fBmzZs1Cs2bNpLAUGBiIL7/8EnPnzsXgwYNx//59zJgxA40bN5YmA4wePRrLly/HtGnTMHLkSBw8eBBbtmzB7t27pfeaNGkShg8fDh8fH3Tu3BlfffUVcnNzMWLECACAvb09QkJCMGnSJNStWxd2dnb46KOPIJfL4efnBwDo2bMnWrdujaFDh2LhwoVIT0/HzJkzMXbsWAYzIqqS8hMS1IW2CRMmKC2ITkQ1W5WXA3l8dwQTExM4OTnh1VdfxfTp01G7dm2NNhAA/vzzT3z88cc4c+YMcnNz4erqil69emHmzJlo2LChVG/Tpk1YuHAhLl26BBsbG8jlcixYsACenp5SncOHD2PixIm4cOECGjVqhFmzZqkM1y5fvhxffPEF0tPT0aFDByxduhS+vr7S8by8PEyePBkbN25Efn4+FAoFvvnmG6Vh0KtXr2LMmDE4fPgwbG1tMXz4cERGRsLMrPJZmcuBEJG/P/DXX3cwbtwKlWPsZSPST9r8/jbYddyMAYMbEXHWKJHh0at13AAgMzMTf//9NwCgefPmKktjEBFR1ahbo01daAsLC+MtF0RGrErLgaSmpiIwMBCOjo7w9fWFr68vHB0d0adPH5U9QYmIqPJCQ0vXaAsNLd2eT11oCw8PZ2gjMnKV7nG7du0a/Pz8YG5ujk8//RReXl4AgAsXLmDlypWQy+U4ceIEGjVqpLXGEhHVVGU3rQwaFIF161SPc2iUiIAq3OMWEhKCv//+GzExMbCyslI69vDhQ/Tq1QstWrTA6tWrtdJQY8R73IiMR3S0+lmjs2bNUlnqiIj0m17c47Zv3z5s3rxZJbQBgLW1NT799FMMGjRIo40jIjIGp0+fRmLiDpVy9rIR0eMqHdzu3LmDJk2aVHi8adOmuHv3ribaRERUoz1tbTaAoY2I1Kt0cHN1dZXWPlPn3LlzT9zOiYiISpVtFq8utDGwEdGTVPrGiX79+mHKlCm4ffu2yrGMjAyEhoZK20QREVHFhg37BXPmMLQRUdVVenLCvXv34Ovri/T0dLz77rvw9PSEEAIXL17Ehg0b4OLigqNHj6Ju3brabrPR4OQEopqHC+oS1Xx6MTmhTp06OHbsGGbMmIFNmzYhMzMTAODg4IB33nkH8+bNY2gjIqpARbNGGdiIqCqeacsrIYQ0ZOrk5ASZTKbxhhF73Ihqiu+++w7Xrl1TKWdoI6qZ9KLHrTyZTIb69etrtCFERDURh0aJSJOeKbgREdHTVbRtFRHRs2JwIyLSgPJrs509+xmKi4tV6jC0EdHzYnAjItKAJ63NBjC0EZFmMLgREWlARbsgMLARkSZVKrgtXbq00iccP378MzeGiEjflR8SDQoqLeMEBCKqLpVaDsTDw6NyJ5PJcOXKleduFJXiciBE+sffv3RIVC4H4uIY2ohIlc6XA0lJSdHomxIRGaqwMCA0FLh7l7NGiaj6PfM9bgUFBUhJSUGzZs1gZsZb5YjIOAQFcQICEelOpTeZL/PgwQOEhITAxsYGbdq0QVpaGgDgo48+QmRkpMYbSESkT9T1sllZWTG0EVG1qHJwmz59Os6cOYPDhw/DyspKKg8ICMDmzZs12jgiIn0RHV3x0GhoaKgOWkRExqjKY5zbt2/H5s2b4efnp7RHaZs2bXD58mWNNo6ISB9wAgIR6YsqB7fbt2+r3ac0NzeXm80TUY0SHa3+frY2bdpgwIABOmgRERm7Kg+V+vj4YPfu3dLzsrC2evVqyOVyzbWMiEjHKlpQl6GNiHSlyj1u8+bNQ+/evXHhwgUUFRXh66+/xoULFxAXF4cjR45oo41ERNWKQ6NEpK+q3OPWpUsXnD59GkVFRWjXrh3279+P+vXrIz4+Hp06ddJGG4mIqo260PbKK68wtBGRXqjUzgmkG9w5gaj6CCEwd+5clXIGNiKqKp3vnJCdnV3pEzJgEJGh4dAoERmKSgU3BweHSs8YLS4ufq4GERFVJ3Wh7c0338QLL7ygg9YQET1ZpYLboUOHpL+npqYiLCwMwcHB0izS+Ph4rF27FvPnz9dOK4mINKy4uBifffaZSrm3dziY2YhIX1X5HrcePXrgvffew+DBg5XKN2zYgP/+9784fPiwJttn1HiPG5F2cGiUiLRJm9/fVZ5VGh8fDx8fH5VyHx8fHD9+XCONIiLSFnWhLT7+PXh7M7QRkf6rcnBzc3PD//73P5Xy1atXw83NTSONIiLStIcPH1a41+i+fQ0RFKSDRhERVVGVF+D98ssv0b9/f+zduxe+vr4AgOPHj+Ovv/7Ctm3bNN5AIqLnxaFRIqopnmkdt+vXr+Obb75BUlISAMDLywujR49mj5uG8R43ouenLrR9/PHHcHBwqP7GEJFR0Ob3Nxfg1WMMbkTP7u7du1i2bJlKOXvZiEjbdL4A7+MyMzPx7bff4uLFiwCANm3aYOTIkbC3t9do44iIngWHRomopqpyj9vJkyehUChgbW2Nzp07AwBOnDiBhw8fYv/+/ejYsaNWGmqM2ONGVHXqQltoaCisrKx00BoiMkZ6NVTatWtXNG/eHP/73/9gZlbaYVdUVIT33nsPV65cwa+//qrRBhozBjeiyrt27Rq+++47lXL2shFRddOr4GZtbY3ExER4enoqlV+4cAE+Pj548OCBRhtozBjciCqHQ6NEpE/06h43Ozs7pKWlqQS3a9euoXbt2hprGBFRZagLbTNnzoSpqakOWkNEpF1VDm4DBw5ESEgIFi1aBH9/fwDAH3/8galTp6psg0VEpC0XLlzA1q1bVcrZy0ZENVmVg9uiRYsgk8kwbNgwFBUVAQDMzc0xZswYREZGaryBRESP49AoERmrZ17H7cGDB7h8+TIAoFmzZrCxsdFow4j3uBGpoy60zZ49GzKZTAetISJSpVf3uJWxsbFBu3btNNkWIqIK/f7774iNjVUpZy8bERmTSge3kSNHVqqeuun4RETPo6KhUW9vhjYiMi6VDm5RUVFo3LgxvL29wV2yiKi6qAtt7GUjImNV6eA2ZswYbNy4ESkpKRgxYgTeffdd1K1bV5ttIyIjtmvXLiQkJKiUM7QRkTEzqWzFFStW4ObNm5g2bRp27twJNzc3vP3224iJiWEPHBFpVEREhNrQFhPD0EZExu2ZZ5VevXoVUVFRWLduHYqKinD+/HnUqlVL0+0zapxVSsZI3dDoxo3hkMmABQuAoCAdNIqIqAr0clapiYkJZDIZhBAoLi7WZJuIyAitWbMGaWlpKuXh4eHg6CgRUalKD5UCQH5+PjZu3IjXXnsNLVu2xJ9//only5cjLS2NvW1E9MwiIiIqDG1ERPRIpXvcPvzwQ2zatAlubm4YOXIkNm7cCEdHR222jYiMAGeNEhFVXqXvcTMxMYG7uzu8vb2fuEL5Tz/9pLHGGTve40Y12bx581BYWKhSztBGRIZOL+5xGzZsGLeUISKNUNfLZmFhgenTp+ugNUREhqNKC/ASET0vDo0SET27Z55VSkRUFRVtW8XQRkRUeQxuRKR16kKbu7s7RowYoYPWEBEZLgY3ItIqDo0SEWkOgxsRaQWHRomINI/BjYg0Tl1o8/HxQWBgoA5aQ0RUczC4EZFGcWiUiEh7GNyISCM4NEpEpH0MbkT0XKKjgcRE1dDWs2dPyOVyHbSIiKjmYnAjomcmhEBi4lyVcvayERFpB4MbET0TDo0SEVU/E103oLKCgoLg7u4OKysruLq6YujQobhx44ZSnS1btqBDhw6wsbFB48aN8cUXX6ic5/Dhw+jYsSMsLS3RvHlztVt5rVixAk2aNIGVlRV8fX1x/PhxpeN5eXkYO3Ys6tWrh1q1aqF///64deuWUp20tDQEBgbCxsYG9evXx9SpU1FUVPT8PwgiPaAutDVtOpihjYhIywwmuHXv3h1btmxBcnIytm3bhsuXL2PAgAHS8b1792LIkCEYPXo0zp07h2+++QZffvklli9fLtVJSUlBYGAgunfvjtOnT2PChAl47733EBMTI9XZvHkzJk2ahPDwcJw6dQrt27eHQqFARkaGVGfixInYuXMntm7diiNHjuDGjRt46623pOPFxcUIDAxEQUEB4uLisHbtWkRFRWH27Nla/ikRaVdJSYna0DZnTjhWrmyJ6GjA37/0vjciItI8mRBC6LoRzyI6Ohr9+vVDfn4+zM3N8c4776CwsBBbt26V6ixbtgwLFy5EWloaZDIZQkNDsXv3bpw7d06qM2jQIGRmZmLfvn0AAF9fX7z44otS4CspKYGbmxs++ugjhIWFISsrC05OTtiwYYMUHJOSkuDl5YX4+Hj4+flh79696NOnD27cuAFnZ2cAwKpVqxAaGorbt2/DwsKiUp8xOzsb9vb2yMrKgp2dnUZ+bkTPqqKhUW/vcERGAmFhQGQkEB8PyOVAXFw1N5CISE9o8/vbYHrcyrt79y7Wr18Pf39/mJubAwDy8/NhZWWlVM/a2hrXr1/H1atXAQDx8fEICAhQqqNQKBAfHw8AKCgoQEJCglIdExMTBAQESHUSEhJQWFioVMfT0xPu7u5Snfj4eLRr104KbWXvk52djfPnz1f4ufLz85Gdna30INIH6kLbBx98gPDwcAQFlYa0oKDS8CaXl/5JRESaZ1DBLTQ0FLa2tqhXrx7S0tKwY8cO6ZhCocBPP/2E2NhYlJSU4NKlS1i8eDEA4ObNmwCA9PR0pTAFAM7OzsjOzsbDhw9x584dFBcXq62Tnp4uncPCwgIODg5PrKPuHGXHKjJ//nzY29tLDzc3t8r+aIi0oqCgoMIFdV1cXFTKy4c4IiLSPJ0Gt7CwMMhksic+kpKSpPpTp05FYmIi9u/fD1NTUwwbNgxlI72jRo3CuHHj0KdPH1hYWMDPzw+DBg0CUNprZgimT5+OrKws6XHt2jVdN4mMWEREBObPn69SzgkIRES6o9PlQCZPnozg4OAn1mnatKn0d0dHRzg6OqJly5bw8vKCm5sbjh49CrlcDplMhgULFmDevHlIT0+Hk5MTYmNjlc7h4uKiMvvz1q1bsLOzg7W1NUxNTWFqaqq2TlnvgouLCwoKCpCZmanU6/Z4ncdnopadU10vRRlLS0tYWlo+8edBVB3U9bJNnDhRulcjOhrSfW3sXSMiqj467YpycnKCp6fnEx8V3chfUlICoPS+sPJMTU3RsGFDWFhYYOPGjZDL5XBycgIAyOVyKcyVOXDggLS6u4WFBTp16qRUp6SkBLGxsVKdTp06wdzcXKlOcnIy0tLSpDpyuRx//vmn0kzUAwcOwM7ODq1bt36mnxVRdcjJyalwaLR8aBsypHQSQmRkdbeQiMi4GcQCvMeOHcOJEyfQpUsX1KlTB5cvX8asWbPQrFkzKSzduXMHP/74I1555RXk5eVhzZo10nIdZUaPHo3ly5dj2rRpGDlyJA4ePIgtW7Zg9+7dUp1JkyZh+PDh8PHxQefOnfHVV18hNzcXI0aMAADY29sjJCQEkyZNQt26dWFnZ4ePPvoIcrkcfn5+AEq3+mndujWGDh2KhQsXIj09HTNnzsTYsWPZo0Z6q7IL6kZGAjk5QK1anIRARFTthAE4e/as6N69u6hbt66wtLQUTZo0EaNHjxbXr1+X6ty+fVv4+fkJW1tbYWNjI3r06CGOHj2qcq5Dhw6JDh06CAsLC9G0aVOxZs0alTrLli0T7u7uwsLCQnTu3FnlPA8fPhQffvihqFOnjrCxsRFvvvmmuHnzplKd1NRU0bt3b2FtbS0cHR3F5MmTRWFhYZU+d1ZWlgAgsrKyqvQ6oqqaM2eOyiMvL09t3R07hJDLS/8kIiJV2vz+Nth13IwB13Ejbbt9+za++eYblXJOQCAienba/P42iKFSItI87jVKRGR4GNyIjJC60DZz5kyYmprqoDVERFRZhrHAGRFpxLVr1yqcNVoW2rjfKBGR/mKPG5GRqGhoNCYmHN7ej9ZjK9tvNDKSa7QREekb9rgRGQF1oW327NnYuDEc8fHAtGmPyrnfKBGR/mKPG1ENdunSJWzcuFGlvGwCgkwGpT+B0l429rQREeknBjeiGqoys0YXLHi0dRUREek/BjeiGqiiCQjlcb9RIiLDw3vciGqQhISESoU2QHkSAhERGQb2uBHVEFVdUDcsjMOkRESGhsGNqAaobC/b48OjHCIlIjIsDG5EBuy3337DwYMHVcor6mXjGm1ERIaNwY3IQKnrZXN0dMTYsWMrfA2HR4mIDBuDG5EBquzQ6OM4PEpEZNgY3IgMyM6dO3Hq1CmV8sqENiIiMnxcDoTIQERERKiEtnbt2iE8PJwbwxMRGQn2uBEZgKcNjXLSARGRcWBwI9Jj69atQ0pKikr540OjnHRARGQcGNyI9JS6XrauXbsiJ+dV+Psrb1XFSQdERMaBwY1IDz1paNTfn8OiRETGisGNSI8sWbIE9+/fVykvPzTKYVEiIuPF4EakJ9T1svXp0wedOnVSKuOwKBGR8WJwI9IDz7qgLhERGRcGNyId+vTTT1FSUqJSztBGRETqMLgR6Yi6XrYhQ4agefPmOmgNEREZAgY3omomhMDcuXNVytnLRkRET8PgRlSNPvvsMxQXF6uUl21bVTZblJMPiIhIHQY3omqibmg0Lu4DxMS4AOC2VURE9HTcZJ5Iy4QQakPbpk3huHrVRdoYPiwMkMu5PhsREVVMJoQQum4EqZednQ17e3tkZWXBzs5O182hZ6AusAGlQ6NlOyDI5UBcXDU3jIiItEab398cKiXSEnWhbcKECbC3twfAHRCIiKjqGNyINKyoqAiff/65Svnjs0a5AwIREVUVgxuRBj1paJSIiOh5MbgRaYi60DZt2jRYW1vroDVERFQTMbgRPaf8/HxERkaqlLOXjYiINI3Bjeg5cGiUiIiqE4Mb0TNSF9pmzJgBc3NzHbSGiIiMAYMbURXl5uZi0aJFKuXsZSMiIm1jcCOqAg6NEhGRLnHLK6JKUhfaZs2aBW/v0l0QyrauIiIi0hYGN6KnyMzMVBvawsPDYWJiorQ5PBERkTZxqJToCdQFNkvLeoiOHgdv79KdD7h1FRERVRduMq/HuMm8bqkLbbNnz8ZLL8m4OTwREVVIm9/fHColekxGRkaFQ6MymQxhYaWhjT1sRERU3ThUSlSOusDm4eGBYcOGSc+5OTwREekKgxvR/1dRLxsREZG+YHAjo3fjxg3873//UylnaCMiIn3D4EZGTV0vW/v27dGvX7/qbwwREdFTMLiR0VIX2ry9w3n/GhER6S3OKqUaLzoaSjsbXLlypcL72RjaiIhIn7HHjWq88jsbJCaqBraAgAC89NJLOmgZERFR1TC4UY1XtrOBQsFZo0REZNgY3KjG8/L6CwrFBpVyb2+GNiIiMiwMblQjRUdX3Mt2+vQAbN/eBnI5F9IlIiLDwuBGNdKThkajo4Fbt7hlFRERGR4GN6pxLl++DIXiB5XysvvZuGUVEREZKgY3qlHULfMxYsQIuLu766A1REREmsXgRjUG9xolIqKajsGNDF5SUhI2b96sUs7QRkRENQ2DGxk0db1sY8eOhaOjow5aQ0REpF0MbmSwODRKRETGhsGNDM6ZM2ewfft2lXKGNiIiqukY3MigqOtlmzBhAuzt7XXQGiIiourF4EYGg0OjRERk7BjcSO8dPXoUMTExSmW1atXC5MmTddQiIiIi3WBwI72mrpdtypQpsLW11UFriIiIdIvBjfSSEAJz585VKefQKBERGTMTXTegqvLz89GhQwfIZDKcPn1a6djZs2fRtWtXWFlZwc3NDQsXLlR5/datW+Hp6QkrKyu0a9cOe/bsUTouhMDs2bPh6uoKa2trBAQE4K+//lKqc/fuXQwZMgR2dnZwcHBASEgIcnJyqtwWUu/w4cMqoc3FxYWhjYiIjJ7BBbdp06ahQYMGKuXZ2dno2bMnGjdujISEBHzxxReYM2cO/vvf/0p14uLiMHjwYISEhCAxMRH9+vVDv379cO7cOanOwoULsXTpUqxatQrHjh2Dra0tFAoF8vLypDpDhgzB+fPnceDAAezatQu//vor3n///Sq1hdSLiIjAkSNHlMpCQ0PxwQcf6KhFRERE+kMmhBC6bkRl7d27F5MmTcK2bdvQpk0bJCYmokOHDgCAlStX4pNPPkF6ejosLCwAAGFhYdi+fTuSkpIAAAMHDkRubi527dolndPPzw8dOnTAqlWrIIRAgwYNMHnyZEyZMgUAkJWVBWdnZ0RFRWHQoEG4ePEiWrdujRMnTsDHxwcAsG/fPrz++uu4fv06GjRoUKm2VEZ2djbs7e2RlZUFOzu75/756bOSkhJ8+umnKuXsZSMiIkOjze9vg+lxu3XrFkaNGoXvv/8eNjY2Ksfj4+PRrVs3KSgBgEKhQHJyMu7duyfVCQgIUHqdQqFAfHw8ACAlJQXp6elKdezt7eHr6yvViY+Ph4ODgxTaACAgIAAmJiY4duxYpduiTn5+PrKzs5UexmDv3r0qoa1Zs2YMbURERI8xiMkJQggEBwdj9OjR8PHxQWpqqkqd9PR0eHh4KJU5OztLx+rUqYP09HSprHyd9PR0qV7511VUp379+krHzczMULduXaU6T2uLOvPnz1c7i7ImU/d5Z8yYAXNzcx20hoiISL/ptMctLCwMMpnsiY+kpCQsW7YM9+/fx/Tp03XZXK2bPn06srKypMe1a9d03SStKS4urnBBXYY2IiIi9XTa4zZ58mQEBwc/sU7Tpk1x8OBBxMfHw9LSUumYj48PhgwZgrVr18LFxQW3bt1SOl723MXFRfpTXZ3yx8vKXF1dleqU3Uvn4uKCjIwMpXMUFRXh7t27T32f8u+hjqWlpcpnrIm2bdumNCEEAF544QW8+eabOmoRERGRYdBpcHNycoKTk9NT6y1duhSfffaZ9PzGjRtQKBTYvHkzfH19AQByuRyffPIJCgsLpR6bAwcOoFWrVtLQpFwuR2xsLCZMmCCd68CBA5DL5QAADw8PuLi4IDY2Vgpq2dnZOHbsGMaMGSOdIzMzEwkJCejUqRMA4ODBgygpKalSW4yVul62mTNnwtTUVAetISIiMiwGMTnB3d0dbdu2lR4tW7YEUHoDe6NGjQAA77zzDiwsLBASEoLz589j8+bN+PrrrzFp0iTpPB9//DH27duHxYsXIykpCXPmzMHJkycxbtw4AIBMJsOECRPw2WefITo6Gn/++SeGDRuGBg0aoF+/fgAALy8v9OrVC6NGjcLx48fxxx9/YNy4cRg0aJC0TEll2mJsCgsLKxwaZWgjIiKqHIOYnFAZ9vb22L9/P8aOHYtOnTrB0dERs2fPVlpfzd/fHxs2bMDMmTMxY8YMtGjRAtu3b0fbtm2lOtOmTUNubi7ef/99ZGZmokuXLti3bx+srKykOuvXr8e4cePQo0cPmJiYoH///li6dGmV2lJTREcDkZFAWBgQFKS+zrp165CSkqJU5ufnB4VCUQ0tJCIiqjkMah03Y2MI67j5+wPx8YBcDsTFqR5X18s2e/ZsyGSyamgdERFR9eM6bqRT0dGlAS06WvVYWFhpaAsLUy7Py8urcGiUoY2IiOjZsMdNj+lLj9vTetUet3LlSpWZt6+88gpefvllLbWQiIhIf2jz+7vG3ONG2hMW9ug+tqfh0CgREZH2cKiUKlQ2RAqU9rRVNPkAAHJycjg0SkREpGXscaMKRUaWDpFGRj45tH3xxRd48OCBUlnv3r3RuXNnLbeQiIjIuDC4UYUqM0RaUS8bERERaR6DG1UoKKjinrb79+9jyZIlKuUMbURERNrD4EZVtmrVKpW9WN9880288MILOmoRERGRceDkBHriOm2Pi4iIUAlt4eHhDG1ERETVgMGNlCYhVOTevXu8n42IiEjHOFRKT52EsGTJEty/f1+pLDg4GI0bN66G1hEREVEZ9rgZoceHRoOCKl6nLSIiQiW0hYeHM7QRERHpAIObEarM0Ghubi6HRomIiPQMh0qN0NOGRg8fPowjR44olY0dOxaOjo7V0DoiIiKqCIObEXrS+mzsZSMiItJfDG4EQP2Cuq+88gpefvllHbWIiIiIHsfgRjhw4ADi4uKUyqZMmQJbW1sdtYiIiIjUYXAzclu3bsWFCxeUyjg0SkREpJ8Y3IxUXl4eFixYoFTWs2dPyOVyHbWIiIiInobBzQhdunQJGzduVCqbMWMGzM3NddQiIiIiqgwGNyNUPrT5+flBoVDosDVERERUWQxuRmzUqFFo0KCBrptBRERElSQTQghdN4LUy87Ohr29PbKysmBnZ6fr5hAREVElaPP7m1teERERERkIBjciIiIiA8HgRkRERGQgGNyIiIiIDASDGxEREZGBYHAjIiIiMhAMbkREREQGgsGNiIiIyEAwuBEREREZCAY3IiIiIgPB4EZERERkIBjciIiIiAwEgxsRERGRgWBwIyIiIjIQZrpuAFVMCAEAyM7O1nFLiIiIqLLKvrfLvsc1icFNj92/fx8A4ObmpuOWEBERUVXdv38f9vb2Gj2nTGgjDpJGlJSU4MaNG6hduzZkMpmum6N12dnZcHNzw7Vr12BnZ6fr5tBjeH30G6+PfuP10W+avj5CCNy/fx8NGjSAiYlm70pjj5seMzExQaNGjXTdjGpnZ2fHX2x6jNdHv/H66DdeH/2myeuj6Z62MpycQERERGQgGNyIiIiIDASDG+kNS0tLhIeHw9LSUtdNITV4ffQbr49+4/XRb4Z0fTg5gYiIiMhAsMeNiIiIyEAwuBEREREZCAY3IiIiIgPB4EZERERkIBjcSCPy8/PRoUMHyGQynD59WunY2bNn0bVrV1hZWcHNzQ0LFy5Uef3WrVvh6ekJKysrtGvXDnv27FE6LoTA7Nmz4erqCmtrawQEBOCvv/5SqnP37l0MGTIEdnZ2cHBwQEhICHJycqrclpokKCgI7u7usLKygqurK4YOHYobN24o1dmyZQs6dOgAGxsbNG7cGF988YXKeQ4fPoyOHTvC0tISzZs3R1RUlEqdFStWoEmTJrCysoKvry+OHz+udDwvLw9jx45FvXr1UKtWLfTv3x+3bt1SqpOWlobAwEDY2Nigfv36mDp1KoqKip7/B6GnKnN9YmJi4Ofnh9q1a8PJyQn9+/dHamqqUh1eH+152jWaM2cOZDKZysPW1lbpPPwdpx2V+TckhMCiRYvQsmVLWFpaomHDhvj888+V6hjUvyFBpAHjx48XvXv3FgBEYmKiVJ6VlSWcnZ3FkCFDxLlz58TGjRuFtbW1+L//+z+pzh9//CFMTU3FwoULxYULF8TMmTOFubm5+PPPP6U6kZGRwt7eXmzfvl2cOXNGBAUFCQ8PD/Hw4UOpTq9evUT79u3F0aNHxW+//SaaN28uBg8eXKW21DRLliwR8fHxIjU1Vfzxxx9CLpcLuVwuHd+zZ48wMzMTK1euFJcvXxa7du0Srq6uYtmyZVKdK1euCBsbGzFp0iRx4cIFsWzZMmFqair27dsn1dm0aZOwsLAQ3333nTh//rwYNWqUcHBwELdu3ZLqjB49Wri5uYnY2Fhx8uRJ4efnJ/z9/aXjRUVFom3btiIgIEAkJiaKPXv2CEdHRzF9+nQt/5R052nX58qVK8LS0lJMnz5d/P333yIhIUF069ZNeHt7K9Xh9dGep12j+/fvi5s3byo9WrduLYYPHy7V4e847Xna9RFCiI8++ki0atVK7NixQ1y5ckWcPHlS7N+/XzpuaP+GGNzoue3Zs0d4enqK8+fPqwS3b775RtSpU0fk5+dLZaGhoaJVq1bS87ffflsEBgYqndPX11d88MEHQgghSkpKhIuLi/jiiy+k45mZmcLS0lJs3LhRCCHEhQsXBABx4sQJqc7evXuFTCYT//zzT6XbUtPt2LFDyGQyUVBQIIQQYvDgwWLAgAFKdZYuXSoaNWokSkpKhBBCTJs2TbRp00apzsCBA4VCoZCed+7cWYwdO1Z6XlxcLBo0aCDmz58vhCi9Xubm5mLr1q1SnYsXLwoAIj4+XghR+t+RiYmJSE9Pl+qsXLlS2NnZKV2zmuzx67N161ZhZmYmiouLpTrR0dFKdXh9qtfj1+hxp0+fFgDEr7/+KpXxd1z1efz6XLhwQZiZmYmkpKQKX2No/4Y4VErP5datWxg1ahS+//572NjYqByPj49Ht27dYGFhIZUpFAokJyfj3r17Up2AgACl1ykUCsTHxwMAUlJSkJ6erlTH3t4evr6+Up34+Hg4ODjAx8dHqhMQEAATExMcO3as0m2pye7evYv169fD398f5ubmAEqHuK2srJTqWVtb4/r167h69SqAp1+fgoICJCQkKNUxMTFBQECAVCchIQGFhYVKdTw9PeHu7q50Ddu1awdnZ2el98nOzsb58+c19WPQW+quT6dOnWBiYoI1a9aguLgYWVlZ+P777xEQECDV4fWpPuqu0eNWr16Nli1bomvXrlIZf8dVD3XXZ+fOnWjatCl27doFDw8PNGnSBO+99x7u3r0rvc7Q/g0xuNEzE0IgODgYo0ePVvplUl56errSf6QApOfp6elPrFP+ePnXVVSnfv36SsfNzMxQt27dp75P+feoiUJDQ2Fra4t69eohLS0NO3bskI4pFAr89NNPiI2NRUlJCS5duoTFixcDAG7evAmg4p9bdnY2Hj58iDt37qC4uPip18fCwgIODg5PrMPro3x9PDw8sH//fsyYMQOWlpZwcHDA9evXsWXLFqkOr4/2PekalZeXl4f169cjJCREqZy/47TrSdfnypUruHr1KrZu3Yp169YhKioKCQkJGDBggFTH0P4NMbiRirCwMLU325Z/JCUlYdmyZbh//z6mT5+u6yYblcpenzJTp05FYmIi9u/fD1NTUwwbNgzi/2+YMmrUKIwbNw59+vSBhYUF/Pz8MGjQIACl/0dJVafJ65Oeno5Ro0Zh+PDhOHHiBI4cOQILCwsMGDBAqkNVp8lrVN7PP/+M+/fvY/jw4dX5cWocTV6fkpIS5OfnY926dejatSteeeUVfPvttzh06BCSk5N19RGfi5muG0D6Z/LkyQgODn5inaZNm+LgwYOIj49X2dvNx8cHQ4YMwdq1a+Hi4qIyq6bsuYuLi/Snujrlj5eVubq6KtXp0KGDVCcjI0PpHEVFRbh79+5T36f8exiCyl6fMo6OjnB0dETLli3h5eUFNzc3HD16FHK5HDKZDAsWLMC8efOQnp4OJycnxMbGKp2jop+bnZ0drK2tYWpqClNT06dew4KCAmRmZir9H+njdR6fpWXs12fFihWwt7dXmhn4ww8/wM3NDceOHYOfnx+vzzPQ5DUqb/Xq1ejTp49Krwp/x1WNJq+Pq6srzMzM0LJlS6m+l5cXgNIZnq1atTK8f0OVvhuO6DFXr14Vf/75p/SIiYkRAMSPP/4orl27JoR4dLNs+Rt5p0+frjI5oU+fPkrnlsvlKjfuLlq0SDqelZWl9sbdkydPSnViYmLU3rj7pLbUdFevXhUAxKFDhyqsM3ToUKVZWdOmTRNt27ZVqjN48GCVG3fHjRsnPS8uLhYNGzZUuXH3xx9/lOokJSWpvXG3/Cyt//u//xN2dnYiLy/v2T6wgXn8+kyaNEl07txZqc6NGzcEAPHHH38IIXh9qltF/4auXLkiZDKZ2Llzp8pr+Duu+jx+fcq+l/7++2+pTtkEkuTkZCGE4f0bYnAjjUlJSVGZVZqZmSmcnZ3F0KFDxblz58SmTZuEjY2NynIgZmZmYtGiReLixYsiPDxc7VR5BwcHsWPHDnH27FnRt29ftVPlvb29xbFjx8Tvv/8uWrRooTRVvjJtqUmOHj0qli1bJhITE0VqaqqIjY0V/v7+olmzZtIvidu3b4uVK1eKixcvisTERDF+/HhhZWUljh07Jp2nbKr81KlTxcWLF8WKFSvUTpW3tLQUUVFR4sKFC+L9998XDg4OSrOnRo8eLdzd3cXBgwfFyZMnVabtl02V79mzpzh9+rTYt2+fcHJyqrHLTVTm+sTGxgqZTCYiIiLEpUuXREJCglAoFKJx48biwYMHQgheH22qzDUqM3PmTNGgQQNRVFSkch7+jtOOylyf4uJi0bFjR9GtWzdx6tQpcfLkSeHr6ytee+016TyG9m+IwY00Rl1wE0KIM2fOiC5dughLS0vRsGFDERkZqfLaLVu2iJYtWwoLCwvRpk0bsXv3bqXjJSUlYtasWcLZ2VlYWlqKHj16SP+3VObff/8VgwcPFrVq1RJ2dnZixIgR4v79+1VuS01x9uxZ0b17d1G3bl1haWkpmjRpIkaPHi2uX78u1bl9+7bw8/MTtra2wsbGRvTo0UMcPXpU5VyHDh0SHTp0EBYWFqJp06ZizZo1KnWWLVsm3N3dhYWFhejcubPKeR4+fCg+/PBDUadOHWFjYyPefPNNcfPmTaU6qamponfv3sLa2lo4OjqKyZMni8LCQs38QPRMZa6PEEJs3LhReHt7C1tbW+Hk5CSCgoLExYsXlerw+mhHZa9RcXGxaNSokZgxY0aF5+LvOM2r7PX5559/xFtvvSVq1aolnJ2dRXBwsPj333+V6hjSvyGZELzDlYiIiMgQcNoYERERkYFgcCMiIiIyEAxuRERERAaCwY2IiIjIQDC4ERERERkIBjciIiIiA8HgRkRERGQgGNyIiLRAJpNh+/btum6GksOHD0MmkyEzM1PXTSGiZ8TgRkT0HObMmSNtBE5EpG0MbkREREQGgsGNiIxaSUkJ5s+fDw8PD1hbW6N9+/b48ccfATwaWoyNjYWPjw9sbGzg7++P5ORkAEBUVBQiIiJw5swZyGQyyGQyREVFSee+c+cO3nzzTdjY2KBFixaIjo6uVJvK3jcmJgbe3t6wtrbGq6++ioyMDOzduxdeXl6ws7PDO++8gwcPHkivy8/Px/jx41G/fn1YWVmhS5cuOHHihOZ+WESkcwxuRGTU5s+fj3Xr1mHVqlU4f/48Jk6ciHfffRdHjhyR6nzyySdYvHgxTp48CTMzM4wcORIAMHDgQEyePBlt2rTBzZs3cfPmTQwcOFB6XUREBN5++22cPXsWr7/+OoYMGYK7d+9Wum1z5szB8uXLERcXh2vXruHtt9/GV199hQ0bNmD37t3Yv38/li1bJtWfNm0atm3bhrVr1+LUqVNo3rw5FApFld6TiPRclbakJyKqQfLy8oSNjY2Ii4tTKg8JCRGDBw8Whw4dEgDEL7/8Ih3bvXu3ACAePnwohBAiPDxctG/fXuXcAMTMmTOl5zk5OQKA2Lt371Pbpe5958+fLwCIy5cvS2UffPCBUCgU0vnNzc3F+vXrpeMFBQWiQYMGYuHChUrnvXfv3lPbQET6yUyHmZGISKf+/vtvPHjwAK+99ppSeUFBAby9vaXnL7zwgvR3V1dXAEBGRgbc3d2feP7yr7O1tYWdnR0yMjIq3b7yr3d2doaNjQ2aNm2qVHb8+HEAwOXLl1FYWIiXXnpJOm5ubo7OnTvj4sWLlX5PItJvDG5EZLRycnIAALt370bDhg2VjllaWuLy5csASgNQGZlMBqD03rinKf+6stdW5nXqXi+TyZ77fERk+HiPGxEZrdatW8PS0hJpaWlo3ry50sPNza1S57CwsEBxcbGWW/p0zZo1g4WFBf744w+prLCwECdOnEDr1q112DIi0iT2uBGR0apduzamTJmCiRMnoqSkBF26dEFWVhb++OMP2NnZoXHjxk89R5MmTZCSkoLTp0+jUaNGqF27NiwtLauh9cpsbW0xZswYTJ06FXXr1oW7uzsWLlyIBw8eICQkpNrbQ0TaweBGREbt008/hZOTE+bPn48rV67AwcEBHTt2xIwZMyo1DNm/f3/89NNP6N69OzIzM7FmzRoEBwdrv+FqREZGoqSkBEOHDsX9+/fh4+ODmJgY1KlTRyftISLNkwkhhK4bQURERERPx3vciIiIiAwEgxsRUTUbPXo0atWqpfYxevRoXTePiPQYh0qJiKpZRkYGsrOz1R6zs7ND/fr1q7lFRGQoGNyIiIiIDASHSomIiIgMBIMbERERkYFgcCMiIiIyEAxuRERERAaCwY2IiIjIQDC4ERERERkIBjciIiIiA8HgRkRERGQg/h8Bu7sJt+ciGQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLyUlEQVR4nO3deVzU1f7H8feALKIsLiBq4Fou2TXSNLgt6s9EK8m2X6tKmWVqZtoCZiJZiWZ202vavaV2y9QsM35qmZXaIvdmapYLmqZpJWqp4Mr6/f3BZXScQQcY+M7yej4e88A53+9854Nzu/P2nPM9x2IYhiEAAAAf4Gd2AQAAADWF4AMAAHwGwQcAAPgMgg8AAPAZBB8AAOAzCD4AAMBnEHwAAIDPIPgAAACfQfABAAA+g+ADwCNZLBaNHz/e7DKskpOT1bx5c7PLAHABBB8ALjN37lxZLBbrIzg4WJdccomGDx+uAwcOVOt7r127VuPHj9fRo0ddet1u3brZ/E7169fXlVdeqdmzZ6ukpMQl7/Hiiy9qyZIlLrkWgPOrZXYBALzPc889pxYtWuj06dP6+uuvNXPmTC1fvlybN29WSEiIS97j1KlTqlXrzP+FrV27Vunp6UpOTlZERIRL3qPMRRddpIkTJ0qSDh06pH/9618aNGiQduzYoYyMjCpf/8UXX9Ttt9+ufv36VflaAM6P4APA5fr06aPOnTtLkh588EE1aNBAU6dO1UcffaS777670tctKSlRQUGBgoODFRwc7KpyLyg8PFz33Xef9fnDDz+sNm3a6O9//7smTJiggICAGqsFQNUw1AWg2vXo0UOStHv3bknSlClTlJCQoAYNGqh27drq1KmT3n//fbvXWSwWDR8+XPPmzdOll16qoKAgffLJJ9ZjZXN8xo8fryeffFKS1KJFC+uw1J49e3TdddepY8eODutq06aNEhMTK/z7hISE6KqrrtKJEyd06NChcs87ceKERo8erZiYGAUFBalNmzaaMmWKDMOw+R1PnDiht956y1p3cnJyhWsC4Bx6fABUu127dkmSGjRoIEl69dVXlZSUpHvvvVcFBQVasGCB7rjjDi1dulQ33nijzWu/+OILvffeexo+fLgaNmzocALxrbfeqh07dmj+/Pl65ZVX1LBhQ0lSZGSk+vfvr8GDB2vz5s3q0KGD9TXr1q3Tjh07NHbs2Er9Tj///LP8/f3LHVYzDENJSUlatWqVBg0apMsvv1wrVqzQk08+qd9++02vvPKKJOntt9/Wgw8+qC5duuihhx6SJLVq1apSNQFwggEALjJnzhxDkvHZZ58Zhw4dMvbt22csWLDAaNCggVG7dm3j119/NQzDME6ePGnzuoKCAqNDhw5Gjx49bNolGX5+fsaWLVvs3kuSkZaWZn3+0ksvGZKM3bt325x39OhRIzg42Hj66adt2keMGGHUqVPHOH78+Hl/p+uuu85o27atcejQIePQoUPGtm3bjBEjRhiSjL59+1rPGzhwoNGsWTPr8yVLlhiSjOeff97merfffrthsViMnTt3Wtvq1KljDBw48Lx1AHANhroAuFzPnj0VGRmpmJgY3XXXXapbt64+/PBDNW3aVJJUu3Zt67lHjhxRbm6urrnmGm3YsMHuWtddd53at29f6VrCw8N18803a/78+dYhpuLiYi1cuFD9+vVTnTp1LniN7OxsRUZGKjIyUu3atdP06dN14403avbs2eW+Zvny5fL399eIESNs2kePHi3DMPTxxx9X+ncCUHkMdQFwuRkzZuiSSy5RrVq11KhRI7Vp00Z+fmf+nbV06VI9//zz+v7775Wfn29tt1gsdtdq0aJFlesZMGCAFi5cqK+++krXXnutPvvsMx04cED9+/d36vXNmzfXP//5T+st+hdffLGioqLO+5pffvlFTZo0UWhoqE17u3btrMcB1DyCDwCX69Kli/WurnN99dVXSkpK0rXXXqvXXntNjRs3VkBAgObMmaN3333X7vyze4cqKzExUY0aNdI777yja6+9Vu+8846io6PVs2dPp15fp04dp88F4N4Y6gJQoz744AMFBwdrxYoVeuCBB9SnTx+XhApHvUVl/P39dc899+j999/XkSNHtGTJEt19993y9/ev8vuWp1mzZvr999917Ngxm/bs7Gzr8TLnqx2AaxF8ANQof39/WSwWFRcXW9v27NlT5ZWLy+bqlLdyc//+/XXkyBE9/PDDOn78uM26PNXhhhtuUHFxsf7+97/btL/yyiuyWCzq06ePta1OnTouX3EagGMMdQGoUTfeeKOmTp2q3r1765577tHBgwc1Y8YMtW7dWj/88EOlr9upUydJ0jPPPKO77rpLAQEB6tu3rzUQxcXFqUOHDlq0aJHatWunK664wiW/T3n69u2r7t2765lnntGePXvUsWNHffrpp/roo480cuRIm1vWO3XqpM8++0xTp05VkyZN1KJFC3Xt2rVa6wN8FT0+AGpUjx499OabbyonJ0cjR47U/PnzNWnSJN1yyy1Vuu6VV16pCRMmaNOmTUpOTtbdd99tt7jggAEDJMnpSc1V4efnp8zMTI0cOVJLly7VyJEjtXXrVr300kuaOnWqzblTp05Vp06dNHbsWN19992aOXNmtdcH+CqLYZy1hCgAeLFXX31Vjz/+uPbs2aPY2FizywFgAoIPAJ9gGIY6duyoBg0aaNWqVWaXA8AkzPEB4NVOnDihzMxMrVq1Sj/++KM++ugjs0sCYCJ6fAB4tT179qhFixaKiIjQ0KFD9cILL5hdEgATEXwAAIDP4K4uAADgMwg+AADAZzC5+RwlJSX6/fffFRoayjLyAAB4CMMwdOzYMTVp0sRmU+RzEXzO8fvvvysmJsbsMgAAQCXs27dPF110UbnHCT7nCA0NlVT6FxcWFmZyNQAAwBl5eXmKiYmxfo+Xh+BzjrLhrbCwMIIPAAAe5kLTVJjcDAAAfAbBBwAA+AyCDwAA8BnM8amE4uJiFRYWml0GakBAQID8/f3NLgMA4CIeE3wmTpyoxYsXKzs7W7Vr11ZCQoImTZqkNm3aWM85ffq0Ro8erQULFig/P1+JiYl67bXX1KhRI5fUYBiGcnJydPToUZdcD54hIiJC0dHRrOsEAF7AY4LPmjVrNGzYMF155ZUqKirSmDFj1KtXL23dulV16tSRJD3++ONatmyZFi1apPDwcA0fPly33nqrvvnmG5fUUBZ6oqKiFBISwhehlzMMQydPntTBgwclSY0bNza5IgBAVXnsJqWHDh1SVFSU1qxZo2uvvVa5ubmKjIzUu+++q9tvv12SlJ2drXbt2ikrK0tXXXWVU9fNy8tTeHi4cnNzbW5nLy4u1o4dOxQVFaUGDRpUy+8E9/Tnn3/q4MGDuuSSSxj2AgA3Vd7397k8dnJzbm6uJKl+/fqSpPXr16uwsFA9e/a0ntO2bVvFxsYqKyuryu9XNqcnJCSkyteCZyn7zJnXBQCez2OGus5WUlKikSNH6q9//as6dOggqXQYKjAwUBERETbnNmrUSDk5OeVeKz8/X/n5+dbneXl5531vhrd8D585AHgPj+zxGTZsmDZv3qwFCxZU+VoTJ05UeHi49cE+XQAAeC+PCz7Dhw/X0qVLtWrVKptNyKKjo1VQUGB3x9WBAwcUHR1d7vVSU1OVm5trfezbt6+6SgcAACbzmOBjGIaGDx+uDz/8UF988YVatGhhc7xTp04KCAjQ559/bm3bvn279u7dq/j4+HKvGxQUZN2Xy1v350pOTpbFYpHFYlFAQIAaNWqk66+/XrNnz1ZJSYnT15k7d67dUCIAAJ7EY+b4DBs2TO+++64++ugjhYaGWufthIeHq3bt2goPD9egQYM0atQo1a9fX2FhYXr00UcVHx/v9B1d3qx3796aM2eOiouLdeDAAX3yySd67LHH9P777yszM1O1annM/xQAAB7q+PHjslgs1mVozOAxPT4zZ85Ubm6uunXrpsaNG1sfCxcutJ7zyiuv6KabbtJtt92ma6+9VtHR0Vq8eLGJVbuPoKAgRUdHq2nTprriiis0ZswYffTRR/r44481d+5cSdLUqVN12WWXqU6dOoqJidHQoUN1/PhxSdLq1at1//33Kzc319p7NH78eEnS22+/rc6dOys0NFTR0dG65557rGvfAABgGIZmzJihl19+WbNmzZKZK+l4zD/znflLCg4O1owZMzRjxowaqKi0JrNucQ4ICKjy3UY9evRQx44dtXjxYj344IPy8/PTtGnT1KJFC/38888aOnSonnrqKb322mtKSEjQ3/72N40bN07bt2+XJNWtW1dS6W3eEyZMUJs2bXTw4EGNGjVKycnJWr58eZV/TwCAZzt69KheffVV6/MTJ06YeresxwQfd1RYWKiJEyea8t6pqakKDAys8nXatm2rH374QZI0cuRIa3vz5s31/PPPa8iQIXrttdcUGBio8PBwWSwWu8niDzzwgPXPLVu21LRp03TllVfq+PHj1nAEAPA969ats/lHcHh4uB577DETKyL4+DzDMKzJ+7PPPtPEiROVnZ2tvLw8FRUV6fTp0zp58uR5F25cv369xo8fr02bNunIkSPWCdN79+5V+/bta+T3AAC4D8MwNG3aNJs7rW+44QZdeeWV5hX1XwSfKggICFBqaqpp7+0K27ZtU4sWLbRnzx7ddNNNeuSRR/TCCy+ofv36+vrrrzVo0CAVFBSUG3xOnDihxMREJSYmat68eYqMjNTevXuVmJiogoICl9QIAPAchw8f1vTp023aHnvsMbe5K5jgUwUWi8Ulw01m+eKLL/Tjjz/q8ccf1/r161VSUqKXX35Zfn6lc97fe+89m/MDAwNVXFxs05adna0///xTGRkZ1sUfv/vuu5r5BQAAbiUrK0uffvqp9XnDhg01dOhQ68hCZqaUkSGlpEhJSebUSPDxEfn5+crJybG5nX3ixIm66aabNGDAAG3evFmFhYWaPn26+vbtq2+++UazZs2yuUbz5s11/Phxff755+rYsaNCQkIUGxurwMBATZ8+XUOGDNHmzZs1YcIEk35LAIAZSkpKNHXqVJ04ccLa1rdvX11xxRU252VkSFlZpT/NCj4eczs7quaTTz5R48aN1bx5c/Xu3VurVq3StGnT9NFHH8nf318dO3bU1KlTNWnSJHXo0EHz5s2zm7idkJCgIUOG6M4771RkZKQmT56syMhIzZ07V4sWLVL79u2VkZGhKVOmmPRbAgBq2h9//KEJEybYhJ7HH3/cLvRIpT098fGlP81iMcy8md4Nlbet/enTp7V79261aNFCwcHBJlaImsZnDwCOffXVV/riiy+szxs3bqzBgwebcrt6ed/f52KoCwAAVEhJSYkyMjJs1rK75ZZb9Je//MXEqpxD8AEAAE47ePCgZs6cadM2evRoj1m3jeADAACcsnTpUq1fv976PDY21roRtqcg+AAAgPMqLCzUiy++aNN2++2369JLLzWposoj+AAAgHJt3LhRmZmZNm0dOjyhSy81b4f1qiD4AAAAh9LT0+3axo9PU3y8dNttJhTkAgQfAABgIz8/XxkZGTZtl19+uSyWm01fh6eqCD4AAMDq22+/1ccff2zT9uijj6p+/fqSzFtx2VUIPgAAQJLjoa20tDQTKqk+bFkBl0lOTla/fv2sz7t166aRI0dW6ZquuAYA4PxOnTplF3q6dOnidaFHosfHJyQnJ+utt96SJAUEBCg2NlYDBgzQmDFjVKtW9f1PYPHixQoICHDq3NWrV6t79+46cuSIIiIiKnUNAEDFLV68WD/++KNN28iRIxUeHm5SRdWL4OMjevfurTlz5ig/P1/Lly/XsGHDFBAQoNTUVJvzCgoKFBgY6JL3LBsPNvsaAADHfGFo61wMdfmIoKAgRUdHq1mzZnrkkUfUs2dPZWZmWoenXnjhBTVp0kRt2rSRJO3bt0//+7//q4iICNWvX18333yz9uzZY71ecXGxRo0apYiICDVo0EBPPfWUzt3v9txhqvz8fD399NOKiYlRUFCQWrdurTfffFN79uxR9+7dJUn16tWTxWJRcnKyw2scOXJEAwYMUL169RQSEqI+ffrop59+sh6fO3euIiIitGLFCrVr105169ZV7969tX//fus5q1evVpcuXVSnTh1FRETor3/9q3755RcX/U0DgPv79ddf7UJPp06dvD70SAQfn1W7dm0VFBRIkj7//HNt375dK1eu1NKlS1VYWKjExESFhobqq6++0jfffGMNEGWvefnllzV37lzNnj1bX3/9tQ4fPqwPP/zwvO85YMAAzZ8/X9OmTdO2bdv0+uuvq27duoqJidEHH3wgSdq+fbv279+vV1991eE1kpOT9d133ykzM1NZWVkyDEM33HCDzUZ5J0+e1JQpU/T222/ryy+/1N69e/XEE09IkoqKitSvXz9dd911+uGHH5SVlaWHHnrIo5ZbB4CqSE9P15tvvmnTNnv2w8rKusmkimoWQ10+xjAMff7551qxYoUeffRRHTp0SHXq1NEbb7xhHeJ65513VFJSojfeeMMaCObMmaOIiAitXr1avXr10t/+9jelpqbq1ltvlSTNmjVLK1asKPd9d+zYoffee08rV65Uz549JUktW7a0Hi8b0oqKirKZ43O2n376SZmZmfrmm2+UkJAgSZo3b55iYmK0ZMkS3XHHHZJKl1afNWuWWrVqJUkaPny4nnvuOUlSXl6ecnNzddNNN1mPt2vXruJ/kQDggRwNbU2Zkqbjx6Vp06QXXjChqBpGj49JMjOlhITSnzVh6dKlqlu3roKDg9WnTx/deeedGj9+vCTpsssus5nXs2nTJu3cuVOhoaGqW7eu6tatq/r16+v06dPatWuXcnNztX//fnXt2tX6mlq1aqlz587lvv/3338vf39/XXfddZX+HbZt26ZatWrZvG+DBg3Upk0bbdu2zdoWEhJiDTWS1LhxYx08eFBSacBKTk5WYmKi+vbtq1dffdVmGAwAvNHPP/9c7nyeESOkunWlESNMKMwE9PiYJCNDysoq/VkTi0F1795dM2fOVGBgoJo0aWJzN1edOrb7rRw/flydOnXSvHnz7K4TGRlZqfevXbt2pV5XGefeBWaxWGzmH82ZM0cjRozQJ598ooULF2rs2LFauXKlrrrqqhqrEQBqiqPA8/DDDys6OlpSaS+PL/T0lKHHxyQpKarRZb/r1Kmj1q1bKzY29oK3sF9xxRX66aefFBUVpdatW9s8wsPDFR4ersaNG+s///mP9TVFRUVav359ude87LLLVFJSojVr1jg8XtbjVFxcXO412rVrp6KiIpv3/fPPP7V9+3a1b9/+vL/TueLi4pSamqq1a9eqQ4cOevfddyv0egDwBOX18pSFHl9E8DFJUpK0dq17Lv197733qmHDhrr55pv11Vdfaffu3Vq9erVGjBihX3/9VZL02GOPKSMjQ0uWLFF2draGDh2qo0ePlnvN5s2ba+DAgXrggQe0ZMkS6zXfe+89SVKzZs1ksVi0dOlSHTp0SMePH7e7xsUXX6ybb75ZgwcP1tdff61NmzbpvvvuU9OmTXXzzTc79bvt3r1bqampysrK0i+//KJPP/1UP/30E/N8AHiVbdu2+eSt6s4g+MBOSEiIvvzyS8XGxurWW29Vu3btNGjQIJ0+fVphYWGSpNGjR6t///4aOHCg4uPjFRoaqltuueW81505c6Zuv/12DR06VG3bttXgwYN14sQJSVLTpk2Vnp6ulJQUNWrUSMOHD3d4jTlz5qhTp0666aabFB8fL8MwtHz5cqcXOQwJCVF2drZuu+02XXLJJXrooYc0bNgwPfzwwxX4GwIA91M2dzQ9Pd36j8oyw4cPJ/T8l8U4d/EVH5eXl6fw8HDl5uZav+Ql6fTp09q9e7datGih4OBgEytETeOzB+AJEhKkxETf7eUp7/v7XExuBgDAw/3tbwuVmJht0+bn56dnn33WpIrcF8EHAAAP5mguz+OPP37eXg9fRvABAMADGYZhXZz1bHFxaSLzlI/JzQAAuLlzF71NT093GHrGj09TRkYNF+dhCD4VxFxw38NnDsBsZy9662hoa9iwYYqLS1PTptL330vPPFPzNXoKgo+Tym6XPnnypMmVoKaVfebO3jIPAK5Wuuit4fCurbi4NDVs2FBJSVJurnTqVOm+W3CMOT5O8vf3V0REhHXPp5CQEHb09nKGYejkyZM6ePCgIiIi5O/vb3ZJAHzUxo3pSky0by8oODO0lZRUut/WtGm+s+9WZbCOzznOtw6AYRjKyck57wrF8D4RERGKjo4m6AKoUZmZpUNbjnp52rd/VK+8Ul9HjkjZ2aVbIK1da0KRboR1fKqBxWJR48aNFRUVpcLCQrPLQQ0ICAigpweAKSZPLlJiov3uoXFxabr3Xun4calNm5rd99EbEHwqwd/fny9DAIBLlfXwpKSUDm1df739OWlpaUpIKA09detKkye7556P7ozgAwCAGyi7c2vjRvuhrQ4dRuu22+pKKg1GZQGJ0FNxzPE5h7NjhAAAuNLixSf1448v2bX7yl5bVcUcHwAAPISjtXkkQk91IPgAAGAiR6Hns89S9NVXQSZU4/0IPgAAmODw4cOaPn26XfuKFWncpVWNCD4AANSw8w1tMbpVvQg+AADUIEehZ+zYsSyTUkMIPgAA1IBff/1Vb775pl17XFyayDw1h+ADAEA1464t90HwAQCgmmRmOl6QcNy4cez/ZxKCDwAA1WDr1q3auHGRXTu9POYi+AAA4GIMbbkvgg8AABVw9maijvbKchR6CDzug+ADAEAFlG0mmpFx5nlKitSw4VqtXLnS7nxCj3sh+AAAUAFn745+vh3VJUKPOyL4AABQDkfDWklJtkNcjkIPgcd9+ZldAAAA7urcYa2zLVu2jNDjgejxAQCgHGcPa52Nu7Y8F8EHAIBynDusJXHXlqcj+AAA4IR//etf2r17t107ocezMMcHAODTMjOlhITSn+VJT0+3Cz3169cn9HggenwAAD7t7AnMLEjo/Qg+AACfVt4E5hdeeEFFRUV25xN6PBvBBwDg05ydwNymTRvdddddNVQVqgtzfAAAPsvR/J7yhrYIPd6BHh8AgM8pW5H5yBEpO7v0z2w74RsIPgAAn1M2oblNGyk+XkpMtA89Xbp0UZ8+fUyoDtWJoS4AgFc6323qKSmlgWfyZMehJy0tjdDjpSyGYRhmF+FO8vLyFB4ertzcXIWFhZldDgCgktq1Kx3GattW2rbN/jjbTngXZ7+/6fEBAHidZ56Rtm8v/bNh2Pf+OAo9vXv3JvT4AK8MPjNmzFDz5s0VHBysrl276ttvvzW7JABADZo2rTTw+PmVDmedvUhheXdtde3a1YRKUdO8LvgsXLhQo0aNUlpamjZs2KCOHTsqMTFRBw8eNLs0AEANGTFCCg6WGjcufZ6SIo0fn17ufB74Dq+b49O1a1ddeeWV+vvf/y5JKikpUUxMjB599FGlnLsspwPM8QEA75CQUNrLU95dW7feeqsuu+wyEypDdfDJOT4FBQVav369evbsaW3z8/NTz549lZWV5fA1+fn5ysvLs3kAADzPufN4Su/cKim3l4fQ45u8Kvj88ccfKi4uVqNGjWzaGzVqpJycHIevmThxosLDw62PmJiYmigVAOBiZ8/jkUoXJExMnGB3HkNbvs2rgk9lpKamKjc31/rYt2+f2SUBACqhbG2elBTHE5jvv/9+Qg+8K/g0bNhQ/v7+OnDggE37gQMHFB0d7fA1QUFBCgsLs3kAANzfuUNbSUnS6tUFDreeSEtLU2xsbA1XCHfkVcEnMDBQnTp10ueff25tKykp0eeff674+HgTKwMAuFJmpnTvvbZDW+np6Zo4caLdufTy4Gxet1fXqFGjNHDgQHXu3FldunTR3/72N504cUL333+/2aUBAKrgmWdK1+cZMUJatUo6flyqW7f8oa2hQ4cqMjLShErhzrwu+Nx55506dOiQxo0bp5ycHF1++eX65JNP7CY8AwA8y7RppWFn2jRp3rzSnp7Ro49p48apdufSy4PyeN06PlXFOj4A4F4yM0tDTtOm0ieflPb4vPACe23BlrPf317X4wMA8GyZmdJTT0kWizRp0pnb1OPjpWPHSs9xFHqeeOIJ1alTp4arhach+AAA3EpGxpkNRjMySufwlP08cOCAZs2aZfcaenngLK+6qwsA4Pm6dy/dZ6tp09Kwk5QkrV1buiAhoQdVRY8PAMCtrFolnT4txcaWhh7J8dDWmDFjFBAQUMPVwdMRfAAAbqFsEnP37qXPU1KknTt3at68eXbn0suDyiL4AADcQtkkZql0aCs9PV0bN9qfR+hBVRB8AABu4exJzI6GtsaNGyeLxWJCZfAmBB8AgFtISpKaNl2vpUuX2h2jlweuwl1dAIBql5kptW0rtWt3ZlPRc6WnpxN6UO3o8QEAVLtz1+Ypu1urjKOhLQIPqgPBBwBQ7VJSzqzGnJJypn3lypVau3at3fmEHlQXgg8AoNolJTnXyyMRelC9CD4AgGqRmSk9/bRkGNLkybbBh6EtmIXgAwCoFhkZUnb2mT8nJUnz58/Xjh077M4l9KCmEHwAANUiJeVMj095a/NIhB7ULIIPAKBanD2vh6EtuAuCDwCg2kyaNEmnT5+2ayf0wCwEHwBAtWBoC+6I4AMAcDmGtuCuCD4AAJehlwfujr26AAB2MjOlhATH+2qVd8xR6AkNDSX0wK1YDMMwzC7CneTl5Sk8PFy5ubkKCwszuxwAMEVCgpSVJcXHS+fuKOHoGENbMJuz398MdQEA7KSklC46ePa+Wo6OMbQFT8NQFwDATlLSmd6cc4e1yo5t3Ggfei6++GJCD9waPT4AgHJlZJQOa5VtOVGGoS14KoIPAKBc5w55MbQFT8dQFwDA7k6tsudS6bBWUpLj0JOQkEDogUfhrq5zcFcXAF9UdqdW3brSvHlnhrjK7txiaAvujru6AABOycyUDh+WgoOl48fPDG1lZEiJielyNLpF6IGnIvgAgI/LyJC2b5fatpXq1SsNPUlJju/auuGGG3TllVeaUCXgGgQfAPBhmZnSkSNSmzbSpEmlgccwDKWnP2d3Lr088AYEHwDwYRkZUnZ26Vye8iYwS4QeeA+CDwD4sAutwnzfffepVatWJlQGVA9uZwcAH5aUJK1ZU+hwPk9aWhqhB16HHh8A8GEMbcHXEHwAwEc5Cj1DhgxRo0aNTKgGqBkMdQGADzh7Zebjx4+XuyAhoQfejuADAB7u3O0mHClbiXnjxnS9/PLLdscZ2oKvYMuKc7BlBQBPU7bdRNn2Eo5kZjpekHDUqFEKDQ2t5gqB6ufs9zc9PgDg4VJSSkNP2Q7q5zp48GC5d20ReuBrmNwMAB4uKan04Qh3bQG2CD4A4KUchZ7U1FQFBgaaUA3gHio81OXv76+DBw/atf/555/y9/d3SVEAgMrbuXNnuXdtEXrg6yrc41PeXOj8/Hz+gwIAkzG0BZyf08Fn2rRpkiSLxaI33nhDdevWtR4rLi7Wl19+qbZt27q+QgCAUxyFnmeffVZ+ftzHApRxOvi88sorkkp7fGbNmmUzrBUYGKjmzZtr1qxZrq8QAHBe3333nZYtW2bXTi8PYM/p4LN7925JUvfu3bV48WLVq1ev2ooCADiHoS2gYio8x2fVqlXVUQcAoILKm8AMoHwVDj4PPPDAeY/Pnj270sUAAM4vM1P66KPlio1dZ3eM0ANcWIWDz5EjR2yeFxYWavPmzTp69Kh69OjhssIAAGdkZpbut5WYmK7YWPvjhB7AORUOPh9++KFdW0lJiR555BG1atXKJUUBAGyVhZ5zEXiAinHZJqXbt29Xt27dtH//fldczjRsUgrAXZT18tx880ydPm2/cCyhBzijxjcp3bVrl4qKilx1OQDwepmZpTurZ2Y6Pv7006W9PIQewHUqPNQ1atQom+eGYWj//v1atmyZBg4c6LLCAMDbZWRIWVmlPx1tMnrXXQxtAa5W4eCzceNGm+d+fn6KjIzUyy+/fME7vgAAZ6SklIaelBTb9gkTJqikpMTufEIPUHWs4wMAJklKsu/pKW9Bwrg4Qg/gChUOPmUOHjyo7du3S5LatGmjqKgolxUFAL7IUehZsSJNWVlSfLzj4TAAFVPh4JOXl6dhw4Zp/vz51q5Yf39/3XnnnZoxY4bCw8NdXiQAeLPzbTsRF+d4OAxA5VT4rq7BgwfrP//5j5YtW6ajR4/q6NGjWrp0qb777js9/PDD1VEjAHitC+21lZQkrV1Lbw/gKhVex6dOnTpasWKFrr76apv2r776Sr1799aJEydcWmBNYx0fADWFvbYA13H2+7vCQ10NGjRwOJwVHh7Oju0A4AR2VAfMU+GhrrFjx2rUqFHKycmxtuXk5OjJJ5/Us88+69LiAMDbOAo9jRs3JvQANaTCQ11xcXHauXOn8vPzFfvfnfL27t2roKAgXXzxxTbnbtiwwXWV1hCGugBUVdlWEykptnNzGNoCqk+1DXXdfPPNslgsVSoOALzZuSsyM7QFuA+XbVLqLejxAVBVZ/f4bNxoH3o2bIjToUNJWrvWhOIAL1Vtm5S2bNlSf/75p1370aNH1bJly4peDgC8Ttkt6I5CT0FBmg4dSmJdHsAkFR7q2rNnj4qLi+3a8/Pz9euvv7qkKADwFI7m8zC0Bbgvp3t8MjMzlZmZKUlasWKF9XlmZqY+/PBDTZgwQS1atKiWIvfs2aNBgwapRYsWql27tlq1aqW0tDQVFBTYnPfDDz/ommuuUXBwsGJiYjR58uRqqQeAb8rMlBISSn+WOXs+j+Q49PTu3ZvQA7gJp3t8+vXrJ0myWCwaOHCgzbGAgAA1b95cL7/8skuLK5Odna2SkhK9/vrrat26tTZv3qzBgwfrxIkTmjJliqTSsb1evXqpZ8+emjVrln788Uc98MADioiI0EMPPVQtdQHwLedOWpbO7LD+9NOG0tOfs3sNgQdwLxWe3NyiRQutW7dODRs2rK6anPLSSy9p5syZ+vnnnyVJM2fO1DPPPKOcnBwFBgZKklJSUrRkyRJlZ2c7fV0mNwMoT0VuU5cIPUBNqrbb2Xfv3l2lwlwlNzdX9evXtz7PysrStddeaw09kpSYmKhJkybpyJEj5a4qnZ+fr/z8fOvzvLy86isagEcrCztlw1rl3ap+5513qm3btjVYGQBnVTj4PPecfVfu2caNG1fpYpy1c+dOTZ8+3TrMJZWuHn3uHKNGjRpZj5UXfCZOnFjuv9YA4Fxlw12TJxdp48YX7I7TywO4twoHnw8//NDmeWFhoXbv3q1atWqpVatWFQo+KSkpmjRp0nnP2bZtm82/nH777Tf17t1bd9xxhwYPHlyx4h1ITU3VqFGjrM/z8vIUExNT5esC8E7lrc0jEXoAT1Dh4LNx40a7try8PCUnJ+uWW26p0LVGjx6t5OTk855z9tpAv//+u7p3766EhAT94x//sDkvOjpaBw4csGkrex4dHV3u9YOCghQUFFShugH4Lkeh56GHHlLjxo1NqAZARVU4+DgSFham9PR09e3bV/3793f6dZGRkYqMjHTq3N9++03du3dXp06dNGfOHPn52d6JHx8fr2eeeUaFhYUKCAiQJK1cuVJt2rRh13gAVbZ48Un9+ONLdu308gCepcIrN5cnNzdXubm5rrqcjd9++03dunVTbGyspkyZokOHDiknJ8dmh/h77rlHgYGBGjRokLZs2aKFCxfq1VdftRnGAoDKSE9PJ/QAXqLCPT7Tpk2zeW4Yhvbv36+3335bffr0cVlhZ1u5cqV27typnTt36qKLLrJ7f0kKDw/Xp59+qmHDhqlTp05q2LChxo0bxxo+AKrE0c0Pjz/+OMtdAB6qUuv4nM3Pz0+RkZHq0aOHUlNTFRoa6tICaxrr+ACQpMOHD2v69Ol27fTyAO7J69fxAYDqwoKEgPeq1OTmo0ePaufOnZKk1q1bKyIiwpU1AYBpHIWe1NRUm8VRAXiuCk1u3rNnj2688UY1bNhQXbt2VdeuXdWwYUPddNNN2rNnTzWVCADV79dff3UYetLS0gg9gBdxusdn3759uuqqqxQQEKAJEyaoXbt2kqStW7dq5syZio+P17p16+wmHwOAu2NoC/AdTk9uHjRokHbu3KkVK1YoODjY5tipU6fUu3dvXXzxxXrjjTeqpdCawuRmwLc4Cj3PPvus3VphANybyyc3f/LJJ1q4cKFd6JGk2rVra8KECbrrrrsqVy0A1LBt27bpvffes2unlwfwbk4Hnz/++EPNmzcv93jLli11+PBhV9QEANWKoS3AdzkdfBo3bqytW7eWO4dn8+bN590TCwDcQXkTmAH4BqcHsfv166cnnnhChw4dsjt28OBBPf300+rXr58rawMAl1m7dm2FQ09mppSQUPoTgHdwenLzkSNH1LVrV+Xk5Oi+++5T27ZtZRiGtm3bpnfffVfR0dH697//rfr161d3zdWKyc2A96ns0FZCgpSVJcXHS2vXVkdlAFzF5ZOb69Wrp//85z8aM2aMFixYoKNHj0qSIiIidM899+jFF1/0+NADwPtUZWgrJUXKyCj9CcA7VHivLql0Y9CyIa/IyEhZLBaXF2YWenwA7/B///d/2rBhg10783kA71Rte3VJksViUVRUVKWLA4DqxF1bAMpTqeADAO6Ku7YAnA/BB4BXmD17tvbt22fXHhdH6AFwBsEHgMdjaAuAswg+ADwaQ1sAKsKp4DNt2jSnLzhixIhKFwMAznrppZd08uRJu3ZCD4Dzcep29hYtWjh3MYtFP//8c5WLMhO3swPuz1EvT/369fXoo4+aUA0Ad+DS29l3797tssIAoCoY2gJQFZWe41NQUKDdu3erVatWqlWLqUIAqhcTmAG4gtOblJY5efKkBg0apJCQEF166aXau3evJOnRRx9VRkaGywsEAEehp127djahhw1FATijwsEnNTVVmzZt0urVqxUcHGxt79mzpxYuXOjS4gCgvKGt//3f/7Vpy8go3VCUf38BOJ8Kj1EtWbJECxcu1FVXXWWzR9ell16qXbt2ubQ4AL6rokNbbCgKwBkVDj6HDh1yuE/XiRMnvGqzUgDmcRR6rrnmGvXo0aPc1yQllT4A4HwqPNTVuXNnLVu2zPq8LOy88cYbio+Pd11lAHxSeUNb5ws9AOCsCvf4vPjii+rTp4+2bt2qoqIivfrqq9q6davWrl2rNWvWVEeNAHwAd20BqAkV7vG5+uqr9f3336uoqEiXXXaZPv30U0VFRSkrK0udOnWqjhoBeDlHoefmm28m9ABwOadWbvYlrNwM1BzDMPTcc8/ZtRN4AFSUS1duzsvLc/qNCQsAnMHQFgAzOBV8IiIinL5jq7i4uEoFAfB+jkJP//791bJlS5u2zMwzt6hzxxYAV3Aq+Kxatcr65z179iglJUXJycnWu7iysrL01ltvaeLEidVTJQCvUFxcrOeff96uvbxenrMXJST4AHCFCs/x+Z//+R89+OCDuvvuu23a3333Xf3jH//Q6tWrXVlfjWOOD1A9KjO0RY8PAGc5+/1d4eATEhKiTZs26eKLL7Zp37Fjhy6//HKdPHmychW7CYIP4HqOQs8jjzzicDFUAKgMZ7+/K3w7e0xMjP75z3/atb/xxhuKiYmp6OUAeLH8/PxyFyQk9AAwQ4UXMHzllVd022236eOPP1bXrl0lSd9++61++uknffDBBy4vEIBn4q4tAO6owj0+N9xwg3766Sf17dtXhw8f1uHDh9W3b1/t2LFDN9xwQ3XUCMBDZGZKCQmOQ8+qVaMVF0foAWAuFjA8B3N8gMrr1u2Yunefate+YkWasrKk+Hhp7VoTCgPg9Vy6gOG5jh49qjfffFPbtm2TJF166aV64IEHFB4eXrlqAXi89PR0de9u356Wlqa4uDN3ZwGAmSrc4/Pdd98pMTFRtWvXVpcuXSRJ69at06lTp/Tpp5/qiiuuqJZCawo9PkDFORraSk1NVWBgoAnVAPBF1XY7+zXXXKPWrVvrn//8p2rVKu0wKioq0oMPPqiff/5ZX375ZdUqNxnBB3DeH3/8oRkzZti1M4EZQE2rtuBTu3Ztbdy4UW3btrVp37p1qzp37sw6PoCPqOhdW5mZ0lNPSRaLNGkSCxICcK1qm+MTFhamvXv32gWfffv2KTQ0tOKVAvA4jkLPs88+Kz+/8m8UzciQtm8/82eCDwAzVPh29jvvvFODBg3SwoULtW/fPu3bt08LFixwuI0FAO+yd+/echckPF/okUonNrdpI7VtyyRnAOapcI/PlClTZLFYNGDAABUVFUmSAgIC9MgjjygjI8PlBQJwD1VdkDApiV4eAOar9Do+J0+e1K5duyRJrVq1UkhIiEsLMwtzfAB7jkLPuHHjZLFYTKgGAOxV6zo+UulmpZdddlllXw7AA2zdulWLFi2ya+euLQCeyung88ADDzh13uzZsytdDAD3UZmhrczMMwsVMqwFwB05HXzmzp2rZs2aKS4uTuxyAXi38iYwX0hGhpSVxV1bANyX08HnkUce0fz587V7927df//9uu+++1S/fv3qrA1ADVu3bp2WL19u135u6CmvZyclha0pALi3Ck1uzs/P1+LFizV79mytXbtWN954owYNGqRevXp5zSRHJjfDVznq5fH399fYsWPt2hMSxKajANxKta3cXOaXX37R3Llz9a9//UtFRUXasmWL6tatW+mC3QXBB76ookNbzOUB4G6c/f6u8AKG1hf6+cliscgwDBUXF1f2MgBM9Nlnn5UbejIzS3t2MjPtX5eUVNrTQ+gB4GkqFHzy8/M1f/58XX/99brkkkv0448/6u9//7v27t3rFb09gC9JT0/XN998Y9PWqFEja0/P2ROVAcBbOD25eejQoVqwYIFiYmL0wAMPaP78+WrYsGF11gagmjgztMVEZQDeyOk5Pn5+foqNjVVcXNx5JzIvXrzYZcWZgTk+8GYfffSRvv/+e7t2FiQE4OlcvnLzgAEDvObOLcAXOerlufzyy3XzzTebUA0AmKNCCxgC8EyVXZAQALxNpffqAuD+5syZo71799q1E3oA+CqCD+ClHPXydOvWTdddd50J1QCAeyD4AF6IoS0AcIzgA3iRKVOm6MSJE3bthB4AKFXplZsBuJf09HS70JOUlFRu6DnfyswA4K0IPoAXKG9oKy4urtzXsDIzAF/EUBfgwRwFHsm5oS1WZgbgiwg+gIdyFHruvvtuXXLJJU69PimJTUYB+B6CD+BhDMPQc889Z9fOBGYAuDCPm+OTn5+vyy+/XBaLxW7PoR9++EHXXHONgoODFRMTo8mTJ5tTJFBN0tPTnQo9TFwGAMc8Lvg89dRTatKkiV17Xl6eevXqpWbNmmn9+vV66aWXNH78eP3jH/8woUrA9RwNbT388MMOe3qYuAwAjnlU8Pn444/16aefasqUKXbH5s2bp4KCAs2ePVuXXnqp7rrrLo0YMUJTp041oVLAdUpKSsq9ays6Otrha1JSpPh4Ji4DwLk8Zo7PgQMHNHjwYC1ZskQhISF2x7OysnTttdcqMDDQ2paYmKhJkybpyJEjqlevnsPr5ufnKz8/3/o8Ly/P9cUDlVTZu7aYuAwAjnlEj49hGEpOTtaQIUPUuXNnh+fk5OSoUaNGNm1lz3Nycsq99sSJExUeHm59xMTEuK5woAochZ7HHnuMScwAUAWmBp+UlBRZLJbzPrKzszV9+nQdO3ZMqampLq8hNTVVubm51se+fftc/h5ARRQVFZU7tBUREVHzBQGAFzF1qGv06NFKTk4+7zktW7bUF198oaysLAUFBdkc69y5s+6991699dZbio6O1oEDB2yOlz0vbx6EJAUFBdldFzBLVRYkBABcmKnBJzIyUpGRkRc8b9q0aXr++eetz3///XclJiZq4cKF6tq1qyQpPj5ezzzzjAoLCxUQECBJWrlypdq0aVPu/B7AnTgKPU8++aTDOW1lMjPPrL7MnB4AuDCPmOMTGxurDh06WB9lK9O2atVKF110kSTpnnvuUWBgoAYNGqQtW7Zo4cKFevXVVzVq1CgzSwcu6PTp0+UObZ0v9Ejctg4AFeUxd3VdSHh4uD799FMNGzZMnTp1UsOGDTVu3Dg99NBDZpcGlKuqQ1vstwUAFWMxDMMwuwh3kpeXp/DwcOXm5iosLMzscuDFHIWeMWPGWIdqAQDOc/b722t6fABPcfz4cb388st27UxgBoDq5xFzfABvkZ6e7lToYa8tAKgeBB+ghjga2lqx4lnFxbHXFgDUFIIPUM2OHj1aTuhJU1aWn8Nww15bAFA9mOMDVCNHgScyMlJDhw5VXFz5d2Sx1xYAVA+CD1BNHIWecePGyWKxSLINNyxECAA1g6EuwMUOHDhQ7oKEZaHnXMzpAYCaQfABXCg9PV2zZs2yaWvdurXNXVuO7thiTg8A1AwWMDwHCxiissrr5TlXQkJp7058vLR2bU1UBgDez9nvb3p8gCrau3ev06FHoncHAMzE5GagChwFnri4OCWdZ4Yyd2wBgHkIPkAlVaSXBwDgHgg+QAXt2rVL77zzjl07oQcA3B/BB6gAR7081157rbp3725CNQCAimJyM+Ck8radIPQAgOegxwe4gM2bN+uDDz6wa1+xIo07swDAwxB8gPNw1MvTr18/dezYUUzpAQDPQ/ABysFdWwDgfQg+wDm+/fZbffzxx3bthB4A8HwEH+Asjnp57r77bl1yySUmVAMAcDWCD/BfDG0BgPcj+MDnZWVl6dNPP7VrJ/QAgPch+MCnOerluf/++xUbG2tCNQCA6kbwgU/JzJQyMkp3Rt+4kaEtAPA1BB/4lIwMKSTkM23c+I3dMUIPAHg/gg98SmKifS/PsGHDtHZtQyUklPYEJSWZUBgAoEawVxd8gmEY5d611bBhQ2VkSFlZpT1CAADvRY8PvN5nn32mb745/9BWSsqZuT8AAO9F8IFXc9TLM3r0aNWtW9emLSmJIS4A8AUEH3glwzD03HPP2bUzgRkAfBvBB17no48+0vfff2/TFhgYqNTUVHMKAgC4DYIPvIqjoa2nn35awcHBJlQDAHA3BB94hZKSEk2YMMGunaEtAMDZuJ0dHiczU0pIKP0pSe+++65d6GnYsCGhBwBghx4feJyz19xxtO3EmDFjFBAQYEJlAAB3R48PPE5KivTXvxY5XIU5LS2N0AMAKBc9PvA4Bw++oeuv/82mrXnz5ho4cKBJFQEAPAXBBx7F0V1bY8eOlb+/vwnVAAA8DcEHHqGgoEATJ060a2cCMwCgIgg+cHtz587VL7/8YtMWHx+vXr16mVQRAMBTEXzg1hwNbY0bN04Wi8WEagAAno7gA7d06tQpTZ482a6doS0AQFUQfOB2ZsyYoT/++MOmrUePHrrmmmtMqggA4C0IPnArDG0BAKoTwQdu4fjx43r55Zft2hnaAgC4EsEHpps0aZJOnz5t03bDDTfoyiuvNKkiAIC3IvjAVI6GtujlAQBUF4IPTHHkyBFNmzbNrp3QAwCoTgQf1DhHvTy33nqrLrvsMhOqAQD4EoIPahRDWwAAMxF8UCMOHTqk1157za6d0AMAqEkEH1Q7R70899xzjy6++GITqgEA+DKCD6oVQ1sAAHdC8EG1+O233/TGG2/YtRN6AABmIvjA5Rz18iQnJ6tZs2YmVAMAwBkEH7gUQ1sAAHdG8IFL7N69W//617/s2gk9AAB3QvBBlTnq5XnooYfUuHFjE6oBAKB8BB9UCUNbAABPQvBBpWRnZ2vhwoV27YQeAIA7I/igwhz18gwbNkwNGzY0oRoAAJxH8EGFMLQFAPBkBB84ZdOmTVqyZIldO6EHAOBJCD64IEe9PCNHjlR4eLgJ1QAAUHkEH5wXQ1sAAG/iZ3YBqFmZmVJCQunP8/nPf/5jF3pCQ0MJPQAAj0aPj4/JyJCyskp/JiU5PsdRL88TTzyhOnXqVHN1AABUL4/q8Vm2bJm6du2q2rVrq169eurXr5/N8b179+rGG29USEiIoqKi9OSTT6qoqMicYt1USooUH1/681yGYZQ7tEXoAQB4A4/p8fnggw80ePBgvfjii+rRo4eKioq0efNm6/Hi4mLdeOONio6O1tq1a7V//34NGDBAAQEBevHFF02svOZkZpb25KSklN+bk5Tk+Njq1au1Zs0am7bGjRvroYceqoZKAQAwh8UwDMPsIi6kqKhIzZs3V3p6ugYNGuTwnI8//lg33XSTfv/9dzVq1EiSNGvWLD399NM6dOiQAgMDnXqvvLw8hYeHKzc3V2FhYS77HWpCQkLpMFZ8vLR2rfOvc9TL8/TTTys4ONiF1QEAUH2c/f72iKGuDRs26LfffpOfn5/i4uLUuHFj9enTx6bHJysrS5dddpk19EhSYmKi8vLytGXLlnKvnZ+fr7y8PJuHpzrfMJYjJSUl5Q5tEXoAAN7II4a6fv75Z0nS+PHjNXXqVDVv3lwvv/yyunXrph07dqh+/frKycmxCT2SrM9zcnLKvfbEiRMdfvl7ovKGsRz5+OOP9e2339q0tWrVSvfdd181VAYAgHswtccnJSVFFovlvI/s7GyVlJRIkp555hnddttt6tSpk+bMmSOLxaJFixZVqYbU1FTl5uZaH/v27XPFr+bW0tPT7ULPmDFjCD0AAK9nao/P6NGjlZycfN5zWrZsqf3790uS2rdvb20PCgpSy5YttXfvXklSdHS03Zf5gQMHrMfKExQUpKCgoMqUbypnJjKfq7i4WM8//7xdO2vzAAB8hanBJzIyUpGRkRc8r1OnTgoKCtL27dt19dVXS5IKCwu1Z88eNWvWTJIUHx+vF154QQcPHlRUVJQkaeXKlQoLC7MJTN7CmfV4zvb555/r66+/tmn7y1/+oltuuaWaKgQAwP14xByfsLAwDRkyRGlpaYqJiVGzZs300ksvSZLuuOMOSVKvXr3Uvn179e/fX5MnT1ZOTo7Gjh2rYcOGeWSPzoWkpJzp8bkQR3OYxo4dK39//2qoDAAA9+URwUeSXnrpJdWqVUv9+/fXqVOn1LVrV33xxReqV6+eJMnf319Lly7VI488ovj4eNWpU0cDBw7Uc889Z3Ll1cOZicxFRUV64YUX7NoZ2gIA+CqPWMenJnnyOj5nW7Zsmb777jubtl69eik+Pt6kigAAqD7Ofn97TI8PnOdoaGvcuHGyWCwmVAMAgPsg+HiR/Px8ZWRk2LUztAUAQCmCj5dwdNdW3759dcUVV5hUEQAA7ofg4wUY2gIAwDkEHw/G0BYAABVD8PFQK1as0L///W+btgEDBqhFixYmVQQAgPvziN3ZvV1mppSQUPrTGenp6XahJy0tjdADAMAFEHzcwNnbT5xPfn6+3XyewMBAhrYAAHASQ11uwJntJ9atW6fly5fbtA0fPlwNGjSo5uoAAPAeBB83cKHtJxzdtUUvDwAAFcdQVw2p6DweSTp16pRd6OncuTOhBwCASqLHp4acPY/nQpuLStLatWu1cuVKm7bHHntMERER1VMgAAA+gOBTQ5yZx1OGoS0AAKoHwaeGXGgejySdOHFCU6ZMsWlLSEjQ9ddfX42VAQDgOwg+bmL16tVas2aNTduoUaMUGhpqUkUAAHgfgo8bYGgLAICaQfAxkaO9trp166brrrvOpIoAAPBuBB+T7Nq1S++8845N2xNPPKE6deqYVBEAAN6P4GOCRYsWaevWrdbnnTp10k033WRiRQAA+AaCTw06ffq0Jk2aZNP2wAMPKCYmxqSKAADwLQSfGrJjxw7Nnz/fpm3MmDEKCAgwqSIAAHwPwaeGnB16rrrqKiUmJppYDQAAvongU8MGDx6sJk2amF0GAAA+yWIYhmF2Ee4kLy9P4eHhys3NVVhYmNnlAAAAJzj7/c3u7AAAwGcQfAAAgM8g+AAAAJ9B8AEAAD6D4AMAAHwGwQcAAPgMgg8AAPAZBB8AAOAzCD4AAMBnEHwAAIDPIPgAAACfQfABAAA+g+ADAAB8BsEHAAD4jFpmF+BuDMOQVLq9PQAA8Axl39tl3+PlIfic49ixY5KkmJgYkysBAAAVdezYMYWHh5d73GJcKBr5mJKSEv3+++8KDQ2VxWIxu5xql5eXp5iYGO3bt09hYWFmlwMH+IzcH5+R++Mzcn9V/YwMw9CxY8fUpEkT+fmVP5OHHp9z+Pn56aKLLjK7jBoXFhbG/xm4OT4j98dn5P74jNxfVT6j8/X0lGFyMwAA8BkEHwAA4DMIPj4uKChIaWlpCgoKMrsUlIPPyP3xGbk/PiP3V1OfEZObAQCAz6DHBwAA+AyCDwAA8BkEHwAA4DMIPgAAwGcQfHzcsmXL1LVrV9WuXVv16tVTv379bI7v3btXN954o0JCQhQVFaUnn3xSRUVF5hTrw/Lz83X55ZfLYrHo+++/tzn2ww8/6JprrlFwcLBiYmI0efJkc4r0QXv27NGgQYPUokUL1a5dW61atVJaWpoKCgpszuMzMt+MGTPUvHlzBQcHq2vXrvr222/NLsknTZw4UVdeeaVCQ0MVFRWlfv36afv27TbnnD59WsOGDVODBg1Ut25d3XbbbTpw4IDLaiD4+LAPPvhA/fv31/33369Nmzbpm2++0T333GM9XlxcrBtvvFEFBQVau3at3nrrLc2dO1fjxo0zsWrf9NRTT6lJkyZ27Xl5eerVq5eaNWum9evX66WXXtL48eP1j3/8w4QqfU92drZKSkr0+uuva8uWLXrllVc0a9YsjRkzxnoOn5H5Fi5cqFGjRiktLU0bNmxQx44dlZiYqIMHD5pdms9Zs2aNhg0bpn//+99auXKlCgsL1atXL504ccJ6zuOPP67/+7//06JFi7RmzRr9/vvvuvXWW11XhAGfVFhYaDRt2tR44403yj1n+fLlhp+fn5GTk2NtmzlzphEWFmbk5+fXRJkwSj+Htm3bGlu2bDEkGRs3brQee+2114x69erZfB5PP/200aZNGxMqhWEYxuTJk40WLVpYn/MZma9Lly7GsGHDrM+Li4uNJk2aGBMnTjSxKhiGYRw8eNCQZKxZs8YwDMM4evSoERAQYCxatMh6zrZt2wxJRlZWlkvekx4fH7Vhwwb99ttv8vPzU1xcnBo3bqw+ffpo8+bN1nOysrJ02WWXqVGjRta2xMRE5eXlacuWLWaU7XMOHDigwYMH6+2331ZISIjd8aysLF177bUKDAy0tiUmJmr79u06cuRITZaK/8rNzVX9+vWtz/mMzFVQUKD169erZ8+e1jY/Pz/17NlTWVlZJlYGqfS/F0nW/2bWr1+vwsJCm8+rbdu2io2NddnnRfDxUT///LMkafz48Ro7dqyWLl2qevXqqVu3bjp8+LAkKScnxyb0SLI+z8nJqdmCfZBhGEpOTtaQIUPUuXNnh+fwGbmXnTt3avr06Xr44YetbXxG5vrjjz9UXFzs8DPg799cJSUlGjlypP7617+qQ4cOkkr/mwgMDFRERITNua78vAg+XiYlJUUWi+W8j7J5CZL0zDPP6LbbblOnTp00Z84cWSwWLVq0yOTfwrs5+xlNnz5dx44dU2pqqtkl+xxnP6Oz/fbbb+rdu7fuuOMODR482KTKAc8xbNgwbd68WQsWLKjR961Vo++Gajd69GglJyef95yWLVtq//79kqT27dtb24OCgtSyZUvt3btXkhQdHW1350PZzPro6GgXVu1bnP2MvvjiC2VlZdntW9O5c2fde++9euuttxQdHW13twOfUdU5+xmV+f3339W9e3clJCTYTVrmMzJXw4YN5e/v7/Az4O/fPMOHD9fSpUv15Zdf6qKLLrK2R0dHq6CgQEePHrXp9XHp5+WSmULwOLm5uUZQUJDN5OaCggIjKirKeP311w3DODO5+cCBA9ZzXn/9dSMsLMw4ffp0jdfsa3755Rfjxx9/tD5WrFhhSDLef/99Y9++fYZhnJk4W1BQYH1damoqE2dr0K+//mpcfPHFxl133WUUFRXZHeczMl+XLl2M4cOHW58XFxcbTZs2ZXKzCUpKSoxhw4YZTZo0MXbs2GF3vGxy8/vvv29ty87OdunkZoKPD3vssceMpk2bGitWrDCys7ONQYMGGVFRUcbhw4cNwzCMoqIio0OHDkavXr2M77//3vjkk0+MyMhIIzU11eTKfdPu3bvt7uo6evSo0ahRI6N///7G5s2bjQULFhghISHW8Irq9euvvxqtW7c2/ud//sf49ddfjf3791sfZfiMzLdgwQIjKCjImDt3rrF161bjoYceMiIiImzuWEXNeOSRR4zw8HBj9erVNv+9nDx50nrOkCFDjNjYWOOLL74wvvvuOyM+Pt6Ij493WQ0EHx9WUFBgjB492oiKijJCQ0ONnj17Gps3b7Y5Z8+ePUafPn2M2rVrGw0bNjRGjx5tFBYWmlSxb3MUfAzDMDZt2mRcffXVRlBQkNG0aVMjIyPDnAJ90Jw5cwxJDh9n4zMy3/Tp043Y2FgjMDDQ6NKli/Hvf//b7JJ8Unn/vcyZM8d6zqlTp4yhQ4ca9erVM0JCQoxbbrnF5h8TVWX5byEAAABej7u6AACAzyD4AAAAn0HwAQAAPoPgAwAAfAbBBwAA+AyCDwAA8BkEHwAA4DMIPgBQTVavXi2LxaKjR4+aXQqA/yL4APBY48eP1+WXX252GQA8CMEHgNcrLCw0uwQAboLgA8A0JSUlmjhxolq0aKHatWurY8eOev/99yWdGSb6/PPP1blzZ4WEhCghIUHbt2+XJM2dO1fp6enatGmTLBaLLBaL5s6dK0myWCyaOXOmkpKSVKdOHb3wwgvnraPsvVasWKG4uDjVrl1bPXr00MGDB/Xxxx+rXbt2CgsL0z333KOTJ09aX5efn68RI0YoKipKwcHBuvrqq7Vu3brq+csC4Bou2/ULACro+eefN9q2bWt88sknxq5du4w5c+YYQUFBxurVq41Vq1YZkoyuXbsaq1evNrZs2WJcc801RkJCgmEYhnHy5Elj9OjRxqWXXmq3w7MkIyoqypg9e7axa9cu45dffjlvHWXvddVVVxlff/21sWHDBqN169bGddddZ/Tq1cvYsGGD8eWXXxoNGjSw2WB0xIgRRpMmTYzly5cbW7ZsMQYOHGjUq1fP+PPPP22ue+TIker5CwRQYQQfAKY4ffq0ERISYqxdu9amfdCgQcbdd99tDQ2fffaZ9diyZcsMScapU6cMwzCMtLQ0o2PHjnbXlmSMHDnS6VocvdfEiRMNScauXbusbQ8//LCRmJhoGIZhHD9+3AgICDDmzZtnPV5QUGA0adLEmDx5ss11CT6A+6hlVk8TAN+2c+dOnTx5Utdff71Ne0FBgeLi4qzP//KXv1j/3LhxY0nSwYMHFRsbe97rd+7cucI1nf1ejRo1UkhIiFq2bGnT9u2330qSdu3apcLCQv31r3+1Hg8ICFCXLl20bdu2Cr83gJpB8AFgiuPHj0uSli1bpqZNm9ocCwoK0q5duySVhokyFotFUuncoAupU6dOhWs6973Ofl7W5sx7A3BfTG4GYIr27dsrKChIe/fuVevWrW0eMTExTl0jMDBQxcXF1VypY61atVJgYKC++eYba1thYaHWrVun9u3bm1ITgAujxweAKUJDQ/XEE0/o8ccfV0lJia6++mrl5ubqm2++UVhYmJo1a3bBazRv3ly7d+/W999/r4suukihoaEKCgqqgepLe5QeeeQRPfnkk6pfv75iY2M1efJknTx5UoMGDaqRGgBUHMEHgGkmTJigyMhITZw4UT///LMiIiJ0xRVXaMyYMU4NKd12221avHixunfvrqNHj2rOnDlKTk6u/sL/KyMjQyUlJerfv7+OHTumzp07a8WKFapXr16N1QCgYiyGYRhmFwEAAFATmOMDAAB8BsEHgNcbMmSI6tat6/AxZMgQs8sDUIMY6gLg9Q4ePKi8vDyHx8LCwhQVFVXDFQEwC8EHAAD4DIa6AACAzyD4AAAAn0HwAQAAPoPgAwAAfAbBBwAA+AyCDwAA8BkEHwAA4DMIPgAAwGf8PyZ6NzE4vB44AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "4/4 [==============================] - 0s 5ms/step\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOD0lEQVR4nO3de1xUZf4H8M9wlYsMch0wUMQrimaiRhhqsuKtMnXzlve0DDS1TG3T1EzQWjOttNxNbVNza7XMynLFy6qEiOEtZZVFseSiGTMiCMic3x/+ODlyG4aZOWfmfN6v17xecM4zM88cDme+53m+z/OoBEEQQERERKRgDlJXgIiIiEhqDIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIyGYsXrwYKpXKqLIqlQqLFy+2aH369OmDPn36yPb1iMh4DIiIqME2bdoElUolPpycnNC8eXNMnDgRv/76q9TVk52WLVsaHK+AgAA8+uij2Llzp1lev6SkBIsXL8aBAwfM8npESsSAiIhMtnTpUvzjH//A+vXrMXDgQHz66afo3bs3bt++bZH3e+2111BaWmqR17a0Bx98EP/4xz/wj3/8Ay+//DKuXr2KYcOGYf369Y1+7ZKSEixZsoQBEVEjOEldASKyXQMHDkRUVBQA4Nlnn4Wfnx9WrFiBXbt24emnnzb7+zk5OcHJyTYvW82bN8czzzwj/j5+/Hi0bt0a77zzDp5//nkJa0ZEAFuIiMiMHn30UQBAdna2wfbz589jxIgR8PHxQZMmTRAVFYVdu3YZlKmoqMCSJUvQpk0bNGnSBL6+vujVqxf27t0rlqkph6isrAyzZ8+Gv78/mjZtiieeeAK//PJLtbpNnDgRLVu2rLa9ptfcuHEjHnvsMQQEBMDV1RURERFYt25dg45FfTQaDTp06ICcnJw6yxUWFmLKlCkIDAxEkyZN0KVLF2zevFncf+nSJfj7+wMAlixZInbLWTp/isje2OatFhHJ0qVLlwAAzZo1E7edPXsWMTExaN68OebPnw8PDw/885//xNChQ/Gvf/0LTz31FIC7gUlSUhKeffZZ9OjRAzqdDsePH8eJEyfwpz/9qdb3fPbZZ/Hpp59izJgxeOSRR5CSkoLBgwc36nOsW7cOHTt2xBNPPAEnJyd8/fXXeOGFF6DX65GQkNCo165SUVGBK1euwNfXt9YypaWl6NOnDy5evIjExESEhYXh888/x8SJE1FUVIQXX3wR/v7+WLduHaZPn46nnnoKw4YNAwB07tzZLPUkUgyBiKiBNm7cKAAQ/v3vfwvXrl0Trly5InzxxReCv7+/4OrqKly5ckUs269fPyEyMlK4ffu2uE2v1wuPPPKI0KZNG3Fbly5dhMGDB9f5vq+//rpw72UrMzNTACC88MILBuXGjBkjABBef/11cduECROEFi1a1PuagiAIJSUl1crFx8cLrVq1MtjWu3dvoXfv3nXWWRAEoUWLFkL//v2Fa9euCdeuXRNOnjwpjBo1SgAgzJgxo9bXW716tQBA+PTTT8Vt5eXlQnR0tODp6SnodDpBEATh2rVr1T4vETUMu8yIyGRxcXHw9/dHSEgIRowYAQ8PD+zatQsPPPAAAODGjRtISUnB008/jZs3b+L69eu4fv06fvvtN8THx+PChQviqDRvb2+cPXsWFy5cMPr9v/32WwDAzJkzDbbPmjWrUZ/Lzc1N/Fmr1eL69evo3bs3/ve//0Gr1Zr0mj/88AP8/f3h7++PLl264PPPP8e4ceOwYsWKWp/z7bffQqPRYPTo0eI2Z2dnzJw5E8XFxTh48KBJdSGi6thlRkQme//999G2bVtotVp8/PHHOHToEFxdXcX9Fy9ehCAIWLhwIRYuXFjjaxQWFqJ58+ZYunQpnnzySbRt2xadOnXCgAEDMG7cuDq7fi5fvgwHBweEh4cbbG/Xrl2jPteRI0fw+uuvIzU1FSUlJQb7tFot1Gp1g1+zZ8+eWLZsGVQqFdzd3dGhQwd4e3vX+ZzLly+jTZs2cHAwvHft0KGDuJ+IzIMBERGZrEePHuIos6FDh6JXr14YM2YMsrKy4OnpCb1eDwB4+eWXER8fX+NrtG7dGgAQGxuL7OxsfPXVV/jhhx/wt7/9De+88w7Wr1+PZ599ttF1rW1Cx8rKSoPfs7Oz0a9fP7Rv3x6rVq1CSEgIXFxc8O233+Kdd94RP1ND+fn5IS4uzqTnEpHlMSAiIrNwdHREUlIS+vbti/feew/z589Hq1atANzt5jEmGPDx8cGkSZMwadIkFBcXIzY2FosXL641IGrRogX0ej2ys7MNWoWysrKqlW3WrBmKioqqbb+/leXrr79GWVkZdu3ahdDQUHH7/v37662/ubVo0QKnTp2CXq83aCU6f/68uB+oPdgjIuMxh4iIzKZPnz7o0aMHVq9ejdu3byMgIAB9+vTBhx9+iLy8vGrlr127Jv7822+/Gezz9PRE69atUVZWVuv7DRw4EACwZs0ag+2rV6+uVjY8PBxarRanTp0St+Xl5VWbLdrR0REAIAiCuE2r1WLjxo211sNSBg0ahPz8fGzfvl3cdufOHaxduxaenp7o3bs3AMDd3R0Aagz4iMg4bCEiIrOaO3cu/vznP2PTpk14/vnn8f7776NXr16IjIzE1KlT0apVKxQUFCA1NRW//PILTp48CQCIiIhAnz590K1bN/j4+OD48eP44osvkJiYWOt7Pfjggxg9ejQ++OADaLVaPPLII9i3bx8uXrxYreyoUaMwb948PPXUU5g5cyZKSkqwbt06tG3bFidOnBDL9e/fHy4uLnj88cfx3HPPobi4GBs2bEBAQECNQZ0lTZs2DR9++CEmTpyIjIwMtGzZEl988QWOHDmC1atXo2nTpgDuJoFHRERg+/btaNu2LXx8fNCpUyd06tTJqvUlsmlSD3MjIttTNew+PT292r7KykohPDxcCA8PF+7cuSMIgiBkZ2cL48ePFzQajeDs7Cw0b95cGDJkiPDFF1+Iz1u2bJnQo0cPwdvbW3BzcxPat28vvPnmm0J5eblYpqYh8qWlpcLMmTMFX19fwcPDQ3j88ceFK1eu1DgM/YcffhA6deokuLi4CO3atRM+/fTTGl9z165dQufOnYUmTZoILVu2FFasWCF8/PHHAgAhJydHLNeQYff1TSlQ2+sVFBQIkyZNEvz8/AQXFxchMjJS2LhxY7XnHj16VOjWrZvg4uLCIfhEJlAJwj3twkREREQKxBwiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseJGY2k1+tx9epVNG3alNPkExER2QhBEHDz5k0EBwdXWyj5XgyIjHT16lWEhIRIXQ0iIiIywZUrV/DAAw/Uup8BkZGqpsi/cuUKvLy8JK4NERERGUOn0yEkJET8Hq8NAyIjVXWTeXl5MSAiIiKyMfWluzCpmoiIiBSPAREREREpHgMiIiIiUjzmEBERkeJVVlaioqJC6mqQCZydneHo6Njo15E0IDp06BDeeustZGRkIC8vDzt37sTQoUNrLPv888/jww8/xDvvvINZs2aJ22/cuIEZM2bg66+/hoODA4YPH453330Xnp6eYplTp04hISEB6enp8Pf3x4wZM/DKK69Y+NMREZHcCYKA/Px8FBUVSV0VagRvb29oNJpGzRMoaUB069YtdOnSBZMnT8awYcNqLbdz5078+OOPCA4OrrZv7NixyMvLw969e1FRUYFJkyZh2rRp2Lp1K4C7w+369++PuLg4rF+/HqdPn8bkyZPh7e2NadOmWeyzERGR/FUFQwEBAXB3d+fEuzZGEASUlJSgsLAQABAUFGTya0kaEA0cOBADBw6ss8yvv/6KGTNm4Pvvv8fgwYMN9p07dw579uxBeno6oqKiAABr167FoEGD8PbbbyM4OBhbtmxBeXk5Pv74Y7i4uKBjx47IzMzEqlWrGBARESlYZWWlGAz5+vpKXR0ykZubGwCgsLAQAQEBJnefyTqpWq/XY9y4cZg7dy46duxYbX9qaiq8vb3FYAgA4uLi4ODggLS0NLFMbGwsXFxcxDLx8fHIysrC77//Xut7l5WVQafTGTyIiMh+VOUMubu7S1wTaqyqv2Fj8sBkHRCtWLECTk5OmDlzZo378/PzERAQYLDNyckJPj4+yM/PF8sEBgYalKn6vapMTZKSkqBWq8UHl+0gIrJP7Cazfeb4G8o2IMrIyMC7776LTZs2SXKyLliwAFqtVnxcuXLF6nUgIiIi65BtQPSf//wHhYWFCA0NhZOTE5ycnHD58mW89NJLaNmyJQBAo9GIiVRV7ty5gxs3bkCj0YhlCgoKDMpU/V5Vpiaurq7iMh1croOIiJRApVLhyy+/lLoaBg4cOACVSmXxkYCyDYjGjRuHU6dOITMzU3wEBwdj7ty5+P777wEA0dHRKCoqQkZGhvi8lJQU6PV69OzZUyxz6NAhg37FvXv3ol27dmjWrJl1PxQRKVKethRHs68jT1sqdVWIAACLFy/Ggw8+KHU1ZEXSUWbFxcW4ePGi+HtOTg4yMzPh4+OD0NDQaln/zs7O0Gg0aNeuHQCgQ4cOGDBgAKZOnYr169ejoqICiYmJGDVqlDhEf8yYMViyZAmmTJmCefPm4cyZM3j33XfxzjvvWO+DEpFibU/PxYIdp6EXAAcVkDQsEiO7h0pdLSK6j6QtRMePH0fXrl3RtWtXAMCcOXPQtWtXLFq0yOjX2LJlC9q3b49+/fph0KBB6NWrFz766CNxv1qtxg8//ICcnBx069YNL730EhYtWsQh90RkcXnaUjEYAgC9ALy64wxbiqjR9Ho9kpKSEBYWBjc3N3Tp0gVffPEFgD+6mPbt24eoqCi4u7vjkUceQVZWFgBg06ZNWLJkCU6ePAmVSgWVSoVNmzaJr339+nU89dRTcHd3R5s2bbBr1y6j6lT1vt9//z26du0KNzc3PPbYYygsLMR3332HDh06wMvLC2PGjEFJSYn4vLKyMsycORMBAQFo0qQJevXqhfT0dPMdLCNJ2kLUp08fCIJgdPlLly5V2+bj4yNOwlibzp074z//+U9Dq0dE1Cg512+JwVCVSkHApeslCFK7SVMpspg8bSlyrt9CmJ+Hxf++SUlJ+PTTT7F+/Xq0adMGhw4dwjPPPAN/f3+xzF/+8hf89a9/hb+/P55//nlMnjwZR44cwciRI3HmzBns2bMH//73vwHcbTyosmTJEqxcuRJvvfUW1q5di7Fjx+Ly5cvw8fExqm6LFy/Ge++9B3d3dzz99NN4+umn4erqiq1bt6K4uBhPPfUU1q5di3nz5gEAXnnlFfzrX//C5s2b0aJFC6xcuRLx8fG4ePGi0e9pDrLNISIisnVhfh5wuG+QrKNKhZZ+nPfG3mxPz0VMcgrGbEhDTHIKtqfnWuy9ysrKsHz5cnz88ceIj49Hq1atMHHiRDzzzDP48MMPxXJvvvkmevfujYiICMyfPx9Hjx7F7du34ebmBk9PTzg5OUGj0UCj0YiTGwLAxIkTMXr0aLRu3RrLly9HcXExjh07ZnT9li1bhpiYGHTt2hVTpkzBwYMHsW7dOnTt2hWPPvooRowYgf379wO4u2LFunXr8NZbb2HgwIGIiIjAhg0b4Obmhr///e/mO2hGYEBERGQhQWo3JA2LhOP/Tx3iqFJh+bBObB2yM9buGr148SJKSkrwpz/9CZ6enuLjk08+QXZ2tliuc+fO4s9VS1rcPzK7Jvc+z8PDA15eXkY9r6bnBwYGwt3dHa1atTLYVvV62dnZqKioQExMjLjf2dkZPXr0wLlz54x+T3PgavdERBY0snsoYtv649L1ErT0c2cwZIes3TVaXFwMAPjmm2/QvHlzg32urq5iUOTs7Cxur5rPT6/X1/v69z6v6rnGPK+m56tUqka/nrUwICIisrAgtRsDITtW1TV6b1Bkya7RiIgIuLq6Ijc3F7179662/95Wotq4uLigsrLSEtVrkPDwcLi4uODIkSNo0aIFgLvLb6Snp2PWrFlWrQsDIiIiokao6hp9dccZVAqCxbtGmzZtipdffhmzZ8+GXq9Hr169oNVqceTIEXh5eYmBRV1atmwpTnXzwAMPoGnTpnB1dbVIfevi4eGB6dOnY+7cueKUOytXrkRJSQmmTJli1bowICIiImoka3eNvvHGG/D390dSUhL+97//wdvbGw899BBeffVVo7qjhg8fjh07dqBv374oKirCxo0bMXHiRIvWuTbJycniYu43b95EVFQUvv/+e6tPnqwSGjLuXcF0Oh3UajW0Wi2X8SAisgO3b99GTk4OwsLC0KRJE6mrQ41Q19/S2O9vjjIjIiIixWNARERERPV6/vnnDYb53/t4/vnnpa5eozGHiIiIiOq1dOlSvPzyyzXus4dUEgZEREREVK+AgAAEBARIXQ2LYZcZERERKR4DIiIiUjQ5zppMDWOOvyG7zIiISJFcXFzg4OCAq1evwt/fHy4uLuISF2QbBEFAeXk5rl27BgcHB7i4uJj8WgyIiIhIkRwcHBAWFoa8vDxcvXpV6upQI7i7uyM0NBQODqZ3fDEgIiIixXJxcUFoaCju3Lkji7W9qOEcHR3h5OTU6NY9BkRERKRoVSuy378qOykLk6qJiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBRP0oDo0KFDePzxxxEcHAyVSoUvv/xS3FdRUYF58+YhMjISHh4eCA4Oxvjx43H16lWD17hx4wbGjh0LLy8veHt7Y8qUKSguLjYoc+rUKTz66KNo0qQJQkJCsHLlSmt8PCIim5GnLcXR7OvI05ZKXRUiSUgaEN26dQtdunTB+++/X21fSUkJTpw4gYULF+LEiRPYsWMHsrKy8MQTTxiUGzt2LM6ePYu9e/di9+7dOHToEKZNmybu1+l06N+/P1q0aIGMjAy89dZbWLx4MT766COLfz4iIluwPT0XMckpGLMhDTHJKdienit1lYisTiUIgiB1JQBApVJh586dGDp0aK1l0tPT0aNHD1y+fBmhoaE4d+4cIiIikJ6ejqioKADAnj17MGjQIPzyyy8IDg7GunXr8Je//AX5+flwcXEBAMyfPx9ffvklzp8/b3T9dDod1Go1tFotvLy8GvVZiYjkIk9bipjkFOjv+SZwVKlweH5fBKndpKsYkZkY+/1tUzlEWq0WKpUK3t7eAIDU1FR4e3uLwRAAxMXFwcHBAWlpaWKZ2NhYMRgCgPj4eGRlZeH333+v9b3Kysqg0+kMHkRE9ibn+i2DYAgAKgUBl66XSFMhIonYTEB0+/ZtzJs3D6NHjxYjvPz8fAQEBBiUc3Jygo+PD/Lz88UygYGBBmWqfq8qU5OkpCSo1WrxERISYs6PQ0QkC2F+HnBQGW5zVKnQ0s9dmgoRScQmAqKKigo8/fTTEAQB69ats8p7LliwAFqtVnxcuXLFKu9LRGRNQWo3JA2LhKPqblTkqFJh+bBO7C4jxXGSugL1qQqGLl++jJSUFIP+P41Gg8LCQoPyd+7cwY0bN6DRaMQyBQUFBmWqfq8qUxNXV1e4urqa62MQEcnWyO6hiG3rj0vXS9DSz53BECmSrFuIqoKhCxcu4N///jd8fX0N9kdHR6OoqAgZGRnitpSUFOj1evTs2VMsc+jQIVRUVIhl9u7di3bt2qFZs2bW+SBERDIXpHZDdLgvgyFSLEkDouLiYmRmZiIzMxMAkJOTg8zMTOTm5qKiogIjRozA8ePHsWXLFlRWViI/Px/5+fkoLy8HAHTo0AEDBgzA1KlTcezYMRw5cgSJiYkYNWoUgoODAQBjxoyBi4sLpkyZgrNnz2L79u149913MWfOHKk+NhEREcmMpMPuDxw4gL59+1bbPmHCBCxevBhhYWE1Pm///v3o06cPgLsTMyYmJuLrr7+Gg4MDhg8fjjVr1sDT01Msf+rUKSQkJCA9PR1+fn6YMWMG5s2b16C6ctg9ERGR7TH2+1s28xDJHQMiIiIi22OX8xARERERWQIDIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIykzxtKY5mX0eetlTqqlADOUldASIiInuwPT0XC3achl4AHFRA0rBIjOweKnW1yEhsISIiImqkPG2pGAwBgF4AXt1xhi1FNoQBERERUSPlXL8lBkNVKgUBl66XSFMhajAGRERERI0U5ucBB5XhNkeVCi393KWpEDUYAyIiIqJGClK7IWlYJBxVd6MiR5UKy4d1QpDaTeKakbGYVE1ERGQGI7uHIratPy5dL0FLP3cGQzaGAREREVED5WlLkXP9FsL8PAwCnyC1GwMhG8WAiIiIqAE4vN4+MYeIiIjISBxeb78YEBERKRhnVm4YDq+3X+wyIyJSKHb9NFzV8Pp7gyIOr7cPbCEiIlIgdv2YhsPr7RdbiIiIFKiurh9+udeNw+vtEwMiIiIFYtdP43B4vf1hlxkRkQKx64fIEFuIiIgUil0/RH9gQEREpGDs+iG6i11mREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIGoQLQRIRkT3isHsyGheCJCIieyVpC9GhQ4fw+OOPIzg4GCqVCl9++aXBfkEQsGjRIgQFBcHNzQ1xcXG4cOGCQZkbN25g7Nix8PLygre3N6ZMmYLi4mKDMqdOncKjjz6KJk2aICQkBCtXrrT0R7M7XAiSiIjsmaQB0a1bt9ClSxe8//77Ne5fuXIl1qxZg/Xr1yMtLQ0eHh6Ij4/H7du3xTJjx47F2bNnsXfvXuzevRuHDh3CtGnTxP06nQ79+/dHixYtkJGRgbfeeguLFy/GRx99ZPHP1xBy74qqayFIIiIiWydpl9nAgQMxcODAGvcJgoDVq1fjtddew5NPPgkA+OSTTxAYGIgvv/wSo0aNwrlz57Bnzx6kp6cjKioKALB27VoMGjQIb7/9NoKDg7FlyxaUl5fj448/houLCzp27IjMzEysWrXKIHCSki10RXEhSCIiaqw8bSlyrt9CmJ+H7GZIl21SdU5ODvLz8xEXFyduU6vV6NmzJ1JTUwEAqamp8Pb2FoMhAIiLi4ODgwPS0tLEMrGxsXBxcRHLxMfHIysrC7///ruVPk3tbKUrigtBEhFRY2xPz0VMcgrGbEhDTHIKtqfnSl0lA7JNqs7PzwcABAYGGmwPDAwU9+Xn5yMgIMBgv5OTE3x8fAzKhIWFVXuNqn3NmjWr8f3LyspQVlYm/q7T6RrxaWpXV1eU3IINLgRJRESmqO3mP7atv2y+S2TbQiS1pKQkqNVq8RESEmKR96nqirqXnLuigtRuiA73lc0JTERE8mcLeaiyDYg0Gg0AoKCgwGB7QUGBuE+j0aCwsNBg/507d3Djxg2DMjW9xr3vUZMFCxZAq9WKjytXrjTuA9WCXVFERGTvbOHmX7YBUVhYGDQaDfbt2ydu0+l0SEtLQ3R0NAAgOjoaRUVFyMjIEMukpKRAr9ejZ8+eYplDhw6hoqJCLLN37160a9eu1u4yAHB1dYWXl5fBw1JGdg/F4fl9sW3qwzg8v6/sEqqJiIgawxZu/lWCIAj1F7OM4uJiXLx4EQDQtWtXrFq1Cn379oWPjw9CQ0OxYsUKJCcnY/PmzQgLC8PChQtx6tQp/Pzzz2jSpAmAuyPVCgoKsH79elRUVGDSpEmIiorC1q1bAQBarRbt2rVD//79MW/ePJw5cwaTJ0/GO++806BRZjqdDmq1Glqt1qLBERERkb3K05ZaPQ/V6O9vQUL79+8XAFR7TJgwQRAEQdDr9cLChQuFwMBAwdXVVejXr5+QlZVl8Bq//fabMHr0aMHT01Pw8vISJk2aJNy8edOgzMmTJ4VevXoJrq6uQvPmzYXk5OQG11Wr1QoABK1Wa/LnJSIiIusy9vtb0hYiW8IWIiIiIttj7Pe3bHOIiIiIiKyFAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERDYiT1uKo9nXkactlboqdsdJ6goQERFR/ban52LBjtPQC4CDCkgaFomR3UOlrpbdYAsRUSPwbo2IrCFPWyoGQwCgF4BXd5zhtceM2EJEZCLerRGRteRcvyUGQ1UqBQGXrpcgSO0mTaXsDFuIiEzAuzUisqYwPw84qAy3OapUaOnnLk2F7BADIiIT1HW3RkRkbkFqNyQNi4Sj6m5U5KhSYfmwTmwdMiN2mRGZoOpu7d6giHdrRGRJI7uHIratPy5dL0FLP3cGQ2bGFiIiE/BujYikEKR2Q3S4L681FsAWIiIT8W6NiMh+MCAiaoQgtRsDISIiO8AuMyIiIlI8BkREREQWxAlcbQO7zIiIiCyEE7jaDrYQERERWQAncLUtDIiIiIgsgBO42hYGRCQL7GMnInvD5TZsCwMiktz29FzEJKdgzIY0xCSnYHt6rtRVIiJqNKkncK3pRpM3n7VTCYIg1F+MdDod1Go1tFotvLy8pK6O3cjTliImOaXaEhiH5/fl/D5EZBfytKVWn8C1pmRuAIpM8Db2+5ujzEhSdfWxMyAiIntg7Qlca0rmXvCv08A96y9WJXjHtvXntfb/scuMJMU+diKyFbbS3VTTjaYeYIJ3PYwOiHQ6ndEPc6msrMTChQsRFhYGNzc3hIeH44033sC9vXyCIGDRokUICgqCm5sb4uLicOHCBYPXuXHjBsaOHQsvLy94e3tjypQpKC4uNls9yXRS97ETERnDlnIda7rRdAB481kPo7vMvL29oVKp6iwjCAJUKhUqKysbXTEAWLFiBdatW4fNmzejY8eOOH78OCZNmgS1Wo2ZM2cCAFauXIk1a9Zg8+bNCAsLw8KFCxEfH4+ff/4ZTZo0AQCMHTsWeXl52Lt3LyoqKjBp0iRMmzYNW7duNUs9qXZ52lLkXL+FMD+PWoMcLpJKRHJW23xC1u5uMuZ6Cvxxo/nqjjOoFATxRhNAtW283v7B6KTqgwcPGv2ivXv3NrlC9xoyZAgCAwPx97//Xdw2fPhwuLm54dNPP4UgCAgODsZLL72El19+GQCg1WoRGBiITZs2YdSoUTh37hwiIiKQnp6OqKgoAMCePXswaNAg/PLLLwgODjaqLkyqrl1t/6ScoZWI7MHR7OsYsyGt2vZtUx9GdLivVepgyvW0pmRuKRK8pWb2pGpzBTkN8cgjj+Cjjz7Cf//7X7Rt2xYnT57E4cOHsWrVKgBATk4O8vPzERcXJz5HrVajZ8+eSE1NxahRo5Camgpvb28xGAKAuLg4ODg4IC0tDU899VSN711WVoaysjLxd3N2BdqT2v5J5XJHRUTUWFVdUPePhrVWd5Op19OakrmtneBtS0weZVZUVIS///3vOHfuHACgY8eOmDx5MtRqtdkqN3/+fOh0OrRv3x6Ojo6orKzEm2++ibFjxwIA8vPzAQCBgYEGzwsMDBT35efnIyAgwGC/k5MTfHx8xDI1SUpKwpIlS8z2WexRXf+kHD1GRPaiti4oa13LeD21DpMCouPHjyM+Ph5ubm7o0aMHAGDVqlV488038cMPP+Chhx4yS+X++c9/YsuWLdi6dSs6duyIzMxMzJo1C8HBwZgwYYJZ3qM2CxYswJw5c8TfdTodQkJCLPqetqauf1Kp76iIiMxJylxHXk+tw6Rh97Nnz8YTTzyBS5cuYceOHdixYwdycnIwZMgQzJo1y2yVmzt3LubPn49Ro0YhMjIS48aNw+zZs5GUlAQA0Gg0AICCggKD5xUUFIj7NBoNCgsLDfbfuXMHN27cEMvUxNXVFV5eXgYPMlTXkHmOHiMiexOkdkN0uK/Vr2O8nlqHyS1EGzZsgJPTH093cnLCK6+8YpCr01glJSVwcDCM2RwdHaHX6wEAYWFh0Gg02LdvHx588EEAd1ty0tLSMH36dABAdHQ0ioqKkJGRgW7dugEAUlJSoNfr0bNnT7PVVYnqa0bm6DEiIvPg9dTyTAqIvLy8kJubi/bt2xtsv3LlCpo2bWqWigHA448/jjfffBOhoaHo2LEjfvrpJ6xatQqTJ08GAKhUKsyaNQvLli1DmzZtxGH3wcHBGDp0KACgQ4cOGDBgAKZOnYr169ejoqICiYmJGDVqlNEjzKh29f2TMoGPiMg8eD21LJMCopEjR2LKlCl4++238cgjjwAAjhw5grlz52L06NFmq9zatWuxcOFCvPDCCygsLERwcDCee+45LFq0SCzzyiuv4NatW5g2bRqKiorQq1cv7NmzR5yDCAC2bNmCxMRE9OvXDw4ODhg+fDjWrFljtnoqHf9JiYjI1pm0uGt5eTnmzp2L9evX486dOwAAZ2dnTJ8+HcnJyXB1dTV7RaWm5HmIjJ0MjIiISG6M/f5u1Gr3JSUlyM7OBgCEh4fD3d1+M96VGhBxckUiIrJlVlnt3t3dHZGRkY15CZIxTq5IRGR/2OpfM5MCotu3b2Pt2rXYv38/CgsLxVFfVU6cOGGWypG0OBkYEZF9Yat/7UwKiKZMmYIffvgBI0aMQI8ePepd9JVsEycDIyKyH2z1r5tJAdHu3bvx7bffIiYmxtz1IRmRerp6IiIyH7b6182kgKh58+ZmnW+I5IuTgRGR3DAHxjRs9a+bSUt3/PWvf8W8efNw+fJlc9eHZEiq6eqJiO63PT0XMckpGLMhDTHJKdienit1lWwGlwCpm0ktRFFRUbh9+zZatWoFd3d3ODs7G+y/ceOGWSpHRGQsthrYP+bANB5b/WtnUkA0evRo/Prrr1i+fDkCAwOZVE1EkuLIGWVgDox5cHWBmpkUEB09ehSpqano0qWLuetDRNQgbDVQDubAkCWZlEPUvn17lJaWmrsuREQNVlerAdkX5sCQJZnUQpScnIyXXnoJb775JiIjI6vlEClpaQsikhZbDZSFOTBkKSatZebgcLdh6f7cIUEQoFKpUFlZaZ7ayYhS1zIjsgXb03OrzZfFHCLbxQR5MieLrmW2f/9+kytGRGQuVV+csW39cXh+X7Ya2AEmyJNUTAqIevfubVS5F154AUuXLoWfn58pb0NEVCt+cdofJsiTlExKqjbWp59+Cp1OZ8m3ICIFqu2LM0/LwR6WlqctxdHs6xY51kyQJymZ1EJkLBPSk4iI6sX5aKRh6VY5JsiTlCzaQkREZAlVX5z34henZVmjVY7D6klKFm0hIiKyhKovzvtHlvGL03Ks1Sonl2H1HOmmPAyIiGwEL9CG5PLFqRTW7M6SemkJJuwrE7vMiGwAV/iuWZDaDdHhvgyGrEAp3VlM2Fcui7YQPfPMM5zE0AzYMqBschuKzPNRuZTQKseEfeUyOSAqKirCsWPHUFhYCL1eb7Bv/PjxAIB169Y1rnbEpluS1QWa5yNJ3Z1laRzpplwmBURff/01xo4di+LiYnh5eRks4aFSqcSAiBpHbi0DJA25XKB5PpISMGFfuUwKiF566SVMnjwZy5cvh7s7o2ZLkVPLAEnH3BdoU7u8eD6SUiiha5CqMykg+vXXXzFz5kwGQxYml5YBkp65LtCN6fLi+Uj2pq6bA3vvGqTqTBplFh8fj+PHj5u7LnQfpYzqIOM0dkRVY0fP8Hy0D5ZcesOWcOQm3c/oFqJdu3aJPw8ePBhz587Fzz//jMjISDg7OxuUfeKJJ8xXQ4Vj0y2Zizm6vHg+2jYmxd/FfDiqidEB0dChQ6ttW7p0abVtKpUKlZWVjaoUGWLTLZmDubq8eD7aJgYBf2A+HNXE6C4zvV5v1IPBEJE82XqXF7t6Gocryf+Ba+FRTUxKqv7kk08wcuRIuLq6GmwvLy/HZ599xmH3RDIlxy4vY0a9savHNPceWybF/4FD66kmKkEQhPqLGXJ0dEReXh4CAgIMtv/2228ICAiwy1YinU4HtVoNrVbL2beJzMSYQCdPW4qY5JRqX+SH5/flF1gdajq2AKoFAUoOLPO0pbK6OSDLMPb726QWIkEQDCZjrPLLL79ArVab8pJEpDDG5rQw36Phaju2h+f3xeH5fRkE/D/mw9G9GhQQde3aFSqVCiqVCv369YOT0x9Pr6ysRE5ODgYMGGD2ShKR/TE20GFXT8PVdWy5GC5RzRoUEFWNNMvMzER8fDw8PT3FfS4uLmjZsiWGDx9u1goSkX2qKdBxAODuYjjWg/keDccgkqjhTMoh2rx5M0aOHIkmTZpYok6yxBwiIvPbnp4rBjpV6solYleP8e49tswXIiUz9vvbpICoSnl5eY2r3YeG2t8/HQMiosaraUTZySu/Y+gHRyEwadrsGEQSWTip+sKFC5g8eTKOHj1qsL0q2doeR5kRUePUNqLsVnkl7r8tY9K0eTBpmGpj6iLP9syktcwmTpwIBwcH7N69GxkZGThx4gROnDiBn376CSdOnDBrBX/99Vc888wz8PX1hZubGyIjIw3WURMEAYsWLUJQUBDc3NwQFxeHCxcuGLzGjRs3MHbsWHh5ecHb2xtTpkxBcXGxWetJRLWrax01TpJHZF1cx61mJrUQZWZmIiMjA+3btzd3fQz8/vvviImJQd++ffHdd9/B398fFy5cQLNmzcQyK1euxJo1a7B582aEhYVh4cKFiI+Px88//yzmOI0dOxZ5eXnYu3cvKioqMGnSJEybNg1bt261aP2J6K76Rj0xaZrIOriES+1MCogiIiJw/fp1c9elmhUrViAkJAQbN24Ut4WFhYk/C4KA1atX47XXXsOTTz4J4O4s2oGBgfjyyy8xatQonDt3Dnv27EF6ejqioqIAAGvXrsWgQYPw9ttvIzg42OKfg0gqcmkWr2/Ukxxn0CayR5zXq3YmdZmtWLECr7zyCg4cOIDffvsNOp3O4GEuu3btQlRUFP785z8jICAAXbt2xYYNG8T9OTk5yM/PR1xcnLhNrVajZ8+eSE1NBQCkpqbC29tbDIYAIC4uDg4ODkhLS6v1vcvKyiz2uYis4d5m8UeSUvDhwWzJ6mLMOmpBajfOkWMmXPeNasMu6tqZ1EJUFYA89thjBjNWmzup+n//+x/WrVuHOXPm4NVXX0V6ejpmzpwJFxcXTJgwAfn5+QCAwMBAg+cFBgaK+/Lz86stMeLk5AQfHx+xTE2SkpKwZMkSs3wOImu7v1lcAJD03XlABTwXGy5JnZTSCiR1qxzXfaO6cF6v2pkUEO3fv9/c9aiRXq9HVFQUli9fDuDuTNlnzpzB+vXrMWHCBIu+94IFCzBnzhzxd51Oh5CQEIu+J5G51NQsDgArvjuPJ7oES3bxs/dRT1IHI8wPIWPI6eZE6huIe5nUZda7d284ODhgw4YNmD9/Plq3bo3evXsjNzcXjo6OZqtcUFAQIiIiDLZ16NABubl3M+I1Gg0AoKCgwKBMQUGBuE+j0aCwsNBg/507d3Djxg2xTE1cXV3h5eVl8CCyFWF+Hqi+2uDdL8hL10tqfA67WRqnrpF01lJXfgjRveTQRX1/t/7yb36W9PpjUkD0r3/9C/Hx8XBzc8NPP/2EsrIyAIBWqxVbc8whJiYGWVlZBtv++9//okWLFgDuJlhrNBrs27dP3K/T6ZCWlobo6GgAQHR0NIqKipCRkSGWSUlJgV6vR8+ePc1WVyI5CVK7Yf7A6qNAa8sV4DDcxpNDMML8ELIVNXXrf/SfHEmvPyYFRMuWLcP69euxYcMGODs7i9tjYmLMOg/R7Nmz8eOPP2L58uW4ePEitm7dio8++ggJCQkAAJVKhVmzZmHZsmXYtWsXTp8+jfHjxyM4OFhcd61Dhw4YMGAApk6dimPHjuHIkSNITEzEqFGjOMKM7NpzvcOxYFB78QuytlwBObRs2AM5BCPGJK8TyUFt3fpSXn9MyiHKyspCbGxste1qtRpFRUWNrZOoe/fu2LlzJxYsWIClS5ciLCwMq1evxtixY8Uyr7zyCm7duoVp06ahqKgIvXr1wp49ewzWWduyZQsSExPRr18/ODg4YPjw4VizZo3Z6kkkV8/FhuOJLsF15gpwGK55yCVZVU75IUS1qWkqjipSXX9MCog0Gg0uXryIli1bGmw/fPgwWrVqZY56iYYMGYIhQ4bUul+lUmHp0qVYunRprWV8fHw4CSMpVn2JzFwZ3XzkEowYk7wup2RWUp6qG4gF/zoN/X37pLr+mNRlNnXqVLz44otIS0uDSqXC1atXsWXLFrz88suYPn26uetIRBbEbhbzkkOyan2YM0ZyMLJ7KI4seAzTHm1Vb9e+NZi02r0gCFi+fDmSkpJQUnI3YdDV1RUvv/wy3njjDbNXUg642j3ZO66Mrgx52lLEJKdUaxE8PL8v/+4kGUtef4z9/jYpIKpSXl6Oixcvori4GBEREfD09DT1pWSPARER2YOj2dcxZkP1Wfq3TX0Y0eG+EtSIyLKM/f42KYeoiouLS7V5goiISL6YM0ZUM5NyiIiIyDYxZ4yoZo1qISIiItsjl9FwRHLCgIiISIHsfV05ooZilxkREREpHgMiIjvCBVqJiEzDLjMiG1PbDMPb03PFNckcVEDSsEiM7B4qYU2JiGwHAyIiG1Jb0FPbAq2xbf2ZJ0JEZAR2mRHZiLpWpa9rgVYiIqofAyIiG1FX0FM12d69ONkeEZHxGBAR2Yi6gh5OtkdE1DjMISKyEVVBz6s7zqBSEKoFPZxsj4jIdAyIiGxIfUEPJ9sjIjINAyIiG8Ogh4jI/JhDRGRlnDyRiMyF1xPzYQsRkRVx8kQiMhdeT8yLLUREVlLXPEKkHLyjJ3Pg9cT82EJEZCV1zSPEnCBl4B09mQuvJ+bHFiIiK+HkicrGO3oyJ15PzI8BEZGVcPJEZePyKmROvJ6YH7vMiKyIkycqV9Ud/b1BEe/oqTF4PTEvthARWVmQ2g3R4b68eCkM7+jJEng9MR+2EBERWYkS7+jztKXIuX4LYX4eivi8ZLsYEJFi8UJNUlDSTOMcVUe2hAERKZI5L9QMrIiqq21UXWxbf/6fkCwxICLFMeeFmnfARDXjPDlka5hUTYpjruHPcphXhrMek1xxnhyyNQyISHHMdaGWel6Z7em5iElOwZgNaYhJTsH29FyrvC+RMTiqjmwNu8xIcaou1K/uOINKQTD5Qi3lvDLMzyBboMRRdWS7GBCRIpnjQm2uwMoUzM8gW6GkUXVk2xgQkWKZ40It1R0wZz0mIjIv5hARNZIUM8UyP4OIyLzYQkRmx3l5rIP5GdbHc5vIfjEgIrPivDzWxfwM6+G5TWTf2GVGZiOHeXmILIHnNpH9Y0BEZiP1vDxkPUqbEJLnNpH9s6mAKDk5GSqVCrNmzRK33b59GwkJCfD19YWnpyeGDx+OgoICg+fl5uZi8ODBcHd3R0BAAObOnYs7d+5Yufb2jzPTKoMSJ4TkuU1k/2wmIEpPT8eHH36Izp07G2yfPXs2vv76a3z++ec4ePAgrl69imHDhon7KysrMXjwYJSXl+Po0aPYvHkzNm3ahEWLFln7I9g9jnyyf0rtOuK5TWT/VIIgCPUXk1ZxcTEeeughfPDBB1i2bBkefPBBrF69GlqtFv7+/ti6dStGjBgBADh//jw6dOiA1NRUPPzww/juu+8wZMgQXL16FYGBgQCA9evXY968ebh27RpcXFyMqoNOp4NarYZWq4WXl5fFPqs9yNOWcuSTnTqafR1jNqRV275t6sOIDveVoEbWxXObyPYY+/1tEy1ECQkJGDx4MOLi4gy2Z2RkoKKiwmB7+/btERoaitTUVABAamoqIiMjxWAIAOLj46HT6XD27Nla37OsrAw6nc7gQcaRYl4esg6ldx3x3CayX7IPiD777DOcOHECSUlJ1fbl5+fDxcUF3t7eBtsDAwORn58vlrk3GKraX7WvNklJSVCr1eIjJCSkkZ+EyPax64hqorQke7JPsp6H6MqVK3jxxRexd+9eNGnSxKrvvWDBAsyZM0f8XafTMSgiAieEJEOcn8k8OOmn9GQdEGVkZKCwsBAPPfSQuK2yshKHDh3Ce++9h++//x7l5eUoKioyaCUqKCiARqMBAGg0Ghw7dszgdatGoVWVqYmrqytcXV3N+GnIFvEiVTNOCElA7Un2sW39eX40AINKeZB1l1m/fv1w+vRpZGZmio+oqCiMHTtW/NnZ2Rn79u0Tn5OVlYXc3FxER0cDAKKjo3H69GkUFhaKZfbu3QsvLy9ERERY/TOR7VDi8HKihjBlfiZ2rxlS6shNOZJ1C1HTpk3RqVMng20eHh7w9fUVt0+ZMgVz5syBj48PvLy8MGPGDERHR+Phhx8GAPTv3x8REREYN24cVq5cifz8fLz22mtISEhgCxDVine+RPWrSrK/NyiqK8meLSHV1RVU8lpjXbJuITLGO++8gyFDhmD48OGIjY2FRqPBjh07xP2Ojo7YvXs3HB0dER0djWeeeQbjx4/H0qVLJaw1yZ0tzkzMO2+ytoYk2bMlpGZKH7kpJzYxD5EcKG0eIqXnzuRpSxGTnFLtzvfw/L6yPB688yYpGTM/k9LnsKrL9vRcvLrjDCoFQQwq+f9rPsZ+f8u6y4ykwS/XP+58779I1RUMSRVEsnuPpGZMkn1Du9eUhCM35YEBERngl+sfGnKRkjKIZA4C2QJTbjKUhCM3pceAiAzwy9WQMRcpqYNI3nmTrWBLCMmZzSdVk3kxwa/hpE7A5uzRZEu4/AnJFVuIyACbtRtODi00vPMmsg9KH9AiJQZEVA2/XBtGLkEkcxCIbBsHtEiLw+6NpLRh90pnyl2aMUOPyXS8cyZ7ZmtTfdgSDrsnMpGpd2lsobEc3jmTveOAFukxqZroHpxNV374NyEl4IAW6TEgIsW7d8kLqUeMUXX8m5AScLSo9NhlRop2f1fMvAHtJR8xRobkMIpPKZinJS0OaJEWW4hIsWrqilm5JwvzBrbnXZqM8M7ZOran5yImOQVjNqQhJjkF29Nzpa6SInGeJumwhYgUq7aumM7NvXF4fl/epckI75wtS+rZ1onkgAERKVZdXTEcMSY//JtYDkc4EbHLjBSMXTFEd3GEExFbiEjh2BVDJJ/Z1omkxICIFI9dMUS8OSBiQERERAB4c0DKxhwiIiIiI907kSvZF7YQERERGYFr6tk3thARERHVg2vq2T8GRERERPXgmnr2jwERERFRPThXk/1jQERERFQPTuRq/5hUTUREZATO1WTfGBARkc3J05Yi5/othPl58EuJrIpzNdkvBkREZFM49JmILIE5RERkMzj0mYgshQEREdkMDn0mW8EZrW0Pu8yIyGZUDX2+Nyji0GeSG3br2ia2EJFF8O6ILIFDn0nu2K1ru9hCRGbHuyOyJA59Jjmrq1uX56q8sYWIzIp3R2QNQWo3RIf78guGZIczWtsuBkRkVkx6JSJb1tjufnbr2i52mZFZMemViGxVQ7r765oclN26toktRGRWvDsiIlvUkO7+7em5iElOwZgNaYhJTsH29NxqZdita3vYQkRmx7sjIrI1xiZD1xY4xbb157XOxjEgIovgej9EZEuM7e7nKDL7Jfsus6SkJHTv3h1NmzZFQEAAhg4diqysLIMyt2/fRkJCAnx9feHp6Ynhw4ejoKDAoExubi4GDx4Md3d3BAQEYO7cubhz5441Pwr9P85RRERyY2x3P0eR2S/ZtxAdPHgQCQkJ6N69O+7cuYNXX30V/fv3x88//wwPDw8AwOzZs/HNN9/g888/h1qtRmJiIoYNG4YjR44AACorKzF48GBoNBocPXoUeXl5GD9+PJydnbF8+XIpP57icI4iIpIrY7r7qwKnV3ecQaUgME/SjqgEQRDqLyYf165dQ0BAAA4ePIjY2FhotVr4+/tj69atGDFiBADg/Pnz6NChA1JTU/Hwww/ju+++w5AhQ3D16lUEBgYCANavX4958+bh2rVrcHFxqfd9dTod1Go1tFotvLy8LPoZ7VWethQxySnVmqQPz+/LiwmRieoa7USWk6ctZZ6kjTD2+1v2XWb302q1AAAfHx8AQEZGBioqKhAXFyeWad++PUJDQ5GamgoASE1NRWRkpBgMAUB8fDx0Oh3Onj1b4/uUlZVBp9MZPKhxOEcRkXkZM9qJLIOjyOyPTQVEer0es2bNQkxMDDp16gQAyM/Ph4uLC7y9vQ3KBgYGIj8/XyxzbzBUtb9qX02SkpKgVqvFR0hIiJk/jfKw753kxNZz2TgrPJF52VRAlJCQgDNnzuCzzz6z+HstWLAAWq1WfFy5csXi72nvOEcRyYU9tKywxZXIvGSfVF0lMTERu3fvxqFDh/DAAw+I2zUaDcrLy1FUVGTQSlRQUACNRiOWOXbsmMHrVY1CqypzP1dXV7i6upr5UxDnKCKp2cs8MpwVnsi8ZN9CJAgCEhMTsXPnTqSkpCAsLMxgf7du3eDs7Ix9+/aJ27KyspCbm4vo6GgAQHR0NE6fPo3CwkKxzN69e+Hl5YWIiAjrfBASse+dpGQvLStscSUyL9m3ECUkJGDr1q346quv0LRpUzHnR61Ww83NDWq1GlOmTMGcOXPg4+MDLy8vzJgxA9HR0Xj44YcBAP3790dERATGjRuHlStXIj8/H6+99hoSEhLYCkSkMPbUssIWVyLzkf2we5VKVeP2jRs3YuLEiQDuTsz40ksvYdu2bSgrK0N8fDw++OADg+6wy5cvY/r06Thw4AA8PDwwYcIEJCcnw8nJuJiQw+6JbIMxw9C3p+dWm0eG82ER2Sdjv79lHxDJBQMiskf2NodNQ1crZ8sKkf0z9vtb9l1mRGQZ9jZreEOTpbneHhHdS/ZJ1URkfvY4h429JEsTkTQYEBEpkD0GD5z4k4gagwERkQLZY/DAYehE1BjMISJSIHtdsZvD0InIVAyIiBTKksGDlKPXmCxNJA+2NoqVARGRglkieLC30WtE1HC2eB1gDhERmY2cRq/Z+mr2RLZKTteBhmALERGZTV2j16zZZG6Ld6dE9kIu14GGYgsRKQZbDCxPDqPXbPXulMheyOE6YAoGRKQI29NzEZOcgjEb0hCTnILt6blSV8kuyWHouz3OsURkS+RwHTAFu8zsjK1l9VtDQ5d0oMaReui7Pa1mT2SrpL4OmIIBkR1h3kTNbLU/25ZJOfTdXudYIrI1tjYFBgMiOyFFK4ittEaxxUB5bPHulIikxYDITli7FcSWWqPYYtAwthLo1sfW7k4bwl7+RkRywoDITlizFcQWc3LYYvCHur5MbSnQVSr+jYgsg6PM7IQ1s/ptdRRPkNoN0eG+ig6G6hptx+Hq8se/EZHlsIXIjlirFYQ5ObapvpY9Jp/LH/9GRJbDFiI7Y41WEFudY0Lp6mvZs9XJ1JSEfyPjcBJWMgVbiMgkzMmxPfW17DH5XP74N6ofc6zIVCpBEIT6i5FOp4NarYZWq4WXl5fU1SEyyfb03Gpfpvd/WeRpSxnoyhz/RjXL05YiJjmlWtB/eH5fHicFM/b7my1ERApiTMuePQ9Xtxf8G9WMOVbUGAyIiBSGX6ZkrzjggxqDSdVERGQXOOCDGoMtRERkUZxVmayJAz7IVAyIiMhiOOKHpMBuYTIFu8yIyCI4qzIR2RIGRERkEba6xAuRXHCCSetilxmRzNlqDg5H/BCZjt3N1scWIiIZq2sx1trI5a6SI37I1kn1v8TuZmmwhYhIpupbjLUmcrur5IgfslVS/i9xgklpsIWIjCKXVgclaWgOjlzvKq2x4DCROUn9v8RFfKXBgIjqZUq3DTVeQy+KTGImMg+p/5fY3SwNdplRnUzptiHzaOjK5kxiJjIPOfwvsbvZ+hgQUZ3Yly2thlwUGxpAkXLZ6shFa5HL/xInmLQuBkRUJzncKSldQy6KvKuk+pgrWdjegyr+LykPAyKJyf2iIpc7JTIe7yqpNubqApfbaEZL4f+SsjAgkpCtXFR4p0RkH8zRBc68QrJXihpl9v7776Nly5Zo0qQJevbsiWPHjklWF6mHdTYUh04T2T5zDOeWegQWkaUoJiDavn075syZg9dffx0nTpxAly5dEB8fj8LCQknqw4sKEVmbOYZzc44cslcqQRCE+ovZvp49e6J79+547733AAB6vR4hISGYMWMG5s+fX+/zdTod1Go1tFotvLy8Gl2fPG0pYpJTqiUrH57fl60wRGRRedrSRnWBb0/PrZZXKMfufiLA+O9vReQQlZeXIyMjAwsWLBC3OTg4IC4uDqmpqZLUicnKRCSVxiYLM6+Q7JEiAqLr16+jsrISgYGBBtsDAwNx/vz5Gp9TVlaGsrIy8XedTmf2evGiQkS2iiOwyN4oJoeooZKSkqBWq8VHSEiIRd6HycpERETSU0RA5OfnB0dHRxQUFBhsLygogEajqfE5CxYsgFarFR9XrlyxRlWJiIhIAooIiFxcXNCtWzfs27dP3KbX67Fv3z5ER0fX+BxXV1d4eXkZPIiIiMg+KSKHCADmzJmDCRMmICoqCj169MDq1atx69YtTJo0SeqqERERkcQUExCNHDkS165dw6JFi5Cfn48HH3wQe/bsqZZoTURERMqjmHmIGsvc8xARERGR5Rn7/a2IHCIiIiKiujAgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPMXMQ9RYVbMTWGKRVyIiIrKMqu/t+mYZYkBkpJs3bwKAxRZ5JSIiIsu5efMm1Gp1rfs5MaOR9Ho9rl69iqZNm0KlUkldHavR6XQICQnBlStXOCFlI/FYmgePo/nwWJoHj6P5WOJYCoKAmzdvIjg4GA4OtWcKsYXISA4ODnjggQekroZkuMCt+fBYmgePo/nwWJoHj6P5mPtY1tUyVIVJ1URERKR4DIiIiIhI8RgQUZ1cXV3x+uuvw9XVVeqq2DweS/PgcTQfHkvz4HE0HymPJZOqiYiISPHYQkRERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEBAA4dOgQHn/8cQQHB0OlUuHLL7802C8IAhYtWoSgoCC4ubkhLi4OFy5ckKayMlbfcZw4cSJUKpXBY8CAAdJUVuaSkpLQvXt3NG3aFAEBARg6dCiysrIMyty+fRsJCQnw9fWFp6cnhg8fjoKCAolqLE/GHMc+ffpUOy+ff/55iWosX+vWrUPnzp3FSQOjo6Px3Xffift5PhqnvuMo1fnIgIgAALdu3UKXLl3w/vvv17h/5cqVWLNmDdavX4+0tDR4eHggPj4et2/ftnJN5a2+4wgAAwYMQF5envjYtm2bFWtoOw4ePIiEhAT8+OOP2Lt3LyoqKtC/f3/cunVLLDN79mx8/fXX+Pzzz3Hw4EFcvXoVw4YNk7DW8mPMcQSAqVOnGpyXK1eulKjG8vXAAw8gOTkZGRkZOH78OB577DE8+eSTOHv2LACej8aq7zgCEp2PAtF9AAg7d+4Uf9fr9YJGoxHeeustcVtRUZHg6uoqbNu2TYIa2ob7j6MgCMKECROEJ598UpL62LrCwkIBgHDw4EFBEO6eg87OzsLnn38uljl37pwAQEhNTZWqmrJ3/3EUBEHo3bu38OKLL0pXKRvWrFkz4W9/+xvPx0aqOo6CIN35yBYiqldOTg7y8/MRFxcnblOr1ejZsydSU1MlrJltOnDgAAICAtCuXTtMnz4dv/32m9RVsglarRYA4OPjAwDIyMhARUWFwXnZvn17hIaG8rysw/3HscqWLVvg5+eHTp06YcGCBSgpKZGiejajsrISn332GW7duoXo6Giejya6/zhWkeJ85OKuVK/8/HwAQGBgoMH2wMBAcR8ZZ8CAARg2bBjCwsKQnZ2NV199FQMHDkRqaiocHR2lrp5s6fV6zJo1CzExMejUqROAu+eli4sLvL29DcryvKxdTccRAMaMGYMWLVogODgYp06dwrx585CVlYUdO3ZIWFt5On36NKKjo3H79m14enpi586diIiIQGZmJs/HBqjtOALSnY8MiIisaNSoUeLPkZGR6Ny5M8LDw3HgwAH069dPwprJW0JCAs6cOYPDhw9LXRWbVttxnDZtmvhzZGQkgoKC0K9fP2RnZyM8PNza1ZS1du3aITMzE1qtFl988QUmTJiAgwcPSl0tm1PbcYyIiJDsfGSXGdVLo9EAQLXREgUFBeI+Mk2rVq3g5+eHixcvSl0V2UpMTMTu3buxf/9+PPDAA+J2jUaD8vJyFBUVGZTneVmz2o5jTXr27AkAPC9r4OLigtatW6Nbt25ISkpCly5d8O677/J8bKDajmNNrHU+MiCieoWFhUGj0WDfvn3iNp1Oh7S0NIM+X2q4X375Bb/99huCgoKkrorsCIKAxMRE7Ny5EykpKQgLCzPY361bNzg7Oxucl1lZWcjNzeV5eY/6jmNNMjMzAYDnpRH0ej3Kysp4PjZS1XGsibXOR3aZEQCguLjYIPrOyclBZmYmfHx8EBoailmzZmHZsmVo06YNwsLCsHDhQgQHB2Po0KHSVVqG6jqOPj4+WLJkCYYPHw6NRoPs7Gy88soraN26NeLj4yWstTwlJCRg69at+Oqrr9C0aVMxD0OtVsPNzQ1qtRpTpkzBnDlz4OPjAy8vL8yYMQPR0dF4+OGHJa69fNR3HLOzs7F161YMGjQIvr6+OHXqFGbPno3Y2Fh07txZ4trLy4IFCzBw4ECEhobi5s2b2Lp1Kw4cOIDvv/+e52MD1HUcJT0frT6ujWRp//79AoBqjwkTJgiCcHfo/cKFC4XAwEDB1dVV6Nevn5CVlSVtpWWoruNYUlIi9O/fX/D39xecnZ2FFi1aCFOnThXy8/OlrrYs1XQcAQgbN24Uy5SWlgovvPCC0KxZM8Hd3V146qmnhLy8POkqLUP1Hcfc3FwhNjZW8PHxEVxdXYXWrVsLc+fOFbRarbQVl6HJkycLLVq0EFxcXAR/f3+hX79+wg8//CDu5/lonLqOo5Tno0oQBMGyIRcRERGRvDGHiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPARER2bzy8nKpq1CNHOtERLVjQEREstOnTx8kJiYiMTERarUafn5+WLhwIapWGmrZsiXeeOMNjB8/Hl5eXpg2bRoA4PDhw3j00Ufh5uaGkJAQzJw5E7du3RJf94MPPkCbNm3QpEkTBAYGYsSIEeK+L774ApGRkXBzc4Ovry/i4uLE5/bp0wezZs0yqOPQoUMxceJE8XdT60RE8sCAiIhkafPmzXBycsKxY8fw7rvvYtWqVfjb3/4m7n/77bfRpUsX/PTTT1i4cCGys7MxYMAADB8+HKdOncL27dtx+PBhJCYmAgCOHz+OmTNnYunSpcjKysKePXsQGxsLAMjLy8Po0aMxefJknDt3DgcOHMCwYcPQ0KUeG1onIpIPLu5KRLLTp08fFBYW4uzZs1CpVACA+fPnY9euXfj555/RsmVLdO3aFTt37hSf8+yzz8LR0REffvihuO3w4cPo3bs3bt26hW+//RaTJk3CL7/8gqZNmxq834kTJ9CtWzdcunQJLVq0qLE+Dz74IFavXi1uGzp0KLy9vbFp0yYAMKlOTZo0adRxIiLzYQsREcnSww8/LAZDABAdHY0LFy6gsrISABAVFWVQ/uTJk9i0aRM8PT3FR3x8PPR6PXJycvCnP/0JLVq0QKtWrTBu3Dhs2bIFJSUlAIAuXbqgX79+iIyMxJ///Gds2LABv//+e4Pr3NA6EZF8MCAiIpvk4eFh8HtxcTGee+45ZGZmio+TJ0/iwoULCA8PR9OmTXHixAls27YNQUFBWLRoEbp06YKioiI4Ojpi7969+O677xAREYG1a9eiXbt2YtDi4OBQrfusoqKi0XUiIvlgQEREspSWlmbw+48//og2bdrA0dGxxvIPPfQQfv75Z7Ru3braw8XFBQDg5OSEuLg4rFy5EqdOncKlS5eQkpICAFCpVIiJicGSJUvw008/wcXFRez+8vf3R15envhelZWVOHPmTL2fwZg6EZE8MCAiIlnKzc3FnDlzkJWVhW3btmHt2rV48cUXay0/b948HD16FImJicjMzMSFCxfw1VdfiQnMu3fvxpo1a5CZmYnLly/jk08+gV6vR7t27ZCWlobly5fj+PHjyM3NxY4dO3Dt2jV06NABAPDYY4/hm2++wTfffIPz589j+vTpKCoqqvcz1FcnIpIPJ6krQERUk/Hjx6O0tBQ9evSAo6MjXnzxRXEoe006d+6MgwcP4i9/+QseffRRCIKA8PBwjBw5EgDg7e2NHTt2YPHixbh9+zbatGmDbdu2oWPHjjh37hwOHTqE1atXQ6fToUWLFvjrX/+KgQMHAgAmT56MkydPYvz48XBycsLs2bPRt2/fej9DfXUiIvngKDMikp2aRnUREVkSu8yIiIhI8RgQERERkeKxy4yIiIgUjy1EREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHj/BxuX9VtXNomyAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABELElEQVR4nO3deXRU9f3/8dckkBCWDFs2IRB2RCAgi4QoBEED9adGtEX4VnYsCApSF7AugNag1harFixWqAtKsaBWcaFsHgQpi1GhypEUSJSExZYJhBAgub8/aKaErDOZmXvnzvNxzpwDd+7MvOfmztz3vD+bwzAMQwAAADYRZnYAAAAAvkRyAwAAbIXkBgAA2ArJDQAAsBWSGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgPAFPPmzZPD4ajVvg6HQ/PmzfNrPGlpaUpLS7Ps8wGoPZIbIMQtX75cDofDfatXr55atWql8ePH64cffjA7PMtJSkoqd7xiY2N1zTXXaM2aNT55/tOnT2vevHnatGmTT54PCEUkNwAkSQsWLNBrr72mJUuWaMSIEXr99dc1ePBgnTlzxi+v9/DDD6uoqMgvz+1vvXr10muvvabXXntN9913nw4fPqyRI0dqyZIldX7u06dPa/78+SQ3QB3UMzsAANYwYsQI9e3bV5I0efJktWzZUk899ZTee+89/exnP/P569WrV0/16gXnV1CrVq3085//3P3/sWPHqmPHjvrd736nqVOnmhgZAInKDYAqXHPNNZKk7Ozsctu//fZb3XbbbWrevLkaNGigvn376r333iu3z7lz5zR//nx16tRJDRo0UIsWLXT11Vdr3bp17n0q63NTXFyse++9VzExMWrSpIluuukmff/99xViGz9+vJKSkipsr+w5ly1bpmuvvVaxsbGKjIxUt27dtHjxYo+ORU3i4+N1+eWX68CBA9Xud/ToUU2aNElxcXFq0KCBkpOT9ec//9l9/8GDBxUTEyNJmj9/vrvpy9/9jQC7Cc6fTQD87uDBg5KkZs2aubft3btXqampatWqlebMmaNGjRrpL3/5izIyMvTXv/5Vt9xyi6QLSUZmZqYmT56s/v37q6CgQDt37tTu3bt13XXXVfmakydP1uuvv64xY8Zo4MCB2rBhg2644YY6vY/Fixfriiuu0E033aR69erpb3/7m+666y6VlpZq+vTpdXruMufOnVNubq5atGhR5T5FRUVKS0vT/v37NWPGDLVr106rVq3S+PHjdeLECc2cOVMxMTFavHixpk2bpltuuUUjR46UJPXs2dMncQIhwwAQ0pYtW2ZIMv7+978bx44dM3Jzc423337biImJMSIjI43c3Fz3vkOHDjV69OhhnDlzxr2ttLTUGDhwoNGpUyf3tuTkZOOGG26o9nUfe+wx4+KvoKysLEOScdddd5Xbb8yYMYYk47HHHnNvGzdunNG2bdsan9MwDOP06dMV9ktPTzfat29fbtvgwYONwYMHVxuzYRhG27Ztjeuvv944duyYcezYMePLL780br/9dkOScffdd1f5fIsWLTIkGa+//rp729mzZ42UlBSjcePGRkFBgWEYhnHs2LEK7xeAZ2iWAiBJGjZsmGJiYpSYmKjbbrtNjRo10nvvvafWrVtLkv79739rw4YN+tnPfqaTJ0/q+PHjOn78uH788Uelp6fru+++c4+uatq0qfbu3avvvvuu1q+/du1aSdI999xTbvusWbPq9L6ioqLc/3a5XDp+/LgGDx6sf/3rX3K5XF495yeffKKYmBjFxMQoOTlZq1at0h133KGnnnqqysesXbtW8fHxGj16tHtb/fr1dc899+jUqVPavHmzV7EAqIhmKQCSpBdffFGdO3eWy+XSK6+8ok8//VSRkZHu+/fv3y/DMPTII4/okUceqfQ5jh49qlatWmnBggW6+eab1blzZ3Xv3l3Dhw/XHXfcUW3zyqFDhxQWFqYOHTqU296lS5c6va/PPvtMjz32mLZt26bTp0+Xu8/lcsnpdHr8nFdddZWeeOIJORwONWzYUJdffrmaNm1a7WMOHTqkTp06KSys/G/Kyy+/3H0/AN8guQEgSerfv797tFRGRoauvvpqjRkzRvv27VPjxo1VWloqSbrvvvuUnp5e6XN07NhRkjRo0CBlZ2fr3Xff1SeffKKXX35Zv/vd77RkyRJNnjy5zrFWNflfSUlJuf9nZ2dr6NCh6tq1q377298qMTFRERERWrt2rX73u9+535OnWrZsqWHDhnn1WAD+R3IDoILw8HBlZmZqyJAheuGFFzRnzhy1b99e0oWmlNpc2Js3b64JEyZowoQJOnXqlAYNGqR58+ZVmdy0bdtWpaWlys7OLlet2bdvX4V9mzVrphMnTlTYfmn1429/+5uKi4v13nvvqU2bNu7tGzdurDF+X2vbtq2++uorlZaWlqvefPvtt+77paoTNwC1R58bAJVKS0tT//79tWjRIp05c0axsbFKS0vTSy+9pLy8vAr7Hzt2zP3vH3/8sdx9jRs3VseOHVVcXFzl640YMUKS9Pvf/77c9kWLFlXYt0OHDnK5XPrqq6/c2/Ly8irMEhweHi5JMgzDvc3lcmnZsmVVxuEvP/nJT5Sfn6+VK1e6t50/f17PP/+8GjdurMGDB0uSGjZsKEmVJm8AaofKDYAq3X///frpT3+q5cuXa+rUqXrxxRd19dVXq0ePHpoyZYrat2+vI0eOaNu2bfr+++/15ZdfSpK6deumtLQ09enTR82bN9fOnTv19ttva8aMGVW+Vq9evTR69Gj94Q9/kMvl0sCBA7V+/Xrt37+/wr633367HnzwQd1yyy265557dPr0aS1evFidO3fW7t273ftdf/31ioiI0I033qhf/OIXOnXqlJYuXarY2NhKEzR/uvPOO/XSSy9p/Pjx2rVrl5KSkvT222/rs88+06JFi9SkSRNJFzpAd+vWTStXrlTnzp3VvHlzde/eXd27dw9ovEBQM3u4FgBzlQ0F37FjR4X7SkpKjA4dOhgdOnQwzp8/bxiGYWRnZxtjx4414uPjjfr16xutWrUy/t//+3/G22+/7X7cE088YfTv399o2rSpERUVZXTt2tX49a9/bZw9e9a9T2XDtouKiox77rnHaNGihdGoUSPjxhtvNHJzcysdGv3JJ58Y3bt3NyIiIowuXboYr7/+eqXP+d577xk9e/Y0GjRoYCQlJRlPPfWU8corrxiSjAMHDrj382QoeE3D3Kt6viNHjhgTJkwwWrZsaURERBg9evQwli1bVuGxW7duNfr06WNEREQwLBzwgsMwLqrXAgAABDn63AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGArITeJX2lpqQ4fPqwmTZowzTkAAEHCMAydPHlSl112WYUFaC8VcsnN4cOHlZiYaHYYAADAC7m5uWrdunW1+4RcclM2xXlubq6io6NNjgYAANRGQUGBEhMT3dfx6oRcclPWFBUdHU1yAwBAkKlNlxI6FAMAAFshuQEAALZCcgMAAGwl5PrcAABCR0lJic6dO2d2GKiliIiIGod51wbJDQDAdgzDUH5+vk6cOGF2KPBAWFiY2rVrp4iIiDo9D8kNAMB2yhKb2NhYNWzYkElbg0DZJLt5eXlq06ZNnf5mJDcAAFspKSlxJzYtWrQwOxx4ICYmRocPH9b58+dVv359r5+HDsUAAFsp62PTsGFDkyOBp8qao0pKSur0PCQ3AABboikq+Pjqb0ZyAwAAbIXkBgAABMSmTZvkcDj8PoqN5AYAPJDnKtLW7OPKcxWZHQpQwbx589SrVy+zwzAdo6UAoJZW7sjR3NVfq9SQwhxS5sgeGtWvjdlhAR47d+5cnUYjWR2VGwCohTxXkTuxkaRSQ3po9R4qOPCp0tJSZWZmql27doqKilJycrLefvttSf9r0lm/fr369u2rhg0bauDAgdq3b58kafny5Zo/f76+/PJLORwOORwOLV++XNKFjrqLFy/WTTfdpEaNGunXv/51tXGUvdbHH3+s3r17KyoqStdee62OHj2qDz/8UJdffrmio6M1ZswYnT592v244uJi3XPPPYqNjVWDBg109dVXa8eOHf45WNUguQGAWjhwvNCd2JQpMQwdPH668gfANgLZFJmZmalXX31VS5Ys0d69e3Xvvffq5z//uTZv3uze51e/+pWeffZZ7dy5U/Xq1dPEiRMlSaNGjdIvf/lLXXHFFcrLy1NeXp5GjRrlfty8efN0yy236Ouvv3Y/pibz5s3TCy+8oK1btyo3N1c/+9nPtGjRIq1YsUIffPCBPvnkEz3//PPu/R944AH99a9/1Z///Gft3r1bHTt2VHp6uv7973/76AjVDs1SAFAL7Vo2UphD5RKccIdDSS2ZS8XOAtkUWVxcrCeffFJ///vflZKSIklq3769tmzZopdeekl33nmnJOnXv/61Bg8eLEmaM2eObrjhBp05c0ZRUVFq3Lix6tWrp/j4+ArPP2bMGE2YMMGjmJ544gmlpqZKkiZNmqS5c+cqOztb7du3lyTddttt2rhxox588EEVFhZq8eLFWr58uUaMGCFJWrp0qdatW6c//elPuv/++707MF6gcgMAtZDgjFLmyB4K/+88HOEOh54c2V0JziiTI4O/BLopcv/+/Tp9+rSuu+46NW7c2H179dVXlZ2d7d6vZ8+e7n8nJCRIko4ePVrj8/ft29fjmC5+rbi4ODVs2NCd2JRtK3vt7OxsnTt3zp0MSVL9+vXVv39/ffPNNx6/dl1QuQGAWhrVr40GdY7RweOnldSyIYmNzVXXFOmPv/2pU6ckSR988IFatWpV7r7IyEh3gnNxR+CySe9KS0trfP5GjRp5HNOlr3VpJ2SHw1Gr1w40khsA8ECCM4qkJkQEuimyW7duioyMVE5OjrvZ6WIXV2+qEhERUeelC7zVoUMHRURE6LPPPlPbtm0lXRiVtWPHDs2aNSugsZDcAABQibKmyIdW71GJYfi9KbJJkya67777dO+996q0tFRXX321XC6XPvvsM0VHR7sThuokJSXpwIEDysrKUuvWrdWkSRNFRkb6Jd5LNWrUSNOmTdP999+v5s2bq02bNnr66ad1+vRpTZo0KSAxlCG5AQCgCoFuinz88ccVExOjzMxM/etf/1LTpk115ZVX6qGHHqpV88+tt96q1atXa8iQITpx4oSWLVum8ePH+zXmiy1cuFClpaW64447dPLkSfXt21cff/yxmjVrFrAYJMlhGIZR8272UVBQIKfTKZfLpejoaLPDAQD42JkzZ3TgwAG1a9dODRo0MDsceKC6v50n129GSwEAAFshuQEAIMRMnTq13HDzi29Tp041O7w6o88NAAAhZsGCBbrvvvsqvc8OXTZIbgAACDGxsbGKjY01Owy/oVkKAADYCskNAMCWrDhzLqrnqwHcNEsBAGwlIiJCYWFhOnz4sGJiYhQREeFepgDWZRiGjh07VukyD54iuQEA2EpYWJjatWunvLw8HT582Oxw4AGHw6HWrVsrPDy8Ts9DcgMAsJ2IiAi1adNG58+fN22tJXiufv36dU5sJJIbAIBNlTVv1LWJA8GHDsUAAMBWSG4AAICtkNwAAABbIbkBAAC2QnIDAABsheQGAADYCskNAACwFZIbAABgKyQ3AADAVkxNbhYvXqyePXsqOjpa0dHRSklJ0YcffljtY1atWqWuXbuqQYMG6tGjh9auXRugaAEAQDAwNblp3bq1Fi5cqF27dmnnzp269tprdfPNN2vv3r2V7r9161aNHj1akyZN0hdffKGMjAxlZGRoz549AY4cAABYlcMwDMPsIC7WvHlzPfPMM5o0aVKF+0aNGqXCwkK9//777m0DBgxQr169tGTJklo9f0FBgZxOp1wul6Kjo30WNwAA8B9Prt+W6XNTUlKit956S4WFhUpJSal0n23btmnYsGHltqWnp2vbtm1VPm9xcbEKCgrK3QAAgH2Zntx8/fXXaty4sSIjIzV16lStWbNG3bp1q3Tf/Px8xcXFldsWFxen/Pz8Kp8/MzNTTqfTfUtMTPRp/AAAwFpMT266dOmirKwsbd++XdOmTdO4ceP0z3/+02fPP3fuXLlcLvctNzfXZ88NAACsp57ZAURERKhjx46SpD59+mjHjh167rnn9NJLL1XYNz4+XkeOHCm37ciRI4qPj6/y+SMjIxUZGenboAEAgGWZXrm5VGlpqYqLiyu9LyUlRevXry+3bd26dVX20QEAAKHH1MrN3LlzNWLECLVp00YnT57UihUrtGnTJn388ceSpLFjx6pVq1bKzMyUJM2cOVODBw/Ws88+qxtuuEFvvfWWdu7cqT/+8Y9mvg0AAGAhpiY3R48e1dixY5WXlyen06mePXvq448/1nXXXSdJysnJUVjY/4pLAwcO1IoVK/Twww/roYceUqdOnfTOO++oe/fuZr0FAABgMZab58bfmOcGAIDgE5Tz3AAAAPgCyQ0AALAVkhsAAGArJDcAAMBWSG4AAICtkNwAAABbIbkBAAC2QnIDAABsheQGAADYCskNAACVyHMVaWv2ceW5iswOBR4ydW0pAACsaOWOHM1d/bVKDSnMIWWO7KFR/dqYHRZqicoNAAAXyXMVuRMbSSo1pIdW76GCE0RIbgAAuMiB44XuxKZMiWHo4PHT5gQEj5HcAABwkXYtGynMUX5buMOhpJYNzQkIHiO5AQDgIgnOKGWO7KFwx4UMJ9zh0JMjuyvBGWVyZNZi5Q7XdCgGAJvJcxXpwPFCtWvZiAuyl0b1a6NBnWN08PhpJbVsyHG8hNU7XJPcAICNWP2iE0wSnFEkNZWoqsP1oM4xljleNEsBgE0wygeBEAwdrkluAMAmguGig+AXDB2uSW4AwCaC4aKD4BcMHa7pcwMANlF20Xlo9R6VGIYlLzqwB6t3uCa5AQAbsfpFB/Zh5Q7XJDcAYDNWvugAgUCfGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AIGTluYq0Nfs4i4vaDJP4AQBC0sodOe5V1MMcUubIHhrVr43ZYcEHqNwAAEJOnqvIndhIUqkhPbR6DxUcmyC5AQCEnAPHC92JTZkSw9DB46fNCQg+RXIDAAg57Vo2Upij/LZwh0NJLRuaExB8iuQGABByEpxRyhzZQ+GOCxlOuMOhJ0d2Z8FRm6BDMQAgJI3q10aDOsfo4PHTSmrZkMTGRkhuAAAhK8EZRVJjQzRLAQAAWyG5AQAAtmJqcpOZmal+/fqpSZMmio2NVUZGhvbt21ftY5YvXy6Hw1Hu1qBBgwBFDAAArM7U5Gbz5s2aPn26Pv/8c61bt07nzp3T9ddfr8LCwmofFx0drby8PPft0KFDAYoYAABYnakdij/66KNy/1++fLliY2O1a9cuDRo0qMrHORwOxcfH+zs8AAAQhCzV58blckmSmjdvXu1+p06dUtu2bZWYmKibb75Ze/furXLf4uJiFRQUlLsBAAD7skxyU1paqlmzZik1NVXdu3evcr8uXbrolVde0bvvvqvXX39dpaWlGjhwoL7//vtK98/MzJTT6XTfEhMT/fUWAACABTgMwzBq3s3/pk2bpg8//FBbtmxR69ata/24c+fO6fLLL9fo0aP1+OOPV7i/uLhYxcXF7v8XFBQoMTFRLpdL0dHRPokdAAD4V0FBgZxOZ62u35aYxG/GjBl6//339emnn3qU2EhS/fr11bt3b+3fv7/S+yMjIxUZGemLMAEAQBAwtVnKMAzNmDFDa9as0YYNG9SuXTuPn6OkpERff/21EhIS/BAhAAAINqZWbqZPn64VK1bo3XffVZMmTZSfny9Jcjqdioq6MB322LFj1apVK2VmZkqSFixYoAEDBqhjx446ceKEnnnmGR06dEiTJ0827X0AAADrMDW5Wbx4sSQpLS2t3PZly5Zp/PjxkqScnByFhf2vwPSf//xHU6ZMUX5+vpo1a6Y+ffpo69at6tatW6DCBgAAFmaZDsWB4kmHJAAAYA2eXL8tMxQcAADAF0huAACArZDcAAAAWyG5AQAAtkJyAwAAbIXkBgAA2ArJDQAAsBWSGwAAYCskNwAAwFZIboD/ynMVaWv2ceW5iswOBQBQB6auLQVYxcodOZq7+muVGlKYQ8oc2UOj+rUxOywAgBeo3CDk5bmK3ImNJJUa0kOr91DBAYAgRXKDkHfgeKE7sSlTYhg6ePy0OQEBAOqE5AYhr13LRgpzlN8W7nAoqWVDcwICANQJyQ1CXoIzSpkjeyjccSHDCXc49OTI7kpwRpkcGQDAG3QoBiSN6tdGgzrH6ODx00pq2ZDEBgCCGMkN8F8JziiSGgCwAZqlAAAIUszPVTkqNwAABCHm56oalRsAsAl+xYcO5ueqHpUbALABfsWHlurm56LvIJUbAAh6/IoPPczPVT2SmwCjbAwEj2D5vDLLduhhfq7q0SwVQJSNgeARTJ/Xsl/xFyc4/Iq3P+bnqhqVmwChbAwEj2D7vPIrPnQlOKOU0qEFf+tLULkJEDp/AbWX5yrSgeOFateykSmfj2D8vPIrHvgfkpsAoWwM1I4VmoOC9fPKLNvABTRLBQhlY6BmVmkO4vMKBDcqNwFE2RionpWag/i8AsGL5CbAKBsDVbNacxCfVyA40SwFwDJoDgLgC1RuAFgKzUEA6orkBoDl0BwEoC5olgIAALZCcgMAAGyF5AYAANSZlRaapc8NAACoEyvMLH4xKjcAAMBrVplZ/GIkN/A5K5UmgWDH5wlWV93M4mahWQo+ZbXSJIKH2SuBWxGfJwQDq80sLplcucnMzFS/fv3UpEkTxcbGKiMjQ/v27avxcatWrVLXrl3VoEED9ejRQ2vXrg1AtKiJFUuTCA4rd+QodeEGjVm6XakLN2jljhyzQzIdnycECyvOLG5qcrN582ZNnz5dn3/+udatW6dz587p+uuvV2FhYZWP2bp1q0aPHq1Jkybpiy++UEZGhjIyMrRnz54ARo7KWLE0CevjIl45Pk8IJqP6tdGWOUP05pQB2jJniOkVRlObpT766KNy/1++fLliY2O1a9cuDRo0qNLHPPfccxo+fLjuv/9+SdLjjz+udevW6YUXXtCSJUv8HjOqZsXSJKzPSiuBWwmfJ/uzW1OslWYWt1SHYpfLJUlq3rx5lfts27ZNw4YNK7ctPT1d27Zt82tsduHPzolWLE3C+sou4hfjIs7nye5oivUvy3QoLi0t1axZs5Samqru3btXuV9+fr7i4uLKbYuLi1N+fn6l+xcXF6u4uNj9/4KCAt8EHIQC0TmRRQ/hqbKL+EOr96jEMLiIX4TPkz1V1RQ7qHOMV39ju1WAfMEyyc306dO1Z88ebdmyxafPm5mZqfnz5/v0OYORrz9M1bFSaRLBgYt41fg82Y8vm2IZUVc5SzRLzZgxQ++//742btyo1q1bV7tvfHy8jhw5Um7bkSNHFB8fX+n+c+fOlcvlct9yc3N9FncwoXMirC7BGaWUDi24kMP2fNUUS2f8qpma3BiGoRkzZmjNmjXasGGD2rVrV+NjUlJStH79+nLb1q1bp5SUlEr3j4yMVHR0dLlbKKJfAwBYg6/6U/GjtWqmNktNnz5dK1as0LvvvqsmTZq4+804nU5FRV34I48dO1atWrVSZmamJGnmzJkaPHiwnn32Wd1www166623tHPnTv3xj3807X1cyortn/RrAIC689X3uy+aYhlRVzWHYRhGzbv56cUdjkq3L1u2TOPHj5ckpaWlKSkpScuXL3ffv2rVKj388MM6ePCgOnXqpKefflo/+clPavWaBQUFcjqdcrlcfqniWL39M89VRL8GAPCCFb/fV+7IqfCj1eyY/MWT67epyY0Z/Jnc5LmKlLpwQ4UsesucISQSABDErPz9Hio/Wj25fte6WcqTIdSh2q+FycgAwJ6s/P3OiLqKap3cNG3atMpmpDKGYcjhcKikpKTOgQUj2j8BwJ74fg8utU5uNm7c6M84bIFOuwBgT3y/Bxf63PhBqLR/AkCo4fvdPH7pc3OpEydO6E9/+pO++eYbSdIVV1yhiRMnyul0evuUtmHH9k8rDm8HgECz4/e7HXlVudm5c6fS09MVFRWl/v37S5J27NihoqIiffLJJ7ryyit9HqivBKJyYzdWHP4IAAgtfh8Kfs0116hjx45aunSp6tW7UPw5f/68Jk+erH/961/69NNPvYs8AEhuPGPl4Y8AgNDh92apnTt3lktsJKlevXp64IEH1LdvX2+eEhZl5eGPAABUxqu1paKjo5WTk1Nhe25urpo0aVLnoGCePFeRtmYfdy+8xppUAIBg41VyM2rUKE2aNEkrV65Ubm6ucnNz9dZbb2ny5MkaPXq0r2NEgKzckaPUhRs0Zul2pS7coJU7cny2wBsAAIHiVbPUb37zGzkcDo0dO1bnz5+XJNWvX1/Tpk3TwoULfRogAiPPVeTuNCxdmKjqodV7NKhzjE8WeIPnGKEGAN7xKrmJiIjQc889p8zMTGVnZ0uSOnTooIYNaaoIVjX1rWH4Y2AxQg0AvOf1PDeS1LBhQ/Xo0cNXscBETC1uHdVV0UgwAaBmXiU3Z86c0fPPP6+NGzfq6NGjKi0tLXf/7t27fRIcAoepxa2DEWrwFE2YQHleJTeTJk3SJ598ottuu039+/evcUFNBAf61lhDIKtoXBSDH02YNeM8Dz1eTeLndDq1du1apaam+iMmv2ISPwSDlTtyKlTRfH3B4qIY/Jhks2ac5/bh90n8WrVqxXw2gB/5u4pGvx57oAmzepznocureW6effZZPfjggzp06JCv4wHwXwnOKKV0aOGXL+HqLooIHoGeZPPSST6tzu7nebD9PQLJq8pN3759debMGbVv314NGzZU/fr1y93/73//2yfBAfAPRsfZQyAHAgRj846dz/Ng/HsEklfJzejRo/XDDz/oySefVFxcHB2KgSDD6Dj78HUTZmWdb4O1eccu5/mlf5Ng/XsEklfJzdatW7Vt2zYlJyf7Oh4AAcLoOPvw1SSbVVUDgrlvT7Cf55X9TRKbNwzav0egeNXnpmvXrioqoo0PCHb+7NeD4FJVNSDPVRT0C+hWdp4HQ3+Vqv4mjSLCg/rvEQheJTcLFy7UL3/5S23atEk//vijCgoKyt0AAMGlpuqMnRbQrWyRYCuq6m9y+myprf4e/uBVs9Tw4cMlSUOHDi233TAMORwOlZSU1D0yAEDA1NT5Ntibd8oEU3+V6v4mKR1a2OLv4S9eJTcbN270dRwAABPVpvOtHRbQDab+QzX9Tezw9/AXr5KbwYMH12q/u+66SwsWLFDLli29eRkAQADZpTpTnWAbHh4KfxN/8KrPTW29/vrr9MEBgCBi907mwdh/yO5/E3/wqnJTW14sWwUAgF9RDbE/vyY3AABYkZn9VVil3P9IbgAACBCWTQgMv/a5AQAAF1Q3USJ8i+QGMEEwzI4KwLfsvkq5lXic3Jw/f14LFizQ999/X+O+P//5zxUdHe1VYIBdBcvsqAB8K9iXsQgmHic39erV0zPPPKPz58/XuO/ixYuZ4wa4CGVpIHQF4zD0YOVVh+Jrr71WmzdvVlJSko/DAeytprI0IygAe2MYemB4ldyMGDFCc+bM0ddff60+ffqoUaNG5e6/6aabfBIcYDdVzY761fcn9H8vf84ICiAEsGyC/zkML2baCwurujXL6gtnFhQUyOl0yuVy0R8Ipli5I6fcWjEPjOiipz78tkLCs2XOEL4AAeC/PLl+e1W5KS0t9SowABXL0sG0kB8ABAOvhoK/+uqrKi4urrD97NmzevXVV+scFGB3F68VwwgKAPAtr5KbCRMmyOVyVdh+8uRJTZgwoc5BAaGEERQA4FteNUsZhiGHw1Fh+/fffy+n01nnoIBQwwgKAPAdj5Kb3r17y+FwyOFwaOjQoapX738PLykp0YEDBzR8+PBaP9+nn36qZ555Rrt27VJeXp7WrFmjjIyMKvfftGmThgwZUmF7Xl6e4uPjPXkrgOXUZgQFC+4BQM08Sm7KEo+srCylp6ercePG7vsiIiKUlJSkW2+9tdbPV1hYqOTkZE2cOFEjR46s9eP27dtXrqd0bGxsrR8LBCsW3AOA2vEouXnsscckSUlJSRo1apQaNGhQpxcfMWKERowY4fHjYmNj1bRp0zq9NhBMqprZeFDnGCo4AHAJr/rcjBs3TtKF0VFHjx6tMDS8TRv//prs1auXiouL1b17d82bN0+pqalV7ltcXFxuZFdBQYFfYwP8oarh4rsP/UfNGtFMBQAX8yq5+e677zRx4kRt3bq13Payjsb+msQvISFBS5YsUd++fVVcXKyXX35ZaWlp2r59u6688spKH5OZman58+f7JR6grmrbh6aymY0dDmnGii9kiGYqALiYVzMUp6amql69epozZ44SEhIqjJxKTk72PBCHo8YOxZUZPHiw2rRpo9dee63S+yur3CQmJjJDMXyiLh18Pe1Dc/HMxmEOyTCkiz+8zGoMwM78PkNxVlaWdu3apa5du3oVoC/1799fW7ZsqfL+yMhIRUZGBjAimMGMUUR16eDrTR+aQZ1jtOj2ZIU5HCo1DN39Zla5+y+e1ZhRVQBCmVfJTbdu3XT8+HFfx+KVrKwsJSQkmB0GTGTGKKK6dvD1dMmFS9/jg8O7VroAZ1LLhoyqAhDyvJqh+KmnntIDDzygTZs26ccff1RBQUG5W22dOnVKWVlZysrKkiQdOHBAWVlZysnJkSTNnTtXY8eOde+/aNEivfvuu9q/f7/27NmjWbNmacOGDZo+fbo3bwM2UFWSkecq8uvrVpec1IYnSy5U9h6f/mifHhzRtcKsxpJMOR4AYCVeVW6GDRsmSbr22mvL9bfxtEPxzp07y03KN3v2bEkXRmMtX75ceXl57kRHujA665e//KV++OEHNWzYUD179tTf//73Sif2Q2jw9aKTdeng68l6UGVLLly8OnhVSy5U9R57tmqqLXOGlJvVeGv2cRbhBBDyvEpuNm7c6JMXT0tLU3X9mZcvX17u/w888IAeeOABn7w27KGuScbFPGnO8SQ5qUptl1yo7j1eOquxL48HAAQrr5qlBg8erLCwMC1dulRz5sxRx44dNXjwYOXk5Cg8PNzXMQJV8tWik940b43q10Zb5gzRm1MGaMucIV71a7l4dfDq9qnte2QRTgDwsnLz17/+VXfccYf+7//+T1988YV7qLXL5dKTTz6ptWvX+jRIoDq+WHTS2+at2qwH5QuevEcW4QQQ6ryq3DzxxBNasmSJli5dqvr167u3p6amavfu3T4LDqit2lRAquNJB1+zePIe63o8ACCYeZXc7Nu3T4MGDaqw3el06sSJE3WNCQg4mnMAc+S5irQ1+zgj+uBTXjVLxcfHa//+/UpKSiq3fcuWLWrfvr0v4gICjuYcILCYkwn+4lXlZsqUKZo5c6a2b98uh8Ohw4cP64033tB9992nadOm+TpG+Am/mCqiOQcIDLPmqEJo8KpyM2fOHJWWlmro0KE6ffq0Bg0apMjISN133326++67fR0j/IBfTADMXKbD13NUWQnLn5jPq4Uzy5w9e1b79+/XqVOn1K1bNzVu3NiXsfmFJwtv2VWeq0ipCzdUmAuFRRfhK3y5W5/ZP3Ds+j1k9nG1M0+u3141S5WJiIhQt27d1L9//6BIbHBBXZcOAKqzckeOUhdu0Jil25W6cINW7sip+UEIKCs0CdmxE78Vjisu8KpZCsGNWWzhL1/m/kdzVn8t45Iv99ouKIrAsEqTkN068VvluKKOlRsEJzv+YoL5Vu7IUcaLW3VpQzdVQeux0rxOdurEb6XjGuqo3IQou/1igrnKyvGVdeDjy916fLE2GiriuFoHyU0IC9TSAbC/ysrx0oUOlXy5WxM/cPyD42oNJDcA6qyyflxhktbcNVDJic1MiwvV4weOf3BczUefGwB1Vlk/rsxbe5DYADAFlRsAPkE5HpVhziOYgeQGgM9QjsfFmNAOZqFZCkDAsa6Z/TGhHee5majcAAgofs2HhlCf0I7z3FxUbgAEDL/mQ0coT2jHeW4+khsAAcO6ZqEjlGdC5zw3H81SAAKGdc1CS6iOoOM8Nx+VGwABE8q/5kOVndaOqi3Oc/M5DOPSZe7sraCgQE6nUy6XS9HR0WaHA4SkPFdRyP2aR+jhPPctT67fNEsBCDi7zIfDBHWojl3O82BEcgMAXmCoL2Bd9LkBAA8x1BewNpIbAPAQQ30vYAZeWBXNUgDgIYb60iwHa6NyAwAeCvWhvjTLweqo3ACAF0J1gjqJdaNgfSQ3AOClUB3qS7McrI5mKQCwIX929g31ZjlYH5UbAF5hAjvrCkRnX6s1y3E+4mIkNwA8ZoeRMna9GFbV2XdQ5xifv0+rNMvZ4XyEb9EsBcAjdhgps3JHjlIXbtCYpduVunCDVu7IMTsknwm1OXjscD7ajRXmP6JyA8AjwT5SJpCVDTOEWmffYD8f7cYqVTQqNwA8UnbxvFgwXTztVNmo7BdyqHX2Dfbz0U6sVEWjcgPAI2UXz4dW71GJYQTdxdMulY3qfiFbrbOvPwX7+WgnVqqikdwA8FgwXzztcDGsTdOaVTr7BkIwn492YqUfDqY2S3366ae68cYbddlll8nhcOidd96p8TGbNm3SlVdeqcjISHXs2FHLly/3e5wAKkpwRimlQ4ugvJCM6tdGW+YM0ZtTBmjLnCFBN7LGTk1rvhLM56NdWKlJ1NTKTWFhoZKTkzVx4kSNHDmyxv0PHDigG264QVOnTtUbb7yh9evXa/LkyUpISFB6enoAIgZgF8Fc2bDSL2TgYlapojkMwzBq3s3/HA6H1qxZo4yMjCr3efDBB/XBBx9oz5497m233367Tpw4oY8++qhWr1NQUCCn0ymXy6Xo6Oi6hg0AAXHpvDwrd+RUaFoLtgoU4AlPrt9B1edm27ZtGjZsWLlt6enpmjVrVpWPKS4uVnFxsfv/BQUF/goPAPyiqs7DVviFDFhRUA0Fz8/PV1xcXLltcXFxKigoUFFR5UPNMjMz5XQ63bfExMRAhGobVpiMCQhl1Q2vpZ8JULmgSm68MXfuXLlcLvctNzfX7JCChp1ncQWCBZ2HAc8FVXITHx+vI0eOlNt25MgRRUdHKyqq8l8ukZGRio6OLndDzaw0GRPshWqgZ5ikznycs8EnqPrcpKSkaO3ateW2rVu3TikpKSZFZF9WmowJ9mGVqdmDiR3m5bGq2iyeyjkbnExNbk6dOqX9+/e7/3/gwAFlZWWpefPmatOmjebOnasffvhBr776qiRp6tSpeuGFF/TAAw9o4sSJ2rBhg/7yl7/ogw8+MOst2BZDTeFrdl/TyZ/oPOx7tUlaOGeDl6nNUjt37lTv3r3Vu3dvSdLs2bPVu3dvPfroo5KkvLw85eT8r59Hu3bt9MEHH2jdunVKTk7Ws88+q5dffpk5bvzASpMxwR7oO1I3dB72ndo2u3POBi9TKzdpaWmqbpqdymYfTktL0xdffOHHqFCGX4vwJaqBsIraNrtzzgavoOpQjMDj1yJ8hWogrKK2nbQ5Z4OXZWYoDhRmKAbMlecqohpYhdp0cIVveDLDM+esNXhy/Sa5AQALYFRO4JG0BBdPrt80SwGAycycVyqU53Ch2d2+gmqeGwCwI7PmlaJaBLuicgMAJjNjFmJmIYedkdwAgMnMGJXDHC7WE8pNhL5GsxQAWECg55ViDhdroYnQt6jcAIBFBLKDK3O4WAdNhL5H5QYAQhSzkFsDCxX7HskNAISwBGcUF1CT0UToezRLAQBgIpoIfY/KDQAAJqOJ0LdIbhAyWLcHgJXRROg7JDcICQyzBIDQQZ8b2B7DLIHQxKR4oYvKDWyPYZZA6KFaG9qo3MD2zFi3B4B5qNaC5Aa2xzBLWBXNJv7BulmgWQohgWGWsBqaTfyHSfFA5QYhI5Dr9gDVodnEv6jWgsoNAAQYndz9j2ptaCO5ga0wUR+CAc0mgcGkeKGLZinYxsodOUpduEFjlm5X6sINWrkjx+yQvEZHU3uj2QTwL4dhGEbNu9lHQUGBnE6nXC6XoqOjzQ4HPpLnKlLqwg0VfglvmTMk6C4YdDQNHXmuIppNgFry5PpN5Qa2YJehn3Q0DS10cgf8g+QGtmCXifrskqQBgJlIbmALdunDYJckDUB59KMLLEZLwTbsMPSzLEl7aPUelRhG0CZpgcYoOVgZ/egCjw7FqBEXjsCjo2ntceGAldlpsIPZPLl+U7lBtbhwmIP5OWqnqg7YgzrHcPxgCUzYaA763KBKoTxyh/bx4EAHbFgd/ejMQXKDKoXqhcNOkwHaHRcOWJ1dBjsEG5qlUKVQnCKeZo7gQgdsBAM7DHYItr6XJDeoUiheOGgfr8jqX2p2uHDAXIE4x4O5H10w9r0kuUG1Qu3CEYrVquoEy5daMF84YK5gOcfNEqzVbPrcoEahNEU87eP/E8odyhEaOMdrFqx9L6ncAJcItWpVVWiig91xjtcsWKvZVG58iOHD9hFK1aqqzltGIsHuOMdrFqzVbCo3PkK7LcxQ146Q1Z23odihHKGFc7x2grGabYnlF1588UU988wzys/PV3Jysp5//nn179+/0n2XL1+uCRMmlNsWGRmpM2fO1Oq1/LH8AtNrwwx1Tahre96yFATsjnM8OHhy/Ta9WWrlypWaPXu2HnvsMe3evVvJyclKT0/X0aNHq3xMdHS08vLy3LdDhw4FMOKKgrXDFYKXLzpC1va8NbuJjuZe+JvZ5zh8z/Tk5re//a2mTJmiCRMmqFu3blqyZIkaNmyoV155pcrHOBwOxcfHu29xcXEBjLgi2m2tzY4XR18k1MFw3jJbNABvmJrcnD17Vrt27dKwYcPc28LCwjRs2DBt27atysedOnVKbdu2VWJiom6++Wbt3bs3EOFWKVg7XIUCu14cfZGYWP28ZZguAG+Z2qH4+PHjKikpqVB5iYuL07ffflvpY7p06aJXXnlFPXv2lMvl0m9+8xsNHDhQe/fuVevWrSvsX1xcrOLiYvf/CwoKfPsm/isYO1zZXbBOPlUbvuoIaeXzlmG6ALwVdKOlUlJSlJKS4v7/wIEDdfnll+ull17S448/XmH/zMxMzZ8/PyCxMUuqtdj94uirxMSq522wzq8B37L68h+wJlObpVq2bKnw8HAdOXKk3PYjR44oPj6+Vs9Rv3599e7dW/v376/0/rlz58rlcrlvubm5dY4bwSEY+pTUlZ07Qlq92Qz+Z9dmZfifqclNRESE+vTpo/Xr17u3lZaWav369eWqM9UpKSnR119/rYSEhErvj4yMVHR0dLkbQgMXx+A3ql8bbZkzRG9OGaAtc4Ywd1QIoc8V6sL0ZqnZs2dr3Lhx6tu3r/r3769FixapsLDQPZfN2LFj1apVK2VmZkqSFixYoAEDBqhjx446ceKEnnnmGR06dEiTJ082823AoqzcpyQQ7FDSt2qzGfzL7s3K8C/Tk5tRo0bp2LFjevTRR5Wfn69evXrpo48+cncyzsnJUVjY/wpM//nPfzRlyhTl5+erWbNm6tOnj7Zu3apu3bqZ9RZgcaF6cWTWbAQz+lyhLiwxQ3Eg+WOGYsBqmDUbdrByR06FEYEk6KHLk+u36ZUb+J8dmibgGUr6sINQb1aG90hubI6midBESR92EarNyqgb05dfgP8w2iB0MVIMQCijcmNjNE2ENkr6AEIVyY2N0TQBSvoAQhHNUjZG0wQAIBRRubE5miYAAKGG5CYE0DQBAAglNEshKOW5irQ1+zgjvwAAFVC5QdBh7h4AQHWo3KBOAl1BYe4eAEBNqNzAa2ZUUJi7BwBQEyo3FmblfiVmVVDK5u65GHP3AAAuRnJjUSt35Ch14QaNWbpdqQs3aOWOHLNDKqe6Coo/MXcPAKAmNEtZUFVVkUGdYyxzETdz9mPm7gEAVIfKjQWZVRXxhNkVlARnlFI6tCCxAQBUQOXGgoJlTSgqKAAAK6JyY0H+ror4sqMyFRQAgNVQubEof1VFmAAPAGB3VG4szNdVESbAAwCEApKbEBIMHZUBAKgrkpsQwgR4AIBQQHITQswevg0AQCDQoTjEMHwbAGB3JDchKMEZRVIDALAtmqUAAICtkNwAAABbIbkBAAC2QnIDAABsheQGgGX5ch00AKGD0VIALIl10AB4i8oNJPELGdbCOmi1x2e3djhOoYXKDfiFbGF5riIdOF6odi0bhdTcRNWtgxZKx6EmfHZrh+MUeqjchDh+IVvXyh05Sl24QWOWblfqwg1auSPH7JD8orJf1KyDVjM+u7XDcQpNJDchjpXCrcnTL+RgLblXlcCxDlrN+OzWDscpNNEsFeLKfiFf/OHnF7L5PGmWCWTJ3ZfNZFUlcIM6xyjBGcU6aDXgs1s7HKfQROUmxPEL2Zpq2ywTyJK7r5vJavOLOsEZpZQOLTgfK8Fnt3Y4TqGJyg34hWxBZV/ID63eoxLDqPILOVAdb2uqsniDX9R1x2e3djhOoYfkBpJYKdyKavOFHKgEwR9JVG0TOFSPz27tcJxCC8kNEECe9lmp6Qs5UAmCv5IoflED8AeSGyBA/NXxNxAJgj+TKH5RA/A1S3QofvHFF5WUlKQGDRroqquu0j/+8Y9q91+1apW6du2qBg0aqEePHlq7dm2AIgW84++Ov4HoeDuqXxttmTNEb04ZoC1zhjAJGgDLMj25WblypWbPnq3HHntMu3fvVnJystLT03X06NFK99+6datGjx6tSZMm6YsvvlBGRoYyMjK0Z8+eAEcO1J5d5tpg9BKAYOAwDMOoeTf/ueqqq9SvXz+98MILkqTS0lIlJibq7rvv1pw5cyrsP2rUKBUWFur99993bxswYIB69eqlJUuW1Ph6BQUFcjqdcrlcio6O9t0bAaqR5ypS6sINFfqsbJkzhEQBAGrBk+u3qZWbs2fPateuXRo2bJh7W1hYmIYNG6Zt27ZV+pht27aV21+S0tPTq9y/uLhYBQUF5W5AoDHXBgAEjqkdio8fP66SkhLFxcWV2x4XF6dvv/220sfk5+dXun9+fn6l+2dmZmr+/Pm+CRioA0YGAUBgmN7nxt/mzp0rl8vlvuXm5podEkIYfVYAwP9Mrdy0bNlS4eHhOnLkSLntR44cUXx8fKWPiY+P92j/yMhIRUZG+iZgAABgeaZWbiIiItSnTx+tX7/eva20tFTr169XSkpKpY9JSUkpt78krVu3rsr9AQBAaDF9Er/Zs2dr3Lhx6tu3r/r3769FixapsLBQEyZMkCSNHTtWrVq1UmZmpiRp5syZGjx4sJ599lndcMMNeuutt7Rz50798Y9/NPNtAAAAizA9uRk1apSOHTumRx99VPn5+erVq5c++ugjd6fhnJwchYX9r8A0cOBArVixQg8//LAeeughderUSe+88466d+9u1lsAAAAWYvo8N4HGPDcAAASfoJnnBgAAwNdIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANiK6fPcBFrZyHdWBwcAIHiUXbdrM4NNyCU3J0+elCQlJiaaHAkAAPDUyZMn5XQ6q90n5CbxKy0t1eHDh9WkSRM5HA6zwwmogoICJSYmKjc3lwkM64hj6RscR9/hWPoGx9F3fH0sDcPQyZMnddlll5VbuaAyIVe5CQsLU+vWrc0Ow1TR0dF8aH2EY+kbHEff4Vj6BsfRd3x5LGuq2JShQzEAALAVkhsAAGArJDchJDIyUo899pgiIyPNDiXocSx9g+PoOxxL3+A4+o6ZxzLkOhQDAAB7o3IDAABsheQGAADYCskNAACwFZIbAABgKyQ3NvTpp5/qxhtv1GWXXSaHw6F33nmn3P2GYejRRx9VQkKCoqKiNGzYMH333XfmBGthNR3H8ePHy+FwlLsNHz7cnGAtLDMzU/369VOTJk0UGxurjIwM7du3r9w+Z86c0fTp09WiRQs1btxYt956q44cOWJSxNZVm2OZlpZW4bycOnWqSRFb1+LFi9WzZ0/3BHMpKSn68MMP3fdzTtZOTcfRrPOR5MaGCgsLlZycrBdffLHS+59++mn9/ve/15IlS7R9+3Y1atRI6enpOnPmTIAjtbaajqMkDR8+XHl5ee7bm2++GcAIg8PmzZs1ffp0ff7551q3bp3OnTun66+/XoWFhe597r33Xv3tb3/TqlWrtHnzZh0+fFgjR440MWprqs2xlKQpU6aUOy+ffvppkyK2rtatW2vhwoXatWuXdu7cqWuvvVY333yz9u7dK4lzsrZqOo6SSeejAVuTZKxZs8b9/9LSUiM+Pt545pln3NtOnDhhREZGGm+++aYJEQaHS4+jYRjGuHHjjJtvvtmUeILZ0aNHDUnG5s2bDcO4cP7Vr1/fWLVqlXufb775xpBkbNu2zawwg8Klx9IwDGPw4MHGzJkzzQsqiDVr1sx4+eWXOSfrqOw4GoZ55yOVmxBz4MAB5efna9iwYe5tTqdTV111lbZt22ZiZMFp06ZNio2NVZcuXTRt2jT9+OOPZodkeS6XS5LUvHlzSdKuXbt07ty5cudk165d1aZNG87JGlx6LMu88cYbatmypbp37665c+fq9OnTZoQXNEpKSvTWW2+psLBQKSkpnJNeuvQ4ljHjfAy5hTNDXX5+viQpLi6u3Pa4uDj3faid4cOHa+TIkWrXrp2ys7P10EMPacSIEdq2bZvCw8PNDs+SSktLNWvWLKWmpqp79+6SLpyTERERatq0abl9OSerV9mxlKQxY8aobdu2uuyyy/TVV1/pwQcf1L59+7R69WoTo7Wmr7/+WikpKTpz5owaN26sNWvWqFu3bsrKyuKc9EBVx1Ey73wkuQG8dPvtt7v/3aNHD/Xs2VMdOnTQpk2bNHToUBMjs67p06drz5492rJli9mhBL2qjuWdd97p/nePHj2UkJCgoUOHKjs7Wx06dAh0mJbWpUsXZWVlyeVy6e2339a4ceO0efNms8MKOlUdx27dupl2PtIsFWLi4+MlqUKv/yNHjrjvg3fat2+vli1bav/+/WaHYkkzZszQ+++/r40bN6p169bu7fHx8Tp79qxOnDhRbn/OyapVdSwrc9VVV0kS52UlIiIi1LFjR/Xp00eZmZlKTk7Wc889xznpoaqOY2UCdT6S3ISYdu3aKT4+XuvXr3dvKygo0Pbt28u1kcJz33//vX788UclJCSYHYqlGIahGTNmaM2aNdqwYYPatWtX7v4+ffqofv365c7Jffv2KScnh3PyEjUdy8pkZWVJEudlLZSWlqq4uJhzso7KjmNlAnU+0ixlQ6dOnSqXFR84cEBZWVlq3ry52rRpo1mzZumJJ55Qp06d1K5dOz3yyCO67LLLlJGRYV7QFlTdcWzevLnmz5+vW2+9VfHx8crOztYDDzygjh07Kj093cSorWf69OlasWKF3n33XTVp0sTdZ8HpdCoqKkpOp1OTJk3S7Nmz1bx5c0VHR+vuu+9WSkqKBgwYYHL01lLTsczOztaKFSv0k5/8RC1atNBXX32le++9V4MGDVLPnj1Njt5a5s6dqxEjRqhNmzY6efKkVqxYoU2bNunjjz/mnPRAdcfR1PMx4OOz4HcbN240JFW4jRs3zjCMC8PBH3nkESMuLs6IjIw0hg4dauzbt8/coC2ouuN4+vRp4/rrrzdiYmKM+vXrG23btjWmTJli5Ofnmx225VR2DCUZy5Ytc+9TVFRk3HXXXUazZs2Mhg0bGrfccouRl5dnXtAWVdOxzMnJMQYNGmQ0b97ciIyMNDp27Gjcf//9hsvlMjdwC5o4caLRtm1bIyIiwoiJiTGGDh1qfPLJJ+77OSdrp7rjaOb56DAMw/Bv+gQAABA49LkBAAC2QnIDAABsheQGAADYCskNAACwFZIbAABgKyQ3AADAVkhuAACArZDcAAAAWyG5AQAAtkJyA8BSzp49a3YIFVgxJgBVI7kB4FdpaWmaMWOGZsyYIafTqZYtW+qRRx5R2covSUlJevzxxzV27FhFR0frzjvvlCRt2bJF11xzjaKiopSYmKh77rlHhYWF7uf9wx/+oE6dOqlBgwaKi4vTbbfd5r7v7bffVo8ePRQVFaUWLVpo2LBh7sempaVp1qxZ5WLMyMjQ+PHj3f/3NiYA1kByA8Dv/vznP6tevXr6xz/+oeeee06//e1v9fLLL7vv/81vfqPk5GR98cUXeuSRR5Sdna3hw4fr1ltv1VdffaWVK1dqy5YtmjFjhiRp586duueee7RgwQLt27dPH330kQYNGiRJysvL0+jRozVx4kR988032rRpk0aOHClPl9HzNCYA1sHCmQD8Ki0tTUePHtXevXvlcDgkSXPmzNF7772nf/7zn0pKSlLv3r21Zs0a92MmT56s8PBwvfTSS+5tW7Zs0eDBg1VYWKi1a9dqwoQJ+v7779WkSZNyr7d792716dNHBw8eVNu2bSuNp1evXlq0aJF7W0ZGhpo2barly5dLklcxNWjQoE7HCYDvULkB4HcDBgxwJzaSlJKSou+++04lJSWSpL59+5bb/8svv9Ty5cvVuHFj9y09PV2lpaU6cOCArrvuOrVt21bt27fXHXfcoTfeeEOnT5+WJCUnJ2vo0KHq0aOHfvrTn2rp0qX6z3/+43HMnsYEwDpIbgCYrlGjRuX+f+rUKf3iF79QVlaW+/bll1/qu+++U4cOHdSkSRPt3r1bb775phISEvToo48qOTlZJ06cUHh4uNatW6cPP/xQ3bp10/PPP68uXbq4E5CwsLAKTVTnzp2rc0wArIPkBoDfbd++vdz/P//8c3Xq1Enh4eGV7n/llVfqn//8pzp27FjhFhERIUmqV6+ehg0bpqefflpfffWVDh48qA0bNkiSHA6HUlNTNX/+fH3xxReKiIhwNzHFxMQoLy/P/VolJSXas2dPje+hNjEBsAaSGwB+l5OTo9mzZ2vfvn1688039fzzz2vmzJlV7v/ggw9q69atmjFjhrKysvTdd9/p3XffdXfeff/99/X73/9eWVlZOnTokF599VWVlpaqS5cu2r59u5588knt3LlTOTk5Wr16tY4dO6bLL79cknTttdfqgw8+0AcffKBvv/1W06ZN04kTJ2p8DzXFBMA66pkdAAD7Gzt2rIqKitS/f3+Fh4dr5syZ7uHVlenZs6c2b96sX/3qV7rmmmtkGIY6dOigUaNGSZKaNm2q1atXa968eTpz5ow6deqkN998U1dccYW++eYbffrpp1q0aJEKCgrUtm1bPfvssxoxYoQkaeLEifryyy81duxY1atXT/fee6+GDBlS43uoKSYA1sFoKQB+VdnoJADwJ5qlAACArZDcAAAAW6FZCgAA2AqVGwAAYCskNwAAwFZIbgAAgK2Q3AAAAFshuQEAALZCcgMAAGyF5AYAANgKyQ0AALAVkhsAAGAr/x+FoOgGs8heLQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVMUlEQVR4nO3deVhU5eIH8O+wDILIILKJgeAuiqaSirgmVzRbTLu5kLmlt3K3TKxcS0HrlsstLe8t7abFrateW9S84nJVLiKKW0ZKKJYskjIjgmzz/v7wx7mOgAzDDHNmzvfzPPM8cs47M+85Dsz3vNtRCSEEiIiIiBTMwdoVICIiIrI2BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiKyGUuXLoVKpTKqrEqlwtKlSy1an4EDB2LgwIGyfT0iMh4DERHV2ebNm6FSqaSHk5MTWrRogYkTJ+K3336zdvVkJzg42OB8+fr6ol+/ftixY4dZXr+oqAhLly7FwYMHzfJ6RErEQEREJlu+fDn+/ve/Y+PGjRg2bBg+//xzDBgwAHfu3LHI+7355psoLi62yGtb2sMPP4y///3v+Pvf/45XX30V165dw8iRI7Fx48Z6v3ZRURGWLVvGQERUD07WrgAR2a5hw4YhPDwcAPDCCy/A29sbq1atwq5du/Dss8+a/f2cnJzg5GSbf7ZatGiB5557Tvr5+eefR5s2bfD+++/jxRdftGLNiAhgCxERmVG/fv0AABkZGQbbf/rpJzzzzDPw8vJCo0aNEB4ejl27dhmUKSsrw7Jly9C2bVs0atQIzZo1Q9++fbFv3z6pTHVjiEpKSjB37lz4+PigSZMmePLJJ/Hrr79WqdvEiRMRHBxcZXt1r/npp5/i0Ucfha+vL1xcXBAaGooNGzbU6VzUxt/fHx07dkRmZuYDy+Xl5WHKlCnw8/NDo0aN0LVrV2zZskXaf/nyZfj4+AAAli1bJnXLWXr8FJG9sc1LLSKSpcuXLwMAmjZtKm07f/48IiMj0aJFC8TGxqJx48b4xz/+gREjRuCf//wnnn76aQB3g0lcXBxeeOEF9OzZEzqdDidOnMDJkyfxhz/8ocb3fOGFF/D5559j3Lhx6NOnDxITEzF8+PB6HceGDRvQqVMnPPnkk3BycsI333yDl19+GXq9HtOnT6/Xa1cqKyvD1atX0axZsxrLFBcXY+DAgbh06RJmzJiBkJAQfPXVV5g4cSIKCgowe/Zs+Pj4YMOGDXjppZfw9NNPY+TIkQCALl26mKWeRIohiIjq6NNPPxUAxL///W9x/fp1cfXqVfH1118LHx8f4eLiIq5evSqVHTx4sAgLCxN37tyRtun1etGnTx/Rtm1baVvXrl3F8OHDH/i+S5YsEff+2UpLSxMAxMsvv2xQbty4cQKAWLJkibRtwoQJomXLlrW+phBCFBUVVSkXHR0tWrVqZbBtwIABYsCAAQ+ssxBCtGzZUgwZMkRcv35dXL9+XZw+fVqMGTNGABAzZ86s8fXWrFkjAIjPP/9c2lZaWioiIiKEu7u70Ol0Qgghrl+/XuV4iahu2GVGRCaLioqCj48PAgMD8cwzz6Bx48bYtWsXHnroIQDAjRs3kJiYiGeffRa3bt1Cfn4+8vPz8fvvvyM6OhoXL16UZqV5enri/PnzuHjxotHv//333wMAZs2aZbB9zpw59TouV1dX6d9arRb5+fkYMGAAfvnlF2i1WpNe84cffoCPjw98fHzQtWtXfPXVVxg/fjxWrVpV43O+//57+Pv7Y+zYsdI2Z2dnzJo1C4WFhTh06JBJdSGiqthlRkQm++CDD9CuXTtotVp88sknOHz4MFxcXKT9ly5dghACixYtwqJFi6p9jby8PLRo0QLLly/HU089hXbt2qFz584YOnQoxo8f/8CunytXrsDBwQGtW7c22N6+fft6HdfRo0exZMkSJCUloaioyGCfVquFRqOp82v26tULb7/9NlQqFdzc3NCxY0d4eno+8DlXrlxB27Zt4eBgeO3asWNHaT8RmQcDERGZrGfPntIssxEjRqBv374YN24c0tPT4e7uDr1eDwB49dVXER0dXe1rtGnTBgDQv39/ZGRk4F//+hd++OEH/PWvf8X777+PjRs34oUXXqh3XWta0LGiosLg54yMDAwePBgdOnTAe++9h8DAQKjVanz//fd4//33pWOqK29vb0RFRZn0XCKyPAYiIjILR0dHxMXFYdCgQfjLX/6C2NhYtGrVCsDdbh5jwoCXlxcmTZqESZMmobCwEP3798fSpUtrDEQtW7aEXq9HRkaGQatQenp6lbJNmzZFQUFBle33t7J88803KCkpwa5duxAUFCRtP3DgQK31N7eWLVvizJkz0Ov1Bq1EP/30k7QfqDnsEZHxOIaIiMxm4MCB6NmzJ9asWYM7d+7A19cXAwcOxEcffYTs7Owq5a9fvy79+/fffzfY5+7ujjZt2qCkpKTG9xs2bBgAYN26dQbb16xZU6Vs69atodVqcebMGWlbdnZ2ldWiHR0dAQBCCGmbVqvFp59+WmM9LOWxxx5DTk4OEhISpG3l5eVYv3493N3dMWDAAACAm5sbAFQb+IjIOGwhIiKzmj9/Pv74xz9i8+bNePHFF/HBBx+gb9++CAsLw9SpU9GqVSvk5uYiKSkJv/76K06fPg0ACA0NxcCBA9GjRw94eXnhxIkT+PrrrzFjxowa3+vhhx/G2LFj8eGHH0Kr1aJPnz7Yv38/Ll26VKXsmDFjsGDBAjz99NOYNWsWioqKsGHDBrRr1w4nT56Uyg0ZMgRqtRpPPPEE/vSnP6GwsBCbNm2Cr69vtaHOkqZNm4aPPvoIEydORGpqKoKDg/H111/j6NGjWLNmDZo0aQLg7iDw0NBQJCQkoF27dvDy8kLnzp3RuXPnBq0vkU2z9jQ3IrI9ldPuU1JSquyrqKgQrVu3Fq1btxbl5eVCCCEyMjLE888/L/z9/YWzs7No0aKFePzxx8XXX38tPe/tt98WPXv2FJ6ensLV1VV06NBBrFixQpSWlkplqpsiX1xcLGbNmiWaNWsmGjduLJ544glx9erVaqeh//DDD6Jz585CrVaL9u3bi88//7za19y1a5fo0qWLaNSokQgODharVq0Sn3zyiQAgMjMzpXJ1mXZf25ICNb1ebm6umDRpkvD29hZqtVqEhYWJTz/9tMpzjx07Jnr06CHUajWn4BOZQCXEPe3CRERERArEMURERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4XJjRSHq9HteuXUOTJk24TD4REZGNEELg1q1bCAgIqHKj5HsxEBnp2rVrCAwMtHY1iIiIyARXr17FQw89VON+BiIjVS6Rf/XqVXh4eFi5NkRERGQMnU6HwMBA6Xu8JgxERqrsJvPw8GAgIiIisjG1DXfhoGoiIiJSPAYiIiIiUjwGIiIiIlI8jiEiIiLFq6ioQFlZmbWrQSZwdnaGo6NjvV/HqoHo8OHDeOedd5Camors7Gzs2LEDI0aMqLbsiy++iI8++gjvv/8+5syZI22/ceMGZs6ciW+++QYODg4YNWoU1q5dC3d3d6nMmTNnMH36dKSkpMDHxwczZ87Ea6+9ZuGjIyIiuRNCICcnBwUFBdauCtWDp6cn/P3967VOoFUD0e3bt9G1a1dMnjwZI0eOrLHcjh078N///hcBAQFV9sXExCA7Oxv79u1DWVkZJk2ahGnTpmHbtm0A7k63GzJkCKKiorBx40acPXsWkydPhqenJ6ZNm2axYyMiIvmrDEO+vr5wc3Pjwrs2RgiBoqIi5OXlAQCaN29u8mtZNRANGzYMw4YNe2CZ3377DTNnzsTevXsxfPhwg30XLlzAnj17kJKSgvDwcADA+vXr8dhjj+Hdd99FQEAAtm7ditLSUnzyySdQq9Xo1KkT0tLS8N577zEQEREpWEVFhRSGmjVrZu3qkIlcXV0BAHl5efD19TW5+0zWg6r1ej3Gjx+P+fPno1OnTlX2JyUlwdPTUwpDABAVFQUHBwckJydLZfr37w+1Wi2ViY6ORnp6Om7evFnje5eUlECn0xk8iIjIflSOGXJzc7NyTai+Kv8P6zMOTNaBaNWqVXBycsKsWbOq3Z+TkwNfX1+DbU5OTvDy8kJOTo5Uxs/Pz6BM5c+VZaoTFxcHjUYjPXjbDiIi+8RuMttnjv9D2Qai1NRUrF27Fps3b7bKh3XhwoXQarXS4+rVqw1eByIiImoYsg1E//nPf5CXl4egoCA4OTnByckJV65cwSuvvILg4GAAgL+/vzSQqlJ5eTlu3LgBf39/qUxubq5BmcqfK8tUx8XFRbpNB2/XQURESqBSqbBz505rV8PAwYMHoVKpLD4TULaBaPz48Thz5gzS0tKkR0BAAObPn4+9e/cCACIiIlBQUIDU1FTpeYmJidDr9ejVq5dU5vDhwwb9ivv27UP79u3RtGnThj2oOsjWFuNYRj6ytcXWrgoREdmZpUuX4uGHH7Z2NWTFqrPMCgsLcenSJennzMxMpKWlwcvLC0FBQVVG/Ts7O8Pf3x/t27cHAHTs2BFDhw7F1KlTsXHjRpSVlWHGjBkYM2aMNEV/3LhxWLZsGaZMmYIFCxbg3LlzWLt2Ld5///2GO9A6SkjJwsLtZ6EXgIMKiBsZhtGPBFm7WkRERHbLqi1EJ06cQLdu3dCtWzcAwLx589CtWzcsXrzY6NfYunUrOnTogMGDB+Oxxx5D37598fHHH0v7NRoNfvjhB2RmZqJHjx545ZVXsHjxYtlOuc/WFkthCAD0Anh9+zm2FBERkUSv1yMuLg4hISFwdXVF165d8fXXXwP4XxfT/v37ER4eDjc3N/Tp0wfp6ekAgM2bN2PZsmU4ffo0VCoVVCoVNm/eLL12fn4+nn76abi5uaFt27bYtWuXUXWqfN+9e/eiW7ducHV1xaOPPoq8vDzs3r0bHTt2hIeHB8aNG4eioiLpeSUlJZg1axZ8fX3RqFEj9O3bFykpKeY7WUayagvRwIEDIYQwuvzly5erbPPy8pIWYaxJly5d8J///Keu1bOKzPzbUhiqVCEELucXobnG1TqVIiKiWmVri5GZfxsh3o0t/vc6Li4On3/+OTZu3Ii2bdvi8OHDeO655+Dj4yOVeeONN/DnP/8ZPj4+ePHFFzF58mQcPXoUo0ePxrlz57Bnzx78+9//BnC38aDSsmXLsHr1arzzzjtYv349YmJicOXKFXh5eRlVt6VLl+Ivf/kL3Nzc8Oyzz+LZZ5+Fi4sLtm3bhsLCQjz99NNYv349FixYAAB47bXX8M9//hNbtmxBy5YtsXr1akRHR+PSpUtGv6c5yHYMkVKFeDeGw32T6hxVKgR7c50MIiK5SkjJQmR8IsZtSkZkfCISUrIs9l4lJSVYuXIlPvnkE0RHR6NVq1aYOHEinnvuOXz00UdSuRUrVmDAgAEIDQ1FbGwsjh07hjt37sDV1RXu7u5wcnKCv78//P39pcUNAWDixIkYO3Ys2rRpg5UrV6KwsBDHjx83un5vv/02IiMj0a1bN0yZMgWHDh3Chg0b0K1bN/Tr1w/PPPMMDhw4AODuHSs2bNiAd955B8OGDUNoaCg2bdoEV1dX/O1vfzPfSTMCA5HMNNe4Im5kGBz/f6kBR5UKK0d2ZusQEZFMNfRQh0uXLqGoqAh/+MMf4O7uLj0+++wzZGRkSOW6dOki/bvylhb3z8yuzr3Pa9y4MTw8PIx6XnXP9/Pzg5ubG1q1amWwrfL1MjIyUFZWhsjISGm/s7MzevbsiQsXLhj9nubAu93L0OhHgtC/nQ8u5xch2NuNYYiISMYaeqhDYWEhAOC7775DixYtDPa5uLhIocjZ2VnaXrmen16vr/X1731e5XONeV51z1epVPV+vYbCQCRTzTWuDEJERDagcqjDvaHIkkMdQkND4eLigqysLAwYMKDK/ntbiWqiVqtRUVFhierVSevWraFWq3H06FG0bNkSwN3bb6SkpGDOnDkNWhcGIiIionqoHOrw+vZzqBDC4kMdmjRpgldffRVz586FXq9H3759odVqcfToUXh4eEjB4kGCg4OlpW4eeughNGnSBC4uLhap74M0btwYL730EubPny8tubN69WoUFRVhypQpDVoXBiIiIqJ6auihDm+99RZ8fHwQFxeHX375BZ6enujevTtef/11o7qjRo0ahe3bt2PQoEEoKCjAp59+iokTJ1q0zjWJj4+XbuZ+69YthIeHY+/evQ2+eLJK1GXeu4LpdDpoNBpotVrexoOIyA7cuXMHmZmZCAkJQaNGjaxdHaqHB/1fGvv9zVlmREREpHgMRERERFSrF1980WCa/72PF1980drVqzeOISIiIqJaLV++HK+++mq1++xhKAkDEREREdXK19cXvr6+1q6GxbDLjIiIiBSPgYiIiBRNjqsmU92Y4/+QXWZERKRIarUaDg4OuHbtGnx8fKBWq6VbXJBtEEKgtLQU169fh4ODA9RqtcmvxUBERESK5ODggJCQEGRnZ+PatWvWrg7Vg5ubG4KCguDgYHrHFwMREREpllqtRlBQEMrLy2Vxby+qO0dHRzg5OdW7dY+BiIiIFK3yjuz335WdlIWDqomIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPGsGogOHz6MJ554AgEBAVCpVNi5c6e0r6ysDAsWLEBYWBgaN26MgIAAPP/887h27ZrBa9y4cQMxMTHw8PCAp6cnpkyZgsLCQoMyZ86cQb9+/dCoUSMEBgZi9erVDXF49ZKtLcaxjHxka4utXRUiIiK7Z9VAdPv2bXTt2hUffPBBlX1FRUU4efIkFi1ahJMnT2L79u1IT0/Hk08+aVAuJiYG58+fx759+/Dtt9/i8OHDmDZtmrRfp9NhyJAhaNmyJVJTU/HOO+9g6dKl+Pjjjy1+fKZKSMlCZHwixm1KRmR8IhJSsqxdJSIiIrumEkIIa1cCAFQqFXbs2IERI0bUWCYlJQU9e/bElStXEBQUhAsXLiA0NBQpKSkIDw8HAOzZswePPfYYfv31VwQEBGDDhg144403kJOTA7VaDQCIjY3Fzp078dNPPxldP51OB41GA61WCw8Pj3od64Nka4sRGZ8I/T3/K44qFY7EDkJzjavF3peIiMgeGfv9bVNjiLRaLVQqFTw9PQEASUlJ8PT0lMIQAERFRcHBwQHJyclSmf79+0thCACio6ORnp6Omzdv1vheJSUl0Ol0Bo+GkJl/2yAMAUCFELicX9Qg709ERKRENhOI7ty5gwULFmDs2LFSwsvJyYGvr69BOScnJ3h5eSEnJ0cq4+fnZ1Cm8ufKMtWJi4uDRqORHoGBgeY8nBqFeDeGg8pwm6NKhWBvtwZ5fyIiIiWyiUBUVlaGZ599FkIIbNiwoUHec+HChdBqtdLj6tWrDfK+zTWuiBsZBkfV3VTkqFJh5cjO7C4jIiKyICdrV6A2lWHoypUrSExMNOj/8/f3R15enkH58vJy3LhxA/7+/lKZ3NxcgzKVP1eWqY6LiwtcXFzMdRh1MvqRIPRv54PL+UUI9nZjGCIiIrIwWbcQVYahixcv4t///jeaNWtmsD8iIgIFBQVITU2VtiUmJkKv16NXr15SmcOHD6OsrEwqs2/fPrRv3x5NmzZtmAMxQXONKyJaN2MYIiIiagBWDUSFhYVIS0tDWloaACAzMxNpaWnIyspCWVkZnnnmGZw4cQJbt25FRUUFcnJykJOTg9LSUgBAx44dMXToUEydOhXHjx/H0aNHMWPGDIwZMwYBAQEAgHHjxkGtVmPKlCk4f/48EhISsHbtWsybN89ah01EREQyY9Vp9wcPHsSgQYOqbJ8wYQKWLl2KkJCQap934MABDBw4EMDdhRlnzJiBb775Bg4ODhg1ahTWrVsHd3d3qfyZM2cwffp0pKSkwNvbGzNnzsSCBQvqVNeGmnZPRERE5mPs97ds1iGSOwYiIiIi22OX6xARERERWQIDERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DkZVla4txLCMf2dpia1eFiIhIsZysXQElS0jJwsLtZ6EXgIMKiBsZhtGPBFm7WkRERIrDFiIrydYWS2EIAPQCeH37ObYUERERWQEDkZVk5t+WwlClCiFwOb/IOhUiIiJSMAYiKwnxbgwHleE2R5UKwd5u1qkQERGRgjEQWUlzjSviRobBUXU3FTmqVFg5sjOaa1ytXDMiIiLl4aBqKxr9SBD6t/PB5fwiBHu7MQwRERFZCQORlTXXuEpBKFtbjMz82wjxbsxwRERE1IAYiGSCU/CJiIish2OIZIBT8ImIiKyLgUgG6jIFnytbExERmR+7zGSgcgr+vaGouin47FYjIiKyDLYQyYAxU/DZrUZERGQ5bCGSidqm4D+oW40z0oiIiOqHgUhG7p2Cfz9ju9WIiIio7thlZiO4sjUREZHlsIXIhnBlayIiIstgILIxD+pWIyIiItOwy4yIiIgUj4GIiIiIFI+BiIiIiBSPgYiIiIgUj4GIiIiIFI+BiIiIiMzKFm9Ezmn3REREZDa2eiNyq7YQHT58GE888QQCAgKgUqmwc+dOg/1CCCxevBjNmzeHq6sroqKicPHiRYMyN27cQExMDDw8PODp6YkpU6agsLDQoMyZM2fQr18/NGrUCIGBgVi9erWlD42IiEhxbPlG5FYNRLdv30bXrl3xwQcfVLt/9erVWLduHTZu3Ijk5GQ0btwY0dHRuHPnjlQmJiYG58+fx759+/Dtt9/i8OHDmDZtmrRfp9NhyJAhaNmyJVJTU/HOO+9g6dKl+Pjjjy1+fERkn2yxO4CoITzoRuRyZ9Uus2HDhmHYsGHV7hNCYM2aNXjzzTfx1FNPAQA+++wz+Pn5YefOnRgzZgwuXLiAPXv2ICUlBeHh4QCA9evX47HHHsO7776LgIAAbN26FaWlpfjkk0+gVqvRqVMnpKWl4b333jMITkRExmjo7oBsbTEy828jxLsxV6kn2bPlG5HLdlB1ZmYmcnJyEBUVJW3TaDTo1asXkpKSAABJSUnw9PSUwhAAREVFwcHBAcnJyVKZ/v37Q61WS2Wio6ORnp6OmzdvNtDREJE9aOjugISULETGJ2LcpmRExiciISXLIu9DZC62fCNy2Q6qzsnJAQD4+fkZbPfz85P25eTkwNfX12C/k5MTvLy8DMqEhIRUeY3KfU2bNq32/UtKSlBSUiL9rNPp6nE0RGQPHtQdYO4/+DWFr/7tfGziy4WUy1ZvRC7bFiJri4uLg0ajkR6BgYHWrhIRWVlld8C9LNUdYMtjMYiaa1wR0bqZzYQhQMaByN/fHwCQm5trsD03N1fa5+/vj7y8PIP95eXluHHjhkGZ6l7j3veozsKFC6HVaqXH1atX63dARGTzGrI7oCHDFxHJOBCFhITA398f+/fvl7bpdDokJycjIiICABAREYGCggKkpqZKZRITE6HX69GrVy+pzOHDh1FWViaV2bdvH9q3b19jdxkAuLi4wMPDw+BBRDT6kSAciR2EL6b2xpHYQRYbUG3LYzGIbJFKCCFqL2YZhYWFuHTpEgCgW7dueO+99zBo0CB4eXkhKCgIq1atQnx8PLZs2YKQkBAsWrQIZ86cwY8//ohGjRoBuDtTLTc3Fxs3bkRZWRkmTZqE8PBwbNu2DQCg1WrRvn17DBkyBAsWLMC5c+cwefJkvP/++3WaZabT6aDRaKDVahmOiKjBZGuLbW4sBpGcGP39LazowIEDAkCVx4QJE4QQQuj1erFo0SLh5+cnXFxcxODBg0V6errBa/z+++9i7Nixwt3dXXh4eIhJkyaJW7duGZQ5ffq06Nu3r3BxcREtWrQQ8fHxda6rVqsVAIRWqzX5eImIiKhhGfv9bdUWIlvCFiIiIiLbY+z3t2zHEBERERE1FAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIyq2xtMY5l5CNbW2ztqhAZzcnaFSAiIvuRkJKFhdvPQi8ABxUQNzIMox8Jsna1iGrFFiKSLV5lEtmWbG2xFIYAQC+A17ef4+8w2QS2EJEs8SqTyPZk5t+WwlClCiFwOb8IzTWu1qkUkZHYQkSyw6tMItsU4t0YDirDbY4qFYK93axTIaI6YCAi2XnQVSYRyVdzjSviRobBUXU3FTmqVFg5sjNbh8gmsMuMZKfyKvPeUMSrTCLbMPqRIPRv54PL+UUI9nZjGCKbwRYikh1eZRLZtuYaV0S0bsbfWbIpbCEiWeJVJhERNSQGIpKt5hpXBiEiImoQ7DIjIiIixWMgIiJSMC6ASnQXu8yIiBSKC6AS/Q9biIiIFIgLoBIZYiAiIlIgLoBKZIiBiIiogclh3A5vs0FkiGOIiIgakFzG7VQugPr69nOoEMIuF0DN1hYjM/82Gqsdcbu0AiHeje3q+Mi8VEIIUXsx0ul00Gg00Gq18PDwsHZ1iMgGZWuLERmfWOW2NEdiB1ntizpbW2yXC6DeGzwrceC4Mhn7/c0uMyKiBiLHcTv2eJuN+weMV+LAcXoQBiIiogZir+N25DAm6l7VBc9K1g6gJF9GByKdTmf0w1wqKiqwaNEihISEwNXVFa1bt8Zbb72Fe3v5hBBYvHgxmjdvDldXV0RFReHixYsGr3Pjxg3ExMTAw8MDnp6emDJlCgoLC81WTyIiY9jjjYsTUrIQGZ+IcZuSERmfiISULGtXqdrgWckeAihZhtGDqj09PaFS1fAJ+39CCKhUKlRUVNS7YgCwatUqbNiwAVu2bEGnTp1w4sQJTJo0CRqNBrNmzQIArF69GuvWrcOWLVsQEhKCRYsWITo6Gj/++CMaNWoEAIiJiUF2djb27duHsrIyTJo0CdOmTcO2bdvMUk8iImM11I2LKwcUW3IgcU1rGfVv52PVMVGZ+bexYFgHrN6djop7LqDtIYCS5RgdiA4cOGDJelTr2LFjeOqppzB8+HAAQHBwML744gscP34cwN0AtmbNGrz55pt46qmnAACfffYZ/Pz8sHPnTowZMwYXLlzAnj17kJKSgvDwcADA+vXr8dhjj+Hdd99FQEBAgx8XESmbpW9cXNNMNnOHpAeNibJG6Lj/uBcM7YAuD3nCTe2AolK93Q0cJ/MyOhANGDDAkvWoVp8+ffDxxx/j559/Rrt27XD69GkcOXIE7733HgAgMzMTOTk5iIqKkp6j0WjQq1cvJCUlYcyYMUhKSoKnp6cUhgAgKioKDg4OSE5OxtNPP13te5eUlKCkpET62ZxdgUREllJTq01BcRlW7f7JrNP9K7um7p81Z40uqeqOe/WedKvO4CPbYvI6RAUFBfjb3/6GCxcuAAA6deqEyZMnQ6PRmK1ysbGx0Ol06NChAxwdHVFRUYEVK1YgJiYGAJCTkwMA8PPzM3ien5+ftC8nJwe+vr4G+52cnODl5SWVqU5cXByWLVtmtmMhImoINbXaxO/+CcLMXVtyWstIbq1VZHtMCkQnTpxAdHQ0XF1d0bNnTwDAe++9hxUrVuCHH35A9+7dzVK5f/zjH9i6dSu2bduGTp06IS0tDXPmzEFAQAAmTJhglveoycKFCzFv3jzpZ51Oh8DAQIu+JxFRfVXXauMAWCwsNNSYqNrIqbWKbJNJ0+7nzp2LJ598EpcvX8b27duxfft2ZGZm4vHHH8ecOXPMVrn58+cjNjYWY8aMQVhYGMaPH4+5c+ciLi4OAODv7w8AyM3NNXhebm6utM/f3x95eXkG+8vLy3Hjxg2pTHVcXFzg4eFh8CAikrvqZrItGNbBotP95bCWkT3O4KOGZXIL0aZNm+Dk9L+nOzk54bXXXjMYq1NfRUVFcHAwzGyOjo7Q6/UAgJCQEPj7+2P//v14+OGHAdxtyUlOTsZLL70EAIiIiEBBQQFSU1PRo0cPAEBiYiL0ej169epltroSEclFda02nm7OsujasiS5tFaRbTIpEHl4eCArKwsdOnQw2H716lU0adLELBUDgCeeeAIrVqxAUFAQOnXqhFOnTuG9997D5MmTAQAqlQpz5szB22+/jbZt20rT7gMCAjBixAgAQMeOHTF06FBMnToVGzduRFlZGWbMmIExY8ZwhhkR2a37Z7IpJSxYegYf2S+TAtHo0aMxZcoUvPvuu+jTpw8A4OjRo5g/fz7Gjh1rtsqtX78eixYtwssvv4y8vDwEBATgT3/6ExYvXiyVee2113D79m1MmzYNBQUF6Nu3L/bs2SOtQQQAW7duxYwZMzB48GA4ODhg1KhRWLdundnqSURkCxgWiGpm0s1dS0tLMX/+fGzcuBHl5eUAAGdnZ7z00kuIj4+Hi4uL2Stqbby5K5HlNcRigkSkLMZ+f9frbvdFRUXIyMgAALRu3RpubvY7mp+BiMiyalpMkIioPoz9/jZ5HSIAcHNzQ1hYWH1egohIVreAYCsVkTKZFIju3LmD9evX48CBA8jLy5NmfVU6efKkWSpHRMogl0X12EpFpFwmBaIpU6bghx9+wDPPPIOePXvWetNXIqIHkcOienJqpSKihmdSIPr222/x/fffIzIy0tz1ISIFksMtIOTSSkVE1mFSIGrRooVZ1xsiIrL2OjlyaKWydxyfRXJm0q07/vznP2PBggW4cuWKuetDRApmzVtA8NYPlpWQkoXI+ESM25SMyPhEJKRkWbtKRAZMaiEKDw/HnTt30KpVK7i5ucHZ2dlg/40bN8xSOSJT8UqUTGHtVip7xfFZZAtMCkRjx47Fb7/9hpUrV8LPz4+DqklWOFOI6oOrOZsfx2eRLTApEB07dgxJSUno2rWruetDVC+8EiWSH47PIltg0hiiDh06oLi42Nx1Iaq3B12JEpF1cHwW2QKTWoji4+PxyiuvYMWKFQgLC6syhoi3tiBr4ZUokTxxfBbJnUn3MnNwuNuwdP/YISEEVCoVKioqzFM7GeG9zGxHQkpWlfVsOIaISL44CYIsyaL3Mjtw4IDJFSOytJquRPlHl0h+OAmC5KJed7uvzcsvv4zly5fD29vbUm/RYNhCZNv4R5dIfrK1xYiMT6zSxX0kdhAvWshsjP3+NmlQtbE+//xz6HQ6S74FUa1qmnmWreXEAKJ7ZWuLcSwjv8F+NzgJguTEpC4zY1mw8YnIaFwDhah21mhF5SQIkhOLthARyUHlH9178Y8u0f9YqxWV0/FJTizaQkQkB3K4kzopi60N4LdmKyqn45NcMBCRIvCPLjWU+nY9WSNMWbvrirdLITlglxkphjXvpE7KUN+uJ2vdEZ5dV0QWbiF67rnnOEWdzMrcV8+21rVB8lafridr34ePraikdCYHooKCAhw/fhx5eXnQ6/UG+55//nkAwIYNG+pXO6J7mHsWDNcmInOrT9eTHGZDsuuKlMykQPTNN98gJiYGhYWF8PDwMLiFh0qlkgIRkbmY++rZ2lfjZJ/qM4Df2uN4iJTOpED0yiuvYPLkyVi5ciXc3PjLSpZn7qtnOVyNk30yteuptjDF7l0iyzIpEP3222+YNWsWwxA1GHNfPfNqnCzJ1K6nmsIUu3ctgyGT7mXSLLPo6GicOHHC3HUhqpG5Z8FwVg3J1f2zIe351jMNfauQe1lrRh/Jl9EtRLt27ZL+PXz4cMyfPx8//vgjwsLC4OzsbFD2ySefNF8Nif6fuWfBcFYN2QJ77d61ZqsXxxBSdYwORCNGjKiybfny5VW2qVQqVFRU1KtSRDUx9ywYzqohubPH7l1rBxJ7DZlUP0Z3men1eqMeDENEROZj7u5da3ZTVbL2Xe55f0OqjkljiD777DOUlJRU2V5aWorPPvus3pUiIqL/Gf1IEI7EDsIXU3vjSOygKl1LxoYcuYybqSmQuKkdGiSscQwhVUclhBC1FzPk6OiI7Oxs+Pr6Gmz//fff4evra5etRDqdDhqNBlqtlqtvE5FsGDsWJ1tbjMj4xCpdb0diB1klCCSkZBksMTCiWwB2nPqtQccUZWuLOYZQAYz9/jZp2r0QwmAxxkq//vorNBqNKS9JRER1VJexOHIbN3PvpAY3tQOe/vBYg48p4hhCuledAlG3bt2gUqmgUqkwePBgODn97+kVFRXIzMzE0KFDzV5JIiKqqi4hR46DsysDybGMfFmFNVKmOgWiyplmaWlpiI6Ohru7u7RPrVYjODgYo0aNMmsFiYiUyJhFA+sScupzWxFLk2NYI+UxaQzRli1bMHr0aDRq1MgSdZIljiEiooZSlzV67h+Ls3Jk5weOvZHruJm6HgeRsYz9/jYpEFUqLS2t9m73QUH29yFmICKihmDK4Gc5hZz63A5DTsdB9sOig6ovXryIyZMn49ixYwbbKwdb2+MsMyKyPiXce8qUwc9yGRxc39Wn5XIcpEwmrUM0ceJEODg44Ntvv0VqaipOnjyJkydP4tSpUzh58qRZK/jbb7/hueeeQ7NmzeDq6oqwsDCD+6gJIbB48WI0b94crq6uiIqKwsWLFw1e48aNG4iJiYGHhwc8PT0xZcoUFBYWmrWeRGRZcllDx9JsddFAe77nGimDSS1EaWlpSE1NRYcOHcxdHwM3b95EZGQkBg0ahN27d8PHxwcXL15E06ZNpTKrV6/GunXrsGXLFoSEhGDRokWIjo7Gjz/+KI1xiomJQXZ2Nvbt24eysjJMmjQJ06ZNw7Zt2yxafyIyD2vf6qEhyXnw84PIbVo/UV2ZFIhCQ0ORn59v7rpUsWrVKgQGBuLTTz+VtoWEhEj/FkJgzZo1ePPNN/HUU08BuLuKtp+fH3bu3IkxY8bgwoUL2LNnD1JSUhAeHg4AWL9+PR577DG8++67CAgIsPhxkG1RQreMrVHal60t3niYM8XI1pnUZbZq1Sq89tprOHjwIH7//XfodDqDh7ns2rUL4eHh+OMf/whfX19069YNmzZtkvZnZmYiJycHUVFR0jaNRoNevXohKSkJAJCUlARPT08pDAFAVFQUHBwckJycXON7l5SUWOy4yHzMfV8mpXTL2BprdiNZ695fzTWuiGjdzCbCEMDbYZDtM6mFqDKAPProowYrVpt7UPUvv/yCDRs2YN68eXj99deRkpKCWbNmQa1WY8KECcjJyQEA+Pn5GTzPz89P2peTk1PlFiNOTk7w8vKSylQnLi4Oy5YtM8tx0IOZ2iJT3wGc1dVDKd0ytsZa3Ujm/ozZO1ts2SKqZFIgOnDggLnrUS29Xo/w8HCsXLkSwN2Vss+dO4eNGzdiwoQJFn3vhQsXYt68edLPOp0OgYGBFn1PJTL1C8cS4UVp3TKWYqkux4b+smVANg1nipGtMqnLbMCAAXBwcMCmTZsQGxuLNm3aYMCAAcjKyoKjo6PZKte8eXOEhoYabOvYsSOysu52Y/j7+wMAcnNzDcrk5uZK+/z9/ZGXl2ewv7y8HDdu3JDKVMfFxQUeHh4GD7rLXF0I9ZmV8qDwYipbnd0jJ5bucmzIbqSaPmOpl29a/L2JqOGZFIj++c9/Ijo6Gq6urjh16hRKSkoAAFqtVmrNMYfIyEikp6cbbPv555/RsmVLAHcHWPv7+2P//v3Sfp1Oh+TkZERERAAAIiIiUFBQgNTUVKlMYmIi9Ho9evXqZba6KoU5v/DqE2osEV44BqJ+7G3adXWfMQCY9eUpji0jskMmBaK3334bGzduxKZNm+Ds7Cxtj4yMNOs6RHPnzsV///tfrFy5EpcuXcK2bdvw8ccfY/r06QAAlUqFOXPm4O2338auXbtw9uxZPP/88wgICJDuu9axY0cMHToUU6dOxfHjx3H06FHMmDEDY8aM4QyzOjL3F159Qo2lwsvoR4JwJHYQvpjaG0diB3G8SB1YotXOmio/Y/f/kbT1oEdE1TNpDFF6ejr69+9fZbtGo0FBQUF96yR55JFHsGPHDixcuBDLly9HSEgI1qxZg5iYGKnMa6+9htu3b2PatGkoKChA3759sWfPHoP7rG3duhUzZszA4MGD4eDggFGjRmHdunVmq6dSmHuMTX0HylpqTAnHQJjGHqddj34kCI1dnDBj2ymD7RxbRmR/TApE/v7+uHTpEoKDgw22HzlyBK1atTJHvSSPP/44Hn/88Rr3q1QqLF++HMuXL6+xjJeXFxdhNANLfOHVN9SYGl641pD52eqCgrXp0bKp3QU9IqrKpEA0depUzJ49G5988glUKhWuXbuGpKQkvPrqq1i0aJG560gyYakvvIZukeFUasuxx2nX9hr0iMiQSXe7F0Jg5cqViIuLQ1HR3fEBLi4uePXVV/HWW2+ZvZJywLvd/48t35HalDuJEwG2/bknUjJjv79NCkSVSktLcenSJRQWFiI0NBTu7u6mvpTsMRDZh2MZ+Ri3qeoK5V9M7Y2I1s2sUCMiIrIkY7+/Teoyq6RWq6usE0QkZ/Y48JeIiOrPpGn3RLaKaw0REVF16tVCRGSL7HHgLxER1Q8DESkS1xoiIqJ7scuMiIiIFI+BiGplrpu5EhERyRW7zOiBuIgh2RquQk5EpmAgohrVdDPX/u18+EVDssQAT0SmYpcZ1cje7l5O9q2mAM+uXiIyBgMR1ahyEcN7cRFDkisGeCKqDwYiqhEXMSRbwgBPRPXBMUT0QFzEkGwF70pPRPXBQES14iKGZCsY4InIVAxERGRXGOCJyBQcQ0REssaFQUmp+NlvWGwhIiLZ4rpCpFT87Dc8thARkSxZe10hXp2TtVj7s69UbCEiIll60LpClh4jxKtzsiZrfvaVjC1ERCRL1lpXiFfnZG1cU8s6GIiISJastTAoV7wma+OiuNbBLjMiki1rrCtUeXV+byji1Tk1NK6p1fDYQkREstZc44qI1s0a7AuBV+ckFw392Vc6thCRzcrWFiMz/zZCvBvzDwaZFa/OiZSHgYhsEmcByZs9hFWueE2kLAxEZHNqmgXUv50Pv8BkoLawag9hiYjsDwMR2Ryu0SFftYVVtuwRkVxxUDVVS86r9HKNDvl6UFjl+j5EJGcMRFRFQkoWIuMTMW5TMiLjE5GQkmXtKhngLCD5elBY5fo+RCRn7DIjA7YyPoezgOSpMqy+vv0cKoSoEla5vg8RyRUDERmwpfE5nAUkTzWF1drCEhGRNTEQkQGu0kvmUFNYZcseEckVxxCRAY7PIUvj6rtEJEdsIaIqeBVP9ojrH9k//h9TfTAQUbU4PofsCdc/sn/8P6b6YpcZEdk1rn9k//h/TObAQEREdo3rH9k/U/+P5bwALTU8mwpE8fHxUKlUmDNnjrTtzp07mD59Opo1awZ3d3eMGjUKubm5Bs/LysrC8OHD4ebmBl9fX8yfPx/l5eUNXHsisgaubG7/TPk/lvsCtNTwbCYQpaSk4KOPPkKXLl0Mts+dOxfffPMNvvrqKxw6dAjXrl3DyJEjpf0VFRUYPnw4SktLcezYMWzZsgWbN2/G4sWLG/oQiMgKOHPS/tX1/5hdbFQdlRBC1F7MugoLC9G9e3d8+OGHePvtt/Hwww9jzZo10Gq18PHxwbZt2/DMM88AAH766Sd07NgRSUlJ6N27N3bv3o3HH38c165dg5+fHwBg48aNWLBgAa5fvw61Wm1UHXQ6HTQaDbRaLTw8PCx2rERkGdnaYs6ctHPG/h8fy8jHuE3JVbZ/MbU3Ilo3s2QVyQqM/f62iRai6dOnY/jw4YiKijLYnpqairKyMoPtHTp0QFBQEJKSkgAASUlJCAsLk8IQAERHR0On0+H8+fM1vmdJSQl0Op3Bg4hsF9c/sn/G/h+zG5WqI/tA9OWXX+LkyZOIi4ursi8nJwdqtRqenp4G2/38/JCTkyOVuTcMVe6v3FeTuLg4aDQa6REYGFjPI6HacIAjETUEdqNSdWS9DtHVq1cxe/Zs7Nu3D40aNWrQ9164cCHmzZsn/azT6RiKLIhriNgvLpZHcsQFaOl+sg5EqampyMvLQ/fu3aVtFRUVOHz4MP7yl79g7969KC0tRUFBgUErUW5uLvz9/QEA/v7+OH78uMHrVs5CqyxTHRcXF7i4uJjxaKgmNQ1w7N/Oh3+kbByDLsnN/QGdf2Ookqy7zAYPHoyzZ88iLS1NeoSHhyMmJkb6t7OzM/bv3y89Jz09HVlZWYiIiAAARERE4OzZs8jLy5PK7Nu3Dx4eHggNDW3wY6KquE6MfeJMHpIbTrWXLzkMmZB1C1GTJk3QuXNng22NGzdGs2bNpO1TpkzBvHnz4OXlBQ8PD8ycORMRERHo3bs3AGDIkCEIDQ3F+PHjsXr1auTk5ODNN9/E9OnT2QIkE5UDHO8NRRzgaPseFHR5VU4NjS3R8iWXlmRZtxAZ4/3338fjjz+OUaNGoX///vD398f27dul/Y6Ojvj222/h6OiIiIgIPPfcc3j++eexfPlyK9a6YckheT8IBzjaJ87kITlhS7Q8yakl2SbWIZIDW12HSC7J2xhcJ8b+JKRk4fXt51AhhBR05fr5I/uWrS1GZHxilZboI7GDbPrvja1PWmiINaGM/f6WdZcZ1Y+tNRFzgKP94UwekovKluj7A7otfybrc8ErlyAlpyETDER2jGM4SA4YdEku7Cmg1+eCV049B3IKqgxEdkxOyZuISA7sJaCbesErx54DuQRVmx9UTTXjYGUiIvtk6qQFuQ4ul8OtddhCZOfkkrzJ/sllTAKREpja1cSeg5oxECmAvTQRk3zJaUwCkVKYcsErpzE7csNp90ay1Wn3RJbWENOZ2fpEVD/3/w4paZkTTrsnogZh6dmMbH0iqp+afofsPQjVFQdVE1G9WHJFajmtYktki/g7ZDwGIiKqF0vOZpTrjBiyP3K/xZGp+DtkPHaZEVG9WWo2I2fEUEOw525ZufwO2cI4QLYQEZFZWGIdEa6lRZZm711KcvgdSkjJQmR8IsZtSkZkfCISUrIa7L3rgi1ERCRrXEuLLEkJtziy5u+QHFfGrgkDERHJHtfSIkuRS5eSpVnrd8iWAie7zIiISLHk0KVkzyw5C9Xc2EJERESKxm5Zy7GllbEZiIiISPHYLWs5thI4GYiIiIjIomwhcHIMERHsd1E2IiIyDluISPHseVE2IiIyDluISNHsfVE2IiIyDgMRKRrv80NERAADESmcLa2RQURElsNARIrGRdmIiAjgoGoim1kjg4iILIeBiAi2sUYGEdmebG0xMvNvI8S7Mf/GyBwDERERkQVwSQ/bwjFEREREZsYlPWwPAxER1QlX9SaqHZf0sD3sMiMio7ELgMg4lUt63BuKuKSHvLGFiIiMwi4AUgpztIJySQ/bwxYiIjLKg7oA+Eee7IU5W0G5pIdtYQsRERmFq3qTvbNEK2hzjSsiWjdjGLIBDEREZBR2AZC940DohiHXiRnsMiMyEyUswMYuALJnHAhteXKemMEWIiIzSEjJQmR8IsZtSkZkfCISUrKsXSWLYRcA2Su2glqW3CdmsIWIqJ5q+iXv386Hf0iJbAxbQS1H7hMzGIiI6knuv+REVDe8t6FlyL1LUvZdZnFxcXjkkUfQpEkT+Pr6YsSIEUhPTzcoc+fOHUyfPh3NmjWDu7s7Ro0ahdzcXIMyWVlZGD58ONzc3ODr64v58+ejvLy8IQ/F7OQ6ME1pOPuKiKh2cu+SlH0L0aFDhzB9+nQ88sgjKC8vx+uvv44hQ4bgxx9/ROPGjQEAc+fOxXfffYevvvoKGo0GM2bMwMiRI3H06FEAQEVFBYYPHw5/f38cO3YM2dnZeP755+Hs7IyVK1da8/BMJueBaUpT+Uv++vZzqBBCdr/kRERyIecuSZUQQtReTD6uX78OX19fHDp0CP3794dWq4WPjw+2bduGZ555BgDw008/oWPHjkhKSkLv3r2xe/duPP7447h27Rr8/PwAABs3bsSCBQtw/fp1qNXqWt9Xp9NBo9FAq9XCw8PDosdYm2xtMSLjE6s0Ox6JHSSrD5fSZGuLZflLTkRkbrY0q9bY72/Zd5ndT6vVAgC8vLwAAKmpqSgrK0NUVJRUpkOHDggKCkJSUhIAICkpCWFhYVIYAoDo6GjodDqcP3++2vcpKSmBTqczeMgF18qQJ86+IiIlsNdZtTYViPR6PebMmYPIyEh07twZAJCTkwO1Wg1PT0+Dsn5+fsjJyZHK3BuGKvdX7qtOXFwcNBqN9AgMDDTz0ZiOY1bI1nC8G5F9kPvU+fqwqUA0ffp0nDt3Dl9++aXF32vhwoXQarXS4+rVqxZ/T2PJfWAa0b3s9WqSSInsuYdC9oOqK82YMQPffvstDh8+jIceekja7u/vj9LSUhQUFBi0EuXm5sLf318qc/z4cYPXq5yFVlnmfi4uLnBxcTHzUZiPnAemEVXiGk1E9kXuU+frQ/YtREIIzJgxAzt27EBiYiJCQkIM9vfo0QPOzs7Yv3+/tC09PR1ZWVmIiIgAAERERODs2bPIy8uTyuzbtw8eHh4IDQ1tmAOxAI5ZIbmz56tJIiWy5x4K2bcQTZ8+Hdu2bcO//vUvNGnSRBrzo9Fo4OrqCo1GgylTpmDevHnw8vKCh4cHZs6ciYiICPTu3RsAMGTIEISGhmL8+PFYvXo1cnJy8Oabb2L69OmybgUisnX2fDVJpFT22kMh+2n3KpWq2u2ffvopJk6cCODuwoyvvPIKvvjiC5SUlCA6OhoffvihQXfYlStX8NJLL+HgwYNo3LgxJkyYgPj4eDg5GZcJ5TTtnsiWJKRkVVmjiWtmEVVlS1PZbYmx39+yD0RywUBEZDqu0UT04MDDxXYtx9jvb9l3mRGR7eO9oUjpHhR4OPlAHmQ/qJqIiMiW1bZ2DycfyAMDERERkQXVFni42K48MBARERFZUG2Bx56nstsSjiEiIiKyoMrAc/9sy3sDj71OZbclDEREFmLPU2jt+diILMGYwMPJB9bFQERkAfY8hdaej43Ikhh45I1jiIjMzJ7vBv2gY+Md7YnIlrGFiMjMHjSjxNavDms6tk+PXMZfj/zCViMisllsISIyM3ueQlvdsTkAUhgC7KtFjMgUbC21TQxERGZmz1Noqzu2F/qFcFE5ov+XkJKFyPhEjNuUjMj4RCSkZFm7SmQkdpkRWYA9T6G9/9gA4K9HMnlHe7J7tc2u5C04bBsDEZGF2POMkvuPrbY1VohsnTGzK+15/KASMBARmYmS1+ax5xYxImNbfirH2LG11DYxEBGZAdfmse8WMVI2Y1t+jFmR2tLMdWGmxAs8BiKierKncQNK/CNIVJu6tPxYs7XUXBdmSr3A4ywzonqq7U7WtoKzY4iqV9eZo801roho3azBW4bMsSCsPS8sWxu2EBHVkz2MG7CnVi4iS5D7ODlzDehW8sBwthAR1ZM9rDtkL61cRJZkjZYfY5lrQVh7Xli2NmwhIjIDuV891qa6Vi4AOPNrASJaN7NOpYjIaOYa0C2HgeHWohJCiNqLkU6ng0ajgVarhYeHh7WrQ2R2Hx3OQNz3Pxlsc1SpcCR2kCL+GBLZg2xtsVkuzMz1OnJg7Pc3W4iICAAQ1kJTZZtSxg4Q2QtzLX+hxGU0OIaIiAAoe+wAEREDEREBsI/B4UREpmKXGZECGLvgoq0PDiciMhUDEZGdq+uqs0ocO0BExC4zIjum5FVniYjqgoGIZCtbW4xjGfn88q4HLrhIRGQcdpmRLCn15oLmZg+3FSFSAt5Y2foYiEh2eF8t49X2R1TJq84S2Yr7LwAXDO2AsIc0DEcNjIGIZEfJNxesC2Nb0ThzjEi+qrsAjNt9d8V4to43LI4hItmx1wUCzTkmqq6DpeV8U0oiJavuArASJ0E0LAYikh17XCAwISULkfGJGLcpGZHxiUhIyarX63GwNJF9qO4C8F78vW447DIjWbKnbh5LjIniYGki+3D/OL/78fe64TAQkWzZywKBlhgTZYnB0pzlQmQd914AnvmtAKt3p3MShBUwEJFJ+OVpPEu15pizFY3LHBBZV+UFYETrZniya4BdtI7bGgYiqjMlf3maEgQtOfXdHK1oXOaASF7spXXc1jAQUZ0o+cuzPkFQzmOiuMwBEZHCZpl98MEHCA4ORqNGjdCrVy8cP37c2lWyOUqd3WSOe4LJdeq7vS5zQERUF4oJRAkJCZg3bx6WLFmCkydPomvXroiOjkZeXp61q2ZTlPrlac9B0B6XOSAiqiuVENXM87NDvXr1wiOPPIK//OUvAAC9Xo/AwEDMnDkTsbGxtT5fp9NBo9FAq9XCw8PD0tWVtYSUrCrjYex9DFG2thiR8YlVBkYfiR1kN8EhW1ssyy49IqL6MPb7WxFjiEpLS5GamoqFCxdK2xwcHBAVFYWkpCQr1sw2yXk8jKUo4Z5gHMhJREqmiECUn5+PiooK+Pn5GWz38/PDTz/9VO1zSkpKUFJSIv2s0+ksWkdbo8QvTyUGQSIipVDMGKK6iouLg0ajkR6BgYHWrhLJgFwHRhMRUf0oIhB5e3vD0dERubm5Bttzc3Ph7+9f7XMWLlwIrVYrPa5evdoQVSUiIiIrUEQgUqvV6NGjB/bv3y9t0+v12L9/PyIiIqp9jouLCzw8PAweREREZJ8UMYYIAObNm4cJEyYgPDwcPXv2xJo1a3D79m1MmjTJ2lUjIiIiK1NMIBo9ejSuX7+OxYsXIycnBw8//DD27NlTZaA1ERERKY9i1iGqL65DREREZHuM/f5WxBgiIiIiogdhICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixVPMOkT1Vbk6AW/ySkREZDsqv7drW2WIgchIt27dAgDe5JWIiMgG3bp1CxqNpsb9XJjRSHq9HteuXUOTJk2gUqmMeo5Op0NgYCCuXr2q6MUceR54DirxPNzF83AXzwPPQSVLngchBG7duoWAgAA4ONQ8UogtREZycHDAQw89ZNJzeXPYu3geeA4q8TzcxfNwF88Dz0ElS52HB7UMVeKgaiIiIlI8BiIiIiJSPAYiC3JxccGSJUvg4uJi7apYFc8Dz0Elnoe7eB7u4nngOagkh/PAQdVERESkeGwhIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjIKqjDRs2oEuXLtLiUREREdi9e7e0/86dO5g+fTqaNWsGd3d3jBo1Crm5uQavkZWVheHDh8PNzQ2+vr6YP38+ysvLG/pQzCY+Ph4qlQpz5syRtinhPCxduhQqlcrg0aFDB2m/Es5Bpd9++w3PPfccmjVrBldXV4SFheHEiRPSfiEEFi9ejObNm8PV1RVRUVG4ePGiwWvcuHEDMTEx8PDwgKenJ6ZMmYLCwsKGPhSTBQcHV/k8qFQqTJ8+HYAyPg8VFRVYtGgRQkJC4OrqitatW+Ott94yuIeUEj4LwN3bRMyZMwctW7aEq6sr+vTpg5SUFGm/PZ6Hw4cP44knnkBAQABUKhV27txpsN9cx3zmzBn069cPjRo1QmBgIFavXm2eAxBUJ7t27RLfffed+Pnnn0V6erp4/fXXhbOzszh37pwQQogXX3xRBAYGiv3794sTJ06I3r17iz59+kjPLy8vF507dxZRUVHi1KlT4vvvvxfe3t5i4cKF1jqkejl+/LgIDg4WXbp0EbNnz5a2K+E8LFmyRHTq1ElkZ2dLj+vXr0v7lXAOhBDixo0bomXLlmLixIkiOTlZ/PLLL2Lv3r3i0qVLUpn4+Hih0WjEzp07xenTp8WTTz4pQkJCRHFxsVRm6NChomvXruK///2v+M9//iPatGkjxo4da41DMkleXp7BZ2Hfvn0CgDhw4IAQQhmfhxUrVohmzZqJb7/9VmRmZoqvvvpKuLu7i7Vr10pllPBZEEKIZ599VoSGhopDhw6JixcviiVLlggPDw/x66+/CiHs8zx8//334o033hDbt28XAMSOHTsM9pvjmLVarfDz8xMxMTHi3Llz4osvvhCurq7io48+qnf9GYjMoGnTpuKvf/2rKCgoEM7OzuKrr76S9l24cEEAEElJSUKIux8YBwcHkZOTI5XZsGGD8PDwECUlJQ1e9/q4deuWaNu2rdi3b58YMGCAFIiUch6WLFkiunbtWu0+pZwDIYRYsGCB6Nu3b4379Xq98Pf3F++88460raCgQLi4uIgvvvhCCCHEjz/+KACIlJQUqczu3buFSqUSv/32m+Uqb0GzZ88WrVu3Fnq9XjGfh+HDh4vJkycbbBs5cqSIiYkRQijns1BUVCQcHR3Ft99+a7C9e/fu4o033lDEebg/EJnrmD/88EPRtGlTg9+JBQsWiPbt29e7zuwyq4eKigp8+eWXuH37NiIiIpCamoqysjJERUVJZTp06ICgoCAkJSUBAJKSkhAWFgY/Pz+pTHR0NHQ6Hc6fP9/gx1Af06dPx/Dhww2OF4CizsPFixcREBCAVq1aISYmBllZWQCUdQ527dqF8PBw/PGPf4Svry+6deuGTZs2SfszMzORk5NjcC40Gg169eplcC48PT0RHh4ulYmKioKDgwOSk5Mb7mDMpLS0FJ9//jkmT54MlUqlmM9Dnz59sH//fvz8888AgNOnT+PIkSMYNmwYAOV8FsrLy1FRUYFGjRoZbHd1dcWRI0cUcx7uZa5jTkpKQv/+/aFWq6Uy0dHRSE9Px82bN+tVR97c1QRnz55FREQE7ty5A3d3d+zYsQOhoaFIS0uDWq2Gp6enQXk/Pz/k5OQAAHJycgz+4FXur9xnK7788kucPHnSoE+8Uk5OjiLOQ69evbB582a0b98e2dnZWLZsGfr164dz584p5hwAwC+//IINGzZg3rx5eP3115GSkoJZs2ZBrVZjwoQJ0rFUd6z3ngtfX1+D/U5OTvDy8rKpc1Fp586dKCgowMSJEwEo53ciNjYWOp0OHTp0gKOjIyoqKrBixQrExMQAgGI+C02aNEFERATeeustdOzYEX5+fvjiiy+QlJSENm3aKOY83Mtcx5yTk4OQkJAqr1G5r2nTpibXkYHIBO3bt0daWhq0Wi2+/vprTJgwAYcOHbJ2tRrM1atXMXv2bOzbt6/KFZCSVF71AkCXLl3Qq1cvtGzZEv/4xz/g6upqxZo1LL1ej/DwcKxcuRIA0K1bN5w7dw4bN27EhAkTrFw76/jb3/6GYcOGISAgwNpVaVD/+Mc/sHXrVmzbtg2dOnVCWloa5syZg4CAAMV9Fv7+979j8uTJaNGiBRwdHdG9e3eMHTsWqamp1q4a1YBdZiZQq9Vo06YNevTogbi4OHTt2hVr166Fv78/SktLUVBQYFA+NzcX/v7+AAB/f/8qM0sqf64sI3epqanIy8tD9+7d4eTkBCcnJxw6dAjr1q2Dk5MT/Pz8FHEe7ufp6Yl27drh0qVLivksAEDz5s0RGhpqsK1jx45S92HlsVR3rPeei7y8PIP95eXluHHjhk2dCwC4cuUK/v3vf+OFF16Qtinl8zB//nzExsZizJgxCAsLw/jx4zF37lzExcUBUNZnoXXr1jh06BAKCwtx9epVHD9+HGVlZWjVqpWizkMlcx2zJX9PGIjMQK/Xo6SkBD169ICzszP2798v7UtPT0dWVhYiIiIAABERETh79qzBf/q+ffvg4eFR5UtFrgYPHoyzZ88iLS1NeoSHhyMmJkb6txLOw/0KCwuRkZGB5s2bK+azAACRkZFIT0832Pbzzz+jZcuWAICQkBD4+/sbnAudTofk5GSDc1FQUGBw9ZyYmAi9Xo9evXo1wFGYz6effgpfX18MHz5c2qaUz0NRUREcHAy/VhwdHaHX6wEo77MAAI0bN0bz5s1x8+ZN7N27F0899ZQiz4O5jjkiIgKHDx9GWVmZVGbfvn1o3759vbrLAHDafV3FxsaKQ4cOiczMTHHmzBkRGxsrVCqV+OGHH4QQd6fWBgUFicTERHHixAkREREhIiIipOdXTq0dMmSISEtLE3v27BE+Pj42NbW2OvfOMhNCGefhlVdeEQcPHhSZmZni6NGjIioqSnh7e4u8vDwhhDLOgRB3l15wcnISK1asEBcvXhRbt24Vbm5u4vPPP5fKxMfHC09PT/Gvf/1LnDlzRjz11FPVTrft1q2bSE5OFkeOHBFt27aV9RTj6lRUVIigoCCxYMGCKvuU8HmYMGGCaNGihTTtfvv27cLb21u89tprUhmlfBb27Nkjdu/eLX755Rfxww8/iK5du4pevXqJ0tJSIYR9nodbt26JU6dOiVOnTgkA4r333hOnTp0SV65cEUKY55gLCgqEn5+fGD9+vDh37pz48ssvhZubG6fdW8PkyZNFy5YthVqtFj4+PmLw4MFSGBJCiOLiYvHyyy+Lpk2bCjc3N/H000+L7Oxsg9e4fPmyGDZsmHB1dRXe3t7ilVdeEWVlZQ19KGZ1fyBSwnkYPXq0aN68uVCr1aJFixZi9OjRBmvvKOEcVPrmm29E586dhYuLi+jQoYP4+OOPDfbr9XqxaNEi4efnJ1xcXMTgwYNFenq6QZnff/9djB07Vri7uwsPDw8xadIkcevWrYY8jHrbu3evAFDl2IRQxudBp9OJ2bNni6CgINGoUSPRqlUr8cYbbxhMkVbKZyEhIUG0atVKqNVq4e/vL6ZPny4KCgqk/fZ4Hg4cOCAAVHlMmDBBCGG+Yz59+rTo27evcHFxES1atBDx8fFmqb9KiHuWECUiIiJSII4hIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIiIixWMgIiIiIsVjICIiIiLFYyAiIosZOHAg5syZY+1qWNzSpUvx8MMPW7saRFQPDERERDUoLS1t0PcTQqC8vLxB35OI7mIgIiKLmDhxIg4dOoS1a9dCpVJBpVLh8uXLOHfuHIYNGwZ3d3f4+flh/PjxyM/Pl543cOBAzJw5E3PmzEHTpk3h5+eHTZs24fbt25g0aRKaNGmCNm3aYPfu3dJzDh48CJVKhe+++w5dunRBo0aN0Lt3b5w7d86gTkeOHEG/fv3g6uqKwMBAzJo1C7dv35b2BwcH46233sLzzz8PDw8PTJs2DQCwYMECtGvXDm5ubmjVqhUWLVok3W178+bNWLZsGU6fPi0d5+bNm3H58mWoVCqkpaVJr19QUACVSoWDBw8a1Hv37t3o0aMHXFxccOTIEej1esTFxSEkJASurq7o2rUrvv76a3P/FxHRPRiIiMgi1q5di4iICEydOhXZ2dnIzs5GkyZN8Oijj6Jbt244ceIE9uzZg9zcXDz77LMGz92yZQu8vb1x/PhxzJw5Ey+99BL++Mc/ok+fPjh58iSGDBmC8ePHo6ioyOB58+fPx5///GekpKTAx8cHTzzxhBRcMjIyMHToUIwaNQpnzpxBQkICjhw5ghkzZhi8xrvvvouuXbvi1KlTWLRoEQCgSZMm2Lx5M3788UesXbsWmzZtwvvvvw8AGD16NF555RV06tRJOs7Ro0fX6VzFxsYiPj4eFy5cQJcuXRAXF4fPPvsMGzduxPnz5zF37lw899xzOHToUJ1el4jqwCy3iCUiqsaAAQPE7NmzpZ/feustMWTIEIMyV69eNbhD/IABA0Tfvn2l/eXl5aJx48Zi/Pjx0rbs7GwBQCQlJQkh/neX7S+//FIq8/vvvwtXV1eRkJAghBBiypQpYtq0aQbv/Z///Ec4ODiI4uJiIYQQLVu2FCNGjKj1uN555x3Ro0cP6eclS5aIrl27GpTJzMwUAMSpU6ekbTdv3hQAxIEDBwzqvXPnTqnMnTt3hJubmzh27JjB602ZMkWMHTu21roRkWmcrBnGiEhZTp8+jQMHDsDd3b3KvoyMDLRr1w4A0KVLF2m7o6MjmjVrhrCwMGmbn58fACAvL8/gNSIiIqR/e3l5oX379rhw4YL03mfOnMHWrVulMkII6PV6ZGZmomPHjgCA8PDwKnVLSEjAunXrkJGRgcLCQpSXl8PDw6POx1+Te9/z0qVLKCoqwh/+8AeDMqWlpejWrZvZ3pOIDDEQEVGDKSwsxBNPPIFVq1ZV2de8eXPp387Ozgb7VCqVwTaVSgUA0Ov1dXrvP/3pT5g1a1aVfUFBQdK/GzdubLAvKSkJMTExWLZsGaKjo6HRaPDll1/iz3/+8wPfz8Hh7ogEIYS0rbL77n73vmdhYSEA4LvvvkOLFi0Myrm4uDzwPYnIdAxERGQxarUaFRUV0s/du3fHP//5TwQHB8PJyfx/fv773/9K4ebmzZv4+eefpZaf7t2748cff0SbNm3q9JrHjh1Dy5Yt8cYbb0jbrly5YlDm/uMEAB8fHwBAdna21LJz7wDrmoSGhsLFxQVZWVkYMGBAnepKRKbjoGoispjg4GAkJyfj8uXLyM/Px/Tp03Hjxg2MHTsWKSkpyMjIwN69ezFp0qQqgcIUy5cvx/79+3Hu3DlMnDgR3t7eGDFiBIC7M8WOHTuGGTNmIC0tDRcvXsS//vWvKoOq79e2bVtkZWXhyy+/REZGBtatW4cdO3ZUOc7MzEykpaUhPz8fJSUlcHV1Re/evaXB0ocOHcKbb75Z6zE0adIEr776KubOnYstW7YgIyMDJ0+exPr167FlyxaTzw0RPRgDERFZzKuvvgpHR0eEhobCx8cHpaWlOHr0KCoqKjBkyBCEhYVhzpw58PT0lLqY6iM+Ph6zZ89Gjx49kJOTg2+++QZqtRrA3XFJhw4dws8//4x+/fqhW7duWLx4MQICAh74mk8++STmzp2LGTNm4OGHH8axY8ek2WeVRo0ahaFDh2LQoEHw8fHBF198AQD45JNPUF5ejh49emDOnDl4++23jTqOt956C4sWLUJcXBw6duyIoUOH4rvvvkNISIgJZ4WIjKES93ZwExHZoIMHD2LQoEG4efMmPD09rV0dIrJBbCEiIiIixWMgIiIiIsVjlxkREREpHluIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8f4PaXCA11XIDegAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABL0klEQVR4nO3deVxUZf8//tcAMoDAuLCKILhLKi64ICaaJnr7rcy6IzV37WNpamWJtrhVUN7eacutZXdSWUmWtrnnehNkoKJiZUoolKCSMcgiCnP9/vDHxMiwzDAz58yZ1/PxmMdDz7nmzHXODDPvc72vRSWEECAiIiJSCCepK0BERERkSQxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuiEgSy5Ytg0qlalRZlUqFZcuWWbU+Q4cOxdChQ2V7PCJqPAY3RA4uKSkJKpVK/3BxcUFQUBCmTp2KP/74Q+rqyU5oaKjB9fLz88Odd96Jbdu2WeT4ZWVlWLZsGQ4ePGiR4xE5IgY3RAQAWLFiBT766COsX78eo0ePxqZNmxATE4Pr169b5fWef/55lJeXW+XY1tarVy989NFH+Oijj7Bw4UJcvHgR48aNw/r165t87LKyMixfvpzBDVETuEhdASKSh9GjRyMyMhIAMHPmTPj4+ODVV1/F119/jYceesjir+fi4gIXF/v8CgoKCsIjjzyi///kyZPRsWNHvP7665g9e7aENSMigC03RFSHO++8EwCQnZ1tsP2XX37Bgw8+iFatWsHNzQ2RkZH4+uuvDcrcvHkTy5cvR6dOneDm5obWrVtj8ODB2Lt3r76MsT43FRUVePLJJ+Hr6wsvLy/ce++9+P3332vVberUqQgNDa213dgxN27ciLvuugt+fn5Qq9UIDw/HunXrTLoWDQkICEC3bt2Qk5NTb7nLly9jxowZ8Pf3h5ubGyIiIvDBBx/o958/fx6+vr4AgOXLl+tTX9bub0SkNPZ520REVnf+/HkAQMuWLfXbTp8+jejoaAQFBSE+Ph7NmzfHZ599hrFjx+KLL77A/fffD+BWkJGQkICZM2eif//+KC4uRkZGBo4dO4a77767ztecOXMmNm3ahAkTJmDQoEHYv38/xowZ06TzWLduHe644w7ce++9cHFxwTfffIPHH38cOp0Oc+bMadKxq928eRN5eXlo3bp1nWXKy8sxdOhQnDt3DnPnzkVYWBi2bNmCqVOnoqioCPPnz4evry/WrVuHxx57DPfffz/GjRsHAOjZs6dF6knkMAQRObSNGzcKAOK7774TV65cEXl5eeLzzz8Xvr6+Qq1Wi7y8PH3Z4cOHix49eojr16/rt+l0OjFo0CDRqVMn/baIiAgxZsyYel936dKlouZXUGZmpgAgHn/8cYNyEyZMEADE0qVL9dumTJki2rVr1+AxhRCirKysVrnY2FjRvn17g20xMTEiJiam3joLIUS7du3EyJEjxZUrV8SVK1fEiRMnxMMPPywAiCeeeKLO461Zs0YAEJs2bdJvu3HjhoiKihKenp6iuLhYCCHElStXap0vEZmGaSkiAgCMGDECvr6+CA4OxoMPPojmzZvj66+/Rtu2bQEAV69exf79+/HQQw/h2rVrKCwsRGFhIf7880/Exsbi7Nmz+tFVLVq0wOnTp3H27NlGv/6OHTsAAPPmzTPYvmDBgiadl7u7u/7fWq0WhYWFiImJwW+//QatVmvWMffs2QNfX1/4+voiIiICW7ZswaRJk/Dqq6/W+ZwdO3YgICAA48eP129r1qwZ5s2bh5KSEhw6dMisuhBRbUxLEREA4O2330bnzp2h1Wrx/vvv4/Dhw1Cr1fr9586dgxACL7zwAl544QWjx7h8+TKCgoKwYsUK3HfffejcuTO6d++OUaNGYdKkSfWmVy5cuAAnJyd06NDBYHuXLl2adF7ff/89li5dirS0NJSVlRns02q10Gg0Jh9zwIABeOmll6BSqeDh4YFu3bqhRYsW9T7nwoUL6NSpE5ycDO8pu3Xrpt9PRJbB4IaIAAD9+/fXj5YaO3YsBg8ejAkTJuDMmTPw9PSETqcDACxcuBCxsbFGj9GxY0cAwJAhQ5CdnY2vvvoKe/bswXvvvYfXX38d69evx8yZM5tc17om/6uqqjL4f3Z2NoYPH46uXbvi3//+N4KDg+Hq6oodO3bg9ddf15+TqXx8fDBixAiznktE1sfghohqcXZ2RkJCAoYNG4a33noL8fHxaN++PYBbqZTG/LC3atUK06ZNw7Rp01BSUoIhQ4Zg2bJldQY37dq1g06nQ3Z2tkFrzZkzZ2qVbdmyJYqKimptv73145tvvkFFRQW+/vprhISE6LcfOHCgwfpbWrt27XDy5EnodDqD1ptffvlFvx+oO3AjosZjnxsiMmro0KHo378/1qxZg+vXr8PPzw9Dhw7FO++8g/z8/Frlr1y5ov/3n3/+abDP09MTHTt2REVFRZ2vN3r0aADAG2+8YbB9zZo1tcp26NABWq0WJ0+e1G/Lz8+vNUuws7MzAEAIod+m1WqxcePGOuthLf/4xz9QUFCA5ORk/bbKykq8+eab8PT0RExMDADAw8MDAIwGb0TUOGy5IaI6PfPMM/jnP/+JpKQkzJ49G2+//TYGDx6MHj16YNasWWjfvj0uXbqEtLQ0/P777zhx4gQAIDw8HEOHDkXfvn3RqlUrZGRk4PPPP8fcuXPrfK1evXph/Pjx+M9//gOtVotBgwZh3759OHfuXK2yDz/8MBYtWoT7778f8+bNQ1lZGdatW4fOnTvj2LFj+nIjR46Eq6sr7rnnHvzf//0fSkpKsGHDBvj5+RkN0Kzp0UcfxTvvvIOpU6fi6NGjCA0Nxeeff47vv/8ea9asgZeXF4BbHaDDw8ORnJyMzp07o1WrVujevTu6d+9u0/oS2TWph2sRkbSqh4Knp6fX2ldVVSU6dOggOnToICorK4UQQmRnZ4vJkyeLgIAA0axZMxEUFCT+3//7f+Lzzz/XP++ll14S/fv3Fy1atBDu7u6ia9eu4uWXXxY3btzQlzE2bLu8vFzMmzdPtG7dWjRv3lzcc889Ii8vz+jQ6D179oju3bsLV1dX0aVLF7Fp0yajx/z6669Fz549hZubmwgNDRWvvvqqeP/99wUAkZOToy9nylDwhoa513W8S5cuiWnTpgkfHx/h6uoqevToITZu3FjruampqaJv377C1dWVw8KJzKASokZ7LREREZGdY58bIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBDREREiuJwk/jpdDpcvHgRXl5enOaciIjITgghcO3aNbRp06bWArS3c7jg5uLFiwgODpa6GkRERGSGvLw8tG3btt4yDhfcVE9xnpeXB29vb4lrQ0RERI1RXFyM4OBg/e94fRwuuKlORXl7ezO4ISIisjON6VLCDsVERESkKAxuiIiISFEY3BAREZGiOFyfGyIichxVVVW4efOm1NWgRnJ1dW1wmHdjMLghIiLFEUKgoKAARUVFUleFTODk5ISwsDC4uro26TgMboiISHGqAxs/Pz94eHhw0lY7UD3Jbn5+PkJCQpr0njG4ISIiRamqqtIHNq1bt5a6OmQCX19fXLx4EZWVlWjWrJnZx2GHYiIiUpTqPjYeHh4S14RMVZ2OqqqqatJxGNwQEZEiMRVlfyz1njG4ISIiIkVhcENEREQ2cfDgQahUKquPYmNwYwP52nKkZhciX1sudVWIiEjBli1bhl69ekldDclxtJSVJafnYvHWU9AJwEkFJIzrgbh+IVJXi4iIHNjNmzebNBpJ7thyY0X52nJ9YAMAOgEs2ZrFFhwiIjJKp9MhISEBYWFhcHd3R0REBD7//HMAf6d09u3bh8jISHh4eGDQoEE4c+YMACApKQnLly/HiRMnoFKpoFKpkJSUBOBWR91169bh3nvvRfPmzfHyyy/XW4/q19q9ezd69+4Nd3d33HXXXbh8+TJ27tyJbt26wdvbGxMmTEBZWZn+eRUVFZg3bx78/Pzg5uaGwYMHIz093ToXqx4Mbqwop7BUH9hUqxIC5wvLjD+BiIhkx5ZdCxISEvDhhx9i/fr1OH36NJ588kk88sgjOHTokL7Mc889h9WrVyMjIwMuLi6YPn06ACAuLg5PP/007rjjDuTn5yM/Px9xcXH65y1btgz3338/Tp06pX9OQ5YtW4a33noLqampyMvLw0MPPYQ1a9bgk08+wfbt27Fnzx68+eab+vLPPvssvvjiC3zwwQc4duwYOnbsiNjYWFy9etVCV6hxmJayojCf5nBSwSDAcVapEOrDuReIiOyBLbsWVFRU4JVXXsF3332HqKgoAED79u2RkpKCd955B48++igA4OWXX0ZMTAwAID4+HmPGjMH169fh7u4OT09PuLi4ICAgoNbxJ0yYgGnTpplUp5deegnR0dEAgBkzZmDx4sXIzs5G+/btAQAPPvggDhw4gEWLFqG0tBTr1q1DUlISRo8eDQDYsGED9u7di//+97945plnzLswZmDLjRUFatyRMK4HnP//cfvOKhVeGdcdgRp3iWtGREQNsXXXgnPnzqGsrAx33303PD099Y8PP/wQ2dnZ+nI9e/bU/zswMBAAcPny5QaPHxkZaXKdar6Wv78/PDw89IFN9bbq187OzsbNmzf1wRAANGvWDP3798fPP/9s8ms3BVturCyuXwiGdPbF+cIyhPp4MLAhIrIT9XUtsMZ3eUlJCQBg+/btCAoKMtinVqv1AU7NjsDVk97pdLoGj9+8eXOT63T7a93eCVmlUjXqtW2NwY0NBGrcGdQQEdkZW3ctCA8Ph1qtRm5urj7tVFPN1pu6uLq6NnnpAnN16NABrq6u+P7779GuXTsAt0ZlpaenY8GCBTatC4MbIiIiI6q7FizZmoUqIazetcDLywsLFy7Ek08+CZ1Oh8GDB0Or1eL777+Ht7e3PmCoT2hoKHJycpCZmYm2bdvCy8sLarXaKvW9XfPmzfHYY4/hmWeeQatWrRASEoLXXnsNZWVlmDFjhk3qUI3BDRERUR1s3bVg5cqV8PX1RUJCAn777Te0aNECffr0wZIlSxqV/nnggQewdetWDBs2DEVFRdi4cSOmTp1q1TrXlJiYCJ1Oh0mTJuHatWuIjIzE7t270bJlS5vVAQBUQgjRcDHlKC4uhkajgVarhbe3t9TVISIiC7t+/TpycnIQFhYGNzc3qatDJqjvvTPl95ujpYiIiEhRGNwQERE5mNmzZxsMN6/5mD17ttTVazL2uSEiInIwK1aswMKFC43uU0KXDQY3REREDsbPzw9+fn5SV8NqmJYiIiIiRWFwQ0REiiTHmXOpfpYawM20FBERKYqrqyucnJxw8eJF+Pr6wtXVVb9MAcmXEAJXrlwxusyDqRjcEBGRojg5OSEsLAz5+fm4ePGi1NUhE6hUKrRt2xbOzs5NOg6DGyIiUhxXV1eEhISgsrJSsrWWyHTNmjVrcmADMLghIiKFqk5vNDXFQfaHHYqJiIhIURjcEBERkaIwuCEiIiJFYXBDREREisLghoiIiBSFwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIUSQNbtatW4eePXvC29sb3t7eiIqKws6dO+t9zpYtW9C1a1e4ubmhR48e2LFjh41qS0RERPZA0uCmbdu2SExMxNGjR5GRkYG77roL9913H06fPm20fGpqKsaPH48ZM2bg+PHjGDt2LMaOHYusrCwb15yIiIjkSiWEEFJXoqZWrVph1apVmDFjRq19cXFxKC0txbfffqvfNnDgQPTq1Qvr169v1PGLi4uh0Wig1Wrh7e1tsXoTERGR9Zjy+y2bPjdVVVXYvHkzSktLERUVZbRMWloaRowYYbAtNjYWaWlpdR63oqICxcXFBg8iIiJSLsmDm1OnTsHT0xNqtRqzZ8/Gtm3bEB4ebrRsQUEB/P39Dbb5+/ujoKCgzuMnJCRAo9HoH8HBwRatPxEREcmL5MFNly5dkJmZiSNHjuCxxx7DlClT8NNPP1ns+IsXL4ZWq9U/8vLyLHZsIiIikh8XqSvg6uqKjh07AgD69u2L9PR0rF27Fu+8806tsgEBAbh06ZLBtkuXLiEgIKDO46vVaqjVastWmoiIiGRL8pab2+l0OlRUVBjdFxUVhX379hls27t3b519dIiIiMjxSNpys3jxYowePRohISG4du0aPvnkExw8eBC7d+8GAEyePBlBQUFISEgAAMyfPx8xMTFYvXo1xowZg82bNyMjIwPvvvuulKdBREREMiJpcHP58mVMnjwZ+fn50Gg06NmzJ3bv3o27774bAJCbmwsnp78blwYNGoRPPvkEzz//PJYsWYJOnTrhyy+/RPfu3aU6BSIiIpIZ2c1zY22c54aIiMj+2OU8N0RERESWwOCGiIiIFIXBDRERESkKgxsiIiJSFAY3REREpCgMboiIiEhRGNwQERGRojC4ISIiIkVhcENERESKwuDGgvK15UjNLkS+tlzqqhARETksSdeWUpLk9Fws3noKOgE4qYCEcT0Q1y9E6moRERE5HLbcWEC+tlwf2ACATgBLtmaxBYeIiEgCDG4sIKewVB/YVKsSAucLy6SpEBERkQNjcGMBYT7N4aQy3OasUiHUx0OaChERETkwBjcWEKhxR8K4HnBW3YpwnFUqvDKuOwI17hLXjIjkhIMOiGyDHYotJK5fCIZ09sX5wjKE+ngYBDb52nLkFJYizKc5Ax4iB8VBB0S2w+DGggI17rWCF36hEVFdgw6GdPblDQ+RFTAtZUUcRUVEAAcdENkagxsr4hcaEQEcdEBkawxurIhfaEQEcNABka2xz40VVX+hLdmahSoh+IVG5MDqG3RARJbF4MbK+IVGRNWMDTogIstjcGMD/EIjIiKyHfa5ISIiIkVhcENERESKwuCGiIiIFIXBDRERESkKgxsiIiJSFAY3REREpCgMboiIiEhRGNxYSb62HKnZhVwkk4iIyMY4iZ8VJKfn6lcDd1IBCeN6IK5fiNTVIiIicghsubGwfG25PrABAJ0AlmzNYgsOERGRjTC4sbCcwlJ9YFOtSgicLyyTpkJEREQOhsGNhYX5NIeTynCbs0qFUB8PaSpERETkYBjcWFigxh0J43rAWXUrwnFWqfDKuO5cOJOIiMhG2KHYCuL6hWBIZ1+cLyxDqI8HAxsiIiIbYnBjJYEadwY1REREEmBaioiIiBSFwQ0REREpiqTBTUJCAvr16wcvLy/4+flh7NixOHPmTL3PSUpKgkqlMni4ubnZqMZEREQkd5IGN4cOHcKcOXPwww8/YO/evbh58yZGjhyJ0tLSep/n7e2N/Px8/ePChQs2qjERERHJnaQdinft2mXw/6SkJPj5+eHo0aMYMmRInc9TqVQICAiwdvWIiIjIDsmqz41WqwUAtGrVqt5yJSUlaNeuHYKDg3Hffffh9OnTdZatqKhAcXGxwYOIiIiUSzbBjU6nw4IFCxAdHY3u3bvXWa5Lly54//338dVXX2HTpk3Q6XQYNGgQfv/9d6PlExISoNFo9I/g4GBrnQIRERHJgEoIIRouZn2PPfYYdu7ciZSUFLRt27bRz7t58ya6deuG8ePHY+XKlbX2V1RUoKKiQv//4uJiBAcHQ6vVwtvb2yJ1JyIiIusqLi6GRqNp1O+3LCbxmzt3Lr799lscPnzYpMAGAJo1a4bevXvj3LlzRver1Wqo1WpLVJOIiIjsgKRpKSEE5s6di23btmH//v0ICwsz+RhVVVU4deoUAgMDrVBDIiIisjeSttzMmTMHn3zyCb766it4eXmhoKAAAKDRaODufmvpgsmTJyMoKAgJCQkAgBUrVmDgwIHo2LEjioqKsGrVKly4cAEzZ86U7DyIiIhIPiQNbtatWwcAGDp0qMH2jRs3YurUqQCA3NxcODn93cD0119/YdasWSgoKEDLli3Rt29fpKamIjw83FbVJiIiIhmTTYdiWzGlQxIRERHJgym/37IZCk5ERERkCQxuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuyCbyteVIzS5EvrZc6qoQEZHCSbq2FDmG5PRcLN56CjoBOKmAhHE9ENcvROpqERGRQrHlhqwqX1uuD2wAQCeAJVuz2IJDRERWw+CGrCqnsFQf2FSrEgLnC8ukqRARESkegxuyqjCf5nBSGW5zVqkQ6uMhTYWIiEjxGNyQVQVq3JEwrgecVbciHGeVCq+M645AjbvENSMiIqVih2Kyurh+IRjS2RfnC8sQ6uPBwIaIiKyKwQ3ZRKDGnUENERHZBNNSRKRYnF+JyDGx5YaIFInzKxE5LrbcSIh3lUTWwfmViBwbW24kwrtKIuupb34l9v0iUj623EiAd5VE1sX5lYgcG4MbCSh51l5TUm1My5G1cH4lIsfGtJQEqu8qawY4SrirNCXVxrQcWRvnVyJyXGy5kYAS7ypNSbUxLUe2EqhxR1SH1nb9t0VEpmPLjUSUdldpSgdOUzt75mvLkVNYijCf5nZ/nYiIyPoY3EhISbP2mpJqM6Us01dERGQqpqXIIkxJtTW2LNNXRERkDrbckMWYkmprTFnOVUJEROZgcEMWZUqqraGySh1VRkRE1sW0FMmWEkeVERGR9bHlhmRNaaPKiIjI+hjckOwpaVQZERFZH9NSREREpCgMboiIiEhRGNwQUZ24uCkR2SP2uSEiozg7NBHZK7bcEFEtnB2aiOwZgxuSDaZA5KO+2aHJED+3RPLDtBTJgqkpEK4Ubl2cHbpxmLojkidJW24SEhLQr18/eHl5wc/PD2PHjsWZM2cafN6WLVvQtWtXuLm5oUePHtixY4cNakvWYmoKJDk9F9GJ+zFhwxFEJ+5HcnquDWvrGDg7dMOYuiOSL0mDm0OHDmHOnDn44YcfsHfvXty8eRMjR45EaWlpnc9JTU3F+PHjMWPGDBw/fhxjx47F2LFjkZWVZcOakyWZkgLhD4rtxPULQUr8MHw6ayBS4oexReI2TN0RyZekaaldu3YZ/D8pKQl+fn44evQohgwZYvQ5a9euxahRo/DMM88AAFauXIm9e/firbfewvr1661eZ7I8U1IgXCnctjg7dN0cJXXHFDDZI1l1KNZqtQCAVq1a1VkmLS0NI0aMMNgWGxuLtLQ0q9aNrMeUFEj1D0pNSvxBUQKld7R1hNQdU8Bkr2TToVin02HBggWIjo5G9+7d6yxXUFAAf39/g23+/v4oKCgwWr6iogIVFRX6/xcXF1umwmRRjV0gs/oHZcnWLFQJocgfFCVoTEdbJbQIKHlh17pSwEM6+yrqPEmZZBPczJkzB1lZWUhJSbHocRMSErB8+XKLHpOso7EpECX/oChBY34UlTTKSKmpO6aAyZ7JIi01d+5cfPvttzhw4ADatm1bb9mAgABcunTJYNulS5cQEBBgtPzixYuh1Wr1j7y8PIvVm6QTqHFHVIfW/JKVoYY62rJTuH1gCpjsmaTBjRACc+fOxbZt27B//36EhYU1+JyoqCjs27fPYNvevXsRFRVltLxarYa3t7fBg4isp6EfRY4ysg+O0KeIlEvStNScOXPwySef4KuvvoKXl5e+34xGo4G7+60/oMmTJyMoKAgJCQkAgPnz5yMmJgarV6/GmDFjsHnzZmRkZODdd9+V7DyI6G8N9YuS2ygjJfT9AaxzHkwBk71SCSFEw8Ws9OIqldHtGzduxNSpUwEAQ4cORWhoKJKSkvT7t2zZgueffx7nz59Hp06d8Nprr+Ef//hHo16zuLgYGo0GWq2WrThEVpSvLa/zRzE5PbdW8CNFnxul9P1RynkQ1ceU329JgxspMLghkof6gh9bvX504v5aLUgp8cPsqoVCKedB1BBTfr8bnZYyZQg1gwYiaojUo4yUMhpIKedBZEmNDm5atGhRZxqpmhACKpUKVVVVTa4YEZE1ya3vj7mUch5EltTo4ObAgQPWrAcRkU0pZUJIpZwHkSWxzw0ROTSp+/5YilLOg6guVulzc7uioiL897//xc8//wwAuOOOOzB9+nRoNBpzD0lEZHNS9/1pjMYM87aH8yCyFbNabjIyMhAbGwt3d3f0798fAJCeno7y8nLs2bMHffr0sXhFLYUtN0RkTzjMm+gWqw8Fv/POO9GxY0ds2LABLi63Gn8qKysxc+ZM/Pbbbzh8+LB5NbcBBjdEZC84zJvob1ZPS2VkZBgENgDg4uKCZ599FpGRkeYckoiIbsNh3kTmMWttKW9vb+Tm5tbanpeXBy8vryZXioiI6l6ny8PVCanZhVxslKgOZgU3cXFxmDFjBpKTk5GXl4e8vDxs3rwZM2fOxPjx4y1dRyIih2Rs8cqxvdvg/v+kYsKGI4hO3I/k9No3mkSOzqy01L/+9S+oVCpMnjwZlZWVAIBmzZrhscceQ2JiokUrSJallEUCiRxFzcUrPVydcP9/UvWpKp0AlmzNwpDOvvx7JqrBrODG1dUVa9euRUJCArKzswEAHTp0gIcHZ8SUM466ILJP1cO8U7ML2QeHqBHMnucGADw8PNCjRw9L1YWsKF9brg9sAN7xEdkjLrVA1DhmBTfXr1/Hm2++iQMHDuDy5cvQ6XQG+48dO2aRypHlKHnUBVNt5Ci41AJR45gV3MyYMQN79uzBgw8+iP79+ze4oCZJT6l3fDVTbSoAs+4Mw7TBYfyyJ4uRW/Bcsw8Ol1ogMs6sSfw0Gg127NiB6Ohoa9TJqhx5Er/k9Nxad3z23OfG2ARnAPsTkeWwnxqRfFh9Er+goCDOZ2OHlHbHZyzVBrA/EVkG+6kR2S+z5rlZvXo1Fi1ahAsXLli6PmRlgRp3RHVoLasv53xtuVkTkhmb4KxadX8iInPV10+NpGPu9wU5FrNabiIjI3H9+nW0b98eHh4eaNasmcH+q1evWqRypHxNafav7ly5+ItT0N22Twn9iUhaSu2nZs+YJqTGMiu4GT9+PP744w+88sor8Pf3Z4diqqUxnTAt0exfnWrbmHIe76X8Bp0AR5CQRXBkknzka8uRcf4q04TUaGYFN6mpqUhLS0NERISl60MK0Ni7K0sNTw/UuGPJmG6YNjhUMf2JSB6U1k/NHtX8PrmdUqazIMszK7jp2rUrysuZ76TaTGmNsXSzf/UsrkSW5GifKzkNfb/9++R2TBNSXczqUJyYmIinn34aBw8exJ9//oni4mKDBzkuUzphGlsUkM3+RNJJTs9FdOJ+2SzKWdeISIDfF1Q/s1puRo0aBQAYPny4wXYhBFQqFaqqqppeM7JLprbGsNmfSB7kOPTd2PeJE4A3J/RGn3Yt+X1BdTIruDlw4ICl60EKYU4nTEdr9ieSIzku0VLX98mYnm0kqQ/ZD7OCm5iYmEaVe/zxx7FixQr4+PiY8zJkp9gaQ2R/5Dr0nd8nZA6z+tw01qZNm9gHx0HJcbJAIqqbnPvA8fuETGVWy01jmbFsFRERSYStJKQUVg1uiIjIvsipD5ychqWTfWFwQ0REssOlFqgprNrnhoiIyFR1DUvnYpnUWAxuiIisgKtXm48rslNTmRzcVFZWYsWKFfj9998bLPvII4/A29vbrIoREdkruc30a2+qh6XXJIdh6WQ/TA5uXFxcsGrVKlRWVjZYdt26dZzjhogcClMqTSfnYelkH8zqUHzXXXfh0KFDCA0NtXB1yBo44oDIduQ406894rB0agqzgpvRo0cjPj4ep06dQt++fdG8eXOD/ffee69FKkdNxxEHRLYl15l+7ZGchqWTfVEJM2bac3KqO5sl94Uzi4uLodFooNVqFd8fKF9bjujE/bW+ZFPih/ELg8iKktNza62HxJsKoqYx5ffbrJYbnU5nVsXIttg8TiQNplSIpGXWUPAPP/wQFRUVtbbfuHEDH374YZMrRZbBEQdE0uF6SETSMSu4mTZtGrRaba3t165dw7Rp05pcKbIMjjggIiJHZFZaSggBlUpVa/vvv/8OjUbT5EqR5bB5nIiIHI1JwU3v3r2hUqmgUqkwfPhwuLj8/fSqqirk5ORg1KhRjT7e4cOHsWrVKhw9ehT5+fnYtm0bxo4dW2f5gwcPYtiwYbW25+fnIyAgwJRTcSgccUB0C6dFIHIMJgU31YFHZmYmYmNj4enpqd/n6uqK0NBQPPDAA40+XmlpKSIiIjB9+nSMGzeu0c87c+aMQU9pPz+/Rj+XiBwTp0UgchwmBTdLly4FAISGhiIuLg5ubm5NevHRo0dj9OjRJj/Pz88PLVq0aNJrE5HjqGvW4CGdfdmCQ6RAZvW5mTJlCoBbo6MuX75ca2h4SIh174Z69eqFiooKdO/eHcuWLUN0dHSdZSsqKgxGdhUXF1u1bkQkP3KbFoHpMSLrMiu4OXv2LKZPn47U1FSD7dUdja01iV9gYCDWr1+PyMhIVFRU4L333sPQoUNx5MgR9OnTx+hzEhISsHz5cqvUh4isy1JBgJxmDWZ6jMj6zJqhODo6Gi4uLoiPj0dgYGCtkVMRERGmV0SlarBDsTExMTEICQnBRx99ZHS/sZab4OBgh5ihmEhuTAlWLB0EyGHWYM4aTmQ+q89QnJmZiaNHj6Jr165mVdCS+vfvj5SUlDr3q9VqqNVqG9aI5ITN/01nqWtoSrBijT4yNadF8HB1QumNKuRry236uZBbeoxIqcwKbsLDw1FYWGjpupglMzMTgYGBUleDZIjN/01nqWtoarBirSAgUOOOw79ekexzIaf0GJGSmTVD8auvvopnn30WBw8exJ9//oni4mKDR2OVlJQgMzMTmZmZAICcnBxkZmYiNzcXALB48WJMnjxZX37NmjX46quvcO7cOWRlZWHBggXYv38/5syZY85pkILV9WOary2XtmJ2xJLXsL5gxRhrLR0i9eeCs4YT2YZZLTcjRowAANx1110G/W1M7VCckZFhMCnfU089BeDWaKykpCTk5+frAx3g1uisp59+Gn/88Qc8PDzQs2dPfPfdd0Yn9iPHxub/pmvMNWxsysrUFovqIOD2PjJNfe/k8LngrOFE1mdWcHPgwAGLvPjQoUNRX3/mpKQkg/8/++yzePbZZy3y2qRsbP5vuoauoSkpK3OCFWsEAXL5XHDWcCLrMistFRMTAycnJ2zYsAHx8fHo2LEjYmJikJubC2dnZ0vXkchkbP5vuvquoTnpnbh+IUiJH4ZPZw1ESvywRvVzsfTK2vxcEDkGs1puvvjiC0yaNAkTJ07E8ePH9UOttVotXnnlFezYscOilSQyB5v/m66ua2huekcOLRb8XBApn1ktNy+99BLWr1+PDRs2oFmzZvrt0dHROHbsmMUqR9RUlr7zd0TGrqG1OvzaCj8XRMpmVnBz5swZDBkypNZ2jUaDoqKiptaJiGSO6R3K15YjNbuQIxBJlsxKSwUEBODcuXMIDQ012J6SkoL27dtbol5EJHNM7zguziFFcmdWy82sWbMwf/58HDlyBCqVChcvXsTHH3+MhQsX4rHHHrN0HYlIppjecTxSzxVEtmePrXRmtdzEx8dDp9Nh+PDhKCsrw5AhQ6BWq7Fw4UI88cQTlq4jEckEl7OwH9Z6r+QwVxDZjr220pm1cGa1Gzdu4Ny5cygpKUF4eDg8PT0tWTerMGXhLSL6m71+ycmBrYNCa75XXPzTccjtvTbl99ustFQ1V1dXhIeHo3///nYR2BCReZiKMF9yei6iE/djwoYjiE7cj+T03Iaf1ATWfq/YmdxxmLpsipyYlZYiIsfCVIR5TF0w1BItPLZ4r9iZ3DHIZUZvczC4IaIG2fOXnJRMCTQslUqy1XslhwkZybqstcabLTQpLUVEjoGpCPM0drJDS6aS+F6RJZmzbIocsOWGiBqFqQjTNfbO19KpJL5XZEn22ErH4IaIGs0ev+Sk1phAwxqpJL5X5MiYliIisrKGJjtkKonIsthyQ0QkA0pJJXGiR5IDBjdERDJh76kkTvRIcsG0FBHVYo9ryTgiOb1PnOiR5IQtN0RkgHff9kFu7xMneiQ5YcsNEenx7ts+yPF9auycPkS2wOCGiPTseS0ZRyLH94kjvkhOmJYiIj0us2Af5Po+KWXEF9k/ttwQkR7vvu2DnN+nhub0IbIFlRBCNFxMOYqLi6HRaKDVauHt7S11dYhkKV9bzrtvO8D3iRyJKb/fTEsRUS32Pt/K7ZQ6sZzS3iciS2FwQ0SKJrch00RkfexzQ0SKJcch00RkfQxuiEix5Dhkmkjp5DBzNtNSRKRYch0yTaRUckkDs+WGiBRLzkOmiZRGTmlgttwQkaJxYjki25DT+mIMbohI8Thkmsj65JQGZlqKiIiIGq2uDsNySgOz5YaIiIyyp8kP7amu9qyhDsNySQMzuCEiu8MfMuuTy6iXxrCnutqzujoMD+nsa/B3KIc0MNNSDk4O8xEQmSI5PRfRifsxYcMRRCfuR3J6rtRVUhw5jXppiD3V1d7Z07xRbLlxYLzbIXvT2DtHaho5jXppiD3V1d7JqcNwQ9hy46B4t0P2yJ7uHO1Z9Y9YTQ39iEnVCmxOXck8cuow3BC23Dgo3u2QPbKnO0d7Vv0jtmRrFqqEaPBHTMpWYFPrSk0jlw7DDWFw46D4I0H2iD9kttPYHzE5pArt5QdXKeTQYbghkqalDh8+jHvuuQdt2rSBSqXCl19+2eBzDh48iD59+kCtVqNjx45ISkqyej2VyJ6aF4lqiusXgpT4Yfh01kCkxA9jPzErCtS4I6pD63q/F+SSKmxMXclxSNpyU1paioiICEyfPh3jxo1rsHxOTg7GjBmD2bNn4+OPP8a+ffswc+ZMBAYGIjY21gY1Vhbe7ZC9soc7R0fBVmCSI5UQQjRczPpUKhW2bduGsWPH1llm0aJF2L59O7KysvTbHn74YRQVFWHXrl2Nep3i4mJoNBpotVp4e3s3tdpERA4vOT23VqpwSGdfzkVEFmXK77dd9blJS0vDiBEjDLbFxsZiwYIFdT6noqICFRUV+v8XFxdbq3pERA7p9lbgw79eQXTifk4zQZKxq6HgBQUF8Pf3N9jm7++P4uJilJcbH36YkJAAjUajfwQHB9uiqkREDqW6zwsAi0wzwQlGqSnsKrgxx+LFi6HVavWPvLw8qatERKRYluhgzFmoqansKrgJCAjApUuXDLZdunQJ3t7ecHc3ntNVq9Xw9vY2eBCRdHfGvCNXtqZOqscJRskS7KrPTVRUFHbs2GGwbe/evYiKipKoRiRHXFSxYVJNusYlP5SvqXMRcYJRsgRJg5uSkhKcO3dO//+cnBxkZmaiVatWCAkJweLFi/HHH3/gww8/BADMnj0bb731Fp599llMnz4d+/fvx2effYbt27dLdQokM/zxbJhUk67JYbI3so2mTDPBoeVkCZKmpTIyMtC7d2/07t0bAPDUU0+hd+/eePHFFwEA+fn5yM39O9caFhaG7du3Y+/evYiIiMDq1avx3nvvcY4bAsDm7MaSatI1uUz2RrZh7qR6nGCULEHSlpuhQ4eivml2jM0+PHToUBw/ftyKtSJ7xebsxpHqzph35NRYnGCUmsquOhQT1YerAzeOVHfGvCMnU3A5BWoK2cxQbCucoVjZjM2Uyj43xuVryyW5M5bqdYnIOHsZhGHK7zeDG1Ic/ngSETWOPQ3CMOX3m2kpB6fEOUfYnE1E1DAlD8Kwq3luyLLsKWInIiLLUvIgDLbcOCglR+xERNQwJQ/CYHDjoDjnCBGRbcg1/a/kEYxMSzkozjlCRGR9ck//K3VOIbbcOCglR+xERHJgL+l/JQ7CYMuNA1NqxE5EJAdK7rArdwxuHFygxp1/ZEREVsD0v3SYliIiIrICpv+lw5YbIiIiK2H6XxoMboiIyC7Zy5pITP/bHoMbIiKyO3IfYk3SYp8bIiKyK/YyxNoRyHWCQrbcEBGRXeEQa3mQc+sZW26IiMiuKHlNJHsh99YzBjdERGRXOMTaNNZIHcl9fUKmpYiIyO5wiHXjWCt1JPcJCtlyQ0REdkmJayJZkjVTR3JvPWPLDRERkQJZu+O1nFvPGNwQEZFi2MvEfrZgi9SRXCcoZFrKzsh1TgEiIqklp+ciOnE/Jmw4gujE/UhOz5W6SpKSe+rImlRCCNFwMeUoLi6GRqOBVquFt7e31NUxiZznFCAiklK+thzRiftrtVKkxA9ziB/z+uRry2WZOjKVKb/fbLmxE3KfU4CISEpyH5osJUfseM3gxk7wD5eIqG6c2I9qYnBjJ+z9D5d9hYjImhy5fwnVxtFSdqL6D3fJ1ixUCWFXf7jsK6QsHI1CciXnoclkW+xQbGfsrWMYO/kpCwNVsjcMxpXDlN9vttzYGbnOKVAXrt6rHHV1ah/S2ZfvJckSg3HHxT43ZFX23leI/sZO7WRPHGmEKfs01sbghqyKnfyUg4Eq2RNHCcY5caFxTEuR1Smhkx/z9vbdqZ0cj9xXrbYEporrxuCGbMLe+grVDGYO/3pF0Xl7UwI3JQSq5BgcIRhnn8a6Mbghus3tnRCFAKq/P5R2Z2ROh0t7C1TJcSk9GHeE1ilzsc8NUQ3GmnlvnytBKXl7R+pwSY5LyUsPsE9j3dhyQ1SDsWbe2ynlzohN2kT2T+mtU+ZicEMOy1hfE2PNvCoVoBKADsq6M2KTNimJI3f6Z6q4NgY35JDq6mtSVydEe7wzaujL3hE6XJJj4GR9dDtZLL/w9ttvY9WqVSgoKEBERATefPNN9O/f32jZpKQkTJs2zWCbWq3G9evXG/Va9r78AjVdY5aEsLdlLm5nype9vZ8rOTYu8eI4TPn9lrxDcXJyMp566iksXboUx44dQ0REBGJjY3H58uU6n+Pt7Y38/Hz948KFCzasMdm7xkzuZc+dEE3tKGzsXDnjKdkLR5msj0wjeXDz73//G7NmzcK0adMQHh6O9evXw8PDA++//36dz1GpVAgICNA//P39bVhjsndKn2m3qV/2nPGU7InS/56N4c1HwyQNbm7cuIGjR49ixIgR+m1OTk4YMWIE0tLS6nxeSUkJ2rVrh+DgYNx33304ffq0LapLCqH04ZNN+bLn8HCyN0r/e74dbz4aR9IOxYWFhaiqqqrV8uLv749ffvnF6HO6dOmC999/Hz179oRWq8W//vUvDBo0CKdPn0bbtm1rla+oqEBFRYX+/8XFxZY9CbJLSh4+2ZSOwhweTvZIyX/PNXG5hcazu9FSUVFRiIqK0v9/0KBB6NatG9555x2sXLmyVvmEhAQsX77cllUkO6Hk4ZPVX/bHLvwFnRCIDG3VqOdxeDjZKyX/PVfjzUfjSZqW8vHxgbOzMy5dumSw/dKlSwgICGjUMZo1a4bevXvj3LlzRvcvXrwYWq1W/8jLy2tyvYnsweFfr+CJT4/jiU8zG9187WhN/ET2xBH7F5lL0uDG1dUVffv2xb59+/TbdDod9u3bZ9A6U5+qqiqcOnUKgYGBRver1Wp4e3sbPIiUril9Z+L6hSAlfhg+nTUQKfHDOF8IkUzw5qPxJE9LPfXUU5gyZQoiIyPRv39/rFmzBqWlpfq5bCZPnoygoCAkJCQAAFasWIGBAweiY8eOKCoqwqpVq3DhwgXMnDlTytMgkpWmNl87QhM/kdwZm4jTUfoXNZXkwU1cXByuXLmCF198EQUFBejVqxd27dql72Scm5sLJ6e/G5j++usvzJo1CwUFBWjZsiX69u2L1NRUhIeHS3UKRLLDvjNE9q2+iTh589EwWcxQbEucoZgcRXJ6bq0RU0wxEckfZ102zpTfb8lbbojIOth8TWQ/aqagOCqq6RjcECkYm6+J5O/2FNSi0V2ZVm4iyZdfICIiclTGRja+tvMMFo3qylFRTcCWGyIiIonUlYLq2bYFUuKHMa1sJgY3REREEqlvZCPTyuZjWoqIiEginJjPOthyQ0REJCGObLQ8BjdEREQSYwrKspiWIiIiMiJfW47U7MJGrclG8sKWGyIiotvUt/wByR9bbmSAdwdERPJhbO6ZJVuz+B1tR9hyIzHeHRARyQuXP7B/bLmREO8OiIikUV+LefXcMzVx+QP7wuBGQvXdHRARkXUkp+ciOnE/Jmw4gujE/UhOzzXYz7ln7B/TUhKqb2ZKIiKyvLpazId09jUIXjj3jH1jy42EeHdARGRbprSYB2rcEdWhNb+T7RBbbiTGuwMiItthi7ljYMuNDPDuwP5w+D6RfWKLuWNgyw2RiTh8n8i+scVc+dhyQ2QCDt8nUga2mCsbgxsiE3D4PhGR/DG4ITIBJ/ciIpI/BjdEJmBnRCIi+WOHYiITsTMiEZG8MbghMkOgxp1BDRGRTDEtRURERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdEREQWxvXnpMXRUkRERBbE9eekx5YbIiOkuOuy5GvyrpFIGlx/Th7YckN0Gynuuiz5mrxrJJJOfevPcW4s22HLDVENUtx1WfI1eddIZD2NaRE1tv4cAJz8o8h6FaNaGNwQ1SDFqt+WfE2uWk5kHcnpuYhO3I8JG44gOnE/3jmcbTTQCdS4Y9GorrWe/9rOM7zJsCGmpYhqqL7rqhkgWHvVb1NfM19bjpzCUoT5NK/VzC1F/YmUzliLaMKOXwAYT/32aKupdQympmyLLTdENUix6rcpr3n73WNyeq7k9SdSOmMtotWMpX6NpaZ4k2FbKiFEHW+ZMhUXF0Oj0UCr1cLb21vq6pBM5WvLbb7qd0Ovma8tR3Ti/lqtMinxw2qVl6L+REpl7G/vdp/OGoioDq31/09Oz8WSrVmoEkJ/k8GO/U1jyu8301JERkix6ndDr2nKKAyuWk5kOdUtotXByu2MtcrE9QvBkM6+vMmQCIMbIjvB/jRE0qkZrJz8vQiv7Tpj0CpTM3ip2S+uZmsO2Q6DGyI7cfvdI/vTENlWdYtoVIfWuLdXG6OtMpxnSh5k0aH47bffRmhoKNzc3DBgwAD8+OOP9ZbfsmULunbtCjc3N/To0QM7duywUU2JpBXXLwQp8cPw6ayBSIkfxi9NIolUBzm3t9hwnil5kDy4SU5OxlNPPYWlS5fi2LFjiIiIQGxsLC5fvmy0fGpqKsaPH48ZM2bg+PHjGDt2LMaOHYusrCwb15xIGsa+VIlIepxnSj4kHy01YMAA9OvXD2+99RYAQKfTITg4GE888QTi4+NrlY+Li0NpaSm+/fZb/baBAweiV69eWL9+fYOvx9FSRERkDaaMaCTTmfL7LWnLzY0bN3D06FGMGDFCv83JyQkjRoxAWlqa0eekpaUZlAeA2NjYOstXVFSguLjY4EFERGRpnGdKPiTtUFxYWIiqqir4+/sbbPf398cvv/xi9DkFBQVGyxcUFBgtn5CQgOXLl1umwkRERPXgEHB5kLzPjbUtXrwYWq1W/8jLy5O6SkREpGDsFyc9SVtufHx84OzsjEuXLhlsv3TpEgICAow+JyAgwKTyarUaarXaMhUmIiIi2ZO05cbV1RV9+/bFvn379Nt0Oh327duHqKgoo8+JiooyKA8Ae/furbM8ERERORbJJ/F76qmnMGXKFERGRqJ///5Ys2YNSktLMW3aNADA5MmTERQUhISEBADA/PnzERMTg9WrV2PMmDHYvHkzMjIy8O6770p5GkRERCQTkgc3cXFxuHLlCl588UUUFBSgV69e2LVrl77TcG5uLpyc/m5gGjRoED755BM8//zzWLJkCTp16oQvv/wS3bt3l+oUiIiISEYkn+fG1jjPDRERkf2xm3luiIiIiCyNwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaJIPs+NrVWPfOfq4ERERPaj+ne7MTPYOFxwc+3aNQBAcHCwxDUhIiIiU127dg0ajabeMg43iZ9Op8PFixfh5eUFlUrV6OcVFxcjODgYeXl5Dj35H68Dr0E1XodbeB14DarxOtxiresghMC1a9fQpk0bg5ULjHG4lhsnJye0bdvW7Od7e3s79Ie2Gq8Dr0E1XodbeB14DarxOtxijevQUItNNXYoJiIiIkVhcENERESKwuCmkdRqNZYuXQq1Wi11VSTF68BrUI3X4RZeB16DarwOt8jhOjhch2IiIiJSNrbcEBERkaIwuCEiIiJFYXBDREREisLghoiIiBTFoYObdevWoWfPnvqJhqKiorBz5079/uvXr2POnDlo3bo1PD098cADD+DSpUsGx8jNzcWYMWPg4eEBPz8/PPPMM6isrLT1qVhMYmIiVCoVFixYoN/mCNdh2bJlUKlUBo+uXbvq9zvCNaj2xx9/4JFHHkHr1q3h7u6OHj16ICMjQ79fCIEXX3wRgYGBcHd3x4gRI3D27FmDY1y9ehUTJ06Et7c3WrRogRkzZqCkpMTWp2K20NDQWp8HlUqFOXPmAHCMz0NVVRVeeOEFhIWFwd3dHR06dMDKlSsN1vVxhM8CcGu6/wULFqBdu3Zwd3fHoEGDkJ6ert+vxOtw+PBh3HPPPWjTpg1UKhW+/PJLg/2WOueTJ0/izjvvhJubG4KDg/Haa69Z5gSEA/v666/F9u3bxa+//irOnDkjlixZIpo1ayaysrKEEELMnj1bBAcHi3379omMjAwxcOBAMWjQIP3zKysrRffu3cWIESPE8ePHxY4dO4SPj49YvHixVKfUJD/++KMIDQ0VPXv2FPPnz9dvd4TrsHTpUnHHHXeI/Px8/ePKlSv6/Y5wDYQQ4urVq6Jdu3Zi6tSp4siRI+K3334Tu3fvFufOndOXSUxMFBqNRnz55ZfixIkT4t577xVhYWGivLxcX2bUqFEiIiJC/PDDD+J///uf6Nixoxg/frwUp2SWy5cvG3wW9u7dKwCIAwcOCCEc4/Pw8ssvi9atW4tvv/1W5OTkiC1btghPT0+xdu1afRlH+CwIIcRDDz0kwsPDxaFDh8TZs2fF0qVLhbe3t/j999+FEMq8Djt27BDPPfec2Lp1qwAgtm3bZrDfEues1WqFv7+/mDhxosjKyhKffvqpcHd3F++8806T6+/QwY0xLVu2FO+9954oKioSzZo1E1u2bNHv+/nnnwUAkZaWJoS49eY7OTmJgoICfZl169YJb29vUVFRYfO6N8W1a9dEp06dxN69e0VMTIw+uHGU67B06VIRERFhdJ+jXAMhhFi0aJEYPHhwnft1Op0ICAgQq1at0m8rKioSarVafPrpp0IIIX766ScBQKSnp+vL7Ny5U6hUKvHHH39Yr/JWNH/+fNGhQweh0+kc5vMwZswYMX36dINt48aNExMnThRCOM5noaysTDg7O4tvv/3WYHufPn3Ec8895xDX4fbgxlLn/J///Ee0bNnS4G9i0aJFokuXLk2us0OnpWqqqqrC5s2bUVpaiqioKBw9ehQ3b97EiBEj9GW6du2KkJAQpKWlAQDS0tLQo0cP+Pv768vExsaiuLgYp0+ftvk5NMWcOXMwZswYg/MF4FDX4ezZs2jTpg3at2+PiRMnIjc3F4BjXYOvv/4akZGR+Oc//wk/Pz/07t0bGzZs0O/PyclBQUGBwbXQaDQYMGCAwbVo0aIFIiMj9WVGjBgBJycnHDlyxHYnYyE3btzApk2bMH36dKhUKof5PAwaNAj79u3Dr7/+CgA4ceIEUlJSMHr0aACO81morKxEVVUV3NzcDLa7u7sjJSXFYa5DTZY657S0NAwZMgSurq76MrGxsThz5gz++uuvJtXR4RbOvN2pU6cQFRWF69evw9PTE9u2bUN4eDgyMzPh6uqKFi1aGJT39/dHQUEBAKCgoMDgy6t6f/U+e7F582YcO3bMIIdcraCgwCGuw4ABA5CUlIQuXbogPz8fy5cvx5133omsrCyHuQYA8Ntvv2HdunV46qmnsGTJEqSnp2PevHlwdXXFlClT9Odi7FxrXgs/Pz+D/S4uLmjVqpVdXYtqX375JYqKijB16lQAjvM3ER8fj+LiYnTt2hXOzs6oqqrCyy+/jIkTJwKAw3wWvLy8EBUVhZUrV6Jbt27w9/fHp59+irS0NHTs2NFhrkNNljrngoIChIWF1TpG9b6WLVuaXUeHD266dOmCzMxMaLVafP7555gyZQoOHTokdbVsJi8vD/Pnz8fevXtr3Zk4kuq7UQDo2bMnBgwYgHbt2uGzzz6Du7u7hDWzLZ1Oh8jISLzyyisAgN69eyMrKwvr16/HlClTJK6dNP773/9i9OjRaNOmjdRVsanPPvsMH3/8MT755BPccccdyMzMxIIFC9CmTRuH+yx89NFHmD59OoKCguDs7Iw+ffpg/PjxOHr0qNRVozo4fFrK1dUVHTt2RN++fZGQkICIiAisXbsWAQEBuHHjBoqKigzKX7p0CQEBAQCAgICAWiMkqv9fXUbujh49isuXL6NPnz5wcXGBi4sLDh06hDfeeAMuLi7w9/d3iOtwuxYtWqBz5844d+6cw3wWACAwMBDh4eEG27p166ZP0VWfi7FzrXktLl++bLC/srISV69etatrAQAXLlzAd999h5kzZ+q3Ocrn4ZlnnkF8fDwefvhh9OjRA5MmTcKTTz6JhIQEAI71WejQoQMOHTqEkpIS5OXl4ccff8TNmzfRvn17h7oO1Sx1ztb8O3H44OZ2Op0OFRUV6Nu3L5o1a4Z9+/bp9505cwa5ubmIiooCAERFReHUqVMGb+DevXvh7e1d6wdCroYPH45Tp04hMzNT/4iMjMTEiRP1/3aE63C7kpISZGdnIzAw0GE+CwAQHR2NM2fOGGz79ddf0a5dOwBAWFgYAgICDK5FcXExjhw5YnAtioqKDO5q9+/fD51OhwEDBtjgLCxn48aN8PPzw5gxY/TbHOXzUFZWBicnw58IZ2dn6HQ6AI73WQCA5s2bIzAwEH/99Rd2796N++67zyGvg6XOOSoqCocPH8bNmzf1Zfbu3YsuXbo0KSUFwLGHgsfHx4tDhw6JnJwccfLkSREfHy9UKpXYs2ePEOLWcM+QkBCxf/9+kZGRIaKiokRUVJT++dXDPUeOHCkyMzPFrl27hK+vr10N9zSm5mgpIRzjOjz99NPi4MGDIicnR3z//fdixIgRwsfHR1y+fFkI4RjXQIhb0wG4uLiIl19+WZw9e1Z8/PHHwsPDQ2zatElfJjExUbRo0UJ89dVX4uTJk+K+++4zOgS0d+/e4siRIyIlJUV06tRJ1sNejamqqhIhISFi0aJFtfY5wudhypQpIigoSD8UfOvWrcLHx0c8++yz+jKO8lnYtWuX2Llzp/jtt9/Enj17REREhBgwYIC4ceOGEEKZ1+HatWvi+PHj4vjx4wKA+Pe//y2OHz8uLly4IISwzDkXFRUJf39/MWnSJJGVlSU2b94sPDw8OBS8qaZPny7atWsnXF1dha+vrxg+fLg+sBFCiPLycvH444+Lli1bCg8PD3H//feL/Px8g2OcP39ejB49Wri7uwsfHx/x9NNPi5s3b9r6VCzq9uDGEa5DXFycCAwMFK6uriIoKEjExcUZzO3iCNeg2jfffCO6d+8u1Gq16Nq1q3j33XcN9ut0OvHCCy8If39/oVarxfDhw8WZM2cMyvz5559i/PjxwtPTU3h7e4tp06aJa9eu2fI0mmz37t0CQK1zE8IxPg/FxcVi/vz5IiQkRLi5uYn27duL5557zmDYrqN8FpKTk0X79u2Fq6urCAgIEHPmzBFFRUX6/Uq8DgcOHBAAaj2mTJkihLDcOZ84cUIMHjxYqNVqERQUJBITEy1Sf5UQNaabJCIiIrJz7HNDREREisLghoiIiBSFwQ0REREpCoMbIiIiUhQGN0RERKQoDG6IiIhIURjcEBERkaIwuCEiIiJFYXBDRI0ydOhQLFiwQOpqWN2yZcvQq1cvqatBRE3A4IaIHMKNGzds+npCCFRWVtr0NYnoFgY3RNSgqVOn4tChQ1i7di1UKhVUKhXOnz+PrKwsjB49Gp6envD398ekSZNQWFiof97QoUPxxBNPYMGCBWjZsiX8/f2xYcMGlJaWYtq0afDy8kLHjh2xc+dO/XMOHjwIlUqF7du3o2fPnnBzc8PAgQORlZVlUKeUlBTceeedcHd3R3BwMObNm4fS0lL9/tDQUKxcuRKTJ0+Gt7c3Hn30UQDAokWL0LlzZ3h4eKB9+/Z44YUX9KsSJyUlYfny5Thx4oT+PJOSknD+/HmoVCpkZmbqj19UVASVSoWDBw8a1Hvnzp3o27cv1Go1UlJSoNPpkJCQgLCwMLi7uyMiIgKff/65pd8iIqqBwQ0RNWjt2rWIiorCrFmzkJ+fj/z8fHh5eeGuu+5C7969kZGRgV27duHSpUt46KGHDJ77wQcfwMfHBz/++COeeOIJPPbYY/jnP/+JQYMG4dixYxg5ciQmTZqEsrIyg+c988wzWL16NdLT0+Hr64t77rlHH4RkZ2dj1KhReOCBB3Dy5EkkJycjJSUFc+fONTjGv/71L0REROD48eN44YUXAABeXl5ISkrCTz/9hLVr12LDhg14/fXXAQBxcXF4+umncccdd+jPMy4uzqRrFR8fj8TERPz888/o2bMnEhIS8OGHH2L9+vU4ffo0nnzySTzyyCM4dOiQScclIhNYZPlNIlK821eLX7lypRg5cqRBmby8PIOVtGNiYsTgwYP1+ysrK0Xz5s3FpEmT9Nvy8/MFAJGWliaE+Hs14s2bN+vL/Pnnn8Ld3V0kJycLIYSYMWOGePTRRw1e+3//+59wcnIS5eXlQggh2rVrJ8aOHdvgea1atUr07dtX//+lS5eKiIgIgzI5OTkCgDh+/Lh+219//SUAiAMHDhjU+8svv9SXuX79uvDw8BCpqakGx5sxY4YYP358g3UjIvO4SBlYEZH9OnHiBA4cOABPT89a+7Kzs9G5c2cAQM+ePfXbnZ2d0bp1a/To0UO/zd/fHwBw+fJlg2NERUXp/92qVSt06dIFP//8s/61T548iY8//lhfRggBnU6HnJwcdOvWDQAQGRlZq27Jycl44403kJ2djZKSElRWVsLb29vk869Lzdc8d+4cysrKcPfddxuUuXHjBnr37m2x1yQiQwxuiMgsJSUluOeee/Dqq6/W2hcYGKj/d7NmzQz2qVQqg20qlQoAoNPpTHrt//u//8O8efNq7QsJCdH/u3nz5gb70tLSMHHiRCxfvhyxsbHQaDTYvHkzVq9eXe/rOTndyuALIfTbqlNkt6v5miUlJQCA7du3IygoyKCcWq2u9zWJyHwMboioUVxdXVFVVaX/f58+ffDFF18gNDQULi6W/yr54Ycf9IHKX3/9hV9//VXfItOnTx/89NNP6Nixo0nHTE1NRbt27fDcc8/pt124cMGgzO3nCQC+vr4AgPz8fH2LS83OxXUJDw+HWq1Gbm4uYmJiTKorEZmPHYqJqFFCQ0Nx5MgRnD9/HoWFhZgzZw6uXr2K8ePHIz09HdnZ2di9ezemTZtWKzgwx4oVK7Bv3z5kZWVh6tSp8PHxwdixYwHcGvGUmpqKuXPnIjMzE2fPnsVXX31Vq0Px7Tp16oTc3Fxs3rwZ2dnZeOONN7Bt27Za55mTk4PMzEwUFhaioqIC7u7uGDhwoL6j8KFDh/D88883eA5eXl5YuHAhnnzySXzwwQfIzs7GsWPH8Oabb+KDDz4w+9oQUf0Y3BBRoyxcuBDOzs4IDw+Hr68vbty4ge+//x5VVVUYOXIkevTogQULFqBFixb6NE5TJCYmYv78+ejbty8KCgrwzTffwNXVFcCtfjyHDh3Cr7/+ijvvvBO9e/fGiy++iDZt2tR7zHvvvRdPPvkk5s6di169eiE1NVU/iqraAw88gFGjRmHYsGHw9fXFp59+CgB4//33UVlZib59+2LBggV46aWXGnUeK1euxAsvvICEhAR069YNo0aNwvbt2xEWFmbGVSGixlCJmklkIiKJHTx4EMOGDcNff/2FFi1aSF0dIrJDbLkhIiIiRWFwQ0RERIrCtBQREREpCltuiIiISFEY3BAREZGiMLghIiIiRWFwQ0RERIrC4IaIiIgUhcENERERKQqDGyIiIlIUBjdERESkKAxuiIiISFH+P6mFqBfr0aimAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" } - ], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(keras_surrogate, data_validation)\n", - "surrogate_parity(keras_surrogate, data_validation)\n", - "surrogate_residual(keras_surrogate, data_validation)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding_usr.ipynb](./surrogate_embedding_usr.ipynb) file." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/properties.py b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/properties.py index d5a60c09..c9fbaaf6 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/properties.py +++ b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/properties.py @@ -1,15 +1,16 @@ -############################################################################## -# Institute for the Design of Advanced Energy Systems Process Systems -# Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the -# software owners: The Regents of the University of California, through -# Lawrence Berkeley National Laboratory, National Technology & Engineering -# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia -# University Research Corporation, et al. All rights reserved. +################################################################################# +# The Institute for the Design of Advanced Energy Systems Integrated Platform +# Framework (IDAES IP) was produced under the DOE Institute for the +# Design of Advanced Energy Systems (IDAES). # -# Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and -# license information, respectively. Both files are also available online -# at the URL "https://github.com/IDAES/idaes-pse". -############################################################################## +# Copyright (c) 2018-2025 by the software owners: The Regents of the +# University of California, through Lawrence Berkeley National Laboratory, +# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon +# University, West Virginia University Research Corporation, et al. +# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md +# for full copyright and license information. +# +################################################################################# """ Maintainer: Javal Vyas diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/sco2_keras_surr/sco2_keras_model.keras b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/sco2_keras_surr/sco2_keras_model.keras index c090ddac..8b5979df 100644 Binary files a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/sco2_keras_surr/sco2_keras_model.keras and b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/sco2_keras_surr/sco2_keras_model.keras differ diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding.ipynb index 10a46ccf..286e015a 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "27ba4108", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": null, @@ -501,8 +528,7 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.16" - }, - "orig_nbformat": 4 + } }, "nbformat": 4, "nbformat_minor": 2 diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding_doc.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding_doc.ipynb index 1a39ef6f..35472420 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding_doc.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding_doc.ipynb @@ -2,7 +2,33 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -62,9 +88,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:13.768395: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", + "2025-03-17 17:39:13.769168: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", + "2025-03-17 17:39:13.772133: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", + "2025-03-17 17:39:13.778950: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", + "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", + "E0000 00:00:1742258353.790882 379144 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "E0000 00:00:1742258353.794461 379144 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "W0000 00:00:1742258353.804206 379144 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "W0000 00:00:1742258353.804224 379144 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "W0000 00:00:1742258353.804225 379144 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "W0000 00:00:1742258353.804226 379144 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n", + "2025-03-17 17:39:13.807756: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] + } + ], "source": [ "# Import Python libraries\n", "import logging\n", @@ -143,7 +189,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -214,7 +260,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -335,7 +381,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -500,9 +546,8 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.16" - }, - "orig_nbformat": 4 + "version": "3.11.11" + } }, "nbformat": 4, "nbformat_minor": 3 diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding_test.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding_test.ipynb index 5f09fc29..ba8aab39 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding_test.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding_test.ipynb @@ -1,509 +1,534 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "##############################################################################\n", - "# Institute for the Design of Advanced Energy Systems Process Systems\n", - "# Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the\n", - "# software owners: The Regents of the University of California, through\n", - "# Lawrence Berkeley National Laboratory, National Technology & Engineering\n", - "# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia\n", - "# University Research Corporation, et al. All rights reserved.\n", - "#\n", - "# Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and\n", - "# license information, respectively. Both files are also available online\n", - "# at the URL \"https://github.com/IDAES/idaes-pse\".\n", - "##############################################################################" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "##############################################################################\n", + "# Institute for the Design of Advanced Energy Systems Process Systems\n", + "# Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the\n", + "# software owners: The Regents of the University of California, through\n", + "# Lawrence Berkeley National Laboratory, National Technology & Engineering\n", + "# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia\n", + "# University Research Corporation, et al. All rights reserved.\n", + "#\n", + "# Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and\n", + "# license information, respectively. Both files are also available online\n", + "# at the URL \"https://github.com/IDAES/idaes-pse\".\n", + "##############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with OMLT Surrogate Object - Embedding Surrogate (Part 2)\n", + "\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "\n", + "## 1. Integration of Surrogate into Custom Property Package\n", + "\n", + "Here we shall see how to integrate the trained surrogate in the custom property package. One can read more about making a properties package from read the docs. To integrate the surrogate we first define the physical parameter block which will return the properties based on the state variables. State variables would be called from the State Block as Pyomo variables. We will define the surrogate input and output as pyomo variables as well. Once we have defined the variables in the state block then we define our surrogate block.\n", + "\n", + "*NOTE:* For ease of explanation the property package is written in \".ipynb\" format, ideally it should be in a python script. Each class of this package is separated in different cell for the same reason, in practice all the classes in this notebook should be part of the same python script. This folder includes \"properties.py\" file which is how embedding file should look like. \n", + "\n", + "### 1.1 Steps in Creating a Property Package\n", + "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", + "\n", + "1. Defining the **units of measurement** for the property package.\n", + "2. Defining the **properties supported** by the property package and the associated metadata.\n", + "3. Defining the **phases and components** of interest.\n", + "4. Defining the necessary **parameters** required to calculate the properties of interest.\n", + "5. Declaring the **state variables** to be used for the property package.\n", + "6. Creating **variables and constraints** to describe the properties of interest.\n", + "7. Creating an **initialization routine** for the property package.\n", + "8. Defining **interface methods** used to couple the property package with unit models." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Importing libraries for making Property Package\n", + "\n", + "To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries. We shall also use the Surrogate API in the IDAES framework to embed the trained surrogate in the property package." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Python libraries\n", + "import logging\n", + "\n", + "# Import Pyomo libraries\n", + "from pyomo.environ import (\n", + " Constraint,\n", + " Param,\n", + " Reals,\n", + " Set,\n", + " value,\n", + " Var,\n", + " NonNegativeReals,\n", + " units,\n", + ")\n", + "from pyomo.opt import SolverFactory, TerminationCondition\n", + "\n", + "# Import IDAES cores\n", + "from idaes.core import (\n", + " declare_process_block_class,\n", + " PhysicalParameterBlock,\n", + " StateBlockData,\n", + " StateBlock,\n", + " MaterialBalanceType,\n", + " EnergyBalanceType,\n", + " LiquidPhase,\n", + " Component,\n", + ")\n", + "from idaes.core.util.initialization import solve_indexed_blocks\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.misc import extract_data\n", + "from idaes.core.solvers import get_solver\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", + "from idaes.core.surrogate.keras_surrogate import KerasSurrogate\n", + "\n", + "from pyomo.util.model_size import build_model_size_report\n", + "\n", + "# Some more information about this module\n", + "__author__ = \"Javal Vyas\"\n", + "\n", + "\n", + "# Set up logger\n", + "_log = logging.getLogger(__name__)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3 Defining Classes\n", + "\n", + "We shall be going through each class of the property package in detail. Since there are not reactions occurring in the flowsheet we shall only write the Physical Parameter Block.\n", + "\n", + "## 3.1 Physical Parameter Block\n", + "\n", + "The Physical Parameter Block serves as the central point of reference for all aspects of the property package, and needs to define a number of things about the package. These are summarized below:\n", + "\n", + "* Units of measurement\n", + "* What properties are supported and how they are implemented\n", + "* What components and phases are included in the packages\n", + "* All the global parameters necessary for calculating properties\n", + "* A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", + "\n", + "To assemble the above mentioned things in a class we need to follow the following steps:\n", + "\n", + "* Declaring the new class and inheriting from the PhysicalParameterBlock base class\n", + "* Declaring any necessary configuration arguments\n", + "* Writing the build method for our class\n", + "* Creating a define_metadata method for the class.\n", + "\n", + "The code below follows the above mentioned steps. \n", + "\n", + "*NOTE*: The SCO2StateBlock will be discussed in the next section." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"SCO2ParameterBlock\")\n", + "class PhysicalParameterData(PhysicalParameterBlock):\n", + " \"\"\"\n", + " Property Parameter Block Class\n", + "\n", + " Contains parameters and indexing sets associated with properties for\n", + " supercritical CO2.\n", + "\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction.\n", + " \"\"\"\n", + " super(PhysicalParameterData, self).build()\n", + "\n", + " self._state_block_class = SCO2StateBlock\n", + "\n", + " # List of valid phases in property package\n", + " self.Liq = LiquidPhase()\n", + "\n", + " # Component list - a list of component identifiers\n", + " self.CO2 = Component()\n", + "\n", + " @classmethod\n", + " def define_metadata(cls, obj):\n", + " obj.add_properties(\n", + " {\n", + " \"flow_mol\": {\"method\": None, \"units\": \"kmol/s\"},\n", + " \"pressure\": {\"method\": None, \"units\": \"MPa\"},\n", + " \"temperature\": {\"method\": None, \"units\": \"K\"},\n", + " \"enth_mol\": {\"method\": None, \"units\": \"kJ/kmol\"},\n", + " \"entr_mol\": {\"method\": None, \"units\": \"kJ/kmol/K\"},\n", + " }\n", + " )\n", + "\n", + " obj.add_default_units(\n", + " {\n", + " \"time\": units.s,\n", + " \"length\": units.m,\n", + " \"mass\": units.kg,\n", + " \"amount\": units.mol,\n", + " \"temperature\": units.K,\n", + " }\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.2 State Block\n", + "\n", + "After the Physical Parameter Block class has been created, the next step is to write the code necessary to create the State Blocks that will be used through out the flowsheet.\n", + "\n", + "For this example, we will begin by describing the content of the StateBlockData objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. \n", + "\n", + "We start by defining the 5 state variables: flow_mol, pressure, temperature, enth_mol and entr_mol as the Pyomo Var, each of this variable has a unit for unit consistency. This is done in _make_state_vars function. We get the enth_mol and entr_mol variables from trained surrogate which we define in this function as well. To get the output variables from the surrogate:\n", + "\n", + "1. Define the input and output variables to the trained surrogate\n", + "2. Load the surrogate from the folder it is saved in, here it is saved in the folder called keras_surrogate (look at the keras_training_test.ipynb file) using the keras Surrogate API of IDAES package\n", + "3. Define a `SurrogateBlock` and call the build_model method on the block with the input variables, output variables, model formulation and the loaded surrogate as the arguments. \n", + "4. Define the constraints necessary for ensuring physical feasibility of the system like the mass balance and energy balance. Check for the state variables to be within the bounds. \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"SCO2StateBlock\", block_class=StateBlock)\n", + "class SCO2StateBlockData(StateBlockData):\n", + " \"\"\"\n", + " An example property package for ideal gas properties with Gibbs energy\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction\n", + " \"\"\"\n", + " super(SCO2StateBlockData, self).build()\n", + " self._make_state_vars()\n", + "\n", + " def _make_state_vars(self):\n", + " self.flow_mol = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=1.0,\n", + " units=units.kmol / units.s,\n", + " doc=\"Total molar flowrate [kmol/s]\",\n", + " )\n", + " self.pressure = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=8,\n", + " bounds=(7.38, 40),\n", + " units=units.MPa,\n", + " doc=\"State pressure [MPa]\",\n", + " )\n", + " self.temperature = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=350,\n", + " bounds=(304.2, 760 + 273.15),\n", + " units=units.K,\n", + " doc=\"State temperature [K]\",\n", + " )\n", + " self.entr_mol = Var(\n", + " domain=Reals,\n", + " initialize=10,\n", + " units=units.kJ / units.kmol / units.K,\n", + " doc=\"Entropy [kJ/kmol/K]\",\n", + " )\n", + " self.enth_mol = Var(\n", + " domain=Reals,\n", + " initialize=1,\n", + " units=units.kJ / units.kmol,\n", + " doc=\"Enthalpy [kJ/ kmol]\",\n", + " )\n", + "\n", + " inputs = [self.pressure, self.temperature]\n", + " outputs = [self.enth_mol, self.entr_mol]\n", + " self.keras_surrogate = KerasSurrogate.load_from_folder(\n", + " keras_folder_name=\"sco2_keras_surr\", keras_model_name=\"sco2_keras_model\"\n", + " )\n", + " self.surrogate_enth = SurrogateBlock()\n", + " self.surrogate_enth.build_model(\n", + " self.keras_surrogate,\n", + " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", + " input_vars=inputs,\n", + " output_vars=outputs,\n", + " )\n", + "\n", + " def get_material_flow_terms(self, p, j):\n", + " return self.flow_mol\n", + "\n", + " def get_enthalpy_flow_terms(self, p):\n", + " return self.flow_mol * self.enth_mol\n", + "\n", + " def default_material_balance_type(self):\n", + " return MaterialBalanceType.componentTotal\n", + "\n", + " def default_energy_balance_type(self):\n", + " return EnergyBalanceType.enthalpyTotal\n", + "\n", + " def define_state_vars(self):\n", + " return {\n", + " \"flow_mol\": self.flow_mol,\n", + " \"temperature\": self.temperature,\n", + " \"pressure\": self.pressure,\n", + " }\n", + "\n", + " def model_check(blk):\n", + " \"\"\"\n", + " Model checks for property block\n", + " \"\"\"\n", + " # Check temperature bounds\n", + " if value(blk.temperature) < blk.temperature.lb:\n", + " _log.error(\"{} Temperature set below lower bound.\".format(blk.name))\n", + " if value(blk.temperature) > blk.temperature.ub:\n", + " _log.error(\"{} Temperature set above upper bound.\".format(blk.name))\n", + "\n", + " # Check pressure bounds\n", + " if value(blk.pressure) < blk.pressure.lb:\n", + " _log.error(\"{} Pressure set below lower bound.\".format(blk.name))\n", + " if value(blk.pressure) > blk.pressure.ub:\n", + " _log.error(\"{} Pressure set above upper bound.\".format(blk.name))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.3 Define Initialization Routine\n", + "\n", + "After defining the variables and constraints required to describe the properties of interest for S-CO2, we need to provide them with a good initial guess. It is often the case that the default values provided to the variables while creating the model are not likely the actual conditions the user would simulate. Given the highly non-linear nature of the physical property calculations, it is more often than not impossible to solve a State Block without providing a set of good initial values for all the variables we have declared.\n", + "\n", + "Any initialization routine can be written by following a 3 step process:\n", + "1. `Fix the state` of the model such that there are no degrees of freedom. For State Blocks, it should only be necessary to fix the state variables to a set of initial guesses provided by the user or unit model, as well as deactivating any constraints like the sum of mole fractions.\n", + "\n", + "2. `Iteratively build up a solution` for the full model. This often involves multiple steps and can involve deactivating constraints and fixing some variables to reduce complexity, as well as analytically calculating values for variables based on the known state (and any previously calculated variables). Solvers can be called as part of any step to efficiently initialize large numbers of variables simultaneously.\n", + "\n", + "3. `Return the state of the model` to where it originally started (with the exception of variable values). Any variable that was fixed or constraint that was deactivated during initialization should be unfixed or reactivated, so that the degrees of freedom are restored to what they were before the initialization began.\n", + "\n", + "\n", + "Thus, we start with fixing the state variables. Here since enth_mol and entr_mol are a function of pressure and temperature, we do not fix them as fixing pressure and temperature would inturn fix them. So, we check if a state variable if fixed or not, if it is fixed then we do not change them, if they are not fixed then we check for an initial guess from the `state_args`, if we get a value then we fix the variable with state_args, else we fix it with the value provided by the user. This should bring the degrees of freedom to 0. Here since we do not have any variable/constrained that we have unfixed/deactivated we can skip step 2 and move to step 3. We unfix the variables that were fixed in step 1 using the `release_state` function. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class _StateBlock(StateBlock):\n", + " \"\"\"\n", + " This Class contains methods which should be applied to Property Blocks as a\n", + " whole, rather than individual elements of indexed Property Blocks.\n", + " \"\"\"\n", + "\n", + " def initialize(\n", + " blk,\n", + " state_args=None,\n", + " hold_state=False,\n", + " outlvl=1,\n", + " state_vars_fixed=False,\n", + " solver=\"ipopt\",\n", + " optarg={\"tol\": 1e-8},\n", + " ):\n", + " \"\"\"\n", + " Initialisation routine for property package.\n", + "\n", + " Keyword Arguments:\n", + " flow_mol : value at which to initialize component flows\n", + " (default=None)\n", + " pressure : value at which to initialize pressure (default=None)\n", + " temperature : value at which to initialize temperature\n", + " (default=None)\n", + " outlvl : sets output level of initialisation routine\n", + "\n", + " * 0 = no output (default)\n", + " * 1 = return solver state for each step in routine\n", + " * 2 = include solver output information (tee=True)\n", + " state_vars_fixed: Flag to denote if state vars have already been\n", + " fixed.\n", + " - True - states have already been fixed by the\n", + " control volume 1D. Control volume 0D\n", + " does not fix the state vars, so will\n", + " be False if this state block is used\n", + " with 0D blocks.\n", + " - False - states have not been fixed. The state\n", + " block will deal with fixing/unfixing.\n", + " optarg : solver options dictionary object (default=None)\n", + " solver : str indicating which solver to use during\n", + " initialization (default = 'ipopt')\n", + " hold_state : flag indicating whether the initialization routine\n", + " should unfix any state variables fixed during\n", + " initialization (default=False).\n", + " - True - states variables are not unfixed, and\n", + " a dict of returned containing flags for\n", + " which states were fixed during\n", + " initialization.\n", + " - False - state variables are unfixed after\n", + " initialization by calling the\n", + " release_state method\n", + "\n", + " Returns:\n", + " If hold_states is True, returns a dict containing flags for\n", + " which states were fixed during initialization.\n", + " \"\"\"\n", + " if state_vars_fixed is False:\n", + " # Fix state variables if not already fixed\n", + " Fcflag = {}\n", + " Pflag = {}\n", + " Tflag = {}\n", + "\n", + " for k in blk.keys():\n", + " if blk[k].flow_mol.fixed is True:\n", + " Fcflag[k] = True\n", + " else:\n", + " Fcflag[k] = False\n", + " if state_args is None:\n", + " blk[k].flow_mol.fix()\n", + " else:\n", + " blk[k].flow_mol.fix(state_args[\"flow_mol\"])\n", + "\n", + " if blk[k].pressure.fixed is True:\n", + " Pflag[k] = True\n", + " else:\n", + " Pflag[k] = False\n", + " if state_args is None:\n", + " blk[k].pressure.fix()\n", + " else:\n", + " blk[k].pressure.fix(state_args[\"pressure\"])\n", + "\n", + " if blk[k].temperature.fixed is True:\n", + " Tflag[k] = True\n", + " else:\n", + " Tflag[k] = False\n", + " if state_args is None:\n", + " blk[k].temperature.fix()\n", + " else:\n", + " blk[k].temperature.fix(state_args[\"temperature\"])\n", + "\n", + " # If input block, return flags, else release state\n", + " flags = {\"Fcflag\": Fcflag, \"Pflag\": Pflag, \"Tflag\": Tflag}\n", + "\n", + " else:\n", + " # Check when the state vars are fixed already result in dof 0\n", + " for k in blk.keys():\n", + " if degrees_of_freedom(blk[k]) != 0:\n", + " raise Exception(\n", + " \"State vars fixed but degrees of freedom \"\n", + " \"for state block is not zero during \"\n", + " \"initialization.\"\n", + " )\n", + "\n", + " if state_vars_fixed is False:\n", + " if hold_state is True:\n", + " return flags\n", + " else:\n", + " blk.release_state(flags)\n", + "\n", + " def release_state(blk, flags, outlvl=0):\n", + " \"\"\"\n", + " Method to release state variables fixed during initialisation.\n", + "\n", + " Keyword Arguments:\n", + " flags : dict containing information of which state variables\n", + " were fixed during initialization, and should now be\n", + " unfixed. This dict is returned by initialize if\n", + " hold_state=True.\n", + " outlvl : sets output level of of logging\n", + " \"\"\"\n", + " if flags is None:\n", + " return\n", + "\n", + " # Unfix state variables\n", + " for k in blk.keys():\n", + " if flags[\"Fcflag\"][k] is False:\n", + " blk[k].flow_mol.unfix()\n", + " if flags[\"Pflag\"][k] is False:\n", + " blk[k].pressure.unfix()\n", + " if flags[\"Tflag\"][k] is False:\n", + " blk[k].temperature.unfix()\n", + "\n", + " if outlvl > 0:\n", + " if outlvl > 0:\n", + " _log.info(\"{} State Released.\".format(blk.name))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_test.ipynb). To learn in detail about making a custom property package, one should go through [Property Package Example](..\\..\\..\\properties\\custom\\custom_physical_property_packages_test.ipynb). " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "idaes-pse", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.16" + } }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with OMLT Surrogate Object - Embedding Surrogate (Part 2)\n", - "\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "\n", - "## 1. Integration of Surrogate into Custom Property Package\n", - "\n", - "Here we shall see how to integrate the trained surrogate in the custom property package. One can read more about making a properties package from read the docs. To integrate the surrogate we first define the physical parameter block which will return the properties based on the state variables. State variables would be called from the State Block as Pyomo variables. We will define the surrogate input and output as pyomo variables as well. Once we have defined the variables in the state block then we define our surrogate block.\n", - "\n", - "*NOTE:* For ease of explanation the property package is written in \".ipynb\" format, ideally it should be in a python script. Each class of this package is separated in different cell for the same reason, in practice all the classes in this notebook should be part of the same python script. This folder includes \"properties.py\" file which is how embedding file should look like. \n", - "\n", - "### 1.1 Steps in Creating a Property Package\n", - "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", - "\n", - "1. Defining the **units of measurement** for the property package.\n", - "2. Defining the **properties supported** by the property package and the associated metadata.\n", - "3. Defining the **phases and components** of interest.\n", - "4. Defining the necessary **parameters** required to calculate the properties of interest.\n", - "5. Declaring the **state variables** to be used for the property package.\n", - "6. Creating **variables and constraints** to describe the properties of interest.\n", - "7. Creating an **initialization routine** for the property package.\n", - "8. Defining **interface methods** used to couple the property package with unit models." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Importing libraries for making Property Package\n", - "\n", - "To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries. We shall also use the Surrogate API in the IDAES framework to embed the trained surrogate in the property package." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Python libraries\n", - "import logging\n", - "\n", - "# Import Pyomo libraries\n", - "from pyomo.environ import (\n", - " Constraint,\n", - " Param,\n", - " Reals,\n", - " Set,\n", - " value,\n", - " Var,\n", - " NonNegativeReals,\n", - " units,\n", - ")\n", - "from pyomo.opt import SolverFactory, TerminationCondition\n", - "\n", - "# Import IDAES cores\n", - "from idaes.core import (\n", - " declare_process_block_class,\n", - " PhysicalParameterBlock,\n", - " StateBlockData,\n", - " StateBlock,\n", - " MaterialBalanceType,\n", - " EnergyBalanceType,\n", - " LiquidPhase,\n", - " Component,\n", - ")\n", - "from idaes.core.util.initialization import solve_indexed_blocks\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.misc import extract_data\n", - "from idaes.core.solvers import get_solver\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", - "from idaes.core.surrogate.keras_surrogate import KerasSurrogate\n", - "\n", - "from pyomo.util.model_size import build_model_size_report\n", - "\n", - "# Some more information about this module\n", - "__author__ = \"Javal Vyas\"\n", - "\n", - "\n", - "# Set up logger\n", - "_log = logging.getLogger(__name__)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3 Defining Classes\n", - "\n", - "We shall be going through each class of the property package in detail. Since there are not reactions occurring in the flowsheet we shall only write the Physical Parameter Block.\n", - "\n", - "## 3.1 Physical Parameter Block\n", - "\n", - "The Physical Parameter Block serves as the central point of reference for all aspects of the property package, and needs to define a number of things about the package. These are summarized below:\n", - "\n", - "* Units of measurement\n", - "* What properties are supported and how they are implemented\n", - "* What components and phases are included in the packages\n", - "* All the global parameters necessary for calculating properties\n", - "* A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", - "\n", - "To assemble the above mentioned things in a class we need to follow the following steps:\n", - "\n", - "* Declaring the new class and inheriting from the PhysicalParameterBlock base class\n", - "* Declaring any necessary configuration arguments\n", - "* Writing the build method for our class\n", - "* Creating a define_metadata method for the class.\n", - "\n", - "The code below follows the above mentioned steps. \n", - "\n", - "*NOTE*: The SCO2StateBlock will be discussed in the next section." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"SCO2ParameterBlock\")\n", - "class PhysicalParameterData(PhysicalParameterBlock):\n", - " \"\"\"\n", - " Property Parameter Block Class\n", - "\n", - " Contains parameters and indexing sets associated with properties for\n", - " supercritical CO2.\n", - "\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction.\n", - " \"\"\"\n", - " super(PhysicalParameterData, self).build()\n", - "\n", - " self._state_block_class = SCO2StateBlock\n", - "\n", - " # List of valid phases in property package\n", - " self.Liq = LiquidPhase()\n", - "\n", - " # Component list - a list of component identifiers\n", - " self.CO2 = Component()\n", - "\n", - " @classmethod\n", - " def define_metadata(cls, obj):\n", - " obj.add_properties(\n", - " {\n", - " \"flow_mol\": {\"method\": None, \"units\": \"kmol/s\"},\n", - " \"pressure\": {\"method\": None, \"units\": \"MPa\"},\n", - " \"temperature\": {\"method\": None, \"units\": \"K\"},\n", - " \"enth_mol\": {\"method\": None, \"units\": \"kJ/kmol\"},\n", - " \"entr_mol\": {\"method\": None, \"units\": \"kJ/kmol/K\"},\n", - " }\n", - " )\n", - "\n", - " obj.add_default_units(\n", - " {\n", - " \"time\": units.s,\n", - " \"length\": units.m,\n", - " \"mass\": units.kg,\n", - " \"amount\": units.mol,\n", - " \"temperature\": units.K,\n", - " }\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.2 State Block\n", - "\n", - "After the Physical Parameter Block class has been created, the next step is to write the code necessary to create the State Blocks that will be used through out the flowsheet.\n", - "\n", - "For this example, we will begin by describing the content of the StateBlockData objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. \n", - "\n", - "We start by defining the 5 state variables: flow_mol, pressure, temperature, enth_mol and entr_mol as the Pyomo Var, each of this variable has a unit for unit consistency. This is done in _make_state_vars function. We get the enth_mol and entr_mol variables from trained surrogate which we define in this function as well. To get the output variables from the surrogate:\n", - "\n", - "1. Define the input and output variables to the trained surrogate\n", - "2. Load the surrogate from the folder it is saved in, here it is saved in the folder called keras_surrogate (look at the keras_training_test.ipynb file) using the keras Surrogate API of IDAES package\n", - "3. Define a `SurrogateBlock` and call the build_model method on the block with the input variables, output variables, model formulation and the loaded surrogate as the arguments. \n", - "4. Define the constraints necessary for ensuring physical feasibility of the system like the mass balance and energy balance. Check for the state variables to be within the bounds. \n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"SCO2StateBlock\", block_class=StateBlock)\n", - "class SCO2StateBlockData(StateBlockData):\n", - " \"\"\"\n", - " An example property package for ideal gas properties with Gibbs energy\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction\n", - " \"\"\"\n", - " super(SCO2StateBlockData, self).build()\n", - " self._make_state_vars()\n", - "\n", - " def _make_state_vars(self):\n", - " self.flow_mol = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=1.0,\n", - " units=units.kmol / units.s,\n", - " doc=\"Total molar flowrate [kmol/s]\",\n", - " )\n", - " self.pressure = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=8,\n", - " bounds=(7.38, 40),\n", - " units=units.MPa,\n", - " doc=\"State pressure [MPa]\",\n", - " )\n", - " self.temperature = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=350,\n", - " bounds=(304.2, 760 + 273.15),\n", - " units=units.K,\n", - " doc=\"State temperature [K]\",\n", - " )\n", - " self.entr_mol = Var(\n", - " domain=Reals,\n", - " initialize=10,\n", - " units=units.kJ / units.kmol / units.K,\n", - " doc=\"Entropy [kJ/kmol/K]\",\n", - " )\n", - " self.enth_mol = Var(\n", - " domain=Reals,\n", - " initialize=1,\n", - " units=units.kJ / units.kmol,\n", - " doc=\"Enthalpy [kJ/ kmol]\",\n", - " )\n", - "\n", - " inputs = [self.pressure, self.temperature]\n", - " outputs = [self.enth_mol, self.entr_mol]\n", - " self.keras_surrogate = KerasSurrogate.load_from_folder(\n", - " keras_folder_name=\"sco2_keras_surr\", keras_model_name=\"sco2_keras_model\"\n", - " )\n", - " self.surrogate_enth = SurrogateBlock()\n", - " self.surrogate_enth.build_model(\n", - " self.keras_surrogate,\n", - " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", - " input_vars=inputs,\n", - " output_vars=outputs,\n", - " )\n", - "\n", - " def get_material_flow_terms(self, p, j):\n", - " return self.flow_mol\n", - "\n", - " def get_enthalpy_flow_terms(self, p):\n", - " return self.flow_mol * self.enth_mol\n", - "\n", - " def default_material_balance_type(self):\n", - " return MaterialBalanceType.componentTotal\n", - "\n", - " def default_energy_balance_type(self):\n", - " return EnergyBalanceType.enthalpyTotal\n", - "\n", - " def define_state_vars(self):\n", - " return {\n", - " \"flow_mol\": self.flow_mol,\n", - " \"temperature\": self.temperature,\n", - " \"pressure\": self.pressure,\n", - " }\n", - "\n", - " def model_check(blk):\n", - " \"\"\"\n", - " Model checks for property block\n", - " \"\"\"\n", - " # Check temperature bounds\n", - " if value(blk.temperature) < blk.temperature.lb:\n", - " _log.error(\"{} Temperature set below lower bound.\".format(blk.name))\n", - " if value(blk.temperature) > blk.temperature.ub:\n", - " _log.error(\"{} Temperature set above upper bound.\".format(blk.name))\n", - "\n", - " # Check pressure bounds\n", - " if value(blk.pressure) < blk.pressure.lb:\n", - " _log.error(\"{} Pressure set below lower bound.\".format(blk.name))\n", - " if value(blk.pressure) > blk.pressure.ub:\n", - " _log.error(\"{} Pressure set above upper bound.\".format(blk.name))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.3 Define Initialization Routine\n", - "\n", - "After defining the variables and constraints required to describe the properties of interest for S-CO2, we need to provide them with a good initial guess. It is often the case that the default values provided to the variables while creating the model are not likely the actual conditions the user would simulate. Given the highly non-linear nature of the physical property calculations, it is more often than not impossible to solve a State Block without providing a set of good initial values for all the variables we have declared.\n", - "\n", - "Any initialization routine can be written by following a 3 step process:\n", - "1. `Fix the state` of the model such that there are no degrees of freedom. For State Blocks, it should only be necessary to fix the state variables to a set of initial guesses provided by the user or unit model, as well as deactivating any constraints like the sum of mole fractions.\n", - "\n", - "2. `Iteratively build up a solution` for the full model. This often involves multiple steps and can involve deactivating constraints and fixing some variables to reduce complexity, as well as analytically calculating values for variables based on the known state (and any previously calculated variables). Solvers can be called as part of any step to efficiently initialize large numbers of variables simultaneously.\n", - "\n", - "3. `Return the state of the model` to where it originally started (with the exception of variable values). Any variable that was fixed or constraint that was deactivated during initialization should be unfixed or reactivated, so that the degrees of freedom are restored to what they were before the initialization began.\n", - "\n", - "\n", - "Thus, we start with fixing the state variables. Here since enth_mol and entr_mol are a function of pressure and temperature, we do not fix them as fixing pressure and temperature would inturn fix them. So, we check if a state variable if fixed or not, if it is fixed then we do not change them, if they are not fixed then we check for an initial guess from the `state_args`, if we get a value then we fix the variable with state_args, else we fix it with the value provided by the user. This should bring the degrees of freedom to 0. Here since we do not have any variable/constrained that we have unfixed/deactivated we can skip step 2 and move to step 3. We unfix the variables that were fixed in step 1 using the `release_state` function. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "class _StateBlock(StateBlock):\n", - " \"\"\"\n", - " This Class contains methods which should be applied to Property Blocks as a\n", - " whole, rather than individual elements of indexed Property Blocks.\n", - " \"\"\"\n", - "\n", - " def initialize(\n", - " blk,\n", - " state_args=None,\n", - " hold_state=False,\n", - " outlvl=1,\n", - " state_vars_fixed=False,\n", - " solver=\"ipopt\",\n", - " optarg={\"tol\": 1e-8},\n", - " ):\n", - " \"\"\"\n", - " Initialisation routine for property package.\n", - "\n", - " Keyword Arguments:\n", - " flow_mol : value at which to initialize component flows\n", - " (default=None)\n", - " pressure : value at which to initialize pressure (default=None)\n", - " temperature : value at which to initialize temperature\n", - " (default=None)\n", - " outlvl : sets output level of initialisation routine\n", - "\n", - " * 0 = no output (default)\n", - " * 1 = return solver state for each step in routine\n", - " * 2 = include solver output information (tee=True)\n", - " state_vars_fixed: Flag to denote if state vars have already been\n", - " fixed.\n", - " - True - states have already been fixed by the\n", - " control volume 1D. Control volume 0D\n", - " does not fix the state vars, so will\n", - " be False if this state block is used\n", - " with 0D blocks.\n", - " - False - states have not been fixed. The state\n", - " block will deal with fixing/unfixing.\n", - " optarg : solver options dictionary object (default=None)\n", - " solver : str indicating which solver to use during\n", - " initialization (default = 'ipopt')\n", - " hold_state : flag indicating whether the initialization routine\n", - " should unfix any state variables fixed during\n", - " initialization (default=False).\n", - " - True - states variables are not unfixed, and\n", - " a dict of returned containing flags for\n", - " which states were fixed during\n", - " initialization.\n", - " - False - state variables are unfixed after\n", - " initialization by calling the\n", - " release_state method\n", - "\n", - " Returns:\n", - " If hold_states is True, returns a dict containing flags for\n", - " which states were fixed during initialization.\n", - " \"\"\"\n", - " if state_vars_fixed is False:\n", - " # Fix state variables if not already fixed\n", - " Fcflag = {}\n", - " Pflag = {}\n", - " Tflag = {}\n", - "\n", - " for k in blk.keys():\n", - " if blk[k].flow_mol.fixed is True:\n", - " Fcflag[k] = True\n", - " else:\n", - " Fcflag[k] = False\n", - " if state_args is None:\n", - " blk[k].flow_mol.fix()\n", - " else:\n", - " blk[k].flow_mol.fix(state_args[\"flow_mol\"])\n", - "\n", - " if blk[k].pressure.fixed is True:\n", - " Pflag[k] = True\n", - " else:\n", - " Pflag[k] = False\n", - " if state_args is None:\n", - " blk[k].pressure.fix()\n", - " else:\n", - " blk[k].pressure.fix(state_args[\"pressure\"])\n", - "\n", - " if blk[k].temperature.fixed is True:\n", - " Tflag[k] = True\n", - " else:\n", - " Tflag[k] = False\n", - " if state_args is None:\n", - " blk[k].temperature.fix()\n", - " else:\n", - " blk[k].temperature.fix(state_args[\"temperature\"])\n", - "\n", - " # If input block, return flags, else release state\n", - " flags = {\"Fcflag\": Fcflag, \"Pflag\": Pflag, \"Tflag\": Tflag}\n", - "\n", - " else:\n", - " # Check when the state vars are fixed already result in dof 0\n", - " for k in blk.keys():\n", - " if degrees_of_freedom(blk[k]) != 0:\n", - " raise Exception(\n", - " \"State vars fixed but degrees of freedom \"\n", - " \"for state block is not zero during \"\n", - " \"initialization.\"\n", - " )\n", - "\n", - " if state_vars_fixed is False:\n", - " if hold_state is True:\n", - " return flags\n", - " else:\n", - " blk.release_state(flags)\n", - "\n", - " def release_state(blk, flags, outlvl=0):\n", - " \"\"\"\n", - " Method to release state variables fixed during initialisation.\n", - "\n", - " Keyword Arguments:\n", - " flags : dict containing information of which state variables\n", - " were fixed during initialization, and should now be\n", - " unfixed. This dict is returned by initialize if\n", - " hold_state=True.\n", - " outlvl : sets output level of of logging\n", - " \"\"\"\n", - " if flags is None:\n", - " return\n", - "\n", - " # Unfix state variables\n", - " for k in blk.keys():\n", - " if flags[\"Fcflag\"][k] is False:\n", - " blk[k].flow_mol.unfix()\n", - " if flags[\"Pflag\"][k] is False:\n", - " blk[k].pressure.unfix()\n", - " if flags[\"Tflag\"][k] is False:\n", - " blk[k].temperature.unfix()\n", - "\n", - " if outlvl > 0:\n", - " if outlvl > 0:\n", - " _log.info(\"{} State Released.\".format(blk.name))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_test.ipynb). To learn in detail about making a custom property package, one should go through [Property Package Example](..\\..\\..\\properties\\custom\\custom_physical_property_packages_test.ipynb). " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "idaes-pse", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.16" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding_usr.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding_usr.ipynb index 24237ee2..0242e561 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding_usr.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/omlt/surrogate_embedding_usr.ipynb @@ -1,509 +1,534 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "##############################################################################\n", - "# Institute for the Design of Advanced Energy Systems Process Systems\n", - "# Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the\n", - "# software owners: The Regents of the University of California, through\n", - "# Lawrence Berkeley National Laboratory, National Technology & Engineering\n", - "# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia\n", - "# University Research Corporation, et al. All rights reserved.\n", - "#\n", - "# Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and\n", - "# license information, respectively. Both files are also available online\n", - "# at the URL \"https://github.com/IDAES/idaes-pse\".\n", - "##############################################################################" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "##############################################################################\n", + "# Institute for the Design of Advanced Energy Systems Process Systems\n", + "# Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the\n", + "# software owners: The Regents of the University of California, through\n", + "# Lawrence Berkeley National Laboratory, National Technology & Engineering\n", + "# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia\n", + "# University Research Corporation, et al. All rights reserved.\n", + "#\n", + "# Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and\n", + "# license information, respectively. Both files are also available online\n", + "# at the URL \"https://github.com/IDAES/idaes-pse\".\n", + "##############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with OMLT Surrogate Object - Embedding Surrogate (Part 2)\n", + "\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "\n", + "## 1. Integration of Surrogate into Custom Property Package\n", + "\n", + "Here we shall see how to integrate the trained surrogate in the custom property package. One can read more about making a properties package from read the docs. To integrate the surrogate we first define the physical parameter block which will return the properties based on the state variables. State variables would be called from the State Block as Pyomo variables. We will define the surrogate input and output as pyomo variables as well. Once we have defined the variables in the state block then we define our surrogate block.\n", + "\n", + "*NOTE:* For ease of explanation the property package is written in \".ipynb\" format, ideally it should be in a python script. Each class of this package is separated in different cell for the same reason, in practice all the classes in this notebook should be part of the same python script. This folder includes \"properties.py\" file which is how embedding file should look like. \n", + "\n", + "### 1.1 Steps in Creating a Property Package\n", + "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", + "\n", + "1. Defining the **units of measurement** for the property package.\n", + "2. Defining the **properties supported** by the property package and the associated metadata.\n", + "3. Defining the **phases and components** of interest.\n", + "4. Defining the necessary **parameters** required to calculate the properties of interest.\n", + "5. Declaring the **state variables** to be used for the property package.\n", + "6. Creating **variables and constraints** to describe the properties of interest.\n", + "7. Creating an **initialization routine** for the property package.\n", + "8. Defining **interface methods** used to couple the property package with unit models." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Importing libraries for making Property Package\n", + "\n", + "To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries. We shall also use the Surrogate API in the IDAES framework to embed the trained surrogate in the property package." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Python libraries\n", + "import logging\n", + "\n", + "# Import Pyomo libraries\n", + "from pyomo.environ import (\n", + " Constraint,\n", + " Param,\n", + " Reals,\n", + " Set,\n", + " value,\n", + " Var,\n", + " NonNegativeReals,\n", + " units,\n", + ")\n", + "from pyomo.opt import SolverFactory, TerminationCondition\n", + "\n", + "# Import IDAES cores\n", + "from idaes.core import (\n", + " declare_process_block_class,\n", + " PhysicalParameterBlock,\n", + " StateBlockData,\n", + " StateBlock,\n", + " MaterialBalanceType,\n", + " EnergyBalanceType,\n", + " LiquidPhase,\n", + " Component,\n", + ")\n", + "from idaes.core.util.initialization import solve_indexed_blocks\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.misc import extract_data\n", + "from idaes.core.solvers import get_solver\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", + "from idaes.core.surrogate.keras_surrogate import KerasSurrogate\n", + "\n", + "from pyomo.util.model_size import build_model_size_report\n", + "\n", + "# Some more information about this module\n", + "__author__ = \"Javal Vyas\"\n", + "\n", + "\n", + "# Set up logger\n", + "_log = logging.getLogger(__name__)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3 Defining Classes\n", + "\n", + "We shall be going through each class of the property package in detail. Since there are not reactions occurring in the flowsheet we shall only write the Physical Parameter Block.\n", + "\n", + "## 3.1 Physical Parameter Block\n", + "\n", + "The Physical Parameter Block serves as the central point of reference for all aspects of the property package, and needs to define a number of things about the package. These are summarized below:\n", + "\n", + "* Units of measurement\n", + "* What properties are supported and how they are implemented\n", + "* What components and phases are included in the packages\n", + "* All the global parameters necessary for calculating properties\n", + "* A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", + "\n", + "To assemble the above mentioned things in a class we need to follow the following steps:\n", + "\n", + "* Declaring the new class and inheriting from the PhysicalParameterBlock base class\n", + "* Declaring any necessary configuration arguments\n", + "* Writing the build method for our class\n", + "* Creating a define_metadata method for the class.\n", + "\n", + "The code below follows the above mentioned steps. \n", + "\n", + "*NOTE*: The SCO2StateBlock will be discussed in the next section." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"SCO2ParameterBlock\")\n", + "class PhysicalParameterData(PhysicalParameterBlock):\n", + " \"\"\"\n", + " Property Parameter Block Class\n", + "\n", + " Contains parameters and indexing sets associated with properties for\n", + " supercritical CO2.\n", + "\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction.\n", + " \"\"\"\n", + " super(PhysicalParameterData, self).build()\n", + "\n", + " self._state_block_class = SCO2StateBlock\n", + "\n", + " # List of valid phases in property package\n", + " self.Liq = LiquidPhase()\n", + "\n", + " # Component list - a list of component identifiers\n", + " self.CO2 = Component()\n", + "\n", + " @classmethod\n", + " def define_metadata(cls, obj):\n", + " obj.add_properties(\n", + " {\n", + " \"flow_mol\": {\"method\": None, \"units\": \"kmol/s\"},\n", + " \"pressure\": {\"method\": None, \"units\": \"MPa\"},\n", + " \"temperature\": {\"method\": None, \"units\": \"K\"},\n", + " \"enth_mol\": {\"method\": None, \"units\": \"kJ/kmol\"},\n", + " \"entr_mol\": {\"method\": None, \"units\": \"kJ/kmol/K\"},\n", + " }\n", + " )\n", + "\n", + " obj.add_default_units(\n", + " {\n", + " \"time\": units.s,\n", + " \"length\": units.m,\n", + " \"mass\": units.kg,\n", + " \"amount\": units.mol,\n", + " \"temperature\": units.K,\n", + " }\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.2 State Block\n", + "\n", + "After the Physical Parameter Block class has been created, the next step is to write the code necessary to create the State Blocks that will be used through out the flowsheet.\n", + "\n", + "For this example, we will begin by describing the content of the StateBlockData objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. \n", + "\n", + "We start by defining the 5 state variables: flow_mol, pressure, temperature, enth_mol and entr_mol as the Pyomo Var, each of this variable has a unit for unit consistency. This is done in _make_state_vars function. We get the enth_mol and entr_mol variables from trained surrogate which we define in this function as well. To get the output variables from the surrogate:\n", + "\n", + "1. Define the input and output variables to the trained surrogate\n", + "2. Load the surrogate from the folder it is saved in, here it is saved in the folder called keras_surrogate (look at the keras_training_usr.ipynb file) using the keras Surrogate API of IDAES package\n", + "3. Define a `SurrogateBlock` and call the build_model method on the block with the input variables, output variables, model formulation and the loaded surrogate as the arguments. \n", + "4. Define the constraints necessary for ensuring physical feasibility of the system like the mass balance and energy balance. Check for the state variables to be within the bounds. \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"SCO2StateBlock\", block_class=StateBlock)\n", + "class SCO2StateBlockData(StateBlockData):\n", + " \"\"\"\n", + " An example property package for ideal gas properties with Gibbs energy\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction\n", + " \"\"\"\n", + " super(SCO2StateBlockData, self).build()\n", + " self._make_state_vars()\n", + "\n", + " def _make_state_vars(self):\n", + " self.flow_mol = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=1.0,\n", + " units=units.kmol / units.s,\n", + " doc=\"Total molar flowrate [kmol/s]\",\n", + " )\n", + " self.pressure = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=8,\n", + " bounds=(7.38, 40),\n", + " units=units.MPa,\n", + " doc=\"State pressure [MPa]\",\n", + " )\n", + " self.temperature = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=350,\n", + " bounds=(304.2, 760 + 273.15),\n", + " units=units.K,\n", + " doc=\"State temperature [K]\",\n", + " )\n", + " self.entr_mol = Var(\n", + " domain=Reals,\n", + " initialize=10,\n", + " units=units.kJ / units.kmol / units.K,\n", + " doc=\"Entropy [kJ/kmol/K]\",\n", + " )\n", + " self.enth_mol = Var(\n", + " domain=Reals,\n", + " initialize=1,\n", + " units=units.kJ / units.kmol,\n", + " doc=\"Enthalpy [kJ/ kmol]\",\n", + " )\n", + "\n", + " inputs = [self.pressure, self.temperature]\n", + " outputs = [self.enth_mol, self.entr_mol]\n", + " self.keras_surrogate = KerasSurrogate.load_from_folder(\n", + " keras_folder_name=\"sco2_keras_surr\", keras_model_name=\"sco2_keras_model\"\n", + " )\n", + " self.surrogate_enth = SurrogateBlock()\n", + " self.surrogate_enth.build_model(\n", + " self.keras_surrogate,\n", + " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", + " input_vars=inputs,\n", + " output_vars=outputs,\n", + " )\n", + "\n", + " def get_material_flow_terms(self, p, j):\n", + " return self.flow_mol\n", + "\n", + " def get_enthalpy_flow_terms(self, p):\n", + " return self.flow_mol * self.enth_mol\n", + "\n", + " def default_material_balance_type(self):\n", + " return MaterialBalanceType.componentTotal\n", + "\n", + " def default_energy_balance_type(self):\n", + " return EnergyBalanceType.enthalpyTotal\n", + "\n", + " def define_state_vars(self):\n", + " return {\n", + " \"flow_mol\": self.flow_mol,\n", + " \"temperature\": self.temperature,\n", + " \"pressure\": self.pressure,\n", + " }\n", + "\n", + " def model_check(blk):\n", + " \"\"\"\n", + " Model checks for property block\n", + " \"\"\"\n", + " # Check temperature bounds\n", + " if value(blk.temperature) < blk.temperature.lb:\n", + " _log.error(\"{} Temperature set below lower bound.\".format(blk.name))\n", + " if value(blk.temperature) > blk.temperature.ub:\n", + " _log.error(\"{} Temperature set above upper bound.\".format(blk.name))\n", + "\n", + " # Check pressure bounds\n", + " if value(blk.pressure) < blk.pressure.lb:\n", + " _log.error(\"{} Pressure set below lower bound.\".format(blk.name))\n", + " if value(blk.pressure) > blk.pressure.ub:\n", + " _log.error(\"{} Pressure set above upper bound.\".format(blk.name))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.3 Define Initialization Routine\n", + "\n", + "After defining the variables and constraints required to describe the properties of interest for S-CO2, we need to provide them with a good initial guess. It is often the case that the default values provided to the variables while creating the model are not likely the actual conditions the user would simulate. Given the highly non-linear nature of the physical property calculations, it is more often than not impossible to solve a State Block without providing a set of good initial values for all the variables we have declared.\n", + "\n", + "Any initialization routine can be written by following a 3 step process:\n", + "1. `Fix the state` of the model such that there are no degrees of freedom. For State Blocks, it should only be necessary to fix the state variables to a set of initial guesses provided by the user or unit model, as well as deactivating any constraints like the sum of mole fractions.\n", + "\n", + "2. `Iteratively build up a solution` for the full model. This often involves multiple steps and can involve deactivating constraints and fixing some variables to reduce complexity, as well as analytically calculating values for variables based on the known state (and any previously calculated variables). Solvers can be called as part of any step to efficiently initialize large numbers of variables simultaneously.\n", + "\n", + "3. `Return the state of the model` to where it originally started (with the exception of variable values). Any variable that was fixed or constraint that was deactivated during initialization should be unfixed or reactivated, so that the degrees of freedom are restored to what they were before the initialization began.\n", + "\n", + "\n", + "Thus, we start with fixing the state variables. Here since enth_mol and entr_mol are a function of pressure and temperature, we do not fix them as fixing pressure and temperature would inturn fix them. So, we check if a state variable if fixed or not, if it is fixed then we do not change them, if they are not fixed then we check for an initial guess from the `state_args`, if we get a value then we fix the variable with state_args, else we fix it with the value provided by the user. This should bring the degrees of freedom to 0. Here since we do not have any variable/constrained that we have unfixed/deactivated we can skip step 2 and move to step 3. We unfix the variables that were fixed in step 1 using the `release_state` function. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class _StateBlock(StateBlock):\n", + " \"\"\"\n", + " This Class contains methods which should be applied to Property Blocks as a\n", + " whole, rather than individual elements of indexed Property Blocks.\n", + " \"\"\"\n", + "\n", + " def initialize(\n", + " blk,\n", + " state_args=None,\n", + " hold_state=False,\n", + " outlvl=1,\n", + " state_vars_fixed=False,\n", + " solver=\"ipopt\",\n", + " optarg={\"tol\": 1e-8},\n", + " ):\n", + " \"\"\"\n", + " Initialisation routine for property package.\n", + "\n", + " Keyword Arguments:\n", + " flow_mol : value at which to initialize component flows\n", + " (default=None)\n", + " pressure : value at which to initialize pressure (default=None)\n", + " temperature : value at which to initialize temperature\n", + " (default=None)\n", + " outlvl : sets output level of initialisation routine\n", + "\n", + " * 0 = no output (default)\n", + " * 1 = return solver state for each step in routine\n", + " * 2 = include solver output information (tee=True)\n", + " state_vars_fixed: Flag to denote if state vars have already been\n", + " fixed.\n", + " - True - states have already been fixed by the\n", + " control volume 1D. Control volume 0D\n", + " does not fix the state vars, so will\n", + " be False if this state block is used\n", + " with 0D blocks.\n", + " - False - states have not been fixed. The state\n", + " block will deal with fixing/unfixing.\n", + " optarg : solver options dictionary object (default=None)\n", + " solver : str indicating which solver to use during\n", + " initialization (default = 'ipopt')\n", + " hold_state : flag indicating whether the initialization routine\n", + " should unfix any state variables fixed during\n", + " initialization (default=False).\n", + " - True - states variables are not unfixed, and\n", + " a dict of returned containing flags for\n", + " which states were fixed during\n", + " initialization.\n", + " - False - state variables are unfixed after\n", + " initialization by calling the\n", + " release_state method\n", + "\n", + " Returns:\n", + " If hold_states is True, returns a dict containing flags for\n", + " which states were fixed during initialization.\n", + " \"\"\"\n", + " if state_vars_fixed is False:\n", + " # Fix state variables if not already fixed\n", + " Fcflag = {}\n", + " Pflag = {}\n", + " Tflag = {}\n", + "\n", + " for k in blk.keys():\n", + " if blk[k].flow_mol.fixed is True:\n", + " Fcflag[k] = True\n", + " else:\n", + " Fcflag[k] = False\n", + " if state_args is None:\n", + " blk[k].flow_mol.fix()\n", + " else:\n", + " blk[k].flow_mol.fix(state_args[\"flow_mol\"])\n", + "\n", + " if blk[k].pressure.fixed is True:\n", + " Pflag[k] = True\n", + " else:\n", + " Pflag[k] = False\n", + " if state_args is None:\n", + " blk[k].pressure.fix()\n", + " else:\n", + " blk[k].pressure.fix(state_args[\"pressure\"])\n", + "\n", + " if blk[k].temperature.fixed is True:\n", + " Tflag[k] = True\n", + " else:\n", + " Tflag[k] = False\n", + " if state_args is None:\n", + " blk[k].temperature.fix()\n", + " else:\n", + " blk[k].temperature.fix(state_args[\"temperature\"])\n", + "\n", + " # If input block, return flags, else release state\n", + " flags = {\"Fcflag\": Fcflag, \"Pflag\": Pflag, \"Tflag\": Tflag}\n", + "\n", + " else:\n", + " # Check when the state vars are fixed already result in dof 0\n", + " for k in blk.keys():\n", + " if degrees_of_freedom(blk[k]) != 0:\n", + " raise Exception(\n", + " \"State vars fixed but degrees of freedom \"\n", + " \"for state block is not zero during \"\n", + " \"initialization.\"\n", + " )\n", + "\n", + " if state_vars_fixed is False:\n", + " if hold_state is True:\n", + " return flags\n", + " else:\n", + " blk.release_state(flags)\n", + "\n", + " def release_state(blk, flags, outlvl=0):\n", + " \"\"\"\n", + " Method to release state variables fixed during initialisation.\n", + "\n", + " Keyword Arguments:\n", + " flags : dict containing information of which state variables\n", + " were fixed during initialization, and should now be\n", + " unfixed. This dict is returned by initialize if\n", + " hold_state=True.\n", + " outlvl : sets output level of of logging\n", + " \"\"\"\n", + " if flags is None:\n", + " return\n", + "\n", + " # Unfix state variables\n", + " for k in blk.keys():\n", + " if flags[\"Fcflag\"][k] is False:\n", + " blk[k].flow_mol.unfix()\n", + " if flags[\"Pflag\"][k] is False:\n", + " blk[k].pressure.unfix()\n", + " if flags[\"Tflag\"][k] is False:\n", + " blk[k].temperature.unfix()\n", + "\n", + " if outlvl > 0:\n", + " if outlvl > 0:\n", + " _log.info(\"{} State Released.\".format(blk.name))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_usr.ipynb). To learn in detail about making a custom property package, one should go through [Property Package Example](..\\..\\..\\properties\\custom\\custom_physical_property_packages_usr.ipynb). " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "idaes-pse", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.16" + } }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with OMLT Surrogate Object - Embedding Surrogate (Part 2)\n", - "\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "\n", - "## 1. Integration of Surrogate into Custom Property Package\n", - "\n", - "Here we shall see how to integrate the trained surrogate in the custom property package. One can read more about making a properties package from read the docs. To integrate the surrogate we first define the physical parameter block which will return the properties based on the state variables. State variables would be called from the State Block as Pyomo variables. We will define the surrogate input and output as pyomo variables as well. Once we have defined the variables in the state block then we define our surrogate block.\n", - "\n", - "*NOTE:* For ease of explanation the property package is written in \".ipynb\" format, ideally it should be in a python script. Each class of this package is separated in different cell for the same reason, in practice all the classes in this notebook should be part of the same python script. This folder includes \"properties.py\" file which is how embedding file should look like. \n", - "\n", - "### 1.1 Steps in Creating a Property Package\n", - "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", - "\n", - "1. Defining the **units of measurement** for the property package.\n", - "2. Defining the **properties supported** by the property package and the associated metadata.\n", - "3. Defining the **phases and components** of interest.\n", - "4. Defining the necessary **parameters** required to calculate the properties of interest.\n", - "5. Declaring the **state variables** to be used for the property package.\n", - "6. Creating **variables and constraints** to describe the properties of interest.\n", - "7. Creating an **initialization routine** for the property package.\n", - "8. Defining **interface methods** used to couple the property package with unit models." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Importing libraries for making Property Package\n", - "\n", - "To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries. We shall also use the Surrogate API in the IDAES framework to embed the trained surrogate in the property package." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Python libraries\n", - "import logging\n", - "\n", - "# Import Pyomo libraries\n", - "from pyomo.environ import (\n", - " Constraint,\n", - " Param,\n", - " Reals,\n", - " Set,\n", - " value,\n", - " Var,\n", - " NonNegativeReals,\n", - " units,\n", - ")\n", - "from pyomo.opt import SolverFactory, TerminationCondition\n", - "\n", - "# Import IDAES cores\n", - "from idaes.core import (\n", - " declare_process_block_class,\n", - " PhysicalParameterBlock,\n", - " StateBlockData,\n", - " StateBlock,\n", - " MaterialBalanceType,\n", - " EnergyBalanceType,\n", - " LiquidPhase,\n", - " Component,\n", - ")\n", - "from idaes.core.util.initialization import solve_indexed_blocks\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.misc import extract_data\n", - "from idaes.core.solvers import get_solver\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", - "from idaes.core.surrogate.keras_surrogate import KerasSurrogate\n", - "\n", - "from pyomo.util.model_size import build_model_size_report\n", - "\n", - "# Some more information about this module\n", - "__author__ = \"Javal Vyas\"\n", - "\n", - "\n", - "# Set up logger\n", - "_log = logging.getLogger(__name__)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3 Defining Classes\n", - "\n", - "We shall be going through each class of the property package in detail. Since there are not reactions occurring in the flowsheet we shall only write the Physical Parameter Block.\n", - "\n", - "## 3.1 Physical Parameter Block\n", - "\n", - "The Physical Parameter Block serves as the central point of reference for all aspects of the property package, and needs to define a number of things about the package. These are summarized below:\n", - "\n", - "* Units of measurement\n", - "* What properties are supported and how they are implemented\n", - "* What components and phases are included in the packages\n", - "* All the global parameters necessary for calculating properties\n", - "* A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", - "\n", - "To assemble the above mentioned things in a class we need to follow the following steps:\n", - "\n", - "* Declaring the new class and inheriting from the PhysicalParameterBlock base class\n", - "* Declaring any necessary configuration arguments\n", - "* Writing the build method for our class\n", - "* Creating a define_metadata method for the class.\n", - "\n", - "The code below follows the above mentioned steps. \n", - "\n", - "*NOTE*: The SCO2StateBlock will be discussed in the next section." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"SCO2ParameterBlock\")\n", - "class PhysicalParameterData(PhysicalParameterBlock):\n", - " \"\"\"\n", - " Property Parameter Block Class\n", - "\n", - " Contains parameters and indexing sets associated with properties for\n", - " supercritical CO2.\n", - "\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction.\n", - " \"\"\"\n", - " super(PhysicalParameterData, self).build()\n", - "\n", - " self._state_block_class = SCO2StateBlock\n", - "\n", - " # List of valid phases in property package\n", - " self.Liq = LiquidPhase()\n", - "\n", - " # Component list - a list of component identifiers\n", - " self.CO2 = Component()\n", - "\n", - " @classmethod\n", - " def define_metadata(cls, obj):\n", - " obj.add_properties(\n", - " {\n", - " \"flow_mol\": {\"method\": None, \"units\": \"kmol/s\"},\n", - " \"pressure\": {\"method\": None, \"units\": \"MPa\"},\n", - " \"temperature\": {\"method\": None, \"units\": \"K\"},\n", - " \"enth_mol\": {\"method\": None, \"units\": \"kJ/kmol\"},\n", - " \"entr_mol\": {\"method\": None, \"units\": \"kJ/kmol/K\"},\n", - " }\n", - " )\n", - "\n", - " obj.add_default_units(\n", - " {\n", - " \"time\": units.s,\n", - " \"length\": units.m,\n", - " \"mass\": units.kg,\n", - " \"amount\": units.mol,\n", - " \"temperature\": units.K,\n", - " }\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.2 State Block\n", - "\n", - "After the Physical Parameter Block class has been created, the next step is to write the code necessary to create the State Blocks that will be used through out the flowsheet.\n", - "\n", - "For this example, we will begin by describing the content of the StateBlockData objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. \n", - "\n", - "We start by defining the 5 state variables: flow_mol, pressure, temperature, enth_mol and entr_mol as the Pyomo Var, each of this variable has a unit for unit consistency. This is done in _make_state_vars function. We get the enth_mol and entr_mol variables from trained surrogate which we define in this function as well. To get the output variables from the surrogate:\n", - "\n", - "1. Define the input and output variables to the trained surrogate\n", - "2. Load the surrogate from the folder it is saved in, here it is saved in the folder called keras_surrogate (look at the keras_training_usr.ipynb file) using the keras Surrogate API of IDAES package\n", - "3. Define a `SurrogateBlock` and call the build_model method on the block with the input variables, output variables, model formulation and the loaded surrogate as the arguments. \n", - "4. Define the constraints necessary for ensuring physical feasibility of the system like the mass balance and energy balance. Check for the state variables to be within the bounds. \n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"SCO2StateBlock\", block_class=StateBlock)\n", - "class SCO2StateBlockData(StateBlockData):\n", - " \"\"\"\n", - " An example property package for ideal gas properties with Gibbs energy\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction\n", - " \"\"\"\n", - " super(SCO2StateBlockData, self).build()\n", - " self._make_state_vars()\n", - "\n", - " def _make_state_vars(self):\n", - " self.flow_mol = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=1.0,\n", - " units=units.kmol / units.s,\n", - " doc=\"Total molar flowrate [kmol/s]\",\n", - " )\n", - " self.pressure = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=8,\n", - " bounds=(7.38, 40),\n", - " units=units.MPa,\n", - " doc=\"State pressure [MPa]\",\n", - " )\n", - " self.temperature = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=350,\n", - " bounds=(304.2, 760 + 273.15),\n", - " units=units.K,\n", - " doc=\"State temperature [K]\",\n", - " )\n", - " self.entr_mol = Var(\n", - " domain=Reals,\n", - " initialize=10,\n", - " units=units.kJ / units.kmol / units.K,\n", - " doc=\"Entropy [kJ/kmol/K]\",\n", - " )\n", - " self.enth_mol = Var(\n", - " domain=Reals,\n", - " initialize=1,\n", - " units=units.kJ / units.kmol,\n", - " doc=\"Enthalpy [kJ/ kmol]\",\n", - " )\n", - "\n", - " inputs = [self.pressure, self.temperature]\n", - " outputs = [self.enth_mol, self.entr_mol]\n", - " self.keras_surrogate = KerasSurrogate.load_from_folder(\n", - " keras_folder_name=\"sco2_keras_surr\", keras_model_name=\"sco2_keras_model\"\n", - " )\n", - " self.surrogate_enth = SurrogateBlock()\n", - " self.surrogate_enth.build_model(\n", - " self.keras_surrogate,\n", - " formulation=KerasSurrogate.Formulation.FULL_SPACE,\n", - " input_vars=inputs,\n", - " output_vars=outputs,\n", - " )\n", - "\n", - " def get_material_flow_terms(self, p, j):\n", - " return self.flow_mol\n", - "\n", - " def get_enthalpy_flow_terms(self, p):\n", - " return self.flow_mol * self.enth_mol\n", - "\n", - " def default_material_balance_type(self):\n", - " return MaterialBalanceType.componentTotal\n", - "\n", - " def default_energy_balance_type(self):\n", - " return EnergyBalanceType.enthalpyTotal\n", - "\n", - " def define_state_vars(self):\n", - " return {\n", - " \"flow_mol\": self.flow_mol,\n", - " \"temperature\": self.temperature,\n", - " \"pressure\": self.pressure,\n", - " }\n", - "\n", - " def model_check(blk):\n", - " \"\"\"\n", - " Model checks for property block\n", - " \"\"\"\n", - " # Check temperature bounds\n", - " if value(blk.temperature) < blk.temperature.lb:\n", - " _log.error(\"{} Temperature set below lower bound.\".format(blk.name))\n", - " if value(blk.temperature) > blk.temperature.ub:\n", - " _log.error(\"{} Temperature set above upper bound.\".format(blk.name))\n", - "\n", - " # Check pressure bounds\n", - " if value(blk.pressure) < blk.pressure.lb:\n", - " _log.error(\"{} Pressure set below lower bound.\".format(blk.name))\n", - " if value(blk.pressure) > blk.pressure.ub:\n", - " _log.error(\"{} Pressure set above upper bound.\".format(blk.name))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.3 Define Initialization Routine\n", - "\n", - "After defining the variables and constraints required to describe the properties of interest for S-CO2, we need to provide them with a good initial guess. It is often the case that the default values provided to the variables while creating the model are not likely the actual conditions the user would simulate. Given the highly non-linear nature of the physical property calculations, it is more often than not impossible to solve a State Block without providing a set of good initial values for all the variables we have declared.\n", - "\n", - "Any initialization routine can be written by following a 3 step process:\n", - "1. `Fix the state` of the model such that there are no degrees of freedom. For State Blocks, it should only be necessary to fix the state variables to a set of initial guesses provided by the user or unit model, as well as deactivating any constraints like the sum of mole fractions.\n", - "\n", - "2. `Iteratively build up a solution` for the full model. This often involves multiple steps and can involve deactivating constraints and fixing some variables to reduce complexity, as well as analytically calculating values for variables based on the known state (and any previously calculated variables). Solvers can be called as part of any step to efficiently initialize large numbers of variables simultaneously.\n", - "\n", - "3. `Return the state of the model` to where it originally started (with the exception of variable values). Any variable that was fixed or constraint that was deactivated during initialization should be unfixed or reactivated, so that the degrees of freedom are restored to what they were before the initialization began.\n", - "\n", - "\n", - "Thus, we start with fixing the state variables. Here since enth_mol and entr_mol are a function of pressure and temperature, we do not fix them as fixing pressure and temperature would inturn fix them. So, we check if a state variable if fixed or not, if it is fixed then we do not change them, if they are not fixed then we check for an initial guess from the `state_args`, if we get a value then we fix the variable with state_args, else we fix it with the value provided by the user. This should bring the degrees of freedom to 0. Here since we do not have any variable/constrained that we have unfixed/deactivated we can skip step 2 and move to step 3. We unfix the variables that were fixed in step 1 using the `release_state` function. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "class _StateBlock(StateBlock):\n", - " \"\"\"\n", - " This Class contains methods which should be applied to Property Blocks as a\n", - " whole, rather than individual elements of indexed Property Blocks.\n", - " \"\"\"\n", - "\n", - " def initialize(\n", - " blk,\n", - " state_args=None,\n", - " hold_state=False,\n", - " outlvl=1,\n", - " state_vars_fixed=False,\n", - " solver=\"ipopt\",\n", - " optarg={\"tol\": 1e-8},\n", - " ):\n", - " \"\"\"\n", - " Initialisation routine for property package.\n", - "\n", - " Keyword Arguments:\n", - " flow_mol : value at which to initialize component flows\n", - " (default=None)\n", - " pressure : value at which to initialize pressure (default=None)\n", - " temperature : value at which to initialize temperature\n", - " (default=None)\n", - " outlvl : sets output level of initialisation routine\n", - "\n", - " * 0 = no output (default)\n", - " * 1 = return solver state for each step in routine\n", - " * 2 = include solver output information (tee=True)\n", - " state_vars_fixed: Flag to denote if state vars have already been\n", - " fixed.\n", - " - True - states have already been fixed by the\n", - " control volume 1D. Control volume 0D\n", - " does not fix the state vars, so will\n", - " be False if this state block is used\n", - " with 0D blocks.\n", - " - False - states have not been fixed. The state\n", - " block will deal with fixing/unfixing.\n", - " optarg : solver options dictionary object (default=None)\n", - " solver : str indicating which solver to use during\n", - " initialization (default = 'ipopt')\n", - " hold_state : flag indicating whether the initialization routine\n", - " should unfix any state variables fixed during\n", - " initialization (default=False).\n", - " - True - states variables are not unfixed, and\n", - " a dict of returned containing flags for\n", - " which states were fixed during\n", - " initialization.\n", - " - False - state variables are unfixed after\n", - " initialization by calling the\n", - " release_state method\n", - "\n", - " Returns:\n", - " If hold_states is True, returns a dict containing flags for\n", - " which states were fixed during initialization.\n", - " \"\"\"\n", - " if state_vars_fixed is False:\n", - " # Fix state variables if not already fixed\n", - " Fcflag = {}\n", - " Pflag = {}\n", - " Tflag = {}\n", - "\n", - " for k in blk.keys():\n", - " if blk[k].flow_mol.fixed is True:\n", - " Fcflag[k] = True\n", - " else:\n", - " Fcflag[k] = False\n", - " if state_args is None:\n", - " blk[k].flow_mol.fix()\n", - " else:\n", - " blk[k].flow_mol.fix(state_args[\"flow_mol\"])\n", - "\n", - " if blk[k].pressure.fixed is True:\n", - " Pflag[k] = True\n", - " else:\n", - " Pflag[k] = False\n", - " if state_args is None:\n", - " blk[k].pressure.fix()\n", - " else:\n", - " blk[k].pressure.fix(state_args[\"pressure\"])\n", - "\n", - " if blk[k].temperature.fixed is True:\n", - " Tflag[k] = True\n", - " else:\n", - " Tflag[k] = False\n", - " if state_args is None:\n", - " blk[k].temperature.fix()\n", - " else:\n", - " blk[k].temperature.fix(state_args[\"temperature\"])\n", - "\n", - " # If input block, return flags, else release state\n", - " flags = {\"Fcflag\": Fcflag, \"Pflag\": Pflag, \"Tflag\": Tflag}\n", - "\n", - " else:\n", - " # Check when the state vars are fixed already result in dof 0\n", - " for k in blk.keys():\n", - " if degrees_of_freedom(blk[k]) != 0:\n", - " raise Exception(\n", - " \"State vars fixed but degrees of freedom \"\n", - " \"for state block is not zero during \"\n", - " \"initialization.\"\n", - " )\n", - "\n", - " if state_vars_fixed is False:\n", - " if hold_state is True:\n", - " return flags\n", - " else:\n", - " blk.release_state(flags)\n", - "\n", - " def release_state(blk, flags, outlvl=0):\n", - " \"\"\"\n", - " Method to release state variables fixed during initialisation.\n", - "\n", - " Keyword Arguments:\n", - " flags : dict containing information of which state variables\n", - " were fixed during initialization, and should now be\n", - " unfixed. This dict is returned by initialize if\n", - " hold_state=True.\n", - " outlvl : sets output level of of logging\n", - " \"\"\"\n", - " if flags is None:\n", - " return\n", - "\n", - " # Unfix state variables\n", - " for k in blk.keys():\n", - " if flags[\"Fcflag\"][k] is False:\n", - " blk[k].flow_mol.unfix()\n", - " if flags[\"Pflag\"][k] is False:\n", - " blk[k].pressure.unfix()\n", - " if flags[\"Tflag\"][k] is False:\n", - " blk[k].temperature.unfix()\n", - "\n", - " if outlvl > 0:\n", - " if outlvl > 0:\n", - " _log.info(\"{} State Released.\".format(blk.name))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_usr.ipynb). To learn in detail about making a custom property package, one should go through [Property Package Example](..\\..\\..\\properties\\custom\\custom_physical_property_packages_usr.ipynb). " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "idaes-pse", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.16" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization.ipynb index f4b67424..50789c92 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "feadf612", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": null, @@ -1471,8 +1498,7 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" - }, - "orig_nbformat": 4 + } }, "nbformat": 4, "nbformat_minor": 2 diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization.py b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization.py index df312dc4..5936a332 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization.py +++ b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization.py @@ -1,15 +1,16 @@ -############################################################################### +################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. -############################################################################### +# +################################################################################# """ Maintainer: Javal Vyas diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization_doc.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization_doc.ipynb index 82ab6d1d..79a33904 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization_doc.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization_doc.ipynb @@ -1,5 +1,31 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": null, @@ -26,12 +52,14 @@ "source": [ "# Supercritical CO2 Property Surrogate with PySMO Surrogate Object - flowsheet_optimization (Part 3)\n", "\n", + "\n", "Maintainer: Javal Vyas\n", "\n", "Author: Javal Vyas\n", "\n", "Updated: 2024-01-24\n", "\n", + "\n", "With the surrogate model being embedded in the property package, it is ready to be used in the flowsheet. We start by creating the following flowsheet using the IDAES package. " ] }, @@ -1469,9 +1497,8 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" - }, - "orig_nbformat": 4 + } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization_test.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization_test.ipynb index 82ab6d1d..d957e340 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization_test.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization_test.ipynb @@ -1,1477 +1,1504 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with PySMO Surrogate Object - flowsheet_optimization (Part 3)\n", - "\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "\n", - "With the surrogate model being embedded in the property package, it is ready to be used in the flowsheet. We start by creating the following flowsheet using the IDAES package. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", - "text/plain": [ - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"CO2_flowsheet.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. Importing libraries\n", - "\n", - "We will be using the unit models from the `IDAES` package along with components from `pyomo.environ` and `pyomo.network`. " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " ConcreteModel,\n", - " Block,\n", - " Var,\n", - " Param,\n", - " Constraint,\n", - " SolverFactory,\n", - " TransformationFactory,\n", - " TerminationCondition,\n", - " value,\n", - " Expression,\n", - " minimize,\n", - " units,\n", - ")\n", - "from pyomo.network import Arc, SequentialDecomposition\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core import FlowsheetBlock, UnitModelBlockData\n", - "from idaes.models.unit_models import (\n", - " Mixer,\n", - " MomentumMixingType,\n", - " PressureChanger,\n", - " Heater,\n", - " Separator,\n", - " HeatExchanger,\n", - ")\n", - "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state\n", - "from properties import SCO2ParameterBlock\n", - "\n", - "import idaes.logger as idaeslog\n", - "\n", - "_log = idaeslog.getModelLogger(\"my_model\", level=idaeslog.DEBUG, tag=\"model\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Constructing the flowsheet\n", - "\n", - "To construct the flowsheet we need to define a ConcreteModel using pyomo and then add a FlowsheetBlock to the ConcreteModel. Here since we are focusing on the steady state process, we shall have the dynamic flag as False in the FlowsheetBlock. Next, we define the properties in the FlowsheetBlock that we imported from the properties.py file. Then start adding the unit models to the FlowsheetBlock with the suitable arguments, after which we connect them using Arcs as in the flowsheet above. \n", - "\n", - "Once we have the connected flowsheet, we initialize individual unit models. Before initializing, we fix desired variables for the desired behavior of the unit model and then use `propagate_state` to pass on the state variables to next unit model in the flowsheet. After completely initializing the flowsheet, we convert the network to a mathematical form by using `network.expand_arcs` from the TransformationFactory and apply it on the flowsheet block. Then we call the solver and solve the flowsheet to calculate the total work in the process. " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with PySMO Surrogate Object - flowsheet_optimization (Part 3)\n", + "\n", + "\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "\n", + "\n", + "With the surrogate model being embedded in the property package, it is ready to be used in the flowsheet. We start by creating the following flowsheet using the IDAES package. " + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n", - "2023-08-19 23:45:28 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n", - "2023-08-19 23:45:31 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", - "--------------------------------------------------------------------\n", - "The degrees of freedom for the flowsheet is 0\n", - "--------------------------------------------------------------------\n", - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 452\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 118\n", - "\n", - "Total number of variables............................: 178\n", - " variables with only lower bounds: 32\n", - " variables with lower and upper bounds: 59\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 178\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 1.12e+02 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 3.28e-01 1.12e-02 -1.0 1.32e+01 - 9.89e-01 1.00e+00h 1\n", - " 2 0.0000000e+00 5.45e-06 1.05e-06 -1.0 1.32e+01 - 1.00e+00 1.00e+00h 1\n", - " 3 0.0000000e+00 1.37e-08 2.83e-08 -2.5 2.87e-04 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 3.4924596548080444e-10 1.3737007975578308e-08\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 3.4924596548080444e-10 1.3737007975578308e-08\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", - "Total CPU secs in NLP function evaluations = 0.002\n", - "\n", - "EXIT: Optimal Solution Found.\n", - "\n", - "====================================================================================\n", - "Unit : fs.boiler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.4382e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 685.15 893.15\n", - " pressure pascal 3.4510e+07 3.4300e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.turbine Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.92700 : dimensionless : True : (None, None)\n", - " Mechanical Work : -9.9927e+05 : watt : False : (None, None)\n", - " Pressure Change : -24.979 : pascal : False : (None, None)\n", - " Pressure Ratio : 0.27174 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 893.15 729.38\n", - " pressure pascal 3.4300e+07 9.3207e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.HTR_pseudo_shell Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -1.4056e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 729.38 489.15\n", - " pressure pascal 9.3207e+06 9.2507e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.HTR_pseudo_tube Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.4056e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 535.47 736.02\n", - " pressure pascal 3.4560e+07 3.4490e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.LTR_pseudo_shell Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -1.0929e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 489.15 354.15\n", - " pressure pascal 9.2507e+06 9.1807e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.LTR_pseudo_tube Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.0929e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 86647. 86647.\n", - " temperature kelvin 378.99 566.32\n", - " pressure pascal 3.4620e+07 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.splitter_1 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Split Fraction [('bypass',)] : 0.25000 : dimensionless : True : (None, None)\n", - " Split Fraction [('to_cooler',)] : 0.75000 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet bypass to_cooler\n", - " flow_mol mole / second 1.2110e+05 30275. 90825.\n", - " temperature kelvin 354.15 354.15 354.15\n", - " pressure pascal 9.1807e+06 9.1807e+06 9.1807e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.co2_cooler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -4.4513e+05 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 90825. 90825.\n", - " temperature kelvin 354.15 308.15\n", - " pressure pascal 9.1807e+06 9.1107e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.main_compressor Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 2.2092e+05 : watt : False : (None, None)\n", - " Pressure Change : 25.510 : pascal : False : (None, None)\n", - " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 90825. 90825.\n", - " temperature kelvin 308.15 378.99\n", - " pressure pascal 9.1107e+06 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.bypass_compressor Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 1.1041e+05 : watt : False : (None, None)\n", - " Pressure Change : 25.706 : pascal : False : (None, None)\n", - " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 30275. 30275.\n", - " temperature kelvin 354.15 460.04\n", - " pressure pascal 9.1807e+06 3.4886e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.splitter_2 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Split Fraction [('to_FG_cooler',)] : 0.046000 : dimensionless : True : (None, None)\n", - " Split Fraction [('to_LTR',)] : 0.95400 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet to_FG_cooler to_LTR \n", - " flow_mol mole / second 90825. 4177.9 86647.\n", - " temperature kelvin 378.99 378.99 378.99\n", - " pressure pascal 3.4620e+07 3.4620e+07 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.FG_cooler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 31903. : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 4177.9 4177.9\n", - " temperature kelvin 378.99 483.15\n", - " pressure pascal 3.4620e+07 3.4560e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.mixer Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units FG_out LTR_out bypass Outlet \n", - " flow_mol mole / second 4177.9 86647. 30275. 1.2110e+05\n", - " temperature kelvin 483.15 566.32 460.04 535.47\n", - " pressure pascal 3.4560e+07 3.4620e+07 3.4886e+07 3.4560e+07\n", - "====================================================================================\n", - "667.9424945058901 kW\n" - ] + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"CO2_flowsheet.png\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1. Importing libraries\n", + "\n", + "We will be using the unit models from the `IDAES` package along with components from `pyomo.environ` and `pyomo.network`. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " ConcreteModel,\n", + " Block,\n", + " Var,\n", + " Param,\n", + " Constraint,\n", + " SolverFactory,\n", + " TransformationFactory,\n", + " TerminationCondition,\n", + " value,\n", + " Expression,\n", + " minimize,\n", + " units,\n", + ")\n", + "from pyomo.network import Arc, SequentialDecomposition\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core import FlowsheetBlock, UnitModelBlockData\n", + "from idaes.models.unit_models import (\n", + " Mixer,\n", + " MomentumMixingType,\n", + " PressureChanger,\n", + " Heater,\n", + " Separator,\n", + " HeatExchanger,\n", + ")\n", + "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state\n", + "from properties import SCO2ParameterBlock\n", + "\n", + "import idaes.logger as idaeslog\n", + "\n", + "_log = idaeslog.getModelLogger(\"my_model\", level=idaeslog.DEBUG, tag=\"model\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Constructing the flowsheet\n", + "\n", + "To construct the flowsheet we need to define a ConcreteModel using pyomo and then add a FlowsheetBlock to the ConcreteModel. Here since we are focusing on the steady state process, we shall have the dynamic flag as False in the FlowsheetBlock. Next, we define the properties in the FlowsheetBlock that we imported from the properties.py file. Then start adding the unit models to the FlowsheetBlock with the suitable arguments, after which we connect them using Arcs as in the flowsheet above. \n", + "\n", + "Once we have the connected flowsheet, we initialize individual unit models. Before initializing, we fix desired variables for the desired behavior of the unit model and then use `propagate_state` to pass on the state variables to next unit model in the flowsheet. After completely initializing the flowsheet, we convert the network to a mathematical form by using `network.expand_arcs` from the TransformationFactory and apply it on the flowsheet block. Then we call the solver and solve the flowsheet to calculate the total work in the process. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n", + "2023-08-19 23:45:28 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n", + "2023-08-19 23:45:31 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", + "--------------------------------------------------------------------\n", + "The degrees of freedom for the flowsheet is 0\n", + "--------------------------------------------------------------------\n", + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 452\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 118\n", + "\n", + "Total number of variables............................: 178\n", + " variables with only lower bounds: 32\n", + " variables with lower and upper bounds: 59\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 178\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.12e+02 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 3.28e-01 1.12e-02 -1.0 1.32e+01 - 9.89e-01 1.00e+00h 1\n", + " 2 0.0000000e+00 5.45e-06 1.05e-06 -1.0 1.32e+01 - 1.00e+00 1.00e+00h 1\n", + " 3 0.0000000e+00 1.37e-08 2.83e-08 -2.5 2.87e-04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 3.4924596548080444e-10 1.3737007975578308e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 3.4924596548080444e-10 1.3737007975578308e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", + "Total CPU secs in NLP function evaluations = 0.002\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\n", + "====================================================================================\n", + "Unit : fs.boiler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.4382e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 685.15 893.15\n", + " pressure pascal 3.4510e+07 3.4300e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.turbine Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.92700 : dimensionless : True : (None, None)\n", + " Mechanical Work : -9.9927e+05 : watt : False : (None, None)\n", + " Pressure Change : -24.979 : pascal : False : (None, None)\n", + " Pressure Ratio : 0.27174 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 893.15 729.38\n", + " pressure pascal 3.4300e+07 9.3207e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.HTR_pseudo_shell Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -1.4056e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 729.38 489.15\n", + " pressure pascal 9.3207e+06 9.2507e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.HTR_pseudo_tube Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.4056e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 535.47 736.02\n", + " pressure pascal 3.4560e+07 3.4490e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.LTR_pseudo_shell Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -1.0929e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 489.15 354.15\n", + " pressure pascal 9.2507e+06 9.1807e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.LTR_pseudo_tube Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.0929e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 86647. 86647.\n", + " temperature kelvin 378.99 566.32\n", + " pressure pascal 3.4620e+07 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.splitter_1 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Split Fraction [('bypass',)] : 0.25000 : dimensionless : True : (None, None)\n", + " Split Fraction [('to_cooler',)] : 0.75000 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet bypass to_cooler\n", + " flow_mol mole / second 1.2110e+05 30275. 90825.\n", + " temperature kelvin 354.15 354.15 354.15\n", + " pressure pascal 9.1807e+06 9.1807e+06 9.1807e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.co2_cooler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -4.4513e+05 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 90825. 90825.\n", + " temperature kelvin 354.15 308.15\n", + " pressure pascal 9.1807e+06 9.1107e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.main_compressor Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 2.2092e+05 : watt : False : (None, None)\n", + " Pressure Change : 25.510 : pascal : False : (None, None)\n", + " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 90825. 90825.\n", + " temperature kelvin 308.15 378.99\n", + " pressure pascal 9.1107e+06 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.bypass_compressor Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 1.1041e+05 : watt : False : (None, None)\n", + " Pressure Change : 25.706 : pascal : False : (None, None)\n", + " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 30275. 30275.\n", + " temperature kelvin 354.15 460.04\n", + " pressure pascal 9.1807e+06 3.4886e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.splitter_2 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Split Fraction [('to_FG_cooler',)] : 0.046000 : dimensionless : True : (None, None)\n", + " Split Fraction [('to_LTR',)] : 0.95400 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet to_FG_cooler to_LTR \n", + " flow_mol mole / second 90825. 4177.9 86647.\n", + " temperature kelvin 378.99 378.99 378.99\n", + " pressure pascal 3.4620e+07 3.4620e+07 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.FG_cooler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 31903. : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 4177.9 4177.9\n", + " temperature kelvin 378.99 483.15\n", + " pressure pascal 3.4620e+07 3.4560e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.mixer Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units FG_out LTR_out bypass Outlet \n", + " flow_mol mole / second 4177.9 86647. 30275. 1.2110e+05\n", + " temperature kelvin 483.15 566.32 460.04 535.47\n", + " pressure pascal 3.4560e+07 3.4620e+07 3.4886e+07 3.4560e+07\n", + "====================================================================================\n", + "667.9424945058901 kW\n" + ] + } + ], + "source": [ + "def main():\n", + " # Setup solver and options\n", + " solver = SolverFactory(\"ipopt\")\n", + " outlvl = 0\n", + " tee = True\n", + "\n", + " # Set up concrete model\n", + " m = ConcreteModel()\n", + "\n", + " # Create a flowsheet block\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + " # Create the properties param block\n", + " m.fs.properties = SCO2ParameterBlock()\n", + "\n", + " # Add unit models to the flowsheet\n", + " m.fs.boiler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.turbine = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=False,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.HTR_pseudo_shell = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.HTR_pseudo_tube = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.LTR_pseudo_shell = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.LTR_pseudo_tube = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.splitter_1 = Separator(\n", + " property_package=m.fs.properties, outlet_list=[\"bypass\", \"to_cooler\"]\n", + " )\n", + "\n", + " m.fs.co2_cooler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.main_compressor = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.bypass_compressor = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.splitter_2 = Separator(\n", + " property_package=m.fs.properties,\n", + " ideal_separation=False,\n", + " outlet_list=[\"to_FG_cooler\", \"to_LTR\"],\n", + " )\n", + "\n", + " m.fs.FG_cooler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.mixer = Mixer(\n", + " property_package=m.fs.properties, inlet_list=[\"FG_out\", \"LTR_out\", \"bypass\"]\n", + " )\n", + "\n", + " # # Connect the flowsheet\n", + " m.fs.s01 = Arc(source=m.fs.boiler.outlet, destination=m.fs.turbine.inlet)\n", + " m.fs.s02 = Arc(source=m.fs.turbine.outlet, destination=m.fs.HTR_pseudo_shell.inlet)\n", + " m.fs.s03 = Arc(\n", + " source=m.fs.HTR_pseudo_shell.outlet, destination=m.fs.LTR_pseudo_shell.inlet\n", + " )\n", + " m.fs.s04 = Arc(\n", + " source=m.fs.LTR_pseudo_shell.outlet, destination=m.fs.splitter_1.inlet\n", + " )\n", + " m.fs.s05 = Arc(source=m.fs.splitter_1.to_cooler, destination=m.fs.co2_cooler.inlet)\n", + " m.fs.s06 = Arc(\n", + " source=m.fs.splitter_1.bypass, destination=m.fs.bypass_compressor.inlet\n", + " )\n", + " m.fs.s07 = Arc(\n", + " source=m.fs.co2_cooler.outlet, destination=m.fs.main_compressor.inlet\n", + " )\n", + " m.fs.s08 = Arc(source=m.fs.bypass_compressor.outlet, destination=m.fs.mixer.bypass)\n", + " m.fs.s09 = Arc(\n", + " source=m.fs.main_compressor.outlet, destination=m.fs.splitter_2.inlet\n", + " )\n", + " m.fs.s10 = Arc(\n", + " source=m.fs.splitter_2.to_FG_cooler, destination=m.fs.FG_cooler.inlet\n", + " )\n", + " m.fs.s11 = Arc(\n", + " source=m.fs.splitter_2.to_LTR, destination=m.fs.LTR_pseudo_tube.inlet\n", + " )\n", + " m.fs.s12 = Arc(source=m.fs.LTR_pseudo_tube.outlet, destination=m.fs.mixer.LTR_out)\n", + " m.fs.s13 = Arc(source=m.fs.FG_cooler.outlet, destination=m.fs.mixer.FG_out)\n", + " m.fs.s14 = Arc(source=m.fs.mixer.outlet, destination=m.fs.HTR_pseudo_tube.inlet)\n", + "\n", + " # NETL Baseline\n", + " m.fs.boiler.inlet.flow_mol.fix(121.1)\n", + " m.fs.boiler.inlet.temperature.fix(685.15)\n", + " m.fs.boiler.inlet.pressure.fix(34.51)\n", + "\n", + " m.fs.boiler.outlet.temperature.fix(893.15) # Turbine inlet T = 620 C\n", + " m.fs.boiler.deltaP.fix(-0.21)\n", + "\n", + " m.fs.boiler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s01)\n", + "\n", + " m.fs.turbine.ratioP.fix(1 / 3.68)\n", + " m.fs.turbine.efficiency_isentropic.fix(0.927)\n", + " m.fs.turbine.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s02)\n", + " m.fs.HTR_pseudo_shell.outlet.temperature.fix(489.15)\n", + " m.fs.HTR_pseudo_shell.deltaP.fix(-0.07)\n", + "\n", + " m.fs.HTR_pseudo_shell.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s03)\n", + "\n", + " m.fs.LTR_pseudo_shell.outlet.temperature.fix(354.15)\n", + " m.fs.LTR_pseudo_shell.deltaP.fix(-0.07)\n", + " m.fs.LTR_pseudo_shell.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s04)\n", + " m.fs.splitter_1.split_fraction[0, \"bypass\"].fix(0.25)\n", + "\n", + " m.fs.splitter_1.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s05)\n", + " m.fs.co2_cooler.outlet.temperature.fix(308.15)\n", + " m.fs.co2_cooler.deltaP.fix(-0.07)\n", + " m.fs.co2_cooler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s06)\n", + " m.fs.bypass_compressor.efficiency_isentropic.fix(0.85)\n", + " m.fs.bypass_compressor.ratioP.fix(3.8)\n", + " m.fs.bypass_compressor.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s07)\n", + " m.fs.main_compressor.efficiency_isentropic.fix(0.85)\n", + " m.fs.main_compressor.ratioP.fix(3.8)\n", + " m.fs.main_compressor.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s09)\n", + "\n", + " m.fs.splitter_2.split_fraction[0, \"to_FG_cooler\"].fix(0.046)\n", + " m.fs.splitter_2.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s10)\n", + " m.fs.FG_cooler.outlet.temperature.fix(483.15)\n", + " m.fs.FG_cooler.deltaP.fix(-0.06)\n", + " m.fs.FG_cooler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s11)\n", + "\n", + " m.fs.LTR_pseudo_tube.deltaP.fix(0)\n", + " m.fs.LTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.LTR_pseudo_shell.heat_duty[0]))\n", + " m.fs.LTR_pseudo_tube.initialize(outlvl=outlvl)\n", + "\n", + " # Add constraint heats of the LTR_pseudo shell and tube\n", + " m.fs.LTR_pseudo_tube.heat_duty[0].unfix()\n", + " m.fs.c1 = Constraint(\n", + " expr=m.fs.LTR_pseudo_shell.heat_duty[0] == -m.fs.LTR_pseudo_tube.heat_duty[0]\n", + " )\n", + "\n", + " propagate_state(m.fs.s08)\n", + " propagate_state(m.fs.s12)\n", + " propagate_state(m.fs.s13)\n", + "\n", + " m.fs.mixer.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s14)\n", + "\n", + " m.fs.HTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.HTR_pseudo_shell.heat_duty[0]))\n", + " m.fs.HTR_pseudo_tube.deltaP.fix(-0.07)\n", + " m.fs.HTR_pseudo_tube.initialize(outlvl=outlvl)\n", + "\n", + " m.fs.HTR_pseudo_tube.heat_duty[0].unfix()\n", + " m.fs.c2 = Constraint(\n", + " expr=m.fs.HTR_pseudo_shell.heat_duty[0] == -m.fs.HTR_pseudo_tube.heat_duty[0]\n", + " )\n", + "\n", + " TransformationFactory(\"network.expand_arcs\").apply_to(m.fs)\n", + "\n", + " print(\"--------------------------------------------------------------------\")\n", + " print(\"The degrees of freedom for the flowsheet is \", degrees_of_freedom(m))\n", + " print(\"--------------------------------------------------------------------\")\n", + "\n", + " solver.solve(m, tee=tee)\n", + "\n", + " #\n", + " from idaes.core.util.units_of_measurement import (\n", + " convert_quantity_to_reporting_units,\n", + " report_quantity,\n", + " )\n", + "\n", + " # Print reports\n", + " for i in m.fs.component_objects(Block):\n", + " if isinstance(i, UnitModelBlockData):\n", + " i.report()\n", + "\n", + " # Converting units for readability\n", + " print(\n", + " -1 * value(units.convert(m.fs.turbine.work_mechanical[0], units.kW))\n", + " - 1 * value(units.convert(m.fs.main_compressor.work_mechanical[0], units.kW))\n", + " - 1 * value(units.convert(m.fs.bypass_compressor.work_mechanical[0], units.kW)),\n", + " units.kW,\n", + " )\n", + " return m\n", + "\n", + "\n", + "if __name__ == \"__main__\":\n", + " m = main()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" } - ], - "source": [ - "def main():\n", - " # Setup solver and options\n", - " solver = SolverFactory(\"ipopt\")\n", - " outlvl = 0\n", - " tee = True\n", - "\n", - " # Set up concrete model\n", - " m = ConcreteModel()\n", - "\n", - " # Create a flowsheet block\n", - " m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - " # Create the properties param block\n", - " m.fs.properties = SCO2ParameterBlock()\n", - "\n", - " # Add unit models to the flowsheet\n", - " m.fs.boiler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.turbine = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=False,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.HTR_pseudo_shell = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.HTR_pseudo_tube = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.LTR_pseudo_shell = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.LTR_pseudo_tube = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.splitter_1 = Separator(\n", - " property_package=m.fs.properties, outlet_list=[\"bypass\", \"to_cooler\"]\n", - " )\n", - "\n", - " m.fs.co2_cooler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.main_compressor = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.bypass_compressor = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.splitter_2 = Separator(\n", - " property_package=m.fs.properties,\n", - " ideal_separation=False,\n", - " outlet_list=[\"to_FG_cooler\", \"to_LTR\"],\n", - " )\n", - "\n", - " m.fs.FG_cooler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.mixer = Mixer(\n", - " property_package=m.fs.properties, inlet_list=[\"FG_out\", \"LTR_out\", \"bypass\"]\n", - " )\n", - "\n", - " # # Connect the flowsheet\n", - " m.fs.s01 = Arc(source=m.fs.boiler.outlet, destination=m.fs.turbine.inlet)\n", - " m.fs.s02 = Arc(source=m.fs.turbine.outlet, destination=m.fs.HTR_pseudo_shell.inlet)\n", - " m.fs.s03 = Arc(\n", - " source=m.fs.HTR_pseudo_shell.outlet, destination=m.fs.LTR_pseudo_shell.inlet\n", - " )\n", - " m.fs.s04 = Arc(\n", - " source=m.fs.LTR_pseudo_shell.outlet, destination=m.fs.splitter_1.inlet\n", - " )\n", - " m.fs.s05 = Arc(source=m.fs.splitter_1.to_cooler, destination=m.fs.co2_cooler.inlet)\n", - " m.fs.s06 = Arc(\n", - " source=m.fs.splitter_1.bypass, destination=m.fs.bypass_compressor.inlet\n", - " )\n", - " m.fs.s07 = Arc(\n", - " source=m.fs.co2_cooler.outlet, destination=m.fs.main_compressor.inlet\n", - " )\n", - " m.fs.s08 = Arc(source=m.fs.bypass_compressor.outlet, destination=m.fs.mixer.bypass)\n", - " m.fs.s09 = Arc(\n", - " source=m.fs.main_compressor.outlet, destination=m.fs.splitter_2.inlet\n", - " )\n", - " m.fs.s10 = Arc(\n", - " source=m.fs.splitter_2.to_FG_cooler, destination=m.fs.FG_cooler.inlet\n", - " )\n", - " m.fs.s11 = Arc(\n", - " source=m.fs.splitter_2.to_LTR, destination=m.fs.LTR_pseudo_tube.inlet\n", - " )\n", - " m.fs.s12 = Arc(source=m.fs.LTR_pseudo_tube.outlet, destination=m.fs.mixer.LTR_out)\n", - " m.fs.s13 = Arc(source=m.fs.FG_cooler.outlet, destination=m.fs.mixer.FG_out)\n", - " m.fs.s14 = Arc(source=m.fs.mixer.outlet, destination=m.fs.HTR_pseudo_tube.inlet)\n", - "\n", - " # NETL Baseline\n", - " m.fs.boiler.inlet.flow_mol.fix(121.1)\n", - " m.fs.boiler.inlet.temperature.fix(685.15)\n", - " m.fs.boiler.inlet.pressure.fix(34.51)\n", - "\n", - " m.fs.boiler.outlet.temperature.fix(893.15) # Turbine inlet T = 620 C\n", - " m.fs.boiler.deltaP.fix(-0.21)\n", - "\n", - " m.fs.boiler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s01)\n", - "\n", - " m.fs.turbine.ratioP.fix(1 / 3.68)\n", - " m.fs.turbine.efficiency_isentropic.fix(0.927)\n", - " m.fs.turbine.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s02)\n", - " m.fs.HTR_pseudo_shell.outlet.temperature.fix(489.15)\n", - " m.fs.HTR_pseudo_shell.deltaP.fix(-0.07)\n", - "\n", - " m.fs.HTR_pseudo_shell.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s03)\n", - "\n", - " m.fs.LTR_pseudo_shell.outlet.temperature.fix(354.15)\n", - " m.fs.LTR_pseudo_shell.deltaP.fix(-0.07)\n", - " m.fs.LTR_pseudo_shell.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s04)\n", - " m.fs.splitter_1.split_fraction[0, \"bypass\"].fix(0.25)\n", - "\n", - " m.fs.splitter_1.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s05)\n", - " m.fs.co2_cooler.outlet.temperature.fix(308.15)\n", - " m.fs.co2_cooler.deltaP.fix(-0.07)\n", - " m.fs.co2_cooler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s06)\n", - " m.fs.bypass_compressor.efficiency_isentropic.fix(0.85)\n", - " m.fs.bypass_compressor.ratioP.fix(3.8)\n", - " m.fs.bypass_compressor.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s07)\n", - " m.fs.main_compressor.efficiency_isentropic.fix(0.85)\n", - " m.fs.main_compressor.ratioP.fix(3.8)\n", - " m.fs.main_compressor.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s09)\n", - "\n", - " m.fs.splitter_2.split_fraction[0, \"to_FG_cooler\"].fix(0.046)\n", - " m.fs.splitter_2.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s10)\n", - " m.fs.FG_cooler.outlet.temperature.fix(483.15)\n", - " m.fs.FG_cooler.deltaP.fix(-0.06)\n", - " m.fs.FG_cooler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s11)\n", - "\n", - " m.fs.LTR_pseudo_tube.deltaP.fix(0)\n", - " m.fs.LTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.LTR_pseudo_shell.heat_duty[0]))\n", - " m.fs.LTR_pseudo_tube.initialize(outlvl=outlvl)\n", - "\n", - " # Add constraint heats of the LTR_pseudo shell and tube\n", - " m.fs.LTR_pseudo_tube.heat_duty[0].unfix()\n", - " m.fs.c1 = Constraint(\n", - " expr=m.fs.LTR_pseudo_shell.heat_duty[0] == -m.fs.LTR_pseudo_tube.heat_duty[0]\n", - " )\n", - "\n", - " propagate_state(m.fs.s08)\n", - " propagate_state(m.fs.s12)\n", - " propagate_state(m.fs.s13)\n", - "\n", - " m.fs.mixer.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s14)\n", - "\n", - " m.fs.HTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.HTR_pseudo_shell.heat_duty[0]))\n", - " m.fs.HTR_pseudo_tube.deltaP.fix(-0.07)\n", - " m.fs.HTR_pseudo_tube.initialize(outlvl=outlvl)\n", - "\n", - " m.fs.HTR_pseudo_tube.heat_duty[0].unfix()\n", - " m.fs.c2 = Constraint(\n", - " expr=m.fs.HTR_pseudo_shell.heat_duty[0] == -m.fs.HTR_pseudo_tube.heat_duty[0]\n", - " )\n", - "\n", - " TransformationFactory(\"network.expand_arcs\").apply_to(m.fs)\n", - "\n", - " print(\"--------------------------------------------------------------------\")\n", - " print(\"The degrees of freedom for the flowsheet is \", degrees_of_freedom(m))\n", - " print(\"--------------------------------------------------------------------\")\n", - "\n", - " solver.solve(m, tee=tee)\n", - "\n", - " #\n", - " from idaes.core.util.units_of_measurement import (\n", - " convert_quantity_to_reporting_units,\n", - " report_quantity,\n", - " )\n", - "\n", - " # Print reports\n", - " for i in m.fs.component_objects(Block):\n", - " if isinstance(i, UnitModelBlockData):\n", - " i.report()\n", - "\n", - " # Converting units for readability\n", - " print(\n", - " -1 * value(units.convert(m.fs.turbine.work_mechanical[0], units.kW))\n", - " - 1 * value(units.convert(m.fs.main_compressor.work_mechanical[0], units.kW))\n", - " - 1 * value(units.convert(m.fs.bypass_compressor.work_mechanical[0], units.kW)),\n", - " units.kW,\n", - " )\n", - " return m\n", - "\n", - "\n", - "if __name__ == \"__main__\":\n", - " m = main()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization_usr.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization_usr.ipynb index 82ab6d1d..d957e340 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization_usr.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/flowsheet_optimization_usr.ipynb @@ -1,1477 +1,1504 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with PySMO Surrogate Object - flowsheet_optimization (Part 3)\n", - "\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "\n", - "With the surrogate model being embedded in the property package, it is ready to be used in the flowsheet. We start by creating the following flowsheet using the IDAES package. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", - "text/plain": [ - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"CO2_flowsheet.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. Importing libraries\n", - "\n", - "We will be using the unit models from the `IDAES` package along with components from `pyomo.environ` and `pyomo.network`. " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " ConcreteModel,\n", - " Block,\n", - " Var,\n", - " Param,\n", - " Constraint,\n", - " SolverFactory,\n", - " TransformationFactory,\n", - " TerminationCondition,\n", - " value,\n", - " Expression,\n", - " minimize,\n", - " units,\n", - ")\n", - "from pyomo.network import Arc, SequentialDecomposition\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core import FlowsheetBlock, UnitModelBlockData\n", - "from idaes.models.unit_models import (\n", - " Mixer,\n", - " MomentumMixingType,\n", - " PressureChanger,\n", - " Heater,\n", - " Separator,\n", - " HeatExchanger,\n", - ")\n", - "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state\n", - "from properties import SCO2ParameterBlock\n", - "\n", - "import idaes.logger as idaeslog\n", - "\n", - "_log = idaeslog.getModelLogger(\"my_model\", level=idaeslog.DEBUG, tag=\"model\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Constructing the flowsheet\n", - "\n", - "To construct the flowsheet we need to define a ConcreteModel using pyomo and then add a FlowsheetBlock to the ConcreteModel. Here since we are focusing on the steady state process, we shall have the dynamic flag as False in the FlowsheetBlock. Next, we define the properties in the FlowsheetBlock that we imported from the properties.py file. Then start adding the unit models to the FlowsheetBlock with the suitable arguments, after which we connect them using Arcs as in the flowsheet above. \n", - "\n", - "Once we have the connected flowsheet, we initialize individual unit models. Before initializing, we fix desired variables for the desired behavior of the unit model and then use `propagate_state` to pass on the state variables to next unit model in the flowsheet. After completely initializing the flowsheet, we convert the network to a mathematical form by using `network.expand_arcs` from the TransformationFactory and apply it on the flowsheet block. Then we call the solver and solve the flowsheet to calculate the total work in the process. " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with PySMO Surrogate Object - flowsheet_optimization (Part 3)\n", + "\n", + "\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "\n", + "\n", + "With the surrogate model being embedded in the property package, it is ready to be used in the flowsheet. We start by creating the following flowsheet using the IDAES package. " + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", - "\n", - "The number of cross-validation cases (3) is used.\n", - "The default training/cross-validation split of 0.75 is used.\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "2023-08-19 23:45:28 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n", - "2023-08-19 23:45:28 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n", - "2023-08-19 23:45:29 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n", - "2023-08-19 23:45:30 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n", - "2023-08-19 23:45:31 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", - "--------------------------------------------------------------------\n", - "The degrees of freedom for the flowsheet is 0\n", - "--------------------------------------------------------------------\n", - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 452\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 118\n", - "\n", - "Total number of variables............................: 178\n", - " variables with only lower bounds: 32\n", - " variables with lower and upper bounds: 59\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 178\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 1.12e+02 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 3.28e-01 1.12e-02 -1.0 1.32e+01 - 9.89e-01 1.00e+00h 1\n", - " 2 0.0000000e+00 5.45e-06 1.05e-06 -1.0 1.32e+01 - 1.00e+00 1.00e+00h 1\n", - " 3 0.0000000e+00 1.37e-08 2.83e-08 -2.5 2.87e-04 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 3.4924596548080444e-10 1.3737007975578308e-08\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 3.4924596548080444e-10 1.3737007975578308e-08\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", - "Total CPU secs in NLP function evaluations = 0.002\n", - "\n", - "EXIT: Optimal Solution Found.\n", - "\n", - "====================================================================================\n", - "Unit : fs.boiler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.4382e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 685.15 893.15\n", - " pressure pascal 3.4510e+07 3.4300e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.turbine Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.92700 : dimensionless : True : (None, None)\n", - " Mechanical Work : -9.9927e+05 : watt : False : (None, None)\n", - " Pressure Change : -24.979 : pascal : False : (None, None)\n", - " Pressure Ratio : 0.27174 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 893.15 729.38\n", - " pressure pascal 3.4300e+07 9.3207e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.HTR_pseudo_shell Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -1.4056e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 729.38 489.15\n", - " pressure pascal 9.3207e+06 9.2507e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.HTR_pseudo_tube Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.4056e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 535.47 736.02\n", - " pressure pascal 3.4560e+07 3.4490e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.LTR_pseudo_shell Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -1.0929e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 1.2110e+05 1.2110e+05\n", - " temperature kelvin 489.15 354.15\n", - " pressure pascal 9.2507e+06 9.1807e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.LTR_pseudo_tube Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.0929e+06 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 86647. 86647.\n", - " temperature kelvin 378.99 566.32\n", - " pressure pascal 3.4620e+07 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.splitter_1 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Split Fraction [('bypass',)] : 0.25000 : dimensionless : True : (None, None)\n", - " Split Fraction [('to_cooler',)] : 0.75000 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet bypass to_cooler\n", - " flow_mol mole / second 1.2110e+05 30275. 90825.\n", - " temperature kelvin 354.15 354.15 354.15\n", - " pressure pascal 9.1807e+06 9.1807e+06 9.1807e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.co2_cooler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : -4.4513e+05 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 90825. 90825.\n", - " temperature kelvin 354.15 308.15\n", - " pressure pascal 9.1807e+06 9.1107e+06\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.main_compressor Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 2.2092e+05 : watt : False : (None, None)\n", - " Pressure Change : 25.510 : pascal : False : (None, None)\n", - " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 90825. 90825.\n", - " temperature kelvin 308.15 378.99\n", - " pressure pascal 9.1107e+06 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.bypass_compressor Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 1.1041e+05 : watt : False : (None, None)\n", - " Pressure Change : 25.706 : pascal : False : (None, None)\n", - " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 30275. 30275.\n", - " temperature kelvin 354.15 460.04\n", - " pressure pascal 9.1807e+06 3.4886e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.splitter_2 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Split Fraction [('to_FG_cooler',)] : 0.046000 : dimensionless : True : (None, None)\n", - " Split Fraction [('to_LTR',)] : 0.95400 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet to_FG_cooler to_LTR \n", - " flow_mol mole / second 90825. 4177.9 86647.\n", - " temperature kelvin 378.99 378.99 378.99\n", - " pressure pascal 3.4620e+07 3.4620e+07 3.4620e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.FG_cooler Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 31903. : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " flow_mol mole / second 4177.9 4177.9\n", - " temperature kelvin 378.99 483.15\n", - " pressure pascal 3.4620e+07 3.4560e+07\n", - "====================================================================================\n", - "\n", - "====================================================================================\n", - "Unit : fs.mixer Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units FG_out LTR_out bypass Outlet \n", - " flow_mol mole / second 4177.9 86647. 30275. 1.2110e+05\n", - " temperature kelvin 483.15 566.32 460.04 535.47\n", - " pressure pascal 3.4560e+07 3.4620e+07 3.4886e+07 3.4560e+07\n", - "====================================================================================\n", - "667.9424945058901 kW\n" - ] + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"CO2_flowsheet.png\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1. Importing libraries\n", + "\n", + "We will be using the unit models from the `IDAES` package along with components from `pyomo.environ` and `pyomo.network`. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " ConcreteModel,\n", + " Block,\n", + " Var,\n", + " Param,\n", + " Constraint,\n", + " SolverFactory,\n", + " TransformationFactory,\n", + " TerminationCondition,\n", + " value,\n", + " Expression,\n", + " minimize,\n", + " units,\n", + ")\n", + "from pyomo.network import Arc, SequentialDecomposition\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core import FlowsheetBlock, UnitModelBlockData\n", + "from idaes.models.unit_models import (\n", + " Mixer,\n", + " MomentumMixingType,\n", + " PressureChanger,\n", + " Heater,\n", + " Separator,\n", + " HeatExchanger,\n", + ")\n", + "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state\n", + "from properties import SCO2ParameterBlock\n", + "\n", + "import idaes.logger as idaeslog\n", + "\n", + "_log = idaeslog.getModelLogger(\"my_model\", level=idaeslog.DEBUG, tag=\"model\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Constructing the flowsheet\n", + "\n", + "To construct the flowsheet we need to define a ConcreteModel using pyomo and then add a FlowsheetBlock to the ConcreteModel. Here since we are focusing on the steady state process, we shall have the dynamic flag as False in the FlowsheetBlock. Next, we define the properties in the FlowsheetBlock that we imported from the properties.py file. Then start adding the unit models to the FlowsheetBlock with the suitable arguments, after which we connect them using Arcs as in the flowsheet above. \n", + "\n", + "Once we have the connected flowsheet, we initialize individual unit models. Before initializing, we fix desired variables for the desired behavior of the unit model and then use `propagate_state` to pass on the state variables to next unit model in the flowsheet. After completely initializing the flowsheet, we convert the network to a mathematical form by using `network.expand_arcs` from the TransformationFactory and apply it on the flowsheet block. Then we call the solver and solve the flowsheet to calculate the total work in the process. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:27 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234527.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.core.surrogate.pysmo_surrogate: Decode surrogate. type=poly\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; results will be saved to \" solution_v_08-19-23_234528.pickle \".\n", + "\n", + "The number of cross-validation cases (3) is used.\n", + "The default training/cross-validation split of 0.75 is used.\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "2023-08-19 23:45:28 [INFO] idaes.init.fs.boiler.control_volume: Initialization Complete\n", + "2023-08-19 23:45:28 [INFO] idaes.init.fs.boiler: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.turbine: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.HTR_pseudo_shell.control_volume: Initialization Complete\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.HTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.LTR_pseudo_shell.control_volume: Initialization Complete\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.LTR_pseudo_shell: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.splitter_1: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.co2_cooler.control_volume: Initialization Complete\n", + "2023-08-19 23:45:29 [INFO] idaes.init.fs.co2_cooler: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.bypass_compressor: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.main_compressor: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.splitter_2: Initialization Step 2 Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.FG_cooler.control_volume: Initialization Complete\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.FG_cooler: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.LTR_pseudo_tube.control_volume: Initialization Complete\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.LTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.mixer: Initialization Complete: optimal - Optimal Solution Found\n", + "2023-08-19 23:45:30 [INFO] idaes.init.fs.HTR_pseudo_tube.control_volume: Initialization Complete\n", + "2023-08-19 23:45:31 [INFO] idaes.init.fs.HTR_pseudo_tube: Initialization Complete: optimal - Optimal Solution Found\n", + "--------------------------------------------------------------------\n", + "The degrees of freedom for the flowsheet is 0\n", + "--------------------------------------------------------------------\n", + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 452\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 118\n", + "\n", + "Total number of variables............................: 178\n", + " variables with only lower bounds: 32\n", + " variables with lower and upper bounds: 59\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 178\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.12e+02 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 3.28e-01 1.12e-02 -1.0 1.32e+01 - 9.89e-01 1.00e+00h 1\n", + " 2 0.0000000e+00 5.45e-06 1.05e-06 -1.0 1.32e+01 - 1.00e+00 1.00e+00h 1\n", + " 3 0.0000000e+00 1.37e-08 2.83e-08 -2.5 2.87e-04 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 3.4924596548080444e-10 1.3737007975578308e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 3.4924596548080444e-10 1.3737007975578308e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", + "Total CPU secs in NLP function evaluations = 0.002\n", + "\n", + "EXIT: Optimal Solution Found.\n", + "\n", + "====================================================================================\n", + "Unit : fs.boiler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.4382e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 685.15 893.15\n", + " pressure pascal 3.4510e+07 3.4300e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.turbine Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.92700 : dimensionless : True : (None, None)\n", + " Mechanical Work : -9.9927e+05 : watt : False : (None, None)\n", + " Pressure Change : -24.979 : pascal : False : (None, None)\n", + " Pressure Ratio : 0.27174 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 893.15 729.38\n", + " pressure pascal 3.4300e+07 9.3207e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.HTR_pseudo_shell Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -1.4056e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 729.38 489.15\n", + " pressure pascal 9.3207e+06 9.2507e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.HTR_pseudo_tube Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.4056e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 535.47 736.02\n", + " pressure pascal 3.4560e+07 3.4490e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.LTR_pseudo_shell Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -1.0929e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 1.2110e+05 1.2110e+05\n", + " temperature kelvin 489.15 354.15\n", + " pressure pascal 9.2507e+06 9.1807e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.LTR_pseudo_tube Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.0929e+06 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 86647. 86647.\n", + " temperature kelvin 378.99 566.32\n", + " pressure pascal 3.4620e+07 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.splitter_1 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Split Fraction [('bypass',)] : 0.25000 : dimensionless : True : (None, None)\n", + " Split Fraction [('to_cooler',)] : 0.75000 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet bypass to_cooler\n", + " flow_mol mole / second 1.2110e+05 30275. 90825.\n", + " temperature kelvin 354.15 354.15 354.15\n", + " pressure pascal 9.1807e+06 9.1807e+06 9.1807e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.co2_cooler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -4.4513e+05 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 90825. 90825.\n", + " temperature kelvin 354.15 308.15\n", + " pressure pascal 9.1807e+06 9.1107e+06\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.main_compressor Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 2.2092e+05 : watt : False : (None, None)\n", + " Pressure Change : 25.510 : pascal : False : (None, None)\n", + " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 90825. 90825.\n", + " temperature kelvin 308.15 378.99\n", + " pressure pascal 9.1107e+06 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.bypass_compressor Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.85000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 1.1041e+05 : watt : False : (None, None)\n", + " Pressure Change : 25.706 : pascal : False : (None, None)\n", + " Pressure Ratio : 3.8000 : dimensionless : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 30275. 30275.\n", + " temperature kelvin 354.15 460.04\n", + " pressure pascal 9.1807e+06 3.4886e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.splitter_2 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Split Fraction [('to_FG_cooler',)] : 0.046000 : dimensionless : True : (None, None)\n", + " Split Fraction [('to_LTR',)] : 0.95400 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet to_FG_cooler to_LTR \n", + " flow_mol mole / second 90825. 4177.9 86647.\n", + " temperature kelvin 378.99 378.99 378.99\n", + " pressure pascal 3.4620e+07 3.4620e+07 3.4620e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.FG_cooler Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 31903. : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " flow_mol mole / second 4177.9 4177.9\n", + " temperature kelvin 378.99 483.15\n", + " pressure pascal 3.4620e+07 3.4560e+07\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.mixer Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units FG_out LTR_out bypass Outlet \n", + " flow_mol mole / second 4177.9 86647. 30275. 1.2110e+05\n", + " temperature kelvin 483.15 566.32 460.04 535.47\n", + " pressure pascal 3.4560e+07 3.4620e+07 3.4886e+07 3.4560e+07\n", + "====================================================================================\n", + "667.9424945058901 kW\n" + ] + } + ], + "source": [ + "def main():\n", + " # Setup solver and options\n", + " solver = SolverFactory(\"ipopt\")\n", + " outlvl = 0\n", + " tee = True\n", + "\n", + " # Set up concrete model\n", + " m = ConcreteModel()\n", + "\n", + " # Create a flowsheet block\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + " # Create the properties param block\n", + " m.fs.properties = SCO2ParameterBlock()\n", + "\n", + " # Add unit models to the flowsheet\n", + " m.fs.boiler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.turbine = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=False,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.HTR_pseudo_shell = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.HTR_pseudo_tube = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.LTR_pseudo_shell = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.LTR_pseudo_tube = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.splitter_1 = Separator(\n", + " property_package=m.fs.properties, outlet_list=[\"bypass\", \"to_cooler\"]\n", + " )\n", + "\n", + " m.fs.co2_cooler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.main_compressor = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.bypass_compressor = PressureChanger(\n", + " dynamic=False,\n", + " property_package=m.fs.properties,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", + " )\n", + "\n", + " m.fs.splitter_2 = Separator(\n", + " property_package=m.fs.properties,\n", + " ideal_separation=False,\n", + " outlet_list=[\"to_FG_cooler\", \"to_LTR\"],\n", + " )\n", + "\n", + " m.fs.FG_cooler = Heater(\n", + " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", + " )\n", + "\n", + " m.fs.mixer = Mixer(\n", + " property_package=m.fs.properties, inlet_list=[\"FG_out\", \"LTR_out\", \"bypass\"]\n", + " )\n", + "\n", + " # # Connect the flowsheet\n", + " m.fs.s01 = Arc(source=m.fs.boiler.outlet, destination=m.fs.turbine.inlet)\n", + " m.fs.s02 = Arc(source=m.fs.turbine.outlet, destination=m.fs.HTR_pseudo_shell.inlet)\n", + " m.fs.s03 = Arc(\n", + " source=m.fs.HTR_pseudo_shell.outlet, destination=m.fs.LTR_pseudo_shell.inlet\n", + " )\n", + " m.fs.s04 = Arc(\n", + " source=m.fs.LTR_pseudo_shell.outlet, destination=m.fs.splitter_1.inlet\n", + " )\n", + " m.fs.s05 = Arc(source=m.fs.splitter_1.to_cooler, destination=m.fs.co2_cooler.inlet)\n", + " m.fs.s06 = Arc(\n", + " source=m.fs.splitter_1.bypass, destination=m.fs.bypass_compressor.inlet\n", + " )\n", + " m.fs.s07 = Arc(\n", + " source=m.fs.co2_cooler.outlet, destination=m.fs.main_compressor.inlet\n", + " )\n", + " m.fs.s08 = Arc(source=m.fs.bypass_compressor.outlet, destination=m.fs.mixer.bypass)\n", + " m.fs.s09 = Arc(\n", + " source=m.fs.main_compressor.outlet, destination=m.fs.splitter_2.inlet\n", + " )\n", + " m.fs.s10 = Arc(\n", + " source=m.fs.splitter_2.to_FG_cooler, destination=m.fs.FG_cooler.inlet\n", + " )\n", + " m.fs.s11 = Arc(\n", + " source=m.fs.splitter_2.to_LTR, destination=m.fs.LTR_pseudo_tube.inlet\n", + " )\n", + " m.fs.s12 = Arc(source=m.fs.LTR_pseudo_tube.outlet, destination=m.fs.mixer.LTR_out)\n", + " m.fs.s13 = Arc(source=m.fs.FG_cooler.outlet, destination=m.fs.mixer.FG_out)\n", + " m.fs.s14 = Arc(source=m.fs.mixer.outlet, destination=m.fs.HTR_pseudo_tube.inlet)\n", + "\n", + " # NETL Baseline\n", + " m.fs.boiler.inlet.flow_mol.fix(121.1)\n", + " m.fs.boiler.inlet.temperature.fix(685.15)\n", + " m.fs.boiler.inlet.pressure.fix(34.51)\n", + "\n", + " m.fs.boiler.outlet.temperature.fix(893.15) # Turbine inlet T = 620 C\n", + " m.fs.boiler.deltaP.fix(-0.21)\n", + "\n", + " m.fs.boiler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s01)\n", + "\n", + " m.fs.turbine.ratioP.fix(1 / 3.68)\n", + " m.fs.turbine.efficiency_isentropic.fix(0.927)\n", + " m.fs.turbine.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s02)\n", + " m.fs.HTR_pseudo_shell.outlet.temperature.fix(489.15)\n", + " m.fs.HTR_pseudo_shell.deltaP.fix(-0.07)\n", + "\n", + " m.fs.HTR_pseudo_shell.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s03)\n", + "\n", + " m.fs.LTR_pseudo_shell.outlet.temperature.fix(354.15)\n", + " m.fs.LTR_pseudo_shell.deltaP.fix(-0.07)\n", + " m.fs.LTR_pseudo_shell.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s04)\n", + " m.fs.splitter_1.split_fraction[0, \"bypass\"].fix(0.25)\n", + "\n", + " m.fs.splitter_1.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s05)\n", + " m.fs.co2_cooler.outlet.temperature.fix(308.15)\n", + " m.fs.co2_cooler.deltaP.fix(-0.07)\n", + " m.fs.co2_cooler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s06)\n", + " m.fs.bypass_compressor.efficiency_isentropic.fix(0.85)\n", + " m.fs.bypass_compressor.ratioP.fix(3.8)\n", + " m.fs.bypass_compressor.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s07)\n", + " m.fs.main_compressor.efficiency_isentropic.fix(0.85)\n", + " m.fs.main_compressor.ratioP.fix(3.8)\n", + " m.fs.main_compressor.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s09)\n", + "\n", + " m.fs.splitter_2.split_fraction[0, \"to_FG_cooler\"].fix(0.046)\n", + " m.fs.splitter_2.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s10)\n", + " m.fs.FG_cooler.outlet.temperature.fix(483.15)\n", + " m.fs.FG_cooler.deltaP.fix(-0.06)\n", + " m.fs.FG_cooler.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s11)\n", + "\n", + " m.fs.LTR_pseudo_tube.deltaP.fix(0)\n", + " m.fs.LTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.LTR_pseudo_shell.heat_duty[0]))\n", + " m.fs.LTR_pseudo_tube.initialize(outlvl=outlvl)\n", + "\n", + " # Add constraint heats of the LTR_pseudo shell and tube\n", + " m.fs.LTR_pseudo_tube.heat_duty[0].unfix()\n", + " m.fs.c1 = Constraint(\n", + " expr=m.fs.LTR_pseudo_shell.heat_duty[0] == -m.fs.LTR_pseudo_tube.heat_duty[0]\n", + " )\n", + "\n", + " propagate_state(m.fs.s08)\n", + " propagate_state(m.fs.s12)\n", + " propagate_state(m.fs.s13)\n", + "\n", + " m.fs.mixer.initialize(outlvl=outlvl)\n", + "\n", + " propagate_state(m.fs.s14)\n", + "\n", + " m.fs.HTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.HTR_pseudo_shell.heat_duty[0]))\n", + " m.fs.HTR_pseudo_tube.deltaP.fix(-0.07)\n", + " m.fs.HTR_pseudo_tube.initialize(outlvl=outlvl)\n", + "\n", + " m.fs.HTR_pseudo_tube.heat_duty[0].unfix()\n", + " m.fs.c2 = Constraint(\n", + " expr=m.fs.HTR_pseudo_shell.heat_duty[0] == -m.fs.HTR_pseudo_tube.heat_duty[0]\n", + " )\n", + "\n", + " TransformationFactory(\"network.expand_arcs\").apply_to(m.fs)\n", + "\n", + " print(\"--------------------------------------------------------------------\")\n", + " print(\"The degrees of freedom for the flowsheet is \", degrees_of_freedom(m))\n", + " print(\"--------------------------------------------------------------------\")\n", + "\n", + " solver.solve(m, tee=tee)\n", + "\n", + " #\n", + " from idaes.core.util.units_of_measurement import (\n", + " convert_quantity_to_reporting_units,\n", + " report_quantity,\n", + " )\n", + "\n", + " # Print reports\n", + " for i in m.fs.component_objects(Block):\n", + " if isinstance(i, UnitModelBlockData):\n", + " i.report()\n", + "\n", + " # Converting units for readability\n", + " print(\n", + " -1 * value(units.convert(m.fs.turbine.work_mechanical[0], units.kW))\n", + " - 1 * value(units.convert(m.fs.main_compressor.work_mechanical[0], units.kW))\n", + " - 1 * value(units.convert(m.fs.bypass_compressor.work_mechanical[0], units.kW)),\n", + " units.kW,\n", + " )\n", + " return m\n", + "\n", + "\n", + "if __name__ == \"__main__\":\n", + " m = main()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" } - ], - "source": [ - "def main():\n", - " # Setup solver and options\n", - " solver = SolverFactory(\"ipopt\")\n", - " outlvl = 0\n", - " tee = True\n", - "\n", - " # Set up concrete model\n", - " m = ConcreteModel()\n", - "\n", - " # Create a flowsheet block\n", - " m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - " # Create the properties param block\n", - " m.fs.properties = SCO2ParameterBlock()\n", - "\n", - " # Add unit models to the flowsheet\n", - " m.fs.boiler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.turbine = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=False,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.HTR_pseudo_shell = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.HTR_pseudo_tube = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.LTR_pseudo_shell = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.LTR_pseudo_tube = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.splitter_1 = Separator(\n", - " property_package=m.fs.properties, outlet_list=[\"bypass\", \"to_cooler\"]\n", - " )\n", - "\n", - " m.fs.co2_cooler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.main_compressor = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.bypass_compressor = PressureChanger(\n", - " dynamic=False,\n", - " property_package=m.fs.properties,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isentropic,\n", - " )\n", - "\n", - " m.fs.splitter_2 = Separator(\n", - " property_package=m.fs.properties,\n", - " ideal_separation=False,\n", - " outlet_list=[\"to_FG_cooler\", \"to_LTR\"],\n", - " )\n", - "\n", - " m.fs.FG_cooler = Heater(\n", - " dynamic=False, property_package=m.fs.properties, has_pressure_change=True\n", - " )\n", - "\n", - " m.fs.mixer = Mixer(\n", - " property_package=m.fs.properties, inlet_list=[\"FG_out\", \"LTR_out\", \"bypass\"]\n", - " )\n", - "\n", - " # # Connect the flowsheet\n", - " m.fs.s01 = Arc(source=m.fs.boiler.outlet, destination=m.fs.turbine.inlet)\n", - " m.fs.s02 = Arc(source=m.fs.turbine.outlet, destination=m.fs.HTR_pseudo_shell.inlet)\n", - " m.fs.s03 = Arc(\n", - " source=m.fs.HTR_pseudo_shell.outlet, destination=m.fs.LTR_pseudo_shell.inlet\n", - " )\n", - " m.fs.s04 = Arc(\n", - " source=m.fs.LTR_pseudo_shell.outlet, destination=m.fs.splitter_1.inlet\n", - " )\n", - " m.fs.s05 = Arc(source=m.fs.splitter_1.to_cooler, destination=m.fs.co2_cooler.inlet)\n", - " m.fs.s06 = Arc(\n", - " source=m.fs.splitter_1.bypass, destination=m.fs.bypass_compressor.inlet\n", - " )\n", - " m.fs.s07 = Arc(\n", - " source=m.fs.co2_cooler.outlet, destination=m.fs.main_compressor.inlet\n", - " )\n", - " m.fs.s08 = Arc(source=m.fs.bypass_compressor.outlet, destination=m.fs.mixer.bypass)\n", - " m.fs.s09 = Arc(\n", - " source=m.fs.main_compressor.outlet, destination=m.fs.splitter_2.inlet\n", - " )\n", - " m.fs.s10 = Arc(\n", - " source=m.fs.splitter_2.to_FG_cooler, destination=m.fs.FG_cooler.inlet\n", - " )\n", - " m.fs.s11 = Arc(\n", - " source=m.fs.splitter_2.to_LTR, destination=m.fs.LTR_pseudo_tube.inlet\n", - " )\n", - " m.fs.s12 = Arc(source=m.fs.LTR_pseudo_tube.outlet, destination=m.fs.mixer.LTR_out)\n", - " m.fs.s13 = Arc(source=m.fs.FG_cooler.outlet, destination=m.fs.mixer.FG_out)\n", - " m.fs.s14 = Arc(source=m.fs.mixer.outlet, destination=m.fs.HTR_pseudo_tube.inlet)\n", - "\n", - " # NETL Baseline\n", - " m.fs.boiler.inlet.flow_mol.fix(121.1)\n", - " m.fs.boiler.inlet.temperature.fix(685.15)\n", - " m.fs.boiler.inlet.pressure.fix(34.51)\n", - "\n", - " m.fs.boiler.outlet.temperature.fix(893.15) # Turbine inlet T = 620 C\n", - " m.fs.boiler.deltaP.fix(-0.21)\n", - "\n", - " m.fs.boiler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s01)\n", - "\n", - " m.fs.turbine.ratioP.fix(1 / 3.68)\n", - " m.fs.turbine.efficiency_isentropic.fix(0.927)\n", - " m.fs.turbine.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s02)\n", - " m.fs.HTR_pseudo_shell.outlet.temperature.fix(489.15)\n", - " m.fs.HTR_pseudo_shell.deltaP.fix(-0.07)\n", - "\n", - " m.fs.HTR_pseudo_shell.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s03)\n", - "\n", - " m.fs.LTR_pseudo_shell.outlet.temperature.fix(354.15)\n", - " m.fs.LTR_pseudo_shell.deltaP.fix(-0.07)\n", - " m.fs.LTR_pseudo_shell.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s04)\n", - " m.fs.splitter_1.split_fraction[0, \"bypass\"].fix(0.25)\n", - "\n", - " m.fs.splitter_1.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s05)\n", - " m.fs.co2_cooler.outlet.temperature.fix(308.15)\n", - " m.fs.co2_cooler.deltaP.fix(-0.07)\n", - " m.fs.co2_cooler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s06)\n", - " m.fs.bypass_compressor.efficiency_isentropic.fix(0.85)\n", - " m.fs.bypass_compressor.ratioP.fix(3.8)\n", - " m.fs.bypass_compressor.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s07)\n", - " m.fs.main_compressor.efficiency_isentropic.fix(0.85)\n", - " m.fs.main_compressor.ratioP.fix(3.8)\n", - " m.fs.main_compressor.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s09)\n", - "\n", - " m.fs.splitter_2.split_fraction[0, \"to_FG_cooler\"].fix(0.046)\n", - " m.fs.splitter_2.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s10)\n", - " m.fs.FG_cooler.outlet.temperature.fix(483.15)\n", - " m.fs.FG_cooler.deltaP.fix(-0.06)\n", - " m.fs.FG_cooler.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s11)\n", - "\n", - " m.fs.LTR_pseudo_tube.deltaP.fix(0)\n", - " m.fs.LTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.LTR_pseudo_shell.heat_duty[0]))\n", - " m.fs.LTR_pseudo_tube.initialize(outlvl=outlvl)\n", - "\n", - " # Add constraint heats of the LTR_pseudo shell and tube\n", - " m.fs.LTR_pseudo_tube.heat_duty[0].unfix()\n", - " m.fs.c1 = Constraint(\n", - " expr=m.fs.LTR_pseudo_shell.heat_duty[0] == -m.fs.LTR_pseudo_tube.heat_duty[0]\n", - " )\n", - "\n", - " propagate_state(m.fs.s08)\n", - " propagate_state(m.fs.s12)\n", - " propagate_state(m.fs.s13)\n", - "\n", - " m.fs.mixer.initialize(outlvl=outlvl)\n", - "\n", - " propagate_state(m.fs.s14)\n", - "\n", - " m.fs.HTR_pseudo_tube.heat_duty[0].fix(-value(m.fs.HTR_pseudo_shell.heat_duty[0]))\n", - " m.fs.HTR_pseudo_tube.deltaP.fix(-0.07)\n", - " m.fs.HTR_pseudo_tube.initialize(outlvl=outlvl)\n", - "\n", - " m.fs.HTR_pseudo_tube.heat_duty[0].unfix()\n", - " m.fs.c2 = Constraint(\n", - " expr=m.fs.HTR_pseudo_shell.heat_duty[0] == -m.fs.HTR_pseudo_tube.heat_duty[0]\n", - " )\n", - "\n", - " TransformationFactory(\"network.expand_arcs\").apply_to(m.fs)\n", - "\n", - " print(\"--------------------------------------------------------------------\")\n", - " print(\"The degrees of freedom for the flowsheet is \", degrees_of_freedom(m))\n", - " print(\"--------------------------------------------------------------------\")\n", - "\n", - " solver.solve(m, tee=tee)\n", - "\n", - " #\n", - " from idaes.core.util.units_of_measurement import (\n", - " convert_quantity_to_reporting_units,\n", - " report_quantity,\n", - " )\n", - "\n", - " # Print reports\n", - " for i in m.fs.component_objects(Block):\n", - " if isinstance(i, UnitModelBlockData):\n", - " i.report()\n", - "\n", - " # Converting units for readability\n", - " print(\n", - " -1 * value(units.convert(m.fs.turbine.work_mechanical[0], units.kW))\n", - " - 1 * value(units.convert(m.fs.main_compressor.work_mechanical[0], units.kW))\n", - " - 1 * value(units.convert(m.fs.bypass_compressor.work_mechanical[0], units.kW)),\n", - " units.kW,\n", - " )\n", - " return m\n", - "\n", - "\n", - "if __name__ == \"__main__\":\n", - " m = main()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/properties.py b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/properties.py index 6cd173b7..9c8acbe4 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/properties.py +++ b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/properties.py @@ -1,15 +1,16 @@ -############################################################################## -# Institute for the Design of Advanced Energy Systems Process Systems -# Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the -# software owners: The Regents of the University of California, through -# Lawrence Berkeley National Laboratory, National Technology & Engineering -# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia -# University Research Corporation, et al. All rights reserved. +################################################################################# +# The Institute for the Design of Advanced Energy Systems Integrated Platform +# Framework (IDAES IP) was produced under the DOE Institute for the +# Design of Advanced Energy Systems (IDAES). # -# Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and -# license information, respectively. Both files are also available online -# at the URL "https://github.com/IDAES/idaes-pse". -############################################################################## +# Copyright (c) 2018-2025 by the software owners: The Regents of the +# University of California, through Lawrence Berkeley National Laboratory, +# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon +# University, West Virginia University Research Corporation, et al. +# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md +# for full copyright and license information. +# +################################################################################# """ Maintainer: Javal Vyas diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_poly_surrogate.json b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_poly_surrogate.json index f7f6e287..17c53879 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_poly_surrogate.json +++ b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_poly_surrogate.json @@ -1 +1 @@ -{"model_encoding": {"enth_mol": {"attr": {"regression_data_columns": ["pressure", "temperature"], "multinomials": 1, "additional_term_expressions": ["IndexedParam[pressure]*IndexedParam[temperature]*IndexedParam[temperature]", "IndexedParam[pressure]*IndexedParam[pressure]*IndexedParam[temperature]*IndexedParam[temperature]", "IndexedParam[pressure]*IndexedParam[pressure]*IndexedParam[temperature]", "IndexedParam[pressure]/IndexedParam[temperature]", "IndexedParam[temperature]/IndexedParam[pressure]"], "optimal_weights_array": [[-539145.2641931743], [-1572.9941129612596], [1028.1303702529963], [-41.89265612633253], [-2.854098382160082], [3.1084792045014056], [0.0040249321969904606], [-0.07298691795031877], [-2.7827021177926484e-06], [0.0006559340352560386], [7.62454692622566e-10], [4.50540106476475], [-0.0025967218940188964], [3.27147430041989e-05], [-0.05205092851352775], [149943.17003170087], [-3.5662256522946807]], "final_polynomial_order": 5, "errors": {"MAE": 116.22937611304296, "MSE": 39254.96789837278, "R2": 0.9997117200542968}, "extra_terms_feature_vector": ["IndexedParam[pressure]", "IndexedParam[temperature]"]}, "map": {"regression_data_columns": "list", "multinomials": "str", "additional_term_expressions": "other", "optimal_weights_array": "numpy", "final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}, "entr_mol": {"attr": {"regression_data_columns": ["pressure", "temperature"], "multinomials": 1, "additional_term_expressions": ["IndexedParam[pressure]*IndexedParam[temperature]*IndexedParam[temperature]", "IndexedParam[pressure]*IndexedParam[pressure]*IndexedParam[temperature]*IndexedParam[temperature]", "IndexedParam[pressure]*IndexedParam[pressure]*IndexedParam[temperature]", "IndexedParam[pressure]/IndexedParam[temperature]", "IndexedParam[temperature]/IndexedParam[pressure]"], "optimal_weights_array": [[-529.9581296941684], [-5.674476891947422], [3.6251620831469844], [-0.012206052330165947], [-0.010121999171951317], [0.0044164987227566545], [1.4212146246171698e-05], [-0.00012049491972756627], [-9.875650167428602e-09], [1.1673348430972035e-06], [2.72031843813476e-12], [0.010605178085763924], [-6.047902870413699e-06], [6.872924493404928e-08], [-0.00011146830780061758], [437.25207041949056], [0.0015391876304710196]], "final_polynomial_order": 5, "errors": {"MAE": 0.34548912239751245, "MSE": 0.3560561890323906, "R2": 0.9991570382929269}, "extra_terms_feature_vector": ["IndexedParam[pressure]", "IndexedParam[temperature]"]}, "map": {"regression_data_columns": "list", "multinomials": "str", "additional_term_expressions": "other", "optimal_weights_array": "numpy", "final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}}, "input_labels": ["pressure", "temperature"], "output_labels": ["enth_mol", "entr_mol"], "input_bounds": {"pressure": [7, 40], "temperature": [306, 1000]}, "surrogate_type": "poly"} +{"model_encoding": {"enth_mol": {"attr": {"regression_data_columns": ["pressure", "temperature"], "multinomials": 1, "additional_term_expressions": ["IndexedParam[pressure]*IndexedParam[temperature]*IndexedParam[temperature]", "IndexedParam[pressure]*IndexedParam[pressure]*IndexedParam[temperature]*IndexedParam[temperature]", "IndexedParam[pressure]*IndexedParam[pressure]*IndexedParam[temperature]", "IndexedParam[pressure]/IndexedParam[temperature]", "IndexedParam[temperature]/IndexedParam[pressure]"], "optimal_weights_array": [[-541092.5943570095], [-3485.037614541703], [1100.5328082296978], [99.44186836309524], [-3.0693992781651227], [-2.9402365083648583], [0.004343168574325156], [0.0588297780356798], [-3.010896457753368e-06], [-0.0004724466679913183], [8.272080563278464e-10], [5.317428139906877], [-0.003219325229480838], [4.438226910352845e-05], [-0.06610226475123816], [195321.10141739884], [-25.31724070025135]], "final_polynomial_order": 5, "errors": {"MAE": 138.65505661875198, "MSE": 55816.77064996388, "R2": 0.9995812255692139}, "extra_terms_feature_vector": ["IndexedParam[pressure]", "IndexedParam[temperature]"]}, "map": {"regression_data_columns": "list", "multinomials": "str", "additional_term_expressions": "other", "optimal_weights_array": "numpy", "final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}, "entr_mol": {"attr": {"regression_data_columns": ["pressure", "temperature"], "multinomials": 1, "additional_term_expressions": ["IndexedParam[pressure]*IndexedParam[temperature]*IndexedParam[temperature]", "IndexedParam[pressure]*IndexedParam[pressure]*IndexedParam[temperature]*IndexedParam[temperature]", "IndexedParam[pressure]*IndexedParam[pressure]*IndexedParam[temperature]", "IndexedParam[pressure]/IndexedParam[temperature]", "IndexedParam[temperature]/IndexedParam[pressure]"], "optimal_weights_array": [[-533.1433487146091], [-11.382044986921615], [3.8301849640307815], [0.41278671762658736], [-0.010731511967613915], [-0.013511359842171135], [1.5122818400972181e-05], [0.00026456812655521885], [-1.0534647243397528e-08], [-2.089555841149664e-06], [2.9088290958316355e-12], [0.012751763519948106], [-7.827035760612202e-06], [1.030963694409036e-07], [-0.0001507459196335798], [553.3693572366914], [-0.075583276326012]], "final_polynomial_order": 5, "errors": {"MAE": 0.40682545544444154, "MSE": 0.503090963628653, "R2": 0.9987871803561564}, "extra_terms_feature_vector": ["IndexedParam[pressure]", "IndexedParam[temperature]"]}, "map": {"regression_data_columns": "list", "multinomials": "str", "additional_term_expressions": "other", "optimal_weights_array": "numpy", "final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}}, "input_labels": ["pressure", "temperature"], "output_labels": ["enth_mol", "entr_mol"], "input_bounds": {"pressure": [7, 40], "temperature": [306, 1000]}, "surrogate_type": "poly"} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training.ipynb index 2a3ddb83..3f182b58 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "e8df2ea4", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": null, @@ -659,8 +686,7 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" - }, - "orig_nbformat": 4 + } }, "nbformat": 4, "nbformat_minor": 2 diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training_doc.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training_doc.ipynb index 9dd602c4..690b3dbb 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training_doc.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training_doc.ipynb @@ -2,7 +2,33 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -52,7 +78,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -62,7 +88,7 @@ "" ] }, - "execution_count": 1, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -90,7 +116,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -122,9 +148,18 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dang/miniforge3/envs/idaes_examples_py3.11/lib/python3.11/site-packages/numpy/_core/fromnumeric.py:57: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be removed in a future version. Please use 'DataFrame.transpose' instead.\n", + " return bound(*args, **kwds)\n" + ] + } + ], "source": [ "# Import training data\n", "np.set_printoptions(precision=6, suppress=True)\n", @@ -164,7 +199,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -174,95 +209,165 @@ "\n", "===========================Polynomial Regression===============================================\n", "\n", - "Warning: solution.pickle already exists; previous file will be overwritten.\n", - "\n", "No iterations will be run.\n", "Default parameter estimation method is used.\n", "Parameter estimation method: pyomo \n", "\n", - "No iterations will be run.\n", + "No iterations will be run.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "Best surrogate model is of order 5 with a cross-val S.S. Error of 20466.657669\n", + "Best surrogate model is of order 5 with a cross-val S.S. Error of 36880.489657\n", "\n", "------------------------------------------------------------\n", "The final coefficients of the regression terms are: \n", "\n", - "k | -534397.59515\n", - "(x_ 1 )^ 1 | -2733.579691\n", - "(x_ 2 )^ 1 | 1036.106357\n", - "(x_ 1 )^ 2 | 32.409203\n", - "(x_ 2 )^ 2 | -2.852387\n", - "(x_ 1 )^ 3 | 0.893563\n", - "(x_ 2 )^ 3 | 0.004018\n", - "(x_ 1 )^ 4 | -0.045284\n", + "k | -541092.594357\n", + "(x_ 1 )^ 1 | -3485.037615\n", + "(x_ 2 )^ 1 | 1100.532808\n", + "(x_ 1 )^ 2 | 99.441868\n", + "(x_ 2 )^ 2 | -3.069399\n", + "(x_ 1 )^ 3 | -2.940237\n", + "(x_ 2 )^ 3 | 0.004343\n", + "(x_ 1 )^ 4 | 0.05883\n", "(x_ 2 )^ 4 | -3e-06\n", - "(x_ 1 )^ 5 | 0.000564\n", + "(x_ 1 )^ 5 | -0.000472\n", "(x_ 2 )^ 5 | 0.0\n", - "x_ 1 .x_ 2 | 4.372684\n", + "x_ 1 .x_ 2 | 5.317428\n", "\n", "The coefficients of the extra terms in additional_regression_features are:\n", "\n", - "Coeff. additional_regression_features[ 1 ]: -0.002723\n", - "Coeff. additional_regression_features[ 2 ]: 3.6e-05\n", - "Coeff. additional_regression_features[ 3 ]: -0.050607\n", - "Coeff. additional_regression_features[ 4 ]: 169668.814595\n", - "Coeff. additional_regression_features[ 5 ]: -44.726026\n", + "Coeff. additional_regression_features[ 1 ]: -0.003219\n", + "Coeff. additional_regression_features[ 2 ]: 4.4e-05\n", + "Coeff. additional_regression_features[ 3 ]: -0.066102\n", + "Coeff. additional_regression_features[ 4 ]: 195321.101417\n", + "Coeff. additional_regression_features[ 5 ]: -25.317241\n", "\n", "Regression model performance on training data:\n", - "Order: 5 / MAE: 134.972465 / MSE: 54613.278159 / R^2: 0.999601\n", + "Order: 5 / MAE: 138.655057 / MSE: 55816.770650 / R^2: 0.999581\n", "\n", "Results saved in solution.pickle\n", - "2023-08-19 23:48:46 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output enth_mol trained successfully\n", + "2025-03-17 17:39:25 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output enth_mol trained successfully\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "===========================Polynomial Regression===============================================\n", "\n", @@ -272,89 +377,144 @@ "Default parameter estimation method is used.\n", "Parameter estimation method: pyomo \n", "\n", - "No iterations will be run.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + "No iterations will be run.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: maxIterations\n", " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", + " Exceeded.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "Best surrogate model is of order 5 with a cross-val S.S. Error of 0.156437\n", + "Best surrogate model is of order 5 with a cross-val S.S. Error of 0.292645\n", "\n", "------------------------------------------------------------\n", "The final coefficients of the regression terms are: \n", "\n", - "k | -519.862457\n", - "(x_ 1 )^ 1 | -8.820865\n", - "(x_ 2 )^ 1 | 3.676641\n", - "(x_ 1 )^ 2 | 0.18002\n", - "(x_ 2 )^ 2 | -0.010217\n", - "(x_ 1 )^ 3 | -0.000783\n", - "(x_ 2 )^ 3 | 1.4e-05\n", - "(x_ 1 )^ 4 | -6.9e-05\n", + "k | -533.143349\n", + "(x_ 1 )^ 1 | -11.382045\n", + "(x_ 2 )^ 1 | 3.830185\n", + "(x_ 1 )^ 2 | 0.412787\n", + "(x_ 2 )^ 2 | -0.010732\n", + "(x_ 1 )^ 3 | -0.013511\n", + "(x_ 2 )^ 3 | 1.5e-05\n", + "(x_ 1 )^ 4 | 0.000265\n", "(x_ 2 )^ 4 | -0.0\n", - "(x_ 1 )^ 5 | 1e-06\n", + "(x_ 1 )^ 5 | -2e-06\n", "(x_ 2 )^ 5 | 0.0\n", - "x_ 1 .x_ 2 | 0.010367\n", + "x_ 1 .x_ 2 | 0.012752\n", "\n", "The coefficients of the extra terms in additional_regression_features are:\n", "\n", - "Coeff. additional_regression_features[ 1 ]: -7e-06\n", + "Coeff. additional_regression_features[ 1 ]: -8e-06\n", "Coeff. additional_regression_features[ 2 ]: 0.0\n", - "Coeff. additional_regression_features[ 3 ]: -0.000112\n", - "Coeff. additional_regression_features[ 4 ]: 484.312223\n", - "Coeff. additional_regression_features[ 5 ]: -0.1166\n", + "Coeff. additional_regression_features[ 3 ]: -0.000151\n", + "Coeff. additional_regression_features[ 4 ]: 553.369357\n", + "Coeff. additional_regression_features[ 5 ]: -0.075583\n", "\n", "Regression model performance on training data:\n", - "Order: 5 / MAE: 0.398072 / MSE: 0.495330 / R^2: 0.998873\n", + "Order: 5 / MAE: 0.406825 / MSE: 0.503091 / R^2: 0.998787\n", "\n", "Results saved in solution.pickle\n", - "2023-08-19 23:49:20 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output entr_mol trained successfully\n" + "2025-03-17 17:39:32 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output entr_mol trained successfully\n" ] } ], @@ -401,12 +561,12 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACX30lEQVR4nO2deXgUxdbG38kKATIhG0lkSQjIoogCEgIKKJGgKHIDEtzYQbgEZZFNBcUNQZFduCqLCygI0YugSFj0qsSoKOKCXMwXNpOwBDJBIklI+vsjt5uZycx0T08v1T3n9zw+kpme7urq6qq3zjl1ysJxHAeCIAiCIAhCUwL0LgBBEARBEIQ/QiKMIAiCIAhCB0iEEQRBEARB6ACJMIIgCIIgCB0gEUYQBEEQBKEDJMIIgiAIgiB0gEQYQRAEQRCEDpAIIwiCIAiC0AESYQRBEARBEDpAIowgCILwyPr162GxWHDs2DG9i0IQpoJEGEEQuvPdd98hKysL1113HRo0aIDmzZtjyJAh+O9//1vn2N69e8NiscBisSAgIADh4eFo06YNHn74YeTk5Hh13Y8//hi9evVCbGwswsLC0LJlSwwZMgQ7d+5U6tbq8OKLL+Kjjz6q8/n+/fvxzDPPoLS0VLVrO/PMM88IdWmxWBAWFob27dvjqaeeQllZmSLX2LhxI5YsWaLIuQjCbJAIIwhCdxYsWICtW7eiT58+WLp0KcaNG4f//Oc/6NSpE3755Zc6xzdt2hTvvPMO3n77bbz88ssYMGAA9u/fj759+yIzMxNVVVWi13zllVcwYMAAWCwWzJ49G4sXL8agQYNw9OhRvP/++2rcJgDPImzevHmaijCeVatW4Z133sGrr76Ktm3b4oUXXkC/fv2gxNbCJMIIwj1BeheAIAhi6tSp2LhxI0JCQoTPMjMz0aFDB7z00kt49913HY63Wq146KGHHD576aWX8Oijj+K1115DYmIiFixY4PZ6V65cwXPPPYc77rgDu3btqvP9mTNnfLwjdigvL0dYWJjHYwYPHozo6GgAwPjx4zFo0CBkZ2fjm2++QWpqqhbFJAi/hCxhBEHoTvfu3R0EGAC0bt0a1113HQ4fPizpHIGBgVi2bBnat2+PFStWwGazuT323LlzKCsrQ48ePVx+Hxsb6/D35cuX8cwzz+Daa69FvXr1EB8fj4yMDOTn5wvHvPLKK+jevTuioqJQv359dO7cGVu2bHE4j8ViwaVLl/DWW28JLsARI0bgmWeewfTp0wEASUlJwnf2MVjvvvsuOnfujPr16yMyMhJDhw7FyZMnHc7fu3dvXH/99Thw4AB69uyJsLAwPPHEE5Lqz57bb78dAFBQUODxuNdeew3XXXcdQkNDkZCQgIkTJzpY8nr37o0dO3bg+PHjwj0lJiZ6XR6CMCtkCSMIgkk4jsPp06dx3XXXSf5NYGAg7r//fsyZMwdfffUV+vfv7/K42NhY1K9fHx9//DEmTZqEyMhIt+esrq7G3XffjT179mDo0KF47LHHcPHiReTk5OCXX35BcnIyAGDp0qUYMGAAHnzwQVRWVuL999/Hfffdh+3btwvleOeddzBmzBh07doV48aNAwAkJyejQYMG+O9//4v33nsPixcvFqxSMTExAIAXXngBc+bMwZAhQzBmzBicPXsWy5cvR8+ePfHjjz8iIiJCKG9JSQnuvPNODB06FA899BCaNGkiuf54eHEZFRXl9phnnnkG8+bNQ1paGiZMmIAjR45g1apV+O677/D1118jODgYTz75JGw2G06dOoXFixcDABo2bOh1eQjCtHAEQRAM8s4773AAuDVr1jh83qtXL+66665z+7sPP/yQA8AtXbrU4/nnzp3LAeAaNGjA3XnnndwLL7zAHThwoM5xa9eu5QBwr776ap3vampqhH+Xl5c7fFdZWcldf/313O233+7weYMGDbjhw4fXOdfLL7/MAeAKCgocPj927BgXGBjIvfDCCw6f//zzz1xQUJDD57169eIAcKtXr3Z73/Y8/fTTHADuyJEj3NmzZ7mCggLuX//6FxcaGso1adKEu3TpEsdxHLdu3TqHsp05c4YLCQnh+vbty1VXVwvnW7FiBQeAW7t2rfBZ//79uRYtWkgqD0H4G+SOJAiCOX7//XdMnDgRqampGD58uFe/5S0tFy9e9HjcvHnzsHHjRtx000347LPP8OSTT6Jz587o1KmTgwt069atiI6OxqRJk+qcw2KxCP+uX7++8O8LFy7AZrPh1ltvxQ8//OBV+Z3Jzs5GTU0NhgwZgnPnzgn/xcXFoXXr1ti3b5/D8aGhoRg5cqRX12jTpg1iYmKQlJSERx55BK1atcKOHTvcxpLt3r0blZWVmDx5MgICrg4jY8eORXh4OHbs2OH9jRKEH0LuSIIgmKK4uBj9+/eH1WrFli1bEBgY6NXv//rrLwBAo0aNRI+9//77cf/996OsrAx5eXlYv349Nm7ciHvuuQe//PIL6tWrh/z8fLRp0wZBQZ67y+3bt+P555/HwYMHUVFRIXxuL9TkcPToUXAch9atW7v8Pjg42OHva665pk58nRhbt25FeHg4goOD0bRpU8HF6o7jx48DqBVv9oSEhKBly5bC9wRBeIZEGEEQzGCz2XDnnXeitLQUX375JRISErw+B5/SolWrVpJ/Ex4ejjvuuAN33HEHgoOD8dZbbyEvLw+9evWS9Psvv/wSAwYMQM+ePfHaa68hPj4ewcHBWLduHTZu3Oj1PdhTU1MDi8WCTz/91KUgdY6xsrfISaVnz55CHBpBENpBIowgCCa4fPky7rnnHvz3v//F7t270b59e6/PUV1djY0bNyIsLAy33HKLrHJ06dIFb731FoqKigDUBs7n5eWhqqqqjtWJZ+vWrahXrx4+++wzhIaGCp+vW7euzrHuLGPuPk9OTgbHcUhKSsK1117r7e2oQosWLQAAR44cQcuWLYXPKysrUVBQgLS0NOEzXy2BBGFmKCaMIAjdqa6uRmZmJnJzc/HBBx/Iyk1VXV2NRx99FIcPH8ajjz6K8PBwt8eWl5cjNzfX5XeffvopgKuutkGDBuHcuXNYsWJFnWO5/yUzDQwMhMViQXV1tfDdsWPHXCZlbdCggcuErA0aNACAOt9lZGQgMDAQ8+bNq5M8leM4lJSUuL5JFUlLS0NISAiWLVvmUKY1a9bAZrM5rEpt0KCBx3QhBOHPkCWMIAjdmTZtGrZt24Z77rkH58+fr5Oc1Tkxq81mE44pLy/HH3/8gezsbOTn52Po0KF47rnnPF6vvLwc3bt3R7du3dCvXz80a9YMpaWl+Oijj/Dll19i4MCBuOmmmwAAw4YNw9tvv42pU6fi22+/xa233opLly5h9+7d+Oc//4l7770X/fv3x6uvvop+/frhgQcewJkzZ7By5Uq0atUKhw4dcrh2586dsXv3brz66qtISEhAUlISUlJS0LlzZwDAk08+iaFDhyI4OBj33HMPkpOT8fzzz2P27Nk4duwYBg4ciEaNGqGgoAAffvghxo0bh8cff9yn+veWmJgYzJ49G/PmzUO/fv0wYMAAHDlyBK+99hpuvvlmh+fVuXNnbNq0CVOnTsXNN9+Mhg0b4p577tG0vATBLHouzSQIguC4q6kV3P3n6diGDRtyrVu35h566CFu165dkq5XVVXFvfHGG9zAgQO5Fi1acKGhoVxYWBh30003cS+//DJXUVHhcHx5eTn35JNPcklJSVxwcDAXFxfHDR48mMvPzxeOWbNmDde6dWsuNDSUa9u2Lbdu3TohBYQ9v//+O9ezZ0+ufv36HACHdBXPPfccd80113ABAQF10lVs3bqVu+WWW7gGDRpwDRo04Nq2bctNnDiRO3LkiEPdeErf4QxfvrNnz3o8zjlFBc+KFSu4tm3bcsHBwVyTJk24CRMmcBcuXHA45q+//uIeeOABLiIiggNA6SoIwg4LxymwORhBEARBEAThFRQTRhAEQRAEoQMkwgiCIAiCIHSARBhBEARBEIQOkAgjCIIgCILQARJhBEEQBEEQOkAijCAIgiAIQgcoWSvD1NTUoLCwEI0aNaKtPwiCIAjCIHAch4sXLyIhIQEBAe7tXSTCGKawsBDNmjXTuxgEQRAEQcjg5MmTaNq0qdvvSYQxTKNGjQDUPkRP++ARBEEQBMEOZWVlaNasmTCOu4NEGMPwLsjw8HASYQRBEARhMMRCiSgwnyAIgiAIQgdIhBEEQRAEQegAiTCCIAiCIAgdIBFGEARBEAShAyTCCIIgCIIgdIBEGEEQBEEQhA6QCCMIgiAIgtABEmEEQRAEQRA6QCKMIAiCIAhCB0iEEQRBEARB6IBhRNiAAQPQvHlz1KtXD/Hx8Xj44YdRWFjocAzHcXjllVdw7bXXIjQ0FNdccw1eeOEFh2M+//xzdOrUCaGhoWjVqhXWr19f51orV65EYmIi6tWrh5SUFHz77bcO31++fBkTJ05EVFQUGjZsiEGDBuH06dMOx5w4cQL9+/dHWFgYYmNjMX36dFy5ckWZyiAIgiAIwvAYRoTddttt2Lx5M44cOYKtW7ciPz8fgwcPdjjmsccew5tvvolXXnkFv//+O7Zt24auXbsK3xcUFKB///647bbbcPDgQUyePBljxozBZ599JhyzadMmTJ06FU8//TR++OEHdOzYEenp6Thz5oxwzJQpU/Dxxx/jgw8+wBdffIHCwkJkZGQI31dXV6N///6orKzE/v378dZbb2H9+vWYO3euijVE+MqpU8C+fbX/JwiCIAjV4QzKv//9b85isXCVlZUcx3Hcb7/9xgUFBXG///6729/MmDGDu+666xw+y8zM5NLT04W/u3btyk2cOFH4u7q6mktISODmz5/PcRzHlZaWcsHBwdwHH3wgHHP48GEOAJebm8txHMd98sknXEBAAFdcXCwcs2rVKi48PJyrqKiQfI82m40DwNlsNsm/Ibzj3LlzXGFhIffKKxe4gIAaDuC4gIAa7pVXLnCFhYXcuXPn9C4iQRAEYTCkjt9BOmtAWZw/fx4bNmxA9+7dERwcDAD4+OOP0bJlS2zfvh39+vUDx3FIS0vDwoULERkZCQDIzc1FWlqaw7nS09MxefJkAEBlZSUOHDiA2bNnC98HBAQgLS0Nubm5AIADBw6gqqrK4Txt27ZF8+bNkZubi27duiE3NxcdOnRAkyZNHK4zYcIE/Prrr7jppptUqRctKCkpQWVlJQCgsDAABQVBSEq6goSEGgBASEgIoqKi9CyiZEpKSrBixQrYbI2wZMlkcFztbvc1NRZMnx6OP/9cC6v1IrKysgxzT4T32LdpVxipTRMEYSwMJcJmzpyJFStWoLy8HN26dcP27duF7/7v//4Px48fxwcffIC3334b1dXVmDJlCgYPHoy9e/cCAIqLix2EEQA0adIEZWVl+Pvvv3HhwgVUV1e7POb3338XzhESEoKIiIg6xxQXF3u8Dv+dOyoqKlBRUSH8XVZWJqVaNIMXLQDwww834eOP7wbHBcBiqcE992xHp04/AoBhRAs/8J4/HwWOc/TMc1wAzp+PhNV60eMAzSIkKqRj36YBwGZrhPPnoxAZWQKr9aLwuVHaNEEQxkJXETZr1iwsWLDA4zGHDx9G27ZtAQDTp0/H6NGjcfz4ccybNw/Dhg3D9u3bYbFYUFNTg4qKCrz99tu49tprAQBr1qxB586dceTIEbRp00b1+/GV+fPnY968eXoXwy38wG6zNRIEGFArWD7++G4kJ/9hSNESGVkCi6XGQYhZLDWIjDyvY6nkQaLCO+zbqqeJhdHaNME2LE6UWCyTP6CrCJs2bRpGjBjh8ZiWLVsK/46OjkZ0dDSuvfZatGvXDs2aNcM333yD1NRUxMfHIygoSBBgANCuXTsAtSsV27Rpg7i4uDqrGE+fPo3w8HDUr18fgYGBCAwMdHlMXFwcACAuLg6VlZUoLS11sIY5H+O8opI/J3+MK2bPno2pU6cKf5eVlaFZs2Ye60cPxCxHRsNqvYh77tleZwA24r2QqJCH2MSCIJTCeaLkDi0nSiyWyV/QVYTFxMQgJiZG1m9rampjkHj3XY8ePXDlyhXk5+cjOTkZAPDf//4XANCiRQsAQGpqKj755BOH8+Tk5CA1NRVArdLv3Lkz9uzZg4EDBwrX2bNnD7KysgAAnTt3RnBwMPbs2YNBgwYBAI4cOYITJ04I50lNTcULL7yAM2fOIDY2VrhOeHg42rdv7/aeQkNDERoaKqs+tERLy5FWs7NOnX5EcvIfOH8+EpGR53UZeJW8VxIV3mG2iQXBLlInQFpOlJyv5c6CTpM35TFETFheXh6+++473HLLLWjcuDHy8/MxZ84cJCcnC8InLS0NnTp1wqhRo7BkyRLU1NRg4sSJuOOOOwTr2Pjx47FixQrMmDEDo0aNwt69e7F582bs2LFDuNbUqVMxfPhwdOnSBV27dsWSJUtw6dIljBw5EgBgtVoxevRoTJ06FZGRkQgPD8ekSZOQmpqKbt26AQD69u2L9u3b4+GHH8bChQtRXFyMp556ChMnTjSEyBJDK8uRVNfaQw89JAhvX7BaL+o24CrtRiRR4R1mckkbFX91h7l71/XCkwWdUB5DiLCwsDBkZ2fj6aefxqVLlxAfH49+/frhqaeeEkRNQEAAPv74Y0yaNAk9e/ZEgwYNcOedd2LRokXCeZKSkrBjxw5MmTIFS5cuRdOmTfHmm28iPT1dOCYzMxNnz57F3LlzUVxcjBtvvBE7d+50CLRfvHgxAgICMGjQIFRUVCA9PR2vvfaa8H1gYCC2b9+OCRMmIDU1FQ0aNMDw4cPx7LPPalBb2qCF5cidaw2owR137EaPHrUrVt99913Dm8mVdiOSqPAOM7mkjYi/usNYEzxkQdceQ4iwDh06CCscPZGQkICtW7d6PKZ379748UfPjTwrK0twP7qiXr16WLlyJVauXOn2mBYtWtRxfZoNrSxHzh0DEICcnDsAQBBiZjGTK9UJkqjwHhZc0v6KP7rDWBQ8ZEHXHkOIMMK/cdUxABbs3p2G66//RXbnEBISouhxSuBLJ1hSUoJz584Jf5Oo8B49XdJELaxZh9SCRcFDFnTtIRFGSEYv0RIZWQKgBs67bPnaYUVFRSErK4upOBS5naA7dw6JCveUlJSgtLRU0rFaCnF/hkXrkFqwKHjIgq49JMIIyeglWqzWi7jjjt3/c0FahM+V6LBYiy+R2wlKdefw+LuokBqDlJmZiZiYGObaiVlh0TqkFqwKHrKgawuJMMIr9BqM+Niv3bvTmOqw1MBTJ3ju3DlRoevJnZORkYGEhAS/FxVSRavVatW0rvx1hSAPi9YhpbGfAHl617WcKDlfy50FXevJmz+8DyTCCMPQo0curr/+F7+YobnrBLOzswG4XyUm5s6Jjo42fKelNKzEILG8QlDNwdA+lpFV65CSsBgGwWKZWH4flIREGMEsrmZdesQ4aTEbczfD9HaVmD+5c6Ti6vnxgz5LMUisrhBUczB0dW5/cIexKBpYKxOr74PSkAgjmCUqKgoPPfQQ3n33XdFj1TKTazUb42eihYWFgrVLjoXGH9w5rnAnlEtLS7F582a3v2NVtLJknSssLHT4TMnB0N1vWHGHEWzAyvugBiTCCKZJTk7W1Uyu5WwsKipK8ibp7vAHd44zUoUyUPf5sShaWbHOuapXtQdDd+8XxTL6L6y8D2pBIoxQDaXceKx0vFrOxqRaaPg69uf8YFKFsrvnx5poZcU651yvp07FqzoYenq/KJbRf2HlfVALEmGEKpgtqFLr2ZgUC42nOvZXd467gdzT82NNtLJonfvhh5uwbdvdUDpXH4+S75c/rKjzJ1h8H5SERBihCmYLqtR6NibFrSi1jjMyMhAdHW36wcfTQC72/FgSray5lPl6dRZggHKDoVLvl9kmfwR774PSkAgjVMcMQZV6zMa8sdCIuXLi4+NVKycreBrIxZ4fL1Tt0VO0smSdc71tGBQdDJV6v8w2+SNqYel9UBoSYYSqmCWoUqvZmNSkieXl5SgvLwdgnjr2FU8DudjzY0Gospow01W9AjUYPfpNNG1apMg11Hi/1Jz86e3y1Pv6WsDq+6A0JMIIVTFTUKUWszEpSRPLy8sd0naYqY59QWwgZ302zWLCTMB9vToLMDmDoVrZ49WcmOjt8tT7+q5QQxSy+j4oDYkwQlWMHlSpx2xMrFMpKnIc/Ixex0oiJrRYn02zOqB4qldf0keoNdCqOTGR6spUy+Wp9/WdUVMUsvo+KAmJMEJVjB5UqcVsTIlZZGpqLvbvTwVgvDr2FalCOTMzE1ar1eXv/aGz9xap9epr/i416l5sYmKf0sUeOW3BXdwZoI3b0NP1tYA1UWg0SIQRiuDc2Zgpb5XasR2+zCKd415SU79GSkqe4erYF/zFbaE1Rq5XsckfvyuFK7yx2HiKOzt58iQ+/fRT0XP44jZkcdGT3qLQaJAII3xGipBg3Q2kF76s5nIV95Kbm4qUlDyH4/yhjlkUAmbAyPUqd/In1WIjFncmRYB5cz1vr68HLIpC1iERRviM1E7EOQ0Aq7NovfC2AxOLe6GtXtjFH1a36YFUFyrgu8XG27gzpS1ErC3IYVEUGgESYYTiuOtsWEgDwCpyOjCxuBcjbPVSUlKCs2fPoqqqyuX3QUFBiI2NZf4+vIHF1W1mwdmFeu7cOZeuR08THvtQCk9i2JsFMV9/nYrdu9MUtRCxtiCHNVFoFEiEEYpC5mh5yOnAWF70IMXSA0DyxttmEiQUyKwuntqJzdYIJ082c9iCyXnC4yza3LU9qe/f11+nIifnDgAWl9eTC2vvP2ui0CiQCCMUwxdztL+7Z7zpwNTKraQUUi09Q4YMqfOZP2Y4p0BmbbCfIDrjacLj3Pakvn9A7bPNyUkDL8CkXE8MVt9/1kShUSARRiiGXHM0uWe868BYX7UmVTBduXLF4W81XDasQ5ZjbXCeIDpjsdQgOLgSBQWJomJYyvtns9mwadMmnD8fBaX33GTt/ddbFBp9Ak8ijFAMueZoOSsEjf7iucKb1VxGujcplh61XDYsQ4HM2uFu/0ugto+64YZDWLNmjGQxLPX9c73lE4e0tN0+PWOW3n89RaEZJvAkwgjFUMIcLcUyYIYXj8fs+6NJeZ5quGyMgN6BzGacyLjD3QRx0KAtiIgoFQQYoKwYdu4TgRrcccdu9OiRKxxj1HfbHlas7u4mfIWFhS7bOgttnEQY4TNKmaOlWgZ8ya3FGqy5FpRE6vNUw2VjBPQMZDbTREYK7iaI119/GAUFiYqLYal94kMPPWSK+mUBTxO+7Oxst+OE3m2cRBjhM0oJCTmWATPE1Ji1E5b6PNVy2YihtyVIz0Bmf1mhKUUMqSGGjTy50vu9kIPYhM/TOKF3GycRRiiCEi+lt50hxdSwjdTnKcVlozR6WoL0DmR2hVlXaHoSQ3wOMbXEMGtCRQpGtZB6mvABYHqcIBFGMIO3naHeMTWEZ8SeZ3BwsHCs2KIEpQWJni5tNa0kcqwYZrAmy7lvFsWw3hjVQuppwsf6OEEijGAKb1YIUnJANpE6uMXExCArK0v3jPl6iBC9V4rxmMGaLNd6Y2SXoVZoZSH11QUqNuFjeZwgEUZIRq1YAbkrBP0hOaDW8RlKXM/bwU3PQc5XEcJS/Iwc6x7rVgIp+GLV9GeBJYbUrZ0A39q5Ui5QdxM+1scJEmGEJNSMFfBlRuqN5cxoaB2foeT1jDK4+SJCWI6fkWrdM5s12QyuVRYQm5y42o9Tbjv3RURLncCzPE6QCCMkoXasgDcvr9lza/FoHZ9h1HgQX/BFhLBaX95Y91i3EniDGVyrrCAW6K5W/KS3IlrKwgsed+OE3pAII2Sh52oqo8Zy+Oq6UqLOPZXB2cVg1hVz9igpQlipLynWPTMGpZvBtcoK7iYnhYUJePvtYapYGuWKaHd9ptS2q3cbJxFGeA0LJn/WBJYYvrqulKhzqWVQ6npqoXQclhKuCpbqS4p1T4mJDEvxcID5XKt64mpykpa2W9jbFVDe0qi0iDbKZJ1EGOEVYrOVc+fOMdGwWcMX15VSbhapsRdquHWUGrCVisNS0qXNmhtMqnXPl3eUxXg4M7lW9cKThVRtS6NaSXNZh0QY4RViLyLvg2ctmR9reOO6UqPz82S5Ufp6Sg7YSsVhKTlLFquv0tJSxMfHSyq3UqgdiMzq1mEsB2AbAVfvhX1slZqWRn8V0STCCK+QOlsxU/C20njrulJ6hihmuVH6emoGsPsSh6XUJEGsvjZv3qzJpESvBSt6u2L1XqjDmlvWV9yVVQuR5I8imkQY4RWuXsTUVPW2lzEqzh0zH/Qux3WldOcnZrlRu7NVKoBdi8FfykIGKfWlxaREjxgYFlyxesb+sOiWVRM1RJLeIlpvSIQRknAVK5CXl4L9+1Oxf38P5OamMhW8rSeeOmZvXH1qrWCTYulSa8WcUsJJi8Hfm4UMfH2dPNkUgAXNmp1UpAzeovVAz8qKRL0EDqtuWSVRWyQZJYBeLUiEEZLgX5TCwkIhPiA3NxUAG8HILOGpM/HG1adW5yRmucnIyEB0dLRi1+NRUjhpMfhLHWB58vNbMbNCUitoReJV9HbLqoUWIsmsAksKJMIIyURFRQkvIiszYC2RG/vhPHh74+pTq3PyZOmKjo5WJZBcyTaj9eAvNsCy4JbTAzMEUysR02X25+/PIkltSIQRshAbBPl4GXcdmNGCWeVsjgy4H7z1SI6pd+yFksJJy8FfygDrj5MSHiMHUysV0+Xr8zdaf0goB4kwQhZig6D9dhHOHZgRg1nlxH6IDd4jR97h4PZTu6PVwq3gajDxJoBdDD0yvUsZYP3NLae3oFcKpWK6fHn+RuwPCeUgEUZ4hdRB0J6zZ886dB6s7rknFamxH2KDt1puP0+o2YlLGUx8FU56BPFKGWDN4JbzBjMGU/sS0+XL8zdjcD9Z9qRDIozwCvvO9+jRo9i3b5/QUbjrPKqqqjyeU6s997SO/TCjdUSJvSedLYCAd52y1p231AHWLHswSsVMg6gSMV1m2/5KLs6TMXf9AFn2aiERRngN/+LYD7pyOw+tOh09Yj/MZh1Rau9JPSyAvuJpgM3MzITVanX7W7PM+s1s3ZAb02Xm7a/kYt9GPPUDRrLsqQmJMMJn5HYeWnY6SrlApVi39Ihb0gKpdWiWwUTqABsTE2NY8SEVs8ctybVaa7n9ldEwSz+gNiTCCJ+R23no2enIdYFKsW6ZMV7GFe7q0CyDiavnaLPZHNzrQUFBqKysRFFREQB9nqsWFiozxi3Z44vVWqvtr4yGWfoBtSERRvhMcHAFAA6Axe5TDsHB6q0o8gVfXaBSYj+MLrDE8FSHZhpMnFf1btq0SfQ3WlqD9Ii/MUPckiv0TrVhtvAFM/UDakIijPCZqqpQOAowALCgqsqzu02PTkeuiVyp2A8zxNWI1aHZBhMeFq1BWsffmM3FxFqqDb2FoJKYtR9QGhJhhGyCgmqbj9iMhz+OR2rMlM1mc3ttuWJFrolcCRejWeJqpNShmQYTV7BmDdJKHJnNxcRC6ABrQlBJzN4PKAGJMEI2sbGxAMRnPPxxPGIdX2lpKTZv3izq+pEjVnwxkVNcTS1S61CJwYRFyyGL1iCtxJEZXUx6T3i8EYIsvg9iuOsHvMGI9y0VEmGEbJw7j7lzz+LYsSAkJl5BQsLNAG52+3Io8cLIESusmMhZs6R4g1YbgLNqOWTRGqSVOGLl/WERX4SClPbL6vvgjNRJltTjzJ53jEQY4RP2jT4+HujcWflrKJHMlaW0EWKWFOekp/ZlY6Vz9VSHCQkJqohsViyHLFqDtBRH5GKqixZCQer7cPbsWV2tRkq7eM2ed4xEGKEb7maOSiSBdYaF2A8eMUuK/b6bzug529OzDlmyHLJqDVJTHJk5bkkJtBYKnq5hH8ahl9VIjXOzGAagBCTCCF2QYlpX+qVjxVQtxZLCitXHGT3qkMXOl1VrkBLxN65gaRLDMlq0VanXMJvViMUwACUgEUboghTTullfOjFLCktWHxZgpR2waA1SOv7GE/4usKSgRVuVcg25IQ8Au2KaxTAAJSARRuiOO9Eh5aUz6qoZd5YUFq0+esNK56u0NUiJtksWKvWR8px4tGirUq4hNeTBSEHurIYB+AqJMEJXxESHp5fOZrMxl8HcE1IsKaxYfVhCrB1ouZBBqfMpGcjNQts2K1KfU2ZmJgBthIKUa0gRamq5K9WcGLMaBuALJMIIXRETHZ5eOo7jJF2DlfgHT1aLc+fOITs7W7TztBcc/mTh8NQOWF3I4Ak5gdxGtfoaGanPyX4/US2Egtg1xCew6ljctVglqlbco16QCCN0RUx0uMs5FRISInnJNkuIdTxinaez4GBVZCiB1BgsgN2FDGJIHQzNniuJdbwVLWoIBW/eB8CzUFPK4u48MZC6st2b91LLuEc9IBFG6Iq35nv72X5RUZHwuZmC2V11nr6IDL0tKHKvL8VyCBj72UsdDNVOgaB3G2EdsefkvDWbO3wRClLi//jdRnjcCTUlYtfcTwwaAYBiljazxz2SCCN0x1tXk/Ns3wzB7J5mub6IDL2zbPt6fbEyGf3ZezsYit1vaWkp4uPjvSoDWdnEEXtOERERmggFsd9LFXlKxK55mhikpuYqGttq5nZnGBE2YMAAHDx4EGfOnEHjxo2RlpaGBQsWICEhAQDwzDPPYN68eXV+FxYWhkuXLgl/f/DBB5gzZw6OHTuG1q1bY8GCBbjrrruE7zmOw9NPP4033ngDpaWl6NGjB1atWoXWrVsLx5w/fx6TJk3Cxx9/jICAAAwaNAhLly5Fw4YNhWMOHTqEiRMn4rvvvkNMTAwmTZqEGTNmqFE1hkSKaV2q9ccMwezOsz3e0uOryJBqGVHLbad21nujP3tvB0Ox+928ebPXYsnsGcmVQMpzYkEoiFmN7C3ISsWuueqj9u9PZWJFsxEwjAi77bbb8MQTTyA+Ph5//vknHn/8cQwePBj79+8HADz++OMYP368w2/69OmDm2++Wfh7//79uP/++zF//nzcfffd2LhxIwYOHIgffvgB119/PQBg4cKFWLZsGd566y0kJSVhzpw5SE9Px2+//YZ69eoBAB588EEUFRUhJycHVVVVGDlyJMaNG4eNGzcCAMrKytC3b1+kpaVh9erV+PnnnzFq1ChERERg3LhxWlQX87jqLOS6mFhJYeArrjpxpUWGnnFzargNzfDsvRkMpdyvXLFkdKui2hhlZZ43YlCJ2DVXfRQQgNTUr5Gbm2qqdBJqYBgRNmXKFOHfLVq0wKxZszBw4EBUVVUhODgYDRs2dLBE/fTTT/jtt9+wevVq4bOlS5eiX79+mD59OgDgueeeQ05ODlasWIHVq1eD4zgsWbIETz31FO69914AwNtvv40mTZrgo48+wtChQ3H48GHs3LkT3333Hbp06QIAWL58Oe666y688sorSEhIwIYNG1BZWYm1a9ciJCQE1113HQ4ePIhXX32VRBjE40/kBMFKtSYYLfZFSZGhZ+yUWgO8WXIHSR0Mne8XADgOyM9v5fOzNLpVUQuMvjJPjSB3d31USkoeUlLymBetemMYEWbP+fPnsWHDBnTv3h3BwcEuj3nzzTdx7bXX4tZbbxU+y83NxdSpUx2OS09Px0cffQQAKCgoQHFxMdLS0oTvrVYrUlJSkJubi6FDhyI3NxcRERGCAAOAtLQ0BAQEIC8vD//4xz+Qm5uLnj17OjTk9PR0LFiwABcuXEDjxo2VqAbDYC98nANHXSF1MPB2U26946PkoJTI0NvKoeYAbxQLhT2+DIbJyX/AMTuLMs/SDFZFpTHbyjw1gtzF+igjvI96YigRNnPmTKxYsQLl5eXo1q0btm/f7vK4y5cvY8OGDZg1a5bD58XFxWjSpInDZ02aNEFxcbHwPf+Zp2NiY2Mdvg8KCkJkZKTDMUlJSXXOwX/nToRVVFSgoqJC+LusrMzlcUZCqvCxR+pg4G2HonZ8klooITL0tnJ4M8BLsVayuIWQN/gyGJ4/HwVA+WdpFquikphxZZ4aZfW2j2L1vdQDXUXYrFmzsGDBAo/HHD58GG3btgUATJ8+HaNHj8bx48cxb948DBs2DNu3b4fFYnH4zYcffoiLFy9i+PDhqpVdDebPn+9ycYGRERM0roSQN4OB3A6F9bQGSosMva0cUp+pN9ZKow+O3pRNq61xjGhVVBuW2xBLOPdR7ia5Dz30ENWpHbqKsGnTpmHEiBEej2nZsqXw7+joaERHR+Paa69Fu3bt0KxZM3zzzTdITU11+M2bb76Ju+++u45FKy4uDqdPn3b47PTp04iLixO+5z+zX+Z9+vRp3HjjjcIxZ86ccTjHlStXcP78eYfzuLqO/TVcMXv2bAd3aVlZGZo1a+b2eCNi/2Lm57dyK4TUHAz0ds1JQekZOAtWDinP1BtrpbepGIyIvVWwb9++2LVrl+rP0uhxT4Q2eJoAeprkhoWFaVVEQ6CrCIuJiUFMTIys39bU1ACAg/sOqI3r2rdvH7Zt21bnN6mpqdizZw8mT54sfJaTkyOIuKSkJMTFxWHPnj2C6CorK0NeXh4mTJggnKO0tBQHDhxA586dAQB79+5FTU0NUlJShGOefPJJYdEAf502bdp4jAcLDQ1FaGiojNowBs4vZm1ci3shpJaLSW/XnFSUmC16GzenNL5Y9Fi3VqqN6/xdiYiMLFF0kmK2uCdCG9RKq+NvGCImLC8vD9999x1uueUWNG7cGPn5+ZgzZw6Sk5PrWMHWrl2L+Ph43HnnnXXO89hjj6FXr15YtGgR+vfvj/fffx/ff/89Xn/9dQCAxWLB5MmT8fzzz6N169ZCioqEhAQMHDgQANCuXTv069cPY8eOxerVq1FVVYWsrCwMHTpUyFn2wAMPYN68eRg9ejRmzpyJX375BUuXLsXixYvVrSiGcfViOmMvhDxtV+SrONHbNaclese0yL0+deTS8ncpMUnxtY0YbcUxoRxapNUxO4YQYWFhYcjOzsbTTz+NS5cuIT4+Hv369cNTTz3lYDmqqanB+vXrMWLECAQGBtY5T/fu3bFx40Y89dRTeOKJJ9C6dWt89NFHQo4wAJgxYwYuXbqEcePGobS0FLfccgt27twp5AgDgA0bNiArKwt9+vQRkrUuW7ZM+N5qtWLXrl2YOHEiOnfujOjoaMydO9cQ6SnU6lBd55JxxF4IRUdHq+ZuYsE1pyV6D4BKtRd/7cjFBKn9hEXu+ym3jRg52z6JR3Xwp0muEhhChHXo0AF79+4VPS4gIAAnT570eMx9992H++67z+33FosFzz77LJ599lm3x0RGRgqJWd1xww034Msvv/RcYMZQM4WDuxeTd0lqLYQoAJltqCO/ipggFZuwqCk2pGbbLywsdDhWb4FjZPHIOv42yfUVQ4gwQhvU3OLG3YupZYyS0dMa+BPUkV/FF0GqldjwZK0DgEWLfmBK4NBWTerC2iTXfiJSWBiAgoIgJCVdQUJCbWy5npMCEmGEqkgJDLdaLyIzMxNWq1X4jRovhN7xUYR3sNaR64UvglQrseHOWpeXl1Jn6xr+mmfOnNF9YKTYQ/VgZZWt/UTE0zug16SARBjhFiX2GWRN+JDAYhup1srS0lKXvzXr8/VVkKotNlxZ64AaQYC5uia/c4aeAyPFHioHq6ts+bFH7B3Qy+pJIoxwiZLpAcw6MBLK406022w2bNq0Sfjb3dZXZo7h8cWyoLTY4N07586dE8rmbK1LTc3F/v09PF5T74HRaLGHLC8mYG3C7QyrgptEGFEHMtETeiKlkzbKllO+oKRlQUmx4S7OLDn5D0yevESw1gFwsIS5uqbeA6ORYg+NsJiA5QkQq4KbRBhRB707RoLwhFQrLctWAykoaVlQUmxIjTMDIHpNFgZGo8Qe0mIC32BVcJMII+rAQsdIEK6QaqU1gtVACkqWTWmxIfYsbLZGaNz4AkaPfhNVVSEur8nKwMhKELkUjOyp0HtixKLgJhFGCPBuDbGOUaqbxPmFs9lsqKqqEv4OCgpCRESEw/VZHhAJ/ZFqpSWrgWvciQ0+tssZT++kp2fhal/YpKTjLs+jx8DIahC5FLTwVKghlliZGLEmuEmEEQLO7o+5c8/i2LEgJCZeQULCzQBulvzySU386oyWlgm9Z2WE93hrpTWy1UAJpIoIfs8/bwZFd88iOLjS6zrXemBkPYjcE2p7KtQSSzQxcg2JMMIB+5cqPh743x7lXiP2IukdWK3m7gCEenjrvvL3+EZPYoPfcBmQNyi6exZVVaEe6zwjIwPBwcEOq131gNX32t3k0NNKVCVduGqLJa0nRqxbPUmEEZpgL7pcuSrkpr+Qi5q7AxDq4o37iuIbxcWGL4Oiq2dhszXyWOfR0dHMD4x6IdUKpYULVy2xpPXEiHWrJ4kwwgE1XHT2symgBoDlf/+x4x5SIjEtoR5yt5xiJfCbZXwdFJ2fhZQ6Z31g1AsxK1St8LraT6nZjtUSS3pMjFhuRyTCCAE1XHTOsykgoM4x9i92aWmpx82I1UDJxLSEOvgyaLO4IoolvB0UpVinpNQ5ywOj3rizQnEcAHjup+QunOLh3Z5qiSWaGDlCIowQUMNF52o25Yz9i71582ZN47D8PXDbSPjSJlhbEcUS3g6K7gSxfYwZf15v65wWy9Tizgpl/2/7fiojI0Nw8yq1cEpNsUQTo6uQCCPcooSLzt2echYLhBc7LW23blnP/T1w26xQzJF3eDsouhrofa1zqfFQQ4YMcUht43xuM4g01/2mI/b9VHR0tFcehLrbgmkfe0YTo1pIhBEuUcpF52429fff9ZCTkwaOC8Du3WmoX/+yLi5ACtw2J/4ccyTXmuTroOhrnUtdlcfvG2rUBLxScNVv8q5IHqX6KbG+XimxRBMj15AII+qghIvO/kVynk0BwJIlk8F3KHq6ACk+wbwYfSCWgzc5ntQYFJWocyn9jxnyTLkSy/ZJc537TVerytXe9cAT3oolf54YeYJEGFEHJVx0rl64Y8eOYdeuXSgoSJR9fqViRjyJRPsy+NusjDA23uR4io+PZ3JQFOt/zBDH6VksXz3O3gqlhmtQrK75WDNn5LYLfxNYUiARRtRBKReduxdO7vmVXL1JszJCDCMHiUsVKiyW310c6aVLDQSxYvQ4Tm82QbdH6Tgqsb7Y21gzwntIhBF1UNtFJ/f8Sq/eZHEAItjA6DsqGFmoOPcPfG7BLVvuExbymCWOU0ws33HHHcjJyRE9j1yLPYVj6A+JMEJASxedEqZ1d/EucjYjJgiekpISFBYWOnym9zZbrvAUU2T0BSd8/3DyZFNs3ToYHHc1ufPu3WlIS9uN3bvTDC8cxMRyUlKS6hZ7qX2xkS3DLEMijBBQ20UnN+u5KzyZ8O1zFTnDquWCYANXsTp5eSnIzU1lKpmvWEyRGSwcVutFnD//t0uRkpBQiMmTlxg+z5QUsSy1v/JGJHnbF6u1qTdBIoxwQs0XSCmRJyXehUXLBcE+zrE627bdDfu0AKwEgUuJKTJaQkxXky9PIsUMeaaUEsveiiRv+2K1N/X2Z0iEEZqihMgTM+HTNkSEr/BCX2ybLd79V1paiitXrjgcFxwcDOv/lrqp5aoRm5AYSajYCwM++74ckWK0Fc1KiGU5IklOezTDylTWIBFGGA5Ps2PqJAgl8LTdlr27yJXrW0tXjdwAfFaFird7fzqnUGA1LsnZVegct6qUWFa7/zPygg9WIRFGGA5Ps2MWcpARxsfdtjHuLDG88CosjK8TMK6mq0YspshVnidX7Zj1tu9OpBghhYJ7V2EjxROiqi2SjL7gg0VIhBGGQcrqTRZykPkTag3eeosCV2kSunfPRUpKXp3BzN79A3AArq7kU9sKK+aukyJSWAy6NtMWN1JdhUpY9dQWSWZY8MEaJMIIw+ApmNSXGBJA+Rxk/oBawlXN84oJO3ukxOo4u394AcajhavG15giFoOuzZhMWcxVqIRVTwuRZLQFH6xDIowwFFI6XTVzkBFXcR4glVqRqsZ5pVp7MjMzHX7nzg122223Yd++fR5jxwDtXDVKxBSxFk9pJIElBa3iqbQQSUZa8ME6JMIIU6BVDjLCNWrVmVLnlWrt4ThO0vliYmIAuIsdq3VJqumqUcNdR0HX6qJlPJXSIslM7mHWIBFGmAItc5ARjojVmbsdDADPz8Sb80p1TYmdMyIiQlI74r935f5JS9uNhIRCVV01arjrxETCuXPnDOcCZAk1XYVqiyQzuodZgUQYYRq0yEFG1EWszjztYAC4j+3y9rxSYsSkPF8p7aioqEj4t14xMkoPeK4WI6Sm5grf8/VNi1Pko1Zb0UIk0TNXBxJhBGEHLcH2Hql15m1sl7vzBgdXoqAgUVaMmFLPV6r729NvWIQXCfxWTfv390BubiplRVcQteKpSCQZExJhBGEHLcGuxZuVhFLqTE5sl6vz3nDDIaxZM0Z2jJhYWaW63JwtD3plzFcLfq9MoK7LtrS0lPncXCxB8VTeoXd6Gq0hEUYQkJaDDKgdbJ1/Z6YOAZCeIsJ+JaGnOvMlzs7+vMHBlYIA8/Y87s7pXFZvXG723xtZlDgP/mIu282bN5NL0gsonko6/pivkUQYQcB1R2mz2bBp0yaH4zZv3lznt0bvEMS2VHGH80pCd24Wb+Ps3Ln65OyGwN+bu21ibLZGsl2bZoFv+4WFhcjOzna74rOwMAFJSccB+Ff9KIGR+wctUSvtDcuQCCMMg9pmaikrJ83WIUiZebq7b7GVhHwCXW/jsJwFsdzziN0bpSK5SlRUlMOKz7S03cjJuQNXk89asHt3Gq6//he/c81rhb+54cTw5f00Ul2SCCMMgdpmalcvrb31xKwDttjMU+y+pdS1nDg7V+f19jye7g0ApSLxQEJCEfTI/u+vsLh1lJ74EsJgNJcmiTDCEKi5rZDYS+svucOcBVda2m5hM2rAt/tWamm+3PM431tqai6lIvEArRLWFqnJhAsLC132cSxZdpTAl1RBRnNpkggjDImS2wqJvbRiHYJzvJERO0RXQjMnJw2AfKGi1C4Gvp7H1b3l5qYCqIH9/fm7yPB2xSuhPGITvuzsbL+wkik1CTCCB4NEmJ9gJB+5GGq+WK7OnZz8h8cOwVUyUqN1iK73QAzwqSNUalWYr+dxJ6K7d/9aSMWghsgw2jsXFRWFzMxMYTEKbdSsPWITPlY2WFcbJSYBRvFgkAjzA4zmI/eEmi+Wu3NPnrzEbYfAuqlbKu5mnvYuSTkdoVLtyZfzuLu3lJQ8pKTkqSIyjPrO8XnNrv5NGzVriScLkFFEhVL4Ogkwyu4nJML8ADXjqbRGzRfL07lddQhGMHVLxd3Ms1OnH3H99b+47AiNklxSbFYtd6N3TxgtLoWHEovqi6e2KpaiRe4erWJoadFVKoQBME5cI4kwP8TdgCBnQ2StUfPFEju3fYdgxlmpu5mn1XoRI0fegejoaOFYVtuHOzzNqjMyMlS9Nz3EutyBkxKL6o+7tirWP8ndo9UTWlt0lWx/RolrJBHmZ3gaEJxf4iFDhiAiIgIAOx2vmi+W2LkzMjIA1NaTUUzdYkideSYkJDDx/L2BhXvTQ6z7OnAa7TmbEVdtVWrfp6TVVQ+LrpLtzwhxjSTC/AhvBwTn7PCZmZl1YkYAbQSa1G2FfHWTeDq3vbXEG4scywHaZrZ8sHBveoh1o7pC/Rmp/ZaYqNB60RKL4RdKujS1gESYH+FuQDh5sinOn/9b6KTdddrOW/jYo3aAsZoDqjcvrX1WcSmzUiMEaBtRYElF73vTOy7FKAOnv+Opf+N3jOBx1z/psWiJxfALFiZf3kAizI9wvSdcDbZuHSx00jfccAiHDt3gttPWc1at1kvjzUtbVFQkfCbF1E1WCf9GSfe5txZVIw2c/oqUZ5qQkCDpXHotWmKxLbEisKRAIsyPcB4QapNVWsBxtduTcFwAfvqpI/jtSpw7bTPPqqW+tL6Yus1cf4R7lIhL8caiymO0gdNMSBFXACQ/UzX2aPUGPSy6LIdxKAmJMD/AXTzVpUsNsGXLfU5Hu94vDqC99gD5pm6ySjhi9g5W6bgUORZVvV2h/opUwZyZmenwt6dnGh8fL3o+PRctKY0RwjiUgkSYH+AsHPiZk83WyIV7koO9EOM7bZpVX0XOS+8v9aekBYDF1blSUTMuRapF1ShL9M2GVMFcVVUl/FspK7maqwG1XGnoT2EcJML8BFedvatO2lVMGN/oaVYtH3+wSkidvQ4ZMkTS+ZxX5xpt1qtGWb21qBphib6ZkSKupD5TdxMcm83m8LeSqwFZWGlo9jAOEmF+iFi6h9tv3+syYaces2qzuK38wSohdVZ69uxZh7+dZ7lmnvX6ihSLKgsDJyFdXEl5pt5McHjrsT1y+0m9Vxr6KlC1KKOvkAjzQ5xfLJvN5pB+wl2nrfWs2mxxAZ7qzwi7FXiLOzG1b98+4d/Os1yx1bn+jphF9dy5c4iOjsaQIUNw5coV4Zjg4GCHHH9maWMsIzUEQYqVXKp7LiIiQlL8mFFQUqCyOk6QCPNT7BtjfHy829lOaWmpg1tIy1m1GeICpFolnHcrYLXDkIqzuEpL242EhCKHZ+dqlutpdS4hblH1tHWNfbLlyspKlJSUGLqNsY7UEARvreRauuf0FjhyBKo7WB0nSIQRANzHr3gSaDxazKqNGhfgblEEjxGFpRiuxFVOzh0ALA7PztUs193qXBJhV5FrkXaVbNnoYp9lvBFXUp+p1qus9RY4csI43PWprCJZhJWVlUk+aXh4uKzCEGyidydt9PQO7urPqMJSDE/iyv7ZuU4e7Hp1rr8j1aIKeDcIqTV4GjlGR0k8iaugIMfhV8pOHXqvstZD4Hgz6TBinypZhEVERMBisXg8huM4WCwWVFdX+1wwguDRu+NxRokBxujC0hOuxdVV+GeXlHTcq9W5/ozUbW3cDUJaDp56u7D0Rqpgjo2N9XqnDj1XWWspcORsJWfUPlWyCLMPpiUILWEpvYOcVUquRBlrwlJJ6u7M4N66JXV1LiFukXY3CP39dz3s3p2mmXXADLGcvqDmikK9VllrLXDkbCVn1D5Vsgjr1auXmuUgCLewlN5B6gAjluOKJWGpFO5SnxQWJtQRAXxdZWRkIDg4WNLqXEqp4Bl3g1BOThoAfawDRnQPKYGaFj49cr/JETi+egy8rUOj9qmyA/NLS0uxZs0aHD58GABw3XXXYdSoUQ7LoAnjwHoMB4tJJ10NMLVlFJ/1syQslcJ+9sq7yKzWi0hKOo7rr//F5bOLjo5mZvGH0XE3CClpHZC6IwJgXPcQi+id+81bgaOHS9qofaosEfb9998jPT0d9evXR9euXQEAr776Kl544QXs2rULnTp1UrSQhLo4vzDurDtax3Do3fHw2A88fD4vVwPMtm13w2KB5Fk/i8LSV/j24e2zI4HliJxJkatBKC1tt2CF5JFrHfB2T0SjuodYRO+kqd4KHC1XVYolH3d1HEvIEmFTpkzBgAED8MYbbwgrPK5cuYIxY8Zg8uTJ+M9//qNoIQl1sX8RPLkPtI7h0LvjAdwPPK5XAAaA42r/5W7Wz4qwlIpcCykLz86oeGtFEBuE6te/rIh1QOr7z++JaFT3EKvo8a4oJXDUXBhi9L5GtiXMXoABtcttZ8yYgS5duihWOEJbWHQfuHpx7IVBZWWlEJjJo+QL5y4GLDi4wuMKQMD1rN9IHYavLgUW7sEX9HLRe2tFcNWm7JMsq2UdEBtYjeoeIq6iRH+lZFwg62EzcpAlwsLDw3HixAm0bdvW4fOTJ0+iUaNGihSM0B4juA/0dJ162mIHqEHtCkDxHFdG6ST0TtSoJyylWZBiRXAug9pxdlIHVjO63FlFLYHiS/tWcmLvjTvcVWw6qwJNlgjLzMzE6NGj8corr6B79+4AgK+//hrTp0/H/fffr2gBeQYMGICDBw/izJkzaNy4MdLS0rBgwQIkJCQIx3z22Wd4+umn8euvv6JevXro2bMnFi1ahMTEROGYzz//HFOnTsWvv/6KZs2a4amnnsKIESMcrrVy5Uq8/PLLKC4uRseOHbF8+XIh9g0ALl++jGnTpuH9999HRUUF0tPT8dprr6FJkybCMSdOnMCECROwb98+NGzYEMOHD8f8+fPrJOhjCSO4D/RynbrqTA4dugGjR7+JqqoQREaeR35+K1PP+o2WidoXWEmz4IsVQa9Nlb1JQqolZrSi8LA0abBHyYm91HfN1c4QPCzmppOlCF555RVYLBYMGzZM2CQ2ODgYEyZMwEsvvaRoAXluu+02PPHEE4iPj8eff/6Jxx9/HIMHD8b+/fsBAAUFBbj33nsxdepUbNiwATabDVOmTEFGRgZ++OEH4Zj+/ftj/Pjx2LBhA/bs2YMxY8YgPj4e6enpAGof4NSpU7F69WqkpKRgyZIlSE9Px5EjRxAbGwugNiZux44d+OCDD2C1WpGVlYWMjAx8/fXXAIDq6mr0798fcXFx2L9/P4qKijBs2DAEBwfjxRdfVKV+lMBI7gOtXafuOpOqqhAkJR0HYO5Zv1apBlgcKPVKs8BieAAgPrBGREQw53JXQqSw2DZ5WJk0OKPmxN7TpJCV+5eCLBEWEhKCpUuXYv78+cjPzwcAJCcnIywsTNHC2TNlyhTh3y1atMCsWbMwcOBAVFVVITg4GAcOHEB1dTWef/55BATUPvDHH38c9957r3DM6tWrkZSUhEWLFgEA2rVrh6+++gqLFy8WRNirr76KsWPHYuTIkQCA1atXY8eOHVi7di1mzZoFm82GNWvWYOPGjbj99tsBAOvWrUO7du3wzTffoFu3bti1axd+++037N69G02aNMGNN96I5557DjNnzsQzzzzDTNC1K4wiJLR2nXqzGS8Ls34l0UoMsDib11oIlZSUCCtwWQ0PkPIusGZt8NW1zmLbdAdLudnUmth7ukeW7l8KPvnGwsLC0KFDB6XKIpnz589jw4YN6N69O4KDgwEAnTt3RkBAANatW4cRI0bgr7/+wjvvvIO0tDThmNzcXKSlpTmcKz09HZMnTwZQ+wIeOHAAs2fPFr4PCAhAWloacnNzAQAHDhxAVVWVw3natm2L5s2bIzc3F926dUNubi46dOjg4J5MT0/HhAkT8Ouvv+Kmm25yeV8VFRWoqKgQ/vZmv04l8bQvHSto7ToV60wyMjIQHR3t8rdGdnMA2okBvWLQXFk49BBCzgM9q+EBRrKYu8Nb17pR4iNZsZ6qmTbC0z0CYOL+vUGWCLt8+TKWL1+Offv24cyZM6ipqXH4nnf/Kc3MmTOxYsUKlJeXo1u3bti+fbvwXVJSEnbt2oUhQ4bgkUceQXV1NVJTU/HJJ58IxxQXFzsIIwBo0qQJysrK8Pfff+PChQuorq52eczvv/8unCMkJETYksb+mOLiYo/X4b9zx/z58zFv3jyJtaEcUl8Ed8cpbab3dD5+cNRjIPDUmfBC3xWVlZUoKSnRRYgp8WzExAD/TLw5pxS0iEETs3BoKYRcPafU1Fzs358KQFux46rd2Gw24d9GzMfEo4SlhNX4SLmTBqX7cDVXgXu6R8DCpPXYE7JE2OjRo7Fr1y4MHjwYXbt2Fd3Y2x2zZs3CggULPB5z+PBhYRXm9OnTMXr0aBw/fhzz5s3DsGHDsH37dlgsFhQXF2Ps2LEYPnw47r//fly8eBFz587F4MGDkZOTI7uMWjJ79mxMnTpV+LusrAzNmjVT/bq+vDBKr1aUej5AG9ep1LxenoJBebR2VSjlQhETvPzm0d6cUwytXApilgu9rD7O95+a+jVSUvI0ETtS283YsXfWmYyybvVVwlLEsrtLzqRBLVerWu1A7B5ZtB57QpYI2759Oz755BP06NHDp4tPmzatzspEZ1q2bCn8Ozo6GtHR0bj22mvRrl07NGvWDN988w1SU1OxcuVKWK1WLFy4UDj+3XffRbNmzZCXl4du3bohLi4Op0+fdjj/6dOnER4ejvr16yMwMBCBgYEuj4mLiwMAxMXFobKyEqWlpQ4dkPMx3377bZ1z8N+5IzQ0FKGhoR7rQy3kvjBKr1aUej4etV2nUgSqfU4mgJ2gUF9dKFJcCmrcq54uFVf3o3WcpKv7z81NRUpKHoBa13dCQoJqg5zUZxcREYH4+HhVyqAWvrqXWXH3uUPOpMEorlYesXs0mqtclgi75pprFMkHFhMTg5iYGFm/5V2gfAxVeXm5EJDPExgY6HCss3sSAHJycpCamgqgdtDp3Lkz9uzZg4EDBwq/3bNnD7KysgDUxp4FBwdjz549GDRoEADgyJEjOHHihHCe1NRUvPDCCzhz5oywojInJwfh4eFo3769rPtlHaU7J1/Pp6SVwJvBjuVZsrcuFFcClN8TElDvXvUKSPd0P1ouuBC7/+joaE2tTay63uTgq3uZ1cUS9vg6aWD1eUuNMzPK4jIeWSJs0aJFmDlzJlavXo0WLVooXaY65OXl4bvvvsMtt9yCxo0bIz8/H3PmzEFycrIgfPr374/Fixfj2WefFdyRTzzxBFq0aCEEwo8fPx4rVqzAjBkzMGrUKOzduxebN2/Gjh07hGtNnToVw4cPR5cuXdC1a1csWbIEly5dElZLWq1WjB49GlOnTkVkZCTCw8MxadIkpKamolu3bgCAvn37on379nj44YexcOFCFBcX46mnnsLEiRN1s3SpjdKdk9j5WAyEZ3mWLFcwuatHNe9VqTgsNTebVtMaxVJAPsuTCjn46l72Nj6SR+0+Sant0Fh+3lFRURgyZIjgdfDkBTHSKnVZIqxLly64fPkyWrZsibCwsDpByefPK9tZhIWFITs7G08//TQuXbqE+Ph49OvXD0899ZQgam6//XZs3LgRCxcuxMKFCxEWFobU1FTs3LkT9evXB1AbvL9jxw5MmTIFS5cuRdOmTfHmm28K6SmA2kS0Z8+exdy5c1FcXIwbb7wRO3fudAi0X7x4MQICAjBo0CCHZK08gYGB2L59OyZMmIDU1FQ0aNAAw4cPx7PPPqtovbCE0gOH2Pmio6Mlu0K0yu/D6ixZDcGk5r0qEYel1GbTJ082xfnzf9exCqhpjWJl9SHLkwpvUWq1npz4SB41Y0KVCIQ3wvN2jkF0Z7VzNUlnNV5Rlgi7//778eeff+LFF19EkyZNVA9679ChA/bu3St63NChQzF06FCPx/Tu3Rs//uhZ2WdlZQnuR1fUq1cPK1euxMqVK90e06JFizquTzOj9MCh1Pm0zO/DkgXDHm8Fk5TVqWrcq5LL2qUmrxTbbHrLlsGwX5molVWABZcKq5MKOfgqUqS2TU+oHVPla/9ltOftyWrnzSRdb2SJsP379yM3NxcdO3ZUujyEgVF64FDifFpmktbCgiHHqueNYJIqWtW4V7WWtUtd4OF8PxwHANpZBZRyKUlBCaGtl+tNLr6UyVPbtI+TBNiNqRJDjYmVWl4II1jtpCJLhLVt2xZ///230mUhTIDSqxXlno9/+e0HCi3iHdS0YMi16nkjmLwRo2rcq9KDtzf7HNrfz6VLDbBly30O51LbKqBmbiV7lBLaerne9ELK/bAcUyWG0hMrNb0QRrPaeUKWCHvppZcwbdo0vPDCC+jQoUOdmLDw8HBFCkewj6+JXtU4zlWusZMnm6k2c9LKguGtVU8J957YrJ71AFhv9znkrRo2WyNdXMtaCBclhTYr6VhYwKjWGbWy26uZ+oLV0A85yBJh/fr1AwD06dPH4XOO42CxWFBdXe17yQhDoPTsXYnzucs15oxSMyetLBj2SJlx+1ouT9dgcXWqK+Tuc8hKcLwWeBPcrEWKEqNiVOuMVv2Xkm5aM72fskTYvn37lC4HYWCUHnCVOp/zzNQZJWdOWudtkjrjllsusWsYJfDV285azT3vWERucLNRrT5qYmTrjNr9l1KC3YzvpywR1qtXL0nH/fOf/8Szzz7rdsZMEGriambKY+SZkxYzbqPO6l3hTeyaHlZNvfBFSJmpffhKaWkpAHNZZ5REScFuxvdTlgiTyrvvvovHH3+cRBihC65mpkANBg/egmbNThm2c9Rixm3kWT3gW5yekTpwX/BFSLHcPrTKC8hfy37LMtasM1rWhTuUFuyeysvfb1FRkcvvWRRoqoowrnaNN0HogruZ6fXXH65zrJHM11rMuI0+qzfjjFlpfBFSrLYPLfMCAq6Dyl0J/szMTM3bmtZ14Q6tBDsr9+stqoowgtAbTzNTPvDYiIOx0ukh+BmkzWaTdA0jiFajPVOt8VVIsZBQ1hkt8wK6wt31rFarKtfzBCsbc2sl2Fm5X28hEUaYHneuKKMEl/OolQrD0wzS/hpDhgxBRESEIUUrcRVfgpu1TCjrK1qv3mR9tajWSWT1DqI3StJcEmGE6VA6JxkrqOVikzozjIiIMJRo1QoW4m68wZd2pJeb19s61nr1JuurRfUQiN60FaXfIdYFsT0kwgjTYeZ4IC3KbJQZJAtIjUPhrYiu0KMt+rqFj5Z4E+vDo/XqTZZXi4oJRPtdRZRui1LOpXQsF+uC2BlVRdhDDz1E2fMJXTCiwGIBI80gWUBqDJL9CjpXsBYszBJyYn20Xr3J8mpRMYHovP2U1m1R6vMtLCwEIN63syyIXSFbhJWWluLbb7/FmTNnUFNT4/DdsGHDAACrVq3yrXQEQWiG0WaQrOGLgGUtWJhlpFhq5QaDy3WLsbpaFPBeILLaFnmxKCYSWRbErpAlwj7++GM8+OCD+OuvvxAeHg6LxSJ8Z7FYBBFGEIRxEJtBlpaWMhcTxko8llQBq7Wrl5X6UQpvhK63qzfluMX0Dj6XgjuBCAAFBYnMhR2IvSNiIpFlQewKWSJs2rRpGDVqFF588UWEhYUpXSaC0BX7gauwMAAFBUFISrqChIRai6/RBi6piM0gN2/ezJTbjKW8QFJcIFq7elmqHyWQInR9Wb0pJ70Fy/GnngRifn4rLFky2WVbtNlsuk22fHlHpApifocD+9/p2f5libA///wTjz76KAkwwnTYD1yeOgSjDFze4GoGmZa2W5P8SnLQOyeUPWICVg9XL0v1owRShK5SosgbMcBqP+BcF/zm62JtcdOmTbr0b67KtW3b3YiNLUbTpq4z4Nvj6tnbbDZs2rTJ4ThX8Zl69ueyRFh6ejq+//57tGzZUunyEISu8C+wWEfF4sAl1/XkPIP8++96yMlJA8cFYPfuNNSvf1m2xUYrd5jeCwrEXCB6BwvrXT9KIDXWx9f2ZKbYSFd1IaUt6tG/ud7rNwBr1oyR3F7lPns9+3PJImzbtm3Cv/v374/p06fjt99+Q4cOHRAcHOxw7IABA5QrIUHogFhHZZ9Z3hVam7idXU/urB6uZnxRUVHIzMzEpk2bYLM1wu7daQB8H4C0coexMmh6coHoGSysVf2oLbi1ivXRWzCrjbs9dfUOXHddLmXbK4vpdySLsIEDB9b57Nlnn63zmcViQXV1tU+FIohTp4CjR4HWrYGmTbW/vtigaW/i9kbwqIX94OfJ6uFukOS3VVFyANLKHabnoCk1BknPYGEt6kdNwa118LvRVtd5C98Wt227G/xkC7AgP7+VLtZR/rm5LlctSrRXVq3BkkWYcxoKglAafia9cWN9zJhhRU2NBQEBHBYutOGBB/7W1LokddCUI3jUxFerh1oDkJodoJ6DplgMkn1Mil6r57SoHzUFt9bB70ZbXScV+zaWnPwHLBaA4/hPLLq5XPnnW5sHLBuxscVYs2aMou2VFWu5K2TFhL399tvIzMxEaGiow+eVlZV4//33KUUF4TX8TNpma/S/VTu1aU9qaiyYPj0cf/65FlbrRU2tS2JL3Fl8sX21eqgxAKldT3oPmp7aY3x8vO6r57SuHzUEt9ZB0yxuTu4rUVFRGDJkCDZv3sycy9X++TZtWuSxvcqZsLB2v/bIEmEjR45Ev379EBsb6/D5xYsXMXLkSBJhhNfwg5TYy6K1dcmdewlg88VWwuqh9ACkRT2xPGiysHpOq/phcWIiFSNtTi4XfussFl2uzhbPuXPP4tixICQmXkFCws0AbpY9YWHxfnlkiTCO4xwStPKcOnVKiC0hCDmw/LI4w2JZ5Vo91ByA1Konfxg0fUGP+hET3GruU+gr3ro9jZwI1xfrqJr3bf+7+Higc2dZp6mD3tZyT3glwm666SZYLBZYLBb06dMHQUFXf15dXY2CggL069dP8UIS/oPeL4s3A5LeZXWHHKuHmnE3atWTc5lLS0tx5coVh2OCg4NRWVmJoqIipgdFNdAjkaiY4NZ7n0IxpJbFqIlwfV3kYLT7NsKOBl6JMH6F5MGDB5Geno6GDRsK34WEhCAxMRGDBg1StICE/6Gna0nKwFVaWiok/PNUVvtZP49WQsCTG9UdapZLrWdqb5UQ2yQb0HZwYMFSovVA6O0WOSzm25OCnE3FWcBXYa7GfattWdM7JlMMr0TY008/DQBITExEZmYm6tWrp0qhCEKqiFBjiyFX7gb7c4eEOFpb3JV13boczVJXSJ3JaTnj09Idxlp2eKNZDJTEmy1yfIEFkcvDYv4pdyhZJ77etxbvCevvl6yYsOHDhwOo7dDOnDlTJ31F8+bNfS8ZQYig5hZDns+dh06dPP9e69QVLM749CoTC/mAjGopkYs7wa1WoD5LIpeF9qYHSty3v70nrpAlwo4ePYpRo0Zh//79Dp/zAfuUrJXQAjW3GJJ67oyMDERHRwOQvjebUrBkCXAHC/vPsbA6z0iWEjm426dQrZWxrAzerLY3tfHX+1YDWSJsxIgRCAoKwvbt2xEfH+9ypSRBeIMv7jQ1UyCInTs6Ohrx8fGalYdHqiVgyJAhwrJ0Z1gQaUrDYtoQby0GRhDXrnBVJq1WEOslcllsb1og976d27Zz3KzZJyuukCXCDh48iAMHDqBt27ZKl4fwU3xxXanZ0cs5N0sZysWC1c0Wk8Ra2hBvLQYsudmUQIsVxHq6A1lrb1oh577F2raSz9FIExlZIqx9+/YuV34RhC/IfSnU7OjlnJvFDOV6B6prBWtpQ7y1GLDiZlMSNVc76+0WY629aYWc+/bUZpV8jkabyMgSYQsWLMCMGTPw4osvokOHDggODnb4Pjw8XJHCEYRU1Ozo5ZybpQzl/hY4zFL2fF8tJe7E87lz55iazTuj1cpYvdyBRsg/pQZK3rd921byORptIiNLhKWlpQEAbr/9dod4MArMJ/RETm4sNc+tZnl4xDovvS0FWsFq9nxfLCWexDOf9JSV2bwzWq2M1csdyOJqZC1Q6r6d23Za2m7VniPrcWayRNi+ffuULgdBuOXUKeDoUaB1a6BpU71L4x49cnWJDUL+EjjM2qDoq8XAlXjetu1uxMYWo2nTIuE4VmbzrtAqKbFe7kCzCSyp+Hrfrtr27t1pSEvbjd270xTbtBswhhdAlgjr1asXvvzyS/zrX/9Cfn4+tmzZgmuuuQbvvPMOkpKSlC4j4YfwgZUbN9bHjBlW1NRYEBDAYeFCGx544G+EhISoKnrknFsPIeA8CAG1s0q+8/KnwGGWBkVf24Ir8QwEYM2aMUwOJFqjhjvQSMHcRsbdxDAhoRCTJy9BcnI6unWL9nnTbqN4AWSJsK1bt+Lhhx/Ggw8+iB9//BEVFRUAAJvNhhdffBGffPKJooUk1Ecta5Oc8/KBlTZbo/9l2q51edfUWDB9ejj+/HMtrNaLyMrKUlz02HfEQ4YMcbkXIb9Jvatz69FJd+r0I/7+u54wi9y9Ow31619Gp04/iloK9Nxayez4UoeuxDPA7kCiNUpPeIwWzG1kPE0Mazd534LERN/r2ZvN5O3Ruv+TJcKef/55rF69GsOGDcP7778vfN6jRw88//zzihWO0IY1a4Bx44CaGiAgAHj9dWD0aP3Oy3esYi9RZWVlnRxdvuDcEbuLJRDriNXYSskZ+xm+zdZIEGBA3YHak6XAeUNlqffoj2hpKeHF87ZtdwMwvztZDkq2T9a2vWIFNdq8FBeyEvXs7Wby9mjZ/8kSYUeOHEHPnj3rfG61WlFaWuprmQiNKCkpwbFjVzBuXCxqanhrE/DIIxxuvPEMEhODZDVEpc6rtSvN/sWXu+2Qmlsp2RMVFYUhQ4Zg8+bNkuK+3AWq02AjDa0sJc5uttjYYqxZM8Yv3MmsoHUcEatuUKXbvCsX8smTTQFY0KzZSV+K6hIpYo+F/k+WCIuLi8Mff/yBxMREh8+/+uortGzZUolyESpTUlKCF154C7/+eh1qatIdvquutmD58k+RlHTc60GFf3ELChJRUzPcp/PqFXTrSyyBmlspOcNnwhcTq662VgKMEbTKClpZSng3W2FhIbKzs9G0aZFf5qHSC63jiFh2gyqd6sF+4ggA+fmtVOl/pMYLstL/yRJhY8eOxWOPPYa1a9fCYrGgsLAQubm5ePzxxzFnzhyly0iowPr1gf+LtwoAwAG4mmrEfgD3dlDhjxcTBlLP6+ol4gfAwsIAKOiNFFBiRaHUcygxCxYTq662VjJK0CqLqN15R0VFObQJlvKemR2tVxMbKaeVEqke+Imjmv2Pp3hBrff3lYIsETZr1izU1NSgT58+KC8vR8+ePREaGorHH38ckyZNUrqMhILwrsIZM2KFgPdaAVYrxJSaaStpxbJ3pdkPgO+8w2HhwlJhtaRSM0Ul3KBSzqFUDBrg/UDtL6krlEas8y4tLVUkTlHpvGesurxYQ+/VxKzmtFJ64qF2/yPWllnq/2SJMIvFgieffBLTp0/HH3/8gb/++gvt27dHw4YNlS4foSCeXIWABenpO9G+/W+KNUKlZ/DOA6Cr1ZJKDCRKCEhvg0/lxqA5X1NqGfUebIyKWOe9efNmRdqhkqv/WHZ5sYaeecdYcY85o4bVSO/+R+/r2yNLhPGEhISgffv2SpWFUBkxV6GSAoxHyazxUlZLKoUSAlLqOeR2cr7kSfPXPe98RUrnrVQ7VEoQGcnlxQJ6uH9Zco85IzfVA+B+oqB3/6P39e3xSYQRxoSlBugKd+JC69mLEgJSyjnkmsZ9tZZQrJH31E2OC3BcbZAxC1YLKbDq8tITvbe9Ysk95owvqR4ARwsrS3tustL/kQjzU1hpgK5wFhd8MKXa4lGPbYcA38Slt9YSvQcbM5Cc/Ac4zv4T6VYLvWOzWHV56Y3e216x5B5zxtd+175O9a5nFvs/EmF+jBYbTMtFD+uNEh2E1Je3vLwc5eXlALS1TOrdCbKMJ4Fks9mEf58/HwU5CVT1js1iyeWltxh1hZ5tnkXvhFSrFY9UC6ue9cxi/0cijPCItzMCLaxJcsWjFpnspbzk5eXlePfddx0+09Iy6Y8CSwypAgmQb7XQOys7Ky4vvcUoS7DknnNGrC/TOuegUsKdtTZFIoyoA5/cU44oYXGmAWiXyR4Qf8mLiooc/rYfjJOSjvt0bUIe3ggfJawWergFWXF56S1GWYLV/pJHynW1sLCaWbiTCCPq4Cq5pzew+BJomcneG6QMxhSfpT1irhVfLJd6uQXVdHnJtVJQjBqb/aU3+GJhldpuzCzcSYT5EXoFnvuKkuVmxSUDiA/GGRkZSEhIMHwnbTSkCgO5Qb1at0G1XV5yrRQsxagR8pFrYfWm3dhjNuFOIsyPYN307Q4ly82KSwYQH4yjo6OZexZmR0wYZGZmwmq1uv29lHaodRtU+72Xa6VgaUJkFvRY8CDXwiq13RQWFjocYzbhTiLMzzDqoK5UuVlahcSSICRqERMGVqvV522J9GiD9u+Pq4G6srJSiFX0ZaD2xkpB7V9ZtI6bUtLC6qnd2OchM6NwJxFG+B2s5EhjSRAStWglDPRqg2oO1N5aKaj9K4vWcVNKWVjdtZvY2GJUVYU6lN+Mwp1EGMEUp04BR48CrVsDTZuqdx1WcqSxIgiJWtQUBiwkilRzoJZjpaD2rw5axU0pYVFz127efHMMAMfym1G4kwgjdId3j2zcWB8zZlhRU2NBQACHhQtteOCBv5mMU/MFFgZjwhEt8jWxFpOp9EAt1UrhbftnMbEryxgtbspVuwE48AmRnctvNuFOIozQFd49YrM1wpIlk8FxFgBATY0F06eH488/18JqvehzHANLK0NZG4yVQsvBUulrafVMWHmmagzUUq0U3tS1mfNDqYXR4qZctRux8ptp4koijNAVviMW6zh8jWNgTfiYbcDQcrBU61pmeyaeUGuglmqlkFrXZs4PpRZGjJuybzfBwZVYs2aM2/LzycSdMeLEFSARRjCCFh2HEV9QoyB1EFRisNTyWmZFyfdNK/e62fJDqYVR4qY8tRtP5fc1mThrkAgjmMAoHYdR0TquRupmvka7lllQ8n3TwspstDgnpZD73hohbsq53djvRSm1/GaIFyQRRnhEq9WKgDE6DiOidVyNlhYLso7IR8n3Te2BzmhxTkrg7XtrxAU/9u1GzoIN+/pxNxljPV6QRBhRBz1XK7KSOsJMaBlXo6TFwt0s99y5c4pfy18w4kANGDPOyVe8fW9Zi3v1Fm/Lb3+cp8kY62EJJMIIB8RWK37zTQ6aNTuJcePugtVqZfqlJuqituVIKYuFFCuAP1pHfMWoA7W/hytIfW89PTd+UsPvjOAMC89dzvWNPhkjEUY4ILZaccuW+2Cx1CA//2onwLq5V09YilnQorNSymIhZfbqj9YRJTDqu+qv4QpKvLdmTvVh9MlYgPghbDBgwAA0b94c9erVQ3x8PB5++GGHjT0BYPPmzbjxxhsRFhaGFi1a4OWXX65zns8//xydOnVCaGgoWrVqhfXr19c5ZuXKlUhMTES9evWQkpKCb7/91uH7y5cvY+LEiYiKikLDhg0xaNAgnD592uGYEydOoH///ggLC0NsbCymT5+OK1eu+F4RGsEPcK7gOwGbrREAzwNmSUkJioqK3P5XXl4uqTysuUekwHd8r7/+utv/VqxYgZKSEk3K46mzUgreYsG3HaUsFjZbIxQUJAptTs1rEezgyn2alHS8zjM2Yv8gFSXe2zNnzjj87ep9Ath33bnC1VhlpMmYYSxht912G5544gnEx8fjzz//xOOPP47Bgwdj//79AIBPP/0UDz74IJYvX46+ffvi8OHDGDt2LOrXr4+srCwAQEFBAfr374/x48djw4YN2LNnD8aMGYP4+Hikp6cDADZt2oSpU6di9erVSElJwZIlS5Ceno4jR44gNjYWADBlyhTs2LEDH3zwAaxWK7KyspCRkYGvv/4aAFBdXY3+/fsjLi4O+/fvR1FREYYNG4bg4GC8+OKLOtSe9zib/52RMtOQGjj50EMPISwszO15WDCTy4G1VApqWo7UzDjvyRWjVnZ7gg2M6j5VEl/f25KSEmzevFn4W4mQBJYs/EZ3VRtGhE2ZMkX4d4sWLTBr1iwMHDgQVVVVCA4OxjvvvIOBAwdi/PjxAICWLVti9uzZWLBgASZOnAiLxYLVq1cjKSkJixYtAgC0a9cOX331FRYvXiyIsFdffRVjx47FyJEjAQCrV6/Gjh07sHbtWsyaNQs2mw1r1qzBxo0bcfvttwMA1q1bh3bt2uGbb75Bt27dsGvXLvz222/YvXs3mjRpghtvvBHPPfccZs6ciWeeecYwgwM/wJ082RRbtgyGveFUSicgNXAyLCzMVHlf3KF3KgU1Oyu1BksxV4wREzeyNIAZASXrwoh17+t7a3+/ZnVtGtlVbRgRZs/58+exYcMGdO/eHcHBwQCAioqKOtaU+vXr49SpUzh+/DgSExORm5uLtLQ0h2PS09MxefJkALWN9cCBA5g9e7bwfUBAANLS0pCbmwsAOHDgAKqqqhzO07ZtWzRv3hy5ubno1q0bcnNz0aFDBzRp0sThOhMmTMCvv/6Km266yeV9VVRUoKKiQvi7rKxMRu0oS+3qqcOorJTfCRg9cFIJWEmloGZnpUaHKxbvoVXiRqUGbxYHMH/ByHWv1Hubl5fic/wUq7sYGHVlvaFE2MyZM7FixQqUl5ejW7du2L59u/Bdeno6pkyZghEjRuC2227DH3/8IVi8ioqKkJiYiOLiYgdhBABNmjRBWVkZ/v77b1y4cAHV1dUuj/n9998BAMXFxQgJCUFERESdY4qLi4VjXJ2D/84d8+fPx7x587yoEe3wpRMweuCkr+gtQo2algBgI/heycGbNRe1P6GkeNDCoqb0e2uzNcL+/al1PvflfdJzcsnSfsC+oKsImzVrFhYsWODxmMOHD6Nt27YAgOnTp2P06NE4fvw45s2bh2HDhmH79u2wWCwYO3Ys8vPzcffdd6Oqqgrh4eF47LHH8MwzzyAgwBjrD2bPno2pU6cKf5eVlaFZs2Y6lsgRd53AuXPnPHY6LAykeqK3CDVyXA0L8R5qCie9XdT+ii/iQSuLmtLv7fnzUXC1Fi81NVdW29N7cmnkfs0eXUXYtGnTMGLECI/HtGzZUvh3dHQ0oqOjce2116Jdu3Zo1qwZvvnmG6SmpsJisWDBggV48cUXUVxcjJiYGOzZs8fhHHFxcXVWMZ4+fRrh4eGoX78+AgMDERgY6PKYuLg44RyVlZUoLS11sIY5H+O8opI/J3+MK0JDQxEaGuqxPtRGyqzBeeDgt5pw1+mwMJDqCQsilPWOyBk1A/19RSnhpJcVwYhxUUriq3jQ0h2n5HNw1Q8BNUhJyZN1Pr0nl4Dx+jVX6CrCYmJiEBMTI+u3NTW1S1LtY6gAIDAwENdccw0A4L333kNqaqpwjdTUVHzyyScOx+fk5CA1tdZEGxISgs6dO2PPnj0YOHCgcJ09e/YIKyw7d+6M4OBg7NmzB4MGDQIAHDlyBCdOnBDOk5qaihdeeAFnzpwRVlTm5OQgPDwc7du3l3W/WmE/uygtLXVYVQPIz0xs5MBJX/F3ESoHVme5SgknvawIesRFsSb6lBQPSrUH5zqy2WyoqqoS/g4KCnKY9MupMyn9kDeTGhYml2bAEDFheXl5+O6773DLLbegcePGyM/Px5w5c5CcnCwIn3PnzmHLli3o3bs3Ll++jHXr1uGDDz7AF198IZxn/PjxWLFiBWbMmIFRo0Zh79692Lx5M3bs2CEcM3XqVAwfPhxdunRB165dsWTJEly6dElYLWm1WjF69GhMnToVkZGRCA8Px6RJk5Camopu3boBAPr27Yv27dvj4YcfxsKFC1FcXIynnnoKEydO1N3S5Qp3nWRERASGDBmC0tJS7Nq1y+eBw6iBk3Jh2ZpjBFib5Yq1f347JUB8kNTLiqB1UDWLwfBKiQelhLTUOnJGTp156ocyMzO9Oh9NLpXBECIsLCwM2dnZePrpp3Hp0iXEx8ejX79+eOqppxxEzVtvvYXHH38cHMchNTUVn3/+Obp27Sp8n5SUhB07dmDKlClYunQpmjZtijfffFNITwHUNsSzZ89i7ty5KC4uxo033oidO3c6BNovXrwYAQEBGDRoECoqKpCeno7XXntN+D4wMBDbt2/HhAkTkJqaigYNGmD48OF49tlnVa4p7/GmA/B24NA7cFLvGTir1hxCHmLtn3fL83gaJJUQAr62by3coSyupFNKPCglpMXqyNc6kxrgL8cr5c8eDqUwhAjr0KED9u7d6/GY6OhoIY2EJ3r37o0ff/Tc0WRlZQnuR1fUq1cPK1euxMqVK90e06JFizquTxaR2kkC3g8ceooQVmbgLOc40lukGg137T84uBIFBYleDZK+CgFf27ce7lBW0rQAyogHNdxxznV0ww2HcOjQDT7VmdL9sJFXW7OIIUQYoQ1inaScgUOvQdxsqQCUFpWsiFQj4ar933DDIaxZM0byIKmUi9pXC5PW7lC9V9KVlJTAZrM5fOareFDaHeeqjn76qSMAi/C33DpT8h1mxcJvlkkkiTACgPRO0qjmZ6OlAnDuYOzjjTyhtPg0ikhVE3fCKTi4UhBggLRBUo0BTI6FSeugaj1X0kmdcAwZMgSxsbFe1b2S/aGrOuIFGA8r+RX1FjdSt8QzwiSSRJgfYj/A84O7N52k0QLsWXKDSEFuoK4vGE2kaomzcDp37hyys7NRUJAoS1goOSjItTBpHVSt50o6qVbDiIgIl8/GeUJUWlrq8L1S7jjXKSQ42AsxWn1Yi9Qt8YwwiSQR5me4G+CV6CRZjAHQ2w0iBykdh5KiyWgiVQ9cDc5i74wr66XSLhJfLExaWrVZWUnnbVuXOiHKzMyE1WoV/lYqhYSrmDBW+y09MGL/7gyJMD/D3QAv1kkOGTKkzlZN9rDqf2choaCvOAsuJUWTGToxvRB7Z5xXS/Io6SLxdvKkZ1C13qEMctq6VCua1WpVZA9TV3V0++17DRf+oRVm6N9JhBECnjrJiIgITTZKVhqjJxR0Flxpabuxe3eaYqLJDJ2YnsgRFkq6SLy1MGkdVM3SSjpf27paFmOxOqLVh+4xev8OkAgjnDDbC8+KG0QOrmbuOTlpcN7/zRfRZIZOTGukCgut4uy8FYJaWqxZWUkH+NbW1bQYu6ojNTLmmxEj9+88JML8HHcDRUZGBqKjowEY84U3Q7Z616ulAhQVTWboxLTGnbDgA/YB9ePsWLIwiaFl3+EqbQEfm+dLW1fbYuxcR0b0OuiF3m5uXyER5sd4Giiio6MN3RGwNAOXi7uZu71L0nkgkbNLgVFFqjNa5g3ydB4t4uzM0L6VxnPagtrP5A7YZDFmG6Ot2LeHRJif4g8B2UYfgNzN3Dt1+hHXX/8Lrr9+IDp2bICEhJsB3OzVoGu2QZyl5LNaxdkZ5dlohdS0BXKshma2GBsx6aneW+IpCYkwP4UCstlFipXKar2Ie++1+tQ5stax+gJLyWfJaqIvYhNM+1ALHnuh4SqPIqCM24s1wWPUpKdmmkSSCPMz+AFebKAwwgzCF1jrDO0xUwejF3omnzWz1cQIiE0wPYVauBYlV/cF9SX2jkXBY+Skp2bp/0iE+Rn2A/w115Rh5kwrqqstCAzksGBBGR544H7TD/Asua7cYeb6Vxu9ks+aMc7OiPhiiZQqSuQsXGJZ8PhDeAqrkAjzQ/gOY9o0IDMT+OMPoFUrC5o2jQAQoWfRNIEl15URYNlq6IyegwlZMNlACUukWDvyZeESi4KHwlP0g0SYn9O0ae1/BOEKI1gN7dF7MGGhDgjf47fUbEd6t1FXUByjfjgnISIIghAwmtWQH0zsocHEP7FaLyIp6bhPSYztUaodsdhGeeshXy6KY9QOsoQRhAEwkktQTygo3n9RMm2Bmu2I1TZq9KSnRoVEGOH36LmSTgosuQRZrSt/DIonYe6I0jF5aooSVgWPWNJTanPKQyKM8Gv0WknnDay4BFmuK38LimdJmLOE0veqZiZ2FrK8e2M9ZDHFhhkgEUb4LSyuUmIVI9SVP3X8zmLT3YDISqyeUVAzEzuLWd69mbwUFRUJn7GWYsPIkAgj/A6+kxNbpWQm15WvsLiii6iFZQul0qjtDlPTomoWa60RJmRGgkQYIRujxgfwneGxY1fwzjscamoswneBgRwmTboTiYlBTJZdL2gJO5v404ColTtMzfeetT7FmzrloQmZspAII2Rh9JiUqKgoREUBr78OPPIIUF0NBAYC//qXBZ07N9G7eB7RMjietwaKregiq6E+iA2I9nsfsjopkgrLGeeNipw6pQmZspAII2TBSrC4r4weDaSn87sGsJ+4VmvXk7MLZe7cszh2LAiJiVeQkHAzgJsNP7gbGXcDYnBwJQoKErFuXY4hg6ZdWdl5QelP1j+t8KZOWU2xYVRIhBF+j1F2DdBr8LEftOPjgc6dVbsU4SWuBsQbbjiENWvGGNZK5NlFRu4wNfC2TllNsWFESIQRqmLvDgGM7xLRA1pIQHjCfkAMDq4UBBhgTCuRmIssOfkPcocpjBwXIwspNswAiTBCVbKzs+t8ZhSXCCvQQgLCGWfBzQ+IBQWJprESubP8Tp68hNxhCiPFxchiig0zQCKM0BwjuERYw8gLCQjlcY7VO3fuHLKzsxULmmZh5bMnyy+5w5RHrE7NkmKDNUiEEYSBMNpCAkI9XA12SgRNs5IZXUxQkjtMecTqlASW8pAIIwgvYMFCoNRCAhbuhVAeX61ErKSCkCso5bjD7N+FwsIAFBQEISnpChISaoRzmvFdIBej/pAII2Thjy+l0XOj2ePrvZCAYxslrEQspILwJCgzMjIQHR3tcLycdmf/LngSnUZ4r72Bf4czMzNx8iSHEydC0bx5BeLirgAAgoKCEBERQe+yypAII2ThKj6Aj0uRitEGcrPkRgN8uxcziVGzoIZFQ69UEKWlpQ5/uxOU0dHRiI+P9/l6fBsXE51GeK+l4q/Ck0VIhBGy8eXlpIHcePCi2TntiDvMNGixjhpB03pkRi8pKcHmzZuFvz3tDqG0Nd6f8o/5o/BkFRJhhCKcOgV8800IbLZGkjosM1mVnOFFCmuWPF+QKpq1wGgWVK1Q+p71yIwuNR4tMzMTAFBUVARAmTguf9yOx5+EJ6uQCCN8Zs0aYNw4oKYmChbLZNGtdEJCQgwprqRi75I1iiVPbD9KT89Ly70syYKqLXqlgpASj6a0O80ft+PxR+HJGiTCCJ84dYoXYLV/c1wAduy4B3PnpggzUnv42Sk/gzU7RhCbvuxHqfVelma2oLKKHqkgxCw0Fy5cAFAr1rZtuxuAMu40f8s/5o/CkzVIhBE+cfToVQHGU11twcWLTaBAzCzTaGkBUgtfVsCxsHrODM+ANVhIWyBmodm1axcAIC8vBbwA4/HVneZv+cf8TXiyBokwwidatwYCAhyFWGBgbSLRU6dqRVrr1uZLKqq1BUgt5MaE2GyN8Ouv1+kaT2KWZ8AaLGRGl2KhsdkaITc31cWvyZ3mLf4mPFmCRBjhE02butpKB/jss6tuyoCA2mNGj9a7tL7Bz/xZsAD5Cn8vYhYHV9YOe/EDcAAsLn/rDiUC683wDFiGhXg6MQuNqwkEAHTvnutVG2DB8kf4LyTCCJ9x3koHAFq0uGodq6mpFWnp6ca2iPEWgn37gMWLjb2iyN7acc01ZZg504rqagsCAzksWFCGBx6436UYchY/tQKsVog5WytcDVpSA+uHDBmC2NhYt2KAVnX5B54sNO4mECkpeV5dgwXLn9aQ8GQHEmGEIthvpbNvn6s4sVqRxh9j1E4gKioK3boBAQEcamq8swCxBj+oTJsGZGbyItqCpk0jAES4/I1r64MF6ek70b79bxg58g5ER9/sdtCSGijN54pyt7qNVnWZE2/edyWDys0ksKTgj8KTVUiEEYrjKU6Mx8idQNOmwMKFNkyfHi50/mlpu3H+fG1ZjWiJEduPUsx92b79b7BaLyIhIcGrZyY3NQat6jIn9v2CzWbDpk2bhO9ctRUKKpcPi32rVMwUb0wijFAcd3Fizi+LkTuBESOq8eefS3D+fCQKCxOwe3eaywBx1ix5cpHrvvSEY2xZDbp3z0VKSp7HgdS+Pj0NwGapd3/EVRvytAjDk8uS2oF54GNJN26sjxkzrKipsSAggMPChTY88MDfzE7axbBwHMfpXQjCNWVlZbBarbDZbAgPD9e7OF5z6tTVODGx2YoRZzYlJSU4duwKunaNdXBNBgZyyMs7g8TEIEN2ClLw5tnaU1RUhNdffx02WyMsWTK5jmvTeYAdN25cnf0BKWO+f+CprVgsNZg8eYlHwT5kyBC0a9dOi6ISKsPHkoq1BZaSNEsdv8kSRqiGmIuL52rGfWOtpIyKisKhQ+7zpDHSF6iC1GfrDncr26SscmSlkyW0wd0ijLy8FPTtu9vt72JjY9UuGqER/KRLbEGOEZM0kwgjdMU5477SKynVtppIiX8j6uIqtoyHVjkS9rhrK/v3pwru64yMDERHRwvfkTXUnJhxQQ6JMEJXXGfcd1xJKRct9hmUGv9GOMIH1ttvOcNj9E6VUBar9SJSU3Oxf38Pp2+uivXo6Og6bmvCfJhxQQ6JMEJX1LQkabXPoHOeNBJg7nEVWJ+Xl4Lc3FTTdKqE8qSk5GH//lTYC3YS6/6J2VbEkggjdMUsliRfY6T8BX6V5dmzZ7Fp0yZYrRfRt+9upKTk0SpHwi1W60UMGGAuCwghHzNts0QijNAdsiT5F1FRUYbOE0dog7MAN5sFhCAAEmEEI5AlyVgoseDB3wWWfR0WFgagoCAISUlXkJBQ65v3dxEaFRWFzMxMh4StZrKAEARAIowgCC9xXvDgLus9Szl7WMO+Dj0lIvX3OrRarXoXgWAAo25zJwUSYYTfILZFDnEVT5auc+fOCf/2JCCMmLNHK/i6cd4Q3TlPmr/XoZkHX3/G2+TcZg5fIBFG+AWexALhiFRLl5iAIMQRSz7p75h58PU3fN12yKzPmEQYYVr42bGYWDDTLFqJWC3733sSryQgfMeMySeVxqyDrz9Rd9uh2m3eamosmD49HH/+uZa5bYe0gkQYYVr4WfS+fcDixXXFQo8ew9G7t3k6eaVjtcTEq5iAsHdbkrXCNWZMPmkPLT4gAHNvO+QrJMIIUxMVFYVu3VwnhE1JiTLV/o5SLVhSOzqxDtOdgACAgoJErFuXQ4H6EjBr6gVafEA4Q5bfupAII0yPWRLCSkWpWC0pHaazgMjPb/U/dwMF6nuDGVMv0OIDwhmzW37lQCKM8Av8KSGsUrFaUjtMXkBQoD7hCoodJOxR2/JrNBc4iTDCb/CXhLBKmvy96TBpsJWOP6VekBo7yMqAqcTiFsIzall+jegCJxFGECZDaZO/uw4zIyMD0dHROHfuHLKzsynewwv8KfWCWHvMzs5mZsCkRMTGxogucBJhBOEGbxMKsoQvJn+p1peEhASHgYjiPbzDKIO4Eu4dT+2RpQFT6cUtzpCVTRuMZJUnEUYQdviaUJAl5Jr8fbHSmHWln7+ipHvHXXtkccBUI77Rn61sWrvfjWSVJxFGEP/D6AkFve3oPFn6fLk/M67081e0cO+wOGCqIQzVtrKxjNbudyNZ5Q0nwioqKpCSkoKffvoJP/74I2688Ubhu0OHDmHixIn47rvvEBMTg0mTJmHGjBkOv//ggw8wZ84cHDt2DK1bt8aCBQtw1113Cd9zHIenn34ab7zxBkpLS9GjRw+sWrUKrVu3Fo45f/48Jk2ahI8//hgBAQEYNGgQli5dioYNG3pVFoItjJ5QUEpHV15ejsrKSixaVKqYpc+fgsz9FTmiROrzZnHAVFMY+usqYq0nrkaxyhtOhM2YMQMJCQn46aefHD4vKytD3759kZaWhtWrV+Pnn3/GqFGjEBERgXHjxgEA9u/fj/vvvx/z58/H3XffjY0bN2LgwIH44YcfcP311wMAFi5ciGXLluGtt95CUlIS5syZg/T0dPz222+oV68eAODBBx9EUVERcnJyUFVVhZEjR2LcuHHYuHGj5LIQ7MLizFwqnjq6kpISvP7664pb+vwpyNxfkfNOiLULfkEHwN6AqaYwZNH9alaMYJU3lAj79NNPsWvXLmzduhWffvqpw3cbNmxAZWUl1q5di5CQEFx33XU4ePAgXn31VUH4LF26FP369cP06dMBAM899xxycnKwYsUKrF69GhzHYcmSJXjqqadw7733AgDefvttNGnSBB999BGGDh2Kw4cPY+fOnfjuu+/QpUsXAMDy5ctx11134ZVXXkFCQoKksihFTU0Ns5YZo1FVVYUGDRqgQYMajBixE/v29UZ1dQCKi4Nw552fMP8yi6GmpY8ElrmRK0q8aResDZhqCUMjT/II5TGMCDt9+jTGjh2Ljz76CGFhYXW+z83NRc+ePR1M4Onp6ViwYAEuXLiAxo0bIzc3F1OnTnX4XXp6Oj766CMAQEFBAYqLi5GWliZ8b7VakZKSgtzcXAwdOhS5ubmIiIgQBBgApKWlISAgAHl5efjHP/4hqSyuqKioQEVFhfB3WVmZxzqprKxEQUEBauz34yFkU11djR49egAAevQARo/+GTU1Abh8uRw//HAYly/rXECFoEGAkANr1iotUEMYsuh+NQtGDI0whAjjOA4jRozA+PHj0aVLFxw7dqzOMcXFxUhKSnL4rEmTJsJ3jRs3RnFxsfCZ/THFxcXCcfa/c3dMbGysw/dBQUGIjIx0OEasLK6YP38+5s2b57oSnOA4DkVFRQgMDESzZs0QEBAg/iPCI5WVlSgtLXX4jOM4XLhwAW3atKnjAjcKfAB+eHhtG6FBgJCLkqKExQFTqzL5o6DVAiOGRugqwmbNmoUFCxZ4PObw4cPYtWsXLl68iNmzZ2tUMn2YPXu2g6WurKwMzZo1c3nslStXUF5ejoSEBJeWQcJ7AgICEBRU95WwWq2IiYlBSEiI4Vy/a9YA48bVbl4eEBCLu+++CZ06/UiDgA4YbTsVtWFxwNSyTKy5X82C0d4hXUXYtGnTMGLECI/HtGzZEnv37kVubi5CQ0MdvuvSpQsefPBBvPXWW4iLi8Pp06cdvuf/jouLE/7v6hj77/nP4uPjHY7hV2HGxcXhzJkzDue4cuUKzp8/L3od+2u4IjQ0tM49uqO6uhoAW2ZVsxIQEICAgAAEBwf7JMK0TP5aUlKCY8euYNy4WNTUXA3At1+FRYOAdhhxOxVAfcsQS/fKo1aZWLT8EfqjqwiLiYlBTEyM6HHLli3D888/L/xdWFiI9PR0bNq0CSkpKQCA1NRUPPnkk6iqqkJwcDAAICcnB23atBHcf6mpqdizZw8mT54snCsnJwepqakAgKSkJMTFxWHPnj2C6CorK0NeXh4mTJggnKO0tBQHDhxA586dAQB79+5FTU2NV2VRCovFouj55FBZCVy+DNSrBxi5/3Dn0nWuYzmdpKNFCnj99dpNxdWAH/ALChJRUzPc4TtahaUPRtxOBWDTWmVUqC4JVxgiJqx58+YOf/P5uJKTk9H0fyaFBx54APPmzcPo0aMxc+ZM/PLLL1i6dCkWL14s/O6xxx5Dr169sGjRIvTv3x/vv/8+vv/+e7z++usAagfbyZMn4/nnn0fr1q2FFBUJCQkYOHAgAKBdu3bo168fxo4di9WrV6OqqgpZWVkYOnQoEhISJJfFLJw9Cxw/fvXvFi0ACbqaSYKCghAbG1tnocPly5dRVlaGIUOGoEGDBl53kqdOXRVgQO3/H3kESE9XxyLGd/IUgM8eRkxPQKJAOaguCWdME81ttVqxa9cuFBQUoHPnzpg2bRrmzp3rkBKie/fu2LhxI15//XV07NgRW7ZswUcffSTkCANq85BNmjQJ48aNw80334y//voLO3fuFHKEAbXpMNq2bYs+ffrgrrvuwi233CIIOallMQOVlY4CDKj929NkfsSIEbBYLLBYLAgODkaTJk1wxx13YO3atV6t8ly/fj0iIiLkFdwDQUFBCAkJqfNfYGAgYmNjZXWiR49eFWA81dXAH38oVGg38AH4FkvtxaUG4JM7RD14YWwPCWOC8F8MYQlzJjExERzH1fn8hhtuwJdffunxt/fddx/uu+8+t99bLBY8++yzePbZZ90eExkZKSRmdYeUshgddykbKio8uyX79euHdevWobq6GqdPn8bOnTvx2GOPYcuWLdi2bZvL4Hgj07p1rQvSXogFBgKtWql/bU8B+BkZGYiOjnY4Xkt3iJE3SJcLrUwlCMIec412hGTsV2q5QspgbGccdEBsbUFoaKiwQOGaa65Bp06d0K1bN/Tp0wfr16/HmDFj8Oqrr2LdunX4v//7P0RGRuKee+7BwoUL0bBhQ3z++ecYOXIkgKvxWk8//TSeeeYZvPPOO1i6dCmOHDmCBg0a4Pbbb8eSJUvqpBXRipKSEgQGVmLhwvqYOdOK6moLAgM5LFhgQ2Dg3ygpUV/0uAvAj46OdliAoiVaxsixBq1MJQiCh0SYH2K/UssTYiu1QkJqY8CcY8LkeLNuv/12dOzYEdnZ2RgzZgwCAgKwbNkyJCUl4f/+7//wz3/+EzNmzMBrr72G7t27Y8mSJZg7dy6OHDkC4GqcYFVVFZ577jm0adMGZ86cwdSpUzFixAh88skn3hfKR5zr+dFHGwkD719/XQTvwWZtRZyauF61CTzyCIcbbzyDxMQgv6gLWplKENqihOFBDUiE+SFSV2BJOS4mBrBaa12QoaG+rY5s27YtDh06BAAOK1gTExPx/PPPY/z48XjttdcQEhICq9UKi8VSJ+XHqFGjhH+3bNkSy5YtE2L77DdY1wLn+nM38LK2Ik4tPK3arK62YPnyT5GUdNyvRKk/weogqDT+cp9GQinDgxqQCCN8JiREmdQUHMcJ7sXdu3dj/vz5+P3331FWVoYrV67g8uXLKC8v95ic9sCBA3jmmWfw008/4cKFC0Kw/4kTJ9C+fXvfC0nIRuqqTTOKUn/PEcXyIKgk/nKfRkNJw4PSkAgjmOHw4cNISkrCsWPHcPfdd2PChAl44YUXEBkZia+++gqjR49GZWWlWxF26dIlpKenIz09HRs2bEBMTAxOnDiB9PR0Uw7s7mB9wPfH4HR/zxHlfN82WyOcPx+FyMgSh+du9PeU5cGeuIq79qcHJMIIJti7dy9+/vlnTJkyBQcOHEBNTQ0WLVokJFDdvHmzw/EhISHCrgE8v//+O0pKSvDSSy8J2z19//332twAQxhhwGctOF2LLYXMKrC8xdOOAQShNqy1PxJhhOZUVFSguLjYIUXF/Pnzcffdd2PYsGH45ZdfUFVVheXLl+Oee+7B119/jdWrVzucIzExEX/99Rf27NmDjh07IiwsDM2bN0dISAiWL1+O8ePH45dffsFzzz2n013qixEGfFaC0426pZAREdsxwGywZHEh2Gx/JMIIWVy5csVjclV3m2EDwM6dOxEfH4+goCA0btwYHTt2xLJlyzB8+HAEBASgY8eOePXVV7FgwQLMnj0bPXv2xPz58zFs2DDhHN27d8f48eORmZmJkpISIUXF+vXr8cQTT2DZsmXo1KkTXnnlFQwYMEDx+yfMg1G3FHIF60HhRtwxQC6sWVwINtsfiTDCa65cuVJnE3NXxMbG1hFi69evx/r160V/O2XKFEyZMsXhs4cfftjh71WrVmHVqlUOn91///24//77HT5zldiXIJxhsYP2BiMEhYstyrDZbLrlrlMSFi0uBJtbuZlm2yJCOr4GbkvdXsibbYjMiK/1fOoUsG9f7f8J9TH6lkKugt8LChJhszXyeJyWiG2ltWnTJpSUlOhWPqXwJOgJ/ZC7lZuakCXMDzFC4LYZ8KWezZhRnlZtagfLrjCxRRlGcPuKwaLFxZ+x71M8tT89+h4SYX4KCSxtkFPPp05dFWAAn1EeSE839h6LRhD/rK3alIPWrjApcWjOgxsrizKUhr9PMUFv1nxwrMJy30MijCAY4+hRx82+AaC6GvjjD+VEmF6bZxtB/LsTCOfOnZPcUesZIK9lbJs3cWhDhgxxSDVjxpWDzoP93LlncexYEBITryAh4WYAN+s+0fBXWK1zEmEEwRitW9e6IO2FWGAg0KqVMuc3o6tTC7KzswGIB7brHSCvpSvMm+SkERERwt8su0t9xf6ZxscDnTvLOw/rK10JZSARRhAMUVJSgsDASixcWB8zZ1pRXW1BYCCHBQtsCAz8GyUl8jte2jzbNe5cQ3KzuuudHZ712DZaOSiO3kKe0A4SYQTBCM4d76OPNhJik/766yJef732czkdL22e7R7ehVRYWChYu5Sy1Ohl8ZET26aE5UWKi9HoqUC0gLY/8h9IhBFew28lpNRxRC3OHaq72CQ5Ha8/b54thaioKMlJW6WitcVHavC7K8ufEpYXqYKTVg4SxFVIhBFeExQUhNjYWNkZ8wn9YN1VxQJKWWq0tvj4sgLMV8uLFMGp9cpBiqkijACNkoQsWBVYn3/+OW677TZcuHDBIRDYE4mJiZg8eTImT56satlYgbU0DKwNlkpZavSw+OglKqQITi1XDlJMFWEU2BxJCdMyYsQIvPXWW3jkkUfqbMo9ceJEvPbaaxg+fLikrY0I+bCSp4nFwVIpa6E/WR2lCk6lVg6KQTFVhFEgEUZoTrNmzfD+++9j8eLFqF+/PgDg8uXL2LhxI5o3b65z6Qgt0XsloTuUshayZnVUGkpOqg1mzKlG1EIijNCcTp06IT8/H9nZ2XjwwQcB1OZgat68OZKSkoTjKioqMH36dLz//vsoKytDly5dsHjxYtx8883CMZ988gkmT56MkydPolu3bhg+fHid63311VeYPXs2vv/+e0RHR+Mf//gH5s+fjwYNGqh/s4Rk9M4d5Utguxrn0ROpgz4lJ1Ufvd8LQl1IhBG6MGrUKKxbt04QYWvXrsXIkSPx+eefC8fMmDEDW7duxVtvvYUWLVpg4cKFSE9Pxx9//IHIyEicPHkSGRkZmDhxIsaNG4fvv/8e06ZNc7hOfn4++vXrh+effx5r167F2bNnkZWVhaysLKxbt07LWyY8wELuKKW2NmF5ixQpeDvoa+Vi9Cd4gS72XrAs5AlpkAgjdNnC5qGHHsLs2bNx/PhxAMDXX3+N999/XxBhly5dwqpVq7B+/XrceeedAIA33ngDOTk5WLNmDaZPn45Vq1YhOTkZixYtAgC0adMGP//8MxYsWCBcZ/78+XjwwQeFoPvWrVtj2bJl6NWrF1atWoV69eppc8MSUHODa9Y3z2Yld5RSwohVgSUGC2KYuCrk9+0DFi+u+1706DEcvXsbt50RVyER5ufotYVNTEwM+vfvj/Xr14PjOPTv3x/R0dHC9/n5+aiqqkKPHj2Ez4KDg9G1a1ccPnwYAHD48GGkpKQ4nDc1NdXh759++gmHDh3Chg0bhM84jkNNTQ0KCgrQrl07NW5PFmpaUFi3zlDuKH3hxbeYGCbLi3ZERUWhWzfXW5ilpESB9Jc5IBHmx5w6dVWAAfwWNkB6ujYWsVGjRiErKwsAsHLlSlWu8ddff+GRRx7Bo48+Wuc7FhcBqCmCWJ41+9NKQhbhRfqxY1fwzjucsK0VAAQGcpg06U5Db2tl1MD2pk1rJ8aPPAJUV9cKsH/9SzuPBaE+JML8mKNHHWdYQO2L/scf2rzk/fr1Q2VlJSwWC9LT0x2+S05ORkhICL7++mu0aNECAFBVVYXvvvtOcC22a9cO27Ztc/jdN9984/B3p06d8Ntvv6GVUrtfE6ph9pWErBMVVWtdqTvoW9C5cxO9i+cV9hY7TzFuRrDsjR5dOzH+4w+gVSsSYGaDRJgf07q1a1O3VnolMDBQcC0GBgY6fNegQQNMmDAB06dPR2RkJJo3b46FCxeivLwco//nLx0/fjwWLVqE6dOnY8yYMThw4ECd/GIzZ85Et27dkJWVhTFjxqBBgwb47bffkJOTIyk/FaEuZlhJaDbMMOjbW/aefTYWHFdr2eO4AOzYcQ/mzk0xlGWvaVNjPgdCHBJhfgwLpu7w8HC337300kuoqanBww8/jIsXL6JLly747LPP0LhxYwC17sStW7diypQpWL58Obp27YoXX3wRo0aNEs5xww034IsvvsCTTz6JW2+9FRzHITk5GZmZmarfGyEO67Fq/ooZBv2oqCgcOuTK2m/BxYtNKKaKYAILx3Gc3oUgXFNWVgar1QqbzVZHrFy+fBkFBQVISkryeYXfqVPGnvWqjZJ1TRCEdpw6BbRoUdfaf+wY9XWEungav+0JcPsN4Tc0bQr07k2dEkEQ5oK39vPRDhTYTrAGuSMJgiAI02KGGDfCvJAIIwiCIEyNGWLcCHNC7kiCIAiCIAgdIBFGEARBEAShAyTCDA4tblUfqmOCIAhCDUiEGRQ+uamn/EqEMvB17JxQliAIgiB8gQLzDUpQUBDCwsJw9uxZBAcHIyCA9LQa1NTU4OzZswgLC0NQEL0uBEEQhHLQqGJQLBYL4uPjUVBQgOPHj+tdHFMTEBCA5s2bw2KxiB9MEARBEBIhEWZgQkJC0Lp1a3JJqkxISAhZGgmCIAjFIRFmcAICAmgrHYIgCIIwIDS9JwiCIAiC0AESYQRBEARBEDpAIowgCIIgCEIHKCaMYfgkoWVlZTqXhCAIgiAIqfDjtliybxJhDHPx4kUAQLNmzXQuCUEQBEEQ3nLx4kVYrVa331s42pOFWWpqalBYWIhGjRr5ZY6qsrIyNGvWDCdPnkR4eLjexTEsVI/KQPXoO1SHykD1qAxq1iPHcbh48SISEhI8pjgiSxjDBAQEoGnTpnoXQ3fCw8Opo1EAqkdloHr0HapDZaB6VAa16tGTBYyHAvMJgiAIgiB0gEQYQRAEQRCEDpAII5glNDQUTz/9NEJDQ/UuiqGhelQGqkffoTpUBqpHZWChHikwnyAIgiAIQgfIEkYQBEEQBKEDJMIIgiAIgiB0gEQYQRAEQRCEDpAIIwiCIAiC0AESYYTu/Oc//8E999yDhIQEWCwWfPTRRw7fcxyHuXPnIj4+HvXr10daWhqOHj2qT2EZRawOR4wYAYvF4vBfv3799Cksw8yfPx8333wzGjVqhNjYWAwcOBBHjhxxOOby5cuYOHEioqKi0LBhQwwaNAinT5/WqcRsIqUee/fuXadNjh8/XqcSs8mqVatwww03CMlEU1NT8emnnwrfU1uUhlg96tkWSYQRunPp0iV07NgRK1eudPn9woULsWzZMqxevRp5eXlo0KAB0tPTcfnyZY1Lyi5idQgA/fr1Q1FRkfDfe++9p2EJjcEXX3yBiRMn4ptvvkFOTg6qqqrQt29fXLp0SThmypQp+Pjjj/HBBx/giy++QGFhITIyMnQsNXtIqUcAGDt2rEObXLhwoU4lZpOmTZvipZdewoEDB/D999/j9ttvx7333otff/0VALVFqYjVI6BjW+QIgiEAcB9++KHwd01NDRcXF8e9/PLLwmelpaVcaGgo99577+lQQvZxrkOO47jhw4dz9957ry7lMTJnzpzhAHBffPEFx3G1bS84OJj74IMPhGMOHz7MAeByc3P1KibzONcjx3Fcr169uMcee0y/QhmUxo0bc2+++Sa1RR/h65Hj9G2LZAkjmKagoADFxcVIS0sTPrNarUhJSUFubq6OJTMen3/+OWJjY9GmTRtMmDABJSUleheJeWw2GwAgMjISAHDgwAFUVVU5tMe2bduiefPm1B494FyPPBs2bEB0dDSuv/56zJ49G+Xl5XoUzxBUV1fj/fffx6VLl5CamkptUSbO9cijV1ukDbwJpikuLgYANGnSxOHzJk2aCN8R4vTr1w8ZGRlISkpCfn4+nnjiCdx5553Izc1FYGCg3sVjkpqaGkyePBk9evTA9ddfD6C2PYaEhCAiIsLhWGqP7nFVjwDwwAMPoEWLFkhISMChQ4cwc+ZMHDlyBNnZ2TqWlj1+/vlnpKam4vLly2jYsCE+/PBDtG/fHgcPHqS26AXu6hHQty2SCCMIP2Do0KHCvzt06IAbbrgBycnJ+Pzzz9GnTx8dS8YuEydOxC+//IKvvvpK76IYGnf1OG7cOOHfHTp0QHx8PPr06YP8/HwkJydrXUxmadOmDQ4ePAibzYYtW7Zg+PDh+OKLL/QuluFwV4/t27fXtS2SO5Jgmri4OACos+Ln9OnTwneE97Rs2RLR0dH4448/9C4Kk2RlZWH79u3Yt28fmjZtKnweFxeHyspKlJaWOhxP7dE17urRFSkpKQBAbdKJkJAQtGrVCp07d8b8+fPRsWNHLF26lNqil7irR1do2RZJhBFMk5SUhLi4OOzZs0f4rKysDHl5eQ7+fMI7Tp06hZKSEsTHx+tdFKbgOA5ZWVn48MMPsXfvXiQlJTl837lzZwQHBzu0xyNHjuDEiRPUHu0Qq0dXHDx4EACoTYpQU1ODiooKaos+wtejK7Rsi+SOJHTnr7/+cphxFBQU4ODBg4iMjETz5s0xefJkPP/882jdujWSkpIwZ84cJCQkYODAgfoVmjE81WFkZCTmzZuHQYMGIS4uDvn5+ZgxYwZatWqF9PR0HUvNHhMnTsTGjRvx73//G40aNRJia6xWK+rXrw+r1YrRo0dj6tSpiIyMRHh4OCZNmoTU1FR069ZN59Kzg1g95ufnY+PGjbjrrrsQFRWFQ4cOYcqUKejZsyduuOEGnUvPDrNnz8add96J5s2b4+LFi9i4cSM+//xzfPbZZ9QWvcBTPereFnVZk0kQduzbt48DUOe/4cOHcxxXm6Zizpw5XJMmTbjQ0FCuT58+3JEjR/QtNGN4qsPy8nKub9++XExMDBccHMy1aNGCGzt2LFdcXKx3sZnDVR0C4NatWycc8/fff3P//Oc/ucaNG3NhYWHcP/7xD66oqEi/QjOIWD2eOHGC69mzJxcZGcmFhoZyrVq14qZPn87ZbDZ9C84Yo0aN4lq0aMGFhIRwMTExXJ8+fbhdu3YJ31NblIanetS7LVo4juPUl3oEQRAEQRCEPRQTRhAEQRAEoQMkwgiCIAiCIHSARBhBEARBEIQOkAgjCIIgCILQARJhBEEQBEEQOkAijCAIgiAIQgdIhBEEQRAEQegAiTCCIAiCIAgdIBFGEARBEAShAyTCCIIgZFBZWal3EerAYpkIgnAPiTCCIAgAvXv3RlZWFrKysmC1WhEdHY05c+aA39ktMTERzz33HIYNG4bw8HCMGzcOAPDVV1/h1ltvRf369dGsWTM8+uijuHTpknDe1157Da1bt0a9evXQpEkTDB48WPhuy5Yt6NChA+rXr4+oqCikpaUJv+3duzcmT57sUMaBAwdixIgRwt9yy0QQBBuQCCMIgvgfb731FoKCgvDtt99i6dKlePXVV/Hmm28K37/yyivo2LEjfvzxR8yZMwf5+fno168fBg0ahEOHDmHTpk346quvkJWVBQD4/vvv8eijj+LZZ5/FkSNHsHPnTvTs2RMAUFRUhPvvvx+jRo3C4cOH8fnnnyMjIwPebufrbZkIgmAH2sCbIAgCtZanM2fO4Ndff4XFYgEAzJo1C9u2bcNvv/2GxMRE3HTTTfjwww+F34wZMwaBgYH417/+JXz21VdfoVevXrh06RI++eQTjBw5EqdOnUKjRo0crvfDDz+gc+fOOHbsGFq0aOGyPDfeeCOWLFkifDZw4EBERERg/fr1ACCrTPXq1fOpngiCUA6yhBEEQfyPbt26CQIMAFJTU3H06FFUV1cDALp06eJw/E8//YT169ejYcOGwn/p6emoqalBQUEB7rjjDrRo0QItW7bEww8/jA0bNqC8vBwA0LFjR/Tp0wcdOnTAfffdhzfeeAMXLlzwuszelokgCHYgEUYQBCGRBg0aOPz9119/4ZFHHsHBgweF/3766SccPXoUycnJaNSoEX744Qe89957iI+Px9y5c9GxY0eUlpYiMDAQOTk5+PTTT9G+fXssX74cbdq0EYRSQEBAHddkVVWVz2UiCIIdSIQRBEH8j7y8PIe/v/nmG7Ru3RqBgYEuj+/UqRN+++03tGrVqs5/ISEhAICgoCCkpaVh4cKFOHToEI4dO4a9e/cCACwWC3r06IF58+bhxx9/REhIiOBajImJQVFRkXCt6upq/PLLL6L3IKVMBEGwAYkwgiCI/3HixAlMnToVR44cwXvvvYfly5fjsccec3v8zJkzsX//fmRlZeHgwYM4evQo/v3vfwtB8Nu3b8eyZctw8OBBHD9+HG+//TZqamrQpk0b5OXl4cUXX8T333+PEydOIDs7G2fPnkW7du0AALfffjt27NiBHTt24Pfff8eECRNQWloqeg9iZSIIgh2C9C4AQRAEKwwbNgx///03unbtisDAQDz22GNC2gdX3HDDDfjiiy/w5JNP4tZbbwXHcUhOTkZmZiYAICIiAtnZ2XjmmWdw+fJltG7dGu+99x6uu+46HD58GP/5z3+wZMkSlJWVoUWLFli0aBHuvPNOAMCoUaPw008/YdiwYQgKCsKUKVNw2223id6DWJkIgmAHWh1JEAQB16sRCYIg1ITckQRBEARBEDpAIowgCIIgCEIHyB1JEARBEAShA2QJIwiCIAiC0AESYQRBEARBEDpAIowgCIIgCEIHSIQRBEEQBEHoAIkwgiAIgiAIHSARRhAEQRAEoQMkwgiCIAiCIHSARBhBEARBEIQOkAgjCIIgCILQgf8HFkwbEKpg6twAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmIBJREFUeJztnXl4FMXWxt/JCgEygWwkEpKwyCK4ABoCigvB4AWRC0rAhV2ES9CAsqkg4IKgCAgo1yuCCyio0YugSFj0qsSoICKKXMwXNpOwBDJBIiQk/f2R283MZGZ6mV6qe87veXjIzPT0VFd3Vb11zqlTNo7jOBAEQRAEQRC6EmR0AQiCIAiCIAIREmEEQRAEQRAGQCKMIAiCIAjCAEiEEQRBEARBGACJMIIgCIIgCAMgEUYQBEEQBGEAJMIIgiAIgiAMgEQYQRAEQRCEAZAIIwiCIAiCMAASYQRBEIRP1qxZA5vNhsOHDxtdFIKwFCTCCIIwnO+//x7Z2dm46qqr0KhRI7Rs2RJDhgzBf//733rH3nLLLbDZbLDZbAgKCkJkZCTatWuHBx54AHl5ebJ+95NPPsHNN9+MuLg4REREoFWrVhgyZAi2bNmi1qXV47nnnsPHH39c7/1du3Zhzpw5KC8v1+y33ZkzZ45QlzabDREREejYsSOefPJJVFRUqPIb69atw5IlS1Q5F0FYDRJhBEEYzoIFC/Dhhx+id+/eWLp0KcaNG4f//Oc/6NKlC/bv31/v+BYtWuDtt9/GW2+9hRdeeAEDBgzArl27cPvttyMrKwvV1dWiv/niiy9iwIABsNlsmDlzJhYvXozBgwfj0KFDeO+997S4TAC+RdjcuXN1FWE8r776Kt5++2289NJLaN++PZ599ln07dsXamwtTCKMILwTYnQBCIIgpkyZgnXr1iEsLEx4LysrC507d8bzzz+Pd955x+V4u92O+++/3+W9559/Hg8//DBeeeUVpKSkYMGCBV5/79KlS3j66afRp08fbN26td7nJ0+e9POK2KGyshIRERE+j7n77rsRExMDABg/fjwGDx6M3NxcfPvtt0hPT9ejmAQRkJAljCAIw+nRo4eLAAOAtm3b4qqrrsKBAwcknSM4OBgvv/wyOnbsiOXLl8PhcHg99vTp06ioqEDPnj09fh4XF+fy+sKFC5gzZw6uvPJKNGjQAAkJCRg0aBAKCwuFY1588UX06NED0dHRaNiwIbp27YoPPvjA5Tw2mw3nz5/Hm2++KbgAR44ciTlz5mDq1KkAgNTUVOEz5xisd955B127dkXDhg3RrFkzDB06FMeOHXM5/y233IJOnTph9+7d6NWrFyIiIvD4449Lqj9nbrvtNgBAUVGRz+NeeeUVXHXVVQgPD0diYiImTpzoYsm75ZZbsHnzZhw5ckS4ppSUFNnlIQirQpYwgiCYhOM4nDhxAldddZXk7wQHB2PYsGGYNWsWvv76a/Tr18/jcXFxcWjYsCE++eQTTJo0Cc2aNfN6zpqaGvTv3x/bt2/H0KFD8cgjj+DcuXPIy8vD/v370bp1awDA0qVLMWDAANx3332oqqrCe++9h3vuuQebNm0SyvH2229j7NixuOGGGzBu3DgAQOvWrdGoUSP897//xbvvvovFixcLVqnY2FgAwLPPPotZs2ZhyJAhGDt2LE6dOoVly5ahV69e+PHHHxEVFSWUt6ysDHfccQeGDh2K+++/H/Hx8ZLrj4cXl9HR0V6PmTNnDubOnYuMjAxMmDABBw8exKuvvorvv/8e33zzDUJDQ/HEE0/A4XDg+PHjWLx4MQCgcePGsstDEJaFIwiCYJC3336bA8CtWrXK5f2bb76Zu+qqq7x+76OPPuIAcEuXLvV5/tmzZ3MAuEaNGnF33HEH9+yzz3K7d++ud9wbb7zBAeBeeumlep/V1tYKf1dWVrp8VlVVxXXq1Im77bbbXN5v1KgRN2LEiHrneuGFFzgAXFFRkcv7hw8f5oKDg7lnn33W5f2ff/6ZCwkJcXn/5ptv5gBwK1eu9Hrdzjz11FMcAO7gwYPcqVOnuKKiIu6f//wnFx4ezsXHx3Pnz5/nOI7jVq9e7VK2kydPcmFhYdztt9/O1dTUCOdbvnw5B4B74403hPf69evHJScnSyoPQQQa5I4kCII5fvvtN0ycOBHp6ekYMWKErO/ylpZz5875PG7u3LlYt24drrvuOnz++ed44okn0LVrV3Tp0sXFBfrhhx8iJiYGkyZNqncOm80m/N2wYUPh77Nnz8LhcOCmm27Cnj17ZJXfndzcXNTW1mLIkCE4ffq08K958+Zo27Ytdu7c6XJ8eHg4Ro0aJes32rVrh9jYWKSmpuKhhx5CmzZtsHnzZq+xZNu2bUNVVRVycnIQFHR5GHnwwQcRGRmJzZs3y79QgghAyB1JEARTlJaWol+/frDb7fjggw8QHBws6/t//vknAKBJkyaixw4bNgzDhg1DRUUFCgoKsGbNGqxbtw533nkn9u/fjwYNGqCwsBDt2rVDSIjv7nLTpk145plnsHfvXly8eFF431moKeHQoUPgOA5t27b1+HloaKjL6yuuuKJefJ0YH374ISIjIxEaGooWLVoILlZvHDlyBECdeHMmLCwMrVq1Ej4nCMI3JMIIgmAGh8OBO+64A+Xl5fjqq6+QmJgo+xx8Sos2bdpI/k5kZCT69OmDPn36IDQ0FG+++SYKCgpw8803S/r+V199hQEDBqBXr1545ZVXkJCQgNDQUKxevRrr1q2TfQ3O1NbWwmaz4bPPPvMoSN1jrJwtclLp1auXEIdGEIR+kAgjCIIJLly4gDvvvBP//e9/sW3bNnTs2FH2OWpqarBu3TpERETgxhtvVFSObt264c0330RJSQmAusD5goICVFdX17M68Xz44Ydo0KABPv/8c4SHhwvvr169ut6x3ixj3t5v3bo1OI5DamoqrrzySrmXownJyckAgIMHD6JVq1bC+1VVVSgqKkJGRobwnr+WQIKwMhQTRhCE4dTU1CArKwv5+fl4//33FeWmqqmpwcMPP4wDBw7g4YcfRmRkpNdjKysrkZ+f7/Gzzz77DMBlV9vgwYNx+vRpLF++vN6x3P+SmQYHB8Nms6Gmpkb47PDhwx6TsjZq1MhjQtZGjRoBQL3PBg0ahODgYMydO7de8lSO41BWVub5IjUkIyMDYWFhePnll13KtGrVKjgcDpdVqY0aNfKZLoQgAhmyhBEEYTiPPvooNm7ciDvvvBNnzpypl5zVPTGrw+EQjqmsrMTvv/+O3NxcFBYWYujQoXj66ad9/l5lZSV69OiB7t27o2/fvkhKSkJ5eTk+/vhjfPXVVxg4cCCuu+46AMDw4cPx1ltvYcqUKfjuu+9w00034fz589i2bRv+8Y9/4K677kK/fv3w0ksvoW/fvrj33ntx8uRJrFixAm3atMG+fftcfrtr167Ytm0bXnrpJSQmJiI1NRVpaWno2rUrAOCJJ57A0KFDERoaijvvvBOtW7fGM888g5kzZ+Lw4cMYOHAgmjRpgqKiInz00UcYN24cHnvsMb/qXy6xsbGYOXMm5s6di759+2LAgAE4ePAgXnnlFVx//fUu96tr165Yv349pkyZguuvvx6NGzfGnXfeqWt5CYJZjFyaSRAEwXGXUyt4++fr2MaNG3Nt27bl7r//fm7r1q2Sfq+6upr717/+xQ0cOJBLTk7mwsPDuYiICO66667jXnjhBe7ixYsux1dWVnJPPPEEl5qayoWGhnLNmzfn7r77bq6wsFA4ZtWqVVzbtm258PBwrn379tzq1auFFBDO/Pbbb1yvXr24hg0bcgBc0lU8/fTT3BVXXMEFBQXVS1fx4YcfcjfeeCPXqFEjrlGjRlz79u25iRMncgcPHnSpG1/pO9zhy3fq1Cmfx7mnqOBZvnw51759ey40NJSLj4/nJkyYwJ09e9blmD///JO79957uaioKA4ApasgCCdsHKfC5mAEQRAEQRCELCgmjCAIgiAIwgBIhBEEQRAEQRgAiTCCIAiCIAgDIBFGEARBEARhACTCCIIgCIIgDIBEGEEQBEEQhAFQslaGqa2tRXFxMZo0aUJbfxAEQRCESeA4DufOnUNiYiKCgrzbu0iEMUxxcTGSkpKMLgZBEARBEAo4duwYWrRo4fVzEmEM06RJEwB1N9HXPngEQRAEQbBDRUUFkpKShHHcGyTCGIZ3QUZGRpIIIwiCIAiTIRZKRIH5BEEQBEEQBkAijCAIgiAIwgBIhBEEQRAEQRgAiTCCIAiCIAgDIBFGEARBEARhACTCCIIgCIIgDIBEGEEQBEEQhAGQCCMIgiAIgjAAEmEEQRAEQRAGQCKMIAiCIAjCAEiEEQRBEARBGIBpRNiAAQPQsmVLNGjQAAkJCXjggQdQXFzscgzHcXjxxRdx5ZVXIjw8HFdccQWeffZZl2O++OILdOnSBeHh4WjTpg3WrFlT77dWrFiBlJQUNGjQAGlpafjuu+9cPr9w4QImTpyI6OhoNG7cGIMHD8aJEydcjjl69Cj69euHiIgIxMXFYerUqbh06ZI6lUFowvHjwM6ddf8TBEEQhNaYRoTdeuut2LBhAw4ePIgPP/wQhYWFuPvuu12OeeSRR/D666/jxRdfxG+//YaNGzfihhtuED4vKipCv379cOutt2Lv3r3IycnB2LFj8fnnnwvHrF+/HlOmTMFTTz2FPXv24JprrkFmZiZOnjwpHDN58mR88skneP/99/Hll1+iuLgYgwYNEj6vqalBv379UFVVhV27duHNN9/EmjVrMHv2bA1riFBCWVkZSkpKsGhROZKTOdx2G5CczGHRonKUlJSgrKzM6CISBCETvl17+0ftmmAFG8dxnNGFUMLGjRsxcOBAXLx4EaGhoThw4ACuvvpq7N+/H+3atfP4nenTp2Pz5s3Yv3+/8N7QoUNRXl6OLVu2AADS0tJw/fXXY/ny5QCA2tpaJCUlYdKkSZgxYwYcDgdiY2Oxbt06QQT+9ttv6NChA/Lz89G9e3d89tln6N+/P4qLixEfHw8AWLlyJaZPn45Tp04hLCxM0jVWVFTAbrfD4XAgMjJScV0RnikrK8Py5cvhcDTBkiU54LjLcxKbrRY5OUtgt59DdnY2oqOjDSwpoSVlZWWoqqry+nlYWBjdfxPBt2sxqF0TWiJ1/A7RsUyqcebMGaxduxY9evRAaGgoAOCTTz5Bq1atsGnTJvTt2xccxyEjIwMLFy5Es2bNAAD5+fnIyMhwOVdmZiZycnIAAFVVVdi9ezdmzpwpfB4UFISMjAzk5+cDAHbv3o3q6mqX87Rv3x4tW7YURFh+fj46d+4sCDD+dyZMmIBffvkF1113ncfrunjxIi5evCi8rqio8KOWCDH4gffMmWgXAQYAHBeEM2eawW4/53OAJsyN+4DtcDTBmTPRaNasDHb7OeF9GrDNg3t79XZPqV0TLGAqETZ9+nQsX74clZWV6N69OzZt2iR89n//9384cuQI3n//fbz11luoqanB5MmTcffdd2PHjh0AgNLSUhdhBADx8fGoqKjAX3/9hbNnz6KmpsbjMb/99ptwjrCwMERFRdU7prS01Ofv8J95Y/78+Zg7d66MGiHUoFmzMthstfUsYc2anTGwVIQeOA/Ee/Zch08+6Q+OC4LNVos779yELl1+rHccYR583VOCYAFDY8JmzJgBm83m8x8vfgBg6tSp+PHHH7F161YEBwdj+PDh4L2ptbW1uHjxIt566y3cdNNNuOWWW7Bq1Srs3LkTBw8eNOoSZTFz5kw4HA7h37Fjx4wuUkBgt5/DnXdugs1WCwBCZ+08ayasjcPRRBisgTpL6Cef9IfD0cTgkhFKYfmeUswawWOoJezRRx/FyJEjfR7TqlUr4e+YmBjExMTgyiuvRIcOHZCUlIRvv/0W6enpSEhIQEhICK688krh+A4dOgCoW6nYrl07NG/evN4qxhMnTiAyMhINGzZEcHAwgoODPR7TvHlzAEDz5s1RVVWF8vJyF2uY+zHuKyr5c/LHeCI8PBzh4eE+64PQhi5dfkTr1r/jzJlmaNbsDAmwAEPMJU2oh14xeKzeU4pZI5wxVITFxsYiNjZW0Xdra+usFnwMVc+ePXHp0iUUFhaidevWAID//ve/AIDk5GQAQHp6Oj799FOX8+Tl5SE9PR1AXePv2rUrtm/fjoEDBwq/s337dmRnZwMAunbtitDQUGzfvh2DBw8GABw8eBBHjx4VzpOeno5nn30WJ0+eRFxcnPA7kZGR6Nixo6LrDVScO+zi4iAUFYUgNfUSEhPr7r+aQdN2+znDO2e9rpVwhVzS+iBVgGRlZcFut7u8J/f5Z/WeUsyaPKy+cMYUMWEFBQX4/vvvceONN6Jp06YoLCzErFmz0Lp1a0H4ZGRkoEuXLhg9ejSWLFmC2tpaTJw4EX369BGsY+PHj8fy5csxbdo0jB49Gjt27MCGDRuwefNm4bemTJmCESNGoFu3brjhhhuwZMkSnD9/HqNGjQIA2O12jBkzBlOmTEGzZs0QGRmJSZMmIT09Hd27dwcA3H777ejYsSMeeOABLFy4EKWlpXjyyScxceJEsnTJwLnDdo7tAGrRp8829OxZt1ji/vvvF4S3WfF2re5xLDQ71gbeJe1e72QFUxepwmL9+vUe35fz/JvhnlLMmm8CYeGMKURYREQEcnNz8dRTT+H8+fNISEhA37598eSTTwqiJigoCJ988gkmTZqEXr16oVGjRrjjjjuwaNEi4TypqanYvHkzJk+ejKVLl6JFixZ4/fXXkZmZKRyTlZWFU6dOYfbs2SgtLcW1116LLVu2uATaL168GEFBQRg8eDAuXryIzMxMvPLKK8LnwcHB2LRpEyZMmID09HQ0atQII0aMwLx583SoLevAd9jusR1AEPLy+gAAevbMxzvvvGPKRug8wzt9+jQA73EsrVv/Tis1NYZc0vrjbVD1htznn+V7KtbWicBYOGMKEda5c2dhhaMvEhMT8eGHH/o85pZbbsGPP/qeaWRnZwvuR080aNAAK1aswIoVK7wek5ycXM/1SSjDU2wHYMO2bRno1Gm/YnEiNV+b1OPk4HmGl4Lz5yOYjGMJFIx2SQcSvgZVueLMGff26u2eatGupVBeXg6A3Zg1FrGyYDWFCCMCm2bNygDUwn0xr78dVnR0NLKzsw2JN/A2w6u7Tg6ATfhcahyL1WMn1KasrEwYEMUwasC2Kr4G1cLCNn656Ixs12KUlZVhw4YNANiNWWMRKwtWEmEE89jt59Cnz7b/uSDlixNfGC1KPLlagVrYbJysOJZAiJ1QEzkB4rGxsVRnKuNtUD12rIUqFg9W75ezMLTbzyEjYxu2bctgNmZNDlpOAq0sWEmEEaaAD8K3SofF49nVGoTBgzegUaNKyXEsgRA7oSZSV6jZ7XZdB/RAsWZ6G1QBm2UtHu7s2XOd0J8BtcjI2GbaoHyt026YYZGFUkiEEaahZ898dOq0n8kgW6V4G4ySko57vL7Tp0/7HIitHDuhFaysUGM5f5Ta4tDboJqUdMyyFg9nPFnAnWNcAXO5wLVKu+FwOIS/WV5k4Q8kwghTYbXAabEZnntnlpubC8D7QGzl2AmleBIQUlej6onUAUpva6aa4tBZWHgbVK1q8XBGrJ1mZWWZ1uKp1qSmrKysXqoSq/X/AIkwgmFYmQlq7SLyNhgpcStaOXbCF97ukcPh8JpzCmBbtPqzQlAtysrKUFxcLOlYKeLQPWi+vLxcCFTn8WXxYKVP8BexduqeqNYsqDmpkWpdA8z9XJAII5glOjoa999/P9555x3RY7VqhHoFvLvP8JR2ZlaLnZAigAFIstQA9e8fq6KVBRepNwuYv+JQSjtxbw+DBg1CYmKiaa1D7litnfJoNanx1R6GDBli6ueCRBihGWpYkFq3bm3ocnOtAt7FRKM/nZlVYifkrGCUgrf7x9pgyIqL1NMzrbU49CbwYmJiTD3QesIq7dQZLSY1Yu3BeQ9nM0IijNAENeNIWOh81R4YveUyOn36NHJzc/3uzKwQOyHVHVFdXS16nK/7x9pgyIqL1DkoGgCOH0/QVByyYP3TGtYTyfqLFhY+VtqDVpAIIzTBapvUatER+BKXcjszI7P/64HUAdrbcWL3j6XBkAUXqXtQ9J4912Hjxv5QO2EyDyvWP61hOZGsWqg9qWGhPWgJiTBCc6wwwzWiI5DTmVm5c5c6QPs6Tu79MzJJKwvxQs7PEV+v7gIMUK8NWN3a4YwZ26AYWlr4WGgPWkIijNAUq8xwjeoI5LgVrdi5A9IHaF/HpaYe8Xj/AKCoKMXwJK2AtPQN7sfpgeeEwlC1DVjd2qE2rCX11XoSyFrIgJqQCCM0xUozXD06AqkDbGVlJUpKSnyeh0VRpmTwkDpAix3nfv8KC9tgyZIcZiy0rFozi4sT4L6fKVCLMWNeR4sWl59Bf8Sh1a0dasJqUl+1f8vq8XM8JMIITbHaDFfrgHcpA3FlZaWktB2s7ROpdPCQOkBLOY6/f6xaaFm6X0CdJXvbtgy4CjAOffpsEwSYP+kjWLX+eYIV6xOLSX21qBtWJyVqQyKM0BSzz3D1CHiX24G5W8DMsujBn8UavgbokJAQSccNGTIEly5dQm5urqUstFri2RVpQ2Li5QSu/uTvMstAy6r1CTA+qa+WdWP0fdcDEmGEKrgLCX5bGMDc/nytBwl/OzCzLnqQUm6p7oi4uDjJ94gXsFaz0GqFWD2pkSjTDAOtUuuT1tYzFtq/1VbC6w2JMMJvpAgJM/vztRwk/HEtsOpSE0NqubUUwGa30OqFWD2ZPVGmUqRYn7S2nrHY/lkQhWaDRBjhN1JnQoMGDUJMTIzwmgU3A2vIcS2Y1aUmp9xaPh9GWmhZiS/y9fs8rMdqiaF2XUsVGlrHbrHW/lkUhWaARBihKr46qJiYGCQkJBhcQnaRO4s0q0tNrNzOrmxAXUHCwoorluOLeMwSqyWG2nXtj9BQO3aLlfZfXl4OgD1RaBZIhBGqQTMh5SipO7O61MTKnZubW+87agkSFsQFi6vbPMG6wJKC1DosLi72eKz7s6BUaGjhpmOh/ZeVlWHDhg0A2BGFZoNEGKEa/syEWHfPaI2cuuNnnoB5Fz3ILbeagoS158jo1W2BhLe69iT8ebKzs4W/lQgNtSenLLmKndul3X4OGRnbsG1bhqkmhUZDIoxQDaUzITO4Z3yhhoCUWnfOM08esyx6kOIKDDRBQoHM+qG0rt2Fhlzrk9puOhasuZ7Ys+c6QYABtcjI2KbLs2z2CTyJMEI1lJrHlbhnWGl4aglIqXUndRFEVlYWcx2Pp8Hj9OnTghUi0AQJue/1Q0pd+5oA+GN90sJNx1rbdq9fIAjbtmWgU6f9Qv1oMSk0+wQeIBFGqIwa7jExawhLDc/f+B5/OndfosVut8u5DN3wdj8CUZBQILN+iNW12ATAH+sTC7FbWiNWv1pNCs0SX+kLEmGE36i54kyKNYTl5IBy3WlKO3eriZZAFCRGBzKzYk3WA191LSdvnRxYit3SGrFnWa9JoRnDGUiEEX6jVoyCEmHBkgtLaVmUDHRWEy1GCBKjRYiRFhKWrMl64Kuui4pSNGlLrMZuaQEL1j6WxgI5kAgjVEGNjkSusGDJGqR3WYy2oqiN3p24kSKEBQuJltZko8Wt+2/xeKtrLduSGQWW0vtn5EptlsYCuZAII5hBbmfIkjVI77KwMPNUA6MEiZGxJFpaSJQMoGpaEIwSt76uOysrCxzH1dtiiV8UYpW2pAZy7x8LyY8BtsYCuZAII5hBbmfIkjXIiLKYNUeYM1IFCQBh821vx/gzqOsdS6KFhUTOAMqjtgXBiHhNpcKPBYska8i9f2pNKPy1nrI0FsiFRBhhOEo7Q5ZmsFqVxb1zck7Uyv+uGXKE+UJKB62ldcWssSTuKLHuaWlB0KtelVo1AylmSwlS75+/9aNG+2ZpLJALiTDCcPzpDI22Bmk5m5baOWVlZbmsPrLawKGl69BfSxBL8U/uSLHuaWVBMDJGR45V00rtRE30vH/+WE+tYM0kEUYwgZzOkJU4BEDb2bRUUWG32wNqY3Q1XYf+brXF6gpDqVYMrSwIRsXoWMWqaTRmuX9WsGaSCCNMB2sNT+rv+Gs1MWMOHLVRe5D1xxLEar46uVYMLazJRsTomHmFHGuY6f6xLLCkQCKMMCVma3j+Wk1ohq/NIKuWJYil+yPFiqGGNdnTpOL06dPC+fSO0THzCjnWoPunHyTCCEIH/IlrssIMX43YKbFOmhcAUs6lZiwJa/dHihXDX2uylEmF3vGaZl4hxyJa3j/n/oBvt4F6/0iEEYQByHEtmn2GqFbslFgnzW8ELuVcarq0Wbs/Uq0Y/liTpbpi9YzXNPMKOVbQI97WW38QqPePRBhB6Ixc15XZZ4hqrW701ElnZGzDmTPRwudyflMtlzYr98eolWK+nudBgwYhJiamXjnVDCewwgo5VtAj3taXgDd6tbsRkAgjCA1wd7/xJnclriurzRDlLjDwNsgWFydi27YMTeOwfLlRjYx/8oQRC1bEnueYmBjNV+6ytlDH7OhZT94EvNlzH8qBRFiAwXJeI6vgy/0mx3VlxRm+kgB250GW32oGAN56a7imcVhS3aiA8fnqePRuu6y4YqnPMh9iAt7ZimrlcYlEWADBcl4jK+FL5MpxXVlthu9PALv7Neox+EuNe+Kxwu4FcmHFFUuYD7E2rIcVlQVIhAUQRm5abAWUWhHdB285riuzCCwpqCmc9B785cY98ZhJJCuBFVcsYT5IwNdBIiyAUSP5Z6C4N5Vsjgx4H7yt4FqUi5qdrp6DPwtxTyzDiiuWMBck4OsgERagqJFcMpDcm0qyo4sN3qNG9XGxoFhBsOqZwFOvwZ+VuCeWYGnrMCsQKJNZd0jAkwgLSNRKLhmo7k2pAjbQYh78TeApZcA2YvAnt0l9rBavaCTu7cbbBM9Mk1lfotLhcLi8DnQBTyIsANFqZh8IexvKEbCBNnhLtRa6WwAB6QO2EYM/uU08YxZBwDrOz7KvCR5Lk1lfIqu8vBwbNmwQPceQIUMQFRXl8bNAEvAkwgIQLcQBS3vneUOPrXOcseLgLSVvFuD7efDXAmhE50xuk8B1mekFa9tfeUOq5U7s86ioKEt5ApRCIiwAUVscGN15SBkcAOiydY7z7wHWye8FSI8BNPp5UAuKe7pMIMV/GoVZYg+lWu6kfE6QCAsotBIHRnYeUgeHrKwsl9dSAus9IUXAWjVeRqq70SyDiRie7mN5eTkuXbokvA4NDUVVVRVKSkoAGHNf9bBQKVmYQsjDbOELYpMtq0zGtIZEWAChlTgwsvOQ2ulXV1cLf/s7O5PimjKbwJKLrzo022DiC+f7WFZWJinWRU9rkBEWKrJuaIPZwhfEJltWmYxpDYmwAEOLwYGlzkNKfIKS2Rm5pi4jVocsPQ9qwqI1SO8yWcW6wWp8m5liD8UmW1aajGkJiTBCMVrGPinpJKXM0JXOzqzqYlSClDo002CiBBatQXqUyQrWDdbj27xN8FhDbLJl1cmY2pAIIxSjlTBRkp1e6gzdn9lZIAgsKUitQ6taC1m0BulVJitYN1izaEptDyy2G7HJllqTMVYtl2pAIozwCy0efCVJYKXO0K04O9O7gxKrQzX3UmSx82XRGqRXmazWftS0Hip9Vs1uZRez3Pk7GbNiMltnSIQRzCMlCaycGTqrrjIlnbhRrhVfdajWTgCsuo1YtAbpWSZW249c1LQe+isU1Hx+tZ64SBVPWVlZsNvtfpfBjMls5UAijDAMb52F1KSfzojN0ENCQuodz5KrTKng0NO1ovfiBNbcRjwsWoO0LpMVF6aoaT1kRSjoYTUyynLHYhiAGpAIIwxBiuiQ0uikLg6Ii4tj2uSvhuDQOjDbSLcJa4HwLFqDtCyT2V1mntDCemi0UNBLDBpxn1kMA1ADEmGEIUjpBKQ0OisODkoEh16dvxH1aPTAxsOiNUjPMpmpDUlBC+shK0JBrM04exvcYbW/ZDEMQA1IhBFM4MnyI6XRsRi47Q9KBQcrnb8WsHJtagt+NZ5dK05C9ESK9VDqtmgAO0JBrM3k5uYCMFeQO4thAGpAIowwHG+WH7FG53A4sH79etHzs9iheEOp4GCl89cCsWvzNqvXQnyodT41Fx2Y5dlmBTnWQ6kxVkOGDBHOxYJQkNIfaOWu1HJizGIYgL+QCCMMRczy46vRcRwn6TfMtGpGjuBwHkxY6fy1QOza+Fm9J1gV4EpiAK1m9TUKOdZDfk9QwLdocd5PlAWhID6B1cbFr8fCALMks5UKiTDCUMQsP95yToWFhUkeyMyEXMHBz8ABNjp/rRC7NlZWTipBSgwgq+k6zIrcOpIrWlgQCr7ajFoufveJgdSV7XLapZmT2UqBRBhhKHLdaPwMtaysTFEqCzMgR0zZbDaX1ywEi7uj1IIj1W1k5nsvdXBnNV1HoCAmWkJDQyWdR+926K3NqBG+4N3q1QQAVLO0WT3ukUQYYShKXE33338/3nnnHeE1K6vn/EFMcHgbdO12u2gHVVlZiaqqKhfXivtva9WB+WPB8dX5nj59Grm5uaa/90osEmYWnWZFTLRIaYd6CAWpIk+N8AVf6TDS0/NVXUxjVoElBRJhhOpIsXxIze/licrKSpfXx44lMbF6zh/cBQcvMgDxQddXB1VWVobXXntN9Pe1cmP5a8ERKxMrKyeVItciISY6y8vLVdmtgHBFimhhQSiIWY2c+xW1whc8PZP5+ekAagFYb6GQ2phGhA0YMAB79+7FyZMn0bRpU2RkZGDBggVITEwEAMyZMwdz586t972IiAicP39eeP3+++9j1qxZOHz4MNq2bYsFCxbgb3/7m/A5x3F46qmn8K9//Qvl5eXo2bMnXn31VbRt21Y45syZM5g0aRI++eQTBAUFYfDgwVi6dCkaN24sHLNv3z5MnDgR33//PWJjYzFp0iRMmzZNi6phCjmWD/fOwrmDAKTFeO3Zcx02buxf730zNnhPnbi/lh6W3FhaWHDMvipUrkVCTHRu2LCB4sI0wiwxl3LuvRqxa96eyR49vkF+frrlFgqpjWlE2K233orHH38cCQkJ+OOPP/DYY4/h7rvvxq5duwAAjz32GMaPH+/ynd69e+P6668XXu/atQvDhg3D/Pnz0b9/f6xbtw4DBw7Enj170KlTJwDAwoUL8fLLL+PNN99EamoqZs2ahczMTPz6669o0KABAOC+++5DSUkJ8vLyUF1djVGjRmHcuHFYt24dAKCiogK33347MjIysHLlSvz8888YPXo0oqKiMG7cOD2qyzDkbL7ta8YuZcDmBYrzbAuAzwZvthVmalp6fNWp1mketHIbWmFVqJzB3ZPoBDgUFyciNfUIAODUqVNMPcNWgoWAe3/QIsjd20QoLa0AaWkFzItWozGNCJs8ebLwd3JyMmbMmIGBAweiuroaoaGhaNy4sYsl6qeffsKvv/6KlStXCu8tXboUffv2xdSpUwEATz/9NPLy8rB8+XKsXLkSHMdhyZIlePLJJ3HXXXcBAN566y3Ex8fj448/xtChQ3HgwAFs2bIF33//Pbp16wYAWLZsGf72t7/hxRdfRGJiItauXYuqqiq88cYbCAsLw1VXXYW9e/fipZdesrwIc8eb5eXQoUPCwB8aGgq73S68ljpgexIoADB48Afo1OmA8JrvUMy4wkwtS49YnfLxVVolbtTSbWgWC4UzSjPd2+3nkJGxDXl5fQDwizJsyMvLQKdO+2G3n8P69euZeobNjNVW5mkR5C42ETJDezQS04gwZ86cOYO1a9eiR48eXlelvP7667jyyitx0003Ce/l5+djypQpLsdlZmbi448/BgAUFRWhtLQUGRkZwud2ux1paWnIz8/H0KFDkZ+fj6ioKEGAAUBGRgaCgoJQUFCAv//978jPz0evXr1cGmZmZiYWLFiAs2fPomnTph7LfPHiRVy8eFF4XVFRIb1SGMSX5WXnzp1evyd1wPYmUJKSjgMABg0ahMTERKFDYck1JxW1LD1idar1psNyxKTcmEKAzVWhvvA0GDocDlRXVwuvQ0JChAUVzpbKxMQSXBZgPEEoKEjD7bdvA8DWM2xmrLgyT4uyyp0IsdoujcBUImz69OlYvnw5Kisr0b17d2zatMnjcRcuXMDatWsxY8YMl/dLS0sRHx/v8l58fDxKS0uFz/n3fB0TFxfn8nlISAiaNWvmckxqamq9c/CfeRNh8+fP9xjXZkakWrOUblcEiAuUmJgYrx0O6yvMpC5ckNqZ+apTPVYYShWT/sQUusP64OhctrKyMpfdH3zFQzZrVgb3oGcAyM9PR1paAVkeVIblZ4glpK7ovv/++6lOnTBUhM2YMQMLFizwecyBAwfQvn17AMDUqVMxZswYHDlyBHPnzsXw4cOxadOmermSPvroI5w7dw4jRozQrOxaMHPmTBdLXUVFBZKSkgwskXK8WV6OHWuBM2f+QrNmZSgsbKNouyJnlLiizJDWQO0ZuK86LSpK0WWFoZR7JcdaaaVVgL6W+7tPEOz2c+jRIx+7dvV0OYeZVoUS5sfXBNDXMxwREaFXEU2BoSLs0UcfxciRI30e06pVK+HvmJgYxMTE4Morr0SHDh2QlJSEb7/9Funp6S7fef3119G/f/96Fq3mzZvjxIkTLu+dOHECzZs3Fz7n33Pu4E+cOIFrr71WOObkyZMu57h06RLOnDnjch5Pv+P8G54IDw9HeHi418/NhOcA4lp8+OHdQsOs23VI/nZF7o1YrivKLGkN1J4teqtTLVcY+uM2ZN1aqQVSJwhpaQXCyjMeM60KJcyPt7Q6ZpjksoShIiw2NhaxsbGKvltbWwsALjFUQF1c186dO7Fx48Z630lPT8f27duRk5MjvJeXlyeIuNTUVDRv3hzbt28XRFdFRQUKCgowYcIE4Rzl5eXYvXs3unbtCgDYsWMHamtrkZaWJhzzxBNPCIsG+N9p166dV1ek1XC3vNS5T2zguDqrpaeAeqnbFflrJTJ7WgM5SBFBWq4wVHqvArUjlzpBYGlVqNlWHBPq4em+mmWSywqmiAkrKCjA999/jxtvvBFNmzZFYWEhZs2ahdatW9ezgr3xxhtISEjAHXfcUe88jzzyCG6++WYsWrQI/fr1w3vvvYcffvhBSGZps9mQk5ODZ555Bm3bthVSVCQmJmLgwIEAgA4dOqBv37548MEHsXLlSlRXVyM7OxtDhw4Vcpbde++9mDt3LsaMGYPp06dj//79WLp0KRYvXqxtRamAvx2qt1im8+cb4YMP7vH5285CKCYmxqe7yZ9OnaUBTGukZJ0HtF1hqOResdSR6yky5EwQWFgVqseGzYS5CKRJrhqYQoRFREQgNzcXTz31FM6fP4+EhAT07dsXTz75pIv7rra2FmvWrMHIkSMRHBxc7zw9evTAunXr8OSTT+Lxxx9H27Zt8fHHHws5wgBg2rRpOH/+PMaNG4fy8nLceOON2LJli5AjDADWrl2L7Oxs9O7dW0jW+vLLLwuf2+12bN26FRMnTkTXrl0RExOD2bNnM5+eQo0UDr5M1J4aJu+S1FsIsTCA6YWcuDFW6oGVjlxvkSE2QejTpw/y8vJcjhe7Z1qKSKmxbMXFxS7HsmAdc66X4uIgFBWFIDX1EhIT67wsLJTRjATSJFcNTCHCOnfujB07dogeFxQUhGPHjvk85p577sE993i3yNhsNsybNw/z5s3zekyzZs2ExKzeuPrqq/HVV1/5LjBjyEm06gtPHZe3hqmnEDJ7WgO1YTkHEisduVSRoWZKCF8TBKnhDHrnxvPlPgaARYv2MGUdc64XX/eVLHjKYG2Sy7LL3BQijDAGKdsGiSEl1YJeQsiKOX/8gfX6YKkj1ztGzdsEISoqStY90ys3njf3cUFBWr2ta3iBc+rUKcOePf53xe4r5VtTDiuWddZd5iTCCI+otTLN00BfXl6OS5cuCa/5jPk8Wna+gSKwpMJafUi1VjocDo/f1ep6tI5Rk2OVVHqNWq429eY+3rUrHd5WQEvJi6b1wMhS7KHZYdWyboQ1Ww4kwoh6qD3rd+9ErZTfiVAXb9a58vJybNiwQXjtPIA7o9WgrXWMmtZWSbXbNO/e4TP5e3Ifp6dLy2Vm5MAodl+dxT4LcWMsu9X0tKwrqQdWV1yTCCPqQbNDwkikdNJ6bzmlR4yaWSw+3tw7rVv/jpycJYL7GIBoLjOjB0ax+8qLfRbixlh3qwH6WNaV1gOr4xqJMKIerKxMMxKWZ5yBjlS3mtr3kKUYNbmo2ablZPcXE64sDIxi95WVuDHW3Wp6obQeWB3XSIQR9WBlZZpR6LWijJCPVMuJVlYDLYKN9RD8WrRpsXvhcDRB06ZnMWbM66iuDvMocFgZGH3dVxaEojNGWw9ZQW49sDqukQgjBNTeNNp9cDEyIF8Oeq0oI+QjdUBUy2qgdbCxni4mX22aj+1yx1eb9HUvPO0Lm5p6pN45WB0YnWFFKPLoIQrN4AlQUg8sWrNJhBECagZWSrUmucOadSkQ9y9kGbkDor9WA62DjbV2MUldbconVJYjAL3di9DQKll1bsTAKEc0syYUtRaFZog9A5TXAyupM3hIhBEuqNWoxAYNFqxL3mZ7vFWAzP7sIXdAVMNqoMdAo9WzJnXbKiUC0Nu9qK4O91nngwYNQkhIiMtqV70HRini2nlFrp5CUaxf0loUmiX2TGo9sJo6g4dEGKELzqLLk6tCS+uSp07N4XB4TXPAw1osCFGHnAGRNVeSN7R81sREpD8C0NO98LZFmfO+sCwMjHLFtR5CUaoVSg9RaIZJqJR6YD0pNYkwwgUtYgHcZ1P8fpGA9g1bqlvUU2dnlgE8EFC65RRrriRvGPms+SsA3e+FlDpnfWA0CjErVJ3guNxPafkcm2USKqUeWH6OSIQRAlqsCvQ0m3LHuWE7HA5Vk7lKMZl7M7mbZQAPBPwZtFkMxnXHyGdNrgCUYp2SaqFgGSOtdd6sUPwE1pcHQa3ysDoJZcGKqiYkwggBtTbwdsbTbMod54a9fv16TQM+3S1eYiZ3MwzggYI/zwRrwbieMOpZkysAvQli5xgz/rys17kvjLTWebNCOf/t3E8NGjRIcPOqVR5WJ6FWs6KSCCO8osYG3t5mU+4zOj2C8z1ZvJo2PStqcpfq+iLYwayzZaOEi1wB6GmA06PO9U6dYNRA7qnfdMe5n4qJidFkOzhWJ6FmEVhSIBFGeESt1AzeZlOtW/+OY8daALAhKemY+hfghjeL15gxr/s0ufMzTHfMNNMKRMwyW9ZCuCgVKv4KQK3r3CypE9TAU7/pHEsL6OcaNLtFk3VIhBH1UGNVjFjiV73zb3kz71dXh/k0uWs1wyS0xwwDsdrCRY5Q0UIAalnnZkmdIBVPYtk5aa57v+lpVbkW4sisVmSzQiKMqIdauZXcB5eioiLk5eUZsvTZV5BpauoRJk3uRGCgpnCRI1QSEhKYtha6ixQr5e/zLZYvH+dshdLLNWgWK7JVIBFG1EOtVTFKtjvRqmMRCzI1Ku7LDNuDBCpmvjdShQqr5fcuUpqYJnWCL+Rsgu6MXq5BVp8LK0IijKiH1qti9Fz6LHU/zCFDhiAqKqred7XsjGijcHYx+70xu1DxJVIyMrYxmTpBCWJiuU+fPsjLyxM9D7kGzQuJMEJA7Q28vaGVyPNmuRgyZAguXbpUb8NwHqMsGrRROJuUlZWhuLjY5T0W742vmCJWczzJxZNI2bYtAxkZ27BtW4bH/sM5roplayUgLpZTU1PJNWhxSIQRAlrHAmgp8sxuuaCNwtnAkxusoCAN+fnpTN0bsZgiVnM8ycWbSElMLEZOzpJ62yWdORON1avzTLNaUopYlrMog8Sa+SARRrigZSPVUuRpkWhWL6wQaGwV3N1gGzf2h3NaAFbujZSYIlZzPMnBl0hxjo8y62pJtcRyIKXvsBokwghd0asDUCPRrF6YPX7HivDC2FmA8Xi6N0ZZIcQEvNlzPEkRKWafxKghlq2WviOQIBFGWA6zufasEr9jJXxtt+V8b06fPo3y8nJs2LBB+FxPK4RSAW+mQG4xkcLqJMZZmDscDlRXVwufnT171uVYtcSy2QVpIEIijLAU/nRCRlkzrBK/YyW8bRvjfm/4vRJ54VVcnFAvYFxLK4SYgPe044On55j1eCJfIoXFSYyvGFXndBtibVyuWGZVkBLeIRFGWAqlnZDRgf1mjd9hffBWirswBmrRo0c+0tIK6t0bZ8srwAGwAdDHCiEm4KXs+GD0s+8JOeKDxUmMt5XPvkS6u2BW0nZYFKSEb0iEEZZCaSdkRGC/+0Bjto3CWRy8fSFFMDojRRi7W155AcajhxXCXwHPYqoUKYt4nN3AvuqgvLzc0K3HpIp0NbZIY1GQEr4hEUZYCrU6IT0C+82+PQiLg7c3pK4ey8rKcvmeN2F86623YufOnT5jxwDzbbLMUjyl3Oeev/4zZ6JdXm/YsMGwiYCWIt15UuFrz0kSYGxDIoywBGrmINNzIGJVYMmFpcHbE1JXj3EcJ+l8sbGxALzFjtVZO8y2ybLZgrrdr43FVYFaiXQxK7TZV8UGEiTCCEugllXJbAMRC+hRZ2rFnomVNSoqStJzxH/uyfKakbENiYnFpttkWSye8vTp00xZZqOjo5GVlYX169cz2261EulSrdDusBTaYNV4UrmQCCMsgxoNllYXyUfrOlMz9kxKWaU8RyUlJcLfRrl/1B6gxOIp+ZWgrMT4ARC2IWO13eoh0n1ZAJ2D/VkSNZRc9jIkwgjCCVpdJB+t60zN2DOtyirF/cOSFcITnlaEpqfn1zuOhRg/d5TcV70sMVqKdDELoBrB/lpAyWUvQyKMIJyg1UV1yFlJqGed+Rt7plZZpQqqrKws2O12pqwQvuAFA79f5q5dPZGfn85cjJ87cu+r1it7pa589vUdKbBqAZSKmIh0XnDAY5a2JBUSYQQB6YH9Doej3ves1CEA0geoIUOGCH/r4ZJTK+5HjbLKjckqKytzcWH6OlZvPA3+/IblADvxVWLIua9ar+x1fz7cM+YDQEhICKKiogAov/9mt9yLiUjeBe6OldyUJMIIAp4HVfftaABg/fr19b5r9g7B3erlafbpCZvNdbm91nnOlMz6+WtzvyY1Vo9Jvees51Pjn/3i4mLk5uaa2rqi5L5qtbLX+V5q5RI0u+VeTESynPZGLUiEEaZB6xgOpd81c4cgRSB46wjtdruuec7kzvqlih9ntIjbMkM+tejoaOH3zWRd8TdVB0urKpX2b2bOC+ZLRPojjs208pJEGGEKtLYmeGq07tYTPRK46o2YQBDrCPXsyOTO+qWKH34FmR4dM+v51ABzWVf8TdXBitVP6mrBIUOGICoqql5YhNl223DGk4j0dw9gli3P7pAII0yBltsKSWm0Zhg8/cX9GjMytgn73AFsxAYpnfX7un96rSBjyeoihpmsK/4MpKxY/aSuFnQPj3CGF2g8LFl7xHAXkf6IYzNYnp0hEUaYEjWtUmKNVu4KHjN1fjyerjEvLwOA8VYCf/fYZEX8sGJ18YbZ9zJVAmtWPynPqre+Lyoqisl0FJ4Qe4bUEsdmmDyTCAsQzOQjF0PLhuXp3E2bnpW9gocVU7dUPG+vEsSElcCsLif3RQGsWF28Yfa9TJXCktVP7Fk1g6iQgrdn7fTp08jNzVVFHLMy+RKDRFgAYDYfuS+0bFjezj1mzOteB0/WTd1S8SYQnF2SRloJzORyKisrw6lTp+qtpGXN6uIJ1tu/WrBq9fP1rJpFVEhF7FnzVxyzbnnmIREWAGgZT6U3WjYsb+eurg7zOHgWFraxxKwU8C4QunT5EZ067Ve8GToL6Cl+vE14eLHeuvXvyMlZwoTVJZBh1ern61ktKkoR3dvTG/5ci55eFDXFMeuWZx4SYQGIN+uNcyNm1e2gZcPyde7U1CMuszIAWLIkxzKzUsD7zNNuP4dRo/oIe9AB2j0fWnX4ermcPMUX8tnnxcS6mqLWSuEHWsHq9Xt7VqXu7ekNJZ4Ovb0oaopjM1ieARJhAYevmAL3Rsyie1LLhiV27lGj+gCoqyexWalZkDrzTExM1PxZULvDN9rltGfPddi4sT+cFze4i3Ut0mNYKfwgUPH0rErt+9QMkTBipaGazyRL8X7eIBEWQMiNKWDJPSl1WyF/B1Rf53a2BMmxyLFslWDJLaN2h2/ktfFtzX11KeAq1rVIj2G2JfqE9H5LTFTovWiJxfALoydfciERFkB4i3k6dqwFzpz5i+kkpFoOqHIaLf/7UmelZrBKsGgNUavDN+raPK82rUPPuBSzDJw8LE9YtMRX/+ZwOFwWeXjrn4xYtMRi+AVLE0spkAgLILxZbz744G7w6QhY7qS1ajRyGq3zJsxSTN1WWhShF2bq8L3hqa0B8Mt9LlegmK0ezTBhURsp97R9+/Y++yc+rYMRi5ZYDb8w0/NBIiyA8GS94TiAd5mw3klridRGq0biUKttfaQ2ZuvwPeHe1oBa9OiRj7S0AsUCTKpA4TFbPVrJjSpFXAFQVXQatWiJ8A8SYQGAt3iq8+cb4YMP7nE5luVOmgX8MXWbzTVkFFbp8KVYSqXGpSgRKGauRzO3FamCOSsry+W1v6LTyEVLhHJIhAUA7sKBN187HE1M20kbiRJTt9lcQ0pRGtNTVlYmpEgxc4cv1VI6ZMgQxMXFKXqWpAoUs9aj2duKVMFcXV0t/K2W6NRyNaAZVhqaERJhAYKnzt6snbQZMZtrSAlKY3o8fc+sHb7WQcFyBYoZ69FKbUWKuJJ6T71NcMrLy11eq7ka0GwrDc0IibAARK90D2pgldVSZnYNSUWq26S4uBhVVVXCvfNlOUhNPVLv+yw8l77Q8nmUIlDMPnBapa1IFVdS7qkcF6fdbq/3vtJ+0iwrDc08TpAIC0DM1LCsslpKzOpoht0K5OLNDeOcFNg5kBzwbTkYNGiQLkljWUZMoJw+fRoxMTHIyspycXeFhIQgKipKeM3yM2YVC71Ui54U0SnVxWm321XPO8c6Zh8nSIQFKCw+jO5YYbWUVKujGXYrkIO7mMrI2IbExBKf907MchATE2PqOlEDMYHia+uaIUOGCEKsqqoKZWVlzNanGd2o7ki16MkVnXouWjCDwDF7GiASYYQpkNLxsGiS9rYogseMwlIMT2IqL68PAJvPQcNKsUBaolSgbNiwod57LIl9s7tR3ZEjrqTeU70XLZhxImy2NECSRVhFRYXkk0ZGRioqDEF4QkrHw/KMzdvvmXkZvi88Z4u3AfA9aFglFkgLpAoUQN4gxNLgaZYwCTn4ElchIa7Dr5SdOoycqJihvzJDGd2RLMKioqJgs9l8HsNxHGw2G2pqavwuGEHwSOl49JyxqWFxM/syfF94yxbP423QsEoskBb4EijO1lVvg5BZrANmEljekCqY4+LiZO/UYdRExQz9lRnK6AnJImznzp1aloMgvCK349FyNiTV4uYcf+NJlFnZ9VY/WzwH3hIG+L53VogF0gqlwv6vvxpg27YMU1kH1MKIEAUtLXpGTVTM0F+ZoYyekCzCbr75Zi3LQRgMi/FUPHI6Hq1nQ1Itbu7xN+5uUCu63rwtQiguTqwnAnylQjF7LJBReBuE+LrnX5vBOqAGRoYoaNlXGjFRUdJf6T2mmLVPVRyYX15ejlWrVuHAgQMAgKuuugqjR4/2mKOEYBuW46l4pHY8es6GPFnc6soo7ga1ouvN2QLAu8js9nNITT2CTp32e713VowFMgLPbuD6bmEzWAfUwIxB5d4weqIit78yYkwxa5+qSIT98MMPyMzMRMOGDXHDDTcAAF566SU8++yz2Lp1K7p06aJqIQltYbWzktPx8GXTYjbkPKPj83l5srht3NgfNhsku32s6HrjO1S5gwYJLFeUWBE8DUIZGdtcLGGAOawDamPGgG1nWJioyOmv9EwbYabk455QJMImT56MAQMG4F//+pewwuPSpUsYO3YscnJy8J///EfVQhL6wVJnJafj4QNX1Z4NeZvReV4BGASOq/vLm9vH6BmtXJS6FFgYNPzFKBe9XCuC2CDUsOEF01kH1MSsAdvuGNFW1OqvtFwYYva+RrElzFmAAXXLbadNm4Zu3bqpVjhCX1jsrLxt9sw3uKqqKpSUlLhknFfTwuStYYutAAQ8u33M1GH461Jg4RqUYqSLXq4VwdMz5XA4sH79egDmtA6oiVkDtuWixaRBjf5KzYk9y7HLSlEkwiIjI3H06FG0b9/e5f1jx46hSZMmqhSM0B8zdFbug6PrDOvycVpZmJx/z3UFYC3qVgCKrwI0SyfBqptaD1jKwi3FiuD+TCUkJJhG7GuNWQO25aDlpMGfZ0TNib2SlenOsPq8KxJhWVlZGDNmDF588UX06NEDAPDNN99g6tSpGDZsmKoF5BkwYAD27t2LkydPomnTpsjIyMCCBQuQmJgoHPP555/jqaeewi+//IIGDRqgV69eWLRoEVJSUoRjvvjiC0yZMgW//PILkpKS8OSTT2LkyJEuv7VixQq88MILKC0txTXXXINly5YJsW8AcOHCBTz66KN47733cPHiRWRmZuKVV15BfHy8cMzRo0cxYcIE7Ny5E40bN8aIESMwf/78egn6WMIMnZXzoCK2z2BMTIzLd/1thJ5+LydniWBhKCxsY1m3D0tuaiMwKs+WP/XO4oBjBFL3bWV1kJYCS5MGZ9Sc2Estu6edIXhY2iGCR5EiePHFF2Gz2TB8+HBcunQJABAaGooJEybg+eefV7WAPLfeeisef/xxJCQk4I8//sBjjz2Gu+++G7t27QIAFBUV4a677sKUKVOwdu1aOBwOTJ48GYMGDcKePXuEY/r164fx48dj7dq12L59O8aOHYuEhARkZmYCANavX48pU6Zg5cqVSEtLw5IlS5CZmYmDBw8iLi4OQF1M3ObNm/H+++/DbrcjOzsbgwYNwjfffAMAqKmpQb9+/dC8eXPs2rULJSUlGD58OEJDQ/Hcc89pUj9qYKbVJVL2GVRzI1tvv5eTswSpqUcAWDPQHtDXTc2iu8EoAcpieIBZkbpvK4uDtBJYSc6r5cReyTWyaLVXJMLCwsKwdOlSzJ8/H4WFhQCA1q1bIyIiQtXCOTN58mTh7+TkZMyYMQMDBw5EdXU1QkNDsXv3btTU1OCZZ55BUFDdDX/sscdw1113CcesXLkSqampWLRoEQCgQ4cO+Prrr7F48WJBhL300kt48MEHMWrUKADAypUrsXnzZrzxxhuYMWMGHA4HVq1ahXXr1uG2224DAKxevRodOnTAt99+i+7du2Pr1q349ddfsW3bNsTHx+Paa6/F008/jenTp2POnDlMx2GYRUjo7TqV+nusB9orQa+6ZjFVit5CqKysTLDMmCE8gGXkbPXEw+IgLReWrNZaTezFrpEVESoFv3xjERER6Ny5s1plkcyZM2ewdu1a9OjRA6GhoQCArl27IigoCKtXr8bIkSPx559/4u2330ZGRoZwTH5+PjIyMlzOlZmZiZycHAB1DXD37t2YOXOm8HlQUBAyMjKQn58PANi9ezeqq6tdztO+fXu0bNkS+fn56N69O/Lz89G5c2cX92RmZiYmTJiAX375Bdddd53H67p48SIuXrwovJazX6c/mG3FHqC/61Ts9zy5P3nM7OYAxK/deVEEoPx6jYpB82R9M0IIuYtQM4QHsIynvHU8Zhqk5cCK9VTLtBFi18iSCJWCIhF24cIFLFu2DDt37sTJkydRW1vr8jnv/lOb6dOnY/ny5aisrET37t2xadMm4bPU1FRs3boVQ4YMwUMPPYSamhqkp6fj008/FY4pLS11EUYAEB8fj4qKCvz11184e/YsampqPB7z22+/CecICwurF/gXHx+P0tJSn7/Df+aN+fPnY+7cuRJrQz38XQGjtgvJ1/n4wVFv16nY76nt/lQLNe6N2LU7D248/lqr9OpIxaxvegohT/cpPT0fu3alA9A3PIBFt7ASPJXRbIO0HJROGtS+31quAvd1jQCYEKFyUCTCxowZg61bt+Luu+/GDTfcILqxtzdmzJiBBQsW+DzmwIEDwirMqVOnYsyYMThy5Ajmzp2L4cOHY9OmTbDZbCgtLcWDDz6IESNGYNiwYTh37hxmz56Nu+++G3l5eYrLqCczZ87ElClThNcVFRVISkrS5beVdqi+VytefuilDspSzwfo4zo1cyJANd17cuvaH2uVnrN5sXIaFSfpLhTS079BWlqBLs8ci25htWDFUqQVSrcX0uJ+a/Vs+LpGM7rwFYmwTZs24dNPP0XPnj39+vFHH3203spEd1q1aiX8HRMTg5iYGFx55ZXo0KEDkpKS8O233yI9PR0rVqyA3W7HwoULhePfeecdJCUloaCgAN27d0fz5s1x4sQJl/OfOHECkZGRaNiwIYKDgxEcHOzxmObNmwMAmjdvjqqqKpSXl7tYw9yP+e677+qdg//MG+Hh4QgPD/dZH6whdbWiktU7UmasUuI8/MFMeb3c8de9J8VNrYVbx9+O1J9Zvafr0Vt8exIK+fnpSEsrAFDn+k5MTNTsmWN1pZ0amHGQloOSSYPZUtGIXaPZXPiKRNgVV1yhSj6w2NhYxMbGKvou7wLlY6gqKyuFgHye4OBgl2Pd3ZMAkJeXh/T0dAB1HWrXrl2xfft2DBw4UPju9u3bkZ2dDaAu9iw0NBTbt2/H4MGDAQAHDx7E0aNHhfOkp6fj2WefxcmTJ4UVlXl5eYiMjETHjh0VXS/rqD3D9Pd8ag6OLAosuShxwXgSoM6xNVq5dfxxAcrJJcS3TR5f1+MuQPnva/FsiAmFmJgYXZ9JK8VPWTXOTi2LPcuuWinXaKYV/jyKRNiiRYswffp0rFy5EsnJyWqXqR4FBQX4/vvvceONN6Jp06YoLCzErFmz0Lp1a0H49OvXD4sXL8a8efMEd+Tjjz+O5ORkIRB+/PjxWL58OaZNm4bRo0djx44d2LBhAzZv3iz81pQpUzBixAh069YNN9xwA5YsWYLz588LqyXtdjvGjBmDKVOmoFmzZoiMjMSkSZOQnp6O7t27AwBuv/12dOzYEQ888AAWLlyI0tJSPPnkk5g4caLpLF1SUXuGKXY+KwfCq40/gtaXxUgrt44/HancXEJDhgwB4P164uJKUV0dXk+AREVFGeJu0RuWB2UlaDVIGx1Dp4bFnnVXbXR0NIYMGSK0XW9eELOFjSgSYd26dcOFCxfQqlUrRERECKsPec6cUbeziIiIQG5uLp566imcP38eCQkJ6Nu3L5588klB1Nx2221Yt24dFi5ciIULFyIiIgLp6enYsmULGjZsCKAueH/z5s2YPHkyli5dihYtWuD1118X0lMAdYloT506hdmzZ6O0tBTXXnsttmzZ4hJov3jxYgQFBWHw4MEuyVp5goODsWnTJkyYMAHp6elo1KgRRowYgXnz5qlaLyyh9sAhdj45gfBGd5BGo4ULRmu3jlrxfmJWHD7Pobfref31sXAOitdDgLAym2d9UJaDlrGdrMTQ+XtuM7hq3RfEeWvfo0b1UT1Zt1YoEmHDhg3DH3/8geeeew7x8fGaB7137twZO3bsED1u6NChGDp0qM9jbrnlFvz4o++ONDs7W3A/eqJBgwZYsWIFVqxY4fWY5OTkeq5PK6P2wKHW+VjpINVCiaCUK5ClrE7VwlqjdqoUZysOUIsePfLrBbfzeN4LlANgjABhIV+fGQZlqWgZ22mVGDot2rSWE2BfVlpWV6t7QpEI27VrF/Lz83HNNdeoXR7CxKg9cKhxPrMFnfpCqaCUI2il/oYW1ho1B0p3Kw4QhF27eiI/P93rAg/369FbgOiZr08Noe2eH865fCxOaPRM8GvGGDq127SWE2ArWWkVibD27dvjr7/+UrsshAVQe7Wi0vPxg4zzQGH2+BZ/ZtxSBa1U0Sp2TqVCQa2B0pMVB6jfWTuHUjhfT2hoFVatGqtrXJZeK3HVEtqe8sPxmMWyrDZm72PUnEhraSG0kpVWkQh7/vnn8eijj+LZZ59F586d68WERUZGqlI4gn2kDrZ6Hucp19ixY0nYuLE/jHIvaYHYjNtfy4rcDdKdz2f0AOzZvViHc2fN7/3KDwTOqz+NiMvSo97kDHpig7KZLctqY1brDO2YYiyKRFjfvn0BAL1793Z5n+M42Gw21NTU+F8ywhSoPXtX43zeco25o+fMSe3YCCkzbn/qUu8N0tWGt+I4C28e987aW72zEJelB96ElCehrUeKErNiVuuMXhZYNd20rCxeUQNFImznzp1ql4MwMWrP3tU6X/24IFf0mjmpHRshZ8attC7NOqB4WgVXUJCG/Px0SZ21Ga0C/qA0uNmsVh8tMbN1RmsLrFqC3cw7mHhDkQi7+eabJR33j3/8A/PmzfPqtiAILfEWFwRA15mT2osD9BBIZh1Q+Fn9qVOnsH79etjt53D77duQllYgqbPWwirAaooUf4QUyyJd7/ouLy8HYC3rjJqoKdjNvIOJNxSJMKm88847eOyxx0iEEYbgTUgMHvwBkpKOG9I5qjEj1EMgmXlAiY6O9quzVrMDZzlFij9CilWRrnd9l5WVCclDAfasMyxMANQW7L7Ky19vSUmJx89ZFGiaijCO47Q8PUH4xJuQ6NTpQL1j9egg1ZoR6iWQzB4TxUJny3IOKX+EFKsiXe/69nQeTy7srKws3Z9HViYAegl2Vq5XLpqKMIIwGl9Cgg881mt25O+MUOus3/zG9M5YPSZKb1jKIeWvkDKDSNe7vr39nt1u1/y33TF6AsD3EWLPmVp9idHXqxQSYYTl8SYk9F7h5++MUKt4CKkzyKysLNjtdiZN+maAldWE/oh5My1c0Lu+Wbm/3tBbkLr3V7Nnn8LhwyFISbmExMTrAVxPfQlIhBEWRO2cZGqhhgtHiw5L6sIBu93OdFoKo5CSfZ6l1YT+xssZERgtN7ZJ7/pm6f56wiiB6HxPEhKArl09H6dF7BpLVmdfkAgjLAfLK2hYd+GwPptnDalWRNZWE/rz7LMc28Sjd32zdn+dEROIzruKGNEvahHLZaZ+TFMRdv/991P2fMIQWDJxm8WFw/psnkWkWhFZXU1oBpTE+uhd3yzfXzGB6L79lN6B61Lvb3FxMQDxvt1s/ZhiEVZeXo7vvvsOJ0+eRG1trctnw4cPBwC8+uqr/pWOICwAy5Y5Z1iezXuDhSX4PL5m30atJmSpftRCiptJ7/pmdbUoIF8gGh247u3+8mJRTCSarR9TJMI++eQT3Hffffjzzz8RGRkJm80mfGaz2QQRRhBmRIuBywwDnVhnXV5ezlRMGEtL0qXMvvXOIcVS/aiFmJtJ74zqZsjg7k0gAkBRUQpTMVNS3IhiIpFlq6QnFImwRx99FKNHj8Zzzz2HiIgItctEEIbhafNvT7MyMw1cUhGbzW/YsIGp62ZpSbrU2fe4cX+rl65AK2sUS/WjBlKErt5WZ5at3L4EYmFhGyxZksNUzJS3+xsXV4oWLTwnX3VGakoMh8NR73tG9mmKRNgff/yBhx9+mAQYYTm8bf7t3lGZZeCSC99ZHzvWAoANSUnHXD5n+bqNXA0ldfZt5ApTs6wW84ZUoav3gMrKpMQdd4HIb77OasyUt/v7+utjMWCAuEj0lBJj//4L+OmnD12ua/369fW+a+TkUpEIy8zMxA8//IBWrVqpXR6CYAKxjsp9NuWO0bMrObi7SgoL26i2skivmCSjV0N5mn2np+fr9vtiGF0/amA2NxMLeGpbrMZMebq/dUgXie4pMRITS3D4sPg1GTm5lCzCNm7cKPzdr18/TJ06Fb/++is6d+6M0NBQl2MHDBigXgkJwgDEOirn2ZTZXZbR0dHIysrC+vXrVZ0l6xWTxMrMnrciFhSkYdeudOza1RP5+emGCx696kdrwc1y8LuZYFXMut9fZ9QSiSxagyWLsIEDB9Z7b968efXes9lsqKmp8atQBHH8OHDoENC2LdCihf6/L7WjsorLko9TUnOWLDV9g7/1ZOTM3lPAdX5+OgB2XD161I+WgtsMwe9GoUT4siZm3e9vXFwpXn99LPg2BLj2vadPn1Yk6Fm1BksWYe5pKAhCbfgOZd26hpg2zY7aWhuCgjgsXOjAvff+pauLT0pHxYoFRk20miVr2QEaObPn41CKi4uRm5vLpKtHj/rxR3BLERKsBr8biVzhy6qYdW9DLVqUYMAA732v1FQVzrDcVyuKCXvrrbeQlZWF8PBwl/erqqrw3nvvUYoKQjZ8h+JwNPnfqp26tCe1tTZMnRqJP/54A3b7OV1dfGLZ7VkccP1Fi1my1h2g0TP76OhoQSCw6OrRu37kCG45QoKl9CgsICfJKX9sVlYWqqurERISgqioqHrHGiVm3X9Tys4icizoLPfVikTYqFGj0LdvX8TFxbm8f+7cOYwaNYpEGCEbvkGJNRYtXHzOM/H9+8tdcud4y24PsDngqoHaWytp1QGyOLM3WhA6Y0T9yBXcVkujYSRiSU7dYS1m1d0ixve9DkcTv/OZsdxXKxJhHMe5JGjlOX78eL0cOAQhB70bi/NM/PIMvoMklxlLA66/+LO1kjd3Er8nnVb3lKUcTSwKQiPqx1/BzWLgtDdY2o1AibtfqbDV8rqdrcqAemEMLPfVskTYddddB5vNBpvNht69eyMk5PLXa2pqUFRUhL59+6peSCJw0Lux8A1ebAY/aNAgxMTEAKjLHL9hwwYA7G/ILRWlA7YUd5KW99S5PJ4Gh6qqKpSUlHgtv1qwJAid0fv3/BHcrAZOe4Kl3QjE0+moJ2z1vG41whhYnBy5I0uE8Ssk9+7di8zMTDRu3Fj4LCwsDCkpKRg8eLCqBSQCDyOEjZwZ/KVLl1xee7Ma8ZYgZ1gOIFZSLqkB2VrfUxYGRU8C1bl+nAUhwPazoBSlgpvlwGlPsORG9dV3qZnzD9Dmut3bCd9vqhHGwOrkyBlZIuypp54CAKSkpCArKwsNGjTQpFAE4SsWyxnnBlxcHISiohCkpl5CYmLdal6pDUxsBr96dZ7s2aS377AWi6EWYpYMOS5OueiVDkMqLIhCo1AiuFkOnJYCi7s1hIZWaS5s/b1uX+1ErTAG1tuXopiwESNGAKjr0E6ePFkvfUXLli39LxlBiOA5nqu+AJAy0Pmawfs6t7Obkt8WRKw8VgwyluPOdUaLWSgLbi3WRKHW+BNTCLAdOC2G0c+bt76rujpcU2GrxnX7ev5ZjuNSE0Ui7NChQxg9ejR27drl8j4fsE/JWgk9kBrPJXWg8zSDFzt3TExMvaXzVslQLgcxS4anetICFt1aRg/SeuCv28esA66Rz5tYvJPD0UQzYav0ur25Hp3P6zxZYTWOS00UibCRI0ciJCQEmzZtQkJCgseVkgQhB6kNytNxaroy3GfwSs5tRIZyb5aWrKwsryuW1RRprFgyWHNrsSgKtULJs2SGwGlfGPm8eRO+vEVeS2Gr5LrFXPTeJit2+zmMGtXHxZJudByXmigSYXv37sXu3bvRvn17tctDBCj+zKS1FABKzq13hnJflhZ+j0ut97dkxZLBihjkYU0UsoYZAqd9YfTz5qle9BC2Sq7b1z1W4nGwCopEWMeOHT2u/CIIf1Da0fojAMQ6IiXn1lOQSLG06BWfxkK6DlbEII/Rg7QZYFVgSYG15w3QR9iqcd3OE8NAnqwoEmELFizAtGnT8Nxzz6Fz584IDQ11+TwyMlKVwhGEVJQKADGTvtJz6yVIxDovrd1h/gZkawELYpCHxUGa8B/W3ahaCVu1rtt9YpiRsS1gJyuKRFhGRgYA4LbbbnOJB6PAfMJIpKa1cEdKh6Xk3ErLIwcxS4vWM0xW3EksikEelkQhoQ6sPPd6o8Z1e5oYbtuWgYyMbdi2LSPgJiuKRNjOnTvVLgdBeOX4ceDQIaBtW6BFC31+U8lCAX8WFyhFzNKihzuMhYGGtUGRZVFIeEbuamMWnnsj8Pe6vU0MExOLkZOzhCmLoh4oEmE333wzvvrqK/zzn/9EYWEhPvjgA1xxxRV4++23kZqaqnYZCR0wQuj4gu8Q161riGnT7KittSEoiMPChQ7ce+9fCAsL01T0KBnUjRICvKXl2LEWAGxISjomfCYm0syW1d8XLJWZNVFI+CaQk+vqja+Jod1+Dnff3d1FR6jdTlhK7QMoFGEffvghHnjgAdx333348ccfcfHiRQCAw+HAc889h08//VTVQhLasmoVMG4cUFsLBAUBr70GjBmjzrmViDu+Q3Q4mmDJkhxwXJ3Lu7bWhqlTI/HHH2/Abj+H7Oxs1Qe6+hn4w2Rl4I+OjvbZyKuqqlBWVqZ6I/e1PYkvdxgf9+YODTb1MdJSwtrAYTVY2obI6ohNDPPy8jTrf1gU24pE2DPPPIOVK1di+PDheO+994T3e/bsiWeeeUa1whHac/z4ZQEG1P3/0ENAZqZyi5gUK5avB5zv6MTimaqqqlRdtqxGBn6p+bv8beTO1j0pwffe3GFWz+TujD9CxsjOm8WBw+rouQ0RywJbzbJJDeoHtOt/WBTbikTYwYMH0atXr3rv2+12lJeX+1smQifKysrw7bdAba1rI6qpAQoKytCwofzZvBwrlti59V7er0YGfqn5u/xt5NHR0cjKysL69esVB98HQiZ3Hn+FjJGdd6BtgWQ0erYLlgW22mVz7rMACM/umTPRLq/1xMg9P3kUibDmzZvj999/R0pKisv7X3/9NVq1aqVGuQiNcRZLNltOPaHzzTdvYv9+aWLJGTlWLDG8ma0BoKgoBcXFQdAif58aKwqlpobwZ6bJZ8IXE6ue9rcMpEzugPpCxqjOO5CEsxHo3S5YtMx4+001xL/z7h1GP8tG/z6PIhH24IMP4pFHHsEbb7wBm82G4uJi5Ofn47HHHsOsWbPULiOhAXzDEfPPK238almx3M3WhYVt/mdhC8Lbb3NYuLBckotT77JLEXJquS7F7qGnbNOBnBzR387X1/cdDodmmb0DTTgbgdHtggXLjCfUFixGP8tG/74zikTYjBkzUFtbi969e6OyshK9evVCeHg4HnvsMUyaNEntMhIao0UeIzWTVPLxTO4NR4mLU6+ySxFyarou5d7DQM3k7m/nK/b99evXa+Y68kcgsBx3xBJGtgtWLDPuaCFYjBa7Rv++M4pEmM1mwxNPPIGpU6fi999/x59//omOHTuicePGapeP0AktEouqLe7UcHFKxd+yyxFySjs5f3JRBWomd387Xynf18p1pFQgsBx3xBpGtQuWLDPuaCFYjJ4EGv37zigSYTxhYWHo2LGjWmUhLIia4k7vhuNv2aUKOaWdnL+5qAIxk7u/z5Cn7wP6dN5KBQLLcUesYPQ2RCxZZtwRazO+9pH21v8YPQk0+ved8UuEEYQWeOvoWGo4UpEi5PwRBnItF4Geyd3fZ4j//saN/QHw98uGwsI2klxH/roF1RDOrMYdGYnRyXVZssy4I9ZmvOUa5HG2sBotdo3+fU+QCCOYw71D9HczbamokYFfzjmkLo5QE6MHGxZQ8gw539fWrX+HzQZwHP+OTZLrSKlbUE3hzGrcEQsY+cyzPsGU0makrJ40uv8x+vc9QSKMUBW1thISWw3IqkCReg7A1Yyvp2vQygLLG/4KmejoaAwZMgQbNmxQ7DpS6hZUa+BgKe6IFgrUwaJlxttv+up35Yh7pfdVrWeGteeKRFiAotW+iyzNNNy3TKq/JVGIrC2JpCJ2Dl+pKVJTj/j9+0R91Hguo6KiAKjnOpLjFlTjuWQl7ogWClyGpf7SHbGy6Zlz0MrPDImwAEXLxm9kI/C2ZdLcuaWoqXkNgPItidRCamoKHqvGZ+mNWvdVDdeREW5BVuKOaAcAV1gWDVLKpoe4t/IzQyIsgGG58TsjVYRUVlbitdde87hl0uzZ8cjJaQIAirckUhuxGeSgQYOQmJhomvtkddRyHRnlFtQy7kipq4hi1MyP3uLeas8MiTCCeaRa7aRsmQTYmHDJAOIzyJiYGBJgDKGW9Vhvt6DWcUdKXUUsxagRylFT3HsT83z8rBWfGRJhhCmQIkZKSkoAiM/MWHDJSCknwR5qiGK977vWcUdKXUWsxKgR/qPGwiIpYt6KzwyJMMJyiM3MWFkKzvqydEIbjLjvellU5biKaBJibtTOOShFzFvxmSERRlgSXzMzljLFs1QWQltYTkegBnJdRTQJMTdaWli9iXkrPjMkwgjD0Sp1hK+8NlrlGlMCS2UhtIPldARqoMRVRJMQc6PFsyom5q32zJAIIwzFOQ7A6NQReqFVjjbCMywlBrXKM+wJqa6iQN86i/CNFDFvpWeGRBhhKPzgKDb70St1hB6N2KoWEZbEDo+VkzyyhlRXkVWff0IdxMT8oEGDEBMTU+97Zn1mSIQRTKDGqhepAmrIkCFC9nP375NFRBmsih0rJ3lkEamuIqs9/4R35E7OxMR8TEwMEhISNC+3XpAIIwTct/nREzVWvdAM2zjMIHasluSRFci9qB0sWpflIGdy5oxUMW/2+gFIhAU83rb5WbjQgXvv/QunTzfA6dNNNRdmaq16Yb3BBQIsih0rJnlkhUCa/Og56LNqXZaDnMmZXDFvhfoBSIQFNPxD7Gmbn6lTI/H5599h27YMcBxchJlWHarVVr0EIqyKHSsmeWQJlgc5tdB70DeDdVkOYpMzuWLeKvVDIiyAEdvmp06A1b3PC7Nvv81DUtIxPPHECE06XkrXYG7UFDtqWh2smOSR0BcjB30WrctykDo5UzqmmLl+SIQRHgcowP11XcP54IN7YLPVwm4vxrhxJZZxMxDqoJbYUdvqYMUkj4Rx6Dnoq2VdNjJ+SktLNKvWd6kEiR/CBgMGDEDLli3RoEEDJCQk4IEHHkBxcbHLMRs2bMC1116LiIgIJCcn44UXXqh3ni+++AJdunRBeHg42rRpgzVr1tQ7ZsWKFUhJSUGDBg2QlpaG7777zuXzCxcuYOLEiYiOjkbjxo0xePBgnDhxwuWYo0ePol+/foiIiEBcXBymTp2KS5cu+V8RGsAPUDZbXXJUm60WffpsE167w3FBmDs3ES+88C6WL1+OsrIyxb9t9ZxZZWVlKCkp8frPn7pjEU/PkhKx48nqUFSUAoejic/jfNGly4/IyVmCESPWICdniWlmyoQxuLddsU2k3Z9NtfAlYKRSWFiI5cuX47XXXsNrr72GF154FzNnbsULL7wrvOdvX+4LfnLmjFqWaDXqx0hMYwm79dZb8fjjjyMhIQF//PEHHnvsMdx9993YtWsXAOCzzz7Dfffdh2XLluH222/HgQMH8OCDD6Jhw4bCyouioiL069cP48ePx9q1a7F9+3aMHTsWCQkJyMzMBACsX78eU6ZMwcqVK5GWloYlS5YgMzMTBw8eRFxcHABg8uTJ2Lx5M95//33Y7XZkZ2dj0KBB+OabbwAANTU16NevH5o3b45du3ahpKQEw4cPR2hoKJ577jkDak8cT/FYDRtecOlsnHGexfgaCKVkw7dqUK9VAkflonZsnz9WB1q5RyjBV9vVO77QX+tyWVkZ3nnnHeG1r/akVfyUlpZos4camEaETZ48Wfg7OTkZM2bMwMCBA1FdXY3Q0FC8/fbbGDhwIMaPHw8AaNWqFWbOnIkFCxZg4sSJsNlsWLlyJVJTU7Fo0SIAQIcOHfD1119j8eLFggh76aWX8OCDD2LUqFEAgJUrV2Lz5s144403MGPGDDgcDqxatQrr1q3DbbfdBgBYvXo1OnTogG+//Rbdu3fH1q1b8euvv2Lbtm2Ij4/Htddei6effhrTp0/HnDlzmO3w3QcofjA9dqwFPvjgbjgbTqU85HKy4Vsp7wuPVQJHpaCV2PHX1RBIK/cI9fDVdvUe9P0VMM7X4nA0wcaN/cH35Xq6NrVaeGX2UAPTiDBnzpw5g7Vr16JHjx4IDQ0FAFy8eBEREREuxzVs2BDHjx/HkSNHkJKSgvz8fGRkZLgck5mZiZycHAB1D+vu3bsxc+ZM4fOgoCBkZGQgPz8fALB7925UV1e7nKd9+/Zo2bIl8vPz0b17d+Tn56Nz586Ij493+Z0JEybgl19+wXXXXadqfWhJ3WB6AFVV8h9y1rLhG4mZA0eloJXYUcPqwJrAskJuI7OipO49tV29B321BExBQRrco5Dktid3K6G3yWV2drZulmgzr6w3lQibPn06li9fjsrKSnTv3h2bNm0SPsvMzMTkyZMxcuRI3Hrrrfj9998Fi1dJSQlSUlJQWlrqIowAID4+HhUVFfjrr79w9uxZ1NTUeDzmt99+AwCUlpYiLCysXsb1+Ph4lJaWCsd4Ogf/mTcuXryIixcvCq8rKiqkVIsu+POQB3p6ALMHjgLGCQdWXA1qXX+guqhZQEniUG9tNydnCXJylmg66KstYByOJsjPT/fwibz25NwOxFybCQkJmlmirRJqYKgImzFjBhYsWODzmAMHDqB9+/YAgKlTp2LMmDE4cuQI5s6di+HDh2PTpk2w2Wx48MEHUVhYiP79+6O6uhqRkZF45JFHMGfOHAQFmWP9wfz58zF37lzdfk/uw6k0fQQrA6lRmF2EGikcWHA1qHn9geSiZg0lde+r7aamHvH4HDocDlUmJWpblz1dCwD06JGvqD1pnXZCDKuEGhgqwh599FGMHDnS5zGtWrUS/o6JiUFMTAyuvPJKdOjQAUlJSfj222+Rnp4Om82GBQsW4LnnnkNpaSliY2Oxfft2l3M0b9683irGEydOIDIyEg0bNkRwcDCCg4M9HtO8eXPhHFVVVSgvL3exhrkf476ikj8nf4wnZs6ciSlTpgivKyoqkJSU5LN+/MHTQ+xwOLB+/XpVf4eFgdRIzC5CjRYORrsatLp+o1zU5A6VXvdS2q7788D3n2pMStS8D96uJS2tQNH5WJhcWuE5NVSExcbGIjY2VtF3a2vrVtc5u+8AIDg4GFdccQUA4N1330V6errwG+np6fj0009djs/Ly0N6ep2JNiwsDF27dsX27dsxcOBA4Xe2b98umKi7du2K0NBQbN++HYMHDwYAHDx4EEePHhXOk56ejmeffRYnT54UVlTm5eUhMjISHTt29HpN4eHhCA8PV1QfSnF/iJ3Nx6dPn0Zubq4qv2P0QGokVhKhegkHVl0Nal2/US5qI6yarIk+OXUv1naNWGmoFLX7IbNPLlnBFDFhBQUF+P7773HjjTeiadOmKCwsxKxZs9C6dWtB+Jw+fRoffPABbrnlFly4cAGrV6/G+++/jy+//FI4z/jx47F8+XJMmzYNo0ePxo4dO7BhwwZs3rxZOGbKlCkYMWIEunXrhhtuuAFLlizB+fPnhdWSdrsdY8aMwZQpU9CsWTNERkZi0qRJSE9PR/fu3QEAt99+Ozp27IgHHngACxcuRGlpKZ588klMnDhRd5ElBW+dJL/oQQypA2EgZ8O3ggjVUziw6GoQu34+j5SUshllRdDbqsliDJzcuvfWdrVsD1oJV7F+SM6kxkqTSyMxhQiLiIhAbm4unnrqKZw/fx4JCQno27cvnnzySRdR8+abb+Kxxx4Dx3FIT0/HF198gRtuuEH4PDU1FZs3b8bkyZOxdOlStGjRAq+//rqQngIAsrKycOrUKcyePRulpaW49tprsWXLFpdA+8WLFyMoKAiDBw/GxYsXkZmZiVdeeUX4PDg4GJs2bcKECROQnp6ORo0aYcSIEZg3b57GNSUfqZ3kkCFD6i1GAALDdaEUVq05StFbOLD2XIldv7vV2JewUMOK4O9ArYdV02hXtiek1L2UtqtVe5Cz+lBKG5HaD91///2y25wVJpdGYwoR1rlzZ+zYscPnMTExMUIaCV/ccsst+PFH3x1Ndna2ywoZdxo0aIAVK1ZgxYoVXo9JTk6u5/pkEamdZFRUlOxcXkZnwzfaDcKiNccfAt39IPf6fd13f60I/lqYjHCHspKmRUrd+2q7fJiGVu1BzupDKWjdDwWyh0MNTCHCCH1Qu5M0UoSw4gZR89xqi0q55wt094O36weAoqKUehMXMfyxIvhrYdLbqslamhYpdS/WlrRuD2rWmZr9kNGTa6tBIowAoF0naZSVR+oskbXgWR53gVReXo4NGzaIfk+qqFSSMwkg94P79RcWtsGSJTmSJy5auKiVTJ70tmqysJJOi7rXsj2wUGeeYMXCL2VLPDN4GUiEEQDYbfBq4c1SwCJSBZIn1BafVVVVlottk4u361cycVF7AFM6edLbqsmCK1sr8aCVO46FOvOG0eJGzpZ4RpdVDBJhAYjzDIJf0cVyg/cXVmJRpCJFIKktKn2dj5WZr1G4Xz8fE6R04qJmPfkzedLTqsmKK1uNutfLHcdKnbGIlbbEIxEWYHizsli1wbMWi6IEd4GktqiUcj6rCiypeLp+sYmLc8oKHrXFqtzJk5FWTau4svWclFilzrTCCh4cEmEBhq+OwyoNvqysTBgAzd5I3QVSRsY2bNuWoZqotIJINQqxiYu3RMdqukjkTp70tmpa1ZXtrX54L0NVVRVKSkrqfc6Su9MKWMGDQyKMcMGITlLNVX/ulj4zN1JPAslZgPH4IyrNLlKNwLkt+Jq46JUTS+7kSe9M+IHiylYrvxetPpSOFTw4JMICHG8dxaBBgxATEwNA205S7VQS7p29mRupN4EE1AJQR1SaWaQahTdh4bzNl9ZxiEZbmFhJAcMSauX3CiThqgZm9+CQCAtgfHUUMTExspOzKrFo6ZFKwlcjZXk26U0gObsk/RWVZhapRuJrANTDxWv0QM1iJnxWUOP+k8CSh5ldtiTCAhS1Bwql2x95Cl5WE+fBITX1iPD+oEGDkJiYyHRn500gdenyIzp12u+XqJTqUmNZpLpj9A4JPHq5eFl5ds22+lhrzObit0q+LbNCIixAUbujkDrjFUs4qmbqBTFLH6sdixSBZLefw7hxf4Pdbnf5ntRrMtqSojYsuccCycXL0sIOVkS4klWzepeRx6z5tqwUN0ciLEBhcaBQc0YtNjg4HA6f3zdSgOglkFjqVP2FpR0SAsnFy4rVhyURLnXVrL8bc6uBWfNtWWkSSSIswOBnBmIdhd4zCLVn1GKDw/r160XPYeTszwydB8sYvUOC2YOFpcLKZI61GDWx+6/GxtxqwoqYloNV+kgSYQGG+wxi9uxTOHw4BCkpl5CYeD2A61WZQcgdBNXuBNQYHFib/RkFK24eqRgVo2T0ikUjYNHqx0qMmrf7z5ILl4cVMR2IkAgLQJwHzIQEoGtXdc9v5IbCUi19hDRYcvNIwcgBzkouEjmwZPUz8v5LFdcsWp2ovzQOEmGEqkjpBD1ZydRyj0qx9JWXl4suECDqYCnWSgpGD3BWE1jeYNXqZ+T9FxPhfB45Vq1OLInpQIJEGKEqYp2gLyvZM8+kquIe1drSR7ALqwOc1WDV6mf0/ZdyvSxbncycb8uskAgjVIGf8frqBMWsZHUJYuN1F01GB3GbCdbriuUBzmrIFVh6xBaa5f5bwep0/Dhw6BDQti3QooXRpTEvJMIIVXCeGV9xRQWmT7ejpsaG4GAOc+acQE3NORQVpfi0khkRsMxKEK8ZYLmurJh81kqota+iFMwicFiwOsnNt8UL6XXrGmLaNDtqa20ICuKwcKED9977lyVjHrWGRBihGnzje/RRICsL+P13oE0bG1q0SEBZWTYOH76Et9/mUFtrE74THMxh0qQ7kJISonvjZXGVEquwXlesuseIOtTaV9EbrMaoKfltPcsop93wQtrhaIIlS3LAcXX9eG2tDVOnRuKPP96A3X6OmUU6ZoFEGKEJLVq4mqijo6MRHQ289hrw0ENATQ0QHAz88582dO0ar2vZ+E5OLH6NrCaXMTrgXQrU8bOPv2Lel0tzyJAhsNlsLrtIOGO0CGd1oiD19/hyi/UFrCzSMQskwghdGTMGyMzkrWTGxBLwnSFrljmWMTrgmbAG/oh5PV2aWsFiueTuHUl9gbqQCCMUozTQ1t1KZgQsWeZYhtUdFoj6iLXHyspKREREeP1cDyuMPwO41i7NQETO3pE8Zln8YBZIhBGKMFsST2+wYJljGb12WCD8Q2p7FEPr9qrGAG50fKLZdpDwhdK9I82y+MEMkAgjFGG2JJ6+YMEyxzKUd419pO6dKPa5Hu3V3wHcyPhEK7hEPaGkTllY3WkFSIQRmnL69GmX12aaJRKEGRFLJcJCqhF/BnAjY5Ks6hKlOC/jIBFGaEpubm6998w2SyQIsyDmVjLKladmegYWYpKMdomqDQt1GqiQCCN0x2yzRIIwC2JuJaNceWqnZzA6JskMKVvkIlanLOY5swIkwgiCICyCmFtJqttJi+Bzta3fRsYkWdV956tOWc1zZnZIhBGEDKy0MspK10LUIeZWkuJ2YjX4nCVLjNXcd1L3hKX+QH1IhBGERKySlgPw/1pIwLGLmFtJ7HNWg89Zs8QY7RL1l7KyMpSXl0taqEEuRu0gEUYoIhAbpZXScvhzLVYSo1ZB6t6JYp+HhYVJzh2lFWYS+GZN0+C8D+Qnn+R4vcdZWVmIjY1lpr6tCIkwQhGeZqWnT5/2uBrSG2bqbInLWEmMWgUpViKpGfNLSkoAGBN8zqorlIcll6g/SN0H0m63Ux+sMSTCCMU4N87jx4GDB8PgcDSRvBEvWVPkQaK1DqoHz6h9zUYEn8txhRrxHLDmEvUXqy4wMBMkwgi/WbUKGDcOqK2Nhs2WI5r80dnlIQZZU+rQWrRKDcxV+7tyIfGuH0YGn4vnO3Ng/fr1LsfrZTGz0nNltQUGZoREGOEXx4/zAqzuNccFYfPmOzF7dhoSE2vrHe/u8iCkoaVo9SeDut7Z10m864tRwefi+c4uW2pYWjxgRsy+wMDskAgj/OLQocsCjKemxoZz5+KRkGBMmQjp+BN8zULWcD2tcIGKEcHnYm6yvLw8AGw8g1bArAsMrACJMMIv2rYFgoJchVhwMNCmTZ2V7NChumOsuEG2FQSAP8HXRmcNZ2EPRCvCQvC5VDdZQUGa5TLXE4EFiTDCL1q0AF57DXjoIaCmpk6A/fOfwOefX3ZTBgXVHTNmjNGl9Q/nQceXANBjZZS/ApAvo5jFwde1KA3qVSOgmiwg2sFK8LmYm8zhaIJdu9LrfY8CywkzQSKM8JsxY4DMTOD33+ssYACQnHzZOlZbWyfSMjPNbRHjB6fDhy9h3rw4cJwNgGscXEpKiOaDkxoWIOeB9oorKjB9uh01NTYEB3NYsKAC9947zOtAywszMWuFJwGnVmC90VY4q8NK8LkvN9mZM9EAguq9n56eT8+ACCxYO4k6SIQRqtCixWWBtXOnpzixOpFmZhEG1A1O+/Z5j4PTeuxS0wLED7SPPgpkZfEi2oYWLaIARPn8nrOlZPbsUzh8OAQpKZeQmHg9gOu9CjipgdLFxcUuZXSHltZbEzmDvqdnAKhFWlqB+gWzGKxYO5VipVAXEmGE6viKE+Mx80xMyvVphVYWIGcRLQXnzjkhAejaVdnvenOr8kl/vVnEaGm9NXEXB+Xl5bh06RIAoLQ0BEePhiMm5iz27t1Ez4CfsCqwxLicEskaoS4kwgjV8RYn5jzIm3kmJuX61EaNGC7WcHarArXo0SMfaWkFLoOo+/PhfH2+YobMVA+EK3ybLysrw4YNGwB4csH/gS5dfhSNG6PnwDqUlZXh8OFLGDcuDrW1daEgdaEuHK699qQuoSBaQCKM0AT3ODFPAsWMDYZHyvWpiT8xXCzi7lYFgrBrV0/k56f7jHEzs3gn5CF1D0tvcWNZWVn0HFgEPpa0qCgFtbUjXD6rqbFh2bLPkJp6xJRJmkmEEZohx8VlRh+/XBeevyiN4WIRT25VQFqMm9k6WcI/lLrgY2NjtS4aoRO8IBfzBJgxOS+JMMJwtPTxW3WfQb0FoNp4Dqqug1Y5Es54flY4FBcnIjX1CIA6q5fdbhc+NWu7JnxjxThAEmGEobhve6RmOgvaZ5Bd+M5048b+cE8zQKscCWfs9nPIyNiGvLw+AGz/e9eGbdsy0KnT/v+5I+1IoC06AgKrbbNEIowwFM/bHqmTzoL2GWQPT4H1BQVpyM9Pt8zMllCfxMQSXBZgdZDFNHCx0jZLJMIIQzEy3QOhP3xgfXFxMXJzc2G3n8Ptt29DWlqBZWa2hPpQXjjCqtQPyCAIHeHTPQQH173WI90DYSzR0dFITEx0ec9uP4fU1COUYoDwCO++ttnqZmtkMSWsAlnCCMPRO90D4T/+LnigVBOEGO4C3GqxQAQBkAgjGMHsq/0CCbUWPJDAInwRHR2NIUOGCAlbAWvFAhHSMfMOK2KQCCMIoh6+LF2nT592ee1t6yFa8ED4S1RUlNFFIDRAbl5IK1vOSYQRAYM3sUC4ItXSBXjaTsZ7tnuCkIuVLSCBBj+xW7euIaZNs6O21oagIA4LFzpw771/SQphsCIkwgjL4twx+xIL1IG74j7b9CZexbaTIQh/sbIFJJDgJ3YORxMsWZIDjuP3frRh6tRI/PHHG7DbzwVkzkYSYYRl4Tvww4cvYd68OKHhc1wQNm++E7Nnp5l201e98CVexbaTcXZb0kAZmKixYwU9N+aHfwbE+oxADGEgEUZYmujoaOzb5ykhrA3nzsWD+nfviFm6vOVuCg2tQlFRClavznOxiAXiLDeQcXdre7Oo0nMROFC+t/qQCCMsDyWEVYbYrNXTPm5XX70Pq1aN9Wg5C8RZbiDjfL99WVTpuQgc9N77Ue4CACMgEUZYHj4h7EMP1W2JRAlhpSFl1uqcuyk0tEoQYADFiBF1UOwg4YzW+d78XQCgNyTCiICAEsLKR+qslbeKFRWl+LScEYGJmEWVCDy0yvdmxgUAJMKIgIESwsrH16x10KBBiImJwenTp5Gbm0vxHoRHxJ4LfgFHcXEQiopCkJp6CYmJdbEDrFktCLYx4wIAEmEEQbjgnrLD26w1MTHRZYDUO96D0Ad/VziKPRe5ubk+Y8ZYsloQ5sBME0ISYQThhPOAE6gzc39yM9H+ftZCrRWOvp4LsZgxlqwWhDL0TrprpgkhiTCC+B/OA04gzMx9rRzy5/pofz/roOYKR2/PBcWMWR8jku6aZUIYJH4IW1y8eBHXXnstbDYb9u7d6/LZvn37cNNNN6FBgwZISkrCwoUL633//fffR/v27dGgQQN07twZn376qcvnHMdh9uzZSEhIQMOGDZGRkYFDhw65HHPmzBncd999iIyMRFRUFMaMGYM///xTdlkItuA7CG8zc4ejictxZqSsrAwlJSVYtKgcyckcbrsNSE7msGhROUpKSlBWVib7nLS1jPURaxOekHq/edeRM6y6jgjlREdHIyEhwes/LSa2dvs5pKYeYVaAASa0hE2bNg2JiYn46aefXN6vqKjA7bffjoyMDKxcuRI///wzRo8ejaioKIwbNw4AsGvXLgwbNgzz589H//79sW7dOgwcOBB79uxBp06dAAALFy7Eyy+/jDfffBOpqamYNWsWMjMz8euvv6JBgwYAgPvuuw8lJSXIy8tDdXU1Ro0ahXHjxmHdunWSy0Kwi1Vn5lqtHKKtZayPkjYh9lzwCzrM5DoiCLUxlQj77LPPsHXrVnz44Yf47LPPXD5bu3Ytqqqq8MYbbyAsLAxXXXUV9u7di5deekkQPkuXLkXfvn0xdepUAMDTTz+NvLw8LF++HCtXrgTHcViyZAmefPJJ3HXXXQCAt956C/Hx8fj4448xdOhQHDhwAFu2bMH333+Pbt26AQCWLVuGv/3tb3jxxReRmJgoqSwEu5gpqFMOWq4cIoGlDazEKCptE1LLZhbXEUGojWlE2IkTJ/Dggw/i448/RkRERL3P8/Pz0atXLxcTeGZmJhYsWICzZ8+iadOmyM/Px5QpU1y+l5mZiY8//hgAUFRUhNLSUmRkZAif2+12pKWlIT8/H0OHDkV+fj6ioqIEAQYAGRkZCAoKQkFBAf7+979LKota1NbWmto9xhLV1dVo1KgRGjWqxciRW7Bz5y2oqQlCaWkI7rjjU8sMDFYVmVaDpRhFPaxVFEtI+IsZQyNMIcI4jsPIkSMxfvx4dOvWDYcPH653TGlpKVJTU13ei4+PFz5r2rQpSktLhfecjyktLRWOc/6et2Pi4uJcPg8JCUGzZs1cjhEriycuXryIixcvCq8rKio8HsdTVVWFoqIi1LpvjEgooqamBj179gQA9OwJjBnzM2prg3DhQiX27DmACxcMLqBC+AD8yMg60aV0QDXDFiBWQixGUe/Vg2StIljHjKERhoqwGTNmYMGCBT6POXDgALZu3Ypz585h5syZOpXMGObPn4+5c+dKOpbjOJSUlCA4OBhJSUkICjLdGgvmqKqqQnl5uct7HMfh7NmzaNeuXb04RDOwahUwblzdvplBQXHo3/86dOnyo+wB1fU8ddtAjRmj00UEOGrFKPqb7wtQ11plRqsFwT4sCSwpGCrCHn30UYwcOdLnMa1atcKOHTuQn5+P8PBwl8+6deuG++67D2+++SaaN2+OEydOuHzOv27evLnwv6djnD/n30tISHA55tprrxWOOXnypMs5Ll26hDNnzoj+jvNveGLmzJku7tKKigokJSV5PPbSpUuorKxEYmKiR/csIZ+goCCEhNRvEna7HbGxsQgLCzOV6/f48cvCCagLwHe2oEgZUMvKynD48CWMGxeH2lo+kB946CEO1157EikpIabr9IxCaXyXGu5jpfm+tBRKZrRaEITaGCrCYmNjERsbK3rcyy+/jGeeeUZ4XVxcjMzMTKxfvx5paWkAgPT0dDzxxBOorq5GaGgoACAvLw/t2rUT3H/p6enYvn07cnJyhHPl5eUhPT0dAJCamormzZtj+/btguiqqKhAQUEBJkyYIJyjvLwcu3fvRteuXQEAO3bsQG1trayyeCI8PLye0PRGTU0NADZmiVVVwIULQIMGAAPFUYw3a2JQUBCCgoIQGhqKqqoqxXWupzuvrKwM334L1Na6DmByLCj8wF1UlILa2hEun9XU2LBs2WdITT1imbxpWuJPfJca8VhK831pLZTouSECHVPEhLVs2dLldePGjQEArVu3Rov/jWb33nsv5s6dizFjxmD69OnYv38/li5disWLFwvfe+SRR3DzzTdj0aJF6NevH9577z388MMPeO211wAANpsNOTk5eOaZZ9C2bVshRUViYiIGDhwIAOjQoQP69u2LBx98ECtXrkR1dTWys7MxdOhQJCYmSi6LWthsNtXPKYdTp4AjRy6/Tk4GJOhqJgkJCUFcXFy9GLsLFy7g3LlzGDJkCBo1aqRo4NDTneecisJmy1FsQeEHXjFLjJmsg0bhb3yXWvFYYr/vCRJKBKEdlgkkstvt2Lp1K4qKitC1a1c8+uijmD17tktKiB49emDdunV47bXXcM011+CDDz7Axx9/LOQIA+rykE2aNAnjxo3D9ddfjz///BNbtmwRcoQBdekw2rdvj969e+Nvf/sbbrzxRkHISS2LFaiqchVgQN1rM4/JISEhCAsLq/cvODgYcXFxigak+m5B4KGH6t7XAn4g5y0ofCJMqRYUT3tHKjkPUR9f8V1iqJF40p/fJwhCfUxhCXMnJSUFHMfVe//qq6/GV1995fO799xzD+655x6vn9tsNsybNw/z5s3zekyzZs2ExKzekFIWs+NtteDFi97dkiNHjsSbb74J4PKq0quvvhrDhg3DyJEjJS8wWLNmDXJycuoF0rPIoUOXBRhPTQ3w++/auyV9WVAGDRqEmJgYl+NpT0htMTo9iNG/TxCEK5axhBH642QcdEEsrK1v374oKSnB4cOH8dlnn+HWW2/FI488gv79++PSpUvqF9RAysrKEBl5AkFBrpOG4GAOTZqcULRNkFy8WVBiYmJkbR1ihi1AWEeOVVGLoHiyahIEW5jSEkb4jxrL1cPC6mLA3GPCxMaE8PBwYZXoFVdcgS5duqB79+7o3bs31qxZg7Fjx+Kll17C6tWr8X//939o1qwZ7rzzTixcuBCNGzfGF198gVGjRgG4HBP31FNPYc6cOXj77bexdOlSHDx4EI0aNcJtt92GJUuW1MvtpgfOwdj9+7sGQ/frtwmbNllrQ3BCGlKtiloFxZNVkwhE1BjztIBEWADivlzdG1LEQWwsYLfXuSDDw5WvjrzttttwzTXXIDc3F2PHjkVQUBBefvllpKam4v/+7//wj3/8A9OmTcMrr7yCHj16YMmSJZg9ezYOHjwI4PJijerqajz99NNo164dTp48iSlTpmDkyJH1NmrXA+cG72vgo8D2wENqvi2tBgUjstOzOggS1kfNMU9tSIQFIFIHfanHhYWpk5qiffv22LdvHwC4pBFJSUnBM888g/Hjx+OVV15BWFgY7HY7bDZbvbxro0ePFv5u1aoVXn75ZWGBBS/UjIK2ZSGMwujEqCwPgoT1cR/LvOXJM2JCTCKMYAaO4wT34rZt2zB//nz89ttvqKiowKVLl3DhwgVUVlb6TE67e/duzJkzBz/99BPOnj0rpJs4evQoOnbsqMt1WAWjB24rYXRdGp0YVe2JH0EoxVeePCMgEUYww4EDB5CamorDhw+jf//+mDBhAp599lk0a9YMX3/9NcaMGYOqqiqvIuz8+fPIzMxEZmYm1q5di9jYWBw9ehSZmZkB1bmrNeAbPXDridauMhbqkqX75M0SQRBaoiRPntaQCCOYYMeOHfj5558xefJk7N69G7W1tVi0aJGQsmLDhg0ux4eFhQm7BvD89ttvKCsrw/PPPy9s9/TDDz/ocwEMoeaAz9LArRVKt/SRSyDUpRRYs0QQgYNa+7CqCYkwQncuXryI0tJS1NTU4MSJE9iyZQvmz5+P/v37Y/jw4di/fz+qq6uxbNky3Hnnnfjmm2+wcuVKl3OkpKTgzz//xPbt23HNNdcgIiICLVu2RFhYGJYtW4bx48dj//79ePrppw26SmOhAV86Srf0IeTDoiWCCBxYzJNHecIIRVy6dAlVVVVe//nK97VlyxYkJCQgJSUFffv2xc6dO/Hyyy/j3//+N4KDg3HNNdfgpZdewoIFC9CpUyesXbsW8+fPdzlHjx49MH78eGRlZSE2NhYLFy5EbGws1qxZg/fffx8dO3bE888/jxdffFHrqiAsgjeB4HA0Mbhk1oEy9hNGwmKePLKEEbK5dOkSTp48KXpcXFwcQkJcH7E1a9ZgzZo1ot+dPHkyJk+e7PLeAw884PL61Vdfxauvvury3rBhwzBs2DCX9zztrqAHRgdjE/Jg0VVhNVi0RBCBBWt58kiEBSD+igP3Da69IfU4q+JvbNbx43VbHrVtq/32RgQJBD3gLRHuLl+jB0LC2njaD9efXSrUhERYAMLCSq1AQWkdrlp1edPvoCDgtdeAMWNULhzhAgkEZUhZWeo8uPmyRJBVmNAClsc8EmEBCgksdjl+/LIAA+r+f+ghIDOTLGJa40sgnD59WnJHHSjZ4eUkYWV1ECQCA1afLRJhBMEYhw5dFmA8NTXA77+rJ8LI1ekdb66K3NxcAOKpKgIpO7ycJKwJCQkal8ZaBIqQD3RIhBEEQ5SVlSEy8hKCguJQW2sT3g8O5tCkyUmUlYUo7nj5Tn3duoaYNs2O2lobgoI4LFzowL33/hWwnbpcF5iY8KDs8IS/BJKQD3RIhBEEIzh3vP37u+ar6tdvEzZtqstXpaTj5c/tcDTBkiU54Lg6gVdba8PUqZH44483YLefC8hOnY8XKS4uFqxdgHpZ3Sk7PCEXEvKBA4kwgmAE5w7VV2ySko6X/45YGoZA7dSjo6MlJ22VQ6BlhyfBqS+nT5/2+H6gWrXNCIkwQjb8VkJqHUd4xltskj9QGgZx1MrqHmjZ4VkTnIEQU+VsuXUnEK3aZoREGCGbkJAQxMXF+cwDFhQUVC9RK2E8LKZhYG2wVCtpayAlf2VNcFJMFbkqzQKNkoQiWBVYX3zxBW699VacPXsWUVFRkr6TkpKCnJwc5OTkaFo2VmApYzSLg6Va1sJAsjqyJjgppoowC+QvInRl5MiRsNlsGD9+fL3PJk6cCJvNhpEjR+pfsADDbj+H1NQjhltkWBws1dpfjsV96tSGX1nKC05nnAUnJWH1D4ejCYqKUmgfUwvCpjmDsDRJSUl47733sHjxYjRs2BAAcOHCBaxbtw4tW7Y0uHSEkRgZ2K1WVvdAyg7vnIn8iisqMH26HTU1NgQHc1iwoAL33jvMErFXRsJarB2hLiTCCN3p0qULCgsLkZubi/vuuw9AXYBpy5YtkZqaKhx38eJFTJ06Fe+99x4qKirQrVs3LF68GNdff71wzKeffoqcnBwcO3YM3bt3x4gRI+r93tdff42ZM2fihx9+QExMDP7+979j/vz5aNSokfYXS0jG6MFGra1NWN4iRQv463j0USArqy6pcJs2NrRoEQUgysiimRZeoLMWa0eoD7kjCUMYPXo0Vq9eLbx+4403MGrUKJdjpk2bhg8//BBvvvkm9uzZgzZt2iAzMxNnztS5OI4dO4ZBgwbhzjvvxN69ezF27FjMmDHD5RyFhYXo27cvBg8ejH379mH9+vX4+uuvkZ2drf1FysTfjdWNOrcaeBts9Ha/REdHIyEhwes/qcJJrfOYjRYtgFtuoV0Y/IUX8j16jPAaa0dYA7KEEYZsYXP//fdj5syZOHLkCADgm2++wXvvvYcvvvgCAHD+/Hm8+uqrWLNmDe644w4AwL/+9S/k5eVh1apVmDp1Kl599VW0bt0aixYtAgC0a9cOP//8MxYsWCD8zvz583HfffcJQfdt27bFyy+/jJtvvhmvvvoqGjRooM8FS0BLCwrr1hnWArsJwmiio6PRvTsQFOS6jVlwMOeyuINys5kbEmEBzqpVlzeLDgoCXnsNGDNG+9+NjY1Fv379sGbNGnAch379+iEmJkb4vLCwENXV1ejZs6fwXmhoKG644QYcOHAAAHDgwAGkpaW5nDc9Pd3l9U8//YR9+/Zh7dq1wnscx6G2thZFRUXo0KGDFpenGC1FEMvWl0BaSUgQUmnRoq5Pfuihuv1jg4OBRYvOo7y8Tmz5cuFbIeYwECARFsAcP35ZgAF1/z/0EJCZqY9FbPTo0YJbcMWKFZr8xp9//omHHnoIDz/8cL3PaBEAO7CYv4wwL+4CxJu1yAxCZcyYuj65LtYOaNGiMcrKsnH48CXMmxcnbEHGcUHYvPlOzJ6dhpQU5XvMEvpCIiyAOXTI1cwN1M22fv9dHxHWt29fVFVVwWazITMz0+Wz1q1bIywsDN988w2Sk5MBANXV1fj+++8F12KHDh2wceNGl+99++23Lq+7dOmCX3/9FW3atNHuQgjFBNJKQkI/nN3v69Y1xLx55t6wvkUL1z45Ojoa+/Z56r9tOHcuHia5LAIkwgKatm09xRvUzbb0IDg4WHAtBgcHu3zWqFEjTJgwAVOnTkWzZs3QsmVLLFy4EJWVlRjzP3/p+PHjsWjRIkydOhVjx47F7t27sWbNGpfzTJ8+Hd27d0d2djbGjh2LRo0a4ddff0VeXp6kJKGEtrAeq0aYl+joaBw/Dkyb5mztt2H69ChkZUWZXqgY3X8T6kAiLIDxFG/wz3/qu7IpMjLS62fPP/88amtr8cADD+DcuXPo1q0bPv/8czRt2hRAnTvxww8/xOTJk7Fs2TLccMMNeO655zB69GjhHFdffTW+/PJLPPHEE7jpppvAcRxat26NrKwsza+NkAYJLEIrjLb2awkL/TfhPzaO4zijC0F4pqKiAna7HQ6Ho55YuXDhAoqKipCamur3Cr/jx53jDfw6lSVRs64JgtCP48eB5OT61qLDh63T11H/zSa+xm9nyBJG1Is3IAiCsAKBYC2i/tvckAgjCIIgLEv91YVGl4ggLkMijCAIgrA0ZC0iWIW2LSIIgiAIgjAAEmEEQRAEQRAGQCLM5NDiVu2hOiYIgiC0gESYSeGTm/pKckmoA1/H7gllCYIgCMIfKDDfpISEhCAiIgKnTp1CaGgogoJIT2tBbW0tTp06hYiICISEUHMhCIIg1INGFZNis9mQkJCAoqIiHDlyxOjiWJqgoCC0bNkSNpvN6KIQBEEQFoJEmIkJCwtD27ZtySWpMWFhYWRpJAiCIFSHRJjJCQoKoq10CIIgCMKE0PSeIAiCIAjCAEiEEQRBEARBGACJMIIgCIIgCAOgmDCG4ZOEVlRUGFwSgiAIgiCkwo/bYsm+SYQxzLlz5wAASUlJBpeEIAiCIAi5nDt3Dna73evnNo72ZGGW2tpaFBcXo0mTJgGZo6qiogJJSUk4duwYIiMjjS6OaaF6VAeqR/+hOlQHqkd10LIeOY7DuXPnkJiY6DPFEVnCGCYoKAgtWrQwuhiGExkZSR2NClA9qgPVo/9QHaoD1aM6aFWPvixgPBSYTxAEQRAEYQAkwgiCIAiCIAyARBjBLOHh4XjqqacQHh5udFFMDdWjOlA9+g/VoTpQPaoDC/VIgfkEQRAEQRAGQJYwgiAIgiAIAyARRhAEQRAEYQAkwgiCIAiCIAyARBhBEARBEIQBkAgjDOc///kP7rzzTiQmJsJms+Hjjz92+ZzjOMyePRsJCQlo2LAhMjIycOjQIWMKyyhidThy5EjYbDaXf3379jWmsAwzf/58XH/99WjSpAni4uIwcOBAHDx40OWYCxcuYOLEiYiOjkbjxo0xePBgnDhxwqASs4mUerzlllvqPZPjx483qMRs8uqrr+Lqq68Wkommp6fjs88+Ez6nZ1EaYvVo5LNIIowwnPPnz+Oaa67BihUrPH6+cOFCvPzyy1i5ciUKCgrQqFEjZGZm4sKFCzqXlF3E6hAA+vbti5KSEuHfu+++q2MJzcGXX36JiRMn4ttvv0VeXh6qq6tx++234/z588IxkydPxieffIL3338fX375JYqLizFo0CADS80eUuoRAB588EGXZ3LhwoUGlZhNWrRogeeffx67d+/GDz/8gNtuuw133XUXfvnlFwD0LEpFrB4BA59FjiAYAgD30UcfCa9ra2u55s2bcy+88ILwXnl5ORceHs69++67BpSQfdzrkOM4bsSIEdxdd91lSHnMzMmTJzkA3JdffslxXN2zFxoayr3//vvCMQcOHOAAcPn5+UYVk3nc65HjOO7mm2/mHnnkEeMKZVKaNm3Kvf766/Qs+glfjxxn7LNIljCCaYqKilBaWoqMjAzhPbvdjrS0NOTn5xtYMvPxxRdfIC4uDu3atcOECRNQVlZmdJGYx+FwAACaNWsGANi9ezeqq6tdnsf27dujZcuW9Dz6wL0eedauXYuYmBh06tQJM2fORGVlpRHFMwU1NTV47733cP78eaSnp9OzqBD3euQx6lmkDbwJpiktLQUAxMfHu7wfHx8vfEaI07dvXwwaNAipqakoLCzE448/jjvuuAP5+fkIDg42unhMUltbi5ycHPTs2ROdOnUCUPc8hoWFISoqyuVYeh6946keAeDee+9FcnIyEhMTsW/fPkyfPh0HDx5Ebm6ugaVlj59//hnp6em4cOECGjdujI8++ggdO3bE3r176VmUgbd6BIx9FkmEEUQAMHToUOHvzp074+qrr0br1q3xxRdfoHfv3gaWjF0mTpyI/fv34+uvvza6KKbGWz2OGzdO+Ltz585ISEhA7969UVhYiNatW+tdTGZp164d9u7dC4fDgQ8++AAjRozAl19+aXSxTIe3euzYsaOhzyK5Iwmmad68OQDUW/Fz4sQJ4TNCPq1atUJMTAx+//13o4vCJNnZ2di0aRN27tyJFi1aCO83b94cVVVVKC8vdzmenkfPeKtHT6SlpQEAPZNuhIWFoU2bNujatSvmz5+Pa665BkuXLqVnUSbe6tETej6LJMIIpklNTUXz5s2xfft24b2KigoUFBS4+PMJeRw/fhxlZWVISEgwuihMwXEcsrOz8dFHH2HHjh1ITU11+bxr164IDQ11eR4PHjyIo0eP0vPohFg9emLv3r0AQM+kCLW1tbh48SI9i37C16Mn9HwWyR1JGM6ff/7pMuMoKirC3r170axZM7Rs2RI5OTl45pln0LZtW6SmpmLWrFlITEzEwIEDjSs0Y/iqw2bNmmHu3LkYPHgwmjdvjsLCQkybNg1t2rRBZmamgaVmj4kTJ2LdunX497//jSZNmgixNXa7HQ0bNoTdbseYMWMwZcoUNGvWDJGRkZg0aRLS09PRvXt3g0vPDmL1WFhYiHXr1uFvf/sboqOjsW/fPkyePBm9evXC1VdfbXDp2WHmzJm444470LJlS5w7dw7r1q3DF198gc8//5yeRRn4qkfDn0VD1mQShBM7d+7kANT7N2LECI7j6tJUzJo1i4uPj+fCw8O53r17cwcPHjS20Izhqw4rKyu522+/nYuNjeVCQ0O55ORk7sEHH+RKS0uNLjZzeKpDANzq1auFY/766y/uH//4B9e0aVMuIiKC+/vf/86VlJQYV2gGEavHo0ePcr169eKaNWvGhYeHc23atOGmTp3KORwOYwvOGKNHj+aSk5O5sLAwLjY2luvduze3detW4XN6FqXhqx6NfhZtHMdx2ks9giAIgiAIwhmKCSMIgiAIgjAAEmEEQRAEQRAGQCKMIAiCIAjCAEiEEQRBEARBGACJMIIgCIIgCAMgEUYQBEEQBGEAJMIIgiAIgiAMgEQYQRAEQRCEAZAIIwiCIAiCMAASYQRBEAqoqqoyugj1YLFMBEF4h0QYQRAEgFtuuQXZ2dnIzs6G3W5HTEwMZs2aBX5nt5SUFDz99NMYPnw4IiMjMW7cOADA119/jZtuugkNGzZEUlISHn74YZw/f1447yuvvIK2bduiQYMGiI+Px9133y189sEHH6Bz585o2LAhoqOjkZGRIXz3lltuQU5OjksZBw4ciJEjRwqvlZaJIAg2IBFGEATxP958802EhITgu+++w9KlS/HSSy/h9ddfFz5/8cUXcc011+DHH3/ErFmzUFhYiL59+2Lw4MHYt28f1q9fj6+//hrZ2dkAgB9++AEPP/ww5s2bh4MHD2LLli3o1asXAKCkpATDhg3D6NGjceDAAXzxxRcYNGgQ5G7nK7dMBEGwA23gTRAEgTrL08mTJ/HLL7/AZrMBAGbMmIGNGzfi119/RUpKCq677jp89NFHwnfGjh2L4OBg/POf/xTe+/rrr3HzzTfj/Pnz+PTTTzFq1CgcP34cTZo0cfm9PXv2oGvXrjh8+DCSk5M9lufaa6/FkiVLhPcGDhyIqKgorFmzBgAUlalBgwZ+1RNBEOpBljCCIIj/0b17d0GAAUB6ejoOHTqEmpoaAEC3bt1cjv/pp5+wZs0aNG7cWPiXmZmJ2tpaFBUVoU+fPkhOTkarVq3wwAMPYO3ataisrAQAXHPNNejduzc6d+6Me+65B//6179w9uxZ2WWWWyaCINiBRBhBEIREGjVq5PL6zz//xEMPPYS9e/cK/3766SccOnQIrVu3RpMmTbBnzx68++67SEhIwOzZs3HNNdegvLwcwcHByMvLw2effYaOHTti2bJlaNeunSCUgoKC6rkmq6ur/S4TQRDsQCKMIAjifxQUFLi8/vbbb9G2bVsEBwd7PL5Lly749ddf0aZNm3r/wsLCAAAhISHIyMjAwoULsW/fPhw+fBg7duwAANhsNvTs2RNz587Fjz/+iLCwMMG1GBsbi5KSEuG3ampqsH//ftFrkFImgiDYgEQYQRDE/zh69CimTJmCgwcP4t1338WyZcvwyCOPeD1++vTp2LVrF7Kzs7F3714cOnQI//73v4Ug+E2bNuHll1/G3r17ceTIEbz11luora1Fu3btUFBQgOeeew4//PADjh49itzcXJw6dQodOnQAANx2223YvHkzNm/ejN9++w0TJkxAeXm56DWIlYkgCHYIMboABEEQrDB8+HD89ddfuOGGGxAcHIxHHnlESPvgiauvvhpffvklnnjiCdx0003gOA6tW7dGVlYWACAqKgq5ubmYM2cOLly4gLZt2+Ldd9/FVVddhQMHDuA///kPlixZgoqKCiQnJ2PRokW44447AACjR4/GTz/9hOHDhyMkJASTJ0/GrbfeKnoNYmUiCIIdaHUkQRAEPK9GJAiC0BJyRxIEQRAEQRgAiTCCIAiCIAgDIHckQRAEQRCEAZAljCAIgiAIwgBIhBEEQRAEQRgAiTCCIAiCIAgDIBFGEARBEARhACTCCIIgCIIgDIBEGEEQBEEQhAGQCCMIgiAIgjAAEmEEQRAEQRAGQCKMIAiCIAjCAP4fye8oJzXwBKYAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -416,7 +576,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHaklEQVR4nO3deVxU9f4/8NcZHBAQBlkFQUFccUvwiuOaBaLX5fpDr+RV09Ksvlqhpdlts9Wyuml5266VtrpXLmWCWakQGWpG7oSKAS4gA25s8/n9MZ3DnFnYZOf1fDx4JHM+c+bMXK68/Hze5/2RhBACRERERFSvNA19AUREREQtEUMYERERUQNgCCMiIiJqAAxhRERERA2AIYyIiIioATCEERERETUAhjAiIiKiBsAQRkRERNQAGMKIiIiIGgBDGBERVWj16tWQJAmnT59u6EshalYYwoiowe3fvx/z5s1Dz5494erqig4dOmDy5Mk4ceKE1dhbb70VkiRBkiRoNBq4u7ujW7dumD59OhISEqr1ulu3bsXw4cPh6+sLFxcXdOrUCZMnT8aOHTtq661ZefHFF/Hll19aPZ6UlIQlS5YgPz+/zl7b0pIlS5TPUpIkuLi4ICwsDE888QQKCgpq5TU+++wzLF++vFbORdTcMIQRUYN7+eWXsWnTJtx+++1YsWIF5syZgx9//BHh4eFIS0uzGh8YGIiPP/4YH330EV555RWMHz8eSUlJGDlyJOLi4lBSUlLpa7766qsYP348JEnCY489htdffx0TJ07EyZMnsXbt2rp4mwAqDmHPPPNMvYYw2dtvv42PP/4Y//nPf9C9e3e88MILGDVqFGpja2GGMCL7WjX0BRARLViwAJ999hkcHR2Vx+Li4tC7d2+89NJL+OSTT1TjdTodpk2bpnrspZdewoMPPoi33noLwcHBePnll+2+XmlpKZ577jlER0dj586dVscvXLhwk++o8bh27RpcXFwqHDNp0iR4e3sDAO677z5MnDgRmzdvxk8//QS9Xl8fl0nUInEmjIga3KBBg1QBDAC6dOmCnj174ujRo1U6h4ODA9544w2EhYVh5cqVMBgMdsdeunQJBQUFGDx4sM3jvr6+qu9v3LiBJUuWoGvXrmjdujX8/f0RGxuL9PR0Zcyrr76KQYMGwcvLC87OzoiIiMDGjRtV55EkCVevXsWaNWuUJcCZM2diyZIlWLhwIQAgJCREOWZeg/XJJ58gIiICzs7O8PT0xB133IHMzEzV+W+99Vb06tULqampGDZsGFxcXPDvf/+7Sp+fudtuuw0AkJGRUeG4t956Cz179oSTkxMCAgIwd+5c1Uzerbfeiu3bt+PMmTPKewoODq729RA1V5wJI6JGSQiB8+fPo2fPnlV+joODA6ZMmYInn3wSe/fuxZgxY2yO8/X1hbOzM7Zu3YoHHngAnp6eds9ZVlaGsWPHYteuXbjjjjvw0EMPobCwEAkJCUhLS0NoaCgAYMWKFRg/fjymTp2K4uJirF27Fv/85z+xbds25To+/vhjzJ49GwMGDMCcOXMAAKGhoXB1dcWJEyfw+eef4/XXX1dmpXx8fAAAL7zwAp588klMnjwZs2fPxsWLF/Hmm29i2LBhOHjwIDw8PJTrzc3NxejRo3HHHXdg2rRp8PPzq/LnJ5PDpZeXl90xS5YswTPPPIOoqCjcf//9OH78ON5++23s378f+/btg1arxeOPPw6DwYBz587h9ddfBwC0adOm2tdD1GwJIqJG6OOPPxYAxPvvv696fPjw4aJnz552n/fFF18IAGLFihUVnv+pp54SAISrq6sYPXq0eOGFF0RqaqrVuA8++EAAEP/5z3+sjhmNRuXP165dUx0rLi4WvXr1ErfddpvqcVdXVzFjxgyrc73yyisCgMjIyFA9fvr0aeHg4CBeeOEF1eO//fabaNWqlerx4cOHCwDinXfesfu+zT399NMCgDh+/Li4ePGiyMjIEO+++65wcnISfn5+4urVq0IIIT788EPVtV24cEE4OjqKkSNHirKyMuV8K1euFADEBx98oDw2ZswY0bFjxypdD1FLw+VIImp0jh07hrlz50Kv12PGjBnVeq4801JYWFjhuGeeeQafffYZ+vXrh2+//RaPP/44IiIiEB4erloC3bRpE7y9vfHAAw9YnUOSJOXPzs7Oyp8vX74Mg8GAoUOH4sCBA9W6fkubN2+G0WjE5MmTcenSJeWrXbt26NKlC3bv3q0a7+TkhLvuuqtar9GtWzf4+PggJCQE9957Lzp37ozt27fbrSVLTExEcXEx4uPjodGU/xq555574O7uju3bt1f/jRK1QFyOJKJGJScnB2PGjIFOp8PGjRvh4OBQredfuXIFAODm5lbp2ClTpmDKlCkoKChASkoKVq9ejc8++wzjxo1DWloaWrdujfT0dHTr1g2tWlX81+W2bdvw/PPP49ChQygqKlIeNw9qNXHy5EkIIdClSxebx7Varer79u3bW9XXVWbTpk1wd3eHVqtFYGCgssRqz5kzZwCYwps5R0dHdOrUSTlORBVjCCOiRsNgMGD06NHIz8/Hnj17EBAQUO1zyC0tOnfuXOXnuLu7Izo6GtHR0dBqtVizZg1SUlIwfPjwKj1/z549GD9+PIYNG4a33noL/v7+0Gq1+PDDD/HZZ59V+z2YMxqNkCQJ33zzjc1AalljZT4jV1XDhg1T6tCIqP4whBFRo3Djxg2MGzcOJ06cQGJiIsLCwqp9jrKyMnz22WdwcXHBkCFDanQd/fv3x5o1a5CdnQ3AVDifkpKCkpISq1kn2aZNm9C6dWt8++23cHJyUh7/8MMPrcbamxmz93hoaCiEEAgJCUHXrl2r+3bqRMeOHQEAx48fR6dOnZTHi4uLkZGRgaioKOWxm50JJGrOWBNGRA2urKwMcXFxSE5OxoYNG2rUm6qsrAwPPvggjh49igcffBDu7u52x167dg3Jyck2j33zzTcAypfaJk6ciEuXLmHlypVWY8VfzUwdHBwgSRLKysqUY6dPn7bZlNXV1dVmQ1ZXV1cAsDoWGxsLBwcHPPPMM1bNU4UQyM3Ntf0m61BUVBQcHR3xxhtvqK7p/fffh8FgUN2V6urqWmG7EKKWjDNhRNTgHn74YWzZsgXjxo1DXl6eVXNWy8asBoNBGXPt2jWcOnUKmzdvRnp6Ou644w4899xzFb7etWvXMGjQIAwcOBCjRo1CUFAQ8vPz8eWXX2LPnj2YMGEC+vXrBwC488478dFHH2HBggX4+eefMXToUFy9ehWJiYn4v//7P/zjH//AmDFj8J///AejRo3Cv/71L1y4cAH//e9/0blzZxw+fFj12hEREUhMTMR//vMfBAQEICQkBJGRkYiIiAAAPP7447jjjjug1Woxbtw4hIaG4vnnn8djjz2G06dPY8KECXBzc0NGRga++OILzJkzB4888shNff7V5ePjg8ceewzPPPMMRo0ahfHjx+P48eN466238Le//U31v1dERATWrVuHBQsW4G9/+xvatGmDcePG1ev1EjVaDXlrJhGREOWtFex9VTS2TZs2okuXLmLatGli586dVXq9kpIS8b///U9MmDBBdOzYUTg5OQkXFxfRr18/8corr4iioiLV+GvXronHH39chISECK1WK9q1aycmTZok0tPTlTHvv/++6NKli3BychLdu3cXH374odICwtyxY8fEsGHDhLOzswCgalfx3HPPifbt2wuNRmPVrmLTpk1iyJAhwtXVVbi6uoru3buLuXPniuPHj6s+m4rad1iSr+/ixYsVjrNsUSFbuXKl6N69u9BqtcLPz0/cf//94vLly6oxV65cEf/617+Eh4eHAMB2FURmJCFqYXMwIiIiIqoW1oQRERERNQCGMCIiIqIGwBBGRERE1AAYwoiIiIgaAEMYERERUQNgCCMiIiJqAGzW2ogZjUZkZWXBzc2NW38QERE1EUIIFBYWIiAgABqN/fkuhrBGLCsrC0FBQQ19GURERFQDmZmZCAwMtHucIawRc3NzA2D6H7GiffCIiIio8SgoKEBQUJDye9wehrBGTF6CdHd3ZwgjIiJqYiorJWJhPhEREVEDYAgjIiIiagAMYUREREQNgDVhTZzRaERxcXFDX0az5ujoWOEtxkRERDXBENaEFRcXIyMjA0ajsaEvpVnTaDQICQmBo6NjQ18KERE1IwxhTZQQAtnZ2XBwcEBQUBBnauqI3DA3OzsbHTp0YNNcIiKqNQxhTVRpaSmuXbuGgIAAuLi4NPTlNGs+Pj7IyspCaWkptFptQ18OERE1E5w+aaLKysoAgEtk9UD+jOXPnIiIqDYwhDVxXB6re/yMiYioLjCEERERETWAJhPCxo8fjw4dOqB169bw9/fH9OnTkZWVpRojhMCrr76Krl27wsnJCe3bt8cLL7ygGvP9998jPDwcTk5O6Ny5M1avXm31Wv/9738RHByM1q1bIzIyEj///LPq+I0bNzB37lx4eXmhTZs2mDhxIs6fP68ac/bsWYwZMwYuLi7w9fXFwoULUVpaWjsfBhERETV5TSaEjRgxAuvXr8fx48exadMmpKenY9KkSaoxDz30EFatWoVXX30Vx44dw5YtWzBgwADleEZGBsaMGYMRI0bg0KFDiI+Px+zZs/Htt98qY9atW4cFCxbg6aefxoEDB9C3b1/ExMTgwoULypj58+dj69at2LBhA3744QdkZWUhNjZWOV5WVoYxY8aguLgYSUlJWLNmDVavXo2nnnqqDj+hpmHmzJmQJAmSJEGr1cLPzw/R0dH44IMPqtVqY/Xq1fDw8Ki7CyUiombt3Dlg927TfxuMaKK++uorIUmSKC4uFkIIceTIEdGqVStx7Ngxu89ZtGiR6Nmzp+qxuLg4ERMTo3w/YMAAMXfuXOX7srIyERAQIJYuXSqEECI/P19otVqxYcMGZczRo0cFAJGcnCyEEOLrr78WGo1G5OTkKGPefvtt4e7uLoqKiqr8Hg0GgwAgDAaD1bHr16+LI0eOiOvXr1f5fOYuXboksrKy7H5dunSpRuetzIwZM8SoUaNEdna2OHfunEhNTRUvvPCCaNOmjRg9erQoKSmp0nk+/PBDodPp6uQaLd3sZ01ERI2D/Lvv1VcvC43GKAAhNBqjePXVy7X6u6+i39/mmmSLiry8PHz66acYNGiQ0jJg69at6NSpE7Zt24ZRo0ZBCIGoqCgsW7YMnp6eAIDk5GRERUWpzhUTE4P4+HgApuanqampeOyxx5TjGo0GUVFRSE5OBgCkpqaipKREdZ7u3bujQ4cOSE5OxsCBA5GcnIzevXvDz89P9Tr3338/fv/9d/Tr169OPpeqys3NxcqVKysdN2/ePHh5edX66zs5OaFdu3YAgPbt2yM8PBwDBw7E7bffjtWrV2P27Nn4z3/+gw8//BB//PEHPD09MW7cOCxbtgxt2rTB999/j7vuugtAedH8008/jSVLluDjjz/GihUrcPz4cbi6uuK2227D8uXL4evrW+vvg4iIGr/c3FwUFxcjPz8f//vfN8jMDMLGjRMBmH5/GI0SFi50x59/fgCdrrDOfvfZ0mSWIwHg0UcfhaurK7y8vHD27Fl89dVXyrE//vgDZ86cwYYNG/DRRx9h9erVSE1NVS1Z5uTkqIIRAPj5+aGgoADXr1/HpUuXUFZWZnNMTk6Ocg5HR0erpTDLMbbOIR+zp6ioCAUFBaqvulDVbY7qczuk2267DX379sXmzZsBmMLvG2+8gd9//x1r1qzBd999h0WLFgEABg0ahOXLl8Pd3R3Z2dnIzs7GI488AgAoKSnBc889h19//RVffvklTp8+jZkzZ9bb+yAiosYjPT0dK1euxHvvvYfFi09i+fJ4bNz4T1jGHyE0yMszTdhcvHix3q6vQUPY4sWLlfoge1/Hjh1Txi9cuBAHDx7Ezp074eDggDvvvBNCCACmzuZFRUX46KOPMHToUNx66614//33sXv3bhw/fryh3mK1LF26FDqdTvkKCgpq6EuqV927d8fp06cBAPHx8RgxYgSCg4Nx22234fnnn8f69esBmPp26XQ6SJKEdu3aoV27dmjTpg0A4O6778bo0aPRqVMnDBw4EG+88Qa++eYbXLlypaHeFhERNYDc3Fx88sknAACDwQ1bt46FEPZijxGennkATP+Yry8Nuhz58MMPVzpL0alTJ+XP3t7e8Pb2RteuXdGjRw8EBQXhp59+gl6vh7+/P1q1aoWuXbsq43v06AHAdKdit27d0K5dO6u7GM+fPw93d3c4OzvDwcEBDg4ONsfIy2ft2rVTpjXNZ8Msx1jeUSmfUx5jy2OPPYYFCxYo3xcUFLSoICaEUJYXExMTsXTpUhw7dgwFBQUoLS3FjRs3cO3atQp3CEhNTcWSJUvw66+/4vLly0qx/9mzZxEWFlYv74OIiBqe+WpOSkpkBQEMaKh2kA06E+bj44Pu3btX+GWvI7z8y7WoqAgAMHjwYJSWliI9PV0Zc+LECQBAx44dAQB6vR67du1SnSchIQF6vR6AaYYlIiJCNcZoNGLXrl3KmIiICGi1WtWY48eP4+zZs8oYvV6P3377TXVHZUJCAtzd3SsMAk5OTnB3d1d9tSRHjx5FSEgITp8+jbFjx6JPnz7YtGkTUlNT8d///hdAxUukV69eRUxMDNzd3fHpp59i//79+OKLLyp9HhERNW25ubnIzs7GsWPH8Ntvv+G3337DyZMnAZhmwZKS9BU+33w5sj41icL8lJQU7N+/H0OGDEHbtm2Rnp6OJ598EqGhoUrwiYqKQnh4OO6++24sX74cRqMRc+fORXR0tDI7dt9992HlypVYtGgR7r77bnz33XdYv349tm/frrzWggULMGPGDPTv3x8DBgzA8uXLcfXqVaUQXKfTYdasWViwYAE8PT3h7u6OBx54AHq9HgMHDgQAjBw5EmFhYZg+fTqWLVuGnJwcPPHEE5g7dy6cnJzq+dNrGr777jv89ttvmD9/PlJTU2E0GvHaa68pG5PLS5EyR0dHq22Ejh07htzcXLz00kvKDOIvv/xSP2+AiIgaRHp6urLsCJhCV16eF7TaIpSUBOPqVRdUNuckSeXLkfWpSYQwFxcXbN68GU8//TSuXr0Kf39/jBo1Ck888YQSajQaDbZu3YoHHngAw4YNg6urK0aPHo3XXntNOU9ISAi2b9+O+fPnY8WKFQgMDMSqVasQExOjjImLi8PFixfx1FNPIScnB7fccgt27NihKrR//fXXodFoMHHiRBQVFSEmJgZvvfWWctzBwQHbtm3D/fffD71eD1dXV8yYMQPPPvtsPXxajV9RURFycnJQVlaG8+fPY8eOHVi6dCnGjh2LO++8E2lpaSgpKcGbb76JcePGYd++fXjnnXdU5wgODsaVK1ewa9cu9O3bFy4uLujQoQMcHR3x5ptv4r777kNaWhqee+65BnqXRERU18zrvgBg3z49EhKiYApdAoAESTICMMJ+EDNi3Lht0OkK6/x6LUlCrmynRqegoAA6nQ4Gg8FqafLGjRvIyMhASEgIWrduXa3zZmdn47333qt03Jw5c+Dv71+tc1dm5syZWLNmDQCgVatWaNu2Lfr27Yt//etfmDFjhjLz9frrr+OVV15Bfn4+hg0bhqlTp+LOO+/E5cuXlVq8+++/Hxs2bEBubq7SouLzzz/Hv//9b2RnZyM8PByPPfYYxo8fj4MHD+KWW26p0TXfzGdNRER1x/z3mSmARUNuPaEmRx3rY5MmrUevXkeV72NjY9G7d++buq6Kfn+bYwhrxOoqhDV0n7CmhiGMiKjxkPt+AcClS5ewefNmGAxuWL48vsLie9uMmD9/uWoWbPLkycqNfTVV1RDWJJYjqXZ5eXlh3rx5FRarOzo6MoAREVGjYm8SIS/PqwoBzLQ8af59dHSi1TJkfTb3ZghroRiwiIioqbGcPDAvwpckYyVBTFLGSJIRUVGJGDw4WTkaGxuLgICAev39yBBGREREjZL50qPBYFAaegPAgQP9zBqwGtGjx1EcO9ZD+d4061U+8yVJRsyatQolJY7w9MyzmgGr7wAGMIQRERFRI1RR/bJ1B3wNjh4Nw9ChP6JTpwx4euYhPb2zMkaSTHdABgZmAwBGjBiBtm3bAgC0Wi18fHwaZIWIIYyIiIgaDXn269KlS6rH5aVHT89cZGYG2Vh6lLB371D0758Kna4Q4eEHERp6Cnl5nlYzX126dKn1u/9rgiGMiIiIGgV7s1+WS4+221CUd76XA5dOV2iz/5e93XjqG0MYERERNQq2Cu8zM4OwZctYlDdbrWgPyPLO9/KSY6tWrVR7PTemu/8ZwoiIiKhByEuPBoMBJSUluHz5snJMPftVObnuS575aixLjhVhCCMiIqJ6V73C+8qY7nyUC++biuq2liVq1L7//ntIkoT8/PwqPyc4OBjLly+vs2siIiJrtpYeMzKCce6cP37/vWe1Atj48dusAlhjqfuqCGfCqF7Je0fee++9Vptyz507F2+99RZmzJiB1atXN8wFEhFRvVMvPcqd7S073FsS6N37V0RFfacqvm+Ipqs1xRBG9S4oKAhr167F66+/DmdnZwCm/Rk/++wzdOjQoYGvjoiIapt509X8/HyUlpbizz//BGBr6VEy+6+9IGZEdLS6472sqQQwgMuR1ADCw8MRFBSEzZs3K49t3rwZHTp0QL9+/ZTHioqK8OCDD8LX1xetW7fGkCFDsH//ftW5vv76a3Tt2hXOzs4YMWKEqpuybO/evRg6dCicnZ0RFBSEBx98EFevXq2z90dEROXk2q/33nsP7733HtavX4/NmzcjJSUFQGX7PspBTGZERMR+zJ+/3CqA/f3vf8e8efOaTAADGMIIwLlzwO7dpv/Wl7vvvhsffvih8v0HH3yAu+66SzVm0aJF2LRpE9asWYMDBw6gc+fOiImJQV6e6fbjzMxMxMbGYty4cTh06BBmz56NxYsXq86Rnp6OUaNGYeLEiTh8+DDWrVuHvXv3Yt68eXX/JomIyKr2y5KnZy4kyVjBCAnDhu3GpEnrMX/+cowb97Vq+XH06NGYN28e/va3vzWpAAYwhLV4778PdOwI3Hab6b/vv18/rztt2jTs3bsXZ86cwZkzZ7Bv3z5MmzZNOX716lW8/fbbeOWVVzB69GiEhYXhf//7H5ydnfH+Xxf59ttvIzQ0FK+99hq6deuGqVOnYubMmarXWbp0KaZOnYr4+Hh06dIFgwYNwhtvvIGPPvoIN27cqJ83S0TUwuTm5iI7OxvZ2dlIS0tTHZML8A0GN6UL/pAhe8yCmFCNlyQjIiIOolevo1aNV6dNm4YBAwY0ufAlY01YC3buHDBnDmD86+feaATuvReIiQECA+v2tX18fDBmzBisXr0aQgiMGTMG3t7eyvH09HSUlJRg8ODBymNarRYDBgzA0aNHAQBHjx5FZGSk6rx6vV71/a+//orDhw/j008/VR4TQsBoNCIjIwM9evSoi7dHRNTimPf8Wrdunc0x1gX4Aqb5ILn2y4guXU7i5MkuADRWvb/kBqwNud9jbWIIa8FOniwPYLKyMuDUqboPYYBpSVJeFvzvf/9bJ69x5coV3HvvvXjwwQetjvEmACKi2lFZz6+8PC9otUU2CvDNi/ABQINTp7pg9uxVKClxbLR7PtYWhrAWrEsXQKNRBzEHB6Bz5/p5/VGjRqG4uBiSJCEmJkZ1LDQ0FI6Ojti3bx86duwIACgpKcH+/fsRHx8PAOjRowe2bNmiet5PP/2k+j48PBxHjhxB5/p6U0RELZC9ui/rPR8rr4ISQoOSEkeEhJyxOtYUen9VB0NYCxYYCLz3nmkJsqzMFMDefbd+ZsEAwMHBQVladHBwUB1zdXXF/fffj4ULF8LT0xMdOnTAsmXLcO3aNcyaNQsAcN999+G1117DwoULMXv2bKSmplr1F3v00UcxcOBAzJs3D7Nnz4arqyuOHDmChIQEu/9qIyKiqsnNzcXFixdx7Ngx1ePyno/qmS/zZUf7zPd/jI2NVUpVGtOej7WFIayFmzXLVAN26pRpBqy+ApjM3d3d7rGXXnoJRqMR06dPR2FhIfr3749vv/0Wbdu2BWBaTty0aRPmz5+PN998EwMGDMCLL76Iu+++WzlHnz598MMPP+Dxxx/H0KFDIYRAaGgo4uLi6vy9ERE1Z+np6fjkk0+sHq94z0d7AcwUzixrwLy9vZvV8qMlSQghKh9GDaGgoAA6nQ4Gg8EqrNy4cQMZGRkICQlB69atG+gKWwZ+1kREJnLxfX5+PtavX291/Nw5f6xaNRvVab4gSUYMGbIHnTplWNWANbW+X7KKfn+b40wYERERVaqi4nsA2LdPj4SEaFS23FhO4O9/34Zu3U5a9f0KCgpqlsuPlhjCiIiIyC559uvSpUuqx+W7Hj09c/HLLxHYs2cYqhPAwsKOYMCAAwBMrSe6dOnSIoKXOYYwIiIissne7Jd1vy+g8gBW3gts6NA9uP3275Uj7du3b9a1X/YwhBEREZFNlq0nbN/1WPnslyQZERWViICALKu6r/HjxyM0NLQ2L7vJYAhr4nhfRd3jZ0xELY28BHn69GnlsYrverRHICLiFwwbtkcVvOLi4qDT6Vrc8qMlhrAmSu6rVVxcDGdn5wa+muZN/pegZS8zIqLmyNYSpMHgVoMAZkR0dCIGD05WHpk8eTJ8fX1bdPAyxxDWRLVq1QouLi64ePEitFotNBruxV4XjEYjLl68CBcXF7Rqxf+7EFHzlpubixMnTqgeMxjc8PvvPasRwAQmTdqAoKBzqtmvadOmtdhlR3v4W6WJkiQJ/v7+yMjIwJkz1ls7UO3RaDTo0KEDJKmqd/0QETU9tmbArAvwK/t70Ijx47ehVy/Tbih9+vRBjx49msVm23WBIawJc3R0RJcuXezu2UW1w9HRkTONRNRs5Obm4sKFCzh37pzq98fly5dV486d88eWLWNR3njVfgCTJCP0+mRERqaoZr8GDhzYIu96rCqGsCZOo9GwizsREVVJZQ1XZQcO9LMIYPYYMWnSRqulR1lz23C7tjGEERERtRBVWTkxGNyqHMDMlx7NxcbGIiAggEuQlWAIIyIiasbk5cfS0lKrJUe571dubluUlbVC164ncORIT1QWwCTJiFmzViEwMNvmcQawqmEIIyIiaqYqWn40LTmOg3mt148/Dq/0nJJkxLhx25QANmLECPj4+MDDwwMAWnzvr+pgCCMiImpG5EarBoNB1WxVZt713rrYvqK7H223nujZsydDVw0xhBERETUTlRXe79unR0JCFCqv91KTZ7/k+q/IyEj07duXs143iSGMiIiomaio8N4UwKJRtY22BUxBzYhBg6xbT3Ts2JGtJ2oBQxgREVETJi8/AkBGRobqmMHghrw8LxQXt6pyAOvb91fcdtt3yMvztNpsW+br61tLV9+yMYQRERE1UZUV3le12/0tt/wCd/dCdO16Uim4txW+uPdj7WIIIyIiaqLsLT9ab7hdcbf7ESN+hE5XiODgYLRp0wtt2rRB27ZtERQUpIxj/VftYwgjIiJqQqqy/JiWFlalDbflgnt51mvkyJGs9apHDGFERESNWG5uLi5evIiSkhIUFhYiISHB5jjr5ceK9ez5G0aOTLC57Ej1gyGMiIioEZI73a9fv97uGHnmS6stqvLyo4nRZgDjXo/1iyGMiIiokanKRtvVKbw3MY2xXIKMjo5GSEgIa74aAEMYERFRI5Kbm4usrCybx8r3evTA7t23o7zpqq0AJgczU6+vsLDfUVLiaNV2IiQkhHVgDYQhjIiIqJGofK/Hsahqt/uIiF/Qq9fvdnt9ybgE2XAYwoiIiBoJey0nzp3zr1YAA4wYNmyPzfAVFxcHnU4HgG0nGhpDGBERUSORn5+v+t5gcENKSiSSkgah8povmUB0dKKq7URwcDAAhq7GhiGMiIioEcjNzVXdCVnd5UcTgaFDf8TgwcnKI8HBwaz5aqQYwoiIiOqZecNV2aVLl5Q/GwxuVQxg5ZttS5IRUVGJqgAGsOarMWMIIyIiqgdy8MrPz6+w9xcA/PjjUFQWwIYN242IiIMAYHez7WnTpnH5sRFjCCMiIqpjFd31KDdc9fTMhU5XCIPBDampEZWc0YiIiINK6LK32XZoaOjNXjrVIYYwIiKiOmbvrkfzhqvycqIkmZYX7TNi/PhtlW435OvrW/MLpnrBEEZERFRH5CVI83ovwDT7dfx4V3z99d8hBy4hNEhIiIbpLkjLDvgCvXv/im7dTiAo6JwqgMXGxsLb21t1ft4F2TQwhBEREdUiOXgZDAasW7fO6njFdz1KZv8t73gfHW1dcC8LCAhg4GqiGMKIiIhqSWW1X5mZQdVoOyEhJmYHwsKOWC09yrNfnPFq2hjCiIiIaoll7ZdcdJ+V5Y/ExKi/NtuuGkky2gxgAGe/mguGMCIiohqy7Pd1+vRp5c/mRffWNV6VEYiKKu96P2LECLRt2xatWrWCr68vA1gzwRBGRERUA5UtPaqXHasTwKxrwLp06cKu980QQxgREVE15ebmIisry+7xlJRIVFz3JdCt2xGcONHjr5kyIyIiUhESkmF19yM1XwxhRERE1WBvBkwuvM/La/vXhtsVkTBw4H78/e/f2u12b45bDzVPDGFERESVyM3NxcWLF1FSUoI///xTdcxgcENKSiSSkvSo+mbbRiV4VRS+Ro8ejdDQUNaANVMMYURERBWoqPZLXXxfVQLR0YkVhq/JkyezAL8FqM5PTYMaP348OnTogNatW8Pf3x/Tp09XrccvWbIEkiRZfbm6uqrOs2HDBnTv3h2tW7dG79698fXXX6uOCyHw1FNPwd/fH87OzoiKisLJkydVY/Ly8jB16lS4u7vDw8MDs2bNwpUrV1RjDh8+jKFDh6J169YICgrCsmXLavkTISKi+mCr7URGRjDOnfPHli3jqh3Ahg79UVV0Hxsbizlz5ihf8+bNQ48ePRjAWoAmE8JGjBiB9evX4/jx49i0aRPS09MxadIk5fgjjzyC7Oxs1VdYWBj++c9/KmOSkpIwZcoUzJo1CwcPHsSECRMwYcIEpKWlKWOWLVuGN954A++88w5SUlLg6uqKmJgY3LhxQxkzdepU/P7770hISMC2bdvw448/Ys6cOcrxgoICjBw5Eh07dkRqaipeeeUVLFmyBO+9914df0pERFSXDhzoh+XL47FmzQysWnUPqn/XYwJuv/171aPe3t7w9/dXvhi+Wg5JCCEa+iJqYsuWLZgwYQKKioqg1Wqtjv/666+45ZZb8OOPP2Lo0KEAgLi4OFy9ehXbtm1Txg0cOBC33HIL3nnnHQghEBAQgIcffhiPPPIIAMBgMMDPzw+rV6/GHXfcgaNHjyIsLAz79+9H//79AQA7duzA3//+d5w7dw4BAQF4++238fjjjyMnJ0cpply8eDG+/PJLHDt2rMrvsaCgADqdDgaDAe7u7jX+rIiIqGJyv6/8/HyUlpaqjl2+fBm7d++GweCG5cvjqznzBQBGTJq00e5dj/PmzWPwamaq+vu7SdaE5eXl4dNPP8WgQYNsBjAAWLVqFbp27aoEMABITk7GggULVONiYmLw5ZdfAgAyMjKQk5ODqKgo5bhOp0NkZCSSk5Nxxx13IDk5GR4eHkoAA4CoqChoNBqkpKTg//2//4fk5GQMGzZMdTdLTEwMXn75ZVy+fBlt27atjY+BiIhuUm5uLi5cuID169dXOjYvz6sKAcyI7t2P4dix7gA0kCQjxo3bhl69jtocPW3aNAawFqxJhbBHH30UK1euxLVr1zBw4EDVjJa5Gzdu4NNPP8XixYtVj+fk5MDPz0/1mJ+fH3JycpTj8mMVjfH19VUdb9WqFTw9PVVjQkJCrM4hH7MXwoqKilBUVKR8X1BQYHMcERHdvIoK7oHyLYc8PXOh0xXC0zMXgBH2K3mE0mTV9NyKW09MmzYNoaGhN/0+qOlq0JqwxYsX2yymN/8yX75buHAhDh48iJ07d8LBwQF33nknbK2mfvHFFygsLMSMGTPq8+3ctKVLl0Kn0ylfQUFBDX1JRETNlmXBvcxgcMPOnVF4/XVT7dfy5fE4cKAfACAiIhWmLYgsqQvudbpChIScsbnxtlx8zwBGDToT9vDDD2PmzJkVjunUqZPyZ29vb3h7e6Nr167o0aMHgoKC8NNPP0Gv16ues2rVKowdO9ZqRqtdu3Y4f/686rHz58+jXbt2ynH5MfPtIc6fP49bbrlFGXPhwgXVOUpLS5GXl6c6j63XMX8NWx577DHVcmlBQQGDGBFRPbHX70sIDbZsGQtJgtLd3kQuyrfeZsgebrxN5ho0hPn4+MDHx6dGzzUaTf8nMF++A0x1Xbt378aWLVusnqPX67Fr1y7Ex8crjyUkJCghLiQkBO3atcOuXbuU0FVQUICUlBTcf//9yjny8/ORmpqKiIgIAMB3330Ho9GIyMhIZczjjz+OkpISpWYtISEB3bp1q7AezMnJCU5OTjX4NIiI6GZU3u9Lg/KFF1MQ+/vft8HF5brdgvvJkyfDw8ND+d7R0ZEBjFSaRE1YSkoK9u/fjyFDhqBt27ZIT0/Hk08+idDQUKtZsA8++AD+/v4YPXq01XkeeughDB8+HK+99hrGjBmDtWvX4pdfflFaR0iShPj4eDz//PPo0qULQkJC8OSTTyIgIAATJkwAAPTo0QOjRo3CPffcg3feeQclJSWYN28e7rjjDgQEBAAA/vWvf+GZZ57BrFmz8OijjyItLQ0rVqzA66+/XrcfFBERVZvB4FaDhqsa+PjkIiTkjNURdrmnqmoSIczFxQWbN2/G008/jatXr8Lf3x+jRo3CE088oZo5MhqNWL16NWbOnAkHBwer8wwaNAifffYZnnjiCfz73/9Gly5d8OWXX6JXr17KmEWLFuHq1auYM2cO8vPzMWTIEOzYsQOtW7dWxnz66aeYN28ebr/9dmg0GkycOBFvvPGGclyn02Hnzp2YO3cuIiIi4O3tjaeeekrVS4yIiOqO3HLCnmvXrillIlW761HAvCeYJJm2HQJMdV7e3t4AONtF1dNk+4S1BOwTRkRUfZXd9Wjp3Dl/rFo1G/bvVTPVfCUmRkGI8rYT4eEHAQBz5sxR1RETNes+YURERPZUNAMmMxjckJkZhIyMYKSmRqAqbSd69UqrtO0EUXUwhBERUYuyb58eCQlRqLxLk0B0dIKq7QTDF9UmhjAiImo2cnNzcenSJdVj5k1X09J6ISEhGpXv+WjE7NmrEBiYXelrmu+OQlQdDGFERNQs2KoFM289IUnGv9pMVB7Axo/fZhXAoqOjrXZDYSE+3QyGMCIiahYsa8HOnfPHli1jIS87Vq0FhbA7A9atWzcGLqpVDGFERNSkye0oMjIylMcOHOiHLVvGofJZL0BuPyHf9WgZwGJjY9npnuoEQxgRETVZlkuQ8l2PFQcwueeXERERqejX7yBKShzt3vXIAEZ1hSGMiIgardzcXFy8eBElJSVWx65cuQKDwaB8X/nWQzIJMTE7EBZ2pMK7HaOjo7kESXWKIYyIiBql9PR0fPLJJ1Uaa1n/VRFJMlYawADTfsIMYFSXGMKIiKjRyc3NtRnAzNtNyCFKngGrOICp676q0u+LrSeorjGEERFRo2Or6/2+fXqrrYNCQ0/V2hLk5MmT4eHhAYCtJ6h+MIQREVGDsrXZtmXD1V27bsWePcMgF9sLocHWrWPRq9dvVWo9YW8JUt58m6GLGgJDGBERNZiq1H3t26dXBTCZEBr89lufKryK/SVI3vlIDYkhjIiIGoS9ui9zBoPbX/s82mo3Iew8bgRgWrLU65MRGZmiCmBy53vOflFDYwgjIqIGYbkEKff4AoCgoEzodIXIy/OC7YJ7+wFs9uxVFfb9CgkJgb+//01fP9HNYggjIqIGZ93h3rR/4+XLOlQ241VOIDo6sdJNt3nXIzUWDGFERNSgDAa3v1pMmActzV99vyTYDmASJElACDmIGREdnYjBg5Ptvk5cXBx8fHy4BEmNBkMYERHVGVt3PsrkOyDz8rzs3OFY8V2PQmgwadJ6uLpes7n0OHLkSAQHBwNgywlqnBjCiIioTlju62iPp2cuJMlYpVYT5iTJiKCgc3b7fnXt2pXBixq16v3EExERVZG9GTBLOl0h+vQ5DFPtV0WEMqayzvfTpk1jAKNGjzNhRERUKyyXHi0brppvOQRA9efDh/vAdu2XzFTz1atXGvLyPK2WH+WmqwCXHqnpYAgjIqKbVtnSo7y/o2nJUZ7xkpReXhUvRQrMnr1KueuRTVepuWAIIyKim2ar55f5TJd6f8fyGS8hNEhKGgTrNhTqDbdttZ2Q93rkzBc1VQxhRERUq8xnvao202W5DCkwdOiP6NQpw27D1WnTpiE0NLRWr5uovjGEERHRTcvPzwdQ3vNLDl2mmS497DdctUVCp04ZCAk5Y3UkOjoa3bp148wXNQsMYUREVCUV9fw6c8YUmGz3/DI1UzWpPIhJkhGennk2jzGAUXPCEEZERJWqTs8v27NeckG++VZDtsZZt55g7Rc1VwxhRERUqar2/EpL61XBUdNWQ6NHb4WLy3UYDB5ITIxS1Y5FRqaoAlhcXBy6d+9+k1dP1DgxhBERUbXJdz9qtUXIygrAlStt0L79n0hIiEJFS45CaODjk6vUe9nr+yXT6XR19RaIGhxDGBERVYt1zy85dFVefG9Z76XTFdrteg+YGq8SNVcMYUREZFNubi4uXLiA0tJSXL58GYD13Y/q0CXBdr8vAUBT6VZD5uLi4uDj48MaMGrWGMKIiMiKvUJ823c/mpNQXnxf9a2GzLEAn1oKhjAiIrJiqwN+ZmYQrl1zhvoOR0sCU6Z8DkfHElXosjX75e3tDX9//9q9cKImhCGMiKiFk/t/5efno7S0FACU5UfAVAO2Zcs4qGu/bBHo2/dXdOt2qkqvy3ovaukYwoiIWhjzpqsGgwHr1q2zO1auAbOu/VLr0+cgBgzYb3OPR5nc7wvgkiMRwBBGRNSiVLXpqtyC4upVl0pqwEx3PN5++26rJcfo6GiEhIQAYOgisoUhjIioGbPcaujSpUuq43LY8vTMhU5XCIPBDSkpkX/t9yhvN2S/9URFdzxyiyGiijGEERE1U5XNepn3+5IkIzp0OIMzZ4KhDlwVz4IJAYSGlteAyXc8cuaLqHIMYUREzdSFCxfsHrPs9yWEBmfOhNTgVTTIy/NUZsJ4xyNR1TGEERE1M/IS5MWLF1WPnzvnj7NnO6JDhzMoKXGqtNbLNvXSpGUHfN7xSFR1DGFERE2UZb0XYP9uxy+++Ad+/bUv5K72YWFHIEnGagex3r1/RVpaH2UJ07weLC4ujkuQRNXAEEZE1ARV5y7H48e7mgUwAJBw5EgYhg79EXv3Dq1WEOvW7QSior6z2QGfm20TVQ9DGBFRE2Q5A2aLeqNtSxIkyYj4+OUWd0PaJ0lGBAWds7vpNpciiaqHIYyIqAmoSasJ+wHM5Mcfh8PDoxAjRyYiMjIFx493wddfj4E6jJlqwCyXHvv374/Q0FBl9ot3QxJVH0MYEVEjl56ejk8++cTucctWE+PGbUPbtpersMyowZYtY+Hrm4PAwGwMGHAArVoJ1bmiohIREJBltfTYoUMHdO/evZbeIVHLxBBGRNSIVRbAbLWa2Lp1LGbNWmWj8N7WxtsarFo1G+PHb0N4+EGEhx9EaOgpmzVf5lxcXG7ujRERQxgRUWOVm5trFcAMBjdkZgYBAIKCMpGX52U14yWEBiUljhg3bhu2bBmL8uAlwV4Q27JlLEJDTyn1XrbC14gRI9C2bVu4uLggNDS0Vt4jUUvGEEZE1EhZFt/v26dHQkI0yu9yNGLo0D1WM15y7y5PzzxIkqmr/V9HYKrxskXddNWWnj17su6LqBYxhBERNQHWAQwANNizZxjCwo7g6NEeVr27MjKCbdSFaWB7L8jypqvy1kPmWHhPVPsYwoiIGjmDwQ0JCVGwvYm2hKNHe+COOz5Hbq4XOnQ4Cze3K8jICIZWW2RzliwqKhGJiVFmjxsxfvw2bj1EVM8YwoiIGhm5HUVaWhoAIC/PCxX18BJCg88/n/LXGCNMYc1U/xUa+gfS0zsBKJ8lCw8/iF690pCZGQgASu8vIqpfDGFERI2IrU74np65lWwxJFAe0szHaJCe3hmSZIRevw+RkSlK2DIV3x+1eTY2XSWqHwxhREQNwNa+jwBw+vRpq8d0ukJERSX+tSSpnu2qyv6PQmiQnKxHZGSK6vHo6Gi4ubkp32u1Wvj4+LD2i6ieMIQREdWzqu77CJjqwUzbCg2CeU1YdHQCAgKyUFysNVuKtE+I8rsfY2NjERAQwLBF1MAYwoiI6pnlDJjllkMy0x2R8uyXOQ0SEqIQHW0qsLd/x2M5uW0FYCq8ZwAjangMYUREDUi9ybYR0dGJGDw42U5LCnMaizsc5R5gpiXKTp3S8ccfoVZtK4io8ahyCCsoKKjySd3d3Wt0MURELYn1JtsaJCRE48YNJ+zdOxQVzWwBtmrBJMTE7EBY2BFlE+/Kth8iooZT5RDm4eEBSaroLwRACAFJklBWVnbTF0ZE1BzYKsC/dOkSANjccgiQsGfPMFQWwGwfFwgKOmtxB6R1+OLdj0SNQ5VD2O7du+vyOoiImpXc3FxcuHAB69evtzvG0zMXtvdyLF9aVBMYMSIR339/O4Sw3bi1pMQUsPr3748OHTpAq9VCp9MpI9j5nqjxqHIIGz58eF1eBxFRs2Hv7kfLAnydrhDR0Yk2ar/sFdlLcHQss9uSwrz4vkOHDujdu/dNvxciqjs1LszPz8/H+++/j6NHTc3+evbsibvvvlv1Ly4ioubKXp8voHy5UVbeZkIPy871gwcnA4BZkb39uxwlyYigoLM2e4NZFt+3asX7rogaO0kIIar7pF9++QUxMTFwdnbGgAEDAAD79+/H9evXsXPnToSHh9f6hbZEBQUF0Ol0MBgMvNmBqBGxnOmy12ICsLz7sZwkGREfv1wZbzC44ciRMHz77Sibr2ke3CzvqBw0KFnVDR8A5s2bx2VHogZS1d/fNfqn0vz58zF+/Hj873//U/61VVpaitmzZyM+Ph4//vhjza6aiKgJMJ8BMw9E5kEJsHX3Yznz5qmAqYg+LOwIvv12JNQ1YgIREb9g2LA9ytjw8IMIDT1l887HyZMnw9fXlwGMqAmoUQj75ZdfVAEMME19L1q0CP3796+1iyMiamxyc3OV5UbLkCWEBlu3jkVo6CnodIV27n6UGXH1qisMBjclRKWnd4Z6KbK8b5gsOjoanp6eNks/WHRP1LTUKIS5u7vj7Nmz6N69u+rxzMxM1T5kRETNieUyZGZmkFXIEkKDlJRIjByZWMHG26YWExs3/lOZPQsNPYWtW8fCPIRJEtCrV5ryfVxcnNXfu0TUdFW82ZgdcXFxmDVrFtatW4fMzExkZmZi7dq1mD17NqZMmVLb1wgAGD9+PDp06IDWrVvD398f06dPR1ZWlmrMt99+i4EDB8LNzQ0+Pj6YOHGi1Wa433//PcLDw+Hk5ITOnTtj9erVVq/13//+F8HBwWjdujUiIyPx888/q47fuHEDc+fOhZeXF9q0aYOJEyfi/PnzqjFnz57FmDFj4OLiAl9fXyxcuBClpaW18lkQUcOwXIbctGmizXFJSXqkpYWhsLAN9PpkmIrtZeWbbwPls2f2Al1enqfyvY+PTy29EyJqDGoUwl599VXExsbizjvvRHBwMIKDgzFz5kxMmjQJL7/8cm1fIwBgxIgRWL9+PY4fP45NmzYhPT0dkyZNUo5nZGTgH//4B2677TYcOnQI3377LS5duoTY2FjVmDFjxmDEiBE4dOgQ4uPjMXv2bHz77bfKmHXr1mHBggV4+umnceDAAfTt2xcxMTG4cOGCMmb+/PnYunUrNmzYgB9++AFZWVmq1ykrK8OYMWNQXFyMpKQkrFmzBqtXr8ZTTz1VJ58NEdWvimq9TDTYuPGfWLXqHiQlDbY6Znn3o3xXpCQZVY+bt5yYPHkylxqJmhtxE65evSoOHz4sDh8+LK5evXozp6q2r776SkiSJIqLi4UQQmzYsEG0atVKlJWVKWO2bNmiGrNo0SLRs2dP1Xni4uJETEyM8v2AAQPE3Llzle/LyspEQECAWLp0qRBCiPz8fKHVasWGDRuUMUePHhUARHJyshBCiK+//lpoNBqRk5OjjHn77beFu7u7KCoqqvJ7NBgMAoAwGAxVfg4R1Z2srCyxZMkSMWPGagGIWvwyiujob8X48V8JSSoTgBCSVCbGj/9KLFmyRCxZskRkZWU19Nsnoiqq6u/vGs2EyVxcXNC7d2/07t0bLi4utRIKqyIvLw+ffvopBg0aBK1WCwCIiIiARqPBhx9+iLKyMhgMBnz88ceIiopSxiQnJyMqKkp1rpiYGCQnm4pei4uLkZqaqhqj0WgQFRWljElNTUVJSYlqTPfu3dGhQwdlTHJyMnr37g0/Pz/V6xQUFOD333+3+76KiopQUFCg+iKixiM/Px8AlFovtWp3+zEjITExCqGhpxAfvxwzZqxGfPxy5S5LgFsNETVHNSrMv3HjBt58803s3r0bFy5cgNGo/svowIEDtXJxlh599FGsXLkS165dw8CBA7Ft2zblWEhICHbu3InJkyfj3nvvRVlZGfR6Pb7++mtlTE5OjioYAYCfnx8KCgpw/fp1XL58GWVlZTbHHDt2TDmHo6MjPDw8rMbk5ORU+DryMXuWLl2KZ555poqfBhHdLLnhqsFgQElJCQDgypUrKCgoQGlpKRwcHFTjU1JSAJjaSYwbt03VmuJvf0tB69Y38OOPw2G70sN+E1agvP4rJOQM7rorGt7e3sox3vVI1DzVKITNmjULO3fuxKRJkzBgwIBKN/a2Z/HixZXWkB09elS5G2jhwoWYNWsWzpw5g2eeeQZ33nkntm3bBkmSkJOTg3vuuQczZszAlClTUFhYiKeeegqTJk1CQkJCja+xPj322GNYsGCB8n1BQQGCgoIa8IqImi97DVe12iKUlDjZbLxqLjz8IK5fb42EBFOn+59/HojyPR/l/SDNg5f0152SgK2QZl7/5e3tDX9//1p5n0TUeNUohG3btg1ff/01Bg+2LDitnocffhgzZ86scEynTp2UP3t7e8Pb2xtdu3ZFjx49EBQUhJ9++gl6vR7//e9/odPpsGzZMmX8J598gqCgIKSkpGDgwIFo166d1V2M58+fh7u7O5ydneHg4AAHBwebY9q1awcAaNeuHYqLi5Gfn6+aDbMcY3lHpXxOeYwtTk5OcHJyqvDzIKLaYa/hqhycJMmIqKhEBARkK4HMvDN+YWEbJCREoTxQmYctASGsN+YWQoNBg/YhOVmvKuq33HKIiFqGGoWw9u3b10o/MB8fnxrfci0vgRYVFQEArl27Bo1G/ReevJQgj7VcngSAhIQE6PV6AKYp/4iICOzatQsTJkxQnrtr1y7MmzcPgKn2TKvVYteuXZg40XR7+vHjx3H27FnlPHq9Hi+88AIuXLgAX19f5XXc3d0RFhZWo/dLRHXD+k7H8tYR8sbakmREjx5HcfRoD2WrIPM2E5Yq2mA7MjIFkZEpyMwMxLVrznBxuY6goHOqAMb6L6KWoUYh7LXXXsOjjz6Kd955Bx07dqzta7KSkpKC/fv3Y8iQIWjbti3S09Px5JNPIjQ0VAk+Y8aMweuvv45nn31WWY7897//jY4dO6Jfv34AgPvuuw8rV67EokWLcPfdd+O7777D+vXrsX37duW1FixYgBkzZqB///4YMGAAli9fjqtXr+Kuu+4CAOh0OsyaNQsLFiyAp6cn3N3d8cADD0Cv12PgwIEAgJEjRyIsLAzTp0/HsmXLkJOTgyeeeAJz587lTBdRI1NxV/vyQHbkSBjKQ1dl9zTZqv8SiIpKNNum6KjNZ06bNo31X0QtRI1CWP/+/XHjxg106tQJLi4uyt2Hsry8vFq5OJmLiws2b96Mp59+GlevXoW/vz9GjRqFJ554Qgk1t912Gz777DMsW7YMy5Ytg4uLC/R6PXbs2AFnZ2cApuL97du3Y/78+VixYgUCAwOxatUqxMTEKK8VFxeHixcv4qmnnkJOTg5uueUW7NixQ1Vo//rrr0Oj0WDixIkoKipCTEwM3nrrLeW4g4MDtm3bhvvvvx96vR6urq6YMWMGnn322Vr9XIioauQCfHPy1kP2u9pbqqyuVA5etgKY9fZDI0eORJs2bZTvtVotfHx8GMCIWhBJCFHt+6qjoqJw9uxZzJo1C35+flZF7zNmzKi1C2zJqroLOxHZZ1mAb4utmrDK7ma0JTj4D5w+3cnq8UmT1qNXr/KZr2nTpiE0NLRa5yaipqOqv79rNBOWlJSE5ORk9O3bt8YXSERUHyxnwMyL6+WlwfDwgwgNPYW8PE9otcU4cqQnkpL0sB/CbNWEGXHmTLDNsUFB5wAAsbGxCAgI4GwXEQGoYQjr3r07rl+/XtvXQkR00yyXHuVlR0A94yXfkSg3RNXpCpU7IJOT9ai47ksuzhcATOfS65NtbFEEDBqUrIQ9b29vBjAiUtQohL300kt4+OGH8cILL6B3795WNWFcOiOihmCv95enp+lubvO7IIXQYMuWsXB0LEJQUKYSlCou1DdnCmKTJq1XZrpstZ6IjExRvuddj0RkrkYhbNSoUQCA22+/XfW4EAKSJKGsrOzmr4yIqJrs9f6SZ6qsw5Vpo23zWbE//giGdT2YvfowDVxdrykBzrKLvnnvL27ATUSWahTCdu/eXdvXQURUayx7fwmh+avGy7qBqnx869axuHxZhz17hsEygA0d+iOuXXNBamp/1THzLveAurbM0zNP1ftL7hlIRCSrUQgbPnx4lcb93//9H5599lnVHmhERHXN9pKiBj17puH333vZfI4QGuzZMxTWM14S/PzOY9OmSbAMZ+Z9v2JjY+3+Xce9H4nIlqoUPtTYJ598goKCgrp8CSIiK3LvL3OmJckkq8fNj9v+K9F0J6R1qJMQEJClfBcQEAB/f3+bXwxgRGRLnYawGrQgIyK6aTpdIcaN26YELrk+KzAwW/W4qdYLyj6R1gFNIDo6EUFBmTZDnbwUyXovIqqJGi1HEhE1JFsd8AF1Owp79Vny46a9G10ACLi43EBQUCacnW+oCuujosq73FdUdO/h4VHn75mImh+GMCJqUqrSAV8m9/6ylJ7e2UaHfCMGDUrGrFmrUFLiaFVYX1HRPVtPEFFNMIQRUZNiawasOizvnDTflDspaTCSk/UYN24bQkLOAAAGDhwId3d3eHh42JzxYtE9EdUUQxgRNWm2tiGqSGXNWOV2FaGhp6DTFaJPnz7w9/evzUsmIgJQxyFs2rRp7J5PRHXGVkPWyMiUCsOYfOdkZUEsL8+zSqGOiKimahzC8vPz8fPPP+PChQswGtV3Dd15550AgLfffvvmro6IyA7bDVkHIylJj/HjTd3vbc2SyXdObtkyFvZuELdswkpEVBdqFMK2bt2KqVOn4sqVK3B3d4ckmXeQlpQQRkRUXeZ3PhoMBpSUlKiO5+TkAKhoWdG0nHj9emskJkapZsnCwn5HSYkTQkNPYf785UhJiTTb79FUoG955yMRUV2RRA2aeXXt2hV///vf8eKLL8LFxaUurosAFBQUQKfTwWAwcFmXmh3zsJWVpUFGRit4e1/GDz98WqXnGwxuWL48voJlRVv7PaqDVvlsmSe02mKbd0XOmzePhfdEVC1V/f1do5mwP//8Ew8++CADGBHViHmbCXVdV1uMG9cP4eEHAaiL7gGolhZ1ukIMGbLHxl6PMvuPWRbf3357N7i5uaFVq1Zwc3ODVquFTqfjnY9EVKdqFMJiYmLwyy+/oFOnTrV9PUTUApQvN1rXdcnhSN3Ly7R1kPksFgDs3Wtrr8eqMS++Dw8P5x2QRFTvqhzCtmzZovx5zJgxWLhwIY4cOYLevXtDq9Wqxo4fP772rpCImgXz5Ue5s72tui4hNMjMDLTo5aVRHTcdUz9eXSy+J6KGVuUQNmHCBKvHnn32WavHJElCWVnZTV0UETVt584BJ08CXboAgYHWXe5Ny4zB0GqLbLSLEDh8uE+lLSTsHIF6ZsxWXRgAqIvv2fGeiBpClUOYZRsKIiJz8kzXZ585Y9EiHYxGCRqNwLJlBowcmaWMs+zt1aPHURw5EobysCThxInusB+g8FdwA9QzYbbGS1aPS5IRs2atQmBgNqKjo9GtWzfWfRFRg6jRXP5HH32EoqIiq8eLi4vx0Ucf3fRFEVHTIs90vfLK51i40B1Goyn0GI0SFi50x4cfJgCwXQN29GgP2C+il2/eNpr9WaBPn8MYP34bJMn0j0PTf+3VhkmqcePGbUNgYDYAMIARUYOqUWH+XXfdhVGjRsHX11f1eGFhIe666y72CSNqYeRaL3s1XnIBvL3jppBl69+EEoYP340ffxwOIcpnyg4f7oPbbvsO8fHLlfYS778/2+YypTzzVVLiiKlTI9Gr198A/I13PhJRg6vRTJgQQtWgVXbu3DnodLqbvigiaprkLYHMmRfA2zseHZ0IUxCD1TEfn0sVBruQkDMIDMzGuHHbzM4tlOfLM18hIWfQq5cH/P394e/vzwBGRA2uWjNh/fr1gyRJkCQJt99+O1q1Kn96WVkZMjIyMGrUqFq/SCJqGuQtgcxrvswL4O0dDw8/iF690lQd7OVjQUGZVsX7tu5sDA8/iNDQUxU2XmUBPhE1JtUKYfIdkocOHUJMTAzatGmjHHN0dERwcDAmTpxYqxdIRI2TrZYTgDoMWYagio7rdIWIjExBQEAWAIGgoHPKsYqCXVxcHHQ6HfLz81FaWmp1nWy8SkSNVY22LVqzZg3i4uLQunXrurgm+gu3LaLGwjxwHTt2BWlpRcjI2AnAVAem1RahpMRJtVG2JVubaZszv2sSMGLQoGRERqZYvIb17NacOXPYaJWIGpU63bZoxowZAEzFuBcuXLBqX9GhQ4eanJaIGiF7WwwBPWGqvbLe/Fredkhm2ZbCcozlXZOABklJg5GUNEh5Dfl5ISFnVOfmEiMRNVU1CmEnT57E3XffjaSkJNXjcsE+m7USNR/2thiStxEq/7P1noy2nmdrjK27Ji1fw/J5sbGxCAgI4BIjETVZNQphM2fORKtWrbBt2zb4+/vbvFOSiJoX+0FJzfzORXvPE0KDH38cil69jsDTM1e5a7Ky85uf29vbmwGMiJq0GoWwQ4cOITU1Fd27d6/t6yGiRqqqQcnyzkV7z0tN7Y/U1L8py4zjxm3Dli1jUVHnHO73SETNSY36hIWFhanuhiKi5k9uL2HZi8v8z5Z3LsrP0+uTbZzReplx9uxVsO4XZv/cRERNWY1mwl5++WUsWrQIL774Inr37g2tVqs6zjv5iJqn8PCDuHxZhz17hsFyo+xJkzao2kqY3w0ZGZmCpCQ97P27TwgNMjMD4ep63cYYCTExOxAWdoQ9v4ioWalRCIuKigIA3Hbbbap6MBbmEzVvBoMb9u4dCut9GjVwdb2mhCRbd0OOH7/NrEDferPtTZsmISoq0WZjVjmAxcbGwtvbmz2/iKhZqFEI2717d21fBxHVg3PngJMngS5dgMBA9THzXmDmzEsP7BfnG6HVFiMjIxhabZHNuyHj45crez1mZQUgISEK5rNeQmiQmBiFqKhEJCZG2WzMyrshiag5qVEIGz58OPbs2YN3330X6enp2LhxI9q3b4+PP/4YISEhtX2NRHQT5HD12WfOWLRIB6NRgkYjsGyZAf/613VlWU/uBQbYb6xqu8heoEePo8oG2raK8OW7GkNCzkCnK4SnZx4SEqKtrlUIDQICshAfvxy9ek1A376uCAjghttE1DzVKIRt2rQJ06dPx9SpU3Hw4EEUFRUBAAwGA1588UV8/fXXtXqRRFQ581kuwPRnb+/L2Lx5JQwGNyxfHg8hTEuARqOEhQvd8eefH/y1XVCkcp6KGqva2vtxyJA92Lt3qGrmy3K50fKuxrw8L1gvaQKAUemIP3q0M/z9/WrzIyIialRqFMKef/55vPPOO7jzzjuxdu1a5fHBgwfj+eefr7WLI6Kqef99YM4cwGgE5DJNIQCNxgNjx/ZD27aXbc5Opab2Q0TEQaSkmLYHqkpjVcu9H/PyvLBnz3CLK5JgusvRekkRsD+jFh2dyLsfiajFqFGLiuPHj2PYsGFWj8ub6BJR/cjNzUVq6nnMmSMg7x4mhOkLMM14bd06FlptkVlriXI//jgCr78ejwMH+gEAMjOD7C4lmtPpCs2WFnNtnFtg6NA9mDRpPUaP3g5HxyIYDG6q55u3u5AkI6KjEzB4cHkrC979SETNXY1mwtq1a4dTp04hODhY9fjevXvRqVOn2rguIrJDXnaUlxozMoJhNM6wO14IDUpKHCtohqrBli1jcf16ayQmRtk4gxFXr7rCYHCzOUul0xUiKirxrxqv8m2M9uyR76KUlPOMH1++tGk5o2Z+7mnTprH+i4iavRqFsHvuuQcPPfQQPvjgA0iShKysLCQnJ+ORRx7Bk08+WdvXSER/MV92lJcaQ0NPVdjJXq7HCgk5A0fHImzc+E8bozRWdyuaGAFI2Ljxn3Y35waAgIBs2GpbYfn9li3qvR+9vb2tzsUCfCJqKWoUwhYvXgyj0Yjbb78d165dw7Bhw+Dk5IRHHnkEDzzwQG1fI1GLl5ubi9OnSzFnji+MxvLiern1g/Usl6kw3rweS14OtB3YjLBdnWB/A22ZweCGq1ddKjiHOfXej/7+/tX5GIiImpUahTBJkvD4449j4cKFOHXqFK5cuYKwsDC0adOmtq+PqMXLzc3FypW2lx3lei3TbFh5LZgcwGbNWoXAwGzVHY+msGR+96IR0dHlvbnKWYcqy8251ecVULNuyCrf/UhERDUMYTJHR0eEhYXV1rUQkQ1yA1VbdxTKS422mqjKtWCWdzyagpURf//7Nri4XFdtNWTeJNW8aarl6wHWd1JaBy4JlmFv/Hju/UhEJLupEEZE9cdWjy7z1g/VCWiABj4+uQgJOQPANKNVHrhMvb8CArIr7F5vv3t++evPmrUK+fkeAKAKe0RExBBG1KTYu6OwpgENsDWjpcGePcOwZ89wZUYsICDL6g5Ge72+zGvRAgOzERiYbfO9sAUFEbV0DGFETYxOV2hzRqmmAc32jFZ5MX5iYhTi45crxf3m2xlZntdeYIuLi4NOp1O+5x2QREQMYUSNWm5urrKBtr39HM1VJ6DJ55MbudpbWpSL8dPTO9vczsher6/JkyfDw8ODgYuIyA6GMKJGSr4rErC/n2NVgpnMPKBZnq9Tp3Skp4fCVLRvve+jVltc4XZGd90Vrer5xeBFRFQ5hjCiRkq+K9Lefo5yh3tbG21bMg9rAKzOl57eBYARgwbtg6vrVdV59fpk5Oe3tbudEXt+ERHVDEMYUSNnr/2EefsIe41UAetZL70+2c7SowbJyXrExy9Hr15pSEmJRFKSHklJg2HdW0xd3E9ERNVXow28iaj+2N4g27qGy3yj7REjRgCwPYuWlKS3uZm3fDwzMxCZmUFIStKj/K8I0zKl+Ybb5sX9RERUfZwJI2rk7N2FWFEjVZm9HmFCWM9syefYuHESbP/7TIOJE9fD1fWaVRE+200QEVUfQxhRE2DrLkRn5xt2207s3r0bgL1eXoDcNb9371/x2299AGj+GicfsyZJRqXhqvnm2yzCJyKqGYYwonpy7hxw8iTQpQsQGFj951u2n6ioPQRQXowfFZWIhIQoWIcrjRLAAFFp93vzkMdCfCKim8cQRlSHcnNzUVxcjM8+c8aiRToYjRI0GoFlywz417+u3/Qskr2+YJbF+EOH7sHevUNtdLe3t+/jX49KRkycuJFbDhER1QGGMKI6Ivf5MhjcsHx5PIQwBR2jUcLChe74888PoNMVYt68eUoQk0MbAJw7d65KrzN58mQAwPr16wHYLsbfu3eo1T6QFc18AeWzX716HbU6xhowIqKbxxBGVEfkMGWvxYTcY0seZ96ctaqmTZuG0NBQZGeX789o7/UCArIQH78ceXme0GqL8f77s+0EMSMmTbKe/ZLrwFgDRkRUOxjCiOqYreJ4W3cyymGsOlxcXKwey8ryh72eXubLl+Z3XFpuvG1r9isgIIDhi4ioFjGEEdWxyjbQlveGlP8rs+xyb297Isv9JRMTo6Cu8RKIikq0ep55Yb9WW4ySEkerAn/OfhER1R2GMKJqqsldjhXdybh582ar8eaF9aZu9RLMZ6rk7Yny8/OVWjDAXl8wCTpdvs3rslfYL+PsFxFR3WEII6qC2rjL0VbgsbUBt2VhvXlrCcvtiUpLS1Xn02qLYApt6iC2ceMkFBeXh7fY2Fi0atXK6vmmc2ih0+k4+0VEVMcYwogqkJubi4sXL2LdunU4d87/r2L2yu9yrArLNhLyDJft2axy5kX9ly9ftjqf3PdLvSSpDm/s80VE1PAYwojsML9b8cCBftiyRQ445cwDUVZWlqq43rLGy5ytNhJySLLf5d7EvKhf7oxvPXtm3ffL/FqJiKjhNZkNvMePH48OHTqgdevW8Pf3x/Tp05GVlaUas379etxyyy1wcXFBx44d8corr1id5/vvv0d4eDicnJzQuXNnrF692mrMf//7XwQHB6N169aIjIzEzz//rDp+48YNzJ07F15eXmjTpg0mTpyI8+fPq8acPXsWY8aMgYuLC3x9fbFw4UKbSz/UeF28eBFAecCx9X8X80C0efNmvPfee8qXrVovWWVtK8aN22a2ybaxwo2zDQY3/P57zyr1/bK8I5OIiBpOk5kJGzFiBP7973/D398ff/75Jx555BFMmjQJSUlJAIBvvvkGU6dOxZtvvomRI0fi6NGjuOeee+Ds7Ix58+YBADIyMjBmzBjcd999+PTTT7Fr1y7Mnj0b/v7+iImJAQCsW7cOCxYswDvvvIPIyEgsX74cMTExOH78OHx9fQEA8+fPx/bt27FhwwbodDrMmzcPsbGx2LdvHwCgrKwMY8aMQbt27ZCUlITs7Gzceeed0Gq1ePHFFxvg06Pqys3Nxbp16wDYK3a3HYgqEhsbC8AU1mzPdglkZQUgJOSMVSG/6Tqsi/rVBfzWbSnkvSCre61ERFT3JCFMf003NVu2bMGECRNQVFQErVaLf/3rXygpKcGGDRuUMW+++SaWLVuGs2fPQpIkPProo9i+fTvS0tKUMXfccQfy8/OxY8cOAEBkZCT+9re/KctQRqMRQUFBeOCBB7B48WIYDAb4+Pjgs88+w6RJkwAAx44dQ48ePZCcnIyBAwfim2++wdixY5GVlQU/Pz8AwDvvvINHH30UFy9erHK38YKCAuh0OhgMBri7u9fK50ZVk52djffeew8AsG+fHgkJ0VAv8Rkxe/YqBAZmWz3XVrE9AMyZMwcAKjyvJBkRH78cOl0hIiMjlT5g165dQ0pKiup1ymvULLciKr+L0t4dmXPmzGFNGBFRHanq7+8mMxNmLi8vD59++ikGDRoErVYLACgqKrJqXOns7Ixz587hzJkzCA4ORnJyMqKiolRjYmJiEB8fD8DULDM1NRWPPfaYclyj0SAqKgrJyckAgNTUVJSUlKjO0717d3To0EEJYcnJyejdu7cSwOTXuf/++/H777+jX79+Nt9XUVERioqKlO8LCgpq8OlQbbLXdys6OtFmALNXbA+YasSuXLmijA0IyIZl7Zb5kqRl6DJnCnC2NuWWEBOzA2FhR5TQxdkvIqLGqcnUhAHAo48+CldXV3h5eeHs2bP46quvlGMxMTHYvHkzdu3aBaPRiBMnTuC1114DAGVLl5ycHFUwAgA/Pz8UFBTg+vXruHTpEsrKymyOycnJUc7h6OgIDw+PCsfYOod8zJ6lS5dCp9MpX0FBQVX9aKiO2Ou7FRCQZTXWXrG9weAGwLQMuXPnTmW8vCSpOrNF3ZbB4IaMjGDlHID5DJrtJVLzAGYP934kImp4DToTtnjxYrz88ssVjjl69Ci6d+8OAFi4cCFmzZqFM2fO4JlnnsGdd96Jbdu2QZIk3HPPPUhPT8fYsWNRUlICd3d3PPTQQ1iyZAk0mqaRNR977DEsWLBA+b6goIBBrI6Yb5RtS35+PoCqbzkEVF5sb0mnK0RUVKIyo2VZt2VrVi009JSNmbny6zJ//ogRI9C2bVul75eM/b+IiBqHBg1hDz/8MGbOnFnhmE6dOil/9vb2hre3N7p27YoePXogKCgIP/30E/R6PSRJwssvv4wXX3wROTk58PHxwa5du1TnaNeundVdjOfPn4e7uzucnZ3h4OAABwcHm2PatWunnKO4uBj5+fmq2TDLMZZ3VMrnlMfY4uTkBCcnpwo/D7p5lhtl26vhAirfcshcVQOb/HpZWf5/BSrTeaOiEpWly3Pn/G3Oqk2cuMnuptuzZqlr1Lp06cK6LyKiRqxBQ5iPjw98fHxq9Fyj0bSMY15DBQAODg5o3749AODzzz+HXq9XXkOv1+Prr79WjU9ISIBerwdgmiGIiIjArl27MGHCBOV1du3apdxhGRERAa1Wi127dmHixIkAgOPHj+Ps2bPKefR6PV544QVcuHBBuaMyISEB7u7uCAsLq9H7pdpjPgNWUQ2XrKIthwAgOjoaCQkJVQps9u5mFEKDxMQo9OqVhvT0znZ7kgHC5l2VtmrUuORIRNS4NYnC/JSUFOzfvx9DhgxB27ZtkZ6ejieffBKhoaFK8Ll06RI2btyIW2+9FTdu3MCHH36IDRs24IcfflDOc99992HlypVYtGgR7r77bnz33XdYv349tm/froxZsGABZsyYgf79+2PAgAFYvnw5rl69irvuugsAoNPpMGvWLCxYsACenp5wd3fHAw88AL1ej4EDBwIARo4cibCwMEyfPh3Lli1DTk4OnnjiCcydO5czXfXM1rKj+WbX9hqm2poRszX7NXnyZPj6+iIhIQFAxYGtsoaqQmiQmRlYYU+yoKBzVkEvKioRgwcnK+NiY2O55yMRURPQJEKYi4sLNm/ejKeffhpXr16Fv78/Ro0ahSeeeEIVatasWYNHHnkEQgjo9Xp8//33GDBggHI8JCQE27dvx/z587FixQoEBgZi1apVSo8wAIiLi8PFixfx1FNPIScnB7fccgt27NihKrR//fXXodFoMHHiRBQVFSEmJgZvvfWWctzBwQHbtm3D/fffD71eD1dXV8yYMQPPPvtsHX9SZM5y2dFSdWu4bPH19YWXlxfmzZuHCxcuYP369XYDW2XbEUmSEbm5npX2JKtsZo4BjIioaWiyfcJaAvYJuznmvb4A69ovg8ENy5fHW9VwyX26AGDQoEFWs5darRZt2rSBVquFj4+PEnhq8nrljAgMPIdz54JgXXRvvyeZpWnTpiE0NLTScUREVHeadZ8wouqyV/tVWQ2XvCNDRWxt3K2u/TJi0KBkREamQK9PRlLSYBtnkewGsPHjt1kFsMmTJ1u1SeFdj0RETQtDGDV7FdV+yUt7mZmBACQEBWVW+/yWNWfWtV8aJCUNRnKyHlFRiQCMsNVk1ZZhw35Q3SjAei8iouaDIYyanMp6fFnOCFVW+5We3rnSOySBiltZmLNX+yXfAdm792H89ltfWHbhN1E/1rXrSdU5GMCIiJoPhjBqUiortpfJLUWAivt3VXaHpGVPL3vbEZn/1/bm3FDO/9tvt8A0GwbI+zzKG22bjUSPHkeUZcgRI0agZ8+eDGBERM0IQxg1KRXNgNkbV1H/royMYJuzZJmZgUhJaY/kZL3Nnl7mQW3z5s2q58uvZ6vXVzlTrdikSRsASNi48Z8WxyUMGLBf+a5t27YMYEREzQxDGLUI9to62Jsl27hxEtQByv5G2xW9XkpKJJKS9LAdxjRwdb0GT8+8SjvtW25OT0RETV/T2FSRqAYsO8brdIUICTmjCk7yrJW8kbbtpUFrkmSEVltstbm25etFRqZAsl1zrwQtW9dgfpfm6NGj2XaCiKgZ4kwYNWkVFcvLTVRtLWHm5+dj/fr1ANSzZFevutpYGpSZliQlyYg+fQ7j/fdn26wRi4yMREpKCoCKGrSqg1ZFDVi5iTsRUfPEEEZNVlX2fbRXR+Xv768KaJcuXcLmzZthMLjZLKqXtwcKCMiCVlusBDBAXSMGAGvXnoenpxt0ukK7y52Wm20D9rdGIiKi5okhjJqk6uz7aI95QDMYDACsi/jNG63K57VXzJ+SEqkU8lfWELYq3e9l3IibiKh5YgijJqk29n1UP7d8967K9ma03YLCaHYnpelatmwZC1/fnArPN3LkSHh4eFh1v5exCz4RUfPFEEZNijwrVFHvL8BU81WdAGM7BNmuqLc1W9az5xH8/nsvi5EavP/+bGVGzFY47Nq1K0MWEVELxRBGTYpcbH/x4kWkp9vf91Euure1r2NlqlJrZt6CIjlZ/1cAK+8lJrNcJo2NjYW3tzcAznIREbV0DGHU5Hh5eaG4uLjSZUMAuHDhQrW2OKqs1iwuLg4lJSVKg1bzJUh7M2fmy6Te3t7w9/ev4TsnIqLmhCGMmrTK7iiUZ8QqYr7FUWW1ZjqdrsKxtlg2XiUiIgLYrJVINVMm15qZsxeibI0tJ5Tnmi+TEhERyTgTRmSmon0mKxtr3sxV7ilmb5mUiIiIIYyaJLmvV/n39jvnVzbm0qVL0Gq1yvcV1Zrl5+ejtLTU5litthglJY4MXkREVCUMYdQklZSUKH+uyt2MFY2Ri+zNybVmkydPhiRJWLduHQBTjZkpzAUrYa46ne7ZeJWIiGQMYdSkVaVzflXH2Jols+wfVpXAZ2ny5Mnw8PBgSwoiIlJhCKMmqVUr049uVTrnVzamomB18uRJ5bUqC3MjRoxA27ZtAQBarRY6nY7Bi4iI7GIIozqTm5tbrR5d1SHPUFXWOb+yMbaClbzdUGBgNnbv3q0sP1696lJhmOvSpQt7gBERUZUxhFGdyM3NxcqVKysdV5OO9ubkOxS3bBkLU8cV67sZK7rj0dZm3ObbDQFQPQ8wwryzC3uAERFRTTGEUZ2oaAasJuMqI0mAEKb/mpPrsQwGA0JDlyt3PAJARkYwtNoiG5txl8+Imc5bPktmGmsKYuwBRkREN4MhjJq0yuq0PDw8lCVC+S5G8xowwIjQ0D+Qnt4J1r2LNRBC/YgQGkyatB6urtfYioKIiG4KQxjVKrkO7NKlS3X6OnKrh8qK7i1bQliGNkCD9PTOMDVaVS81AkbVTBhgWn4MCjrH8EVERDeNIYxqTVXrwGqDl5cX5s2bh9OnS/HxxwJGY/k6pIODwAMPjEZwcCurejP7+z1KkCRhtdQIoErd8wH2ACMiouphCKNaU1v1XVXl5eUFLy/gvfeAe+8FysoABwfg3XclBAe3QnFxMbKzswFAmZmzdaekzN5So73u+bGxsfD29gZwc3d6EhFRy8QQRk3erFlATAxw6hTQuTPg7KyekStvxOpm427KcvaWGu11xPf29mZLCiIiqjGGMGpQtmrH5GW96vQYCww0fQFAdnb58ywbsZo21s7G7NmrcORITyQn66u01GjvGoiIiGqKIYwalK19G6tq2rRpCA0NtXvc1p2TCQnRMNV/mQLZxImbAAirGbCRI0eiTZs2AEzd+S23L+LyIxER3SyGMLpp9XVHpKVPPvnEZrPX/Px8APaK8E0F/JaBzHIPyODgYC41EhFRnWIIo5tSn3dE2mK5ZJmbm4v169cDqLgI36Q8kFlu6M2lRiIiqmv2fjsRVUlV74g0GNyQkREMg8GtVl9fnvWSXbx4UflzWlovi2arFp1XzY/81VsMAOLi4rjUSEREdY4zYVTnLIvjLZf+KmMwuCEzMwgAEBSUqardWr9+vbIkmZubi3Xr1gEA9u3TK8uN5cRfX5q//lt+zHwPSJ1OV7M3SkREVA0MYVSnKttWqDIHDvSzaCchMH78VlWIKy4uRm5uLrKysgAA5875IyEhCuoABgDlfcCysgKQmBhV4zsjiYiIbhZDGNWpyrYVKu/hlWsVggwGNxv9vCSrEGcwGJQZMHnWzfZKe3kfsJCQM+jVK81mE1YiIqL6wBBGdcZgcMPVqy5WxfHy0l9ly5SmJUjbne1TUiIxcmQiAKCkpER5PfW+kKpnITo6URW27DVhJSIiqg8MYVQnzAOWaSNsoypsAahwmbJ8GdK2pCQ9IiNTVCHK/r6QRkRHJ2Lw4OTafItEREQ3hSGMap31jJQGQhgxadJ6ZTkwIyPY7jIlgAqWFGXlS5oyWy0pJMmIWbNWITAwu8rXz/YURERUHxjC6KbYCiy2Z6Q0cHW9poQme4HJ0zOvghktWI0FgMuXLwOAsi+k5RKnrQA2efJkqy748vthewoiIqoPDGF0U7y8vDBv3jxVv7CsLA0+/ljAaLTdAkIuxo+KSqzgDkUj1DNhRkgSrJY0Tb3HfoHcVSI09JTdrYhkkydPRo8ePWrxUyAiIqo+hjC6aZYzR/7+wHvvAffeC5SVAQ4OAmPGbFNqvaw31M5S7lA0GNyQkhIJdXsJI8aP34bQ0FPK3Yzp6Z2xfHm83TqzivqR+fr61uGnQUREVDWSEMJ+G3FqUAUFBdDpdDAYDHB3d2/oy6mSc+eAkyeBLl1M3586BXTuDDg75+L06VIMGOCrmiHTaAQeeuh1q4BmTpKMiI9froS0zMwgbNo00Wop0/STrLH5PACIjY1FQEAAlxuJiKhOVfX3N2fCqNa8/z4wZw5gNAIajWk2bNYs+agXDh82HTNnNEqqYnxbtWBywX56eucKx9h7nhzCGMCIiKgxYQijasvNzbXaMzIrS4M5c8pnuYxG03JkTAwQGGga06WLKZyZBzEHB1FpMb4kGaHVFlfQA8z+TJhch8b9IImIqLFhCKNqyc3NxcqVK60ez8gIhtE4Q/VYWZlpOVIOYYGBlrViwMsvG3DlimmmyvJuSRNTbVdJiVOFAcxeTZg8C8b9IImIqLFhCKNqsZwBk9lqOeHgYKoHMzdrlml2TK4Vc3C4jvfes91eQq9PVhqyGgxuNkKaEZMmbVTdBWlevM9u+ERE1JgxhFGtsAxRDg4C774rKbNg5gIDy2fHcnPL+4yFhx+0G6Ls9QDr1euo1XUwfBERUVPAEEa1xjxEPfDAaERE+FX6HFt9xsxdunQJmzdvtjo/Z7qIiKipYwijWiXPRAUEmKrvbRXxy/Lz8yFJEnQ6HbKyNMjIaIWQkFLluY6OjvD29rZ5fiIioqaOIYzqjGURv9wp39MzVxWkLBu4mjdZjYuLq5Vr4X6QRETU2DCE0U2xF6zy8/NRWlqqfG8vaFlu9i2EBlu3jkVo6CnodIUQQth9DXP29oIEuB8kERE1TgxhVGMVzWCtX79eGXfunL/doGWrP5h5k9X1692wYsV8GI0SNBqBp576E7Gxl6HVapW2EwxZRETUFDGEUbXIy3qVzWDJDhzohy1bxkK9GXd50LLV2kJusmowuGH58gAIITeAlfDMMwEwGNZDpyvEvHnzGL6IiKjJst39ksgO+W7GQYNm2J3BMhjckJERrMyA2foxk4OWTleIqKhEAEblcbnJakWzZID9nmVERERNAWfCqNq8vLwwcKD1FkSSZERWVgA++uhOZYnSVpd786B14EA/JCZGATCNj4pKVJY0K5olIyIiauo4E0Y1Im9B5OBg+l4OUImJUaolSkBYPNOIWbNW2S3KT0yMgsHgBqC8QaskWc+SERERNXWcCaMak7cgSknJxb59a+xswi2Z/VkgOjoRgYHZAGB3ufH338PQs+cR6HSFbNBKRETNFkMY3ZTAQMDBoRhpaRVtwi2TEBCQBcBU2H/1qouN8QI7d45CQsJI5W5LNmglIqLmiCGMao3l/o6mpcjymTC5nsu8tYWpIF8eVz7e3t2WREREzQVDGFXZuXPAyZNAly6wuTE3oN7fMSsrQKkRk+u5CgvbWLSsMIW1rl2P4cSJ7qpzmfcLIyIiam4YwqhC8t6Pn33mjEWLdErT1GXLDPjXv67b3A5IXj4MCTmDXr3SlHqu9PTOeP/92bC+H0TCiRNdq30nJLciIiKipowhjOyS9340NU2NVzVNXbjQHX/++QEAIDw8DgaDm80ZKzmQWd4JaU0DvX4fkpP1qpkz+ZyxsbGqzbzZJZ+IiJq6JteioqioCLfccgskScKhQ4dUxw4fPoyhQ4eidevWCAoKwrJly6yev2HDBnTv3h2tW7dG79698fXXX6uOCyHw1FNPwd/fH87OzoiKisLJkydVY/Ly8jB16lS4u7vDw8MDs2bNwpUrV6p9LY2d3AzV3l2MKSmRWL48HtOnt8eKFfMBzEJ0dLTNc9m+c7KcJBkRGZmC+PjlmDFjNeLjlyv9wgDA29sb/v7+yhcDGBERNXVNLoQtWrQIAQEBVo8XFBRg5MiR6NixI1JTU/HKK69gyZIleO+995QxSUlJmDJlCmbNmoWDBw9iwoQJmDBhAtLS0pQxy5YtwxtvvIF33nkHKSkpcHV1RUxMDG7cuKGMmTp1Kn7//XckJCRg27Zt+PHHHzFnzpxqXUtTIjdNNSdJRiQl6ZVgJW8ptHHjTwBMG2rPmTMHsbGxds9hTq9PVi1jsg6MiIiauyYVwr755hvs3LkTr776qtWxTz/9FMXFxfjggw/Qs2dP3HHHHXjwwQfxn//8RxmzYsUKjBo1CgsXLkSPHj3w3HPPITw8HCtXrgRgmgVbvnw5nnjiCfzjH/9Anz598NFHHyErKwtffvklAODo0aPYsWMHVq1ahcjISAwZMgRvvvkm1q5di6ysrCpfS1Niq2mqXp8Me/tBAoCHhwf8/f2VJUTLc6iZZsGIiIhakiYTws6fP4977rkHH3/8MVxcXKyOJycnY9iwYapi7ZiYGBw/fhyXL19WxkRFRameFxMTg+TkZABARkYGcnJyVGN0Oh0iIyOVMcnJyfDw8ED//v2VMVFRUdBoNEhJSanytdhSVFSEgoIC1VdjER5+ULVUGBmZYnN2rKJCevkcgwbtg/lekePHV94Fn0X4RETU3DSJwnwhBGbOnIn77rsP/fv3x+nTp63G5OTkICQkRPWYn5+fcqxt27bIyclRHjMfk5OTo4wzf569Mb6+vqrjrVq1gqenp2pMZddiy9KlS/HMM8/Y/hAaATko5eV5wdMzV9UTrKpbCul0hRg5MhGRkSl2u+BPnjwZHh4eyvcswiciouaoQUPY4sWL8fLLL1c45ujRo9i5cycKCwvx2GOP1dOVNYzHHnsMCxYsUL4vKChAUFBQA16RmnmTVTl0xccvR16eJ7TaYpSUOCl3SV66dKnC2St7XfDj4uLQvXt3G88gIiJqXho0hD388MOYOXNmhWM6deqE7777DsnJyXByclId69+/P6ZOnYo1a9agXbt2OH/+vOq4/H27du2U/9oaY35cfszf31815pZbblHGXLhwQXWO0tJS5OXlVfo65q9hi5OTk9V7bEhZWRpkZATD0zMXAKw22966dSzi45fj8mVPq3AGbAYATJs2rVqv6ePjU6vvgYiIqLFq0BDm4+NTpV+6b7zxBp5//nnl+6ysLMTExGDdunWIjIwEAOj1ejz++OMoKSmBVqsFACQkJKBbt27K8p9er8euXbsQHx+vnCshIQF6vR4AEBISgnbt2mHXrl1K6CooKEBKSgruv/9+5Rz5+flITU1FREQEAOC7776D0Wis1rU0tMq637//PjBnji+MxhlKIb6tNhWZmYE2w5m83ZCLiwvmzZuH4uJi5Ofno7S01Oq1tFotdDodlx2JiKhlEU1QRkaGACAOHjyoPJafny/8/PzE9OnTRVpamli7dq1wcXER7777rjJm3759olWrVuLVV18VR48eFU8//bTQarXit99+U8a89NJLwsPDQ3z11Vfi8OHD4h//+IcICQkR169fV8aMGjVK9OvXT6SkpIi9e/eKLl26iClTplTrWqrCYDAIAMJgMNTgU7Jv1SohNBohANN/V61SH8/MLD8uf0lSmQDKrB6bNGm96jH5a8aMD8WSJUtEVlZWrV47ERFRY1fV39/NJoQJIcSvv/4qhgwZIpycnET79u3FSy+9ZPXc9evXi65duwpHR0fRs2dPsX37dtVxo9EonnzySeHn5yecnJzE7bffLo4fP64ak5ubK6ZMmSLatGkj3N3dxV133SUKCwurfS2VqYsQZitgOTiYHpd99511qAKEGDRo719hzBTAxo//Ssyf/5rymHk4mz//NYYwIiJqkar6+1sSQoiGnIkj+woKCqDT6WAwGODu7l4r59y9G7jtNtuP33qr6c/nzgEdOwJGsw4UkmTExImb4OFxGSUljqq7Gm0V7Mvd7ufMmaOqryMiImruqvr7u0m0qKDa06ULoNGoA5aDA9C5s+nPubm5cHAoxrJlznj0UR3KyqS/NtYGNm78pxKyQkLOKM8PDz+I0NBTdltOEBERkTWGsBYmMBB47z3g3nuBsjJTAHv3XdPj8obdsgcfdENmZiA2bpwEua+vZeG9zF7LCSIiIrKtyXTMp9ozaxZw+rRpCfL0adP3QPmG3TKdrhCurtdR0fZElTEYDDd/wURERM0QZ8JaqMBA260pLMkbb5u3p6hseyJzLDkkIiKyjTNhVCFbm3ebmrECGRnBMBjcAAAGg5vqe5n59kNERERUjjNhVKnQ0FOYOHETAIGgoHNIT++M5cvjlbsh+/Q5jMOH+9i8O5KIiIhsYwijClm2n4iKSkRiYpSqQ/6vv/YFICnf2yrcJyIiIjWGsBYkNzfXqvjenGURvcHgZrUlkXkAKyepvpML9xnCiIiI7GMIayEs209URV6el839IgEjKionrE7hPhERUUvFwvwWwtYMmL1iepl8Z6Q5STIiIiLV7uvINWGcBSMiIqoYZ8JaKHtbDQ0cOBA//fQTACA9vTPMO0zI40JDTyE1NQLqDG/EpEkbERR0ThXAHB0d6+cNERERNTEMYS2QrVovuZi+tLRUNcY8aAkBpeB+/PhtViGuV6+jAIDJkyfDw8MDjo6O8PLyqvf3R0RE1BQwhLVA9mq98vI88csvv9gdA5QX3IeHH8T06b4oKPBFUFAR2rULgVbbFT4+PgxeREREVcAQ1gJ5eubCurheXUxflTGDB3eEv79/3V4sERFRM8UQ1mKp20pIElBY2AaZmUEAAA+PyzbHmGO9FxERUc0xhLVAeXlesNXba9Wqe8weN9ocIy9Hjhw5ksuOREREN4EtKloI81krW60nAAF16LL+0TDv/8U9IYmIiG4OQ1gL4eXlhZEjRwKwvSm35ayXJcv+X76+vnV6vURERM0dlyNbiNzcXJSUlCjfh4cfRGjoKeTleUKrLcb778+2cTdkuYkTN6JXr6OIjY1FQEAAlyKJiIhuEkNYC2BvyyKdrlCZ2Ro3bpuqd5g5STIiKOgcAMDb25sBjIiIqBYwhLUAllsWGQxuyMvzgqdnrhLC5JmxzMxAHD/eFWlpfVSNWOVxvCOSiIiodjCEtTC2tisyLUuaQllxcWslgAFGREUlIjz8IAAgLi6Os2BERES1hCGsBbG1XdGWLWMhSVBCmWmvSHlJUoPExCj06pUGna4QPj4+DXXpREREzQ5DWAtibysieZNuW/VgQmgwePAM3HorOAtGRERUixjCWhC5P1hFd0FacnAAIiO9wPxFRERUu9gnrAWx7A9m6oovVGNMx0zHHRyAd98FAgPr9TKJiIhaBM6EtTDm/cGysgKQkBBtdrS8UH/48FmIiNAxgBEREdURhrAWwLKthNxu4qOP7oR5p3yNRsJTT0UiOHgwvLx09XmJRERELQ5DWAvg5eWFefPmqfqF7dvniNdfV69GG40SCgv9WP9FRERUDxjCWgjLOxsHDgQ0GsBoto+3gwPQuXM9XxgREVELxcL8FiowEHjvPVPwAliET0REVN84E9aCzZoFxMQAp06ZZsAYwIiIiOoPQ1gLFxjI8EVERNQQuBxJRERE1AAYwoiIiIgaAEMYERERUQNgCCMiIiJqAAxhRERERA2AIYyIiIioATCEERERETUAhjAiIiKiBsAQRkRERNQAGMKIiIiIGgBDGBEREVED4N6RjZgQAgBQUFDQwFdCREREVSX/3pZ/j9vDENaIFRYWAgCCgoIa+EqIiIiougoLC6HT6ewel0RlMY0ajNFoRFZWFtzc3CBJUo3PU1BQgKCgIGRmZsLd3b0Wr7Dp4Gdgws+BnwHAzwDgZyDj51A3n4EQAoWFhQgICIBGY7/yizNhjZhGo0FgYGCtnc/d3b3F/p9Mxs/AhJ8DPwOAnwHAz0DGz6H2P4OKZsBkLMwnIiIiagAMYUREREQNgCGsBXBycsLTTz8NJyenhr6UBsPPwISfAz8DgJ8BwM9Axs+hYT8DFuYTERERNQDOhBERERE1AIYwIiIiogbAEEZERETUABjCiIiIiBoAQ1gT9fbbb6NPnz5Kczm9Xo9vvvlGOX7jxg3MnTsXXl5eaNOmDSZOnIjz58+rznH27FmMGTMGLi4u8PX1xcKFC1FaWlrfb6XWvPTSS5AkCfHx8cpjLeFzWLJkCSRJUn11795dOd4SPgMA+PPPPzFt2jR4eXnB2dkZvXv3xi+//KIcF0Lgqaeegr+/P5ydnREVFYWTJ0+qzpGXl4epU6fC3d0dHh4emDVrFq5cuVLfb6VGgoODrX4OJEnC3LlzAbSMn4OysjI8+eSTCAkJgbOzM0JDQ/Hcc8+p9u9r7j8HgGmrnPj4eHTs2BHOzs4YNGgQ9u/frxxvjp/Bjz/+iHHjxiEgIACSJOHLL79UHa+t93z48GEMHToUrVu3RlBQEJYtW3ZzFy6oSdqyZYvYvn27OHHihDh+/Lj497//LbRarUhLSxNCCHHfffeJoKAgsWvXLvHLL7+IgQMHikGDBinPLy0tFb169RJRUVHi4MGD4uuvvxbe3t7isccea6i3dFN+/vlnERwcLPr06SMeeugh5fGW8Dk8/fTTomfPniI7O1v5unjxonK8JXwGeXl5omPHjmLmzJkiJSVF/PHHH+Lbb78Vp06dUsa89NJLQqfTiS+//FL8+uuvYvz48SIkJERcv35dGTNq1CjRt29f8dNPP4k9e/aIzp07iylTpjTEW6q2CxcuqH4GEhISBACxe/duIUTL+Dl44YUXhJeXl9i2bZvIyMgQGzZsEG3atBErVqxQxjT3nwMhhJg8ebIICwsTP/zwgzh58qR4+umnhbu7uzh37pwQonl+Bl9//bV4/PHHxebNmwUA8cUXX6iO18Z7NhgMws/PT0ydOlWkpaWJzz//XDg7O4t33323xtfNENaMtG3bVqxatUrk5+cLrVYrNmzYoBw7evSoACCSk5OFEKYfWI1GI3JycpQxb7/9tnB3dxdFRUX1fu03o7CwUHTp0kUkJCSI4cOHKyGspXwOTz/9tOjbt6/NYy3lM3j00UfFkCFD7B43Go2iXbt24pVXXlEey8/PF05OTuLzzz8XQghx5MgRAUDs379fGfPNN98ISZLEn3/+WXcXX0ceeughERoaKoxGY4v5ORgzZoy4++67VY/FxsaKqVOnCiFaxs/BtWvXhIODg9i2bZvq8fDwcPH444+3iM/AMoTV1nt+6623RNu2bVX/f3j00UdFt27danytXI5sBsrKyrB27VpcvXoVer0eqampKCkpQVRUlDKme/fu6NChA5KTkwEAycnJ6N27N/z8/JQxMTExKCgowO+//17v7+FmzJ07F2PGjFG9XwAt6nM4efIkAgIC0KlTJ0ydOhVnz54F0HI+gy1btqB///745z//CV9fX/Tr1w//+9//lOMZGRnIyclRfQ46nQ6RkZGqz8HDwwP9+/dXxkRFRUGj0SAlJaX+3kwtKC4uxieffIK7774bkiS1mJ+DQYMGYdeuXThx4gQA4Ndff8XevXsxevRoAC3j56C0tBRlZWVo3bq16nFnZ2fs3bu3RXwGlmrrPScnJ2PYsGFwdHRUxsTExOD48eO4fPlyja6NG3g3Yb/99hv0ej1u3LiBNm3a4IsvvkBYWBgOHToER0dHeHh4qMb7+fkhJycHAJCTk6P6y1Y+Lh9rKtauXYsDBw6o6h1kOTk5LeJziIyMxOrVq9GtWzdkZ2fjmWeewdChQ5GWltZiPoM//vgDb7/9NhYsWIB///vf2L9/Px588EE4OjpixowZyvuw9T7NPwdfX1/V8VatWsHT07PJfA6yL7/8Evn5+Zg5cyaAlvP/hcWLF6OgoADdu3eHg4MDysrK8MILL2Dq1KkA0CJ+Dtzc3KDX6/Hcc8+hR48e8PPzw+eff47k5GR07ty5RXwGlmrrPefk5CAkJMTqHPKxtm3bVvvaGMKasG7duuHQoUMwGAzYuHEjZsyYgR9++KGhL6veZGZm4qGHHkJCQoLVv/paEvlf+QDQp08fREZGomPHjli/fj2cnZ0b8Mrqj9FoRP/+/fHiiy8CAPr164e0tDS88847mDFjRgNfXf17//33MXr0aAQEBDT0pdSr9evX49NPP8Vnn32Gnj174tChQ4iPj0dAQECL+jn4+OOPcffdd6N9+/ZwcHBAeHg4pkyZgtTU1Ia+NLLA5cgmzNHREZ07d0ZERASWLl2Kvn37YsWKFWjXrh2Ki4uRn5+vGn/+/Hm0a9cOANCuXTurO6Pk7+UxjV1qaiouXLiA8PBwtGrVCq1atcIPP/yAN954A61atYKfn1+L+BwseXh4oGvXrjh16lSL+Vnw9/dHWFiY6rEePXooy7Ly+7D1Ps0/hwsXLqiOl5aWIi8vr8l8DgBw5swZJCYmYvbs2cpjLeXnYOHChVi8eDHuuOMO9O7dG9OnT8f8+fOxdOlSAC3n5yA0NBQ//PADrly5gszMTPz8888oKSlBp06dWsxnYK623nNd/H+EIawZMRqNKCoqQkREBLRaLXbt2qUcO378OM6ePQu9Xg8A0Ov1+O2331Q/dAkJCXB3d7f6ZdZY3X777fjtt99w6NAh5at///6YOnWq8ueW8DlYunLlCtLT0+Hv799ifhYGDx6M48ePqx47ceIEOnbsCAAICQlBu3btVJ9DQUEBUlJSVJ9Dfn6+arbgu+++g9FoRGRkZD28i9rx4YcfwtfXF2PGjFEeayk/B9euXYNGo/615uDgAKPRCKBl/RwAgKurK/z9/XH58mV8++23+Mc//tHiPgOg9v531+v1+PHHH1FSUqKMSUhIQLdu3Wq0FAmALSqaqsWLF4sffvhBZGRkiMOHD4vFixcLSZLEzp07hRCm29E7dOggvvvuO/HLL78IvV4v9Hq98nz5dvSRI0eKQ4cOiR07dggfH58mdTu6LeZ3RwrRMj6Hhx9+WHz//fciIyND7Nu3T0RFRQlvb29x4cIFIUTL+Ax+/vln0apVK/HCCy+IkydPik8//VS4uLiITz75RBnz0ksvCQ8PD/HVV1+Jw4cPi3/84x82b1Hv16+fSElJEXv37hVdunRp1LflWyorKxMdOnQQjz76qNWxlvBzMGPGDNG+fXulRcXmzZuFt7e3WLRokTKmJfwc7NixQ3zzzTfijz/+EDt37hR9+/YVkZGRori4WAjRPD+DwsJCcfDgQXHw4EEBQPznP/8RBw8eFGfOnBFC1M57zs/PF35+fmL69OkiLS1NrF27Vri4uLBFRUt09913i44dOwpHR0fh4+Mjbr/9diWACSHE9evXxf/93/+Jtm3bChcXF/H//t//E9nZ2apznD59WowePVo4OzsLb29v8fDDD4uSkpL6fiu1yjKEtYTPIS4uTvj7+wtHR0fRvn17ERcXp+qP1RI+AyGE2Lp1q+jVq5dwcnIS3bt3F++9957quNFoFE8++aTw8/MTTk5O4vbbbxfHjx9XjcnNzRVTpkwRbdq0Ee7u7uKuu+4ShYWF9fk2bsq3334rAFi9LyFaxs9BQUGBeOihh0SHDh1E69atRadOncTjjz+uainQEn4O1q1bJzp16iQcHR1Fu3btxNy5c0V+fr5yvDl+Brt37xYArL5mzJghhKi99/zrr7+KIUOGCCcnJ9G+fXvx0ksv3dR1S0KYtRImIiIionrBmjAiIiKiBsAQRkRERNQAGMKIiIiIGgBDGBEREVEDYAgjIiIiagAMYUREREQNgCGMiIiIqAEwhBERERE1AIYwImpWbr31VsTHxzf0ZdS5JUuW4JZbbmnoyyCim8AQRkTUiBQXF9fr6wkhUFpaWq+vSUQmDGFE1GzMnDkTP/zwA1asWAFJkiBJEk6fPo20tDSMHj0abdq0gZ+fH6ZPn45Lly4pz7v11lvxwAMPID4+Hm3btoWfnx/+97//4erVq7jrrrvg5uaGzp0745tvvlGe8/3330OSJGzfvh19+vRB69atMXDgQKSlpamuae/evRg6dCicnZ0RFBSEBx98EFevXlWOBwcH47nnnsOdd94Jd3d3zJkzBwDw6KOPomvXrnBxcUGnTp3w5JNPoqSkBACwevVqPPPMM/j111+V97l69WqcPn0akiTh0KFDyvnz8/MhSRK+//571XV/8803iIiIgJOTE/bu3Quj0YilS5ciJCQEzs7O6Nu3LzZu3Fjb/xMRkRmGMCJqNlasWAG9Xo977rkH2dnZyM7OhpubG2677Tb069cPv/zyC3bs2IHz589j8uTJqueuWbMG3t7e+Pnnn/HAAw/g/vvvxz//+U8MGjQIBw4cwMiRIzF9+nRcu3ZN9byFCxfitddew/79++Hj44Nx48YpYSk9PR2jRo3CxIkTcfjwYaxbtw579+7FvHnzVOd49dVX0bdvXxw8eBBPPvkkAMDNzQ2rV6/GkSNHsGLFCvzvf//D66+/DgCIi4vDww8/jJ49eyrvMy4urlqf1eLFi/HSSy/h6NGj6NOnD5YuXYqPPvoI77zzDn7//XfMnz8f06ZNww8//FCt8xJRNdzU9t9ERI3M8OHDxUMPPaR8/9xzz4mRI0eqxmRmZgoA4vjx48pzhgwZohwvLS0Vrq6uYvr06cpj2dnZAoBITk4WQgixe/duAUCsXbtWGZObmyucnZ3FunXrhBBCzJo1S8yZM0f12nv27BEajUZcv35dCCFEx44dxYQJEyp9X6+88oqIiIhQvn/66adF3759VWMyMjIEAHHw4EHlscuXLwsAYvfu3arr/vLLL5UxN27cEC4uLiIpKUl1vlmzZokpU6ZUem1EVDOtGjIAEhHVtV9//RW7d+9GmzZtrI6lp6eja9euAIA+ffoojzs4OMDLywu9e/dWHvPz8wMAXLhwQXUOvV6v/NnT0xPdunXD0aNHldc+fPgwPv30U2WMEAJGoxEZGRno0aMHAKB///5W17Zu3Tq88cYbSE9Px5UrV1BaWgp3d/dqv397zF/z1KlTuHbtGqKjo1VjiouL0a9fv1p7TSJSYwgjombtypUrGDduHF5++WWrY/7+/sqftVqt6pgkSarHJEkCABiNxmq99r333osHH3zQ6liHDh2UP7u6uqqOJScnY+rUqXjmmWcQExMDnU6HtWvX4rXXXqvw9TQaU4WJEEJ5TF4atWT+mleuXAEAbN++He3bt1eNc3JyqvA1iajmGMKIqFlxdHREWVmZ8n14eDg2bdqE4OBgtGpV+3/l/fTTT0qgunz5Mk6cOKHMcIWHh+PIkSPo3Llztc6ZlJSEjh074vHHH1ceO3PmjGqM5fsEAB8fHwBAdna2MoNlXqRvT1hYGJycnHD27FkMHz68WtdKRDXHwnwialaCg4ORkpKC06dP49KlS5g7dy7y8vIwZcoU7N+/H+np6fj2229x1113WYWYmnj22Wexa9cupKWlYebMmfD29saECRMAmO5wTEpKwrx583Do0CGcPHkSX331lVVhvqUuXbrg7NmzWLt2LdLT0/HGG2/giy++sHqfGRkZOHToEC5duoSioiI4Oztj4MCBSsH9Dz/8gCeeeKLS9+Dm5oZHHnkE8+fPx5o1a5Ceno4DBw7gzTffxJo1a2r82RBRxRjCiKhZeeSRR+Dg4ICwsDD4+PiguLgY+/btQ1lZGUaOHInevXsjPj4eHh4eyvLdzXjppZfw0EMPISIiAjk5Odi6dSscHR0BmOrMfvjhB5w4cQJDhw5Fv3798NRTTyEgIKDCc44fPx7z58/HvHnzcMsttyApKUm5a1I2ceJEjBo1CiNGjICPjw8+//xzAMAHH3yA0tJSREREID4+Hs8//3yV3sdzzz2HJ598EkuXLkWPHj0watQobN++HSEhITX4VIioKiRhXjxARERV8v3332PEiBG4fPkyPDw8GvpyiKgJ4kwYERERUQNgCCMiIiJqAFyOJCIiImoAnAkjIiIiagAMYUREREQNgCGMiIiIqAEwhBERERE1AIYwIiIiogbAEEZERETUABjCiIiIiBoAQxgRERFRA2AIIyIiImoA/x8XV8X3Pvc5BQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAh3FJREFUeJzt3XlYVGX/P/D3GQQEhEF2EBTEfU2wcDQtC0RzyR/6iD5mmpjVVyu0THta1Mos22x5ysrK9jS1HvcEszIlMtQMM1JCxQAXkAFFAZn798d0DnNmYRMYlvfruriEOfecOTNZvLvvz/nckhBCgIiIiIgalcbeF0BERETUGjGEEREREdkBQxgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgRERGRHTCEEREREdkBQxgRERGRHTCEERFRldasWQNJknDixAl7XwpRi8IQRkR2t3//fsydOxe9e/eGm5sbOnbsiEmTJuHPP/+0GHvzzTdDkiRIkgSNRgMPDw90794d06ZNQ1JSUq1ed/Pmzbjpppvg5+cHV1dXdO7cGZMmTcKOHTvq661ZePbZZ/H1119bPL5v3z4sWbIEhYWFDfba5pYsWaJ8lpIkwdXVFb169cLjjz+OoqKienmNzz77DCtXrqyXcxG1NAxhRGR3zz//PDZs2IBbb70Vr776KmbPno0ffvgBERERSE9PtxgfHByMjz/+GB999BFeeOEFjBs3Dvv27cOIESMQHx+P8vLyal/zxRdfxLhx4yBJEh599FG88sormDBhAo4dO4YvvviiId4mgKpD2NKlSxs1hMneeustfPzxx3j55ZfRo0cPLFu2DCNHjkR9bC3MEEZkWxt7XwAR0fz58/HZZ5/ByclJeSw+Ph59+/bFc889h08++UQ1XqvV4o477lA99txzz+GBBx7Am2++idDQUDz//PM2X+/q1at4+umnERMTg507d1ocP3v27DW+o6ajpKQErq6uVY6ZOHEifHx8AAD33nsvJkyYgI0bN+Knn36CTqdrjMskapU4E0ZEdjd48GBVAAOArl27onfv3jh69GiNzuHg4IDXXnsNvXr1whtvvAG9Xm9z7Pnz51FUVIQhQ4ZYPe7n56f6+cqVK1iyZAm6deuGtm3bIjAwEHFxccjMzFTGvPjiixg8eDC8vb3h4uKCyMhIrF+/XnUeSZJw6dIlfPjhh8oS4IwZM7BkyRIsWLAAABAWFqYcM63B+uSTTxAZGQkXFxd4eXlh8uTJyM7OVp3/5ptvRp8+fZCWloZhw4bB1dUV//nPf2r0+Zm65ZZbAABZWVlVjnvzzTfRu3dvODs7IygoCHPmzFHN5N18883YunUrTp48qbyn0NDQWl8PUUvFmTAiapKEEDhz5gx69+5d4+c4ODhgypQpeOKJJ/Djjz9i9OjRVsf5+fnBxcUFmzdvxv333w8vLy+b56yoqMCYMWOwa9cuTJ48GQ8++CCKi4uRlJSE9PR0hIeHAwBeffVVjBs3DlOnTkVZWRm++OIL/Otf/8KWLVuU6/j4448xa9Ys3HDDDZg9ezYAIDw8HG5ubvjzzz/x+eef45VXXlFmpXx9fQEAy5YtwxNPPIFJkyZh1qxZOHfuHF5//XUMGzYMBw8ehKenp3K9+fn5GDVqFCZPnow77rgD/v7+Nf78ZHK49Pb2tjlmyZIlWLp0KaKjo3HfffchIyMDb731Fvbv34+9e/fC0dERjz32GPR6PU6fPo1XXnkFANCuXbtaXw9RiyWIiJqgjz/+WAAQ7733nurxm266SfTu3dvm87766isBQLz66qtVnv/JJ58UAISbm5sYNWqUWLZsmUhLS7MY9/777wsA4uWXX7Y4ZjAYlO9LSkpUx8rKykSfPn3ELbfconrczc1NTJ8+3eJcL7zwggAgsrKyVI+fOHFCODg4iGXLlqke/+2330SbNm1Uj990000CgFi1apXN921q8eLFAoDIyMgQ586dE1lZWeLtt98Wzs7Owt/fX1y6dEkIIcQHH3ygurazZ88KJycnMWLECFFRUaGc74033hAAxPvvv688Nnr0aNGpU6caXQ9Ra8PlSCJqcv744w/MmTMHOp0O06dPr9Vz5ZmW4uLiKsctXboUn332GQYMGIBvvvkGjz32GCIjIxEREaFaAt2wYQN8fHxw//33W5xDkiTlexcXF+X7CxcuQK/XY+jQoThw4ECtrt/cxo0bYTAYMGnSJJw/f175CggIQNeuXbF7927VeGdnZ9x11121eo3u3bvD19cXYWFhuOeee9ClSxds3brVZi1ZcnIyysrKkJiYCI2m8tfI3XffDQ8PD2zdurX2b5SoFeJyJBE1KXl5eRg9ejS0Wi3Wr18PBweHWj3/4sWLAAB3d/dqx06ZMgVTpkxBUVERUlNTsWbNGnz22WcYO3Ys0tPT0bZtW2RmZqJ79+5o06bq/1xu2bIFzzzzDA4dOoTS0lLlcdOgVhfHjh2DEAJdu3a1etzR0VH1c4cOHSzq66qzYcMGeHh4wNHREcHBwcoSqy0nT54EYAxvppycnNC5c2flOBFVjSGMiJoMvV6PUaNGobCwEHv27EFQUFCtzyG3tOjSpUuNn+Ph4YGYmBjExMTA0dERH374IVJTU3HTTTfV6Pl79uzBuHHjMGzYMLz55psIDAyEo6MjPvjgA3z22We1fg+mDAYDJEnC9u3brQZS8xor0xm5mho2bJhSh0ZEjYchjIiahCtXrmDs2LH4888/kZycjF69etX6HBUVFfjss8/g6uqKG2+8sU7XMXDgQHz44YfIzc0FYCycT01NRXl5ucWsk2zDhg1o27YtvvnmGzg7OyuPf/DBBxZjbc2M2Xo8PDwcQgiEhYWhW7dutX07DaJTp04AgIyMDHTu3Fl5vKysDFlZWYiOjlYeu9aZQKKWjDVhRGR3FRUViI+PR0pKCr788ss69aaqqKjAAw88gKNHj+KBBx6Ah4eHzbElJSVISUmxemz79u0AKpfaJkyYgPPnz+ONN96wGCv+aWbq4OAASZJQUVGhHDtx4oTVpqxubm5WG7K6ubkBgMWxuLg4ODg4YOnSpRbNU4UQyM/Pt/4mG1B0dDScnJzw2muvqa7pvffeg16vV92V6ubmVmW7EKLWjDNhRGR3Dz30EDZt2oSxY8eioKDAojmreWNWvV6vjCkpKcHx48exceNGZGZmYvLkyXj66aerfL2SkhIMHjwYgwYNwsiRIxESEoLCwkJ8/fXX2LNnD8aPH48BAwYAAO6880589NFHmD9/Pn7++WcMHToUly5dQnJyMv7v//4Pt99+O0aPHo2XX34ZI0eOxL///W+cPXsW//3vf9GlSxccPnxY9dqRkZFITk7Gyy+/jKCgIISFhSEqKgqRkZEAgMceewyTJ0+Go6Mjxo4di/DwcDzzzDN49NFHceLECYwfPx7u7u7IysrCV199hdmzZ+Phhx++ps+/tnx9ffHoo49i6dKlGDlyJMaNG4eMjAy8+eabuP7661X/vCIjI7F27VrMnz8f119/Pdq1a4exY8c26vUSNVn2vDWTiEiIytYKtr6qGtuuXTvRtWtXcccdd4idO3fW6PXKy8vFu+++K8aPHy86deoknJ2dhaurqxgwYIB44YUXRGlpqWp8SUmJeOyxx0RYWJhwdHQUAQEBYuLEiSIzM1MZ895774muXbsKZ2dn0aNHD/HBBx8oLSBM/fHHH2LYsGHCxcVFAFC1q3j66adFhw4dhEajsWhXsWHDBnHjjTcKNzc34ebmJnr06CHmzJkjMjIyVJ9NVe07zMnXd+7cuSrHmbeokL3xxhuiR48ewtHRUfj7+4v77rtPXLhwQTXm4sWL4t///rfw9PQUANiugsiEJEQ9bA5GRERERLXCmjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDhjAiIiIiO2AIIyIiIrIDNmttwgwGA3JycuDu7s6tP4iIiJoJIQSKi4sRFBQEjcb2fBdDWBOWk5ODkJAQe18GERER1UF2djaCg4NtHmcIa8Lc3d0BGP8hVrUPHhERETUdRUVFCAkJUX6P28IQ1oTJS5AeHh4MYURERM1MdaVELMwnIiIisgOGMCIiIiI7YAgjIiIisgPWhDVzBoMBZWVl9r6MFs3JyanKW4yJiIjqgiGsGSsrK0NWVhYMBoO9L6VF02g0CAsLg5OTk70vhYiIWhCGsGZKCIHc3Fw4ODggJCSEMzUNRG6Ym5ubi44dO7JpLhER1RuGsGbq6tWrKCkpQVBQEFxdXe19OS2ar68vcnJycPXqVTg6Otr7coiIqIXg9EkzVVFRAQBcImsE8mcsf+ZERET1gSGsmePyWMPjZ0xERA2BIYyIiIjIDhjCiIiIiOyg2YSwcePGoWPHjmjbti0CAwMxbdo05OTkqMYIIfDiiy+iW7ducHZ2RocOHbBs2TLVmO+++w4RERFwdnZGly5dsGbNGovX+u9//4vQ0FC0bdsWUVFR+Pnnn1XHr1y5gjlz5sDb2xvt2rXDhAkTcObMGdWYU6dOYfTo0XB1dYWfnx8WLFiAq1ev1s+H0YzNmDEDkiRBkiQ4OjrC398fMTExeP/992vVamPNmjXw9PRsuAslIqIW6fRpYPdu45/21mxC2PDhw7Fu3TpkZGRgw4YNyMzMxMSJE1VjHnzwQaxevRovvvgi/vjjD2zatAk33HCDcjwrKwujR4/G8OHDcejQISQmJmLWrFn45ptvlDFr167F/PnzsXjxYhw4cAD9+/dHbGwszp49q4yZN28eNm/ejC+//BLff/89cnJyEBcXpxyvqKjA6NGjUVZWhn379uHDDz/EmjVr8OSTTzbgJ1Q7+fn5yM3NtfmVn5/fYK89cuRI5Obm4sSJE9i+fTuGDx+OBx98EGPGjGFQJSKieif/znvmmVx06iRwyy1Ap04CS5eexm+//YajR482+O8+ayQhhGjUV6wnmzZtwvjx41FaWgpHR0ccPXoU/fr1Q3p6Orp37271OQsXLsTWrVuRnp6uPDZ58mQUFhZix44dAICoqChcf/31eOONNwAY+0SFhITg/vvvx6JFi6DX6+Hr64vPPvtMCYF//PEHevbsiZSUFAwaNAjbt2/HmDFjkJOTA39/fwDAqlWrsHDhQpw7d67GdzQWFRVBq9VCr9fDw8NDdezKlSvIyspCWFgY2rZtW6vPLj8/X3l/VZk7dy68vb1rde7qzJgxA4WFhfj6669Vj3/77be49dZb8e6772LWrFl4+eWX8cEHH+Cvv/6Cl5cXxo4dixUrVqBdu3b47rvvMHz4cNXzFy9ejCVLluDjjz/Gq6++ioyMDLi5ueGWW27BypUr4efnV+drvpbPmoiI7Ev+nafXu2PlykQIUTn/JEkGJCauhFZbrDxWH7/7qvr9barZzISZKigowKefforBgwcrfZs2b96Mzp07Y8uWLQgLC0NoaChmzZqFgoIC5XkpKSmIjo5WnSs2NhYpKSkAjB3o09LSVGM0Gg2io6OVMWlpaSgvL1eN6dGjBzp27KiMSUlJQd++fZUAJr9OUVERjhw5YvN9lZaWoqioSPXVEGq6zVFjbod0yy23oH///ti4cSMA4+f+2muv4ciRI/jwww/x7bff4pFHHgEADB48GCtXroSHh4cyc/fwww8DAMrLy/H000/j119/xddff40TJ05gxowZjfY+iIioaZFXsgoKvFUBDACE0CA7O1j1WGP+7mtWIWzhwoVwc3ODt7c3Tp06hf/973/Ksb/++gsnT57El19+iY8++ghr1qxBWlqaaskyLy9PFYwAwN/fH0VFRbh8+TLOnz+PiooKq2Py8vKUczg5OVnUI5mPsXYO+Zgty5cvh1arVb5CQkJq+Mm0DD169MCJEycAAImJiRg+fDhCQ0Nxyy234JlnnsG6desAGPt2abVaSJKEgIAABAQEoF27dgCAmTNnYtSoUejcuTMGDRqE1157Ddu3b8fFixft9baIiMiO5DIXL698AJaLfxs2TMSBAwMa+aqM7BrCFi1apBRp2/r6448/lPELFizAwYMHsXPnTjg4OODOO++EvJpqMBhQWlqKjz76CEOHDsXNN9+M9957D7t370ZGRoa93mKtPProo9Dr9cpXdna2vS+pUQkhlJ5cycnJuPXWW9GhQwe4u7tj2rRpyM/PR0lJSZXnSEtLw9ixY9GxY0e4u7vjpptuAmC8UYKIiFqX/Px8XLhwweQRyxAmhAabN4+BXu/eeBf2D7tuW/TQQw9Vu1TUuXNn5XsfHx/4+PigW7du6NmzJ0JCQvDTTz9Bp9MhMDAQbdq0Qbdu3ZTxPXv2BGD8Bdy9e3cEBARY3MV45swZeHh4wMXFBQ4ODnBwcLA6JiAgAAAQEBCAsrIyFBYWqmbDzMeY31Epn1MeY42zszOcnZ2r/DxasqNHjyIsLAwnTpzAmDFjcN9992HZsmXw8vLCjz/+iISEBJSVldncpunSpUuIjY1FbGwsPv30U/j6+uLUqVOIjY1t1OllIiKyj/z8fOW/93q9HmvXrlWOFRR4w9bckxAaFBR4qWrDGoNdQ5ivry98fX3r9Fy5nUFpaSkAYMiQIbh69SoyMzMRHh4OAPjzzz8BAJ06dQIA6HQ6bNu2TXWepKQk6HQ6AMZlrsjISOzatQvjx49XXmfXrl2YO3cuACAyMhKOjo7YtWsXJkyYAADIyMjAqVOnlPPodDosW7YMZ8+eVQrCk5KS4OHhgV69etXp/bZ03377LX777TfMmzcPaWlpMBgMeOmll5SNyeWlSJmTk5PFNkJ//PEH8vPz8dxzzylLub/88kvjvAEiIrKL/Px8nDt3DtnZ2di+/TdkZxv/+x8Skg2ttnKco2MpAAOsBTFJMsDLq8Di8YbWLDbwTk1Nxf79+3HjjTeiffv2yMzMxBNPPIHw8HAl+ERHRyMiIgIzZ87EypUrYTAYMGfOHMTExCizY/feey/eeOMNPPLII5g5cya+/fZbrFu3Dlu3blVea/78+Zg+fToGDhyIG264AStXrsSlS5dw1113AQC0Wi0SEhIwf/58eHl5wcPDA/fffz90Oh0GDRoEABgxYgR69eqFadOmYcWKFcjLy8Pjjz+OOXPmtOqZLllpaSny8vJQUVGBM2fOYMeOHVi+fDnGjBmDO++8E+np6SgvL8frr7+OsWPHYu/evVi1apXqHKGhobh48SJ27dqF/v37w9XVFR07doSTkxNef/113HvvvUhPT8fTTz9tp3dJREQNKT8/H2fPnsW6deug17sjNTUK+/YlojJkCcTEJCEoKBc5OYFITo7+55gAICl/SpIBY8duafRZMKCZhDBXV1ds3LgRixcvxqVLlxAYGIiRI0fi8ccfV0KNRqPB5s2bcf/992PYsGFwc3PDqFGj8NJLLynnCQsLw9atWzFv3jy8+uqrCA4OxurVqxEbG6uMiY+Px7lz5/Dkk08iLy8P1113HXbs2KEqtH/llVeg0WgwYcIElJaWIjY2Fm+++aZy3MHBAVu2bMF9990HnU4HNzc3TJ8+HU899VQjfFpN344dO5Tl4/bt26N///547bXXMH36dGg0GvTv3x8vv/wynn/+eTz66KMYNmwYli9fjjvvvFM5x+DBg3HvvfciPj4e+fn5SouKNWvW4D//+Q9ee+01RERE4MUXX8S4cePs+G6JiKi+ZWZm4pNPPgEAHDgwAJs3j7G48xGQkJQUA9PAJT8uSQZMnvw5nJzK4eVVYJcABjTjPmGtQUvsE9YcsU8YEVHTYfo7zFrvr5qaPn0NwsJOWjzemH3CmsVMGNUvb29vzJ07t8pidScnJwYwIiJqMuTaL9MdbFJTo+oUwKzVgE2aNAl+fn6N+ruPIayVYsAiIqLmwnwFR693R3Z2CPbt09XiLNZrwOLi4hAUFGSX34sMYURERNRk5efnIycnR/nZdg1YVQSGDv0BnTtnWdSA+fj42G1igiGMiIiImpz8/HxkZmZi+/btymN6vXudA9itt35n9WhN93NuCAxhRERE1KSY3v0IGMNXQYE3Ll1yrWUAMyAmJhlDhqSoHo2Li4OPj4/d658ZwoiIiMju5L5fp0+fxr59+5TH1cuPBthquKpmwMSJ6xESctpq+wl71YCZYwgjIiIiu7JWeF9Q4A1Hx1Kz5cfKRqyVfb/U5ML7Pn2OAgD69OmDoKAgeHp6wtPT0+6zX6YYwoiIiKhRme7xCABZWVnK95YzX9ZmvawFMOuzX4MHD0ZgYGC9XXt9YggjIiKiRlNVw3DLwvua1n8ZMG5c5eyXKXsW3leHIYxalO+++w7Dhw/HhQsX4OnpWaPnhIaGIjExEYmJiQ16bUREBItG4fLSo5dXPgoKvGvdfFWSDEhIWI3g4FzlsaZSeF+d2reZJboGM2bMgCRJuPfeey2OzZkzB5IkYcaMGY1/YURE1OgOHBiAlSsT8eGH07FyZSL++isUxnqv6hjHyPVfpgEMMBbeBwYGNukABnAmjOwgJCQEX3zxBV555RW4uLgAMO7P+Nlnn6Fjx452vjoiImpIhYWFACyXHoXQYM+eobBVcF9J4IYbfkLPnhkWjVft2f2+LjgTRo0uIiICISEh2Lhxo/LYxo0b0bFjRwwYMEB5rLS0FA888AD8/PzQtm1b3Hjjjdi/f7/qXNu2bUO3bt3g4uKC4cOH48SJExav9+OPP2Lo0KFwcXFBSEgIHnjgAVy6dKnB3h8REVXKzMzEb7/9ht9++w379u3DunXrAMDG0mP1rSdiYpJw2207ERZ20qL9RHMKYABnwgjA6dPAsWNA165AcHDjvObMmTPxwQcfYOrUqQCA999/H3fddRe+++47ZcwjjzyCDRs24MMPP0SnTp2wYsUKxMbG4vjx4/Dy8kJ2djbi4uIwZ84czJ49G7/88gseeugh1etkZmZi5MiReOaZZ/D+++/j3LlzmDt3LubOnYsPPvigcd4sEVErZd501ZSXVz4kyVDDGjCBwYP3ISoqVRW8Ro0ahZCQEABo8vVf1jCEtXLvvQfMng0YDIBGA7zzDpCQ0PCve8cdd+DRRx/FyZMnAQB79+7FF198oYSwS5cu4a233sKaNWswatQoAMC7776LpKQkvPfee1iwYAHeeusthIeH46WXXgIAdO/eHb/99huef/555XWWL1+OqVOnKkX3Xbt2xWuvvYabbroJb731Ftq2bdvwb5aIqBUxbT/x999/q46dPh2IU6c6oWPHkwgOzkVERBrS0q63ea6oqH0ICTlt0XbitttuQ+fOnZtd6DLHENaKnT5dGcAA45/33APExjb8jJivry9Gjx6NNWvWQAiB0aNHw8fHRzmemZmJ8vJyDBkyRHnM0dERN9xwA44eNd6CfPToUURFRanOq9PpVD//+uuvOHz4MD799FPlMSEEDAYDsrKy0LNnz4Z4e0RErYocvAoLC5XlRnNffXU7fv21P4w1XwK+vmdx7pyvzXNKkgGDB/9kMfMVHh7e7MOXjCGsFTt2rDKAySoqgOPHG2dZcubMmZg7dy4A4L///W+DvMbFixdxzz334IEHHrA4xpsAiIiuXVV9v2SnTweaBDAAkHDunL+VkcZO+PJdj3IAa24F9zXFENaKde1qXII0DWIODkCXLo3z+iNHjkRZWRkkSUJsbKzqWHh4OJycnLB371506tQJAFBeXo79+/crS4s9e/bEpk2bVM/76aefVD9HRETg999/R5fGelNERK3MuXPnVD+b9v0CjAX4WVmdUP1dj8Btt22Br2++xV2PLTGAAQxhrVpwsLEG7J57jDNgDg7A2283XnG+g4ODsrTo4OCgOubm5ob77rsPCxYsgJeXFzp27IgVK1agpKQECf8Urd1777146aWXsGDBAsyaNQtpaWlYs2aN6jwLFy7EoEGDMHfuXMyaNQtubm74/fffkZSUVO3/uRERUdUyMzOxdu1a5Wf1lkPiny95+yHb+z0CxuXH7t2PqcJXfHw8fH19W2QAAxjCWr2EBGMN2PHjxhmwxgpgMg8PD5vHnnvuORgMBkybNg3FxcUYOHAgvvnmG7Rv3x6AcTlxw4YNmDdvHl5//XXccMMNePbZZzFz5kzlHP369cP333+Pxx57DEOHDoUQAuHh4YiPj2/w90ZE1JLl5+er7ny03HJIQmXoqr71RGtYfjQnCSFq0pqW7KCoqAharRZ6vd4irFy5cgVZWVkICwvjHX4NjJ81EbV2cuG9Xq9HeXk5AODChQvYvXu3MiYrKxQffji9lmcWiIz8BcOG7VHNgM2dO7dZB7Cqfn+b4kwYERER2VSTwnsAJlsOVV/7BRiXH6OjkzFkSIryWGuZAZMxhBEREZFV+fn5+PPPP60eMy3AT0/vgz17hqFmAcyAiRPXW/T+AlpuAb4tDGFERERkwdYMmF7vjtTUKKSk6CCE5p+u90BNApjceqJPH+NNWcOHD0f79u3h6OjYogvwbWEIIyIiIgty13uZHL727dPBtNC+JtsOSZIBEyZYzn717t271QUvUwxhzRzvq2h4/IyJqDWRi/BPnDihPKZuPVE75rNfcXFx8PHxaZZ7PdY3hrBmSu6rVVZWBhcXFztfTcsm/9+geS8zIqKWxtoSpGXriZoy4Lbbtlr0/mptdV9VYQhrptq0aQNXV1ecO3cOjo6O0Ghq/38nVD2DwYBz587B1dUVbdrwXxciapny8/Nx7tw51eyXrKDAu9YBTJ79iog4qHr8jjvuYAAzwd8qzZQkSQgMDERWVhZOnjxp78tp0TQaDTp27AhJqtlt10REzUV+fj7Onj1rc9Pt06cD8ccf3WC79YT6cVu1Xy29831dMYQ1Y05OTujatatF8STVLycnJ840ElGLIdd8FRYW2gxfAPDVV7ebbbqtJkkG9Ot3GIcP91PukmTtV+0whDVzGo2GXdyJiKhGatJ4Va93x6FD/aoMYIABCQmrERyci1tu+RYFBV6tZtPt+sQQRkRE1EpUtXJiqwWFNYMHpyA4OBcAMGJEL3Tq1Amenp7Kcc5+1QxDGBERUQslLz3Kzp8/rzqu17sjOzsEWVmhSEuLRPUbbQOAAVFRqcpP/fv3R2BgYD1dcevCEEZERNQCVbf0eODAAGzaNBY13esRqLzr0XTZ0cnJ6Vous1VjCCMiImph8vPzkZGRYfO43Pur5gHM+n6P8fHxXHa8BgxhRERELUhVez4WFHjD0bEUp051qkXvLwPGjau869GUr6/vNV5t68YQRkRE1IJYK77fu1eH5OTof4KX3NvLVu8vAyIj0+DvnwdX18sWs18jRoxAaGgoi+/rAUMYERFRM2VaeK/X61FeXo4LFy6oxuzadTP27BmGysBl+qdpEDNg8OAUREWlqkKXuW7dujF81ROGMCIiomZEDl56vR5r166tcuzevTqzAGZOgq09HocPHw5fX1+2nmhADGFERETNRE2arQKVrSeSkmJQffG9Br6++RazX71792bgamAMYURERM1Afn4+cnJybB6XC+9zcgJN6r+ssdzv0curAAC3GmpsDGFERERNVHVLj9aDl62CewAQCA39CydPhqn2e5RnwXx8fNh4tRExhBERETVBVS09Wm4xZBq8bG+4HR2djCFDUv4Jb5b7PVLjYggjIiJqgmzt83jgwABs3jzGbLmxqrovy0arWm2x1fDF7veNiyGMiIioGdDr3ZGR0Q3bto1G9cX2xpkxeblRbrQ6cOBAuLu7w9HREZ6enrzz0c4YwoiIiJqI/Px8nDt3DhcuXEBBQYHyeO32eTQgJiYZQUE5FsuNERERrPlqQhjCiIiI7MS02WphYSHWrVtnMaa2+zxOnLje6hZDAJcbmxqGMCIiIjuorueX3OsrOzu4xvs8SpIBISGnAVg2W+VyY9PDEEZERGQHtgrvAXn5cQyMdz7WlLrdRNeuXbn02MQxhBERETUBcs8vR8fSOgWwWbNWIzg4t6EujxoAQxgREVEDM639kp0/f175Xt12oqpmq0C3bn/gzz+7w3Tj7XHjtjCANUMMYURERA2oJrVf6r5ftgOYJBkwevQ2jB69DdnZwQCg6v9likX4TR9DGBERUQM6d+5clccLCrxrWHgvVDVfWq31OyDj4+Ph6+vLIvxmgCGMiIioAcg9v8z3fJRrv7y88qHVFsPRsRTVLUHWtObrjjvuQHh4+DVfOzUOhjAiIqJ6Ut2G23v36pCUFA1j0b0BnTqdxKlTnVDdEuTYsZY1X/Hx8dBqtcrPbEHR/DCEERER1YPqNtz+4YehSEsbiMrApcHJk2FVnNGA227biu7dj6lqvmJiYtC9e3cGrhaAIYyIiKgeVLXhdu1bTgjExCTjhhsOWBxhAGs5GMKIiIjqwLztRFZWluq43PHeuOVQ7Xp+xcQkY8iQFOURufu9n58fA1gLwhBGRERUS9W1nVD3/aoZSTJAp0tBVFSqRcuJ3r17M3y1QAxhREREtZCfn4+cnBybxy37flljejekAYMHWw9fADBp0iQGsBaKIYyIiKiGbM2AmW45lJIyuNoZsNtu2wJX18sAbDdblfn5+V3bRVOTxRBGRERkQ35+Ps6ePYurV6/i4sWLKCgosBhTmy2HAOOyo/kdj9aw6WrLxxBGRERkRXV1XwBw+nRgjbccAip7flUVwCZNmsQC/FaCIYyIiOgfpnc8mm6wLTNddvz9997Yt0+Hmt35KBAZ+QuGDdujCmBxcXHw8fFRfmbD1dalNvfM2tW4cePQsWNHtG3bFoGBgZg2bZqqMHLJkiWQJMniy83NTXWeL7/8Ej169EDbtm3Rt29fbNu2TXVcCIEnn3wSgYGBcHFxQXR0NI4dO6YaU1BQgKlTp8LDwwOenp5ISEjAxYsXVWMOHz6MoUOHom3btggJCcGKFSvq+RMhIqL6JM98vfPOO3jnnXewceNG1fG9e3V45ZVEfPjhdKxefTf27RuCmv0aNSAmJgljx26zmAHz8fFBYGCg8sUA1ro0mxA2fPhwrFu3DhkZGdiwYQMyMzMxceJE5fjDDz+M3Nxc1VevXr3wr3/9Sxmzb98+TJkyBQkJCTh48CDGjx+P8ePHIz09XRmzYsUKvPbaa1i1ahVSU1Ph5uaG2NhYXLlyRRkzdepUHDlyBElJSdiyZQt++OEHzJ49WzleVFSEESNGoFOnTkhLS8MLL7yAJUuW4J133mngT4mIiOqqqo22jdsNxaDy12bVy44ySTLu+Wja88uUk5NTLa+SWhJJCCHsfRF1sWnTJowfPx6lpaVwdHS0OP7rr7/iuuuuww8//IChQ4cCMBY5Xrp0CVu2bFHGDRo0CNdddx1WrVoFIQSCgoLw0EMP4eGHHwYA6PV6+Pv7Y82aNZg8eTKOHj2KXr16Yf/+/Rg4cCAAYMeOHbjttttw+vRpBAUF4a233sJjjz2GvLw85V+wRYsW4euvv8Yff/xR4/dYVFQErVYLvV4PDw+POn9WRERkSV56LCwsxIULF5CUlKQ6LjdbLSlpi23bRqP6eQu5KN/4p1z/FRFx0GIk675atpr+/m6WNWEFBQX49NNPMXjwYKsBDABWr16Nbt26KQEMAFJSUjB//nzVuNjYWHz99dcAjN2O8/LyEB0drRzXarWIiopCSkoKJk+ejJSUFHh6eioBDACio6Oh0WiQmpqK//f//h9SUlIwbNgw1f/hxMbG4vnnn8eFCxfQvn17q9dcWlqK0tJS5eeioqKafyhERFRj1RXdqzfargljl/ugoBw4OpahvNwJXl4FVgvw77jjDoSHh9ftwqlFaVYhbOHChXjjjTdQUlKCQYMGqWa0TF25cgWffvopFi1apHo8Ly8P/v7+qsf8/f2Rl5enHJcfq2qMec+WNm3awMvLSzUmLCzM4hzyMVshbPny5Vi6dKn1N09ERPXG1j6P1jfaro5xyTE4OLfKUXFxcQgKCuLsFynsWhO2aNEiq8X0pl+my3cLFizAwYMHsXPnTjg4OODOO++EtdXUr776CsXFxZg+fXpjvp1r9uijj0Kv1ytf2dnZ9r4kIqJWQa93x86d0XjllUSkpV2P2gSwceO2VBvAADCAkQW7zoQ99NBDmDFjRpVjOnfurHzv4+MDHx8fdOvWDT179kRISAh++ukn6HQ61XNWr16NMWPGWMxoBQQE4MyZM6rHzpw5g4CAAOW4/FhgYKBqzHXXXaeMOXv2rOocV69eRUFBgeo81l7H9DWscXZ2hrOzs83jRERU/2q/z6PA8OHJ8Pa+YNHtPiYmxmIlBGDrCbLOriHM19cXvr6+dXquwWAAAFUNFWCs69q9ezc2bdpk8RydToddu3YhMTFReSwpKUkJcWFhYQgICMCuXbuU0FVUVITU1FTcd999yjkKCwuRlpaGyMhIAMC3334Lg8GAqKgoZcxjjz2G8vJypWYtKSkJ3bt3t7kUSUREjaewsBBATfd5NCehY8e/ERZ20uJIWFiY6n/iiarSLGrCUlNTsX//ftx4441o3749MjMz8cQTTyA8PNxiFuz9999HYGAgRo0aZXGeBx98EDfddBNeeukljB49Gl988QV++eUXpXWEJElITEzEM888g65duyIsLAxPPPEEgoKCMH78eABAz549MXLkSNx9991YtWoVysvLMXfuXEyePBlBQUEAgH//+99YunQpEhISsHDhQqSnp+PVV1/FK6+80rAfFBERqRqumtLr9SgvL8fly5exfft2AEBBgXcNAph6KyJJMsDLy3L7IoAtJ6h2mkUIc3V1xcaNG7F48WJcunQJgYGBGDlyJB5//HHV8p3BYMCaNWswY8YMODg4WJxn8ODB+Oyzz/D444/jP//5D7p27Yqvv/4affr0UcY88sgjuHTpEmbPno3CwkLceOON2LFjB9q2bauM+fTTTzF37lzceuut0Gg0mDBhAl577TXluFarxc6dOzFnzhxERkbCx8cHTz75pKqXGBER1b+abDUEVHa+P3q0G6re71GgV6/fcfRoTwihsdh2aPjw4ejatSsALjlS7TXbPmGtAfuEERHVTm5ubrWNsavecFv886WB3HZiyJCUf0Kbl0XbiUmTJqFnz571/0aoWWvRfcKIiIhqQp7x8vLKh1ZbDL3eHZs2jUVl8DKfAZMwceKXcHMrUQUurbbYas8vT0/Phrx8auEYwoiIqEXIz89XbbptOuMlLyNmZXVEVe0nJMlgccdjVVgDRteCIYyIiJo981ow87sehdBg06YxqLr/l8CNN+5RAlhUVBRcXV0BGJtyt2/fXjXzxRowulYMYURE1OyZ3w2ZnR1i5a7H6u6ClNC5c5byU//+/dlughoUQxgRETUb5u0n5LYTf//9t/LYgQMD/pn1qp2qWk8QNQSGMCIiahaqaz+h17sjOzvknwBWk+arcnMAyaL1BMB6L2p4DGFERNQk5efn4+zZs7h69SoA4MKFC6rjpnc+pqf3QXJydK0630dG/oJhw/ZYbT0RExPDei9qcAxhRETU5FQ362XZ6wuo+abbAGDAsGF7bLae4BZz1BgYwoiIqMk5d+6cxWPyzJejY6nZfo/VhS+5IavxT2tLj+b8/PzqeOVENccQRkRETYJcdK/X67F27VrVsb17dUhKiobcyb5mNV8AYMCUKZ/Dyakcjo5lKC93slh6BID4+HhotVoAbD1BjYchjIiI7Kaq4CXbtetm7NkzDJUzXta2G7LGgHHjtqB79+NVjoqPj0ePHj1qeeVE144hjIiI7CIzMxOffPJJlWP27tWZBTBZ1QFMkgxISFiN4ODcaq/D19e32jFEDYEhjIiIGl1+fn6VAUxuN5GUFIPaFdxDqfkyD2A9e/aEVquFi4sL2rRpAy8vL/j6+nLpkeyGIYyIiBqdeYd7oLLwPicnsNbtJgBj+JowYb3NvR9vvfVWBi5qUhjCiIjI7tSF91XVe1lvRyHPfvXpc9TiGXFxcQgKCmIAoyaHIYyIiOzKGMBMlx2tBzBJMiA6OhkuLldMWlQYMHhwCqKiUm22nGAAo6aKIYyIiOxGr3dHcnI0anKno2mhfXj4caud7mUxMTEICwtjuwlq0hjCiIioQZhutl1YWKhsPwRA2XC7oMC7hrVfGpSXV+7laKvTvax79+4MX9TkMYQREVG9q27bIZmXVz5q0vNLkgzw8iqo9nyTJk2Cn58fAxg1CwxhRER0zUxnvQDg/PnzquOmm20DUH1fXQgz32YoLi4OPj4+FuO49EjNDUMYERFdk7pvtm1AZGQaqt6CyLLpqo+PDwIDA+vhyonsq3ZNWIiIiMxY6/kl0+vdrWy2Xbn9UFraQBj3gjQlBzXjtkM16XpP1BxxJoyIiOqV6dJj9YX3ciAzbsott6EICsqxeeejk5OTxWNEzRFDGBER1RvTpUdJMiAiIg3VF95LuO22LfD1zbcZvABj2wne9UgtCUMYERFVy7zw3lR6ejoAy6VHITRIS7selcuNtoOYq+tlhIWdrPIaGMCopWEIIyKiKtW03YTtpUe5IN/6jJgkGRASctrqOePj46HVannnI7VIDGFERFSlqgrvTTk6lsL20qMEQOC22zbjzJkAHDgQqSxZmrafGD58OLp27QqALSeo5WMIIyKiWpEL7x0dS1FY2B4AEBKSjYMHB6C62i9X18sYO3Ybhg3bY3Xbofbt27P9BLUaDGFERFRjlj2/5NAlqniWJVvbDrVpw19L1HrwbzsREVklF+PL3e+t9/yCle9tsV37JfPz86vTtRI1RwxhRERkwVoxfs0325bJd0VqIDdetVb7JWMNGLU2DGFERGTBvBhfr3fHpUuukJuqVk8gJiYZffqks/aLyAaGMCKiVsxW/6+srCzle8s6MLkWzHYT1sjIXzBkSAoAWK39cnV1vfaLJ2rmGMKIiFoR09Cl1+uxdu3aKsfXpQ5MkgwYNmyP6rHBgwcjICAAgDGAhYeH1+n6iVoShjAiolaipk1XTdW+DkwgOjpZNfsVHx+PHj161Op1iVoDhjAiohbKfKlRvsvRFtP+X+XlzvDyyq+mAatx1ksIQC6+j4lJVpYhZb6+vtf0PohaKoYwIqIWqCazXqah6+DBAUhLGwh1rZcBvXv/DtvtJ4yzXraK7wHgjjvu4B2PRDYwhBERtUDnzp2r8rjtpqsw+V6DI0f6WDleOS4oKMdm49X4+HjWfhFVgSGMiKgFkZcgz549q3r89OlAnDrVCR07noS7+8Uqiu2tsX4npCQZ4OVVYPNZXIYkqhpDGBFRM2SttURhYSHWrVtnMfarr27Hr7/2hxymwsOP17LYHgAkdOv2B/78sxsAy423R4wYgdDQUGU0G68SVY8hjIiomanpXY56vTsyMrqZBDAAkJCZ2QU1b7paqV+/wxg9epvV+q/Q0FA2XyWqJYYwIqJmxlpzVXPqmi9zxlmtY8e626gJs/IMybjvo636Lycnp5pdPBEpGMKIiJq46lpNyHc5ennlQ6stttJg1dKxY90RHZ2MoKAcODqWIScnENu2jYZ6dswYzsyXHs33feTSI1HdMIQRETVh1S09ms54yWGpffsL1dZ8CaFBcnI0EhJWIzg4F8HBuWjTRqjOJYc07vtI1DAYwoiImrCqlh7NZ7yE0GDz5jGYPPnzf5qoVh/EVq+ehXHjtiAi4iAiIg4iPPy4zZ5fMu77SFQ/GMKIiJoR06VHa1sKCaHB559PgXFZsfpaL0CDTZvGIDz8uFLvZS18jRgxAu3ateO+j0T1iCGMiKiZMF96jI5OtjLjJVBZ11VdAJNpUFDgBa22GHFxcfDx8VEdZc0XUcNgCCMiagasLT0mJUVj6NA9+PHHoUowq77/l7XZscqmqz4+Pqz3Imokte3WR0REdmBt6RHQ4Mcfh+LGG/dgxIgduP76VBhDli0GxMQkQZIMqsfGjdtis/6LiBoOZ8KIiJqY/Px8nD17FlevXsWFCxcAAF5e+VZnuoTQYM+eYbC+tZAcyCrbTEREHESfPunIzg4GAKX3FxE1PoYwIqImxFZLCq22GGPHbsGmTWNguYghmf1Z+fhtt22Gr2++6m5HY/H9Uauvz6arRI2HIYyIqJFZ2/cRAPR6vcXG28bHjXdEhocfx6xZq/Hee7NqvPejq+tlhIWdtHg8JiYG7u7uys+Ojo7w9fVlAT5RI2IIIyJqRDXd91G2d68OSUnRMN00e+zYLSZF+lW1oTBuNQQAUVFR6N+/PwDe7UjUVLAwn4ioEZnPgOn17sjKCoVe727x+ObNtyEpKQbyf6rlZqzh4ceV9hSVtWDmBGJikpUlyA4dOiAwMBCBgYEMYERNBGfCiIgaUFX7Pqo32TYgJiYZQ4akVLn5thAaZGR0RXJytMlxOYgZe4TJPcSGDElRntemDf9zT9TU1PjfyqKiohqf1MPDo04XQ0TUklS19Gi5ybYGSUkxuHLFWen7ZZ3BykbbACBh4sQv4eZWYnXLIT8/v2t5K0TUAGocwjw9PSFJVXdfFkJAkiRUVFRc84URETV35kX21W05BEgm7Saskeu/rB0X8PQsRHBwrsWRO+64g0uQRE1QjUPY7t27G/I6iIhaDLnP17p165THrG05BBhgvd2EtWJ7gb59f8Vvv11n41UllJcb20sMHz4cXbt2BcAifKKmrMYh7KabbmrI6yAialaqajOxdu1as8cstxxKTjZuOWQ582XrbkcJ3bv/ifT0flaXKiWpcuuh9u3bc+shomagzpWahYWFeO+993D0qLHhX+/evTFz5kxotdp6uzgioqaoNm0m9Hp37Nw5wmqn+86ds9C2balJkb3tdhOSZGw3Ya09hdy6Qq4Dc3R0rPubI6JGU6cQ9ssvvyA2NhYuLi644YYbAAAvv/wyli1bhp07dyIiIqJeL5KIqCmx1mZCrvUyLYiv6i5HeeZKbqQq9wKztcG2HLIiIg4iPPw4Cgq84OhYhvJyJ4tCfF9f33p6p0TUkOoUwubNm4dx48bh3XffVW57vnr1KmbNmoXExET88MMP9XqRRERNlXmtl7w/o+Xdj2o6XQq02mLo9e5ITpYDGGBaEyZJBuh0KYiKSlWFLOO2Q5b7PU6aNAl+fn6sASNqJuo8E2YawABjD5pHHnkEAwcOrLeLIyJqSuQ6MLnXl7VaL7mZqvW7H2UGREWlAoDNuyR79/4NI0YkqcLWiBEj4OnpCU9PT4szsgCfqPmpUwjz8PDAqVOn0KNHD9Xj2dnZqr3IiIhaCvM6ML3eHUeO9LZa63XkSC907HgKkmSwErAMGDeusn7Lyyvf6rgjR3pjxIgkAEBcXByCgoIYsohamDptWxQfH4+EhASsXbsW2dnZyM7OxhdffIFZs2ZhypQp9X2NAIBx48ahY8eOaNu2LQIDAzFt2jTk5OSoxnzzzTcYNGgQ3N3d4evriwkTJuDEiROqMd999x0iIiLg7OyMLl26YM2aNRav9d///hehoaFo27YtoqKi8PPPP6uOX7lyBXPmzIG3tzfatWuHCRMm4MyZM6oxp06dwujRo+Hq6go/Pz8sWLAAV69erZfPgogan2kd2IEDA7ByZSJ27oyF5ZZBAjt3jsR7781C586Z/2wtBGWcebtFrbYYOl0KLGlQUOAFAPDx8WEAI2qB6hTCXnzxRcTFxeHOO+9EaGgoQkNDMWPGDEycOBHPP/98fV8jAGPfm3Xr1iEjIwMbNmxAZmYmJk6cqBzPysrC7bffjltuuQWHDh3CN998g/PnzyMuLk41ZvTo0Rg+fDgOHTqExMREzJo1C998840yZu3atZg/fz4WL16MAwcOoH///oiNjVU1XZw3bx42b96ML7/8Et9//z1ycnJUr1NRUYHRo0ejrKwM+/btw4cffog1a9bgySefbJDPhogaj2Wtl/nejcaUJYQGmZldIQRg7AdW+fjmzWOQkdFF2TPSuDRpgCnTlhNE1EKJa3Dp0iVx+PBhcfjwYXHp0qVrOVWt/e9//xOSJImysjIhhBBffvmlaNOmjaioqFDGbNq0STXmkUceEb1791adJz4+XsTGxio/33DDDWLOnDnKzxUVFSIoKEgsX75cCCFEYWGhcHR0FF9++aUy5ujRowKASElJEUIIsW3bNqHRaEReXp4y5q233hIeHh6itLS0xu9Rr9cLAEKv19f4OUTUMHJycsSSJUvE9OlrBCDq4csgACEkqUKMG/c/MW7c/4QkVageW7JkiViyZInIycmx99snolqo6e/vOs2EyVxdXdG3b1/07dsXrq6u9RIKa6KgoACffvopBg8erPTDiYyMhEajwQcffICKigro9Xp8/PHHiI6OVsakpKQgOjpada7Y2FikpBiXAsrKypCWlqYao9FoEB0drYxJS0tDeXm5akyPHj3QsWNHZUxKSgr69u0Lf39/1esUFRXhyJEjNt9XaWkpioqKVF9EZD/5+fnIzc1Fbm4usrKyAFTWcKmZL0nWhHpmLDz8OBITV2L69DVITFyJiIiDykgnJ6c6vgMiasrqVJh/5coVvP7669i9ezfOnj0Lg0H9H6QDBw7Uy8WZW7hwId544w2UlJRg0KBB2LJli3IsLCwMO3fuxKRJk3DPPfegoqICOp0O27ZtU8bk5eWpghEA+Pv7o6ioCJcvX8aFCxdQUVFhdcwff/yhnMPJycni7iR/f3/k5eVV+TryMVuWL1+OpUuX1vDTIKJrId/pWFhYaFGvWVxcjJKSEuzdu9fieVptMcaO3YJNm8ZAXdEhb0FkfcshI+uNWIUw1n+FhZ3EXXfFwMfHRznGux6JWq46hbCEhATs3LkTEydOxA033FDtxt62LFq0qNoasqNHjyp3YS5YsAAJCQk4efIkli5dijvvvBNbtmyBJEnIy8vD3XffjenTp2PKlCkoLi7Gk08+iYkTJyIpKanO19iYHn30UcyfP1/5uaioCCEhIXa8IqKWydqdjgUF3nB0LEV5ubNF01Vz4eHHIUn4p94LqNxU24ChQ/egpMQVaWkDURm6jMeMYczaAkRl/ZePjw+3HCJqJeoUwrZs2YJt27ZhyJAh1/TiDz30EGbMmFHlmM6dOyvf+/j4wMfHB926dUPPnj0REhKCn376CTqdDv/973+h1WqxYsUKZfwnn3yCkJAQpKamYtCgQQgICLC4i/HMmTPw8PCAi4sLHBwc4ODgYHVMQEAAACAgIED5v2fT2TDzMeZ3VMrnlMdY4+zsDGdn5yo/DyK6duZ3OtraBkhuumoe0LKzQ2z0ANNgz56hGDbsB1jOemkQGbnfLJwBgEBMTHKVoY+IWqY6hbAOHTrUSz8wX1/fOm+vIS+BlpaWAgBKSkqg0aj/o+jg4KAaa748CQBJSUnQ6XQAjNP+kZGR2LVrF8aPH688d9euXZg7dy4AY+2Zo6Mjdu3ahQkTJgAAMjIycOrUKeU8Op0Oy5Ytw9mzZ+Hn56e8joeHB3r16lWn90tE9c/6nY6VdVqXL7e1sq+jQNU1YBr88MPNMF+WlCQDhg3bAy+vC8o5JcmA6OhkDBlS2aKC9V9ErUedQthLL72EhQsXYtWqVejUqVN9X5OF1NRU7N+/HzfeeCPat2+PzMxMPPHEEwgPD1eCz+jRo/HKK6/gqaeeUpYj//Of/6BTp04YMGAAAODee+/FG2+8gUceeQQzZ87Et99+i3Xr1mHr1q3Ka82fPx/Tp0/HwIEDccMNN2DlypW4dOkS7rrrLgCAVqtFQkIC5s+fDy8vL3h4eOD++++HTqfDoEGDABi7Wvfq1QvTpk3DihUrkJeXh8cffxxz5szhTBdRE1JVV3shNCb7OQLqpcWalDeotx+S934cMiQFffqko6DAy2LPxzvuuIP1X0StSJ1C2MCBA3HlyhV07twZrq6uyt2HsoKC+u1t4+rqio0bN2Lx4sW4dOkSAgMDMXLkSDz++ONKqLnlllvw2WefYcWKFVixYgVcXV2h0+mwY8cOuLi4ADAW72/duhXz5s3Dq6++iuDgYKxevRqxsbHKa8XHx+PcuXN48sknkZeXh+uuuw47duxQFdq/8sor0Gg0mDBhAkpLSxEbG4s333xTOe7g4IAtW7bgvvvug06ng5ubG6ZPn46nnnqqXj8XIqqeXIBvSt52yFa3egA2H68dCbGxO9Cr1++qsHX33aMsbu5hAT5R6yMJIWp9b3V0dDROnTqFhIQE+Pv7WxS9T58+vd4usDUrKiqCVquFXq+Hh4eHvS+HqNkxL8C3xlpNGGBAp04ncfJkKGo26yWzXIJMTFwJrbYYcXFx8PHxYdgiagVq+vu7TjNh+/btQ0pKCvr371/nCyQiamjmM2Bykb3p3Y8REQf/2XDbC46OZfj9995ISdHh5MmwKs4st6MwZd6aQiA6urLgnnc9EpG5OoWwHj164PLly/V9LURE18R86VFedgTUM15yjZYxfBlDWVjYSej17khJ0VWzDCm3mZC3IpJsLF1KCArKsXg2EZGsTiHsueeew0MPPYRly5ahb9++FjVhXDojosZmq/eXl5fxTm7TuyCF0GDTpjH/9PqqDGXt21+oQQCTZ7uMQWzixC/h6VmI996bpXqu+d6PvOuRiMzVKYSNHDkSAHDrrbeqHhdCQJIkVFRUXPuVERHVwrlz55TvzWe9dLoUK+FKozRblVtSTJ78OawvNRrQu/fvOHKkj8U53NxKEByci7Fjt1jMtMlLkfHx8awDIyILdQphu3fvru/rICKqs/z8fKxduxaAZe8vITRISdHBeriqJIQGn38+xcoYgVmzVuPkyVAcOdIb5oX38myXaW2ZeeuJuvZDJKKWrU4h7KabbqrRuP/7v//DU089pdoHjYiovpnWgVnr/SWEBr17/4YjR/pWcRZbWwpJKCz0RHJyNKoqvJfvfjTHuyGJyJZrbYJTpU8++QRFRUUN+RJERCo5OYEw72gvL0lKksFstDxOLrK3ZHyOVG3hfVBQEAIDAy2+GMCIyJYGDWF1aEFGRFRner27zRkruW5LDmKSZEBMTBKmT1+DWbNWWwloUGq7QkKyLY6bLkWy5ouI6qJOy5FERPZSVQd869sQSdBqC5GVFYrw8ONITFyJ7OxgABI8PS+gvNwZ7u4XVYX1gAGDB6cgKipVWW6sqvCeNV9EVBcMYUTUbFTXAd/aNkSSZMD69RMBGMNTv36HcfhwP4sO+TExyUhMXGm1sB4wFt7Pm9cL+fntERp6FUFB1wO4njVfRFRnDGFE1GxU1wFfqy22mLEyVkVU3in566/9od6M23g8KSkGV64449Zbv1POP3z4cPj6+sLT05Nhi4jqHUMYETVL1jrgR0QcVLWKuHTJDevX/8vsmbb2gpSwZ88wtG1biiFDUgAAXbt25VZDRNRgGjSE3XHHHeyeT0T1zlovsM2bx8DJqRQhIdnKrJhe725lSyHzPR5NSUhKikafPukWy5FERPWtziGssLAQP//8M86ePQuDQX3X0J133gkAeOutt67t6oioVTMvws/KygJguxfY+vX/stgXMjo6GcnJ0UrBfXh4Jv76K9ysJsyUBgUFXgxhRNTg6hTCNm/ejKlTp+LixYvw8PCAJJl2kJaUEEZEZIu1uxz1ej3Ky8sBAJcvX8b27dutPtdaAb5MnhWrrAUzIDIyDQBw4EAkMjO7wnj3415cvarBzz8Pgq0u+EREDalOIeyhhx7CzJkz8eyzz8LV1bW+r4mIWjjbm23n12gGyrwA35z6MQ3S0q6H+ebbKSk6JCauhFZbjKSkaMh3T5q2nuCm20TUkOoUwv7++2888MADDGBEVCemM2C2CuzNg5n5z+HhxzFhwgaUlLTFtm2jUX3vafWyoxDGZcchQ1Iwe7YHior8EBJSioCAMDg6doOvry/vhiSiBlWnEBYbG4tffvkFnTt3ru/rIaIWyHzpUW6uaqvA/vLltkodl3lvL0kyoGfPozh6tKfyc//+6uOmbSlsMV12HDKkE++CJKJGV+MQtmnTJuX70aNHY8GCBfj999/Rt29fODo6qsaOGzeu/q6QiJo120uP7jYL7CsL6S17ewmhwe+/91L9fPhwPyQkrEZ5uRMcHcvw+++9sW+fDraCmPmyIxGRPdQ4hI0fP97isaeeesriMUmSUFFRcU0XRUTN2+nTwLFjQNeugIOD7aXH6OhkKwX21gruze9gtFxaLC93woULXqqthyzvfjRg4sT1CAk5rQpgrP0iInuocQgzb0NBRGRKXnL87DMXPPKIFgaDBI1G4Mknjf9TZm3pMTk52qyFhIBx9so8PFXV28s4s+XoWGZWqG8MYpIkVPVmffocBQDExMQgLCyMnfCJyG6qq2S16qOPPkJpaanF42VlZfjoo4+u+aKIqHmRlxxfeOFzLFjgAYPBGJgMBglLlwYpS5DWlh6DgnKQkLAakmSAejsh8c/3tv4H0HhcDlfl5c5WZtA0mDBhPaZPX4PExJWIiDioHOnevTsCAwMZwIjIbupUmH/XXXdh5MiR8PPzUz1eXFyMu+66i33CiFqZs2fPArDdRNW4Kbb1zbW9vAqsPg+QMGzYbuzZcxOEUM+CSZIB11//M9q3L0RIyCkEB+da7Y4vSQZl6TEuLg4+Pj4AwNkvImoS6hTChBCqBq2y06dPQ6vVXvNFEVHzkZ+fj3Xr1gEAcnICYb50KActa5trmxbHWwtQ7dpdstkH7OefowBIqrYWVZ3fx8eHd0ASUZNSqxA2YMAASJIESZJw6623ok2byqdXVFQgKysLI0eOrPeLJKKmS249ode7Izk5Gua1XNHRyUoQMt1cWw5mgGXzVbktxfbtt1XxypV3R27ePAbh4cdtnh9g8T0RNT21CmHyHZKHDh1CbGws2rVrpxxzcnJCaGgoJkyYUK8XSERNh1x8b7q90IULFwBYX4oEJGi1hcjKClWarMpf5kwDlKNjGd57b5bVWTBr5CVPrbYYd90Voyw7yrj8SERNUa1C2OLFiwEAoaGhiI+PR9u2bRvkooio6ZCDV2FhId59d7vStR4wBi9Hx1KUl4fC0bHUaruJDRsmKrNbOl0KoqJSbfbnkh8/cqS3jQBm/S5J08arXHYkouaiTjVh06dPB2Bchjh79qxF+4qOHTte+5URkd2ZNlo19vhKNGkloW4nYd7Z3nhXo6QU1Quhwb59Q7Bvnw7jxm1R7lTs06cP0tPTTV5jjMlrWPYHqwx6la/LxqtE1BzVKYQdO3YMM2fOxL59+1SPywX7bNZK1DKY1nupe3BJULeTsOxcf+mSG9av/5eVs2qwaZOxhkurLVZm1K2/hjmDqjN+ebkTa7+IqNmqUwibMWMG2rRpgy1btiAwMNDqnZJE1HJYr/eyJHeuDws7abVlRCUNsrODodUexS+//FLj1xg8OAXBwbkAgOHDh6N9+/YAgDZt2sDT05O1X0TUrNQphB06dAhpaWno0aNHfV8PETVB1np8WWNam2V+x2NNXsO4hGl7v8eoqFTl5969ezNwEVGzVqeO+b169cL58+fr+1qIqImSA5X17vXqzvWmS4MREQeRkLAald3voYwNCTkNvd4dWVmh0OvdodUWY/DgFBtXoD73pEmTGMCIqNmr00zY888/j0ceeQTPPvss+vbtC0dHR9VxDw+Perk4Imo6IiIO4upVCdu2jTU7YuxsHxl50GpxfHBwLsaN22zRRDUzs4vFY1FRqUhJ0Vk0bU1IWK0sQwKw2K2DiKg5qlMIi46OBgDccsstqnowFuYTNV9yKwpT5jPerq5XrD7Xz++cRQCLiopCaqpx+dC8iSoArFyZqIQtueFqYuJKq13v5QAWFxeHoKAgzoIRUYtQpxC2e/fu+r4OImoEp08Dx44BXbsCwcGVj5u2oqhKSEg2LOu2jEuL5ry8vFQ/mzZpzcoKtbnHZFVd7xnAiKglqVMIu+mmm7Bnzx68/fbbyMzMxPr169GhQwd8/PHHCAsLq+9rJKIaqCpglZWV4bPPXPDII1oYDBI0GoEVK/T4978vo6SkBCUlJapz6fXuSlNW0xCk1RZj3Lgt2LRpDIxBzIBx46z36Nq+fTsA44yYq6srAKCkpASpqalVbuYNgF3viahVqFMI27BhA6ZNm4apU6fi4MGDKC0tBQDo9Xo8++yz2LZtW71eJBFV7b33gNmzAYMB0GiA558HIiMBH58L2LjxDej17v8s/xnLBwwGCQsWeODvv9+3CFCmDVNNN8eWVTVTZY28JGmqus282fWeiFqDOoWwZ555BqtWrcKdd96JL774Qnl8yJAheOaZZ+rt4oioeqdPVwYwwPjnggXGbvIajSfGjBmA9u0vWF3+27kzBiNGJCnh5/TpQJNZLvXm2OYzYubhy9bsmS3cbJuIWrs6hbCMjAwMGzbM4nGtVovCwsJrvSYiqqH8/Hz89BNgMJgv01XOeG3ePAYJCaut9vk6cqQvfv+99z/tJ4DNmysDmMx0c2xbQcva7Fl4+HFkZ4cAMNaSmY6Pi4uzWG6UcdmRiFqLOoWwgIAAHD9+HKGhoarHf/zxR3Tu3Lk+rouIqiEX0xs70yfabIgqd7HX6VKwb98Qq8eNAQqw3jrQAEfHMpvLlObbDQmhwaZNY1G5tyQACIwbt1lZ1uRyIxFRHZu13n333XjwwQeRmpoKSZKQk5ODTz/9FA8//DDuu++++r5GIrJCbich11dJkrVGqpUF7716HYH1Zqv4J0DZ+s+BBqtX341Nm8ZYtJQ4fToQR470thIAJbPzGWfk9Hr3mr49IqIWr04zYYsWLYLBYMCtt96KkpISDBs2DM7Oznj44Ydx//331/c1ElE1wsOP/zOTpWbeGNUYjIz1YubjbM+EAeoNu42E0OC992b9E8Asz2nOdFmTiIjqGMIkScJjjz2GBQsW4Pjx47h48SJ69eqFdu3a1ff1EVENFBR4w1qAmjBhPUJCTqsaoxrDkgGSBNXSIoAa7/NoJMzOWTXTFhRERFTHECZzcnJCr1696utaiKiObPXdCgk5jYICbyvBSoMJE9bBza1EuTNRr3fHhAkbUFLSFtu2jYZlqBOorPOyvdG2erykXIv5vpJERK3dNYUwImoaquu7ZSugycfNi+7DwzORmRkOOWiZ3vFYUOAFR8cyk6VImLwGABjPER2dDK22EABUrwWwBQUREcAQRtRi2Oq7VV1As3Z3Y2ZmVwAGREbuR1hYlrItkWl7CmvntNX3a/jw4Wjfvj3atGkDPz8/tqAgIgJDGFGzI29DZL65NmC9iSpQdWNU68uVAKDBgQORGDZsj1LYb96ewlboM9e7d28GLyIiMwxhRE3Yb79dQEaGAWFhVwEA6eml+PXX9apZrJp2qTcNaKbPs1ZPJhNCg+zsYIuZMtMu+hMnDoK7e2XrCUdHR2i1WuVnNl8lIrKOIYyoiZFnut57D3jySf9/wo8BcpsISUq0uJvR2h6PtpjXf0VHJ0OnS0FKis4iiEmSAWfP+lnd8khuNxEWFsbGq0REdcAQRtSEmHbBV7eVqAxBxo70Y5QWE/Jj1vZ4lEVFRSE1NdVq/VdSUgzkthXh4ceRmdkZcnG9EMAPP9wM8z5gbDdBRHTt6tQxn4gahtwF33adlkxjc3YKMO7NOGnSJOVYampqFeeVw5UGf/3VGbNmrcbEievMmrdKMAYxtpsgIqovnAkjaoKqqtMyMqhmwgD17JS1zbH1endcuuRa5XnlfSbd3C7D8v/RJMTG7kCvXr8zgBER1QOGMKImyLwFRHUd7qubnTKtAzOeSw5i5tsNVQY5a73FrAUw9vwiIqobhjCiJsq8BQQAi3YQttpOmDKvAzMuZRowceI66PWeSEqKhumyY2ZmF0REHKyyt1hcXBx8fHx45yMR0TVgCCNqQPKdjgCQk6NBVlYbhIVdRVCQAUD17RvM+36ZBy1bfcFM2dq2yM2tBCEhp5GcHG2y+bekFPhX1VvMx8eHd0QSEV0jhjCiBiLf6QhYtoUwbScxd+7cep9NcnJyUsKfrX0lvbwKrAY00/YTtkIelyCJiK4dQxhRA5FDkLW2EKbtJORx+fn5VrvgV2fUqFEICQlRfpZn13JzcwHUbV9JeflTXnY0xSVIIqL6wRBG1MCqm20C1LNmttjqjh8SEqJaGszPz0dubq4q0NV1X0kuOxIRNRyGMKI6OH0aOHYM6NoVCA6uemxVy4EyeTZMZh64qlrO1Ov1Js/TY+3atVavoy77ShIRUcNhCCOqIbnI/s03XbFsmQeEkKDRCKxYoce//33Z5jJddbNN5qxtK2Qsnre+nGkrdAG2Z8+GDBmCvXv3qq6RtV9ERI2LIYyoBjIzM/HJJ59g716dyTY/gMEgYcECD/z99/vQaottFtnXdLbJWv2YaQCTmS9nmj5fDl2ZmV2wadMYGNtPGDBuXOXsmb+/P+bOnWsxA2eKtV9ERA2LIYyoGvn5+fjkk09w+nSgKoDJTANRVaHG1myTae2Wrfox4wbetpcz9Xp3pKZGmWzCXbnht5Fxv0nTvSUZsIiI7IshjKgK+fn5yMnJwYEDA/6ZVZKsjLq2zaw3btyofG+rfsx0SdJ8ObPy2kzDm7VtiTTIzg6GVnu0ztdKRET1p9ls4D1u3Dh07NgRbdu2RWBgIKZNm4acnBzVmHXr1uG6666Dq6srOnXqhBdeeMHiPN999x0iIiLg7OyMLl26YM2aNRZj/vvf/yI0NBRt27ZFVFQUfv75Z9XxK1euYM6cOfD29ka7du0wYcIEnDlzRjXm1KlTGD16NFxdXeHn54cFCxbg6tWr1/5BUKOR71j84IMkbN5sHnJkAjExyUogOn/+PHJzc5Gbm6sqmK+KXu+OrKxQ6PXuSv2YJBmbucqBa8iQFCQmrsT06WuQmLhSWVY8fTqwimsjIqKmrNnMhA0fPhz/+c9/EBgYiL///hsPP/wwJk6ciH379gEAtm/fjqlTp+L111/HiBEjcPToUdx9991wcXHB3LlzAQBZWVkYPXo07r33Xnz66afYtWsXZs2ahcDAQMTGxgIA1q5di/nz52PVqlWIiorCypUrERsbi4yMDPj5+QEA5s2bh61bt+LLL7+EVqvF3LlzERcXpxQ6V1RUYPTo0QgICMC+ffuQm5uLO++8E46Ojnj22Wft8OlRXZw7dw6ArY7zgDGAJWHIkBTlEdNZLXOTJk2Cp6cnzp8/r4yzddejrXYSpsuZ1mfA1NdnOnMnSQaEhJyu0XsnIqKGJwlRuWFJc7Jp0yaMHz8epaWlcHR0xL///W+Ul5fjyy+/VMa8/vrrWLFiBU6dOgVJkrBw4UJs3boV6enpypjJkyejsLAQO3bsAABERUXh+uuvV3o2GQwGhISE4P7778eiRYug1+vh6+uLzz77DBMnTgQA/PHHH+jZsydSUlIwaNAgbN++HWPGjEFOTg78/f0BAKtWrcLChQtx7ty5Gt9xVlRUBK1WC71eDw8Pj3r53KhmTPt2mRfjGxkwa9ZqBAfnWjzX1h2Js2fPRmBgIHJzc/HOO+9Ar3fHypWJFkuPiYkrqyzcLyjwRllZG3z++RTYCmCSZEC/fodx+HA/q20t4uLi0Ldv39p9KEREVCM1/f3dbGbCTBUUFODTTz/F4MGD4ejoCAAoLS2Fq6urapyLiwtOnz6NkydPIjQ0FCkpKYiOjlaNiY2NRWJiIgBjr6a0tDQ8+uijynGNRoPo6GikpBhnO9LS0lBeXq46T48ePdCxY0clhKWkpKBv375KAJNf57777sORI0cwYMCAev08qP6ZdrtPTo6GOoAZlyCtBbCq+nkB6q741TVxHT58OABg9+7dFuc2n+WqZMDgwSmIikqFVluMW2751uodmW3aNMt/9YmIWpRmVUiycOFCuLm5wdvbG6dOncL//vc/5VhsbCw2btyIXbt2wWAw4M8//8RLL70EAMr2LXl5eapgBBhv1S8qKsLly5dx/vx5VFRUWB2Tl5ennMPJyQmenp5VjrF2DvmYLaWlpSgqKlJ9kX1ZX4qUEBSUYzHW1vZEer07AONy+BtvvKEsRcpF+Kozm9z1uHv3biWAmZ/bVgCbNWs1RoxIVi1hhoWdtJhZk5fWiYjIfuwawhYtWgRJkqr8+uOPP5TxCxYswMGDB7Fz5044ODjgzjvvhLyaevfdd2Pu3LkYM2YMnJycMGjQIEyePBmAcTarOVi+fDm0Wq3yZbofINlHdUHJVFUzWwCQlJRk8RydLgXGdhKwuOvRtGDfdl2azNgHzHx2LiYmBpMmTcLs2bOVr4bYMJyIiGrPrmsSDz30EGbMmFHlmM6dOyvf+/j4wMfHB926dUPPnj0REhKCn376CTqdDpIk4fnnn8ezzz6LvLw8+Pr6YteuXapzBAQEWNzFeObMGXh4eMDFxQUODg5wcHCwOiYgIEA5R1lZGQoLC1WzYeZjzO+olM8pj7Hm0Ucfxfz585Wfi4qKGMTsrDbd7muyPZEcqHJyAlUtJ3S6vcoSImCsQzM9Hh2dDPNeYZUs69Pi4uIQFBTEsEVE1ITZNYT5+vrC19e3Ts81GIyzB6WlparHHRwc0KFDBwDA559/Dp1Op7yGTqfDtm3bVOOTkpKg0+kAGDuER0ZGYteuXRg/frzyOrt27VLusIyMjISjoyN27dqFCRMmAAAyMjJw6tQp5Tw6nQ7Lli3D2bNnlWWfpKQkeHh4oFevXjbfk7OzM5ydnev0eVDDqa7b/cCBA/HLL79Aqy1Gv36H8euv/WFcLhTo1++wqp+XtZouITRISdEhKioVgOWNAHLX/KFD92DPnmGoSX2aj48PAxgRURPXLKpzU1NTsX//ftx4441o3749MjMz8cQTTyA8PFwJPufPn8f69etx880348qVK/jggw/w5Zdf4vvvv1fOc++99+KNN97AI488gpkzZ+Lbb7/FunXrsHXrVmXM/PnzMX36dAwcOBA33HADVq5ciUuXLuGuu+4CAGi1WiQkJGD+/Pnw8vKCh4cH7r//fuh0OgwaNAgAMGLECPTq1QvTpk3DihUrkJeXh8cffxxz5sxhyGpE8l6PttRmWx5b3e4BoH379gCMs1yHD/dDZUiScPhwP9xyy7cAUGVNl3rZ0vxGAOPxzp2z0LZtqcUMmWmLDNP3RkRETVuzCGGurq7YuHEjFi9ejEuXLiEwMBAjR47E448/rgo1H374IR5++GEIIaDT6fDdd9/hhhtuUI6HhYVh69atmDdvHl599VUEBwdj9erVSo8wAIiPj8e5c+fw5JNPIi8vD9dddx127NihKrR/5ZVXoNFoMGHCBJSWliI2NhZvvvmmctzBwQFbtmzBfffdB51OBzc3N0yfPh1PPfVUA39SJDNtMVGVa62PmjRpEiTJGJiqrgmTqqzpkiQDHB3LcORIb1hbcpSXNcPCTqJPn3Sbs3Lx8fHw9fXlLBgRUTPQbPuEtQbsE1Z3ci8uma3eXXFxcfDx8bF4fklJCT755JNqX0feBLu6vl8ALI5VEggMzEFeXqCN9hOWTWGtmTRpEnr27FntNRMRUcNq0X3CiGqjqt5dVXW4v+2221BeXm6x3VSbNm3g7u6u9KiTWSvi1+lSUFzcDuXlzoiOTv5nqdGy5UVubhBMlzErg5gBMTHWlxzNse0EEVHzwhBGLZqt3l3h4cdt1njJzG/isCU+Pl75Xi7iT02Nwr59OuzbNwT79g0GIEGSDP8U1w+FtSBm/nNs7A706vW7xXXK2x+Zqk19GxERNQ0MYdSiVdeVHrC9VFlT1lb0U1J0qAxalXc5/vjjUJt3OZrv82gtgMXHx6NHjx61vkYiImp6GMKo2anJXY+y6np3VbfNkGlAA2A1rHl6emLu3LnIycnBxo0bq2ysau0uR2s1YNHRyVYDYV1buhARUdPDEEbNSk3vepw0aRKAqput2lqq9PPLQ3m5s6qhqrFRqgR5WdE0rJ0/f15V3G8t+MnM73L8/fde+OabkeajVNsiyTcPcMmRiKhlYQijZqWqGTBT586dU7631WzV1lLle+/NsjJDpVGNMa0rMy/uNw9+8nnMu+1rtcXo1et37Nw5osou+z4+PggMDKzR+yYiouaDIYxaJHnja5m1ZqvWZ6xENZtk/zNKaJCdHYyCgstWa8nk4JedHYySEle4upYgJOS0xbiabIvExqtERC0TQxg1a9dSVG85Y2Vrb0ZrDNiwYaLNWjIAyMzsUmW9mayqbZHi4+O5BElE1EIxhFGzkZ+fj/Pnzys/V1dUXxOmAcjRscxkKVJW2a9LkqCqDxOi8q7HTZvGwMmpFCEh2VXWm8lLmCNGjMDOnTuVV7G1LZJWq63V+yEiouaDIYyahczMTFUH+5r2/7I1U2baa+v8+fNKXZf50mB0dDKCgnKUGq2CAi9cuuSG9ev/ZXaFGqxf/y8lDDo5lVbZGqNdu3b19dEQEVEzxRBGTV5+fr7FFkK2iuqPHOmF3r2N/bWqminz9PRUit1Na66qWhoEoMxy2br7UQ6D1jYDMy24b9OmZv/qsR6MiKjlYgijJs/aHZG2iup37hyJpKQRiI5ONmkvUXWnfG9vb8THx2Pt2rUAbC8NyixrydSs9whTF9zLvcWq63fGejAiopaLIYyaJVttIABjCDINYDLzTvnq86lrr6or+JdnzDIyumLbtjGo6k5KAJg4cT369DmqeowBi4iodWMIo2ZJr3dH+/YXkJCwGqdOdcTOneqGp9budjRdDpQL/K3NNtW04D8zswu2bx8N9YbbliTJgJCQ03V9q0RE1EIxhFGzYx6SoqOTrW5NZLokad5/y7TB6ty5c5Xva3pXo/m4qgKYed8vgLVeRETEEEbNjF7vjk2bxkCe4ZKXHq0FroiIg+jTJ91mkb3MtC6rug2/5bsaq9of0siAiRPXWzRojYuLQ1BQEJciiYiIIYyal9TUKJg3VBVCg6CgHCQmrlQFruHDh2P37t21auJa3YbfVY0z357IvAYMMG5BxABGREQAQxg1I3q9O1JSdFaOGHDpkpuyMbasffv2Fs+vrrt+ddsIFRcXK+cxn30z7SlW2+79RETU+jCEUZMn10/ZXgKUVI1SrRXRV1dsb61XWHZ2MAAJISHZyrHnnz+PzZsT6xy8WAtGREQyhjBq8ry9vTF37lycOHEVH38sYDCYFsGrW1PY6ppfXXd9815h1vZ9DA8/bnGe5ORoJCaurDKAyd352feLiIhMMYRRs+Dt7Q1vb+Cdd4B77hGoqDDu52itPkwuond0dARQfbG9Xq8HAJSXlwOwHdomTNhQ5XmGDx+O9u3bo02bNsqWSAxeRERkC0MYNSsJCUBsrIS0ND0cHcswdqyPambMwUHg/vtHITS0jXLXY3XF9vLsF2AMYEeO9LYatgBR5Xm6du2qbIVERERUHYYwajD5+fkNsi1PcDAQHGzscG+cGQMqKgAHB+DttyVERvorrw9UX2wvM60bs2y+KqDXe9boPERERDUhCWFtq2FqCoqKiqDVaqHX6+Hh4WHvy6mV/Px8vPHGG9WOmzt37jUv150+DRw/DnTpYgxo5tdx9uxZrFu37p+7Gq33DNPr3bFyZaLVlhMySTIgMXElAFg9z+zZszkTRkRENf79zZkwahBVzYDVZVxVjDNj1o95e3srryFvzK3XuyM9vRcAICQkG1ptsY07L9Vd8OX6r7Cwk5z9IiKia8YQRvVKXoKU92Zsag4cGKDquA8IjBu3GZcvt4W1JUjzmTDzpq1ERER1xRBG9aamS5D2Yr7lkZH0T42X8ftKAr16/Y6jR3uy/ouIiBoEQxjVm/pYWmxIBQXeMG9pAcBmA9jrr9+P2Nhvqt17UsZGrEREVBsMYdQimd6ZKS+Nennlw1pvMWPbCagel5ce5Toyc3FxcfDx8VF+Zj8wIiKqLYYwsitrtWPyjFJd21uYL4sa74oMhZdXPsaN22K2JGncesjF5UqtWk/4+PjwTkgiIromDGFkVxs3bqzzc++44w6Eh4dbPG4a3qztGTlv3kr88MNQpKUNBGDcemjs2C1ITFzJpUciImo0DGHUbH3yySdW+4zJ2xDZ2n4oIWE1DhyIhPmek4mJKxEWdtLidbj0SEREDYEhjK6ZPdtSmC9Z5ufnK9sQ2doz8tSpjlXuAWkuKCiIoYuIiOodQxhdk5q2pTDWZXnDyyu/Xts8FBYWqmqzzp07p3yfkxMIa72+OnY8VeUekKYzX5z1IiKihsIQRtekJm0prNVlRUQcrPFr6PXuyM4OAVDZ4V62bt06ZUnSdBZMr3dHUlI0zHt/RUcnIzg4t8o9IFl0T0REjYEhjBqUrbqs8PDjNZoRs9Xh3jTElZWVIT8/Hzk5OcpjqalRsOwJJiEoyDgmIuIgwsOP17gQn4iIqL4xhFGDslWXZav+ylRVHe5NQ5xer1dmwADg9OlA7Ns32MoZ1dsO2eoBRkRE1BistQonqhd6vTsuXXKFsUFqJdP6K73eHVlZodDr3S2eX1WHe+NMl1F5ebny/YEDA7B69SyYb74NAIMHpzB0ERFRk8GZMGoQpnVggIAkCQghwcFBYPRoY/2Vea1YdHQygoJyleJ9Wx3uAWDfPh2iolJVoUpe+rQ2XpIMiIpKbbD3S0REVFsMYVTvzOvAAAmSJLB2LaDTSXBxGYITJ6Lw1FN+EKKyV1dSUsw/YyuL9y073MsslzStLX0CqPXm22zESkREjYEhjOqdtTBkMEjw9QWCgwHAG4cPAwaD+TPVzVPDw48jIuIg/Pzy/llitN5SQmZ95syAhITVCA7OVY2Nj4+HVqu1uHa2pCAiosbCEEbXxNqskZdXvkUfLgcHgS5dKuu0unYFNBoBg8GydgswBrHs7GBotUcRHJyLceMsW0oAQFZWKDIyLgEAMjO7QF0LZsC4cVssAtikSZPQo0ePOr5jIiKi+sEQRtfE29sbc+fOtegX1qFDERYu1KKiwlgH9vbb0j+zYEbBwcDLL1/CvHmuSt2YeTH9+vUTUVZmXJY0bymRmdkFK1cmQggNPvrIgOjoIiQnq/uCSRIQHn7c4pr9/Pzq8RMgIiKqG0kIIex9EWRdUVERtFot9Ho9PDw87H05tXb6NHD8ONClC1QBzNR33x3HmjU/IicnSKkJMyVJBiQmroRWW4zhw4dj9+7d0OvdlQBWyXoB//Tpa5T9IOPi4rgFERERNbia/v5miwqqV6dPA7t3G/8MDgZuvtl2AAOA7t3dEBZ2En36pMM4G6Ym9xST6fXuOHKkt5UCfOMypSnzujEGMCIiakq4HEm1Jm/Ybe6zz1zwyCNaGAwSNBrgnXeAhISandNWTzDTBqsvvVSIzZsTrS5fyi0ukpOjrW5FNGnSJAYwIiJqUhjCqFZsbdhduURoDEYGA3DPPUBsbNUzYTJrxfyAQExMMrTaYqttL+QgZtrSok+fdKtbEXl6etb1LRMRETUIhjCqFVsbdltrS1FRYawJq0kI02qLLTbVjo5OxpAhKTbPD0iIjd2BXr1+VwIXtyIiIqLmgiGM6oX1thTGovyaqmpTbWvnlySDKoARERE1JyzMp3ohz2TJxfHGthTVz4KZ9xnTaosRFnbSIliZn7+2XfCJiIiaGs6EUb0xncm6//5RiIz0t1nEL3NycrLaZ0x2/vx5bNy40eL85jNlREREzQ1DGNUruSYrKMhgs4jf3Ny5cxEYGFir89cW94MkIqKmhiGMGsT58+ctHtPr3VFQ4A0vr3xVkKpqpiwnR4OsrFCL55iLi4uDj4+P1WPcD5KIiJoihjC6JraClbyEKDtwYIDF3o8REQetnlNewjT2HfODwTC92uewESsRETU3DGFUK6bLejUJVnq9O7KzQ7Bp0xjI94EIocHmzWMQHn7cYnZLXsI07ztm/pxJkyYpvb8400VERM0RQxjVirxh94kTV/HUU36qkLR161jMndsV+/atA6AOaebk7Yi02mLV0qX8vbW+YKbP8fT0rHEdGRERUVPEEEa15u3tjcOHjV3xTVVUSMjJcQUAKx3u1Uz3dfzggySLJU1bfcFM94IkIiJqzhjCqE66dgU0GnUQc3AAgoJKcOKErQ73RqY9vsyXNKOjkxEUlAsvr3yLDvrsC0ZERC0JQxjVSXCwcYPue+4xbk/k4AC8/TYQEHAVAODoWArzTbYBgdtu24Lu3Y9Z3Q9SCA2SkmJguh9kYuJK9gUjIqIWiR3zqc4SEoATJ4Ddu41/JiRUHisvd4Y6gAGABF/fyiVHW/tBApWF+ACsdtAnIiJq7jgTRtckONj61kTV1XTp9e64dMnVYowp00J8IiKiloYhjOqVo6MjgMq9Hq3VdKnvmjSYBDH18iUL8YmIqCVjCKMqme79aOxe3wZhYVcRFGSsyDfv0aXVapXvzfd6BID09F6qnmGABkIYMHHiOuj1nkhOjq5RIT63ISIiouaOIYxsMt370VZjVr3eHcOGJWDgQK3VZUl5r8eqeoYBGri5laBPn6Po0yfdaiG+6bZEbM5KREQtQbMrzC8tLcV1110HSZJw6NAh1bHDhw9j6NChaNu2LUJCQrBixQqL53/55Zfo0aMH2rZti759+2Lbtm2q40IIPPnkkwgMDISLiwuio6Nx7Ngx1ZiCggJMnToVHh4e8PT0REJCAi5evFjra2nq5Bkwa3cxbt48Bnv36rByZSL+3//TolMngZdeKkRhYaHFeWrTM0yrLbZaiO/j44PAwEAEBgYygBERUYvQ7ELYI488gqCgIIvHi4qKMGLECHTq1AlpaWl44YUXsGTJErzzzjvKmH379mHKlClISEjAwYMHMX78eIwfPx7p6enKmBUrVuC1117DqlWrkJqaCjc3N8TGxuLKlSvKmKlTp+LIkSNISkrCli1b8MMPP2D27Nm1upbmxFb3ennpEAAMBgkLFnjg3Xe3AwDi4+MRFxdn8/ky9v8iIqLWqlktR27fvh07d+7Ehg0bsH37dtWxTz/9FGVlZXj//ffh5OSE3r1749ChQ3j55ZeVgPTqq69i5MiRWLBgAQDg6aefRlJSEt544w2sWrUKQgisXLkSjz/+OG6//XYAwEcffQR/f398/fXXmDx5Mo4ePYodO3Zg//79GDhwIADg9ddfx2233YYXX3wRQUFBNbqW5sTanY6A5V2NpnczZmcLnDrlBr3e3eadkhMmrEdIyGkGMCIiapWazUzYmTNncPfdd+Pjjz+Gq6urxfGUlBQMGzZMVbAdGxuLjIwMXLhwQRkTHR2tel5sbCxSUlIAAFlZWcjLy1ON0Wq1iIqKUsakpKTA09NTCWAAEB0dDY1Gg9TU1BpfS3Mi3+koScZifEkyICYmWflZJi8rHjgwALGx3TFrVmesXJmIzMwuFs8fO3YL+vQ5WuMAxkJ8IiJqaZrFTJgQAjNmzMC9996LgQMH4sSJExZj8vLyEBYWpnrM399fOda+fXvk5eUpj5mOycvLU8aZPs/WGD8/P9XxNm3awMvLSzWmumuxprS0FKWlpcrPRUVFVsfZg3ynY3Z2MEpKXOHqehnR0ckWdzMCsFo/lpi4skbd700L8GUsxCciopbIriFs0aJFeP7556scc/ToUezcuRPFxcV49NFHG+nK7GP58uVYunSpvS/DpszMLti0aSwqe3kZZ8SCgnKUYJWVFWpzmbImne+DgoIYuIiIqFWwawh76KGHMGPGjCrHdO7cGd9++y1SUlLg7OysOjZw4EBMnToVH374IQICAnDmzBnVcfnngIAA5U9rY0yPy48FBgaqxlx33XXKmLNnz6rOcfXqVRQUFFT7OqavYc2jjz6K+fPnKz8XFRUhJCTE5vjGJN/hqN6KSIOkpGjMm7cSAJCVFYqysjYADDBd6a6u6Wp8fDy0Wi1nvIiIqFWxawjz9fWFr69vteNee+01PPPMM8rPOTk5iI2Nxdq1axEVFQUA0Ol0eOyxx1BeXq50bU9KSkL37t2V5T+dToddu3YhMTFROVdSUhJ0Oh0AICwsDAEBAdi1a5cSuoqKipCamor77rtPOUdhYSHS0tIQGRkJAPj2229hMBhqdS3WODs7WwTNhnL6NHDsGNC1q/VthwDg/Pm2yMoKhZdXfhV3OGqQmhqFlBSdWdd745/mdz+aLzcyeBERUaslmqGsrCwBQBw8eFB5rLCwUPj7+4tp06aJ9PR08cUXXwhXV1fx9ttvK2P27t0r2rRpI1588UVx9OhRsXjxYuHo6Ch+++03Zcxzzz0nPD09xf/+9z9x+PBhcfvtt4uwsDBx+fJlZczIkSPFgAEDRGpqqvjxxx9F165dxZQpU2p1LTWh1+sFAKHX6+vwKdm2erUQGo0QgPHP1aurHiNJFSIm5hshSRUCEGZfFf98mT9ufN6sWW+LJUuWKF85OTn1+l6IiIiampr+/m4xIUwIIX799Vdx4403CmdnZ9GhQwfx3HPPWTx33bp1olu3bsLJyUn07t1bbN26VXXcYDCIJ554Qvj7+wtnZ2dx6623ioyMDNWY/Px8MWXKFNGuXTvh4eEh7rrrLlFcXFzra6lOQ4Sw7OzKcCV/OTgYH69qjPUgViEGD/7RagCTv6ZP/4AhjIiIWpWa/v6WhBDCnjNxZFtRURG0Wi30ej08PDzq5Zy7dwO33GL98ZtvrnrM9Olr4OVVgOxs4/plSMhpAMDKlYlWlyolyYDExJWqYvzZs2er6u2IiIhampr+/m4WLSqo/nTtCmg0gMGkxZeDA9Cli/H7/Px8eHhchUbjB4OhsghfLq437gV5VHXOsWO3mLSlsF4LJmO/LyIiIiOGsFYmOBh45x3gnnuAigpjAHv7bePjpht2jxljuWG3rfYScg+xggIvODqWobzcyeoG3Gw/QUREVIkhrBVKSABiY4Hjx40zYPLdkfKG3YA6WFXVXFVmnCGzPcbHx4cBjIiIyARDWCsVHGy7NYWsumBlSq93R0GBN7y88q0+h8uQREREagxhdM0OHLBcuoyIOAgAiImJQffu3TkLRkREZIYhjOpEnvlydCy1uldkePhxaLXFCAsLYwAjIiKygiGMqmW+1Gg682W+RRFQuVdkTZcyiYiIWiOGMKqS+VJjdHQykpOjTfqCmW5VZFTdXpFERETEENaq5Ofnq+6ANFdYWKj6Wd6023SpUR3AZMa+YDVpZ0FERERGDGGthGkPsJqytmm3tSVISTIgIWG11f5gREREZJ3lXjPUIlmbAdPr3ZGVFQq93l15LD4+HnFxcQAAL698SJJB9RxJMiAmJll5XJ75Cg7ORVjYSXbIJyIiqiHOhLVSttpKlJeXK2O02mLVlkSm4/r0SbfayHXSpEnw9PQEYAxgvDOSiIjIOoawVsharZfcVmLjxo2qsbY652u1xbjrrhj4+PgoYxm6iIiIao4hrBWyVetlq62Erc75Pj4+CAwMbLDrJCIiaslYE9YKeXnlw9hWolJd2kqw3ouIiKjuOBPWaql7ewkBFBe3Q3Z2CAAgJCTb6uxXXFwcfHx8uPRIRER0jRjCWqGCAm9YToJqsHr1LJPHBQYP3oeoqFRVGOMSJBERUf3gcmQrYbp0aK31hHFmzPSvg4R9+4Zg5cpEHDgwoDEukYiIqFVhCGtFBg0aBKCy9URlEDPAdGnSlHznpGkvMSIiIrp2XI5sBax1yzdtPeHoWGa2FKnGDbmJiIjqH2fCWgFb+0VqtcUICzuJ4OBcjBu3BcYZMUumd07yjkgiIqL6wZmwVkivd0dBgTe8vPKV2S15ZuyHH4YiLS0Scj433ZA7Pj6ed0QSERHVE4awVsbWdkWVxysDGGBsXREefhwA4Ovr29iXS0RE1GIxhLUiVW1XpNUWW+2kD2gwZMh03HwzOAtGRERUjxjCWpGqtisCgEuXXGGsC6sc4+AgEBXlDeYvIiKi+sUQ1orI/cFMg5gkGZCTE4SPPrrzn8cF5CAmSQa89FIJgoPb2euSiYiIWizeHdmKmPcHkyQDbrxxD5KTo02CmQRJAl5++TR+/VWPBx9kACMiImoInAlrBUzbSpj2B8vJCUJSUjTMs7gQGgwYEIy+fRv5QomIiFoRhrBWwNvbG3PnzlX1C8vJ0eCGG/xgrVO+gwPQpUsjXiAREVErxBDWSpjf2fjHH4DBSm9WjQZ4+20gOLiRLoyIiKiVYghrpbp2NQYu0yCm0QA//QRcf739rouIiKi1YGF+KxUcDLzzjnHpETD++c47DGBERESNhTNhrVhCAhAbCxw/bqwB4xIkERFR42EIa+WCgxm+iIiI7IHLkURERER2wBBGREREZAcMYURERER2wBBGREREZAcMYURERER2wBBGREREZAcMYURERER2wBBGREREZAcMYURERER2wBBGREREZAcMYURERER2wL0jmzAhBACgqKjIzldCRERENSX/3pZ/j9vCENaEFRcXAwBCQkLsfCVERERUW8XFxdBqtTaPS6K6mEZ2YzAYkJOTA3d3d0iSVOfzFBUVISQkBNnZ2fDw8KjHK2w++BnwMwD4GQD8DAB+BgA/A6BhPwMhBIqLixEUFASNxnblF2fCmjCNRoPg4OB6O5+Hh0er/ZdNxs+AnwHAzwDgZwDwMwD4GQAN9xlUNQMmY2E+ERERkR0whBERERHZAUNYK+Ds7IzFixfD2dnZ3pdiN/wM+BkA/AwAfgYAPwOAnwHQND4DFuYTERER2QFnwoiIiIjsgCGMiIiIyA4YwoiIiIjsgCGMiIiIyA4Ywpqpt956C/369VOazOl0Omzfvl05fuXKFcyZMwfe3t5o164dJkyYgDNnzqjOcerUKYwePRqurq7w8/PDggULcPXq1cZ+K/XmueeegyRJSExMVB5r6Z/DkiVLIEmS6qtHjx7K8Zb+/mV///037rjjDnh7e8PFxQV9+/bFL7/8ohwXQuDJJ59EYGAgXFxcEB0djWPHjqnOUVBQgKlTp8LDwwOenp5ISEjAxYsXG/ut1EloaKjF3wNJkjBnzhwArePvQUVFBZ544gmEhYXBxcUF4eHhePrpp1V797X0vweAcZucxMREdOrUCS4uLhg8eDD279+vHG9pn8EPP/yAsWPHIigoCJIk4euvv1Ydr6/3e/jwYQwdOhRt27ZFSEgIVqxYUT9vQFCztGnTJrF161bx559/ioyMDPGf//xHODo6ivT0dCGEEPfee68ICQkRu3btEr/88osYNGiQGDx4sPL8q1evij59+ojo6Ghx8OBBsW3bNuHj4yMeffRRe72la/Lzzz+L0NBQ0a9fP/Hggw8qj7f0z2Hx4sWid+/eIjc3V/k6d+6ccrylv38hhCgoKBCdOnUSM2bMEKmpqeKvv/4S33zzjTh+/Lgy5rnnnhNarVZ8/fXX4tdffxXjxo0TYWFh4vLly8qYkSNHiv79+4uffvpJ7NmzR3Tp0kVMmTLFHm+p1s6ePav6O5CUlCQAiN27dwshWsffg2XLlglvb2+xZcsWkZWVJb788kvRrl078eqrrypjWvrfAyGEmDRpkujVq5f4/vvvxbFjx8TixYuFh4eHOH36tBCi5X0G27ZtE4899pjYuHGjACC++uor1fH6eL96vV74+/uLqVOnivT0dPH5558LFxcX8fbbb1/z9TOEtSDt27cXq1evFoWFhcLR0VF8+eWXyrGjR48KACIlJUUIYfyLq9FoRF5enjLmrbfeEh4eHqK0tLTRr/1aFBcXi65du4qkpCRx0003KSGsNXwOixcvFv3797d6rDW8fyGEWLhwobjxxhttHjcYDCIgIEC88MILymOFhYXC2dlZfP7550IIIX7//XcBQOzfv18Zs337diFJkvj7778b7uIbyIMPPijCw8OFwWBoNX8PRo8eLWbOnKl6LC4uTkydOlUI0Tr+HpSUlAgHBwexZcsW1eMRERHisccea/GfgXkIq6/3++abb4r27dur/l1YuHCh6N69+zVfM5cjW4CKigp88cUXuHTpEnQ6HdLS0lBeXo7o6GhlTI8ePdCxY0ekpKQAAFJSUtC3b1/4+/srY2JjY1FUVIQjR440+nu4FnPmzMHo0aNV7xdAq/kcjh07hqCgIHTu3BlTp07FqVOnALSe979p0yYMHDgQ//rXv+Dn54cBAwbg3XffVY5nZWUhLy9P9TlotVpERUWpPgdPT08MHDhQGRMdHQ2NRoPU1NTGezP1oKysDJ988glmzpwJSZJazd+DwYMHY9euXfjzzz8BAL/++it+/PFHjBo1CkDr+Htw9epVVFRUoG3btqrHXVxc8OOPP7aKz8BUfb3flJQUDBs2DE5OTsqY2NhYZGRk4MKFC9d0jdzAuxn77bffoNPpcOXKFbRr1w5fffUVevXqhUOHDsHJyQmenp6q8f7+/sjLywMA5OXlqf6DKx+XjzUXX3zxBQ4cOKCqeZDl5eW1+M8hKioKa9asQffu3ZGbm4ulS5di6NChSE9PbxXvHwD++usvvPXWW5g/fz7+85//YP/+/XjggQfg5OSE6dOnK+/D2vs0/Rz8/PxUx9u0aQMvL69m8znIvv76axQWFmLGjBkAWse/BwCwaNEiFBUVoUePHnBwcEBFRQWWLVuGqVOnAkCr+Hvg7u4OnU6Hp59+Gj179oS/vz8+//xzpKSkoEuXLq3iMzBVX+83Ly8PYWFhFueQj7Vv377O18gQ1ox1794dhw4dgl6vx/r16zF9+nR8//339r6sRpOdnY0HH3wQSUlJFv/n11rI/5cPAP369UNUVBQ6deqEdevWwcXFxY5X1ngMBgMGDhyIZ599FgAwYMAApKenY9WqVZg+fbqdr67xvffeexg1ahSCgoLsfSmNat26dfj000/x2WefoXfv3jh06BASExMRFBTUqv4efPzxx5g5cyY6dOgABwcHREREYMqUKUhLS7P3pZEVXI5sxpycnNClSxdERkZi+fLl6N+/P1599VUEBASgrKwMhYWFqvFnzpxBQEAAACAgIMDi7ij5Z3lMU5eWloazZ88iIiICbdq0QZs2bfD999/jtddeQ5s2beDv798qPgdTnp6e6NatG44fP95q/h4EBgaiV69eqsd69uypLMvK78Pa+zT9HM6ePas6fvXqVRQUFDSbzwEATp48ieTkZMyaNUt5rLX8PViwYAEWLVqEyZMno2/fvpg2bRrmzZuH5cuXA2g9fw/Cw8Px/fff4+LFi8jOzsbPP/+M8vJydO7cudV8BrL6er8N+e8HQ1gLYjAYUFpaisjISDg6OmLXrl3KsYyMDJw6dQo6nQ4AoNPp8Ntvv6n+8iUlJcHDw8PiF1pTdeutt+K3337DoUOHlK+BAwdi6tSpyvet4XMwdfHiRWRmZiIwMLDV/D0YMmQIMjIyVI/9+eef6NSpEwAgLCwMAQEBqs+hqKgIqampqs+hsLBQNVvw7bffwmAwICoqqhHeRf344IMP4Ofnh9GjRyuPtZa/ByUlJdBo1L/SHBwcYDAYALSuvwcA4ObmhsDAQFy4cAHffPMNbr/99lb3GdTX+9XpdPjhhx9QXl6ujElKSkL37t2vaSkSAFtUNFeLFi0S33//vcjKyhKHDx8WixYtEpIkiZ07dwohjLekd+zYUXz77bfil19+ETqdTuh0OuX58i3pI0aMEIcOHRI7duwQvr6+zeqWdGtM744UouV/Dg899JD47rvvRFZWlti7d6+Ijo4WPj4+4uzZs0KIlv/+hTC2J2nTpo1YtmyZOHbsmPj000+Fq6ur+OSTT5Qxzz33nPD09BT/+9//xOHDh8Xtt99u9Tb1AQMGiNTUVPHjjz+Krl27Ntnb8q2pqKgQHTt2FAsXLrQ41hr+HkyfPl106NBBaVGxceNG4ePjIx555BFlTGv4e7Bjxw6xfft28ddff4mdO3eK/v37i6ioKFFWViaEaHmfQXFxsTh48KA4ePCgACBefvllcfDgQXHy5EkhRP2838LCQuHv7y+mTZsm0tPTxRdffCFcXV3ZoqI1mzlzpujUqZNwcnISvr6+4tZbb1UCmBBCXL58Wfzf//2faN++vXB1dRX/7//9P5Gbm6s6x4kTJ8SoUaOEi4uL8PHxEQ899JAoLy9v7LdSr8xDWEv/HOLj40VgYKBwcnISHTp0EPHx8ar+WC39/cs2b94s+vTpI5ydnUWPHj3EO++8ozpuMBjEE088Ifz9/YWzs7O49dZbRUZGhmpMfn6+mDJlimjXrp3w8PAQd911lyguLm7Mt3FNvvnmGwHA4n0J0Tr+HhQVFYkHH3xQdOzYUbRt21Z07txZPPbYY6q2Aq3h78HatWtF586dhZOTkwgICBBz5swRhYWFyvGW9hns3r1bALD4mj59uhCi/t7vr7/+Km688Ubh7OwsOnToIJ577rl6uX5JCJN2wkRERETUKFgTRkRERGQHDGFEREREdsAQRkRERGQHDGFEREREdsAQRkRERGQHDGFEREREdsAQRkRERGQHDGFEREREdsAQRkQtys0334zExER7X0aDW7JkCa677jp7XwYRXQOGMCKiJqSsrKxRX08IgatXrzbqaxKREUMYEbUYM2bMwPfff49XX30VkiRBkiScOHEC6enpGDVqFNq1awd/f39MmzYN58+fV55388034/7770diYiLat28Pf39/vPvuu7h06RLuuusuuLu7o0uXLti+fbvynO+++w6SJGHr1q3o168f2rZti0GDBiE9PV11TT/++COGDh0KFxcXhISE4IEHHsClS5eU46GhoXj66adx5513wsPDA7NnzwYALFy4EN26dYOrqys6d+6MJ554AuXl5QCANWvWYOnSpfj111+V97lmzRqcOHECkiTh0KFDyvkLCwshSRK+++471XVv374dkZGRcHZ2xo8//giDwYDly5cjLCwMLi4u6N+/P9avX1/f/4iIyARDGBG1GK+++ip0Oh3uvvtu5ObmIjc3F+7u7rjlllswYMAA/PLLL9ixYwfOnDmDSZMmqZ774YcfwsfHBz///DPuv/9+3HffffjXv/6FwYMH48CBAxgxYgSmTZuGkpIS1fMWLFiAl156Cfv374evry/Gjh2rhKXMzEyMHDkSEyZMwOHDh7F27Vr8+OOPmDt3ruocL774Ivr374+DBw/iiSeeAAC4u7tjzZo1+P333/Hqq6/i3XffxSuvvAIAiI+Px0MPPYTevXsr7zM+Pr5Wn9WiRYvw3HPP4ejRo+jXrx+WL1+Ojz76CKtWrcKRI0cwb9483HHHHfj+++9rdV4iqoV62QaciKiJuOmmm8SDDz6o/Pz000+LESNGqMZkZ2cLACIjI0N5zo033qgcv3r1qnBzcxPTpk1THsvNzRUAREpKihBCiN27dwsA4osvvlDG5OfnCxcXF7F27VohhBAJCQli9uzZqtfes2eP0Gg04vLly0IIITp16iTGjx9f7ft64YUXRGRkpPLz4sWLRf/+/VVjsrKyBABx8OBB5bELFy4IAGL37t2q6/7666+VMVeuXBGurq5i3759qvMlJCSIKVOmVHttRFQ3bewZAImIGtqvv/6K3bt3o127dhbHMjMz0a1bNwBAv379lMcdHBzg7e2Nvn37Ko/5+/sDAM6ePas6h06nU7738vJC9+7dcfToUeW1Dx8+jE8//VQZI4SAwWBAVlYWevbsCQAYOHCgxbWtXbsWr732GjIzM3Hx4kVcvXoVHh4etX7/tpi+5vHjx1FSUoKYmBjVmLKyMgwYMKDeXpOI1BjCiKhFu3jxIsaOHYvnn3/e4lhgYKDyvaOjo+qYJEmqxyRJAgAYDIZavfY999yDBx54wOJYx44dle/d3NxUx1JSUjB16lQsXboUsbGx0Gq1+OKLL/DSSy9V+XoajbHCRAihPCYvjZozfc2LFy8CALZu3YoOHTqoxjk7O1f5mkRUdwxhRNSiODk5oaKiQvk5IiICGzZsQGhoKNq0qf//5P30009KoLpw4QL+/PNPZYYrIiICv//+O7p06VKrc+7btw+dOnXCY489pjx28uRJ1Rjz9wkAvr6+AIDc3FxlBsu0SN+WXr16wdnZGadOncJNN91Uq2slorpjYT4RtSihoaFITU3FiRMncP78ecyZMwcFBQWYMmUK9u/fj8zMTHzzzTe46667LEJMXTz11FPYtWsX0tPTMWPGDPj4+GD8+PEAjHc47tu3D3PnzsWhQ4dw7Ngx/O9//7MozDfXtWtXnDp1Cl988QUyMzPx2muv4auvvrJ4n1lZWTh06BDOnz+P0tJSuLi4YNCgQUrB/ffff4/HH3+82vfg7u6Ohx9+GPPmzcOHH36IzMxMHDhwAK+//jo+/PDDOn82RFQ1hjAialEefvhhODg4oFevXvD19UVZWRn27t2LiooKjBgxAn379kViYiI8PT2V5btr8dxzz+HBBx9EZGQk8vLysHnzZjg5OQEw1pl9//33+PPPPzF06FAMGDAATz75JIKCgqo857hx4zBv3jzMnTsX1113Hfbt26fcNSmbMGECRo4cieHDh8PX1xeff/45AOD999/H1atXERkZicTERDzzzDM1eh9PP/00nnjiCSxfvhw9e/bEyJEjsXXrVoSFhdXhUyGimpCEafEAERHVyHfffYfhw4fjwoUL8PT0tPflEFEzxJkwIiIiIjtgCCMiIiKyAy5HEhEREdkBZ8KIiIiI7IAhjIiIiMgOGMKIiIiI7IAhjIiIiMgOGMKIiIiI7IAhjIiIiMgOGMKIiIiI7IAhjIiIiMgOGMKIiIiI7OD/A8i/5rEMgwm9AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -426,7 +586,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACH+klEQVR4nO2deXxTVd7/P+nK1qbQUtraQkthdJBFqYiFERCKwE9weECpC8oOOqAiDigP48K4IKCI4LgwIjgqCgJuODoURUelMooi4iADPEXAlqWBBqRCS3N/f2RuSNK7r+fefN+vFy9tcpOcnJx7zud8t+PhOI4DQRAEQRBEDBBndwMIgiAIgiCsgoQPQRAEQRAxAwkfgiAIgiBiBhI+BEEQBEHEDCR8CIIgCIKIGUj4EARBEAQRM5DwIQiCIAgiZiDhQxAEQRBEzEDChyAIgiCImIGED0EQBIOsXLkSHo8H+/fvt7spBOEqSPgQRIzy1VdfYdq0abj44ovRvHlztG3bFqNGjcJ//vOfRtf269cPHo8HHo8HcXFxSE1NxYUXXohbbrkFZWVlqj73vffeQ9++fZGZmYlmzZqhffv2GDVqFD788EOjvlojHnvsMbz99tuNHt+yZQseeugh1NTUmPbZ0Tz00EOhvvR4PGjWrBk6deqEP/3pTzh58qQhn7Fq1SosXrzYkPciCLdBwocgYpT58+dj3bp1GDBgAJ5++mlMnjwZ//znP9G9e3fs3Lmz0fW5ubl45ZVX8Le//Q0LFy7Etddeiy1btuDqq69GaWkp6uvrZT/ziSeewLXXXguPx4PZs2fjqaeewsiRI7Fnzx688cYbZnxNANLCZ+7cuZYKH57nnnsOr7zyChYtWoSLLroIjz76KAYPHgwjjk8k4UMQ4iTY3QCCIOxhxowZWLVqFZKSkkKPlZaWokuXLnj88cfx6quvRlzv9XoxevToiMcef/xx3HnnnXj22WeRn5+P+fPni37euXPn8PDDD2PgwIHYuHFjo+ePHj2q8xuxQ21tLZo1ayZ5zXXXXYeMjAwAwG233YaRI0di/fr1+PLLL1FcXGxFMwkiJiGLD0HEKL169YoQPQDQsWNHXHzxxdi1a5ei94iPj8eSJUvQqVMnPPPMM/D7/aLXVldX4+TJk+jdu7fg85mZmRF/nzlzBg899BB+85vfoEmTJsjOzsaIESOwb9++0DVPPPEEevXqhfT0dDRt2hRFRUVYu3ZtxPt4PB6cPn0aL7/8csi9NHbsWDz00EOYOXMmAKCgoCD0XHhMzauvvoqioiI0bdoUrVq1wg033ICDBw9GvH+/fv3QuXNnbNu2DX369EGzZs3wv//7v4r6L5z+/fsDACoqKiSve/bZZ3HxxRcjOTkZOTk5mDp1aoTFql+/fnj//ffx008/hb5Tfn6+6vYQhFshiw9BECE4jsORI0dw8cUXK35NfHw8brzxRtx///34/PPPcc011whel5mZiaZNm+K9997DHXfcgVatWom+Z0NDA4YOHYqPPvoIN9xwA+666y6cOnUKZWVl2LlzJwoLCwEATz/9NK699lrcfPPNqKurwxtvvIHrr78eGzZsCLXjlVdewcSJE3H55Zdj8uTJAIDCwkI0b94c//nPf/D666/jqaeeCllfWrduDQB49NFHcf/992PUqFGYOHEijh07hqVLl6JPnz749ttvkZaWFmqvz+fDkCFDcMMNN2D06NFo06aN4v7j4QVdenq66DUPPfQQ5s6di5KSEtx+++3YvXs3nnvuOXz11Vf44osvkJiYiDlz5sDv9+PQoUN46qmnAAAtWrRQ3R6CcC0cQRDEf3nllVc4ANzy5csjHu/bty938cUXi77urbfe4gBwTz/9tOT7P/DAAxwArnnz5tyQIUO4Rx99lNu2bVuj61566SUOALdo0aJGzwUCgdD/19bWRjxXV1fHde7cmevfv3/E482bN+fGjBnT6L0WLlzIAeAqKioiHt+/fz8XHx/PPfrooxGPf//991xCQkLE43379uUAcM8//7zo9w7nwQcf5ABwu3fv5o4dO8ZVVFRwL7zwApecnMy1adOGO336NMdxHLdixYqIth09epRLSkrirr76aq6hoSH0fs888wwHgHvppZdCj11zzTVcu3btFLWHIGINcnURBAEA+PHHHzF16lQUFxdjzJgxql7LWxROnToled3cuXOxatUqXHrppfjHP/6BOXPmoKioCN27d49wr61btw4ZGRm44447Gr2Hx+MJ/X/Tpk1D/3/ixAn4/X5ceeWV+Oabb1S1P5r169cjEAhg1KhRqK6uDv3LyspCx44dsXnz5ojrk5OTMW7cOFWfceGFF6J169YoKCjAlClT0KFDB7z//vuisUGbNm1CXV0dpk+fjri481P3pEmTkJqaivfff1/9FyWIGIRcXQRB4PDhw7jmmmvg9Xqxdu1axMfHq3r9L7/8AgBISUmRvfbGG2/EjTfeiJMnT2Lr1q1YuXIlVq1ahWHDhmHnzp1o0qQJ9u3bhwsvvBAJCdJT1IYNG/DII49g+/btOHv2bOjxcHGkhT179oDjOHTs2FHw+cTExIi/L7jggkbxUnKsW7cOqampSExMRG5ubsh9J8ZPP/0EICiYwklKSkL79u1DzxMEIQ0JH4KIcfx+P4YMGYKamhp89tlnyMnJUf0efPp7hw4dFL8mNTUVAwcOxMCBA5GYmIiXX34ZW7duRd++fRW9/rPPPsO1116LPn364Nlnn0V2djYSExOxYsUKrFq1SvV3CCcQCMDj8eCDDz4QFIHRMTPhliel9OnTJxRXRBCEdZDwIYgY5syZMxg2bBj+85//YNOmTejUqZPq92hoaMCqVavQrFkz/O53v9PUjssuuwwvv/wyqqqqAASDj7du3Yr6+vpG1hWedevWoUmTJvjHP/6B5OTk0OMrVqxodK2YBUjs8cLCQnAch4KCAvzmN79R+3VMoV27dgCA3bt3o3379qHH6+rqUFFRgZKSktBjei1eBOFmKMaHIGKUhoYGlJaWory8HG+++aam2jENDQ248847sWvXLtx5551ITU0Vvba2thbl5eWCz33wwQcAzrtxRo4cierqajzzzDONruX+W+AvPj4eHo8HDQ0Noef2798vWKiwefPmgkUKmzdvDgCNnhsxYgTi4+Mxd+7cRgUFOY6Dz+cT/pImUlJSgqSkJCxZsiSiTcuXL4ff74/IpmvevLlkaQGCiGXI4kMQMco999yDd999F8OGDcPx48cbFSyMLlbo9/tD19TW1mLv3r1Yv3499u3bhxtuuAEPP/yw5OfV1taiV69euOKKKzB48GDk5eWhpqYGb7/9Nj777DMMHz4cl156KQDg1ltvxd/+9jfMmDED//rXv3DllVfi9OnT2LRpE/7whz/g97//Pa655hosWrQIgwcPxk033YSjR4/iL3/5Czp06IAdO3ZEfHZRURE2bdqERYsWIScnBwUFBejZsyeKiooAAHPmzMENN9yAxMREDBs2DIWFhXjkkUcwe/Zs7N+/H8OHD0dKSgoqKirw1ltvYfLkyfjjH/+oq//V0rp1a8yePRtz587F4MGDce2112L37t149tln0aNHj4jfq6ioCKtXr8aMGTPQo0cPtGjRAsOGDbO0vQTBLHamlBEEYR98GrbYP6lrW7RowXXs2JEbPXo0t3HjRkWfV19fz/31r3/lhg8fzrVr145LTk7mmjVrxl166aXcwoULubNnz0ZcX1tby82ZM4crKCjgEhMTuaysLO66667j9u3bF7pm+fLlXMeOHbnk5GTuoosu4lasWBFKFw/nxx9/5Pr06cM1bdqUAxCR2v7www9zF1xwARcXF9cotX3dunXc7373O6558+Zc8+bNuYsuuoibOnUqt3v37oi+kUr1j4Zv37FjxySvi05n53nmmWe4iy66iEtMTOTatGnD3X777dyJEycirvnll1+4m266iUtLS+MAUGo7QYTh4TgDDoYhCIIgCIJwABTjQxAEQRBEzEDChyAIgiCImIGED0EQBEEQMQMJH4IgCIIgYgYSPgRBEARBxAwkfAiCIAiCiBmogGEUgUAAlZWVSElJobLvBEEQBOEQOI7DqVOnkJOTg7g4cbsOCZ8oKisrkZeXZ3czCIIgCILQwMGDB5Gbmyv6PAmfKFJSUgAEO07q3CGCIAiCINjh5MmTyMvLC63jYpDwiYJ3b6WmppLwIQiCIAiHIRemQsHNBEEQBEHEDCR8CIIgCIKIGUj4EARBEAQRM1CMD0EQBEEYQENDA+rr6+1uhmtJTExEfHy87vch4UMQBEEQOuA4DocPH0ZNTY3dTXE9aWlpyMrK0lVnj4QPQRAEQeiAFz2ZmZlo1qwZFb81AY7jUFtbi6NHjwIAsrOzNb8XCR+CIAiC0EhDQ0NI9KSnp9vdHFfTtGlTAMDRo0eRmZmp2e1Fwc0EQRAEoRE+pqdZs2Y2tyQ24PtZTywVCR+CIAiC0Am5t6zBiH4m4UMQBEEQRMxAwocgCIIgiJiBhI8D8Pl8qKqqQlVVFbZtO4K1a33Ytu1I6DGfz2d3EwmCIAiHMXbsWHg8Hng8HiQmJqJNmzYYOHAgXnrpJQQCAcXvs3LlSqSlpZnXUIOhrC7G8fl8eOaZZwAA33xzKd57byg4Lg4eTwDDhm1A9+7fAgCmTZtGGQUEQRAOw+fzoa6uTvT5pKQkU+f2wYMHY8WKFWhoaMCRI0fw4Ycf4q677sLatWvx7rvvIiHBfTLBfd/IZfA3hN+fEhI9AMBxcXjvvaEoLNwLr/eU5I1DEARBsEf4xlYKMze2ycnJyMrKAgBccMEF6N69O6644goMGDAAK1euxMSJE7Fo0SKsWLEC//d//4dWrVph2LBhWLBgAVq0aIFPPvkE48aNA3A+8PjBBx/EQw89hFdeeQVPP/00du/ejebNm6N///5YvHgxMjMzTfkuSiFXl0M4fjw9JHp4OC4Ox4+3sqlFBEEQhB6Ublit3tj2798f3bp1w/r16wEAcXFxWLJkCX744Qe8/PLL+PjjjzFr1iwAQK9evbB48WKkpqaGwi/++Mc/AgimnD/88MP47rvv8Pbbb2P//v0YO3aspd9FCMcIn3nz5qFHjx5ISUlBZmYmhg8fjt27d0dcc+bMGUydOhXp6elo0aIFRo4ciSNHjtjUYmNp1coHjyfS5+rxBNCq1XGbWkQQBEG4lYsuugj79+8HAEyfPh1XXXUV8vPz0b9/fzzyyCNYs2YNgKArzuv1wuPxICsrC1lZWWjRogUAYPz48RgyZAjat2+PK664AkuWLMEHH3yAX375xa6vBcBBwufTTz/F1KlT8eWXX6KsrAz19fW4+uqrcfr06dA1d999N9577z28+eab+PTTT1FZWYkRI0bY2Grj8HpPYdiwDSHxw8f4eL2nbG4ZQRAE4TY4jgu5rjZt2oQBAwbgggsuQEpKCm655Rb4fD7U1tZKvse2bdswbNgwtG3bFikpKejbty8A4MCBA6a3XwrHxPh8+OGHEX+vXLkSmZmZ2LZtG/r06QO/34/ly5dj1apV6N+/PwBgxYoV+O1vf4svv/wSV1xxhR3NNpTu3b9FYeFeHD/eCq1aHSfRQxAEQZjCrl27UFBQgP3792Po0KG4/fbb8eijj6JVq1b4/PPPMWHCBNTV1YlWrD59+jQGDRqEQYMG4bXXXkPr1q1x4MABDBo0yPaYVMcIn2j8fj8AoFWrYIzLtm3bUF9fj5KSktA1F110Edq2bYvy8nJR4XP27FmcPXs29PfJkydNbLV+vN5TJHgIgiAI0/j444/x/fff4+6778a2bdsQCATw5JNPIi4u6CTi3Vw8SUlJaGhoiHjsxx9/hM/nw+OPP468vDwAwNdff23NF5DBkcInEAhg+vTp6N27Nzp37gwgeDpuUlJSo1oCbdq0weHDh0Xfa968eZg7d66ZzXUc4emVlZVxqKhIQEHBOeTkBN1sRqZXHjoE7NkDdOwI5OYa8pYEQRCEQs6ePYvDhw9HpLPPmzcPQ4cOxa233oqdO3eivr4eS5cuxbBhw/DFF1/g+eefj3iP/Px8/PLLL/joo4/QrVs3NGvWDG3btkVSUhKWLl2K2267DTt37sTDDz9s07eMxDExPuFMnToVO3fuxBtvvKH7vWbPng2/3x/6d/DgQQNaaBxJSUmGXicHn165bNky3HbbV+jRozWuvz4dl13WGmPGfI9ly5bhmWeewb59+3R/1vLlQLt2QP/+wf8uX27AFyAIgiAU8+GHHyI7Oxv5+fkYPHgwNm/ejCVLluCdd95BfHw8unXrhkWLFmH+/Pno3LkzXnvtNcybNy/iPXr16oXbbrsNpaWlaN26NRYsWIDWrVtj5cqVePPNN9GpUyc8/vjjeOKJJ2z6lpF4OI7j7G6EGqZNm4Z33nkH//znP1FQUBB6/OOPP8aAAQNw4sSJCKtPu3btMH36dNx9992K3v/kyZPwer3w+/1ITU01uvmasLLAVVVVFZYtWwa/PwWLF0+PSqHnMHBgGXr3LgegvbaEz+fD/v3ncPnlmQgEzh84Fx/PYevWo8jPT6BijARBOIIzZ86goqICBQUFaNKkiarXslDHx2lI9bfS9dsxri6O43DHHXfgrbfewieffBIhegCgqKgIiYmJ+OijjzBy5EgAwO7du3HgwAEUFxfb0WTDUDPgjRJJQnWDAA82bSpB5847NRdN5G/0iop8BAJjIp5raPBg6dIPUFDwE93oBEG4nvT0dEybNs3Wys2xiGOEz9SpU7Fq1Sq88847SElJCcXteL1eNG3aFF6vFxMmTMCMGTPQqlUrpKam4o477kBxcbErMrqUYOTuoVUrH4AAor2hfNFErQHW/A3O1yUKF1fhdYnsjvonCIKwAhI11uOYGJ/nnnsOfr8f/fr1Q3Z2dujf6tWrQ9c89dRTGDp0KEaOHIk+ffogKysrVHkyFjCyCqjXewoDB24CEOkJNapoItUlIgiCIOzAMRYfJaFITZo0wV/+8hf85S9/saBF9hPt1qquro543u9PwfHj6WjVyqdJUPCxPJs2lUQcjGqUOKG6RARBEITVOEb4EJHIubWkTnJXQ+/e5ejceadp4oTqEhEEQRBW4hhXFxGJlLtK7CR3vz9F02d5vadQUPATCRSCIAjC8ZDwcSF6TnI3qh4QQRAEQbAIubpcQng8j1zGlBTp6ekYPXo0Xn31Vdlr3SCSrKxSTRAEQdgPCR8XIBTPM2zYhkaPKXVVFRYWmlZbQqlYqq2tRVVVleGfH054nJRUTJSS9H8SUARBEM6AhA/jiBUk5DO4xOJ5pk9fjOnTFwsGJfPiw8qK0DxKCnbV1tZGWJzEstP0Fjnk2yDWh4WFexUVajRSQBEEQbiFTz75BFdddVWjExWkyM/Px/Tp0zF9+nTT2kXCh2GUFCSUiucpKPgJ48YNREZGRug5XszYWSpd7v3CLT1SQsKoIodSfajESmaUgCIIgrCSsWPH4uWXX8aUKVMaHTw6depUPPvssxgzZgxWrlxpTwNNgoKbGUbJQsnH84QTHs+TkZERUfCRFx1GFjs0C6Oz08SQ68Pq6mr4fD7B1/p8vpD1TU9QOUEQhB3k5eXhjTfewK+//hp67MyZM1i1ahXatm1rY8vMg4SPw5GrgKw0psbvT0FFRb6kqPD5fKiqqhL9JyYOtGKVkBDqw+Li8tDz69evxzPPPNPo+/FWM746uJyAIgiCYI3u3bsjLy8v4pSD9evXo23btrj00ktDj509exZ33nknMjMz0aRJE/zud7/DV199FfFef//73/Gb3/wGTZs2xVVXXYX9+/c3+rzPP/8cV155JZo2bYq8vDzceeedOH36tGnfTwhydTkIsVgXvgLyJZdch4svTkZOTg8APRTH6CgpdmiHa0xPdppa+D7curUntmwpxpYtvVFeXizpWhOyhhUXl6O8vNiUStcEQbibQ4eAPXuAjh2B3FzrPnf8+PFYsWIFbr75ZgDASy+9hHHjxuGTTz4JXTNr1iysW7cOL7/8Mtq1a4cFCxZg0KBB2Lt3L1q1aoWDBw9ixIgRmDp1KiZPnoyvv/4a99xzT8Tn7Nu3D4MHD8YjjzyCl156CceOHcO0adMwbdo0rFixwrLvS8LHIciJk+DZWonIzm6j6n3l4lJ47HCN8ZYYrdlpWigvLwZvCBXrCz4oPPyIkPDfBwigV68v0LPnVhI9BEEoYvlyYPJkIBAA4uKAZcuACROs+ezRo0dj9uzZ+OmnnwAAX3zxBd54442Q8Dl9+jSee+45rFy5EkOGDAEA/PWvf0VZWRmWL1+OmTNn4rnnnkNhYSGefPJJAMCFF16I77//HvPnzw99zrx583DzzTeHApc7duyIJUuWoG/fvnjuuefQpEkTS74vCR8HoFScaEFrYK/ec8CUYuV5Xkr6QsjyFf37AHEoLy9Gz55bTWsrQRDu4dCh86IHCP53yhRg0CBrLD+tW7fGNddcg5UrV4LjOFxzzTURSTH79u1DfX09evfuHXosMTERl19+OXbt2gUA2LVrF3r27BnxvsXFxRF/f/fdd9ixYwdee+210GMcxyEQCKCiogK//e1vzfh6jSDh4wDEFuSDB3Ph9e7S9d5a3ElGnQOmFDPO8/L5fPD7/RGPyfWF3+9HfX19o/fSmxUWi1DdI4I4z54950UPT0MDsHevdS6v8ePHY9q0aQBg2kHfv/zyC6ZMmYI777yz0XNWBlKT8HEAQgsyAKxdex3q6s6Ljj179qC6uhrNmjVDYWGhovdW604y0/rEozQgW2vlaLF4Jbm+WL16daPX+P0pOH26GYAAwnMFhMSjGypdGwHVPSKISDp2DLq3wsVPfDzQoYN1bRg8eDDq6urg8XgwaNCgiOcKCwuRlJSEL774Au3atQMA1NfX46uvvgq5rX7729/i3XffjXjdl19+GfF39+7d8e9//xsdrPxiApDwYRh+oYxekM8TKTo2b94cemb06NGS4id8EZZyJ0Uv1lZYN5QUOdRjEZB6XzWutci4Hg68+IkWTCNGjEBOTg4t4v+F6h4RRCS5ucGYnilTgpae+HjghResDXCOj48Pua3i4+MjnmvevDluv/12zJw5E61atULbtm2xYMEC1NbWYsJ/A5Fuu+02PPnkk5g5cyYmTpyIbdu2Nar/c++99+KKK67AtGnTMHHiRDRv3hz//ve/UVZWpih5xihI+DAMLwAqKysBrEdS0lmsXXt9xDVioqO2tlbRe6sVF1ZlWlkpEqLjlZS41g4dysa77w7FeSuPBx4Ph5Ej1yAv71DE6zMyMkj0CEAuQoI4z4QJwZievXuDlh4rRQ9Pamqq6HOPP/44AoEAbrnlFpw6dQqXXXYZ/vGPf6Bly5YAgq6qdevW4e6778bSpUtx+eWX47HHHsP48eND79G1a1d8+umnmDNnDq688kpwHIfCwkKUlpaa/t3CIeHDOOnp6SFxkpd3UJfoMOKICjsyrcxES7wS/5roMlgcF4fmzWsb9QW5uM4TXvDRynIFBOEEcnOtFTxyFZnffvvt0P83adIES5YswZIlS0SvHzp0KIYOHRrx2Lhx4yL+7tGjBzZu3Cj6HkK1f4yGhI8DEHN5eTwB/O53n+GHHy5G27Y/ITdX/FBPvXV4tLrGWEbO1TJixIhQZkNNTQ3WrFkjkMF1nvBFm3+tm4N0pYR0TU0NPB4PvF5v6DG/3x8RJ+U2EU0QhDMg4eMAwt1Se/bsQWFh8PDRf/2rBz77rA8ADwAO3bp9h//5n3cE30NvHR6z427sQM7Vwh/3IfeaIJGLttBr3YRSIS2F35+Cli1PYMKEF1Ffn2R6uQKCIAiAhI9j4AVFdXU1vN5TOHWqBXbt6oSg6AEAD777rht69PiXpOWHR0sdHieJGiVocbWIvWbChBcj+t1Jli8t6A08FnIxFhT8ZFDrCIIgxCHh41AOHGiH86KHx4ODB9vKCh+r6/CwihZXi9hr+D6P1QwuKSEd/ZwVJRHUYETsG0EQzoGEj0Np2/YnBFOow8UPh7y8A5KvY23RMRuhRS28cKFUvFL4dUpfE4uiR0pICz3XsuUJRdlcVljN7DiDjnAnHMfZ3YSYwIh+JuHjMJo1awYAyM2tQrdu3+G777ohPMaHtzzw10UTSynEShe1SZOGIC0tDcD5IGZAuGCh0Gt47LYMKLVc+Hw+HDt2TLAKNQAkJCQgMzNT0XeREtIABJ+bMOFFSRejlVYzO86gI9xFYmIigGAJkaZNm9rcGvfDl2rh+10LJHwcRmFhIUaPHo3a2lqMGAF8//1ebN/eHJdcchpdusQDGCFZuVkurqWiokL0s7Us7HrdCGpeH31t+CGiUqSlpakORNbyGjNRKvJGjx6NV199VdF7KrFySAlpwCP4XH19kqSL0c66R1adQccK5ObTT3x8PNLS0nD06FEAwU2nxxMdhkDoheM41NbW4ujRo0hLS2tUZFENJHwcSLio6dIFuOkm5a+Vi2spKyuTfL0ak79eN4Ka1wOQvVbLouaUhVCpRUKusKXa95QT0mLPFRT8ZNnhs0phLfbNbFFCbj7jyMrKAoCQ+CHMIy0tLdTfWiHhEyMorcPDI7bgqzH5N46tUfeeel8fjp5ChXoXQrkFrLa2VtQ1CWhb4JQKNr8/BQcP5gEIFshUK0DkhLTUc2IVsu3IiGMp9o13RUq5Wnn0iBIj769Yx+PxIDs7G5mZmaIuZEI/iYmJuiw9PCR8YoT09HSUlpaGJlN+Yjt+PD3ib8Ccna/e91T7+vBJHBCONZFa1IxaCI2odwOoW+CU9tU331wadewGh2uvfU/R76JUSEs9N2rUKGbipFiJfVM7XrSKkvAK2gB71i4zsMKtFx8fb8jCTJgLCZ8YIryKrthEZ8bOV+97qn199HcrLi5XvagZtRAatVtW+j5K+8rvT4kSPQDgUfy7yBW0FKrcHA5rsSOsHJ8h1p9GulyjxRVL1i6zILceEQ4JnxhEaqJTsuCr3TnpFRFqXi/03crLi8GfnM6jtVCh3oVQbgHTu8Ap7augpa9xBWo1v4vUAsFS4DeP0LjlrR6sHp/h96dg69aeKC8vNswaE90HrFi7zIRVtx4Fl9sDCR8GsHrwS010cgt+9HlLYvABx4B+EaHm9WLfrVevLxotHloKFepZCOTcCUa4G5T2VdAFGCkGxa41ErsmeiU7ftbOoGvsijTHGpOYeJYJa5dVsOLWIyuUfZDwsRmzBn/0AlNTU4Njx44BkF4c5RZ8pYF74Z+tV0Soeb3Yd+vZcyt69twqu6iZdRirnDvBKHeDXF+dOHEidN21126IWFjNtnLYOdEr3cmPGzcwdDAtjx27bn486LXKyREuAviCqFrGgVMsFyy59Vi1QsUCJHxsxowCanILjNTiqPbgSKWuGSWZZFIofb3cwj98+GVo2bIodH10ESyzDmOVcyfodTcoFWybN29udN3Bg7kAgLy8Q6ZaOVgqFig2blk5XFb8MFzjrDHRIiBYCLXxuXNyOMlywapbjxUrVKxAwseFyO0kxMSNkoMjExLODxm5mzV64VSbvqz19UoX/nDCJ2UzJmc5F5Red2C0YKuursb69etlXxcUgi3/+9dvAQhXbjZjR29XjSQnLDJC4wEw1ionLK6CBSbDkRPALAlaOVgJYg+HJStUrEDChzGMXgyiJ/muXXdgx46ujcSN3M3HHyPAT15Kbla91hO1rxe6NloA2GVOlrNEGRFTJCU8xL53x44dZS0cZuzo9YgPPSLMKYtM9HgAAujVqxw9e241zConJwK0Hh3CctFPFoPYWbVCuRkSPgxh9E5UaJI/f7aXumwu/hiBqqqgCVzpzarXeqLm9XLXSvWv2PEWemMT1BSOlHq+pqZG9DOECiAaWaPF6FgEPeJDrwize5FRUsySR64GktLz1MSQEwFajg4x8x4zyuqo1+1uNCxaodwOCR9GMGMnKmzKjjxDRmk2VzRqrmch8FGuf6XcQnpiE5RYraQqN/NZdPzBqWoxelwZIc71iA+9bhUzFhk1h8MqPU/N6Ere0a/nsTKAX889plfw6nW7mwlrVigW5muzIeHDCGbsRIXjBIKZGzxKs7miUXo9K4GPSvrXLDeYlZNE9HcwclwZJaLkxIeUdSvaaiD2m9XU1Ai68IxeZNSMb6XjqFmzZqYGWNsVwC9FZWVlqD1Cn620744ePYpjx44JZp9effXV4DgOLVu2bFQxXOxzwzFTELBihWJlvjYbEj42w0/yShYDtZOh0CQvFOPD32RKdn9qd4uspGzK9a8TAl4B6fgJoe9QWLjXMAuHUSJKTnwotW5J/WZr1qyJmJzNsnLosUDZGQtjRwA/IP6do61Bcgur2PsoHTtayoMYLQhYtEKxMl+bDQkfm/F4gtYXucWAv06O6DN4hCb5/v0/Fpz0R4wY0aiGCRC5k9GzW7RTXMil8EtZMsL7004zr1T/iX2H6dMXG2bh0OsmUntQrhRKrE/hY9QsK4dQu5SIGacIbTWI3WMAUFGRj8rKbGzaVKLoO0v9Tkb0ndqF24zMNavGpFbcOEZ5SPjYTPhZRlKLgdiZR+GI7UqidxJiOwulGRxabkQWsmnE+lfOkqF2N2oGcv0n9R2MsnDodRMpmeijK4OLCQkt1iezfzOlCwUL94KRSAnaffs6YPHi6f/9rufd7Fq/s9q+M8uqZtT76hmTZrre3DZGoyHhwyTKrDvRaDU/lpaWonXr1rbH2JiBEnOymCUjMbEOFRX5TJh55fpPzhpjVEVivZYaNZ8nJSTE4tcqK3Ma1Z6yAjULhZ57gaXA0/C2lJaWhuJqTpw4gc2bN4sUSDwPx8Xh4MFcHD/+q2IBoabvvviiWLGFSQ0sWELMjsWxO/vRbEj4MIQZ6ezRhQuFdiler9f0ydKulE0pKwNf40csFmr58onMmHnl+k9JarLSGDGh407CsSIWQU5IeL2nUFKyCWVlA3F+QfVg06YSdO680/LJWc1CofVeYCnwVElbpKpPA8HvvHbtdQCU32NK++6LL4ojxoZRFgtWLCFmF410e4o9CR9GMDvtWCiomZ9ktAROq8XOlE21tT0SE+tCogfQ9lsYvTNX0n9GZIYoXVxLS0sj3K9WHqTLf6+cnCqIlWewWvioWSi03gssVUhW8hlSWaXBxwH+LDKl95iSvvP7U1BWVgIzxgarlhCjXXqspdgbDQkfRjA77ViscKHXe6pRBoxZsJKyySPmBquoyNf1Wxi5M1cbEKzXGqM0q8Pr9ZoqlpUICZZ2pUoWCqMzy1iqkCzUFqE+KSnZhJycSpw+3Rxr114f8R5S95ia++D48XQIHe5qxNhgaczxmOV6Y22+NhISPoxg5A2lpnChUAaMkbCYsskjdr6V3t/CyJRQvQUQAe3WGBaz8ABExF3ZvStVI2aMzOJhIc5ESVvE+sTvT1F1j6kJjBezNJWUbNI9NlgYc+EY7Slgeb42EhI+NsMPILkbSs1AU1O40GxYT9kU+lwjJzcjFigtfRPuaqurqwsdNcIj1+d2xTIozRAK70ujavJoQe34NmKcsxJnoqQt0SUyampqsGbNGk3znVLraPR7AwEMHLgJvXuXN7pWKWbVgeLR6ho32vWmdDwDaDSnKGkvK5DwsZnogfbAA8ewf38C8vPPISenB4AehsSDhMf4AADHAfv2dbBklyh3ynf4wszKDWOEmdeuBcoIV5vchGrW2WZiVji5vozOWjN7HNmZXcVSnImSM/7CXaLZ2dmGz3c8/Ng5duwYRoyox7Rpu3HwYDLy8s4iKysbwAgkJCRoOuPMzA2cnvvVDNeb3HdQ2t5Ro0ZpqpBtBSR8GCB8EGRnA0VF2t5HalcCAN991zXsaut3iSxlpQhhtJnXrgXKCFeb3ITKixGh99X7+2nZ2arJWtNL9Dg2qx/4zwoXgQBbcSZa2mLEfCclPL1eL5KSktCli7FziFlzktIwg/BjPfixYIfrTWl7papo233kBQkfFxG9KwkvBldRkY/ogD+rd4msl0M3elfHwgKl1dUmN6FKva8Zvx8LfckT/v3M7AdhgRWMb2IlzkTrwqvHYsb6BkovSo/14NHqejPKaikVZM/aHM9DwsdlRO6mslFaWioa8Kd04TDDrM9ScGY4Rk6UdgdC6nW1SQWmWu3Cs7svhTC7H+QE1vTpi22LbdIT86JXuLC+gdKD2nlR7JghwBrxKNVeVud4gISP6+FrrejZmRm9u2IpONNs7EwJVeNq48Wt3++PeFzI3WeXC8+oOkVGiXir+kHqHLaCgp8iFj+r4if0WEeNFC4sL65qkZoXAQj2kVYXrxG/gVx7WZ7jSfi4HL3ZCGbsrlgKzjQDVlJClVr5lIrbgQMHoqyszFK3k5F9aXRsjlX9wFJ8UzhGCCw9wkXvBoql4z8A8d9569aeKC8vNk3caf0NpMYl4GF6jifh43Ksqh2iJsuHpXgNM2AlhV+plU+puE1JSVH1vkZgZF9qic0RWhytDix16/2iV7joPfOMtTghsd95y5ZiqK1wrRQ9v4HcuGR5zJLwiQGsqB0iFngHNJ48WIzXMBpWgirVuoeU7v6sdOEZ3ZdKJ3tpC1HwMSv6wa33i17Lrx5ByGKckNDvXFxcji1bekdcZ6TlRM9vIDcuWR6zJHxMhDVTqh6U3CBqJg83l0O3G63uIbW7P7H3ZR2lk71SC5EV/eDG+0WvJcsoQWh3nJBcGRLezcVjpOVEy2+gNHyC5TFLwsckWDSl6kHuBlEyebAS++J2tLqH5ARBYmKios9n/fdTO9lrdQfI9YPcxkhJoLmTMUK46F1cWUi0ELpf+cKdgHLLiZaNtpbfQGp+CS+hwr8/i3M8CR+TYOkkZSOQukGUTh6sxL7EAlr6UE4QeL1eV/x+aid7qaDTq6/eBKBxWrFcPygNtFaC3YuIHrQIF6UbqJqaGtnfgZVEi+g2qk1K0bPR1vIbiPVpdGVuIViYI0j42Ex4UDALA0IKsRtEzeTB8veLdeQEQXV1daOaIayPWTHUTPbCZ98BW7YUo2fPrZoyq5S60cTK/vM4sf/1Wn7Dj6YIty5Ei0e+crCUVZ3VwHG1m0S1MUtmWt+dMB5J+FiE0mqcrLm+lNwgrBVHJLQjJQhWrCgz7WgGO5CyFACR2VtCQaaAfsuAnLU0LS3NllR1M1GyqNfW1goersuTlJQUqlEGaK+grcT6Z9ccpfU9lYQdxLr1nYSPBagJngs/j4WFgSd1g/B+aJaKIxLqUSJu9aR/R3+WXb+l0t1r+BlD/IalU6cfItKKAWMsA6y4WqxGzg24bNmy0N9im8bS0tLQ82ZUKA++t1/SqsQzevRoNGvWTPQzrBr3avoiludUEj4mo/amZNECpOTztfiJWUwpjUXExK3Sk9F5rDy8UwtKdrnhC1202OvWbQd27OhqaHouq64WO1HqBqyvrwegTTwqdfVwHKeoLa+++mroOjvHfawKabWQ8DEZsYF48GAujh//VTaYMdwCFA4L1iAj/cR2p5TGOkYEgFp1eKce9ByrsmNHV0yY8CLq65MMS891a40eI1AquLWeEK/E1XP+wGdlbZEa92JzOf9ZRsznRgpplq23eiHhYzLCgZEBrFt3XcTNEbSWKD+RF7BmByE3+I0w8bKQUkqIY1X6N0uIib36+iQUFPwk+3o1qeos1zuxE6WCW6t4VDJ38jFGSuuYKSnyaqZFyCghzbr1Vi+uFD5/+ctfsHDhQhw+fBjdunXD0qVLcfnll1vaBt7KET0QgQCC55h4AARvjnffHQqPB6LWDrtcQFbF4JB5lm2MSv920u+pVuyFWzW1pKqrrdETLqwqK+NQUZGAgoJzyMkJhNrjxAUpHDW/gdniUUlblIx7KyyhRvSFE6y3enCd8Fm9ejVmzJiB559/Hj179sTixYsxaNAg7N69G5mZmZa1I9qUOm3abrz22lacPt0ca9deH3V1HHhXcvQuwU4XkFUxOBTnwD5607+d9nvKiT2pE9GVLhpKEHIThwsrNanwThNDagW3mQUelbRFbtybaQmtra1t1F4j0tPdYL0VwnXCZ9GiRZg0aRLGjRsHAHj++efx/vvv46WXXsJ9991naVuiJ5mCgp/g96cI1gQJh98lAGBm0JkpwJTUjwnHaRO4W1C6sLglbkVK7Cmp2yO3aGit0aMk7gQA5s//l+NdE1K/QUKCsuXLqAKPcuJfbtwbZQmNdqOqyTxT+9u7wXorhKuET11dHbZt24bZs2eHHouLi0NJSQnKy8sFX3P27FmcPXs29PfJkydNaZuc6yv4Lwi/S2Bl0Jml+pXGOQjFOTltAnciShcMoevcEreix4ogd/+qrdHDL3jV1dXw+1Pwww8Xi1aU5s93it6kHD161HEuMrHfIC0tzfJaNHLjQWrcG2EJFXejpsh6CKRiMcVwg/VWCFcJn+rqajQ0NKBNmzYRj7dp0wY//vij4GvmzZuHuXPnmt42MddXq1bHsW9fB9FdAguDzgwB5vP5InYpgPCkQinu9qG3yJmZrgez0CP2opFbNKItmeHvHd2njd1b0//7vhzCN01AIOJQy+hNCl+jSGqBNHNToSQ2Sc1vYLZI02ItEhv3RlhCpdyoJSWbsGlTiaEbVLdYb6NxlfDRwuzZszFjxozQ3ydPnkReXp4pnxV+kyYlJWHLlmB2iNgugZVBZ4bqVxI/RCnu9qNmYTFSNNiFkRVt5e5fvkaSkmwZMfdWUPQExY/HE0D37tuwbVuPiHaozT4ya1OhNDZp2rRpzFQVVlplOryOjxRGWUKFfsOyshKEF9jkH9frIXCL9TYcVwmfjIwMxMfH48iRIxGPHzlyBFlZWYKvSU5ORnJyshXNi0BJRWSAjUFntgATmgQLC/dKTs6xHPfDan0Nt5TBN7J9UvevlmwZIesr4MGgQR8iEOAXv6hnNWQfmYHSmjh1dXVMHdOhZDxIjfvw+RwwxhIqPA7iTPMQONF6K4WrhE9SUhKKiorw0UcfYfjw4QCAQCCAjz76CNOmTbO3cQKI3VBmHiCnFbMEmNgkOHLkOsnJOVbjflg/5kPrZ/Jizu/3hyryhpOQkIC0tDRHCKdoxFy4WuLmxKyveXkHsHz5RETv+LVkH5kNK7GLRiI1Js2whIr9hr/73Wf47LMrwYsgrRtUN1hvpXCV8AGAGTNmYMyYMbjssstw+eWXY/HixTh9+nQoy4slpHbupaWl4DhONOvDDv+2GQJMbBIEONWTcyzE/ZhZYsAuS5KYmHNS0bTwvuMPOZVC6+IvZn2tr08WzBQdOXItOnfepeg9rBIddgsvqzHDEir0G3btugOff35e9JSUbNIcGuAW660YrhM+paWlOHbsGB544AEcPnwYl1xyCT788MNGAc9244TKmFYMfvEd7CHRyVlJQbhYwMgYKDstSUJiTioziTWBK3wv5wseqllfX4/169frWvyFrK9CZTL4+0jpe1iF3cLLDsyYw8N/w8TEOixfPjHCgrhpUwk6d96puV+dKmqU4DrhA5wPjmMZlitjWrnzl5oEhSZntwQ8C/VxuJuHd+2EE25Zk3OViGUM8e8T/fuxcmDsN99cinffHYpwl42YG4iVWCel97LX6w1dp3fxj7a+ank/O+M2WIhdVAor40wI/jesqMiXtSA61S1lBq4UPk6CtcqYduz8pSbB8MmZtb7SitI+FqK0tBSAvKtE6ow3QPr3k1q8wwWVkglfyaLBw/++0XEqQOR3q66uRk1NTSg1WwqjLVRC34fvE7Xj0+jFX+r9RowYgcTExEYlJISwKnHACQGzrFnmxcSLnAVx1KhRrrbgqIWEj82wFuhn1c5fafxQuHtATV+xvEtT0ndi/c5bhJS6StT+fkoPWuSRmvCVCjwpMSf03YQOe+Rfb6aFSnoR1HYvK138le7Wxd4vIyND0Xv4/Sl48slvmHK52wlrlvno8AM+Y0zO4idVIdwKDh0C9uwBOnYEcnNtbQoAEj62w3Kgn5luJTXxQ/wJyUr7ivXMp2iixYmSflfi2tDy+6ldvKV+P6UiWkrMAcKZSeHfLVjHhkN4JosZ7k+5RbCwcK/s+NSaLSN2v0SnSksh9B7hr5caL5WVlairq9NV7ZnlTCGxjZJWa56ZiPU1a+5Dvk9XrWqKWbO8CAQ8iIvjsGCBHzfd9Kutm08SPjbDaqCfFTe62kGvtK+U7r5YCJLVU31VaqIzOl06MbEOFRWNA3a1fk8lYg4IoFevcvTsuVXyu4Uf+WLFgiTWt9OnL5Ydn3oSBoQeUysmxO45oe/07rtDkZR0Fnl5B7F+/Xrd1Z5ZzRRS4s6ywjJvhJWaFfch36d+fwoWL54Ojgven4GABzNnpuLnn1+C13vKts0nCR8GYE2pA2y54MInd6m+ElsEWM0C01J9NfpgRrGJzsh06a5dd4QyRrRYVNSIMCX3gpRLTOn31INU3yppv5ETvVFiQqwg3tq11ysS5Eo3ESxYWKNRYsk7fbqZqZZ5rbFESoUvfy6iVeez8X0qNw/Ztfkk4cMIrCh1HpZccHomd5azwLRUX5U7mJF3XRiVLi2UJitnUQk/TFPse4ZPfqdORb6P3L0g5hJT+z21Ite3Su9lo+LQjFi0pPqUT41mZSNkFmICneOA4GYkEOojoy3zWmOJ5OZGPglg9erVtpzPxtI6Eg4JH5tg2d8NsOeC03JTsuSXF0JsUgjfXYu5S+RQ+/uJBZsrSZMNRyi+Sm7yKysrAxDMPPF4PKKVm8+dOycayMkvTlaMU633Rngfs5Yt1NjNGAnvegy3RrKwgKlFKitPvJgqTxw4LoDrrluDvLxDmsaYGbFESsaHXeezsbaO8JDwsQm9JmorspZYdMGpgSV3nRBik0L37t+ic+eduvtdze8nli2idscmNCaFvmdxcXmj69LS0iTPaOKD3IW+GwBLx6lc6nhGRkbE9dH3I2vZQsD573TwYC7WrbtOtSBnHbmsPDlLYpA4NG9eq1n02BVLZOdcyOI6QsLHRvSca2TWblFpmnl0WX6zgxK1CD25RVttTRqjUBKzJNbvchZAPceMCH1/vTs2fmwWFu7F9OmLsXVrT2zZUowtW3qjvLxYl+sx+rtp6S89SKWOKz1kkzWrZPA77UJdnXmC3C6UiE0xSyKPmOhXMs6UfL5ZriG7XU6shXKQ8HEgZu4WhSxRfr8/ovCZ35+C+fP/ZZlZXmt6utyiraYmjZGIWfuUVG62KnNGb0A5IJyxVl5eDH4hUbvIKxUxpaWl8Hq9hotZM9zTcjvx6upqU0W5WFvVCnInISU2o7/3vn0dROcP3rKn9veRE7tmuIZYdTnZBQkfB2PWblHqJrbDLK+0HgxfayTcGiV2rpEdxzGEI9THSq0EWt5by3voEVBCY1NvgKzd6dBmfL6weyVYPgA4L87NEuXh3ym6JpAbRI4QcmIz/HtLiX5e9NTV1UW4YcMRGg9yn2+Wa4hFl5NdkPBxMEb6baVcSXYU8QpvT7hLSkp4RVtw+J2/0iJtRCR6FlrxQFF9AbJ2p0Mb/fmNg4qDhRiXL58YMTaPHj1qqqDTC4vnQEXPafw8otbtIyYAhSzhSkIOlHy+2GfqPU7EKjHLevIOCR8HY5TfVmnMkFUBcmKuLTHhlZl5GPX1yY3a6/V6I6worMVTuBmtGWt6YfmoEjG6d/8WmZmHJcsGrFmzxnRXrFpXYvjrWOtT8TktRdbtM3DgwFCmoRRcMAAIgDpLuFa3k5OOE7HbOisHCR8HY5TfVmnMkFUBcmKurdOnmwkKL6XF9VjP8tKK0sXeSlFgdsaaEE47qiSc+vpkwbG5dWtPXH31JgDmu2JZX6zUoGROE3P7FBQUKOoH/nktGyolWYFKLdVKDwGWwgzLC8vjhISPwzHSbyt3A9sRIBd5JlMAQVeAJ+wKTvGEY3dmgxkoXeyHDBmCDz74QPa6UaNGhYKqtSxyZmasyWHVAbtGEP1dxVKpt2wpbnRkh5mwvFhpQcmcJoSSfuDjevRUSVeSFajHUu0mMWskJHxcgFF+WyU3sJUBco3PZOKrp3JhQkj5hOPGzAali70S0QMAa9asifhbrXVEbKKtqanBuXPnAACJiYkRrhLA+MmX9Vguvp8qKytDRRmLi8uxZUvvqCudb5G0Ey2iRK0AV7qh0mp90WupjjVRowQSPg7ELPOl0hvYqgA5sSMdRo5cg+bNaxsdpyDW3nDcnNmgZrFXen6Z1pII0RiVsaYEu2K51LoS09PTI67v2XMrtmw5n+4PON8iaTdyc1p0sUktAlzphkqr9cWNlmq7IeHjQMwyX+q1iBjtJxa74cPLxStpr56ifk5B7nTt8O8rdhAjiwe5asGOWC4j4ou83lO49lp3WSTtRm5OU1NsUgqlGyot1hc3WqrthoSPQzHLfKm2FD+PGX5iJTe8VHtramqQnZ0dE35uudO1eeuPmEDyeMCsW0gtduyQtcYXRYttN1sk7cKqPjXTEk7jwlhI+BCNMKIUv1EZREpueLH2hqcAO1nUKEHudG3e1SMmkPjMXDek+Bu5Q9YyjtW4HNPT01FaWhpRD8athQPtRKxPo4/eiUZqnrI6Y4rGhXGQ8CEMv4H1niWm1DUVDssZPGrRstg2LoQXCe/qUXIQoxtS/I3YIatxX/FoiS9q3bq1ovY42RVrNUr7KjqYXwixecpsSzLrRQCdDAkfwrAbmF+wlVZaFvs8Je2pqakJTVqsZ/CoQU+siNzp2rwAiBRIAQTLA3gaXes0jI7l0uK+0hJfFAuuWKtR0qdKKy/zR+FEY/ZvQuPCPEj4EAD0xwwJWXkOHszTVX9CCW6rxqzUQsVfJ7zYC5+uLVaSQOogRidh5kKhVFxrjS+ixct41PSpmqNwwjG7GKZV48KJFc/1QMKHMASxSqnRGO1GcWs1Zh65tPPwxT58Byvl6iktLQUARdc6zYxuxuSsRlxTBo7zUPL7usmVHo3e0AQnQsKHMJTGRQcjMdqNwmKNC6N2T0qtDPx7ZWdnq7J4kBldGXLiOvrgSMrAcRZyv6+bXOlCKD2yyA0ij4eED2EowllDQczY/bK2wzbqvCitLjy1VZYJeeTEtZArRCy+qLa21ryGEpqQ+n3l7sNo0RuO0zYOesMGnOQuI+FDGIpw1lAA1123NqLwoJGwtMNWG6Mjhlorg55JxUkTlh0oEddKK2G/+uqrrnIZuAGp37eiIl/yPpSK/wG0u4fsuCf1hA04zV1GwocwFLFJpHPnXYZ+jpXVmPVMQkoXxGi0WBm0TCqsnWjOqgiTEtdi7gE3x4U4GaHsU7HfV6kr3cjf2q57Uk/YgNPcZSR8CMNRaoHRI0qsSvXUMwnpiQ3Q4sLTMqkYZaEyAtZEmBJxLeYe+PXXJti0qcS1cSEsokQ0AxAdY0K/r5L70OgYIK1VwPViRNiAU7JsSfgQpiBmgeGPvTBClFix+GkVBlongPDFVkxAarUiKcHM95bDbhEmtHCWlpaivr4eAJCQkIC0tDQAQHV1NdavXy/qHigrKwF/2Cirh6S6CaWimc9olOOqq67C5s2bAUhv5Mxe6K0OrNYbNuCULFsSPoQhKLXe5OTkOHryVSoM1E4A4YvWqFGjcO7cudBzJ06cwObNPwEwdyJkLXvFShGm1dok5h5w4iGpTkaplYQXsXLXRVfTFtvImbnQ22U90XM0BotZtkKQ8CEMIRaqjKoRBmomAKWLlpkTodWTrJB1QmnFbzPQ6l4Qcg+UlGwKubl49Ez+Siw5drlHWETp2JG6Li0tDdOmTcOxY8caiSWA34xsNnWht8p6YuTRGKxl2YpBwocIcegQsGcP0LEjkJur/vVOFjVyqBUGaiYApYuRmROhlSZqOaFnd5yAWtEl5B5o2vSMYYekqnXhsGa5sxKlY0fpdeFHWghh5kJvlfUkugiqkNBLSEhAXV0dfD6f7DzPUpatGCR8CADA8uXA5MlAIADExQHLlgETJtjdKnZQKgyUxOhEXxeN2G7dzInQqPfWYp2Ixuo4AZ/PF7I2KV0Q5QKfjZr8lYpifrGyWzTajdKxo+Q6pVY0sxZ6K60n6enp8Pl8skIPUOYu1eMuswISPjGOz+fD/v3nMHlyJgKB4EGVgQAwZQqHSy45ivz8BFdbcpSiVBjodflJ7dbNnAiNeG+tAabRC4qVcQLRbVa6cAr9zuEH5wLmlFiQi3tySnCpWSgdO2rHmJwVzaxyGlZaT/QkFzjtJHkSPjEMP+lXVOQjEBgT8VxDgwdLl36AgoKfLAmIDLcUVFbGoaIiAQUF55CTEwBgf3yQGmGgtZ1KdutGn6tlhIWKR611AhBfUKza6Ua3Wc2CGP07qz0yRC1KXFhOCS41C6X3qZr7We6+5DNVo9H6W0dX97arCria5AKnxXiS8Ilh+EEqN1maHRAZvuuWmtztyEgxUhjIIbdbF5tg+c/X0jdmTlhyE6fYgpKZeRgtW57AhAkvor4+yfKDU4uLy7FlSzEA9aLLrPGp1IXllOBSM5G6TxMSEhRdF+6SlbsvMzIykJ2dbVj7mzVrZuh1WlAisp1cPoGED2H7ZMnfPHKTux0ZKWYKg+gKsnIC1OgJlseMyUnJxCm2oLz44kSEi46CgmAq/4gRI0wthxDd5uLiL9Cz51bL7gOpTDc1LiwnBJcajdJK7pmZmYrv56qqKgD2W9Gsrq2lRGQ7vXwCCR8CABuTJavxCWbcuEITh90C1CiUWieEz3XjIFb4LyMjw1KLSnl5MXr23BpxnVnWJrmFRG7xDbdkAOYe4aIGq6wCZm5Q7Lwv7cjQ0xL4LQar5RNI+BAh7I7El5vc/X5/6HEW44DUIDYhmO1OswKlAlZoQbFL+CpxM5ppbZJbIOQWX77uDEuuB6utAmZ+Nzs2hnZl6GmxcNlZ8V0LJHxsRG/dHBYw8jvITe58qiVrcUBGED1x8N/ZyCM+rEKNdSJ8QUlMrMPy5RNtcSkocTNa2f9CC4mcKGZtfBhhFbAzjsTKg5CF0GIBN6K/1Fq4nFg3ioSPTbihbo4Z30FuZ8ViHJBepCYOs+J6zEStdYI/9wqAbS4FltyMUuNh3LiBjQLcWRQ9Qqi1CtgdR6LEfVZbW4u6urpQPFA0en4btZYXvf2lJpFDaVwmq5DwsZhDh4AtW4BJkwCOCz4WrJsDDBrkDMuP2bV/pFxurMUB6d1hyU0cNTU1jhE+aibO8D6xMnNOT5v1IjVWlBZQdKIQBrRZBViII5G6d30+H5YtWyb7HlqFmVoxrre/1MRJ8UKPtflYKSR8LCTcQhJNQwOwd6+1wkdL0Sm7a//YnWERjhE7UrmJY82aNY5x32kNMLWzBohVn610rMiNh/DzzIxuo1kYZRVgLY7ELGFmlBjX0l9qxxBL87EaSPhYxKFD4qIHAOLjOaSkHIXPZ12lZC2Tvhm1f9TspllySRhxMKSSicNJ7jutY9fORduKz1b6G8qNB94lKASrAtkIq4AT4kiMEmZGiHEj+0uqzAJL87EaSPhYxJ494qLH4wngmms2YMMGYwJ01QQca/0cIwe82CF5hw8n4MCBZLRtexbNm59AWVkZADZS76PROtEI9WNJySYmvhNhHmKLpJ77ilWBrNcq4IQ4EqOFmZ7538j+UmKplJqPza4urRUSPhbg8/mQmnoOcXHnY2KA4M0/cuRa5OUdUmwhkMPKoGkjBUj0IXnCE8n568XigIRcAWa7AbRMNNHm7F9/bYKyshJwXBw2bSpB06ZnmNvRsoSTq8bKLZJKAvxZcvnIoXeTxLr7T6vQMGsMGxl3o3QtEpuPX331VSYtkSR8TCZcMQ8d2njC69x5l2GfFe1O0xM0rdRqZGTtHyMyBVasKBNcFMy8+bRMNOnp6SgtLcXq1avh96dg06YSiBXuU4vZosBu0WF3to8etJz7FJ715gSXD49RsSqsu/+0pp2bNYbNjLvRIrpZtESS8DGZ8B/dTBeNz+fDl18CgUDkTdLQAGzd6kPTpsrNp3an2mvdsUgtCmbefFonGq/XC8DYHZrZooAF0aH0t6ysrBS91i6LkJ5zn5zg8gnHqMBx1t1/Wu5/MzPWzIq7kRPdTrJEkvCxGDOqI/OLkd+fAo9neqMb8IsvXsbOnadkFyMlaepWIDeRhO+K+d2wnYuC3onGyB2aEQHXdr6/FsTaIGUJAOyxCOn5rZ2YOqynf5VajAB7F10jhIYR7TezNIPc/OokSyRAwscV8IuM3A0oVyFVSZr6qFGjzPsi/0Xuewjtiu1eFPRY8+zaoemFhclOTxvsMMHr+a2dmjqsFSmLEQvuP6OEhlHtN7M0g9T8CsBRlkiAhI/r0LoAK01T93g8gq+PRm/BN7Xfw45FQW9Jezt3aHphwe2itA0smOCN+K1ZTh02K+5L7jV2jkMjhIbR7TfLgik1v9q96dQCCR8XosedJje5er1ey4rNqfkediwKeic+u3ZoRvQJC5OdkjawYJUC9P3Wdla2VoIdcV81NTUA7B+Her+PGe03Q4TKza9Os0SS8GEQu0/hFppc+V1zZWUciorYypThsaK+j9GTih07NCe8vxFtsMsaYMYYYe3k9XCsPlrC5/NhzZo1ANgYh3owuv1Gi1Ah0X3wYC4AD/LyDgJg2xIphmLhc/LkScVvmpqaqqkxsQxrp3CHW1vCd82vvMKZluWVlJSkyC0h5w4w64aLnlTE2jpq1CikpaUJvodVv6/ZkxELk51cG+ywBphl/bBjTtAq4Mx2LYa3iYVxqAej22+0CE1PT8eoUaNCQnPfvg6CFlQWLZFSKBY+aWlpsvEdHMfB4/GgoaFBd8PcgtIfPScnhwnBE030rjkQ8Bh2GCkPP8GuWtUUTz99NwIBD+LiODzwwM8YMeIEEhMTQ6nfUgdcSmHEzRc+WUi5UPhJQgyrsonMtoDZVUFbqevHDmsACwdrGoEaAReOHa5Fpy26APvuy3D4TZycBXXcuIGNalCxspGPRrHw2bx5s5ntcC2sm6nlENo1G3kYaXgq/uLF08FxfBq9B3Pn5sDvXwOvVzwV347+1RtUa+aipzfg2qj39/v9oeuNHttyvzmf8cOCNYCFwGotaBFwdrkWxfq4tLSUaUuZFfOWkeNPTw0q1lAsfPr27WtmO1yN2TefmVYPIw8jFYJ/vdxNJfU5/HEX/DWVlXGoqEhAQcE55OQEUFdXB5/PZ9jvwHJQrdkTavj719TUiFq3+KNHAHMsXFLvx8pumpXAaiNQsoBqdS3qiYmS6mPeSmwlLBT45DF6/Dk9nioczcHNNTU1WL58OXbtCh65cPHFF2P8+PG2DLZYx4jFTmwRsGrXrOemCp9spG52oyYbVoNqecyeUNW+v9VuHRasrHaPASNRuoBquYf1CAUW+5gVV6cZfcOCBdUoNAmfr7/+GoMGDULTpk1x+eWXAwAWLVqERx99FBs3bkT38NMkCUvQO4lHLxbhBcKsiOUwoiy93M1u1GQT3VYg8kR1u1Ns7YIlt47drmOrxoDZ56apWUC13MN6hIIT7jO77gkj+0apBZV3bwu93u77MRpNwufuu+/Gtddei7/+9a9ISAi+xblz5zBx4kRMnz4d//znPw1tJGENUoPTzGwpHr0Cy8qJkD9RfdOmxiequ8kkrBRW3Dp2H6DKY8UYsMKtouSessu1yPp9JnVPhJ8ob8aYNLJvpCyo4e7ucPd2NKwdGKzZ4hMuegAgISEBs2bNwmWXXWZY44jYQ4/AsnIi5E9UF9sJS+18wyc9HhZ3RUphxeXAUnyFFW4BK85NU3JPGelaVFPOQq6P7cyIkrsnos+RM2pMqukbNZsEvW1jLYtRk/BJTU3FgQMHcNFFF0U8fvDgQaSkpBjSMIJQi9LFRioQGlBWQVduJyy18xU7PJO1XZFSWHE5sBBfYZf1wyyLm9J7yohxq/Q7RAutBx44hv37E5Cffw45OT0A9LB9I6H2njBqTCrtGwDMbBLsQJPwKS0txYQJE/DEE0+gV69eAIAvvvgCM2fOxI033mhoAwFg//79ePjhh/Hxxx/j8OHDyMnJwejRozFnzpyICWTHjh2YOnUqvvrqK7Ru3Rp33HEHZs2aZXh7CG0cOgTs2QN07Ajk5przGXLuMj2B0OHFvJTshMVTve0/0dxIWHU52BFfwWJ5BS1uFasFnFqrYfh3yM4GiooMaYZhqL0n/H6/YangSvqmqqpK0XtVVlY2ek8pWIrzk0KT8HniiSfg8Xhw66234ty5cwCAxMRE3H777Xj88ccNbSAA/PjjjwgEAnjhhRfQoUMH7Ny5E5MmTcLp06fxxBNPAAhWlr766qtRUlKC559/Ht9//z3Gjx+PtLQ0TJ482fA2uR2jUuTDixPOmuUNFSdcsMCPm276FbW1tYa2B5B2l+kNhOaLecnthPlK3AAbJ0mbCYvZHnb2s9U7ZDnrgha3itUCjhWroVGI3RMAUFGR30gYrF69mknrCj92lLTNSXObJuGTlJSEp59+GvPmzcO+ffsAAIWFhWjWrJmhjeMZPHgwBg8eHPq7ffv22L17N5577rmQ8HnttddQV1eHl156CUlJSbj44ouxfft2LFq0iISPBoyY+KSKE86cmYqff34JXu8pjB49WnLsmGG2NmKildoJCxXzYiUWxihYqZcTjZZ+ZiUoWgtqrQtqjiuwClathmqRuif27evw33lQWBjYafGVs9TItc1pc5uuQ0qbNWuGLl26GNUWVfj9frRq1Sr0d3l5Ofr06RMx8AYNGoT58+fjxIkTaNmypeD7nD17FmfPng39reZMMrcg5oIyKqBNTmQ0a9ZMl5lXjXWKb5NRE62aYGy37WpZqJcjhNp+ZikoWgtqrQss4YRAZTWIlQVhWRgYYalx2tymSficOXMGS5cuxebNm3H06FEEAoGI57/55htDGifG3r17sXTp0pC1BwAOHz6MgoKCiOvatGkTek5M+MybNw9z5841r7GMs3w5MHkyEAgAcXEw5QBSs3dzahZg3ret1T2jxwXoll1tOCwKAb0WECfGYKm1LrCC2kBlJ1jmhD6fVWEgJMjefXcoMjMPIzdXWRwQIH/PRWey2v07aRI+EyZMwMaNG3Hdddfh8ssvlz28VIz77rsP8+fPl7xm165dEdljP//8MwYPHozrr78ekyZN0vS54cyePRszZswI/X3y5Enk5eXpfl89WBEE7PP5sH//OUyenIlAgHdBwfADSAFrYkCUtNXn84VuQL8/BS1bnsCECS+ivj5Jcd0gPVYOFmNh3IiefparvWL3hB2O2LlpZloXzBAeSgOVnWyZExIGAIfKyhwUFPxkW7uEBBkQh+XLJyoSy0otdkKZrHb+TpqEz4YNG/D3v/8dvXv31vXh99xzD8aOHSt5Tfv27UP/X1lZiauuugq9evXCsmXLIq7LysrCkSNHIh7j/87KyhJ9/+TkZCQnJ6tsufHIBQEbOeHyE0hFRT4CgTERzxl5AGk4dp3kzSOXzaVm8tHTJ3b3g5vRG3OktPYKKwurmFvFLOuC3cKDhXIFagkXBiUlm1BWNhAAbyjwYNOmEnTuvNO2eUBYkCkXy0IWu+++O42dO9+W/U52/k6ahM8FF1xgSL2e1q1bo3Xr1oqu/fnnn3HVVVehqKgIK1asQFxc5A9VXFyMOXPmoL6+HomJiQCAsrIyXHjhhaJuLlaQCwL+8ssy5OUdxJw5YwyZUJTGuRg9MK2o/iyG0mwuMzD7xHQ3o7bImp6YIzHBcPBgLrzeXaHHWFpYhb6LWS5VJwoPuwkvgZGTU4XzoieIXe6uaEvNu+8OBaBNLEdb7HJyqnDw4PnXsJjirkn4PPnkk7j33nvx/PPPo127dka3qRE///wz+vXrh3bt2uGJJ57AsWPHQs/x1pybbroJc+fOxYQJE3Dvvfdi586dePrpp/HUU0+Z3j69yAUBr117PTyeAC644CTuuce4z41F14vS3bCRIoTVIGDW0WJh0NOHYrvfdeuuQ10dmzEyQlh1X9u9oNn9+UrhS2DoPYjZyPmDn5OCdXrWIzPzMJYvn2i4WGY1xV2T8Lnssstw5swZtG/fHs2aNQtZWHiOHzc2WLOsrAx79+7F3r17kRsV9MJxHADA6/Vi48aNmDp1KoqKipCRkYEHHnjAUansYhMvEFycZ83yol+/I4bG38Sa60Vu8hkxYgRycnIMFyEkatRjddCx2O6XpQwcKawsL2D3gmb356tBb+aaWS7G8Gtzc6sMz6pjOZNNk/C58cYb8fPPP+Oxxx5DmzZtNAc3K2Xs2LGysUAA0LVrV3z22WemtsVMom+MaAIBc+JvzHJBGVUE0UjkJp+MjAwSKQxi1ULXvfu3SEo6i7Vrr494nIUMHDmssizavaDZ/flq0XvEhpkuRjOP/2A1kw3QKHy2bNmC8vJydOvWzej2xDz8Tu3gwVysXXsdwneeZsbfmAGrLp5Ys3I5HbmFrqamxtA6UHl5Bx1bdsCKe8nuBc3uz9cCa0dsiLnOcnICyMmpM2ReZrl8hybhc9FFF+HXX381ui3EfwlaYHahrs758TesWk/sDLQm1CG30K1Zs0aXBTQ83mH9+vUxGfumBrsXNLs/3270xjZZlZ3H8n2kSfg8/vjjuOeee/Doo4+iS5cujWJ8UlNTDWlcrEOWCYJQttDptYCmp6dHvAfde+LYtaC5rcqzFoxw+ZqdncfqUTbhaBI+/LlZAwYMiHic4zh4PB40NDTobxkBQJtlItyMWVkZh4qKBBQUnENOTrDCthkHg7IOi/FGhDKEYt84Dti3r4OhcT5UdkAaMxY0PeUKjIxHcQJaY5ui+zi6irLRsBriEI4m4bN582aj2xHTGDmRyhXq4xcKOw4GtRMn3IyxiNTCFz5BFxbuxX8TOP+L8QGtRo8RJxyvoAYz+kdPuQIWYmWsREtsk5I+NqMsAOvjWpPw6du3r6Lr/vCHP+DPf/4zMjIytHxMzBA+ofDVV7WitFCf3oNBnQjrN2OsoXThA4KTvtYCa2qtCkZgd5VjszCyrVQQUR1aYpvk+s7IbEknCX1dp7PL8eqrr+KPf/wjCR8FqB0QcucGOTHzgYgtlNbpAbQHtNolQNxw8KnVOKUgodUYGdsU3scADCsL4DShb6rw4SJt04QCpM4RCp8U5M4NivXMB8JZyO08tQbUsiBAnFRszy6s7iMnWSeMim2K7uPi4nLDNsdOs96ZKnwIcaRuvFGjRqGmpgYbN24EID0piL0Hy6mEBBGO0qBNvZlWdggQpxXbswOr+8hp1glAf2yTUB+XlxcDCECsVpybIeFjA2piG/RMCpSSSzgBNW5ZrZlWdgkQcjnLY3UfsW6dMMMaJdbHvXp9gfLyYsPLArDutiThYwNqYhv0TgpUqM8+rDCnO8lkL4acW7a0tBRer1f09Uq+o10ChFzO8lAfnccsa5RYH/fsuRU9e27F8eOtcPPNPdG5s/6yAE5w7ZLwsRm5QUKTgjOxwpzuRJO9EHJuWa/XqzsD0a77iCWXM6si2e4+Ysk6YZY1Sv4eO4XOnQfpvs/kLKtiNYSsHnuqhc+5c+fw2GOPYfz48Y1OSo9m9OjRVMVZAiXmd7WTAhXqY2OCtyKoloXAXaMw2y1r5+LKgsuZRZHMQoVf1q0TekWZUB8fPJgLwIO8vIMGtjSInGVVqlSLlWNPtfBJSEjAwoULceutt8pe+9xzz2lqVKyg1PyuZuKM9UJ90RO82MRh5U1mxeRqxWcYLSitrpRspQCx4rup+T1YFMl2z1WsB54bcU+np6dj1KhRWLNmDYBgtXMz5wklllUWxp4mV1f//v3x6aefIj8/3+DmuJfwSYo396kxv6uJ1XGrqFFC+M2jJRvOaKyYXK34DDMsBlYsfHYdQxH93fx+P+rr6yOuSUhIQF1dHaqqqlR/Tz2/B0tWDjvnKpYDz428p9PS0gx/z2iU1hpiZexpEj5DhgzBfffdh++//x5FRUVo3rx5xPPXXnutIY1zC2KTlBHmdze7rPTAym7OisnVis8wy2Jg9sJnp1WBf0+fz4fVq1fLXq9GNGr9PVi5L1iA5fhJuXta6rwtsfFs5jwhVWsoKakA69d/y9TY0yR8/vCHPwAAFi1a1Og5OqS0MVKTrpT5fdSoUSG1LoSbXVZ6YWU3Z8XkavUEzsquTSl23yNmu5nU/B6s3Bd24oRT3uXuabljjYREtNnzhFitoaqq4OHYLI09TcInEAgY3Y6YRsz8npmZafuk7VRY2c1ZEVRrZeAuS7s2J2K0aFT7e7ByX9iJE05513tPh4toVoQeS2NPk/D529/+htLSUiQnJ0c8XldXhzfeeENR4DPRmBEjRoTONbP7xnM6dqfIhmNFUK1RnyEWMMub1lnatTkNM0Sj2t+DpfvCTlg95V1pphuPkqwvVoQeS2NPk/AZN24cBg8ejMzMzIjHT506hXHjxpHw0UhGRobjT0xnIZWcx840YiuCao3+DCUBsyzt2pyGGaJRy+/BQno9IYxcTFp1dXXIzaXGesiK0GNl7GkSPhzHwePxNHr80KFDkhVWiSAsFcwyEhZrhdhVudqKoFqjP0NJLApLuzanYYZoVPp7qBXJLG1gYg0l/WqVy9mIcWBXZqUUqoTPpZdeCo/HA4/HgwEDBiAh4fzLGxoaUFFRgcGDBxveSDfhtMBQNbBwBg5LBRytWBjM+gypccrKrs1pmCUalfweakQyixsYlrFDJOqxHiptr1HjwO56TUKoEj7Dhw8HAGzfvh2DBg1CixYtQs8lJSUhPz8fI0eONLSBbiLWAkPtsGyxeJM5DaUVxe3etTkRo0Sjll202anysYhdIlGr9VBNe40cB6zNt6qEz4MPPggAyM/PR2lpKZo0aWJKo9wGP/nIqXQ3LRp2WrZYu8mchtw4DQ/CD4cEpTBmmPqtEvhutlAbgV0iUav1UGk7KisrI/522zjQFOMzZswYAMFOPHr0aKP09rZt2+pvmYvgJ6n9+8/hlVc4BALn46Pi4znccccQ5OcnuGbRiDXLltuQ2026IQjfSswSKWbPF3Qfq8MKcWD0+WZiQi28TpAbx4Em4bNnzx6MHz8eW7ZsiXicD3qmAoaNSU9PR3o6sGwZMGUK0NAAxMcDL7zgQVFRG7ubZyiU8uxsKIDZeJy4qaH7WDlWiQMjRbRSoebGcaBJ+IwdOxYJCQnYsGEDsrOzBTO8CGEmTAAGDQL27gU6dABkDrh3JG5KeY7V7BYKYCbcdB+bjZXiwIj5RkyoZWYeRn19coQFyI3jQJPw2b59O7Zt24aLLrrI6PbEBLm57hQ8PE61GESLHL/fb/gZSyzDWtqpkaIzVgWsHpx6H9uB08SBmFB78cWJACItQG4cB5qET6dOnSQPSSNiE6P9z1aiNNtBCDWBiywvwCxlxBmZLUPp2dqJRcuflnvUaeJASKgBHABhV53bxoEm4TN//nzMmjULjz32GLp06YLExMSI51NTUw1pHOEsWFo41aJEvOhNz3fCAszKb2NktgylZ6uDNcuflei5R50kDoSEmpyrzk3jQJPwKSkpAQD0798/Ir6HgpsJVhZOozEiY4OFAo9OxMhsGbel5ZqBkzcwelErkp0mEsWs8omJdVi+fKKoq85tJSw0CZ/Nmzcb3Q6CYIrwCQ+AKRkbbj26xEiMzJZxY1quWThxMTMaJSLZaSIxur3hZ39JuercVsJCk/Dp27cvPvvsM7zwwgvYt28f1q5diwsuuACvvPIKCgoKjG4jQVhK9IRXXFxueMYGWR6UIZctEx5rKLfAuDEtlzAHNSKZFVGjlPD2aonLZDlOUSmahM+6detwyy234Oabb8a3336Ls2fPAghmwTz22GP4+9//bmgjCcIqhCa8LVuKDc3YIMuDcuSyZcILrQHS8VF2Zt64YbHQihO/u1EimfXvrtZiFR0DJWa1Zj1RQJPweeSRR/D888/j1ltvxRtvvBF6vHfv3njkkUcMaxxBWI3QhAfEobj4C5SXFxuSsUGWB+WIZcsAQEVFvqoAZbsyb9yyWGjBCQH9Qhghkvft24dXX31V9jq7v7uazw6/v6Ss1qzHKWoSPrt370afPn0aPe71elFTU6O3TYRLYX33A4hPeD17bkXPnlsNSc93Ws0Pu4k2we/b1wGLF0/X5CbUm3mjZQy7ZbHQglMz6vSKZJ/P10j0OOW7K8HpVmtNwicrKwt79+5Ffn5+xOOff/452rdvb0S7CJfB+s6PFy9yE96kSUOQlpYW8Tq17XVazQ87EMuW0TLhGpV5o3cMW7lYsLjJ0BvXZvV30iOSo9v5xRfF2LSpxDUxfU63WmsSPpMmTcJdd92Fl156CR6PB5WVlSgvL8cf//hH3H///Ua3kXABrKdyR/u6H3jgGPbvT0B+/jnk5PQA0EP3xOrkAo9WI5Z9omXCNSrzRq/1wqrFgkXXml7RZ9XGyYz09C++KEZZ2UAAwdIvWgUvS2LW6VZrTcLnvvvuQyAQwIABA1BbW4s+ffogOTkZf/zjH3HHHXcY3UaCsITwSSM7GygqMv79nZT6ajdC/aB1wjW6T7VYL6xaLFh0rekVfVa5zIy+R/3+FJSVlYAXPTxqBS9rYtbpVmtNwsfj8WDOnDmYOXMm9u7di19++QWdOnVCixYtjG4fQbgKEjX6YGHC1Wq9sLrtLMVhGCn6zC4FYeQ9evx4OvhjIMJR+91ZFLNOqlQdjSbhw5OUlIROnToZ1RaCIAhZpCZcoTMEjbai6bFeWLlYsBSHYZToM1LMWeE6EjsTq6Rkk6bfgCUxC4i7AllHl/AhCIKwAqWxF9F1fXiMdAHotV5YtViwFodhhOgzsr6OkpihUaNGhZIZjEhkAAIYOHATevcuV/U+PHaLWaWxTazHKZLwcRgsBbjpgY5rINQgFnsRXnIfsCZlWK31wq7Fwm63oM/ng9/vb9QmPcHCRok5uZgh/u+//vUD3TE0coJPze9ut5h1S5wiCR8HwXpKuFLouAb3YKUQl3sfK8eVGuuFnYuFXXEYaiwqmZmZir+7GWIuetx07boDO3Z01RVDo9RCOXr0aFW/u91iFnBHnCIJHwfBekq4FPxEIOejZt1ESpyHJSFuReyDnlRnOxcLO+IwlGZhpaWlGW5BUYPQuPnuu27Qm3pupth1clAxK5DwISyBnwg2bwaeeqqxj7p37zHo188duwkjcIJLkyUhbkXsg1PM/KzFYRhhiTOjvg4gdkSNvtRzHjPHgVODilmBhA9hGenp6bjiCiAuDggEzj8eHw/07JkO0jxBWLKkqMHOuC2rYh9Y6m8xWBJoWi1xQsJ/1KhROHfuHAAgMTERXq834nkt30ks6ypc/LBQmI81Met0SPgQlpKbCyxbBkyZAjQ0BEXPCy8EH2cNu6wuLFlSlGJ33BYLsQ8swYpA02KJs7JYn9C4EYrxsXscsSRm3QAJH8JyJkwABg0C9u4FOnRgV/Q40epiB6zUFqHYB/bQYomzulif0Ljp3/9j5sZRrM8zRkLCx4VEF3FjcSeQm8um4OFxotXFLuysLWJW7AdhDHoscWYKarlxQzE0woRbwSsr41BRkYCCgnPIyQnGLrC41ghBwseFCBVxI8uEc2G95pGdtUXIBWA/Qouh11sTel6rJc5MQR09bvx+P1avXi37ulgW0OFWcClLnBPWGhI+DkLPTUeWCWdid+yMEuyOr2F9knUz4othSwwbdmlorGqxxJktqCMPJc4mAS3DeZEobYlzwlpDwsdBCO1uoyvXEu6BldgZMcIXLaldfSzvkt2O0sVwxIgRyMjIiHitnJCwWlDHsqhRg93HZhgBCR+HQTenPdjhbmJ9giE3E8EjN1YzMjKQnZ2t+n0pYJ097D42wwhI+BCEDFa7m3gLidwEw4IlhUQNAehfDMPjhKKTMyjQmC3sdm0bAQkfgpDADndTuCXlggtO4t57vWho8CA+nsP8+Sdx0003kiWFYAo9i6Fw3Z58WeuqUuHvhCroTsPpljgSPgQhAD+pypnwzbK68BPxPfcApaV8zSMPcnPTAKSZ8pkEoQeti6HSuj3hcUJKxYqVxRDV4Ia0cCdb4kj4EIQAvNVl//5zeOUVDoHA+RL28fEc7rhjCPLzEyyZnFiveRRLkPVAGj2LoZx1VUuckNXFEJXgprRwp0LCx+HQGS7mkZ4ePD+s8REbHhQVtbG7eYTFUDVvczEzmJ+lDEmnpoW7aa0h4eNgDh0C9uxJx4gRdyIj44zodeG7UNqxqscJR2wQ5hN934i5TVhbsMzEyMXQzGwhFjMkWWyTFG7K4iTh41CWLwcmTw6ech4X1xLLlgUXaCmcumNlQayRu4kIxwmFJa3AyMXQzGwhFlOwWWyTHCytC3og4eNADh06L3qA4H+nTAlaJaQWZyeeP+VUsUa4F5bcJixg5H1nVrYQiynYLLYpViDh40D27DkvengaGoKuGLdZJZwo1gh34zQXhdMwK1uIxRRsFtsUC8TJX8IWZ8+exSWXXAKPx4Pt27dHPLdjxw5ceeWVaNKkCfLy8rBgwQJ7GmkyHTsCcVG/XHx8MP6EIAhz4V0U4YS7KKqrq1FVVYWqqir4fD47mugorAya9XpPoaDgJ6YEBottcjuOs/jMmjULOTk5+O677yIeP3nyJK6++mqUlJTg+eefx/fff4/x48cjLS0NkydPtqm15pCbK5Rp5D5rjxthIV6J0IeciyL67Dynu2HNHrNmBs26KROJMA5HCZ8PPvgAGzduxLp16/DBBx9EPPfaa6+hrq4OL730EpKSknDxxRdj+/btWLRokeuED0CZRk6E4pXcg5CLwo1ZXlYVADRrvLOYiURizH4cI3yOHDmCSZMm4e2330azZs0aPV9eXo4+ffpEDJZBgwZh/vz5OHHiBFq2bCn4vmfPnsXZs2dDf588edL4xpuEUKZRMMU96A4jMcQWFK/kbKIXovBYFLdmebFYAFAtrG0i1IoxN1R5Zg1HCB+O4zB27FjcdtttuOyyy7B///5G1xw+fBgFBQURj7Vp0yb0nJjwmTdvHubOnWt4m+0gMsUdilLc3QJ/sKGbJwFyk9lL9IJVXV2N9evXx0SWVyx8RytRep9SlWdzsFX43HfffZg/f77kNbt27cLGjRtx6tQpzJ492/A2zJ49GzNmzAj9ffLkSeTl5Rn+OWajJMXdzSbW8LgKN04C5CZjA6G+dUuWl5BlweutAeCe7+g0nFrlmXVsFT733HMPxo4dK3lN+/bt8fHHH6O8vBzJyckRz1122WW4+eab8fLLLyMrKwtHjhyJeJ7/OysrS/T9k5OTG72vE1GS4s6iv1sOLSLMjZMAucnYxYmF6KIRtyy0xLBhl6KwcK/jvyNLqHVfkfA0FluFT+vWrdG6dWvZ65YsWYJHHnkk9HdlZSUGDRqE1atXo2fPngCA4uJizJkzB/X19UhMTAQAlJWV4cILLxR1c7kJPsU9XPwIpbizJGqUEC7WqqursWJFmWBwpVvhJ0jelUewhxsK0clZFqZPX+z478gKatxXPG4Q1yzhiBiftm3bRvzdokULAEBhYSFy/2vOuOmmmzB37lxMmDAB9957L3bu3Imnn34aTz31lOXttQM3p7jzYm3VqqZYvHi6awJIxTJkeJS6twj7MaIQHQsxXFKWBSq2Zwxa3FduENcs4QjhowSv14uNGzdi6tSpKCoqQkZGBh544AFXprKL4eYU90OHgFmzvOA4DwDnB1cqyQKSWgTlRBNhPlJZXlLXCWFV2rgccpYFs6oqxyJq3VckPI3DkcInPz8fHMc1erxr16747LPPbGgRO7j1MM1gDJMn4jGn+bj5BVBupye3UNqROs2CNYI1jIyZYyVtXKtlwYkJEXajxX1FwtMYHCl8iNgjGMPERYgfp/m4+YVy82bgqaca7/R69x6Dfv2k47DsSCumjDJxjP6+LKSNS1kWRowYgYyMjIjrY1H0GgG5r+yDhA/hCHJzgQUL/Jg5M9XRk0R6ejquuEI4EL1nz3TIrR92ZHdQRpl1sJK9I2ZZyMjIQHZ2tmXtcDty7is3lyCxExI+MYzTqjyPHduAn39eLOvjZn0S0BqI7ven4PTpZpLmcda/OyFNLGXvUEXiIFLuKyeWIHECJHxiFCdWeU5PT8ecOWNcMVmqDUQPj/sAAqHF0eMJ4MEHKzF58o2WfXcKrDYPu9wftbW1iq4zSlhTRWLlxPr3NwMSPjGIkirPrMJPAk4UbtEoDUSPjvsA4sBxAVx33Rrk5R3C5Mk3yrofjApOduuZVCxhdfaOz+fDq6++GvpbTNiOHj3asEU4lisSk/vKfkj4xCBKqjyzjJOFmxr4iU8o7gOIQ/PmtYqywIwKTmYh8DZWsDJ7R2lGmdDh0HphJabJSnj31f795xpZrHmcYrl2KiR8YhClVZ5ZxenCTSnhE+Qrr0RmtMXHc7jjjiHIz0+QnSCNCk6OxUXKKliwAigRtkbH5cRSTBNwvv9WrWqKWbNaIRDwIC6Ow4IFftx0068keCyChE8MYnaVZ7NrvjhduKkhPT2Y6dX49/KgqKiNoZ9VXV0t+dvE2iJlJSwEscoJW7/fj9WrVwMwLi4nllK6ecur35/y3wr0wY1MIODBzJmp+Pnnl+D1nqK4Jgsg4ROjmFXl2YqaL24+nkMMI38vsRgO/oT76N+GtzLILVIUk6APuxc7OWFbX18PIDh+3n13KABj4nJipSIx3y9yAtONcU2sQcInhjGjyrNVNV/cfDyHGEb8XlqOyoi2RjzwwDHs35+A/PxzyMnpAaAHmehdgJyw/eWXXwAAW7f2BC96ePS6PGOpIjFZTu2HhA/hWNx6PIdZCMVwvPvuUGRmHkZubpXka8NFTXY2UFRkalMJm5CyvmzcuBF+fwrKy4sFXkkLt1Jiyb3HKiR8CCJGEMsOW758IqWlEyGkrC/CYwjo1atc1cLNQjC3ncSKe49VSPgQRIwgZGIHKC091lEjLsTcND17blX1mSwEc9tNLLn3WIOED0G4nOjg5PDAVB5KS49dlIiQmpoarFmzxlA3jZtFDcE2JHwIwuXwC1tlZSWA9cjMPIzlyydScCURQo0IITcN4XRI+BBEDJCenh7a0efmVlFwJSGKUJFCr7cm4hopN41b43L0EutxTSxBwocwFLq52SW8z6V27fTbxC7ih4e2xLBhl8oGwI8aNYpcWCJQXBM7kPAhDIVubnah34aQQ+nhoWKkpaVZ0UzHQvcWG5DwIQwn/OY+dCh4tlbHjlRzhwVo4iWUoPVcNrIWEk6AhA9hGsuXnz9FPS4ueMzEhAl2t4ogCDnkqgsPHDgQBQUFEa8hayHhFBpXoiIIAzh06LzoAYL/nTIl+DihDZ/Ph6qqKtF/Pp/P7iYSLoFPW/d4zp8EzHHAvn3Bk4DLysqQlJSE7Ozs0D8SPYRTIIsPYQp79kSeng4EDxTdu5dcXlqw4vBXgginsHAvOC78EX2HkRLOxk1hC2TxIUyhY8egeyuc+PjggaKEeqIXGb8/BRUV+fD7UySvIwitHD+eDrFCl0RswFuZn3yyBu3acejfH2jXjsOTT9Y42spMFh/CFHJzgzE9U6YELT3x8cALLzh/p2Am4fVToqmurg79v5IT1glCL3SKeGzDW5n9/hQsXjwdHOcBAAQCHsycmYqff34JXu8pR1qZSfgQpjFhAjBoUNC91aEDiR4plLqytKYZE4QSwrOy6BTx2IbfhMll+DnRykzChzCV3Fz3Cx4pSw2gLNtFyJV1/Hg6WrXyRSw0WtOMiSBCVYkLCs4hJycYkBbrmUnp6ekoLS3F6tWrAdDxFIQ7LX8kfAhCB9GWGjHBosYcLOXKcuMkZBXiVYkj+9iJpnsj8Xq9UX/TKeKxjBstfyR8CEIH4ZYaqcVUqTlYzpXlxknIKpRWJXai6Z4gzMRtlj8SPgRhAEbF3ihxZUlNQuFB0LHuthGD3IXS0Hl7hBBusvyR8CEIAzBqMVXqyoqehHgX24oVZZpdbLECuQuloTPdCLdDwocgDMCoxVTOlTVixAhkZGSguroa69evB2CMiy2WIHehPCRqCDdDwocgDMDIxVTKlZWRkYHs7OzQ35Terg23xSwQhNG42eVJwodgCieXRdezmEZPHmL+9OjrKF5FO26KWSAIo3Gzy5OED2E7fG2VVauaYtYsLwIBD+LiOCxY4MdNN/3qqJtL62KqdZKheBWCIMzCKfOuWkj4ELbi9LLoRpqDtXw/ildRjptN9+FQkUaCkIaED2ErTi+LzoI5mOJVlMHCb2U2VKSREMPJYQRGQ8KHYAInu2xYWEAoXkUZLPxWZkJFGolw3BRGYCQkfAgmiBWXjVG7rlhx2xDaoKB3wulhBGZCwodgBre7bJYvByZPBgIBIC4OWLYseIK9FmLBbUNox8kWVMIYnB5GYCYkfAimcKPLxufzYf/+c5g8OROBAL/rAqZM4XDJJUeRn5+gSaCQqCHEiBULKiEPieDGkPAhCBPhzc0VFfkIBMZEPNfQ4MHSpR+goOCnmDQ3E+ai5Ew3yvpyPySCG0PChyBMhDcjy+26YtHcTIhjVEq6mAV1/fr1lPUVQ7g9jEAtJHwciltSE2MlSJd2XYRSrEhJZy3ri2oPmY8bwwi0QsLHgRgZJGs3sRSkS7suQgl6UtKVbhBYyvqi2kPuwgmbchI+DuPQofOiB+CDZIFBg9gdZHK4cTLjb/7U1MjFhXZdhFK0iBO5jUR1dTXWr1/PVMAr1R5yPk6rF0TCx2Hs2XNe9PA0NAB79zpX+LiNSItcJoYOvTS0ayUIpWgVJ0pjf1hzvZplhYpVN5pVYQROrBdEwsdhdOwYdG+Fi5/4eKBDB/vaxDJWm10bW+Q8EbtWglCK2eKENderGVaoWHajWRVG4MR6QSR8HEZubjCmZ8qUoKUnPh544QWy9ghhRyyUkEWOKuYSWjFbnLDkejVD6MW6G81KMceS+1QOEj4OZMKEYEzP3r1BSw+JnsbYFQslZJFTcvM7PWuNMA+WxInZmCX0WArmdissuk/FIOHjUHJzSfBIYUcslM/nQ3x8HRYsaIp77/WiocGD+HgODz10GL///UAkJibC6/U2ep1bYwwI9nBC+QgzhJ6TrBFOhjX3qRgkfAhXYnUsVHgsAQDceWdK6OZvaDiF9euDj7sxloAwFjPFSSyVjwjHSdYIp+MECyUJH8KVWB0LFb2QiN38bo0lcAJOqC8CmC9OWBM1VlmhnGKNIMyHhA/hWigWinBafREeFttkFlZaoZxgjSDMh4QP4WooFip2cWJ9kViF+t+5OCFuLBoSPoTrCC9YJgSru3zCWJxYX4QwFicuyk7DiXFjJHwIVxEdZCwG7fJjB8roiV2cuCg7Eaf1HwkfwlUo3b3H6i7fKQG+RkIZPbGN0xZlwnxI+BBEjGBHJWtWoIwegiB44uQvIQhCDtZjCcQqWR86ZEtzbMHrPYWCgp9I9BBEjEMWH4IwAJZjCXw+H778EggEIj+7oQHYutWHpk3JHUAQROxAwocgDIJF8RCe0u3xTG8U4PvFFy9j505K6SYIInYgVxdBuBjeAsUH+Ho8QV9XdICvG4O9WXc/EgRhD2TxcRBUn4bQQ6wF+LLsfiQIwj4cJXzef/99/PnPf8aOHTvQpEkT9O3bF2+//Xbo+QMHDuD222/H5s2b0aJFC4wZMwbz5s1DQoKjvqYgVJ9GGbTLlybWSvbH8r1AEIQwjlEE69atw6RJk/DYY4+hf//+OHfuHHbu3Bl6vqGhAddccw2ysrKwZcsWVFVV4dZbb0ViYiIee+wxG1tuDFSfRhm0yycIgiCkcITwOXfuHO666y4sXLgQE8IKj3Tq1Cn0/xs3bsS///1vbNq0CW3atMEll1yChx9+GPfeey8eeuihmN3hxyIkapxHLBZWtAJyjxNEYxwhfL755hv8/PPPiIuLw6WXXorDhw/jkksuwcKFC9G5c2cAQHl5Obp06YI2bdqEXjdo0CDcfvvt+OGHH3DppZcKvvfZs2dx9uzZ0N8nT54098sQBAHAuSenOwVyjxOEMI7I6vq///s/AMBDDz2EP/3pT9iwYQNatmyJfv364fjx4Hk7hw8fjhA9AEJ/Hz58WPS9582bB6/XG/qXl5dn0rcgCIKHX5QXLnwdM2emIhCIPDl94cLX8cwzz8Dn89ncUudC7nGCEMZW4XPffffB4/FI/vvxxx8R+G+52Tlz5mDkyJEoKirCihUr4PF48Oabb+pqw+zZs+H3+0P/Dh48aMRXIxzKoUPA5s3uqWjMarC3kpPTw68j9OP3p6CiIh9+f4rdTTEcn8+Hqqoq0X8koIlwbHV13XPPPRg7dqzkNe3bt0dVVRWAyJie5ORktG/fHgcOHAAAZGVl4V//+lfEa48cORJ6Tozk5GQkJydraT7hMtx4lhXrwd50cro1fPPNpY0Oae3e/Vu7m2UI5NJjF1ZjzGwVPq1bt0br1q1lrysqKkJycjJ2796N3/3udwCA+vp67N+/H+3atQMAFBcX49FHH8XRo0eRmZkJACgrK0NqamqEYCIIIcTOsho0yPnBtixP9nRyuvn4/Smh/gWCFrX33huKwsK9ruhncumxCcuC1BHBzampqbjtttvw4IMPIi8vD+3atcPChQsBANdffz0A4Oqrr0anTp1wyy23YMGCBTh8+DD+9Kc/YerUqa6w6LDqsnALe/acFz08DQ3A3r3OFz6s4/TCiqzuanmk3IlO62vCObAsSB0hfABg4cKFSEhIwC233IJff/0VPXv2xMcff4yWLVsCAOLj47FhwwbcfvvtKC4uRvPmzTFmzBj8+c9/trnlxsC6y8LpdOwYdG+Fi5/4eKBDB/vaFEs4tbAiy7tanlhzJ/r9KTh+PB2tWvkcOaYI83GM8ElMTMQTTzyBJ554QvSadu3a4e9//7uFrbIWEjXmkZsbjOmZMiVo6YmPB154gaw9hDQs72p5Ysmd6OZYJqfDkiB1jPAhCLOZMCEY07N3b9DSY7TooSJ97oelyT3c7S3lTnSLe9ztsUxOhjVBSsKHIMLIzTVHlLgxY0wPboxZY21y593jx44dQ319veA1bjjHkIdimdiERUHqnlFPEBoxOzjVzRljWnFbzBqLkzvP6tWrZa9xQ6p3rMUyOQUWBSkJHyKmsSI4lTLGhOH7U0x41tXVoaqqSrEAsjO7isXJHXBGDJJeeKugXCyTk6yHboJFQUrCh4hpzF4YfD4fUlPPIS4uM3QsAwDEx3NISTkKny/B8TttPRglPO3OrrJ6cmc9hd5Koq2HDzxwDPv3JyA//xxycnoA6BFT/cEKLAtSEj4EYRLhi/HQoZHxH9dcswEbNgTjP9zgZtBK9OItFhwsJzzttmxYmTmlRuRFw1LwtZGE3z/Z2UBRkY2NIQCwLUhJ+BCESYQvslJZNU52MxiJkcHBVi3wdmROaRV5rAVfE+6HVUFKwocgLMKpRfqswMjgYCsXeKcEabMcfE0QVkPChyAI2zEqONiOBd5uUaMEVoOvCcIO4uQvIQiCMBc+ODgcLcHBUgu8W/H7U1BRkQ+/P0X0GqP6lyDcAFl8CIKwHaOCg1lMnZVCb3aWnFuP5cwaFqFsudiAhA8R07ixgrASWJzgjTil3UnnUulNwVfi1mM5s4Y17C6JQFgHCR8ipnFKcKqRRE/wYhlQVkzw0YJSLABcTng68VwqvSn4SuN2WM2sYQ27SyIQ1kHCh4h5zFrcWbUmhU/cUq4SKyZ4o4RnLAlYfrzIufVYEnkEwRIkfAjCJFhfjFlJcTbq+7tB1CghfFxdcMFJ3HuvFw0NHsTHc5g//yRuuulG14g8gjADEj4EYSIsLz6U4uxc+HF1zz1AaWnw3LcOHTzIzU0DkGZbu1iMHSOIaEj4EESM4rQMKEKY3Fw2Drul4GDCKVAdH4KIUfgMKL6+C8sZULGAkno8LEPBwYRTIIsPQcQwRqSQE/qhc7QIwjrI4kMQMY7XewoFBT+R6LEYPutKLMict/xQdpY1RPezmAWOfg/nQxYfgogxWE2zjzX47KzNm4GnnmocZN679xj068d2gLybCM+WW7WqKf78Zy8CAQ/i4jgsWODHTTf9SsHZLoGED0HEGKyn2ccS6enpuOIKIC4OCIQdpRUfD/TsmQ76CawlPT0dhw4Bs2ad/z0CAQ/uvTcNpaVp9Hu4BBI+BBGDkKhhh9xcYNkyYMoUoKEhKHpeeIGNTK1YZM+eSBEKBH+XvXvpN3ELJHwIgiBsZsIEYNAgvh4PLbB20rGjsAWuQwf72kQYCwU3EwRBMEBuLtCvn3NFj1tix3gLXHx88G+ywLkPD8dxnN2NYImTJ0/C6/XC7/cjNTXV7uYQBEE4hvDKzZWVcaioSEBBwTnk5ATNJ06KHTt0iCxwTkPp+k2uLoIgCMIQeFGzfDkweXLQXRQXF7SgTJhgc+NUwkpFbMJ4yNVFEARBGMahQ+dFDxD875QpwccJggVI+BAEQRCGIZUVRRAsQMKHIAiCMAw+KyocyooiWIKED0EQBGEYlBVFsA4FNxMEQRCGQnWJCJYh4UMQBEEYDmVFEaxCri6CIAiCIGIGEj4EQRAEQcQMJHwIgiAIgogZSPgQBEEQBBEzkPAhCIIgCCJmIOFDEARBEETMQMKHIAiCIIiYgYQPQRAEQRAxAwkfgiAIgiBiBhI+BEEQBEHEDCR8CIIgCIKIGeisrig4jgMAnDx50uaWEARBEAShFH7d5tdxMUj4RHHq1CkAQF5ens0tIQiCIAhCLadOnYLX6xV93sPJSaMYIxAIoLKyEikpKfB4PHY3x3JOnjyJvLw8HDx4EKmpqXY3x7FQPxoD9aN+qA+NgfrRGMzsR47jcOrUKeTk5CAuTjyShyw+UcTFxSE3N9fuZthOamoq3dwGQP1oDNSP+qE+NAbqR2Mwqx+lLD08FNxMEARBEETMQMKHIAiCIIiYgYQPEUFycjIefPBBJCcn290UR0P9aAzUj/qhPjQG6kdjYKEfKbiZIAiCIIiYgSw+BEEQBEHEDCR8CIIgCIKIGUj4EARBEAQRM5DwIQiCIAgiZiDhE6P885//xLBhw5CTkwOPx4O333474nmO4/DAAw8gOzsbTZs2RUlJCfbs2WNPYxlFrg/Hjh0Lj8cT8W/w4MH2NJZh5s2bhx49eiAlJQWZmZkYPnw4du/eHXHNmTNnMHXqVKSnp6NFixYYOXIkjhw5YlOL2URJP/br16/RmLzttttsajGbPPfcc+jatWuowF5xcTE++OCD0PM0FpUh1492jkUSPjHK6dOn0a1bN/zlL38RfH7BggVYsmQJnn/+eWzduhXNmzfHoEGDcObMGYtbyi5yfQgAgwcPRlVVVejf66+/bmELncGnn36KqVOn4ssvv0RZWRnq6+tx9dVX4/Tp06Fr7r77brz33nt488038emnn6KyshIjRoywsdXsoaQfAWDSpEkRY3LBggU2tZhNcnNz8fjjj2Pbtm34+uuv0b9/f/z+97/HDz/8AIDGolLk+hGwcSxyRMwDgHvrrbdCfwcCAS4rK4tbuHBh6LGamhouOTmZe/31121oIftE9yHHcdyYMWO43//+97a0x8kcPXqUA8B9+umnHMcFx15iYiL35ptvhq7ZtWsXB4ArLy+3q5nME92PHMdxffv25e666y77GuVQWrZsyb344os0FnXC9yPH2TsWyeJDNKKiogKHDx9GSUlJ6DGv14uePXuivLzcxpY5j08++QSZmZm48MILcfvtt8Pn89ndJObx+/0AgFatWgEAtm3bhvr6+ojxeNFFF6Ft27Y0HiWI7kee1157DRkZGejcuTNmz56N2tpaO5rnCBoaGvDGG2/g9OnTKC4uprGokeh+5LFrLNIhpUQjDh8+DABo06ZNxONt2rQJPUfIM3jwYIwYMQIFBQXYt28f/vd//xdDhgxBeXk54uPj7W4ekwQCAUyfPh29e/dG586dAQTHY1JSEtLS0iKupfEojlA/AsBNN92Edu3aIScnBzt27MC9996L3bt3Y/369Ta2lj2+//57FBcX48yZM2jRogXeeustdOrUCdu3b6exqAKxfgTsHYskfAjCJG644YbQ/3fp0gVdu3ZFYWEhPvnkEwwYMMDGlrHL1KlTsXPnTnz++ed2N8XRiPXj5MmTQ//fpUsXZGdnY8CAAdi3bx8KCwutbiazXHjhhdi+fTv8fj/Wrl2LMWPG4NNPP7W7WY5DrB87depk61gkVxfRiKysLABolKlw5MiR0HOEetq3b4+MjAzs3bvX7qYwybRp07BhwwZs3rwZubm5ocezsrJQV1eHmpqaiOtpPAoj1o9C9OzZEwBoTEaRlJSEDh06oKioCPPmzUO3bt3w9NNP01hUiVg/CmHlWCThQzSioKAAWVlZ+Oijj0KPnTx5Elu3bo3wzxLqOHToEHw+H7Kzs+1uClNwHIdp06bhrbfewscff4yCgoKI54uKipCYmBgxHnfv3o0DBw7QeAxDrh+F2L59OwDQmJQhEAjg7NmzNBZ1wvejEFaORXJ1xSi//PJLhLKuqKjA9u3b0apVK7Rt2xbTp0/HI488go4dO6KgoAD3338/cnJyMHz4cPsazRhSfdiqVSvMnTsXI0eORFZWFvbt24dZs2ahQ4cOGDRokI2tZo+pU6di1apVeOedd5CSkhKKlfB6vWjatCm8Xi8mTJiAGTNmoFWrVkhNTcUdd9yB4uJiXHHFFTa3nh3k+nHfvn1YtWoV/t//+39IT0/Hjh07cPfdd6NPnz7o2rWrza1nh9mzZ2PIkCFo27YtTp06hVWrVuGTTz7BP/7xDxqLKpDqR9vHoi25ZITtbN68mQPQ6N+YMWM4jgumtN9///1cmzZtuOTkZG7AgAHc7t277W00Y0j1YW1tLXf11VdzrVu35hITE7l27dpxkyZN4g4fPmx3s5lDqA8BcCtWrAhd8+uvv3J/+MMfuJYtW3LNmjXj/ud//oerqqqyr9EMItePBw4c4Pr06cO1atWKS05O5jp06MDNnDmT8/v99jacMcaPH8+1a9eOS0pK4lq3bs0NGDCA27hxY+h5GovKkOpHu8eih+M4znx5RRAEQRAEYT8U40MQBEEQRMxAwocgCIIgiJiBhA9BEARBEDEDCR+CIAiCIGIGEj4EQRAEQcQMJHwIgiAIgogZSPgQBEEQBBEzkPAhCIIgCCJmIOFDEARBEETMQMKHIAjHUFdXZ3cTGsFimwiCEIeED0EQttGvXz9MmzYN06ZNg9frRUZGBu6//37wJ+nk5+fj4Ycfxq233orU1FRMnjwZAPD555/jyiuvRNOmTZGXl4c777wTp0+fDr3vs88+i44dO6JJkyZo06YNrrvuutBza9euRZcuXdC0aVOkp6ejpKQk9Np+/fph+vTpEW0cPnw4xo4dG/pba5sIgmADEj4EQdjKyy+/jISEBPzrX//C008/jUWLFuHFF18MPf/EE0+gW7du+Pbbb3H//fdj3759GDx4MEaOHIkdO3Zg9erV+PzzzzFt2jQAwNdff40777wTf/7zn7F79258+OGH6NOnDwCgqqoKN954I8aPH49du3bhk08+wYgRI6D2yEK1bSIIgh3okFKCIGyjX79+OHr0KH744Qd4PB4AwH333Yd3330X//73v5Gfn49LL70Ub731Vug1EydORHx8PF544YXQY59//jn69u2L06dP4+9//zvGjRuHQ4cOISUlJeLzvvnmGxQVFWH//v1o166dYHsuueQSLF68OPTY8OHDkZaWhpUrVwKApjY1adJEVz8RBGEcZPEhCMJWrrjiipDoAYDi4mLs2bMHDQ0NAIDLLrss4vrvvvsOK1euRIsWLUL/Bg0ahEAggIqKCgwcOBDt2rVD+/btccstt+C1115DbW0tAKBbt24YMGAAunTpguuvvx5//etfceLECdVtVtsmgiDYgYQPQRBM07x584i/f/nlF0yZMgXbt28P/fvuu++wZ88eFBYWIiUlBd988w1ef/11ZGdn44EHHkC3bt1QU1OD+Ph4lJWV4YMPPkCnTp2wdOlSXHjhhSFxEhcX18jtVV9fr7tNBEGwAwkfgiBsZevWrRF/f/nll+jYsSPi4+MFr+/evTv+/e9/o0OHDo3+JSUlAQASEhJQUlKCBQsWYMeOHdi/fz8+/vhjAIDH40Hv3r0xd+5cfPvtt0hKSgq5rVq3bo2qqqrQZzU0NGDnzp2y30FJmwiCYAMSPgRB2MqBAwcwY8YM7N69G6+//jqWLl2Ku+66S/T6e++9F1u2bMG0adOwfft27NmzB++8804okHjDhg1YsmQJtm/fjp9++gl/+9vfEAgEcOGFF2Lr1q147LHH8PXXX+PAgQNYv349jh07ht/+9rcAgP79++P999/H+++/jx9//BG33347ampqZL+DXJsIgmCHBLsbQBBEbHPrrbfi119/xeWXX474+HjcddddoRRxIbp27YpPP/0Uc+bMwZVXXgmO41BYWIjS0lIAQFpaGtavX4+HHnoIZ86cQceOHfH666/j4osvxq5du/DPf/4TixcvxsmTJ9GuXTs8+eSTGDJkCABg/Pjx+O6773DrrbciISEBd999N6666irZ7yDXJoIg2IGyugiCsA2hLCqCIAgzIVcXQRAEQRAxAwkfgiAIgiBiBnJ1EQRBEAQRM5DFhyAIgiCImIGED0EQBEEQMQMJH4IgCIIgYgYSPgRBEARBxAwkfAiCIAiCiBlI+BAEQRAEETOQ8CEIgiAIImYg4UMQBEEQRMxAwocgCIIgiJjh/wN9s77nJ4/qUAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAiDVJREFUeJztnXl4FFW6/7+dlS3pkIRAYoCEwMUBFCFiDMwAYhS8gsMFhyiiICjggBpxQPlxZcQNQUUEV0YER0VBQcdldAiKjkrMKIjIiAzkBgETtpZ0kAgJ6fr90VbT3al9PVX9fp4nD6S7U32q6tQ53/Nux8NxHAeCIAiCIIgYIM7uBhAEQRAEQVgFCR+CIAiCIGIGEj4EQRAEQcQMJHwIgiAIgogZSPgQBEEQBBEzkPAhCIIgCCJmIOFDEARBEETMQMKHIAiCIIiYgYQPQRAEQRAxAwkfgiAIBlm9ejU8Hg/27dtnd1MIwlWQ8CGIGOXLL7/EzJkz0bt3b7Rt2xZdunTBuHHj8J///KfFZ4cOHQqPxwOPx4O4uDikpqaiZ8+euP7661FeXq7qe9955x0MGTIEWVlZaNOmDbp164Zx48bhgw8+MOrUWvDQQw/hrbfeavH6li1bcO+996Kurs60747m3nvvDV1Lj8eDNm3aoFevXvjf//1f1NfXG/Ida9aswdKlSw05FkG4DRI+BBGjLFq0COvXr8ell16KJ554AlOnTsU///lP9O/fHzt37mzx+dzcXLz00kv461//ikceeQRXXXUVtmzZgssvvxylpaVoamqS/c5HH30UV111FTweD+bOnYvHH38cY8eOxZ49e/Daa6+ZcZoApIXPggULLBU+PM888wxeeuklLFmyBOeeey4efPBBjBgxAkZsn0jChyDESbC7AQRB2MOsWbOwZs0aJCUlhV4rLS3Feeedh4cffhgvv/xyxOe9Xi8mTJgQ8drDDz+M2267DU8//TTy8vKwaNEi0e87c+YM7r//flx22WXYuHFji/ePHDmi84zYoaGhAW3atJH8zNVXX43MzEwAwPTp0zF27Fhs2LABX3zxBYqLi61oJkHEJGTxIYgYZeDAgRGiBwB69OiB3r17Y9euXYqOER8fj2XLlqFXr1548skn4ff7RT977Ngx1NfXY9CgQYLvZ2VlRfx+6tQp3Hvvvfiv//ovtGrVCtnZ2RgzZgyqqqpCn3n00UcxcOBAZGRkoHXr1igsLMQbb7wRcRyPx4OTJ0/ixRdfDLmXJk2ahHvvvRezZ88GAOTn54feC4+pefnll1FYWIjWrVsjPT0d11xzDQ4cOBBx/KFDh6JPnz7YunUrBg8ejDZt2uD//b//p+j6hTNs2DAAQHV1teTnnn76afTu3RvJycnIycnBjBkzIixWQ4cOxXvvvYcffvghdE55eXmq20MQboUsPgRBhOA4DocPH0bv3r0V/018fDyuvfZa3HPPPfjss89w5ZVXCn4uKysLrVu3xjvvvINbb70V6enposdsbm7GyJEj8eGHH+Kaa67B7bffjhMnTqC8vBw7d+5EQUEBAOCJJ57AVVddheuuuw6NjY147bXX8Ic//AHvvvtuqB0vvfQSbrrpJlx00UWYOnUqAKCgoABt27bFf/7zH7z66qt4/PHHQ9aXDh06AAAefPBB3HPPPRg3bhxuuukmHD16FMuXL8fgwYPx9ddfIy0tLdRen8+HK664Atdccw0mTJiAjh07Kr5+PLygy8jIEP3MvffeiwULFqCkpAS33HILdu/ejWeeeQZffvklPv/8cyQmJmLevHnw+/04ePAgHn/8cQBAu3btVLeHIFwLRxAE8SsvvfQSB4BbuXJlxOtDhgzhevfuLfp3b775JgeAe+KJJySPP3/+fA4A17ZtW+6KK67gHnzwQW7r1q0tPvfCCy9wALglS5a0eC8QCIT+39DQEPFeY2Mj16dPH27YsGERr7dt25abOHFii2M98sgjHACuuro64vV9+/Zx8fHx3IMPPhjx+rfffsslJCREvD5kyBAOAPfss8+Knnc4f/7znzkA3O7du7mjR49y1dXV3HPPPcclJydzHTt25E6ePMlxHMetWrUqom1HjhzhkpKSuMsvv5xrbm4OHe/JJ5/kAHAvvPBC6LUrr7yS69q1q6L2EESsQa4ugiAAAN9//z1mzJiB4uJiTJw4UdXf8haFEydOSH5uwYIFWLNmDfr164d//OMfmDdvHgoLC9G/f/8I99r69euRmZmJW2+9tcUxPB5P6P+tW7cO/f/48ePw+/343e9+h23btqlqfzQbNmxAIBDAuHHjcOzYsdBPp06d0KNHD2zevDni88nJybjxxhtVfUfPnj3RoUMH5OfnY9q0aejevTvee+890digTZs2obGxEWVlZYiLOzt033zzzUhNTcV7772n/kQJIgYhVxdBEDh06BCuvPJKeL1evPHGG4iPj1f19z///DMAICUlRfaz1157La699lrU19ejsrISq1evxpo1azBq1Cjs3LkTrVq1QlVVFXr27ImEBOkh6t1338UDDzyA7du34/Tp06HXw8WRFvbs2QOO49CjRw/B9xMTEyN+P+ecc1rES8mxfv16pKamIjExEbm5uSH3nRg//PADgKBgCicpKQndunULvU8QhDQkfAgixvH7/bjiiitQV1eHTz/9FDk5OaqPwae/d+/eXfHfpKam4rLLLsNll12GxMREvPjii6isrMSQIUMU/f2nn36Kq666CoMHD8bTTz+N7OxsJCYmYtWqVVizZo3qcwgnEAjA4/Hg/fffFxSB0TEz4ZYnpQwePDgUV0QQhHWQ8CGIGObUqVMYNWoU/vOf/2DTpk3o1auX6mM0NzdjzZo1aNOmDX77299qaseFF16IF198EbW1tQCCwceVlZVoampqYV3hWb9+PVq1aoV//OMfSE5ODr2+atWqFp8VswCJvV5QUACO45Cfn4//+q//Uns6ptC1a1cAwO7du9GtW7fQ642NjaiurkZJSUnoNb0WL4JwMxTjQxAxSnNzM0pLS1FRUYHXX39dU+2Y5uZm3Hbbbdi1axduu+02pKamin62oaEBFRUVgu+9//77AM66ccaOHYtjx47hySefbPFZ7tcCf/Hx8fB4PGhubg69t2/fPsFChW3bthUsUti2bVsAaPHemDFjEB8fjwULFrQoKMhxHHw+n/BJmkhJSQmSkpKwbNmyiDatXLkSfr8/Ipuubdu2kqUFCCKWIYsPQcQod955J95++22MGjUKP/30U4uChdHFCv1+f+gzDQ0N2Lt3LzZs2ICqqipcc801uP/++yW/r6GhAQMHDsTFF1+MESNGoHPnzqirq8Nbb72FTz/9FKNHj0a/fv0AADfccAP++te/YtasWfjXv/6F3/3udzh58iQ2bdqEP/7xj/j973+PK6+8EkuWLMGIESMwfvx4HDlyBE899RS6d++OHTt2RHx3YWEhNm3ahCVLliAnJwf5+fkoKipCYWEhAGDevHm45pprkJiYiFGjRqGgoAAPPPAA5s6di3379mH06NFISUlBdXU13nzzTUydOhV/+tOfdF1/tXTo0AFz587FggULMGLECFx11VXYvXs3nn76aQwYMCDifhUWFmLt2rWYNWsWBgwYgHbt2mHUqFGWtpcgmMXOlDKCIOyDT8MW+5H6bLt27bgePXpwEyZM4DZu3Kjo+5qamri//OUv3OjRo7muXbtyycnJXJs2bbh+/fpxjzzyCHf69OmIzzc0NHDz5s3j8vPzucTERK5Tp07c1VdfzVVVVYU+s3LlSq5Hjx5ccnIyd+6553KrVq0KpYuH8/3333ODBw/mWrduzQGISG2///77uXPOOYeLi4trkdq+fv167re//S3Xtm1brm3btty5557LzZgxg9u9e3fEtZFK9Y+Gb9/Ro0clPxedzs7z5JNPcueeey6XmJjIdezYkbvlllu448ePR3zm559/5saPH8+lpaVxACi1nSDC8HCcARvDEARBEARBOACK8SEIgiAIImYg4UMQBEEQRMxAwocgCIIgiJiBhA9BEARBEDEDCR+CIAiCIGIGEj4EQRAEQcQMVMAwikAggJqaGqSkpFDZd4IgCIJwCBzH4cSJE8jJyUFcnLhdh4RPFDU1NejcubPdzSAIgiAIQgMHDhxAbm6u6PskfKJISUkBELxwUvsOEQRBEATBDvX19ejcuXNoHheDhE8UvHsrNTWVhA9BEARBOAy5MBUKbiYIgiAIImYg4UMQBEEQRMxAwocgCIIgiJiBYnwIgiAIwgCam5vR1NRkdzNcS2JiIuLj43Ufh4QPQRAEQeiA4zgcOnQIdXV1djfF9aSlpaFTp0666uyR8CEIgiAIHfCiJysrC23atKHitybAcRwaGhpw5MgRAEB2drbmY5HwIQiCIAiNNDc3h0RPRkaG3c1xNa1btwYAHDlyBFlZWZrdXhTcTBAEQRAa4WN62rRpY3NLYgP+OuuJpXKM8Fm4cCEGDBiAlJQUZGVlYfTo0di9e3fEZ06dOoUZM2YgIyMD7dq1w9ixY3H48GGbWkwQBEHECuTesgYjrrNjhM8nn3yCGTNm4IsvvkB5eTmamppw+eWX4+TJk6HP3HHHHXjnnXfw+uuv45NPPkFNTQ3GjBljY6sJgiAIgmAJx8T4fPDBBxG/r169GllZWdi6dSsGDx4Mv9+PlStXYs2aNRg2bBgAYNWqVfjNb36DL774AhdffLEdzSYIgiAIgiEcY/GJxu/3AwDS09MBAFu3bkVTUxNKSkpCnzn33HPRpUsXVFRUiB7n9OnTqK+vj/ghznLwILB5c/BfJx6fIAiCEGbSpEnweDzweDxITExEx44dcdlll+GFF15AIBBQfJzVq1cjLS3NvIYajCOFTyAQQFlZGQYNGoQ+ffoACKYTJiUltbj4HTt2xKFDh0SPtXDhQni93tBP586dzWy6I/D5fKitrcVjj9Wha1cOw4YBXbpwuOceP2pra+Hz+Qz5npUrga5dgWHDgv+uXGnIYQmCIBwDP96K/Rg13ooxYsQI1NbWYt++fXj//fdxySWX4Pbbb8fIkSNx5swZU7/bLhzj6gpnxowZ2LlzJz777DPdx5o7dy5mzZoV+p3f1j5W8fl8ePLJJ+H3p2Dp0jJwXDCQjOM8eOCBVFRWVmLQoApMmDABBQUFmr/n4EFg6lSAX1QEAsC0acDw4UBurhFnQhAEwTb8eCvHzJkzTUuVT05ORqdOnQAA55xzDvr374+LL74Yl156KVavXo2bbroJS5YswapVq/B///d/SE9Px6hRo7B48WK0a9cOH3/8MW688UYAZwOP//znP+Pee+/FSy+9hCeeeAK7d+9G27ZtMWzYMCxduhRZWVmmnItSHGfxmTlzJt59911s3rwZuWEzZKdOndDY2Niicubhw4dDN1WI5ORkpKamRvzEMo2NjQCAn37KAMdFdw8PNm0qgd+fgpdfflnzSsTn8+GLL3yItqQ2NwOVlT7TVzgEQRAswI+3Rn3OKIYNG4a+fftiw4YNAIC4uDgsW7YM//73v/Hiiy/io48+wpw5cwAAAwcOxNKlS5GamhqyUv3pT38CEEw5v//++/HNN9/grbfewr59+zBp0iRLz0UIx1h8OI7DrbfeijfffBMff/wx8vPzI94vLCxEYmIiPvzwQ4wdOxYAsHv3buzfvx/FxcV2NNkWfD6f5EOSlJSkaOWQnu4DEEC0Nua4OPz0Uzq83hOaHsZwi5LHUxYhrjyeAD7//EXs3HnC1BUOQRAEIc25556LHTt2AADKyspCr+fl5eGBBx7A9OnT8fTTTyMpKQlerxcej6eFkWHy5Mmh/3fr1g3Lli3DgAED8PPPP6Ndu3aWnIcQjhE+M2bMwJo1a/C3v/0NKSkpobgdr9eL1q1bw+v1YsqUKZg1axbS09ORmpqKW2+9FcXFxTGT0WWk2dTrPYHLLtuE8vLLAJytm+DxBJCe/pPmNvJiyes9gVGj3sU774wEx8XB4wlg1Kh34fWeiPgcQRAEYT0cx4VcV5s2bcLChQvx/fffo76+HmfOnMGpU6fQ0NAgWbhx69atuPfee/HNN9/g+PHjoYDp/fv3o1evXpachxCOET7PPPMMAGDo0KERr69atSpkOnv88ccRFxeHsWPH4vTp0xg+fDiefvppi1tqH9Fiwe9PwU8/ZSA93RcSFEKfE2PQoGA23KZNJYLiRC/9+3+NgoK9+OmndKSn/2TYcQmCIAh97Nq1C/n5+di3bx9GjhyJW265BQ8++CDS09Px2WefYcqUKWhsbBQVPidPnsTw4cMxfPhwvPLKK+jQoQP279+P4cOH276wdYzw4ThO9jOtWrXCU089haeeesqCFtlPtFvr2LFjof9v29avhTWlf/+vVX/HoEEV6NNnp2nixOs9QYKHIAiCIT766CN8++23uOOOO7B161YEAgE89thjiIsLhiasW7cu4vNJSUlobm6OeO3777+Hz+fDww8/HEoY+uqrr6w5ARkcI3yISKTcWn5/Skj0AMG4nHfeGYmCgr2aRAaJE4IgCHdy+vRpHDp0CM3NzTh8+DA++OADLFy4ECNHjsQNN9yAnTt3oqmpCcuXL8eoUaPw+eef49lnn404Rl5eHn7++Wd8+OGH6Nu3L9q0aYMuXbogKSkJy5cvx/Tp07Fz507cf//9Np1lJI7L6iKCSJkKhTKy+KBkgiAIguD54IMPkJ2djby8PIwYMQKbN2/GsmXL8Le//Q3x8fHo27cvlixZgkWLFqFPnz545ZVXsHDhwohjDBw4ENOnT0dpaSk6dOiAxYsXo0OHDli9ejVef/119OrVCw8//DAeffRRm84yErL4uITweJ70dB88nkCLjCklQclJSUlmNpMgCIL4FaXjrVnj8urVq7F69WrZz91xxx244447Il67/vrrI35/5plnQrG4PNdeey2uvfbaiNeUhK2YDQkfFyAUzyOVMSVFRkYGJkyYgJdffln2s24QSeFxUjU1caiuTkB+/hnk5ASzD5Sm/xMEQaglIyMDM2fONKQECaEcEj4ORyyep6xsKcrKlmoKSi4oKDDtYVQqlhoaGlBbW2v494cLnd27T2L16s+Rnu5DVVV30WBwqilEEIRZ0NhiPSR8HI5UPE9+/g+CgocXH0YVO1SDkhVOQ0NDhMVJLC1frSAJDwg/ayXrjmChRg/4ekXRweB2p14SBEEQxkHCxwLMFBhy8TxjxoxBZmZmi++yc48YueOFW3qk0vLVChL+89FWMqEY//AK1QRBEIR7IOFjMmYLDLkKyJmZmcjOzm7xd6zuEROO0Wn5PML7kEUSLh6PHTsmKk7tsJoRBEEQ2iHhYzJmCYzwWBmpCshKY2rE3EnhWD3JS7nx9AgfISsZEIDHg5B4LC6uCL3Db9QXLU6jRa1RLjmCIAjCPEj4OBQjswGUVHm2wzWmJy1fCjErWUHBXlRWFmHLlmJs2TIIFRXFkq618N+NdMkRBEEQ5kHCx8EYITCUupPscI3JufH0IGQl8/tTUFFRDD7mR6lrzSyXHEEQBGE8JHwsRolLyUq0upOsOg8zNzKN3opD67UwyyVHEARBGA8JHwsxauNQI9HiTrL6PKzaK0yra80sl5ybocKRBOF+Pv74Y1xyySU4fvw40tLSFP1NXl4eysrKUFZWZlq7aK8uixBzh/j9KaqP5fP5UFtbK/rj8/kUH4t3J3k8wQlHzp1k5HmIoTQgu66uTtU1kDuu3LWI/r5jx44p+jsiEj5ebMWKFZg+/UsMGNABf/hDBgYM6IDp07/EihUr8OSTT6rqxwRBqGfSpEnweDyYPn16i/dmzJgBj8eDSZMmWd8wkyGLj0UY5Q4xKshYa1aYFW4ducBtv9+PtWvXYt26dZLHib4G/HFrampCmVrRSF0Lqe8z0yXnNsTqKVHhSIKwns6dO+O1117D448/jtatWwMATp06hTVr1qBLly42t84cSPiYDC8c5NwhSq0cRgUZa80Ks8qtY4SbQ+jcMjIyWrweHa+kxLUmFONklUvOLVBsFEHYT//+/VFVVYUNGzbguuuuAxAs4dGlSxfk5+eHPnf69GnMnj0br732Gurr63HhhRfi8ccfx4ABA0Kf+fvf/46ysjIcOHAAF198MSZOnNji+z777DPMnTsXX331FTIzM/E///M/WLhwIdq2bWv+yf4KCR+TCRcY55xTj7vu8qK52YP4eA6LFtVj/PhrdcUz6AkyNqNgoh3ouQZa4pXU/o0bNnM1Cp/PF3IRUmwUQURy8CCwZw/QoweQm2vd906ePBmrVq0KCZ8XXngBN954Iz7++OPQZ+bMmYP169fjxRdfRNeuXbF48WIMHz4ce/fuRXp6Og4cOIAxY8ZgxowZmDp1Kr766ivceeedEd9TVVWFESNG4IEHHsALL7yAo0ePYubMmZg5cyZWrVpl2fmS8LEAXmDceSdQWgrs3Qt07+5Bbm4agDTNx7UyyNjogolGoecayLlawrf7OHDgAN5//31VfwM4M0hXaaFKtQUto920LIpogrCLlSuBqVOBQACIiwNWrACmTLHmuydMmIC5c+fihx9+AAB8/vnneO2110LC5+TJk3jmmWewevVqXHHFFQCAv/zlLygvL8fKlSsxe/ZsPPPMMygoKMBjjz0GAOjZsye+/fZbLFq0KPQ9CxcuxHXXXRcKXO7RoweWLVuGIUOG4JlnnkGrVq0sOV8SPhaTm2uMkre6doyRBRONQu81kHO18Nt9+Hw+vP/++6r+hiXUCBSlMWQTJkyI2EhWjHHjxoWyOXhLD4/fn4L27Y9jypTn0dSURLFRRMxy8OBZ0QME/502DRg+3BrLT4cOHXDllVdi9erV4DgOV155ZcQCrqqqCk1NTRg0aFDotcTERFx00UXYtWsXAGDXrl0oKiqKOG5xcXHE79988w127NiBV155JfQax3EIBAKorq7Gb37zGzNOrwUkfByKHfERrFku9F4Dpa6WcNHgNPeM2mB4ufgnnoaGBkXfLxYQLmSpy8//QdExCcJt7NlzVvTwNDcHvQNWubwmT56MmTNnAgCeeuopU77j559/xrRp03Dbbbe1eM/KQGpKZ3co/AQcDssTsBnovQZa0tC93hMoKdnkmNR1PcHw27b1w9KlZXjxxYlYurQM27b1E/17vz8F1dV5gmUNot+zoiQCQTiJHj2C7q1w4uOB7t2ta8OIESPQ2NiIpqYmDB8+POK9goICJCUl4fPPPw+91tTUhC+//BK9evUCAPzmN7/Bv/71r4i/++KLLyJ+79+/P7777jt07969xY+VYRJk8XEoFB+h7BoIuXnq6upC/5eKV+I/F+6i2batHzZtKvl10g6gpGST7UUo1aA0EFyNG1Eqzkrovfbtjyuy1Fk1EFq9+S5BRJObG4zpmTYtaOmJjweee87aAOf4+PiQ2yo+Pj7ivbZt2+KWW27B7NmzkZ6eji5dumDx4sVoaGjAlF8DkaZPn47HHnsMs2fPxk033YStW7di9erVEce56667cPHFF2PmzJm46aab0LZtW3z33XcoLy9XZJk2ChI+DoPVIGMrUXoNGhoasGLFCtnjTZ363/B6vQDO1ggCWrpposUAEIdNm0rQp8/O0PeyfN2lBAov7vh/lboRpQQSAMH3pkx5XtJdOGbMGOTk5FgiNuzYfNcOrBB3JCD1MWVKMKYnmPxirejhSU1NFX3v4YcfRiAQwPXXX48TJ07gwgsvxD/+8Q+0b98eQNBVtX79etxxxx1Yvnw5LrroIjz00EOYPHly6Bjnn38+PvnkE8ybNw+/+93vwHEcCgoKUFpaavq5hUPCx2HoDTKWGpz8fj84jhMtLR4dBGtG5o/S9paWlqKpqQkJCQmh9tbV1eHMmTMAgoF3SuNQvF6vooBkOTFQWlrK7MAuZ8GJLuioNJZJ6poAHsH36urSUFxcgS1bghvCRlvqMjMzLbuOSmOanFxMUam4Ky0tDS0AeJSKlejvELuOTheQZmNU8otSoi0y0bz11luh/7dq1QrLli3DsmXLRD8/cuRIjBw5MuK1G2+8MeL3AQMGYOPGjaLH2Ldvn2SbjICEjwPROnAoHQCl4IPfjMz8ERsM1azGAenKyoC2ej/hfyMnBqInDZZQGwiu1JUqd02i3wMCWL/+6tAxi4s/R1FRJRMuWhb30jMCpeKOt3RGo0SshH+H1HV0soAk3AMJnxjCiEFH6Bh6M3/E2mVUlWrAuEKFTo2rkhIoYvdPyTYccgIp/D0ggKAVyAMgKLwqKopRVFQZcUw73IVWl4dQghmuI6nnwAhrF4vXkSCiIeETw0hZQJRaR9QICj0VltX+ffhnAeFYE6nBWGwALytbirKypY6LqxITKFVV3SXvn9g2HG3atAn9X0oghb938mRbvPHGHyKOE251sjK2JxqWts/w+Xw4evSoqAUmHDWuIylRItcPlMLSdYyGYpAIHhI+LkHJQx2O2kwcoUHQqMwfJaj5++jPFhdXqB6MpQbw/PwfcOONlzmiQrNUIDgALF1aprgKdfgxpWLNwgPEgbPiye9PkXSLWRnbEw0r9ZmqqqoUuYd51FhjxPr0gQO5hllpWLmO0cRKEDuhDBI+LkDpQz1u3DgA2jJxhAZBIzJ/lAysav5e6LNbthSrHozlBnAWKzQLISRQjh07hg0bNqC6Ok9XFWqxCSI7OzviO/nvs7sEg9DigM9is7ttfPvERI9eaykg3qfFgtC1WGlYuI5CWBHEznGc5r8llGPEdSbhwwB6TbBKH1Y+40lLJk74IMjXtzEi88eIrSXkPgvEobj4c1RUFCsejFkdwLUg1nfk7l94vSMhpPpl+OtKyw/4/X7TLGdKFgdKYprMRCx+rrKyqEXf1eKGEuvTnTsfMNRKY/d1FCK8LxsdxJ6YmAggGNPYunVrvU0lZOBjR/nrrgUSPjZjhglWbDWzf/9+AOozccLf8/v9oewpozJ/5FDz92KfLSqqRFFRpWxsTizVSZK7f3JZcoCyfslbnY4cOYJ169aJxg3x7jEz3A1KFwdibbPjfn/+eTHKy0sQXmBfb7CwUJ/2+1NQXFyhamEgh9h1tAOfzxfqy2YEX8fHxyMtLQ1HjhwBEIx/83g8xjSeCMFxHBoaGnDkyBGkpaW1KLKoBhI+NmNk5hIgvZr56quvAKjLxIl+j3+4eYzI/JFDzd/LfVYuNofFzVi1ImZJVFq5WglK+6XQPmB6j2kGQnFNdtzvoOi5DEDLCVStGypatIWLkvDxAghg4EBt5QWUCkM7BGR4fzIr+LpTp04AWo6PhPGkpaWFrrdWSPgwhh5fvprVjNiEJ7dj9ubNmxW3V2nmj9hgqNX6IvVZJVlDThA1cugpWge0DFAWu898jIwWcWBE3IpWxL6bhdgtvz8FmzaVQEj0AOrdUNFino+5EqpErrW8gFMWDGYFX3s8HmRnZyMrKwtNTU16m2k7x48flzyPxMTEUMVmK0lMTNRl6eEh4cMQen3PUlkbP/30S2iQDx/0w3fEltox+5JLLokQPXKxB6WlpSgoKNA1GKodTJ0w8FqF0mBOJVWrpfpleMVnNS4qO4sFsl6oUDhOLYhWN5TQfZGzfqgtL+CEZ6uqqjvCY2ONjt2Lj483ZGJWihkp+j6fT9FWP07OgCPhwwhG+J6FVjPRlXLPP38Hduw4v8WgL/f94ep+27Z+ePvtkZCKPeCtCHofDDV/r+W73FDbQypbCdA30avpl0pdVHr7up575oQCe8LPMYfCwq8wePCnhsWaKclcZL3vq4G/95HjFkLZrE7DrBT9WNjGhYQPIxjhe46ObxGqlPvNN33Bm9DDB321qenhg4fW9tqNU2p7SE30dXV1kkHIeid6sX7x73/3Qu/e32m613r6ut57ZneBPal7KZVaX1KyCYMGVYQ+O27cOGRlZenql07IXDRyYSKW8Rl+752UtGBFzBzr1lGtkPBhBD2+Z7FYGKFKudFxA/ygryc1Xa69rFpV9AwcVp2T3v3V9E70YtaHjRtHoLz8ck0DoZ6+rnc1akaMh5oNe5XeS6k4tQkTJqCgoEBze63IXDTi+TB6YSJ37+U2GWZ1HOMxKmbO7/eHjse6dVQrJHwYQc/qSyp4UWjSChc//IOvJzWdP47Q551iVQGUDxxWnpPSiV7sfb0TfUsr4tn+o3UglOtr/MArhFYXHj+Jy3232sleTV9QKrTFKmbz7TPCfWxmPJzewHr+u7UuTKIFitIilVKbDLM+jhllmfH5fKGkBruto2ZCwsdmwjfylFp9yW34KfSwCT3oQjE+/PdIfT9fLErInTZwYEWLFFh+AnGKv1jNwGHXOcm1Uex9LYJayCrw73/3wsaNIyI+p2YgVGppULJHldrVaPRkP3/+Uezbl4C8vDPIyRkAYICmyV6P1dDIzDK11ggzJ2el10TqPs+cObPFa0oWJnICRauFi+VSDEZaZsLbH9znMIDwsAYWth8xAhI+NhOe8g0o2xRSCp/PF7FiFnrQhw37SPDBl1qBhT8QUoOHVCYIq/5iuYEj3MqgZs8zK9so9b6WWj3hQoG3IPbu/R3Kyy/XbD1SYmmIjlkSm+y0rEbD+2R2NlBYqKjZqjBjc185WLdGaHHBRPcRpddLifDwek84Zq89Kfhx3izLTFVVd0SGRrAXA6YVEj6MocdPKzYARoup6N+VBEr6fD7JY/KIiR6W/cVyA0d4yjagbM8zo89Jro1y72upSBx9H40IhlUzuUhNdixuhmnG5r5KYNkaYYTA03O9zKrXZGcNKiDSJWXGs3A2iSU8LMK5GXDRkPBhCL2DhNaBLS0tTfG2A1rjAlj2F4sNHImJjaiuzmsxuCnZ88zoc5Ib3OTe11OR2I5tPOQmO9YyktRMznqz2qRKF/BtsWJSFnOv8e1Rck2UtFXr9TLLGsuC5Tr8upvxLCi55k7KgIuGhA8jmGE9iB5U9A6IekzBLK7QecRioVauvElycJM7p+gJKRy1pnX5wEzp99WscIUmtHHjxoUEX2JiYguXqNGuAiUDL0ubYaqZnLU+C0pcWlZNykraIndNlLZVy/UyyxrLiuU6egNhoxckctd83LhxjnMNhkPChxGMth5EDypihQuBoK/Y7DL9rK3QAXFLRmJiY0j0AOKDm9w5RbvIolEbcyE30Rsx+LESL6J0stPiwjMDNZOz1mdBzqJr5aSsxLosdU3UtFXL9TLLGsuC5Tp801UesUWtVoEid83T0tJ0nYPdkPBhBCMtIkKDiljhQq/3BNauXWtJ4CNLK3RAvAxAdXWe4sFNyTnpyfqS2mAyHLHAdP4YSu8tK1l4aie7cePGhQZjOwJVlbTXaJdh9L2xc1IW6idS10TJM6bnepllYWbBcq0m8FuPQGFtvDYSEj6MYKRFRLjIoHDhQv74Zk1kSiduu/zFQhOk3ODGp/bziJ0TID0oibnCwiduOzd/tDuWQWjgFRNiaWlptmwuqmZyNvJeCt2bgoK9tkzKUv1E7JooERB6rpfRFmaz6kDpxWgrH+vjtVGQ8LEZMwJHxartRqcmWrFKUTN4sVIZVT6exit5TmK7X0cPSlKusHALnB17kNkVyyA18NotxMIJv77h8U884XFQ0UJWL2L3pqxsqeXuZLl+Eh1Uz5crUCog1F4vswLxzaoDxaP1ea2sLDLUyqd0vAaA2tpa1e1lBRI+NmPGil4sWPebb87H2WJUHlRVdbdk4ghvu9AD3tjYiF27dknuOcVjVS0SOTOvkjYocT2Y4UqKjtMR+w6paynXdiXWKi1IVSFnIagUsD8OSureWJV1p6QtXu+JFkH12dnZpgoIMy2kZtWB0tqf/P4UbNlS3OJzeq18Vm8lYgckfBjAqM4htdoB8GtwM/8Jj6kTh5DA8fv9iqryBj9rfWyJ0WZeOXO+WRaM8Gsk9R1S11Ku7bwYUSuolMDi5qLhWBkHFf4c8WJT7t5EF+cDzFuBa4l5MbuQJKuTrRha+9NPP2VAaLPo4uIKU11vLNeNUgoJHxchtNqprq5GeXm5qoBdvejdWNMul4bRq0Upc74VFgw93yHnitAqqLTCQlCpEGb2VamCpEaVLtALi9maTkZNfxIOaQigqKgSgHWbrtpdzFELJHxchlhHtXLiULqCEXrdbpeG0atFMdeDFRYMvd8h1nY77hGLE6zZ10HqObLapRWNHUUt3Y7a/qQkFlEMo9xVLMXdqYGET4xg18Qh9mCIvc6SS0MrSlxmVghRNd/Br/6iC6MJtd2ue2REeq2RAfRWXgex5yU6gNiqoFI7sw3ditL+ZIToNMJda/ciVQ8kfFyOnSszsQcjK+uQ6APDqktDDVKTAh+sa4UQVfodSoOhL7vsMpSXl1t6j4yMuzIi6Dscq66D3ARjpWsrHKeLGlaySHmU9ietolMoXgzQbrVx8iKVhI/LMXtlJrV3kNiDsX9/F9EHJj//B+ZcGlpQcj2tKBCm5DuUBkOnpKQAsNZ6aGT/1RL0LdW/rboOTp5gWIXFzCQ1/Ultm8TOV4/VxsmLVBI+MYBZD67c4CH2YHTpsl/ygXFzxVA7CoRJFVgMR80gaOU9Mrr/Kj1PaQtR8DUrroOTJ5hwWLKwsFKhPBqz+pPY+Z482UazqGYx7k4pJHxMhKUH3QzkBgWxByM3t1b2gXFrxVArYiOUXqPoz6m1LCgVVKyh9DyVWojM7qtOnmB4jHYzGondAbpWL4aizxcIIDwtXk5UuyGwnYSPSbBoSjUbocFM7MGQemDE9p1yulDkMfsctIortVt1SB2bZdRaUJRYiML3CgOM76tOt4IaUVvKDFgI0DWqWnJDQwPatGkj+B7vnhU63+CzEBQ/SkS1GwLbSfiYhBuKPKlBy4r45puvaLGJHusPjFMwY0dmua06AGfcP7nz5CcJuVi1ysoiXH75JgCAx+MxPMDYjfsmGS009FrVWYmfMqpashxi53v11evQtm2DYlHN+jMuBwkfixAz7YZH1zth0hBC7X49gHPP1e1IWRaOHTtm2X00200stQHqqlXlEectXCgO2LKlGEVFlfB6T2Dt2rWGW2/dsLKOxkihYYT7zCnxU0pjkuTeFzvfzp0POl5Uq4GEjwVIWUOiN6p0outL7X494dgRB+X22Cu9iFkWVq0qtyQuw6p4kPDzlLNYFhdXYMuWQVFHiLT6mGG9dVs/VCo0lDyjRrjPnBg/JReTJNeXpc7XjppQdkDCx2TUmnad6PrSumqyIw4qFmOv5FCyqtOT/h39XXLX1ax4ELHzVPKMFhVV/rohZKTAr6g4a/Uh5FEiNJQK33HjxoXe1+M+Y60wphRy56rkWkidr101oayGhI/JiFlDDhzIxU8//eKo/U3E0LpqsiMOitU0VjsRc6mo3RndaEuN0fEgYju/K3G/eL0nMHBgS6sP1dNRj5zQUCp8z5w5A0Cb+4zlwphSyJ2r0mvhhngxPZDwMRkxa8gbb1yN8Ch6J+xvEo3RaY1Wb3ZndxorSxgRAGq0pcaMwFOh81RqsSwqqkRFRTHz8SBOQEkpBKXCV+sO8XYWxtSK3LnKvS8Ub8kTfb5uDgkg4WMyQtYQjgN4k7kd6ZNqkOv8EyZMEE2hBJQ/HFaLEBbSWJ2CGenfZnyvVpRaLNVYNt08aWhBTW0p/rqpsV5osThbXRiTT2SpqYlDdXUC8vPPICcnAEB5f5DPvJR+X6kri+W6S0bgSuHz1FNP4ZFHHsGhQ4fQt29fLF++HBdddJGlbRCzhpw82RZvvPGHiM+yai63Kh7GDhHCShqrE1A7sRh1ba0MPFUa56Hkc1ZMGuHCSs9EahVqLCx8rRo1wpeFOkdy/X7Dhg2SCzyl/UHuXI24FqzWXTIK1wmftWvXYtasWXj22WdRVFSEpUuXYvjw4di9ezeysrIsa4dYPIHfn+KI9EnAuhgcO0SIU9JYWUHNYGrktTVrQvP5fBGlJABx9wu/Oavc53jMnjTChZXU8aMLgdothtR+t1rhq8R9ZiZy/V5ugaekgCGP3LkaFcPjVsu464TPkiVLcPPNN+PGG28EADz77LN477338MILL+Duu++2tC1CD7oT0yd5zIrBkRswoicoIwZwJ98Hu1A6sRh9bY2e0JRaZHg6duyo6LjRk4pZkwY/QUodHwAefrjS8a4JKeHLWiVxuX6vZ4EXvpD2+/1oamoCABw6lIDvv29GdfXG0DHE+vOECRNU33u3WsZdJXwaGxuxdetWzJ07N/RaXFwcSkpKUFFRIfg3p0+fxunTp0O/19fXm9I2p+9vYkYMjt/vByA/YETXOgKMGcBZMI+zjNY9vwB911bP9ypBqUVmzJgxyMnJ0RwIa/Skwbu3lFSU5oOwo8/p6NGjjos9EhO+LFYSl+r3ei2hGRkZ8Pl8WLt2LYDovtsLo0a9CwCi/VkqFlMMt1rGXSV8jh07hubm5hYrtI4dO+L7778X/JuFCxdiwYIFprfNyVVYzVi5hj/AgPqJUqubwI3bAJiF3j6r1VJj1bMi168zMzND36Hlu4ycNISsVCdPthE8fni9oehzCn/m7AhYVRL0rUb4sjheigs1/ZZQOWuf0YkzbrWMu0r4aGHu3LmYNWtW6Pf6+np07tzZlO9i8SFVghnmTqHBT2jAMNq95mQBagdqroORlhorrr/ZZny5SePYsWOKA5PFrFRAICR+PJ4A+vffiq1bB8iekx0Bq2qCvp30jKpZJBllZRbru9EY0Z/daBl3lfDJzMxEfHw8Dh8+HPH64cOH0alTJ8G/SU5ORnJyshXNcyxWmDuFBkGzUtxZGTC1wmqqtNNEpRX9WmrS+N//rcY77/RWleETvdIH4sBxAVx99Tr4/WkoLy9p8TfR52RXwKqaoG8nVQ+W6/d8YguPETFrYn033OLDv2ZEf7Y7cNxoXCV8kpKSUFhYiA8//BCjR48GAAQCAXz44YeYOXOmvY1zMGabO4UGwYKCvYpqYvCwNKGaCetbbuj9TitFnVVmfDFLppYMH6GVPj/RbdpUgugtNYTOye6AVfltF/ySf8/is251e8T67i+/tPpV/Orrz2bH2dmNq4QPAMyaNQsTJ07EhRdeiIsuughLly7FyZMnQ1leLMHqyj38+3nMCsgWGwTHjl0vWxMjGqdlrGjBrVtu+Hw+HD161PIYFDPM+EqeB63iQ2ylD3gEXR1jx76BPn12KTqGVQGrcududxyS0ZglIqL7blVV95D49XgCKCnZpNlC7jTrrVpcJ3xKS0tx9OhRzJ8/H4cOHcIFF1yADz74QHFKqlU4oTKmFZ1f3FfNiQ7Obpns9eKWLTeEngWpzCSj77MRZvzogoJdu07COec0oFOn4H5SiYmJ8Hq9IbeHVvEhttLv3PmA4PE6dz6o+BhWuTKUnrtbCueZOY7yfVdoAblpUwn69Nmp+b46VdQowXXCBzgbHMcyLFfGtNISJTYIdu58UHBwrqrq7prJvqX15mx9joSEBKSlpUW8H74idFNhsehn4e23RyLcZWP0uRm9AldaUHDmzJmhfZL0iA8xK5Wa49kZsKrk3Fnq30aMh2aLCCUWRKe6pczAlcLHSbD0gAPWx5BIDYLRgzMALF1axsy10orSayzEuHHjANgfp6EUJZMGD/8sRMepAJHnxsd31dXVhXbo5uEtK/yxhfqo0StwJQUFheJ29IgPISuV1PHGjBmDhIQErFu3TvIYViF37qz0b9Ys82LiRc6KNm7cOFdbcNRCwsdmWHnAeayKIVEaPzR16n+jqakJGzZsQHV1HlPXSitKrp3YdecneiviNPSudJUKvNLSUgBigbtBws+Nj+8Kv0b83yudkIzYI4tHrqCgVP9UKj6UrtbFjpeZmclcwKrUudsdh8TDmmVebCskOStatPU41iHhYzOsPOBCmBlDYvamhawHjocTLXKUXHez4zSMsPwpFdG8e0/o/gLCmUmRtWy4X3/MnZCkV//mPstiz0t0qrSWY4Qj9FwYtSGqGkFldxxSNCxZ5sWuNWv1dljeSJeEj82w9oDzKH3Q9QgMszYtZD3lO5xokVNSsgmbNpUoGmDNHOiMtvxpEXNAAAMHVqCoqFIy/gPw/Ppj7oSkZPUv1z/1WF2E+qra48n1d5/PF1poAMG4M+EtEtTvLK5EeNXV1YXccVZO5NGT9LffnsI55zQgOfkoAPYs82KY6b5UI2TUxL3ZMQaT8GEA1pQ6oOxBt0NgKLlWVu0qrxchccnX4Agn/LpHb8woNtAZ6a7Qa/lTs1pWcn+lXGL88c2ckKTOR679RscXGXk8cYtWCgCoil+Saq8arIhDkp6k96CgILg9CBCAGcUBw9vBqoVErZDRGvdmFSR8GIG1yphKzPZWCQy9+2uZtau8XsSK0Uldd6s3ZjTCxK92tSz3LIi5xHjMdhXLnY9c+42evIw6npRFq7i4whKLhx1xSMr3v+LAix8zXctqLCRWXS+tQoZVSxkJH5tgLdAwGi0uOLMEhp5VLcu1bsTEZbi7S+i6W7nq0zJwRe8iLieiExKUDUOXXXYZysvLBfsmPzlZ4So2KpaH1Tg0oclty5ZiyXMOr6Sup912Fs6T3//KA4+Hw9ix69C580FTXMtqhYXV10vteMBqDCsJH5twQmVMNS44swWGluvAUkCiEGLisn//r9Gnz04mXJ9qBy4h96eSjBMlz0L4+0KlDqy6Xlrj8sIXMaylSYcjZoksLv68RVFJAKiuzsOqVeWGtdvM8xVyJ3m9dQDkLYlAcAxp27bBtD6mZaFhZf9QOx6wGsNKwsdG9HRYs1aLSt1K4TVUWBUYcoOIUatUtShJ5bcidkcJagcusaDogoK9KCtbKhn7Ikd40C3ftvDjCLUpek+3cPTcc7maOXyhQrHvYi1NOhyxya2oqBJFRZURWyTwdbVYaLcc4u6k9hg1qp9gcLrSTT+Nei5ZtZDwaBEyLMawkvBxIGauFoUsUeGZHTzhhdCs8ONqEXpyg0h0GrBVq2sxa5+Sys1mtE+qNg2gfeBSagU00+0rl+qt555L1cxRuru43KLh2LFjllt+5SY3r1d4iwQWFjtSKHEnCe1/JXYdeIHrxI1z9aBlPGAthpWEjwMxe7Uo9xBHCy2zVylKs8fGjRuHtLS00KSt11phJkLXWOlkaSRKr62WgHKpiVHLpBEtGKUqN0fXtzGiEKcZAk1u0cCfg9UuL72Vlevq6mzpz0pQE5wudR3UCFw1sGghiYY1IaMWEj4Oxo5Vl9b6JXpQWlMm3ArFIzSIsJrlZQdKJ34l7ptw5CYXrZNG+Pcp/Xuj4s/MiMsTjisJIDEx8jvscB1JTW5yi51169YxUSdLCC1xKnKB/GLo3XzUqbCevEPCx8EY6WKSeoB5C4rW+iVaOnd4e8LdLmomMX6yDl/9s5zlxQJiolCtULErViE6o8zoxYHRE3m0VZKvQL1y5U2W9009lZUBgOOAqqruzGywHO46BoDjx48DMM6d1NDQgBUrVoR+ZylA3Wi0FMpkOXmHhI+DMTKtVknMkJzQuvHGy1RZBZS2J7xdQpNYVtYhNDUly07WToxLUIJRq04jRaHVsQo+nw9Hjx5tEYvGah2RcPr3/xpZWYewcuVNtvZNtZWVCwr2/hr8y8PWBsvCe7mlwOttuQFydHB6QkJChBs1fPNboGWWod6QA9YtJFqEDMtij4SPgzFqclH6AMsJLaN83mKurZMn2whOYvyEITdZO2ESVIva+KfosvJmWUYA62IVpISyFRV3jaCpKZmJvqlmsvrppwxIVRm3GrFxLHj/g9uahI8ReoPT+SxDI54d1i0kANtCRi0kfByOkZOL3ANsR8ZBtBCLnsQATvGAw3qqqBaUuhPC459mzpwJABFiwShRqLfKthaEhHJlZVGo5oyZFXe1En3+Tumb4e1mtc0t93I72z4zLGlGPTtuEhasQ8LHBRgVCKfkAbYy40BIiAUHWl78RIsg+a0QWE8V1YuSwG0hsWTUJGb3ynXbtn54++2RiOwX5lXc1Qp/nWpqarBhwwbH9M2MjAyUlpZi7dq1mtpsRbVqvXu5SYlyodhDVgUgIQ4JHwdilj9Y6QNsVXE9MSF29dXr0LZtAxITGyPiIsTaq6RgoBnttxqhnd5zcmoVZ68VF1e0qMzLQgCwUnihHC2GAfGKu0bec7WTevhmjoAz0pgBRMS6qGmzVdWq1ezlFp2tKCW8hNufh/R0nyNEK3EWEj4OxKxVtdwKTiilWc/3ySEmxMJX7UoGHLutEFYgvNP7ZYiOaxAiOh5i4MDPUVRU6ThRKLXSF5rsjLznSmOt5DaZZKVitxqUWpytqlbdMuMsAI8HgmOEmrhEufZLVSYn2IKEj0Mxa5K2o2CXGEpM6UotOE4WNUoQnvQ9AKTjGoTiISoqilFUVAkgKBJycnIccf3EVvp6JjulVhyltabs3mTSCPRanK3IrjRzLzex9peVLUV+/g+6206YDwkfogVGxAwZ5ctXuyeS2uO7BTnzvlhcg5JCg065jkIr/YEDK1pYr5SixooTjtqyAE65vjx6xZpV2ZXR45jQsevq6iSPIXQeatvPkrXOihgrJ0DChzAsZoh/qMJrfQDqfflKzf9OsUSoRcvgJFwIzxN6XyzY0m2BmUpiTpT2d6Uul8h97dxZKyoao2NwjOhzWgSGULX3aKLHKbn2hy/IWBISVsVYOQESPoQh5nax1bEWX74Tzf9GoTZWRCxwu6YmB5s2lcgGWzolm0gKpUJ53LhxyMrK0txvlGTMubFWlNGY1eeix43oys1A5Oa/0Zsvi93fmpqaiGrgcu23OiRAKVbFWDkBEj4EAP3mdqEYhwMHOkekFqtZ/bpR1ChBrZUhfLDnB3Kv9wTy839Anz47FWWvOT3TzQqhrNR95UQLmh3uD7My2LTs5QZI39/wzW55nJKBJ4ScVTJ8iyAety00SfgQhhOZJRRJLKx+jZxIlFgZ+GNlZ2erEgBusqqZ2U417iunWdC0ZqMZgVH1x/Si5P4KPYestF8tclbJVavKXe8CI+FDGErLLKFIWF/96sXIiUTL3llqBia3DGJmIzdRRK+QnWQN0BLHpBVW96OSu79qn0PWraRSVslYcYGR8CEMRa6WCsurXyMwaiJRa452knXGaci5r4RcIWLWgIaGBvMaagBKLIxaYTV2T+r+yj2Hl1xyCdq3bx/6u4SEBDQ2NqK2tpbZZ1LMKglAV2C+kzLGSPgQhiI2iIwd+wYz2wVYidaJRG4VKjTZajVFO2nAsgMl7iul9/nll19m1mWgxcKoFhbPW+r+VlfnST6Hmzdvljw2q8+kkFVS7lzl2muXy1QLJHwIQxEbRPr02WV30zSjdRDSM5FoCZLVYopmbcBiSYQp3epE7D4rLWLIAm5Iw1fad/jPhVtNxe6v0ufQyHtt1TMZbZXUE5ivtYCnXZDwIQxHaYyD2b5wIyZRrYOQ3olEahVqpDvCyhgPOVgTYVKumWPHjmHDhg2i9/mXX1q1KCdgtPXESJyehq+070yYMAEvv/yy4HtC7kkl1j6jLWVmiQi58daowHwrLId6IeFDGILSWiqlpaXwer2mr9yNmkS1CgOtE4mclcHsQcXMGA857BZhWoSy2H3mRQ//O+vWEyem4YejtE8ojbG65JJLQm4sqYWc2ZYyI593MSHPi3hAf2C+UyyHJHwIQ2AtcNGsVZNSYaB2IgmfdEtLSyMKrx0/fhybN//gqEHWCKwUYVqFsvBWIS23DmHdeuK0NHw5lPYdsc9lZWVFfE5sIWempcyM513J+KsnTd8plkMSPoRhsBC0JoRRE7qa46iZSJROuk4bZKUQsq6Ex1xYLcK0WpuE7nNJyaYIiw/ArvVEaRwT6yna4SjtO1Kf83q9mDlzJo4ePdqi+jPAL0Y2m2ops0pEGFlmwCmWQxI+hKsxakJXehwtE4nSSZflQVaNm0hO6LFgLldjbRK6z61bn3KE9YQ1S61elPYdpZ8L39JCCDMtZVaJCCP7gFMshyR8iBAHDwJ79gA9egC5uXa3xhiMWjUpPY4Rg4jYpMvqIKvUYsXvlSUn9Kw2l/t8PtXWJrmYNicVMTRa1NiZmae07yj5nFJ3uVn32koRYeT9cELfJ+ET4/CD1Jo1rTFnjheBgAdxcRwWL/Zj/PhfHLXaE8KoVZOa45i5J5RZ7gg9g6xSixW/E/a4ceMiXo+eUKw0lwvtWK3EEiAkcKM3vRSLlXCS20gtdmfmKe07avuY3HNp1r12gogAlCe3sNL3SfjEMPwg5fenYOnSMnCcBwAQCHgwe3YqfvzxBXi9JyxJHw5fJdbUxKG6OgH5+WeQkxMAoH2VaNSqyYrVl9ykO2bMGGRmZgr+rdbrY0aMh5yb6MyZM6H/i00oVq109WTjRV9vtXuluRG7M/OUPqdqnmetz6XWex2deSYmIliqAu40lykJnxiG76Ryg73ZNVzCV4lSKyutAkzPqsnK4E+5+5CZmalqx2klGD1gRW5QG8DAgRUoKqpUNaFkZR1C+/bHMWXK82hqSrI00DYx8TSAAABt1iZWBnZWsCozT+lz2qZNG0WfS0pKUjw+Gv1chrfRiM+ZBUvFRtVCwoewPRKff3jkVlZqBJhRplczVzLRFWTtug9GDU4tN6iNw5Ytg1BRUSwYJyM2oTz//E0Azgrf/PwfAABjxoxBTk6OaYMpL9qCoocD4LE0ONPJE4kQVmbmqXlOlX6utrYWgP3jo521tcSw26WpFxI+BDOR+EYGtRopWMx4cIUGDlbug1bENqgVi5MRroHDgbe2RP9dZmamaYNoS9EWFD1TpjyP3Nza0OfMsjY5fSKJRukmu0aKOaXHUft9dj6XrNXW4rHbpakXEj42wlIWFQtBdHIrK7/fH3pdSRwQyxOE2IDg5FoqwkImiJCAFZpQ7Cp+Jia6m5qC19xsa5PTJ5Jo1Gyy6wQxZ8f4yEJZB6WwaJWSgoSPTaxcCUydCgQCQFwcsGIFMGWKvW3SU7HTqO+XWlnxGTNmxAHZTfTAwZ8zHzjpBDcHf//efpt3F50lXMAmJiaGXg+fUBITG7Fy5U22uBTkRLeZ1iY3osY9xKqYsztTSYsF3A53KatWKSlI+NjAwYNnRQ8Q/HfaNGD4cPstP2rRarUKf0B37qxDdXUe0tN9sisrI+OAWEFq4DAjoNlohAJLKyuLUFFRLChg+aq4/L0K3yvILpcCa25Gp62go2HtempBibu8oaEBjY2NoXigaPQIDS3b3ljtLnWSVSocEj42sGfPWdHD09wM7N3rDOGjt/aPcBbXbyImfbGHxil7wShFbuCoq6tjXvjwE8TRo0exdu1aeL0ncPnlm1BUVCnqsgvvH3Zum2Dld0utxu3crsNIpK4ngNACxynPqtw4tmLFCtljaBUaasWjHe5Sp47HJHxsoEePoHsrXPzExwPdu1vbDi17tBhR+0dpFpcQdmdYGI3cwLFu3TpHuO8yMjI0B5TbWQPEqu9WuhpXGhRsRhuNIPx68pY8r/eEo8WcGGYJDaPEuBVWQ6eOxyR8LMbn8yE+vhGLF7fGXXd50dzsQXw8h0WL/IiP/wU+n3UDmJZB38jaP1pWC24woYejZOBwkvtOa9+1c9sEK543pfdQTVBwNKwI5Og2ONUdohajhIYRYtxIoSm1obBTx2MSPhYSveq77baUkJL/+ecT4K2megcwNXE3VvmftRyjd+/h8Puz0KXLabRtexzl5eUA2MhAMwqhgaOkZJOjz8lunJwarue5YlUgO9UdogajLVp6+qWRQlPJsyQ1HrNUXTocEj4WEj0wiWUJ6BnArMoWM0LpSx1j27Z+WLDgoqiBJPJvnTxoRpuzf/mlFcrLS8Bxcdi0qQStW59yvCvALpyQGm7HRrR2YZY7hJWCj1qFhlntN1JoKn1GxMbjl19+mckFBgkfF2FktpgSq5ERlhehY+hZsezcWYfPP08yZJ8vM8nIyEBpaSnWrl0Lvz8FmzaVQKxwn1rMnhBYmHCUBgoD7GVISVkHxowZg6lTMzF//lHs25eAvLwzSErKx4YNZ0Uwa+cjBi/u5cSclsBxlqx6WtPOzWq/mXE3Wvoei5ZIEj4uwefz4YsvgEAg8iFpbgYqK31o3Vq5+VSN1cgIy0v0MbSuWIJWop6Oqe/j9XoBGLtCM3tCYGHCUdoGgL0MKTlRz5cvyM4GCguDf1NbezYLgrXzkSI6ViVczOXkDAAwQLNIZsmqp0VomNl+s6yGcn3PKYIcIOHjCsIzrTyeshYP4Oefv4idO+V3Wff5fNi37wymTs1CIMBnawHTpnG44IIjyMuzprvIDSThuyHzmSNOru9j5Aot+jzFBiOt18Ps42tpgxgsBtXqEbksno8c4eNNuJhzE0YIDSNEg5mlGeT6npMEOUDCxxXwE4HcAyg1YfDiqbo6D4HAxIj3mps9WL78feTn/4DS0lLd7ZV78OTOQ6ion5MDKO1aoemFlcFObNJgsU/oEbksng8r2GFtMEpoGPUcmVmaQarvAXCcICfh4zK0xt3wD4vcwMxxnKLjST3sYg9oeAVftefhxHoSdq7Q9MKK9UFq0mCpTxgR78LS+URjZ9yXXQLcCKFh9HNk1jWW6ntOFOQkfFyInrgbuYE5LS3NkFWFkgdUzXk4MRtGz8ApNtHwgb1mD0YsDHZykwZLfUJPvIuZQcJGYGfcl90CXO/5sPAcKUGu77EqyMUg4WMhWiol24FYptVPP2WgpiYOhYVsBQnzWFHfx+iVrVkBxmZbB1iwPiiZNOzY7V5JHykszFAc72JmkLAR2BFoXFdXB8A5wkEMM54jI8coJVZplhYYSiHhYyF2luZXS7i1JdyU/NJLnGm1gZKSkhT56qUmLDPr+0QLDrG2mp1BpiTA2OzBiIXBTmzSSEyMvD433nhZKBiex6znzCzrhx1BwiyULRDC5/Nh3bp1ANgQ4How+jkyuv9lZGRg3LhxoevNt+unnzIifrdjgaEHEj4Ww4KoUUO0KTkQ8ERkeRlxPuGbnj7xxB2hTU/nz/8RY8YcR0JCAtLS0gDYKwzDJwGpuIKamhrRCcPo9ku1w2wLmN0VtKMnDYADx8Vh5cqbbNvhnqU0az2omUCjMTvQOPzaser+k8Os+D4z+h8/9gLS442VCwy9kPAhJBEyJYdneem1bkhterpgQQ78/nXwesVT8e1wH8rFFfAB2mZbhJTEN4hZwLRej+i/Ezu+3+8Pfd7ogS960sjKOoTnn78JRhWAJLRPoHYEGhcU7MXYsesBcOjc+WDonpeWltpmkVJiKbPC+m+kCFVag8oJkPBxAWZO/nKmZL0rV72bntrhPlQSVyA1ARi12pdrR3i9o3D0XI/w611XVxcygUezdu3a0P+Ndv3xbaipqcGGDRvQ1JQMXvTwsBLn4aSibnqxI9BY6jnjC4RaCQsFPnmMFqFOj6cKh4SPCzBi8hcTRVbFcujx1WdkZESssmpq4lBdnRDatqKxsRE+n8+wgUaurVZNAHLtMGsFpvY6muHWycjIUFyCwS5YqXNkBEoEnNUTo90ZXUKw4uo049qw+pxpQbHwqa+vV3zQ1NRUTY0htKN3Uo8WT3pq6mhBj8AKX2VJTTZGrbKE2hq+o7pVEwALAcbh2GXdYO06ANZNylYEICsVcFZPjG6yQBiNkdeG9XIKWlAsfNLS0uDxeCQ/w3EcPB4PmpubdTeMsB6pAdLMbCkevcUXrdy2QmpHdSsnALsDjHnssG6YWQBSL1ZMyla4VZQIOLsmRidYIMQWA+Eb6ZoRB2fktZErp1BX1wMejweNjY2ora1t8fcsBjgrFj6bN282sx0EAUCfwLJyBSi3o7qZFgilAcZWTfh2uRyEXLx+vx9NTU2h3xMSEiIGZKsGYSsmZSvcKkqeKbvqDLFo6QtHajHAW9N5jI75MfraiJVTCC8tIAVrm0QrFj5Dhgwxsx0EoRulk41UPBAgPjmGCwm5CUHKAhG+2gs/ttKBgbV6UHa6HMLP0efzRQRVi2HmIGynW0CNq1HORcZn5Sl9pqysM8SypY9H7WLAKGu0mmtjhJuUlZgmtWgObq6rq8PKlSuxa9cuAEDv3r0xefJkUyLp9+3bh/vvvx8fffQRDh06hJycHEyYMAHz5s2LuNE7duzAjBkz8OWXX6JDhw649dZbMWfOHMPbQ4hz8CCwZw/QoweQm6v8PSNQssrREw+UkZGB0tJSrF27VtGEIGaJWbWqXHeaO0urJ1ZcDizsHG+X9UONq1GpiwxgM66DNeEvhF2LAaXXBgAz2Wd2oEn4fPXVVxg+fDhat26Niy66CACwZMkSPPjgg9i4cSP69+9vaCO///57BAIBPPfcc+jevTt27tyJm2++GSdPnsSjjz4KIBh8ffnll6OkpATPPvssvv32W0yePBlpaWmYOnWqoe2JBdSkyIcXIJwzxxsqQLh4sR/jx/+CpKQkvPVWBqZOBQIBIC4OoerPRqfiy8W86I0H4oW9VlOyFWnuVsOiy8HOjCqrqyybZV0YN25cqHgda9tksD4ZS1UVr67OMzUBQMm1EYrFEaKmpkbxMQHnlG/QJHzuuOMOXHXVVfjLX/6ChITgIc6cOYObbroJZWVl+Oc//2loI0eMGIERI0aEfu/WrRt2796NZ555JiR8XnnlFTQ2NuKFF15AUlISevfuje3bt2PJkiVMCx+zrSBaUbtyECpAOHt2Kn788QUACFVkDr6HiOrPRq/elMQJGbEikxJZ4TV0+Aw5FtNv9cCqy8Ft11kOvX1ZbLJKS0sLlUOwapsMpyPl6jz//B1YufImR5U34GORlFh+nFS+QbPFJ1z0AMEgwjlz5uDCCy80rHFS+P1+pKenh36vqKjA4MGDIwbZ4cOHY9GiRTh+/Djat29vSbvUsHIlBK0grKBm5SA1+AKekOjhia7+bHXFT6PcM2IiS6iGjtvSb1l1ObjtOsuhpy87abJiBbnYmAkTJqBNmzYAgJkzd+OVVyqRmNgYEj0Ae2JczlIjZyV02mJDk/BJTU3F/v37ce6550a8fuDAAaSkpBjSMCn27t2L5cuXh6w9AHDo0CHk5+dHfK5jx46h98SEz+nTp3H69OnQ72rqFenh4MGzogfgrSDA8OHWW36MsDrJDb5mVn9W4y7jv0ure0aPa46VWBgjYdHl4MbrLIXWvuy0yYoFtJQQyM//AdXVecyKcSPEr9xiIzqhw+4YLE3Cp7S0FFOmTMGjjz6KgQMHAgA+//xzzJ49G9dee63i49x9991YtGiR5Gd27doVIbB+/PFHjBgxAn/4wx9w8803a2l+BAsXLsSCBQt0H0cNPp8PX3wBBAKRN765Gais9OH48TgcO9beEveXUVYnucHXzBgQNZaHcN+2lho4eqwcLMbCuJFYuc56XY1OtIzZvWO81iwmVsW4mPjNyjqE3FxlcUCA/PlFp+8D9gZOaxI+jz76KDweD2644QacOXMGAJCYmIhbbrkFDz/8sOLj3HnnnZg0aZLkZ7p16xb6f01NDS655BIMHDgQK1asiPhcp06dcPjw4YjX+N87deokevy5c+di1qxZod/r6+vRuXNnpaegmvBNOT2eshYd5bnntmLTphJwnLnuL5/Ph337zmDq1CzR2Bu1nVJq8DW70J6Stvp8vtDKI9y0m5//g+HfJQYrBQetwq6JKhaus15XI6uTsRgs7YMlx9lxJlgWgMXsOEBc/D7//E246qqzlp9jx44J9iWl5RuEsDOZQ5PwSUpKwhNPPIGFCxeiqqoKAFBQUBDyayqlQ4cO6NChg6LP/vjjj7jkkktQWFiIVatWIS4u8mYVFxdj3rx5aGpqQmJiIgCgvLwcPXv2lIzvSU5ORnJysqp260HK1VJSsulX0RM8t0AAmDqVw5kzdRg4EDjvPGPilPgBpLo6D4HAxIj39O68LhVYbEX1ZzGUprFbgZ3XwUqsnqhYK+xoBXqum9MsYyzWjBGLjRGycPTv/zXKyn6Dn35KZyY7Tkj8Bol0e4oFOQuVb/jmm5PYufMtZvsRoHOT0jZt2uC8884zqi2i/Pjjjxg6dCi6du2KRx99FEePHg29x1tzxo8fjwULFmDKlCm46667sHPnTjzxxBN4/PHHTW+fVqJXpULqOxDwYPr09vB4Anj88Z9x++3tdH+v0s0dnZpeLYTSNHYeIydHo1P2nYIRdXXUWIxYDbZmDVaz8ZyGlgXUuee2Q3a2+v5ntOVUzFITjpDbU6gN0eUbcnJqceDA2b9hMcVdk/A5deoUli9fjs2bN+PIkSMI8BG6v7Jt2zZDGsdTXl6OvXv3Yu/evciNCnrhOA5AsL7Kxo0bMWPGDBQWFiIzMxPz589nOpUdaLkqFVbfwU44a1Zb/Pa3hzW5ocS+20krPiOQi2sYM2YMcnJyDJ0caULWNklosRgZeQ3tjicxC7f0RzsnVCsDw82wnPJ9IFinZwOysg7h+edvAr8FD2CM29Nu67oYmoTPlClTsHHjRlx99dW46KKLZDcv1cukSZNkY4EA4Pzzz8enn35qalvMREp9A0Hrjx43lBB6YyGctiqUs3JlZmaaMuCzPomYidZJws5KzE6KJ9GCE9scjt0TqtwCykhRZpaLL7wP5ObW4qqrIhfBxcUVqo4XDctZg5qEz7vvvou///3vGDRokNHtiXl4IXLgQC7eeONqiClwIwd7PTEnUqtHv9+vaO8kK8VTLFq57MaI7CGpic7v9xteB4rFeBIiCAsTqtQCym5RpoZoy09BwV5UVhZhy5ZibNkyCBUVxZrbz3LWoCbhc84551hSrydWCQqRXWhsdMYELbZ6zM7OZtKkHgsZPyyhN3tIbqJbu3at6ZYXFuMUYhU7J1S5LCYAposyI/qilBu3oqIY/IJbT/tZzhrUJHwee+wx3HXXXXj22WfRtWtXo9tE/IobJmhWTeqxklnFAnqtbEomOjMtL05awccCdk6oYpvQpqYewZYtX5teqNCIvijlxjVCVCpNcbczTEKT8Lnwwgtx6tQpdOvWDW3atAmlj/P89JP9io5V1N5svRM0q3uBEbGFHhEvnHLLoaYmR3UNJrWw4FYhgrAyoQptQltb24gtW8wVZVr7YrR1J7qKcjhGtF9MHLKSwg9oFD7XXnstfvzxRzz00EPo2LGj6cHNbkIoJobfxNIo5HZLb2hoUHQcpwUuSxGrKeV2YlRdHa/3BEpKNqG8/DIA/FjjwaZNJejTZ6epAoTlOAU3oKdcAUsTqhWiTEtfVBKkH+06M6L9QuKQJTQJny1btqCiogJ9+/Y1uj0xgVj1SyMIrwwttlu613siYiM9IexW5EbjlhReJ2HkNc/JqcVZ0RPECgGiZwXs1nR4o9BbroClCdUKUaalL8q5gMVcZwUFe9Gnz2j07dvWdlFpBpqEz7nnnotffvnF6LbELOEPjV7rD9/R5VYHbdq0sXxHdLtxy0PrJPRc8/AFgV0CRGt8ktvT4Y3AbZlzZokys6xJcq6zK65ojezsjsacBGNoEj4PP/ww7rzzTjz44IM477zzWsT4pKamGtK4WIJ/aIxyybAcUU8QSsjIyMC4ceOwbt06ywWI3urGdtYgciqUOSeMkdak8Gscy25cTcJnxIgRAIBLL7004nWO4+DxeNDc3Ky/ZTGKUe4BqldDuIG0tLTQ/7UESGsVIEa66SgrTB6rr5HT3JBGWJOir3FJyaaYXRxrEj6bN282uh0xhxUPnhvS4YnYxsiNR9VOrkZMfJQVJo/V1ygW3ZBC13jTppKIjbFjaXGsSfgMGTJE0ef++Mc/4r777kNmZqaWr3Et0Q+e2CrUiAeP6tUQTsYoy4tdAiSW3QlKsfoasR5bZMaiWOwa5+TUoKxsacxtUqtrd3Y5Xn75ZfzpT38i4RNFeKeWWoWS/5+Qw2kmey0Y0X67BAjF2slj9zViKbbILGuU1DXmF8djxowJzdVuGDekMFX48DunE8KQGZzQg5WWQ6dj1+TKUqwdqyLZzmvEWvyV0dYoqYywkpJNEdc4MzPTtExf1vqeqcKHkMaMVSgV6mPvITMLshwqx87JlYVYOxbjWvRmzunFCQtPvdaojIwMlJaWYu3atejf/2v88ksrlJeXhGJ8Wrc+ZbrQY7HvkfCxETNWobFeqC8WrSAsDuAsik8rBYiRQdliqLnGLMa12D1WsR5/ZZQ1yuv1AgiOE5s2lcCIDUjVwGLfI+FjEeGDFL9XilmrULdM6FqIRSsIawM4S+LTCgEihNmTut5VNCtxLXaOVXbHFklhxmKGlXGChb5HwscCpAYpFszgboRFK4hZsDaAsyQ+7bQqmDmp61lFsxbXYhcsxV9FIydSpDYaFevPLIwTrPQ91cLnzJkzeOihhzB58mTkymz3PWHCBKriDPlBilLOjYeV1Y0VsDqAsyI+Y8ECqnQVzco9sRO7Y4uUICdS5LY1ErL02T1OsNT3VAufhIQEPPLII7jhhhtkP/vMM89oahQRxM0ByGbDwurGSli0HMaS+LQTNatouif2xxYpQa9ICT83VoQeS31Pk6tr2LBh+OSTT5CXl2dwc2KbWKqjYDZ2r27swAjLoZFBybEmPu1A7Sqa7kkQVsdWpSKFR4mljxWhx1Lf0yR8rrjiCtx999349ttvUVhYiLZt20a8f9VVVxnSOLci1lnNrKNgFSxl87BoBTESo0sXGB2UHIvi02rUrqLpnrCNnEg5duxYyM2lxtLHgtBjqe9pEj5//OMfAQBLlixp8R5tUioNK8FdZsBivQY3x08ZvZIzIyjZ7eLTbpSuollxdxDyKN1l3Yp4GSMWsiz2PU3CJxAIGN2OmICl4C4zYKFeg5sKONplPTO6n7pZfNqN0lU0K+4OwhisiJcxaiHLYt/TJHz++te/orS0FMnJyRGvNzY24rXXXlMU+ByLsBTcZQV21Gtg8SHTgp3WM7391E3ik1W0rKJZ7/OEcqyIl4keQ8XGcyULWdb6nibhc+ONN2LEiBHIysqKeP3EiRO48cYbSfhEwQ8+cp3VTROBnS491h4yLRg56KhF76DqFvHJMnSNYxur42XcFqKhSfhwHAePx9Pi9YMHD4bKYxNnCR+kzjmnHnfd5UVzswfx8RwWLarH+PHXah6ktLpDzHSjuN2lZzVWDzpGDKo04ZoPXePYw4x4GbG5gC+S6MbxXJXw6devHzweDzweDy699FIkJJz98+bmZlRXV2PEiBGGN9IN8IPUnXcCpaXA3r1A9+4e5OamAUjTdEyt7hCz3Six5tIzE7sGHQpKJgj2MNrSp2QucON4rkr4jB49GgCwfft2DB8+HO3atQu9l5SUhLy8PIwdO9bQBrqR3Nzgj160BhObEYTs8/lCKwSW6jXoxe70fDsHHQpKJgj2MHK8UeJSd9N4zqNK+Pz5z38GAOTl5aG0tBStWrUypVGEs4heNbBUr0EN0SKnrq4O69atk/07M9PzrRx0WAtKNlJ02i1gCe3QvbMGMZe6U8dzKTTF+EycOBFAUC0eOXKkRXp7ly5d9LeMMIzoDe2kNrjTgtCgxEq9BqUodf8JodYypmYQt3LQYSlg1kh3LIv1pQhl2HHvYlFoybnU3eb61iR89uzZg8mTJ2PLli0Rr/NBz1TAkC3kNrQzi2hXyZgxY5CTk8PkoKFEvOhNz1cziIdj5aDDyr0xMqvNzgw5Qh9W37tYFclKXOpirm8WF7JyaBI+kyZNQkJCAt59911kZ2cLZngRzsGqejuZmZmOHSyMyKxSE1sVPZi4adBRi5FZbW5Ly40lrLh3bhHJaq1Wci718H0kpY7jFDQJn+3bt2Pr1q0499xzjW4PoQMtAsaMwcSOwoVGE34OAEzJrJK6Tiy5nezEyKw2N6bluo3oCdvOlGqnimQ1e+7xyLnU3bCPZDiahE+vXr0MjxMh9KHlITVjMHHqYBFO9DkUF1cYnlml5Dq5XdQoQc4EHz4OyQlBN6blugkpN5PV987JIlnrnntKXepuiIHSJHwWLVqEOXPm4KGHHsJ5552HxMTEiPdTU1MNaRwhDe/m0PqQyg0mat0oTh4seITOoaKiGEAAgDGZVW64TlYhZ4KPjl+Tir2wMy3XDZOF2Ui5may+d0YJLTvvu5JxRq1LXY01ieX+rEn4lJSUAACGDRsWEd9Dwc3WwrtDNm8GHn9c/UOanu5DXByHQODsPYyP53DrrVcgLy9Bdcd1w4pa7BwGDvwcFRXFhmRWueE6WYWYCR4AqqvzVMVe2JWWG6sBszxaJn8hS4WV984IoVVVVYWXX3459LvVIkHJOKPWpa7VmsQamoTP5s2bjW4HoZGMjAxcfDEQFweEVxWIj+dkH1Kv9wQWL/bjrrvS0NwMxMcDzz3nQWFhR1VtULoXWUNDA2prayWPY/fAL3YORUWVKCqqNCQ9340Fwcwk2gRfVdUdS5eWaXKn2pGW65aAWS1oiTcRs1SUlS1FWdlSS+6dXpHs8/kiRI8dIkHpOKNlzHW61VqT8BkyZAg+/fRTPPfcc6iqqsIbb7yBc845By+99BLy8/ONbiMhQ24usGIFMG0aQgJm0SI/fv75bAcUG3DGj/8FpaVpv26hoa2itJK9yBoaGiIGAjHsWvXy4kVuwJs69b8j9qPTItbcWBDMaMRM8FoGXCMz5PS6LqyKgWPFtabFQiBlqcjP/8Gy7EY9Ijn8fPz+FLz99kjwrnKrRIKZ44zTrdaahM/69etx/fXX47rrrsPXX3+N06dPAwD8fj8eeugh/P3vfze0kYQ8U6YAw4cjJGBat24Gv9CSGnCCA6D+LTTk9iKTsvSEY9eqN9rkO3/+Uezbl4C8vDPIyRkAYIDuycKMDQbdSvT9OHbsGDZs2KBpwDUqQ05vfINVq2QWXWtqzl3OUnHJJZegffv2ofcSExPR2NgIn8+n+3zMKCNRWVmE8PhAwLp4IbMsnE63WmsSPg888ACeffZZ3HDDDXjttddCrw8aNAgPPPCAYY0j1BG5B1hwsN+37wzuuy8LHBeM4+G4OLz33ijMn1+kKY5HfTucQ/i1yM4GCguNPz6lqCtH6DpoHXCNuKZ64xusWiWz6FpTc+5ylorNmzebFi9j9DPq96f8mhwRjTqRoMVlyGPGnntOt1prEj67d+/G4MGDW7zu9XpRV1ent02EQWRkZGDHjsjYHwBobvbgxImOoPnVekjU6IOFAVer5caOVTIr5SXUnruUpcLseBkjn1EhwQcAAwdWaHadyZ2/VXvuOXkbC03Cp1OnTti7dy/y8vIiXv/ss8/QrVs3I9pFGESPHkKBz0F3GEE4EakBV6i+mNFWNK2WG6tFG0sBqErOXYmbiaVzUoJUsoQWlJy/lZZlM6xJVqBJ+Nx88824/fbb8cILL8Dj8aCmpgYVFRX405/+hHvuucfoNhI6EAp8fu45Z7qiiNhFaeyF2L50Rsaz6LHcWLlKZi0AVe7cpSZsPTFeSjEjINxosav0/M2yLFtlTTIbTcLn7rvvRiAQwKWXXoqGhgYMHjwYycnJ+NOf/oRbb73V6DYSOokOfGZB9LhhWwvCOsQmRX5ClMPIeBa1k5ld+66xGIAqZyGQm7DNOiczC/PJCT41993ue+qWOEVNwsfj8WDevHmYPXs29u7di59//hm9evVCu3btjG4fEYXWVQlLAcesxB0Q+rEybVrJcawS1GosN3ZNFizEQxltITDrnIwuzKdU7E6YMEHVfWfhnrIuapSgSfjwJCUloVevXka1hZCBxTRVpSjdXoN1EylxFtb6o9WCWk18g13Po90BqGaIPjPPyagYIjPFrt331A3oEj6EtShdbbBYAVZue41BgyZi6FB3rCZiBZb6oxVBr06Jb7DLtSaGGc+0WUG1RsYQmTmWOTWomBVI+BCWIb69BlBUlEHp9WGwUnlXDXbGbVkRyOuU+AantFMNVolOu2NoxHCK6HYKJHwIS6EsM3lYcyEpwe64LasmLLuvt1JBbHc7jcYqMcdCDI0QbhSzdkLCh7AcFrPMWIIlF5ISWKitwuqEZSROFMRGYtU5sRpD48Z7ahckfFxIdBE3FlcCLGWZEfqws15MLO1/xuJWFG6FYmjkOXgQ2LMnWCTXaWM5CR8XIlTXxK2rwFiA9ZpHdsZFxKoLwG7XIkuEu/9qauJQXZ2A/PwzyMkJBhIquf8UQ6MM/lqvWdMac+Z4EQh4EBfHYfFiP8aP/8UxzxoJnxiBVoHOxAkTnN1uJicMtEbCgmuRFcLdf1LPitzCL1YFtBr4a+33p2Dp0rLQxteBgAezZ6fixx9fgNd7whGLbBI+DiLWVxuxBusTXCy5mViCta0o7IQXKnLPipKFH+uTtd3w11Cu/zlhkU3Cx0EIrUqUluwnnAfrExytku2B1ZRrO2H9WXETbuh/JHwcBk0isYMTBhjqj9Zjt2sxHFbqTTnhWXELLPU/rZDwIQjG4F1DcgMMuZBiFxZSrs3c2FMtbpiMnQQL/U8PJHwIgjGiXUjz5x/Fvn0JyMs7g5ycAQAGkAspBmFtKwqjN/bUi9RkzJf40Jr1ZTRGZKLZjZNT/kn4EASDhA962dlAYaGNjSGYgNWYKpaC8MUm4w0bNujK+jISozLRCO2Q8HE4VH+CIGIHFidCJwQWG5H1ZRRGZqIR2iDh42CClTMzMGbMbcjMPCX6OSeYTQmCcCZ2BhYrXdCxKM5YbJMUblpkk/BxKCtXAlOnBnc5j4trjxUrgntgycFKFgZBEOZjxfNuZ2CxnPuPL/fBYtYXi22SglVXqxZI+DiQgwfPih4g+O+0acGNP6X2THHqJock1ghCPVZmXdmZ5aOk7SxmfbHYJjncMs6S8HEge/acFT08zc3B3c6lhI/Tdv0GnCvWCMJurM66Yj3Lh8UUbBbbFAuQ8HEgPXoAcXGR4ic+Huje3b42mYUTxRpBsIRZWVdOjPlgUZyx2Ca34zjhc/r0aRQVFeGbb77B119/jQsuuCD03o4dOzBjxgx8+eWX6NChA2699VbMmTPHvsaaRG4usGJF0L3V3BwUPc89J23tIQjCeJzghjUriNZNMR9EbOE44TNnzhzk5OTgm2++iXi9vr4el19+OUpKSvDss8/i22+/xeTJk5GWloapU6fa1FrzmDIlGNOzd2/Q0kOixxk4YaIklKHUDTtu3DikpaUJvmfF/dYbROvkPsuiVYrFNsUajhI+77//PjZu3Ij169fj/fffj3jvlVdeQWNjI1544QUkJSWhd+/e2L59O5YsWeJK4QMExQ4JHudA8UruIloMiAUPr1u3TvI4Zt9vPUG0LG1LoQUWrVJ62hQsYRIMd6CxXzuOET6HDx/GzTffjLfeegtt2rRp8X5FRQUGDx4coZKHDx+ORYsW4fjx42jfvr3gcU+fPo3Tp0+Hfq+vrze+8RZCDwa7ULySe5EKHuYREw1W3G+tQbSsbUuhBVYFmVJ4i9uaNa0xZ44XgYAHcXEcFi/2Y/z4X5i2uLGKI4QPx3GYNGkSpk+fjgsvvBD79u1r8ZlDhw4hPz8/4rWOHTuG3hMTPgsXLsSCBQsMb7MdRNb2geLaPoQzcLLLwc0oCR5WIozMRk8QLUvbUsQSvMXN70/B0qVl4DgPACAQ8GD27FT8+OML8HpPMGtxYxVbhc/dd9+NRYsWSX5m165d2LhxI06cOIG5c+ca3oa5c+di1qxZod/r6+vRuXNnw7/HbJTU9iHfsnpYERvkJmMXueBhu0SDkc+706oMOwkpKz0/9shdf5Ytbixiq/C58847MWnSJMnPdOvWDR999BEqKiqQnJwc8d6FF16I6667Di+++CI6deqEw4cPR7zP/96pUyfR4ycnJ7c4rhNRUtuHRX+3HHaKNZbEBrnJ2EUueNgu0WDk8253lWE37GYejlr3ld3X323YKnw6dOiADh06yH5u2bJleOCBB0K/19TUYPjw4Vi7di2KiooAAMXFxZg3bx6ampqQmJgIACgvL0fPnj1F3VxuQmltHycNDkDLwdvKQY/EBqEEueBhOycto54LO6sMu203czXuKx4nVnlmGUfE+HTp0iXi93bt2gEACgoKkPurOWP8+PFYsGABpkyZgrvuugs7d+7EE088gccff9zy9tqBm2v78IOZ22KYxIJdCechFTysdNJixa0qhl1Vht22m7lW9xVVeTYORwgfJXi9XmzcuBEzZsxAYWEhMjMzMX/+fNemsgvh5to+WvcnYxW9wa4kmuwn2r0qFTwsN2mx5FaVws4qw26LM9JiCaQqz8bgSOGTl5cHjuNavH7++efj008/taFF7ODW2j5a9ydjCX6ilFu5ysUr2ZEhxLo1wg7kYmj8fj/Wrl0b+l1s0kpKSlJcE8hqqwZLCRFui3Mh95V9OFL4ELGHG/Yn4yfKzZuBxx9vuXIdNGgihg6VjsuwI0PIKdYIO5A63+zsbMXBxbW1taHXWEh952EpIcKNQoHcV/ZAwodwBCzEMBnhXsrIyMDFFwuLuKKiDMjNH3aY+ynIWztqBQGL9XJYErNuFApS7iuWLG5ugoRPDOO0Ks92xjAZuQrXIuL4gU3O3E8DoLNxWxyLGcRSnAtLFjc3QcInRnFqhpSVMUxGxeQIoVbEhQ+A55xTj7vu8qK52YP4eA6LFtVj/PhrLRsAKbDaPNwWx0Loh0SN8ZDwiUHcliFlFkbE5EihVsTx33PnnUBpKS+aPMjNTQOQpqkNamEp/sSN2BXHwnKBQLe5e9x2Pk6EhE8M4oYMKavQG5NjFmpFkxFZWSzGn7gRq+NYWC8Q6DZ3D38++/adaSEweZx0Pk6EhE8M4oYMKSthIbBaD0ZlZVH8iXkorQlkhhVATYFAuyxDbhEBkVtVpNNO6zZBwicGMXsid2PNFycXh1SabVVTUwNAfJKh+BPzYMGqIb/Z6tm6RCxahliHdlpnBxI+MYpZE7mba764tTgkz4YNGwC0vDe8lUEu/oRiEvRh9/MgJ2ybmpoAuGfrCKuhndbZgYRPDGPGRE41X9hHLisr+t5EWyPmzz+KffsSkJd3Bjk5AwAMcKQVj4hETtieOBH8l1ye+iDLqf2Q8CGIGEJrVla4qMnOBgoLzWwlYRdSgdXl5eUAgJqabAAcAE/oPZq4lePGCtROg4QPQcQIQi6Kt98eiaysQ8jNrZX5ayJWkCoQ6PenYNOmEoSLHoBDSckmmrhV4MYK1E4iTv4jBEG4ASEXBRCHlStvwrZt/WxpE+EshPuQBzk5Nba0x8l4vSeQn/8DiR4bIOFDEDECH1sQDR+c6ven2NAqwm7UBKUL9SFycxFOg1xdBOFyorOy3n57JKLXPBScGrsoSaXnU9kpPoVwAyR8CMLl8BNbsE7PBmRlHcLKlTdRVgkRQk1Gnlx8CpU1EIa2qmAHEj6EodDDzSbhE1tubi3V4yFEEarO7PXWRXxGLAC6tLSUyhqIwEKRSiKIh+M4zu5GsER9fT28Xi/8fj9SU1Ptbo4jcWPlZrcQPamdrcdj/2aUhP0o3bdLjKlTpyI7O9uKphJEC5TO32TxIQwnfOI8eDC4KWqPHu6ueuwUqB4PIYXSfbvEIGsh4QRI+BCmsXIlMHVqcDPUuLjg/mBTptjdKoIg5JCrzjxmzBhkZmZGvE/WQsIpkPAhTOHgwbOiBwj+O21acH8wsvxog1yIhFUIbasAnA2AT0xMJJdWjOEm6z0JH8IU9uw5K3p4mpuDm6I6/aGxAzdv/kqwh3DpAw+qqrqjf/+vsXbtWuprMYTbrPdUwJAwhR49gg9IOPHxwZ3gCfXQ5q+E1RQU7IUnfGcKeCIKXVJfiw3ErPcHD9rbLj2QxYcwhdzc4Kpg2rSgpSc+HnjuObL2SCHlyjp27FjE73I7rBOEXmgXdsLn8+GLL4BAINKy19wMVFb60Lq1uhpQrEDChzCNKVOCMT179wYtPSR6xFHqygK077BOEGoQivOhQpexAz8m+f0p8HjKWvSDzz9/ETt3nnCky5NcXYSp5OYCQ4eS6JEj2tLj96egujqvxf5ZYmnGtM8WYQTh6eh8nA+/NxdtTxFb8GOSXD9wosuTLD4EwRhSFh1yPxBmkpGRgXHjxmHdunUA5LenIGIDt/UDEj4EwRByhePI/UCYTVpaWsTvYttTELGFm/oBuboIgiGkLDoAuR8IgiD0QhYfgmAIJRYdIbMzn+W1e/dJALUAqKAhoQ3aaJhwOyR8CIIheIuO2M7p/FYBdXV1oTiM8Jigv/41MibIiRkXhL3QLuKE2yHhQxCMIRVImJmZGbFVgFxMkBMzLgj7IVFDuBkSPgTBANFuA7FAwujPUZYXQRBm4GaXJwkfginctBGeGrS6FyjLiyAIM3Czy5OED2E7/FYNa9a0xpw5XgQCHsTFcVi82I/x439x7MOlFi3nKBcTRBAEoRW3jrskfAhbCS+LvnRpGTguuCtiIODB7Nmp+PHHF+D1OrMsulW4rbgYoY/wPd9qauJQXZ2A/PwzyMkJlkCIlYUEEUmsWtOFIOFD2Ao/QMvFqlCQrjRuKi5GaCd8zzepCuC0kIgtVq48u8N6XFxwA+kpU+xulX1QAUOCCfhYlXAoVoUg1MEvEOT2dKOFRGzg8/mwdethTJ3KIfDr8BoIANOmcdi69TB8Pp+9DbQJEj4EE1BFYnW4OeOC0I9cBXDC/fDWv+XLP0Ag4Il4r7nZg+XL38eTTz4Zk+KHXF0EM8RCrIpRfnY3Z1wQ+qFsP4IfG+T6Qixa/0j4EEzhxlgVs7LWSNQQYlC2H8FDfaElJHwIwkQoa42wCykL6rFjxwBQ1lesEAvWdDWQ8CEIE6GsNUIL4SnpQigVJ2IW1A0bNlDWV4zhRmu6Vkj4OBS31GSIlSBdirkglBKekg4EM7R++ikD6em+iIlLjzihPd4Is3DC3ETCx4G4qSZDrATpkp+dUEr4syBllRF6ZpQuEGiPN8IMnDI3kfBxGAcPnu1YAF+TARg+nF11LYfTRY1SyM9OqEHOKiOE3ELi2LFj2LBhA1kgCUPx+XzYt+8Mpk7NCqXO8/WCLrjgCPLyEpga50n4OIw9e86KHp7mZmDvXucKHzfCm3tTUyNX1eRnJ5Si1SqjNPaHLJDuxqowAt41W12dh0BgYsR7fL2g/PwfmIobI+HjMHr0CJoQw8VPfDzQvbt9bSIiiTT3ZmHkyH4h94RanOAvJ8zBbKsMWSDdjVVhBE6sF0TCx2Hk5gb9ptOmBS098fHAc8/RpCiG1cKhpSvSI+ueEMMp/nK3wcomn1ZYZcgC6W6stLA4yYpIwseBTJkSjOnZuzdo6SHRI4wdwkHIFanEPRFtbnZjLJcTYG2TT7LKEE7CKf2VhI9Dyc2lCVAKO4SDz+dDauoZxMVlReyNExfH4brripCbW4S0tLQWfxdtQfD5fPjiCyAQiJxYm5uBykofWreOnYBwq5Hb5NOOdG8jrTKxUj6CsA8nWBFJ+BCuxOog8HBLwciRkZaCkSPfxZYtyiwF4ZWePZ6yFv7yzz9/ETt3UqVns7Ez3dtMcRIr5SMIQgoSPoQrsToIPHwikTL3ylkK+Pfl/OUsBQq6ETvTvc0WJyRqiFiHhA/hSuwOAjfC3OsUfznLaA1UNipQU+vWEyROCMI8SPgQrsUNQeBO8Jezit5AZb3C04qtJwjCbpwYN0bCh3Ad4avs+HigZ8/g67W1wX8phiE2MCJQWY/w1LP1BEE4BSfGjZHwIVxF9CpbDFplxw5270ulZesJgnASThtL4+Q/QhDOQenqmVbZsQMfqByOWKCyGWZ7KeFFEIT1kMWHIAhXoyZQ2QyzPW0IShBsQcKHIAzAKEuBEwMFnYCaQGWjzfZOKuVPELEACR+CMACjLAVODBR0CnZmyFFpAoJgBxI+BGEQRokREjXuhEoTEAQbUHAzQRCuxG63od3fTxCEMGTxcRBaq8ASRCxit9vQ7u8nCEIYRwmf9957D/fddx927NiBVq1aYciQIXjrrbdC7+/fvx+33HILNm/ejHbt2mHixIlYuHAhEhIcdZqCUH0aZdAqmwjH7mfB7u8nCKIljlEE69evx80334yHHnoIw4YNw5kzZ7Bz587Q+83NzbjyyivRqVMnbNmyBbW1tbjhhhuQmJiIhx56yMaWGwPVp1EGrbIJgiAIKRwhfM6cOYPbb78djzzyCKZMmRJ6vVevXqH/b9y4Ed999x02bdqEjh074oILLsD999+Pu+66C/feey+t8GMIEjUEEYTc4wTREkcIn23btuHHH39EXFwc+vXrh0OHDuGCCy7AI488gj59+gAAKioqcN5556Fjx46hvxs+fDhuueUW/Pvf/0a/fv0Ej3369GmcPn069Ht9fb25J0MQBACalM2G3OMEIYwjhM///d//AQDuvfdeLFmyBHl5eXjssccwdOhQ/Oc//0F6ejoOHToUIXoAhH4/dOiQ6LEXLlyIBQsWmNd4giBaQDuXmw+5xwlCGFvT2e+++254PB7Jn++//x6BQHCfnXnz5mHs2LEoLCzEqlWr4PF48Prrr+tqw9y5c+H3+0M/Bw4cMOLUCIKQIHrn8qVLy/DiixOxdGkZtm3rJ/g5giAII7DV4nPnnXdi0qRJkp/p1q0bamtrAUTG9CQnJ6Nbt27Yv38/AKBTp07417/+FfG3hw8fDr0nRnJyMpKTk7U0n3AhBw8Ce/YAPXoAubl2t8b90M7l1iFmVSOIWMNW4dOhQwd06NBB9nOFhYVITk7G7t278dvf/hYA0NTUhH379qFr164AgOLiYjz44IM4cuQIsrKyAADl5eVITU2NEEwEIcbKlcDUqUAgAMTFAStWAGGx9IQJSO1cTpOzcWzb1q/FXmH9+39td7MIl8NqHJ8jYnxSU1Mxffp0/PnPf0bnzp3RtWtXPPLIIwCAP/zhDwCAyy+/HL169cL111+PxYsX49ChQ/jf//1fzJgxwxUWHapPYy4HD54VPUDw32nTgOHDyfJjJrRzufmQVY2wA5aD6x0hfADgkUceQUJCAq6//nr88ssvKCoqwkcffYT27dsDAOLj4/Huu+/illtuQXFxMdq2bYuJEyfivvvus7nlxkD1acxlz56zooenuRnYu5eEj5nQzuXmQ1Y1wg6i5yoxV6sdcXyOET6JiYl49NFH8eijj4p+pmvXrvj73/9uYaushUSNefToEXRvhYuf+Hige3f72hQr0M7l5kJWNcJuWHO10ialBIGgVWfFiqDYAYL/PvccWXuswus9gfz8H0j0GAjv9uatah5PUNVHW9XIPU6YiZir1e9Psa1NjrH4EITZTJkSjOnZuzdo6TFa9FDG2FkoZs18ot3j8+cfxb59CcjLO4OcnAEABpB7nDAdFl2tJHyImCc88yA+HujZM/j6r1UUDJkcKGMsEopZs4bw65edDRQW2tgYIiZh0dVKwoeIaazIPKCMMWFI1BCE+2ExgYGEDxHTWFHWnzLGpDGq1gerNUMIItZhLYGBhA9BmIjP50Nq6hnExWUhEPCEXo+P55CScgQ+X0JMT8ZGWdxYrhliBiTyCNaJjs/zek8ICh474vhI+BCESYRPxiNHRqZzXnnlu3j33WA6p1smYy0YZXGLpQ05Y03kEc6E5Tg+Ej4EYRLhD7yUqdcNk7FR0H5S8sSSyCOcDavCm4QPQViEmKmXCGJkkTMSUARBiEHChyAI2zFyPynWqsQSBMEWVLmZIAjbkSpypgYWq8QSBMEWZPEhYhqqIMwGRhU5Y7FKrNmQW884KFsuNiDhQ8Q0LGcemAlrA7xRRc5YrBJrJuTWMw7KlosdSPgQMU+sDWIsDfDhljSpzDc5i1v0hpxiAspNljsj46IIypaLJUj4EIRJsOpGix64xVwlVgzwRlncYmlDTr6/yLn13CTyCMJISPgQhEk4wY3GgqvEqPOPlQ05+X61b98ZvPQS16Ii+K23XoG8PHsqgrPmQjWDY8eOCb7uhnOLFUj4EISJsDwQkqvEuWRkZCAjA1ixIrjhbXMzEB8PPPecB4WFHW1pE0suVDPZsGGD6HtOP7dYgYQPQcQosZgB5TamTAGGDw9ueNu9u72b3lKMjLvPzU2Q8CGIGCXWMqDcSm6uvYKHIJwGFTAkiBiFz4DyeAIAoDmFnCAIwkmQxYcgYhipFHKCiCWis+CoMKR7IeFDEDFG9AAvtnkqpUMTsUR4FuaaNa1x331eBAIexMVxmD//RwAr7W4iYRAkfAgixnBCmj1B2EFGRgYOHgTmzAECQQ8wAgEP7r//HNx2WwpZflwCCR+CiEFI1BCEMHv2nBU9PM3NHsp2dBEU3EwQBEHohtVK5Wrp0QOIi5oZ4+M5RdmOrJ8bEcTDcRxndyNYor6+Hl6vF36/H6mpqXY3hyAIwjG4pXLzypXRhSGB0aPdcW5uRun8TcInChI+BEEQxMGDbBSGJJSjdP6mGB+CIAjCcA4eDMbL9OjhTOEgVRjS6ecW61CMD0EQBGEoK1cCXbsCw4YF/13pokxwN59brECurijI1UUQBKGdgweDgiA8Myo+Hti3z/nWETefmxtQOn+TxYcgCIIwDOF08GC8jNNx87nFEiR8CIIgCMMQTgcPBgk7HTefWyxBwocgCIIwjNxcYMWKoCAAzqaDu8EV5OZziyUoxicKivEhCILQj5vTwd18bk6G0tkJgiAI25BKB3c6bj63WIBcXQRBEARBxAwkfAiCIAiCiBlI+BAEQRAEETOQ8CEIgiAIImYg4UMQBEEQRMxAwocgCIIgiJiBhA9BEARBEDEDCR+CIAiCIGIGEj4EQRAEQcQMJHwIgiAIgogZSPgQBEEQBBEz0F5dUfB7ttbX19vcEoIgCIIglMLP23J7r5PwieLEiRMAgM6dO9vcEoIgCIIg1HLixAl4vV7R9z2cnDSKMQKBAGpqapCSkgKPx2N3cyynvr4enTt3xoEDB5Cammp3cxwLXUdjoOuoH7qGxkDX0RjMvI4cx+HEiRPIyclBXJx4JA9ZfKKIi4tDbm6u3c2wndTUVHq4DYCuozHQddQPXUNjoOtoDGZdRylLDw8FNxMEQRAEETOQ8CEIgiAIImYg4UNEkJycjD//+c9ITk62uymOhq6jMdB11A9dQ2Og62gMLFxHCm4mCIIgCCJmIIsPQRAEQRAxAwkfgiAIgiBiBhI+BEEQBEHEDCR8CIIgCIKIGUj4xCj//Oc/MWrUKOTk5MDj8eCtt96KeJ/jOMyfPx/Z2dlo3bo1SkpKsGfPHnsayyhy13DSpEnweDwRPyNGjLCnsQyzcOFCDBgwACkpKcjKysLo0aOxe/fuiM+cOnUKM2bMQEZGBtq1a4exY8fi8OHDNrWYTZRcx6FDh7bok9OnT7epxWzyzDPP4Pzzzw8V2CsuLsb7778fep/6ojLkrqOdfZGET4xy8uRJ9O3bF0899ZTg+4sXL8ayZcvw7LPPorKyEm3btsXw4cNx6tQpi1vKLnLXEABGjBiB2tra0M+rr75qYQudwSeffIIZM2bgiy++QHl5OZqamnD55Zfj5MmToc/ccccdeOedd/D666/jk08+QU1NDcaMGWNjq9lDyXUEgJtvvjmiTy5evNimFrNJbm4uHn74YWzduhVfffUVhg0bht///vf497//DYD6olLkriNgY1/kiJgHAPfmm2+Gfg8EAlynTp24Rx55JPRaXV0dl5yczL366qs2tJB9oq8hx3HcxIkTud///ve2tMfJHDlyhAPAffLJJxzHBfteYmIi9/rrr4c+s2vXLg4AV1FRYVczmSf6OnIcxw0ZMoS7/fbb7WuUQ2nfvj33/PPPU1/UCX8dOc7evkgWH6IF1dXVOHToEEpKSkKveb1eFBUVoaKiwsaWOY+PP/4YWVlZ6NmzJ2655Rb4fD67m8Q8fr8fAJCeng4A2Lp1K5qamiL647nnnosuXbpQf5Qg+jryvPLKK8jMzESfPn0wd+5cNDQ02NE8R9Dc3IzXXnsNJ0+eRHFxMfVFjURfRx67+iJtUkq04NChQwCAjh07RrzesWPH0HuEPCNGjMCYMWOQn5+Pqqoq/L//9/9wxRVXoKKiAvHx8XY3j0kCgQDKysowaNAg9OnTB0CwPyYlJSEtLS3is9QfxRG6jgAwfvx4dO3aFTk5OdixYwfuuusu7N69Gxs2bLCxtezx7bffori4GKdOnUK7du3w5ptvolevXti+fTv1RRWIXUfA3r5IwocgTOKaa64J/f+8887D+eefj4KCAnz88ce49NJLbWwZu8yYMQM7d+7EZ599ZndTHI3YdZw6dWro/+eddx6ys7Nx6aWXoqqqCgUFBVY3k1l69uyJ7du3w+/344033sDEiRPxySef2N0sxyF2HXv16mVrXyRXF9GCTp06AUCLTIXDhw+H3iPU061bN2RmZmLv3r12N4VJZs6ciXfffRebN29Gbm5u6PVOnTqhsbERdXV1EZ+n/iiM2HUUoqioCACoT0aRlJSE7t27o7CwEAsXLkTfvn3xxBNPUF9Uidh1FMLKvkjCh2hBfn4+OnXqhA8//DD0Wn19PSorKyP8s4Q6Dh48CJ/Ph+zsbLubwhQcx2HmzJl488038dFHHyE/Pz/i/cLCQiQmJkb0x927d2P//v3UH8OQu45CbN++HQCoT8oQCARw+vRp6os64a+jEFb2RXJ1xSg///xzhLKurq7G9u3bkZ6eji5duqCsrAwPPPAAevTogfz8fNxzzz3IycnB6NGj7Ws0Y0hdw/T0dCxYsABjx45Fp06dUFVVhTlz5qB79+4YPny4ja1mjxkzZmDNmjX429/+hpSUlFCshNfrRevWreH1ejFlyhTMmjUL6enpSE1Nxa233ori4mJcfPHFNreeHeSuY1VVFdasWYP//u//RkZGBnbs2IE77rgDgwcPxvnnn29z69lh7ty5uOKKK9ClSxecOHECa9aswccff4x//OMf1BdVIHUdbe+LtuSSEbazefNmDkCLn4kTJ3IcF0xpv+eee7iOHTtyycnJ3KWXXsrt3r3b3kYzhtQ1bGho4C6//HKuQ4cOXGJiIte1a1fu5ptv5g4dOmR3s5lD6BoC4FatWhX6zC+//ML98Y9/5Nq3b8+1adOG+5//+R+utrbWvkYziNx13L9/Pzd48GAuPT2dS05O5rp3787Nnj2b8/v99jacMSZPnsx17dqVS0pK4jp06MBdeuml3MaNG0PvU19UhtR1tLsvejiO48yXVwRBEARBEPZDMT4EQRAEQcQMJHwIgiAIgogZSPgQBEEQBBEzkPAhCIIgCCJmIOFDEARBEETMQMKHIAiCIIiYgYQPQRAEQRAxAwkfgiAIgiBiBhI+BEEQBEHEDCR8CIJwDI2NjXY3oQUstokgCHFI+BAEYRtDhw7FzJkzMXPmTHi9XmRmZuKee+4Bv5NOXl4e7r//ftxwww1ITU3F1KlTAQCfffYZfve736F169bo3LkzbrvtNpw8eTJ03Keffho9evRAq1at0LFjR1x99dWh99544w2cd955aN26NTIyMlBSUhL626FDh6KsrCyijaNHj8akSZNCv2ttE0EQbEDChyAIW3nxxReRkJCAf/3rX3jiiSewZMkSPP/886H3H330UfTt2xdff/017rnnHlRVVWHEiBEYO3YsduzYgbVr1+Kzzz7DzJkzAQBfffUVbrvtNtx3333YvXs3PvjgAwwePBgAUFtbi2uvvRaTJ0/Grl278PHHH2PMmDFQu2Wh2jYRBMEOtEkpQRC2MXToUBw5cgT//ve/4fF4AAB333033n77bXz33XfIy8tDv3798Oabb4b+5qabbkJ8fDyee+650GufffYZhgwZgpMnT+Lvf/87brzxRhw8eBApKSkR37dt2zYUFhZi37596Nq1q2B7LrjgAixdujT02ujRo5GWlobVq1cDgKY2tWrVStd1IgjCOMjiQxCErVx88cUh0QMAxcXF2LNnD5qbmwEAF154YcTnv/nmG6xevRrt2rUL/QwfPhyBQADV1dW47LLL0LVrV3Tr1g3XX389XnnlFTQ0NAAA+vbti0svvRTnnXce/vCHP+Avf/kLjh8/rrrNattEEAQ7kPAhCIJp2rZtG/H7zz//jGnTpmH79u2hn2+++QZ79uxBQUEBUlJSsG3bNrz66qvIzs7G/Pnz0bdvX9TV1SE+Ph7l5eV4//330atXLyxfvhw9e/YMiZO4uLgWbq+mpibdbSIIgh1I+BAEYSuVlZURv3/xxRfo0aMH4uPjBT/fv39/fPfdd+jevXuLn6SkJABAQkICSkpKsHjxYuzYsQP79u3DRx99BADweDwYNGgQFixYgK+//hpJSUkht1WHDh1QW1sb+q7m5mbs3LlT9hyUtIkgCDYg4UMQhK3s378fs2bNwu7du/Hqq69i+fLluP3220U/f9ddd2HLli2YOXMmtm/fjj179uBvf/tbKJD43XffxbJly7B9+3b88MMP+Otf/4pAIICePXuisrISDz30EL766ivs378fGzZswNGjR/Gb3/wGADBs2DC89957eO+99/D999/jlltuQV1dnew5yLWJIAh2SLC7AQRBxDY33HADfvnlF1x00UWIj4/H7bffHkoRF+L888/HJ598gnnz5uF3v/sdOI5DQUEBSktLAQBpaWnYsGED7r33Xpw6dQo9evTAq6++it69e2PXrl345z//iaVLl6K+vh5du3bFY489hiuuuAIAMHnyZHzzzTe44YYbkJCQgDvuuAOXXHKJ7DnItYkgCHagrC6CIGxDKIuKIAjCTMjVRRAEQRBEzEDChyAIgiCImIFcXQRBEARBxAxk8SEIgiAIImYg4UMQBEEQRMxAwocgCIIgiJiBhA9BEARBEDEDCR+CIAiCIGIGEj4EQRAEQcQMJHwIgiAIgogZSPgQBEEQBBEzkPAhCIIgCCJm+P8Gr9hE3+lVBgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -436,7 +596,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOBElEQVR4nO3deVxU9f4/8NewCgiDggsICqJXU9MUi9DSLNx+pbevmrRYapTWlYr2ut4Wb4vtWXZvq2lli1y1rlmWUNY1JW5pZqaZclExcAFlRDFZ5vz+mM7hnDNnm2FY5/V8PHwkM2fOfM7JOm8/n/fn/bYJgiCAiIiIyA8EtPQAiIiIiJoLAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AYDHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIiIj8BgMfIqJWaNmyZbDZbNi3b19LD4WoXWHgQ+SnvvvuO2RnZ2PgwIGIiIhAz549MX36dPz6669ux1500UWw2Wyw2WwICAhAVFQU+vXrh2uvvRZ5eXkefe/HH3+M0aNHo2vXrggPD0fv3r0xffp0fPbZZ766NDePP/44PvroI7fXN2/ejIcffhiVlZVN9t1qDz/8sHQvbTYbwsPDMWDAAPztb3/DiRMnfPId7733HhYtWuSTcxG1Nwx8iPzUk08+iVWrVuGSSy7BCy+8gDlz5uA///kPhg0bhh07drgdn5CQgHfeeQdvv/02nn76aUyePBmbN2/GuHHjkJmZidraWtPvfOaZZzB58mTYbDbcf//9eP755zF16lTs2bMHH3zwQVNcJgDjwGfBggXNGviIXn75Zbzzzjt47rnn0L9/fzz22GOYMGECfNE+kYEPkb6glh4AEbWMO+64A++99x5CQkKk1zIzM3H22WfjiSeewPLlyxXH2+12zJgxQ/HaE088gVtvvRX//Oc/kZSUhCeffFL3++rq6vDII49g7NixWL9+vdv7R44caeQVtR7V1dUIDw83PGbatGmIjY0FANx0002YOnUqVq9ejW+//Rbp6enNMUwiv8QZHyI/NWLECEXQAwB9+/bFwIEDsWvXLkvnCAwMxIsvvogBAwbgpZdegsPh0D22vLwcJ06cwMiRIzXf79q1q+Ln33//HQ8//DD+9Kc/oUOHDoiLi8OUKVNQVFQkHfPMM89gxIgRiImJQVhYGFJTU7Fy5UrFeWw2G06dOoW33npLWl6aNWsWHn74Ydx9990AgOTkZOk9eU7N8uXLkZqairCwMHTu3BlXXnklSkpKFOe/6KKLMGjQIGzZsgWjRo1CeHg4/vrXv1q6f3IXX3wxAKC4uNjwuH/+858YOHAgQkNDER8fj3nz5ilmrC666CJ88skn2L9/v3RNSUlJHo+HqL3ijA8RSQRBwOHDhzFw4EDLnwkMDMRVV12FBx54AN988w0uvfRSzeO6du2KsLAwfPzxx7jlllvQuXNn3XPW19fjsssuwxdffIErr7wSt912G6qqqpCXl4cdO3YgJSUFAPDCCy9g8uTJuOaaa1BTU4MPPvgAV1xxBdauXSuN45133sENN9yA8847D3PmzAEApKSkICIiAr/++ivef/99PP/889LsS5cuXQAAjz32GB544AFMnz4dN9xwA44ePYrFixdj1KhR+OGHHxAdHS2Nt6KiAhMnTsSVV16JGTNmoFu3bpbvn0gM6GJiYnSPefjhh7FgwQJkZGTg5ptvxu7du/Hyyy/ju+++w6ZNmxAcHIz58+fD4XDg4MGDeP755wEAHTt29Hg8RO2WQET0h3feeUcAICxZskTx+ujRo4WBAwfqfu7DDz8UAAgvvPCC4fkffPBBAYAQEREhTJw4UXjssceELVu2uB335ptvCgCE5557zu09p9Mp/b66ulrxXk1NjTBo0CDh4osvVrweEREhzJw50+1cTz/9tABAKC4uVry+b98+ITAwUHjssccUr//0009CUFCQ4vXRo0cLAIRXXnlF97rlHnroIQGAsHv3buHo0aNCcXGx8OqrrwqhoaFCt27dhFOnTgmCIAhLly5VjO3IkSNCSEiIMG7cOKG+vl4630svvSQAEN58803ptUsvvVTo1auXpfEQ+RsudRERAOCXX37BvHnzkJ6ejpkzZ3r0WXFGoaqqyvC4BQsW4L333sPQoUPx+eefY/78+UhNTcWwYcMUy2urVq1CbGwsbrnlFrdz2Gw26fdhYWHS748fPw6Hw4ELL7wQW7du9Wj8aqtXr4bT6cT06dNRXl4u/erevTv69u2LDRs2KI4PDQ3F7NmzPfqOfv36oUuXLkhOTsbcuXPRp08ffPLJJ7q5Qfn5+aipqUFOTg4CAhr+133jjTciKioKn3zyiecXSuSHuNRFRDh06BAuvfRS2O12rFy5EoGBgR59/uTJkwCAyMhI02OvuuoqXHXVVThx4gQKCwuxbNkyvPfee5g0aRJ27NiBDh06oKioCP369UNQkPH/otauXYtHH30U27Ztw5kzZ6TX5cGRN/bs2QNBENC3b1/N94ODgxU/9+jRwy1fysyqVasQFRWF4OBgJCQkSMt3evbv3w/AFTDJhYSEoHfv3tL7RGSMgQ+Rn3M4HJg4cSIqKyuxceNGxMfHe3wOcft7nz59LH8mKioKY8eOxdixYxEcHIy33noLhYWFGD16tKXPb9y4EZMnT8aoUaPwz3/+E3FxcQgODsbSpUvx3nvveXwNck6nEzabDevWrdMMAtU5M/KZJ6tGjRol5RURUfNh4EPkx37//XdMmjQJv/76K/Lz8zFgwACPz1FfX4/33nsP4eHhuOCCC7wax/Dhw/HWW2+hrKwMgCv5uLCwELW1tW6zK6JVq1ahQ4cO+PzzzxEaGiq9vnTpUrdj9WaA9F5PSUmBIAhITk7Gn/70J08vp0n06tULALB792707t1ber2mpgbFxcXIyMiQXmvsjBdRe8YcHyI/VV9fj8zMTBQUFOBf//qXV7Vj6uvrceutt2LXrl249dZbERUVpXtsdXU1CgoKNN9bt24dgIZlnKlTp6K8vBwvvfSS27HCHwX+AgMDYbPZUF9fL723b98+zUKFERERmkUKIyIiAMDtvSlTpiAwMBALFixwKygoCAIqKiq0L7IJZWRkICQkBC+++KJiTEuWLIHD4VDspouIiDAsLUDkzzjjQ+Sn7rzzTqxZswaTJk3CsWPH3AoWqosVOhwO6Zjq6mrs3bsXq1evRlFREa688ko88sgjht9XXV2NESNG4Pzzz8eECROQmJiIyspKfPTRR9i4cSMuv/xyDB06FABw3XXX4e2338Ydd9yB//73v7jwwgtx6tQp5Ofn4y9/+Qv+/Oc/49JLL8Vzzz2HCRMm4Oqrr8aRI0fwj3/8A3369MH27dsV352amor8/Hw899xziI+PR3JyMtLS0pCamgoAmD9/Pq688koEBwdj0qRJSElJwaOPPor7778f+/btw+WXX47IyEgUFxfjww8/xJw5c3DXXXc16v57qkuXLrj//vuxYMECTJgwAZMnT8bu3bvxz3/+E+eee67i31dqaipWrFiBO+64A+eeey46duyISZMmNet4iVqtltxSRkQtR9yGrffL6NiOHTsKffv2FWbMmCGsX7/e0vfV1tYKr7/+unD55ZcLvXr1EkJDQ4Xw8HBh6NChwtNPPy2cOXNGcXx1dbUwf/58ITk5WQgODha6d+8uTJs2TSgqKpKOWbJkidC3b18hNDRU6N+/v7B06VJpu7jcL7/8IowaNUoICwsTACi2tj/yyCNCjx49hICAALet7atWrRIuuOACISIiQoiIiBD69+8vzJs3T9i9e7fi3hht9VcTx3f06FHD49Tb2UUvvfSS0L9/fyE4OFjo1q2bcPPNNwvHjx9XHHPy5Enh6quvFqKjowUA3NpOJGMTBB80hiEiIiJqA5jjQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNFjBUcTqdKC0tRWRkJMu+ExERtRGCIKCqqgrx8fEICNCf12Hgo1JaWorExMSWHgYRERF5oaSkBAkJCbrvM/BRiYyMBOC6cUZ9h4iIiKj1OHHiBBITE6XnuB4GPiri8lZUVBQDHyIiojbGLE2Fyc1ERETkNxj4EBERkd9g4ENERER+gzk+XnA6naipqWnpYbRrISEhhtsRiYiIvMHAx0M1NTUoLi6G0+ls6aG0awEBAUhOTkZISEhLD4WIiNoRBj4eEAQBZWVlCAwMRGJiImckmohYRLKsrAw9e/ZkIUkiIvIZBj4eqKurQ3V1NeLj4xEeHt7Sw2nXunTpgtLSUtTV1SE4OLilh0NERO0Epyw8UF9fDwBcfmkG4j0W7zkREZEvMPDxApdemh7vMRERNQUGPkREROQ3GPgQERGR32Dg4wdmzZoFm80Gm82G4OBgdOvWDWPHjsWbb77p0bb8ZcuWITo6uukGSkRE7UJFRQXKyspQVlaGLVsOY+XKCmzZclh6raKiosXGxl1dzaiiosKw8GFISAhiYmKa5LsnTJiApUuXor6+HocPH8Znn32G2267DStXrsSaNWsQFMQ/CkRE1HgVFRV46aWXAABbtw7Fxx9fBkEIgM3mxKRJazFs2A8AgOzs7CZ75hnh066ZyP8gGGmqPwihoaHo3r07AKBHjx4YNmwYzj//fFxyySVYtmwZbrjhBjz33HNYunQp/ve//6Fz586YNGkSnnrqKXTs2BFfffUVZs+eDaAh8fihhx7Cww8/jHfeeQcvvPACdu/ejYiICFx88cVYtGgRunbt6vPrICKi1k38C77DESkFPQAgCAH4+OPLkJKyF3Z7VYt1QOBSVzOx+i+4Of8gXHzxxRgyZAhWr14NwFUt+cUXX8TPP/+Mt956C19++SXuueceAMCIESOwaNEiREVFSVOVd911FwCgtrYWjzzyCH788Ud89NFH2LdvH2bNmtVs10FERK3PsWMxUtAjEoQAHDvWuYVG5NJmAp+FCxfi3HPPRWRkJLp27YrLL78cu3fvVhzz+++/Y968eYiJiUHHjh0xdepUHD58uIVG3Db0798f+/btAwDk5ORgzJgxSEpKwsUXX4xHH30Uubm5AFzLcHa7HTabDd27d0f37t3RsWNHAMD111+PiRMnonfv3jj//PPx4osvYt26dTh58mRLXRYREbWwzp0rYLMp80htNic6dz7WQiNyaTOBz9dff4158+bh22+/RV5eHmprazFu3DicOnVKOub222/Hxx9/jH/961/4+uuvUVpaiilTprTgqFs/QRCkpav8/Hxccskl6NGjByIjI3HttdeioqIC1dXVhufYsmULJk2ahJ49eyIyMhKjR48GABw4cKDJx09ERK2T3V6FSZPWSsGPmONjt1e16LjaTI7PZ599pvh52bJl6Nq1K7Zs2YJRo0bB4XBgyZIleO+993DxxRcDAJYuXYqzzjoL3377Lc4///yWGHart2vXLiQnJ2Pfvn247LLLcPPNN+Oxxx5D586d8c033yArKws1NTW6LTpOnTqF8ePHY/z48Xj33XfRpUsXHDhwAOPHj2cHeyIiPzds2A9ISdmLY8c6o3PnYy0e9ABtKPBRczgcAIDOnV1rhVu2bEFtbS0yMjKkY/r374+ePXuioKBAN/A5c+YMzpw5I/184sSJJhx16/Lll1/ip59+wu23344tW7bA6XTi2WeflZqvistcopCQELcWEr/88gsqKirwxBNPIDExEQDw/fffN88FEBFRq2e3V7WKgEfUJgMfp9OJnJwcjBw5EoMGDQIAHDp0CCEhIW51Zrp164ZDhw7pnmvhwoVYsGBBUw63VThz5gwOHTqk2M6+cOFCXHbZZbjuuuuwY8cO1NbWYvHixZg0aRI2bdqEV155RXGOpKQknDx5El988QWGDBmC8PBw9OzZEyEhIVi8eDFuuukm7NixA4888kgLXSURETUXeYmW0tIAFBcHITm5DiEh5bqfcTgicexYDDp3Zh0fj8ybNw87duzAN9980+hz3X///bjjjjukn0+cOCHNXLQnn332GeLi4hAUFIROnTphyJAhePHFFzFz5kwEBARgyJAheO655/Dkk0/i/vvvx6hRo7Bw4UJcd9110jlGjBiBm266CZmZmaioqJC2sy9btgx//etf8eKLL2LYsGF45plnMHny5Ba8WiIiakpFRUVYvnw5AGDTpnTk5WUAEGv1FGLYMPfPqGv69OpVjdtua95xA4BNEASh+b/We9nZ2fj3v/+N//znP0hOTpZe//LLL3HJJZfg+PHjilmfXr16IScnB7fffrul8584cQJ2ux0OhwNRUVGK937//XcUFxcjOTkZHTp08GjcLV3Hp61pzL0mIqKmI3+euYKesQAaGkvbbE7k5CyC3V6FKVOmICgoCAcPAhMm9IfT2XBcYKCAwsIjSEoK8slzz+j5LddmZnwEQcAtt9yCDz/8EF999ZUi6AGA1NRUBAcH44svvsDUqVMBALt378aBAweQnp7eEkNWiImJQXZ2dotVbiYiIgIa30VAXqAwPz8D8qAHaKjVY7dXISgoCLm5uSguToLTeZbiuPp6GxYvXofk5P3N+pf+NhP4zJs3D++99x7+/e9/IzIyUsrbsdvtCAsLg91uR1ZWFu644w507twZUVFRuOWWW5Cent5qdnQxqCEiopbky9UHrQKFLg21eurq6gA01PSRHy+v6dOcu4DbTB2fl19+GQ6HAxdddBHi4uKkXytWrJCOef7553HZZZdh6tSpGDVqFLp37y5VJSYiIvJ3vuwioFWgEBAwdmy+2y6u1lTTp83M+FhJRerQoQP+8Y9/4B//+EczjIiIiKhlNXbZSr7LytMgRAxm5AnLGRn5GDmyQPP41lLTp80EPkRERNSgsctWRp3TrfI0mGkNNX3azFIXERERNWjMspVe53SHI9LjcdjtVUhO3t/iAY1VDHyIiIj8THN1Tg8ODvbp+XyBgQ8REVE74HBEorg4ydKsTWM6p4eEhFgaw8SJE1FbW2s+8GbGHB8iIqI2ztN8Ha3EZPkuq/JyZdsJeZK0vC6dw+GQdlerx1BUtPaP/J8k0+Rpo2DK1xj4UKN99dVXGDNmjFvVbCNJSUnIyclBTk5Ok46NiKg1aMzuK73PisGJXr5OSspet2BDHmDoJSY7HJF49tmtbsGKPElaPVa9Mbg2ZLsHY5mZmbDb7abX3hQY+PiBWbNm4a233sLcuXPdGo/OmzcP//znPzFz5kwsW7asZQZIRNSONWb3lZXPGuXrqAMfrS4C5eXlUs07o5kjo8BNbwzy38uDMbvdjri4OMPraioMfPxEYmIiPvjgAzz//PMICwsD4OqH9d5776Fnz54tPDoiovarMbuvPCkkqFcVWU1vdsVs5mjPnj0oLy9HUFCQNLsvzjppjUFNLxhrbkxu9hPDhg1DYmKiopL16tWr0bNnTwwdOlR67cyZM7j11lvRtWtXdOjQARdccAG+++47xbk+/fRT/OlPf0JYWBjGjBmDffv2uX3fN998gwsvvBBhYWFITEzErbfeilOnTjXZ9RERtaSKigqUlZVp/lLny3hyPvVntRKYzaoiW82f0Zu12blzAByOSGzYsAGrV69Gbm4uXnvtNbz22mvSM0VrDIB3ydNNjTM+LeTgQWDPHqBvXyAhoXm+8/rrr8fSpUtxzTXXAADefPNNzJ49G1999ZV0zD333INVq1bhrbfeQq9evfDUU09h/Pjx2Lt3Lzp37oySkhJMmTIF8+bNw5w5c/D999/jzjvvVHxPUVERJkyYgEcffRRvvvkmjh49iuzsbGRnZ2Pp0qXNc7FERM3E6lKWyKxast75jJahHn00GQ8+eBT79gUhKakO8fHnAjjXo/wZ7VkbAZ9/PgHr14+Tvk9v/OqcoaKiPrrJ0y2JgU8LWLIEmDMHcDqBgADgtdeArKym/94ZM2bg/vvvx/79+wEAmzZtwgcffCAFPqdOncLLL7+MZcuWYeLEiQCA119/HXl5eViyZAnuvvtuvPzyy0hJScGzzz4LAOjXrx9++uknPPnkk9L3LFy4ENdcc42UuNy3b1+8+OKLGD16NF5++WV06NCh6S+WiKiZeNJg08ruK08KDorLULGxsYiL64bUVOvjFpOmxVkl9U4vQIDYeV38vtOnOyA/P0N3/PLKzK2lRYUaA59mdvBgQ9ADuP45dy4wfnzTz/x06dIFl156KZYtWwZBEHDppZciNjZWer+oqAi1tbUYOXKk9FpwcDDOO+887Nq1CwCwa9cupKWlKc6bnp6u+PnHH3/E9u3b8e6770qvCYIAp9OJ4uJinHXWWU1xeURErZonu6/Un/v554GWE5it0JtVEoOVnTsH4PPPJ7h9nxj0WB1/a2hRocbAp5nt2dMQ9Ijq64G9e5tnyev6669HdnY2ADRZM9eTJ09i7ty5uPXWW93eYyI1EbV3ektBnuy+EslniOQzMIB7zox627vD4VAUENRKStZit1dhwICdWL9+nGq87snLngZf4r3ZsaNSeo3b2du5vn1dy1vy4CcwEOjTp3m+f8KECaipqYHNZsP48eMV76WkpCAkJASbNm1Cr169AAC1tbX47rvvpGWrs846C2vWrFF87ttvv1X8PGzYMOzcuRN9muuiiIh8RAweKisrUVdX5/Z+cHAw7Ha77sPaaCnL091X6hkiV9DjCn7UOTPyQoLeUAdrep3X5TM+6vFPmTIFQUFByM3N1fwO+b15+23lvdFrpNoUGPg0s4QEV07P3LmumZ7AQODVV5svwTkwMFBatgoMDFS8FxERgZtvvhl33303OnfujJ49e+Kpp55CdXU1sv5IQrrpppvw7LPP4u6778YNN9yALVu2uNX/uffee3H++ecjOzsbN9xwAyIiIrBz507k5eV5lABIRNScPE1SVj+szZayzKolq3dfac0QATaMH/8ZBgzYqZhlEVyVAr2iF6xp5eiEhf2uO35XnlGcok6QWCPI7N54kifVWAx8WkBWliunZ+9e10xPcwU9oqioKN33nnjiCTidTlx77bWoqqrC8OHD8fnnn6NTp04AXEtVq1atwu23347FixfjvPPOw+OPP47rr79eOsfgwYPx9ddfY/78+bjwwgshCAJSUlKQmZnZ5NdGROQtTx++6uPNlrKmTJmCOXNiLe++0pshEoOeKVOmIDY2FiEhIW5jUc/g6C2/WQnWjHZuaS1xac3ceLPM11QY+LSQhITmC3jMKjJ/9NFH0u87dOiAF198ES+++KLu8Zdddhkuu+wyxWuzZ89W/Hzuuedi/fr1uufQqv1DRNSWOBwORfVhs6UscUYkLg6Wdl+ZzRCJ5wOAsrIy6XPqGZzBg7dj+/bBmstv3gQkegnL1dXVutfi6TJfU2IBQyIiIg1iscCDB+M0u56vWLECFRUV0hKVrwoJqvtp5eQswsyZy5CTs0ixdVzrfFozOD/+OMRtRke8FrMu7cOHD8eYMWMwZMgQ03EvX74cFRUVmu+Z3ZvmxBkfIiIiFa3dVFp1a2pqatzyWhpbSFCrn5aa3vn08oLk5DM6ZrNK33//veb36y2dGY25tdT1YeBDREQko72byhUwrFmjXbdGHoRYXcoy4u0OJ73qy0bb4D0NSKwUYdTTGur6cKmLiIhIRnvWRBSAwsI0nfdantaS0pAhP+ouMbkSrudg9uyxSE7eL9ser73Mp5cMrV4GbM044+OFxmwbJGt4j4mopZh1Gi8oSEdaWqHhzIW6mCAARW0gsR6QXGMK+anzgtQzOBdf/KXmjE58fLzbdxot83XqdNyjZGhv8pqaGgMfD4h1b2pqahAWFtbCo2nfxP9hqGsNERE1FXWSsnK5q4HZridP6wHJmRXyq6iowNGjR3H8+HFFVWYAOP/88yEIAqKiotC5c2cA0K3cDGgHWkbLfB9/fBmyst7waHdWY/KVmgoDHw8EBQUhPDwcR48eRXBwMAICuFLYFJxOJ44ePYrw8HAEBfGPKBGZ05phARraNqgf+iLxoSt+PjMzE7W1tUhL+w0pKYtQUpKAVaum6T7o9+zZg/LycsvtIMwYBQiNLbBohdEynyAE4MCBnooKzuqlM71rb+7gxgifKh6w2WyIi4tDcXGx1OGcmkZAQAB69uwJm81mfjAR+bXGzLAAwIwZM7B8+XK31+12wG7fhZoa/V1PGzZsMD2/1g4ovV1RRhpbYNEK42U+AevXT5DaV8THl7otna1evVr33M3ZlsIIAx8PhYSEoG/fvs1aXtsfhYSEcEaNiCyx+v9jvWBDXXhPfZw6ZwYAiouTLAUtWjugAOjuiqqsrFQURTS7npKSRFRXhyE8/DQSE0savWPKfZlP3BHWsDNM7NKek7NI8/u82erenBj4eCEgIAAdOnRo6WEQEZEGrQev1S3YeseJ27C13ncFRdbbQbj2bmi3iMjNzbU0M7J161CsWXMZlJuzBUye/LHlreVyesnRwcE1OHCgJ9avn6A4Xp7nNGbMGGnmy+g+y5fBWnLpi4EPERG1G3qBiVE/KpFZ3yqt99esuQw2GzxqB6GmTpY2mxlxOCI1gh4AsGlelxUxMTHIzMyUOrzL6+1ERp5EXt443TwnsZej2f1TL4O11NIXAx8iImqV9BKWxW3h4pZwcSZB78E7deoqS1uwzfpWaSf+BkCsvqF+0Ov1p5LP+IivedKz6tixGOiV4ZOPt7y83KOZFfX2enHmrLQ0DvIKI3rtJvTuX0lJAo4dO+02I3bkyBEGPkRE1HbpBSoiTx7C3iQs68+wCJa2YJs10jSr7yN+n147CNf7wJAhDU1DxdeKivpoLgnJORwOaRyAE1rBj3y84gyLNzMrWrV8Gq4RSEnZK/0cHBwsjcv9/jilXXHqGTGry3q+xsCHiIgazWqgkp2dDcC1nCMv6CcXHBzsVqPGCr3AJTHxoGE/KpFZ3yr3QMYJV0Cg3w4iJWUvlPVYA/4IepSvGS0JqdntVZg8ea3bcpfedZltkRff15s5U/f6AhqCu8zMTGmmSO/+CIKyFpB8Ka4lEp4Z+BARUaNZfYAdOXIEubm5Hp9fb6eQ+nW9wMWoH9Xx48el35v1rVK/X1TUxzCg0lqW8qYoopo4jpKSBGlXV3R0JWprQ+FwRFo6j16watyyQxncqZfH5Pfn1KkIrFx5heJ9QXC1/Bg3Lt/KZTYJBj5ERNRs1DM8YuASHHwGtbWhmlvE9XYK6b2uF7joNchU1+Ixa6Qpf98sUPI2z0cv0Js+fTpsNhuOHz+OY8eOSd3Tt24diiVLbvCocahesGq2pJeeXqAYk7rdhHh/HI5IzfNs3mze8qMpMfAhIiKfs1Kgz6gnlPjQ1ktY7tr1kOEOotmzxyI2Nlaq3FxVVYW8vDzT8U2ZMgWxsbFuY62urkZ4eLjs8w63dhB1dXWKZSrxO7QqHQPutXysbL2Pjo6W6vyUlZXh+++/N91NZZX8nui37HAiLa1Q+knM25K3pSgvL8fq1atht1chPb0AmzePVJ3Ds9ktX2PgQ0REPmWlZo5ZTyjxoa2/U6inpZ1a6qUYs/GJiboN42wIcKqrq6XWFOJ55QnbZWVlut8xbNgWJCcXIzHxoDQ+rZkisyBGnvhcWVkJwHw3Wnl5uVs+lTqPSuue5OQsQmFhGjZvTgfgHqBlZmZK166XoJyWVih9XuTpLjZfY+BDREQ+Y3X2wawnlPjQ1k9YPmC4A0svQdhsfGIdG0+odyZpfceWLediy5ZUTJ7cEGRpLamZBTFa12W2G80sWVrvnuTkLMK4cflISyvUXcorKytz260nX/oSE7HNEsubEwMfIiI/5Mut53JmD26RUR6JMnlWO2E5IaHM0k4t9ZKW1fFp0VseO3LkCGpqalBcXKx7D1zcCyKqz2cWxGgx241mxuye6OU8yYNEefCnLoZolgfV3Bj4EBH5GU+2nnsa/Fh9cOv1hLLZnEhPL1Acq/fgNHug6lVxthpYyAMTrd1b8no0ZvdAJAYUeufTC2IA4/5gRvdCHWCpf/Yk2LLah6tLly6Kn/WCJ3VidHNg4ENE5Gesbj0vLS3VPFZrNkh8gJnNPshzaNQ9oXbuHIjNm9OxefNIFBSkK4KL2bPHSnkpVVVVqKurQ1BQECIjI6Xzie+vXr3acPnGyuyIMvFaWa/HLHlYq3ChyGZzIji4Rne5DQA6dTqOrKw3UFsbIm2ZX7Qox3THlnw3lRgkqQOswYMbiifKz+XpPTHbOaZOeNbSUv26GPgQEZEmo9yQGTNmICUlRfpZ/aB78MGj2LcvCElJdYiPPxfAuZp/u5c/rAsKGpJg1cFFcHCwpfybzMxMAMbLN2YzRe6J19br7ogzIl27HsLUqatQXJyELVtSIU8Orq0N1RxbYWEaCgrSFYFF587HPNqxpQ5O1A1Rf/xxCOQB3Jo1rh1ynt4TKzvHWqoJqRkGPkREfs7K1nO15cuXuy2FyX8fFwekpmp/VgyQKisrcfToUWzYsME0z0RdyVlvzOJxZss3RrV6zAr4qc8l0tueP3ZsPuLjS6WAQqu+jc3mVOx+EgMLq33GHI5IlJQkugUnGiNX/RyAJUtuUCy1ybf0OxwOrFixolG5Ua0NAx8iIj9mtnwhPlABIDGxxDCvwyoxQIqLi0N0dDQ2bNjgUZ6JlSUXsyW3MWPGSF3FxWanlZWVyM3N1e05pe7CbtTZXT6rkp+fgZycRbqtL8S8JnW9GzGAMrsvyoDLjLLvlvg98tmb2NhYqVaQyJuk69aKgQ8RkZ8Rm12aLV9s3TpU1Q9KwOTJH5tWBPaGWaAitpXwZMnFaPlGXa05MzNTqnOjNxajpSCr2/P1xgZAWuYSWekz5h5wmbFBq8Gp2exNY3eOtSYMfIiI/EhFRYWUK2O0fAHArQkmYPOqIrBVVgIVsyWXoCDlY029pKW3RKbOH9Ibi951W9mer/5u9djUDT4zMvJN+4xZWZZTEuD6d6qc+bEye9PatqV7i4EPEZEfkS9PGS1faDXXBHyf16HX50mLwxGJU6fCoZ6xkD+0o6OjNdsnANYrSquDE6BhaUys3NxwvCsHxmh7/qRJaw23w4uGDfsBp093kNpb5OdnICzsdyn3RmzDIb8uvWW5//f/PsGnn14K5b9DebBjcxujle3mrWlburcY+BAR+Sm7vQoZGfnIy8uAVksCrSURX+d1GG171gtaXA9sp86YtXcTWVkiMwqM+vbt65b3Aigf+Ort+eJ2dADSdnSt7x47dizy8vLgcERKQY/eGB0OBwRBkGa29Jaghg37AUFBgmpLvjqQtWH8+M8wYMBOxf2TX1Nr3pbuLQY+RER+auvWocjPbwh6MjLyFe0UJk9eq1juaqq8DrOHplbisM0mYOrUXEXvKwCKXlbyB7jZEplZYORwODQDH3lgoG5cevz4cWzYsB/FxUmG3y3WIvKmXQXgvgR15ZUXoK5uLMaNs+Haa/+LtWt/QXBwjdS9XWSzOaWgR9zJpRXEtKWgxgoGPkREfkjrQZ+fn4FBg3a4VUYuKUkAALcgo7noBQQAZDMhriWqpUvzFGOcPn06APNdSWZBx4oVK5CZmQm73e4WHMh3qQHu7UDMvltM3G7Mzin5ElRiYqKig/vPP38OAIbJyVo7udorBj5ERH7ISl0WMZjQC3iaK69DL3F45cppqKlxtXPQW6Iy26ll1CMLEPC//yUDsKFz5wpFAvT06dMVuT4icUu8nNl3i4nbWsdlZOT/kW/lHuQFB59BbW2oYf0lvaU4dXJyW8rRaSwGPkRE7YxRA1JxKchsdsEo32XKlCmIj49vtiUQ/RYQAX+85vo94P329oZ8p7GQJwBv3DgKGzeONu3PpUcMUlJS9iInZ5Hpjij5GEtL46WcH3nPLr0Eaq0yA+0xR6exGPgQEbUjVhuQGs1CmOW7xMbG+uxBaSVIA1wBQUjIGaxceYXiGK2t3PKZq5MnTyreM9o1Fh9fBvfKxsb9uYyqXpsFj4CyLYh8JufUqQgp6Vz8/jVrLpOKKFoZm8ifghorGPgQEbUj6iDC6MGsNwPSXO0JrAZposTEEs1ZKvmMj4urESgArF+/HoC1pSmjWjyA+z0wCmysBI9yWu0u3AX8ca3mYyN9DHyIiNow9YyJfJbEbMZB/fA1qg3TFO0JrAZpY8aMwYYNG3RnqQD18o+y/xTgqu+jlbwbFxeH6dOnIzc3V7cWj9Y9MAtsPAke9dpduHOqZnwatNX2ES2BgQ8RURtlNGNiZcZBbxdPS7QnMArSxJ5agPYslcMRiYkTlQX7zJZ/5OQzQWY5NlZnxTwJHq02RTXL8eFsjzUMfIiIPGCUkwI0b6Ko0YxJY5ermrM9gVmQdvr0acXx8jwdowad3i7/iOdPTt6PQYN2aN6D0tI4GM0IeRI8mrW7mDp1pWJnnVaRRH/doeUNBj5ERBZZzUnJzs5u9oRS9YxJRka+x8tVLdWewCxIW7dunfS6PLgDoBv0ANaXf4yuR+seiBWWlUtSgtRbS2Q1eDRrdzFo0C7TMQGuRqtdunRhMrMJBj5ERBYZzfR4c5yv6BUjzMjI112q0dJSW5+tLgspZ3ecGDhwp2HQo3W9ejN2mZmZqK2txenTpxWBlhbtpSkb4uNL3Y61GjzqtbuQf1YrL0t+PgY81jDwISLSYZQ43JrozZjEx5daqh0j583Ds7HLf1aWhdwTgAPw88+DoLXcpF4ako9TPmOnl0w9Y8YMhIeHKz4r7xvmmm3Sb5QKQKrybHY/srOzcfToUanRqdG/o+asndSeMfAhItJgZVnLaKu4L8fRmGKETb1cZTWY0Fr+czgc0u/NloX0E4Ddu4yrl4YA96DVKJm6pqYGKSkputdcVNQHymUuZaA2ffp09O/fX/fzcjExMSwy2MwY+BARaTh69Kjh+0YPTl/xRTFCwH2JxBcPUTEgs7p9Xv1Qr6hQtoAwCyKNa+xodxmXn1NdKNAomTo3N1c3T0v8rHKWyZVwLNKqF2SGQU3zYeBDRKSifiirmT04fcUXxQgB3zeg1JrlKSlJ9OieyK/NKGAaO3Ys8vLypOBO3i1eJO8ybuWcJSWJmkuDhYVpGDcu3218clZ2y3FXVevGwIeISOXIkSNur/lyq7g3rMwwNdcuLL2gRc3KPTELIiMjI6VjxeCusDANBQXplvOB5OcsKurzR/DkbvPmdKSlFf5RG8ihGSyaJWJPnz6dszetHAMfIiKZiooKtwaUmzalS32TrGwVl+euaPF0qcksOGip3T7uCcdK8nuizrERf/Y0iLTbqzBuXD7S0go9ygcShACUlCT8sUylVyyw4XtXrFihudxltqzozTIXNa92Gfj84x//wNNPP41Dhw5hyJAhWLx4Mc4777yWHhYRtQHqJY4vvrgIGzeOgrwhpNlWcaNlMpEntX7MggNfL2VZZVRxWH1PVq9erblUFxx8xjCIDArSfkwZ7YDSzgcSUFycbFIhWUBpaTySk/cD0F/uas7ijuR77S7wWbFiBe644w688sorSEtLw6JFizB+/Hjs3r0bXbt2benhEVEbsmlTuiLoEcm3ig8adDmGDIlAfPy5AM5VNL0E9PNyPKn101y9szylHWA4MW2a+3ZyraU6wLz9QnR0tGLLtxV2exUyMvKRlzcWDf/ubNiyJVUzIJIfk5+fgUGDdrgFMy1V3JF8r90FPs899xxuvPFGzJ49GwDwyiuv4JNPPsGbb76J++67r4VHR0RthcMR+cfyllbDyIat4hMnhiEurpvmOYzyctRLP0ZLUi3RO8sKvXGpt5NrLdU15NnIG3M6kZX1BhISyhSfN9ry7XA4UFtbi5MnT0qd2F1jc8D9310A0tM3KfKDrC6zcct5+9GuAp+amhps2bIF999/v/RaQEAAMjIyUFBQoPmZM2fO4MyZM9LPJ06caPJxElHrd+xYDLRzQQSMHdvQmkDvb/hmeTny7dUio+Wv1rq8otc0VD7Lpb0kpnVvA1Bbqz9jor43elviS0vj/mgpoWSzOZGWVijlBwUH12DJkhssz6QxqGkf2lXgU15ejvr6enTrpvzbV7du3fDLL79ofmbhwoVYsGBBcwyPiNoQvTyRCy/8D0aOdP1FSmsHT2VlJQDjvBzxfbPlr9a4vFJRUeE2W6XXNFScATp9ugPUFZZd9Jt8ioyuTX93mdZ3KWfJxH+2xpk0alrtKvDxxv3334877rhD+vnEiRNITExswRERUWvg3jjSibFj86WgB4Bm3mBdXR0A/byc0tJ4vP32dZYKH7a25RWzKs0HD8ZpznIJAqC9ZOhedVledNFqiwb33WXu3zVt2krNis6tdSaNmk67CnxiY2MRGBiIw4cPK14/fPgwunfvrvmZ0NBQhIaGNsfwiKiNMXooZmZmKh7KYiXj48ePA3AFToMHb8ePPw6B+IA/66xd0k4wwFrhQ/E79FpX1NTUoKysrFkCIKOig65rHQz1EpbxLipADHq0cnvEa1NTX6vR7jLAFXAmJh7Ufd+sRxa1L+0q8AkJCUFqaiq++OILXH755QAAp9OJL774AtnZ2S07OCJqE6wuL3Xp0kX6vVZrCYcjEtu3D4Z8x9CuXWd5VfjQausKeY6QGCiJyb9qQUFBiI6O9ipg0spfagjwlFyzXoB+7RzX59W5PWIOlFHvL5HesqTWTJInuEOrfWpXgQ8A3HHHHZg5cyaGDx+O8847D4sWLcKpU6ekXV5E1HY1tgu4Fd4sL2kdq5fjY9bVW4vV1hVHjx5FTEyMbqCk9zmrncSNrk0v6HHftu7841jj3B7Aeu8vrd1lGRn5iI8vdZupE5fQ1Oewct3UPrS7wCczMxNHjx7Fgw8+iEOHDuGcc87BZ5995pbwTERtS2O6gHuqsZ93OCJx6lS4Zo6PUeFDK4yCAbHasFagpNXmQf458Tgr99RohqWBcvlKvmRYVNTHNKHY035oVnN1YmNjGdD4uXYX+ACu/0i5tEXUvlhtamn0t/jmmDFS7i5ySgGCfJyDBu3QfEDv2bMHJSUlCAsLk5aigIaaP3r1cOTBQGlpqdt41I09tYIIT+6p1gzL4MHbsX37YMXn5Tk78iVDoyBlzJgx2LBhg1f90Kzk6nD5itpl4ENE7Ze3ndG9yZNp7NiAAAiCE9Om5SoqGes9oDds2GB4fr16OPKu4vL6QOJ4tPJr5EGE2T0VAy9xqz6gHbxcfPGXhvV85PTuQadOnQBYq1ZtNYiZPn261/lM1P4w8CGiNsXbzuhW82TUx1mZJTIaGxCAiIhq0w7lWmNRv965cwXUOUIAUFDg6ioujiE4+Axqa0Nx6lS4pQaievd0584BGDBgp2axRcA9eDGr5yPftm8UFInnMqux09q2+1PbwMCHiNoUX/StMnsoi6zOEmVmZloam7iMIzLKvdEb44gRBdi8eaTi+wUhQHEe+Y4mrUAJEBRBhF7OzuefT8D69eMMaw1pMZtBMrr/8qakVvJ2GNSQp8wKLBARtSriTIDroe7eBdyM3kPZ4Yh0O9ZqI1Fxu7jZ2MRlHMAVfD3/fA42bx7pNha9QoAOR+QfMztO1Qic2Lw5XRa4NHSSbygSKCcgJWWvdD+OHYtBRka+NG55orLe/XE4IlFcnKR534xm5czuv82m3B1mt1chOXk/6+yQz3DGh4janMZU2/V2qQzQX56xOksRHBwsncco9+bAgZ6aYywsTPsj8FFvHbdpvCZ/T811verdVRdcsBEbN17oNi71/dm0Kd1tZ5rrml3LbHo72jp3PmZ6/wVBHaRpY5IyeYuBDxG1Sd5W2/V2qcxoeSY6OtpSron4vlGlYZvNiZ49D2h2Dt+8OR3x8aXQDny0lrS0CwjabE4EB9e4zbx884170OPScH82bUpHXt5YyGeE1qy5DDabOMMkzha572gT/30Z3X+r95JLXOQtBj5E1CZY/Ru+2XFWkmbVrOwks/IgFtsvaOfUNCyNJSSUIT3dPZfHFZQImoHDBRdsxDffXOiW46MuICi+VlsbaqnAorwbvcMRiby8DLgHXgFomKixyV7T3tFmJWmZqKkw8CGiZuVtLR1f7uDxdKmsMctjWrQaoI4YUYABA35GbW2olMuzeXM61DM1iYkHNWvoNAQ9Tlx44Ub07l2suDb19TockRrBlxOpqVuwZUsqgIYKyIMG7UBxcRJOnQqHZ6mh2jva2BiUWhIDHyJqNt5WX/Y0WNI6Xl6DBtBfKquurnZ7zRc7ycRxisSHf0lJAgAbHA47liy5QTELMnmy9syIPHAIDq6RPufiWrIaPnyL7lZz8Wd18AXYsGXLubDZnEhP34S0tEIUFfXBokU50hi0ZoT+uCNu12t0j9gYlFoKAx8iajbeVF/2NFiyugVdz/Lly90CL2+Wx7TExMRg+vTpyM3NBQBFcrHWTqqcnEXIyVmkOTMiBg7FxUlez0bJg69Vq6ZBEBq+v6AgHQMG/Oy2xOcKAMXgx4mxY/MRFva723Wo75F6Kz9RS2HgQ0TNzpPqy54ESxUVFW4tG4wK5ZkVMdSaodEKQjzZYSS2oXCv8qycMRGDF/lWbq3xms1GjRs3DklJSVKX9uPHjysCELu9CseOndYMnkpKtHeXTZuWi4iIas2ltODgGtTWhrjdI/lWfqKWxMCHiJqdWc5MeXm52/KVWbC0b98+rF+/XnFOo0DJShHDpqwMbLSzC3BfJtIbr9lsVMeOHeFwOKRGpIB2RWit4Ckx0X13mZhnZLUFhUjcym+G29SpqTHwIaJmp72rybXFGmjoNyVvNmwWLKmDnoMH4xTNOeWBEgDLM06N2WGklWsk9r0y6nAu341VXJyE4OAzhuPVmo0Sg5ulS/MU16QOoNLTC5CWVqgZPCUklPlkiQ8A7HY7t6lTq8DAh4ianXtirQAgAEuW3KCb66M3K3HqVAQcjkjNh7teIT7AZhhEFRcXSwGKSN4t3coD2izXSGumJiMjH/Hxpejc+ZgiqVirRo86j8dKnyytWbPNm0di8+Z0TJ68VjOfyGiJb+zYsQCAvLw8w3th9Z4RNQcGPkTUIoYN+wFdux5S7EgymnnRChQEAVi58grDh7ucfPnIKC/GyoPcrIu7laaoekGFVpd3efKzerzq79GbHdJfXmtIpk5O3u/2rt4yVnJyMuLi4tCvXz/O5FCbwcCHiFqMXhE9vR1J8l1IK1dOg9Yylv7DXblMY7SEY9Y5HLDexwswzieaNu18REa6+lSJicfa12DTrYQ8ZcoUAK4lQqMlQb3CifJjPFnGEvNxGNRQW8LAh4iajTpx1Zv6OOIuJL2lH71zZmW9gYSEMuk1vdkWdZDiWn4qMwyCRPKcHnGpzCwpW5w1AVyVnTds2GB4DVo7pmJjYy3dU/clRrgdA7gCqaCgINTV1SE4OBh2u93tWjmLQ20VAx8iajbiLqnS0lKsXr3aUn0crV0+njzc5Ym6auolHIcj0i0hWuxLpbfzS6SX0+NN1WdPrsHqZ9XLa4WFaVJlaPUxsbGxUjBG1N4w8CGiZhUTE6NYJjJKni0vL0dsbCxmzJiB8PBwlJeXWwqYzBJyO3XqJCUqi+cEgMLCNLi3ZFAWFdTKPwL0c3qCg894VfXZk7YO8gaoVj5rt1dh3Lh8pKUVsm0E+R0GPkTUJIzaTKh3TOklz4oBCeBKJpYv6Vh5uGuds1+/fppLNA5HJAoK0g2vSV1rSO+a1Mtlgwdvx/btgw23hFdUVFi+L1OmTJHuhbjkJDZANfusp8cQtTcMfIjI56y2mdBiVE1Zveyl9+AeO3YsIiMjFVvQAeO8FLOCgi4NMzXyoEw9fnVOz/btg3XzcwDzre9q8fHxbtfhy8J/LCJI7RkDHyJqNPXsjtHshzxPRr4byexYQFlJWV2NWE6+Hd1s27nIaMeTi4CxY/PdcoLUQZpeTk9tbYjmVvHKykrU1dUpXtML/qZMmaIZ9ADWq0wDxjvSmLRM7R0DHyJqFP3ZHdcWbaMdTfKlK6v9uzx9KFvddq7Vrdxma2jMmZGRj5EjC6Tj9YI0s51q4jKVGLiJDUvNziu/HnFZSx2kMGAhMsfAh4gaxaiJaHp6geUdTd7sfpLzZDlNzqgRqWtc7jlEZkGaUeK13o4phyMSJSWJhm02nn12q25XeiKyhoEPEfmEdjuEdMs7msxmSiorK3W3WFtpOKpHXCI6evQoamtrUVVV9cfSU2/pmKCgP6Fz586ora01LRKo1zvLiHz8aoIQgMLCNBQUpOt2pSci6xj4EJFPaCcHByA9fZPbQ1srEDCbKcnNzdWc3bC6RKanoqICR48e1c0XksvMzARgrfCiXuJ1ZWUlAP0Ch+6c0v3z5vqISImBDxH5hF4wkJZWaLlejNlMyc8//4xOnTohODgYtbW1ABq3RKa3m0pv2Uz8TrMgTZ3HI6fO6THeTebEiBEF2Lx5pFfXR0TuGPgQkU+YBQNaD2mHw4EuXbq4nQdwBQTqz23YsMHtHGazL+Xl5bo7lbSKDhotK8lZWc4SBMHt/OqASns3mashqc0GRESc8qoAIhFpY+BDRD7jaW7LihUrkJ2djczMTGlmxNN8HbOAS9wqb5YEvHXrUEViMeC+rBQUpPxfppXCi/Lzq3uAjRxZoLGbrKELuyAEID8/AxkZ+cjPzzBdLiQicwx8iMinPK0GXFNTIzXB1MvXCQk5g8TEEt3u6VYCrtLSUqkIohgAifk24ve6t6tQLitFR0djxowZWL58uSe3RPO6XD3AgJEjC6Tx//zzAKxfP8Ht++PjS5GTs4jtJYh8gIEPETWK1Sq/enkz5eXlCA4OBqCfr7Ny5RXSTAcAzRkhMeByOCJRXJzk9j3q9hdAQ76NUZ6NelkpPDxc87qCg8+gtjZUczu99vltyMvLwKBBO6SxDxy4E3l543SbrzLgIWo8Bj5E1Ch6FYPlzT+Nlq/kAYlR9WRx9seVNqO9w0lrOSk+vswtGCktLVWcW+971ctK6l5aym3oYl6O+/Kc/nUpk5StdKtXY3sJIs8w8CFqJw4eBPbsAfr2BRISmve7jXJnPNlu7p7voqT32rFjnQG4V4l2LSe5ByPqHJyioj5Q5iG7dlOlpRXqzhq5b0PX7+Jut1chIyNfGo9IK0nZaNlO3pwUYHsJIm8w8CFqB5YsAebMAZxOICAAeO01ICurpUflord8VVKSALt9l9vx4oO/pCQBK1dOgzzvxjVrArfXOnc+prucJH6fXrCll9+jDnrUn/n554G6y2Na283Fdhd5eRkAzGsaab2uV/WZiKxj4EPUhlVUVGDfvjrMmdMVTqfrIe90AnPnCjjnnCNISgpq8RkBvWWeVaumoaZGe8eW68G/CzU1a92Wrk6disDmzenQCh6MmoyKwdaxY6dNm4qql6DS0tJQWFgIQHt5S01vu/nIkQUYNGiH10nKXNYiajwGPkRtlFh8r7g4CU7nTMV79fU2LF68DsnJ+xXbuOVd1EtLA1BcHITk5DrExzsBNM3Sibh8ZbZVXIt82ae0NF6xpTs9fZNiVsZoW7iLE6tWTfO4qSgAKejRXt4SVP909Sgzuh9a1ztjxgy3xGk5LmsR+QYDH6I2SgxgzB7c4nHyKsVGyca+anqpbv4ZEnIGK1deoThGvSQk3/kFQPp9587H8Pbb1ynydwoK0jFgwM+629rlgRLgBGCDIGgvfVlNKNZbThs//jMkJh7Azp0DUVCQjs2bR6KgIF1xX9X5Oep7xaCGqHkw8CFq46w+uMUAyCzZWK/ppXy2SIv64S3u9iotLcXq1auRmFhiGKC5LyEJEJez9Lq8L1lyg+629uTk/dKy0qlTEYZBl9XCi8HBZ+AKopTXMGDATgAw7KnF/Byi1oGBD1E74EnFZG96W+n1tFJTzxbFxMRIwZJRgKa9hNQwO6PV5R0QTHeKyWv7eNtUVCQGZq6gR7l13W6vQnFxktc9w4io+TDwIWon9B7cYu2ZHTsqUVychODgMx73fjKa6TE7Tr3kpRWgGTfqBNRd3tWzLoBxkGG1qahaZWUlcnNzdQIzJ6688n3067cXgLWO7UTU8hj4EDVCc9XOacz3rF69WraMdBZsNicGD96O7dsHe937Sa8Ksxa9AodAQ5FDo8KFgLLLe0lJAqqrw7Fu3f/zKMgwmhVT9+ACXAFbdHQ0AP2dXx98cJViic3T4oNE1PwY+BB5qblq5zT2e7RyerZvH4ysrDdQWxvi8bZqT5uIAsYFDgHtGRmxXo88gFDmATmlYEkdZOgFZpdfPhydOnVCVVUV8vLypNfF1hVqmZmZAPS35KuX2IyCK25FJ2odGPgQWaCecTl4sCEYAcTaOcD48b6b+TGr0RMR4bB0Hr2cntraECQn73c7vri42O01dTNPK1WYzVRUVEjnBdxnZFxjbwgg3JebAiAITkyblovExIPS9xsFZhs2bPBojLW1tQD0t+SL90BcYtNbMuOuLaLWg4EPkQmtGZfevRuCHlF9PbB3r28CH6s1eqzwNPdEPhOi5k1itBa9ZGl1ntLEiWejY8d+WL9+ve5yU0REtWKmx5vATG+GSL4ENmzYD+ja9ZC0k0wkv5fcuUXU+jHwITKgPbMjYM2acgQExEozMQAQGCggMvIIKioaXy3Zao2e6dOnS3koamL+jNluKqu5OlbG4+n1mdm8eTOmT59u+bsLC9N0AzMAmtdqNEMUHR2t2JKfkFDGPB6iNo6BD5GBPXu0ZnZsyM39BJdd1lnxALz44nwsXuzqBD5//kyfLG1oBS0ZGfk4dsx17rq6OgDmSylauSd6D3yjYKipEniNvlO8RrPvdjgi/2hloWSzOVFaGi8VQFRfq9kMkfq+Mo+HqG1j4EOko6KiAlFRdQgI6KqY2RFnGZKT9+u2U+jR4wTuvNM34zBq21BUtBbDhrk6hmdmZqJLly66AZB8GUnvgX/6dAfF+bUSl40e/A6Hw+N8FnUAlpGRLzX0BICTJ09a+m5XMOi+K2zYsC2yCs7K4Mbq0p3RzjQR83iI2gYGPkQa5Dkol13mPjMi7w8FwK2dwr332pGZ2ZAI3dgt73rf8/HHl6Fr10NISCjDihUrAFhrOaH3wNcLEOz2KowdOxaAKwdIr2aQJ2MAtAOwvDzX94jBz/r1693uhdZ3a++8ciI5eR+2bDnX7VpLShKQmHjQ8tIdgxqi9sGoYhiR35L/zX7YsB+Qk7MIM2cuQ07OIrcZEK0gor7ehsLCCrzwwkn06gVcfDHQq5crUdpbesHKG2/cgK1bh7qN3WjZRQwSlLS3a4v5MXl5eYaJz3JWc3j0el/l5WXA4Yi0dA6RuBQmXpfN5sTkyWulVhlqK1dOQ1FRH7fPMGeHqH3jjA+RBUbtDPSSbj/7bNUfO4Bcr8m3oicleZ4ArV/kT3vnktbyjF7CM+BEauoWbNmSCuXfh5w4dSoCDkek5vV7mhztyTXpNS/V+x6HIxKdOh3XrE/k2oo+Ccpu7a77lpOzCDk5i5izQ+QnGPgQNZJe0m1tbajmTJC4Fd3TLujuwUoDvS3lVhKeCwvTUFCQ/sdykICGdhCujuYrV16hme/jTSFDrWvKyMj/Y3nLPY/K6vdoHSPf7p+Sshdify058b4lJ+/H7NljFTV4mLND1D4x8CHyAa2kW7PGmGaJsnrf07XrIbzxxg1Qdwi3sqVc67zyjuKuxpsCJk78GOvWXQpBaGgUKp9VcjgiFcX8jOrlaHV1dzgaii+KuTx5eRlQV2q2suvKyjF6ic+swUPkfxj4EPmIejmsMVu/5ctU4vKUKCGhDJMnN+68Yl0avbyhurpgw1mlwsI0WGkSarWr+8iRBRg0aIel5qXq77FyjPaSmoCMjHzm8xD5GQY+RI1klH9itP3ajLjMIm/r4KvzmhVI7NnzgO5slcMRiYIC93o5gPusk9UkZ8AVKN5440TYbDZpd5iVooWdO1dA3a1dfYxWTtPYscpt88znIfIPlgOfEydOWD5pVFSUV4Mhamus5J+IM0EORySKi5M8SgQuKipSNNBUB1mNna3Qm5UyqlBcXJyk2UV9xIgCaTzl5eWKf+qNX01dhdrKrFlRUR8oc3e0Z8CMgsUZM2Ywn4fIT1gOfKKjo2Gz2QyPEQQBNpsN9fX1jR4YUUuy8rd/T/pCaQVI5eXlhgm0FRUVWL58ueE5tJKJPZ250AsI9F7Xm4VJSyuUfpYvzXk6fqvjAxr+HSgTo8VkZpcZM2YgPDxc9/xMYibyL5YDH0+7GhO1ZUaVeh0OB1asWGG56q9+gLQIdnuV7u4u+XebJROLXcHFoKesrEz32kJCQtyCI73ZI73X09ML/mgPYS3HSO8eiMUXjRjNEpn9O5g+fTpSUlIMz09E/sVy4DN69OimHAdRq2M2C2C1YafZw/nIkSOm32WWTCzuSLKaTJydnW0Y2NXW1iIoKAjR0dGK5Gr1rE16+iakpRW6BXrqQMWo+OLkyQ0zPw6HA3a7XTrGbJbI7N+BXgNXIvJfXic3V1ZWYsmSJdi1axcAYODAgbj++usV/9Mias+s7trS21FUWhqP5OT9yM3NRWZmptt/O2J+TFMkE9fU1Ohu3dZ7XWvWpqAgXbHEpReoWC2+WFtba/h96qXEpmqaSkTtl1eBz/fff4/x48cjLCwM5513HgDgueeew2OPPYb169dj2LBhPh0kUWtllH8yZswYbNiwQadInw35+RkYNGgH7PYqrFixQndJR7utgzKZWI83lZXVdXfEAMxs5sosULFSfPH48eMICgqy9H0idksnIk94FfjcfvvtmDx5Ml5//XXpf1J1dXW44YYbkJOTg//85z8+HSRRa6aXB9OpUyfp9/HxZdCrGmy3Vxku6VhJJtZidM7KykrNmR2jpTKzZSWzQEWv+KJ85kqeS2j2fdOnTzdcymLSMhFp8apJ6ffff497771XCnoAICgoCPfccw++//57nw2OqL3Qagoqr4ujNVMiNunUar7pbTKxeM7c3FxUVFS4fc69wrJrC77Yq0tvHA5HJE6dCte9RlFk5EmoA0C9zaJm1921a1fExcXp/mLQQ0RavJrxiYqKwoEDB9C/f3/F6yUlJYiM9KyjMlF7dfz4ccVSkyd1cdRLOmYFC9VLOlaWiczygfRmjNTjkB8HOKVZGq0AzdU6Qn/mSyTPeXrwwaPYty8ISUl1iI8/F8C5nM0hIq95FfhkZmYiKysLzzzzDEaMGAEA2LRpE+6++25cddVVPh0gAOzbtw+PPPIIvvzySxw6dAjx8fGYMWMG5s+fr/gf/vbt2zFv3jx899136NKlC2655Rbcc889Ph8P+Y+DB4E9e4C+fYGEBM8+++yzlfj44xxFEKDVBTw4+AzMKg8D+ktqWsX3rOw4UxcXlL9mlq8zfvxAfPvtfrfjgAAIghPTpuUiMfGgpURvm82J4GBlEGa326WluLg4IDXVbahERF7xKvB55plnYLPZcN1116Gurg4AEBwcjJtvvhlPPPGETwcIAL/88gucTideffVV9OnTBzt27MCNN96IU6dO4ZlnngHgqiw9btw4ZGRk4JVXXsFPP/2E66+/HtHR0ZgzZ47Px0Ttl5jc+957YbjnHjucThsCAgQ89ZQDV199GtXV1abn0AsccnIWKbqGi7MlrqDH1T1cPVMi1ujRojfzoZVMLAiuKsdino9WkUGR2YzRt99+q3scEICICNc9Uleqdh+XAEEIwJIlN3jV3Z2IyFNeBT4hISF44YUXsHDhQhQVFQEAUlJSDKujNsaECRMwYcIE6efevXtj9+7dePnll6XA591330VNTQ3efPNNhISEYODAgdi2bRuee+45Bj5kmZjc63BEYtGiHKk7udNpw913R+G3396E3V6lWw1YrHljZanJfbbEFfRkZb2hKOpn1jVcvgtL3tcrJWUvBEF+pH5laTWrNYr0jistjcfbb18nLX+NGFEg1fvRSnI2qnpNRORLjWpSGh4ejrPPPttXY/GIw+FA586dpZ8LCgowatQoxdLX+PHj8eSTT+L48eOKHTZyZ86cwZkzZ6SfPelJRq2fp0tVYgBhFriEh4cbBiNWAge976ittb4F22gXliufxlplafWWd6v1cbSOy8jIR35+hmL5a/PmkSgoSJdmdWprQy2NjYjI17wKfH7//XcsXrwYGzZswJEjR+B0KndybN261SeD07N3714sXrxYmu0BgEOHDiE5OVlxXLdu3aT39AKfhQsXYsGCBU03WGoxS5YAc+YATicQEAC89hqQlWXts1ZnPPRYCRysfodRLRqtXVhiEGPl/EZb3q12gE9J2YupU1cBEJCYeFC37pB8Vqex95eIyFteBT5ZWVlYv349pk2bhvPOO8+0eame++67D08++aThMbt27VLsHvvtt98wYcIEXHHFFbjxxhu9+l65+++/H3fccYf084kTJ5CYmNjo85JveTJzU1FRgX376jBnTlc4neJSFTB3roBzzjmCpKQg0x1BRoGLwxGJTz89jXPOOYz4eFfQr5VrYxY4mAVHU6ZMQXx8vNt55Utb8gRlrSDG6PxWKyMbzcBofaerQagyWVskzuokJ+83HBsLDxJRU/Eq8Fm7di0+/fRTjBw5slFffuedd2LWrFmGx/Tu3Vv6fWlpKcaMGYMRI0bgtddeUxzXvXt3HD58WPGa+HP37t11zx8aGorQ0FAPR07NwSzJWCvYEJd+iouT4HTOVLxXX2/D4sXrkJy8X7cxqJzZ1m31DEl2drbbOcwCB6PgKDY2Vvf61IySqbV2kgHWKyOrk6srKyuRm5ur+51ZWW9AvWVdJJ/VefTRZG5VJ6Jm51Xg06NHD5/U6+nSpQu6dOli6djffvsNY8aMQWpqKpYuXYqAAOX/sNPT0zF//nzU1tYiODgYAJCXl4d+/frpLnNR6yU+4A8ejMOSJTfoJhmrAxhxJsRsKcVqTyt54GI2Q2L1nEbfISdPVAZcsyB6S1unToXrBjHJyfs1z291uUkvuVovcPr1177QDnyUszribBa3qhNRc/Iq8Hn22Wdx77334pVXXkGvXr18PSY3v/32Gy666CL06tULzzzzDI4ePSq9J87mXH311ViwYAGysrJw7733YseOHXjhhRfw/PPPN/n4yPdqamqwdetQrFkjbvVuIJ+V0As2mqJ5pZUZEqtLNOpdYQ6HAytWrFAck5ub6/a5zMxM6ffq2ScrtYDUiczKreVOpKcXuH2nuJymnonRazz6n/+Mhrg1Xz4Wcbea3hIeEVFz8CrwGT58OH7//Xf07t0b4eHh0gyL6Ngx3yYo5uXlYe/evdi7dy8SVAkewh/7de12O9avX4958+YhNTUVsbGxePDBB7mVvQ2qqKjAjh2Vsvo2SlaTYK0m51plZYYkJiYG2dnZhrM/VpZy9JqLit3LtWafXGNzBT9agZ5RJebCwjQUFKS77b4ClPV+srOzpeBOv/GoWMFZUHyXuEWfQQ8RtSSvAp+rrroKv/32Gx5//HF069bN6+Rmq2bNmmWaCwQAgwcPxsaNG5t0LNS05Dk6gnCW2/ueztyY5dioGc3YWJ1FauxD3SiPSKQ3+zRtWi4iIqrdAj2jZToAKChIN0xyFtXU1CAuLg7Z2dkoLS0FsBohIWewcuUVqqsIwNSprrFcc00aBg1i/g4RtQ5eBT6bN29GQUEBhgwZ4uvxkJ8zytEB3Iv7+ZrWjI1YlBDwzSySfFeW/DsAazutAP3ZJ602EYDxMh1gs5TkLBcTEyNdQ2JiieFYBg0ab1jziIioOXkV+PTv3x+nT5/29ViIJHqzK00Z9IisbHX3dtnMqOAgYH2nlZWt8LGxsVLQZrZMp/XeqVMRUld2I02RT0VE1FS8CnyeeOIJ3HnnnXjsscdw9tlnu+X4REVF+WRw5N98naPTGhgVHLTbqzwq7Ge2FV4+y2IWnKjfEwRg5cordJfaAOWyoNFYWJOHiFoTrwIfsW/WJZdconhdEATYbDbU19c3fmTklxwOh+z32gm+Rqw+ZD15GDfFOQH9XB6jACUoSPmfrN7sk9hI1WpwIr5XUpKAlSunwUoPLV8lchMRNSevAp8NGzb4ehxEqKiokLZ0W0nwBdyDjaZ4GHtyTq38HTmxNo9RLo9RgBIdHY0ZM2Zg+fLlhmNevny5VOMoOzsbR48exYoVK0yX6U6csMOTHloMaoiorfEq8Bk9erSl4/7yl7/g73//u6LqK5EeMWCwkuBrVAumKR7GVs5plr8jZ5bLoxegeDKrJN7PmJgYRe0rLfJAU6sGD3toEVF70aju7GaWL1+Ou+66i4EPAdDezSQnzoZYSfDVaufQ0szyd+T0dq1pJRSLicrirFJZmTLB22xJUD6TpvUZAKpaPDaIwQ97aBFRe9OkgY9YXJBIPRviaVCgnnVo7Q9gvaU6+XWrqyYDNs2EYjFRuaKiAmVlZaaNSdVLguqATP2Z9PQCjW7qNowf/xkGDNiJ2bPHIjaWNXiIqH1o0sCH/JNRnRrA/GFttgNp+vTprfoBrLdUd/p0B+TnZyiuKSdnEUpKErBq1TSpH5nW0p7WMprZkqB4z+X3XuszBQXp0Gp3MWDATtjtVbq9uoiI2iIGPuRTZnkuVgv0mSX4tmZ6S3Vi0CP+LHZPj4g4bbq0p7VEaLYkKG81YfaZESM2SdWbubxFRO0ZAx/yKbM8F6sF+oDGFQpUM8ovqqyshM1mg91u13zf0yUevfwdvev2pHaP2feYfa60NA5ayctpaYVISyvEoEGXY8iQCMTHs8UEEbVPDHyoyWgtaaWk7PXqId8Ynuy20iNuDbdCa6kuIyNfMeMDNFy3N5WPxYBSfl6zzzkckcjPz4A86AEEZGTkS5+ZODEMcXHdLF0nEVFb5HHgU1dXh8cffxzXX3+9W6d0tRkzZrCKs5/SW9LKyVnU6PYG4tKL2S4xcbbCk91Weu8ZfY8WraW6sLDfda/bkyrV6oDyggs2IizsNHr2PICEhDLda9CabQNsiI8vVdwzIqL2zOPAJygoCE8//TSuu+4602NffvllrwZFbZ/RkpbRQz4zM1N3yQlQFgq0skssOztb8XmjxGqj98QEYaOlH3XQoF6qk193cHANamtDFVvXjWr3GNU42rhxFMSt54MHb8f27YMVM00jRxYAMF8aa+1J40REvuDVUtfFF1+Mr7/+GklJST4eDrVWVmdXRGYPWb2HvN1ut7SDSD4Wo4BFfpxRYjUAw6RreaKwetlLfm+mT5+O48ePIy8vT3PcdnsVior66I5XrNkjUtfu0Zu1Ecf8449DFD/n5Y0FAIwcWWC6pNa1a1fDe05E1B54FfhMnDgR9913H3766SekpqYiIiJC8f7kyZN9MjhqHazmyMhnV7zt2O3pUovVXWKA8SwUYNN87+efB2DgwJ26y15W7o1RsUD1eOU1e2pqalBTU6Oo3aOdOC1nc/s5Ly8DgwbtgN1ehUcfTcaDDx7Fvn1BSEqqYxIzEfkdrwKfv/zlLwCA5557zu09Niltf6zmt6iPM1rSUs9sAN41tPRkl5jZLJR7QCFg/foJyMsbp9srzCx/yEqxQPV4jYIpdUCp3qHl/jMANJzfFVh1Q2qq5umJiNo9rwIfp9Pp63FQO2GW5yLS67PlKU+2dJvNQukFFEazSHLqIEe9k0sQArB5c7rpeM0CTXlAWVoar9jVddZZu7Bz5wCot6uz1xYRkYtXgc/bb7+NzMxMhIaGKl6vqanBBx98YCnxmdqnpuiObsTTJTWjWSjxvZ9/HoD16ycoPmfUoRzQXnJTb193CUB6un6xQL1zqxO3xYAyOXk/Bg3aobieTZvSkZeXAcC7XXNERO2ZV4HP7NmzMWHCBLdkyKqqKsyePZuBj58zCmrE3BV1o02RN0GR2VZwq7NQ4nsDB+5EXt44j2oN6S25abWCEIsFerN1XS8Rury8XErAHjmywC0YIiIiF68CH0EQYLOp8wiAgwcPGm5FpvbBrBu4Hk+SpD0NfoyCmZiYGEyfPh25ubnSa0bX4MkskthRXm/JzajAoNb5HA4HamtrpTFaSYQGrAd3rNNDRP7Oo8Bn6NChsNlssNlsuOSSSxAU1PDx+vp6FBcXY8KECQZnoLbOSjdwPd4mSWux+gAXj5P397JyDVYKClZUVEjBlF6wNGzYD7qzL2lpaQgPD0d1dTUKCwsBACtWrJDe9yRxu7mXGImI2iqPAp/LL78cALBt2zaMHz8eHTt2lN4LCQlBUlISpk6d6tMBUuvhydZxq+fzZuYI8P5B78k1mM2aqL87JWUvpk5dBUBAYuJB08KEYrCjJt6X4OAzHrX3YFBDRGTOo8DnoYceAgAkJSUhMzMTHTp0aJJBUesiPujNZiA8WUZpzMyRyJsHvdk1WK0crebJ9RgFfOrzqCsxM1GZiKhxvMrxmTlzJgDX33iPHDnitr29Z8+ejR8ZtRri7Mq+fXV45x0BTmdDfldgoIBbbpmIpKQgy4GIr2eOPGFeUdpa5Wg5s+sZN24c1q9fD0A/QHI4IlFSkog1ay6DmAwtCAHYvn0wsrLeQG1tiNtSGfN1iIg851Xgs2fPHlx//fXYvHmz4nUx6ZkFDNufmJgYxMQAr70GzJ0L1NcDgYHAq6/akJrqWTdvT3JXfM3bitJGzK5HXBLWC5BOn+6gs/XddUxtbQiSk/crdnExX4eIyDteBT6zZs1CUFAQ1q5di7i4OM0dXtQ+ZWUB48cDe/cCffoACQmen8Ns1kVszyDnywe9J53QrbBaRFEvQBJr7miRn0e+i4uIiLzjVeCzbds2bNmyBf379/f1eKgNSEjwLuARmc26yBuCynm6zV3ePPTgwYNuY/DVdm+rs0j6fbb0gx7m9BAR+ZZXgc+AAQM0/1ZOZEQeVHgz61JaWoqamhpLsz9WawbJzZgxw3JgVVFRofhvwMr1uPfZ0mazOTF16krFzjAiIvINrwKfJ598Evfccw8ef/xxnH322QgODla8HxUV5ZPBUfui3oIurzYsp7frSX6s2eyPUfNQAJrnDw8Pt3QdekGV3iySvN7VsGE/ICTkDFauvELz3OIsz6BBu9zeYzIzEVHjeRX4ZGRkAAAuvvhiRX4Pk5vJjNmMitVt4VaLIarP6WohYQNg83obvVlHdtGUKVMQHx/v9vnExBKNJS8npk1zn+URt9czmZmIyDe8Cnw2bNjg63EQ4eDBOM1dTyEhZ5CYWOJ1kUTl0lJDsOGLbfRGgVpsbKwUrGRnZ6O0tBSrV6/WzQkSZ3nE3VsMdoiIfM+rwGf06NHYuHEjXn31VRQVFWHlypXo0aMH3nnnHSQnJ/t6jOQHtm4dqqhhIxKEAKxceYXh7Iw8iVkk5t9o7aRSn9/bbfRm9XvkOUAhISGK2R+jnKD4+HgGPERETcSrwGfVqlW49tprcc011+CHH37AmTNnALgaLD7++OP49NNPfTpIat/EAEJvdxOgPztjlsSsv5PKxWwbvUjepsIoqBKEAJSUJODYsdNYujRPMdbs7Gz20yIiamFeBT6PPvooXnnlFVx33XX44IMPpNdHjhyJRx991GeDI/9gNisj0pqdMcu3cd9J5Z7jY7aNXo9e/Z6VK6cBcF/6qqmpYR0eIqIW5lXgs3v3bowaNcrtdbvdjsrKysaOiVoxrWUlOW9mLLRnZcQ2KNYadAL6+TbDhv2A06c7yAoFOjFixGakpRVqLnFZaZ4qHpORkS9VXXZdQ8OYm7MVBxERWeNV4NO9e3fs3bsXSUlJite/+eYb9O7d2xfjolbIam0cq4UGxeUjvWRfAJZbSxjl2wBAfr68OnIACgrSkZbm3h3dbFeZwxGJwsI0FBSkS8dkZOQjPr4Up05FuG1Tb65WHEREZI1Xgc+NN96I2267DW+++SZsNhtKS0tRUFCAu+66Cw888ICvx0ithNUt5FaPU9f1efDBo/j55zPYtm2lFCjoJQCra9oY5dtERJy21BvMLFlZKwFbEAKQn5+BnJxF6Nz5mKXWFURE1HK8Cnzuu+8+OJ1OXHLJJaiursaoUaMQGhqKu+66C7fccouvx0jtmHxmKC4OSE0FLr10psfLaXpJzKtWTUNGRr7GewJKS+ORnLxfeqWkJFE3QAKguetMfkxy8n6fN0AlIiLf8irwsdlsmD9/Pu6++27s3bsXJ0+exIABA6Qu1ESN4c2uJnG5TG9G5oILNmLjxlFwJTYDgA35+RkYNGiHajZHSZyxKSxMg5VGor5ugEpERL7lVeAjCgkJwYABA3w1FiJNRgnV6n5ZWu0gBCEAYWGn0RD0NLwuzuZobaeX5xoVFKRrfr/WrI5e6woiImp5jQp8iJqap81GtdpB2GxO9Ox5QDf/Rm87/dSpKzFo0C4UFydpvj9w4E8YNy7PcpDDXltERC2PgU870xTbzfVY2fbdWFb7Yo0ZMwYbNmzQ3SGWkFCmm39z6FA3uLbPK4OixMSDAPTr9WgFPWJvLTUWJiQiah0Y+LQjvt5ubsRqM1EzZoGavC6U0Xd26tRJOk4vz0br9Q8//DN+/HEIXMtgArQKG+oFU/KgZ/r06ejatSuDGyKiVo6BTzvi6+3mauJSjdm2b6tLOp4sY5l9Z1CQ8o+yPM9Gq5oz4GqK2hD0AGLwc+WV76Nfv72K8xklLU+fPh1nnXWWpesgIqKWxcCHLBPr7mzYADz/vPu275EjZ+Kii1w/l5WV6Z5HXPbxJADTq9Mj1uKJjo6WagKVl5dL7SeMZokOHOgFdcIzYMOxYzEA9kJNL2k5Ojra8nUQEVHLYuBDHomJicH55wMBAYDT2fB6YCCQlhYDwPpym5pRzpBeno28OGBMTAwqKioU5zOaJerZcz/E5a0GAhITDwAA0tLSUFjoXt1ZjUnLRERtBwMf8khFRQUCA2vw1FNhuPdeO+rrbQgMFPDkkw4EBp7G0aMOS+dRz/aY5QxZybNRL50ZFSS026uQkFCGIUN+VOT4DBnyIxISXLNVPXr0YDd1IqJ2hoEPWaYOLG69NVLKeTl5sgqvvebdec1mZkRmxQHlAYoYSKmpZ4n+7//+jXPP/S9KSnoiMfGAFPSIGNQQEbUvDHzaAXFnlLyYX1NQz3z4qlCfWf6Ole8MCQmRxqcOpBq4zxI5HJGorQ3FgAE73c6rTpgmIqK2j/9nb+M8LfDX3KzU+jHL39GqjeNwOFBbWwsAKC/vgA0bALu9EoB2IAUA06a5ChKKzJbXunbt6t1FExFRq8XAp43zZmt6cyXjWq31Y5a/Y7fbERcXJx1fUVGBFStWaHxHJ0yaNBQpKXs1AymxICFgvrw2ffp0LnMREbVDDHz8xJQpUxAbG9tsybhW8nbkAZhR/o46UNNb0hK/IydnkWkitJXt8URE1P4w8PETsbGxilkTXzBaxrKStyPWBfJ215TRd5glQlvZHk9ERO0PAx/yitkylllgIc7ieDL7pE7iNvsOo+RrK9vjiYio/WHgQx6zkh8THR2NHj1OqGr9nMDVV1/l1XKbOolbnG3KyMhHfn6GV8GL2awQERG1Pwx8yDJxlsZsGUts1nnnnUBmJrB3L9Cnjw0JCdEAor36bq0aPWKwM2zYFiQnFyM6uhK1taFwOCJht1dhzJgx6Nq1q2JHWGVlJXJzc6WffbUln4iI2gYGPmSZmJOzb18d3nlHgNPZ0OohMFDALbdMRFJSkGI2JyHB9Utk1o3dbDZIa7Zpy5ZzsWVLKlzVlxu6qwMbAPimGz0REbUPDHzaOKtb0321hT0mJgYxMcBrrwFz5wL19a4+Xa++akNqajfDz1qtOWQUqOjV6AEaXlMvvckDrea+X0RE1Low8Gmj5DMnmZmZUjE/UVBQEKqrO6O4OAj9+gUgJqaTT78/KwsYP15cxlLO6uhRz/To7QozmhHSSmjWolf5ubE7yYiIqG1j4NMGWZk52bp1KNaunQSn04aAAOC5505i+nT9XBZvHvbqZSxPWC1uqKbejaXHaGs6gxoiIv/FwKcNMqvW3JAH48rBcTqB228Px/79rxkm8jZXLozVpqR6xN1YhYVp2Lw5Ha5lLidsNnBrOhERGWLg0w550vRTzpv2F97wdnxydnsVxo3LR1paobQd3XVubk0nIiJ9xokSrdCZM2dwzjnnwGazYdu2bYr3tm/fjgsvvBAdOnRAYmIinnrqqZYZZAsT82DkWqoqcUVFBcrKylBWVuZWeNCT8eklG9vtVUhO3i9tSxd/T0REpKXNzfjcc889iI+Px48//qh4/cSJExg3bhwyMjLwyiuv4KeffsL111+P6OhozJkzp4VG2zLEPJhPPpkkFQ+89FLzpZ/KykrD9z3NA9LLRTKrmlxeXu72XWJS8pEjRxR1eIiIiDzRpgKfdevWYf369Vi1ahXWrVuneO/dd99FTU0N3nzzTYSEhGDgwIHYtm0bnnvuOb8LfABXHsyDD6ahqqobIiOPYO1a88RhKwGFJ3lARru45FWTg4NrFIUHV69erfldrq30DbuyHA6H1KXdCLemExGRqM0EPocPH8aNN96Ijz76COHh4W7vFxQUYNSoUYqH3Pjx4/Hkk0/i+PHj6NRJezv3mTNncObMGennEydO+H7wzUgeXMTHOxEXB5SVOc0/aJG3eUB6u7iKivro7u46evSo9H2lpQEoLg5CcnId4uNd19OlSxduTSciIo+0icBHEATMmjULN910E4YPH459+/a5HXPo0CEkJycrXuvWrZv0nl7gs3DhQixYsMDnY24J6uCic+dDyMpqyK3xBYfD4XGXd71dXF27HjLc3SXO5hhtfc/OzvZ513kiImq/WjS5+b777oPNZjP89csvv2Dx4sWoqqrC/fff7/Mx3H///XA4HNKvkpISn3+Hr2kt3WgFFw8+2B1PP/2+tHTkCytWrEBFRYVHn9HbxfXrr311d3eJ9IImhyMSQPPtRCMiovahRWd87rzzTsyaNcvwmN69e+PLL79EQUEBQkNDFe8NHz4c11xzDd566y10794dhw8fVrwv/ty9e3fd84eGhrqdt7XTqj68aVMInn++cVvErfI02NCrtrxx42gATsjjb3F3l7hkd+pUeKO3vhMREYlaNPDp0qULunTpYnrciy++iEcffVT6ubS0FOPHj8eKFSuQlpYGAEhPT8f8+fNRW1uL4OBgAEBeXh769eunu8zVlqnzVs4/HwgIcBUrFOltEZfnAc2ePRZBQUGorKzE+vXrm2Ss4i6uNWsug7qnlisgcgU/4jKWOu9HLzgiIiLyVJvI8enZs6fi544dOwIAUlJSkPBHz4Srr74aCxYsQFZWFu69917s2LEDL7zwAp5//vlmH29LSEhQNw7V3sKulQdUX/+62/n0+mgZUXdel+cWDRv2A0JCzmDlyisUnxGEAEyblouIiGopmFm0KEextKUVHHG2h4iIvNEmAh8r7HY71q9fj3nz5iE1NRWxsbF48MEH/Woru7xxqNYWdq18mYceisNtt0UqAgl5cAQ4MXZsPkaOLDD8bnXNnobAqeHciYklbkteNpsTiYkHpWOKi5M0l7bkwRGDHiIi8labDHySkpIgCILb64MHD8bGjRtbYESth9g4VGsLu1aSsdNpU+TLqIMjIAB5eWMBQAp+Kisr3XZSyWd69HZhmRUuBLTzgdTBERERkbfaZOBD3tEKKgICBEW+jFZwBNiQn5+BQYN2wG6vQm5urm4hQ7MGpPLChVqzN1aCIyIiIm8x8PEjWkHFgw+WAlDOuKiTiQH3nVR6O7usNCAV+2rpMQuO5FiVmYiIPMHApx04eBDYswfo29e1zAXoBwTqoCIz8/9B3fUhNXULtmwZDsAmvWZ1J5XeUtWpUxFSSwor9IKjKVOmIDY2FgCrMhMRkecY+LRxS5YAc+a4trEHBLh2dmVludf60Wr5EBISopub45r1AQAbbDYnMjLyDYMWscGp1qySIAArV17hVnXZG7GxsazUTEREXmPg04YdPNgQ9ACuf86d69rZlZDQUOtHLzgCgF9++QWAdlKzK/gRIAgByM/PQFjY75pBS0VFhaLBaUrKXkydugrV1R3w6aeXQlw2U+f7yGdvqqursXz5ctNr5tIWERE1BgOfNmzPHmXBQsBVw2fv3oYlL6PgKCysQuqHpZ3UrCw2KA9a5Ix2dGnlCv388wAMHLjTbfaGDUeJiKipMfBpw/r2da/WHBgI9OnT8LNRcNSvX0OQoddWQk6vVYTD4fjjn5GK6syucwmQ5woBAtavn4C8vHGw20sxZ06ZFNAwqCEioqbWok1KybqKigqUlZUpfgUGluGppyoRGOiqaRQYCLz6asNsD9AQHMkFBgIxMccVlZXF3BzXLA0gLnPJaSU4V1Q0zBoVFqbB/Y+UDQ35Qg1BkCAEYMGCeDz99Pt46aWXPG58SkRE5A3O+LQB6qrIarfeGoljxzrjzjv/jLPPVvYlc29lATz77EmsXv2i23nE3BxAQGLiQbeeWfJ6OmKujbg0dfBgHDZvTtcYnRM33PAGDhzoifXrJyjekc8gscs6ERE1BwY+bYBZUCBu/Y6N/V3zfXkriz59gMDAKrz2mvIYvWrLKSl7MWjQ5RgyJALx8ecCOFdamqqoqEB5ebn0Wa0JxBEjCpCQUIbIyJPIyxvnts2dzUaJiKg5MfDxE2IrCwAoK1O+d/BgnFtujjyReeLEMMTFdVN8RpyFcu0Gy9HMDbLZnEhLKwTAisxERNQ6MPDxc3qzNXqJzCJxFkp7NxgAuAc2nlRkJiIiagoMfPyYe+2eBo2t1JyV9QYSEsrcjjdrV0FERNSUuKvLj1mdrTEqGqjeDSYuYWkFPURERC2NMz5+zGy2ZsqUKYiPjzetr8MlLCIiaisY+PgxvYRjcbYmNjZW2r2l7vllt1e6nasxAQ9bURARUXNg4NMGWA0KvDnOaLYmJCREUUNIueW9EyZNGmracHTKlCkIDw9HeHi44XhYtZmIiJoDA582QN1pXYsnwYMn5yv7Y++7OhHaqHeXHLupExFRa8LAp42QBzUHD7p6cPXtq2xP4e35rNBKhDbb8g5wCYuIiFoXBj5tzJIlDd3WAwJc7Siysnz/PWJeT3l5ORyOSJw6Fa6ZCC1ueZ8yZQpiY2MV5+ASFhERtTYMfNqQgwcbgh7A9c+5c13tKOQzP/JkZC1mAYl7Xo9YmdkpBT/qystc0iIioraAgU8bsmdPQ9Ajqq939eASAx+zhqai7Oxs3eBHDJrcCxwGQBCcmDYtF4mJB6Wgx+GIxKZNITj/fO+X3oiIiJoDCxi2IX37upa35AIDXY1HReqZHocjEsXFSXA4IhWvW+mGrl3gMAAREdVS0LN161AsWpSDK66IQa9eAp59thJlZWWoqKiwfF1ERETNhTM+bUhCgiunZ+5c10xPYCDw6qvK2Z7y8nLpeL2O61bpFTgU83rUM0JOpw133x2F3357E3Z7leGsEhERUUvgjE8bk5UF7NsHbNjg+qeY2Cwuca1evRqA/vZz9cyPEb12FOJsj9FOL8DarBIREVFz4oxPG5SQ4PpVUVGBsjJXcCGf6QGAkpJEw+3n5eXlUhXm5OQ6xMe7ghv19nOjAodmM0JEREStDQOfNkqdxOxwROLYsSR07lyBoqI+WLPmMrfPyIOSv/2tGB9/PFBzGSwzM1PxOb12FHotL9iri4iIWisGPm2UfBlJncsjCIB6FVMelJhVYa6trbU8DjYoJSKitoSBTxunFcRomTp1JQYN2gXAvApzUJBnfywa26CUiIiouTDwaeO0t5wr2WxOJCYelH42y82Jjo427OVVXl4uJVETERG1JQx82jitIAYQANj++L173o2V3BxuQyciovaIgU8bpw5ilEEPYLMBKSl73T7XmNwcq41H2aCUiIhaGwY+rZyVTuxiELNz5wB8/vkExXtGHdS9zc2JiYkxXAoD2KCUiIhaJwY+rZDYZPS998Jwzz12OJ02BAQIeOopB66++rTmTIrdXoUBA3Zi/fpxurk7Y8eORV5enk/GyKCGiIjaIgY+rYxYn8fhiMSiRTkQBNeylbodxIwZM9w+a5a7I9+t5ar7E4POnSvcZn24REVERO0VA59WRlw+MttyHh4eLi03yXdZGeXurFu3DoBxD68ZM2YgJibG0hIbERFRW8NeXa2UuFtLTt0OIiYmBnFxcYiNjVUcZ7dXITl5v2b+jlkPr+rqajz7bCV69RJw8cVgx3UiImpXGPi0UkYNQh2OSGzaFIKDf5Tm8WRpyqyx6NKlebj77ig4ncoltqeffh8vvfQSgx8iImrTuNTVimktW4nLVM8/H4CAAOC114CsLPNdVpWVlcjNzTUtXmi2xMaO60RE1JYx8Gnl5FvO1ctUTicwd66Ac845gqSkIMTFxVk6n1ECNDuuExFRe8bApw3Rmo2pr7dh8eJ1SE7ej+zsbLdt5uLW+PLycmknV0rKXuTkLNJMgGbHdSIias8Y+LQhZrMx8mWoiooKHDlyBLm5uXA4IlFYmIbNm3MAuO/kUmPHdSIiaq8Y+DQjK1vEjRKVrc7GiLWAAOXWdZEgBGDNmsuQkrJXN6hhx3UiImqPGPg0kyVLgDlzXHk5DUnJ7sdptYOwWqdHJH5WnROkFIDCwjSMG5dvWMyQiIioPWHg0wwOHmwIegAxKRkYP1575kedp1NaGoDi4iQpMLE6G6OVEyRXUJCOiIhTyM/P0CxmSERE1N4w8GkGe/Y0BD2i+npg717zqsiumaKucDpnehyYaOUEyQlCgBT0iD9//LHxEhjbWRARUVvGwKcZ9O3rWt6SBz+BgUCfPu7HyvOAAHGmyFVM0EpgIqfOCQIEADbZEe5Bkbxmz5QpUxRVodlxnYiI2jpWbm4GCQmunJ7AQNfPgYHAq6+6z/YsWQL06oU/WkUAL7zgPlMkr7JsxbBhPyAr6w0ATiiDHgEXXrjRsC1GbGws4uLipF8MeoiIqK3jjE8zycpy5fTs3eua6VEHPVp5QM8/D9hsgCA0HGdUTFBvGaq2NhTuMa4NvXsXo1MnB2v2EBGR32Dg04wSEvRzevTygG666SRefz0C9fU2BAQIePDBUkyZMhbBwcGw2+3SsUbLUEb1f5KT97NmDxER+Q0GPq2EVh6QzeZEWNhruPVWSIEJUIU/drZrVmoG3Gd+zOr/sGYPERH5CwY+rYSYBzR3rmumRys4Udu3rw7bt7sXRBRrAZWWlnpU/4eIiKi9Y+DTioh5QIWFFdi06S3D4GTr1qH4+9+7/lEQUcBTTzlw9dWnpSWvmJgYt07qnNkhIiJ/x8CnlUlIAAIDa7Bjh36A0lCR2bVLy+m04e67o/Dbb2/Cbq/SXQLzFGv2EBFRe8PApxUQO6iLysvLDY/Xqsgsr78jnstq4DJ9+nRER0crXmPNHiIiao8Y+LQweUNRq8y6tIu0+n6pMcAhIiJ/wsCnhRkFJXrNQ612aQfc+34RERH5MwY+rdTWrUPdAht5jy7u0iIiIvIcW1a0Qg3Jy8rmoQ5HpOI4u70Kycn7GfQQERFZxMCnFdJLXu7V65IWGhEREVH7wMCnFRKTl+VsNif27/+ihUZERETUPjDwaYXE5GUx+PG0eSjr7xAREWljcnMTU9foUXM4HJqvGyUvT5kyBbGxsZqf4/Z0IiIifW0q8Pnkk0/w97//Hdu3b0eHDh0wevRofPTRR9L7Bw4cwM0334wNGzagY8eOmDlzJhYuXIigoJa5TG9q9MjptZiIjY1FXFxcY4ZGRETkl9pM4LNq1SrceOONePzxx3HxxRejrq4OO3bskN6vr6/HpZdeiu7du2Pz5s0oKyvDddddh+DgYDz++OMtMmajmR45sXJyeXm51FSUiIiIfK9NBD51dXW47bbb8PTTTyMrK0t6fcCAAdLv169fj507dyI/Px/dunXDOeecg0ceeQT33nsvHn744Vad9xIdHe02g6NXvBBQtrTg0hYREZF1bSLw2bp1K3777TcEBARg6NChOHToEM455xw8/fTTGDRoEACgoKAAZ599Nrp16yZ9bvz48bj55pvx888/Y+jQoZrnPnPmDM6cOSP9fOLEiaa9GANivo9Z8UL1rJCvmpISERG1d21iV9f//vc/AMDDDz+Mv/3tb1i7di06deqEiy66CMeOufpTHTp0SBH0AJB+PnTokO65Fy5cCLvdLv1KTExsoqswVlFRgRUrVlguXihndUmNiIjI37Vo4HPffffBZrMZ/vrll1/gdLq2dc+fPx9Tp05Famoqli5dCpvNhn/961+NGsP9998Ph8Mh/SopKfHFpelyOCJRXJzkFsiIwYtR53W9z1ZWVjbpmImIiNqLFl3quvPOOzFr1izDY3r37o2ysjIAypye0NBQ9O7dGwcOHAAAdO/eHf/9738Vnz18+LD0np7Q0FCEhoZ6M3yPmS1hAfqd10tL4/H229dpfjY3N1dKkGbODxERkb4WDXy6dOmCLl26mB6XmpqK0NBQ7N69GxdccAEAoLa2Fvv27UOvXr0AAOnp6Xjsscdw5MgRdO3aFQCQl5eHqKgoRcDUUvSWsFJS9iqO0+q8npGRj/z8DM3PionPubm50jmY80NERKStTSQ3R0VF4aabbsJDDz2ExMRE9OrVC08//TQA4IorrgAAjBs3DgMGDMC1116Lp556CocOHcLf/vY3zJs3r9lmdNTkO8mMlrBCQkJw5MgR6XV18UKjz2rV+WHODxERkbY2EfgAwNNPP42goCBce+21OH36NNLS0vDll1+iU6dOAIDAwECsXbsWN998M9LT0xEREYGZM2fi73//e4uNOSYmBtnZ2aipqUFpaQDeeUeA02mT3g8MFHDnnX8G4FTM2ADuxQu1lr86dz7W5NdARETUntgEQRBaehCtyYkTJ2C32+FwOBAVFeXTcy9ZAsydC9TXA4GBwKuvAllZQFlZGV577TXDz8rzg1ycGDs2H/HxZW61fubMmcPKzkRE5FesPr/bzIxPe5CVBQweDHzzDXDBBcC552ofp1W8MCVlL5QhagDy8sYCsOkmShMREZESA59mtGQJMGcO4HQCAQHAa6+5giE5vZ1fx47FwL36gGvZTCvZmYiIiNy1iQKGbV1FRQW2bDmMOXME/FGSCE4nMHeugC1bDuPgwYMA9Hd+ORyR0jZ3PWKyMxEREelj4NPExA7tixd/pkhsBoD6ehsWL16HTz/9FIDxzi9xm3tD8KNMzWKyMxERkTkudTUxcWu5XmFCebBidsxf/hKKlJRFOHasM0pL46XaPuKSmLjM1ZobshIREbUkBj5NTGw8qlWYcNKktQCA4uIkKZF50qS1WLPmMrgm45QBTXx8PObPHy4FU6WlR7FvXxCSkuoQH38ugHNZuZmIiMgAA58mVltbK/1eXZiwqKgPFi3KUVRoDgv7HTYbIAiATbkyhqCgIEVQExcHpKY215UQERG1fQx8mplYmFArkdm1PR3Q260VHR3dMoMmIiJqJ5jc3EK0EpldAY9ymoe7tYiIiHyHgU8LMdueLuJuLSIiIt9h4NNC7PYqZGTkQ70t3cX1GndrERER+RZzfJpQRUUFqqr0KymPHFkAAMjLy4AyBrUBcCIr6w0kJJRhypQpiI+P524tIiKiRmLg00TEwoUirf5bgCv4sdsdWLnyCtUZAlBb65rhiY2NZdBDRETkAwx8mohYawfQ778lSkwsMSxcyCUuIiIi32COTxMz6r8lUrejkOf2ZGZmcraHiIjIRzjj08TM+m+J1MUNxffsdnuzjpeIiKg9Y+DTxKz06BKJxQ2JiIioaXCpq4npLWMBrh5d8iUvIiIialqc8WkGZj261MnORERE1DQY+DQTox5dH398Gbp2PYTa2lC37e7c0UVEROQ7DHyaiF7Aopfs/MYbNwAIQECAgKeecuDqq08jJCSEO7qIiIh8yCYIglbPBL914sQJ2O12OBwOREVFNepcFRUVqKmpQXl5OVavXg3Atb1dXOZqIEDenDQwENi3D0hIaNTXExER+Q2rz28mNzehmJgYxMXFITY2VnpNK9lZ3ZG9vh7Yu7c5R0pEROQfuNTVAuTJzsHBNViy5AbFDFBgINCnTwsOkIiIqJ3ijE8z0Mr3sdurkJy8HwkJZYoZoMBA4NVXucxFRETUFJjjo+LLHB85Md8HAEpLA1BcHITk5DrEx7sCnvLyDqio6IQ+fRj0EBERecrq85tLXc1E3J21ZAkwZw7gdAIBAcBrrwFZWUBcXAsPkIiIyA9wqasZHTzYEPQArn/Onet6nYiIiJoeA59mtGdPQ9Aj4g4uIiKi5sPApxn17eta3pLjDi4iIqLmw8CnGSUkuHJ6AgNdP3MHFxERUfNicnMzy8oCxo93LW9xBxcREVHzYuDTAhISGPAQERG1BC51ERERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkN9upSEQQBAHDixIkWHgkRERFZJT63xee4HgY+KlVVVQCAxMTEFh4JEREReaqqqgp2u133fZtgFhr5GafTidLSUkRGRsJms3l9nhMnTiAxMRElJSWIiory4QjbDt4DF94H3gOA9wDgPRDxPjTNPRAEAVVVVYiPj0dAgH4mD2d8VAICApCQkOCz80VFRfntH2wR74EL7wPvAcB7APAeiHgffH8PjGZ6RExuJiIiIr/BwIeIiIj8BgOfJhIaGoqHHnoIoaGhLT2UFsN74ML7wHsA8B4AvAci3oeWvQdMbiYiIiK/wRkfIiIi8hsMfIiIiMhvMPAhIiIiv8HAh4iIiPwGAx8PvPzyyxg8eLBUcCk9PR3r1q2T3v/9998xb948xMTEoGPHjpg6dSoOHz6sOMeBAwdw6aWXIjw8HF27dsXdd9+Nurq65r4Un3niiSdgs9mQk5MjveYP9+Hhhx+GzWZT/Orfv7/0vj/cAwD47bffMGPGDMTExCAsLAxnn302vv/+e+l9QRDw4IMPIi4uDmFhYcjIyMCePXsU5zh27BiuueYaREVFITo6GllZWTh58mRzX4pXkpKS3P4c2Gw2zJs3D4B//Dmor6/HAw88gOTkZISFhSElJQWPPPKIol9Se/9zALjaJOTk5KBXr14ICwvDiBEj8N1330nvt8d78J///AeTJk1CfHw8bDYbPvroI8X7vrrm7du348ILL0SHDh2QmJiIp556qnEDF8iyNWvWCJ988onw66+/Crt37xb++te/CsHBwcKOHTsEQRCEm266SUhMTBS++OIL4fvvvxfOP/98YcSIEdLn6+rqhEGDBgkZGRnCDz/8IHz66adCbGyscP/997fUJTXKf//7XyEpKUkYPHiwcNttt0mv+8N9eOihh4SBAwcKZWVl0q+jR49K7/vDPTh27JjQq1cvYdasWUJhYaHwv//9T/j888+FvXv3Ssc88cQTgt1uFz766CPhxx9/FCZPniwkJycLp0+flo6ZMGGCMGTIEOHbb78VNm7cKPTp00e46qqrWuKSPHbkyBHFn4G8vDwBgLBhwwZBEPzjz8Fjjz0mxMTECGvXrhWKi4uFf/3rX0LHjh2FF154QTqmvf85EARBmD59ujBgwADh66+/Fvbs2SM89NBDQlRUlHDw4EFBENrnPfj000+F+fPnC6tXrxYACB9++KHifV9cs8PhELp16yZcc801wo4dO4T3339fCAsLE1599VWvx83Ap5E6deokvPHGG0JlZaUQHBws/Otf/5Le27VrlwBAKCgoEATB9YckICBAOHTokHTMyy+/LERFRQlnzpxp9rE3RlVVldC3b18hLy9PGD16tBT4+Mt9eOihh4QhQ4Zovucv9+Dee+8VLrjgAt33nU6n0L17d+Hpp5+WXqusrBRCQ0OF999/XxAEQdi5c6cAQPjuu++kY9atWyfYbDbht99+a7rBN5HbbrtNSElJEZxOp9/8Obj00kuF66+/XvHalClThGuuuUYQBP/4c1BdXS0EBgYKa9euVbw+bNgwYf78+X5xD9SBj6+u+Z///KfQqVMnxX8P9957r9CvXz+vx8qlLi/V19fjgw8+wKlTp5Ceno4tW7agtrYWGRkZ0jH9+/dHz549UVBQAAAoKCjA2WefjW7duknHjB8/HidOnMDPP//c7NfQGPPmzcOll16quF4AfnUf9uzZg/j4ePTu3RvXXHMNDhw4AMB/7sGaNWswfPhwXHHFFejatSuGDh2K119/XXq/uLgYhw4dUtwHu92OtLQ0xX2Ijo7G8OHDpWMyMjIQEBCAwsLC5rsYH6ipqcHy5ctx/fXXw2az+c2fgxEjRuCLL77Ar7/+CgD48ccf8c0332DixIkA/OPPQV1dHerr69GhQwfF62FhYfjmm2/84h6o+eqaCwoKMGrUKISEhEjHjB8/Hrt378bx48e9GhublHrop59+Qnp6On7//Xd07NgRH374IQYMGIBt27YhJCQE0dHRiuO7deuGQ4cOAQAOHTqk+B+c+L74XlvxwQcfYOvWrYr1a9GhQ4f84j6kpaVh2bJl6NevH8rKyrBgwQJceOGF2LFjh9/cg//97394+eWXcccdd+Cvf/0rvvvuO9x6660ICQnBzJkzpevQuk75fejatavi/aCgIHTu3LnN3AfRRx99hMrKSsyaNQuA//y3cN999+HEiRPo378/AgMDUV9fj8ceewzXXHMNAPjFn4PIyEikp6fjkUcewVlnnYVu3brh/fffR0FBAfr06eMX90DNV9d86NAhJCcnu51DfK9Tp04ej42Bj4f69euHbdu2weFwYOXKlZg5cya+/vrrlh5WsykpKcFtt92GvLw8t7/d+BPxb7MAMHjwYKSlpaFXr17Izc1FWFhYC46s+TidTgwfPhyPP/44AGDo0KHYsWMHXnnlFcycObOFR9f8lixZgokTJyI+Pr6lh9KscnNz8e677+K9997DwIEDsW3bNuTk5CA+Pt6v/hy88847uP7669GjRw8EBgZi2LBhuOqqq7Bly5aWHhqpcKnLQyEhIejTpw9SU1OxcOFCDBkyBC+88AK6d++OmpoaVFZWKo4/fPgwunfvDgDo3r27244O8WfxmNZuy5YtOHLkCIYNG4agoCAEBQXh66+/xosvvoigoCB069bNL+6DWnR0NP70pz9h7969fvNnIS4uDgMGDFC8dtZZZ0lLfuJ1aF2n/D4cOXJE8X5dXR2OHTvWZu4DAOzfvx/5+fm44YYbpNf85c/B3Xffjfvuuw9XXnklzj77bFx77bW4/fbbsXDhQgD+8+cgJSUFX3/9NU6ePImSkhL897//RW1tLXr37u0390DOV9fcFP+NMPBpJKfTiTNnziA1NRXBwcH44osvpPd2796NAwcOID09HQCQnp6On376SfEvOi8vD1FRUW4PkNbqkksuwU8//YRt27ZJv4YPH45rrrlG+r0/3Ae1kydPoqioCHFxcX7zZ2HkyJHYvXu34rVff/0VvXr1AgAkJyeje/fuivtw4sQJFBYWKu5DZWWl4m/FX375JZxOJ9LS0prhKnxj6dKl6Nq1Ky699FLpNX/5c1BdXY2AAOWjJDAwEE6nE4B//TkAgIiICMTFxeH48eP4/PPP8ec//9nv7gHgu3/v6enp+M9//oPa2lrpmLy8PPTr18+rZS4A3M7uifvuu0/4+uuvheLiYmH79u3CfffdJ9hsNmH9+vWCILi2rvbs2VP48ssvhe+//15IT08X0tPTpc+LW1fHjRsnbNu2Tfjss8+ELl26tKmtq1rku7oEwT/uw5133il89dVXQnFxsbBp0yYhIyNDiI2NFY4cOSIIgn/cg//+979CUFCQ8Nhjjwl79uwR3n33XSE8PFxYvny5dMwTTzwhREdHC//+97+F7du3C3/+8581t7MOHTpUKCwsFL755huhb9++rXoLr1p9fb3Qs2dP4d5773V7zx/+HMycOVPo0aOHtJ199erVQmxsrHDPPfdIx/jDn4PPPvtMWLdunfC///1PWL9+vTBkyBAhLS1NqKmpEQShfd6Dqqoq4YcffhB++OEHAYDw3HPPCT/88IOwf/9+QRB8c82VlZVCt27dhGuvvVbYsWOH8MEHHwjh4eHczt5crr/+eqFXr15CSEiI0KVLF+GSSy6Rgh5BEITTp08Lf/nLX4ROnToJ4eHhwv/93/8JZWVlinPs27dPmDhxohAWFibExsYKd955p1BbW9vcl+JT6sDHH+5DZmamEBcXJ4SEhAg9evQQMjMzFfVr/OEeCIIgfPzxx8KgQYOE0NBQoX///sJrr72meN/pdAoPPPCA0K1bNyE0NFS45JJLhN27dyuOqaioEK666iqhY8eOQlRUlDB79myhqqqqOS+jUT7//HMBgNt1CYJ//Dk4ceKEcNtttwk9e/YUOnToIPTu3VuYP3++YvuxP/w5WLFihdC7d28hJCRE6N69uzBv3jyhsrJSer893oMNGzYIANx+zZw5UxAE313zjz/+KFxwwQVCaGio0KNHD+GJJ55o1LhtgiArr0lERETUjjHHh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AYDHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIGu2iiy5CTk5OSw+jyT388MM455xzWnoYRNQIDHyIyO/V1NQ06/cJgoC6urpm/U4icmHgQ0SNMmvWLHz99dd44YUXYLPZYLPZsG/fPuzYsQMTJ05Ex44d0a1bN1x77bUoLy+XPnfRRRfhlltuQU5ODjp16oRu3brh9ddfx6lTpzB79mxERkaiT58+WLdunfSZr776CjabDZ988gkGDx6MDh064Pzzz8eOHTsUY/rmm29w4YUXIiwsDImJibj11ltx6tQp6f2kpCQ88sgjuO666xAVFYU5c+YAAO6991786U9/Qnh4OHr37o0HHnhA6gq9bNkyLFiwAD/++KN0ncuWLcO+fftgs9mwbds26fyVlZWw2Wz46quvFONet24dUlNTERoaim+++QZOpxMLFy5EcnIywsLCMGTIEKxcudLX/4qISIaBDxE1ygsvvID09HTceOONKCsrQ1lZGSIjI3HxxRdj6NCh+P777/HZZ5/h8OHDmD59uuKzb731FmJjY/Hf//4Xt9xyC26++WZcccUVGDFiBLZu3Ypx48bh2muvRXV1teJzd999N5599ll899136NKlCyZNmiQFKEVFRZgwYQKmTp2K7du3Y8WKFfjmm2+QnZ2tOMczzzyDIUOG4IcffsADDzwAAIiMjMSyZcuwc+dOvPDCC3j99dfx/PPPAwAyMzNx5513YuDAgdJ1ZmZmenSv7rvvPjzxxBPYtWsXBg8ejIULF+Ltt9/GK6+8gp9//hm33347ZsyYga+//tqj8xKRBxrV4pSISBCE0aNHC7fddpv08yOPPCKMGzdOcUxJSYmii/no0aOFCy64QHq/rq5OiIiIEK699lrptbKyMgGAUFBQIAhCQzfoDz74QDqmoqJCCAsLE1asWCEIgiBkZWUJc+bMUXz3xo0bhYCAAOH06dOCIAhCr169hMsvv9z0up5++mkhNTVV+vmhhx4ShgwZojimuLhYACD88MMP0mvHjx8XAAgbNmxQjPujjz6Sjvn999+F8PBwYfPmzYrzZWVlCVdddZXp2IjIO0EtGXQRUfv0448/YsOGDejYsaPbe0VFRfjTn/4EABg8eLD0emBgIGJiYnD22WdLr3Xr1g0AcOTIEcU50tPTpd937twZ/fr1w65du6Tv3r59O959913pGEEQ4HQ6UVxcjLPOOgsAMHz4cLexrVixAi+++CKKiopw8uRJ1NXVISoqyuPr1yP/zr1796K6uhpjx45VHFNTU4OhQ4f67DuJSImBDxH53MmTJzFp0iQ8+eSTbu/FxcVJvw8ODla8Z7PZFK/ZbDYAgNPp9Oi7586di1tvvdXtvZ49e0q/j4iIULxXUFCAa665BgsWLMD48eNht9vxwQcf4NlnnzX8voAAV8aAIAjSa+Kym5r8O0+ePAkA+OSTT9CjRw/FcaGhoYbfSUTeY+BDRI0WEhKC+vp66edhw4Zh1apVSEpKQlCQ7/838+2330pBzPHjx/Hrr79KMznDhg3Dzp070adPH4/OuXnzZvTq1Qvz58+XXtu/f7/iGPV1AkCXLl0AAGVlZdJMjTzRWc+AAQMQGhqKAwcOYPTo0R6NlYi8x+RmImq0pKQkFBYWYt++fSgvL8e8efNw7NgxXHXVVfjuu+9QVFSEzz//HLNnz3YLHLzx97//HV988QV27NiBWbNmITY2FpdffjkA186szZs3Izs7G9u2bcOePXvw73//2y25Wa1v3744cOAAPvjgAxQVFeHFF1/Ehx9+6HadxcXF2LZtG8rLy3HmzBmEhYXh/PPPl5KWv/76a/ztb38zvYbIyEjcdddduP322/HWW2+hqKgIW7duxeLFi/HWW295fW+IyBgDHyJqtLvuuguBgYEYMGAAunTpgpqaGmzatAn19fUYN24czj77bOTk5CA6OlpaGmqMJ554ArfddhtSU1Nx6NAhfPzxxwgJCQHgyhv6+uuv8euvv+LCCy/E0KFD8eCDDyI+Pt7wnJMnT8btt9+O7OxsnHPOOdi8ebO020s0depUTJgwAWPGjEGXLl3w/vvvAwDefPNN1NXVITU1FTk5OXj00UctXccjjzyCBx54AAsXLsRZZ52FCRMm4JNPPkFycrIXd4WIrLAJ8oVpIqJW7KuvvsKYMWNw/PhxREdHt/RwiKgN4owPERER+Q0GPkREROQ3uNRFREREfoMzPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNBj5ERETkN/4/oCIjCbnlO2gAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjtFJREFUeJzt3XlcVPX+P/DXAAOCwqAsCoKCaJqSJliElqbh9i27/bSkxdLCrK5WZPv1tthmq1nd227prbzqVevaYgllpkLeco0yU8PEwAWUEVeWOb8/xnM458w5Z84Mwzqv5+PhI5k5c+acyZq3n897sQiCIICIiIjIDwQ09wUQERERNRUGPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNBj5ERC3QggULYLFYsHfv3ua+FKI2hYEPkZ/64YcfMGPGDPTr1w/t27dHt27dMHHiRPz2228ux1566aWwWCywWCwICAhAREQEevfujRtvvBF5eXkeve+nn36KYcOGITY2FmFhYejRowcmTpyIL7/80le35uKZZ57BJ5984vJ4QUEBHn/8cVRWVjbae6s9/vjj0mdpsVgQFhaGvn374u9//zuOHTvmk/dYtGgR5s2b55NzEbU1DHyI/NRzzz2H5cuX47LLLsMrr7yCadOm4bvvvkNaWhqKiopcjk9ISMAHH3yAf/3rX3jhhRdw5ZVXoqCgAKNGjUJ2djZqamrcvueLL76IK6+8EhaLBQ8//DBefvllTJgwAbt27cLixYsb4zYBGAc+s2fPbtLAR/TGG2/ggw8+wNy5c9GnTx88/fTTGDNmDHwxPpGBD5G+oOa+ACJqHjNnzsSiRYsQHBwsPZadnY3zzjsPzz77LD788EPF8TabDZMmTVI89uyzz+Kuu+7C66+/jqSkJDz33HO671dbW4snn3wSI0eOxOrVq12eP3ToUAPvqOU4efIkwsLCDI+5+uqrER0dDQC4/fbbMWHCBKxYsQLff/89MjMzm+IyifwSV3yI/NTgwYMVQQ8A9OrVC/369cOOHTtMnSMwMBCvvvoq+vbti3/84x+w2+26x5aXl+PYsWMYMmSI5vOxsbGKn0+fPo3HH38c55xzDtq1a4e4uDiMHz8ee/bskY558cUXMXjwYERFRSE0NBTp6elYtmyZ4jwWiwUnTpzAwoULpe2lKVOm4PHHH8f9998PAEhOTpaek+fUfPjhh0hPT0doaCg6deqEa6+9FiUlJYrzX3rppUhNTcWmTZswdOhQhIWF4W9/+5upz09uxIgRAIDi4mLD415//XX069cPISEhiI+Px/Tp0xUrVpdeeik+//xz/PHHH9I9JSUleXw9RG0VV3yISCIIAg4ePIh+/fqZfk1gYCCuu+46PPLII1i/fj0uv/xyzeNiY2MRGhqKTz/9FHfeeSc6deqke866ujpcccUV+Prrr3Httdfi7rvvRlVVFfLy8lBUVISUlBQAwCuvvIIrr7wSN9xwA6qrq7F48WJcc801+Oyzz6Tr+OCDDzB16lRceOGFmDZtGgAgJSUF7du3x2+//YZ///vfePnll6XVl5iYGADA008/jUceeQQTJ07E1KlTcfjwYbz22msYOnQotmzZgsjISOl6KyoqMHbsWFx77bWYNGkSOnfubPrzE4kBXVRUlO4xjz/+OGbPno2srCzccccd2LlzJ9544w388MMP2LBhA6xWK2bNmgW73Y79+/fj5ZdfBgB06NDB4+sharMEIqKzPvjgAwGAMH/+fMXjw4YNE/r166f7uo8//lgAILzyyiuG53/00UcFAEL79u2FsWPHCk8//bSwadMml+Pee+89AYAwd+5cl+ccDof0+5MnTyqeq66uFlJTU4URI0YoHm/fvr0wefJkl3O98MILAgChuLhY8fjevXuFwMBA4emnn1Y8/tNPPwlBQUGKx4cNGyYAEN58803d+5Z77LHHBADCzp07hcOHDwvFxcXCW2+9JYSEhAidO3cWTpw4IQiCILz//vuKazt06JAQHBwsjBo1Sqirq5PO949//EMAILz33nvSY5dffrnQvXt3U9dD5G+41UVEAIBff/0V06dPR2ZmJiZPnuzRa8UVhaqqKsPjZs+ejUWLFmHgwIH46quvMGvWLKSnpyMtLU2xvbZ8+XJER0fjzjvvdDmHxWKRfh8aGir9/ujRo7Db7bjkkkuwefNmj65fbcWKFXA4HJg4cSLKy8ulX126dEGvXr2wZs0axfEhISG4+eabPXqP3r17IyYmBsnJybjtttvQs2dPfP7557q5Qfn5+aiurkZubi4CAur/133rrbciIiICn3/+uec3SuSHuNVFRDhw4AAuv/xy2Gw2LFu2DIGBgR69/vjx4wCA8PBwt8ded911uO6663Ds2DFs3LgRCxYswKJFizBu3DgUFRWhXbt22LNnD3r37o2gIOP/RX322Wd46qmnsHXrVpw5c0Z6XB4ceWPXrl0QBAG9evXSfN5qtSp+7tq1q0u+lDvLly9HREQErFYrEhISpO07PX/88QcAZ8AkFxwcjB49ekjPE5ExBj5Efs5ut2Ps2LGorKzEunXrEB8f7/E5xPL3nj17mn5NREQERo4ciZEjR8JqtWLhwoXYuHEjhg0bZur169atw5VXXomhQ4fi9ddfR1xcHKxWK95//30sWrTI43uQczgcsFgsWLVqlWYQqM6Zka88mTV06FApr4iImg4DHyI/dvr0aYwbNw6//fYb8vPz0bdvX4/PUVdXh0WLFiEsLAwXX3yxV9cxaNAgLFy4EGVlZQCcyccbN25ETU2Ny+qKaPny5WjXrh2++uorhISESI+///77LsfqrQDpPZ6SkgJBEJCcnIxzzjnH09tpFN27dwcA7Ny5Ez169JAer66uRnFxMbKysqTHGrriRdSWMceHyE/V1dUhOzsbhYWF+M9//uNV75i6ujrcdddd2LFjB+666y5EREToHnvy5EkUFhZqPrdq1SoA9ds4EyZMQHl5Of7xj3+4HCucbfAXGBgIi8WCuro66bm9e/dqNips3769ZpPC9u3bA4DLc+PHj0dgYCBmz57t0lBQEARUVFRo32QjysrKQnBwMF599VXFNc2fPx92u11RTde+fXvD1gJE/owrPkR+6t5778XKlSsxbtw4HDlyxKVhobpZod1ul445efIkdu/ejRUrVmDPnj249tpr8eSTTxq+38mTJzF48GBcdNFFGDNmDBITE1FZWYlPPvkE69atw1VXXYWBAwcCAG666Sb861//wsyZM/G///0Pl1xyCU6cOIH8/Hz89a9/xV/+8hdcfvnlmDt3LsaMGYPrr78ehw4dwj//+U/07NkT27dvV7x3eno68vPzMXfuXMTHxyM5ORkZGRlIT08HAMyaNQvXXnstrFYrxo0bh5SUFDz11FN4+OGHsXfvXlx11VUIDw9HcXExPv74Y0ybNg333Xdfgz5/T8XExODhhx/G7NmzMWbMGFx55ZXYuXMnXn/9dVxwwQWKf1/p6elYsmQJZs6ciQsuuAAdOnTAuHHjmvR6iVqs5iwpI6LmI5Zh6/0yOrZDhw5Cr169hEmTJgmrV6829X41NTXCO++8I1x11VVC9+7dhZCQECEsLEwYOHCg8MILLwhnzpxRHH/y5Elh1qxZQnJysmC1WoUuXboIV199tbBnzx7pmPnz5wu9evUSQkJChD59+gjvv/++VC4u9+uvvwpDhw4VQkNDBQCK0vYnn3xS6Nq1qxAQEOBS2r58+XLh4osvFtq3by+0b99e6NOnjzB9+nRh586dis/GqNRfTby+w4cPGx6nLmcX/eMf/xD69OkjWK1WoXPnzsIdd9whHD16VHHM8ePHheuvv16IjIwUALC0nUjGIgg+GAxDRERE1Aowx4eIiIj8BgMfIiIi8hsMfIiIiMhvMPAhIiIiv8HAh4iIiPwGAx8iIiLyG2xgqOJwOFBaWorw8HC2fSciImolBEFAVVUV4uPjERCgv67DwEeltLQUiYmJzX0ZRERE5IWSkhIkJCToPs/ARyU8PByA84MzmjtERERELcexY8eQmJgofY/rYeCjIm5vRUREMPAhIiJqZdylqTC5mYiIiPwGAx8iIiLyGwx8iIiIyG8wx8cLDocD1dXVzX0ZbVpwcLBhOSIREZE3GPh4qLq6GsXFxXA4HM19KW1aQEAAkpOTERwc3NyXQkREbQgDHw8IgoCysjIEBgYiMTGRKxKNRGwiWVZWhm7durGRJBER+QwDHw/U1tbi5MmTiI+PR1hYWHNfTpsWExOD0tJS1NbWwmq1NvflEBFRG8ElCw/U1dUBALdfmoD4GYufORERkS+0msBnzpw5uOCCCxAeHo7Y2FhcddVV2Llzp+KY06dPY/r06YiKikKHDh0wYcIEHDx40OfXwq2XxsfPmIiIGkOrCXzWrl2L6dOn4/vvv0deXh5qamowatQonDhxQjrmnnvuwaeffor//Oc/WLt2LUpLSzF+/PhmvGoiIiJqSVpNjs+XX36p+HnBggWIjY3Fpk2bMHToUNjtdsyfPx+LFi3CiBEjAADvv/8+zj33XHz//fe46KKLmuOyiYiIqAVpNSs+ana7HQDQqVMnAMCmTZtQU1ODrKws6Zg+ffqgW7duKCws1D3PmTNncOzYMcWvtmbKlCmwWCywWCywWq3o3LkzRo4ciffee8+jsvwFCxYgMjKy8S6UiIhanf37gTVrnP9syDFNpVUGPg6HA7m5uRgyZAhSU1MBAAcOHEBwcLDLF3Pnzp1x4MAB3XPNmTMHNptN+pWYmNho111RUYGysjLdXxUVFY323mPGjEFZWRn27t2LVatWYfjw4bj77rtxxRVXoLa2ttHel4iI2p6Kigps2nQQd9xxHN26CRgxAujeXcBLL1W6fJ/Nnw90746zxzh/bk6tZqtLbvr06SgqKsL69esbfK6HH34YM2fOlH4Wx9r7WkVFBf7xj3+4PW7GjBmIiory+fuHhISgS5cuAICuXbsiLS0NF110ES677DIsWLAAU6dOxdy5c/H+++/j999/R6dOnTBu3Dg8//zz6NChA7799lvcfPPNAOoTjx977DE8/vjj+OCDD/DKK69g586daN++PUaMGIF58+YhNjbW5/dBRETNp6KiAocOHcJDD+3Cp59eAUGoXz9xOCy4//4I/Pnne7DZqjBjxgycOhWFadMAcXPB4QBuuw0YPRpISGiee2h1Kz4zZszAZ599hjVr1iBB9ql16dIF1dXVqKysVBx/8OBB6QtfS0hICCIiIhS/GoPZERdNOQpjxIgRGDBgAFasWAHA2S351Vdfxc8//4yFCxfim2++wQMPPAAAGDx4MObNm4eIiAhpheq+++4DANTU1ODJJ5/Etm3b8Mknn2Dv3r2YMmVKk90HERE1PvEv8O+8s8ol6BEJQgCOHHGmoBw6dAjff18BdUZFXR2wcWNFo+5yGGk1Kz6CIODOO+/Exx9/jG+//RbJycmK59PT02G1WvH1119jwoQJAICdO3di3759yMzMbI5LbhX69OmD7du3AwByc3Olx5OSkvDUU0/h9ttvx+uvv47g4GDYbDZYLBaXQPKWW26Rft+jRw+8+uqruOCCC3D8+HF06NChSe6DiIiMVVRUGP7lOjg42HDHQXztkSNRmkEPAFgsDnTqdAQAsHTpUtjt4bBYchXHWywObNiwEEVFVY22y2Gk1QQ+06dPx6JFi/Df//4X4eHhUt6OzWZDaGgobDYbcnJyMHPmTHTq1AkRERG48847kZmZyYouA4IgSFtX+fn5mDNnDn799VccO3YMtbW1OH36NE6ePGnYqXrTpk14/PHHsW3bNhw9elRKmN63bx/69u3bJPdBRET6fJlu0alTBSwWh0bw48C4cZ/BZquSHrHZqjBu3GfSCpHFojymOQZ+t5rA54033gAAXHrppYrH33//fWlb5eWXX0ZAQAAmTJiAM2fOYPTo0Xj99deb+Epblx07diA5ORl79+7FFVdcgTvuuANPP/00OnXqhPXr1yMnJwfV1dW6gc+JEycwevRojB49Gh999BFiYmKwb98+jB49mhPsiYhaCPX/j+32cBw5EoVOnSoUgYqZ/29rBTOZmYXIyNioOJcoLW0LUlJ248iRTujU6YjmMU2p1QQ+giC4PaZdu3b45z//iX/+859NcEWt3zfffIOffvoJ99xzDzZt2gSHw4GXXnpJGr66dOlSxfHBwcEuIyR+/fVXVFRU4Nlnn5WSwn/88cemuQEiIj/m7dbV5s0DXVZg0tK2ePTengYzNltVswc8olYT+FDDnDlzBgcOHEBdXR0OHjyIL7/8EnPmzMEVV1yBm266CUVFRaipqcFrr72GcePGYcOGDXjzzTcV50hKSsLx48fx9ddfY8CAAQgLC0O3bt0QHByM1157DbfffjuKiorw5JNPNtNdEhH5B2+3ruz2cEVisiAE4NNPr0BKym6PA5OWFMx4otVVdZF3vvzyS8TFxSEpKQljxozBmjVr8Oqrr+K///0vAgMDMWDAAMydOxfPPfccUlNT8dFHH2HOnDmKcwwePBi33347srOzERMTg+effx4xMTFYsGAB/vOf/6Bv37549tln8eKLLzbTXRIR+QdvK4W1EpPllVj+gCs+TcTsRPfGmPy+YMECLFiwwO1x99xzD+655x7FYzfeeKPi5zfeeEPKtxJdd911uO666xSPmdmaJCIi39DL2VHTSkyWV2L5AwY+TSQqKgozZsxoUCkhERGRmic5O+6qrIwY/cVcHnhdc00mBEFAXl6e1/fUmBj4NCEGNURE5Eve5OwYJSaXl5crjlX/hTw7Oxs1NTXYs+cMPvnkZ3TqVIE9e3oqAqk9e8wnSzfGLoc7DHyIiIhaIKOqLTFAMcrZkQc06gBDKzHZbg/HSy9tdtkumzFjBgBIydT1K0yDADgAWM7+cg28xo8fj+joaM17aK5dDgY+REREbjS067E372emastszo5WukV5ebk0sshou0z+GvUKk1aNlDzwio6ORlxcnOn7bgoMfIiIiAw0x5Bps1VbnuTs6F2bu+2yXbt2SccajasQtfRkaQY+REREBpp6yHRFRYVLro1R1ZZRzo6ZHBq97bKSkgQcOXIKdvuPsNmqYLeH48SJMI1xFQ5YLPA4Wbq5MPAhIiJqIbRWl4y2oXyRQ6M9e8uB5cuvlt6zf//t2L69/9ljHNLx4vW0pJEU7jDwISIiaiG0ZmoZbUP5IodGvV0mJiwLQn3C8rZtAyAmMAMBEAQHrr56KRIT90uBTksPeEQMfIiIiDxgtlmgL5SUJJqq2moo+XbZiRPtsWzZNaojLKqfA9C+/clWE+zIMfChBvv2228xfPhwHD16FJGRkaZek5SUhNzcXOTm5jbqtRER+ZIvBnx6+l5qWsnDvqg6E0vc7fZwja0vAfLgx2wCs91uBwCUlgaguDgIycm1iI93mL6mxsDAxw9MmTIFCxcuxG233eYyeHT69Ol4/fXXMXnyZFNjLYiI2jp1ECEmGvtywKc7rmXjItfkYbNVZxMnTpT+chocHKyb+KxVKSbP8TFKYBbfo7KyEkuXLsWSJUsMg0VfVsKZxcDHTyQmJmLx4sV4+eWXERoaCgA4ffo0Fi1ahG7dujXz1RERtQxGQYTZZoG+oFc2fvXVy5CaukP6+eTJk6bPuXTpUsXPM2bMUPT2kff10aoUGzHiG80EZjHBWmsFx12w6KtKOE9wOrufSEtLQ2JiovSHGgBWrFiBbt26YeDAgdJjZ86cwV133YXY2Fi0a9cOF198MX744QfFub744gucc845CA0NxfDhw7F3716X91u/fj0uueQShIaGIjExEXfddRdOnDjRaPdHROQLRl/EYvWTnHzLx5fjF/TeKzFxv+KxsLAwl9fa7eEoLk6C3R6u+bOouroaUVFRiIuLQ1xcnEt1mM1WheTkPxTJy/KfRWKCtdbKTUucBs/Ap5ns3w+sWeP8Z1O55ZZb8P7770s/v/fee7j55psVxzzwwANYvnw5Fi5ciM2bN6Nnz54YPXo0jhxx/oddUlKC8ePHY9y4cdi6dSumTp2Khx56SHGOPXv2YMyYMZgwYQK2b9+OJUuWYP369VLbcyKi1kIeNIhbQGJAEhgo4IUXjuH++6/z+ZaN+r0ABzIzC92+bvPmgZg3LxcLF07GvHm5+Pjjvyh+3rx5oO5rvQ3cjFad3AWLzYFbXc1g/nxg2jTA4QACAoC33wZychr/fSdNmoSHH34Yf/zxBwBgw4YNWLx4Mb799lsAwIkTJ/DGG29gwYIFGDt2LADgnXfeQV5eHubPn4/7778fb7zxBlJSUvDSSy8BAHr37o2ffvoJzz33nPQ+c+bMwQ033CAlLvfq1Quvvvoqhg0bhjfeeAPt2rVr/JslImogvdyUlJTdGDJkMjIyopCQEAkg0mfvKQ8+xPfauDEDhYWZKCgYgsLCTEWOTHl5OaxWKwDtbSV5GbpWTlJFRQUOHTqE2tpaAMCoUaNQU1MjXYPdbsfmzZsNr/nDDz/UDfwaMg2+sTDwaWL799cHPYDzn7fdBoweDSQkNO57x8TE4PLLL8eCBQsgCAIuv/xyxdLmnj17UFNTgyFDhkiPWa1WXHjhhdixw7mnvGPHDmRkZCjOm5mZqfh527Zt2L59Oz766CPpMUEQ4HA4UFxcjHPPPbcxbo+IyGfc5aYMHlyNxhhBJc7UKi0tlVITCgszda9Dnr6gnRekLEOX5ySJCcie0CvlN9oiNOos3RwY+DSxXbvqgx5RXR2we3fjBz6Ac7tL3HL65z//2Sjvcfz4cdx222246667XJ5jIjURtQZNmcisFhUVJQUSnlyHdgdm/TL0o0ePKl7vrj9RQ0r5tabBNxcGPk2sVy/n9pY8+AkMBHr2bJr3HzNmDKqrq2GxWDB69GjFcykpKQgODsaGDRvQvXt3AEBNTQ1++OEHadvq3HPPxcqVKxWv+/777xU/p6Wl4ZdffkHPpropIiIfMzv1vLmuw2p1XWHxtAxdHviog5qLL16HHj32SkFQU5byNzYGPk0sIcGZ03Pbbc6VnsBA4K23mma1BwACAwOlbavAwEDFc+3bt8cdd9yB+++/H506dUK3bt3w/PPP4+TJk8g5m4R0++2346WXXsL999+PqVOnYtOmTS79fx588EFcdNFFmDFjBqZOnYr27dvjl19+QV5enqleE0REza0huSlazQTtdruUOxMUFOTS7FWvmZ/rOAkBghCA+fOnaq64aG0rXXDB/1BS0g2JifuQkFAmHfvjjz+evTbXoGbduqFYt26YdN8dOx71aAXMbKK0LyvhzGLg0wxycpw5Pbt3O1d6miroEUVEROg+9+yzz8LhcODGG29EVVUVBg0ahK+++godO3YE4NyqWr58Oe655x689tpruPDCC/HMM8/glltukc7Rv39/rF27FrNmzcIll1wCQRCQkpKC7OzsRr83IqKG0Eou9mTqudlmglrkCcLq64iNPYB3350KsRhbveIycuRIhIc7y9UPHDiAgoICAOa2p4xyg8T3ycl513AFTD1NHnA2M6ytrcXp06c1i1qCgoJQXV2NioqKJm1iaBEEQWiyd2sFjh07BpvNBrvd7hIgnD59GsXFxUhOTmZlUiPjZ01EZumNaxBXWdQrLOrHKysrpaomADh16pTU6LWqqgoWiwUdOnTQfN5qtcJms0nPyZsAemratGmKgaMVFRVSknNxcRIWLpzs8prJkxcgOfkPzfPZ7eGYNy/XJVjJzZ0nbV8dORIFq/UM5s+fqtkwUTRq1JcQhADk52c1aFyHXh6RL9oBGH1/y3HFh4iIWq2GrLA0Ba0verNDTuVJzt7kHBklRu/Z01OxEnTuuTvwyy994TqMFAAErF49BhaLA1lZ+YiPL9WtzjK6N6PVp6bs4MzAh4iIWq2GfmE25qR1rS96AF5VRunlHAFAcXGS5vUbJUarc3p27DgXl1zyHdatuwTO7TSxGqy+Kkxc8RFXjNQ2bMjUXRFqScnRDHyIiKjN0AtktB7XCkycOT3agZAnqzdaX/QrV14BiwUeffkb5Rzt2dNT2srSCqL0gqWamhDNlaAePYoxaNAmHDnSCVZrNfbt64bVq8e4HCcmNA8fPhxr1qwB4Ax68vJGQq9ZYnO2B1Bj4ENERM1KL0dHpFfxpKa3laIX4GitQDizXl0DCU9Xb7QThgOgzqp19+UvNjRUDxI1u4KilaBtt4frbpvJ++2Ehx9HXt4o3e01sejFbg9HXl4WjJoltpT2AAADH68wH7zx8TMm8g9mc3TcJb/qBQKxsQc0H58wYbnmCoT892IgAcAwSFIfr/dFDzgUKz6AuS9/T4d/2mxVGDt2LBITExXPi0GT2VJ9m60KWVn5LttX6uOOHImC1uhPcVtN3IprKaMrGPh4QOx7U11dLWX0U+MQ/3aj7jVERC2Tt6s2ZnN0SktLUV1dDbvdDkEQpCotsYxaLxDYt6+bToAjaAQmcDnOOUXcYhgkqY8XV030cnL0vvx37dqF8vJyU31+3K2grFq1yiVYNFuqL27flZbGSUEP4Exslm+liQ0Q9TpGn3vuDqlaTLzX3Nx5zT66goGPB4KCghAWFobDhw/DarUiIIDD7RuDw+HA4cOHERYWhqAg/hElauk8WbUBnMGOWEJudmyCuxJxvUCgW7d9mo8nJu53CUzkKzjicWIgoXUOo+MB/eBCL+AQ82X0iJ8fYK7BojqoVM8BEwM0cQJ9p04Vimov5bgLZ2JzamqR9B7i9bo2WXTgkkvWYf36S1xWyXJz5+mW3zcVfqt4wGKxIC4uDsXFxdKEc2ocAQEB6NatGywWrdJKImpJzK7aHD58GEuWLNF9vqGzoLQCgYSEMt0AQStZWC+Q8HT1Zvjw4VIODOCcYSgIAmpra7FmzRqvVjuqq6tNr9rokZfIA66fuTKY08/ZUVNfy5EjUVi3bpjp1zdlB2cGPh4KDg5Gr169mrTngD8KDg7mihpRK6W3aiOObNB7jV6OTk1NiKkqK71AwChAkCfzGh3nq9Wb//u//3P7WRmV2EdFRWHixInSVHXxeWeeDTwKqLQ+cyNa+Ujqa5W/v9FW3Pjx4xEdHQ3AfPK6rzDw8UJAQAC7CRMRafBk1UbeOXjfvu6aeTTimAaxed6QIYWG72OzVeHmm0ciOjra687N8m7MlZWVsFgsiu7M8uPFY9Udm/WCly+++MLwswLc9/mR30tDVsm0K8/0ZWYWKu7F6L3dbcVFR0crulQ3JQY+RETkE540qZN/aWo1y3MSIK+acvaJAVJTi0y9jzxYEQUHB6NPnz6Kx7S+gMVkbXWSMeAMPIxWKcwEI77o89PQpoB6eVHq3CUnBzIyNpp6b8AZVKWk7G4RycxqDHyIiMgnzDapU39p1gc79cGPdsWVBXl5WbDZ7Ibv4y4RWqs0Xl6VVllZKW0leXoes8GIN31+xAo2u92uew758eJxauJ59FZlUlJ2Y+PGDBQUZELe08jd9QtCADZuzEBhYabbFajmmMouYuBDREQ+YbZJnfEWiwWjR3+JxMR9OoMztUvRPWmGV1paCqC+P4638760cj2NAoJRo/Klx6zWMwAcUK6sGPf5UQd07j5vo0RykV7u0qhR+cjI2Khb7n7iRJhmnyIx6BHvWx70iXk9TZ3To8bAh4jIz/iqU7Ka2cZ42n1fnCwWB/r2/UVqnicfgyA+r1WKrvU+7krjxRUb9Wehfp1RsrH4WYqrKHr3VlCQiYyMjbDZqqStMPlMLDOVYt5+3u6ISckTJ04EANTW1sJqtQJwDZ6UW5QO6V4tFgcyMwtRUDBEcbx8Bao583rkGPgQEfkRX3VKljNbYi325XLt+1L/5Z+ZWSgdLyYyO8chGJeiG+cQOTB4cKEUeIi0gj91fk7//tuxfXt/za0bu93uEhjYbFWaAQAgNkOEyzafxeJATs67SEgoA6CsFAP0h5C6+7zlzAxjjYyMVAQmZWVliuf374/DypViwOa8J0Fw4OqrlyIxcT8AKFZ8gOYbS2GEgQ8RkR8x24rj559/VvShEVmtVsTExCiCIvU8KS3qnA75F7bVWo1ffumHgoJMFBQMQWFhphRgDBlSiNTUIs0v9quuGiRdY1BQEGprazXnWAEBLufVopWfs23bAOgN3lSX54vBRd++P0v5MSIxANDbCqusjFSU7ctXhtzly8jLyM0OYzVb+SVSrlLJBaB9+5OG/Y5aSlKziIEPEZEf01sJMNNFWB38mCEGSJWVlTh8+DDWrFkDuz0chYX1gYI6wFD3h9G7RnGrRi+HyF3Vk/brzDXxUwcXAwa4rhSJr9HKy1m27GrIV7X0hqgaVWypryErKx82m13zPMHBZ5CYWGIqKHENJGWfjslu1S0JAx8iIj/VkJUAb5u4igFSXFwcIiMjsWbNGrfVScOHD1cEOXrBmthbxyiHyKh7sN7MKXWOkVYTP3VwsX17f+TkvIuammBFAKCVl6Medrpy5RUYOvQ7UxVy4vuXlCS6XIM6P0p+nmXLrjH971w/GV1/uGlzd2c2wsCHiMgPmSm7Fr9QAZheHfCG2WowwFywJgYXynwU1/OWl5crvoy1ghKtHB+t6eRaQUpNTbDmXCr5qsiJE+2xbNk1qiMC8N13l8JM0KXMZVIzHvljtu+P3r8feV4S4Fxx0+p7BDR9d2YjDHyIiPyI2R4wmzcPxMqV41D/5enAlVd6nhtihrvqJHG1x12wJlYiAfXBhVZfGfG8YnXXyJEjXV4n36oZMeIbw2RtTwI3+T2LFWP6U+KVfY3UQZfRFpRZRitg8mvVm4MGOMdPxMfHt5jAxh0GPkREfqKiokKqQjL6sha/UJUrBs4tGLNdgT3lLjfEbg/Hzz/3MwzWbDaby/RxeT8aq7UaNTUhsNvDFefPy8tTnFO9VSP+nJ2dLXWDDg4Olrb7zJSV623PuVa4qTn7Gokl/nLG/ZDUXbAdZ/+pvwJmxOjfT3R0dKsJegAGPkREfkOel2P0ZV1cnKTzhep+dcAT6pwPvdwQ7fEWTuovbq0vYJutSnPyutYYCa3gRG9FQ17ubRQYuNueS0vbglOn2kll+3LyvkZiA0Cxs7R2TpID//d/n6OmJgT5+VmaeUTyY+UBmvrfh9l/Py0ld8csBj5ERH4qJWU3JkxYDkBAYuJ+6UtNPzlYmR8j8jZ/QyyDP3z4sG6XYe3xFvrbP/Lziis/ZvKZjIITq9WqeX9mAgOzuVT5+dpBj/z+jh8/Lm2vie/n2g8pAKtWXY5x4z6T5mRp5xEBV1+9DKmpO3QDO7NtClrTag/AwIeIyC95MlnbyZnjo86PEXnS8FDOXedkvRJzre0fdTAWHR0NwMxMK+PgZMmSJZr3ZxQYiNPazcwv09uymjDBGZiIVq9e7XJMWtoWxMYekKbYy68/N3cekpP/0MwjEjtgA8ZbVa0tqDGDgQ8RkZ8xswohbt2UlCQAgLQipLcd5G15u5pWLxqtEnOHI8Clad/77+cprik7OxuA++RjM8GJer6XyF1gYCbxWe+YyMhKw67NopqaEKhXi5S5T8Y5SK1tq6qhGPgQEfkZs1PUnV+a9SsOvugAbEQrIMvPz8LFF6/DunVDIZ/inp+fhdTUIsPcHbGzsrsvfr3+PaWl8VI5unq+l1lmEp/1yujFIa1an7U8AHUXXI0fPx7TpkXj0UcPY+/eICQl1SI+/gIAF7TKraqGYuBDRORn9L4ordZqaYUBgMugTk87CXtKLyALDT0FrQ7KJSUJpq/JKPnYZtMaiGpBXl4Wunffq+hVY3Zly+z8Mq1jrNZqxWR69X1pBaBGwZU4HDQuDkhPN3X5bRoDHyIiP+NuhcFZ+myBPIG4Y8ejpjsJm2VmsrnF4kC3bvs0HwcshtdUVWWuozAAxMeXwbXhXwDmz5/q1cqW2cRgeWK3eG1GZfsANIO93Nx5UjKzOrjyt60sdxj4EBH5Cb1VCPUKgzxfRPxizcl51+MmfUbUU+LFrZusrHxFGbbYKE9rRSMxsUR35Qqo78+j11FYLAsH9CvZ1Kst8gRqNfW2UVRUlBTcaVE/bqZs32ibMjn5D9x880gpqVvrmoiBDxFRq2X0pQpofxHLVyHEyiP9vj1O4vgFX07ell+3VkJzfHypYuVCb7tIXc4tCK6rNJGRkYiLi3O5hri4OEycOBFLly41HHMhX0VSV7OpyXOA1MGdEU/K9o0CUHFbi/Qx8CEiaoXMfqmamaJuNNQTqP9iTU7+w+eTt/USmnNz55kafpmSshtjx36OL764HHrT3bWIQaM42BSoLw1Xrn7pDyZ1V91mVKZvrguza9m+mWRpMsbAh4jIJE9XWBqT2SRbM8e59u1xwGKB5herr7v3mq0w02I0oNPoHHrbbJ06Vehuq3nSidndtWq9Ri+/SWtUhVGyNPN53GPgQ0RkgrcrLE3FaDXBDPWXKQDNL1b5vCpRQwI+TwZ8yu8RgG7QY3QOwHibTQxI9AILb6rbzLzG3UrO+PHjYbVaIQhCq5iA3pIx8CEiMsGXKyy+5m1/HXcjF8Tfi8nBjfHFanbrRn2PmZmFhkGP1jnUVWTuAhKtQMabFSqzr3E3CJS5O77BwIeISIN6W0tdzdPQFRZfaUh/HV/MYnK3/Xfy5EmEhYW5PC7/PJVdoi1ITCyR7u3IkShYrWdc7rGgIFNzpWjChGWKuWPy61Rvb7mb9j58+HCsWbNG8ZrDhzvBWe5vvrrNk1WttjIItCVj4ENEpOJuW6uxOxjLr0MvqBADB3erCeqATavSqyHXp5cro/XlbfS8ugNz//7bsX17f+ln19WdAGRmbkBhYabi34N8tpWovLxcMdzT7LT3jh07Kl6zcuU42bHGg1Ll3K1q6ZXbi7iF5VsMfIiIVIxWMJqigzFgPqfI3WqCVvl1Q/OQ1FtGgPtg0Oh5rc9027YBEIMMvQAlI2MjMjI2umwNqQMs+WfgzbR38TXKBocWAA7k5Lyr6Oysx2gbS6/cnhoHAx8iIjfcTQtvaAdjLWZzhYxWExpjoKjWKk9JSaKi/406GHQXLOqVcrv+7Nxi0qo0E7kLwEpKEk2VjcvpTU8HnP2N5ORbUu5yqPSOo8bFwIeIyICZaeEN6WBsltE2kdZqQmNtx+lVRKnJg0F3waLekFD1Ck9OzruoqQnW7SHkLsBybldd4fI6vbJxkX6fI+Ug0Pj4eMOGkVq4jdX0GPgQEenQa66nNVZB/NKsrKw0PKc3X3RGQcz48eOlEQViJ+am2I5z3TJSkgeD7rbj9GaHyXN8xNEVWsQkZL0Ay5k0vf/sdpXyebFCTIuYF+Ta5wgAHLjySuUgUK1/rwxqWp42Gfj885//xAsvvIADBw5gwIABeO2113DhhRc292URUSuj90UaH1+qOxBSnP1kxJMcG3dBjFaZc1Nsx+lv/7iWk4vTz+XBYlZWPo4ciZKe11q1GjHiG1NdomNiYgDor8wsX361bvm7IAAFBUNQWJipCCjVCcfKyjNoVo5R69DmAp8lS5Zg5syZePPNN5GRkYF58+Zh9OjR2LlzJ2JjY5v78oioFTFaqbDZqlwGQtrtdmnSthFPcmy8CWI8KZ/2lLiipfceWuXkmzcPlIIewIE+fXa4rJilpW3R7COkdY/yVa7g4GAcOnRIOl5r3pYgBKCwMBPqMnTndpp2QCn2LZJzXo9r1Zh4HdQ6tLnAZ+7cubj11ltx8803AwDefPNNfP7553jvvffw0EMPNfPVEVFr4q4M2V1TOb28HHcl5nLeBDGNNc+poqJCWtHSWsXRKid33RILwI4dfSGv2PJ0G07MpamoqMChQ4ewdOlS6bOOjT2AoUO/w3ffXap4jSAEYPBgZfm7u4BSzNE5dOiQYqaXnNVqRUxMDLe0WpE2FfhUV1dj06ZNePjhh6XHAgICkJWVhcJC7T3cM2fO4MyZM9LPx44da/TrJKKWTf63d2/nIhnl5XhSYu5tEGN03d5SJzbLV3GysvI1k6fNVGzJA46RI0ciPDxces5qtSpGZIhBory6TLsvj3H5u9VabWoYaVRUFIOaNqZNBT7l5eWoq6tD586dFY937twZv/76q+Zr5syZg9mzZzfF5RFRK+FtNY7dbj/7T8+Ti9Xv5U3w1VTl01qrOPn5WUhNLQIAxSqXc66WeotJSR5wJCcnm+ppI35e2n15xH9q9+cR/8kp5/6pTQU+3nj44Ycxc+ZM6edjx44hMTGxGa+IiFoCb/6WX1NTA8A4L0d83t2oC2+Cr8Yunxbze/Tub/Xqkfjll36KQMJJ3ZOnXkMDDqMka3f9eRpjVYxavjYV+ERHRyMwMBAHDx5UPH7w4EF06dJF8zUhISEICQlpissjIj+hl5dTWhqPf/3rJtO9dcQARW90RXV1NcrKyhTBTGNty8jze0pL46DeSgIE/PzzefU/CQFYufIKWCyAfuCjv0Vmln6PHff9eQD9VTFqu9pU4BMcHIz09HR8/fXXuOqqqwAADocDX3/9NWbMmNG8F0dEbZYYmBw9ehSA88u0f//tsrELAs49d4csJ8Z8Uq/Z0RVaOULuBoh6svoj31rKz8+COujRDm4CIAhGZ63fIqsfN2GXni0tDUBxcRCSk2sRH+/QvGbXHjvmZ2gZYZVW29WmAh8AmDlzJiZPnoxBgwbhwgsvxLx583DixAmpyouIWi9ffpH7ilZgYreHY/v2/pDnm+zYca5XvXXU92tmDEVFRQUOHz6sKK3Xe52nc7vMjZcQOc4+p7/Vpf4MxGs2Sg5X/0VWvmVltVYbdncGgEmTJmlOjBexm3Lb1uYCn+zsbBw+fBiPPvooDhw4gPPPPx9ffvmlS8IzEbUuZieBN3QAp6e0ApOff+6nGeSok3w97a1jZgyF1ue0cWOGyxRz8XWlpaWorq42tboC6G0taa34yIOe+lUY5wqQ8WfgLjlcK/h1t2Ul9v5hUENtLvABnP/j49YWUduiNyNK/UWutyLUFKtF2mXVTmK3Yr1RF7t27UJlZaXUOM+1YsxcpZj6c9Jq5id/3YoVK9yurhhtLanHSwAOpKdvwubN6RAEeYWVc9bWoUNddCupRo4ciby8vEbpPK2eo0X+q00GPkTUdnlTKt6QPBlvr0urnDotbQtSU4s0q4jWrFljeC3ugoHt27ejvLxcyjMSr0erjFz+Om9WV9yNlzhyJAqbNl2gepVzkrlRJZXYv8dM00azOTjZ2dlsMEgKDHyIqFXxZjXAmzwZX1yXVjm1ektG71rELSixy7O7YOCrr37GkSMHYLWeQU1NEk6cCDM1QNTb1RWj8RJFRanQWvGSDyV1d253PXY4+Zy8xcCHiFqVhs6hMpMnI+dui8zd7Cox6BEniIvc5d6ouztrBQNZWfmw2ap0ttgc0Mq9UQcR2jk7DlitznsuLy/3qMJJr+pLvFbxGK1gT5yGDpjrscOghrzBwIeIWhUzqwHqYEVcNfF0m8zsFpmZ6+rYsaN0rJncG/F65QFCWtoWnDrVDnl5zjwhZ4ABRZl8fcAhJlPLH3Ptm6NdDh6A+fOnnm1A6AzAhg4dKr1GL3AB9Fe+bLZK6d7NBp7ssUONgYEPEbU6RqsBlZWVUqM9NU+3dTzd+jKzSmE290YrQEhJ2X022KkP3JRBj5oY/NQHQ/K+OWIAk5KyGzk57ypmV6kDse+++05zlSorKx/x8WWKERVaDQWXL78adnu+YS8jvUGgRL7EwIeIWiW91QCjL8+GbpMZrXS4uy5xG8doxIJ4LXorUxMmLDdVJi8/n16gt2dPT0VglZlZaBgU6q1S5eWNhDqBe9y4z3SOzYL6OuXvYbVaNT8XNTYXpIZg4ENErYLZLzv1l6c6WPF2MKXRFk12drZigrjWtYurR3orIvJrKS5O0glwBM3ATV4mL68kUz5ef7zVWu0SWBUUZOoGhUarVOJqknz1Ji1tC4KDz2DZsmtUxwYYBp42m40Jy9ToGPgQUatgtorHTL8fTwdTussNstlsbieKl5WVAdDKqXFg8OBCZGRsNEw4tlgcSEzcrxm4Oa/DDkBAZGSlonNxaOhpxXtlZhaisrKjxqpTAPr2/cllyKheIKZFvnqTmFjiNkjTq9YiakwMfIioyXjTRNDT14gBhvtgxTXgOXnypOZ7+KKhnnzFSgy+SkoSAFiQmFjiUhqutzKlDtz27OmJefNydZOFxePF3JyCgiGwWBxw3R4Th4w6MHjwBreBmPgao5J1rXsw6mVE1BQY+BBRk/Bm5IQ3jQfF8nJvgpUPP/xQs4mhu9wgsWpMTT01PTs7W5pFpc6x0QtYtAIEMXDzpEpNTEgWj3Pejxj8yAOYABQWZiIjY6Pi/bRWqdq3P2G4eqN3D6zWoubEwIeImoQ3Iyc8aTxYUVGBQ4cOSRVd3iYy682BMsoNUvfckZMHUmIekF7AEhx8RrH64y5AMBvc6R139dVLUVUVga++GuP2HHpBjLvVGwY51NIw8CGiJuXNyAnAOFiy2+2KSeSA8wvXKJ/ETIWW1vaUp1s0WoGUXiCybNk1ur1ttK7XXXAnNk00yhkCgNWrR5kKELWCGF8GNqzWoqbAwIeImpS7VQqxU7B8u8ldsHTo0CGX99m8eaCsoknZuM9sEz2jhOry8nLFSo9eICXfBjMaPyH/LNSBoN717tnTE85p507q4O7w4cMA6les6kvMlcd5W+nWEBMnTkRkZKT0M6u1qKkw8CGiJqW3+iCOSBCDiRkzZkjPuwuW1AM+9++PU/WRqW/cB8AwiDKTr6NmFEhpbYO55swoye9NL+iLjT3gUmIuCEBKym7s3x+Hffu6Y//+P5CQUH9ei8V5jEU5xcJwNUss1bfb7aipqUFVVRXy8vI0Pwc5oxJ/BjnUnBj4EFGT0hqRIAj1IxK0cn2MgqXi4iTFKosYhOg1ygMshkGUUb7OpEmTkJKSonjMzNad1mqQvLJr2bKrFddrZohoSUk3zZL0lSvHYc+enhCnww8YsA0jRnzj9hr1tqzEUn15uX7v3r3Za4daLQY+RNTk0tK2IDb2AN59dyrk4xf0cn20kov7998ujViQ97PRW0WRBxPedm/WqvrSD0wScOTIKZSWxrnkGYnBnTPY2IHqav2tJv38nH2aw0Xrgx4AsGDbtgHo2nV/g8vx5RjUUGvGwIeImkVNTQiMxheoybdjrNZqzblSWiMdnDzLaTFKfFavdOhNN1++/GpFJ2X5daqDO3el61rXm5BQ5vJ4376/4OefU1X3bsHx4+29DvaYcExtDQMfImoS6i9QM+Xm6teI2zGejnTIyXkXCQll0mN6gYY4hLOgIBPieIWsrHwMGVKoe19aPW6c22n1qy7q69QK7rS2muRDRHNz57lcb0rKbkyYsByAgMTE/aiq6oCff+6nek8B55yzC5GRVbrB3vjx4xEdHe1yb9yyoraIgQ8RNQmxQqq0tBQrVqwwNTdLXVUlVlJ5OtJBHvQA9RVF8soseYKySBDEIZxwCX70St1PnGivMaOqnjy4U1c26V2PVuWZ3vMDBmzDtm0DIM/xSUgoQ0JCme6qUnR0tNuRG0RtBQMfImoyUVFRiq0iM71xtFYcPBnpoK5QiomJcTmnOkFZyYK8PGdFmLrqa+LEiaitrcXRo0exZs0aqQrLdeurfnCoPLiLjIzUDDjcJUwbPf///t9/ccEF/0NJSTckJu5TBH1sJkjEwIeIGoHRfC11ubi3X8ZGAc7NN4902box2rbRSlBWMlf1BUCzt05WVj7i40t1gzvx8xI/G3fl++6eF1d4zGIeD/kTBj5E1CDqIKeyslIaGwGY65CsRevLWC/nRy0oKMij/BSjhoKA+URgcSVG3VtHXC1SCw4O1pxH5i7/ydtxHGPHjkViYqLLNTCPh/wJAx8i8pq7IaJGeSp6CbWA/pexmPNz+PBhlxEVcmLgpTVwVItWbyHnL/1OxloBnfbKkTKZWczrOXnypGKVR31eo3Eb7jo2Dx8+HB07dlScNywszKUHEZE/YuBDRF4zGiIKGHdI9jahVp0n5Mn1qRnN4gKgm3ukF9C5W4nJzs5Gnz59UFFRgbffftvletTn1doi01tVSknZLf3cq1cvJisT6WDgQ0Q+of7Szsws9KhpnlFeEGC8JePtdpq6aqyyshK1tbWKY6xWK2w2m1Rx5S7x2KhSTRzhoBUwlpQkKsZsCIJzzEZu7jwAkDpUm1lVIiJ9DHyIqMG0goHCwkw4e9q4z0Nxt2Um0tq6MjtwVE9UVJQUdMlLy+WCg4OlbTl3icWeTnHXKqOXn3fjxgwUFmYqVoE87X9ERPUY+BBRg+kFA4MHb1B8aetN/Ta7dVVaWqr42cycLCMVFRU4dOiQIhlbz8SJEwHoJxafONEednu4lHCt9f6VlZUA6ivbjMvoAcAhfX7i/eXnZxnm/2RnZzNZmcgAAx8iajC9YCAjYyMyMjaaXv0Q6W1diaXkI0c6mwq6W30xorfKpPfe4haY1naWIADLll3jdsVJHWAZldGL24UFBUNc7i8+vlSzk7Pz+rQnohOREwMfImow97ktrkGI3W7XTMA1s3WVl5cHwH1Zd3l5uW5ukFaejXpchfy9rVardKzeZHWjFSetgErv+i+5ZC3OOWcXwsOPK1Z85PfHZoRE3mHgQ0Res9vt0u89zW1ZsmSJS86O1tbVypVXIDb2gGZDPncBl7hC5K6sXW9chTyIsdlsmDFjhrQ15mwkeApmBq1qVWsNGVKou3r03XfDsW7dMIwb95nbsR5qzO8hMsbAh4i8UlFR4dJLx9NVCPWqi17F0vz5U6XVF/XKiZmAq7S0VHov9QqQUZ6NOohRl9KbaSSoFczJ53+5Wz3KzZ2nu62l7oXEZoRE7jHwISKvGPXwMbPNA8iTfJ0rR3odlMUg4NSpdi5JvWlpW6SAy24Pl8q+tXKDRDNmzJB+7y7Pxqgbss1WhaysfOTlZcEZsLiuyGifXzn/y93qUXLyH5oBHYeLEnmOgQ8RNZhRXo7Rc+qARNz6kfezEYkVTXoVXJ6UtbtbtXFSBjFikCbvtLx588CzqzcW3c9G//zK1SRvxlBwW4vIcwx8iKhBjErKAePuzVrS0rYgNvYA5s+fqgoWtFeCjhzppPs+sbEHUFMTYtjYUCvPJjOzEBkZGw1Xjeo7KMuDHmdOkvz+6leFlAGSOqhxl6/EbS0i32DgQ9RG7N8P7NoF9OoFJCQ03fsalZQDFs3nfv65L/r1+0U3GElIKHMJAuS9a0Ri8KB3De++OxVaFVrq+VieJGaL23YnToTpbJG5JjcPGVIIANKWmF6SstF1cFuLyDcY+BC1YmLH4UWLQvHAAzY4HBYEBAh4/nk7rr/+VJOsCrjbonHd5hGwevUY5OWNMtyO0pqddeJEe92GiFrvo1dmrl69AfQTsy+66CJ8//33AFy37dSdqZ20t6eGDClEamqR2+BK7zq4rUXkGwx8iFopsQGf3R6OefNyIQjObRSHw4L774/An3++B5utSlHKLZ+HVVoagOLiICQn1yI+3gHAu+0Td1s0rlPPndept+2lToRW5+8ADgwevEGxFaVdFu5dY0PAua0UFBSEpUuXSkGP1pae833kwY8DV15Zf+9jx47FqlWrFJ+V1vtPmjQJYWFhutfDbS0i32HgQ9RKiQGMu+7F4nHyTsVGicDuet5oMdqiEZ/7+ee+WL16jO51qhsIOgOcQvTt+7Oq3Nw5B6xv3591y9qt1mqXHCGtRGG9ajN5Lo1I73O++ur6bsyJifsV50lJSVEMQdXCoIaoaTHwIWrlzFYDiV++7uZbaX1Ja01OlzcvBPRXM0aNGoXVq1ejX79fkJc3SvM6tQd1BqCgYIgsEKqnl78jvwZ3jf88HW5qtZ7R/JzFYCcjIwNdu448e6wVMTExDGiIWiAGPkStnLutJjVP51uZnZw+ceJEl+nmwcHBUsCkd50ANIIeOeUW2dkrhrsxEUarUJ4ON1UGZs5rUX/OXbt2xXnnnef2cyKi5sXAh6gBmquSSs3oS768vBylpQHYuvUU7PZwj/vFmJ2cHhkZqVl1VFFRYXidxcVJBkGPdIXSNXuSvyNfAZo4cSJqa2uxYsUKj4I/187OFgAOXHvtv9G79243101ELQ0DHyIvzZ8PTJsGOBxAQADw9ttATk7zXY/eVtPf/16MTz/tB0HoDIsl16v5T3JGHZq1REVFaea5lJeXY8WKFQYN/upZLA7k5LyLmppg0/k7avLVKHfBX2VlpXS83hiNxYuv0x1iSkQtFwMfIi/s318f9ADOf952GzB6tO9XfvRWlSorK6Xf6wUjels6RvOfjHiaFyMyynXR2gLr0WMPfv89RfE+4pBSuz0cmZmFLlPU3d2DvHePu+3BpUuXYuLEiQDcj9GQDzElopaPgQ+RF3btqg96RHV1wO7dvgl83PXnOXnyJJYudVYTGQUjRls6evOf1M39xADL07wYd/cnD9y0tsCcwZwyMFPfa2bmBpcOy3pBoLp3j7umhbW1tQDcj9EwWyJPRC0DAx8iL/Tq5dzekgc/gYFAz54NP7fZ/jyA+2DEm/lPWs39AM+Tot3dn5p6q2706H7o1KkT2rVrhxUrVmjea2FhJjIyNkqv8XRFSny/I0eiFD8Dyq0rvTEaZrbYiKhlYeBD5KGKigoEBlbj+edD8eCDNtTVWRAYKOC55+wIDDyFioqG9WUx25/HzDGeVnwZMRNEaZW9y8mrvNwRGweKW07u7tXdzDCtVSCjQMlms2HGjBkoLS3FihUrNMdoePtZElHzYeBD5AH1asVdd9Vvx/z5J/Dww84v11mzJje4h4teoHHiRHvY7eGmV3SMtnSGDx+ONWvWSD8bJS67C6IqKyul7TcjYiBjlrjl5O5e9QKjjRszXMZcpKVtMbV1p/53aPRZcqQEUevAwIfIA+rVCq2RChaLA127HsO99zbsvbTHMADLll2j+AI3swqhV/HVsWNH6fdmtomMvvgtFgvMEAMZkbsqsePHj+t+HvJ71U5CdkhBD6AMbsxu3elVpcmx+zJR68HAh6iBtFYOHnzQhuxsZ6JzQ3r9iIFGSUkCli27GvKmfStXXoHY2AMeTRZXO3r0qO49yFc/Ro4cifDwcADAqVOnEBoaqjiP1WpFTU2Ny+firuzddQZXoUuy8urVq10+D6171QqMnNVfQxTvKQgBKClJQGLiftP5TwxqiNoOBj5EDaS1clBXZ8HGjRVYvjwEM2d2aFCvH5utCkeOnILrFPAAzJ8/VTGuwVPiNpe71Y+8vDyPzmtm9ci1MaBzREVhYaZhUrLe6hWgPdFdvuIjWrbsalx5ZcP6GRFR68TAh6iB9HJPvvxy+dkqIOdjzl4/As4//xCSkoI8WkUw20tGbfz48S4DN8XGgSK7PRwnToQBkE8Zd96D1VqN4uIk080KxfOZKXvXbgzoXZm81kR3kXYpuvt+RszZIWqbGPgQNZBe7klNTYjmStBrr61CcvIfHk1B97aXTHx8vOF7uM6gcgY/FosD/ftvl8q3jVZt1NtZZnNnjDo2q4832jZzt7rkrOpyzT+S9zO6+eaRigCROTtEbRcDHyIf0GvAZ5RDopcsq7fSYKaXjHyFx92Xt9YMKotFwIQJSxEZWal4H61VGL2Aw131VVWV8/VGwZz8eKPAxszqkrNHj1bidf17REdHa84ZI6K2x91kQCIyyWarUnRDFr/YLRZnl0OzOSRiFdG0adMwfvx4xXNiLxkz56yurkZZWZn0Sz4sFNBfmWnf/qTmapW4QgLoBxximb3RNcrzhdLStuCee+Zh8OANmscbvY/RPYjXCdSvLCkJGDkyn/k8RH6IKz5EHtBajTHahvG24kpcqbHb7S7PGZ1Tr+uyaMaMGdLv3a3MeNMzR9ye8uS+r7pqEG69tRNOnjyMvXuDkJRUizNnopGX5/59zPQx0tqKzMrKx5AhhdIxzOch8h8MfIg8IO/pUl5efnbyuXH1ktFYBCMVFRVYsmSJ9LNRAq+aXjAm315z1xdHK1gw6pkjDziGDx8OAIrmiHrEY2bMmIH09KizTSLzTL2PzVaFrKx85OdnGVZmGQVikyZNYj4PkR9h4EPkoago55fzgQNBpqqX9HJUKisrDfNK5EGKJzOoPDnWKCBIS9uCU6faIS/PGVTk52chNPS0VDpvFDRpBTzu+vqI9+tJcLZ580Ap6AGcwZn8XidNmoSwsDC9j5hJzER+iIEPkYfEsRXFxUkQhHMVz2lVI+kFR0uXLjWs7PJmKrq7Y8vLy10CAb3VI7s9HPn5WZA3TZSfy5PtLNep6q6NCu12u2YgmJKyGxMmLAcgIDFxv+5nCziDs9TUIthsVcjOzkZKSoruNRGRf2LgQ+QhcUXCTH6JuxwVozEI4mgHd+cYPnw4OnbsiBUrVrg9VswBMloJ2bt3L1avXq17rl9+6Yu+fX+RAiZ3W3dawVhBwRAUFGTiyivrV6OWLFmiyEECjFev3A9otRleFxH5JwY+RF4yM/lcb36U1eoMeIqLi2G32zW/pMVxElbrGTh77MhLsgXpHB07dpRK2M0EYwAQFhbmtnxb+9oFfPXVGKxePapBfX2cXFeu5IGgu9Urs/dKRCRnOvA5duyY6ZNGRER4dTFErY277R51cOQMYOpHTQD1pd16OTA1NSFw7UNjQU2NayWS3rwqsyoqKlBeXm5w7c7raGhfH5FR80X3KzrGgScrtYhIi+nAJzIy0u30ZUEQYLFYUFdX1+ALI2ot3G33aDUeVAcORls6nq5siMHYxo0ZKCjINDX/CqjPXdI61y+/9MVXX41RPCcPQtytzigDKDnlfVRWViIyMtLUfY8fPx7TpkXj0Ufry+Dj4y8AcAGTlolIl+nAx0xZKhFpc9cQ0ChoMLOlprW6UViYCb3EZC16+UY2WxX69v0Fq1ePanBfHzEYq++dasGePT2lgGzp0qWYOHGi9L5G9y12W46LA9LTNS+diMiF6cBn2LBhjXkdRG2SuH1ltZ7RXb0wM9vKaEvNarVK/YV27tyJvLw8t+dUV1DJt7jU1y5uvRkFIWYbCWZkbDw7LV06yiUgk68sG903t7KIyBteJzdXVlZi/vz52LFjBwCgX79+uOWWWxqlkmLv3r148skn8c033+DAgQOIj4/HpEmTMGvWLMX//LZv347p06fjhx9+QExMDO6880488MADPr8eatv27wd27QJ69XL+LP4+IcGz86i3r/r3347t2/u7BA5VVR2gNRldvZWlt6Um/jcXFRWF8HDnKAd3gUhNTY30uNYWl97WW0rKbqSmXoUBA9ojPv4CVFb2wtKlS02tSgHmBpjabDapSaQebmURkbe8Cnx+/PFHjB49GqGhobjwwgsBAHPnzsXTTz+N1atXIy0tzacX+euvv8LhcOCtt95Cz549UVRUhFtvvRUnTpzAiy++CMCZfD1q1ChkZWXhzTffxE8//YRbbrkFkZGRmDZtmk+vh9qeiooKVFdXY9GiUDzwgA0Oh3NgJwAIggUBAQLeftuCnBxzKw1aOS/bt/dHTs67qKkJllYvxADDGfQ4k4fNzvQSaV2PzVaF/v23Y9u2AXAmJAvo33+7YeNAo2uXr8qMHRuKuLjOAIC4uDjMmDEDpaWlAFZIqzNWazVqakKk2V0is/lKDGqIqLF4Ffjcc889uPLKK/HOO+8gKMh5itraWkydOhW5ubn47rvvfHqRY8aMwZgx9YmVPXr0wM6dO/HGG29Igc9HH32E6upqvPfeewgODka/fv2wdetWzJ07l4FPGyFfifF09cWIuOJht4dj3rxcCIJYuVS/5eJwWDBtmoDzzz+EpKQg3RWJ8vJyw346NTXBSE7+A4DedHQHcnLeRUJCmfQ6+cR1NfXKh/jfo90eju3b+6O+GsyC7dv7Y8SIb2CzVUnHaSkpSXS7KiMXFRWFw4cPA3AGXHv29NRN1NZKdBYEKPJ8iIgak9crPvKgB3D+D/eBBx7AoEGDfHZxRux2Ozp1qp/AXFhYiKFDhyr+9jt69Gg899xzOHr0KDp27Ngk10WNY/58YNo0wOEAAgKAt98GcnJ8c24xgNHvN+PkcFjw2murkJz8B2bMmGHYB6chzQ3VZepiEq8ZYkWUuy0l8Ti1+hUoJfm1i7lA8qBL3DrTWi1aufIKBAefQWJiCWy2KqSk7Jbl+ABa/XyIiBqLV4FPREQE9u3bhz59+igeLykpkXIMGtPu3bvx2muvSas9AHDgwAEkJycrjuvcubP0nF7gc+bMGZw5c0b62ZN+RdQ09u+vD3oA5z9vuw0YPdr9yo8nq0RG/WYA5Ze/Uf4J4H1zQ61tH2+SeL1p7ue6AiVSXrt8Anx2djZsNpvUbFE7eAzAsmXXSJ9Bx45HIc9nAoxXlIiIfEn/r7cGsrOzkZOTgyVLlqCkpAQlJSVYvHgxpk6diuuuu870eR566CFYLBbDX7/++qviNX/++SfGjBmDa665Brfeeqs3l68wZ84c2Gw26VdiYmKDz0m+U1FRge+/r5CCHlFdHbBxYwUqKip0Xzt/PtC9OzBihPOf8+cbv5cYrFgs4ps5pN97mncDOCuScnPnYfLkBcjNnac5tV3+fur3GD9+vOEsL0/uRev6KyoqUFZWJq3g6K14XX31Mt1tqCVLluDtt9+W2l2IAZcWMVdIrHCTY8dlImoqXq34vPjii7BYLLjpppukeUJWqxV33HEHnn32WdPnuffeezFlyhTDY3r06CH9vrS0FMOHD8fgwYPx9ttvK47r0qULDh48qHhM/LlLly6653/44Ycxc+ZM6edjx44x+GkhxNybDRsyAYyEvHuxxeLAhg0LUVRU5RIcVFRUYO/eWkybFguHw/ka5ypRfY6OXjChLp8G4FJKbbeH44svTuH88w8iPt75Ba5XZWSmuaFR5+fq6mpUVFR4FfwYnbuyshJLly5VHK+3SpSYuN/0e7omVSuJW3nsuExEzcWrwCc4OBivvPIK5syZgz179gAAUlJSdIce6omJiUFMTIypY//8808MHz4c6enpeP/99xEQoPybaWZmJmbNmoWamhpYrVYAQF5eHnr37m2Y3xMSEoKQkBCPrpuaxuHDh7F/f9zZCeHKOVVZWfma853kk9MdjsmK89XVKXN09IIJdbAi/71Rh2X1gE2z9IIj+ZaS2ZUfddCgd26tLuxG23N64zTUXJOq1e/rXNlx/jvohWPHYtlxmYiaVIOGlIaFheG8887z1bXo+vPPP3HppZeie/fuePHFF6UKEqB+Nef666/H7NmzkZOTgwcffBBFRUV45ZVX8PLLLzf69ZHvVVRU4MEHf8PKlVPhuiNrQXx8qebrzE5Od5ejo8VdmXd1dXWDVyv0AozDhw+bCgjERobueuDoPa+1SmQU7Kmv+8SJMMMcKfnKTlpaLIMcImpyXgU+p0+fxmuvvYY1a9bg0KFDcKgSMDZv3uyTixPl5eVh9+7d2L17NxJUGarC2fIQm82G1atXY/r06UhPT0d0dDQeffRRlrK3QhUVFdi8+ZCsv42SmXwQsw31PGGm+Z7ZwANwBl9i+TtgvJq0ZMkSKZFYPIde0GAmmCgrK1P8rA645Nt6RsGe+rqdjRjVk+QduPrqZUhM3I+bbx6J6Giu7BBR8/Eq8MnJycHq1atx9dVX48ILL3Q7vLShpkyZ4jYXCAD69++PdevWNeq1UOOSb1UJwrkuz3sSwLjLnxGZXaVpzOZ7emXg8gBjyZIlitd4m/isphVwOT837RUcQQhASUkCbLYdGpVgzuDHYhEU50tNdXZ4j4+PZ8BDRM3Kq8Dns88+wxdffIEhQ4b4+nrIzxltVQGuzf3ccZdcDChXaex2u0uAIT+XL1aRxC7RANxUVAVg48YMjBqVr3keb7br1PRWdJwLqXorOMDy5VejutpZmq513RMmLEX79idxww0ZSE1l/g4RtRxeBT5du3Ztkn495L/0ggxPgh5PiF/I4ggGeVAh344yu4qkR2suFuAM9NTzugDnhPW+fX9GTU2I28Rib+ht39WTBz8BimM+/fQK5OS8q1sJZrNVITV1tOnmi0RETcGrwOell17Cgw8+iDfffBPdu3f39TURAWh4kOEtd6sSZlaR9GjNxRJzawYPLkRBgXIVVRAC8O67zgRvvcTihnDXtNEpAEOHrsF33w13uTaWphNRa+NV4DNo0CCcPn0aPXr0QFhYmFQ+LjpyhI3IqOHMllC31i9XdW5NVla+RhBSv9KilVhslnx7DXD28QG0Zme5bmsBDpxzzi6sWzdMM7+JpelE1Jp4Ffhcd911+PPPP/HMM8+gc+fOjZ7cTP7DbrcDMK5wkps4caLiy9VsEORJsNQY59TKrcnPz0JWVj7y87Ok+zaqIhPzg7SuQ93QUWt7TSSurG3ePBBr1w53eX7w4EIkJJQZruywNJ2IWguvAp+CggIUFhZiwIABvr4e8mMVFRVYsmSJqRJqUWxsrOJns+XknnxJN8Y59XJr4uNLkZs7D0eOdILVWo3586fqVpHJGxyqySu+zCRB79nTE999N8zlcYvFgYyMjQCABx+MxqOPHsbevUFc2SGiVsurwKdPnz44deqUr6+F/JzRlHR1v5zx48frlkY3xpewt+dUbzGJqzRGpfHyHCJvq8g8qfgyO5y0d+/eiIqKQnq66VMTEbU4XgU+zz77LO699148/fTTOO+881xyfCIiInxyceSfzPTLaQ39YIy2mLSq1jIzC12Oc5fgbTYPyug1RsNJU1N3GAaZREStjVeBz5gxYwAAl112meJxQRBgsVhQV1fX8Csjv+WuX446r6elMqrgstmqpKBm48YMFBRkoqBgCAoLMxX5TOPHj0d0dDTsdjtqampw9OhRaRK62TwoOb1mhUbDSaOjo1vF501EZIZXgY/4P14iNfXWjprZfBCjlY7IyEhfXGqTMgpSCgszoVe5FR0djeDgYJemiu7yoOSJz2IFl95rcnPn+Xy8BxFRS+VV4DNsmGsSpJa//vWveOKJJxAdHe3N21Aro97a0duGMTtqoSH9cloSoyDFTD6TViDp7nVaic9GrzEKNFtruwAiIi0Nms7uzocffoj77ruPgY+fkH9BG61w+GLUgq/4aoXKiFHAYXb+l5zdHo4TJ8Kg7vTs7nXu3ss5QFT53yortoiorWnUwEecnE7+xZNy9Obk6xUqPe4quDzZZlJOQhcgBj/i6wCguDhJM9nZ3XsxgZmI/EGjBj7kn8xs32jxtFFgQ1drmmqFyl3AYXY0h2vZuQUWi4CxYz9FWNhp2O02zJuXq5vsPHHiREybFslePETk1xj4kM95s30DeNYo0JerNZ4kCsuvQY8YkMlf5y640ctnCg4Odtvf6IsvLodzy6t+3ITWKltkZCTi4uIQFwf24iEiv8XAh0wxs7oi8nT7Rs7sqoMvV2uMVqgA4KWXNpsOqNz17hHPoReoieXrQH2AVVbmnEivPVBUPjVdOTrGzCobEZG/YeBDbrmb9SSaOHGi9Pummqzui3wivRWq0tJ4/OtfN3kUUJkJtIwCNbF8vbq6GtXV1SgrK5NWjrQCSuOp6gJKS+ORnPyHqc+BiMgfeBz41NbW4plnnsEtt9yChIQEw2MnTZrELs5tgNkcl9raWsXPTVGO7m0+kZxWQCEfFiqe05sEbfXKjrtArbKyEkuXLtU9nzyg1JrlpZyubkF+fhZSU4u46kNEdJbHgU9QUBBeeOEF3HTTTW6PfeONN7y6KGqd1KNL9PiyL4y3+URq6hUqXwRUWis7HTseNTyvOnjUojfLS13e7s01ExG1dV5tdY0YMQJr165FUlKSjy+HWjObzebzKebu39N8PpHewFD5ueSva0hApbeyk5PzrkfndTeLy90KkDdBIBFRW+ZV4DN27Fg89NBD+Omnn5Ceno727dsrnr/yyit9cnHUMhl9GZupdhKTddW8DYrM5BPpV4GFax7fkARtQH8LrqYm2PR5jXKBsrOzYbPZADgDOLFTM0dPEBEZ8yrw+etf/woAmDt3rstzHFLatnkzGBMwnyDtbbNAd/lEZqvAhg8fLs2ia0iCttEWXHLyH7rnPX78OAD3Sds2mw1xcXEAlFuHHD1BRGTMq8DH4XD4+jqoFWhIBZXZBGmzx3na7FDk7h46duyoON7bBG13K0by8RDyhObVq1cD8Cxp25P+R0RE/s6rwOdf//oXsrOzERISoni8uroaixcvNpX4TK2PLxJ+Re5yVxqLu3toaIK22dUXo/EQ3sziYlBDRGSOV4HPzTffjDFjxiA2NlbxeFVVFW6++WYGPm2M+GXuroLK7CqMt9tlcurVDb1ASn2cu3toaIJ2Q1df3M3iYr4OEVHDeBX4CIIAi8Xi8vj+/fulhEtqG8SE5OzsbNTU1MBmK8UTT3SFw2FBQICABx74HddfPxJBQUFS4rLRF3tjDDD1JJAyk7Tc0NUTTxO8xeoyvVlcEyYsRWLifubrEBH5gEeBz8CBA2GxWGCxWHDZZZchKKj+5XV1dSguLsaYMWN8fpHUPPQSku++O1zavmnXrgpnC4oU9JKUfbldBngXSDVVV2k1dwneep9N+/YnYbNVSeMsmK9DROQ9jwKfq666CgCwdetWjB49Gh06dJCeCw4ORlJSEiZMmODTC6Tmo7ddYybht7S0VPF6u90OwP1Wk7q3jkjvy97bQKopukqruduec/fZREdHS5VcRETkHY8Cn8ceewwAkJSUhOzsbLRr165RLopavxVay0Bwv9Wk9zpAexXJTCBVWVmJo0ePmrpud1tIZoa1mlmN0dueYx8eIqLG5VWOz+TJkwE4/wZ76NAhl/L2bt26NfzKqNmJqzS+5u1Wk7iK5MkkeKNASi47OxsxMTFu83PMDmuNjY31Ks+pubbhiIj8hVeBz65du3DLLbegoKBA8biY9MwGhq1fRUUFlixZ4tNzTpw4EZGRkQCU3YbV9Cq05MdnZ2dLv3cXLMjPB0Dz3Dabze1KjdlKMrEnj7d5TnrbcExoJiJqOK8CnylTpiAoKAifffYZ4uLiNCu8qHUz20jQk348kZGRbnNUzFZoCYKg+FkvWHAtDxcgLw/3tIxe+7wODB5ciIyMjYprkOc5yYMWd9tzYhKzHBOaiYh8w6vAZ+vWrdi0aRP69Onj6+uhFkwd5OgFKd40J7Tbw1FSkoiVK6+A2LRPEAKwcuUVCA4+g8TEEsW5IiMjdfvliKtJWuXhzl/uq7+0cnn0y84DUFAwBIWFmRg37rOzq09ReP/9PMW5J06cCMD99hyTmImIGo9XgU/fvn11q2+obVIHOVlZ+cjPz3LJUzl1qp30uNlVFeXqiVoAli27RvNc4gqIXsKx1paSnF71lzdl5+L5Vq68AhYLNO+/trZWOpa5PEREzcOrwOe5557DAw88gGeeeQbnnXeeS5v/iIgIn1wctQxaybh5eVmQj1PQetxMTx3X1RNteucyClK0tpTk9EZAeFN2Xi8A4i6c+ppPnz6tOJK5PERETc+rwCcrKwsAMGLECEV+D5Ob2ybtFY4AzTwVT3vquFuVcXcud0GKekvJGZS4bi/JVzDlv9fazktJ2Y3MzEIUFGRCHfwZXXO7du04TJSIqJl5FfisWbPG19dBLZheMm5WVj6+/nokHA6L5vaXeJzRLC+9c48d+zlWrbpc91xa9HKOxC0lq7UalZUdAQguIyDEirH6wCkcADTLzsXgCXAgJWUXfv89RUpylucROQmwWusDHQY1RETNy6vAZ9iwYVi3bh3eeust7NmzB8uWLUPXrl3xwQcfIDk52dfXSM3MZqtCVla+tI0lDypSU4sUeSpDh56Hxx/vgro6CwIDBTz33DFcf/11LisZYhCkl+iblrYFQUGC6WZ+7kZX7NnT0221mDpwysws1FzBqheA339PQU7Ou6ipCcaJE+2xbNk1qiuzoKaGW1dERC2FV4HP8uXLceONN+KGG27Ali1bcObMGQDOhnfPPPMMvvjiC59eJDU9+erM5s0DkZ9fH/RkZeVLQYM6TyUnB5gyxYLdu4GePS1ISIgEEOlyfvUU80cfPYy9e4PQqdMRfPed89xGCcDq1SO93jglJQkA9rud56UVOBUUZBrmCInH1dQEIzn5D9jt4YZl6kRE1Py8CnyeeuopvPnmm7jpppuwePFi6fEhQ4bgqaee8tnFUfMRA5O9e2vxxBOxEIT6MvD8/Cykphbprr4kJDh/mXkPUVwckJ4OAFHo39/zPBi9hOPly6/WXbmR5wvp5TFlZm4wzOWRBzZmJr8TEVHz8irw2blzJ4YOHeryuM1mQ2VlZUOviVqIqKgobN8OqCaSNGiautn39ZQYdMj7AAHOay0szIQz/0YevAgoLY1HcvIfAIDS0jg4mxvW5+dYLA5kZGzEmTPB2LTpAo13dQ1sjFapgoK8+s+NiIh8yKv/E3fp0gW7d+9GUlKS4vH169ejR48evrguaiF69QICApTBT1Nv3xgNBpVXYKWlbUFw8BmXPBtBCEB6+g/YtGkQ6gMbi7RyBeDsVp4yKTkrKx8AsHlzusY7OzB16rtISChzeUavTF0c10FERM3Hq8Dn1ltvxd1334333nsPFosFpaWlKCwsxH333YdHHnnE19dIzSghAXj7beC22wTU1VmafPvG7GBQUWJiiWaeTXLyXpdVG3HlCrBobHNZEB9fqltuP3hwoWbQY4T9eYiImp9Xgc9DDz0Eh8OByy67DCdPnsTQoUMREhKC++67D3feeaevr5GaWU4OcP75h/Daa6uk7RtvxlJ4w+zMsOHDh2PNmjW6eTZ6AVF9ibtyK0y+qqX1uoyMjS7XIB/Cqsb+PERELYNXgY/FYsGsWbNw//33Y/fu3Th+/Dj69u2LDh06+Pr6yENG20KA91/A8fEOKR/G7CBRX1yvOmdML+Dq2LGj9Hu9PBt1QNS//3bMnz9VNsDUGfyoV7XcJSxnZ2cjJiaGgQ0RUSvQoGzL4OBg9O3b11fXQg1kdltoxowZHn9Ji9s07vrleLKd4+k2licBl1aejbqZYX3QAwAWWCwCJkxY6tLc0ChheeLEiRzWS0TUirDMpA0xuy1k9jg5sbx9zRrg5ZddS8OHDJmMSy/1rCLLk+twF3Cp58XpEQOi4uIkzRL39u1Pam7dMWGZiKhtYOBDpkVFReGii1yrvAIDgYyMKIgxj7fbbUZ5Q3oNCsWyepvNpjsHq7KyErW1tbBaraipqcGKFSt0R2V4Wq3GhGUiotaFgQ95pL7KC6ircwY9b71V37DQk+02OXfbWO4ClfLyckRHR2sGVXFxcdLvy8qclVjumg2OHz8eVqsVgiAwYZmIqA1h4EMey8kBRo/G2bEUyi7N3my3udvGAtwHKuKQUcB8DpNR7k50dLQiYCIioraBgU8bIG4tyZv5NTazYynMcLeNJVIHKgBQXJzksjVmNvhqqpJ8IiJqORj4tHKeVkY1NTPBhbttrOzsbNhsNpSXl2PFihWw2aoMt8aKiiqxYUMwkpNrER/vTEYSt6VOnjwJwP3WGnN3iIjaJgY+rZw3FVpNxWz5ubttLJvNpth2Mtoa27OnJ2bP7q35npMmTcKHH37odmtt0qRJzN0hImqjGPj4oaZYzTCTtyO/DqN8G/X16m2NlZQkGL6nuNrjbmstLCzMR58CERG1NAx8/MT48eN1q54ag5m8HbE3kKel73pbY1ozt7RyhXxVyk5ERK0PAx8/0dRVSmaDC7NBWEVFhZS87ek8LvV7uttaIyKitouBD/mUuC3lLrhoyGgLuz0cHTseRU7Ou6ipCTacx6UX0BhtrRERUdvFwId8Sr199eijh7F3bxCSkmoRH38BgAs83m6Tb4WpE6azsvIBWKTn9QIiLXpjKIiIqO1i4EM+Jw9q4uKA9HTfnFcrYTovbyScgY/j7D8t0kqPOE2eiIhIFOD+EGrJzG4ZtYW+NFoJ0/WrPQHS78VqLrs9vCkvj4iIWgGu+LRyRpVRpaUBKC4OQu/eAYiK6tgMV+dbWgnTerSqucyWqbeFIJGIiLQx8Gml3E1AX7o0HDNndoDD4Zym/vbbzhlbLZG7e7Hb7QBcE6YBAfL8Hjl5Ndf48eMRHx/vdfk8ERG1HQx8WiF3Yyrs9nDMm5cLQXD+7HAAt90m4PzzD0kjHNSa6wtfq2LLaMSFvBqrtDQe+flZZ4MgBywWaFZzRUdHS/fGoIaIyL8x8GmF3I2p0MqFqauz4LXXVhkm/Jqdau5LRhVbRiMubLYqJCf/gdTUIsXQUpanExGREQY+bZC3nYmbc+6XmREXWtQl6Qx4iIjISKur6jpz5gzOP/98WCwWbN26VfHc9u3bcckll6Bdu3ZITEzE888/3zwX2czEXJjAQOdeV2Cg0CydiSsqKlBWVqb7q6KiQjrWaMQFAEycOBHTpk3D+PHjm/QeiIiobWl1Kz4PPPAA4uPjsW3bNsXjx44dw6hRo5CVlYU333wTP/30E2655RZERkZi2rRpzXS1zSctbQsefTQDVVWdER5+CJ995rplpFZZWWn4vCd5QO7ykERDhgwB4H6VKjIyEnFxcV5VXLFKi4iIRK0q8Fm1ahVWr16N5cuXY9WqVYrnPvroI1RXV+O9995DcHAw+vXrh61bt2Lu3Ll+GfgAQHy8A3FxQFmZdkKz2tKlS90eYzYPSL1tppe0vGHDBum5rKx8KVlZnaBcWhqAX38FevVSVmbZ7XbU1NQo3isoKAiRkZEAWKVFRERKrSbwOXjwIG699VZ88sknmv1YCgsLMXToUMXf7kePHo3nnnsOR48eRceO2n1szpw5gzNnzkg/Hzt2zPcX34TkAUZj8CYPSJ60DDgwcmQ+hgwpdHlOHEERH1+qSFDevHkgnngi9mxpvoDnnw/E9dc7g5o+ffr48vaIiKiNaxWBjyAImDJlCm6//XYMGjQIe/fudTnmwIEDSE5OVjzWuXNn6Tm9wGfOnDmYPXu2z6+5OaiDiK5dj+Hee337Hna73aMp7+qkZUAcMwGkpha5JDTn52chN3eeFPTUv97Zr8fhsOD++yPw55/vwWarapZKNCIiar2aNbn5oYcegsViMfz166+/4rXXXkNVVRUefvhhn1/Dww8/DLvdLv0qKSnx+Xv4mlbOilZV1IMP2rB/v2/fe8mSJYqkZHf0xkzk52ehpCRRM6G5pCQBxcVJ0uqVUdJzc1aiERFR69OsKz733nsvpkyZYnhMjx498M0336CwsBAhISGK5wYNGoQbbrgBCxcuRJcuXXDw4EHF8+LPXbp00T1/SEiIy3lbOq0OxBs2BOPll1179+zeDZx3nm+Tez0JNpxbbg6oY2yx87JWQvOyZVcDqN/68qY0n4iISEuzBj4xMTGIiYlxe9yrr76Kp556Svq5tLQUo0ePxpIlS5CRkQEAyMzMxKxZs1BTUwOr1QoAyMvLQ+/evXW3uVoz9fbORRc5R1M4ZHnMgYFAz57KQKm8vBzvv59n2B3Zl2y2KowcmS+bou5ksThgt0dK3aWdhLM/K7e+jJKeiYiIPNEqcny6deum+LlDhw4AgJSUFCQkJAAArr/+esyePRs5OTl48MEHUVRUhFdeeQUvv/xyk19vc0hIcM7juu02oK7OGfS89ZbzcaA+UFq0KPTsOAvj7sjuRkdokc/cKi8vlx4XE5nlwYsYzChXggRorQzFx5ciN3ceuzITEVGDtYrAxwybzYbVq1dj+vTpSE9PR3R0NB599FG/KmXPyQFGjwZ273au9IhBj2j/fuCBB2xSorBed2SjKiw97vr2DBlSqBgvoZ37E6C7raXu0ExEROSNVhn4JCUlQVDukQAA+vfvj3Xr1jXDFbUcCQmuAY9o1y5nVZScmCjsWkXlWoUlBj+VlZUulV1m+vaogxetIIfbWkRE1JhaZeBD3unVy9kHRx78qBOFjaqwUlOLYLNVYenSpYZl5EbDRocPH441a9ZIYzW0jpOvDDHoISIiX2Lg40cSEoDnn7fj/vsjFLk2R444AxibrcqwCku+MqRX2eVu2Kg80TwtbQtSUna7BDmebGtxHAUREXmCgU8bsH+/cxurVy/9bS7R9defwp9/vocjRzqhtDTeZVspLW2LbhWWmRJyo747WsGMJ0HO+PHjER0dLf3McRREROSpVjednZTmzwe6dwdGjHD+c/584+ODg4PPruwckYIeoH5lxm4Px5AhhRg5Mg8Wi7M2XlwZMhOgiMNG5XzVdyc6OhpxcXHSLwY9RETkKQY+rdj+/cC0afW9exwOZzm7UbdmsafP4MGTNVdmUlOvAuBMZM7KygfgkPrpbN48UPe8drsdgHMFR3wdAJcEZbHHkje4rUVERA3Fra5WzFmlpXysrs5Zzm605RUVFXW24aEy0TkwUEBi4hmUlDhzdeR9dvRK3wFnKfuSJUsAOBObxdeJK0XyPkEnTnTEgAG5SEw8jfj4+ouXT1mXT1cXcVuLiIh8gYFPK+as0tLu1uxOaGgFrrhig6Kq6vLLP0NBgTNI8SRX5/DhwwCcwdLKlVdA3XlZrAarn7JuQUBABJ5/3o7rrz/FKetERNRkGPi0EvKuyKLAQOD550Px4IM21NVZXLo1Gzl8+LBuVRVQn6vjbkaWfLVn48YM6FWDAeCUdSIianYMfFoBd12R77orHEeOdMK99/4F553nfi6ZPFjRq6rS67MjHivm24jBmN0ejsLCTI13c+h2apavIHHKOhERNQUGPq2Au6BADF6io097fT6tTstpaVswY0YvHDsWi6SkWsTHXwDgAinfpqKiQprJVVKSqNH4EBg8uFA6H6esExFRc2PgQ4adllNTIxEX57oFJV+F2rx54NncHiWLxYGMjI0A3K8gERERNQUGPn5OKyFZr3pLTr7F9emn9a8XaQU2RjlFRERETYGBj58zSkg2E5hoz/YCJkxYhtTUHS6Pc8o6ERE1JzYw9GPuEpLN0OvUnJho0EWRiIiomTDw8WN6qzXyhGR33ZLF3B35eAvm7hARUUvFrS4/pterR0xInjhxoqneOr7I3eE4CiIiagoMfFoBs0GBp8e5q7SKjY0FoGyeWFoagOLiINhslYpz6uXujB8/HmFhYQgLCzO8HjYvJCKipmARBEFo7otoSY4dOwabzQa73Y6IiIjmvhyJVudmOU+DB3Uws3dv0NlePQ7F+dRl63pl73qmTZuGuLg409dFRETkDbPf31zxaSXkQc3+/c4Bpb16mRtP4e58cXFAerr2ceqydXFbzGzZO7ewiIioJWHg08rMnw9Mm+YcTBoQALz9NpCT0/jv627kxPjx4xEdHa14nltYRETU0jDwaUX2768PegDnP2+7DRg9Wrny44ttMfEc5eXlsNvDceJEGAAH5IWA4sgJuz0cO3fGo2PHKK9XoIiIiJoCA59WZNeu+qBHVFcH7N5dH/i4G2gqMpqG7prXk3t2tUeAGPyIOT579vTEp59egZdfDmjSFSgiIiJvMPBpRXr1cm5vyYOfwECgZ8/6n81OOTc6Ti+vB7DAYhEwYcJSqUHhvHm50vN6K1BEREQtBRsYtiIJCc4VlcBA58+BgcBbbzkfr6ioQFlZmTQtXWS3h6O4OAl2e7jH76eX19O+/UnYbFWaz9fVARs3VqCiosLj9yMiImpsXPFpZXJynCsqu3c7V3rEoEdre8ub8nM5vQaH4jgLvec3bFiIoqIqw+00IiKi5sAVn1YoIQG49NL67ST1tpXdHo6ior5YudK1/NyTlR934yjcPW92242IiKipcMWnjZGv8qh5MnVd5G4chS/GVRARETUVBj5tiGsyspJ8m8oTeuMozD5PRETUUnCrqw3Rm7YOcGo6ERERwBWfNkUv2XjChGVITNyvCHqMRklwzAQREbVVDHzagMrKSgDOLaf+/bdj27YBACwABPTvvx2pqTsAACNHjkRycrLbzs1RUVGYMWOGbnJyeXk5VqxY4eO7ICIianwMfNqA2tpaAM4cn+3b+8MZ9ACABdu398eIEd/AZqtCeHi46UnpLEMnIqK2iDk+bYDVagVgPEhUflxDmd0K45YZERG1NFzxaeH273fO6OrVS38MhM1mA+C+4aB4XEO52woDOJmdiIhaJgY+LZA4GX3RolA88IANDocFAQECnn/ejuuvP6UbVIgNBdXdmhujkotBDRERtUYMfFoYcfyE3R5+dgCoM1/H4bDg/vsj8Oef78Fm0x8HYdRQ0G63S78vLQ1AcXEQkpNrER/v7LwsBlRmVpmIiIhaIwY+LYy4fWSUr2OzVRluM+k1FFyyZAkA4xlekZH3YubMDnA4nJPg337bOR+MiIioLWBycwsl5uvIedt5WU7d3Vk+w8tuD8fMme3hOPu2Dgdw220CNm06yGnrRETUJjDwaaHcDQCV86R6ymgl6ciRKDgcFsVzdXUWvPbaKvzjH/9g8ENERK0et7paML18Hbs9HBs2BOOii5w5OGaqrCorK7F06VK3lV9Gz3HaOhERtXYMfFo4db6OmJ/z8ssBLpVeZpoTuqv8aqqqMCIioubAwKcVUefnmKn0Ekvjy8vLYbeH48iRKKSk7EZu7jzNyi+jqjAiIqLWjoFPK2K20ksMdsTtLUBcKcrVrORS06sKIyIiau0Y+DQhM/1xjBKV3eXnAPV9gER2ezhKShKxcuUVEHPZxUqulJTdsNmqpJWgTp0qGPAQEVGbxsCnicyfD0ybBrf9cbQSlcVp6GY6M8tfJ+/XoyauFO3Z01O3pw8REVFbw8CnCezfXx/0AGJ/HGD0aO2VH6NxEGZzcNT5QGoWiwNWa7VmTx9xJYiIiKitYR+fJrBrV33QI6qrA3bvNvd653iJJNjt4QCcOTjJyX8YBida+UAicWWnpibEcJq7GqetExFRa8cVnybQq5dze0se/AQGAj17un+tc4ssFg7HZFgsDmRl5WPIkEK3r9PLB5owYRkSE/dLuT1GOUPjx49HdHQ0AE5bJyKitoErPk0gIcGZ0xMY6Pw5MBB46y3tba79+4E1a5z/rN8ic3ZTFoQA5OWNxIYNmZrvU1RUiS++OAW7PVy383Nq6g5ppchdd+jo6GjExcUhLi6OQQ8REbUJXPFpIjk5zpye3budKz1aQY86AXrmTNctMsCCvLwspKYWuTQ2nD2799kk5VwpSdldPhD79hARkT9h4NOEEhL0y9i1EqDnzhXOPmtRHR2AHj1GIS3tGPLy8nQHj4pJyu6CGfbtISIif8GtrhZCKwHa4bAgPf1HAILicYvFgd9/X428vDwAxo0NiYiIqB5XfFoIrQRoi8WBoUPXoVOno8jLywKg3bvHXWNDeZIyANjtdixZsqTR74mIiKilYeDTQogJ0Lfd5ix1lwc4Q4YUIjW1SHNKu9hx2aixoZikTERE5O8Y+LQgYgL0xo0V2LBhoWJVR29Ku3OVx4HBgwuRk/MuamqC3SYpm+3Hw749RETU1jDwaQHEoaKAs9T9nHPKUVSkH7i4dmUOQEHBEBQWZmLcuM+QnPyH4ftpjcVQY98eIiJqixj4NDP1UFEz9LoyezJygkENERH5I1Z1NTOjVRc9YjKzFq1qLm5ZEREROXHFpxUSOy6vXHkF1LGruporPj6eqztERERnMfBppcSOyxs3ZqCwMFO3motBDxERUT0GPq3E8OHDAQBr1qyRHrPZqjBqVD4yMjZy5AQREZEJDHxaiV69egFQBj4ijpwgIiIyh8nNrYinScpMaiYiIlLiik8jk/fo0VJZWWn6XPL+O3a7HTU1NS7HBAUFITIykn14iIiINLSqwOfzzz/HE088ge3bt6Ndu3YYNmwYPvnkE+n5ffv24Y477sCaNWvQoUMHTJ48GXPmzEFQUPPcpjc9evSIqzdiMMMRFERERJ5rNYHP8uXLceutt+KZZ57BiBEjUFtbi6KiIun5uro6XH755ejSpQsKCgpQVlaGm266CVarFc8880yzXLPZHj3Z2dmw2Wy6z3P1hoiIyDdaReBTW1uLu+++Gy+88AJycnKkx/v27Sv9fvXq1fjll1+Qn5+Pzp074/zzz8eTTz6JBx98EI8//niLznex2Wy6KzjiVllZWZnm8wyKiIiIzGsVgc/mzZvx559/IiAgAAMHDsSBAwdw/vnn44UXXkBqaioAoLCwEOeddx46d+4svW706NG444478PPPP2PgwIGa5z5z5gzOnDkj/Xzs2LHGvRkD6nygyspKLF261O3rZsyYweCHiIjIhFYR+Pz+++8AgMcffxxz585FUlISXnrpJVx66aX47bff0KlTJxw4cEAR9ACQfj5w4IDuuefMmYPZs2c33sWbpM4HstvDceRIFDp1Cndbqu7N2AsiIiJ/1Kzl7A899BAsFovhr19//RUOh3Mu1axZszBhwgSkp6fj/fffh8ViwX/+858GXcPDDz8Mu90u/SopKfHFrXlMHrxs3jwQ8+blYuHCyZg3LxebN2uvVhEREZFnmnXF595778WUKVMMj+nRo4eU3yLP6QkJCUGPHj2wb98+AECXLl3wv//9T/HagwcPSs/pCQkJQUhIiDeX75X6lZwKzZUcuz0cn356hTR9XT5xHYDha4mIiMhYswY+MTExiImJcXtceno6QkJCsHPnTlx88cUAgJqaGuzduxfdu3cHAGRmZuLpp5/GoUOHEBsbCwDIy8tDRESEImBqTps3D5SCGnGuVlraFsUxR45ESUGPSBACNGdyia8tLy+XjmWyMxERkb5WkeMTERGB22+/HY899hgSExPRvXt3vPDCCwCAa665BgAwatQo9O3bFzfeeCOef/55HDhwAH//+98xffr0Jl3RkZNXkhmt5AQHB0tbXZ06VcBicSiCH4vFgYKCTIg7k/LX2mxVWLFiheJ9mexMRESkrdWMrHjhhRdw7bXX4sYbb8QFF1yAP/74A9988w06duwIAAgMDMRnn32GwMBAZGZmYtKkSbjpppvwxBNPNNs1i52Wp02bhsGDJ2uu5AwblqMIUmy2Kowb9xksFmdek8XiQGZmIdT/qgQhACUlCSguToLdHq54jsnORERE2iyCIAjNfREtybFjx2Cz2WC32xEREeGz8+7fD3TvDpzN0wYABAYCe/cCCQlAWVkZ3n77bek5Zy6Qc+I6AMybl6sKnBywWKC59TVt2jR2diYiIr9i9vu71az4tHYJCcDbbzuDHcD5z7fecj6uxWarQnLyH9LkdfkqEOAAYHHZNlOv/BAREZFSq8jxaStycoD+/YH164GLLwYuuKD+OXedpdPStiAlZTeOHOmEEyfaY9myaxTPC0IAjhzpxGovIiIiAwx8moDYkXnRolA88IANDocFAQECnn/ejuuvPyVVYomT1/XY7XYsWbIEdnu4ZgK0uC1GRERE2hj4NDKxI7PdHn42T8cCAHA4LLj//gj8+ed7sNmqPKrEEre+1KXxXO0hIiIyxsCnkYkrOHr9ecTtqZ9//lmqUAsKCkJsbKxhICTf+urU6QiDHiIiIhMY+DQRvf484vbUmjVrXF4zceJERQCkzgMSE5/VWvIkeiIioubEwKeRVVZWAvBue0qczC5ug5nJA2LnZiIiIn0MfBpZbW2t9Hut7Sl3s7sAZUNCBjVERETeY+DTxOTbU/LZXYADI0fmY8iQwua9QCIiojaMDQybiXp2FxCAvLyR2LAhs1mvi4iIqC1j4NNMtKq8AAvy87PYgZmIiKiRMPBpZFarVfPxTp0q4Bw9oSQOHyUiIiLfY+DTiCoqKlBTU6P5nM1WhZEj8wG4zohdvvxqbN48sJGvjoiIyP8wubmRiB2bjYiJzHl5WZDHoOLQ0ZSU3WxMSERE5ENc8Wkk6l47dns4iouTXPJ3hgwpxNVXL3d5vdjVGWBDQiIiIl/hik8TkJeti40L09K2SM8nJpbodnXOzs5m7x4iIiIf4YpPI1OXrYvbWPKVH7Grs8XiTHaWd3W22WzNct1ERERtEVd8Gpm74aQiDh0lIiJqfAx8Gpm74aRyekNHiYiIyDe41dXIjLaxiIiIqGlxxacJmNnG0htWyoouIiIi32Hg00jUAYvRNpa66uuxx0oxbVoggoODWdFFRETkQxZBEFxbB/uxY8eOwWazwW63IyIiokHnqqioQHV1NcrLy7FixQrNY+z2cMybl6vIAQoMFLB3rwUJnFxBRERkitnvb674NCIzqzVaVV91dRbs3g0GPkRERD7G5OYmYJSnI1Z9yQUGCujZs7GvioiIyP9wxacJREVFYcaMGaiurobdbncZXGqzleKJJ7rC4bAgMFDAW29xm4uIiKgxMMdHxZc5Pp7Yvx/YvRvo2ZNbXERERJ5ijk8Ltn8/sGsX0KEDcPw40KuXM9hhwENERNS4GPg0sfnzgWnTAIcsrScgAHj7bSAnp/mui4iIyB8wubkJ7d/vGvQAzp9vu835PBERETUeBj5NaNcu16BHVFfnzPEhIiKixsPApwn16uXc1tISGAiWsBMRETUyBj5NKCHBmcsTGKh8PDAQeOstJjcTERE1NiY3N7GcHGD0aOe2Vvv2wIkTLGEnIiJqKgx8mgFL14mIiJoHt7qIiIjIbzDwISIiIr/BwIeIiIj8BgMfIiIi8hsMfIiIiMhvMPAhIiIiv8HAh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AZndakIggAAOHbsWDNfCREREZklfm+L3+N6GPioVFVVAQASExOb+UqIiIjIU1VVVbDZbLrPWwR3oZGfcTgcKC0tRXh4OCwWi9fnOXbsGBITE1FSUoKIiAgfXmHrwc+AnwHAzwDgZwDwMwD4GQCN+xkIgoCqqirEx8cjIEA/k4crPioBAQFISEjw2fkiIiL89g+4iJ8BPwOAnwHAzwDgZwDwMwAa7zMwWukRMbmZiIiI/AYDHyIiIvIbDHwaSUhICB577DGEhIQ096U0G34G/AwAfgYAPwOAnwHAzwBoGZ8Bk5uJiIjIb3DFh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcDHA2+88Qb69+8vNV7KzMzEqlWrpOdPnz6N6dOnIyoqCh06dMCECRNw8OBBxTn27duHyy+/HGFhYYiNjcX999+P2trapr4Vn3n22WdhsViQm5srPdbWP4fHH38cFotF8atPnz7S8239/kV//vknJk2ahKioKISGhuK8887Djz/+KD0vCAIeffRRxMXFITQ0FFlZWdi1a5fiHEeOHMENN9yAiIgIREZGIicnB8ePH2/qW/FKUlKSy58Di8WC6dOnA/CPPwd1dXV45JFHkJycjNDQUKSkpODJJ59UzEpq638OAOeIhNzcXHTv3h2hoaEYPHgwfvjhB+n5tvYZfPfddxg3bhzi4+NhsVjwySefKJ731f1u374dl1xyCdq1a4fExEQ8//zzvrkBgUxbuXKl8Pnnnwu//fabsHPnTuFvf/ubYLVahaKiIkEQBOH2228XEhMTha+//lr48ccfhYsuukgYPHiw9Pra2lohNTVVyMrKErZs2SJ88cUXQnR0tPDwww831y01yP/+9z8hKSlJ6N+/v3D33XdLj7f1z+Gxxx4T+vXrJ5SVlUm/Dh8+LD3f1u9fEAThyJEjQvfu3YUpU6YIGzduFH7//Xfhq6++Enbv3i0d8+yzzwo2m0345JNPhG3btglXXnmlkJycLJw6dUo6ZsyYMcKAAQOE77//Xli3bp3Qs2dP4brrrmuOW/LYoUOHFH8G8vLyBADCmjVrBEHwjz8HTz/9tBAVFSV89tlnQnFxsfCf//xH6NChg/DKK69Ix7T1PweCIAgTJ04U+vbtK6xdu1bYtWuX8NhjjwkRERHC/v37BUFoe5/BF198IcyaNUtYsWKFAED4+OOPFc/74n7tdrvQuXNn4YYbbhCKioqEf//730JoaKjw1ltvNfj6Gfg0UMeOHYV3331XqKysFKxWq/Cf//xHem7Hjh0CAKGwsFAQBOcfloCAAOHAgQPSMW+88YYQEREhnDlzpsmvvSGqqqqEXr16CXl5ecKwYcOkwMcfPofHHntMGDBggOZz/nD/giAIDz74oHDxxRfrPu9wOIQuXboIL7zwgvRYZWWlEBISIvz73/8WBEEQfvnlFwGA8MMPP0jHrFq1SrBYLMKff/7ZeBffSO6++24hJSVFcDgcfvPn4PLLLxduueUWxWPjx48XbrjhBkEQ/OPPwcmTJ4XAwEDhs88+UzyelpYmzJo1q81/BurAx1f3+/rrrwsdO3ZU/Lfw4IMPCr17927wNXOry0t1dXVYvHgxTpw4gczMTGzatAk1NTXIysqSjunTpw+6deuGwsJCAEBhYSHOO+88dO7cWTpm9OjROHbsGH7++ecmv4eGmD59Oi6//HLF/QLwm89h165diI+PR48ePXDDDTdg3759APzn/leuXIlBgwbhmmuuQWxsLAYOHIh33nlHer64uBgHDhxQfA42mw0ZGRmKzyEyMhKDBg2SjsnKykJAQAA2btzYdDfjA9XV1fjwww9xyy23wGKx+M2fg8GDB+Prr7/Gb7/9BgDYtm0b1q9fj7FjxwLwjz8HtbW1qKurQ7t27RSPh4aGYv369X7xGcj56n4LCwsxdOhQBAcHS8eMHj0aO3fuxNGjRxt0jRxS6qGffvoJmZmZOH36NDp06ICPP/4Yffv2xdatWxEcHIzIyEjF8Z07d8aBAwcAAAcOHFD8T058XnyutVi8eDE2b96s2MMWHThwoM1/DhkZGViwYAF69+6NsrIyzJ49G5dccgmKior84v4B4Pfff8cbb7yBmTNn4m9/+xt++OEH3HXXXQgODsbkyZOl+9C6T/nnEBsbq3g+KCgInTp1ajWfg+iTTz5BZWUlpkyZAsA//jsAgIceegjHjh1Dnz59EBgYiLq6Ojz99NO44YYbAMAv/hyEh4cjMzMTTz75JM4991x07twZ//73v1FYWIiePXv6xWcg56v7PXDgAJKTk13OIT7XsWNHr6+RgY+Hevfuja1bt8Jut2PZsmWYPHky1q5d29yX1WRKSkpw9913Iy8vz+VvOP5C/NssAPTv3x8ZGRno3r07li5ditDQ0Ga8sqbjcDgwaNAgPPPMMwCAgQMHoqioCG+++SYmT57czFfX9ObPn4+xY8ciPj6+uS+lSS1duhQfffQRFi1ahH79+mHr1q3Izc1FfHy8X/05+OCDD3DLLbega9euCAwMRFpaGq677jps2rSpuS+NNHCry0PBwcHo2bMn0tPTMWfOHAwYMACvvPIKunTpgurqalRWViqOP3jwILp06QIA6NKli0tVh/izeExLt2nTJhw6dAhpaWkICgpCUFAQ1q5di1dffRVBQUHo3LmzX3wOcpGRkTjnnHOwe/duv/lzEBcXh759+yoeO/fcc6UtP/E+tO5T/jkcOnRI8XxtbS2OHDnSaj4HAPjjjz+Qn5+PqVOnSo/5y5+D+++/Hw899BCuvfZanHfeebjxxhtxzz33YM6cOQD8589BSkoK1q5di+PHj6OkpAT/+9//UFNTgx49evjNZyDy1f025n8fDHwayOFw4MyZM0hPT4fVasXXX38tPbdz507s27cPmZmZAIDMzEz89NNPin/heXl5iIiIcPkSaakuu+wy/PTTT9i6dav0a9CgQbjhhhuk3/vD5yB3/Phx7NmzB3FxcX7z52DIkCHYuXOn4rHffvsN3bt3BwAkJyejS5cuis/h2LFj2Lhxo+JzqKysVPyt+JtvvoHD4UBGRkYT3IVvvP/++4iNjcXll18uPeYvfw5OnjyJgADl10hgYCAcDgcA//pzAADt27dHXFwcjh49iq+++gp/+ctf/O4z8NX9ZmZm4rvvvkNNTY10TF5eHnr37t2gbS4ALGf3xEMPPSSsXbtWKC4uFrZv3y489NBDgsViEVavXi0IgrN8tVu3bsI333wj/Pjjj0JmZqaQmZkpvV4sXx01apSwdetW4csvvxRiYmJaVfmqFnlVlyC0/c/h3nvvFb799luhuLhY2LBhg5CVlSVER0cLhw4dEgSh7d+/IDhbGQQFBQlPP/20sGvXLuGjjz4SwsLChA8//FA65tlnnxUiIyOF//73v8L27duFv/zlL5olrQMHDhQ2btworF+/XujVq1eLLeHVUldXJ3Tr1k148MEHXZ7zhz8HkydPFrp27SqVs69YsUKIjo4WHnjgAekYf/hz8OWXXwqrVq0Sfv/9d2H16tXCgAEDhIyMDKG6uloQhLb3GVRVVQlbtmwRtmzZIgAQ5s6dK2zZskX4448/BEHwzf1WVlYKnTt3Fm688UahqKhIWLx4sRAWFsZy9qZ2yy23CN27dxeCg4OFmJgY4bLLLpOCHkEQhFOnTgl//etfhY4dOwphYWHC//t//08oKytTnGPv3r3C2LFjhdDQUCE6Olq49957hZqamqa+FZ9SBz5t/XPIzs4W4uLihODgYKFr165Cdna2on9NW79/0aeffiqkpqYKISEhQp8+fYS3335b8bzD4RAeeeQRoXPnzkJISIhw2WWXCTt37lQcU1FRIVx33XVChw4dhIiICOHmm28WqqqqmvI2GuSrr74SALjclyD4x5+DY8eOCXfffbfQrVs3oV27dkKPHj2EWbNmKUqQ/eHPwZIlS4QePXoIwcHBQpcuXYTp06cLlZWV0vNt7TNYs2aNAMDl1+TJkwVB8N39btu2Tbj44ouFkJAQoWvXrsKzzz7rk+u3CIKsxSYRERFRG8YcHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIiIj8BgMfIiIi8hsMfIiIiMhvMPAhIiIiv8HAh4iIiPwGAx8iarBLL70Uubm5zX0Zje7xxx/H+eef39yXQUQNwMCHiPxedXV1k76fIAiora1t0vckIicGPkTUIFOmTMHatWvxyiuvwGKxwGKxYO/evSgqKsLYsWPRoUMHdO7cGTfeeCPKy8ul11166aW48847kZubi44dO6Jz58545513cOLECdx8880IDw9Hz549sWrVKuk13377LSwWCz7//HP0798f7dq1w0UXXYSioiLFNa1fvx6XXHIJQkNDkZiYiLvuugsnTpyQnk9KSsKTTz6Jm266CREREZg2bRoA4MEHH8Q555yDsLAw9OjRA4888og0HXrBggWYPXs2tm3bJt3nggULsHfvXlgsFmzdulU6f2VlJSwWC7799lvFda9atQrp6ekICQnB+vXr4XA4MGfOHCQnJyM0NBQDBgzAsmXLfP2viIhkGPgQUYO88soryMzMxK233oqysjKUlZUhPDwcI0aMwMCBA/Hjjz/iyy+/xMGDBzFx4kTFaxcuXIjo6Gj873//w5133ok77rgD11xzDQYPHozNmzdj1KhRuPHGG3Hy5EnF6+6//3689NJL+OGHHxATE4Nx48ZJAcqePXswZswYTJgwAdu3b8eSJUuwfv16zJgxQ3GOF198EQMGDMCWLVvwyCOPAADCw8OxYMEC/PLLL3jllVfwzjvv4OWXXwYAZGdn495770W/fv2k+8zOzvbos3rooYfw7LPPYseOHejfvz/mzJmDf/3rX3jzzTfx888/45577sGkSZOwdu1aj85LRB7wyahTIvJrw4YNE+6++27p5yeffFIYNWqU4piSkhLFJPNhw4YJF198sfR8bW2t0L59e+HGG2+UHisrKxMACIWFhYIg1E+FXrx4sXRMRUWFEBoaKixZskQQBEHIyckRpk2bpnjvdevWCQEBAcKpU6cEQRCE7t27C1dddZXb+3rhhReE9PR06efHHntMGDBggOKY4uJiAYCwZcsW6bGjR48KAIQ1a9YorvuTTz6Rjjl9+rQQFhYmFBQUKM6Xk5MjXHfddW6vjYi8E9ScQRcRtU3btm3DmjVr0KFDB5fn9uzZg3POOQcA0L9/f+nxwMBAREVF4bzzzpMe69y5MwDg0KFDinNkZmZKv+/UqRN69+6NHTt2SO+9fft2fPTRR9IxgiDA4XCguLgY5557LgBg0KBBLte2ZMkSvPrqq9izZw+OHz+O2tpaREREeHz/euTvuXv3bpw8eRIjR45UHFNdXY2BAwf67D2JSImBDxH53PHjxzFu3Dg899xzLs/FxcVJv7darYrnLBaL4jGLxQIAcDgcHr33bbfdhrvuusvluW7dukm/b9++veK5wsJC3HDDDZg9ezZGjx4Nm82GxYsX46WXXjJ8v4AAZ8aAIAjSY+K2m5r8PY8fPw4A+Pzzz9G1a1fFcSEhIYbvSUTeY+BDRA0WHByMuro66ee0tDQsX74cSUlJCAry/f9mvv/+eymIOXr0KH777TdpJSctLQ2//PILevbs6dE5CwoK0L17d8yaNUt67I8//lAco75PAIiJiQEAlJWVSSs18kRnPX379kVISAj27duHYcOGeXStROQ9JjcTUYMlJSVh48aN2Lt3L8rLyzF9+nQcOXIE1113HX744Qfs2bMHX331FW6++WaXwMEbTzzxBL7++msUFRVhypQpiI6OxlVXXQXAWZlVUFCAGTNmYOvWrdi1axf++9//uiQ3q/Xq1Qv79u3D4sWLsWfPHrz66qv4+OOPXe6zuLgYW7duRXl5Oc6cOYPQ0FBcdNFFUtLy2rVr8fe//93tPYSHh+O+++7DPffcg4ULF2LPnj3YvHkzXnvtNSxcuNDrz4aIjDHwIaIGu++++xAYGIi+ffsiJiYG1dXV2LBhA+rq6jBq1Cicd955yM3NRWRkpLQ11BDPPvss7r77bqSnp+PAgQP49NNPERwcDMCZN7R27Vr89ttvuOSSSzBw4EA8+uijiI+PNzznlVdeiXvuuQczZszA+eefj4KCAqnaSzRhwgSMGTMGw4cPR0xMDP79738DAN577z3U1tYiPT0dubm5eOqpp0zdx5NPPolHHnkEc+bMwbnnnosxY8bg888/R3JyshefChGZYRHkG9NERC3Yt99+i+HDh+Po0aOIjIxs7ssholaIKz5ERETkNxj4EBERkd/gVhcRERH5Da74EBERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHf+P8/hJne5GNN2QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -446,7 +606,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrfUlEQVR4nO3dd1QU198G8GfpTcCCgAqKFTX+xBIVoiYaEjTWRBNbVCIaNZbYARt2EXs30SjG3gUrKtYoEiRgBWwoFkAiUkTp9/3Dl4kjqKDA7sLzOWePzp27s9/dEfZxZu4dhRBCgIiIiIhUmoayCyAiIiKi92NoIyIiIlIDDG1EREREaoChjYiIiEgNMLQRERERqQGGNiIiIiI1wNBGREREpAYY2oiIiIjUAEMbERERkRpgaCMi+kgKhQLTpk1TdhkSZ2dnVKtWTdllEFEhY2gjohLJ29sbCoVCeujp6aF27doYPnw4YmNji/S1L1y4gGnTpiEhIaFQt/vFF1/I3lO5cuXw6aefYv369cjOzi6U15gzZw72799fKNsiosKlpewCiIiK0owZM2BjY4PU1FT89ddfWL16NQ4fPoxr167BwMCgUF7j5cuX0NL679fphQsXMH36dDg7O8PU1LRQXiNHlSpVMHfuXABAXFwc/vzzT7i4uODmzZvw9PT86O3PmTMH3bt3R9euXT96W0RUuBjaiKhEa9++PZo2bQoAGDhwIMqXL49FixbBx8cHvXr1+uDtZmdnIz09HXp6etDT0yusct/LxMQEP/74o7Q8ePBg1KlTBytWrMDMmTOhra1dbLUQUfHi6VEiKlXatm0LAIiMjAQALFiwAA4ODihfvjz09fXRpEkT7N69O9fzFAoFhg8fji1btqB+/frQ1dXF0aNHpXU517RNmzYN48ePBwDY2NhIpzLv3buHzz//HA0bNsyzrjp16sDJyanA78fAwAAtWrRASkoK4uLi3tovJSUFY8eOhZWVFXR1dVGnTh0sWLAAQgjZe0xJScHGjRulup2dnQtcExEVDR5pI6JS5c6dOwCA8uXLAwCWLl2Kzp07o0+fPkhPT8f27dvx/fff4+DBg+jQoYPsuSdPnsTOnTsxfPhwVKhQIc+L/b/77jvcvHkT27Ztw+LFi1GhQgUAgJmZGfr27YtBgwbh2rVr+OSTT6TnBAUF4ebNm5g8efIHvae7d+9CU1PzradihRDo3LkzTp06BRcXF9jZ2cHPzw/jx4/Ho0ePsHjxYgDApk2bMHDgQDRr1gw///wzAKBGjRofVBMRFQFBRFQCbdiwQQAQJ06cEHFxceLBgwdi+/btonz58kJfX188fPhQCCHEixcvZM9LT08Xn3zyiWjbtq2sHYDQ0NAQ169fz/VaAISHh4e0PH/+fAFAREZGyvolJCQIPT094erqKmsfOXKkMDQ0FM+fP3/ne/r888+Fra2tiIuLE3FxcSIsLEyMHDlSABCdOnWS+vXv319UrVpVWt6/f78AIGbNmiXbXvfu3YVCoRC3b9+W2gwNDUX//v3fWQcRKQdPjxJRiebo6AgzMzNYWVmhZ8+eMDIywr59+1C5cmUAgL6+vtT32bNnSExMRKtWrfDPP//k2tbnn3+OevXqfXAtJiYm6NKlC7Zt2yadlszKysKOHTvQtWtXGBoavncb4eHhMDMzg5mZGerWrYvly5ejQ4cOWL9+/Vufc/jwYWhqamLkyJGy9rFjx0IIgSNHjnzweyKi4sPTo0RUoq1cuRK1a9eGlpYWzM3NUadOHWho/Pf/1YMHD2LWrFkIDQ1FWlqa1K5QKHJty8bG5qPr6devH3bs2IFz586hdevWOHHiBGJjY9G3b998Pb9atWpYu3atNI1JrVq1ULFixXc+5/79+6hUqRLKlCkja69bt660nohUH0MbEZVozZo1k0aPvuncuXPo3LkzWrdujVWrVsHS0hLa2trYsGEDtm7dmqv/60flPpSTkxPMzc2xefNmtG7dGps3b4aFhQUcHR3z9XxDQ8N89yWikoWnR4mo1NqzZw/09PTg5+eHAQMGoH379oUSiPI6SpdDU1MTvXv3xu7du/Hs2TPs378fvXr1gqam5ke/7ttUrVoVjx8/RnJysqw9PDxcWp/jXbUTkXIxtBFRqaWpqQmFQoGsrCyp7d69ex99R4Cca9PedkeEvn374tmzZxg8eDCeP38um3etKHzzzTfIysrCihUrZO2LFy+GQqFA+/btpTZDQ8NCv5MDERUOnh4lolKrQ4cOWLRoEdq1a4fevXvjyZMnWLlyJWrWrIkrV6588HabNGkCAJg0aRJ69uwJbW1tdOrUSQpzjRo1wieffIJdu3ahbt26aNy4caG8n7fp1KkT2rRpg0mTJuHevXto2LAhjh07Bh8fH4waNUo2rUeTJk1w4sQJLFq0CJUqVYKNjQ2aN29epPURUf7wSBsRlVpt27bFH3/8gZiYGIwaNQrbtm3DvHnz8O23337Udj/99FPMnDkTly9fhrOzM3r16pVr4tt+/foBQL4HIHwMDQ0N+Pr6YtSoUTh48CBGjRqFGzduYP78+Vi0aJGs76JFi9CkSRNMnjwZvXr1wurVq4u8PiLKH4UQr02HTURExWLp0qUYPXo07t27B2tra2WXQ0RqgKGNiKiYCSHQsGFDlC9fHqdOnVJ2OUSkJnhNGxFRMUlJSYGvry9OnTqFq1evwsfHR9klEZEa4ZE2IqJicu/ePdjY2MDU1BS//PILZs+ereySiEiNMLQRERERqQGOHiUiIiJSAwxtRERERGqAAxFUWHZ2Nh4/fowyZcrw1jJERERqQgiB5ORkVKpUCRoahXd8jKFNhT1+/BhWVlbKLoOIiIg+wIMHD1ClSpVC2x5DmworU6YMgFc73djYWMnVEBERUX4kJSXByspK+h4vLAxtKiznlKixsTFDGxERkZop7EubOBCBiIiISA0wtBERERGpAYY2IiIiIjXAa9rUXFZWFjIyMpRdBhUDbW1taGpqKrsMIiJSEoY2NSWEQExMDBISEpRdChUjU1NTWFhYcN4+IqJSiKFNTeUEtooVK8LAwIBf4iWcEAIvXrzAkydPAACWlpZKroiIiIobQ5saysrKkgJb+fLllV0OFRN9fX0AwJMnT1CxYkWeKiUiKmU4EEEN5VzDZmBgoORKqLjl7HNex0hEVPowtKkxnhItfbjPiYhKL4Y2IiIiIjWgNqGtc+fOsLa2hp6eHiwtLdG3b188fvxY1kcIgQULFqB27drQ1dVF5cqVMXv2bFmf06dPo3HjxtDV1UXNmjXh7e2d67VWrlyJatWqQU9PD82bN8fff/8tW5+amophw4ahfPnyMDIyQrdu3RAbGyvrExUVhQ4dOsDAwAAVK1bE+PHjkZmZWTgfBhEREZU6ahPa2rRpg507dyIiIgJ79uzBnTt30L17d1mfX3/9FevWrcOCBQsQHh4OX19fNGvWTFofGRmJDh06oE2bNggNDcWoUaMwcOBA+Pn5SX127NiBMWPGwMPDA//88w8aNmwIJycnadQeAIwePRoHDhzArl27cObMGTx+/BjfffedtD4rKwsdOnRAeno6Lly4gI0bN8Lb2xtTp04twk9IPTg7O0OhUEChUEBbWxvm5ub46quvsH79emRnZ+d7O97e3jA1NS26QomIiFSNUFM+Pj5CoVCI9PR0IYQQN27cEFpaWiI8PPytz5kwYYKoX7++rK1Hjx7CyclJWm7WrJkYNmyYtJyVlSUqVaok5s6dK4QQIiEhQWhra4tdu3ZJfcLCwgQAERAQIIQQ4vDhw0JDQ0PExMRIfVavXi2MjY1FWlpavt9jYmKiACASExNl7S9fvhQ3btwQL1++zPe2VEX//v1Fu3btRHR0tHj48KEIDg4Ws2fPFkZGRqJ9+/YiIyMjX9vZsGGDMDExKdpiVZA673siotLibd/fH0ttjrS9Lj4+Hlu2bIGDgwO0tbUBAAcOHED16tVx8OBB2NjYoFq1ahg4cCDi4+Ol5wUEBMDR0VG2LScnJwQEBAAA0tPTERwcLOujoaEBR0dHqU9wcDAyMjJkfWxtbWFtbS31CQgIQIMGDWBubi57naSkJFy/fv2t7ystLQ1JSUmyR0mkq6sLCwsLVK5cGY0bN8bEiRPh4+ODI0eOSKerFy1ahAYNGsDQ0BBWVlb45Zdf8Pz5cwCvTnH/9NNPSExMlI7aTZs2DQCwadMmNG3aFGXKlIGFhQV69+4tO0pKREQEAL6+gIPDqz/VhVqFNldXVxgaGqJ8+fKIioqCj4+PtO7u3bu4f/8+du3ahT///BPe3t4IDg6WnUKNiYmRBSkAMDc3R1JSEl6+fIl///0XWVlZefaJiYmRtqGjo5Pr1NybffLaRs66t5k7dy5MTEykh5WVVT4/mVfX86WnpyvlIYTId51v07ZtWzRs2BB79+4F8CosL1u2DNevX8fGjRtx8uRJTJgwAQDg4OCAJUuWwNjYGNHR0YiOjsa4ceMAvJoKY+bMmbh8+TL279+Pe/fuwdnZ+aPrIyKiksXTEwgIePWnulDq5Lpubm6YN2/eO/uEhYXB1tYWADB+/Hi4uLjg/v37mD59Ovr164eDBw9CoVAgOzsbaWlp+PPPP1G7dm0AwB9//IEmTZogIiICderUKfL387Hc3d0xZswYaTkpKSnfwS0jIwNz584tqtLeyd3dHTo6Oh+9HVtbW1y5cgUAMGrUKKm9WrVqmDVrFoYMGYJVq1ZBR0cHJiYmUCgUsLCwkG1jwIAB0t+rV6+OZcuW4dNPP8Xz589hZGT00TUSEZF68/UF5s9Pw1df+aJKFRv8+GNTZZeUb0oNbWPHjn3vUZDq1atLf69QoQIqVKiA2rVro27durCyssLFixdhb28PS0tLaGlpSYENAOrWrQvg1UjOOnXqwMLCItcoz9jYWBgbG0NfXx+amprQ1NTMs09OOLCwsEB6ejoSEhJkR9ve7PPmiNOcbb4ZMl6nq6sLXV3dd34eJZkQQpqH7MSJE5g7dy7Cw8ORlJSEzMxMpKam4sWLF++cVDg4OBjTpk3D5cuX8ezZM2lwQ1RUFOrVq1cs74OIiFTX0qURcHTcDgCoX/8GOnVqAkA95sBUamgzMzODmZnZBz0358s4LS0NAPDZZ58hMzMTd+7cQY0aNQAAN2/eBABUrVoVAGBvb4/Dhw/LtnP8+HHY29sDAHR0dNCkSRP4+/uja9eu0uv4+/tj+PDhAIAmTZpAW1sb/v7+6NatGwAgIiICUVFR0nbs7e0xe/Zs6XZDOa9jbGxcZMFBW1sb7u7uRbLt/Lx2YQgLC4ONjQ3u3buHjh07YujQoZg9ezbKlSuHv/76Cy4uLkhPT39raEtJSYGTkxOcnJywZcsWmJmZISoqCk5OTkhPTy+UGomISD35+AicPLkRrVvfl9patWqlVpOWq8W9RwMDAxEUFISWLVuibNmyuHPnDqZMmYIaNWpIQcnR0RGNGzfGgAEDsGTJEmRnZ2PYsGH46quvpKNvQ4YMwYoVKzBhwgQMGDAAJ0+exM6dO3Ho0CHptcaMGYP+/fujadOmaNasGZYsWYKUlBT89NNPAAATExO4uLhgzJgxKFeuHIyNjTFixAjY29ujRYsWAICvv/4a9erVQ9++feHl5YWYmBhMnjwZw4YNK7IjaQqFolBOUSrLyZMncfXqVYwePRrBwcHIzs7GwoULoaHx6rLLnTt3yvrr6OggKytL1hYeHo6nT5/C09NTOq186dKl4nkDRESkshITExEaugTlyv3XVqfOz2jb1lJ5RX0AtQhtBgYG2Lt3Lzw8PJCSkgJLS0u0a9cOkydPlkKQhoYGDhw4gBEjRqB169YwNDRE+/btsXDhQmk7NjY2OHToEEaPHo2lS5eiSpUqWLduHZycnKQ+PXr0QFxcHKZOnYqYmBjY2dnh6NGjsoEFixcvhoaGBrp164a0tDQ4OTlh1apV0npNTU0cPHgQQ4cOhb29PQwNDdG/f3/MmDGjGD4t1ZeWloaYmBhkZWUhNjYWR48exdy5c9GxY0f069cP165dQ0ZGBpYvX45OnTrh/PnzWLNmjWwb1apVw/Pnz+Hv74+GDRvCwMAA1tbW0NHRwfLlyzFkyBBcu3YNM2fOVNK7JCIiVRAYGIijR49Ky0LoYerU8dJBAXWiEIUx9I+KRFJSEkxMTJCYmAhjY2OpPTU1FZGRkbCxsYGenp4SKyw4Z2dnbNy4EQCgpaWFsmXLomHDhujduzf69+8v/RAtXrwY8+fPR0JCAlq3bo0+ffqgX79+ePbsmXQt4dChQ7Fr1y48ffoUHh4emDZtGrZt24aJEyciOjoajRs3hru7Ozp37oyQkBDY2dkp6V0XHnXe90RExWnSpGxkZc2Hvn6q1Hb0qBMUiha4cKFoX/tt398fi6FNhZXE0EYfh/ueiOj9tm+PRkTE77I2X99RSEkxgZcX0Llz0b5+UYU2tTg9SkRERJQfR44cQUTEfzM4pKRYY948Z3h4qM+Ag7dhaCMiIiK1l5aWBs83Zsrdtq0HypWzhRoNEH0nhjYiIiJSazdv3sS2bdtkbf/7nyv8/PTg5qakoooAQxsRERGpJSEEFi3ahOfPI6W2xo0bo1OnTgCAb79VVmVFg6GNiIiI1E5SUhIWL14saxs4cCAqV66spIqKnvpNUkJERESlWlBQkCywpadrY8eOySU6sAE80kZERERqIjs7G3PnLkRm5guprVKlr7BhgwPeGINQIjG0ERERkcqLiYnBb7/9Jmv7/fdf8eiRKQYNUlJRxYyhjYiIiFSan58fLl68KC0/fFgZf/zhAnf3EjKXRz4xtFGJ5OzsjISEBOzfvx8A8MUXX8DOzg5Lliz54G0WxjaIiCj/0tPTMXfuXFnbjh0/ICKiLvbvL/o7G6gahjYqVq/fe1RbWxvW1tbo168fJk6cCC2tovvnuHfvXmhra+er7+nTp9GmTRvZfU4Lug0iIvo4t2/fxpYtW2Rtnp6uAF7NvVbaAhvA0EZK0K5dO2zYsAFpaWk4fPgwhg0bBm1tbbi7u8v6paenQ0dHp1Bes1y5ciqxDSIier/Nmzfjzp070nJWlh0WL+6CMWOA2bOVWJiSccoPKna6urqwsLBA1apVMXToUDg6OsLX1xfOzs7o2rUrZs+ejUqVKqFOnToAgAcPHuCHH36AqakpypUrhy5duuDevXvS9rKysjBmzBiYmpqifPnymDBhAoQQstf84osvMGrUKGk5LS0Nrq6usLKygq6uLmrWrIk//vgD9+7dQ5s2bQAAZcuWhUKhgLOzc57bePbsGfr164eyZcvCwMAA7du3x61bt6T13t7eMDU1hZ+fH+rWrQsjIyO0a9cO0dHRUp/Tp0+jWbNmMDQ0hKmpKT777DPcv3+/kD5pIiL1kpycjOnTp8sC2+bNLpgxowuSk0t3YAMY2kgF6OvrIz09HQDg7++PiIgIHD9+HAcPHkRGRgacnJxQpkwZnDt3DufPn5fCT85zFi5cCG9vb6xfvx5//fUX4uPjsW/fvne+Zr9+/bBt2zYsW7YMYWFh+O2332BkZAQrKyvs2bMHABAREYHo6GgsXbo0z204Ozvj0qVL8PX1RUBAAIQQ+Oabb5CRkSH1efHiBRYsWIBNmzbh7NmziIqKwrhx4wAAmZmZ6Nq1Kz7//HNcuXIFAQEB+Pnnn6EoKTfJIyIqgODgYCxatEhazsrSwKxZk/HDD1WUWJVq4elRUhohBPz9/eHn54cRI0YgLi4OhoaGWLdunXRadPPmzcjOzsa6deukMLNhwwaYmpri9OnT+Prrr7FkyRK4u7vju+++AwCsWbMGfn5+b33dmzdvYufOnTh+/DgcHR0BANWrV5fW55wGrVixouyattfdunULvr6+OH/+PBwcHAAAW7ZsgZWVFfbv34/vv/8eAJCRkYE1a9agRo0aAIDhw4djxowZAF7N5p2YmIiOHTtK6+vWrVvwD5KISI1lZ2djyZIlSE5OltoqVXLEhg2fYc+e0nnt2tvwSBvB1xdwcHj1Z3E4ePAgjIyMoKenh/bt26NHjx6YNm0aAKBBgway69guX76M27dvo0yZMjAyMoKRkRHKlSuH1NRU3LlzB4mJiYiOjkbz5s2l52hpaaFp06Zvff3Q0FBoamri888//+D3EBYWBi0tLdnrli9fHnXq1EFYWJjUZmBgIAUyALC0tMSTJ08AvAqHzs7OcHJyQqdOnbB06VLZqVMiopIuNjYWM2fOlAW2kSNHYtCgz3DhAgPbmxjaCJ6eQEAAim026TZt2iA0NBS3bt3Cy5cvsXHjRhgaGgKA9GeO58+fo0mTJggNDZU9bt68id69e3/Q6+vr63/0e8ivN0ebKhQK2fV2GzZsQEBAABwcHLBjxw7Url1bNhcREVFJdfz4caxZs0ZafvzYEn5+U1G2bFklVqXaGNoIbm6Avf2rP4uDoaEhatasCWtr6/dO89G4cWPcunULFStWRM2aNWUPExMTmJiYwNLSEoGBgdJzMjMzERwc/NZtNmjQANnZ2Thz5kye63OO9GVlZb11G3Xr1kVmZqbsdZ8+fYqIiAjUq1fvne/pTY0aNYK7uzsuXLiATz75BFu3bi3Q84mI1El6ejqmT5+OCxcuSG27dnXHunU/w82N1/S+C0MboXNnqOxh6D59+qBChQro0qULzp07h8jISJw+fRojR47Ew4cPAQC//vorPD09sX//foSHh+OXX35BQkLCW7dZrVo19O/fHwMGDMD+/fulbe7cuRMAULVqVSgUChw8eBBxcXF4/vx5rm3UqlULXbp0waBBg/DXX3/h8uXL+PHHH1G5cmV06dIlX+8tMjIS7u7uCAgIwP3793Hs2DHcunWL17URUYl1586dXJPlzps3AWFh9Uvt3GsFwdBGKs3AwABnz56FtbU1vvvuO9StWxcuLi5ITU2FsbExAGDs2LHo27cv+vfvD3t7e5QpUwbffvvtO7e7evVqdO/eHb/88gtsbW0xaNAgpKSkAAAqV66M6dOnw83NDebm5hg+fHie29iwYQOaNGmCjh07wt7eHkIIHD58ON8T8BoYGCA8PBzdunVD7dq18fPPP2PYsGEYPHhwAT4hIiL1sG3bNmzevFlaDg1tiO3bPWBnp499+zidR34oxJsTWpHKSEpKgomJCRITE6WAAgCpqamIjIyEjY0N9PT0lFghFTfueyJSN8+fP8fChQtlbX/88RMePbLGvn0l8+ja276/Pxan/CAiIqIiERISAt/XpiYQApg1axKysrQwcWLJDGxFiaGNiIiICpUQAkuXLkViYqLU5u/fBnfvtoa+PjByJE+HfgiGNiIiIio0cXFxWLVqlaxt2bIRSE8vhy1beHTtYzC0ERERUaHw9/fHX3/9JS3HxJhjzZrB0NNTYMcOBraPxdCmxjiGpPThPiciVZSRkYE5c+bI2nbv/g63bzeArS0wbx4DW2FgaFNDOVNKvHjxolhn9yfle/HiBYDcd1ogIlKWLVsicfv2n7K2pUvHo2JFAx5dK2QMbWpIU1MTpqam0j0sDQwMpJupU8kkhMCLFy/w5MkTmJqaQlNTU9klERFhx44duH07XFq+evUT+Pl147VrRYShTU1ZWFgAgBTcqHQwNTWV9j0RkbKkpKRgwYIFsra7d53x+HFVBrYixNCmphQKBSwtLVGxYkVkZGQouxwqBtra2jzCRkRKFxoaCh8fH1nbrFmT8OmnWnjtdqJUBBja1Jympia/yImIqMgJIbBixQrEx8dLbVevfo5+/b7Ap58Cbm5KLK6UYGgjIiKid/r333+xcuVKWdvy5cNhZlYenTvzdGhxYWgjIiKitzp16hTOnj0rLcfFVYC//y+oXVvBo2vFjKGNiIiIcsnMzMTsN+41tXfvt7h163/Yvp1H15SBoY2IiIhk7t27h40bN8raFi0ah/r1DRnYlIihjYiIiCS7du3CjRs3pOXr1+th167voa0Njg5VMoY2IiIiwosXLzB//nxZW82a/bF2bTXo6QFjxiipMJIwtBEREZVyV65cwb59+2RtS5ZMxLNn2ujTR0lFUS4MbURERKWUEAKrVq3Cv//+K7WdOdMKZ8605chQFcTQRkREVAo9ffoUK1askLWtWDEMqakVsG8fBxuoIoY2IiKiUubMmTM4ffq0tPz0aTmsWDEcCoWCgU2FMbQRERGVEnnNvbZ/fxdERdnB0BAYOZKBTZUxtBEREZUC9+/fh7e3t6xt+fJxqF3bEBs2MKypA4Y2IiKiEm7Pnj24du2atJydbYtFi3pg5EjgjQNvpMIY2oiIiEqovOZe69u3L6pXr47p05VUFH0wDWUXQERERIXv2rVruQLb8eMTUb16dSVVRB+LR9qIiIhKECEEvLx+Q2pqrNR27txnCA93xKpVSiyMPhpDGxERUQkRHx+P5cuXy9pWrvwFcXFmsLfnYAN1x9BGRERUApw7dw4nT56UlhMSTLF06UhoaSlgawve4aAEYGgjIiJSY3nNvZaZ2Qlt2jRGYOCrsMYjbCUDQxsREZGaevDgAdavXy9rW7BgLAAjJCczrJU0DG1ERERqaP/+/bh8+bK0/PhxLRw61BtZWcDo0UosjIoMQxsREZEaefnyJby8vGRtu3b9iDlzauC335RUFBULhjYiIiI1cf36dezevVvWduKEO+bM0eGp0FKAoY2IiEjFCSEwf/5avHwZLbVFRtrD2/treHgosTAqVgxtREREKuzZs2dYtmyZrO3w4SGYNMlcSRWRsjC0ERERqai1a8/j8eMT0nJSUhksXjwKLVpo8HRoKcTQRkREpGKysrIwZ84cZGdnS20HD3aAjk5TtGjBiXJLK4Y2IiIiFfLw4UP88ccfsrb9+8cgJKSMkioiVcHQRkREpCKWL/dBfHyotHz7dg3s3/8jtmxRXk2kOhjaiIiIlGzv3lRcvTpP1lajRh/4+dXEli28swG9wtBGRESkRJMnh0Fbe6es7X//c8e33+rgxx+VVBSpJIY2IiIiJfDxETh9+g+Ymj6S2oKCmuPnn9vxyBrlSUPZBeRX586dYW1tDT09PVhaWqJv3754/PixtH7atGlQKBS5HoaGhrLt7Nq1C7a2ttDT00ODBg1w+PBh2XohBKZOnQpLS0vo6+vD0dERt27dkvWJj49Hnz59YGxsDFNTU7i4uOD58+eyPleuXEGrVq2gp6cHKyurXLccISKi0ishIQGhoTNkgW3PnsEMbPROahPa2rRpg507dyIiIgJ79uzBnTt30L17d2n9uHHjEB0dLXvUq1cP33//vdTnwoUL6NWrF1xcXBASEoKuXbuia9euuHbtmtTHy8sLy5Ytw5o1axAYGAhDQ0M4OTkhNTVV6tOnTx9cv34dx48fx8GDB3H27Fn8/PPP0vqkpCR8/fXXqFq1KoKDgzF//nxMmzYNv//+exF/SkREpOrWrr2ApUuXSsspKQaYMmUKrlyxYGCjd1IIIYSyi/gQvr6+6Nq1K9LS0qCtrZ1r/eXLl2FnZ4ezZ8+iVatWAIAePXogJSUFBw8elPq1aNECdnZ2WLNmDYQQqFSpEsaOHYtx48YBABITE2Fubg5vb2/07NkTYWFhqFevHoKCgtC0aVMAwNGjR/HNN9/g4cOHqFSpElavXo1JkyYhJiYGOjo6AAA3Nzfs378f4eHh+X6PSUlJMDExQWJiIoyNjT/4syIiIuXLysrC7NmeECJTajtxoj1at26G2bOVWBgVuqL6/labI22vi4+Px5YtW+Dg4JBnYAOAdevWoXbt2lJgA4CAgAA4OjrK+jk5OSEgIAAAEBkZiZiYGFkfExMTNG/eXOoTEBAAU1NTKbABgKOjIzQ0NBAYGCj1ad26tRTYcl4nIiICz549+8h3T0RE6ubRo0eYNWuWLLCtWjUa584xsFH+qVVoc3V1haGhIcqXL4+oqCj4+Pjk2S81NRVbtmyBi4uLrD0mJgbm5vJ7tZmbmyMmJkZan9P2rj4VK1aUrdfS0kK5cuVkffLaxuuvkZe0tDQkJSXJHkREpN4OHjyIdevWScuRkTbw9JyKgQN5BoUKRqmhzc3NLc/BA68/Xj+dOH78eISEhODYsWPQ1NREv379kNfZ3X379iE5ORn9+/cvzrfz0ebOnQsTExPpYWVlpeySiIjoA6WmpmL69OkIDg6W2v75pxe++64fXr5U8AgbFZhSp/wYO3YsnJ2d39mnevXq0t8rVKiAChUqoHbt2qhbty6srKxw8eJF2Nvby56zbt06dOzYMdfRLgsLC8TGxsraYmNjYWFhIa3PabO0tJT1sbOzk/o8efJEto3MzEzEx8fLtpPX67z+Gnlxd3fHmDFjpOWkpCQGNyIiNRQeHo4dO3bI2tzc3KCrq6ukiqgkUGpoMzMzg5mZ2Qc9N+cmumlpabL2yMhInDp1Cr6+vrmeY29vD39/f4waNUpqO378uBT6bGxsYGFhAX9/fymkJSUlITAwEEOHDpW2kZCQgODgYDRp0gQAcPLkSWRnZ6N58+ZSn0mTJiEjI0O65u748eOoU6cOypYt+9b3pKuryx9oIiI1JoTAwoXeSEmJktoCAz9FQsI38PBQYmFUIqjF5LqBgYEICgpCy5YtUbZsWdy5cwdTpkxBjRo1ch1lW79+PSwtLdG+fftc2/n111/x+eefY+HChejQoQO2b9+OS5cuSVNxKBQKjBo1CrNmzUKtWrVgY2ODKVOmoFKlSujatSsAoG7dumjXrh0GDRqENWvWICMjA8OHD0fPnj1RqVIlAEDv3r0xffp0uLi4wNXVFdeuXcPSpUuxePHiov2giIhIaRITE7FkyRJZ22+//YzkZEveO5QKhVqENgMDA+zduxceHh5ISUmBpaUl2rVrh8mTJ8uOTGVnZ8Pb2xvOzs7Q1NTMtR0HBwds3boVkydPxsSJE1GrVi3s378fn3zyidRnwoQJSElJwc8//4yEhAS0bNkSR48ehZ6entRny5YtGD58OL788ktoaGigW7duWLZsmbTexMQEx44dw7Bhw9CkSRNUqFABU6dOlc3lRkREJce6dRfx6JGftPzypR6WLBmPxo014ObGe4dS4VDbedpKA87TRkSk2rKzs+Hl5SW7VCcz0wlLlrTAyJHgYINSqqi+v9XiSBsREZGq2b49GhER8jvd1K8/Ct27m2DmTCUVRSUaQxsREVEB+PoCPj6HYW0dJLVZW1vD2dkZCoVCiZVRSadWk+sSEREpi68vYGOThpCQ6bLAZmPTAz/99BMDGxU5HmkjIiJ6D19fYMqUm3B23iZrd3V1lQ1UIypKDG1ERETvIISAv/+f+O67e1JbfHwTBAV1RKNGHBlKxYenR4mIiN4iKSkJM2bMQLly96S2QYMGISioIwICAE9P5dVGpQ+PtBEREb3B1xdYu/ZvNG16RGrT1taGq6srNDU14eb2KrC5uSmxSCp1GNqIiIhek52djcDAhWja9IXUFh7+NbZt++8OPJ0787QoFT+GNiIiov+3fXsMIiJ+g47Of22+vr/Cw8NUaTUR5WBoIyIiArBq1VHExQVKy8+eVcHixQPg4cGpPEg1MLQREVGpNmlSOnR05srazp37ASNH1gWnXiNVwtBGRESl1q1bt6Cjs1XW1qCBKzw8OPcaqR6GNiIiKnV8fYHDhzfD0vKO1PbPP40QF9cZHh5KLIzoHRjaiIioVNmzJxnXri2CpeV/bceOuSA+vgrmzVNeXUTvw9BGRESlxqVLl3Dt2iFpOStLE40bu8PDQ1OJVRHlD0MbERGVeD4+2bh4cTH09J5LbZUqOWLQoM+UWBVRwTC0ERFRibZjRyzCw9fg9fu616s3Et9/X1Z5RRF9AIY2IiIqkXx9gb17j8HGJkBqe/SoEtauHQh7ewW+/16JxRF9AIY2IiIqcdLT0xESMhc2Nv+1ZWR0x7lz9VGnDu8ZSuqJoY2IiEqUzZvv4M6dzbK2CRMmQF9fH7NmKakookLA0EZERCWCry9w7NhWmJndktoePWqIjh27Ql9fiYURFRKGNiIiUnvPnz9HSMhCmJn911ar1gB4eFgpryiiQsbQRkREau2ff/7BgQMHpOXsbAWmTp0ETU3OvUYlC0MbERGpJSEEJk9eCh2dRKnt7Nm2+PXXVmBeo5KIoY2IiNTOkydPsHr1aujo/Nd29uwI/PprOXTurLy6iIoSQxsREamVEydO4Pz589JyTIw5/v13MPz9FUqsiqjoMbQREZFayMjIwJw5c2RtBw50g5PTJ1i9WklFERUjhjYiIlJ5W7bcxe3bm2Rt48ePh4eHgZIqIip+DG1ERKSyfH2Bo0e3w9w8Qmq7caMB+vT5DgbMa1TKMLQREZFKSklJQUjIApib/9d24sRPGD/emoMNqFRiaCMiIpWzYUMIoqJ8ZW2TJk2Chwe/tqj04r9+IiJSGUIILF++HM+ePZPaTp/+AqNHfw4tfmNRKccfASIiUglxcXFYtWqVrO2334bjp5/K83QoERjaiIhIBaxZcxKxseekZTMzMwwdOhQeHpx7jSgHQxsRESlNXnOvffvtt/jf//6npIqIVJeGsgsgIqLS6d69e7kC29Kl4xnYiN6CR9qIiKjYLV26EwkJYdJyVlZ9LF7cHSNHKrEoIhXH0EZERMUmJSUFCxYskLX1798f1apVw4wZSiqKSE3w9CgRERWLy5cv5wpsO3ZMQrVq1ZRTEJGa4ZE2IiIqUkIIzJu3EmlpT6W206dbIzCwDbZvV2JhRGqmwEfaNDU18eTJk1ztT58+haamZqEURUREJcPTp08xY8YMWWBbsWIYYmJeBTbOv0aUfwU+0iaEyLM9LS0NOjo6H10QERGVDL/9dhoxMWek5adPy2HduuEYPVqB2bOVWBiRmsp3aFu2bBkAQKFQYN26dTAyMpLWZWVl4ezZs7C1tS38ComISK1kZmZi9hupbP/+LvjmGzu8eKGkoohKgHyHtsWLFwN4daRtzZo1slOhOjo6qFatGtasWVP4FRIRkdq4f/8+vL29ZW379o3DjBmGPBVK9JEU4m3nO9+iTZs22Lt3L8qWLVtUNdH/S0pKgomJCRITE2FsbKzscoiI3mnPnj24du2atBwba4tVq3oosSIi5Siq7+8CX9N26tSpQntxIiJSfy9evMD8+fNlbdu29YOXl42SKiIqmQoc2gYMGPDO9evXr//gYoiISL14e1/F/ft7ZW2zZk1EzZraPB1KVMgKHNqePXsmW87IyMC1a9eQkJCAtm3bFlphRESkunKub359CqizZ1vi8eMv8emngJubEosjKqEKHNr27duXqy07OxtDhw5FjRo1CqUoIiJSXfHx8Vi+fLmsbdeuX5CZaQYvL869RlRUCjwQ4W0iIiLwxRdfIDo6ujA2R+BABCJSPWfPnpVd2/zsmSn++GMkkpMVSqyKSLWozECEt7lz5w4yMzMLa3NERKRC8pp77dChTggLa4yRI5VUFFEpU+DQNmbMGNmyEALR0dE4dOgQ+vfvX2iFERGRanjw4EGuQWarVo3FwIFG+PtvJRVFVAoVOLSFhITIljU0NGBmZoaFCxe+d2QpERGpl3379uHKlSvSckREbdy71wuxsUosiqiU4jxtRESUy8uXL+Hl5SVr27TpR2hp1cAbzURUTD74mrYnT54gIiICAFCnTh1UrFix0IoiIiLluXbtGvbs2SNrW7JkIn75RZs3eidSogKHtqSkJAwbNgzbtm1DdnY2AEBTUxM9evTAypUrYWJiUuhFEhFR0RNC4Pfff0dMTIzUdv68A54//wpvTNFJREqgUdAnDBo0CIGBgTh06BASEhKQkJCAgwcP4tKlSxg8eHBR1EhEREXs2bNnmDFjhiywrVo1FOfOfcWJcolURIHnaTM0NISfnx9atmwpaz937hzatWuHlJSUQi2wNOM8bURUHP766y/4+/tLy0lJZbBkySjUqqXByXKJPoDKzNNWvnz5PE+BmpiYoGzZsoVSFBERFb2srCzMmjUbwH//dz9woCNCQprAzQ28fo1IxRT49OjkyZMxZswY2SH0mJgYjB8/HlOmTCnU4oiIqGg8fPgQs2bNwuuBbeHCMYiMbIJ9+xjYiFRRgU+PNmrUCLdv30ZaWhqsra0BAFFRUdDV1UWtWrVkff/555/Cq7QU4ulRIioKPj4+CA0NlZb//bcGvvrqR54GJSokKnN6tEuXLlAoeI85IiJ1k5qainnz5snagoP7wNe3ppIqIqKCKHBomzZtWhGUQURERenGjRvYtWuXrG3pUnd4e+soqSIiKqgCh7bq1asjKCgI5cuXl7UnJCSgcePGuHv3bqEVR0REH0cIgQUL1uHFi8dSW0BAC5w/74QtWzgylEidFDi03bt3D1lZWbna09LS8PDhw0IpioiIPl5CQgKWLl0qa6tTZzD8/CwY2IjUUL5Hj/r6+sLX1xcA4OfnJy37+vpi3759mDlzJmxsbIqs0M6dO8Pa2hp6enqwtLRE37598fjxY1kfPz8/tGjRAmXKlIGZmRm6deuGe/fuyfqcPn0ajRs3hq6uLmrWrAlvb+9cr7Vy5UpUq1YNenp6aN68Of7++2/Z+tTUVAwbNgzly5eHkZERunXrhtg37p4cFRWFDh06wMDAABUrVsT48eORmZlZKJ8FEdH7rF17QRbYnj83xI4dU9CzpwUuXGBgI1JH+R49qqHxKt8pFAq8+RRtbW1Uq1YNCxcuRMeOHQu/SgCLFy+Gvb09LC0t8ejRI4wbNw4AcOHCBQBAZGQk6tatizFjxsDFxQWJiYkYPXo0kpOTpVGskZGR+OSTTzBkyBAMHDgQ/v7+GDVqFA4dOgQnJycAwI4dO9CvXz+sWbMGzZs3x5IlS7Br1y5ERERI91cdOnQoDh06BG9vb5iYmGD48OHQ0NDA+fPnAbya+8jOzg4WFhaYP38+oqOj0a9fPwwaNAhz5szJ93vm6FEiKqisrCzMnu0JIf77T+Jff32Dhw8/xbx5DGtExaGovr8LPOWHjY0NgoKCUKFChUIr4kP4+vqia9euSEtLg7a2Nnbv3o1evXohLS1NCpgHDhxAly5dpD6urq44dOgQrl27Jm2nZ8+eSEhIwNGjRwEAzZs3x6effooVK1YAALKzs2FlZYURI0bAzc0NiYmJMDMzw9atW9G9e3cAQHh4OOrWrYuAgAC0aNECR44cQceOHfH48WOYm5sDANasWQNXV1fExcVBRyd/F/4ytBFRQTx69Ajr1q2TtS1cOBqffGKM////LREVg6L6/i7w5LqRkZFKD2zx8fHYsmULHBwcoK2tDQBo0qQJNDQ0sGHDBmRlZSExMRGbNm2Co6Oj1CcgIACOjo6ybTk5OSEgIAAAkJ6ejuDgYFkfDQ0NODo6Sn2Cg4ORkZEh62Nrawtra2upT0BAABo0aCAFtpzXSUpKwvXr19/6vtLS0pCUlCR7EBHlx4EDB2SB7c6d6pg2bSqEMOa9Q4lKiAIPRJgxY8Y710+dOvWDi3kfV1dXrFixAi9evECLFi1w8OBBaZ2NjQ2OHTuGH374AYMHD0ZWVhbs7e1x+PBhqU9MTIwsSAGAubk5kpKS8PLlSzx79gxZWVl59gkPD5e2oaOjA1NT01x9cu4S8bbXyVn3NnPnzsX06dPz+WkQEeU999qWLb1x+3Yt1KkD3juUqAQp8JG2ffv2yR47d+7EvHnzsHDhQuzfv79A23Jzc4NCoXjnIycsAcD48eMREhKCY8eOQVNTE/369ZOur4uJicGgQYPQv39/BAUF4cyZM9DR0UH37t1zXYOnqtzd3ZGYmCg9Hjx4oOySiEiFhYeH5wps3t5uePiwFtzdgfBwBjaikqTAR9pCQkJytSUlJcHZ2RnffvttgbY1duxYODs7v7NP9erVpb9XqFABFSpUQO3atVG3bl1YWVnh4sWLsLe3x8qVK2FiYgIvLy+p/+bNm2FlZYXAwEC0aNECFhYWuUZ5xsbGwtjYGPr6+tDU1ISmpmaefSwsLAAAFhYWSE9PR0JCguxo25t93hxxmrPNnD550dXVha6u7js/DyIiIQQ2bNgg+49dYGAzJCS0R2SkEgsjoiJV4NCWF2NjY0yfPh2dOnVC37598/08MzMzmJmZfdBrZmdnA3h1HRgAvHjxQhqAkENTU1PW983TpQBw/Phx2NvbAwB0dHTQpEkT+Pv7o2vXrtJz/f39MXz4cACvrp3T1taGv78/unXrBgCIiIhAVFSUtB17e3vMnj0bT548kUacHj9+HMbGxqhXr94HvV8iIgCYNCkROjpLZG1r1vyMJ08ssW+fcmoiouJRKKENgHRKrygEBgYiKCgILVu2RNmyZXHnzh1MmTIFNWrUkIJShw4dsHjxYsyYMQO9evVCcnIyJk6ciKpVq6JRo0YAgCFDhmDFihWYMGECBgwYgJMnT2Lnzp04dOiQ9FpjxoxB//790bRpUzRr1gxLlixBSkoKfvrpJwCAiYkJXFxcMGbMGJQrVw7GxsYYMWIE7O3t0aJFCwDA119/jXr16qFv377w8vJCTEwMJk+ejGHDhvFIGhF9sIsXL0JHx09aTk3Vw+bN45GQoAE3N54KJSrpChzali1bJlsWQiA6OhqbNm1C+/btC62w1xkYGGDv3r3w8PBASkoKLC0t0a5dO0yePFkKQW3btsXWrVvh5eUFLy8vGBgYwN7eHkePHoW+vj6AV4MVDh06hNGjR2Pp0qWoUqUK1q1bJ83RBgA9evRAXFwcpk6dipiYGNjZ2eHo0aOygQWLFy+GhoYGunXrhrS0NDg5OWHVqlXSek1NTRw8eBBDhw6Fvb09DA0N0b9///cO4iAiyktWVha8vLyQnp4utR0+3A4hIc3xWhMRlXAfNE/b6zQ0NGBmZoa2bdvC3d0dZcqUKdQCSzPO00ZEjx8/xtq1a2VtixePQmKiCSpXBnj3QCLVU1Tf3wU+0hbJq1yJiIrFoUOHcOnSJWn5yZOq+Prr/vjzTwU8PcH514hKmQ+6pi0hIQG3b98GANSsWTPXnGVERPTh9u1Lw5UrnrK2bdt6IiKiDkJCwHuHEpVSBZqn7d69e+jQoQMqVKiA5s2bo3nz5qhQoQI6duyY68bsRERUcBEREbkC2+7dbgDqwNaWR9eISrN8H2l78OABWrRoAW1tbcycORN169YFANy4cQOrV6+Gvb09goKCUKVKlSIrloiopBJCYOPGjbh//77UFhTUBGfOdMSWLTyyRkQFGIjg4uKC27dvw8/PD3p6erJ1L1++RLt27VCrVq1cNyumD8eBCESlw+7dSbh+fbGszc9vEIBKnMqDSA0pfSDC0aNHsWPHjlyBDQD09fUxc+ZM9OzZs9AKIyIqDf7++29cv35EWk5L04GX1wTs3avJsEZEMvkObf/++y+qVav21vXVq1dHfHx8YdRERFTiZWdnY8GCBXj58qXUduzY17hwwR6VK/PoGhHllu/QZmlpiRs3brz1mrVr1669876aRET0SnR0NH7//XdZ26+//opGjUw5lQcRvVW+Q1vXrl0xbtw4+Pv757pf6JMnT+Dq6irdr5OIiPJ25MgR/P3339KylZUVfvrpJygUCnTuzCNsRPR2+R6I8OzZMzRv3hwxMTH48ccfYWtrCyEEwsLCsHXrVlhYWODixYsoV65cUddcanAgAlHJkZ6ejrlz58rafvjhB2kkPhGVHEofiFC2bFkEBgZi4sSJ2L59OxISEgAApqam6N27N+bMmcPARkSUh1u3bmHr1q2yNldX1zwHdhERvU2B7z0KvJpPKC4uDgBgZmYGhUJR6IURj7QRlQSbNm3C3bt3peXg4EY4daozkpOVWBQRFSmlH2l7nUKhQMWKFQutCCKikiYpKQmLF8vnXlu7diAePaqMiROVVBQRqbUPCm1ERPR2QUFBOHz4sLSsUGghLc0NiYmamDgRmD1bicURkdpiaCMiKiTZ2dlYtGgRUlJSpLZjxxwhxGe4cIFhjYg+DkMbEVEhiI2NxZo1a2Rt27ePRNmyZTnvGhEVCoY2IqKP5Ofnh4sXL0rLjx5Vwtq1A2Frq8CFC0osjIhKlHyFtmXLluV7gyNHjvzgYoiI1MnevS9x9aqXrG3nzu9x40Y9aGgA8+YpqTAiKpHyFdreHAH1NgqFgqGNiEqFoKAgXL16WNa2ePEEaGrqQ08PGDOGdzcgosKVr9AWGRlZ1HUQEamN6dOny5ZfvtTDvHmuAAB7e/CUKBEViQ++pi09PR2RkZGoUaMGtLR4aRwRlWy+vsCyZU/RqtWKN9q7IyysPrp3Bx494s3eiajoFDhtvXjxAiNGjMDGjRsBADdv3kT16tUxYsQIVK5cGW78jUVEJYSvL+Dp+SqI+foeRKtWwbL1s2ZNhJ6eNl68UFKBRFSqaBT0Ce7u7rh8+TJOnz4tu2+eo6MjduzYUajFEREpk6cnEBiYjZCQ6bCy+i+w3bxZC8uWeUBPTxu8jJeIikuBj7Tt378fO3bsQIsWLWT3HK1fvz7u3LlTqMURESnTsGGRcHL6U9bm5zcIQCVs2MCBBkRUvAoc2uLi4vK872hKSgpvHE9EJcbvv/+O6OhoWZuf31S4uSkY1ohIKQp8erRp06Y4dOiQtJwT1NatWwd7e/vCq4yISAlSU1Mxffp0WWBr1aoVPDw8cOECAxsRKU+Bj7TNmTMH7du3x40bN5CZmYmlS5fixo0buHDhAs6cOVMUNRIRFYvg4GAcPHhQ1jZ69GgYGxsrqSIiov8U+Ehby5YtERoaiszMTDRo0ADHjh1DxYoVERAQgCZNmhRFjURERW769OmywKZQaMHDw4OBjYhUhkIIIZRdBOUtKSkJJiYmSExM5BcHURGYNAlYv/4ZhgyR36pv9+7vUKZMA06SS0QfpKi+v/N1ejQpKSnfG2S4ICJ1ce3aEQwZ8resbfbsicjK0sa+fUoqiojoLfIV2kxNTfM9MjQrK+ujCiIiKmrZ2dmYOXMmGjf+r+3p0+rYu7cvtLSA8eM5nQcRqZ58hbZTp05Jf7937x7c3Nzg7OwsjRYNCAjAxo0bMXfu3KKpkoiokNy/fx/e3t6ytrVrXZCYWAXJycqpiYgoPwp8TduXX36JgQMHolevXrL2rVu34vfff8fp06cLs75Sjde0ERWuP/74Aw8fPpS1rV07FYmJCowcCcyeraTCiKhEUeo1ba8LCAjAmjVrcrU3bdoUAwcOLJSiiIgKU1paGjw9PWVtN258hgcPHLFqFU+FEpF6KPCUH1ZWVli7dm2u9nXr1sHKyqpQiiIiKiwhISG5AtvKlaPQp48jLlxgYCMi9VHgI22LFy9Gt27dcOTIETRv3hwA8Pfff+PWrVvYs2dPoRdIRPShpk+fLlvOzlZgxoypsLVlWCMi9VPgI23ffPMNbt26hU6dOiE+Ph7x8fHo1KkTbt68iW+++aYoaiQiei9fX8DB4dWfCQkJuQLb3r1dsXPnVNjbA/PmKalIIqKPwMl1VRgHIhDln4MDEBAA9OzpB1vbi7J1u3e7o0wZHbi58QgbERU9lRmIALz6X+wff/yBsLAwAED9+vUxYMAAmJiYFFphRETv4usLTJgAKBSvjpy5ugqEhs6Q9TEyqoo9e5wxezbDGhGpvwIfabt06RKcnJygr6+PZs2aAQCCgoLw8uVLHDt2DI1fn62SPgqPtBG9Xc6RNQCwsYlC//4bZOtr1RqA3r05OIqIil9RfX8XOLS1atUKNWvWxNq1a6Gl9epAXWZmJgYOHIi7d+/i7NmzhVZcacfQRvR2OUfaPvvMG9bW92Xr/Pym4sKF/N3FhYiosKnM6dFLly7JAhsAaGlpYcKECWjatGmhFUZE9DpfX8DTE9J1ae3apSMkRH4XlgsXWuDECSfeN5SISqQChzZjY2NERUXB1tZW1v7gwQOUKVOm0AojInqdp+er06F9+gDLl1/G/fv7Zes3bPgVT5+acrABEZVYBQ5tPXr0gIuLCxYsWAAHBwcAwPnz5zF+/Phct7YiIiosbm6vAtuYMTNw/778qo5p0zxQpw5471AiKtEKHNoWLFgAhUKBfv36ITMzEwCgra2NoUOH5pp1nIiosHz+eSLGjVsia7O27ox58xrB1pZzrxFRyffB87S9ePECd+7cAQDUqFEDBgYGhVoYcSACUY4TJ07g/Pnzsrb//c8N336rq6SKiIjeTmUGIuQwMDBAgwYNCq0QIqI3CSEwY4Z87rUHD6rgxg0XeHgoqSgiIiXJd2gbMGBAvvqtX7/+g4shIsrx8OFD/PHHH7K2DRuc8fRpVWzZoqSiiIiUKN+hzdvbG1WrVkWjRo3AO18RUVHatGkT7t69K2uzs5uCSpU0sGwZR4cSUemU79A2dOhQbNu2DZGRkfjpp5/w448/oly5ckVZGxGVIr6+wPz56XB0lM+9FhjYDAkJ7eHhAXTpoqTiiIhUgEZ+O65cuRLR0dGYMGECDhw4ACsrK/zwww/w8/PjkTci+mje3ldzBbYDB0YiIaE93NyUVBQRkQr54NGj9+/fh7e3N/78809kZmbi+vXrMDIyKuz6SjWOHqXSYs6cOcjIyJC1+fl5cKJcIlJLKjd6VENDAwqFAkIIZGVlFVpBRFR6JCUlYfHixbK2Awc6IjKyCZ4+VVJRREQqKt+nRwEgLS0N27Ztw1dffYXatWvj6tWrWLFiBaKioniUjYgK5OTJk7kC2//+5wodnSbYsEFJRRERqbB8H2n75ZdfsH37dlhZWWHAgAHYtm0bKlSoUJS1EVEJlNfca48fW+Lq1Z/h4QF8+62SCiMiUnH5vqZNQ0MD1tbWaNSoERQKxVv77d27t9CKK+14TRuVNI8fP8batWtlbSdP9kNsrA28vHj9GhGVDEq/pq1fv37vDGtERG/y9QU8PV/d7P358624deuWbP3ChVOQlFSgqzSIiEqtAk2uS0RUEJ6eQFBQBkJC5sjaL11qgsOHO3IqDyKiAvjg0aNERO8zePB1ODntlrXVrTscfn7lsW8fT4cSERUEQxsRFYl58+YhNTVV1ubx/3d5/+EHZVRERKTeGNqIqFAlJydj0aJFsrYbN77Bjh2fKqkiIqKSgaGNiArNmTNncPr0aVmbv/8EjBunr5yCiIhKEIY2IvpgOaNDXV0FQkPlc6/FxlbEqVNDERampOKIiEoYhjYi+mCenkBkZDRCQ3+Xtdeo8SP8/Gpg3jwlFUZEVAKpzQRJnTt3hrW1NfT09GBpaYm+ffvi8ePHsj47d+6EnZ0dDAwMULVqVcyfPz/Xdk6fPo3GjRtDV1cXNWvWzHMqk5UrV6JatWrQ09ND8+bN8ffff8vWp6amYtiwYShfvjyMjIzQrVs3xMbGyvpERUWhQ4cOMDAwQMWKFTF+/HhkZmZ+/AdBpAJ8fQEHB+Crr3ZgyBB5YJs/fzJ+/LEGLlzg6FAiosKkNqGtTZs22LlzJyIiIrBnzx7cuXMH3bt3l9YfOXIEffr0wZAhQ3Dt2jWsWrUKixcvxooVK6Q+kZGR6NChA9q0aYPQ0FCMGjUKAwcOhJ+fn9Rnx44dGDNmDDw8PPDPP/+gYcOGcHJywpMnT6Q+o0ePxoEDB7Br1y6cOXMGjx8/xnfffSetz8rKQocOHZCeno4LFy5g48aN8Pb2xtSpU4v4UyIqHl5emXBymg4NjXCpLSvLDgsWeODXXzWVWBkRUcmV79tYqRpfX1907doVaWlp0NbWRu/evZGRkYFdu3ZJfZYvXw4vLy9ERUVBoVDA1dUVhw4dwrVr16Q+PXv2REJCAo4ePQoAaN68OT799FMp7GVnZ8PKygojRoyAm5sbEhMTYWZmhq1bt0qhMTw8HHXr1kVAQABatGiBI0eOoGPHjnj8+DHMzc0BAGvWrIGrqyvi4uKgo6OTr/fI21iRKgoLC8POnTtlbcOGDeO9iImI/l9RfX+rzZG218XHx2PLli1wcHCAtrY2ACAtLQ16enqyfvr6+nj48CHu378PAAgICICjo6Osj5OTEwICAgAA6enpCA4OlvXR0NCAo6Oj1Cc4OBgZGRmyPra2trC2tpb6BAQEoEGDBlJgy3mdpKQkXL9+/a3vKy0tDUlJSbIHkarw9QXc3BbkCmx+fh4MbERExUCtQpurqysMDQ1Rvnx5REVFwcfHR1rn5OSEvXv3wt/fH9nZ2bh58yYWLlwIAIiOjgYAxMTEyIIUAJibmyMpKQkvX77Ev//+i6ysrDz7xMTESNvQ0dGBqanpO/vktY2cdW8zd+5cmJiYSA8rK6v8fjRERer58+cICZkOff0Uqe3ChXbYts2Dt6IiIiomSg1tbm5uUCgU73yEh/93zcz48eMREhKCY8eOQVNTE/369UPO2d1BgwZh+PDh6NixI3R0dNCiRQv07NkTwKujZerA3d0diYmJ0uPBgwfKLokI586dk/4DlGPevPFITm6O8HAONiAiKi5KnfJj7NixcHZ2fmef6tWrS3+vUKECKlSogNq1a6Nu3bqwsrLCxYsXYW9vD4VCgXnz5mHOnDmIiYmBmZkZ/P39ZduwsLDINcozNjYWxsbG0NfXh6amJjQ1NfPsY2FhIW0jPT0dCQkJsqNtb/Z5c8RpzjZz+uRFV1cXurq67/w8iIqLEAIzZsjnXktJKY+WLYfDzg48wkZEVMyUGtrMzMxgZmb2Qc/Nzs4G8Oo6sNdpamqicuXKAIBt27bB3t5eeg17e3scPnxY1v/48eOwt7cHAOjo6KBJkybw9/dH165dpdfx9/fH8OHDAQBNmjSBtrY2/P390a1bNwBAREQEoqKipO3Y29tj9uzZePLkCSpWrCi9jrGxMerVq/dB75eoOMXGxmLNmjWytj17emPWrFro3JlH14iIlEEtJtcNDAxEUFAQWrZsibJly+LOnTuYMmUKatSoIQWlf//9F7t378YXX3yB1NRUbNiwQZqSI8eQIUOwYsUKTJgwAQMGDMDJkyexc+dOHDp0SOozZswY9O/fH02bNkWzZs2wZMkSpKSk4KeffgIAmJiYwMXFBWPGjEG5cuVgbGyMESNGwN7eHi1atAAAfP3116hXrx769u0LLy8vxMTEYPLkyRg2bBiPpJHKW7p0FxISbsjaFi2ajE2bNBnWiIiUSC1Cm4GBAfbu3QsPDw+kpKTA0tIS7dq1w+TJk2UhaOPGjRg3bhyEELC3t8fp06fRrFkzab2NjQ0OHTqE0aNHY+nSpahSpQrWrVsHJycnqU+PHj0QFxeHqVOnIiYmBnZ2djh69KhsYMHixYuhoaGBbt26IS0tDU5OTli1apW0XlNTEwcPHsTQoUNhb28PQ0ND9O/fP9epJiJVkpmZidmzZ8vaLl/+H44f/xZbtvDoGhGRsqntPG2lAedpo+IyeXIEtLW3y9p27x6KzMyKmDePgY2IqCCK6vtbLY60EVHRWbx4MbS15XMC2tlNhYeHQkkVERFRXhjaiEqplJQULFiwQNZ28eJXOHLEQUkVERHRuzC0EZVC58+fx4kTJ2Rt8+ePx9atBkqqiIiI3oehjagU8fERCA2VD4hJSDDBsmWj4ObGa9eIiFQZQxtRKfHkyROEhq6WtW3d2guPH9fGvn0MbEREqo6hjagU2Lt3L65evSprmzlzMrS1NbFjBwMbEZE6YGgjKsGysrIwa9YsWVt0dH0cPNgdWVlArVoMbERE6oKhjaiEunXrFrZu3SprO39+CI4fN0edOoC9Pe8fSkSkThjaiEqgZcuW4dmzZ7I2O7upaNRIgefPwUEHRERqiKGNqAR58eIF5s+fL2s7ceJLhIa2lG5FxbBGRKSeNJRdABEVjnXrLuYKbJ98Mg6hoS3x/Dng6amkwoiIqFDwSBuRmstr7jUjIyOMHTsWAKCt/Sqw8fo1IiL1xtBGpMb+/fdfhIaulLXZ2PRAv3620jJPiRIRlQwMbURqaupUH2hqhsraGjachK5d+WNNRFQS8bc7kZrJmXtNU/O/ttjYuli9+gfY2wNduyqtNCIiKkIMbURq5M6dO9i8ebOsLSNjMNq1s0BoKK9bIyIqyRjaiNTEqlWrEBcXJ2ubOnUqFAoFAF63RkRU0jG0Eam4ly9fwsvLS9bWpk0btG7dWkkVERGRMjC0Eamwv//+G0eOHJG1jRkzBmXKlFFSRUREpCwMbUQqavr06bJlTU19HD48AY0avVrOmXuNp0WJiEoHhjYiFbNz51OEha2QtX3//fcYOLAeAgL+u7NBzt8Z2oiISgeGNiIVcuDAAYSF/SNrmzhxIrS1teHmJr+zAe9yQERUuiiEEELZRVDekpKSYGJigsTERBgbGyu7HCpC2dnZmDlzpqwtIqI27t3rhQsXlFQUERF9kKL6/uaRNiIl8vUFFi6MRNu2f8ra69QZBD+/SjySRkREEg1lF0BUmp0581uuwDZ16lQYGFRSUkVERKSqeKSNSAlSU1Mxb948vH7U3MKiNQYPbgPg1fVqHGhARESvY2gjKmbr11/CgweHZG2jR4+WXffw5qADIiIihjaiYvTm3GuZmTr49FN3vHmdaufOPMJGRERyDG1ExSA+Ph7Lly+XtVWr1g39+3+ipIqIiEjdMLQRFbHDhw8jKChI1pYz9xoREVF+MbQRFREfn2yEhsrnXqtevTr69u2rpIqIiEidMbQRFSJfX8DVFahQ4R4cHTfK1g0cOBCVK1dWUmVERKTuGNqICpGnJ9Cy5TpUqfJI1j516lQoFAolVUVERCUBQxtRIfD1BebPT4OTk6esvWXLlvjyyy+VVBUREZUkvCMCUSHYtOkfODrKA9uoUaPeGdh8fQEHh1d/EhERvQ9vGK/CeMN41efrC4SEyOde09DQwJQpU977XAeHV3c9sLcHbwpPRFSCFNX3N4+0EX2gZ8+e5QpsVat+i61bp8DW9v1H0NzcXgU23vWAiIjyg0faVBiPtKkmX1/gzz9D0aCBj6zd3d0dX3yhg4CAV8s8gkZEVDrxSBuRChBC4K+/lssCm5FRNXh4eEBHRwdubkDlyoCeHtCmjRILJSKiEoehjSif/v33X8yYMQOGhvFS2/LlwzBtWn/pVGjnzoC1NZCaCpw69d9zOeiAiIg+FkMbUT6cOnUKK1eulJbLly8PO7upSEurgOfPX83PliOva9U8PV8NOvCUDzAlIiLKN87TRvQOmZmZmD17tqyta9euaNiwIQBgy5ZXQez1gNa586vH69zccvcjIiIqCA5EUGEciKAcvr6vAtawYfdw+7b8VlTjxo2DoaGhkiojIiJ1wIEIREUs57ozV1egcuXdssAWE1MXjRp5yAIbr1MjIqLixCNtKoxH2oqXgwNw+fILTJgwX9bu798P587Z5JrCg5PjEhFRXnikjaiI5Bwx+/LLK7kC26xZExEXZ5PnJLg5Aw7atOERNyIiKno80qbCeKSteDg4CDRuvApmZv9Kba1atcLz522lwQNvDiyQP59H3IiI6D9F9f3N0aNUqj19+hROTitkbb/88gvMzMwAvDus5eDIUCIiKg4MbVRqnTlzBqdPn5aWy5YtixEjRkChUBRoO3lN8UFERFTYGNqo1Mlr7rXOnTujUaNGSqqIiIjo/RjaqFSJiorChg0bZG1jx46FkZGRkioiIiLKH4Y2KjX27t2Lq1evSst16tRBz549lVgRERFR/jG0UYnm6wssXPgCbdvKp/Lo27cvqlevrqSqiIiICo6hjUq0FSuuoW3bPbK2iRMnQltbW0kVERERfRhOrkslSs5EuT4+AmvWrMFnn/0X2BwcHODh4SEFNt6GioiI1AlDG5Uonp5AeHg8QkNnIDY2Vmq3tR2Kr776KlffgIBXfxIREak6nh6lEsXZ+Ryio09Ky8bGxvj111+hoZH7/yecFJeIiNQJQxupPV9fwN09C99/Pwuvz4trZdUJAwY0fuvzOCkuERGpE4Y2UnteXg/www/rZW1jxoxBmTJllFQRERFR4WNoI7W2f/9+fPXVZWnZ2LgmRo/uo8SKiIiIigZDG6kdX19gwYKX+PJLL1l7jRo/4scfayipKiIioqLF0EZqw9f31cABI6Pr+PLL3bJ17u7u0NHRUVJlRERERY+hjVReTliLihLo0GEtKlWKltbZ29vj66+/VmJ1RERExYOhjVSary/Qowegp/cMo0Ytk60bMmQIzM3NlVQZERFR8VK7yXXT0tJgZ2cHhUKB0NBQ2borV66gVatW0NPTg5WVFby8vHI9f9euXbC1tYWenh4aNGiAw4cPy9YLITB16lRYWlpCX18fjo6OuHXrlqxPfHw8+vTpA2NjY5iamsLFxQXPnz8vcC30fp6eQJMm52WBTUvLCFOmTGFgIyKiUkXtQtuECRNQqVKlXO1JSUn4+uuvUbVqVQQHB2P+/PmYNm0afv/9d6nPhQsX0KtXL7i4uCAkJARdu3ZF165dce3aNamPl5cXli1bhjVr1iAwMBCGhoZwcnJCamqq1KdPnz64fv06jh8/joMHD+Ls2bP4+eefC1QLvV3O7aX2789Cu3az8NVXJ6R1HTp0wKRJY/OcLJeIiKhEE2rk8OHDwtbWVly/fl0AECEhIdK6VatWibJly4q0tDSpzdXVVdSpU0da/uGHH0SHDh1k22zevLkYPHiwEEKI7OxsYWFhIebPny+tT0hIELq6umLbtm1CCCFu3LghAIigoCCpz5EjR4RCoRCPHj3Kdy35kZiYKACIxMTEAj1P3dnbC1G58gMxbdo02SMpKUnZpREREb1XUX1/q83hitjYWAwaNAibNm2CgYFBrvUBAQFo3bq1bAShk5MTIiIi8OzZM6mPo6Oj7HlOTk4ICAgAAERGRiImJkbWx8TEBM2bN5f6BAQEwNTUFE2bNpX6ODo6QkNDA4GBgfmuJS9paWlISkqSPUqj3r19MWjQH9Jy9erV4eHhwclyiYioVFOL0CaEgLOzM4YMGSILS6+LiYnJdY1TznJMTMw7+7y+/vXnva1PxYoVZeu1tLRQrly5977O66+Rl7lz58LExER6WFlZvbVvSZSamorp06fj6dMQqa13797o27evEqsiIiJSDUoNbW5ublAoFO98hIeHY/ny5UhOToa7u7syyy1y7u7uSExMlB4PHjxQdknFJiwsDPPmzZO1ubu7o1atWkqqiIiISLUodcqPsWPHwtnZ+Z19qlevjpMnTyIgIAC6urqydU2bNkWfPn2wceNGWFhYIDY2VrY+Z9nCwkL6M68+r6/PabO0tJT1sbOzk/o8efJEto3MzEzEx8e/93Vef4286Orq5nqPJU3OnGtubq9u1i6EwPr16/Hw4UOpT7NmzdC+fXslVklERKR6lBrazMzMYGZm9t5+y5Ytw6xZs6Tlx48fw8nJCTt27EDz5s0BvJpkddKkScjIyIC2tjYA4Pjx46hTpw7Kli0r9fH398eoUaOkbR0/fhz29vYAABsbG1hYWMDf318KaUlJSQgMDMTQoUOlbSQkJCA4OBhNmjQBAJw8eRLZ2dkFqqW08vQEAgKAPn2ADRsScP36Utn6wYMHvzPYEhERlVqFOqyhmERGRuYaPZqQkCDMzc1F3759xbVr18T27duFgYGB+O2336Q+58+fF1paWmLBggUiLCxMeHh4CG1tbXH16lWpj6enpzA1NRU+Pj7iypUrokuXLsLGxka8fPlS6tOuXTvRqFEjERgYKP766y9Rq1Yt0atXrwLVkh+qNnrUx+fVyE4fnw/v6+MjhJGREPb2F2QjQ728vERWVlbRFE5ERFSMiur7u8SENiGEuHz5smjZsqXQ1dUVlStXFp6enrmeu3PnTlG7dm2ho6Mj6tevLw4dOiRbn52dLaZMmSLMzc2Frq6u+PLLL0VERISsz9OnT0WvXr2EkZGRMDY2Fj/99JNITk4ucC3vo2qhzd5eCODVnx/aNzMzU8yYMVsW2AIDA4umYCIiIiUoqu9vhRBCKPNIH71dUlISTExMkJiYCGNjY2WXk+t6tIL2ffz4MdauXSvrN3r0aJV4b0RERIWlqL6/GdpUmKqFto9x8OBBBAcHS8vVqlVDv379oFAolFgVERFR4Suq72+1mKeN1EfOLah8fV8tp6WlYfr06bLA1rNnT/Tv35+BjYiIqACUOnqUSp6c0aGenkCdOhHYvn27bL2bm1uJn9aEiIioKDC0UaFycwM8PQW++84b27dHSe1NmzZFhw4dlFgZERGRemNoo0L1+eeJCAlZgpSU/9oGDRqESpUqKa8oIiKiEoChjQpNYGAgjh49Ki3r6upi/Pjx0NTUVGJVREREJQNDG3207OxseHl5IS0tTWqrXNkJAwe2UGJVREREJQtDG30wX19g5cpoODj8LmtfvHgU6tUzwcCBSiqMiIioBGJoow/m43MYDg5B0nJcnBVWrvwJenoKuLkpsTAiIqISiKGNCiwtLQ2enp6wtv6vrUePHrh50xb//JO/OyYQERFRwTC0UYHcvHkT27Ztk7W5urpCT08PtrYMa0REREWFd0QgyZt3M3idEAJ//vmnLLA1btwYHh4e0NPTK8YqiYiISieGNpK8fjeD1yUlJWHGjBmIjIyU2gICBqJTp07FXCEREVHpxdBGEjc3wN4eskEEf//9NxYvXiwta2ho49ixyfjll8pKqJCIiKj04jVtBODVKVFPz/8GEWRnZ2PhwoV48eKF1Cc8/Cv06uWAKVOUWCgREVEpxdBGAOSnRps1i8Fvv/0mW3/mzK84dcoU9+9zsAEREZEyMLQRgJwbvQM//uiH3367KLUbGFTGuHEuOHBAgdRUcP41IiIiJWFoIwBAu3bpCAmZi7i4/9p27PgeDx7UQ506r46u8QgbERGR8nAgAuHWrVuYO3eurG3PHldERtbD8+e5R5MSERFR8eORtlJu8+bNuHPnjrRsZ2eHLl26wMNDPjiBiIiIlIuhrZRKTk7GokWLZG0uLi6oUqWKtMxTokRERKqDoa0U2rAhFFFRPtKyhoYGJk6cCE1NTSVWRURERO/Ca9pKoXv3Dkh///LLLzFlyhQpsL3rVlZERESkPAxtpZCV1ddITLREvXoj0bJlS1lQe9utrIiIiEi5FEIIoewiKG9JSUkwMTFBYmIijI2Ni+x1HBxeBbWcW1i9fmcEIiIiKpii+v7mkTaS3XO0c2fgwgUGNiIiIlXDgQjEUaJERERqgEfaSjEOOiAiIlIfDG2lGAcdEBERqQ+GtlLs9WvZiIiISLXxmrZSjNeyERERqQ8eaSMiIiJSAwxtRERERGqAoY2IiIhIDTC0EREREakBhjYiIiIiNcDQRkRERKQGGNqIiIiI1ABDGxEREZEaYGgjIiIiUgMMbURERERqgKGNiIiISA0wtBERERGpAYY2IiIiIjWgpewC6O2EEACApKQkJVdCRERE+ZXzvZ3zPV5YGNpUWHJyMgDAyspKyZUQERFRQSUnJ8PExKTQtqcQhR0DqdBkZ2fj8ePHKFOmDBQKhbLLKVZJSUmwsrLCgwcPYGxsrOxy6DXcN6qL+0Z1cd+otsLeP0IIJCcno1KlStDQKLwr0XikTYVpaGigSpUqyi5DqYyNjfkLTkVx36gu7hvVxX2j2gpz/xTmEbYcHIhAREREpAYY2oiIiIjUAEMbqSRdXV14eHhAV1dX2aXQG7hvVBf3jerivlFt6rJ/OBCBiIiISA3wSBsRERGRGmBoIyIiIlIDDG1EREREaoChjYiIiEgNMLRRoUtLS4OdnR0UCgVCQ0Nl665cuYJWrVpBT08PVlZW8PLyyvX8Xbt2wdbWFnp6emjQoAEOHz4sWy+EwNSpU2FpaQl9fX04Ojri1q1bsj7x8fHo06cPjI2NYWpqChcXFzx//rzAtZQUnTt3hrW1NfT09GBpaYm+ffvi8ePHsj47d+6EnZ0dDAwMULVqVcyfPz/Xdk6fPo3GjRtDV1cXNWvWhLe3d64+K1euRLVq1aCnp4fmzZvj77//lq1PTU3FsGHDUL58eRgZGaFbt26IjY2V9YmKikKHDh1gYGCAihUrYvz48cjMzPz4D0IF5Wff+Pn5oUWLFihTpgzMzMzQrVs33Lt3T9aH+6ZovG//TJs2DQqFItfD0NBQth3+Xit8+fnZEUJgwYIFqF27NnR1dVG5cmXMnj1b1ketfnYEUSEbOXKkaN++vQAgQkJCpPbExERhbm4u+vTpI65duya2bdsm9PX1xW+//Sb1OX/+vNDU1BReXl7ixo0bYvLkyUJbW1tcvXpV6uPp6SlMTEzE/v37xeXLl0Xnzp2FjY2NePnypdSnXbt2omHDhuLixYvi3LlzombNmqJXr14FqqUkWbRokQgICBD37t0T58+fF/b29sLe3l5af/jwYaGlpSVWr14t7ty5Iw4ePCgsLS3F8uXLpT53794VBgYGYsyYMeLGjRti+fLlQlNTUxw9elTqs337dqGjoyPWr18vrl+/LgYNGiRMTU1FbGys1GfIkCHCyspK+Pv7i0uXLokWLVoIBwcHaX1mZqb45JNPhKOjowgJCRGHDx8WFSpUEO7u7kX8KSnH+/bN3bt3ha6urnB3dxe3b98WwcHBonXr1qJRo0ayPtw3ReN9+yc5OVlER0fLHvXq1RP9+/eX+vD3WtF4374RQogRI0aIOnXqCB8fH3H37l1x6dIlcezYMWm9uv3sMLRRoTp8+LCwtbUV169fzxXaVq1aJcqWLSvS0tKkNldXV1GnTh1p+YcffhAdOnSQbbN58+Zi8ODBQgghsrOzhYWFhZg/f760PiEhQejq6opt27YJIYS4ceOGACCCgoKkPkeOHBEKhUI8evQo37WUZD4+PkKhUIj09HQhhBC9evUS3bt3l/VZtmyZqFKlisjOzhZCCDFhwgRRv359WZ8ePXoIJycnablZs2Zi2LBh0nJWVpaoVKmSmDt3rhDi1b7S1tYWu3btkvqEhYUJACIgIEAI8erfkIaGhoiJiZH6rF69WhgbG8v2V0n15r7ZtWuX0NLSEllZWVIfX19fWR/um+Lz5v55U2hoqAAgzp49K7Xx91rxeHPf3LhxQ2hpaYnw8PC3PkfdfnZ4epQKTWxsLAYNGoRNmzbBwMAg1/qAgAC0bt0aOjo6UpuTkxMiIiLw7NkzqY+jo6PseU5OTggICAAAREZGIiYmRtbHxMQEzZs3l/oEBATA1NQUTZs2lfo4OjpCQ0MDgYGB+a6lpIqPj8eWLVvg4OAAbW1tAK9Oaevp6cn66evr4+HDh7h//z6A9++b9PR0BAcHy/poaGjA0dFR6hMcHIyMjAxZH1tbW1hbW8v2X4MGDWBubi57naSkJFy/fr2wPgaVlNe+adKkCTQ0NLBhwwZkZWUhMTERmzZtgqOjo9SH+6Z45LV/3rRu3TrUrl0brVq1ktr4e63o5bVvDhw4gOrVq+PgwYOwsbFBtWrVMHDgQMTHx0vPU7efHYY2KhRCCDg7O2PIkCGyXyqvi4mJkf2DBSAtx8TEvLPP6+tff97b+lSsWFG2XktLC+XKlXvv67z+GiWNq6srDA0NUb58eURFRcHHx0da5+TkhL1798Lf3x/Z2dm4efMmFi5cCACIjo4G8PbPLCkpCS9fvsS///6LrKys9+4bHR0dmJqavrMP981/+8bGxgbHjh3DxIkToaurC1NTUzx8+BA7d+6U+nDfFK137Z/XpaamYsuWLXBxcZG18/da0XnXvrl79y7u37+PXbt24c8//4S3tzeCg4PRvXt3qY+6/ewwtNE7ubm55XmR7euP8PBwLF++HMnJyXB3d1d2yaVGfvdNjvHjxyMkJATHjh2DpqYm+vXrB/H/N0QZNGgQhg8fjo4dO0JHRwctWrRAz549Abz6XyUVTGHum5iYGAwaNAj9+/dHUFAQzpw5Ax0dHXTv3l3qQwVTmPvndfv27UNycjL69+9fnG+nRCnMfZOdnY20tDT8+eefaNWqFb744gv88ccfOHXqFCIiIpT1Fj+KlrILINU2duxYODs7v7NP9erVcfLkSQQEBOS6b1vTpk3Rp08fbNy4ERYWFrlG0+QsW1hYSH/m1ef19TltlpaWsj52dnZSnydPnsi2kZmZifj4+Pe+zuuvoeryu29yVKhQARUqVEDt2rVRt25dWFlZ4eLFi7C3t4dCocC8efMwZ84cxMTEwMzMDP7+/rJtvO0zMzY2hr6+PjQ1NaGpqfne/Zeeno6EhATZ/0rf7PPmyKzSvG9WrlwJExMT2SjAzZs3w8rKCoGBgWjRogX3TQEV5v553bp169CxY8dcR1T4ey3/CnPfWFpaQktLC7Vr15b6161bF8CrkZx16tRRv5+dfF/9RvQO9+/fF1evXpUefn5+AoDYvXu3ePDggRDiv4tkX7+A193dPddAhI4dO8q2bW9vn+uC3QULFkjrExMT87xg99KlS1IfPz+/PC/YfVctJdn9+/cFAHHq1Km39unbt69sJNaECRPEJ598IuvTq1evXBfsDh8+XFrOysoSlStXznXB7u7du6U+4eHheV6w+/rIrN9++00YGxuL1NTUD3vDauTNfTNmzBjRrFkzWZ/Hjx8LAOL8+fNCCO6b4vS2n527d+8KhUIhDhw4kOs5/L1WPN7cNznfQ7dv35b65AwUiYiIEEKo388OQxsVicjIyFyjRxMSEoS5ubno27evuHbtmti+fbswMDDINeWHlpaWWLBggQgLCxMeHh55Do03NTUVPj4+4sqVK6JLly55Do1v1KiRCAwMFH/99ZeoVauWbGh8fmopKS5evCiWL18uQkJCxL1794S/v79wcHAQNWrUkH5ZxMXFidWrV4uwsDAREhIiRo4cKfT09ERgYKC0nZyh8ePHjxdhYWFi5cqVeQ6N19XVFd7e3uLGjRvi559/FqamprIRU0OGDBHW1tbi5MmT4tKlS7mG6ecMjf/6669FaGioOHr0qDAzMyuR00rkZ9/4+/sLhUIhpk+fLm7evCmCg4OFk5OTqFq1qnjx4oUQgvumqORn/+SYPHmyqFSpksjMzMy1Hf5eK3z52TdZWVmicePGonXr1uKff/4Rly5dEs2bNxdfffWVtB11+9lhaKMikVdoE0KIy5cvi5YtWwpdXV1RuXJl4enpmeu5O3fuFLVr1xY6Ojqifv364tChQ7L12dnZYsqUKcLc3Fzo6uqKL7/8UvpfU46nT5+KXr16CSMjI2FsbCx++uknkZycXOBaSoIrV66INm3aiHLlygldXV1RrVo1MWTIEPHw4UOpT1xcnGjRooUwNDQUBgYG4ssvvxQXL17Mta1Tp04JOzs7oaOjI6pXry42bNiQq8/y5cuFtbW10NHREc2aNcu1nZcvX4pffvlFlC1bVhgYGIhvv/1WREdHy/rcu3dPtG/fXujr64sKFSqIsWPHioyMjML5QFRIfvaNEEJs27ZNNGrUSBgaGgozMzPRuXNnERYWJuvDfVP48rt/srKyRJUqVcTEiRPfui3+Xitc+d03jx49Et99950wMjIS5ubmwtnZWTx9+lTWR51+dhRC8EpWIiIiIlXHYWFEREREaoChjYiIiEgNMLQRERERqQGGNiIiIiI1wNBGREREpAYY2oiIiIjUAEMbERERkRpgaCMiKgIKhQL79+9Xdhkyp0+fhkKhQEJCgrJLIaIPwNBGRPQRpk2bJt3Um4ioKDG0EREREakBhjYiKtWys7Mxd+5c2NjYQF9fHw0bNsTu3bsB/Hc60d/fH02bNoWBgQEcHBwQEREBAPD29sb06dNx+fJlKBQKKBQKeHt7S9v+999/8e2338LAwAC1atWCr69vvmrKeV0/Pz80atQI+vr6aNu2LZ48eYIjR46gbt26MDY2Ru/evfHixQvpeWlpaRg5ciQqVqwIPT09tGzZEkFBQYX3YRGRUjG0EVGpNnfuXPz5559Ys2YNrl+/jtGjR+PHH3/EmTNnpD6TJk3CwoULcenSJWhpaWHAgAEAgB49emDs2LGoX78+oqOjER0djR49ekjPmz59On744QdcuXIF33zzDfr06YP4+Ph81zZt2jSsWLECFy5cwIMHD/DDDz9gyZIl2Lp1Kw4dOoRjx45h+fLlUv8JEyZgz5492LhxI/755x/UrFkTTk5OBXpNIlJhBbq9PBFRCZKamioMDAzEhQsXZO0uLi6iV69e4tSpUwKAOHHihLTu0KFDAoB4+fKlEEIIDw8P0bBhw1zbBiAmT54sLT9//lwAEEeOHHlvXXm97ty5cwUAcefOHalt8ODBwsnJSdq+tra22LJli7Q+PT1dVKpUSXh5ecm2++zZs/fWQESqR0uJeZGISKlu376NFy9e4KuvvpK1p6eno1GjRtLy//73P+nvlpaWAIAnT57A2tr6ndt//XmGhoYwNjbGkydP8l3f6883NzeHgYEBqlevLmv7+++/AQB37txBRkYGPvvsM2m9trY2mjVrhrCwsHy/JhGpLoY2Iiq1nj9/DgA4dOgQKleuLFunq6uLO3fuAHgVfnIoFAoAr66Fe5/Xn5fz3Pw8L6/nKxSKj94eEak3XtNGRKVWvXr1oKuri6ioKNSsWVP2sLKyytc2dHR0kJWVVcSVvl+NGjWgo6OD8+fPS20ZGRkICgpCvXr1lFgZERUWHmkjolKrTJkyGDduHEaPHo3s7Gy0bNkSiYmJOH/+PIyNjVG1atX3bqNatWqIjIxEaGgoqlSpgjJlykBXV7cYqpczNDTE0KFDMX78eJQrVw7W1tbw8vLCixcv4OLiUuz1EFHhY2gjolJt5syZMDMzw9y5c3H37l2YmpqicePGmDhxYr5OPXbr1g179+5FmzZtkJCQgA0bNsDZ2bnoC8+Dp6cnsrOz0bdvXyQnJ6Np06bw8/ND2bJllVIPERUuhRBCKLsIIiIiIno3XtNGREREpAYY2oiIitmQIUNgZGSU52PIkCHKLo+IVBRPjxIRFbMnT54gKSkpz3XGxsaoWLFiMVdEROqAoY2IiIhIDfD0KBEREZEaYGgjIiIiUgMMbURERERqgKGNiIiISA0wtBERERGpAYY2IiIiIjXA0EZERESkBhjaiIiIiNTA/wGshenDJO+9bAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAa81JREFUeJzt3Xtcjvf/B/DX3fmkQkcUxZDD13FUYxtriy/DxndjhqbZGDOHUWFiRsn5zJzCnM/NKZbDNiWnyKmcSqjUpINTp/vz+6Nf11wKxV33fdfr+XjcD6739bmu+3134X65jgohhAARERERaTQddTdARERERK/G0EZERESkBRjaiIiIiLQAQxsRERGRFmBoIyIiItICDG1EREREWoChjYiIiEgLMLQRERERaQGGNiIiIiItwNBGRPSGFAoFJk2apO42JF5eXqhTp4662yAiFWNoI6IKKTg4GAqFQnoZGRmhfv36GDZsGO7du1em7x0eHo5JkyYhPT1dpet9//33ZZ+pWrVqePvtt7Fq1SoolUqVvMe0adOwa9culayLiFRLT90NEBGVpZ9//hlOTk54+vQp/v77byxZsgT79u3DxYsXYWJiopL3ePLkCfT0/v3nNDw8HJMnT4aXlxcsLS1V8h6FatWqhYCAAABAamoq1q5dC29vb1y9ehWBgYFvvP5p06ahV69e6NGjxxuvi4hUi6GNiCq0zp07o3Xr1gCAr7/+GtWrV8fs2bOxe/du9OnT57XXq1QqkZOTAyMjIxgZGamq3VeysLDAl19+KU1/++23aNCgARYuXIgpU6ZAX1+/3HohovLFw6NEVKl07NgRABAXFwcAmDlzJtzd3VG9enUYGxujVatW2LZtW5HlFAoFhg0bhvXr16Nx48YwNDTEgQMHpHmF57RNmjQJY8aMAQA4OTlJhzLj4+Px3nvvoVmzZsX21aBBA3h6epb685iYmMDV1RWPHj1CamrqC8c9evQIo0ePhoODAwwNDdGgQQPMnDkTQgjZZ3z06BHWrFkj9e3l5VXqnoiobHBPGxFVKjdu3AAAVK9eHQAwb948dOvWDX379kVOTg42bdqE//3vf9izZw+6dOkiW/bw4cPYsmULhg0bBisrq2JP9v/0009x9epVbNy4EXPmzIGVlRUAwNraGv369cOgQYNw8eJFNGnSRFrm1KlTuHr1KiZMmPBan+nmzZvQ1dV94aFYIQS6deuGI0eOwNvbG82bN0doaCjGjBmDu3fvYs6cOQCAdevW4euvv0abNm3wzTffAADq1q37Wj0RURkQREQV0OrVqwUA8ccff4jU1FRx+/ZtsWnTJlG9enVhbGws7ty5I4QQ4vHjx7LlcnJyRJMmTUTHjh1ldQBCR0dHXLp0qch7ARD+/v7S9IwZMwQAERcXJxuXnp4ujIyMhI+Pj6w+fPhwYWpqKh4+fPjSz/Tee++Jhg0bitTUVJGamiquXLkihg8fLgCIjz/+WBo3YMAAUbt2bWl6165dAoD45ZdfZOvr1auXUCgU4vr161LN1NRUDBgw4KV9EJF68PAoEVVoHh4esLa2hoODA3r37g0zMzPs3LkTNWvWBAAYGxtLYx88eICMjAy0b98eZ8+eLbKu9957D40aNXrtXiwsLNC9e3ds3LhROiyZn5+PzZs3o0ePHjA1NX3lOmJiYmBtbQ1ra2u4uLhgwYIF6NKlC1atWvXCZfbt2wddXV0MHz5cVh89ejSEENi/f/9rfyYiKj88PEpEFdqiRYtQv3596OnpwdbWFg0aNICOzr//X92zZw9++eUXnDt3DtnZ2VJdoVAUWZeTk9Mb99O/f39s3rwZf/31F95991388ccfuHfvHvr161ei5evUqYPly5dLtzF56623YGNj89Jlbt26hRo1aqBKlSqyuouLizSfiDQfQxsRVWht2rSRrh593l9//YVu3brh3XffxeLFi2Fvbw99fX2sXr0aGzZsKDL+2b1yr8vT0xO2trb47bff8O677+K3336DnZ0dPDw8SrS8qalpiccSUcXCw6NEVGlt374dRkZGCA0NxcCBA9G5c2eVBKLi9tIV0tXVxRdffIFt27bhwYMH2LVrF/r06QNdXd03ft8XqV27NhITE5GVlSWrx8TESPMLvax3IlIvhjYiqrR0dXWhUCiQn58v1eLj49/4iQCF56a96IkI/fr1w4MHD/Dtt9/i4cOHsvuulYX//ve/yM/Px8KFC2X1OXPmQKFQoHPnzlLN1NRU5U9yICLV4OFRIqq0unTpgtmzZ6NTp0744osvkJKSgkWLFqFevXqIjo5+7fW2atUKADB+/Hj07t0b+vr6+Pjjj6Uw16JFCzRp0gRbt26Fi4sLWrZsqZLP8yIff/wxOnTogPHjxyM+Ph7NmjXDwYMHsXv3bowYMUJ2W49WrVrhjz/+wOzZs1GjRg04OTmhbdu2ZdofEZUM97QRUaXVsWNHrFy5EsnJyRgxYgQ2btyI6dOn45NPPnmj9b799tuYMmUKzp8/Dy8vL/Tp06fIjW/79+8PACW+AOFN6OjoICQkBCNGjMCePXswYsQIXL58GTNmzMDs2bNlY2fPno1WrVphwoQJ6NOnD5YsWVLm/RFRySiEeOZ22EREVC7mzZuHkSNHIj4+Ho6Ojupuh4i0AEMbEVE5E0KgWbNmqF69Oo4cOaLudohIS/CcNiKicvLo0SOEhITgyJEjuHDhAnbv3q3ulohIi3BPGxFROYmPj4eTkxMsLS3x3XffYerUqepuiYi0CEMbERERkRbg1aNEREREWoChjYiIiEgL8EIEDaZUKpGYmIgqVarw0TJERERaQgiBrKws1KhRAzo6qts/xtCmwRITE+Hg4KDuNoiIiOg13L59G7Vq1VLZ+hjaNFiVKlUAFGx0c3NzNXdDREREJZGZmQkHBwfpe1xVGNo0WOEhUXNzc4Y2IiIiLaPqU5t4IQIRERGRFmBoIyIiItICDG1EREREWoDntGm5/Px85ObmqrsNKgf6+vrQ1dVVdxtERKQmDG1aSgiB5ORkpKenq7sVKkeWlpaws7PjffuIiCohhjYtVRjYbGxsYGJiwi/xCk4IgcePHyMlJQUAYG9vr+aOiIiovDG0aaH8/HwpsFWvXl3d7VA5MTY2BgCkpKTAxsaGh0qJiCoZXoighQrPYTMxMVFzJ1TeCrc5z2MkIqp8GNq0GA+JVj7c5kRElRdDGxEREZEWYGgjIiIi0gJaE9q6desGR0dHGBkZwd7eHv369UNiYqJsjBACM2fORP369WFoaIiaNWti6tSpsjFHjx5Fy5YtYWhoiHr16iE4OLjIey1atAh16tSBkZER2rZti5MnT8rmP336FEOHDkX16tVhZmaGnj174t69e7IxCQkJ6NKlC0xMTGBjY4MxY8YgLy9PNT8MLebl5QWFQgGFQgF9fX3Y2triww8/xKpVq6BUKku8nuDgYFhaWpZdo0RERBpGa0Jbhw4dsGXLFsTGxmL79u24ceMGevXqJRvzww8/YMWKFZg5cyZiYmIQEhKCNm3aSPPj4uLQpUsXdOjQAefOncOIESPw9ddfIzQ0VBqzefNmjBo1Cv7+/jh79iyaNWsGT09P6VYLADBy5Ej8/vvv2Lp1K44dO4bExER8+umn0vz8/Hx06dIFOTk5CA8Px5o1axAcHIyJEyeW4U9Ie3Tq1AlJSUmIj4/H/v370aFDB/zwww/o2rUrgy0REdGLCC21e/duoVAoRE5OjhBCiMuXLws9PT0RExPzwmXGjh0rGjduLKt9/vnnwtPTU5pu06aNGDp0qDSdn58vatSoIQICAoQQQqSnpwt9fX2xdetWacyVK1cEABERESGEEGLfvn1CR0dHJCcnS2OWLFkizM3NRXZ2dok/Y0ZGhgAgMjIyZPUnT56Iy5cviydPnpR4XZpiwIABonv37kXqYWFhAoBYvny5EEKIWbNmiSZNmggTExNRq1YtMWTIEJGVlSWEEOLIkSMCgOzl7+8vhBBi7dq1olWrVsLMzEzY2tqKPn36iHv37pXXxytz2rztiYg0ye7dQri5Ffyqai/6/n5TWrOn7VlpaWlYv3493N3doa+vDwD4/fff4ezsjD179sDJyQl16tTB119/jbS0NGm5iIgIeHh4yNbl6emJiIgIAEBOTg7OnDkjG6OjowMPDw9pzJkzZ5Cbmysb07BhQzg6OkpjIiIi0LRpU9ja2sreJzMzE5cuXXrh58rOzkZmZqbsVVJCCOTk5KjlJYQocZ8v0rFjRzRr1gw7duwAUPBznz9/Pi5duoQ1a9bg8OHDGDt2LADA3d0dc+fOhbm5OZKSkpCUlIQff/wRQMGtMKZMmYLz589j165diI+Ph5eX1xv3R0REFUtgIBARUfCrttCqm+v6+Phg4cKFePz4MVxdXbFnzx5p3s2bN3Hr1i1s3boVa9euRX5+PkaOHIlevXrh8OHDAAqeIvBskAIAW1tbZGZm4smTJ3jw4AHy8/OLHRMTEyOtw8DAoMj5VLa2tkhOTn7p+xTOe5GAgABMnjy5FD+Rf+Xm5iIgIOC1ln1Tfn5+MDAweOP1NGzYENHR0QCAESNGSPU6dergl19+weDBg7F48WIYGBjAwsICCoUCdnZ2snUMHDhQ+r2zszPmz5+Pt99+Gw8fPoSZmdkb90hERBXDmDE5mD1bYMwYQ3W3UmJq3dPm6+srnZT+oldhWAKAMWPGICoqCgcPHoSuri769+8v7eVRKpXIzs7G2rVr0b59e7z//vtYuXIljhw5gtjYWHV9xFLx8/NDRkaG9Lp9+7a6WypXQgjpPmR//PEHPvjgA9SsWRNVqlRBv379cP/+fTx+/Pil6zhz5gw+/vhjODo6okqVKnjvvfcAFFwYQkREFBICDB68DtHRAejS5Vd8/PGbHy0qL2rd0zZ69OhXHrpydnaWfm9lZQUrKyvUr18fLi4ucHBwwIkTJ+Dm5gZ7e3vo6emhfv360ngXFxcABV/YDRo0gJ2dXZGrPO/duwdzc3MYGxtDV1cXurq6xY4p3KNjZ2eHnJwcpKeny/a2PT/m+StOC9f5/J6hZxkaGsLQ8PUSv76+Pvz8/F5r2TdVeIj6TV25cgVOTk6Ij49H165dMWTIEEydOhXVqlXD33//DW9vb+Tk5LzwSRCPHj2Cp6cnPD09sX79elhbWyMhIQGenp7IyclRSY9ERKS9MjMzERU1B4WPb87OTnv5AhpGraHN2toa1tbWr7Vs4e0hsrOzAQDvvPMO8vLycOPGDdStWxcAcPXqVQBA7dq1AQBubm7Yt2+fbD2HDh2Cm5sbAMDAwACtWrVCWFgYevToIb1PWFgYhg0bBgBo1aoV9PX1ERYWhp49ewIAYmNjkZCQIK3Hzc0NU6dOlZ4RWfg+5ubmaNSo0Wt93ldRKBQqOUSpLocPH8aFCxcwcuRInDlzBkqlErNmzYKOTsHO4C1btsjGGxgYID8/X1aLiYnB/fv3ERgYCAcHBwDA6dOny+cDEBGRRjt58iT2798vTefl6aFVK1+tetKMVpzTFhkZiVOnTqFdu3aoWrUqbty4gZ9++gl169aVgpKHhwdatmyJgQMHYu7cuVAqlRg6dCg+/PBDae/b4MGDsXDhQowdOxYDBw7E4cOHsWXLFuzdu1d6r1GjRmHAgAFo3bo12rRpg7lz5+LRo0f46quvAAAWFhbw9vbGqFGjUK1aNZibm+P777+Hm5sbXF1dAQAfffQRGjVqhH79+iEoKAjJycmYMGEChg4d+tp70iqS7OxsJCcnIz8/H/fu3cOBAwcQEBCArl27on///rh48SJyc3OxYMECfPzxxzh+/DiWLl0qW0edOnXw8OFDhIWFoVmzZjAxMYGjoyMMDAywYMECDB48GBcvXsSUKVPU9CmJiEgTKJVKzJgxA0+fPpVqH374Idzd3dXY1WtS6bWoZSQ6Olp06NBBVKtWTRgaGoo6deqIwYMHizt37sjG3b17V3z66afS7R68vLzE/fv3ZWOOHDkimjdvLgwMDISzs7NYvXp1kfdbsGCBcHR0FAYGBqJNmzbixIkTsvlPnjwR3333nahataowMTERn3zyiUhKSpKNiY+PF507dxbGxsbCyspKjB49WuTm5pbqc1fUW37g/2/ToaenJ6ytrYWHh4dYtWqVyM/Pl8bNnj1b2NvbC2NjY+Hp6SnWrl0rAIgHDx5IYwYPHiyqV68uu+XHhg0bRJ06dYShoaFwc3MTISEhAoCIiooq3w9aRrR52xMRladx44Rwdk4UkyZNkr2e/R4pK2V1yw+FECq4XwOViczMTFhYWCAjIwPm5uZS/enTp4iLi4OTkxOMjIzU2CGVN257IqJXCwkBfv11L95++99TZBISHHDlylcIDy/7w6Ev+v5+U1pxeJSIiIioJLKzsxEVFYi33/63lpv7Oa5caQhfX/X1pQoMbURERFQhrF0bg7i4zbJaQIAvWrY0RHi4mppSIYY2IiIi0mpCCKxatQp37tyRagkJrbFqVReYmUHr97AVYmgjIiIirbV1azouX54nqzVo8A1atLDHlSsFga1bNzU1p2IMbURERKSVwsPDcfnyIWn68WNj/P33j/D3L7jHZ0UJa4UY2oiIiEir5OfnIyAgQHaT9ePHO+PhwzYV5lBocRjaiIiISGts3HgHV6+ulNWWLh2JZcvMK9yetecxtBEREZFW2LVrF65ePS9NZ2XVRXj4l1i2rOIdCi0OQxsRERFptCdPniAoKEhW++23vkhOroesLDU1pQY66m6AqCx4eXmhR48e0vT777+PESNGvNE6VbEOIiIqnYsXLxYJbFOn+uHmzXoYPlxNTakJ97RRufLy8sKaNWsAAPr6+nB0dET//v0xbtw46OmV3R/HHTt2QF9fv0Rjjx49ig4dOuDBgwewtLR8rXUQEdGbEUJg6dKlSElJkWrHj7vh0KGPYGQEbNtWOQ6JPouhjcpdp06dsHr1amRnZ2Pfvn0YOnQo9PX14efnJxuXk5MDAwMDlbxntWrVNGIdRET0avfv38fChQtltcWLh0Bf3wZubhXr3mulwcOjVO4MDQ1hZ2eH2rVrY8iQIfDw8EBISIh0SHPq1KmoUaMGGjRoAAC4ffs2PvvsM1haWqJatWro3r074uPjpfXl5+dj1KhRsLS0RPXq1TF27FgIIWTv+fyhzezsbPj4+MDBwQGGhoaoV68eVq5cifj4eHTo0AEAULVqVSgUCnh5eRW7jgcPHqB///6oWrUqTExM0LlzZ1y7dk2aHxwcDEtLS4SGhsLFxQVmZmbo1KkTkpKSpDFHjx5FmzZtYGpqCktLS7zzzju4deuWin7SRETa59ixY7LA9uiRBTZv/glVq9pg8WIgPLxyBjaAoY00gLGxMXJycgAAYWFhiI2NxaFDh7Bnzx7k5ubC09MTVapUwV9//YXjx49L4adwmVmzZiE4OBirVq3C33//jbS0NOzcufOl79m/f39s3LgR8+fPx5UrV7Bs2TKYmZnBwcEB27dvBwDExsYiKSkJ8+bNK3YdXl5eOH36NEJCQhAREQEhBP773/8iNzdXGvP48WPMnDkT69atw59//omEhAT8+OOPAIC8vDz06NED7733HqKjoxEREYFvvvkGCoXijX+mRETaJi8vD5MnT8bRo0elWmRkN7RrNwKXL+sgJqbyhrVCPDxKaiOEQFhYGEJDQ/H9998jNTUVpqamWLFihXRY9LfffoNSqcSKFSukMLN69WpYWlri6NGj+OijjzB37lz4+fnh008/BQAsXboUoaGhL3zfq1evYsuWLTh06BA8PDwAAM7OztL8wsOgNjY2snPannXt2jWEhITg+PHjcHd3BwCsX78eDg4O2LVrF/73v/8BAHJzc7F06VLUrVsXADBs2DD8/PPPAIDMzExkZGSga9eu0nwXF5fS/yCJiLRcfHy8dL5zoRkzRuM//zGr9EHtWdzTRggJAdzdC34tD3v27IGZmRmMjIzQuXNnfP7555g0aRIAoGnTprLz2M6fP4/r16+jSpUqMDMzg5mZGapVq4anT5/ixo0byMjIQFJSEtq2bSsto6enh9atW7/w/c+dOwddXV289957r/0Zrly5Aj09Pdn7Vq9eHQ0aNMCVK1ekmomJiRTIAMDe3l46qbZatWrw8vKCp6cnPv74Y8ybN0926JSIqDLYunWrLLBZWDTEpk3+qFXLrEI/3eB1cE8bITAQiIgo+LU8/kfToUMHLFmyBAYGBqhRo4bsqlFTU1PZ2IcPH6JVq1ZYv359kfVYW1u/1vsbGxu/1nKv4/mrTRUKhex8u9WrV2P48OE4cOAANm/ejAkTJuDQoUNwdXUttx6JiNTh0aNHmDlzpqxWr15/9O3rBN5dqXjc00bw9YV0NU55MDU1Rb169eDo6PjK23y0bNkS165dg42NDerVqyd7WVhYwMLCAvb29oiMjJSWycvLw5kzZ164zqZNm0KpVOLYsWPFzi/c0/fsM+2e5+Ligry8PNn73r9/H7GxsWjUqNFLP9PzWrRoAT8/P4SHh6NJkybYsGFDqZYnItI2586dKxLYfvllHBYtclJTR9qBoY3QrZvmXo3Tt29fWFlZoXv37vjrr78QFxeHo0ePYvjw4bhz5w4A4IcffkBgYCB27dqFmJgYfPfdd0hPT3/hOuvUqYMBAwZg4MCB2LVrl7TOLVu2AABq164NhUKBPXv2IDU1FQ8fPiyyjrfeegvdu3fHoEGD8Pfff+P8+fP48ssvUbNmTXTv3r1Eny0uLg5+fn6IiIjArVu3cPDgQVy7do3ntRFRhSWEwLx587B7926pdvTou5g0yR+2tvo8HPoKDG2k0UxMTPDnn3/C0dERn376KVxcXODt7Y2nT5/C3NwcADB69Gj069cPAwYMgJubG6pUqYJPPvnkpetdsmQJevXqhe+++w4NGzbEoEGD8OjRIwBAzZo1MXnyZPj6+sLW1hbDhg0rdh2rV69Gq1at0LVrV7i5uUEIgX379pX4BrwmJiaIiYlBz549Ub9+fXzzzTcYOnQovv3221L8hIiItENqaip+/vln2X+qly8fiqNHO6BhQ+DOHc3ceaBJFOL5G1qRxsjMzISFhQUyMjKkgAIAT58+RVxcHJycnGBkZKTGDqm8cdsTkTb6448/cPz4cWk6JcUaa9cOwfDhChw5UvFulvui7+83xQsRiIiIqEzk5uZi2rRpslp4+KdISGiK9esrVlArDwxtREREpHI3btzAb7/9Jqs1bToG/v4maupI+zG0ERERkUqtX78e169fl6ajo5tix45P4eYG/P990Ok1MLQRERGRSmRlZWH27NmyWnDwQCQmOqBmzfK7tVRFxdCmxXgNSeXDbU5Emur06dPYu3evNK1UKjB37nisW6fLc9dUhKFNCxXeUuLx48flend/Ur/Hjx8DKPqkBSIidVEqlZg9e7Z02yQAOHz4A6SktMO6dbzYQJUY2rSQrq4uLC0tpWdYmpiYSA9Tp4pJCIHHjx8jJSUFlpaW0NXVVXdLRERITk7GsmXLZLW5c4fDzq4qnnkMM6kIQ5uWsrOzAwApuFHlYGlpKW17IiJ12r9/P06ePClNK5U1sXmzN+zsFJg+XY2NVWAMbVpKoVDA3t4eNjY2yM3NVXc7VA709fW5h42I1C47OxuBgYGy2ubNn8HS0gUxMWpqqpJgaNNyurq6/CInIqJyERsbi02bNslq//mPD0JDjXhlaDlgaCMiIqKXEkIgODgYCQkJUu306VbYt68r8vOBVzzumVSEoY2IiIheKCMjA3PnzpXVIiIG4dChGrxRbjljaCMiIqJiRURE4ODBg9L0kydGmDFjDNq21UF+vhobq6QY2oiIiEgmPz8f06dPl13otm9fJ5w61RY1avDJBurC0EZERESSu3fvYsWKFbLa7NkjoVSaY9cu3ixXnRjaiIiICAAQEhKCqKgoadrMzAnLl/dDjRoF915jYFMvhjYiIqJK7smTJwgKCpLVnJ2/QL9+b2H0aDU1RUUwtBEREVVily9fxtatW2W1adP80KqVAfr1U1NTVCyGNiIiokpICIFff/0VycnJUi083BWHDnmifn1ebKCJGNqIiIgqmbS0NCxYsEBWW7JkMFJTbeHnB0ydqqbG6KUY2oiIiCqRP//8E0eOHJGmq1Spgrp1R8DZWQe//sqLDTQZQxsREVElkJeXh6nP7UI7ebIr9u5tBQDo3l0dXVFpMLQRERFVcLdu3UJwcLCsNnPmaNSsaaaehui1MLQRERFVYNu3b8fFixel6ZSU+li8uA/MzIDn7vJBGo6hjYiIqAJ6/PgxZsyYIaudOtUP33zjjKiogqtDef6admFoIyIiqmCCg8/j1q1dstqhQ+Mwdqw+unVjWNNWDG1EREQVhBAC06cvQnb2fal27Fh7JCZ2REyMGhsjlWBoIyIiqgD++ecfLFq0SFbbsmUolEornrtWQTC0ERERabnDhw/jr7/+kqbT06vj/feHwt9focauSNUY2oiIiLRUbm4upk2bJqvt2NEDN282w5w5amqKygxDGxERkRa6efMm1q1bJ6utXTsGiYkmGDVKTU1RmWJoIyIi0jIbN27E1atXpekLF5rg0qWeuHFDjU1RmWNoIyIi0hIPHz7ErFmzZLVDh77C/fuOmD5dTU1RuWFoIyIi0gKrVp3B7dt7ZLXx48fD359f5ZUFtzQREZEGUyqV+PnnuVAosqTa+fMd4eXVHnr8Fq9UuLmJiIg01ObN9xATsxSKZ+7cMW/e92jYsBqfalAJMbQRERFpoNDQUMTEnJCmExPtkZY2CA0bKuDrq8bGSG0Y2oiIiDRITk4OAgICZLVdu/6HyZMbce9aJcfQRkREpCHWrbuGmzc3yGoLFozFqlXGDGzE0EZERKRuu3cLhIauha1tvFSrXr0FNmzohlWrwMBGABjaiIiI1Gr8+EwYGMyBre2/tfr1v0afPjUxbJj6+iLNw9BGRESkJpGRkTAwOCBN5+bq4+23fdC9u64auyJNxdBGRERUzpRKJSZNCoKubrZUO3DgIygUbvjlFzU2RhpNR90NlFS3bt3g6OgIIyMj2Nvbo1+/fkhMTJTmT5o0CQqFosjL1NRUtp6tW7eiYcOGMDIyQtOmTbFv3z7ZfCEEJk6cCHt7exgbG8PDwwPXrl2TjUlLS0Pfvn1hbm4OS0tLeHt74+HDh7Ix0dHRaN++PYyMjODg4ICgoCAV/0SIiEgbJSYmYsqUKbLA1rjxCCgUbryVB72U1oS2Dh06YMuWLYiNjcX27dtx48YN9OrVS5r/448/IikpSfZq1KgR/ve//0ljwsPD0adPH3h7eyMqKgo9evRAjx49cPHiRWlMUFAQ5s+fj6VLlyIyMhKmpqbw9PTE06dPpTF9+/bFpUuXcOjQIezZswd//vknvvnmG2l+ZmYmPvroI9SuXRtnzpzBjBkzMGnSJPz6669l/FMiIiJNtnDhHixfvlyavnWrNi5enIhevSwQHs4LDujlFEIIoe4mXkdISAh69OiB7Oxs6OvrF5l//vx5NG/eHH/++Sfat28PAPj888/x6NEj7Nnz77PbXF1d0bx5cyxduhRCCNSoUQOjR4/Gjz/+CADIyMiAra0tgoOD0bt3b1y5cgWNGjXCqVOn0Lp1awDAgQMH8N///hd37txBjRo1sGTJEowfPx7JyckwMDAAAPj6+mLXrl2IiYkp8WfMzMyEhYUFMjIyYG5u/to/KyIiUq+nT59i+nNPdN+2rTcuXGigpo6oLJXV97fW7Gl7VlpaGtavXw93d/diAxsArFixAvXr15cCGwBERETAw8NDNs7T0xMREREAgLi4OCQnJ8vGWFhYoG3bttKYiIgIWFpaSoENADw8PKCjo4PIyEhpzLvvvisFtsL3iY2NxYMHD174ubKzs5GZmSl7ERGRdrty5UqRwDZtmi8ePGBgo9LRqtDm4+MDU1NTVK9eHQkJCdi9e3ex454+fYr169fD29tbVk9OTobts9dUA7C1tUVycrI0v7D2sjE2Njay+Xp6eqhWrZpsTHHrePY9ihMQEAALCwvp5eDg8MKxRESk2XbvFvj++xXYsmWLVIuNbYOcHH+0amWIxYvV2BxpJbWGNl9f32IvHnj29ezhxDFjxiAqKgoHDx6Erq4u+vfvj+KO7u7cuRNZWVkYMGBAeX6cN+bn54eMjAzpdfv2bXW3REREr+HBgwc4d+5nWFndlWpLl36L+PjOmDoVPH+NXotab/kxevRoeHl5vXSMs7Oz9HsrKytYWVmhfv36cHFxgYODA06cOAE3NzfZMitWrEDXrl2L7O2ys7PDvXv3ZLV79+7Bzs5Oml9Ys7e3l41p3ry5NCYlJUW2jry8PKSlpcnWU9z7PPsexTE0NIShoeEL5xMRkeYbMuQ47Oz+kKYfPjTFpk2j4OSkw6tD6Y2oNbRZW1vD2tr6tZZVKpUACs4De1ZcXByOHDmCkJCQIsu4ubkhLCwMI0aMkGqHDh2SQp+TkxPs7OwQFhYmhbTMzExERkZiyJAh0jrS09Nx5swZtGrVCgBw+PBhKJVKtG3bVhozfvx45ObmSufcHTp0CA0aNEDVqlVf6/MSEZFmy8/Px9SpU2Fn9+8RoD17uiAmpjXWr+eeNXpzWnFOW2RkJBYuXIhz587h1q1bOHz4MPr06YO6desW2cu2atUq2Nvbo3PnzkXW88MPP+DAgQOYNWsWYmJiMGnSJJw+fRrD/v85IQqFAiNGjMAvv/yCkJAQXLhwAf3790eNGjXQo0cPAICLiws6deqEQYMG4eTJkzh+/DiGDRuG3r17o0aNGgCAL774AgYGBvD29salS5ewefNmzJs3D6NGjSrbHxQREanF7du38csvv8hO2Vm6dBT09RnYSHW04okIJiYm2LFjB/z9/fHo0SPY29ujU6dOmDBhguxwolKpRHBwMLy8vKCrW/QRIO7u7tiwYQMmTJiAcePG4a233sKuXbvQpEkTaczYsWPx6NEjfPPNN0hPT0e7du1w4MABGBkZSWPWr1+PYcOG4YMPPoCOjg569uyJ+fPnS/MtLCxw8OBBDB06FK1atYKVlRUmTpwou5cbERFVDDt37kR0dLQ0bW5eD1u39sWyZQxrpFpae5+2yoD3aSMi0lw7djzGhQszZLUvv/wSdevWVVNHpCnK6vtbK/a0ERERaYqQEGDRogtwd98hq48bN+6F9w4lUgWGNiIiohIaP14gPX0J3N1TpZqt7TsYPNjjJUsRqQZDGxERUQls2XIfBgYL8ez91XNyvsPgwa93FwSi0mJoIyIieoVly44iOfmYNJ2ZWRVz5nwPV1eFGruiyoahjYiI6AV27crF+fPTZDVHx+6oXr05IiLAm+VSuWJoIyIiek5ICDBlSjy6dl0jqzdp8iN69jQFwNt5UPljaCMiInrOgQOb0bXrv8++TkhohJUr/6fGjogY2oiIiCTbtz/CxYsz8eyjq3//fQAmTqyjtp6ICjG0ERERAVi9OgoJCfLnVo8fPx7+/vyqJM3AP4lERFSpjR8v8OTJPFhYZEi1v/56H8OHvwc9fkuSBuEfRyIiqrRSUlJgYLAEBgb/1vbsGYaffqrOCw1I4zC0ERFRpRMSAuzYcQhOTuFSLTnZFufPf4tTp3jvNdJMDG1ERFSp7NyZg+joADg5/VvburUnbt1qgvXr1dcX0aswtBERUaVx/fp1REfLk9mOHWNhbm6M9et57zXSbAxtRERUKfz222+4ceOGNP3gQTOcPNkDU6YwrJF2YGgjIqIKLTMzE3PmzJHVVqzwhoNDLYSHv2AhIg3E0EZERBVSSAiwfv0pNGq0T6rl5ekiIMAPxsa6WLRIjc0RvQaGNiIiqnCUSiVOnJiJRo2eSLUaNT7E7NnuqFcPCAriIVHSPgxtRERUoWzalITY2F9haPhv7YcffoClpSUGDVJfX0RviqGNiIgqhJAQYPfufXB0PCXVHjxwQIcOX8HSkvdeI+3H0EZERFovOzsbUVGBcHT8t+bk9Dn8/RuqrykiFWNoIyIirRYTE4PNmzfLar6+vjB89vgoUQXA0EZERFpJCAEfn9UwNb0t1aKiWmPXri5q7Iqo7DC0ERGR1klPT8e8efNgavpvbe3ab9C7t736miIqYwxtRESkVcLDw3Ho0CFp+vFjY9y8+SNu3NBRY1dEZY+hjYiItEJ+fj6mTg2AEPlSbe/ezsjMbIOYGDU2RlROGNqIiEjjbdx4B1evrpTVGjceidBQcwQFqakponLG0EZERBorJATYvn03nJ3PSbX4eGd88kk/dOsG9Oqlvt6IyhtDGxERaaQnT54gKioIzs7/1o4e7YuRI+vxEVRUKTG0ERGRxlmz5iLi47fLav/5jx/8/Q3U1BGR+jG0ERGRxti9W+DPP5fB3PyeVDt+3A0PH34Ef381NkakARjaiIhII6SlpeHcuQUwN/+39uuvQ6BQ2GDxYvX1RaQpGNqIiEjtfvrpGPT0jkrT+voW8PUdDn9/3nuNqBBDGxERqU1eXh6mTp0KvWe+jbp164YWLVqorykiDcX/whARkVrcunULU6dOldV++200AxvRC3BPGxERlbt587YhPf2SNG1h0RBbtnyOWbPU2BSRhmNoIyKicvPo0SPMnDlTVuvfvz+cnJwwYoR6eiLSFjw8SkRE5eL8+fNFAtuWLePg5OSkpo6ItAv3tBERUZkSQiAwcAFych5Itb/+ehd37nTgc0OJSqHUoU1XVxdJSUmwsbGR1e/fvw8bGxvk5+errDkiItJuqampWPzcTdYWLBgKa2srxMSoqSkiLVXq0CaEKLaenZ0NAwM+XoSIiAosXRqGe/f+lqZTU63x669DYGOjwPTpamyMSEuVOLTNnz8fAKBQKLBixQqYmZlJ8/Lz8/Hnn3+iYcOGqu+QiIi0Sm5uLqZNmyarbd/+KXJymiInR01NEVUAJQ5tc+bMAVCwp23p0qXQ1dWV5hkYGKBOnTpYunSp6jskIiKtcePGDfz222+y2tq1Y6Cvb8Lz14jekEK86HjnC3To0AE7duxA1apVy6on+n+ZmZmwsLBARkYGzJ99GB8RkQbasGEDrl27Jk0nJjbFsmWfqrEjIvUoq+/vUp/TduTIEZW9ORERab+srCzMnj1bVlu9+ivMn++opo6IKqZSh7aBAwe+dP6qVateuxkiItIuq1adxu3be6VppVKBefPGYehQPXTrpsbGiCqgUoe2Bw8eyKZzc3Nx8eJFpKeno2PHjiprjIiINJdSqURAwGzk5T2San/88QFSU9shPV19fRFVZKUObTt37ixSUyqVGDJkCOrWrauSpoiISHMlJydj2bJlstqiRcNRrVpVXmxAVIZKfSHCi8TGxuL9999HUlKSKlZH4IUIRKR59u/fj5MnT0rT9+/XxMGD3ggKUvBwKNH/05gLEV7kxo0byMvLU9XqiIhIg2RnZyMwMFBWO3fuf9i5s5GaOiKqfEod2kaNGiWbFkIgKSkJe/fuxYABA1TWGBERaYbY2Fhs2rRJVgsL88GPPxqpqSOiyqnUoS0qKko2raOjA2tra8yaNeuVV5YSEZH2EEJgzZo1uHXrllQ7fbolrl//GFeuqLExokqK92kjIqIiMjIyMHfuXFktOHgQjIxq8LmhRGry2ue0paSkIDY2FgDQoEED2NjYqKwpIiJSn4iICBw8eFCa1tExxIEDYzBvni4vNiBSo1KHtszMTAwdOhQbN26EUqkEAOjq6uLzzz/HokWLYGFhofImiYio7OXn52P69OnIzc2VamfOdEJISFv89JMaGyMiAIBOaRcYNGgQIiMjsXfvXqSnpyM9PR179uzB6dOn8e2335ZFj0REVMbu3r2LX375RRbYZs8egWvX2qqxKyJ6Vqn3tO3ZswehoaFo166dVPP09MTy5cvRqVMnlTZHRERlLyQkRHaRWVxcHaxd2x/16yt4/hqRBil1aKtevXqxh0AtLCxQtWpVlTRFRERl7+nTp5j+XCpbv74PbtyoDz8/YOpUNTVGRMUq9eHRCRMmYNSoUUhOTpZqycnJGDNmDH7iSQ9ERFrh8uXLRQJbQIAv7t+vj507GdiINFGpH2PVokULXL9+HdnZ2XB0dAQAJCQkwNDQEG+99ZZs7NmzZ1XXaSXEx1gRkaoJIbB8+XLZIwcjItoiM7MTwsPV2BhRBaIxj7Hq3r07FAqFyhogIqLykZaWhgULFshq+/cPRkaGLc9dI9ICKntgPKke97QRkar89ddfOHz4sDSdmVkFEREjEB5e6rNkiOgVNGZPm7OzM06dOoXq1avL6unp6WjZsiVu3rypsuaIiOjN5OXlYepzJ6j9/ntXxMa2wvr1amqKiF5LqUNbfHw88vPzi9Szs7Nx584dlTRFRERvLiEhAatXr5bVdu0ahSdPqmD9evDpBkRapsT7xUNCQhASEgIACA0NlaZDQkKwc+dOTJkyBU5OTmXWaLdu3eDo6AgjIyPY29ujX79+SExMlI0JDQ2Fq6srqlSpAmtra/Ts2RPx8fGyMUePHkXLli1haGiIevXqITg4uMh7LVq0CHXq1IGRkRHatm2LkydPyuY/ffoUQ4cORfXq1WFmZoaePXvi3r17sjEJCQno0qULTExMYGNjgzFjxiAvL08lPwsioleZP3+7LLDFxtbHxo3+iIqqgpgYBjYibVTic9p0dArynUKhwPOL6Ovro06dOpg1axa6du2q+i4BzJkzB25ubrC3t8fdu3fx448/AgDC//9yp7i4OLi4uGDUqFHw9vZGRkYGRo4ciaysLOkq1ri4ODRp0gSDBw/G119/jbCwMIwYMQJ79+6Fp6cnAGDz5s3o378/li5dirZt22Lu3LnYunUrYmNjpeerDhkyBHv37kVwcDAsLCwwbNgw6Ojo4Pjx4wAKHgXTvHlz2NnZYcaMGUhKSkL//v0xaNAgTJs2rcSfmee0EVFpPX78GDNmzJDVcnP74fBhZ/j6MqwRlYey+v4u9YUITk5OOHXqFKysrFTWxOsICQlBjx49kJ2dDX19fWzbtg19+vRBdna2FDB///13dO/eXRrj4+ODvXv34uLFi9J6evfujfT0dBw4cAAA0LZtW7z99ttYuHAhAECpVMLBwQHff/89fH19kZGRAWtra2zYsAG9evUCAMTExMDFxQURERFwdXXF/v370bVrVyQmJsLW1hYAsHTpUvj4+CA1NRUGBgYl+owMbURUGtHR0di5c6esNnXqOLRurc/beRCVo7L6/i71ZUNxcXFqD2xpaWlYv3493N3doa+vDwBo1aoVdHR0sHr1auTn5yMjIwPr1q2Dh4eHNCYiIgIeHh6ydXl6eiIiIgIAkJOTgzNnzsjG6OjowMPDQxpz5swZ5ObmysY0bNgQjo6O0piIiAg0bdpUCmyF75OZmYlLly698HNlZ2cjMzNT9iIiehUhBBYuXCgLbH/+2Q5Tp/rD2Vkfvr5qbI6IVKbUFyL8/PPPL50/ceLE127mVXx8fLBw4UI8fvwYrq6u2LNnjzTPyckJBw8exGeffYZvv/0W+fn5cHNzw759+6QxycnJsiAFALa2tsjMzMSTJ0/w4MED5OfnFzsmJiZGWoeBgQEsLS2LjCl8SsSL3qdw3osEBARg8uTJJfxpEBEB//zzDxYtWiSrLVz4HdLSrLFzJw+HElUkpd7TtnPnTtlry5YtmD59OmbNmoVdu3aVal2+vr5QKBQvfRWGJQAYM2YMoqKicPDgQejq6qJ///7S+XXJyckYNGgQBgwYgFOnTuHYsWMwMDBAr169ipyDp6n8/PyQkZEhvW7fvq3ulohIgx0+fFgW2DIzq2Py5IlIS7Pm+WtEFVCp97RFRUUVqWVmZsLLywuffPJJqdY1evRoeHl5vXSMs7Oz9HsrKytYWVmhfv36cHFxgYODA06cOAE3NzcsWrQIFhYWCAoKksb/9ttvcHBwQGRkJFxdXWFnZ1fkKs979+7B3NwcxsbG0NXVha6ubrFj7OzsAAB2dnbIyclBenq6bG/b82Oev+K0cJ2FY4pjaGgIQ0PDl/48iIhyc3OLXNS0Y0cPZGc3g6srGNiIKqhSh7bimJubY/Lkyfj444/Rr1+/Ei9nbW0Na2vr13pPpVIJoOA8MKDgiqnCCxAK6erqysY+f7gUAA4dOgQ3NzcAgIGBAVq1aoWwsDD06NFDWjYsLAzDhg0DUHDunL6+PsLCwtCzZ08AQGxsLBISEqT1uLm5YerUqUhJSZGuOD106BDMzc3RqFGj1/q8REQAMGHCTejrr5PV5s8fA2trEwQFMawRVWQqCW0ApEN6ZSEyMhKnTp1Cu3btULVqVdy4cQM//fQT6tatKwWlLl26YM6cOfj555/Rp08fZGVlYdy4cahduzZatGgBABg8eDAWLlyIsWPHYuDAgTh8+DC2bNmCvXv3Su81atQoDBgwAK1bt0abNm0wd+5cPHr0CF999RUAwMLCAt7e3hg1ahSqVasGc3NzfP/993Bzc4OrqysA4KOPPkKjRo3Qr18/BAUFITk5GRMmTMDQoUO5J42IXtumTZugrx8rTV+92hhxcb2wejXDGlFlUOrQNn/+fNm0EAJJSUlYt24dOnfurLLGnmViYoIdO3bA398fjx49gr29PTp16oQJEyZIIahjx47YsGEDgoKCEBQUBBMTE7i5ueHAgQMwNjYGUHCxwt69ezFy5EjMmzcPtWrVwooVK6R7tAHA559/jtTUVEycOBHJyclo3rw5Dhw4ILuwYM6cOdDR0UHPnj2RnZ0NT09PLF68WJqvq6uLPXv2YMiQIXBzc4OpqSkGDBjwyos4iIiK8/DhQ8yaNUtWW7XKC6mptfH4sZqaIqJy91r3aXuWjo4OrK2t0bFjR/j5+aFKlSoqbbAy433aiOjs2bP4/fffZbUpU8ZDqdSDnx/w3GNFiUgDaMwD4+Pi4lT25kREVDylUom5c+ciKytLqv35Zwe4ur6LNm14sQFRZfRa57Slp6fj+vXrAIB69eoVuWcZERG9vnv37mHp0qWy2vz53yMtrRqePAGfbkBUSZUqtMXHx2Po0KEIDQ2V7n2mUCjQqVMnLFy4EHXq1CmLHomIKo3Q0FCcOHFCmk5KssOxY9/A2loBGxvw6QZElViJQ9vt27fh6uoKfX19TJkyBS4uLgCAy5cvY8mSJXBzc8OpU6dQq1atMmuWiKiiysnJQUBAgKy2dWsv3LrVGOvX81AoEZXiQgRvb29cv34doaGhMDIyks178uQJOnXqhLfeegsrVqwok0YrI16IQFQ5rFt3DTdvbpDV5swZC3t7Y0yfzsBGpG3UfiHCgQMHsHnz5iKBDQCMjY0xZcoU9O7dW2WNERFVdEIIrFu3TnaB19mzzfH7792xaxfDGhHJlTi0/fPPPy89Z83Z2RlpaWmq6ImIqMLLzMzEnDlzZLXly72RlFQLfn4MbERUVIlDm729PS5fvvzCc9YuXrz40udqEhFRgcjISBw4cECa1tfXR+PGPnB01MXixQxsRFS8Eoe2Hj164Mcff0RYWFiR54WmpKTAx8dHel4nEREVpVQqERQUJD0zGQBiYj7Cxo0Fj+Pr3l1dnRGRNijxhQgPHjxA27ZtkZycjC+//BINGzaEEAJXrlzBhg0bYGdnhxMnTqBatWpl3XOlwQsRiCqOxMRELF++XFY7duwHjBhhyT1rRBWM2i9EqFq1KiIjIzFu3Dhs2rQJ6enpAABLS0t88cUXmDZtGgMbEVEx9uzZgzNnzkjTjx45Yvp0LygUCjV2RUTaptTPHgUKrnhKTU0FAFhbW/MfnjLCPW1E2u3p06eYPn26rLZxY29cu9YA+flqaoqIypza97Q9S6FQwMbGRmVNEBFVNFeuXMGWLVtktYAAX2RnG6JXLzU1RURa7bVCGxERFU8IgZUrV+Lu3btS7datt2Fv/1/o6wOjRwNTp6qxQSLSWgxtREQq8uDBA8yfP19WCw//BkOH2qNbN4Y1InozDG1ERCpw/Phx/PHHH9L0w4em2Lt3FC5f1lFjV0RUkTC0ERG9gfz8fEydOhXPXtO1Z89/cfr022jQQI2NEVGFU6LQ9vzu/pcZPnz4azdDRKRNNmy4jWvXVslq69ePwrVrVWBkBAQFqakxIqqQSnTLDycnp5KtTKHAzZs337gpKsBbfhBprp07dyI6Olqavn27Hlau7IuGDYGqVQFfXz6OiqiyUustP+Li4lT2hkRE2uzx48eYMWOGrLZu3Ze4e7cu3NwY1oio7Lz2OW05OTmIi4tD3bp1oafHU+OIqGILCQHWrLmA//xnh6weGOiH/HwDjBnDq0OJqGyV+rKmx48fw9vbGyYmJmjcuDESEhIAAN9//z0CAwNV3iARkbqEhADu7sDu3QJ//bVYFtguX34Hkyb5o0ULA+TkMLARUdkrdWjz8/PD+fPncfToURgZGUl1Dw8PbN68WaXNERGpU2AgcPXqfZw79zPMzFKl+qJFQxAd7SEdDiUiKg+lPq65a9cubN68Ga6urrJnjjZu3Bg3btxQaXNEROo0YMBRJCcfk6YfPLDEgQPDUa+egueuEVG5K3VoS01NLfa5o48ePeKD44lI64WEAEFBufjww2my+rFj3ZCY2AJBQQxrRKQepT482rp1a+zdu1eaLgxqK1asgJubm+o6IyJSg2XL4osEthkzfsSRIy1QrRoDGxGpT6n3tE2bNg2dO3fG5cuXkZeXh3nz5uHy5csIDw/HsWPHXr0CIiINtXnzZrRpEyNNK5Uu2LLlM1haAg4OPH+NiNSr1KGtXbt2OHfuHAIDA9G0aVMcPHgQLVu2REREBJo2bVoWPRIRlYmQkIKLDUaPfoSLF2fK5gUHD4C9fR1cuaKm5oiInvNaN1irW7culi9frupeiIjKlY8PYGwchYsXQ2T1S5fGw95ej3vWiEijlCi0ZWZmlniFfNwSEWkDIQS6dp0HM7MMqXbkyHs4dux9mJkBWVnq642IqDglCm2WlpYlvjI0Pz//jRoiIiprKSkpWLJkCczM/q2tWTMMOTnVYWwMDB+uvt6IiF6kRKHtyJEj0u/j4+Ph6+sLLy8v6WrRiIgIrFmzBgEBAWXTJRGRiixZcggpKeHSdHq6DebOHYyGDRW4eVONjRERvUKJQtt7770n/f7nn3/G7Nmz0adPH6nWrVs3NG3aFL/++isGDBig+i6JiN7Qzp05iI6W/8eyZ8+euHmzCSIjeWUoEWk+hRBClGYBExMTnD9/Hm+99ZasfvXqVTRv3hyPHz9WaYOVWWZmJiwsLJCRkcFzBYnewPXr17F+/XpZrWnTsfj0U2M1dUREFVlZfX+X+ua6Dg4OxV45umLFCjg4OKikKSIiVfntt99kge3cuWYIDfVnYCMirVPqW37MmTMHPXv2xP79+9G2bVsAwMmTJ3Ht2jVs375d5Q0SEb2OzMxMzJkzR1arX38gQkMdeCiUiLRSqQ+PAsCdO3ewePFixMQU3DncxcUFgwcP5p42FePhUaKSK7xRbocOwPXrp9Co0T5pnq6uLvz8/KCrq6vGDomosiir7+/XCm1UPhjaiF4sJKTg5rhCAEFBBYEtMlKJH3+cCROTJ9I4Dw8PvPPOO2rslIgqG40Kbenp6Vi5ciWu/P/zXRo3boyBAwfCwsJCZY0RQxvRy7i7AxERBb9v2BCwtExCp06/ysb88MMPsLS0LP/miKhS05gLEU6fPo26detizpw5SEtLQ1paGmbPno26devi7NmzKmuMiOhlfH0LwlrNmkC9evtkgc3EpBYmTpzIwEZEFUqp97S1b98e9erVw/Lly6GnV3AdQ15eHr7++mvcvHkTf/75Z5k0WhlxTxvRy2VnZyMwMFBW27Tpc1St2hDh4S9YiIiojJXV93eprx49ffq0LLABgJ6eHsaOHYvWrVurrDEioucVXmzg6wvUrx+DzZs3y+YHBPhAR8cI06erqUEiojJU6tBmbm6OhIQENGzYUFa/ffs2qlSporLGiIieFxgIREQI7NmzGjVr3pbqp061xt69XdCwITB9OtCtmxqbJCIqI6UObZ9//jm8vb0xc+ZMuLu7AwCOHz+OMWPGyB5tRUSkaqNGpePSpXmy2rJlg5CUVAO9egFbt6qpMSKiclDq0DZz5kwoFAr0798feXl5AAB9fX0MGTKkyLklRESqEh4ejkuXDknTurpGaNp0DOrU0cHSpdy7RkQV32vfp+3x48e4ceMGAKBu3bowMTFRaWPECxGIACA/Px8BAQHIz8+XaleudMKmTW3V2BUR0YtpzIUIhUxMTNC0aVOVNUJE9Lw7d+5g5cqVstrSpSOxbBn/E0NElU+JQ9vAgQNLNG7VqlWv3QwRUaHdu3fj3Llz0nSVKs7Ytu1LLFum4KFQIqqUShzagoODUbt2bbRo0QJ88hURlZUnT54gKChIVjtz5guEhLyFUaPU1BQRkQYocWgbMmQINm7ciLi4OHz11Vf48ssvUa1atbLsjYgqiZAQYOxYwMbmIj74YLts3h9/+GHMGAM1dUZEpDlKdSFCdnY2duzYgVWrViE8PBxdunSBt7c3PvroIygUirLss1LihQhUWbi7CzRrtgx2dvekWlycGz799CMeCiUiraNRD4wHgFu3biE4OBhr165FXl4eLl26BDMzM5U1RgxtVDmkpaVhwYIFstrKlYORkGCrpo6IiN6Mxl09qqOjA4VCASGE7FJ8IqKSOnbsGI4ePSpNC2GO2bN/wPff66ivKSIiDVWq0Pbs4dG///4bXbt2xcKFC9GpUyfo6PAfWSIqmby8PEydOlVW+/jjj9GyZUtMmqSenoiINF2JQ9t3332HTZs2wcHBAQMHDsTGjRthZWVVlr0RUQVUeGrFs44cGQ1/f55eQUT0MiU+p01HRweOjo5o0aLFSy862LFjh8qaq+x4ThtVNNu2bcOlS5ek6Tt3GuDSpd7w9eVjqIio4lD7OW39+/fnFaJEVCohIUBgIDB69CNcvDhTNu/Uqf745hsnLF+upuaIiLRMqW6uS0RUGoGBwOPH53Hx4i5Zfdy4cdDX11dPU0REWuq1rx4lInoZIQQ+/ngBcnIeSLV3330XHTp0UGNXRETai6GNiFQuNTUVixcvltWGDh3Ki5eIiN4AQxsRvbHCc9d8fYHExDDcu/e3NC811Qpnz34Hf3+eE0tE9CYY2ojotRWGtbQ04ObNXERFTZPNj4j4BJmZ/4Gvr5oaJCKqQBjaiOi1BQYCERHAe+/dQJ8+v8nmbd8+Br/8YsJbeRARqYjWPMagW7ducHR0hJGREezt7dGvXz8kJibKxmzZsgXNmzeHiYkJateujRkzZhRZz9GjR9GyZUsYGhqiXr16xV4Vu2jRItSpUwdGRkZo27YtTp48KZv/9OlTDB06FNWrV4eZmRl69uyJe/fuycYkJCSgS5cuMDExgY2NDcaMGYO8vLw3/0EQaYCQEMDdHejQARg6dAM6dPg3sMXHN4W/vz+ioxnYiIhUSWtCW4cOHbBlyxbExsZi+/btuHHjBnr16iXN379/P/r27YvBgwfj4sWLWLx4MebMmYOFCxdKY+Li4tClSxd06NAB586dw4gRI/D1118jNDRUGrN582aMGjUK/v7+OHv2LJo1awZPT0+kpKRIY0aOHInff/8dW7duxbFjx5CYmIhPP/1Ump+fn48uXbogJycH4eHhWLNmDYKDgzFx4sQy/ikRlY/AQODChSwYGEyGtfU1qb5hw1f45JNPX7IkERG9rhI/EUHThISEoEePHsjOzoa+vj6++OIL5ObmYuvWrdKYBQsWICgoCAkJCVAoFPDx8cHevXtx8eJFaUzv3r2Rnp6OAwcOAADatm2Lt99+Wwp7SqUSDg4O+P777+Hr64uMjAxYW1tjw4YNUmiMiYmBi4sLIiIi4Orqiv3796Nr165ITEyEra0tAGDp0qXw8fFBamoqDAwMSvQZ+UQE0lQ//XQaenp7ZbWDB8fDx0ePe9eIqNIrq+9vrdnT9qy0tDSsX78e7u7u0g06s7OzYWRkJBtnbGyMO3fu4NatWwCAiIgIeHh4yMZ4enoiIiICAJCTk4MzZ87Ixujo6MDDw0Mac+bMGeTm5srGNGzYEI6OjtKYiIgING3aVApshe+TmZkpe4QPkTYpOCSqxNSpM2WB7erVjvD398fx4wxsRERlSatCm4+PD0xNTVG9enUkJCRg9+7d0jxPT0/s2LEDYWFhUCqVuHr1KmbNmgUASEpKAgAkJyfLghQA2NraIjMzE0+ePME///yD/Pz8YsckJydL6zAwMIClpeVLxxS3jsJ5L5KdnY3MzEzZi0hTLFqUDE/PKcjLeyTVQkKG4/PP26uxKyKiykOtoc3X1xcKheKlr5iYGGn8mDFjEBUVhYMHD0JXVxf9+/dH4dHdQYMGYdiwYejatSsMDAzg6uqK3r17AyjYW6YNAgICYGFhIb0cHBzU3RIRAGDx4v1wd18mTd+9WwMzZ07EmTNVuXeNiKicqPWWH6NHj4aXl9dLxzg7O0u/t7KygpWVFerXrw8XFxc4ODjgxIkTcHNzg0KhwPTp0zFt2jQkJyfD2toaYWFhsnXY2dkVucrz3r17MDc3h7GxMXR1daGrq1vsGDs7O2kdOTk5SE9Pl+1te37M81ecFq6zcExx/Pz8MGrUKGk6MzOTwY3UKjs7G4GBgbLaH3/8D6dPN8Izf1SJiKgcqDW0WVtbw9ra+rWWVSqVAAq+VJ6lq6uLmjVrAgA2btwINzc36T3c3Nywb98+2fhDhw7Bzc0NAGBgYIBWrVohLCwMPXr0kN4nLCwMw4YNAwC0atUK+vr6CAsLQ8+ePQEAsbGxSEhIkNbj5uaGqVOnIiUlBTY2NtL7mJubo1GjRi/8TIaGhjA0NHytnweRql29ehUbN26U1Zo29YG/v9ELliAiorKkFTfXjYyMxKlTp9CuXTtUrVoVN27cwE8//YS6detKQemff/7Btm3b8P777+Pp06dYvXq1dEuOQoMHD8bChQsxduxYDBw4EIcPH8aWLVuwd++/J1WPGjUKAwYMQOvWrdGmTRvMnTsXjx49wldffQUAsLCwgLe3N0aNGoVq1arB3Nwc33//Pdzc3ODq6goA+Oijj9CoUSP069cPQUFBSE5OxoQJEzB06FCGMtJ4QgjMnr0GDx/ekmrnz7eEl9fHPBRKRKROQgtER0eLDh06iGrVqglDQ0NRp04dMXjwYHHnzh1pTGpqqnB1dRWmpqbCxMREfPDBB+LEiRNF1nXkyBHRvHlzYWBgIJydncXq1auLjFmwYIFwdHQUBgYGok2bNkXW8+TJE/Hdd9+JqlWrChMTE/HJJ5+IpKQk2Zj4+HjRuXNnYWxsLKysrMTo0aNFbm5uqT53RkaGACAyMjJKtRzR60pPTxeTJk2SvWrVuiN271Z3Z0RE2qOsvr+19j5tlQHv00bl6cSJE7IbTefkGGDevLH44QddTJ2qxsaIiLRMWX1/a8XhUSIqO/n5+ZgyJQgKRY5Ui4nxxMaNrgxrREQahKGNqBK7e/cuVqxYAYXi39qxYyMwYoSF+poiIqJiMbQRVVK///47zp49K03HxdVBzZr9cfiw4iVLERGRujC0EVUiISHAzJlP8cEH02X1jRv7oGfP+jwcSkSkwRjaiCqR1asv44MPtspq8+b5IjjYkLfzICLScAxtRJWAEALLly9H8+ZJUu3EibY4dqwTNm0CAxsRkRZgaCOq4NLS0rBgwQJZbfv2b3Hhgh0aNGBgIyLSFgxtRBXYX3/9hcOHD0vT2dlmCAwciQYNdODmBvj6qrE5IiIqFYY2ogpo1648nD8vv6qgS5cuSExsDVfXgrDGPWxERNqFoY2ogklISMD586tltSVLRqFFiyro1o1hjYhIWzG0EVUgO3bswIULF6RppfItzJ79BR4+BAIDGdiIiLQZQxuRlgsJAWbNeoyOHWfI6keOfImcnLoYPhw4coTnrxERaTuGNiItt2ZNNDp23CmrzZ07Dqam+rh7t2A6PFwNjRERkUoxtBFpqfHjBbKyFuE//7kv1Wxt22Ht2g+Qng7Y2YFXiBIRVSAMbURaKCEhAQYGq1G9+r+1hQu/w1tvWcPXt+D8NV4hSkRUsTC0EWmZVatW4fbt29K0ENXQosUwWFkpkJZWUOPhUCKiioehjUhLZGdnIzAwUFbz9PSEq6srAGD6dCAigleJEhFVVDrqboCIXu3s2bNFAtsPP/yAlBRXuLsXXEHq68tz2IiIKjKFEEKouwkqXmZmJiwsLJCRkQFzc3N1t0NqMnny5CI1f39/AIC7e8HeNTc3HhIlItIUZfX9zT1tRBomJKQgjG3dmlYksEVH90CLFv7SmA4duHeNiKiy4DltRBomMBCoVm0vLl8+Lav/8Ycf/v7bAElJBdMREQW/cg8bEVHlwNBGpEGUSiU8PafIas7OzujXrx9atADy8//dq1Z4Ww8iIqoceE6bBuM5bRVfSMi/4atJk5tYt26dbH79+l+jT5+aauqOiIheR1l9f3NPG5EaBQYWHOY8eHAJoqJSZPMmTpwIhUKhps6IiEjTMLQRqdGPPz7BhQtBstq7776LDh06qKkjIiLSVAxtRGoQEgJs2BAJF5cDsvqoUaNQpUoVNXVFRESajKGNqJwJIRAV9TNcXP6tGRkZwcfHR31NERGRxmNoIypHqampWLx4say2e/f/cPZsIzV1RERE2oKhjaic7Ny5E9HR0bLanDnjMXQo/xoSEdGr8duCqIzl5+fjl19+kdVcXFzw2Wef4f+fRkVERPRKDG1EZejq1avYuHGjrPbtt9/Czs5OTR0REZG2YmgjUqFnb5Z78eIc5OZmyubz3mtERPS6GNqIVCgwEIiOfoSoqJmyuoeHB9555x01dUVERBUBQxuRCnl5/YWkpMOyWpMmP+Kdd0zV1BEREVUUDG1EKrB7t8C5cz/LapaWlvjhhx/U1BEREVU0OupugEibhYQAnp7JRQLbF1988crAFhICuLsX/EpERPQqDG1EbyA0dBPc3ZfJalu2TMDHH7/1yjBW+LD4wMAybJCIiCoMhjai15Cbm4vJkyfDxiZWqjVv3hyhof64fFkXsbGvDmO+voCbW8GvREREr8Jz2ohKac2aS4iP3yarDR06FFZWVlAogO++A+7fBzp0ePl6unUreBEREZUE97QRlUJAQECRwBYa6g8rKysABSHM0RF4+hQ4cuTfMTx/jYiI3hRDG1EJZGZmYvLkycjJyZFqeXmdsXGjPx48kIex4g578vw1IiJ6UwohhFB3E1S8zMxMWFhYICMjA+bm5upup9I6fPgw/vrrL1nNx8cHRkZGcHcvCGNubkB4+IvX8eyTEnhIlIioYiur72/uaSP6f88fwhRCYPLkybLAZmdnB39/fxgZGQEo+cUE3boVhDoGNiIiel3c06bBuKetfBXuNWvYEKhT5w5cXVfK5ter1x99+zqpqTsiItIW3NNGVMYK95p16LCmSGCbPPknLFrEwEZEROrDW34Q/b9OnXIQFRUgq0VGtkFcXGe4uvJ+akREpF7c00aVXkgI0KvXOQQEyANbo0bDkZ7eGdOnv/x8NN7Og4iIygPPadNgPKetfEyePLlIzd/fv8TLl/QKUiIiqhzK6vubh0ep0nrw4AHmz58vq3Xv3h3Nmzcv1Xp8ff+9nQcREVFZYWijSmn//v04efKkrObn5wcDA4NSr4uPoyIiovLA0EaVilKpxJQpU2S1OnXqYMCAAWrqiIiIqGQY2qjSiI+Px5o1a2S1gQMHwsHBQU0dERERlRxDG1UKv/76K5KSkmS1iRMnQqFQqKkjIiKi0mFoowrt6dOnmD59uqzWrl07fPDBB2rqiIiI6PUwtFGF8uyD2e3tT2Hfvn2y+SNHjuTtU4iISCvx5rpUoQQGFtwzLSpqsiyw5eXpw9/fXxbYeFNcIiLSJgxtVKGMGPEPJk2S3yz33LleePvtcUXGFga8wMDy6o6IiOj18fAoVRinTp3ClSvyw6Hjxo2Dvr5+seN5U1wiItImDG2k9caPVyIvbxZMTB5LtZSUBvD07I0X5DUAvCkuERFpF4Y20jrPXmzw9ttJMDD4Fc8+yGDo0KGwsrJSX4NERERlgKGNtE7huWi7d+9DVNQpqa5U1sKkSQN57zUiIqqQGNpI64wZk43oaPnVA5999hlcXFzU1BEREVHZY2gjrRESAqxcGYuWLTfJ6j4+PjAyMlJTV0REROWDoY00XsE5bAItW65Gy5a3pXqrVq3QtWtXNXZGRERUfrTuPm3Z2dlo3rw5FAoFzp07J5sXHR2N9u3bw8jICA4ODggKCiqy/NatW9GwYUMYGRmhadOmRe6YL4TAxIkTYW9vD2NjY3h4eODatWuyMWlpaejbty/Mzc1haWkJb29vPHz4sNS90KuFhABDhqTD0/NnWFv/G9gGDRrEwEZERJWK1oW2sWPHokaNGkXqmZmZ+Oijj1C7dm2cOXMGM2bMwKRJk/Drr79KY8LDw9GnTx94e3sjKioKPXr0QI8ePXDx4kVpTFBQEObPn4+lS5ciMjISpqam8PT0xNOnT6Uxffv2xaVLl3Do0CHs2bMHf/75J7755ptS9UIv9uyTCjZuDMc338yT5hkZGeGnn34q9s8AERFRhSa0yL59+0TDhg3FpUuXBAARFRUlzVu8eLGoWrWqyM7Olmo+Pj6iQYMG0vRnn30munTpIltn27ZtxbfffiuEEEKpVAo7OzsxY8YMaX56erowNDQUGzduFEIIcfnyZQFAnDp1Shqzf/9+oVAoxN27d0vcS0lkZGQIACIjI6NUy2k7NzchdHTyxE8//SImTZokvU6cOKHu1oiIiF6prL6/tWZP27179zBo0CCsW7cOJiYmReZHRETg3XffhcEzN+zy9PREbGwsHjx4II3x8PCQLefp6YmIiAgAQFxcHJKTk2VjLCws0LZtW2lMREQELC0t0bp1a2mMh4cHdHR0EBkZWeJeipOdnY3MzEzZqzL6/vs7mDjxF+jq5km1kSNHom3btmrsioiISL20IrQJIeDl5YXBgwfLwtKzkpOTYWtrK6sVTicnJ790zLPzn13uRWNsbGxk8/X09FCtWrVXvs+z71GcgIAAWFhYSC8HB4cXjq2IQkKAQYN24+rVlVLNyckJEydOlD3onYiIqDJSa2jz9fWFQqF46SsmJgYLFixAVlYW/Pz81NlumfPz80NGRob0un379qsXqiCePHmCqKjJqFXrnFT74osv0L9/f94sl4iICGq+5cfo0aPh5eX10jHOzs44fPgwIiIiYGhoKJvXunVr9O3bF2vWrIGdnR3u3bsnm184bWdnJ/1a3Jhn5xfW7O3tZWOaN28ujUlJSZGtIy8vD2lpaa98n2ffoziGhoZFPmNFExIC+PgAQgBBQQXP/rx06RK2bdsmG+fn5yc7vExERFTZqTW0WVtbw9ra+pXj5s+fj19++UWaTkxMhKenJzZv3iyd5+Tm5obx48cjNzcX+v//lPBDhw6hQYMGqFq1qjQmLCwMI0aMkNZ16NAhuLm5ASg4FGdnZ4ewsDAppGVmZiIyMhJDhgyR1pGeno4zZ86gVatWAIDDhw9DqVSWqpfKKjAQiIkp/L1AYuIyWcB1dXWFp6enmrojIiLSYCq9rKGcxMXFFbl6ND09Xdja2op+/fqJixcvik2bNgkTExOxbNkyaczx48eFnp6emDlzprhy5Yrw9/cX+vr64sKFC9KYwMBAYWlpKXbv3i2io6NF9+7dhZOTk3jy5Ik0plOnTqJFixYiMjJS/P333+Ktt94Sffr0KVUvJVERrx7dvVuImjWFsLG5L7sydNKkSSI5OVnd7REREb2xsvr+rjChTQghzp8/L9q1aycMDQ1FzZo1RWBgYJFlt2zZIurXry8MDAxE48aNxd69e2XzlUql+Omnn4Stra0wNDQUH3zwgYiNjZWNuX//vujTp48wMzMT5ubm4quvvhJZWVml7uVVNC207d5dcDuO3bvfbGzfvkdlYW327NkiPz9f9Q0TERGpQVl9fyuEEEKde/roxTIzM2FhYYGMjAyNuHrS3R2IiADc3IDw8NKPzcvLw9SpU2XjHBw+xsCBLcuoYyIiovJXVt/ffPYolZivb8E5ab6+pR9769YtBAcHy8aMHj0aZmZmqm+UiIioAuKeNg2maXvaXte2bdtw6dIlabpBgwbo3bu3GjsiIiIqO9zTRlrn0aNHmDlzpqzWv39/ODk5qakjIiIi7cXQRmXi/Pnz2LVrl6w2btw46RYoREREVDoMbaRSQggsWLBA9ozV9u3bo2PHjmrsioiISPsxtJHKpKamYvHixbLa0KFDYWVlpaaOiIiIKg6GNlKJsLAw/P3339L0w4dWCAr6js8NJSIiUhGGNnptISFAUFAuPvxwmqweEfEJvvvuP2BeIyIiUh0ddTdA2mv58htFAltQ0BhkZv4H3bqpqSkiIqIKinva6LVs2LABrVtfk6abNGkCff2eaNasZDffJSIiotJhaKNSycrKwuzZs2W1r776Co6OjgDAPWxERERlhKGNSuz06dPYu3evrDZ+/Hjo6fGPERERUVnjty1JQkL+fV7os3vMlEolZs+ejUePHkm1jh07on379mrokoiIqHJiaCNJYCAQEVHwa2FoS05OxrJly2Tjhg8fjqpVq6qhQyIiosqLoY0kvr7/7mkDgP379+PkyZPSfHt7ewwaNIj3XiMiIlIDhjYCID806umZjcmTA2Xz//e//6FRo0Zq6o6IiIgY2gjAv4dGV668iqiojbJ5Pj4+MDIyUlNnREREBDC00f/z8RE4fHgNqlW7JdVu3GiBXr26gXmNiIhI/RjaCBkZGTh3bi6qVfu39uuvXyMxsSZ27gTWr+f914iIiNSNoa2SO3HiBEJDQ6VpAwMDNGo0FlWq6MLYGHj4UH41KREREakHQ1sllZ+fj6CgIOTk5Eg1T09PuLq6AgC6d5dfnEBERETqxdBWCd29excrVqyQ1UaMGAELCwtZrVs37mEjIiLSFDrqboDK37OBrXbt2pg4caIU2EJCAHf3gl+JiIhIczC0VULW1m0AAM7OveHl5SW7We6zT0UgIiIizcHDo5XQb791RkREZ7i5Af36yec9/1QEIiIi0gzc01YJ+foCbm7FB7Nu3YDwcJ7LRkREpGkY2iqhZ4MZz2EjIiLSDgxtlRzPYSMiItIODG2VWEgIkJYGNGzIc9iIiIg0HUNbJRYYCMTGAlWr8hw2IiIiTcfQVom97IIEIiIi0iy85UclxiceEBERaQ/uaSMiIiLSAgxtRERERFqAoY2IiIhICzC0EREREWkBhjYiIiIiLcDQRkRERKQFGNqIiIiItABDGxEREZEWYGgjIiIi0gIMbURERERagKGNiIiISAswtBERERFpAYY2IiIiIi2gp+4G6MWEEACAzMxMNXdCREREJVX4vV34Pa4qDG0aLCsrCwDg4OCg5k6IiIiotLKysmBhYaGy9SmEqmMgqYxSqURiYiKqVKkChUKh7nbKVWZmJhwcHHD79m2Ym5urux16BreN5uK20VzcNppN1dtHCIGsrCzUqFEDOjqqOxONe9o0mI6ODmrVqqXuNtTK3Nyc/8BpKG4bzcVto7m4bTSbKrePKvewFeKFCERERERagKGNiIiISAswtJFGMjQ0hL+/PwwNDdXdCj2H20ZzcdtoLm4bzaYt24cXIhARERFpAe5pIyIiItICDG1EREREWoChjYiIiEgLMLQRERERaQGGNlK57OxsNG/eHAqFAufOnZPNi46ORvv27WFkZAQHBwcEBQUVWX7r1q1o2LAhjIyM0LRpU+zbt082XwiBiRMnwt7eHsbGxvDw8MC1a9dkY9LS0tC3b1+Ym5vD0tIS3t7eePjwYal7qSi6desGR0dHGBkZwd7eHv369UNiYqJszJYtW9C8eXOYmJigdu3amDFjRpH1HD16FC1btoShoSHq1auH4ODgImMWLVqEOnXqwMjICG3btsXJkydl858+fYqhQ4eievXqMDMzQ8+ePXHv3j3ZmISEBHTp0gUmJiawsbHBmDFjkJeX9+Y/CA1Ukm0TGhoKV1dXVKlSBdbW1ujZsyfi4+NlY7htysarts+kSZOgUCiKvExNTWXr4b9rqleSvztCCMycORP169eHoaEhatasialTp8rGaNXfHUGkYsOHDxedO3cWAERUVJRUz8jIELa2tqJv377i4sWLYuPGjcLY2FgsW7ZMGnP8+HGhq6srgoKCxOXLl8WECROEvr6+uHDhgjQmMDBQWFhYiF27donz58+Lbt26CScnJ/HkyRNpTKdOnUSzZs3EiRMnxF9//SXq1asn+vTpU6peKpLZs2eLiIgIER8fL44fPy7c3NyEm5ubNH/fvn1CT09PLFmyRNy4cUPs2bNH2NvbiwULFkhjbt68KUxMTMSoUaPE5cuXxYIFC4Surq44cOCANGbTpk3CwMBArFq1Sly6dEkMGjRIWFpainv37kljBg8eLBwcHERYWJg4ffq0cHV1Fe7u7tL8vLw80aRJE+Hh4SGioqLEvn37hJWVlfDz8yvjn5J6vGrb3Lx5UxgaGgo/Pz9x/fp1cebMGfHuu++KFi1ayMZw25SNV22frKwskZSUJHs1atRIDBgwQBrDf9fKxqu2jRBCfP/996JBgwZi9+7d4ubNm+L06dPi4MGD0nxt+7vD0EYqtW/fPtGwYUNx6dKlIqFt8eLFomrVqiI7O1uq+fj4iAYNGkjTn332mejSpYtsnW3bthXffvutEEIIpVIp7OzsxIwZM6T56enpwtDQUGzcuFEIIcTly5cFAHHq1ClpzP79+4VCoRB3794tcS8V2e7du4VCoRA5OTlCCCH69OkjevXqJRszf/58UatWLaFUKoUQQowdO1Y0btxYNubzzz8Xnp6e0nSbNm3E0KFDpen8/HxRo0YNERAQIIQo2Fb6+vpi69at0pgrV64IACIiIkIIUfBnSEdHRyQnJ0tjlixZIszNzWXbq6J6ftts3bpV6Onpifz8fGlMSEiIbAy3Tfl5fvs879y5cwKA+PPPP6Ua/10rH89vm8uXLws9PT0RExPzwmW07e8OD4+Syty7dw+DBg3CunXrYGJiUmR+REQE3n33XRgYGEg1T09PxMbG4sGDB9IYDw8P2XKenp6IiIgAAMTFxSE5OVk2xsLCAm3btpXGREREwNLSEq1bt5bGeHh4QEdHB5GRkSXupaJKS0vD+vXr4e7uDn19fQAFh7SNjIxk44yNjXHnzh3cunULwKu3TU5ODs6cOSMbo6OjAw8PD2nMmTNnkJubKxvTsGFDODo6yrZf06ZNYWtrK3ufzMxMXLp0SVU/Bo1U3LZp1aoVdHR0sHr1auTn5yMjIwPr1q2Dh4eHNIbbpnwUt32et2LFCtSvXx/t27eXavx3rewVt21+//13ODs7Y8+ePXByckKdOnXw9ddfIy0tTVpO2/7uMLSRSggh4OXlhcGDB8v+UXlWcnKy7A8sAGk6OTn5pWOenf/sci8aY2NjI5uvp6eHatWqvfJ9nn2PisbHxwempqaoXr06EhISsHv3bmmep6cnduzYgbCwMCiVSly9ehWzZs0CACQlJQF48c8sMzMTT548wT///IP8/PxXbhsDAwNYWlq+dAy3zb/bxsnJCQcPHsS4ceNgaGgIS0tL3LlzB1u2bJHGcNuUrZdtn2c9ffoU69evh7e3t6zOf9fKzsu2zc2bN3Hr1i1s3boVa9euRXBwMM6cOYNevXpJY7Tt7w5DG72Ur69vsSfZPvuKiYnBggULkJWVBT8/P3W3XGmUdNsUGjNmDKKionDw4EHo6uqif//+EP//QJRBgwZh2LBh6Nq1KwwMDODq6orevXsDKPhfJZWOKrdNcnIyBg0ahAEDBuDUqVM4duwYDAwM0KtXL2kMlY4qt8+zdu7ciaysLAwYMKA8P06Fospto1QqkZ2djbVr16J9+/Z4//33sXLlShw5cgSxsbHq+ohvRE/dDZBmGz16NLy8vF46xtnZGYcPH0ZERESR57a1bt0affv2xZo1a2BnZ1fkaprCaTs7O+nX4sY8O7+wZm9vLxvTvHlzaUxKSopsHXl5eUhLS3vl+zz7HpqupNumkJWVFaysrFC/fn24uLjAwcEBJ06cgJubGxQKBaZPn45p06YhOTkZ1tbWCAsLk63jRT8zc3NzGBsbQ1dXF7q6uq/cfjk5OUhPT5f9r/T5Mc9fmVWZt82iRYtgYWEhuwrwt99+g4ODAyIjI+Hq6sptU0qq3D7PWrFiBbp27Vpkjwr/XSs5VW4be3t76OnpoX79+tJ4FxcXAAVXcjZo0ED7/u6U+Ow3ope4deuWuHDhgvQKDQ0VAMS2bdvE7du3hRD/niT77Am8fn5+RS5E6Nq1q2zdbm5uRU7YnTlzpjQ/IyOj2BN2T58+LY0JDQ0t9oTdl/VSkd26dUsAEEeOHHnhmH79+smuxBo7dqxo0qSJbEyfPn2KnLA7bNgwaTo/P1/UrFmzyAm727Ztk8bExMQUe8Lus1dmLVu2TJibm4unT5++3gfWIs9vm1GjRok2bdrIxiQmJgoA4vjx40IIbpvy9KK/Ozdv3hQKhUL8/vvvRZbhv2vl4/ltU/g9dP36dWlM4YUisbGxQgjt+7vD0EZlIi4ursjVo+np6cLW1lb069dPXLx4UWzatEmYmJgUueWHnp6emDlzprhy5Yrw9/cv9tJ4S0tLsXv3bhEdHS26d+9e7KXxLVq0EJGRkeLvv/8Wb731luzS+JL0UlGcOHFCLFiwQERFRYn4+HgRFhYm3N3dRd26daV/LFJTU8WSJUvElStXRFRUlBg+fLgwMjISkZGR0noKL40fM2aMuHLlili0aFGxl8YbGhqK4OBgcfnyZfHNN98IS0tL2RVTgwcPFo6OjuLw4cPi9OnTRS7TL7w0/qOPPhLnzp0TBw4cENbW1hXythIl2TZhYWFCoVCIyZMni6tXr4ozZ84IT09PUbt2bfH48WMhBLdNWSnJ9ik0YcIEUaNGDZGXl1dkPfx3TfVKsm3y8/NFy5YtxbvvvivOnj0rTp8+Ldq2bSs+/PBDaT3a9neHoY3KRHGhTQghzp8/L9q1aycMDQ1FzZo1RWBgYJFlt2zZIurXry8MDAxE48aNxd69e2XzlUql+Omnn4Stra0wNDQUH3zwgfS/pkL3798Xffr0EWZmZsLc3Fx89dVXIisrq9S9VATR0dGiQ4cOolq1asLQ0FDUqVNHDB48WNy5c0cak5qaKlxdXYWpqakwMTERH3zwgThx4kSRdR05ckQ0b95cGBgYCGdnZ7F69eoiYxYsWCAcHR2FgYGBaNOmTZH1PHnyRHz33XeiatWqwsTERHzyySciKSlJNiY+Pl507txZGBsbCysrKzF69GiRm5urmh+IBinJthFCiI0bN4oWLVoIU1NTYW1tLbp16yauXLkiG8Nto3ol3T75+fmiVq1aYty4cS9cF/9dU62Sbpu7d++KTz/9VJiZmQlbW1vh5eUl7t+/LxujTX93FELwTFYiIiIiTcfLwoiIiIi0AEMbERERkRZgaCMiIiLSAgxtRERERFqAoY2IiIhICzC0EREREWkBhjYiIiIiLcDQRkRUBhQKBXbt2qXuNmSOHj0KhUKB9PR0dbdCRK+BoY2I6A1MmjRJeqg3EVFZYmgjIiIi0gIMbURUqSmVSgQEBMDJyQnGxsZo1qwZtm3bBuDfw4lhYWFo3bo1TExM4O7ujtjYWABAcHAwJk+ejPPnz0OhUEChUCA4OFha9z///INPPvkEJiYmeOuttxASElKingrfNzQ0FC1atICxsTE6duyIlJQU7N+/Hy4uLjA3N8cXX3yBx48fS8tlZ2dj+PDhsLGxgZGREdq1a4dTp06p7odFRGrF0EZElVpAQADWrl2LpUuX4tKlSxg5ciS+/PJLHDt2TBozfvx4zJo1C6dPn4aenh4GDhwIAPj8888xevRoNG7cGElJSUhKSsLnn38uLTd58mR89tlniI6Oxn//+1/07dsXaWlpJe5t0qRJWLhwIcLDw3H79m189tlnmDt3LjZs2IC9e/fi4MGDWLBggTR+7Nix2L59O9asWYOzZ8+iXr168PT0LNV7EpEGK9Xj5YmIKpCnT58KExMTER4eLqt7e3uLPn36iCNHjggA4o8//pDm7d27VwAQT548EUII4e/vL5o1a1Zk3QDEhAkTpOmHDx8KAGL//v2v7Ku49w0ICBAAxI0bN6Tat99+Kzw9PaX16+vri/Xr10vzc3JyRI0aNURQUJBsvQ8ePHhlD0SkefTUmBeJiNTq+vXrePz4MT788ENZPScnBy1atJCm//Of/0i/t7e3BwCkpKTA0dHxpet/djlTU1OYm5sjJSWlxP09u7ytrS1MTEzg7Owsq508eRIAcOPGDeTm5uKdd96R5uvr66NNmza4cuVKid+TiDQXQxsRVVoPHz4EAOzduxc1a9aUzTM0NMSNGzcAFISfQgqFAkDBuXCv8uxyhcuWZLnillcoFG+8PiLSbjynjYgqrUaNGsHQ0BAJCQmoV6+e7OXg4FCidRgYGCA/P7+MO321unXrwsDAAMePH5dqubm5OHXqFBo1aqTGzohIVbinjYgqrSpVquDHH3/EyJEjoVQq0a5dO2RkZOD48eMwNzdH7dq1X7mOOnXqIC4uDufOnUOtWrVQpUoVGBoalkP3cqamphgyZAjGjBmDatWqwdHREUFBQXj8+DG8vb3LvR8iUj2GNiKq1KZMmQJra2sEBATg5s2bsLS0RMuWLTFu3LgSHXrs2bMnduzYgQ4dOiA9PR2rV6+Gl5dX2TdejMDAQCiVSvTr1w9ZWVlo3bo1QkNDUbVqVbX0Q0SqpRBCCHU3QUREREQvx3PaiIiIiLQAQxsRUTkbPHgwzMzMin0NHjxY3e0RkYbi4VEionKWkpKCzMzMYueZm5vDxsamnDsiIm3A0EZERESkBXh4lIiIiEgLMLQRERERaQGGNiIiIiItwNBGREREpAUY2oiIiIi0AEMbERERkRZgaCMiIiLSAgxtRERERFrg/wDVD4K8mvwLiAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -456,7 +616,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXFklEQVR4nO3de1yO9/8H8Nfd+XxASZScFsacD7WZw/qJzdlsY0NzGjJDQ2FyLjnN+TCUOR9HGDmGqTGnCJlTNEpmKiqd7uv3R98uLhV3ubuv7u7X8/Hoket9XV33O/e2+7XP9bk+l0IQBAFEREREOkBP7gaIiIiINIXBh4iIiHQGgw8RERHpDAYfIiIi0hkMPkRERKQzGHyIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4i0kkKhwJQpU+RuQ+Tl5QUXFxe52yCit2DwISK1CQkJgUKhEL9MTEzw3nvvYcSIEXj06FGJvnZERASmTJmCpKQktZ63TZs2kt+pXLlyaNasGdauXQulUqmW15g1axZ2796tlnMR0ZsZyN0AEZU906ZNQ7Vq1fDixQv88ccfWL58OX7//XdER0fDzMxMLa+Rnp4OA4OX/wmLiIjA1KlT4eXlBRsbG7W8Rp4qVaogICAAAPD48WP8+uuvGDhwIP7++28EBga+8/lnzZqFzz//HN26dXvncxHRmzH4EJHadezYEU2bNgUADBo0COXLl8f8+fOxZ88e9O7du9jnVSqVyMzMhImJCUxMTNTV7ltZW1vjm2++Ebe/++47uLq6YsmSJZg+fToMDQ011gsRvRte6iKiEteuXTsAwN27dwEAc+fOhbu7O8qXLw9TU1M0adIEO3bsyPdzCoUCI0aMwMaNG/H+++/D2NgYBw8eFPflzfGZMmUKxo4dCwCoVq2aeFkqNjYWrVu3RoMGDQrsy9XVFZ6enkX+fczMzNCyZUukpqbi8ePHhR6XmpoKHx8fODk5wdjYGK6urpg7dy4EQZD8jqmpqVi3bp3Yt5eXV5F7IiLVcMSHiErc7du3AQDly5cHACxcuBBdunTB119/jczMTGzZsgW9evXCvn378Nlnn0l+9tixY9i2bRtGjBiBChUqFDiBuEePHvj777+xefNmLFiwABUqVAAA2NnZoW/fvhg8eDCio6NRr1498Wf++usv/P3335g0aVKxfqc7d+5AX1+/0MtqgiCgS5cuOH78OAYOHIiGDRsiLCwMY8eOxYMHD7BgwQIAwPr16zFo0CA0b94cQ4YMAQDUqFGjWD0RkQoEIiI1CQ4OFgAIR44cER4/fizExcUJW7ZsEcqXLy+YmpoK//zzjyAIgpCWlib5uczMTKFevXpCu3btJHUAgp6ennD16tV8rwVA8Pf3F7fnzJkjABDu3r0rOS4pKUkwMTERxo8fL6mPHDlSMDc3F54/f/7G36l169ZC7dq1hcePHwuPHz8Wrl+/LowcOVIAIHTu3Fk8rn///kLVqlXF7d27dwsAhBkzZkjO9/nnnwsKhUK4deuWWDM3Nxf69+//xj6ISD14qYuI1M7DwwN2dnZwcnLCV199BQsLC/z222+oXLkyAMDU1FQ89unTp0hOTkarVq1w4cKFfOdq3bo16tatW+xerK2t0bVrV2zevFm8xJSTk4OtW7eiW7duMDc3f+s5YmJiYGdnBzs7O9SpUweLFy/GZ599hrVr1xb6M7///jv09fUxcuRISd3HxweCIODAgQPF/p2IqPh4qYuI1G7p0qV47733YGBggIoVK8LV1RV6ei//P2vfvn2YMWMGLl26hIyMDLGuUCjynatatWrv3E+/fv2wdetWnDp1Ch9//DGOHDmCR48eoW/fvir9vIuLC3755RfxFv1atWrB3t7+jT9z7949ODo6wtLSUlKvU6eOuJ+INI/Bh4jUrnnz5uJdXa87deoUunTpgo8//hjLli1DpUqVYGhoiODgYGzatCnf8a+ODhWXp6cnKlasiA0bNuDjjz/Ghg0b4ODgAA8PD5V+3tzcXOVjiah046UuItKonTt3wsTEBGFhYRgwYAA6duyollBR0GhRHn19ffTp0wc7duzA06dPsXv3bvTu3Rv6+vrv/LqFqVq1Kh4+fIhnz55J6jExMeL+PG/qnYjUi8GHiDRKX18fCoUCOTk5Yi02NvadVy7Om6tT2MrNffv2xdOnT/Hdd9/h+fPnknV5SsKnn36KnJwcLFmyRFJfsGABFAoFOnbsKNbMzc3VvuI0ERWMl7qISKM+++wzzJ8/Hx06dECfPn2QmJiIpUuXombNmrh8+XKxz9ukSRMAwMSJE/HVV1/B0NAQnTt3FgNRo0aNUK9ePWzfvh116tRB48aN1fL7FKZz585o27YtJk6ciNjYWDRo0ACHDh3Cnj17MGrUKMkt602aNMGRI0cwf/58ODo6olq1amjRokWJ9kekqzjiQ0Qa1a5dO6xZswYJCQkYNWoUNm/ejNmzZ6N79+7vdN5mzZph+vTpiIqKgpeXF3r37p1vccF+/foBgMqTmt+Fnp4eQkNDMWrUKOzbtw+jRo3CtWvXMGfOHMyfP19y7Pz589GkSRNMmjQJvXv3xvLly0u8PyJdpRCEV5YQJSIqwxYuXIjRo0cjNjYWzs7OcrdDRDJg8CEinSAIAho0aIDy5cvj+PHjcrdDRDLhHB8iKtNSU1MRGhqK48eP48qVK9izZ4/cLRGRjDjiQ0RlWmxsLKpVqwYbGxsMHz4cM2fOlLslIpIRgw8RERHpDN7VRURERDqDwYeIiIh0Bic3v0apVOLhw4ewtLTkMvJERERaQhAEPHv2DI6OjpKHIr+Owec1Dx8+hJOTk9xtEBERUTHExcWhSpUqhe5n8HmNpaUlgNy/OCsrK5m7ISIiIlWkpKTAyclJ/BwvDIPPa/Iub1lZWTH4EBERaZm3TVPh5GYiIiLSGQw+REREpDMYfIiIiEhncI5PMeTk5CArK0vuNkgDDA0Noa+vL3cbRESkJgw+RSAIAhISEpCUlCR3K6RBNjY2cHBw4LpORERlAINPEeSFHnt7e5iZmfGDsIwTBAFpaWlITEwEAFSqVEnmjoiI6F0x+KgoJydHDD3ly5eXux3SEFNTUwBAYmIi7O3tedmLiEjLcXKzivLm9JiZmcncCWla3nvOeV1ERNqPwaeIeHlL9/A9JyIqOxh8iIiISGcw+BAREZHOYPDRAV5eXlAoFFAoFDA0NETFihXxf//3f1i7di2USqXK5wkJCYGNjU3JNUpERFTCGHx0RIcOHRAfH4/Y2FgcOHAAbdu2xQ8//IBOnTohOztb7vaIiIg0gsFHRxgbG8PBwQGVK1dG48aNMWHCBOzZswcHDhxASEgIAGD+/PmoX78+zM3N4eTkhOHDh+P58+cAgPDwcHz77bdITk4WR4+mTJkCAFi/fj2aNm0KS0tLODg4oE+fPuLaN0RERHlCQwF399zvcmHweQeCICAzM1OWL0EQ3rn/du3aoUGDBti1axcAQE9PD4sWLcLVq1exbt06HDt2DOPGjQMAuLu74+eff4aVlRXi4+MRHx+PH3/8EUDubd7Tp09HVFQUdu/ejdjYWHh5eb1zf0REVLYEBgKRkbnf5aI1CxgGBARg165diImJgampKdzd3TF79my4urqKx7x48QI+Pj7YsmULMjIy4OnpiWXLlqFixYol0lNWVhYCAgJK5Nxv4+fnByMjo3c+T+3atXH58mUAwKhRo8S6i4sLZsyYgaFDh2LZsmUwMjKCtbU1FAoFHBwcJOcYMGCA+Ofq1atj0aJFaNasGZ4/fw4LC4t37pGIiLRffHw8OnRYDVfXZujevYNsfWjNiM+JEyfg7e2NP//8E4cPH0ZWVhbat2+P1NRU8ZjRo0dj79692L59O06cOIGHDx+iR48eMnZd+gmCIK5Tc+TIEXzyySeoXLkyLC0t0bdvXzx58gRpaWlvPMf58+fRuXNnODs7w9LSEq1btwYA3L9/v8T7JyKi0m/v3r1YtWoVBEEJF5cz6Nz53a9aFJfWjPgcPHhQsh0SEgJ7e3ucP38eH3/8MZKTk7FmzRps2rQJ7dq1AwAEBwejTp06+PPPP9GyZUu192RoaAg/Pz+1n1fV11aH69evo1q1aoiNjUWnTp0wbNgwzJw5E+XKlcMff/yBgQMHIjMzs9AVq1NTU+Hp6QlPT09s3LgRdnZ2uH//Pjw9PZGZmamWHomISDulp6cjKChIUvvyyy9lXRhWa4LP65KTkwEA5cqVA5A76pCVlQUPDw/xmNq1a8PZ2RmRkZGFBp+MjAxkZGSI2ykpKSr3oFAo1HK5SS7Hjh3DlStXMHr0aJw/fx5KpRLz5s2Dnl7uQOC2bdskxxsZGSEnJ0dSi4mJwZMnTxAYGAgnJycAwLlz5zTzCxARUal19epV7NixQ1Lz9fWFsbGxTB3l0srgo1QqMWrUKHz44YeoV68egNwnpxsZGeVbZ6ZixYpISEgo9FwBAQGYOnVqSbZbKmRkZCAhIQE5OTl49OgRDh48iICAAHTq1An9+vVDdHQ0srKysHjxYnTu3BmnT5/GihUrJOdwcXHB8+fPcfToUTRo0ABmZmZwdnaGkZERFi9ejKFDhyI6OhrTp0+X6bckIiK5CYKAlStX4tGjR2KtefPm6Nixo4xdvaQ1c3xe5e3tjejoaGzZsuWdz+Xn54fk5GTxKy4uTg0dlj4HDx5EpUqV4OLigg4dOuD48eNYtGgR9uzZA319fTRo0ADz58/H7NmzUa9ePWzcuDHfxG13d3cMHToUX375Jezs7BAUFAQ7OzuEhIRg+/btqFu3LgIDAzF37lyZfksiIpLTkydPMG3aNEnoGTp0aKkJPQCgENRxX7QGjRgxAnv27MHJkydRrVo1sX7s2DF88sknePr0qWTUp2rVqhg1ahRGjx6t0vlTUlJgbW2N5ORkWFlZifUXL17g7t27qFatGkxMTNT2+1Dpx/eeiCi/0NDc29LbtgWOHwf69z+OhIST4n5ra2uMHDlSnD5R0gr7/H6d1lzqEgQB33//PX777TeEh4dLQg8ANGnSBIaGhjh69Ch69uwJALhx4wbu378PNzc3OVomIiIqs/LW5Dl/PgsTJszCq7NKunTpgkaNGsnX3BtoTfDx9vbGpk2bsGfPHlhaWorzdqytrWFqagpra2sMHDgQY8aMQbly5WBlZYXvv/8ebm5uJXJHFxERkS7z9QUmTLiNXr02SOo//vgjzM3NZerq7bQm+CxfvhwA0KZNG0k9ODhYXCV4wYIF0NPTQ8+ePSULGBIREZF6paRsQK9et8Xt999/H59//rmMHalGa4KPKlORTExMsHTpUixdulQDHREREemelJQULFiwQFL79ttv4ezsLFNHRaM1wYeIiIjkdebMGcmCwnp6evDz84OBgfbECe3plIiIiGSRk5ODoKAgyYr8N254YNOmD2XsqngYfIiIiKhQDx48wOrVqyW1Eyd+wKhRNvI09I4YfIiIiKhAe/bswaVLl8TtqlWron///rI+a+tdMfgQERGRRFpaGubMmSOpVa/eG337vidTR+qjlY+soNLJy8sL3bp1E7fbtGmDUaNGvdM51XEOIiJSTWgo0LPn5XyhZ9YsPyxfrv2hB+CIj07w8vLCunXrAACGhoZwdnZGv379MGHChBKdib9r1y4YGhqqdGx4eDjatm2b75EjRTkHEREVT+7jJwS4uS3FBx88Eevu7u5IT/8/NGmSu2BhWcDgoyM6dOiA4OBgZGRk4Pfff4e3tzcMDQ3h5+cnOS4zMxNGRkZqec1y5cqVinMQEdGbLV78GJ6e0gV/hw8fDjs7OwBAly5ydFUyeKlLRxgbG8PBwQFVq1bFsGHD4OHhgdDQUPHy1MyZM+Ho6AhXV1cAQFxcHL744gvY2NigXLly6Nq1K2JjY8Xz5eTkYMyYMbCxsUH58uUxbty4fItMvn6ZKiMjA+PHj4eTkxOMjY1Rs2ZNrFmzBrGxsWjbti0AwNbWFgqFQlyN+/VzPH36FP369YOtrS3MzMzQsWNH3Lx5U9wfEhICGxsbhIWFoU6dOrCwsECHDh0QHx8vHhMeHo7mzZvD3NwcNjY2+PDDD3Hv3j01/U0TEWmXw4cP46OPXoae1NRymDx5shh6yhoGHx1lamoqrsdw9OhR3LhxA4cPH8a+ffuQlZUFT09PWFpa4tSpUzh9+rQYIPJ+Zt68eQgJCcHatWvxxx9/4L///sNvv/32xtfs168fNm/ejEWLFuH69etYuXIlLCws4OTkhJ07dwLIfbBsfHw8Fi5cWOA5vLy8cO7cOYSGhiIyMhKCIODTTz9FVlaWeExaWhrmzp2L9evX4+TJk7h//z5+/PFHAEB2dja6deuG1q1b4/Lly4iMjMSQIUO0+g4FIqLiyMzMxNSpUxERESHWLl/ujo8++r5M/zeRl7p0jCAIOHr0KMLCwvD999/j8ePHMDc3x+rVq8VLXBs2bIBSqcTq1avFf/iDg4NhY2OD8PBwtG/fHj///DP8/PzQo0cPAMCKFSsQFhZW6Ov+/fff2LZtGw4fPgwPDw8AQPXq1cX9eZe07O3tJXN8XnXz5k2Ehobi9OnTcHd3BwBs3LgRTk5O2L17N3r16gUAyMrKwooVK1CjRg0AwIgRIzBt2jQAuUutJycno1OnTuL+OnXqFP0vkohIi928eRObNm2S1OrXHwt/fzOZOtIcjvjIJDQUcHfP/a4J+/btg4WFBUxMTNCxY0d8+eWXmDJlCgCgfv36knk9UVFRuHXrFiwtLWFhYQELCwuUK1cOL168wO3bt5GcnIz4+Hi0aNFC/BkDAwM0bdq00Ne/dOkS9PX10bp162L/DtevX4eBgYHkdcuXLw9XV1dcv35drJmZmYmhBgAqVaqExMREALkBy8vLC56enujcuTMWLlwouQxGRFSWCYKAdevWSULPlSsNMGWKPyZMKPuhB+CIj2wCA4HIyNzvmpg01rZtWyxfvhxGRkZwdHSU3M1lbm4uOfb58+do0qQJNm7cmO88xb3ma2pqWqyfK47X7wJTKBSS+UfBwcEYOXIkDh48iK1bt2LSpEk4fPgwWrZsqbEeiYg0LSkpKd80gg0bBiI9vQoAoAxf3ZLgiI9MfH0BNzfN3R5obm6OmjVrwtnZ+a23sDdu3Bg3b96Evb09atasKfmytraGtbU1KlWqhDNnzog/k52djfPnzxd6zvr160OpVOLEiRMF7s8bccrJySn0HHXq1EF2drbkdZ88eYIbN26gbt26b/ydXteoUSP4+fkhIiIC9erVyzfkS0RUlkREREhCjyAY4dChSZg3rwqWLcv9PJo9W8YGNYgjPjLp0qX03h749ddfY86cOejatSumTZuGKlWq4N69e9i1axfGjRuHKlWq4IcffkBgYCBq1aqF2rVrY/78+UhKSir0nC4uLujfvz8GDBiARYsWoUGDBrh37x4SExPxxRdfoGrVqlAoFNi3bx8+/fRTmJqawsLCQnKOWrVqoWvXrhg8eDBWrlwJS0tL+Pr6onLlyujatatKv9vdu3exatUqdOnSBY6Ojrhx4wZu3ryJfv36vctfGRFRqbR7dw4uXpwFPT2lWDtwoAOuXm2BjRtffg6V1s+jksARH8rHzMwMJ0+ehLOzM3r06IE6depg4MCBePHiBaysrAAAPj4+6Nu3L/r37w83NzdYWlqie/fubzzv8uXL8fnnn2P48OGoXbs2Bg8ejNTUVABA5cqVMXXqVPj6+qJixYoYMWJEgecIDg5GkyZN0KlTJ7i5uUEQBPz+++8qL3JoZmaGmJgY9OzZE++99x6GDBkCb29vfPfdd0X4GyIiKv3u37+PqKgZktDz/vujcfVqCzx/njvVQhcphNcXX9FxKSkpsLa2RnJysvghDwAvXrzA3bt3Ua1aNZiYmMjYIWka33si0jY7duzA1atXxe1bt2rg9u1vEBGRt0pz7lSLsjTSU9jn9+t4qYuIiKiMSE1Nxdy5cyW1rKxvcPt2DXFOaWmeaqEJDD5ERERlwKVLl7Bnzx5JbebMCWja1BCvrFGo8xh8iIiItJhSqcSiRYuQnJws1i5caIUDB9rB3r7sPFxUXRh8iIiItNSjR4+wYsUKSe3UKW8cPVoBAODsrNuXtQrC4FNEnAuue/ieE1FpdPDgQcm6ZgkJFREe/h1mz1bgwQNAEDjaUxAGHxXl3S6dlpam0VWISX5paWkA8q8ITUQkh4yMDAS+di/6gQM9ceZMPbi6cvLy2zD4qEhfXx82NjbiM5/MzMzK9NNrKXekJy0tDYmJibCxsYG+vr7cLRGRjouJicHWrVsltcDAcQBMNfo0AG3G4FMEDg4OACCGH9INNjY24ntPRCQHQRCwZs0aPHjwQKw1btwYf/7ZGQYGwMiRwMyZMjaoRbiA4WtUWQApJycHWVlZGu6M5GBoaMiRHiKS1dOnT7Fo0SJJbfDgwXB0dJSpo9KJCxiWIH19fX4YEhFRiTt16hSOHTsmbqemmmHfPh/4+/OJU8XF4ENERFTKZGdnY+Zr16727fsU5841g6urTE2VEQw+REREpUhsbCzWrVsnqc2dOwbPn1vCxAQICpKpsTKCwYeIiKiU2Lp1K2JiYsTtGzfew+bNvQEAlSsDy5bxVvV3xeBDREQks+fPn2PevHmSWkhIP2RlVYOFBe/aUicGHyIiIhmdO3cO+/fvl9RmzJiI7GwD7NnDER51Y/AhIiKSgVKpxPz585GamirWjh9vg9OnWyMnB/j8c4aeksDgQ0REpGHx8fFYtWqVpLZly/ewtS2HnTsZeEoSgw8REZEG7d+/H+fOnRO3HzxwxC+/DELt2gpERMjYmI5g8CEiItKAFy9eYPbs2ZLa1q1f4Pr1OgCA13ZRCWHwISIiKmHXrl3D9u3bJbWAgPHIyDCBqSkwejQvb2kKgw8REVEJEQQBq1atQkJCglg7c6YZjhz5FAYGwIQJvE1d0xh8iIiISsCTJ0+wZMkSSS0r6zskJTlgxw6O8MiFwYeIiEjNjh8/jpMnT4rbyclW+PnnH9CypR4nMMuMwYeIiEhNsrKyMGvWLEktNLQzLlxoDADw9ZWjK3oVgw8REZEa3LlzB+vXr5fU5szxQVqaBfT0gB49eHmrNGDwISIiekebNm3CzZs3xe2rV+ti+/ZeADiBubRh8CEiIiqmlJQULFiwQFJbu9YL9+9XBcDQUxox+BARERXD2bNnceDAAXFbqVRg5swJsLY24BPVSzEGHyIioiLIycnBrFlzoFRmiLXDhz1w+vSHMDEBgoM5l6c005O7ASIiIm3x4MEDzJgxQxJ6Vq36AZUqfQg3N2DrVoae0o4jPkRERCrYs2cPLl26JG7fu+eMyEgvPHigkK8pKjIGHyIiojdIT09HUFCQpLZp01eIi3PFli0yNUXFxuBDRERUiJ9+ugIDg12S2gcf+CIszBhz5vCyljZi8CEiInqNIAiYMGEZTEz+FWuRkW4YPrw9unQBuneXsTl6Jww+REREr/j333+xdOlSmJi8rC1bNgyJifZISeEoj7Zj8CEiIvqfI0eO4PTp0+L2f//ZYu3a77FxowKBgXzWVlnA4ENERDrvt98ycflywGu1boiKaoDatXNHeTjSUzYw+BARkU67efMmLl/eJKnNmTMWHTuawcyMozxlDYMPERHppD17BBw9+ivKl48VazdvfoA7d7pj0yaO8JRVDD5ERKRzkpOTcenSzyhf/mVt48YBmDvXiYGnjGPwISIinREaCmzeHInatQ+JtexsAxw75ou5c/UZenQAgw8REemE3btzcP58AGrXzhFrMTHt0bu3G6ZPl7Ex0igGHyIiKvM2bYrDzZtrYfDKp96oUaNgbW0tX1MkCwYfIiIqk0JDgcBAwMNjF/T1r4j1f/6pjqtXv0GjRgpe2tJBDD5ERFQm/fRTKnr0mCupHT/+NRISauLGjdxQxOCje/TkboCIiEjdfvrpUr7Q88EHfggPr4mgIMDNjevz6KoyGXyWLl0KFxcXmJiYoEWLFjh79qzcLRERkQYIgoCFCxfCwGCPWDt58iNs2eKP7t2NAOSO8kREcLRHV5W54LN161aMGTMG/v7+uHDhAho0aABPT08kJibK3RoREZWQiRMBZ+dHmDZtGpKSksT62rXeePjwE8yeLV9vVLooBEEQ5G5CnVq0aIFmzZphyZIlAAClUgknJyd8//338FVhXDMlJQXW1tZITk6GlZVVSbdLRETvKDQUWL48DC1b/inWnj+3w7x5w9CypQIRETI2Rxqj6ud3mRrxyczMxPnz5+Hh4SHW9PT04OHhgcjIyAJ/JiMjAykpKZIvIiIq/UJDgVatMnDx4lRJ6ImI6IlWrYajZUsF5/FQPmUq+Pz777/IyclBxYoVJfWKFSsiISGhwJ8JCAiAtbW1+OXk5KSJVomI6B2EhgITJ96Ah0egpL5kyTh4e9fjPB4qVJkKPsXh5+eH5ORk8SsuLk7uloiIqBATJwKWlgIOHFiLzz/fItbLl2+EsDB/rFljyrBDb1Sm1vGpUKEC9PX18ejRI0n90aNHcHBwKPBnjI2NYWxsrIn2iIjoHYSGAitWPMWPPy6S1N97bxB6966MESNkaoy0Spka8TEyMkKTJk1w9OhRsaZUKnH06FG4ubnJ2BkREb2LiROBuXP/wMiRL0NPZqYpfvrpJ/TuXVnGzkjblKkRHwAYM2YM+vfvj6ZNm6J58+b4+eefkZqaim+//Vbu1oiIqBiys7NhZDQTn3zysnbkyKcYO7YZ9MrU/76TJpS54PPll1/i8ePHmDx5MhISEtCwYUMcPHgw34RnIiIq/TZtuoebN0MktfDwMRg71pJzeahYytw6Pu+K6/gQEZUOCxduQ1LSdXG7Vq1a6NOnj4wdUWmm6ud3mRvxISIi7bZz53NER8+T1Pbv74uzZ6vL1BGVJbw6SkREsgsNBdzdgbVrL+QLPTNmTMCzZww9pB4c8SEiItkFBirh7r4AcXHPxdrx421gZ9cazZrxSeqkPgw+REQki9BQIDAQsLJKgKfnSsm+U6e+x5gx5TiBmdSOwYeIiGQxfjxQvfp+NG9+Tqw9fFgJ69cPRlqaQsbOqCxj8CEiIo2aOBFYuvQFRo+eLalv3doLt27VxdixMjVGOoHBh4iINCY0FNi9+xpGj94uqe/cOR6BgSa8tEUljsGHiIg0QhAEnDixCl98kSDWzp5tiqdPP8PlyzI2RjqFwYeIiErc9u3/4dq1xXh1XbmsrCF4+rQS79gijWLwISKiEvXTT+EwMDghbr94YYGZM0dDjw/aIhkw+BARUYnYvTsLUVGzYPDKJ82BA50wYUITPlyUZMPgQ0REanfnzh1ERa2X1DZs8MG8eRacwEyyYvAhIiK1WrBgE1JSborbd+7Uwbp1X8DfX8amiP6HwYeIiNRi585niI6eL6kFB3vBxKSqTB0R5cerrERE9E5CQ4G2bc/mCz1r1kyEqWlVBAXJ1BhRATjiQ0RExaZUKnHmzBy0afNCrB050g45Oa1w/76MjREVgsGHiIiK5eHDh/jll19gZPSy9ssvI+HsbMu1eajUYvAhIqIiCw0NxcWLF8XthAQnhId/i2XLFLxri0o1Bh8iIlJZeno6gl6btLN581coV84V16/L1BRRETD4EBGRSqKjo7Fz505JbdYsXxgZGXMCM2kNBh8iInojQRAQFLQcL148FmvnzrXEvn2e0NMDtm8HL2+R1uDt7EREVKh///0X06ZNk4SeYcOG4YMPPGFhAfj6MvSQdlEIgiDI3URpkpKSAmtrayQnJ8Pq1ccIExHpmMmTj0Jf/w9xOy3NFu7u36NrV4WMXREVTNXPb17qIiIiUWgoMGdOJjw8AqCv/7J+5UpX7NjRULa+iNSFwYeIiES//HILHh4bJbX163/E/PnmMnVEpF4MPkREBEEQsGDBBjRtekesxcbWR/fuPfhwUSpTGHyIiHRccnIyfv75Z0ltzZoBqFLFiROXqcxh8CEi0mF//vknwsLCxO3sbAOsW+cLc3N9PnaCyiQGHyIiHbR7dw4uXAiEvn62WGvfvj3c3NwwfbqMjRGVMK7jQ0SkY+Li4hAVNUMSelauHAU3NzcZuyLSDI74EBHpkF27duHKlSvi9p071bBhQ1/4+nJtHtINDD5ERDogLS0Nc+bMkdQ2bOiD9PRa+O03rr5MuoPBh4iojIuKisLu3bsltZkz/ZCVZQQ3N4Ye0i0MPkREZZQgCFi8eDGePn0q1k6d+hBHj3rAxASoUQO8c4t0Dic3ExGVAaGhgLt77ncASExMxLRp0yShZ/ny4Th2zAPlygFbtwLXr3O0h3QPR3yIiMqAwEAgMjL3u4nJIURGRor7/vuvAlatGo4xYxSYOVPGJolKgSKP+Ojr6yMxMTFf/cmTJ9B/9Yl2RESkMb6+wEcfZcLTc6ok9OzY0QOLFnmjUSOGHiKgGCM+giAUWM/IyICRkdE7N0REREUTGgqsWXMDHh5bJPWFC8fh6VNTmJpyLg9RHpWDz6JFiwAACoUCq1evhoWFhbgvJycHJ0+eRO3atdXfIRERFUoQBBw7FozGjePE2oULDfH3310REpJ76cvXl3N5iPKoHHwWLFgAIPdfshUrVkguaxkZGcHFxQUrVqxQf4dERFSgpKQkLFy4ELa2L2u//DII8fGVxbV5GHiIpFQOPnfv3gUAtG3bFrt27YLtq/+mERGRRp0+fRpHjhwRt7OyjBEQMBaAPkd4iN6gyHN8jh8/XhJ9EBGRCnbvzsalS7OgULycb3n9ekf06dMcLVrwshbR2xQ5+AwYMOCN+9euXVvsZoiIdF1o6Mt5OYB0js69e/cQFRUCxSuP1QoPH43Ro614WYtIRUUOPq8uhgUAWVlZiI6ORlJSEtq1a6e2xoiIdNGr6/EAL/+ckbEd165dE4+7ebMm9uz5Gs+eydQokZYqcvD57bff8tWUSiWGDRuGGjVqqKUpIiJd8uooj6+vdMRn/vxUtG07F69kHvz6a1/ExlbnLepExaAQCluYp4hu3LiBNm3aID4+Xh2nk01KSgqsra2RnJwMKysrudshIh3g7p47suPmBkREvKxfuHABe/fulRybmTkBx48bci4P0WtU/fxW2yMrbt++jezsbHWdjohIZ7w+yqNUKhEY+DOysl5exwoP/xjh4W3zhSMiKpoiB58xY8ZItgVBQHx8PPbv34/+/furrTEiorLs1ctbeROTQ0MBT88EuLuvlBy7b98InDtXniswE6lBkYPPxYsXJdt6enqws7PDvHnz3nrHFxER5Qacr78Gnj/PDT95l6x27/4d7u5/icfFxzvg11+HYMsWBVdgJlITtc3xKSs4x4eISlrenB4LC2DjRiA7+wWuXJktOWbbtl6IiakLX1/w4aJEKijxOT6JiYm4ceMGAMDV1RX29vbFPRURkU55dU6Pre0pHDt2TLI/MHA8DAxMxMdOEJH6FDn4pKSkwNvbG5s3b4ZSqQQA6Ovr48svv8TSpUthbW2t9iaJiMqSLl2Azp0FTJs2TVK/cKEJzp/vBBcXYPZshh6ikqBX1B8YPHgwzpw5g/379yMpKQlJSUnYt28fzp07h++++64keiQiKlMePHiQL/Rs3NgHoaGd4OwMXL/O0ENUUoo8x8fc3BxhYWH46KOPJPVTp06hQ4cOSE1NVWuDmsY5PkRUkn799Vfxoc95liyZhCdP9GFrCwQHM/QQFUeJzfEpX758gZezrK2t+cR2IiLkv1UdADIyMhCY9xyK/zl3rjGePOmMx49laJJIRxX5UtekSZMwZswYJCQkiLWEhASMHTsWP/30k1qbIyLSRq8/b+vixYv5Qk9m5vd48qQz1+Uh0rAiX+pq1KgRbt26hYyMDDg7OwMA7t+/D2NjY9SqVUty7IULF9TXqYbwUhcRvauJE4FFi4CRIwEjo6n59k+Z4s8VmInUrMQudXXt2hUKheKdmiMiKsuOHweMjZ/AyGiJpH7lSlfs3NkQFhZcgZlILkUOPlOmTCmBNoiIyo7evffgv/8uSWrLl/th4EAjuLlxBWYiORU5+FSvXh1//fUXypcvL6knJSWhcePGuHPnjtqaIyLSFqGhwOzZOWjffoakfvNmTWzc+DWA3JEgXt4ikleRg09sbCxycnLy1TMyMvDPP/+opSkiIm2zZs0NtG+/RVL79dchuHOnEhQKwNGRl7eISgOVg09oaKj457CwMMkt7Tk5OTh69CiqVaum3u6IiLTAzJnz0Ljxc0mtYcPJaNSIDxclKm1UvqtLTy/3zneFQoHXf8TQ0BAuLi6YN28eOnXqpP4uNYh3dRGRqp49e4b58+dLaidOeOD48Q951xaRhqn6+a3yOj5KpRJKpRLOzs5ITEwUt5VKJTIyMnDjxo0SCz2xsbEYOHAgqlWrBlNTU9SoUQP+/v7IzMyUHHf58mW0atUKJiYmcHJyQlBQUIn0Q0R07NixfKEnM3MsRo36UJzATESlT5Hn+Ly+1LomxMTEQKlUYuXKlahZsyaio6MxePBgpKamYu7cuQByk1779u3h4eGBFStW4MqVKxgwYABsbGwwZMgQjfdMRGVP7orMAjw9pc/Zevy4ApYu9YabGzBzJi9rEZVmRV7A8PUH671u8uTJ79SQqubMmYPly5eLd5EtX74cEydOREJCAoyMjAAAvr6+2L17N2JiYlQ+Ly91EdGrXn38xIoVcWjRYq1k//79ffHwYXVYWABBQQw9RHIpsQUMf/vtN8l2VlYW7t69CwMDA9SoUUNjwSc5ORnlypUTtyMjI/Hxxx+LoQcAPD09MXv2bDx9+rTQ54hlZGQgIyND3E5JSSm5polI6+Q9fuLYsbVo0SJOsm/atJ+gVOpxPg+RFily8Ll48WK+WkpKCry8vNC9e3e1NPU2t27dwuLFi8XLXEDu88Jev6usYsWK4r7Cgk9AQACmTs2/pDwREQCMHfsCly/PltTOn2+O06c7QqkETEw4n4dImxT5IaUFsbKywtSpU4v8kFJfX18oFIo3fr1+merBgwfo0KEDevXqhcGDB79z735+fkhOTha/4uLi3v5DRFQmhYYC7u653wHgr7/+yhd69u79AXv3doS9PeDmBmzdystbRNqkyCM+hckLDkXh4+MDLy+vNx5TvXp18c8PHz5E27Zt4e7ujlWrVkmOc3BwwKNHjyS1vG0HB4dCz29sbAxjY+Mi9U1EZdOrT1W/eFE6EpyTo4fp039CuXLgYyeItFiRg8+iRYsk24IgID4+HuvXr0fHjh2LdC47OzvY2dmpdOyDBw/Qtm1bNGnSBMHBweK6Qnnc3NwwceJEZGVlwdDQEABw+PBhuLq6FnqZi4gIeDmBuXJloGrVx/D0XCbZHxXVEwcP1gMApKdzPg+RNivyXV2vz6PR09ODnZ0d2rVrBz8/P1haWqq1QSA39LRp0wZVq1bFunXroK+vL+7LG81JTk6Gq6sr2rdvj/HjxyM6OhoDBgzAggULinQ7O+/qItI97u65Iz1ffrkTdepES/YdPjwB48YZ4swZYNEiYOTI3FvWiah0UfXzu8jBRw4hISH49ttvC9z3avuXL1+Gt7c3/vrrL1SoUAHff/89xo8fX6TXYvAh0g2v3qauVGYjKkqaZh49qoMOHb7g5SwiLVGiwScpKQm3bt0CANSsWRM2NjbFbrS0YfAh0g15ozzdul1Dw4bbJfuWLx+KR48q8jZ1Ii1SIuv4xMbGwtvbG2FhYeJIi0KhQIcOHbBkyRK4uLi8U9NERJri6wucPRsIQ8MMSX3KlMkAFLCw4G3qRGWRysEnLi4OLVu2hKGhIaZPn446deoAAK5du4bly5fDzc0Nf/31F6pUqVJizRIRqUNycjIuXvwZ/7sPAgBw/bon+vRpCVdXQKEAZs/mXVtEZZHKl7oGDhyIW7duISwsDCYmJpJ96enp6NChA2rVqoXVq1eXSKOawktdRGXb4cOHEfHa9aujR8fhxx9NGXSItJjaL3UdPHgQW7duzRd6AMDU1BTTp0/HV199VbxuiYhKmFKpxPTp0yU1U9NK2L17CNfkIdIhKq/c/O+//75xDk/16tXx33//qaMnIiK1io2NzRd6vLy8sHv3EHHBQiLSDSoHn0qVKuHatWuF7o+Ojn7jCslERJqU9/iJoKAVWLdunWRfWNhkVK1aFb6+L1dhJiLdoPKlrm7duuHHH3/E0aNH8622nJiYiPHjx6Nbt27q7o+IqFjmzUuHp2cQ0tNf1q5d+xCXL3tg9v8ev9WlCy9xEekalSc3P336FC1atEBCQgK++eYb1K5dG4Ig4Pr169i0aRMcHBzw559/oly5ciXdc4ni5GYi7RcZGYlDhw5JauHhoxEebsW1eYjKKLVPbra1tcWZM2cwYcIEbNmyBUlJSQAAGxsb9OnTB7NmzdL60ENE2k0QBEybNk1Se/HCBHp64zF6NJCRwctaRLquWCs3C4KAx48fA8h90KhCoVB7Y3LhiA+RdkpISMDKlSsltW3bvsC1a3VgYQE8eyZTY0SkESWycnMehUIBe3v7YjdHRKROW7duRUxMjKQ2d+5EdOhggPv3cx8sSkQEFDP4EBGVBllZWZg1a5akdvlyfRw40ANbtnDiMhHlx+BDRFrpypUr2LVrl6RWp85whIXZMfQQUaEYfIhI60ybNg2vT0+cO9cfz54BX3whU1NEpBUYfIhIazx9+hSLFi2S1I4f/wxnzjTFmDEyNUVEWkWl4PP6f2jeZCRnERJRCVi27AAePz4rqQUE+CIjwxhubsDMmTI1RkRaRaXgs2DBApVOplAoGHyISK0KerjovXvO2LDhW9jbA5aWXJuHiFSnUvC5e/duSfdBRJTP7du3sWHDBkltz54BSEtzwo4dnMBMREVX7Dk+mZmZuHv3LmrUqAEDA04VIiL1WrJkCZ48eSKpNWw4Gf7+ZWfBVCLSPJWfzp4nLS0NAwcOhJmZGd5//33cv38fAPD9998jMDBQ7Q0SkW5JTU3F1KlTJaEnIqI1GjXyR9euDD1E9G6KHHz8/PwQFRWF8PBwmJiYiHUPDw9s3bpVrc0RkW45deoU5s6dK6kdP+4Db+82vKxFRGpR5GtUu3fvxtatW9GyZUvJM7ref/993L59W63NEZFuKOjhoikploiMHMMnqRORWhV5xOfx48cFPqcrNTW1TD2slIg04+HDh/lCT/XqvREZOQZt2wLu7kBoqEzNEVGZU+Tg07RpU+zfv1/czgs7q1evhpubm/o6I6Iyb8OGDfjll18ktUOHJqFv3/cQEQEcPw5ERgKcPkhE6lLkS12zZs1Cx44dce3aNWRnZ2PhwoW4du0aIiIicOLEiZLokYjKmMzMTAQEBEhqt241wrlzXTB79suar29u6OE6PUSkLgrh9QfeqOD27dsIDAxEVFQUnj9/jsaNG2P8+PGoX79+SfSoUSkpKbC2tkZycjKsrKzkboeozLl48SJCX7t2tXr1CPzzT3m4uYFzeoioWFT9/C7WAjw1atTINzxNRPQ2U6dOzVcLDPTHmDG5l7U4skNEJU2l4JOSkqLyCTlKQkSve/LkCZYsWSKp7d7dFbduNcTWrVyBmYg0R6XgY2Njo/IdWzk5Oe/UEBGVLaGhobh48aKk9sEHfggLM8LGjQw9RKRZKgWf48ePi3+OjY2Fr68vvLy8xLu4IiMjsW7dunyTFYlId+Xk5GDGjBmS2q1bNXD79jfw9we6d5epMSLSaUWe3PzJJ59g0KBB6N27t6S+adMmrFq1CuHh4ersT+M4uZno3f3999/YvHmzpObqOhiLFjnC15ejPESkfqp+fhc5+JiZmSEqKgq1atWS1P/++280bNgQaWlpxeu4lGDwIXo38+fPx7NnzyS1hg0n8zlbRFSiVP38LvIChk5OTgXe0bV69Wo4OTkV9XREVEY8f/4cU6dOlYSeo0c/wZQp/pg9m6GHiEqHIt/OvmDBAvTs2RMHDhxAixYtAABnz57FzZs3sXPnTrU3SESlX3h4eL4FTIOCfkTDhuZwc+Nt6kRUehQ5+Hz66ae4efMmli1bhpiYGABA586dMXToUI74EOmYgh8uWh7z54/4334uSEhEpUuxFjCsUqUKZs2ape5eiEiL/PPPP1izZo2k9s033+Dq1Rr4/ffc0MORHiIqbYoVfJKSkrBmzRpcv34dAPD+++9jwIABsLa2VmtzRFQ6jRsXDHPz+5LaTz/9BD09PdSowbu2iKj0KvJdXefOnYOnpydMTU3RvHlzAMBff/2F9PR0HDp0CI0bNy6RRjWFd3URFe7FixeY/epTRAGcOdMMd+58iv9d+SYikkWJ3c7eqlUr1KxZE7/88gsMDHIHjLKzszFo0CDcuXMHJ0+efLfOZcbgQ1Swc+fOYf/+/ZLaqVMjkZZmy7V5iEh2JRZ8TE1NcfHiRdSuXVtSv3btGpo2bcp1fIjKmNBQ4OJF6cNFlUoFpk6dLFNHRET5ldg6PlZWVrh//36+elxcHCwtLYt6OiIqxR4/fpwv9Ozb1wNNmjD0EJF2KvLk5i+//BIDBw7E3Llz4e7uDgA4ffo0xo4dm+8xFkSkvXbt2oUrV65Iatu2TUBAgCEvaxGR1ipy8Jk7dy4UCgX69euH7OxsAIChoSGGDRuGwMBAtTdIRJqVnZ2NmTNnSmqPHrmiQ4ev4O8vU1NERGpS5Dk+edLS0nD79m0AQI0aNWBmZqbWxuTCOT6ky3799Tru3t0mqX333XdwcHCQqSMiItWo+vldrHV8gNyHldavX7+4P05EpcyMGbORk/NCUps8eTIUitznbIWGAoGB4B1cRKTVVA4+AwYMUOm4tWvXFrsZItK8HTtScPXqAkntwgVP7NnTUlILDAQiI3O/M/gQkbZSOfiEhISgatWqaNSoEYp5dYyISpnDhw/j6lXpw7R27RqH6dNN8x3r6/tyxIeISFupPMfH29sbmzdvRtWqVfHtt9/im2++Qbly5Uq6P43jHB/SBQU9XNTUtCLGjRsqU0dERO9G7ev4LF26FPHx8Rg3bhz27t0LJycnfPHFFwgLC+MIEJEWuXfvXr7QU7Nmf4YeItIJxb6r6969ewgJCcGvv/6K7OxsXL16FRYWFuruT+M44kNlWVDQKqSnx0tqU6f+hJYt9RARUcgPERFpgRK/q0tPTw8KhQKCICAnJ6e4pyEiDUhPT0dQUJCk5u7ujvT0/0PLlpy3Q0S6o0jBJyMjA7t27cLatWvxxx9/oFOnTliyZAk6dOgAPb0iP/2CiEpYaCiwadOfqFMnTFJ///1R+L//swbAO7SISLeoHHyGDx+OLVu2wMnJCQMGDMDmzZtRoUKFkuyNiN7Bnj0CLl2ahjp1XtaMjY1Rt64vAgMBIyOGHiLSPSrP8dHT04OzszMaNWokLmhWkF27dqmtOTlwjg+VBY8ePcKKFSsktV69eqFu3bpwd89dj8fNDZzXQ0Rlhtrn+PTr1++NgYeISodt27bh+vXrktrEiRNhYJD7rzvX4yEiXVakBQyJqPTKysrCrFmzJLV69eqhZ8+eAKSPnOBIDxHpqmLf1UVEpUd0dDR27twpqQ0fPhx2dnbiNh85QUTE4EOktUJDgXHjgC++mAF9femSEv7+/vmO5yUuIqJ3WMCwrOLkZtIWjRsnoWvXhZLap59+imbNmsnUERGRfEp8AUMiks/BgwfRtesZSW38+PEwMTGRqSMiIu3A4EOkRZRKJaZPny6pmZs74ccfB8jUERGRduFyy0Ra4s6dO/lCz4ABA9459ISGAu7uud+JiMo6jvgQaYGlS5fi33//ldQmT56slrW1eLcXEekSrRvxycjIQMOGDaFQKHDp0iXJvsuXL6NVq1YwMTGBk5NTvocyEmmbtLQ0TJ06VRJ6bt/+GI0a+attQVFf39xVnHm3FxHpAq0b8Rk3bhwcHR0RFRUlqaekpKB9+/bw8PDAihUrcOXKFQwYMAA2NjYYMmSITN0SFd/p06dx5MgRSW3MmDGwtLRU6+t06cKRHiLSHVoVfA4cOIBDhw5h586dOHDggGTfxo0bkZmZibVr18LIyAjvv/8+Ll26hPnz5zP4kFYRBAHTpk2T1CwsLODj4yNTR0REZYfWBJ9Hjx5h8ODB2L17N8zMzPLtj4yMxMcffwwjIyOx5unpidmzZ+Pp06ewtbUt8LwZGRnIyMgQt1NSUtTfPJEKch8pEQ9Pz1WS+ldffQVXV1eZuiIiKlu0Yo6PIAjw8vLC0KFD0bRp0wKPSUhIQMWKFSW1vO2EhIRCzx0QEABra2vxy8nJSX2NExXBoUMb84WeSZMmMfQQEamRrMHH19cXCoXijV8xMTFYvHgxnj17Bj8/P7X34Ofnh+TkZPErLi5O7a9BVJjQUKBVq0xMnToVdna3xHq5cg3h7+8PfX39dz4/b1UnInpJ1ktdPj4+8PLyeuMx1atXx7FjxxAZGQljY2PJvqZNm+Lrr7/GunXr4ODggEePHkn25207ODgUen5jY+N85yXSlF9/vQQPjz2S2ogRI1C+fHm1nJ+3qhMRSckafOzs7CRPjy7MokWLMGPGDHH74cOH8PT0xNatW9GiRQsAgJubGyZOnIisrCwYGhoCAA4fPgxXV9dC5/cQySF3Lg/g6TkV9etL9xX0cNF3wQeTEhFJaeVDSmNjY1GtWjVcvHgRDRs2BAAkJyfD1dUV7du3x/jx4xEdHY0BAwZgwYIFRbqriw8ppZIUGgp4e/+HQYMWS+qdO3dG48aNZeqKiEj7qfr5rRWTm1VhbW2NQ4cO4e7du2jSpAl8fHwwefJk3spOpUpo6N58ocfPz6/Q0MM5OkRE6qWVIz4liSM+VBJycnIkl2sBoFq1aujXrx+Al5e/fH2lc3Hc3XPn6Li5ARERmuyYiEi76NyID1FptX79zXyhZ9CgQbCx6SeO5rw6CflVfJwEEZF6ac0ChkTaaP/+/bhz55yklvdw0V69XoadwiYh83ESRETqxeBDVAJevHiB2bNnS2qVKrXDkCGtxO1Xww4DDhGRZjD4EKnZtWvXsH37dklt/PjxMDExkdQYdoiINI9zfIjUIPfuKwFBQSsloadZs2bw9/fHoUMmxb47i3d2ERGpD4MP0TvICyXTpj2Bp+c0pKe/fC5cRMR3yM7+FEDBk5dVDTSFTXwmIqKiY/AhegeBgYCxcTg6d14i1iwtLREW9hMOHXIQw0pBd2epGmh4ZxcRkfpwHZ/XcB0fepu828/HjctCVNQsyb68FZgLW5enoPO86RgiIlKNqp/fDD6vYfCht6ldG8jKuoN+/dZL6j4+PrCwsJCpKyIi3abq5zfv6iIqotatN8HR8aa4XbduXfTq1UvGjoiISFUMPkRvkXdJasyYFFy9ugCOji/3nTnjhUaNqsrXHBERFQmDD9FbBAYCOTlncfXqAbGmUCgQFjYBEREGSEriHB0iIm3B4EP0Bjk5OejYcQ6Uygyx9vffn+DLLz9Cw4YFP2aCiIhKLwYfokI8ePAAq1evltROnPgBx4/b4O7d3Kelc6SHiEi7MPgQFWDPnj24dOmSuO3s7AwvLy/s3avAixcc5SEi0lYMPkSvSE9PR1BQkKT21VdfwdXVFQCfr0VEpO0YfIj+58qVK9i1a5ek5uvrC2NjY5k6IiIidWPwIZ2We6u6gC5dliEj41+x7ubmhvbt28vYGRERlQQGH9Jpixf/C0/Ppch4edMWhg0bBnt7e/maIiKiEsOHlJLOOnLkCD76aKm4bWtri8mTJxcaelR9mjoREZVeHPEhnZOZmYmAgABJrVu3bmjQoMEbf+7Vp6lzgjMRkXZi8CGdkPfYiWHDbuLOnU2SfWPHjoWZmdlbz+HrywULiYi0HZ/O/ho+nb1scncX8N57v6JatVix9sEHH6B79+7yNUVERGqj6uc35/hQmfTqfJzk5GR4ek6ThJ4BAwYw9BAR6SBe6qIyKW8+zubNkbh48ZBYNzAwgK+vL/T19WXsjoiI5MLgQ2XSuHE5uHAhAPr6OWItJqY9Nm92k7ErIiKSG4MPlTmbNsXh5s21eHVQ58SJURg1ylq+poiIqFRg8KEyIzQU2L9/Fxwdr4i16tWr45tvvoFCoZCxMyIiKi0YfKhMSE1NxcWLc+Ho+LJWo8bX+OabmvI1RUREpQ6DD2m9S5cuYc+ePZKan58fjIyMZOqIiIhKKwYf0kp5Dxft3HkRMjOTxPqdOx+hZ89PwMxDREQFYfAhrbRkSSI8PZcjM/NlzdvbGxUqVJCvKSIiKvUYfEjrhIWF4cMP/xS37ezsMGzYME5gJiKit2LwIa2RkZGBwMBASa1nz56oV6+eTB0REZG24SMrqNR69bETN27cyBd6xo0bx9BDRERFwhEfKpVCQ4GvvwaePxdw7FgwLl6ME/c1atQIXbp0kbE7IiLSVgw+VCoFBgIGBk8xZcoiSX3QoEGoXLmyTF0REZG2Y/ChUiP3FnXA1xfw8voD8fFHxX0mJiYYO3Ys9PR4dZaIiIqPwYdKjcBA4OzZbFy8OFNS79ixI5o3by5TV0REVJbwf59JFq9OXM4zYsQ9/PSTNPSMGTOGoYeIiNSGIz4ki8BAIDIy93uXLsC2bdtw8+Z1cX+tWrXQp08fGTskIqKyiMGHZOHrmxt6fHyeY+rUeZJ9ffv2RfXq1WXqjIiIyjIGH9K4vEnMgwZdQHT0Xsm+CRMmwNDQUKbOiIiorGPwIY0KDQW++UaJIUMWIC7uuVhv06YNWrduLWNnRESkCzi5WYcVNMG4pF9v1KgE+PhMh6Xly9Dz/fffM/QQEZFGMPjosFcnGJeUV8PVnj370b//SnFfpUqVMHnyZJQrV67kGiAiInoFg48O8/UF3Nxyv7+rwkaPAgOBCxde4OLFqXB2PifWe/XqhSFDhvCJ6kREpFEKQRAEuZsoTVJSUmBtbY3k5GRYWVnJ3Y7WcHfPHT1ycwMiInJroaHAokXX0arVNsmx48ePh4mJiQxdEhFRWaXq5zdHfEglb5sP9ProkSAICA9fJQk9TZs2hb+/P0MPERHJhiM+r+GIT8EKGtEpzH///YfFixdLakOGDEGlSpVKsEMiItJlqn5+83Z2UknegoNvmw8UHh6OEydOiNsWFhYYPXo0Hy5KRESlAoMPqaRLl9yvwmRlZWHWrFmSWqdOndCkSZMS7oyIiEh1DD70zu7cuYP169dLaj4+PrCwsJCpIyIiooIx+FCR5T1ywtcXeP58E27evCnuq1OnDr744gsZuyMiIiocgw8VWWAgEB39DBcvzpfU+/fvDxcXF3maIiIiUgGDDxXZwIF/4Z9/fpfUJk6cCAMD/uNERESlGz+pSGVKpRJz585Fenq6WGvXrh1atWolY1dERESqY/AhlTx8+BC//PKLpDZy5EjY2trK1BEREVHRcXEVkihohebQ0FBJ6HFycsLkyZMZeoiISOtwxIckXn1i+//9XzqCgoIk+7/66iu4urrK1B0REdG7YfAhibwVmr/7LhpBQTtf2+cLY2NjmTojIiJ6dww+JNG5s4B//lmO2NjHYq1ly5bw9PSUsSsiIiL1YPAh0b///oulS5dKakOHDkXFihVl6oiIiEi9tGpy8/79+9GiRQuYmprC1tYW3bp1k+y/f/8+PvvsM5iZmcHe3h5jx45Fdna2PM1qmaNHj0pCj42NDX766SeGHiIiKlO0ZsRn586dGDx4MGbNmoV27dohOzsb0dHR4v6cnBx89tlncHBwQEREBOLj49GvXz8YGhrme3gmvVTQw0W7du2Khg0bytMQERFRCVIIgiDI3cTbZGdnw8XFBVOnTsXAgQMLPObAgQPo1KkTHj58KI5SrFixAuPHj8fjx49hZGSk0mulpKTA2toaycnJsLKyUtvvUBrdunULGzdulNR+/PFHmJuby9QRERFR8aj6+a0Vl7ouXLiABw8eQE9PD40aNUKlSpXQsWNHyYhPZGQk6tevL7k04+npiZSUFFy9erXQc2dkZCAlJUXyVdYJgoD169dLQk/9+vXh7+/P0ENERGWaVgSfO3fuAACmTJmCSZMmYd++fbC1tUWbNm3w33//AQASEhLyzUfJ205ISCj03AEBAbC2tha/nJycSui3kFfewoQ7diRj2rRp4t8pAAwYMAA9evSQsTsiIiLNkDX4+Pr6QqFQvPErJiYGSqUSQO6DMHv27IkmTZogODgYCoUC27dvf6ce/Pz8kJycLH7FxcWp41crdQIDAUH4E1ev/izWDAwMMGnSpDIb9oiIiF4n6+RmHx8feHl5vfGY6tWrIz4+HgBQt25dsW5sbIzq1avj/v37AAAHBwecPXtW8rOPHj0S9xXG2Ni4zC/Kl5OTgw4dAiEIL+9wa9++Pdzc3GTsioiISPNkDT52dnaws7N763FNmjSBsbExbty4gY8++ghA7t1IsbGxqFq1KgDAzc0NM2fORGJiIuzt7QEAhw8fhpWVlSQwabvQ0NzRG19foEuXtx8fFxeHtWvXSmonToyCv791CXVIRERUemnF7exWVlYYOnQo/P394eTkhKpVq2LOnDkAgF69egHIHcGoW7cu+vbti6CgICQkJGDSpEnw9vYuUyM6rz5L623B57fffsPly5fFbQuLati5sy98fRUl3CUREVHppBXBBwDmzJkDAwMD9O3bF+np6WjRogWOHTsmPiFcX18f+/btw7Bhw+Dm5gZzc3P0798f06ZNk7lz9cp7lpavb+HHpKWlicEwT58+fVCrVi34+JRwg0RERKWYVqzjo0navo5PVFQUdu/eLan5+fmpvI4RERGRNlL181trRnzozQRBwOLFi/H06VOxlpPzIY4c8UCjRqrNByIiIirrtGIdH12XtwZPaGjB+xMTEzFt2jRJ6FmyZDgWLPAQ5wMRERERR3y0wpsmNB86dAiRkZHitolJBdSuPRy1ainQti1w/Pib5wMRERHpEgYfLVDQhObMzEwEBARIjtuxowcsLetj/Higa1cNN0lERKQFGHy0QJcu0pGeGzduYMuWLZJj6tcfh7AwU47uEBERvQGDjxYRBAEhISHiatUA0LBhQ3T93/AOH7dFRET0Zgw+WiIpKQkLFy6U1AYNGoTKlSvL1BEREZH2YfDRAqdPn8aRI0fEbX19Yxw4MBaNGumDuYeIiEh1DD6lWHZ2NmbNmoVX15g8f74j/v23ucqPrSAiIqKXGHxKqXv37iEkJERSmzdvNBwdrRAU9PbHVhAREVF+DD6l0Pbt23Ht2jVxu2bNmrC0/Br16r18KjtHeoiIiIqOwacUSU1Nxdy5cyW1vn37Ijq6ujjCw8BDRERUfAw+pcSFCxewd+9eSW3ChAkwNDTEN98UvnIzERERqY7BR2ZKpRI///wznj17JtY+/vhjtG3bVtwuaOVmIiIiKjoGHxlt2ZKAGzdWSmojRoxA+fLlJTXO6SEiIlIPBh+ZHDhwADdunBW3HRwcMGTIECgUChm7IiIiKtsYfDQsIyMDgYGBkpqLSy/0719Xpo6IiIh0B4OPBl2/fh3btm2T1MaPHw8TExOZOiIiItItDD4asnfvXly4cEHcbtq0KT777DMZOyIiItI9enI3oCuuX78u/nnIkCFi6AkNBdzdc78TERFRyVIIrz4IipCSkgJra2skJyfDyspKbeeNjY3Fw4cP0bJlS+jpvcyb7u65a/S4uQEREWp7OSIiIp2i6uc3L3VpiIuLC1xcXPLV27YFrlzJ/U5EREQli5e6ZHb8OPD8ee53IiIiKlkMPjLz9c29zMVVmYmIiEoeL3XJjKsyExERaQ5HfIiIiEhnMPgQERGRzmDw0RCu10NERCQ/Bh8NCQzMXa/ntcd0ERERkQYx+GgI794iIiKSH+/q0hDevUVERCQ/jvgQERGRzmDwISIiIp3B4ENEREQ6g8GHiIiIdAaDDxEREekMBh8iIiLSGQw+REREpDMYfIiIiEhnMPgQERGRzmDwISIiIp3B4ENEREQ6g8GHiIiIdAaDDxEREekMPp39NYIgAABSUlJk7oSIiIhUlfe5nfc5XhgGn9c8e/YMAODk5CRzJ0RERFRUz549g7W1daH7FcLbopGOUSqVePjwISwtLaFQKORup0SlpKTAyckJcXFxsLKykrsdegXfm9KJ70vpxPel9NLkeyMIAp49ewZHR0fo6RU+k4cjPq/R09NDlSpV5G5Do6ysrPgfi1KK703pxPeldOL7Unpp6r1500hPHk5uJiIiIp3B4ENEREQ6g8FHhxkbG8Pf3x/GxsZyt0Kv4XtTOvF9KZ34vpRepfG94eRmIiIi0hkc8SEiIiKdweBDREREOoPBh4iIiHQGgw8RERHpDAYfHbZ//360aNECpqamsLW1Rbdu3ST779+/j88++wxmZmawt7fH2LFjkZ2dLU+zOiYjIwMNGzaEQqHApUuXJPsuX76MVq1awcTEBE5OTggKCpKnSR0SGxuLgQMHolq1ajA1NUWNGjXg7++PzMxMyXF8b+SxdOlSuLi4wMTEBC1atMDZs2flbkmnBAQEoFmzZrC0tIS9vT26deuGGzduSI558eIFvL29Ub58eVhYWKBnz5549OiRLP0y+OionTt3om/fvvj2228RFRWF06dPo0+fPuL+nJwcfPbZZ8jMzERERATWrVuHkJAQTJ48Wcaudce4cePg6OiYr56SkoL27dujatWqOH/+PObMmYMpU6Zg1apVMnSpO2JiYqBUKrFy5UpcvXoVCxYswIoVKzBhwgTxGL438ti6dSvGjBkDf39/XLhwAQ0aNICnpycSExPlbk1nnDhxAt7e3vjzzz9x+PBhZGVloX379khNTRWPGT16NPbu3Yvt27fjxIkTePjwIXr06CFPwwLpnKysLKFy5crC6tWrCz3m999/F/T09ISEhASxtnz5csHKykrIyMjQRJs66/fffxdq164tXL16VQAgXLx4Udy3bNkywdbWVvIejB8/XnB1dZWhU90WFBQkVKtWTdzmeyOP5s2bC97e3uJ2Tk6O4OjoKAQEBMjYlW5LTEwUAAgnTpwQBEEQkpKSBENDQ2H79u3iMdevXxcACJGRkRrvjyM+OujChQt48OAB9PT00KhRI1SqVAkdO3ZEdHS0eExkZCTq16+PihUrijVPT0+kpKTg6tWrcrStEx49eoTBgwdj/fr1MDMzy7c/MjISH3/8MYyMjMSap6cnbty4gadPn2qyVZ2XnJyMcuXKidt8bzQvMzMT58+fh4eHh1jT09ODh4cHIiMjZexMtyUnJwOA+O/H+fPnkZWVJXmfateuDWdnZ1neJwYfHXTnzh0AwJQpUzBp0iTs27cPtra2aNOmDf777z8AQEJCgiT0ABC3ExISNNuwjhAEAV5eXhg6dCiaNm1a4DF8X0qHW7duYfHixfjuu+/EGt8bzfv333+Rk5NT4N87/87loVQqMWrUKHz44YeoV68egNx//o2MjGBjYyM5Vq73icGnDPH19YVCoXjjV95cBQCYOHEievbsiSZNmiA4OBgKhQLbt2+X+bcoe1R9XxYvXoxnz57Bz89P7pZ1hqrvzasePHiADh06oFevXhg8eLBMnROVTt7e3oiOjsaWLVvkbqVQBnI3QOrj4+MDLy+vNx5TvXp1xMfHAwDq1q0r1o2NjVG9enXcv38fAODg4JDvzoi8GfgODg5q7LrsU/V9OXbsGCIjI/M906Zp06b4+uuvsW7dOjg4OOS7E4LvS/Gp+t7kefjwIdq2bQt3d/d8k5b53mhehQoVoK+vX+DfO//ONW/EiBHYt28fTp48iSpVqoh1BwcHZGZmIikpSTLqI9v7pPFZRSS75ORkwdjYWDK5OTMzU7C3txdWrlwpCMLLyc2PHj0Sj1m5cqVgZWUlvHjxQuM964J79+4JV65cEb/CwsIEAMKOHTuEuLg4QRBeTqDNzMwUf87Pz48TaDXgn3/+EWrVqiV89dVXQnZ2dr79fG/k0bx5c2HEiBHidk5OjlC5cmVObtYgpVIpeHt7C46OjsLff/+db3/e5OYdO3aItZiYGNkmNzP46KgffvhBqFy5shAWFibExMQIAwcOFOzt7YX//vtPEARByM7OFurVqye0b99euHTpknDw4EHBzs5O8PPzk7lz3XH37t18d3UlJSUJFStWFPr27StER0cLW7ZsEczMzMTASiXjn3/+EWrWrCl88sknwj///CPEx8eLX3n43shjy5YtgrGxsRASEiJcu3ZNGDJkiGBjYyO5I5VK1rBhwwRra2shPDxc8u9GWlqaeMzQoUMFZ2dn4dixY8K5c+cENzc3wc3NTZZ+GXx0VGZmpuDj4yPY29sLlpaWgoeHhxAdHS05JjY2VujYsaNgamoqVKhQQfDx8RGysrJk6lj3FBR8BEEQoqKihI8++kgwNjYWKleuLAQGBsrToA4JDg4WABT49Sq+N/JYvHix4OzsLBgZGQnNmzcX/vzzT7lb0imF/bsRHBwsHpOeni4MHz5csLW1FczMzITu3btL/sdBkxT/a5qIiIiozONdXURERKQzGHyIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4iIiHQGgw8RERHpDAYfIqISEh4eDoVCgaSkJLlbIaL/YfAhIq01ZcoUNGzYUO42iEiLMPgQUZmXlZUldwtEVEow+BCRbJRKJQICAlCtWjWYmpqiQYMG2LFjB4CXl4mOHj2Kpk2bwszMDO7u7rhx4wYAICQkBFOnTkVUVBQUCgUUCgVCQkIAAAqFAsuXL0eXLl1gbm6OmTNnvrGPvNcKCwtDo0aNYGpqinbt2iExMREHDhxAnTp1YGVlhT59+iAtLU38uYyMDIwcORL29vYwMTHBRx99hL/++qtk/rKISD1keUIYEZEgCDNmzBBq164tHDx4ULh9+7YQHBwsGBsbC+Hh4cLx48cFAEKLFi2E8PBw4erVq0KrVq0Ed3d3QRAEIS0tTfDx8RHef//9fE+DBiDY29sLa9euFW7fvi3cu3fvjX3kvVbLli2FP/74Q7hw4YJQs2ZNoXXr1kL79u2FCxcuCCdPnhTKly8vefDoyJEjBUdHR+H3338Xrl69KvTv31+wtbUVnjx5Ijnv06dPS+YvkIiKjMGHiGTx4sULwczMTIiIiJDUBw4cKPTu3VsMDUeOHBH37d+/XwAgpKenC4IgCP7+/kKDBg3ynRuAMGrUKJV7Kei1AgICBADC7du3xdp3330neHp6CoIgCM+fPxcMDQ2FjRs3ivszMzMFR0dHISgoSHJeBh+i0sNArpEmItJtt27dQlpaGv7v//5PUs/MzESjRo3E7Q8++ED8c6VKlQAAiYmJcHZ2fuP5mzZtWuSeXn2tihUrwszMDNWrV5fUzp49CwC4ffs2srKy8OGHH4r7DQ0N0bx5c1y/fr3Ir01EmsHgQ0SyeP78OQBg//79qFy5smSfsbExbt++DSA3TORRKBQAcucGvY25uXmRe3r9tV7dzqup8tpEVHpxcjMRyaJu3bowNjbG/fv3UbNmTcmXk5OTSucwMjJCTk5OCXdasBo1asDIyAinT58Wa1lZWfjrr79Qt25dWXoiorfjiA8RycLS0hI//vgjRo8eDaVSiY8++gjJyck4ffo0rKysULVq1beew8XFBXfv3sWlS5dQpUoVWFpawtjYWAPd544oDRs2DGPHjkW5cuXg7OyMoKAgpKWlYeDAgRrpgYiKjsGHiGQzffp02NnZISAgAHfu3IGNjQ0aN26MCRMmqHRJqWfPnti1axfatm2LpKQkBAcHw8vLq+Qb/5/AwEAolUr07dsXz549Q9OmTREWFgZbW1uN9UBERaMQBEGQuwkiIiIiTeAcHyIiItIZDD5EVOYNHToUFhYWBX4NHTpU7vaISIN4qYuIyrzExESkpKQUuM/Kygr29vYa7oiI5MLgQ0RERDqDl7qIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4iIiHQGgw8RERHpDAYfIiIi0hkMPkRERKQz/h8ZE1xgsXhGfQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV6JJREFUeJzt3XdYFFfbBvB7QXq1gFhAsAQ0+Co2hEQTjRG7RtNjIRpjQY1dUCNqoiD2rtGIRo29sLFh16gksSsqVhAbxUJRkLbz/cHH6AjoAgvDsvfvurjIPDM7++DGcOfMmTMKQRAEEBEREekAPbkbICIiIiopDD5ERESkMxh8iIiISGcw+BAREZHOYPAhIiIincHgQ0RERDqDwYeIiIh0BoMPERER6QwGHyIiItIZDD5EpJUUCgUmT54sdxsib29vODo6yt0GEb0Dgw8Raczq1auhUCjEL2NjY7z33nsYMmQIYmNji/W9T506hcmTJyMhIUGj5/34448lP1OFChXQtGlTrFq1CiqVSiPvMX36dOzcuVMj5yKitysndwNEVPZMnToVTk5OePnyJU6cOIGlS5diz549CA8Ph6mpqUbeIzU1FeXKvfpP2KlTpzBlyhR4e3vD2tpaI++Ro3r16ggICAAAxMfH448//kC/fv1w48YNBAYGFvn806dPx+eff45u3boV+VxE9HYMPkSkce3bt0eTJk0AAD/88AMqVqyIOXPmICQkBN98802hz6tSqZCeng5jY2MYGxtrqt13srKyQs+ePcXtAQMGwNnZGYsWLcIvv/wCAwODEuuFiIqGl7qIqNi1bt0aABAZGQkAmDVrFjw9PVGxYkWYmJigcePG2Lp1a67XKRQKDBkyBOvXr8f7778PIyMj7Nu3T9yXM8dn8uTJGDNmDADAyclJvCwVFRWFjz76CA0aNMizL2dnZ3h5eRX45zE1NUXz5s3x4sULxMfH53vcixcvMGrUKNjb28PIyAjOzs6YNWsWBEGQ/IwvXrzAmjVrxL69vb0L3BMRqYcjPkRU7G7fvg0AqFixIgBg/vz56NKlC7777jukp6dj48aN+OKLL7Br1y507NhR8trDhw9j8+bNGDJkCCpVqpTnBOLu3bvjxo0b2LBhA+bOnYtKlSoBAGxsbNCrVy/0798f4eHhcHV1FV9z+vRp3LhxAxMnTizUz3Tnzh3o6+vne1lNEAR06dIFR44cQb9+/dCwYUOEhoZizJgxePDgAebOnQsAWLt2LX744Qc0a9YMP/74IwCgVq1aheqJiNQgEBFpSHBwsABAOHjwoBAfHy/cu3dP2Lhxo1CxYkXBxMREuH//viAIgpCSkiJ5XXp6uuDq6iq0bt1aUgcg6OnpCVeuXMn1XgAEf39/cXvmzJkCACEyMlJyXEJCgmBsbCyMGzdOUh82bJhgZmYmPH/+/K0/00cffSS4uLgI8fHxQnx8vHDt2jVh2LBhAgChc+fO4nF9+vQRatSoIW7v3LlTACD8+uuvkvN9/vnngkKhEG7duiXWzMzMhD59+ry1DyLSDF7qIiKNa9OmDWxsbGBvb4+vv/4a5ubm2LFjB6pVqwYAMDExEY999uwZEhMT0aJFC5w7dy7XuT766CPUq1ev0L1YWVmha9eu2LBhg3iJKSsrC5s2bUK3bt1gZmb2znNERETAxsYGNjY2qFu3LhYuXIiOHTti1apV+b5mz5490NfXx7BhwyT1UaNGQRAE7N27t9A/ExEVHi91EZHGLV68GO+99x7KlSuHypUrw9nZGXp6r/4/a9euXfj1119x4cIFpKWliXWFQpHrXE5OTkXup3fv3ti0aRP+/vtvtGzZEgcPHkRsbCx69eql1usdHR2xYsUK8Rb9OnXqwNbW9q2vuXv3LqpWrQoLCwtJvW7duuJ+Iip5DD5EpHHNmjUT7+p6099//40uXbqgZcuWWLJkCapUqQIDAwMEBwfjzz//zHX866NDheXl5YXKlStj3bp1aNmyJdatWwc7Ozu0adNGrdebmZmpfSwRlW681EVEJWrbtm0wNjZGaGgo+vbti/bt22skVOQ1WpRDX18f3377LbZu3Ypnz55h586d+Oabb6Cvr1/k981PjRo18PDhQyQnJ0vqERER4v4cb+udiDSLwYeISpS+vj4UCgWysrLEWlRUVJFXLs6Zq5Pfys29evXCs2fPMGDAADx//lyyLk9x6NChA7KysrBo0SJJfe7cuVAoFGjfvr1YMzMz0/iK00SUN17qIqIS1bFjR8yZMwft2rXDt99+i7i4OCxevBi1a9fGpUuXCn3exo0bAwAmTJiAr7/+GgYGBujcubMYiNzc3ODq6ootW7agbt26aNSokUZ+nvx07twZrVq1woQJExAVFYUGDRpg//79CAkJwfDhwyW3rDdu3BgHDx7EnDlzULVqVTg5OcHd3b1Y+yPSVRzxIaIS1bp1a/z++++IiYnB8OHDsWHDBsyYMQOfffZZkc7btGlT/PLLL7h48SK8vb3xzTff5FpcsHfv3gCg9qTmotDT04NSqcTw4cOxa9cuDB8+HFevXsXMmTMxZ84cybFz5sxB48aNMXHiRHzzzTdYunRpsfdHpKsUgvDaEqJERGXY/PnzMWLECERFRcHBwUHudohIBgw+RKQTBEFAgwYNULFiRRw5ckTudohIJpzjQ0Rl2osXL6BUKnHkyBFcvnwZISEhcrdERDLiiA8RlWlRUVFwcnKCtbU1Bg8ejGnTpsndEhHJiMGHiIiIdAbv6iIiIiKdweBDREREOoOTm9+gUqnw8OFDWFhYcBl5IiIiLSEIApKTk1G1alXJQ5HfxODzhocPH8Le3l7uNoiIiKgQ7t27h+rVq+e7n8HnDRYWFgCy/+AsLS1l7oaIiIjUkZSUBHt7e/H3eH4YfN6Qc3nL0tKSwYeIiEjLvGuaCic3ExERkc5g8CEiIiKdweBDREREOoNzfAohKysLGRkZcrdBJcDAwAD6+vpyt0FERBrC4FMAgiAgJiYGCQkJcrdCJcja2hp2dnZc14mIqAxg8CmAnNBja2sLU1NT/iIs4wRBQEpKCuLi4gAAVapUkbkjIiIqKgYfNWVlZYmhp2LFinK3QyXExMQEABAXFwdbW1te9iIi0nKc3KymnDk9pqamMndCJS3nM+e8LiIi7ac1wScgIABNmzaFhYUFbG1t0a1bN1y/fl1yzMuXL+Hj44OKFSvC3NwcPXr0QGxsrEb74OUt3cPPnIio7NCa4HPs2DH4+Pjgn3/+wYEDB5CRkYG2bdvixYsX4jEjRozAX3/9hS1btuDYsWN4+PAhunfvLmPXREREVJpozRyfffv2SbZXr14NW1tbnD17Fi1btkRiYiJ+//13/Pnnn2jdujUAIDg4GHXr1sU///yD5s2by9E2ERERlSJaM+LzpsTERABAhQoVAABnz55FRkYG2rRpIx7j4uICBwcHhIWF5XuetLQ0JCUlSb7KGm9vbygUCigUChgYGKBy5cr49NNPsWrVKqhUKrXPs3r1alhbWxdfo0RERMVMK4OPSqXC8OHD8cEHH8DV1RVA9q3mhoaGuX4xV65cGTExMfmeKyAgAFZWVuKXvb19cbYum3bt2uHRo0eIiorC3r170apVK/z000/o1KkTMjMz5W6PiIioRGhl8PHx8UF4eDg2btxY5HP5+fkhMTFR/Lp3754GOix9jIyMYGdnh2rVqqFRo0YYP348QkJCsHfvXqxevRoAMGfOHNSvXx9mZmawt7fH4MGD8fz5cwDA0aNH8f333yMxMVEcPZo8eTIAYO3atWjSpAksLCxgZ2eHb7/9Vlz7hoiISKkEPD2BCROyvyuV8vWidcFnyJAh2LVrF44cOYLq1auLdTs7O6Snp+daVTk2NhZ2dnb5ns/IyAiWlpaSL3UJgoD09HRZvgRBKPCf3Ztat26NBg0aYPv27QAAPT09LFiwAFeuXMGaNWtw+PBhjB07FgDg6emJefPmwdLSEo8ePcKjR48wevRoANm3ef/yyy+4ePEidu7ciaioKHh7exe5PyIiKhsCA4GwMOl3uWjN5GZBEDB06FDs2LEDR48ehZOTk2R/48aNYWBggEOHDqFHjx4AgOvXryM6OhoeHh7F0lNGRgYCAgKK5dzv4ufnB0NDwyKfx8XFBZcuXQIADB8+XKw7Ojri119/xcCBA7FkyRIYGhrCysoKCoUiV5Ds27ev+M81a9bEggUL0LRpUzx//hzm5uZF7pGIiLSbry/w3XfA8+eAuXn2tly0Jvj4+Pjgzz//REhICCwsLMR5O1ZWVjAxMYGVlRX69euHkSNHokKFCrC0tMTQoUPh4eHBO7reQhAEcZ2agwcPIiAgABEREUhKSkJmZiZevnyJlJSUty7cePbsWUyePBkXL17Es2fPxAnT0dHRqFevXon8HEREVHp16QIsWHAR0dE7YWXlgi5dvpKtF60JPkuXLgUAfPzxx5J6cHCweFll7ty50NPTQ48ePZCWlgYvLy8sWbKk2HoyMDCAn59fsZ3/Xe+tCdeuXYOTkxOioqLQqVMnDBo0CNOmTUOFChVw4sQJ9OvXD+np6fkGnxcvXsDLywteXl5Yv349bGxsEB0dDS8vL6Snp2ukRyIi0l4qlQoLFy4Up6IkJkZI/qe7pGlN8FFnTouxsTEWL16MxYsXl0BH2Sv6auJyk1wOHz6My5cvY8SIETh79ixUKhVmz54NPb3sqV+bN2+WHG9oaIisrCxJLSIiAk+ePEFgYKB4R9yZM2dK5gcgIqJSbdOmWERELJPUBg8eLOuK+FoTfKho0tLSEBMTg6ysLMTGxmLfvn0ICAhAp06d0Lt3b4SHhyMjIwMLFy5E586dcfLkSSxbJv2X1dHREc+fP8ehQ4fQoEEDmJqawsHBAYaGhli4cCEGDhyI8PBw/PLLLzL9lEREVFrs2bMHERGnxW1bW1sMHDhQ9scAad1dXVQ4+/btQ5UqVeDo6Ih27drhyJEjWLBgAUJCQqCvr48GDRpgzpw5mDFjBlxdXbF+/fpcE7c9PT0xcOBAfPXVV7CxsUFQUBBsbGywevVqbNmyBfXq1UNgYCBmzZol009JRERye/nyJaZMmYLTp1+FHkfHzzFo0CDZQw8AKARN3BddhiQlJcHKygqJiYmSW9tfvnyJyMhIODk5wdjYWMYOqaTxsyciUk94eDi2bdsmqY0bN65E/tuZ3+/vN/FSFxERERWJIAhYunQp4uPjxVrTpk3RoUMHGbvKG4MPERERFZhSmb0Q4U8/xSMiQnoH9cmTA+HvX1mmzt6OwYeIiIgKLDAQsLDYj4iIVw8CNzQsj7/+GgJf39I7hZjBh4iIiApkx440eHlJnzvRrVs3NGjQADItb6c2Bh8iIiJS2x9/XENkpHSdtzFjxrx1hf/ShMGHiIiI3kkQBKxYsQKPHj0SaxUrumHIkC4ydlVwDD5ERET0Vk+ePMGiRYskNWfn/vj666oydVR4DD5ERESUJ6USWLv2MFxd/xZrL1+ao3nzEejatfROYH4bBh8iIiLKJT09HefPB8DV9VUtPLwztm5tBA8PoGtX+XorCu2Ma1QqeXt7o1u3buL2xx9/jOHDhxfpnJo4BxERFcyNGzdyPbZo+/bReO+97NDj6ytTYxrAER8d4O3tjTVr1gAADAwM4ODggN69e2P8+PEoV674/hXYvn07DAwM1Dr26NGjaNWqFZ49ewZra+tCnYOIiIpGEASsXr0a0dHRYq18+frYuLE7Ll0CzMyAU6dkbFADGHx0RLt27RAcHIy0tDTs2bMHPj4+MDAwgN8bCy6kp6fD0NBQI+9ZoUKFUnEOIiJ6O6USmD//GVq2XCCpr1zZD/b21eHrm71goTaP9OTgpS4dYWRkBDs7O9SoUQODBg1CmzZtoFQqxctT06ZNQ9WqVeHs7AwAuHfvHr788ktYW1ujQoUK6Nq1K6KiosTzZWVlYeTIkbC2tkbFihUxduxYvPm82zcvU6WlpWHcuHGwt7eHkZERateujd9//x1RUVFo1aoVAKB8+fJQKBTw9vbO8xzPnj1D7969Ub58eZiamqJ9+/a4efOmuH/16tWwtrZGaGgo6tatC3Nzc7Rr105y++XRo0fRrFkzmJmZwdraGh988AHu3r2roT9pIiLts3nzcUnoMTIyQsOGE8XQ06VL9khPF+26cz1PDD46ysTEBOnp6QCAQ4cO4fr16zhw4AB27dqFjIwMeHl5wcLCAn///TdOnjwpBoic18yePRurV6/GqlWrcOLECTx9+hQ7dux463v27t0bGzZswIIFC3Dt2jUsX74c5ubmsLe3F5/me/36dTx69Ajz58/P8xze3t44c+YMlEolwsLCIAgCOnTogIyMDPGYlJQUzJo1C2vXrsXx48cRHR2N0aNHAwAyMzPRrVs3fPTRR7h06RLCwsLw448/QqFQFPnPlIhI22RkZGDKlCmoU+eIWOvQoQN8fX3Rtat+mQk7r+OlLh0jCAIOHTqE0NBQDB06FPHx8TAzM8PKlSvFS1zr1q2DSqXCypUrxUAQHBwMa2trHD16FG3btsW8efPg5+eH7t27AwCWLVuG0NDQfN/3xo0b2Lx5Mw4cOIA2bdoAAGrWrCnuz7mkZWtrK5nj87qbN29CqVTi5MmT8PT0BACsX78e9vb22LlzJ7744gsA2X+Rly1bhlq1agEAhgwZgqlTpwIAkpKSkJiYiE6dOon769atW/A/SCIiLXfnzh2sXbtWUhs5ciQsLCxk6qhkcMRHJkol4OmZ/b0k7Nq1C+bm5jA2Nkb79u3x1VdfYfLkyQCA+vXrS+b1XLx4Ebdu3YKFhQXMzc1hbm6OChUq4OXLl7h9+zYSExPx6NEjuLu7i68pV64cmjRpku/7X7hwAfr6+vjoo48K/TNcu3YN5cqVk7xvxYoV4ezsjGvXrok1U1NTMdQAQJUqVRAXFwcgO2B5e3vDy8sLnTt3xvz58yWXwYiIyjpBELBu3TpJ6Ll2zQWzZvmX+dADcMRHNoGBQFhY9veSGEZs1aoVli5dCkNDQ1StWlVyN5eZmZnk2OfPn6Nx48ZYv359rvPY2NgU6v1NTEwK9brCePMuMIVCIZl/FBwcjGHDhmHfvn3YtGkTJk6ciAMHDqB58+Yl1iMRkRwSExMxb948SS042Bt379bA+PHy9FTSOOIjE19flOhaCGZmZqhduzYcHBzeeQt7o0aNcPPmTdja2qJ27dqSLysrK1hZWaFKlSr4999/xddkZmbi7Nmz+Z6zfv36UKlUOHbsWJ77c0acsrKy8j1H3bp1kZmZKXnfJ0+e4Pr166hXr95bf6Y3ubm5wc/PD6dOnYKrqyv+/PPPAr2eiEjbnDp1ShJ69PT0kJ4+AU+eZIeeadPk660kMfjIpDTPkP/uu+9QqVIldO3aFX///TciIyNx9OhRDBs2DPfv3wcA/PTTTwgMDMTOnTsRERGBwYMHIyEhId9zOjo6ok+fPujbty927twpnnPz5uwn/NaoUQMKhQK7du1CfHw8nj9/nuscderUQdeuXdG/f3+cOHECFy9eRM+ePVGtWjV0VXMJ0cjISPj5+SEsLAx3797F/v37cfPmTc7zIaIyKzMzE1OnTsWBAwfEWkREW/z888+YNq0ckpN1J/QADD6UB1NTUxw/fhwODg7o3r076tati379+uHly5ewtLQEAIwaNQq9evVCnz594OHhAQsLC3z22WdvPe/SpUvx+eefY/DgwXBxcUH//v3x4sULAEC1atUwZcoU+Pr6onLlyhgyZEie5wgODkbjxo3RqVMneHh4QBAE7NmzR+1FDk1NTREREYEePXrgvffew48//ggfHx8MGDCgAH9CRETaISoqCtOmTZNc7l+8eDi++cZDxq7kpRDeXHxFxyUlJcHKygqJiYniL3kAePnyJSIjI+Hk5ARjY2MZO6SSxs+eiLTRxo0bcf36dXH75s3aWL/+O7i4AK/dD1Jm5Pf7+02c3ExERFSGJCcnY86cOZLamjW9EBVVE9WqATNmyNRYKcHgQ0REVEb8/vt/uH9/r6TWoMEE2NmVw7x5pXNeaUlj8CEiItJyWVlZCAoKElfXB4BDh1rj/PkWSE4GunWTr7fShsGHiIhIi927dw+rVq2S1ObN+wkJCdY6szZPQTD4FBDngusefuZEVFpt27YN4eHh4nZkpCPWrOkNY2OFTq3NUxAMPmrKuV06JSWlRFchJvmlpKQAyL0iNBGRXF68eIFZs2ZJauvWfYtbt+qgWjXg/5dcozww+KhJX18f1tbW4jOfTE1N+UTvMk4QBKSkpCAuLg7W1tbQ19eXuyUiIpw9exa7du2S1LZs8cOtW4YwNweWLJGpMS3B4FMAdnZ2ACCGH9IN1tbW4mdPRCQXlUqFOXPmiAu/AsDx4y1x+HAreHgAvCqvHgafAlAoFKhSpQpsbW2RkZEhdztUAgwMDDjSQ0Sye/jwIVasWCGpLV48BPHxFWFuXnLPfSwLGHwKQV9fn78MiYioRISEhODChQvi9v371bByZT8oFArxYddcn0d9DD5ERESlUEpKCmbOnCmpbdjwFR4/doGeHtC9O7Bli0zNaTEGHyIiolLmwoULCAkJkdSmT/dFeroRQkI4wlMUDD5ERESlhEqlwoIFC5CYmCjWTp70xIEDn0KhAMaPZ+gpKgYfIiKiUiAmJgbLly+X1FatGox792xQsSKwahVDjyYw+BAREcls9+7dOHPmjLj9+LEtFi0aCGdnBVQqGRsrgxh8iIiIZPLy5UvMmDFDUtu8+XPcufO+eMcWaRaDDxERkQzCw8Oxbds2SS0gYBxUKmOMGcPnbBUXBh8iIqISJAgClixZgsePH4u1f/9thr1728PYGEhPl7E5HcDgQ0REVELi4+Ox5I2HaS1dOhCxsZUBACNHytGVbmHwISIiKgH79+9HWFiYuP30aXksXDgUgqCAnl72fB5e3ip+DD5ERETFKC0tDYGBgZLajh2f4eLF/wEADAyArVt5q3pJYfAhIiIqJteuXcPmzZsltRkzxsLNzQTOzoBCAcyYwdBTkhh8iIiINEwQBMycuQKpqY/EWkSEG3bu7IKXLwFBACIiZGxQhzH4EBERadCTJ0+waNEiSW358v549KgqXFyA8uW5Po+cGHyIiIg05PDhw/j777/F7eRkc8yZMwLlyunB2ZmXtUoDBh8iIqIi2rEjHZcuBUhqISGdERfXCM2bZ4/wMPCUDgw+RERERXDjxg1curRBUnN1HY3QUDMsWcLAU9ow+BARERWCIAiYPTsYL17cE2uXLtXHlSvdEREB9OghY3OULwYfIiKiAnr27BkWLFggqa1Y0Q8xMdWxfbtMTZFaGHyIiIgK4Pjx4zhy5Ii4nZpqjHnzRsPRUR/bt/PSVmnH4ENERKSGnTszcPHidElt9+4OuHatKTZvZuDRFnpyN0BERFTa3b59O1focXUdhXLlmmL9eoYebcIRHyIionyEhAg4eHAdKlW6I9aio+uia9cv0aULJzBrIwYfIiKiPGzdmogrV+ahUqVXtQ0bvBERUUO+pqjIGHyIiIheo1QCGzeegrPzAbGWlaWP+fP9MGSIvoydkSYw+BAREf2/zMxMnDs3Hc7OglgLDW0LwAOJifL1RZrD4ENERASgT58o1Ky5BgrFq1p6+ggAlnyoaBnC4ENERDrP338jata8Lm7fvFkb69d/Bw8P4NQpGRsjjWPwISIinbVtWzLCw+dA77XFXdat64WGDWvCwwMc6SmDGHyIiEjnKJXAypX/onHjfZJ6evoE3LzJX41lWZlcwHDx4sVwdHSEsbEx3N3d8d9//8ndEhERlRJZWVk4fXq6JPQcOtQas2b5Y9o0hp6yrswFn02bNmHkyJHw9/fHuXPn0KBBA3h5eSEuLk7u1oiISEZKJfDhh/fw66+/oly5DLE+b95POHmyBYYNk7E5KjEKQRCEdx+mPdzd3dG0aVMsWrQIAKBSqWBvb4+hQ4fCV42LtUlJSbCyskJiYiIsLS2Lu10iIioBEyYAN25sg6truFhzdHSEtXVvzJihgK8vHzuh7dT9/V2mxvTS09Nx9uxZ+Pn5iTU9PT20adMGYWFheb4mLS0NaWlp4nZSUlKx90lERCXn+fPnMDScDVfXV7Vatb5Dz561AQBdu8rUGMmiTF3qevz4MbKyslC5cmVJvXLlyoiJicnzNQEBAbCyshK/7O3tS6JVIiIqRkolUKkS0KTJWcyePVuy78CB8WLoId1TpoJPYfj5+SExMVH8unfvntwtERFRESiVQM+eKvTtOxOdO+8S63Z2HyE01B9jxxrI2B3JrUxd6qpUqRL09fURGxsrqcfGxsLOzi7P1xgZGcHIyKgk2iMiomKkVAKBgUBKygOMGrVSsm/o0KGoUKECBgyQqTkqNcrUiI+hoSEaN26MQ4cOiTWVSoVDhw7Bw8NDxs6IiKg4KZXAV18BtrYh+OyzV6HH1LQaJk2ahAoVKsjYHZUmZWrEBwBGjhyJPn36oEmTJmjWrBnmzZuHFy9e4Pvvv5e7NSIiKiazZ6fA13empLZhw9eoUMEZY8bI1BSVSmUu+Hz11VeIj4/HpEmTEBMTg4YNG2Lfvn25JjwTEZH2UyqBP/64gNatQyT16dN9YWhohKAgmRqjUqvMreNTVFzHh4hIO4SEqHDs2AJYWSWKNU9PT6SmforAQHBtHh2jk+v4EBFR2adUAhMnxqBHj+WwsnpVHzx4MGxsbAAw8FD+ytTkZiIiKruUSsDTE9i8eTd69Fgu1mNjbbFixSQx9BC9DUd8iIhIK8yalQovL+mknejoz3Ht2vtYskSmpkjrMPgQEVGpplQCs2aF45NPtknq48aNg7GxsUxdkbbipS4iIiqVJkwALCwEHDy4SBJ6zpxpBn9/f4YeKhSO+BARUamiVAJjxwLPnsVh9Oilkn1LlgyEgQGXJ6HCY/AhIqJS5fvvgSZNQvHNN/+ItadPK+DhwyGoVUsBX18ZmyOtx+BDRESlRlpaGoYNC5TULl36DNu2/U+mjqisYfAhIiLZKZXAqlXX4Oa2WVI/fHgsRo0ykakrKosYfIiISFYhIQL27fsNbm4xYu3MmUZ48qQzTp2SsTEqk3hXFxERyebx48e4cGEq7OxehR5n5x/x5ElnzuWhYsERHyIiksWyZYcQG3tC3E5KssDevcNx9aoevv5axsaoTGPwISKiErVjRzouXQqQ1BwcumDFCjcEBubzIiINYfAhIqISMWECsGvXDXTvvkFSX7t2NG7dMsP338vUGOkUzvEhIqJipVQCdesKiIlZJQk9Fy/+D5Mn+8PAwEzG7kjXcMSHiIiK1fz5z/D11wsktZ07+yE+vjpcXIAZM2RqjHQSgw8RERWbY8eOoWXLo+J2aqoxZs4cDXd3fdy/L19fpLsYfIiISOMyMjIwffp0SW3Png5o06Yp3N3BW9VJNgw+RESkUbdv38a6desktVmzRmHYMHNMmyZTU0T/j8GHiIg0QhAETJ68Fnp6kWLt1q26WLfuSzg7g6GHSgUGHyIiKrLExETMmzcPeq/dK7xq1feIi3OAhwcvbVHpweBDRERFcvLkSRw8eFDczsgoh6NHffH0qT5GjuRID5UuDD5ERFQomZmZmPZGqomI8MKGDc1l6ojo3Rh8iIiowCZOjIKBwRpJ7ejRERgxwlKmjojUw+BDREQFsnHjRhgYXBe34+PrYNGib+HvL2NTRGpi8CEiIrVs25aM8PA5ktq6db0xe7aTTB0RFRyDDxERvdPKlf/iwYN9ktrcuRPwxx/l0KWLTE0RFQKDDxER5SsrKwszZsxARkaGWPvvv09w586H+OMPMPSQ1mHwISKiPN27dw+rVq2S1OrV+wn+/tbyNESkAQw+RESUy/z5W5GQcEXcjox0xI0bveHvr5CxK6KiY/AhIiLR8+fPMXv2bElt3brvcOdObezYIVNTRBrE4ENERACAs2fPYteuXZJaYOB4lCtnAF9fzuehsoHBh4hIx6lUKkyfPgtZWali7ejRj3D8+Mfw9eUjJ6hsYfAhItJhDx48wMqVKyW1BQuGIjW1Anbs4CgPlT0MPkREOiokJAQXLlwQt+/dq47ff+8LExMFNm5k6KGySU/uBoiIqHgplYCnZ/Z3AEhJScGUKVMkoWfr1q+xb18/ODsz9FDZxhEfIqIyLjAQCAvL/u7gcAEhISGS/fPn+2H1akOGHdIJDD5ERGWcry8QGKhCp07zERKSJNb//vsDHDnShnN5SKcw+BARlWFKJbB4cQy8vJbjtadO4MYNH/z7byXepk46h8GHiKgMCwnZDU/PM+J2TExlLFs2AB4eCiQny9gYkUwYfIiIyqDU1FQEBQXBweFVbfPmL3D1aj0YG2df/iLSRQw+RERlTHh4OLZt2yapBQSMQ3q6MapVA5Ys4eUt0l0Fvp1dX18fcXFxuepPnjyBvr6+RpoiIqLc3rwt/U0hIQLGjFkkCT02Nu5wc/NHo0bG2LkTuH+foYd0W4FHfARByLOelpYGQ0PDIjdERER5e/229DfDS1xcHC5cWApz81e1JUsGolatyjh1imGHKIfawWfBggUAAIVCgZUrV8L8tb9dWVlZOH78OFxcXDTfIRERAci5LT37u1IJjB0LKBTA0KGhiI//RzzuyZMK2L59CGrVUnAuD9EbFEJ+QzhvcHJyAgDcvXsX1atXl1zWMjQ0hKOjI6ZOnQp3d/fi6bSEJCUlwcrKComJibC0tJS7HSKiPHl6AufOpcHPL1BS37btM1y+/D+4uADXrsnUHJEM1P39rfaIT2RkJACgVatW2L59O8qXL1/0LomIqFAGDryGyMjNklp6+likp5vAxQWYMUOmxohKuQLP8Tly5Ehx9EFERGoQBAEzZ/6G1NQYsXbxYiPs2NEZHh5ARISMzRFpgQIHn759+751/6pVqwrdDBERZc/fyZnLkzMpWakEFix4jBYtFkuOPXXqR+zfXwXm5lybh0gdBQ4+z549k2xnZGQgPDwcCQkJaN26tcYaIyLSVXndvbVt2yG0aHFCPCYpyRLGxj/Bx0cPycngoyeI1FTg4LNjx45cNZVKhUGDBqFWrVoaaYqISFcplcCzZ4Czc3aY2bEjHZcuBaBmzVfHhIR0wfnzbvDwAKZNY+AhKogCL2CY50n09DBy5EjMnTtXE6cjItJZgYHZ83QqVABcXG7g0qUAyf6goDE4f94Nenq8tEVUGBp7ZMXt27eRmZmpqdMREemk7LV6BHTvvgobNtwX6+Hh/8PWrZ/BwAAwMQFGjOBID1FhFDj4jBw5UrItCAIePXqE3bt3o0+fPhprjIhIF7Vo8Qznzy/AixevaitW/IAHD6rB3BxYv56Bh6goChx8zp8/L9nW09ODjY0NZs+e/c47voiIKH/Hjh3D0aNHxe2XL00QFDQKKpU+Qw+RhnAdHyIimWVkZGD69OmSWocOHfDoUVPUqZP9WIoZMxh6iDSh0HN84uLicP36dQCAs7MzbG1tNdYUEVFZ9eYaPbdv38a6deskx7i6jkLTptnPQ2TYIdIstZ/VlSMpKQk+Pj7YsGEDVCoVAEBfXx9fffUVFi9eDCsrq2JptKTwWV1EVJzq1s2+a6taNQFduqxF5cqR4r4rV+phy5Yv4OEBnDolY5NEWkjd398Fvp29f//++Pfff7F7924kJCQgISEBu3btwpkzZzBgwIAiNU1EVNYJAmBllYD+/adKQs+qVd/jr7++gIsLb1MnKk4FHvExMzNDaGgoPvzwQ0n977//Rrt27fDi9VsRtBBHfIioOP3880mUK3dQ3M7IKIejR32hUulz9WWiItD409lzVKxYMc/LWVZWVnxiOxHRG3Lm9Iwdm4mLF6eh3Gv/1d23zwv//NMc5uZAcrJ8PRLpkgJf6po4cSJGjhyJmJhXTwaOiYnBmDFj8PPPP2u0OSIibRcYCDx6FIWLF6dJ6rNnj8DZs81hbAwMGyZTc0Q6qMCXutzc3HDr1i2kpaXBwcEBABAdHQ0jIyPUqVNHcuy5c+c012kJ4aUuItIUpRL4668NqF79hliztKyDWrW+zfX0dSIqmmK71NW1a1coFIoiNUdEVNYlJSXh/Pm5qF79VW316t54/NgJ69fzri0iuRR4xEcOUVFR+OWXX3D48GHExMSgatWq6NmzJyZMmABDQ0PxuEuXLsHHxwenT5+GjY0Nhg4dirFjxxbovTjiQ0RF9e+//2Lfvn2SWoMGE9CrVzk8fw7erk5UDIptxKdmzZo4ffo0KlasKKknJCSgUaNGuHPnTsG7fYeIiAioVCosX74ctWvXRnh4OPr3748XL15g1qxZALJ/4LZt26JNmzZYtmwZLl++jL59+8La2ho//vijxnsiInqdUgnMmJEFL69ACMKrBzZXrfoJ+vfPvgt2/fpXixcSkTwKPOKjp6eHmJiYXCs1x8bGwt7eHunp6RptMD8zZ87E0qVLxaC1dOlSTJgwATExMeIokK+vL3bu3ImIiAi1z8sRHyJSh1IJjBuXvS5PUBAQFBSNTz8Nlhwzd+5PqFfPmqM7RCVA4yM+SqVS/OfQ0FDJLe1ZWVk4dOgQnJycCtluwSUmJqJChQridlhYGFq2bCm59OXl5YUZM2bg2bNn+d5qn5aWhrS0NHE7KSmp+JomIq315qMmAgOzV2AGgD17tuLTT6+Ix96544S1a3uhalUFR3eIShm1g0+3bt0AAAqFAn369JHsMzAwgKOjI2bPnq3R5vJz69YtLFy4ULzMBWTfUv9m8KpcubK4L7/gExAQgClTphRfs0RUJgQGAmFh2d+7dMkOQJMmPcdnn0n/uxcV9R3WrasNQQASE3nXFlFpo/Y6PiqVCiqVCg4ODoiLixO3VSoV0tLScP36dXTq1KlAb+7r6wuFQvHWrzcvUz148ADt2rXDF198gf79+xfo/fLi5+eHxMRE8evevXtFPicRlT2+vtmTknNGcKpWPZMr9EybNh5hYbXh6wuYm3N9HqLSqMCTmyMjI999kJpGjRoFb2/vtx5Ts2ZN8Z8fPnyIVq1awdPTE7/99pvkODs7O8TGxkpqOdt2dnb5nt/IyAhGRkYF7JyIdEHO5a1WrYAjR7JDT6dOKgQFzUJqaqp43K1bH+HIkY+RkQEoFMC0adlfRFT6FDj4TJ069a37J02apPa5bGxsYGNjo9axDx48QKtWrdC4cWMEBwdDT086WOXh4YEJEyYgIyMDBgYGAIADBw7A2dmZj9IgokLJubx1+TLw/DmwdOkDnD+/UnLM8eNDcfhwBTg7S0eEiKh0KtTKza/LyMhAZGQkypUrh1q1ahXLas0PHjzAxx9/jBo1amDNmjXQ19cX9+WM5iQmJsLZ2Rlt27bFuHHjEB4ejr59+2Lu3LkFup2dd3URUY6cEZ9q1QBgJ1xdL4r7qlevjr59++KvvxRchZmoFCi2dXzOnz+f55t5e3vjs88+K+jp1HLgwAHcunULt27dQvXXl0EFkJPbrKyssH//fvj4+KBx48aoVKkSJk2axDV8iKhA3rx7q02bFMycOVNyzLlzX8PNzRkKRfYxDDxE2kNjKzdfvnwZnTt3RlRUlCZOJxuO+BDpNk/P7MtbHh7AkiUXEBISItk/e7YfkpMNufoyUSlTbCM++cm5K4qISJv5+gKBgSp06jQfISGv1vX6998PsHdvGwDZd2xxLg+Rdipw8FmwYIFkWxAEPHr0CGvXrkX79u011hgRkRyaNYuBl9dyZGS8qi1e7IM6dSrBxeXVSs28vEWknQocfObOnSvZ1tPTg42NDfr06QM/Pz+NNUZEVNJ27dqFs2fPituPHtlhxYofoVIpkJoKJCfL2BwRaYSs6/gQEZUGqampCAoKktQOHPgCT57UQ/fuwL59XIyQqKwo1ByfhIQE3Lp1CwBQu3ZtWFtba7InIqISc/nyZWzfvl1SCwjwRVqaETw8gC1bZGqMiIpFgYJPVFQUfHx8EBoaKt5GrlAo0K5dOyxatAiOjo7F0SMRkcbk3K4+bpyA6OhFePr0qbjv7l13dOvWDo6O2SswcwIzUdmj9u3s9+7dQ9OmTWFgYIDBgwejbt26AICrV69i6dKlyMzMxOnTp3Ots6NteDs7Udnm6Qncvh2HwYOXSup79w7C+PG2nLRMpKXU/f2tdvDp168fbt26hdDQUBgbG0v2paamol27dqhTpw5WrlyZzxm0A4MPUdm2ZMk+xMf/K26/eFERs2b5oHlzBdflIdJiGl/HZ9++fdi0aVOu0AMAJiYm+OWXX/D1118XrlsiomKWlpaGwMBASa179+6IjKyPEyd4WYtIV6gdfB4/fvzWOTw1a9aUXCsnIiotrl69ii1vzFJOTx+L+vVNUL8+1+Qh0iVqB58qVarg6tWr+c7hCQ8PFx8YSkRUGgiCgOXLlyM2NlasnTnTGLt2dYK5OTBtmozNEZEs1A4+3bp1w+jRo3Ho0CHY2NhI9sXFxWHcuHHo1q2bpvsjIiqUx48fY/HixZLasmU/Ij29CszNuS4Pka5Se3Lzs2fP4O7ujpiYGPTs2RMuLi4QBAHXrl3Dn3/+CTs7O/zzzz+oUKFCcfdcrDi5mUj7LVt2ELGxJ8VtS0tL1Kz5E2bM0BOfuk5EZYvGJzeXL18e//77L8aPH4+NGzciISEBAGBtbY1vv/0W06dP1/rQQ0TaLT09HQEBAZKag0MXfP+9GwCga1c5uiKi0kTtEZ/XCYKA+Ph4AICNjQ0UCoXGG5MLR3yItNPatddx585GSS0oaAwaNDDlbepEOkDjIz6vUygUsLW1LXRzRESaIggCVq1ahfv374u1Cxca4PTpbmjQgLepE5FUoYIPEVFp8PTpUyxcuFBS27nzB1y4UA3OzuBIDxHlwuBDRFpp+fJjiIk5Km6npJjA03M03Nz0EBjIkR4iyhuDDxFplYyMDEyfPl1S27WrI86caQIPj+xRHt61RUT5YfAhIq1x69YtrF+/XlJzdR0FNzdzjvIQkVrUCj4LFixQ+4TDuCoYEWmYIAhYu3YtIiMjxdqVK/Vw//4X8PfP3uYoDxGpQ63gM3fuXLVOplAoGHyISKMSEhIwf/58SS0j43vcv+/AER4iKjC1gs/r/5dFRFRSVqw4gYcPD4nbWVnlMH26L0xM9LF+PUd5iKjgCj3HJz09HZGRkahVqxbKleNUISLSnMzMTEx74wmiXl5eiItrDhMT4PlzIDCQwYeICk6voC9ISUlBv379YGpqivfffx/R0dEAgKFDhyIwMFDjDRKRbomMjMwVet5/fwSaN2+OLl2A9esBDw9OZCaiwilw8PHz88PFixdx9OhRGBsbi/U2bdpg06ZNGm2OiHTLhg0b8Mcff4jb16+/h9BQf3z++avl57t04S3rRFR4Bb5GtXPnTmzatAnNmzeXPKPr/fffx+3btzXaHBHphqSkpFw3URw+3BsZGU4c2SEijSpw8ImPj8/zOV0vXrwoUw8rJaKS8c8//yA0NFRSO3BgAsaOLcdRHSLSuAJf6mrSpAl2794tbueEnZUrV8LDw0NznRFRmZaVlYWpU6dJQs+NG5/Azc0fJ04w9BBR8SjwiM/06dPRvn17XL16FZmZmZg/fz6uXr2KU6dO4dixY8XRIxGVMdHR0QgODpbUfvrpJ1hbW8vTEBHpjAKP+Hz44Ye4cOECMjMzUb9+fezfvx+2trYICwtD48aNi6NHIipDtmzZIgk9jx/XRMOGkxh6iKhEKARBEORuojRJSkqClZUVEhMTYWlp+e4XEJFanj9/jtmzZ0tqPXv2RK1atWTqiIjKEnV/f6t1qSspKUntN2ZYIKI3nTlzRjI3EADGjx8PAwMDmToiIl2lVvCxtrZW+46trKysIjVERGWHSqXCrFmzkJqaKtaOHPkY6ekfwc0N4hPVOZGZiEqKWsHnyJEj4j9HRUXB19cX3t7e4l1cYWFhWLNmDQICAoqnSyLSOg8ePMDKlSsltfnzhyIxsQLeew8YPBh48AAYN47Bh4hKToHn+HzyySf44Ycf8M0330jqf/75J3777TccPXpUk/2VOM7xISq6nTt34uLFi+L2/fv2WLnye5iYKODgAFy/DhgbAy9fAs7OQESEjM0SUZmg0Tk+rwsLC8OyZcty1Zs0aYIffvihoKcjojJk27YXCA+fJamdO/c1XF2dJc/XCgwEWrUCjhzhM7eIqGQVOPjY29tjxYoVCAoKktRXrlwJe3t7jTVGRNolOPg8oqOVktrBg374+2/DXMfy0hYRyaXAwWfu3Lno0aMH9u7dC3d3dwDAf//9h5s3b2Lbtm0ab5CISreQEBVOnZoHU9NksXbhwgeIjW3D0RwiKnUKvIBhhw4dcPPmTXTu3BlPnz7F06dP0blzZ9y4cQMdOnQojh6JqJSKjIzEhQu/SELPihU++P77NpInqCuVgKdn9nciIjlxAcM3cHIzkXqmT5+DjIxXgefxYzscPPgjZsxQ5LqU5ekJhIUBHh7AqVMl3CgR6YRim9wMAAkJCfj9999x7do1AMD777+Pvn37wsrKqnDdEpHW2LYtGeHhcyS1L774AvXq1cv3Nb6+r9bsISKSU4FHfM6cOQMvLy+YmJigWbNmAIDTp08jNTUV+/fvR6NGjYql0ZLCER+i/B08eBAnT56U1FxdR6NHDzOZOiIiyqbu7+8CB58WLVqgdu3aWLFiBcqVyx4wyszMxA8//IA7d+7g+PHjRetcZgw+RLmpVCr88ssvktrjx5VgaemDadNkaoqI6DXFFnxMTExw/vx5uLi4SOpXr15FkyZNkJKSUriOSwkGHyKpyMhI/PHHH5Ja79694eTkJFNHRES5qfv7u8B3dVlaWiI6OjpX/d69e7CwsCjo6YiolFIqgTFjFucKPT///LMYeni3FhFpmwIHn6+++gr9+vXDpk2bcO/ePdy7dw8bN27M8zEWRKSdXrx4gfPnp8Dc/LFYu3PnQ/j7+0NP79V/NgIDs+/WCgyUo0siooIr8F1ds2bNgkKhQO/evZGZmQkAMDAwwKBBgxDI//oRab3jx49LHkwMAEeOjMTIkblHdHm3FhFpm0Kv45OSkoLbt28DAGrVqgVTU1ONNiYXzvEhXSUIAqZOnSqpWVpaYsSIETJ1RESkvmJdxwcATE1NUb9+/cK+nIhKkejoaAQHB0tqtWp9h549a8vUERFR8VA7+PTt21et41atWlXoZoio5K1YsQIPHz6U1KZO/Rnu7nro2VOmpoiIionawWf16tWoUaMG3NzcwKdcEGm/7dtTcflykKTm7u6O9PR2cHfnvB0iKpvUDj6DBg3Chg0bEBkZie+//x49e/ZEhQoVirM3ItIwpTJ7MvL335/Cw4cHJPuGDx8uPnbmzWdtERGVFWrfzr548WI8evQIY8eOxV9//QV7e3t8+eWXCA0N5QgQkZYYO1aAl9cUSegRBCOEhvrj2DE+a4+Iyr5C39V19+5drF69Gn/88QcyMzNx5coVmJuba7q/Ese7uqisevDgAVauXCmpffXVV+jb14VPTicirVfsd3Xp6elBoVBAEARkZWUV9jREVALWrFmDqKgoSW3ixInQ19fnWjxEpFMKFHzS0tKwfft2rFq1CidOnECnTp2waNEitGvXTrKaKxGVDmlpabkWFm3UqBE6d+4sbnfpwjk9RKQ71A4+gwcPxsaNG2Fvb4++fftiw4YNqFSpUnH2RkSFpFQC69f/h3r19krqQ4cO5U0JRKTT1J7jo6enBwcHB7i5uUGhUOR73Pbt2zXWnBw4x4e0XV4rMCsUCkyaNEmmjoiIip/G5/j07t37rYGHiOSjVALjxgFWVjFo3365ZF+PHj3g6uoqU2dERKVLoe/qKqs44kPayNMTcHTcAGfnG5L6hAkTUK5coe9hICLSGsV+VxcRlQ7p6enw8gqQ1OrXr4/u3bvL1BERUenFW7GItNj58+cRECANPT4+PkUKPUpl9giSUlnU7oiISh+O+BBpqSlTpuSq+fv7F/m8gYFAWFj2d97mTkRlDYMPkZaJj4/HkiVLJLWuXbuiYcOGGjk/FzQkorJM6y51paWloWHDhlAoFLhw4YJk36VLl9CiRQsYGxvD3t4eQUFBeZ+ESEtt27YtV+jx8/PTWOgBskd5Tp3iaA8RlU1aF3zGjh2LqlWr5qonJSWhbdu2qFGjBs6ePYuZM2di8uTJ+O2332TokkizMjIyMGXKFISHh4u1uDhnuLn5w9DQUMbOiIi0i1Zd6tq7dy/279+Pbdu2Ye9e6Yq069evR3p6OlatWgVDQ0O8//77uHDhAubMmYMff/xRpo6Jiu7y5cu5FgYdOHAgKleuLFNHRETaS2uCT2xsLPr374+dO3fC1NQ01/6wsDC0bNlS8n+/Xl5emDFjBp49e4by5cvned60tDSkpaWJ20lJSZpvnqiQ8prAPGnSJC4mSkRUSFoRfARBgLe3NwYOHIgmTZrkeso0AMTExMDJyUlSy/k/4piYmHyDT0BAQJ6/XIjkoFRmTyx2cnqK995bKNnXoUMHNG3aVKbOiIjKBlnn+Pj6+kKhULz1KyIiAgsXLkRycjL8/Pw03oOfnx8SExPFr3v37mn8PYjUFRgI2Ngoc4Wegwd9NRJ6uEYPEek6WUd8Ro0aBW9v77ceU7NmTRw+fBhhYWEwMjKS7GvSpAm+++47rFmzBnZ2doiNjZXsz9m2s7PL9/xGRka5zkskh6ysLHh5/SqpPX/uhJMne2vs1nKu0UNEuk7W4GNjYwMbG5t3HrdgwQL8+uurXwgPHz6El5cXNm3aBHd3dwCAh4cHJkyYgIyMDBgYGAAADhw4AGdn53wvcxHJKeeylq8vUKfONWzevFmyv3///nnewVgUXKOHiHSdVj6kNCoqCk5OTjh//ry4fkliYiKcnZ3Rtm1bjBs3DuHh4ejbty/mzp1boLu6+JBSKil16wIREcCECQEwMEiX7OMEZiKiglH397fWreOTHysrK+zfvx+RkZFo3LgxRo0ahUmTJvFWdiq1TEwSMHnyFEnoadu2Lfz9/fHXX4o85+Jwjg4RUdFo5YhPceKID5WEvXv34r///pPUxo4dCxMTEwDZ4SYsDPDwyF5FOUd+dSIiXadzIz5E2kClUmHKlCmS0FOtWjW4ufnjk09MxJEcX9/scPPmXJz86kREpB6O+LyBIz5UXG7evIk///xTUuvbty/s7e05kkNEVETq/v7WigUMibTdnDlzkJycLKm9PoGZd1sREZUMBh+iYpScnIw5c+ZIajdvtsKXX7ZEzk1br9/WzrV1iIiKF4MPUTE5ePAgTp48KamNHj0aZmZmklpBFxVkUCIiKjxObibSsJwJzK+HnufPbeDm5p8r9AAFn7D8elAiIqKC4YgPURG8PvoCAL/9dgdNm66VHPPff32wZ48jTp7Me4SmS5eCjdxwPhARUeEx+BAVweujLx9+uAhNmz6R7P/555+xa5cenj3TXFApaFAiIqJXGHyIiqBVK+D27Rfw8polqbdo0QKtW7cGwKBCRFSaMPgQFUF09DEMHnxUUhs5ciQsLCzkaYiIiN6KwYeoEARBwNSpU1G79qtaaqoVPD2Hg5mHiKj0YvAhKgClEli2LBru7sGS+tmz3+Gvv2rDw4OXtYiISjMGH6ICOHr0N7i7P5LUciYwP37MO62IiEo7Bh8iNaSmpiIoKAhWVq9qNjbNsW6dF9zcOIGZiEhbMPgQvcOpU6dw4MABSW348OFo396qQCsuExGR/Bh8iPKRM4H5dcbGxhg3bhwALiRIRKSNGHyI8vDgwQOsXLlSUvvqq6/g4uIibvPyFhGR9mHwIXrDmjVrEBUVJalNnDgR+vr68jREREQaw+BDhOzb1GfNeolPPpkhqTdq1AidO3eWqSsiItI0Bh8iAOvX/4dPPtkrqQ0bNgzly5eXqSMiIioOenI3QCQnQRAwZcoU1Kv3KvQoFAr4+/u/NfQolYCnZ/Z3IiLSHhzxIZ0VExOD5cuXS2o9evSAq6vrO1/7+lPZOcGZiEh7cMSHyrS8RmaUSsDH589coWfChAlqhR4g+xZ2Dw/eyk5EpG0UgiAIcjdRmiQlJcHKygqJiYmwtLSUux0qIk/P7JEZDw/g1CkgPT0dAQEBkmPq16+P7t27y9QhERFpgrq/v3mpi8q01xcZPH/+PJRvTMrx8fFBpUqVZOqOiIhKGkd83sARn7JpypQpuWr+/v4ydEJERMWBIz5EAOLj47FkyRJJbceOrjA1bQjmHiIi3cPgQ2XW1q1bceXKFUntf//zQ2ioISclExHpKAYfKnMyMjIwffp0SS021gVLlnwFAPjsMzm6IiKi0oDBh8qUy5cvY/v27ZLayZMDMWRIZZk6IiKi0oTBh8qMvCYwT5o0CQqFQoZuiIioNGLwIa2mVAILFjxFixYLJfWOHTuiSZMmMnVFRESlFYMPabW//lKiRYvzkpqvry+MjIxk6oiIiEozBh/SSpmZmZg2bRqqV39Vq1mzJnr16iVfU0REVOox+JDWuXbtGjZv3iyp9e/fH1WrVpWpIyIi0hYMPlTqKZWvHjsRHj4dGRkZkv2cwExEROri09mp1HnzieqBgcDVqwk4f36KJPS0bdsW/v7+DD1ERKQ2jvhQqRMYmP1E9cDA7G0npz3w8jotOWbs2LEwMTGRoTsiItJmDD5U6uQ8UX3cuCycP/8r3nvv1b7q1aujX79+8jVHRERajcGHSp0uXYC6dW/izz//lNT79u0Le3t7mboiIqKygHN8SFZvzucBgNmzZ+cKPZMmTWLoISKiIuOID8nq9fk8n36aiqCgIMn+1q1bo0WLFjJ1R0REZQ2DD8kqZz7Pjz9eQlDQDsm+MWPGwNTUVKbOiIioLGLwIdlkr88joEuXRbh796lYb968Oby8vGTsjIiIyioGH5KFUgn89FMcvL2XIi3tVX3QoEGwtbWVrzEiIirTOLlZx+U1ubgk3mPnzn3w9l4qbleqVAmTJk1i6CEiomKlEARBkLuJ0iQpKQlWVlZITEyEpaWl3O0UO0/P7MnFHh7AqVPF/x6HD7/EjBkzJPt79OgBV1fX4nlzIiLSCer+/uaIj47z9c0OJL6+xf8eAwZczRV6xo4dy9BDREQlhnN8dFyXLtlfmvD6w0RfP2fnzgIePlyOqKhYsdakSRN07NhRM29MRESkJl7qeoOuXerSpLp1gYgIwMUFuHYtu/b48WMsXrxYctyAAQNgZ2cnQ4dERFRW8VIXFYu3TYbOidCCkL2/T5+DktBjZWWFn3/+maGHiIhkwxGfN3DE5+3eNhk651LXmDHpuHQpQLKvW7duaNCgQQl2SkREukTd39+c40MFkrPScl6Tobt0AZydr2Pjxo2SOldgJiKi0oLBhwokv8nQgiDg999/x4MHD8Raw4YN0bVr1xLsjoiI6O0YfKjInj59ioULF0pq/fv3R9WqVWXqiIiIKG8MPlRoSiWwZctR1K59TKyZmZlh5MiR0NPjvHkiIip9GHyoUDIyMnD+/HTUrv2q1qlTJzRu3Fi+poiIiN6BwYcK7NatW1i/fr2kNnr0aJiZmcnUERERkXoYfEhtgiDgjz/+QFRUlFh79MgVHTr0ADMPERFpAwYfUktCQgLmz58vqfXt2xf29vYydURERFRwDD70TidOnMChQ4fEbUNDQ4wdOxb6+voydkVERFRwDD6Ur8zMTEybNk1Sa9euHdzd3WXqiIiIqGgYfChPkZGR+OOPPyS1kSNHwsLCQqaOiIiIio7Bh3JZv349bt26JW47Ozvj66+/lrEjIiIizdCqVeZ2794Nd3d3mJiYoHz58ujWrZtkf3R0NDp27AhTU1PY2tpizJgxyMzMlKdZLZSUlIQpU6ZIQk+fPn0YeoiIqMzQmhGfbdu2oX///pg+fTpat26NzMxMhIeHi/uzsrLQsWNH2NnZ4dSpU3j06BF69+4NAwMDTJ8+XcbOtUNYWBj2798vbisUCowfPx7lymnNvyJERETvpBAEQZC7iXfJzMyEo6MjpkyZgn79+uV5zN69e9GpUyc8fPgQlStXBgAsW7YM48aNQ3x8PAwNDdV6L3Ufa19WZGVlISAgAFlZWWLt008/haenp4xdERERFYy6v7+14lLXuXPn8ODBA+jp6cHNzQ1VqlRB+/btJSM+YWFhqF+/vhh6AMDLywtJSUm4cuVKvudOS0tDUlKS5EtXREdH49dff5WEnuHDhzP0EBFRmaUVwefOnTsAgMmTJ2PixInYtWsXypcvj48//hhPnz4FAMTExEhCDwBxOyYmJt9zBwQEwMrKSvzSlQX5Nm/ejODgYHG7Vq1a8Pf3h5WVlYxdERERFS9Zg4+vry8UCsVbvyIiIqBSqQAAEyZMQI8ePdC4cWMEBwdDoVBgy5YtRerBz88PiYmJ4te9e/c08aOVSkol8PHHzzFlyhRcu3ZNrPfq1Qs9e/aUsTMiIqKSIevM1VGjRsHb2/utx9SsWROPHj0CANSrV0+sGxkZoWbNmoiOjgYA2NnZ4b///pO8NjY2VtyXHyMjIxgZGRWmfa2zfv1ptGq1R1IbP348DAwMZOqIiIioZMkafGxsbGBjY/PO4xo3bgwjIyNcv34dH374IQAgIyMDUVFRqFGjBgDAw8MD06ZNQ1xcHGxtbQEABw4cgKWlpSQw6aKsrCzMmjUL9eq9FGutWrVCy5YtZeyKiIio5GnFHB9LS0sMHDgQ/v7+2L9/P65fv45BgwYBAL744gsAQNu2bVGvXj306tULFy9eRGhoKCZOnAgfH58yNaKjVAKentnf1XH//n38+uuvePnyVeg5fnwYEhIYeoiISPdozSItM2fORLly5dCrVy+kpqbC3d0dhw8fRvny5QEA+vr62LVrFwYNGgQPDw+YmZmhT58+mDp1qsyda1ZgIBAWlv29S5e3H7tjxw5cunRJ3HZwcMCKFd4IC1MgNfXdryciIiprtGIdn5JU2tfxUSqzQ4+vb/7B5cWLF5g1a5ak9u2336JOnTpqvZ6IiEjbqPv7m8HnDaU9+LzL+fPnoXzjOpifn5/aCzgSERFpI3V/f2vNpS56O5VKhXnz5iE5OVms3b7dAp9/3hrMPERERNkYfMqAR48e4bfffpPUhgwZgooVK8rUERERUemkFXd16bq33cn1119/SUJPlSpVMGnSJIYeIiKiPHDERwvkdSdXamoqgoKCJMd9+eWXqFu3rgwdEhERaQcGHy3g6/vqTiwAuHTpEnbs2PHGMb5lar0iIiKi4sDgowW6dMn+EgQBCxYsxLNnz8R9Hh4eaNu2rYzdERERaQ8GHy0RGxuLZcuWSWqDBw9W65EfRERElI3BRwvs3btX8gBWGxsbDBo0CAqFQsauiIiItA+DTyn28uVLzJgxQ1JzdOyBPn1cZeqIiIhIuzH4lFJXrlzB1q1bJbXAwHGoUcMYffrI1BQREZGWY/ApZQRBwLJlyxAXFyfWmjZtilGjOuDlS4BXt4iIiAqPwacUefz4MRYvXiypDRgwAHZ2dsjMlN7STkRERAXH4FNKHDx4ECdPnhS3ra2tMXToUOjp6fGJ6kRERBrC4COz9PR0BAQESGrdunVDgwYNxO28Vm4mIiKigmPwkdH169exceNGSW3MmDEwNTWV1N5cuZmIiIgKh8FHBoIg4Pfff8eDBw/EWsOGDdG1a9c8j89ZuZmIiIiKhsGnhD19+hQLFy6U1MLC+sPfv6pMHREREekOBp8SdOTIERw/flzcLlfOHHv2jMC4cXoydkVERKQ7GHxKyNq1a3Hnzh1xu3PnzmjUqBEmTJCxKSIiIh3D4FNC4uPjxX8ePXo0zMzMZOyGiIhINzH4lJDevXsjOTkZTk5OcrdCRESkszi5pIRUqlQp39CjVAKentnfiYiIqPgw+JQCry9QSERERMWHwacU8PUFPDy4QCEREVFx4xyfUoALFBIREZUMjvgQERGRzmDwISIiIp3B4FNCeOcWERGR/Bh8Ssi4cdl3bo0bJ3cnREREuovBp4QIgvQ7ERERlTwGnxISFJR9y3pQkNydEBER6S7ezl5CeMs6ERGR/DjiQ0RERDqDwYeIiIh0BoMPERER6QwGHyIiItIZDD5ERESkMxh8iIiISGcw+BAREZHOYPAhIiIincHgQ0RERDqDwYeIiIh0BoMPERER6QwGHyIiItIZDD5ERESkM/h09jcIggAASEpKkrkTIiIiUlfO7+2c3+P5YfB5Q3JyMgDA3t5e5k6IiIiooJKTk2FlZZXvfoXwrmikY1QqFR4+fAgLCwsoFAq52yl2SUlJsLe3x71792BpaSl3O5QHfkalHz+j0o+fUelX1M9IEAQkJyejatWq0NPLfyYPR3zeoKenh+rVq8vdRomztLTkfwxKOX5GpR8/o9KPn1HpV5TP6G0jPTk4uZmIiIh0BoMPERER6QwGHx1nZGQEf39/GBkZyd0K5YOfUenHz6j042dU+pXUZ8TJzURERKQzOOJDREREOoPBh4iIiHQGgw8RERHpDAYfIiIi0hkMPjpu9+7dcHd3h4mJCcqXL49u3bpJ9kdHR6Njx44wNTWFra0txowZg8zMTHma1WFpaWlo2LAhFAoFLly4INl36dIltGjRAsbGxrC3t0dQUJA8TeqgqKgo9OvXD05OTjAxMUGtWrXg7++P9PR0yXH8jOS3ePFiODo6wtjYGO7u7vjvv//kbkknBQQEoGnTprCwsICtrS26deuG69evS455+fIlfHx8ULFiRZibm6NHjx6IjY3VWA8MPjps27Zt6NWrF77//ntcvHgRJ0+exLfffivuz8rKQseOHZGeno5Tp05hzZo1WL16NSZNmiRj17pp7NixqFq1aq56UlIS2rZtixo1auDs2bOYOXMmJk+ejN9++02GLnVPREQEVCoVli9fjitXrmDu3LlYtmwZxo8fLx7Dz0h+mzZtwsiRI+Hv749z586hQYMG8PLyQlxcnNyt6Zxjx47Bx8cH//zzDw4cOICMjAy0bdsWL168EI8ZMWIE/vrrL2zZsgXHjh3Dw4cP0b17d801IZBOysjIEKpVqyasXLky32P27Nkj6OnpCTExMWJt6dKlgqWlpZCWllYSbZKQ/Tm4uLgIV65cEQAI58+fF/ctWbJEKF++vOTzGDdunODs7CxDpyQIghAUFCQ4OTmJ2/yM5NesWTPBx8dH3M7KyhKqVq0qBAQEyNgVCYIgxMXFCQCEY8eOCYIgCAkJCYKBgYGwZcsW8Zhr164JAISwsDCNvCdHfHTUuXPn8ODBA+jp6cHNzQ1VqlRB+/btER4eLh4TFhaG+vXro3LlymLNy8sLSUlJuHLlihxt65zY2Fj0798fa9euhampaa79YWFhaNmyJQwNDcWal5cXrl+/jmfPnpVkq/T/EhMTUaFCBXGbn5G80tPTcfbsWbRp00as6enpoU2bNggLC5OxMwKy/74AEP/OnD17FhkZGZLPy8XFBQ4ODhr7vBh8dNSdO3cAAJMnT8bEiROxa9culC9fHh9//DGePn0KAIiJiZGEHgDidkxMTMk2rIMEQYC3tzcGDhyIJk2a5HkMP6PS5datW1i4cCEGDBgg1vgZyevx48fIysrK8zPgn7+8VCoVhg8fjg8++ACurq4Asv9OGBoawtraWnKsJj8vBp8yxtfXFwqF4q1fOfMSAGDChAno0aMHGjdujODgYCgUCmzZskXmn6JsU/czWrhwIZKTk+Hn5yd3yzpH3c/odQ8ePEC7du3wxRdfoH///jJ1TqQ9fHx8EB4ejo0bN5bo+5Yr0XejYjdq1Ch4e3u/9ZiaNWvi0aNHAIB69eqJdSMjI9SsWRPR0dEAADs7u1x3PuTMrLezs9Ng17pF3c/o8OHDCAsLy/XcmiZNmuC7777DmjVrYGdnl+tuB35GRafuZ5Tj4cOHaNWqFTw9PXNNWuZnJK9KlSpBX18/z8+Af/7yGTJkCHbt2oXjx4+jevXqYt3Ozg7p6elISEiQjPpo9PPSyEwh0jqJiYmCkZGRZHJzenq6YGtrKyxfvlwQhFeTm2NjY8Vjli9fLlhaWgovX74s8Z51zd27d4XLly+LX6GhoQIAYevWrcK9e/cEQXg1cTY9PV18nZ+fHyfOlqD79+8LderUEb7++mshMzMz135+RvJr1qyZMGTIEHE7KytLqFatGic3y0ClUgk+Pj5C1apVhRs3buTanzO5eevWrWItIiJCo5ObGXx02E8//SRUq1ZNCA0NFSIiIoR+/foJtra2wtOnTwVBEITMzEzB1dVVaNu2rXDhwgVh3759go2NjeDn5ydz57opMjIy111dCQkJQuXKlYVevXoJ4eHhwsaNGwVTU1MxvFLxun//vlC7dm3hk08+Ee7fvy88evRI/MrBz0h+GzduFIyMjITVq1cLV69eFX788UfB2tpacscqlYxBgwYJVlZWwtGjRyV/X1JSUsRjBg4cKDg4OAiHDx8Wzpw5I3h4eAgeHh4a64HBR4elp6cLo0aNEmxtbQULCwuhTZs2Qnh4uOSYqKgooX379oKJiYlQqVIlYdSoUUJGRoZMHeu2vIKPIAjCxYsXhQ8//FAwMjISqlWrJgQGBsrToA4KDg4WAOT59Tp+RvJbuHCh4ODgIBgaGgrNmjUT/vnnH7lb0kn5/X0JDg4Wj0lNTRUGDx4slC9fXjA1NRU+++wzyf9MFJXi/xshIiIiKvN4VxcRERHpDAYfIiIi0hkMPkRERKQzGHyIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4iomBw9ehQKhQIJCQlyt0JE/4/Bh4i01uTJk9GwYUO52yAiLcLgQ0RlXkZGhtwtEFEpweBDRLJRqVQICAiAk5MTTExM0KBBA2zduhXAq8tEhw4dQpMmTWBqagpPT09cv34dALB69WpMmTIFFy9ehEKhgEKhwOrVqwEACoUCS5cuRZcuXWBmZoZp06a9tY+c9woNDYWbmxtMTEzQunVrxMXFYe/evahbty4sLS3x7bffIiUlRXxdWloahg0bBltbWxgbG+PDDz/E6dOni+cPi4g0Q2NP/SIiKqBff/1VcHFxEfbt2yfcvn1bCA4OFoyMjISjR48KR44cEQAI7u7uwtGjR4UrV64ILVq0EDw9PQVBEISUlBRh1KhRwvvvv5/rCc8ABFtbW2HVqlXC7du3hbt37761j5z3at68uXDixAnh3LlzQu3atYWPPvpIaNu2rXDu3Dnh+PHjQsWKFSUPGB02bJhQtWpVYc+ePcKVK1eEPn36COXLlxeePHkiOe+zZ8+K5w+QiAqMwYeIZPHy5UvB1NRUOHXqlKTer18/4ZtvvhFDw8GDB8V9u3fvFgAIqampgiAIgr+/v9CgQYNc5wYgDB8+XO1e8nqvgIAAAYBw+/ZtsTZgwADBy8tLEARBeP78uWBgYCCsX79e3J+eni5UrVpVCAoKkpyXwYeo9Cgn10gTEem2W7duISUlBZ9++qmknp6eDjc3N3H7f//7n/jPVapUAQDExcXBwcHhredv0qRJgXt6/b0qV64MU1NT1KxZU1L777//AAC3b99GRkYGPvjgA3G/gYEBmjVrhmvXrhX4vYmoZDD4EJEsnj9/DgDYvXs3qlWrJtlnZGSE27dvA8gOEzkUCgWA7LlB72JmZlbgnt58r9e3c2rqvDcRlV6c3ExEsqhXrx6MjIwQHR2N2rVrS77s7e3VOoehoSGysrKKudO81apVC4aGhjh58qRYy8jIwOnTp1GvXj1ZeiKid+OIDxHJwsLCAqNHj8aIESOgUqnw4YcfIjExESdPnoSlpSVq1KjxznM4OjoiMjISFy5cQPXq1WFhYQEjI6MS6D57RGnQoEEYM2YMKlSoAAcHBwQFBSElJQX9+vUrkR6IqOAYfIhINr/88gtsbGwQEBCAO3fuwNraGo0aNcL48ePVuqTUo0cPbN++Ha1atUJCQgKCg4Ph7e1d/I3/v8DAQKhUKvTq1QvJyclo0qQJQkNDUb58+RLrgYgKRiEIgiB3E0REREQlgXN8iIiISGcw+BBRmTdw4ECYm5vn+TVw4EC52yOiEsRLXURU5sXFxSEpKSnPfZaWlrC1tS3hjohILgw+REREpDN4qYuIiIh0BoMPERER6QwGHyIiItIZDD5ERESkMxh8iIiISGcw+BAREZHOYPAhIiIincHgQ0RERDrj/wBA6GC8ZKADZQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -466,7 +626,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABo50lEQVR4nO3deXwTdf4/8FdaSGmhB6U3lLYUuaQU5LICBYSlVFYXwRVB5QYPDoVVAXdVQJdy7CrKIriooKsgXxUVQVxQrgUqdzmlP6iForTcTexBC838/igZcswkk6PNpHk9H48oTSYzn0wmM+/5fN6fz0cjCIIAIiIiIh/m5+kCEBEREXkaAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIvIas2fPhkajUbSsRqPB7Nmza7Q8ffr0QZ8+fVS7PiJSjgERETls1apV0Gg04qNevXpo2rQpRo8ejd9++83TxVOdxMREs/0VFRWFXr164auvvnLL+svKyjB79mxs377dLesj8kUMiIjIaXPnzsV//vMfLF++HJmZmfjkk0/Qu3dv3Lhxo0a297e//Q3l5eU1su6a1rFjR/znP//Bf/7zH7zwwgu4cOEChgwZguXLl7u87rKyMsyZM4cBEZEL6nm6AETkvTIzM9GlSxcAwPjx4xEREYEFCxZg/fr1ePTRR92+vXr16qFePe88bTVt2hRPPPGE+PfIkSPRsmVLvPXWW3j66ac9WDIiAlhDRERu1KtXLwBAXl6e2fOnTp3CI488gvDwcDRo0ABdunTB+vXrzZa5efMm5syZg7vuugsNGjRAkyZN0LNnT2zZskVcRiqHqKKiAtOmTUNkZCSCg4Px0EMP4ddff7Uq2+jRo5GYmGj1vNQ6V65cifvvvx9RUVEICAhAu3btsGzZMof2hT0xMTFo27Yt8vPzbS536dIljBs3DtHR0WjQoAFSU1Px0Ucfia+fPXsWkZGRAIA5c+aIzXI1nT9FVNd4560WEanS2bNnAQCNGzcWnztx4gR69OiBpk2bYubMmWjYsCH+7//+D4MHD8aXX36Jhx9+GEB1YJKVlYXx48ejW7du0Ov1OHDgAA4dOoQ//OEPstscP348PvnkE4wYMQL33Xcftm7dikGDBrn0OZYtW4a7774bDz30EOrVq4dvv/0Wzz77LAwGAyZNmuTSuo1u3ryJ8+fPo0mTJrLLlJeXo0+fPjhz5gwmT56MpKQkfP755xg9ejSKi4vx3HPPITIyEsuWLcMzzzyDhx9+GEOGDAEAdOjQwS3lJPIZAhGRg1auXCkAEH744Qfh8uXLwvnz54UvvvhCiIyMFAICAoTz58+Ly/br109ISUkRbty4IT5nMBiE++67T7jrrrvE51JTU4VBgwbZ3O5rr70mmJ62cnJyBADCs88+a7bciBEjBADCa6+9Jj43atQoISEhwe46BUEQysrKrJbLyMgQWrRoYfZc7969hd69e9sssyAIQkJCgjBgwADh8uXLwuXLl4UjR44Ijz32mABAmDJliuz6Fi9eLAAQPvnkE/G5yspKIS0tTWjUqJGg1+sFQRCEy5cvW31eInIMm8yIyGn9+/dHZGQk4uPj8cgjj6Bhw4ZYv349mjVrBgC4du0atm7dikcffRS///47rly5gitXruDq1avIyMjA6dOnxV5pYWFhOHHiBE6fPq14+9999x0AYOrUqWbPP//88y59rsDAQPHfOp0OV65cQe/evfHLL79Ap9M5tc7NmzcjMjISkZGRSE1Nxeeff44nn3wSCxYskH3Pd999h5iYGAwfPlx8rn79+pg6dSpKSkqwY8cOp8pCRNbYZEZETlu6dClatWoFnU6HDz/8EDt37kRAQID4+pkzZyAIAl555RW88sorkuu4dOkSmjZtirlz5+JPf/oTWrVqhfbt22PgwIF48sknbTb9nDt3Dn5+fkhOTjZ7vnXr1i59rt27d+O1115DdnY2ysrKzF7T6XQIDQ11eJ3du3fHG2+8AY1Gg6CgILRt2xZhYWE233Pu3Dncdddd8PMzv3dt27at+DoRuQcDIiJyWrdu3cReZoMHD0bPnj0xYsQI5ObmolGjRjAYDACAF154ARkZGZLraNmyJQAgPT0deXl5+Oabb7B582a8//77eOutt7B8+XKMHz/e5bLKDehYVVVl9ndeXh769euHNm3a4M0330R8fDy0Wi2+++47vPXWW+JnclRERAT69+/v1HuJqOYxICIit/D390dWVhb69u2Lf/3rX5g5cyZatGgBoLqZR0kwEB4ejjFjxmDMmDEoKSlBeno6Zs+eLRsQJSQkwGAwIC8vz6xWKDc312rZxo0bo7i42Op5y1qWb7/9FhUVFVi/fj2aN28uPr9t2za75Xe3hIQEHD16FAaDwayW6NSpU+LrgHywR0TKMYeIiNymT58+6NatGxYvXowbN24gKioKffr0wXvvvYfCwkKr5S9fviz+++rVq2avNWrUCC1btkRFRYXs9jIzMwEA77zzjtnzixcvtlo2OTkZOp0OR48eFZ8rLCy0Gi3a398fACAIgvicTqfDypUrZctRUx544AEUFRVh7dq14nO3bt3CkiVL0KhRI/Tu3RsAEBQUBACSAR8RKcMaIiJyqxdffBF//vOfsWrVKjz99NNYunQpevbsiZSUFEyYMAEtWrTAxYsXkZ2djV9//RVHjhwBALRr1w59+vRB586dER4ejgMHDuCLL77A5MmTZbfVsWNHDB8+HO+++y50Oh3uu+8+/Pjjjzhz5ozVso899hhmzJiBhx9+GFOnTkVZWRmWLVuGVq1a4dChQ+JyAwYMgFarxYMPPoinnnoKJSUlWLFiBaKioiSDupo0ceJEvPfeexg9ejQOHjyIxMREfPHFF9i9ezcWL16M4OBgANVJ4O3atcPatWvRqlUrhIeHo3379mjfvn2tlpfIq3m6mxsReR9jt/v9+/dbvVZVVSUkJycLycnJwq1btwRBEIS8vDxh5MiRQkxMjFC/fn2hadOmwh//+Efhiy++EN/3xhtvCN26dRPCwsKEwMBAoU2bNsLf//53obKyUlxGqot8eXm5MHXqVKFJkyZCw4YNhQcffFA4f/68ZDf0zZs3C+3btxe0Wq3QunVr4ZNPPpFc5/r164UOHToIDRo0EBITE4UFCxYIH374oQBAyM/PF5dzpNu9vSEF5NZ38eJFYcyYMUJERISg1WqFlJQUYeXKlVbv3bNnj9C5c2dBq9WyCz6REzSCYFIvTEREROSDmENEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwOzKiQwWDAhQsXEBwczGHyiYiIvIQgCPj9998RFxdnNVGyKQZECl24cAHx8fGeLgYRERE54fz582jWrJns6wyIFDIOkX/+/HmEhIR4uDRERESkhF6vR3x8vHgdl8OASCFjM1lISAgDIiIiIi9jL92FSdVERETk8xgQERERkc9jQEREREQ+jzlERETk86qqqnDz5k1PF4OcUL9+ffj7+7u8HgZERETkswRBQFFREYqLiz1dFHJBWFgYYmJiXBonkAERERH5LGMwFBUVhaCgIA6862UEQUBZWRkuXboEAIiNjXV6XQyIiIjIJ1VVVYnBUJMmTTxdHHJSYGAgAODSpUuIiopyuvmMSdVEROSTjDlDQUFBHi4Jucr4HbqSB8aAiIiIfBqbybyfO75DBkRERETk8xgQEREREYDqmpavv/7a08Uws337dmg0mhrvCciAqA4p1JVjT94VFOrKPV0UIiJSsdmzZ6Njx46eLoaqsJdZHbF2fwFmrTsGgwD4aYCsISkY1rW5p4tFRETkFVhDVAcU6srFYAgADALw8rrjrCkiIqqjDAYDsrKykJSUhMDAQKSmpuKLL74AcKeJ6ccff0SXLl0QFBSE++67D7m5uQCAVatWYc6cOThy5Ag0Gg00Gg1WrVolrvvKlSt4+OGHERQUhLvuugvr169XVCbjdv/73/+iU6dOCAwMxP33349Lly5h06ZNaNu2LUJCQjBixAiUlZWJ76uoqMDUqVMRFRWFBg0aoGfPnti/f7/7dpZCDIjqgPwrpWIwZFQlCDh7pUz6DURE5Ha1mbaQlZWFjz/+GMuXL8eJEycwbdo0PPHEE9ixY4e4zF//+lf885//xIEDB1CvXj2MHTsWADBs2DD85S9/wd13343CwkIUFhZi2LBh4vvmzJmDRx99FEePHsUDDzyAxx9/HNeuXVNcttmzZ+Nf//oX9uzZg/Pnz+PRRx/F4sWLsXr1amzcuBGbN2/GkiVLxOVfeuklfPnll/joo49w6NAhtGzZEhkZGQ5t0x0YENUBSREN4WfR49Bfo0FiBMfWICKqDWv3F6DH/K0YsWIveszfirX7C2psWxUVFZg3bx4+/PBDZGRkoEWLFhg9ejSeeOIJvPfee+Jyf//739G7d2+0a9cOM2fOxJ49e3Djxg0EBgaiUaNGqFevHmJiYhATEyMObggAo0ePxvDhw9GyZUvMmzcPJSUl2Ldvn+LyvfHGG+jRowc6deqEcePGYceOHVi2bBk6deqEXr164ZFHHsG2bdsAAKWlpVi2bBkWLVqEzMxMtGvXDitWrEBgYCA++OAD9+00BRgQ1QGxoYHIGpIC/9vjMPhrNJg3pD1iQwPtvJOIiFxV22kLZ86cQVlZGf7whz+gUaNG4uPjjz9GXl6euFyHDh3EfxuntDBOcWGL6fsaNmyIkJAQRe+Ten90dDSCgoLQokULs+eM68vLy8PNmzfRo0cP8fX69eujW7du+PnnnxVv0x2YVF1HDOvaHOmtInH2ShkSI4IYDBER1RJbaQs1cS4uKSkBAGzcuBFNmzY1ey0gIEAMiurXry8+bxy40GAw2F2/6fuM71XyPqn3azQal9dXWxgQ1SGxoYEMhIiIapkxbcE0KKrJtIV27dohICAABQUF6N27t9XrprVEcrRaLaqqqmqieA5JTk6GVqvF7t27kZCQAKB6+o39+/fj+eefr9WyMCAiIiJygTFt4eV1x1ElCDWethAcHIwXXngB06ZNg8FgQM+ePaHT6bB7926EhISIgYUtiYmJyM/PR05ODpo1a4bg4GAEBATUSHltadiwIZ555hm8+OKLCA8PR/PmzbFw4UKUlZVh3LhxtVoWBkREREQuqu20hddffx2RkZHIysrCL7/8grCwMNxzzz14+eWXFTVHDR06FOvWrUPfvn1RXFyMlStXYvTo0TVaZjnz58+HwWDAk08+id9//x1dunTBf//7XzRu3LhWy6ERBEGwvxjp9XqEhoZCp9MhJCTE08UhIiIX3bhxA/n5+UhKSkKDBg08XRxyga3vUun1m73MiIiIyOcxICIiIiK7nn76abNu/qaPp59+2tPFc5lHA6KdO3fiwQcfRFxcnOQMu8YhxS0fixYtEpdJTEy0en3+/Plm6zl69Ch69eqFBg0aID4+HgsXLqyNj0dERFRnzJ07Fzk5OZKPuXPnerp4LvNoUnVpaSlSU1MxduxYDBkyxOr1wsJCs783bdqEcePGYejQoWbPz507FxMmTBD/Dg4OFv+t1+sxYMAA9O/fH8uXL8exY8cwduxYhIWFYeLEiW7+RERERHVTVFQUoqKiPF2MGuPRgCgzMxOZmZmyr8fExJj9/c0336Bv375mI14C1QGQ5bJGn376KSorK/Hhhx9Cq9Xi7rvvRk5ODt58800GRERERATAi3KILl68iI0bN0qOSzB//nw0adIEnTp1wqJFi3Dr1i3xtezsbKSnp0Or1YrPZWRkIDc3F9evX5fdXkVFBfR6vdmDiIjqHjWOmkyOccd36DXjEH300UcIDg62alqbOnUq7rnnHoSHh2PPnj2YNWsWCgsL8eabbwIAioqKkJSUZPae6Oho8TW5cQ6ysrIwZ86cGvgkRESkBlqtFn5+frhw4QIiIyOh1WrFKS7IOwiCgMrKSly+fBl+fn5mlR+O8pqA6MMPP8Tjjz9uNb7A9OnTxX936NABWq0WTz31FLKyslwadXPWrFlm69br9YiPj3d6fUREpC5+fn5ISkpCYWEhLly44OnikAuCgoLQvHlz+Pk53/DlFQHR//73P+Tm5mLt2rV2l+3evTtu3bqFs2fPonXr1oiJicHFixfNljH+LZd3BFRPkOeJYcyJiKj2aLVaNG/eHLdu3VLF3F7kOH9/f9SrV8/l2j2vCIg++OADdO7cGampqXaXzcnJgZ+fn5gJn5aWhr/+9a+4efOmOOPuli1b0Lp161ofFpyIiNTHOCO75azs5Fs8mlRdUlIijmEAQJxorqCgQFxGr9fj888/x/jx463en52djcWLF+PIkSP45Zdf8Omnn2LatGl44oknxGBnxIgR0Gq1GDduHE6cOIG1a9fi7bffNmsOIyIiIt/m0RqiAwcOoG/fvuLfxiBl1KhRWLVqFQDgs88+gyAIGD58uNX7AwIC8Nlnn2H27NmoqKhAUlISpk2bZhbshIaGYvPmzZg0aRI6d+6MiIgIvPrqq+xyT0RERCJO7qoQJ3clIiLyPpzclYiIiEghBkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHP82hAtHPnTjz44IOIi4uDRqPB119/bfb66NGjodFozB4DBw40W+batWt4/PHHERISgrCwMIwbNw4lJSVmyxw9ehS9evVCgwYNEB8fj4ULF9b0RyMiIiIv4tGAqLS0FKmpqVi6dKnsMgMHDkRhYaH4WLNmjdnrjz/+OE6cOIEtW7Zgw4YN2LlzJyZOnCi+rtfrMWDAACQkJODgwYNYtGgRZs+ejX//+9819rmIiIjIu9Tz5MYzMzORmZlpc5mAgADExMRIvvbzzz/j+++/x/79+9GlSxcAwJIlS/DAAw/gH//4B+Li4vDpp5+isrISH374IbRaLe6++27k5OTgzTffNAuciIiIyHepPodo+/btiIqKQuvWrfHMM8/g6tWr4mvZ2dkICwsTgyEA6N+/P/z8/LB3715xmfT0dGi1WnGZjIwM5Obm4vr167LbraiogF6vN3sQERFR3aTqgGjgwIH4+OOP8eOPP2LBggXYsWMHMjMzUVVVBQAoKipCVFSU2Xvq1auH8PBwFBUVictER0ebLWP827iMlKysLISGhoqP+Ph4d340IiIiUhGPNpnZ89hjj4n/TklJQYcOHZCcnIzt27ejX79+NbrtWbNmYfr06eLfer2eQREREVEdpeoaIkstWrRAREQEzpw5AwCIiYnBpUuXzJa5desWrl27JuYdxcTE4OLFi2bLGP+Wy00CqnOXQkJCzB5ERERUN3lVQPTrr7/i6tWriI2NBQCkpaWhuLgYBw8eFJfZunUrDAYDunfvLi6zc+dO3Lx5U1xmy5YtaN26NRo3bly7H4CIiIhUyaMBUUlJCXJycpCTkwMAyM/PR05ODgoKClBSUoIXX3wRP/30E86ePYsff/wRf/rTn9CyZUtkZGQAANq2bYuBAwdiwoQJ2LdvH3bv3o3JkyfjscceQ1xcHABgxIgR0Gq1GDduHE6cOIG1a9fi7bffNmsOIyIiIt+mEQRB8NTGt2/fjr59+1o9P2rUKCxbtgyDBw/G4cOHUVxcjLi4OAwYMACvv/66WZL0tWvXMHnyZHz77bfw8/PD0KFD8c4776BRo0biMkePHsWkSZOwf/9+REREYMqUKZgxY4ZDZdXr9QgNDYVOp2PzGRERkZdQev32aEDkTRgQEREReR+l12+vyiEiIiIiqgkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4DIBxTqyrEn7woKdeWeLgoREZEq1fN0Aahmrd1fgFnrjsEgAH4aIGtICoZ1be7pYhEREakKa4jqsEJduRgMAYBBAF5ed5w1RURERBYYENVh+VdKxWDIqEoQcPZKmWcKREREpFIMiOqwpIiG8NOYP+ev0SAxIsgzBSIiIlIpBkR1WGxoILKGpMBfUx0V+Ws0mDekPWJDA22+j0nYRETka5hUXccN69oc6a0icfZKGRIjguwGQ0zCJiIiX8QaIh8QGxqItOQmimqGmIRNRES+iAERiZiETUREvooBEYmYhE1ERL6KARGJnE3CJiIi8nZMqiYzjiZhExER1QUMiMhKbGggAyEiIvIpbDIjIiIin8eAiIiIiHweAyIiIiLyeR4NiHbu3IkHH3wQcXFx0Gg0+Prrr8XXbt68iRkzZiAlJQUNGzZEXFwcRo4ciQsXLpitIzExERqNxuwxf/58s2WOHj2KXr16oUGDBoiPj8fChQtr4+MRERGRl/BoQFRaWorU1FQsXbrU6rWysjIcOnQIr7zyCg4dOoR169YhNzcXDz30kNWyc+fORWFhofiYMmWK+Jper8eAAQOQkJCAgwcPYtGiRZg9ezb+/e9/1+hnIyIiIu/h0V5mmZmZyMzMlHwtNDQUW7ZsMXvuX//6F7p164aCggI0b35nfq3g4GDExMRIrufTTz9FZWUlPvzwQ2i1Wtx9993IycnBm2++iYkTJ7rvw6hIoa4c+VdKkRTRkL3FiIiIFPCqHCKdTgeNRoOwsDCz5+fPn48mTZqgU6dOWLRoEW7duiW+lp2djfT0dGi1WvG5jIwM5Obm4vr167LbqqiogF6vN3t4g7X7C9Bj/laMWLEXPeZvxdr9BZ4uEhERkep5TUB048YNzJgxA8OHD0dISIj4/NSpU/HZZ59h27ZteOqppzBv3jy89NJL4utFRUWIjo42W5fx76KiItntZWVlITQ0VHzEx8e7+RO5HydnJSIico5XDMx48+ZNPProoxAEAcuWLTN7bfr06eK/O3ToAK1Wi6eeegpZWVkICAhwepuzZs0yW7der1d9UGRrclY2nREREclTfUBkDIbOnTuHrVu3mtUOSenevTtu3bqFs2fPonXr1oiJicHFixfNljH+LZd3BAABAQEuBVSeYJyc1TQo4uSsRERE9qm6ycwYDJ0+fRo//PADmjRpYvc9OTk58PPzQ1RUFAAgLS0NO3fuxM2bN8VltmzZgtatW6Nx48Y1VnZP4OSsREREzvFoDVFJSQnOnDkj/p2fn4+cnByEh4cjNjYWjzzyCA4dOoQNGzagqqpKzPkJDw+HVqtFdnY29u7di759+yI4OBjZ2dmYNm0annjiCTHYGTFiBObMmYNx48ZhxowZOH78ON5++2289dZbHvnMNY2TsxIRETlOIwiCYH+xmrF9+3b07dvX6vlRo0Zh9uzZSEpKknzftm3b0KdPHxw6dAjPPvssTp06hYqKCiQlJeHJJ5/E9OnTzZq7jh49ikmTJmH//v2IiIjAlClTMGPGDIfKqtfrERoaCp1OZ7fZjoiIiNRB6fXbowGRN2FARERE5H2UXr9VnUNEREREVBsYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PPqKV1Qr9crXmlISIhThSEiIiLyBMUBUVhYGDQajc1lBEGARqNBVVWVywUjIiIiqi2KA6Jt27bVZDmIiIiIPEZxQNS7d++aLAcRERGRxygOiCwVFxfjgw8+wM8//wwAuPvuuzF27FiEhoa6rXBEREREtcGpXmYHDhxAcnIy3nrrLVy7dg3Xrl3Dm2++ieTkZBw6dMjdZSQiIiKqURpBEARH39SrVy+0bNkSK1asQL161ZVMt27dwvjx4/HLL79g586dbi+op+n1eoSGhkKn07EXHRERkZdQev12KiAKDAzE4cOH0aZNG7PnT548iS5duqCsrMzxEqscAyIiIiLvo/T67VSTWUhICAoKCqyeP3/+PIKDg51ZJREREZHHOBUQDRs2DOPGjcPatWtx/vx5nD9/Hp999hnGjx+P4cOHu7uMRERERDXKqYDoH//4B4YMGYKRI0ciMTERiYmJGD16NB555BEsWLBA8Xp27tyJBx98EHFxcdBoNPj666/NXhcEAa+++ipiY2MRGBiI/v374/Tp02bLXLt2DY8//jhCQkIQFhaGcePGoaSkxGyZo0ePolevXmjQoAHi4+OxcOFCZz42ERER1VFOBURarRZvv/02rl+/jpycHOTk5ODatWt46623EBAQoHg9paWlSE1NxdKlSyVfX7hwId555x0sX74ce/fuRcOGDZGRkYEbN26Iyzz++OM4ceIEtmzZgg0bNmDnzp2YOHGi+Lper8eAAQOQkJCAgwcPYtGiRZg9ezb+/e9/O/PRiYiIqC4SVAKA8NVXX4l/GwwGISYmRli0aJH4XHFxsRAQECCsWbNGEARBOHnypABA2L9/v7jMpk2bBI1GI/z222+CIAjCu+++KzRu3FioqKgQl5kxY4bQunVrh8qn0+kEAIJOp3Pm4xEREZEHKL1+O1VDdOPGDSxatAgPPPAAunTpgnvuucfs4Q75+fkoKipC//79xedCQ0PRvXt3ZGdnAwCys7MRFhaGLl26iMv0798ffn5+2Lt3r7hMeno6tFqtuExGRgZyc3Nx/fp12e1XVFRAr9ebPYiIiKhucmqk6nHjxmHz5s145JFH0K1bN7uTvjqjqKgIABAdHW32fHR0tPhaUVERoqKizF6vV68ewsPDzZZJSkqyWofxtcaNG0tuPysrC3PmzHH9gxAREZHqORUQbdiwAd999x169Ojh7vKoxqxZszB9+nTxb71ej/j4eA+WiIiIiGqKU01mTZs2rfHxhmJiYgAAFy9eNHv+4sWL4msxMTG4dOmS2eu3bt3CtWvXzJaRWofpNqQEBAQgJCTE7EFERER1k1MB0T//+U/MmDED586dc3d5RElJSYiJicGPP/4oPqfX67F3716kpaUBANLS0lBcXIyDBw+Ky2zduhUGgwHdu3cXl9m5cydu3rwpLrNlyxa0bt1atrmMiIiIfItTAVGXLl1w48YNtGjRAsHBwQgPDzd7KFVSUiJ22weqE6lzcnJQUFAAjUaD559/Hm+88QbWr1+PY8eOYeTIkYiLi8PgwYMBAG3btsXAgQMxYcIE7Nu3D7t378bkyZPx2GOPIS4uDgAwYsQIaLVajBs3DidOnMDatWvx9ttvmzWHERERkW9zKodo+PDh+O233zBv3jxER0c7nVR94MAB9O3bV/zbGKSMGjUKq1atwksvvYTS0lJMnDgRxcXF6NmzJ77//ns0aNBAfM+nn36KyZMno1+/fvDz88PQoUPxzjvviK+HhoZi8+bNmDRpEjp37oyIiAi8+uqrZmMVERERkW9zanLXoKAgZGdnIzU1tSbKpEqc3JWIiMj71Ojkrm3atEF5ebnThSMiIiJSE6cCovnz5+Mvf/kLtm/fjqtXr3IAQyIiIvJqTjWZ+flVx1GWuUOCIECj0aCqqso9pVMRNpkRERF5H6XXb6eSqrdt2+Z0wYiIiIjUxqmAqHfv3oqWe/bZZzF37lxEREQ4sxkiIiKiWuFUDpFSn3zyCXOKiIiISPVqNCByIj2JiIiIqNbVaEBERERE5A0YEBEREZHPY0BEREREPo8BEREREfm8Gg2InnjiCQ5iSKpTqCvHnrwrKNRx+hkiIqrm1DhEAFBcXIx9+/bh0qVLMBgMZq+NHDkSALBs2TLXSkfkZmv3F2DWumMwCICfBsgakoJhXZt7ulhERORhTk3d8e233+Lxxx9HSUkJQkJCzKbw0Gg0uHbtmlsLqQacusP7FerK0WP+VhhMjnh/jQa7ZvZFbGig5wpGREQ1pkZnu//LX/6CsWPHoqSkBMXFxbh+/br4qIvBENUN+VdKzYIhAKgSBJy9UuaZAhERkWo4FRD99ttvmDp1KoKCgtxdHqIakxTREH7m8xHDX6NBYgSPYyIiX+dUQJSRkYEDBw64uyxENSo2NBBZQ1Lgf7uJ11+jwbwh7dlcRkREypOq169fL/570KBBePHFF3Hy5EmkpKSgfv36Zss+9NBD7ishkRsN69oc6a0icfZKGRIjghgMERERAAeSqv38lFUmaTQaVFVVuVQoNWJStW8r1JUj/0opkiIaMogiIvIiSq/fimuILLvWE/kKdtUnIqr7nMoh+vjjj1FRUWH1fGVlJT7++GOXC0WkFoW6cjEYAgCDALy87jgHdSRyEgdGJbVyKiAaM2YMdDqd1fO///47xowZ43KhiNSCXfWJ3Gft/gL0mL8VI1bsRY/5W7F2f4Gni0QkciogEgTBbDBGo19//RWhoaEuF4pILdhVn8g9WNtKaufQ1B2dOnWCRqOBRqNBv379UK/enbdXVVUhPz8fAwcOdHshiTzF2FX/5XXHUSUI7KpP5CRbta38PZEaOBQQDR48GACQk5ODjIwMNGrUSHxNq9UiMTERQ4cOdWsBiTyNXfWJXGesbbWcOoe1raQWDgVEr732GgAgMTERw4YNQ4MGDWqkUERqExsayECIyAWsbSW1c2pyV6PKykrJ2e6bN697XZI5DhERkesKdeWsbaVa5fZxiEydPn0aY8eOxZ49e8yeNyZb18WBGYmIyHWsbSW1ciogGj16NOrVq4cNGzYgNjZWsscZERERkbdwKiDKycnBwYMH0aZNG3eXh4iIiKjWOTUOUbt27XDlyhV3l4WIiIjII5wKiBYsWICXXnoJ27dvx9WrV6HX680eRERERN7EqV5mpjPfm+YP1eWkavYyIyIi8j412sts27ZtTheMqCYU6sqRf6UUSREN2YOFiIgc5lSTWe/eveHn54cVK1Zg5syZaNmyJXr37o2CggL4+/u7u4xENnHCSCIicpVTAdGXX36JjIwMBAYG4vDhw6ioqAAA6HQ6zJs3z60FTExMFOdPM31MmjQJANCnTx+r155++mmzdRQUFGDQoEEICgpCVFQUXnzxRdy6dcut5STP4ISRRFSbCnXl2JN3heeYOsipJrM33ngDy5cvx8iRI/HZZ5+Jz/fo0QNvvPGG2woHAPv37zfLSTp+/Dj+8Ic/4M9//rP43IQJEzB37lzx76CgO3PjVFVVYdCgQYiJicGePXtQWFiIkSNHon79+m4P3qj2ccJIIqota/cXiDdgfhoga0gKhnWtezMz+Cqnaohyc3ORnp5u9XxoaCiKi4tdLZOZyMhIxMTEiI8NGzYgOTkZvXv3FpcJCgoyW8Y0aWrz5s04efIkPvnkE3Ts2BGZmZl4/fXXsXTpUlRWVrq1rFT7jBNGmuKEkUTkbqyNrvucCohiYmJw5swZq+d37dqFFi1auFwoOZWVlfjkk08wduxYs95tn376KSIiItC+fXvMmjULZWVl4mvZ2dlISUlBdHS0+FxGRgb0ej1OnDghu62KigoOJ+AFjBNG+t8+HjhhJBHVBFu10VQ3ONVkNmHCBDz33HP48MMPodFocOHCBWRnZ+OFF17AK6+84u4yir7++msUFxdj9OjR4nMjRoxAQkIC4uLicPToUcyYMQO5ublYt24dAKCoqMgsGAIg/l1UVCS7raysLMyZM8f9H4IAuLdX2LCuzZHeKpITRhJRjTHWRpsGRayNrlucCohmzpwJg8GAfv36oaysDOnp6QgICMALL7yAKVOmuLuMog8++ACZmZmIi4sTn5s4caL475SUFMTGxqJfv37Iy8tDcnKy09uaNWsWpk+fLv6t1+sRHx/v9ProjppohzedMJJd8InI3Yy10S+vO44qQWBtdB3kVECk0Wjw17/+FS+++CLOnDmDkpIStGvXDo0aNXJ3+UTnzp3DDz/8INb8yOnevTsA4MyZM0hOTkZMTAz27dtntszFixcBVDf9yQkICEBAQICLpSZLcu3w6a0i3XJiYdIjEdUU1kbXbU7lEBlptVq0a9cO3bp1q9FgCABWrlyJqKgoDBo0yOZyOTk5AIDY2FgAQFpaGo4dO4ZLly6Jy2zZsgUhISFo165djZWXpNVkOzyTHomopsWGBiItuQmDoTrIpYCothgMBqxcuRKjRo1CvXp3KrXy8vLw+uuv4+DBgzh79izWr1+PkSNHIj09HR06dAAADBgwAO3atcOTTz6JI0eO4L///S/+9re/YdKkSawB8oCa7BXGpEciInKWVwREP/zwAwoKCjB27Fiz57VaLX744QcMGDAAbdq0wV/+8hcMHToU3377rbiMv78/NmzYAH9/f6SlpeGJJ57AyJEjzcYtotpTk73C2AWfiIic5dTkrr6Ik7u6V6GuvEba4dfuL7BKemQOERGR76rRyV2JXGXaK8ydmPRIRETOYEBEdU5NBVtERFR3eUUOEREREVFNYkBEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBHVokJdOfbkXUGhrtzTRSEiIhOc7Z6olqzdX4BZ647BIAB+GiBrSAqGdW3u6WIRERFYQ0RUKwp15WIwBAAGAXh53XHWFBERqQQDIqJakH+lVAyGjKoEAWevlHmmQEREZIYBEVEtSIpoCD+N+XP+Gg0SI4I8UyAiIjLDgEglmGxbt8WGBiJrSAr8NdVRkb9Gg3lD2iM2NNDDJSMiIoBJ1apgmWw7I7MNUpqGIimiIS+Ydciwrs2R3ioSZ6+UITEiiN8tEZGKMCDyMKlk26zvTgFgT6S6KDY0kIEQEZEKscnMw6SSbY3YE4mIiKh2MCDyMKlkW1PsiURERFTzGBB5mGWyrSX2RCIiIqp5zCFSAdNk26O/FmPh97moEgT2RPIRhbpy5F8pZRI9EZEHMSBSCWOybVpyEzzUMY49kXwEp/MgIlIHNpmpkDEwYjBUt3E6DyIi9WBAROQhnM6DiEg9GBAReQin8yAiUg8GREQewuk8iIjUg0nVRB7E6TyIiNSBARGRh3E6DyIiz2OTGalKoa4ce/KusKcVERHVKtYQkWpwTB4iIvIU1dcQzZ49GxqNxuzRpk0b8fUbN25g0qRJaNKkCRo1aoShQ4fi4sWLZusoKCjAoEGDEBQUhKioKLz44ou4detWbX8UsoFj8hARkSd5RQ3R3XffjR9++EH8u169O8WeNm0aNm7ciM8//xyhoaGYPHkyhgwZgt27dwMAqqqqMGjQIMTExGDPnj0oLCzEyJEjUb9+fcybN6/WPwtJszUmD/NryJdxahei2uEVAVG9evUQExNj9bxOp8MHH3yA1atX4/777wcArFy5Em3btsVPP/2Ee++9F5s3b8bJkyfxww8/IDo6Gh07dsTrr7+OGTNmYPbs2dBqtbX9cUiCcUwe06CIY/LUHl501YnNyES1R/VNZgBw+vRpxMXFoUWLFnj88cdRUFAAADh48CBu3ryJ/v37i8u2adMGzZs3R3Z2NgAgOzsbKSkpiI6OFpfJyMiAXq/HiRMnZLdZUVEBvV5v9vBmak9W5pg8nrN2fwF6zN+KESv2osf8rVi7v8DTRSKwGZmotqm+hqh79+5YtWoVWrdujcLCQsyZMwe9evXC8ePHUVRUBK1Wi7CwMLP3REdHo6ioCABQVFRkFgwZXze+JicrKwtz5sxx74fxEG+5y+SYPLVP7qKb3iqS+9/D2IxMVLtUHxBlZmaK/+7QoQO6d++OhIQE/N///R8CA2vupDBr1ixMnz5d/Fuv1yM+Pr7GtldTvO2CxzF5ahcvuurFZmSi2uUVTWamwsLC0KpVK5w5cwYxMTGorKxEcXGx2TIXL14Uc45iYmKsep0Z/5bKSzIKCAhASEiI2cMbcQLRmqP2ZkglOJ+aerEZmah2eV1AVFJSgry8PMTGxqJz586oX78+fvzxR/H13NxcFBQUIC0tDQCQlpaGY8eO4dKlS+IyW7ZsQUhICNq1a1fr5a9tvODVjLqSd8OLrroN69ocu2b2xZoJ92LXzL6qbOomqis0giAI9hfznBdeeAEPPvggEhIScOHCBbz22mvIycnByZMnERkZiWeeeQbfffcdVq1ahZCQEEyZMgUAsGfPHgDV3e47duyIuLg4LFy4EEVFRXjyyScxfvx4h7rd6/V6hIaGQqfTeV1t0dr9BXh53XFUCYJ4weOJ1XmFunL0mL/Vqilj18y+XhtIFOrKmbtFRHWS0uu36nOIfv31VwwfPhxXr15FZGQkevbsiZ9++gmRkZEAgLfeegt+fn4YOnQoKioqkJGRgXfffVd8v7+/PzZs2IBnnnkGaWlpaNiwIUaNGoW5c+d66iPVOiYru1ddzLth7hYR+TrV1xCphTfXEJF71cUaIiKiukrp9dvrcoiIPI15N0REdY/qm8yI1IjNkEREdQsDIiInuTPvhlNnEBF5FgMiIg/zlpHEiYjqMuYQEXkQ56siIlIHBkREHsSRxImI1IEBEZEHSY0k7gfgamkFa4mIiGoRAyIiD7Lswq8BIACYvPqwV08JQkTkbRgQEXmYcb6qfw3vBI2mOiACmE9ERFSbGBARqUBsaCDCG2mZT0RE5CEMiMghhbpy7Mm7wlqLGiCVT+Sv0SAxIsgzBSIi8iEMiEixtfsL0GP+VoxYsZf5LTWAU4IQEXkOJ3dVyNcnd+WEprWnUFfOKUGIiNxE6fWbI1WTIrbGy+FF273cOSUIEREpwyYzUoT5LUREZKku5ZUyICJF5PJbANSZHwMRESlX1/JKmUOkkK/nEBmZ5rfs/H+XOSkpEZEP8qa8UqXXb9YQkUNiQwORltwEADgpKRGRj6qL8zAyIFIRb2qLrYs/BiIiUqYu5pUyIFIJb2uLrekfgzcFh0REvqYujpvGHCKFajKHSO1tsYW6cuRfKUVSREOz8qzdX4CX1x1HlSCIPwZ35BCt3V/A3CQiF8n9boncyRvGTeM4RF5EzWP82ApOhnVtjvRWkW79MRTqyiVzk9JbRXp8XxB5C95UUG2pS+OmsclMBdTaFisXnJg2YxmTrN31g2BuEpFrlPxuicgaAyIVUNoWW9t5NZ4ITtQaHKqR1PHA3CviTQWRc9hkphL2mp88UQVuDE4sc5tqMjgxBoeWuUl1pUrWXSyPh3E9kxARHIAFm06xmcTHeeJ3S1QXMKlaIU8OzOippOtCXTlW7srH+//LhwFwa+K0km2rPVHPU6SOBylqSsyn2lVTHR6IvBGTqusQTyRdW9ZATOzZAmN6Jirenqs9XCwT9dhj5g6p40GKWhLz1a4uHls10eGBqK5jQOQFarsKXCop84Nd+RjTM1HR+93dvMceM+akjgcpbCaxry4fW3Wp9w9RbWBStReo7QGwXEnKdHcPF/aYsWY8HiyTz00x98o+HltEtccbOnywhshL1GYVuCs1Uu5u3lPzGE2eZDweVu7Ox/s77+R4vTSwNTo0C2MziQI8tohqh7fUxDIg8iK1VQXuSk8vdzfvsceMvNjQQLz8QDuM6ZHEXBEn+PKxVRfzpkidvGmwXQZEXqqmT2jO1ki5u9s8u+Hbx1wR53j7seXsOcBb7tapdtT0tcSbamLZ7V4hT3a7t+QNJzR3d5tnN3yqKd54bDl7DlD7vIlUu2rjWqKGY07p9ZtJ1V7GWxJB3T2lh7vXR2TkbceWK+cAubv1Q+eumyW82kuA9YYEWbKttq4ltd0pyBVsMvMy3lT9SETu58o5QCpvSqMBJq8+DAHVtQQPd2qKrw7/Jltr4A011GRfbV5LvGVcLNXXEGVlZaFr164IDg5GVFQUBg8ejNzcXLNl+vTpA41GY/Z4+umnzZYpKCjAoEGDEBQUhKioKLz44ou4detWbX4Ut+BcX+QrWAshzZVzgOXdup8GgAAYr4sGAfjy0G+ytQbeUkPtzWrruK/ta4k31MSqPiDasWMHJk2ahJ9++glbtmzBzZs3MWDAAJSWlpotN2HCBBQWFoqPhQsXiq9VVVVh0KBBqKysxJ49e/DRRx9h1apVePXVV2v747jMm6ofiZy1dn8BeszfihEr9qLH/K1Yu7/A00VSDVfPAcO6NseumX2xZsK9ePuxjrCXRGo6Bhknjq1ZtXnc81pizeuSqi9fvoyoqCjs2LED6enpAKpriDp27IjFixdLvmfTpk344x//iAsXLiA6OhoAsHz5csyYMQOXL1+GVqu1u101JVUD3pkIKoddgMmUGpIwvYE7zgFK5sUz3feFunLcl7XVLIjSANgz635+Ny7y5JyVdeVaIqfOJlXrdDoAQHh4uNnzn376KSIiItC+fXvMmjULZWV37liys7ORkpIiBkMAkJGRAb1ejxMnTkhup6KiAnq93uyhJt5Q/agEawLIEmshlHHHOUCqlmDoPU0dqzWwMWI6Keep476uXEvcwauSqg0GA55//nn06NED7du3F58fMWIEEhISEBcXh6NHj2LGjBnIzc3FunXrAABFRUVmwRAA8e+ioiLJbWVlZWHOnDk19EkI8K4Bu4xYm1XzfHnARE+QSnh9IaO1ZK1B/pVSqyY2QQA7dbgBj3vP86qAaNKkSTh+/Dh27dpl9vzEiRPFf6ekpCA2Nhb9+vVDXl4ekpOTndrWrFmzMH36dPFvvV6P+Ph45wpew7z1Iq20l4NaPh9719QOTw+YqJbjrTZZDu4pN9inrYu2L+43d/L0cU9eFBBNnjwZGzZswM6dO9GsWTOby3bv3h0AcObMGSQnJyMmJgb79u0zW+bixYsAgJiYGMl1BAQEICAgwA0ldw+5k403X6SV3BGp5fN5Y22WN/NUN121HG9qJXfR3vn/LtfKAH91PeDylu7pdZXqAyJBEDBlyhR89dVX2L59O5KSkuy+JycnBwAQGxsLAEhLS8Pf//53XLp0CVFRUQCALVu2ICQkBO3atauxsruL3Em6UFeOmV8eM+syO/PLY2gTE4zU+MYeLbMS9u6I1BSEcPyn2lfbU5Ko6XhTM8uLNgCzZGCDAMxad8yt+82XAlVOxeM5qg+IJk2ahNWrV+Obb75BcHCwmPMTGhqKwMBA5OXlYfXq1XjggQfQpEkTHD16FNOmTUN6ejo6dOgAABgwYADatWuHJ598EgsXLkRRURH+9re/YdKkSaqqBZJi6yR98Nx16/Z8AH9augcLhtbcCcOdd2q27ojUFISwqaDuU9PxpnamF+09eVes9ptBAFbuzsfLD7h2w1moK8eBs9d8MlDleaX2qT4gWrZsGYDqrvWmVq5cidGjR0Or1eKHH37A4sWLUVpaivj4eAwdOhR/+9vfxGX9/f2xYcMGPPPMM0hLS0PDhg0xatQozJ07tzY/ilNsnaRtjZhQUyeMmrhTcyZfobZ5sqmAaoeajjdvIrXfAOD9nfkY0yPJ6XOQ6bnGkjOBqjcFGI6eZ73ps6mZ6gMie8MkxcfHY8eOHXbXk5CQgO+++85dxao1tk7SiRFBuD3QrJWauLOt7SYFtSUZKmkqcHV/8MTmOWo73rxFbGggxvVMwor/5Zs9b4Dzvc8szzWWHA1UvanJzdHzrDd9NktqO9+pPiDydcaTtOkBb3qSnj80xSyPyKgm7mzlaqsOnr2OP6bWzMGstiRDe00FrgSi3nxiqyvUdrypia2L19ieSXj/f/lm5yFXzkFS5xrT9ToSqHpbbpgjTbfe9tlMqfF853UDM/oqY0WZZYXZsK7NsWfW/ZiYniR+mX4aYFi3eBw4e82t8+FIzX0DAFM/O1zjQ8ybDhymljmu3DkXUE3NEaWWfeVNOFCdNXsDqMaGBmL+UPdNAyH12/IDsHREJ+ya2dehC6e3DfTpyHnF2z6bkVrnxGNApHLGA8d4zAuwPnBiQwPx8gPtsPt2YGQQgNV7CzBlTQ7uy3Lf6M/G2irLg6Y2D2Y1jWztzrmAauLEpqZ9Rd5L6cXLdI40R4MWS1K/rayhKRjUIc7h35e3TYjtyHnF2z6bkVoDOTaZqZyjPV/et2jHFwDM+tJ9XWCHdW2OhgH1MHn1YcVlchc1Vg+7q4nF3Qm9atxX5J0cOQe5s8u4u35bSob3UFMeC6D8s3tr3ptaOzAwIFI5Rw4cuXZ3V5IbpXROaOyRg1mt3aLdcRFw94lNrfuKvI8nL17uCrDkAgw15rEYKf3sxs926Nx1GAQBXRLD7b5HCWOg2FDrj9LKKrcGjGoN5BgQqZwjB45c91c/wK0nL08dzGq9q3AXdyb0qmlfqfEOnJRT68XLUZYBhppqUY3jLWk0GnROaOzw9t09/IfUkAfuDhjV2IFBI9jr104AqucyCw0NhU6nQ0hISK1vv1BXrujAWbu/ADPXHROTrzUAZj7QBk+lm8/p5o6LlNIySb3P2W2v3V9gdWJWyx2d2qhhX6n5Dpwc4+zvXa325F3BiBV7rZ5fM+FepCU3qdFtm54Dd/6/y2Y9hTWo7j2s9HdSqCs3G/4DqL752TWzr+z3ZOscLLU+peu1t25PUXr9Zg2Rl3C0+nTJj6exet95CAAWbDqFsMD64g/MXRcpZ6qzXd22Gu8qlKrtE4Wn95Wa7sDJdXVtSglP1aJangMtAw8Bjk194mjzuNQ5OL1VpHhusjXkgb1md2+/AWJAVEd9tv+8+G/TCxEAj12k3HWB9MYTs6dOFI7sK3cHbMxjUg9H8kHs1R6o7e7fWZ5oCpQ6B0oxCMrzPh0J7KS2P3PdMUCoDsT8NMCMgW1kB/y1FTDWhRsgBkQeVhMnGJvTfUDw2EXK1Qukq/vK2fe7Y7tqP1HURMCmpjwmX2F6rALVv7ljv+mwYNMpRfkgto6D2grqazPoqu1aVFu1L6b8NMrzPh0J7KS2b5o0YxCABd+fkgyGLAcFVrJub7sBYkDkQTV1grF3IfLURcqVC6Sr+8rZ97vjO1L7icIdAZvURayuJON6C9Nj1Tg0jdy1V+o7tnUcXNLfMMtNtKx1diUhWO4z1FZNam3WOEudAzUa86BEc/tzx4YGKg4OlQZ2ch1vTMm99s5jnfDH1DiHPpuSCbDVVOvIgMhDarLWwN6FyFMXKWcvkK7uK2ff767vSO01Ja4GbLYuYp7OY/JWjl4kLI9VJT1lLL9jueNg5e58rNiZb7VOqdccTQi29RnUWJPqKrlzYHqrSBw8ex0aDXBPQmMAwLyNJ7Hi9nQoSoJDJYGd5fb9bgdjpt+t1HP+Gg06JzZ26rPZ6gGntpwjBkQeUtO1BrYuRJ68SDmzbVf3lbPvd9d3pPaaElcCNiUXMW/M+aoNckGPMxcJpU0xpiy/Y6njwE8DyWDI6N87883+djQh2JTaa1LdRe4caJwPUqrLu+XvypVaFcvt7/x/l+8ESKjOIQoLqu/UjWt8eBDWPZuGskqD3QmwL+lvmPWuU0MAzIDIQ2qj1sD0zs/0b+O/HT3o3NVV39F1OJo0aLn+Y7/qrJZTsq/d+R2puabElYDNVy5i7iYX9DhbS6KkKcSU1HcsdRyM7ZloNYu9PY4kBJvyZE2qkvOSkmYfpYMYyp1/Lb9/U8bflTvGHDLd/rCuzVFcfhPzb+eZLfj+FLKGpGDXzL6Kz1dSx3NachPZCbBX7jqLFbt+kax19OS5gwGRh9RGrYEzd5ruvGt1R3kA5ftKrjvpgu9PWa3zpczWDlcvu/odqbmmxDRgC9L6obSyCoW6crvlVXtzoJqYXjTlgh65APPQuesY1EG+ZsDyWNXc7iYkoPr7eGlga3RoFoYgrZ949y713VoG7gDwwa58h2qfHEkINuXu35vSmy8l5yVbXdUdSVq3x1ZNn79GgyCtn9PN/7aCuQWbTlnlh+2a2VfReEy2gnjJWkcA7+/6xWqicuNn9OS5gwGRB9VkrYEzd5ruvmt1tTym7O0rufUvfixV8gTToWmYonKruWbH3WJDAx2++1R7c2BNcbSm0yzh2SKJFrhzZyxX0zN59WFsPXUJXx3+Tfa7kQpmnDluLQN30+/Xkq2EYGfY+r0prcU5cPYasvOuYs3tcdik9pWt4HTWl8fQMKCemCBur6u6FHfmGwLVQcS8Ie1RWlnlcI2svYBvpUTAq7SmplBXjg1HL8i+Py25idX5YVzPRPxbotbR+Bk9ee5gQORhNVVr4GhThq2AxR3NIu5Yh619Jbd+P43G5RoMNdfsuJOzQasvBY2A4zWdVgnPNu6MjQGmZbOJAODLQ7+Jf8t9N5bHqrvzEY/+VoyFm3JtJgS7o1OI5Tre25mH+bdrMaQGE4wNDawepd8kJ8XIcl+ZrktqvB0DqgNQ43biw4NsdlWXYzp7u9LgWSrpeXzPFhjTMxGxoYE4cv66VRDq6NhAs9YdQ5DWX5zzTKpJVEktn1Suk1SZpAL19y2CMD8N8NWz9yE13nbidk1jQFRHOdqUYStgcUeziFzV6dXSCkVNM86s31+jwT0JjZ3u2aaWrqC1Re4YOHj2upjwKcfXg8Y2McGyuSNyzSB+qL74Wh6Tw7o2R5DWH1PW5NgsS23mWxi/37TkJngoNU42IdgWZ7tev7cjD1mb7jR7GwRg5pfHoLn9e/fTADMy22D+d9Lj5wB39tX6nAtm67IV1xi/23XPpjmUn2Xkr9Hg6G/FePz9nxxKE0hvFYnFj6XC7/b5y7g/jAGIZTAkdT47cv469p29hsqbBqtyGwRgypoc+GmAcT2TJPfB+J4t7DbByQVDGonxiozHj/F7njGwDRZ+bx5YezoYAhgQqY67LsRKmjJMt2Ur6HFHs4hVjgOqT0amd2KudLe0VUalNRjG/WGaE6CGrqDuZOv4kquun7LmMEorb9WZfeAKuaBx8NI9EFBd4zChVxLG9EwS96/cb8u0N47ld9ElMVx2tGDTdXgi38KZ4NfZAR8LdeWYv8k6B1AAzHJeFmySD4aMdp+5jKXb8iRfkwt4qgQBv14vt9tV3ZIxb8s0t8idaQtAdUC97tk0q0DiL/+XY1abKMcgVOeHWR5nfgDG9Ey0+V5buU4aAeL4VID8eXVGZht0aBqmqlplBkQq4u4xGWwFAlLberhTU7Mf0uBOcWZ3ra42ixjXcfDsdUz97LBLOUmOfl57J3G56l81dAV1F3vHV2xoIGZktkHWd+YXIAHOd6X2NvZuSOSCRsHk///+Xz7e35Uv7l+5YN3WHfHO/3fZ7G8NgCH3NMXXhy94Xa6WrVq189fLbXa9zr9SqmhMJSW1N+9uz5NclwbAipGdUV5pMDsvGU1efRjzh5r3ujLtqi6XtF7TaQsGAGWVBrPnjpy/rigYEtchABPTk/DB/846dFzZ6tVowJ1ehrbOqws35dqdKLa2MSBSiZoalEwqEDhy/rrVSUjqoP368AW8kHGnN5Y7mkViQwMR3qjmumo7U0Zb1b/uKpunph0xfb+S4yulaajk+w0CxJ5OrlJrc6SSGxK5mk5LlvvXkRsK43dlud6+baIwMi0BZZUGh3oCOsvVruhGsrVq7+6RzMUx9qpr3LA66Vnqwmu5341ByXwbNUUGmZwhAcCEjw8ia0iKbP6WZa8rpd+nI6kGB89ddzltYd/ZazKfXpq/RoMxPZIwpkeSQze7Yq7bl8dgsHjNdHTqmj6vuhsDIpWorfFc1u4vqB6C3+J5uerig2evI7zRnROeOy5mauuqbW9QO1fLVlvTjtj6bpQeX0kRDWUv8pNXH0ZJxS2rZFZHKPkscmO6ODN6s+Xycutw5IbEtKZzymeHZdtOLPev0mBdcr4p3GlefrhTU5u9zdzB2a7oxuYd030sNQ4YIJ+YrNFUf1YB1esd2D4G3x8vqt4OqptawoLqm2173pD2GNa1OR7qGIeDZ6+juLwSr3x9wqopaEbmndwVU8bve9fMvnj7sY5W+VtSvxV732dsaKDNWnfLfTnzy2NWz9tKW3hpYGurMea63U6UVsJybjJHf8vG38HKXWfx/q5fYBDMc5qkxiCS+mxqwoBIJWojSBDvPBUmB2oAsQpZyYlY6QXLHTlJ7mSr+leubEo/q9ILrSMX6plfHkNllQH920ZbJVzKfTdKj6/Y0EDMH5oi2VtHgHUyq62AxpmgQ6qK3ZkgQGp/ADB7bsbANkhpFoqkiIYO35AYazpt/Zac/f3abI4QrHubzfryGNrEBLstKVXJ9yS3THHZTSz4/pTZPpYaB0yOZX6OQQC+O1YEoPp8NCOzDZ7qnYy1+wvEfS8IwJlLJWJtmTHBu76/n9lxLAAIC6qPXTP7YuPRQryx8WezbRu/7y6J4W45FxfqyvHVYfPmq68O/4aRaQlm35VcjaBlwGLZ2880H2dczySM7ZmE1PjGGHpPU6tmM9NxqfwAjE+vrhVyR438y4PaYkzPRKsaJmfOq56mEQSll0ffptfrERoaCp1Oh5CQkBrZxtr9BVZBgjvv/PbkXcGIFXsVL68kqdPYBuzsIJBq6aptue+NOQFSZXPks8rt8zUT7hWr322tz9Z3pkH1vFHprSLNhscHzL8bManxV514d2y8W36oY5xs8LJmbwHe2XrG5n4z3Y7UZzGeqI13jLb2RaGu3Opz2NsucKdLs/HfDbX+ePjdPWbrsXUsm164Lbc96/YFWIqt8tr7/doLqE2PRyU0GmC+wppDe9tWcszKLSOVoGvZpCLFT1M9eagAwWbvOmMyuuX3a9y26TxqUt+P6XFj6zfj6LlYap/a2kem5ZRb7l/DzSdTNa05tff5j5y/jgNnryMxIghB2voujUvlCkfOqzVJ6fWbNUQqItUube/k5UgzguRMy7f/b3natRcMAebjbEiNdWEv/8kdOUnuIDUHj62cCUdyvezVzNhbn627LAHVtQNvD+8oW7thOdDiwPYx2HS7+WH+plNizoWx10dK01DxWBrevTmWbD1j8zgwrUU5cv661YzoK/6Xj/f/ly8GblJzZQVp/QA4Nh9XlSBgyY9n8Nn+AjE3xLhP5PJE5BgEYOH3uXi2TzL+ZdELaeH3ubi3Rbhkl3rJZozM1nZ7ztjrVZV/pRTprSKxa2ZfsVnOXlwkCObjy8gFqEpq2pTUJsrNeyaV+Cv1fWgAq27zf0yNQ6Gu3GYX9ypBwP6z1rk2wJ1cH9OEbLnfhdSAgXK1MfYu3nLfp60EfHu/ccvJVM0G9pTYn5brTY1vLFljqPR86648P28bo4wBkcqYBgn2aiIcrZWxPIHL3b0Zaw+k7phNGU+Skj0gBGDl7ny8/EA75R++Flj+0OXm4JHjTNOK1IkXqL4zvFpSYXN9UnkIpgyA7OCTUsP8G5sfAPOTqkGA2LvMtInJlFTwbDwG5AbFMy4/a90xfPXsfVajHhsE4OF394gD7SkJxI1W7yuQ/CzOVHlXCQLCgrSSzxuTfzUAhneLx5R+dzl14QRsB8CmwatGA8zMbIOn0pNx5NdiRfOJGYQ748sY96fltpQO7mivSVsuGLScwsL4/HyTqSGMNRnFZXfmz5r/3SlAAJ7qnWxzZGx/jQZdExvb7CZv/O3YC+zsfXdKbtjs3dBIJWlbltPe/rYa2NNGedyRd+ru3s5Kb3zV0NmCAZFK2fuhuWNU4TOXfscr35ywWmbu4LvxxL2JZomLliyHWZc6Qb2/M19RO7WzPwRHJ1S0/KHPyGzj8DghSmp8LD+L1OzSxup6P410jxnT9VnmIZjyA2QHn5Qa5l8JY14KNObl0txuWrIcUA2AZA6E5ToHL92DmZlt8NpDbfHaNyetulrvmtkXMzPbmA2cZ5TZPgb/PV6kqPnFGbYutILJhWj1vvNYve88JpqMNaT0wpl/pRTXSislL44Hz163Gs0663aQMLZnEt7/n/mM83I1u8Cd/SlVc2hJ7gKqJNCTWiYs0HqW9GFdm+Oh1DgcOncdggCx5qPH/K1m+T1Zm04BGuCp9OQ7uTK/FksO4CcXaJj+dpQGdq5cfO3dIA3r2hwFV8uwdLt5zaNljZut/S07sKfEsepq3qkz1xV3BDLuDsKcxYBIpez90FzplWY8CVwpuSH5elhg9Z3ysK7N0SYmWBx0zshymPXY0ECM65lkdRdrAOyOcuzsD0Eu+dZWDyzLH7rl3Sxgvg+lfui2TrK28meMD6lyaHAnKLI8aUt1xTXSAMgamiKeeKWaWx2pcTFlgPUbDQLQoVmY1SzY9nqTGIkXPQnG/f5U72RAA6sB3J5KT8Z/ss9KBvCuMiavGi+09mpQAeuxhqSY5m6ZdgeXCoAhU+OxYNMpPNQxDvOHmg8MOCOzDQBYjRllVHU7M9neCMu2LqBKggXLZeQu7LGhgWZDNsgdMws2ncJDqXHietOSm+ChjtYjY4s9nHbn4/2d+ZIjftsqjxx7+VaWfyu5QVq2w3owSKnJpeX2t62BPdceOI81e89Lnjuc4eh1xd75W0n+Wk0NOeMMBkQqtfvMFcnnjfkW7uiVJjUargYwa7tOjW9sdjKWG1RO6i4WqO6lJjfKsbM/BLnxLWy9X65ZT652xtYPXS74sPwsxvyZmQ/cyc2R61KtATCx1505iwDrKQuM/DTAnIfuRv920VYnGSWzUyvhB1hdpE27AJvu34Zaf5e3Z3rsPpWebDY9BADM23hSckJIV/mhOriPCmmAPXlXxNyds1fKEKT1kx0rB7B9vNma50nAnUDF+HvqnNBYctJX4yB3w7o2N2tiWrDpFMb1TJL9XMYcFMvgfXCnOIcHd3S0BsD0+JB7r9zwDgYBVhdfuUAhNjQQLz/Qzu4YOkprgezlW0nlX6W3isS4nkn44PbcXJb7VK52R+nk0sbyS92EnSr6HZ/dnsBWA+Clga1drlWRu64Eaf2wJ++K2Hnh4LnruFZagdnrT8qev5Xmr9XWkDNKMCBSoUJdOd7dLj3EvHFkUiXVwfbEhlZ3sTYOruWHOzUOppTcZVmuy8jRIEXJD8FW8q3c++XmUnusWzw+23deTP4c1q0ZLulv2A3ULE+ycmUSYJ6bM2NgG9lEyw925YtD5r+3Uz4YGtczSQyGbAVuSkf5BYAR3eOxdt+vVk1h9o4v4/alKK2dMl23ZXBnK7BwlB+AZ/okY/mOX6wuLKZTb5j2AJopMXK3Kanjzd6AdEB1QNsyKlgcYFFuW6aD3C34/pRZM6PUtAuAeXdtqd/uCxmtFdeYuNKUYeu9saGBks2jzjT5KAnA7JG6obHMt7L823TGew2qR3y2TBFwx42rVKcPwLyXnIDqDgAPdZQe58h0Xbb2j9R1ZXCnOLFXm73ftPH3cEl/w6qDhVz+mprGpWNApEL5V6THN/EDFLc7K6V0HZYBgFyuTMOAepi8+rDZex0JUpT8EOyNbyH1fssfOlB9971633mzfIzVe89j9d7zVu+vEgT8+PNFtIhs5NA8YKYMQvVJyzJ3yXQbxl57UvM3Gdex4n/5+GBXvlVXcYNQnctjHJPG1iCLpvw1Gky5/y5Muf8us1qZ/CulNnve2brwSwVVlvwALBnRSZzA0l6OlytM81meSEsw+5z3ZZnnssz88k4PyafSkwFBvqnPT2M9K7iS3nLhDbUouFZqFTDMMn5mmAeKUk1MBsF82gW58WUsf7umzbfGu36p370rTRlK3ivVPGralORocONK8OZID0cj00NaAPDB/85iTA/zWjtXb1zlOn1IHQ/2biaV7h/Ta0KQ1s+si7+Sc8nR34ptTrRrWt7qlIo41YxLx4BIheQurjMy29gNSpzhaGKh1A/LOHpxfONAxUGO5cnC8oRoq7xSPVH8AIyzMSmh8Ye+5Mczsj2UbPnb19X5K3Ink8z2Mdho0otLSpUgoGloIOY8dLdVPoxprz173azFHCiJ5wcv3SPWckjdhWs01RMwSuVdyNU6GccJMj3e5C4irwxqiwc6xIrrNB1MbuEm8wTZQR2qx1lRmuPlDM3t48q0dsJYtm+P/CbZRd809+2p3smIC2sgOT6O1KzgSoLjBvX9MGWNdcCwa2ZfyZwZuZuHMT2SMCglFvvPXkfXROmu1lLk8t2AO+M6udKUofS9xoDTtCkwLLA+ADgU3Liah6LkO7PHlQR1KbY+k5KmLVu1lvb2j/E3ojQ/0Lh944S2SnejaUqFGrrnMyBSIalAwZhYauTK3ZArgZTcyMmmY4o83Ml8EkqpIeaNpHIjwgLrm43LcvDcdQiCYDa+SnqrSCx+LBV+Gg2aNQ7ExqNFeH/XL4qSXdfsL5B83pKt0YJNRwd2pFlHgzujf5vWTFkGJkpOzgZAMu9EwJ0xaR7qGGd2F27cTpuYYMmLqNIRiI1BsNRYNFEhAWblMUuQTbW+2BfqyrHh6AVFOV72DL2nKUamJZh1BBCE6okkjcm6pjQajfVKcHtkXxNSoxfLzQoeGyrdycDU+I8PWn1vVYKAjUcLMahDrFUumFxNg+U4U0pGj5fLd1vxvztNcHLNu0qbMpTW/ko1BRpH0zd9zl5w42oeitQ5t2tiY+zNvy65vOWI2nKfz3T9jp5r7Y2jNGOgeW2iadOWVPO5M/unodbf7m9QA+Bft2t6bfWIe7hTU3x16DebKRWeCoSMGBCplK2I2ZW7IVe7N8olBZu2FX99+ILY1GI5xLzUCVvqhBik9ccF3Q2zqldjfgdgPQWDcS4d0/3RJibYqju+ktoXoHq9sx9qh1e/OSn5ugHA4Hf3YKbMCMeS67y9r0yrn/00wJLHOomJ7Ma7O3sXVODOGC9SNSkGwXxMmt0z7zfr9u/oidO0l5RpbYbZRKe3LxKm25WaHNX0GLUVTBqDaXF0bQ2Q2T4WG48VWi07pFMcOjYPwx/axUjmTsmd/DsnNLbuWKCpHsrAstxKq/ULdeVIjQ+z/kAm5I7BNzb+jHnf/Sy57yzPCYB5HonleUDut26recj0OzY271rW6jkTYMi9V66zgyV7F29HAjC5m0HTnmsrdubLBkPP3d8Sd8UE47fr5WY3Ce5u5rH1mdbuL6jeNqqP16f7tMCy7Xmyx4Iz6QnG48deMDR/aIpY0wtY38wZOy6kxjdG3zZRilMqPIEBkYrJRczORvvu6N6opGq5ShDEvJPH3//J5vbkTohSzRMCzGujjMtKzXBdJQhiLYGS0WNNaUxqQEx7UViVR5ButpLyyqC2iA5tYHUyMAhAk0YBVnf6MzLbSPYANH5205yYe5PCrYZGMF2/6UzdUseA6ajiSkcgNh5vxovIoXPXxQk5Tbdrb/wSezlIxgk7D527DoMgoHl4EDYdLzR7jwbA1zkXsO7wBcxef9JuzYblRXH+0BSrwEGqzEqq9eVGFHakpsvWvjM9J8jlkVTvq2uSv/U2McG4WlKhqAayShDQoan1MAtKKdlfcsebI7UvgLIATOnNoFRvWSMNgCXbzlh9v3IBriu18XKfCTCfGUAQgGXb8qzOQ44M/ihVblu13hoAc/90p6ervTIba6E7J1iP9aWmSV59KiBaunQpFi1ahKKiIqSmpmLJkiXo1q2bp4vlMGeTkd3RvdHygJc60dsawdpye4623ZvWRpk+J7cscKdHiOnosZbNkQ+lVs+SbawdMJbP1qi5gHyzlSljM5JUfhUA7D5zGe9a3N0t3JSLmZnWgyBKXWAsh0awZG/8KoNwZ1RxqROa3AjExt5P1esUFNfKAPLNZADwXL+WeKxbc/F9lsGiaZOsZa2bvZoNuYui0vwFqZsU0wFCLScTFd3O27L8uBoAU+5vaTVnnJLfpeRUPBqYBaaW6zTtTWcvSJMbZsFIycXeXjOIrYu+o0m27qhVV5JcbVrDayTA9kTFcgGYvX0o9ZkkE+xhfR5yZPBHS7b2g7253YzbOXj2OqCpDoKMXE0yr2k+ExCtXbsW06dPx/Lly9G9e3csXrwYGRkZyM3NRVRUlKeL5xBnDyp3dW80PeCnSsyz9NLAO4nR9rYnlyAtR3P7P0qavUwJAnDo3HUM6iDdFRmA5ACSpsuWVd60yv0wBgymF1/TsV4sm5Ey7q6eS8yUaTBkVCUIkoMgAtLzEcnV1BjLaNzncgGo6aji9kYg9gPwdO8WWLmrOu/EWAtneYGVO7bs5Vy98+MZxIVVl0PqQmbaJHu1tEKyCl6qZsPeRdGZk7KSOaYAiFN/WD0PoFV0sFO/S6ng3rJmRWp7xv/7ARjePR6f7b0z7ITxt2XvnOLOkYXlfo/OJNkav0fLHnRKbwZt3aDZCyAtB3W1F4BZHjszZSYStjw25c7jluchqe9P6XEuV3P3zu3mfXvrsJXbppYEaik+ExC9+eabmDBhAsaMGQMAWL58OTZu3IgPP/wQM2fO9HDpHOfMQeXO6Dw2NBDhjWQGHWsW5tD2bF3MTRnbq89cKlE0t5Ml00DGkQug6bLzJT6PcWoCy7FepJqR/nvcuhea1MXU3t25XDkHdQhEScUt2X0ul/BrHADQdDnT7Q7r2hzF5XeS3y2nIjAI1XeofoJ07zUjJWP0mN5ty13IyioNYhOgXDBh+RncPQCcI3NMyb1uHEDRcr66wZ1sjydjZHoeuFJyQ3ameKmLvAHAgx2aWg23YO+cUhMjC0sd5+4IUm11AJAKOuVu0MQeVDbyBU3XZ+9Ykzp2TKcusUXuvCp1HnKW3Db+mBpn971Kjg9nv9ua5hMBUWVlJQ4ePIhZs2aJz/n5+aF///7Izs6WfE9FRQUqKirEv/V6fY2X01HOHFTujM6V1Dg5Ms6R1MX8pYGt0axxoDgHkvFkYqudX4oG5iNwO8vW1ASWbemNG1on98pVbZsmD7tajWxvn0uNKm6vRqJQV17dndZWICNU9zYJbxgg+10rHe/FePGwd4w5EuS7ewA4R8eukfueAVjNV/f14Qt4IcP+EBSAea2IVELrkhGd0KxxoNl4MsbySAWO9rapppGFLcldjC07ANg6TizH4TEdhyss6E5Nqeb2XYwA6xsAe8ea3LFjOnWJLUrPQ65w9lqh5uPDHp8IiK5cuYKqqipER0ebPR8dHY1Tp6QHXMvKysKcOXNqo3i1zl0/GqUXI0e258io2LamJBjcKU7s4ik3ArezXKl2lqvaNiYPu6sa2VYZpfafvQBMycXfX6Mxy7+S4mgSrZJjzJGg2535C3I5PKajF1s2QUl9z84MsufI5zP2AHLXZ1fTyMKWbF2MXc0VA6R7+kmtz96x5sjUJY6W0Z2c2Yaajw97NILgaDaG97lw4QKaNm2KPXv2IC0tTXz+pZdewo4dO7B3716r90jVEMXHx0On0yEkJKRWyu0tCnXlHmkPttyuvb89Ye3+AsmqbTWUzZEyFOrKzbp4WzIGnUon5lWSRGs5PIO79pc71yX1WZRcMC3LY7lv/TUa7JrZ1+mmPLltuuuzyx3XnubufemO8sjtb6m5Cj1ZVndS2/Gh1+sRGhpq9/rtEwFRZWUlgoKC8MUXX2Dw4MHi86NGjUJxcTG++eYbu+tQukOJLKkh+HEH05OckZ+merRm00lplZDaJ966n9xRbrVdQJRQ6/flTfvyvZ15VoOmqrWsjlLT8cGAyEL37t3RrVs3LFmyBABgMBjQvHlzTJ48WVFSNQMiojsnOcvcCnKdmi4g3s6b9qU3ldVbKb1++0QOEQBMnz4do0aNQpcuXdCtWzcsXrwYpaWlYq8zIrJPrb1D6gLuW/fxpn3pTWWt63wmIBo2bBguX76MV199FUVFRejYsSO+//57q0RrIiIi8j0+02TmKjaZEREReR+l12+/WiwTERERkSoxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjn+czUHa4yDuit1+s9XBIiIiJSynjdtjcxBwMihX7//XcAQHx8vIdLQkRERI76/fffERoaKvs65zJTyGAw4MKFCwgODoZGo/F0cWqdXq9HfHw8zp8/z7ncXMD96DruQ/fgfnQP7kf3qMn9KAgCfv/9d8TFxcHPTz5TiDVECvn5+aFZs2aeLobHhYSE8EfvBtyPruM+dA/uR/fgfnSPmtqPtmqGjJhUTURERD6PARERERH5PAZEpEhAQABee+01BAQEeLooXo370XXch+7B/ege3I/uoYb9yKRqIiIi8nmsISIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgItHOnTvx4IMPIi4uDhqNBl9//bXZ64Ig4NVXX0VsbCwCAwPRv39/nD592jOFVTF7+3H06NHQaDRmj4EDB3qmsCqWlZWFrl27Ijg4GFFRURg8eDByc3PNlrlx4wYmTZqEJk2aoFGjRhg6dCguXrzooRKrk5L92KdPH6tj8umnn/ZQidVp2bJl6NChgzhwYFpaGjZt2iS+zmPRPnv70NPHIQMiEpWWliI1NRVLly6VfH3hwoV45513sHz5cuzduxcNGzZERkYGbty4UcslVTd7+xEABg4ciMLCQvGxZs2aWiyhd9ixYwcmTZqEn376CVu2bMHNmzcxYMAAlJaWistMmzYN3377LT7//HPs2LEDFy5cwJAhQzxYavVRsh8BYMKECWbH5MKFCz1UYnVq1qwZ5s+fj4MHD+LAgQO4//778ac//QknTpwAwGNRCXv7EPDwcSgQSQAgfPXVV+LfBoNBiImJERYtWiQ+V1xcLAQEBAhr1qzxQAm9g+V+FARBGDVqlPCnP/3JI+XxZpcuXRIACDt27BAEofr4q1+/vvD555+Ly/z8888CACE7O9tTxVQ9y/0oCILQu3dv4bnnnvNcobxU48aNhffff5/HoguM+1AQPH8csoaIFMnPz0dRURH69+8vPhcaGoru3bsjOzvbgyXzTtu3b0dUVBRat26NZ555BlevXvV0kVRPp9MBAMLDwwEABw8exM2bN82OyTZt2qB58+Y8Jm2w3I9Gn376KSIiItC+fXvMmjULZWVlniieV6iqqsJnn32G0tJSpKWl8Vh0guU+NPLkccjJXUmRoqIiAEB0dLTZ89HR0eJrpMzAgQMxZMgQJCUlIS8vDy+//DIyMzORnZ0Nf39/TxdPlQwGA55//nn06NED7du3B1B9TGq1WoSFhZkty2NSntR+BIARI0YgISEBcXFxOHr0KGbMmIHc3FysW7fOg6VVn2PHjiEtLQ03btxAo0aN8NVXX6Fdu3bIycnhsaiQ3D4EPH8cMiAiqmWPPfaY+O+UlBR06NABycnJ2L59O/r16+fBkqnXpEmTcPz4cezatcvTRfFqcvtx4sSJ4r9TUlIQGxuLfv36IS8vD8nJybVdTNVq3bo1cnJyoNPp8MUXX2DUqFHYsWOHp4vlVeT2Ybt27Tx+HLLJjBSJiYkBAKteExcvXhRfI+e0aNECEREROHPmjKeLokqTJ0/Ghg0bsG3bNjRr1kx8PiYmBpWVlSguLjZbnsekNLn9KKV79+4AwGPSglarRcuWLdG5c2dkZWUhNTUVb7/9No9FB8jtQym1fRwyICJFkpKSEBMTgx9//FF8Tq/XY+/evWbtv+S4X3/9FVevXkVsbKyni6IqgiBg8uTJ+Oqrr7B161YkJSWZvd65c2fUr1/f7JjMzc1FQUEBj0kT9vajlJycHADgMWmHwWBARUUFj0UXGPehlNo+DtlkRqKSkhKzSDw/Px85OTkIDw9H8+bN8fzzz+ONN97AXXfdhaSkJLzyyiuIi4vD4MGDPVdoFbK1H8PDwzFnzhwMHToUMTExyMvLw0svvYSWLVsiIyPDg6VWn0mTJmH16tX45ptvEBwcLOZihIaGIjAwEKGhoRg3bhymT5+O8PBwhISEYMqUKUhLS8O9997r4dKrh739mJeXh9WrV+OBBx5AkyZNcPToUUybNg3p6eno0KGDh0uvHrNmzUJmZiaaN2+O33//HatXr8b27dvx3//+l8eiQrb2oSqOQ4/1byPV2bZtmwDA6jFq1ChBEKq73r/yyitCdHS0EBAQIPTr10/Izc31bKFVyNZ+LCsrEwYMGCBERkYK9evXFxISEoQJEyYIRUVFni626kjtQwDCypUrxWXKy8uFZ599VmjcuLEQFBQkPPzww0JhYaHnCq1C9vZjQUGBkJ6eLoSHhwsBAQFCy5YthRdffFHQ6XSeLbjKjB07VkhISBC0Wq0QGRkp9OvXT9i8ebP4Oo9F+2ztQzUchxpBEITaCb2IiIiI1Ik5REREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQEZHXq6ys9HQRrKixTEQkjwEREalOnz59MHnyZEyePBmhoaGIiIjAK6+8AuNMQ4mJiXj99dcxcuRIhISEYOLEiQCAXbt2oVevXggMDER8fDymTp2K0tJScb3vvvsu7rrrLjRo0ADR0dF45JFHxNe++OILpKSkIDAwEE2aNEH//v3F9/bp0wfPP/+8WRkHDx6M0aNHi387WyYiUgcGRESkSh999BHq1auHffv24e2338abb76J999/X3z9H//4B1JTU3H48GG88soryMvLw8CBAzF06FAcPXoUa9euxa5duzB58mQAwIEDBzB16lTMnTsXubm5+P7775Geng4AKCwsxPDhwzF27Fj8/PPP2L59O4YMGQJHp3p0tExEpB6c3JWIVKdPnz64dOkSTpw4AY1GAwCYOXMm1q9fj5MnTyIxMRGdOnXCV199Jb5n/Pjx8Pf3x3vvvSc+t2vXLvTu3RulpaX47rvvMGbMGPz6668IDg42296hQ4fQuXNnnD17FgkJCZLl6dixIxYvXiw+N3jwYISFhWHVqlUA4FSZGjRo4NJ+IiL3YQ0REanSvffeKwZDAJCWlobTp0+jqqoKANClSxez5Y8cOYJVq1ahUaNG4iMjIwMGgwH5+fn4wx/+gISEBLRo0QJPPvkkPv30U5SVlQEAUlNT0a9fP6SkpODPf/4zVqxYgevXrztcZkfLRETqwYCIiLxSw4YNzf4uKSnBU089hZycHPFx5MgRnD59GsnJyQgODsahQ4ewZs0axMbG4tVXX0VqaiqKi4vh7++PLVu2YNOmTWjXrh2WLFmC1q1bi0GLn5+fVfPZzZs3XS4TEakHAyIiUqW9e/ea/f3TTz/hrrvugr+/v+Ty99xzD06ePImWLVtaPbRaLQCgXr166N+/PxYuXIijR4/i7Nmz2Lp1KwBAo9GgR48emDNnDg4fPgytVis2f0VGRqKwsFDcVlVVFY4fP273MygpExGpAwMiIlKlgoICTJ8+Hbm5uVizZg2WLFmC5557Tnb5GTNmYM+ePZg8eTJycnJw+vRpfPPNN2IC84YNG/DOO+8gJycH586dw8cffwyDwYDWrVtj7969mDdvHg4cOICCggKsW7cOly9fRtu2bQEA999/PzZu3IiNGzfi1KlTeOaZZ1BcXGz3M9grExGpRz1PF4CISMrIkSNRXl6Obt26wd/fH88995zYlV1Khw4dsGPHDvz1r39Fr169IAgCkpOTMWzYMABAWFgY1q1bh9mzZ+PGjRu46667sGbNGtx99934+eefsXPnTixevBh6vR4JCQn45z//iczMTADA2LFjceTIEYwcORL16tXDtGnT0LdvX7ufwV6ZiEg92MuMiFRHqlcXEVFNYpMZERER+TwGREREROTz2GRGREREPo81REREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8/4/NXj9NDYxwzoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaaZJREFUeJzt3XtcFOX+B/DPgC6CCojcDQExNRPQvEUqappInjqmnUwr79pFs/RUYL8srY6Y/bqaxzqV1jml+avoZpeT5S2VzEuEWnKUg2IJKiqLXARl5/cHzriXmd3ZZZfdZT/v14uS2dnZZ4bZme88z/d5HkEURRFEREREPszP3QUgIiIicjcGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRE5DUWL14MQRA0rSsIAhYvXuzS8gwbNgzDhg3z2O0RkXYMiIjIbu+88w4EQZB/WrVqhU6dOmHq1Kn4448/3F08j5OQkGByvCIjIzFkyBB88sknTtl+TU0NFi9ejC1btjhle0S+iAERETns6aefxr/+9S+8/vrryMzMxHvvvYehQ4fiwoULLvm8J554ArW1tS7Ztqv17t0b//rXv/Cvf/0LjzzyCE6cOIFx48bh9ddfb/K2a2pqsGTJEgZERE3Qyt0FICLvlZmZiX79+gEAZs6cifDwcDz33HP4/PPPcccddzj981q1aoVWrbzzstWpUyfcfffd8u+TJ09G165d8dJLL+G+++5zY8mICGANERE50ZAhQwAARUVFJssPHTqE22+/HWFhYWjTpg369euHzz//3GSdixcvYsmSJbj66qvRpk0bdOzYEYMHD8bGjRvldZRyiOrq6jB//nxERESgffv2uPXWW/H7779blG3q1KlISEiwWK60zTVr1uDGG29EZGQkAgIC0LNnT6xatcquY2FLdHQ0rrnmGhQXF1td79SpU5gxYwaioqLQpk0bpKam4t1335VfP3r0KCIiIgAAS5YskZvlXJ0/RdTSeOejFhF5pKNHjwIAOnToIC87ePAgBg0ahE6dOiE7Oxtt27bF//3f/2Hs2LH4+OOPcdtttwFoDExycnIwc+ZMDBgwAJWVldizZw/27duHm266SfUzZ86ciffeew+TJk3CDTfcgE2bNmHMmDFN2o9Vq1bh2muvxa233opWrVrhiy++wAMPPACDwYA5c+Y0aduSixcv4vjx4+jYsaPqOrW1tRg2bBiOHDmCuXPnIjExER9++CGmTp2KiooKPPTQQ4iIiMCqVatw//3347bbbsO4ceMAACkpKU4pJ5HPEImI7LRmzRoRgPjdd9+Jp0+fFo8fPy5+9NFHYkREhBgQECAeP35cXnfEiBFicnKyeOHCBXmZwWAQb7jhBvHqq6+Wl6Wmpopjxoyx+rlPPfWUaHzZys/PFwGIDzzwgMl6kyZNEgGITz31lLxsypQpYnx8vM1tiqIo1tTUWKyXkZEhdunSxWTZ0KFDxaFDh1otsyiKYnx8vDhq1Cjx9OnT4unTp8VffvlFvPPOO0UA4oMPPqi6vZdfflkEIL733nvysvr6ejEtLU1s166dWFlZKYqiKJ4+fdpif4nIPmwyIyKHjRw5EhEREYiLi8Ptt9+Otm3b4vPPP8dVV10FADh79iw2bdqEO+64A+fPn0d5eTnKy8tx5swZZGRk4PDhw3KvtNDQUBw8eBCHDx/W/PlfffUVAGDevHkmyx9++OEm7VdgYKD8b71ej/LycgwdOhT//e9/odfrHdrmt99+i4iICERERCA1NRUffvgh7rnnHjz33HOq7/nqq68QHR2NiRMnystat26NefPmoaqqClu3bnWoLERkiU1mROSwlStXolu3btDr9Vi9ejW2bduGgIAA+fUjR45AFEUsWrQIixYtUtzGqVOn0KlTJzz99NP485//jG7duqFXr14YPXo07rnnHqtNP8eOHYOfnx+SkpJMlnfv3r1J+7Vjxw489dRTyMvLQ01Njclrer0eISEhdm9z4MCBePbZZyEIAoKCgnDNNdcgNDTU6nuOHTuGq6++Gn5+ps+u11xzjfw6ETkHAyIictiAAQPkXmZjx47F4MGDMWnSJBQWFqJdu3YwGAwAgEceeQQZGRmK2+jatSsAID09HUVFRfjss8/w7bff4q233sJLL72E119/HTNnzmxyWdUGdGxoaDD5vaioCCNGjECPHj3w4osvIi4uDjqdDl999RVeeukleZ/sFR4ejpEjRzr0XiJyPQZEROQU/v7+yMnJwfDhw/Haa68hOzsbXbp0AdDYzKMlGAgLC8O0adMwbdo0VFVVIT09HYsXL1YNiOLj42EwGFBUVGRSK1RYWGixbocOHVBRUWGx3LyW5YsvvkBdXR0+//xzdO7cWV6+efNmm+V3tvj4eBQUFMBgMJjUEh06dEh+HVAP9ohIO+YQEZHTDBs2DAMGDMDLL7+MCxcuIDIyEsOGDcMbb7yB0tJSi/VPnz4t//vMmTMmr7Vr1w5du3ZFXV2d6udlZmYCAF599VWT5S+//LLFuklJSdDr9SgoKJCXlZaWWowW7e/vDwAQRVFeptfrsWbNGtVyuMrNN9+MsrIyrF+/Xl526dIlrFixAu3atcPQoUMBAEFBQQCgGPARkTasISIip3r00Ufxl7/8Be+88w7uu+8+rFy5EoMHD0ZycjJmzZqFLl264OTJk8jLy8Pvv/+OX375BQDQs2dPDBs2DH379kVYWBj27NmDjz76CHPnzlX9rN69e2PixIn4+9//Dr1ejxtuuAHff/89jhw5YrHunXfeiaysLNx2222YN28eampqsGrVKnTr1g379u2T1xs1ahR0Oh1uueUW3HvvvaiqqsKbb76JyMhIxaDOlWbPno033ngDU6dOxd69e5GQkICPPvoIO3bswMsvv4z27dsDaEwC79mzJ9avX49u3bohLCwMvXr1Qq9evZq1vERezd3d3IjI+0jd7nfv3m3xWkNDg5iUlCQmJSWJly5dEkVRFIuKisTJkyeL0dHRYuvWrcVOnTqJf/rTn8SPPvpIft+zzz4rDhgwQAwNDRUDAwPFHj16iH/729/E+vp6eR2lLvK1tbXivHnzxI4dO4pt27YVb7nlFvH48eOK3dC//fZbsVevXqJOpxO7d+8uvvfee4rb/Pzzz8WUlBSxTZs2YkJCgvjcc8+Jq1evFgGIxcXF8nr2dLu3NaSA2vZOnjwpTps2TQwPDxd1Op2YnJwsrlmzxuK9O3fuFPv27SvqdDp2wSdygCCKRvXCRERERD6IOURERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz+PAjBoZDAacOHEC7du35zD5REREXkIURZw/fx6xsbEWEyUbY0Ck0YkTJxAXF+fuYhAREZEDjh8/jquuukr1dQZEGklD5B8/fhzBwcFuLg0RERFpUVlZibi4OPk+roYBkUZSM1lwcDADIiIiIi9jK92FSdVERETk8xgQERERkc9jQEREREQ+jzlERETk8xoaGnDx4kV3F4Mc0Lp1a/j7+zd5OwyIiIjIZ4miiLKyMlRUVLi7KNQEoaGhiI6ObtI4gQyIiIjIZ0nBUGRkJIKCgjjwrpcRRRE1NTU4deoUACAmJsbhbTEgIiIin9TQ0CAHQx07dnR3cchBgYGBAIBTp04hMjLS4eYzJlUTEZFPknKGgoKC3FwSairpb9iUPDAGRERE5NPYTOb9nPE3dGtAtG3bNtxyyy2IjY2FIAj49NNPTV4XBEHx5/nnn5fXSUhIsHh92bJlJtspKCjAkCFD0KZNG8TFxWH58uXNsXtERETkJdwaEFVXVyM1NRUrV65UfL20tNTkZ/Xq1RAEAePHjzdZ7+mnnzZZ78EHH5Rfq6ysxKhRoxAfH4+9e/fi+eefx+LFi/GPf/zDpftGRETkbZQqJ9xty5YtEATB5T0B3ZpUnZmZiczMTNXXo6OjTX7/7LPPMHz4cHTp0sVkefv27S3Wlbz//vuor6/H6tWrodPpcO211yI/Px8vvvgiZs+e3fSd8CCl+loUl1cjMbwtYkIC3V0cIiLyUIsXL8ann36K/Px8dxfFY3hNDtHJkyfx5ZdfYsaMGRavLVu2DB07dkSfPn3w/PPP49KlS/JreXl5SE9Ph06nk5dlZGSgsLAQ586da5ayN4f1u0swaNkmTHpzFwYt24T1u0vcXSQiIiKv4TUB0bvvvov27dtj3LhxJsvnzZuHDz74AJs3b8a9996LpUuX4rHHHpNfLysrQ1RUlMl7pN/LyspUP6+urg6VlZUmP56qVF+Lhbn7YRAbfzeIwOO5B1Cqr3VvwYiIyCUMBgNycnKQmJiIwMBApKam4qOPPgJwpYnp+++/R79+/RAUFIQbbrgBhYWFAIB33nkHS5YswS+//CLn3r7zzjvytsvLy3HbbbchKCgIV199NT7//HNNZZI+99///jf69OmDwMBA3HjjjTh16hS+/vprXHPNNQgODsakSZNQU1Mjv6+urg7z5s1DZGQk2rRpg8GDB2P37t3OO1gaeU1AtHr1atx1111o06aNyfIFCxZg2LBhSElJwX333YcXXngBK1asQF1dXZM+LycnByEhIfJPXFxck7bnSsXl1XIwJGkQRRwtr1F+AxEROV2pvhY7i8qb5WE0JycH//znP/H666/j4MGDmD9/Pu6++25s3bpVXud//ud/8MILL2DPnj1o1aoVpk+fDgCYMGEC/vrXv+Laa6+Vc28nTJggv2/JkiW44447UFBQgJtvvhl33XUXzp49q7lsixcvxmuvvYadO3fi+PHjuOOOO/Dyyy9j7dq1+PLLL/Htt99ixYoV8vqPPfYYPv74Y7z77rvYt28funbtioyMDLs+0xm8IiD64YcfUFhYiJkzZ9pcd+DAgbh06RKOHj0KoDEP6eTJkybrSL+r5R0BwMKFC6HX6+Wf48ePO74DLpYY3hZ+Zj0O/QUBCeEcW4OIqDk0Z9pCXV0dli5ditWrVyMjIwNdunTB1KlTcffdd+ONN96Q1/vb3/6GoUOHomfPnsjOzsbOnTtx4cIFBAYGol27dmjVqhWio6MRHR0tD24IAFOnTsXEiRPRtWtXLF26FFVVVfjpp580l+/ZZ5/FoEGD0KdPH8yYMQNbt27FqlWr0KdPHwwZMgS33347Nm/eDKCxc9WqVavw/PPPIzMzEz179sSbb76JwMBAvP322847aBp4RUD09ttvo2/fvkhNTbW5bn5+Pvz8/BAZGQkASEtLw7Zt20wGa9q4cSO6d++ODh06qG4nICAAwcHBJj+eKiYkEDnjkuF/eRwGf0HA0nG9mFhNRNQMmjtt4ciRI6ipqcFNN92Edu3ayT///Oc/UVRUJK+XkpIi/1ua0kKa4sIa4/e1bdsWwcHBmt6n9P6oqCgEBQWZdIaKioqSt1dUVISLFy9i0KBB8uutW7fGgAED8Ntvv2n+TGdway+zqqoqHDlyRP69uLgY+fn5CAsLQ+fOnQE0dpv/8MMP8cILL1i8Py8vD7t27cLw4cPRvn175OXlydWGUrAzadIkLFmyBDNmzEBWVhYOHDiAV155BS+99FLz7GQzmdC/M9K7ReBoeQ0SwoMYDBERNRNraQuuuBZXVVUBAL788kt06tTJ5LWAgAA5KGrdurW8XBq40GAw2Ny+8fuk92p5n9L7BUFo8vaai1sDoj179mD48OHy7wsWLAAATJkyRU7w+uCDDyCKIiZOnGjx/oCAAHzwwQdYvHgx6urqkJiYiPnz58vbAYCQkBB8++23mDNnDvr27Yvw8HA8+eSTLa7LPdBYU8RAiIioeUlpC8ZBkSvTFnr27ImAgACUlJRg6NChFq8b1xKp0el0aGhocEXx7JKUlASdTocdO3YgPj4eQOP0G7t378bDDz/crGVxa0A0bNgwiKJodZ3Zs2erBi/XXXcdfvzxR5ufk5KSgh9++MGhMhIREVkjpS08nnsADaLo8rSF9u3b45FHHsH8+fNhMBgwePBg6PV67NixA8HBwXJgYU1CQoLcKnPVVVehffv2CAgIcEl5rWnbti3uv/9+PProo3Lr0PLly1FTU6M4zI4rcbZ7IiKiJmrutIVnnnkGERERyMnJwX//+1+Ehobiuuuuw+OPP66pOWr8+PHIzc3F8OHDUVFRgTVr1mDq1KkuLbOaZcuWwWAw4J577sH58+fRr18//Pvf/7aa5+sKgmirioYANOYyhYSEQK/Xe3SCNRERaXPhwgUUFxcjMTHRYkgX8i7W/pZa799e0cuMiIiIyJUYEBEREZFN9913n0k3f+Of++67z93FazLmEBEREZFNTz/9NB555BHF11pCKgkDIiIiIrIpMjJSHvS4JWKTGREREfk8BkREROTTPHHUZLKPM/6GbDIjIiKfpNPp4OfnhxMnTiAiIgI6nU6e4oK8gyiKqK+vx+nTp+Hn5wedTufwthgQERGRT/Lz80NiYiJKS0tx4sQJdxeHmiAoKAidO3eGn5/jDV8MiIiIyGfpdDp07twZly5d8oi5vch+/v7+aNWqVZNr9xgQERGRT5NmZDeflZ18C5OqiYiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOe5NSDatm0bbrnlFsTGxkIQBHz66acmr0+dOhWCIJj8jB492mSds2fP4q677kJwcDBCQ0MxY8YMVFVVmaxTUFCAIUOGoE2bNoiLi8Py5ctdvWtERETkRdwaEFVXVyM1NRUrV65UXWf06NEoLS2Vf9atW2fy+l133YWDBw9i48aN2LBhA7Zt24bZs2fLr1dWVmLUqFGIj4/H3r178fzzz2Px4sX4xz/+4bL9IiIiIu/Syp0fnpmZiczMTKvrBAQEIDo6WvG13377Dd988w12796Nfv36AQBWrFiBm2++Gf/7v/+L2NhYvP/++6ivr8fq1auh0+lw7bXXIj8/Hy+++KJJ4ERERES+y+NziLZs2YLIyEh0794d999/P86cOSO/lpeXh9DQUDkYAoCRI0fCz88Pu3btktdJT0+HTqeT18nIyEBhYSHOnTvXfDtCREREHsutNUS2jB49GuPGjUNiYiKKiorw+OOPIzMzE3l5efD390dZWRkiIyNN3tOqVSuEhYWhrKwMAFBWVobExESTdaKiouTXOnTooPjZdXV1qKurk3+vrKx05q4RERGRB/HogOjOO++U/52cnIyUlBQkJSVhy5YtGDFihEs/OycnB0uWLHHpZxAREZFn8PgmM2NdunRBeHg4jhw5AgCIjo7GqVOnTNa5dOkSzp49K+cdRUdH4+TJkybrSL+r5SYBwMKFC6HX6+Wf48ePO3NXiIiIyIN4VUD0+++/48yZM4iJiQEApKWloaKiAnv37pXX2bRpEwwGAwYOHCivs23bNly8eFFeZ+PGjejevbtqcxnQmMwdHBxs8kNEREQtk1sDoqqqKuTn5yM/Px8AUFxcjPz8fJSUlKCqqgqPPvoofvzxRxw9ehTff/89/vznP6Nr167IyMgAAFxzzTUYPXo0Zs2ahZ9++gk7duzA3LlzceeddyI2NhYAMGnSJOh0OsyYMQMHDx7E+vXr8corr2DBggXu2m0iIiLyMIIoiqK7PnzLli0YPny4xfIpU6Zg1apVGDt2LH7++WdUVFQgNjYWo0aNwjPPPCMnRQONAzPOnTsXX3zxBfz8/DB+/Hi8+uqraNeunbxOQUEB5syZg927dyM8PBwPPvggsrKy7CprZWUlQkJCoNfrWVtERETkJbTev90aEHkTBkRERETeR+v926tyiIiIiIhcgQERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQ+YBSfS12FpWjVF/r7qIQERF5pFbuLgC51vrdJViYux8GEfATgJxxyZjQv7PV95Tqa1FcXo3E8LaICQlsppISERG5DwOiFqxUXysHQwBgEIHHcw8gvVuEaqDjSABFRETk7dhk1oIVl1fLwZCkQRRxtLxGcX21AIpNbURE1NIxIGrBEsPbwk8wXeYvCEgID1Jc394AioiIqKVgQNSCxYQEImdcMvyFxqjIXxCwdFwv1eYyewMoIiKiloI5RC3chP6dkd4tAkfLa5AQHmQ1SVoKoB7PPYAGUbQZQBEREbUUDIh8QExIoOagxp4AioiIqKVgQEQW7AmgiIiIWgLmEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9za0C0bds23HLLLYiNjYUgCPj000/l1y5evIisrCwkJyejbdu2iI2NxeTJk3HixAmTbSQkJEAQBJOfZcuWmaxTUFCAIUOGoE2bNoiLi8Py5cubY/eIiIjIS7g1IKqurkZqaipWrlxp8VpNTQ327duHRYsWYd++fcjNzUVhYSFuvfVWi3WffvpplJaWyj8PPvig/FplZSVGjRqF+Ph47N27F88//zwWL16Mf/zjHy7dNyIiIvIebh2HKDMzE5mZmYqvhYSEYOPGjSbLXnvtNQwYMAAlJSXo3PnKDOzt27dHdHS04nbef/991NfXY/Xq1dDpdLj22muRn5+PF198EbNnz3bezhAREZHX8qocIr1eD0EQEBoaarJ82bJl6NixI/r06YPnn38ely5dkl/Ly8tDeno6dDqdvCwjIwOFhYU4d+5ccxWdiIiIPJjXjFR94cIFZGVlYeLEiQgODpaXz5s3D9dddx3CwsKwc+dOLFy4EKWlpXjxxRcBAGVlZUhMTDTZVlRUlPxahw4dFD+vrq4OdXV18u+VlZXO3iUiIiLyEF4REF28eBF33HEHRFHEqlWrTF5bsGCB/O+UlBTodDrce++9yMnJQUBAgMOfmZOTgyVLljj8fiIiIvIeHt9kJgVDx44dw8aNG01qh5QMHDgQly5dwtGjRwEA0dHROHnypMk60u9qeUcAsHDhQuj1evnn+PHjTdsRIiIi8lgeHRBJwdDhw4fx3XffoWPHjjbfk5+fDz8/P0RGRgIA0tLSsG3bNly8eFFeZ+PGjejevbtqcxkABAQEIDg42OTHW5Tqa7GzqByl+lp3F4WIiMgruLXJrKqqCkeOHJF/Ly4uRn5+PsLCwhATE4Pbb78d+/btw4YNG9DQ0ICysjIAQFhYGHQ6HfLy8rBr1y4MHz4c7du3R15eHubPn4+7775bDnYmTZqEJUuWYMaMGcjKysKBAwfwyiuv4KWXXnLLPrva+t0lWJi7HwYR8BOAnHHJmNC/s+03EhER+TBBFEXRXR++ZcsWDB8+3GL5lClTsHjxYotkaMnmzZsxbNgw7Nu3Dw888AAOHTqEuro6JCYm4p577sGCBQtM8ocKCgowZ84c7N69G+Hh4XjwwQeRlZVlV1krKysREhICvV7vsbVFpfpaDFq2CQajv6i/IGB79nDEhAS6r2BERERuovX+7dYaomHDhsFaPGYrVrvuuuvw448/2vyclJQU/PDDD3aXz9sUl1ebBEMA0CCKOFpew4CIiIjICo/OISL7JIa3hZ9gusxfEJAQHuSeAhEREXkJBkQtSExIIHLGJcNfaIyK/AUBS8f1Yu0QERGRDV4xDhFpN6F/Z6R3i8DR8hokhAcxGCIiItKAAVELFBMSyECIiIjIDmwyIyIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOe10rpiZWWl5o0GBwc7VBgiIiIid9BcQxQaGooOHTpY/ZHW0Wrbtm245ZZbEBsbC0EQ8Omnn5q8LooinnzyScTExCAwMBAjR47E4cOHTdY5e/Ys7rrrLgQHByM0NBQzZsxAVVWVyToFBQUYMmQI2rRpg7i4OCxfvlxzGYmIiKjl01xDtHnzZqd/eHV1NVJTUzF9+nSMGzfO4vXly5fj1VdfxbvvvovExEQsWrQIGRkZ+PXXX9GmTRsAwF133YXS0lJs3LgRFy9exLRp0zB79mysXbsWQGPN1qhRozBy5Ei8/vrr2L9/P6ZPn47Q0FDMnj3b6ftEREREXkj0EADETz75RP7dYDCI0dHR4vPPPy8vq6ioEAMCAsR169aJoiiKv/76qwhA3L17t7zO119/LQqCIP7xxx+iKIri3//+d7FDhw5iXV2dvE5WVpbYvXt3u8qn1+tFAKJer3dk94iIiMgNtN6/HU6qrqiowAsvvICZM2di5syZeOmll6DX650Vp6G4uBhlZWUYOXKkvCwkJAQDBw5EXl4eACAvLw+hoaHo16+fvM7IkSPh5+eHXbt2yeukp6dDp9PJ62RkZKCwsBDnzp1zWnmJiIjIezkUEO3ZswdJSUl46aWXcPbsWZw9exYvvvgikpKSsG/fPqcUrKysDAAQFRVlsjwqKkp+raysDJGRkSavt2rVCmFhYSbrKG3D+DOU1NXVobKy0uSHiIiIWiaHAqL58+fj1ltvxdGjR5Gbm4vc3FwUFxfjT3/6Ex5++GEnF9E9cnJyEBISIv/ExcW5u0hERETkIg7XEGVlZaFVqys52a1atcJjjz2GPXv2OKVg0dHRAICTJ0+aLD958qT8WnR0NE6dOmXy+qVLl3D27FmTdZS2YfwZShYuXAi9Xi//HD9+vGk7RERERB7LoYAoODgYJSUlFsuPHz+O9u3bN7lQAJCYmIjo6Gh8//338rLKykrs2rULaWlpAIC0tDRUVFRg79698jqbNm2CwWDAwIED5XW2bduGixcvyuts3LgR3bt3tzpEQEBAAIKDg01+iIiIqGVyKCCaMGECZsyYgfXr1+P48eM4fvw4PvjgA8ycORMTJ07UvJ2qqirk5+cjPz8fQGMidX5+PkpKSiAIAh5++GE8++yz+Pzzz7F//35MnjwZsbGxGDt2LADgmmuuwejRozFr1iz89NNP2LFjB+bOnYs777wTsbGxAIBJkyZBp9NhxowZOHjwINavX49XXnkFCxYscGTXiYiIqCVypAtbXV2dOG/ePFGn04l+fn6in5+fGBAQID788MPihQsXNG9n8+bNIgCLnylTpoii2Nj1ftGiRWJUVJQYEBAgjhgxQiwsLDTZxpkzZ8SJEyeK7dq1E4ODg8Vp06aJ58+fN1nnl19+EQcPHiwGBASInTp1EpctW2b3PrPbPRERkffRev8WRFEUHQ2mampqUFRUBABISkpCUFBQ0yM0D1VZWYmQkBDo9Xo2nxEREXkJrfdvzSNVKwkKCkJycnJTNkFERD6kVF+L4vJqJIa3RUxIoLuLQyRzKCC6cOECVqxYgc2bN+PUqVMwGAwmrztrLCIiImo51u8uwcLc/TCIgJ8A5IxLxoT+nd1dLCIADgZEM2bMwLfffovbb78dAwYMgCAIzi4XERG1IKX6WjkYAgCDCDyeewDp3SJYU0QewaGAaMOGDfjqq68waNAgZ5eHiIhaoOLyajkYkjSIIo6W1zAgIo/gULf7Tp06OW28ISIiavkSw9vCz6wxwV8QkBDecjvjkHdxKCB64YUXkJWVhWPHjjm7PERE1ALFhAQiZ1wy/C+nWPgLApaO68XaIfIYDjWZ9evXDxcuXECXLl0QFBSE1q1bm7x+9uxZpxSOiIhajgn9OyO9WwSOltcgITyoxQVD7EHn3RwKiCZOnIg//vgDS5cuRVRUFJOqiYhIk5iQwBYZLLAHnfdzKCDauXMn8vLykJqa6uzyEBEReRX2oGsZHMoh6tGjB2pra51dFiIiIq9jrQcdeQ+HAqJly5bhr3/9K7Zs2YIzZ86gsrLS5IeIiMhXsAddy+DQXGZ+fo1xlHnukCiKEAQBDQ0NzimdB+FcZkREpGb97hI8nnsADaIo96BjDpFncOlcZps3b3a4YERERC1NS+9B5wscCoiGDh2qab0HHngATz/9NMLDwx35GCIiIq/RUnvQ+QqHcoi0eu+995hTRERERB7PpQGRA+lJRERERM3OpQERERERkTdgQEREREQ+jwERERER+TwGREREROTzXBoQ3X333RzEkIiIiDyeQ+MQAUBFRQV++uknnDp1CgaDweS1yZMnAwBWrVrVtNIRERERNQOHAqIvvvgCd911F6qqqhAcHGwyhYcgCHJAREREROQNHGoy++tf/4rp06ejqqoKFRUVOHfunPxz9uxZZ5eRyKlK9bXYWVSOUn2tu4tCREQewqEaoj/++APz5s1DUBBn8iXvsn53CRbm7odBBPwEIGdcMidgJCIix2qIMjIysGfPHmeXhcilSvW1cjAEAAYReDz3AGuKiIhIew3R559/Lv97zJgxePTRR/Hrr78iOTkZrVu3Nln31ltvdV4JiZykuLxaDoYkDaKIo+U1nJCRiMjHaQ6Ixo4da7Hs6aeftlgmCAIaGhqaVCgiV0gMbws/ASZBkb8gICGcTb9ERL5Oc5OZwWDQ9MNgiDxVTEggcsYlw/9yr0h/QcDScb1YO0RERI4lVf/zn//EhAkTEBAQYLK8vr4eH3zwAbvdk8ea0L8z0rtF4Gh5DRLCgxgMERERAEAQRVG0vZopf39/lJaWIjIy0mT5mTNnEBkZ2SJriSorKxESEgK9Xs/Rt4mIiLyE1vu3Q73MRFE0GYxR8vvvvyMkJMSRTRIRERG5jV1NZn369IEgCBAEASNGjECrVlfe3tDQgOLiYowePdrphSQiIiJyJbsCIqmnWX5+PjIyMtCuXTv5NZ1Oh4SEBIwfP96pBSQiIiJyNbsCoqeeegoAkJCQgAkTJqBNmzYuKRQRERFRc3Kol9mUKVMANPYqU5rtvnNnToVARERE3sOhgOjw4cOYPn06du7cabJcSrZuib3MyLlK9bUoLq9GYnhbdn0nIiK3c6iX2dSpU+Hn54cNGzZg79692LdvH/bt24eff/4Z+/btc2oBExIS5ERu4585c+YAAIYNG2bx2n333WeyjZKSEowZMwZBQUGIjIzEo48+ikuXLjm1nKTd+t0lGLRsEya9uQuDlm3C+t0l7i6STaX6WuwsKue8Z0RELZRDNUT5+fnYu3cvevTo4ezyWNi9e7dJjdOBAwdw00034S9/+Yu8bNasWSbTiAQFXZmKoaGhAWPGjEF0dDR27tyJ0tJSTJ48Ga1bt8bSpUtdXn4ypTbBanq3CI+tKVq/u0Qus58A5IxLxoT+bBYmImpJHKoh6tmzJ8rLy51dFkURERGIjo6WfzZs2ICkpCQMHTpUXicoKMhkHeOBl7799lv8+uuveO+999C7d29kZmbimWeewcqVK1FfX98s+0BXWJtgtSlcVYOjFsCxpoiIqGVxKCB67rnn8Nhjj2HLli04c+YMKisrTX5cpb6+Hu+99x6mT59uMjDk+++/j/DwcPTq1QsLFy5ETc2Vm2teXh6Sk5MRFRUlL8vIyEBlZSUOHjzosrKSMmmCVWNNnWDVlU1wrgrgiIjIszjUZDZy5EgAwI033mgSmLg6qfrTTz9FRUUFpk6dKi+bNGkS4uPjERsbi4KCAmRlZaGwsBC5ubkAgLKyMpNgCID8e1lZmepn1dXVoa6uTv7dlYGeL5EmWH089wAaRLHJE6y6uglOCuCMg6KmBnBE5L3YIaTlcigg2rx5s7PLocnbb7+NzMxMxMbGystmz54t/zs5ORkxMTEYMWIEioqKkJSU5PBn5eTkYMmSJU0qLylz5gSr1mpwnHGxcnYAR0Tei/mELZtDTWZDhw6Fn58f3nzzTWRnZ6Nr164YOnQoSkpK4O/v7+wyAgCOHTuG7777DjNnzrS63sCBAwEAR44cAQBER0fj5MmTJutIv0dHR6tuZ+HChdDr9fLP8ePHm1J8MhMTEoi0pI5NDixc0QRnbkL/ztiePRzrZl2P7dnDeQEk8kHMJ2z5HAqIPv74Y2RkZCAwMBA///yz3LSk1+td1nNrzZo1iIyMxJgxY6yul5+fDwCIiYkBAKSlpWH//v04deqUvM7GjRsRHByMnj17qm4nICAAwcHBJj/keaQaHP/LTbeuqsFxVgBHRN6J+YQtn0NNZs8++yxef/11TJ48GR988IG8fNCgQXj22WedVjiJwWDAmjVrMGXKFJMJZYuKirB27VrcfPPN6NixIwoKCjB//nykp6cjJSUFADBq1Cj07NkT99xzD5YvX46ysjI88cQTmDNnDgICApxeVmp+zmyCIyJSwnzCls+hGqLCwkKkp6dbLA8JCUFFRUVTy2Thu+++Q0lJCaZPn26yXKfT4bvvvsOoUaPQo0cP/PWvf8X48ePxxRdfyOv4+/tjw4YN8Pf3R1paGu6++25MnjzZZNwi8n6swSEiV2qu2mhyH4dqiKKjo3HkyBEkJCSYLN++fTu6dOnijHKZGDVqFERRtFgeFxeHrVu32nx/fHw8vvrqK6eXi4iIfAdro1s2hwKiWbNm4aGHHsLq1ashCAJOnDiBvLw8PPLII1i0aJGzy0hEROQRYkICGQi1UA4FRNnZ2TAYDBgxYgRqamqQnp6OgIAAPPLII3jwwQedXUYiIiIilxJEpbYojerr63HkyBFUVVWhZ8+eaNeunTPL5lEqKysREhICvV7PHmdEREReQuv926EaIolOp7PadZ2IiIjIGzjUy4xcy1UTlRIREZGyJtUQkfNxaHgiIqLmxxoiD8Kh4YmIiNyDAZEH4dDwRERE7sGAyIM0x0SlREREZIkBkQfh0PBERETuwaRqD8Oh4YmIiJofAyIPxKHhiYiImhebzIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiomZUqq/FzqJylOpr3V0UIiIywsldiZrJ+t0lWJi7HwYR8BOAnHHJmNC/s7uLRUREYA0RUbMo1dfKwRAAGETg8dwDrCkiIvIQDIiImkFxebUcDEkaRBFHy2vcUyAiIjLBgIioGSSGt4WfYLrMXxCQEB7kngIREZEJBkREzSAmJBA545LhLzRGRf6CgKXjeiEmJNDNJSMiIoBJ1UTNZkL/zkjvFoGj5TVICA9iMERE5EEYEBE1o5iQQAZCREQeiE1mRERE5PMYEBEREZHPY0Dk4zhyMhEREXOIfBpHTiYiImrEGiIfxZGTiYiIrmBA5CPMm8Y4cjIREdEVbDLzAUpNY+ndIuAnwCQo4sjJ3qNUX4vi8mokhrdlN34icpuWdC3y+BqixYsXQxAEk58ePXrIr1+4cAFz5sxBx44d0a5dO4wfPx4nT5402UZJSQnGjBmDoKAgREZG4tFHH8WlS5eae1fcQq1pDABHTvZS63eXYNCyTZj05i4MWrYJ63eXuLtIROSDWtq1yCtqiK699lp899138u+tWl0p9vz58/Hll1/iww8/REhICObOnYtx48Zhx44dAICGhgaMGTMG0dHR2LlzJ0pLSzF58mS0bt0aS5cubfZ9aW7WmsY4crL3UQtw07tF8O9HRM2mJV6LvCIgatWqFaKjoy2W6/V6vP3221i7di1uvPFGAMCaNWtwzTXX4Mcff8T111+Pb7/9Fr/++iu+++47REVFoXfv3njmmWeQlZWFxYsXQ6fTNffuNCtpUlG1pjGOnOxdrAW4/DsSUXNpidcij28yA4DDhw8jNjYWXbp0wV133YWSksZqub179+LixYsYOXKkvG6PHj3QuXNn5OXlAQDy8vKQnJyMqKgoeZ2MjAxUVlbi4MGDqp9ZV1eHyspKkx9vxElFWxYpwDXG3C8iam4t8Vrk8QHRwIED8c477+Cbb77BqlWrUFxcjCFDhuD8+fMoKyuDTqdDaGioyXuioqJQVlYGACgrKzMJhqTXpdfU5OTkICQkRP6Ji4tz7o41own9O2N79nCsm3U9tmcP51hDTtacg1sywCUiT9ASr0Ue32SWmZkp/zslJQUDBw5EfHw8/u///g+Bga478AsXLsSCBQvk3ysrK706KPKWpjFv67HgjsEtmftFWnjbd4m8T0u7Fnl8QGQuNDQU3bp1w5EjR3DTTTehvr4eFRUVJrVEJ0+elHOOoqOj8dNPP5lsQ+qFppSXJAkICEBAQIDzd0AjX7yYedvI2e5MKvSWAJfcw9u+S+S9WtK1yOObzMxVVVWhqKgIMTEx6Nu3L1q3bo3vv/9efr2wsBAlJSVIS0sDAKSlpWH//v04deqUvM7GjRsRHByMnj17Nnv5tWhpXRm18MaRs501uCXnkyNn8sbvEpEn8PgaokceeQS33HIL4uPjceLECTz11FPw9/fHxIkTERISghkzZmDBggUICwtDcHAwHnzwQaSlpeH6668HAIwaNQo9e/bEPffcg+XLl6OsrAxPPPEE5syZ49YaIDUtsSujFt7YY8FWDz4t+CRPzuaN3yUiT+DxNUS///47Jk6ciO7du+OOO+5Ax44d8eOPPyIiIgIA8NJLL+FPf/oTxo8fj/T0dERHRyM3N1d+v7+/PzZs2AB/f3+kpaXh7rvvxuTJk/H000+7a5escsWUGt5QA+GNPRaamlTIJ3lyBW/8LhF5AkEURdH2alRZWYmQkBDo9XoEBwe77HNK9bUYtGyTRa3D9uzhDj3deVMNxPrdJXg89wAaRFEOLjy1rMZK9bUOJRXuLCrHpDd3WSxfN+t6pCV1dGYRycd463eJyBW03r89vsnM10i1DuYXM0eCIW9rfvPWHguOJhU6o8mNSIm3fpeI3IkBkQdy1sXMG3MJWlKPBVucGfwSmfOl7xKRMzAg8lDOuJixBsLz8UmeiHyBNwwlw4CoBWMNhHfgkzwRtWTeksvKpGqNmiup2hUcTfolIiJqCmd3FHIEk6pJxhoIIiJS4uqmLG/KZWVAROQBvKF9nYhaluZoyvKmXFaPH5iRrvCGARadxZf21RenaiEi92qugWGbOoBtc2INkZfwlqQ0Z/ClffW2saKIqGVozqYsb+lNyxoiL+BLUzz40r4CrpmqhYjIluae4iUmJBBpSR09NhgCGBB5BU+6abq6KcuT9rU5cN4pInIHb2rKai5sMvMCnpKUxgQ85+NYUUTkLt7SlNVcOA6RRu4eh8jdkzU251gS7t5Xd+BYUURErsFxiFoYd0fyak1Z+46dQ4e2zu0u7u59dQeOFUVE5F4MiLyIO2+aSk1ZggDMXfszRDi/Cc2XAwSOSURE1PyYVE2amCfg+QkARECKj1p6b7DmwjGJiIjcgzVEXsodtQjGTVnlVRfw4Lp8k9c9dTh2b8ExiYiI3IcBkRdy58CFUlNWqb7Wp3qDNQdvmvOHiKilYZOZl2nOgQutjTnEMSycj2MSEZEvTVvkaVhD5GWaqxZBSy2UL/YGcyWOSUTk23xp2iJPxIDIyzTHwIX25LL4cm8wV2CQSeSbmEPofmwy8zLN0VTla9NneBpvmPOHiJyL1133Yw2RF3J1LUJbnb/i8iAd42ciIlfwtWmLPBHvcF7KlbUI1fUNistr6g1O/ywiImJHFU/AGiKywCcVIqLmxxxC92INEVlQGpV6+uAE9xaKiMgHMIfQfTjbvUbunu3eHUr1tVizoxhvbit2yXxlRETUdJz/0DrOdk9O8dYPxRbzlbEbKBGRa2kNcjh2kfMwICJVzhwEkk8wRETaaA1yOHaRczEgIlVNSa42DoC2/ee0/KUVBCA7swfuTU9yYcmJiLyTPUEO5z90LgZEpMrRqSSMn26kqbmk76woAjlfHQJE4N6hDIqIiIzZE+SwR7BzMSAiq5S6gVpr/jJ/ulHL2H/u60O4tXcsn2KcjE2TRN7NniCH8x86FwMissl4vjJbbdtKTzdKDACrdZ2MyZVE3s/eIIdjFzkPAyLSTEvbttLTjQDLmiLjJx7WajQdkyuJWg57gxxOsu0cHJiRNNMy+aDS8PPLxidjYWYP+WQzfuJZv7sEg5ZtwqQ3d2HQsk1Yv7ukmfamZeHEkEQtCwdobH6sISLNlGp//GA56ava082tvWMtcpFYq+E445o1JlcSETUNa4hIM/PaH6AxF+i2v++0qNlReroxX2ZPrUapvhY7i8pRqq913g55MfOatW3/Oc2JIYmImsDjA6KcnBz0798f7du3R2RkJMaOHYvCwkKTdYYNGwZBEEx+7rvvPpN1SkpKMGbMGAQFBSEyMhKPPvooLl261Jy70iJM6N8ZuQ+kwSgmkmt27A1WpFoNY0q1GmxWM2WtZm179nCsm3U9tmcPZ0I1EZEdPD4g2rp1K+bMmYMff/wRGzduxMWLFzFq1ChUV1ebrDdr1iyUlpbKP8uXL5dfa2howJgxY1BfX4+dO3fi3XffxTvvvIMnn3yyuXenRaiub4D5DHiO5Kso5RuZ12qo3fx9uabI1jglzDsgIrKfx+cQffPNNya/v/POO4iMjMTevXuRnp4uLw8KCkJ0dLTiNr799lv8+uuv+O677xAVFYXevXvjmWeeQVZWFhYvXgydTufSfWhpnJmvYqs3BUditcR8ISIi5/P4GiJzer0eABAWFmay/P3330d4eDh69eqFhQsXoqbmSm1FXl4ekpOTERUVJS/LyMhAZWUlDh48qPg5dXV1qKysNPmhRlpqduzdnlqtxv7f9RbLfP3m7+zjT0REXlBDZMxgMODhhx/GoEGD0KtXL3n5pEmTEB8fj9jYWBQUFCArKwuFhYXIzc0FAJSVlZkEQwDk38vKyhQ/KycnB0uWLHHRnni/5hgMrFRfi+e+OWSx/LHM7j5/8+dgbETkibx5XDmvCojmzJmDAwcOYPv27SbLZ8+eLf87OTkZMTExGDFiBIqKipCU5Nh8WQsXLsSCBQvk3ysrKxEXF+dYwTXythPJ1YOBqY16ndIp1GWf6U04GBsReRJvHy3fawKiuXPnYsOGDdi2bRuuuuoqq+sOHDgQAHDkyBEkJSUhOjoaP/30k8k6J0+eBADVvKOAgAAEBAQ4oeTaePuJ5ArMlSEi8g4tYVw5j88hEkURc+fOxSeffIJNmzYhMTHR5nvy8/MBADExMQCAtLQ07N+/H6dOnZLX2bhxI4KDg9GzZ0+XlNse7EmljLky5Gwcz8o5eBxdyxuPb0sYLd/ja4jmzJmDtWvX4rPPPkP79u3lnJ+QkBAEBgaiqKgIa9euxc0334yOHTuioKAA8+fPR3p6OlJSUgAAo0aNQs+ePXHPPfdg+fLlKCsrwxNPPIE5c+Y0ay2QGnf0pPKW5jnmypCzqNXCest3wZmass+szXYtbz2+LaFGXxBF8xFlPIsgCIrL16xZg6lTp+L48eO4++67ceDAAVRXVyMuLg633XYbnnjiCQQHB8vrHzt2DPfffz+2bNmCtm3bYsqUKVi2bBlatdIWE1ZWViIkJAR6vd5ku85Qqq/FoGWbLE6k7dnDXXKB9tYvHJGj1L5jj43ujue+OWT3d8Gbg6imfP+b+1rla7z9+K7fXYLHcw+gQRTlGn1PuLdovX97fA2RrXgtLi4OW7dutbmd+Ph4fPXVV84qllNt+89pk4EOBQEuaxpqCe28RPZSq4Vd9vUhSIu1fhe8+YGiqd9/jgvmWt5+fL29Rt/jc4haOukCZfwdEEQgvVuESz7Pm9p5vbEdnTyT0jQxfgJg/rhl67vg7fl+Tf3+t9X5Ky43n+C5ubWUa4XW6Yw8mTePls+AyM2ULlAGwGUBird84azNX9ZSLn7UfJQS9LMye9j9XfCkBwpHvgdav/9q266ub1Dcbk29wW3fy5Y01yE7kriXxzeZtXTNnYgmfeHM23k96QtnrVp/239ON3tzhTfni9AVStX5oYGt7foueEriqKPNdlq+/9a2rbb/BX9U4K63foRBBAQA2Zk9cO9Qx8aAs0dLTAHw9mYnb+bxSdWewpVJ1e5IRCvV13rsF25nUTkmvbnLYvnKSX3w4LqfmzXh0JvzRQAGc1rY+11wd+KoMxJv1fZZy7bN9984Md3Ywpt74N501wZFateKdbOuR1pSR5d+NmmndB1qzmtTi0mq9gXueCLw5FGO1Z5CDaLYpIRDe7+A3v706e3BXHOx97vg7id4ZyTequ2zlm2b77/aiPLPfX0It6bGuvT4eEqNHalTug4B8MhrE3OIPIQ3J6I5m1o7er+EMIfznxzJM1C7OXxZUOrx+Uvenvzr6dz5fXVlHqDWbRvvf2J4WygNjmIQXZcLaVwO5tx4LqXr0MLc/cj+2DOvTQyIyCNN6N8Z27OHY92s67E9ezgm9O/s8MXP0eBA6eYAAM9++ZvHJ296UvIvOZcrgwBHth0TEojszB4Wy5urpkbpWkFNJyXJ/3L8nMPJ8oqdhkT7e3c2FzaZkcdSqtZ3pLnC0SYG8wRUY57efMamhJbNlc12jmz73qFJgNDYTGYQm7+mxpNTALyRcTOXxE8AsjJ7ILlTiOa0A6XrkJ8AiGZBkadcm5hUrZErk6q1YHKs45qahFqqr8WXBaV49svfLF7z5ORNdyf/NhXPec+i5e/hyZ01rOG5doXS9dKcUt6P2jFUug4BaNZrk9b7NwMijdwZEDE5tumaGhxYC6oAeOzF1FtvUDznPUtL/ns4Y9+aGlA1d0Bm7fPUeu6ZM36otHUMla5DzXltYkDkZO4KiLx9bhtPUaqvxZ6jZ+EnCLguvoOmvCPzC4bak05LvVG4C895z+Jpfw9nBg/27Ju1GhDza0B6twirZTTelj1jqzm67/Z8npYaIsm6WdcjITzIo84PJex230I4mv8iBQCCIKCvhgCgJdP6BChdNHYcLsfftxRBhOn65rkVAEwuBJ6eV2SLpzQbePt8Tt7G1t+9uf8e1srj7JoqrfumFvTsPXYO2R/vN5kPL/vj/RAu582Yl7FUX4vV24vx9vZi+XXjfBpr1xAttTBaAjZbnyflTi78eD8MVo6dlPdj6xh6ynVFCwZEHk7q0moy1xlgNQFt/e4Sky+pAGDZeO+vuXDki6V1LCGlJEKl9Y2TN3cWlTv9RuGui4crm0Ts3SdfSwhvjr+59Bltdf6orm+QP0tL7UZz/j2snYdav8tq+6pEy74pfW527n5AobcU0LhMVCjjtv+cNrkuS6+bU7qG2Np3teOm9D4tnwcA0o1HEIBZg7ugYzsdln9TqDjCuVLidEJ4kNc1tTIg8kZKg35cVqqvtfjSiWhs1vHWmgvA8Ru2lidA84uGObULhrNvFO66eDhjAEp7mhNs7ZM3TC/jLI4cH2sBlPFrQOP5v/93vcVI0lKPIalXGGC9dkPt72FPMGdrXVvnobVxwcakxFgEBsb7qnZclc61xzK7o7i8Wn5d6XPtSTRpEEXsO3bOYhJvNUrXEFvDaFiM9fPxfrQNaAVRYTBbpc8L0vlhZ1G5fN4Yb08Ugbe3F2N79nDc2jvWIu8nJiQQWZk9sOyrQ/L+iSLwef4Jk/POG2rQGRB5uOLyaosvkShCtRZCaX3gyiBpnnoiWmPPDdv8oqslaFEbaVfiB+UaOWfeuN05KnZTm0TseTrVuk/uHg26Ofxy/Byyc/cr1iYAyon61gIo49ekZya109ogwiQYkpjXbmTn7kd4O53i38P882YNScS0wYmKfystNVG2zkOl7zLQOC7Y0q9+swjwjPfV/Lwzvk4Y71vB7xXyNozLqfS5SvykY2i0TG2UfYkgAILYOKm32jXE2nVMbYLwuWt/hp8AxRYGAVc+b2yfWNz2953yPs8cnKj6d1AajHT97hI89/Uhi4fw574+ZNHkpvQw6knNaQyIPJy9tRBKTWxA44lu/BTgzpPP3i9BU9r5rT3dStQutJKszB6q5XTWjdudeTNNqemyFvQ0dZ+Mmyc97cLZVObN2pIGUcSaHcV464diTQGmVPMLmD3VayiDFMhYW1cUgRnv7sX46zrhhTt6y7VCGwpOmJRfBPCPH4rx1vZixdwWiyYnhZoopcDD+Dy0NS6YUjAkMT7vrAWV0gS10jYfzz2A7dnDTT5XaRwdPwF49c4+iAsLxIaCUjlHyHyUffPyGe+72txy0nlv7Tqmdv0yXG7yMv8jZ2X2QMpVoQjS+cnBkLT+Wz8Ua74eWKtdN6Dxs0WV7XhicxoDIg9nby1ETEgglo1PNs0hEoDb+nQyeQpw18nnyJfA0XZ+6cZsK2hRu9BKzQq2Jqh0xqBw7sybaUpNl7Wgx1n75IkXzqaQzlWle7efALy5rVgx6VVt1N+/ffkrMq6N1lSDYUyamFXKC1Gq3ZB8vO8PTE6Lx6Gy81abl6Xy9ohuL+fvKDY5wTLPxiLwAPDY6O4m56H0XVYaF8xWgFfwRwUSwoMcCuDNryHb/nPa4vtSXX9JvsYKAGanJ2LaoEQAjd+TrNE9TI71zMuvG++fcVOd0nm/PXu4YpOVWqAIWDbviQCWf1OI7dnDVWuXZg/ugre3F9u8HlirXZeaH5d/bZl35KnzRDIg8gL21kJI6+89eg6CAFzVIdDiKcD8otUcT+KOfgm03LBt1UbYClqMj3GQzg819YZmbapxd96MozVd1oKepu6T1FOyOS+cSjk4zvouSNs+U1WneBPxE4AZgxPx5g/FJsutBZgAsKGgDF/uL7NZ22PMeCwu47yQbf85bdKMZ+z7307htc1HbAZeDaKIsSt3yr00s0b3sNnkZBx4VNRexLLLtT3PfXMIoUGtTQLgmJBAjEmJwdKvfrM474wDPHPPfX0IQTp/hwN442uIrR6nIoC3fziKju0CTJrgsjJ7IKVTqMV3zDz4UcrvkoJGpYFgja/58z742SKHyt59njY4AdMGJ9i8Hqidk37AlfMr1TLvSEs+mDtwHCKN3D1SdVOoDbQlXUClp4+KmsYLkfEyZz6Jq5VD62jP1gby8rSxUhzlCQMp2hsU2xr00pF9Uuv1J3HFCOFqOTgCgOzMHo3TU1hhT3dxpRvIJ3NuQGRwG6vn8d++/NUiYDImfaet5RAtGnMNbrZy0/n+tzLMeHevxfJnxl6LRZ8eVP1sNeY1BWp5NtIgp+b77wfg1Ul9LIYPeWNbkcVUIVLTotrI8oBlLZL5AIOODOCqeo1VaDIyvyYpXbvUAkgt5735PjyW2d2iOdEZ+6z0eY05SF0wbXCC1e+6tbGOXHHv4ThEJFOL4o2r5ZW6g1rr0urIU3NTm1Cs1fK4u4bFWZzR/NYUjjRPaWmStGefbPX6c0VTovlnGn+0CCDn60OAANXm0ze2FTU+TCgcN1tdnwUAOeOTkRrXAaX6WswcnNiYQwTLJNvpl19Te4oV0XgTzs7sgesTw+SaGom/IFgNhgBgxDXRGH9dJ3y87w952fjrOmHkNVF46rODdjfNNYgiUjqFmjT3KDU5xYQEKg5lYZwgLB1XKZFXCl4fG91dPt5qNUjGpEDFD8CMwQnycmfWlPpBuWZm37FzGJNivXZbqflPy3lfqq9FXFgQch9IM6nlDg1srXptlPZ537FzMIgi+iWEadpniSPHzFY+mLuaz1hDpJE31xABl290NgbaUiI9kSgNKOZIFP/G1iK594Er5rDxhBoWqRzelgTsKbVs1qYOMK8JcNYx1jJdgZ8A7Mi+0eKz3tha1Bgwqaxra9vSusYjCAsAJg7ojAdHdFWubdIwaN727OGKgYfW79svx89hz9Fz6JfQAalxHeTPNs7xMa/pUZu4U23kZ6XpHKyNkuwvCMh9IM0kBUDtM2zVMgKWteRaBjpUY1EzM7q7XONu/pnG48Kpfe+Mm//M/3ZqI+lrmT4jSOdnkSrhaJ6eM6YsaY55IllDRCYm9O+MtgGtMHftz5rfI3U3V+oRoyWKN/+yrN9d0jguBRqf0B7L7O7UYAhwfw0L4L1JwJ4yQrTa0/aKSX3kaVecPf+UrZ6GgPLQFaX6WotgSFp3zY5iPH5zT5vbNojA3qPnLGqo1v5UgviOQSZNdVINwCdzbsCXBWV4a/t/FberlAws3QhL9bWa/p6pcVcCIYmW5GIAJk0oj2V2V/w86btaqq816f1qLUG4QRSx++g5TefphP6d0SO6vUUtmTHjWvKFufsRpPNHv4Qw1ektrAUASnlFyxTODRGWg70q1W6b53dZC17Su0Uo5tqZ54kq7Zfae23V0Gj5DtoKmKzlg7ljIFYGRB7OmU/BfeM7aB5PA2hM7AOg2iPG2s3SIklwdA+TQbpEEVj+dSFuTY0F4LmTo9rLfGBMT+k9oYXajXvHkdNOe1LTOqig0g1iTEqsvF5TRyxWupgbf6ZSgrLSRXr1dvV8nre2Fcu9iKzd5P2FxsFilL6Xy74+hOu7hCE1roNimXdk36iYSGueDGzPfFm2WEsulpZL+YgGsTGZOTSwteLnqd1U1RKE/QUB/RMsr2NqN9DUuA7IlhKUbeyXQQQeXJdvkX8lnV8VNRfla5jaMTROGj5TVacaiJlfO9WOo/kDntq5/8rE3opBoklyu0qittp7rT0IafkOan1o8aR0BwZEHszZNQ22LswSAUD2zY3dzZXa9CVKFyGpZ5D5gHNqg3SpjbnirVZvt8zv8ITeE1rEhAQia3QPixqP1zYXoX2b1jaTim3ROqig1NvKPA9CoqUmy9qIxWpPxNuzh5vkuXz+y4krPYRg2QW8VF+Lt60ERAZcqVFK7xaBl+9MhZ8g4PdztRZNIX3jO1gk4AKNN+WxK3c23tQVRv3dnj0cf0qNRXX9JdUbiqu7OCvdtJ/75pBF7UuP6PYmNU62yvWn1EDF/UqN66D5BmpSKw1tvfDUHv6Mm7/UjqH5eaz2mUrXTi2122rnPkTlRGzj8iqN06T2Xls1NFrmL7PnnPOUgVgZEHkoV13EzKvQzauTBQCfzrlBvnCpDfQIWFaFW2uzVxqky9qYK/Ym4TZl+gBH50hT2o7aDVIaTbepAZ8rcpOMt5l8VYjiOs99fQi39o5V/EwtZbJnUEGDCLz5Q2OgvGx8slw79cvxc/jp6FmEBra2OuCbWlK2QWyc0mDxn3uqXsylzyour5ZrL6WajmXfmCZW2xrhXCqT1vFksjN7IOcr5SYWW6P+WruhNHdTqFqS8NiVO01yZ7SUS22/tNxAlRLljUeFFtD4Hy1ZtNa6rlsLPAUB8Lv8eZKm1ICodUzpm9DBZg2nWqK2+Xu1lM9WB5k9R8/afc55QroDAyIP5eqLmAgRkcFtsGx8ssXF2vgpLiYkELOGJOIfCl19UzqFyv+21TNIAPDAsCS8vuW/8pduwoA4rN1V4vA+luprsWZ7Md683OvGVg2T0o0JgN21cGo1HXuPWeY2GGtqUOuK3CSlpk2lmgrj2g5j1npXGVO7Sa7ZUYxh3SMVj5uIxgAmvVsE/vffhSa9noyZX8Ct/R0MAJ787FfFbZgHL+ZNJ6KIxoBFBO4dmoS2On/FY2VcJsAy2DMeT8Y4f+be9CRAhGIirlJzjyCYTimjdkOxp3enMx4YrPVqNT7/tZZLbb9s3UDV5iB7bVIfhLUNkD9n37FzmLv2Z8vpLS6XzVrXdVtTABl/njPGN7PWvGTcW2yOQq6o9P1WmqDV3hoaa+WQvkPmvGGCZgZEbqZ2sXHVyMVqeQjWvgjTBifircu9y5TKIg3lby0YEAGs2lIkD0xW8HuFYsKh1n1Uqo0yDjgA07wkxRqKj/eb5G5oCVjUau6knAlbGkQRe4+eQ1g7y7+5rfwaLUmT9lDa5vJvCjFnWBJe21xksq4fGqd+MWbeu8ra8dv/u16xDG9tK8aY5Bj1qQfQWDvyaf4Jxff7Ach9IE3usr76coBsD2kQOUDb9BfLvj6EytqLWLW1yKKW6rHM7iYD7yk1OUtBv1Jez71Dk3B9F8vu8oo01GxI51RWZg/FEYON19n/h95iHi/jY2LP5LxKTa/G+w5Yjt4s9azac/QsBEGwGHfIXmrX0OvMtjsmJRBVdZZNc+YBgrWu6/Z8njFHanytBS8xIYHo0LZa8X0zB3fBvUOTFBO1pffac7yVyqH2YCx9x9xdA2QLAyI3svbEHxMSaJIE54xEM7Wbqtrop9J7rF1QtXRtlRjExkTq3AfSTHIMJNJ4IuZBwt5j5yBeHh/D2pcOaLzgvrbpCNb9VGJyXOPCgixrKACLm4q1Giq1wM88v0Ci1AVZAOREUfNxVazdeNRqDM1HBE6+KqTJc8QN6hqB9m1amzTTGADc9vedmDE4EdMHJwJQ7kFjHPBJycxtdf547hvlYNEAoKbegJxxyap/089UgiHp/buPnsOP/z2r+DfQYsWkPhiTEms1X86YCGDlFsuAUQrMjKndJIN0fqpN4qlxHbBsvO1cPxHWJ2xWqv1Lucp0lGS176/UpGl8/tpTw6nW9OqHxik0pDnDjEdvLvijwmTGdPPu6fayJ1nXWlKzrXUc+TygaTW+xsnbxr+X6mtxtrreYn0BwJiUaM3N21qDNPMgSq0ZWfqOeToGRG5iK0fI2sBjjrK3Gc7WBdVWM5kStW6zwOVcics3zuSrQrD/d73JTU66QBadqrL6me8bNcNJxzX3gTSLG5N5kwigXBMCWM+PUqvdePXOPiZJodK4LUq1PLbyxbQMrik9kdszR5za4G9pSR0bayr+vtMkOV7K7blzQJxq8PHgBz+b1JyoNSsBV463dLP525e/YkNBmeI+qlEbkVgL6QkeUD7GWhNxpcDOnNpNsrq+wep30dqcXcZlV6tNVav9Mx6rx9b3V+2BQ0uTttr5ev+wJIueTtJDknEwBFxuMr2cZ+bog6A9TUFaakhsraP186zl1GkJVJRqFwGo/j1FNOZwSf9Wu0ZoDdLsadnwEyB/xzyd5ZWfmoW14EQpGXD5N4Uo1dc26TOlk9WY1lmMpQuqrflozJl9HPwFAYlWmsSkG/ukN3ch52vLC2T2x/sV85msaRBFuRbCXxBMymVefKkmZP3uK0GVtRuHvyAgK7OH4nHtm9ABE/p3xvbs4Vg363q8OqmPYg80a+OqSKRmCC2kgErtfJHyVj7/xbTmRYBptXZ1fYNiICMCWPfTcdXPt+gpZeUcMaDxQr30y8a8nv8Z01PxWGb2ilbfiB0u93CXtyvt7y/Hz2FDwQncPzRJPkf8BaExxy6zh8V5bM5acGJ8DmzPHo4J/Ttr+i7GhDSO0WK+HmC7CcLa9cXaOiafISh/f7U0aUuBoHQs/QRg4c09MOjqcMVy7T56TjHwNIgwKbMjYkICkZbU0eGgSvq+aL3+avk8azl1StbvLsGgZZsw6c1dGLRsE7I/tmz+t/VwKsJs3KWP92NDwQl5v9Qe0s3327wsxtdK6e8uGJ04oghs+89p9YJ5ENYQuYm1qnS1ZpmmJlTbU6WrpTbJ1oBzarMdB+ocP+0caRIxrvVQG9/EmHl+ztnqesV1jeeEspZfID1VluprFZ+etIyrUqqvhZ8djy/mXWCVnizNCQLk/CvA9t/XXlJti0WyMoB//FCMt7YXW4wHZDxIndocW7Y+c8XEPogLC5QTWgGYPMH/9f/yTRK2b06Oxj3XJ5gE/9byerQ0Z5vXLGj9Lpqvp2WuKKnZRK32T2Lr7ztzcBckRbZ1eHwYtRwTpXO9f0IHxdo4P7PE8ebmqkFW1Y698dhVEltTvwDKzf+2mE+JopRWoKUnnXltdnq3CJOyiPCesdgYELmJ0gVxbJ9YiyHpJY4mVJtXbWqt0tWS1G2+D8bdWE1GWzWb7VjpotgUarU9gOX4MTEhgQhrZ7tmyzg/R4Byd1XjOaGMB5OD0DgIpjnpeBmP0SSKwKGy81ZvjvbkaRmXz1avKXPS07jxscrK7CH3ImsyAZg9uAtS4kIUR0w3zmlT6pY+4ppoPKcht0bih8Y5wv6Uapm7IG3z+9/KLHqvfbW/DPemdzH5bpjn9SglUEuMB4Q8fq7WJP/N+PX0bhGK+2nOnmYf87+3dN4qBTPS+ag0DYgfIAddTRkfRmsgKB1f40FNhcs3ans+0xlTSUjvB5R7CBrf2B39vJiQQMwYnGjRAUCpN6eWmng/QHVwT1uspRVo6UlnHjQVl1cr1oQ394j3jmBA5EbmYwJZC4YcSahWe7rR2lau5QlWabh6W6OtWgRSl6/ajtxzpZveT8VnTW5svWKDcbC0EgaxMS8pNOjKSLlaaz5Es/9bu7kA0DQasNrTk1oQYKu5Trop/yvvKL46cCX3ZmyfxiBAS68p4+0ZX/ykPDZbsYfW4FYUgbe3FyteeCXG4wFZS37dd+wc1u46hh1FZy3WeTSjG67rHKYpeMj62LJ7MADsOXrO5rQVtvLujEn5b4B6ry1rN1dr31njAMz87+0nACvu7IO+Cco9naR9WrP9qDwNiFoNp7PYGlto79FzEC7nndjzuU2tzVEaHNTazd94SiNHEsCVJupVevBVzG0TroynpDRlivF60rXV+IHVnHFagbUBPs9U1dkMmlzVQ7o5cHJXjVw9uavaBJDGzTL2cNZEnfZMlmrv05LxtoHGQKrgjwqTJrbHMrvjqtBAFJadx6ubjlhsY+Xl+a2sTQgJWO67+USMY/vE4tOfT8gBmtK3QgAwa4hyc4XW4632d1abyFDLeaH22a9M7G3X3HULM3vIo1ErbVOthmnhzT0AERbdrNUSktfNuh4lZ6st5scDGm9Er9zZ26RGxZytGrOVGnq02JpE9DOjwUm1srVNAVfGtpEYT8LqyM3cpEZI5bzVOkmmp0yM7IimXu/UznfzwyltEwBuyNlk0YN050LLyX+tMb8OqU2+q7SeUlBpPIGrUhMxANUpUaRjZX5dNh+Swbwl4LHM7kjuZNq7Vet+NRdO7upl1KJqR4IhwHkDO6o9HSpN3OrIeCXmNUdpSR0tmtgA4Lr4Wry2+YhF/o1BFBVHRTVnvu/p3SLwysTeOFddjw5tdegb3wGPZHTHmh3FeHNbseI2RDTWcEwbnGDxmtJggEpTdmh9epKmQDl2xjKh1Py8UBsVVm04fzUpV4XK/1YcZE7lff6CgDGpMYAAk2EirA1mV3JWeawUg9g4n5S1ySJtDQCqpUeLtWaI8dd1sjsYsrVN4HJSq8Lfad1PJVjx/RG7u7dbdL5oYlO7s2uCmlNTr3daz3ep+f2LX/6weF1EY7Dxp9SmjeVjz3paaxKNl6lNiWJeI6j24CGicfTt1yb1we/nai3GrprQv7PHTMVhLwZEHsKehGctXFltaWviVvMLur01R0pfaqVmNtHo5mmre7TxvqvNc5WV2cOiCttcgyhi37Fz6NDWNBjMVml6MZ+yQ8vf2bgq3pwfgBlGAZm1UWH7JnRAlsp0EBbbNUtetSeh2ngfzQf5VEo2B9QnDJaoBQVa8im2/ee01WBcLelYAPDWlL4YcY1jPdpsHTOlGiIAePV7y5pPLTdztWPhB9OmFG+5GTWFPQ8aWruLK5EeGgTjblRGVBZbpTUQdWbAaitgsTkkA4Cz1fVY9s0hk2E5jL+z3hhgMyDyIM6Mqp0dYEmUehlYm2fJmbNsG+ePGA+1LzUXSHMGmTeBGe+7tXmulCY/NCcIkD/bOBi05+Zu7e9cqq9VDYYEAKJwpUeW+ezVEimRvLi8GrEhbazv0GUzB5smEVtLuLW2j+aDfCrt69Ivf9UUaCkFBbZuXFJOllLtijSS9duXR11XSjp2JBgyvsmqTZ4s5ZhU1F7UdJ5peXhRCwL+Mfk6FJfXoH9CB4dqutzBGXP0zbyck6MWDNoaCNfWxNfS36RU35gobxFQC5a1k66Ye9BZrAUsth48BABPfnbQKcnTnnSMfCogWrlyJZ5//nmUlZUhNTUVK1aswIABA9xdLBPN+RTgCMXxM2CZv2BrNF5HyxIT0jg0vUV1tWg6R1FMSCAeyehuse/WvujSTdK81kB6qjcfeVotGFSidKEQFcIepR4aV9a/UjhrAdzEgZ3lGjsttWdSjyJzE/p3RtuAVprzkNQuhsbndKm+VvPUGmrzWpl3Q9fSVKJU6yYFtdaSjm2xNnFrkM4P+//Q41RlHUZcE4lDZec1B0NaHl6UHnrG9onFrH/u1fQA0tRJkR2htB17mtu1vH+2wrAEWrqLT+jfGT2i2ysOr+AnNI77ZPyAZxxQS+XWGoA5gysnem6r81d98JAGmFU6jW0F8s5ItXAlnwmI1q9fjwULFuD111/HwIED8fLLLyMjIwOFhYWIjIx0d/FcxtnVlmpPpUrjDdkajdfZZTDvlaK079ZqGKS5lMwnP5SCyvKqC3hwXb7Je5SCQaUusGpNduYXAaXRo9UoBXB+gDxtifE6xjUharVnSvrGW46RpEZLrYa1gE9p2AZrPaPUemcqjeGk1kRnEIGO7QIcOh9tTYWzfncJnvzsIAwi8NrmIxbTuJjzExpHN7cnOLN2LKw9gNhzI3LWTUtpO+ndIjQ/NGl9v1Ken9Yco+r6BsW/kfR3MU68FtH4fXvtcscOewOwpmiOiZ5v69NJvk74AbhzQBxuSAoHLteSm5OCRi2dIbSkWriDz4xU/eKLL2LWrFmYNm0aevbsiddffx1BQUFYvXq1u4vmVaSnUuPRfJeO64V705McGo3XmWXQ2g5v/F7jci0d1wv3DrXcDynZu19CmOL+ZGf2MClLzvhk1fLZGg02JiQQy8Yn2xwZWe2zZw6x7CosPc0JAvBYZne8cEdvi33Uerz8BQHjr+ukevxs/Q2UzgkBwGsT+2DnwhuxM/tGzeVKS+qI1LgONs8Fa7WCTTkf7Rlt3qASDEnHwl8QkDOuccwke28G0rGw9gBiTOuIxPaua43adtQ6BGgts1pnBvP3a70Wqa3XN6GDau14WFvLgFrLSOGOctbfxNY2P/35BHIfSMPsIV0AAVj703HM++Bn/FFRa3GM/AB88sANVmv2FFMtXHSMHOUTNUT19fXYu3cvFi5cKC/z8/PDyJEjkZeXp/ieuro61NXVyb9XVla6vJzewlqPB6U8FGfnMVkrg73vNe6eqrYftvZHafBJAIrl0/KkOqF/ZwTp/C1qo4ArvcZMPtto9moAeOtyjow5UWycN+rWyzddR2ohzJsjlY6fNWrH0HjwRHvPD1vnglqtoK0nWlusJfJqSf72FwTkPpBm1/FztDzG7OmR5azeqmrb8ROEJpVZqSellqZWrSODm6+ntaOKKzu1OOtvomWbx8/WyuNTAVfmnssa3cOiJt1avpo9qRbuHK/IJwKi8vJyNDQ0ICoqymR5VFQUDh1S7oGTk5ODJUuWNEfxvJLWG6oru182pTnQ0fdqDQbVlmm9UEq1UebrKd1AzT9HaQRciaMXTqVg19Fj74pzwlp5LPKOAMxMT7SYIsGRz7Tn5qk0mJ4zk5613vTtuVk768ZurZm7KWXum6Dt/YBzurhr/SxXPgy6IthS26bS6NcNooiUq0I1jbJua/tKqRbuTKz2iYEZT5w4gU6dOmHnzp1IS0uTlz/22GPYunUrdu3aZfEepRqiuLg4lw3MSL6jKYOxackTKNXXWgwaJ3FkcM6WwlUDD6ptV+tges6mZT/tObecNciete00tczNOaikvYPVuqJcrhj4UO18dcYAv9bK3Bx/O60DM/pEQFRfX4+goCB89NFHGDt2rLx8ypQpqKiowGeffWZzG64eqZp8i9aLgKMXC+OLj8QTRoz1NZ48+rM7buxN3Y4nH8/m5opjobRNZwZf7vr7MSAyM3DgQAwYMAArVqwAABgMBnTu3Blz585Fdna2zfczICJvozSMv6/fRIjIft4eiHLqDjMLFizAlClT0K9fPwwYMAAvv/wyqqurMW3aNHcXjcglnD3kAhH5Jl+5lvhMQDRhwgScPn0aTz75JMrKytC7d2988803FonWRERE5Ht8psmsqdhkRkRE5H203r99ZmBGIiIiIjUMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5PjN1R1NJA3pXVla6uSRERESklXTftjUxBwMijc6fPw8AiIuLc3NJiIiIyF7nz59HSEiI6uucy0wjg8GAEydOoH379hAEwd3FaXaVlZWIi4vD8ePHOZdbE/A4Nh2PoXPwODoHj6NzuPI4iqKI8+fPIzY2Fn5+6plCrCHSyM/PD1dddZW7i+F2wcHB/NI7AY9j0/EYOgePo3PwODqHq46jtZohCZOqiYiIyOcxICIiIiKfx4CINAkICMBTTz2FgIAAdxfFq/E4Nh2PoXPwODoHj6NzeMJxZFI1ERER+TzWEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQkWzbtm245ZZbEBsbC0EQ8Omnn5q8LooinnzyScTExCAwMBAjR47E4cOH3VNYD2brOE6dOhWCIJj8jB492j2F9WA5OTno378/2rdvj8jISIwdOxaFhYUm61y4cAFz5sxBx44d0a5dO4wfPx4nT550U4k9k5bjOGzYMItz8r777nNTiT3TqlWrkJKSIg8cmJaWhq+//lp+neeibbaOobvPQwZEJKuurkZqaipWrlyp+Pry5cvx6quv4vXXX8euXbvQtm1bZGRk4MKFC81cUs9m6zgCwOjRo1FaWir/rFu3rhlL6B22bt2KOXPm4Mcff8TGjRtx8eJFjBo1CtXV1fI68+fPxxdffIEPP/wQW7duxYkTJzBu3Dg3ltrzaDmOADBr1iyTc3L58uVuKrFnuuqqq7Bs2TLs3bsXe/bswY033og///nPOHjwIACei1rYOoaAm89DkUgBAPGTTz6RfzcYDGJ0dLT4/PPPy8sqKirEgIAAcd26dW4ooXcwP46iKIpTpkwR//znP7ulPN7s1KlTIgBx69atoig2nn+tW7cWP/zwQ3md3377TQQg5uXluauYHs/8OIqiKA4dOlR86KGH3FcoL9WhQwfxrbfe4rnYBNIxFEX3n4esISJNiouLUVZWhpEjR8rLQkJCMHDgQOTl5bmxZN5py5YtiIyMRPfu3XH//ffjzJkz7i6Sx9Pr9QCAsLAwAMDevXtx8eJFk3OyR48e6Ny5M89JK8yPo+T9999HeHg4evXqhYULF6KmpsYdxfMKDQ0N+OCDD1BdXY20tDSeiw4wP4YSd56HnNyVNCkrKwMAREVFmSyPioqSXyNtRo8ejXHjxiExMRFFRUV4/PHHkZmZiby8PPj7+7u7eB7JYDDg4YcfxqBBg9CrVy8AjeekTqdDaGioybo8J9UpHUcAmDRpEuLj4xEbG4uCggJkZWWhsLAQubm5biyt59m/fz/S0tJw4cIFtGvXDp988gl69uyJ/Px8nosaqR1DwP3nIQMiomZ25513yv9OTk5GSkoKkpKSsGXLFowYMcKNJfNcc+bMwYEDB7B9+3Z3F8WrqR3H2bNny/9OTk5GTEwMRowYgaKiIiQlJTV3MT1W9+7dkZ+fD71ej48++ghTpkzB1q1b3V0sr6J2DHv27On285BNZqRJdHQ0AFj0mjh58qT8GjmmS5cuCA8Px5EjR9xdFI80d+5cbNiwAZs3b8ZVV10lL4+OjkZ9fT0qKipM1uc5qUztOCoZOHAgAPCcNKPT6dC1a1f07dsXOTk5SE1NxSuvvMJz0Q5qx1BJc5+HDIhIk8TERERHR+P777+Xl1VWVmLXrl0m7b9kv99//x1nzpxBTEyMu4viUURRxNy5c/HJJ59g06ZNSExMNHm9b9++aN26tck5WVhYiJKSEp6TRmwdRyX5+fkAwHPSBoPBgLq6Op6LTSAdQyXNfR6yyYxkVVVVJpF4cXEx8vPzERYWhs6dO+Phhx/Gs88+i6uvvhqJiYlYtGgRYmNjMXbsWPcV2gNZO45hYWFYsmQJxo8fj+joaBQVFeGxxx5D165dkZGR4cZSe545c+Zg7dq1+Oyzz9C+fXs5FyMkJASBgYEICQnBjBkzsGDBAoSFhSE4OBgPPvgg0tLScP3117u59J7D1nEsKirC2rVrcfPNN6Njx44oKCjA/PnzkZ6ejpSUFDeX3nMsXLgQmZmZ6Ny5M86fP4+1a9diy5Yt+Pe//81zUSNrx9AjzkO39W8jj7N582YRgMXPlClTRFFs7Hq/aNEiMSoqSgwICBBHjBghFhYWurfQHsjacaypqRFHjRolRkREiK1btxbj4+PFWbNmiWVlZe4utsdROoYAxDVr1sjr1NbWig888IDYoUMHMSgoSLztttvE0tJS9xXaA9k6jiUlJWJ6eroYFhYmBgQEiF27dhUfffRRUa/Xu7fgHmb69OlifHy8qNPpxIiICHHEiBHit99+K7/Oc9E2a8fQE85DQRRFsXlCLyIiIiLPxBwiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIyOvV19e7uwgWPLFMRKSOAREReZxhw4Zh7ty5mDt3LkJCQhAeHo5FixZBmmkoISEBzzzzDCZPnozg4GDMnj0bALB9+3YMGTIEgYGBiIuLw7x581BdXS1v9+9//zuuvvpqtGnTBlFRUbj99tvl1z766CMkJycjMDAQHTt2xMiRI+X3Dhs2DA8//LBJGceOHYupU6fKvztaJiLyDAyIiMgjvfvuu2jVqhV++uknvPLKK3jxxRfx1ltvya//7//+L1JTU/Hzzz9j0aJFKCoqwujRozF+/HgUFBRg/fr12L59O+bOnQsA2LNnD+bNm4enn34ahYWF+Oabb5Ceng4AKC0txcSJEzF9+nT89ttv2LJlC8aNGwd7p3q0t0xE5Dk4uSsReZxhw4bh1KlTOHjwIARBAABkZ2fj888/x6+//oqEhAT06dMHn3zyifyemTNnwt/fH2+88Ya8bPv27Rg6dCiqq6vx1VdfYdq0afj999/Rvn17k8/bt28f+vbti6NHjyI+Pl6xPL1798bLL78sLxs7dixCQ0PxzjvvAIBDZWrTpk2TjhMROQ9riIjII11//fVyMAQAaWlpOHz4MBoaGgAA/fr1M1n/l19+wTvvvIN27drJPxkZGTAYDCguLsZNN92E+Ph4dOnSBffccw/ef/991NTUAABSU1MxYsQIJCcn4y9/+QvefPNNnDt3zu4y21smIvIcDIiIyCu1bdvW5Peqqirce++9yM/Pl39++eUXHD58GElJSWjfvj327duHdevWISYmBk8++SRSU1NRUVEBf39/bNy4EV9//TV69uyJFStWoHv37nLQ4ufnZ9F8dvHixSaXiYg8BwMiIvJIu3btMvn9xx9/xNVXXw1/f3/F9a+77jr8+uuv6Nq1q8WPTqcDALRq1QojR47E8uXLUVBQgKNHj2LTpk0AAEEQMGjQICxZsgQ///wzdDqd3PwVERGB0tJS+bMaGhpw4MABm/ugpUxE5BkYEBGRRyopKcGCBQtQWFiIdevWYcWKFXjooYdU18/KysLOnTsxd+5c5Ofn4/Dhw/jss8/kBOYNGzbg1VdfRX5+Po4dO4Z//vOfMBgM6N69O3bt2oWlS5diz549KCkpQW5uLk6fPo1rrrkGAHDjjTfiyy+/xJdffolDhw7h/vvvR0VFhc19sFUmIvIcrdxdACIiJZMnT0ZtbS0GDBgAf39/PPTQQ3JXdiUpKSnYunUr/ud//gdDhgyBKIpISkrChAkTAAChoaHIzc3F4sWLceHCBVx99dVYt24drr32Wvz222/Ytm0bXn75ZVRWViI+Ph4vvPACMjMzAQDTp0/HL7/8gsmTJ6NVq1aYP38+hg8fbnMfbJWJiDwHe5kRkcdR6tVFRORKbDIjIiIin8eAiIiIiHwem8yIiIjI57GGiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh83v8Da/E4iHOMuicAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -476,7 +636,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaNUlEQVR4nO3deXwU5f0H8M8kkJCEZCGQQICEhHBEJATKoQgGEBQiVTlsEVq5PUE8flaCrRWsErCtRRHBokKtBakKigcelUsMIlc4VBBikABBCMIGkhAgO78/4iyzszOzs5vdndnk83690sru7Owzs3N853m+z/MIoiiKICIiIrKgMLMLQERERKSFgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoR1dqsWbMgCIKhZQVBwKxZswJangEDBmDAgAGWXR8RGcdAhagOWbZsGQRBcP41aNAArVu3xoQJE3Ds2DGzi2c5qampLvsrMTER119/PVavXu2X9VdUVGDWrFnYsGGDX9ZHVB8xUCGqg5566in8+9//xuLFi5GTk4M33ngD/fv3x4ULFwLyfX/6059QWVkZkHUHWrdu3fDvf/8b//73v/Hoo4/i+PHjGDlyJBYvXlzrdVdUVGD27NkMVIhqoYHZBSAi/8vJyUHPnj0BAFOmTEHz5s0xb948rFmzBr/97W/9/n0NGjRAgwaheTlp3bo1fv/73zv/PW7cOLRv3x7/+Mc/cO+995pYMiICWKNCVC9cf/31AIDCwkKX1/fv34/bb78d8fHxaNSoEXr27Ik1a9a4LHPp0iXMnj0bHTp0QKNGjdCsWTP069cPn332mXMZtRyVqqoqPPzww0hISEBsbCxuvfVWHD161K1sEyZMQGpqqtvrautcunQpbrjhBiQmJiIyMhKdO3fGokWLvNoXnrRs2RJXXXUVioqKdJc7efIkJk+ejBYtWqBRo0bIysrCv/71L+f7hw8fRkJCAgBg9uzZzualQOfnENU1ofkIREReOXz4MACgadOmzte++eYb9O3bF61bt0Zubi5iYmLw3//+F8OHD8c777yDESNGAKgJGPLy8jBlyhT07t0bZWVl2L59O3bu3Ikbb7xR8zunTJmCN954A2PHjsV1112HdevWYdiwYbXajkWLFuHqq6/GrbfeigYNGuD999/H/fffD4fDgalTp9Zq3ZJLly6huLgYzZo101ymsrISAwYMwKFDhzBt2jSkpaXhrbfewoQJE3D27Fk8+OCDSEhIwKJFi3DfffdhxIgRGDlyJACga9eufiknUb0hElGdsXTpUhGA+L///U88deqUWFxcLL799ttiQkKCGBkZKRYXFzuXHTRokJiZmSleuHDB+ZrD4RCvu+46sUOHDs7XsrKyxGHDhul+75NPPinKLycFBQUiAPH+++93WW7s2LEiAPHJJ590vjZ+/Hixbdu2HtcpiqJYUVHhttyQIUPEdu3aubzWv39/sX///rplFkVRbNu2rXjTTTeJp06dEk+dOiXu3r1bvOOOO0QA4gMPPKC5vvnz54sAxDfeeMP52sWLF8U+ffqIjRs3FsvKykRRFMVTp065bS8ReYdNP0R10ODBg5GQkIDk5GTcfvvtiImJwZo1a9CmTRsAwM8//4x169bht7/9Lc6dO4fS0lKUlpbi9OnTGDJkCA4ePOjsJdSkSRN88803OHjwoOHv/+ijjwAA06dPd3n9oYceqtV2RUVFOf/bbrejtLQU/fv3xw8//AC73e7TOj/99FMkJCQgISEBWVlZeOutt3DnnXdi3rx5mp/56KOP0LJlS4wZM8b5WsOGDTF9+nScP38eGzdu9KksROSOTT9EddDChQvRsWNH2O12vPbaa9i0aRMiIyOd7x86dAiiKOKJJ57AE088obqOkydPonXr1njqqadw2223oWPHjujSpQuGDh2KO++8U7cJ48cff0RYWBjS09NdXu/UqVOttuvLL7/Ek08+iS1btqCiosLlPbvdDpvN5vU6r7nmGjz99NMQBAHR0dG46qqr0KRJE93P/Pjjj+jQoQPCwlyf9a666irn+0TkHwxUiOqg3r17O3v9DB8+HP369cPYsWNx4MABNG7cGA6HAwDw6KOPYsiQIarraN++PQAgOzsbhYWFeO+99/Dpp5/ilVdewT/+8Q8sXrwYU6ZMqXVZtQaKq66udvl3YWEhBg0ahIyMDDz33HNITk5GREQEPvroI/zjH/9wbpO3mjdvjsGDB/v0WSIKPAYqRHVceHg48vLyMHDgQLz44ovIzc1Fu3btANQ0Vxi5ScfHx2PixImYOHEizp8/j+zsbMyaNUszUGnbti0cDgcKCwtdalEOHDjgtmzTpk1x9uxZt9eVtRLvv/8+qqqqsGbNGqSkpDhfX79+vcfy+1vbtm2xZ88eOBwOl1qV/fv3O98HtIMwIjKOOSpE9cCAAQPQu3dvzJ8/HxcuXEBiYiIGDBiAl19+GSUlJW7Lnzp1yvnfp0+fdnmvcePGaN++PaqqqjS/LycnBwDwwgsvuLw+f/58t2XT09Nht9uxZ88e52slJSVuo8OGh4cDAERRdL5mt9uxdOlSzXIEys0334wTJ05g5cqVztcuX76MBQsWoHHjxujfvz8AIDo6GgBUAzEiMoY1KkT1xB/+8Af85je/wbJly3Dvvfdi4cKF6NevHzIzM3HXXXehXbt2+Omnn7BlyxYcPXoUu3fvBgB07twZAwYMQI8ePRAfH4/t27fj7bffxrRp0zS/q1u3bhgzZgxeeukl2O12XHfddfj8889x6NAht2XvuOMOzJgxAyNGjMD06dNRUVGBRYsWoWPHjti5c6dzuZtuugkRERG45ZZbcM899+D8+fNYsmQJEhMTVYOtQLr77rvx8ssvY8KECdixYwdSU1Px9ttv48svv8T8+fMRGxsLoCb5t3Pnzli5ciU6duyI+Ph4dOnSBV26dAlqeYlCmtndjojIf6Tuydu2bXN7r7q6WkxPTxfT09PFy5cvi6IoioWFheK4cePEli1big0bNhRbt24t/vrXvxbffvtt5+eefvppsXfv3mKTJk3EqKgoMSMjQ3zmmWfEixcvOpdR60pcWVkpTp8+XWzWrJkYExMj3nLLLWJxcbFqd91PP/1U7NKlixgRESF26tRJfOONN1TXuWbNGrFr165io0aNxNTUVHHevHnia6+9JgIQi4qKnMt50z3ZU9drrfX99NNP4sSJE8XmzZuLERERYmZmprh06VK3z+bn54s9evQQIyIi2FWZyAeCKMrqUYmIiIgshDkqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILCukB3xzOBw4fvw4YmNjOVQ1ERFRiBBFEefOnUOrVq3cJvdUCulA5fjx40hOTja7GEREROSD4uJitGnTRneZkA5UpGGqi4uLERcXZ3JpiIiIyIiysjIkJyc77+N6QjpQkZp74uLiGKgQERGFGCNpG0ymJSIiIstioEJERESWxUCFiIiILCukc1SIiKj+qK6uxqVLl8wuBhkUERHhseuxEQxUiIjI0kRRxIkTJ3D27Fmzi0JeCAsLQ1paGiIiImq1HgYqRERkaVKQkpiYiOjoaA7wGQKkAVlLSkqQkpJSq9+MgQoREVlWdXW1M0hp1qyZ2cUhLyQkJOD48eO4fPkyGjZs6PN6mExLRESWJeWkREdHm1wS8pbU5FNdXV2r9TBQISIiy2NzT+jx12/GQIWIiIgsi4EKEREReW3Dhg0QBCHgvbEYqARBib0S+YWlKLFXml0UIiIKEbNmzUK3bt3MLobp2OsnwFZuO4KZq/bCIQJhApA3MhOje6WYXSwiIqojLl26VKteNVbHGpUAKrFXOoMUAHCIwOOr9rFmhYioHnA4HMjLy0NaWhqioqKQlZWFt99+G8CVZpPPP/8cPXv2RHR0NK677jocOHAAALBs2TLMnj0bu3fvhiAIEAQBy5YtA1CTpLpo0SLceuutiImJwTPPPKNbDum7PvnkE3Tv3h1RUVG44YYbcPLkSaxduxZXXXUV4uLiMHbsWFRUVDg/V1VVhenTpyMxMRGNGjVCv379sG3btsDsLB0MVAKoqLTcGaRIqkURh0sr1D9AREQBE+xm+Ly8PLz++utYvHgxvvnmGzz88MP4/e9/j40bNzqX+eMf/4i///3v2L59Oxo0aIBJkyYBAEaPHo3/+7//w9VXX42SkhKUlJRg9OjRzs/NmjULI0aMwN69e52f8WTWrFl48cUXkZ+fj+LiYvz2t7/F/PnzsXz5cnz44Yf49NNPsWDBAufyjz32GN555x3861//ws6dO9G+fXsMGTIEP//8s5/2kDGmN/0cO3YMM2bMwNq1a1FRUYH27dtj6dKl6Nmzp9lFq7W05jEIE+ASrIQLAlKbczwAIqJgCnYzfFVVFebMmYP//e9/6NOnDwCgXbt22Lx5M15++WXcfffdAIBnnnkG/fv3BwDk5uZi2LBhuHDhAqKiotC4cWM0aNAALVu2dFv/2LFjMXHiRK/K9PTTT6Nv374AgMmTJ2PmzJkoLCxEu3btAAC333471q9fjxkzZqC8vByLFi3CsmXLkJOTAwBYsmQJPvvsM7z66qv4wx/+4NuO8YGpNSpnzpxB37590bBhQ6xduxbffvst/v73v6Np06ZmFstvkmxRyBuZifBf+pKHCwLmjOyCJFuUySUjIqo/zGiGP3ToECoqKnDjjTeicePGzr/XX38dhYWFzuW6du3q/O+kpCQAwMmTJz2u35eHefl3tWjRAtHR0c4gRXpN+u7CwkJcunTJGdgAQMOGDdG7d2989913Xn93bZhaozJv3jwkJydj6dKlztfS0tJMLJH/je6VguyOCThcWoHU5tEMUoiIgkyvGT5Q1+Tz588DAD788EO0bt3a5b3IyEhnsCJPgpUGSHM4HB7XHxMT43WZlN+lTMAVBMHQdwebqTUqa9asQc+ePfGb3/wGiYmJ6N69O5YsWaK5fFVVFcrKylz+QkGSLQp90psxSCEiMoHUDC8X6Gb4zp07IzIyEkeOHEH79u1d/pKTkw2tIyIiotbDz/sqPT0dERER+PLLL52vXbp0Cdu2bUPnzp2DWhZTa1R++OEHLFq0CI888ggef/xxbNu2DdOnT0dERATGjx/vtnxeXh5mz55tQkmJiChUSc3wj6/ah2pRDEozfGxsLB599FE8/PDDcDgc6NevH+x2O7788kvExcWhbdu2HteRmpqKoqIiFBQUoE2bNoiNjUVkZGTAyiwXExOD++67D3/4wx8QHx+PlJQUPPvss6ioqMDkyZODUgaJqYGKw+FAz549MWfOHABA9+7dsW/fPixevFg1UJk5cyYeeeQR57/LysoMR6ZERFR/mdEM/5e//AUJCQnIy8vDDz/8gCZNmuBXv/oVHn/8cUNNLKNGjcKqVaswcOBAnD17FkuXLsWECRMCXm7J3Llz4XA4cOedd+LcuXPo2bMnPvnkk6DnkQqiKIqeFwuMtm3b4sYbb8Qrr7zifG3RokV4+umncezYMY+fLysrg81mg91uR1xcXCCLSkREJrhw4QKKioqQlpaGRo0amV0c8oLeb+fN/dvUHJW+ffs6B7eRfP/994aqxIiIiKjuMzVQefjhh/HVV19hzpw5OHToEJYvX45//vOfmDp1qpnFIiIiChn33nuvSxdo+d+9995rdvFqzdSmHwD44IMPMHPmTBw8eBBpaWl45JFHcNdddxn6LJt+iIjqNjb9eHby5EnNXrBxcXFITEwMcolq+Kvpx/SRaX/961/j17/+tdnFICIiCkmJiYmmBSPBwLl+iIiIyLIYqBARkeVZccRU0uevzBLTm36IiIi0REREICwsDMePH0dCQgIiIiKcQ82TdYmiiFOnTqkO1e8tBipERGRZYWFhSEtLQ0lJCY4fP252ccgLgiCgTZs2CA8Pr9V6GKgQEZGlRUREICUlBZcvXzZt7hvyXsOGDWsdpAAMVIiIKARITQi1bUag0MNkWiIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJZlaqAya9YsCILg8peRkWFmkYiIiMhCGphdgKuvvhr/+9//nP9u0MD0IhEREZFFmB4VNGjQAC1btjS7GERERGRBpueoHDx4EK1atUK7du3wu9/9DkeOHNFctqqqCmVlZS5/REREVHeZGqhcc801WLZsGT7++GMsWrQIRUVFuP7663Hu3DnV5fPy8mCz2Zx/ycnJQS4xERERBZMgiqJodiEkZ8+eRdu2bfHcc89h8uTJbu9XVVWhqqrK+e+ysjIkJyfDbrcjLi4umEUlIiIiH5WVlcFmsxm6f5ueoyLXpEkTdOzYEYcOHVJ9PzIyEpGRkUEuFREREZnF9BwVufPnz6OwsBBJSUlmF4WIiIgswNRA5dFHH8XGjRtx+PBh5OfnY8SIEQgPD8eYMWPMLBYRERFZhKlNP0ePHsWYMWNw+vRpJCQkoF+/fvjqq6+QkJBgZrGIiIjIIkwNVN58800zv56IiIgszlI5KkRERERyDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAxUQl9krkF5aixF5pdlGIiIgsqYHZBaivVm47gpmr9sIhAmECkDcyE6N7pZhdLCIiIkthjYoJSuyVziAFABwi8PiqfaxZISIiUmCgYoKi0nJnkCKpFkUcLq0wp0BEREQWxUDFBGnNYxAmuL4WLghIbR5tToGIiIgsioGKCZJsUcgbmYlwoSZaCRcEzBnZBUm2KN3PMfmWiIjqGybTmmR0rxRkd0zA4dIKpDaP9hikMPmWiIjqI0vVqMydOxeCIOChhx4yuyhBkWSLQp/0ZoZqUph8S0RE9ZFlApVt27bh5ZdfRteuXc0uiuUw+ZaIiOorSwQq58+fx+9+9zssWbIETZs2Nbs4lsPkWyIiqq8sEahMnToVw4YNw+DBg80uiiX5mnxLREQU6kxPpn3zzTexc+dObNu2zeOyVVVVqKqqcv67rKwskEWzFG+Tb4mIiOoCUwOV4uJiPPjgg/jss8/QqFEjj8vn5eVh9uzZQSiZNSXZohigEBFRvSKIoih6Xiww3n33XYwYMQLh4eHO16qrqyEIAsLCwlBVVeXynlqNSnJyMux2O+Li4oJadiIiIvJNWVkZbDabofu3qTUqgwYNwt69e11emzhxIjIyMjBjxgyXIAUAIiMjERkZGcwiEhERkYlMDVRiY2PRpUsXl9diYmLQrFkzt9eJiIio/rFEr5/6gMPfExERec/0Xj9KGzZsMLsIfsfh74mIiHzDGpUA4/D3REREvmOgEmAc/p6IiMh3DFQCjMPfExER+Y6BSoBx+HsiIiLfWS6Zti7i8PdERES+YaASJBz+noiIyHts+iEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZluFJCcvKygyvNC4uzqfCEBEREckZDlSaNGkCQRB0lxFFEYIgoLq6utYFIyIiIjIcqKxfvz6Q5SAiIiJyYzhQ6d+/fyDLQUREROTGcKCidPbsWbz66qv47rvvAABXX301Jk2aBJvN5rfCERERUf3mU6+f7du3Iz09Hf/4xz/w888/4+eff8Zzzz2H9PR07Ny5099lJCIionpKEEVR9PZD119/Pdq3b48lS5agQYOaSpnLly9jypQp+OGHH7Bp0ya/F1RNWVkZbDYb7HY7exoRERGFCG/u3z4FKlFRUdi1axcyMjJcXv/222/Rs2dPVFRUeLtKnzBQISIiCj3e3L99avqJi4vDkSNH3F4vLi5GbGysL6skIiIicuNToDJ69GhMnjwZK1euRHFxMYqLi/Hmm29iypQpGDNmjL/LSERERPWUT71+/va3v0EQBIwbNw6XL18GADRs2BD33Xcf5s6d69cCEhERUf3lU46KpKKiAoWFhQCA9PR0REdH+61gRjBHhYiIKPR4c//2eRwVAIiOjkZmZmZtVkFERESkyadA5cKFC1iwYAHWr1+PkydPwuFwuLzPsVSIiIjIH3wKVCZPnoxPP/0Ut99+O3r37u1xskIiIiIiX/gUqHzwwQf46KOP0LdvX3+Xh4iIiMjJp+7JrVu35ngpREREFHA+BSp///vfMWPGDPz444/+Lg8RERGRk09NPz179sSFCxfQrl07REdHo2HDhi7v//zzz34pHBEREdVvPgUqY8aMwbFjxzBnzhy0aNGCybREREQUED4FKvn5+diyZQuysrL8XR4iIiIiJ59yVDIyMlBZWenvshARERG58ClQmTt3Lv7v//4PGzZswOnTp1FWVubyR0REROQPPs31ExZWE98oc1NEUYQgCKiurvZP6TzgXD9EREShJ+Bz/axfv96nghERERF5w6dApX///oaWu//++/HUU0+hefPmvnwNERER1XM+5agY9cYbb+jmrCxatAhdu3ZFXFwc4uLi0KdPH6xduzaQRSIiIqIQEtBAxVP6S5s2bTB37lzs2LED27dvxw033IDbbrsN33zzTSCLRURERCHCp6Yff7nllltc/v3MM89g0aJF+Oqrr3D11VebVCoiIiKyClMDFbnq6mq89dZbKC8vR58+fcwuDhEREVmA6YHK3r170adPH1y4cAGNGzfG6tWr0blzZ9Vlq6qqUFVV5fw3x2whIiKq2wKao2JEp06dUFBQgK1bt+K+++7D+PHj8e2336oum5eXB5vN5vxLTk4OcmmJiIgomLwOVC5fvoynnnoKR48e9bjs73//e48DuURERKB9+/bo0aMH8vLykJWVheeff1512ZkzZ8Jutzv/iouLvS0+ERERhRCvA5UGDRrgr3/9Ky5fvuxx2UWLFnk9horD4XBp3pGLjIx0dmWW/oiIiKju8ilH5YYbbsDGjRuRmppaqy+fOXMmcnJykJKSgnPnzmH58uXYsGEDPvnkk1qtl4iIiOoGnwKVnJwc5ObmYu/evejRowdiYmJc3r/11lsNrefkyZMYN24cSkpKYLPZ0LVrV3zyySe48cYbfSkWERER1TG1mpRQdYWclJCIiIh0BHxSQofD4VPBiIiIiLzhU/fk119/XTXh9eLFi3j99ddrXSgiIiIiwMemn/DwcJSUlCAxMdHl9dOnTyMxMZFNP0RERKTJm/u3TzUqoihCEAS3148ePQqbzebLKomIiIjceJWj0r17dwiCAEEQMGjQIDRocOXj1dXVKCoqwtChQ/1eSCIiIqqfvApUhg8fDgAoKCjAkCFD0LhxY+d7ERERSE1NxahRo/xaQCIiIqq/vApUnnzySQBAamoqRo8ejUaNGgWkUERERESAj92Tx48fD6Cml8/JkyfduiunpKTUvmRERERU7/kUqBw8eBCTJk1Cfn6+y+tSkm2wev0QERFR3eZToDJhwgQ0aNAAH3zwAZKSklR7ABERERHVlk+BSkFBAXbs2IGMjAx/l4eIiIjIyadxVDp37ozS0lJ/l4XIayX2SuQXlqLEXml2UYiIKAB8qlGZN28eHnvsMcyZMweZmZlo2LChy/scJZaCYeW2I5i5ai8cIhAmAHkjMzG6FxO5iYjqklrPnizPTwl2Mi2H0K9bSuyVKCotR1rzGCTZojwu23fuOjhkR2+4IGBz7kCPnyUiInMFfPbk9evX+1QwIi3e1o4UlZa7BCkAUC2KOFxawUCFiKgO8SlHpX///ggLC8OSJUuQm5uL9u3bo3///jhy5AjCw8P9XUaq40rslc4gBQAcIvD4qn26eSdpzWMQpuhsFi4ISG0eHcCSEhFRsPkUqLzzzjsYMmQIoqKisGvXLlRVVQEA7HY75syZ49cCUt2nVzuiJckWhbyRmQj/pekxXBAwZ2QX1qYQEdUxPjX9PP3001i8eDHGjRuHN9980/l637598fTTT/utcFQ/SLUjynwTT7Ujo3ulILtjAg6XViC1eTSDFCKiOsinGpUDBw4gOzvb7XWbzYazZ8/WtkxUz9SmdiTJFoU+6c0YpBAR1VE+1ai0bNkShw4dQmpqqsvrmzdvRrt27fxRLqpnWDtCRERqfApU7rrrLjz44IN47bXXIAgCjh8/ji1btuDRRx/FE0884e8yUj2RZItigEJERC58ClRyc3PhcDgwaNAgVFRUIDs7G5GRkXj00UfxwAMP+LuMREREVE/5NOCb5OLFizh06BDOnz+Pzp07o3Hjxv4sm0cc8I2IiCj0BHzAN0lERAQ6d+5cm1UQERERafKp1w8RERFRMDBQISIiIstioEJERESWxUCFiIiILIuBCrkosVciv7BUd0JAIiKiYKlVrx+qW1ZuO+KcxThMAPJGZmJ0rxSzi0VERPUYa1QIQE1NihSkADUTBD6+al+talZYO0NERLXFGhUCABSVlrvMXgwA1aKIw6UVPg1rz9oZIiLyB9aoEAAgrXkMwgTX18IFAanNo71eVyBqZ4gosFgDSlbFQIUA1EwImDcyE+FCTbQSLgiYM7KLT7UperUzRGQ9K7cdQd+56zB2yVb0nbsOK7cdMbtIRE5s+iGn0b1SkN0xAYdLK5DaPNrnmYyl2hl5sBIuCIiOCEN+YSnSmsdwlmQii9CqAc3umMDzlCyBgQq5SLJF1friJNXOPL5qH6pFEeGCgOHdW2HES/nMWSGyGH/npxH5GwMVCgh57Ux0RJgzSAH4xEZkJVo1oL7kpxEFAnNUKGCSbFHok94M5RermbNCZFH+zE8jCgTWqFDA8YmNyNr8lZ9GFAisUaGA4xMbkfVJNaA8L8lqWKNCQcEnNiIi8gUDFQoaf/QoIiKi+oVNP0RERGRZDFSIiIjIskwNVPLy8tCrVy/ExsYiMTERw4cPx4EDB8wsEhEREVmIqYHKxo0bMXXqVHz11Vf47LPPcOnSJdx0000oLy83s1hERBRiOKli3SWIoih6Xiw4Tp06hcTERGzcuBHZ2dkely8rK4PNZoPdbkdcXFwQSkhERFazctsR53xFnKIjNHhz/7ZUjordbgcAxMfHm1wSIiIKBVqTKrJmpe6wTPdkh8OBhx56CH379kWXLl1Ul6mqqkJVVZXz32VlZcEqHhERWRAnVaz7LFOjMnXqVOzbtw9vvvmm5jJ5eXmw2WzOv+Tk5CCWkIiIrEaaokOOU3TULZYIVKZNm4YPPvgA69evR5s2bTSXmzlzJux2u/OvuLg4iKUkIiKr4RQddZ+pTT+iKOKBBx7A6tWrsWHDBqSlpekuHxkZicjIyCCVjoiIQgGn6KjbTA1Upk6diuXLl+O9995DbGwsTpw4AQCw2WyIiuKBRkRExnCKjrrL1O7JgiCovr506VJMmDDB4+fZPZmIiCj0eHP/Nr3ph4iIiEiLJZJpiYiIiNQwUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkQaSuyVyC8s5SysREQmsszsyURWsnLbEefU8WECkDcyE6N7pZhdLCKieoc1Kh7wqbp+kP/OJfZKZ5ACAA4ReHzVPh4DREQmYI2KDj5V1w/K33lKvzRnkCKpFkUcLq3gXCJEREHGGhUNak/VM1ftxe7iM+YWjPxK7Xd+5YsihCmmoQoXBKQ2jw5+AYmI6jkGKhqKSsvdnqodIjB8YT5WbjtiTqHI71R/ZwBT+rVD+C+TZoYLAuaM7MLaFCIiE7DpR0Na8xiECXC7iYmoyVfI7pjAG1cdoPY7hwsCJvZLxcR+qThcWoHU5tH8rYmITMIaFQ1Jtijkjcx0awIAruQrUOiTfme12pMkWxT6pDdjkEJEZCLWqOgY3SsFGS1jMXxhPuQVK8xXqFtG90pBdscE1p4QEVkQa1Q8yEpuirmj1J+4qe5g7QkRkTWxRsUAPnETERGZg4GKQVLOAhEREQUPm36IiIjIshioEBERkWUxUCEiIiLLYqBiMk56SEREpI3JtCbipIdERET6WKNiErXJ8B5ftc+yNSus+SEiIjOwRsUkapPhSUPzW60bNGt+iIjILKxRMYk0GZ6cFYfmD7WaHyIiqlsYqJhEbzI8K9Gr+SGqz9gcShQcbPoxUSgMzS/V/MiDFSvW/BAFE5tDiYKHNSoms/pkeKFS81MX8YndmtgcShRcrFEhj0Kh5qeu4RO7dYVSIjxRXcAaFTLE6jU/dQmf2K0tVBLhieoKBipU54R6kwkTmK2NzaFEwcWmH6pT6kKTCROYrY/NoUTBwxoVqjPqSpMJn9hDA5tDiYKDNSpUZ9SlJEc+sRMR1WCgQnVGIJtMSuyVKCotR1rzmKAFDUm2KAYoRFTvsemnjgj1BFJ/CFSTycptR9B37jqMXbIVfeeuw8ptR/xRXCIiMkAQRVH0vJg1lZWVwWazwW63Iy4uzuzimKYuJJD6U4m90m9NJiX2SvSdu86tlmZz7kDWdhAR+cib+zebfkKcVgJpRstYlF+sDmpThVX4s8mkLuW9EBGFIgYqBpiRn2CU1o10+Ev5EFnDUmvsKkxEZC7mqHhg9fwEtVEyAUAM8S66ViAFqDNyMthVmIjIJKxR0aHVrJLdMcEyNyopgfTxVftQLYoIA+BQLMOmCu8p835mDM1A1zZN2FWYiCjIGKjoCJX8BPmYG9ERYRjxUn7Amiqs3AzmL2oB6rMfH2ACLRGRCRio6Ail/AR5Aqm8hsWfTRX1pXdRqASoRET1AQMVHcpmlVDJTwjEqKah0AzmL6EUoBIR1XWmJtNu2rQJt9xyC1q1agVBEPDuu++aWRxVo3ulYHPuQKy461pszh1oiRoEI4O7+Xsekvo0oy/n2iEisg5Ta1TKy8uRlZWFSZMmYeTIkWYWRZeVhjI3q/mlvtUycK4dIgpldSmf0NRAJScnBzk5OWYWIaSY2fwSqs1gtWGlAJWIyKi6lk8YUjkqVVVVqKqqcv67rKzMxNJcEazI1ewkT9YyGFeXnmaIKHTUxXzCkApU8vLyMHv2bLOL4SKYkasVml9Yy+CZ2jGR3TGBgQsRBZzZD7SBEFIj086cORN2u935V1xcbGp5tCLXQI0Cq0zyDBOASf1SA/Jd5Bu1YyL3nb2WHt2YgoeznFOgqY1WHur5hCEVqERGRiIuLs7lz0xm9ISReiHdnZ0GUQSWfFHEm5+FqB0TIhC0YJasy+rTcVDdUBd7LYZU04/VmNkU88oXRZC+1mgbJPMmAk/tmFAK9WpY8l5dzBsg66pr+YSm1qicP38eBQUFKCgoAAAUFRWhoKAAR46ExpOGWZGrLzU5fJoLDrfmOQDKOSNDvRqWvFefxiEia/D3WFpmMrVGZfv27Rg4cKDz34888ggAYPz48Vi2bJlJpfKOcp6d8ovVKLFXBvTg8LYmx9enOdbA+Eb5NLPp+1P1qls3ubNCIjxRqDI1UBkwYABEUaeOPEQk2aKw6ftTQev94+2YJr5kgde1fvjBJu8dVdeqYcl79XEcIiJ/EcQQjhTKyspgs9lgt9tNTawtsVei79x1bk9LgZ5tt8Reaejm5235zNoeorrO6DlLVNd5c/8OqV4/VmVW+7PRNkhvc2m82R52tyQyri7lDVDdEArXcPb68YNQaH/2pvnB6PaweUgdc3uIKBSEyjWcNSp+ECr91v1ZAxPswe5CBXtXEVEoCKVrOGtU/KSuJUx62p66OExzbXGsDPI31s5RoITSNZyBih/VtXlw9LZn7zG722tWa+4KtlA68UNBfb9Jh0q1PPlfMI79UEhZkDBQIa+V2Csxb+1+t9cfG9qpXt5QJKF04ltdfb9Js3au/grWsR9KXeYZqARIXX4aVKs5AICubZoEvSxWEkonvpXxJs3aOSsKxjU92Md+qKQsMFAJgLr+NMiaA22hcuJbWX2+SUs3w5iIcJ5jFhKsa7oZx34opCyw14+fqUXEM1fttWQmta9CpZeTWer6WBmBHnch1Kep93X/yHuMjXgpHyO6t/b6HAuFMTFCTTB7x1jl2LfaccQaFT9Ti4gdIrD0yyI8fnNncwoVAKw5qJ+C8WQZyk1ovu4ftZvhu7uOY9X9fVBx0eG8UeUXlmo2PdT1mlyzBLOWwwrHvhWPIwYqfqbWLAIASzYVYVhmErKSm5pTsAAIhSpD8p9gtp+HYiBcm/2jdTOsuOhAn/RmHm8ezOsJnGA3dZt57Fv1OGLTj58l2aIwuV+a2+sigOEL8wM6AJjVquuobgn2VBGh1oRWm/2jV+VvpOnBrGk86gMzmrrNOvatehyxRiUAJvVLwytfFEHZMUaE5+jU18xyK1bXUd3CJGp9tdk/elX++YWlHpseYiLCVdcbHRFWp3sgBou8liM6IgzlF6tRYq80lDMUSvvequc4A5UASLJFYe6oTJenIIle26Y/27fNqK4LtZOSvGOF9nMrq+3+0aryN3LzKL9YrbrOD/ecwCubf4BDBAQByM3JwD3Z6b5v5C/8ea6HynUjyRaFTd+fMnyNDsWHR6ue44IoiiojYoQGb6aJNsPu4jMYvjDfpWYlXBCwOXeg2w9fYq9E37nr3C5Gassq5ReWYuySrW6vr7jrWvRJb1abTTAsFE/KUGG1C3mJvTKkckeCLRD7Z+W2I243D2WOivL6EQYAKvlyM3MycE9/34MVf57rVr5uyLuKl1+sRkxEOEa8lG/oGl2b67m35QrEdSEY57g392/WqNSS3k0kK7kp5o4yFp3WJrNc7YkrDDXVvsFQ2xodM2/EVgsClKx4IWcStb5A7B9PCZZqT8KT+6Xin18Uua1r3tr9uLVbK5/KqDr8wjt7ERPZAD3aNvVqnVapCVaWqai0HHuP2jHv4/0u11QBcGvO17pG+3o993Q9kl8PJIG4LljtHGegUgtGbiLKts3iM5V4f/cx9EyNdzkQ/Nm+DQAOACNeyg/Kja02QZaZN2IrBgFyVryQm8nqQWWgad08pP2S3TEBm3MHOoMZAFiyuQjKOnMH4HPXWtXhFwBMW77L63PIagP7qQUBcmova12jtXp/7jl6VrOW29ueXZL6cF1grx8feTMIUJItCkd+LsfwhfmYtnwXHlhRgOvy1rn0AKptZvnoXilYdX8fCLKeA8GattvXQYrMnGY8FKY4t2oGvhnkg6H1nbsuoL3nQolyv2z6/pSzt0iSLQq5ORlun6lNcqTauS7x9hyyyuBmgHYQoEYqs941OskWhRkq+/7Zjw+o7h9fe3ZJ6vp1gYGKBk9dfb25iUgHoXxxETVVpvL1j+6Vgs25A7HirmuxOXeg10/35Rer3Z6egnEA+xpk+fNG7G3X7FAIAqx0ITdTKASVnmgdn9Lru4vPeDx+leswsl/uyU7HzJwM54Xe1+RI6bsBuJzrSt6cQ1Ya4VovCJALFwSsvv86Q9fozNY2t9e09o/W9Wjnj1eOi7TmMdCIEQ0/GIbq8BVs+lFhpElg71G72+e0Dhatk0CtCrY2bYNmdi3zZZAif5XXlyYcq3bDk1M26YUBmNwv1at11IXmEqs1EXhLeXzOyMlAZmsb9h6zY95a1zwIreNX7RhPjo82tF/u6Z+OW7u18jk5Uu27N+cOxI7DZzD9zV21OoesMrCfVlONnBRIZSU3dZ5XADTL7M01Rm1ZQahpUhNx5bhREybAY4Bn9WZuT9jrR8FItrbaMgAw82b1rn9aywsA8mfe4NeT01PvAKsxUl61m608891oJr4v320FJfZKLN182NnN1OiFJtQvTpJA9qDwthzeBn1a574eI9ebcEHAvf3bYeGGQpfPhgH4UnZNqW2g6mnfB/IcCnaQrdyWx3I6oWvrJoiOCHNOYyBtszddlI3uH/myYQIgiq55MVqB1ItjuuPXWa00t0vvNwRg2oMMe/3UgpGnN60akq6tm6iuU3oyzl21161pZtP3p/x687DKE4pRnsrr9jQ6NAOl56vw6uYi59gQWs1dnrY9lPaVFKQAxpLn6lIibrDHdlC7Qfoa9BltUpAzcr2pFkW8pAhSgJpa2jUFx3FP/3S8vKkQc9fuh1iLQNXT9TBQ55C/gmxvuvIa2RZvzytv9o982fd3H8Pyr4td3neI7j2PwgUBPVL1p2XR+g2XflmEV74oCokHGQYqCkaq63xpNhjdKwUZLWNdxlUREZibR7C7lvn65CP/nFomvNpFIW/tfpdl1OoD5UOPeyqX1brhqfGl6SOQzSVmNCcFK6hUu0Fmd0zwOegz0qSgZOR6o7fOvLX78dUPp7H+wCnna74Gqkaudd6eQ56OH2+DAfn6gCs1BPLB2SSebsietmX74Z+9Pq/01qncF9JyKxRBClATpOTmZODZjw94FbDHRIS7PdCFCTXzz0kvSfs4o2VswMZmqQ0GKgpGnt58fcIrv1htuB9+qPD1ycfI57x5Gg1DzdOk9Ft4M4Kk1fkSGAcqB8fM5qRAB5VaN8jnx3TzOehTGzpAj9HrzWM5ndzyW+TkQYq3ZdYrv1r5jASuauOTKI+fEnslth/+GQdPnje8v+XHo5RoKsL1v+VqU7MofZdSGIDT5VXYXXzGq5u81rlUVFqu2hUaAJpEN3Tpgm50+AdRcR2Y1C8VSxRj7FSLIoa/lF+rGrhAYaCiwsjTm5nJo1bha/OC0c8ZfRoNFwSsur+Psx0ZgEubrD+aPfxdi+DN+nwJjAPRXBIKzUm+5pEUlZbj9Pkq1RskRPcajDABKD1/wdB8L/JrxZ6jZ12eiB8b2gld27jnQeitQ1qmSVRDzHxnLxyGtrKmzL5ca/SudUaal7TGJ3GINT0fszsmYNP3p5D7zl7NGzQAvL/nmMv3K49H+Wf11iPveWP0WNHrviyiJulVYuQmv7v4jEsqgPxc0rruSTXwm3MHGhpxXK3MYQBW3d8HiXGNnM3nLt9h0XObgYoGI09v3j7hJdmiMKJ7a7yz85jzteHdfRsh0gq8aV6Q30CMfs7I06iU8Z6VfKWd1sgkbt7wdy2CVi8QT+3nGS1jse3wGaQ1j0ZURAOPN0l/N5dYvfeNL7+T8jNaOQDy41CqRn9gRYHh75GuFX3Sm/ncA0d5vZF+3wWfH8Lyrz2PKzMjJ8Pr30mvefbljYUuTbFqNzdP45M4ALy47hCWbz2iG1wAwPKtxXjz62KXmgdv83+Amt90z7Gz+N0rXxk+Vnb8eEb1u9RGq/V0k1+57YhqUCZ1Rx7WtRXyRmaqBqHejG77c/lF9+AQQMVFh2qPQl++K1gYqBjgr6fpEnslVu865vLau7uO49EhnQwdeFZrNzRaQ6R2YzZas+TyNHrsLJ5de8B5Yk3JTsPEvmlu+8SfNVf+rkVQzbv5qOZir3fB9HXobG/axz2xco2g1u+k1+au9hlBAMJE12ZEedLozh/POLuMSp/xdgh5fzZhJdmiMGdkJto2j3Y2BYULAoZ3b4V3dx13niszVCYjLLFXYsePZ/BzeRXiYyKd5ddrpsnumOBMTp2ryBcDam5uOw6fQXxj7YcSpeVfew5SJEZqHiQCan5P5fH62FDXZjOjgYWS3ndr3eSdNSka2zdt+S6cr7p8Jafxl6YYefn1zjdlU5ha4C19Xn5trbh4CVP+tUNzWbMxUPHAn0/TvjyRan2/mU0REqPt18qbwbNrD2DGUONJYS5Po1men0b92ezh71oEvQu31gVTb+jsmav2IqNlrEuNkhFaSaN6x0AgmpOM8nR8av1OUvK6AOCu69Mwsd+VwFbtM6IIvDi2O+JjIt2OsSRbFJrGuOcP+DqEvD/dk53ucm4AwMCMREAEeqS6B1BqT/UCgJG/ao3Vu46pHmu5q/YC4i85IIJ684oAOMdWkR5K1God5LwdIEM6//qkN3Or6ZLKJx2b8ulLpKY1b2uClYN1Ale2TStPSOuBzVPzltS8k90xoWauOC/ON72mMKDmN1PLf5Ly+ZRBymM5nTyOFRMsDFR0+Ptp2tsnUq3vP1t5yXmC+KspQjqBBABzRxlfn6fmBa2LQtc2TbxKCpMYfRr1V7OHp99Mq8eBvOpb/pqnp0C1C6an4Gb4wnyvfjO14yr3nb3Op0+tY6rEXonoiHDMurUzmkZHOLtF5heWBrS2z8jDgl67vvT///yiCK9sLnJ+Xuu3/ZVOzYg0Oqjaz2F2u750bhidM0a5DSLg0iytJA8o9IIL+XE1b+1+3D8g3W28FzmplmPu2v0uZbq+Q3NsPliqGiRIE64qz3MAbue82m+hV9Mgp3XuvXBHzdglTaIaujVNSwEFcOXcAKC6z9X42v3bU+2VIALZHROc/5aSl9Vqau/t386v95jaYqCiw99P094+kWp9v5S8Blx5qo6OCHeb6NCIEnulS5Qvouam5c3FVi940LvRB6IXh1Z3v9qY3C/NmXgm/820ehxIJzYA1RuGXt6N2gXTU3Ajfwozsr2qNQnQT6RTPg0qn76NXsy8rbkz+rBgJJ9J7fPe1hBt+t69N42c2e36RvaXr7kdaqTchjAAPVOb4uvDZ1zed4jAJYcDM2++UvugVvMxulcKbu3WCjsOn8GWH05jxddH8MXBUoQJwPXtm2PzoVKXbZJPuKo8zz3te+VvKEB7ZFe1rr3ysUuyOybg+THdABFIjo9y1tps+v6UM6E/TACm9EszvM+VSc9Gr2OerhPykdD1JmB0iMBLGwrdui6bmVjLQEVHINrkvYmQVcdPgPuB6BA9J/Zp3SC2H/5Z9clqx+Ez+HVW7Q/KYDYX+KOZTr6f5F2cBQB3y3Ji9KpZpeBRPrKk/GSX5zt8eagUb35d7LzYqw2Rb+Qm7M0N0khvKvn6lMGstL3yp28juRpGfh/lcerNw4JWu77ethk9H6V8Dk9V92rXB61zLxC5Z0b2ly9ju6iNlCrvbRcdEYbhC/NVP/vKpiJ8OfMGt6YptZqPHqlwGZbfIQJfHjqNJeN6uORQ+HrzVKtNEgTXmgaJVtdetQcVZbO8MlhUdgXW40vSM+D5OiEfX0ovwVnt2DA7AGegokPvJmtk0CKt941GyGrf/9jQTs4ENyWtk1fvBiFoTC6m8bJPfG2G8eZCbvTJW2+dyv0kvzCLAF794jAm9k0D4PmpVO09+cmuHOcl+5enRql5YsbQDGS2sTmrjZPjo503hYqLlzD5Xztc1m10UjJp25UZ/yK0q8L1xnVw2WZo52ro/T7Sd8jnvpHnzah1DVZrekuyRalOzKmkNWCZNGmb8tjQe/qUEwC3dn2tc682QbXeMaz1cBUdEeaybWojZQsC0D25CXYeOet87Zq0prjz2lT0SG2KTd+fcrsWSrlR+YXuTTQS6UlemtVZTpkDoRVoFZVW+GUMKrX1O0T3Odf0uvZKc/1oJW9/rTIonNa+uTs7Da9+cVg36dkbWp0P5PcutV6REq0xesxOrGWg4oHaTdbTRcafCbjyp2+HKKJnajyaRLu3i0qUJ6+nG3iPtk1V29zFXz7rrwja22YYvX2odqH2NBuykcGmlPtJSb5vYyLCdcuv9QSq9kTjEIFNB0udyznEKyPwajUpyX8zvapradte21zkbL4KE2qas+Rjz6jdhORP4J4SIuWMNjcoh/FWW8fm3IFuN1VRvFJ9r5YQ7Da5m2wfatXoGX069mTuR/tdJpFT612S0TLW6x5KnsopUXu4Gd69lXM+LPlnpOvKz+UXER8TgTZNozDiJddaka1FZ7Dt8BmXz8hrRaTgR6+WxkhPQE95Q71Sm3pdu612ndAa5Vc5Jo5qQIOarr1a78sHTFMKAwCV8k/sW1NL688Rl6VrrVbnA62a+gVjuzvzs+S5N2bOai1hoGKA/Cbr6cYfiEGx1EZZ3Zw70K2rJOB+8nqqCk6yRWHuqEy3XItg92JQJqVq7UOtEWe1LnDy8RLklL+LkXZ7+b4tv1itu5yUTKd2sus90SjJF5OaV6DocaFVdQ2o9zSQqqJf+aIIc0dlok96M2R3TMD8O7IQJgho07SmZkK6cEvHiEuOigCM7N7a2QVWSa25QRnsCHAdxltrHdkdE1w+KOLKfpAfIzNX7cXq+69TrQXVq9HTO2e9yedQ7mMpaFFu07bD7mNyeOqh5Kmc8uXkAUV0RJjLpJ3KzwzreuVzWsel8jNaD2tqzQ5GewJ6yhvKSm7qVgsoNZN6MzeTcv1aY+J4avbXTN7WCNT0rgdA4HrVqD0gKveB9OAiTyK32jxoDFS85OnG748EXCM37c25AzGsayucr7rscsA9luM6JouRPBvpoFRO2x6sJCrlRWWySuKZND6DNxc45XgJSvLfRWuadUF0H1OjxF6J0+erVJ/MXriju0t3ULWT3ZccAYkDcKvaUKu6BrR7d0hE/NKLrOKSs6ZJrQZndK8Ul2NEEOC8qD06pBM+/+4n/Ondb1zWrTzGtJJQ9XaBtA61piet/SD1gFLrUaa2f3b8eAYHTpRpnrNpzWNUJ740Qu0jWrUD8uVFuPdQArxL7pduUFqDH364pwTDuiZ5vFaofY9WoLE5d6BzvytH2vVmwEetm6T0ujST+D+/KHLmfsiPV09zM+mNiWM00drtZg/3AdMA4NddW+KPwzrrXg/M4NyXXxZhyaaa/fiq4njz1CQaTAxUvLT3qN3tNU+Rtjf5A8rmCa2btvykPltxCXN/uSHPW7sfTaIauhxsRpJZk2xRiG/sv15ORvNL1C56r24uUm1qyP9Bf8RZ5QXO09Ow/HfR2k96zX4CrszeLC2vnG7dyBONVD2vNn6FEVrHl9oEakrOXmS//FtZK6B8klYmWG/6/hSeUAQpyqYotWRc5XepbZN8HWpV1aLKOqTgy9Mw457GtJD3TMvNyXAOyif/fqND1yu3ya12QCM4UO5/f835BABPf/gd5nz0nduNSWtEVHlekF6goZaHojYDuqft0Gsqls8krna8GpmbKcmmPiaON4nWejVXko/2nMAfh3U2tF1GqF1Xjb6m5pUv3CcmVPb2s8KcaQxUvFBir8S8j91HY5TXYhgNDOT05sJ4dXOR2/LKcTzmfbxf92AzWo2n1X4rjVlglDcHt1Zy26CMBHy+3/Up/M2txV5f4PRqLpS1T3r7qai0HCfLLrj19AkTawYI0xt7Q428hgICcOxMpVtioyi6duVUI00hoHVzMEIvYNALVLUCEGVT1I4fz+h+h/KmLwB4bGgn3WB7ePdWWKUx5oen4Hp38RnMUBlpVKI8Z2va+cvx5tfFzjwXvaR2NconayM3OeW2+HJtUX5GTu9asXTzYSz54ocrAaxYE5QaaRaRUx3w8eMDmJGToZro6Ymnh49qUUR+Yanb62rl8/TQCXgOLOTvT+6X5ta7R94luLbUrquAa57WjJwMlJ6rcslH07r+eqrZstLcXgxUvKB1knRt3cT53yX2SpceGp6q+DzOhaF4Xfm0auRg05qrQ0ntouYQXccs8MTbg1vriU8ZpAA1J/3d/drh1c1Fhi5wm74/pVtl3/qXqnHpqcNTW7daE4ADNa+pjeDo6alGbRp6iSALgADgwz0lePrD79yWe+q2q5EcH+2SCKh1TAmoGUTrC5VBtLToPbFr9QZSNkWJOj9CuCDgn+N+5dL1VETNzezWbq10b+yeakPUaA2HLnli2FW4WdYkoqxBk3dRV0tq10o6/kDxZA243uSM1GQo94PR5gPpM2rHkNYcWxP7pWLJFz84X5Nqqrwdf0ZzwMfWvg346KnZNEwAVmwtdntd+VBi5KHTW5P6pbnUUAD+6y2jNUijskZJWfOnvP7Kr0meAk4rze3FQMULnn5YtYjXU3Dg7eBLyqfVmIhwzVEWfam2c45FsTBft5bGm+2pFkWs2HoEY6650tYuH5DNyEBd0nZN7JeKif1SDY174WkkyAdW7HK2bY/o7j54mbKtW6t48vUY7X5qZLK2+JhI5/YN65qEOR9955ZD88S737h9t9Yx9eLY7hjWtRXe330MD6woUP1e4Zf/kTdn6dXAqd2YBUUtXM/UePXlUBN0R0U0MNT1VC/vQu7e/u1Uy7y7WH8clDDAJUhRGytH3kVdGTxJDyYLPj+I5V+73yz1xiYyUpOh3A/eSLJFqR5DeiOy1qZZROLvAR+V1wtlj65J/VJVxyyRP0xK2+fpodNbSbaapHNfhrPwRGuQRiOk3005LlRuToZuwGmlub28q9Ov56STJPyXQUaUB6JaTUKJvVJ3ndLF3ijpaRWoCYyUT5byDHNfygPU9GjRukh5orU9L6w7hD5563Bd3jqMXbIVfeeuw8ptNTO+ju6VUpMcnJmkuV55E0eSLUq1LVzOSAAoD8Te2XnMbV8ZyfFQrufxVfuwu1g96Ve+773JnwHcj70wRZOQ/DukC4xczQVHRIm9Ej1T493fB7BwbHfkz7wB+bk3YMVd12Jz7kCPEx7OHZXp9nuLv9TCSb+vtJzyYiON1aNWXr0Lotryci9tLHR+t2TltiMuwbeaKdenufzbU5d3AM5jMSu5qfOYvK59c9X1641NJN3IhnVt6fK6VJNh5Lz1RO/6pWTkNzFyHnrznUaN7pWCx4Z2cgl+785Ow+bcgZjUL83QseTtMedN2TbnDnQ5f1ZuO4K+c92vexIpWVXvN/Z0zOuRxtFRBt15a/fjbOUlt/JKAvHb+Yo1Kl7SepLwtZrMmaynMhOpGr3RBcOEKwMSaWX77/zxDJrG6Ef2RiJprSeENbuP65Zfr5Zm7b4S7c95UeuktQ3eqBZFHPzpnNfr0Ot+WjOFu+eePwKA3/Zq4/a6/NgrPX/BrVZEb7I2ZRdMtSepYV2vJAJLwbd8rhK131sqk7Lnj1pPC62aOmmsFKO5F86kT40aKVGlutvTiLKCYHwuIE83M7WxiQQBaNM0yuOAcmo1T/6sbjdaE+JLPkxtvtNIjYO0TExEuEtenrymy2i5/bl9SvKaIk9N4UZrvZ3HvErzoB7pAa/8YrXquTJv7X7cmtVKs+bfKt2UGaj4QB6cSP+uTTXZPf3TAQG6XWmBmqdevbE4HOKVAYm0uttK3fGMnBRaJ7HWyfXyxkLDARfguVu3nLKNXH7RUhskS7kNWr1E9LywrtCtZ8+QLi3w0d4Tmp/R634qn8JdbR8P6dICa/eegAhgxdfFePPrYrfJBqWLYIm9Uvd489QFU96VVO0C5GkeI2WZ2iU0dtsXUpNfhxaN0TM1XrOmTuoqq1YerRuYsnul3s3dUzIvoD3P0YyhvwzaBuNPlFINkvwcGdG9teqga55mvAW8f9L3dNM32uSidZPydaZ1ZfDr6Xoi5ylXTP57y8cE0kty9+f2yRntig1ojxel9r1Gp4iQjL0mGQ/c0AFJtijsLj6juowyn0yNL010/sZAxQdaJ1ZtInT5NO2bD53CwvWus42GCcDq+69zDlntaajsmIhwl8n0lCOlGjkptE5i5ck1c9VeZLSM9SpIkew5ehZ90pt5Nf+MWhKq2gVOuQ3y0Ve1kh6VRLj37Hl5Y6Hz5iXP6ZDGsZG6nyrLKOLKvkqMa+SSdK2WICqiZmAztd9ILdB5bKjr8O1JNv0umGrV9mozqso/Lz9uAOgm5gE1TX6SqQPTDXeVBYyNwvr4zZ0xLDPJ7eItv7nrJfOqkWq/Cop/Gc0XNTfHx3I66TaFyXkadE2aF0kURdVjXtpP3l5H/N2dVHmTqs361T7racwTQCVXSGV/eZOXpzdxqTJAVxt4z5tt1OuK7UstfFZyU8zVqU2Uu6Vra+d6tAaoVCZrW5UgensWB8DChQvx17/+FSdOnEBWVhYWLFiA3r17e/xcWVkZbDYb7HY74uLiglDSmoNcmhVTEi4I2Jw70PnE4I9qMvnNUD7DqNzKbUc8jsUhALg5syWuaRePP7/3rdv3/GnYVW4DP2kpsVfigz3H8cyH7gHJoKsS8Pl3+jPLqpHvO/n2aA1Bv+r+PppdOcMAvDC2u+akeNI2aDWdAMCI7q2wepd789WKu651qR6V/85rCo47xyKRXxw9Ja3Kl0+Oj8bYJVtVl1V+t9r2fHnoFBZuKKzp0gxgTO9kPDCoAwDoHq9yRue0AWpyAqSh7+VdJT0lRd/cpSU++eYn1WXCBOD5O7qhZ2q8V+WWyq42Bo5U6+YpP8UIve/Xk19Yqvnb6h3nWgOmaSVnero21VZt1q/12efHdMO05bvclpcf83r7D6g53ueOqgl6PJXP09Qcys8D3s0Mrvb9j+V0cuuKLdWm1WZ/Lv2yCK9sKlJtClKuR2vbZt7sOrdQICbK1OLN/dv0GpWVK1fikUceweLFi3HNNddg/vz5GDJkCA4cOIDExESzi+fGyJD0/viB7+mfjlu7uc/TIGdkLAYRwId7T+CjvSdUaxG0nmYlagPRqdEKUoZ3a4UbO7eoeQr6pelJTq8ngdr8M1ptrQB0J8WTSL/P7uIzblXIAoB3C9yDFLWqd3lVttY4NlLSqmoehWL5Vff3UV02DPpPPEm2KKwpOI4XZTVwIoDlXxdj+dfFmDcqEyO6t3aZ6Xh491Zux5M3c9qECa5D3yubk/60eh8+339S9bMf7zuB1VOvw7bDZ9y6yjrEK3k0UzwMdKikduxIF+YwARj5q9ZYvfOYai2Y0RwkX3NF9GoLpaaMMNF1BGSp5hRwv7mq9VDT6u3lz/yW2qxf67NQ+Q2U59veY3bddUs9IdWS370ZF0Sr+Vmr9tnoTN9aXbFrkycj1SZK8wRpTUAoX17ZFK6cANEqg7upMT1Qee6553DXXXdh4sSJAIDFixfjww8/xGuvvYbc3FyTS+cumF22jAQ90jKeumyKcL0gymmdiN48YWuRT1nuKa9Cvj2AevOT2jqUPDVrqU3f7sxhUQkU9C4enkbp1Ev6lC9fcdHhNvmeACBvVKbuMVBir8RcnSa33Hf2uvU2eXfXcTw6xHW8CKPd5AVBfWAraZtTm0drBikAnBO7qXWVdS4j1oyY6ZaQCs9Bm9YN6d1dx7F66nXOWgoAHgdbU/L1PFfeJJTEX5oW42Mi3R5K1LZFHnTKj/VAX5tqs36tz/ZIbap7sy6xV2KehyZlhwjnsPpK3owLYnQKAUC7Gcvbrti1TVaV1qs1AaHR77LS4G5qTO2efPHiRezYsQODBw92vhYWFobBgwdjy5YtbstXVVWhrKzM5S/YpIuOFbpsyRnpviaKNTNk/mnYVW7vKbtdejtrbLggYGZOhvOACgMwT3GT9WXfSSeh8ikkXHn39bA9etsVBmD2bVerNg0sGNtd96nCUzfH0b1SsPr+63S7oEvLj+6VgvzcG7BwbHe8OKamq7CnJxqtQdckItwvvGr7Rm071MosiMC17eJVvys6IsyZI6NFfuHW+x1VezYY7J6pdUOquOhwHkvScSXlE8m7fat9jdYIwEZJ3VZfHNNd9Xj5VdumqjlDRgJI+U00kNem2qxf77NqXXolRrY/DK7D6stfVxsXRE5tGg21m6JyNHC1mzoAn/aP8hrnKyPr0VrGSFd8M5lao1JaWorq6mq0aNHC5fUWLVpg/373KDovLw+zZ88OVvE0WaXLlpynpzbgygURgMeBnzxdIKTeMPKEv9G9UrxqrvJ13ymbvIp/rnSZTFFte/S2ywGgaXSE6tOQtL+0GKm+zUpu6jIQlLzpQbl8ks11RltPPCUhy38n+XapNWUpt0Nt8CwHgCKNi1fFRYdueZTbqtUzCVCfS0cUjQ1H7u2Tv16TYxiAKbLRaGsjyVYzV1L5xcuGq/uNJJmr9fYK1LWpNuvX+6xWjYORyUIn90vFP1UGeVvwywCH8u/wdK4qJz5US2jWu6lb8d5ghJUGd1NjetOPN2bOnIlHHnnE+e+ysjIkJyebUhZ/5aL4k/IG/uHeEmeylfJk83TCGrnhqJ2Q3jRX1YZ8HVnJTQ1f/H2tgtZj5OKkXAaAXy5megGqlGQIaE8v76mMUq8xiVb3a2VNifxGf9/AdPRrn6C6rVJgJp8FXOrBpMyJMnrh9KXt31OToz95s361bRnevRXe3XVcNx8hkNem2qzf289q/ZbK4/QVleNU7SHDyL5PskXh8WFXaY6A7emmbsV7gye1yZcJBlN7/Vy8eBHR0dF4++23MXz4cOfr48ePx9mzZ/Hee+/pft6MXj+hRq8XkqceSsqeFI/ldELX1k0s+6RgtMeVWg8ReeZ/qD0NAVfKHR0RhqO/THDYI/VK7ydft0trX+ntQ1+/T/kZT9/h7fpCmXJb6tK2GeHttcrbY8Vbwf6+YAnmceXN/dv07snXXHMNevfujQULFgAAHA4HUlJSMG3aNI/JtAxUAq+uXhDr6nYFgta+CsY+5O9ERgX7WOGxWTshFaisXLkS48ePx8svv4zevXtj/vz5+O9//4v9+/e75a4oMVAhIiIKPSE1jsro0aNx6tQp/PnPf8aJEyfQrVs3fPzxxx6DFCIiIqr7TK9RqQ3WqBAREYUeb+7fpo6jQkRERKSHgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCzL9CH0a0MaVLesrMzkkhAREZFR0n3byOD4IR2onDt3DgCQnJxsckmIiIjIW+fOnYPNZtNdJqTn+nE4HDh+/DhiY2MhCILZxQm6srIyJCcno7i4mHMd1QL3o39wP/oH96N/cD/6R6D2oyiKOHfuHFq1aoWwMP0slJCuUQkLC0ObNm3MLobp4uLieCL6Afejf3A/+gf3o39wP/pHIPajp5oUCZNpiYiIyLIYqBAREZFlMVAJYZGRkXjyyScRGRlpdlFCGvejf3A/+gf3o39wP/qHFfZjSCfTEhERUd3GGhUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZTFQCQGbNm3CLbfcglatWkEQBLz77rsu74uiiD//+c9ISkpCVFQUBg8ejIMHD5pTWAvztB8nTJgAQRBc/oYOHWpOYS0qLy8PvXr1QmxsLBITEzF8+HAcOHDAZZkLFy5g6tSpaNasGRo3boxRo0bhp59+MqnE1mRkPw4YMMDteLz33ntNKrE1LVq0CF27dnUORtanTx+sXbvW+T6PRWM87Uezj0UGKiGgvLwcWVlZWLhwoer7zz77LF544QUsXrwYW7duRUxMDIYMGYILFy4EuaTW5mk/AsDQoUNRUlLi/FuxYkUQS2h9GzduxNSpU/HVV1/hs88+w6VLl3DTTTehvLzcuczDDz+M999/H2+99RY2btyI48ePY+TIkSaW2nqM7EcAuOuuu1yOx2effdakEltTmzZtMHfuXOzYsQPbt2/HDTfcgNtuuw3ffPMNAB6LRnnaj4DJx6JIIQWAuHr1aue/HQ6H2LJlS/Gvf/2r87WzZ8+KkZGR4ooVK0woYWhQ7kdRFMXx48eLt912mynlCVUnT54UAYgbN24URbHm2GvYsKH41ltvOZf57rvvRADili1bzCqm5Sn3oyiKYv/+/cUHH3zQvEKFqKZNm4qvvPIKj8VakvajKJp/LLJGJcQVFRXhxIkTGDx4sPM1m82Ga665Blu2bDGxZKFpw4YNSExMRKdOnXDffffh9OnTZhfJ0ux2OwAgPj4eALBjxw5cunTJ5XjMyMhASkoKj0cdyv0o+c9//oPmzZujS5cumDlzJioqKswoXkiorq7Gm2++ifLycvTp04fHoo+U+1Fi5rEY0pMSEnDixAkAQIsWLVxeb9GihfM9Mmbo0KEYOXIk0tLSUFhYiMcffxw5OTnYsmULwsPDzS6e5TgcDjz00EPo27cvunTpAqDmeIyIiECTJk1cluXxqE1tPwLA2LFj0bZtW7Rq1Qp79uzBjBkzcODAAaxatcrE0lrP3r170adPH1y4cAGNGzfG6tWr0blzZxQUFPBY9ILWfgTMPxYZqBD94o477nD+d2ZmJrp27Yr09HRs2LABgwYNMrFk1jR16lTs27cPmzdvNrsoIU1rP959993O/87MzERSUhIGDRqEwsJCpKenB7uYltWpUycUFBTAbrfj7bffxvjx47Fx40azixVytPZj586dTT8W2fQT4lq2bAkAbpnsP/30k/M98k27du3QvHlzHDp0yOyiWM60adPwwQcfYP369WjTpo3z9ZYtW+LixYs4e/asy/I8HtVp7Uc111xzDQDweFSIiIhA+/bt0aNHD+Tl5SErKwvPP/88j0Uvae1HNcE+FhmohLi0tDS0bNkSn3/+ufO1srIybN261aV9kbx39OhRnD59GklJSWYXxTJEUcS0adOwevVqrFu3DmlpaS7v9+jRAw0bNnQ5Hg8cOIAjR47weJTxtB/VFBQUAACPRw8cDgeqqqp4LNaStB/VBPtYZNNPCDh//rxL5FpUVISCggLEx8cjJSUFDz30EJ5++ml06NABaWlpeOKJJ9CqVSsMHz7cvEJbkN5+jI+Px+zZszFq1Ci0bNkShYWFeOyxx9C+fXsMGTLExFJby9SpU7F8+XK89957iI2Ndbb122w2REVFwWazYfLkyXjkkUcQHx+PuLg4PPDAA+jTpw+uvfZak0tvHZ72Y2FhIZYvX46bb74ZzZo1w549e/Dwww8jOzsbXbt2Nbn01jFz5kzk5OQgJSUF586dw/Lly7FhwwZ88sknPBa9oLcfLXEsmtbfiAxbv369CMDtb/z48aIo1nRRfuKJJ8QWLVqIkZGR4qBBg8QDBw6YW2gL0tuPFRUV4k033SQmJCSIDRs2FNu2bSvedddd4okTJ8wutqWo7T8A4tKlS53LVFZWivfff7/YtGlTMTo6WhwxYoRYUlJiXqEtyNN+PHLkiJidnS3Gx8eLkZGRYvv27cU//OEPot1uN7fgFjNp0iSxbdu2YkREhJiQkCAOGjRI/PTTT53v81g0Rm8/WuFYFERRFIMTEhERERF5hzkqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIgoYC5evGh2EdxYsUxEpI2BChEZNmDAAEybNg3Tpk2DzWZD8+bN8cQTT0CaiSM1NRV/+ctfMG7cOMTFxeHuu+8GAGzevBnXX389oqKikJycjOnTp6O8vNy53pdeegkdOnRAo0aN0KJFC9x+++3O995++21kZmYiKioKzZo1w+DBg52fHTBgAB566CGXMg4fPhwTJkxw/tvXMhGRNTBQISKv/Otf/0KDBg3w9ddf4/nnn8dzzz2HV155xfn+3/72N2RlZWHXrl144oknUFhYiKFDh2LUqFHYs2cPVq5cic2bN2PatGkAgO3bt2P69Ol46qmncODAAXz88cfIzs4GAJSUlGDMmDGYNGkSvvvuO2zYsAEjR46Et1OUeVsmIrIOTkpIRIYNGDAAJ0+exDfffANBEAAAubm5WLNmDb799lukpqaie/fuWL16tfMzU6ZMQXh4OF5++WXna5s3b0b//v1RXl6Ojz76CBMnTsTRo0cRGxvr8n07d+5Ejx49cPjwYbRt21a1PN26dcP8+fOdrw0fPhxNmjTBsmXLAMCnMjVq1KhW+4mI/Ic1KkTklWuvvdYZpABAnz59cPDgQVRXVwMAevbs6bL87t27sWzZMjRu3Nj5N2TIEDgcDhQVFeHGG29E27Zt0a5dO9x55534z3/+g4qKCgBAVlYWBg0ahMzMTPzmN7/BkiVLcObMGa/L7G2ZiMg6GKgQkV/FxMS4/Pv8+fO45557UFBQ4PzbvXs3Dh48iPT0dMTGxmLnzp1YsWIFkpKS8Oc//xlZWVk4e/YswsPD8dlnn2Ht2rXo3LkzFixYgE6dOjmDibCwMLdmoEuXLtW6TERkHQxUiMgrW7dudfn3V199hQ4dOiA8PFx1+V/96lf49ttv0b59e7e/iIgIAECDBg0wePBgPPvss9izZw8OHz6MdevWAQAEQUDfvn0xe/Zs7Nq1CxEREc5mnISEBJSUlDi/q7q6Gvv27fO4DUbKRETWwECFiLxy5MgRPPLIIzhw4ABWrFiBBQsW4MEHH9RcfsaMGcjPz8e0adNQUFCAgwcP4r333nMmrn7wwQd44YUXUFBQgB9//BGvv/46HA4HOnXqhK1bt2LOnDnYvn07jhw5glWrVuHUqVO46qqrAAA33HADPvzwQ3z44YfYv38/7rvvPpw9e9bjNngqExFZRwOzC0BEoWXcuHGorKxE7969ER4ejgcffNDZ5VdN165dsXHjRvzxj3/E9ddfD1EUkZ6ejtGjRwMAmjRpglWrVmHWrFm4cOECOnTogBUrVuDqq6/Gd999h02bNmH+/PkoKytD27Zt8fe//x05OTkAgEmTJmH37t0YN24cGjRogIcffhgDBw70uA2eykRE1sFeP0RkmFovGyKiQGLTDxEREVkWAxUiIiKyLDb9EBERkWWxRoWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgs6/8B01+YvL+mRYAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWJZJREFUeJzt3Xt4FNX9BvB3EkhIQrIQkkCA3Ah3gYhcbAQDCAqRqoC2CK3cURHES1GC/VHBWgK2VSpVoKigtSAVQamKl5ZbI2i5X1QQYjBBghCEDSQhQHZ+f4RZZ2dnZmc3uzuz4f08T1rZnZ09Ozs75zvnfM85giiKIoiIiIgsKMzsAhARERFpYaBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRHU2Z84cCIJgaFtBEDBnzpyAlqd///7o37+/ZfdHRMYxUCGqR1asWAFBEJx/DRo0QKtWrTBu3Dh8//33ZhfPctLT012OV1JSEm6++WasW7fOL/uvrKzEnDlzsHnzZr/sj+haxECFqB565pln8Pe//x1LlixBbm4u3nzzTfTr1w8XL14MyPv93//9H6qqqgKy70C7/vrr8fe//x1///vfMWPGDJw4cQIjRozAkiVL6rzvyspKzJ07l4EKUR00MLsAROR/ubm56NmzJwBg0qRJSEhIwIIFC7B+/Xr88pe/9Pv7NWjQAA0ahOblpFWrVvj1r3/t/PeYMWPQtm1bvPDCC3jwwQdNLBkRAWxRIbom3HzzzQCAwsJCl8cPHTqEe+65B/Hx8WjUqBF69uyJ9evXu2xz+fJlzJ07F+3atUOjRo3QrFkz9O3bF59++qlzG7Uclerqajz22GNITExEbGws7rzzThw/ftytbOPGjUN6errb42r7XL58OW655RYkJSUhMjISnTt3xuLFi706Fp60aNECnTp1QlFRke52p06dwsSJE9G8eXM0atQIWVlZeP31153PHzt2DImJiQCAuXPnOruXAp2fQ1TfhOYtEBF55dixYwCApk2bOh/78ssv0adPH7Rq1Qp5eXmIiYnBP//5TwwbNgzvvPMOhg8fDqA2YMjPz8ekSZPQu3dvlJeXY+fOndi9ezduvfVWzfecNGkS3nzzTYwePRo33XQTNm7ciKFDh9bpcyxevBjXXXcd7rzzTjRo0AD/+te/8NBDD8HhcGDq1Kl12rfk8uXLKCkpQbNmzTS3qaqqQv/+/XH06FFMmzYNGRkZePvttzFu3DicO3cOjzzyCBITE7F48WJMmTIFw4cPx4gRIwAA3bp180s5ia4ZIhHVG8uXLxcBiP/+97/F06dPiyUlJeKaNWvExMREMTIyUiwpKXFuO3DgQLFr167ixYsXnY85HA7xpptuEtu1a+d8LCsrSxw6dKju+z799NOi/HKyd+9eEYD40EMPuWw3evRoEYD49NNPOx8bO3asmJaW5nGfoiiKlZWVbtsNHjxYbNOmjctj/fr1E/v166dbZlEUxbS0NPG2224TT58+LZ4+fVrct2+feO+994oAxIcfflhzfwsXLhQBiG+++abzsUuXLonZ2dli48aNxfLyclEURfH06dNun5eIvMOuH6J6aNCgQUhMTERKSgruuecexMTEYP369WjdujUA4Mcff8TGjRvxy1/+EufPn0dZWRnKyspw5swZDB48GEeOHHGOEmrSpAm+/PJLHDlyxPD7f/jhhwCA6dOnuzz+6KOP1ulzRUVFOf/bbrejrKwM/fr1w7fffgu73e7TPj/55BMkJiYiMTERWVlZePvtt3HfffdhwYIFmq/58MMP0aJFC4waNcr5WMOGDTF9+nRcuHABW7Zs8aksROSOXT9E9dBLL72E9u3bw26347XXXsPWrVsRGRnpfP7o0aMQRRGzZ8/G7NmzVfdx6tQptGrVCs888wzuuusutG/fHl26dMGQIUNw33336XZhfPfddwgLC0NmZqbL4x06dKjT5/rss8/w9NNPY/v27aisrHR5zm63w2azeb3PG2+8Ec8++ywEQUB0dDQ6deqEJk2a6L7mu+++Q7t27RAW5nqv16lTJ+fzROQfDFSI6qHevXs7R/0MGzYMffv2xejRo3H48GE0btwYDocDADBjxgwMHjxYdR9t27YFAOTk5KCwsBDvvfcePvnkE7zyyit44YUXsGTJEkyaNKnOZdWaKK6mpsbl34WFhRg4cCA6duyI559/HikpKYiIiMCHH36IF154wfmZvJWQkIBBgwb59FoiCjwGKkT1XHh4OPLz8zFgwAD89a9/RV5eHtq0aQOgtrvCSCUdHx+P8ePHY/z48bhw4QJycnIwZ84czUAlLS0NDocDhYWFLq0ohw8fdtu2adOmOHfunNvjylaJf/3rX6iursb69euRmprqfHzTpk0ey+9vaWlp2L9/PxwOh0uryqFDh5zPA9pBGBEZxxwVomtA//790bt3byxcuBAXL15EUlIS+vfvj6VLl6K0tNRt+9OnTzv/+8yZMy7PNW7cGG3btkV1dbXm++Xm5gIAXnzxRZfHFy5c6LZtZmYm7HY79u/f73ystLTUbXbY8PBwAIAois7H7HY7li9frlmOQLn99ttx8uRJrF692vnYlStXsGjRIjRu3Bj9+vUDAERHRwOAaiBGRMawRYXoGvHEE0/gF7/4BVasWIEHH3wQL730Evr27YuuXbti8uTJaNOmDX744Qds374dx48fx759+wAAnTt3Rv/+/dGjRw/Ex8dj586dWLNmDaZNm6b5Xtdffz1GjRqFl19+GXa7HTfddBP+85//4OjRo27b3nvvvZg5cyaGDx+O6dOno7KyEosXL0b79u2xe/du53a33XYbIiIicMcdd+CBBx7AhQsXsGzZMiQlJakGW4F0//33Y+nSpRg3bhx27dqF9PR0rFmzBp999hkWLlyI2NhYALXJv507d8bq1avRvn17xMfHo0uXLujSpUtQy0sU0swedkRE/iMNT96xY4fbczU1NWJmZqaYmZkpXrlyRRRFUSwsLBTHjBkjtmjRQmzYsKHYqlUr8ec//7m4Zs0a5+ueffZZsXfv3mKTJk3EqKgosWPHjuIf/vAH8dKlS85t1IYSV1VVidOnTxebNWsmxsTEiHfccYdYUlKiOlz3k08+Ebt06SJGRESIHTp0EN98803Vfa5fv17s1q2b2KhRIzE9PV1csGCB+Nprr4kAxKKiIud23gxP9jT0Wmt/P/zwgzh+/HgxISFBjIiIELt27SouX77c7bXbtm0Te/ToIUZERHCoMpEPBFGUtaMSERERWQhzVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVlWSE/45nA4cOLECcTGxnKqaiIiohAhiiLOnz+Pli1bui3uqRTSgcqJEyeQkpJidjGIiIjIByUlJWjdurXuNiEdqEjTVJeUlCAuLs7k0hAREZER5eXlSElJcdbjekI6UJG6e+Li4hioEBERhRgjaRtMpiUiIiLLYqBCRERElsVAhYiIiCwrpHNUiIjo2lFTU4PLly+bXQwyKCIiwuPQYyMYqBARkaWJooiTJ0/i3LlzZheFvBAWFoaMjAxERETUaT+mByrff/89Zs6ciQ0bNqCyshJt27bF8uXL0bNnT7OLRkREFiAFKUlJSYiOjuYEnyFAmpC1tLQUqampdfrOTA1Uzp49iz59+mDAgAHYsGEDEhMTceTIETRt2tTMYhERkUXU1NQ4g5RmzZqZXRzyQmJiIk6cOIErV66gYcOGPu/H1EBlwYIFSElJwfLly52PZWRkmFgiIiKyEiknJTo62uSSkLekLp+ampo6BSqmjvpZv349evbsiV/84hdISkpC9+7dsWzZMs3tq6urUV5e7vJHRET1H7t7Qo+/vjNTA5Vvv/0WixcvRrt27fDxxx9jypQpmD59Ol5//XXV7fPz82Gz2Zx/XOeHiIiofjM1UHE4HLjhhhswb948dO/eHffffz8mT56MJUuWqG4/a9Ys2O12519JSUmQS0xEREQAsHnzZgiCEPDRWKYGKsnJyejcubPLY506dUJxcbHq9pGRkc51fUJpfZ9SexW2FZah1F5ldlGIiChEzJkzB9dff73ZxTCdqcm0ffr0weHDh10e++abb5CWlmZSifxv9Y5izFp7AA4RCBOA/BFdMbJXqtnFIiKieuLy5ct1Sla1OlNbVB577DF8/vnnmDdvHo4ePYqVK1fib3/7G6ZOnWpmsfym1F7lDFIAwCECT609yJYVIqJrgMPhQH5+PjIyMhAVFYWsrCysWbMGwE/dJv/5z3/Qs2dPREdH46abbnLevK9YsQJz587Fvn37IAgCBEHAihUrANQmqS5evBh33nknYmJi8Ic//EG3HNJ7ffzxx+jevTuioqJwyy234NSpU9iwYQM6deqEuLg4jB49GpWVlc7XVVdXY/r06UhKSkKjRo3Qt29f7NixIzAHS4epgUqvXr2wbt06rFq1Cl26dMHvf/97LFy4EL/61a/MLJbfFJVVOIMUSY0o4lhZpfoLiIgoYILdDZ+fn4833ngDS5YswZdffonHHnsMv/71r7FlyxbnNr/97W/x5z//GTt37kSDBg0wYcIEAMDIkSPxm9/8Btdddx1KS0tRWlqKkSNHOl83Z84cDB8+HAcOHHC+xpM5c+bgr3/9K7Zt24aSkhL88pe/xMKFC7Fy5Up88MEH+OSTT7Bo0SLn9k8++STeeecdvP7669i9ezfatm2LwYMH48cff/TTETLG9Jlpf/7zn+PnP/+52cUIiIyEGIQJcAlWwgUB6QmcD4CIKJiC3Q1fXV2NefPm4d///jeys7MBAG3atEFBQQGWLl2K+++/HwDwhz/8Af369QMA5OXlYejQobh48SKioqLQuHFjNGjQAC1atHDb/+jRozF+/HivyvTss8+iT58+AICJEydi1qxZKCwsRJs2bQAA99xzDzZt2oSZM2eioqICixcvxooVK5CbmwsAWLZsGT799FO8+uqreOKJJ3w7MD7g6skBlGyLQv6Irgi/OpY8XBAwb0QXJNuiTC4ZEdG1w4xu+KNHj6KyshK33norGjdu7Px74403UFhY6NyuW7duzv9OTk4GAJw6dcrj/n1ZZkb+Xs2bN0d0dLQzSJEek967sLAQly9fdgY2ANCwYUP07t0bX3/9tdfvXRemt6jUdyN7pSKnfSKOlVUiPSGaQQoRUZDpdcMH6pp84cIFAMAHH3yAVq1auTwXGRnpDFbkSbDSBGkOh8Pj/mNiYrwuk/K9lAm4giAYeu9gY6ASBMm2KAYoREQmMaMbvnPnzoiMjERxcbGza0dO3qqiJSIiAjU1NYEonkeZmZmIiIjAZ5995hyJe/nyZezYsQOPPvpoUMvCQIWIiOo1qRv+qbUHUSOKQemGj42NxYwZM/DYY4/B4XCgb9++sNvt+OyzzxAXF2doGo709HQUFRVh7969aN26NWJjYxEZGRmwMsvFxMRgypQpeOKJJxAfH4/U1FQ899xzqKysxMSJE4NSBgkDFSIiqvfM6Ib//e9/j8TEROTn5+Pbb79FkyZNcMMNN+Cpp54y1MVy9913Y+3atRgwYADOnTuH5cuXY9y4cQEvt2T+/PlwOBy47777cP78efTs2RMff/wxmjZtGrQyAIAgiqLoeTNrKi8vh81mg91uD5lZaomIyLiLFy+iqKgIGRkZaNSokdnFIS/ofXfe1N8c9UNERESWxUCFiIgohD344IMuQ6Dlfw8++KDZxasz5qgQERGFsGeeeQYzZsxQfa4+pEUwUCEiIgphSUlJSEpKMrsYAcOuHyIiIrIsBipERGR5VpwxlfT5a1Axu36IiMiyIiIiEBYWhhMnTiAxMRERERHOqebJukRRxOnTp1Wn6vcWAxUiIrKssLAwZGRkoLS0FCdOnDC7OOQFQRDQunVrhIeH12k/DFSIiMjSIiIikJqaiitXrpi29g15r2HDhnUOUgAGKkREFAKkLoS6diNQ6GEyLREREVkWAxUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIssyNVCZM2cOBEFw+evYsaOZRSIiIiILaWB2Aa677jr8+9//dv67QQPTi0REREQWYXpU0KBBA7Ro0cLsYhAREZEFmZ6jcuTIEbRs2RJt2rTBr371KxQXF2tuW11djfLycpc/IiIiqr9MDVRuvPFGrFixAh999BEWL16MoqIi3HzzzTh//rzq9vn5+bDZbM6/lJSUIJeYiIiIgkkQRVE0uxCSc+fOIS0tDc8//zwmTpzo9nx1dTWqq6ud/y4vL0dKSgrsdjvi4uKCWVQiIiLyUXl5OWw2m6H62/QcFbkmTZqgffv2OHr0qOrzkZGRiIyMDHKpiIiIyCym56jIXbhwAYWFhUhOTja7KERERGQBpgYqM2bMwJYtW3Ds2DFs27YNw4cPR3h4OEaNGmVmsYiIiMgiTO36OX78OEaNGoUzZ84gMTERffv2xeeff47ExEQzi0VEREQWYWqg8tZbb5n59kRERGRxlspRISIiIpJjoEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIiIiMiyGKiYqNRehW2FZSi1V5ldFCIiIktqYHYBrlWrdxRj1toDcIhAmADkj+iKkb1SdV9Taq9CUVkFMhJikGyLClJJiYiIzMNAxQSl9ipnkAIADhF4au1B5LRP1AxAfAlsiIiIQh27fkxQVFbhDFIkNaKIY2WVqttrBTbsMiIiovqOgYoJMhJiECa4PhYuCEhPiFbd3tvAhoiIqL5goGKCZFsU8kd0RbhQG62ECwLmjeii2e3jbWBDRERUXzBHxSQje6Uip30ijpVVIj0hWjc5Vgpsnlp7EDWi6DGwISIiqi8sFajMnz8fs2bNwiOPPIKFCxeaXZyAS7ZFGQ42vAlsiIiI6gvLBCo7duzA0qVL0a1bN7OLYlneBDZERET1gSVyVC5cuIBf/epXWLZsGZo2bWp2cYiIiMgiLBGoTJ06FUOHDsWgQYN0t6uurkZ5ebnLHxEREdVfpnf9vPXWW9i9ezd27Njhcdv8/HzMnTs3CKUiIiIiKzC1RaWkpASPPPII/vGPf6BRo0Yet581axbsdrvzr6SkJAilJCIiIrMIoiiKnjcLjHfffRfDhw9HeHi487GamhoIgoCwsDBUV1e7PKdUXl4Om80Gu92OuLi4YBSZiIiI6sib+tvUrp+BAwfiwIEDLo+NHz8eHTt2xMyZM3WDFCIiIqr/TA1UYmNj0aVLF5fHYmJi0KxZM7fHiYiI6NpjiVE/RERERGpMH/WjtHnzZrOLQERERBbBFhUiIiKyLAYqQVJqr8K2wjKU2qvMLgoREVHIsFzXT320ekcxZq09AIcIhAlA/oiuGNkr1exiERERWR5bVAKs1F7lDFIAwCECT609yJYVIiIiAxioBFhRWYUzSJHUiCKOlVWaUyAiIqIQwkAlwDISYhAmuD4WLghIT4g2p0BEREQhhIFKgCXbopA/oivChdpoJVwQMG9EFyTbokwuGRERkfUxmTYIRvZKRU77RBwrq0R6QjSDFCIiIoMYqARJsi2KAQoREZGX2PVDRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWU1MLpheXm54Z3GxcX5VBgiIiIiOcOBSpMmTSAIgu42oihCEATU1NTUuWBEREREhgOVTZs2BbIcRERERG4MByr9+vULZDmIiIiI3BgOVJTOnTuHV199FV9//TUA4LrrrsOECRNgs9n8VjgiIiK6tvk06mfnzp3IzMzECy+8gB9//BE//vgjnn/+eWRmZmL37t3+LiMRERFdowRRFEVvX3TzzTejbdu2WLZsGRo0qG2UuXLlCiZNmoRvv/0WW7du9XtB1ZSXl8Nms8Fut3OkERERUYjwpv72KVCJiorCnj170LFjR5fHv/rqK/Ts2ROVlZXe7tInDFSIiIhCjzf1t09dP3FxcSguLnZ7vKSkBLGxsb7skoiIiMiNT4HKyJEjMXHiRKxevRolJSUoKSnBW2+9hUmTJmHUqFH+LiMRERFdo3wa9fOnP/0JgiBgzJgxuHLlCgCgYcOGmDJlCubPn+/XAhIREdG1y6ccFUllZSUKCwsBAJmZmYiOjvZbwYxgjgoREVHo8ab+9nkeFQCIjo5G165d67ILIiIiIk0+BSoXL17EokWLsGnTJpw6dQoOh8Plec6lQkRERP7gU6AyceJEfPLJJ7jnnnvQu3dvj4sVEhEREfnCp0Dl/fffx4cffog+ffr4uzxERERETj4NT27VqhXnSyEiIqKA8ylQ+fOf/4yZM2fiu+++83d5iIiIiJx86vrp2bMnLl68iDZt2iA6OhoNGzZ0ef7HH3/0S+GIiIjo2uZToDJq1Ch8//33mDdvHpo3b85kWiIiIgoInwKVbdu2Yfv27cjKyvJ3eYiIiIicfMpR6dixI6qqqur85osXL0a3bt0QFxeHuLg4ZGdnY8OGDXXeLxEREdUPPgUq8+fPx29+8xts3rwZZ86cQXl5ucufUa1bt8b8+fOxa9cu7Ny5E7fccgvuuusufPnll74Ui4iIiOoZn9b6CQurjW+UuSmiKEIQBNTU1PhcoPj4ePzxj3/ExIkTPW7LtX6IiIhCT8DX+tm0aZNPBdNTU1ODt99+GxUVFcjOzvb7/omIiCj0+BSo9OvXz9B2Dz30EJ555hkkJCRobnPgwAFkZ2fj4sWLaNy4MdatW4fOnTurbltdXY3q6mrnv73pZiIiIqLQ41OOilFvvvmmx2CiQ4cO2Lt3L7744gtMmTIFY8eOxVdffaW6bX5+Pmw2m/MvJSUlEMUmIiIii/ApR8Wo2NhY7Nu3D23atDH8mkGDBiEzMxNLly51e06tRSUlJYU5KkRERCEk4DkqgeRwOFyCEbnIyEhERkYGuURERERkFlMDlVmzZiE3Nxepqak4f/48Vq5cic2bN+Pjjz82s1hERERkEaYGKqdOncKYMWNQWloKm82Gbt264eOPP8att95qZrGIiIjIIkwNVF599VUz356IiIgszutRP1euXMEzzzyD48ePe9z217/+NZNciYiIyGc+jfqJjY3FgQMHkJ6eHoAiGceZaYmIiEKPN/W3T/Oo3HLLLdiyZYtPhSMiIiIyyqccldzcXOTl5eHAgQPo0aMHYmJiXJ6/8847/VI4IiIiurbVaVFC1R3WcVFCb7Drh4iIKPQEfMI3h8PhU8GIiIiIvOFTjsobb7yhOnvspUuX8MYbb9S5UERERESAj10/4eHhKC0tRVJSksvjZ86cQVJSErt+iIiISFPAR/2IoghBENweP378OGw2my+7JCIiInLjVY5K9+7dIQgCBEHAwIED0aDBTy+vqalBUVERhgwZ4vdCEhER0bXJq0Bl2LBhAIC9e/di8ODBaNy4sfO5iIgIpKen4+677/ZrAYmIiOja5VWg8vTTTwMA0tPTMXLkSDRq1CgghSIiIiICfByePHbsWAC1o3xOnTrlNlw5NTW17iUjIiKia55PgcqRI0cwYcIEbNu2zeVxKck2WKN+iIiIqH7zKVAZN24cGjRogPfffx/JycmqI4CIiIiI6sqnQGXv3r3YtWsXOnbs6O/yEBERETn5NI9K586dUVZW5u+yEBEREbnwKVBZsGABnnzySWzevBlnzpxBeXm5yx8REYWWUnsVthWWodReZXZRiFzUefVkeX5KsJNpOYU+EVHdrd5RjFlrD8AhAmECkD+iK0b24uhNCpyAr568adMmnwpGRETWUmqvcgYpAOAQgafWHkRO+0Qk26LMLRwRfOz66devH8LCwrBs2TLk5eWhbdu26NevH4qLixEeHu7vMhIRUYAUlVU4gxRJjSjiWFmlOQUiUvApUHnnnXcwePBgREVFYc+ePaiurgYA2O12zJs3z68FJCKiwMlIiEGYYoaJcEFAekK0OQUiUvApUHn22WexZMkSLFu2DA0bNnQ+3qdPH+zevdtvhSMiosBKtkUhf0RXhF/NNwwXBMwb0YXdPmQZPuWoHD58GDk5OW6P22w2nDt3rq5lIhOV2qtQVFaBjIQYXqiIrhEje6Uip30ijpVVIj0hmr99shSfApUWLVrg6NGjSE9Pd3m8oKAAbdq08Ue5yARmZ/4zSCIyT7Itir87siSfApXJkyfjkUcewWuvvQZBEHDixAls374dM2bMwOzZs/1dRgoCszP/zQ6SiKh+4g1Q6PMpUMnLy4PD4cDAgQNRWVmJnJwcREZGYsaMGXj44Yf9XUYKAr3M/0D/uOsSJPEiRERaeANUP/gUqAiCgN/+9rd44okncPToUVy4cAGdO3dG48aN/V0+ChIp818erAQr89/XIIkXISLSYnYrMfmPT6N+JBEREejcuTN69+7NICXEmZn578vwSK2LEKf/JiKA88PUJz61qFD9ZFbmvxQkPbX2IGpE0VCQZGZXFRFZn5mtxORfDFTIhVmZ/94GSbwIEZEeX26AyJoYqFDAeJvo6k2QxIsQEXnC+WHqBwYqFBDBSHTlRYiIPOH8MKGvTsm0RGqCmeiabItCdmYzXoiIiOopBirkd8y2JyIif2GgQn7H1ViJiMhfGKiQ33E1ViIi8hcm01JAMNGViIj8gYEKBQyz7YmIqK7Y9UNERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZZkaqOTn56NXr16IjY1FUlIShg0bhsOHD5tZJCIiIrIQUwOVLVu2YOrUqfj888/x6aef4vLly7jttttQUVFhZrGIiIjIIgRRFEXPmwXH6dOnkZSUhC1btiAnJ8fj9uXl5bDZbLDb7YiLiwtCCYmIiKiuvKm/LTWFvt1uBwDEx8erPl9dXY3q6mrnv8vLy4NSLiIiIjKHZZJpHQ4HHn30UfTp0wddunRR3SY/Px82m835l5KSEuRSEhERUTBZputnypQp2LBhAwoKCtC6dWvVbdRaVFJSUtj1Q0R0jSu1V6GorAIZCTFcDDUEhFzXz7Rp0/D+++9j69atmkEKAERGRiIyMjKIJfsJfwRERNa0ekcxZq09AIcIhAlA/oiuGNkr1exikZ+YGqiIooiHH34Y69atw+bNm5GRkWFmcTTxR0BEZE2l9irn9RkAHCLw1NqDyGmfyJvKesLUHJWpU6fizTffxMqVKxEbG4uTJ0/i5MmTqKqqMrNYLrR+BKV265SRiOhaVVRW4bw+S2pEEcfKKs0pEPmdqYHK4sWLYbfb0b9/fyQnJzv/Vq9ebWaxXPBHQERkXRkJMQgTXB8LFwSkJ0SbUyDyO9O7fqxO+hHIgxX+CIiIrCHZFoX8EV3x1NqDqBFFhAsC5o3owm6fesQSybRWxh8BEZG1jeyVipz2iThWVon0hGhen+sZBioG8EdARGRtybYoXpvrKQYqBvFHQEREFHyWmZmWiIiISImBChEREVkWAxUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqFlVqr8K2wjKU2qvMLgoREZFpuCihBa3eUYxZaw/AIQJhApA/oitG9ko1u1j1Wqm9CkVlFchIiOHik0REFsJAxWJK7VXOIAUAHCLw1NqDyGmfyAo0QBgYEhFZF7t+LKaorMIZpEhqRBHHyirNKVA9pxUYssuNiMgaGKhYTEZCDMIE18fCBQHpCdHmFChEGc3xYWBIRGRtDFRMpqxQk21RyB/RFeFCbbQSLgiYN6ILu328sHpHMfrM34jRy75An/kbsXpHsea2DAyJiKxNEEVR9LyZNZWXl8Nms8FutyMuLs7s4nhNLzei1F6FY2WVSE+IZpDihVJ7FfrM3+jSShIuCCjIG6B5HFfvKMZTaw+iRhSdgeHIXqlMsCUiChBv6m8m05rEU9Ks9Efe0evK0TqeI3ulIqd9oktgyARbIiJrYNePSZgbERi+duUk26KQndkMybYoJtgSEVkIAxWTMDciMPyR48MgkojIOtj1YxKpQlXmRrC7p+7UunK8IQWRyjwXBpFERMHHQMVEda1QSVtdcnwYRBIRWQcDFS/4exQIR5VYF4NIIiJrYKBikL9HgYTaqJJrMajiyCsiIvMxmdYAf48CCbVRJd5MoEZEROYzOjt3KGCgYoC/R4GE0qiSUAuqzFafLg5EFJrq280lu34M8PcokFAaVeLLBGrXqlDrzqPguxa7UCm4PE0mGorYomKAv9ffCaX1fDjfizFseSJP6ttdLllTKLXYG8UWFYP8PQokVEaVcKiuMWx5Ij318S6XrCmUWuyNYqDiBX+PAgmVUSXyoCo6IgwVl2pQaq8KibIHS328OJD/MJClYKmPN5cMVMiQZFsUtn5zmjkYGurjxYH8h4EsBVOotNgbJYiiKHrezJq8WSY6kK6FBLlSexX6zN/odqEtyBtQbz+zL0rtVfXm4kD+tXpHsVsgy0CfrlXe1N9sUamja2WkB5uujQmV7jwKvvp2l0sULBz1UwfX0kgPjv4hqrtkWxSyM5sxSCHLCIW5nxio1IGVhoEF+mQLpSHVRETkWagMmWfXTx1YJUFOrfspp32i3/NmruWm62shD4mIrh2hNGSegUodWGGkh9rJlrf2ACACIvyfN3Mt5mBcK3lIRHTtCKW8QwYqdWR2K4PaySYfx2XlKDkUhNJdBxHVD8FowbVKj4ARDFT8INitDPKTWO1kU7JqlBwKQumug4hCX7BacK3QI2AUAxU/CkYUrHYSy0+2MKG2RUVet1o1Sg4FoXTXQUShLdgtuGb3CBjFQMVPghEFa53EBXkDUJA3wHmybf3mdEhEyaEglO46iCi0mdGCGwp5hwxU/CBYUbDeSSyfmyFUouRQweNJRMHAFlx1ps6jsnXrVtxxxx1o2bIlBEHAu+++a2ZxfBas+VS8mXSNE0vVnXxuGh5PIgo0zlelztQWlYqKCmRlZWHChAkYMWKEmUWpk2BFwcm2KMzM7YgFGw7BIfIkDiQOSSYiM7AF152pgUpubi5yc3PNLIJfBCuPYfWOYmeQIgB4ckgHVp4BwCHJRGSmUMgbCaaQylGprq5GdXW189/l5eUmlsZVoKNgZeUpAnjuo8O48/qWdXovzrjqjkOSiYisI6QClfz8fMydO9fsYmgKZBQciMqT3RvqmNBGRGQdIbUo4axZs2C3251/JSUlZhcpaPy9evG1tPKzt5jQRkRKobDKcH0VUi0qkZGRiIyMNLsYpvB3Hgy7N/QxoY2IJGx9NldIBSrXOn9Wnuze8MyfXXnMBSIKTUyuN5+pgcqFCxdw9OhR57+Lioqwd+9exMfHIzWV0aoaeeVZl8rPSAsNK1f/4N0YUehi67P5TA1Udu7ciQEDBjj//fjjjwMAxo4dixUrVphUqtDgj8pPr4WGlat/8G6MKLSx9dl8pibT9u/fH6Iouv0xSNHnayKsWjKY2oyrTLT1n2DNWkxEgVGX5Hom4PoHc1RCkC9Nkd60kLCp0394N0YU+uStz9ERYai4VONcWkMLW6X9J6SGJ1Mtb4cqe9tC4u+h0NcyDnUmqh+SbVEo/rECw1/ehtHLvkCf+Ruxekex6rZslfYvBioGWK35TqvyA6BaTk/dD8rPx8rVv0b2SkVB3gCsmvwzFOQN4F0VUQjyJvhgl69/sevHA6s23ykTYbd+cxp95m9ULade94PW5+M8Iv7FtTuIQps3XeLs8vUvtqjosHrznZQIC0C3nHotMJ5ep0y0lbNaSxMRUaB40yXOVmn/YouKjlBJKjVSTrUWkm2FZT5/Pqu2NBERBYK3s4OzVdp/GKjoCJXmO7VyhgGIjnBtMFN2P/j6+Tg3CBFdi7wNPtjl6x/s+tERKs13ynICgAPA8Je3aWalq73O6OdjohgRXas8dYmT/7FFxYNgN9/5Om39yF6p6NgiFsNe3gbRi5YOXz5fqLQ0mYVLDxAR+Q8DFQOC1XxX17yPiks1ziBFYiTnxNvP5++VnOsT5u4QEfkXAxWL8EfeRzBbOqSWmF3HzgIC0COtqd/fI9Qwd4eIrCqUW3oZqFiEP0YYBbulY+s3p9l6IBMqo8SI6NoS6i29DFR0BDMC9VdrSLByath64I65O0T1Wyi2StSHazVH/WhYvaMYfeZv9Limg7/4c4RRMLLSOfLHXaiMEiMi7wW7TvCX+nCtZouKCrMi0FCaIIitB+pC6Tu0ilC8S6VrSyi3StSHazVbVFSYGYGGyhh9f7Ye+DIVv5Wn7w+V79AKQvUula4todwqUR9aetmioqI+RKCBJN0B57RPREHeAGfrAVC7erM3d8a+JHmFemIY1Qrlu1S6toR6nRDqLb1sUVFRHyLQQFHeAW/95jSyM5s5V2/25s7Yl0Ufrb5QZCBYufWoLkL5LpWMqS/nbn2oE9RaepXfj1W/L7aoaAj1CDQQtIKEji1ifbozNjqcV57DcK0NAa7PrUehfpdqRVbK96lv5259qxOU38/w7q2wbs/3lvy+GKjo4IJSrrSChB3HzvoUPBipqJQ/pof6Z0IQ4DIDb32t3Op71whnOPYvKwUG9fXctUKdIAWjMRHhqLhU41NQqvb9vLP7e+fzVvu+GKiQYVqBRa/0pj7dGXuqqNR+TH/dVOiyj/pcuVm19cifd+16d6lWah2wOqsFBlY5d+tyDhl9bTDeQyIPRiVhAjAztyO6trJp7kf5Pmrfj5IVrjUSBipkmFZgkZXS1Oc7Y72KytOPKQzA2oeykZVSP6fv90fXiL8r+0Dctavdpfr6PqEe3Phafk/5PjuP/QhBENAjrWlQjoveuevNZzSyrXwbAM7/9mXmbGlfB47bseCjQx5fW5ffg9prc9onan5eZTAqcYhA/oeHAKiXQet9lN+PUhiA6AhrpLEKoqhcxi50lJeXw2azwW63Iy4uzuziXDNK7VWad8D+7L8ttVehz/yNuj+mVZN/huzMZnV+L6tavaPYGQCGAZh0cwbG983w+u7LH0GF2vcRLggoyBvg18rP1/exUteHL+pS/n0lZ3HXS9vcHp86IBMvbyqEdCgFAPPv1t+vr8GSMmBYXlCEV/5bBAd+avkEYPgzGjke8m2Eq4+JqN1eFAH5pSNcELD2oWzV7pJSexVeKyjCqwVFqtcbtfOvLr8HtdcKQm3hpfIrP++2wjKMXvaF7n6VZSi1V+Gm/I1ux6EgbwC2fnPa5eZyWPeWeHfPCdTIQoJA/o68qb/ZokJe0+qn9bb/1tMFUdmCo1Rfc1PkpBan5QXH8ErBt/jbf4vwSkGRx4tHILoCgtWc78v7WK3rw1tq5Z+19gA6toh1thjq/V4qLtWo7vclRVepiNr9SsdFuU+t4MDTb1UvYLi/bxuM75uOU+UXMeylbc5KU+07kudfePo+lcdMfsqoBRs1oohhL2+DqPhsq3cUI++dA1B5ictrleefL4MBpMfVXiu/xKl9XrVWKk9lfa2gyO1zSc+rtWaPyU5zHiOtcpiBgQqZwujdo/zHVHDkNBZvLnS5QwuFSsgfXin41qtKOBBBRbBG6fjyPlbJiQDUKyatil56vPDUBdUm/WEvbcP8u7sCgLMyVWsVMVqJSfs9Vlbp1jUyc0hHZ3eHtN1Taw/iXOVl5+MCgMmKVj1PAcOrBUVo1jgC8z86pFlpKoMkZcK8tO3u785iaDftyt4TZQUsjVj0tBu188+XwQAzh3RE19Y2xESEe/y+lOdvsi0Kw7u3ckl61Strqb0KrxYUuT0fBjjLqLy5rLhUo3rczc5VYaASZKHeh+4P3t79JtuisPWb01i8pTZIEQTgydwOIdWsXxe+VMKBCCqkFq5Z7xyAA7UXvEAEi76MBvLn5/UUVOglLMq7D6QAHIBqZSXPg9Aiyl4rfyzvnZ9aW6RyzRzSEQs2HILDw+cLE2pzD5S/QbXX1ogi5m/4KcAQAbdWPU8Bg3IfSvu/P4f0hGjXYEdj42kr9+BC9RWM7JXqMTgTBEAQoXk8tEYsKmmdf74MBsjf8FMuyfDurbB2z/ean1V5/pbaq7Buj2uQEiYAU/plYsmWb93KsK2wTPWzTcrJUG1NA6w7ZQADlSAK9T50f/G24nW7YxOB5zYcxp1ZLT3esdYHvlw8Ajr092pfurONPwC8nbPCX59X6zfq6ber1n0gdd/Ivzd5ZWWUWmUjArjrpW24+wbXuS/uvTEVK7/QnmxRuFr2iks17i04cG/J0AoE5DcXngIGTy0Hz204jJa2RqrbSKeaRITrTY38O5fneEjff8cWsS5dGS7lApCREK1aPmkkTbdWTVTPP63ZuY0OBnCIwDoPQYqU0yPN9q22P4cI9G2XiF9np7mVQe17CROA8X0yNM9nq04ZwECljrwZwhbKfeh6vA0SvK14PQU29T0A9PXi4e8JqoJ9DsubpbVGdsjft66fV29CQ3kQovzc0uvU6hxvuybUKCtrOeXcF2/9TydIAfDuQzc5W2HUfoNP5nbAcxsOO8+zJ3M71La0aOR8HCurRHZmM9eA4eqbiSI87kPaT5ggqJbn6Ts74XfvfaX6vsm2KLfvHIDL97+tsEwzGHAAmPzGLgzv3sqZRBqG2haH8X1cWx0AOM8no9cbTwGc1uOzh3bC7d2SnbN9y1vitK6bavmBybYozMzt6Dz2agnNUjnk57MVJ7ZjoFIH3lSQVupD9ydfggRvK15PQx3rawAo5+vFw9sEZz1mncNaiZoCgLzcjnigX6ZzW7XPa6TLpqisAkdPnVf9fH/bqp2QaHROCm/IuyzCBQFPDumg23Ui56kb6fjZKueoF7Xf4Mheqbgzq6XLedYkqqGzu09OfnPhKWBoEtVQMyk+TABaN1W/JuS0T8Sc9V/p3tQov3P5fxsJFt7dcwJrH8pG5SWHy29La1iv0euNp8EAauUKFwTc3i0ZgHsw8dxHhzEzt6NLIKl33Vy9o9gZpAgAnhxS212u1iWklg9jpesnAxUfldqrdO+ylKza91cX3gQJysrCm4pXL7Ax8qPTK4dZfCmH2RcPI+ewP46vsvVEK1FTxNVuFAF4ICfTbT+A50BabQItuTAAHx4sVX1O+twZCTG6rR7ekFfQLhV9dEPkrT2g2TqgpFYeQajN8RDx07FQ67aQzjNp3Zec9on4bNYtzpFn8rtzZYCgFTDIf+/7vz/nrGyB2vNp+MvbNMtTl64I5bUjDO45KzWiiMpLDpdpDrSubQvvzfLqeuPpc8sDbyPXtW6tmmh2NcmpJTg/99Fh3Hl9S6/rIitcMxmo+Ehv2JdWQqjyB/PkkA6Wilq9ZfQOW68/1Ojn1wpsvPnRWaWLqK7lMOvC4XYOC8CEvunO5/1xfJX7mNQ3w2NrxYINh1zylSSeAmmtCbQk0rw1f/tvke77b/3mtMFP51oxqT0nTxJXVvQdW8SqzpWidmcutThJDwtXH1TeWBXkDVCdh0jtu3xqaCeM75vucbV0rfNT+r1nZzbDzzLi3YYqz1p7AH+593r0TI932XdduyLkr4+OCMPwl7e5Ha9/7fveZd9a1zatLipP+WIAIELE38bcgEmv73JJTg4TgEX3dkeP9KaGrmuerpul9iq8v/+E5rVZ2VWnF/xZ5ZrJQMUHRoZ9qRnZKxXnqi5j/tXmuAUfHUKT6IYhm09h9A7bX10zWv2wWj86vTtzs7qI6no8AnXhMDoDaEp8NNY+lI0PDpRi2dYiLLs6AuSh/pm1Q8c9fC6991E7Nq/8t8hjMqZDBHYdO4ufZ7nub7nK5F3edNk8M+w62KIaaraWSLO+GhneCri2liz/rAjLFF1KItyTxOWyUppiwd2uo67y7+5amzAqq/Tl+3PSGO6rdmPl6RzVywszen5WXKpxK69DBB5etddtHhb5jY0aI+eu/NoxM7ejcyZXycr/leCtHSXO99K6tt2Q5v0s3MquS7XP3axxpFtQp7wpeDLX842tXguhXledVuuzFa6ZAAMVn2hd4KRhX1pK7VVYsOGQ5SbT8ZWRXJNg5DWo/eiUF4fbu7awRI5QXY6Hvy8c0gV+29EyvLS5EKJY2z2Ql9vR2ZWiNqW4kii6Tyym9rmUldjEvhmYIJuPQ3VUA2onDHu1oMiZqKkWFEx/aw8qLl1xVor7Ss5qtoTsP34O2ZnNEBMRrjpfB1B7HGa/+6VmACJd9I3mp0gJktJnfer2zujWugmmrdzjsp2nc0Grgpl/t373hqhRSRYcPe3WouLpHPXHKup6uSPyh9RawYxMUKdGem1LWyPV55XvpXVt0/oOtObP0eq6lEjDxZWtUyN7peJcpezGdsMhNInSvrHVayE00lWnZKW8SgYqPtAb9qVH64vf/d1ZNI0xvp6F2g/WE6MJhd52J3iKzLWOlZE1JLwpk7xf/f39J1zyh0QAHxw46fYaozlC/uxq8aaryshCYjWiqNqa4KncWndeonh13RARaBLdULdrxBP551Kr3Jb9t3aKdWnyMq1jM75vukuXw/p9JzD/w0NuFZo0k+uhk+eRt/aAZrme++gwgNoWTdVhq4L79OvATxW9vMvLyERrUoKk8jvokeb7Yp7KfXnq3ggXBDzYv41bQPnSpkLENWrokpDs6Rz1xyrqnhJN1fbhNkGdbEQLoB8YKQMarYBXb0SRXiWvFTAZCWT7tk1wfl/K2YAXyCbJ83RjovVeyiDZKCvlVTJQ0aB3kTfSkqBG7YtXS3DTW89CmihIPneCp8WsvEko9KU7QS8yV7sgyZPn6rLOh95rPJHyAZRDD/X2qTbKRM7IjKRGzx1vFhJTtiYAwNKthbUjRVSOn6fcDACYv+EQBA8VsB5BcJ0MTusiKsLYXaykqKwCd2a1RKsmUW6tEQ6xdm4RT4mtahOQhQFYNrYHoiMaouzCRTy8aq/b6xaN6o79359zdnm9enXSM2WZ5Wum6F0bfL2OaJH/DtX2mxIfrdrytWDDIdx5fUuXG6CZQzriuY/UR5f4axX1nPaJ+Muo63Gu8pJu61WYABw5Ve4y+kdqYTASGKkFydLIKuV7ehpRpFRqr8LOYz9qtiR5nJQOwH+PlKkGI962aGh9L/IgxdubP6vMqcJFCVUYrSR9WYTPZZE5lTs35cJZADwuzCcAzkpFrVJSvj5MgEvSmtbCWoD6fBVGKH8Q+0rOuvWjKxfPktb4KDlbhYevBm/OMgP4bNYtui1Ono6TnFo/eE77ROz67ixEUdQ8NgAw6/aObqNM1M4ZQHsBNr1zR2+xs63fnFYdKhomAJ/l1R6fpVsK3SYVkx9ro4ub1YXy+yq1V+Gm+Rs1R63IF5dUOzZqU5EbHbLrVjaNikMqg9bxX/tQtmpLhfRbkZfZm2uD3iKfdWnJU+5Xa+FC6bMX/1jh1mKhNeGZ/DomH9qs9biS2s2XFNzJ52GRT+KmRhmUqi0KqHW+vzS6O/aV2N1GMund9Gl9Bq1jmp3ZzOWYKCelm9A3HctUuihXTf4Z0hOi1a8/OjdLesdfOSmh2nVMjb8Xm5VwUcI68CYPwFO0rUbK3t9x7CwiGgiqkxnJF86aaGDUgwj3NSyk8mrNZvjwqr2a+68RRZehiN62sqhV2inx0ZqjpORNulocAJYXHMNTQzsZXuRLj7LbIO+dAy6PC6hd00Rtn/JRJlp3VLOuDiXVarbVO3f07qRG9kpFTGQD1daE5Z8VYXyfDMxXmflU6iKKb1xhaJ2RsKsHwVOArPW0A3C58/vTx4c9ThUu/149DRVV+4x65QR+qhzUJiCT30lr3UmqzeYqH0nhTf+/nNq2/kiaVu5Xa+HCMKhPqf/chsOaKwFrdYv4mqSpnMsEAHZ/d9bZ2qxGmmNGq+VHopcYO7RbS5duReUka3o3qXrXLKNzzABwW7FZPrpHLfFXGmbszfeinE4D+KmLVyvokfhSz/kbAxWFQCcQGekrlQcdr3gYGqlGnveiVyk5xNofibIMYfC8CJ7eeijKi1De2gP4zW3tVS8WyguknlcKvkWzxhHOpE75hUQrF+beXqlY9b9ij3febt8BanMotLL0PQVYao8pzyOtvKOYiHDVO0XpwqaW2wAAr2wtQtdWNs3P+vBbe5wBsPwOVkk+g6W8sh7cpTk+OnjSefepdTcIuI6A21dyVnchtSdzO7jlH8grCNWVZjX35trCqDkviWwCMrUKTu2CrzabaxiAo6fOo+zCRfRMj/fYTWDmLNZa3RAzczui+MdKj9c9tW5MrS4tX5I0lXOZNI2p0A1SnBPUXd9SNzDy1IUhz2/ztIK13mdQlk0vcHXpZtOZxK1rK5vb/vW+F6lsynNs57EfVY/lfFm3n5UxUFHQqvDKLlxEqb2qTl+oal+ph9eonVy5XVrgky9/0ExCU+a96FVKDhHIaZeArUfKnI/1VfwbMD5l/a7v3BPqRBH408ffuL33sO4tVe9StUh30lqtFFozbY7s1Rp/21qEDQdLnWVWS5ZUEgGM7p2KlYppyY0EWFrdelLlvXRLofOzKPOOlEGKALhdWO/t7b6miwOAveqyZkuHPABet+d7LBtTm5MRHRGGyksO5//LL/hqlbX8bvCV/7rPJwTUVn7SPv537Ef1g3RVK1sUpr+1R7Ni9mZlYK3ARDpuEik/AiLQI722ElKOulCrXJRTxTsAzH7vSwDqqxpLrDCLtbL8UvdOk6iGeOStvW7bu5yvOjlPRsgrU6NJmqrXYgCLRnfHDWlNNb8nNUZaerRan6UVrD2tVh2Gn4a0S13Hys8uvY98FJ3UldmtdRNER4Sh4lKNs67xdKy0Zm1WfkeCoF7TiIDfbsIDiTkqKrT6FJUZ2d72H/srN2DV5J8hOiJMdbEt+ckqCRcE/G3MDfjHF8XYeOi0x+21KlmpL14vf0LZvKhHq99fi1Zl9X9DO2Ho1YQxZX+q8oc8+eo6Hlu/Oe0ynFOEe+Uu5Vms33fCbb2MlPhoze9Sq0VCCpyWbi10a8719Lml/BNAfQE8wLUlwQitilXesiPlSuklG8vLIgDIU/R96+VGhAsC/jLqereuLMA1b8Ultwvu31eYALx4ddIsQD+3qq7J6aX2Kuw6dtbZQiWnlkull3Ok1TXillcG4MXR3dFDVkH7ShlsquVBSHO0jOyV6jHnyROt/C2juSxa2/l74kO9PDe1z6ss27DuLd3OIwCqgYRSGICHBmTi5atzESnnplFbWmDnsR/xyFt7dVt25DmAN+Vv1LzGmRGoeFN/M1DRUGqvUu0jDRcETOnfxjnvhDd3F1qJrUbu7uXvX5A3AEVlFQFNiLw/JwOv/veY2wVCLzFNrz9Zi5TE52mYoqfFzdS+B08VhPyCvfWb0y5TlCsrcWUApFWZKO/21F6nl1Sqd5yyM5upJiVL5QUULTGC+hwhcsoLsFqCoJH5KXYdOwtBgMtnl/vNP/e6df/IL7pGKnLl96WVzKnXcmEk6Vrr5kRO76ZDHmDpbavcTs7lZunqY/LyGE349ETv9zy0W0vNCs5T+SV6v0EAhpI0jSRXq33PvhwfvQRZtc8rlU1tSLiRPC89etcqo93lymBfeVOh1QIYDEym9YNkW5RqH2mNKOKvsiF+3vQfa3VPAHBpjtXsToBrF4CnYZi+ChNq+0bVFurSaob/9KsfvC6L1ISZndnM2SxbcPQ0Fm8qdFmQrVvrJqq5BXJq34OnmUnlTcZS0/Du785CvNodoNbHXGqvwr/2fQ9BEFSHcA7t1tLl/eTJvtL/exukSPkeq3cU1wZTKts8fEtbvLjxqMtjRt5HPg+LVoKgp3M82RblnMdFWh9GWUH8+ZfXY0x2GnYeO4v0hGhERzT0ej0Xte9LGQR6yu0wknQtP25an13rd6A2O7Uv3cnS59t17Kxbt1je2gMeAymj9BJNgdquXNUWAEF/Fm6JXjeWMgFZi7Jrx9P3XJduKmmwg9oIRbXPK5VNbW0eB1CnC7TatcrI1AJaZfZ0jbMyBio6jPaNe9N/rNVXKl2UIADfn61yycWoHYHSBuP7prv0y+bldnRrklUy2rcvkboOpKms83I7QrxaEunHopaJ/t6+E4b3L4ruCWfSvrMzm+HXP0vTvNOSjt8H+0vx7AdfuzynnD1TLdFT7wKbbIvC0G76wxHVujm0hnBKr1EOq1X7Tm7v0gIbDp5Uva5NyskA8NNIIrfPBGBgpyT8ddNRtwrnwX61rX96pHlYUuKjNc8VI+e4p7vcrJSmbkmJErWREWoBj5yyAjOS2+HLAoJqn1266VC2wuXf3VU1wBrevZVLi5L0G/PUGhDfOEI150u+n7ok2uolmkrnuxp5DpKeQEwapvc9r997wuWa6MvxyUpp6jLTr5H5Q7RyVuraoqI8TnqBtnD1f9SurxJP1zirYqCiwy35DO5TUwPG7y7k+1WeQMpRD3m3d0QrW5Ruc/oD/TIBQX3iI6lcy8b0wOQ3dnn8sYQJwDN3XYf/e/dL52Mi4PzRS5Vs19Y21Smote7ewwRg7p3XIT4mwnmX5qm511NyXO2PLRnzPvxa8wJYVKY+YmBS3zYem5m1RjMp80JE1B57ef6Icl+elmqvHZmUgrSEGGw46D57rjTjsd4FSgRw6OR5DOnSAh/KZuAd1r0lnhjSEXHRDX9a7l3WrSGRLuZrH8rWDGw9VS5606rr5bmojSTxdWiuVmUhnwVZuYCgAGDEDT8lm3tKgpbzdIcqz/VZt0d91JOyIjUa2MrVNdFWr3VKrYtRvsSC8rOqLURopLXM6FpT0vFUC34qL11WvXHz5fh4uxCikdZy5RwqD/Zvg5evphAoeTPUWt7lDNQO6z5TUY2YyAaGBoDoXfPMXjVZwkDFAyMrbxq9u9CiWqHpzGEg90BOJu7MaqnawuAQgeiIhm4jFbQqcFtUQ833cYiuQYtyP2EA7u2dgpX/K3E+JmhUMv466Sf1zcAr/y1ydhN5mj0zDMB42Wq/SnoVpFbg4xDhnJ9EbUig2p2ftFS7tDCd/JjJSWWQ9qlVYYkAZqrc+a7b/T1mDO7gPEeki+6uq7lXynJ9sP+kVxdNOa27XCmJ1uiMyDntE30emqusLIDaGwtpFmRp3/JiCgIwY3AHzBjcwXl8/vTxYZfWj2HdtYdvat2helqITnmc5Ascyj/7fMU0/1rJ73Wd1txI6xRQOzvvz7Ncuzc9BZaeKn0jgalym8HXtcDHB086f/vDurfEpDd2qX42X4+PpxsmJb3WcrU5VJJtUUiNj3YJbpRd3WplUguIpC5nb/NQ6rq4ZLAwUDFAfsIqW1hmqtxdeKuuwxE9tTDIc0C0kr7G903Hru/OGiqvdGceJtZWBNKFeOX/Spxzl/Rp20yzJchXzgXyvrc7WwjChNpF6+TdYoDxVZWl13jq95aGFqp5eJX7EgjSD11JfoevNbRX8uK9P1UKapWwJ/JJ8uTncI8096BHmjvHpRIH8FfZnZpeV4ynblKHCMx654DL4nJqx3vhvVmqvwWt9YyUnDkGshFxevt2iHDJlyi1V7m1fqzb8z36d0j0OE+KxMhCdHJ6CxyqjeqbmdvRJYARxdqWIn9WJFpdNtKoKomn343WJH5GX6+1jdT6KAjAg/3bYLFGywTgfiMZyJYCZU6aPL9EuQ1gvOVGXmZvJnUTURv8qgX6/lhcMlgsEai89NJL+OMf/4iTJ08iKysLixYtQu/evc0ulipvmwSN8Ec/rqcmVq1gS75djzTjCbqiWFuJiSLckv1W7yjBwwPb1rmVSWuVVDmHWDtpnVpLiadVleWBhadgMdkWhftvzlBdkVd6mdYP3aW8qL3Dz+3ivpqznFqlIO9qMDrC6pWCbw0FcRP7prt9NhFAfEyk7mRsWvtUIw+ctI73kVMXVM/Bh1XWM9JScanGrdKqEUXVOWaUya+eZnI2cmep1Roh/caVXQDy36mnbh4HgNZNo1w+hAj/VyRGu2z0fjdGzhsjN2m63Z4inMn3SmrdVIFuKfBl/55abrT2KQWC0g2EXquv2k2vPxaXDBbTA5XVq1fj8ccfx5IlS3DjjTdi4cKFGDx4MA4fPoykpCSzi6fK2yZBI/vzx+JPWn3NyrsHrWAr2RaF+Xd3NTTuXxoZEIjJqdz66RWrpCrJm86Vn1X+XendvRkJFsf3zcAyD60gNaKIZVu/1a9sRPXVnOXvq7eQ3dBuUbhQfcXjPDDSe6l9F8pz4FT5RdUg7PjZCsN3V9I+V31R7DYCSSIFTlotMC/+52jtfDCKzyOKtaNdjFTGqot/Avjde+4L34mobY2Qhvt6msnZSECgdS4pp4hX+/0pJ2RTy5dxiKLb5whERWLkpkzrs6pNyW909JTyd+cpAdoB96H4YQKw7qGbXJK3AzXjbyD3r7dPtdWk1Y6TVteXvxaXDAbTA5Xnn38ekydPxvjx4wEAS5YswQcffIDXXnsNeXl5JpcuePzVUiOvmPWie61gS2tdiv3fn9Oc5tmfJ7XaD1MvSJHeb//xc/jVK5/7fPeWndnMY7CYbItC3u3uI56U3tcJQvQ+g6f+aTnl96S1WKHedyE/B6SmaqUn1rh3X+lVism2KJRdqNYst7yrRTkSRiLip1YHl8fF2kRBT6MW3Cr8q7vSyu9RDvfVm8nZSECgdeOhHPFk5PenNl9Mz/T4oFUknm7KtD6r3rpIRrtoJcoEaCVpjiXl9cnItPf+DPACsX+tfe46dlY1rzEv13WxTilP0Jt8l6yUppZZNVliaqBy6dIl7Nq1C7NmzXI+FhYWhkGDBmH79u1u21dXV6O6+qeLYHl5eVDKGSz+bKmpS3Sv1qeandnMJSFT6y6wrie1VtO71h2V2kRwvt69GQkWH8jJBKTgCca7yvS2mz20k8tS7EbJvyep7PLFJL35Lrydpl6rUiy1V2GVRnKw/LVquSByWvkGRuegkX+XZyqqVWe+VdunQ/xpgbzjZ6tUJ3w0EhDU5cZD7XtV7sdKFYnRdZE8jZ7SWkHaLQH66p88iX5kr1TV65NcIIZKB3r/WvtUG/ZcI4ro1roJts26xeMEjJK6LC4ZTKYGKmVlZaipqUHz5s1dHm/evDkOHXK/a83Pz8fcuXODVbyQFojo3mgrTF1Oaq0fpnKVVHnrg9HPaiSoMhIsPtAv07kQmqdKEKjNg5h5u3r3Vbgg+BSkqEm2ReGpoZ1cVoM1ul/p2Gjl1kjfiadKUaufHHB9rdoEWWrvJycAbnk7eqTvUq3S1CMtkDe0W0uXLjZvAwJ/3Xio7cdqFYnazY03wZTWsdJakPKvo7sjPibS7abJl9afYOf1+GOfaguTSkFRsi3KUOK5/D20WlzMPq8kpnf9eGPWrFl4/PHHnf8uLy9HSkqKiSWyrkDfPSj586Kstbig3iqp/rh787acWpWgIACCqH7Ht/yzIryyVX1Itb/4+l3ozcqpNkuxGq38kEWjurvMM6LXgiOfg0LqzpLWnvHlcynPKeUU+XrzplgtIJCzUkWixh/HTm/mXF/P8UB+n4HYfyi0qgWaqWv9XLp0CdHR0VizZg2GDRvmfHzs2LE4d+4c3nvvPd3XB3Ktn/pAb0Evq1Nb30OPmZ9Va9EwrfJ7+9mCra7H0ujrldup5ej481gpF+PztG4QWUMoX8cCzerXEj0htSjhjTfeiN69e2PRokUAAIfDgdTUVEybNs1jMi0DFc9C+UT2lpmftb4d57p+HqOvt8pxs0o5SB2/n/onpAKV1atXY+zYsVi6dCl69+6NhQsX4p///CcOHTrklruixECFiIgo9ITU6skjR47E6dOn8bvf/Q4nT57E9ddfj48++shjkEJERET1n+ktKnXBFhUiIqLQ4039Hab7LBEREZGJGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIiIiMiyTJ9Cvy6kSXXLy8tNLgkREREZJdXbRibHD+lA5fz58wCAlJQUk0tCRERE3jp//jxsNpvuNiG91o/D4cCJEycQGxsLQRDMLk7QlZeXIyUlBSUlJVzrqA54HP2Dx9E/eBz9g8fRPwJ1HEVRxPnz59GyZUuEhelnoYR0i0pYWBhat25tdjFMFxcXxx+iH/A4+gePo3/wOPoHj6N/BOI4empJkTCZloiIiCyLgQoRERFZFgOVEBYZGYmnn34akZGRZhclpPE4+gePo3/wOPoHj6N/WOE4hnQyLREREdVvbFEhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDlRCwdetW3HHHHWjZsiUEQcC7777r8rwoivjd736H5ORkREVFYdCgQThy5Ig5hbUwT8dx3LhxEATB5W/IkCHmFNai8vPz0atXL8TGxiIpKQnDhg3D4cOHXba5ePEipk6dimbNmqFx48a4++678cMPP5hUYmsychz79+/vdj4++OCDJpXYmhYvXoxu3bo5JyPLzs7Ghg0bnM/zXDTG03E0+1xkoBICKioqkJWVhZdeekn1+eeeew4vvvgilixZgi+++AIxMTEYPHgwLl68GOSSWpun4wgAQ4YMQWlpqfNv1apVQSyh9W3ZsgVTp07F559/jk8//RSXL1/GbbfdhoqKCuc2jz32GP71r3/h7bffxpYtW3DixAmMGDHCxFJbj5HjCACTJ092OR+fe+45k0psTa1bt8b8+fOxa9cu7Ny5E7fccgvuuusufPnllwB4Lhrl6TgCJp+LIoUUAOK6deuc/3Y4HGKLFi3EP/7xj87Hzp07J0ZGRoqrVq0yoYShQXkcRVEUx44dK951112mlCdUnTp1SgQgbtmyRRTF2nOvYcOG4ttvv+3c5uuvvxYBiNu3bzermJanPI6iKIr9+vUTH3nkEfMKFaKaNm0qvvLKKzwX60g6jqJo/rnIFpUQV1RUhJMnT2LQoEHOx2w2G2688UZs377dxJKFps2bNyMpKQkdOnTAlClTcObMGbOLZGl2ux0AEB8fDwDYtWsXLl++7HI+duzYEampqTwfdSiPo+Qf//gHEhIS0KVLF8yaNQuVlZVmFC8k1NTU4K233kJFRQWys7N5LvpIeRwlZp6LIb0oIQEnT54EADRv3tzl8ebNmzufI2OGDBmCESNGICMjA4WFhXjqqaeQm5uL7du3Izw83OziWY7D4cCjjz6KPn36oEuXLgBqz8eIiAg0adLEZVuej9rUjiMAjB49GmlpaWjZsiX279+PmTNn4vDhw1i7dq2JpbWeAwcOIDs7GxcvXkTjxo2xbt06dO7cGXv37uW56AWt4wiYfy4yUCG66t5773X+d9euXdGtWzdkZmZi8+bNGDhwoIkls6apU6fi4MGDKCgoMLsoIU3rON5///3O/+7atSuSk5MxcOBAFBYWIjMzM9jFtKwOHTpg7969sNvtWLNmDcaOHYstW7aYXayQo3UcO3fubPq5yK6fENeiRQsAcMtk/+GHH5zPkW/atGmDhIQEHD161OyiWM60adPw/vvvY9OmTWjdurXz8RYtWuDSpUs4d+6cy/Y8H9VpHUc1N954IwDwfFSIiIhA27Zt0aNHD+Tn5yMrKwt/+ctfeC56Ses4qgn2uchAJcRlZGSgRYsW+M9//uN8rLy8HF988YVL/yJ57/jx4zhz5gySk5PNLopliKKIadOmYd26ddi4cSMyMjJcnu/RowcaNmzocj4ePnwYxcXFPB9lPB1HNXv37gUAno8eOBwOVFdX81ysI+k4qgn2uciunxBw4cIFl8i1qKgIe/fuRXx8PFJTU/Hoo4/i2WefRbt27ZCRkYHZs2ejZcuWGDZsmHmFtiC94xgfH4+5c+fi7rvvRosWLVBYWIgnn3wSbdu2xeDBg00stbVMnToVK1euxHvvvYfY2FhnX7/NZkNUVBRsNhsmTpyIxx9/HPHx8YiLi8PDDz+M7Oxs/OxnPzO59Nbh6TgWFhZi5cqVuP3229GsWTPs378fjz32GHJyctCtWzeTS28ds2bNQm5uLlJTU3H+/HmsXLkSmzdvxscff8xz0Qt6x9ES56Jp443IsE2bNokA3P7Gjh0rimLtEOXZs2eLzZs3FyMjI8WBAweKhw8fNrfQFqR3HCsrK8XbbrtNTExMFBs2bCimpaWJkydPFk+ePGl2sS1F7fgBEJcvX+7cpqqqSnzooYfEpk2bitHR0eLw4cPF0tJS8wptQZ6OY3FxsZiTkyPGx8eLkZGRYtu2bcUnnnhCtNvt5hbcYiZMmCCmpaWJERERYmJiojhw4EDxk08+cT7Pc9EYveNohXNREEVRDE5IREREROQd5qgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZTFQIaKAuXTpktlFcGPFMhGRNgYqRGRY//79MW3aNEybNg02mw0JCQmYPXs2pJU40tPT8fvf/x5jxoxBXFwc7r//fgBAQUEBbr75ZkRFRSElJQXTp09HRUWFc78vv/wy2rVrh0aNGqF58+a45557nM+tWbMGXbt2RVRUFJo1a4ZBgwY5X9u/f388+uijLmUcNmwYxo0b5/y3r2UiImtgoEJEXnn99dfRoEED/O9//8Nf/vIXPP/883jllVecz//pT39CVlYW9uzZg9mzZ6OwsBBDhgzB3Xffjf3792P16tUoKCjAtGnTAAA7d+7E9OnT8cwzz+Dw4cP46KOPkJOTAwAoLS3FqFGjMGHCBHz99dfYvHkzRowYAW+XKPO2TERkHVyUkIgM69+/P06dOoUvv/wSgiAAAPLy8rB+/Xp89dVXSE9PR/fu3bFu3TrnayZNmoTw8HAsXbrU+VhBQQH69euHiooKfPjhhxg/fjyOHz+O2NhYl/fbvXs3evTogWPHjiEtLU21PNdffz0WLlzofGzYsGFo0qQJVqxYAQA+lalRo0Z1Ok5E5D9sUSEir/zsZz9zBikAkJ2djSNHjqCmpgYA0LNnT5ft9+3bhxUrVqBx48bOv8GDB8PhcKCoqAi33nor0tLS0KZNG9x33334xz/+gcrKSgBAVlYWBg4ciK5du+IXv/gFli1bhrNnz3pdZm/LRETWwUCFiPwqJibG5d8XLlzAAw88gL179zr/9u3bhyNHjiAzMxOxsbHYvXs3Vq1aheTkZPzud79DVlYWzp07h/DwcHz66afYsGEDOnfujEWLFqFDhw7OYCIsLMytG+jy5ct1LhMRWQcDFSLyyhdffOHy788//xzt2rVDeHi46vY33HADvvrqK7Rt29btLyIiAgDQoEEDDBo0CM899xz279+PY8eOYePGjQAAQRDQp08fzJ07F3v27EFERISzGycxMRGlpaXO96qpqcHBgwc9fgYjZSIia2CgQkReKS4uxuOPP47Dhw9j1apVWLRoER555BHN7WfOnIlt27Zh2rRp2Lt3L44cOYL33nvPmbj6/vvv48UXX8TevXvx3Xff4Y033oDD4UCHDh3wxRdfYN68edi5cyeKi4uxdu1anD59Gp06dQIA3HLLLfjggw/wwQcf4NChQ5gyZQrOnTvn8TN4KhMRWUcDswtARKFlzJgxqKqqQu/evREeHo5HHnnEOeRXTbdu3bBlyxb89re/xc033wxRFJGZmYmRI0cCAJo0aYK1a9dizpw5uHjxItq1a4dVq1bhuuuuw9dff42tW7di4cKFKC8vR1paGv785z8jNzcXADBhwgTs27cPY8aMQYMGDfDYY49hwIABHj+DpzIRkXVw1A8RGaY2yoaIKJDY9UNERESWxUCFiIiILItdP0RERGRZbFEhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy/p/QnLwyocO47cAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -486,7 +646,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtOklEQVR4nO3deVxU5f4H8M8MOgjKorIbAmLuiKZppKKmVyRvZdrN1NyXFpfUMrWupbaA+ruldUu7Vlq3RW9lZpqluaaS4oKoFSlhWIJKCoggCDy/P2hOs5xZmWFmOJ/36zW+ZM6ZM885c+ac7zzP93kelRBCgIiIiEjB1K4uABEREZGrMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIo+xaNEiqFQqq9ZVqVRYtGiRU8vTr18/9OvXz223R0TWY0BERDZbt24dVCqV9GjQoAFatGiB8ePH4/fff3d18dxOdHS03vEKCQlBnz598Pnnnztk+6WlpVi0aBH27NnjkO0RKREDIiKy25IlS/Df//4Xq1evRnJyMj744AP07dsXN27ccMr7/fOf/0RZWZlTtu1sXbp0wX//+1/897//xVNPPYULFy5g2LBhWL16da23XVpaisWLFzMgIqqFBq4uABF5ruTkZHTv3h0AMHnyZAQFBWHp0qXYvHkzHnzwQYe/X4MGDdCggWdetlq0aIGHH35Y+nvs2LFo3bo1Xn31VTz66KMuLBkRAawhIiIH6tOnDwAgOztb7/mffvoJDzzwAJo1a4ZGjRqhe/fu2Lx5s946N2/exOLFi3HrrbeiUaNGaN68OXr37o0dO3ZI68jlEJWXl2P27NkIDg6Gn58f7r33Xvz2229GZRs/fjyio6ONnpfb5tq1a3HXXXchJCQE3t7e6NChA1atWmXTsbAkLCwM7du3R05Ojtn1Ll26hEmTJiE0NBSNGjVCfHw83nvvPWn5uXPnEBwcDABYvHix1Czn7PwpovrGM39qEZFbOnfuHACgadOm0nOnT59Gr1690KJFC8yfPx+NGzfG//73PwwdOhSfffYZ7r//fgA1gUlKSgomT56MHj16oLi4GEeOHMGxY8fwt7/9zeR7Tp48GR988AFGjRqFO++8E7t27cKQIUNqtR+rVq1Cx44dce+996JBgwb48ssv8fjjj6O6uhrTpk2r1ba1bt68ifPnz6N58+Ym1ykrK0O/fv1w9uxZTJ8+HTExMfjkk08wfvx4FBYW4oknnkBwcDBWrVqFxx57DPfffz+GDRsGAOjcubNDykmkGIKIyEZr164VAMS3334rLl++LM6fPy8+/fRTERwcLLy9vcX58+eldQcMGCDi4uLEjRs3pOeqq6vFnXfeKW699Vbpufj4eDFkyBCz7/v8888L3ctWRkaGACAef/xxvfVGjRolAIjnn39eem7cuHEiKirK4jaFEKK0tNRovaSkJNGqVSu95/r27Sv69u1rtsxCCBEVFSUGDRokLl++LC5fvixOnDghHnroIQFAzJgxw+T2VqxYIQCIDz74QHquoqJCJCQkiCZNmoji4mIhhBCXL1822l8isg2bzIjIbgMHDkRwcDAiIyPxwAMPoHHjxti8eTNuueUWAMCVK1ewa9cuPPjgg7h27RoKCgpQUFCAP/74A0lJSThz5ozUKy0wMBCnT5/GmTNnrH7/r776CgAwc+ZMvednzZpVq/3y8fGR/l9UVISCggL07dsXv/zyC4qKiuza5vbt2xEcHIzg4GDEx8fjk08+wZgxY7B06VKTr/nqq68QFhaGkSNHSs81bNgQM2fORElJCfbu3WtXWYjIGJvMiMhub7zxBtq0aYOioiK8++672LdvH7y9vaXlZ8+ehRACCxcuxMKFC2W3cenSJbRo0QJLlizBfffdhzZt2qBTp04YPHgwxowZY7bp59dff4VarUZsbKze823btq3Vfh04cADPP/880tLSUFpaqresqKgIAQEBNm+zZ8+eePHFF6FSqeDr64v27dsjMDDQ7Gt+/fVX3HrrrVCr9X+7tm/fXlpORI7BgIiI7NajRw+pl9nQoUPRu3dvjBo1CllZWWjSpAmqq6sBAE899RSSkpJkt9G6dWsAQGJiIrKzs/HFF19g+/btePvtt/Hqq69i9erVmDx5cq3LampAx6qqKr2/s7OzMWDAALRr1w6vvPIKIiMjodFo8NVXX+HVV1+V9slWQUFBGDhwoF2vJSLnY0BERA7h5eWFlJQU9O/fH//+978xf/58tGrVCkBNM481wUCzZs0wYcIETJgwASUlJUhMTMSiRYtMBkRRUVGorq5Gdna2Xq1QVlaW0bpNmzZFYWGh0fOGtSxffvklysvLsXnzZrRs2VJ6fvfu3RbL72hRUVHIzMxEdXW1Xi3RTz/9JC0HTAd7RGQ95hARkcP069cPPXr0wIoVK3Djxg2EhISgX79+eOutt5CXl2e0/uXLl6X///HHH3rLmjRpgtatW6O8vNzk+yUnJwMAXnvtNb3nV6xYYbRubGwsioqKkJmZKT2Xl5dnNFq0l5cXAEAIIT1XVFSEtWvXmiyHs9x9993Iz8/Hhg0bpOcqKyvx+uuvo0mTJujbty8AwNfXFwBkAz4isg5riIjIoebOnYt//OMfWLduHR599FG88cYb6N27N+Li4jBlyhS0atUKFy9eRFpaGn777TecOHECANChQwf069cP3bp1Q7NmzXDkyBF8+umnmD59usn36tKlC0aOHIk333wTRUVFuPPOO7Fz506cPXvWaN2HHnoI8+bNw/3334+ZM2eitLQUq1atQps2bXDs2DFpvUGDBkGj0eCee+7BI488gpKSEqxZswYhISGyQZ0zTZ06FW+99RbGjx+Po0ePIjo6Gp9++ikOHDiAFStWwM/PD0BNEniHDh2wYcMGtGnTBs2aNUOnTp3QqVOnOi0vkUdzdTc3IvI82m736enpRsuqqqpEbGysiI2NFZWVlUIIIbKzs8XYsWNFWFiYaNiwoWjRooX4+9//Lj799FPpdS+++KLo0aOHCAwMFD4+PqJdu3bipZdeEhUVFdI6cl3ky8rKxMyZM0Xz5s1F48aNxT333CPOnz8v2w19+/btolOnTkKj0Yi2bduKDz74QHabmzdvFp07dxaNGjUS0dHRYunSpeLdd98VAEROTo60ni3d7i0NKWBqexcvXhQTJkwQQUFBQqPRiLi4OLF27Vqj1x48eFB069ZNaDQadsEnsoNKCJ16YSIiIiIFYg4RERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixePAjFaqrq7GhQsX4Ofnx2HyiYiIPIQQAteuXUNERITRRMm6GBBZ6cKFC4iMjHR1MYiIiMgO58+fxy233GJyOQMiK2mHyD9//jz8/f1dXBoiIiKyRnFxMSIjI6X7uCkMiKykbSbz9/dnQERERORhLKW7MKmaiIiIFI8BERERESkeAyIiIiJSPOYQERGR4lVVVeHmzZuuLgbZoWHDhvDy8qr1dhgQERGRYgkhkJ+fj8LCQlcXhWohMDAQYWFhtRonkAEREREpljYYCgkJga+vLwfe9TBCCJSWluLSpUsAgPDwcLu3xYCIiIgUqaqqSgqGmjdv7urikJ18fHwAAJcuXUJISIjdzWdMqiYiIkXS5gz5+vq6uCRUW9rPsDZ5YAyIiIhI0dhM5vkc8RkyICIiIiLFY0BEREREAGpqWjZt2uTqYujZs2cPVCqV03sCMiBysbyiMhzMLkBeUZmri0JERAqxaNEidOnSxdXFcCvsZeZCG9JzsWDjSVQLQK0CUobFYcTtLV1dLCIiIsVhDZGL5BWVScEQAFQL4JmNp1hTREREFlVXVyMlJQUxMTHw8fFBfHw8Pv30UwB/NTHt3LkT3bt3h6+vL+68805kZWUBANatW4fFixfjxIkTUKlUUKlUWLdunbTtgoIC3H///fD19cWtt96KzZs3W1Um7ft+88036Nq1K3x8fHDXXXfh0qVL2LZtG9q3bw9/f3+MGjUKpaWl0uvKy8sxc+ZMhISEoFGjRujduzfS09Mdd7CsxIDIRXIKrkvBkFaVEDhXUCr/AiIicmt1mQKRkpKC999/H6tXr8bp06cxe/ZsPPzww9i7d6+0zrPPPot//etfOHLkCBo0aICJEycCAEaMGIEnn3wSHTt2RF5eHvLy8jBixAjpdYsXL8aDDz6IzMxM3H333Rg9ejSuXLliddkWLVqEf//73zh48CDOnz+PBx98ECtWrMBHH32ErVu3Yvv27Xj99del9Z9++ml89tlneO+993Ds2DG0bt0aSUlJNr2nIzAgcpGYoMZQG/QS9FKpEB3E8TCIiDzNhvRc9ErdhVFrDqFX6i5sSM912nuVl5fj5ZdfxrvvvoukpCS0atUK48ePx8MPP4y33npLWu+ll15C37590aFDB8yfPx8HDx7EjRs34OPjgyZNmqBBgwYICwtDWFiYNLghAIwfPx4jR45E69at8fLLL6OkpASHDx+2unwvvvgievXqha5du2LSpEnYu3cvVq1aha5du6JPnz544IEHsHv3bgDA9evXsWrVKixfvhzJycno0KED1qxZAx8fH7zzzjuOO2hWYEDkIuEBPkgZFgevP8dO8FKp8PKwTggP8LHwSiIicid1nQJx9uxZlJaW4m9/+xuaNGkiPd5//31kZ2dL63Xu3Fn6v3ZKC+0UF+bovq5x48bw9/e36nVyrw8NDYWvry9atWql95x2e9nZ2bh58yZ69eolLW/YsCF69OiBH3/80er3dAQmVbvQiNtbIrFNMM4VlCI6yJfBEBGRBzKXAuGM63pJSQkAYOvWrWjRooXeMm9vbykoatiwofS8duDC6upqi9vXfZ32tda8Tu71KpWq1turKwyIXCw8wIeBEBGRB9OmQOgGRc5MgejQoQO8vb2Rm5uLvn37Gi3XrSUyRaPRoKqqyhnFs0lsbCw0Gg0OHDiAqKgoADXTb6Snp2PWrFl1WhYGRERERLWgTYF4ZuMpVAnh9BQIPz8/PPXUU5g9ezaqq6vRu3dvFBUV4cCBA/D395cCC3Oio6ORk5ODjIwM3HLLLfDz84O3t7dTymtO48aN8dhjj2Hu3Llo1qwZWrZsiWXLlqG0tBSTJk2q07IwICIiIqqluk6BeOGFFxAcHIyUlBT88ssvCAwMxG233YZnnnnGquao4cOHY+PGjejfvz8KCwuxdu1ajB8/3qllNiU1NRXV1dUYM2YMrl27hu7du+Obb75B06ZN67QcKiGEsLwaFRcXIyAgAEVFRfD393d1cYiIqJZu3LiBnJwcxMTEoFGjRq4uDtWCuc/S2vs3e5kRERGR4jEgIiIiIoseffRRvW7+uo9HH33U1cWrNZcGRPv27cM999yDiIgI2Rl2tUOKGz6WL18urRMdHW20PDU1VW87mZmZ6NOnDxo1aoTIyEgsW7asLnaPiIio3liyZAkyMjJkH0uWLHF18WrNpUnV169fR3x8PCZOnIhhw4YZLc/Ly9P7e9u2bZg0aRKGDx+u9/ySJUswZcoU6W8/Pz/p/8XFxRg0aBAGDhyI1atX4+TJk5g4cSICAwMxdepUB+8RERFR/RQSEoKQkBBXF8NpXBoQJScnIzk52eTysLAwvb+/+OIL9O/fX2/ES6AmADJcV+vDDz9ERUUF3n33XWg0GnTs2BEZGRl45ZVXGBARERERAA/KIbp48SK2bt0qOy5Bamoqmjdvjq5du2L58uWorKyUlqWlpSExMREajUZ6LikpCVlZWbh69arJ9ysvL0dxcbHeg4iI6h93HDWZbOOIz9BjxiF677334OfnZ9S0NnPmTNx2221o1qwZDh48iAULFiAvLw+vvPIKACA/Px8xMTF6rwkNDZWWmRrnICUlBYsXL3bCnhARkTvQaDRQq9W4cOECgoODodFopCkuyDMIIVBRUYHLly9DrVbrVX7YymMConfffRejR482Gl9gzpw50v87d+4MjUaDRx55BCkpKbUadXPBggV62y4uLkZkZKTd2yMiIveiVqsRExODvLw8XLhwwdXFoVrw9fVFy5YtoVbb3/DlEQHRd999h6ysLGzYsMHiuj179kRlZSXOnTuHtm3bIiwsDBcvXtRbR/u3qbwjoGaCPFcMY05ERHVHo9GgZcuWqKysdIu5vch2Xl5eaNCgQa1r9zwiIHrnnXfQrVs3xMfHW1w3IyMDarVayoRPSEjAs88+i5s3b0oz7u7YsQNt27at82HBiYjI/WhnZDeclZ2UxaVJ1SUlJdIYBgCkieZyc3OldYqLi/HJJ59g8uTJRq9PS0vDihUrcOLECfzyyy/48MMPMXv2bDz88MNSsDNq1ChoNBpMmjQJp0+fxoYNG7By5Uq95jAiIiJSNpfWEB05cgT9+/eX/tYGKePGjcO6desAAOvXr4cQAiNHjjR6vbe3N9avX49FixahvLwcMTExmD17tl6wExAQgO3bt2PatGno1q0bgoKC8Nxzz7HLPREREUk4uauVOLkrERGR5+HkrkRERERWYkBEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBTPpQHRvn37cM899yAiIgIqlQqbNm3SWz5+/HioVCq9x+DBg/XWuXLlCkaPHg1/f38EBgZi0qRJKCkp0VsnMzMTffr0QaNGjRAZGYlly5Y5e9eIiIjIg7g0ILp+/Tri4+PxxhtvmFxn8ODByMvLkx4ff/yx3vLRo0fj9OnT2LFjB7Zs2YJ9+/Zh6tSp0vLi4mIMGjQIUVFROHr0KJYvX45FixbhP//5j9P2i4iIiDxLA1e+eXJyMpKTk82u4+3tjbCwMNllP/74I77++mukp6eje/fuAIDXX38dd999N/7v//4PERER+PDDD1FRUYF3330XGo0GHTt2REZGBl555RW9wImIiIiUy+1ziPbs2YOQkBC0bdsWjz32GP744w9pWVpaGgIDA6VgCAAGDhwItVqNQ4cOSeskJiZCo9FI6yQlJSErKwtXr141+b7l5eUoLi7WexAREVH95NYB0eDBg/H+++9j586dWLp0Kfbu3Yvk5GRUVVUBAPLz8xESEqL3mgYNGqBZs2bIz8+X1gkNDdVbR/u3dh05KSkpCAgIkB6RkZGO3DUiIiJyIy5tMrPkoYcekv4fFxeHzp07IzY2Fnv27MGAAQOc+t4LFizAnDlzpL+Li4sZFBEREdVTbl1DZKhVq1YICgrC2bNnAQBhYWG4dOmS3jqVlZW4cuWKlHcUFhaGixcv6q2j/dtUbhJQk7vk7++v9yAiIqL6yaMCot9++w1//PEHwsPDAQAJCQkoLCzE0aNHpXV27dqF6upq9OzZU1pn3759uHnzprTOjh070LZtWzRt2rRud4CIiIjckksDopKSEmRkZCAjIwMAkJOTg4yMDOTm5qKkpARz587F999/j3PnzmHnzp2477770Lp1ayQlJQEA2rdvj8GDB2PKlCk4fPgwDhw4gOnTp+Ohhx5CREQEAGDUqFHQaDSYNGkSTp8+jQ0bNmDlypV6zWFERESkbCohhHDVm+/Zswf9+/c3en7cuHFYtWoVhg4diuPHj6OwsBAREREYNGgQXnjhBb0k6StXrmD69On48ssvoVarMXz4cLz22mto0qSJtE5mZiamTZuG9PR0BAUFYcaMGZg3b55NZS0uLkZAQACKiorYfEZEROQhrL1/uzQg8iQMiIiIiDyPtfdvj8ohIiIiInIGBkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEClEXlEZDmYXIK+ozNVFISIicjsNXF0Acr4N6blYsPEkqgWgVgEpw+Iw4vaWri4WERGR22ANUT2XV1QmBUMAUC2AZzaeYk0RERGRDgZE9VxOwXUpGNKqEgLnCkpdUyAiIiI3xIConosJagy1Sv85L5UK0UG+rikQERGRG2JAVI/lFZUhp+A65iW3g5eqJiryUqnw8rBOCA/wcXHpiIiI3AeTquspw0TqeYPbofMtgYgO8mUwREREZIA1RPWQXCL1sq+zGAwRERGZwICoHmIiNRERkW0YENVDTKQmIiKyDQOieig8wAcpw+KYSE1ERGQlJlXXUyNub4nENsE4V1DK3CEiIiILGBDVY+EBPgyEiIiIrMAmMyIiIlI8BkRERESkeAyIiIiISPFcGhDt27cP99xzDyIiIqBSqbBp0yZp2c2bNzFv3jzExcWhcePGiIiIwNixY3HhwgW9bURHR0OlUuk9UlNT9dbJzMxEnz590KhRI0RGRmLZsmV1sXtERETkIVwaEF2/fh3x8fF44403jJaVlpbi2LFjWLhwIY4dO4aNGzciKysL9957r9G6S5YsQV5envSYMWOGtKy4uBiDBg1CVFQUjh49iuXLl2PRokX4z3/+49R9IyIiIs/h0l5mycnJSE5Oll0WEBCAHTt26D3373//Gz169EBubi5atmwpPe/n54ewsDDZ7Xz44YeoqKjAu+++C41Gg44dOyIjIwOvvPIKpk6d6rid8SDaSV9jghqzFxoRERE8LIeoqKgIKpUKgYGBes+npqaiefPm6Nq1K5YvX47KykppWVpaGhITE6HRaKTnkpKSkJWVhatXr5p8r/LychQXF+s96oMN6bnolboLo9YcQq/UXdiQnuvqIhEREbmcxwREN27cwLx58zBy5Ej4+/tLz8+cORPr16/H7t278cgjj+Dll1/G008/LS3Pz89HaGio3ra0f+fn55t8v5SUFAQEBEiPyMhIB+9R3ZOb9PWZjaeQV1Tm2oIRERG5mEcMzHjz5k08+OCDEEJg1apVesvmzJkj/b9z587QaDR45JFHkJKSAm9vb7vfc8GCBXrbLi4u9vigyNykr2w6IyIiJXP7gEgbDP3666/YtWuXXu2QnJ49e6KyshLnzp1D27ZtERYWhosXL+qto/3bVN4RAHh7e9cqoHJH2klfdYMiTvpKRETk5k1m2mDozJkz+Pbbb9G8eXOLr8nIyIBarUZISAgAICEhAfv27cPNmzeldXbs2IG2bduiadOmTiu7O+Kkr0RERPJcWkNUUlKCs2fPSn/n5OQgIyMDzZo1Q3h4OB544AEcO3YMW7ZsQVVVlZTz06xZM2g0GqSlpeHQoUPo378//Pz8kJaWhtmzZ+Phhx+Wgp1Ro0Zh8eLFmDRpEubNm4dTp05h5cqVePXVV12yz67GSV+JiIiMqYQQwvJqzrFnzx7079/f6Plx48Zh0aJFiImJkX3d7t270a9fPxw7dgyPP/44fvrpJ5SXlyMmJgZjxozBnDlz9Jq7MjMzMW3aNKSnpyMoKAgzZszAvHnzbCprcXExAgICUFRUZLHZjoiIiNyDtfdvlwZEnoQBERERkeex9v7t1jlERERERHWBAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSvgbUrFhcXW71Rf39/uwpDRERE5ApWB0SBgYFQqVRm1xFCQKVSoaqqqtYFIyIiIqorVgdEu3fvdmY5iIiIiFzG6oCob9++ziwHERERkctYHRAZKiwsxDvvvIMff/wRANCxY0dMnDgRAQEBDiscERERUV2wq5fZkSNHEBsbi1dffRVXrlzBlStX8MorryA2NhbHjh1zdBmJiIiInEolhBC2vqhPnz5o3bo11qxZgwYNaiqZKisrMXnyZPzyyy/Yt2+fwwvqasXFxQgICEBRURF70REREXkIa+/fdgVEPj4+OH78ONq1a6f3/A8//IDu3bujtLTU9hK7OQZEREREnsfa+7ddTWb+/v7Izc01ev78+fPw8/OzZ5NERERELmNXQDRixAhMmjQJGzZswPnz53H+/HmsX78ekydPxsiRIx1dRiIiIiKnsisg+r//+z8MGzYMY8eORXR0NKKjozF+/Hg88MADWLp0qdXb2bdvH+655x5ERERApVJh06ZNesuFEHjuuecQHh4OHx8fDBw4EGfOnNFb58qVKxg9ejT8/f0RGBiISZMmoaSkRG+dzMxM9OnTB40aNUJkZCSWLVtmz24TERFRPWVXQKTRaLBy5UpcvXoVGRkZyMjIwJUrV/Dqq6/C29vb6u1cv34d8fHxeOONN2SXL1u2DK+99hpWr16NQ4cOoXHjxkhKSsKNGzekdUaPHo3Tp09jx44d2LJlC/bt24epU6dKy4uLizFo0CBERUXh6NGjWL58ORYtWoT//Oc/9uw6ERER1UfCTQAQn3/+ufR3dXW1CAsLE8uXL5eeKywsFN7e3uLjjz8WQgjxww8/CAAiPT1dWmfbtm1CpVKJ33//XQghxJtvvimaNm0qysvLpXXmzZsn2rZta1P5ioqKBABRVFRkz+4RERGRC1h7/7arhujGjRtYvnw57r77bnTv3h233Xab3sMRcnJykJ+fj4EDB0rPBQQEoGfPnkhLSwMApKWlITAwEN27d5fWGThwINRqNQ4dOiStk5iYCI1GI62TlJSErKwsXL161eT7l5eXo7i4WO9BRERE9ZNdI1VPmjQJ27dvxwMPPIAePXpYnPTVHvn5+QCA0NBQvedDQ0OlZfn5+QgJCdFb3qBBAzRr1kxvnZiYGKNtaJc1bdpU9v1TUlKwePHi2u8IERERuT27AqItW7bgq6++Qq9evRxdHrexYMECzJkzR/q7uLgYkZGRLiwREREROYtdTWYtWrRw+nhDYWFhAICLFy/qPX/x4kVpWVhYGC5duqS3vLKyEleuXNFbR24buu8hx9vbG/7+/noPIiIiqp/sCoj+9a9/Yd68efj1118dXR5JTEwMwsLCsHPnTum54uJiHDp0CAkJCQCAhIQEFBYW4ujRo9I6u3btQnV1NXr27Cmts2/fPty8eVNaZ8eOHWjbtq3J5jIiIiJSFrsCou7du+PGjRto1aoV/Pz80KxZM72HtUpKSqRu+0BNInVGRgZyc3OhUqkwa9YsvPjii9i8eTNOnjyJsWPHIiIiAkOHDgUAtG/fHoMHD8aUKVNw+PBhHDhwANOnT8dDDz2EiIgIAMCoUaOg0WgwadIknD59Ghs2bMDKlSv1msOIiIhI2ezKIRo5ciR+//13vPzyywgNDbU7qfrIkSPo37+/9Lc2SBk3bhzWrVuHp59+GtevX8fUqVNRWFiI3r174+uvv0ajRo2k13z44YeYPn06BgwYALVajeHDh+O1116TlgcEBGD79u2YNm0aunXrhqCgIDz33HN6YxURERGRstk1uauvry/S0tIQHx/vjDK5JU7uSkRE5HmcOrlru3btUFZWZnfhiIiIiNyJXQFRamoqnnzySezZswd//PEHBzAkIiIij2ZXk5laXRNHGeYOCSGgUqlQVVXlmNK5ETaZEREReR5r7992JVXv3r3b7oIRERERuRu7AqK+fftatd7jjz+OJUuWICgoyJ63ISIiIqoTduUQWeuDDz5gThERERG5PacGRHakJxERERHVOacGRERERESegAERERERKR4DIiIiIlI8BkRERESkeE4NiB5++GEOYuggeUVlOJhdgLwiTplCRETkaHaNQwQAhYWFOHz4MC5duoTq6mq9ZWPHjgUArFq1qnalIwDAhvRcLNh4EtUCUKuAlGFxGHF7S1cXi4iIqN6wa+qOL7/8EqNHj0ZJSQn8/f31pvBQqVS4cuWKQwvpDlw1dUdeURl6pe5Ctc6n5KVSYf/8/ggP8KmzchAREXkip852/+STT2LixIkoKSlBYWEhrl69Kj3qYzDkSjkF1/WCIQCoEgLnCkpdUyAiIqJ6yK6A6Pfff8fMmTPh6+vr6PKQgZigxlDrz6ELL5UK0UE89kRERI5iV0CUlJSEI0eOOLosJCM8wAcpw+Lg9WezpJdKhZeHdWJzGRERkQNZnVS9efNm6f9DhgzB3Llz8cMPPyAuLg4NGzbUW/fee+91XAkJI25vicQ2wThXUIroIF8GQ0RERA5mdVK1Wm1dZZJKpUJVVVWtCuWOnJ1UnVdUhpyC64gJasyAh4iIyEGsvX9bXUNk2LWeHIfd6omIiFzLrhyi999/H+Xl5UbPV1RU4P333691oZQkr6hMCoYAoFoACzae5ACMREREdciugGjChAkoKioyev7atWuYMGFCrQulJHLd6qsFsPZAjmsKREREpEB2BURCCL3BGLV+++03BAQE1LpQSiLXrR4A3t6Xw1oiIiKiOmLT1B1du3aFSqWCSqXCgAED0KDBXy+vqqpCTk4OBg8e7PBC1mfhAT6Y1DsGa77TrxGqBnCuoJQJ1kRERHXApoBo6NChAICMjAwkJSWhSZMm0jKNRoPo6GgMHz7coQVUgom9Y/D2dznQbTnj4ItERER1x6aA6PnnnwcAREdHY8SIEWjUqJFTCqU04QE+SB0eh2c2nkKVEBx8kYiIqI7ZNbmrVkVFhexs9y1b1r8u43UxuWteURkHXyQiInIgh49DpOvMmTOYOHEiDh48qPe8Ntm6Pg7MWBfCA3wYCBEREbmAXQHR+PHj0aBBA2zZsgXh4eGyPc6IiIiIPIVdAVFGRgaOHj2Kdu3aObo8RERERHXOrnGIOnTogIKCAkeXhYiIiMgl7AqIli5diqeffhp79uzBH3/8geLiYr0HERERkSexq5eZ7sz3uvlD9Tmpui56mREREZFjObWX2e7du+0uGLmvvKIy5BRcR0xQY/Z2IyIiRbGryaxv375Qq9VYs2YN5s+fj9atW6Nv377Izc2Fl5eXo8tIdWBDei56pe7CqDWH0Ct1Fzak57q6SERERHXGroDos88+Q1JSEnx8fHD8+HGUl5cDAIqKivDyyy87tIDR0dHS/Gm6j2nTpgEA+vXrZ7Ts0Ucf1dtGbm4uhgwZAl9fX4SEhGDu3LmorKx0aDmdJa+oDAezC5w60WteURkWbDyJ6j8bT6sF8MzGU5xcloiIFMOuJrMXX3wRq1evxtixY7F+/Xrp+V69euHFF190WOEAID09XS8n6dSpU/jb3/6Gf/zjH9JzU6ZMwZIlS6S/fX3/mgOsqqoKQ4YMQVhYGA4ePIi8vDyMHTsWDRs2dHjw5mgb0nOlQEWtAlKGxWHE7Y4fBTyn4LoUDGlVCcHJZYmISDHsqiHKyspCYmKi0fMBAQEoLCysbZn0BAcHIywsTHps2bIFsbGx6Nu3r7SOr6+v3jq6SVPbt2/HDz/8gA8++ABdunRBcnIyXnjhBbzxxhuoqKhwaFkdqS5rbWKCGkNtMLYmJ5clIiIlsSsgCgsLw9mzZ42e379/P1q1alXrQplSUVGBDz74ABMnTtTr3fbhhx8iKCgInTp1woIFC1BaWiotS0tLQ1xcHEJDQ6XnkpKSUFxcjNOnT5t8r/LycpcOJ2Cu1sbRwgN8kDIsDl5/HlNOLktEREpjV5PZlClT8MQTT+Ddd9+FSqXChQsXkJaWhqeeegoLFy50dBklmzZtQmFhIcaPHy89N2rUKERFRSEiIgKZmZmYN28esrKysHHjRgBAfn6+XjAEQPo7Pz/f5HulpKRg8eLFjt8JK2lrbXSDIku1NrXpJTbi9pZIbBPMyWWJiEiR7AqI5s+fj+rqagwYMAClpaVITEyEt7c3nnrqKcyYMcPRZZS88847SE5ORkREhPTc1KlTpf/HxcUhPDwcAwYMQHZ2NmJjY+1+rwULFmDOnDnS38XFxYiMjLR7e7bS1to8s/EUqoSwWGtjb76RYRDFQIiIiJTIroBIpVLh2Wefxdy5c3H27FmUlJSgQ4cOaNKkiaPLJ/n111/x7bffSjU/pvTs2RMAcPbsWcTGxiIsLAyHDx/WW+fixYsAapr+TPH29oa3t3ctS1071tbamMo3SmwTbDbAqaukbSIiIndnVw6RlkajQYcOHdCjRw+nBkMAsHbtWoSEhGDIkCFm18vIyAAAhIeHAwASEhJw8uRJXLp0SVpnx44d8Pf3R4cOHZxWXkcJD/BBQmxzs4GNPflG7GpPRET0l1oFRHWluroaa9euxbhx49CgwV+VWtnZ2XjhhRdw9OhRnDt3Dps3b8bYsWORmJiIzp07AwAGDRqEDh06YMyYMThx4gS++eYb/POf/8S0adNcXgPkKPb0EqvLpG0iIiJ35xEB0bfffovc3FxMnDhR73mNRoNvv/0WgwYNQrt27fDkk09i+PDh+PLLL6V1vLy8sGXLFnh5eSEhIQEPP/wwxo4dqzdukaezp5cYu9oTERH9xa7JXZXIEyZ3zSsqs6mX2Ib0XKOkbeYQERFRfeLUyV3JPdnaS4xd7YmIiGowIFI4drUnIiLykBwiIiIiImdiQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIPlldUhoPZBcgrKnN1UYiIiDwaZ7v3UBvSc7Fg40lUC0CtAlKGxWHE7S1dXSwiIiKPxBoiD5RXVCYFQwBQLYBnNp5iTREREZGdGBB5oJyC61IwpFUlBM4VlLqmQERERB6OAZEHiglqDLVK/zkvlQrRQb6uKRAREZGHY0DkgcIDfJAyLA5eqpqoyEulwsvDOiE8wMfFJVMeJrYTEdUPTKr2UCNub4nENsE4V1CK6CBfBkMuYC6xPa+oDDkF1xET1JifDRGRB2BA5MHCA3x4s3URU4ntiW2Cse/ny+wBSETkYdhkRmQHU4ntx369yh6AREQeiAERkR1MJbZXC8EegEREHogBEZEdTCW2d49uxh6AREQeiDlEboJJuJ7HVGJ7yrA4PLPxFKqEYA9AIiIPwYDIDXAaDs8ll9jOHoBERJ6HTWYuxmk46qfwAB8kxDZnMERE5CEYELkYp+EgIiJyPQZELsZpOIiIiFyPAZGLcRoOIiIi12NStRtgEi4REZFrMSByE5yGg4iIyHXYZEYOxdnfiYjIE7GGiByG4ykREZGncvsaokWLFkGlUuk92rVrJy2/ceMGpk2bhubNm6NJkyYYPnw4Ll68qLeN3NxcDBkyBL6+vggJCcHcuXNRWVlZ17tSr3E8JSIi8mQeUUPUsWNHfPvtt9LfDRr8VezZs2dj69at+OSTTxAQEIDp06dj2LBhOHDgAACgqqoKQ4YMQVhYGA4ePIi8vDyMHTsWDRs2xMsvv1zn+2KJp07hYW48JU/aDyIiUiaPCIgaNGiAsLAwo+eLiorwzjvv4KOPPsJdd90FAFi7di3at2+P77//HnfccQe2b9+OH374Ad9++y1CQ0PRpUsXvPDCC5g3bx4WLVoEjUZT17tjkrVNTu4YNGnHU9INijieEhEReQq3bzIDgDNnziAiIgKtWrXC6NGjkZubCwA4evQobt68iYEDB0rrtmvXDi1btkRaWhoAIC0tDXFxcQgNDZXWSUpKQnFxMU6fPm3yPcvLy1FcXKz3cCZrm5w2pOeiV+oujFpzCL1Sd2FDeq5Ty2UtjqdkGhPNiYjcn9vXEPXs2RPr1q1D27ZtkZeXh8WLF6NPnz44deoU8vPzodFoEBgYqPea0NBQ5OfnAwDy8/P1giHtcu0yU1JSUrB48WLH7owZ1jQ5mQqaEtsEu0XgwfGUjDHRnIjIM7h9QJScnCz9v3PnzujZsyeioqLwv//9Dz4+zrvhLliwAHPmzJH+Li4uRmRkpNPez5omJ0/I0+F4Sn9x9wCWiIj+4hFNZroCAwPRpk0bnD17FmFhYaioqEBhYaHeOhcvXpRyjsLCwox6nWn/lstL0vL29oa/v7/ew5msaXLylHnP2ERUgxP3EhF5Do8LiEpKSpCdnY3w8HB069YNDRs2xM6dO6XlWVlZyM3NRUJCAgAgISEBJ0+exKVLl6R1duzYAX9/f3To0KHOy2/OiNtbYv/8/vh4yh3YP7+/UdOKJ+TpuGuOkyt4SgBLRESASgghLK/mOk899RTuueceREVF4cKFC3j++eeRkZGBH374AcHBwXjsscfw1VdfYd26dfD398eMGTMAAAcPHgRQ0+2+S5cuiIiIwLJly5Cfn48xY8Zg8uTJNnW7Ly4uRkBAAIqKipxeW2RJXlGZW+bp5BWVoVfqLqNmv/3z+7tVOevShvRcPLPxFKqEkAJY5hAREdUda+/fbp9D9Ntvv2HkyJH4448/EBwcjN69e+P7779HcHAwAODVV1+FWq3G8OHDUV5ejqSkJLz55pvS6728vLBlyxY89thjSEhIQOPGjTFu3DgsWbLEVbtUa+6ap+MJOU51jYnmRESewe1riNyFO9UQuSvWEBERkbux9v7tcTlE5L48IceJiIhIjts3mZFnYRMRERF5IgZE9Yi7TOnhrjlOREREpjAgqic4IjIREZH9mENUD1g7DxoRERHJY0BUD3BEZCIiotphQFQP1OWIyJyWg4iI6iMGRPVAXXV357QcRERUX3FgRit5wsCMzpzSg4MuEhGRJ6o3U3eQ9ZzZ3Z3TchARUX3GJjOyCmdudzzmYxERuQ8GRGQVTsvhWMzHIiJyL8whspIn5BDVBWfmKSkF87GIiOoOc4jIKTgtR+0xH4uIyP2wyYychjky8piPRUTkfhgQkVMwR8Z0QMh8LCIi98McIisxh8h6zJGxbrJd5mMRETmftfdv1hCRwyl9bjVrJ9sND/BBQmxzBkNERG6AARE5jLaJqLHGS9E5MkoPCImIPBF7mZFDGDYR3d+1BTYdv4AqIRSXI6NNmjZsMlRKQEhEZKu8ojLkFFxHTFBjl90rGBB5AHc4UcyRayLadPwCNj6egNKKasXlyGiTpp/ZeMotAkJ3P3+ISNmsybmsCwyI3Jy7nCjmmGoiKq2oRkJsc9cUysVG3N4SiW2CXZ407QnnDxEpl6mcy8Q2wXV+3WQOkRuzNjnX1TiujjxXJ017yvlDRMrlTjmXDIjcmDudKLoMx9exZ1wdRw3ayMEfTXPX84eISMudflCzycyNuVNyrjYP5eTvRVi67SejJhhbmogc1YzD5iDz3On8ISKS4045lxyY0UquGphxQ3qu0YlS1zd93cDDkK0DLjpq0MbabkcpicbucP4QEVnizIFqOblrPWGq5sXcDd2RN3vDPBRDtk5K6qiJTWuznfpUs2Tps3aX5G4iInPcYeJwBkQewPBEMXdDd/TNXi7w0GVrE4yjmnHs3Y479WioLWs/a3e40BARuTsmVXsYcz2HHN2rKK+oDFeuV0BlYrk9bb2OmtjU3u3Ul0Rj9iAjInIs1hB5GHM3dAHhkOYoQL/2QYWah0BN4PH04LbofEug3U0wjmrGsWc79SXR2FFNj0REVIMBkYexdEOv7c0+r6gMR85d0at9EH9u9/WHuqJbdFOH3HAd1Yxj63bcqUdDbdSXwI6IyF0wIPIwlm7o1t7s5ZJxzfUmqxaASlVTM6EthyvVJnG8PiQa15fAjojIXbDbvZVc1e3eFHNdFC11X5RLxk1sE2zUjV2X6s82M21tkSt7ZtWnXmK15cyuqkRE9YG1928GRFZyh4DIEd3p5cbvUauAaf1j8fqubNnXqFWA+DMY0vJSqbDx8QRcr6iq07F8HDWOERERKQPHIapnHFUrIpeMWy0gGwypAbw+qiuqhcCMjzP0llUJgaFvHKzzGiMmExMRkTO4fbf7lJQU3H777fDz80NISAiGDh2KrKwsvXX69esHlUql93j00Uf11snNzcWQIUPg6+uLkJAQzJ07F5WVlXW5K3aT62K94LOTdnWxlps3Ro6XSoWU4XEY0jkC3aObyb5GG5c4osu3tXOSudO8N0REVH+4fUC0d+9eTJs2Dd9//z127NiBmzdvYtCgQbh+/breelOmTEFeXp70WLZsmbSsqqoKQ4YMQUVFBQ4ePIj33nsP69atw3PPPVfXu2MX2VodAGv3n7N5W4bj98hZOKQ99s/vL9X4GL5GLjiqEgJbM/PsCoo2pOeiV+oujFpzCL1Sd2FDeq7V5WcyMREROYLH5RBdvnwZISEh2Lt3LxITEwHU1BB16dIFK1askH3Ntm3b8Pe//x0XLlxAaGgoAGD16tWYN28eLl++DI1GY/F9XZlDlFdUhjtTdsHwg1KrgAPz77IrGMgrKsOxX69i+kfHjXKDTOXjaBN4fTVq3P/mQdkEbFubz+zNCXJ1MrFS5kIjIvJ01t6/3b6GyFBRUREAoFmzZnrPf/jhhwgKCkKnTp2wYMEClJb+NfJwWloa4uLipGAIAJKSklBcXIzTp0/Lvk95eTmKi4v1Hq4SHuCDKX1ijJ6vFrB7hOXwAB8M6RyB1OHW17aEB/ggIbY54iObmqxlsrX5zN6Ro7VlcUUwYkuNFhEReQaPSqqurq7GrFmz0KtXL3Tq1El6ftSoUYiKikJERAQyMzMxb948ZGVlYePGjQCA/Px8vWAIgPR3fn6+7HulpKRg8eLFTtoT203oHYO39+c4fCA+e8fk0b5ua2YeXtz6o94yW5KcrRlg0J1qY+rTXGhERPQXj6ohmjZtGk6dOoX169frPT916lQkJSUhLi4Oo0ePxvvvv4/PP/8c2dny3citsWDBAhQVFUmP8+fP17b4teLM3BnD2hZrE5xrapnCzSY5W9qWpf1yt9oYZ8yFZu3xJqL6jdcC1/KYGqLp06djy5Yt2LdvH2655Raz6/bs2RMAcPbsWcTGxiIsLAyHDx/WW+fixYsAgLCwMNlteHt7w9vb2wEldxxnjrCsrYU5+VsRln79k9Xd+82NmGztUAGm9ssda2McPWUGB5kkpXGnGl93osRrgbudC24fEAkhMGPGDHz++efYs2cPYmKMc2kMZWRkAADCw8MBAAkJCXjppZdw6dIlhISEAAB27NgBf39/dOjQwWlldwZHzQGmy9SUHdYGIHIBjexQARtPol2YH+IjmxptQ26/3HHMIUdOmeGOAR+RMynxpq/LVACgxGuBO54Lbh8QTZs2DR999BG++OIL+Pn5STk/AQEB8PHxQXZ2Nj766CPcfffdaN68OTIzMzF79mwkJiaic+fOAIBBgwahQ4cOGDNmDJYtW4b8/Hz885//xLRp09yuFqiuGX4RDVkbgBgGNKYGgBz6xkGkDq858S39OpCrjVEBOHvpmkunqnBUTZ07BnxEzqLEm74ucwFAfb4WyF3n3fVccPuAaNWqVQBqutbrWrt2LcaPHw+NRoNvv/0WK1aswPXr1xEZGYnhw4fjn//8p7Sul5cXtmzZgsceewwJCQlo3Lgxxo0bhyVLltTlrjiVvVWPcl9EXfY2B8kFM0DNYI7PbDyFwtKbFpvmDGtjtK9f+MVpPPfFaaQOr5mDzRVVro6oqeOM9aQk9fmmb4mlAKC+XgtMBYHuei64fUBkaZikyMhI7N271+J2oqKi8NVXXzmqWG6lNlWPpgIXoHaJ29pgRq72qUoIpG77yWika7lfByNub4l2YX64742Des8LAPM/Oyn9312qXG3BGetJSay96btbXokjWAoA6uO1wFwQ6K4BoNsHRGRebase5b6ITye3RecWgbVultIGM9o5z7RUf04Wq8vcr4PrFVWy29fdhLtUudrKmYnyRLXlyODEmpu+O+aVOII1AUB9uxaYCwITYpu7ZQDIgMjD2VL1aOri5swvYnxkU6QOj8P8jSf/CoJETS6Q4QjZpn4dxAQ1NlpfjjtUudrDUYny9fGXNbmOM4ITc9cad80rkaP9rjXWeOF6RZXF75y1NUDO6DTjKid/LzJ6Tvc6744BIAMiD2dt1aOli5szv4iJbYL1ohmBmloitaiZk82aEbJTh8dh/mcnzQZF7lDl6ir19Zc1uYYzgxNT1xp3zSsxJNcr15rvnDsGAM6SV1SGpdt+Mnr+6cFt9fbb3QJAjxqYkYxZM2CjqYubdvAvZw8GllNw3SiQEQJ4fVRXfDzlDr2JZE0ZcXtLHFxwF14c2lF2uVoFt6hydQVLny+RrZwxAKkl2h93utztR46pXrnWfudcOeVQXTLVWafzLYF1XhZbsIaoHrD0y8PcxW3fz5edXrNgqhbrtqimNl0YwgN88PAd0WjopZaqntUAJifGYEKvmHp/kTGlLn9Z17ZZTvf1ANjE56ZckfTqCYnF5nrlumNtlqu4a9K0JQyI6glzVY+mTk5fjbpO2uxre6EzvAkrqerZGnV18bG1Wc7wc9N9vbYiwFN7CNZ3rgpO3P27balXrrvf8OuKJwS3clTCUr92AgAUFxcjICAARUVF8Pf3d3VxbLYhPdfo5Ixs5otRaw4ZrfvxlDuQENvc4WXIKyqz6kKneyOVq8Gqi7GHPC1BWe7zdWSAkVdUhl6pu4yCrv3z+8seH8Pgad7gdtK4U3K02wJgdbKqp31Gnsja76yS6H7XtJzxnasP3OX8sfb+zYDISp4eEAHGJ6etN7m6YKoWQUuFmoRsZzbxeWqCsiMuPqZGld2SeQEvbTVOkpQLnuXOKzVqEujNmdqnFd7e/4tVyaqe+hlR/aD9rvlq1CitqHb5Dd8T1eUPGgZEDlYfAiI5lmoW6vKkPXH+qtGYRZY4OoBzxyCxrsgFGQBMTu1i6rgczC6QrXk0N3SC+s8VrHkfJX9GnsrcdcTWLuzk+er6B42192/mECmcuTb7ujxpN6Tn1oxVZOPrHJ3I6Kquv65u/jE1Ga8Q8kGMuZwAUzlNj/VrhX/vzjZaX60CJveOwX++y5Etm+Hx94Tu2a7+PN2JYa3vlD4xmNA7xiivTEutAh7q0RIJrZqhe3QzxR+/+kI38HXX8aYYENVDtl6M5RKyLY1D4sgLvva95Ooq9ZrIUHNztnZAR3u4oneEOzT/mJqMV87CIe1xd+dws+NGySVUjri9JfwaNcTSbT+hGtDrIQgAb+/PsSpZ1dbPqK6DE3f4PJ0lr6gMR3+9CiGEVcGK4XVEAPjPdzl4e38O5iW3qzkXZM67jw7l4qNDuVAB0mTQ5Ln0gmIbZyqoSwyI6hlHXYzrsqu+ua6s4s9/pv5549z382Wbey7YckOs694R7jI6r7neM7q8VCqzwZCWqZrHR/rG4t4uEbI1koYT+WoN7RphNJibtZ9RXQcn7vJ5OoJcL0HdwVHNBSva1/5RUi57TlULyAZDhgSABZ+d9MjjRzWMgmI37qHHgKgeceTFuC676lu6GQsA73x3DhN6xdjcLdeeG2Jddv11RvOPqZwMc4FheIAPJvWOwRqZZivtZ2NrcKitedQO/Kl9X1NDRJia+27T8Qt4Kkl/hFtrPqMT56/q3cDrIjjxhOY8axj1EvyzNkd310wFK4avNZU7pm1Cs9RMXg143PGjv5j6wavtaOFOXfIZENUjjrwYm/oVfr2iyuEXfMP3kguODGeGtqZW6Mi5K3YHb3U1pLyjm+hM5WTc37UFPj/+u2xgqA2U/t45HG9/l2PUJLnx8QS7e9KYyx+Rc72iyugGWSUEjp67ir/HWz/vk6mcNGcHJ546IJ0uuR9WpmpzDIMVudeqVIBKJhdNDeCxfrF4c0+22aBIDXjU8XNHtjYbO7KZ2dR3ojbXFWdhQFSPOPpinNgmGCtHdgEE0C26qfRrvzbvYc0Es74aNe5/86Dd7yEXFGi52691RzbRmZtW4LNjv+v9rQ0MDZs/h93WApuOX9ArS3xkU7v2zVz+iKmausYaL9kcg5nrj+N6RaVVzV3mctI42rJltuSTGQYrr+86Y7SuEMAbo7riYPYf+OhwrvS5VANYtdc4yV6XCkDK8DjZ42fqWlLXOWPunkBvay25o5uZTX0n7L2uOBMDonrEkRdjU1+K2ryHLRPM2vsehs0khtzx17qjmujM5WIZqhICx369avRrftPxC0a/3Oy94Jsqj6maOu35IRfI2FK7Z66KnqMtW2ZtPplhsPLW3mx8dOi80XpqFfDb1TJ8rBMMaZl6jycGtMatIX6IbOaD6xVVyCsqs6oHrKNv5pbOfXdPoLe1c8yJ81dralYdnAPnKd8JBkT1jCNOPEtfInvew9b8Jnvew1LXfXf+te6IJjprb2RAzbGoFkK2abK0oloabLE2F3xz5TGsqTNVu2XuNba8r1oFfP74nUa/Si3NrWZvMFhXTa7OYPijx5AKwJL7OmJgh1C945QqM7s5ANwbH4FUg/wjc7xUKjzUoyX2/XxZqinWPfdMXUvahflZfY2x5nO1dO57QgK9uTSKzScu1Hwu4q9m9Y3HfndaM7MnfCcYENVDtT3xrMlFsvU97MlvsuU9zDWTqAG8PqqrzZPJOpMjqtkNt2HqRualUmFo1wijprDu0c1kAwdfjVrafm0u+Pt+viz7eWjLFB3ka7E3ktxrzB0DwPoqektzqwFw61//zqT9QfLxoVy8tuus3jIBoKmvRq+G4Y+ScpMBzxcZF8wGQ9ocI90EWwAmzz1T15KdP10yeY0B/gp2DQMBuc/VmnPf3RPo84rKkH25xOh5L5UK+89cxht7/mquNGxWN1zfV6PW6xhRXzEgIiPOSAx1drKpuWaSlOFxGNI5wiHvY461QY4jqtlNbUM37yuymY9e09dTSW2NatwMA6hqAdz/5kGkDItDZDNfuy/4UoAqs0x70zPMXzLscaQ7BpVc7Z6542iphlEuv0mrWtT0ntIdObu2tQ2uZKl8ppaHB/igTZif7DZVKut6k1nqRab9XA0/q4PZBSbPPblriUoFvLZTP3DTbj/z90KMfvt7m5pvrQl23DWBPq+oDO/uzzHqIAHUlO/p5LZI/Uq+Ns+QWlUz7IVcTV19xICIjDgjMdTZyaa2NJM4g7VBjiOq2U1to7D0pjSBqqUcLS25ru7a7W18PMHuC76pAFU7qCMAvek3tL2R1AY1BaaCGmuOo7kaRkv5VtWA0Z1cLhh09xwSufLpTo5saUyxblFNjQNVFXBLUx+9jg+Gn58awEM9IvHRYZmcItR04+98S6De56p7XE/+VmT0Ou25J9crVbZmWAU82rcVUr8y31wn97laE+y4YwK94VhRumrGjeqEwrKbVjVfqgCsGdsNU94/6tbNgo7EgKies/fXqzOS4JyZWGd0kUTNdBAh/o0c9h6m2BLkOKKa3dQ2dPM0bLlwmerqXlpRbfcFXzZABRAa0MjkPggBvDC0I2KD/YxulIZjGZk6Bsd+vYqmjS2f75byrXRrp7QMb4julENialJew/LN/+yk3uTIulOzaGvG2oX5ST8iwgN8kDo8zihokht+Qwjg36O6olljb+k4rU8/b/OPlLyiMiz92rgG47F+raR9072WFJTcwIyPM4zWf+j2lnhzr/ku/doyGQb51gY7zrqm2XPdNlcrC9R8znM/PWl1GaYkxsBH08Ds96y+zT/HgMiN1bYqvra/Xp2RBOfMxDrtxWnt/nN4e/8vJrt4WzPRpC3H3JYgxxHV7KZqw+TKsDUzD0MsjCxtrkwJsc3tvuBP6h2Dd/6cjkNbyzD9o+M1A/0Nbidb5oWbTiN1eJyU1A3IDxLoq/GSrbmY/tFxvTwgU+e79oZnKpF7Sp9WiA1pbPaG6C45JKa+57JBJ6DXg8hQNYChbx5EqoXmx7dkust7qVRGeXr2dLc2VXv3xu5sRDbzlcqlvZbIDQWiBrA+3bhXm5xqAWzOuIC4WwL0BjGNbOZr1Vg5jr6mWZPMLXeNOnLuilUdKqyhVkGaUkeueVL7PdNd39k9+uoCZ7u3Ul3Pdl/bYEZuRnC1Clj5UJd6PWGipZnQzR1Xe4+5rbOvb0jPlZ3nyxaG23g6ua3JwfMs7YvRlAwq6N0Q5Zi7eL21N1uqrVIBGNkzEusPnzc6PqbKrHvs5I6tHLlcFe12AJicTf3E+atGI2OrARxYcJf0/ubykO5M2WWU93Twz9c6k+5o5HJjdmn325pjJ8dcTY6pz2TB3e3wSGKs7Pq29kg1VW5T3yvD78Ok3tEmJws2RwWgz61B2H+2oM6aQQ17OhqeU9Zcv8yNvWaO9nuj+vM/AjC6JukeW8NaRV263xtbObvpmbPdezBHVMWbGlxtxscZbpnrUFvai8qV6xUmq3irhfHI1Qs2noSvxgstm/nWalRrW5qWHFHNLreNQJ+Gsl2lLSUEG1azq0TNoJymgh5zeSkHzhbgDZ0Z7QWA9YfO1+Tk6KgSAp1bBGLlQ12Mmjt0a1msHVtJbpUqIaTaQsMfBtrzPz6yKVKHm/7sdGshDmYX6AVVslTyTzuSYe84uebOcwWlSIhtbtSMLGBcqwaZG1y1AIa+cVB2rjJTn0nnFoGy5bW1BsVc7Z1cDZxcbQ5gerJgcwSAfWcKpL+11whHN4Nqv1snfyvSy/vr1TrI5OcJGPe8W/DZSQQ10dgVDBmOFg1A9ppkTfMkUFO7uHb/OTwzpL1N5XCnpmcGRG7IEVXx5nIk3Dkxzp5qU8MbhLmmFEPaINHcjcWactga5Fh7k7A0/5jchWtrZh5e3PqjxX3JKyrDlswLxoEzoBdIGI4BYzg/2PzPavISTF2Pq2E8w7W2SS46yFe2uUN7gW4s0zRmLRVgFAxpy2zLuFqmfn3fEdPUqFxCOHfeLXO947R0m2AN901ucuR2YX4Y+uZBo+YlgZobsG5OEWD62pL5e6FeU2dtmJrXzrB5WS4415bB3FhKtqgWwNoDOXjm7g612o6WqfOpWgDf6QRjWtrvg+yPXACT3jsq+z4vDu2I5744bbKmTa750lKz4Fv7zI8svua7XzChd7RN57+7ND0DNcea3Iz2gqPL1jwT7a8sL5X8T1bdXx3uYkN6Lnql7sKoNYfQK3UXNqTnWnyNqRuE9vipTfwCNmTpxqL7fgezC5BXVGa0fniADxJim9v9JTbctj3HIzzAB0M6hxudP2oAZy9fw5bMC8grKsNbe7NxZ8ouvLTVOHlVDf1AQhtA5BWV4eivV42DAJg/vmoA85PbSeeibi2M9jzVLa5AzRhGG9JzjW6ItugZ09Tkr2bD89/UZ2duwMjvc64aPefsbtcmh5dQ/fX+hrWTuvuW2CYYKx6KxxujumL//P5/1ZINizM6Z4C/aop0z73wAB/MG9zOaN1l27Jkvxf20tbeyZ03gOmaBW0ZRtzeEvvn98c/TdRY2HLze3tfjtG+mbsWmFrHmgFIDU1OrJn7T+6+YIqXSoUB7UP17gFqANP6xeLjKXdIn70t8orKsNTE4JtaAjU/pmzhiPudo7CGyA2ZaoIBYNPgWNpfh8d+vWpUQ+IO42Xosrfa1FTi6OsPdUXzJt5mq3jlmJrZXTu2hzZJ2NHNjqZmF5dr3rMmB2xy7xi8/V1OTe0Man5JLtx02mI5TOVfaAMIe1IO5yXX5JbcGx8hWwuT2CZYrwZJWzNhKlfBWnIBi64DZy9brNGwZToUAHh6cFun/qq1d6LMvKIyrN2fgzV/jk1jeP4mtgnG4vs6yp4jAsbfxbhbAozWM1ULWZtEWXO1d9YOIDukczhe/upHk8cs8/dCLP3qJ6NmXV3aSWy172vY1KVbg2puSAO5sb0sad7EW9qXlGFxWPDZSbNl1b12WVNzbe1nZO134e39ttUS2Zpy4EwMiNyUXFW3NtHQlptxzQXBByXllW5xwgHyX0B7q01N3SDMTUZrqglGBWDxfR3RzFeD26Ka4lLxDaz5LhuF128azcjtyGZHuWBQbuwU3ea9+cnt8Ehf4wRWw8Bq1O0t8fFhyzVLgP4YQXL5F5m/F+Le+Airm7C0gZ020dZUM6Etk4kabv/zx+/ET/nXzM5fZ8qbe7Ix+o6oWnXPN+SlVhnNu+Vour33rOm5JddEoz1/24X5YUtmnl5vQMBy87E1vSUdlShr6ryxVAbd64y53m4Jsc1xb3yEbL6Z7nYzfyvEqDXfy34vF3x2Eid+K8THh85LnQkA/SENTI3tpatdWBP8lK8/uvSybVm4I6YZcq+UorF3A6wZ1w2T3ztq8hq28fEEvfPB8PhZCtpMfUZyY0PJqbah2VhblsQ2wdg/v7/L5zpjLzMr1XUvM1229mIytx1Xn3CmLpK12UdLvbaMemQNbiv9upOjVgFdIgNxLLfQ4v58POUOm/MmDAPCg9kFGLXmkE3bAPR79eQVleHIuSt4Yn2GUQKxVcEF9HuIvLU3GykG1ePaz2Pfz5elX6lqAPff1kKaFkTLXNBmyFSPSGtqiLTHX6681nhjVFeLo5jrnj/WUKn+3HeDHle21JbIrWuYKzclMQYTesWY3Za1vfR0yZ0zct9Fc9872c8UwGujuqKbA6fQMVUGU4n/lq5/2mtk5m+FWPZ1ll4vTksDPFrj4yl3IPfKdZPNZi/c1xELv7Bck9u/XTB2/3TZ5HuYuiaZmq5Gy9Q115bzyFIPRXuCsdpiL7N6xFFJZ44eL8NWcjUhus1A9labWqoWlu2R5SvfI0tbLmuCIVubHU01uyW2CbYrcXjptp9wb3yE3oXFkLU3wnnJ7fSOm7kmEbnjOTYhSi/fRwBY9nUW7u0SYXcvPQB6M28b0p0PTW4gPy21Cnisb6ze3E1a0z86jpLyStm5rLQXbt399dWo8a/tP+v1RDIkBJDy1U+AgBQQ2lJbYhT49InBkM7hRrly73x3ThorxhRbm/yAmnNmamIM3vnunN2DEppKANaOQ+Wom59cGUw1v++f39/ijxftPggIvWbII+eu1DoYMhzba96nmXrn0fDbWmBgh1A8v1k+EVrX7p8u485WzXDwlyuy7yHHmoR8U/cVc+eRXG3YfW8cxAKDH0TmgjFn9eazFQMiF7PmV6Mz5sxxxSBY1gwFYG+1qalgT3c/dS+G2gvp0XNXMeNj+R5o5qhVsKnZUW5Ife2F+unktja++1+vP/brVbNJmtoaMd1RrHUvRobNWlqmBn/UTvxqeLxNjXZd21562hw4IYDfi8qwbFuW0U1abt4rXdr98/dtaDTukWF+jLlcMW2Z3p/UEyfOX8WRc1cRHeSLz4/9ji0n843ed+m2n3Bvl5raJ1tmYTe8af3nu79yf+SOLwCT32VTTX7mAnAvlQoTetXUPln6LtrSnKXl6F6uhmWw9gekpVo43V5rKhOdUyzRHmdtLVNOwXVcKr6B6xVVWPpAZ1wqvoEj566ie3RTqUbFcFoSU+f29zlXMK1/LFbtyZaaT58eXPMe2uOiy5rg2NR9xdT1YHr/1oiPDJDt6Zay7SdABTySGGtVMObo3nz2YEDkQtb+arSUdGZrcOOq+ZesuUha8yvOWpb2MzzAB82aXLfrl9+8we30mgcsTZ5pakh9wyk3bOGlUqFaCLPBkLYJ4d4uETh67ipUKuC2qJoLr7mbneE5B+hP/Gp4vtQmaDcVtGrLMaTzX+WTS8w2d9PXbbp6JDEWEQGNZMc9OnruKjJ/yzFKJjd1846PbIoQ/0Y4cu4KtsoEQ8BfibgCxp+Rdmws3X0DTN+0ZPNFVEDmb39NXGrqHDe8wU7u3Qo9WzWVzUMxDPTtDVjkzh9dttZwSz0chbDYqcDe/KbENsEmA1e5Od20zAWX2ucHdQw1Csa17zupTyu91xjWSJrqaVktgN6tg/HwHVE1zXy/F0rvIXcuyE6KC/MTKAN/fT/nDW4nNSNqO0G8tusszMWK2lpsqxOy9+VYbAZ2JgZELmJrrypTv6BtDW5cOQiWoy+S5li7n401XrKvbxvaBFkXS2SXAX81B1nTDm6putmWLD7dX5wvD+uEC0U3jNZRA3h9VFe9aRTCA3zw93jjcYzMMTfxq+FxtLeniK3nr1yNhKmbvlxPl+7RzWRvCjPWHzf5OVia1NUU7U34UvENo3GYAGDaR8eRcb4QE3vHSLVTZy9ds7r5VAgYzV83/7OTKK+sQrPG3lKujvZzTD93FbdHN8VP+dcw5X39YEiNmu7djrwZ6dbCzlx/3O4abqOR1AHZASN16fayVKuAib2jpWWmrg0rHoo3WbOUENsc8+9uV9MUqkNb86OtuTRl2ynjoNnctVf3PE8dHod5nxnPQaY72S0AKTA2tW1T31FzEygb1pbOS26HWwJ99Hotm7t+aROsTQVjhi/V/ohgQKQw9uQFyfUWsDW4cfUgWHU1FIC1k39er6iSff2iezuhtOKmyUHPtLUK5o6/9pfVwbNm8k1s2Cc1gM+n3ak3smyv1F1G681LbmcxUdhatjSF2To4pSODc2vfOzygZgydpdt+kpLCBcxf1L1UKvhq1NKQFwAsBkNq1HTB1+3qLmfNdzl4+7scDLutBTYe+93mmkLD9QWA5774AcBfgYNueeUSaa2ZcNWQtbXS2kD8eoV9vVzlalcFanp1yZ0nhgF2YusgfHemAGu+q7mxm+r6XhNIq8zWLNXUTl7H+sPnjaa4uDc+QvaaZok1117tuT1rfQYO5fyVMzS061/5edZe1019T+SOo1wT/7JtWVjxULzV+6gbtBkGY3KJ6q4eDoYBkYvY0mXUkcGNM/KRbKVtBjE1FIAj8ptkf5GojCf/TGwTbPJ4hAf4YOlw+XE/vFQqQKaZRnv8zSU620MFIGV4nN5Ny1TuTOdbAh3zprD9fLElcd/W89fSeaH73uamHVn69U/S+Ez924dg54+XTJZRrQKSOoVKIzmrANwdF2byc9XWTjX305icW86QAPDZsd+NnjfVBd5aAsbjOZlqeimtMDeyjT57mtztna7GVO2qYU2CtknNcBR1w2k4THV9105Ma6qW0zAheKpBbZr2mvZbYZlRLZI5uh0DLF3z0s/pJ1BvOn4BTyXVjHtly/fU0nfUUhO/qcBx4+MJ2JD+G9an58o2wVmabsjVw8EACguI3njjDSxfvhz5+fmIj4/H66+/jh49erikLOaaGKy94NgT3NjbtOEMcl8QR45dYtiMontj0M1ZMnc8tGXUHaNEu063qKYmE48dGQwBNcFcYptgveecFdwaXpyddb7YUn57e2kZDu1gmNhpKhjSdmtvqFbr9U4TgGzOkG4zJWD/pKq6HHH6WFMGW86Z2tTq2RIsa5nKD9Od3sWWiU2rhEBpRbXJc9qaXmsCpnv4xbUIkH3fxFuDcODsH3rNatr3tbfZXffHg9z1TreZ0BbmmvjNBY7xkTWJ4TMGtDYZ+BqeA46Y19GRFBMQbdiwAXPmzMHq1avRs2dPrFixAklJScjKykJISIhLymRLl1FT7cz23Kzc6SQ0/FXvyPwmS5MSai8o2ukM1H9+2eWO8zND2mNC72ijY5YyLE6va3i1ANbskx/cTUtujB1LuQjatnhH5O2YYyqYcMb5Ym35bTkvzK1rTWKnbv4RUDPzuCXacmubKV/e+oNDg+HakDvXrEmkNaWum9y154jud0xbWyp3vbTEsOu74bVXLrnfln021Rtr6QOdAUBKlC6tqIavRo3cK6V6Y4eZOret+fEg/Xg7kIM1+3L0mglt+VFpMgjVSbg3d02wNfC1J1B2FsUERK+88gqmTJmCCRMmAABWr16NrVu34t1338X8+fNdVi7Dk8HWC469Nyt3Ogm1nHGx1e6n3IjV2tFnzfXSkduWrsQ2wUY/5eW6YOual9xOtqpYm4tgSxKqI4MVS4GHM84Xa8pvy3lhbl1Lo05rR+rWbvNgdoHFWhrD1+QVlWGNQU81LTWAeXe3w/UblXht11kLW3aM+7u2QI+YZlYn0lriiiZ33bxDISCNQg9Y7kquWzNjGPzpntPmaiBtbY4yF+TLvZ8huXPblh8/b+vkrNnzo9KotgnyCffueA+pLUUERBUVFTh69CgWLFggPadWqzFw4ECkpaXJvqa8vBzl5eXS38XFxU4vJ2B/M1h9ODGdebE1ldRnOF+YrRePnALbu+13bhEo+wtVW05bk1Ad9fm7KuHeUvltOS/Mras9B+RuRF4qlV5gY2pbll5j6nz4e1w4nv17eyk4//fus+Z7HsovMuuJu1rjtd1n9RLEtXkmcuN72fOZuqrJXZujY8jcZ6SGfs2Mubm8LP0QsGWfLQX5lmq1avPjx1HfYXdqRahLigiICgoKUFVVhdDQUL3nQ0ND8dNP8glwKSkpWLx4cV0UT4875fjUNWfvu+GX3BEXD5vnutK52JkLBFxxQXKHhHs5tpwXltbVbVZ4e19Nt2xT2zPclm6Ss6nXyDaZAFIwpLtduVG45QJ1Q2rAKKHfS6XCrWF+RtvT7TburO+Rq5vc5YbyMFUzI8ea64Ct+2zuu20pR6c2P34c+R2uLz+0baGIgMgeCxYswJw5c6S/i4uLERkZWSfv7U4XnLrm7H03/JLX9uIh1TqY6In29OC2enMi2RLg1fUFyZ2DcVvOC0vrhgf44Jm7O1g1ErPhtgDbBrS0NO2FthkospmP3mz1uk2qqj+rjHQDMQBG7yGX5O+sgNadbpaGAxnqHkdrWBtEOGqfTQXNhmOH2cOdv8OeQBGTu1ZUVMDX1xeffvophg4dKj0/btw4FBYW4osvvrC4DVdO7krOY2liWGvlFZXJ9kTT9m7ypODW08rrjhxxDHW3ARgHYnLv4ajzWWnq+rg5+/34HdZn7f1bEQERAPTs2RM9evTA66+/DgCorq5Gy5YtMX36dKuSqhkQ1V+OvHjwQkSuxnPQPnV93Pg51R3Odm9gzpw5GDduHLp3744ePXpgxYoVuH79utTrjJTLkdX/7tSUQMrEc9A+rmii5ufkXhQTEI0YMQKXL1/Gc889h/z8fHTp0gVff/21UaI1ERERKY9imsxqi01mREREnsfa+7e6DstERERE5JYYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEUM3VHbWkH9C4uLnZxSYiIiMha2vu2pYk5GBBZ6dq1awCAyMhIF5eEiIiIbHXt2jUEBASYXM65zKxUXV2NCxcuwM/PDyqVyu7tFBcXIzIyEufPn1fsnGg8BjV4HHgMAB4DgMdAi8fBOcdACIFr164hIiICarXpTCHWEFlJrVbjlltucdj2/P39FXvCa/EY1OBx4DEAeAwAHgMtHgfHHwNzNUNaTKomIiIixWNARERERIrHgKiOeXt74/nnn4e3t7eri+IyPAY1eBx4DAAeA4DHQIvHwbXHgEnVREREpHisISIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiB1i1ahU6d+4sDSSVkJCAbdu2Sctv3LiBadOmoXnz5mjSpAmGDx+Oixcv6m0jNzcXQ4YMga+vL0JCQjB37lxUVlbW9a44TGpqKlQqFWbNmiU9V9+Pw6JFi6BSqfQe7dq1k5bX9/3X9fvvv+Phhx9G8+bN4ePjg7i4OBw5ckRaLoTAc889h/DwcPj4+GDgwIE4c+aM3jauXLmC0aNHw9/fH4GBgZg0aRJKSkrqelfsEh0dbXQuqFQqTJs2DYAyzoWqqiosXLgQMTEx8PHxQWxsLF544QW9+aTq+3kA1EwXMWvWLERFRcHHxwd33nkn0tPTpeX18Rjs27cP99xzDyIiIqBSqbBp0ya95Y7a58zMTPTp0weNGjVCZGQkli1bVruCC6q1zZs3i61bt4qff/5ZZGVliWeeeUY0bNhQnDp1SgghxKOPPioiIyPFzp07xZEjR8Qdd9wh7rzzTun1lZWVolOnTmLgwIHi+PHj4quvvhJBQUFiwYIFrtqlWjl8+LCIjo4WnTt3Fk888YT0fH0/Ds8//7zo2LGjyMvLkx6XL1+Wltf3/de6cuWKiIqKEuPHjxeHDh0Sv/zyi/jmm2/E2bNnpXVSU1NFQECA2LRpkzhx4oS49957RUxMjCgrK5PWGTx4sIiPjxfff/+9+O6770Tr1q3FyJEjXbFLNrt06ZLeebBjxw4BQOzevVsIoYxz4aWXXhLNmzcXW7ZsETk5OeKTTz4RTZo0EStXrpTWqe/ngRBCPPjgg6JDhw5i79694syZM+L5558X/v7+4rfffhNC1M9j8NVXX4lnn31WbNy4UQAQn3/+ud5yR+xzUVGRCA0NFaNHjxanTp0SH3/8sfDx8RFvvfWW3eVmQOQkTZs2FW+//bYoLCwUDRs2FJ988om07McffxQARFpamhCi5uRRq9UiPz9fWmfVqlXC399flJeX13nZa+PatWvi1ltvFTt27BB9+/aVAiIlHIfnn39exMfHyy5Twv5rzZs3T/Tu3dvk8urqahEWFiaWL18uPVdYWCi8vb3Fxx9/LIQQ4ocffhAARHp6urTOtm3bhEqlEr///rvzCu8kTzzxhIiNjRXV1dWKOReGDBkiJk6cqPfcsGHDxOjRo4UQyjgPSktLhZeXl9iyZYve87fddpt49tlnFXEMDAMiR+3zm2++KZo2bar3fZg3b55o27at3WVlk5mDVVVVYf369bh+/ToSEhJw9OhR3Lx5EwMHDpTWadeuHVq2bIm0tDQAQFpaGuLi4hAaGiqtk5SUhOLiYpw+fbrO96E2pk2bhiFDhujtLwDFHIczZ84gIiICrVq1wujRo5GbmwtAOfsPAJs3b0b37t3xj3/8AyEhIejatSvWrFkjLc/JyUF+fr7esQgICEDPnj31jkVgYCC6d+8urTNw4ECo1WocOnSo7nbGASoqKvDBBx9g4sSJUKlUijkX7rzzTuzcuRM///wzAODEiRPYv38/kpOTASjjPKisrERVVRUaNWqk97yPjw/279+viGNgyFH7nJaWhsTERGg0GmmdpKQkZGVl4erVq3aVjZO7OsjJkyeRkJCAGzduoEmTJvj888/RoUMHZGRkQKPRIDAwUG/90NBQ5OfnAwDy8/P1Lnza5dplnmL9+vU4duyYXvu4Vn5+fr0/Dj179sS6devQtm1b5OXlYfHixejTpw9OnTqliP3X+uWXX7Bq1SrMmTMHzzzzDNLT0zFz5kxoNBqMGzdO2he5fdU9FiEhIXrLGzRogGbNmnnUsQCATZs2obCwEOPHjwegjO8CAMyfPx/FxcVo164dvLy8UFVVhZdeegmjR48GAEWcB35+fkhISMALL7yA9u3bIzQ0FB9//DHS0tLQunVrRRwDQ47a5/z8fMTExBhtQ7usadOmNpeNAZGDtG3bFhkZGSgqKsKnn36KcePGYe/eva4uVp05f/48nnjiCezYscPo15BSaH/5AkDnzp3Rs2dPREVF4X//+x98fHxcWLK6VV1dje7du+Pll18GAHTt2hWnTp3C6tWrMW7cOBeXru698847SE5ORkREhKuLUqf+97//4cMPP8RHH32Ejh07IiMjA7NmzUJERISizoP//ve/mDhxIlq0aAEvLy/cdtttGDlyJI4ePerqopEBNpk5iEajQevWrdGtWzekpKQgPj4eK1euRFhYGCoqKlBYWKi3/sWLFxEWFgYACAsLM+phov1bu467O3r0KC5duoTbbrsNDRo0QIMGDbB371689tpraNCgAUJDQxVxHHQFBgaiTZs2OHv2rGLOAwAIDw9Hhw4d9J5r37691Hyo3Re5fdU9FpcuXdJbXllZiStXrnjUsfj111/x7bffYvLkydJzSjkX5s6di/nz5+Ohhx5CXFwcxowZg9mzZyMlJQWAcs6D2NhY7N27FyUlJTh//jwOHz6MmzdvolWrVoo5Broctc/O+I4wIHKS6upqlJeXo1u3bmjYsCF27twpLcvKykJubi4SEhIAAAkJCTh58qTeCbBjxw74+/sb3Vjc1YABA3Dy5ElkZGRIj+7du2P06NHS/5VwHHSVlJQgOzsb4eHhijkPAKBXr17IysrSe+7nn39GVFQUACAmJgZhYWF6x6K4uBiHDh3SOxaFhYV6v6J37dqF6upq9OzZsw72wjHWrl2LkJAQDBkyRHpOKedCaWkp1Gr9W4yXlxeqq6sBKOs8AIDGjRsjPDwcV69exTfffIP77rtPcccAcNznnpCQgH379uHmzZvSOjt27EDbtm3tai4DwG73jjB//nyxd+9ekZOTIzIzM8X8+fOFSqUS27dvF0LUdLFt2bKl2LVrlzhy5IhISEgQCQkJ0uu1XWwHDRokMjIyxNdffy2Cg4M9qoutHN1eZkLU/+Pw5JNPij179oicnBxx4MABMXDgQBEUFCQuXbokhKj/+691+PBh0aBBA/HSSy+JM2fOiA8//FD4+vqKDz74QFonNTVVBAYGii+++EJkZmaK++67T7bbbdeuXcWhQ4fE/v37xa233urWXY0NVVVViZYtW4p58+YZLVPCuTBu3DjRokULqdv9xo0bRVBQkHj66aeldZRwHnz99ddi27Zt4pdffhHbt28X8fHxomfPnqKiokIIUT+PwbVr18Tx48fF8ePHBQDxyiuviOPHj4tff/1VCOGYfS4sLBShoaFizJgx4tSpU2L9+vXC19eX3e5dbeLEiSIqKkpoNBoRHBwsBgwYIAVDQghRVlYmHn/8cdG0aVPh6+sr7r//fpGXl6e3jXPnzonk5GTh4+MjgoKCxJNPPilu3rxZ17viUIYBUX0/DiNGjBDh4eFCo9GIFi1aiBEjRuiNvVPf91/Xl19+KTp16iS8vb1Fu3btxH/+8x+95dXV1WLhwoUiNDRUeHt7iwEDBoisrCy9df744w8xcuRI0aRJE+Hv7y8mTJggrl27Vpe7USvffPONAGC0X0Io41woLi4WTzzxhGjZsqVo1KiRaNWqlXj22Wf1ukkr4TzYsGGDaNWqldBoNCIsLExMmzZNFBYWSsvr4zHYvXu3AGD0GDdunBDCcft84sQJ0bt3b+Ht7S1atGghUlNTa1VulRA6w4YSERERKRBziIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHgMiIjIafr164dZs2a5uhhOt2jRInTp0sXVxSCiWmBARERkQkVFRZ2+nxAClZWVdfqeRFSDAREROcX48eOxd+9erFy5EiqVCiqVCufOncOpU6eQnJyMJk2aIDQ0FGPGjEFBQYH0un79+mHGjBmYNWsWmjZtitDQUKxZswbXr1/HhAkT4Ofnh9atW2Pbtm3Sa/bs2QOVSoWtW7eic+fOaNSoEe644w6cOnVKr0z79+9Hnz594OPjg8jISMycORPXr1+XlkdHR+OFF17A2LFj4e/vj6lTpwIA5s2bhzZt2sDX1xetWrXCwoULpVm2161bh8WLF+PEiRPSfq5btw7nzp2DSqVCRkaGtP3CwkKoVCrs2bNHr9zbtm1Dt27d4O3tjf3796O6uhopKSmIiYmBj48P4uPj8emnnzr6IyIiHQyIiMgpVq5ciYSEBEyZMgV5eXnIy8uDn58f7rrrLnTt2hVHjhzB119/jYsXL+LBBx/Ue+17772HoKAgHD58GDNmzMBjjz2Gf/zjH7jzzjtx7NgxDBo0CGPGjEFpaane6+bOnYt//etfSE9PR3BwMO655x4pcMnOzsbgwYMxfPhwZGZmYsOGDdi/fz+mT5+ut43/+7//Q3x8PI4fP46FCxcCAPz8/LBu3Tr88MMPWLlyJdasWYNXX30VADBixAg8+eST6Nixo7SfI0aMsOlYzZ8/H6mpqfjxxx/RuXNnpKSk4P3338fq1atx+vRpzJ49Gw8//DD27t1r03aJyAa1mhqWiMiMvn37iieeeEL6+4UXXhCDBg3SW+f8+fN6s8L37dtX9O7dW1peWVkpGjduLMaMGSM9l5eXJwCItLQ0IcRfs2uvX79eWuePP/4QPj4+YsOGDUIIISZNmiSmTp2q997fffedUKvVoqysTAghRFRUlBg6dKjF/Vq+fLno1q2b9Pfzzz8v4uPj9dbJyckRAMTx48el565evSoAiN27d+uVe9OmTdI6N27cEL6+vuLgwYN625s0aZIYOXKkxbIRkX0auDIYIyJlOXHiBHbv3o0mTZoYLcvOzkabNm0AAJ07d5ae9/LyQvPmzREXFyc9FxoaCgC4dOmS3jYSEhKk/zdr1gxt27bFjz/+KL13ZmYmPvzwQ2kdIQSqq6uRk5OD9u3bAwC6d+9uVLYNGzbgtddeQ3Z2NkpKSlBZWQl/f3+b998U3fc8e/YsSktL8be//U1vnYqKCnTt2tVh70lE+hgQEVGdKSkpwT333IOlS5caLQsPD5f+37BhQ71lKpVK7zmVSgUAqK6utum9H3nkEcycOdNoWcuWLaX/N27cWG9ZWloaRo8ejcWLFyMpKQkBAQFYv349/vWvf5l9P7W6JiNBCCE9p22+M6T7niUlJQCArVu3okWLFnrreXt7m31PIrIfAyIichqNRoOqqirp79tuuw2fffYZoqOj0aCB4y8/33//vRTcXL16FT///LNU83Pbbbfhhx9+QOvWrW3a5sGDBxEVFYVnn31Weu7XX3/VW8dwPwEgODgYAJCXlyfV7OgmWJvSoUMHeHt7Izc3F3379rWprERkPyZVE5HTREdH49ChQzh37hwKCgowbdo0XLlyBSNHjkR6ejqys7PxzTffYMKECUYBhT2WLFmCnTt34tSpUxg/fjyCgoIwdOhQADU9xQ4ePIjp06cjIyMDZ86cwRdffGGUVG3o1ltvRW5uLtavX4/s7Gy89tpr+Pzzz432MycnBxkZGSgoKEB5eTl8fHxwxx13SMnSe/fuxT//+U+L++Dn54ennnoKs2fPxnvvvYfs7GwcO3YMr7/+Ot577z27jw0RmceAiIic5qmnnoKXlxc6dOiA4OBgVFRU4MCBA6iqqsKgQYMQFxeHWbNmITAwUGpiqo3U1FQ88cQT6NatG/Lz8/Hll19Co9EAqMlL2rt3L37++Wf06dMHXbt2xXPPPYeIiAiz27z33nsxe/ZsTJ8+HV26dMHBgwel3mdaw4cPx+DBg9G/f38EBwfj448/BgC8++67qKysRLdu3TBr1iy8+OKLVu3HCy+8gIULFyIlJQXt27fH4MGDsXXrVsTExNhxVIjIGiqh28BNROSB9uzZg/79++Pq1asIDAx0dXGIyAOxhoiIiIgUjwERERERKR6bzIiIiEjxWENEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREivf/P0yxqwCkR+gAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbftJREFUeJzt3XlcVOX+B/DPgIKgAiq7sYm5JZBLGi6oaSp5K9Nupua+tLiktoDdLK1ukP7ab9fKUru3Um9lVpql5ZZJ7ohakRIKJaioDCIIwjy/P2iOs5xZmWFmOJ/368VLOedw5jlnzpzznef5Ps+jEkIIEBERESmYl6sLQERERORqDIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIyGMsXrwYKpXKqm1VKhUWL17s1PIMHDgQAwcOdNv9EZH1GBARkc1Wr14NlUol/TRp0gRt27bF5MmT8eeff7q6eG4nNjZW73yFhoaif//++Pzzzx2y/4qKCixevBg7duxwyP6IlIgBERHZ7bnnnsN///tfvP3220hNTcWHH36IAQMG4OrVq055vaeffhqVlZVO2bez3Xzzzfjvf/+L//73v3j88cdx5swZjBo1Cm+//Xa9911RUYElS5YwICKqhyauLgARea7U1FT07NkTADB9+nQEBwfjpZdewpdffon77rvP4a/XpEkTNGnimbettm3b4oEHHpB+nzhxItq3b49XX30VDz30kAtLRkQAa4iIyIH69+8PAMjLy9Nb/uuvv+Lee+9F69at0axZM/Ts2RNffvml3jbXrl3DkiVLcOONN6JZs2Zo06YN+vXrh61bt0rbyOUQVVVVYf78+QgJCUHLli1x11134Y8//jAq2+TJkxEbG2u0XG6fq1atwm233YbQ0FD4+vqiS5cuWL58uU3nwpLw8HB07twZ+fn5Zrc7d+4cpk2bhrCwMDRr1gxJSUn44IMPpPWnTp1CSEgIAGDJkiVSs5yz86eIGhvP/KpFRG7p1KlTAIBWrVpJy44fP46+ffuibdu2SE9PR/PmzfG///0PI0eOxGeffYZ77rkHQF1gkpGRgenTp6NXr14oKyvDgQMHcOjQIdx+++0mX3P69On48MMPMW7cOPTp0wfbtm3DiBEj6nUcy5cvx0033YS77roLTZo0wVdffYVHHnkEGo0Gs2bNqte+ta5du4bCwkK0adPG5DaVlZUYOHAgTp48idmzZyMuLg6ffPIJJk+ejNLSUjz66KMICQnB8uXL8fDDD+Oee+7BqFGjAACJiYkOKSeRYggiIhutWrVKABDfffedOH/+vCgsLBSffvqpCAkJEb6+vqKwsFDadvDgwSIhIUFcvXpVWqbRaESfPn3EjTfeKC1LSkoSI0aMMPu6zz77rNC9bWVnZwsA4pFHHtHbbty4cQKAePbZZ6VlkyZNEjExMRb3KYQQFRUVRtsNGzZMtGvXTm/ZgAEDxIABA8yWWQghYmJixNChQ8X58+fF+fPnxZEjR8T9998vAIg5c+aY3N9rr70mAIgPP/xQWlZdXS2Sk5NFixYtRFlZmRBCiPPnzxsdLxHZhk1mRGS3IUOGICQkBFFRUbj33nvRvHlzfPnll7jhhhsAABcvXsS2bdtw33334fLlyygpKUFJSQkuXLiAYcOG4cSJE1KvtKCgIBw/fhwnTpyw+vW//vprAMDcuXP1ls+bN69ex+Xn5yf9X61Wo6SkBAMGDMDvv/8OtVpt1z63bNmCkJAQhISEICkpCZ988gkmTJiAl156yeTffP311wgPD8fYsWOlZU2bNsXcuXNRXl6OnTt32lUWIjLGJjMisttbb72FDh06QK1WY+XKldi1axd8fX2l9SdPnoQQAosWLcKiRYtk93Hu3Dm0bdsWzz33HO6++2506NABXbt2xfDhwzFhwgSzTT+nT5+Gl5cX4uPj9ZZ37NixXsf1448/4tlnn0VWVhYqKir01qnVagQGBtq8z969e+OFF16ASqWCv78/OnfujKCgILN/c/r0adx4443w8tL/7tq5c2dpPRE5BgMiIrJbr169pF5mI0eORL9+/TBu3Djk5uaiRYsW0Gg0AIDHH38cw4YNk91H+/btAQApKSnIy8vDF198gS1btuC9997Dq6++irfffhvTp0+vd1lNDehYW1ur93teXh4GDx6MTp064ZVXXkFUVBR8fHzw9ddf49VXX5WOyVbBwcEYMmSIXX9LRM7HgIiIHMLb2xsZGRkYNGgQ/vWvfyE9PR3t2rUDUNfMY00w0Lp1a0yZMgVTpkxBeXk5UlJSsHjxYpMBUUxMDDQaDfLy8vRqhXJzc422bdWqFUpLS42WG9ayfPXVV6iqqsKXX36J6Ohoafn27dstlt/RYmJikJOTA41Go1dL9Ouvv0rrAdPBHhFZjzlEROQwAwcORK9evfDaa6/h6tWrCA0NxcCBA/HOO++gqKjIaPvz589L/79w4YLeuhYtWqB9+/aoqqoy+XqpqakAgDfeeENv+WuvvWa0bXx8PNRqNXJycqRlRUVFRqNFe3t7AwCEENIytVqNVatWmSyHs9xxxx0oLi7GunXrpGU1NTV488030aJFCwwYMAAA4O/vDwCyAR8RWYc1RETkUE888QT+/ve/Y/Xq1XjooYfw1ltvoV+/fkhISMCMGTPQrl07nD17FllZWfjjjz9w5MgRAECXLl0wcOBA9OjRA61bt8aBAwfw6aefYvbs2SZf6+abb8bYsWPx73//G2q1Gn369MH333+PkydPGm17//33Iy0tDffccw/mzp2LiooKLF++HB06dMChQ4ek7YYOHQofHx/ceeedePDBB1FeXo4VK1YgNDRUNqhzppkzZ+Kdd97B5MmTcfDgQcTGxuLTTz/Fjz/+iNdeew0tW7YEUJcE3qVLF6xbtw4dOnRA69at0bVrV3Tt2rVBy0vk0VzdzY2IPI+22/3+/fuN1tXW1or4+HgRHx8vampqhBBC5OXliYkTJ4rw8HDRtGlT0bZtW/G3v/1NfPrpp9LfvfDCC6JXr14iKChI+Pn5iU6dOol//vOforq6WtpGrot8ZWWlmDt3rmjTpo1o3ry5uPPOO0VhYaFsN/QtW7aIrl27Ch8fH9GxY0fx4Ycfyu7zyy+/FImJiaJZs2YiNjZWvPTSS2LlypUCgMjPz5e2s6XbvaUhBUzt7+zZs2LKlCkiODhY+Pj4iISEBLFq1Sqjv92zZ4/o0aOH8PHxYRd8IjuohNCpFyYiIiJSIOYQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwOzGgljUaDM2fOoGXLlhwmn4iIyEMIIXD58mVERkYaTZSsiwGRlc6cOYOoqChXF4OIiIjsUFhYiBtuuMHkegZEVtIOkV9YWIiAgAAXl4aIiIisUVZWhqioKOk5bgoDIitpm8kCAgIYEBEREXkYS+kuTKomIiIixWNARERERIrHgIiIiIgUjzlERESkeLW1tbh27Zqri0F2aNq0Kby9veu9HwZERESkWEIIFBcXo7S01NVFoXoICgpCeHh4vcYJZEBERESKpQ2GQkND4e/vz4F3PYwQAhUVFTh37hwAICIiwu59MSAiIiJFqq2tlYKhNm3auLo4ZCc/Pz8AwLlz5xAaGmp38xmTqomISJG0OUP+/v4uLgnVl/Y9rE8eGAMiIiJSNDaTeT5HvIcuDYh27dqFO++8E5GRkVCpVNiwYYPeepVKJfuzbNkyaZvY2Fij9ZmZmXr7ycnJQf/+/dGsWTNERUVh6dKlDXF4RERE5CFcGhBduXIFSUlJeOutt2TXFxUV6f2sXLkSKpUKo0eP1tvuueee09tuzpw50rqysjIMHToUMTExOHjwIJYtW4bFixfj3XffdeqxEREReRq5yglX27FjB1QqldN7Aro0qTo1NRWpqakm14eHh+v9/sUXX2DQoEFo166d3vKWLVsabav10Ucfobq6GitXroSPjw9uuukmZGdn45VXXsHMmTPrfxD1VKSuRH7JFcQFN0dEoJ+ri0NERAqwePFibNiwAdnZ2a4uitvwmByis2fPYtOmTZg2bZrRuszMTLRp0wbdunXDsmXLUFNTI63LyspCSkoKfHx8pGXDhg1Dbm4uLl261CBlN2Xd/gL0zdyGcSv2om/mNqzbX+DS8hARESmVxwREH3zwAVq2bIlRo0bpLZ87dy7Wrl2L7du348EHH8SLL76IJ598UlpfXFyMsLAwvb/R/l5cXGzy9aqqqlBWVqb340hF6kosXH8UGlH3u0YAT60/hiJ1pUNfh4iIGh+NRoOMjAzExcXBz88PSUlJ+PTTTwFcb2L6/vvv0bNnT/j7+6NPnz7Izc0FAKxevRpLlizBkSNHpNzb1atXS/suKSnBPffcA39/f9x444348ssvrSqT9nW//fZbdOvWDX5+frjttttw7tw5bN68GZ07d0ZAQADGjRuHiooK6e+qqqowd+5chIaGolmzZujXrx/279/vuJNlJY8JiFauXInx48ejWbNmessXLFiAgQMHIjExEQ899BBefvllvPnmm6iqqqrX62VkZCAwMFD6iYqKqtf+DOWXXJGCIa1aIXCqpEL+D4iIyK0VqSuxJ6+kQb7YZmRk4D//+Q/efvttHD9+HPPnz8cDDzyAnTt3Stv84x//wMsvv4wDBw6gSZMmmDp1KgBgzJgxeOyxx3DTTTdJubdjxoyR/m7JkiW47777kJOTgzvuuAPjx4/HxYsXrS7b4sWL8a9//Qt79uxBYWEh7rvvPrz22mv4+OOPsWnTJmzZsgVvvvmmtP2TTz6Jzz77DB988AEOHTqE9u3bY9iwYTa9piN4RED0ww8/IDc3F9OnT7e4be/evVFTU4NTp04BqMtDOnv2rN422t9N5R0BwMKFC6FWq6WfwsJC+w9ARlxwc3gZ9BL0VqkQG8zxMIiIPE1DpkBUVVXhxRdfxMqVKzFs2DC0a9cOkydPxgMPPIB33nlH2u6f//wnBgwYgC5duiA9PR179uzB1atX4efnhxYtWqBJkyYIDw9HeHi4NLghAEyePBljx45F+/bt8eKLL6K8vBz79u2zunwvvPAC+vbti27dumHatGnYuXMnli9fjm7duqF///649957sX37dgB1nauWL1+OZcuWITU1FV26dMGKFSvg5+eH999/33EnzQoeERC9//776NGjB5KSkixum52dDS8vL4SGhgIAkpOTsWvXLr3BmrZu3YqOHTuiVatWJvfj6+uLgIAAvR9Higj0Q8aoBHj/NXaCt0qFF0d1ZWI1EZGHaegUiJMnT6KiogK33347WrRoIf385z//QV5enrRdYmKi9H/tlBbaKS7M0f275s2bIyAgwKq/k/v7sLAw+Pv763WGCgsLk/aXl5eHa9euoW/fvtL6pk2bolevXvjll1+sfk1HcGkvs/Lycpw8eVL6PT8/H9nZ2WjdujWio6MB1HWb/+STT/Dyyy8b/X1WVhb27t2LQYMGoWXLlsjKypKqDbXBzrhx47BkyRJMmzYNaWlpOHbsGF5//XW8+uqrDXOQZoy5JRopHUJwqqQCscH+DIaIiDyQuRQIZ9zXy8vLAQCbNm1C27Zt9db5+vpKQVHTpk2l5dqBCzUajcX96/6d9m+t+Tu5v1epVPXeX0NxaUB04MABDBo0SPp9wYIFAIBJkyZJCV5r166FEAJjx441+ntfX1+sXbsWixcvRlVVFeLi4jB//nxpPwAQGBiILVu2YNasWejRoweCg4PxzDPPuEWXe6CupoiBEBGR59KmQOgGRc5MgejSpQt8fX1RUFCAAQMGGK3XrSUyxcfHB7W1tc4onk3i4+Ph4+ODH3/8ETExMQDqpt/Yv38/5s2b16BlcWlANHDgQAghzG4zc+ZMk8FL9+7d8dNPP1l8ncTERPzwww92lZGIiMgcbQrEU+uPoVYIp6dAtGzZEo8//jjmz58PjUaDfv36Qa1W48cff0RAQIAUWJgTGxsrtcrccMMNaNmyJXx9fZ1SXnOaN2+Ohx9+GE888YTUOrR06VJUVFTIDrPjTJztnoiIqJ4aOgXi+eefR0hICDIyMvD7778jKCgI3bt3x1NPPWVVc9To0aOxfv16DBo0CKWlpVi1ahUmT57s1DKbkpmZCY1GgwkTJuDy5cvo2bMnvv32W7N5vs6gEpaqaAhAXS5TYGAg1Gq1wxOsiYio4V29ehX5+fmIi4szGtKFPIu599La57dH9DIjIiIiciYGRERERGTRQw89pNfNX/fnoYcecnXx6o05RERERGTRc889h8cff1x2XWNIJWFARERERBaFhoZKgx43RmwyIyIiIsVjQERERIrmjqMmk20c8R6yyYyIiBTJx8cHXl5eOHPmDEJCQuDj4yNNcUGeQQiB6upqnD9/Hl5eXvDx8bF7XwyIiIhIkby8vBAXF4eioiKcOXPG1cWhevD390d0dDS8vOxv+GJAREREiuXj44Po6GjU1NS4xdxeZDtvb280adKk3rV7DIiIiEjRtDOyG87KTsrCpGoiIiJSPAZEREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPJcGRLt27cKdd96JyMhIqFQqbNiwQW/95MmToVKp9H6GDx+ut83Fixcxfvx4BAQEICgoCNOmTUN5ebneNjk5Oejfvz+aNWuGqKgoLF261NmHRkRERB7EpQHRlStXkJSUhLfeesvkNsOHD0dRUZH0s2bNGr3148ePx/Hjx7F161Zs3LgRu3btwsyZM6X1ZWVlGDp0KGJiYnDw4EEsW7YMixcvxrvvvuu04yIiIiLP0sSVL56amorU1FSz2/j6+iI8PFx23S+//IJvvvkG+/fvR8+ePQEAb775Ju644w783//9HyIjI/HRRx+huroaK1euhI+PD2666SZkZ2fjlVde0QuciIiISLncPodox44dCA0NRceOHfHwww/jwoUL0rqsrCwEBQVJwRAADBkyBF5eXti7d6+0TUpKCnx8fKRthg0bhtzcXFy6dKnhDoSIiIjclktriCwZPnw4Ro0ahbi4OOTl5eGpp55CamoqsrKy4O3tjeLiYoSGhur9TZMmTdC6dWsUFxcDAIqLixEXF6e3TVhYmLSuVatWsq9dVVWFqqoq6feysjJHHhoRERG5EbcOiO6//37p/wkJCUhMTER8fDx27NiBwYMHO/W1MzIysGTJEqe+BhEREbkHt28y09WuXTsEBwfj5MmTAIDw8HCcO3dOb5uamhpcvHhRyjsKDw/H2bNn9bbR/m4qNwkAFi5cCLVaLf0UFhY68lCIiIjIjXhUQPTHH3/gwoULiIiIAAAkJyejtLQUBw8elLbZtm0bNBoNevfuLW2za9cuXLt2Tdpm69at6Nixo8nmMqAumTsgIEDvh4iIiBonlwZE5eXlyM7ORnZ2NgAgPz8f2dnZKCgoQHl5OZ544gn89NNPOHXqFL7//nvcfffdaN++PYYNGwYA6Ny5M4YPH44ZM2Zg3759+PHHHzF79mzcf//9iIyMBACMGzcOPj4+mDZtGo4fP45169bh9ddfx4IFC1x12ERERORmVEII4aoX37FjBwYNGmS0fNKkSVi+fDlGjhyJw4cPo7S0FJGRkRg6dCief/55KSkaqBuYcfbs2fjqq6/g5eWF0aNH44033kCLFi2kbXJycjBr1izs378fwcHBmDNnDtLS0mwqa1lZGQIDA6FWq1lbRERE5CGsfX67NCDyJAyIiIiIPI+1z2+PyiEiIiIicgYGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAZFCFKkrsSevBEXqSlcXhYiIyO00cXUByHmK1JXIL7mCo3+q8dLmX6ERgJcKyBiVgDG3RLu6eERERG6DAVEjtW5/ARauPwqN0F+uEcBT648hpUMIIgL9XFM4IiIiN8Mms0aoSF0pGwxp1QqBUyUVDVsoIiIiN8aAqBHKL7liMhgCAG+VCrHB/g1XICIiIjfHgKgRigtuDi+V/DpvlQovjurK5jIiIiIdzCFqhCIC/ZAxKgFPrT+GWiHgrVLhyeEdkXhDEGKD/RkMERERGWBA1EiNuSUaKR1CcKqkgkEQERGRBQyIGrGIQD8GQkRERFZgDhEREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeK5NCDatWsX7rzzTkRGRkKlUmHDhg3SumvXriEtLQ0JCQlo3rw5IiMjMXHiRJw5c0ZvH7GxsVCpVHo/mZmZetvk5OSgf//+aNasGaKiorB06dKGODwiIiLyEC4NiK5cuYKkpCS89dZbRusqKipw6NAhLFq0CIcOHcL69euRm5uLu+66y2jb5557DkVFRdLPnDlzpHVlZWUYOnQoYmJicPDgQSxbtgyLFy/Gu+++69RjIyIiIs/h0nGIUlNTkZqaKrsuMDAQW7du1Vv2r3/9C7169UJBQQGio6Ol5S1btkR4eLjsfj766CNUV1dj5cqV8PHxwU033YTs7Gy88sormDlzpuMOhoiIiDyWR+UQqdVqqFQqBAUF6S3PzMxEmzZt0K1bNyxbtgw1NTXSuqysLKSkpMDHx0daNmzYMOTm5uLSpUsNVXQiIiJyYx4zUvXVq1eRlpaGsWPHIiAgQFo+d+5cdO/eHa1bt8aePXuwcOFCFBUV4ZVXXgEAFBcXIy4uTm9fYWFh0rpWrVrJvl5VVRWqqqqk38vKyhx9SEREROQmPCIgunbtGu677z4IIbB8+XK9dQsWLJD+n5iYCB8fHzz44IPIyMiAr6+v3a+ZkZGBJUuW2P33RERE5DncvslMGwydPn0aW7du1asdktO7d2/U1NTg1KlTAIDw8HCcPXtWbxvt76byjgBg4cKFUKvV0k9hYWH9DoSIiIjcllsHRNpg6MSJE/juu+/Qpk0bi3+TnZ0NLy8vhIaGAgCSk5Oxa9cuXLt2Tdpm69at6Nixo8nmMgDw9fVFQECA3k9jUaSuxJ68EhSpK11dFCIiIrfg0iaz8vJynDx5Uvo9Pz8f2dnZaN26NSIiInDvvffi0KFD2LhxI2pra1FcXAwAaN26NXx8fJCVlYW9e/di0KBBaNmyJbKysjB//nw88MADUrAzbtw4LFmyBNOmTUNaWhqOHTuG119/Ha+++qpLjtnV1u0vwML1R6ERgJcKyBiVgDG3RFv+QyIiokZMJYQQrnrxHTt2YNCgQUbLJ02ahMWLFxslQ2tt374dAwcOxKFDh/DII4/g119/RVVVFeLi4jBhwgQsWLBAL38oJycHs2bNwv79+xEcHIw5c+YgLS3NprKWlZUhMDAQarXaY2uLitSV6Ju5DRqdd9xbpcLu9EGICPRzXcGIiIicxNrnt0triAYOHAhz8ZilWK179+746aefLL5OYmIifvjhB5vL19jkl1zRC4YAoFYInCqpYEBERESK5tY5RORYccHN4aXSX+atUiE22N81BSIiInITDIgUJCLQDxmjEuCtqouKvFUqvDiqK2uHiIhI8TxiHCJynDG3RCOlQwhOlVQgNtifwRAREREYEClSRKAfAyEiIiIdbDIjIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiNbF2w7KyMqt3GhAQYFdhiIiIiFzB6hqioKAgtGrVyuyPdhtr7dq1C3feeSciIyOhUqmwYcMGvfVCCDzzzDOIiIiAn58fhgwZghMnTuhtc/HiRYwfPx4BAQEICgrCtGnTUF5errdNTk4O+vfvj2bNmiEqKgpLly61uoxERETU+FldQ7R9+3aHv/iVK1eQlJSEqVOnYtSoUUbrly5dijfeeAMffPAB4uLisGjRIgwbNgw///wzmjVrBgAYP348ioqKsHXrVly7dg1TpkzBzJkz8fHHHwOoq9kaOnQohgwZgrfffhtHjx7F1KlTERQUhJkzZzr8mIiIiMgDCTcBQHz++efS7xqNRoSHh4tly5ZJy0pLS4Wvr69Ys2aNEEKIn3/+WQAQ+/fvl7bZvHmzUKlU4s8//xRCCPHvf/9btGrVSlRVVUnbpKWliY4dO9pUPrVaLQAItVptz+ERERGRC1j7/LY7qbq0tBQvv/wypk+fjunTp+PVV1+FWq12VJyG/Px8FBcXY8iQIdKywMBA9O7dG1lZWQCArKwsBAUFoWfPntI2Q4YMgZeXF/bu3Sttk5KSAh8fH2mbYcOGITc3F5cuXXJYeYmIiMhz2RUQHThwAPHx8Xj11Vdx8eJFXLx4Ea+88gri4+Nx6NAhhxSsuLgYABAWFqa3PCwsTFpXXFyM0NBQvfVNmjRB69at9baR24fua8ipqqpCWVmZ3g8RERE1TnYFRPPnz8ddd92FU6dOYf369Vi/fj3y8/Pxt7/9DfPmzXNwEV0jIyMDgYGB0k9UVJSri0REREROYncNUVpaGpo0uZ6T3aRJEzz55JM4cOCAQwoWHh4OADh79qze8rNnz0rrwsPDce7cOb31NTU1uHjxot42cvvQfQ05CxcuhFqtln4KCwvrd0BERETktuwKiAICAlBQUGC0vLCwEC1btqx3oQAgLi4O4eHh+P7776VlZWVl2Lt3L5KTkwEAycnJKC0txcGDB6Vttm3bBo1Gg969e0vb7Nq1C9euXZO22bp1Kzp27Gh2iABfX18EBATo/RAREVHjZFdANGbMGEybNg3r1q1DYWEhCgsLsXbtWkyfPh1jx461ej/l5eXIzs5GdnY2gLpE6uzsbBQUFEClUmHevHl44YUX8OWXX+Lo0aOYOHEiIiMjMXLkSABA586dMXz4cMyYMQP79u3Djz/+iNmzZ+P+++9HZGQkAGDcuHHw8fHBtGnTcPz4caxbtw6vv/46FixYYM+hExERUWNkTxe2qqoqMXfuXOHj4yO8vLyEl5eX8PX1FfPmzRNXr161ej/bt28XAIx+Jk2aJISo63q/aNEiERYWJnx9fcXgwYNFbm6u3j4uXLggxo4dK1q0aCECAgLElClTxOXLl/W2OXLkiOjXr5/w9fUVbdu2FZmZmTYfM7vdExEReR5rn98qIYSwN5iqqKhAXl4eACA+Ph7+/v71j9DcVFlZGQIDA6FWq9l8RkRE5CGsfX5bPVK1HH9/fyQkJNRnF6SjSF2J/JIriAtujohAP1cXh4iISDHsCoiuXr2KN998E9u3b8e5c+eg0Wj01jtqLCIlWbe/AAvXH4VGAF4qIGNUAsbcEu3qYhERESmCXQHRtGnTsGXLFtx7773o1asXVCqVo8ulKEXqSikYAgCNAJ5afwwpHUJYU0RERNQA7AqINm7ciK+//hp9+/Z1dHkUKb/kihQMadUKgVMlFQyIiIiIGoBd3e7btm3rsPGGCIgLbg4vg0o2b5UKscGNN0mdiIjIndgVEL388stIS0vD6dOnHV0eRYoI9EPGqAR4/9X06K1S4cVRXVk7RERE1EDsajLr2bMnrl69inbt2sHf3x9NmzbVW3/x4kWHFE5JxtwSjZQOIThVUgF/Hy9cqa5FkbqSQREREVEDsCsgGjt2LP7880+8+OKLCAsLY1K1g0QE+mHXb+fZ24yIiKiB2RUQ7dmzB1lZWUhKSnJ0eRSNvc2IiIhcw64cok6dOqGystLRZVE8c73NiIiIyHnsCogyMzPx2GOPYceOHbhw4QLKysr0fsg+7G1GRETkGnbNZeblVRdHGeYOCSGgUqlQW1vrmNK5kYaay2zd/gI8tf4YaoWQepsxh4iIiMg+Tp3LbPv27XYXjMzT7W0WG+zP3CEiIqIGYFdANGDAAKu2e+SRR/Dcc88hODjYnpdRrIhAPwZCREREDciuHCJrffjhh8wpIiIiIrfn1IDIjvQkIiIiogbn1ICIiIiIyBMwICIiIiLFY0BEREREiseAiIiIiBTPqQHRAw884NRBDImIiIgcwa5xiACgtLQU+/btw7lz56DRaPTWTZw4EQCwfPny+pWOiIiIqAHYFRB99dVXGD9+PMrLyxEQEKA3hYdKpZICIiIiIiJPYFeT2WOPPYapU6eivLwcpaWluHTpkvRz8eJFR5eRABSpK7EnrwRF6kpXF4WIiKjRsauG6M8//8TcuXPh789Z2BvCuv0FWLj+KDQC8FIBGaMSOOErERGRA9lVQzRs2DAcOHDA0WUhGUXqSikYAgCNAJ5af4w1RURERA5kdQ3Rl19+Kf1/xIgReOKJJ/Dzzz8jISEBTZs21dv2rrvuclwJFS6/5IoUDGnVCoFTJRWcAJaIiMhBrA6IRo4cabTsueeeM1qmUqlQW1tbr0LRdXHBzeGlgl5Q5K1SITaYzZVERESOYnWTmUajseqHwZBjRQT6IWNUArz/6snnrVLhxVFdWTtERETkQHYlVf/nP//BmDFj4Ovrq7e8uroaa9euZbd7BxtzSzRSOoTgVEkFYoP9GQwRERE5mEoIISxvps/b2xtFRUUIDQ3VW37hwgWEhoY2ylqisrIyBAYGQq1Wc/RtIiIiD2Ht89uuXmZCCL3BGLX++OMPBAYG2rNLIiIiIpexqcmsW7duUKlUUKlUGDx4MJo0uf7ntbW1yM/Px/Dhwx1eSCIiIiJnsikg0vY0y87OxrBhw9CiRQtpnY+PD2JjYzF69GiHFpCIiIjI2WwKiJ599lkAQGxsLMaMGYNmzZo5pVBEREREDcmuXmaTJk0CUNerTG62++hoTitBREREnsOugOjEiROYOnUq9uzZo7dcm2zdGHuZeYIidSXyS64gLrg5u+YTERHZwK5eZpMnT4aXlxc2btyIgwcP4tChQzh06BAOHz6MQ4cOObSAsbGxUiK37s+sWbMAAAMHDjRa99BDD+nto6CgACNGjIC/vz9CQ0PxxBNPoKamxqHlrK/6zma/bn8B+mZuw7gVe9E3cxvW7S9wcAmJiIgaL7tqiLKzs3Hw4EF06tTJ0eUxsn//fr0ap2PHjuH222/H3//+d2nZjBkz9KYR8fe/Pq1FbW0tRowYgfDwcOzZswdFRUWYOHEimjZtihdffNHp5bdGfWezNzUBbEqHENYUERERWcGuGqIuXbqgpKTE0WWRFRISgvDwcOln48aNiI+Px4ABA6Rt/P399bbRHXhpy5Yt+Pnnn/Hhhx/i5ptvRmpqKp5//nm89dZbqK6ubpBjMMcRs9mbmwDW1rLUp5aKiIjIU9kVEL300kt48sknsWPHDly4cAFlZWV6P85SXV2NDz/8EFOnTtUbGPKjjz5CcHAwunbtioULF6Ki4nogkJWVhYSEBISFhUnLhg0bhrKyMhw/ftxpZbWWI4IZ7QSwumydAJZNbkREpGR2NZkNGTIEAHDbbbfpBSbOTqresGEDSktLMXnyZGnZuHHjEBMTg8jISOTk5CAtLQ25ublYv349AKC4uFgvGAIg/V5cXGzytaqqqlBVVSX97qxAz9Js9tYkSmsngH1q/THUCmHzBLBsciMiIqWzKyDavn27o8thlffffx+pqamIjIyUls2cOVP6f0JCAiIiIjB48GDk5eUhPj7e7tfKyMjAkiVL6lVea5gLZmzJLarPBLDmaqkYEBERkRLY1WQ2YMAAeHl5YcWKFUhPT0f79u0xYMAAFBQUwNvb29FlBACcPn0a3333HaZPn252u969ewMATp48CQAIDw/H2bNn9bbR/h4eHm5yPwsXLoRarZZ+CgsL61N8s8bcEo3d6YOwZsat2J0+CGNuibYrtygi0A/J8W1sDmIc0eRGRETkyewKiD777DMMGzYMfn5+OHz4sNS0pFarndZza9WqVQgNDcWIESPMbpednQ0AiIiIAAAkJyfj6NGjOHfunLTN1q1bERAQgC5dupjcj6+vLwICAvR+nMkwmHFUorS1r50xKgHefzV/2trkRkRE5OnsajJ74YUX8Pbbb2PixIlYu3attLxv37544YUXHFY4LY1Gg1WrVmHSpEl6E8rm5eXh448/xh133IE2bdogJycH8+fPR0pKChITEwEAQ4cORZcuXTBhwgQsXboUxcXFePrppzFr1iz4+vo6vKyOYim3yNHq0+RGRETk6eyqIcrNzUVKSorR8sDAQJSWlta3TEa+++47FBQUYOrUqXrLfXx88N1332Ho0KHo1KkTHnvsMYwePRpfffWVtI23tzc2btwIb29vJCcn44EHHsDEiRP1xi1yR66otbG3yY2IiMjT2VVDFB4ejpMnTyI2NlZv+e7du9GuXTtHlEvP0KFDIYQwWh4VFYWdO3da/PuYmBh8/fXXDi+Xs7HWhoiIqGHYFRDNmDEDjz76KFauXAmVSoUzZ84gKysLjz/+OBYtWuToMipaRKAfAyEiIiInsysgSk9Ph0ajweDBg1FRUYGUlBT4+vri8ccfx5w5cxxdRiIiIiKnUgm5tigrVVdX4+TJkygvL0eXLl3QokULR5bNrZSVlSEwMBBqtdrpPc6IiIjIMax9fttVQ6Tl4+Njtus6ERERkSewq5cZEZnHiXKJiDxLvWqIiMiYLVOuEBGRe2ANEZED2TPlChERuR4DIiIHasgpV4iIyHEYEBE5ECfKJSLyTAyIiByIE+USEXkmJlUTORinXCEi8jwMiIicgFOuEBF5FjaZERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAyIMVqSuxJ68ERepKVxeFiIjIo3FyVw+1bn8BFq4/Co0AvFRAxqgEjLkl2tXFIiIi8kisIfJARepKKRgCAI0Anlp/jDVFREREdmJA5IHyS65IwZBWrRA4VVLhmgIRERF5OAZEHiguuDm8VPrLvFUqxAb7u6ZAREREHo4BkQeKCPRDxqgEeKvqoiJvlQovjuqKiEA/F5eMiIjIMzGp2kONuSUaKR1CcKqkArHB/gyGiIiI6oEBkQeLCPRjIEREROQAbDIjIiIixWNARERERIrHgIjqhaNlExFRY8AcIrIbR8smIqLGgjVEZBeOlk1ERI0JAyKyC0fLth6bFYmI3B+bzDxckboS+SVXEBfcvEG74GtHy9YNigxHy3ZV2dwJmxWJiDyD29cQLV68GCqVSu+nU6dO0vqrV69i1qxZaNOmDVq0aIHRo0fj7NmzevsoKCjAiBEj4O/vj9DQUDzxxBOoqalp6ENxuHX7C9A3cxvGrdiLvpnbsG5/QYO9tqXRsl1ZNnfBZkUiIs/hETVEN910E7777jvp9yZNrhd7/vz52LRpEz755BMEBgZi9uzZGDVqFH788UcAQG1tLUaMGIHw8HDs2bMHRUVFmDhxIpo2bYoXX3yxwY/FUUw9bFM6hDRYbYyp0bLdoWzuwFyzopLOAxGRJ/CIgKhJkyYIDw83Wq5Wq/H+++/j448/xm233QYAWLVqFTp37oyffvoJt956K7Zs2YKff/4Z3333HcLCwnDzzTfj+eefR1paGhYvXgwfH5+GPhyHcJeHrdxo2e5SNlezplmRiIjcg9s3mQHAiRMnEBkZiXbt2mH8+PEoKKhrfjl48CCuXbuGIUOGSNt26tQJ0dHRyMrKAgBkZWUhISEBYWFh0jbDhg1DWVkZjh8/bvI1q6qqUFZWpvfjTtx5xnt3LltD4iS8RESew+0Dot69e2P16tX45ptvsHz5cuTn56N///64fPkyiouL4ePjg6CgIL2/CQsLQ3FxMQCguLhYLxjSrteuMyUjIwOBgYHST1RUlGMPrJ6c+bCtb68oBgLXjbklGrvTB2HNjFuxO30QE6qJiNyU2zeZpaamSv9PTExE7969ERMTg//973/w83PeA3bhwoVYsGCB9HtZWZlLgiJzPbWcMeN9fXtFacub0iEEu9MHObRsnoqT8BIRuT+3D4gMBQUFoUOHDjh58iRuv/12VFdXo7S0VK+W6OzZs1LOUXh4OPbt26e3D20vNLm8JC1fX1/4+vo6/gBsYE1w4siHbX2ToV3VxZzd+4mIqL7cvsnMUHl5OfLy8hAREYEePXqgadOm+P7776X1ubm5KCgoQHJyMgAgOTkZR48exblz56Rttm7dioCAAHTp0qXBy2+KYTOVK7ps12ewRVd1MWf3fiIicgS3ryF6/PHHceeddyImJgZnzpzBs88+C29vb4wdOxaBgYGYNm0aFixYgNatWyMgIABz5sxBcnIybr31VgDA0KFD0aVLF0yYMAFLly5FcXExnn76acyaNcvlNUBacjUrUa39G7ynVn16RbmiZxm79xMRkaO4fQ3RH3/8gbFjx6Jjx46477770KZNG/z0008ICQkBALz66qv429/+htGjRyMlJQXh4eFYv3699Pfe3t7YuHEjvL29kZycjAceeAATJ07Ec88956pD0mPqod7cx7vBe2rZmwxdpK7EhfKqBi8vpw8hIiJHUQkhhOXNqKysDIGBgVCr1QgICHDYfvfklWDcir1Gy9fMuBUFF6/gqfXHUCuEFJw0VE6OtcnQurVbKgBQAUKgQcpbpK5E38xtRjVau9MHsYaIiIgAWP/8dvsms8bOXDNVcnwbh/cis4a1idqGtVsCgJcA/jWuG7rHtHJ6ebU1WoZBI4MhIiKyFQMiF7P0UHfnLttyTVYaAK2b+7p8+hAiIiJbMCByA+76ULfUnd1dpqZw56CRiIg8AwMiN+FuD3Vrx0BikxURETUGTKq2krOSqt2RrcnKtiRhExERNSQmVZPdTHVnP3T6Elo1N25Cc7faLSIiIlsxIGpEHDWFhVxukEoFzP74cF1PsgacloOIiKghuP3AjGQdR05hYThAo5cKgKjrVg803LQc1jCc8oSIiDyHO93DWUPUCDhjCgvdnm8l5VcxZ0223npnT8thDVdNJktERPXnbvdw1hA1As6awiIi0A/J8W3QM7Z1g0/LYYmrJpMlIqL6c8d7OAOiRkCb86PLkQGLvXOcOVNjmMfMnaqKiYgakjvew9lk1gg0xHhA7jZ4pLsMCmkvd6sqJiJqSO54D+c4RFbyhHGIlDYe0Lr9BS6Z/La+OCktEVHD3cM5DpECKW08IHertTJkahgEc1XF7nYMRETO4m73cAZEZBNHjXXkKO4aBJprEnPHqmIiIldwp3s4k6rJao4c66gxs9R7wh2T1ImIlI41RGQVZ4x1VN/yuFNNlS5rmsTcraqYiEjpGBCRVdwp78Xde2hZ2yTmTlXFRERKxyYzsoqtYx3ZOsaOtdu742BehtgkRkTkeVhDRFaxZawjW2twbNnenWqqzGGTGBGRZ2FARFaz5iFva66Rrds7qodWQ+QgsUmMiMhzsMmMbKKd38zUg97W4dht3d4RzVHsLUdERIZYQ0QOZWsNjj01PvVpjnK33nJEROQeWENEDmVrDY69NT6WaqpMcccJBYmIyPVYQ0QOZ2sNTkMmIHOUaCIiksMaInIKW2tw7K3xsadcSusSb+sQCERESsQaIvJo9vQWU1KXeHcfxJKIyF0wICKPYRj81Odhr4Qu8UwgJyKyHgMi8giGwU9aaie8tPnXBn3Yu/P8aXI8ZRBLIiJ3wICIGoy9AYVcTYduMKTlzIe9OzY9WTqfTCAnIrIeAyJqEPUJKORqOjQCUAHQXeysh707Nj1Zcz5tmW6FiEjpGBCRzWyt6alvQGGqpuPJ4R2x9Jtcpz/s3a3pyZbzqaQEciJyL56WZsCAiGxiT01PfQMKUzUdY26Jxl03Rzr9Ye9uTU+2nk8lJJATkXtxxzQDSxgQkdXsrelxREBhqqajIR72cgHZk8M7Ir/kirS+IblbgEZEpMsd0wyswYCIrGZvTY+jcllcWdOhG5Dl/FkqJXW74psPc4OIyJ25W5qBtRgQkdXqUzNhWMMDAHvySjymbRm4XhM0/r2fXP7Nh7lBROSumvt4N1inF0diQOShXJGsVt+aCW0Njye2LWu50zcf5gYRkbvR3t8NgyFPqMV2+7nMMjIycMstt6Bly5YIDQ3FyJEjkZubq7fNwIEDoVKp9H4eeughvW0KCgowYsQI+Pv7IzQ0FE888QRqamoa8lAcZt3+AvTN3IZxK/aib+Y2rNtf0GCvPeaWaOxOH4Q1M27F7vRBNgcyptqWPWWeLW0tmS5P+OZDRORshvd3oO5L7/pHkj3iS6/bB0Q7d+7ErFmz8NNPP2Hr1q24du0ahg4diitXruhtN2PGDBQVFUk/S5culdbV1tZixIgRqK6uxp49e/DBBx9g9erVeOaZZxr6cOrNHQKK+kzEaq6GxRMocXJYIiJrmBozrqJa45oC2cjtm8y++eYbvd9Xr16N0NBQHDx4ECkpKdJyf39/hIeHy+5jy5Yt+Pnnn/Hdd98hLCwMN998M55//nmkpaVh8eLF8PHxceoxOJI7NdnYozH0kHJk/o6njdNBRGSKp9/f3b6GyJBarQYAtG7dWm/5Rx99hODgYHTt2hULFy5ERcX1GoesrCwkJCQgLCxMWjZs2DCUlZXh+PHjsq9TVVWFsrIyvR934OlNNo2lhqU+tWRarmz6JCJyNE+/v7t9DZEujUaDefPmoW/fvujatau0fNy4cYiJiUFkZCRycnKQlpaG3NxcrF+/HgBQXFysFwwBkH4vLi6Wfa2MjAwsWbLESUdiv8bQ5drde0g1RK2Np47TQURkjrvf383xqIBo1qxZOHbsGHbv3q23fObMmdL/ExISEBERgcGDByMvLw/x8fF2vdbChQuxYMEC6feysjJERUXZV3AHc9cLzpZAwl17SDVUDzhPb/okIjLFXe/vlnhMQDR79mxs3LgRu3btwg033GB22969ewMATp48ifj4eISHh2Pfvn1625w9exYATOYd+fr6wtfX1wEldw53u+A8uSu9VkPW2nh6WzsRUWPj9jlEQgjMnj0bn3/+ObZt24a4uDiLf5OdnQ0AiIiIAAAkJyfj6NGjOHfunLTN1q1bERAQgC5dujil3I5QpK7EnrwSt+2Sri3fkcJLLu/5Zo6157Ehe8B5els7EVFj4/Y1RLNmzcLHH3+ML774Ai1btpRyfgIDA+Hn54e8vDx8/PHHuOOOO9CmTRvk5ORg/vz5SElJQWJiIgBg6NCh6NKlCyZMmIClS5eiuLgYTz/9NGbNmuW2tUD1qXGpTw6MtX+rWz6VChAN2Pxjy/HZch4butbGXZs+iYiUSCWE4aPMvahUKtnlq1atwuTJk1FYWIgHHngAx44dw5UrVxAVFYV77rkHTz/9NAICAqTtT58+jYcffhg7duxA8+bNMWnSJGRmZqJJE+tiwrKyMgQGBkKtVuvt1xmK1JXom7nN6MG8O32QXQFASocQm4Mcc8GDXPkMWVteW9kS4NhzHtftLzBKWPe0pj8icg0Oo+GerH1+u30NkaV4LSoqCjt37rS4n5iYGHz99deOKpZT2ZtwK5cDk77+KCDq5pSxFORYmz8jVz5dKhWc0vxja46PPeeRtTZEZI/GkEepdG6fQ6RE9o41JBcACHF9gj1zuT225M/IlU+XSgApHULMltUSubwfW3N87D2PjhhjyB24ew4aUWPhDjMIUP0xIHJD9ibcWgpUgOsBhO7DskhdiQvlVVYHD4blM6QBpCDFnoeyqQELbQ1wlJS4bHieOegjUcPx9CmJqI7bN5kplT1NN4aDNnqp9GuIgLqgIOfPUox/76e6hOi/lgvU/V+bIG0peNCW79DpS5j98WGj14gN9tdPvAYwo38cpvSLs7nZT7dZzNZBKZXQBGZYVZ82vBNe+uZXDvpI1EA4jIZpnpRX5fZJ1e6iIZOq66tIXSkFALt+O389QALw8MB4LN+ZZzIHyAvAm+O6oXtMK6svXrlE5JQOIbKJ15ba1vfklWDcir1Gy9fMuBXJ8W2Mjs/dP2DOJpc47oW6WjpDuuewodhzM/SkGyiRFjtkGHOXvKpGk1RNttMdtHHMLdEorbyGzM11NQb/3pEHcxGwBkDr5r42PYjkamH25JXIBl2Waius+ablboNS1ld9AgDZ2aVhPBSCK76t2nMzdJcbKJGtlFAbbQtPnJ6IOUSNXJG6Ei9t/lV6OFqqDrT3wWmYiGwun8lc27ph3o8XgGn9Ym0uj6eob66Pqbyq9NROLs2dsifJlImp5OkaS4cMR/DEvCoGRI2cqS7y2oeoSnU9j8iRD05tYCN3gVkKusbcEo3d6YMws387QAW8+0N+o0wMdkQAYCpx/MGUeOxOH4Q1M27F7vRBDV7LYupmePDUJb1kft1EcE+8gRKRPHt7+boSm8waOVNNUOsfSUZFtUa6OJ1RzautQl61+xTe2/07NFYka+vS/g3gGdWttnLUBK+mquobsmnRsNlP7rpTAZi79rBRMr/uAKJMTCVqHOzpBONqDIg8jK35JqYuyqSoVkbbOUNEoB+eGtEZU/rF4tDpS9AIgZ6xrS3+XX2CBU9JynVkzxRX5lWZyvvR6/GIuuBHI9N0qw12d6cPcugN1FOuAyXhe6IsnpZXxYDIg9ibcOoOF+Wu387bVHa5YMFLBZSUX0WRutLs1BuekpTrid+gDJlLnNS97i5cqcLsjw+b3I822LX2WrX0YPWk60ApDOc/TE/thAdT4l1dLHIyT+oEw273VnJ1t/v6zG/mavaWXbcbq0oFi1OQeMo5MnyYO3IYgYb+Br4x54xsoGPYxb9IXYk+GdtMJvVrm3GvVNfWe849T7kOGhu561r7OwDZYTgWpnbCgwNsD4pY00S2YLf7RsZSwqmzbg6OuPHY2/xlavBHU/lEjsrJsZc158rUw9wR5XNGrYjhQ+3g6UsQfzV77vrtPNI/O2r0N7Y2+3mrVBjZLRL3/HuPVPZp/eIwVWYQT2u68tp6HfDhKs+W8/LOrjxk/tWb1UsF3NOtLT4//Kfe+ynXuSNz86+46+ZIaf/1+Qw1NF438jz5vDAg8hCm8k1y/rg+6rThzaG+F6ajbjz1yZWJCPSDRlw0qlmoFQKbcoowIjHCqKu/K5JyrTlXzhyXw5H71l43R/9U46W/xq/6q4JOj9wyLxMT++aXXJGtHVo0ojN6xraSgiFt2Vf8kI/3fshH5mj982hNsGPLdeAuD1d3Y8t5eWdnHjI2/yr9rhHAZ4f+1Pv9/d35sn8rALy783eM7BaJTTlFWPFDvsVaYHcY24bXjTxPPy/sdu8h5LpXP5naUXaKhiJ1Zb3Ht7HUJdyWOcrqM6fYuv0FeHRttuy6Fzb9ondsrpq7zNru887sVu6IfRepK/Hipp/RJ6Puusn4+vq1JRfMyC174/5usjfA5j7eMJz6zlulwh2JESi4WCFbeyBgfB6t6cpr7XUg974tXH9U8eMemTovRwovyW6bqRMMmWJqZHwAWLXnFO5+aw/e/SsYkl7zM+P3wp7r3NGTHDe28bLMnR9bzl1jOC+sIfIghgmnpm4Oh05fqve3KHM3HlsTpOXKbk05DD9gcgyPzRUJ5NY20TizBsvefUu1QX+o9YJre3irVOgR28poufZbo+HI2S+O6lrX7LbeuNlNy/A8WpuIbs11IDvKtwBW/ZiPp+7oYsORNy6mzsvdb+0xyvkxVfPnCBoAq3afwlMjOkvLbL3ODWssTDXF2sLVTfP2MJXfpVsLbHgvN1fbI9f64InnxRADIjdlqrnLMGNf7uagEaLeF6apG4+/j5fdwZY1vQ10j9vUoJKG5B6aDfkBtPYm7cxeZfbsW/eGZy/tcVtbCwPUVUuvfyQZoQHN0DdzG8x165A7j9pg5+CpS4AK6BFjHIQB0LtR6/6uJfe+AcB7u/IxpW/9HpqeLC64uWxzKIC6pjEVpN5hps6ho7y3+3dM6Rer9xBPS+2EpZtzLV7ncjUWpppibeFpE7kaBja6+V26tDWB/j7eiG7tL3uf7xTe0mTTpqedFzkMiNyQte2wph6CPWNb1/vCNLXvK9W1TvsWYHjcDw+IN7oxe/01R5fuMld/6GwJRpxZg2XLvq2pfbNG2vBOSLwhyLZaGAAV1RqLAa+pfCTAumEcLH2OIgL9MK1fHFb8oJ/fogE86lutIxwpvIR9py6iV2xr/Fp82ey2L23+FXclRUpfPHSvfUfTCMjWSlu67gDTo/QL1DXHNfdtgh42TGKt5SnDZRSpK3Hg1EWjwEY3v8uQRgBz1mTLBsS1QmDkW3uMxhBb+NlR6QuxJ5wXc9jt3koN1e3eni7Dct22HTXzsuG+ndWlWW6/hrTHAcCuY3N27wdHdp93BsPat3Er9tZ7n9Zcm6auF0C+K7YKwIyUOJO1NNZcg9Zep3LDASiti/5j/8s2+5CUIzeswqacIryw6RejbWUT8g0mHzZFBWDDrD56SfeAde+RNfeU+iT+uvPn3RG1v7aY2b+d1LRp63lpiF5p7Hbvoexph5VrInJETYTcheqsbwHW1BasfyRZGmHb1mNriN4P7jQAmeF7Z3j8acM7mWzq8FIB0/u1w5S/JtU1HPZAl6WhHyxdL3qjWeu8rrlu2NZ8Rqz9HEUE+iFztGd/q62PI4WXbA6GtE3ne/JKpPclItAPIxIj8OLXvxid91mD4lFdI4ym7+kU3hJ3v7XH7GsJAOv2F5rMlRyRaPp90l575gKD+vRSc6fPuy5H1f4C15vELTWL6jZt2nJe3K1XGgMiN+Mu0zmYu1Cd0exjKRdBI+qaWbRsOTZnd3d3tzE3jIKf1E5S4iRQd/xLv8k1ysV4MrUjEtsaN0OMSPRDeVWN7E3WW6VCzp+mh34AzF8v5tYZjm1jS66CtZ+jInUlolr7683t5y7vozPoNo0lRbXCvlMXbfp7LxX0xozSHXE6ItAPacM76XXBB4DlO37H7vRBmNIv1uh9fkknGDWVt/TxvkLZssz++DDKq2qQ0iHE5GdwzC3RFgMv7RAet8S2smpgUHdn7sulNodow+Ez1z/3wzvihlZ+Rl96dOe89PfxMqql06Vt2rTlvLnLEAq6GBC5GXdoh7XmQnX0tyNLuQj1yRNyVu+Hhvp2Y23QVaSuxMHTl5D+2VG97suZX/8qmw+Q2DYIu9MHWRXYShP1/piP93blQwNIN1PDYMvUTU2Y6I8kdy3JjW2ju19LnxFrtpF7/wybgdwt2K0Pw6ax0d3b4o6EcJv28dzdN+GZL45fH45BABlf/woI4MEB8Ui4IdDob7SfteT4NiZrsrUJ8peuVGPRF8etKosA9K51U5/BK9W1Fvel29SnO9mwO7//pq7PuODmJpsk37i/G/6WFInHh3U0+tyXV9WYnfPS0fdnd+yVxoDIxeQualfPPeaqC1X3uHP+LLWqJ4k17Kl1s/QwbKhvN9YGXeZyBuTCEC8VpGvL2vJGBPrhqTu6YErfOItDP+heK3I1VgltA82eW7mxbXT3K/cZMXzPDLcBIDXzADD7/tkT7LpbAKVbnnNlV42axj479Kdsc1n36CAcLiw1eqB6q1QI9Gsqe4299NeI0/Z81nQTplWQzzkyxTDBV/c91B5/cx9vm/apEUC6zjARKqBevdIcyZru8hGBfkhP7VQXqOrQHRbD8HNvTU2prfdnS58Hd+yVxoDIhczddF3ZPu3KC1V73MnxbXBXUqRDgkJba92seRg2RNBobdB1pFC/Vsga0/u1s7uc2veoSF2Ji1eqjR42ujkmzX28jY5Be6M2d27NBXGG5QDMjzcjF+BMl5lKQjcfytZg191yId7Z+VdzI+oe6Ld1CrH4NyoAS+9NQNpnR42CIS9A6sEqV/ug7ZmXHN9GPy8MwJPDO5pNutc919ry2svUWGmpXcPx9bFio+M19ZnRPT5tTZS9vdIcxdSXHrnr88GUeJRVXsO/t+dBwPwgtXL5hdraXMPtrb0/W/N5cIfWEEMMiFzEHdtPtdzlQrU1KDT3jcSWWdSteV8aImi0tvYlfb1twZAXICVM20tv5nJcf7gYzktmrjeRuXMr97BKS+1kdW2d7ngzKR1CjNa/90O+yffPnrnQ3Omz/M4u/eZGAeD7X89b/DsBQF1ZI1sD9Oa4bhiRGAkAJmsftNf+mFuiUVp5DZl/1WC89M2vCPJvKhsgyp1rAWBcr2is3VcADaA3sbPu/+V4q1SoqL6mV8OjEcC3x89i1qB4LN+RJyV2P5mq39xr6dzM/viwS4Jdue7zhuTuC8t35EkB5kMD2iGqtT+K1JVGNUNGX1g2m//CoqXbgeFc2VUp/wqw/guFq1tDDDEgchFXNEvZUqXvrAvVWc0Kut+IzX0jsfSatvROsjVotPXYLQVd2puZLQNn6A5doNtLyBZy3+q9VMCb93dDVGs/veRLS2Wz5Zq/Na611b3OtOV6av0xvHZ/kvG3agAz+7XD+7vzZd8/W4Jdd8qFsHYqDTleAG6JbSV77N11Br98MCUeEHXNZNpcMt1zV6SuxEt/JcMD+gP+9YxtbdUXizmD22PO4PZ6zZ3a/58ru2o0Ho7WyG6RmP7BQdmcuVb+Pvj8kT56TUJBfk1tGkPJ1MPd1EjQ5j5fctuY6x1qjtx9Qffz+daOPLy1I8/o3njw9CW7e+DJlc3URL7mPg+ubA0xxIDIRRq6WcqeKn1HX6jOalYw/EZcn2/otrwvtgSN1k7+qnsz1PbaMfXgMXUz8wJwT3fjniTagex2/XZeGp/FnvfB1NQObVr4yg7cqS2TxngxvFSAv4/+lIqmmsx0ewrplls7T5rcM62uO79K9j2d0i9WtueTrcGuK5uYDa+Z/JIrVgXIgzqGYEfueb3zLAD8WnzZqmN/cEA87rpZvsnE1PUxZ022bGqAudcz/BKi/Tf9DuNaKhWAzw//abL26IVNvxglz2s/w6bGUJJjKUdOdyRoWwYNBaC37JGB8XjrryYvcwy/5Fwor7IqyNn123mkf2Z62hzdYwVgFPCZar57f3e+8YC6AC5cqTKqoXI3HJjRSs4YmNFRgyda4qzBFBuyDKa+cRWpK9HHxPQPa2bcKjWBNPfxtrpLra3vizUJ2IbH7qUCXr//Zukbs9wNUtvsIIR+92ZtGeXyhrxUwOeP9EFSVCvZAdIccS3YOtiibvfdnD9KsfSbXL1v5HLzJFkaUE+7X2uaPb6Y1Qc//X5RCiy9AEzvH4cpZua00vbYgwB6xFrOG9G9Zqzdf31qSovUlVi5Ox/v787Xu2ZSOoRYde5M0X0f7a0dtvT+mRog05bX25NXYvfAoqZe39rzpvv31g4oa2nQUC8AsGMKlCl9YtEjthX+vFQpzUUoN5q/obfGdcOcNYctvp4Kdfcd3X1njEpAVGt/s+d/Zkoc3v/hlDScAgCztffOxoEZPUBDtZ+6Q5V+fcpgrnbF1DdiL0BvfBxpuc7fm3ooObrmx9I35rThnfQmVtUIGAU7QgBLN+firqS6PI6FJvKG7unWVuoqK1fD54hrwVLNldw3fm2ZkuPb4NZ2rfWaPAxr9LS1Bgs/Oypbq6RbbsNaAjkrfvgdm3KKpXwKAeDdH/Lx3u58u6b8MKTbQ2dTTjHe2/277P51J9LVTXjW9mCyNkiSC4a1zVI/pt9mNO6ULeS6yNsavBnW+ph6DcPaH3PB44FTF6FSqaSkZrlaObmgQi4Xzdom8GE3hWHzsWKjDgO617o18y1aM2ioBjIFtcKqPaewas8p/X399QXKS8jXypqa79IU7bWq3ffC9UexYmIPk7WyXipgREIEpvSNw8FTlzB37WG9e5vuVB/uhgGRizVE+6k7dG80NfBizp+lemO/GLKUsGpqvw8PjJd9KGj/vrTymsluq4D1E9Ealm3h+qPoFN5Sb/wOc4NOanRyMXTJ3au0N9btv541eTPbcPgMHh9mulePI66FdfsL6gI41N14n0ztaPVAjEDduDCWHlLaAfVG/nuPTTlScjbmXO9dZBhEGDatFqkrjcZxspRHobu97gPYsHlCrolBoC74tXQ9akl5YzLHqRFA2qc52H2ypF41RLrXglxwaM34PNprQG6Uc1uuN7nzqw0g5QJvQH9aH7kaRGuawLUDERo2++iOlg+YnwhX7vVM9cz0AiDMdECwlRDA8yNvQnxIS9ku8nLzXco1a5u6zqZ9cNDka2sEcM+/90g1SXLB36rdp6SpPtyJl+VNyNNpv/14q+oqL13Ra0xbq2Bo6eZcFKkrTf6duRoN7X51j81LBSy8oxP63hhstkdGpsFgggvXH8VXR/40WxZryqYRwMi39mDd/gJpmbaMXib6E5urBdHlpQJOnr+Mdw0mI9Wle27k1PdaMErYFPLvYUSgn+xAfMD1oEyX3EMqKaoVMs2cN0cwPF8rd+fLBmuHTl/CnrwSveM0DJ4A+dqIQ6cvmU2MFagbisAw6Dc8p0XqSmzMOWM22Nl1wnIwpELdoIzaa0BLLjnaMOBP/+wo+mZuw7gVe9E3c5vedW4oItAPIxIjkTnavuvN1PlduP4oitSVGHNLNHanD8KaGbdid/ogjLkl2mjZXUmRmN4vTnrQWXp97XUrlwunnZTYFrqvt25/AfpmbjMKEFUqIGN0Aqb3i7O4P1s+Cs98cRwFF6/gwZR4o/Mkdx9IS+1k9Fmz96OnvYa1Y0AZem/37zbdaxsKa4gUwh26N5obxbY+NRqmBukzOVcXjJebSvo0x1TNj4B8rYK13/5MlVsIYNEG86P4WvPtO6VDCF67Pwlef/UesuVacFSTm+G3+yeHd0R+yRVpvZbuCNkrdhkHK6ZYO3mo4bf393fLB5vah5huLteBUxetSni1pXlCy1zibn2k3BiMl+5NRESgnzRasb+Pl+xgfKa6xAuDwM1wIMT6NEHrMpVcrxHXp4mQq8nVLjOs3ZppME+eOdbWpJoqIwAsGtEZdyRGmE1CBgAIoLlvE/wtMQLv/WB8jXuhbsiJxBuCUFF9zWztjC65pugidaXUu1TufQnyv97rzqueNVa1QqCiWoMZ/eOMvsTpvofuhAGRgujePFwxqq49zTXW9vgxvDGaymPwAnB/ryis2Vdo8mZr2Oxl6lxJuS4yNzrdB5q5Zg5D5nqXWPPwtfTtu749/RzV/Go46q2l5sv4kBZmcxbuvyUaa/cXQCOsT7b2+qu5z5p8EO1i7VQVp0quoNLElBDa82OueUKXbtKplvacFqkr8d3PZ62ezsKoLABWTOqBUyUV6BnbSq+5x1KzsKX5BQHTAyHa0wQt9/pyzVGGA3QC8t3eDWu33t+db/X4W9YG7abOkRcgBUOA5WtLO8bRKJ3eoXKTHe/JK7Gq/FraGspWzety1wyTo1M6hOhNqaP7uSwpv4o5a7Jtej1d2mt4Sr84vPdX8r/uOsMJgt0Be5lZyRm9zFzFlaPq2tuzztZeKIZ/5+/jJSW8aoT8Q0iXNlcBgMVzdaTwktG4KLo9S0z1iJnQOxr/3Wvc5GD44Df3UDLsUm/u3Diqt6Eje0daUyZzPXl0X9/wGtHr+aUC+rUPNsqvMUyyN3wdS/khct6f1AP+Pk313g/dssj1ugEgmw9jbgTyRSM642JFtTTYoJyZKXF46o4uNh7BdYa95wSMA7f1jyQbTfzpqF6sRjlEKiDT4DModz8z1QtqzYxbkRzfxqb5AQ2DdhWAGTq9CKXBUf8qpApA+h3Xe4Rqk8IfXZttsYZPt0em3OfZ3GdB7v0xN5Cl6q/1pu5ttvS8kzsO3fuC4T1jZLdIi0MTOJK1z28GRFZqLAGRu3TBb+imO1Nd3+9OisTn2Wdk/0au14put2TDAdRMBQmmzrncg8TUeD1GSZiquokarekSrmUqMNM+JAyZe2g46j20pkymtjFskjA1LINukqypoEp7/RsGUZa6L8sxN86U3ECDuoGf7npLXdcNa8HkrpEf02+TfX9sqSHWLdeu384bXeeWgo/6KlJX4uCpS1CpYNTEa8tnS/s+W6rNknt9ufdCd16+5j7eWLe/EB/vK5TWGY4tpAIAK5qh5M6b7vtl+B48mdoRiW2DjN4fW69fueeAuS8VXgCGdw3Ht8fPSuvv7xWNPu3ayN6XzH0Wnf0MYrd7kuUOXfANq8+d2Xyn3ffFK9WyeUMbTARDgHxX2FohsGr3KammSfeGaipPwlSzX1JUK9lqed0u+IB8Psw93drib391wbeWLc1dlmoR5ZpAzAUlpt5fuUEVDctkqtzaYMjS5LHaWjpzSfba6183v0ojhF1NBuZya3QfdKaafS0lT6sAjLnlBmR+/atsc5Juc52pnnG2BAS677W1+XqO7MUaEeiHvyVdDxp1m1lM3c8qqjUme6HJJYpX1dTi9i7hsufL1ACoGnF9Xj7DxGGNqOtervuFSqCuK/y/xnXDDa38UHixUq9LOiB/3uTer93pg2TvNfVp8pJ7Dph6vw1/1+b4fby3AGv3FZidKUDus+jqWe61GBApjDt0wdflzOY7U/NtaVnKj5CrIfICpGAIkE9clGMqYLImsVGujJ8f/tNs93o51uZj2TM3l6n30dz7q11nGAwZlslcuWXnYpKZPNZcPoz2+peb5NLSNWJKrRDYlFOES1eq8e+/5pSSG4DSMFC0KnlaBakmQpdA3fQpbVr4mqy5c8S8a5by9ZzVi9XUEABG3cdVdaOfy3225B7GAsAzX/yMZ7/42WhWe22TnSVyb5fcFyoNgNbNfZEUVZfPdaW6xux5M/V+7U4fZLL2TTewNtexRK75U+45IPd+G763usng5q6pInUlLpRXudUzSBcDokbGUm1LQ928rC2royfF1B6/4SzrAnUBke43aHOJt3LjmmgTsg0fRoYJ1NrzD+g3q5kKmAyXW/Mtz95eGtb0+HHU5KadwluafH8BGD345cZ5sVRuc8mqhteTqcECR3a7PtilblmXfpOLtNRO0hguhrQ1em2D/Iy+6QMwmgpCW2tQXavBL0WX6yYvFdfnf/pbYoTFYEgF000u2gDeXDOms2qInd2L1VxgYPi+asT1cXC0Xcy1zAXGAvqDBtrSGUKOqSZ3Sz1kddXn/ZJNDDfRvFaf54C1ZTT6gvpXzbArn0GGFBUQvfXWW1i2bBmKi4uRlJSEN998E7169XJ1sRzG2toWd+iCDzj+5qz3gZNpZpL7Bq07uaMXgIcHxaNf+xC986I7c/eafYWyNU2GNQxyibO21HzpfsuztqeNrfs2RXYUYBVQUn5Vdi4iU+/j/lPGTQ3a91fAuCu6pXFe5MptqSeU7vUkDfZokAC/4fAZDOwYIlvWxLZBUvOEtnu6XDd13W/65mhgPHSCRgArfsjHCjPjS6lUwGO3d8D/bflNfj2sm5HdmTXElq6r+jB1jR06fQlRrf3x7sTuepO6mvpypQ0STI2CrsH1LxrWjEKtSzdJ2dRAkaYe/MJE2FXf98vcvd5RzwFryig7IfRfzYfavDBX9Hw2pJiAaN26dViwYAHefvtt9O7dG6+99hqGDRuG3NxchIaGurp49WZrbYszb17WOvqH2miZvTdnuQED5fZtmOw35pZovYBn+Y48RLf2l6qji9SVerka2pom3SBFCODL7DN6uT+6L29rzZfhjSFzdIJRT5uMUQl2vX/W3HQMv1lqg0tT4zSZuiGamjld+/464sFsruZHbp+mRsk2NQGs9kFh6Vxrgy3dCWgdSQjIBkNeKmDJXTfh2S+PW/XZd6caYlvIXWMqlc74ULBuig4AJgNjoK5WR3u9WDPsgLYThPY8ygUY5oIOa3L16vt+mbt+HfEcsKaMpqYrad3cVzYP0BXznQEKCoheeeUVzJgxA1OmTAEAvP3229i0aRNWrlyJ9PR0F5eu/twhWdoWReq6yQgN6Y4LYwtT3+YMb1hybdov/TWBKmD8MJEbuVjud7npN3TVd962lA4hJnvaWMuWm46pqRfkHrambohySeOW5jyz57j0xjTSmTxWbp+mgrfuMebLao0rJsYlchbdLua2fPbdpYbYFobXmGEPKrmYxVyAnRTVqu6LhkF3+YzRCSava91eYuYCILkgtD75XJ7wflkqo7laJGekTthLEQFRdXU1Dh48iIULF0rLvLy8MGTIEGRlZcn+TVVVFaqqqqTfy8rKnF7O+nC3ZGlLTAUwiW2D7NqfqeM3N6aHqXLoTucgN3Kx3LdR7bxeplpMrHkvLN0YtD1t7GHPTSci0A+tmhuPxGttbxRzyy2ts5X2oZMc3wZ33Rxpcp/mvs3WtzzW1CjYw9RYSG/c3w1/S4q0q5eXO9QQ28qa3DpretkZ7u/Q6UsQArJdxQ2vCcB4uAR7z6MtX2I94f2yVBNl6nPnTr3OFBEQlZSUoLa2FmFhYXrLw8LC8Ouv8rNlZ2RkYMmSJQ1RPIfwtKpwRwdw5mop7C2HqaBtbK8orN1faPQ3T6Z2lBJw5b5NWnovnFnLZ+++bXmfTN0QnV1lb+s+LQ2RYG95pPwUmcRoLwBpd3Qy6irfO64V9uZf0ttWG8gXXqyESgXc0MpPdtyWHrGt9F7XUz779aGbW2fPFyC5/Y1ItJycbHiNOIKnfYmtL1OfO3c6D4oIiOyxcOFCLFiwQPq9rKwMUVFRLiyRZZ5QtarljJu4PcdvqRxyycVzBt+IpKgg2YEY70qKNPtt0hxn3hjs3Xdjfdg66xu37txr7+3K12uu1V4fhk2f7+zMk5pcdQN53WDe0nvgSZ99R7D3C5A7aayfLXPkPnfudB4UMVJ1dXU1/P398emnn2LkyJHS8kmTJqG0tBRffPGFxX00lpGq3Y0rRq22pRyWRqB2dNkdOS2GI/ftLu+TJ7HlnFmzLd8DY43hnDSGY3AEZ54HTt1hoHfv3ujVqxfefPNNAIBGo0F0dDRmz55tVVI1AyLlaugbljNfjzdfIlIaTt1hYMGCBZg0aRJ69uyJXr164bXXXsOVK1ekXmdEpjR0QqMzX88TkjOJiFxBMQHRmDFjcP78eTzzzDMoLi7GzTffjG+++cYo0ZqIiIiURzFNZvXFJjMiIiLPY+3z26sBy0RERETklhgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RQzdUd9aQf0Lisrc3FJiIiIyFra57aliTkYEFnp8uXLAICoqCgXl4SIiIhsdfnyZQQGBppcz7nMrKTRaHDmzBm0bNkSKpXK7v2UlZUhKioKhYWFip0TjeeA5wDgOQB4DgCeA4DnAHDuORBC4PLly4iMjISXl+lMIdYQWcnLyws33HCDw/YXEBCg2Atfi+eA5wDgOQB4DgCeA4DnAHDeOTBXM6TFpGoiIiJSPAZEREREpHgMiBqYr68vnn32Wfj6+rq6KC7Dc8BzAPAcADwHAM8BwHMAuMc5YFI1ERERKR5riIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4DIAZYvX47ExERpQKnk5GRs3rxZWn/16lXMmjULbdq0QYsWLTB69GicPXtWbx8FBQUYMWIE/P39ERoaiieeeAI1NTUNfSgOk5mZCZVKhXnz5knLGvt5WLx4MVQqld5Pp06dpPWN/fi1/vzzTzzwwANo06YN/Pz8kJCQgAMHDkjrhRB45plnEBERAT8/PwwZMgQnTpzQ28fFixcxfvx4BAQEICgoCNOmTUN5eXlDH4pdYmNjja4DlUqFWbNmAVDGdVBbW4tFixYhLi4Ofn5+iI+Px/PPP683l1Rjvw6Auqki5s2bh5iYGPj5+aFPnz7Yv3+/tL6xnYNdu3bhzjvvRGRkJFQqFTZs2KC33lHHm5OTg/79+6NZs2aIiorC0qVLHXMAgurtyy+/FJs2bRK//fabyM3NFU899ZRo2rSpOHbsmBBCiIceekhERUWJ77//Xhw4cEDceuutok+fPtLf19TUiK5du4ohQ4aIw4cPi6+//loEBweLhQsXuuqQ6mXfvn0iNjZWJCYmikcffVRa3tjPw7PPPituuukmUVRUJP2cP39eWt/Yj18IIS5evChiYmLE5MmTxd69e8Xvv/8uvv32W3Hy5Elpm8zMTBEYGCg2bNggjhw5Iu666y4RFxcnKisrpW2GDx8ukpKSxE8//SR++OEH0b59ezF27FhXHJLNzp07p3cNbN26VQAQ27dvF0Io4zr45z//Kdq0aSM2btwo8vPzxSeffCJatGghXn/9dWmbxn4dCCHEfffdJ7p06SJ27twpTpw4IZ599lkREBAg/vjjDyFE4zsHX3/9tfjHP/4h1q9fLwCIzz//XG+9I45XrVaLsLAwMX78eHHs2DGxZs0a4efnJ9555516l58BkZO0atVKvPfee6K0tFQ0bdpUfPLJJ9K6X375RQAQWVlZQoi6i8jLy0sUFxdL2yxfvlwEBASIqqqqBi97fVy+fFnceOONYuvWrWLAgAFSQKSE8/Dss8+KpKQk2XVKOH4hhEhLSxP9+vUzuV6j0Yjw8HCxbNkyaVlpaanw9fUVa9asEUII8fPPPwsAYv/+/dI2mzdvFiqVSvz555/OK7yTPProoyI+Pl5oNBrFXAcjRowQU6dO1Vs2atQoMX78eCGEMq6DiooK4e3tLTZu3Ki3vHv37uIf//hHoz8HhgGRo4733//+t2jVqpXeZyEtLU107Nix3mVmk5mD1dbWYu3atbhy5QqSk5Nx8OBBXLt2DUOGDJG26dSpE6Kjo5GVlQUAyMrKQkJCAsLCwqRthg0bhrKyMhw/frzBj6E+Zs2ahREjRugdLwDFnIcTJ04gMjIS7dq1w/jx41FQUABAOcf/5ZdfomfPnvj73/+O0NBQdOvWDStWrJDW5+fno7i4WO88BAYGonfv3nrnISgoCD179pS2GTJkCLy8vLB3796GOxgHqK6uxocffoipU6dCpVIp5jro06cPvv/+e/z2228AgCNHjmD37t1ITU0FoIzroKamBrW1tWjWrJnecj8/P+zevVsR50CXo443KysLKSkp8PHxkbYZNmwYcnNzcenSpXqVkZO7OsjRo0eRnJyMq1evokWLFvj888/RpUsXZGdnw8fHB0FBQXrbh4WFobi4GABQXFysd/PTrteu8xRr167FoUOH9NrItYqLixv9eejduzdWr16Njh07oqioCEuWLEH//v1x7NgxRRw/APz+++9Yvnw5FixYgKeeegr79+/H3Llz4ePjg0mTJknHIXecuuchNDRUb32TJk3QunVrjzkPWhs2bEBpaSkmT54MQBmfAwBIT09HWVkZOnXqBG9vb9TW1uKf//wnxo8fDwCKuA5atmyJ5ORkPP/88+jcuTPCwsKwZs0aZGVloX379oo4B7ocdbzFxcWIi4sz2od2XatWrewuIwMiB+nYsSOys7OhVqvx6aefYtKkSdi5c6eri9VgCgsL8eijj2Lr1q1G34iUQvvtFwASExPRu3dvxMTE4H//+x/8/PxcWLKGo9Fo0LNnT7z44osAgG7duuHYsWN4++23MWnSJBeXruG9//77SE1NRWRkpKuL0qD+97//4aOPPsLHH3+Mm266CdnZ2Zg3bx4iIyMVdR3897//xdSpU9G2bVt4e3uje/fuGDt2LA4ePOjqopEMNpk5iI+PD9q3b48ePXogIyMDSUlJeP311xEeHo7q6mqUlpbqbX/27FmEh4cDAMLDw416mWh/127j7g4ePIhz586he/fuaNKkCZo0aYKdO3fijTfeQJMmTRAWFqaI86ArKCgIHTp0wMmTJxVzHURERKBLly56yzp37iw1HWqPQ+44dc/DuXPn9NbX1NTg4sWLHnMeAOD06dP47rvvMH36dGmZUq6DJ554Aunp6bj//vuRkJCACRMmYP78+cjIyACgnOsgPj4eO3fuRHl5OQoLC7Fv3z5cu3YN7dq1U8w50HLU8Trz88GAyEk0Gg2qqqrQo0cPNG3aFN9//720Ljc3FwUFBUhOTgYAJCcn4+jRo3oXwtatWxEQEGD0cHFXgwcPxtGjR5GdnS399OzZE+PHj5f+r4TzoKu8vBx5eXmIiIhQzHXQt29f5Obm6i377bffEBMTAwCIi4tDeHi43nkoKyvD3r179c5DaWmp3rfobdu2QaPRoHfv3g1wFI6xatUqhIaGYsSIEdIypVwHFRUV8PLSf7x4e3tDo9EAUNZ1AADNmzdHREQELl26hG+//RZ333234s6Bo443OTkZu3btwrVr16Rttm7dio4dO9aruQwAu907Qnp6uti5c6fIz88XOTk5Ij09XahUKrFlyxYhRF032+joaLFt2zZx4MABkZycLJKTk6W/13azHTp0qMjOzhbffPONCAkJ8ahutnJ0e5kJ0fjPw2OPPSZ27Ngh8vPzxY8//iiGDBkigoODxblz54QQjf/4hagbcqFJkybin//8pzhx4oT46KOPhL+/v/jwww+lbTIzM0VQUJD44osvRE5Ojrj77rtlu95269ZN7N27V+zevVvceOONbtvVWE5tba2Ijo4WaWlpRuuUcB1MmjRJtG3bVup2v379ehEcHCyefPJJaRslXAfffPON2Lx5s/j999/Fli1bRFJSkujdu7eorq4WQjS+c3D58mVx+PBhcfjwYQFAvPLKK+Lw4cPi9OnTQgjHHG9paakICwsTEyZMEMeOHRNr164V/v7+7HbvLqZOnSpiYmKEj4+PCAkJEYMHD5aCISGEqKysFI888oho1aqV8Pf3F/fcc48oKirS28epU6dEamqq8PPzE8HBweKxxx4T165da+hDcSjDgKixn4cxY8aIiIgI4ePjI9q2bSvGjBmjN/5OYz9+ra+++kp07dpV+Pr6ik6dOol3331Xb71GoxGLFi0SYWFhwtfXVwwePFjk5ubqbXPhwgUxduxY0aJFCxEQECCmTJkiLl++3JCHUS/ffvutAGB0XEIo4zooKysTjz76qIiOjhbNmjUT7dq1E//4xz/0ukor4TpYt26daNeunfDx8RHh4eFi1qxZorS0VFrf2M7B9u3bBQCjn0mTJgkhHHe8R44cEf369RO+vr6ibdu2IjMz0yHlVwmhM3QoERERkQIxh4iIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiInGbgwIGYN2+eq4vhdIsXL8bNN9/s6mIQUT0wICIiMqG6urpBX08IgZqamgZ9TSKqw4CIiJxi8uTJ2LlzJ15//XWoVCqoVCqcOnUKx44dQ2pqKlq0aIGwsDBMmDABJSUl0t8NHDgQc+bMwbx589CqVSuEhYVhxYoVuHLlCqZMmYKWLVuiffv22Lx5s/Q3O3bsgEqlwqZNm5CYmIhmzZrh1ltvxbFjx/TKtHv3bvTv3x9+fn6IiorC3LlzceXKFWl9bGwsnn/+eUycOBEBAQGYOXMmACAtLQ0dOnSAv78/2rVrh0WLFkmzba9evRpLlizBkSNHpONcvXo1Tp06BZVKhezsbGn/paWlUKlU2LFjh165N2/ejB49esDX1xe7d++GRqNBRkYG4uLi4Ofnh6SkJHz66aeOfouISAcDIiJyitdffx3JycmYMWMGioqKUFRUhJYtW+K2225Dt27dcODAAXzzzTc4e/Ys7rvvPr2//eCDDxAcHIx9+/Zhzpw5ePjhh/H3v/8dffr0waFDhzB06FBMmDABFRUVen/3xBNP4OWXX8b+/fsREhKCO++8Uwpc8vLyMHz4cIwePRo5OTlYt24ddu/ejdmzZ+vt4//+7/+QlJSEw4cPY9GiRQCAli1bYvXq1fj555/x+uuvY8WKFXj11VcBAGPGjMFjjz2Gm266STrOMWPG2HSu0tPTkZmZiV9++QWJiYnIyMjAf/7zH7z99ts4fvw45s+fjwceeAA7d+60ab9EZAOHTBFLRCRjwIAB4tFHH5V+f/7558XQoUP1tiksLNSbGX7AgAGiX79+0vqamhrRvHlzMWHCBGlZUVGRACCysrKEENdn2V67dq20zYULF4Sfn59Yt26dEEKIadOmiZkzZ+q99g8//CC8vLxEZWWlEEKImJgYMXLkSIvHtWzZMtGjRw/p92effVYkJSXpbZOfny8AiMOHD0vLLl26JACI7du365V7w4YN0jZXr14V/v7+Ys+ePXr7mzZtmhg7dqzFshGRfZq4MhgjImU5cuQItm/fjhYtWhity8vLQ4cOHQAAiYmJ0nJvb2+0adMGCQkJ0rKwsDAAwLlz5/T2kZycLP2/devW6NixI3755RfptXNycvDRRx9J2wghoNFokJ+fj86dOwMAevbsaVS2devW4Y033kBeXh7Ky8tRU1ODgIAAm4/fFN3XPHnyJCoqKnD77bfrbVNdXY1u3bo57DWJSB8DIiJqMOXl5bjzzjvx0ksvGa2LiIiQ/t+0aVO9dSqVSm+ZSqUCAGg0Gpte+8EHH8TcuXON1kVHR0v/b968ud66rKwsjB8/HkuWLMGwYcMQGBiItWvX4uWXXzb7el5edRkJQghpmbb5zpDua5aXlwMANm3ahLZt2+pt5+vra/Y1ich+DIiIyGl8fHxQW1sr/d69e3d89tlniI2NRZMmjr/9/PTTT1Jwc+nSJfz2229SzU/37t3x888/o3379jbtc8+ePYiJicE//vEPadnp06f1tjE8TgAICQkBABQVFUk1O7oJ1qZ06dIFvr6+KCgowIABA2wqKxHZj0nVROQ0sbGx2Lt3L06dOoWSkhLMmjULFy9exNixY7F//37k5eXh22+/xZQpU4wCCns899xz+P7773Hs2DFMnjwZwcHBGDlyJIC6nmJ79uzB7NmzkZ2djRMnTuCLL74wSqo2dOONN6KgoABr165FXl4e3njjDXz++edGx5mfn4/s7GyUlJSgqqoKfn5+uPXWW6Vk6Z07d+Lpp5+2eAwtW7bE448/jvnz5+ODDz5AXl4eDh06hDfffBMffPCB3eeGiMxjQERETvP444/D29sbXbp0QUhICKqrq/Hjjz+itrYWQ4cORUJCAubNm4egoCCpiak+MjMz8eijj6JHjx4oLi7GV199BR8fHwB1eUk7d+7Eb7/9hv79+6Nbt2545plnEBkZaXafd911F+bPn4/Zs2fj5ptvxp49e6TeZ1qjR4/G8OHDMWjQIISEhGDNmjUAgJUrV6KmpgY9evTAvHnz8MILL1h1HM8//zwWLVqEjIwMdO7cGcOHD8emTZsQFxdnx1khImuohG4DNxGRB9qxYwcGDRqES5cuISgoyNXFISIPxBoiIiIiUjwGRERERKR4bDIjIiIixWMNERERESkeAyIiIiJSPAZEREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESne/wNbOnRYv2BEIQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -496,13 +656,26 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABd9ElEQVR4nO3deVwV5f4H8M8AgoCCGygoCGKKC5BpGu6WpVzL1O7NzMy1bmWZrWJdr9oieu+v/ZZ2rbRut7TFzFIrb7nkkuGCS6UpopJiSspBBUE5z+8PnPEsM2fjnDNz4PN+vewVc+bMeWbOnJnvPM/3eR5JCCFAREREZEBBeheAiIiISAsDFSIiIjIsBipERERkWAxUiIiIyLAYqBAREZFhMVAhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGRYDFSKqsVmzZkGSJJfWlSQJs2bN8ml5+vfvj/79+xt2e0TkOgYqRLXI4sWLIUmS8i8kJAQtW7bEuHHjcOzYMb2LZzhJSUlWxys2NhZ9+vTBZ5995pXtl5WVYdasWVi3bp1XtkdUFzFQIaqFnnnmGfznP//BggULkJWVhffffx/9+vXDhQsXfPJ5f/vb31BeXu6Tbfva1Vdfjf/85z/4z3/+g8cffxzHjx/HiBEjsGDBghpvu6ysDLNnz2agQlQDIXoXgIi8LysrC926dQMATJo0Cc2aNcO8efOwYsUK3H777V7/vJCQEISEBOblpGXLlrjrrruUv++++260bdsWL730Eu677z4dS0ZEAGtUiOqEPn36AADy8/Otlu/btw9//vOf0aRJE9SvXx/dunXDihUrrNa5ePEiZs+ejauuugr169dH06ZN0bt3b6xZs0ZZRy1HpaKiAo888ghiYmLQsGFDDB06FL/99ptd2caNG4ekpCS75WrbXLRoEa6//nrExsYiLCwMHTt2xPz58906Fs60aNECHTp0QEFBgcP1Tp48iYkTJ6J58+aoX78+MjIy8O677yqvHz58GDExMQCA2bNnK81Lvs7PIaptAvMRiIjccvjwYQBA48aNlWU//fQTevXqhZYtWyI7OxuRkZH46KOPMGzYMHz66acYPnw4gOqAIScnB5MmTUL37t1RWlqKbdu2YceOHbjxxhs1P3PSpEl4//33ceedd6Jnz5747rvvMGTIkBrtx/z589GpUycMHToUISEh+OKLL/DAAw/AbDZj8uTJNdq27OLFiygsLETTpk011ykvL0f//v1x8OBBPPjgg0hOTsbHH3+McePGoaSkBA8//DBiYmIwf/583H///Rg+fDhGjBgBAEhPT/dKOYnqDEFEtcaiRYsEAPG///1PnDp1ShQWFopPPvlExMTEiLCwMFFYWKise8MNN4i0tDRx4cIFZZnZbBY9e/YUV111lbIsIyNDDBkyxOHnzpw5U1heTvLy8gQA8cADD1itd+eddwoAYubMmcqysWPHitatWzvdphBClJWV2a03aNAg0aZNG6tl/fr1E/369XNYZiGEaN26tbjpppvEqVOnxKlTp8SuXbvEHXfcIQCIhx56SHN7L7/8sgAg3n//fWVZZWWlyMzMFA0aNBClpaVCCCFOnTplt79E5B42/RDVQgMHDkRMTAwSEhLw5z//GZGRkVixYgVatWoFADh9+jS+++473H777Th79iyKi4tRXFyMP/74A4MGDcKBAweUXkKNGjXCTz/9hAMHDrj8+atWrQIATJkyxWr51KlTa7Rf4eHhyv+bTCYUFxejX79+OHToEEwmk0fb/OabbxATE4OYmBhkZGTg448/xpgxYzBv3jzN96xatQotWrTAqFGjlGX16tXDlClTcO7cOaxfv96jshCRPTb9ENVCr7/+Otq1aweTyYR33nkHGzZsQFhYmPL6wYMHIYTAjBkzMGPGDNVtnDx5Ei1btsQzzzyDW2+9Fe3atUPnzp0xePBgjBkzxmETxpEjRxAUFISUlBSr5e3bt6/Rfm3atAkzZ87Eli1bUFZWZvWayWRCdHS029vs0aMHnnvuOUiShIiICHTo0AGNGjVy+J4jR47gqquuQlCQ9bNehw4dlNeJyDsYqBDVQt27d1d6/QwbNgy9e/fGnXfeif3796NBgwYwm80AgMcffxyDBg1S3Ubbtm0BAH379kV+fj4+//xzfPPNN3jrrbfw0ksvYcGCBZg0aVKNy6o1UFxVVZXV3/n5+bjhhhuQmpqKF198EQkJCQgNDcWqVavw0ksvKfvkrmbNmmHgwIEevZeIfI+BClEtFxwcjJycHAwYMAD/+te/kJ2djTZt2gCobq5w5SbdpEkTjB8/HuPHj8e5c+fQt29fzJo1SzNQad26NcxmM/Lz861qUfbv32+3buPGjVFSUmK33LZW4osvvkBFRQVWrFiBxMREZfnatWudlt/bWrdujd27d8NsNlvVquzbt095HdAOwojIdcxRIaoD+vfvj+7du+Pll1/GhQsXEBsbi/79++PNN99EUVGR3fqnTp1S/v+PP/6weq1BgwZo27YtKioqND8vKysLAPDqq69aLX/55Zft1k1JSYHJZMLu3buVZUVFRXajwwYHBwMAhBDKMpPJhEWLFmmWw1f+9Kc/4cSJE1i6dKmy7NKlS3jttdfQoEED9OvXDwAQEREBAKqBGBG5hjUqRHXEE088gb/85S9YvHgx7rvvPrz++uvo3bs30tLScM8996BNmzb4/fffsWXLFvz222/YtWsXAKBjx47o378/unbtiiZNmmDbtm345JNP8OCDD2p+1tVXX41Ro0bhjTfegMlkQs+ePfHtt9/i4MGDduvecccdmDZtGoYPH44pU6agrKwM8+fPR7t27bBjxw5lvZtuugmhoaG45ZZb8Ne//hXnzp3DwoULERsbqxps+dK9996LN998E+PGjcP27duRlJSETz75BJs2bcLLL7+Mhg0bAqhO/u3YsSOWLl2Kdu3aoUmTJujcuTM6d+7s1/ISBTS9ux0RkffI3ZNzc3PtXquqqhIpKSkiJSVFXLp0SQghRH5+vrj77rtFixYtRL169UTLli3FzTffLD755BPlfc8995zo3r27aNSokQgPDxepqani+eefF5WVlco6al2Jy8vLxZQpU0TTpk1FZGSkuOWWW0RhYaFqd91vvvlGdO7cWYSGhor27duL999/X3WbK1asEOnp6aJ+/foiKSlJzJs3T7zzzjsCgCgoKFDWc6d7srOu11rb+/3338X48eNFs2bNRGhoqEhLSxOLFi2ye+/mzZtF165dRWhoKLsqE3lAEsKiHpWIiIjIQJijQkRERIbFQIWIiIgMi4EKERERGRYDFSIiIjIsBipERERkWAxUiIiIyLACesA3s9mM48ePo2HDhhyqmoiIKEAIIXD27FnEx8fbTe5pK6ADlePHjyMhIUHvYhAREZEHCgsL0apVK4frBHSgIg9TXVhYiKioKJ1LQ0RERK4oLS1FQkKCch93JKADFbm5JyoqioEKERFRgHElbYPJtERERGRYDFSIiIjIsBioEBERkWEFdI4KERHVHVVVVbh48aLexSAXhYaGOu167AoGKkREZGhCCJw4cQIlJSV6F4XcEBQUhOTkZISGhtZoOwxUiIjI0OQgJTY2FhERERzgMwDIA7IWFRUhMTGxRt8ZAxUiIjKsqqoqJUhp2rSp3sUhN8TExOD48eO4dOkS6tWr5/F2mExLRESGJeekRERE6FwScpfc5FNVVVWj7TBQISIiw2NzT+Dx1nfGQIWIiIgMi4EKERERuW3dunWQJMnnvbEYqGgoMpVjc34xikzleheFiIjqoFmzZuHqq6/Wuxi6Y68fFUtzj2L6sj0wCyBIAnJGpGHktYl6F4uIiMjOxYsXa9SrxuhYo2KjyFSuBCkAYBbAU8v2smaFiIjcYjabkZOTg+TkZISHhyMjIwOffPIJgCvNJt9++y26deuGiIgI9OzZE/v37wcALF68GLNnz8auXbsgSRIkScLixYsBVCepzp8/H0OHDkVkZCSef/55h+WQP+vrr79Gly5dEB4ejuuvvx4nT57E6tWr0aFDB0RFReHOO+9EWVmZ8r6KigpMmTIFsbGxqF+/Pnr37o3c3FzfHCwHGKjYKCg+rwQpsiohcLi4TP0NREQUEPzdpJ+Tk4P33nsPCxYswE8//YRHHnkEd911F9avX6+s8/TTT+OFF17Atm3bEBISggkTJgAARo4cicceewydOnVCUVERioqKMHLkSOV9s2bNwvDhw7Fnzx7lPc7MmjUL//rXv7B582YUFhbi9ttvx8svv4wPPvgAK1euxDfffIPXXntNWf/JJ5/Ep59+infffRc7duxA27ZtMWjQIJw+fdpLR8g1ujf9HDt2DNOmTcPq1atRVlaGtm3bYtGiRejWrZsu5UluFokgCVbBSrAkIakZ+/ATEQUqfzfpV1RUYM6cOfjf//6HzMxMAECbNm2wceNGvPnmm7j33nsBAM8//zz69esHAMjOzsaQIUNw4cIFhIeHo0GDBggJCUGLFi3stn/nnXdi/PjxbpXpueeeQ69evQAAEydOxPTp05Gfn482bdoAAP785z9j7dq1mDZtGs6fP4/58+dj8eLFyMrKAgAsXLgQa9aswdtvv40nnnjCswPjAV1rVM6cOYNevXqhXr16WL16NX7++We88MILaNy4sW5liosOR86INARf7v8dLEmYM6Iz4qLDdSsTERF5To8m/YMHD6KsrAw33ngjGjRooPx77733kJ+fr6yXnp6u/H9cXBwA4OTJk06378nDvOVnNW/eHBEREUqQIi+TPzs/Px8XL15UAhsAqFevHrp3745ffvnF7c+uCV1rVObNm4eEhAQsWrRIWZacnKxjiaqNvDYRfdvF4HBxGZKaRTBIISIKYI6a9H11fT937hwAYOXKlWjZsqXVa2FhYUqwYpkEKw+QZjabnW4/MjLS7TLZfpZtAq4kSS59tr/pWqOyYsUKdOvWDX/5y18QGxuLLl26YOHChZrrV1RUoLS01Oqfr8RFhyMzpSmDFCKiACc36VvydZN+x44dERYWhqNHj6Jt27ZW/xISElzaRmhoaI2Hn/dUSkoKQkNDsWnTJmXZxYsXkZubi44dO/q1LLrWqBw6dAjz58/Ho48+iqeeegq5ubmYMmUKQkNDMXbsWLv1c3JyMHv2bB1KSkREgUpu0n9q2V5UCeGXJv2GDRvi8ccfxyOPPAKz2YzevXvDZDJh06ZNiIqKQuvWrZ1uIykpCQUFBcjLy0OrVq3QsGFDhIWF+azMliIjI3H//ffjiSeeQJMmTZCYmIh//OMfKCsrw8SJE/1SBpmugYrZbEa3bt0wZ84cAECXLl2wd+9eLFiwQDVQmT59Oh599FHl79LSUpcjUyIiqrv0aNJ/9tlnERMTg5ycHBw6dAiNGjXCNddcg6eeesqlJpbbbrsNy5Ytw4ABA1BSUoJFixZh3LhxPi+3bO7cuTCbzRgzZgzOnj2Lbt264euvv/Z7HqkkhBDOV/ON1q1b48Ybb8Rbb72lLJs/fz6ee+45HDt2zOn7S0tLER0dDZPJhKioKF8WlYiIdHDhwgUUFBQgOTkZ9evX17s45AZH3507929dc1R69eqlDG4j+/XXX12qEiMiIqLaT9dA5ZFHHsEPP/yAOXPm4ODBg/jggw/w73//G5MnT9azWERERAHjvvvus+oCbfnvvvvu07t4NaZr0w8AfPnll5g+fToOHDiA5ORkPProo7jnnntcei+bfoiIajc2/Th38uRJzV6wUVFRiI2N9XOJqnmr6Uf3kWlvvvlm3HzzzXoXg4iIKCDFxsbqFoz4A+f6ISIiIsNioEJERIZnxBFTyTFvZZbo3vRDRESkJTQ0FEFBQTh+/DhiYmIQGhqqDDVPxiWEwKlTp1SH6ncXAxUiIjKsoKAgJCcno6ioCMePH9e7OOQGSZLQqlUrBAcH12g7DFSIiMjQQkNDkZiYiEuXLuk29w25r169ejUOUgAGKkREFADkJoSaNiNQ4GEyLRERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsPSNVCZNWsWJEmy+peamqpnkYiIiMhAQvQuQKdOnfC///1P+TskRPciERERkUHoHhWEhISgRYsWeheDiIiIDEj3HJUDBw4gPj4ebdq0wejRo3H06FHNdSsqKlBaWmr1j4iIiGovXQOVHj16YPHixfjqq68wf/58FBQUoE+fPjh79qzq+jk5OYiOjlb+JSQk+LnERERE5E+SEELoXQhZSUkJWrdujRdffBETJ060e72iogIVFRXK36WlpUhISIDJZEJUVJQ/i0pEREQeKi0tRXR0tEv3b91zVCw1atQI7dq1w8GDB1VfDwsLQ1hYmJ9LRURERHrRPUfF0rlz55Cfn4+4uDi9i0JEREQGoGug8vjjj2P9+vU4fPgwNm/ejOHDhyM4OBijRo3Ss1hERERkELo2/fz2228YNWoU/vjjD8TExKB379744YcfEBMTo2exiIiIyCB0DVSWLFmi58cTERGRwRkqR4WIiIjIEgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUNFZkakcm/OLUWQq17soREREhhOidwHqsqW5RzF92R6YBRAkATkj0jDy2kS9i0VERGQYrFHRSZGpXAlSAMAsgKeW7WXNChERkQUGKjopKD6vBCmyKiFwuLhMnwIREREZEAMVnSQ3i0SQZL0sWJKQ1CxCnwIREREZEAMVP5OTZ4HqnJRgqTpaCZYkzBnRGXHR4XoWj4iIyFCYTOtHasmzG7MH4HBxGZKaRTBIISIismGoGpW5c+dCkiRMnTpV76J4nVbyLABkpjRlkEJERKTCMIFKbm4u3nzzTaSnp+tdFJ9g8iwREZH7DBGonDt3DqNHj8bChQvRuHFjvYvjE0yeJSIicp8hApXJkydjyJAhGDhwoN5F8Zm46HAmzxIREblJ92TaJUuWYMeOHcjNzXW6bkVFBSoqKpS/S0tLfVk0rxt5bSL6toth8iwREZGLdA1UCgsL8fDDD2PNmjWoX7++0/VzcnIwe/ZsP5TMd+KiwxmgEBERuUgSQgjnq/nG8uXLMXz4cAQHByvLqqqqIEkSgoKCUFFRYfWaWo1KQkICTCYToqKi/Fp2IiIi8kxpaSmio6Ndun/rWqNyww03YM+ePVbLxo8fj9TUVEybNs0qSAGAsLAwhIWF+bOIREREpCNdA5WGDRuic+fOVssiIyPRtGlTu+VERERU9xii1w9Vk4fX5wzKRERE1XTv9WNr3bp1ehdBF2rD64+8NlHvYhEREemKNSoGoDW8PmtWiIiormOgYgAcXp+IiEgdAxUD4PD6RERE6hioGACH1yciIlJnuGTauorD6xMREdljoGIgHF6fiIjIGpt+iIiIyLAYqBAREZFhMVAhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGRYDFSIiIjIsBipERERkWAxUiIiIyLAYqBAREZFhMVAhIiIiw2KgQkRERIbl8qSEpaWlLm80KirKo8IQERERWXI5UGnUqBEkSXK4jhACkiShqqqqxgUjIiIicjlQWbt2rS/LQURERGTH5UClX79+viwHERERkR2XAxVbJSUlePvtt/HLL78AADp16oQJEyYgOjraa4UjIiKius2jXj/btm1DSkoKXnrpJZw+fRqnT5/Giy++iJSUFOzYscPbZSQiIqI6ShJCCHff1KdPH7Rt2xYLFy5ESEh1pcylS5cwadIkHDp0CBs2bPB6QdWUlpYiOjoaJpOJPY2IiIgChDv3b48ClfDwcOzcuROpqalWy3/++Wd069YNZWVl7m7SIwxUiIiIAo8792+Pmn6ioqJw9OhRu+WFhYVo2LChJ5skIiIisuNRoDJy5EhMnDgRS5cuRWFhIQoLC7FkyRJMmjQJo0aN8nYZiYiIqI7yqNfP//3f/0GSJNx99924dOkSAKBevXq4//77MXfuXK8WkIiIiOouj3JUZGVlZcjPzwcApKSkICIiwmsFcwVzVIiIiAKPO/dvj8dRAYCIiAikpaXVZBNEREREmjwKVC5cuIDXXnsNa9euxcmTJ2E2m61e51gqRERE5A0eBSoTJ07EN998gz//+c/o3r2708kKiYiIiDzhUaDy5ZdfYtWqVejVq5e3y0NERESk8Kh7csuWLTleChEREfmcR4HKCy+8gGnTpuHIkSPeLg8RERGRwqOmn27duuHChQto06YNIiIiUK9ePavXT58+7ZXCERERUd3mUaAyatQoHDt2DHPmzEHz5s2ZTEtEREQ+4VGgsnnzZmzZsgUZGRneLg8RERGRwqMcldTUVJSXl3u7LERERERWPApU5s6di8ceewzr1q3DH3/8gdLSUqt/RERERN7g0Vw/QUHV8Y1tbooQApIkoaqqyjulc4Jz/RAREQUen8/1s3btWo8KRkREROQOjwKVfv36ubTeAw88gGeeeQbNmjXz5GOIiIiojvMoR8VV77//vsOclfnz5yM9PR1RUVGIiopCZmYmVq9e7csiERERUQDxaaDiLP2lVatWmDt3LrZv345t27bh+uuvx6233oqffvrJl8UiIiKiAOFR04+33HLLLVZ/P//885g/fz5++OEHdOrUSadSERERkVHoGqhYqqqqwscff4zz588jMzNT7+IQERGRAegeqOzZsweZmZm4cOECGjRogM8++wwdO3ZUXbeiogIVFRXK3xyzhYiIqHbzaY6KK9q3b4+8vDxs3boV999/P8aOHYuff/5Zdd2cnBxER0cr/xISEvxcWiIiIvIntwOVS5cu4ZlnnsFvv/3mdN277rrL6UAuoaGhaNu2Lbp27YqcnBxkZGTglVdeUV13+vTpMJlMyr/CwkJ3i09EREQBxO1AJSQkBP/85z9x6dIlp+vOnz/f7TFUzGazVfOOpbCwMKUrs/yPiIiIai+PclSuv/56rF+/HklJSTX68OnTpyMrKwuJiYk4e/YsPvjgA6xbtw5ff/11jbZLREREtYNHgUpWVhays7OxZ88edO3aFZGRkVavDx061KXtnDx5EnfffTeKiooQHR2N9PR0fP3117jxxhs9KRYRERHVMjWalFB1g5yUkIiIiBzw+aSEZrPZo4IRERERucOj7snvvfeeasJrZWUl3nvvvRoXioiIiAjwsOknODgYRUVFiI2NtVr+xx9/IDY2lk0/REREpMmd+7dHNSpCCEiSZLf8t99+Q3R0tCebJCIiIrLjVo5Kly5dIEkSJEnCDTfcgJCQK2+vqqpCQUEBBg8e7PVCEhERUd3kVqAybNgwAEBeXh4GDRqEBg0aKK+FhoYiKSkJt912m1cLSERERHWXW4HKzJkzAQBJSUkYOXIk6tev75NCEREREQEedk8eO3YsgOpePidPnrTrrpyYmFjzkhEREVGd51GgcuDAAUyYMAGbN2+2Wi4n2fqr1w8RERHVbh4FKuPGjUNISAi+/PJLxMXFqfYAIiIiIqopjwKVvLw8bN++Hampqd4uDxEREZHCo3FUOnbsiOLiYm+XxZCKTOXYnF+MIlO53kUhIiKqczyqUZk3bx6efPJJzJkzB2lpaahXr57V67VllNiluUcxfdkemAUQJAE5I9Iw8lomChMREflLjWdPtsxP8XcyrS+H0C8ylaPX3O9gtjg6wZKEjdkDEBcdbrVeQfF5JDeLtFpORERE6nw+e/LatWs9KlggKSg+bxWkAECVEDhcXKYEJKxxISIi8i2PclT69euHoKAgLFy4ENnZ2Wjbti369euHo0ePIjg42Ntl1EVys0gE2XRmCpYkJDWLAFBdkyIHKQBgFsBTy/Yyl4WIiMiLPApUPv30UwwaNAjh4eHYuXMnKioqAAAmkwlz5szxagH1EhcdjpwRaQi+3LQVLEmYM6KzUpviqMaFiIiIvMOjpp/nnnsOCxYswN13340lS5Yoy3v16oXnnnvOa4XT28hrE9G3XQwOF5chqVmEVQ6KXONim8Mi17gQERFRzXlUo7J//3707dvXbnl0dDRKSkpqWiZDiYsOR2ZKU7tEWWc1LkRERFRzHtWotGjRAgcPHkRSUpLV8o0bN6JNmzbeKFdAcFTjQkRERDXnUaByzz334OGHH8Y777wDSZJw/PhxbNmyBY8//jhmzJjh7TIaWlx0OAMUIiIiH/EoUMnOzobZbMYNN9yAsrIy9O3bF2FhYXj88cfx0EMPebuMREREVEd5NOCbrLKyEgcPHsS5c+fQsWNHNGjQwJtlc8qXA74RERGRb/h8wDdZaGgoOnbsWJNNEBEREWnyqNcPERERkT8wUCEiIiLDYqBCREREhsVAhYiIiAyLgYofFJnKsTm/mBMWEhERualGvX7IuaW5R5VZloMkIGdEGkZem6h3sYiIiAICa1R8qMhUrgQpQPUEhk8t2+t2zQprZIiIqK5ijYoPFRSft5pdGQCqhMDh4jKXh91njQwREdVlrFFxgac1GsnNIhEkWS8LliQkNYtw+XO9USNDREQUqBioOLE09yh6zf0Ody7cil5zv8PS3KMuvzcuOhw5I9IQLFVHK8GShDkjOrtcm+KoRoaIiKguYNOPA1o1Gn3bxbgcbIy8NhF928XgcHEZkppFuPS+IlM5CorPIzI0GEESrIIVd2pkiIiIAh0DFQe8kWMCVNeseJqTMrxLSyzfeRxVQrhdI0NERBToGKg4IOeY+KtGQ60GZ/nO41j2QCbKKs0u18gQERHVFsxRcaCmOSbu0qrBKas0IzOlKYMUIiKqc1ij4oQnOSae8ncNDhERkdGxRsUFcdHhfqnR8HcNDhERkdGxRsVg/FmDQ0REZHQMVAzInV5CREREtRmbfoiIiMiwGKgQERGRYekaqOTk5ODaa69Fw4YNERsbi2HDhmH//v16FomIiIgMRNdAZf369Zg8eTJ++OEHrFmzBhcvXsRNN92E8+fP61ksl3g6USERERG5ThJCCOer+cepU6cQGxuL9evXo2/fvk7XLy0tRXR0NEwmE6KiovxQwmq2w9znjEjDyGsT/fb5REREgcyd+7ehclRMJhMAoEmTJjqXRJvWRIWsWSEiIvI+w3RPNpvNmDp1Knr16oXOnTurrlNRUYGKigrl79LSUn8VT+GtiQqJiIjIOcPUqEyePBl79+7FkiVLNNfJyclBdHS08i8hIcGPJawmD3NvicPcExER+YYhApUHH3wQX375JdauXYtWrVpprjd9+nSYTCblX2FhoR9LWY3D3BMREfmPrk0/Qgg89NBD+Oyzz7Bu3TokJyc7XD8sLAxhYWF+Kp02DnNPRETkH7oGKpMnT8YHH3yAzz//HA0bNsSJEycAANHR0QgPN/bNn8PcExER+Z6u3ZMlSVJdvmjRIowbN87p+/XqnkxERESec+f+rXvTDxEREZEWQyTTEhEREalhoEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVJwoMpVjc34xZ0cmIiLSgWFmTzaipblHMX3ZHpgFECQBOSPSMPLaRL2LRUREVGewRkVDkalcCVIAwCyAp5btdalmhbUw+uN3QERUO7BGRUNB8XklSJFVCYHDxWUO5/hhLYz++B0QEdUerFHRkNwsEkE2UxEFSxKSmkVovqcmtTDkHc6+A9a0EBEFFgYqGuKiw5EzIg3BlydODJYkzBnR2WFtiqNaGPIPR9/B0tyj6DX3O9y5cCt6zf0OS3OP6lNIIiJyGZt+HBh5bSL6tovB4eIyJDWLcBikAFdqYSxvlM5qYci7tL6DiNAg1ZqWvu1inH6vRESkH9aoOBEXHY7MlKYu3cw8qYUh79L6Ds5XVrG2i4goALFGxcvcrYUh71P7DopM5aztIiIKQKxR8QF3amHIN2y/A9Z2EREFJtaoUJ3B2i4iosDDQIXqlLjocAYoREQBhE0/REREZFgMVIiIiMiwGKgQERGRYTFQoTqLw+kTERkfk2mpTuLEhUREgYE1KnUEaw+u4OSRRESBgzUqdQBrD6w5mriQXZeJiIyFNSq1HGsP7MkTF1ricPpERMbEQMVFgdp04qj2oK7icPpERIGDTT8uCOSmE7n2gJPxWeNw+kREgYE1Kk6403RixFoX1h5o4+SRRETGxxoVJ1xNvDRyrQtrD4iIKFCxRsUJVxIvAyFhlbUHREQUiBioOOFK00mgJKwasWmKiIjIETb9uMBZ00kgJKwauWmKiIhIC2tUXOSo6cToCauB0DRFRESkhjUqXmLkhFWOxEpERIGKgYoXxUWH63bjLzKVo6D4PJKbRQZk0xQREZEaNv3UAktzj6LX3O9w58Kt6DX3OyzNPWr1utGbpoyGScdERMYhCSGE89WMqbS0FNHR0TCZTIiKitK7OLooMpWj19zv7GpLNmYPsAtEikzlhmyaMhImHRMR+Z4792/WqAQ4d7pGcyyValo1Jkw6JiIyHuaoBDhX8k8c5a/UNY5qTJh0TERkPKxR8QNf5jw4yz9xlr9SlzirMXFlFGIiIvIv1qj4mD9yHrS6RmvdmPu2i6mTNQTOakzkoO+pZXtRJQSTjomIDICBig/5M1BQ6xrNpgxrrjSTGXk8HCIifzNC6gADFR/SO1Dg+CnWXK0x0XM8HCIiozBKL0gGKj6kd6DApgx7rDEhInLOSKkDuibTbtiwAbfccgvi4+MhSRKWL1+uZ3G8zggDrY28NhEbswfgw3uuw8bsAYYfE8Qfg62xmzYRkWPuDH3ha7rWqJw/fx4ZGRmYMGECRowYoWdRfMYIT/C2TRlGaHNUY5RqRiKiuk7vFgFLugYqWVlZyMrK0rMIfmGknAejBgNGqmYkIqrrjJQ6EFA5KhUVFaioqFD+Li0t1bE0xuBO7Yg/gwF3a230TjwmIiJrRmgRAAIsUMnJycHs2bP1LoZh2NaOTBucirRW0ZrBgb+CAU9qbYxUzUhERNWM0CIQUCPTTp8+HSaTSflXWFioW1n0nmFXrXYkZ/U+hyPQ+mPkVU/nyzFC4rG/6X0OEREFgoCqUQkLC0NYWJjexTBEnoda7YhMq0nHH22ONam1MUo1oz8Y4RwiIgoEARWoGIFRkj7VmkosaQUHvg4GatqEY4RqRm9wlKNjlHOIiCgQ6Nr0c+7cOeTl5SEvLw8AUFBQgLy8PBw9atyJ84zSt9y2qcSWo+DAl+OI1MUmHFvOJoI0yjlERBQIdK1R2bZtGwYMGKD8/eijjwIAxo4di8WLF+tUKseMlPRpWTuy+1gJ/rF6v+7dyIpM5UhoEoFlD2SirNLs9yYcvceIcaW2xEjnEBGR0ekaqPTv3x9CaLRdGJSR+pbL5ZFrSIZmxOua36GWd5GZ0lTXzzdC7pBtM5zRziEiIiOTRKBFChZKS0sRHR0Nk8mEqKgov352kam8TiR9uqrIVI5ec7+zqyXYmD3AL8dH78/3pBw8h4iornLn/h1Q3ZONRCvPw9ddTo3apVXvvAu9P1/mTo4O5xwiInKOvX68yNdND/5o2vA0x0PvvAu9P99SXepmTUTka6xR8RJPBzozyvYB571VHNG7t4/en69WHtaWEBHVHGtUvKDIVI4vdx/36fD0vh7+3htje+hdk+DNz9e79xAREVVjoFJDls0xtmybHmpy83PUtOGNm6q3AiG9B2zzxucbofcQERFVY6BSA7a1EJZsmx5qevPT6tK64ddTXrmpGinHQ08cNZaIyFgYqNSA1nw7M4Z0wJ/S45Qbm7dufrZNGwCsusLW5KaqFQgBwOb84jrTBOKvGaaJKHCwKVhfDFRqQKsWwjJIAbxz87P8ociDqG3OL/bqTdU2ENrw6yklEKorTSCsWSIiS2wK1h97/dSAbU+TIABPDm5vFyTINz9LWjc/tXFStHrjaG03IjTI47FW5N4qAHzey8iIjNZ7iMgojDqGky/5o7elERntu2aNSg2NvDYRJeUXMXf1PpgFMO+rfWgUUc8q4nZ1yHTbyH1i72TcnB7nsNnIdrvDusRj+Bubaxz91+UmEL17LxEZTV2tVaiL10EjftcMVGqoyFSOeav3QTjJE3F281OL3Bd+X4CF3xfYfablD8VyuxGhQUqQIm9j+qd7EBkWgq6tGwfUAG5607v3EpFR1IUEc60clLp2HTTqd82mnxpyZ+h2R4OAaSXmqrH9ocjbPV9ZZbcNM4AHP9gZcAO4EZExGGV6Cl9xNNBlbb4OqjXvGPW7Zo1KDXkr4lbbjiX5NUc/FEfbsI2MXclid7UJRN5WZGgwzldWIblZJAAwS56oFqjNtQqu1CDUxqZgreYdo37XDFRqyFn+iavd2uTtqI3LEixJWPZAJsoqzQ5/KLZlsSVHxrZjr0zsnYwJvZM1y+yo3GoD3sn5vQLGaePUC7s1UqBzNccuELmag1KbmoKdBWdG/K4lIVTuaAHCnWmifa3IVG4XcXuSlFRkKseiTQV4a0MBzLhSg2L7Pkc3wCJTObYfPoMpS3baRcbLHsi0ymORSQDm3pYGAC6XuchUbjWOi5ZgScLG7AG6n+z+ZsSkNED93CkylWP7kTMQQiCxSYRSM1bXvjPSpnaNC3Rq17Dafr3anF+MOxdutVv+4T3XKT0+/fFdu3P/Zo2Kl9hG3J4mJcVFh+OpP3XE+F7JSoLs+coqFJnKXQ6A4qLDcXNGOM5XXrKLjNXyWIDq2o/py/ZAiOr/d6XMrubVBHKWvKc1Iv5OSnO1nGrnDgBkf7oHtl+l5bnlznFgLVJgcva91aZaBZlRaxB8KblZJCTA6vdu2bxjxN8vAxUfqWm3trjocLsmmmlZqYiPru/yDVCtbbXIVO4wj8WWozI7y6uRGaGN0xM1qRHxZ7dGV8upFjxN/3QPhAS7IEV+/alle1FSfhHzLne/d3YcjFqLRI7Vlu9NLV/O2e+tNuagOLLh11NWf0uAEpwZ9Txgrx8fcWeQNzVqN5WcVfvw0Id5bmVl2/Y0kp8gbMumxVGZbTPiZRIAeVGgPqHUdKCnmn7/rpbxi13HXC6nWvBkBuCo8bdKCGWMIGfbr6uDYwW62vK9WfbeufX1zaq9eLQ46pFZm8jfteVPXpKAvu1iDH0esEbFR2papViT7srOyE8Qr313AB9sLbR6TZIAScAqP0atzPKTS992MdiYPUBpppITfgF4/QnFn1WS3qgR82aVsu2+O5q1W6ucajVgQUB1jYpWbzPY15hpbT8QBscyYrW2J7y1H0Wmcny5+7jq97bjyBk0jrxSO+FOLYW/aU0Qa5RxQIxC9WFFVF+rBYRhf78MVHyoJlWK7jSreNrL6Ob0eLtARQjgX3d2QZPIMM0yu1o96M2T299Vkt7opuetKmXbfZ+Wlao0xajRKqejiSezL+cn2W7nycHtMe+rfS4dB3ePmb+DBqNWa7tLbT/6totx+1g6CnYlqXr8JbVTTJKA7KxU/LVvSs12xIscPdgZ5WZrBM5+o0bsmgwwUPE5TxPQ4qLDnd6QJABPZrVXLrbuXoi1TtprbEaxtbyhAOpzAPnyiaWmiame3BC9VSNS0wREtX13FqQ4KqdW8NS3XQx2HDkDIYCEJuFWXeEbRdRTjkOQBEzonaS5r64eM38HDUYdcdNdavsx7dM9SnKkKz315BwOrSAFcNwcKC43Q0MAf+1njGDF0YOdUW62avwdrNv+RoMATLz8ezZyYjG7JxuU5YVcAjC4cwt8vfcEzDbryV3pAHjUzW5p7lG7E9PyIqc2/5DasP6WXdu8zZXudFrcvSHaXjj07pKpte+2WftBAF67s4tdkOktcrf5hRsKnN4QnR0zPbqE1uQcMhKt/bCkdSytrikOmvtcFQRg0/TrDXEjA6yvZTKt4R2MoKbXppooMpVj0cbDeGvjIbvP99c1j92TA5ztU5MA8M1Pv2P2rZ0w4/OfrNaVqzU9bV901Dyh9vT2lkqQEgTgj/MVVl2oXd1PV354njbDuPsUrXXh8MaP1dm4N1qvqeaVSMC0wan4x1f7rQLMIenxXiuT7XrbDp/GW98XuNR13Vkt0rbDp/3eFm7UETfdteeYyek6tseyyFSONT+fwMzPf1a+P288npoB1e9Mrzwg23nPnA2QqSdvXZtqQg5S1D7f3VQCX2OgYkBaSYmNI0J90r6odWNRK4fa9U2guj3b2VO2PKBYt6Qmdl2vHf3wPK2SdCe505dNA3Y5JoNTkdYqGsnNIp0eB3nfLXNIhAAaRdRTkpg9uRi7euHzJGnXlc+15eugwcjV2q6SJ0B1JghQjuXS3KOqY+R4g9p3pnceUKCM9aJ1bdpx5AzM4jQkSVImkvXFtcmVa6Pe36UlBio6U4tYtZ7+uiY1dnix9faF2NWEXsun7OnL9iAiNBjdkppYnfC2F0sJrg8sB3iWmOrOU7SveqyodjO/fLOxnGpAfk3tOPRtF2MVIQpUj3/y6p1d3J4VW6tMap+r1ZNC5m6irNb2ggC7c9UXT3KBPl6Gqz0Bp2WlKjc4bwcpSi4MruQ2yJydV0Z5OjcCtWuTJAGTP9h55W9Ujxa+q7DE69cmZ9dGo+V0MVDRkaOmBq2gw9HF1tsXYrvEq8vt2o4ufGYBPPRhnlVvBNt++4D9Nlz54bn7tOTOU7SvmgYc3VzUFlseB/nC/se5Crt15VmxPXnSWbSxwKULn6OyWw4SZUvrvNba3mt3drFqtnLlSc7Tm16gPHGrcfbgIAHI/lN1bxy527E3gxR5Co6Vu0/grY2H8O/vC/DWxgKH36/W/GI1fToPxKDHMpH56Oky3HFtApb8WAgz7GvDgerrw7RP7WsfcXn9mlybnF0bjTbUAAMVnTiLWB0FHY4utp5eiLV++Lbl2PDrKeXktq0RsCTvzyujrnbpKdBXVf+uBm++ahpwtVZKJh8H28RHLZ70gFJLhla78KkNtS2TB4lS277Wee2ol5mj99vW0rkzEm+g3cwckc9RR12Kh2bEO2yu0zJjSAdcEgL/WH0l72lYl3gs33nc6vcQG1VfM7dB6/stq7xo1XRp+R4AVjdvyyYPLYH4/Tv6Tu7snojUuAb4++c/u7y9Sb3bAKhOrvZ0/xxdG42W08VAxU9sfzSuRKz+evpzZe4gAFYDvFlmjGupulz9onWjlm+Cvs4XcPU4+qJpwDYAsiWP4msWV44DYN0F3FnioztPOgXF51UDj6zOcXbLbIfatmQWUEZDduW8Xrm7CEPS45wGg1oDUsm1dNMGp1qN66IVqBmpfd1TajfakdcmIiI0GA99mGe3vlkAO46ccRqkqM3z8qf0OMRFh2NoRrzV+f/4oPZWf2/OL9a8bmWmNLX7fod1icekd7er1qBqXUPkJg9Xp4Ew8vcv5+Y5aoL74MejcPAsYkcC0LRhqNJzrib7p3VtNFpOFwMVP9AaoMkIEasrP3y1ZFDbC4zak7dlXo1aFaaE6sHlrrFIGtP7CaimwaHWzSW1RUPkHj6DkrJKzF93yOrHbxscqd0MZGrNb+6cN1o1PCv3FGHVniLlBqE21LalYEnC7mMlGP3WD1fOi6xURIQGq54Lz638BXNW/YKcEWnYmD3gctJg9UzNlk+FjmqgzOLyGDI2y9V6uRipfV2LWld4+W/LphIJwD19kjEkPQ7nK6uQ2CRC9RhXHzf73n8AMOX6tmjfoiGuad3YqlbU9gZke/7b/u3sSdu2583wNzar18gBWPj9Ic3k/OnL9qh+X6484Pnq+3d2fXJn9Ghb7jTRPdA/xWosJV+d30bK6WKg4mNaP5qN2QMMEbE6++FrDjhmsx0B4N6+yXj7+8OqeTWRYSF40CJRDKjOs2gSGeZWdb6Rae2DWqCX3qqR1Y/f2c1AZhbax9lVE3sn422VPBWB6lmU5VFONYMlACOvbWV3scxZ5bhHinzuP5nV3m7QOsvj5agGygz7MUBsAzWjta+rsT0nhndpic92HlP+tgxGBYB/f1+Af19usguSgBHXtMSyHceUdaTLx69bUhPVQGJUj0SrwNnTG5ArT9pycKMVcDtqMpbJtUND0p131/fV928bOMq1Imo1PrbjXo3qnoAluYVuNb+psZzSRH4YSGsZjdfX5dd4/1xhlJwuBio+5uhHY4SI1dkPX2siO7WbxfheyRjfK1l1f7q2bqz5OVp5CaktGiIj4Ur+gpFpBaSpLRraLf/HV/sdDm7mKBfB0XF29sT35vp8zF29T7nY3pAag2/3WTfvCADbD59B1yT776v6ApyIJblH8cGP1lMvuEqe5NA2BjGL6p5MfdvFKDVQt76+2e798sVazqWQR8o9WXpB2XejtK9rfR9q58qnO44przu7uZkFsHzncSyf3BOFp8shSbAa6M+VB6Ca3IBcvW6p9my5/B9XxnF58IOdOFdxSbW7vqP988b3bxtIWm7LMqBXe5gTgMe/D0taNa5FpnJDnN/+xEDFTe42Tzj70egdsTr74WuV/8ms9laJd7bVx+58jtqTl1kAw17frNlWbQSW54JWQJp7+IxHT3eWE0d+uLVQNZdHq01ewuW5WPqlKGXcdLAYr6+98hQmAHy3Tz0HRZIsxm+xaVv/8MejNepJIkH7JmUGsGjjYTw1pAPOV1aprjOpdxv8tW8KhmbEKyPlLvy+wCpB+Oa0FhhzXWu8t+WI0pXW37WVjmoI3ZlwVEuVECirNOPmDPtB/vzxAOTKdUvtNz+xd5JSM+SMgH2TRpGpHAlNIrDsgUzNAd1qkl8h55RYNlWrfVdyQH9zhnpelpogCXj1ji5IaBKORZsKsDyvSHWdaVmpSG+pXeOqtX/AleRaALo3o3sTAxU3eNI8YbSkJDXOehgN79LS6olvWJd45WbhzsVQ63O0mjrULlRGodacoxbQXatSMxEEICI0yOlnbPj1FJb8WKjUgDw5uD36touxy/RXe6LLWb0Pu34rwVd7T2heROXtWr4sSUCrxtXBY2qLhlY1ZzW8t7q0jYXfH8L43kmaMz2Ptxi7w3KkXEtf7jnh1md6i9Y8OrY5BK70BJMufzFaqzh7gtb7AUhm+5sHgLdUmh21yEE9ALyzsbo7tLC4/mpNf+BJsOZubym5N54r36dcXjmwfPmOxugQn680gQYBuKNHAjLbNFV6txWZyjV79dju34q84+iZ853ymwZcm/spUHCuHxfVdH4SveeM8ZS/5mVxdJH425AOGHK5V4LtCLd6HEutY6JWyyTnqNjmXLgyeZztZ1j2ELJ8vyvzv6gJAjDtT1cmvrTNldDqmuwqT+eTmXJ9W4zqkaia9CkfL3f32dfz0ry5IV9p0tI6bpbzClmeE0ES0KttM2w6WGzV+6tvuxjVnjHemL9Gz8R1td+DFvl3NXfVPrtjKknA5mzPvlO1RGbb35szn0/uifOVVVeSnz/dY5e7J3v21k4Yk5mkWo7DxWXY/VuJ0ptNLWfJ0bXizQ35DvPDjDYnk4xz/XiBO92JAefVbEZ5wnFE7eLlr8REOS9h2Ov2vQTkHiPDu9gkEAKY1CcZE3on+/XYah2T9JaN7Ia1l6uq/333NZj03naHY0k4O+4CUH2/o/FOHJmWlWpVMyb30rCsmbHlyucEScBnD/QEANXvUza8Szw+23ncbvmr3x3Ev9YeVHoIWT6Ny0+Y7o5PozUvjTe8uT5fGW0YUD8+tjUglk17H2wtxPcHiiGhOlF6fK9kANXnwJD0FkhrFYUgSUKrxuFemb+mponrNQ1y5H1fubsIz638RXO9YEnCff3aKHlVtoRQT7h1Rm3/E5pEODyXeiQ3xo8FZ6zKYXlu39k9AZ9N7olXvz2Ib/edtHt/k8hQ1e3Kx0/uPQeo5yxp1SwXmcox18m0CpZNqoGKgYoKd7oT23bRDNRqNq2Llz8TEzMSGmPubeo9Pmx/vED1DUHOT5h+OSfDF2wvzFoTBUaEBlkFpM5mq7UdSyJIqu56GB1RD21cuBFbjl+RnZVqdbN0RMKVEUwB57005HLIT/Il5RftnnDl/ZPXyUhojM35xQ6bLsb1TMLyneqjp1r2jstMaap6fjrqHaS2z8XnLrg9caYzjm4U8nELktRzZFbsOo4Ptl5JuhQA3v7+MJpGhlmNFSNvy9Vri7MJMO0S1z/dg8iwEJemY/BW77y46HAMSY/D86t+Ua11kwegU6tJsWT7Xq2pG+RlAFSb5ZY9kOnw93ZzejxyD5+x+jzLVT/4sRAf/liI7D+l2gUqcrKzFldyXLQeDguKz7tUayk3qRr9YVkLAxUb7nQnfnJwe7/0Z/c1Z6OB+jPHxtWnLVs5q/cBEpSbr7eoXZhLyi6qJv8Of2Oz1VTpzgZtsx1LwiyAf1kkvF6T2Ai7Ck3VzQO4XKNis43dx0qQmdK0OkiToJyP8mBbcvWx7ecOVUnC1MoLWXh3V0SE1rN6kh+aEY8dR6ov3F2Tqi/CruYeyTduOTB1NOnhyt1FuDapseZvUq5xiQgNwgvf/IoNB4rtN3T5uFlO7eDJzVWrxlGr5snRd68V4Ci9omyWu3ptcRZIaPXic2U6Bq3rhKfXu7jo8OoA26bZIliS0C2pseYYLDIJV869XYVnsHDDISU/Sc4b++NcBRZezmUKkoBJvZNVa0PLKs2aPe0kAI0jQ50GEwLVv7/pWalWzTg5I9IcHh9Xagcte0g6e2jSKtu/vjuI54enOV7RoBio2HCnO7ErY5AEQua1s9FAbavgfb0vcdHhqPKgW8S81fswNCPe7fK5043U0QiTljcTraekIFzu3g3nTSg7jpbg7bFXgoQVecftak3mrd6H+Oj66JbURDXBuX/7GLtRTLWaQWwTv+V173lvu13iYvUTsf37bf+eNjhVGXcnCMCky00btmN67DhyBg9+sFO12U+rNkquTZK39d7EHthVeAbf/nISofWCcPD3c1ieZ9205OnDhG2vqnv6JGN872SHieCW/2/7mVpPwo7OC2dNrq4MdOZsjB5Hx0brOvH8yp/x9JCOHl0X/to3BRBXxmaSH4TOV1Y5Tk4FkHNbdQDw2Ed5drWtZgG734pZVCdga9UQZ6Y0rc4LutybTFh8jtrwCmrMAkhv1Qibsq93+Xqp1uFCbfoCtUEAx/dOdjitgqX/bj2KRuH18MTgVMcrGhADFRvudifWWjeQBjBz5eIlV8F7i6NROQFg3lf2T5t/SmuB1XtPaHdvFdY3YFcCRXe7kToLLuSbyZ5jJrvXggDMvrUTAGDmip9cqrI9XFyGiX2q5/VIaxVt97ptQClPainTGgBMq+lOyRV6Y7NqPoy7N/d5X+1Txt2Rc2JsyUHPb2fKVWsT1I6T1j7sO3EW/1p70KUmM9ug1NXmEgFYTcg3LSvVqvfGyO4J+NBmHA3bz9T6zT0wIAXz1+Wrll/rqVrm6rQcjprMHAVDWmX+cvcJrNpzwuq3485D2l/7pWDo1fF2uV2qtXtjrWv3dhWesQtSHDEDuLd3G7y9seBKzXhWexQUn8fJ0gs4X1mlOU6R5XFzFFDKtZzu/FbUeilZTl8AwCrZ1/Yc3JR9PRZtKsBbGwo0E3oB4PV1+YiKqOf1mmdfY6Biw53uxI76swfCEN4yVy9egHf65jsblXOiSvUsAIy5Lgkzbu6IHUfOYM3PJ+zGIbC8ebk6A29Nu5HaCpYkRIQGYZ5Ktb4ZwIzPf3KrN0y3pCtt2548DXvSPf58ZZVmDYar37ta09c/Vu/XrPFamntUM2lSJtdGWf7Ovth1DCXlF9E4IhQJjcNderK0nc5+0cYCq+YBV5pLgMs1bMv2KN2IJVQHY0OvjsdSm1FJbQMr2+8lyCKQS2wSYfdbVHuqti1rZGiw6v7adoWXb4rbD5/BlCU7XQ5i46LDMbF3suqklpbnn6szJdsGM87O2yez2iM8NMQqePjx8GnVsmqRu7iP7510pbeNg1GSLdl1Cd51XLW3jaPz3FEAp3YM5L+18scsc2z6t4/FkLQ4lFWaEREapJnI7mnNs54YqKhwpw++2rqOJu5y9LSvZ1ORoyr4YEnC7t+8kzTsyqicb28ssHtikccekZ++h6THW41DYHkDdnWuD2dPoPLF0tWxFVyttlYLUoIA9G0fg3X7rwzCdts1La1G5vX0adjdMSW8kUDtTm8xZ/MKyZ9vOcjXhl9PKeNGyFzt+XRfvzYoKD6P9384gjfW5lu9Ry251FGvKtvkynmr9+G6NvZ5XU8Orn5qB640kWl9L7bz5cj7DFg/Vdue11qD5JVV2j9jx0WH4+aMcJyvvORWEDuhd7Lm+DVVQmD74TMO892A6nNjz28muzwOR4GBZUBhuX73y9t0lUD1+ETyZ1n2tpFZHle5vJbBlHx8/to3BS0bhdtNDaJ1nteklt3RQ0qVEEpQYrnd7D/Z5//I+2ek6SRcwUBFg2106866zi70aicsAN2biuQg4FzFJbsnGU+Thl3p5m3LLKznswGqn6Qtk1UBaA465+rEZafPV9p9tlo3Uq3ZaiWpegTYoRnx2H74DCBVTxUAaM8Ybcm2hmDktYnYVXgG2w6fQbekxqrTBzgLKB09DbtzPrtTC6MWYGv1jDp46iyKz12wGgPH2Tlh2ZNI/jy1XCFXK77eWJdvN1eKJdvk0pLyiy5uufq9w97YjLkWeV27j6nfZAHHs9faLnf2AORJgOluEBsXHV6dAK0yZkiwJAEq573cPCld/tv2e7K9nqidT7bdd+X1MxIaY0D7GKzdbz3KsuWYQ5YErgRO8rbUVAlR3ZTyfYHDa7KjqUEs1XSiROWhSWOsFvnjLQPDoRnxKC27aHeuS0DADbfPQMVNrtR6OLrQa2XOW57oejcVuZs0rMXVbt625PlsQoODrHrByE+7ji5oAFSfgCVcqQLXGlxOAlSffNXyPADgmVs7YWCH5qpV3bbV+paTzMn7qDYMeEaCeoBiSSug9GZvLFdvYFpPiba/AfmmMWP5TwCsJ3bTelqUcGV2beDKGCpaPW1kcgCo1VPK1YDGLKA667czQlzJ64oIDbKa26gmv21X8uc86aHnThALXDk3LLvWy5/lKOnU0XGXrydqvyW1MU4s11//q3WQYjlgnlrvQcu8Lke1cP/eUGD1npo0rXpjPCq14652rC33b9rgVPt9lBBwDDEy7euvv45//vOfOHHiBDIyMvDaa6+he/fuTt/nz5FpAfer7tRGo3VnRE3LkSz15MnotI7eYzniqC25mjy+UX1M+TBP9SJyb582SImNtBvCPq1VtJKMa9ssAFyZR8O2TVpm+cRn+/3aDuql9h7b/QSudNl1NMpqTeg54rEr50WRqVyzR4/liJlLc48ie9ke5YZuGcjYTVeQlao5voY82JxlE5FlwOhOvlFN3ds3Wek9Ykv+bTtKKtfK5XF0HhWZyrHt8GkESZLVRIW+onb+uTPyrEwO3C0HHJSX//vuazDp3e2qgb7t+kEAPpvc06r2zdGIs5azE7tC65rs6Hcoj6b9kEoNqKcjfMufZztIoy05aHe2H+6eh94QUCPTLl26FI8++igWLFiAHj164OWXX8agQYOwf/9+xMbG6l08hSdVd2pPKq4maBppNkxPntScdfNWG4U2CMD9/dvYDXZl662Nh6xqKMziSldEORlX7e1mAc0gBbAONixzFY6dKVfthWT7Htv9tMz898ZEcWoXD3efhr3J1V4mjSPVa0Asu0lbNmnJY7No1UD+Y/V+ZGel2iXfSpeDS8saKeUpdFOB1ROyt6k9mTv6vI0HT+Ho6fMOk8pdSei0/O716Glo2Xwn/z3y2kTVQQG1OMrtqhJCNUjRWt8M65wcZ3lmQlTX2hWZLjgdt8mTplXbbu3yeVLTGlDLz3OUt6Y1073lfjjq3CA3b+vdS0j3QOXFF1/EPffcg/HjxwMAFixYgJUrV+Kdd95Bdna2zqW7wltDyTtLiAS0R7LUk7cTMs9XVtm3VaO6+5yzBzFHQYxWMq4r77VbF7BLlHOF1gWtJkGFEbu7u5oToTnwG6zbyuUmLUua0xW0aoTN06/H9sNnUFJeicYRoQ5rEN5yccZeT7lbUTP/8nluGWy7Omy62nlU0xwIT2k1785z0oMLACYPSEHvtjEOuyQDNkn1ErDsgUxkJDRWXV/t/HOUZxaEK6PGzln1i9W2LPNcPAks1Lq1B0nAa3d0UQJxb3CWt+ZopntnnRuEQHVCroDPRv52hfMpXH2osrIS27dvx8CBA5VlQUFBGDhwILZs2WK3fkVFBUpLS63++Yt8sbXkaa3HyGsTsTF7AF6/s4tdc2EQqquu9b4JqYmLDnd5fAA5IAu+PMWo7Q9E7XgGwbVuu3LbshazAO7pm+y3k1u6XCag5k9KarRuQkWmcq99hiecfce260kWX5qEKwN2OeLod1fdcyUed12XhCHp2t0ttZJ1n721Ez685zpM/1Oq3y+EZuE8uLEcFsAZZ3OR+YLWebn9yBmXHgh6t42xup7Ynk+237v8GXKNiavnH3Alz8zWtKxUJfCz3dbc26rHJ/nwnuuwMXuA29dkrQHymjYI83rwWB3kx2PubfbH4699U7Axe4DqfrjSuQGoronW83qja41KcXExqqqq0Lx5c6vlzZs3x7599lXtOTk5mD17tr+KZ8XTRDVH29NKiHSWTBkoHNXCqB3PJwe3t5/jBNXTny/ZWmg3hoajPBd50CZniWcAcNd1iXj/h6Me7aNl4p6vckX8NTGkJ1ytadNq2nHGG787rZqfgR2bK8H30Ix41ZmKZXJuTKPweq7PL+Qg/0EtwdqWOw9C/pyTS6Z1XsLBb81Z2Wy7ZqvlrKhN7ujs/LM9jyzHrXG2LU9/Y3p8J472QW0/XE1F8OWknq7QNZn2+PHjaNmyJTZv3ozMzExl+ZNPPon169dj61brpNOKigpUVFQof5eWliIhIcFvybSAb5IX9UyI1JvtvmslC6odI2WK9GMldlWbtgmGji58akl5WqrnC2mDIektvDKTrSs8SWaubWr6G3GWhGr5OZYjfKoN+6+VIKzWVCDfNDYdPIU3Lo84qxZsaw2b7s5TvKv76C2uJszXZN+8vU/+vtb6+zvxhG0ZB3VujlWX50yS+eJ6404yra6BSmVlJSIiIvDJJ59g2LBhyvKxY8eipKQEn3/+ucP3+7vXD/mHJxcTV9+jdeGwXW57YX0yqz3SWzbSLZgMhAue0blzXrmyrtp34ujp3lGwbZmnUdOEa6PciL21b4H+IBcI5bct45vr8+3mX/L29SZgAhUA6NGjB7p3747XXnsNAGA2m5GYmIgHH3zQaTItAxXyhNaFw9s3DW8zWnmI3wnAY1Bb+fp7DahAZenSpRg7dizefPNNdO/eHS+//DI++ugj7Nu3zy53xRYDFSIiosATUOOojBw5EqdOncLf//53nDhxAldffTW++uorp0EKERER1X6616jUBGtUiIiIAo87929dx1EhIiIicoSBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDEv3IfRrQh5Ut7S0VOeSEBERkavk+7Yrg+MHdKBy9uxZAEBCQoLOJSEiIiJ3nT17FtHR0Q7XCei5fsxmM44fP46GDRtCkqQabau0tBQJCQkoLCyss/MG8RjwGMh4HHgMAB4DgMdA5u3jIITA2bNnER8fj6Agx1koAV2jEhQUhFatWnl1m1FRUXX6ZAR4DAAeAxmPA48BwGMA8BjIvHkcnNWkyJhMS0RERIbFQIWIiIgMi4HKZWFhYZg5cybCwsL0LopueAx4DGQ8DjwGAI8BwGMg0/M4BHQyLREREdVurFEhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGVatDlTmz5+P9PR0ZYCazMxMrF69Wnn9woULmDx5Mpo2bYoGDRrgtttuw++//261jaNHj2LIkCGIiIhAbGwsnnjiCVy6dMnfu+I1c+fOhSRJmDp1qrKsth+HWbNmQZIkq3+pqanK67V9/2XHjh3DXXfdhaZNmyI8PBxpaWnYtm2b8roQAn//+98RFxeH8PBwDBw4EAcOHLDaxunTpzF69GhERUWhUaNGmDhxIs6dO+fvXfFYUlKS3bkgSRImT54MoG6cC1VVVZgxYwaSk5MRHh6OlJQUPPvss1ZzrtSFc+Hs2bOYOnUqWrdujfDwcPTs2RO5ubnK67XxGGzYsAG33HIL4uPjIUkSli9fbvW6t/Z59+7d6NOnD+rXr4+EhAT84x//qFnBRS22YsUKsXLlSvHrr7+K/fv3i6eeekrUq1dP7N27VwghxH333ScSEhLEt99+K7Zt2yauu+460bNnT+X9ly5dEp07dxYDBw4UO3fuFKtWrRLNmjUT06dP12uXauTHH38USUlJIj09XTz88MPK8tp+HGbOnCk6deokioqKlH+nTp1SXq/t+y+EEKdPnxatW7cW48aNE1u3bhWHDh0SX3/9tTh48KCyzty5c0V0dLRYvny52LVrlxg6dKhITk4W5eXlyjqDBw8WGRkZ4ocffhDff/+9aNu2rRg1apQeu+SRkydPWp0Ha9asEQDE2rVrhRB141x4/vnnRdOmTcWXX34pCgoKxMcffywaNGggXnnlFWWdunAu3H777aJjx45i/fr14sCBA2LmzJkiKipK/Pbbb0KI2nkMVq1aJZ5++mmxbNkyAUB89tlnVq97Y59NJpNo3ry5GD16tNi7d6/48MMPRXh4uHjzzTc9LnetDlTUNG7cWLz11luipKRE1KtXT3z88cfKa7/88osAILZs2SKEqP5Sg4KCxIkTJ5R15s+fL6KiokRFRYXfy14TZ8+eFVdddZVYs2aN6NevnxKo1IXjMHPmTJGRkaH6Wl3YfyGEmDZtmujdu7fm62azWbRo0UL885//VJaVlJSIsLAw8eGHHwohhPj5558FAJGbm6uss3r1aiFJkjh27JjvCu9DDz/8sEhJSRFms7nOnAtDhgwREyZMsFo2YsQIMXr0aCFE3TgXysrKRHBwsPjyyy+tll9zzTXi6aefrhPHwDZQ8dY+v/HGG6Jx48ZWv4dp06aJ9u3be1zWWt30Y6mqqgpLlizB+fPnkZmZie3bt+PixYsYOHCgsk5qaioSExOxZcsWAMCWLVuQlpaG5s2bK+sMGjQIpaWl+Omnn/y+DzUxefJkDBkyxGp/AdSZ43DgwAHEx8ejTZs2GD16NI4ePQqg7uz/ihUr0K1bN/zlL39BbGwsunTpgoULFyqvFxQU4MSJE1bHITo6Gj169LA6Do0aNUK3bt2UdQYOHIigoCBs3brVfzvjJZWVlXj//fcxYcIESJJUZ86Fnj174ttvv8Wvv/4KANi1axc2btyIrKwsAHXjXLh06RKqqqpQv359q+Xh4eHYuHFjnTgGtry1z1u2bEHfvn0RGhqqrDNo0CDs378fZ86c8ahsAT0poSv27NmDzMxMXLhwAQ0aNMBnn32Gjh07Ii8vD6GhoWjUqJHV+s2bN8eJEycAACdOnLC6IMmvy68FiiVLlmDHjh1W7a+yEydO1Prj0KNHDyxevBjt27dHUVERZs+ejT59+mDv3r11Yv8B4NChQ5g/fz4effRRPPXUU8jNzcWUKVMQGhqKsWPHKvuhtp+WxyE2Ntbq9ZCQEDRp0iRgjoOl5cuXo6SkBOPGjQNQN34LAJCdnY3S0lKkpqYiODgYVVVVeP755zF69GgAqBPnQsOGDZGZmYlnn30WHTp0QPPmzfHhhx9iy5YtaNu2bZ04Bra8tc8nTpxAcnKy3Tbk1xo3bux22Wp9oNK+fXvk5eXBZDLhk08+wdixY7F+/Xq9i+U3hYWFePjhh7FmzRq7p4e6Qn5SBID09HT06NEDrVu3xkcffYTw8HAdS+Y/ZrMZ3bp1w5w5cwAAXbp0wd69e7FgwQKMHTtW59Lp4+2330ZWVhbi4+P1LopfffTRR/jvf/+LDz74AJ06dUJeXh6mTp2K+Pj4OnUu/Oc//8GECRPQsmVLBAcH45prrsGoUaOwfft2vYtGNmp9009oaCjatm2Lrl27IicnBxkZGXjllVfQokULVFZWoqSkxGr933//HS1atAAAtGjRwi7jX/5bXsfotm/fjpMnT+Kaa65BSEgIQkJCsH79erz66qsICQlB8+bN68RxsNSoUSO0a9cOBw8erDPnQVxcHDp27Gi1rEOHDkoTmLwfavtpeRxOnjxp9fqlS5dw+vTpgDkOsiNHjuB///sfJk2apCyrK+fCE088gezsbNxxxx1IS0vDmDFj8MgjjyAnJwdA3TkXUlJSsH79epw7dw6FhYX48ccfcfHiRbRp06bOHANL3tpnX/xGan2gYstsNqOiogJdu3ZFvXr18O233yqv7d+/H0ePHkVmZiYAIDMzE3v27LH6YtasWYOoqCi7i75R3XDDDdizZw/y8vKUf926dcPo0aOV/68Lx8HSuXPnkJ+fj7i4uDpzHvTq1Qv79++3Wvbrr7+idevWAIDk5GS0aNHC6jiUlpZi69atVsehpKTE6onzu+++g9lsRo8ePfywF96zaNEixMbGYsiQIcqyunIulJWVISjI+tIfHBwMs9kMoO6dC5GRkYiLi8OZM2fw9ddf49Zbb61zxwDw3veemZmJDRs24OLFi8o6a9asQfv27T1q9gFQu7snZ2dni/Xr14uCggKxe/dukZ2dLSRJEt98840QororYmJiovjuu+/Etm3bRGZmpsjMzFTeL3dFvOmmm0ReXp746quvRExMTEB1RVRj2etHiNp/HB577DGxbt06UVBQIDZt2iQGDhwomjVrJk6ePCmEqP37L0R11/SQkBDx/PPPiwMHDoj//ve/IiIiQrz//vvKOnPnzhWNGjUSn3/+udi9e7e49dZbVbsmdunSRWzdulVs3LhRXHXVVYbujqmmqqpKJCYmimnTptm9VhfOhbFjx4qWLVsq3ZOXLVsmmjVrJp588kllnbpwLnz11Vdi9erV4tChQ+Kbb74RGRkZokePHqKyslIIUTuPwdmzZ8XOnTvFzp07BQDx4osvip07d4ojR44IIbyzzyUlJaJ58+ZizJgxYu/evWLJkiUiIiKC3ZO1TJgwQbRu3VqEhoaKmJgYccMNNyhBihBClJeXiwceeEA0btxYREREiOHDh4uioiKrbRw+fFhkZWWJ8PBw0axZM/HYY4+Jixcv+ntXvMo2UKntx2HkyJEiLi5OhIaGipYtW4qRI0dajR9S2/df9sUXX4jOnTuLsLAwkZqaKv79739bvW42m8WMGTNE8+bNRVhYmLjhhhvE/v37rdb5448/xKhRo0SDBg1EVFSUGD9+vDh79qw/d6PGvv76awHAbt+EqBvnQmlpqXj44YdFYmKiqF+/vmjTpo14+umnrbqT1oVzYenSpaJNmzYiNDRUtGjRQkyePFmUlJQor9fGY7B27VoBwO7f2LFjhRDe2+ddu3aJ3r17i7CwMNGyZUsxd+7cGpVbEsJiOEIiIiIiA6lzOSpEREQUOBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSI6qD+/ftj6tSpehfD52bNmoWrr75a72IQUQ0wUCGigFNZWenXzxNC4NKlS379TCKqxkCFqI4ZN24c1q9fj1deeQWSJEGSJBw+fBh79+5FVlYWGjRogObNm2PMmDEoLi5W3te/f3889NBDmDp1Kho3bozmzZtj4cKFOH/+PMaPH4+GDRuibdu2WL16tfKedevWQZIkrFy5Eunp6ahfvz6uu+467N2716pMGzduRJ8+fRAeHo6EhARMmTIF58+fV15PSkrCs88+i7vvvhtRUVG49957AQDTpk1Du3btEBERgTZt2mDGjBnKrK2LFy/G7NmzsWvXLmU/Fy9ejMOHD0OSJOTl5SnbLykpgSRJWLdunVW5V69eja5duyIsLAwbN26E2WxGTk4OkpOTER4ejoyMDHzyySfe/oqIyAIDFaI65pVXXkFmZibuueceFBUVoaioCA0bNsT111+PLl26YNu2bfjqq6/w+++/4/bbb7d677vvvotmzZrhxx9/xEMPPYT7778ff/nLX9CzZ0/s2LEDN910E8aMGYOysjKr9z3xxBN44YUXkJubi5iYGNxyyy1KQJGfn4/Bgwfjtttuw+7du7F06VJs3LgRDz74oNU2/u///g8ZGRnYuXMnZsyYAQBo2LAhFi9ejJ9//hmvvPIKFi5ciJdeegkAMHLkSDz22GPo1KmTsp8jR45061hlZ2dj7ty5+OWXX5Ceno6cnBy89957WLBgAX766Sc88sgjuOuuu7B+/Xq3tktEbqjRlIZEFJBsZ9B+9tlnxU033WS1TmFhodUsw/369RO9e/dWXr906ZKIjIwUY8aMUZYVFRUJAGLLli1CiCuztS5ZskRZ548//hDh4eFi6dKlQgghJk6cKO69916rz/7+++9FUFCQMr1869atxbBhw5zu1z//+U/RtWtX5e+ZM2eKjIwMq3UKCgoEALFz505l2ZkzZwQAsXbtWqtyL1++XFnnwoULIiIiQmzevNlqexMnTrSa5p6IvCtEzyCJiIxh165dWLt2LRo0aGD3Wn5+Ptq1awcASE9PV5YHBwejadOmSEtLU5Y1b94cAHDy5EmrbWRmZir/36RJE7Rv3x6//PKL8tm7d+/Gf//7X2UdIQTMZjMKCgrQoUMHAEC3bt3syrZ06VK8+uqryM/Px7lz53Dp0iVERUW5vf9aLD/z4MGDKCsrw4033mi1TmVlJbp06eK1zyQiawxUiAjnzp3DLbfcgnnz5tm9FhcXp/x/vXr1rF6TJMlqmSRJAACz2ezWZ//1r3/FlClT7F5LTExU/j8yMtLqtS1btmD06NGYPXs2Bg0ahOjoaCxZsgQvvPCCw88LCqpu8RZCKMvkZihblp957tw5AMDKlSvRsmVLq/XCwsIcfiYReY6BClEdFBoaiqqqKuXva665Bp9++imSkpIQEuL9y8IPP/ygBB1nzpzBr7/+qtSUXHPNNfj555/Rtm1bt7a5efNmtG7dGk8//bSy7MiRI1br2O4nAMTExAAAioqKlJoQy8RaLR07dkRYWBiOHj2Kfv36uVVWIvIck2mJ6qCkpCRs3boVhw8fRnFxMSZPnozTp09j1KhRyM3NRX5+Pr7++muMHz/e7kbviWeeeQbffvst9u7di3HjxqFZs2YYNmwYgOqeO5s3b8aDDz6IvLw8HDhwAJ9//rldMq2tq666CkePHsWSJUuQn5+PV199FZ999pndfhYUFCAvLw/FxcWoqKhAeHg4rrvuOiVJdv369fjb3/7mdB8aNmyIxx9/HI888gjeffdd5OfnY8eOHXjttdfw7rvvenxsiMgxBipEddDjjz+O4OBgdOzYETExMaisrMSmTZtQVVWFm266CWlpaZg6dSoaNWqkNJXUxNy5c/Hwww+ja9euOHHiBL744guEhoYCqM57Wb9+PX799Vf06dMHXbp0wd///nfEx8c73ObQoUPxyCOP4MEHH8TVV1+NzZs3K72BZLfddhsGDx6MAQMGICYmBh9++CEA4J133sGlS5fQtWtXTJ06Fc8995xL+/Hss89ixowZyMnJQYcOHTB48GCsXLkSycnJHhwVInKFJCwbaomIvGjdunUYMGAAzpw5g0aNGuldHCIKQKxRISIiIsNioEJERESGxaYfIiIiMizWqBAREZFhMVAhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGRYDFSIiIjIsBipERERkWAxUiIiIyLAYqBAREZFh/T8Zs6wqh35IbwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXeZJREFUeJzt3Xl0FFXaBvCnOiEhCdkgCQkhO0JAQtgEw44wAoMii4qICgg6Kgo4ogT9HMCFgI6KOgoOKriMggsoyubGIoLKvqhsISERghAgHSAhQPp+f8Que6le091VnTy/c3KU6urqW9XVVW/d+957JSGEABEREZEG6dQuABEREZEtDFSIiIhIsxioEBERkWYxUCEiIiLNYqBCREREmsVAhYiIiDSLgQoRERFpFgMVIiIi0iwGKkRERKRZDFSIqNZmzpwJSZKcWleSJMycOdOr5enTpw/69Omj2e0RkfMYqBDVIYsXL4YkSfJfYGAgEhMTMXbsWBw7dkzt4mlOamqq2fGKi4tDz549sXz5co9sv6KiAjNnzsT69es9sj2i+oiBClEd9NRTT+G9997DggULMGjQILz//vvo3bs3Ll686JXP+7//+z9UVlZ6Zdve1r59e7z33nt47733MHXqVBw/fhzDhw/HggULar3tiooKzJo1i4EKUS0Eql0AIvK8QYMGoXPnzgCACRMmICYmBnPnzsWKFStw6623evzzAgMDERjon5eTxMRE3HHHHfK/77rrLrRo0QIvvfQS7rvvPhVLRkQAa1SI6oWePXsCAPLz882W79+/HzfffDMaN26Mhg0bonPnzlixYoXZOpcvX8asWbNw1VVXoWHDhmjSpAl69OiBr7/+Wl5HKUelqqoKDz/8MGJjYxEeHo4hQ4bg999/tyrb2LFjkZqaarVcaZuLFi3Cddddh7i4OAQHB6NNmzaYP3++S8fCkfj4eLRu3RoFBQV21zt58iTGjx+Ppk2bomHDhsjOzsY777wjv15YWIjY2FgAwKxZs+TmJW/n5xDVNf75CERELiksLAQAREdHy8t++eUXdO/eHYmJicjNzUVYWBg++ugjDB06FJ9++imGDRsGoCZgyMvLw4QJE9ClSxeUl5dj27Zt2LFjB/72t7/Z/MwJEybg/fffx+23345u3brhu+++w+DBg2u1H/Pnz8fVV1+NIUOGIDAwEF988QUeeOABGAwGTJw4sVbbNrp8+TKKi4vRpEkTm+tUVlaiT58+OHz4MB588EGkpaXh448/xtixY1FWVobJkycjNjYW8+fPx/33349hw4Zh+PDhAIB27dp5pJxE9YYgojpj0aJFAoD45ptvxKlTp0RxcbH45JNPRGxsrAgODhbFxcXyuv369RNZWVni4sWL8jKDwSC6desmrrrqKnlZdna2GDx4sN3PnTFjhjC9nOzatUsAEA888IDZerfffrsAIGbMmCEvGzNmjEhJSXG4TSGEqKiosFpvwIABIj093WxZ7969Re/eve2WWQghUlJSxPXXXy9OnTolTp06JXbv3i1uu+02AUA89NBDNrc3b948AUC8//778rJLly6JnJwc0ahRI1FeXi6EEOLUqVNW+0tErmHTD1Ed1L9/f8TGxiIpKQk333wzwsLCsGLFCjRv3hwAcObMGXz33Xe49dZbce7cOZSWlqK0tBSnT5/GgAEDcOjQIbmXUFRUFH755RccOnTI6c9ftWoVAGDSpElmy6dMmVKr/QoJCZH/X6/Xo7S0FL1798aRI0eg1+vd2uZXX32F2NhYxMbGIjs7Gx9//DHuvPNOzJ071+Z7Vq1ahfj4eIwaNUpe1qBBA0yaNAnnz5/Hhg0b3CoLEVlj0w9RHfTaa6+hZcuW0Ov1ePvtt7Fx40YEBwfLrx8+fBhCCDz55JN48sknFbdx8uRJJCYm4qmnnsJNN92Eli1bom3bthg4cCDuvPNOu00YR48ehU6nQ0ZGhtnyVq1a1Wq/fvjhB8yYMQNbtmxBRUWF2Wt6vR6RkZEub7Nr16545plnIEkSQkND0bp1a0RFRdl9z9GjR3HVVVdBpzN/1mvdurX8OhF5BgMVojqoS5cucq+foUOHokePHrj99ttx4MABNGrUCAaDAQAwdepUDBgwQHEbLVq0AAD06tUL+fn5+Pzzz/HVV1/hzTffxEsvvYQFCxZgwoQJtS6rrYHiqqurzf6dn5+Pfv36ITMzEy+++CKSkpIQFBSEVatW4aWXXpL3yVUxMTHo37+/W+8lIu9joEJUxwUEBCAvLw99+/bFf/7zH+Tm5iI9PR1ATXOFMzfpxo0bY9y4cRg3bhzOnz+PXr16YebMmTYDlZSUFBgMBuTn55vVohw4cMBq3ejoaJSVlVktt6yV+OKLL1BVVYUVK1YgOTlZXr5u3TqH5fe0lJQU7NmzBwaDwaxWZf/+/fLrgO0gjIicxxwVonqgT58+6NKlC+bNm4eLFy8iLi4Offr0wRtvvIGSkhKr9U+dOiX//+nTp81ea9SoEVq0aIGqqiqbnzdo0CAAwCuvvGK2fN68eVbrZmRkQK/XY8+ePfKykpISq9FhAwICAABCCHmZXq/HokWLbJbDW/7+97/jxIkTWLp0qbzsypUrePXVV9GoUSP07t0bABAaGgoAioEYETmHNSpE9cSjjz6KW265BYsXL8Z9992H1157DT169EBWVhbuuecepKen448//sCWLVvw+++/Y/fu3QCANm3aoE+fPujUqRMaN26Mbdu24ZNPPsGDDz5o87Pat2+PUaNG4fXXX4der0e3bt3w7bff4vDhw1br3nbbbZg2bRqGDRuGSZMmoaKiAvPnz0fLli2xY8cOeb3rr78eQUFBuPHGG/GPf/wD58+fx8KFCxEXF6cYbHnTvffeizfeeANjx47F9u3bkZqaik8++QQ//PAD5s2bh/DwcAA1yb9t2rTB0qVL0bJlSzRu3Bht27ZF27ZtfVpeIr+mdrcjIvIcY/fkrVu3Wr1WXV0tMjIyREZGhrhy5YoQQoj8/Hxx1113ifj4eNGgQQORmJgobrjhBvHJJ5/I73vmmWdEly5dRFRUlAgJCRGZmZni2WefFZcuXZLXUepKXFlZKSZNmiSaNGkiwsLCxI033iiKi4sVu+t+9dVXom3btiIoKEi0atVKvP/++4rbXLFihWjXrp1o2LChSE1NFXPnzhVvv/22ACAKCgrk9Vzpnuyo67Wt7f3xxx9i3LhxIiYmRgQFBYmsrCyxaNEiq/du3rxZdOrUSQQFBbGrMpEbJCFM6lGJiIiINIQ5KkRERKRZDFSIiIhIsxioEBERkWYxUCEiIiLNYqBCREREmsVAhYiIiDTLrwd8MxgMOH78OMLDwzlUNRERkZ8QQuDcuXNo1qyZ1eSelvw6UDl+/DiSkpLULgYRERG5obi4GM2bN7e7jl8HKsZhqouLixEREaFyaYiIiMgZ5eXlSEpKku/j9vh1oGJs7omIiGCgQkRE5GecSdtgMi0RERFpFgMVIiIi0iwGKkRERKRZfp2jQkRE9Ud1dTUuX76sdjHISUFBQQ67HjuDgQoREWmaEAInTpxAWVmZ2kUhF+h0OqSlpSEoKKhW21E9UDl27BimTZuG1atXo6KiAi1atMCiRYvQuXNntYtGREQaYAxS4uLiEBoaygE+/YBxQNaSkhIkJyfX6jtTNVA5e/Ysunfvjr59+2L16tWIjY3FoUOHEB0drWaxiIhII6qrq+UgpUmTJmoXh1wQGxuL48eP48qVK2jQoIHb21E1UJk7dy6SkpKwaNEieVlaWpqKJSIiIi0x5qSEhoaqXBJylbHJp7q6ulaBiqq9flasWIHOnTvjlltuQVxcHDp06ICFCxfaXL+qqgrl5eVmf0REVPexucf/eOo7UzVQOXLkCObPn4+rrroKa9euxf33349JkybhnXfeUVw/Ly8PkZGR8h/n+SEiIqrbVA1UDAYDOnbsiNmzZ6NDhw649957cc8992DBggWK60+fPh16vV7+Ky4u9nGJiYiICADWr18PSZK83htL1UAlISEBbdq0MVvWunVrFBUVKa4fHBwsz+vj7fl9SvSV2JxfihJ9pdc+g4iIyJaZM2eiffv2ahdDdaom03bv3h0HDhwwW3bw4EGkpKSoVKIaS7cWYfqyvTAIQCcBecOzMPKaZFXLREREpOTy5cu1SlbVOlVrVB5++GH8+OOPmD17Ng4fPowPPvgA//3vfzFx4kTVylSir5SDFAAwCODxZftYs0JERC4xGAzIy8tDWloaQkJCkJ2djU8++QTAX80m3377LTp37ozQ0FB069ZNfnhfvHgxZs2ahd27d0OSJEiShMWLFwOoSVKdP38+hgwZgrCwMDz77LN2y2H8rLVr16JDhw4ICQnBddddh5MnT2L16tVo3bo1IiIicPvtt6OiokJ+X1VVFSZNmoS4uDg0bNgQPXr0wNatW71zsOxQNVC55pprsHz5cnz44Ydo27Ytnn76acybNw+jR49WrUwFpRfkIMWoWggUllYov4GIiPyCr5v08/Ly8O6772LBggX45Zdf8PDDD+OOO+7Ahg0b5HWeeOIJvPDCC9i2bRsCAwNx9913AwBGjhyJRx55BFdffTVKSkpQUlKCkSNHyu+bOXMmhg0bhr1798rvcWTmzJn4z3/+g82bN6O4uBi33nor5s2bhw8++AArV67EV199hVdffVVe/7HHHsOnn36Kd955Bzt27ECLFi0wYMAAnDlzxkNHyDmqj0x7ww034IYbblC7GLK0mDDoJJgFKwGShNQY9uEnIvJXvm7Sr6qqwuzZs/HNN98gJycHAJCeno5NmzbhjTfewL333gsAePbZZ9G7d28AQG5uLgYPHoyLFy8iJCQEjRo1QmBgIOLj4622f/vtt2PcuHEulemZZ55B9+7dAQDjx4/H9OnTkZ+fj/T0dADAzTffjHXr1mHatGm4cOEC5s+fj8WLF2PQoEEAgIULF+Lrr7/GW2+9hUcffdS9A+MGzp5sISEyBHnDsxDwZ//vAEnC7OFtkRAZonLJiIjIHWo06R8+fBgVFRX429/+hkaNGsl/7777LvLz8+X12rVrJ/9/QkICAODkyZMOt+/ONDOmn9W0aVOEhobKQYpxmfGz8/PzcfnyZTmwAYAGDRqgS5cu+O2331z+7NpQvUZFi0Zek4xeLWNRWFqB1JhQBilERH7MXpO+t67v58+fBwCsXLkSiYmJZq8FBwfLwYppEqxxgDSDweBw+2FhYS6XyfKzLBNwJUly6rN9jYGKDQmRIQxQiIjqADWa9Nu0aYPg4GAUFRXJTTumTGtVbAkKCkJ1dbU3iudQRkYGgoKC8MMPP8g9cS9fvoytW7diypQpPi0LAxUiIqrTjE36jy/bh2ohfNKkHx4ejqlTp+Lhhx+GwWBAjx49oNfr8cMPPyAiIsKpYThSU1NRUFCAXbt2oXnz5ggPD0dwcLDXymwqLCwM999/Px599FE0btwYycnJeO6551BRUYHx48f7pAxGDFSIiKjOU6NJ/+mnn0ZsbCzy8vJw5MgRREVFoWPHjnj88cedamIZMWIEli1bhr59+6KsrAyLFi3C2LFjvV5uozlz5sBgMODOO+/EuXPn0LlzZ6xduxbR0dE+KwMASEII4Xg1bSovL0dkZCT0er1XR6klIiJ1XLx4EQUFBUhLS0PDhg3VLg65wN5358r9m71+iIiISLMYqBAREfmx++67z6wLtOnffffdp3bxao05KkRERH7sqaeewtSpUxVfqwtpEQxUiIiI/FhcXBzi4uLULobXsOmHiIiINIuBChERaZ4WR0wl+zzVqZhNP0REpFlBQUHQ6XQ4fvw4YmNjERQUJA81T9olhMCpU6cUh+p3FQMVIiLSLJ1Oh7S0NJSUlOD48eNqF4dcIEkSmjdvjoCAgFpth4EKERFpWlBQEJKTk3HlyhXV5r4h1zVo0KDWQQrAQIWIiPyAsQmhts0I5H+YTEtERESaxUCFiIiINIuBChEREWkWAxUiIiLSLAYqREREpFkMVIiIiEizGKgQERGRZjFQISIiIs1ioEJERESaxUCFiIiINIuBChEREWkWAxUiIiLSLAYqREREpFkMVIiIiEizGKgQERGRZjFQISIiIs1ioEJERESaxUCFiIiINIuBChEREWkWAxUiIiLSLAYqREREpFkMVIiIiEizGKgQERGRZjFQISIiIs1ioEJERESaxUCFiIiINIuBChEREWkWAxUiIiLSLAYqREREpFkMVIiIiEizVA1UZs6cCUmSzP4yMzPVLBIRERFpSKDaBbj66qvxzTffyP8ODFS9SERERKQRqkcFgYGBiI+PV7sYREREpEGq56gcOnQIzZo1Q3p6OkaPHo2ioiKb61ZVVaG8vNzsj4iIiOouVQOVrl27YvHixVizZg3mz5+PgoIC9OzZE+fOnVNcPy8vD5GRkfJfUlKSj0tMREREviQJIYTahTAqKytDSkoKXnzxRYwfP97q9aqqKlRVVcn/Li8vR1JSEvR6PSIiInxZVCIiInJTeXk5IiMjnbp/q56jYioqKgotW7bE4cOHFV8PDg5GcHCwj0tFREREalE9R8XU+fPnkZ+fj4SEBLWLQkRERBqgaqAydepUbNiwAYWFhdi8eTOGDRuGgIAAjBo1Ss1iERERkUao2vTz+++/Y9SoUTh9+jRiY2PRo0cP/Pjjj4iNjVWzWERERKQRqgYqS5YsUfPjiYiISOM0laNCREREZIqBChEREWkWAxUiIiLSLAYqREREpFkMVIiIiEizGKgQERGRZjFQISIiIs1ioEJERESaxUCFiIiINIuBChEREWkWAxUiIiLSLAYqREREpFkMVIiIiEizGKgQERGRZjFQISIiIs1ioEJERESaxUCFiIiINIuBChEREWkWAxUiIiLSLAYqREREpFkMVIiIiEizGKgQERGRZjFQISIiIs1ioEJERESaxUCFiIiINIuBChEREWkWAxUiIiLSLAYqREREpFkMVIiIiEizGKgQERGRZjFQISIiIs1ioEJERESaxUCFiIiINIuBChEREWkWAxUiIiLSLAYqREREpFkMVIiIiEizGKgQERGRZjFQISIiIs1ioKKyEn0lNueXokRfqXZRiIiINCdQ7QLUNyX6ShSUXkBaTBg2HjyF6cv2wiAAnQTkDc/CyGuS1S4iERGRZjBQ8aGlW4vkwET6c5n4878GATy+bB96tYxFQmSIWkUkIiLSFDb9+EiJvlIOUoCaAEVYrFMtBApLK3xdNCIiIs1ioOIjBaUX5CDFlgBJQmpMqG8KRERE5AcYqPhIWkwYdJL5MgmQlwVIEmYPb8tmHyIiIhPMUfGRhMgQ5A3PwuPL9qFaCDkw6dUyFoWlFUiNCWWQQkREZEFTgcqcOXMwffp0TJ48GfPmzVO7OB438ppkxcCEAQoREZEyzQQqW7duxRtvvIF27dqpXRSvSogMYWBCRETkJE3kqJw/fx6jR4/GwoULER0drXZxiIiISCM0EahMnDgRgwcPRv/+/e2uV1VVhfLycrM/IiIiqrtUb/pZsmQJduzYga1btzpcNy8vD7NmzfJBqYiIiEgLVK1RKS4uxuTJk/G///0PDRs2dLj+9OnTodfr5b/i4mIflJKIiIjUIgkhHAxD5j2fffYZhg0bhoCAAHlZdXU1JEmCTqdDVVWV2WuWysvLERkZCb1ej4iICF8UmYiIiGrJlfu3qk0//fr1w969e82WjRs3DpmZmZg2bZrdIIWIiIjqPlUDlfDwcLRt29ZsWVhYGJo0aWK1nIiIiOofTfT6ISIiIlKieq8fS+vXr1e7CERERKQRrFEhIiIizWKgoiEl+kpszi9Fib5S7aIQERFpguaafuqrpVuLMH3ZXhgEoJOAvOFZGHlNstrFIiIiUhVrVDSgRF8pBykAYBDA48v2sWaFiIjqPQYqGlBQekEOUoyqhUBhaYU6BSIiItIIBioakBYTBp1kvixAkpAaE6pOgYiIiDSCgYoGJESGIG94FgKkmmglQJIwe3hbJESGqFwyIiIidTGZViNGXpOMXi1jUVhagdSYUAYpREREYKCiKQmRIQxQiIiITLDph4iIiDSLgQoRERFpFgMVIiIi0iwGKkRERKRZDFSIiIhIsxioEBERkWYxUCEiIiLNYqBCREREmsVAhYiIiDSLgQoRERFpFgMVIiIi0iwGKkRERKRZDFSIiIhIsxioEBERkWYxUCEiIiLNCnR2xfLycqc3GhER4VZhiIiIiEw5HahERUVBkiS76wghIEkSqqura10wIiIiIqcDlXXr1nmzHERERERWnA5Uevfu7c1yEBEREVlxOlCxVFZWhrfeegu//fYbAODqq6/G3XffjcjISI8VjoiIiOo3t3r9bNu2DRkZGXjppZdw5swZnDlzBi+++CIyMjKwY8cOT5eRiIiI6ilJCCFcfVPPnj3RokULLFy4EIGBNZUyV65cwYQJE3DkyBFs3LjR4wVVUl5ejsjISOj1evY0IiIi8hOu3L/dClRCQkKwc+dOZGZmmi3/9ddf0blzZ1RUVLi6SbcwUCEiIvI/rty/3Wr6iYiIQFFRkdXy4uJihIeHu7NJIiIiIituBSojR47E+PHjsXTpUhQXF6O4uBhLlizBhAkTMGrUKE+XkYiIiOopt3r9/Pvf/4YkSbjrrrtw5coVAECDBg1w//33Y86cOR4tIBEREdVfbuWoGFVUVCA/Px8AkJGRgdDQUI8VzBnMUSEiIvI/rty/3R5HBQBCQ0ORlZVVm00QERER2eRWoHLx4kW8+uqrWLduHU6ePAmDwWD2OsdSISIiIk9wK1AZP348vvrqK9x8883o0qWLw8kKiYiIiNzhVqDy5ZdfYtWqVejevbuny0NEREQkc6t7cmJiIsdLISIiIq9zK1B54YUXMG3aNBw9etTT5SEiIiKSudX007lzZ1y8eBHp6ekIDQ1FgwYNzF4/c+aMRwpHRERE9ZtbgcqoUaNw7NgxzJ49G02bNmUyLREREXmFW4HK5s2bsWXLFmRnZ3u6PEREREQyt3JUMjMzUVlZWesPnz9/Ptq1a4eIiAhEREQgJycHq1evrvV2iYiIqG5wK1CZM2cOHnnkEaxfvx6nT59GeXm52Z+zmjdvjjlz5mD79u3Ytm0brrvuOtx000345Zdf3CkWERER1TFuzfWj09XEN5a5KUIISJKE6upqtwvUuHFjPP/88xg/frzDdTnXDxERkf/x+lw/69atc6tg9lRXV+Pjjz/GhQsXkJOT4/HtExERkf9xK1Dp3bu3U+s98MADeOqppxATE2Nznb179yInJwcXL15Eo0aNsHz5crRp00Zx3aqqKlRVVcn/dqWZiYiIiPyPWzkqznr//fcdBhOtWrXCrl278NNPP+H+++/HmDFj8Ouvvyqum5eXh8jISPkvKSnJG8UmIiIijXArR8VZ4eHh2L17N9LT051+T//+/ZGRkYE33njD6jWlGpWkpCTmqBAREfkRr+eoeJPBYDALRkwFBwcjODjYxyUiIiIitagaqEyfPh2DBg1CcnIyzp07hw8++ADr16/H2rVr1SwWERERaYSqgcrJkydx1113oaSkBJGRkWjXrh3Wrl2Lv/3tb2oWi4iIiDRC1UDlrbfeUvPjiYiISONc7vVz5coVPPXUU/j9998drnvHHXcwyZWIiIjc5lavn/DwcOzduxepqaleKJLzODItERGR/3Hl/u3WOCrXXXcdNmzY4FbhiIiIiJzlVo7KoEGDkJubi71796JTp04ICwsze33IkCEeKRwRERHVb7WalFBxg7WclNAVbPohIiLyP14f8M1gMLhVMCIiIiJXuJWj8u677yqOHnvp0iW8++67tS4UEREREeBm009AQABKSkoQFxdntvz06dOIi4tj0w8RERHZ5PVeP0IISJJktfz3339HZGSkO5skIiIisuJSjkqHDh0gSRIkSUK/fv0QGPjX26urq1FQUICBAwd6vJBERERUP7kUqAwdOhQAsGvXLgwYMACNGjWSXwsKCkJqaipGjBjh0QISERFR/eVSoDJjxgwAQGpqKkaOHImGDRt6pVBEREREgJvdk8eMGQOgppfPyZMnrborJycn175kREREVO+5FagcOnQId999NzZv3my23Jhk66teP0RERFS3uRWojB07FoGBgfjyyy+RkJCg2AOIiIiIqLbcClR27dqF7du3IzMz09PlISIiIpK5NY5KmzZtUFpa6umyEBEREZlxK1CZO3cuHnvsMaxfvx6nT59GeXm52V9dU6KvxOb8UpToK9UuChERUb1S69mTTfNTfJ1M64sh9JduLcL0ZXthEIBOAvKGZ2HkNezVRERE5C6vz568bt06twrmb0r0lXKQAgAGATy+bB96tYxFQmSIuoUjIiKqB9xq+unduzd0Oh0WLlyI3NxctGjRAr1790ZRURECAgI8XUbVFJRekIMUo2ohUFhaoU6BiIiI6hm3ApVPP/0UAwYMQEhICHbu3ImqqioAgF6vx+zZsz1aQDWlxYRBZ9HzOkCSkBoTqk6BiIiI6hm3ApVnnnkGCxYswMKFC9GgQQN5effu3bFjxw6PFU5tCZEhyBuehYA/83ACJAmzh7dlsw8REZGPuJWjcuDAAfTq1ctqeWRkJMrKympbJk0ZeU0yerWMRWFpBVJjQt0KUkr0lSgovYC0mDAGOURERC5wK1CJj4/H4cOHkZqaarZ806ZNSE9P90S5NCUhMsRmgOEoCGGvISIiIve5Fajcc889mDx5Mt5++21IkoTjx49jy5YtmDp1Kp588klPl1EzLIMSR0EIew0RERHVjluBSm5uLgwGA/r164eKigr06tULwcHBmDp1Kh566CFPl1FVxuBk7zE95q7eLwcl0wZmYu6a/XaDEHu9hhioEBEROeZWoCJJEp544gk8+uijOHz4MM6fP482bdqgUaNGni6fqkxrTEwZBGqCFov1LYMQY68h0/ez1xAREZHz3Or1YxQUFIQ2bdqgS5cudS5IsWy2sWQAYDlptGUQwl5DREREteNWjUp9oNRsYypAkvDYoFZ4bvUBVAthMwjxRK8hIiKi+oqBig1KzTZGxqBk5DXJGJLdzGEQYq/XEBEREdnGQMUGY7PN48v2yTUmjw1shXbNo8yCEl8EIRyHhYiI6isGKnZoodmG47AQEVF9Vqtk2vogITIEORlNVAlSbI3DUqKv9HlZiIiI1MBARcM4ezMREdV3DFQ0jLM3ExFRfcdARcM4DgsREdV3TKbVOC0k9BIREamFgYof4DgsRERUX7Hph4iIiDSLgQoRERFpFgMVIiIi0iwGKkRERKRZDFSIiIhIsxioEBERkWYxUCEiIiLNUjVQycvLwzXXXIPw8HDExcVh6NChOHDggJpFIiIiIg1RNVDZsGEDJk6ciB9//BFff/01Ll++jOuvvx4XLlxQs1hERESkEZIQQjhezTdOnTqFuLg4bNiwAb169XK4fnl5OSIjI6HX6xEREeGDEhIREVFtuXL/1tQQ+nq9HgDQuHFjxderqqpQVVUl/7u8vNwn5SIiIiJ1aCaZ1mAwYMqUKejevTvatm2ruE5eXh4iIyPlv6SkJB+XkoiIiHxJM00/999/P1avXo1NmzahefPmiuso1agkJSWp0vRToq9EQekFpMWEccJAIiIiF/hd08+DDz6IL7/8Ehs3brQZpABAcHAwgoODfVgyZUu3FmH6sr0wCEAnAXnDszDymmS1i0UOMLgkIvI/qgYqQgg89NBDWL58OdavX4+0tDQ1i+OUEn2lHKQAgEEAjy/bh14tY3nz0zAGl0RE/knVHJWJEyfi/fffxwcffIDw8HCcOHECJ06cQGVlpZrFsqug9IIcpBhVC4HC0gp1CkQO2QouS/TaPc+IiKiGqoHK/Pnzodfr0adPHyQkJMh/S5cuVbNYdqXFhEEnmS8LkCSkxoSqUyByiMElEZH/Ur3px98kRIYgb3gWHl+2D9VCIECSMHt4Wzb7aJgxuDQNVhhcEhH5B00k0/qbkdcko1fLWBSWViA1JpRBisYxuCQi8l8MVNyUEBnCG50fYXBJROSfGKhQvcHgkojI/2hmZFoiIiIiSwxUiIiISLMYqBAREZFmMVAhIiIizWKgQkRERJrFQIWIiIg0i4EKERERaRYDFSIiItIsBipERESkWQxUiIiISLMYqBAREZFmMVCpg0r0ldicX4oSfaXaRSEiIqoVTkroBSX6ShSUXkBaTJjPJ8FburUI05fthUEAOgnIG56Fkdck+7QMREREnsJAxcPUDBRK9JXyZwOAQQCPL9uHXi1jOWswERH5JTb9eJCtQMFXTTAFpRfkzzaqFgKFpRU++XwiIiJPY6DiQd4OFBzlnqTFhEEnmS8LkCSkxoR65POJiIh8jYGKB3kzUFi6tQjd53yH2xf+hO5zvsPSrUVW6yREhiBveBYCJEn+7NnD27LZxwYmHRMRaZ8khBCOV9Om8vJyREZGQq/XIyIiwiuf4Wpi7NKtRXh82T5UCyEHCrXNUSnRV6L7nO/MamsCJAmbcvsqlqlEX4nC0gqkxoQySLGBScdEROpx5f7NZFo73LmZjbwmGb1axno0ULDXpKS0/YTIEAYodjDpmIjIf7Dpx4baJMYmRIYgJ6OJx256zD3xLCYdExH5DwYqNmjpZsbcE89i4EdE5D/Y9GOD8WZmmRei1s3MG01K9ZUx8LPMJeIxJSLSHgYqNmjxZsbcE89h4EdE5B8YqNjh7zczNYfyV/OzncXAj4hI+xioOOCvNzPLHkvTBmYiq3mkTwIHdv0lIiJP4TgqdZDSuCtGOgmYNigTWYneCVpcHfOFiIjqH46jogFqNn0o9VgyMgggb9V+AN6p7XB1zBciIiJ7GKi4yV4gonbTh1KPJSXeGOhMa72liIjIv3EcFTfYm3dH7RmUAetxV+zx9NgwHPOFiIg8iTUqLnI0/LpWmj5MeyztOVaG51YfQLVCOpI3ajv8vbcUERFpBwMVFzkKRLTU9GHssZST0QRDspvVBC2/l+G5NQe8PjaMv/aWIiIibQ0xwUDFRY4CES0OFGcslxy0tG/G2g4iIlKkdp6lJXZPdsPSrUVWgYjll1iir6zXwYCWonEiInKOr4aYYPdkL3MmB6M+N31oLRonIiLnaCXP0hR7/bjJ2IyixtD0m/NLfdqLyBVa6PVERETu0eLs8gxU/Ii9btFaYS8a9wdaDwSJiLxJi0NMsOnHTzjqFq2VnBAt9XpSouWB+oiItEBrQ0wwUPET9moqNh48pZkbrFZ7PQH2AxFHgSARUX2ipTxLBip+wlZNRWiQTnM3WK1F44D/DNRHRETmmKPiJ2y1G67cU6LJnBB3k429lSPiKHdGiwlkRETEGhW/YllTAQC5n+61Wk8nQbUbbG1yZbyZI+KvA/UREdV3DFT8jGm74eb8UiiN1jehR7oqN9jaBBrezhFxJhDRYpMVEVF9x0DFjynVEugAjOuR6vOy1DbQ8EWOCAfqIyLyP6rmqGzcuBE33ngjmjVrBkmS8Nlnn6lZHK/xVt6FUt5K3ogsVW60tR0/xVc5ImoN1EdERO5RtUblwoULyM7Oxt13343hw4erWRSv8fbYHK42V3hrvJXajp/CHBEiIlKimUkJJUnC8uXLMXToUKffo9akhM7y1eROzvJ20OTMZI2O1PfJHImI6oM6OylhVVUVqqqq5H+Xl5erWBrHtDQ2hy8GNPNEMqo7OSJaGZWXiIg8z68Clby8PMyaNUvtYjhNS8PJ+ypo8nUyKoe9JyKq2/xqwLfp06dDr9fLf8XFxWoXyS4tTe7kTrKq1ifo40zNRER1n1/VqAQHByM4OFjtYrhEK2NzuJqs6g81FVpqWiMiIu/wq0DFX/mqOcRRroazQZO/TNCnpaY1IiLyDlUDlfPnz+Pw4cPyvwsKCrBr1y40btwYycnaenrXOmdrQJwJmvylpsKylkgHYLwKg925gwnARETOUbV78vr169G3b1+r5WPGjMHixYsdvl/r3ZN9xdPdoLXWrdqREn0lFm0qxJubjmi6qcrIH5rViIi8yZX7t6rJtH369IEQwurPmSCF/lLbUWEt1TYJWI0kXGOQAqifVGtv/5kATETkGuao1AHeyNVwJQnYtBlj48FTPq8t0FJTlaPaEi2VlYjIHzBQqQO8Nfy8M/ksljdmISDP6OyrJFytJNU6k4SslbISEfkLvxpHhWwbeU0yNuX2xYf3XItNuX3NnuIdNcW421SjdGO2THiqTROUs7QyXo0zTXBaKSsR1U9aHx9LCWtU6hClGhBHTRG1SexUujFb8lVtgRbGq3G2tkQLZSWi+sdfE/lZo1KHOUrcrG1ip9Jot5L010nl69qChMgQ5GQ08cjnufPU4UptiSfLSkTkiD8n8rNGpQ5zlLhZ28ROW7kx/l5bUJunDtaWEJEW+XMiPwOVOsxRU4QnEjtt3Zi1fuLb4olReX09MSMRkSNpMWGQYJ5H6C+J/Gz6qcMcNUV4KrGzLjVjeHpMGiIiLdh48JTZvyXAbxL5WaNSxzlqirB8HQA255e6NbR7XRgWnt2HiaiuMdYUmz6DSRLQq2WsamVyBQOVesBRU4Tx9drkZvhrNrklb41JQ0SkFqWaYoOAX+SnAAxUPM5faxVqk5vhq9mWfXVsmRBLRHWJv9cUM1DxIH+uVahNRrgvssl9fWyZEEtEdYW/1xQzUPEQX9UqeEttIm533+tsDYm/H1siUo+/1nJ7mj/XFLPXj4f4e2+R2vQAcue9S7cWofuc73D7wp/Qfc53WLq1yOa6/n5siUgdrlxn6gN/7aHJGhUX2YrO/b0NEKhdxO3qbMuu1JDUhWNLRL7Fmti6gzUqLrAXndeVyeZqE3E7+15Xa0jUOrb+OHkXEdVgTax9/nR9Y42Kk5yJzv25DdCX3Kkh8fWx9VTyrlINHNvMibyPNbG2+VvHDwYqTnK2Z4uveouodbPzxOe6m4Huy2PriSpjpYsBAE1cINz5HhlgkT/x954u3uKPTWIMVJykpejcUTTsrRuKJ6NwX9WQuHMsPNHdWuliMP3TvYDJOaTWBcKd79HfnsCIANZyK/HHyQkZqDhJK9G5o2jYWzcUb0Th3q4hcfVYGIOasKCAWgeliiNBAuYzgsH3FwhbAVRYcCA6pUQDgGJTlb89gREZcUwkc1p66HYWAxUX1DY690RNh6MEMaub0LK9CA0KQOfUxrX6sfpbFO7qzdUyqBnWIRGf7TzudlCqdDHQAWY1KoD3LxCW55ytAOrBD3biz+JBwDyw87fvnuyzdR0yDdQvXKp2+TrFpkH/4OxDt5a+TwYqLnI3Old6uu/VMtbpE8GZp31b8zk89OEusxuP6QkIWD9BK/FEFO7LE9+Vm6tSUPPZzuNY9kAOKi4Z3ApKbV0MAPisVs7WOWf5PZoyLjYN7CovXbFaz9Z3r6WLG9V8H9sKz0CSJHRKicbGg6cUaxlNzxUjW9cMZwJ9Ng1qm6OHbq19nwxUfEDpRpi7bC8grJ9elVieNAOvjseafSdggHlX3RW7jtssg/HGU1Z5GXNX74dB1Dw9A86VobZNX74+8V0JrGwFNRWXDMjJaOJ2GWxdDLzRZm4ZfG4rPKNYo7Qpt6/Z92hPtRCY9skebDxUarbc1nfvzHfMQMZ3lm4tQu6nf82Ya/p7B/46JzLjw62CFNPXTa8ZtnLi2DToHnu/B2//Vmw9dGvx+2Sg4iWmJ5nSjdD0HqF0IpjWoFieNKv2nQBQM033Y4NayU88c9fst1umaiEwZ/V++bNNi+TMyehu05caJ74rgZU322yNFwPjmAXGi05t93t38Vn8XHgGXVIb48cjZ2q+V1jfjEwZa5SM3+P2wrN46MOdiuviz21ZBikA8N+7OqJf63izZc58x1p7SqvLSvSVZkEKYPuc2Fp41mYNW7UQmLNqv2JNm/F7ZdOge+zVsu89prcbHHqTFr9PBipeYHkCThuUabe6HTDPM1m0qQALvy+Qbzy23iYE8NzqAxiS3Uzx5LKkg3NlsHcyunOTVevEdzaw8naitKdv0I98tAuf7jim+Jq9U8A0+EqIDMGFS6fsBim2XlMaMMvRd6zFpzR/Z++Ju6D0gt1zwUgnAZEh9m8Dltux/O26E+i70/xcVxib4+zVspvyVK6hszU0Wky2ZaDiIfZqQJ5bfQDTBmbiuTUHUC0EdFJNkGF6QgZIEvYcK8PoN380O0EcXWyMFw2lk0uSAElAbiJ6bGArzF2z32aw4q2TUc0T39nAylvdGD19g95dfNZmkGKPZfBlLJclCcCorklY8nMxbLUMdU6Ntlqm9B0DwJ5jZcjJaOJWsMpmIttMg18JQO6gTPyjd4b8elpMmGKwabnMIIBHP7E+D+zRSTD77boa6FuWHXCu+dlZWj5vlHKBjOy1xJrmGk4bmIms5pEu7Z8rD0ta6eFqioGKB5j98CTrE65aCLRrHoVNuX3lG+HGg6fMToTHBraSq/qU2KqRMd7wbZ1cljffqNAGNvMThnZo5pXBv7R44ivxRjdGT43JYjzWPxeecenzdQBevb0DOqZEm32erRq4V0d1QONGQfjgp2LF7Y3omIjspGir7z8hMgTTBmYib7V586Oxxs9WL6jQIOVZPNhMVMPWyMamNzsB1Bx3CfhHr5pgJSEyBHNGZFk1/3iCQQAbD54y+z6cDfSVym663drWsmn5vLHcd3cYBOTfmLNjaLnzsKS18WcYqNSS1Q/PQTBh/MItTwR7TTcBkiT3QNnze5lcM2N5w7d1cpmeZKb5CZOW7DT7zM92HsfUAa0cnpTuXAy0duL7Sm1rkyyD4DHXpjj92cbzY3C7Zk6Xq9OftSVKtXNv3tUJ/VrH442N+XKuk+n3n9U80upzjEFZTkYTqyReA4Bhr292Kjlz+rK99a6ZSKkJOSsxEqfPVyleK+au3o8h2c3MrgeZ8eG46bXN8jqeClqUbnTOBPqOmqirhcDKPSUY3C7BreEftNy8aG/flWrZHTHdP8A8ZcATwwtoafwZBiq1ZOvk0wFWvXIsWZ4ISrUmOgCzh7dFdlLNDSQnowmGtG9m84bvzMmVEBmCxo3cO3lrczGwl2Wu1ara2qpNbZJSELx4y1G0bRaBfcfL7b5Xh5qk15CgQJToKxXPE3vlUnqtX+t4vLEh36zWxPT7dxSUGW+cQ1/fLAf0ziZnGgSw6IcCPP73Ng6PW12g9DvLW/XXk7QSg4DV7/fCpWqvlM80p86VXBNbTYSmnln5G2av+s3l2hCtJIHaup7Z2vfbuyThoX5XWdWy39cnHQE6Ca98e9jmZ1ULgUU/FODN7wvMtuvK79IfMFCpJVsngbNjcJie1KY3B50ETOiRjnE9Ut0KRtwtt6OT19MXAy1X1TribIDlqDbJVnXtl3uOK17Qfz1ejudvzrKbW2AAMOHd7Va1HvbKBUDumaRU5hJ9Jeastu5ZZqvWxNikWVB6AYAxgbdasWnU9Ck6LChAMb/izY0FGNc9rc4Fs0rsPX27kmNmK1eltixz6pzNNbEMkKU/C6eUQOpqbYiaN2Tjb9heb52EyBBMG5QpB5xGS7f+jof6XWX2m9vze5mcT2ivJ59OAhZuLLDby0/pd6nFpnd7GKi4QOmGYuvJ1FgDYo/STdo0j8WbJ5K7T/p7j+mtlrl7MfBmVa23a2lcDbBsdVN2NHGhEgOA5tFhmDvC/ngo9motLMtla39M199+9KzNi6VprYl8sT1WZnXRtjXgnPEpeliHRCzfeUzxcwywrjGoCywHZTMGa67QSVD8/SZEhuCenmn47/cFVu+549pkvP9jkdXy27sk44Of/1ouARiUFY+1+/6wmVOnlGuSGR+uOMKtUoD84U9FeOU785oDV2tt1MqFs5Ugq/S7S4yyLku1ENhx9CwGt/vrAdS0U4Ux+Hv1tg44pq/Ec6v/avq/u0cqFip8t0bGZHZ/b3pnoOIkezcmV0+CEn0lth89a5boZjypN+X2rdUgY65wp9xzFZ6o7+uTbvbU7Cxv9QTxdi2NuwGWUs6B6cXeIKwnLlRiDAxzMpqYPYHJvcrw57xCJqqFwPbCs2jcSHnodGfGQMn9VLkGZ9qgTAAwC8AA84utMc/k5dvaY9qgTPlia8ogYLdHk79VVztDaVC2OSOyEBbs2qX5lds64IZs61wkABjXIw1vbjJvGtABuKVTc3zwU5FVDcTIa5pjydYisxvl2n1/mNUSO5NrMvS1zTZrWExrhZduLcKr31k3bwRIEvb87lqtja9vyLuLzyJ32V6bPXZMr2f2fkMPfrAT56uu2MwpMQigSaNg3JDdDEOym5kFeW9ZfLemjMnsxuPtbwGKEQMVJzhzIXf2JLDXPU2N9lRXTl5bF6fX1+XjtXX5Ls/k7GpVrbMjn3o7oc7VAMtWYGo6kJaR0sSFwF/dSi2fEo3fn2nuUsWly5jwznazzUiAnDxteeycHQPFslgSgNu6JKG88jK6zfnOrJkpqXGo4sXWtItlgE7CMyt/s95ZBab77c85TZbjhygNyuZqTx2dBDkJWomxpsF0uwLA/hPnFGsgLlyqVjwfLEdqdpRrYvkQZkz6NP3ubJ1buj8Hs3RUa2OvltDb3tiYb9WMYylAkhAapMOXe47b/V4FHOeUhAbp5IcB0+/B3kjTag/U5ikMVJzgqbwMR93TtPzEWKKvxOnzVYoXJ6ULkr3mBCNXqmqdDUC8nVBXoq/EmQuXrNr9lb67En2lWSa+JaVlEmp62LiT85QQGSLP5WK6bd2fn2Xr2DkKGG0FqALAhz+bd2M2bvu+PumKZTSu89yaA1j2QI7D/AmdVFNb0Ck12qlzSsssxw+5rnWc0+eFTgIe6JOB19blW70+bVCmw3O7V8tYs6ETjDfGZQ/k4OVR7QEB+RiX6CsdPkBY5ZqYlF3pGlEtBBZtKsSbm46YfXdKAS1Q8503bhTksNbG0zdhRxM2GpdbJpUrkQB0SonCsNc3290PI9OcEtPa1gBJwtAOzeTt2KrRV+rJqeV7iisYqDjBU0lajrogazXByV4tkCVjE0OnVOuZnJUCC2erap0NQLyZUGd5o7FVy2G5rivu6ZmOjLgwt3KelAJhnQTMGnI1nvz8F7N1TY+do4DRmZ4altt+fX2+w3UWfn/E4Ui6s4e3lZs0LIeFd7W2TM2aGKXxQ7797aTT7zc27SQ1Dv0r4R41QYpx7BR7bP1+lJpnnH2AGHlNMsoqLsvTN+gk4J4e6RjcLt7q5qwD5CAF+Ou7u+Na6yAzQJKQ1DgERWcq7J53nr4J2wqCLZff1iUZH/xkndtjSQD4ufCs059v3J+lW4vM5mO7r3c65m/Id1ijf0N2CC5cumKezD7IPJndX2sjGag4wVNJWoqDXlk8MWqNO4MUTVqyE+N7pNkMLADz6l9nqmqdDUAsvytjFbKzPa/s5cZY3miMCW6W3527AzvpALmXlzvt7LbatqNDgxweO3sBo9IxdbRvDuY7BAB8ueeEzdd0ErDsgRw5QCvRV+KZL391OJy7JWd6Y/jCIjt5BM44pq8E4H4Ohq1g01bQZ+tzTH8rJ8svykGKcRtvbSrAuB6pVtfL8T1SrRJ6q4XAO1uOWpV1QNumcqBjoyc2dAAeG9gKgHVulCnL37a9GhOlByvLCRsNAk4FKY4Ya0k+23ncanZ1y+vM/PX5ijlnSue9ae3K5vxSuXlZJ0FOVPfH2kgGKk7yRJKWrYDHVhKcFjgzh5Al4wVLqXnEtEujKz8WV4JF0yc9g6gZCCsqpIHi5zjblGAvwc2yDM7elEybeUwvVErt0M5Q6tZrHMTNmWOnFDAaL+y9WsbKPdJCg3ROV2e7yyCAiks1l2d7tVM6wOZT9Rsb8s1upKbb9uVAYCX6Srs9M5zhbFKkrRuxM8Gm5c3P8nMsaxSVvn7LiS9Nkz4tE3ptWb3vhOLEqaYMAOas3m9Wm2P527X8bdu7UduqcbI3YaO7dNJfYxzdlZOC4jOVgAR0SolWvs7AesRze7VJxuZf0+1YJqr7+jdQWwxUXOCJJC2tdhNzZZAiZ8ZlMAjg3l5peOv7QptdGl39sbgyTPfcNeZPetOX7UVmfLhZE4oribfO1ug4uilZNheZ7s/Gg6fQfc53bj3xGC/KlkGKMSBx5gnZcp/tBXF5w7Mc1hopnSdKU0woMR5bR7VTf8+Kx8nyi1b78MZG+zkElsnCxnm6is5UmHUTdpVxW5WXruBI6QV0SW1cM3aMy1tSLi9gu3uuo6Db9BxQCjbt3fzsDX1vytmkT1u1chKcOz8sy2D521X6bdu7USsF+ToAaTGhDmsQXR2nxiAgJ7tb5vYoTWBrbMIx7ZbsbC6fPc7m+GihuYiBigq01k3M3gVOqSbDUd99oObHNa57GsZ1T7M7TYCrCXGmx2538Vn8XHgGXVIbmwUgtmo/hr62GXNGON/bxfJznamVsDXWyA1ZCXjihtYAoDjFQW16K9nKTTFtOrE8doD9791eeQAgqXEoZg5pg399/qtimYwJwCv3nJBzE4wXXHtzWhkZ553anF9qd90v957Al3tPyPs8vkcabmiXgDlO9MYw5gMoXdiN3YR7tYx1+iJta1t/bxvvUo6PrfLaq41Uyt/JVZh2wPQccKU529nZ2e0lffZqGYt5t2VDX3kZAsC/PvvF6rfyQN+MmqYON46V6W/XmfIa11dKQAdqajLueXc7ureIwfeHSq3eL6FmbqykxiEu1zAKi/8Cf01ge3/vDLm5x/i9jLwm2axbsmWAbRyvxpUacGdyfLSSvM5ApZ5z5gapVI1r2XdfqRnD9EZs5KlE10c+2mX2hDSiYyJeuLU9APvt8Za9XSyfhiTJuinBVvPHhUvVZsPT2xonQQfgiRtaKx4Po9oEcbYCM2PTiRJH37ut8pgO162TlJ8mjYOPZSdFIzspGuN6pGLH0bM4U3EJUSENzMZRsXUDX77jGKYOaOVSIq9BAAu/L3AqiFbKBzAlAPm7tNW0ANieNd3Uqn0nMLR9AlbsKoEB9rv1Gl+TAODP2idnaiOVAmQhIA8kpsSV2t20mDC7tWE6CVh4Vyfc8+52szLmfroXYcGBOHa20mrmdtOEdDkxuHcGkk0Shi1zOewxvZYoDUyptH5okM7+4IoC+OGwdZAC1MxY3Sm1prlm2sBMs3GM7u+TgTbNIiAEzAZpc3QuVwuB1zfU9OyS/syvM31oNL3WKJW7X2asw/0GbA8QaEpLcycxULFBC9VdvuDsDdLyadyZmZoteSopeXfxWauBwT7dcQx35aQgOyla/hylH7LDm7/F+o5GjjUdcdXWWCN5I7I8lizsqfc6+t7DggKsbkyWw3UbRM3FVCdqnj51ACb0SrMa5n7jwVNWg5rlDspEu+ZRKD1/EQ99uMuqfMZRaC2H/9ZJQN9Wsfh2/ymHx8XSmGtTMDArQT4/HdXW2GtaAJzL2TD6bFcJdBJw75/TYvx77QGrc3junzU4pg8EztZGCgejE9vibO1uQmQIchWGfwdqvve84VkICQpUfDh48IOdymWDckK6UgA1dUArFJZWYNPhU3htnXWPMtMbr62BKQHrplelMWMsWTZjG5tookIamDXVThuUiXaJUYrXP2NtiDP5XXJ+jjDPTTKy17zj7O/C2IvM3n1OK3MnAQxUFKlV3aVGcGTridU49LItzszUbEqpVsLdHJ2fC88oLt9WeFZu6pAnwPuz+6WR5fggVk+hgDzvDGDdxXr6n6NQmt6sH1+2D/Nuy7Z58TE2l9iTEBliNXaCs0GcowBQ6byyF9yYzo5s+ppSk58QwH9u74DGYcE25zGyDOAEahKcf5h+HVJt5ABI+Ktmy9hkoJMkdEyJxvajZ90KVN776SjaJEbI57U73a6NeSKWA/g5swmDqKmJHNwuHst3mgcpOglyEGT5gGC6jq1gtHNqY+vaQdgfCM5V/+iVAYia785YM2ScjwyoOSbu5GsoJaQrHYeEyBAICMVAxXRkXnvNH5JJYAQA2wrPODwHlJqxAchBinE/nlt9AJty+9p8SFNqcjOd68jWiNKWgYE7HRws96dTarTD+5yWJjNkoGJBreoutYKjhMgQTBuYaZV4qBTJK73XmWPi7r7ZCty6pDZWXP9MxSWzf2cnRWPOCNfHBzHOOzNBoYu10gWi5ilLUrxICzg3P43l2AmPDWxl8xgpHRdbgaO9OXyUgpsVu45bnQs61OS7xEU0tGryC/gzeHA1t8GyxkRpGPKNB2uCEaXaK1dviIDyCKm2hvM3TXI03VfTPBElzlTtK/UkMQj754nS92U5RsacEVmY/uleuXbLmZo8V/2jd4Y8ArKx+XPF7uNm564rHCXwOhNg6wAkNbbfAcDIGBiZ9owxNlsr1T7ZasZWqo1ztrZBqSndmQRn02ZGZ85/4z6ZBkO2mj2V7nOeqgH3BAYqFrxV3WWvtkTttsCs5pFWyyxntHWX5VwYzu6b0rw4WYmRSIsJQ3ZSNP7eNh6r9pmPw7Fg/RF0TI6Se1tkJ0XbnAVYacZqUwYBvPl9geK4N6Y1KsZlzaP/rBq3uMk78wSi1KPiuTUHMKS9daDoKPHZXhWx5bFXumB2y/vOqnwG1OS7uHPhsnXTMO1WrFT7JWC79mpTbl/MGZHl8lDzQM15/eyXv8oJuKbNUKFBOhSfqYQkAR1TorHx4CmzwdVGXtNccdoD031a/kA3bC08a3NqgABJwjWp0W49qVrNrqsw4eMrt3cwG2XWGxIiQxS7wAKuBY/2zh9nA2yg5vwc9vpmTBuYiazmNdeIaYMyrWoFjZ9pmZciUNN8+Z/bO6B5dAgqLhkQGqSzOxJ0bWsbbNWc2fp9WR6PQQrXP0tv3tUJoUENrJoRbTV7GgfrvCH7r3JppZcqAxUL3qjuclSjoHZboKOaBXdrdywnXDNyZpAuyxussW3cePzuyEmx+qFWC4Hx72yX/21MsLWVhGbc1qbcvli5p8Tq5mJATU7BW5sKrAZlMrtQipoeRbmDMjH976433zj7/Ssdl+nL9iI0KACdUxu71cZsemw255e6NDuyMxcu443FNFhVyttR6sJrq/bKdJyOHUfPQoi/mjiM5TpZfhHf/XYSr6w7bHWzMgYpQM1Nas7q/dg8/TokRIaY9ZIyfoZx6PcPLKYLsGTAX82GisGZSZKxu0+qxnUsJ3zM/XSvnMyu1CPIk03K7gxoaKwBapcYZTcIsDdhq2mAXXS6Aq+ZjH5sEJAfEpRqw4C/5g9SyksxAGgcFuzUCNCA92obbD1YWf7u1/7yByba6SE1omMi+rWOtyqzka1r/kMf7sSFS1dsTiCpFgYqFjx9AjpTW6J2W6DSU4qRu7U7tiYbA5SrM00vovbaYI3lWfZAjsNqdtME2xJ9JbYVnlH8Ljbl9sXgdgmYveo3qyrldkmR8jw7xqrutJgwLHsgx6oGIG/1fkz/eyZ+yL3OpScQZ79/W717jBP91baN2dbFy3IuGVcvXEpBheX7bY3abFl7ZVr+hMgQqx4tpgFYdlI0QhsGOpw4TgBWT5JAzbn5za9/4L/fH3F6X//7fQHe3FSAYR0S5Z4qEoBRXZPw0HVXOWyqcyaoUDoPBKBYa2la8+GpJmVXcySMTYeOggBnJ2wt0VfanaJBqWgSao7L3NX7MW2g8lgltnr72fouvFXbYPn7svXA0aNFLO64NsUsON9WeBadU6Otxouy3A9bTf4CNTO4a20gOE0EKq+99hqef/55nDhxAtnZ2Xj11VfRpUsX1crjyRPQ2adatdsCjfusVLPgTu2OrYuZ8akSAGav/FWesE8CcE/PNIzrkabYbdiyPBWXDFaToimtv63wLPafOOfwAmjZu8S4vQc/2AmdBAy4Oh5r9p2QeyqM75Gm+HlzV+/HkOxmLo8qO6FHWk23X9iuiXHU9u5KG7Oti5dZDxs4P5eMI0pBheXrSmUFUKvfRVaidbOmEskkucI4maTlkO/OMgjgs53HcX+fdLy2Ph9CAEt+LkZ28yi7T6rO5nI5kwRcLQR2HD3rlSZle5+vtNzYdGiPKxO2KiXBO2JaO/PcmgNmuUmO5uqy9134orbB3gOH6edb1gg62g+lJn/gr/wxBiomli5din/+859YsGABunbtinnz5mHAgAE4cOAA4uLiVCuXp05AZ55qS/SVSGoc6tQMud5UczNJwLMrf3M4togjtpLelj/QDftPnDPLmAdqLiTGp9EH+mQ4nKwuNSYUORlN5ICy4tJls2Yfo9SYULOxHWxtC7A9C6lB1AzrbWQQNb03lDhKirRkeSExdl9Ver+9mi9AOaBUCrrtXbw8GaS72uRg67NrUx5nbuoSanKMvth9DFuOnMGHPxc5PTqqLdVCyEEK4DhIcCVPTSmgFLCueTII4ZUmZcXE3oGt5DwfpQkJT1+oMhtzyJK9Whod4FQSvLOqhUC7xCibvQ/Vzhm05O6DrKP9sHUcJQChQTrv7IybVA9UXnzxRdxzzz0YN24cAGDBggVYuXIl3n77beTm5qpcutpzdJIp3TRcfRr3OjcuCLb2Oy6iod1xBAwC+I9C90Mjy4uWaUA5omOi1SBwSmM7GCn94BMiQ9C4keOqbYMAuqRGW82O6kqTndKFxDipmy2mzSgPfrDTZrOIKdNj5MxF2BNBurs9vZQ+uzblcRTcAcCgrHirbuzOGta+GT7fddyqW6kO1jcAe0GCq3lqlkGdaeKv8bzunNrYa03K9gJaezWT9mqJbNWKvnp7Bwxu99d8aM58p8Zt2QriLGsjTKmdM6jEnQcIR/uhlD8G1ByrYa9v1tSkhaoGKpcuXcL27dsxffp0eZlOp0P//v2xZcsWq/WrqqpQVVUl/7u8vNwn5awte+3RWorcAdtji7jzI1Xab0eDbDliedEy9cKt7XFXTopZO22JvlKxZufV2zvY7Fbr7FP4VoUp3B3N1GzK3QuisRnlfNUVl5+yfHER1tp5bXoebjp0Sh6e3DiC6Ovr890KUiQAjw3KxGODMuWEW2MS9WMDW1mNxOpqfpCjoML0RmvrGuPNJmVbN3p7NZP2aols9ZrrmGKd22LWA+pY2V8jv6KmudLYhdpWEGfvGKidM2iLqwG7M/thPI7f/vYHnjSZ0kDt36wlVQOV0tJSVFdXo2nTpmbLmzZtiv37rRPg8vLyMGvWLF8Vz6OUTjItRu6e/pFa7ndtqm1tXbRMGYdtN/18pYu1rWBH6T1KbuuShA8VeoG0S4xybmdQ+2PtzlOWLy7CWjyvjedhTkYT3JHzVwJiQekFs94jtkgAhndMxPIdxxTHKXl8cGuM65Fq9l1EhTZw+gbpiTw1pWuMWt1LbdVM2jsP/tE7A5DgdK850+/Uch4c4+uA+z3VtDB+SG04ux8JkSFIj23kcu9MX1K96ccV06dPxz//+U/53+Xl5UhKSlKxRLWjxcjd2z9Sq/Z1CejRIgabDtuvaalNOdy5WNt8YvtzTJch2c2wdGtxrb47b92cvP2ZjmjxvDZlecxsNTnoJGBUl2TkpDeReyoZh3JXOo8st+vqeeerXiS+4s558I9eGYpBhyOO9tHVY6CV8UNqy9n90PpvVhK2JonwgUuXLiE0NBSffPIJhg4dKi8fM2YMysrK8Pnnn9t9f3l5OSIjI6HX6xEREeHl0nrH0q1FVjcNLbQLlugrvfojtdy+8d97fi+TJ/cyHXtB7YuF0vHw1Hfn7WOtxmdq9bxWojTez70KcxaR6/zpPKjvfP1duXL/VjVQAYCuXbuiS5cuePXVVwEABoMBycnJePDBBx0m09aFQAVQ50alZf50PPyprL7mT8emRF+J7YVn5VFptV5ef+JP50F958vvyq8ClaVLl2LMmDF444030KVLF8ybNw8fffQR9u/fb5W7YqmuBCpERET1iSv3b9VzVEaOHIlTp07hX//6F06cOIH27dtjzZo1DoMUIiIiqvtUr1GpDdaoEBER+R9X7t/aGn6OiIiIyAQDFSIiItIsBipERESkWQxUiIiISLMYqBAREZFmMVAhIiIizWKgQkRERJrFQIWIiIg0i4EKERERaZbqQ+jXhnFQ3fLycpVLQkRERM4y3redGRzfrwOVc+fOAQCSkpJULgkRERG56ty5c4iMjLS7jl/P9WMwGHD8+HGEh4dDkqRabau8vBxJSUkoLi6ut/MG8RjwGAA8BgCPAcBjAPAYAN47BkIInDt3Ds2aNYNOZz8Lxa9rVHQ6HZo3b+7RbUZERNTbE9KIx4DHAOAxAHgMAB4DgMcA8M4xcFSTYsRkWiIiItIsBipERESkWQxU/hQcHIwZM2YgODhY7aKohseAxwDgMQB4DAAeA4DHANDGMfDrZFoiIiKq21ijQkRERJrFQIWIiIg0i4EKERERaRYDFSIiItKsOh2ozJ8/H+3atZMHqsnJycHq1avl1y9evIiJEyeiSZMmaNSoEUaMGIE//vjDbBtFRUUYPHgwQkNDERcXh0cffRRXrlzx9a54xJw5cyBJEqZMmSIvqw/HYObMmZAkyewvMzNTfr0+HAMAOHbsGO644w40adIEISEhyMrKwrZt2+TXhRD417/+hYSEBISEhKB///44dOiQ2TbOnDmD0aNHIyIiAlFRURg/fjzOnz/v611xS2pqqtV5IEkSJk6cCKB+nAfV1dV48sknkZaWhpCQEGRkZODpp582m2+lrp8H586dw5QpU5CSkoKQkBB069YNW7dulV+vi/u/ceNG3HjjjWjWrBkkScJnn31m9rqn9nnPnj3o2bMnGjZsiKSkJDz33HOe2QFRh61YsUKsXLlSHDx4UBw4cEA8/vjjokGDBmLfvn1CCCHuu+8+kZSUJL799luxbds2ce2114pu3brJ779y5Ypo27at6N+/v9i5c6dYtWqViImJEdOnT1drl9z2888/i9TUVNGuXTsxefJkeXl9OAYzZswQV199tSgpKZH/Tp06Jb9eH47BmTNnREpKihg7dqz46aefxJEjR8TatWvF4cOH5XXmzJkjIiMjxWeffSZ2794thgwZItLS0kRlZaW8zsCBA0V2drb48ccfxffffy9atGghRo0apcYuuezkyZNm58DXX38tAIh169YJIerHefDss8+KJk2aiC+//FIUFBSIjz/+WDRq1Ei8/PLL8jp1/Ty49dZbRZs2bcSGDRvEoUOHxIwZM0RERIT4/fffhRB1c/9XrVolnnjiCbFs2TIBQCxfvtzsdU/ss16vF02bNhWjR48W+/btEx9++KEICQkRb7zxRq3LX6cDFSXR0dHizTffFGVlZaJBgwbi448/ll/77bffBACxZcsWIUTNl6vT6cSJEyfkdebPny8iIiJEVVWVz8vurnPnzomrrrpKfP3116J3795yoFJfjsGMGTNEdna24mv15RhMmzZN9OjRw+brBoNBxMfHi+eff15eVlZWJoKDg8WHH34ohBDi119/FQDE1q1b5XVWr14tJEkSx44d817hvWTy5MkiIyNDGAyGenMeDB48WNx9991my4YPHy5Gjx4thKj750FFRYUICAgQX375pdnyjh07iieeeKLO778QwipQ8dQ+v/766yI6OtrstzBt2jTRqlWrWpe5Tjf9mKqursaSJUtw4cIF5OTkYPv27bh8+TL69+8vr5OZmYnk5GRs2bIFALBlyxZkZWWhadOm8joDBgxAeXk5fvnlF5/vg7smTpyIwYMHm+0rgHp1DA4dOoRmzZohPT0do0ePRlFREYD6cwxWrFiBzp0745ZbbkFcXBw6dOiAhQsXyq8XFBTgxIkTZschMjISXbt2NTsOUVFR6Ny5s7xO//79odPp8NNPP/luZzzg0qVLeP/993H33XdDkqR6cx5069YN3377LQ4ePAgA2L17NzZt2oRBgwYBqPvnwZUrV1BdXY2GDRuaLQ8JCcGmTZvq/P4r8dQ+b9myBb169UJQUJC8zoABA3DgwAGcPXu2VmX060kJnbF3717k5OTg4sWLaNSoEZYvX442bdpg165dCAoKQlRUlNn6TZs2xYkTJwAAJ06cMLsoGV83vuYPlixZgh07dpi1wRqdOHGiXhyDrl27YvHixWjVqhVKSkowa9Ys9OzZE/v27as3x+DIkSOYP38+/vnPf+Lxxx/H1q1bMWnSJAQFBWHMmDHyfijtp+lxiIuLM3s9MDAQjRs39pvjYPTZZ5+hrKwMY8eOBVB/fgu5ubkoLy9HZmYmAgICUF1djWeffRajR48GgDp/HoSHhyMnJwdPP/00WrdujaZNm+LDDz/Eli1b0KJFizq//0o8tc8nTpxAWlqa1TaMr0VHR7tdxjofqLRq1Qq7du2CXq/HJ598gjFjxmDDhg1qF8sniouLMXnyZHz99ddWTxD1ifFpEQDatWuHrl27IiUlBR999BFCQkJULJnvGAwGdO7cGbNnzwYAdOjQAfv27cOCBQswZswYlUvne2+99RYGDRqEZs2aqV0Un/roo4/wv//9Dx988AGuvvpq7Nq1C1OmTEGzZs3qzXnw3nvv4e6770ZiYiICAgLQsWNHjBo1Ctu3b1e7aGRDnW/6CQoKQosWLdCpUyfk5eUhOzsbL7/8MuLj43Hp0iWUlZWZrf/HH38gPj4eABAfH2+V9W/8t3EdLdu+fTtOnjyJjh07IjAwEIGBgdiwYQNeeeUVBAYGomnTpnX+GCiJiopCy5Ytcfjw4XpxHgBAQkIC2rRpY7asdevWchOYcT+U9tP0OJw8edLs9StXruDMmTN+cxwA4OjRo/jmm28wYcIEeVl9OQ8effRR5Obm4rbbbkNWVhbuvPNOPPzww8jLywNQP86DjIwMbNiwAefPn0dxcTF+/vlnXL58Genp6fVi/y15ap+9+fuo84GKJYPBgKqqKnTq1AkNGjTAt99+K7924MABFBUVIScnBwCQk5ODvXv3mn1BX3/9NSIiIqwu+lrUr18/7N27F7t27ZL/OnfujNGjR8v/X9ePgZLz588jPz8fCQkJ9eI8AIDu3bvjwIEDZssOHjyIlJQUAEBaWhri4+PNjkN5eTl++ukns+NQVlZm9uT53XffwWAwoGvXrj7YC89YtGgR4uLiMHjwYHlZfTkPKioqoNOZX/YDAgJgMBgA1K/zICwsDAkJCTh79izWrl2Lm266qV7tv5Gn9jknJwcbN27E5cuX5XW+/vprtGrVqlbNPgDqdvfk3NxcsWHDBlFQUCD27NkjcnNzhSRJ4quvvhJC1HRHTE5OFt99953Ytm2byMnJETk5OfL7jd0Rr7/+erFr1y6xZs0aERsb61fdES2Z9voRon4cg0ceeUSsX79eFBQUiB9++EH0799fxMTEiJMnTwoh6scx+Pnnn0VgYKB49tlnxaFDh8T//vc/ERoaKt5//315nTlz5oioqCjx+eefiz179oibbrpJsYtihw4dxE8//SQ2bdokrrrqKk13y7RUXV0tkpOTxbRp06xeqw/nwZgxY0RiYqLcPXnZsmUiJiZGPPbYY/I6df08WLNmjVi9erU4cuSI+Oqrr0R2drbo2rWruHTpkhCibu7/uXPnxM6dO8XOnTsFAPHiiy+KnTt3iqNHjwohPLPPZWVlomnTpuLOO+8U+/btE0uWLBGhoaHsnuzI3XffLVJSUkRQUJCIjY0V/fr1k4MUIYSorKwUDzzwgIiOjhahoaFi2LBhoqSkxGwbhYWFYtCgQSIkJETExMSIRx55RFy+fNnXu+IxloFKfTgGI0eOFAkJCSIoKEgkJiaKkSNHmo0fUh+OgRBCfPHFF6Jt27YiODhYZGZmiv/+979mrxsMBvHkk0+Kpk2biuDgYNGvXz9x4MABs3VOnz4tRo0aJRo1aiQiIiLEuHHjxLlz53y5G7Wydu1aAcBqv4SoH+dBeXm5mDx5skhOThYNGzYU6enp4oknnjDrUlrXz4OlS5eK9PR0ERQUJOLj48XEiRNFWVmZ/Hpd3P9169YJAFZ/Y8aMEUJ4bp93794tevToIYKDg0ViYqKYM2eOR8ovCWEyJCERERGRhtS7HBUiIiLyHwxUiIiISLMYqBAREZFmMVAhIiIizWKgQkRERJrFQIWIiIg0i4EKERERaRYDFSIiItIsBipE9VCfPn0wZcoUtYvhdTNnzkT79u3VLgYR1QIDFSLyO5cuXfLp5wkhcOXKFZ9+JhHVYKBCVM+MHTsWGzZswMsvvwxJkiBJEgoLC7Fv3z4MGjQIjRo1QtOmTXHnnXeitLRUfl+fPn3w0EMPYcqUKYiOjkbTpk2xcOFCXLhwAePGjUN4eDhatGiB1atXy+9Zv349JEnCypUr0a5dOzRs2BDXXnst9u3bZ1amTZs2oWfPnggJCUFSUhImTZqECxcuyK+npqbi6aefxl133YWIiAjce++9AIBp06ahZcuWCA0NRXp6Op588kl59tbFixdj1qxZ2L17t7yfixcvRmFhISRJwq5du+Ttl5WVQZIkrF+/3qzcq1evRqdOnRAcHIxNmzbBYDAgLy8PaWlpCAkJQXZ2Nj755BNPf0VEZIKBClE98/LLLyMnJwf33HMPSkpKUFJSgvDwcFx33XXo0KEDtm3bhjVr1uCPP/7Arbfeavbed955BzExMfj555/x0EMP4f7778ctt9yCbt26YceOHbj++utx5513oqKiwux9jz76KF544QVs3boVsbGxuPHGG+WAIj8/HwMHDsSIESOwZ88eLF26FJs2bcKDDz5oto1///vfyM7Oxs6dO/Hkk08CAMLDw7F48WL8+uuvePnll7Fw4UK89NJLAICRI0fikUcewdVXXy3v58iRI106Vrm5uZgzZw5+++03tGvXDnl5eXj33XexYMEC/PLLL3j44Ydxxx13YMOGDS5tl4hc4JGpDYnIr1jOov3000+L66+/3myd4uJis5mGe/fuLXr06CG/fuXKFREWFibuvPNOeVlJSYkAILZs2SKE+GvW1iVLlsjrnD59WoSEhIilS5cKIYQYP368uPfee80++/vvvxc6nU6eZj4lJUUMHTrU4X49//zzolOnTvK/Z8yYIbKzs83WKSgoEADEzp075WVnz54VAMS6devMyv3ZZ5/J61y8eFGEhoaKzZs3m21v/PjxZtPdE5FnBaoZJBGRNuzevRvr1q1Do0aNrF7Lz89Hy5YtAQDt2rWTlwcEBKBJkybIysqSlzVt2hQAcPLkSbNt5OTkyP/fuHFjtGrVCr/99pv82Xv27MH//vc/eR0hBAwGAwoKCtC6dWsAQOfOna3KtnTpUrzyyivIz8/H+fPnceXKFURERLi8/7aYfubhw4dRUVGBv/3tb2brXLp0CR06dPDYZxKROQYqRITz58/jxhtvxNy5c61eS0hIkP+/QYMGZq9JkmS2TJIkAIDBYHDps//xj39g0qRJVq8lJyfL/x8WFmb22pYtWzB69GjMmjULAwYMQGRkJJYsWYIXXnjB7ufpdDUt3kIIeZmxGcqS6WeeP38eALBy5UokJiaarRccHGz3M4nIfQxUiOqhoKAgVFdXy//u2LEjPv30U6SmpiIw0POXhR9//FEOOs6ePYuDBw/KNSUdO3bEr7/+ihYtWri0zc2bNyMlJQVPPPGEvOzo0aNm61juJwDExsYCAEpKSuSaENPEWlvatGmD4OBgFBUVoXfv3i6VlYjcx2RaonooNTUVP/30EwoLC1FaWoqJEyfizJkzGDVqFLZu3Yr8/HysXbsW48aNs7rRu+Opp57Ct99+i3379mHs2LGIiYnB0KFDAdT03Nm8eTMefPBB7Nq1C4cOHcLnn39ulUxr6aqrrkJRURGWLFmC/Px8vPLKK1i+fLnVfhYUFGDXrl0oLS1FVVUVQkJCcO2118pJshs2bMD//d//OdyH8PBwTJ06FQ8//DDeeecd5OfnY8eOHXj11VfxzjvvuH1siMg+BipE9dDUqVMREBCANm3aIDY2FpcuXcIPP/yA6upqXH/99cjKysKUKVMQFRUlN5XUxpw5czB58mR06tQJJ06cwBdffIGgoCAANXkvGzZswMGDB9GzZ0906NAB//rXv9CsWTO72xwyZAgefvhhPPjgg2jfvj02b94s9wYyGjFiBAYOHIi+ffsiNjYWH374IQDg7bffxpUrV9CpUydMmTIFzzzzjFP78fTTT+PJJ59EXl4eWrdujYEDB2LlypVIS0tz46gQkTMkYdpQS0TkQevXr0ffvn1x9uxZREVFqV0cIvJDrFEhIiIizWKgQkRERJrFph8iIiLSLNaoEBERkWYxUCEiIiLNYqBCREREmsVAhYiIiDSLgQoRERFpFgMVIiIi0iwGKkRERKRZDFSIiIhIsxioEBERkWb9P2A9EhTgwG1YAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[
,\n", + "
,\n", + "
,\n", + "
]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -523,12 +696,12 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgxUlEQVR4nO3deVxU5eI/8M8wsgujLLLEKu5lLuSC5U6B1yV+4k3NXFIzvaKi5la5lWaaJi6prWIlLaZ1c01z65ZkilqZylUuagW4gAyoCcic3x98OTHAwDDMzDln5vN+vXgpc56ZeebMcOZznu2oBEEQQERERERW5SB1BYiIiIjsEUMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgREdUoOTkZKpUKly9flroqRDaFIYyIJHfixAkkJCTgwQcfhLu7O0JCQvDUU0/hv//9b5WyvXr1gkqlgkqlgoODAzw9PdGyZUuMHDkSBw4cqNPz7ty5Ez179kSTJk3g5uaGpk2b4qmnnsK+ffvM9dKqeO211/DVV19Vuf3YsWNYtGgR8vPzLfbclS1atEjclyqVCm5ubmjTpg1efvllFBQUmOU5UlJSkJSUZJbHIrI1DGFEJLnly5dj+/bt6Nu3L9asWYMJEybgu+++Q8eOHXH27Nkq5YOCgvDRRx/hww8/xBtvvIFBgwbh2LFjeOKJJzB06FCUlJTU+pwrV67EoEGDoFKpMG/ePKxevRrx8fG4ePEiPv30U0u8TAA1h7DFixdbNYSV27hxIz766CO8+eabaNWqFZYuXYrY2FiY49LCDGFEhjWQugJERDNmzEBKSgqcnJzE24YOHYq2bdvi9ddfx8cff6xXXqPR4JlnntG77fXXX8fUqVOxYcMGhIWFYfny5Qaf7/79+3j11Vfx+OOPY//+/VW2X79+vZ6vSD7u3r0LNze3GssMGTIEPj4+AICJEyciPj4eO3bswI8//oioqChrVJPILrEljIgk161bN70ABgDNmzfHgw8+iPPnzxv1GGq1GmvXrkWbNm2wfv16aLVag2Vv3ryJgoICPProo9Vub9Kkid7v9+7dw6JFi9CiRQu4uLggICAAgwcPRkZGhlhm5cqV6NatG7y9veHq6orIyEh88cUXeo+jUqlw584dbNmyRewCHDNmDBYtWoRZs2YBAMLDw8VtFcdgffzxx4iMjISrqyu8vLwwbNgw/P7773qP36tXLzz00ENIS0tDjx494ObmhhdffNGo/VdRnz59AACZmZk1ltuwYQMefPBBODs7IzAwEJMnT9ZryevVqxd2796NK1euiK8pLCyszvUhslVsCSMiWRIEAdeuXcODDz5o9H3UajWGDx+O+fPn4/vvv0f//v2rLdekSRO4urpi586dmDJlCry8vAw+ZmlpKQYMGICDBw9i2LBhmDZtGgoLC3HgwAGcPXsWERERAIA1a9Zg0KBBGDFiBIqLi/Hpp5/in//8J3bt2iXW46OPPsL48ePRuXNnTJgwAQAQEREBd3d3/Pe//8Unn3yC1atXi61Svr6+AIClS5di/vz5eOqppzB+/HjcuHED69atQ48ePXD69Gk0atRIrG9ubi769euHYcOG4ZlnnoGfn5/R+69cebj09vY2WGbRokVYvHgxoqOjMWnSJKSnp2Pjxo04ceIEfvjhBzg6OuKll16CVqvFH3/8gdWrVwMAGjZsWOf6ENksgYhIhj766CMBgPD+++/r3d6zZ0/hwQcfNHi/L7/8UgAgrFmzpsbHX7BggQBAcHd3F/r16ycsXbpUSEtLq1Lugw8+EAAIb775ZpVtOp1O/P/du3f1thUXFwsPPfSQ0KdPH73b3d3dhdGjR1d5rDfeeEMAIGRmZurdfvnyZUGtVgtLly7Vu/3XX38VGjRooHd7z549BQDCpk2bDL7uihYuXCgAENLT04UbN24ImZmZwttvvy04OzsLfn5+wp07dwRBEITNmzfr1e369euCk5OT8MQTTwilpaXi461fv14AIHzwwQfibf379xdCQ0ONqg+RvWF3JBHJzoULFzB58mRERUVh9OjRdbpveUtLYWFhjeUWL16MlJQUdOjQAd988w1eeuklREZGomPHjnpdoNu3b4ePjw+mTJlS5TFUKpX4f1dXV/H/t27dglarRffu3XHq1Kk61b+yHTt2QKfT4amnnsLNmzfFH39/fzRv3hyHDx/WK+/s7Ixnn322Ts/RsmVL+Pr6Ijw8HM8//zyaNWuG3bt3GxxL9u2336K4uBiJiYlwcPj7a+S5556Dp6cndu/eXfcXSmSH2B1JRLKSk5OD/v37Q6PR4IsvvoBara7T/W/fvg0A8PDwqLXs8OHDMXz4cBQUFOD48eNITk5GSkoKBg4ciLNnz8LFxQUZGRlo2bIlGjSo+XC5a9cuLFmyBGfOnEFRUZF4e8WgZoqLFy9CEAQ0b9682u2Ojo56vz/wwANVxtfVZvv27fD09ISjoyOCgoLELlZDrly5AqAsvFXk5OSEpk2bituJqGYMYUQkG1qtFv369UN+fj7+85//IDAwsM6PUb6kRbNmzYy+j6enJx5//HE8/vjjcHR0xJYtW3D8+HH07NnTqPv/5z//waBBg9CjRw9s2LABAQEBcHR0xObNm5GSklLn11CRTqeDSqXC3r17qw2klcdYVWyRM1aPHj3EcWhEZD0MYUQkC/fu3cPAgQPx3//+F99++y3atGlT58coLS1FSkoK3Nzc8Nhjj5lUj0ceeQRbtmxBdnY2gLKB88ePH0dJSUmVVqdy27dvh4uLC7755hs4OzuLt2/evLlKWUMtY4Zuj4iIgCAICA8PR4sWLer6ciwiNDQUAJCeno6mTZuKtxcXFyMzMxPR0dHibfVtCSSyZRwTRkSSKy0txdChQ5Gamopt27aZtDZVaWkppk6divPnz2Pq1Knw9PQ0WPbu3btITU2tdtvevXsB/N3VFh8fj5s3b2L9+vVVygr/t5ipWq2GSqVCaWmpuO3y5cvVLsrq7u5e7YKs7u7uAFBl2+DBg6FWq7F48eIqi6cKgoDc3NzqX6QFRUdHw8nJCWvXrtWr0/vvvw+tVqs3K9Xd3b3G5UKI7BlbwohIcjNnzsTXX3+NgQMHIi8vr8rirJUXZtVqtWKZu3fv4tKlS9ixYwcyMjIwbNgwvPrqqzU+3927d9GtWzd07doVsbGxCA4ORn5+Pr766iv85z//QVxcHDp06AAAGDVqFD788EPMmDEDP/30E7p37447d+7g22+/xb/+9S88+eST6N+/P958803Exsbi6aefxvXr1/HWW2+hWbNm+OWXX/SeOzIyEt9++y3efPNNBAYGIjw8HF26dEFkZCQA4KWXXsKwYcPg6OiIgQMHIiIiAkuWLMG8efNw+fJlxMXFwcPDA5mZmfjyyy8xYcIEvPDCC/Xa/3Xl6+uLefPmYfHixYiNjcWgQYOQnp6ODRs2oFOnTnrvV2RkJD777DPMmDEDnTp1QsOGDTFw4ECr1pdItqScmklEJAh/L61g6Kemsg0bNhSaN28uPPPMM8L+/fuNer6SkhLh3XffFeLi4oTQ0FDB2dlZcHNzEzp06CC88cYbQlFRkV75u3fvCi+99JIQHh4uODo6Cv7+/sKQIUOEjIwMscz7778vNG/eXHB2dhZatWolbN68WVwCoqILFy4IPXr0EFxdXQUAestVvPrqq8IDDzwgODg4VFmuYvv27cJjjz0muLu7C+7u7kKrVq2EyZMnC+np6Xr7pqblOyorr9+NGzdqLFd5iYpy69evF1q1aiU4OjoKfn5+wqRJk4Rbt27plbl9+7bw9NNPC40aNRIAcLkKogpUgmCGi4MRERERUZ1wTBgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgCGMiIiISAJcrFXGdDodsrKy4OHhwUt/EBERKYQgCCgsLERgYCAcHAy3dzGEyVhWVhaCg4OlrgYRERGZ4Pfff0dQUJDB7QxhMubh4QGg7E2s6Tp4REREJB8FBQUIDg4Wv8cNYQiTsfIuSE9PT4YwIiIihaltKBEH5hMRERFJgCGMiIiISAIMYUREREQS4JgwhdPpdCguLpa6GjbNycmpxinGREREpmAIU7Di4mJkZmZCp9NJXRWb5uDggPDwcDg5OUldFSIisiEMYQolCAKys7OhVqsRHBzMlhoLKV8wNzs7GyEhIVw0l4iIzIYhTKHu37+Pu3fvIjAwEG5ublJXx6b5+voiKysL9+/fh6Ojo9TVISIiG6GY5pNBgwYhJCQELi4uCAgIwMiRI5GVlaVXRhAErFy5Ei1atICzszMeeOABLF26VK/MkSNH0LFjRzg7O6NZs2ZITk6u8lxvvfUWwsLC4OLigi5duuCnn37S237v3j1MnjwZ3t7eaNiwIeLj43Ht2jW9MlevXkX//v3h5uaGJk2aYNasWbh//755dgaA0tJSAGAXmRWU7+PyfU5ERGQOiglhvXv3xueff4709HRs374dGRkZGDJkiF6ZadOm4b333sPKlStx4cIFfP311+jcubO4PTMzE/3790fv3r1x5swZJCYmYvz48fjmm2/EMp999hlmzJiBhQsX4tSpU2jXrh1iYmJw/fp1scz06dOxc+dObNu2DUePHkVWVhYGDx4sbi8tLUX//v1RXFyMY8eOYcuWLUhOTsaCBQvMvl/YPWZ53MdERGQRgkL9+9//FlQqlVBcXCwIgiCcO3dOaNCggXDhwgWD95k9e7bw4IMP6t02dOhQISYmRvy9c+fOwuTJk8XfS0tLhcDAQGHZsmWCIAhCfn6+4OjoKGzbtk0sc/78eQGAkJqaKgiCIOzZs0dwcHAQcnJyxDIbN24UPD09haKiIqNfo1arFQAIWq22yra//vpLOHfunPDXX38Z/XhkGu5rIuW5efOmkJWVZfDn5s2bUleRbFhN398VKXJMWF5eHrZu3Ypu3bqJY3R27tyJpk2bYteuXYiNjYUgCIiOjsaKFSvg5eUFAEhNTUV0dLTeY8XExCAxMRFA2WzDtLQ0zJs3T9zu4OCA6OhopKamAgDS0tJQUlKi9zitWrVCSEgIUlNT0bVrV6SmpqJt27bw8/PTe55Jkybht99+Q4cOHSyyX4iICMjNzcX69etrLZeQkABvb28r1IioeorpjgSAOXPmwN3dHd7e3rh69Sr+/e9/i9v+97//4cqVK9i2bRs+/PBDJCcnIy0tTa/LMicnRy8YAYCfnx8KCgrw119/4ebNmygtLa22TE5OjvgYTk5OaNSoUY1lqnuM8m2GFBUVoaCgQO/H1owZMwYqlQoqlQqOjo7w8/PD448/jg8++KBOS20kJydXeQ+IiABUWTtRq/VAZmYYtFqPGssRWZukIWzu3LniF7KhnwsXLojlZ82ahdOnT2P//v1Qq9UYNWoUBEEAULaUQFFRET788EN0794dvXr1wvvvv4/Dhw8jPT1dqpdYJ8uWLYNGoxF/goODLfZcubm5yM7ONviTm5trseeOjY1FdnY2Ll++jL1796J3796YNm0aBgwYYNbJC0REp051QFJSIrZsGY2kpEScOsWeCJIPSbsjZ86ciTFjxtRYpmnTpuL/fXx84OPjgxYtWqB169YIDg7Gjz/+iKioKAQEBKBBgwZo0aKFWL5169YAymYqtmzZEv7+/lVmMV67dg2enp5wdXWFWq2GWq2utoy/vz8AwN/fH8XFxcjPz9drialcpvKMyvLHLC9TnXnz5mHGjBni7wUFBRYJYlI31Ts7O4v74YEHHkDHjh3RtWtX9O3bF8nJyRg/fjzefPNNbN68Gf/73//g5eWFgQMHYsWKFWjYsCGOHDmCZ599FsDfg+YXLlyIRYsW4aOPPsKaNWuQnp4Od3d39OnTB0lJSWjSpInZXwcRyZtW64GdOwdAEMraGwTBATt3DkBExCVoNIUS145I4hDm6+sLX19fk+5b3nVVVFQEAHj00Udx//59ZGRkICIiAgDw3//+FwAQGhoKAIiKisKePXv0HufAgQOIiooCULYUQWRkJA4ePIi4uDjxeQ4ePIiEhAQAQGRkJBwdHXHw4EHEx8cDANLT03H16lXxcaKiorB06VJcv35d/PI/cOAAPD090aZNG4OvydnZGc7Ozibtj7owtgnemk31ffr0Qbt27bBjxw6MHz8eDg4OWLt2LcLDw/G///0P//rXvzB79mxs2LAB3bp1Q1JSEhYsWCC2cjZs2BAAUFJSgldffRUtW7bE9evXMWPGDIwZM6bK+05E0snNza3x+OLk5GSWE8C8PG8xgJUTBAfk5XkxhCmMtT4z1qaIgfnHjx/HiRMn8Nhjj6Fx48bIyMjA/PnzERERIQaf6OhodOzYEWPHjkVSUhJ0Oh0mT56Mxx9/XGwdmzhxItavX4/Zs2dj7NixOHToED7//HPs3r1bfK4ZM2Zg9OjReOSRR9C5c2ckJSXhzp07YsuLRqPBuHHjMGPGDHh5ecHT0xNTpkxBVFQUunbtCgB44okn0KZNG4wcORIrVqxATk4OXn75ZUyePNkqIUupWrVqhV9++QUAxMkSABAWFoYlS5Zg4sSJ2LBhA5ycnKDRaKBSqaq0LI4dO1b8f9OmTbF27Vp06tQJt2/fFoMa2TZbPVjbCmu2xHt55UKl0ukFMZVKBy+vvHo9LlmX1L03lqSIEObm5oYdO3Zg4cKFuHPnDgICAhAbG4uXX35ZDDUODg7YuXMnpkyZgh49esDd3R39+vXDqlWrxMcJDw/H7t27MX36dKxZswZBQUF47733EBMTI5YZOnQobty4gQULFiAnJwft27fHvn379Abar169Gg4ODoiPj0dRURFiYmKwYcMGcbtarcauXbswadIkREVFwd3dHaNHj8Yrr7xihb2lXIIgiN2L3377LZYtW4YLFy6goKAA9+/fx71793D37t0arxCQlpaGRYsW4eeff8atW7fEFtOrV6/W2ApJtqHywVqr9UBenje8vHL1Wj6UeLC2FdUNmq/uPTJHS7xGU4iBA3eJXZIqlQ4DB+5iK5jCWPMzY22KCGFt27bFoUOHai0XGBiI7du311imV69eOH36dI1lEhISxO7H6ri4uOCtt97CW2+9ZbBMaGgou8Dq6Pz58wgPD8fly5cxYMAATJo0CUuXLoWXlxe+//57jBs3DsXFxQZD2J07dxATE4OYmBhs3boVvr6+uHr1KmJiYmT3x8nWGsuouE9PnepQ5cu3Y8fTVcqRdGp6j8ylY8fTiIi4hLw8L3h55ckmgPEYYBprfGasSREhjGzfoUOH8Ouvv2L69OlIS0uDTqfDqlWrxAuTf/7553rlnZycqlxG6MKFC8jNzcXrr78uTmg4efKkdV5AHbC1xvI4IFv+LPkeVb6cm0ZTWO1jSnXZN1vuXrMkW/y7ZggjqysqKkJOTg5KS0tx7do17Nu3D8uWLcOAAQMwatQonD17FiUlJVi3bh0GDhyIH374AZs2bdJ7jLCwMNy+fRsHDx5Eu3bt4ObmhpCQEDg5OWHdunWYOHEizp49i1dffVWiV2kYW2ssjwOy5c+S75G3tzcSEhJk29Ikx8lR5mLJFj5b/LtmCCOr27dvn7ikSOPGjdGuXTusXbsWo0ePhoODA9q1a4c333wTy5cvx7x589CjRw8sW7YMo0aNEh+jW7dumDhxIoYOHYrc3FxxiYrk5GS8+OKLWLt2LTp27IiVK1di0KBBEr5aw2zxrE4uOCBb/iz9HimpBclQa7jSWLqFzxb/rhnC7JCxTfCWaKpPTk5GcnJyreWmT5+O6dOn6902cuRIvd83btyIjRs36t02fPhwDB8+XO+28gV95cYWz+rkggOy5Y/vURlbGuNk6RY+W/zMMITZIbk31dsLWzyrkxO5Dsimv9n7e2TrreGWaOGztc8MQ5idYsCSni2e1cmNoQHZJB25D5q3JltuDTdnC58tf2YYwogkZGtndVKTsqudjMOW+L/Zamu4uVv4bPkzwxBGJDG21hhW15lWtnywtiXc/2VstTXcEi18tvqZYQgjsjK21hjH1JlWtnqwJttR8W+7ptZwpR4DbLWFzxIYwoisjK01xrHlS5UoBVd1twxbPwbYagufJTCEEUlAqQdXqZhzkC+DhXG4qrtl2eI+s/UWPktgCCMiWTPnIF8GC+OxJZLqytZb+CyBIYyIZM2cg3wZLExjSwuKkmUxYNUNQxjZlCNHjqB37964desWGjVqZNR9wsLCkJiYiMTERIvWzd6Z2g1oqUG+DBbGsfUFRYmkxBBGVjVmzBhs2bIFzz//fJWLck+ePBkbNmzA6NGjjbq0ESlHfboBLTHIl8HCeLa8oGhdcTwhmRtDGFldcHAwPv30U6xevRqurq4AgHv37iElJQUhISES144sob7dgOZe1JbBwnhcbqAMxxOSJTjUXoTIvDp27Ijg4GDs2LFDvG3Hjh0ICQlBhw4dxNuKioowdepUNGnSBC4uLnjsscdw4sQJvcfas2cPWrRoAVdXV/Tu3RuXL1+u8nzff/89unfvDldXVwQHB2Pq1Km4c+eOxV4f1ezUqQ5ISkrEli2jkZSUiFOnOlRbrrpLlYSHX6kSkkyZaVUeLCqyx2BhjPKWyPL9Za/LDVR3IpGZGQat1qPGckQ1YUsY4Y8/gIsXgebNgaAg6zzn2LFjsXnzZowYMQIA8MEHH+DZZ5/FkSNHxDKzZ8/G9u3bsWXLFoSGhmLFihWIiYnBpUuX4OXlhd9//x2DBw/G5MmTMWHCBJw8eRIzZ87Ue56MjAzExsZiyZIl+OCDD3Djxg0kJCQgISEBmzdvts6LJVFdugEtOdOK6xjVDS+vpY/jCclcGMLs3PvvAxMmADod4OAAvPMOMG6c5Z/3mWeewbx583DlyhUAwA8//IBPP/1UDGF37tzBxo0bkZycjH79+gEA3n33XRw4cADvv/8+Zs2ahY0bNyIiIgKrVq0CALRs2RK//vorli9fLj7PsmXLMGLECHHQffPmzbF27Vr07NkTGzduhIuLi+VfLInq2g1oyW4dBoua2fJFk+uD4wnJnBjC7Ngff/wdwICyf59/HoiJsXyLmK+vL/r374/k5GQIgoD+/fvDx8dH3J6RkYGSkhI8+uij4m2Ojo7o3Lkzzp8/DwA4f/48unTpove4UVFRer///PPP+OWXX7B161bxNkEQoNPpkJmZidatW1vi5ZEBUo8vYrAwHtd8qh7HE1aPkxZMwxBmxy5e/DuAlSstBS5dsk635NixY5GQkAAAeOuttyzyHLdv38bzzz+PqVOnVtnGSQDWJ3U3IINF3XA/VCX1iYQccdKC6RjC7Fjz5mVdkBWDmFoNNGtmneePjY1FcXExVCoVYmJi9LZFRETAyckJP/zwA0JDQwEAJSUlOHHihNi12Lp1a3z99dd69/vxxx/1fu/YsSPOnTuHZtZ6URZmC2ebUncDyn3/kLxJfSIhR1wE2XQMYXYsKKhsDNjzz5e1gKnVwNtvW29wvlqtFrsW1Wq13jZ3d3dMmjQJs2bNgpeXF0JCQrBixQrcvXsX4/5v0NrEiROxatUqzJo1C+PHj0daWlqV9cXmzJmDrl27IiEhAePHj4e7uzvOnTuHAwcOGHXmVhtrhiIln22yG5BsidQnEnLGSQt1wxBm58aNKxsDdulSWQuYtQJYOU9PT4PbXn/9deh0OowcORKFhYV45JFH8M0336Bx48YAyroTt2/fjunTp2PdunXo3LkzXnvtNYwdO1Z8jIcffhhHjx7FSy+9hO7du0MQBERERGDo0KH1rru1Q5GSzzbZDUhKxxOJ2nHSQt0xhBGCgqwXvmpbCf+rr74S/+/i4oK1a9di7dq1BssPGDAAAwYM0Lvt2Wef1fu9U6dO2L9/v8HHqG5tMWMYG3YsEYqUeLbJgEVKxhOJ2nHSQt0xhBGZiaGWKUs8D882iazPngOWMThpoe4YwojMwJotUzzbJCI54qSFumMII6ona7dM8WyT5M4WZvGSaThpoW4YwojqydotUzzbJDlT8ixeMg0nLZiOIUzhBEGQugo2r7Z9LEXLlBzONq29PAdbVpRBybN4yTSctGA6hjCFKl9Xq7i4GK6urhLXxraVH1gqr2VWzlotU3I627RmawdbVpRLibN4yTT82zMNQ5hCNWjQAG5ubrhx4wYcHR3h4OBQ+52oznQ6HW7cuAE3Nzc0aKD/51Ix7NTUMmWuUCSns01rLs8h5VIgZDrO4iWqHUOYQqlUKgQEBCAzMxNXrlyRujo2zcHBASEhIVCpVHq3SxGK5Hq2aa3lOaz9XGQ6zuIlqh1DmII5OTmhefPmbAGwMCcnJ4MtjXINRdZkzS4ndm8pB2fxEtWOIUzhHBwc4OLiInU1yE5Zs8uJ3VvKwlm8RLVjCCMik1mzy4ndW8ojh1m8JF+c9cwQRkT1YM0uJ3ZvKYOcZvGSfHHWcxmGMCIzsNczOmt2ObF7SxnkNIuX5IvryZVhCCOqJ3s8o7Pm8hzWXgqE6s9WPudkHfY84YYhzE7Ya0uNNdjjOlbWbO1gywqR7bL3CTcMYXbAHltqpGQv61hZ87PCzyWRbbL3CTcMYXbAHltqpGLPzepEJA0l93TY+4QbhjAiM7H3ZnUisj6l93TY+4QbhjAiM7H3ZnUisj5bmGVoz+vJMYTZIXsZs2Rt9t6sTkTSUtJwCK4nV4YhzM4o6Y9Uaey9WZ2IpGPt4RD1HYfGWc9lGMLsCMcsWQbXsSIiqVlzOIS5xqHZesAyBkOYHeGYJcvgGR0RSc2awyFsYRyaXDCE2YHyFpja/kiV2FIjl6nZDFhEJCWphkNwiEv9MITZgYotNQ88UIA5czQoLVVBrRawfHkBnn56uCJbapQ+NZuIyJysPcuQQ1zqjyHMTpSHkJkzgaFDgUuXgGbNVAgKagSgkZRVMxmbxInI3kk5y5BDXOqPIcwOBQWV/dgSNokTUV3IZShDfUk5JpXL8tQfQxgpHpvEiaguKg9lMNSKrpShDFLVkcvy1B9DGCmevTeJ28oZPZG1VPx7qakVnUMZamfPq92bA0MYKZ49N4lzcgKR6diKbhqudm8+DGGkePbcJG7smTrP6ImqsvdWdFNxbUTzYQgjm8Am8TK8LiiR8azVim6LQwaUVl+5YggjxWKTuD7OECWqG2u0otvaJAAyL4YwUiw2if+NY1uITGPpVnROAqCaMISRotlDwDIGx7YQmc5QK7o58USJquNQexEikrvysS0V2csMUaK6MnaIgjmHMtR0okT2iy1hRDbAnmeIEtWVFEMZ7HkpHTKMIYwUxxZnGpmq4pl6TWNb7GVyApGxrH2M4IkSVYchjBSFi5Pq4+QEIuVQylI6PNG1HoYwUhQuTloVD4ZEymGNSQD1wSU1rEsxA/MHDRqEkJAQuLi4ICAgACNHjkRWVpa4fdGiRVCpVFV+3N3d9R5n27ZtaNWqFVxcXNC2bVvs2bNHb7sgCFiwYAECAgLg6uqK6OhoXLx4Ua9MXl4eRowYAU9PTzRq1Ajjxo3D7du39cr88ssv6N69O1xcXBAcHIwVK1aYeY/IU25uLrKzsw3+5ObmmvX5tFoPZGaGQav1MOvjEhGZgxSTAOqj8pIaSUmJ2LJlNJKSEnHqVIdqy5HpFNMS1rt3b7z44osICAjAn3/+iRdeeAFDhgzBsWPHAAAvvPACJk6cqHefvn37olOnTuLvx44dw/Dhw7Fs2TIMGDAAKSkpiIuLw6lTp/DQQw8BAFasWIG1a9diy5YtCA8Px/z58xETE4Nz587BxcUFADBixAhkZ2fjwIEDKCkpwbPPPosJEyYgJSUFAFBQUIAnnngC0dHR2LRpE3799VeMHTsWjRo1woQJE6yxuyRh7a5CLk5aP+xyILI8pQ4Z4JIa1qGYEDZ9+nTx/6GhoZg7dy7i4uJQUlICR0dHNGzYEA0bNhTL/Pzzzzh37hw2bdok3rZmzRrExsZi1qxZAIBXX30VBw4cwPr167Fp0yYIgoCkpCS8/PLLePLJJwEAH374Ifz8/PDVV19h2LBhOH/+PPbt24cTJ07gkUceAQCsW7cO//jHP7By5UoEBgZi69atKC4uxgcffAAnJyc8+OCDOHPmDN58802bDmHW7CrkAaJ+OLZO2RiglUWJ7wXXHrQOxYSwivLy8rB161Z069YNjo6O1ZZ577330KJFC3Tv3l28LTU1FTNmzNArFxMTg6+++goAkJmZiZycHERHR4vbNRoNunTpgtTUVAwbNgypqalo1KiRGMAAIDo6Gg4ODjh+/Dj+3//7f0hNTUWPHj30mpdjYmKwfPly3Lp1C40bNzbHbpA9S17HkAeI+qn8BW7ovWKXg/xwzA5ZA5fUsA5FhbA5c+Zg/fr1uHv3Lrp27Ypdu3ZVW+7evXvYunUr5s6dq3d7Tk4O/Pz89G7z8/NDTk6OuL38tprKNGnSRG97gwYN4OXlpVcmPDy8ymOUbzMUwoqKilBUVCT+XlBQUG05JbB0VyEPEObDbl15MLZ1i5fBIWvgkhrWIWkImzt3LpYvX15jmfPnz6NVq1YAgFmzZmHcuHG4cuUKFi9ejFGjRmHXrl1QqVR69/nyyy9RWFiI0aNHW6zulrBs2TIsXrxY6mrUmzW6CnmAMA9268pDXVq3Kpbhe0eWpJQlNZRM0hA2c+ZMjBkzpsYyTZs2Ff/v4+MDHx8ftGjRAq1bt0ZwcDB+/PFHREVF6d3nvffew4ABA6q0aPn7++PatWt6t127dg3+/v7i9vLbAgIC9Mq0b99eLHP9+nW9x7h//z7y8vL0Hqe656n4HNWZN2+eXndpQUEBgoODDZaXK0t2FXJxUvNit648mNK6xfeOrEHuS2oonaQhzNfXF76+vibdV6cru05exe47oGxc1+HDh/H1119XuU9UVBQOHjyIxMRE8bYDBw6IIS48PBz+/v44ePCgGLoKCgpw/PhxTJo0SXyM/Px8pKWlITIyEgBw6NAh6HQ6dOnSRSzz0ksviZMGyp+nZcuWNY4Hc3Z2hrOzswl7Q14s2VWo1JlGcsVuXXmpS+sW3zuyBKUtqaF0ihgTdvz4cZw4cQKPPfYYGjdujIyMDMyfPx8RERFVWsE++OADBAQEoF+/flUeZ9q0aejZsydWrVqF/v3749NPP8XJkyfxzjvvAABUKhUSExOxZMkSNG/eXFyiIjAwEHFxcQCA1q1bIzY2Fs899xw2bdqEkpISJCQkYNiwYQgMDAQAPP3001i8eDHGjRuHOXPm4OzZs1izZg1Wr15t2R0lE5buKmTAMh9268pLXVq3+N6RJfBE17oUEcLc3NywY8cOLFy4EHfu3EFAQABiY2Px8ssv67Uc6XQ6JCcnY8yYMVCr1VUep1u3bkhJScHLL7+MF198Ec2bN8dXX30lrhEGALNnz8adO3cwYcIE5Ofn47HHHsO+ffvENcIAYOvWrUhISEDfvn3h4OCA+Ph4rF27Vtyu0Wiwf/9+TJ48GZGRkfDx8cGCBQtsenkKgF2FSsVxHzWz5nIQdW3d4ntHlsCAZT0qQRAEqStB1SsoKIBGo4FWq4Wnp6fU1TEK1y9SBq4TZhxrLQeRnZ0ttsjXNCas/ESuvGxNJkyYoDe2lYisx9jvb0W0hJFy2PMXtpKwy8E4UiwHUVvrFsfsENkOhjAiO2XvAasurL0cRE0z0higiWwHQxgRUS0svRxEXVu3GLCsh0MsyJIYwoiIamHp5SDYuiVPvESUvFUMyFlZDsjMbIDw8PsIDCxbwkoJfzMMYUREtbDGchBy/7KwR7xElHxVDMg1vTdyD8gMYUSVsPuBqsPlIOwXLxElP+XH6NreG7kHZIYwogq4dAPVxBKXcGHolz9eIkq+lP7eMIQRVVD5y9DQGBBLn13xi1keLL0cBMccKQMvESVfSn9vGMKIDKhpnIElsTVOPiw9YJ5jjpSBl4iSL6W/NwxhRNWQcgyIXFrjqIw1gi7HHMkfxwTKl5LfG4YwsmmmduvJZZyBVK1xZF1y+bxRzSwxJpDMQ6nvDUMY2az6dOvJYZwBW0fshxw+b1SVrVwiimNM5YshjGxWfbr15DDOgK0j9kMOnzeqyhYW0bXVyR+2EpAZwsgumNKtJ/U4A7aO2BepP29UPSUFk+rY6uQPWwjIAEMY2YG6dOtVPmsyNM7AGmdXbB2xP0od10LyZ4vDG+QesIzBEEY2ry7denI7u2LriG2zlS4Vkj8Ob5AnhjCyeXXt1pP67EpOrXFkWXIL/WS7OLxBnhjCyOYprVuPX8z2he8jWYPSjoP2giGM7IIcu/U4bZyIrEmOx0F7xxBGNkvO3Xq8NBERSYGTP+SFIYxslpy79XhpIiLzYItyzeQy+YPvU/UYwsimKeGPmpcmIjKNrS5Eak5yOBlly79hDGFEErLFtXuIrMVWFyI1N6mDDVv+DWMII5IQ1+4hqj+ezCgHW/71MYQRSYhr9xDVn1xPZjgOSh/DclUMYUQS4to9RPUnx5MZjoOqSq5hWUoMYUQS49o9RPUjx5MZjoOqSo5hWWoMYUQSkPMaZkRKVNPJTH5+PgICAiSrG8dBlZFjWJYaQxiRBOQwbZzI1pR/mefleev9/vnnn0vW7WfJcVBKHHPGln99DGFEEpHbwZFIaSq3FMtxmQpLjYNS0pgztvwbxhBGRESK5O3tjaFDh+Kzzz6T7cw7S42DUtKYM0Mt//n5+bh//z4AwNHREcXFxcjOzha3y7Elz9wYwoiISLE0Gg0A+c68s8Y4KCWMOascpnJzc/H555+Lv9vr1Q4YwqgKJY4zICL7JueZd5YcByXXFsDa8GoHZRjCSI+SxhkQEZUzpcXJkiec1hoHJdcWQGMpNUSaC0MY6TH2rMPWz06IzImty9ZRlxYnS1/821ozoOXcAmgMpYfI+mIIoxoZOjARkXHYumxdhlqcKrNGd5g13k+lr72l9BBZXwxhZJASBnvWFVskyNqUNItNiYztzjNUzha6w5S89pbSQ2R9MYRRtWzhwFQZWyRIarZ4YiO1+nb7KbU7zJbW3lJyiKwvhjCqllIPTDVhiwRJyRZPbOSiPidNSu0Os7WrbhjbjWxrGMKoWko9MBmLLRJkbbZ4YmMLlNwdppSAVZ36diPbCoYwqpaSD0y1YYsEScHWT2yUzJ67w6Riay15pmIIIz0VzzpqOjAp+eyELRIkBVs+sbEF9todJiVbD1jGYAgjPfZwdsIWCbKkyjNwb968Kf6fLS7ywe4wkgOGMKpCyQHLGGyRkC+lLyFieAFQD/HzpeRZbLbEHk44Sf4YwsgusUVCfmxhCRFjFwAdPHgwfHx8xLL8spcG9zlJjSGM7IYtratji2xpCZHaJn/4+PggICBA4loSkdQYwshusPtBOZS+hAgnfxCRMRjCyK4wYMmfLSwhwskfplH6mECiumIIIyJZsYVWJE7+qDtbGBNIVFcMYUQkK7bSisTJH3VjS2MCiYzFEEZVsEuApGRLrUhcANQ0Sh8TSGQshjDSwy4BkgOltiJxAdD6s4UxgUTGYggjPewSIKnYwhIinIFbf7YwJpDIWAxhZBC7BMiabCXAyL1+cmcrYwKJjMEQRtVilwBJgQGGbGlMIFFtGMKoWuwSICKpKHVMIFFdMYRRtZTWJcAZnUTKZgtjAonqiiGMqqWkLgHO6CRSPlsZE0hUF0aHsIKCAqMf1NPT06TKkLwopUuAMzqJbAMDFtkbo0NYo0aNoFKpaiwjCAJUKhVKS0vrXTGShtK7BDijk4gq4lAFkjOjQ9jhw4ctWQ+SCSV3CXBGJxFVxKEKJHdGh7CePXtash4kI0o9GHFGJxFVxKEKJHcmD8zPz8/H+++/j/PnzwMAHnzwQYwdOxYajcZslSOqC6XN6CQi6+FQBZIjh9qLVHXy5ElERERg9erVyMvLQ15eHt58801ERETg1KlT5q4jkVHKZ3SqVDoAkPWMTiKyHkNDFbRaD4lrRvbOpJaw6dOnY9CgQXj33XfRoEHZQ9y/fx/jx49HYmIivvvuO7NWkshYSpnRSUTWw6EKJFcmt4TNmTNHDGAA0KBBA8yePRsnT540W+UqGjRoEEJCQuDi4oKAgACMHDkSWVlZemW++eYbdO3aFR4eHvD19UV8fDwuX76sV+bIkSPo2LEjnJ2d0axZMyQnJ1d5rrfeegthYWFwcXFBly5d8NNPP+ltv3fvHiZPngxvb280bNgQ8fHxuHbtml6Zq1evon///nBzc0OTJk0wa9Ys3L9/3yz7gvRVN6MzPPxKlYOrXGd0EpFllQ9VqIhDFUgOTGoJ8/T0xNWrV9GqVSu923///Xd4eFimebd379548cUXERAQgD///BMvvPAChgwZgmPHjgEAMjMz8eSTT2LGjBnYunUrtFotpk+fjsGDB4tdpJmZmejfvz8mTpyIrVu34uDBgxg/fjwCAgIQExMDAPjss88wY8YMbNq0CV26dEFSUhJiYmKQnp6OJk2aAChrCdy9eze2bdsGjUaDhIQEDB48GD/88AMAoLS0FP3794e/vz+OHTuG7OxsjBo1Co6Ojnjttdcssn/smZJndBKR5Slp8WmyLypBEIS63mnq1Kn48ssvsXLlSnTr1g0A8MMPP2DWrFmIj49HUlKSuetZxddff424uDgUFRXB0dERX3zxBYYPH46ioiI4OJQ18O3cuRNPPvmkWGbOnDnYvXs3zp49Kz7OsGHDkJ+fj3379gEAunTpgk6dOonTmnU6HYKDgzFlyhTMnTsXWq0Wvr6+SElJwZAhQwAAFy5cQOvWrZGamoquXbti7969GDBgALKysuDn5wcA2LRpE+bMmYMbN24Y3SJTUFAAjUYDrVbLBXCJiOooOzsb77zzjvh72ezIqkMVJkyYgICAACmqSDbK2O9vk7ojV65cicGDB2PUqFEICwtDWFgYxowZgyFDhmD58uUmV9pYeXl52Lp1K7p16wZHR0cAQGRkJBwcHLB582aUlpZCq9Xio48+QnR0tFgmNTUV0dHReo8VExOD1NRUAGXTlNPS0vTKODg4IDo6WiyTlpaGkpISvTKtWrVCSEiIWCY1NRVt27YVA1j58xQUFOC3334z+LqKiopQUFCg90NERKbhUAWSO5O6I52cnLBmzRosW7YMGRkZAICIiAi4ubmZtXKVzZkzB+vXr8fdu3fRtWtX7Nq1S9wWHh6O/fv346mnnsLzzz+P0tJSREVFYc+ePWKZnJwcvWAEAH5+figoKMBff/2FW7duobS0tNoyFy5cEB/DyckJjRo1qlImJyenxucp32bIsmXLsHjxYiP3BhER1YRDFUjuTGoJK+fm5oa2bduibdu2JgWwuXPnQqVS1fhTHn4AYNasWTh9+jT2798PtVqNUaNGobw3NScnB8899xxGjx6NEydO4OjRo3BycsKQIUNgQo+rJObNmwetViv+/P7771JXiYhI0by9vREQEGDwhwGMpGRSS9i9e/ewbt06HD58GNevX4dOpz/rxNi1wmbOnIkxY8bUWKZp06bi/318fODj44MWLVqgdevWCA4Oxo8//oioqCi89dZb0Gg0WLFihVj+448/RnBwMI4fP46uXbvC39+/yizGa9euwdPTE66urlCr1VCr1dWW8ff3BwD4+/ujuLgY+fn5eq1hlctUnlFZ/pjlZarj7OwMZ2fnGvcHERER2QaTQti4ceOwf/9+DBkyBJ07d671wt6G+Pr6wtfX16T7lge/oqIiAMDdu3fFAfnl1Gq1XtnK3ZMAcODAAURFRQEoa5aOjIzEwYMHERcXJ9734MGDSEhIAFA29szR0REHDx5EfHw8ACA9PR1Xr14VHycqKgpLly7F9evXxRmVBw4cgKenJ9q0aWPS6yUi4/CCzUSkFCbNjtRoNNizZw8effRRS9SpiuPHj+PEiRN47LHH0LhxY2RkZGD+/Pm4du0afvvtNzg7O+PQoUOIjo7GokWLMHz4cBQWFuLFF1/EhQsXcP78ebi6uiIzMxMPPfQQJk+ejLFjx+LQoUOYOnUqdu/erbdExejRo/H222+jc+fOSEpKwueff44LFy6I47omTZqEPXv2IDk5GZ6enpgyZQoAiMtllJaWon379ggMDMSKFSuQk5ODkSNHYvz48XVaooKzI4nqhhdsJiI5sOjsyAceeMBi64FVx83NDTt27EDfvn3RsmVLjBs3Dg8//DCOHj0qdt/16dMHKSkp+Oqrr9ChQwfExsbC2dkZ+/btg6urK4Cywfu7d+/GgQMH0K5dO6xatQrvvfeeGMAAYOjQoVi5ciUWLFiA9u3b48yZM9i3b5/eQPvVq1djwIABiI+PR48ePeDv748dO3aI29VqNXbt2gW1Wo2oqCg888wzGDVqFF555RUr7TEi+2TshZh5wWYikgOTWsL27t2LtWvXYtOmTQgNDbVEvQhsCSOqq+rXhfKGl1cu14UiIqsx9vvbpDFhjzzyCO7du4emTZvCzc1NXIerXF4eLwVBRNI6dapDlRXSO3Y8LXW1iIhEJoWw4cOH488//8Rrr70GPz8/kwfmExFZglbrIQYwoOxizTt3DkBExCVeqoaIZMOkEHbs2DGkpqaiXbt25q4PEVG95eV5iwGsnCA4IC/PiyGMiGTDpIH5rVq1wl9//WXuuhARmYWXVy5UKv31C1UqHby8OFSCiOTDpJaw119/HTNnzsTSpUvRtm3bKmPCOIicSB/XrrIujaYQAwfuqjImjK1gRCQnJoWw2NhYAEDfvn31bhcEASqVCqWlpfWvGZGN4NpV1lPxQswdO55GRMQl5OV5wcsrTy+A8YLNRCQHJoWww4cPm7seRDarcguYoWUTuHZV/cnxgs1sBSUiQ0wKYT179jSq3L/+9S+88sor8PHxMeVpiGwOl02wPDkFGraCElFNTBqYb6yPP/4YBQUFlnwKIsUwtGyCVmu9q0+QdXEFfyKqiUVDmAmL8RPZrJqWTSD7oNV6IDMzjMGbiACY2B1JRHVXvmxCxSDGZRPsB7uiiagyi7aEEdHfypdNKF+/issm2A92RRNRddgSRmRFNS2bQHWnlJmHXMGfiKrDEEZkYZXXpNJoCqv94uXaVXWjpJmH7IomoupYNIQ988wzXD2f7J4c166yBUqaecgV/ImoOiaHsPz8fPz000+4fv06dDr9a7SNGjUKALBx48b61Y7IRjBgWZ6hRXCtpbqu0fz8fPH/XMGfiCozKYTt3LkTI0aMwO3bt+Hp6QmVSiVuU6lUYggjIrIGqWceGts1OmHCP6DRaPRuYysokf0yKYTNnDkTY8eOxWuvvQY3Nzdz14mIyGiGZh5GRFyyWouYsV2eGo0GAQEBFq4NESmFSUtU/Pnnn5g6dSoDGBFJTo6L4HJRViIyhkktYTExMTh58iSaNm1q7voQEdWJ3GYeSt01SkTKYXQI+/rrr8X/9+/fH7NmzcK5c+fQtm1bODo66pUdNGiQ+WpIRFQDOc08lEPXKNkfpayXV1e2+roqMjqExcXFVbntlVdeqXKbSqVCaWlpvSpFRFSbijMK5TLzkIuymsYevmwtRUnr5dWFrb6uyowOYZWXoSAikpIc11+TW9eoEtjLl62lKGm9vLqw1ddVmUljwj788EMMHToUzs7OercXFxfj008/5RIVpBg8A1c2ub03cuoaVYrKf3+G1ntT+pettRjafzdv3qxSVknHN6nXAbQUk0LYs88+i9jYWDRp0kTv9sLCQjz77LMMYaQIlc/ADf2R8wy8Zgyy8uwaVSJOaqifmvbfjh07qr2PEo5vtvy5MCmECYKgt0BruT/++KPKQoREclUxONT0R84zcMPYlVRGjl2jSsNJDfVj6v6T+/HN1j8XdQphHTp0gEqlgkqlQt++fdGgwd93Ly0tRWZmJmJjY81eSSJLsvU/ckuyl3EbxmDAqh9Oaqif2vafUrvzbP1zUacQVj5D8syZM4iJiUHDhg3FbU5OTggLC0N8fLxZK0hkabb+R25NSj3Qk/Q4qaF+atp/Su7Os/XPRZ1C2MKFCwEAYWFhGDp0KFxcXCxSKSJrsvU/cmtR8oGepMdJDfVjaP8BUHRLv61/LkwaEzZ69GgAZV0M169fr7J8RUhISP1rRmQltv5Hbg3s0iVzqGlSA1WvtkkhmZlhimzpt5fJLiaFsIsXL2Ls2LE4duyY3u3lA/a5WCspDQ/+9cMuXTJV5S9Rjaaw2s+M0r9sjVXX2caGJoXcvHkTO3bsUGxLv71MdjEphI0ZMwYNGjTArl27EBAQUO1MSSKlMXTwryt7XLJBqQd6kp69fNkaw9TZxjXtGyW39NvDe25SCDtz5gzS0tLQqlUrc9eHyGqMPbOuyxm4va49puQDPUnPlv4W6sOcs42N7c67e/du3StKZmNSCGvTpk21q+8SKYklzsDtbe0xexm3QSSF+sw29vb2xjPPPIOPP/4YgOGW/o8//tjmTgqVxKQQtnz5csyePRuvvfYa2rZtC0dHR73tnp6eZqkckaVZ6sBjLwPV2ZVEZBnmmG3s5uZmVDlbOSlUIpNCWHR0NACgT58+euPBODCfqIw9DVRnwCIyL0udxHEdP/kxKYQdPnzY3PUgsikcqE5EprLESRzX8ZMnh9qLVNWzZ084ODjg3Xffxdy5c9GsWTP07NkTV69ehVqtNncdiRSnfKC6SlW2hh4HqlN95ObmIjs72+BPbm6u1FUkMyo/iauoPidxhlrWtFqPeteV6seklrDt27dj5MiRGDFiBE6fPo2ioiIAgFarxWuvvYY9e/aYtZJESsS1x+RFqUuH8CLp9sfcs43taXiE0pgUwpYsWYJNmzZh1KhR+PTTT8XbH330USxZssRslSNSOnOtPUb1o+QgUzk4GhrXw8HVymep2cYcHiFfJoWw9PR09OjRo8rtGo0G+fn59a0TkWJZYu0xqj9bCTIc12PbLDXbmOv4yZdJIczf3x+XLl1CWFiY3u3ff/89mjZtao56ESkSl2yQP6UGGXtZ9sTemfPYwHX85M+kEPbcc89h2rRp+OCDD6BSqZCVlYXU1FS88MILmD9/vrnrSKQoDFjypeQgw3E9VFc8KZQ/k0LY3LlzodPp0LdvX9y9exc9evSAs7MzXnjhBUyZMsXcdSQiMgslBxmO6yFTMGDJm0lLVKhUKrz00kvIy8vD2bNn8eOPP+LGjRt49dVXzV0/IiKzMffUf2visidEtseklrByTk5OaNOmjbnqQkRkUUofoMxlT4hsS71CGBGR0igtyFQeNG1o2RMOriZSHoYwIrJ5Sg4yHFxNZLtUgiAIUleCqldQUACNRgOtVgtPT0+pq0OkaEpdMZ+IlMfY72+2hJHNqPglm5XlgMzMBggPv4/AwLKBzPyStW9874lIbhjCyCZUvCxNTYtxyvGyNEREZJ9MWqKCSG7KW8AMLcap1XrolSMiIpIaQxjZlJoW4yQiIpIThjCyKUpejJOIiOwLQxjZFK4qTkRESsGB+WRzlLYYJxER2SeGMLJJhhbjJCIikguGMCKyaVyklYjkiiGMbIKxl5uR42VpyHIqrh9XE64fR0RSYAgjm8Dr61F1Kn8etFoP5OV5w8srV6+7muvHEVkOW6MNYwgj/PEHcPEi0Lw5EBQkdW1MZ69/xGScmq6kQGQsBoq6YWt0zRjC7FT5gSQlxRWzZ2ug06ng4CBgxQotnn76Lx5IyKYYupJCRMQlTuAgozFQ1B1bo2vGEGaHyg8kWq0HkpISIQgqAIBOp8KsWZ74888PoNEU8kBCNqOmKykwhJGxGCjqh63RVTGE2aHyA0RtX0w8kJCtKL+SQsXPO6+kQPXBQFE3bI2uHlfMt2O8xA/ZC15JgUyRm5uL7Oxs8efmzZsADAcKrdZDyurKGq/rWz3FhLBBgwYhJCQELi4uCAgIwMiRI5GVlaVX5vPPP0f79u3h5uaG0NBQvPHGG1Ue58iRI+jYsSOcnZ3RrFkzJCcnVynz1ltvISwsDC4uLujSpQt++uknve337t3D5MmT4e3tjYYNGyI+Ph7Xrl3TK3P16lX0798fbm5uaNKkCWbNmoX79+/Xf0eYEb+YyJ507HgaiYlJGD06GYmJSWy1oBqVD9t45513xJ8dO3YAYKAwBU/6q6eYENa7d298/vnnSE9Px/bt25GRkYEhQ4aI2/fu3YsRI0Zg4sSJOHv2LDZs2IDVq1frDaLMzMxE//790bt3b5w5cwaJiYkYP348vvnmG7HMZ599hhkzZmDhwoU4deoU2rVrh5iYGFy/fl0sM336dOzcuRPbtm3D0aNHkZWVhcGDB4vbS0tL0b9/fxQXF+PYsWPYsmULkpOTsWDBAgvvpbrjFxPZssrrwmk0hQgPv1LlRIPrx1Fl1Y3/yswMg1brwUBhAp70V08lCIIgdSVM8fXXXyMuLg5FRUVwdHTE008/jZKSEmzbtk0ss27dOqxYsQJXr16FSqXCnDlzsHv3bpw9e1YsM2zYMOTn52Pfvn0AgC5duqBTp05ieNPpdAgODsaUKVMwd+5caLVa+Pr6IiUlRQyBFy5cQOvWrZGamoquXbti7969GDBgALKysuDn5wcA2LRpE+bMmYMbN24YfcAvKCiARqOBVquFp6enWfYbAGRnZ+Odd96ptdyECRMQEBBgtuclkgKXFCBTVDxOVjf+C4DBMWE8dv6t8vdN2WSGqtf1tbV9Zuz3tyIH5ufl5WHr1q3o1q0bHB0dAQBFRUVwc3PTK+fq6oo//vgDV65cQVhYGFJTUxEdHa1XJiYmBomJiQDKznzS0tIwb948cbuDgwOio6ORmpoKAEhLS0NJSYne47Rq1QohISFiCEtNTUXbtm3FAFb+PJMmTcJvv/2GDh06VPu6ioqKUFRUJP5eUFBgwt4hoooYsKg+DI3/SkxMQmJiUrWBgv5WXWt0dfvKXlujFRXC5syZg/Xr1+Pu3bvo2rUrdu3aJW6LiYnB9OnTMWbMGPTu3RuXLl3CqlWrAJQl8bCwMOTk5OgFIwDw8/NDQUEB/vrrL9y6dQulpaXVlrlw4QIAICcnB05OTmjUqFGVMjk5OWKZ6h6jfJshy5Ytw+LFi+uwR4gsjy1JZM9qGv9VXdc2YL+Bojq8mknNJA1hc+fOxfLly2ssc/78ebRq1QoAMGvWLIwbNw5XrlzB4sWLMWrUKOzatQsqlQrPPfccMjIyMGDAAJSUlMDT0xPTpk3DokWL4OCgjKFv8+bNw4wZM8TfCwoKEBwcbPbn4XUWyVhcnJLsXW3LmwwePBg+Pj7iNnsOFIZwfxgmaQibOXMmxowZU2OZpk2biv/38fGBj48PWrRogdatWyM4OBg//vgjoqKioFKpsHz5crz22mvIycmBr68vDh48qPcY/v7+VWYxXrt2DZ6ennB1dYVarYZara62jL+/v/gYxcXFyM/P12sNq1ym8ozK8scsL1MdZ2dnODs717g/zIFnJmQsY9eK45pyZKvKB5RXHv9V3gLm4+NjU2OZyLokDWG+vr7w9fU16b46XdkMi4pjqABArVbjgQceAAB88skniIqKEp8jKioKe/bs0St/4MABREVFASgLHpGRkTh48CDi4uLE5zl48CASEhIAAJGRkXB0dMTBgwcRHx8PAEhPT8fVq1fFx4mKisLSpUtx/fp1NGnSRHweT09PtGnTxqTXa24MWGQKQyuEE9myjh1PIyLiEsd/kdkpYkzY8ePHceLECTz22GNo3LgxMjIyMH/+fERERIjB5+bNm/jiiy/Qq1cv3Lt3D5s3bxaXkCg3ceJErF+/HrNnz8bYsWNx6NAhfP7559i9e7dYZsaMGRg9ejQeeeQRdO7cGUlJSbhz5w6effZZAIBGo8G4ceMwY8YMeHl5wdPTE1OmTEFUVBS6du0KAHjiiSfQpk0bjBw5EitWrEBOTg5efvllTJ482SotXUSWwBXCyZ5wQDlZgyJCmJubG3bs2IGFCxfizp07CAgIQGxsLF5++WW9ULNlyxa88MILEAQBUVFROHLkCDp37ixuDw8Px+7duzF9+nSsWbMGQUFBeO+99xATEyOWGTp0KG7cuIEFCxYgJycH7du3x759+/QG2q9evRoODg6Ij49HUVERYmJisGHDBnG7Wq3Grl27MGnSJERFRcHd3R2jR4/GK6+8YuE9RWQZvOQI2RsO2yBrUOw6YfbAUuuEERmrfI2fzMwwbNkyusr20aOTER5+xebW+CEi2yDV7G6bXieMiKyLF8AmIqWpPLvb0JhWKWd3M4QRUa1qmyFGRCQ3FVvAahrTKuXsboYwIjKo4qDjmmaIcXAyEcmVnMe0MoQRkUEcnExESlfTVQ8YwohI1hiwiEjJ5DymlSGMbAqvc0hEUuIxSH7kPKaVIYwkY+6DFa9zSGRdDBz6lDAbz17J9aoHDGFkFnU9GFsiMPE6h0TWw5OeqpQwG8+eGbrqgZQYwqjeTDkYMzARKVvlv01DrT72+Dcs59l49sTYWdtSzu5mCKN6M/Ygm5WVJZa9efOmJasEgBebJrIWXldUn5xn49kTJczuZggjq9mxY4fVnotfCkTWIadWH7mMUZPzbDx7I/eucIYwkgVztlrJ6UuByNbJpdVHToPi5Twbj+SFIYwkZ+5WK7l8KRDZA7m0+shtULxcZ+ORvDjUXoSobrRaD2RmhkGr9TCqbHWtVsbc15DyL4WK2BVAZBnlrT7lf3NSt/pY4phiKo2mEOHhVxjAyCC2hJFZ1bVVy5ytVuUzXGrrCuB1DonMS06tPlK2hCthNh7JC0MYmY0pY7Fq68qoy8Gq8kyYBQtu4PLlBggLu4/AwE4AOkk+E4bIVlT+2zS0BpO1A4eU3aNKmI1H8sIQRvVWfpA15gy08mDZ8larXbsGQqdTQa0WsHx5AZ5+erhJB6uK5QMCgMjIer44IqqWXAOH1IPiGbCoLhjCqN7KD8aXL9/HRx8J0OlU4jYHB0E8AzXUVdmx42ksWNAFhYV+aNZMhaCgRgAaSfJaiMh4dQ0c1lpCQk7do0Q1YQgjs/D29oa3N/DOO8DzzwOlpYBaDaxadQf5+YW1dlWGhTUATyCJbJe1l5CQ4yVqiCpjCCOzGjcOiIkBLl0CmjUDgoIaIjc3AYcPA6tXV+2qfPTR0ejVi034RLbO0ktIcFA8KRFDGJldUFDZTzlvb2907Qo4OAC6CitHqNVAly7ebAEjsiOWWkxZrmPUiGrCEEZWERRUtavy7bf1wxoR2T5LLiHBgEVKwxBGVlO1q1LqGhHZD15XkUh+GMLIqip3VRKR5VUeFG8Ir6toHLkEWlI+hjAiIhtXOTAYmpnI6yrWTk4XCiflYwgjIrIjdb20mKUodQkJuV0onJSNF/AmIrITUl7c2taWkJDThcJJudgSRkRkJ6S8uLWtLSEh5b4k28EQRkRkJ6SemaiUgGUMqfcl2QZ2RxIR2YnymYkqVdmqyUqcmSgX3JdkDmwJIyKyI0qemSg33JdUXwxhREQ2rvJgd0MzE5UyKF5OlDrLk+SBIYyIyMbZ2qB4KdnaLE+SlkoQBEHqSlD1CgoKoNFooNVq4enpKXV1SEJcoZtIPvj3SLUx9vubLWFEMienS84QkW3N8iRpcXYkkcwZu/I2V+gmIlIWhjAiIiIiCTCEEREREUmAIYyIiIhIAhyYT6QwWq0H8vK84eWVy/WJiMhiKs4CzcpyQGZmA4SH30dgYNlVAjgLtP4YwogU5NSpDti5cwAEwUG8TErHjqelrhYR2ZiKs7JrOu5wVnb9sDuSSCG0Wg/xQAgAguCAnTsHQKv1kLhmRGRrylvAajvucFZ2/TCEEclc+crbeXne4oGwnCA4IC/PS68cEZG51HbcofphdySRzJVfcuby5fv46CMBOp1K3KZWC5gypR/CwhqwS4CIzM7LKxcqlU4viKlUOnh55UlYK9vBljAiBfD29kZkpB/eeUcFtbrsNrUaePttFSIj/RjAiMgiNJpCDBy4CypV2WD88jFhnBRkHmwJI1KQceOAmBjg0iWgWTMgKEjqGhGRrevY8TQiIi4hL88LXl55DGBmxBBGpDBBQQxftoTLAJASaDSFDF8WwBBGRCQRLgNAJJ0//gAuXgSaN5fuxJZjwoiIJMJlAEiujJ1trbRZ2bm5ucjOzsaqVfkIDRXQpw8QGipg1ap8ZGdnIzc316r1YUsYEZHEaloGgF1AJIXyWdk1nQAorau8vOVZq/VAUlIiBKFsprlOp8KsWZ74888PoNEUWrXlmSGMiEhiXAaA5EhJAcsY5YGytpMea7Y8szuSiEhiXAaAyHrKT3oqkuqkhy1hREQywGUAiKyj/KSn8kQYKf7mGMKIiGSCywAQWYdcTnoYwoiIiMjuyOGkh2PCiIgkYqvLABCRcdgSRkQkEVtcBoCIjMcQRkQkIQYsIuuQY8szQxgRERHZPDm2PDOEERERkV2QW8szB+YTERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgRERGRBBQXwoqKitC+fXuoVCqcOXNGb9svv/yC7t27w8XFBcHBwVixYkWV+2/btg2tWrWCi4sL2rZtiz179uhtFwQBCxYsQEBAAFxdXREdHY2LFy/qlcnLy8OIESPg6emJRo0aYdy4cbh9+3ad60JERET2S3EhbPbs2QgMDKxye0FBAZ544gmEhoYiLS0Nb7zxBhYtWoR33nlHLHPs2DEMHz4c48aNw+nTpxEXF4e4uDicPXtWLLNixQqsXbsWmzZtwvHjx+Hu7o6YmBjcu3dPLDNixAj89ttvOHDgAHbt2oXvvvsOEyZMqFNdiIjq6o8/gMOHy/4lIhsgKMiePXuEVq1aCb/99psAQDh9+rS4bcOGDULjxo2FoqIi8bY5c+YILVu2FH9/6qmnhP79++s9ZpcuXYTnn39eEARB0Ol0gr+/v/DGG2+I2/Pz8wVnZ2fhk08+EQRBEM6dOycAEE6cOCGW2bt3r6BSqYQ///zT6LoYQ6vVCgAErVZbp/sRke24efOmkJWVJaxceUtwcNAJgCA4OOiElStvCVlZWcLNmzelriIRVWLs97diWsKuXbuG5557Dh999BHc3NyqbE9NTUWPHj30LjcQExOD9PR03Lp1SywTHR2td7+YmBikpqYCADIzM5GTk6NXRqPRoEuXLmKZ1NRUNGrUCI888ohYJjo6Gg4ODjh+/LjRdalOUVERCgoK9H6IyH7l5uZi/fr1eOONTzBrlid0OhUAQKdTYdYsT7zxxidYv349cnNzJa4pEZlCESFMEASMGTMGEydO1As/FeXk5MDPz0/vtvLfc3JyaixTcXvF+xkq06RJE73tDRo0gJeXV63PU/E5qrNs2TJoNBrxJzg42GBZImtjV5j1lV9eJS/PG5XPmQXBAXl5XnrliEhZJA1hc+fOhUqlqvHnwoULWLduHQoLCzFv3jwpq2tx8+bNg1arFX9+//13qatEBAB4/30gNBTo06fs3/ffl7pG9sXLKxcqlU7vNpVKBy+vvDo9Tm5uLrKzs5GdnY20tGv44otcpKVdE29jixqRdUl67ciZM2dizJgxNZZp2rQpDh06hNTUVDg7O+tte+SRRzBixAhs2bIF/v7+uHbtmt728t/9/f3Ff6srU3F7+W0BAQF6Zdq3by+WuX79ut5j3L9/H3l5ebU+T8XnqI6zs3OV10gkpdzcXFy+fB8TJjSp0BUGPP+8gPbtryMsrIHsrsVmizSaQgwcuAs7dw6AIDhApdJh4MBd0GgKjX6M8q5NADh1qkOVx+rY8TQAICEhge8pkZVIGsJ8fX3h6+tba7m1a9diyZIl4u9ZWVmIiYnBZ599hi5dugAAoqKi8NJLL6GkpASOjo4AgAMHDqBly5Zo3LixWObgwYNITEwUH+vAgQOIiooCAISHh8Pf3x8HDx4UQ1dBQQGOHz+OSZMmiY+Rn5+PtLQ0REZGAgAOHToEnU5Xp7oQyV35l3ZmZhh0utF620pLVVi3bi/Cw6/wS9tKOnY8jYiIS8jL84KXV16dAhjwd5elVushBjCgrFtz584BiIi4BI2mkF2bRFakiDFhISEheOihh8SfFi1aAAAiIiIQFBQEAHj66afh5OSEcePG4bfffsNnn32GNWvWYMaMGeLjTJs2Dfv27cOqVatw4cIFLFq0CCdPnkRCQgIAQKVSITExEUuWLMHXX3+NX3/9FaNGjUJgYCDi4uIAAK1bt0ZsbCyee+45/PTTT/jhhx+QkJCAYcOGiUtnGFMXIrkr/zKurSuMX9rWo9EUIjz8Sp0DWEW1jS8jIutRRAgzhkajwf79+5GZmYnIyEjMnDkTCxYs0Fu/q1u3bkhJScE777yDdu3a4YsvvsBXX32Fhx56SCwze/ZsTJkyBRMmTECnTp1w+/Zt7Nu3Dy4uLmKZrVu3olWrVujbty/+8Y9/4LHHHtNbA8yYuhApRXlXWHkQM6UrjOTDXOPLiKj+JO2ONFVYWBgEQahy+8MPP4z//Oc/Nd73n//8J/75z38a3K5SqfDKK6/glVdeMVjGy8sLKSkpNT6PMXUhUor6doWRfJhjfBkRmYciQxgRWZ9GU8gvaiuruNagOcqVY6gmkgeGMCIimfL29kZCQkKN4+6cnJxMmhjBUE0kPYYwIiIZ48xTIttlMwPziYjIMEt1bRKR6dgSRkTV4pe2bbFk1yYRmUYlVDfNkGShoKAAGo0GWq0Wnp6eUleH7FBubi6/tImI6sjY72+2hBGRQQxYRESWwzFhRERERBJgCCMiIiKSAEMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEuCK+URERArDS4rZBoYwIiIiBcnNzcX69etrLZeQkMAgJnPsjiQiIlKQmlrATClH0mEIIyIiIpIAQxgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgCGMiIhIQZycnPR+12o9kJkZBq3Wo8ZyJD9crJWIiEhBvL29kZCQgOLiYqSkuOKVVzTQ6VRwcBCwYoUWTz/9F1fMVwiVIAiC1JWg6hUUFECj0UCr1cLT01Pq6hARkYz88QcQGgrodH/fplYDly8DQUGSVYtg/Pc3uyOJiIgU6OJF/QAGAKWlwKVL0tSH6o4hjIiISIGaNwccKn2Lq9VAs2bS1IfqjiGMiIhIgYKCgHfeKQteQNm/b7/Nrkgl4cB8IiIihRo3DoiJKeuCbNaMAUxpGMKIiIgULCiI4Uup2B1JREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgNeOlDFBEAAABQUFEteEiIiIjFX+vV3+PW4IQ5iMFRYWAgCCg4MlrgkRERHVVWFhITQajcHtKqG2mEaS0el0yMrKgoeHB1QqldTVsaqCggIEBwfj999/h6enp9TVUSzuR/PhvjQP7kfz4b40D0vsR0EQUFhYiMDAQDg4GB75xZYwGXNwcEBQUJDU1ZCUp6cnDy5mwP1oPtyX5sH9aD7cl+Zh7v1YUwtYOQ7MJyIiIpIAQxgRERGRBBjCSJacnZ2xcOFCODs7S10VReN+NB/uS/PgfjQf7kvzkHI/cmA+ERERkQTYEkZEREQkAYYwIiIiIgkwhBERERFJgCGMiIiISAIMYSSZ7777DgMHDkRgYCBUKhW++uorve2CIGDBggUICAiAq6sroqOjcfHiRWkqK3O17csxY8ZApVLp/cTGxkpTWRlbtmwZOnXqBA8PDzRp0gRxcXFIT0/XK3Pv3j1MnjwZ3t7eaNiwIeLj43Ht2jWJaixPxuzHXr16VflMTpw4UaIay9fGjRvx8MMPiwuJRkVFYe/eveJ2fh6NV9u+lOIzyRBGkrlz5w7atWuHt956q9rtK1aswNq1a7Fp0yYcP34c7u7uiImJwb1796xcU/mrbV8CQGxsLLKzs8WfTz75xIo1VIajR49i8uTJ+PHHH3HgwAGUlJTgiSeewJ07d8Qy06dPx86dO7Ft2zYcPXoUWVlZGDx4sIS1lh9j9iMAPPfcc3qfyRUrVkhUY/kKCgrC66+/jrS0NJw8eRJ9+vTBk08+id9++w0AP491Udu+BCT4TApEMgBA+PLLL8XfdTqd4O/vL7zxxhvibfn5+YKzs7PwySefSFBD5ai8LwVBEEaPHi08+eSTktRHya5fvy4AEI4ePSoIQtln0NHRUdi2bZtY5vz58wIAITU1Vapqyl7l/SgIgtCzZ09h2rRp0lVKwRo3biy89957/DyaQfm+FARpPpNsCSNZyszMRE5ODqKjo8XbNBoNunTpgtTUVAlrplxHjhxBkyZN0LJlS0yaNAm5ublSV0n2tFotAMDLywsAkJaWhpKSEr3PZatWrRASEsLPZQ0q78dyW7duhY+PDx566CHMmzcPd+/elaJ6ilFaWopPP/0Ud+7cQVRUFD+P9VB5X5az9meSF/AmWcrJyQEA+Pn56d3u5+cnbiPjxcbGYvDgwQgPD0dGRgZefPFF9OvXD6mpqVCr1VJXT5Z0Oh0SExPx6KOP4qGHHgJQ9rl0cnJCo0aN9Mryc2lYdfsRAJ5++mmEhoYiMDAQv/zyC+bMmYP09HTs2LFDwtrK06+//oqoqCjcu3cPDRs2xJdffok2bdrgzJkz/DzWkaF9CUjzmWQII7IDw4YNE//ftm1bPPzww4iIiMCRI0fQt29fCWsmX5MnT8bZs2fx/fffS10VRTO0HydMmCD+v23btggICEDfvn2RkZGBiIgIa1dT1lq2bIkzZ85Aq9Xiiy++wOjRo3H06FGpq6VIhvZlmzZtJPlMsjuSZMnf3x8AqszyuXbtmriNTNe0aVP4+Pjg0qVLUldFlhISErBr1y4cPnwYQUFB4u3+/v4oLi5Gfn6+Xnl+LqtnaD9Wp0uXLgDAz2Q1nJyc0KxZM0RGRmLZsmVo164d1qxZw8+jCQzty+pY4zPJEEayFB4eDn9/fxw8eFC8raCgAMePH9frvyfT/PHHH8jNzUVAQIDUVZEVQRCQkJCAL7/8EocOHUJ4eLje9sjISDg6Oup9LtPT03H16lV+LiuobT9W58yZMwDAz6QRdDodioqK+Hk0g/J9WR1rfCbZHUmSuX37tt4ZRmZmJs6cOQMvLy+EhIQgMTERS5YsQfPmzREeHo758+cjMDAQcXFx0lVapmral15eXli8eDHi4+Ph7++PjIwMzJ49G82aNUNMTIyEtZafyZMnIyUlBf/+97/h4eEhjqvRaDRwdXWFRqPBuHHjMGPGDHh5ecHT0xNTpkxBVFQUunbtKnHt5aO2/ZiRkYGUlBT84x//gLe3N3755RdMnz4dPXr0wMMPPyxx7eVl3rx56NevH0JCQlBYWIiUlBQcOXIE33zzDT+PdVTTvpTsM2nVuZhEFRw+fFgAUOVn9OjRgiCULVMxf/58wc/PT3B2dhb69u0rpKenS1tpmappX969e1d44oknBF9fX8HR0VEIDQ0VnnvuOSEnJ0fqastOdfsQgLB582axzF9//SX861//Eho3biy4ubkJ/+///T8hOztbukrLUG378erVq0KPHj0ELy8vwdnZWWjWrJkwa9YsQavVSltxGRo7dqwQGhoqODk5Cb6+vkLfvn2F/fv3i9v5eTReTftSqs+kShAEwXIRj4iIiIiqwzFhRERERBJgCCMiIiKSAEMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIyQXFxsdRVqEKOdSIiwxjCiIgA9OrVCwkJCUhISIBGo4GPjw/mz5+P8iu7hYWF4dVXX8WoUaPg6emJCRMmAAC+//57dO/eHa6urggODsbUqVNx584d8XE3bNiA5s2bw8XFBX5+fhgyZIi47YsvvkDbtm3h6uoKb29vREdHi/ft1asXEhMT9eoYFxeHMWPGiL+bWicikgeGMCKi/7NlyxY0aNAAP/30E9asWYM333wT7733nrh95cqVaNeuHU6fPo358+cjIyMDsbGxiI+Pxy+//ILPPvsM33//PRISEgAAJ0+exNSpU/HKK68gPT0d+/btQ48ePQAA2dnZGD58OMaOHYvz58/jyJEjGDx4MOp6Od+61omI5IMX8CYiQlnL0/Xr1/Hbb79BpVIBAObOnYuvv/4a586dQ1hYGDp06IAvv/xSvM/48eOhVqvx9ttvi7d9//336NmzJ+7cuYM9e/bg2WefxR9//AEPDw+95zt16hQiIyNx+fJlhIaGVluf9u3bIykpSbwtLi4OjRo1QnJyMgCYVCcXF5d67SciMh+2hBER/Z+uXbuKAQwAoqKicPHiRZSWlgIAHnnkEb3yP//8M5KTk9GwYUPxJyYmBjqdDpmZmXj88ccRGhqKpk2bYuTIkdi6dSvu3r0LAGjXrh369u2Ltm3b4p///Cfeffdd3Lp1q851rmudiEg+GMKIiIzk7u6u9/vt27fx/PPP48yZM+LPzz//jIsXLyIiIgIeHh44deoUPvnkEwQEBGDBggVo164d8vPzoVarceDAAezduxdt2rTBunXr0LJlSzEoOTg4VOmaLCkpqXediEg+GMKIiP7P8ePH9X7/8ccf0bx5c6jV6mrLd+zYEefOnUOzZs2q/Dg5OQEAGjRogOjoaKxYsQK//PILLl++jEOHDgEAVCoVHn30USxevBinT5+Gk5OT2LXo6+uL7Oxs8blKS0tx9uzZWl+DMXUiInlgCCMi+j9Xr17FjBkzkJ6ejk8++QTr1q3DtGnTDJafM2cOjh07hoSEBJw5cwYXL17Ev//9b3EQ/K5du7B27VqcOXMGV65cwYcffgidToeWLVvi+PHjeO2113Dy5ElcvXoVO3bswI0bN9C6dWsAQJ8+fbB7927s3r0bFy5cwKRJk5Cfn1/ra6itTkQkHw2krgARkVyMGjUKf/31Fzp37gy1Wo1p06aJyz5U5+GHH8bRo0fx0ksvoXv37hAEARERERg6dCgAoFGjRtixYwcWLVqEe/fuoXnz5vjkk0/w4IMP4vz58/juu++QlJSEgoIChIaGYtWqVejXrx8AYOzYsfj5558xatQoNGjQANOnT0fv3r1rfQ211YmI5IOzI4mIUP1sRCIiS2J3JBEREZEEGMKIiIiIJMDuSCIiIiIJsCWMiIiISAIMYUREREQSYAgjIiIikgBDGBEREZEEGMKIiIiIJMAQRkRERCQBhjAiIiIiCTCEEREREUmAIYyIiIhIAv8fokYhtfbx9AEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYShJREFUeJzt3XlclOX6P/DPsAoKYyyyJAribmaKqVipJQXlkj/1pGauqOkRCzG3k0tWai7lvrSrHa1caBGXNDU7JpGhZiaS8kXNg7hADC4JyDy/PzjzxAAzDMPMPMt83q8Xr2See2bueRrmuea67/u6NYIgCCAiIiIih3KRugNEREREzohBGBEREZEEGIQRERERSYBBGBEREZEEGIQRERERSYBBGBEREZEEGIQRERERSYBBGBEREZEEGIQRERERSYBBGBERmbVhwwZoNBpcuHBB6q4QqQqDMCKS3LFjx5CQkIA2bdqgbt26aNSoEZ577jn8/vvvldr26NEDGo0GGo0GLi4u8PX1RYsWLTBs2DDs37+/Rs+7c+dOdO/eHQ0aNIC3tzeaNGmC5557Dnv37rXVS6tkwYIF+PLLLyvdfvToUbz22msoKCiw23NX9Nprr4nnUqPRwNvbG61bt8asWbNQWFhok+fYsmULli9fbpPHIlIbBmFEJLlFixZhx44d6NmzJ1asWIFx48bh+++/R4cOHXD69OlK7Rs2bIhPPvkEmzZtwpIlS9C3b18cPXoUTz31FAYNGoSSkpJqn3Pp0qXo27cvNBoNZs6ciWXLlmHAgAE4d+4cPvvsM3u8TADmg7B58+Y5NAgzWLduHT755BO88847aNmyJebPn4+4uDjYYmthBmFEprlJ3QEioqSkJGzZsgUeHh7ibYMGDULbtm3x1ltv4d///rdRe61WixdeeMHotrfeegsvvfQS1q5di/DwcCxatMjk8927dw9vvPEGnnzySezbt6/S8WvXrtXyFcnHnTt34O3tbbbNwIEDERAQAAAYP348BgwYgOTkZPz444+Ijo52RDeJnBIzYUQkua5duxoFYADQrFkztGnTBhkZGRY9hqurK1auXInWrVtj9erV0Ol0JtveuHEDhYWFeOSRR6o83qBBA6Pf7969i9deew3NmzdHnTp1EBISgv79+yMrK0tss3TpUnTt2hX+/v7w8vJCVFQUtm/fbvQ4Go0Gt2/fxsaNG8UhwJEjR+K1117D1KlTAQARERHisfJzsP79738jKioKXl5e8PPzw+DBg/HHH38YPX6PHj3wwAMPID09Hd26dYO3tzf+9a9/WXT+ynviiScAANnZ2WbbrV27Fm3atIGnpydCQ0MxceJEo0xejx49sGvXLly8eFF8TeHh4TXuD5FaMRNGRLIkCAKuXr2KNm3aWHwfV1dXDBkyBLNnz8aRI0fQq1evKts1aNAAXl5e2LlzJyZNmgQ/Pz+Tj1laWorevXvjwIEDGDx4MF5++WXcvHkT+/fvx+nTpxEZGQkAWLFiBfr27YuhQ4eiuLgYn332Gf7xj38gJSVF7Mcnn3yCMWPGoFOnThg3bhwAIDIyEnXr1sXvv/+OTz/9FMuWLROzUoGBgQCA+fPnY/bs2XjuuecwZswYXL9+HatWrUK3bt1w4sQJ1K9fX+xvXl4enn76aQwePBgvvPACgoKCLD5/Bobg0t/f32Sb1157DfPmzUNMTAwmTJiAzMxMrFu3DseOHcMPP/wAd3d3vPrqq9DpdLh8+TKWLVsGAKhXr16N+0OkWgIRkQx98sknAgDhww8/NLq9e/fuQps2bUze74svvhAACCtWrDD7+HPmzBEACHXr1hWefvppYf78+UJ6enqldh999JEAQHjnnXcqHdPr9eK/79y5Y3SsuLhYeOCBB4QnnnjC6Pa6desKI0aMqPRYS5YsEQAI2dnZRrdfuHBBcHV1FebPn290+6+//iq4ubkZ3d69e3cBgLB+/XqTr7u8uXPnCgCEzMxM4fr160J2drbw7rvvCp6enkJQUJBw+/ZtQRAE4eOPPzbq27Vr1wQPDw/hqaeeEkpLS8XHW716tQBA+Oijj8TbevXqJTRu3Nii/hA5Gw5HEpHsnD17FhMnTkR0dDRGjBhRo/saMi03b940227evHnYsmUL2rdvj2+++QavvvoqoqKi0KFDB6Mh0B07diAgIACTJk2q9BgajUb8t5eXl/jvP//8EzqdDo899hiOHz9eo/5XlJycDL1ej+eeew43btwQf4KDg9GsWTMcOnTIqL2npydGjRpVo+do0aIFAgMDERERgRdffBFNmzbFrl27TM4l+/bbb1FcXIzExES4uPx9GRk7dix8fX2xa9eumr9QIifE4UgikpXc3Fz06tULWq0W27dvh6ura43uf+vWLQCAj49PtW2HDBmCIUOGoLCwEGlpadiwYQO2bNmCPn364PTp06hTpw6ysrLQokULuLmZ/7hMSUnBm2++iZMnT6KoqEi8vXygZo1z585BEAQ0a9asyuPu7u5Gv99///2V5tdVZ8eOHfD19YW7uzsaNmwoDrGacvHiRQBlwVt5Hh4eaNKkiXiciMxjEEZEsqHT6fD000+joKAA//nPfxAaGlrjxzCUtGjatKnF9/H19cWTTz6JJ598Eu7u7ti4cSPS0tLQvXt3i+7/n//8B3379kW3bt2wdu1ahISEwN3dHR9//DG2bNlS49dQnl6vh0ajwZ49e6oMSCvOsSqfkbNUt27dxHloROQ4DMKISBbu3r2LPn364Pfff8e3336L1q1b1/gxSktLsWXLFnh7e+PRRx+1qh8dO3bExo0bceXKFQBlE+fT0tJQUlJSKetksGPHDtSpUwfffPMNPD09xds//vjjSm1NZcZM3R4ZGQlBEBAREYHmzZvX9OXYRePGjQEAmZmZaNKkiXh7cXExsrOzERMTI95W20wgkZpxThgRSa60tBSDBg1Camoqtm3bZlVtqtLSUrz00kvIyMjASy+9BF9fX5Nt79y5g9TU1CqP7dmzB8DfQ20DBgzAjRs3sHr16kpthf8VM3V1dYVGo0Fpaal47MKFC1UWZa1bt26VBVnr1q0LAJWO9e/fH66urpg3b16l4qmCICAvL6/qF2lHMTEx8PDwwMqVK4369OGHH0Kn0xmtSq1bt67ZciFEzoyZMCKS3JQpU/D111+jT58+yM/Pr1SctWJhVp1OJ7a5c+cOzp8/j+TkZGRlZWHw4MF44403zD7fnTt30LVrV3Tp0gVxcXEICwtDQUEBvvzyS/znP/9Bv3790L59ewDA8OHDsWnTJiQlJeGnn37CY489htu3b+Pbb7/FP//5Tzz77LPo1asX3nnnHcTFxeH555/HtWvXsGbNGjRt2hSnTp0yeu6oqCh8++23eOeddxAaGoqIiAh07twZUVFRAIBXX30VgwcPhru7O/r06YPIyEi8+eabmDlzJi5cuIB+/frBx8cH2dnZ+OKLLzBu3Di88sortTr/NRUYGIiZM2di3rx5iIuLQ9++fZGZmYm1a9fi4YcfNvr/FRUVhc8//xxJSUl4+OGHUa9ePfTp08eh/SWSLSmXZhIRCcLfpRVM/ZhrW69ePaFZs2bCCy+8IOzbt8+i5yspKRHef/99oV+/fkLjxo0FT09PwdvbW2jfvr2wZMkSoaioyKj9nTt3hFdffVWIiIgQ3N3dheDgYGHgwIFCVlaW2ObDDz8UmjVrJnh6egotW7YUPv74Y7EERHlnz54VunXrJnh5eQkAjMpVvPHGG8L9998vuLi4VCpXsWPHDuHRRx8V6tatK9StW1do2bKlMHHiRCEzM9Po3Jgr31GRoX/Xr183265iiQqD1atXCy1bthTc3d2FoKAgYcKECcKff/5p1ObWrVvC888/L9SvX18AwHIVROVoBMEGm4MRERERUY1wThgRERGRBBiEEREREUmAQRgRERGRBBiEEREREUmAQRgRERGRBBiEEREREUmAxVplTK/XIycnBz4+Ptz6g4iISCEEQcDNmzcRGhoKFxfT+S4GYTKWk5ODsLAwqbtBREREVvjjjz/QsGFDk8cZhMmYj48PgLL/ieb2wSMiIiL5KCwsRFhYmHgdN4VBmIwZhiB9fX0ZhBERESlMdVOJODGfiIiISAIMwoiIiIgkwCCMiIiISAIMwoiIiIgkwCCMiIiISAIMwoiIiIgkwCCMiIiISAIMwoiIiIgkwCCMiIiISAIMwoiIiIgkoJggrG/fvmjUqBHq1KmDkJAQDBs2DDk5OUZtBEHA0qVL0bx5c3h6euL+++/H/Pnzjdp899136NChAzw9PdG0aVNs2LCh0nOtWbMG4eHhqFOnDjp37oyffvrJ6Pjdu3cxceJE+Pv7o169ehgwYACuXr1q1ObSpUvo1asXvL290aBBA0ydOhX37t2zzckgIiIixVNMEPb4449j69atyMzMxI4dO5CVlYWBAwcatXn55ZfxwQcfYOnSpTh79iy+/vprdOrUSTyenZ2NXr164fHHH8fJkyeRmJiIMWPG4JtvvhHbfP7550hKSsLcuXNx/PhxtGvXDrGxsbh27ZrYZvLkydi5cye2bduGw4cPIycnB/379xePl5aWolevXiguLsbRo0exceNGbNiwAXPmzLHjGXKcy5eBQ4fK/ktERERWEhTqq6++EjQajVBcXCwIgiCcOXNGcHNzE86ePWvyPtOmTRPatGljdNugQYOE2NhY8fdOnToJEydOFH8vLS0VQkNDhYULFwqCIAgFBQWCu7u7sG3bNrFNRkaGAEBITU0VBEEQdu/eLbi4uAi5ublim3Xr1gm+vr5CUVGRxa9Rp9MJAASdTmfxfezlxo0bQk5OjrB06Z+Ci4teAATBxUUvLF36p5CTkyPcuHFD6i4SERHJgqXXb8VkwsrLz8/H5s2b0bVrV7i7uwMAdu7ciSZNmiAlJQUREREIDw/HmDFjkJ+fL94vNTUVMTExRo8VGxuL1NRUAEBxcTHS09ON2ri4uCAmJkZsk56ejpKSEqM2LVu2RKNGjcQ2qampaNu2LYKCgoyep7CwEL/99pvJ11VUVITCwkKjHznIy8vD6tWrsWTJp5g61Rd6fdmu8Hq9BlOn+mLJkk+xevVq5OXlSdxTIiIi5XCTugM1MX36dKxevRp37txBly5dkJKSIh77v//7P1y8eBHbtm3Dpk2bUFpaismTJ2PgwIE4ePAgACA3N9coMAKAoKAgFBYW4q+//sKff/6J0tLSKtucPXtWfAwPDw/Ur1+/Upvc3Fyzz2M4ZsrChQsxb968GpwRxyguLgYA5Of7o2LcLgguyM/3g1Z7U2xH0snLyxP/P+TkuCA72w0REfcQGqoHAHh4eMDf31/KLhKRjJX/DKkKP0NsS9IgbMaMGVi0aJHZNhkZGWjZsiUAYOrUqYiPj8fFixcxb948DB8+HCkpKdBoNNDr9SgqKsKmTZvQvHlzAMCHH36IqKgoZGZmokWLFnZ/PbU1c+ZMJCUlib8XFhYiLCxMwh4Z8/PLg0ajNwrENBo9/PzyzdyLHMWQsQSA48fbY+fO3hAEF2g0evTpk4IOHU4AABISEvghSkSVlP8MMYefIbYjaRA2ZcoUjBw50mybJk2aiP8OCAhAQEAAmjdvjlatWiEsLAw//vgjoqOjERISAjc3NzEAA4BWrVoBKFup2KJFCwQHB1daxXj16lX4+vrCy8sLrq6ucHV1rbJNcHAwACA4OBjFxcUoKCgwyoZVbFNxRaXhMQ1tquLp6QlPT0+z50NKWu1N9OmTUunirtXelLprhL8zljqdj/j/CCjLVu7c2RuRkeeZsSQikyp+Nuh0PsjP94efX57R5zw/Q2xH0iAsMDAQgYGBVt1Xry8bXikqKgIAPPLII7h37x6ysrIQGRkJAPj9998BAI0bNwYAREdHY/fu3UaPs3//fkRHRwMoS7NGRUXhwIED6Nevn/g8Bw4cQEJCAgAgKioK7u7uOHDgAAYMGAAAyMzMxKVLl8THiY6Oxvz583Ht2jU0aNBAfB5fX1+0bt3aqtcrFx06nEBk5Hnk5/vBzy+fAZgMVTdsrHYcTiGqPXPZdLIdRcwJS0tLw7Fjx/Doo4/ivvvuQ1ZWFmbPno3IyEgx8ImJiUGHDh0wevRoLF++HHq9HhMnTsSTTz4pZsfGjx+P1atXY9q0aRg9ejQOHjyIrVu3YteuXeJzJSUlYcSIEejYsSM6deqE5cuX4/bt2xg1ahQAQKvVIj4+HklJSfDz84Ovry8mTZqE6OhodOnSBQDw1FNPoXXr1hg2bBgWL16M3NxczJo1CxMnTpR1pstSWu1Np7iYK5UzDxtzOIWo9qrLppPtKGJ1pLe3N5KTk9GzZ0+0aNEC8fHxePDBB3H48GExqHFxccHOnTsREBCAbt26oVevXmjVqhU+++wz8XEiIiKwa9cu7N+/H+3atcPbb7+NDz74ALGxsWKbQYMGYenSpZgzZw4eeughnDx5Env37jWaaL9s2TL07t0bAwYMQLdu3RAcHIzk5GTxuKurK1JSUuDq6oro6Gi88MILGD58OF5//XUHnC1ydoZhY42mLFvsTMPGVQ2nZGeHQ6fzMduOiP5mLptOtqWITFjbtm3FFY7mhIaGYseOHWbb9OjRAydOmE+pJiQkiMOPValTpw7WrFmDNWvWmGzTuHHjSkOfRI7CYWMOpxBZy5mz6Y6miEwYScvDw8Om7cgxtNqbiIi46JQBmKnhlIoZMSKqzJmz6Y6miEwYScvf3x8JCQmc7EyK4eyLE4hqi9l0x2AQRhZhgCV/zFj+jcMpRDVX8bPB1CIsZ/gMcRQGYUQqwYzl31jTjqjm+BnieAzCiFSEH45/43AKUc3xM8SxGIQRkWpwOIWIlIRBGBGpBodTiEhJGIQRKRS356maM75mIlImBmFECsTteYhM4xcUUgoGYUQKVNX2PPn5/vDzyzOaA8XtecjZ8AsKKQmDMCKF4/Y8RH+z9IsHv6CQHHDbIiIF4/Y8ROaZ2sSdSA6YCSNSMG7PQ2SaPbPEnHdGtsAgjEjBuD0PUdVMZYkjI8/X+gsK552RrXA4kkjBDNvzaDR6AOD2PET/Yy5LXFucd0a2wkwYkcJxex6iyqrLEt+4caPK+1kzjGhqdTJRdRiEESkQt+chMq+6TdyTk5NN3rcmw4jVzTvj3DEyh0EYkQJxex6iqpX/4mFtltjSYcTq5p0VFBRg69at1T4O5445LwZhRArFD22iysx9Qblx44ZRBqy2w4jVrU6+d++eRY/DuWPOi0EYEUmCwzRkL5a8b2xRvqKmq5M5d4wqYhBGRDZlSXAFgEv8STK2Kl9R3byz8rizBVWFQRgR2Yyl9ZOee+45ix6PwzRkD7UtcmzpvDN3d3cA9q1ZRsrGIIyIbMbSoKniXBkO05Aj1bbIsaULYwzHubMFmcIgjIjsxpLgisM05Gg1GUY0xZJh8itXrgDgzhZSk/P8UwZhRGQXlgRXHKYhR7J0GNHW9fVsEfSRdeS+xRSDMCKyOUuDKw7TkCM5ur6eVEEf/U3uW0wxCCMim7M0uOIwDTmaI7MdLKosP3Kbf8ogjIhsztLgisM0pHYMsORDjvNPGYQRkc1VF1wZlu4DHKYhIvuT6/xTBmFEZJWqVhzpdDrx3+aCq8DAQA7TEJHDyHX+KYMwqpacl/eS7dTk/7OlK47Gjn0a9evXN/k4RKQMSr8OyHX+KYMwMkvuy3vJNmr6/7lyBqzqya7169dHSEiIzftLRI6jhuuAXOefMggjs+S+vJdsw9Kgqqr/z3Kc7EpEtlObzwepyb1MCIMwqhG5Le8ly5kbTrhx44b475oEVXKd7EpE9qG0L11yLxPCIIwsprQ/PvqbpcMJNQ2q5DrZlYhsT6lfuuQ6RAoALtU3ITL9x6fT+QAoy6Tk5eVJ2UUyo6rhhOzscPH/n4G5oKoqhsmu5clhsisR2V5NPx+oesyEkUWqy3gkJycDkPfETCpjLqNZ0xVEcp3s6khKXzVGZCm5rjBUMgZhZBFL//jkODHTEZRyIa5uOMGaoMrcZFe1U8OqMao9pfz91xa/dNkegzCySFV/fNHRqVJ3SxaUdCG2ZA6XJUFVxZVEhgCuunZqo+RVY2QbSvr7twVn/tJlDwzCyKyqlvempXXG0aPROHr0EaSmRjv9BH0lXYhrsqejuaBK7iuOpMCFK85JSX//1uKXLvthEEZmGS62OTk54ryv1NRoGNZ0KGV1jKPI/UJc3XBC//79ERAQUOV9KwZVzhRgVUepq8bItuT+928tfumyHwZhVK3yFdJZksA0pVyIzQ0nBAQEsMK9Ffh3oWy2mNMl5d+/I+akMcCyDwZhVCO1XR2j5gmscr4QczjBvrhqTLlsNadLqr//iv03NRyqljlpasMgjGqkuuEsQ+X1qoIptU9glfOFmMMJ9sVVY8plqzldUv39l++XueFQJc9JUzMGYWQRS/ffMswbAyoHU2rfh1LuF2IGWPbFVWPKV5s5XVL//StlOgQZYxBGFimfSblx4waSk5Or/cOuLphS4z6UvBA7Fw7zqoctghgp//7lPB2CTGMQRhYzlUmxJphS0yoiXoidF4d51cPaIEYuf/9yng5BpjEIo1qxJphSW9qcF2Lnxv+v6mBtECOXv3+ph0PJOgzCyGrWBlNqTJvzQkykbLUJYuTy98/pEMrDIIysZm0wxbQ5EcmRGoIYU8OhJE8Mwshq1gZTzpo2V3ONNCKlksucLmtZ2i+59t/ZMQgjq9U0mLK0zIUaPyzUXiONSKnkMqfLWkrvv7NjEEY1Zm0w5cwfFs6wyS+RUinpM4cZdXVhEEY1Vptgih8O6irPQUSOw4y6+jAII6vwD9w6aivPQUSOw4y6+jAII3IgNZbnICLz7DGEyIy6OjAII3Iglucgci4VhxBNZa9qMoTIjLp6MAgjciBnLc9B5KzKZ8DMZa9qMoTIjLp6MAgjcjA1FIQkopqxZfaKGXX1cKm+CRHVVlUFISMiLlb68FVjjTQiMp+9qilDRl2j0QMAM+oKxkwYkQM4c400IrJ99ooZdXVgEEbkIAywiJyXLeaDKn2LJaqMQRgRkZNjFXbHqG32ylEZdb4fHIdBGBGRE2MVdscylb2ylL3/H9ijpAaZxiCMiMiJsQq7fVk6NCiXIUR7lNQg0xSzOrJv375o1KgR6tSpg5CQEAwbNgw5OTni8ddeew0ajabST926dY0eZ9u2bWjZsiXq1KmDtm3bYvfu3UbHBUHAnDlzEBISAi8vL8TExODcuXNGbfLz8zF06FD4+vqifv36iI+Px61bt4zanDp1Co899hjq1KmDsLAwLF682MZnhIjIto4fb4/lyxOxceMILF+eiOPH20vdJcUzDCGOGzfO5I8cs0qmSmrodD4S90xdFBOEPf7449i6dSsyMzOxY8cOZGVlYeDAgeLxV155BVeuXDH6ad26Nf7xj3+IbY4ePYohQ4YgPj4eJ06cQL9+/dCvXz+cPn1abLN48WKsXLkS69evR1paGurWrYvY2FjcvXtXbDN06FD89ttv2L9/P1JSUvD9999j3Lhx4vHCwkI89dRTaNy4MdLT07FkyRK89tpreO+99+x8loiIrMOLrv34+/sjJCTE5I/cAjDAtiU1yDTFDEdOnjxZ/Hfjxo0xY8YM9OvXDyUlJXB3d0e9evVQr149sc0vv/yCM2fOYP369eJtK1asQFxcHKZOnQoAeOONN7B//36sXr0a69evhyAIWL58OWbNmoVnn30WALBp0yYEBQXhyy+/xODBg5GRkYG9e/fi2LFj6NixIwBg1apVeOaZZ7B06VKEhoZi8+bNKC4uxkcffQQPDw+0adMGJ0+exDvvvGMUrBERyQWrsFN5LAjrGIrJhJWXn5+PzZs3o2vXrnB3d6+yzQcffIDmzZvjscceE29LTU1FTEyMUbvY2FikpqYCALKzs5Gbm2vURqvVonPnzmKb1NRU1K9fXwzAACAmJgYuLi5IS0sT23Tr1s1ojD82NhaZmZn4888/Tb6uoqIiFBYWGv0QETmC4aJbHi+6zosFYR1DUUHY9OnTUbduXfj7++PSpUv46quvqmx39+5dbN68GfHx8Ua35+bmIigoyOi2oKAg5ObmiscNt5lr06BBA6Pjbm5u8PPzM2pT1WOUf46qLFy4EFqtVvwJCwsz2ZaIyJZ40aWKOnQ4gcTE5RgxYgMSE5eLk/LJdiQdjpwxYwYWLVpktk1GRgZatmwJAJg6dSri4+Nx8eJFzJs3D8OHD0dKSgo0Go3Rfb744gvcvHkTI0aMsFvf7WHmzJlISkoSfy8sLGQgRuTEHF2viVXYqaLaltQg8yQNwqZMmYKRI0eabdOkSRPx3wEBAQgICEDz5s3RqlUrhIWF4ccff0R0dLTRfT744AP07t27UjYqODgYV69eNbrt6tWrCA4OFo8bbgsJCTFq89BDD4ltrl27ZvQY9+7dQ35+vtHjVPU85Z+jKp6envD09DR5nIich6PqNbEKO5WntJIaSidpEBYYGIjAwECr7qvXl6XMi4qKjG7Pzs7GoUOH8PXXX1e6T3R0NA4cOIDExETxtv3794tBXEREBIKDg3HgwAEx6CosLERaWhomTJggPkZBQQHS09MRFRUFADh48CD0ej06d+4stnn11VfFRQOG52nRogXuu+8+q14vETkXR9Vr4r6mVB7fD46liNWRaWlpOHbsGB599FHcd999yMrKwuzZsxEZGVkpC/bRRx8hJCQETz/9dKXHefnll9G9e3e8/fbb6NWrFz777DP8/PPPYukIjUaDxMREvPnmm2jWrBkiIiIwe/ZshIaGol+/fgCAVq1aIS4uDmPHjsX69etRUlKChIQEDB48GKGhoQCA559/HvPmzUN8fDymT5+O06dPY8WKFVi2bJl9TxQRqY6p0hGRkedtNkzECyqVx/eD4yhiYr63tzeSk5PRs2dPtGjRAvHx8XjwwQdx+PBho+E7vV6PDRs2YOTIkXB1da30OF27dsWWLVvw3nvvoV27dti+fTu+/PJLPPDAA2KbadOmYdKkSRg3bhwefvhh3Lp1C3v37kWdOnXENps3b0bLli3Rs2dPPPPMM3j00UeNaoBptVrs27cP2dnZiIqKwpQpUzBnzhyWpyCiGmO9JiL10giCIEjdCapaYWEhtFotdDodfH19pe4OETnQlStX8N5770Gn88Hy5YmV6jUlJi6HVnsT48aNM5rDSkTSs/T6rYhMGBGRs2LpCCL1UsScMCIiZ8bSEUTqxCCMiEgBWK+JSH04HElEJEOs10SkfsyEERHJEOs1EakfgzAiIpligEVq4+ituOSOQRiRzPBDiojUyFFbcSkJgzAiGan4IWWKM31IEZE6OGorLiXhxHwiGan44aPT+SA7Oxw6nY/ZdkRESmFqK66Kn3POgJkwIpky902RiEipzG3F5WxlWJgJI5IhflMkIrXy88sTd4Aw0Gj08PPLl6hH0mEmjEiG+E2RiGyl/GKfnBwXZGe7ISLiHkJDywIhRy/2MWzFVTHT74yfbQzCiGTI8E2x4qbNzvhNkYisV36xj7kpDoMGDYJWqzW6rz2DM27FVYZBGJEM8ZsiOSuWaLEtw7k0NcUhMvI8tNqbeO+93Q4vF8GtuBiEEckWvymSs2EdKfsxN8UhK6upQ8pFcCuuyhiEEclIxQ8fU98UnelDipwH60jZj6kpDu7uxWYzZLbErbgqYxBGJCP8kCKqfuiMas7UFIeSEk+HLgLiZ5cxBmGkGM4yV0QNr4GoNrg62D6qmuKg0/lwEZCEGISRInA7HyLnwdXB9lNxigMXAUmLQRgpQlXb+VQ1YZdzRYiUj4GBY9VkEZCzjEg4CoMwUhxu50OkflwdbBuWLuKxpFxEbVavMnirGoMwUhRO2CVyHqwjVXumFvsUFBRg69at1d6/fBBn7epVlh4xjUEYKQon7BKpF+tI2UdVgU1ISIjVK7Fr+mWYpUdMYxBGisIJu0TqxRItjmXtebT2yzBHMipjEEaKwgm7ROrGAEv+rP0yzJGMyhiEkeJwwq76cRIvkXxZ+2WYIxmVMQgjReB2Ps6DNeGI5M+aL8McyaiMQRgpAueKOA/WhCNSBmtWr3IkwxiDMFIMBljOhzXhiOTDVqtXWXrkbwzCiEiWuJKKSF6sHZFg6RHTGIQRkV3UdnI9V1IRyY81IxKcTmIagzAywlVpZAu2mFzPlVRE6sHrRtUYhJGIq9LIVmwxuZ4rqaTBL2JEjsMgjESWrjbjqjSqidpMrrfHSioGGabxixiRYzEII5NMZS+ILGXN5Hp71oRjkGEey4MQORaDMKqSWksDMAviWNZMrrfnJF4GGZZT62cAkZwwCKNK1FoagFkQx7N2cr0jzj+DDNPU+hlAJDcu1TchZ2Mue6FknPPmeIbJ9RqNHgBkM7neVJCh0/lI2i+5UOtnAJHcMBNGlThLaQDOeXMMOW5Twhpk5jnLZwCR1BiEUSXOUBqAQ1H2JfcN1xlkmOcMnwFEcsAgjETlL4jmshdK31qC813sT+4VshlkVE+OGUwitWEQRiK5XzhthUNRjiH39wmDjMrknsEkUhsGYWRE7hdOW+BQlPNikGGes3wRI5ILBmHkdDgU5bwYZFTPmV87kaMxCCOnKWDqLHPeyDw1vJeJSB0YhDk5SwuYDho0CFqt1ug2pQVnzIIQEZGcMAhzcpZu4/L5559XeX+lVZdXUl+JiEjdGISRyFztLO6xR0REjqb26TIMwgiA+dpZWVlNWdiUiIgcyhn2+2UQRgBM187644+GLGxKNqX2b7ZEZBvOsN8vgzACYLp2FqBhYVOyGWf4ZktE9qHG/X4ZhBEA07WzwsL+YGFTshln+GZLRLan1v1+GYSRqKraWTqdD6KjU5GaGs3CpmRzavxmS0S2peb9fhmEOTlz27iU/+YB6NG16w/o3DlN8W96kge1frMlIttS836/DMKcXMUCpjdu3EBycnKlbx6AC1JTo9G5c5rR/Vldnqyh5m+2RGRbat7v1+IgrLCw0OIH9fX1taozJI2qJkBX982jf//+CA0N5eRpsoqav9kSkW2peb9fi4Ow+vXrQ6PRmG0jCAI0Gg1KS0tr3TGSVnXfPAICAhiAkdXU/M2WyrAUCdWWM+z3a3EQdujQIXv2g2RGzd88SHp8f6kbS5GQLTjDfr8WB2Hdu3e3Zz9Ihsx98yCyhjN8syXL96RlKRKqjpIDLEtYPTG/oKAAH374ITIyMgAAbdq0wejRo6HVam3WOXI8c6slzbUjsoQzfLMlY1wFS2SaVUHYzz//jNjYWHh5eaFTp04AgHfeeQfz58/Hvn370KFDB5t2khyHF0myN753lKum87y4CpbIPKuCsMmTJ6Nv3754//334eZW9hD37t3DmDFjkJiYiO+//96mnSTH4kWSiCqqyTwvA66CJTLP6kxY+QAMANzc3DBt2jR07NjRZp0jIiJ5sGbLKa6CJTLPpfomlfn6+uLSpUuVbv/jjz/g4+NT604REZG86XQ+yM4Oh05n+jPfsApWo9EDAFfBElVgVSZs0KBBiI+Px9KlS9G1a1cAwA8//ICpU6diyJAhNu0gERHJS00m23OVNZFpVmXCli5div79+2P48OEIDw9HeHg4Ro4ciYEDB2LRokW27iMAoG/fvmjUqBHq1KmDkJAQDBs2DDk5OUZtvvnmG3Tp0gU+Pj4IDAzEgAEDcOHCBaM23333HTp06ABPT080bdoUGzZsqPRca9asQXh4OOrUqYPOnTvjp59+Mjp+9+5dTJw4Ef7+/qhXrx4GDBiAq1evGrW5dOkSevXqBW9vbzRo0ABTp07FvXv3bHIuiIikYmqyffmMWFWrrCMiLlYKwLjKmpydVZkwDw8PrFixAgsXLkRWVhYAIDIyEt7e3jbtXHmPP/44/vWvfyEkJAT//e9/8corr2DgwIE4evQoACA7OxvPPvsskpKSsHnzZuh0OkyePBn9+/fH8ePHxTa9evXC+PHjsXnzZhw4cABjxoxBSEgIYmNjAQCff/45kpKSsH79enTu3BnLly9HbGwsMjMz0aBBAwBlCxN27dqFbdu2QavVIiEhAf3798cPP/wAACgtLUWvXr0QHByMo0eP4sqVKxg+fDjc3d2xYMECu50jIiJ7s2SyvVpXWXMXALI1jSAIgtSdsMbXX3+Nfv36oaioCO7u7ti+fTuGDBmCoqIiuLiUfUDs3LkTzz77rNhm+vTp2LVrF06fPi0+zuDBg1FQUIC9e/cCADp37oyHH35YXAWk1+sRFhaGSZMmYcaMGdDpdAgMDMSWLVswcOBAAMDZs2fRqlUrpKamokuXLtizZw969+6NnJwcBAUFAQDWr1+P6dOn4/r16xZ/+yssLIRWq4VOp+N+nEQkqStXruC9996DTueD5csTK022T0xcDq32JsaNG4eQkBAJe2of3AWAasLS67dVw5F3797FkiVL8Mwzz6Bjx47o0KGD0Y+95efnY/PmzejatSvc3d0BAFFRUXBxccHHH3+M0tJS6HQ6fPLJJ4iJiRHbpKamIiYmxuixYmNjkZqaCqBsVU96erpRGxcXF8TExIht0tPTUVJSYtSmZcuWaNSokdgmNTUVbdu2FQMww/MUFhbit99+M/m6ioqKUFhYaPRDRCQnzjrZ3prVoUTVsWo4Mj4+Hvv27cPAgQPRqVOnajf2tpXp06dj9erVuHPnDrp06YKUlBTxWEREBPbt24fnnnsOL774IkpLSxEdHY3du3eLbXJzc40CIwAICgpCYWEh/vrrL/z5558oLS2tss3Zs2fFx/Dw8ED9+vUrtcnNzTX7PIZjpixcuBDz5s2z8GyQXHCIgpwBt5wyZmorJqKasCoIS0lJwe7du/HII4/U6slnzJhR7UT+jIwMtGzZEgAwdepUxMfH4+LFi5g3bx6GDx+OlJQUaDQa5ObmYuzYsRgxYgSGDBmCmzdvYs6cORg4cCD279/vsECxNmbOnImkpCTx98LCQoSFhUnYI6oOhyjIWah1npc1uBUT2YpVQdj9999vk3pgU6ZMwciRI822adKkifjvgIAABAQEoHnz5mjVqhXCwsLw448/Ijo6GmvWrIFWq8XixYvF9v/+978RFhaGtLQ0dOnSBcHBwZVWMV69ehW+vr7w8vKCq6srXF1dq2wTHBwMAAgODkZxcTEKCgqMsmEV21RcUWl4TEObqnh6esLT09Ps+SB54UbF5EycIcCqDrdiIluyKgh7++23MX36dKxfvx6NGze2+skDAwMRGBho1X31+rL5CEVFRQCAO3fuiBPyDVxdXY3aVhyeBID9+/cjOjoaQNm3uKioKBw4cAD9+vUT73vgwAFxK46oqCi4u7vjwIEDGDBgAAAgMzMTly5dEh8nOjoa8+fPx7Vr18QVlfv374evry9at25t1esl+eO3YyL141ZMZEtWTczv2LEj7t69iyZNmsDHxwd+fn5GP7aWlpaG1atX4+TJk7h48SIOHjyIIUOGIDIyUgx8evXqhWPHjuH111/HuXPncPz4cYwaNQqNGzdG+/btAQDjx4/H//3f/2HatGk4e/Ys1q5di61bt2Ly5MnicyUlJeH999/Hxo0bkZGRgQkTJuD27dsYNWoUAECr1SI+Ph5JSUk4dOgQ0tPTMWrUKERHR6NLly4AgKeeegqtW7fGsGHD8Msvv+Cbb77BrFmzMHHiRGa6VMqS2klEpHyGrZjK41ZMZC2rMmFDhgzBf//7XyxYsABBQUF2n2/l7e2N5ORkzJ07F7dv30ZISAji4uIwa9YsMah54oknsGXLFixevBiLFy+Gt7c3oqOjsXfvXnh5eQEom7y/a9cuTJ48GStWrEDDhg3xwQcfiDXCgLLdAK5fv445c+YgNzcXDz30EPbu3Ws00X7ZsmVwcXHBgAEDUFRUhNjYWKxdu1Y87urqipSUFEyYMAHR0dGoW7cuRowYgddff92u54mkw2/HRM7BsDq0Ytabf+dkDavqhHl7eyM1NRXt2rWzR5/of1gnTP6cvXYSkbOouAinbP5n5dWhXIRDgOXXb6syYS1btsRff/1ldeeI1IbfjonUjatDyR6sCsLeeustTJkyBfPnz0fbtm3FYqgGzNqQM+JGxUTqxgCLbM2qICwuLg4A0LNnT6PbBUGARqNBaWlp7XtGpABVbVRcVfDlLAUsiYjIclYFYYcOHbJ1P4gUiUMURERkLauCsO7du1vU7p///Cdef/11BAQEWPM0RIrAAIuIiKxhVZ0wS/373//mJtREREREVbBrEGZF9QsiIiIip2DXIIyIiIiIqsYgjIiIiEgCDMKIiIiIJMAgjIiIiEgCVpWosNQLL7zA6vlE5NTy8vJYR46IqmR1EFZQUICffvoJ165dg16vNzo2fPhwAMC6detq1zsiIjPkHuBU3PTZFG76TOScrArCdu7ciaFDh+LWrVvw9fWFRqMRj2k0GjEIIyKyFyUEOOYCRGvakf3JPbAndbEqCJsyZQpGjx6NBQsWwNvb29Z9IiKqVsULpU7ng/x8f/j55Rnt3ymnAMdUH0kelBDYk7pYFYT997//xUsvvcQAjIhk4fjx9ti5szcEwQUajR59+qSgQ4cTUnfLiBL66OycKXPJjJ88WBWExcbG4ueff0aTJk1s3R8iohrR6XzE4AYABMEFO3f2RmTkedlkm5TQR6pMrZlLZvzkw+Ig7Ouvvxb/3atXL0ydOhVnzpxB27Zt4e7ubtS2b9++tushEVXLmb/V5uf7i8GNgSC4ID/fTzYXTiX0kYypOXPpTBk/ubM4COvXr1+l215//fVKt2k0GpSWltaqU0RkOWf/VuvnlweNRm8U5Gg0evj55UvYK2NK6CP9zdkyl2rN+CmBxUFYxTIURCQPSpygbkta7U306ZNSKWshp4uJEvpIf3OmzKWaM35KYNWcsE2bNmHQoEHw9PQ0ur24uBifffYZS1QQScRZP1A7dDiByMjzyM/3g59fvmwulB4eHuK/zfWxfDuSnrNkLp0t4ydHVgVho0aNQlxcHBo0aGB0+82bNzFq1CgGYUQScLYP1IqBi1Z7s8rXKWWA4+/vj4SEBKedr6dUzpK5dKaMn1xZFYQJgmBUoNXg8uXL0Gq1te4UEdWcs32gKiXAkfr5yXLOlrl0loyfnNUoCGvfvj00Gg00Gg169uwJN7e/715aWors7GzExcXZvJNEVD1n/EBlgCNvSlu1q5TA3lacJeMnZzUKwgwrJE+ePInY2FjUq1dPPObh4YHw8HAMGDDAph0kIsvwA5XkRKmrduXUF3txtoyfnNUoCJs7dy4AIDw8HIMGDUKdOnXs0ikiso5cJ6iT82EtKvlytoyfnFk1J2zEiBEAyv54rl27Vql8RaNGjWrfMyKyiBImqBOxFpW8MMCSB6uCsHPnzmH06NE4evSo0e2GCfss1krkOPxWS3Jnj9IpSptvRlQVq4KwkSNHws3NDSkpKQgJCalypSQROQ4vNiRX9iidotT5ZkQVWRWEnTx5Eunp6WjZsqWt+0NE5NTUluGxR+kUzjcjtbAqCGvdujVu3Lhh674QKZ7aLqDkWGrM8DiidIqa5pvxM8S5WBWELVq0CNOmTcOCBQvQtm1buLu7Gx339fW1SeeIlKTiBdTUhUFJF1ByLDVmeOxdOkVNW3XZIwh35qBOCa/dqiAsJiYGAPDEE08YzQfjxHxyZuX/2M1dGJR0ASVpmQrkb9y4IYsLiDmOqEWltq26bB2EqzGzaimlvHargrBDhw7Zuh9EqqG2CwNJw1wgn5ycDED6C4g5jli1q/atumo7zKrGzKqllPLarQrCunfvjv/85z949913kZWVhe3bt+P+++/HJ598goiICFv3kUhR1H5hIPuzNJCX+gJSHXsHiGreqssew6xqmjtXU3J97VYFYTt27MCwYcMwdOhQnDhxAkVFRQAAnU6HBQsWYPfu3TbtJJGSqPnCQI5hKpD/44+G0GozJOqV/Kh1qy57ZNPVNHeupuT82l2qb1LZm2++ifXr1+P99983mpT/yCOP4Pjx4zbrHJESGS4MGk3ZThJquTCQ4xgC+Yq2bx+I48fbS9Ajeak43ywxcTlGjNiAxMTlRhdXpe4SYS6bbg1TQZ1O51Prvsqd3F+7VZmwzMxMdOvWrdLtWq0WBQUFte0TkeJxD0eqjYoZnr9xfiGg/l0ibJ1Nd+YpEnJ/7VYFYcHBwTh//jzCw8ONbj9y5AiaNGlii36RHV2+DJw7BzRrBjRsKHVv1MvUHo5EplTM8Hh4FGH79n8YtZHTBURKSg2wLGHrYVZnniIh99duVRA2duxYvPzyy/joo4+g0WiQk5OD1NRUvPLKK5g9e7at+0g29OGHwLhxgF4PuLgA770HxMdL3St1sHToQ6lDJGR/hgxPTk4OkpOTERb2h6wvIGRb9irroda5c5aQ+2u3KgibMWMG9Ho9evbsiTt37qBbt27w9PTEK6+8gkmTJtm6j2Qjly//HYABZf998UUgNpYZMVtQ+xAJOYa/v7/4HpL7BYRsy9afIY6o1SZXSnntGkEQBGvvXFxcjPPnz+PWrVto3bo16tWrZ8u+Ob3CwkJotVrodDqb7EJw6BDwxBNV396jR60fnohspOrdFypfQORcJ4zkQQlV4+1Fytdu6fXbqkyYgYeHB1q3bl2bhyAHycvLg6/vPbi4NIBe//cuB66uAnx8riEvz021f4hESsOsKtmKM79HlPDaaxWEkTKU/1bdu7dxvZRevVKQklK2pJvfqonkg3+LROrHIMwJlP82bW5sXO7Vt4mIiNSEQZgTYukEIiIi6VlVMZ+IiIiIaoeZMCIiOPcqMiKSBoMwInJ6FUtCmMLFK0RkSwzCiMjpVcyAldXl8oefXx4XrxDZmTNnoRmEERGVc/x4+0oV6jt0OCF1t4hUydmz0AzCnAD3NCSyjE7nIwZgQNlm2Tt39kZk5HmuKCZFUFpWydmz0AzCnACrbxNZJj/f32izbKAsEMvP91NNEKa0izRZTulZJWfMQjMIcxJy/IMjkhs/vzxoNHqjQEyj0cPPL1/CXtmO0i/SZJ6Ss0rOmoVmEEZE9D9a7U306ZNS6du4Wi4Cll585XiRpppRWlbJGbLQVWEQRkRUjrmtvdTGVKZEbjiEWjNKzCqpPQttCoMwInJ6FRelmNraS02LV5SSKeEQas0pMauk9iy0KQzCiEhxbJ0ZcbbFK0rKlHAIteaUmlVypiy0AYMwIlIUe2VG1BJgWUKJmRIDpQyhSklJWSVnzEKXxyCMSOXUNp9GySvA5EKpmRKlDKHKgVKySs6Wha6IQRiRiql9Pg0vytZRUqbEQElDqFJRalZJiZ89tsIgjEjF1Jw14kW55spffM1lSuR2kQaUPYTqKM6eVVIiBmFETkJtWSNelGtOyRdppQ6hOpoc/9+RaQzCiJyAGrNGvChbR6kXaSUOoRJVh0EYkRNQY9aIF2XnoOQhVKLqKCYI69u3L06ePIlr167hvvvuQ0xMDBYtWoTQ0FCxzdatW7FgwQL8/vvvCAwMREJCAqZOnWr0ON999x2SkpLw22+/ISwsDLNmzcLIkSON2qxZswZLlixBbm4u2rVrh1WrVqFTp07i8bt372LKlCn47LPPUFRUhNjYWKxduxZBQUFim0uXLmHChAk4dOgQ6tWrhxEjRmDhwoVwc1PMKScVUWvWSCkrwMh6Sh5CJaqOS/VN5OHxxx/H1q1bkZmZiR07diArKwsDBw4Uj+/ZswdDhw7F+PHjcfr0aaxduxbLli0zWhmWnZ2NXr164fHHH8fJkyeRmJiIMWPG4JtvvhHbfP7550hKSsLcuXNx/PhxtGvXDrGxsbh27ZrYZvLkydi5cye2bduGw4cPIycnB/379xePl5aWolevXiguLsbRo0exceNGbNiwAXPmzLHzWSKqmiFrpNHoAUDRWaOqVoBFRFys9FqYGVEPf39/hISEmPxhAEZKpREEQZC6E9b4+uuv0a9fPxQVFcHd3R3PP/88SkpKsG3bNrHNqlWrsHjxYly6dAkajQbTp0/Hrl27cPr0abHN4MGDUVBQgL179wIAOnfujIcfflgM3vR6PcLCwjBp0iTMmDEDOp0OgYGB2LJlixgEnj17Fq1atUJqaiq6dOmCPXv2oHfv3sjJyRGzY+vXr8f06dNx/fp1iy8OhYWF0Gq10Ol08PX1tcl5I+dy5coVvPfee+LvZasjK2eNxo0bh5CQECm6aBW11T4jInWx9PqtmExYefn5+di8eTO6du0Kd3d3AEBRURHq1Klj1M7LywuXL1/GxYsXAQCpqamIiYkxahMbG4vU1FQAZcv009PTjdq4uLggJiZGbJOeno6SkhKjNi1btkSjRo3ENqmpqWjbtq3R8GRsbCwKCwvx22+/mXxdRUVFKCwsNPohqg21Zo2YGSEiNVDUBKXp06dj9erVuHPnDrp06YKUlBTxWGxsLCZPnoyRI0fi8ccfx/nz5/H2228DKMsGhIeHIzc31ygwAoCgoCAUFhbir7/+wp9//onS0tIq25w9exYAkJubCw8PD9SvX79Sm9zcXLFNVY9hOGbKwoULMW/evBqcEftjxkHZOJ+GiEi+JA3CZsyYgUWLFpltk5GRgZYtWwIApk6divj4eFy8eBHz5s3D8OHDkZKSAo1Gg7FjxyIrKwu9e/dGSUkJfH198fLLL+O1116Di4syEn4zZ85EUlKS+HthYSHCwsIk60/FauumCn0qtdq6s+D/GyIieZI0CJsyZUqllYkVNWnSRPx3QEAAAgIC0Lx5c7Rq1QphYWH48ccfER0dDY1Gg0WLFmHBggXIzc1FYGAgDhw4YPQYwcHBuHr1qtHjX716Fb6+vvDy8oKrqytcXV2rbBMcHCw+RnFxMQoKCoyyYRXb/PTTT5Uew3DMFE9PT3h6epo9H45UPntirtCnEqutExERSU3SICwwMBCBgYFW3VevL1vlVVRUZHS7q6sr7r//fgDAp59+iujoaPE5oqOjsXv3bqP2+/fvR3R0NICyYZmoqCgcOHAA/fr1E5/nwIEDSEhIAABERUXB3d0dBw4cwIABAwAAmZmZuHTpkvg40dHRmD9/Pq5du4YGDRqIz+Pr64vWrVtb9XqlpMZCn0REcsPpH85HEXPC0tLScOzYMTz66KO47777kJWVhdmzZyMyMlIMfG7cuIHt27ejR48euHv3Lj7++GOxhITB+PHjsXr1akybNg2jR4/GwYMHsXXrVuzatUtsk5SUhBEjRqBjx47o1KkTli9fjtu3b2PUqFEAAK1Wi/j4eCQlJcHPzw++vr6YNGkSoqOj0aVLFwDAU089hdatW2PYsGFYvHgxcnNzMWvWLEycOFFWmS5LqbHQJxGRnHD6h3NSRBDm7e2N5ORkzJ07F7dv30ZISAji4uIwa9Yso6Bm48aNeOWVVyAIAqKjo/Hdd98ZFVmNiIjArl27MHnyZKxYsQINGzbEBx98gNjYWLHNoEGDcP36dcyZMwe5ubl46KGHsHfvXqOJ9suWLYOLiwsGDBhgVKzVwNXVFSkpKZgwYQKio6NRt25djBgxAq+//rqdz5R9qLXQJxGRXHD6h3NSbJ0wZyB1nbDyNabMfSgorcYUEZHcGD5vdTofLF+eWOlLb2Licmi1N/l5W0Plh3hzclyQne2GiIh7CA0tm9JkryFeS6/fisiEkfS4PQwRKZlS5ltx+oftlB/iNZdIkHKIl0EYWUyrvckPASJSnIrzrUyRw3wrTv+wHUPQXd3iMimHeBmEkUmWVlFXWrV1InIuFS+ypia9m7oYOzKLZtjntWLWhl+ArSfn7CKDMDKJ1daJSG3MDUtVRYosGqd/2Jacs4sMwsgsBlhEpBbW1DysbRbNWpz+YTtyzi4yCCMiIqdQ22GpmmbRaoLTP+xLrtlFBmFEROQUajMsZe+dQzj9w/7kmF1kEEZERKpR1ST6GzduAKjdsJQjJnczwHI+DMKIiEgVzG/9U3abtcNScp7cTVVTwhAvgzAiIlIFS7f+MTUsZe5iLOfJ3VQ1JQzxMggjIiJVqW7+Vv/+/REQEGB0n/IX4/JDmoahTEC+k7vJNLkP8TIIIyIiValu/lZAQIDJ/RerHtIMF0tSWJNFIzKFQRgREalKbeZvWTqkWT6bJvWQFimXS/VNiIiIlMMwf0uj0QOAVfO3TA1p6nQ+ACBm00JCQhiAkdWYCSMiItWp7fwtOe83SOrBIIyIiFSpNsU5WZKCHIFBGJHMVVV8sjzORyEqY8u6UCxJQY7AIIxIxiqu1DIlISGBgZiTYXBema3rQrEkBdkbgzAiGTN3MbGmHakDg3PTbP165bjfIKkHV0cSESlMxaBbp/NBdna4uHLPVDuqnhK2uiH1YCaMiEjBzNWyoppTwlY3pB4MwoiIFKq67XnIOgywyFE4HEmkIKaGncg5matlRUTyx0wYkUJw2IkqUnMtK67+JGfAIIxIATjsRFVRay2rqjfR9hc30TZwxtWfpC4MwohkzLACq7otVLhSy3mpsZaVpZtoc/UnKR2DMCIZM6zUunDhHj75RIBerxGPuboKmDTpaYSHuzEb4GQqBt2malkpPThnBpjUjkEYkcz5+/vD3x947z3gxReB0lLA1RV4910NoqKCpO4eScBZyihwE21SOwZhRAoRHw/ExgLnzwNNmwING0rdI5KS0gMsS6h54QERwCCMSFEaNmTwRc7DkQsPyq/GzMlxQXa2GyIi7iE0VA9AHZlFkh8GYUREJFuOWHhQfjWmuYUAXI1JtsZirUREJGta7U1ERFy02zwwQwbM1EIAQ3FkrsYkW2MQRkREsiLVJtrcgYAcjcORRFQtVi8nR5Jq9ScXApCjMQgjsoIzBSUVq5ebwvkyZEtSvJfUugMByReDMKIacragxNJ5MJwvQ2qgxh0ISL4YhBHVEIMSInUztQMBka1xYj4R1YhO54Ps7HBxxRgREVmHmTAispi5GkpESiXVakwluXwZOHcOaNaMBaNtiUEYEVmEmymTWjnLXpw1ZViAtGWLF6ZN00Kv18DFRcDixTo8//xfTnlObI1BGBFZhJspk5oxmDBmWICk0/lg+fJECIIGAKDXazB1qi/++9+PoNXeVM0CJKlwThhRLTnLHClDDaXyWEOJSJ0MWcHqCthyAVLtMBNGVAvOMEfKMA+muhpKzjxfhkitWMDWvhiEEdWQIdiobo6UWoKSivNl5sy5jgsX3BAefg+hoQ8DeJhzQ4hUigVs7YtBGFENGYKSQ4eAZcsqp+kfeWQEevRQ1xyT8q8lJASIipKwM0TkUCxgaz8Mwois4O/vjy5dABcXQF9umpSrK9C5sz9UFH+RHTnT9lekbGosYCuHshsMwois1LAh8N57wIsvAqWlZQHYu++yhg5ZpuL2VzqdD/Lz/eHnl2d0sePqMyLb+/BDYNy4si/RLi5ln+Xx8Y7vB4MwolqIjwdiY4Hz54GmTRmAkeXKZ8DMLfDg6jMi28nLy8OFC/cwblwD6PWGshvAiy8KeOihawgPd3Polx4GYUS11LAhgy+yHovgkhypcRcBQ/Y5Ozscev0Io2OlpRqsWrUHEREXHZp9ZhBGRCQhFsElOVLjLgKG11Jd2Q1HZp8ZhBERSYh1mEiulBRg1YScym4wCCMikkBBQQGA6i8IBQUFCAkJkbCnROojl7IbDMKIiCRw7949o98Fwfi/ptoRkW3IoewG944kIpKQYWL+3x/HZRPz1b4XKRExE0akGiz8qSzu7u4Aqp+Yb2hHROrDIIxIBSoW/jSFhT/lQ6vVAqh+Yr6hHRGpD4cjiVSgYgZMp/NBdnZ4pSEtFv6UH8PEfI2mbP8rbpBMZB9yrH3GTBiRypirvk7yJJeVWkRqJsfaZwzCiFSE1deVSw4rtYjUTm7TMTgcSaQi5iZ5k7zIcWiEiByLmTAiFWH1deWQ49AIlSm/0jgnxwXZ2W6IiLiH0NCyeXv8/0K2wiCMSEXktB0HVY8Xcvkpv9LY3PxKa1cas5QMlccgjEhlOMmbyHqGAKm6+ZXWrDSuWEpGp/NBfr4//PzyjP5OWUrGeTAII1KBivOGTE3y5vwiIstUV0TXGuUDN3NZNpaScR4MwhROr9fzD9bOPDw84OIi7zUsnF9EZFv2nF/JVcxkoLggrKioCJ07d8Yvv/yCEydO4KGHHhKPnTp1ChMnTsSxY8cQGBiISZMmYdq0aUb337ZtG2bPno0LFy6gWbNmWLRoEZ555hnxuCAImDt3Lt5//30UFBTgkUcewbp169CsWTOxTX5+PiZNmoSdO3fCxcUFAwYMwIoVK1CvXr0a9aW2iouLkZ2dDb1eb9PHJWMuLi6IiIiQfRaJARaR7dhzfqU9smykTIoLwqZNm4bQ0FD88ssvRrcXFhbiqaeeQkxMDNavX49ff/0Vo0ePRv369TFu3DgAwNGjRzFkyBAsXLgQvXv3xpYtW9CvXz8cP34cDzzwAABg8eLFWLlyJTZu3IiIiAjMnj0bsbGxOHPmDOrUqQMAGDp0KK5cuYL9+/ejpKQEo0aNwrhx47BlyxaL+1JbgiDgypUrcHV1RVhYmOwzNUql1+uRk5ODK1euoFGjRtBoNFJ3iYgcxF7zK7mKmQwUFYTt2bMH+/btw44dO7Bnzx6jY5s3b0ZxcTE++ugjeHh4oE2bNjh58iTeeecdMfBZsWIF4uLiMHXqVADAG2+8gf3792P16tVYv349BEHA8uXLMWvWLDz77LMAgE2bNiEoKAhffvklBg8ejIyMDOzduxfHjh1Dx44dAQCrVq3CM888g6VLlyI0NNSivtTWvXv3cOfOHYSGhsLb29smj0lVCwwMRE5ODu7du8fNlImcjD2K6HIVMxkoJn1y9epVjB07Fp988kmVQUdqaiq6detmNGQUGxuLzMxM/Pnnn2KbmJgYo/vFxsYiNTUVAJCdnY3c3FyjNlqtFp07dxbbpKamon79+mIABgAxMTFwcXFBWlqaxX2pSlFREQoLC41+TCktLQXAidaOYDjHhnNORFRbHTqcQGLicowYsQGJicu5tZiTUkQQJggCRo4cifHjxxsFP+Xl5uYiKCjI6DbD77m5uWbblD9e/n6m2jRo0MDouJubG/z8/Kp9nvLPUZWFCxdCq9WKP2FhYSbbGnB4zP54jomchyN3MtBqbyIi4iIzYE5M0uHIGTNmYNGiRWbbZGRkYN++fbh58yZmzpzpoJ5JY+bMmUhKShJ/LywstCgQIyIi27DnSmNuVUUVSRqETZkyBSNHjjTbpkmTJjh48CBSU1Ph6elpdKxjx44YOnQoNm7ciODgYFy9etXouOH34OBg8b9VtSl/3HBbSEiIURvDKszg4GBcu3bN6DHu3buH/Pz8ap+n/HNUxdPTs9JrVJuRI0di48aNAP7OID744IMYMmQIRo4cafECgw0bNiAxMREFBQV27C0ROSN7rTRmKRmqSNIgLDAwEIGBgdW2W7lyJd58803x95ycHMTGxuLzzz9H586dAQDR0dF49dVXUVJSIk6e3r9/P1q0aIH77rtPbHPgwAEkJiaKj7V//35ER0cDACIiIhAcHIwDBw6IQVdhYSHS0tIwYcIE8TEKCgqQnp6OqKgoAMDBgweh1+tr1BdnFhcXh48//hilpaW4evUq9u7di5dffhnbt2/H119/DTc3Ra0XISKyGAMsMiIoUHZ2tgBAOHHihHhbQUGBEBQUJAwbNkw4ffq08Nlnnwne3t7Cu+++K7b54YcfBDc3N2Hp0qVCRkaGMHfuXMHd3V349ddfxTZvvfWWUL9+feGrr74STp06JTz77LNCRESE8Ndff4lt4uLihPbt2wtpaWnCkSNHhGbNmglDhgypUV8sodPpBACCTqerdOyvv/4Szpw5Y9Svmrhx44aQk5Nj8ufGjRtWPW51RowYITz77LOVbj9w4IAAQHj//fcFQRCEt99+W3jggQcEb29voWHDhsKECROEmzdvCoIgCIcOHRIAGP3MnTtXEARB2LRpkxAVFSXUq1dPCAoKEoYMGSJcvXq1Vn2u7bkmIiLnYu76XZ5qUg5arRb79u3DxIkTERUVhYCAAMyZM8eoJETXrl2xZcsWzJo1C//617/QrFkzfPnll2KNMKCsDtnt27cxbtw4FBQU4NFHH8XevXvFGmFAWTmMhIQE9OzZUyzWunLlyhr1RUoV9y8zxZH7lz3xxBNo164dkpOTMWbMGLi4uGDlypWIiIjA//3f/+Gf//wnpk2bhrVr16Jr165Yvnw55syZg8zMTAAQC+WWlJTgjTfeQIsWLXDt2jUkJSVh5MiR2L17t0NeBxERkaU0giAIUneCqlZYWAitVgudTgdfX1+jY3fv3kV2djYiIiKMAkRLXLlyBe+991617caNG2c0N84WRo4ciYKCAnz55ZeVjg0ePBinTp3CmTNnKh3bvn07xo8fjxs3bgCwfE7Yzz//jIcffhg3b9402tGgJmpzrqlqly8D584BzZoBDRtK3RsiItsyd/0uTxElKsg5CIIgloP49ttv0bNnT9x///3w8fHBsGHDkJeXhzt37ph9jPT0dPTp0weNGjWCj48PunfvDgC4dOmS3ftPlvnwQ6BxY+CJJ8r+++GHUveIiEgaDMJINjIyMhAREYELFy6gd+/eePDBB7Fjxw6kp6djzZo1AGB2VdHt27cRGxsLX19fbN68GceOHcMXX3xR7f3IMfLy8pCefhXjxgkwbHeq1wMvviggPf0q8vLypO0gEZGDqWZOGCnbwYMH8euvv2Ly5MlIT0+HXq/H22+/LZas2Lp1q1F7Dw+PShXsz549i7y8PLz11ltifbWff/7ZMS+AzDLMQ8zODodeP8LoWGmpBqtW7UFExEWHzkMkspe8vDyWoSCLMAgjhysqKkJubq5RiQrDpurDhw/H6dOnUVJSglWrVqFPnz744YcfsH79eqPHCA8Px61bt3DgwAG0a9cO3t7eaNSoETw8PLBq1SqMHz8ep0+fxhtvvCHRq6TyDBek6jYuZsaSlE6OC59IvjgcSQ63d+9ehISEIDw8HHFxcTh06BBWrlyJr776Cq6urmjXrh3eeecdLFq0CA888AA2b96MhQsXGj1G165dMX78eAwaNAiBgYFYvHgxAgMDsWHDBmzbtg2tW7fGW2+9haVLl0r0Kqkqho2LNZqy8UhuXExqY+kXCX7hIICZMHKwDRs2YMOGDdW2mzx5MiZPnmx027Bhw4x+X7duHdatW2d025AhQzBkyBCj27gAWF46dDiByMjzyM/3g59fPgMwUjWdzgf5+f7w88vje50qYRDmhLh/GUlNq73JCxKp3vHj7bFzZ28IgouY9e3Q4YTU3SIZYRDmhLh/GZE6cUK4fOh0PmIABgCC4IKdO3sjMvI8v4CQiEGYk+IHMZG6KGVCuLMEivn5/kYLUICyQCw/349BGIkYhBERqYASJoQrJVC0hepWAhMBXB1JRA7AeYiOp9P5IDs7HDqdj9RdESkhULQVrgQmSzATRkR2x3mIjsUJ4dIp/0XC3EpgfuEggEEYETkIAyzH4IRwafELB9UEgzAiIhVR0oRwtdbQYoBFlmIQRkSkIkqZEM4hUyJOzCeV+e6776DRaFBQUGDxfcLDw7F8+XK79YnIkaydEJ6Xl4crV66Y/MnLy7NZH00NmcppEQGRIzATRg41cuRIbNy4ES+++GKlTbknTpyItWvXYsSIERZtbUREf6vNhHBHl45Q0pApkT0xCCOHCwsLw2effYZly5bBy8sLAHD37l1s2bIFjRo1krh3RMpUmwnhjiodYQgAqxsy5cpBchYcjiSH69ChA8LCwpCcnCzelpycjEaNGqF9+/bibUVFRXjppZfQoEED1KlTB48++iiOHTtm9Fi7d+9G8+bN4eXlhccffxwXLlyo9HxHjhzBY489Bi8vL4SFheGll17C7du37fb6iKTi7++PkJAQkz9STxg3BIpTpw7BkiWFcHUVAACurgKWLCnE1KlDVFGolchSDMJIEqNHj8bHH38s/v7RRx9h1KhRRm2mTZuGHTt2YOPGjTh+/DiaNm2K2NhY5OeXfVv+448/0L9/f/Tp0wcnT57EmDFjMGPGDKPHyMrKQlxcHAYMGIBTp07h888/x5EjR5CQkGD/F0lElRgCxSlT6uPCBQ0OHQIuXNBgypT6sggUiRyJQRjh8mXg0KGy/zrKCy+8gCNHjuDixYu4ePEifvjhB7zwwgvi8du3b2PdunVYsmQJnn76abRu3Rrvv/8+vLy88OGHHwIA1q1bh8jISLz99tto0aIFhg4dipEjRxo9z8KFCzF06FAkJiaiWbNm6Nq1K1auXIlNmzbh7t27jnvBRFRJw4ZAjx5l/yVyRpwT5uQ+/BAYNw7Q6wEXF+C994D4ePs/b2BgIHr16oUNGzZAEAT06tULAQEB4vGsrCyUlJTgkUceEW9zd3dHp06dkJGRAQDIyMhA586djR43Ojra6PdffvkFp06dwubNm8XbBEGAXq9HdnY2WrVqZY+XR0REVC0GYU7s8uW/AzCg7L8vvgjExjrmm+no0aPFYcE1a9bY5Tlu3bqFF198ES+99FKlY1wEQFQ1tRZRJZIbBmFO7Ny5vwMwg9JS4Px5xwRhcXFxKC4uhkajQWxsrNGxyMhIeHh44IcffkDjxo0BACUlJTh27BgSExMBAK1atcLXX39tdL8ff/zR6PcOHTrgzJkzaNq0qf1eCJGKsIgqkeNwTpgTa9asbAiyPFdXwFHxiqurKzIyMnDmzBm4uroaHatbty4mTJiAqVOnYu/evThz5gzGjh2LO3fuIP5/46Xjx4/HuXPnMHXqVGRmZmLLli2V6otNnz4dR48eRUJCAk6ePIlz587hq6++4sR8onIMJSGqK6LK0hFEtsUgzIk1bFg2B8wQ/7i6Au++69hJsr6+vvD19a3y2FtvvYUBAwZg2LBh6NChA86fP49vvvkG9913H4Cy4cQdO3bgyy+/RLt27bB+/XosWLDA6DEefPBBHD58GL///jsee+wxtG/fHnPmzEFoaKjdXxuRUhhKR3TtOqLKIqqPPDKCpSOI7EAjCIIgdSeoaoWFhdBqtdDpdJUClbt37yI7OxsRERGoU6dOrZ7n8uWyIcimTblKqSq2PNdEcnb5MtC4sfE0BVdX4MIFfjYQ1YS563d5zIQRl4kTEQB5ZMeJnAkn5hMRkSg+vmyFNLPjRPbHIIyIiIw0bMjgi8gROBxJREREJAEGYUREREQSYBCmcFzcan88x0REZA8MwhTKUNy0uLhY4p6on+EcVywoS0REVBucmK9Qbm5u8Pb2xvXr1+Hu7g6XiqXvySb0ej2uX78Ob29vuLnxz4WIiGyHVxWF0mg0CAkJQXZ2Ni5evCh1d1TNxcUFjRo1gkajkborRESkIgzCFMzDwwPNmjXjkKSdeXh4MNNIREQ2xyBM4VxcXLiVDhERkQLx6z0RERGRBBiEEREREUmAQRgRERGRBDgnTMYMRUILCwsl7gkRERFZynDdrq7YN4MwGbt58yYAICwsTOKeEBERUU3dvHkTWq3W5HGNwD1ZZEuv1yMnJwc+Pj5OVaOqsLAQYWFh+OOPP+Dr6yt1dxSN59I2eB5th+fSdngubcMe51EQBNy8eROhoaFmSxwxEyZjLi4uaNiwodTdkIyvry8/WGyE59I2eB5th+fSdngubcPW59FcBsyAE/OJiIiIJMAgjIiIiEgCDMJIdjw9PTF37lx4enpK3RXF47m0DZ5H2+G5tB2eS9uQ8jxyYj4RERGRBJgJIyIiIpIAgzAiIiIiCTAIIyIiIpIAgzAiIiIiCTAII8l8//336NOnD0JDQ6HRaPDll18aHRcEAXPmzEFISAi8vLwQExODc+fOSdNZmavuXI4cORIajcboJy4uTprOytjChQvx8MMPw8fHBw0aNEC/fv2QmZlp1Obu3buYOHEi/P39Ua9ePQwYMABXr16VqMfyZMl57NGjR6X35Pjx4yXqsXytW7cODz74oFhINDo6Gnv27BGP8/1ouerOpRTvSQZhJJnbt2+jXbt2WLNmTZXHFy9ejJUrV2L9+vVIS0tD3bp1ERsbi7t37zq4p/JX3bkEgLi4OFy5ckX8+fTTTx3YQ2U4fPgwJk6ciB9//BH79+9HSUkJnnrqKdy+fVtsM3nyZOzcuRPbtm3D4cOHkZOTg/79+0vYa/mx5DwCwNixY43ek4sXL5aox/LVsGFDvPXWW0hPT8fPP/+MJ554As8++yx+++03AHw/1kR15xKQ4D0pEMkAAOGLL74Qf9fr9UJwcLCwZMkS8baCggLB09NT+PTTTyXooXJUPJeCIAgjRowQnn32WUn6o2TXrl0TAAiHDx8WBKHsPeju7i5s27ZNbJORkSEAEFJTU6XqpuxVPI+CIAjdu3cXXn75Zek6pWD33Xef8MEHH/D9aAOGcykI0rwnmQkjWcrOzkZubi5iYmLE27RaLTp37ozU1FQJe6Zc3333HRo0aIAWLVpgwoQJyMvLk7pLsqfT6QAAfn5+AID09HSUlJQYvS9btmyJRo0a8X1pRsXzaLB582YEBATggQcewMyZM3Hnzh0puqcYpaWl+Oyzz3D79m1ER0fz/VgLFc+lgaPfk9zAm2QpNzcXABAUFGR0e1BQkHiMLBcXF4f+/fsjIiICWVlZ+Ne//oWnn34aqampcHV1lbp7sqTX65GYmIhHHnkEDzzwAICy96WHhwfq169v1JbvS9OqOo8A8Pzzz6Nx48YIDQ3FqVOnMH36dGRmZiI5OVnC3srTr7/+iujoaNy9exf16tXDF198gdatW+PkyZN8P9aQqXMJSPOeZBBG5AQGDx4s/rtt27Z48MEHERkZie+++w49e/aUsGfyNXHiRJw+fRpHjhyRuiuKZuo8jhs3Tvx327ZtERISgp49eyIrKwuRkZGO7qastWjRAidPnoROp8P27dsxYsQIHD58WOpuKZKpc9m6dWtJ3pMcjiRZCg4OBoBKq3yuXr0qHiPrNWnSBAEBATh//rzUXZGlhIQEpKSk4NChQ2jYsKF4e3BwMIqLi1FQUGDUnu/Lqpk6j1Xp3LkzAPA9WQUPDw80bdoUUVFRWLhwIdq1a4cVK1bw/WgFU+eyKo54TzIII1mKiIhAcHAwDhw4IN5WWFiItLQ0o/F7ss7ly5eRl5eHkJAQqbsiK4IgICEhAV988QUOHjyIiIgIo+NRUVFwd3c3el9mZmbi0qVLfF+WU915rMrJkycBgO9JC+j1ehQVFfH9aAOGc1kVR7wnORxJkrl165bRN4zs7GycPHkSfn5+aNSoERITE/Hmm2+iWbNmiIiIwOzZsxEaGop+/fpJ12mZMncu/fz8MG/ePAwYMADBwcHIysrCtGnT0LRpU8TGxkrYa/mZOHEitmzZgq+++go+Pj7ivBqtVgsvLy9otVrEx8cjKSkJfn5+8PX1xaRJkxAdHY0uXbpI3Hv5qO48ZmVlYcuWLXjmmWfg7++PU6dOYfLkyejWrRsefPBBiXsvLzNnzsTTTz+NRo0a4ebNm9iyZQu+++47fPPNN3w/1pC5cynZe9KhazGJyjl06JAAoNLPiBEjBEEoK1Mxe/ZsISgoSPD09BR69uwpZGZmSttpmTJ3Lu/cuSM89dRTQmBgoODu7i40btxYGDt2rJCbmyt1t2WnqnMIQPj444/FNn/99Zfwz3/+U7jvvvsEb29v4f/9v/8nXLlyRbpOy1B15/HSpUtCt27dBD8/P8HT01No2rSpMHXqVEGn00nbcRkaPXq00LhxY8HDw0MIDAwUevbsKezbt088zvej5cydS6nekxpBEAT7hXhEREREVBXOCSMiIiKSAIMwIiIiIgkwCCMiIiKSAIMwIiIiIgkwCCMiIiKSAIMwIiIiIgkwCCMiIiKSAIMwIiIiIgkwCCMiIiKSAIMwIiIrFBcXS92FSuTYJyIyjUEYERGAHj16ICEhAQkJCdBqtQgICMDs2bNh2NktPDwcb7zxBoYPHw5fX1+MGzcOAHDkyBE89thj8PLyQlhYGF566SXcvn1bfNy1a9eiWbNmqFOnDoKCgjBw4EDx2Pbt29G2bVt4eXnB398fMTEx4n179OiBxMREoz7269cPI0eOFH+3tk9EJA8MwoiI/mfjxo1wc3PDTz/9hBUrVuCdd97BBx98IB5funQp2rVrhxMnTmD27NnIyspCXFwcBgwYgFOnTuHzzz/HkSNHkJCQAAD4+eef8dJLL+H1119HZmYm9u7di27dugEArly5giFDhmD06NHIyMjAd999h/79+6Om2/nWtE9EJB/cwJuICGWZp2vXruG3336DRqMBAMyYMQNff/01zpw5g/DwcLRv3x5ffPGFeJ8xY8bA1dUV7777rnjbkSNH0L17d9y+fRu7d+/GqFGjcPnyZfj4+Bg93/HjxxEVFYULFy6gcePGVfbnoYcewvLly8Xb+vXrh/r162PDhg0AYFWf6tSpU6vzRES2w0wYEdH/dOnSRQzAACA6Ohrnzp1DaWkpAKBjx45G7X/55Rds2LAB9erVE39iY2Oh1+uRnZ2NJ598Eo0bN0aTJk0wbNgwbN68GXfu3AEAtGvXDj179kTbtm3xj3/8A++//z7+/PPPGve5pn0iIvlgEEZEZKG6desa/X7r1i28+OKLOHnypPjzyy+/4Ny5c4iMjISPjw+OHz+OTz/9FCEhIZgzZw7atWuHgoICuLq6Yv/+/dizZw9at26NVatWoUWLFmKg5OLiUmlosqSkpNZ9IiL5YBBGRPQ/aWlpRr//+OOPaNasGVxdXats36FDB5w5cwZNmzat9OPh4QEAcHNzQ0xMDBYvXoxTp07hwoULOHjwIABAo9HgkUcewbx583DixAl4eHiIQ4uBgYG4cuWK+FylpaU4ffp0ta/Bkj4RkTwwCCMi+p9Lly4hKSkJmZmZ+PTTT7Fq1Sq8/PLLJttPnz4dR48eRUJCAk6ePIlz587hq6++EifBp6SkYOXKlTh58iQuXryITZs2Qa/Xo0WLFkhLS8OCBQvw888/49KlS0hOTsb169fRqlUrAMATTzyBXbt2YdeuXTh79iwmTJiAgoKCal9DdX0iIvlwk7oDRERyMXz4cPz111/o1KkTXF1d8fLLL4tlH6ry4IMP4vDhw3j11Vfx2GOPQRAEREZGYtCgQQCA+vXrIzk5Ga+99hru3r2LZs2a4dNPP0WbNm2QkZGB77//HsuXL0dhYSEaN26Mt99+G08//TQAYPTo0fjll18wfPhwuLm5YfLkyXj88cerfQ3V9YmI5IOrI4mIUPVqRCIie+JwJBEREZEEGIQRERERSYDDkUREREQSYCaMiIiISAIMwoiIiIgkwCCMiIiISAIMwoiIiIgkwCCMiIiISAIMwoiIiIgkwCCMiIiISAIMwoiIiIgkwCCMiIiISAL/H5zSGc5j2/vNAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -538,7 +711,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrrElEQVR4nO3deVxV1fo/8M8GGRUOMsigIIhzmgoWYg6ZKHoVrz/xOmQOqZldUVFzypwy0yxzyNJswkpzSOs6Fw7ZIKE5ZJaSEk4BKiAHnAA56/cH37M9+0wMAocDn/frdV5x9l5nn7V33MvTWs96liSEECAiIiKiSmVj6Q4QERER1UQMwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiMisuLg4SJKES5cuWborRNUKgzAisrjjx48jJiYGjz32GGrXro2AgAAMGjQIf/31l0Hbp59+GpIkQZIk2NjYwNXVFc2aNcPw4cMRHx9fqu/dtWsXunbtinr16sHZ2RmNGjXCoEGDsH///vK6NQNvvPEGvvnmG4PjR48exYIFC5CdnV1h361vwYIF8rOUJAnOzs5o2bIlXn31VeTk5JTLd2zatAkrV64sl2sRVTcMwojI4t58801s374d3bt3x6pVqzBu3Dj88MMPCAkJwdmzZw3aN2jQAJ9//jk+++wzvPXWW+jXrx+OHj2Knj17YvDgwSgoKCj2O99++23069cPkiRh9uzZWLFiBaKjo3HhwgVs3ry5Im4TgPkgbOHChZUahGmtXbsWn3/+Od555x00b94cixcvRq9evVAeWwszCCMyrZalO0BENHXqVGzatAn29vbyscGDB6N169ZYunQpvvjiC0V7lUqF5557TnFs6dKlmDRpEt5//30EBgbizTffNPl9Dx48wKJFi9CjRw989913Budv3LjxiHdUddy9exfOzs5m2wwcOBCenp4AgPHjxyM6Oho7duzAL7/8gvDw8MroJlGNxJEwIrK4jh07KgIwAGjSpAkee+wxnDt3rkTXsLW1xerVq9GyZUusWbMGarXaZNuMjAzk5OTgqaeeMnq+Xr16ivf379/HggUL0LRpUzg6OsLX1xcDBgxAcnKy3Obtt99Gx44d4eHhAScnJ4SGhuKrr75SXEeSJNy5cwcbNmyQpwBHjRqFBQsWYPr06QCAoKAg+ZxuDtYXX3yB0NBQODk5wd3dHUOGDMHVq1cV13/66afRqlUrnDhxAl26dIGzszNeeeWVEj0/Xc888wwAICUlxWy7999/H4899hgcHBzg5+eHCRMmKEbynn76aezZsweXL1+W7ykwMLDU/SGqrjgSRkRVkhAC169fx2OPPVbiz9ja2mLo0KGYO3cufvrpJ/Tp08dou3r16sHJyQm7du3CxIkT4e7ubvKahYWF6Nu3Lw4ePIghQ4Zg8uTJyM3NRXx8PM6ePYvg4GAAwKpVq9CvXz8MGzYM+fn52Lx5M/7zn/9g9+7dcj8+//xzjB07Fk8++STGjRsHAAgODkbt2rXx119/4csvv8SKFSvkUSkvLy8AwOLFizF37lwMGjQIY8eOxc2bN/Huu++iS5cuOHXqFNzc3OT+ZmZmonfv3hgyZAiee+45eHt7l/j5aWmDSw8PD5NtFixYgIULFyIiIgIvvfQSkpKSsHbtWhw/fhw///wz7OzsMGfOHKjValy7dg0rVqwAANSpU6fU/SGqtgQRURX0+eefCwDi448/Vhzv2rWreOyxx0x+7uuvvxYAxKpVq8xef968eQKAqF27tujdu7dYvHixOHHihEG7Tz75RAAQ77zzjsE5jUYj/3z37l3Fufz8fNGqVSvxzDPPKI7Xrl1bjBw50uBab731lgAgUlJSFMcvXbokbG1txeLFixXHf//9d1GrVi3F8a5duwoAYt26dSbvW9f8+fMFAJGUlCRu3rwpUlJSxAcffCAcHByEt7e3uHPnjhBCiE8//VTRtxs3bgh7e3vRs2dPUVhYKF9vzZo1AoD45JNP5GN9+vQRDRs2LFF/iGoaTkcSUZVz/vx5TJgwAeHh4Rg5cmSpPqsdacnNzTXbbuHChdi0aRPatWuHb7/9FnPmzEFoaChCQkIUU6Dbt2+Hp6cnJk6caHANSZLkn52cnOSfb926BbVajc6dO+PkyZOl6r++HTt2QKPRYNCgQcjIyJBfPj4+aNKkCQ4fPqxo7+DggOeff75U39GsWTN4eXkhKCgIL774Iho3bow9e/aYzCU7cOAA8vPzERsbCxubh39GXnjhBbi6umLPnj2lv1GiGojTkURUpaSnp6NPnz5QqVT46quvYGtrW6rP3759GwDg4uJSbNuhQ4di6NChyMnJQWJiIuLi4rBp0yZERUXh7NmzcHR0RHJyMpo1a4Zatcz/3+Xu3bvx+uuv4/Tp08jLy5OP6wZqZXHhwgUIIdCkSROj5+3s7BTv69evb5BfV5zt27fD1dUVdnZ2aNCggTzFasrly5cBFAVvuuzt7dGoUSP5PBGZxyCMiKoMtVqN3r17Izs7Gz/++CP8/PxKfQ1tSYvGjRuX+DOurq7o0aMHevToATs7O2zYsAGJiYno2rVriT7/448/ol+/fujSpQvef/99+Pr6ws7ODp9++ik2bdpU6nvQpdFoIEkS9u3bZzQg1c+x0h2RK6kuXbrIeWhEVHkYhBFRlXD//n1ERUXhr7/+woEDB9CyZctSX6OwsBCbNm2Cs7MzOnXqVKZ+tG/fHhs2bEBaWhqAosT5xMREFBQUGIw6aW3fvh2Ojo749ttv4eDgIB//9NNPDdqaGhkzdTw4OBhCCAQFBaFp06alvZ0K0bBhQwBAUlISGjVqJB/Pz89HSkoKIiIi5GOPOhJIVJ0xJ4yILK6wsBCDBw9GQkICtm3bVqbaVIWFhZg0aRLOnTuHSZMmwdXV1WTbu3fvIiEhwei5ffv2AXg41RYdHY2MjAysWbPGoK34v2Kmtra2kCQJhYWF8rlLly4ZLcpau3ZtowVZa9euDQAG5wYMGABbW1ssXLjQoHiqEAKZmZnGb7ICRUREwN7eHqtXr1b06eOPP4ZarVasSq1du7bZciFENRlHwojI4qZNm4adO3ciKioKWVlZBsVZ9QuzqtVquc3du3dx8eJF7NixA8nJyRgyZAgWLVpk9vvu3r2Ljh07okOHDujVqxf8/f2RnZ2Nb775Bj/++CP69++Pdu3aAQBGjBiBzz77DFOnTsWxY8fQuXNn3LlzBwcOHMB///tf/Pvf/0afPn3wzjvvoFevXnj22Wdx48YNvPfee2jcuDHOnDmj+O7Q0FAcOHAA77zzDvz8/BAUFISwsDCEhoYCAObMmYMhQ4bAzs4OUVFRCA4Oxuuvv47Zs2fj0qVL6N+/P1xcXJCSkoKvv/4a48aNw8svv/xIz7+0vLy8MHv2bCxcuBC9evVCv379kJSUhPfffx9PPPGE4t9XaGgotmzZgqlTp+KJJ55AnTp1EBUVVan9JaqyLLk0k4hIiIelFUy9zLWtU6eOaNKkiXjuuefEd999V6LvKygoEB9++KHo37+/aNiwoXBwcBDOzs6iXbt24q233hJ5eXmK9nfv3hVz5swRQUFBws7OTvj4+IiBAweK5ORkuc3HH38smjRpIhwcHETz5s3Fp59+KpeA0HX+/HnRpUsX4eTkJAAoylUsWrRI1K9fX9jY2BiUq9i+fbvo1KmTqF27tqhdu7Zo3ry5mDBhgkhKSlI8G3PlO/Rp+3fz5k2z7fRLVGitWbNGNG/eXNjZ2Qlvb2/x0ksviVu3bina3L59Wzz77LPCzc1NAGC5CiIdkhDlsDkYEREREZUKc8KIiIiILIBBGBEREZEFMAgjIiIisgAGYUREREQWwCCMiIiIyAIYhBERERFZAIu1VmEajQapqalwcXHh1h9ERERWQgiB3Nxc+Pn5wcbG9HgXg7AqLDU1Ff7+/pbuBhEREZXB1atX0aBBA5PnGYRVYS4uLgCK/iWa2wePiIiIqo6cnBz4+/vLf8dNYRBWhWmnIF1dXRmEERERWZniUomYmE9ERERkAQzCiIiIiCyAQRgRERGRBTAnzMppNBrk5+dbuhvVmr29vdklxkRERGXBIMyK5efnIyUlBRqNxtJdqdZsbGwQFBQEe3t7S3eFiIiqEQZhVkoIgbS0NNja2sLf358jNRVEWzA3LS0NAQEBLJpLRETlhkGYlXrw4AHu3r0LPz8/ODs7W7o71ZqXlxdSU1Px4MED2NnZWbo7RERUTVjN8Em/fv0QEBAAR0dH+Pr6Yvjw4UhNTVW0EULg7bffRtOmTeHg4ID69etj8eLFijbff/89QkJC4ODggMaNGyMuLs7gu9577z0EBgbC0dERYWFhOHbsmOL8/fv3MWHCBHh4eKBOnTqIjo7G9evXFW2uXLmCPn36wNnZGfXq1cP06dPx4MGD8nkYAAoLCwGAU2SVQPuMtc+ciIioPFhNENatWzds3boVSUlJ2L59O5KTkzFw4EBFm8mTJ+Ojjz7C22+/jfPnz2Pnzp148skn5fMpKSno06cPunXrhtOnTyM2NhZjx47Ft99+K7fZsmULpk6divnz5+PkyZNo06YNIiMjcePGDbnNlClTsGvXLmzbtg1HjhxBamoqBgwYIJ8vLCxEnz59kJ+fj6NHj2LDhg2Ii4vDvHnzyv25cHqs4vEZExFRhRBW6n//+5+QJEnk5+cLIYT4888/Ra1atcT58+dNfmbGjBniscceUxwbPHiwiIyMlN8/+eSTYsKECfL7wsJC4efnJ5YsWSKEECI7O1vY2dmJbdu2yW3OnTsnAIiEhAQhhBB79+4VNjY2Ij09XW6zdu1a4erqKvLy8kp8j2q1WgAQarXa4Ny9e/fEn3/+Ke7du1fi61HZ8FkTEVUPGRkZIjU11eQrIyOjXL7H3N9vXVaZE5aVlYWNGzeiY8eOco7Orl270KhRI+zevRu9evWCEAIRERFYtmwZ3N3dAQAJCQmIiIhQXCsyMhKxsbEAilYbnjhxArNnz5bP29jYICIiAgkJCQCAEydOoKCgQHGd5s2bIyAgAAkJCejQoQMSEhLQunVreHt7K77npZdewh9//IF27dpVyHMhIiIi4zIzM7FmzZpi28XExMDDw6MSemRF05EAMHPmTNSuXRseHh64cuUK/ve//8nn/v77b1y+fBnbtm3DZ599hri4OJw4cUIxZZmenq4IjADA29sbOTk5uHfvHjIyMlBYWGi0TXp6unwNe3t7uLm5mW1j7Brac6bk5eUhJydH8apuRo0aBUmSIEkS7Ozs4O3tjR49euCTTz4pVamNuLg4g38HREREpujX1FSrXZCSEgi12sVsu4pk0SBs1qxZ8h9kU6/z58/L7adPn45Tp07hu+++g62tLUaMGAEhBICiUgJ5eXn47LPP0LlzZzz99NP4+OOPcfjwYSQlJVnqFktlyZIlUKlU8svf37/CviszMxNpaWkmX5mZmRX23b169UJaWhouXbqEffv2oVu3bpg8eTL69u1brosXiIiIjDl5sh1WrozFhg0jsXJlLE6etMwMlUWnI6dNm4ZRo0aZbdOoUSP5Z09PT3h6eqJp06Zo0aIF/P398csvvyA8PBy+vr6oVasWmjZtKrdv0aIFgKKVis2aNYOPj4/BKsbr16/D1dUVTk5OsLW1ha2trdE2Pj4+AAAfHx/k5+cjOztbMRKj30Z/RaX2mto2xsyePRtTp06V3+fk5FRIIGbpIVkHBwf5OdSvXx8hISHo0KEDunfvjri4OIwdOxbvvPMOPv30U/z9999wd3dHVFQUli1bhjp16uD777/H888/D+Bh0vz8+fOxYMECfP7551i1ahWSkpJQu3ZtPPPMM1i5ciXq1atX7vdBRETWR612wa5dfSFE0TiUEDbYtasvgoMvQqXKrdS+WHQkzMvLC82bNzf7MlWCQTt1lZeXBwB46qmn8ODBAyQnJ8tt/vrrLwBAw4YNAQDh4eE4ePCg4jrx8fEIDw8HUFSKIDQ0VNFGo9Hg4MGDcpvQ0FDY2dkp2iQlJeHKlStym/DwcPz++++KFZXx8fFwdXVFy5YtTT4PBwcHuLq6Kl4VoaRDrZU5JPvMM8+gTZs22LFjB4CiXLzVq1fjjz/+wIYNG3Do0CHMmDEDANCxY0esXLkSrq6u8sjdyy+/DAAoKCjAokWL8Ntvv+Gbb77BpUuXig30iYioesjMzMT58+fx+++/G7wuXLgAAMjK8pADMC0hbJCV5V7p/bWKxPzExEQcP34cnTp1Qt26dZGcnIy5c+ciODhYDnwiIiIQEhKC0aNHY+XKldBoNJgwYQJ69Oghj46NHz8ea9aswYwZMzB69GgcOnQIW7duxZ49e+Tvmjp1KkaOHIn27dvjySefxMqVK3Hnzh155EWlUmHMmDGYOnUq3N3d4erqiokTJyI8PBwdOnQAAPTs2RMtW7bE8OHDsWzZMqSnp+PVV1/FhAkT4ODgUMlPz3o0b94cZ86cAQB5sQQABAYG4vXXX8f48ePx/vvvw97eHiqVCpIkGYwsjh49Wv65UaNGWL16NZ544gncvn0bderUqZT7ICKiypWZmYmbN29iy5YtxbZ1d8+EJGkUgZgkaeDunlWRXTTKKoIwZ2dn7NixA/Pnz8edO3fg6+uLXr164dVXX5WDGhsbG+zatQsTJ05Ely5dULt2bfTu3RvLly+XrxMUFIQ9e/ZgypQpWLVqFRo0aICPPvoIkZGRcpvBgwfj5s2bmDdvHtLT09G2bVvs379fkWi/YsUK2NjYIDo6Gnl5eYiMjMT7778vn7e1tcXu3bvx0ksvITw8HLVr18bIkSPx2muvVcLTsl5CCHl68cCBA1iyZAnOnz+PnJwcPHjwAPfv38fdu3fN7hBw4sQJLFiwAL/99htu3bolj5heuXLF7CgkERFZJ/0UG7XaBVlZHrCzy0N2dl0AgL//VXmqUaXKRVTUbnlKUpI0iIraXelTkYCVBGGtW7fGoUOHim3n5+eH7du3m23z9NNP49SpU2bbxMTEICYmxuR5R0dHvPfee3jvvfdMtmnYsCH27t1rvsOkcO7cOQQFBeHSpUvo27cvXnrpJSxevBju7u746aefMGbMGOTn55sMwu7cuYPIyEhERkZi48aN8PLywpUrVxAZGVmpU6tERFSxMjMzkZ+fD7VarUj9OXmynU6+lwCgLbYt0K/fLoSEFP39Dwk5heDgi8jKcoe7e5ZFAjDASoIwqv4OHTqE33//HVOmTMGJEyeg0WiwfPlyeWPyrVu3Ktrb29sbbCN0/vx5ZGZmYunSpfKChl9//bVyboCIiCqF8ZGvQNjZ5SkS7h8GYEU/6yffq1S5RoOvytwOkEEYVbq8vDykp6ejsLAQ169fx/79+7FkyRL07dsXI0aMwNmzZ1FQUIB3330XUVFR+Pnnn7Fu3TrFNQIDA3H79m0cPHgQbdq0gbOzMwICAmBvb493330X48ePx9mzZ7Fo0SIL3SUREVUEUyNf+nle+rTJ9ypVLgYMGABPT0+DNvb29pVWqBWwsmKtVD3s378fvr6+CAwMRK9evXD48GGsXr0a//vf/2Bra4s2bdrgnXfewZtvvolWrVph48aNWLJkieIaHTt2xPjx4zF48GB4eXlh2bJl8PLyQlxcHLZt24aWLVti6dKlePvtty10l0REVN4yMzPlmRFjpSaKpiCN002+9/T0hK+vr8GrMgMwgCNhNVJJh1orYkg2Li4OcXFxxbabMmUKpkyZojg2fPhwxfu1a9di7dq1imNDhw7F0KFDFce0BX2JiMi66eb3Gis1UTQFKfT+CYsm35vDIKwG8vDwQExMjNlk9coekiUiIioNY6UmikiQJA2GDPkSBQVF+0v7+1+rcgEYwCCsxmKARURE1iw5uTFMTXQIYQN7+wI0a3bR6PnKTL43h0EYERERWRVtPpip1HZjxVd79OiBunXrol69elVmIIJBGBEREVmUtu6XKfopMsbzwYro538NGDAAfn5+VSbw0sUgjIiIiCxGv+6XKbpF1I3ng2kwcOBXBvlfVTUAAxiEERERkYVkZmYiNTVVcUy77ZC7e6YimNIdKTO19VCrVucAFE09BgUFVflFZgzCiIiIqFKZ2nBbv/hqVNRueashQJlQb27roWbNmlXp4EuLQRgRERFVGlPTj9eu+WLnzofJ9kLYGGw1VN1KLDEIIyIiokqjH0Cp1S5ITAzD0aMdodzvUbnVkJa1BFglwW2LqFr5/vvvIUkSsrOzS/yZwMBArFy5ssL6RERUk2VmZiItLU1+ZWRkyOdOnmyHFSticfToU9APwADjpSaqEwZhVKlGjRoFSZIwfvx4g3MTJkyAJEkYNWpU5XeMiIjKnXbqcf369fJrx44dAIqv9QVUza2GyhODMKp0/v7+2Lx5M+7duycfu3//PjZt2oSAgAAL9oyIiMqTsanHlJRAeQWkuVpfY8d+pEjKr44YhFGlCwkJgb+/v/xfQwCwY8cOBAQEoF27dvKxvLw8TJo0CfXq1YOjoyM6deqE48ePK661d+9eNG3aFE5OTujWrRsuXbpk8H0//fQTOnfuDCcnJ/j7+2PSpEm4c+dOhd0fEREZOnmyHVaujMWGDSOxYkUs/v47EJKkMWinXRXZoEGa4nhV2WqoPDEII1y7Bhw+XPTPyjJ69Gh8+umn8vtPPvkEzz//vKLNjBkzsH37dmzYsAEnT55E48aNERkZiaysovyAq1evYsCAAYiKisLp06cxduxYzJo1S3GN5ORk9OrVC9HR0Thz5gy2bNmCn376SVH0j4iIKpZ26vHhyJcNfvyxC1q0OKcTiGnQsePPiI1dqRgBGzBgAGJiYqpVQr4WV0fWcB9/DIwbB2g0gI0NsH49MGZMxX/vc889h9mzZ+Py5csAgJ9//hmbN2/G999/DwC4c+cO1q5di7i4OPTu3RsA8OGHHyI+Ph4ff/wxpk+fjrVr1yI4OBjLly8HUFQX5vfff8ebb74pf8+SJUswbNgwxMbGAgCaNGmC1atXo2vXrli7di0cHR0r/maJiGo441OPEs6da4ExYz5CQYG9Qa0vrapc8f5RMQirwa5dexiAAUX/fPFFIDISaNCgYr/by8sLffr0QVxcHIQQ6NOnDzw9PeXzycnJKCgowFNPPSUfs7Ozw5NPPolz54oqIp87dw5hYWGK64aHhyve//bbbzhz5gw2btwoHxNCQKPRICUlBS1atKiI2yMiqlFM7f2oXQnp7p4JQAP9CTghbFBQYI+goMsGnx00aFCV2my7IjAIq8EuXHgYgGkVFgIXL1Z8EAYUTUlqpwXfe++9CvmO27dv48UXX8SkSZMMznERABHRoyvJ3o8qVS569DiA+Pge0C1FoVuCYsCAAfJ/jFtTwdVHwSCsBmvSpGgKUjcQs7UFGjeunO/v1asX8vPzIUkSIiMjFeeCg4Nhb2+Pn3/+GQ0bNgQAFBQU4Pjx4/LUYosWLbBz507F53755RfF+5CQEPz5559oXFk3RURUjRkb8dKt+wWY3vvxqacSAAAHDkQotiXStvH09ISvr28F30HVwiCsBmvQoCgH7MUXi0bAbG2BDz6onFEwALC1tZWnFm1tbRXnateujZdeegnTp0+Hu7s7AgICsGzZMty9exdj/i9pbfz48Vi+fDmmT5+OsWPH4sSJE4iLi1NcZ+bMmejQoQNiYmIwduxY1K5dG3/++Sfi4+OL/S83IiJ6GHip1WqDvR71Fbf341NPJaBVq7NG93usiRiE1XBjxhTlgF28WDQCVlkBmJarq6vJc0uXLoVGo8Hw4cORm5uL9u3b49tvv0XdunUBFE0nbt++HVOmTMG7776LJ598Em+88QZGjx4tX+Pxxx/HkSNHMGfOHHTu3BlCCAQHB2Pw4MEVfm9ERNbO3FSj/oiX/gpIY3s/AkVTk8aCr+pYgqI4khBCWLoTZFxOTg5UKhXUarVBsHL//n2kpKQgKCiIK/wqGJ81EdVUaWlpWL9+vcFxYyNedevewoYNIw3ajhwZh6Cgy4qcL33VLQfM3N9vXRwJIyIiohJRq11w9aq/0RGvMWM+giRpFKUodBPva2LOV3EYhBEREVGxdEe/9GlLTURF7TYYIavpeV/mMAgjIiIime4KSO3KR8OK90raEa+goMsIDr7IxPsSYhBGREREAEwn4he32bbuiBcT70uOQZiV47qKisdnTETVUXJyMu7evas4duvWLcV77QpIO7s8g3wvQIOBA7+Cv/81RdBlLAG/uiXelxcGYVZKW1crPz8fTk5OFu5N9aYdltevZUZEZK2Sk5PxxRdfmG2jvwLy8cfP4MyZxxX5Xq1anTP4XHXe67G8MQizUrVq1YKzszNu3rwJOzs72NgYHyamR6PRaHDz5k04OzujVi3+z4WIqgf9ETB9xmp+nTnzuMnNtgcNGgQ3NzeOeJUS/6pYKUmS4Ovri5SUFFy+bLjxKZUfGxsbBAQEQJKk4hsTEVmha9d8ceVKQwQEXEaDBmlGc8B0N9uuifs8VgQGYVbM3t4eTZo0MbpzPZUfe3t7jjQSUbX19df/xm+/tUHRxtoCbdr8hmeeOcSaX5WAQZiVs7GxYRV3IiIqk2vXfHUCMACQ8NtvbfDEE8dY86sSMAgjIiKq5nRrfwEPV0FeudIQDwMwLQlXrwYgPDyRNb8qGIMwIiKiaszcJtwBAZcBCCgDMQF//ysAWPOrojEIIyIismL6o1z61Gq13vui2l/u7plo0CANbdr8ZpAT1qBBGgCgW7duaNKkieLzTMQvPwzCiIiIrJS5US5j9Gt/RUXtxv/7f//DE08cw9WrAfD3vyIHYABQv359JuBXIAZhREREVkJ/1Eu7t2NJGKv9tWtXXwQHX0SDBmkYPrw56tYNl9s7OzsjODi4/DpPBhiEERERWYGSjHrpTjXq53KZqv2VleUOlSoXTZo04ahXJWMQRkREZAWKqwlpbKoxJOSUfN7dPdNs7S+qfKxASUREZOVMTTWq1S5yG5UqF1FRuyFJGgBg7a8qgCNhREREVq64qUatkJBTrP1VhTAIIyIiskK6+V+pqb7Qr/dlaqqRtb+qDgZhREREVVxmZqZiJaRu/hegQVHwpSy4GhFxQA62Bg0aBDc3N5PXZ+0vy2AQRkREVIXpr4rUz/8ynt4twc8vVX5Xr149BllVEBPziYiIqjD9VZFXr/ob5H/p052KHDx4MAOwKoojYURERBZQ3HZDxqYItdOQhjSQJCjKU2inIlUqVXl2m8oRgzAiIqJKVtLthmJiYuSfDachtTTo1283Vz1aIQZhRERElUx/BMxUpXvddsbKUADAwIFfoVWrcwDAVY9WhkEYERGRBZmrdJ+dnS2vajRV8d7f/xoAYMCAAfD09FRcm6seqzYm5hMREVlIcZXut27dCrVaDaD4iveenp7w9fVVvBiAVW0cCSMiIqogppLvtTW/TFW6T0wMQ8+eBwAABQUF8jlWvK9eGIQRERFVgJIk3xubYgSAo0fDERaWCJUqF7VqKf9Us+J99cEgjIiIqAKYKz+hpVLlIjw8AUePPqV35uG+j25uboiJiSl1OQuq+hiEERERVQJTKyDDwhJx9Gg4dNO09fd9ZIBVPTEIIyIiqmD6KyAjIg7gqacSABSNhvXrt9tghSTzvao/BmFEREQVyNgKyPj4HgAgB2JMuK+ZWKKCiIioAhkvsiohPj5CLkUBFI2IBQVdZgBWgzAIIyIiqkDaFZCGipLvi8NVj9UXpyOJiIgqkEqVi4iIA/83BSnJx3WT741Vuwe46rG6YxBGRERkgqliq1rmgiTdESxt7ld8fAQAw+R7bbV7qlkYhBERERlRkmKrADB48GCoVCrFMW1wNnjwYGzZsgVAUSDWqtVZJt+TjEEYERGRESUptgoA69fvNVr/KyYmxiA4M1Xtnmomq0nM79evHwICAuDo6AhfX18MHz4cqamp8vkFCxZAkiSDV+3atRXX2bZtG5o3bw5HR0e0bt0ae/fuVZwXQmDevHnw9fWFk5MTIiIicOHCBUWbrKwsDBs2DK6urnBzc8OYMWNw+/ZtRZszZ86gc+fOcHR0hL+/P5YtW1bOT4SIiMpTZmYm0tLS5Jd2f0cttdoFKSmBihWNJ0+2w8qVsdiwYSRWrozFyZPt5HP5+fklTqpn8n3NZDUjYd26dcMrr7wCX19f/PPPP3j55ZcxcOBAHD16FADw8ssvY/z48YrPdO/eHU888YT8/ujRoxg6dCiWLFmCvn37YtOmTejfvz9OnjyJVq1aAQCWLVuG1atXY8OGDQgKCsLcuXMRGRmJP//8E46OjgCAYcOGIS0tDfHx8SgoKMDzzz+PcePGYdOmTQCAnJwc9OzZExEREVi3bh1+//13jB49Gm5ubhg3blxlPC4iIiqF4qYe9YutRkXtRnDwRYP6X7t29UVw8EV5tMvDw4NbDpFJkhBCWLoTZbFz5070798feXl5sLOzMzj/22+/oW3btvjhhx/QuXNnAEXz9nfu3MHu3bvldh06dEDbtm2xbt06CCHg5+eHadOm4eWXXwYAqNVqeHt7Iy4uDkOGDMG5c+fQsmVLHD9+HO3btwcA7N+/H//6179w7do1+Pn5Ye3atZgzZw7S09Pl/7qZNWsWvvnmG5w/f77E95iTkwOVSgW1Wg1XV9cyPysiIjIvLS0N69evN3pOrXbBypWxilpfkqRBdPR2fPXVfwzajxwZh6Cgyxg3bhyT7Wuokv79tprpSF1ZWVnYuHEjOnbsaDQAA4CPPvoITZs2lQMwAEhISEBERISiXWRkJBISilatpKSkID09XdFGpVIhLCxMbpOQkAA3Nzc5AAOAiIgI2NjYIDExUW7TpUsXxfByZGQkkpKScOvWrUe8eyIiqmhqtQvOnm2JY8dCceJEiEGx1aL3wqD+l/6ej0TmWM10JADMnDkTa9aswd27d9GhQwfFiJau+/fvY+PGjZg1a5bieHp6Ory9vRXHvL29kZ6eLp/XHjPXpl69eorztWrVgru7u6JNUFCQwTW05+rWrWu033l5ecjLy5Pf5+TkGG1HRETlS61Wyz+fPNkOO3dGQbemFyCgX+PL3/8aoqK45yOVnUVHwmbNmmU0mV73pTt9N336dJw6dQrfffcdbG1tMWLECBibTf3666+Rm5uLkSNHVubtPLIlS5ZApVLJL39/f0t3iYio2svMzJTLSKjVLti5sy+UARj+733R3xvdYCsk5BRiY1di5Mg4xMauREjIqUrtO1k3i46ETZs2DaNGjTLbplGjRvLPnp6e8PT0RNOmTdGiRQv4+/vjl19+QXh4uOIzH330Efr27WswouXj44Pr168rjl2/fh0+Pj7yee0x3Xn869evo23btnKbGzduKK7x4MEDZGVlKa5j7Ht0v8OY2bNnY+rUqfL7nJwcBmJERBVMN2k+MTEMpscnJERG7kfLln8qRrtYdoLKyqJBmJeXF7y8vMr0WY2maB5ed/oOKMrrOnz4MHbu3GnwmfDwcBw8eBCxsbHysfj4eDmICwoKgo+PDw4ePCgHXTk5OUhMTMRLL70kXyM7OxsnTpxAaGgoAODQoUPQaDQICwuT28yZMwcFBQVyzlp8fDyaNWtmcioSABwcHODg4FCGp0FERI9KrXZBQkK4yfOSpDEIwMxh2QkqjlXkhCUmJuL48ePo1KkT6tati+TkZMydOxfBwcEGo2CffPIJfH190bt3b4PrTJ48GV27dsXy5cvRp08fbN68Gb/++qu8IkaSJMTGxuL1119HkyZN5BIVfn5+6N+/PwCgRYsW6NWrF1544QWsW7cOBQUFiImJwZAhQ+Dn5wcAePbZZ7Fw4UKMGTMGM2fOxNmzZ7Fq1SqsWLGiYh8UERGVWVaWh0ECvpZ+vpexKvm6WHaCSsIqgjBnZ2fs2LED8+fPx507d+Dr64tevXrh1VdfVYwcaTQaxMXFYdSoUbC1tTW4TseOHbFp0ya8+uqreOWVV9CkSRN88803co0wAJgxYwbu3LmDcePGITs7G506dcL+/fvlGmEAsHHjRsTExKB79+6wsbFBdHQ0Vq9eLZ9XqVT47rvvMGHCBISGhsLT0xPz5s1jjTAiIgsobv9HbVK+u3smJEmjF4hp8K9/7UGzZhf0piBVLD9Bj8xq64TVBKwTRkT0aPSLsKrVLka3GNIyVpTVWLI9a4CROSX9+20VI2FERERloTsCVpIAKyTkFIKDLxa7yTbzvag8MAgjIqJqT612KXaLIS1Tqx0HDBgAT09P5ntRuWEQRkRE1YpuDph2E25jSfdC2CAry73Eqx39/PwYfFG5YhBGRETVhvEcsEDk59cySLrX3WJo0KBBcHNzM3ldjn5RRWAQRkRE1YapHLCH2w4V/VO/5ISbmxsT7anSMQgjIiKrUFypCd1kef0csIfbEEkANBgz5iM0aJBWYX0lKgkGYUREVOXpTzOa0qNHDwDmC68CNigo4OpGsjwGYUREVGVpR7+0CfZa2npfdnZ5KChwkOt+xcfHAzBVeLWIbi6YFktOkCUwCCMioirJ1OiXsVwv/bpfKlUuoqJ2m2ynzQUbMGAAVz2SxTAIIyKiKkk//0utdsHVq/5Gc72M1f3SLbxqZ5ePggJ7gwKsnp6eDMDIYhiEERGRRZlKuNedglSOfhlnrO6XqcKrRFUBgzAiIrKYkiTcG650NM5YrhdRVWb+N5qIiKgCGZtyTEkJhFrtIh8zv9JRAIBBrlfPnj1L9P1MyCdL4kgYERFVCaY22HZ3zwSggXLcQIOBA7+Cm1u20VyvwMBAxMTEFFtXjPlgZEkMwoiIyOLMbbBdRFK0lyTA3/+a2XwvBlhU1TEIIyIiizO3wXZRACYZPWcqCOM0I1kDBmFERGRxxoqr6ibamzvXo0cPBAUFyec4zUjWgon5RERkcdriqpKkAaBMtDd3DgCCgoLg6+srvxiAkbXgSBgREZW7kmy2rR8s6RZX1U+0N3eOyFoxCCMionJV0s22Y2JiDHK3zBVXZeFVqm4YhBERUbkyVvsrK8tD3mRb648//kDdunXRu3dvODk5oVatWnBzc5PPZ2dnY+vWrcV+H5PwyVoxCCMiogqjX/srIuIA/PzS4O6eicOHDxu0j4mJkacpfX19WeuLqjUGYUREVCGM1f6Kj++BonITGnTsmICwsETF6Jh+wMUAi6ozro4kIqIKYXy7IW29LxscPfoUVq6MxcmT7Sq7a0RVAoMwIiIqF5mZmUhLS0NGRgaAh7W/zNFWxtfdK5KopuB0JBERPTJjKyK19b0eTkkK6Fe+B4qvfk9UXTEIIyKiR2ZqRWRw8EXExq5EVpY7UlP9EB8fAf1JGN3q90Q1CYMwIiIqE92CrNopSMBwRWRU1G6EhJxCUNBltGp1FomJYUhICFec5ygY1UQMwoiIqNSSk5PxxRdfyO+LRr4CYWeXZ7AicteuvggOvigXW+3Z8wDCwhJZ/Z5qPAZhRERUKpmZmYoATHfkC9BAf7rRWM6Xqer3LLxKNQmDMCIiKpUbN27IP6vVLti5sy8eBl6GCfi6OV/dunVD3bp1FdfTVspn4VWqaRiEERFRiWVmZiq2Evrhh84wrHYkQZI0RnO+mjRpAl9f38rrMFEVxiCMiKiG0E2kN6YkI1G6n//553CcONHeSCsNxoz5CAUF9sz5IjKDQRgRUQ1grI6XMTExMQAMS05oaVdBqtUu/1duwrDuV8eOCWjQIM3o55nzRfQQgzAiohrA3AiYrqSkJMTHx8vvtfW+3N0zFSNaWVkeMLbpiiRpEBaWKL8fMGAAPD09AXCzbSJ9DMKIiGogU8GVbgBmqt4X8HBLIuXekAIREQcU1/P09GQOGJEJDMKIiKqp0hZT1Q3MABRb70u5JZEGPXocwFNPJSj6wOlHItMYhBERVUOmcsDUahejwdW9e444cCBCDszCwxP0RrkM632FhJxCcPBFk0VXn3vuOU4/EpnBIIyIqBoytZfjnTvORoMrbQCmfZ+QEA79wqvG9ng0VXR18ODBCA4OLp+bIaqmGIQREVVzhhXtlcVUAf3crqJArGPHn8u8x6OXl1d5dZ+o2mIQRkRUjelPPxaNbGkgSUIOriIiDihGwoCHqxxN7fGou+pRH1dBEpUMgzAiomosK8vDYJQLsEF09FbUrn1XDq6cnO4bJOtrgy5jo19c9Uj06BiEERFVI9oVkdrVkMZKSUiSBv7+1xTBVXFJ9vq46pHo0TEIIyKyYrplKNRqNbZs2SKf0ybj6043msvtMpdkr1Kp5PecbiQqHwzCiIislLmtiPRrgUVEHICfX6rBKJd+gKWPARdRxWEQRkRkpUyVobCzyzOoBXbgQARiY1cajHR5eXkxyCKyEAZhRETVgGEZCtOFVrUrGznKRWRZDMKIiKxQZmamnHxvvAyFshaYbqFVrmwkqhoYhBERWRn9XDDjZSgkeVVkaQutElHlYBBGRGRl9HPB7OzyjJahGDPmIxQU2Jeo5AQRVT4GYURElUi3pIQxpc3TUuaCFU1Bake+GjRIe/QOE1GFYRBGRFRJzJWU0BUTE1OiQMwwF0wCUDQCZi4AY6FVoqqBQRgRUSUxVVLC3T1TMV1obqRMl6ktiQoKlEHWoEGD4ObmBoB1v4iqEgZhREQWoF9MNSpqN0JCTpXqGqa2JNKughwwYAD8/PwYdBFVUfr/CUVERBVMfxpRCBvs2tUXarVLqa6jUuUiKmo3JEkDAAarID09PRmAEVVhHAkjIqpkxqYRdYuplkZpN94moqqDQRgRUTkztQJSW1y1uGnE4ugn1pvaeJsJ+ERVG4MwIqJyVJIVkNppRP2csJKOYnl4eCAmJqZcS10QUeUrcRCWk5NT4ou6urqWqTNERNaupCsgH3UakQEWkfUrcRDm5uYGSZLMthFCQJIkFBYWPnLHiIisXXErIE1NI969e7cyu0lEFlLiIOzw4cMV2Q8iomrF1ArI4OCLxY56ffHFFyUu2EpE1qvEQVjXrl0rsh9ERNVKSVdAPmrBViKyXmVOzM/OzsbHH3+Mc+fOAQAee+wxjB49GiqVqtw6R0RkrUqyArI8CrYSkfUqU7HWX3/9FcHBwVixYgWysrKQlZWFd955B8HBwTh58mR595GIyOoUV0i1vAq2EpH1KtNI2JQpU9CvXz98+OGHqFWr6BIPHjzA2LFjERsbix9++KFcO0lEZI3MrYAsz4KtRGSdyjwSNnPmTDkAA4BatWphxowZ+PXXX8utc7r69euHgIAAODo6wtfXF8OHD0dqaqqizbfffosOHTrAxcUFXl5eiI6OxqVLlxRtvv/+e4SEhMDBwQGNGzdGXFycwXe99957CAwMhKOjI8LCwnDs2DHF+fv372PChAnw8PBAnTp1EB0djevXryvaXLlyBX369IGzszPq1auH6dOn48GDB+XyLIio6jJWSDUo6LJBYKWdrtRVmoKtRGT9yjQS5urqiitXrqB58+aK41evXoWLS8UMpXfr1g2vvPIKfH198c8//+Dll1/GwIEDcfToUQBASkoK/v3vf2Pq1KnYuHEj1Go1pkyZggEDBshTpCkpKejTpw/Gjx+PjRs34uDBgxg7dix8fX0RGRkJANiyZQumTp2KdevWISwsDCtXrkRkZCSSkpJQr149AEUjgXv27MG2bdugUqkQExODAQMG4OeffwYAFBYWok+fPvDx8cHRo0eRlpaGESNGwM7ODm+88UaFPB8iqhqKK6SakZGBHTt2PHLBViKyfpIQQpT2Q5MmTcLXX3+Nt99+Gx07dgQA/Pzzz5g+fTqio6OxcuXK8u6ngZ07d6J///7Iy8uDnZ0dvvrqKwwdOhR5eXmwsSka4Nu1axf+/e9/y21mzpyJPXv24OzZs/J1hgwZguzsbOzfvx8AEBYWhieeeEKueK3RaODv74+JEydi1qxZUKvV8PLywqZNmzBw4EAAwPnz59GiRQskJCSgQ4cO2LdvH/r27YvU1FR4e3sDANatW4eZM2fi5s2bJd5KJCcnByqVCmq1mgVwiaqJtLQ0rF+/Xn5ftDrScLpy3Lhx8PX1tUQXiegRlfTvd5mmI99++20MGDAAI0aMQGBgIAIDAzFq1CgMHDgQb775Zpk7XVJZWVnYuHEjOnbsCDs7OwBAaGgobGxs8Omnn6KwsBBqtRqff/45IiIi5DYJCQmIiIhQXCsyMhIJCQkAipaEnzhxQtHGxsYGERERcpsTJ06goKBA0aZ58+YICAiQ2yQkJKB169ZyAKb9npycHPzxxx8m7ysvLw85OTmKFxFVLyWdruS+j0TVX5mmI+3t7bFq1SosWbIEycnJAIDg4GA4OzuXa+f0zZw5E2vWrMHdu3fRoUMH7N69Wz4XFBSE7777DoMGDcKLL76IwsJChIeHY+/evXKb9PR0RWAEAN7e3sjJycG9e/dw69YtFBYWGm1z/vx5+Rr29vZwc3MzaJOenm72e7TnTFmyZAkWLlxYwqdBRNaI+z4SkVaZRsK0nJ2d0bp1a7Ru3bpMAdisWbMgSZLZlzb4AYDp06fj1KlT+O6772Bra4sRI0ZAO5uanp6OF154ASNHjsTx48dx5MgR2NvbY+DAgSjDjKtFzJ49G2q1Wn5dvXrV0l0iogrg4eEBX19fky8GYEQ1Q5lGwu7fv493330Xhw8fxo0bN6DRKFf4lLRW2LRp0zBq1CizbRo1aiT/7OnpCU9PTzRt2hQtWrSAv78/fvnlF4SHh+O9996DSqXCsmXL5PZffPEF/P39kZiYiA4dOsDHx8dgFeP169fh6uoKJycn2NrawtbW1mgbHx8fAICPjw/y8/ORnZ2tGA3Tb6O/olJ7TW0bYxwcHODg4GD2eRAREVH1UKYgbMyYMfjuu+8wcOBAPPnkk8Vu7G2Kl5cXvLy8yvRZbeCXl5cHoGjDW21Cvpatra2irf70JADEx8cjPDwcQNEUQGhoKA4ePIj+/fvLnz148CBiYmIAFOWe2dnZ4eDBg4iOjgYAJCUl4cqVK/J1wsPDsXjxYty4cUNeURkfHw9XV1e0bNmyTPdLRBUnMzOT04NEVOnKtDpSpVJh7969eOqppyqiTwYSExNx/PhxdOrUCXXr1kVycjLmzp2L69ev448//oCDgwMOHTqEiIgILFiwAEOHDkVubi5eeeUVnD9/HufOnYOTkxNSUlLQqlUrTJgwAaNHj8ahQ4cwadIk7NmzR1GiYuTIkfjggw/w5JNPYuXKldi6dSvOnz8v53W99NJL2Lt3L+Li4uDq6oqJEycCgFwuo7CwEG3btoWfnx+WLVuG9PR0DB8+HGPHji1ViQqujiSqeJmZmfJqaHO4oTYRlVSFro6sX79+hdUDM8bZ2Rk7duxA9+7d0axZM4wZMwaPP/44jhw5Ik/fPfPMM9i0aRO++eYbtGvXDr169YKDgwP2798PJycnAEXJ+3v27EF8fDzatGmD5cuX46OPPpIDMAAYPHgw3n77bcybNw9t27bF6dOnsX//fkWi/YoVK9C3b19ER0ejS5cu8PHxwY4dO+Tztra22L17N2xtbREeHo7nnnsOI0aMwGuvvVZJT4yISqqkG2VzQ20iKm9lGgnbt28fVq9ejXXr1qFhw4YV0S8CR8KIKoPxul0ecHfPZN0uIiqTkv79LlNOWPv27XH//n00atQIzs7Och0urawsbrtBRNbn5Ml2BhXsQ0JOWbpbRFRNlSkIGzp0KP755x+88cYb8Pb2LnNiPhFRVaFWu8gBGFC0mfauXX0RHHyRWwkRUYUoUxB29OhRJCQkoE2bNuXdHyIii8jK8pADMC0hbJCV5c4gjIgqRJkS85s3b4579+6Vd1+IiCzG3T0TkqSseShJGri7M72CiCpGmUbCli5dimnTpmHx4sVo3bq1QU4Yk8iJqDKUZ30vlSoXUVG7DXLCOApGRBWlTEFYr169AADdu3dXHBdCQJIkFBYWPnrPiIjMKK/6XrobZYeEnEJw8EVkZbnD3T1LEYBxQ20iKm9lCsIOHz5c3v0gIioV/REwU6UlUlNTFW31R8e4oTYRWUqZgrCuXbuWqN1///tfvPbaa/D09CzL1xARlYi50hK6hZS19EfHGGARkSWUKTG/pL744gvk5ORU5FcQUQ1nqrSEWm16Vw9WvyeiqqBMI2ElVYZi/EREpWKutIT2vP4UJRFRVVChQRgRUUXTlpbQDcQkSYPUVD989tkIVr8noiqrQqcjiYgqmra0hLbGlyRpEBFxAAcORJRqipKIqLJxJIyIqixzdcAyMjLkn/VLS7D6PRFZAwZhRFQllbQOmJZKlasIsIxNUbL6PRFVJRUahD333HOsnk9EZVLSFYwDBgyQy+BkZGRgx44drH5PRFahzEFYdnY2jh07hhs3bkCjUe63NmLECADA2rVrH613RFQjZWZmKqYbAdPFWD09PeHr6wuA1e+JyLqUKQjbtWsXhg0bhtu3b8PV1RWSJMnnJEmSgzAiotIyNg1prhirLla/JyJrUqYgbNq0aRg9ejTeeOMNODs7l3efiKgGM7YdkbFirMHBF41OLzLAIiJrUaYSFf/88w8mTZrEAIyIKtzVq/5mi7ESEVmrMgVhkZGR+PXXX8u7L0RECidPtsP27dEGx7nSkYiqgxJPR+7cuVP+uU+fPpg+fTr+/PNPtG7dGnZ2doq2/fr1K78eElGNpD8N+ZBypaNarZYT84mIrEmJg7D+/fsbHHvttdcMjkmShMLCwkfqFBHVLLpFWbWrIo0VXAWAgQO/QqtW5+T3W7ZsQUxMDHPBiMjqlDgI0y9DQURUHkwVZTW1J6S//zWDtiWtKUZEVJWUKSfss88+Q15ensHx/Px8fPbZZ4/cKSKq2jIzM5GWlmbylZmZWeJrGVsNmZISCAAGe0J26vQjsrI8uAckEVULkhBClPZDtra2SEtLQ7169RTHMzMzUa9ePU5HlpOcnByoVCqo1WruPEBVhv7IlakiqoMGDYKbm5v83lR9rrS0NKxfvx6A8Xpg9+45Ij4+AkX/zSgASAa1wsaNG8e8MCKqMkr697tMdcKEEIoCrVrXrl2DSqUqyyWJyErojlyZK6K6detWg8+ay90yVg9s586+KPq/Gu2gvSSfM1crjIjIGpQqCGvXrh0kSYIkSejevTtq1Xr48cLCQqSkpKBXr17l3kkiqnpKW0QVMJ+7ZTwR3wamxuq1tcIYhBGRtSpVEKZdIXn69GlERkaiTp068jl7e3sEBgYiOtqwpg8RVT/GgibdIqrGpijNMZaIXzT9CGhHwHSxVhgRWbtSBWHz588HAAQGBmLw4MFwdHSskE4RUdVnavViaqofPvtsRLH7POpTqXIREXEA8fE98DDokgBoIEni/75HmRPGUTAismZlygkbOXIkgKKphRs3bhiUrwgICHj0nhFRlaZS5SIqarciJywi4gAOHIgo1RSlLj+/NBiOetkgOnorate+Czu7fBQU2MPdPUtxPXt7+3K8MyKiylGmIOzChQsYPXo0jh49qjiuTdjn6kiimiEk5BSCgy8iK8sd7u5ZZqcoVapcuRAr8HC1pG4AZa42mEqVi27duqFu3boAgFq1asHNzc3kqksioqquTEHYqFGjUKtWLezevRu+vr5GV0oSkXXRrVpvjKlgR6XKVYxKGQuitLlbO3bsUHxWu1py0KBB2Lp1q9HRNd1pxyZNmrAUBRFVG2UKwk6fPo0TJ06gefPm5d0fIrKAktb+iomJMTv1V1wQpU8b9OnWHNQfXeO0IxFVV2UKwlq2bKmYViAi61bS2l/5+fnw9fVFTEyM4jNqtRpbtmwBYDyIMhXUaXl4eBhcUx+nHYmouilTEPbmm29ixowZeOONN9C6dWvY2dkpzrO6O5F1KmntL/1gSDcwy8jIwI4dO+T25oI6XQywiKimKVMQFhERAQB45plnFPlgTMwnsm7FJdabYyyIUqtdsHNnX2gr3rPSPRHRQ2UKwg4fPlze/SCiKsDU6sSyFkVNTAzDwy2HirDSPRFREf09Qkqka9eusLGxwYcffohZs2ahcePG6Nq1K65cuQJbW9vy7iMRVRJtYr0kFdX+00+sz8jIQFpaGjIzM4u9llrtgoSEcCNnWOmeiAgo40jY9u3bMXz4cAwbNgynTp1CXl4egKLk3DfeeAN79+4t104SUcXQlqXQXWhjbnWibokJc5txA6b2ggQ6dkzgKBgREcoYhL3++utYt24dRowYgc2bN8vHn3rqKbz++uvl1jkiqjj6ZSl06db+MrWy0dxKRsD01GZYWKL8niUniKgmK1MQlpSUhC5duhgcV6lUyM7OftQ+EVEl0A+ijAVbJV3ZaExxNcMGDRrEFZFEVKOVKQjz8fHBxYsXERgYqDj+008/oVGjRuXRLyKqRMaCreDgiyUqV6FPd3TL3NSmboFWIqKaqExB2AsvvIDJkyfjk08+gSRJSE1NRUJCAl5++WXMnTu3vPtIRBXIVG2w6OjtZSpXwcKrREQlU6YgbNasWdBoNOjevTvu3r2LLl26wMHBAS+//DImTpxY3n0kogpkqjYYIMpcroIBFhFR8cpUokKSJMyZMwdZWVk4e/YsfvnlF9y8eROLFi0q7/4RUQXTJtDrkiQN/P2vmS1XQUREj6ZMI2Fa9vb2aNmyZXn1hYgswFwCvbmcLiIiejSPFIQRUfVgLtjSLVehi+UliIgeDYMwohpKP4gyFWwNGjQIbm5uBp9l3hcR0aNhEEZUQ3EVIxGRZTEII6oCtNsHAUBqqg1SUmohKOgB/PyKkuIrKhhigEVEZDkMwogsTHf7IHMV6ovbq5GIiKxLmUpUEFH50Y6AmSqaqla7KNoREVH1wCCMqIowVTQ1K8vdQj0iIqKKxCCMqIowVTS1JBXqiYjI+jAII6oitEVTWaGeiKhmYGI+URXCCvVERDUHgzCiKsZU0VQiIqpeGIQRWYmMjAwALKBKRFRdMAgjsrCS7sG4Y8cO+WfWDCMisn4MwogsTHf7oIyMDEWwpVa7ICvLA+7umYopSv2aYboV943h6BkRUdXDIIyoBK5dAy5cAJo0ARo0KP/rGwuQzFXP105NAoBarcaWLVuK/Q6OnhERVS0MwohM0I4ubdrkhBkzVNBoJNjYCCxbpsazz96r0NElU9Xzg4MvQqXKVYyWGftsSUbPiIjIshiEERmh3c9RrXbBypWxEEICAGg0EqZPd8U//3wClSq3wkaXzFXPV6lyTQZa5kbPiIioamEQRmSEdtSouGCookaXtNXzdb9bWz3fVKBV3OgZERFVLayYT2SGpbYSMlU9H4DJTb659yQRkXWxmiCsX79+CAgIgKOjI3x9fTF8+HCkpqYq2mzduhVt27aFs7MzGjZsiLfeesvgOt9//z1CQkLg4OCAxo0bIy4uzqDNe++9h8DAQDg6OiIsLAzHjh1TnL9//z4mTJgADw8P1KlTB9HR0bh+/bqizZUrV9CnTx84OzujXr16mD59Oh48ePDoD4IqVWVvJZSdnS3/HBJyCrGxKzFyZBxiY1ciJOSU2UCLe08SEVkXqwnCunXrhq1btyIpKQnbt29HcnIyBg4cKJ/ft28fhg0bhvHjx+Ps2bN4//33sWLFCqxZs0Zuk5KSgj59+qBbt244ffo0YmNjMXbsWHz77bdymy1btmDq1KmYP38+Tp48iTZt2iAyMhI3btyQ20yZMgW7du3Ctm3bcOTIEaSmpmLAgAHy+cLCQvTp0wf5+fk4evQoNmzYgLi4OMybN6+CnxJVBGPBUEWRJMnYUfknc4EW954kIrIukhBCWLoTZbFz5070798feXl5sLOzw7PPPouCggJs27ZNbvPuu+9i2bJluHLlCiRJwsyZM7Fnzx6cPXtWbjNkyBBkZ2dj//79AICwsDA88cQTcvCm0Wjg7++PiRMnYtasWVCr1fDy8sKmTZvkIPD8+fNo0aIFEhIS0KFDB+zbtw99+/ZFamoqvL29AQDr1q3DzJkzcfPmzRIX58zJyYFKpYJarYarq2u5PDcqmbS0NKxfv77YduPGjYOvr2+FfK+p3K/iku+LpiYN954s774SEZFxJf37bTUjYbqysrKwceNGdOzYEXZ2dgCAvLw8ODo6Kto5OTnh2rVruHz5MgAgISEBERERijaRkZFISEgAUJSMfeLECUUbGxsbREREyG1OnDiBgoICRZvmzZsjICBAbpOQkIDWrVvLAZj2e3JycvDHH3+YvK+8vDzk5OQoXlQzmUqyV6tdih2ZU6lyERR02WAErKTBPxERVQ6rWh05c+ZMrFmzBnfv3kWHDh2we/du+VxkZCSmTJmCUaNGoVu3brh48SKWL18OoGh0ITAwEOnp6YrACAC8vb2Rk5ODe/fu4datWygsLDTa5vz58wCA9PR02Nvbw83NzaBNenq63MbYNbTnTFmyZAkWLlxYiidClqZbNFXXo9YQK25VpqlNvgcNGmTwu1ke/SEiovJn0SBs1qxZePPNN822OXfuHJo3bw4AmD59OsaMGYPLly9j4cKFGDFiBHbv3g1JkvDCCy8gOTkZffv2RUFBAVxdXTF58mQsWLAANjbWMeA3e/ZsTJ06VX6fk5MDf39/C/ao5irLfo76HqWGmLkSFQAwYMAAeHp6Kj7DQIuIyLpYNAibNm0aRo0aZbZNo0aN5J89PT3h6emJpk2bokWLFvD398cvv/yC8PBwSJKEN998E2+88QbS09Ph5eWFgwcPKq7h4+NjsIrx+vXrcHV1hZOTE2xtbWFra2u0jY+Pj3yN/Px8ZGdnK0Yc9Nvor6jUXlPbxhgHBwc4ODiYfR5UOXT3c9Snv7+jKY9SQ0ybZK+f+6Ud/fL09GR+FxGRlbNoEObl5QUvL68yfVajKVoBlpeXpzhua2uL+vXrAwC+/PJLhIeHy98RHh6OvXv3KtrHx8cjPDwcQNFIQmhoKA4ePIj+/fvL33Pw4EHExMQAAEJDQ2FnZ4eDBw8iOjoaAJCUlIQrV67I1wkPD8fixYtx48YN1KtXT/4eV1dXtGzZskz3S5WvpKNKpqrXP6qQkFMIDr5oNMmeiIisn1XkhCUmJuL48ePo1KkT6tati+TkZMydOxfBwcFy4JORkYGvvvoKTz/9NO7fv49PP/1ULiGhNX78eKxZswYzZszA6NGjcejQIWzduhV79uyR20ydOhUjR45E+/bt8eSTT2LlypW4c+cOnn/+eQCASqXCmDFjMHXqVLi7u8PV1RUTJ05EeHg4OnToAADo2bMnWrZsieHDh2PZsmVIT0/Hq6++igkTJnCkq5op722C9KdBTeV+McmeiMj6WUUQ5uzsjB07dmD+/Pm4c+cOfH190atXL7z66quKoGbDhg14+eWXIYRAeHg4vv/+ezz55JPy+aCgIOzZswdTpkzBqlWr0KBBA3z00UeIjIyU2wwePBg3b97EvHnzkJ6ejrZt22L//v2KRPsVK1bAxsYG0dHRyMvLQ2RkJN5//335vK2tLXbv3o2XXnoJ4eHhqF27NkaOHInXXnutgp8UVaaK2CbI3DSoFnO/iIiqB6utE1YTsE5Y1aSt5ZWSEogNG0YanB85Mg5BQZfN1uXKzMxkoEVEVE2V9O+3VYyEEVVFxa1gNCUzM1Oxk4OpnLJHWV1JRERVH4MwojIqbgWjKbojYOZyyh5ldSUREVV9DMKISkk3Kd7cCsbikucrIqeMiIisB4MwolIqr+T54qriExFR9cYgjKgMyiNXq6w5ZUREVD0wCCOrZ+mVhmX9/rLmlBERUfXAIIysin7Ao1arsWXLlmI/Vx4rDY0FW/rfX9qVjqyKT0RUczEIoypLP+jJzs7G1q1by3StR11pqF9WwpiyrnQ0VRWfiIiqNwZhVCWVJOipTIYjYMoRr9KsdCzplkPcmoiIqHpjEEZVTmZmJlJTU8v02YraTFuXsRGvunVvlXilI7cmIiIigEEYVTGPMgJW3ptp6/YpIyMDgOnaXmPGfFSqlY4MsIiIyKb4JkSVpzS5W2q1C1JSAqFWu5gMjtRql0fqjzYo3LFjBwDg6lV/oyNeBQX2iIraDUnSAABXOhIRUbE4EkZWSX/UKzw8oUIKnxrbYkifdsQrKOgyVzoSEVGJMQgjq6Cb6wXAYNTr6NHwCi18qj/S9pByxIsrHYmIqKQYhFGVV5JRL8AG4eE/IyEh3Gjh00ddaWhsiyEAGDjwK7Rqda7Yz3OlIxER6WMQRlWasVyvhIRwABropjRKkgZhYYkIC0tEmzbRaNXKEX5+TwB4olxWGpraYsjf/5qi3aBBg+Dm5qY4xpWORERkDIMwqtJMJcJ37Phw1MvWVuDNN3Pw7LNDKyzgKW6LoQEDBsDPz4/BFhERlRiDMKqyTp5sh507jSfCL1jgDh8fNTIz66JxYwkNGrgBcCv1dxS376NarZZ/NrfFkKenJwMwIiIqFQZhVKVoc6e005D6VVQe1v96Ch4edR/pu/RrkpWk0CsT74mIqLwwCKMqRVtN/vBhYMUKw0T4devUiI5+qlxGnYyVnyhroVcm3hMRUWkxCKMqx8PDAx06ADY2gEbz8LitLfCvf9VFec/6Fbfvo7Fke11MvCciorJgEEZVUoMGwPr1wIsvAoWFRQHYBx8UHS9vxspP6BZ6dXNzg6+vb/l/MRER1WgMwqjKGjMGiIwELl4EGjcufQBWXNJ9dnY2ANPlJ8qr0CsREZExDMKoSmvQoGyjX6XZCLy48hNEREQVgUEYVUv6I2DGVj7qHjNXfoKIiKgiMAijas/YykcARldDMvgiIqLKwiCMqjVjKx937uwLSYLJ1ZD6WH6CiIgqAoMwqtaMb7xtAyGUR3RXQw4YMACenp4AWH6CiIgqDoMwqtaMrXwENIqRMEC5GtLT05MlKYiIqMIZliQnqka0Kx8lqajqqyRp0K/fboNjXA1JRESVjSNhVO2ZWvnI1ZBERGRJDMKoWtJPpje28TY34yYiIktiEEbVknYjcN16YWq1Glu2bCn2s1wNSURElUESQn+dGFUVOTk5UKlUUKvVcHV1tXR3Hllx2whVxkrEqtAHIiKq3kr695sjYVQpSrqNUExMTIUGQQywiIioquDqSKoU5kafytKOiIjI2jEIIyIiIrIABmFEREREFsAgjIiIiMgCmJhPFqFWuyArywPu7pllrtWlu9IxNdUGKSm1EBT0AH5+RZXwudKRiIiqMgZhVOlOnmyHXbv6QggbecugkJBTpbqG7mpLc9er6NWWREREZcXpSKpUarWLHDABRZto79rVF2q1S6muox0BK+56XG1JRERVFYMwqhTaKvRZWR5ywKQlhA2ystwV7UqquOsRERFVVZyOpEqh3Ubo0qUH+PxzAY1Gks/Z2gpMnNgbgYG1Sj116O6eCUnSKAIxSdLA3T2r3PpORERUETgSRpXGw8MDoaHeWL9egq1t0TFbW+CDDySEhnqXKXdLpcpFVNRuSFJRMr42J4wbcxMRUVXHkTCqdGPGAJGRwMWLQOPGQIMGj3a9kJBTCA6+iKwsd7i7ZzEAIyIiq8AgjCyiQQPAyamoxERa2qOXmFCpchl8ERGRVWEQRhZR2hIT164BFy4ATZo8+sgZERFRVcCcMLKIkpaYSE1NxfLl2WjYUOCZZ4CGDQWWL8+GWq0u0feUdrUlERFRZeFIGFmUuRITKlUuPv00HitXxkKIotWUGo2E6dNd8c8/n0ClAgYNGgQ3Nzej12bFfCIiqsoYhJFFFVdiorggzc3NDb6+vpXaZyIiovLA6UiyqOJKTGiDNF2sA0ZERNUBR8LI4syVmNAGafqJ+1wJSURE1o5BGFUJ5kpMsA4YERFVRwzCyCqwDhgREVU3zAkji2DpCCIiquk4EkYWod3QW1svTF9GRgZ27NhRyb0iIiKqPAzCyGLM1fAq6UgZR9SIiMhaMQijKqm4kTKAxViJiMi6MQijKosBFhERVWdMzCciIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC7C6ICwvLw9t27aFJEk4ffq04tyZM2fQuXNnODo6wt/fH8uWLTP4/LZt29C8eXM4OjqidevW2Lt3r+K8EALz5s2Dr68vnJycEBERgQsXLijaZGVlYdiwYXB1dYWbmxvGjBmD27dvl7ovREREVHNZXRA2Y8YM+Pn5GRzPyclBz5490bBhQ5w4cQJvvfUWFixYgPXr18ttjh49iqFDh2LMmDE4deoU+vfvj/79++Ps2bNym2XLlmH16tVYt24dEhMTUbt2bURGRuL+/ftym2HDhuGPP/5AfHw8du/ejR9++AHjxo0rVV+qk2vXgMOHi/5JREREJSSsyN69e0Xz5s3FH3/8IQCIU6dOyefef/99UbduXZGXlycfmzlzpmjWrJn8ftCgQaJPnz6Ka4aFhYkXX3xRCCGERqMRPj4+4q233pLPZ2dnCwcHB/Hll18KIYT4888/BQBx/Phxuc2+ffuEJEnin3/+KXFfSkKtVgsAQq1Wl+pzlSEjI0OkpqaKt9++JWxsNAIQwsZGI95++5ZITU0VGRkZlu4iERGRRZT077fVjIRdv34dL7zwAj7//HM4OzsbnE9ISECXLl0U29hERkYiKSkJt27dkttEREQoPhcZGYmEhAQAQEpKCtLT0xVtVCoVwsLC5DYJCQlwc3ND+/bt5TYRERGwsbFBYmJiiftiTF5eHnJychSvqigzMxNr1qzBW299ienTXaHRSAAAjUbC9OmueOutL7FmzRpkZmZauKdERERVl1UEYUIIjBo1CuPHj1cEP7rS09Ph7e2tOKZ9n56ebraN7nndz5lqU69ePcX5WrVqwd3dvdjv0f0OY5YsWQKVSiW//P39TbatTPrTjdqthLKyPKAfxwthg6wsd0U7IiIiMmTRIGzWrFmQJMns6/z583j33XeRm5uL2bNnW7K7FW727NlQq9Xy6+rVq5buEj7+GGjYEHjmmaJ/fvwxkJ2dDQBwd8+EJGkU7SVJA3f3LAv0lIiIyLpYdO/IadOmYdSoUWbbNGrUCIcOHUJCQgIcHBwU59q3b49hw4Zhw4YN8PHxwfXr1xXnte99fHzkfxpro3tee8zX11fRpm3btnKbGzduKK7x4MEDZGVlFfs9ut9hjIODg8E9WkpmZiYuXXqAcePq6Uw3AuPGCUyevA8qFZCc3BhCPPyMJGkQFbUbKlWuhXpNRERkPSwahHl5ecHLy6vYdqtXr8brr78uv09NTUVkZCS2bNmCsLAwAEB4eDjmzJmDgoIC2NnZAQDi4+PRrFkz1K1bV25z8OBBxMbGyteKj49HeHg4ACAoKAg+Pj44ePCgHHTl5OQgMTERL730knyN7OxsnDhxAqGhoQCAQ4cOQaPRlKovVZk25yslJRAazUjFOY1Gkqcbd+3qC93BVCGA4OCLldlVIiIiq2UVOWEBAQFo1aqV/GratCkAIDg4GA0aNAAAPPvss7C3t8eYMWPwxx9/YMuWLVi1ahWmTp0qX2fy5MnYv38/li9fjvPnz2PBggX49ddfERMTAwCQJAmxsbF4/fXXsXPnTvz+++8YMWIE/Pz80L9/fwBAixYt0KtXL7zwwgs4duwYfv75Z8TExGDIkCFy6YyS9KUq0+ZymZtuNJYPBjzMByMiIiLzrCIIKwmVSoXvvvsOKSkpCA0NxbRp0zBv3jxF/a6OHTti06ZNWL9+Pdq0aYOvvvoK33zzDVq1aiW3mTFjBiZOnIhx48bhiSeewO3bt7F//344OjrKbTZu3IjmzZuje/fu+Ne//oVOnTopaoCVpC/WQKXKRVTUbjkQ051uZD4YERHRo5GE0M3qoaokJycHKpUKarUarq6ulfa9aWlpiqBSrXZBVpY73N2zFPleJ0+2w65dfSGEjRyghYScks+PGzdOkVtHRERUE5T077dFc8LIOqhUuUaT7UNCTiE4+KLRAA2Aok4aERERKTEIo0diKkAbPHgwPDw8LNAjIiIi61BtcsKoalGpVJbuAhERUZXGIIwqBKciiYiIzON0JBkoaQA1ePBgoyNe9vb2nIokIiIqBoMwMuDh4YGYmBizez8y0CIiIno0DMLIKAZYREREFYs5YUREREQWwCCMiIiIyAIYhBERERFZAIMwIiIiIgtgEEZERERkAQzCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsCK+TVEZmYmtyEiIiKqQhiE1QCZmZlYs2ZNse1iYmIYiBEREVUSTkfWAOZGwMrSjoiIiB4dgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjIiIisgAGYUREREQWwCCsBrC3t1e8V6tdkJISCLXaxWw7IiIiqjgs1loDeHh4ICYmBvn5+di0yQmvvaaCRiPBxkZg2TI1nn32HivmExERVTJJCCEs3QkyLicnByqVCmq1Gq6uro98vWvXgIYNAY3m4TFbW+DSJaBBg0e+PBEREaHkf785HVmDXLigDMAAoLAQuHjRMv0hIiKqyRiE1SBNmgA2ev/GbW2Bxo0t0x8iIqKajEFYDdKgAbB+fVHgBRT984MPOBVJRERkCUzMr2HGjAEiI4umIBs3ZgBGRERkKQzCaqAGDRh8ERERWRqnI4mIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjIiIisgDuHVmFCSEAADk5ORbuCREREZWU9u+29u+4KQzCqrDc3FwAgL+/v4V7QkRERKWVm5sLlUpl8rwkigvTyGI0Gg1SU1Ph4uICSZJK9JmcnBz4+/vj6tWrcHV1reAeVl18DkX4HPgMtPgcivA58BloVeRzEEIgNzcXfn5+sLExnfnFkbAqzMbGBg0aNCjTZ11dXWv0/7i0+ByK8DnwGWjxORThc+Az0Kqo52BuBEyLiflEREREFsAgjIiIiMgCGIRVMw4ODpg/fz4cHBws3RWL4nMowufAZ6DF51CEz4HPQKsqPAcm5hMRERFZAEfCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsAgzAqsXbsWjz/+uFxQLjw8HPv27ZPP379/HxMmTICHhwfq1KmD6OhoXL9+XXGNK1euoE+fPnB2dka9evUwffp0PHjwoLJvpdwsXboUkiQhNjZWPlZTnsOCBQsgSZLi1bx5c/l8TXkO//zzD5577jl4eHjAyckJrVu3xq+//iqfF0Jg3rx58PX1hZOTEyIiInDhwgXFNbKysjBs2DC4urrCzc0NY8aMwe3btyv7VsosMDDQ4HdBkiRMmDABQM35XSgsLMTcuXMRFBQEJycnBAcHY9GiRYp9+2rC70Nubi5iY2PRsGFDODk5oWPHjjh+/Lh8vjo+gx9++AFRUVHw8/ODJEn45ptvFOfL657PnDmDzp07w9HREf7+/li2bFn53ICgKm/nzp1iz5494q+//hJJSUnilVdeEXZ2duLs2bNCCCHGjx8v/P39xcGDB8Wvv/4qOnToIDp27Ch//sGDB6JVq1YiIiJCnDp1Suzdu1d4enqK2bNnW+qWHsmxY8dEYGCgePzxx8XkyZPl4zXlOcyfP1889thjIi0tTX7dvHlTPl8TnkNWVpZo2LChGDVqlEhMTBR///23+Pbbb8XFixflNkuXLhUqlUp888034rfffhP9+vUTQUFB4t69e3KbXr16iTZt2ohffvlF/Pjjj6Jx48Zi6NChlrilMrlx44bi9yA+Pl4AEIcPHxZC1IzfBSGEWLx4sfDw8BC7d+8WKSkpYtu2baJOnTpi1apVcpua8PswaNAg0bJlS3HkyBFx4cIFMX/+fOHq6iquXbsmhKiez2Dv3r1izpw5YseOHQKA+PrrrxXny+Oe1Wq18Pb2FsOGDRNnz54VX375pXBychIffPDBI/efQZiVqlu3rvjoo49Edna2sLOzE9u2bZPPnTt3TgAQCQkJQoiiX1IbGxuRnp4ut1m7dq1wdXUVeXl5ld73R5GbmyuaNGki4uPjRdeuXeUgrCY9h/nz54s2bdoYPVdTnsPMmTNFp06dTJ7XaDTCx8dHvPXWW/Kx7Oxs4eDgIL788kshhBB//vmnACCOHz8ut9m3b5+QJEn8888/Fdf5CjR58mQRHBwsNBpNjfldEEKIPn36iNGjRyuODRgwQAwbNkwIUTN+H+7evStsbW3F7t27FcdDQkLEnDlzasQz0A/Cyuue33//fVG3bl3F/yZmzpwpmjVr9sh95nSklSksLMTmzZtx584dhIeH48SJEygoKEBERITcpnnz5ggICEBCQgIAICEhAa1bt4a3t7fcJjIyEjk5Ofjjjz8q/R4exYQJE9CnTx/F/QKocc/hwoUL8PPzQ6NGjTBs2DBcuXIFQM15Djt37kT79u3xn//8B/Xq1UO7du3w4YcfyudTUlKQnp6ueA4qlQphYWGK5+Dm5ob27dvLbSIiImBjY4PExMTKu5lykp+fjy+++AKjR4+GJEk15ncBADp27IiDBw/ir7/+AgD89ttv+Omnn9C7d28ANeP34cGDBygsLISjo6PiuJOTE3766aca8Qz0ldc9JyQkoEuXLrC3t5fbREZGIikpCbdu3XqkPnIDbyvx+++/Izw8HPfv30edOnXw9ddfo2XLljh9+jTs7e3h5uamaO/t7Y309HQAQHp6uuL/ZLXnteesxebNm3Hy5ElFjoNWenp6jXkOYWFhiIuLQ7NmzZCWloaFCxeic+fOOHv2bI15Dn///TfWrl2LqVOn4pVXXsHx48cxadIk2NvbY+TIkfJ9GLtP3edQr149xflatWrB3d3dap6Drm+++QbZ2dkYNWoUgJr1v4lZs2YhJycHzZs3h62tLQoLC7F48WIMGzYMAGrE74OLiwvCw8OxaNEitGjRAt7e3vjyyy+RkJCAxo0b14hnoK+87jk9PR1BQUEG19Ceq1u3bpn7yCDMSjRr1gynT5+GWq3GV199hZEjR+LIkSOW7laluXr1KiZPnoz4+HiD/9KrabT/dQ8Ajz/+OMLCwtCwYUNs3boVTk5OFuxZ5dFoNGjfvj3eeOMNAEC7du1w9uxZrFu3DiNHjrRw7yzj448/Ru/eveHn52fprlS6rVu3YuPGjdi0aRMee+wxnD59GrGxsfDz86tRvw+ff/45Ro8ejfr168PW1hYhISEYOnQoTpw4YemukQmcjrQS9vb2aNy4MUJDQ7FkyRK0adMGq1atgo+PD/Lz85Gdna1of/36dfj4+AAAfHx8DFZEad9r21R1J06cwI0bNxASEoJatWqhVq1aOHLkCFavXo1atWrB29u7RjwHY9zc3NC0aVNcvHixxvw++Pr6omXLlopjLVq0kKdltfdh7D51n8ONGzcU5x88eICsrCyreQ5aly9fxoEDBzB27Fj5WE35XQCA6dOnY9asWRgyZAhat26N4cOHY8qUKViyZAmAmvP7EBwcjCNHjuD27du4evUqjh07hoKCAjRq1KjGPANd5XXPFfm/EwZhVkqj0SAvLw+hoaGws7PDwYMH5XNJSUm4cuUKwsPDAQDh4eH4/fffFb9o8fHxcHV1NfhDVlV1794dv//+O06fPi2/2rdvj2HDhsk/14TnYMzt27eRnJwMX1/fGvP78NRTTyEpKUlx7K+//kLDhg0BAEFBQfDx8VE8h5ycHCQmJiqeQ3Z2tmKU4NChQ9BoNAgLC6uEuyg/n376KerVq4c+ffrIx2rK7wIA3L17FzY2yj9ntra20Gg0AGre70Pt2rXh6+uLW7du4dtvv8W///3vGvcMgPL79x4eHo4ffvgBBQUFcpv4+Hg0a9bskaYiAbBEhTWYNWuWOHLkiEhJSRFnzpwRs2bNEpIkie+++04IUbQMPSAgQBw6dEj8+uuvIjw8XISHh8uf1y5D79mzpzh9+rTYv3+/8PLysrpl6Pp0V0cKUXOew7Rp08T3338vUlJSxM8//ywiIiKEp6enuHHjhhCiZjyHY8eOiVq1aonFixeLCxcuiI0bNwpnZ2fxxRdfyG2WLl0q3NzcxP/+9z9x5swZ8e9//9vo0vR27dqJxMRE8dNPP4kmTZpU6eX4xhQWFoqAgAAxc+ZMg3M14XdBCCFGjhwp6tevL5eo2LFjh/D09BQzZsyQ29SE34f9+/eLffv2ib///lt89913ok2bNiIsLEzk5+cLIarnM8jNzRWnTp0Sp06dEgDEO++8I06dOiUuX74shCife87Ozhbe3t5i+PDh4uzZs2Lz5s3C2dmZJSpqitGjR4uGDRsKe3t74eXlJbp37y4HYEIIce/ePfHf//5X1K1bVzg7O4v/9//+n0hLS1Nc49KlS6J3797CyclJeHp6imnTpomCgoLKvpVypR+E1ZTnMHjwYOHr6yvs7e1F/fr1xeDBgxX1sWrKc9i1a5do1aqVcHBwEM2bNxfr169XnNdoNGLu3LnC29tbODg4iO7du4ukpCRFm8zMTDF06FBRp04d4erqKp5//nmRm5tbmbfxyL799lsBwODehKg5vws5OTli8uTJIiAgQDg6OopGjRqJOXPmKEoK1ITfhy1btohGjRoJe3t74ePjIyZMmCCys7Pl89XxGRw+fFgAMHiNHDlSCFF+9/zbb7+JTp06CQcHB1G/fn2xdOnScum/JIROSWEiIiIiqhTMCSMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjomrl6aefRmxsrKW7UeEWLFiAtm3bWrobRPQIGIQREVUh+fn5lfp9Qgg8ePCgUr+TiIowCCOiamPUqFE4cuQIVq1aBUmSIEkSLl26hLNnz6J3796oU6cOvL29MXz4cGRkZMife/rppzFx4kTExsaibt268Pb2xocffog7d+7g+eefh4uLCxo3box9+/bJn/n+++8hSRL27NmDxx9/HI6OjujQoQPOnj2r6NNPP/2Ezp07w8nJCf7+/pg0aRLu3Lkjnw8MDMSiRYswYsQIuLq6Yty4cQCAmTNnomnTpnB2dkajRo0wd+5cFBQUAADi4uKwcOFC/Pbbb/J9xsXF4dKlS5AkCadPn5avn52dDUmS8P333yv6vW/fPoSGhsLBwQE//fQTNBoNlixZgqCgIDg5OaFNmzb46quvyvtfERHpYBBGRNXGqlWrEB4ejhdeeAFpaWlIS0uDi4sLnnnmGbRr1w6//vor9u/fj+vXr2PQoEGKz27YsAGenp44duwYJk6ciJdeegn/+c9/0LFjR5w8eRI9e/bE8OHDcffuXcXnpk+fjuXLl+P48ePw8vJCVFSUHCwlJyejV69eiI6OxpkzZ7Blyxb89NNPiImJUVzj7bffRps2bXDq1CnMnTsXAODi4oK4uDj8+eefWLVqFT788EOsWLECADB48GBMmzYNjz32mHyfgwcPLtWzmjVrFpYuXYpz587h8ccfx5IlS/DZZ59h3bp1+OOPPzBlyhQ899xzOHLkSKmuS0SlUC7bgBMRVRFdu3YVkydPlt8vWrRI9OzZU9Hm6tWrAoBISkqSP9OpUyf5/IMHD0Tt2rXF8OHD5WNpaWkCgEhISBBCCHH48GEBQGzevFluk5mZKZycnMSWLVuEEEKMGTNGjBs3TvHdP/74o7CxsRH37t0TQgjRsGFD0b9//2Lv66233hKhoaHy+/nz54s2bdoo2qSkpAgA4tSpU/KxW7duCQDi8OHDin5/8803cpv79+8LZ2dncfToUcX1xowZI4YOHVps34iobGpZMgAkIqpov/32Gw4fPow6deoYnEtOTkbTpk0BAI8//rh83NbWFh4eHmjdurV8zNvbGwBw48YNxTXCw8Pln93d3dGsWTOcO3dO/u4zZ85g48aNchshBDQaDVJSUtCiRQsAQPv27Q36tmXLFqxevRrJycm4ffs2Hjx4AFdX11Lfvym633nx4kXcvXsXPXr0ULTJz89Hu3btyu07iUiJQRgRVWu3b99GVFQU3nzzTYNzvr6+8s92dnaKc5IkKY5JkgQA0Gg0pfruF198EZMmTTI4FxAQIP9cu3ZtxbmEhAQMGzYMCxcuRGRkJFQqFTZv3ozly5eb/T4bm6IMEyGEfEw7NapP9ztv374NANizZw/q16+vaOfg4GD2O4mo7BiEEVG1Ym9vj8LCQvl9SEgItm/fjsDAQNSqVf7/l/fLL7/IAdWtW7fw119/ySNcISEh+PPPP9G4ceNSXfPo0aNo2LAh5syZIx+7fPmyoo3+fQKAl5cXACAtLU0ewdJN0jelZcuWcHBwwJUrV9C1a9dS9ZWIyo6J+URUrQQGBiIxMRGXLl1CRkYGJkyYgKysLAwdOhTHjx9HcnIyvv32Wzz//PMGQUxZvPbaazh48CDOnj2LUaNGwdPTE/379wdQtMLx6NGjiImJwenTp3HhwgX873//M0jM19ekSRNcuXIFmzdvRnJyMlavXo2vv/7a4D5TUlJw+vRpZGRkIC8vD05OTujQoYOccH/kyBG8+uqrxd6Di4sLXn75ZUyZMgUbNmxAcnIyTp48iXfffRcbNmwo87MhIvMYhBFRtfLyyy/D1tYWLVu2hJeXF/Lz8/Hzzz+jsLAQPXv2ROvWrREbGws3Nzd5+u5RLF26FJMnT0ZoaCjS09Oxa9cu2NvbAyjKMzty5Aj++usvdO7cGe3atcO8efPg5+dn9pr9+vXDlClTEBMTg7Zt2+Lo0aPyqkmt6Oho9OrVC926dYOXlxe+/PJLAMAnn3yCBw8eIDQ0FLGxsXj99ddLdB+LFi3C3LlzsWTJErRo0QK9evXCnj17EBQUVIanQkQlIQnd5AEiIiqR77//Ht26dcOtW7fg5uZm6e4QkRXiSBgRERGRBTAIIyIiIrIATkcSERERWQBHwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILOD/A1M3HSEaHErLAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAay5JREFUeJzt3XlcVNX/P/DXZRUUBllkURTE3dQEP+GYSyaKflHzp340cxez/EiJmtvH3CrTtFLLymzTSnNJK8Ws0MxSiQw1s5SUcAvQBBlwY5vz+4PP3OYyCwMCwzCv5+PBQ7j3zJ1zb+i8O+d93kcSQggQERERUY1ysHYHiIiIiOwRgzAiIiIiK2AQRkRERGQFDMKIiIiIrIBBGBEREZEVMAgjIiIisgIGYURERERWwCCMiIiIyAoYhBERERFZAYMwIiIya+PGjZAkCRcuXLB2V4jqFAZhRGR1x44dQ1xcHNq3b4/69eujadOmGDFiBP744w+Dtg899BAkSYIkSXBwcICnpydat26NsWPHIjExsULvu2fPHvTq1QuNGjWCu7s7mjdvjhEjRuCrr76qqlsz8OKLL+Lzzz83OH706FEsWbIEubm51fbeZS1ZskR+lpIkwd3dHe3atcOzzz6LvLy8KnmPLVu2YM2aNVVyLaK6hkEYEVndSy+9hJ07d6JPnz5Yu3YtpkyZgu+//x7h4eE4ffq0QfsmTZrgo48+wocffohVq1Zh8ODBOHr0KPr164eRI0eiqKio3Pd8+eWXMXjwYEiShPnz52P16tUYNmwYzp07h61bt1bHbQIwH4QtXbq0RoMwnbfeegsfffQRXn31VbRp0wbLli1D//79URVbCzMIIzLNydodICKaOXMmtmzZAhcXF/nYyJEj0aFDB6xYsQIff/yxor1KpcKYMWMUx1asWIGnn34ab775JkJCQvDSSy+ZfL/i4mI8//zz6Nu3L7755huD89euXbvHO6o9bt++DXd3d7Nthg8fDl9fXwDAk08+iWHDhmHXrl348ccfoVara6KbRHaJI2FEZHXdunVTBGAA0LJlS7Rv3x5nzpyx6BqOjo547bXX0K5dO6xbtw4ajcZk2+vXryMvLw8PPvig0fONGjVS/Hz37l0sWbIErVq1Qr169RAYGIihQ4ciLS1NbvPyyy+jW7du8PHxgZubGyIiIvDpp58qriNJEm7duoVNmzbJU4ATJkzAkiVLMHv2bABAaGiofE4/B+vjjz9GREQE3Nzc4O3tjUcffRSXL19WXP+hhx7Cfffdh5SUFPTs2RPu7u7473//a9Hz0/fwww8DANLT0822e/PNN9G+fXu4uroiKCgI06ZNU4zkPfTQQ9i7dy8uXrwo31NISEiF+0NUV3EkjIhqJSEErl69ivbt21v8GkdHR4waNQoLFy7E4cOHERMTY7Rdo0aN4Obmhj179uCpp56Ct7e3yWuWlJRg4MCBOHDgAB599FFMnz4d+fn5SExMxOnTpxEWFgYAWLt2LQYPHozRo0ejsLAQW7duxb///W8kJCTI/fjoo48wefJkPPDAA5gyZQoAICwsDPXr18cff/yBTz75BKtXr5ZHpfz8/AAAy5Ytw8KFCzFixAhMnjwZf//9N15//XX07NkTJ06cgJeXl9zf7OxsDBgwAI8++ijGjBkDf39/i5+fji649PHxMdlmyZIlWLp0KaKiojB16lSkpqbirbfewrFjx3DkyBE4OztjwYIF0Gg0uHLlClavXg0AaNCgQYX7Q1RnCSKiWuijjz4SAMR7772nON6rVy/Rvn17k6/77LPPBACxdu1as9dftGiRACDq168vBgwYIJYtWyZSUlIM2r3//vsCgHj11VcNzmm1Wvn727dvK84VFhaK++67Tzz88MOK4/Xr1xfjx483uNaqVasEAJGenq44fuHCBeHo6CiWLVumOP7rr78KJycnxfFevXoJAGL9+vUm71vf4sWLBQCRmpoq/v77b5Geni7efvtt4erqKvz9/cWtW7eEEEJ88MEHir5du3ZNuLi4iH79+omSkhL5euvWrRMAxPvvvy8fi4mJEc2aNbOoP0T2htORRFTrnD17FtOmTYNarcb48eMr9FrdSEt+fr7ZdkuXLsWWLVvQuXNnfP3111iwYAEiIiIQHh6umALduXMnfH198dRTTxlcQ5Ik+Xs3Nzf5+xs3bkCj0aBHjx44fvx4hfpf1q5du6DVajFixAhcv35d/goICEDLli1x8OBBRXtXV1dMnDixQu/RunVr+Pn5ITQ0FE888QRatGiBvXv3mswl279/PwoLCxEfHw8Hh38+Rh5//HF4enpi7969Fb9RIjvE6UgiqlWysrIQExMDlUqFTz/9FI6OjhV6/c2bNwEAHh4e5bYdNWoURo0ahby8PCQnJ2Pjxo3YsmULBg0ahNOnT6NevXpIS0tD69at4eRk/p/LhIQEvPDCCzh58iQKCgrk4/qBWmWcO3cOQgi0bNnS6HlnZ2fFz40bNzbIryvPzp074enpCWdnZzRp0kSeYjXl4sWLAEqDN30uLi5o3ry5fJ6IzGMQRkS1hkajwYABA5Cbm4sffvgBQUFBFb6GrqRFixYtLH6Np6cn+vbti759+8LZ2RmbNm1CcnIyevXqZdHrf/jhBwwePBg9e/bEm2++icDAQDg7O+ODDz7Ali1bKnwP+rRaLSRJwr59+4wGpGVzrPRH5CzVs2dPOQ+NiGoOgzAiqhXu3r2LQYMG4Y8//sD+/fvRrl27Cl+jpKQEW7Zsgbu7O7p3716pfnTp0gWbNm1CZmYmgNLE+eTkZBQVFRmMOuns3LkT9erVw9dffw1XV1f5+AcffGDQ1tTImKnjYWFhEEIgNDQUrVq1qujtVItmzZoBAFJTU9G8eXP5eGFhIdLT0xEVFSUfu9eRQKK6jDlhRGR1JSUlGDlyJJKSkrBjx45K1aYqKSnB008/jTNnzuDpp5+Gp6enyba3b99GUlKS0XP79u0D8M9U27Bhw3D9+nWsW7fOoK34XzFTR0dHSJKEkpIS+dyFCxeMFmWtX7++0YKs9evXBwCDc0OHDoWjoyOWLl1qUDxVCIHs7GzjN1mNoqKi4OLigtdee03Rp/feew8ajUaxKrV+/fpmy4UQ2TOOhBGR1c2aNQu7d+/GoEGDkJOTY1CctWxhVo1GI7e5ffs2zp8/j127diEtLQ2PPvoonn/+ebPvd/v2bXTr1g1du3ZF//79ERwcjNzcXHz++ef44YcfMGTIEHTu3BkAMG7cOHz44YeYOXMmfvrpJ/To0QO3bt3C/v378Z///AePPPIIYmJi8Oqrr6J///547LHHcO3aNbzxxhto0aIFTp06pXjviIgI7N+/H6+++iqCgoIQGhqKyMhIREREAAAWLFiARx99FM7Ozhg0aBDCwsLwwgsvYP78+bhw4QKGDBkCDw8PpKen47PPPsOUKVPwzDPP3NPzryg/Pz/Mnz8fS5cuRf/+/TF48GCkpqbizTffxL/+9S/Ff6+IiAhs27YNM2fOxL/+9S80aNAAgwYNqtH+EtVa1lyaSUQkxD+lFUx9mWvboEED0bJlSzFmzBjxzTffWPR+RUVF4p133hFDhgwRzZo1E66ursLd3V107txZrFq1ShQUFCja3759WyxYsECEhoYKZ2dnERAQIIYPHy7S0tLkNu+9955o2bKlcHV1FW3atBEffPCBXAJC39mzZ0XPnj2Fm5ubAKAoV/H888+Lxo0bCwcHB4NyFTt37hTdu3cX9evXF/Xr1xdt2rQR06ZNE6mpqYpnY658R1m6/v39999m25UtUaGzbt060aZNG+Hs7Cz8/f3F1KlTxY0bNxRtbt68KR577DHh5eUlALBcBZEeSYgq2ByMiIiIiCqEOWFEREREVsAgjIiIiMgKGIQRERERWQGDMCIiIiIrYBBGREREZAUMwoiIiIisgMVaazGtVouMjAx4eHhw6w8iIiIbIYRAfn4+goKC4OBgeryLQVgtlpGRgeDgYGt3g4iIiCrh8uXLaNKkicnzDMJqMQ8PDwCl/xHN7YNHREREtUdeXh6Cg4Plz3FTGITVYropSE9PTwZhRERENqa8VCIm5hMRERFZAYMwIiIiIitgEEZERERkBcwJs3FarRaFhYXW7kad5uLiYnaJMRERUWUwCLNhhYWFSE9Ph1artXZX6jQHBweEhobCxcXF2l0hIqI6hEGYjRJCIDMzE46OjggODuZITTXRFczNzMxE06ZNWTSXiIiqDIMwG1VcXIzbt28jKCgI7u7u1u5Onebn54eMjAwUFxfD2dnZ2t0hIqI6gsMnNqqkpAQAOEVWA3TPWPfMiYiIqgKDMBvH6bHqx2dMRETVgUEYERERkRXYTBA2ePBgNG3aFPXq1UNgYCDGjh2LjIwMRRshBF5++WW0atUKrq6uaNy4MZYtW6Zo89133yE8PByurq5o0aIFNm7caPBeb7zxBkJCQlCvXj1ERkbip59+Upy/e/cupk2bBh8fHzRo0ADDhg3D1atXFW0uXbqEmJgYuLu7o1GjRpg9ezaKi4ur5mEQERGRzbOZIKx3797Yvn07UlNTsXPnTqSlpWH48OGKNtOnT8e7776Ll19+GWfPnsXu3bvxwAMPyOfT09MRExOD3r174+TJk4iPj8fkyZPx9ddfy222bduGmTNnYvHixTh+/Dg6deqE6OhoXLt2TW4zY8YM7NmzBzt27MChQ4eQkZGBoUOHyudLSkoQExODwsJCHD16FJs2bcLGjRuxaNGianxCtmHChAmQJAmSJMHZ2Rn+/v7o27cv3n///QqV2ti4cSO8vLyqr6NERFRnXbkCHDxY+qdVCRv1xRdfCEmSRGFhoRBCiN9//104OTmJs2fPmnzNnDlzRPv27RXHRo4cKaKjo+WfH3jgATFt2jT555KSEhEUFCSWL18uhBAiNzdXODs7ix07dshtzpw5IwCIpKQkIYQQX375pXBwcBBZWVlym7feekt4enqKgoICi+9Ro9EIAEKj0Ricu3Pnjvj999/FnTt3LL6evuvXr4uMjAyTX9evX6/Udcszfvx40b9/f5GZmSmuXLkiUlJSxLJly0SDBg3EgAEDRFFRkUXX+eCDD4RKpaqWPpZ1r8+aiIisT/e59/LLN4SDg1YAQjg4aMXLL9+o8s89c5/f+myyREVOTg42b96Mbt26ySUD9uzZg+bNmyMhIQH9+/eHEAJRUVFYuXIlvL29AQBJSUmIiopSXCs6Ohrx8fEASoufpqSkYP78+fJ5BwcHREVFISkpCQCQkpKCoqIixXXatGmDpk2bIikpCV27dkVSUhI6dOgAf39/xftMnToVv/32Gzp37mz0vgoKClBQUCD/nJeXdw9PybTs7GysW7eu3HZxcXHw8fGp8vd3dXVFQEAAAKBx48YIDw9H165d0adPH2zcuBGTJ0/Gq6++ig8++AB//vknvL29MWjQIKxcuRINGjTAd999h4kTJwL4J2l+8eLFWLJkCT766COsXbsWqampqF+/Ph5++GGsWbMGjRo1qvL7ICIi26D73NNoPLBmTTyEKP3s0GolzJ7tib/+eh8qVX61fe6ZYjPTkQAwd+5c1K9fHz4+Prh06RK++OIL+dyff/6JixcvYseOHfjwww+xceNGpKSkKKYss7KyFIERAPj7+yMvLw937tzB9evXUVJSYrRNVlaWfA0XFxeDqbCybYxdQ3fOlOXLl0OlUslfwcHBFj6ZirF0m6Oa3A7p4YcfRqdOnbBr1y4ApcHva6+9ht9++w2bNm3Ct99+izlz5gAAunXrhjVr1sDT0xOZmZnIzMzEM888AwAoKirC888/j19++QWff/45Lly4gAkTJtTYfRARUe2jSynKyfGBEMrQRwgH5OR4K9rVFKsGYfPmzZPzg0x9nT17Vm4/e/ZsnDhxAt988w0cHR0xbtw4CCEAlFY2LygowIcffogePXrgoYcewnvvvYeDBw8iNTXVWrdYIfPnz4dGo5G/Ll++bO0u1ag2bdrgwoULAID4+Hj07t0bISEhePjhh/HCCy9g+/btAErrdqlUKkiShICAAAQEBKBBgwYAgEmTJmHAgAFo3rw5unbtitdeew379u3DzZs3rXVbRERkRdnZ2fLnR0ZGIAChOC9JWnh75wAAtm/fjuzs7Brrm1WnI2fNmlXuKEXz5s3l7319feHr64tWrVqhbdu2CA4Oxo8//gi1Wo3AwEA4OTmhVatWcvu2bdsCKF2p2Lp1awQEBBisYrx69So8PT3h5uYGR0dHODo6Gm2jmz4LCAhAYWEhcnNzFaNhZduUXVGpu6aujTGurq5wdXU1+zzqMiGEPL24f/9+LF++HGfPnkVeXh6Ki4tx9+5d3L592+wOASkpKViyZAl++eUX3LhxQ072v3TpEtq1a1cj90FERLWHblZHo/HA/v1RAPRrPwp07/4DVKp8g/Y1waojYX5+fmjTpo3ZL1MV4XUfrrocqgcffBDFxcVIS0uT2/zxxx8AgGbNmgEA1Go1Dhw4oLhOYmIi1Go1gNIRloiICEUbrVaLAwcOyG0iIiLg7OysaJOamopLly7JbdRqNX799VfFsGZiYiI8PT0ZCJhx5swZhIaG4sKFCxg4cCA6duyInTt3IiUlBW+88QYA8385bt26hejoaHh6emLz5s04duwYPvvss3JfR0REdUt2dracrnL9+nUAxqciAQk//NADx48bz9WubjaRmJ+cnIxjx46he/fuaNiwIdLS0rBw4UKEhYXJgU9UVBTCw8MxadIkrFmzBlqtFtOmTUPfvn3l0bEnn3wS69atw5w5czBp0iR8++232L59O/bu3Su/18yZMzF+/Hh06dIFDzzwANasWYNbt27JieAqlQqxsbGYOXMmvL294enpiaeeegpqtRpdu3YFAPTr1w/t2rXD2LFjsXLlSmRlZeHZZ5/FtGnT7Hqky5xvv/0Wv/76K2bMmIGUlBRotVq88sor8sbkuqFkHRcXF4NthM6ePYvs7GysWLFCzqf7+eefa+YGiIioVjC1+MzbOxuSpDUSiDlgz56BCAs7rxgRqwk2kZjv7u6OXbt2oU+fPmjdujViY2PRsWNHHDp0SA5qHBwcsGfPHvj6+qJnz56IiYlB27ZtsXXrVvk6oaGh2Lt3LxITE9GpUye88sorePfddxEdHS23GTlyJF5++WUsWrQI999/P06ePImvvvpKkWi/evVqDBw4EMOGDUPPnj0REBAgJ5QDgKOjIxISEuDo6Ai1Wo0xY8Zg3LhxeO6552rgadV+BQUFyMrKwl9//YXjx4/jxRdfxCOPPIKBAwdi3LhxaNGiBYqKivD666/jzz//xEcffYT169crrhESEoKbN2/iwIEDuH79Om7fvo2mTZvCxcVFft3u3bvx/PPPW+kuiYjIGsrOfGg0HkhPDwEADBqUAEkyrEmpn5xfkyShy2ynWicvLw8qlQoajQaenp6Kc3fv3kV6ejpCQ0NRr169Cl03MzMTGzZsKLfdlClTEBgYWKFrl2fChAnYtGkTAMDJyQkNGzZEp06d8Nhjj2H8+PHyyNfq1auxatUq5ObmomfPnhg9ejTGjRuHGzduyLl4U6dOxY4dO5CdnS2XqPjkk0/w3//+F5mZmQgPD8f8+fMxePBgnDhxAvfff3+l+nwvz5qIiGqW/mfc8eOdsWfPQAjhAEnSYtCgBDRqlIV3350M/XEoSdIiPn4NVKr8KvnsM/f5rY9BWC1WXUGYteuE2RoGYUREtkMXhP1TE8ww2EpLa2EQnIWHnwBQNQMQlgZhNpETRlXLx8cHcXFxZpPVXVxcGIAREZHNMlcTLDz8BMLCziMnxxve3jk1ngumwyDMTjHAIiKiusxYIr5+TTCVKt9o8GWqKkN1YBBGREREdY5KlY9BgxIMph11gVfv3r3RsGFDAICzszNUKlWNzwIxCCMiIqI6ydy0Y8uWLat88VlFMQgjIiKiOqPsdGJtmHY0hUEYERER1Rm2tPiMQRgRERFZXXZ2dpUFTrUhwLIEgzAiIiKyKkvrV44ZMwZhYWE10KOaYRPbFhEREVHdZWqrIY3GQ3H8448/RnZ2dk12rVoxCKM65bvvvoMkScjNzbX4NSEhIVizZk219YmIiCx3/HhnrFkTj02bxmPNmngcP95Zcd7clKWtYRBGNWrChAmQJAlPPvmkwblp06ZBkiRMmDCh5jtGRERWp9F4yHW9gNIK93v2DDQYEasrGIRRjQsODsbWrVtx584d+djdu3exZcsWNG3a1Io9IyKimpKdnY3MzExkZmbi+vXrAExvNZScHGmNLlY7BmFU48LDwxEcHIxdu3bJx3bt2oWmTZuic+d/hp0LCgrw9NNPo1GjRqhXrx66d++OY8eOKa715ZdfolWrVnBzc0Pv3r1x4cIFg/c7fPgwevToATc3NwQHB+Ppp5/GrVu3qu3+iIjIPF0i/oYNG7Bhwwb580C31VBZR4+q6+RoGIMwwpUrwMGDpX/WlEmTJuGDDz6Qf37//fcxceJERZs5c+Zg586d2LRpE44fP44WLVogOjoaOTml+35dvnwZQ4cOxaBBg3Dy5ElMnjwZ8+bNU1wjLS0N/fv3x7Bhw3Dq1Cls27YNhw8fRlxcXPXfJBERGWUqr0ulyodanWTkTOnG23UNgzA79957QLNmwMMPl/753ns1875jxozB4cOHcfHiRVy8eBFHjhzBmDFj5PO3bt3CW2+9hVWrVmHAgAFo164d3nnnHbi5ueG9/3XyrbfeQlhYGF555RW0bt0ao0ePNsgnW758OUaPHo34+Hi0bNkS3bp1w2uvvYYPP/wQd+/erZmbJSKyc/pTj/rTjzr6qyEjI5MBKEfD9DferktYJ8yOXbkCTJkCaP/3u67VAk88AURHA02aVO97+/n5ISYmBhs3boQQAjExMfD19ZXPp6WloaioCA8++KB8zNnZGQ888ADOnDkDADhz5gwiI5V5Amq1WvHzL7/8glOnTmHz5s3yMSEEtFot0tPT0bZt2+q4PSIi+p+0tDR8/PHHJs8fP97ZYJPtwYNNb7xdlzAIs2Pnzv0TgOmUlADnz1d/EAaUTknqpgXfeOONanmPmzdv4oknnsDTTz9tcI6LAIiIqld2drbZAMzUasj4+DWIj19jdOPt2rDnY1VhEGbHWrYEHByUgZijI9CiRc28f//+/VFYWAhJkhAdHa04FxYWBhcXFxw5cgTNmjUDABQVFeHYsWOIj48HALRt2xa7d+9WvO7HH39U/BweHo7ff/8dLWrqpoiISGYs90uj8UBOjg+8vbNNrobMyfFGaOhFTJzYVzFLUlv2fKwqDMLsWJMmwIYNpVOQJSWlAdjbb9fMKBgAODo6ylOLjo6OinP169fH1KlTMXv2bHh7e6Np06ZYuXIlbt++jdjYWADAk08+iVdeeQWzZ8/G5MmTkZKSgo0bNyquM3fuXHTt2hVxcXGYPHky6tevj99//x2JiYkWbZFBRETlM7XvY9ncryNH1Ni/P0qeZoyK2g9J0ioCMf38L19fXwQGBlZv562IQZidi40tzQE7f750BKymAjAdT09Pk+dWrFgBrVaLsWPHIj8/H126dMHXX3+Nhg0bAiidTty5cydmzJiB119/HQ888ABefPFFTJo0Sb5Gx44dcejQISxYsAA9evSAEAJhYWEYOXJktd8bEVFdl52djb///hvbtm0rt+2RI2okJvYFIAEoHfHavz8KUVH7FYFZXc3/MkYSQghrd4KMy8vLg0qlgkajMQhW7t69i/T0dISGhqJevXpW6qF94LMmIjJk6abbQOkU5OrV8TBWlGH8+I3w9s4xmv8VFxdnk9OP5j6/9XEkjIiIiCrMVK0v/ZwvXUCVk+MDYwGYbupRpcqv8/lfxjAIIyIiogrJzs42WusrOTkSSUlqxdRiePgJuRK+MglfICpqvxyo1fX8L2MYhBEREZHFjE1DHj/eGbt3D4T+aJeu3ERY2HmoVPkYNChBrxyFFn377seDD/5THb8ulZ6wFIMwIiIisljZaUhdrS9j0426chMqVT7Cw08gLOy80dyvMWPG1PmpR2MYhNk4rquofnzGRESmXb4cbFDrS0e/3MTQoUMVOV869pD7ZQqDMBulq6tVWFgINzc3K/embtP9X1/ZWmZERPbun2lIQ2XLTdhjzld5GITZKCcnJ7i7u+Pvv/+Gs7MzHBy4F3t10Gq1+Pvvv+Hu7g4nJ/51ISLSMT0NqUW3bkmIjEyus9sNVRV+qtgoSZIQGBiI9PR0XLx40drdqdMcHBzQtGlTSJJk7a4QEVULUxXvdYxNGRrbcggAhg//FPfdd0b+ecSIEWjUqJHdTjmawyDMhrm4uKBly5Zm/+LQvXNxceFIIxHVKbqgKzc3Fzdu3EBiYmK5rxk5ciT8/Pzkn42VnZAkLYKDrwAozQELCgpi8GUGgzAb5+DgwCruRERksfIq3RsrtgpA3ppoxIgRAGBQdsJYDhgDMPMYhBEREdkRc5XuyxZbVasNc7v0UzPMlZ1gDlj5GIQRERHZAd0UpKlK90ePqlG22OrRow/i6FE1Bg8urXwPACqVCnFxcRXOISNDDMKIiIjqOFNTkMePd9arYm+KsvI9AAZYVYRBGBERUR1TdrWjsdGvy5eDDbYaMkW/8j1VHQZhREREdUh5ifeWjX4p6Ve+p6rDdfdERER1RHZ2NjIyMkye1xVYNR+AaREWdh6AFoBh5XuqOhwJIyIiqgNMjYDpph51zO3zqL8asrRUheGqR6o6DMKIiIjqgLKrFY2vehT/+/qnzIQkaTFs2KcIDr6iCLZUqnyjwRdLT1QdBmFERER1zD8ba5cd9dIFX6WBmG6qUbfNUGRkJNzd3eHs7IwGDRrAyckJXl5e8qtZeqJqMQgjIiKyYbqVkOnp6QDMbaytTwKgRWzsu2jSJFM+2qlTJwQGBlZrf+kfDMKIiIhsgLFNtnNzc7F9+3bFMVMbaxtyQFGRcmqRU401i0EYERFRLaULvDQajbx3ozkajQdOn26HsnlfxuiXneBm29bBIIyIiKgWKq/eV1mm638JdOjwC1xcipCSEgGAm23XFgzCiIiIaiFzezOWlo/wgbd3tlxOwnT9Lwnh4ScRGnoRPXv+wLITtQiDMCIiIhugC7wyMgKxf38UhPhnRKthwxtm63/pph1ZdqJ2YRBGRERUyymnGv/J9xKidHPt2Nh3IUlaI4GYctqxb9++CA0NVbRg2QnrYRBGRERUixlONSoT7oUoXeU4aFCC3K5s9Xud0NBQlqCoRRiEERER1WLllZzQTTeGhl5EWNh55nzZEAZhREREVmCs7pe+3NxcAIC3d7aRqUZlxXtdwGUq50uHuV+1C4MwIiKiGlaR8hMqVb7BVGNU1H4EBWUYjHj169cPDRo0ULze2dkZKpWKuV+1EIMwIiKiGmZss239khNlhYefMDnVOGLECHh5eTHIskEMwoiIiKxIf+WjbnoxPPyEfF4XZBnDwMu2MQgjIiKykrIrH4VwwO7dAxEWdl4e7fLy8uKKxjrKkh0+iYiIqApkZ2cjMzMT169fB2Bq5aMDkpMja75zVOM4EkZERFQDyibjazQeuHXLHYAWZcdEkpLUBjW+qO5hEEZERFQD9JPxDSvgKwnhgJwcbwZhdRynI4mIiGqQ8Qr4ykBMf79HqrsYhBEREdUg43lgEkqnJWFQgJXqLk5HEhER1SBjFfAlSYvY2HdRVOTCLYfsCEfCiIiIapCuAr4kKUe+mjTJRGjoRYMAjFsN1V0cCSMiIqoE3d6Pubm5KC4uNjhvbrsgcxXwhw4dCl9fXwAsxlrXMQgjIiKqIFN7P5rafiguLs6granNtn19fVmc1U4wCCMiIqogY3s/JidH4uhRNQDD7YcKCwstnlbk9KP9sJmcsMGDB6Np06aoV68eAgMDMXbsWGRkZMjnlyxZAkmSDL7q16+vuM6OHTvQpk0b1KtXDx06dMCXX36pOC+EwKJFixAYGAg3NzdERUXh3LlzijY5OTkYPXo0PD094eXlhdjYWNy8eVPR5tSpU+jRowfq1auH4OBgrFy5soqfCBER1QbHj3fGmjXxOHr0Qeg+VoVwwJ49A6HReMjtfHx8EBcXhylTppj8iouL4/SjHbGZIKx3797Yvn07UlNTsXPnTqSlpWH48OHy+WeeeQaZmZmKr3bt2uHf//633Obo0aMYNWoUYmNjceLECQwZMgRDhgzB6dOn5TYrV67Ea6+9hvXr1yM5ORn169dHdHQ07t69K7cZPXo0fvvtNyQmJiIhIQHff/89pkyZIp/Py8tDv3790KxZM6SkpGDVqlVYsmQJNmzYUM1PiYiIapJhza9/6Aqu6vPx8UFgYKDJLwZgdkbYqC+++EJIkiQKCwuNnj958qQAIL7//nv52IgRI0RMTIyiXWRkpHjiiSeEEEJotVoREBAgVq1aJZ/Pzc0Vrq6u4pNPPhFCCPH7778LAOLYsWNym3379glJksRff/0lhBDizTffFA0bNhQFBQVym7lz54rWrVtX6B41Go0AIDQaTYVeR0RE1SsjI0MsWbJEjB+/UQDC6JcklYgZM14RS5YsERkZGdbuMtUgSz+/bWYkTF9OTg42b96Mbt26wdnZ2Wibd999F61atUKPHj3kY0lJSYiKilK0i46ORlJSEgAgPT0dWVlZijYqlQqRkZFym6SkJHh5eaFLly5ym6ioKDg4OCA5OVlu07NnT8W8fnR0NFJTU3Hjxg2T91VQUIC8vDzFFxER1V66ml+GWHCVymdTQdjcuXNRv359+Pj44NKlS/jiiy+Mtrt79y42b96M2NhYxfGsrCz4+/srjvn7+yMrK0s+rztmrk2jRo0U552cnODt7a1oY+wa+u9hzPLly6FSqeSv4OBgk22JiMj6jNX86tbtCGbMWCMn5ROZYtXVkfPmzcNLL71kts2ZM2fQpk0bAMDs2bMRGxuLixcvYunSpRg3bhwSEhIgSZLiNZ999hny8/Mxfvz4aut7dZg/fz5mzpwp/5yXl8dAjIioBuhqfplirl6XuZpfROZYNQibNWsWJkyYYLZN8+bN5e99fX3h6+uLVq1aoW3btggODsaPP/4ItVqteM27776LgQMHGoxGBQQE4OrVq4pjV69eRUBAgHxed0y/RsvVq1dx//33y22uXbumuEZxcTFycnIU1zH2PvrvYYyrqytcXV1NnicioqpXtuaXuVpfukCsbBkJUzW/dFh2goyxahDm5+cHPz+/Sr1Wqy0d+i0oKFAcT09Px8GDB7F7926D16jVahw4cADx8fHyscTERDmICw0NRUBAAA4cOCAHXXl5eUhOTsbUqVPla+Tm5iIlJQUREREAgG+//RZarRaRkZFymwULFqCoqEjOWUtMTETr1q3RsGHDSt0vERFVD/0RsOPHO8urHY3V+tLRlZuobMV8IsBGirUmJyfj2LFj6N69Oxo2bIi0tDQsXLgQYWFhBqNg77//PgIDAzFgwACD60yfPh29evXCK6+8gpiYGGzduhU///yzXDpCkiTEx8fjhRdeQMuWLREaGoqFCxciKCgIQ4YMAQC0bdsW/fv3x+OPP47169ejqKgIcXFxePTRRxEUFAQAeOyxx7B06VLExsZi7ty5OH36NNauXYvVq1dX74MiIqJKK1tuQlfrKyzsvNFRLl1gxer2VFk2kZjv7u6OXbt2oU+fPmjdujViY2PRsWNHHDp0SDF9p9VqsXHjRkyYMAGOjo4G1+nWrRu2bNmCDRs2oFOnTvj000/x+eef47777pPbzJkzB0899RSmTJmCf/3rX7h58ya++uor1KtXT26zefNmtGnTBn369MH//d//oXv37ooaYCqVCt988w3S09MRERGBWbNmYdGiRYpaYkREVLvk5PgY1PsyVuuLqKpIQghh7U6QcXl5eVCpVNBoNPD09LR2d4iI6qTMzExs2LABGo0H1qyJVwRikqRFfPwaqFT5mDJlCke9yCKWfn7bxEgYERFRdTNWboK1vqg62UROGBERUU1guQmqSQzCiIiI9JRXboKoqnA6koiI7JqlNbxY64uqGkfCiIjIrunX/DKFtb6oOjAIIyKiOqOy2w8xwCJrYBBGRES1niXBFYAKbz9EZE0MwoiIqFYru7ejKSNHjpS/t3T7ISJrYmI+ERHVamWDJo3GA+npIdBoPBTHi4qK5PPGth8q257I2jgSRkRENsPcCJeOue2HWHqCahOOhBERkU2wdITL2ztbrnqvI0laeHvn1FhfiSzBIIyIiGxCeRts37x5EwC3HyLbwelIIiKq1XJzcwH8M8KlDMQEMjKCEBp6Ed988418lNsPkS3gSBgREdU62dnZyMzMxJkzZ7B9+3YApSNc3bv/AEDotZSwf3+U0aR7lSofoaEXGYBRrcWRMCIiqlXKlqTQ1fvKyAjEDz/0ACAp2lc06Z7bD1FtwSCMiIhqFf2SFPqrIUtHwCSD9vpJ9yNGjICXl5fJa3P7IapNGIQREVGtVHY1pKkATD/p3svLC4GBgTXYS6LKYxBGRETVorL7OOoYWw2ppEVs7Lto0iTzHnpJZD0MwoiIqMpZutWQuX0cTa2GBCR5BIwBGNkyBmFERFTljG01ZGwz7YyMDIO2169fB/BPvS/9CvlRUfsRFJTBshNUJzAIIyKiamVuq6Fdu3aZDNCAitf74spHsiUMwoiIqNqY2mooLOw8VKp8HDmixv79UWb3glSp8ssNvkaMGIFGjRpx5SPZFAZhRERUbcxtNXT69H1ITOwL3arHsgFaeUaOHAmVSsWyE2SzGIQREVG1MZZcL0laODsXIjExCuYKrw4dOhS+vr5Gr8vAi+oCBmFERFRtjCXXDxqUgKIiVxjbOU+/8Kqvry9rflGdxiCMiIgqrLwaYBqNRv7eWHK9RuNhtPxEVNR+rnoku8EgjIiIKsTSGmD6yibXlx0hA7To23c/HnwwqYp7S1R7MQgjIqIKsbQGmLF9HK9fv45du3YBqHj5CaK6hkEYERFVmrkaYJbs42iu/ARrflFdZ25TLiIiIpNM1QDTaDxMvsbSwGrMmDFc/Uh1HkfCiIjIgLnEe922QuZqgJka3fLx8UFcXNw9bexNVFcwCCMisjPlrWy8ffs2Pv7443KvY6oGmK7EhCkMsIhKMQgjIrIjlVnZaCrx3lQNMCbYE1mGQRgRkR0xNwJmjLnEe4ArHInuBRPziYjsmEbjgfT0EKPJ9JYm3qtU+QgNvWgQgHF1I5F5HAkjIqrj9HPAdEn1gPlRLo3GA7/91t5s4n3v3r3RsmVLo+/J5Hqi8jEIIyKqw0zlgJka5QoLO4+0tBZ65wSUm2wLODuXBnQNGzbk3o5E94DTkUREdZipHDBT5SUuX26iCM6UAVjpz0VFnGYkqgocCSMisiO6lY7OzgVGy0sAkkFwps+SEhREZBkGYUREdqJsDljHjqdw6lRHRU5YcPBlg+BMNyVZtgSFkxM/QojuBf8GERHZAWM5YKdOdURs7LsoKnJRlJcoW/srKmo/goIyDEpQlN2cm4gqhkEYEZEdMJUDVlTkgtDQi+jduzcOHjwIwPLaXyxBQXRvGIQREdmB8rYYatSokaK9SpVvNPgaMWIEvLy8WIKCqAowCCMisgPlbTGkUqm4sTZRDWMQRkRUi5W32XZ5gZH+lKG5aUYGWEQ1j0EYEVEtlZaWho8//rjcdnFxcSYDKB8fH45wEdVSDMKIiGqh7OxsgwBMV+PL2ztbMYpV3qbcDLCIaicGYUREtVDZwOrIETX2748yus+jzr1OXRJRzWIQRkRUyx05okZiYl/othDS3+dRNyJmao/IssxNXRJRzeLekUREtZhG44HExCiU3cNRCAfk5HjLP5c3JVnRdkRU/TgSRkRkBeVNHV6+fBlAaZFVY/+/XN4ejqbyx4io9mAQRkRUwyydOgSMF1kFBKKi9psMrsruEWksf4yIrI/TkURENazsCJhG44H09BBoNB4GbXVFVgHt/45o0bdvIh58MMnotY3tEblnz0Cj1yYi6+JIGBGRFVk6aiVJgBClf7q53VWcc3FxkQM7U3tE5uR4c1qSqJbhSBgRkZVYMmpVXpsBAwYoVjvqpi/1lZc/RkTWYfFIWF5ensUX9fT0rFRniIjsiSWjVuW1CQ4OVpwrb49IIqo9LA7CvLy8IEmS2TZCCEiShJKSknvuGBFRXWcs6b7sqJUlbYCK7RFJRLWDxUHYwYMHq7MfRER2x5JRK0tHtrhHJJHtsTgI69WrV3X2g4jILpUdtQKA9PQQRX0vS0e2GGAR2ZZKr47Mzc3Fe++9hzNnzgAA2rdvj0mTJkGlUlVZ54iI6qKyU4IqVT5UqnyzKyUnTuwLX19fg+sw8CKyXZIQQlT0RT///DOio6Ph5uaGBx54AABw7Ngx3LlzB9988w3Cw8OrvKP2KC8vDyqVChqNhosdiGyYser4ubm5KC4uxo0bN3Dw4EFoNB5YsybeIPcrPn4NVKp8TJkyBYGBgTXddSKqBEs/vys1EjZjxgwMHjwY77zzDpycSi9RXFyMyZMnIz4+Ht9//33lek1EVMdYWh2f9b2I7E+lgrCff/5ZEYABgJOTE+bMmYMuXbpUWeeIiGydpRtmW7oKkojqjkoVa/X09MSlS5cMjl++fBkeHtwag4jIFFNbFOlWQeoKrbK+F1HdV6mRsJEjRyI2NhYvv/wyunXrBgA4cuQIZs+ejVGjRlVpB4mI6orytigytwqSiOqeSo2Evfzyyxg6dCjGjRuHkJAQhISEYMKECRg+fDheeumlqu4jAGDw4MFo2rQp6tWrh8DAQIwdOxYZGRmKNl9//TW6du0KDw8P+Pn5YdiwYbhw4YKizXfffYfw8HC4urqiRYsW2Lhxo8F7vfHGGwgJCUG9evUQGRmJn376SXH+7t27mDZtGnx8fNCgQQMMGzYMV69eVbS5dOkSYmJi4O7ujkaNGmH27NkoLi6ukmdBRLbH0o21Vap8hIZeNAjAWGSVqO6p1EiYi4sL1q5di+XLlyMtLQ0AEBYWBnd39yrtnL7evXvjv//9LwIDA/HXX3/hmWeewfDhw3H06FEAQHp6Oh555BHMnDkTmzdvhkajwYwZMzB06FAcP35cbhMTE4Mnn3wSmzdvxoEDBzB58mQEBgYiOjoaALBt2zbMnDkT69evR2RkJNasWYPo6GikpqaiUaNGAEoXJuzduxc7duyASqVCXFwchg4diiNHjgAASkpKEBMTg4CAABw9ehSZmZkYN24cnJ2d8eKLL1bbMyIi6zK2CvL69esAyk+8Hzp0qEEJCh2WoiCqmypVoqI22L17N4YMGYKCggI4Ozvj008/xahRo1BQUAAHh9J/6Pbs2YNHHnlEbjN37lzs3bsXp0+flq/z6KOPIjc3F1999RUAIDIyEv/617/k1UxarRbBwcF46qmnMG/ePGg0Gvj5+WHLli0YPnw4AODs2bNo27YtkpKS0LVrV+zbtw8DBw5ERkYG/P39AQDr16/H3Llz8ffff1v8f7QsUUFkO8pbBckSFET2w9LP70pNR969exerVq3C//3f/6FLly4IDw9XfFW3nJwcbN68Gd26dYOzszMAICIiAg4ODvjggw9QUlICjUaDjz76CFFRUXKbpKQkREVFKa4VHR2NpKQkAKWrmFJSUhRtHBwcEBUVJbdJSUlBUVGRok2bNm3QtGlTuU1SUhI6dOggB2C698nLy8Nvv/1m8r4KCgqQl5en+CIi21DeKkgm3hNRWZWajoyNjcU333yD4cOH44EHHih3Y++qMnfuXKxbtw63b99G165dkZCQIJ8LDQ3FN998gxEjRuCJJ55ASUkJ1Go1vvzyS7lNVlaWIjACAH9/f+Tl5eHOnTu4ceMGSkpKjLY5e/asfA0XFxd4eXkZtMnKyjL7PrpzpixfvhxLly618GkQUVUyNpWor6JTghqNB3JyfCq1/RAR2YdKBWEJCQn48ssv8eCDD97Tm8+bN6/cRP4zZ86gTZs2AIDZs2cjNjYWFy9exNKlSzFu3DgkJCRAkiRkZWXh8ccfx/jx4zFq1Cjk5+dj0aJFGD58OBITE2ssULwX8+fPx8yZM+Wf8/LyEBwcbMUeEdkHSwuqxsXFWRSIcfshIrJEpYKwxo0bV0k9sFmzZmHChAlm2zRv3lz+3tfXF76+vmjVqhXatm2L4OBg/Pjjj1Cr1XjjjTegUqmwcuVKuf3HH3+M4OBgJCcno2vXrggICDBYxXj16lV4enrCzc0Njo6OcHR0NNomICAAABAQEIDCwkLk5uYqRsPKtim7olJ3TV0bY1xdXeHq6mr2eRBR1Ss7AmZsFMtYO2NMrYIMCzsPlSofvr6+zP0iIgCVDMJeeeUVzJ07F+vXr0ezZs0q/eZ+fn7w8/Or1Gu12tK8ioKCAgDA7du35YR8HUdHR0XbstOTAJCYmAi1Wg2g9P9GIyIicODAAQwZMkR+7YEDBxAXFwegNPfM2dkZBw4cwLBhwwAAqampuHTpknwdtVqNZcuW4dq1a/KKysTERHh6eqJdu3aVul8iqhnl1fIqD7cfIiJLVSoxv0uXLrh79y6aN28ODw8PeHt7K76qWnJyMtatW4eTJ0/i4sWL+PbbbzFq1CiEhYXJgU9MTAyOHTuG5557DufOncPx48cxceJENGvWDJ07dwYAPPnkk/jzzz8xZ84cnD17Fm+++Sa2b9+OGTNmyO81c+ZMvPPOO9i0aRPOnDmDqVOn4tatW5g4cSIAQKVSITY2FjNnzsTBgweRkpKCiRMnQq1Wo2vXrgCAfv36oV27dhg7dix++eUXfP3113j22Wcxbdo0jnQR1WKW1vIyR7f9kD5uP0RExlRqJGzUqFH466+/8OKLL8Lf37/a863c3d2xa9cuLF68GLdu3UJgYCD69++PZ599Vg5qHn74YWzZsgUrV67EypUr4e7uDrVaja+++gpubm4ASpP39+7dixkzZmDt2rVo0qQJ3n33XblGGFC6G8Dff/+NRYsWISsrC/fffz+++uorRaL96tWr4eDggGHDhqGgoADR0dF488035fOOjo5ISEjA1KlToVarUb9+fYwfPx7PPfdctT4nIro3VTGKpVsFWXY0jaNgRFRWpeqEubu7IykpCZ06daqOPtH/sE4YUc3IzMzEhg0b7qmWV9nk/tK8MsNVkJYm9xOR7bL087tSI2Ft2rTBnTt3Kt05IqLa6F5GsXx8fBAXF1elZS6IqG6rVBC2YsUKzJo1C8uWLUOHDh3kYqg6HLUhIlt1L5toM8AiooqoVBDWv39/AECfPn0Ux4UQkCQJJSUl994zIqIaUrZQqkqVbzT4YkFVIqpKlQrCDh48WNX9ICKyGk4lEpE1VCoI69Wrl0Xt/vOf/+C5554zqA5NRFTbMMAioppWqTphlvr444+5CTURERGREdUahFWi+gURERGRXajWIIyIiIiIjGMQRkRERGQFDMKIiIiIrIBBGBEREZEVVKpEhaXGjBnD6vlEVKWys7NZz4uI6oRKB2G5ubn46aefcO3aNWi1WsW5cePGAQDeeuute+sdERH+Cbw0Gg22bdtWbntukk1EtqBSQdiePXswevRo3Lx5E56enpAkST4nSZIchBER3avs7GysW7euQq/JyMiQR8s4MkZEtVWlgrBZs2Zh0qRJePHFF+Hu7l7VfSIikpWdetRoPJCT4wNv72wAkL/X3+tx165ditdwZIyIaqNKBWF//fUXnn76aQZgRFSjjh/vjD17BkIIBwBaABIACZKkxaBBCQgPP2H0deZyyIiIrKVSqyOjo6Px888/V3VfiIhM0mg89AIwoPSfr9JUCCEcsGfPQFy5Eoj09BBoNB5W6ycRkaUsHgnbvXu3/H1MTAxmz56N33//HR06dICzs7Oi7eDBg6uuh0RU51RmhWNOjo9eAGZICAe8++5kAA7ljowREdUGFgdhQ4YMMTj23HPPGRyTJAklJSX31CkiqrssTbQvm8fl7Z0NSdKaCcQEdIP7upGxsLDzilwxIqLaxOLpSK1Wa9EXAzAiMsdYor2xKcSy7VSqfAwalABJ0pXE0ep9L6CbmtQRwgE5Od5V2HMioqpVqcT8Dz/8ECNHjoSrq6vieGFhIbZu3coSFURkEf1Ee0umEMPDTyAs7Dxycrzh7Z2D/PwG8hRkWZKkhbd3TjX2nojo3lQqMX/ixInQaDQGx/Pz8zFx4sR77hQR1X1lE+11U4hlR8RcXFwUP6tU+QgNvQiVKh9FRa4wFYANGpTAqUgiqtUqNRImhFAUaNW5cuUKVCrVPXeKiOo+Y4n2uilE/eDJx8cHcXFxiunJ69evY9euXSbyxLSIjX0XTZpkykfKBnJERLVBhYKwzp07Q5IkSJKEPn36wMnpn5eXlJQgPT0d/fv3r/JOElHdYyyA0p9C1Gg0CAwMBACThVZ1eWJlpzR1AdjQoUMRFBTEQq1EVCtVKAjTrZA8efIkoqOj0aBBA/mci4sLQkJCMGzYsCrtIBHVTaYCKN0o2LZt20xWutcf2SqbJ6Y/isYAjIhqswoFYYsXLwYAhISEYOTIkahXr161dIqI7IO5AAowXene2BRlWdwzkohqu0rlhI0fPx5A6T+Q165dg1arVZxv2rTpvfeMiOokY4n2QGmOmP7P5WGARUS2rlJB2Llz5zBp0iQcPXpUcVyXsM9aYUSkr2yF/L59+yIxMRFAxctUEBHVFZUKwiZMmAAnJyckJCQgMDDQ6EpJIiLAfIV8U2UqWOmeiOxBpYKwkydPIiUlBW3atKnq/hCRDTK3F+T169dNvs7SMhVERHVRpYKwdu3amf2HlYhsV0U317Z0L0gdjcYDOTk+8PbOLrdMBRFRXVapIOyll17CnDlz8OKLL6JDhw5wdnZWnPf09KySzhFRzSobUOkHTPojU/qlI8wFbGUZy/8yV6aCiKguq1QQFhUVBQB4+OGHFflgTMwnsm36AZW5hPmMjAy5bdlRcVOBm6n8r/j4NYiPX2O0TAUr3RNRXVapIOzgwYNV3Q8iqkXKS5jftWuX0deZC9wuXw42mf+l2wty6NCh8PX1BcA6X0RU91VqA+9evXrBwcEB77zzDubNm4cWLVqgV69euHTpEhwdHau6j0RUw8wlzJtibkPu48c749NPje2mocz/8vX1RWBgIAIDAxmAEVGdV6kgbOfOnYiOjoabmxtOnDiBgoICAKV7vb344otV2kEiqnm6hHl9xhLmNRoPpKeHyFOQxgK3y5ebYPfugTD+z42EtLQWVdx7IiLbUKkg7IUXXsD69evxzjvvKJLyH3zwQRw/frzKOkdE1qHb11EXiBlLmD9+vDPWrInHpk3jsWZNPDIyAo0Gbrdvu8P0PzWSPFpGRGRvKpUTlpqaip49exocV6lUyM3Nvdc+EVEtYG5fR2NTj/v3RyEqaj/2749S5IS5uBSYfR/WBSMie1WpICwgIADnz59HSEiI4vjhw4fRvHnzqugXEZVx5Qpw7hzQsiXQpEnNvKdKlW80ODI19RgUlGGw0rF0lEsAML6zBuuCEZG9qtR05OOPP47p06cjOTkZkiQhIyMDmzdvxjPPPIOpU6dWdR+J7N577wHNmgEPP1z653vvVc/7WFoSwlzOmEqVj1mzIjB8eFcApYHc4MF79NprzU5zEhHZi0qNhM2bNw9arRZ9+vTB7du30bNnT7i6uuKZZ57BU089VdV9JLJrV64AU6YA2v/FMFot8MQTQHR01Y+I+fj4IC4uzuwWRLt27ZJzxkwVWfX19UVQUJC8SXfZqU0ArAtGRHavUkGYJElYsGABZs+ejfPnz+PmzZto164dGjRoUNX9I7J75879E4DplJQA589Xz7SkudIQ+kGSuZwxXY0v/YBOo9GgqKhIcT0nJyd4eXkpXkNEZC8qFYTpuLi4oF27dlXVFyIqIzs7G56exXBwaASt9p+cKkdHAQ+Pa8jOdqrRwKW8kTJAGUzp9y0wMLDa+0dEZEvuKQgjouqjv4/jwIHKSvQxMQlISCitRK+/j2NN4GgVEVHVYBBGVEvpjzaZm/qryAbaRERUezAII7IRpspFEBGRbapUiQoiIiIiujccCSOqY7Kzsy1OnCciIuthEEZUh+gn85tT08n8RERkiEEYUR1SdgRMo/FATo4PvL2zjSbzc9SMiMh6GIQR1VHHj3c2qGgfHn5CPs9RMyIi62JiPlEtZekWPsbaaTQecgAGlG6uvWfPwP9tpl26/VBGRobBa9LTQ+Q2OiyBQURUPTgSRlRLWVqdHgAyMzMBlAZXAJCT4yMHYDpCOCAnxxsqVT527dqlOFfeqBkREVU9BmFEtVh504CmphS9vbMhSVpFICZJWnnzbP1cMQBGR83Cws6zLhkRUTViEEZkw0yNkqlU+Rg0KMFgdEulyjcY9VKrk8yOmhERUfVgEEZkwzQaTZmf/xnhMrbVkbFcsaNH1WZHzYiIqHowCCOyUdnZ2di2bZv8s6m8Lv3RLGO5YoAD1OojSEpSG4yaERFR9WEQRlSLVKRul347U6shdXldvXv3xsGDB03mikVGJiMyMtnoBuFERFQ9GIQR1RL3UrervNWQDRs2BGA+V0x3vixLS2UQEVHFMAgjqgGWjHBVtNq9voyMQAACgCQfM5XXZSxXTGfo0KHw9fVV9IuFWomIqgeDMKJqZukI18iRI+XvK1K3S6PxwP79UdAPwACBqKj9coDl5KT8q65S5Rsd9QoKCmLQRURUQxiEEVUzS0e4ioqK5PMVqdtlPNleQlDQPxXxGzVqZFHhVwZgREQ1h0EYUQ2yZISrvPyussorzDpixAgGV0REtRD3jiSqIeXt56ijC6r0mavbpUu2172mbLK9l5dXFd8JERFVBY6EEdUQS0e4ylvBqKO/atFcsj1XNxIR1U42E4QNHjwYJ0+exLVr19CwYUNERUXhpZdeQlBQkNxm+/btePHFF/HHH3/Az88PcXFxmD17tuI63333HWbOnInffvsNwcHBePbZZzFhwgRFmzfeeAOrVq1CVlYWOnXqhNdffx0PPPCAfP7u3buYNWsWtm7dioKCAkRHR+PNN9+Ev7+/3ObSpUuYOnUqDh48iAYNGmD8+PFYvny5QYI02Y/ypg31mQuqdCzd4JtTkUREtZPNTEf27t0b27dvR2pqKnbu3Im0tDQMHz5cPr9v3z6MHj0aTz75JE6fPo0333wTq1evVqxKS09PR0xMDHr37o2TJ08iPj4ekydPxtdffy232bZtG2bOnInFixfj+PHj6NSpE6Kjo3Ht2jW5zYwZM7Bnzx7s2LEDhw4dQkZGBoYOHSqfLykpQUxMDAoLC3H06FFs2rQJGzduxKJFi6r5KVFtVt60obEVjKGhF82OgPn4+CAwMNDkFwMwIqLaSxJCCGt3ojJ2796NIUOGoKCgAM7OznjsscdQVFSEHTt2yG1ef/11rFy5EpcuXYIkSZg7dy727t2L06dPy20effRR5Obm4quvvgIAREZG4l//+pccvGm1WgQHB+Opp57CvHnzoNFo4Ofnhy1btshB4NmzZ9G2bVskJSWha9eu2LdvHwYOHIiMjAx5dGz9+vWYO3cu/v77b4unh/Ly8qBSqaDRaODp6Vklz41qXmZmJjZs2CD/XLo60nCEa8qUKUbrhenjyBYRUe1n6ee3zYyE6cvJycHmzZvRrVs3ODs7AwAKCgpQr149RTs3NzdcuXIFFy9eBAAkJSUhKipK0SY6OhpJSUkASksJpKSkKNo4ODggKipKbpOSkoKioiJFmzZt2qBp06Zym6SkJHTo0EExPRkdHY28vDz89ttvJu+roKAAeXl5ii+yfWWDbnMjXBzZIiKyHzaVoDR37lysW7cOt2/fRteuXZGQkCCfi46OxowZMzBhwgT07t0b58+fxyuvvAKgdCQiJCQEWVlZisAIAPz9/ZGXl4c7d+7gxo0bKCkpMdrm7NmzAICsrCy4uLgYrDjz9/dHVlaW3MbYNXTnTFm+fDmWLl1agSdCFVGRfRmrEnO3iIjIGKsGYfPmzcNLL71kts2ZM2fQpk0bAMDs2bMRGxuLixcvYunSpRg3bhwSEhIgSRIef/xxpKWlYeDAgSgqKoKnpyemT5+OJUuWwMHBNgb85s+fj5kzZ8o/5+XlITg42Io9qjvKVq03VTDV2L6MVYEBFhERlWXVIGzWrFkGKxPLat68ufy9r68vfH190apVK7Rt2xbBwcH48ccfoVarIUkSXnrpJbz44ovIysqCn58fDhw4oLhGQEAArl69qrj+1atX4enpCTc3Nzg6OsLR0dFom4CAAPkahYWFyM3NVYyGlW3z008/GVxDd84UV1dXuLq6mn0eVDn6o1DmCqaaG60iIiKqSlYNwvz8/ODn51ep12q1pSvMCgoKFMcdHR3RuHFjAMAnn3wCtVotv4darcaXX36paJ+YmAi1Wg2gdEooIiICBw4cwJAhQ+T3OXDgAOLi4gAAERERcHZ2xoEDBzBs2DAAQGpqKi5duiRfR61WY9myZbh27RoaNWokv4+npyfatWtXqfulqlHRLYGqi7WmRomIqPawiZyw5ORkHDt2DN27d0fDhg2RlpaGhQsXIiwsTA58rl+/jk8//RQPPfQQ7t69iw8++EAuIaHz5JNPYt26dZgzZw4mTZqEb7/9Ftu3b8fevXvlNjNnzsT48ePRpUsXPPDAA1izZg1u3bqFiRMnAgBUKhViY2Mxc+ZMeHt7w9PTE0899RTUajW6du0KAOjXrx/atWuHsWPHYuXKlcjKysKzzz6LadOmcaTLyiq6JVB1sPbUKBER1Q42EYS5u7tj165dWLx4MW7duoXAwED0798fzz77rCKo2bRpE5555hkIIaBWq/Hdd98piqyGhoZi7969mDFjBtauXYsmTZrg3XffRXR0tNxm5MiR+Pvvv7Fo0SJkZWXh/vvvx1dffaVItF+9ejUcHBwwbNgwRbFWHUdHRyQkJGDq1KlQq9WoX78+xo8fj+eee66anxSVpyIFU6sLp0aJiAiw4Tph9oB1wqqOfq0uc4HPlClTEBgYWCN90Wg8sGZNfJmROS1mzFgDlSofI0eOlBelEBGR7bD089smRsKIqpIlWwLdK3M5X9evXwdgfGoUcEByciT69duPbdu2cUqSiKgOYxBGdkmlyq+2HLCyOV+meHtnA9CibM3kpCQ1IiOToVLlc0qSiKgOs40CWkT3yNKtoixtZ0p2djYyMjIUxzQaD6Snh0Cj8VAcV6ny0a1bksE1dAsFiIiobuNIGNmFmqhab2wEzFz+GQBERiYjKUlt1YUCRERkHQzCyG5Ud25V2QDvypXAcmuSqVT5GDQowSBQq8maZUREZB0MwoiqwfHjnbF790CUnfE3VpOsJhYKEBFR7cMgjKiK6aryG0u5NDXVWJ0LBYiIqHZiEEZUQabKT5gvPQFONRIRkQKDMKIKsGTLIWNV+QEtYmPfRZMmmRV6v3tdrUlERLUXgzCiCrBkyyFTyfZlA7AxY8bA3d3d5HtxE28iorqNQRiRhbKzs+UpR13el6mVj+aS7YcOHYqgoCAGWEREdo5BGJEFyk5DXr4cbJD3VXblo6lkewZgREQEMAgjsoixaciy9Fc+Dh06FL6+vgZtOMVIREQ6DMKIKqDsNOQ/lCsffX19ERgYWPMdJCIim8EgjKgCTJWfGD78U9x33xkr9IiIiGwVN/AmqgBd+Ql9kqRFcPAVK/WIiIhsFUfCyKaYKpSqU905V5bu9cj6XkREVB4GYWQzyq5QNCUuLs5kIFYVQRzLTxARUVVgEEY2w1zwZEm7qgjidEyVn/D19WUARkREFmFOGNmNssGZRuOB9PQQaDQeZtsBlk8vchqSiIgsxZEwskumthwyxcfHB3FxcVbNRyMiorqFQRjZnfK2HDKFARYREVUlTkeSzTI1nVgeY7W+dFsOERER1RSOhJFNquh0ov7m27paX/qBmP6WQ0RERDWBI2Fkc0xNJ5oaEdOtity1a5d8TK1OAlBadNVUrS8iIqLqxJEwshm6lYfmphNVqnyDFYrGNt/WjaCp1UcQGZnMAIyIiGocgzCyGboVihcuFOOjjwS0Wkk+5+go8NRTAxAS4mQygd7YCFpSkhqRkcmKdiwzQURENYFBGNkUHx8f+PgAGzYATzwBlJQAjo7A229LiIjwN/va8kbQWO2eiIhqEoMwskmxsUB0NHD+PNCiBdCkSfmvKS8hn9XuiYioJjExn2xWkybAQw8ZD8Cys7ORmZmJzMxMnD6di/T0EADAoEEJkCQm5BMRkfVxJIzqHP09Iv9JxG8rB13x8WuMbr5NRERUkzgSRnWObjWkqVIWABAaepEBGBERWRWDMKqzKloZn6siiYioJnE6kqwuOzu7WjbGLi8Rf+jQofD19b2n9yAiIqosBmFULSwNrPTzt8yJi4urcJCkUuVj0KAEg+2NdNOQvr6+CAwMrNA1iYiIqgqDMKpyFQmszAVq+ixtV1Z4+AmEhZ1nIj4REdU6DMKoylV3YFVRKlU+gy8iIqp1mJhPtYpG44H09BCTm3ETERHVFRwJo1qj7ObagwYlIDz8hMWvv3IFOHcO8PWtZ1F7roYkIiJrYhBGtYKpml5hYefNTiXqFgBs2eKGOXNU0GolODh4YenSKXjkketwcnKCl5eXweu4GpKIiKyNQRjVCuVtrm2MbgGARuOBNWviIYQEANBqJSxa5I+cnE+gUuVXamUlERFRdWNOGFU7S/K8dDW99OnX9DJGl9hfXlHWmloAQEREVBEcCaNqVV6ely4vq7yaXubyt8orykpERFQbMQijKqcLmMrL89LlZenXC1u06G9cuOCEkJBiBAX9C8C/ys3fKi+AIyIiqo0YhFGV0wVWBw8Cq1cbThM++OB4PPQQ5MBKP8AKDAQiIir+nizKSkREtoZBGFULHx8fdO0KODgAWr1UL0dHIDLSB7q4q6L7RurKULRsWXotfSzKSkREtoRBGFWbJk2ADRuAJ54ASkpKg6a33y49Dhhub6TReCAnxwfe3tmKYEq3uvG994ApU0qDOgcHYOVKt5q+JSIioirDIIyqVWwsEB0NnD8PtGjxTwAGKFctmkvgv3btGi5cKMaUKY2g1erKUABz5qgwfboHR7+IiMgmMQijatekiTL4Kqu8BP7t27cjPT0EWu14xeu0WslsHTEdVsYnIqLaiEEYWZ0lhVrLK0MxdOhQ+Pr6GlyblfGJiKi2YhBGNaZsEv7169cBWFbnq7wyFL6+vggMDKyhOyEiIrp3DMKoRphOwvewuM4Xy1AQEVFdwiCMaoQlSfiWBFgsQ0FERHUFgzCqUeUl4TPAIiIie8EgjCqlokVWdSxJwiciIrIHDMKowsrmd5miK7Kqr6KrHDUaDbZt21ZFPSciIqo9HMpvQqRUdgRMo/FAenoINBoPs+2Af1Y5SlLpXkamVjnqvvz8/CzqE2uBERGRreFIGN0Tc5XuTanIKkfdZuCVmfokIiKqzRiEUaWVl2RvTkWS8BlgERFRXcTpSKo0c0n2ZVk6XchpRSIishccCaNKs6TSvf4qyp49H8OffzqiadMCBAQUAwCcnZ2hUqkAcFqRiIjsC4MwqrTyKt3rr2w0lztmbBUlERFRXccgjO6JuST7nJzSEbHycseuXbvGIIyIiOwOgzCqsLJ5W+Ul2ZdXoLW4uLha+klERFSbMQijCrO0bERGRgYAwNm5AIAAIOm1EHB2Nv16IiKius7mVkcWFBTg/vvvhyRJOHnypOLcqVOn0KNHD9SrVw/BwcFYuXKlwet37NiBNm3aoF69eujQoQO+/PJLxXkhBBYtWoTAwEC4ubkhKioK586dU7TJycnB6NGj4enpCS8vL8TGxuLmzZsV7ost8/HxURRVLfulP71YVOQKZQAGABKKirgSkoiI7JfNBWFz5sxBUFCQwfG8vDz069cPzZo1Q0pKClatWoUlS5Zgw4YNcpujR49i1KhRiI2NxYkTJzBkyBAMGTIEp0+fltusXLkSr732GtavX4/k5GTUr18f0dHRuHv3rtxm9OjR+O2335CYmIiEhAR8//33mDJlSoX6Yk90qyj1lV1FSUREZHeEDfnyyy9FmzZtxG+//SYAiBMnTsjn3nzzTdGwYUNRUFAgH5s7d65o3bq1/POIESNETEyM4pqRkZHiiSeeEEIIodVqRUBAgFi1apV8Pjc3V7i6uopPPvlECCHE77//LgCIY8eOyW327dsnJEkSf/31l8V9sYRGoxEAhEajqdDraotTp06JJUuWiCVLlojBg78QklQiACEkqUQMHvyFfO7UqVPW7ioREVGVsfTz22ZGwq5evYrHH38cH330Edzd3Q3OJyUloWfPnoqk8ejoaKSmpuLGjRtym6ioKMXroqOjkZSUBABIT09HVlaWoo1KpUJkZKTcJikpCV5eXujSpYvcJioqCg4ODkhOTra4L8YUFBQgLy9P8VVXhIefQHz8GowfvxHx8WvK3dqIiIiorrOJIEwIgQkTJuDJJ59UBD/6srKy4O/vrzim+zkrK8tsG/3z+q8z1aZRo0aK805OTvD29i73ffTfw5jly5dDpVLJX8HBwSbb2gJnZ2fFzypVPkJDLxqspCzbjoiIyB5YNQibN28eJEky+3X27Fm8/vrryM/Px/z5863Z3Wo3f/58aDQa+evy5cvW7tI98fPzq9J2REREdYlVS1TMmjULEyZMMNumefPm+Pbbb5GUlARXV1fFuS5dumD06NHYtGkTAgICcPXqVcV53c8BAQHyn8ba6J/XHQsMDFS0uf/+++U2165dU1yjuLgYOTk55b6P/nsY4+rqanCPtszSUhYs1EpERPbIqkGYn5+fRaMgr732Gl544QX554yMDERHR2Pbtm2IjIwEAKjVaixYsABFRUXy9FZiYiJat26Nhg0bym0OHDiA+Ph4+VqJiYlQq9UAgNDQUAQEBODAgQNy0JWXl4fk5GRMnTpVvkZubi5SUlIQEREBAPj222+h1Wor1Bd7wQCLiIjIhJpZJ1C10tPTDVZH5ubmCn9/fzF27Fhx+vRpsXXrVuHu7i7efvttuc2RI0eEk5OTePnll8WZM2fE4sWLhbOzs/j111/lNitWrBBeXl7iiy++EKdOnRKPPPKICA0NFXfu3JHb9O/fX3Tu3FkkJyeLw4cPi5YtW4pRo0ZVqC+WsPXVkURERPbI0s/vOhOECSHEL7/8Irp37y5cXV1F48aNxYoVKwxeu337dtGqVSvh4uIi2rdvL/bu3as4r9VqxcKFC4W/v79wdXUVffr0EampqYo22dnZYtSoUaJBgwbC09NTTJw4UeTn51e4L+VhEEZERGR7LP38loQQwpojcWRaXl4eVCoVNBoNPD09a/S9r1wBzp0DWrYEmjSp0bcmIiKyaZZ+fttEiQqqWe+9BzRrBjz8cOmf771n7R4RERHVPQzCSJadnY2UlKuYMkVA+79dhrRa4IknBFJSriI7O9u6HSQiIqpDrLo6kmqP7OxsrFu3DunpIdBqxyvOlZRIeP31fQgNvYiRI0dCpVLJ51higoiIqHIYhBEAyLW8dJtt6+9opb/Z9rZt2wxeGxcXx0CMiIiogjgdSQoqVT4GDUqAJJXOR0qSFoMGJRhsNaTPXDFWIiIiMo4jYWQgPPwEwsLOIyfHG97eOXIAptF4ICfHB97e2WaDMiIiIiofgzAySqXKVwRax493xp49AyGEgzw6Fh5+woo9JCIism2cjiRkZ2fj+vXrJs9rNB5yAAYAQjhgz56B0Gg8aqqLREREdQ5HwuycblWkOTk5PopEfaA0EMvJ8ea0JBERUSVxJMzOXbt2rdw2uhWT+vRXTBIREVHFMQizc8XFxYqfNRoPpKeHKKYaK7NikoiIiMzjdCTJzCXfm1oxCZQWbCUiIqKKYRBGAEwn34eFnYdKlY/evXujZcuWBq9jxXwiIqLKYRBGAMpPvm/YsCECAwOt1DsiIqK6hzlhBKA0+R4QimNMviciIqo+HAmzE9nZ2Ua3F7px44beTwKA9M9PwqA5ERERVREGYXbA0lpghgOj/0xHOjs7V1v/iIiI7BGnI+2AJRtsl1cLzM/Pr1r6RkREZK84EkYASmuBLV6cgeefb4ySEgmOjgIvvZSHxx4bxRWQRERE1YBBGMmmTHFEbKyE8+eBFi0kNGniBcDLyr0iIiKqmxiEkUKTJqVfREREVL2YE0ZERERkBQzC7JCx/SGJiIioZnE60s6Y2x+SiIiIag5HwuyAboNtU/tD6kbEuBE3ERFRzZGEYF302iovLw8qlQoajQaenp73dK3s7GwcPAj8+9+GpSY+/TQbDz0ElqEgIiKqApZ+fnM60k74+Piga1fAwQHQ6tVkdXQEIiN9wPiLiIioZnE60o40aQJs2FAaeAGlf779NktSEBERWQNHwuxMbCwQHY3/FWRlAEZERGQtDMLsEAuyEhERWR+nI4mIiIisgEEYERERkRUwCCMiIiKyAgZhRERERFbAIIyIiIjIChiEEREREVkBgzAiIiIiK2AQRkRERGQFDMKIiIiIrIBBGBEREZEVMAgjIiIisgLuHVmLCSEAAHl5eVbuCREREVlK97mt+xw3hUFYLZafnw8ACA4OtnJPiIiIqKLy8/OhUqlMnpdEeWEaWY1Wq0VGRgY8PDwgSZLFr8vLy0NwcDAuX74MT0/Pauxh7cbnUIrPoRSfQyk+h1J8Dv/gsyhVlc9BCIH8/HwEBQXBwcF05hdHwmoxBwcHNGnSpNKv9/T0tOu/UDp8DqX4HErxOZTicyjF5/APPotSVfUczI2A6TAxn4iIiMgKGIQRERERWQGDsDrI1dUVixcvhqurq7W7YlV8DqX4HErxOZTicyjF5/APPotS1ngOTMwnIiIisgKOhBERERFZAYMwIiIiIitgEEZERERkBQzCiIiIiKyAQZiNeOutt9CxY0e5iJxarca+ffvk83fv3sW0adPg4+ODBg0aYNiwYbh69ariGpcuXUJMTAzc3d3RqFEjzJ49G8XFxTV9K1VqxYoVkCQJ8fHx8jF7eBZLliyBJEmKrzZt2sjn7eEZ6Pz1118YM2YMfHx84Obmhg4dOuDnn3+WzwshsGjRIgQGBsLNzQ1RUVE4d+6c4ho5OTkYPXo0PD094eXlhdjYWNy8ebOmb6XSQkJCDH4fJEnCtGnTANjP70NJSQkWLlyI0NBQuLm5ISwsDM8//7xi/z57+H0ASrfLiY+PR7NmzeDm5oZu3brh2LFj8vm6+hy+//57DBo0CEFBQZAkCZ9//rnifFXd96lTp9CjRw/Uq1cPwcHBWLlyZeU6LMgm7N69W+zdu1f88ccfIjU1Vfz3v/8Vzs7O4vTp00IIIZ588kkRHBwsDhw4IH7++WfRtWtX0a1bN/n1xcXF4r777hNRUVHixIkT4ssvvxS+vr5i/vz51rqle/bTTz+JkJAQ0bFjRzF9+nT5uD08i8WLF4v27duLzMxM+evvv/+Wz9vDMxBCiJycHNGsWTMxYcIEkZycLP7880/x9ddfi/Pnz8ttVqxYIVQqlfj888/FL7/8IgYPHixCQ0PFnTt35Db9+/cXnTp1Ej/++KP44YcfRIsWLcSoUaOscUuVcu3aNcXvQmJiogAgDh48KISwn9+HZcuWCR8fH5GQkCDS09PFjh07RIMGDcTatWvlNvbw+yCEECNGjBDt2rUThw4dEufOnROLFy8Wnp6e4sqVK0KIuvscvvzyS7FgwQKxa9cuAUB89tlnivNVcd8ajUb4+/uL0aNHi9OnT4tPPvlEuLm5ibfffrvC/WUQZsMaNmwo3n33XZGbmyucnZ3Fjh075HNnzpwRAERSUpIQovQX08HBQWRlZclt3nrrLeHp6SkKCgpqvO/3Kj8/X7Rs2VIkJiaKXr16yUGYvTyLxYsXi06dOhk9Zy/PQAgh5s6dK7p3727yvFarFQEBAWLVqlXysdzcXOHq6io++eQTIYQQv//+uwAgjh07JrfZt2+fkCRJ/PXXX9XX+Wo0ffp0ERYWJrRarV39PsTExIhJkyYpjg0dOlSMHj1aCGE/vw+3b98Wjo6OIiEhQXE8PDxcLFiwwG6eQ9kgrKru+8033xQNGzZU/N2YO3euaN26dYX7yOlIG1RSUoKtW7fi1q1bUKvVSElJQVFREaKiouQ2bdq0QdOmTZGUlAQASEpKQocOHeDv7y+3iY6ORl5eHn777bcav4d7NW3aNMTExCjuGYBdPYtz584hKCgIzZs3x+jRo3Hp0iUA9vUMdu/ejS5duuDf//43GjVqhM6dO+Odd96Rz6enpyMrK0vxLFQqFSIjIxXPwsvLC126dJHbREVFwcHBAcnJyTV3M1WksLAQH3/8MSZNmgRJkuzq96Fbt244cOAA/vjjDwDAL7/8gsOHD2PAgAEA7Of3obi4GCUlJahXr57iuJubGw4fPmw3z6GsqrrvpKQk9OzZEy4uLnKb6OhopKam4saNGxXqEzfwtiG//vor1Go17t69iwYNGuCzzz5Du3btcPLkSbi4uMDLy0vR3t/fH1lZWQCArKwsxT+wuvO6c7Zk69atOH78uCK/QScrK8sunkVkZCQ2btyI1q1bIzMzE0uXLkWPHj1w+vRpu3kGAPDnn3/irbfewsyZM/Hf//4Xx44dw9NPPw0XFxeMHz9evhdj96r/LBo1aqQ47+TkBG9vb5t6Fjqff/45cnNzMWHCBAD283cCAObNm4e8vDy0adMGjo6OKCkpwbJlyzB69GgAsJvfBw8PD6jVajz//PNo27Yt/P398cknnyApKQktWrSwm+dQVlXdd1ZWFkJDQw2uoTvXsGFDi/vEIMyGtG7dGidPnoRGo8Gnn36K8ePH49ChQ9buVo26fPkypk+fjsTERIP/y7Mnuv+zB4COHTsiMjISzZo1w/bt2+Hm5mbFntUsrVaLLl264MUXXwQAdO7cGadPn8b69esxfvx4K/fOOt577z0MGDAAQUFB1u5Kjdu+fTs2b96MLVu2oH379jh58iTi4+MRFBRkd78PH330ESZNmoTGjRvD0dER4eHhGDVqFFJSUqzdNdLD6Ugb4uLighYtWiAiIgLLly9Hp06dsHbtWgQEBKCwsBC5ubmK9levXkVAQAAAICAgwGA1lO5nXRtbkJKSgmvXriE8PBxOTk5wcnLCoUOH8Nprr8HJyQn+/v528yz0eXl5oVWrVjh//rxd/T4EBgaiXbt2imNt27aVp2Z192LsXvWfxbVr1xTni4uLkZOTY1PPAgAuXryI/fv3Y/LkyfIxe/p9mD17NubNm4dHH30UHTp0wNixYzFjxgwsX74cgH39PoSFheHQoUO4efMmLl++jJ9++glFRUVo3ry5XT0HfVV131X594VBmA3TarUoKChAREQEnJ2dceDAAflcamoqLl26BLVaDQBQq9X49ddfFb9ciYmJ8PT0NPgQq8369OmDX3/9FSdPnpS/unTpgtGjR8vf28uz0Hfz5k2kpaUhMDDQrn4fHnzwQaSmpiqO/fHHH2jWrBkAIDQ0FAEBAYpnkZeXh+TkZMWzyM3NVYwQfPvtt9BqtYiMjKyBu6g6H3zwARo1aoSYmBj5mD39Pty+fRsODsqPNUdHR2i1WgD29/sAAPXr10dgYCBu3LiBr7/+Go888ohdPgeg6v77q9VqfP/99ygqKpLbJCYmonXr1hWaigTAEhW2Yt68eeLQoUMiPT1dnDp1SsybN09IkiS++eYbIUTpEvSmTZuKb7/9Vvz8889CrVYLtVotv163BL1fv37i5MmT4quvvhJ+fn42twTdGP3VkULYx7OYNWuW+O6770R6ero4cuSIiIqKEr6+vuLatWtCCPt4BkKUlilxcnISy5YtE+fOnRObN28W7u7u4uOPP5bbrFixQnh5eYkvvvhCnDp1SjzyyCNGl6R37txZJCcni8OHD4uWLVvW+qX4ZZWUlIimTZuKuXPnGpyzl9+H8ePHi8aNG8slKnbt2iV8fX3FnDlz5Db28vvw1VdfiX379ok///xTfPPNN6JTp04iMjJSFBYWCiHq7nPIz88XJ06cECdOnBAAxKuvvipOnDghLl68KISomvvOzc0V/v7+YuzYseL06dNi69atwt3dnSUq6rJJkyaJZs2aCRcXF+Hn5yf69OkjB2BCCHHnzh3xn//8RzRs2FC4u7uL//f//p/IzMxUXOPChQtiwIABws3NTfj6+opZs2aJoqKimr6VKlc2CLOHZzFy5EgRGBgoXFxcROPGjcXIkSMVtbHs4Rno7NmzR9x3333C1dVVtGnTRmzYsEFxXqvVioULFwp/f3/h6uoq+vTpI1JTUxVtsrOzxahRo0SDBg2Ep6enmDhxosjPz6/J27hnX3/9tQBgcG9C2M/vQ15enpg+fbpo2rSpqFevnmjevLlYsGCBopSAvfw+bNu2TTRv3ly4uLiIgIAAMW3aNJGbmyufr6vP4eDBgwKAwdf48eOFEFV337/88ovo3r27cHV1FY0bNxYrVqyoVH8lIfRKCRMRERFRjWBOGBEREZEVMAgjIiIisgIGYURERERWwCCMiIiIyAoYhBERERFZAYMwIiIiIitgEEZERERkBQzCiIiIiKyAQRgR1SkPPfQQ4uPjrd2NardkyRLcf//91u4GEd0DBmFERLVIYWFhjb6fEALFxcU1+p5EVIpBGBHVGRMmTMChQ4ewdu1aSJIESZJw4cIFnD59GgMGDECDBg3g7++PsWPH4vr16/LrHnroITz11FOIj49Hw4YN4e/vj3feeQe3bt3CxIkT4eHhgRYtWmDfvn3ya7777jtIkoS9e/eiY8eOqFevHrp27YrTp08r+nT48GH06NEDbm5uCA4OxtNPP41bt27J50NCQvD8889j3Lhx8PT0xJQpUwAAc+fORatWreDu7o7mzZtj4cKFKCoqAgBs3LgRS5cuxS+//CLf58aNG3HhwgVIkoSTJ0/K18/NzYUkSfjuu+8U/d63bx8iIiLg6uqKw4cPQ6vVYvny5QgNDYWbmxs6deqETz/9tKr/ExGRHgZhRFRnrF27Fmq1Go8//jgyMzORmZkJDw8PPPzww+jcuTN+/vlnfPXVV7h69SpGjBiheO2mTZvg6+uLn376CU899RSmTp2Kf//73+jWrRuOHz+Ofv36YezYsbh9+7bidbNnz8Yrr7yCY8eOwc/PD4MGDZKDpbS0NPTv3x/Dhg3DqVOnsG3bNhw+fBhxcXGKa7z88svo1KkTTpw4gYULFwIAPDw8sHHjRvz+++9Yu3Yt3nnnHaxevRoAMHLkSMyaNQvt27eX73PkyJEVelbz5s3DihUrcObMGXTs2BHLly/Hhx9+iPXr1+O3337DjBkzMGbMGBw6dKhC1yWiCqjUtt9ERLVUr169xPTp0+Wfn3/+edGvXz9Fm8uXLwsAIjU1VX5N9+7d5fPFxcWifv36YuzYsfKxzMxMAUAkJSUJIYQ4ePCgACC2bt0qt8nOzhZubm5i27ZtQgghYmNjxZQpUxTv/cMPPwgHBwdx584dIYQQzZo1E0OGDCn3vlatWiUiIiLknxcvXiw6deqkaJOeni4AiBMnTsjHbty4IQCIgwcPKvr9+eefy23u3r0r3N3dxdGjRxXXi42NFaNGjSq3b0RUOU7WDACJiKrbL7/8goMHD6JBgwYG59LS0tCqVSsAQMeOHeXjjo6O8PHxQYcOHeRj/v7+AIBr164prqFWq+Xvvb290bp1a5w5c0Z+71OnTmHz5s1yGyEEtFot0tPT0bZtWwBAly5dDPq2bds2vPbaa0hLS8PNmzdRXFwMT0/PCt+/Kfrvef78edy+fRt9+/ZVtCksLETnzp2r7D2JSIlBGBHVaTdv3sSgQYPw0ksvGZwLDAyUv3d2dlackyRJcUySJACAVqut0Hs/8cQTePrppw3ONW3aVP6+fv36inNJSUkYPXo0li5diujoaKhUKmzduhWvvPKK2fdzcCjNMBFCyMd0U6Nl6b/nzZs3AQB79+5F48aNFe1cXV3NvicRVR6DMCKqU1xcXFBSUiL/HB4ejp07dyIkJAROTlX/T96PP/4oB1Q3btzAH3/8IY9whYeH4/fff0eLFi0qdM2jR4+iWbNmWLBggXzs4sWLijZl7xMA/Pz8AACZmZnyCJZ+kr4p7dq1g6urKy5duoRevXpVqK9EVHlMzCeiOiUkJATJycm4cOECrl+/jmnTpiEnJwejRo3CsWPHkJaWhq+//hoTJ040CGIq47nnnsOBAwdw+vRpTJgwAb6+vhgyZAiA0hWOR48eRVxcHE6ePIlz587hiy++MEjML6tly5a4dOkStm7dirS0NLz22mv47LPPDO4zPT0dJ0+exPXr11FQUAA3Nzd07dpVTrg/dOgQnn322XLvwcPDA8888wxmzJiBTZs2IS0tDcePH8frr7+OTZs2VfrZEJF5DMKIqE555pln4OjoiHbt2sHPzw+FhYU4cuQISkpK0K9fP3To0AHx8fHw8vKSp+/uxYoVKzB9+nREREQgKysLe/bsgYuLC4DSPLNDhw7hjz/+QI8ePdC5c2csWrQIQUFBZq85ePBgzJgxA3Fxcbj//vtx9OhRedWkzrBhw9C/f3/07t0bfn5++OSTTwAA77//PoqLixEREYH4+Hi88MILFt3H888/j4ULF2L58uVo27Yt+vfvj7179yI0NLQST4WILCEJ/eQBIiKyyHfffYfevXvjxo0b8PLysnZ3iMgGcSSMiIiIyAoYhBERERFZAacjiYiIiKyAI2FEREREVsAgjIiIiMgKGIQRERERWQGDMCIiIiIrYBBGREREZAUMwoiIiIisgEEYERERkRUwCCMiIiKyAgZhRERERFbw/wGfQzm8LDv+PgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -548,7 +721,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPs0lEQVR4nO3deVxU9f4/8NewigijLLIEAgJXr6ZeQTOy1NQCv2r508rylmuaBprZdcubaYtLqbllVtelvFreUuuqWVqZZZqVSupNSbyQG7gMOaAmIHN+f3BnYoAZZjtzttfz8eChzBxmPjMM57zO5/P+fI5OEAQBRERERBrgI3UDiIiIiLyFwYeIiIg0g8GHiIiINIPBh4iIiDSDwYeIiIg0g8GHiIiINIPBh4iIiDSDwYeIiIg0g8GHiIiINIPBh4hIhtauXQudTofCwkKpm0KkKgw+RBr1ww8/ICcnB23btkVwcDBatGiBhx56CL/88kudbXv06AGdTgedTgcfHx+EhoaiVatWeOyxx7Br1y6nnnfr1q3o3r07mjdvjsaNG6Nly5Z46KGH8Omnn3rqpdUxZ84cfPTRR3Vu37dvH2bNmoUrV66I9ty1zZo1y/Je6nQ6NG7cGG3atMHf//53lJaWeuQ5NmzYgMWLF3vksYjUhsGHSKPmz5+PTZs2oVevXliyZAnGjBmDr7/+GmlpaTh27Fid7ePi4rBu3Tq8++67ePXVV3Hfffdh3759uPfeezF48GBUVlY2+JwLFizAfffdB51Oh+nTp+O1117DoEGDcPLkSbz//vtivEwA9oPP7NmzvRp8zN544w2sW7cOixYtQuvWrfHyyy8jKysLnrh8IoMPkW1+UjeAiKQxadIkbNiwAQEBAZbbBg8ejHbt2mHevHn45z//abW9Xq/Ho48+anXbvHnzMGHCBKxYsQKJiYmYP3++zee7efMmXnzxRdxzzz3YuXNnnfsvXrzo5iuSj+vXr6Nx48Z2t3nggQcQEREBABg7diwGDRqEzZs347vvvkNGRoY3mkmkSezxIdKoO+64wyr0AEBqairatm2L48ePO/QYvr6+WLp0Kdq0aYPly5fDaDTa3Pby5csoLS1F165d672/efPmVt/fuHEDs2bNwp/+9Cc0atQIMTExGDhwIE6dOmXZZsGCBbjjjjsQHh6OoKAgpKen48MPP7R6HJ1Oh2vXruGdd96xDC8NHz4cs2bNwuTJkwEASUlJlvtq1tT885//RHp6OoKCghAWFoaHH34YZ86csXr8Hj164NZbb8XBgwfRrVs3NG7cGM8++6xD719NPXv2BAAUFBTY3W7FihVo27YtAgMDERsbi+zsbKseqx49emD79u349ddfLa8pMTHR6fYQqRV7fIjIQhAEXLhwAW3btnX4Z3x9ffHII4/gueeew969e9G3b996t2vevDmCgoKwdetWjB8/HmFhYTYfs6qqCv369cMXX3yBhx9+GE899RTKysqwa9cuHDt2DMnJyQCAJUuW4L777sNf//pXVFRU4P3338eDDz6Ibdu2Wdqxbt06PP7447jtttswZswYAEBycjKCg4Pxyy+/4L333sNrr71m6X2JjIwEALz88st47rnn8NBDD+Hxxx/HpUuXsGzZMnTr1g2HDx9G06ZNLe01GAzo06cPHn74YTz66KOIiopy+P0zMwe68PBwm9vMmjULs2fPRu/evTFu3Djk5eXhjTfewA8//IBvv/0W/v7+mDFjBoxGI86ePYvXXnsNANCkSROn20OkWgIR0f+sW7dOACCsWrXK6vbu3bsLbdu2tflzW7ZsEQAIS5Yssfv4M2fOFAAIwcHBQp8+fYSXX35ZOHjwYJ3tVq9eLQAQFi1aVOc+k8lk+f/169et7quoqBBuvfVWoWfPnla3BwcHC8OGDavzWK+++qoAQCgoKLC6vbCwUPD19RVefvllq9uPHj0q+Pn5Wd3evXt3AYCwcuVKm6+7pueff14AIOTl5QmXLl0SCgoKhDfffFMIDAwUoqKihGvXrgmCIAhr1qyxatvFixeFgIAA4d577xWqqqosj7d8+XIBgLB69WrLbX379hUSEhIcag+R1nCoi4gAACdOnEB2djYyMjIwbNgwp37W3KNQVlZmd7vZs2djw4YN6NixIz777DPMmDED6enpSEtLsxpe27RpEyIiIjB+/Pg6j6HT6Sz/DwoKsvz/t99+g9FoxF133YVDhw451f7aNm/eDJPJhIceegiXL1+2fEVHRyM1NRW7d++22j4wMBAjRoxw6jlatWqFyMhIJCUl4YknnkBKSgq2b99uszbo888/R0VFBSZOnAgfnz923aNHj0ZoaCi2b9/u/Asl0iAOdRERiouL0bdvX+j1enz44Yfw9fV16uevXr0KAAgJCWlw20ceeQSPPPIISktLceDAAaxduxYbNmxA//79cezYMTRq1AinTp1Cq1at4Odnfxe1bds2vPTSS8jNzUV5ebnl9prhyBUnT56EIAhITU2t935/f3+r72+55ZY69VIN2bRpE0JDQ+Hv74+4uDjL8J0tv/76K4DqwFRTQEAAWrZsabmfiOxj8CHSOKPRiD59+uDKlSv45ptvEBsb6/RjmKe/p6SkOPwzoaGhuOeee3DPPffA398f77zzDg4cOIDu3bs79PPffPMN7rvvPnTr1g0rVqxATEwM/P39sWbNGmzYsMHp11CTyWSCTqfDjh076g2BtWtmavY8Oapbt26WuiIi8h4GHyINu3HjBvr3749ffvkFn3/+Odq0aeP0Y1RVVWHDhg1o3Lgx7rzzTpfa0alTJ7zzzjsoKioCUF18fODAAVRWVtbpXTHbtGkTGjVqhM8++wyBgYGW29esWVNnW1s9QLZuT05OhiAISEpKwp/+9CdnX44oEhISAAB5eXlo2bKl5faKigoUFBSgd+/eltvc7fEiUjPW+BBpVFVVFQYPHoz9+/fjgw8+cGntmKqqKkyYMAHHjx/HhAkTEBoaanPb69evY//+/fXet2PHDgB/DOMMGjQIly9fxvLly+tsK/xvgT9fX1/odDpUVVVZ7issLKx3ocLg4OB6FykMDg4GgDr3DRw4EL6+vpg9e3adBQUFQYDBYKj/RYqod+/eCAgIwNKlS63atGrVKhiNRqvZdMHBwXaXFiDSMvb4EGnUM888g3//+9/o378/SkpK6ixYWHuxQqPRaNnm+vXryM/Px+bNm3Hq1Ck8/PDDePHFF+0+3/Xr13HHHXfg9ttvR1ZWFuLj43HlyhV89NFH+OabbzBgwAB07NgRADB06FC8++67mDRpEr7//nvcdddduHbtGj7//HM8+eSTuP/++9G3b18sWrQIWVlZGDJkCC5evIjXX38dKSkpOHLkiNVzp6en4/PPP8eiRYsQGxuLpKQkdOnSBenp6QCAGTNm4OGHH4a/vz/69++P5ORkvPTSS5g+fToKCwsxYMAAhISEoKCgAFu2bMGYMWPwt7/9za3331mRkZGYPn06Zs+ejaysLNx3333Iy8vDihUr0LlzZ6vfV3p6OjZu3IhJkyahc+fOaNKkCfr37+/V9hLJlpRTyohIOuZp2La+7G3bpEkTITU1VXj00UeFnTt3OvR8lZWVwttvvy0MGDBASEhIEAIDA4XGjRsLHTt2FF599VWhvLzcavvr168LM2bMEJKSkgR/f38hOjpaeOCBB4RTp05Ztlm1apWQmpoqBAYGCq1btxbWrFljmS5e04kTJ4Ru3boJQUFBAgCrqe0vvviicMsttwg+Pj51prZv2rRJuPPOO4Xg4GAhODhYaN26tZCdnS3k5eVZvTf2pvrXZm7fpUuX7G5Xezq72fLly4XWrVsL/v7+QlRUlDBu3Djht99+s9rm6tWrwpAhQ4SmTZsKADi1nagGnSB44MIwRERERArAGh8iIiLSDAYfIiIi0gwGHyIiItIMBh8iIiLSDAYfIiIi0gzFBJ+5c+eic+fOCAkJQfPmzTFgwADk5eVZbXPjxg1kZ2cjPDwcTZo0waBBg3DhwgWJWkxERERyo5jp7FlZWXj44YfRuXNn3Lx5E88++yyOHTuGn3/+2bL66rhx47B9+3asXbsWer0eOTk58PHxwbfffuvw85hMJpw/fx4hISFc9p2IiEghBEFAWVkZYmNj4eNjp19H0lWE3HDx4kUBgLBnzx5BEAThypUrgr+/v/DBBx9Ytjl+/LgAQNi/f7/Dj3vmzBm7i7rxi1/84he/+MUv+X6dOXPG7nFesZesMF+HJiwsDABw8OBBVFZWWl2or3Xr1mjRogX279+P22+/vd7HKS8vR3l5ueV74X8dYGfOnLF73SEiIiKSj9LSUsTHxyMkJMTudooMPiaTCRMnTkTXrl1x6623AgCKi4sREBCApk2bWm0bFRWF4uJim481d+5czJ49u87toaGhDD5EREQK01CZimKKm2vKzs7GsWPH8P7777v9WNOnT4fRaLR8nTlzxgMtJCIiIjlSXI9PTk4Otm3bhq+//hpxcXGW26Ojo1FRUYErV65Y9fpcuHAB0dHRNh8vMDAQgYGBYjaZiIiIZEIxPT6CICAnJwdbtmzBl19+iaSkJKv709PT4e/vjy+++MJyW15eHk6fPo2MjAxvN5eIiIhkSDE9PtnZ2diwYQM+/vhjhISEWOp29Ho9goKCoNfrMWrUKEyaNAlhYWEIDQ3F+PHjkZGRYbOwmYiIiLRFMev42CpWWrNmDYYPHw6gegHDZ555Bu+99x7Ky8uRmZmJFStW2B3qqq20tBR6vR5Go5HFzURERArh6PFbMcHHWxh8iIiIlMfR47dianyIiIiI3MXgQ0RERJrB4ENERESaweBDREREmqGY6exE7jIYDKioqLB5f0BAAMLDw73YIiIi8jYGH9IEg8GA5cuXW743GkNQUhKOsDAD9Poyy+05OTkMP0REKsbgQ5pQs6fn0KGO2Lq1HwTBBzqdCf37b0Na2uE62xERkfow+IiIQyvyYzSGWEIPAAiCD7Zu7Yfk5Hyrnh8iIlInBh+R1B5asYVDK95VUhJuCT1mguCDkpIwBh8iIg3grC6RODpkwqEV7woLM0CnM1ndptOZEBZWIlGLiIjImxh8SFP0+jL077/NEn7MNT7s7SEi0gYOdZHmpKUdRnJyPkpKwhAWVsLQQ0SkIQw+pEl6fRkDDxGRBnGoy0uMxhAUFCTCaAyRuimaFBAQ4NHtiIhImdjj4wX21o0h57myTEB4eDhycnK4vIBIuHQDESkFg4/IuG6MZ7mzTAAPvOLgqthEpCQMPiIxD5k0tG4Mh1acw2UC5IerYhORkjD4iMQ8tFJYeBPr1gkwmXSW+3x9BYwf3weJiX48A3aTrd4F8j72bhKREjD4iCg8PBzh4cBbbwFPPAFUVQG+vsCbb+qQnh4ldfMUz1u1U1qrX3H19XJVbCJSAgYfLxg1CsjMBPLzgZQUIC5O6hYpn7d6F7R26RF3Xq95Veya4YerYhOR3DD4eElcHAOPJ3mrd0HpNUXO9t6483rNq2LX7oVjbw8RyQmDDymSVL0LSqop8kRvlbOvl6tiE5HcMfiQIknRu6C09Zjc7a1y9fXaWhX78uXLNn9GbXVSRCRfDD6kKDWn/9vrXfD0MgFqmLHkTO+NM6/X0fd68+bNdu9XS52UXHmjSF9rEwFImRh8yGlS7txqrsBsNBpRWVlZZxs/Pz9UVFTAYDB4rB1Kn7HkbO+NM6+3oVWxL1++3GDoAeRbJ6UG3ijS50KWpBQMPuQUOcxyCg8Ph8FgwMaNG73WDiXPWHKlt8rZ1+vMe6ykOim1qB0qbf0O3AmfXMiSlILBh5wil1lO3tiR16TkGUuu9FaJ9XqVVielRmL/DtQwLEzqxuBDbpHD2buYO3KpaopscWWY0ZneGzFfLw+I0vPG70Dpw8Kkfgw+5DI5nL2LvSOX01XdXR1mdKb3RszXywOiY8SsofPG70DJw8KkDQw+KiBFsbFczt69sSOXSyGms8OMrvbeiPV6eUBsmNg1dN74HSh5WJi0gcFH4aQqNpbL2TsPprbJqbcK4AHREWLX0HnrdyDXhSw53Z4ABh/Fk6rYWC6BQ8sHU0fqq9zZiXvqICG3OiklEaOGzluhxNZCllKRw4xUkgcGH5URq9jYfBA0r74rp8Ah17NLMYldX+XJg4Tcep6UwpO/49qh0lYocSd8OvqzUgVcucxIJekx+KiIWAdDWwdBKc/evbEjlytv1Fd5+iDBUOMcT/+OvRE+lRZw5TAjlaTB4KMSYh4M7e3IagaOgQMHIiIiwis7N6XtZD1JivoqHiS8S4zfsTf+FpTy9yaHGalKoNaaKAYflfDmwdDWQTAiIgIxMTEefS57lPgH5wnerq/iQcL75FJDp0ZymZHqSWIEFDVfgoTBRyW8taPkQVA65mG7huqrPDm8p8aDhBLIqYZOap4+qMtlRqqniFW0reZLkDD4qIQ3dpQ8CEqr9vDezJmXUFjoh8TEm4iN7Qygs8e7ntV2kJA7zoCzJsZBXW29aWIXbatxv8/go3De3FHyIPgHqca+az5mTAyQnu7xp7CitoOE3Gm5dq0+YhzU1d6b5ul6PDXu9xl8FM6bO0oeBKtpaT0QtR8k5Ejpnxm50kJvmhilCGrc7zP4qABX3vUub18ZXgpaOEiojVpn4NTkTm+G2nvTxBqSUuN+n8GHGsSDoG1qLfZW+0FCbbTQC+mJvzWlvnZHiDkkpbZFYhl8qEE8CNZPjUV/NWnt96lkau+FVPvfmieIPSQlt0uQuIPBhxzCg2Bdaiz6I+VTYy8k/9Ya5ukhKblfgsQdDD5ELlJj0R8pm1p7Rvi3Vj+DwQCj0Wj53pOlCGru6WfwIXKRGov+SNnU1jMixaKdSmGrrqv2kNRDDz2E5s2buxRQlBhqHMHgQ+QGtRX9kbKprWdEikU7lcLReq2mTZtq8v2xh8GHyEnuXBleC1OOSTpq7IX09qKdpH4MPiQLSgoEro59a2HKMUmPvZDa5OkVm9WMwYckp8RA4Eo71D7lmKTjTi8kKZ8aZ/KJicGHPM7Z3hstBgLuqMiT1DwDh+xT60w+MTH4kEe523ujhUDAHRWJgaFGm9Q2k88bfBrehMhx9fXeFBQkwmgMsbudedv6AkHtn1U6ezsqIiJnmGfy1aTkmXzewB4fEo2zvTdaOXNR25RjIvI+rnHkOgYfmVDSrCZHuDKco5VAoMYpx0TkXa6ucaS2Y40rGHxkQImzmhriSu+N1IHAmzsETjkmUjY5BAhn1zhS47HGFQw+MuDobCUlzWpytfdGqkDgjR0CpxwTqYNSA4QWZ9DWh8GHROFM740cAoE3dgicckxaJ4deEk9QQ4DQwgxaWxh8ZEgtK3A62nsjt0Ag5g5BCTt1IjHU7iWxtZ+TWy9JQ5QYILS+pAaDj8wo8Y+oJld7b+Syo9P6DoFILDVPbOzt5+TcS1Kbt/cXnuox08oMWlsYfGREDQddufXeOEvrOwStceZAUnPb8+d9UFDgh6Skm4iNNdXZlmxTw37OzJv7C0/WFWllBq0tDD4yopaDrpx3/rYOdJcvXwbAHYJceKMWxJmhFwCWbe31VihtmEYKatnPAd7dX3iyrkjqGbRSY/CRER50xeXIGZPWdwhy4K1aEFeGXhrqrVDSMI1UvLWf80Z4lmp/4YmSCC0vqcHgIwNcgdM7HD1j0vIOQQ68XQvizNCLmnorpOKNsODNQmpv7y/cGSqUwwxaOWDwkQFXV+Ak1zV0xqTVHYKceKsWxJkww15ZzxA7LIgdnqUMEO6Eb6XXYHoKg49MOLsCJ7muoQPqwIEDERERUefntLBDkBNv9a44E2Y4FOo5tsKCJ4kVnqUMEO6Gb+7DGHxIgxo6oEZERCAmJkai1pGZt3pXnA0zHAp1jaO9H57sJREzPEsVIBi+3afK4PP666/j1VdfRXFxMTp06IBly5bhtttuk7pZJBMcrlAGb+7gnQ0z3uitUBspeknU+rfO8O0e1QWfjRs3YtKkSVi5ciW6dOmCxYsXIzMzE3l5eWjevLnUzbNJLUu5KwHPmJRDrB28wWCwLGFgxjAjPm/vw9T0t87CZM9RXfBZtGgRRo8ejREjRgAAVq5cie3bt2P16tWYNm2axK2rn1IveOcoOYY6njEph6cDiaMzfsycOZDwoCM/Svlbd2Q/ycJkz1BV8KmoqMDBgwcxffp0y20+Pj7o3bs39u/fX+/PlJeXo7y83PJ9aWmp6O2sTY1XZzeTU6jjGZMyiF0L4uiMn4EDByI2NtbyueRBR7nk3pvnzPR71h+6T1XB5/Lly6iqqkJUVJTV7VFRUThx4kS9PzN37lzMnj3bG81zmFouUgrI6yrGnMqpDN76PTU04yciIsLqOfi5UA4pCqndocbrmMmZqoKPK6ZPn45JkyZZvi8tLUV8fLxk7VH6RUrtkcNr48FLGbzxe+JihOql1JMcNV3HTM5UFXwiIiLg6+uLCxcuWN1+4cIFREdH1/szgYGBCAwM9EbzGqTmD72aXxspk1pn/FA1uYUaRzCMe4dPw5soR0BAANLT0/HFF19YbjOZTPjiiy+QkZEhYcscY+9Dr3Rqfm2kTOYZPzpd9dXVlTzjh9TBHMZrYhj3PFX1+ADApEmTMGzYMHTq1Am33XYbFi9ejGvXrllmecmZms9A1fzaSLmUMuNHa2rOcDp/3gcFBX5ISrqJ2NjqUCDHYSpPUNP0ezlTXfAZPHgwLl26hJkzZ6K4uBh/+ctf8Omnn9YpeJYjNX/o1fzaSNnkPuNHa2rOcLJXF6jU5T0awjAuPtUFH6D6DyInJ0fqZjis5swCex96ucxAcBX/oEkOlDbjR2vMPT0N1QWqeYYTw7i4VBl8lEapMxAcwbVzSG7U/PemJloq9GUY9y4GH5lQ606WBxmSI37e5E9LdYHcT3oXgw+Jjn+sROQsrdUFcj/pPQw+REQkS6wLJDEw+JDL5HjxUSJSFxb6yosalhpg8CGXyOnio0REJD61LDXA4EMukdPFR4nIu8Ts7VXLDCc19IzUppalBhh8yG1yuPgoEXlH7d5eWyc9rp71q2GGk1p6RmxR+lIDDD7kFl58lEhbagYSewd1d876lRgGalJLz4gtSl9qgMGH3KL05E/qxeJ7cfGkp2Fq3T8qfakBBh9yi9KTP6kzILD4XnxqPah7kpr3j0peaoDBh9yi9OSvdWoNCCy+F19DB/UrV64gJiZGqubJgtr3j0pdaoDBh9ym5OSvdY4e+JUcEFh8L476Duq9e39u+fv/17/+pbjALAbuH+WHwYdcwouPqpOtnhGlYh2KuNLSDuP33xth167eEAQffP55bwQF3fBIgbOr5DiNXKk9I7WpZakBBh9yiRqmnJI1JfeM1K5Tunz5MgDWoYjNaAzB55/3BiCPYKn2aeTO8nT9nlr2+ww+5DK5f7jJcUruGbFXp6Tm4lKp1Dybl1uwlMs0cjn0jIi13pIa9vsMPkQkuwOYMxoqZFZzcakUwsPDMXjwYGzcuFG2wVLqz7Mceka8sd6SUjH4EJFsD2DOsrWDZ3GpZ+n1+v/963yw9MbyCWJ+nh1tv1x6RpTcmysWBh8iUkXPSEM7eBbfi8OZYCn25S7MxPo8e6v9niR175ccMfgQaVjNA7+9A5gSAkJDO/iBAwciIiLCcp8SijCVwtFZS94cfhGjp0+Jw0dq6c31JAYfIg2TQy2CpzS0g4+IiND8gnqe4m7xrreGX8SaRq6k4SM19OZ6GoMPkcYpIdQ4gjt473E3MCt9+EVp7bfX+2Ve+sFMKSc67mDwISLVYCGz97hzcBRr+MVb08iVOHxUX++X0RiChQsPybpGSQwMPkSkaFxFXHnE6p3z1tCtEnoXG/q8K6VGSQwMPkSkaGqqU9ISsXrnvPV7lnvvYn1/F5cvX8bmzZsVVaMkBgYfIlI8hhrXeWNdHVuUfg0rubdfrTVW7mLwISLSKHuX+6jJUzUfcriUgzuU3n4zJdYoeRKDDxGRRjV0uQ9b27lK6cOSSm+/mRJqlMTE4ENERHaLXT1J7qGgIUpvv5nca5TE5NPwJkREpGa2il2NxhCJW0Zi0uvLkJT0q6ZCD8DgQ0SkefaKXUk91FKj5C4OdZFqSTlbhUhJtF7sqhVqqVFyF4MPqZISr6JMJBWtF7tqCfd3DD6kUkq8ijKRlLRc7ErawhofUjUWbRLZVt/lPuordlV7zQdpC3t8SNW0vkKpt7CeSpnEqvng54HkjMGHVI1Fm+Lz9uq/5Fme/p3w80Byx6EuUjVz0aZOZwIAFm2KwNE6KdZTaQM/DyR37PEh1WPRpnfZmkFH2sTPA8kNgw9pgtyvoqwW3rrsASkDPw8kRxzqIlXiCqXexxl0VBM/DyRX7PEhVeIKpd7HGXRUEz8PJFcMPqRaDDXexRl0VBM/DyRXHOoiIo/gDDqqiZ8Hkiv2+JDX1Vzc7Px5HxQU+CEp6SZiY6t3kByCUpaadVL2ZtCxnkob+HkgudMJgiBI3Qg5KS0thV6vh9FoRGhoqNTNUZ2ai5vZm/HBxc2UhSv1Uk38PJAUHD1+s8eHvMq8M7Q14yM5OR96fRkXN1MYHsSoJn4eSM4YfEgSnPFBYmKPAxHZwuBDkuCMD+WSe6jgtaKIyB4GH5KEecZH7Rof9vbImxJCBa8VRUT2MPiQZHgNLeVRYqjgtaKIqCYGH5IUr6GlbHIPFbxWFBHVxuBDRC6Re6hoaOYgEWkTV24mr+LFQ9VBCRegtDdzkIi0iz0+5FViXTxU7jON1EYuyxHU93u/fPkyAM4cJKL6MfiQ13k6gNSeaWSr7oTTlz1HDqGioRlmnDlIRPVh8CHFq3nGb6/uRE4zjdwldQ+XHEKFI79PXiuKiGpj8CHV0Eoxq5Rr6cj5ApS2evpGjLgHERERVtty6JNIuxh8SDXkUncitto9HbYO+GL0cIlVo+Uuez19ERERiImJ8Wp7iEi+GHxINeRQd+JtUkwpl1tPiVZ6+ojIMzidnVTDXHei05kAQPXFrEqYUu4NnLZORM5gjw+pipYug6GVob2GaLGnj4hcxx4fUh29vgxJSb+q/uBvPuDXpMUDvtZ6+ojIPezxIcXT6mrQcphSLiU5zzAjIvli8CHFk+tMI2/Q0tBebVr+vROR6xh8SBW0dHCr3YNh6wr3Wujp0NLvnYg8g8GHSGHY00GeIPXq30RSUUTwKSwsxIsvvogvv/wSxcXFiI2NxaOPPooZM2ZYndUeOXIE2dnZ+OGHHxAZGYnx48djypQpErZcW86eBU6eBFJTgbg4qVujbjwgkTukXP2bSGqKCD4nTpyAyWTCm2++iZSUFBw7dgyjR4/GtWvXsGDBAgBAaWkp7r33XvTu3RsrV67E0aNHMXLkSDRt2hRjxoyR+BWol/msccOGIEyZoofJpIOPj4BXXjFiyJDfedZIJEOOruqtpuvbEZkpIvhkZWUhKyvL8n3Lli2Rl5eHN954wxJ81q9fj4qKCqxevRoBAQFo27YtcnNzsWjRIgYfkZjPGo3GECxePBGCoAMAmEw6TJ4cinPnVkOvL+NZI5HM2brsCZEaORx8SktLHX7Q0NBQlxrjDKPRiLCwP1Zm3b9/P7p162Y19JWZmYn58+fjt99+Q7Nmzep9nPLycpSXl1u+d+Z1ukMNw0Lms8GGFtLjWSORfElx2RM1YI2UcjkcfJo2bQqdTmd3G0EQoNPpUFVV5XbD7MnPz8eyZcssvT0AUFxcjKSkJKvtoqKiLPfZCj5z587F7NmzxWtsPVatAsaMAUwmwMcHeOstYNQorzbBo7hyLpEy8TpnrmGNlLI5HHx2797t8SefNm0a5s+fb3eb48ePo3Xr1pbvz507h6ysLDz44IMYPXq0222YPn06Jk2aZPm+tLQU8fHxbj9ufQwGAwoLb2LMmOYwmczDQsATTwj4y18uIjHRT5F/JFpfSI9IqXjZE9ewRkrZHA4+3bt39/iTP/PMMxg+fLjdbVq2bGn5//nz53H33XfjjjvuwFtvvWW1XXR0NC5cuGB1m/n76Ohom48fGBiIwMBAJ1vuPPMZQkFBIkymYVb3VVXpsGzZDiQl/arYMwQtL6RHtnE4QN7YWyuuy5cv17lN7p95LfzNulzcfOXKFaxatQrHjx8HALRt2xYjR46EXq93+DEiIyMRGRnp0Lbnzp3D3XffjfT0dKxZswY+PtZnKRkZGZgxYwYqKyvh7+8PANi1axdatWplc5jLm8wfpIZ2NEo+Q7C1kB5pE4cD5I+9tZ5hqzh88+bN9W4v18+8Vv5mXQo+P/74IzIzMxEUFITbbrsNALBo0SK8/PLL2LlzJ9LS0jzayHPnzqFHjx5ISEjAggULcOnSJct95t6cIUOGYPbs2Rg1ahSmTp2KY8eOYcmSJXjttdc82hZ3cUdDWsHhAPnidc48x5XicLl+5rXyN+tS8Hn66adx33334e2334afX/VD3Lx5E48//jgmTpyIr7/+2qON3LVrF/Lz85Gfn4+4WlOgBEEAAOj1euzcuRPZ2dlIT09HREQEZs6cKcup7BwWIi3ilGn54OrfnsHicGVyucenZugBAD8/P0yZMgWdOnXyWOPMhg8f3mAtEAC0b98e33zzjcefXwxqGBbS6lXRyXlKnDKt9loHJbddLhoqDld62Fd6+21xKfiEhobi9OnTVrOtAODMmTMICQnxSMNI/njWSI5Q4lmxVmodyD32ajaVGPZrUnr77XEp+AwePBijRo3CggULcMcddwAAvv32W0yePBmPPPKIRxtI8sadPjVEiVOma4d5W2e+Sq91oGrO9u6Ze7Ft1WwCUFzYr0mJJyvOcCn4LFiwADqdDkOHDsXNmzcBAP7+/hg3bhzmzZvn0QYSkbIpfcq0ms98ybXevdq93TNnXkJhoR9CQy9i377DKChIVFzYr0mJJyvO8Gl4k7oCAgKwZMkS/Pbbb8jNzUVubi5KSkrw2muveWVNHCViPQxplfmsWKczAYCiZjLaOvM1GjmkrxauzmQKDw9HTEwMYmJikJ4ehUGDwnHrrU0B/BH2a6oZ9o1Go/sNF1FD7Vc6ty5S2rhxY7Rr185TbVE11sOQ1qhhyrTaz3zJsxoaAjN/ZjZu3CjL+jBH2y/nv1lHuBR8bty4gWXLlmH37t24ePEiTCbrZHjo0CGPNE5t5PYhJxKTGsK+0ofpyHnuzGQKDw/HQw89hH/9618NLlsix/owW0N4iYk3ERvbGUBn2f/NOsKl4DNq1Cjs3LkTDzzwAG677bYGL15KRNqk9B0kFxzVFk/UczVt2tTyfyUuW1LzbzYmBkhPl7AxInEp+Gzbtg2ffPIJunbt6un2EBHJChcc1QaxZjKpdS0cJXMp+Nxyyy1cr4eIVKt2DYOtM3el1zrQH8So5+KMQHlyKfgsXLgQU6dOxcqVK5GQkODpNhERSUoN9UnkHE/Xc6l9LRwlcyn4dOrUCTdu3EDLli3RuHFjy9XQzUpKWPhHRMrGUKMNYs1k4oxA+XIp+DzyyCM4d+4c5syZg6ioKBY3ExGRIok1k4kzAuXLpeCzb98+7N+/Hx06dPB0e4iIiLzKkzOZtLIWjpK5FHxat26N33//3dNtISIiUjStrIWjZC4Fn3nz5uGZZ57Byy+/jHbt2tWp8QkNDfVI44hImZy96CORmmhhLRwl0wmCIDj7Qz4+1WOWtWt7BEGATqdDVVWVZ1ongdLSUuj1ehiNRgY4Ihe4ctFHIiJ3OXr8dqnHZ/fu3S43jIjUrXZPj60F3OS4ZD8RqZ9Lwad79+4Obffkk0/ihRdeQEREhCtPQ0QKxwXciEhufBrexHX//Oc/UVpaKuZTEJFM2VrAzWjkqu9EJB1Rg48L5UNEpBL2FnAjIpKKqMGHiLTLvIBbTVzAjYikxuBDRKIwL+BmDj+1F3AjIpKCS8XNRESOSEs7jOTkfJSUhCEsrIShh4gkx+BDRB5Veyl+vb6s3sDDJfuJSApOB5+bN29izpw5GDlyJOLi4uxu++ijj3IRQCIXKHnl49pL9tdHzu0nInVzaeXmkJAQHD16FImJiSI0SVpcuZmkxpWPiYicJ+rKzT179sSePXtUGXzUTsk9CVrBlY+JiMTjUvDp06cPpk2bhqNHjyI9PR3BwcFW9993330eaRzZ52yIYU+C8nDlYyIiz3Ip+Dz55JMAgEWLFtW5T+kXKVUKV0KMoz0EzvYksBdJHLZWPk5OzufsKCIiF7kUfEwmU8MbkajECjHOYi+SeOytfMzgQ1rCkyvyJJeCz7vvvovBgwcjMDDQ6vaKigq8//77GDp0qEcaR+67fPlyvf/3FLkEMDUyr3xcM/xw5WPSGp5ckae5FHxGjBiBrKwsNG/e3Or2srIyjBgxgsFHRjZv3ix1E8hF5pWPa9f4sLeHtITF/uRpLgUfQRCg0+nq3H727Fno9Xq3G0VE1bjyMdEfWOzvOA4P2uZU8OnYsSN0Oh10Oh169eoFP78/fryqqgoFBQXIysryeCNJHLbOnOT2mFrDlY9Jy2ofsM1D9Cz2dxyHB+1zKvgMGDAAAJCbm4vMzEw0adLEcl9AQAASExMxaNAgjzaQHONs4BDjzIlnY57BlY9Jq+wdsFns7zgOD9rnVPB5/vnnAQCJiYkYPHgwGjVqJEqjyDnOBo6Gzpxc6Ung2ZhnMdSQFtk7YLPY3zU8Ia3LpRqfYcOGAaj+kF68eLHO9PYWLVq43zKyyxxOXAkcts6cunYdhh49XDvo8myMiDypvgM2i/2dwxPS+rkUfE6ePImRI0di3759Vrebi565gKH4zMMhu3cDr73mXOCo78zJ1xfo0iUczmYecwBr6GyM9ShE5ChbB+yJExdj4sTFLPZ3EE9I6+dS8Bk+fDj8/Pywbds2xMTE1DvDi8QXHh6O228HfHyAmp1uvr6C3e5f8zTp7dv7o6pKB19f4M03gbg419pgrke55ZZSTJ2q/99jCpg/vxRDhjzCehQicoq9A3ZS0q8s9ncQhwfr51Lwyc3NxcGDB9G6dWtPt4ecFBcHvPUW8MQTQFVVdc/NwoXXcOXKHzuG+grb0tIO46WX7oLB0AwpKa6FHjNzqHnmGWDwYCA/H0hJ0SEurimApq4/MBFpUkMH7IEDByIiIsJyH0+u6se1wOrnUvBp06aNKKsAk2tGjQIyM82BA4iLawKDoboXZsOGILzwgh4mkw4+PgJeecWIIUN+/9+OopnH2xIX516IIiJq6IAdERGBmJgYiVupDFwLrC6Xgs/8+fMxZcoUzJkzB+3atYO/v7/V/aGhoR5pHDmuduAIDw/H2bPAlCl/DIOZTDpMndoUgwc3dbqWh4jIm3jAdh3XArPPpeDTu3dvAEDPnj2t6ntY3CwvJ09a1/4A1cNh+fnslSEi+eEB2zO4Fph9LgWf3bt3e7odJILU1PoKn6uHw4iI5IYHbM/he2SbS8Gne/fu+Oabb/Dmm2/i1KlT+PDDD3HLLbdg3bp1SEpK8nQbyUX1FT67OnuLiMgbeMAmsfk0vEldmzZtQmZmJoKCgnD48GGUl5cDAIxGI+bMmePRBpJ7Ro0CCguB3bur/x01SuoWERERScel4PPSSy9h5cqVePvtt60Km7t27YpDhw55rHHkGXFxQI8e7OkhIiJyKfjk5eWhW7dudW7X6/W4cuWKu20iIiIiEoVLwSc6Ohr5+fl1bt+7dy9atmzpdqOIiIiIxOBS8Bk9ejSeeuopHDhwADqdDufPn8f69evxt7/9DePGjfN0G4mIiIg8wqVZXdOmTYPJZEKvXr1w/fp1dOvWDYGBgfjb3/6G8ePHe7qNRET0PwaDgdO9idygEwRBcPWHKyoqkJ+fj6tXr6JNmzZo0qSJJ9smidLSUuj1ehiNRq5ATUSyYjAYsHz5csv39V2HDwBycnIYfkhzHD1+u9TjYxYQEIA2bdq48xBEROSgmj09hw51rHMtq7S0w3W2I/K2mr2S58/7oKDAD0lJNxEbW72artS9km4FHyIi8j6jMcQSegBAEHywdWs/JCfna/KaVhz+k4+avZL2wrmUvZIMPkREClNSEm4JPWaC4IOSkjDNBR8O/8mLOYA2FM6l7JVk8CEiUpiwMAN0OpNV+NHpTAgLK5GwVdLg8J88yTmcuzSdnYiIpKPXl6F//23Q6aprJswHeakPKFKy1cNgNIZI3DJtMofzmuQSztnjQ0SkQGlph5GcnI+SkjCEhZVIFnrkUl8j5x4GLTKH89o9cHL4XTD4EBEplF5fJumBRE71NRz+kx+5hPPaGHyIiBQiICDAo9u5S071NXLuYdAyqcN5fRh8iIgUIjw8HDk5ObIYWqpJLtPr5drDQPLC4ENEpCBynJItp/oaOfYwaInceiXrw+BDRERukbK+RgkHWi2Ra69kTQw+REQq5o1ZV1LW1yjhQKs1cn+vGXyIiFTKm7OupKyvkfuBluSFwYeISKW8PeuK9TWkBFy5mYhI5cRa1Zj1NaREiuvxKS8vR5cuXfDTTz/h8OHD+Mtf/mK578iRI8jOzsYPP/yAyMhIjB8/HlOmTJGusUREMiDWrCvW15ASKS74TJkyBbGxsfjpp5+sbi8tLcW9996L3r17Y+XKlTh69ChGjhyJpk2bYsyYMRK1lohIemLOumKoIaVRVPDZsWMHdu7ciU2bNmHHjh1W961fvx4VFRVYvXo1AgIC0LZtW+Tm5mLRokUMPkQkCblcx4qrGhP9QTHB58KFCxg9ejQ++ugjNG7cuM79+/fvR7du3azGkjMzMzF//nz89ttvaNasmTebS0QaJ6frWAFc1ZjITBHBRxAEDB8+HGPHjkWnTp1QWFhYZ5vi4mIkJSVZ3RYVFWW5z1bwKS8vR3l5ueX70tJSzzWciDRLTtexMuOsKyKJZ3VNmzYNOp3O7teJEyewbNkylJWVYfr06R5vw9y5c6HX6y1f8fHxHn8OItIusWZUOYKzrojqkrTH55lnnsHw4cPtbtOyZUt8+eWX2L9/PwIDA63u69SpE/7617/inXfeQXR0NC5cuGB1v/n76Ohom48/ffp0TJo0yfJ9aWkpww8BkE99BimblNex4qwrorokDT6RkZGIjIxscLulS5fipZdesnx//vx5ZGZmYuPGjejSpQsAICMjAzNmzEBlZSX8/f0BALt27UKrVq3s1vcEBgbWCVREteszbPFWfQYpl5TXsQLUM+uq5onI+fM+KCjwQ1LSTcTGmgAwwJHjFFHj06JFC6vvmzRpAgBITk5GXFwcAGDIkCGYPXs2Ro0ahalTp+LYsWNYsmQJXnvtNa+3l5TP0boLb9ZnkDJxRpX7ap6I2KuX4okIOUIRwccRer0eO3fuRHZ2NtLT0xEREYGZM2dyKjsRSY4zqtxjPsGwVS+VnJwPvb6MJyLkEEUGn8TERAiCUOf29u3b45tvvpGgRURE9nFGlfukrJci9eC1uoiIRMAZVZ5nrpeqyZv1UqQOiuzxISKSO86o8jzWS5EnMPgQEYmEocbzWC9F7mLwIXKArcsNEJH3sV6K3MHgQ1SPmnUX9qbPsj6DiEhZGHyI6mGuzygsvIkXXmgOQdABqJ5Bsn17f8yc2QWJiX4cyiDyAhaKkycx+BDZEB4ejiNHAJP1JBJUVelQVhYFZh4i72ChOHkSgw+RHampgI+Pdfjx9QVSUqRrE5EWMdSQp3AdHyI74uKAt96qDjtA9b9vvll9OxERKQ97fIgaMGoUkJkJ5OdX9/Qw9BARKReDD5ED4uIYeIiI1IBDXURERKQZDD5ERESkGQw+REREpBkMPkRERKQZDD5ERESkGQw+REREpBkMPkRERKQZDD5EREQydPYssHt39b/kOQw+REREMmEwGFBUVISFC68gIUFAz55AQoKAhQuvoKioCAaDQeomKh5XbiYizTEYDLzSN8mOwWDA8uXLYTSGYPHiiRAEHQDAZNJh8uRQnDu3Gnp9GXJycvj5dAODDxFpivngYmY0hqCkJBxhYQbo9WWW23lwIW8zh/GSknAIgvWAjCD4oKQkDHp9md3QTg1j8CEiTal50Dh0qCO2bu0HQfCBTmdC//7bkJZ2uM52RN4UFmaATmeyCj86nQlhYSUStko9WONDRJpkNIZYQg9QfUa9dWs/GI0hEreMtE6vL0P//tug05kAwBLKa/ZIkuvY40NEmtTQcAKRlNLSDiM5OR8lJWEICyvhZ9KDGHyISJM4nEByp9eXMfCIgENdRKRJHE4g0ib2+BCRZnE4gUh7GHyISNM4nEByERAQ4NHtqH4MPkSkKTy4kFyFh4cjJyeHi2uKTCcIgiB1I+SktLQUer0eRqMRoaGhUjeHiETAlZuJ1MfR4zd7fIhIcxhqiKRx9ixw8iSQmgrExUnTBs7qIiIiItGtWgUkJOB/F16t/l4KDD5EREQkGoPBgIMHL2DMGAGm6tUjYDIBTzwh4ODBC16/4jyHuoiIiEgU5osCFxQkwmQaZnVfVZUOy5btQFLSr169KDB7fIiIiEgU5kkE5pXSa6q5Uro3LwrM4ENERESiktNK6RzqIiIiItHJZaV0Bh8iIiLyCjmslM6hLiIiItIMBh8iIiLSDAYfIiIi0gwGHyIiIhKFHC8KzOJmIiIiEoUcrzjP4ENERESikdtFgTnURURERJrB4ENERESaweBDREREmsHgQ0RERJrB4EMkY2fPArt3V/9LRETuY/AhkqlVq4CEBKBnz+p/V62SukXaxPBJpC4MPkQydPYsMGYMYDJVf28yAU88wYOvtxgMBhQVFWHhwitISBD+Fz4FLFx4BUVFRTAYDFI3kYhcxHV8iGTo5Mk/Qo9ZVRWQnw/ExUnTJq0wGAxYvnw5jMYQLF48EYKgAwCYTDpMnhyKc+dWQ68vQ05OjuzWJyGihrHHh0hmDAYDQkMvwMdHsLrd11dASMgF9jaIzLzCbElJOATBehcpCD4oKQmz2o6IlIU9PkQyYu5tAIB+/Tpi69Z+EAQf6HQm9O27Ddu2HQYA9jZ4QViYATqdySr86HQmhIWVSNgqInIXgw+RjNTsRUhLO4zk5HyUlIQhLKwEen1ZvduROPT6MvTvv80qfPbvv83q90BEysPgQyRjen0ZD7QSshc+HWUwGCxB9fx5HxQU+CEp6SZiY6uLuLx9gUYirWPwISKyw53wWXPo8tChjnV6j9LSOHRJ5G0sbiYiEom5p8doDLGEHqC6SHrr1n4wGkOstiMi8TH4EBGJrKEZYkTkPQw+REQ1BAQEeHQ74I8ZYjVxhhiRNFjjQ0RUQ3h4OHJycuwOPzlbkMwZYkTyweBDJCNi9DaQ88QoNPbEDDEich+DD5GMiNHbQPLB5QmIpMfgQyQzDDVEROJhcTMRkUg4dEkkP+zxISISCYcuieRHUT0+27dvR5cuXRAUFIRmzZphwIABVvefPn0affv2RePGjdG8eXNMnjwZN2/elKaxRESoDj8xMTE2vxh6iLxLMT0+mzZtwujRozFnzhz07NkTN2/exLFjxyz3V1VVoW/fvoiOjsa+fftQVFSEoUOHwt/fH3PmzJGw5URERCQXOkEQBKkb0ZCbN28iMTERs2fPxqhRo+rdZseOHejXrx/Onz+PqKgoAMDKlSsxdepUXLp0yeEx9NLSUuj1ehiNRoSGhnrsNRAREZF4HD1+K2Ko69ChQzh37hx8fHzQsWNHxMTEoE+fPlY9Pvv370e7du0soQcAMjMzUVpaiv/85z9SNJuIiIhkRhHB57///S8AYNasWfj73/+Obdu2oVmzZujRowdKSqqXfC8uLrYKPQAs3xcXF9t87PLycpSWllp9ERERkTpJGnymTZsGnU5n9+vEiRMwmaqvcTNjxgwMGjQI6enpWLNmDXQ6HT744AO32jB37lzo9XrLV3x8vCdeGhEREcmQpMXNzzzzDIYPH253m5YtW6KoqAgA0KZNG8vtgYGBaNmyJU6fPg0AiI6Oxvfff2/1sxcuXLDcZ8v06dMxadIky/elpaUNhh+TyWR3eiq5LyAgAD4+iuiQJCIiBZE0+ERGRiIyMrLB7dLT0xEYGIi8vDzceeedAIDKykoUFhYiISEBAJCRkYGXX34ZFy9eRPPmzQEAu3btQmhoqFVgqi0wMBCBgYEOt7miogIFBQWWXigSh4+PD5KSkriwGxEReZQiprOHhoZi7NixeP755xEfH4+EhAS8+uqrAIAHH3wQAHDvvfeiTZs2eOyxx/DKK6+guLgYf//735Gdne1UsLFHEAQUFRXB19cX8fHx7JEQiclkwvnz51FUVIQWLVpAp9NJ3SQiIlIJRQQfAHj11Vfh5+eHxx57DL///ju6dOmCL7/8Es2aNQMA+Pr6Ytu2bRg3bhwyMjIQHByMYcOG4YUXXvBYG27evInr168jNjYWjRs39tjjUl2RkZE4f/48bt68CX9/f6mbQ0REKqGIdXy8yd46ADdu3EBBQQESExMRFBQkUQu14ffff0dhYSGSkpLQqFEjqZtDREQyp6p1fOSGQy/i43tMRERiYPAhIiIizWDw0YDhw4db1kXy9/dHVFQU7rnnHqxevdqp2Wlr165F06ZNxWsoERGRyBh8NCIrKwtFRUUoLCzEjh07cPfdd+Opp55Cv379eAV7IiLSDAYfLzIYDCgqKrL5ZTAYRHvuwMBAREdH45ZbbkFaWhqeffZZfPzxx9ixYwfWrl0LAFi0aBHatWuH4OBgxMfH48knn8TVq1cBAF999RVGjBgBo9Fo6T2aNWsWAGDdunXo1KkTQkJCEB0djSFDhuDixYuivRYiIiJXKWY6u9IZDAYsX768we1ycnIQHh7uhRYBPXv2RIcOHbB582Y8/vjj8PHxwdKlS5GUlIT//ve/ePLJJzFlyhSsWLECd9xxBxYvXoyZM2ciLy8PANCkSRMA1YtJvvjii2jVqhUuXryISZMmYfjw4fjkk0+88jqIiIgcxeDjJY5e4sLbl8Jo3bo1jhw5AgCYOHGi5fbExES89NJLGDt2LFasWIGAgADo9XrodLo6lwAZOXKk5f8tW7bE0qVL0blzZ1y9etUSjoiIiOSAQ10aJwiCZer4559/jl69euGWW25BSEgIHnvsMRgMBly/ft3uYxw8eBD9+/dHixYtEBISgu7duwOA5TpqREREcsHgo3HHjx9HUlISCgsL0a9fP7Rv3x6bNm3CwYMH8frrrwOw3wt17do1ZGZmIjQ0FOvXr8cPP/yALVu2NPhzREREUuBQl4Z9+eWXOHr0KJ5++mkcPHgQJpMJCxcutFyD7F//+pfV9gEBAaiqqrK67cSJEzAYDJg3b57lqvY//vijd14AERGRk9jjoxHl5eUoLi7GuXPncOjQIcyZMwf3338/+vXrh6FDhyIlJQWVlZVYtmwZ/vvf/2LdunVYuXKl1WMkJibi6tWr+OKLL3D58mVcv34dLVq0QEBAgOXn/v3vf+PFF1+U6FUSERHZx+CjEZ9++iliYmKQmJiIrKws7N69G0uXLsXHH38MX19fdOjQAYsWLcL8+fNx6623Yv369Zg7d67VY9xxxx0YO3YsBg8ejMjISLzyyiuIjIzE2rVr8cEHH6BNmzaYN28eFixYINGrJCIiso8XKa3FkYuUunLhzKKiIrz11lsNbjdmzBjExMQ49dhq5M57TURE2sOLlMpMQECAR7cjIiIi57G42UvCw8ORk5Njd6ZTQECA1xYvJCIi0iIGHy9iqCEiIpIWh7qIiIhIM9jjQ0RE5ACDwcByBRVg8CEiImqAHC80Ta7hUBcREVED5HqhaXIegw8RERFpBoMPERERaQaDD7ntq6++gk6nw5UrVxz+mcTERCxevFi0NhEREdWHwUcDhg8fDp1Oh7Fjx9a5Lzs7GzqdDsOHD/d+w4iIiLyMwUcj4uPj8f777+P333+33Hbjxg1s2LABLVq0kLBlRERE3sPgoxFpaWmIj4/H5s2bLbdt3rwZLVq0QMeOHS23lZeXY8KECWjevDkaNWqEO++8Ez/88IPVY33yySf405/+hKCgINx9990oLCys83x79+7FXXfdhaCgIMTHx2PChAm4du2aaK+PiIjIEQw+GjJy5EisWbPG8v3q1asxYsQIq22mTJmCTZs24Z133sGhQ4eQkpKCzMxMlJSUAADOnDmDgQMHon///sjNzcXjjz+OadOmWT3GqVOnkJWVhUGDBuHIkSPYuHEj9u7di5ycHPFfJBGRCHihafXgAoYSOXsWOHkSSE0F4uK885yPPvoopk+fjl9//RUA8O233+L999/HV199BQC4du0a3njjDaxduxZ9+vQBALz99tvYtWsXVq1ahcmTJ+ONN95AcnIyFi5cCABo1aoVjh49ivnz51ueZ+7cufjrX/+KiRMnAgBSU1OxdOlSdO/eHW+88QYaNWrknRdMROQhvNC0ejD4SGDVKmDMGMBkAnx8gLfeAkaNEv95IyMj0bdvX6xduxaCIKBv376IiIiw3H/q1ClUVlaia9eultv8/f1x22234fjx4wCA48ePo0uXLlaPm5GRYfX9Tz/9hCNHjmD9+vWW2wRBgMlkQkFBAf785z+L8fKIiETFUKMODD5edvbsH6EHqP73iSeAzEzv9PyMHDnSMuT0+uuvi/IcV69exRNPPIEJEybUuY+F1ESkBlL02pNnsMbHy06e/CP0mFVVAfn53nn+rKwsVFRUoLKyEpmZmVb3JScnIyAgAN9++63ltsrKSvzwww9o06YNAODPf/4zvv/+e6uf++6776y+T0tLw88//4yUlJQ6Xxz/JiKlW7UKSEgAevas/nfVKqlbRM5g8PGy1NTq4a2afH2BlBTvPL+vry+OHz+On3/+Gb6+vlb3BQcHY9y4cZg8eTI+/fRT/Pzzzxg9ejSuX7+OUf8bixs7dixOnjyJyZMnIy8vDxs2bMDatWutHmfq1KnYt28fcnJykJubi5MnT+Ljjz9mcTMRKZ6tXvuzZ6VtFzmOwcfL4uKqa3rMmcPXF3jzTe92lYaGhiI0NLTe++bNm4dBgwbhscceQ1paGvLz8/HZZ5+hWbNmAKqHqjZt2oSPPvoIHTp0wMqVKzFnzhyrx2jfvj327NmDX375BXfddRc6duyImTNnIjY2VvTXRkQkJql77cl9OkEQBKkbISelpaXQ6/UwGo11wsGNGzdQUFCApKQkt2cmnT1b/YeSksLx4fp48r0mIvKUs2erh7dqhh9fX6CwkPtyqdk7ftfEHh+JxMUBPXrwD4WISEnk0GtP7uGsLiIiIieMGlU9E5e99srE4ENEROSkuDgGHqXiUBcRERFpBoMPERERaQaDjws4EU58fI+JiEgMDD5OMC/4Z+8ideQZ5ve49iKLRERE7mBxsxP8/PzQuHFjXLp0Cf7+/vCpvQQzeYTJZMKlS5fQuHFj+PnxI0pERJ7Do4oTdDodYmJiUFBQgF9//VXq5qiaj48PWrRoAZ1OJ3VTiIhIRRh8nBQQEIDU1FQOd4ksICCAPWpERORxDD4u8PHx4WUUiIiIFIin1ERERKQZDD5ERESkGQw+REREpBms8anFvHBeaWmpxC0hIiIiR5mP2w0tgMvgU0tZWRkAID4+XuKWEBERkbPKysqg1+tt3q8TeG0AKyaTCefPn0dISIjm1pApLS1FfHw8zpw5g9DQUKmbo1h8Hz2H76Vn8H30HL6XniHG+ygIAsrKyhAbG2t3ORT2+NTi4+ODuLg4qZshqdDQUP5BewDfR8/he+kZfB89h++lZ3j6fbTX02PG4mYiIiLSDAYfIiIi0gwGH7IIDAzE888/j8DAQKmbomh8Hz2H76Vn8H30HL6XniHl+8jiZiIiItIM9vgQERGRZjD4EBERkWYw+BAREZFmMPgQERGRZjD4aMzXX3+N/v37IzY2FjqdDh999JHV/YIgYObMmYiJiUFQUBB69+6NkydPStNYmWvovRw+fDh0Op3VV1ZWljSNlbG5c+eic+fOCAkJQfPmzTFgwADk5eVZbXPjxg1kZ2cjPDwcTZo0waBBg3DhwgWJWixPjryPPXr0qPOZHDt2rEQtlq833ngD7du3tyyul5GRgR07dlju5+fRcQ29l1J8Jhl8NObatWvo0KEDXn/99Xrvf+WVV7B06VKsXLkSBw4cQHBwMDIzM3Hjxg0vt1T+GnovASArKwtFRUWWr/fee8+LLVSGPXv2IDs7G9999x127dqFyspK3Hvvvbh27Zplm6effhpbt27FBx98gD179uD8+fMYOHCghK2WH0feRwAYPXq01WfylVdekajF8hUXF4d58+bh4MGD+PHHH9GzZ0/cf//9+M9//gOAn0dnNPReAhJ8JgXSLADCli1bLN+bTCYhOjpaePXVVy23XblyRQgMDBTee+89CVqoHLXfS0EQhGHDhgn333+/JO1RsosXLwoAhD179giCUP0Z9Pf3Fz744APLNsePHxcACPv375eqmbJX+30UBEHo3r278NRTT0nXKAVr1qyZ8I9//IOfRw8wv5eCIM1nkj0+ZFFQUIDi4mL07t3bcpter0eXLl2wf/9+CVumXF999RWaN2+OVq1aYdy4cTAYDFI3SfaMRiMAICwsDABw8OBBVFZWWn0uW7dujRYtWvBzaUft99Fs/fr1iIiIwK233orp06fj+vXrUjRPMaqqqvD+++/j2rVryMjI4OfRDbXfSzNvfyZ5kVKyKC4uBgBERUVZ3R4VFWW5jxyXlZWFgQMHIikpCadOncKzzz6LPn36YP/+/fD19ZW6ebJkMpkwceJEdO3aFbfeeiuA6s9lQEAAmjZtarUtP5e21fc+AsCQIUOQkJCA2NhYHDlyBFOnTkVeXh42b94sYWvl6ejRo8jIyMCNGzfQpEkTbNmyBW3atEFubi4/j06y9V4C0nwmGXyIRPLwww9b/t+uXTu0b98eycnJ+Oqrr9CrVy8JWyZf2dnZOHbsGPbu3St1UxTN1vs4ZswYy//btWuHmJgY9OrVC6dOnUJycrK3mylrrVq1Qm5uLoxGIz788EMMGzYMe/bskbpZimTrvWzTpo0kn0kOdZFFdHQ0ANSZnXDhwgXLfeS6li1bIiIiAvn5+VI3RZZycnKwbds27N69G3FxcZbbo6OjUVFRgStXrlhtz89l/Wy9j/Xp0qULAPAzWY+AgACkpKQgPT0dc+fORYcOHbBkyRJ+Hl1g672sjzc+kww+ZJGUlITo6Gh88cUXlttKS0tx4MABq/FYcs3Zs2dhMBgQExMjdVNkRRAE5OTkYMuWLfjyyy+RlJRkdX96ejr8/f2tPpd5eXk4ffo0P5c1NPQ+1ic3NxcA+Jl0gMlkQnl5OT+PHmB+L+vjjc8kh7o05urVq1ZJuqCgALm5uQgLC0OLFi0wceJEvPTSS0hNTUVSUhKee+45xMbGYsCAAdI1WqbsvZdhYWGYPXs2Bg0ahOjoaJw6dQpTpkxBSkoKMjMzJWy1/GRnZ2PDhg34+OOPERISYqmT0Ov1CAoKgl6vx6hRozBp0iSEhYUhNDQU48ePR0ZGBm6//XaJWy8fDb2Pp06dwoYNG/B///d/CA8Px5EjR/D000+jW7duaN++vcStl5fp06ejT58+aNGiBcrKyrBhwwZ89dVX+Oyzz/h5dJK991Kyz6RX55CR5Hbv3i0AqPM1bNgwQRCqp7Q/99xzQlRUlBAYGCj06tVLyMvLk7bRMmXvvbx+/bpw7733CpGRkYK/v7+QkJAgjB49WiguLpa62bJT33sIQFizZo1lm99//1148sknhWbNmgmNGzcW/t//+39CUVGRdI2WoYbex9OnTwvdunUTwsLChMDAQCElJUWYPHmyYDQapW24DI0cOVJISEgQAgIChMjISKFXr17Czp07Lffz8+g4e++lVJ9JnSAIgnixioiIiEg+WONDREREmsHgQ0RERJrB4ENERESaweBDREREmsHgQ0RERJrB4ENERESaweBDREREmsHgQ0RERJrB4ENERESaweBDRIpRUVEhdRPqkGObiMg2Bh8ikkyPHj2Qk5ODnJwc6PV6RERE4LnnnoP5SjqJiYl48cUXMXToUISGhmLMmDEAgL179+Kuu+5CUFAQ4uPjMWHCBFy7ds3yuCtWrEBqaioaNWqEqKgoPPDAA5b7PvzwQ7Rr1w5BQUEIDw9H7969LT/bo0cPTJw40aqNAwYMwPDhwy3fu9omIpIHBh8iktQ777wDPz8/fP/991iyZAkWLVqEf/zjH5b7FyxYgA4dOuDw4cN47rnncOrUKWRlZWHQoEE4cuQINm7ciL179yInJwcA8OOPP2LChAl44YUXkJeXh08//RTdunUDABQVFeGRRx7ByJEjcfz4cXz11VcYOHAgnL1kobNtIiL54EVKiUgyPXr0wMWLF/Gf//wHOp0OADBt2jT8+9//xs8//4zExER07NgRW7ZssfzM448/Dl9fX7z55puW2/bu3Yvu3bvj2rVr+OSTTzBixAicPXsWISEhVs936NAhpKeno7CwEAkJCfW25y9/+QsWL15suW3AgAFo2rQp1q5dCwAutalRo0ZuvU9E5Dns8SEiSd1+++2W0AMAGRkZOHnyJKqqqgAAnTp1str+p59+wtq1a9GkSRPLV2ZmJkwmEwoKCnDPPfcgISEBLVu2xGOPPYb169fj+vXrAIAOHTqgV69eaNeuHR588EG8/fbb+O2335xus7NtIiL5YPAhIlkLDg62+v7q1at44oknkJuba/n66aefcPLkSSQnJyMkJASHDh3Ce++9h5iYGMycORMdOnTAlStX4Ovri127dmHHjh1o06YNli1bhlatWlnCiY+PT51hr8rKSrfbRETyweBDRJI6cOCA1fffffcdUlNT4evrW+/2aWlp+Pnnn5GSklLnKyAgAADg5+eH3r1745VXXsGRI0dQWFiIL7/8EgCg0+nQtWtXzJ49G4cPH0ZAQIBl2CoyMhJFRUWW56qqqsKxY8cafA2OtImI5IHBh4gkdfr0aUyaNAl5eXl47733sGzZMjz11FM2t586dSr27duHnJwc5Obm4uTJk/j4448thcTbtm3D0qVLkZubi19//RXvvvsuTCYTWrVqhQMHDmDOnDn48ccfcfr0aWzevBmXLl3Cn//8ZwBAz549sX37dmzfvh0nTpzAuHHjcOXKlQZfQ0NtIiL58JO6AUSkbUOHDsXvv/+O2267Db6+vnjqqacsU8Tr0759e+zZswczZszAXXfdBUEQkJycjMGDBwMAmjZtis2bN2PWrFm4ceMGUlNT8d5776Ft27Y4fvw4vv76ayxevBilpaVISEjAwoUL0adPHwDAyJEj8dNPP2Ho0KHw8/PD008/jbvvvrvB19BQm4hIPjiri4gkU98sKiIiMXGoi4iIiDSDwYeIiIg0g0NdREREpBns8SEiIiLNYPAhIiIizWDwISIiIs1g8CEiIiLNYPAhIiIizWDwISIiIs1g8CEiIiLNYPAhIiIizWDwISIiIs34/2GiY/EoyBLqAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUVBJREFUeJzt3XtYVHXiP/D3gICAMModAgHR1dXMFM3bpqYm+DNdVyuz8n5fsNDS9OtmmuU976XZmlqb1aZYaTetzLLMCjWzjFUXMwO8DDGgJCBzfn+wMzLAXJg5M+f2fj0PjzJzOHw4c2bO+3yuOkEQBBARERFpgI/UBSAiIiLyFgYfIiIi0gwGHyIiItIMBh8iIiLSDAYfIiIi0gwGHyIiItIMBh8iIiLSDAYfIiIi0gwGHyIiItIMBh8iIhnatm0bdDodzp07J3VRiFSFwYdIo7799ltkZmaiXbt2CA4ORvPmzXH//ffjP//5T51t+/TpA51OB51OBx8fH4SGhqJ169YYNWoU9u/f36Dfu2fPHvTu3RtRUVEICgpCixYtcP/99+PDDz8U60+rY/HixXj77bfrPP7VV19hwYIFKC4u9tjvrm3BggWWY6nT6RAUFIS2bdviH//4B0pKSkT5HTt27MCaNWtE2ReR2jD4EGnUsmXLsGvXLvTr1w9r167F5MmT8fnnn6NTp044efJkne3j4+Px6quv4pVXXsGKFSswZMgQfPXVVxgwYABGjBiByspKh79z5cqVGDJkCHQ6HebOnYvVq1dj+PDhOH36NN544w1P/JkA7AefhQsXejX4mG3cuBGvvvoqVq1ahTZt2uDZZ59Feno6xFg+kcGHyLZGUheAiKQxc+ZM7NixA/7+/pbHRowYgfbt22Pp0qX417/+ZbW9Xq/Hww8/bPXY0qVL8cgjj+CFF15AUlISli1bZvP33bhxA4sWLcLdd9+Nffv21Xn+0qVLbv5F8lFWVoagoCC729x7772IiIgAAEydOhXDhw9HdnY2vv76a3Tv3t0bxSTSJNb4EGlUjx49rEIPALRq1Qrt2rXDqVOnnNqHr68v1q1bh7Zt22LDhg0wGo02t71y5QpKSkrQs2fPep+Pioqy+v769etYsGAB/vSnP6Fx48aIjY3FsGHDcPbsWcs2K1euRI8ePRAeHo7AwECkpqZi586dVvvR6XS4du0atm/fbmleGjt2LBYsWIBZs2YBAJKTky3P1exT869//QupqakIDAxEWFgYHnjgAfz6669W++/Tpw9uvfVW5OTkoFevXggKCsL//d//OXX8aurbty8AIC8vz+52L7zwAtq1a4eAgADExcUhIyPDqsaqT58+eO+99/DLL79Y/qakpKQGl4dIrVjjQ0QWgiDg4sWLaNeundM/4+vri5EjR+LJJ5/EoUOHMGjQoHq3i4qKQmBgIPbs2YPp06cjLCzM5j6rqqpwzz334JNPPsEDDzyARx99FKWlpdi/fz9OnjyJlJQUAMDatWsxZMgQPPTQQ6ioqMAbb7yB++67D3v37rWU49VXX8XEiRNxxx13YPLkyQCAlJQUBAcH4z//+Q9ef/11rF692lL7EhkZCQB49tln8eSTT+L+++/HxIkTcfnyZaxfvx69evXCsWPH0LRpU0t5DQYDBg4ciAceeAAPP/wwoqOjnT5+ZuZAFx4ebnObBQsWYOHChejfvz+mTZuG3NxcbNy4Ed9++y2+/PJL+Pn5Yd68eTAajbhw4QJWr14NAGjSpEmDy0OkWgIR0f+8+uqrAgBhy5YtVo/37t1baNeunc2f2717twBAWLt2rd39z58/XwAgBAcHCwMHDhSeffZZIScnp852L7/8sgBAWLVqVZ3nTCaT5f9lZWVWz1VUVAi33nqr0LdvX6vHg4ODhTFjxtTZ14oVKwQAQl5entXj586dE3x9fYVnn33W6vEffvhBaNSokdXjvXv3FgAImzZtsvl31/TUU08JAITc3Fzh8uXLQl5envDiiy8KAQEBQnR0tHDt2jVBEARh69atVmW7dOmS4O/vLwwYMECoqqqy7G/Dhg0CAOHll1+2PDZo0CAhMTHRqfIQaQ2buogIAPDzzz8jIyMD3bt3x5gxYxr0s+YahdLSUrvbLVy4EDt27EDHjh3x0UcfYd68eUhNTUWnTp2smtd27dqFiIgITJ8+vc4+dDqd5f+BgYGW///+++8wGo248847cfTo0QaVv7bs7GyYTCbcf//9uHLliuUrJiYGrVq1woEDB6y2DwgIwLhx4xr0O1q3bo3IyEgkJydjypQpaNmyJd577z2bfYM+/vhjVFRUICsrCz4+Nz+6J02ahNDQULz33nsN/0OJNIhNXUSEwsJCDBo0CHq9Hjt37oSvr2+Dfv7q1asAgJCQEIfbjhw5EiNHjkRJSQmOHDmCbdu2YceOHRg8eDBOnjyJxo0b4+zZs2jdujUaNbL/EbV3714888wzOH78OMrLyy2P1wxHrjh9+jQEQUCrVq3qfd7Pz8/q+1tuuaVOfylHdu3ahdDQUPj5+SE+Pt7SfGfLL7/8AqA6MNXk7++PFi1aWJ4nIvsYfIg0zmg0YuDAgSguLsYXX3yBuLi4Bu/DPPy9ZcuWTv9MaGgo7r77btx9993w8/PD9u3bceTIEfTu3dupn//iiy8wZMgQ9OrVCy+88AJiY2Ph5+eHrVu3YseOHQ3+G2oymUzQ6XT44IMP6g2BtfvM1Kx5clavXr0s/YqIyHsYfIg07Pr16xg8eDD+85//4OOPP0bbtm0bvI+qqirs2LEDQUFB+Mtf/uJSOTp37ozt27ejoKAAQHXn4yNHjqCysrJO7YrZrl270LhxY3z00UcICAiwPL5169Y629qqAbL1eEpKCgRBQHJyMv70pz819M/xiMTERABAbm4uWrRoYXm8oqICeXl56N+/v+Uxd2u8iNSMfXyINKqqqgojRozA4cOH8dZbb7k0d0xVVRUeeeQRnDp1Co888ghCQ0NtbltWVobDhw/X+9wHH3wA4GYzzvDhw3HlyhVs2LChzrbC/yb48/X1hU6nQ1VVleW5c+fO1TtRYXBwcL2TFAYHBwNAneeGDRsGX19fLFy4sM6EgoIgwGAw1P9HelD//v3h7++PdevWWZVpy5YtMBqNVqPpgoOD7U4tQKRlrPEh0qjHHnsM7777LgYPHoyioqI6ExbWnqzQaDRatikrK8OZM2eQnZ2Ns2fP4oEHHsCiRYvs/r6ysjL06NED3bp1Q3p6OhISElBcXIy3334bX3zxBYYOHYqOHTsCAEaPHo1XXnkFM2fOxDfffIM777wT165dw8cff4y///3v+Otf/4pBgwZh1apVSE9Px4MPPohLly7h+eefR8uWLXHixAmr352amoqPP/4Yq1atQlxcHJKTk9G1a1ekpqYCAObNm4cHHngAfn5+GDx4MFJSUvDMM89g7ty5OHfuHIYOHYqQkBDk5eVh9+7dmDx5Mh5//HG3jn9DRUZGYu7cuVi4cCHS09MxZMgQ5Obm4oUXXkCXLl2sXq/U1FS8+eabmDlzJrp06YImTZpg8ODBXi0vkWxJOaSMiKRjHoZt68vetk2aNBFatWolPPzww8K+ffuc+n2VlZXCSy+9JAwdOlRITEwUAgIChKCgIKFjx47CihUrhPLycqvty8rKhHnz5gnJycmCn5+fEBMTI9x7773C2bNnLdts2bJFaNWqlRAQECC0adNG2Lp1q2W4eE0///yz0KtXLyEwMFAAYDW0fdGiRcItt9wi+Pj41BnavmvXLuEvf/mLEBwcLAQHBwtt2rQRMjIyhNzcXKtjY2+of23m8l2+fNnudrWHs5tt2LBBaNOmjeDn5ydER0cL06ZNE37//Xerba5evSo8+OCDQtOmTQUAHNpOVINOEERYGIaIiIhIAdjHh4iIiDSDwYeIiIg0g8GHiIiINIPBh4iIiDSDwYeIiIg0g8GHiIiINIMTGNZiMpmQn5+PkJAQTvtORESkEIIgoLS0FHFxcfDxsV2vw+BTS35+PhISEqQuBhEREbng119/RXx8vM3nGXxqCQkJAVB94OytO0RERETyUVJSgoSEBMt13BYGn1rMzVuhoaEMPkRERArjqJsKOzcTERGRZjD4EBERkWYw+BAREZFmsI8PERGRCKqqqlBZWSl1MVTLz88Pvr6+bu+HwYeIiMgNgiCgsLAQxcXFUhdF9Zo2bYqYmBi35tlj8CEiInKDOfRERUUhKCiIk996gCAIKCsrw6VLlwAAsbGxLu+LwYeIiMhFVVVVltATHh4udXFULTAwEABw6dIlREVFudzsxc7NRERELjL36QkKCpK4JNpgPs7u9KVi8CEiInITm7e8Q4zjzOBDREREmsHgQ0RERJrB4KMQFy4ABw5U/0tEROSusWPHQqfTQafTwc/PD9HR0bj77rvx8ssvw2QyOb2fbdu2oWnTpp4rqMg4qksBtmwBJk8GTCbAxwfYvBmYMEHqUhERkbsMBgMqKipsPu/v7+/R0WLp6enYunUrqqqqcPHiRXz44Yd49NFHsXPnTrz77rto1Eh9MUF9f5HKXLhwM/QA1f9OmQKkpQHx8dKWjYiIXGcwGLBhwwaH22VmZnos/AQEBCAmJgYAcMstt6BTp07o1q0b+vXrh23btmHixIlYtWoVtm7div/+978ICwvD4MGDsXz5cjRp0gSfffYZxo0bB+Bmx+OnnnoKCxYswKuvvoq1a9ciNzcXwcHB6Nu3L9asWYOoqCiP/C3OYlOXjBkMBnz9tQG1axyrqoAjRwwwGAzSFIyIiNxmr6bHle3E0rdvX3To0AHZ2dkAAB8fH6xbtw4//vgjtm/fjk8//RSzZ88GAPTo0QNr1qxBaGgoCgoKUFBQgMcffxxA9ZDzRYsW4fvvv8fbb7+Nc+fOYezYsV79W+rDGh+ZMt8JGI0h0OmyIAg3M6pOZ8KXX27HyZOlHr0TICIibWrTpg1OnDgBAMjKyrI8npSUhGeeeQZTp07FCy+8AH9/f+j1euh0OkvNkdn48eMt/2/RogXWrVuHLl264OrVq2jSpIlX/o76sMZHpswJX68vxeDBe6HTVVf76HQmDB68F3p9qdV2REREYhEEwdJ09fHHH6Nfv3645ZZbEBISglGjRsFgMKCsrMzuPnJycjB48GA0b94cISEh6N27NwDg/PnzHi+/PYoJPkuWLEGXLl0QEhKCqKgoDB06FLm5uVbbXL9+HRkZGQgPD0eTJk0wfPhwXLx4UaISi6dTp2PIylqDMWO2IStrDTp1OiZ1kYiISMVOnTqF5ORknDt3Dvfccw9uu+027Nq1Czk5OXj++ecB2L/xvnbtGtLS0hAaGorXXnsN3377LXbv3u3w57xBMcHn4MGDyMjIwNdff439+/ejsrISAwYMwLVr1yzbzJgxA3v27MFbb72FgwcPIj8/H8OGDZOw1OLR60uRnPyLpaaHiIjIEz799FP88MMPGD58OHJycmAymfDcc8+hW7du+NOf/oT8/Hyr7f39/VFVVWX12M8//wyDwYClS5fizjvvRJs2bSwLjEpNMX18PvzwQ6vvt23bhqioKOTk5KBXr14wGo3YsmULduzYgb59+wIAtm7dij//+c/4+uuv0a1bNymKTUREJFvl5eUoLCy0Gs6+ZMkS3HPPPRg9ejROnjyJyspKrF+/HoMHD8aXX36JTZs2We0jKSkJV69exSeffIIOHTogKCgIzZs3h7+/P9avX4+pU6fi5MmTWLRokUR/pTXF1PjUZjQaAQBhYWEAqtsSKysr0b9/f8s2bdq0QfPmzXH48GFJykhERCRnH374IWJjY5GUlIT09HQcOHAA69atwzvvvANfX1906NABq1atwrJly3Drrbfitddew5IlS6z20aNHD0ydOhUjRoxAZGQkli9fjsjISGzbtg1vvfUW2rZti6VLl2LlypUS/ZXWFFPjU5PJZEJWVhZ69uyJW2+9FQBQWFgIf3//OrNHRkdHo7Cw0Oa+ysvLUV5ebvm+pKTEI2UmIiKqyd/fX9TtGmrbtm3Ytm2bw+1mzJiBGTNmWD02atQoq+83btyIjRs3Wj02cuRIjBw50uoxQRBcK6yIFBl8MjIycPLkSRw6dMjtfS1ZsgQLFy4UoVRERETOCw8PR2ZmpqQzN2uR4oJPZmYm9u7di88//xzxNaYujomJQUVFBYqLi61qfS5evFhnboGa5s6di5kzZ1q+LykpQUJCgkfK3hBS3wkQEZHnMdR4n2KCjyAImD59Onbv3o3PPvsMycnJVs+npqbCz88Pn3zyCYYPHw4AyM3Nxfnz59G9e3eb+w0ICEBAQIBHy+4K3gkQERGJTzHBJyMjAzt27MA777yDkJAQS78dvV6PwMBA6PV6TJgwATNnzkRYWBhCQ0Mxffp0dO/eXbEjuhhqiIiIxKWY4GPuNNWnTx+rx7du3WpZ+2P16tXw8fHB8OHDUV5ejrS0NLzwwgteLikRERHJlWKCjzM9wRs3boznn3/eMqskERERUU2KnceHiIiIqKEYfIiIiEgzGHyIiIhIMxh8iIiISHSfffYZdDodiouLnf6ZpKQkrFmzxmNlAhh8iNxmMBhQUFCAgoIC5ORcxM6dBuTkXLQ8ZjAYpC4iEVEdY8eOhU6nw9SpU+s8l5GRAZ1OZxk1rSaKGdWlNQaDgZMXKoDBYMCGDRsAAEePdsSePfdAEHyg05kwePBedOp0DED1jON8vYhIbhISEvDGG29g9erVCAwMBABcv34dO3bsQPPmzSUunWcw+MhQzYupPbyYSs8cTo3GEEvoAQBB8MGePfcgJeUM9PpSuyGWiEgqnTp1wtmzZ5GdnY2HHnoIAJCdnY3mzZtbrZBQXl6OWbNm4Y033kBJSQk6d+6M1atXo0uXLpZt3n//fWRlZeHXX39Ft27dMGbMmDq/79ChQ5g7dy6+++47RERE4G9/+xuWLFmC4OBgz/+x/8OmLhly9iLJi6l8FBWFW0KPmSD4oKgoTKISEZHSXLgAHDhQ/a83jR8/Hlu3brV8//LLL2PcuHFW28yePRu7du3C9u3bcfToUbRs2RJpaWkoKioCAPz6668YNmwYBg8ejOPHj2PixImYM2eO1T7Onj2L9PR0DB8+HCdOnMCbb76JQ4cOITMz0/N/ZA0MPkQiCAszQKczWT2m05kQFlYkUYmISEm2bAESE4G+fav/3bLFe7/74YcfxqFDh/DLL7/gl19+wZdffomHH37Y8vy1a9ewceNGrFixAgMHDkTbtm3x0ksvITAwEFv+V9CNGzciJSUFzz33HFq3bo2HHnqoTv+gJUuW4KGHHkJWVhZatWqFHj16YN26dXjllVdw/fp1r/29DD4KYDSGIC8vCUZjiNXjV65cYcdZmdDrSzF48F5L+DH38dHrSyUuGRHJ3YULwOTJgOl/904mEzBlivdqfiIjIzFo0CBs27YNW7duxaBBgxAREWF5/uzZs6isrETPnj0tj/n5+eGOO+7AqVOnAACnTp1C165drfZbe4Hw77//Htu2bUOTJk0sX2lpaTCZTMjLy/PgX2iNfXxkzl6H2ezsbADs6yMXnTodQ0rKGRQVhSEsrIihh4iccvr0zdBjVlUFnDkDxMd7pwzjx4+3NDl5atmnq1evYsqUKXjkkUfqPOfNjtQMPjLmqMOsGfv6eE/t0XZXrlyxel6vL2XgIaIGadUK8PGxDj++vkDLlt4rQ3p6OioqKqDT6ZCWlmb1XEpKCvz9/fHll18iMTERAFBZWYlvv/0WWVlZAIA///nPePfdd61+7uuvv7b6vlOnTvjpp5/Q0pt/WD0YfGTMVofZX3+Nh15/SqJSaZezo+2IiBoiPh7YvLm6eauqqjr0vPii92p7AMDX19fSbOXr62v1XHBwMKZNm4ZZs2YhLCwMzZs3x/Lly1FWVoYJEyYAAKZOnYrnnnsOs2bNwsSJE5GTk4Nt27ZZ7eeJJ55At27dkJmZiYkTJyI4OBg//fQT9u/f79XPVgYfGTN3mK0dfnbuvBcVFTebvMg7atesGY0hKCoKR1iYwWEtj7+/vyeLJjnOO0XkngkTgLS06uatli29G3rMQkNDbT63dOlSmEwmjBo1CqWlpejcuTM++ugjNGvWDEB1U9WuXbswY8YMrF+/HnfccQcWL16M8ePHW/Zx22234eDBg5g3bx7uvPNOCIKAlJQUjBgxwuN/W006QRAEr/5GmSspKYFer4fRaLR7EniSrUnxatLpTMjKWgO9vhTDhg1DREQELy4eVlBQgM2bNwOw3/fK/HqYqf11qV0TZisQsi8aqdH169eRl5eH5ORkNG7cWOriqJ694+3s9Zs1PjIUHh6OzMxM5OfnA8iGv385du68z2ob8xwxen2ppZMzwIuLNzjqexUREYHY2FiJS+k9NWt67AVC9kUjIjlg8JGp8PBwy4UiIeHXOk1etuaIqe/iwmYIcdmbrFDLHZud7YxPRCQlBh8FMM8RU/NOun//j1FUFG553hYufyG++vpecbJCBkIiUgYGHxmr2SG25hwx+flx+Pjj/vU2J9TG5S/EV18Q5WSFDIREpAwMPjJm7utTUVGBK1euWPryvPLKaJebExoyEols42SFdTEQkpZxnJB3iHGcGXxkrnbzkzvNCfY6npJjtYek25qsUO1D1+1hICSt8fPzAwCUlZUhMDBQ4tKoX1lZGYCbx90VDD4K42pzAjueuq9mDZwt7CjO2atJW3x9fdG0aVNcunQJABAUFASdTidxqdRHEASUlZXh0qVLaNq0aZ1JFhuCwUdhXG1OYMdTccg11Eg5cs/ZGi4t14SRusXExACAJfyQ5zRt2tRyvF3F4KMQtjo6125OsHVxUWPHUw7Tr9aQkXuA/Y7srhwz1oSR1ul0OsTGxiIqKgqVlZVSF0e1/Pz83KrpMWPwUQh3Ly5q63jKYfo3OTsi7/Lly3jzzTcdbufKMVP7MSZyhq+vrygXZvIsBh8FceXi4m5NkVw5u26W3Ifpe6LWytaxcPZOVO7HjIjIHQw+KqeFZgg5j1azF2yKi4vx73//2+E+atbA1Le/K1euWP7fkGPBqQ2ISIsYfDRAyaHGETmPVnO2Oc4Rc9BxtL+GHAs5h0UiIk/ycbwJkXzZG60mtYY2GRmNIcjLS4LRGOLS/pw9FrYCkq3fS0SkJqzxIUVT0mg1e01LrtTA1N6fs8eCUxsQyQtHqHoXgw8pmlJGq9kLNq4019nanzPHQklhkUjtajdh27pB0sIIVW9h8CHFszdazWg02v1Zb9xJOQo2Da2Bsbc/e8eiUaPqt7tSwiIpC2stXFPzmNm7QeJoS/Ew+JAiObtulqfmrWkIR8GmoTUwjvY3btzdiIiIsHq+9vFS09QGJD3Oq+U+OQ/UUBsGH1IkZ4bpOztc3NN3Uo6CTUNrYBztLyIiArGxsfX+rNqnNiBpOPseYq2Fbex75z0MPqRYYk3s52nOBJuG1MC401TFUEPewDmiGo5977yHwYc0QYp5a5ydNXvEiBHQ6/U292EOK2qdhZvUxd57reZkmzU5W9Oo5n5E7HvnPQw+pHpStZ2LPWu2FmbhJmVz9F7Lzs62+bOO+v9ooR+RvRsaEg+DD6melG3nYn8AK/UDXWxqvvNXMnfea476/zSkH5GSzw9bAzVIPAw+pHpsO1cXLdz5K5Uz7zWx+v/Y2o8ra+BJydmmaTZhi4fBh1SPbefqwhFE8uXovSZWXzt7+7lx44ZT+5DL+cEmbO9j8CHVYmdgbeAIIuk5814Tq6+dGue7YajxLgYfUi3eSakfV5mXB3vvtStXriA7O1u0vnauzHTOYEw1MfiQqjHUqJca7/yVzNF7Tay+dg3ZD4Mx1cfH8SZERPJj786f5Mfc/0enMwGAy33tnN2PrWBsNIaI8NeQkrHGh4gUiaP1lEGsvnbO7sfPzw8Al4Ag2xh8iEiROFpPGcTqa+fsfszPMxiTLQw+RKQoHK2nPGL1tXN2WQvAcTDm+aFdOkEQBKkLISclJSXQ6/UwGo0IDQ2VujhEVA8lz8xLnlfz/MjP98G5c42QlHQDcXHV/YJ4fnieFO9RZ6/frPEhIsXhRYucvbDGxgKpqV4smIiUGvDlPrs6gw8REXmdOxd1uV9YxaDkv1Hus6sz+JBdSr3jICL5cveiXvszydYkhXJZlsIVcg8PDSG3SSQZfMgmJd9xEJF8iRlctDJJodzCg7Pk+Pow+MiAXGtV1HTH4YhcXwMitXPnwijl7N3e/MyQY3hwhlxnV2fwkZiSalWUesfhiJJeAyI1cffCKNUkhd78zJBreHCGXCeRZPCRmFJqVZR6x+EMLfQXIJIjdy+MUk1S6M3PDLmGB2fIdRJJBh+ZkWOtipLvOBpKzQGPSG7cvTDKYfZuT39myDU8OEMOr099GHxkRK4XXSXfcTSElgIekRyIcWG0N3u3p3njM0Ou4cEeuc+uzuAjE3K+6Cr5jqMhtBLwSB5qzy6cl9cIycnam13YleBS+4Kp15fW+3OevrB68jND7uHBHrHWZ/MUBh+ZkPNFV4l3HK7QSsAj6dXsHGuvpletHerdDS5yubB68jNDLn+jq+RaLoDBRzbkeNFV8h2HK7QS8Mg+bwxTNu/fUU2vWjvUi3FRd/QaGAwGFBQUuLz/2vuqWdYrV64A8PxnhpzDg5Ix+EjE/Eby1hvIFUq/43CFlP0FSHq1hynbGmwgVk2MnGt6Pc2Tnxtivo629xUCvb6UnxkKxOAjAVtzQMixVkVNocYWufQXIOnVDPn2mqDEqomRY02vGoj5OjqzL35mKAuDjwQczQFhfgPdddddaNasGfz8/FBRUYGCggLV1bDIgRZrtsg+bw02kGNNr5qI+To62tewYcMQERFh2Z6fGfLF4CMxe3cjBw4cqPdn1NrhUUo8nlSTN5ug2FTiOWK+jo72FRERgdjYWLfLTJ7n43gT5Xn++eeRlJSExo0bo2vXrvjmm2+kLlK9bN1BGI0hdn9OrR0eieTC3ARVkyeboPT6UiQn/8LQIzIxX0dvnxPkOaoLPm+++SZmzpyJp556CkePHkWHDh2QlpaGS5cuSV20OuzdQQDVwSgvL8lhECIicZmboMwXOjZBKZOYryPPCfVQXVPXqlWrMGnSJIwbNw4AsGnTJrz33nt4+eWXMWfOHIlLZ81ex0a5zuLsCq58TkrkySYoZzu9snOs+8R8HT15TvBz0ntUFXwqKiqQk5ODuXPnWh7z8fFB//79cfjw4Xp/pry8HOXl5ZbvS0pKPF5OM1sdGwHIdhbnhuLK56RktkbruIsd6r1LzNfRE+eEt6dR0DpVBZ8rV66gqqoK0dHRVo9HR0fj559/rvdnlixZgoULF3qjePWq7w7i5Mm2qpnbgyufk5J4syaGFzDPEfN19MY54e1pFLROVcHHFXPnzsXMmTMt35eUlCAhIcGjv9PevDFHj3bEu+/eU+dn1NCJTk3Nd6ROrIlRBzFfR2+eE3Jes1FNVBV8IiIi4Ovri4sXL1o9fvHiRcTExNT7MwEBAQgICPBG8Sxqv5GuXLmC7Oxsy0lfu8+5GjrR8Q1NSsFQow5ivo7eOie0PJO3N6lqVJe/vz9SU1PxySefWB4zmUz45JNP0L17dwlLVld4eDhiY2MRGxtrmfSqvpMeAIYP32lVM6LEDo+ORrAREWkdh8x7h6pqfABg5syZGDNmDDp37ow77rgDa9aswbVr1yyjvOTM1iivhIQLAIBhw4YhLi5OkXeknJqfiMg+zuTtHaoLPiNGjMDly5cxf/58FBYW4vbbb8eHH35Yp8OzHDk66SMiIhQZegC+oZWAw2mJpMeZvD1PdcEHqB7yl5mZKXUxnFaz6UqOC5WKhW9oz3M1vHA4LZF8eGoaBaqmyuCjNGoeScKVz73HnTmTOJyWSDqc0NK7GHxkQomhxhlqDnVyI8acSRx9p001awrz832Ql9cIyck3EBdX3dGW71HP4uekdzH4kMfxzep9rs6ZxOG02lOzptDeecNmTs/isfUeVQ1nJyLbtTbOLHbL4bTaY65lcHTesJmT1II1PkQq406tDUffaRdr+9SLTZnWGHyIVMbdOZM8MfqOQ+Xlj3NtiUsuYYNNmXUx+BCpjBi1NmIOp3VntBl5D2v7xONs2BgxYgT0er3Vz4odiBw1ZZoHLmipKZPBh0iFGlpr48nhtGKMNiPv4Fxb4nA2bGze/L7X5stiU+ZNDD5EKuHOnEneGk7r6mgz8h5Onicee2Hj7NmWXp0vi02ZNzH4EKmEu+HF081MnCOItMZW2PDzq/D6e4FNmTcx+BCpiJz7yLCqXZ44a7Dn2AoblZUBkrwX2JRZjcGHiLyCVe22STnqjbMGe1Z9YcNoDJHsvcCmTAYfIvISVrXXTw4LxDLUeFbtsNHQ94JchsarBYMPkQbIZR4dVrXXxQVitcnZ94I78/AYDAYUFxc7VR4tNWUy+BCpnNTz6Lgz2kxL2PlbPZw9l51pdnJ1Hh5naxJHjBiByMhITdUYMfgQqZyzNQWeqlFgHxLnsPO3etg654uLi/Hvf//b4c/XF5waen44W5Oo1+s1995j8CHSGFt3fp6ktQ9WV7Dzt7rUd87Hxsa6fBPg6vnBmsS6GHyINIQTCMoXO39rg6s3Aa6eH6xJrIvBh0gjeOcnf+z8Tfa4cn6wJrEuBh9SJLmMUlIS3vkpA+dZIXsaen6wJrEuBh9SHKlHKSkV7/zkiTMnk6exJtEagw8pDlf7dg3v/OSJo97IHrGCMWsSb2LwIUVjZ13Han4g2rvzY42CdBhqyBZXgzFrEm1j8CHFYmdd57BGgUjZXHlv8n1vG4MPKRY76zpPix9uRFrH9339fBxvQiRP5s66NbGzLhER2cPgQ4pl7qxrDj/srEtERI6wqYsUjcM0iYioIRh8SHG42jcREbmKwYcUh6MViOrHGc2JHGPwIUXihzeRNc5oTuQcdm4mIlIBZ2cq54zmpHWs8SEikjFXm69sLeVCpHUMPkREMtWQ5quauJQLuUPtfcUYfIiIZMqV5isu5ULu0EJfMfbxISJSCKMxBHl5STAaQ2xuY28pFyJHaodtW+eckvuKscaHiEgBnG2+Mi/lUjP8cCkXcoVam0xZ40NEJHO2mq/qq/nhUi4khoacc0rDGh8iIpmz13xlDjQ1Zyq3t5QLZzQnZzhzzikVgw8Rkcw503zFGc1JTGpuMmXwISKSOXPzVe3+FrXvvBlqSCzOnnNKxOBDRCRTbL5S/5wycmbvnFMyBh8vuXABOH0aaNUKiI+XujREpARab77SwpwyclM7ROv1pfUGHiWHbQYfL9iyBZg8GTCZAB8fYPNmYMIEqUtF7uKdKHmDls8hrj/mfVoI2ww+Hnbhws3QA1T/O2UKkJbGmh8l450okfdx/THvUPtnFoOPh50+fTP0mFVVAWfOMPgoWX2zm9b3gcw7USJxqHUyPfI+Bh8Pa9WqunmrZvjx9QVatpSuTCQurX0gs4mPvI3rj5GYGHw8yGAwwNe3AsuXB+KJJ/SoqtLB11fAsmVG+Pr+AYOBFwil09oHMpv4SApqnkyPvI/Bx0NqXyAeeSTEMiTw6tVSbN5c/TgvEMqmtQ9kNvGRFNQ8mR55H4OPh9T+4Lc1JJAXCGXT8geynJv42BynLmqeTI+8j8GHyA1a/UCWcxMfm+PUgxM4kic4HXxKSkqc3mloaKhLhSFSIrXObmqPnJv4OPeLemhhThnyPqeDT9OmTaHT6exuIwgCdDodqqqq3C4YkbNqNmvk5/sgL68RkpNvIC6ueiidJz4YtTC7qT1KauLj3C/KxlBDYnM6+Bw4cMCT5SBySc1mDXt9TsRu1tD6nahSmvjk3A+JiKThdPDp3bu3J8tB5BJz8HDU58QTzRpqDTXOknsTn5z7IRGRdFzu3FxcXIwtW7bg1KlTAIB27dph/Pjx0Ov1ohWOyFly7nOiJkpq4uM5QUT1cSn4fPfdd0hLS0NgYCDuuOMOAMCqVavw7LPPYt++fejUqZOohVQiZz/45XCBUAMl9TlRMiU18fGcIKL6uBR8ZsyYgSFDhuCll15Co0bVu7hx4wYmTpyIrKwsfP7556IWUomUdIFQA6X0OVEDpZyzPCeIqD4u1/jUDD0A0KhRI8yePRudO3cWrXBKp5QLhFrIvc8JeQfnflEeTjhJ3uRS8AkNDcX58+fRpk0bq8d//fVXhISEiFIwIlfY6nNC2sHaVmXhhJPkbS4FnxEjRmDChAlYuXIlevToAQD48ssvMWvWLIwcOVLUAhIRNRQvkMrBCSfJ21wKPitXroROp8Po0aNx48YNAICfnx+mTZuGpUuXilpAInvYiZyIiBrCpeDj7++PtWvXYsmSJTh79iwAICUlBUFBQaIWjsgRNmsQqQtn2iZPc2uR0qCgILRv316sshC5hKGGSB040zZ5g0vB5/r161i/fj0OHDiAS5cuwWQyWT1/9OhRUQpndu7cOSxatAiffvopCgsLERcXh4cffhjz5s2zasI4ceIEMjIy8O233yIyMhLTp0/H7NmzRS0LEZGcKXWElBZm2lbqa6M2LgWfCRMmYN++fbj33ntxxx13OFy81F0///wzTCYTXnzxRbRs2RInT57EpEmTcO3aNaxcuRJA9erxAwYMQP/+/bFp0yb88MMPGD9+PJo2bYrJkyd7tHxERHKg5BFSap9pW8mvjdq4FHz27t2L999/Hz179hS7PPVKT09Henq65fsWLVogNzcXGzdutASf1157DRUVFXj55Zfh7++Pdu3a4fjx41i1ahWDDxHZpZY7cSWPkFL7TNtKfm3UxqXgc8stt0g+X4/RaERYWJjl+8OHD6NXr15WTV9paWlYtmwZfv/9dzRr1qze/ZSXl6O8vNzyfUlJiecKTUSyo+Y7cSV0FDZ/ZjuaaZsjM0ksLgWf5557Dk888QQ2bdqExMREscvk0JkzZ7B+/XpLbQ8AFBYWIjk52Wq76Ohoy3O2gs+SJUuwcOFCzxWWiGRNrXfiSukoXHtk5vz5l3HuXCMkJd1AXFwXAF0UU+PWEEoIpWrlUvDp3Lkzrl+/jhYtWiAoKAh+fn5WzxcVOVc1OWfOHCxbtszuNqdOnbKaIfq3335Deno67rvvPkyaNKnhha9l7ty5mDlzpuX7kpISJCQkuL1fIlImWxekK1euKOYC7KmOwp5qEqz5M7GxQGqqS8VTDKWEUrVyKfiMHDkSv/32GxYvXozo6GiXOzc/9thjGDt2rN1tWrRoYfl/fn4+7rrrLvTo0QObN2+22i4mJgYXL160esz8fUxMjM39BwQEICAgoIElJyI1sndBys7OBqCMJi9PdBRWc5OgN2lh9JrcuRR8vvrqKxw+fBgdOnRw65dHRkYiMjLSqW1/++033HXXXUhNTcXWrVvh42P9pu7evTvmzZuHyspKSw3U/v370bp1a5vNXEREZrYuSFFRhYiPL7Bsp4QmL090FFZrk6C3qX30mhL4ON6krjZt2uCPP/4Quyw2/fbbb+jTpw+aN2+OlStX4vLlyygsLERhYaFlmwcffBD+/v6YMGECfvzxR7z55ptYu3atVTMWEZEtti5I//znRBw92lGiUrnG3FFYp6ueY612R2ExGI0hyMtLgtHIhakbwhxKa1LT6DUlcKnGZ+nSpXjsscfw7LPPon379nX6+ISGhopSOLP9+/fjzJkzOHPmDOLj462eEwQBAKDX67Fv3z5kZGQgNTUVERERmD9/PoeyE5FT6qslqaacpoiaI586dTqGlJQzKCoKQ1hYkVXZ3R0hxT4qDcfRa/KhE8zJoQHMzUy1+/YIggCdToeqqipxSieBkpIS6PV6GI1G0QMcEclPQUGBpc9gzQt6bWPGbENy8i+YPHkyYmNjvV1Mp3mqA7L5OBmNIVizJqtOM1pW1hro9aWyPz5Sqvna5Of71Bi9Vl0DpJTO83Ll7PXbpRqfAwcOuFwwIiI5qV1LEhVViH/+cyJq9gRQUlOEpy+cauyj4q0JLLU2ek2uXAo+vXv3dmq7v//973j66acRERHhyq8hIvI48zwy+fn5yM7ORnx8AYYMsd0UoXVqm2GZo9W0x63V2R3517/+hccff5zBh4hkLTw83OqO317/GK1z1EdFaTwxWk0tS6ColUeDjwvdh4iIJFG7U6leX1rvxVyrnU+91XFa6ViDJH8eDT5EREpRe+mE+mj5Tl0rx8fdpSQ435H8MfgQkWTk1iSg9Iu2p6n9+HCYvjYw+MhQ7SGPeXmNkJzMIY+kLrWbBGzdabNJgLzBU0tJaG0xUrndzNSHwUdmal4M7N198GJASlfzw9Heuc4mAfIGTwzT11oNklL6NzV4yYobN27g6aefxoULFxxu+/DDD3MSwAYyf8jbuvswTw/PiwGphaNzncgbxF5KQovntVL6NzU4+DRq1AgrVqzAjRs3HG67ceNGDmV3kb27DyI14blOUqq9lISt9c0aOlqN57V813Nzqamrb9++OHjwIJKSkkQuDpmpbZIwIlt4rpOUao9Wmz//co2lJLoA6OJSvxStn9dybuZzKfgMHDgQc+bMwQ8//IDU1FQEBwdbPT9kyBBRCqdlapskTGuU0MFPLniuk9TEXEqCi5F6rqO4WFwKPn//+98BAKtWrarznNIXKZUTzh6rTByt1HA810ktPFWDpCRyX8/NpeBjMpkcb0SisDV7LMmXWkcreboWi+c6qYXWFyOVezOfS8HnlVdewYgRIxAQEGD1eEVFBd544w2MHj1alMIRKZncq3sbwhPDVJ2t6ldDkwCbPklL5N587VLwGTduHNLT0xEVFWX1eGlpKcaNG8fg4wYtXQzUTu7VvQ1R+6Jtq/muIbVYWlkCQSlzmxC5SynrubkUfARBgE6nq/P4hQsXoNfr3S6UlmnlYqAFcq/udZWYozW0cB4rZW4TIncp5frVoODTsWNH6HQ66HQ69OvXD40a3fzxqqoq5OXlIT09XfRCao3UJwWJQ+7Vva5QU/OdVLS2hAFpixKuXw0KPkOHDgUAHD9+HGlpaWjSpInlOX9/fyQlJWH48OGiFpBIydQ2WklNzXdSkPPcJkRa0aDg89RTTwEAkpKSMGLECDRu3NgjhSJSEzWNVlJr8503sLaMSB5c6uMzZswYANVt0pcuXaozvL158+bul4xIodTcQV2NzXfewtoyInlwKficPn0a48ePx1dffWX1uLnTMycwJC1TSgc/V6mt+c5blFZbxiH4zlPisVJimcXiUvAZO3YsGjVqhL179yI2NrbeEV5EWqa2D4zatVO2mu+UWIvlLUqqLeMQfOcp8Vgpscxicin4HD9+HDk5OWjTpo3Y5SEiGVJ7LZYnKWVuk5o8MW+TWinxWGl9igWXgk/btm1x5coVsctCRDLGUOMapYdGjkRznlKPldamWHAp+CxbtgyzZ8/G4sWL0b59e/j5+Vk9HxoaKkrhiIjUQK6hxhGORHOeUo+VUsOaO1wKPv379wcA9O3b16p/Dzs3ExGpB0eiOU+Jx0qpYc1dLgWfAwcOiF0OIiKSGaWNRJOSEo+VEsOaGHwcb1JX79694ePjg5deeglz5sxBy5Yt0bt3b5w/fx6+vr5il5GIiCRgHomm01XP1SbnkWhSU+KxMoe1muQe1sTgUo3Prl27MGrUKDz00EM4duwYysvLAQBGoxGLFy/G+++/L2ohiYhIGpy3yXlKO1ZKmmJBTC4Fn2eeeQabNm3C6NGj8cYbb1ge79mzJ5555hnRCkdERN7HeZucp8RjpcQpFsSkEwRBaOgPBQUF4aeffkJSUhJCQkLw/fffo0WLFvjvf/+Ltm3b4vr1654oq1eUlJRAr9fDaDRydBoRaZaWZ/ZtKCUeKyWW2RFnr98u1fjExMTgzJkzSEpKsnr80KFDaNGihSu7JCIiGVHaRU9KSjxWSiyzWFzq3Dxp0iQ8+uijOHLkCHQ6HfLz8/Haa6/h8ccfx7Rp08QuIxEREZEoXKrxmTNnDkwmE/r164eysjL06tULAQEBePzxxzF9+nSxy0hEREQkCpf6+JhVVFTgzJkzuHr1Ktq2bYsmTZqIWTZJsI8PERGR8ni0j4+Zv78/2rZt684uiIiIiLzGpT4+RERERErE4ENERESaweBDREREmsHgQ0RERJrhVudmIiIiJVPjDMZkH4MPERFpksFgwIYNGyzfG40hKCoKR1iYwWrNqszMTIYfFWHwISIij5B7bUrNsh092rHOKuWdOh2rsx0pH4MPERGJTkm1KUZjiCX0AIAg+GDPnnuQknKm3pXWSdkYfIiISHRKqk0pKgq3hB4zQfBBUVEYg48KcVQXERF5jK3aFKMxROKS3RQWZoBOZ7J6TKczISysSKISkSexxoeoHnLvm0CkFK7WpnjzPajXl2Lw4L11aqVY26NODD5EtdTum2CLHPomEMmduTalZvhxVJsiRf+gTp2OISXlDIqKwhAWVsTQI5ILF4DTp4FWrYD4eKlLU43Bh6gWZ/scyKFvApHcuVKbIlX/IL2+lIFHBObauh07AjF7th4mkw4+PgKWLzfiwQf/kLzGnMGHiIjcUl+z1JUrVyz/d7U2xdOjrfz9/UXdjm7W1hmNIVizJguCoAMAmEw6zJoVit9+exl6famkNeYMPkRE5DL7zVI3t3OlNsXTo63Cw8ORmZnJ/nwiMh9LR6+dlDXmDD5EROQyZ5ulbLFXm+JK/6CGYqjxDG+8dq5i8CEiIrc5apYaNmwYIiIirH7GUW0KR1spl5xfOwYfIgdsjSghopscNW1EREQgNja2wfvlaCvlkutrx+BDZIcrVfdEWuRu00bNDtI1O0YDHG2lZHJ87Rh8iGox9zlwVHXPkR5EN7nTtFF/B+kkh7WsfA+SKxh8iGoxj/Q4cABYvbpu1X3PnmPQpw87RRLV5mrThrMdpGv2E+JoK3IVgw9RPcLDw9GtG+DjA5hqLOHj6wt07RoOft5qE5cyccydpg1Htayu9hMi71HC3EgMPkQ2xMcDmzcDU6YAVVXVoefFF+Uz7Tp5F5cyqZ+YFzqukq58SpgbicGHyI4JE4C0NODMGaBlS4YeLav9QW5rtJ/WljIR80In57lfyHlyD/4MPkQOxMcz8JA1jvazxlXSSUkYfIiIGsDT60dpnVznfiH1YPAhImoA9kPxPDnO/ULq4eN4E3kpLy/H7bffDp1Oh+PHj1s9d+LECdx5551o3LgxEhISsHz5cmkKSUSqZe6HUhP7obhHCSOBSD0UV+Mze/ZsxMXF4fvvv7d6vKSkBAMGDED//v2xadMm/PDDDxg/fjyaNm2KyZMnS1RaIlIb9kMRnxJGApF6KCr4fPDBB9i3bx927dqFDz74wOq51157DRUVFXj55Zfh7++Pdu3a4fjx41i1ahWDDxGJiv1QxMdQQ96imKauixcvYtKkSXj11VcRFBRU5/nDhw+jV69eVlWhaWlpyM3Nxe+//25zv+Xl5SgpKbH6IiKqrXYzi15fiuTkX+qEHjbHEMmbImp8BEHA2LFjMXXqVHTu3Bnnzp2rs01hYSGSk5OtHouOjrY816xZs3r3vWTJEixcuFD0MpP4OGsuSYnNMUTqIGnwmTNnDpYtW2Z3m1OnTmHfvn0oLS3F3LlzRS/D3LlzMXPmTMv3JSUlSEhIEP33kHs4ay7JgdrPLd5ckBZIGnwee+wxjB071u42LVq0wKefforDhw8jICDA6rnOnTvjoYcewvbt2xETE4OLFy9aPW/+PiYmxub+AwIC6uyX5MfZ2XC1NmsukVjqXyG97szUvLkgpZM0+ERGRiIyMtLhduvWrcMzzzxj+T4/Px9paWl488030bVrVwBA9+7dMW/ePFRWVsLPzw8AsH//frRu3dpmMxeRnPHum7zJ2RXSeXNBSqeIPj7Nmze3+r5JkyYAgJSUFMT/by2BBx98EAsXLsSECRPwxBNP4OTJk1i7di1Wr17t9fISuYtNeyQVzkxNaqeI4OMMvV6Pffv2ISMjA6mpqYiIiMD8+fM5lJ0UiU17JBXOTE1qp8jgk5SUBEEQ6jx+22234YsvvpCgRERE6sAV0kntFDOPDxEReZ55ZmrzshycmZrURpE1PkRE5DmcmZrUjMGHFEHrixjaGlpM5CneWCG95sjF/Hwf5OU1QnLyDcTFVdc2ceQieQKDDylC7VlztfQhaW9oMZFYvH1zUXPkor1znCMXSWwMPqQY5g+/LVuAyZMBkwnw8QE2bwYmTJC4cB7CocXkLd5eksP8exyd4xy5SGJj8CFFuXDhZugBqv+dMgVISwP+N6WTKpjvqh0NLVZr0x5JQ4qaFQ6fJ29j8CFFOX36Zugxq6oCzpxRV/Ax332fO3cDr74qwGTSWZ7z9RUwffpAJCU1YhMAKR6Hz5O3cTg7KUqrVtXNWzX5+gItW0pTHk8KDw9Hamo0Nm/Wwde3+jFfX+DFF3VITY1m6CFV4PB58jbW+JCixMdX9+mZMqW6pqc6CKirtqe2CROqm/LOnKkOeGr+W0mbOHyevInBhxRHi0EgPl4bfydplzeGzxMBDD6kUAwCRETkCvbxISIir9P6pKQkHdb4EBGR13l73iAiMwYfIiKSBEMNSYFNXURERKQZDD5EREQydOECcOBA9b8kHgYfIiIimdmyBUhMBPr2rf53yxapS6QeDD5EREQyYTAYkJNzEZMnC7XWJBSQk3MRBoNB2gKqADs3E5GmGAwGjiQiWTIYDNiwYQPy8pJgMo2xeq6qSof16z9AcvIvyMzM5DnqBgYfItIM84XFzGgMQVFROMLCDFazBvPCQlIwB3JHC7faC+7kGIMPEWlGzQvG0aMdsWfPPRAEH8vCmJ06HauzHZG3mRdurX1+ckkPcTD4EJHmGI0hlosKAAiCD/bsuQcpKWd4cSFZ4MKtnsPgQ0SaU1QUbtWMAFSHn6KiMF5gSDa4cKtncFQXEWmOuQ9FTTX7UBCRejH4EJHmmPtQmMMP+1AQaQebuojcwKHRysU+FETaxOBD5KLaQ6Nt4dBo+SguLq7nUV2928XGxnq8PEQ1+fv7i7od1Y/Bh8hFtWt6bM0Jw6HR8qHT3Qw59oaz19yOyFvCw8ORmZmp6lrkCxeA06eBVq2A+HhpysDgQyQCexdRkg+9Xg/A8XB283ZE3qbkUOPIli3A5MnVS3D4+ACbNwMTJni/HOzcTOQmWxdRozFE4pKRLfaGsxOR+C5cuBl6APP6Y9KsPM/gQ+QmXkSVh8PZibzHYDDg668NltBjVlUFHDli8PrCqww+RG7iRVR5OJydyDvMg0C++mp7vZ+TX365HRs2bPBq+GEfHyI3cV0dZeJwdiLPM3fUdvQ56c1BIAw+RCLgRVSZuCQAkffI5XOSwYfIRbXn0rB1EeWcG/LBeVKIpCWHmw0GHyIXaWHODbXha0ZEDD5EbuAFUnn4mhFpG0d1ERERkWYw+BAREZFmMPgQERGRR8hxQAH7+BAREZFHyHFAAYMPEREReYzcBhQw+BARkeQMBoOsagVIvRh8iIhIUub1nMyMxhAUFYUjLMxgNdldZmYmww+5jcGHiIgkVbOm5+jRjnXWc+rU6Vid7YhcxeBDRESyYDSGWEIPAAiCD/bsuQcpKWfcWuaAzWhUE4MPERHJQlFRuCX0mAmCD4qKwlwOPmxGo9oYfIiISBbCwgzQ6UxW4UenMyEsrMjlfbIZjWrjBIZERCQLen0pBg/eC53OBACWcCLGat62mtGMxhC3903KwhofIiKSjU6djiEl5QyKisIQFlYkSugBPNOMRsrE4ENERLKi15eKHkY80YxGysSmLiIikpQ31nPyZDMaKQtrfIiISFLeWs/JU81opCwMPkREJDlvDSX3RDMaKQubuoiISLW80YxGysIaHyIiUi1vNaORcjD4EBGRqjHUUE1s6iLSiAsXgAMHqv8lItIqBh8iDdiyBUhMBPr2rf53yxapS0REJA0GHyIVMxgMyMm5iMmTBZiqpy+ByQRMmSIgJ+ciDAaDtAUkIvIy9vEhUinzqtR5eUkwmcZYPVdVpcP69R8gOfkXrkpNRJrCGh8ilTKPYjFP1V9Tzan6uSo1EWkJgw+RynGqfiKimxQVfN577z107doVgYGBaNasGYYOHWr1/Pnz5zFo0CAEBQUhKioKs2bNwo0bN6QpLJGMdOp0DFlZazBmzDZkZa1Bp07HpC4SEZEkFNPHZ9euXZg0aRIWL16Mvn374saNGzh58qTl+aqqKgwaNAgxMTH46quvUFBQgNGjR8PPzw+LFy+WsORE8sCp+omIFBJ8bty4gUcffRQrVqzAhAkTLI+3bdvW8v99+/bhp59+wscff4zo6GjcfvvtWLRoEZ544gksWLCA05ETERGRMpq6jh49it9++w0+Pj7o2LEjYmNjMXDgQKsan8OHD6N9+/aIjo62PJaWloaSkhL8+OOPUhSbiIiIZEYRwee///0vAGDBggX4xz/+gb1796JZs2bo06cPioqqR6YUFhZahR4Alu8LCwtt7ru8vBwlJSVWX0RERKROkgafOXPmQKfT2f36+eefYfrfzGvz5s3D8OHDkZqaiq1bt0Kn0+Gtt95yqwxLliyBXq+3fCUkJIjxpxFJjqtSk5YYDAYUFBTY/OJknWQmaR+fxx57DGPHjrW7TYsWLVBQUADAuk9PQEAAWrRogfPnzwMAYmJi8M0331j97MWLFy3P2TJ37lzMnDnT8n1JSQnDD6kCV6UmrTBP1ukIJ+skQOLgExkZicjISIfbpaamIiAgALm5ufjLX/4CAKisrMS5c+eQmJgIAOjevTueffZZXLp0CVFRUQCA/fv3IzQ01Cow1RYQEICAgAAR/hoi+eGHPGmBs5NwcrJOAhQyqis0NBRTp07FU089hYSEBCQmJmLFihUAgPvuuw8AMGDAALRt2xajRo3C8uXLUVhYiH/84x/IyMhgsCEiIiIACgk+ALBixQo0atQIo0aNwh9//IGuXbvi008/RbNmzQAAvr6+2Lt3L6ZNm4bu3bsjODgYY8aMwdNPPy1xyYlIzQwGA5sTiRREMcHHz88PK1euxMqVK21uk5iYiPfff9+LpSIiLWPfEnkyGkNQVBSOsDADJ+2kOhQTfIiI5IZ9S+Tn6NGO2LPnHgiCj2VdOi7RQjUx+BARqZxWmuOMxhBL6AEAQfDBnj33ICXlDGt+yILBh4hIJHJsYtFSc1xRUbgl9JgJgg+KisJk83qQ9Bh8iIhEINcmFi00x5kn4QwLM0CnM1mFH53OhLCwIqvtSNsYfIiI3MQmFmnVnKzzlltK8MQTelRV6eDrK2DZshI8+OBI1TTnkfsYfIiI3MQmFumZQ81jjwEjRgBnzgAtW+oQH98UQFMpi0Yyw+BDROQmR00s5F3x8dVfRPVRxOrsRERyZO4zoteXYvDgvdDpqhdUNvfxMdf2sG8JkXywxoeIyEW1F4KdP/8yzp1rhKSkG4iL6wKgi+z6lshx5BmRNzH4EBG5oWaoiY0FUlMlLIwDch15RuRNbOoiIlIxczObrZFnRmOI1XZEaqcTBEGQuhByUlJSAr1eD6PRiNDQUKmLQ0Qq5q0ZlQ0GAw4cAO67r+6+du40oE8fyKo5jsgVzl6/2dRFRCQBb86oHB4ejm7dAB8fwGS6+bivL9C1aziYeUhL2NRFRCQBb8+oHB8PbN5cHXaA6n9ffJHDvkl7WONDRKQREyYAaWnmyf0YekibGHyIiDSEk/uR1rGpi4iIiDSDwYeIiIg0g8GHiIiINIPBh4iIiDSDwYeISAK1Z0o2GkOQl5dkmUnZ1nZE5B6O6iIikkDNBU537AjE00/rYTLp4OMjYPlyIx588A/ZLXBKpAZcsqIWLllBRN504QKQmFh3RuVz5zjsnKghnL1+s6mLiEhCp09bhx4AqKqqnmSQiMTH4ENEJKFWrarX0KrJ17d6ZmUiEh+DDxGRhLiGFpF3sXMzEZHEuIYWkfcw+BARyQDX0CLyDjZ1ERERkWYw+BAREZFmMPgQERGRZjD4EBERkWYw+BAREZFmMPgQERGRZjD4EBERkWYw+BAREZFmMPgQERGRZjD4EBERkWYw+BAREZFmcK2uWgRBAACUlJRIXBIiIiJylvm6bb6O28LgU0tpaSkAICEhQeKSEBERUUOVlpZCr9fbfF4nOIpGGmMymZCfn4+QkBDodDqpi+M1JSUlSEhIwK+//orQ0FCpi6NoPJbi4HEUD4+leHgsxeGJ4ygIAkpLSxEXFwcfH9s9eVjjU4uPjw/i4+OlLoZkQkND+WYWCY+lOHgcxcNjKR4eS3GIfRzt1fSYsXMzERERaQaDDxEREWkGgw8BAAICAvDUU08hICBA6qIoHo+lOHgcxcNjKR4eS3FIeRzZuZmIiIg0gzU+REREpBkMPkRERKQZDD5ERESkGQw+REREpBkMPhrz+eefY/DgwYiLi4NOp8Pbb79t9bwgCJg/fz5iY2MRGBiI/v374/Tp09IUVuYcHcuxY8dCp9NZfaWnp0tTWBlbsmQJunTpgpCQEERFRWHo0KHIzc212ub69evIyMhAeHg4mjRpguHDh+PixYsSlVienDmOffr0qXNOTp06VaISy9fGjRtx2223WSbX6969Oz744APL8zwfnefoWEpxTjL4aMy1a9fQoUMHPP/88/U+v3z5cqxbtw6bNm3CkSNHEBwcjLS0NFy/ft3LJZU/R8cSANLT01FQUGD5ev31171YQmU4ePAgMjIy8PXXX2P//v2orKzEgAEDcO3aNcs2M2bMwJ49e/DWW2/h4MGDyM/Px7BhwyQstfw4cxwBYNKkSVbn5PLlyyUqsXzFx8dj6dKlyMnJwXfffYe+ffvir3/9K3788UcAPB8bwtGxBCQ4JwXSLADC7t27Ld+bTCYhJiZGWLFiheWx4uJiISAgQHj99dclKKFy1D6WgiAIY8aMEf76179KUh4lu3TpkgBAOHjwoCAI1eegn5+f8NZbb1m2OXXqlABAOHz4sFTFlL3ax1EQBKF3797Co48+Kl2hFKxZs2bCP//5T56PIjAfS0GQ5pxkjQ9Z5OXlobCwEP3797c8ptfr0bVrVxw+fFjCkinXZ599hqioKLRu3RrTpk2DwWCQukiyZzQaAQBhYWEAgJycHFRWVlqdl23atEHz5s15XtpR+ziavfbaa4iIiMCtt96KuXPnoqysTIriKUZVVRXeeOMNXLt2Dd27d+f56Ibax9LM2+ckFykli8LCQgBAdHS01ePR0dGW58h56enpGDZsGJKTk3H27Fn83//9HwYOHIjDhw/D19dX6uLJkslkQlZWFnr27Ilbb70VQPV56e/vj6ZNm1pty/PStvqOIwA8+OCDSExMRFxcHE6cOIEnnngCubm5yM7OlrC08vTDDz+ge/fuuH79Opo0aYLdu3ejbdu2OH78OM/HBrJ1LAFpzkkGHyIPeeCBByz/b9++PW677TakpKTgs88+Q79+/SQsmXxlZGTg5MmTOHTokNRFUTRbx3Hy5MmW/7dv3x6xsbHo168fzp49i5SUFG8XU9Zat26N48ePw2g0YufOnRgzZgwOHjwodbEUydaxbNu2rSTnJJu6yCImJgYA6oxOuHjxouU5cl2LFi0QERGBM2fOSF0UWcrMzMTevXtx4MABxMfHWx6PiYlBRUUFiouLrbbneVk/W8exPl27dgUAnpP18Pf3R8uWLZGamoolS5agQ4cOWLt2Lc9HF9g6lvXxxjnJ4EMWycnJiImJwSeffGJ5rKSkBEeOHLFqjyXXXLhwAQaDAbGxsVIXRVYEQUBmZiZ2796NTz/9FMnJyVbPp6amws/Pz+q8zM3Nxfnz53le1uDoONbn+PHjAMBz0gkmkwnl5eU8H0VgPpb18cY5yaYujbl69apVks7Ly8Px48cRFhaG5s2bIysrC8888wxatWqF5ORkPPnkk4iLi8PQoUOlK7RM2TuWYWFhWLhwIYYPH46YmBicPXsWs2fPRsuWLZGWliZhqeUnIyMDO3bswDvvvIOQkBBLPwm9Xo/AwEDo9XpMmDABM2fORFhYGEJDQzF9+nR0794d3bp1k7j08uHoOJ49exY7duzA//t//w/h4eE4ceIEZsyYgV69euG2226TuPTyMnfuXAwcOBDNmzdHaWkpduzYgc8++wwfffQRz8cGsncsJTsnvTqGjCR34MABAUCdrzFjxgiCUD2k/cknnxSio6OFgIAAoV+/fkJubq60hZYpe8eyrKxMGDBggBAZGSn4+fkJiYmJwqRJk4TCwkKpiy079R1DAMLWrVst2/zxxx/C3//+d6FZs2ZCUFCQ8Le//U0oKCiQrtAy5Og4nj9/XujVq5cQFhYmBAQECC1bthRmzZolGI1GaQsuQ+PHjxcSExMFf39/ITIyUujXr5+wb98+y/M8H51n71hKdU7qBEEQPBeriIiIiOSDfXyIiIhIMxh8iIiISDMYfIiIiEgzGHyIiIhIMxh8iIiISDMYfIiIiEgzGHyIiIhIMxh8iIiISDMYfIiIiEgzGHyISDEqKiqkLkIdciwTEdnG4ENEkunTpw8yMzORmZkJvV6PiIgIPPnkkzCvpJOUlIRFixZh9OjRCA0NxeTJkwEAhw4dwp133onAwEAkJCTgkUcewbVr1yz7feGFF9CqVSs0btwY0dHRuPfeey3P7dy5E+3bt0dgYCDCw8PRv39/y8/26dMHWVlZVmUcOnQoxo4da/ne1TIRkTww+BCRpLZv345GjRrhm2++wdq1a7Fq1Sr885//tDy/cuVKdOjQAceOHcOTTz6Js2fPIj09HcOHD8eJEyfw5ptv4tChQ8jMzAQAfPfdd3jkkUfw9NNPIzc3Fx9++CF69eoFACgoKMDIkSMxfvx4nDp1Cp999hmGDRuGhi5Z2NAyEZF8cJFSIpJMnz59cOnSJfz444/Q6XQAgDlz5uDdd9/FTz/9hKSkJHTs2BG7d++2/MzEiRPh6+uLF1980fLYoUOH0Lt3b1y7dg3vv/8+xo0bhwsXLiAkJMTq9x09ehSpqak4d+4cEhMT6y3P7bffjjVr1lgeGzp0KJo2bYpt27YBgEtlaty4sVvHiYjEwxofIpJUt27dLKEHALp3747Tp0+jqqoKANC5c2er7b///nts27YNTZo0sXylpaXBZDIhLy8Pd999NxITE9GiRQuMGjUKr732GsrKygAAHTp0QL9+/dC+fXvcd999eOmll/D77783uMwNLRMRyQeDDxHJWnBwsNX3V69exZQpU3D8+HHL1/fff4/Tp08jJSUFISEhOHr0KF5//XXExsZi/vz56NChA4qLi+Hr64v9+/fjgw8+QNu2bbF+/Xq0bt3aEk58fHzqNHtVVla6XSYikg8GHyKS1JEjR6y+//rrr9GqVSv4+vrWu32nTp3w008/oWXLlnW+/P39AQCNGjVC//79sXz5cpw4cQLnzp3Dp59+CgDQ6XTo2bMnFi5ciGPHjsHf39/SbBUZGYmCggLL76qqqsLJkycd/g3OlImI5IHBh4gkdf78ecycORO5ubl4/fXXsX79ejz66KM2t3/iiSfw1VdfITMzE8ePH8fp06fxzjvvWDoS7927F+vWrcPx48fxyy+/4JVXXoHJZELr1q1x5MgRLF68GN999x3Onz+P7OxsXL58GX/+858BAH379sV7772H9957Dz///DOmTZuG4uJih3+DozIRkXw0kroARKRto0ePxh9//IE77rgDvr6+ePTRRy1DxOtz22234eDBg5g3bx7uvPNOCIKAlJQUjBgxAgDQtGlTZGdnY8GCBbh+/TpatWqF119/He3atcOpU6fw+eefY82aNSgpKUFiYiKee+45DBw4EAAwfvx4fP/99xg9ejQaNWqEGTNm4K677nL4NzgqExHJB0d1EZFk6htFRUTkSWzqIiIiIs1g8CEiIiLNYFMXERERaQZrfIiIiEgzGHyIiIhIMxh8iIiISDMYfIiIiEgzGHyIiIhIMxh8iIiISDMYfIiIiEgzGHyIiIhIMxh8iIiISDP+P6p+cHelrTChAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -558,7 +731,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZC0lEQVR4nO3deVhU9eI/8PewDALCIIssooBomqYmWIaVlnlFH5fbV2+SqbnmkpikueXNJXOr3L1p9TM1y7SSuqlZLpllcs1cUm9GSpgbqIAMKMk2n98f3JkYmBlmObNx3q/nmUfmnDNnPucwNW8+q0IIIUBEREQkAx7OLgARERGRozD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQEbmgTZs2QaFQ4OLFi84uClG9wuBDJFPHjh1Damoq2rZtC39/fzRr1gyDBg3Cb7/9VuvYxx57DAqFAgqFAh4eHggMDESrVq0wbNgw7Nu3z6L33blzJ7p164bGjRvDz88PzZs3x6BBg/DVV19JdWm1LFq0CJ9//nmt7UeOHMG8efNQWFhot/euad68ebp7qVAo4OfnhzZt2uCf//wnioqKJHmPrVu3YuXKlZKci6i+YfAhkqmlS5dix44deOKJJ7Bq1SqMHTsW3333HRISEnD27Nlax0dHR2PLli14//338cYbb6B///44cuQIevbsiZSUFJSXl9f5nm+++Sb69+8PhUKBWbNmYcWKFRg4cCDOnz+Pbdu22eMyAZgOPvPnz3do8NFat24dtmzZguXLl6N169ZYuHAhevXqBSmWT2TwITLOy9kFICLnmDJlCrZu3QqlUqnblpKSgnbt2mHJkiX44IMP9I5XqVQYOnSo3rYlS5bghRdewFtvvYXY2FgsXbrU6PtVVFRgwYIF+Nvf/oa9e/fW2n/jxg0br8h1lJSUwM/Pz+Qx//jHPxAaGgoAGD9+PAYOHIj09HT85z//QVJSkiOKSSRLrPEhkqkuXbrohR4AaNmyJdq2bYtz586ZdQ5PT0+sXr0abdq0wdq1a6FWq40em5eXh6KiIjz88MMG9zdu3Fjv+d27dzFv3jzcc889aNCgASIjIzFgwABkZWXpjnnzzTfRpUsXhISEwNfXF4mJifj000/1zqNQKHDnzh1s3rxZ17w0YsQIzJs3D9OmTQMAxMXF6fZV71PzwQcfIDExEb6+vggODsbTTz+Ny5cv653/sccew3333Yfjx4+ja9eu8PPzw8svv2zW/auue/fuAIDs7GyTx7311lto27YtfHx8EBUVhYkTJ+rVWD322GPYvXs3/vjjD901xcbGWlweovqKNT5EpCOEwPXr19G2bVuzX+Pp6YnBgwfjlVdeweHDh9GnTx+DxzVu3Bi+vr7YuXMnJk2ahODgYKPnrKysRN++fXHgwAE8/fTTmDx5MoqLi7Fv3z6cPXsW8fHxAIBVq1ahf//+GDJkCMrKyrBt2zY89dRT2LVrl64cW7ZswZgxY/Dggw9i7NixAID4+Hj4+/vjt99+w0cffYQVK1boal/CwsIAAAsXLsQrr7yCQYMGYcyYMbh58ybWrFmDrl274uTJkwgKCtKVNz8/H71798bTTz+NoUOHIjw83Oz7p6UNdCEhIUaPmTdvHubPn48ePXpgwoQJyMzMxLp163Ds2DH88MMP8Pb2xuzZs6FWq3HlyhWsWLECANCwYUOLy0NUbwkiov/ZsmWLACA2bNigt71bt26ibdu2Rl/32WefCQBi1apVJs8/Z84cAUD4+/uL3r17i4ULF4rjx4/XOu69994TAMTy5ctr7dNoNLqfS0pK9PaVlZWJ++67T3Tv3l1vu7+/vxg+fHitc73xxhsCgMjOztbbfvHiReHp6SkWLlyot/3MmTPCy8tLb3u3bt0EALF+/Xqj113d3LlzBQCRmZkpbt68KbKzs8Xbb78tfHx8RHh4uLhz544QQoiNGzfqle3GjRtCqVSKnj17isrKSt351q5dKwCI9957T7etT58+IiYmxqzyEMkNm7qICADw66+/YuLEiUhKSsLw4cMteq22RqG4uNjkcfPnz8fWrVvRsWNHfP3115g9ezYSExORkJCg17y2Y8cOhIaGYtKkSbXOoVAodD/7+vrqfr516xbUajUeffRRnDhxwqLy15Seng6NRoNBgwYhLy9P94iIiEDLli1x8OBBveN9fHwwcuRIi96jVatWCAsLQ1xcHMaNG4cWLVpg9+7dRvsG7d+/H2VlZUhLS4OHx1//637uuecQGBiI3bt3W36hRDLEpi4iQm5uLvr06QOVSoVPP/0Unp6eFr3+9u3bAICAgIA6jx08eDAGDx6MoqIiHD16FJs2bcLWrVvRr18/nD17Fg0aNEBWVhZatWoFLy/T/4vatWsXXnvtNZw6dQqlpaW67dXDkTXOnz8PIQRatmxpcL+3t7fe8yZNmtTqL1WXHTt2IDAwEN7e3oiOjtY13xnzxx9/AKgKTNUplUo0b95ct5+ITGPwIZI5tVqN3r17o7CwEN9//z2ioqIsPod2+HuLFi3Mfk1gYCD+9re/4W9/+xu8vb2xefNmHD16FN26dTPr9d9//z369++Prl274q233kJkZCS8vb2xceNGbN261eJrqE6j0UChUGDPnj0GQ2DNPjPVa57M1bVrV12/IiJyHAYfIhm7e/cu+vXrh99++w379+9HmzZtLD5HZWUltm7dCj8/PzzyyCNWlaNTp07YvHkzcnJyAFR1Pj569CjKy8tr1a5o7dixAw0aNMDXX38NHx8f3faNGzfWOtZYDZCx7fHx8RBCIC4uDvfcc4+ll2MXMTExAIDMzEw0b95ct72srAzZ2dno0aOHbputNV5E9Rn7+BDJVGVlJVJSUpCRkYFPPvnEqrljKisr8cILL+DcuXN44YUXEBgYaPTYkpISZGRkGNy3Z88eAH814wwcOBB5eXlYu3ZtrWPF/yb48/T0hEKhQGVlpW7fxYsXDU5U6O/vb3CSQn9/fwCotW/AgAHw9PTE/Pnza00oKIRAfn6+4Yu0ox49ekCpVGL16tV6ZdqwYQPUarXeaDp/f3+TUwsQyRlrfIhkaurUqfjiiy/Qr18/FBQU1JqwsOZkhWq1WndMSUkJLly4gPT0dGRlZeHpp5/GggULTL5fSUkJunTpgoceegi9evVC06ZNUVhYiM8//xzff/89nnzySXTs2BEA8Oyzz+L999/HlClT8OOPP+LRRx/FnTt3sH//fjz//PP4+9//jj59+mD58uXo1asXnnnmGdy4cQP/+te/0KJFC5w+fVrvvRMTE7F//34sX74cUVFRiIuLQ+fOnZGYmAgAmD17Np5++ml4e3ujX79+iI+Px2uvvYZZs2bh4sWLePLJJxEQEIDs7Gx89tlnGDt2LF566SWb7r+lwsLCMGvWLMyfPx+9evVC//79kZmZibfeegsPPPCA3u8rMTER27dvx5QpU/DAAw+gYcOG6Nevn0PLS+SynDmkjIicRzsM29jD1LENGzYULVu2FEOHDhV79+416/3Ky8vFu+++K5588kkRExMjfHx8hJ+fn+jYsaN44403RGlpqd7xJSUlYvbs2SIuLk54e3uLiIgI8Y9//ENkZWXpjtmwYYNo2bKl8PHxEa1btxYbN27UDRev7tdffxVdu3YVvr6+AoDe0PYFCxaIJk2aCA8Pj1pD23fs2CEeeeQR4e/vL/z9/UXr1q3FxIkTRWZmpt69MTXUvyZt+W7evGnyuJrD2bXWrl0rWrduLby9vUV4eLiYMGGCuHXrlt4xt2/fFs8884wICgoSADi0nagahRASLAxDRERE5AbYx4eIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZMNtgs/ixYvxwAMPICAgAI0bN8aTTz6JzMxMvWPu3r2LiRMnIiQkBA0bNsTAgQNx/fp1J5WYiIiIXI3bDGfv1asXnn76aTzwwAOoqKjAyy+/jLNnz+KXX37Rzb46YcIE7N69G5s2bYJKpUJqaio8PDzwww8/mP0+Go0G165dQ0BAAKd9JyIichNCCBQXFyMqKgoeHibqdZw6i5ANbty4IQCIQ4cOCSGEKCwsFN7e3uKTTz7RHXPu3DkBQGRkZJh93suXL5uc1I0PPvjggw8++HDdx+XLl01+z7vtkhXadWiCg4MBAMePH0d5ebneQn2tW7dGs2bNkJGRgYceesjgeUpLS1FaWqp7Lv5XAXb58mWT6w4RERGR6ygqKkLTpk0REBBg8ji3DD4ajQZpaWl4+OGHcd999wEAcnNzoVQqERQUpHdseHg4cnNzjZ5r8eLFmD9/fq3tgYGBDD5ERERupq5uKm7Tubm6iRMn4uzZs9i2bZvN55o1axbUarXucfnyZQlKSERERK7I7Wp8UlNTsWvXLnz33XeIjo7WbY+IiEBZWRkKCwv1an2uX7+OiIgIo+fz8fGBj4+PPYtMRERELsJtanyEEEhNTcVnn32Gb775BnFxcXr7ExMT4e3tjQMHDui2ZWZm4tKlS0hKSnJ0cYmIiMgFuU2Nz8SJE7F161b8+9//RkBAgK7fjkqlgq+vL1QqFUaPHo0pU6YgODgYgYGBmDRpEpKSkox2bLaWRqNBWVmZpOckfUql0vRwRCIiIiu4zTw+xjorbdy4ESNGjABQNYHh1KlT8dFHH6G0tBTJycl46623TDZ11VRUVASVSgW1Wm2wc3NZWRmys7Oh0Wisug4yj4eHB+Li4qBUKp1dFCIicgN1fX9ruU3wcRRTN04IgUuXLqG8vLzuCZLIatpJJL29vdGsWTNOJElERHUyN/i4TVOXK6ioqEBJSQmioqLg5+fn7OLUa2FhYbh27RoqKirg7e3t7OIQEVE9wSoLC1RWVgIAm18cQHuPtfeciIhICgw+VmDTi/3xHhMRkT0w+BAREZFssI8PERER1Sk/P9/kVC5KpRIhISEOLJF1GHxkYMSIEdi8eTMAwMvLC8HBwWjfvj0GDx6MESNGmD06bdOmTUhLS0NhYaEdS0tERK4mPz8fa9eu1T1XqwNQUBCC4OB8qFTFuu2pqakuH34YfBzImWm5V69e2LhxIyorK3H9+nV89dVXmDx5Mj799FN88cUX8PLiR4GIiAyr/t114kRH7NzZF0J4QKHQoF+/XUhIOFnrOFfFbzsHqZmWjbFXWvbx8dFN5NikSRMkJCTgoYcewhNPPIFNmzZhzJgxWL58OTZu3Ijff/8dwcHB6NevH15//XU0bNgQ3377LUaOHAngr47Hc+fOxbx587BlyxasWrUKmZmZ8Pf3R/fu3bFy5Uo0btxY8usgInK0+tLEIwW1OkAXegBACA/s3NkX8fEX9Gp+XBmDj4OYm4IdmZa7d++ODh06ID09HWPGjIGHhwdWr16NuLg4/P7773j++ecxffp0vPXWW+jSpQtWrlyJOXPmIDMzEwDQsGFDAEB5eTkWLFiAVq1a4caNG5gyZQpGjBiBL7/80mHXQkRkD87+o9XVFBSE6EKPlhAeKCgIZvAh99C6dWucPn0aAJCWlqbbHhsbi9deew3jx4/HW2+9BaVSCZVKBYVCUWsJkFGjRul+bt68OVavXo0HHngAt2/f1oUjIiJ35Ip/tDpTcHA+FAqNXvhRKDQIDi5wYqksw+HsMieE0DVd7d+/H0888QSaNGmCgIAADBs2DPn5+SgpKTF5juPHj6Nfv35o1qwZAgIC0K1bNwDApUuX7F5+IiJyHJWqGP367YJCUbVepbaPj7vU9gCs8ZG9c+fOIS4uDhcvXkTfvn0xYcIELFy4EMHBwTh8+DBGjx6NsrIyo0t03LlzB8nJyUhOTsaHH36IsLAwXLp0CcnJybL5C4iISE4SEk4iPv4CCgqCERxc4FahB2DwkbVvvvkGZ86cwYsvvojjx49Do9Fg2bJluuHtH3/8sd7xSqWy1hISv/76K/Lz87FkyRI0bdoUAPDTTz855gKIiMgpVKpitws8WmzqkonS0lLk5ubi6tWrOHHiBBYtWoS///3v6Nu3L5599lm0aNEC5eXlWLNmDX7//Xds2bIF69ev1ztHbGwsbt++jQMHDiAvLw8lJSVo1qwZlEql7nVffPEFFixY4KSrJCKyL7U6ANnZsVCrA5xdFIcyd41Kd1jLkjU+MvHVV18hMjISXl5eaNSoETp06IDVq1dj+PDh8PDwQIcOHbB8+XIsXboUs2bNQteuXbF48WI8++yzunN06dIF48ePR0pKCvLz83XD2Tdt2oSXX34Zq1evRkJCAt58803079/fiVdLRCQ9U/PXSM3VhtCHhIQgNTVVr0yFhYWoqKjQPff29kZZWRlycnKcUkZzKYQQwtmFcCVFRUVQqVRQq9UIDAzU23f37l1kZ2cjLi4ODRo0sOi8HBJpGVvuNRGRVHJycvDOO+9ArQ7AypVptUYzpaWthEpVjLFjxyIyMlKS93SH7wtXnMnZ1Pd3dazxcRBDabkmV03HRERypW26qWv+GimbeNxhCL07z+TM4ONADDVERO5F+0frxYsV2LJFQKNR6PZ5egpMmtQbsbFedv3/u7HaFFfgjjM5M/gQERGZEBISgpAQ4J13gHHjgMpKwNMTePttBRITw+363qZqU/Ly8gBY31ogRT8id5zJmcGHiIjIDKNHA8nJwIULQIsWQHS0fd+vrtqU9PR03bGW9qWRqh+RO87kzOBDRERkpuho+wceLUtqU2rW3NRVm6NWq80qQ119dLQzOdeslXLV2h6AwYeIiMglGapNATS4c8cfanWA0XBhbm1Odbb0I3K3mZwZfIiIiFxQzdoUQANAgU8/fcrkPEKWjqSSYn4id5rJmcGHiIjIhVQfGq+tTbl8ORo7dvwDQlSNKrNk9JSp2hxrR2WZO3y/sLAQJSUlRtd71J7LkaOeGXyIiEg2pJoR2Z4zK1ef9y0vLw/p6ekoKPjTqtFTddXmWDsqS1vGmzdvYvv27UaPq7nmoytMdMjgQzb79ttv8fjjj+PWrVsICgoy6zWxsbFIS0tDWlqaXctGRKQl1UgmR8ysXPN11oyeMlWbA1SFHm/vUqtHZYWEhNQKf6Zql1xlokMuUioDI0aMgEKhwPjx42vtmzhxIhQKBUaMGOH4ghEROZBUMyIb+rI3tHCplF/m2v4+CoUGAMwaPWWsNufo0c5YuTINmzcPx4YNY9C+/WmLzmvMiRMddedduTINJ0501O0zFsKcsdgra3xkomnTpti2bRtWrFgBX19fAFXrYW3duhXNmjVzcumIiBxPihmRLe0YbGkTmaH+PoZGTxnqc2NsVFhGRpJeADl9uj1Gj/5/KC9XmnVeQ+rqK+RKEx0y+MhEQkICsrKykJ6ejiFDhgAA0tPT0axZM8TFxemOKy0txbRp07Bt2zYUFRWhU6dOWLFiBR544AHdMV9++SXS0tJw+fJlPPTQQxg+fHit9zt8+DBmzZqFn376CaGhofi///s/LF68GP7+/va/WCKiOkgxksnSjsHWNJHZss6joTl2kpIycOTIw3rHCeGB8nIl4uL+wOOPP47GjRtDpVJZ1E+prmDjShMdsqnLSa5cAQ4erPrXUUaNGoWNGzfqnr/33nsYOXKk3jHTp0/Hjh07sHnzZpw4cQItWrRAcnIyCgqqPpyXL1/GgAED0K9fP5w6dQpjxozBzJkz9c6RlZWFXr16YeDAgTh9+jS2b9+Ow4cPIzU11f4XSURuJT8/Hzk5OUYf+fn5kr+nVM0upr7sDbG2qS0kJASRkZFGHzXDSc1aorS0lRg+fBPS0laic+ejumYtreoB5ODBg9i+fbvFnbO1wcbYea1pqrMX1vg4wYYNwNixgEYDeHhUrf8yerT933fo0KGYNWsW/vjjDwDADz/8gG3btuHbb78FANy5cwfr1q3Dpk2b0Lt3bwDAu+++i3379mHDhg2YNm0a1q1bh/j4eCxbtgwA0KpVK5w5cwZLly7Vvc/ixYsxZMgQXcflli1bYvXq1ejWrRvWrVuHBg0a2P9iicjlOaKTsCFSNbu4Ui1GdYZqibSjwwCYNdOyqZBWvblOu16YOTM4u8pEhww+Dnblyl+hB6j6d9y4qvVf7D0NelhYGPr06YNNmzZBCIE+ffogNDRUtz8rKwvl5eV4+OG/qkG9vb3x4IMP4ty5cwCAc+fOoXPnznrnTUpK0nv+888/4/Tp0/jwww9124QQ0Gg0yM7Oxr333muPyyMiNyNVZ2NLSRVYbF2uwZ6rrtdVC6QNIN7eZSgv9zE5E3R1psKqOcHGFSY6ZPBxsPPn/wo9WpWVVYveOWL9l1GjRumanP71r3/Z5T1u376NcePG4YUXXqi1jx2picgYY0FAW6ugZeuEd1KuL2VJLUZhYaHuZ1N9jAoLCxEZGWlxWUzR1gJdu3YN6enpUKmKkZXVwuJ+Tuas3WXNfTS3E7UUGHwcrGXLquat6uHH07NqpV9H6NWrF8rKyqBQKJCcnKy3Lz4+HkqlEj/88ANiYmIAAOXl5Th27Jiu2eree+/FF198ofe6//znP3rPExIS8Msvv6CFoy6KiNyeqSBQfRVyLWuav2wZIWXsPIDxL/uax1VUVACou1O09jipVZ93x9oZm2syFlYHDBiga1HgzM0yFx1d1adn3Liqmh5PT+Dttx232q+np6eu2crT01Nvn7+/PyZMmIBp06YhODgYzZo1w+uvv46SkhKM/l8npPHjx2PZsmWYNm0axowZg+PHj2PTpk1655kxYwYeeughpKamYsyYMfD398cvv/yCffv2WbxwHhHVf9Z8CVvT/GXLCCkpz+MKQ7ulKIO5I+P8/PwcHm5MYfBxgtGjq/r0XLhQVdPjqNCjFRgYaHTfkiVLoNFoMGzYMBQXF6NTp074+uuv0ahRIwBVTVU7duzAiy++iDVr1uDBBx/EokWLMGrUKN052rdvj0OHDmH27Nl49NFHIYRAfHw8UlJS7H5tROR+6hodJWU/GKm+fG05T3BwPgABQKHb5uhO0Zb2c9J2aNY2O9Y1K/SyZSecuiyFKQw+ThId7bjAU7NGpqbPP/9c93ODBg2wevVqrF692ujxffv2Rd++ffW21RwW/8ADD2Dv3r1Gz3Hx4kWTZSIi+TD2JXztWhTef/9Zm+bacSXe3t7VnukHHyGMHWc9Q5MlWjIKq/p5atbWm5oVWjtBojOXpTCFwYeIiJzK0Jdwjx77sX9/D5v7oLgSlUoFoCo01J5G769mJu1xtjBnqgBz+zkZCizGwuqRI0nQXpur/s4YfIiIyClMdTa2pQ+KPVdOl4Ij5v8xt3Zl5Mi/6U1rAtR9f7QdmquHU1OzQjtjWQpTGHyIiMgp6ppoz5pw4KxJES0h5XB6W4WGhlo0dL5mh+YePfYjKuqa7vdSfR0wwDUmdKyJwYeIiJzGWPiwNhwYWjndUOdoZ/Q3MXc4ffX5fqq/1pagJsVkiYY6NO/f3wNpaSt153SVQGcKg48VRPVeaGQXvMdE8iTVXDuANAuRSsnYMHi1Wo3t27frnn/88ccGX29tLZVU98Gc5kdXWZbCFAYfC2jnvSkrK4Ovr6+TS1O/af/HUHOuISKq36Saa0eqCfqkZk5wkbKWSsr7YG7fJFdYlsIUBh8LeHl5wc/PDzdv3oS3tzc8PLi4vT1oNBrcvHkTfn5+8PLiR5RIbqToe+MKkwRaQ+paKinvg619kxy5LIUp/FaxgEKhQGRkJLKzs3UrnJN9eHh4oFmzZlAoFHUfTERUg6uunG6KpbUzpkavaefrkeI+mNv8OGjQIAQFBRk9hytMXggw+FhMqVSiZcuWLjMRU32lVCpZo0ZEVnOlkVPmsqR2xtzRa3XdB3NqYaRqfnQVDD5W8PDwQIMGDZxdDCIiMsEdOtpWZ0ntjLl/fA8YMABjx4ZizpybuHjRC7GxFYiKegDAAxaFFXcJNeZg8CEiIqeScsJBa1dOdwX2qKXSztMTGQkkJkpYWDfG4ENEREbZexZkqSccdPdmGWtrqaSYp0cuGHyIiMggR8yCbI8JB1011Bhjay2Vq81X5OoYfIiIZMicmhxHz4Is1y9wW2qpXHW+IlfG4ENEJDPm1uSkpKTofrZ3KJH7F7i1tVTuOl+RM3G8MBGRzBiqycnOjoVaHaC3vby8XLffUCipebwtTH2Bk3HakWDVufp8Rc7GGh8iIhkzpybHEbUK7jjhoDNp+/tIMU+P3DD4EBHZkb1HRdnC3OYlR4QSd5xwsC72/N3X7Bdk6zw9csLgQ0RkJ44YFWWLumpybt26BcBxocRdJhw0J9AAsPvvvvrrOE+P+Rh8iIjsxNzRTs5aAqeumpyDBw/qttsrlLjbhIPmhtlBgwbpPbf3iDgyH4MPEZFMmVOTU/MLW+pQ4owJB21pgjJ3iH9FRYXuZ7kO03dVDD5ERA7iirPrmqrJMfWFPWDAAISGhkoSShzZzFezxsbY78ScJihzAo3ch+m7IgYfIiIHcKW/+s1pXqrrC1u7BpS7qV5jY+p3UlZWZrBmKC8vD4D5gYbz7LgeBh8iIjtztb/6TTUv5eXlIT093SFf2NWDRWFhoa55KDfXC5cu+SA+XoNWrfwBSN/cVdfvpLCwEB9//LHR15t7fzhM3/Uw+BAR2Zmj/uq3pO9KXSHC1i/suspSUlKCDz74QPdc2+R07Vok9u/vYbAWRsrRb3X9Tqr30alePm2TmLn3pz4O03d3DD5ERHbmiL/6pR46b8sXtrn9aLSqNzkBAoACQO1aGEtGQBkLXtqmKkt+J8aaxMy9P+4yTF8uGHyIiOzEkbPr2mNBUWu/sM3tR6MtZ/UmJ23o0bKmZsyc4GVusDPVJGbq/nh7e+udx9WH6csJgw8RkZ04a3ZdWzpSSzmvjjl9mww1OVVnTc2YucHLnGBXV5OYsfsTFhbm8GH6ZB4GHyIiO3L07Lq2dqSWcl4dc/o2GWpy0jZ32dofxpx7YSy4aNXVJKYd1l8dA41rY/AhIqpHpOhILdWXtjn9aAw1OfXosR9RUdds7g9jy73QNlXV1STmrsP65axeBp9//etfeOONN5Cbm4sOHTpgzZo1ePDBB51dLCIiu3Ol4dPm9qOxV+dfa2prgKoam+o1XuycXL/Uu+Czfft2TJkyBevXr0fnzp2xcuVKJCcnIzMzE40bN3Z28YjICVx5hXSp2Wv4tLX30NzQUFeTkzVsqa3Jz883q3zsnOx+6l3wWb58OZ577jmMHDkSALB+/Xrs3r0b7733HmbOnOnk0hGRozl6hXRXCFlS11DYusyDVKGmpKQEOTk5RvcburfW3gtnrCFGjlGvgk9ZWRmOHz+OWbNm6bZ5eHigR48eyMjIMPia0tJSlJaW6p4XFRXZvZxE5DiOXCHd0SGrOnuucm7JMg+WvMfQoUPh5+cHQH/mZi1vb2+oVCoAxic8NBS+arI2eDHU1E/1Kvjk5eWhsrIS4eHhetvDw8Px66+/GnzN4sWLMX/+fEcUj4hcgD0XCrXHXDrmckQNhbkjxqwpS10dhKvX9NQVvswNXmymkqd6FXysMWvWLEyZMkX3vKioCE2bNnViiYjIXhy5UKgzFiW1dw2FJaOk7FUWc8IXm6nIlHoVfEJDQ+Hp6Ynr16/rbb9+/ToiIiIMvsbHxwc+Pj6OKB4ROZEjFwp1tUVJpeIKI8bMDV8MNWSM8eky3ZBSqURiYiIOHDig26bRaHDgwAEkJSU5sWRE5GymvjDd+b0cSTtKSqHQAIBTFtzUhq/quNo5WaJe1fgAwJQpUzB8+HB06tQJDz74IFauXIk7d+7oRnkRkTw5srbCFWpG7MXUKCntAqDXrnkgO9sLcXEViIqqCilSNS1xtXOyVb0LPikpKbh58ybmzJmD3Nxc3H///fjqq69qdXgmInlx5Bdmff9yNjZKKj093WTfJqlGs3FCQbJFvQs+QNV/XIaGNBKR/FQfuWPqC1PqET716cvZ3HtTV98mKUez2WPCQ5KHehl8iIi0HDnCx55z6ThTXfcwLy8P6enpkqwTZgyHqJNUGHyIqN5z1Aif+jyM2pwy27NvU32+t+RYDD5ERBKS8xevvfs2yfneknQYfIiISDL1qW8T1U8MPkRUL7jC4qBURdu3Sa0OQHZ2rG7Jjry8PP4eyOkYfIjI7TlzcVAyzNCwdiAdAH8P5FwMPkTk9py5OKirsqUGrPprzZmMsOZIKkcOayeyFIMPEdUrzlgc1NXUrAEzFgQN1bxUf625kxFqR1xdu3bN7sPaiWzF4ENE9UZ9XRzUUtVrVEyFF0M1L9ptltbahISE6LbV5yU7yP0x+BBRveEuNQ2O6ohtSxC05V7W9yU7yL0x+BBRveGomgZb+884qiO2LeHF1nvJYe3kqhh8iKjecERNg63BxdaO2OaELi1bwosU95LraZErYvAhonrF3jUN5o5IMuc4Sztim9tpedCgQQBsDy+staH6iMGHiNyeMxcHNRY+zHmdpf1v6uq0XBVSQvDf/6p1x9kaXiypteFCouQOGHyIyO05awFLUzU2eXl5Jt/blv43hkLTF1/0hUJR9fP772vQr98NXVmMhRepZ1LmQqLkDhh8iKhecPSXaV01Nunp6XrH1+zzY0v/G0OhCfCAEDBYluplrl47pS1j9bLZWmvDUEOujsGHiMgKxmpsLl+ORkHBn3V2Vral/42h0FRTzdojc+fzYa0N1XcMPkREVjAcPjTYseMfZndWNtX/pnpTGVAVNtTqqr47NUMToAGg+N+jSvXaI0v7EzHUUH3G4ENEZAVj4UOIqvBhLFyY0xFbrQ7AsmUnTHaYjo+/gIEDdwAQaNr0CrKyWhitPXKXiR2JHIHBh4jIAtWDS/Uamzt3/PHpp0/pHWsoXBhqSsrLy9P1tzFniLuxY4zVHnEJCaK/MPgQEVmgZnDRhha1OsDscGGsKcmcJqm6jjFUg8MlJIj+wuBDRGQhQ8FFinBhTpOUtc1WnIyQqAqDDxGRRGwNF+Y0Sdm6DAUDD8kdgw8RkQ2knDXanFqjrKwWuvl6ANQ6ZsCAAQgNDQUAqNVqbN++3eJrIKrPGHyIiGwg9bw3pmqNtP17gL9qe4SoGuGlFRoaisjISABAZGQk5+QhqoHBh4jITOasjC5FiDBWa2RsxmZT/XsYaoj0MfgQEZmh5sroxtRcmsIc5jY1mdO/h81WRKYx+BARmaFmTY+xVdlN1QgZU1dzmXbIfF19gFJSUljDQ1QHBh8iIguZM8mgpaToA6RSqWwqA5EcGF/hjoiIajE2gaBaHeCwMqhUxYiL+4ND04mswOBDRGQBUxMI2ou5/XbYv4eobmzqIiKLOGpkk6tyxrpXUg+ZJ5IzBh8iMlvNkU3GOvhaM7LJXThr3av6ej+JHI3Bh4jMVr3GwVQHX2tGNrkTrntF5L7Yx4eILOYKHXwdzdDSFIY6GLOfDZFrY40PEVnM2hXCq3N0XyFb34/9bIjqBwYfIrKYrR187TkLsj3fj6GGyP2xqYuILKbt4KtQaADUXiG8Lub2AZKqr5Cj34+IXBdrfIjIKlJ28DU2OsxeHP1+ROQ6GHyIyGrGVhG3hD2Wf3Cl9yMi18KmLiIym9QzCDt6dJgcR6MRkT7W+BCR2aQe2STF6DBLOPr9iMj1MPgQkUWkHNnk6OUfnLHcBBG5FjZ1EZHT2Do6zNXfj4hcD2t8iNxE9Qn4rl3zQHa2F+LiKhAVVfUl7k6T51XvA2RqdJhUsyA7+v2IyHUphBDC2YVwJUVFRVCpVFCr1QgMDHR2cYgA6E/AZ2pUkjstDupuMzcTkWsz9/ubNT5EbkD7hW1sVFJ8/AWoVMVuNQGfo0MGQw0RAQw+RG7FVUclsTaFiNwFgw+RG3HEqCRLQ4yj190iIrIFgw+RG9GOSqrZx0eq2h5rQgzXwSIid8LgQ+RmpFwjqyYpQgzXwSIiV8bgQ+SGpFgjyxyWhhiug0VEro7Bh4gMsjTE1DXijIjIFXDmZiI3IPXioHWxZjFPUyPOiIhcBWt8iJzI3BFUUi8OaqwseXl5AKwbNs91sIjIHTD4EDlJzRFUxvrTaEdQ2XMoeM2yWBNi7D3ijIhICgw+RE5SvfbGVH8aU7U8Uk0cWPMcloQYroNFRO6EwYfIyaztFGzPiQPV6gA0anQLo0f/P5SXK02GGEc0wxERSYXBh8jJrF2GombQMNZUZunEgYZqn+Li/gAADBgwAFFRUbVCDEMNEbkLBh8iJ5OiU7BU8+fUVfsUGhrKkENEbo3D2YmcTNufRqHQAIDFnYKtGXpuDIekE1F9xxofIhdgyzIUUq7YziHpRFTfscaHyEWoVMWIi/vD6rBSnbVhxdbaJyIiV8caHyInkWo2Zinmz+GQdCKSCwYfIieRchi4rSu2c0g6EckFgw+RE9kSJGrWvhhbsd3cWhqGGiKSAwYfIjdlay2NVLM+ExG5E7cIPhcvXsSCBQvwzTffIDc3F1FRURg6dChmz56t99fs6dOnMXHiRBw7dgxhYWGYNGkSpk+f7sSSk7u4cgU4fx5o2RKIjnZ2acxnbTCx56zPRESuzC2Cz6+//gqNRoO3334bLVq0wNmzZ/Hcc8/hzp07ePPNNwEARUVF6NmzJ3r06IH169fjzJkzGDVqFIKCgjB27FgnXwG5Im2Nx9atvpg+XQWNRgEPD4HXX1fjmWf+rNc1HubO5mzprM9ERK7OLYJPr1690KtXL93z5s2bIzMzE+vWrdMFnw8//BBlZWV47733oFQq0bZtW5w6dQrLly9n8KFatDUeanUAVq5MgxAKAIBGo8C0aYG4evU9qFTFsqnxMLbcBRFRfWN28CkqKjL7pIGBgVYVxhJqtRrBwX/NJpuRkYGuXbvqNX0lJydj6dKluHXrFho1amTwPKWlpSgtLdU9t+Q6yb7s2fykrcmoa/I/OdR4mFruIi8vT+/Y+lwLRkTyYHbwCQoKgkKhMHmMEAIKhQKVlZU2F8yUCxcuYM2aNbraHgDIzc1FXFyc3nHh4eG6fcaCz+LFizF//nz7FZassmEDMHYsoNEAHh7AO+8Ao0dL/z5yn6m4rrW50tPTa71GLrVgRFQ/mR18Dh48KPmbz5w5E0uXLjV5zLlz59C6dWvd86tXr6JXr1546qmn8Nxzz9lchlmzZmHKlCm650VFRWjatKnN5yXr5Ofn4+LFCowd2xgajbb5CRg3TuD++28gNtZL0i9dKSb/c2fWLHchh1owIqq/zA4+3bp1k/zNp06dihEjRpg8pnnz5rqfr127hscffxxdunTBO++8o3dcREQErl+/rrdN+zwiIsLo+X18fODj42NhycketP1usrNjodEM19tXWanAmjV7EBf3h+Q1DrZO/mcpVxpGbk2NV15eHpu8iMhtWd25ubCwEBs2bMC5c+cAAG3btsWoUaOgUqnMPkdYWBjCwsLMOvbq1at4/PHHkZiYiI0bN8LDQ/+v1KSkJMyePRvl5eXw9vYGAOzbtw+tWrUy2sxFrkUbBur6MrZHjYOxyf+k5mrDyE3VeBnr8Kxt/mKTFxG5I6uCz08//YTk5GT4+vriwQcfBAAsX74cCxcuxN69e5GQkCBpIa9evYrHHnsMMTExePPNN3Hz5k3dPm1tzjPPPIP58+dj9OjRmDFjBs6ePYtVq1ZhxYoVkpaF7K8+Nz+5yjDyutbmMtXh2VFlJCKyB6uCz4svvoj+/fvj3XffhZdX1SkqKiowZswYpKWl4bvvvpO0kPv27cOFCxdw4cIFRNcY3iOEAACoVCrs3bsXEydORGJiIkJDQzFnzhwOZXdTjm5+chZnDSMPCQnBoEGD8PHHHwPQr/Gqq8MzEZE7s7rGp3roAQAvLy9Mnz4dnTp1kqxwWiNGjKizLxAAtG/fHt9//73k70/OYc/mJ6lWRreFJcPItWWRsmkpKChI77k2hN2542eww/Ply9FQqc5J9v5ERM5gVfAJDAzEpUuX9EZbAcDly5cREBAgScGI7MnZq5FbM4wcsF+/muohDNAAEAD0p6/YseMfKCur3eRFROROrAo+KSkpGD16NN5880106dIFAPDDDz9g2rRpGDx4sKQFJLIXZ3bMrWsYubEmsLr61VgzYqxmCAOqh5+/ysgmLyKqD6wKPm+++SYUCgWeffZZVFRUAAC8vb0xYcIELFmyRNICEtVHpkaumdOx2BBrR4wZCmGAB7p2PYjvvntcb2tdc/wQEbm6mv+3M4tSqcSqVatw69YtnDp1CqdOnUJBQQFWrFjBOXHIaq7Q78ZRtCPXFAoNAOgCDgCDTWBqdd1NyNVHO5pSs0ZIG8KqUyg0uOee8wa3y2VWayKqn2xapNTPzw/t2rWTqiwkc87ud+MIdQ0jz86OtXgmZaCqtmf79u1WlcXY9AHR0TkmpxWoDwGUiOTHquBz9+5drFmzBgcPHsSNGzeg0ej/VXjixAlJCkfy486hxhzGwl1eXh7S09OtXjvMUFisa6h8zbLMmXMTFy96ITa2Av7+96C8PA6DBnnpbY+KegDAA24fQIlIvqwKPqNHj8bevXvxj3/8Aw8++GCdi5cS0V9MBQapJm80t59Q9bJERgKJidpn4XrH/bWdiMi9WRV8du3ahS+//BIPP/yw1OUhkj1bJ29UqwPwxRd9oe3Cx9FYRER/sSr4NGnShPP1EEmoZn8ZY5M3mtOv5ujRzqg5boGjsYiIqlgVfJYtW4YZM2Zg/fr1iImJkbpMRLIjVcdutToAGRlJBvZwNBYREWBl8OnUqRPu3r2L5s2bw8/PT7caulZBAf8HS2QpKToLG56TB+jSJYOjsYiIYGXwGTx4MK5evYpFixYhPDycnZuJXISxUWGdOx8FAAwaNIijsYhI1qwKPkeOHEFGRgY6dOggdXmIyAp1zcmjre1p3LixM4tJROR0VgWf1q1b488//5S6LERkJVNz8nDuHSKiv1gVfJYsWYKpU6di4cKFaNeuXa0+PoGBgZIUjshRrFnc09UYn5OHiIi0FEIIYemLPDyq+g/U7NsjhIBCoUBlZaU0pXOCoqIiqFQqqNVqBjiZsHZxTyIich3mfn9bVeNz8OBBqwtG5Gpq1vQYW+rBVI0QERG5B6uCT7du3cw67vnnn8err76K0NBQa96GyOHMXeqBiIjcU+0JPyT0wQcfoKioyJ5vQSQZtTpAF3qAv5Z6UKs5SzkRUX1h1+BjRfchIqcxNPmfdqkHIiKqH+wafIjciXbyv+oUCi71QERUnzD4EP2PdvI/bfipOfkfERG5P6s6NxPVVwkJJxEffwEFBcEIDi5g6CEiqmcYfEj2ai7aqVIVGww8XNyTiMj9WRx8KioqsGjRIowaNQrR0dEmjx06dCgnASTJ2Gt25ZrLPUh5biIici1WzdwcEBCAM2fOIDY21g5Fci7O3OyaOLsyERGZYteZm7t3745Dhw7Vy+BDtbnCOlacXZmIiKRgVfDp3bs3Zs6ciTNnziAxMRH+/v56+/v37y9J4cjxaoacwsJCfPzxx3W+zpE1LZxdmYiIrGVV8Hn++ecBAMuXL6+1z90XKZUzc5uTDLl27ZpeYLJXLZCx2ZXj4y9wBBYREdXJquCj0WjqPojcji3NROnp6bW22aMWyNTsyvYIPq7QzEdERNKxKvi8//77SElJgY+Pj972srIybNu2Dc8++6wkhSPHyc/PR15enqTntEd/G+3sytXDj71mV2aHaiKi+seqmZtHjhwJtVpda3txcTFGjhxpc6HIsbRf8IZqbVyNI2dXNtShOjs7ttaipexQTUTkPqyq8RFCQKFQ1Np+5coVqFQqmwtFjuVuX9zOmF3ZVIdqYzVlbAYjInI9FgWfjh07QqFQQKFQ4IknnoCX118vr6ysRHZ2Nnr16iV5Icl1GBpGbmxouZTsPbuyob482kBTV4dqUzVlbAYjInItFgWfJ598EgBw6tQpJCcno2HDhrp9SqUSsbGxGDhwoKQFJOepGWgM1XoAcMjQcnvOrlxXXx5zOlRzXiEiIvdgUfCZO3cuACA2NhYpKSlo0KCBXQpFzlcz5PTosR/79/fQq/X44ou+UCjgsKHl9qo5qWtyxLo6VHNeISIi92FVH5/hw4cDqPrCuHHjRq3h7c2aNbO9ZOQ0hpp2qoeev3ig5oIn9hxa7gjGQky/frtqbVepijmvEBGRm7Eq+Jw/fx6jRo3CkSNH9LZrOz1zAkP3ZqxpR6EQEKJ6p3aNXo0PoF8T4m6rmZsKMcY6VDt6XiEiIrKNVcFnxIgR8PLywq5duxAZGWlwhBe5L2NNO7NnF2PxYhUqKwFPT4GlS4sAADNmqFBZqdBte+aZwW45oqmuEGOoQ7Uj5xUiIiLbWRV8Tp06hePHj6N169ZSl4ecwFDNTFJSBjIykvSadtLSHsa4ccCFC0CLFgpERwcBAFJSam4LcmTxJVNXiBkwYABCQ0MBVI34Sk9P180rZKgZjIiIXI9VwadNmzaSz/JLzlN9xNTWrb549VUVNBoFFAqB8eNvY8yYO4iNfVhXgxMdrf/66Oja29xRXSEmNDQUkZGRtV7njHmFiIjIOlYFn6VLl2L69OlYtGgR2rVrB29vb739gYGBkhSOHCckJARXrgDTpwPavupCKPDuuw0xe3ZDuFmrldXMDTH2nleIiIjsw6rg06NHDwBA9+7d9fr3sHOzezt//q/Qo1VZWdWMVR9qdIyxJsTYc14hIiKyH6uCz8GDB6UuB7mAli0BDw/98OPpCbRo4bwyOYK1IYahhojI/VgVfLp164bvv/8eb7/9NrKysvDpp5+iSZMm2LJlC+Li4qQuIzlIdDTwzjvAuHH438gt4O2363dtjxZDDBGRPFi1OvuOHTuQnJwMX19fnDx5EqWlpQAAtVqNRYsWSVpAcqzRo4GLF4GDB6v+HT3a2SUiIiKSjlXB57XXXsP69evx7rvv6nVsfvjhh3HixAnJCkfOER0NPPaYPGp6iIhIXqwKPpmZmejatWut7SqVCoWFhbaWiYiIiMgurAo+ERERuHDhQq3thw8fRvPmzW0uFBEREZE9WBV8nnvuOUyePBlHjx6FQqHAtWvX8OGHH+Kll17ChAkTpC4jERERkSSsGtU1c+ZMaDQaPPHEEygpKUHXrl3h4+ODl156CZMmTZK6jCRj+fn5nCuHiIgkoxBCCGtfXFZWhgsXLuD27dto06YNGjZsKGXZnKKoqAgqlQpqtZozUDtZfn4+1q5dq3uuVgegoCAEwcH5ehMMpqamMvwQEcmcud/fVtX4aCmVSrRp08aWUxAZVb2m58SJjrXW0EpIOFnrOFOq1x5du+aB7GwvxMVVICqqasZG1h4REdV/NgUfIkdQqwN0oQcAhPDAzp19ER9/ASpVscEFc2uGmOq1R6ZCFGuPiIjqNwYfcnkFBSG60KMlhAcKCoKhUhVj48Z9dTaBaWt66gpR5tYeERGRe2LwIZcXHJwPhUKjF34UCg2CgwssbgKrK0QREVH9ZtVwdiJHUqmK0a/fLigUVX1xtAEHgMHaG7U6wOi5tCGqOm2IIiKi+o81PuSS8vPz9fruJCScRHz8BRQUBCM4uAAqVTGys2Mtrr3RhqiatUSs7SEikgcGH3I5poaxx8X9odtuqgnMFEMhioiI5IHBh1yOucPYbam9UamKGXiIiGSIwYdcVl0jsADW3hARkWUYfMhlmTsCy5zaG6VSadZ7mnscERG5JwYfclnW9uHRqh5iQkJCkJqaynW/iIhkjsGHHK6uhUfVajWAuvvwDBgwAKGhoQbPYSjEMNQQERGDDzmUuQuPapnqwxMaGorIyEiHlJuIiOoHBh9yKHNHbFXHEVhERCQVztxMTmFsxJapWZdrYkdkIiKylNvV+JSWlqJz5874+eefcfLkSdx///26fadPn8bEiRNx7NgxhIWFYdKkSZg+fbrzCktG1TVia9CgQQgKCjL6enZEJiIia7hd8Jk+fTqioqLw888/620vKipCz5490aNHD6xfvx5nzpzBqFGjEBQUhLFjxzqptGRMXSO2goKC2H+HiIgk51bBZ8+ePdi7dy927NiBPXv26O378MMPUVZWhvfeew9KpRJt27bFqVOnsHz5cgYfB6prxFZhYSEArplFRETO4TbB5/r163juuefw+eefw8/Pr9b+jIwMdO3aVa/fR3JyMpYuXYpbt26hUaNGjiyuLEk5YouIiMge3CL4CCEwYsQIjB8/Hp06dcLFixdrHZObm4u4uDi9beHh4bp9xoJPaWkpSktLdc+LioqkK7jMcMQWERG5OqeO6po5cyYUCoXJx6+//oo1a9aguLgYs2bNkrwMixcvhkql0j2aNm0q+XvIDUdsERGRq3Jqjc/UqVMxYsQIk8c0b94c33zzDTIyMuDj46O3r1OnThgyZAg2b96MiIgIXL9+XW+/9nlERITR88+aNQtTpkzRPS8qKqpX4aeuPjf2GB1V14itlJQUqFQqh5aJiIgIcHLwCQsLQ1hYWJ3HrV69Gq+99pru+bVr15CcnIzt27ejc+fOAICkpCTMnj0b5eXl8Pb2BgDs27cPrVq1Mtm/x8fHp1agqi9q9rkxJjU1VdKgYWrEllodgB9+UOL++z0QFaUBwKBDRESO4xZ9fJo1a6b3vGHDhgCA+Ph4REdHAwCeeeYZzJ8/H6NHj8aMGTNw9uxZrFq1CitWrHB4eV2FqZoea44zl7ERW1lZLYz2+5E6fBERERniFsHHHCqVCnv37sXEiRORmJiI0NBQzJkzh0PZnaTmiC0AWLkyrVa/n/j4C1CpiiUPX0RERIa4ZfCJjY2FEKLW9vbt2+P77793QonIkOojtrKzY032+yEiInIErtVFkjE1Ekvb76e66jM1ExEROYJb1viQawoJCUFqaqpes1VeXh7S09M5UzMREbkEBh+SlKkOypypmYiInI3BR0bqWkLCEThTMxERORODTz1Wvc+NqSUkOEsyERHJBYNPPabtc3PxYgVefbUxhFAAqBpNtXt3P8yZ0xmxsV52nT/H3FDF8EVERI7A4FPPhYSE4PRpQKM/oAqVlQoUF4fD3nMGGurwXBNnbiYiIkdh8JGBli0BDw/98OPpCbRo4Zj3Z6ghIiJXwXl8ZCA6GnjnnaqwA1T9+/bbVduJiIjkhDU+MjF6NJCcDFy4UFXTw9BDRERyxOAjI9HRDDxERCRvbOoiIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwIatduQIcPFj1LxERkTtg8CGL5OfnIycnB8uWFSImRqB7dyAmRmDZskLk5OQgPz/f2UUkIiIyijM3y0x+fr7VK6Xn5+dj7dq1UKsDsHJlGoRQAAA0GgWmTQvE1avvQaUqRmpqKhcmJSIil8TgIyPa4KKlVgegoCAEwcH5UKmKdduNBRdtYCooCIEQ+pWFQnigoCAYKlWxyWBFRETkTAw+MlI9kJw40RE7d/aFEB5QKDTo128XEhJO1jrOkODgfCgUGr3wo1BoEBxcYJ+CExERSYR9fGRIrQ7QhR6gqrZm586+UKsDzHq9SlWMfv12QaHQAIAuOFWvNSIiInJFrPGRobqaqsyRkHAS8fEXUFAQjODgAoYeIiJyCww+MiRVU5VKVczAQ0REboVNXTLEpioiIpIr1vjIFJuqiIhIjhh8ZMzSpiqlUinpcURERI7G4CMjtgaXkJAQpKamWj0BIhERkbMphBDC2YVwJUVFRVCpVFCr1QgMDHR2cSRny8zNRERErsrc72/W+MiMJaHmyhXg/HmgZUsgOtqOhSIiInIQjuoigzZsAGJi8L9FSKueExERuTsGH9KTn5+P48evY+xYAU3VaHdoNMC4cQLHj1/n6utEROTW2NRFOtpFTLOzY6HRDNfbV1mpwJo1exAX9wdXXyciIrfFGh/S0XZ61s7sXF31mZ25+joREbkrBh+qhTM7ExFRfcWmLjKIMzsTEVF9xOBDRnERUiIiqm/Y1EVERESyweBDREREssHgQ0RERLLB4EM6XH2diIjqO3ZuJh2uvk5ERPUdgw/pYaghIqL6jE1dREREJBsMPkRERCQbDD5EREQkGww+REREJBsMPi7qyhXg4MGqf4mIiEgaDD4uaMMGICYG6N696t8NG2ofw2BERERkOQYfF3PlCjB2LKDRVD3XaIBx46q25+fnIycnB8uWFSImRvwvGAksW1aInJwc5OfnO7fwRERELo7z+LiY8+f/Cj1alZXA8eNqnDq1Fmp1AFauTIMQCgCARqPAtGmBuHr1PahUxUhNTeVcPEREREawxseF5OfnIzDwOjw8hN52T08BP79rAICCghAIof9rE8IDBQXBAGBy1mUiIiK5Y42Pi8jPz8fatWsBAH37dsTOnX0hhAcUCg369NmFI0dOAgCCg/OhUGj0wo9CoUFwcIFTyk1EROROGHxcRPWamoSEk4iPv4CCgmAEBxdApSrW7VOpitGv3y69YNSv3y69Y4iIiMgwBh8XpVIVGw0z8fEXMHDgDgACTZteYeghIiIyE4OPmzlxomOt2p6EhJPOLhYREZFbYOdmN6JWB+hCD1DVqXnnzr5QqwOcXDIiIiL3wODjRuoa0UVERESmMfi4Ee2IrupqjuhSKpWOLhYREZHbYPBxI9oRXdrwU3NEV0pKCicvJCIiMoGdm12EuTU1poe6q+xVPCIionqBwcdFhISEIDU11eDMy3l5eUhPT9c9NzXUnYiIiIxj8HEhbKYiIiKyL/bxcQPmNoOxYzMREZFprPFxA6aawbSUSiVrjIiIiOrgVjU+u3fvRufOneHr64tGjRrhySef1Nt/6dIl9OnTB35+fmjcuDGmTZuGiooK5xRWYiEhIYiMjDT6YOghIiKqm9vU+OzYsQPPPfccFi1ahO7du6OiogJnz57V7a+srESfPn0QERGBI0eOICcnB88++yy8vb2xaNEiJ5aciIiIXIVCCCGcXYi6VFRUIDY2FvPnz8fo0aMNHrNnzx707dsX165dQ3h4OABg/fr1mDFjBm7evGl2/5eioiKoVCqo1WoEBgZKdg1ERERkP+Z+f7tFU9eJEydw9epVeHh4oGPHjoiMjETv3r31anwyMjLQrl07XegBgOTkZBQVFeG///2vM4pNRERELsYtgs/vv/8OAJg3bx7++c9/YteuXWjUqBEee+wxFBRULdeQm5urF3oA6J7n5uYaPXdpaSmKior0HkRERFQ/OTX4zJw5EwqFwuTj119/hUZTtUTD7NmzMXDgQCQmJmLjxo1QKBT45JNPbCrD4sWLoVKpdI+mTZtKcWlERETkgpzauXnq1KkYMWKEyWOaN2+OnJwcAECbNm102318fNC8eXNcunQJABAREYEff/xR77XXr1/X7TNm1qxZmDJliu55UVERww8REVE95dTgExYWhrCwsDqPS0xMhI+PDzIzM/HII48AAMrLy3Hx4kXExMQAAJKSkrBw4ULcuHEDjRs3BgDs27cPgYGBeoGpJh8fH/j4+EhwNUREROTq3GI4e2BgIMaPH4+5c+eiadOmiImJwRtvvAEAeOqppwAAPXv2RJs2bTBs2DC8/vrryM3NxT//+U9MnDiRwYaIiIgAuEnwAYA33ngDXl5eGDZsGP7880907twZ33zzDRo1agQA8PT0xK5duzBhwgQkJSXB398fw4cPx6uvvurkkhMREZGrcIt5fByJ8/gQERG5n3o1jw8RERGRFBh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDa8nF2A+iw/Px9lZWVG9yuVSoSEhDiwRERERPLG4GMn+fn5WLt2bZ3HpaamMvwQERE5CJu67MRUTY81xxEREZHtGHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHzsRKlUSnocERER2Y4TGNpJSEgIUlNTOXMzERGRC2HwsSOGGiIiItfCpi4HuXIFOHiw6l8iIiJyDgYfB9iwAYiJAbp3r/p3wwZnl4iIiEieGHzs7MoVYOxYQKOpeq7RAOPGseaHiIjIGRh87Oz8+b9Cj1ZlJXDhgnPKQ0REJGcMPnbWsiXgUeMue3oCLVo4pzxERERyxuBjZ9HRwDvvVIUdoOrft9+u2k5ERESOxeHsDjB6NJCcXNW81aIFQw8REZGzMPg4SHQ0Aw8REZGzsamLiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDa3XVIIQAABQVFTm5JERERGQu7fe29nvcGAafGoqLiwEATZs2dXJJiIiIyFLFxcVQqVRG9ytEXdFIZjQaDa5du4aAgAAoFAqzXlNUVISmTZvi8uXLCAwMtHMJXRfvQxXeB94DLd6HKrwPvAda9rwPQggUFxcjKioKHh7Ge/KwxqcGDw8PREdHW/XawMBAWX+gtXgfqvA+8B5o8T5U4X3gPdCy130wVdOjxc7NREREJBsMPkRERCQbDD4S8PHxwdy5c+Hj4+PsojgV70MV3gfeAy3ehyq8D7wHWq5wH9i5mYiIiGSDNT5EREQkGww+REREJBsMPkRERCQbDD5EREQkGww+Rqxbtw7t27fXTbKUlJSEPXv26PbfvXsXEydOREhICBo2bIiBAwfi+vXreue4dOkS+vTpAz8/PzRu3BjTpk1DRUWFoy9FMkuWLIFCoUBaWppum1zuw7x586BQKPQerVu31u2Xy324evUqhg4dipCQEPj6+qJdu3b46aefdPuFEJgzZw4iIyPh6+uLHj164Pz583rnKCgowJAhQxAYGIigoCCMHj0at2/fdvSlWC02NrbWZ0GhUGDixIkA5PNZqKysxCuvvIK4uDj4+voiPj4eCxYs0FsnSQ6fh+LiYqSlpSEmJga+vr7o0qULjh07pttfH+/Bd999h379+iEqKgoKhQKff/653n6prvn06dN49NFH0aBBAzRt2hSvv/66NBcgyKAvvvhC7N69W/z2228iMzNTvPzyy8Lb21ucPXtWCCHE+PHjRdOmTcWBAwfETz/9JB566CHRpUsX3esrKirEfffdJ3r06CFOnjwpvvzySxEaGipmzZrlrEuyyY8//ihiY2NF+/btxeTJk3Xb5XIf5s6dK9q2bStycnJ0j5s3b+r2y+E+FBQUiJiYGDFixAhx9OhR8fvvv4uvv/5aXLhwQXfMkiVLhEqlEp9//rn4+eefRf/+/UVcXJz4888/dcf06tVLdOjQQfznP/8R33//vWjRooUYPHiwMy7JKjdu3ND7HOzbt08AEAcPHhRCyOOzIIQQCxcuFCEhIWLXrl0iOztbfPLJJ6Jhw4Zi1apVumPk8HkYNGiQaNOmjTh06JA4f/68mDt3rggMDBRXrlwRQtTPe/Dll1+K2bNni/T0dAFAfPbZZ3r7pbhmtVotwsPDxZAhQ8TZs2fFRx99JHx9fcXbb79tc/kZfCzQqFEj8f/+3/8ThYWFwtvbW3zyySe6fefOnRMAREZGhhCi6oPh4eEhcnNzdcesW7dOBAYGitLSUoeX3RbFxcWiZcuWYt++faJbt2664COn+zB37lzRoUMHg/vkch9mzJghHnnkEaP7NRqNiIiIEG+88YZuW2FhofDx8REfffSREEKIX375RQAQx44d0x2zZ88eoVAoxNWrV+1XeDuaPHmyiI+PFxqNRjafBSGE6NOnjxg1apTetgEDBoghQ4YIIeTxeSgpKRGenp5i165detsTEhLE7NmzZXEPagYfqa75rbfeEo0aNdL7b2LGjBmiVatWNpeZTV1mqKysxLZt23Dnzh0kJSXh+PHjKC8vR48ePXTHtG7dGs2aNUNGRgYAICMjA+3atUN4eLjumOTkZBQVFeG///2vw6/BFhMnTkSfPn30rheA7O7D+fPnERUVhebNm2PIkCG4dOkSAPnchy+++AKdOnXCU089hcaNG6Njx4549913dfuzs7ORm5urdx9UKhU6d+6sdx+CgoLQqVMn3TE9evSAh4cHjh496riLkUhZWRk++OADjBo1CgqFQjafBQDo0qULDhw4gN9++w0A8PPPP+Pw4cPo3bs3AHl8HioqKlBZWYkGDRrobff19cXhw4dlcQ9qkuqaMzIy0LVrVyiVSt0xycnJyMzMxK1bt2wqIxcpNeHMmTNISkrC3bt30bBhQ3z22Wdo06YNTp06BaVSiaCgIL3jw8PDkZubCwDIzc3V+x+bdr92n7vYtm0bTpw4oddmrZWbmyub+9C5c2ds2rQJrVq1Qk5ODubPn49HH30UZ8+elc19+P3337Fu3TpMmTIFL7/8Mo4dO4YXXngBSqUSw4cP112Hoeusfh8aN26st9/LywvBwcFucx+q+/zzz1FYWIgRI0YAkNd/EzNnzkRRURFat24NT09PVFZWYuHChRgyZAgAyOLzEBAQgKSkJCxYsAD33nsvwsPD8dFHHyEjIwMtWrSQxT2oSaprzs3NRVxcXK1zaPc1atTI6jIy+JjQqlUrnDp1Cmq1Gp9++imGDx+OQ4cOObtYDnP58mVMnjwZ+/btq/UXjdxo/4oFgPbt26Nz586IiYnBxx9/DF9fXyeWzHE0Gg06deqERYsWAQA6duyIs2fPYv369Rg+fLiTS+ccGzZsQO/evREVFeXsojjcxx9/jA8//BBbt25F27ZtcerUKaSlpSEqKkpWn4ctW7Zg1KhRaNKkCTw9PZGQkIDBgwfj+PHjzi4aGcGmLhOUSiVatGiBxMRELF68GB06dMCqVasQERGBsrIyFBYW6h1//fp1REREAAAiIiJqjeTQPtce4+qOHz+OGzduICEhAV5eXvDy8sKhQ4ewevVqeHl5ITw8XBb3wZCgoCDcc889uHDhgmw+D5GRkWjTpo3etnvvvVfX5Ke9DkPXWf0+3LhxQ29/RUUFCgoK3OY+aP3xxx/Yv38/xowZo9sml88CAEybNg0zZ87E008/jXbt2mHYsGF48cUXsXjxYgDy+TzEx8fj0KFDuH37Ni5fvowff/wR5eXlaN68uWzuQXVSXbM9/zth8LGARqNBaWkpEhMT4e3tjQMHDuj2ZWZm4tKlS0hKSgIAJCUl4cyZM3q/3H379iEwMLDWl4ereuKJJ3DmzBmcOnVK9+jUqROGDBmi+1kO98GQ27dvIysrC5GRkbL5PDz88MPIzMzU2/bbb78hJiYGABAXF4eIiAi9+1BUVISjR4/q3YfCwkK9v4a/+eYbaDQadO7c2QFXIZ2NGzeicePG6NOnj26bXD4LAFBSUgIPD/2vEE9PT2g0GgDy+zz4+/sjMjISt27dwtdff42///3vsrsHgHS/96SkJHz33XcoLy/XHbNv3z60atXKpmYuABzObszMmTPFoUOHRHZ2tjh9+rSYOXOmUCgUYu/evUKIqiGrzZo1E99884346aefRFJSkkhKStK9XjtktWfPnuLUqVPiq6++EmFhYW43ZLWm6qO6hJDPfZg6dar49ttvRXZ2tvjhhx9Ejx49RGhoqLhx44YQQh734ccffxReXl5i4cKF4vz58+LDDz8Ufn5+4oMPPtAds2TJEhEUFCT+/e9/i9OnT4u///3vBoexduzYURw9elQcPnxYtGzZ0qWH7hpSWVkpmjVrJmbMmFFrnxw+C0IIMXz4cNGkSRPdcPb09HQRGhoqpk+frjtGDp+Hr776SuzZs0f8/vvvYu/evaJDhw6ic+fOoqysTAhRP+9BcXGxOHnypDh58qQAIJYvXy5Onjwp/vjjDyGENNdcWFgowsPDxbBhw8TZs2fFtm3bhJ+fH4ez29OoUaNETEyMUCqVIiwsTDzxxBO60COEEH/++ad4/vnnRaNGjYSfn5/4v//7P5GTk6N3josXL4revXsLX19fERoaKqZOnSrKy8sdfSmSqhl85HIfUlJSRGRkpFAqlaJJkyYiJSVFb/4audyHnTt3ivvuu0/4+PiI1q1bi3feeUdvv0ajEa+88ooIDw8XPj4+4oknnhCZmZl6x+Tn54vBgweLhg0bisDAQDFy5EhRXFzsyMuw2ddffy0A1Lo2IeTzWSgqKhKTJ08WzZo1Ew0aNBDNmzcXs2fP1ht+LIfPw/bt20Xz5s2FUqkUERERYuLEiaKwsFC3vz7eg4MHDwoAtR7Dhw8XQkh3zT///LN45JFHhI+Pj2jSpIlYsmSJJOVXCFFtmk0iIiKieox9fIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iMhmjz32GNLS0pxdDLubN28e7r//fmcXg4hswOBDRLJXVlbm0PcTQqCiosKh70lEVRh8iMgmI0aMwKFDh7Bq1SooFAooFApcvHgRZ8+eRe/evdGwYUOEh4dj2LBhyMvL073usccew6RJk5CWloZGjRohPDwc7777Lu7cuYORI0ciICAALVq0wJ49e3Sv+fbbb6FQKLB79260b98eDRo0wEMPPYSzZ8/qlenw4cN49NFH4evri6ZNm+KFF17AnTt3dPtjY2OxYMECPPvsswgMDMTYsWMBADNmzMA999wDPz8/NG/eHK+88opudehNmzZh/vz5+Pnnn3XXuWnTJly8eBEKhQKnTp3Snb+wsBAKhQLffvutXrn37NmDxMRE+Pj44PDhw9BoNFi8eDHi4uLg6+uLDh064NNPP5X6V0RE1TD4EJFNVq1ahaSkJDz33HPIyclBTk4OAgIC0L17d3Ts2BE//fQTvvrqK1y/fh2DBg3Se+3mzZsRGhqKH3/8EZMmTcKECRPw1FNPoUuXLjhx4gR69uyJYcOGoaSkRO9106ZNw7Jly3Ds2DGEhYWhX79+uoCSlZWFXr16YeDAgTh9+jS2b9+Ow4cPIzU1Ve8cb775Jjp06ICTJ0/ilVdeAQAEBARg06ZN+OWXX7Bq1Sq8++67WLFiBQAgJSUFU6dORdu2bXXXmZKSYtG9mjlzJpYsWYJz586hffv2WLx4Md5//32sX78e//3vf/Hiiy9i6NChOHTokEXnJSILSLLUKRHJWrdu3cTkyZN1zxcsWCB69uypd8zly5f1VjTv1q2beOSRR3T7KyoqhL+/vxg2bJhuW05OjgAgMjIyhBB/rQq9bds23TH5+fnC19dXbN++XQghxOjRo8XYsWP13vv7778XHh4e4s8//xRCCBETEyOefPLJOq/rjTfeEImJibrnc+fOFR06dNA7Jjs7WwAQJ0+e1G27deuWACAOHjyoV+7PP/9cd8zdu3eFn5+fOHLkiN75Ro8eLQYPHlxn2YjIOl7ODF1EVD/9/PPPOHjwIBo2bFhrX1ZWFu655x4AQPv27XXbPT09ERISgnbt2um2hYeHAwBu3Lihd46kpCTdz8HBwWjVqhXOnTune+/Tp0/jww8/1B0jhIBGo0F2djbuvfdeAECnTp1qlW379u1YvXo1srKycPv2bVRUVCAwMNDi6zem+nteuHABJSUl+Nvf/qZ3TFlZGTp27CjZexKRPgYfIpLc7du30a9fPyxdurTWvsjISN3P3t7eevsUCoXeNoVCAQDQaDQWvfe4cePwwgsv1NrXrFkz3c/+/v56+zIyMjBkyBDMnz8fycnJUKlU2LZtG5YtW2by/Tw8qnoMCCF027TNbjVVf8/bt28DAHbv3o0mTZroHefj42PyPYnIegw+RGQzpVKJyspK3fOEhATs2LEDsbGx8PKS/n8z//nPf3Qh5tatW/jtt990NTkJCQn45Zdf0KJFC4vOeeTIEcTExGD27Nm6bX/88YfeMTWvEwDCwsIAADk5ObqamuodnY1p06YNfHx8cOnSJXTr1s2ishKR9di5mYhsFhsbi6NHj+LixYvIy8vDxIkTUVBQgMGDB+PYsWPIysrC119/jZEjR9YKDtZ49dVXceDAAZw9exYjRoxAaGgonnzySQBVI7OOHDmC1NRUnDp1CufPn8e///3vWp2ba2rZsiUuXbqEbdu2ISsrC6tXr8Znn31W6zqzs7Nx6tQp5OXlobS0FL6+vnjooYd0nZYPHTqEf/7zn3VeQ0BAAF566SW8+OKL2Lx5M7KysnDixAmsWbMGmzdvtvreEJFpDD5EZLOXXnoJnp6eaNOmDcLCwlBWVoYffvgBlZWV6NmzJ9q1a4e0tDQEBQXpmoZssWTJEkyePBmJiYnIzc3Fzp07oVQqAVT1Gzp06BB+++03PProo+jYsSPmzJmDqKgok+fs378/XnzxRaSmpuL+++/HkSNHdKO9tAYOHIhevXrh8ccfR1hYGD766CMAwHvvvYeKigokJiYiLS0Nr732mlnXsWDBArzyyitYvHgx7r33XvTq1Qu7d+9GXFycFXeFiMyhENUbpomIXNi3336Lxx9/HLdu3UJQUJCzi0NEbog1PkRERCQbDD5EREQkG2zqIiIiItlgjQ8RERHJBoMPERERyQaDDxEREckGgw8RERHJBoMPERERyQaDDxEREckGgw8RERHJBoMPERERyQaDDxEREcnG/wdmed262Vc8gQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWnFJREFUeJzt3X18zXXjP/DX2c2ZbbbDbuyGsRkRIZtiyk2Sm5+4fClLyM0iXVZGCZerkOSu3OWKdAkVUVFXSLlJCkty20pCc9fmZmd2NmR35/37Y53jnLNzv3P/eT0fjz04n8/7fM7782l1Xr1vZUIIASIiIiIJ8HN3BYiIiIhchcGHiIiIJIPBh4iIiCSDwYeIiIgkg8GHiIiIJIPBh4iIiCSDwYeIiIgkg8GHiIiIJIPBh4iIiCSDwYeIyAOtWbMGMpkM586dc3dViHwKgw+RRB06dAiZmZlo2bIlQkND0bBhQwwaNAi///57tbJdu3aFTCaDTCaDn58fwsPD0axZMwwbNgw7d+606XO3bNmCLl26oF69eggJCUHjxo0xaNAgfPXVV466tWpef/11fP7559WOHzhwADNmzEBRUZHTPtvQjBkztM9SJpMhJCQELVq0wL///W8UFxc75DPWr1+PxYsXO+RaRL6GwYdIoubNm4dNmzbh4YcfxpIlSzBmzBh89913SElJQU5OTrXyDRo0wAcffID3338fCxYsQL9+/XDgwAH06NED6enpKC8vt/iZb7zxBvr16weZTIapU6di0aJFGDhwIE6fPo0NGzY44zYBmA8+M2fOdGnw0Vi+fDk++OADLFy4EM2bN8fs2bPRq1cvOGL7RAYfItMC3F0BInKPiRMnYv369ZDL5dpj6enpaNWqFebOnYsPP/xQr7xCocDQoUP1js2dOxfPP/883n77bSQmJmLevHkmP6+iogKzZs3CI488gh07dlQ7f/Xq1Rrekee4desWQkJCzJZ57LHHEBUVBQAYO3YsBg4ciM2bN+OHH35AWlqaK6pJJEls8SGSqI4dO+qFHgBo2rQpWrZsiZMnT1p1DX9/fyxduhQtWrTAsmXLoFKpTJYtKChAcXExHnjgAaPn69Wrp/f69u3bmDFjBu666y7UqlULcXFxGDBgAM6ePast88Ybb6Bjx46IjIxEcHAwUlNT8emnn+pdRyaT4ebNm1i7dq22e2nEiBGYMWMGJk2aBABISkrSntMdU/Phhx8iNTUVwcHBiIiIwBNPPIGLFy/qXb9r16645557cPjwYXTu3BkhISH417/+ZdXz09WtWzcAQG5urtlyb7/9Nlq2bImgoCDEx8dj3Lhxei1WXbt2xbZt23D+/HntPSUmJtpcHyJfxRYfItISQuDKlSto2bKl1e/x9/fH4MGD8fLLL2Pfvn3o06eP0XL16tVDcHAwtmzZgueeew4REREmr1lZWYlHH30Uu3fvxhNPPIHx48ejpKQEO3fuRE5ODpKTkwEAS5YsQb9+/TBkyBCUlZVhw4YNePzxx7F161ZtPT744AM8/fTTuP/++zFmzBgAQHJyMkJDQ/H777/jo48+wqJFi7StL9HR0QCA2bNn4+WXX8agQYPw9NNP49q1a3jrrbfQuXNnHD16FHXq1NHWV6lUonfv3njiiScwdOhQxMTEWP38NDSBLjIy0mSZGTNmYObMmejevTueffZZnDp1CsuXL8ehQ4ewf/9+BAYGYtq0aVCpVLh06RIWLVoEAKhdu7bN9SHyWYKI6G8ffPCBACBWrVqld7xLly6iZcuWJt/32WefCQBiyZIlZq//yiuvCAAiNDRU9O7dW8yePVscPny4Wrn33ntPABALFy6sdk6tVmv/fuvWLb1zZWVl4p577hHdunXTOx4aGiqGDx9e7VoLFiwQAERubq7e8XPnzgl/f38xe/ZsveM///yzCAgI0DvepUsXAUCsWLHC5H3rmj59ugAgTp06Ja5duyZyc3PFO++8I4KCgkRMTIy4efOmEEKI1atX69Xt6tWrQi6Xix49eojKykrt9ZYtWyYAiPfee097rE+fPqJRo0ZW1YdIatjVRUQAgN9++w3jxo1DWloahg8fbtN7NS0KJSUlZsvNnDkT69evR9u2bfH1119j2rRpSE1NRUpKil732qZNmxAVFYXnnnuu2jVkMpn278HBwdq/X79+HSqVCp06dcKRI0dsqr+hzZs3Q61WY9CgQSgoKND+xMbGomnTptizZ49e+aCgIIwcOdKmz2jWrBmio6ORlJSEZ555Bk2aNMG2bdtMjg3atWsXysrKkJWVBT+/O//pHj16NMLDw7Ft2zbbb5RIgtjVRUS4fPky+vTpA4VCgU8//RT+/v42vf/GjRsAgLCwMItlBw8ejMGDB6O4uBgHDx7EmjVrsH79evTt2xc5OTmoVasWzp49i2bNmiEgwPx/orZu3YrXXnsNx44dQ2lpqfa4bjiyx+nTpyGEQNOmTY2eDwwM1Htdv379auOlLNm0aRPCw8MRGBiIBg0aaLvvTDl//jyAqsCkSy6Xo3HjxtrzRGQegw+RxKlUKvTu3RtFRUX4/vvvER8fb/M1NNPfmzRpYvV7wsPD8cgjj+CRRx5BYGAg1q5di4MHD6JLly5Wvf/7779Hv3790LlzZ7z99tuIi4tDYGAgVq9ejfXr19t8D7rUajVkMhm2b99uNAQajpnRbXmyVufOnbXjiojIdRh8iCTs9u3b6Nu3L37//Xfs2rULLVq0sPkalZWVWL9+PUJCQvDggw/aVY927dph7dq1yM/PB1A1+PjgwYMoLy+v1rqisWnTJtSqVQtff/01goKCtMdXr15draypFiBTx5OTkyGEQFJSEu666y5bb8cpGjVqBAA4deoUGjdurD1eVlaG3NxcdO/eXXuspi1eRL6MY3yIJKqyshLp6enIzs7GJ598YtfaMZWVlXj++edx8uRJPP/88wgPDzdZ9tatW8jOzjZ6bvv27QDudOMMHDgQBQUFWLZsWbWy4u8F/vz9/SGTyVBZWak9d+7cOaMLFYaGhhpdpDA0NBQAqp0bMGAA/P39MXPmzGoLCgohoFQqjd+kE3Xv3h1yuRxLly7Vq9OqVaugUqn0ZtOFhoaaXVqASMrY4kMkUS+88AK++OIL9O3bF4WFhdUWLDRcrFClUmnL3Lp1C2fOnMHmzZtx9uxZPPHEE5g1a5bZz7t16xY6duyIDh06oFevXkhISEBRURE+//xzfP/99+jfvz/atm0LAHjqqafw/vvvY+LEifjxxx/RqVMn3Lx5E7t27cI///lP/OMf/0CfPn2wcOFC9OrVC08++SSuXr2K//znP2jSpAlOnDih99mpqanYtWsXFi5ciPj4eCQlJaF9+/ZITU0FAEybNg1PPPEEAgMD0bdvXyQnJ+O1117D1KlTce7cOfTv3x9hYWHIzc3FZ599hjFjxuDFF1+s0fO3VXR0NKZOnYqZM2eiV69e6NevH06dOoW3334b9913n94/r9TUVGzcuBETJ07Efffdh9q1a6Nv374urS+Rx3LnlDIich/NNGxTP+bK1q5dWzRt2lQMHTpU7Nixw6rPKy8vF++++67o37+/aNSokQgKChIhISGibdu2YsGCBaK0tFSv/K1bt8S0adNEUlKSCAwMFLGxseKxxx4TZ8+e1ZZZtWqVaNq0qQgKChLNmzcXq1ev1k4X1/Xbb7+Jzp07i+DgYAFAb2r7rFmzRP369YWfn1+1qe2bNm0SDz74oAgNDRWhoaGiefPmYty4ceLUqVN6z8bcVH9Dmvpdu3bNbDnD6eway5YtE82bNxeBgYEiJiZGPPvss+L69et6ZW7cuCGefPJJUadOHQGAU9uJdMiEcMDGMERERERegGN8iIiISDIYfIiIiEgyGHyIiIhIMhh8iIiISDIYfIiIiEgyGHyIiIhIMriAoQG1Wo28vDyEhYVx2XciIiIvIYRASUkJ4uPj4ednul2HwcdAXl4eEhIS3F0NIiIissPFixfRoEEDk+cZfAyEhYUBqHpw5vYdIiIiIs9RXFyMhIQE7fe4KQw+BjTdW+Hh4Qw+REREXsbSMBUObiYiIiLJYPAhIiIiyWDwISIiIsngGB87qNVqlJWVubsaPk0ul5udjkhERGQPBh8blZWVITc3F2q12t1V8Wl+fn5ISkqCXC53d1WIiMiHMPjYQAiB/Px8+Pv7IyEhgS0STqJZRDI/Px8NGzbkQpJEROQwDD42qKiowK1btxAfH4+QkBB3V8enRUdHIy8vDxUVFQgMDHR3dYiIyEewycIGlZWVAMDuFxfQPGPNMyciInIEBh87sOvF+fiMiYjIGRh8iIiISDIYfIiIiEgyGHwkYMSIEZDJZJDJZAgMDERMTAweeeQRvPfeezZNy1+zZg3q1KnjvIoSEZHPunQJ2LOn6k934qwuF1IqlWYXPpTL5YiMjHTKZ/fq1QurV69GZWUlrly5gq+++grjx4/Hp59+ii+++AIBAfxVICIi51i1ChgzBlCrAT8/YOVKICPDPXXht52LKJVKLFu2zGK5zMxMp4SfoKAgxMbGAgDq16+PlJQUdOjQAQ8//DDWrFmDp59+GgsXLsTq1avxxx9/ICIiAn379sX8+fNRu3ZtfPvttxg5ciSAOwOPp0+fjhkzZuCDDz7AkiVLcOrUKYSGhqJbt25YvHgx6tWr5/D7ICIi73Lp0p3QA1T9+cwzQM+eQIMGrq8Pu7pcxNotLly5FUa3bt3Qpk0bbN68GUDVaslLly7FL7/8grVr1+Kbb77BSy+9BADo2LEjFi9ejPDwcOTn5yM/Px8vvvgiAKC8vByzZs3C8ePH8fnnn+PcuXMYMWKEy+6DiIg8k1KpxA8/KGE4qqKyEjh4UAmlUunyOrHFR+KaN2+OEydOAACysrK0xxMTE/Haa69h7NixePvttyGXy6FQKCCTybQtRxqjRo3S/r1x48ZYunQp7rvvPty4cQO1a9d2yX0QEZFn0fR0qFRhkMmyIMSdthaZTI39+9ciJ6fEaT0dprDFR+KEENquq127duHhhx9G/fr1ERYWhmHDhkGpVOLWrVtmr3H48GH07dsXDRs2RFhYGLp06QIAuHDhgtPrT0REnknTg6FQlKBv362QyaqafWQyNfr23QqFokSvnKt4TfCZM2cO7rvvPoSFhaFevXro378/Tp06pVfm9u3bGDduHCIjI1G7dm0MHDgQV65ccVONvcPJkyeRlJSEc+fO4dFHH0Xr1q2xadMmHD58GP/5z38AmP+lvHnzJnr27Inw8HCsW7cOhw4dwmeffWbxfUREJB0pKUeRlbUYw4evQVbWYqSkHHVbXbwm+Ozduxfjxo3DDz/8gJ07d6K8vBw9evTAzZs3tWUmTJiALVu24JNPPsHevXuRl5eHAQMGuLHWnu2bb77Bzz//jIEDB+Lw4cNQq9V488030aFDB9x1113Iy8vTKy+Xy6ttIfHbb79BqVRi7ty56NSpE5o3b46rV6+68jaIiMgLKBQlSEo6r23pcRevGePz1Vdf6b1es2YN6tWrh8OHD6Nz585QqVRYtWoV1q9fj27dugEAVq9ejbvvvhs//PADOnTo4I5qe4zS0lJcvnxZbzr7nDlz8Oijj+Kpp55CTk4OysvL8dZbb6Fv377Yv38/VqxYoXeNxMRE3LhxA7t370abNm0QEhKChg0bQi6X46233sLYsWORk5ODWbNmuekuiYiIzPOaFh9DKpUKABAREQGgapxJeXk5unfvri3TvHlzNGzYENnZ2W6poyf56quvEBcXh8TERPTq1Qt79uzB0qVL8b///Q/+/v5o06YNFi5ciHnz5uGee+7BunXrMGfOHL1rdOzYEWPHjkV6ejqio6Mxf/58REdHY82aNfjkk0/QokULzJ07F2+88Yab7pKIiMg8r2nx0aVWq5GVlYUHHngA99xzDwDg8uXLkMvl1VYWjomJweXLl01eq7S0FKWlpdrXxcXFTqmztTu6O2Pn9zVr1mDNmjUWy02YMAETJkzQOzZs2DC918uXL8fy5cv1jg0ePBiDBw/WOyaEsK+yRERETuSVwWfcuHHIycnBvn37anytOXPmYObMmQ6olXmRkZHIzMx028rNRERE5IXBJzMzE1u3bsV3332HBjpLPsbGxqKsrAxFRUV6rT5Xrlyptu6MrqlTp2LixIna18XFxUhISHBK3RlqiIhIKtzZ02GO1wQfIQSee+45fPbZZ/j222+RlJSkdz41NRWBgYHYvXs3Bg4cCAA4deoULly4gLS0NJPXDQoKQlBQkFPrTkREJDWe2tPhNcFn3LhxWL9+Pf73v/8hLCxMO25HoVAgODgYCoUCGRkZmDhxIiIiIhAeHo7nnnsOaWlpkp/RRURE5A6e2NPhNcFHM6C2a9euesdXr16t3Rdq0aJF8PPzw8CBA1FaWoqePXvi7bffdnFNiYiIyFN5TfCxZpZQrVq18J///Ee74jARERGRLq9dx4eIiIjIVgw+REREJBkMPkRERCQZDD5UY99++y1kMhmKioqsfk9iYiIWL17stDoREREZw+AjASNGjIBMJsPYsWOrnRs3bhxkMpl2ZhwREZEjKJVK5OfnIz8/H4cPX8Gnnypx+PAV7TGlUumWennNrC6qmYSEBGzYsAGLFi1CcHAwAOD27dtYv349GjZs6ObaERH5PqVS6XGL+TmLUqnEsmXLAABHjrTFli2PQgg/yGRq9O27FSkpRwFU7cbABQzJKVJSUnD27Fls3rwZQ4YMAQBs3rwZDRs21FsFu7S0FJMmTcKGDRtQXFyMdu3aYdGiRbjvvvu0Zb788ktkZWXh4sWL6NChA4YPH17t8/bt24epU6fip59+QlRUFP7v//4Pc+bMQWhoqPNvlojIw+gGAXPcEQScQRPwVKowbegBACH8sGXLo0hOPgOFosRsEHQWdnW5yaVLwJ49VX+6yqhRo7B69Wrt6/feew8jR47UK/PSSy9h06ZNWLt2LY4cOYImTZqgZ8+eKCwsBABcvHgRAwYMQN++fXHs2DE8/fTTmDJlit41zp49i169emHgwIE4ceIENm7ciH379iEzM9P5N0lE5IGs/YJ3RxBwpsLCSG3o0RDCD4WFEW6qEYOPW6xaBTRqBHTrVvXnqlWu+dyhQ4di3759OH/+PM6fP4/9+/dj6NCh2vM3b97E8uXLsWDBAvTu3RstWrTAu+++i+DgYKz6u5LLly9HcnIy3nzzTTRr1gxDhgypNj5ozpw5GDJkCLKystC0aVN07NgRS5cuxfvvv4/bt2+75maJiMjtIiKUkMnUesdkMjUiIgrdVCN2dbncpUvAmDGA+u/fA7UaeOYZoGdPQGezeaeIjo5Gnz59sGbNGggh0KdPH0RFRWnPnz17FuXl5XjggQe0xwIDA3H//ffj5MmTAICTJ0+iffv2etc13AT2+PHjOHHiBNatW6c9JoSAWq1Gbm4u7r77bmfcHhGRW5kbw1NQUKD3WqUKQ2FhJCIilFAoSlxRPbdQKErQt+/WamN83HnPDD4udvr0ndCjUVkJnDnj/OADVHV3abqcnLW1x40bN/DMM8/g+eefr3aOA6mJyBdZO4YHMD/Y1xelpBxFcvIZFBZGICKi0O1Bj8HHxZo2Bfz89MOPvz/QpIlrPr9Xr14oKyuDTCZDz5499c4lJydDLpdj//79aNSoEQCgvLwchw4dQlZWFgDg7rvvxhdffKH3vh9++EHvdUpKCn799Vc0cdVNERG5mbVjcywN9nU1V800UyhK3B54NBh8XKxBA2DlyqrurcrKqtDzzjuuae0BAH9/f223lb+/v9650NBQPPvss5g0aRIiIiLQsGFDzJ8/H7du3UJGRgYAYOzYsXjzzTcxadIkPP300zh8+DDWrFmjd53JkyejQ4cOyMzMxNNPP43Q0FD8+uuv2Llzp9X/R0RE5M1MdWWZG+zr6mAgtZlmGgw+bpCRUTWm58yZqpYeV4UejfDwcJPn5s6dC7VajWHDhqGkpATt2rXD119/jbp16wKo6qratGkTJkyYgLfeegv3338/Xn/9dYwaNUp7jdatW2Pv3r2YNm0aOnXqBCEEkpOTkZ6e7vR7IyJyN3NdWZrBvrrhx12DfQ1bekyFNWtbs3Rbj6xdyV8ul1tXWQeSCSGEyz/VgxUXF0OhUEClUlULCLdv30Zubi6SkpJQq1YtN9VQGvisichd7On+yc/Px8qVK6FShWHx4qxqwSYra7E2THjKgn6aOluq05gxYxAXF2f2WoatR6ZCVHp6OhQKBQDHL9ho7vtbF1t8iIiI/lbT7h9LXVkDBgzAmDFReOWVazh3LgCJiRWIj78PwH1uW7nZEeOOdIOiuRClUCgshihnY/AhIiL6m7XdOnl5eSgrK6sWVix1ZUVFRSEuLg5xcUBqqmPrbi9HjjvytMHbxjD4EBERmWCqy2bz5s3av+uuSu+J69ZY4shxR540eNsUBh8iIiIjrF1vR9Pyo2Fu3Rp3DOa1xJFhzZMGb5vC4GMHjgd3Pj5jInInY102X3zxKOTyUiQkXKwWCiIjI5GZmem1u687apFBb2jxYvCxgWbdm7KyMgQHB7u5Nr5N8x8Pw7WGiIhcwViXDeCHTz993GTrj6eGGlMMW59MLTJoayuVp63UbIjBxwYBAQEICQnBtWvXEBgYCD8/7vHqDGq1GteuXUNISAgCAvgrSkSuZ6zLRsMTB+zaw5mtVJ60UrMhfqvYQCaTIS4uDrm5uTh//ry7q+PT/Pz80LBhQ8hkMndXhYgkyLDLxpA7B+w6cpsJR7VSWdsq5AljnBh8bCSXy9G0aVOrpzySfeRyOVvUiMjljA1SvnixATZteszkgF1LqxQ7cmyPtesMDRo0CPXq1XNZ95s3jXHiys0GrF35kYiIfJOmRaWgoEA7bb2mO6o7akVm3dWWXfm53oArNxMREdlBExSsnaKuy5r9rhzZVWXq84x9LlVh8CEiIjLCmu4blUqFjRs3AjDfKlRQUACgqlvs448/tvjZ1nRV6X4eoEbHjtlo3/6gxw4q9hQMPkRERCbY0vJibqsG3ZWeraEJR6a6qgw/D/DDgQMPIDs7zeZuOKnh6FEiIqIaMrdVgzkqVRhycxOhUoUZPW+qtcn4OkN3Apep6xFbfIiIiGrMmq0aDMfj1KSrytI6Q560N5YjxzQ5AoMPERFRDVnaqsFw/E/37ruwa1d3u7uqNJ/3xRePwrDzxpP2xjKcfm9qMLYrZ58x+BARkWQ4s/XB1MwvY+N/9EPPHZZWhTY20+zgwfbIzk6ze28sZz4T3euaG/ztytlnDD5ERCQJ1i7+Z0vrgzX7XZka/wOoYWyorbmuKs1Ms2vXrmHjxo1QKErQo8cutG9/0K7d4J3xTIyxNPjblRh8iIhIEqxtVbCl9cHclHfNAoimxv90774LO3d2h61dVZGRkQ5bKdkZz8QYc4O/GXyIiIhcwNLif9ayFC5Mjf9JSTmKe+7JsburyhljYhz1TAxZM/jbVRh8iIhIcmq6BYU1rFn5uaZdVeYYG7ujUqlQXl4OAAgICEBFRYX2nDOfiaXB367E4ENERJLiqvEmlrqjioqKIJPJoFAojJ6vyaBia8fuaLjimVi77YezMfgQEZGkOHO8iS0zpOLi4mr0WeZcvXrVpvKuGoNjbPC3qzH4EBGRpDhrvImrZkhZUw/D/cCMjd3RPeasZ2JtV11NuvRsxeBDRESS4qzxJq6aIWXr9Y2N3QFQ7ZgznomjZp85EoMPERFJgjWDjQ3L1YSzZkjZWgfDsTtffPEoZDJUG8+TlbUYWVmLHf5MXBlqrMHgQ0REkuDK1gdXzBqzhvHNTP0ghP4RzXiepKTzGDnyEURFRWnPubpFxtkYfIiISDJc8QXuSasU5+XFARAAZDpH1XotPoD+eJ6oqCinDrx2t+prZRMREZHdzM2QciWVKgy7dnWHfugReOSRXejbdytkMjUAuHVNHXdgiw8REZEDecoqxca7uWSIj89DUtJ5p49x8lQMPkRERA7kKasUWwpgjz3WAUlJSXrv8bXxPMYw+BARETmAq2eNWaqHpQDWrFkznw85xsiEMBzbLW3FxcVQKBRQqVQIDw93d3WIiMiL2LJyszOvrVs2L88P584FIDGxAvHx6hrXw1NZ+/3N4GOAwYeIiGrK3pBiqiwAj1gV2pNZ+/3Nri4iIiIbmQsrRUVF1baMMCYzMxOAdYFm0KBBVtXL2atC+wIGHyIiH+LMrhaqYs/O58ZWcLYlpFRUVFh1TbKMwYeIyEd4yiaZvs4wsJgLIbau4GxNoPGUVaG9FYMPEZELuKIlxtGbZLL1yDJzIcTWFZytCTSetCq0t2LwISJyMne1xNSkO4StR5ZZCiHmVnA2/OdhbaCx5ZpkHIMPEZGTObolxho17Q6xtjtHyoNpTYWQixcbQKE4adMKztYGGk9ZFdqbca8uIiIXU6nCkJubCJUqzGnXN9Z6YO/nHTnSFosXZ2Ht2uFYvDgLR460dWR1vZYmhBj69NPHcORIW+0CgtbsiWXsWsYCjS3XJOPY4kNE5EKuGJjqyO4QjikxzXBl5DvuPCNzKzibu5ZhoAkMDNSWdeeq0L6AwYeIyEVcFSIc2R3iaWNKDFckzs0NQFKS+1YkTkk5Crm8FJ9++rjecd1npPkxZBhSzAWa6OhoZGZmcrC5AzD4EBG5iKtChCM3yfSkMSW6A67NtZw5e8C1YWBJSLho9hkNGDAAUVFR1a6hqSMDjWsx+BARuYizQ4QzNsl05k7jtk6X15S11HJmeE3DzykqKtJbEDAwMBAKhcLk5xqKjIxEZmYm8vLysHnzZovPKCoqCnFxcWavR67D4ENEZMBZ69c4M0QAd76QHV13a8ep2MJwurypWWPGWm9saTmz9Dm2fK6uyMhIvefsjGdEzsHgQ0Skwxnr1zijJcYUR7UeGNbF2nEq1tINDea6rYyFOFtazsx9TuvWJ3DiRGurP9eQs58ROQeDDxGRjqtXr+q9dsT6Nc5qiXEmV9XZngHf9rScGfuc48fbAJBZ/bmGvPGfKzH4EBFpKZVKvV21HTn13Bu//FxRZ3sHfNvatWTsczShx5bPNeSN/1ylzicXMPzPf/6DxMRE1KpVC+3bt8ePP/7o7ioRkRfQ/T93Ry8CSMZZu3CfMQpFCZKSzlsVVIwvNijs+lzybj4XfDZu3IiJEydi+vTpOHLkCNq0aYOePXtWa74mIulRKpXIz883+VNUVKQta64lghzHVSsRG/ucNm2OcwVkCfK5rq6FCxdi9OjRGDlyJABgxYoV2LZtG9577z1MmTLFzbUjInexdtCyRl5eHKpaBO50h9jSIsCdza1nbbeVtYOEVSqV0edr7HO6dfuGM7EkxqeCT1lZGQ4fPoypU6dqj/n5+aF79+7Izs42+p7S0lKUlpZqXxcXFzu9nkTkerYMRlapwrBrV3fojwER6N59l1VfjtzZ3HamZkTp0gwmvnr1qt5YLMMB6Bs3bgRQ9XwtfY41n0u+xaeCT0FBASorKxETE6N3PCYmBr/99pvR98yZMwczZ850RfWIyIOYmq0FmB4IGx+fZ9W1ubO5Zda23hiWM1w/x9JUeHunknMKuu/yqeBjj6lTp2LixIna18XFxUhISHBjjYjI2SzN1rJmnRhrvxhdsSmpN3LEVHBrpsIb+5yartxM3s2ngk9UVBT8/f1x5coVveNXrlxBbGys0fcEBQUhKCjIFdUjIg9gzZelpXVi0tPTrfpi5M7m5tU0XFg7Fd7wc8xtH0G+z6eCj1wuR2pqKnbv3o3+/fsDANRqNXbv3m20r5eIpMfaL0tLO2U78rPIPp60gSp5D58KPgAwceJEDB8+HO3atcP999+PxYsX4+bNm9pZXkQkbZa+LNPT0/W6PQzZ0g3CL2bncvbeZ+SbfC74pKen49q1a3jllVdw+fJl3Hvvvfjqq6+qDXgmImmy9GWpUCgc1hXi6C9mTpGvjpuDkq18LvgAVVMY2bVFRLpcuVGoLlu+mM0Fm6KiIrNTuDWkOEWeU9LJFj4ZfIiIDLlyQ0l7du22ZYFFW3cz9zX2ToUnAhh8iEhCXNUSYk/IsnbtH2fOFNNtccrL80NubgCSkioQH682Wmd34a7oVBMMPkRETlCTL11zLTrOmimm2+Jk7vM9pSvNE+pA3snnNiklIvJmlnaFr8lu5uZoWk8sfb4UutLIt7HFh4jIg1hq0XH2FG57WpS8pYuMCGDwISJyK01oKCgoAGDd2j/OnMJt7vNVqjB8+eVfuPfeK9pQc+vWLXz44YcAvKOLjIjBh4jITYzN5LK2RcdZU7hNff7Zs03M7jlmadA1u8jIUzD4EBG5iamZXMnJZ5CVtdiuFh1HTOE2bFEqKamNVaueNjuTjNtzkLdg8CEi8gDW7uJubksNR46l0bQoHTnSFl988SgM58IYhhpuz0HegsGHiMjNLHUTDRgwAFFRUS4fJKypl7EJwIahhvtmkbdg8CEicjNL3URRUVEO2z/MFGNdZMbqBcBkqOG+WeQNGHyIiNzMUjeRZsaXM1t8dFdDLigowObNm43WC1AjI+O/aNAg3+h1uG8WeToGHyIiNzPWTdS9+y4UFlaFnM2bN2vL1mRauDXr7ei2LJnqvjIVeoi8AYMPEZEOczukA85rddHtJsrLi8euXd0dugnp2bNnrV5vx1S9atJ9xQ1DyVMw+BAR/c3aHdIdtRifsV3cAeD9959y6CakSqVSG3rsWW/HUvfV0KFDERISYvI8V24mT8LgQ0T0N2tbUxy1GJ+xcTXOWA9Ht74HD7a3eH1rW2cGDRqEevXqMdSQV2HwISIyQbOgYESE0mkDdg1DgzPXw1GpwnDgQFq144bX1w1kprAVh7wVgw8RkRHWLijoaM5cD6dqsHT16elpadnVrs9QQ76KwYeIyIClcTDO5qz1cExNT2/f/qBDrk/kDRh8iMht3DWDyhJP2HfKGevhcHVlIgYfInITV8+gsoU79p2ydkBxTaeFc3VlkjoGHyJyC1M7kxsOJHbUDCpbuKNlxJUDis21JnG9HfJ1DD5E5HbuGkhsSPdL31zLiLPCgbNatqyt79ChQzmomXwegw8RuZW7BxLr8tVp3L56X0T2YPAhIrfyhIHEunz1y99X74vIVtUXdCAiciHNQGJdzh5ITETSxeBDRG6lGUisCT+cYk1EzsSuLiJyO06xJiJXYfAhIrcwtjO5scDD6dVE5EgMPkTkFu6eaeSpq0YTkXMx+BCR27grWHjyqtFE5Fwc3ExEkmPtatDuWDWaiJyLLT5E5JPMdWUVFBTovTa1XQYR+R4GHyLyOdZ2ZQE13y6DY4WIvAuDDxH5HGu7qGq6XQbHChF5H47xISKfp1KFITc3ESpVmN5xc9tlWMPYDvPGPodjhYg8B1t8iMinmevK0myXoRt+7N0uw1N2mCci89jiQ0Q+y1RXlqZFxlHbZVj6HCLyHGzxISKfZc3O7+a2y7B21WhP22GeiExj8CEin2WpK2vAgAGIiooy+l5bZmM5ssuMiJyLXV1E5LMsdWVFRUUhLi7O6I8ts7C4wzyR92CLDxF5NWPr6KhUKu3fHdGVZQ3uME/kHRh8iMy4dAk4fRpo2hRo0MDdtSFD1q6jM3p0b9SpU0fvmCMWFuQO80Teh8GHyIRVq4AxYwC1GvDzA1auBDIy3F0r+/niCsPWro9Tp04dxMXFOfzz3b3DPBHZjsGHyIhLl+6EHqDqz2eeAXr29M6WH6msMOyOPbe8+XkRSRGDD5ERp0/fCT0alZXAmTPeGXyMrTBsLCB48wrDXECQiKzB4ENkRNOmVd1buuHH3x9o0sR9dXIUawOCN3WN1XTPLSKSDgYfIgNKpRL+/mWYPz8YkycrUFkpg7+/wLx5Kvj7/wWl0nO+8G1lbUDwtq4xLiBIRNZi8CHSYfiF//zzYdrpyTdulGDlyqrjnvKFbytrA4K3dY1xAUEishaDD5EOwy9yU9OTPeUL31b2BARzXWMFBQUA3N/tpVlA0LCebO0hIkMMPkQSYmtAsNQ1tnnzZm1Zd7SC6a6P46qFConIu1kdfIqLi62+aHh4uF2VISLns2WFYVvGzrijFYzr6BCRrawOPnXq1IFMJjNbRggBmUyGysrKGleMSEp0Z1Dl5fkhNzcASUkViI+vmlZW0y9ve1cYNtY1Bqhx82YoVKowj+hKYqghIltYHXz27NnjzHoQSZbugGpz42lq0pVkb8uIYdcYoAYgw6efPs61cojIK1kdfLp06eLMehBJliaMWBpPU9OuJHtDk6Zr7OLFBti06TEIITNaPyIib2D34OaioiKsWrUKJ0+eBAC0bNkSo0aNgkKhcFjliKTEk9aiMdY1Vlj4l8fUj4jIXn6Wi1T3008/ITk5GYsWLUJhYSEKCwuxcOFCJCcn48iRI46uI5HLWDv7xxmzhDTjaXS5ay0aTdfYmDFjMGDAAI+rHxGRvexq8ZkwYQL69euHd999FwEBVZeoqKjA008/jaysLHz33XcOrSSRq7hzlpCnrUVjabyPu+tHRGQPu4LPTz/9pBd6ACAgIAAvvfQS2rVr57DKEbmDO2cJ2TLV3FWsXStHpVLpvYezrYjIE9kVfMLDw3HhwgU0b95c7/jFixcRFhbmkIoRSZWpqebuYtgKVlRUhI8//rhauY0bN+q99tZtPYjIt9kVfNLT05GRkYE33ngDHTt2BADs378fkyZNwuDBgx1aQSJyP3sCjLdu60FEvs2u4PPGG29AJpPhqaeeQkVFBQAgMDAQzz77LObOnevQChL5OncOqCYikhq7go9cLseSJUswZ84cnD17FgCQnJyMkJAQh1aOSAq8fdsFUzu3ExF5ohptUhoSEoJWrVo5qi5EkuWpocYScytNExF5IrvW8bl9+zYWLFiA//f//h/atWuHlJQUvR9HO3fuHDIyMpCUlITg4GAkJydj+vTp1f4P+cSJE+jUqRNq1aqFhIQEzJ8/3+F1IfJmSqUS+fn5Jn+USqXF9xcUFAAwvdK0SsUJDkTkuexq8cnIyMCOHTvw2GOP4f7777e4eWlN/fbbb1Cr1XjnnXfQpEkT5OTkYPTo0bh58ybeeOMNAFW7x/fo0QPdu3fHihUr8PPPP2PUqFGoU6cOxowZ49T6EXkD3T3BzDE1G8vw/Z600jQRkbXsCj5bt27Fl19+iQceeMDR9TGqV69e6NWrl/Z148aNcerUKSxfvlwbfNatW4eysjK89957kMvlaNmyJY4dO4aFCxcy+JBP0t3R3RjDcUHWzrIyVc7wuLGd27mSMxF5OruCT/369d2+Xo9KpUJERIT2dXZ2Njp37qw386Vnz56YN28erl+/jrp16xq9TmlpKUpLS7Wvi4uLnVdpIgepaesNUPNByZZWcuYsNCLyRHYFnzfffBOTJ0/GihUr0KhRI0fXyaIzZ87grbfe0rb2AMDly5eRlJSkVy4mJkZ7zlTwmTNnDmbOnOm8yhI5QU1bbxwxKFmlCkPduteRkfFflJfLtSs5DxgwAPHx8V47YJuIfJtdwaddu3a4ffs2GjdujJCQEAQGBuqdLyy0rql7ypQpmDdvntkyJ0+e1Fsh+s8//0SvXr3w+OOPY/To0bZX3sDUqVMxceJE7evi4mIkJCTU+LpEjmTYraUZYKxhqvVGt5ylQcnJyWesbvkxFpySks4DAKKiohh6iMhj2RV8Bg8ejD///BOvv/46YmJi7B7c/MILL2DEiBFmyzRu3Fj797y8PDz00EPo2LEjVq5cqVcuNjYWV65c0TumeR0bG2vy+kFBQQgKCrKx5kSuY6lby1zrzebNm6uVr+mgZEcEJyIid7Er+Bw4cADZ2dlo06ZNjT48Ojoa0dHRVpX9888/8dBDDyE1NRWrV6+Gn5/+f7jT0tIwbdo0lJeXa1ugdu7ciWbNmpns5iLyBobdVbqtOwBsDiE1HZTM2VxE5M3sCj7NmzfHX3/95ei6mPTnn3+ia9euaNSoEd544w1cu3ZNe07TmvPkk09i5syZyMjIwOTJk5GTk4MlS5Zg0aJFLqsnkbMZtu6kpWVbFUIMu8LMDUq2hLO5iMib2RV85s6dixdeeAGzZ89Gq1atqo3xCQ8Pd0jlNHbu3IkzZ87gzJkzaNCggd45IQQAQKFQYMeOHRg3bhxSU1MRFRWFV155hVPZyWcY62I6cCDNYggx1RWWnHwGhYUR2kHJGqZmY2mOczYXEXkzmdAkBxtoupkMx/YIISCTyVBZWemY2rlBcXExFAoFVCqVwwMckT3y8/OxcuVK5OYmYu3a4dXOd+y4H9nZaUbH+KhUYVi8OKtaMMrKWqydgRUVFaU9Z2lPMN1B1nl5fjh3LgCJiRWIj1db9X4iImex9vvbrhafPXv22F0xIrKPqS6m9u0Pon37g0ZbbyyNx4mKikJcXJzVddANNXFxQGpqDW6IiMgN7Ao+Xbp0sarcP//5T7z66qt6/0dJRPax1MU0cuQjCAgIwMcff6x9D8fjEBHpq9Hu7JZ8+OGHePHFFxl8iBzE3NgcY/+e1XQgMxGRr3Fq8LFj+BARGTAcLKxQlBgNLnK5XG/Go4Y9A5mJiHyVU4MPEdVcZGQkMjMzrdqQNC8vT++47jR2zcrKAPDQQw+hZcuWHIhMRJLD4EPkALbulG4re95rbkXnunXrMvQQkSQx+JBTGU5/zs0NQFKSb01/NtxSwtS+WeZ2Snc0S9tKXL9+Hfn5+T7x/ImIbMHgQ06jGwjMtT64MhA4g25Lj7n7tHZHdUewNI19z5492mUpvP35ExHZws9yEX0VFRV49dVXcenSJYtlhw4dykUAJUzzRW+q9UGlCtMr5+0s3acrBQaWAjCcXCAQGFj9WfvK8ycisobNwScgIAALFixARUWFxbLLly/nVHYy2/rgSzzhPgMCqhpxy8uDAMgMzspw4UJDtwQxIiJPYXPwAYBu3bph7969jq4L+SjNInq6fHERPU+4zzp16pisCyCwY0cvLF6chSNH2rqsTkREnsSuMT69e/fGlClT8PPPPyM1NRWhoaF65/v16+eQypFvcNcies6eaWXIExYLNLWRaFW3V1ULkOFAZyIiKbEr+Pzzn/8EACxcuLDaOW/fpJScw9wies7grplWrr5PQ7pr/hQUFCA5eTF++aUFduzopVdOd6AzEZGU2BV81GrDJnQiy0ytOOwMtsy0cnTLkCvv0xjduioUJWjZ8lfs3NmD+3UREcHO4PP+++8jPT0dQUFBesfLysqwYcMGPPXUUw6pHFFNWVrPpqioSG9TT1MMW4Z0w1JRUZFVdXHX9hCe0AVHROQp7Ao+I0eORK9evVCvXj294yUlJRg5ciSDDwGw/ovemYHA0no2hrMTTXWJ6bYIGXajmZKeng6FQgHAPQs16j5X7tdFRFTFruAjhIBMZjhVFrh06ZL2P/REtuwx5Sya2U3WdPOY6xLTZe26NwqFAnFxcfZXvoY84fkTEXkam4JP27ZtIZPJIJPJ8PDDD2vXDAGAyspK5ObmolevXmauQFLj7i9Va7t5LHWJmWOqlcgTuPv5ExF5GpuCT//+/QEAx44dQ8+ePVG7dm3tOblcjsTERAwcONChFSSqKWtmWlnqEjPF2lYiIiLyDDYFn+nTpwMAEhMTkZ6ejlq1ajmlUkSOZmmmlS1dYho1aSUiIiL3sGuMz/DhwwFUjXW4evVqtentDRs2rHnNiGrA2gG7gYGBAOyb+WRvKxEREbmPXcHn9OnTGDVqFA4cOKB3XDPomQsYkrtZO7BX97y1iw+qVCoA1rUSGVsjSKVSoby8HEDV3lqabSZ068WxOUREzmFX8BkxYgQCAgKwdetWxMXFGZ3hReRu1oQHpVKp99pUl5imBUmpVGLjxo3asuZaiaxdI8gYR68oTUREVewKPseOHcPhw4fRvHlzR9eHyKVsnfJtWC45+QwGDtwEQCAh4ZJeaDL8HwJbZn9ZO2WeiIhsY1fwadGiBQoKChxdFyK3sLdlxdyMrkGDBumtaWWqrCdPhSci8kV2BZ958+bhpZdewuuvv45WrVppB4hqhIeHO6RyRJ7K0owu3XE7psr+9Vct7NrVnVPhiYhcyK7g0717dwBAt27d9JrzObiZpMKWGV2mympCj+Y1p8ITETmfXcFnz549jq4HkVexZd0fY2UBw9ecCk9E5Ap+lotU16VLF/j5+eHdd9/FlClT0KRJE3Tp0gUXLlyAv7+/o+tI5HE0M7pksqo1rMyt+2Os7COP7NK+1rC0YCIREdWcXS0+mzZtwrBhwzBkyBAcPXoUpaWlAKrWJ3n99dfx5ZdfOrSSRJ7I2nV/TJUNDr5t04KJRERUc3YFn9deew0rVqzAU089hQ0bNmiPP/DAA3jttdccVjkiT2O4IrSldX/MlTUXnKxdeZqIiGxjV/A5deoUOnfuXO24QqFAUVFRTetE5LFsXffHWFmu3ExE5D52BZ/Y2FicOXMGiYmJesf37duHxo0bO6JeRB7LllBirGxcXJwjq0NERDawa3Dz6NGjMX78eBw8eBAymQx5eXlYt24dXnzxRTz77LOOriMRERGRQ9jV4jNlyhSo1Wo8/PDDuHXrFjp37oygoCC8+OKLeO655xxdRyIiIiKHkAkhhL1vLisrw5kzZ3Djxg20aNECtWvXdmTd3KK4uBgKhQIqlYorUBMREXkJa7+/7Wrx0ZDL5WjRokVNLkFERETkMnaN8SEiIiLyRgw+REREJBkMPkRERCQZDD5EREQkGTUa3EzkTZRKpdUrLhMRkW9i8CFJUCqVWLZsmfa1ShWGwsJIREQo9fbIyszMZPghIvJhDD7kM8y16BQUFGj/fuRI22q7oqekHAUAsy1CRETk/Rh8yCdY26KjUoVpQw8ACOGHLVseRXLyGaO7rBMRkW9h8CGfoNtSY65Fp7AwUht6NITwQ2FhBIMPEZEEcFYX+RRTLToqVRgAICJCCZlMrfcemUyNiIhCl9eViIhcjy0+ZJGnz4ZSKpXaMTyWWnQUihL07bu1WosQW3uIiKSBwYfMMhw7Y4q7ZkMZ1i8wsBQymVov/Bi26KSkHEVy8hlcvNgAgAwJCRddWWUiInIjBh8yy9pZTu6aDWVqbA8gAMhMtuicPdvE6DgglUqFuLg4194EERG5DIMPeQVT3W2aLi7DsT2ADIAaGRn/RYMG+XrvMTeza+PGjVzLh4jIhzH4kMezZqq6sbE9gB/Ky+XVrmdpHBDX8iEi8l0MPuTxrJmqrpmtZW5sj4YtZYmIyLdwOjt5DXNT1TWztTRT1Q3H9gwYMADp6ekAYLEsERH5Lrb4kE1MrYjsCpa6qDSztQoLIxARUahXv6ioKL33mStLRES+i8GHrGZuRWRn0V2jx5ouKs1aPdawpSwREfkGdnWRWXJ51eBgSysia8o5kmZQ8+bNm7XH0tKyAdjeReWM+hERkfdhiw+ZFRkZiczMTOzZAyxaVL2b6YEHhqNrVzhl+re5Qc1pafvRvv1BvdAzYMCAal1awJ2VpfPz86udIyIiaWHwIYsiIyPRoQPg5weodba58vcH2rePhKXMU9MtL4y1NmVnp6F9+4N65aKioswuPmhtqw9bh4iIfBeDD1mlQQNg5UrgmWeAysqq0PPOO1XHzXHElhfW7qhuKbBoWq88ed8xIiJyLgYfslpGBtCzJ3DmDNCkieXQA1TfysLUrDBzYcTSoOYBAwYgPj7eqsDCUENEJG0MPmSTBg2sCzzG2DsrzNKO6lFRUQw0RERkFQYfcglz+2NZMyuL6+4QEZEjMPiQS1g7TsccrrtDREQ15XXr+JSWluLee++FTCbDsWPH9M6dOHECnTp1Qq1atZCQkID58+e7p5JUjWacji5L+2NxFhYRETma17X4vPTSS4iPj8fx48f1jhcXF6NHjx7o3r07VqxYgZ9//hmjRo1CnTp1MGbMGDfVljQsjdMxhrOwiIjI0bwq+Gzfvh07duzApk2bsH37dr1z69atQ1lZGd577z3I5XK0bNkSx44dw8KFCxl8PIQ943QYaoiIyJG8pqvrypUrGD16ND744AOEhIRUO5+dnY3OnTvrdXv07NkTp06dwvXr101et7S0FMXFxXo/5DiG3VAKRQmSks5XCz3sriIiIlfwihYfIQRGjBiBsWPHol27djh37ly1MpcvX0ZSUpLesZiYGO25unXrGr32nDlzMHPmTIfX2R1qukKyM7C7ioiIPIlbg8+UKVMwb948s2VOnjyJHTt2oKSkBFOnTnV4HaZOnYqJEydqXxcXFyMhIcHhn+Nsjlgh2dE8MYgREZG0uTX4vPDCCxgxYoTZMo0bN8Y333yD7OxsBAUF6Z1r164dhgwZgrVr1yI2NhZXrlzRO695HRsba/L6QUFB1a7rjcwFDHvK1ZRhEDO1YrMrgxgREZFbg090dDSio6Mtllu6dClee+017eu8vDz07NkTGzduRPv27QEAaWlpmDZtGsrLyxEYGAgA2LlzJ5o1a2aym0vKnN0aY25ndd0Vm10VxIiIiAAvGePTsGFDvde1a9cGACQnJ6PB3/snPPnkk5g5cyYyMjIwefJk5OTkYMmSJVi0aJHL6+vpXNktVtMVm4mIiBzJK4KPNRQKBXbs2IFx48YhNTUVUVFReOWVVziV3QhXdos5YsVmIiIiR/HK4JOYmAghRLXjrVu3xvfff++GGpEplnZWJyIiciWvWceHvJNmxWbNdhXWrNhMRETkLF7Z4kPehTurExGRp2Dw8RG2bOhpOHbH1FRzW+nOFMvJKUJubqL2mtxZnYiIPAGDj48wXCE5L88PubkBSEqqQHx8VTeTZop6fn6+9n3mpprbQnem2J1r3m3xmtyqgoiIXInBx4dopp6vWgWMGQOo1YCfH7ByJZCRUb28I6eaawKXpWsOGDAAUVFRALhyMxERuR4HN/uYS5fuhB6g6s9nnqk6rqFpZTE31Vy3nC0sXTMqKgpxcXGIi4tj6CEiIpdji4+POX36TujRqKwEzpwB/l7rUdstdu5cBT74QECtlmnL+vsLPPdcbyQmBtgVTDh9nYiIPBlbfHxM06ZV3Vu6/P2BJk30j0VGRiI1NQYrV8rg73+n3DvvyJCaGmN3awynrxMRkSdji4+PadCgakzPM89UtfRUhZk7rT2GMjKAnj2rWoSaNDFdzhacvk5ERJ6KwccH2RpmGjRwTODRxenrRETkiRh8fJQzwgwREZG34xgfcghbFlAkIiJyF7b4kEMYLqBoDNftISIid2PwIYdhqCEiIk/Hri4iIiKSDAYfqpFLl4A9e/RXhiYiIvJUDD5kt1WrgEaNgG7dqv5ctcrdNSIiIjKPwYdsplQqcfjwFYwZIwz2BBM4fPgKlEqleytIRERkAgc3S5BSqbR79pVSqcSyZcuQm5sItXq43rnKShneems7kpLOIzMzk4OdiYjI4zD4SIwmuGioVGEoLIxERIRSb6VlU8FFE5gsbUZqLlgRERG5C4OPxOgGkiNH2mLLlkchhJ92M9GUlKPVyhmj2YzU8P3cpoKIiDwZg49EqVRh2tACAEL4YcuWR5GcfMbq8MLNSImIyNsw+EhUYWGkXjcVUBV+CgsjbAow3IyUiIi8CWd1SZRmjI4u3TE6REREvojBR6I0Y3Q04YdjdIiISArY1eVF7JmGbviegoIC7d85RoeIiKSGwcdLGE5DN0V3Grrpqeth2pBj6xgduVzu0HJERESuxODjJQxbekytv6Nbztqp68boBpdLl4DTp4GmTYEGDSKRmZlp9wKIRERE7sTg44VsDTGWpq4PGDAAUVFR2vK6wWXVKmDMmKotKfz8gJUrgYwMhhoiIvJOHNzsZUyFGJUqzOR7zE1dB4CoqCjExcVpfzSh59KlO6EH0OzHxZ3YiYjIezH4eBlLIcYYe6auK5VK/PCDUht6NCorgYMHldyIlIiIvBKDj5exJ8TYOnVdMyj6wIG1Rj9r//61WLZsGcMPERF5HY7x8TL27pFly9R1zcBlS5/FjUiJiMjbMPh4IXvX37Fnewmu9UNERL6EwcdLGK6LYyrE6JZz1Jo73I+LiIh8BYOPl4iMtH39HHveQ0RE5MsYfLyIPQGFoYaIiOgOzuoiIiIiyWDwISIiIslg8KFquBEpERH5Ko7xoWo4KJqIiHwVgw8ZxVBDRES+iMHHBymVSrbWEBERGcHg42M0+2xpqFRhKCyMRESEUm8RwszMTIYfIiKSHAYfH6Pb0nPkSNtq+2ylpBytVo6IiEgqOKvLR6lUYdrQAwBC+GHLlkehUoW5uWZERETuw+DjY4qKigAAhYWR2tCjIYQfCgsj9MoRERFJCYOPj6moqAAAREQoAQi9czKZGhERhXrliIiIpITBx6fpBx8hTBQjIiKSCAYfH1VYGInq/3jvdHURERFJEYOPj4qIUEImU+sd0+3qIiIikiIGHx8TGBgIAFAoStC371Zt+NFMZ9es5aMpR0REJCVcx8fHKBQK7d9TUo4iOfkMCgsjEBFRqLeAoW45IiIiqWDw8XEKRYle4CEiIpIydnX5GLlc7tByREREvoQtPj4mMjISmZmZ3KSUiIjICAYfH8RQQ0REZBy7ujzIpUvAnj1VfxIREZHjMfh4iFWrgEaNgG7dqv5ctcrdNSIiIvI9DD5uplQqcfjwFYwZI6D+e71BtRp45hmBw4evQKlUureCREREPoRjfNxIqVRi2bJlyM1NhFo9XO9cZaUMb721HUlJ55GZmclxO0RERA7AFh830sy8srS9hLkZWkRERGQ9Bh8PYGl7CSIiInIMrwo+27ZtQ/v27REcHIy6deuif//+eucvXLiAPn36ICQkBPXq1cOkSZNQUVHhnsraKCXlKLKyFmP48DXIylqMlJSj7q4SERGRz/GaMT6bNm3C6NGj8frrr6Nbt26oqKhATk6O9nxlZSX69OmD2NhYHDhwAPn5+XjqqacQGBiI119/3Y01tx63lyAiInIurwg+FRUVGD9+PBYsWICMjAzt8RYtWmj/vmPHDvz666/YtWsXYmJicO+992LWrFmYPHkyZsyYwS0aiIiIyDu6uo4cOYI///wTfn5+aNu2LeLi4tC7d2+9Fp/s7Gy0atUKMTEx2mM9e/ZEcXExfvnlF3dUm4iIiDyMVwSfP/74AwAwY8YM/Pvf/8bWrVtRt25ddO3aFYWFVTOfLl++rBd6AGhfX7582eS1S0tLUVxcrPdDREREvsmtwWfKlCmQyWRmf3777Teo/17Zb9q0aRg4cCBSU1OxevVqyGQyfPLJJzWqw5w5c6BQKLQ/CQkJjrg1q1jb/aZSqZCfn6/94aKGRERE9nHrGJ8XXngBI0aMMFumcePGyM/PB6A/picoKAiNGzfGhQsXAACxsbH48ccf9d575coV7TlTpk6diokTJ2pfFxcXuyz8GNtJvaioCB9//LFeuY0bN1Z7Lxc1JCIisp1bg090dDSio6MtlktNTUVQUBBOnTqFBx98EABQXl6Oc+fOoVGjRgCAtLQ0zJ49G1evXkW9evUAADt37kR4eLheYDIUFBSEoKAgB9yNfewNL1zUkIiIyHZeMasrPDwcY8eOxfTp05GQkIBGjRphwYIFAIDHH38cANCjRw+0aNECw4YNw/z583H58mX8+9//xrhx49wabIiIiMhzeEXwAYAFCxYgICAAw4YNw19//YX27dvjm2++Qd26dQEA/v7+2Lp1K5599lmkpaUhNDQUw4cPx6uvvurmmhunVCqNttoUFBS4oTZERETSIBNCCHdXwpMUFxdDoVBApVIhPDzcKZ+h2ZzUGipVGAoLIxERodRb3HDMmDGIi4tzSv2IiIi8jbXf317T4uNLrB2fc+RIW2zZ8iiE8NPu38WtLIiIiOznFev4SJFKFaYNPQAghB+2bHkUKlWYm2tGRETkvRh83KCoqEjvtUoVhtzcRL1QU1gYqQ09GkL4obAwwhVVJCIi8kns6nID3R3jTXVnRUQoIZOp9cKPTKZGRETVStXce4yIiMh2DD5uZKo7Kzn5DBSKEkyadAZvvtkUlZUy+PsLzJtXjCefHAy5XM7FC4mIiOzA4ONG5rqzFIoSDB1aiueek+HMGaBJExkaNKgDoI47qkpEROQTGHzcyFJ3FgA0aFD1Q0RERDXHwc1uEBgYCABQKErQt+9WyGRVm7Bqxvho1uvRlCMiIiLHYIuPGygUCu3fU1KOol69y7h4sSESEi6gQYN8o+WIiIio5hh83IyLFBIREbkOu7rcQDMV3dIihZyyTkRE5Fhs8XEiUxuRAsCgQYPw44+hRmd1PfDAcHTtCk5ZJyIicjAGHyexZiNSlSoMfn4ToFbLtMf8/YH27SPBzENEROR47OpyEms2IlUoSjB/vgr+/lWv/f2Bd97h9HUiIiJnYYuPmz355F9IT6/z9yKFDD1ERETOxODjAbhIIRERkWuwq4uIiIgkg8GHiIiIJIPBh4iIiCSDwYeIiIgkg8HHSQxXXVapwpCbm6hdldlUOSIiInIezupyksjISGRmZqKsrAzr1wfj1VcVUKtl8PMTmD9fhSef/AtyuZyrMxMREbmQTAgh3F0JT1JcXAyFQgGVSoXw8PAaX+/SJaBRI0CtvnPM3x84d45T2ImIiBzF2u9vdnU52enT+qEHACorgTNn3FMfIiIiKWPwcbKmTQE/g6fs71+1SjMRERG5FoOPkzVoAKxcCe7HRURE5AE4uNkFMjKAnj3B/biIiIjcjMHHRbgfFxERkfuxq4uIiIgkg8GHiIiIJIPBh4iIiCSDwYeIiIgkg8GHiIiIJIPBh4iIiCSDwYeIiIgkg8GHiIiIJIPBh4iIiCSDwYeIiIgkg8GHiIiIJIN7dRkQQgAAiouL3VwTIiIispbme1vzPW4Kg4+BkpISAEBCQoKba0JERES2KikpgUKhMHleJixFI4lRq9XIy8tDWFgYZDKZ1e8rLi5GQkICLl68iPDwcCfW0LPxOVThc6jC51CFz6EKn8MdfBZVHPkchBAoKSlBfHw8/PxMj+Rhi48BPz8/NGjQwO73h4eHS/qXWIPPoQqfQxU+hyp8DlX4HO7gs6jiqOdgrqVHg4ObiYiISDIYfIiIiEgyGHwcJCgoCNOnT0dQUJC7q+JWfA5V+Byq8DlU4XOowudwB59FFXc8Bw5uJiIiIslgiw8RERFJBoMPERERSQaDDxEREUkGgw8RERFJBoOPGcuXL0fr1q21CyulpaVh+/bt2vO3b9/GuHHjEBkZidq1a2PgwIG4cuWK3jUuXLiAPn36ICQkBPXq1cOkSZNQUVHh6ltxqLlz50ImkyErK0t7TArPYsaMGZDJZHo/zZs3156XwjPQ+PPPPzF06FBERkYiODgYrVq1wk8//aQ9L4TAK6+8gri4OAQHB6N79+44ffq03jUKCwsxZMgQhIeHo06dOsjIyMCNGzdcfSt2S0xMrPb7IJPJMG7cOADS+X2orKzEyy+/jKSkJAQHByM5ORmzZs3S2y9JCr8PQNVWCVlZWWjUqBGCg4PRsWNHHDp0SHveV5/Dd999h759+yI+Ph4ymQyff/653nlH3feJEyfQqVMn1KpVCwkJCZg/f759FRZk0hdffCG2bdsmfv/9d3Hq1Cnxr3/9SwQGBoqcnBwhhBBjx44VCQkJYvfu3eKnn34SHTp0EB07dtS+v6KiQtxzzz2ie/fu4ujRo+LLL78UUVFRYurUqe66pRr78ccfRWJiomjdurUYP3689rgUnsX06dNFy5YtRX5+vvbn2rVr2vNSeAZCCFFYWCgaNWokRowYIQ4ePCj++OMP8fXXX4szZ85oy8ydO1coFArx+eefi+PHj4t+/fqJpKQk8ddff2nL9OrVS7Rp00b88MMP4vvvvxdNmjQRgwcPdsct2eXq1at6vws7d+4UAMSePXuEENL5fZg9e7aIjIwUW7duFbm5ueKTTz4RtWvXFkuWLNGWkcLvgxBCDBo0SLRo0ULs3btXnD59WkyfPl2Eh4eLS5cuCSF89zl8+eWXYtq0aWLz5s0CgPjss8/0zjvivlUqlYiJiRFDhgwROTk54qOPPhLBwcHinXfesbm+DD42qlu3rvjvf/8rioqKRGBgoPjkk0+0506ePCkAiOzsbCFE1S+Dn5+fuHz5srbM8uXLRXh4uCgtLXV53WuqpKRENG3aVOzcuVN06dJFG3yk8iymT58u2rRpY/ScVJ6BEEJMnjxZPPjggybPq9VqERsbKxYsWKA9VlRUJIKCgsRHH30khBDi119/FQDEoUOHtGW2b98uZDKZ+PPPP51XeScaP368SE5OFmq1WlK/D3369BGjRo3SOzZgwAAxZMgQIYR0fh9u3bol/P39xdatW/WOp6SkiGnTpknmORgGH0fd99tvvy3q1q2r9+/G5MmTRbNmzWyuI7u6rFRZWYkNGzbg5s2bSEtLw+HDh1FeXo7u3btryzRv3hwNGzZEdnY2ACA7OxutWrVCTEyMtkzPnj1RXFyMX375xeX3UFPjxo1Dnz599O4ZgKSexenTpxEfH4/GjRtjyJAhuHDhAgBpPYMvvvgC7dq1w+OPP4569eqhbdu2ePfdd7Xnc3NzcfnyZb1noVAo0L59e71nUadOHbRr105bpnv37vDz88PBgwdddzMOUlZWhg8//BCjRo2CTCaT1O9Dx44dsXv3bvz+++8AgOPHj2Pfvn3o3bs3AOn8PlRUVKCyshK1atXSOx4cHIx9+/ZJ5jkYctR9Z2dno3PnzpDL5doyPXv2xKlTp3D9+nWb6sRNSi34+eefkZaWhtu3b6N27dr47LPP0KJFCxw7dgxyuRx16tTRKx8TE4PLly8DAC5fvqz3HzXNec05b7JhwwYcOXJEr79a4/Lly5J4Fu3bt8eaNWvQrFkz5OfnY+bMmejUqRNycnIk8wwA4I8//sDy5csxceJE/Otf/8KhQ4fw/PPPQy6XY/jw4dp7MXavus+iXr16eucDAgIQERHhVc9C4/PPP0dRURFGjBgBQDr/TgDAlClTUFxcjObNm8Pf3x+VlZWYPXs2hgwZAgCS+X0ICwtDWloaZs2ahbvvvhsxMTH46KOPkJ2djSZNmkjmORhy1H1fvnwZSUlJ1a6hOVe3bl2r68TgY0GzZs1w7NgxqFQqfPrppxg+fDj27t3r7mq51MWLFzF+/Hjs3Lmz2v/NSInm/2ABoHXr1mjfvj0aNWqEjz/+GMHBwW6smWup1Wq0a9cOr7/+OgCgbdu2yMnJwYoVKzB8+HA31849Vq1ahd69eyM+Pt7dVXG5jz/+GOvWrcP69evRsmVLHDt2DFlZWYiPj5fc78MHH3yAUaNGoX79+vD390dKSgoGDx6Mw4cPu7tqpINdXRbI5XI0adIEqampmDNnDtq0aYMlS5YgNjYWZWVlKCoq0it/5coVxMbGAgBiY2OrzeLQvNaU8QaHDx/G1atXkZKSgoCAAAQEBGDv3r1YunQpAgICEBMTI5lnoatOnTq46667cObMGUn9PsTFxaFFixZ6x+6++25tt5/mXozdq+6zuHr1qt75iooKFBYWetWzAIDz589j165dePrpp7XHpPT7MGnSJEyZMgVPPPEEWrVqhWHDhmHChAmYM2cOAGn9PiQnJ2Pv3r24ceMGLl68iB9//BHl5eVo3LixpJ6DLkfdtyP/fWHwsZFarUZpaSlSU1MRGBiI3bt3a8+dOnUKFy5cQFpaGgAgLS0NP//8s94/0J07dyI8PLzaF4cne/jhh/Hzzz/j2LFj2p927dphyJAh2r9L5VnounHjBs6ePYu4uDhJ/T488MADOHXqlN6x33//HY0aNQIAJCUlITY2Vu9ZFBcX4+DBg3rPoqioSO//hL/55huo1Wq0b9/eBXfhOKtXr0a9evXQp08f7TEp/T7cunULfn76XyX+/v5Qq9UApPf7AAChoaGIi4vD9evX8fXXX+Mf//iHJJ8D4Lh//mlpafjuu+9QXl6uLbNz5040a9bMpm4uAJzObs6UKVPE3r17RW5urjhx4oSYMmWKkMlkYseOHUKIqumqDRs2FN9884346aefRFpamkhLS9O+XzNdtUePHuLYsWPiq6++EtHR0V43XdUY3VldQkjjWbzwwgvi22+/Fbm5uWL//v2ie/fuIioqSly9elUIIY1nIETVkgYBAQFi9uzZ4vTp02LdunUiJCREfPjhh9oyc+fOFXXq1BH/+9//xIkTJ8Q//vEPo9NX27ZtKw4ePCj27dsnmjZt6vHTdg1VVlaKhg0bismTJ1c7J5Xfh+HDh4v69etrp7Nv3rxZREVFiZdeeklbRiq/D1999ZXYvn27+OOPP8SOHTtEmzZtRPv27UVZWZkQwnefQ0lJiTh69Kg4evSoACAWLlwojh49Ks6fPy+EcMx9FxUViZiYGDFs2DCRk5MjNmzYIEJCQjid3dFGjRolGjVqJORyuYiOjhYPP/ywNvQIIcRff/0l/vnPf4q6deuKkJAQ8X//938iPz9f7xrnzp0TvXv3FsHBwSIqKkq88MILory83NW34nCGwUcKzyI9PV3ExcUJuVwu6tevL9LT0/XWrpHCM9DYsmWLuOeee0RQUJBo3ry5WLlypd55tVotXn75ZRETEyOCgoLEww8/LE6dOqVXRqlUisGDB4vatWuL8PBwMXLkSFFSUuLK26ixr7/+WgCodm9CSOf3obi4WIwfP140bNhQ1KpVSzRu3FhMmzZNb9qxVH4fNm7cKBo3bizkcrmIjY0V48aNE0VFRdrzvvoc9uzZIwBU+xk+fLgQwnH3ffz4cfHggw+KoKAgUb9+fTF37ly76isTQmd5TSIiIiIfxjE+REREJBkMPkRERCQZDD5EREQkGQw+REREJBkMPkRERCQZDD5EREQkGQw+REREJBkMPkRERCQZDD5EVGNdu3ZFVlaWu6vhdDNmzMC9997r7moQUQ0w+BCR5JWVlbn084QQqKiocOlnElEVBh8iqpERI0Zg7969WLJkCWQyGWQyGc6dO4ecnBz07t0btWvXRkxMDIYNG4aCggLt+7p27YrnnnsOWVlZqFu3LmJiYvDuu+/i5s2bGDlyJMLCwtCkSRNs375d+55vv/0WMpkM27ZtQ+vWrVGrVi106NABOTk5enXat28fOnXqhODgYCQkJOD555/HzZs3tecTExMxa9YsPPXUUwgPD8eYMWMAAJMnT8Zdd92FkJAQNG7cGC+//LJ2N+g1a9Zg5syZOH78uPY+16xZg3PnzkEmk+HYsWPa6xcVFUEmk+Hbb7/Vq/f27duRmpqKoKAg7Nu3D2q1GnPmzEFSUhKCg4PRpk0bfPrpp47+R0REOhh8iKhGlixZgrS0NIwePRr5+fnIz89HWFgYunXrhrZt2+Knn37CV199hStXrmDQoEF67127di2ioqLw448/4rnnnsOzzz6Lxx9/HB07dsSRI0fQo0cPDBs2DLdu3dJ736RJk/Dmm2/i0KFDiI6ORt++fbUB5ezZs+jVqxcGDhyIEydOYOPGjdi3bx8yMzP1rvHGG2+gTZs2OHr0KF5++WUAQFhYGNasWYNff/0VS5YswbvvvotFixYBANLT0/HCCy+gZcuW2vtMT0+36VlNmTIFc+fOxcmTJ9G6dWvMmTMH77//PlasWIFffvkFEyZMwNChQ7F3716brktENrBra1MiIh1dunQR48eP176eNWuW6NGjh16Zixcv6u1k3qVLF/Hggw9qz1dUVIjQ0FAxbNgw7bH8/HwBQGRnZwsh7uwCvWHDBm0ZpVIpgoODxcaNG4UQQmRkZIgxY8boffb3338v/Pz8xF9//SWEEKJRo0aif//+Fu9rwYIFIjU1Vft6+vTpok2bNnplcnNzBQBx9OhR7bHr168LAGLPnj169f7888+1ZW7fvi1CQkLEgQMH9K6XkZEhBg8ebLFuRGSfAHeGLiLyTcePH8eePXtQu3btaufOnj2Lu+66CwDQunVr7XF/f39ERkaiVatW2mMxMTEAgKtXr+pdIy0tTfv3iIgINGvWDCdPntR+9okTJ7Bu3TptGSEE1Go1cnNzcffddwMA2rVrV61uGzduxNKlS3H27FncuHEDFRUVCA8Pt/n+TdH9zDNnzuDWrVt45JFH9MqUlZWhbdu2DvtMItLH4ENEDnfjxg307dsX8+bNq3YuLi5O+/fAwEC9czKZTO+YTCYDAKjVaps++5lnnsHzzz9f7VzDhg21fw8NDdU7l52djSFDhmDmzJno2bMnFAoFNmzYgDfffNPs5/n5VY0YEEJoj2m63QzpfuaNGzcAANu2bUP9+vX1ygUFBZn9TCKyH4MPEdWYXC5HZWWl9nVKSgo2bdqExMREBAQ4/j8zP/zwgzbEXL9+Hb///ru2JSclJQW//vormjRpYtM1Dxw4gEaNGmHatGnaY+fPn9crY3ifABAdHQ0AyM/P17bU6A50NqVFixYICgrChQsX0KVLF5vqSkT24+BmIqqxxMREHDx4EOfOnUNBQQHGjRuHwsJCDB48GIcOHcLZs2fx9ddfY+TIkdWCgz1effVV7N69Gzk5ORgxYgSioqLQv39/AFUzsw4cOIDMzEwcO3YMp0+fxv/+979qg5sNNW3aFBcuXMCGDRtw9uxZLF26FJ999lm1+8zNzcWxY8dQUFCA0tJSBAcHo0OHDtpBy3v37sW///1vi/cQFhaGF198ERMmTMDatWtx9uxZHDlyBG+99RbWrl1r97MhIvMYfIioxl588UX4+/ujRYsWiI6ORllZGfbv34/Kykr06NEDrVq1QlZWFurUqaPtGqqJuXPnYvz48UhNTcXly5exZcsWyOVyAFXjhvbu3Yvff/8dnTp1Qtu2bfHKK68gPj7e7DX79euHCRMmIDMzE/feey8OHDigne2lMXDgQPTq1QsPPfQQoqOj8dFHHwEA3nvvPVRUVCA1NRVZWVl47bXXrLqPWbNm4eWXX8acOXNw9913o1evXti2bRuSkpLseCpEZA2Z0O2YJiLyYN9++y0eeughXL9+HXXq1HF3dYjIC7HFh4iIiCSDwYeIiIgkg11dREREJBls8SEiIiLJYPAhIiIiyWDwISIiIslg8CEiIiLJYPAhIiIiyWDwISIiIslg8CEiIiLJYPAhIiIiyWDwISIiIsn4/8TGl40I9GJZAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -568,7 +741,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAHHCAYAAAAGU9SoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdhUlEQVR4nO3deXxM1/8/8NdkX0iCrEiIPZYvESXjg1abCkVo+RRVpEIbtdQWEkVEW9LYd/1UK6r22mINjbWSKmnsEhohfEiiJQkh+/n94Zf7MWZCEpPM9no+HvNgzj1z5z1zK3n1nHvPlQkhBIiIiIhI6xlpugAiIiIiKhsGNyIiIiIdweBGREREpCMY3IiIiIh0BIMbERERkY5gcCMiIiLSEQxuRERERDqCwY2IiIhIRzC4EREREekIBjciotckk8kwa9YsTZch8ff3R/369TVdBhFVAgY3ItJLkZGRkMlk0sPCwgJNmjTBmDFjkJ6eXqnvHRsbi1mzZiEzM1Ot+33rrbcUPlPNmjXxxhtv4Mcff0RxcbFa3mPOnDnYtWuXWvZFROpnoukCiIgq0+zZs+Hu7o7c3Fz89ttvWLVqFfbv349Lly7ByspKLe/x9OlTmJj878dpbGwswsLC4O/vDzs7O7W8R4m6deti7ty5AID79+/jp59+QkBAAK5du4bw8PDX3v+cOXPQv39/9O3b97X3RUTqx+BGRHqtR48eaNeuHQBgxIgRqFWrFhYuXIjdu3dj0KBBFd5vcXEx8vPzYWFhAQsLC3WV+0q2trb4+OOPpeefffYZmjZtiuXLl+Orr76CqalpldVCRFWPU6VEZFDefvttAEBKSgoAYP78+ejYsSNq1aoFS0tLeHl54ZdfflF6nUwmw5gxY7Bhwwa0aNEC5ubmOHjwoLSt5By3WbNmISgoCADg7u4uTWvevHkTb775Jlq3bq2yrqZNm8LX17fcn8fKygre3t7IycnB/fv3S+2Xk5ODSZMmwdXVFebm5mjatCnmz58PIYTCZ8zJycG6deukuv39/ctdExFVHo64EZFBSU5OBgDUqlULALBkyRL4+flh8ODByM/Px+bNm/Hvf/8be/fuRc+ePRVee+TIEWzduhVjxoyBvb29ygsAPvjgA1y7dg2bNm3CokWLYG9vDwBwcHDAkCFDMHLkSFy6dAktW7aUXnPmzBlcu3YN06dPr9BnunHjBoyNjUudlhVCwM/PD0ePHkVAQADatGmD6OhoBAUF4b///S8WLVoEAFi/fj1GjBiB9u3b49NPPwUANGzYsEI1EVElEUREemjt2rUCgPj111/F/fv3xe3bt8XmzZtFrVq1hKWlpbhz544QQognT54ovC4/P1+0bNlSvP322wrtAISRkZG4fPmy0nsBEKGhodLzefPmCQAiJSVFoV9mZqawsLAQU6dOVWgfN26csLa2Fo8fP37pZ3rzzTdFs2bNxP3798X9+/fF1atXxbhx4wQA0bt3b6nfsGHDRL169aTnu3btEgDE119/rbC//v37C5lMJv766y+pzdraWgwbNuyldRCR5nCqlIj0mo+PDxwcHODq6oqBAweiWrVq2LlzJ+rUqQMAsLS0lPo+fPgQWVlZ6Ny5M/7880+lfb355pto3rx5hWuxtbVFnz59sGnTJmmKsqioCFu2bEHfvn1hbW39yn0kJibCwcEBDg4O8PDwwLJly9CzZ0/8+OOPpb5m//79MDY2xrhx4xTaJ02aBCEEDhw4UOHPRERVi1OlRKTXVqxYgSZNmsDExAROTk5o2rQpjIz+9/+se/fuxddff41z584hLy9PapfJZEr7cnd3f+16hg4dii1btuDkyZPo0qULfv31V6Snp2PIkCFlen39+vXx/fffS0ucNG7cGI6Oji99za1bt1C7dm1Ur15dod3Dw0PaTkS6gcGNiPRa+/btpatKX3Ty5En4+fmhS5cuWLlyJVxcXGBqaoq1a9di48aNSv2fH52rKF9fXzg5OeHnn39Gly5d8PPPP8PZ2Rk+Pj5ler21tXWZ+xKR/uFUKREZrO3bt8PCwgLR0dEYPnw4evTooZZQpGq0roSxsTE++ugj/PLLL3j48CF27dqFQYMGwdjY+LXftzT16tXD3bt38ejRI4X2xMREaXuJl9VORJrH4EZEBsvY2BgymQxFRUVS282bN1/7zgEl56qVdueEIUOG4OHDh/jss8/w+PFjhXXZKsN7772HoqIiLF++XKF90aJFkMlk6NGjh9RmbW2t9js+EJH6cKqUiAxWz549sXDhQnTv3h0fffQRMjIysGLFCjRq1AgXLlyo8H69vLwAAF9++SUGDhwIU1NT9O7dWwp0np6eaNmyJbZt2wYPDw+0bdtWLZ+nNL1790bXrl3x5Zdf4ubNm2jdujUOHTqE3bt3Y/z48QpLfnh5eeHXX3/FwoULUbt2bbi7u6NDhw6VWh8RlR1H3IjIYL399tv44YcfkJaWhvHjx2PTpk349ttv8f7777/Wft944w189dVXOH/+PPz9/TFo0CClxXGHDh0KAGW+KOF1GBkZISoqCuPHj8fevXsxfvx4XLlyBfPmzcPChQsV+i5cuBBeXl6YPn06Bg0ahFWrVlV6fURUdjIhnls2m4iIqsSSJUswYcIE3Lx5E25ubpouh4h0BIMbEVEVE0KgdevWqFWrFo4eParpcohIh/AcNyKiKpKTk4OoqCgcPXoUFy9exO7duzVdEhHpGI64ERFVkZs3b8Ld3R12dnb4/PPP8c0332i6JCLSMQxuRERERDqCV5USERER6QgGNyIiIiIdwYsTtFhxcTHu3r2L6tWr8zY0REREOkIIgUePHqF27dowMlLvGBmDmxa7e/cuXF1dNV0GERERVcDt27dRt25dte6TwU2LVa9eHcCzA29jY6PhaoiIiKgssrOz4erqKv0eVycGNy1WMj1qY2PD4EZERKRjKuM0J16cQERERKQjGNyIiIiIdASDGxEREZGO4DluOq6oqAgFBQWaLoOqgKmpKYyNjTVdBhERaRCDm44SQiAtLQ2ZmZmaLoWqkJ2dHZydnbmuHxGRgWJw01Eloc3R0RFWVlb8Ra7nhBB48uQJMjIyAAAuLi4aroiIiDSBwU0HFRUVSaGtVq1ami6HqoilpSUAICMjA46Ojpw2JSIyQDpzcYKfnx/c3NxgYWEBFxcXDBkyBHfv3lXoI4TA/Pnz0aRJE5ibm6NOnTr45ptvFPocO3YMbdu2hbm5ORo1aoTIyEil91qxYgXq168PCwsLdOjQAX/88YfC9tzcXIwePRq1atVCtWrV0K9fP6Snpyv0SU1NRc+ePWFlZQVHR0cEBQWhsLBQLd9FyTltVlZWatkf6Y6SY87zGomIDJPOBLeuXbti69atSEpKwvbt25GcnIz+/fsr9Pniiy+wZs0azJ8/H4mJiYiKikL79u2l7SkpKejZsye6du2Kc+fOYfz48RgxYgSio6OlPlu2bMHEiRMRGhqKP//8E61bt4avr680RQUAEyZMwJ49e7Bt2zYcP34cd+/exQcffCBtLyoqQs+ePZGfn4/Y2FisW7cOkZGRmDlzplq/E06PGh4ecyIiAyd01O7du4VMJhP5+flCCCGuXLkiTExMRGJiYqmvmTJlimjRooVC24ABA4Svr6/0vH379mL06NHS86KiIlG7dm0xd+5cIYQQmZmZwtTUVGzbtk3qc/XqVQFAxMXFCSGE2L9/vzAyMhJpaWlSn1WrVgkbGxuRl5dX5s+YlZUlAIisrCyF9qdPn4orV66Ip0+flnlfpB947ImItF9pv7/VQWdG3J734MEDbNiwAR07doSpqSkAYM+ePWjQoAH27t0Ld3d31K9fHyNGjMCDBw+k18XFxcHHx0dhX76+voiLiwMA5OfnIz4+XqGPkZERfHx8pD7x8fEoKChQ6NOsWTO4ublJfeLi4tCqVSs4OTkpvE92djYuX75c6ufKy8tDdna2woOIiIiohE4Ft6lTp8La2hq1atVCamoqdu/eLW27ceMGbt26hW3btuGnn35CZGQk4uPjFaZT09LSFMIUADg5OSE7OxtPnz7F33//jaKiIpV90tLSpH2YmZnBzs7upX1U7aNkW2nmzp0LW1tb6eHq6lrGb0Z3+Pv7QyaTQSaTwdTUFE5OTnj33Xfx448/ori4uMz7iYyMVDoGRERE+k6jwS04OFj6JV7aIzExUeofFBSEhIQEHDp0CMbGxhg6dCiEEACA4uJi5OXl4aeffkLnzp3x1ltv4YcffsDRo0eRlJSkqY9YLiEhIcjKypIet2/f1nRJlaJ79+64d+8ebt68iQMHDqBr16744osv0KtXL7VdwEFERPQyurqAvUaXA5k0aRL8/f1f2qdBgwbS3+3t7WFvb48mTZrAw8MDrq6u+P333yGXy+Hi4gITExM0adJE6u/h4QHg2RWeTZs2hbOzs9LVn+np6bCxsYGlpSWMjY1hbGysso+zszMAwNnZGfn5+cjMzFQY8Xmxz4tXopbss6SPKubm5jA3N3/p96EPzM3Npe+hTp06aNu2Lby9vfHOO+8gMjISI0aMwMKFC7F27VrcuHEDNWvWRO/evREREYFq1arh2LFj+OSTTwD872T90NBQzJo1C+vXr8eSJUuQlJQEa2trvP3221i8eDEcHR019nmJiEi77NixAxcvXsSjR47o0mUU/Pw0XVHZaXTEzcHBAc2aNXvpw8zMTOVrS6bV8vLyAAD/+te/UFhYiOTkZKnPtWvXAAD16tUDAMjlcsTExCjs5/Dhw5DL5QAAMzMzeHl5KfQpLi5GTEyM1MfLywumpqYKfZKSkpCamir1kcvluHjxosKVqIcPH4aNjQ2aN29egW/q1YQQyM/P18ijZNTzdbz99tto3bo1duzYAeDZuYVLly7F5cuXsW7dOhw5cgRTpkwBAHTs2BGLFy+GjY0N7t27h3v37mHy5MkAni2T8dVXX+H8+fPYtWsXbt68+cr/OSAiIsPw9OlThIWF4eLFiwCA6tUzEB7++r/DqpJOLMB7+vRpnDlzBp06dUKNGjWQnJyMGTNmoGHDhlJY8vHxQdu2bTF8+HAsXrwYxcXFGD16NN59911pFC4wMBDLly/HlClTMHz4cBw5cgRbt27Fvn37pPeaOHEihg0bhnbt2qF9+/ZYvHgxcnJypBEeW1tbBAQEYOLEiahZsyZsbGwwduxYyOVyeHt7AwC6deuG5s2bY8iQIYiIiEBaWhqmT5+O0aNHV9qIWkFBAebOnVsp+36VkJCQUgN2eTRr1gwXLlwAAIwfP15qr1+/Pr7++msEBgZi5cqVMDMzg62tLWQymdII5vDhw6W/N2jQAEuXLsUbb7yBx48fo1q1aq9dIxER6aZLly5h+/btCm2HD09DcLBuLbOkE8HNysoKO3bsQGhoKHJycuDi4oLu3btj+vTpUhAyMjLCnj17MHbsWHTp0gXW1tbo0aMHFixYIO3H3d0d+/btw4QJE7BkyRLUrVsXa9asga+vr9RnwIABuH//PmbOnIm0tDS0adMGBw8eVLjYYNGiRTAyMkK/fv2Ql5cHX19frFy5UtpubGyMvXv3YtSoUZDL5bC2tsawYcMwe/bsKvi2dJcQQpr6/PXXXzF37lwkJiYiOzsbhYWFyM3NxZMnT1668HB8fDxmzZqF8+fP4+HDh9LIbGpqaqWNdhIRkfYSQuA///mPwsWBHTt2xLvvvovQUA0WVkEyoY55LqoU2dnZsLW1RVZWFmxsbKT23NxcpKSkwN3dHRYWFgCe/YepqZMsTU1Ny7wwrL+/PzIzM7Fr1y6lbf/3f/8HNzc3LF++HM2aNcOoUaMwYMAA1KxZE7/99hsCAgLw8OFD2NnZITIyEuPHj0dmZqb0+pycHNSrVw++vr4IDAyEg4MDUlNT4evri4SEBLRp00Y9H1iDVB17IiJSLT09HatXr1ZoCwwMVFr5Qd1K+/2tDjox4kavJpPJ1DJdqSlHjhzBxYsXMWHCBMTHx6O4uBgLFiyAkdGz0zC3bt2q0N/MzAxFRUUKbYmJifjnn38QHh4uLaVy9uzZqvkARESkVcLCwhSeV69eHePHj5d+r+gqBjeqcnl5eUhLS0NRURHS09Nx8OBBzJ07F7169cLQoUNx6dIlFBQUYNmyZejduzdOnTql9H9M9evXx+PHjxETE4PWrVvDysoKbm5uMDMzw7JlyxAYGIhLly7hq6++0tCnJCIiTcjJycH8+fMV2o4f98GRI//SUEXqpduxk3TSwYMH4eLigvr166N79+44evQoli5dit27d8PY2BitW7fGwoUL8e2336Jly5bYsGGD0oUXHTt2RGBgIAYMGAAHBwdERETAwcEBkZGR2LZtG5o3b47w8HClf7xERKS/wsLClH7u79rVH3K5foQ2gOe4abXynONGhoHHnohItRenRoFna3xqAs9xIyIiIlLhypUr2LZtm1K7pkJbZWNwIyIiIp2kapTtp5+GwMmpgU4u9VEWPMeNiIiIdIoQQmVo8/QMhZNTAwQHa6CoKsIRNyIiItIZkZGRuHXrllJ7dHQoQkOhU/cdrQgGNyIiItIJqkbZWrachAULqun1KNvzGNyIiIhIqz169AgLFy5Uai+5AKFfv6quSHMY3IiIiEhrqRplq1+/PoYNG6aBajSPwY2IiIi0kqrQNnPmzDLfH1sfMbgRERGRVjlz5gz279+v1K6va7OVB5cDIb3k7++Pvn37Ss/feustjB8//rX2qY59EBHRy4WFhSmFtqtXu8PTk6EN4IgbVTF/f3+sW7cOAGBqago3NzcMHToU06ZNg4lJ5f3nuGPHDpiampap77Fjx9C1a1c8fPgQdnZ2FdoHERGVn6qp0ejoUMTGaqAYLcXgRlWue/fuWLt2LfLy8rB//36MHj0apqamCAkJUeiXn58PMzMztbxnzZo1tWIfRESkbOnSpXj48KFS+/z5odiwQQMFaTFOlVKVMzc3h7OzM+rVq4dRo0bBx8cHUVFR0vTmN998g9q1a6Np06YAgNu3b+PDDz+EnZ0datasiT59+uDmzZvS/oqKijBx4kTY2dmhVq1amDJlCoQQCu/54jRnXl4epk6dCldXV5ibm6NRo0b44YcfcPPmTXTt2hUAUKNGDchkMvj7+6vcx8OHDzF06FDUqFEDVlZW6NGjB65fvy5tj4yMhJ2dHaKjo+Hh4YFq1aqhe/fuuHfvntTn2LFjaN++PaytrWFnZ4d//etfKheWJCLSV2FhYUqhrVmzUYiOfhba9H1B3fJicCONs7S0RH5+PgAgJiYGSUlJOHz4MPbu3YuCggL4+vqievXqOHnyJE6dOiUFoJLXLFiwAJGRkfjxxx/x22+/4cGDB9i5c+dL33Po0KHYtGkTli5diqtXr+K7775DtWrV4Orqiu3btwMAkpKScO/ePSxZskTlPvz9/XH27FlERUUhLi4OQgi89957KCgokPo8efIE8+fPx/r163HixAmkpqZi8uTJAIDCwkL07dsXb775Ji5cuIC4uDh8+umnBn21FBEZjsePH6ucGg0NDcWAAY6IjWVoU4VTpaQxQgjExMQgOjoaY8eOxf3792FtbY01a9ZIU6Q///wziouLsWbNGinQrF27FnZ2djh27Bi6deuGxYsXIyQkBB988AEAYPXq1YiOji71fa9du4atW7fi8OHD8PHxAQA0aNBA2l4yJero6Khwjtvzrl+/jqioKJw6dQodO3YEAGzYsAGurq7YtWsX/v3vfwMACgoKsHr1ajRs2BAAMGbMGMyePRsAkJ2djaysLPTq1Uva7uHhUf4vkohIx6gKbACvGi0LjrgRoqKAjh2f/VkV9u7di2rVqsHCwgI9evTAgAEDMGvWLABAq1atFM5rO3/+PP766y9Ur14d1apVQ7Vq1VCzZk3k5uYiOTkZWVlZuHfvHjp06CC9xsTEBO3atSv1/c+dOwdjY2O8+eabFf4MV69ehYmJicL71qpVC02bNsXVq1elNisrKymUAYCLiwsyMjIAPAuI/v7+8PX1Re/evbFkyRKFaVQiIn2kKrQtXDidV42WEUfcCOHhQFzcsz+rYli6a9euWLVqFczMzFC7dm2Fq0mtra0V+j5+/BheXl7YoOLsVAcHhwq9v6WlZYVeVxEvXoUqk8kUzr9bu3Ytxo0bh4MHD2LLli2YPn06Dh8+DG9v7yqrkYioKpw7dw67d+9Wao+ODsX69ZwWLSuOuBGCgwG5HFV2g15ra2s0atQIbm5ur1wCpG3btrh+/TocHR3RqFEjhYetrS1sbW3h4uKC06dPS68pLCxEfHx8qfts1aoViouLcfz4cZXbS0b8ioqKSt2Hh4cHCgsLFd73n3/+QVJSEpo3b/7Sz/QiT09PhISEIDY2Fi1btsTGjRvL9XoiIm0XFhamFNpatmyJ0NBQnstWTgxuBD8/aO0/nMGDB8Pe3h59+vTByZMnkZKSgmPHjmHcuHG4c+cOAOCLL75AeHg4du3ahcTERHz++efIzMwsdZ8l97gbPnw4du3aJe1z69atAIB69epBJpNh7969uH//Ph4/fqy0j8aNG6NPnz4YOXIkfvvtN5w/fx4ff/wx6tSpgz59+pTps6WkpCAkJARxcXG4desWDh06hOvXr/M8NyLSK6VdgNDPkO4Mr0YMbqTVrKyscOLECbi5ueGDDz6Ah4cHAgICkJubCxsbGwDApEmTMGTIEAwbNgxyuRzVq1fH+++//9L9rlq1Cv3798fnn3+OZs2aYeTIkcjJyQEA1KlTB2FhYQgODoaTkxPGjBmjch9r166Fl5cXevXqBblcDiEE9u/fX+ZFeq2srJCYmIh+/fqhSZMm+PTTTzF69Gh89tln5fiGiIi0U0RERKmhjSpOJl5c8Iq0RnZ2NmxtbZGVlSWFFADIzc1FSkoK3N3dYWFhocEKqarx2BORLlAV2P74Yxj27atf9cVoQGm/v9WBFycQERGRWjx9+hQRERFK7dHRoVV2HrW+Y3AjIiKi1/aytdk4O6o+PMeNiIiIXouq0Pbrr8Fcm60ScMSNiIiIKuTixYvYsWOHUrunJ0fZKguDmw7jdSWGh8eciLSFqlE2KysrBAUFaaAaw8HgpoNKlpt48uRJld4FgDTvyZMnAJTvyEBEVJW4zIfmMLjpIGNjY9jZ2Un3vLSyspJuwE76SQiBJ0+eICMjA3Z2djA2NtZ0SURkgL799lvk5uYqtTO0VR0GNx3l7OwMAFJ4I8NgZ2cnHXsioqqkapTt8uVe2LrVSwPVGC4GNx0lk8ng4uICR0dHFBQUaLocqgKmpqYcaSOiKldQUIA5c+YotXNtNs1gcNNxxsbG/GVORESVgmuzaR+u40ZERERKVIW2+fMnIjqaiU2TOOJGREREksTERGzZskWpfdOmUNStC06PahiDGxEREQHg1KguYHAjIiIirs2mIxjciIiIDNjy5cvxzz//KLUztGknBjciIiIDpWqULTW1HX74oacGqqGy4FWlREREBqa4uFhlaIuODkWfPgxt2owjbkRERAaEFyDoNo64ERERGQhVoW3lykCuzaZDOOJGRESk527cuIH169crtXt6hqJhQ67NpksY3IiIiPTYy6ZGAcDPryqrodfFqVIiIiI9pSq0tWkzE9HRoYiK0kBB9No44kZERKRnVq9ejfT0dKV2T89QhIcDcXFAeDhH23QRgxsREZEeUTXK5uTkhMDAQOl5eDjPa9NVDG5ERER6QAiB2bNnK7W/eAcEPz+OtOkyBjciIiId96oLEEh/8OIEIiIiHaYqtJ05MxSengxt+ogjbkRERDooLS0N3333nVI7R9n0G4MbERGRjuHUqOHiVCkREZEOURXaDh2azqlRA8ERNyIiIh2wceNGXL9+XamdN4c3LAxuREREWo5To1SCwY2IiEiLqQptDGyGi8GNiIhIC3GUjVRhcCMiItIyqkLbpUu9sW1bWw1UQ9qEwY2IiEhLZGZmYsmSJUrt0dGhvLcoAWBwIyIi0govmxrl7CiVYHAjIiLSMFWhLTg4GObm5hqohrQZgxsREZGGHDhwAH/88YdSOy9AoNIwuBEREWkArxqlitCZW175+fnBzc0NFhYWcHFxwZAhQ3D37l1p+6xZsyCTyZQe1tbWCvvZtm0bmjVrBgsLC7Rq1Qr79+9X2C6EwMyZM+Hi4gJLS0v4+PgorVT94MEDDB48GDY2NrCzs0NAQAAeP36s0OfChQvo3LkzLCws4OrqioiICDV/I0REpKtKW5uNoY1eRWeCW9euXbF161YkJSVh+/btSE5ORv/+/aXtkydPxr179xQezZs3x7///W+pT2xsLAYNGoSAgAAkJCSgb9++6Nu3Ly5duiT1iYiIwNKlS7F69WqcPn0a1tbW8PX1RW5urtRn8ODBuHz5Mg4fPoy9e/fixIkT+PTTT6Xt2dnZ6NatG+rVq4f4+HjMmzcPs2bNwn/+859K/paIiEibhYWFcUFdei0yIYTQdBEVERUVhb59+yIvLw+mpqZK28+fP482bdrgxIkT6Ny5MwBgwIAByMnJwd69e6V+3t7eaNOmDVavXg0hBGrXro1JkyZh8uTJAICsrCw4OTkhMjISAwcOxNWrV9G8eXOcOXMG7dq1AwAcPHgQ7733Hu7cuYPatWtj1apV+PLLL5GWlgYzMzMAz04y3bVrFxITE8v8GbOzs2Fra4usrCzY2NhU+LsiIiLNUxXYunTpgq5du2qgGqpMlfn7W2dG3J734MEDbNiwAR07dlQZ2gBgzZo1aNKkiRTaACAuLg4+Pj4K/Xx9fREXFwcASElJQVpamkIfW1tbdOjQQeoTFxcHOzs7KbQBgI+PD4yMjHD69GmpT5cuXaTQVvI+SUlJePjwYamfKy8vD9nZ2QoPIiLSbU+ePFEZ2qKjQxnaqNx0KrhNnToV1tbWqFWrFlJTU7F7926V/XJzc7FhwwYEBAQotKelpcHJyUmhzcnJCWlpadL2kraX9XF0dFTYbmJigpo1ayr0UbWP599Dlblz58LW1lZ6uLq6ltqXiIi0X1hYGObNm6fUzgV1qaI0GtyCg4NVXlDw/OP5qcWgoCAkJCTg0KFDMDY2xtChQ6Fqpnfnzp149OgRhg0bVpUf57WFhIQgKytLety+fVvTJRERUQWpGmVr2XIiQkNDERsL+PlpoCjSeRpdDmTSpEnw9/d/aZ8GDRpIf7e3t4e9vT2aNGkCDw8PuLq64vfff4dcLld4zZo1a9CrVy+lUS9nZ2ekp6crtKWnp8PZ2VnaXtLm4uKi0KdNmzZSn4yMDIV9FBYW4sGDBwr7UfU+z7+HKubm5lxskYhIx504cQJHjx5Vap81KxRyOdCvnwaKIr2h0eDm4OAABweHCr22uLgYwLPzwp6XkpKCo0ePIioqSuk1crkcMTExGD9+vNR2+PBhKfi5u7vD2dkZMTExUlDLzs7G6dOnMWrUKGkfmZmZiI+Ph5eXFwDgyJEjKC4uRocOHaQ+X375JQoKCqRz8A4fPoymTZuiRo0aFfq8RESk/Upbmy0//1lo4/QovS6dWID39OnTOHPmDDp16oQaNWogOTkZM2bMQMOGDZVG23788Ue4uLigR48eSvv54osv8Oabb2LBggXo2bMnNm/ejLNnz0rLdMhkMowfPx5ff/01GjduDHd3d8yYMQO1a9dG3759AQAeHh7o3r07Ro4cidWrV6OgoABjxozBwIEDUbt2bQDARx99hLCwMAQEBGDq1Km4dOkSlixZgkWLFlXuF0VERBrDZT6oKuhEcLOyssKOHTsQGhqKnJwcuLi4oHv37pg+fbrC1GJxcTEiIyPh7+8PY2Njpf107NgRGzduxPTp0zFt2jQ0btwYu3btQsuWLaU+U6ZMQU5ODj799FNkZmaiU6dOOHjwICwsLKQ+GzZswJgxY/DOO+/AyMgI/fr1w9KlS6Xttra2OHToEEaPHg0vLy/Y29tj5syZCmu9ERGRfuAdEKgq6ew6boaA67gREWk3VaHtxcXfyfBU5u9vnRhxIyIi0iaFhYX45ptvlNo5ykaVjcGNiIioHDg1SprE4EZERFRGqkLb559/XuEVEojKi8GNiIjoFS5fvoxffvlFqZ2jbFTVGNyIiIheglOjpE0Y3IiIiFT48kvAzIxrs5F2YXAjIiJ6QVhYGMzMlNsZ2kjTGNyIiIieo2pq1NHRUbr1IZEmMbgREREBEEJg9uzZSu0cZSNtwuBGREQGjxcgkK5gcCMiIoOmKrSdOTMEe/c20EA1RC/H4EZERAbpxo0bWL9+vVJ7dHQogoM1UBBRGTC4ERGRwXnZ1ChnR0mbGWm6ACIioqqkKrRFR8+ApycTG2k/jrgREZFBmDNnIQoKHim1c5SNdAmDGxER6T1eNUr6gsGNiIj0mqrQ5ukZCj8/DRRD9JoY3IiISC9xlI30EYMbERHpHVWhrXfv3mjbtq0GqiFSHwY3IiLSG+np6Vi9erVSO0fZSF8wuBERkV7g1CgZAgY3IiLSeapC27Rp02BqaqqBaogqD4MbERHprJ9//hnJyclK7RxlI33F4EZERDqJU6NkiHjLKyIi0jmqb1sVyttWkd7jiBsREekM3hyeDB1H3IiISCeoCm3JyZ04ykYGhSNuRESk1bKzs7Fo0SKldp7LRoaIwY2IiLQWL0AgUsTgRkREWklVaJs8eTKsra01UA2RdmBwIyIirbJnzx78+eefSu2enqFgZiNDx+BGRERag1OjRC/H4EZERFpBVWjz9AyFn58GiiHSUgxuRESkURxlIyo7ruNGREQaoyq0ZWQ04dpsRKXgiBsREVW5vLw8hIeHK7VzapTo5RjciIioSnFqlKjiGNyIiKjKqAptHh6j8eGH9hqohkj3MLgREVGli42NxeHDh5XaZ80KhVwOfPihBooi0kEMbkREVKlKmxr19HwW2oKDq7ggIh3G4EZERJXmVWuz8UIEovJhcCMiIrXjBQhElaPc67gZGxsjIyNDqf2ff/6BsbGxWooiIiLdpSq05eVZcW02IjUo94ibEEJle15eHszMzF67ICIi0k1FRUX4+uuvldo5ykakPmUObkuXLgUAyGQyrFmzBtWqVZO2FRUV4cSJE2jWrJn6KyQiIq3HqVGiqlHm4LZo0SIAz0bcVq9erTAtamZmhvr162P16tXqr5CIiLSaqtA2ZMgQNGjQQAPVEOm3Mge3lJQUAEDXrl2xY8cO1KhRo9KKIiIi7Xfp0iVs375dqZ2jbESVp9znuB09erQy6iAiIh3CqVEizSh3cBs+fPhLt//4448VLoaIiLSfqtA2c+ZMyGQyDVRDZFjKHdwePnyo8LygoACXLl1CZmYm3n77bbUVRkRE2uVld0BgZiOqGuUObjt37lRqKy4uxqhRo9CwYUO1FEVERNqFU6NE2kEmSluYrZySkpLw1ltv4d69e+rYHQHIzs6Gra0tsrKyYGNjo+lyiMgACSEwe/ZspXYGNqLSVebvb7Xd8io5ORmFhYXq2h0REWkYR9mItE+5g9vEiRMVngshcO/ePezbtw/Dhg1TW2FERKQ5qkJbr1694OXlpYFqiKhEuYNbQkKCwnMjIyM4ODhgwYIFr7zilIiItNuNGzewfv16pXaOshFpB67jRkREADg1SqQLKnyOW0ZGBpKSkgAATZs2haOjo9qKIiKiqqUqtB0+/CWmTFHbqdBEpAbl/heZnZ2N0aNHY9OmTSguLgYAGBsbY8CAAVixYgVsbW3VXiQREVWOb775RuWFZaGhoeBAG5H2MSrvC0aOHInTp09j3759yMzMRGZmJvbu3YuzZ8/is88+q4waiYioEoSFhZUa2ohIO5V7HTdra2tER0ejU6dOCu0nT55E9+7dkZOTo9YCDRnXcSOiyqJqapSBjUg9tGodt1q1aqmcDrW1tUWNGjXUUhQREVUOXoBApNvKPVU6ffp0TJw4EWlpaVJbWloagoKCMGPGDLUWR0RE6qMqtDk4dGBoI9Ih5Z4q9fT0xF9//YW8vDy4ubkBAFJTU2Fubo7GjRsr9P3zzz/VV6kB4lQpEanD33//jRUrVii1M7ARVQ6tmirt06cPZDKZWosgIqLKwalRIv2itpvMk/pxxI2IXoeq0HbkSBCOH7fSQDVEhqMyf3+X+xy3Bg0a4J9//lFqz8zMRIMGDdRSlCp+fn5wc3ODhYUFXFxcMGTIENy9e1ehT3R0NLy9vVG9enU4ODigX79+uHnzpkKfY8eOoW3btjA3N0ejRo0QGRmp9F4rVqxA/fr1YWFhgQ4dOuCPP/5Q2J6bm4vRo0ejVq1aqFatGvr164f09HSFPqmpqejZsyesrKzg6OiIoKAglZfdExGp28aNG1WGtujoUEyaxNBGpMvKHdxu3ryJoqIipfa8vDzcuXNHLUWp0rVrV2zduhVJSUnYvn07kpOT0b9/f2l7SkoK+vTpg7fffhvnzp1DdHQ0/v77b3zwwQcKfXr27ImuXbvi3LlzGD9+PEaMGIHo6Gipz5YtWzBx4kSEhobizz//ROvWreHr64uMjAypz4QJE7Bnzx5s27YNx48fx927dxXep6ioCD179kR+fj5iY2Oxbt06REZGYubMmZX2/RARAc9G2a5fv67UHhoaithYwM9PA0URkdqUeao0KioKANC3b1+sW7dOYUmQoqIixMTE4PDhw9JtsCpbVFQU+vbti7y8PJiamuKXX37BoEGDkJeXByOjZ3l0z5496NOnj9Rn6tSp2LdvHy5duiTtZ+DAgcjMzMTBgwcBAB06dMAbb7yB5cuXAwCKi4vh6uqKsWPHIjg4GFlZWXBwcMDGjRul4JiYmAgPDw/ExcXB29sbBw4cQK9evXD37l04OTkBAFavXo2pU6fi/v37MDMzK9Nn5FQpEZUH12Yj0g5acXFC3759AQAymQzDhg1T2GZqaor69etjwYIFai2uNA8ePMCGDRvQsWNHmJqaAgC8vLxgZGSEtWvXwt/fH48fP8b69evh4+Mj9YmLi4OPj4/Cvnx9fTF+/HgAQH5+PuLj4xESEiJtNzIygo+PD+Li4gAA8fHxKCgoUNhPs2bN4ObmJgW3uLg4tGrVSgptJe8zatQoXL58GZ6enio/V15eHvLy8qTn2dnZr/EtEZGh4AUIRIajzFOlxcXFKC4uhpubGzIyMqTnxcXFyMvLQ1JSEnr16lWZtWLq1KmwtrZGrVq1kJqait27d0vb3N3dcejQIUybNg3m5uaws7PDnTt3sHXrVqlPWlqaQpgCACcnJ2RnZ+Pp06f4+++/UVRUpLJPybp1aWlpMDMzg52d3Uv7qNpHybbSzJ07F7a2ttLD1dW1jN8MERkqVaGtRYsWDG1Eeqrc57ilpKTA3t5eLW8eHBwMmUz20kdiYqLUPygoCAkJCTh06BCMjY0xdOhQlMz0pqWlYeTIkRg2bBjOnDmD48ePw8zMDP3794euXDgbEhKCrKws6XH79m1Nl0REWionJ6fUqdHnz/8lIv1S7nXcZs+e/dLt5TkBf9KkSfD3939pn+evVLW3t4e9vT2aNGkCDw8PuLq64vfff4dcLseKFStga2uLiIgIqf/PP/8MV1dXnD59Gt7e3nB2dla6+jM9PR02NjawtLSEsbExjI2NVfZxdnYGADg7OyM/Px+ZmZkKo24v9nnxStSSfZb0UcXc3Bzm5uYv/T6IiDg1SmS4yh3cdu7cqfC8oKAAKSkpMDExQcOGDcsV3BwcHODg4FDeEgA8m7oFIJ0T9uTJE+mihBLGxsYKfeVyOfbv36/Q5/Dhw5DL5QAAMzMzeHl5ISYmRjqnr7i4GDExMRgzZgyAZ+fSmZqaIiYmBv369QMAJCUlITU1VdqPXC7HN998g4yMDDg6OkrvY2Njg+bNm1fo8xIRAapD27hx43ivaCIDUe7glpCQoNSWnZ0Nf39/vP/++2op6kWnT5/GmTNn0KlTJ9SoUQPJycmYMWMGGjZsKIWlnj17YtGiRZg9ezYGDRqER48eYdq0aahXr550MUBgYCCWL1+OKVOmYPjw4Thy5Ai2bt2Kffv2Se81ceJEDBs2DO3atUP79u2xePFi5OTk4JNPPgEA2NraIiAgABMnTkTNmjVhY2ODsWPHQi6Xw9vbGwDQrVs3NG/eHEOGDEFERATS0tIwffp0jB49miNqRFQhhw4dki6Seh5H2YgMi9runHDx4kX07t1bacFbde37iy++wPnz55GTkwMXFxd0794d06dPR506daR+mzdvRkREBK5duwYrKyvI5XJ8++23aNasmdTn2LFjmDBhAq5cuYK6detixowZStO1y5cvx7x585CWloY2bdpg6dKl6NChg7Q9NzcXkyZNwqZNm5CXlwdfX1+sXLlSYRr01q1bGDVqFI4dOwZra2sMGzYM4eHhMDEpe1bmciBEBHBqlEjXVObvb7UFt99++w29e/fGw4cP1bE7AoMbEXFtNiJdpBXruJVYunSpwnMhBO7du4f169ejR48eaiuMiMiQcZSNiFQpd3BbtGiRwnMjIyM4ODhg2LBhCgvXEhFRxagKbRYWDpg69XMNVENE2qTcwS0lJaUy6iAiMngFBQWYM2eOUvusWaGQy4GpUzVQFBFplXIHNwDIzMzEX3/9BQBo1KiR0l0EiIiofEqbGvX0fBbagoOruCAi0krlCm43b97E6NGjER0dLd2NQCaToXv37li+fDnq169fGTUSEek1VaEtICAAdevWBQD4+VV1RUSkrcoc3G7fvg1vb2+Ympriq6++goeHBwDgypUrWLVqFeRyOc6cOSP9oCEiopeLj4/H3r17ldp5AQIRlabMy4EEBATgr7/+QnR0NCwsLBS2PX36FN27d0fjxo2xZs2aSinUEHE5ECL9xatGifSXViwHcvDgQWzZskUptAGApaUlvvrqKwwcOFCtxRER6SNVoW3mzJmQyWQaqIaIdEmZg9vff//90nPYGjRogAcPHqijJiIivcRRNiJ6XUav7vKMi4sLrly5Uur2S5cuKdzyiYiI/oehjYjUoczBrW/fvpg8eTLu37+vtC0jIwNTp05F37591VkbEZHOE0KoDG3R0aHw9GRoI6LyKfPFCQ8fPkSHDh2QlpaGjz/+GM2aNYMQAlevXsXGjRvh7OyM33//HTVr1qzsmg0GL04g0m0cZSMyTFpxcUKNGjVw+vRpTJs2DZs3b0ZmZiYAwM7ODh999BHmzJnD0EZE9P+pCm0JCQMwfHgzDVRDRPqizCNuzxNCSFOmDg4OvBKqknDEjUj3XL9+HRs3blRq5ygbkeHQihG358lkMjg6Oqq1ECIiXcepUSKqbBUKbkREpEhVaJsxYwaMjMp8DRgR0SsxuBERvYaIiAg8ffpUqZ2jbERUGRjciIgqiFOjRFTVGNyIiCqgtLXZYmM1UAwRGYwyBbelS5eWeYfjxo2rcDFERNqutFG26OhQBAdXcTFEZHDKtByIu7t72XYmk+HGjRuvXRQ9w+VAiLSLqtB29Wp3bN7cQQPVEJG20vhyICkpKWp9UyIiXZKRkYFVq1YptXOUjYiqWoXPccvPz0dKSgoaNmwIExOeKkdE+ullFyDwGgQiqmrlXmDoyZMnCAgIgJWVFVq0aIHU1FQAwNixYxEeHq72AomINEVVaAsJCeFVo0SkMeUObiEhITh//jyOHTsGCwsLqd3HxwdbtmxRa3FERJqwc+dOlaEtNDQUZmZmGqiIiOiZcs9x7tq1C1u2bIG3t7fCPUpbtGiB5ORktRZHRFSVoqKAhASuzUZE2qvcwe3+/fsq71Oak5PDm80TkU5TFdpmzQpFtWrg+WxEpBXKHdzatWuHffv2YezYsQAghbU1a9ZALpertzoioipQ2gUI338fCktLgMtTEpG2KHdwmzNnDnr06IErV66gsLAQS5YswZUrVxAbG4vjx49XRo1ERJVGVWhzcemKTz/twlE2ItI65b44oVOnTjh37hwKCwvRqlUrHDp0CI6OjoiLi4OXl1dl1EhEpHY5OTkqQ9usWaGIjOyigYqIiF6tQguwNWzYEN9//726ayEiqhKlTY1u3hwKuRxcVJeItFaZglt2dnaZd8hbMxGRNlMV2lq1CsL8+Vb49lvAz08DRRERlVGZgpudnV2ZrxgtKip6rYKIiCrDyZMnceTIEaX2kmU+PvigqisiIiq/MgW3o0ePSn+/efMmgoOD4e/vL11FGhcXh3Xr1mHu3LmVUyUR0Wt42W2riIh0iUwIIcrzgnfeeQcjRozAoEGDFNo3btyI//znPzh27Jg66zNo2dnZsLW1RVZWFqegiSqotDsgEBFVlsr8/V3u4GZlZYXz58+jcePGCu3Xrl1DmzZt8OTJE7UWaMgY3IgqjqNsRKQplfn7u9zLgbi6uqq8onTNmjVwdXVVS1FERK9DVWhLSmrP0EZEOq/cy4EsWrQI/fr1w4EDB9ChQwcAwB9//IHr169j+/btai+QiKis8vPzVZ5ru2lTKCIiNFAQEZGalXuqFADu3LmDlStXIjExEQDg4eGBwMBAjripGadKicqutKnRWbOerc0WG1vFBRGRwarM398VWoC3bt26mDNnjloLISKqKFWhbdy4cTh5sgYX1CUivVKh4JaZmYkffvgBV69eBQC0aNECw4cPh62trVqLIyJ6mQsXLmDnzp1K7SXnsvn5cUFdItIv5Z4qPXv2LHx9fWFpaYn27dsDAM6cOYOnT5/i0KFDaNu2baUUaog4VUpUOl41SkTaSquWA+ncuTMaNWqE77//HiYmzwbsCgsLMWLECNy4cQMnTpxQa4GGjMGNSDWuzUZE2kyrznE7e/asQmgDABMTE0yZMgXt2rVTa3FERM8rbZTN05OhjYgMQ7nXcbOxsUFqaqpS++3bt1G9enW1FEVE9CJVoe3Bg3rw9AzleWxEZDDKPeI2YMAABAQEYP78+ejYsSMA4NSpUwgKClK6DRYR0esqLi7GV199pdTOqVEiMkTlDm7z58+HTCbD0KFDUVhYCAAwNTXFqFGjEB4ervYCichw8QIEIiJFFVqAFwCePHmC5ORkAEDDhg1hZWWl1sKIFyeQYVMV2gICAlC3bl0NVENEVHZadXFCCSsrK7Rq1UqdtRARITk5GT///LNSO0fZiIjKEdyGDx9epn4//vhjhYshIsPGqVEiopcrc3CLjIxEvXr14OnpiQrOrhIRlUpVaJs5cyZkMpkGqiEi0k5lDm6jRo3Cpk2bkJKSgk8++QQff/wxatasWZm1EZGei4oCTp1aCiurh0rbOMpGRKSszOu4rVixAvfu3cOUKVOwZ88euLq64sMPP0R0dDRH4IioQhISwpRCm4WFBUMbEVEpKnxV6a1btxAZGYmffvoJhYWFuHz5MqpVq6bu+gwaryolfSWEwOzZs5XaGdiISB9o5VWlRkZGkMlkEEKgqKhInTURkR7jBQhERBVXrlte5eXlYdOmTXj33XfRpEkTXLx4EcuXL0dqaipH24jolVSFtgEDBjC0ERGVUZlH3D7//HNs3rwZrq6uGD58ODZt2gR7e/vKrI2I9ERaWhq+++47pXYGNiKi8inzOW5GRkZwc3ODp6fnSy/P37Fjh9qKM3Q8x430AadGicjQaMU5bkOHDuV6SkRULqpC2/Tp02FsbKyBaoiIdF+5FuAlIiqLjRs34vr160rtHGUjIno9Fb6qlIhIFU6NEhFVHgY3IlIbVaGNgY2ISH0Y3IiowqKigPBwwNdX9ShbdHQomNuIiNSHwY2IKqy00Fa3bg/88EN7BAdroCgiIj3G4EZEFZKVlQVf38VK7dHRoYiNBQICqr4mIiJ9V647J2iSn58f3NzcYGFhARcXFwwZMgR3795V6LN161a0adMGVlZWqFevHubNm6e0n2PHjqFt27YwNzdHo0aNVF4tu2LFCtSvXx8WFhbo0KED/vjjD4Xtubm5GD16NGrVqoVq1aqhX79+SE9PV+iTmpqKnj17wsrKCo6OjggKCkJhYeHrfxFEWiAsLAyLFy9Wao+ODuUoGxFRJdKZ4Na1a1ds3boVSUlJ2L59O5KTk9G/f39p+4EDBzB48GAEBgbi0qVLWLlyJRYtWoTly5dLfVJSUtCzZ0907doV586dw/jx4zFixAhER0dLfbZs2YKJEyciNDQUf/75J1q3bg1fX19kZGRIfSZMmIA9e/Zg27ZtOH78OO7evYsPPvhA2l5UVISePXsiPz8fsbGxWLduHSIjIzFz5sxK/paIKp+qCxD+7/+mIjT02Uibn58GiiIiMhBlvnOCtomKikLfvn2Rl5cHU1NTfPTRRygoKMC2bdukPsuWLUNERARSU1Mhk8kwdepU7Nu3D5cuXZL6DBw4EJmZmTh48CAAoEOHDnjjjTekwFdcXAxXV1eMHTsWwcHByMrKgoODAzZu3CgFx8TERHh4eCAuLg7e3t44cOAAevXqhbt378LJyQkAsHr1akydOhX379+HmZlZmT4j75xA2uTXX3/FqVOnlNp51SgRkaLK/P2tMyNuz3vw4AE2bNiAjh07wtTUFACQl5cHCwsLhX6Wlpa4c+cObt26BQCIi4uDj4+PQh9fX1/ExcUBAPLz8xEfH6/Qx8jICD4+PlKf+Ph4FBQUKPRp1qwZ3NzcpD5xcXFo1aqVFNpK3ic7OxuXL18u9XPl5eUhOztb4UGkDcLCwhjaiIi0gE4Ft6lTp8La2hq1atVCamoqdu/eLW3z9fXFjh07EBMTg+LiYly7dg0LFiwAANy7dw/AsxtdPx+mAMDJyQnZ2dl4+vQp/v77bxQVFansk5aWJu3DzMwMdnZ2L+2jah8l20ozd+5c2NraSg9XV9eyfjVElaa0tdkY2oiIqp5Gg1twcDBkMtlLH4mJiVL/oKAgJCQk4NChQzA2NsbQoUNRMtM7cuRIjBkzBr169YKZmRm8vb0xcOBAAM9GzXRBSEgIsrKypMft27c1XRIZsLCwMJWhzdOTgY2ISFM0uhzIpEmT4O/v/9I+DRo0kP5ub28Pe3t7NGnSBB4eHnB1dcXvv/8OuVwOmUyGb7/9FnPmzEFaWhocHBwQExOjsA9nZ2elqz/T09NhY2MDS0tLGBsbw9jYWGUfZ2dnaR/5+fnIzMxUGHV7sc+LV6KW7LOkjyrm5uYwNzd/6fdBVBVUBbauXbuiS5cuGqiGiIhKaDS4OTg4wMHBoUKvLS4uBvDsvLDnGRsbo06dOgCATZs2QS6XS+8hl8uxf/9+hf6HDx+GXC4HAJiZmcHLywsxMTHo27ev9D4xMTEYM2YMAMDLywumpqaIiYlBv379AABJSUlITU2V9iOXy/HNN98gIyMDjo6O0vvY2NigefPmFfq8RFUhNzcX3377rVI7p0WJiLSDTizAe/r0aZw5cwadOnVCjRo1kJycjBkzZqBhw4ZSWPr777/xyy+/4K233kJubi7Wrl0rLddRIjAwEMuXL8eUKVMwfPhwHDlyBFu3bsW+ffukPhMnTsSwYcPQrl07tG/fHosXL0ZOTg4++eQTAICtrS0CAgIwceJE1KxZEzY2Nhg7dizkcjm8vb0BAN26dUPz5s0xZMgQREREIC0tDdOnT8fo0aM5okZaizeHJyLSfjoR3KysrLBjxw6EhoYiJycHLi4u6N69O6ZPn64QhNatW4fJkydDCAG5XI5jx46hffv20nZ3d3fs27cPEyZMwJIlS1C3bl2sWbMGvr6+Up8BAwbg/v37mDlzJtLS0tCmTRscPHhQ4WKDRYsWwcjICP369UNeXh58fX2xcuVKabuxsTH27t2LUaNGQS6Xw9raGsOGDcPs2bMr+ZsiqhhVoe3YsYk4erS6BqohIqLS6Ow6boaA67hRZUtISEBUVJRSe8kdELiYLhFR+VXm72+dGHEjIvV72dQoZ0eJiLQTgxuRASptbTYiItJuDG5EBoQXIBAR6TYGNyIDoXoxXU/48UQ2IiKdweBGpOeKiorw9ddfK7VzlI2ISPcwuBHpMU6NEhHpFwY3Ij2lKrSNGTMGtWrV0kA1RESkDgxuRHrmxo0bWL9+vVI7R9mIiHQfgxuRHuHUKBGRfmNwI9ITqkLbzJkzIZPJNFANERFVBgY3Ih33888/Izk5Wamdo2xERPqHwY1Ih6kaZbOxaYJt2wbB05P3GiUi0jcMbkQ6SAiB2bNnK7Vv2hQKmQxITATCwxnciIj0DYMbkY4p7QKE6OhQJCUBTZsCcjkQHFzFhRERUaVjcCPSIapC22effQZnZ2d4ej4bZQsO5kgbEZG+MtJ0AUT0av/884/K0BYaGoo//nBGx47PnsfGMrQREekzjrgRablXrc0WHg7ExfGcNiIiQ8DgRqTFyrI2W3Dw/6ZIiYhIvzG4EWmhY8eO4fjx40rtJaNsUVGK57NxpI2IyDAwuBFpGVWjbC1atED//v2l55weJSIyTAxuRFqktAsQXsTpUSIiw8TgRqQFvv76axQVFSm1l3bbKk6PEhEZJgY3Ig1TNcrWuLE/PvqongaqISIibcbgRqQhOTk5mD9/vlI7bw5PRESlYXAj0oBXrc1GRESkCoMbURVTFdqmT58OY2NjDVRDRES6hMGNqIqsW3cFN29uU2rnKBsREZUVgxtRFVA1ytawYUN8/PHHGqiGiIh0FYMbUSVTFdo8PUO5nAcREZUbgxtRJdm2bRuuXLmi1M6pUSIiqigGN6JKoGqU7ZNPPoGbm5sGqiEiIn3B4EakRgUFBZgzZ45SO0fZiIhIHRjciNSEa7MREVFlY3AjUgNVoS0kJARmZmYaqIaIiPQVgxvRa0hNTcXatWuV2jnKRkRElYHBjaiCVI2yeXh44MMPP9RANUREZAgY3IgqQFVo4ygbERFVNgY3onI4duwYjh8/rtTO0EZERFWBwY2ojFSNsg0aNAhNmjTRQDVERGSIGNyIXqGoqAhff/21UjtH2YiIqKoxuBG9RHh4OPLy8pTaGdqIiEgTGNyIXhAVBYSHA76+ylOjU6dOhYWFhdQnOBi8WTwREVUZI00XQKRtli79W2VoCw0NhYWFBYBnoS0u7tmfREREVYUjbkTPCQsLQ+fOim3NmjXDgAEDFNqCg/834kZERFRVGNyI/r/yrM3m58cpUiIiqnoMbmTwzp8/j127dim18wIEIiLSNgxuZNBUjbJ9/PHHaNiwoQaqISIiejkGNzJIQgjMnj1bqZ2jbEREpM0Y3MigREUBhw5tgIPDX0rbGNqIiEjbMbiR3nt+zbWEhDA4OChunzx5MqytrTVTHBERUTkwuJHeCw8Hzp9/goSEeUrbOMpGRES6hMGN9J6v71fw9S1WaGvevDn+/e9/a6giIiKiimFwI72m6qrRmTNnQiaTaaAaIiKi18PgRnrp7t27+P7775XaOTVKRES6jMGN9I6qUbbhw4fD1dVVA9UQERGpD4Mb6Q2uzUZERPqOwY30wpkzZ7B//36FNgcHB3z++ecaqoiIiEj9GNxI56maGg0KCoKVlZUGqiEiIqo8DG6ks/Lz8zF37lyldk6NEhGRvmJwI520ceNGXL9+XaGtc+fOePvttzVUERERUeVjcCOdw7XZiIjIUDG4kc64f/8+Vq5cqdTOqVEiIjIUDG6kE1SNsg0ZMgQNGjTQQDVERESaweBGWk9VaOMoGxERGSIGN9JaFy5cwM6dOxXarK2tMXnyZA1VREREpFlGmi6gvPLy8tCmTRvIZDKcO3dOYduFCxfQuXNnWFhYwNXVFREREUqv37ZtG5o1awYLCwu0atVKadFWIQRmzpwJFxcXWFpawsfHR+nqxQcPHmDw4MGwsbGBnZ0dAgIC8Pjx43LXQqULCwtTCm0TJkxgaCMiIoOmc8FtypQpqF27tlJ7dnY2unXrhnr16iE+Ph7z5s3DrFmz8J///EfqExsbi0GDBiEgIAAJCQno27cv+vbti0uXLkl9IiIisHTpUqxevRqnT5+GtbU1fH19kZubK/UZPHgwLl++jMOHD2Pv3r04ceIEPv3003LVQqoVFhaWOjVqY2OjgYqIiIi0h0wIITRdRFkdOHAAEydOxPbt29GiRQskJCSgTZs2AIBVq1bhyy+/RFpaGszMzAAAwcHB2LVrFxITEwEAAwYMQE5ODvbu3Svt09vbG23atMHq1ashhEDt2rUxadIkaWQnKysLTk5OiIyMxMCBA3H16lU0b94cZ86cQbt27QAABw8exHvvvYc7d+6gdu3aZaqlLLKzs2Fra4usrCyDCC07d+7EhQsXFNreeOMNvPfeexqqiIiIqPwq8/e3zoy4paenY+TIkVi/fr3KWxnFxcWhS5cuUlACAF9fXyQlJeHhw4dSHx8fH4XX+fr6Ii4uDgCQkpKCtLQ0hT62trbo0KGD1CcuLg52dnZSaAMAHx8fGBkZ4fTp02WuRZW8vDxkZ2crPPRdVBTQseOzqdEXQ9uMGTMY2oiIiJ6jE8FNCAF/f38EBgYqBKbnpaWlwcnJSaGt5HlaWtpL+zy//fnXldbH0dFRYbuJiQlq1qz5yvd5/j1UmTt3LmxtbaWHq6trqX31xZIlD+Hrq3pq1MhIJ/7zJCIiqjIa/c0YHBwMmUz20kdiYiKWLVuGR48eISQkRJPlVrqQkBBkZWVJj9u3b2u6pEq1ZMkSdOmyVKHtww8/5FIfREREpdDociCTJk2Cv7//S/s0aNAAR44cQVxcHMzNzRW2tWvXDoMHD8a6devg7OyM9PR0he0lz52dnaU/VfV5fntJm4uLi0KfknPpnJ2dkZGRobCPwsJCPHjw4JXv8/x7qGJubq70GfVFVBQQHg4EBwN+flybjYiIqCI0GtwcHBzg4ODwyn5Lly7F119/LT2/e/cufH19sWXLFnTo0AEAIJfL8eWXX6KgoACmpqYAgMOHD6Np06aoUaOG1CcmJgbjx4+X9nX48GHI5XIAgLu7O5ydnRETEyMFtezsbJw+fRqjRo2S9pGZmYn4+Hh4eXkBAI4cOYLi4uJy1WJowsOBuDggKCgVCQlrFbbJZDLMnDlTQ5URERHpDp26qrTEzZs34e7urnBVaVZWFpo2bYpu3bph6tSpuHTpEoYPH45FixZJS3XExsbizTffRHh4OHr27InNmzdjzpw5+PPPP9GyZUsAwLfffovw8HCsW7cO7u7umDFjBi5cuIArV67AwsICANCjRw+kp6dj9erVKCgowCeffIJ27dph48aNZa6lLPTpqtKoKOC33+bD2jpHoX3ixImoXr26hqoiIiJSv8r8/a03d06wtbXFoUOHMHr0aHh5ecHe3h4zZ85UCEodO3bExo0bMX36dEybNg2NGzfGrl27pNAGPFsnLicnB59++ikyMzPRqVMnHDx4UAptALBhwwaMGTMG77zzDoyMjNCvXz8sXbq0XLUYEiEEEhJmw9pasZ1To0REROWjkyNuhkIfRtwePHiAZcuWKbR17doVXbp00VBFRERElYsjbqSTTpw4gaNHjyq0zZgxg8t8EBERVRCDG6ldYWEhvvnmG4W23r17o23bthqqiIiISD8wuJFa3b59Gz/++KNC26RJk1CtWjUNVURERKQ/GNxIbXbt2oXz589Lzxs3boyPPvpIgxURERHpFwY3em1Pnz5FRESEQtvHH3+Mhg0baqgiIiIi/cTgRq/lypUr2LZtm0JbSEgIzMzMNFQRERGR/mJwowoRQmDNmjW4e/eu1CaXy9GtWzcNVkVERKTfGNyo3DIzM7FkyRKFtsDAQDg5OWmoIiIiIsPA4EblEhsbi8OHD0vPra2tMXHiRK7NRkREVAUY3KhMioqKEB4ejsLCQqntvffewxtvvKHBqoiIiAwLgxu90n//+1+sWbNGoW3ChAk6exsuIiIiXcXgRi+1d+9exMfHS8/d3d0xZMgQyGQyDVZFRERkmBjcSKW8vDyEh4crtA0aNAhNmjTRUEVERETE4EZKkpKSsHnzZoW24OBgmJuba6giIiIiAhjc6DlCCKxbtw63bt2S2tq1a4eePXtqsCoiIiIqweBGAICsrCwsXrxYoW3kyJGoXbu2ZgoiIiIiJQxuhD/++AMHDhyQnpubmyMoKAjGxsYarIqIiIhexOBmwIqLizF//nw8ffpUauvWrRvkcrkGqyIiIqLSMLgZqLS0NHz33XcKbV988QXs7Ow0UxARERG9EoObATp58iSOHDkiPa9bty6GDx/OtdmIiIi0HIObATp58qT09w8//BAeHh4arIaIiIjKisHNAPXu3Rt//fUXevToAQsLC02XQ0RERGXE4GaAWrVqhVatWmm6DCIiIionI00XQERERERlw+BGREREpCMY3IiIiIh0BIMbERERkY5gcDNAUVFAx47P/iQiIiLdweBmgMLDgbi4Z38SERGR7mBwM0DBwYBc/uxPIiIi0h1cx80A+fk9exAREZFu4YgbERERkY5gcCMiIiLSEQxuRERERDqCwY2IiIhIRzC4EREREekIBjciIiIiHcHgRkRERKQjGNyIiIiIdASDGxEREZGOYHAjIiIi0hEMbkREREQ6gsGNiIiISEcwuBERERHpCBNNF0ClE0IAALKzszVcCREREZVVye/tkt/j6sTgpsUePXoEAHB1ddVwJURERFRejx49gq2trVr3KROVEQdJLYqLi3H37l1Ur14dMplM0+VUuuzsbLi6uuL27duwsbHRdDn0Ah4f7cbjo914fLSbuo+PEAKPHj1C7dq1YWSk3rPSOOKmxYyMjFC3bl1Nl1HlbGxs+INNi/H4aDceH+3G46Pd1Hl81D3SVoIXJxARERHpCAY3IiIiIh3B4EZaw9zcHKGhoTA3N9d0KaQCj4924/HRbjw+2k2Xjg8vTiAiIiLSERxxIyIiItIRDG5EREREOoLBjYiIiEhHMLgRERER6QgGN1KLvLw8tGnTBjKZDOfOnVPYduHCBXTu3BkWFhZwdXVFRESE0uu3bduGZs2awcLCAq1atcL+/fsVtgshMHPmTLi4uMDS0hI+Pj64fv26Qp8HDx5g8ODBsLGxgZ2dHQICAvD48eNy16JP/Pz84ObmBgsLC7i4uGDIkCG4e/euQp+tW7eiTZs2sLKyQr169TBv3jyl/Rw7dgxt27aFubk5GjVqhMjISKU+K1asQP369WFhYYEOHTrgjz/+UNiem5uL0aNHo1atWqhWrRr69euH9PR0hT6pqano2bMnrKys4OjoiKCgIBQWFr7+F6GlynJ8oqOj4e3tjerVq8PBwQH9+vXDzZs3Ffrw+FSeVx2jWbNmQSaTKT2sra0V9sOfcZWjLP+GhBCYP38+mjRpAnNzc9SpUwfffPONQh+d+jckiNRg3LhxokePHgKASEhIkNqzsrKEk5OTGDx4sLh06ZLYtGmTsLS0FN99953U59SpU8LY2FhERESIK1euiOnTpwtTU1Nx8eJFqU94eLiwtbUVu3btEufPnxd+fn7C3d1dPH36VOrTvXt30bp1a/H777+LkydPikaNGolBgwaVqxZ9s3DhQhEXFydu3rwpTp06JeRyuZDL5dL2/fv3CxMTE7Fq1SqRnJws9u7dK1xcXMSyZcukPjdu3BBWVlZi4sSJ4sqVK2LZsmXC2NhYHDx4UOqzefNmYWZmJn788Udx+fJlMXLkSGFnZyfS09OlPoGBgcLV1VXExMSIs2fPCm9vb9GxY0dpe2FhoWjZsqXw8fERCQkJYv/+/cLe3l6EhIRU8rekOa86Pjdu3BDm5uYiJCRE/PXXXyI+Pl506dJFeHp6KvTh8ak8rzpGjx49Evfu3VN4NG/eXAwbNkzqw59xledVx0cIIcaOHSuaNm0qdu/eLW7cuCHOnj0rDh06JG3XtX9DDG702vbv3y+aNWsmLl++rBTcVq5cKWrUqCHy8vKktqlTp4qmTZtKzz/88EPRs2dPhX126NBBfPbZZ0IIIYqLi4Wzs7OYN2+etD0zM1OYm5uLTZs2CSGEuHLligAgzpw5I/U5cOCAkMlk4r///W+Za9F3u3fvFjKZTOTn5wshhBg0aJDo37+/Qp+lS5eKunXriuLiYiGEEFOmTBEtWrRQ6DNgwADh6+srPW/fvr0YPXq09LyoqEjUrl1bzJ07Vwjx7HiZmpqKbdu2SX2uXr0qAIi4uDghxLP/joyMjERaWprUZ9WqVcLGxkbhmOmzF4/Ptm3bhImJiSgqKpL6REVFKfTh8alaLx6jF507d04AECdOnJDa+DOu6rx4fK5cuSJMTExEYmJiqa/RtX9DnCql15Keno6RI0di/fr1sLKyUtoeFxeHLl26wMzMTGrz9fVFUlISHj58KPXx8fFReJ2vry/i4uIAACkpKUhLS1PoY2triw4dOkh94uLiYGdnh3bt2kl9fHx8YGRkhNOnT5e5Fn324MEDbNiwAR07doSpqSmAZ1PcFhYWCv0sLS1x584d3Lp1C8Crj09+fj7i4+MV+hgZGcHHx0fqEx8fj4KCAoU+zZo1g5ubm8IxbNWqFZycnBTeJzs7G5cvX1bX16C1VB0fLy8vGBkZYe3atSgqKkJWVhbWr18PHx8fqQ+PT9VRdYxetGbNGjRp0gSdO3eW2vgzrmqoOj579uxBgwYNsHfvXri7u6N+/foYMWIEHjx4IL1O1/4NMbhRhQkh4O/vj8DAQIUfJs9LS0tT+I8UgPQ8LS3tpX2e3/7860rr4+joqLDdxMQENWvWfOX7PP8e+mjq1KmwtrZGrVq1kJqait27d0vbfH19sWPHDsTExKC4uBjXrl3DggULAAD37t0DUPr3lp2djadPn+Lvv/9GUVHRK4+PmZkZ7OzsXtqHx0fx+Li7u+PQoUOYNm0azM3NYWdnhzt37mDr1q1SHx6fyveyY/S83NxcbNiwAQEBAQrt/BlXuV52fG7cuIFbt25h27Zt+OmnnxAZGYn4+Hj0799f6qNr/4YY3EhJcHCwypNtn38kJiZi2bJlePToEUJCQjRdskEp6/EpERQUhISEBBw6dAjGxsYYOnQoxP+/YcrIkSMxZswY9OrVC2ZmZvD29sbAgQMBPPs/Sio/dR6ftLQ0jBw5EsOGDcOZM2dw/PhxmJmZoX///lIfKj91HqPn7dy5E48ePcKwYcOq8uPoHXUen+LiYuTl5eGnn35C586d8dZbb+GHH37A0aNHkZSUpKmP+FpMNF0AaZ9JkybB39//pX0aNGiAI0eOIC4uTunebu3atcPgwYOxbt06ODs7K11VU/Lc2dlZ+lNVn+e3l7S5uLgo9GnTpo3UJyMjQ2EfhYWFePDgwSvf5/n30AVlPT4l7O3tYW9vjyZNmsDDwwOurq74/fffIZfLIZPJ8O2332LOnDlIS0uDg4MDYmJiFPZR2vdmY2MDS0tLGBsbw9jY+JXHMD8/H5mZmQr/R/pinxev0jL047NixQrY2toqXBn4888/w9XVFadPn4a3tzePTwWo8xg9b82aNejVq5fSqAp/xpWPOo+Pi4sLTExM0KRJE6m/h4cHgGdXeDZt2lT3/g2V+Ww4ohfcunVLXLx4UXpER0cLAOKXX34Rt2/fFkL872TZ50/kDQkJUbo4oVevXgr7lsvlSifuzp8/X9qelZWl8sTds2fPSn2io6NVnrj7slr03a1btwQAcfTo0VL7DBkyROGqrClTpoiWLVsq9Bk0aJDSibtjxoyRnhcVFYk6deoonbj7yy+/SH0SExNVnrj7/FVa3333nbCxsRG5ubkV+8A65sXjM3HiRNG+fXuFPnfv3hUAxKlTp4QQPD5VrbR/Qzdu3BAymUzs2bNH6TX8GVd1Xjw+Jb+X/vrrL6lPyQUkSUlJQgjd+zfE4EZqk5KSonRVaWZmpnBychJDhgwRly5dEps3bxZWVlZKy4GYmJiI+fPni6tXr4rQ0FCVl8rb2dmJ3bt3iwsXLog+ffqovFTe09NTnD59Wvz222+icePGCpfKl6UWffL777+LZcuWiYSEBHHz5k0RExMjOnbsKBo2bCj9kLh//75YtWqVuHr1qkhISBDjxo0TFhYW4vTp09J+Si6VDwoKElevXhUrVqxQeam8ubm5iIyMFFeuXBGffvqpsLOzU7h6KjAwULi5uYkjR46Is2fPKl22X3KpfLdu3cS5c+fEwYMHhYODg94uN1GW4xMTEyNkMpkICwsT165dE/Hx8cLX11fUq1dPPHnyRAjB41OZynKMSkyfPl3Url1bFBYWKu2HP+MqR1mOT1FRkWjbtq3o0qWL+PPPP8XZs2dFhw4dxLvvvivtR9f+DTG4kdqoCm5CCHH+/HnRqVMnYW5uLurUqSPCw8OVXrt161bRpEkTYWZmJlq0aCH27dunsL24uFjMmDFDODk5CXNzc/HOO+9I/7dU4p9//hGDBg0S1apVEzY2NuKTTz4Rjx49Knct+uLChQuia9euombNmsLc3FzUr19fBAYGijt37kh97t+/L7y9vYW1tbWwsrIS77zzjvj999+V9nX06FHRpk0bYWZmJho0aCDWrl2r1GfZsmXCzc1NmJmZifbt2yvt5+nTp+Lzzz8XNWrUEFZWVuL9998X9+7dU+hz8+ZN0aNHD2FpaSns7e3FpEmTREFBgXq+EC1TluMjhBCbNm0Snp6ewtraWjg4OAg/Pz9x9epVhT48PpWjrMeoqKhI1K1bV0ybNq3UffFnnPqV9fj897//FR988IGoVq2acHJyEv7+/uKff/5R6KNL/4ZkQvAMVyIiIiJdwMvGiIiIiHQEgxsRERGRjmBwIyIiItIRDG5EREREOoLBjYiIiEhHMLgRERER6QgGNyIiIiIdweBGRFQJZDIZdu3apekyFBw7dgwymQyZmZmaLoWIKojBjYjoNcyaNUu6ETgRUWVjcCMiIiLSEQxuRGTQiouLMXfuXLi7u8PS0hKtW7fGL7/8AuB/U4sxMTFo164drKys0LFjRyQlJQEAIiMjERYWhvPnz0Mmk0EmkyEyMlLa999//433338fVlZWaNy4MaKiospUU8n7RkdHw9PTE5aWlnj77beRkZGBAwcOwMPDAzY2Nvjoo4/w5MkT6XV5eXkYN24cHB0dYWFhgU6dOuHMmTPq+7KISOMY3IjIoM2dOxc//fQTVq9ejcuXL2PChAn4+OOPcfz4canPl19+iQULFuDs2bMwMTHB8OHDAQADBgzApEmT0KJFC9y7dw/37t3DgAEDpNeFhYXhww8/xIULF/Dee+9h8ODBePDgQZlrmzVrFpYvX47Y2Fjcvn0bH374IRYvXoyNGzdi3759OHToEJYtWyb1nzJlCrZv345169bhzz//RKNGjeDr61uu9yQiLVeuW9ITEemR3NxcYWVlJWJjYxXaAwICxKBBg8TRo0cFAPHrr79K2/bt2ycAiKdPnwohhAgNDRWtW7dW2jcAMX36dOn548ePBQBx4MCBV9al6n3nzp0rAIjk5GSp7bPPPhO+vr7S/k1NTcWGDRuk7fn5+aJ27doiIiJCYb8PHz58ZQ1EpJ1MNJgZiYg06q+//sKTJ0/w7rvvKrTn5+fD09NTev5///d/0t9dXFwAABkZGXBzc3vp/p9/nbW1NWxsbJCRkVHm+p5/vZOTE6ysrNCgQQOFtj/++AMAkJycjIKCAvzrX/+StpuamqJ9+/a4evVqmd+TiLQbgxsRGazHjx8DAPbt24c6deoobDM3N0dycjKAZwGohEwmA/Ds3LhXef51Ja8ty+tUvV4mk732/ohI9/EcNyIyWM2bN4e5uTlSU1PRqFEjhYerq2uZ9mFmZoaioqJKrvTVGjZsCDMzM5w6dUpqKygowJkzZ9C8eXMNVkZE6sQRNyIyWNWrV8fkyZMxYcIEFBcXo1OnTsjKysKpU6dgY2ODevXqvXIf9evXR0pKCs6dO4e6deuievXqMDc3r4LqFVlbW2PUqFEICgpCzZo14ebmhoiICDx58gQBAQFVXg8RVQ4GNyIyaF999RUcHBwwd+5c3LhxA3Z2dmjbti2mTZtWpmnIfv36YceOHejatSsyMzOxdu1a+Pv7V37hKoSHh6O4uBhDhgzBo0eP0K5dO0RHR6NGjRoaqYeI1E8mhBCaLoKIiIiIXo3nuBERERHpCAY3IqIqFhgYiGrVqql8BAYGaro8ItJinColIqpiGRkZyM7OVrnNxsYGjo6OVVwREekKBjciIiIiHcGpUiIiIiIdweBGREREpCMY3IiIiIh0BIMbERERkY5gcCMiIiLSEQxuRERERDqCwY2IiIhIRzC4EREREemI/wfIwUKhYZuBRgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAHHCAYAAADpkb+WAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXQZJREFUeJzt3X1czff/P/DH6fqCiq5R5DrmSzSVDza0xbL0wWeuRk0Mw+ZiVBbJZnI1m+vP52Nk5nqM5CIWZpszo4WFshExJVsqouvX7w+/3h/HOaVy6lz0uN9u52bn9X6d93me8556eL3e79dbJoQQICIiIiKdYKDpAoiIiIio6hjeiIiIiHQIwxsRERGRDmF4IyIiItIhDG9EREREOoThjYiIiEiHMLwRERER6RCGNyIiIiIdwvBGREREpEMY3oiIXpBMJsP8+fM1XYYkODgYLVq00HQZRFRLGN6ISC/FxMRAJpNJDzMzM7Rt2xZTpkzB3bt3a/W9T58+jfnz5yMnJ0et+3311VcVPlPjxo3x8ssvY+PGjSgrK1PLe3z66afYt2+fWvZFRLXDSNMFEBHVpgULFsDNzQ0FBQX48ccfsW7dOhw6dAjJycmwsLBQy3s8fvwYRkb/+3F6+vRpREVFITg4GDY2Nmp5j3LNmjXDokWLAAD37t3DV199hZCQEFy9ehXR0dEvvP9PP/0UQ4cORWBg4Avvi4hqB8MbEem1AQMGwNPTEwAwbtw42Nra4rPPPsP+/fsxYsSIGu+3rKwMRUVFMDMzg5mZmbrKfS5ra2u8/fbb0vMJEyagXbt2WL16NT7++GMYGxvXWS1EpBmcNiWieqVv374AgLS0NADAsmXL0KNHD9ja2sLc3BzdunXDN998o/Q6mUyGKVOmYOvWrejYsSNMTU1x5MgRaVv5OW/z58/HrFmzAABubm7SFOeNGzfwyiuvoHPnzirrateuHfz8/Kr9eSwsLODt7Y38/Hzcu3evwn75+fmYOXMmXFxcYGpqinbt2mHZsmUQQih8xvz8fGzevFmqOzg4uNo1EVHt4sgbEdUr165dAwDY2toCAL744gsEBARg1KhRKCoqwo4dO/Cvf/0LcXFx8Pf3V3jt8ePHsWvXLkyZMgV2dnYqLwoYPHgwrl69iu3bt2PFihWws7MDANjb22P06NEYP348kpOT8dJLL0mvOXv2LK5evYqIiIgafabr16/D0NCwwilaIQQCAgJw4sQJhISEoEuXLoiPj8esWbPw559/YsWKFQCALVu2YNy4cejevTveffddAECrVq1qVBMR1SJBRKSHNm3aJACI7777Tty7d0/cunVL7NixQ9ja2gpzc3Nx+/ZtIYQQjx49UnhdUVGReOmll0Tfvn0V2gEIAwMDcenSJaX3AiAiIyOl50uXLhUARFpamkK/nJwcYWZmJkJDQxXa33//fWFpaSkePnxY6Wd65ZVXRPv27cW9e/fEvXv3xJUrV8T7778vAIg333xT6hcUFCSaN28uPd+3b58AID755BOF/Q0dOlTIZDLxxx9/SG2WlpYiKCio0jqISLM4bUpEes3X1xf29vZwcXHB8OHD0aBBA3z77bdo2rQpAMDc3Fzqe//+feTm5qJXr1749ddflfb1yiuvoEOHDjWuxdraGoMGDcL27dul6crS0lLs3LkTgYGBsLS0fO4+UlJSYG9vD3t7e7i7u2PVqlXw9/fHxo0bK3zNoUOHYGhoiPfff1+hfebMmRBC4PDhwzX+TERU9zhtSkR6bc2aNWjbti2MjIzg6OiIdu3awcDgf/9ujYuLwyeffILz58+jsLBQapfJZEr7cnNze+F6xowZg507d+KHH35A79698d133+Hu3bsYPXp0lV7fokUL/Pe//5WWP2nTpg0cHBwqfc3NmzfRpEkTNGzYUKHd3d1d2k5EuoPhjYj0Wvfu3aWrTZ/1ww8/ICAgAL1798batWvh7OwMY2NjbNq0Cdu2bVPq//QoXU35+fnB0dERX3/9NXr37o2vv/4aTk5O8PX1rdLrLS0tq9yXiPQTp02JqN7as2cPzMzMEB8fj7Fjx2LAgAFqCUaqRu3KGRoaYuTIkfjmm29w//597Nu3DyNGjIChoeELv29Fmjdvjjt37uDBgwcK7SkpKdL2cpXVTkTageGNiOotQ0NDyGQylJaWSm03btx44TsMlJ+7VtEdFkaPHo379+9jwoQJePjwocK6bbXhjTfeQGlpKVavXq3QvmLFCshkMgwYMEBqs7S0VPudIYhIvThtSkT1lr+/Pz777DP0798fI0eORFZWFtasWYPWrVvj4sWLNd5vt27dAAAfffQRhg8fDmNjY7z55ptSqPPw8MBLL72E3bt3w93dHV27dlXL56nIm2++iT59+uCjjz7CjRs30LlzZxw9ehT79+/HtGnTFJYD6datG7777jt89tlnaNKkCdzc3ODl5VWr9RFR9XDkjYjqrb59++LLL79EZmYmpk2bhu3bt2Px4sX45z//+UL7ffnll/Hxxx/jwoULCA4OxogRI5QW0B0zZgwAVPlChRdhYGCA2NhYTJs2DXFxcZg2bRouX76MpUuX4rPPPlPo+9lnn6Fbt26IiIjAiBEjsG7dulqvj4iqRybEU8trExFRnfjiiy8wffp03LhxA66urpouh4h0CMMbEVEdE0Kgc+fOsLW1xYkTJzRdDhHpGJ7zRkRUR/Lz8xEbG4sTJ07gt99+w/79+zVdEhHpII68ERHVkRs3bsDNzQ02NjZ47733sHDhQk2XREQ6iOGNiIiISIfwalMiIiIiHcLwRkRERKRDeMGCFisrK8OdO3fQsGFD3rKGiIhIRwgh8ODBAzRp0gQGBuofJ2N402J37tyBi4uLpssgIiKiGrh16xaaNWum9v0yvGmxhg0bAnhy8K2srDRcDREREVVFXl4eXFxcpN/j6sbwpsXKp0qtrKwY3oiIiHRMbZ3yxAsWiIiIiHQIwxsRERGRDmF4IyIiItIhPOdNx5WWlqK4uFjTZVAdMDY2hqGhoabLICIiDWN401FCCGRmZiInJ0fTpVAdsrGxgZOTE9f9IyKqxxjedFR5cHNwcICFhQV/mes5IQQePXqErKwsAICzs7OGKyIiIk1heNNBpaWlUnCztbXVdDlUR8zNzQEAWVlZcHBw4BQqEVE9xQsWdFD5OW4WFhYaroTqWvkx53mORET1F8ObDuNUaf3DY05ERAxvRERERDpEZ8JbQEAAXF1dYWZmBmdnZ4wePRp37txR6COEwLJly9C2bVuYmpqiadOmWLhwoUKfkydPomvXrjA1NUXr1q0RExOj9F5r1qxBixYtYGZmBi8vL/zyyy8K2wsKCjB58mTY2tqiQYMGGDJkCO7evavQJz09Hf7+/rCwsICDgwNmzZqFkpIS9XwZREREVG/pTHjr06cPdu3ahdTUVOzZswfXrl3D0KFDFfp88MEH2LBhA5YtW4aUlBTExsaie/fu0va0tDT4+/ujT58+OH/+PKZNm4Zx48YhPj5e6rNz507MmDEDkZGR+PXXX9G5c2f4+flJV/kBwPTp03HgwAHs3r0b33//Pe7cuYPBgwdL20tLS+Hv74+ioiKcPn0amzdvRkxMDObNm1eL35BuCA4Ohkwmg0wmg7GxMRwdHfHaa69h48aNKCsrq/J+YmJiYGNjU3uFEhERaSuho/bv3y9kMpkoKioSQghx+fJlYWRkJFJSUip8zezZs0XHjh0V2oYNGyb8/Pyk5927dxeTJ0+WnpeWloomTZqIRYsWCSGEyMnJEcbGxmL37t1SnytXrggAQi6XCyGEOHTokDAwMBCZmZlSn3Xr1gkrKytRWFhY5c+Ym5srAIjc3FyF9sePH4vLly+Lx48fV3lf2iIoKEj0799fZGRkiNu3b4vExESxcOFC0aBBAzFgwABRXFxcpf1s2rRJWFtb126xWkiXjz0RUX1R0e9vddGZkbenZWdnY+vWrejRoweMjY0BAAcOHEDLli0RFxcHNzc3tGjRAuPGjUN2drb0OrlcDl9fX4V9+fn5QS6XAwCKioqQmJio0MfAwAC+vr5Sn8TERBQXFyv0ad++PVxdXaU+crkcnTp1gqOjo8L75OXl4dKlSxV+rsLCQuTl5Sk89JGpqSmcnJzQtGlTdO3aFXPmzMH+/ftx+PBhaRr7s88+Q6dOnWBpaQkXFxe89957ePjwIYAnU9/vvPMOcnNzpVG8+fPnAwC2bNkCT09PNGzYEE5OThg5cqTCqCkREREAxMYCPXo8+VPX6FR4Cw0NhaWlJWxtbZGeno79+/dL265fv46bN29i9+7d+OqrrxATE4PExESFqdXMzEyFQAUAjo6OyMvLw+PHj/HXX3+htLRUZZ/MzExpHyYmJkpTds/2UbWP8m0VWbRoEaytraWHi4tLFb+ZJ+f7FRUVaeQhhKhynRXp27cvOnfujL179wJ4EppXrlyJS5cuYfPmzTh+/Dhmz54NAOjRowc+//xzWFlZISMjAxkZGfjwww8BPFlC4+OPP8aFCxewb98+3LhxA8HBwS9cHxER6ZfoaEAuf/KnrtHoIr1hYWFYvHhxpX2uXLmC9u3bAwBmzZqFkJAQ3Lx5E1FRURgzZgzi4uIgk8lQVlaGwsJCfPXVV2jbti0A4Msvv0S3bt2QmpqKdu3a1frneVHh4eGYMWOG9DwvL6/KAa64uBiLFi2qrdIqFR4eDhMTkxfeT/v27XHx4kUAwLRp06T2Fi1a4JNPPsHEiROxdu1amJiYwNraGjKZDE5OTgr7GDt2rPTfLVu2xMqVK/Hyyy/j4cOHaNCgwQvXSERE+iEs7ElwCwvTdCXVp9HwNnPmzOeOirRs2VL6bzs7O9jZ2aFt27Zwd3eHi4sLfv75Z/j4+MDZ2RlGRkZScAMAd3d3AE+u/GzXrh2cnJyUrgq9e/curKysYG5uDkNDQxgaGqrsUx4SnJycUFRUhJycHIXRt2f7PHuFavk+nw0bTzM1NYWpqWml34c+E0JI65h99913WLRoEVJSUpCXl4eSkhIUFBTg0aNHlS5OnJiYiPnz5+PChQu4f/++dBFEeno6OnToUCefg4iItFdsLLBu3S14e2/ERx95wt/fX9MlVZtGw5u9vT3s7e1r9NryX8qFhYUAgH/84x8oKSnBtWvX0KpVKwDA1atXAQDNmzcHAPj4+ODQoUMK+zl27Bh8fHwAACYmJujWrRsSEhIQGBgovU9CQgKmTJkCAOjWrRuMjY2RkJCAIUOGAABSU1ORnp4u7cfHxwcLFy6UbmNU/j5WVla1FiCMjY0RHh5eK/uuynurw5UrV+Dm5oYbN25g4MCBmDRpEhYuXIjGjRvjxx9/REhICIqKiioMb/n5+fDz84Ofnx+2bt0Ke3t7pKenw8/PD0VFRWqpkYiIdNuJExvg7f0nAODcuXN44403dG4BdJ24t+mZM2dw9uxZ9OzZE40aNcK1a9cwd+5ctGrVSgpMvr6+6Nq1K8aOHYvPP/8cZWVlmDx5Ml577TVpNG7ixIlYvXo1Zs+ejbFjx+L48ePYtWsXDh48KL3XjBkzEBQUBE9PT3Tv3h2ff/458vPz8c477wAArK2tERISghkzZqBx48awsrLC1KlT4ePjA29vbwDA66+/jg4dOmD06NFYsmQJMjMzERERgcmTJ9fayJpMJlPL1KWmHD9+HL/99humT5+OxMRElJWVYfny5TAweHJa5q5duxT6m5iYoLS0VKEtJSUFf//9N6Kjo6Xp5nPnztXNByAiIq32559/YsOGDXj6lPVRo0bpXHADdCS8WVhYYO/evYiMjER+fj6cnZ3Rv39/RERESGHIwMAABw4cwNSpU9G7d29YWlpiwIABWL58ubQfNzc3HDx4ENOnT8cXX3yBZs2aYcOGDfDz85P6DBs2DPfu3cO8efOQmZmJLl264MiRIwoXIKxYsQIGBgYYMmQICgsL4efnh7Vr10rbDQ0NERcXh0mTJsHHxweWlpYICgrCggUL6uDb0n6FhYXIzMxEaWkp7t69iyNHjmDRokUYOHAgxowZg+TkZBQXF2PVqlV488038dNPP2H9+vUK+2jRogUePnyIhIQEdO7cGRYWFnB1dYWJiQlWrVqFiRMnIjk5GR9//LGGPiUREWmLqKgopbbvvgtHZKRuDnrIhDouFaRakZeXB2tra+Tm5sLKykpqLygoQFpaGtzc3GBmZqbBCqsvODgYmzdvBgAYGRmhUaNG6Ny5M0aOHImgoCBppG3FihVYunQpcnJy0Lt3b4waNQpjxozB/fv3pXMNJ02ahN27d+Pvv/9GZGQk5s+fj+3bt2POnDnIyMhA165dER4ejoCAACQlJaFLly4a+tTqo8vHnoiorgkhVA6cxMdHIiwMCAionfet6Pe3ujC8aTF9DG/0YnjsiYiq5uzZs0rnuffu3Rt9+vSp9feu7fCmE9OmRERERFWlapq0c+eP0KePfsQe/fgUREREVO89evQIS5cuVWqPjIzUQDW1h+GNiIiIdN727dulJcLKvf3229LyYfqE4Y2IiIh0mqppUn0bbXsawxsRERHppFu3bmHjxo0KbU2bNsW4ceM0VFHdYHgjIiIinaNqtG369Om1cnWntmF4IyIiIp1RVlamcgF2fZ4mfRbDGxEREekEuVyOo0ePKrT16dMHvXv31lBFmsHwRkRERFpP1TRpREQEDA0NNVCNZhlougCi2hAcHIzAwEDp+auvvopp06a90D7VsQ8iIqqevLy8Cq8mrY/BDeDIG9Wxp+9tamxsDFdXV4wZMwZz5syBkVHt/e+4d+9eGBsbV6nvyZMn0adPH4X7qFZ3H0RE9OJWrVqF7OxshbYxY8bAzc1NQxVpB4Y3qnP9+/fHpk2bUFhYiEOHDmHy5MkwNjZGeHi4Qr+ioiKYmJio5T0bN26sFfsgIqKqqW9rt1UHp02pzpmamsLJyQnNmzfHpEmT4Ovri9jYWGmqc+HChWjSpAnatWsH4Mk6Pm+99RZsbGzQuHFjDBo0CDdu3JD2V1paihkzZsDGxga2traYPXs2hBAK7/nslGdhYSFCQ0Ph4uICU1NTtG7dGl9++SVu3Lgh3bS4UaNGkMlkCA4OVrmP+/fvY8yYMWjUqBEsLCwwYMAA/P7779L2mJgY2NjYID4+Hu7u7mjQoAH69++PjIwMqc/JkyfRvXt3WFpawsbGBv/4xz9w8+ZNNX3TRES658KFC0rBLT/fGh4eDG7lGN5I48zNzVFUVAQASEhIQGpqKo4dO4a4uDgUFxfDz88PDRs2xA8//ICffvpJCkHlr1m+fDliYmKwceNG/Pjjj8jOzsa3335b6XuOGTMG27dvx8qVK3HlyhX8+9//RoMGDeDi4oI9e/YAAFJTU5GRkYEvvvhC5T6Cg4Nx7tw5xMbGQi6XQwiBN954A8XFxVKfR48eYdmyZdiyZQtOnTqF9PR0fPjhhwCAkpISBAYG4pVXXsHFixchl8vx7rvvQiaTvfB3SkSki6KiorBv3z6FtlWrpuDHH6chIEAzNWkjTpuSxgghkJCQgPj4eEydOhX37t2DpaUlNmzYIE2Xfv311ygrK8OGDRukULNp0ybY2Njg5MmTeP311/H5558jPDwcgwcPBgCsX78e8fHxFb7v1atXsWvXLhw7dgy+vr4AgJYtW0rby6dHHRwcFM55e9rvv/+O2NhY/PTTT+jRowcAYOvWrXBxccG+ffvwr3/9CwBQXFyM9evXS/fWmzJlChYsWADgyUm4ubm5GDhwoLTd3d29+l8kEZGOKykpwcKFC5XaPTwi0bYtEBamgaK0GMMbITYWiI5+8pejLv5lExcXhwYNGqC4uBhlZWUYOXIk5s+fj8mTJ6NTp04K57lduHABf/zxBxo2bKiwj4KCAly7dg25ubnIyMiAl5eXtM3IyAienp5KU6flzp8/D0NDQ7zyyis1/gxXrlyBkZGRwvva2tqiXbt2uHLlitRmYWGhcFNkZ2dnZGVlAXgSEoODg+Hn54fXXnsNvr6+eOutt+Ds7FzjuoiIdI2qixLatWuH4cOHA6ib30u6huGNEB0NyOVP/qyLvyR9+vTBunXrYGJigiZNmihcZWppaanQ9+HDh+jWrRu2bt2qtB97e/savb+5uXmNXlcTz16dKpPJFELlpk2b8P777+PIkSPYuXMnIiIicOzYMXh7e9dZjUREmqLqooTOnSMQGFg/lwCpKp7zRggLA3x86m5Y2tLSEq1bt4arq+tzlwfp2rUrfv/9dzg4OKB169YKD2tra1hbW8PZ2RlnzpyRXlNSUoLExMQK99mpUyeUlZXh+++/V7m9fOSvtLS0wn24u7ujpKRE4X3//vtvpKamokOHDpV+pmd5eHggPDwcp0+fxksvvYRt27ZV6/VERLrm9u3bKoPb/PmRWLKEwe15GN4IAQHA6dPaOTQ9atQo2NnZYdCgQfjhhx+QlpaGkydP4v3338ft27cBAB988AGio6Oxb98+pKSk4L333kNOTk6F+2zRogWCgoIwduxY7Nu3T9rnrl27AADNmzeHTCZDXFwc7t27h4cPHyrto02bNhg0aBDGjx+PH3/8ERcuXMDbb7+Npk2bYtCgQVX6bGlpaQgPD4dcLsfNmzdx9OhR/P777zzvjYj0WlRUFL788kuFNj8/P3h4RNbpQIIuY3gjrWZhYYFTp07B1dUVgwcPhru7O0JCQlBQUAArKysAwMyZMzF69GgEBQXBx8cHDRs2xD//+c9K97tu3ToMHToU7733Htq3b4/x48cjPz8fANC0aVNERUUhLCwMjo6OmDJlisp9bNq0Cd26dcPAgQPh4+MDIQQOHTpU5YV8LSwskJKSgiFDhqBt27Z49913MXnyZEyYMKEa3xARke5QNdrm4REJb29vrR5I0DYyUdFZ3aRxeXl5sLa2Rm5urhRUgCcn66elpcHNzQ1mZmYarJDqGo89EemiPXv2IDk5Wal9/vwno22nT2ugqFpU0e9vdeEFC0RERFRrVI22tW0bgqioZmjfntOkNcHwRkRERGpXUFCAxYsXK7WX3+JqxIi6rkh/MLwRERGRWqkabQN4b1J1YXgjIiIitVEV3Fas+AhffcXIoS78JnUYrzWpf3jMiUhbXb58Gbt371Zqj4+PxFdf8SpSdWJ400HlS1E8evSoTu8WQJr36NEjAMp3biAi0iRVo21dunTBoEGDwJlS9WN400GGhoawsbGR7pFpYWEh3bSd9JMQAo8ePUJWVhZsbGxgaMgVyIlIO6gKbjy3rXYxvOkoJycnAJACHNUPNjY20rEnItKkFStWIC8vT6k9Pj6So221jOFNR8lkMjg7O8PBwQHFxcWaLofqgLGxMUfciEgrqBpta9MmGKtXN+e6bXWA4U3HGRoa8hc6ERHVifz8fCxbtkypvXyadOTIuq6ofmJ4IyIioufi2m3ag+GNiIiIKqUquEVERHDmR0MMNF0AERERaafvvvtOZXCLj49kcNMgjrwRERGRElWh7bffXsKdO0N4UYKGMbwRERGRAlXBbcGCSAweDJw+rYGCSAHDGxEREQGo/KIEXpegPRjeiIiISGVwO3duFA4caK2BaqgyDG9ERET1WHZ2NlatWqXUHh8fyXPbtBTDGxERUT3FaVLdxKVCiIiI6iFVwe3o0Qh4eDC1aTuOvBEREdUj+/fvx/nz55Xa//vfSNy+Xff1UPUxvBEREdUTqkbbzM2dsW/fu1i7VgMFUY0wvBEREek5IQQWLFig1F5+X9LZs+u6InoRDG9ERER6jDeU1z8Mb0RERHpKVXBLSAjCqVMt6r4YUhuGNyIiIj3z559/YsOGDUrty5ZFYutWDRREasXwRkREpEcqmiaNj38S3AIC6rggUjuGNyIiIj2hKrhFRc2Ft7cBbyivRxjeiIiIdNyXX36J2yoWafPwiIS3N3ibKz3D8EZERKTDVI222draYsqUKQA4TaqPGN6IiIh00PPWbiP9xfBGRESkY7h2W/3G8EZERKRDVAW34OBgNG/eXAPVkCYwvBEREemAtLQ0fPXVV0rtHG2rfxjeiIiItFxF06QeHgxu9RHDGxERkRZTFdzmzZsHmUymgWpIGzC8ERERaaEFCz6BEKVK7R4ekWBuq98Y3oiIiLSMqtE2a2trTJs2re6LIa3D8EZERKQlysrK8PHHHyu186IEehrDGxERkRbg2m1UVQxvREREGqYquAUFBaFFixZ1XwxpPYY3IiIiDUlOTsaePXuU2jnaRpVheCMiItIATpNSTRlouoCqCggIgKurK8zMzODs7IzRo0fjzp070vb58+dDJpMpPSwtLRX2s3v3brRv3x5mZmbo1KkTDh06pLBdCIF58+bB2dkZ5ubm8PX1xe+//67QJzs7G6NGjYKVlRVsbGwQEhKChw8fKvS5ePEievXqBTMzM7i4uGDJkiVq/kaIiEgXffRRxWu3MbhRVehMeOvTpw927dqF1NRU7NmzB9euXcPQoUOl7R9++CEyMjIUHh06dMC//vUvqc/p06cxYsQIhISEICkpCYGBgQgMDERycrLUZ8mSJVi5ciXWr1+PM2fOwNLSEn5+figoKJD6jBo1CpcuXcKxY8cQFxeHU6dO4d1335W25+Xl4fXXX0fz5s2RmJiIpUuXYv78+fjPf/5Ty98SERFps6ioKJiYKAe3yMhILrpLVSYTQghNF1ETsbGxCAwMRGFhIYyNjZW2X7hwAV26dMGpU6fQq1cvAMCwYcOQn5+PuLg4qZ+3tze6dOmC9evXQwiBJk2aYObMmfjwww8BALm5uXB0dERMTAyGDx+OK1euoEOHDjh79iw8PT0BAEeOHMEbb7yB27dvo0mTJli3bh0++ugjZGZmwsTEBAAQFhaGffv2ISUlpcqfMS8vD9bW1sjNzYWVlVWNvysiItI8VaNtdnZ2mDx5sgaqodpU27+/dWbk7WnZ2dnYunUrevTooTK4AcCGDRvQtm1bKbgBgFwuh6+vr0I/Pz8/yOVyAE9u+puZmanQx9raGl5eXlIfuVwOGxsbKbgBgK+vLwwMDHDmzBmpT+/evaXgVv4+qampuH//foWfq7CwEHl5eQoPIiLSbSUlJSqDW2RkJIMb1YhOhbfQ0FBYWlrC1tYW6enp2L9/v8p+BQUF2Lp1K0JCQhTaMzMz4ejoqNDm6OiIzMxMaXt5W2V9HBwcFLYbGRmhcePGCn1U7ePp91Bl0aJFsLa2lh4uLi4V9iUiIu0XFRWFhQsXKrXz3DZ6ERoNb2FhYSovMnj68fQ046xZs5CUlISjR4/C0NAQY8aMgapZ32+//RYPHjxAUFBQXX6cFxYeHo7c3FzpcevWLU2XRERENaRqtG3s2LEMbvTCNLpUyMyZMxEcHFxpn5YtW0r/bWdnBzs7O7Rt2xbu7u5wcXHBzz//DB8fH4XXbNiwAQMHDlQa/XJycsLdu3cV2u7evQsnJydpe3mbs7OzQp8uXbpIfbKyshT2UVJSguzsbIX9qHqfp99DFVNTU5iamla4nYiItJ9cLsfRo0eV2hnaSF00Gt7s7e1hb29fo9eWlZUBeHKe2NPS0tJw4sQJxMbGKr3Gx8cHCQkJCjf2PXbsmBT+3Nzc4OTkhISEBCms5eXl4cyZM5g0aZK0j5ycHCQmJqJbt24AgOPHj6OsrAxeXl5Sn48++gjFxcXSOXnHjh1Du3bt0KhRoxp9XiIi0n5cu43qgk4s0nvmzBmcPXsWPXv2RKNGjXDt2jXMnTsXrVq1Uhp127hxI5ydnTFgwACl/XzwwQd45ZVXsHz5cvj7+2PHjh04d+6ctISHTCbDtGnT8Mknn6BNmzZwc3PD3Llz0aRJEwQGBgIA3N3d0b9/f4wfPx7r169HcXExpkyZguHDh6NJkyYAgJEjRyIqKgohISEIDQ1FcnIyvvjiC6xYsaJ2vygiItKI2FggKUn1RQlE6qYT4c3CwgJ79+5FZGQk8vPz4ezsjP79+yMiIkJhmrGsrAwxMTEIDg6GoaGh0n569OiBbdu2ISIiAnPmzEGbNm2wb98+vPTSS1Kf2bNnIz8/H++++y5ycnLQs2dPHDlyBGZmZlKfrVu3YsqUKejXrx8MDAwwZMgQrFy5UtpubW2No0ePYvLkyejWrRvs7Owwb948hbXgiIhIP3C0jeqazq7zVh9wnTciIu3GtdtIldr+/a0TI29ERETapLCwENHR0UrtHG2jusDwRkREVA2cJiVNY3gjIiKqIlXBbcKECZUuA0WkbgxvREREz3H8+HH88MMPSu0cbSNNYHgjIiKqBKdJSdswvBEREVWgohvKE2kSwxsREdEzONpG2ozhjYiI6Cmqglvz5s2fey9uorrC8EZERARg795H+O23pUrtHG0jbcPwRkRE9R6nSUmXMLwREVG9piq4TZ06FY0bN9ZANUTPx/BGRET10sGDB3Hu3Dmldo62kbZjeCMionqnomlSDw8GN9J+DG9ERFRvxMYCSUlcu410G8MbERHVC7wogfQFwxsREek9VcHN3d0db731lgaqIXoxDG9ERKS38vLysGLFCqV2jraRLmN4IyIivcRpUtJXDG9ERKR3VAW3jh2nYehQaw1UQ6ReDG9ERKQ3tm/fjqtXryq1c7SN9AnDGxER6QVOk1J9wfBGREQ6T1VwY2gjfcXwRkREOoujbVQfGWi6ACIioppQFdwyMl7iLa5I73HkjYiIdMq9e/ewdu1apXaOtlF9wfBGREQ6g9OkRAxvRESkI1QFt5kzZ6JBgwYaqIZIcxjeiIhIqy1fvhwPHz5UaudoG9VXDG9ERKS1OE1KpIzhjYiItBLXbiNSjeGNiIi0CkfbiCrH8EZERFpDVXBr3LgLpk4dpIFqiLQTwxsREWncn3/+iQ0bNii1c7SNSBnDGxERaRSnSYmqh+GNiIg0RlVwCw0NhZmZmQaqIdINDG9ERFTnPv30UxQXFyu1e3hEgrmNqHIMb0REVKc4TUr0YhjeiIiozqgKbvHxkTh9WgPFEOkohjciIqp1FY22bd8eiSVL6rgYIh1X7fBmaGiIjIwMODg4KLT//fffcHBwQGlpqdqKIyIi3acquPXs2RP9+vUDZ0qJqq/a4U0IobK9sLAQJiYmL1wQERHph+vXr2PLli1K7Ty3jejFVDm8rVy5EgAgk8mwYcMGNGjQQNpWWlqKU6dOoX379uqvkIiIdE5F06Tx8ZEcbSN6QVUObytWrADwZORt/fr1MDQ0lLaZmJigRYsWWL9+vforJCIinaIquHXuPAdLlhgjLEwDBRHpmSqHt7S0NABAnz59sHfvXjRq1KjWiiIiIt3zvCVAAgPrsBgiPVbtc95OnDhRG3UQEZEO49ptRHWn2uFt7NixlW7fuHFjjYshIiLdIoTAggULlNoZ2ohqT7XD2/379xWeFxcXIzk5GTk5Oejbt6/aCiMiIu3G0TYizah2ePv222+V2srKyjBp0iS0atVKLUUREZF2UxXc+vXrh549e2qgGqL6RSYqWritmlJTU/Hqq68iIyNDHbsjAHl5ebC2tkZubi6srKw0XQ4REVJTU7Fjxw6ldo62Ef1Pbf/+Vtvtsa5du4aSkhJ17Y6IiLQMp0mJtEO1w9uMGTMUngshkJGRgYMHDyIoKEhthRERkfZQFdw++ywCW7YYquhNRLWp2uEtKSlJ4bmBgQHs7e2xfPny516JSkREuqWyOyVs2QIEBNRxQUSkvnPeSP14zhsRaRKnSYlqRmvPecvKykJqaioAoF27dnBwcFBbUUREpDkVrd0WHx+J06c1UBARKah2eMvLy8PkyZOxfft2lJWVAQAMDQ0xbNgwrFmzBtbW1movkoiI6kZl06S8LymRdjCo7gvGjx+PM2fO4ODBg8jJyUFOTg7i4uJw7tw5TJgwoTZqJCKiOqAquP3yy5vw8Hgy4sbz24i0Q7XPebO0tER8fLzSQow//PAD+vfvj/z8fLUWWJ/xnDciqgtJSUmIjY1Vaue5bUQ1o3XnvNna2qqcGrW2tkajRo3UUhQREdUNXpRApHuqHd4iIiIwY8YMbNmyBU5OTgCAzMxMzJo1C3PnzlV7gUREVDtUBbd58+ZBJpNpoBoiqqpqT5t6eHjgjz/+QGFhIVxdXQEA6enpMDU1RZs2bRT6/vrrr+qrtB7itCkR1QaOthHVLq2bNh00aBD/VUZEpKMY3Ih0Hxfp1WIceSMidSktLcUnn3yi1M6124jUT+tG3lq2bImzZ8/C1tZWoT0nJwddu3bF9evX1VYcERG9OK7dRqRfqh3ebty4gdLSUqX2wsJC3L59Wy1FERGReqgKboMHD0anTp3AmVIi3VTl8Pb0GkDx8fEKy4WUlpYiISEBbm5u6q2OiIhq5Mcff0RCQoJSO89tI9J9Vb7DQmBgIAIDAyGTyRAUFCQ9DwwMxPDhw3Hs2DEsX7681goNCAiAq6srzMzM4OzsjNGjR+POnTsKfeLj4+Ht7Y2GDRvC3t4eQ4YMwY0bNxT6nDx5El27doWpqSlat26NmJgYpfdas2YNWrRoATMzM3h5eeGXX35R2F5QUIDJkyfD1tYWDRo0wJAhQ3D37l2FPunp6fD394eFhQUcHBwwa9YslJSUqOW7ICKqTFRUFIMbkR6rcngrKytDWVkZXF1dkZWVJT0vKytDYWEhUlNTMXDgwFortE+fPti1axdSU1OxZ88eXLt2DUOHDpW2p6WlYdCgQejbty/Onz+P+Ph4/PXXXxg8eLBCH39/f/Tp0wfnz5/HtGnTMG7cOMTHx0t9du7ciRkzZiAyMhK//vorOnfuDD8/P2RlZUl9pk+fjgMHDmD37t34/vvvcefOHYX3KS0thb+/P4qKinD69Gls3rwZMTExmDdvXq19P0REgOpp0vj4eQxuRHpEZ682jY2NRWBgIAoLC2FsbIxvvvkGI0aMQGFhIQwMnmTSAwcOYNCgQVKf0NBQHDx4EMnJydJ+hg8fjpycHBw5cgQA4OXlhZdffhmrV68G8CS0uri4YOrUqQgLC0Nubi7s7e2xbds2KTympKTA3d0dcrkc3t7eOHz4MAYOHIg7d+7A0dERALB+/XqEhobi3r17MDExqdJn5NWmRFRVz7sogfclJao7Wne16YIFCyrdXhejS9nZ2di6dSt69OgBY2NjAEC3bt1gYGCATZs2ITg4GA8fPsSWLVvg6+sr9ZHL5fD19VXYl5+fH6ZNmwYAKCoqQmJiIsLDw6XtBgYG8PX1hVwuBwAkJiaiuLhYYT/t27eHq6urFN7kcjk6deokBbfy95k0aRIuXboEDw8PlZ+rsLAQhYWF0vO8vLwX+JaIqL6obO02DrgR6Z9qh7dvv/1W4XlxcTHS0tJgZGSEVq1a1Wp4Cw0NxerVq/Ho0SN4e3sjLi5O2ubm5oajR4/irbfewoQJE1BaWgofHx8cOnRI6pOZmakQqADA0dEReXl5ePz4Me7fv4/S0lKVfVJSUqR9mJiYwMbGRqlPZmZmpe9Tvq0iixYtqvCHMBHRs4qLi/Hpp58qtXOKlEi/Vfmct3JJSUkKj+TkZGRkZKBfv36YPn16tfYVFhYGmUxW6aM8NAHArFmzkJSUhKNHj8LQ0BBjxoxB+axvZmYmxo8fj6CgIJw9exbff/89TExMMHToUOjKzHB4eDhyc3Olx61btzRdEhFpqaioKAY3onqq2iNvqlhZWSEqKgpvvvkmRo8eXeXXzZw5E8HBwZX2admypfTfdnZ2sLOzQ9u2beHu7g4XFxf8/PPP8PHxwZo1a2BtbY0lS5ZI/b/++mu4uLjgzJkz8Pb2hpOTk9JVoXfv3oWVlRXMzc1haGgIQ0NDlX2cnJwAAE5OTigqKkJOTo7C6NuzfZ69QrV8n+V9VDE1NYWpqWml3wcRkaoR+pEjRyrdX5qI9JNawhsAabSoOuzt7WFvb1+j9ysrKwMA6RyxR48eSRcqlDM0NFTo++w0KgAcO3YMPj4+AAATExN069YNCQkJCAwMlF6bkJCAKVOmAHhybp2xsTESEhIwZMgQAEBqairS09Ol/fj4+GDhwoXIysqCg4OD9D5WVlbo0KFDjT4vEdGxY8dwWsW9rOLjeW4bUX1S7fC2cuVKhedCCGRkZGDLli0YMGCA2gp72pkzZ3D27Fn07NkTjRo1wrVr1zB37ly0atVKCkz+/v5YsWIFFixYgBEjRuDBgweYM2cOmjdvLl0gMHHiRKxevRqzZ8/G2LFjcfz4cezatQsHDx6U3mvGjBkICgqCp6cnunfvjs8//xz5+fl45513AADW1tYICQnBjBkz0LhxY1hZWWHq1Knw8fGBt7c3AOD1119Hhw4dMHr0aCxZsgSZmZmIiIjA5MmTObJGRDXCW1wRUblqLxXy7F0UDAwMYG9vj759+yI8PBwNGzZUa4EA8Ntvv+GDDz7AhQsXkJ+fD2dnZ/Tv3x8RERFo2rSp1G/Hjh1YsmQJrl69CgsLC/j4+GDx4sVo37691OfkyZOYPn06Ll++jGbNmmHu3LlKU7erV6/G0qVLkZmZiS5dumDlypXw8vKSthcUFGDmzJnYvn07CgsL4efnh7Vr1ypMid68eROTJk3CyZMnYWlpiaCgIERHR8PIqOp5mUuFEBFQ0dptvKE8kbaq7d/fOrvOW33A8EZUv3HtNiLdpHXrvAFATk4O/vjjDwBA69atlZbNICKiF8O124ioItUKbzdu3MDkyZMRHx8vLb8hk8nQv39/rF69Gi1atKiNGomI6o2CggIsXrxYqZ1LgBBRuSqHt1u3bsHb2xvGxsb4+OOP4e7uDgC4fPky1q1bBx8fH5w9exbNmjWrtWKJiPRZZaNtRETlqnzOW0hICP744w/Ex8fDzMxMYdvjx4/Rv39/tGnTBhs2bKiVQusjnvNGVH+oCm7vvPMOXF1dNVANEb0IrTnn7ciRI9i5c6dScAMAc3NzfPzxxxg+fLhaiyMi0nfffvstLl68qNTO0TYiqkiVw9tff/1V6TltLVu2RHZ2tjpqIiKqFzhNSkQ1UeXw5uzsLK2NpkpycnKlt34iIqL/URXcGNqIqCqqHN4CAwPx4YcfIiEhQemWVllZWQgNDZVuKUVERKpxtI2IXlSVL1i4f/8+vLy8kJmZibfffhvt27eHEAJXrlzBtm3b4OTkhJ9//hmNGzeu7ZrrDV6wQKRfVAU3Y2NjzJkzRwPVEFFt0ZoLFho1aoQzZ85gzpw52LFjB3JycgAANjY2GDlyJD799FMGNyIiFR4+fIjly5crtXO0jYhqoka3xxJC4N69ewAAe3t7yGQytRdGHHkj0gecJiWqf7Rm5O1pMpkMDg4O6q6FiEivqApuEydOhKOjowaqISJ9UaPwRkREFdu6dat0/+encbSNiNSB4Y2ISI04TUpEtY3hjYhITbh2GxHVBYY3IqIXxNE2IqpLVQpvK1eurPIO33///RoXQ0Ska1QFt8aNG2Pq1KkaqIaI6oMqLRXi5uZWtZ3JZLh+/foLF0VPcKkQIu2Vm5uLzz//XKl92bJIPHhQ9/UQkfbQiqVC0tLS1P7GRES6qqJp0mXLIsHJByKqbTU+562oqAhpaWlo1aoVjIx46hwR1Q+qgtsXX7yP9u0bccSNiOqEQXVf8OjRI4SEhMDCwgIdO3ZEeno6AGDq1KmIjo5We4FERNrg66+/VhncPDwi0b59I4SFaaAoIqqXqh3ewsPDceHCBZw8eRJmZmZSu6+vL3bu3KnW4oiItEFUVBSuXbum1B4fH4mAAOD0aSAgQAOFEVG9VO35zn379mHnzp3w9vZWuKdpx44dVf5wIyLSZapG24qKInHiBDjaRkQaUe3wdu/ePZX3Nc3Pz+cN6olIb3DtNiLSVtWeNvX09MTBgwel5+WBbcOGDfDx8VFfZUREGqIquHXs2JHBjYi0QrVH3j799FMMGDAAly9fRklJCb744gtcvnwZp0+fxvfff18bNRIR1Ym///4bq1evVmpnaCMibVLtkbeePXvi/PnzKCkpQadOnXD06FE4ODhALpejW7dutVEjEVGti4qKYnAjIp1QpTsskGbwDgtEdUPVNOnMmTPRoEEDDVRDRLpOK+6wkJeXV+UdMmQQka7YuHEjbt26pdTO0TYi0mZVCm82NjZVvpK0tLT0hQoiIqoLFV1NGh8fCWY3ItJmVQpvJ06ckP77xo0bCAsLQ3BwsHR1qVwux+bNm7Fo0aLaqZKISI0qulNCdDTXbiMi7Vftc9769euHcePGYcSIEQrt27Ztw3/+8x+cPHlSnfXVazznjUi9uHYbEdWF2v79Xe2rTeVyOTw9PZXaPT098csvv6ilKCIidVMV3OztvRjciEjnVDu8ubi44L///a9S+4YNG+Di4qKWooiI1GXnziyVwW3+/Eh8/XV/DVRERPRiqr1I74oVKzBkyBAcPnwYXl5eAIBffvkFv//+O/bs2aP2AomIaqqiaVIPj0j4+PD8NiLSTTVa5+327dtYu3YtUlJSAADu7u6YOHEiR97UjOe8EdWcquC2Z08oLl4000A1RFSf1Pbvby7Sq8UY3oiqb/369bh7965S+/z5kWjXDvj//+YkIqo1WrFI77NycnLw5Zdf4sqVKwCe3LB57NixsLa2VmtxRETVUdE06eLFT4LbkiV1XBARUS2o9sjbuXPn4OfnB3Nzc3Tv3h0AcPbsWTx+/BhHjx5F165da6XQ+ogjb0RVpyq4bd8eicaNn5zbFhCggaKIqF7SumnTXr16oXXr1vjvf/8LI6MnA3clJSUYN24crl+/jlOnTqm9yPqK4Y3o+Sq7UwJDGxFpgtaFN3NzcyQlJaF9+/YK7ZcvX4anpycePXqk1gLrM4Y3IiA2FtKdD54NYqqCW79+/dCzZ886qo6ISJnWLdJrZWWF9PR0pfZbt26hYcOGaimKiKhcdDQglz/5s9yff/6pMrhFRkYyuBGR3qv2BQvDhg1DSEgIli1bhh49egAAfvrpJ8yaNUvplllERC8qLAwK9xzlLa6IqL6rdnhbtmwZZDIZxowZg5KSEgCAsbExJk2ahOin/2lMRKQGAQH/my5VFdzmzJkDY2PjOq6KiEhzarzO26NHj3Dt2jUAQKtWrWBhYaHWwojnvBGVW7ZsGfLz85XaOdpGRNpIK9d5AwALCwt06tRJnbUQESnhNCkRkaIqh7exY8dWqd/GjRtrXAwRUTkhBBYsWKDUztBGRPVdlcNbTEwMmjdvDg8PD/COWkRUmzjaRkRUsSqHt0mTJmH79u1IS0vDO++8g7fffhuNGzeuzdqIqB5SFdz8/f3h6empgWqIiLRPldd5W7NmDTIyMjB79mwcOHAALi4ueOuttxAfH8+ROCJ6YWlpaRWu3cbgRkT0PzW+2vTmzZuIiYnBV199hZKSEly6dAkNGjRQd331Gq82pfqC06REpE+09mpTAwMDyGQyCCFQWlqqzpqIqB5RFdwiIiJgaGiogWqIiLRftcJbYWEh9u7di40bN+LHH3/EwIEDsXr1avTv3x8GBtW+0xYR1WMcbSMiqpkqh7f33nsPO3bsgIuLC8aOHYvt27fDzs6uNmsjIj1VUXDz8GBwIyJ6niqf82ZgYABXV1d4eHhAJpNV2G/v3r1qK66+4zlvpG+4dhsR1Qdac87bmDFjKg1tRESV4WgbEZF6VGuRXiKimlAV3AYPHsxb7BER1UCNrzYlInqeq1evYvv27UrtHh6RYG4jIqoZhjciqhWVTZMGBNRxMUREeoThjYjUTlVwmzt3LpcUIiJSA4Y3IlIbrt1GRFT7+M9gIlILVcGtpMQQ8fEMbkRE6sSRNyJ6IWVlZfj444+V2rdvj0TjxkBYmAaKIiLSYwxvRFRjFU2TxsdHYskS8MIEIqJawPBGRDWiKri9/fbbaNWqFXiKGxFR7dGZc94CAgLg6uoKMzMzODs7Y/To0bhz545Cn127dqFLly6wsLBA8+bNsXTpUqX9nDx5El27doWpqSlat26tcvHhNWvWoEWLFjAzM4OXlxd++eUXhe0FBQWYPHkybG1t0aBBAwwZMgR3795V6JOeng5/f39YWFjAwcEBs2bNQklJyYt/EUQadunSJZXBzcMjEq1atdJARURE9YvOhLc+ffpg165dSE1NxZ49e3Dt2jUMHTpU2n748GGMGjUKEydORHJyMtauXYsVK1Zg9erVUp+0tDT4+/ujT58+OH/+PKZNm4Zx48YhPj5e6rNz507MmDEDkZGR+PXXX9G5c2f4+fkhKytL6jN9+nQcOHAAu3fvxvfff487d+5g8ODB0vbS0lL4+/ujqKgIp0+fxubNmxETE4N58+bV8rdEVLuioqLwzTffKLVHRnLtNiKiulLlG9Nrm9jYWAQGBqKwsBDGxsYYOXIkiouLsXv3bqnPqlWrsGTJEqSnp0MmkyE0NBQHDx5EcnKy1Gf48OHIycnBkSNHAABeXl54+eWXpdBXVlYGFxcXTJ06FWFhYcjNzYW9vT22bdsmhceUlBS4u7tDLpfD29sbhw8fxsCBA3Hnzh04OjoCANavX4/Q0FDcu3cPJiYmVfqMvDE9aRNVo23z5s3jPY+JiJ5R27+/dWbk7WnZ2dnYunUrevToAWNjYwBAYWEhzMzMFPqZm5vj9u3buHnzJgBALpfD19dXoY+fnx/kcjkAoKioCImJiQp9DAwM4OvrK/VJTExEcXGxQp/27dvD1dVV6iOXy9GpUycpuJW/T15eHi5dulTh5yosLEReXp7Cg0jToqKiVAa3yMhIBjciIg3QqfAWGhoKS0tL2NraIj09Hfv375e2+fn5Ye/evUhISEBZWRmuXr2K5cuXAwAyMjIAAJmZmQqBCgAcHR2Rl5eHx48f46+//kJpaanKPpmZmdI+TExMYGNjU2kfVfso31aRRYsWwdraWnq4uLhU9ashqhWqQpuNjQ0X3SUi0iCNhrewsDDIZLJKHykpKVL/WbNmISkpCUePHoWhoSHGjBmD8lnf8ePHY8qUKRg4cCBMTEzg7e2N4cOHA4DO3JInPDwcubm50uPWrVuaLonqqdLS0gpH2z744AMNVEREROU0ulTIzJkzERwcXGmfli1bSv9tZ2cHOzs7tG3bFu7u7nBxccHPP/8MHx8fyGQyLF68GJ9++ikyMzNhb2+PhIQEhX04OTkpXRV69+5dWFlZwdzcHIaGhjA0NFTZx8nJSdpHUVERcnJyFEbfnu3z7BWq5fss76OKqakpTE1NK/0+iGobb3FFRKTdNBre7O3tYW9vX6PXlpWVAXhyntjTDA0N0bRpUwDA9u3b4ePjI72Hj48PDh06pND/2LFj8PHxAQCYmJigW7duSEhIQGBgoPQ+CQkJmDJlCgCgW7duMDY2RkJCAoYMGQIASE1NRXp6urQfHx8fLFy4EFlZWXBwcJDex8rKCh06dKjR5yWqbbGxQFKScnALCQlBs2bNNFARERGpohOL9J45cwZnz55Fz5490ahRI1y7dg1z585Fq1atpMD0119/4ZtvvsGrr76KgoICbNq0SVrKo9zEiROxevVqzJ49G2PHjsXx48exa9cuHDx4UOozY8YMBAUFwdPTE927d8fnn3+O/Px8vPPOOwAAa2trhISEYMaMGWjcuDGsrKwwdepU+Pj4wNvbGwDw+uuvo0OHDhg9ejSWLFmCzMxMREREYPLkyRxZI62UlJSEpKRYpXaOthERaR+dCG8WFhbYu3cvIiMjkZ+fD2dnZ/Tv3x8REREKYWjz5s348MMPIYSAj48PTp48ie7du0vb3dzccPDgQUyfPh1ffPEFmjVrhg0bNsDPz0/qM2zYMNy7dw/z5s1DZmYmunTpgiNHjihcgLBixQoYGBhgyJAhKCwshJ+fH9auXSttNzQ0RFxcHCZNmgQfHx9YWloiKCgICxYsqOVviqj6OE1KRKRbdHadt/qA67xRbavoogQiIqq52v79rRMjb0SkXhxtIyLSXQxvRPVIRRclWFg0xaxZ4zRQERERVRfDG1E9UVxcjKSkT5XaOdpGRKRbGN6I6gFOkxIR6Q+GNyI9pyq4TZw4UekWbkREpBsY3oj0VGJiIuLi4pTaOdpGRKTbGN6I9BCnSYmI9BfDG5Ge4dptRET6jeGNSE9UNNrm4cHgRkSkTxjeiPSAquDWpUsXDBo0SAPVEBFRbWJ4I9JhhYWFiI6OVmrnNCkRkf5ieCPSUbwogYiofmJ4I9JBqoJbx44fYOhQm7ovhoiI6hTDG5EO+e9/T+POnWNK7RxtIyKqPxjeiHQEp0mJiAhgeCPSCVy7jYiIyjG8EWkxjrYREdGzGN6ItJSq4NazZ0/069dPA9UQEZG2YHgj0jKPHz/GkiVLlNo52kZERADDG5FW4TQpERE9D8MbkZZQFdw+/PBDWFpaaqAaIiLSVgxvRBoml8tx9OhRpXaOthERkSoMb0QaxGlSIiKqLoY3Ig1RFdy2b4+ETAZ4eAABARooioiItB7DG1Edq2y0LT4ekMuB6GiGNyIiUo3hjagOqQpufn5+8Pb2BgCEhT0JbmFhdV0ZERHpCoY3ojqwZ08+kpOXKbU/e25bQABH3IiIqHIMb0S1jBclEBGROjG8EdUiVcEtNDQUZmZmGqiGiIj0AcMbUS348ccfkZCQoNTO0TYiInpRDG9EaqZqtE0mk2HevHkaqIaIiPQNwxuRGsTGPrlK1M9PObhxtI2IiNSJ4Y1IDZKSouDnp9zO4EZEROrG8Eb0glRNk/7zn//E//3f/2mgGiIi0ncMb0Q19PDhQyxfvlypnaNtRERUmxjeiGqAa7cREZGmMLwRVZOq4DZnzhwYGxtroBoiIqpvGN6IqujcuXM4ePCgUjtH24iIqC4xvBFVgarRNltbW0yZMkUD1RARUX1moOkCiLRNbCzQo8eTPwHVwS0+PhKurgxuRERU9zjyRvSM6GhALgfOnVuIpKQSpe3x8ZGQy5/0CwjQQIFERFSvMbwRPSMs7Mmiu88KDg5G8+bN4eHxJLiFhWmgOCIiqvcY3oie8vDhQyQlVb52W0AAR9yIiEhzeM4b0f8XFRX13EV3nz0fjoiIqK5x5I0Iqi9KiIiIgKGhoUJb+flwPN+NiIg0heGN6rXExETExcUptVe0dltYGM93IyIizWJ4o3pL1Wibp6cn/P39K3wNz3cjIiJN4zlvpPeePU9NCKEyuEVGRlYa3IiIiLQBR95I7z19ntrFi4tRWlqg1Ie3uCIiIl3B8EZ6r/w8NT+/KJSWKm6bMGECnJycNFMYERFRDTC8kd7r0+cBkpI+U2rnaBsREekihjfSa6rObQMY3IiISHcxvJHeUhXc5s6dCwMDXqdDRES6i+GN9M7mzcm4cWOPUjtH24iISB8wvJFeUTXa9sYbb+Dll1/WQDVERETqx/BGekEIgQULFii1c7SNiIj0DcMb6bwVK1YgLy9PqZ3BjYiI9BHDG+k0VdOkU6ZMga2trQaqISIiqn0Mb6ST8vLysGLFCqV2jrYREZG+Y3gjnaNqtM3U1BRhYWEaqIaIiKhuMbyRTlEV3Lp0mYdBg2QaqIaIiKjuMbyRTkhKSkJsbKxSO6dJiYiovmF4I60WGwskJSmPtg0aNAhdunSp+4KIiIg0jOGNtJYQAklJXLuNiIjoaQxvpJVWrNiGvLzfldoZ3IiIqL7TuTt0FxYWokuXLpDJZDh//rzCtosXL6JXr14wMzODi4sLlixZovT63bt3o3379jAzM0OnTp1w6NAhhe1CCMybNw/Ozs4wNzeHr68vfv9dMURkZ2dj1KhRsLKygo2NDUJCQvDw4cNq10KqRUVFKQW3GTNmMLgRERFBB8Pb7Nmz0aRJE6X2vLw8vP7662jevDkSExOxdOlSzJ8/H//5z3+kPqdPn8aIESMQEhKCpKQkBAYGIjAwEMnJyVKfJUuWYOXKlVi/fj3OnDkDS0tL+Pn5oaCgQOozatQoXLp0CceOHUNcXBxOnTqFd999t1q1kLKHDx+qvJo0MjISDRs21EBFRERE2kcmhBCaLqKqDh8+jBkzZmDPnj3o2LEjkpKSpJPW161bh48++giZmZkwMTEBAISFhWHfvn1ISUkBAAwbNgz5+fmIi4uT9unt7Y0uXbpg/fr1EEKgSZMmmDlzJj788EMAQG5uLhwdHRETE4Phw4fjypUr6NChA86ePQtPT08AwJEjR/DGG2/g9u3baNKkSZVqqYq8vDxYW1sjNzcXVlZWL/z9aTNVoa1z584IDAys+2KIiIheQG3//taZkbe7d+9i/Pjx2LJlCywsLJS2y+Vy9O7dWwpLAODn54fU1FTcv39f6uPr66vwOj8/P8jlcgBAWloaMjMzFfpYW1vDy8tL6iOXy2FjYyMFNwDw9fWFgYEBzpw5U+VaVCksLEReXp7Coz5QFdzmzZvH4EZERKSCToQ3IQSCg4MxceJEhdD0tMzMTDg6Oiq0lT/PzMystM/T259+XUV9HBwcFLYbGRmhcePGz32fp99DlUWLFsHa2lp6uLi4VNhXH6SmplY4TSqTcdFdIiIiVTR6tWlYWBgWL15caZ8rV67g6NGjePDgAcLDw+uoMs0IDw/HjBkzpOd5eXl6G+BUhbagoCC0aNGi7oshIiLSIRoNbzNnzkRwcHClfVq2bInjx49DLpfD1NRUYZunpydGjRqFzZs3w8nJCXfv3lXYXv7cyclJ+lNVn6e3l7c5Ozsr9Ck/t87JyQlZWVkK+ygpKUF2dvZz3+fp91DF1NRU6TPqGyEEFizg2m1EREQ1pdHwZm9vD3t7++f2W7lyJT755BPp+Z07d+Dn54edO3fCy8sLAODj44OPPvoIxcXFMDY2BgAcO3YM7dq1Q6NGjaQ+CQkJmDZtmrSvY8eOwcfHBwDg5uYGJycnJCQkSGEtLy8PZ86cwaRJk6R95OTkIDExEd26dQMAHD9+HGVlZdWqpT7at28fLly4oNBmZmaG0NBQDVVERESke3TqatNyN27cgJubm8LVprm5uWjXrh1ef/11hIaGIjk5GWPHjsWKFSukZTxOnz6NV155BdHR0fD398eOHTvw6aef4tdff8VLL70EAFi8eDGio6OxefNmuLm5Ye7cubh48SIuX74MMzMzAMCAAQNw9+5drF+/HsXFxXjnnXfg6emJbdu2VbmWqtCnq01VTZOGhoZK3ykREZG+qO3f33pzhwVra2scPXoUkydPRrdu3WBnZ4d58+YphKUePXpg27ZtiIiIwJw5c9CmTRvs27dPCm7Ak3Xk8vPz8e677yInJwc9e/bEkSNHFELG1q1bMWXKFPTr1w8GBgYYMmQIVq5cWa1a6ou8vDysWLFCqZ3TpERERDWjkyNv9YWuj7ypGm3r1asX+vbtq4FqiIiI6gZH3kgnVbQECBEREb0YnVjnjbRbbCzQo8eTPy9fvszgRkREVIs48kYvLDoakMuBpKQoJCUpbhs7dqzerlVHRESkCQxv9MJCQ8tw/vzHSu0cbSMiIlI/hjd6IYcOHcL582cV2qysrDB9+nQNVURERKTfGN6oxlSd2xYWFqb3d4kgIiLSJIY3qrZHjx5h6dKlSu2cJiUiIqp9DG9ULTt37kRKSopCm6trAN55x0NDFREREdUvDG9UZaqmSefPj4SPD/DOOxooiIiIqB5ieKPnun37Nr788kuFNkdHRzRpMhE+PkBYmIYKIyIiqocY3qhSn3zyCUpLSxXaPvjgA9jY2AAAAgI0UBQREVE9xvBGKgkhsGDBAqV2XpRARESkWQxvpCQ7OxurVq1SaHNy6o0JE/poqCIiIiIqx/BGCk6dOoUTJ04otC1YMBdeXgaYMEFDRREREZGE4Y0AACUlJVi4cKFC25tvvonbt7vCy4sXJRAREWkLhjfCzZs3ERMTo9A2c+ZMHD/eANHRT4IbL0wgIiLSDgxv9dyePXuQnJwsPW/Xrh2GDx8OAIiOBuTyJ38yvBEREWkHhrd6StUtrsaMGQM3NzfpeVgYpJE3IiIi0g4Mb/XQpUuX8M033yi0zZkzB8bGxgptAQEccSMiItI2DG/10N69e6X/7tWrF/r27avBaoiIiKg6GN7qob59++LXX3/FiBEjYGdnp+lyiIiIqBpkQgih6SJItby8PFhbWyM3NxdWVlaaLoeIiIiqoLZ/fxuofY9EREREVGsY3oiIiIh0CMNbPRQbC/To8eRPIiIi0i0Mb/XQ04vvEhERkW5heKuHwsIAHx8uvktERKSLuFRIPcTFd4mIiHQXR96IiIiIdAjDGxEREZEOYXgjIiIi0iEMb0REREQ6hOGNiIiISIcwvBERERHpEIY3IiIiIh3C8EZERESkQxjeiIiIiHQIwxsRERGRDmF4IyIiItIhDG9EREREOoThjYiIiEiHGGm6AKqYEAIAkJeXp+FKiIiIqKrKf2+X/x5XN4Y3LfbgwQMAgIuLi4YrISIioup68OABrK2t1b5fmaitWEgvrKysDHfu3EHDhg0hk8k0XU6tysvLg4uLC27dugUrKytNl0Mq8BhpNx4f7cdjpP3UdYyEEHjw4AGaNGkCAwP1n6HGkTctZmBggGbNmmm6jDplZWXFH2pajsdIu/H4aD8eI+2njmNUGyNu5XjBAhEREZEOYXgjIiIi0iEMb6QVTE1NERkZCVNTU02XQhXgMdJuPD7aj8dI++nKMeIFC0REREQ6hCNvRERERDqE4Y2IiIhIhzC8EREREekQhjciIiIiHcLwRmpRWFiILl26QCaT4fz58wrbLl68iF69esHMzAwuLi5YsmSJ0ut3796N9u3bw8zMDJ06dcKhQ4cUtgshMG/ePDg7O8Pc3By+vr74/fffFfpkZ2dj1KhRsLKygo2NDUJCQvDw4cNq16JPAgIC4OrqCjMzMzg7O2P06NG4c+eOQp9du3ahS5cusLCwQPPmzbF06VKl/Zw8eRJdu3aFqakpWrdujZiYGKU+a9asQYsWLWBmZgYvLy/88ssvCtsLCgowefJk2NraokGDBhgyZAju3r2r0Cc9PR3+/v6wsLCAg4MDZs2ahZKSkhf/IrRYVY5RfHw8vL290bBhQ9jb22PIkCG4ceOGQh8eo9rxvOMzf/58yGQypYelpaXCfvgzrvZU5e+QEALLli1D27ZtYWpqiqZNm2LhwoUKfXTq75AgUoP3339fDBgwQAAQSUlJUntubq5wdHQUo0aNEsnJyWL79u3C3Nxc/Pvf/5b6/PTTT8LQ0FAsWbJEXL58WURERAhjY2Px22+/SX2io6OFtbW12Ldvn7hw4YIICAgQbm5u4vHjx1Kf/v37i86dO4uff/5Z/PDDD6J169ZixIgR1apF33z22WdCLpeLGzduiJ9++kn4+PgIHx8fafuhQ4eEkZGRWLdunbh27ZqIi4sTzs7OYtWqVVKf69evCwsLCzFjxgxx+fJlsWrVKmFoaCiOHDki9dmxY4cwMTERGzduFJcuXRLjx48XNjY24u7du1KfiRMnChcXF5GQkCDOnTsnvL29RY8ePaTtJSUl4qWXXhK+vr4iKSlJHDp0SNjZ2Ynw8PBa/pY063nH6Pr168LU1FSEh4eLP/74QyQmJorevXsLDw8PhT48RrXjecfnwYMHIiMjQ+HRoUMHERQUJPXhz7ja9bxjJIQQU6dOFe3atRP79+8X169fF+fOnRNHjx6Vtuva3yGGN3phhw4dEu3btxeXLl1SCm9r164VjRo1EoWFhVJbaGioaNeunfT8rbfeEv7+/gr79PLyEhMmTBBCCFFWViacnJzE0qVLpe05OTnC1NRUbN++XQghxOXLlwUAcfbsWanP4cOHhUwmE3/++WeVa9F3+/fvFzKZTBQVFQkhhBgxYoQYOnSoQp+VK1eKZs2aibKyMiGEELNnzxYdO3ZU6DNs2DDh5+cnPe/evbuYPHmy9Ly0tFQ0adJELFq0SAjx5HgZGxuL3bt3S32uXLkiAAi5XC6EePL/kYGBgcjMzJT6rFu3TlhZWSkcM3337DHavXu3MDIyEqWlpVKf2NhYhT48RnXn2ePzrPPnzwsA4tSpU1Ibf8bVrWeP0eXLl4WRkZFISUmp8DW69neI06b0Qu7evYvx48djy5YtsLCwUNoul8vRu3dvmJiYSG1+fn5ITU3F/fv3pT6+vr4Kr/Pz84NcLgcApKWlITMzU6GPtbU1vLy8pD5yuRw2Njbw9PSU+vj6+sLAwABnzpypci36LDs7G1u3bkWPHj1gbGwM4Ml0t5mZmUI/c3Nz3L59Gzdv3gTw/ONTVFSExMREhT4GBgbw9fWV+iQmJqK4uFihT/v27eHq6qpwDDt16gRHR0eF98nLy8OlS5fU9TVoNVXHqFu3bjAwMMCmTZtQWlqK3NxcbNmyBb6+vlIfHqO6oer4PGvDhg1o27YtevXqJbXxZ1zdUXWMDhw4gJYtWyIuLg5ubm5o0aIFxo0bh+zsbOl1uvZ3iOGNakwIgeDgYEycOFHhB8rTMjMzFf4nBSA9z8zMrLTP09uffl1FfRwcHBS2GxkZoXHjxs99n6ffQx+FhobC0tIStra2SE9Px/79+6Vtfn5+2Lt3LxISElBWVoarV69i+fLlAICMjAwAFX9veXl5ePz4Mf766y+UlpY+9/iYmJjAxsam0j718fgAlR8jNzc3HD16FHPmzIGpqSlsbGxw+/Zt7Nq1S+rDY1S7Kjs+TysoKMDWrVsREhKi0M6fcbWvsmN0/fp13Lx5E7t378ZXX32FmJgYJCYmYujQoVIfXfs7xPBGSsLCwlSegPv0IyUlBatWrcKDBw8QHh6u6ZLrlaoen3KzZs1CUlISjh49CkNDQ4wZMwbi/99YZfz48ZgyZQoGDhwIExMTeHt7Y/jw4QCe/KuSakadxygzMxPjx49HUFAQzp49i++//x4mJiYYOnSo1IeqR53H52nffvstHjx4gKCgoLr8OHpJnceorKwMhYWF+Oqrr9CrVy+8+uqr+PLLL3HixAmkpqZq6iO+ECNNF0DaZ+bMmQgODq60T8uWLXH8+HHI5XKle8B5enpi1KhR2Lx5M5ycnJSutCl/7uTkJP2pqs/T28vbnJ2dFfp06dJF6pOVlaWwj5KSEmRnZz/3fZ5+D11Q1eNTzs7ODnZ2dmjbti3c3d3h4uKCn3/+GT4+PpDJZFi8eDE+/fRTZGZmwt7eHgkJCQr7qOh7s7Kygrm5OQwNDWFoaPjcY1hUVIScnByFf5U+2+fZK7d08fgA6j1Ga9asgbW1tcJVg19//TVcXFxw5swZeHt78xhVkzqPz9M2bNiAgQMHKo2s8Gdc9anzGDk7O8PIyAht27aV+ru7uwN4cuVnu3btdO/vUJXPjiN6xs2bN8Vvv/0mPeLj4wUA8c0334hbt24JIf53Au3TJ/eGh4crXbAwcOBAhX37+Pgoncy7bNkyaXtubq7Kk3nPnTsn9YmPj1d5Mm9ltei7mzdvCgDixIkTFfYZPXq0wpVas2fPFi+99JJCnxEjRiidyDtlyhTpeWlpqWjatKnSibzffPON1CclJUXlibxPX7n173//W1hZWYmCgoKafWAd9OwxmjFjhujevbtCnzt37ggA4qeffhJC8BjVpYr+Dl2/fl3IZDJx4MABpdfwZ1zdevYYlf9u+uOPP6Q+5ReWpKamCiF07+8QwxupTVpamtLVpjk5OcLR0VGMHj1aJCcnix07dggLCwulpUKMjIzEsmXLxJUrV0RkZKTKy+htbGzE/v37xcWLF8WgQYNUXkbv4eEhzpw5I3788UfRpk0bhcvoq1KLPvn555/FqlWrRFJSkrhx44ZISEgQPXr0EK1atZJ+SNy7d0+sW7dOXLlyRSQlJYn3339fmJmZiTNnzkj7Kb+EftasWeLKlStizZo1Ki+hNzU1FTExMeLy5cvi3XffFTY2NgpXVE2cOFG4urqK48ePi3Pnzildzl9+Cf3rr78uzp8/L44cOSLs7e31ehmKqhyjhIQEIZPJRFRUlLh69apITEwUfn5+onnz5uLRo0dCCB6j2lKV41MuIiJCNGnSRJSUlCjthz/jak9VjlFpaano2rWr6N27t/j111/FuXPnhJeXl3jttdek/eja3yGGN1IbVeFNCCEuXLggevbsKUxNTUXTpk1FdHS00mt37dol2rZtK0xMTETHjh3FwYMHFbaXlZWJuXPnCkdHR2Fqair69esn/Yup3N9//y1GjBghGjRoIKysrMQ777wjHjx4UO1a9MXFixdFnz59ROPGjYWpqalo0aKFmDhxorh9+7bU5969e8Lb21tYWloKCwsL0a9fP/Hzzz8r7evEiROiS5cuwsTERLRs2VJs2rRJqc+qVauEq6urMDExEd27d1faz+PHj8V7770nGjVqJCwsLMQ///lPkZGRodDnxo0bYsCAAcLc3FzY2dmJmTNniuLiYvV8IVqoKsdICCG2b98uPDw8hKWlpbC3txcBAQHiypUrCn14jNSvqsentLRUNGvWTMyZM6fCffFnXO2o6jH6888/xeDBg0WDBg2Eo6OjCA4OFn///bdCH136OyQTgme8EhEREekKXk5GREREpEMY3oiIiIh0CMMbERERkQ5heCMiIiLSIQxvRERERDqE4Y2IiIhIhzC8EREREekQhjciologk8mwb98+TZeh4OTJk5DJZMjJydF0KUT0AhjeiIhewPz586WbhxMR1QWGNyIiIiIdwvBGRPVaWVkZFi1aBDc3N5ibm6Nz58745ptvAPxvmjEhIQGenp6wsLBAjx49kJqaCgCIiYlBVFQULly4AJlMBplMhpiYGGnff/31F/75z3/CwsICbdq0QWxsbJVqKn/f+Ph4eHh4wNzcHH379kVWVhYOHz4Md3d3WFlZYeTIkXj06JH0usLCQrz//vtwcHCAmZkZevbsibNnz6rvyyIircDwRkT12qJFi/DVV19h/fr1uHTpEqZPn463334b33//vdTno48+wvLly3Hu3DkYGRlh7NixAIBhw4Zh5syZ6NixIzIyMpCRkYFhw4ZJr4uKisJbb72Fixcv4o033sCoUaOQnZ1d5drmz5+P1atX4/Tp07h16xbeeustfP7559i2bRsOHjyIo0ePYtWqVVL/2bNnY8+ePdi8eTN+/fVXtG7dGn5+ftV6TyLSAdW6jT0RkR4pKCgQFhYW4vTp0wrtISEhYsSIEeLEiRMCgPjuu++kbQcPHhQAxOPHj4UQQkRGRorOnTsr7RuAiIiIkJ4/fPhQABCHDx9+bl2q3nfRokUCgLh27ZrUNmHCBOHn5yft39jYWGzdulXaXlRUJJo0aSKWLFmisN/79+8/twYi0l5GGsyNREQa9ccff+DRo0d47bXXFNqLiorg4eEhPf+///s/6b+dnZ0BAFlZWXB1da10/0+/ztLSElZWVsjKyqpyfU+/3tHRERYWFmjZsqVC2y+//AIAuHbtGoqLi/GPf/xD2m5sbIzu3bvjypUrVX5PItJ+DG9EVG89fPgQAHDw4EE0bdpUYZupqSmuXbsG4EkIKieTyQA8OVfueZ5+Xflrq/I6Va+XyWQvvD8i0g88542I6q0OHTrA1NQU6enpaN26tcLDxcWlSvswMTFBaWlpLVf6fK1atYKJiQl++uknqa24uBhnz55Fhw4dNFgZEakbR96IqN5q2LAhPvzwQ0yfPh1lZWXo2bMncnNz8dNPP8HKygrNmzd/7j5atGiBtLQ0nD9/Hs2aNUPDhg1hampaB9UrsrS0xKRJkzBr1iw0btwYrq6uWLJkCR49eoSQkJA6r4eIag/DGxHVax9//DHs7e2xaNEiXL9+HTY2NujatSvmzJlTpSnJIUOGYO/evejTpw9ycnKwadMmBAcH137hKkRHR6OsrAyjR4/GgwcP4Onpifj4eDRq1Egj9RBR7ZAJIYSmiyAiIiKiquE5b0REREQ6hOGNiKiOTZw4EQ0aNFD5mDhxoqbLIyItx2lTIqI6lpWVhby8PJXbrKys4ODgUMcVEZEuYXgjIiIi0iGcNiUiIiLSIQxvRERERDqE4Y2IiIhIhzC8EREREekQhjciIiIiHcLwRkRERKRDGN6IiIiIdAjDGxEREZEO+X91JklIccjarAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -578,7 +751,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHHCAYAAABa2ZeMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJvElEQVR4nO3dd3hUVf7H8c8kpEIKJSGUhKoU8QcIgokFYZHAqsCKuogCEURREBEsRJQQEIiIKFjAFSmrKFiRBSUiRVTiqkiREhQkUgOoJBGQ1Pv7gzDrOBNMwmTulPfreebJ3nPv3PkOdzEfzjn3XIthGIYAAAAgP7MLAAAAcBcEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAeyWKxaOLEiWaXYZWUlKTGjRubXQaAC0QwAuA0CxculMVisb6Cg4N18cUXa+TIkTp69GiVfvbGjRs1ceJE5eTkOPW81157rc13qlWrli6//HLNnz9fJSUlTvmMqVOnatmyZU45F4ALU83sAgB4n0mTJqlJkyY6c+aMPv/8c82ZM0cffvihtm/frtDQUKd8xu+//65q1f73n7CNGzcqNTVVSUlJioyMdMpnnNOwYUNNmzZNknT8+HH9+9//1tChQ/X9998rLS3tgs8/depU3Xzzzerbt+8FnwvAhSEYAXC6Xr16qWPHjpKku+66S7Vr19bMmTP1wQcf6Lbbbqv0eUtKSlRQUKDg4GAFBwc7q9y/FBERoTvuuMO6fc8996hFixZ64YUXNHnyZAUEBLisFgBVi6E0AFWuW7dukqR9+/ZJkmbMmKGEhATVrl1bISEh6tChg9555x2791ksFo0cOVKLFy/WJZdcoqCgIK1atcq679wco4kTJ+rhhx+WJDVp0sQ67JWVlaUuXbqobdu2Dutq0aKFEhMTK/x9QkNDdcUVV+jUqVM6fvx4mcedOnVKY8eOVWxsrIKCgtSiRQvNmDFDhmHYfMdTp05p0aJF1rqTkpIqXBMA56DHCECV27t3rySpdu3akqRZs2apd+/euv3221VQUKAlS5bolltu0YoVK3T99dfbvHft2rV66623NHLkSNWpU8fhBOebbrpJ33//vd588009++yzqlOnjiQpKipKAwcO1LBhw7R9+3a1adPG+p6vv/5a33//vR5//PFKfacff/xR/v7+ZQ7bGYah3r17a926dRo6dKjatWun9PR0Pfzwwzp06JCeffZZSdJrr72mu+66S506ddLdd98tSWrWrFmlagLgBAYAOMmCBQsMScYnn3xiHD9+3Dhw4ICxZMkSo3bt2kZISIhx8OBBwzAM4/Tp0zbvKygoMNq0aWN069bNpl2S4efnZ+zYscPusyQZKSkp1u2nn37akGTs27fP5ricnBwjODjYePTRR23aR40aZVSvXt04efLkeb9Tly5djJYtWxrHjx83jh8/buzatcsYNWqUIcm48cYbrccNHjzYaNSokXV72bJlhiTjySeftDnfzTffbFgsFmPPnj3WturVqxuDBw8+bx0AXIOhNABO1717d0VFRSk2Nlb9+/dXjRo19P7776tBgwaSpJCQEOuxJ06cUG5urq6++mp9++23dufq0qWLWrduXelaIiIi1KdPH7355pvWIazi4mItXbpUffv2VfXq1f/yHJmZmYqKilJUVJRatWql559/Xtdff73mz59f5ns+/PBD+fv7a9SoUTbtY8eOlWEY+uijjyr9nQBUHYbSADjdiy++qIsvvljVqlVT3bp11aJFC/n5/e/fYStWrNCTTz6pLVu2KD8/39pusVjsztWkSZMLrmfQoEFaunSpPvvsM11zzTX65JNPdPToUQ0cOLBc72/cuLFeeeUV6xIEF110kaKjo8/7np9++kn169dXWFiYTXurVq2s+wG4H4IRAKfr1KmT9a60P/vss8/Uu3dvXXPNNXrppZdUr149BQQEaMGCBXrjjTfsjv9j71JlJSYmqm7dunr99dd1zTXX6PXXX1dMTIy6d+9ervdXr1693McC8GwMpQFwqXfffVfBwcFKT0/XkCFD1KtXL6eEDke9Tef4+/trwIABeuedd3TixAktW7ZMt912m/z9/S/4c8vSqFEjHT58WL/99ptNe2ZmpnX/OeerHYBrEYwAuJS/v78sFouKi4utbVlZWRe88vO5uUJlrXw9cOBAnThxQvfcc49Onjxpsy5RVfj73/+u4uJivfDCCzbtzz77rCwWi3r16mVtq169utNX7AZQOQylAXCp66+/XjNnzlTPnj01YMAAHTt2TC+++KKaN2+ubdu2Vfq8HTp0kCSNHz9e/fv3V0BAgG688UZrYGrfvr3atGmjt99+W61atdJll13mlO9TlhtvvFFdu3bV+PHjlZWVpbZt2+rjjz/WBx98oNGjR9vckt+hQwd98sknmjlzpurXr68mTZqoc+fOVVofAMfoMQLgUt26ddOrr76q7OxsjR49Wm+++aaeeuop/eMf/7ig815++eWaPHmytm7dqqSkJN122212iy8OGjRIkso96fpC+Pn5afny5Ro9erRWrFih0aNHa+fOnXr66ac1c+ZMm2NnzpypDh066PHHH9dtt92mOXPmVHl9AByzGMYflmAFAC82a9YsPfjgg8rKylJcXJzZ5QBwQwQjAD7BMAy1bdtWtWvX1rp168wuB4CbYo4RAK926tQpLV++XOvWrdN3332nDz74wOySALgxeowAeLWsrCw1adJEkZGRuu+++zRlyhSzSwLgxghGAAAApbgrDQAAoJTHBKNp06bp8ssvV1hYmKKjo9W3b1/t3r3b5pgzZ85oxIgRql27tmrUqKF+/frp6NGjJlUMAAA8jccMpfXs2VP9+/fX5ZdfrqKiIj322GPavn27du7caV3A7d5779XKlSu1cOFCRUREaOTIkfLz89MXX3xR7s8pKSnR4cOHFRYWxjL9AAB4CMMw9Ntvv6l+/fo2D62uzIk80rFjxwxJxqeffmoYhmHk5OQYAQEBxttvv209ZteuXYYkIyMjo9znPXDggCGJFy9evHjx4uWBrwMHDlxQvvDY2/Vzc3MlSbVq1ZIkbdq0SYWFhTYPo2zZsqXi4uKUkZGhK664wuF58vPzlZ+fb902SjvQDhw4oPDw8KoqHwAAOFFeXp5iY2MVFhZ2QefxyGBUUlKi0aNH68orr1SbNm0kSdnZ2QoMDFRkZKTNsXXr1lV2dnaZ55o2bZpSU1Pt2sPDwwlGAAB4mAudBuMxk6//aMSIEdq+fbuWLFlywedKTk5Wbm6u9XXgwAEnVAgAADyRx/UYjRw5UitWrNCGDRvUsGFDa3tMTIwKCgqUk5Nj02t09OhRxcTElHm+oKAgBQUFVWXJAADAQ3hMj5FhGBo5cqTef/99rV27Vk2aNLHZ36FDBwUEBGjNmjXWtt27d2v//v2Kj493dbkAAMADeUyP0YgRI/TGG2/ogw8+UFhYmHXeUEREhEJCQhQREaGhQ4dqzJgxqlWrlsLDw3X//fcrPj6+zInXlVVcXKzCwkKnnhPuKSAgQP7+/maXAQBwEY9Zx6isyVQLFixQUlKSpLMLPI4dO1Zvvvmm8vPzlZiYqJdeeum8Q2l/lpeXp4iICOXm5tpNvjYMQ9nZ2crJyans14AHioyMVExMDOtaAYAbO9/v74rwmGDkKuf7gz1y5IhycnIUHR2t0NBQflF6OcMwdPr0aR07dkyRkZGqV6+e2SUBAMrgrGDkMUNpZisuLraGotq1a5tdDlwkJCREknTs2DFFR0czrAYAXs5jJl+b7dycotDQUJMrgaudu+bMKwMA70cwqiCGz3wP1xwAfAfBCAAAoBTBCAAAoBTByAckJSXJYrHIYrEoICBAdevW1XXXXaf58+erpKSk3OdZuHCh3bPoAADwJgQjH9GzZ08dOXJEWVlZ+uijj9S1a1c98MADuuGGG1RUVGR2eQAAuAWCkY8ICgpSTEyMGjRooMsuu0yPPfaYPvjgA3300UdauHChJGnmzJm69NJLVb16dcXGxuq+++7TyZMnJUnr16/XnXfeqdzcXGvv08SJEyVJr732mjp27KiwsDDFxMRowIABOnbsmEnfFADgrj74wFBCQomWLze7krIRjC6AYRgqKCgw5eWMdTm7deumtm3b6r333pMk+fn5afbs2dqxY4cWLVqktWvX6pFHHpEkJSQk6LnnnlN4eLiOHDmiI0eO6KGHHpJ09jb2yZMna+vWrVq2bJmysrKsq5EDACBJ69at05Ytk9Sq1UKlpZldTdlY4PECFBYWatq0aaZ8dnJysgIDAy/4PC1bttS2bdskSaNHj7a2N27cWE8++aSGDx+ul156SYGBgYqIiJDFYrF7xMqQIUOs/7tp06aaPXu2Lr/8cp08eVI1atS44BoBAJ6rsLBQU6dOtW7HxR1Q796GJPdcCoVg5OMMw7Cu0/PJJ59o2rRpyszMVF5enoqKinTmzBmdPn36vAtbbtq0SRMnTtTWrVt14sQJ64Tu/fv3q3Xr1i75HgAA95OZmamlS5fatD300EOqXt09Q5FEMLogAQEBSk5ONu2znWHXrl1q0qSJsrKydMMNN+jee+/VlClTVKtWLX3++ecaOnSoCgoKygxGp06dUmJiohITE7V48WJFRUVp//79SkxMVEFBgVNqBAB4ntTUVJvtNm3aqF+/fiZVU34EowtgsVicMpxllrVr1+q7777Tgw8+qE2bNqmkpETPPPOM/PzOTj176623bI4PDAxUcXGxTVtmZqZ++eUXpaWlKTY2VpL0zTffuOYLAADczsGDB/Xqq6/atA0ZMsT6O8LdEYx8RH5+vrKzs1VcXKyjR49q1apVmjZtmm644QYNGjRI27dvV2FhoZ5//nndeOON+uKLLzR37lybczRu3FgnT57UmjVr1LZtW4WGhiouLk6BgYF6/vnnNXz4cG3fvl2TJ0826VsCAMw0a9Ys5eTk2LQ5a06sq3BXmo9YtWqV6tWrp8aNG6tnz55at26dZs+erQ8++ED+/v5q27atZs6cqaeeekpt2rTR4sWL7SaWJyQkaPjw4frnP/+pqKgoTZ8+XVFRUVq4cKHefvtttW7dWmlpaZoxY4ZJ3xIAYIbCwkKlpqbahKKwsDClpKR4VCiSJIvhjPu+vUheXp4iIiKUm5ur8PBwa/uZM2e0b98+NWnSRMHBwSZWCFfj2gNA2b788kulp6fbtN15552Ki4vT8uVSWpo0bpzUu3fV1lHW7++KYigNAABUyp8nWEvShAkTrHc7p6VJGRlnf1Z1MHIWghEAAKiQJUsOa/fuV2zaOnXqpF69etm0jRv3vx4jT0EwAgAA5eaol+js2kTV7dp79/acnqJzCEYAAOAvFRUVacqUKXbtKSkpJlRTdQhGAADgvJYsWaLdu3fbtH35ZSfl5vaSl+UighEAACibo6Gzdu0eV3q6v0fNHSovghEAALCTlZWlRYsW2bWfGzrr08fVFbkGwQgAANhw1EtUWDhQTz7Z1IRqXIuVrwEAgCTJMAyHoWjixBTNmuX9oUiixwhOlJSUpJycHC1btkySdO2116pdu3Z67rnnKn1OZ5wDAPDXZsyYoVOnTtm1FxSkqEYNadQoE4oyAcHIByQlJVnHiQMCAhQXF6dBgwbpscceU7VqVfd/gffee08BAQHlOnb9+vXq2rWrTpw4ocjIyEqdAwBQOY56iZ5++iH93/9V18aNkoO79L0WwchH9OzZUwsWLFB+fr4+/PBDjRgxQgEBAUpOTrY5rqCgwGkP/KtVq5ZbnAMA4Nju3bu1ZMkSu/aCghT93/951orVzsIcIx8RFBSkmJgYNWrUSPfee6+6d++u5cuXKykpSX379tWUKVNUv359tWjRQpJ04MAB3XrrrYqMjFStWrXUp08fZWVlWc9XXFysMWPGKDIyUrVr19YjjzyiPz+P+Nprr9Xo0aOt2/n5+Xr00UcVGxuroKAgNW/eXK+++qqysrLUtWtXSVLNmjVlsViUlJTk8BwnTpzQoEGDVLNmTYWGhqpXr1764YcfrPsXLlyoyMhIpaenq1WrVqpRo4Z69uypI0eOWI9Zv369OnXqpOrVqysyMlJXXnmlfvrpJyf9SQOAZ0hNTbULRfv3t9LEiSlat07auNHzVq12BoKRjwoJCVFBQYEkac2aNdq9e7dWr16tFStWqLCwUImJiQoLC9Nnn32mL774whowzr3nmWee0cKFCzV//nx9/vnn+vXXX/X++++f9zMHDRqkN998U7Nnz9auXbv08ssvq0aNGoqNjdW7774r6ey/Xo4cOaJZs2Y5PEdSUpK++eYbLV++XBkZGTIMQ3//+99VWFhoPeb06dOaMWOGXnvtNW3YsEH79+/XQw89JOnsyq19+/ZVly5dtG3bNmVkZOjuu++2PvAQAHyBo6Gzp55KUZ8+tyo+3jd7is5hKM3HGIahNWvWKD09Xffff7+OHz+u6tWra968edYhtNdff10lJSWaN2+eNTAsWLBAkZGRWr9+vXr06KHnnntOycnJuummmyRJc+fOVXp6epmf+/333+utt97S6tWr1b17d0lS06b/u8Ph3JBZdHS0zRyjP/rhhx+0fPlyffHFF0pISJAkLV68WLGxsVq2bJluueUWSVJhYaHmzp2rZs2aSZJGjhypSZMmSZLy8vKUm5urG264wbq/VatWFf+DBAAP5CgQSdKMGSl68EHPfLaZs9FjZJLly6WEhLM/XWHFihWqUaOGgoOD1atXL/3zn//UxIkTJUmXXnqpzbyirVu3as+ePQoLC1ONGjVUo0YN1apVS2fOnNHevXuVm5urI0eOqHPnztb3VKtWTR07dizz87ds2SJ/f3916dKl0t9h165dqlatms3n1q5dWy1atNCuXbusbaGhodbQI0n16tXTsWPHJJ0NYElJSUpMTNSNN96oWbNm2QyzAYC3chSKbrnlFqWkpOi333xrgvX50GNkkrQ0KSPj7E9XpPOuXbtqzpw5CgwMVP369W3uRvvzE5FPnjypDh06aPHixXbniYqKqtTnh4SEVOp9lfHnu9gsFovN/KcFCxZo1KhRWrVqlZYuXarHH39cq1ev1hVXXOGyGgHAVY4ePaq5c+fatXvbw1+dhR4jk4wbJ5eO41avXl3NmzdXXFzcX96if9lll+mHH35QdHS0mjdvbvOKiIhQRESE6tWrp//+97/W9xQVFWnTpk1lnvPSSy9VSUmJPv30U4f7z/VYFRcXl3mOVq1aqaioyOZzf/nlF+3evVutW7c+73f6s/bt2ys5OVkbN25UmzZt9MYbb1To/QDgCVJTUx2GovR0QlFZCEYm6d3bfWf833777apTp4769Omjzz77TPv27dP69es1atQoHTx4UJL0wAMPKC0tTcuWLVNmZqbuu+8+5eTklHnOxo0ba/DgwRoyZIiWLVtmPedbb70lSWrUqJEsFotWrFih48eP6+TJk3bnuOiii9SnTx8NGzZMn3/+ubZu3ao77rhDDRo0UJ9yPrRn3759Sk5OVkZGhn766Sd9/PHH+uGHH5hnBMDrOBo6mzfvCaWnp/j05Oq/QjCCndDQUG3YsEFxcXG66aab1KpVKw0dOlRnzpxReHi4JGns2LEaOHCgBg8erPj4eIWFhekf//jHec87Z84c3XzzzbrvvvvUsmVLDRs2zLrKaoMGDZSamqpx48apbt26GjlypMNzLFiwQB06dNANN9yg+Ph4GYahDz/8sNyLQIaGhiozM1P9+vXTxRdfrLvvvlsjRozQPffcU4E/IQBwX9OnTy/zsR7Vq/u57T/K3YXF+PPiMz4uLy9PERERys3NtYYASTpz5oz27dunJk2aKDg42MQK4WpcewCewlEgysxsoS1b+qtmzbPTN7w1FJX1+7uimHwNAICHO3PmjJ566im79okTzz7nbPFi7w1EzkYwAgDAg5W1NlFBQYr1Jh9CUfkRjAAA8FCOQtEll4zWzTdHmFCNdyAYAQDgYT744ANt2bLFrp21iS4cd6VVEHPVfQ/XHIA7SU1NdRiKWJvIOegxKqdzt4OfPn3apas4w3ynT5+WZL+iNgC4kmEY1uc+/lFBQYrWrfPtB786E8GonPz9/RUZGWl95lZoaChPZPdyhmHo9OnTOnbsmCIjI+Xv7292SQB8VFkTrCdOPDvBeuNGFxfkxQhGFRATEyNJ1nAE3xAZGWm99gDgao5C0ebN/9Qll7R06aOlfAXBqAIsFovq1aun6OhoFRYWml0OXCAgIICeIgCm2LZtm95//3279vT0FHqIqhDBqBL8/f35ZQkAqDJlDZ3xnLOqRzACAMCNOApFEyZMkMViEXfjVz2CEQAAbqCsXiLWJnItghEAACZzFIratWunPn36mFCNbyMYAQBgkp9//lkvvviiXXt6egrDZiYhGAEAYAImWLsnghEAAC7mKBQ9+uijCg4OpqfIZAQjAABcZMqUKSoqKrJrb98+RcHBJhQEOwQjAABcoKyhs/btU9S7t4uLQZkIRgAAVKGioiJNmTLFrp0VrN0TwQgAgCrCBGvPQzACAKAKOApFQ4cOVcOGDZlg7cYIRgAAONHq1au10cEYGStYewaCEQAATsJjPTwfwQgAACdwFIomTkzRBx+YUAwqjWAEAMAFKKuXaNKkFN18s7gV38MQjAAAqITx46XAQPtQVL/+dRo2LIEJ1h6KYAQAQAUtXrxPgYH/tmtnLpHnIxgBAFBOy5dLmzczwdqb+ZldAAAAnsJRKEpPf0Lt2xOKvAU9RgAA/IXz3YZPR5F38coeoxdffFGNGzdWcHCwOnfurK+++srskgAAHspRKPr110b0Enkpr+sxWrp0qcaMGaO5c+eqc+fOeu6555SYmKjdu3crOjra7PIAAB7i1KlTmjFjhl07c4m8m8UwDMPsIpypc+fOuvzyy/XCCy9IkkpKShQbG6v7779f48rxxL68vDxFREQoNzdX4eHhVV0uAMANsYK153HW72+v6jEqKCjQpk2blJycbG3z8/NT9+7dlZGR4fA9+fn5ys/Pt27n5eVVeZ0AAPflKBSNGTNGYWFhJlQDV/OqYPTzzz+ruLhYdevWtWmvW7euMjMzHb5n2rRpZf7LAADgO5599k3l5X1v104vkW/xysnXFZGcnKzc3Fzr68CBA2aXBABwsdTUVEIRJHlZj1GdOnXk7++vo0eP2rQfPXpUMTExDt8TFBSkoKAgV5QHAHAzhmFo0qRJdu0EIt/lVT1GgYGB6tChg9asWWNtKykp0Zo1axQfH29iZQAAd5OamuowFM2YQSjyZV7VYySdnSA3ePBgdezYUZ06ddJzzz2nU6dO6c477zS7NACAm3A0t7So6CY999ylGjXKhILgNrwuGP3zn//U8ePHNWHCBGVnZ6tdu3ZatWqV3YRsAIDv2bBhg9atW2fXfm7obPJkV1cEd+N16xhdKNYxAgDvw8NfvR/rGAEAUE6OQhGBCI4QjAAAXosVrFFRBCMAgFdyFIpatGih/v37m1ANPAXBCADgVQ4dOqR58+bZtdNLhPIgGAEAvAZDZ7hQBCMAgFdwFIqSk5MVGBhoQjXwVAQjAIDH4jZ8OJtXPRIEAOBbCEVwNnqMAAAeZfly6emn89W9e5rdPgIRLhTBCADgUTZvTlX37vbthCI4A0NpAACP4WiCdUbGXWrfnlAE56DHCADg9pYsWaLdu3fbtdNLBGcjGAEA3BprE8GVCEYAALflKBQRiFCVCEYAALdDLxHMQjACALiNshZs3LChmx544GoTKoKvIRgBANzCt99+q82b/2PXnp6eonHjpN69TSgKPodgBAAw3fmGzhg9gysRjAAApnIUiiZMmCCLxWJCNfB1BCMAgCmYYA13xMrXAACXcxSKiooCWMEapqPHCADgMidOnNDs2bPt2uklgrsgGAEAXKKsoTN6ieBOCEYAgCrnKBQ9+OCDCg8PN6EaoGwEIwBAlUlNnSTJsGtn6AzuimAEAKgS3HUGT0QwAgA4VUlJiSZPnmzXTiCCJyAYAQCchl4ieDqCEQDAKRyFoltvvVWtWrUyoRqgcghGAIALsmLFCm3atMmunV4ieCKCEQCg0hg6g7chGAEAKsVRKCIQwdMRjAAAFUIvEbwZwQgAUG6OQlGLFi3Uv39/E6oBnI9gBAD4S3v37tXrr79u104vEbwNwQgAcF4MncGXEIwAAGVyFIratn1MffsGmFANUPUIRgAAO/QSwVf5mV0AAMC9EIrgy+gxAgBIkn7//XdNnz7drp1ABF9CMAIA0EsElGIoDQB8nKNQNHfuPUpPJxTB99BjBAA+6pVXXtHhw4ft2pcsSVFEhDRunAlFASYjGAGADzrf0BmjZ/BlBCMA8CGGYWjSpEl27cwlAs4iGAGAj2CCNfDXCEYA4MWWL5fS0qTERPtQdN111ykhIcGEqgD3RTACAC/2xhtfKTHxI7t2eokAxwhGAOClUlNT1aqVfTuhCCgbwQgAvJCj+UQTJkyQxWIxoRrAcxCMAMCLMMEauDAEIwDwEo5CUZ06dTRixAgTqgE8U4WDkb+/v44cOaLo6Gib9l9++UXR0dEqLi52WnEAgL/2888/68UXX7Rrb98+Rb17m1AQ4MEqHIwMw3DYnp+fr8DAwAsuCABQfmUNnU2cmKL4eBGMgAoqdzCaPXu2JMlisWjevHmqUaOGdV9xcbE2bNigli1bOr9CAIBDjkLR9OkPKzY2VPHxPOsMqIxyB6Nnn31W0tkeo7lz58rf39+6LzAwUI0bN9bcuXOdXyEAwEZZvUTt26eobduzgYieIqByyh2M9u3bJ0nq2rWr3nvvPdWsWbPKigIAOPZXd50RiIALU+E5RuvWrauKOgAA57FsWbG2bn3Srp3b8AHnqnAwGjJkyHn3z58/v9LFAADssTYR4DoVDkYnTpyw2S4sLNT27duVk5Ojbt26Oa0wAIDjUNSs2UDdcUdTE6oBvF+Fg9H7779v11ZSUqJ7771XzZo1c0pRAODrVq5cqW+++cau/dxt+HfcYUJRgA/wc8pJ/Pw0ZswY651rAIDKS01NdRiK2rdP4TZ8oIo57ZEge/fuVVFRkbNOBwA+ydHQWXp6ivUWfO46A6pWhYPRmDFjbLYNw9CRI0e0cuVKDR482GmFAYAvOd8Ea+ZYA65T4WC0efNmm20/Pz9FRUXpmWee+cs71gAA9hyFok6dOqlXr14mVAP4NtYxAgCT7NmzR4sXL7Zr5zZ8wDyVnmN07Ngx7d69W5LUokULRUdHO60oAPB2rE0EuKcK35WWl5engQMHqn79+urSpYu6dOmiBg0a6I477lBubm5V1KisrCwNHTpUTZo0UUhIiJo1a6aUlBQVFBTYHLdt2zZdffXVCg4OVmxsrKZPn14l9QDAhXAUih5//HFCEeAGKtxjNGzYMG3evFkrV65UfHy8JCkjI0MPPPCA7rnnHi1ZssTpRWZmZqqkpEQvv/yymjdvru3bt2vYsGE6deqUZsyYIelsYOvRo4e6d++uuXPn6rvvvtOQIUMUGRmpu+++2+k1AUBF0UsEuD+LYRhGRd5QvXp1paen66qrrrJp/+yzz9SzZ0+dOnXKqQWW5emnn9acOXP0448/SpLmzJmj8ePHKzs7W4GBgZKkcePGadmyZcrMzCz3efPy8hQREaHc3FyFh4dXSe0AfMPy5VJa2tl1hzZvJhQBVclZv78r3GNUu3ZtRURE2LVHRESoZs2alS6konJzc1WrVi3rdkZGhq655hprKJKkxMREPfXUUzpx4kSZteXn5ys/P9+6nZeXV3VFA/ApaWnStm2ntHnzDLt9BCLAPVV4jtHjjz+uMWPGKDs729qWnZ2thx9+WE888YRTiyvLnj179Pzzz+uee+6xqaFu3bo2x53b/mOtfzZt2jRFRERYX7GxsVVTNACfk5iYqocftg9F6emEIsBdVTgYzZkzR19++aXi4uLUvHlzNW/eXHFxcdq4caNefvllXXbZZdbXXxk3bpwsFst5X38eBjt06JB69uypW265RcOGDato+XaSk5OVm5trfR04cOCCzwnA9yxfLiUknP0pOZ5P1KrVSOsq1gDcU4WH0vr06SOLxeKUDx87dqySkpLOe0zTpv97gvThw4fVtWtXJSQk6F//+pfNcTExMTp69KhN27ntmJiYMs8fFBSkoKCgClYOALbS0qSMDGnDhjnavPmY3f5zQ2e33urqygBURIWD0cSJE5324VFRUYqKiirXsYcOHVLXrl3VoUMHLViwQH5+tp1d8fHxGj9+vAoLCxUQECBJWr16tVq0aOHSuU8AfBMTrAHvUOGhtKZNm+qXX36xa8/JybHp3XGmQ4cO6dprr1VcXJxmzJih48ePKzs722bu0IABAxQYGKihQ4dqx44dWrp0qWbNmmX3bDcAcDbDMByGorPPOSMUAZ6kwj1GWVlZKi4utmvPz8/XwYMHnVLUn61evVp79uzRnj171LBhQ5t951YbiIiI0Mcff6wRI0aoQ4cOqlOnjiZMmMAaRgCqVFlrE7VvTyACPFG51zFaXjqjsG/fvlq0aJHNLfvFxcVas2aNVq9ebX1MiKdiHSMA5eUoFG3b1lfvvddW8fHSxo0mFAX4KJevY9S3b19JksVi0eDBg232BQQEqHHjxnrmmWcqXQgAeIpvvvlGK1eutGtPSUnR8uXSkSPizjPAQ5U7GJWUlEiSmjRpoq+//lp16tSpsqIAwF2VNXS2ffvZobPevc++AHimCs8x2rdvX1XUAQBuz1EomjEjRSdPSjVqmFAQAKercDCaNGnSefdPmDCh0sUAgDs638NfCwqk2bOlUaNcXBSAKlHhh8i2b9/eZruwsFD79u1TtWrV1KxZM3377bdOLdDVmHwN4I8chaIjRy7R3Lk3m1ANgLKY9hDZzZs3OywmKSlJ//jHPypdCAC4k6NHj2ru3Ll27TzSA/BuFe4xKst3332nG2+8UVlZWc44nWnoMQJwvqEzAO7JWb+/K7zydVnOPYQVADyZo1A0bdo4pacTigBfUOGhtNmzZ9tsG4ahI0eO6LXXXlOvXr2cVhgAuNKkSZPkqAO9ffsUXXYZ6xIBvqLCQ2lNmjSx2fbz81NUVJS6deum5ORkhYWFObVAV2MoDfA9DJ0Bns+0ydesYwTAWxQWFmrq1Kl27RMnpig+XiIXAb6nwsFIknJycrRnzx5JUvPmzRUZGenMmgCgyp3v4a/x8QydAb6qQsEoKytLI0aMUHp6unUs3mKxqGfPnnrhhRfUuHHjqqgRAJzKUSi666671KBBA0k80gPwZeUORgcOHNAVV1yhgIAATZ48Wa1atZIk7dy5U3PmzFF8fLy+/vprNWzYsMqKBYALsXLlSn3zzTd27cwlAnBOuSdfDx06VHv27FF6erqCg4Nt9v3+++/q2bOnLrroIs2bN69KCnUVJl8D3okJ1oB3c/nk61WrVmnp0qV2oUiSQkJCNHnyZPXv37/ShQBAVXEUighEABwpdzD6+eefzzuHqGnTpvr111+dURMAOAW9RAAqqtzBqF69etq5c2eZc4i2b9+umJgYpxUGABfCUSjq3r27rrzyShOqAeApyh2M+vbtq4ceekhr1qxRVFSUzb5jx47p0UcfVd++fZ1dHwBUyJ49e7R48WK7dnqJAJRHuSdfnzhxQp07d1Z2drbuuOMOtWzZUoZhaNeuXXrjjTcUExOjL7/8UrVq1arqmqsUk68Bz8XQGeC7XD75umbNmvrvf/+rxx57TEuWLFFOTo4kKTIyUgMGDNDUqVM9PhQB8FyOQlG7dk+oTx+nPSsbgA+o8LPSpLMPjj1+/LgkKSoqShaLxemFmYUeI8Cz0EsEQDLxWWnS2dWuo6OjK/2hAOAMjkJRw4YNNXToUBOqAeANKhWMAMBMJ0+e1DPPPGPXTi8RgAtFMALgURg6A1CVCEYAPIajUDRmzBiFhYWZUA0Ab0QwAuD25s+frwMHDti100sEwNnKFYxmz55d7hOOGjWq0sUAwJ8xdAbAlcp1u36TJk3KdzKLRT/++OMFF2UmbtcH3INhGJo0aZJdO4EIgCMuvV1/3759lf4AAKiosnqJ0tNTRC4CUJUqvSRsQUGBdu/eraKiImfWA8DHOQpFTZsOUHp6isaNM6EgAD6lwpOvT58+rfvvv1+LFi2SJH3//fdq2rSp7r//fjVo0EDj+C8XgErYtGmTVqxYYdd+buhs4EBXVwTAF1W4xyg5OVlbt27V+vXrFRwcbG3v3r27li5d6tTiAPiG1NTU84YiAHCVCvcYLVu2TEuXLtUVV1xh84y0Sy65RHv37nVqcQC8n6OhMwIRALNUOBgdP37c4XPSTp065VUPkwVQtc53G/7y5VJamjRunNS7t4sLA+DTKjyU1rFjR61cudK6fS4MzZs3T/Hx8c6rDIDXchSKduy4SkuW/C8UZWSc/QkArlThHqOpU6eqV69e2rlzp4qKijRr1izt3LlTGzdu1KeffloVNQLwEj///LNefPFFu/aUlBQlJEiZmdIjj0gWi9SihbgLDYDLVbjH6KqrrtKWLVtUVFSkSy+9VB9//LGio6OVkZGhDh06VEWNALxAampqmaFIOhuC4uPPhqLMTKlWLYbRALheuVa+9iWsfA04n6Ohs9Wrx+uRR6rZhR/mFwGoDGf9/i5XMMrLyyv3CT09TBCMAOcp6+Gv7dunEHoAOJVLHwkSGRlZ7jvOiouLK10MAO/hqJeoWbNmuuOOO0yoBgDKp1zBaN26ddb/nZWVpXHjxikpKcl6F1pGRoYWLVqkadOmVU2VADxGYWGhpk6datfuaG0ihs0AuJsKzzH629/+prvuuku33XabTfsbb7yhf/3rX1q/fr0z63M5htKAyjvf2kSOJCScvS0/Pl7auLEqKwPg7Zz1+7vCd6VlZGSoY8eOdu0dO3bUV199VelCAHg2R6HogQceOO8q1ufuROO2fADuosLBKDY2Vq+88opd+7x58xQbG+uUogB4js8//7zMx3pERkae9729e5/tKWIYDYC7qPACj88++6z69eunjz76SJ07d5YkffXVV/rhhx/07rvvOr1AAO6rokNnAODuKrWO0cGDB/XSSy8pMzNTktSqVSsNHz7cK3qMmGMElA8PfwXgTly6jpEvIRgB50cvEQB35NJ1jP4sJydHr776qnbt2iVJuuSSSzRkyBBFRERUuhAA7s9RKOrfv79atGhhQjUA4HwV7jH65ptvlJiYqJCQEHXq1EmS9PXXX+v333/Xxx9/rMsuu6xKCnUVeowAez/99JMWLlxo104vEQB3YdpQ2tVXX63mzZvrlVdeUbVqZzucioqKdNddd+nHH3/Uhg0bKl2MOyAYAbYYOgPgCUwLRiEhIdq8ebNatmxp075z50517NhRp0+frnQx7oBgBPyPo1A0YcKEcj8iCABcxbQ5RuHh4dq/f79dMDpw4IDCwsIqXQgA9zF58mSVlJTYtdNLBMDbVTgY/fOf/9TQoUM1Y8YMJSQkSJK++OILPfzww3aPCQHgOc49tywx0b6XKD4+Xj169DChKgBwrQoHoxkzZshisWjQoEEqKiqSJAUEBOjee+9VWlqa0wsE4BozZ55UYuIzdu30EgHwJZVex+j06dPau3evJKlZs2YKDQ11amFmYY4RfM3y5dLmzUywBuDZTF3HSJJCQ0N16aWXVvqDAbgHR6Ho0UcfVXBwsAnVAIC5yh2MhgwZUq7j5s+fX+liALjO6tWrtXHjRrt2eokA+LJyB6OFCxeqUaNGat++vXiKCODZHN2GHxMTo3vuuceEagDAfZQ7GN1777168803tW/fPt1555264447VKtWraqsDYATnb3rrESJiZPt9tFLBABn+ZX3wBdffFFHjhzRI488ov/85z+KjY3VrbfeqvT0dHqQAA+weXMqoQgA/kKl70o79+ykf//73yoqKtKOHTtUo0YNZ9fnctyVBm/kaOjsvvvuU1RUlAnVAIDzmX5Xmp+fnywWiwzDUHFxcaULAFB1MjMztXTpUrt2eokAwLFyD6VJUn5+vt58801dd911uvjii/Xdd9/phRde0P79+72itwjwJqmpqYQiAKigcvcY3XfffVqyZIliY2M1ZMgQvfnmm6pTp05V1gagkhwNnRGIAOCvlXuOkZ+fn+Li4tS+ffvzPln7vffec1pxZmCOETyZo0AkEYoAeD+XzzEaNGjQeQMRAPOU9ViPm2++WZdccokJFQGAZ6rQAo/uID8/X507d9bWrVu1efNmtWvXzrpv27ZtGjFihL7++mtFRUXp/vvv1yOPPGJesYALnDhxQps3z7Zrp5cIACqu0nelmeWRRx5R/fr1tXXrVpv2vLw89ejRQ927d9fcuXP13XffaciQIYqMjNTdd99tUrVA1WLoDACcy6OC0UcffaSPP/5Y7777rj766CObfYsXL1ZBQYHmz5+vwMBAXXLJJdqyZYtmzpxJMIJXchSKnnjiCfn5VehmUwDAH3hMMDp69KiGDRumZcuWKTQ01G5/RkaGrrnmGgUGBlrbEhMT9dRTT+nEiROqWbOmw/Pm5+crPz/fup2Xl+f84gEnev/997Vt2za7dnqJAODCecQ/LQ3DUFJSkoYPH66OHTs6PCY7O1t169a1aTu3nZ2dXea5p02bpoiICOsrNjbWeYUDTpaammoXiq666ipCEQA4ianBaNy4cbJYLOd9ZWZm6vnnn9dvv/2m5ORkp9eQnJys3Nxc6+vAgQNO/wzgQhUWFpa5NtHf/vY3EyoCAO9k6lDa2LFjlZSUdN5jmjZtqrVr1yojI0NBQUE2+zp27Kjbb79dixYtUkxMjI4ePWqz/9x2TExMmecPCgqyOy/gTphgDQCuY2owioqKKtdDLGfPnq0nn3zSun348GElJiZq6dKl6ty5syQpPj5e48ePV2FhoQICAiRJq1evVosWLcqcXwS4O0ehqE2bh9SvX3UTqgEA7+cRk6/j4uJsts89l61Zs2Zq2LChJGnAgAFKTU3V0KFD9eijj2r79u2aNWuWnn32WZfXC1yo7777zuEq8vQSAUDV8ohgVB4RERH6+OOPNWLECHXo0EF16tTRhAkTuFUfHmP5ciktTUpMtO8lat68uW6//XYTqgIA31LuZ6X5Cp6VBrMkJBhKTJxk104vEQD8NZc/Kw1A1Zk3b54SEw/ZtROKAMC1CEaAyRxNsL7vvvvKdWMCAMC5CEaASX755Re98MILdu30EgGAeQhGgAkc9RI1aNBAd911lwnVAADOIRgBLuYoFE2YMEEWi8WEagAAf+QRz0oDvEF6enqZj/X4YyhavlxKSDj7EwDgWvQYAS7gKBDdcccdatasmV17WpqUkXH2Z+/erqgOAHAOwQioQmfOnNFTTz1l136+Cdbjxp0NRePGVWVlAABHCEZAFansw19796anCADMQjACqoCjUDR+/HhVq8ZfOQBwZ/xXGnCirVu3atmyZXbtrE0EAJ6BYAQ4iaNeosTERF1xxRUmVAMAqAyCEXCBSkpKNHnyZLt2eokAwPMQjIALkJaWpvz8fLt2QhEAeCaCEVBJjobOxo4dqxo1aphQDQDAGQhGQAUdPHhQr776ql07vUQA4PkIRkAFOOolatOmjfr162dCNQAAZyMYAeVU1nPOAADeg2AE/IWlS5cqMzPTrp1QBADeh2AEnIejXqK7775b9erVM6EaAEBV8zO7AMBdLF8uJSSc/ZmXl1fm0BmhCAC8Fz1GQKm0NCkjQ9q8OVWbN9vuCwsL05gxY8wpDADgMgQjQGd7iX79VZo40b6XaMKECbJYLCZUBQBwNYIRIOn117/RbbettGtngjUA+BaCEXxeamqqLrnEtu3mm2/WJX9uBAB4PYIRfFZxcbGefPJJu3Z6iQDAdxGM4JPmzZunQ4cO2bTVrl1bI0eONKkiAIA7IBjB5zi6Df+xxx5TQECACdUAANwJwQg+49ChQ5o3b55dO0NnAIBzCEbwCY56ifr06aN27dq5vhgAgNsiGMGrGYahSZMm2bXTSwQAcIRgBK+1YsUKbdq0ya6dUAQAKAvBCF7J0dDZ2LFjVaNGDROqAQB4Ch4iC4/2xwe/SlJubm6ZD38lFAEA/go9RvBo5x78mpZ29uGvf3bllVeqe/fuJlQGAPBEBCN4tHHjzoaixETHvUQAAFQEwQgeLSbmKyUmfmTXTigCAFQGwQgey9FcouHDh6tu3bomVAMA8AYEI3icwsJCTZ061a6dXiIAwIUiGMGj/Pvf/9a+ffts2i6//HL9/e9/N6kiAIA3IRjBYzgaOnviiSfk58eqEwAA5yAYwe0dOHBA8+fPt2tn6AwA4GwEI7g1R71Ed955p+Li4kyoBgDg7QhGcEslJSWaPHmyXTu9RACAqkQwgttZtWqV/vvf/9q0NWrUSElJSeYUBADwGQQjuBVHQ2fJyckKDAw0oRoAgK8hGMEtnDhxQrNnz7ZrZ+gMAOBKBCOYzlEv0U033aRLL73UhGoAAL6MYARTOQpF9BIBAMxCMIIpvv76a3344Yc2bYGBgUpOTjapIgAACEYwgaNeojFjxigsLMyEagAA+B+epQCnW75cSkg4+/OPfv/99zKHzghFAAB3QI8RnC4tTcrIOPvz3HafPi/qzJmfbY7r2rWrrrnmGhMqBADAMYIRnG7cuLNh6NzPxMRUnTlje8yECRNksVjMKRAAgDIQjOB0vXuffR08eFCJia/a7eeuMwCAuyIYoUo4mks0fPhw1a1b14RqAAAoH4IRnIqHvwIAPBnBCE6zc+dOvf322zZtTLAGAHgSghEuyPLl/5tg/WdPPPGE/PxYEQIA4DkIRrggM2eeVGLiMzZtF110kQYMGGBSRQAAVB7BCJX2/fffq2vXN23a7r//ftWqVcukigAAuDAEI1SYYRhauHCh9u/fb9POBGsAgKcjGKFCcnJyNGvWLJu2u+66Sw0aNDCpIgAAnIdghHL7/PPPtWbNGut2cHCwHnroIfn7+5tYFQAAzkMwwl8qKirSlClTbNp69eqlTp06mVQRAABVg2CE8/rpp5+0cOFCm7YxY8YoLCzMnIIAAKhCBCOU6a233tKuXbus2xdffLFuu+02EysCAKBqedTqeytXrlTnzp0VEhKimjVrqm/fvjb79+/fr+uvv16hoaGKjo7Www8/rKKiInOK9WAnT55UamqqTSgaNGgQoQgA4PU8psfo3Xff1bBhwzR16lR169ZNRUVF2r59u3V/cXGxrr/+esXExGjjxo06cuSIBg0apICAAE2dOtXEyj3Lpk2btGLFCpu2xx57TAEBASZVBACA61gMwzDMLuKvFBUVqXHjxkpNTdXQoUMdHvPRRx/phhtu0OHDh61PcJ87d64effRRHT9+XIGBgeX6rLy8PEVERCg3N1fh4eFO+w7urqSkRDNnztSpU6esbddee626dOliYlUAAJSPs35/e8RQ2rfffqtDhw7Jz89P7du3V7169dSrVy+bHqOMjAxdeuml1lAkSYmJicrLy9OOHTvMKNtjHDlyRJMnT7YJRffffz+hCADgczxiKO3HH3+UJE2cOFEzZ85U48aN9cwzz+jaa6/V999/r1q1aik7O9smFEmybmdnZ5d57vz8fOXn51u38/LyquAbuK+VK1fqm2++sW7Xr19fd911lywWi4lVAQBgDlN7jMaNGyeLxXLeV2ZmpkpKSiRJ48ePV79+/dShQwctWLBAFotFb7/99gXVMG3aNEVERFhfsbGxzvhqbu/MmTNKTU21CUW33nqrhg0bRigCAPgsU3uMxo4dq6SkpPMe07RpUx05ckSS1Lp1a2t7UFCQmjZtan1eV0xMjL766iub9x49etS6ryzJyckaM2aMdTsvL8/rw9HOnTvtAuW4ceMUFBRkUkUAALgHU4NRVFSUoqKi/vK4Dh06KCgoSLt379ZVV10lSSosLFRWVpYaNWokSYqPj9eUKVN07NgxRUdHS5JWr16t8PBwm0D1Z0FBQT4TCAzD0Msvv2wNjJLUqVMn9erVy8SqAABwHx4xxyg8PFzDhw9XSkqKYmNj1ahRIz399NOSpFtuuUWS1KNHD7Vu3VoDBw7U9OnTlZ2drccff1wjRozwmeBzPr/88oteeOEFm7bhw4fbzcsCAMCXeUQwkqSnn35a1apV08CBA/X777+rc+fOWrt2rWrWrClJ8vf314oVK3TvvfcqPj5e1atX1+DBgzVp0iSTKzffunXrtGHDBut2RESERo0aJT8/j7gpEQAAl/GIdYxcyZvWMSosLLRb3LJ3795q3769SRUBAFA1nPX722N6jFAxe/fu1euvv27T9tBDD6l69eomVQQAgPsjGHmh119/XXv37rVut2nTRv369TOxIgAAPAPByIvk5eXp2WeftWkbMmSI1y8/AACAsxCMvMSXX36p9PR067a/v7+Sk5Pl7+9vYlUAAHgWgpGHKy4u1lNPPaXCwkJr23XXXaeEhAQTqwIAwDMRjDzYwYMH9eqrr9q0jR49WhERESZVBACAZyMYeaj3339f27Zts243adJEAwcO5DlnAABcAIKRhzl9+rR11e9zbr/9djVv3tykigAA8B4EIw+ydetWLVu2zKYtOTlZgYGB5hQEAICXIRh5AMMwNHv2bOXk5FjbrrrqKv3tb38zrygAALwQwcjNHTt2THPmzLFpGzFihOrUqWNSRQAAeC+CkRtLT0/Xl19+ad2Ojo7W8OHDmWANAEAVIRi5ofz8fKWlpdm09evXT23atDGpIgAAfAPByM3s3r1bS5YssWl75JFHFBISYlJFAAD4DoKRmzAMQ/Pnz9fBgwetbZdddpluvPFGE6sCAMC3EIzcwIkTJzR79mybtmHDhql+/fomVQQAgG8iGJnss88+09q1a63boaGhGjt2rPz8/EysCgAA30QwMklRUZGmTJli03b99derY8eOJlUEAAAIRibIysrSokWLbNrGjBmjsLAwkyoCAAASwcjllixZot27d1u3W7Roof79+5tYEQAAOIdg5CK//fabZs6cadM2ePBgNW7c2JyCAACAHYKRi/w5FI0fP17VqvHHDwCAO+E3s4u0atVKu3btUrdu3XT11VebXQ4AAHCAYOQit956q9klAACAv8BiOQAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRi6yfLmUkHD2JwAAcE8EIxdJS5MyMs7+BAAA7olg5CLjxknx8Wd/AgAA98QjQVykd++zLwAA4L7oMQIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChVzewC3I1hGJKkvLw8kysBAADlde739rnf45VFMPqT3377TZIUGxtrciUAAKCifvvtN0VERFT6/RbjQqOVlykpKdHhw4cVFhYmi8VidjkukZeXp9jYWB04cEDh4eFml4Ny4Jp5Fq6X5+GaeZZz12vnzp1q0aKF/PwqP1OIHqM/8fPzU8OGDc0uwxTh4eH8B8DDcM08C9fL83DNPEuDBg0uKBRJTL4GAACwIhgBAACUIhhBQUFBSklJUVBQkNmloJy4Zp6F6+V5uGaexZnXi8nXAAAApegxAgAAKEUwAgAAKEUwAgAAKEUwAgAAKEUwglauXKnOnTsrJCRENWvWVN++fW3279+/X9dff71CQ0MVHR2thx9+WEVFReYUC6v8/Hy1a9dOFotFW7Zssdm3bds2XX311QoODlZsbKymT59uTpE+LisrS0OHDlWTJk0UEhKiZs2aKSUlRQUFBTbHcb3cy4svvqjGjRsrODhYnTt31ldffWV2SZA0bdo0XX755QoLC1N0dLT69u2r3bt32xxz5swZjRgxQrVr11aNGjXUr18/HT16tEKfQzDyce+++64GDhyoO++8U1u3btUXX3yhAQMGWPcXFxfr+uuvV0FBgTZu3KhFixZp4cKFmjBhgolVQ5IeeeQR1a9f3649Ly9PPXr0UKNGjbRp0yY9/fTTmjhxov71r3+ZUKVvy8zMVElJiV5++WXt2LFDzz77rObOnavHHnvMegzXy70sXbpUY8aMUUpKir799lu1bdtWiYmJOnbsmNml+bxPP/1UI0aM0JdffqnVq1ersLBQPXr00KlTp6zHPPjgg/rPf/6jt99+W59++qkOHz6sm266qWIfZMBnFRYWGg0aNDDmzZtX5jEffvih4efnZ2RnZ1vb5syZY4SHhxv5+fmuKBMOfPjhh0bLli2NHTt2GJKMzZs3W/e99NJLRs2aNW2uz6OPPmq0aNHChErxZ9OnTzeaNGli3eZ6uZdOnToZI0aMsG4XFxcb9evXN6ZNm2ZiVXDk2LFjhiTj008/NQzDMHJycoyAgADj7bffth6za9cuQ5KRkZFR7vPSY+TDvv32Wx06dEh+fn5q37696tWrp169emn79u3WYzIyMnTppZeqbt261rbExETl5eVpx44dZpTt844ePaphw4bptddeU2hoqN3+jIwMXXPNNQoMDLS2JSYmavfu3Tpx4oQrS4UDubm5qlWrlnWb6+U+CgoKtGnTJnXv3t3a5ufnp+7duysjI8PEyuBIbm6uJFn/Pm3atEmFhYU2169ly5aKi4ur0PUjGPmwH3/8UZI0ceJEPf7441qxYoVq1qypa6+9Vr/++qskKTs72yYUSbJuZ2dnu7ZgyDAMJSUlafjw4erYsaPDY7hm7mvPnj16/vnndc8991jbuF7u4+eff1ZxcbHD68G1cC8lJSUaPXq0rrzySrVp00bS2b8vgYGBioyMtDm2otePYOSFxo0bJ4vFct7XubkPkjR+/Hj169dPHTp00IIFC2SxWPT222+b/C18S3mv2fPPP6/ffvtNycnJZpfs08p7vf7o0KFD6tmzp2655RYNGzbMpMoB7zBixAht375dS5Yscfq5qzn9jDDd2LFjlZSUdN5jmjZtqiNHjkiSWrdubW0PCgpS06ZNtX//fklSTEyM3R0Z52b4x8TEOLFq31bea7Z27VplZGTYPQ+oY8eOuv3227Vo0SLFxMTY3YXBNXOu8l6vcw4fPqyuXbsqISHBblI118t91KlTR/7+/g6vB9fCfYwcOVIrVqzQhg0b1LBhQ2t7TEyMCgoKlJOTY9NrVOHr5+zJUPAcubm5RlBQkM3k64KCAiM6Otp4+eWXDcP43+Tro0ePWo95+eWXjfDwcOPMmTMur9nX/fTTT8Z3331nfaWnpxuSjHfeecc4cOCAYRj/m8xbUFBgfV9ycjKTeU1y8OBB46KLLjL69+9vFBUV2e3nermXTp06GSNHjrRuFxcXGw0aNGDytRsoKSkxRowYYdSvX9/4/vvv7fafm3z9zjvvWNsyMzMrPPmaYOTjHnjgAaNBgwZGenq6kZmZaQwdOtSIjo42fv31V8MwDKOoqMho06aN0aNHD2PLli3GqlWrjKioKCM5OdnkymEYhrFv3z67u9JycnKMunXrGgMHDjS2b99uLFmyxAgNDbWGXbjOwYMHjebNmxt/+9vfjIMHDxpHjhyxvs7hermXJUuWGEFBQcbChQuNnTt3GnfffbcRGRlpc2cuzHHvvfcaERERxvr1623+Lp0+fdp6zPDhw424uDhj7dq1xjfffGPEx8cb8fHxFfocgpGPKygoMMaOHWtER0cbYWFhRvfu3Y3t27fbHJOVlWX06tXLCAkJMerUqWOMHTvWKCwsNKli/JGjYGQYhrF161bjqquuMoKCgowGDRoYaWlp5hTo4xYsWGBIcvj6I66Xe3n++eeNuLg4IzAw0OjUqZPx5Zdfml0SDKPMv0sLFiywHvP7778b9913n1GzZk0jNDTU+Mc//mHzD5HysJR+GAAAgM/jrjQAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAqCLr16+XxWJRTk6O2aUAKCeCEQCPNXHiRLVr187sMgB4EYIRAK9XWFhodgkAPATBCIBpSkpKNG3aNDVp0kQhISFq27at3nnnHUn/G4Zas2aNOnbsqNDQUCUkJGj37t2SpIULFyo1NVVbt26VxWKRxWLRwoULJUkWi0Vz5sxR7969Vb16dU2ZMuW8dZz7rPT0dLVv314hISHq1q2bjh07po8++kitWrVSeHi4BgwYoNOnT1vfl5+fr1GjRik6OlrBwcG66qqr9PXXX1fNHxYA13DqE94AoAKefPJJo2XLlsaqVauMvXv3GgsWLDCCgoKM9evXG+vWrTMkGZ07dzbWr19v7Nixw7j66quNhIQEwzAM4/Tp08bYsWONSy65xO4p25KM6OhoY/78+cbevXuNn3766bx1nPusK664wvj888+Nb7/91mjevLnRpUsXo0ePHsa3335rbNiwwahdu7bNA15HjRpl1K9f3/jwww+NHTt2GIMHDzZq1qxp/PLLLzbnPXHiRNX8AQJwOoIRAFOcOXPGCA0NNTZu3GjTPnToUOO2226zhopPPvnEum/lypWGJOP33383DMMwUlJSjLZt29qdW5IxevToctfi6LOmTZtmSDL27t1rbbvnnnuMxMREwzAM4+TJk0ZAQICxePFi6/6CggKjfv36xvTp023OSzACPEc1s3qqAPi2PXv26PTp07ruuuts2gsKCtS+fXvr9v/93/9Z/3e9evUkSceOHVNcXNx5z9+xY8cK1/THz6pbt65CQ0PVtGlTm7avvvpKkrR3714VFhbqyiuvtO4PCAhQp06dtGvXrgp/NgD3QDACYIqTJ09KklauXKkGDRrY7AsKCtLevXslnQ0b51gsFkln5yb9lerVq1e4pj9/1h+3z7WV57MBeC4mXwMwRevWrRUUFKT9+/erefPmNq/Y2NhynSMwMFDFxcVVXKljzZo1U2BgoL744gtrW2Fhob7++mu1bt3alJoAXDh6jACYIiwsTA899JAefPBBlZSU6KqrrlJubq6++OILhYeHq1GjRn95jsaNG2vfvn3asmWLGjZsqLCwMAUFBbmg+rM9Uvfee68efvhh1apVS3FxcZo+fbpOnz6toUOHuqQGAM5HMAJgmsmTJysqKkrTpk3Tjz/+qMjISF122WV67LHHyjVk1a9fP7333nvq2rWrcnJytGDBAiUlJVV94aXS0tJUUlKigQMH6rffflPHjh2Vnp6umjVruqwGAM5lMQzDMLsIAAAAd8AcIwAAgFIEIwBeb/jw4apRo4bD1/Dhw80uD4AbYSgNgNc7duyY8vLyHO4LDw9XdHS0iysC4K4IRgAAAKUYSgMAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAACj1/1j+WUwWRiX3AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASXxJREFUeJzt3Xl8jOf+//H3JLIiiS1iib3HVoeU0mirOI5wtKrbt9tBSLWUqlKVqK8I1YQqrVbpZvl2QRfV/LSVqrVIT1tFay+1luC0kliz3r8/HHOMmZDEZO7JzOv5eMwj5rrvueczuR/M23Vd93VbDMMwBAAA4AV8zC4AAADAVQg+AADAaxB8AACA1yD4AAAAr0HwAQAAXoPgAwAAvAbBBwAAeA2CDwAA8BoEHwAA4DUIPgDKJYvFogkTJphdhlVsbKwaNGhgdhkAroHgA8Bp5s+fL4vFYn0EBgbqL3/5i4YNG6bjx4+X6Xtv3LhREyZMUGZmplOP27lzZ5vPVLVqVd18882aO3euCgsLnfIeL774opYuXeqUYwG4ugpmFwDA80ycOFENGzbUhQsXtH79es2ePVtffvmltm3bpuDgYKe8x/nz51Whwn//Cdu4caOSkpIUGxursLAwp7zHJXXr1lVycrIk6eTJk/q///s/xcXFac+ePUpJSbnu47/44ou6//771adPn+s+FoCrI/gAcLqePXuqXbt2kqTHHntM1apV0/Tp0/X555/r4YcfLvVxCwsLlZubq8DAQAUGBjqr3GsKDQ3VP//5T+vzJ554Qk2bNtXrr7+uSZMmyc/Pz2W1ALg+DHUBKHNdu3aVJO3fv1+SNG3aNHXs2FHVqlVTUFCQ2rZtq08++cTudRaLRcOGDdMHH3ygli1bKiAgQMuXL7duuzTHZ8KECRo9erQkqWHDhtZhqQMHDuiOO+5Q69atHdbVtGlTxcTElPjzBAcH65ZbbtHZs2d18uTJIvc7e/asRo0apcjISAUEBKhp06aaNm2aDMOw+Yxnz57VggULrHXHxsaWuCYAxUOPD4Ayt2/fPklStWrVJEmvvvqqevfurUcffVS5ublatGiRHnjgAS1btky9evWyee2qVav00UcfadiwYapevbrDCcT33nuv9uzZo4ULF2rGjBmqXr26JKlGjRrq27evBg0apG3btunGG2+0vuaHH37Qnj17NG7cuFJ9pt9++02+vr5FDqsZhqHevXtr9erViouLU5s2bZSWlqbRo0fr999/14wZMyRJ7733nh577DG1b99ejz/+uCSpcePGpaoJQDEYAOAk8+bNMyQZ33zzjXHy5Enj8OHDxqJFi4xq1aoZQUFBxpEjRwzDMIxz587ZvC43N9e48cYbja5du9q0SzJ8fHyM7du3272XJCMxMdH6/KWXXjIkGfv377fZLzMz0wgMDDTGjBlj0z58+HCjYsWKxpkzZ676me644w6jWbNmxsmTJ42TJ08aO3fuNIYPH25IMu666y7rfv379zfq169vfb506VJDkvHCCy/YHO/+++83LBaLsXfvXmtbxYoVjf79+1+1DgDOwVAXAKfr1q2batSoocjISD300EOqVKmSPvvsM9WpU0eSFBQUZN331KlTysrK0u23366ffvrJ7lh33HGHWrRoUepaQkNDdffdd2vhwoXWIaaCggItXrxYffr0UcWKFa95jF27dqlGjRqqUaOGmjdvrtdee029evXS3Llzi3zNl19+KV9fXw0fPtymfdSoUTIMQ1999VWpPxOA0mOoC4DTzZo1S3/5y19UoUIF1axZU02bNpWPz3//n7Vs2TK98MIL2rJli3JycqztFovF7lgNGza87nr69eunxYsX69tvv1WnTp30zTff6Pjx4+rbt2+xXt+gQQO9/fbb1kv0b7jhBoWHh1/1NQcPHlTt2rVVuXJlm/bmzZtbtwNwPYIPAKdr37699aquK3377bfq3bu3OnXqpDfeeEO1atWSn5+f5s2bpw8//NBu/8t7h0orJiZGNWvW1Pvvv69OnTrp/fffV0REhLp161as11esWLHY+wJwbwx1AXCpTz/9VIGBgUpLS9PAgQPVs2dPp4QKR71Fl/j6+uqRRx7RJ598olOnTmnp0qV6+OGH5evre93vW5T69evr6NGjOn36tE37rl27rNsvuVrtAJyL4APApXx9fWWxWFRQUGBtO3DgwHWvXHxprk5RKzf37dtXp06d0hNPPKEzZ87YrMtTFv7xj3+ooKBAr7/+uk37jBkzZLFY1LNnT2tbxYoVnb7iNADHGOoC4FK9evXS9OnT1aNHDz3yyCM6ceKEZs2apSZNmujnn38u9XHbtm0rSXr++ef10EMPyc/PT3fddZc1EEVFRenGG2/Uxx9/rObNm+umm25yyucpyl133aUuXbro+eef14EDB9S6dWt9/fXX+vzzzzVixAibS9bbtm2rb775RtOnT1ft2rXVsGFDdejQoUzrA7wVPT4AXKpr16569913lZGRoREjRmjhwoWaMmWK7rnnnus67s0336xJkyZp69atio2N1cMPP2y3uGC/fv0kqdiTmq+Hj4+PUlNTNWLECC1btkwjRozQjh079NJLL2n69Ok2+06fPl1t27bVuHHj9PDDD2v27NllXh/grSyGcdkSogDgwV599VU988wzOnDggOrVq2d2OQBMQPAB4BUMw1Dr1q1VrVo1rV692uxyAJiEOT4APNrZs2eVmpqq1atX65dfftHnn39udkkATESPDwCPduDAATVs2FBhYWF68sknNXnyZLNLAmAigg8AAPAaXNUFAAC8BsEHAAB4DSY3X6GwsFBHjx5V5cqVWUYeAIBywjAMnT59WrVr17a5KfKVCD5XOHr0qCIjI80uAwAAlMLhw4dVt27dIrcTfK5QuXJlSRd/cSEhISZXAwAAiiM7O1uRkZHW7/GiEHyucGl4KyQkhOADAEA5c61pKkxuBgAAXoPgAwAAvAbBBwAAeA3m+JRCQUGB8vLyzC4DLuDn5ydfX1+zywAAOAnBpwQMw1BGRoYyMzPNLgUuFBYWpoiICNZ1AgAPQPApgUuhJzw8XMHBwXwRejjDMHTu3DmdOHFCklSrVi2TKwIAXC+CTzEVFBRYQ0+1atXMLgcuEhQUJEk6ceKEwsPDGfYCgHKOyc3FdGlOT3BwsMmVwNUunXPmdQFA+UfwKSGGt7wP5xwAPAfBBwAAeA2CDwAA8BoEHy8QGxsri8Uii8UiPz8/1axZU3//+981d+5cFRYWFvs48+fPV1hYWNkVCgBAGSP4eIkePXro2LFjOnDggL766it16dJFTz/9tO68807l5+ebXR4AAC5B8PESAQEBioiIUJ06dXTTTTdp7Nix+vzzz/XVV19p/vz5kqTp06erVatWqlixoiIjI/Xkk0/qzJkzkqQ1a9ZowIABysrKsvYeTZgwQZL03nvvqV27dqpcubIiIiL0yCOPWNe+AQDgktRUqWPHiz/NQvC5DoZhKDc315SHYRjXXX/Xrl3VunVrLVmyRJLk4+OjmTNnavv27VqwYIFWrVql5557TpLUsWNHvfLKKwoJCdGxY8d07NgxPfvss5IuXuY9adIkbd26VUuXLtWBAwcUGxt73fUBADxLSoqUnn7xp1lYwPA65OXlKTk52ZT3TkhIkL+//3Ufp1mzZvr5558lSSNGjLC2N2jQQC+88IIGDx6sN954Q/7+/goNDZXFYlFERITNMQYOHGj9c6NGjTRz5kzdfPPNOnPmjCpVqnTdNQIAPEN8/MXQEx9vXg0EHy9nGIZ1nZpvvvlGycnJ2rVrl7Kzs5Wfn68LFy7o3LlzV124cdOmTZowYYK2bt2qU6dOWSdMHzp0SC1atHDJ5wAAuL/evS8+zFRugk9ycrKWLFmiXbt2KSgoSB07dtSUKVPUtGlT6z4XLlzQqFGjtGjRIuXk5CgmJkZvvPGGatasWSY1+fn5KSEhoUyOXZz3doadO3eqYcOGOnDggO68804NGTJEkydPVtWqVbV+/XrFxcUpNze3yOBz9uxZxcTEKCYmRh988IFq1KihQ4cOKSYmRrm5uU6pEQBQ/uXn52vFihWqW7euWrVqZVod5Sb4rF27VkOHDtXNN9+s/Px8jR07Vt27d9eOHTtUsWJFSdIzzzyjL774Qh9//LFCQ0M1bNgw3XvvvdqwYUOZ1GSxWJwy3GSWVatW6ZdfftEzzzyjTZs2qbCwUC+//LJ8fC5O/froo49s9vf391dBQYFN265du/THH38oJSVFkZGRkqQff/zRNR8AAFAuHDhwQAsWLJAkff/997rxxhtNWxW/3ASf5cuX2zyfP3++wsPDtWnTJnXq1ElZWVl699139eGHH6pr166SpHnz5ql58+b67rvvdMstt5hRttvIyclRRkaGCgoKdPz4cS1fvlzJycm688471a9fP23btk15eXl67bXXdNddd2nDhg2aM2eOzTEaNGigM2fOaOXKlWrdurWCg4NVr149+fv767XXXtPgwYO1bds2TZo0yaRPCQBwN4sWLdLu3butz2+++WZTbwVUbq/qysrKkiRVrVpV0sV5Jnl5eerWrZt1n2bNmqlevXpKT083pUZ3snz5ctWqVUsNGjRQjx49tHr1as2cOVOff/65fH191bp1a02fPl1TpkzRjTfeqA8++MBu4nbHjh01ePBgPfjgg6pRo4amTp2qGjVqaP78+fr444/VokULpaSkaNq0aSZ9SgCAuzh9+rSSkpJsQk///v31j3/8w8SqJIvhjOuiXaywsFC9e/dWZmam1q9fL0n68MMPNWDAAOXk5Njs2759e3Xp0kVTpkxxeKycnByb12RnZysyMlJZWVkKCQmxtl+4cEH79+9Xw4YNFRgYWAafCu6Kcw8AJfPDDz/oyy+/tGl7/vnnVaFC2Q00ZWdnKzQ01O77+0rlZqjrckOHDtW2bdusoed6JCcnKykpyQlVAQDg3QoLCzVt2jSdP3/e2ta1a1fdfvvtJlZlq9wNdQ0bNkzLli3T6tWrVbduXWt7RESEcnNzlZmZabP/8ePH7daduVxCQoKysrKsj8OHD5dV6QAAeKyjR49q0qRJNqFn+PDhbhV6pHLU42MYhp566il99tlnWrNmjRo2bGizvW3btvLz89PKlSt13333SZJ2796tQ4cOKTo6usjjBgQEKCAgoExrBwDAk6Wmpmrz5s3W55GRkRowYICpk5iLUm6Cz9ChQ/Xhhx/q888/V+XKlZWRkSFJCg0NVVBQkEJDQxUXF6eRI0eqatWqCgkJ0VNPPaXo6Givv6ILAICycP78eU2dOtWm7aGHHrJZY8/dlJvgM3v2bElS586dbdrnzZtnvS/UjBkz5OPjo/vuu89mAUMAAOBcv/zyi/Vej5fEx8e7/ShKuQk+xbn4LDAwULNmzdKsWbNcUBEAAN7HMAzNmjVLf/zxh7UtOjpa3bt3N7Gq4is3wQcAAJjr5MmTdiMpQ4YMUXh4uEkVlRzBBwAAXNOKFSu0ceNG6/OqVatq2LBhbjmB+WoIPgAAoEi5ubl2K/nfc889+utf/2pSRden3K3jA/cVGxurPn36WJ937txZI0aMuK5jOuMYAIDS2bNnj13oGT16dLkNPRI9Pl4hNjbWeldcPz8/1atXT/369dPYsWPLdPnwJUuWyM/Pr1j7rlmzRl26dNGpU6cUFhZWqmMAAJzDMAzNmzfPZlHfNm3a6O677zaxKucg+HiJHj16aN68ecrJydGXX36poUOHys/PTwkJCTb75ebmyt/f3ynveekGsmYfAwBQfJmZmXr11Vdt2h577DHVqVPHpIqci6EuLxEQEKCIiAjVr19fQ4YMUbdu3ZSammodnpo8ebJq165tXXTq8OHD+p//+R+FhYWpatWquvvuu3XgwAHr8QoKCjRy5EiFhYWpWrVqeu655+yWHLhymConJ0djxoxRZGSkAgIC1KRJE7377rs6cOCAunTpIkmqUqWKLBaLdW2mK49x6tQp9evXT1WqVFFwcLB69uypX3/91bp9/vz5CgsLU1pampo3b65KlSqpR48eOnbsmHWfNWvWqH379qpYsaLCwsJ066236uDBg076TQNA+ZOaKnXsKL311nqb0BMYGKhx48Z5TOiRCD5eKygoSLm5uZKklStXavfu3VqxYoWWLVumvLw8xcTEqHLlyvr222+1YcMGa4C49JqXX35Z8+fP19y5c7V+/Xr9+eef+uyzz676nv369dPChQs1c+ZM7dy5U2+++aYqVaqkyMhIffrpp5Iu3mbk2LFjdv/buCQ2NlY//vijUlNTlZ6eLsMw9I9//EN5eXnWfc6dO6dp06bpvffe07p163To0CE9++yzkqT8/Hz16dNHd9xxh37++Welp6fr8ccfL3dXJQCAM02Zkq+YmCQdO7bS2vaPf/xDY8aMka+vr4mVOR9DXV7GMAytXLlSaWlpeuqpp3Ty5ElVrFhR77zzjnWI6/3331dhYaHeeecdayCYN2+ewsLCtGbNGnXv3l2vvPKKEhISdO+990qS5syZo7S0tCLfd8+ePfroo4+0YsUKdevWTZLUqFEj6/ZLQ1rh4eE2c3wu9+uvvyo1NVUbNmxQx44dJUkffPCBIiMjtXTpUj3wwAOSpLy8PM2ZM0eNGzeWdPHGthMnTpQkZWdnKysrS3feead1e/PmzUv+iwQAD7F27Vp1777Gpm3kyJGqXLmyOQWVMXp8THKpWzE11TXvt2zZMlWqVEmBgYHq2bOnHnzwQU2YMEGS1KpVK5t5PVu3btXevXtVuXJlVapUSZUqVVLVqlV14cIF7du3T1lZWTp27Jg6dOhgfU2FChXUrl27It9/y5Yt8vX11R133FHqz7Bz505VqFDB5n2rVaumpk2baufOnda24OBga6iRpFq1aunEiROSLgas2NhYxcTE6K677tKrr75qMwwGAN4kKSlJa9assT5v0qSJEhMTPTb0SPT4mCYlRUpPv/izd++yf78uXbpo9uzZ8vf3V+3atW2u5qpYsaLNvmfOnFHbtm31wQcf2B2nRo0apXr/oKCgUr2uNK68CsxisdjMP5o3b56GDx+u5cuXa/HixRo3bpxWrFjBzWwBeI29e/fa/RvfqVMn63xLT0aPj0ni46Xo6Is/XaFixYpq0qSJ6tWrd81L2G+66Sb9+uuvCg8PV5MmTWweoaGhCg0NVa1atfSvf/3L+pr8/Hxt2rSpyGO2atVKhYWFWrt2rcPtl3qcCgoKijxG8+bNlZ+fb/O+f/zxh3bv3q0WLVpc9TNdKSoqSgkJCdq4caNuvPFGffjhhyV6PQCUV0lJSXahZ/XqUTp92vNDj0TwMU3v3tLGja7p7SmpRx99VNWrV9fdd9+tb7/9Vvv379eaNWs0fPhwHTlyRJL09NNPKyUlRUuXLtWuXbv05JNPKjMzs8hjNmjQQP3799fAgQO1dOlS6zE/+ugjSVL9+vVlsVi0bNkynTx5UmfOnLE7xg033KC7775bgwYN0vr167V161b985//VJ06dYq9tsT+/fuVkJCg9PR0HTx4UF9//bV+/fVX5vkA8Hg5OTlKSkqya09LS9TatZWUkmJCUSYg+MBOcHCw1q1bp3r16unee+9V8+bNFRcXpwsXLigkJESSNGrUKPXt21f9+/dXdHS0KleurHvuueeqx509e7buv/9+Pfnkk2rWrJkGDRqks2fPSpLq1KmjpKQkxcfHq2bNmho2bJjDY8ybN09t27bVnXfeqejoaBmGoS+//LLYixwGBwdr165duu+++/SXv/xFjz/+uIYOHaonnniiBL8hAChf3nrrLaVckWzuvPNOJSYmunwEwmwW48rFV7xcdna2QkNDlZWVZf2Sl6QLFy5o//79atiwoQIDA02sEK7GuQdQnjnq5WnTZrzuvtuzlvEo6vv7SkxuBgDAA+3Zs0cLFy60a58wIVHR0ZIH3H2iVAg+AAB4GEe9PN99N1BDhkR61bCWIwQfAAA8RH5+viZPnmzXnpZ2cS5P797ueVGNKxF8AADwAK+++qrd1bUVK9bTs88OUGKiOTW5I4JPCTEX3PtwzgG4O0dDW61bP68+ffiavxK/kWK6dLn0uXPnXLoKMcx37tw5SfYrQgOA2X799VeHC7BemsDcp4/ra3J3BJ9i8vX1VVhYmPWeT8HBwdzR28MZhqFz587pxIkTCgsL87g7FAMo3xz18kRG3qnq1dt6/QTmqyH4lEBERIQkWcMPvENYWJj13AOA2QzD0MSJE+3aL/XyuOtdAdwFwacELBaLatWqpfDwcOXl5ZldDlzAz8+Pnh4AbuOtt97SsWPH7NqjohLp5Skmgk8p+Pr68mUIAHApR0NbzzzzjHWVYnp5iofgAwCAGzt+/LjmzJlj157INeqlQvABAMBNOerladmype6//34TqvEMBB8AANyQo9BDL8/1I/gAAOBGZs+e7fDq4WnTElmB2QkIPgAAuAlHvTzvv/+ofvutCVdsOQnBBwAAk2VlZemVV16xa4+KSlRamvTyy1y15SwEHwAATOSol0e6eEf1xEQCj7MRfAAAMImj0JOU9L+yWHz02WcmFOQFCD4AALjYkiVL9Msvv9i15+YmqmJFafhwenrKCsEHAAAXctTLU7t2Nw0adKskafJkV1fkXQg+AAC4QG5urpKTk+3aWZvHtQg+AACUsaImMBN6XM/H7AIAAPBkjkLPlCnPKS2N0GMGenwAACgDq1ev1rp16+zaFy5MVP36YkFCkxB8AABwMke9POHh4RoyZAi3nTAZwQcAACcxDEMTJ060a8/NTdSQISYUBDsEHwAAnKCoCcwTJiSqUiUuU3cXTG4GAOA6OQo9jz32mHJzL4ae4cNNKAoOWQzDMMwuwp1kZ2crNDRUWVlZCgkJMbscAIAb++WXX7RkyRK79kWLErVzpwkFebHifn8z1AUAQClcbWiraVMXF4NiI/gAAFBCjkJPYmKiUlOl6GguVXdnBB8AAIrpWisw9+7NzUXdHcEHAIBicBR6/v73v6tjx44mVIPSIvgAAHAVJ06c0OzZs+3auc9W+UTwAQCgCNxc1PMQfAAAcMBR6Bk3bpx8fX1NqAbOQvABAOAyL7/8ss6cOWPXTi+PZyD4AADwH456eRo1aqS+ffuaUA3KAsEHAOD1Lly4oClTpti1T5uWqNOnTSgIZYbgAwDwakVNYJ4yJVHPPOPiYlDmCD4AAK/lKPSsXfu0RowI07lzJhSEMkfwAQB4nYULF2rPnj127VFRiWIOs2cj+AAAvApr83g3H7MLAADAFQzDcBh6JkxIVFoaocdb0OMDAPBoqanS5s2Oe3miohK5m7qXIfgAADyao9Dz4IMPqlmzZpK4m7q3IfgAADzSd999p7S0NLt25vJ4N4IPAMDjMIEZRSH4AAA8iqPQQ+DBJR55VdesWbPUoEEDBQYGqkOHDvr+++/NLgkAUMaSkpIchp6oKEIP/svjgs/ixYs1cuRIJSYm6qefflLr1q0VExOjEydOmF0aAKCMOAo8x483V2JiIpOXYcPjgs/06dM1aNAgDRgwQC1atNCcOXMUHBysuXPnml0aAMDJDh065DD0pKUlqkeP/zGhIrg7j5rjk5ubq02bNikhIcHa5uPjo27duik9Pd3ha3JycpSTk2N9np2dXeZ1AgCu39UmMDOlB0XxqB6ff//73yooKFDNmjVt2mvWrKmMjAyHr0lOTlZoaKj1ERkZ6YpSAQClkJoqdezoOPSsWDGW+Ty4Jo8KPqWRkJCgrKws6+Pw4cNmlwQAKMLmzUmKiXF81db69X7M58E1edRQV/Xq1eXr66vjx4/btB8/flwREREOXxMQEKCAgABXlAcAuA6szQNn8KgeH39/f7Vt21YrV660thUWFmrlypWKjo42sTIAQGmdPXvWYehZtCiR0IMS86geH0kaOXKk+vfvr3bt2ql9+/Z65ZVXdPbsWQ0YMMDs0gAAJVRUL09aWqKmTHFxMfAIHhd8HnzwQZ08eVLjx49XRkaG2rRpo+XLl9tNeAYAuDdHoefxxx9XrVq1uGoLpWYxDMMwuwh3kp2drdDQUGVlZSkkJMTscgDA60ydOlXnz5+3a2dYC1dT3O9vj+vxAQCUX0xgRlkj+AAATGcYhiZOnGjXTuCBsxF8AACmopcHrkTwAQCYIjX14oKEV6pTp7see4wlSFA2CD4AAJdbu3atNm9eY9dOLw/KGsEHAOBSRQ1tcZ8tuALBBwBQ5lJTpZQUFXmfLcBVCD4AgDJ1aS5PTIz9NkIPXM2j7tUFAHAfqalSx46OJzA3atSI0ANT0OMDACgTb721XzEx/2fXTuCBmQg+AACnS0pK0s0327cTemA2hroAAE7l6Kqtb76J56otuAV6fAAATnG1FZjp6IG7oMcHAHDduO0Eygt6fAAApZKaKr388jl17fqS3TYCD9wVwQcAUCqbNyepa1f7dkIP3BnBBwBQYo6Gtpo2HaSHHqptQjVA8RF8AADF9sILL6igoMCunV4elBcEHwBAsTCBGZ6A4AMAuCrDMDRx4kS79rS0RG3caEJBwHUg+AAAilRUL09aWqLi411cDOAEBB8AgEOOQk+nTp3UpUsXFiREuUXwAQDYWLFihTY6GMNiLg88AcEHAGDFBGZ4OoIPAECS49DDBGZ4GoIPAHg5JjDDmxB8AMCLOQo9VapU0fDhw5nADI9E8AEAL3Tw4EHNnz/frp25PPB0BB8A8DJMYIY3I/gAgBdxFHrGjBmjwMBAE6oBXI/gAwBegF4e4CIfswsAAJQtQg/wX/T4AICHOn/+vKZOnWrXTuCBNytx8PH19dWxY8cUHh5u0/7HH38oPDxcBQUFTisOAFA69PIAjpU4+BiG4bA9JydH/v7+110QAOD6OAo9AwcOVGRkpAnVAO6l2MFn5syZkiSLxaJ33nlHlSpVsm4rKCjQunXr1KxZM+dXCAAolpSUFOXk5Ni1p6Ulshgh8B/FDj4zZsyQdLHHZ86cOfL19bVu8/f3V4MGDTRnzhznVwgAuCZuOwEUj8UoauyqCF26dNGSJUtUpUqVsqrJVNnZ2QoNDVVWVpZCQkLMLgcArsowDE2cONGunZuLwtsU9/u7xHN8Vq9efV2FAQCcg14eoORKHHwGDhx41e1z584tdTEAgOJxFHr27u2kBx7ownwe4CpKHHxOnTpl8zwvL0/btm1TZmamunbt6rTCAAD2Vq1apW+//dauncvUgeIpcfD57LPP7NoKCws1ZMgQNW7c2ClFAQDssTYPcP1KPLm5KLt371bnzp117NgxZxzONExuBuCOHIWe8ePHy2KxmFAN4H7KbHJzUfbt26f8/HxnHQ4AIHp5AGcrcfAZOXKkzXPDMHTs2DF98cUX6t+/v9MKAwBPlpoqpaRI8fFS796O93EUeipXrmz37zCA4ivVOj6X8/HxUY0aNdS1a1cNHDhQFSqU7/ueMtQFwBU6dpTS06XoaNmtt3Pw4EHNnz/f7jX08gBFYx0fAHBj8fH/7fG5HENbQNkq9eTmEydOaPfu3ZKkpk2b2t2tvbyixweAWRyFnilTnlObNkGswgxcQ5n1+GRnZ2vo0KFauHChCgsLJUm+vr568MEHNWvWLIWGhpa+agDwQkX18kRFJapNG/teIQCl51PSFwwaNEj/+te/9MUXXygzM1OZmZlatmyZfvzxRz3xxBNlUSMAeKyrhZ7evS/O/ylq8jOAkivxUFfFihWVlpam2267zab922+/VY8ePXT27FmnFuhqDHUBcIULFy5oypQpdu3M5QFKp8yGuqpVq+ZwOCs0NNRj79gOAM50tZuLknuAslXioa5x48Zp5MiRysjIsLZlZGRo9OjR+t///V+nFgcAnsZR6LnhhljuqA64SImHuqKiorR3717l5OSoXr16kqRDhw4pICBAN9xwg82+P/30k/MqdRGGugCUhVdeeUVZWVl27QxtAc5RZkNdd999N/eGAYBiSk2VNm9mbR7AXTjtJqWegh4fAM5iGIYmTpxo1z5hQqLDFZsBlF6Z9fg0atRIP/zwg6pVq2bTnpmZqZtuukm//fZbyasFAA9ztcvUo6NZmwcwS4mDz4EDB1RQUGDXnpOToyNHjjilKAAozxyFnltvvVXdunWTxLo8gJmKHXxSU1Otf05LS7O5pL2goEArV65Uw4YNnVsdAJQj69ev18qVK+3amcsDuI9iB58+ffpIkiwWi/r372+zzc/PTw0aNNDLL7/s1OIAoLzg5qJA+VDs4HPpvlwNGzbUDz/8oOrVq5dZUQBQnjgKPePHj+cKWMANlXiOz/79+8uiDgAod+jlAcqfEgcfR5dmXm78+PGlLgYAygtHoady5coaOXKkCdUAKK4SB5/PPvvM5nleXp7279+vChUqqHHjxgQfAB7t6NGjevvtt+3a6eUByocS36tr8+bNNo9t27bp2LFj+tvf/qZnnnmmLGrUgQMHFBcXp4YNGyooKEiNGzdWYmKicnNzbfb7+eefdfvttyswMFCRkZGaOnVqmdQDwDslJSU5DD1RUYQeoLwocY+PIyEhIUpKStJdd92lvn37OuOQNnbt2qXCwkK9+eabatKkibZt26ZBgwbp7NmzmjZtmqSLKzZ2795d3bp105w5c/TLL79o4MCBCgsL0+OPP+70mgB4F0dDW6tWPad164IUHc3aPEB54ZTgI0lZWVkOb8DnDD169FCPHj2szxs1aqTdu3dr9uzZ1uDzwQcfKDc3V3PnzpW/v79atmypLVu2aPr06QQfAKV2tQnMUVFSXh6rMAPlSYmDz8yZM22eG4ahY8eO6b333lPPnj2dVti1ZGVlqWrVqtbn6enp6tSpk/z9/a1tMTExmjJlik6dOqUqVao4PE5OTo5ycnKsz7Ozs8uuaADlyrWu2urdm54eoLwpcfCZMWOGzXMfHx/VqFFD/fv3V0JCgtMKu5q9e/fqtddes/b2SFJGRobdytE1a9a0bisq+CQnJxf5jxsA75Sbm6vk5GS7diYwA+Wfqev4xMfHa8qUKVfdZ+fOnWrWrJn1+e+//64ePXrogQce0KBBg667hoSEBJvLT7OzsxUZGXndxwVQPrE2D+DZSjXHJzMzU3v37pUkNWnSRGFhYaV681GjRik2Nvaq+zRq1Mj656NHj6pLly7q2LGj3nrrLZv9IiIidPz4cZu2S88jIiKKPH5AQIACAgJKWDkAT+Qo9LzzTpwqVaorcg/gGUoUfA4cOKChQ4cqLS1NhmFIunjvrh49euj1119XgwYNSvTmNWrUUI0aNYq17++//64uXbqobdu2mjdvnnx8bK/Ej46O1vPPP6+8vDz5+flJklasWKGmTZsWOcwFAJL04Ycf6tdff7VrX7gwUUeOSE2bmlAUgDJhMS4lmGs4fPiwbr75Zvn5+enJJ59U8+bNJUk7duzQ7NmzlZ+frx9++EF169Z1epG///67OnfurPr162vBggXy9fW1brvUm5OVlaWmTZuqe/fuGjNmjLZt26aBAwdqxowZJbqqKzs7W6GhocrKylJISIjTPwsA91LU0FZaWqLi46WUlItXbTGJGXBvxf3+LnbwiYuL0969e5WWlqbAwECbbefPn1ePHj10ww036J133rm+yh2YP3++BgwY4HDb5eX//PPPGjp0qPUmqk899ZTGjBlTovci+ADew1HoiYpKJOwA5ZDTg0+dOnW0ePFi3XbbbQ63r1u3Tg899JCOHj1auordBMEH8HxMYAY8T3G/v4t9y4p///vfV53D06hRI/35558lKhIAXM1R6Fm+vLsWLiT0AN6g2MGnVq1a2rFjR5Hbt23bdtWrpwDATFu2bClyaMtiiRa39gO8Q7Gv6urTp4+effZZrVy50u5KrBMnTmjMmDHq06ePs+sDgOtWnBWYAXiHYs/xOXXqlDp06KCMjAz985//VLNmzWQYhnbu3KkPP/xQERER+u6772xuI1EeMccH8CyOQs/48eNlsVhMqAZAWSnu93exe3yqVKmif/3rXxo7dqwWLVqkzMxMSVJYWJgeeeQRvfjii+U+9ADwHExgBuBIsXt8LmcYhk6ePCnp4iKEnvQ/J3p8gPLPUeipX7/+NVeKB1B+Ob3H53IWi0Xh4eGlLg4AysLJkyf1xhtv2LWnpSVq40YTCgLgdkoVfADA3VxrBWYAkAg+AMq51FRp82b70NOq1Rjde28gNxcFYIPgA6DcKqqXZ8KEREVHS/fe6+KCALi9Yi9gCADupKjQExV1MfQwvAXAkWL1+MycObPYBxw+fHipiwGAa8nLy9OLL75o1x4VlWhdiJAFCQEUpViXszds2LB4B7NY9Ntvv113UWbicnbAfV1raIsrtwDv5dTL2ffv3++0wgCgNByFngEDBmjLlnoMbQEotlJPbs7NzdX+/fvVuHFjVajAHGkAZePTTz/Vtm3b7NovrcBcrx5DWwCKr8STm8+dO6e4uDgFBwerZcuWOnTokCTpqaeeUkpKitMLBOC9kpKSrhp6AKCkShx8EhIStHXrVq1Zs0aBgYHW9m7dumnx4sVOLQ6A93I0tBUVlUjoAXBdSjxGtXTpUi1evFi33HKLzT26WrZsqX379jm1OADeh5uLAihLJQ4+J0+edHifrrNnz3rUzUoBuJ6j0FO79t81aFBHE6oB4IlKHHzatWunL774Qk899ZQkWcPOO++8o+joaOdWB8ArbNmyRZ9//rldO708AJytxMHnxRdfVM+ePbVjxw7l5+fr1Vdf1Y4dO7Rx40atXbu2LGoE4MGutgIzADhbiYPPbbfdpi1btiglJUWtWrXS119/rZtuuknp6elq1apVWdQIwEM5Cj3jx49n2BxAmSnWys3ehJWbgbLHBGYAzubUlZuzs7OL/caEBQBX4yj01KxZU4MHDzahGgDepljBJywsrNhdzwUFBddVEADP9Mcff+j111+3a6eXB4ArFSv4rF692vrnAwcOKD4+XrGxsdaruNLT07VgwQIlJyeXTZUAyjWGtgC4ixLP8fnb3/6mxx57TA8//LBN+4cffqi33npLa9ascWZ9LsccH8C5HIWeVatGa+3aYBOqAeCpnDrH53Lp6emaM2eOXXu7du302GOPlfRwADxUcnKycnNz7drffjtRb7xhQkEAoFLcqysyMlJvv/22Xfs777yjyMhIpxQFoHxLSkpyGHoSExN15Ah3UwdgnhL3+MyYMUP33XefvvrqK3Xo0EGS9P333+vXX3/Vp59+6vQCAZQf+fn5mjx5sl07c3kAuItSreNz5MgRvfHGG9q1a5ckqXnz5ho8eLBH9PgwxwcoHSYwAzBTcb+/WcDwCgQfoOQchZ64uDjVrVvXhGoAeKMym9wsSZmZmXr33Xe1c+dOSVLLli01cOBAhYaGlq5aAOXSsmXLtGnTJrt2enkAuKsS9/j8+OOPiomJUVBQkNq3by9J+uGHH3T+/HnrfbvKM3p8gOJhaAuAOymzoa7bb79dTZo00dtvv60KFS52GOXn5+uxxx7Tb7/9pnXr1l1f5SYj+ADX5ij0EHgAmKnMgk9QUJA2b96sZs2a2bTv2LFD7dq107lz50pXsZsg+ABFo5cHgLsqszk+ISEhOnTokF3wOXz4sCpXrlzySgGUC45CT/fu3a23rgGA8qDEwefBBx9UXFycpk2bpo4dO0qSNmzYoNGjR9vdxgJA+bdz50599NFHdu308gAoj0ocfKZNmyaLxaJ+/fopPz9fkuTn56chQ4YoJSXF6QUCMA9DWwA8TanX8Tl37pz27dsnSWrcuLGCgz3jhoPM8QEuchR6xo8fL4vFYkI1AHB1ZbqOjyQFBwerVatWpX05ADdFLw8AT1bs4DNw4MBi7Td37txSFwPAXI5CT7169TRgwAATqgEA5yt28Jk/f77q16+vqKgocZcLwLOcOnVKM2fOtGunlweApyl28BkyZIgWLlyo/fv3a8CAAfrnP/+pqlWrlmVtAFyAoS0A3qREk5tzcnK0ZMkSzZ07Vxs3blSvXr0UFxen7t27e8yERyY3w5s4Cj2jR4/2mIsVAHiPMr87+8GDBzV//nz93//9n/Lz87V9+3ZVqlSp1AW7C4IPvMHUqVN1/vx5u3Z6eQCUV2V+VZePj48sFosMw1BBQUFpDwPAxRjaAuDNShR8Lh/qWr9+ve688069/vrr6tGjh3x8fMqqRgBOUFBQoBdeeMGuncADwJsUO/g8+eSTWrRokSIjIzVw4EAtXLhQ1atXL8vaADgJvTwAcFGx5/j4+PioXr16ioqKuupE5iVLljitODMwxweeJDVV2rzZPvTExcWpbt26JlQEAGXD6XN8+vXr5zFXbgGeLDVVSkmR+vb9WidOpNttp5cHgDcr9VVdnooeH5R3HTtKMTEMbQHwLmV+VRcA9+Qo9BB4AOAigg/gIZjADADXRvABPICj0NO9e3dFR0ebUA0AuC+CD1CO7du3T++//75dO708AOAYqw4C5VRSUtJVQ09q6sWJzqmprq4MANwXPT5AOeRoaGv8+PE2S06kpEjp6Rd/9u7tyuoAwH0RfIBypCQTmOPjL4ae+PiyrgoAyg+CD1BOOAo9f/nLX/Twww873L93b3p6AOBKBB/AzZ0+fVrTp0+3a2cCMwCUHMEHcGOszQMAzkXwAdyUo9Dz3HPPKSgoyIRqAMAzEHwAN7Nw4ULt2bPHrp1eHgC4fuVuHZ+cnBy1adNGFotFW7Zssdn2888/6/bbb1dgYKAiIyM1depUc4oESikpKcku9OTmBikqitADAM5Q7np8nnvuOdWuXVtbt261ac/Ozlb37t3VrVs3zZkzR7/88osGDhyosLAwPf744yZVCxRPQUGBXnjhBbt2enkAwLnKVfD56quv9PXXX+vTTz/VV199ZbPtgw8+UG5urubOnSt/f3+1bNlSW7Zs0fTp0wk+cGtMYAYA1yk3wef48eMaNGiQli5dquDgYLvt6enp6tSpk/z9/a1tMTExmjJlik6dOqUqVao4PG5OTo5ycnKsz7Ozs51fPFAER6HniSeeUEREhAnVAIDnKxdzfAzDUGxsrAYPHqx27do53CcjI0M1a9a0abv0PCMjo8hjJycnKzQ01PqIjIx0XuFAEf71r385DD2JiYmEHgAoQ6YGn/j4eFkslqs+du3apddee02nT59WQkKC02tISEhQVlaW9XH48GGnvwdwuaSkJC1fvtyunaEtACh7pg51jRo1SrGxsVfdp1GjRlq1apXS09MVEBBgs61du3Z69NFHtWDBAkVEROj48eM22y89v9r/oAMCAuyOC5SVonp5AACuYWrwqVGjhmrUqHHN/WbOnGlzxcvRo0cVExOjxYsXq0OHDpKk6OhoPf/888rLy5Ofn58kacWKFWratGmR83sAV2ECMwC4h3IxublevXo2zytVqiRJaty4serWrStJeuSRR5SUlKS4uDiNGTNG27Zt06uvvqoZM2a4vF7gco5Cz9133602bdq4vhgA8HLlIvgUR2hoqL7++msNHTpUbdu2VfXq1TV+/HguZYdpjh07prfeesuunV4eADCPxTAMw+wi3El2drZCQ0OVlZWlkJAQs8tBOcXQFgC4VnG/vz2mxwdwF45Cz/jx42WxWEyoBgBwOYIP4CRvv/22jh49atdOLw8AuA+CD+AEjnp5OnXqpC5duphQDQCgKAQf4DqcP39eU6dOtWunlwcA3BPBByiF1FRp8+aiJzCnpkopKVJ8vNS7t4uLAwAUqVzcqwtwN45Cz5gxY6w9PSkpUnr6xZ+XpKZKHTte/AkAMAfBByiBdevWFXnbicDAQOvz+HgpOvriz0schSEAgGsx1AUUk6PA06BBA/Xv39+uvXdv+yGu+Pj/Dn8BAMxB8AGuobCwUJMmTbJrL+kEZkdhCADgWgQf4CpYgRkAPAvBByiCo9Dz1FNPqWrVqiZUAwBwBoIPcIU9e/Zo4cKFdu308gBA+UfwAS7jqJfHz89PY8eONaEaAICzEXyA/yjqMnUAgOcg+MDrTZo0SYWFhXbthB4A8DwEH3g1R708jz76qJo0aWJCNQCAskbwgVf697//rVmzZtm108sDAJ6NW1bA4115j6ykpCRCDwB4KXp84PEuv0eWo5uLjh8/XhaLxYTKAACuRvCBx4uPl9LSFio8fI/dNnp5AMC7EHzg8TZvTlJ4uG1bt27ddOutt5pTEADANAQfeKzc3FwlJyfbtdPLAwDei+ADj8TNRQEAjhB84HEchZ6//jVe99wTYEI1AAB3QvCBx9i8ebNSL12zfhl6eQAAlxB84BEc9fLccsstiomJMaEaAIC7IvigXDMMQxMnTrRrp5cHAOAIwQflUmqq48UIJUIPAKBoBB+US45Cz9NPP62wsDDXFwMAKDe4Vxfc0pX317rk0KFDDufzJCYmEnoAANdEjw/c0uX31+rd+2Kbo8Bz6lRdvfJKnIurAwCUV/T4wC3Fx0vR0Rd/So5DT1paorp2JfQAAIrPYhiGYXYR7iQ7O1uhoaHKyspSSEiI2eV4vXfffVdHjhyxa2cCMwDgcsX9/maoC27LUS/PgAEDVK9ePROqAQB4AoIP3E52drZmzJhh104vDwDgehF84Fa4uSgAoCwRfOA2HIWe8ePHy2KxmFANAMATEXxgunXr1mn16tV27fTyAACcjeADUznq5bn//vvVsmVLE6oBAHg6gg9MkZeXpxdffNGunV4eAEBZIvjA5ZjADAAwC8EHLuUo9CQkJMjf39+EagAA3obgA5fYsWOHPv74Y7t2enkAAK5E8EGZc9TLc8cdd6hz586uLwYA4NUIPigzhmFo4sSJdu308gAAzELwQZl48cUZysvLtmsn9AAAzETwgdM5GtoaMWKEQkNDTagGAID/IvjAKVJTpddeO6Hbbpttt41eHgCAuyD4wCk2b07SbbfZtv31r3/VPffcY05BAAA4QPDBdXM0tEUvDwDAHRF8UGrffvutVq1aZddO6AEAuCuCD0rFUS/PkCFDFB4ebkI1AAAUD8EHJXL+/HlNnTrVrp1eHgBAeUDwQbE56uVp2bKl7r//fhOqAQCg5Ag+KBZHoWf8+PGyWCwmVAMAQOkQfHBV27dv1yeffGLXztAWAKA8IvigSI56efr3768GDRq4vhgAAJyA4AM7+fn5mjx5sl07vTwAgPKO4AMbb775pjIyMmzaqlWrpmHDhplUEQAAzkPw8VKpqVJKihQfL/XufbHN0dDW2LFj5efn5+LqAAAoGwQfL5WSIqWnX/wZFXVYc+fOtduHoS0AgKch+Hip+PiLoScmJklXZp4+ffqodevW5hQGAEAZIvh4qbvuMrR580S7dnp5AACezMfsAkriiy++UIcOHRQUFKQqVaqoT58+NtsPHTqkXr16KTg4WOHh4Ro9erTy8/PNKdaNrVmzRhMnEnoAAN6n3PT4fPrppxo0aJBefPFFde3aVfn5+dq2bZt1e0FBgXr16qWIiAht3LhRx44dU79+/eTn56cXX3zRxMrdi6MJzM8++6wqVqxoQjUAALiWxTAMw+wiriU/P18NGjRQUlKS4uLiHO7z1Vdf6c4779TRo0dVs2ZNSdKcOXM0ZswYnTx5Uv7+/sV6r+zsbIWGhiorK0shISFO+wxmy87O1owZM+za6eUBAHiC4n5/l4uhrp9++km///67fHx8FBUVpVq1aqlnz542PT7p6elq1aqVNfRIUkxMjLKzs7V9+/Yij52Tk6Ps7Gybh6eZNGmSXejp1asXoQcA4HXKRfD57bffJEkTJkzQuHHjtGzZMlWpUkWdO3fWn3/+KUnKyMiwCT2SrM+vXJDvcsnJyQoNDbU+IiMjy+hTmCMpKUmFhYU2bYmJiWrXrp1JFQEAYB5Tg098fLwsFstVH7t27bJ+cT///PO677771LZtW82bN08Wi0Uff/zxddWQkJCgrKws6+Pw4cPO+Gim27Jli8P5PPTyAAC8mamTm0eNGqXY2Nir7tOoUSMdO3ZMktSiRQtre0BAgBo1aqRDhw5JkiIiIvT999/bvPb48ePWbUUJCAhQQEBAacp3W44Cz9NPP62wsDDXFwMAgBsxNfjUqFFDNWrUuOZ+bdu2VUBAgHbv3q3bbrtNkpSXl6cDBw6ofv36kqTo6GhNnjxZJ06cUHh4uCRpxYoVCgkJsQlMniwnJ0cpKSl27fTyAABwUbm4nD0kJESDBw9WYmKiIiMjVb9+fb300kuSpAceeECS1L17d7Vo0UJ9+/bV1KlTlZGRoXHjxmno0KEe16PjyFtvvWXtGbukY8eO+vvf/25SRQAAuJ9yEXwk6aWXXlKFChXUt29fnT9/Xh06dNCqVatUpUoVSZKvr6+WLVumIUOGKDo6WhUrVlT//v0dLtTnaRwNbY0fP14Wi8WEagAAcF/lYh0fVypP6/gcPXpUb7/9tl07Q1sAAG9T3O/vctPjA1uOennWr39STz117TlTAAB4K4JPOVNYWKhJkybZtaelJSo9XTp7Vurd24TCAAAoBwg+5cjOnTv10Ucf2bTdfvvt6tq1q6KipJQUKT7epOIAACgHCD7lhKOhrXHjxsnX11fSxV4eenoAALg6go+bO3PmjF5++WWbtj//bKC//a2//pN5AABAMRF83Nj27dv1ySef2LR9++0wrVxZTT/8QA8PAAAlRfBxQ4ZhaMGCBTp48KBNe2JiolJTpXPnmMsDAEBpEHzcTGZmpl599VWbtvvvv18tW7aUxFweAACuB8HHjWzYsEHffPON9XlAQIBGjx5tncAMAACuD8HHDeTn52vy5Mk2bT169FCHDh2Umvrfy9Tp6QEA4PoQfEx28OBBzZ8/36btmWeesS63nZIipadf/EnwAQDg+hB8TPTRRx9p586d1uc33HCDHnnkEZt94uNZmBAAAGch+JjA0do8ffv2VaNGjez2ZTIzAADOQ/BxsU2bNmnZsmU2bWPHjpWfn59JFQEA4D0IPi5SWFio6dOn6+zZs9a2zp0764477jCxKgAAvAvBx0WmTZum8+fPW58/9dRTqlq1qokVAQDgfQg+LlKlShWdP39ederUUVxcnCwWi9klAQDgdQg+LhIbGyvDMOTv7292KQAAeC2Cj4sweRkAAPP5mF0AAACAqxB8AACA1yD4AAAAr0HwcZHUVKljx4s/AQCAOQg+LnL5zUYBAIA5CD4uEh8vRUdzs1EAAMzE5ewuws1GAQAwHz0+AADAaxB8AACA1yD4AAAAr0HwAQAAXoPgAwAAvAbBBwAAeA2CDwAA8BoEHwAA4DUIPgAAwGsQfAAAgNcg+AAAAK9B8AEAAF6D4AMAALwGd2e/gmEYkqTs7GyTKwEAAMV16Xv70vd4UQg+Vzh9+rQkKTIy0uRKAABASZ0+fVqhoaFFbrcY14pGXqawsFBHjx5V5cqVZbFYzC7HabKzsxUZGanDhw8rJCTE7HJwGc6Ne+P8uDfOj3tz5fkxDEOnT59W7dq15eNT9Eweenyu4OPjo7p165pdRpkJCQnhHwc3xblxb5wf98b5cW+uOj9X6+m5hMnNAADAaxB8AACA1yD4eImAgAAlJiYqICDA7FJwBc6Ne+P8uDfOj3tzx/PD5GYAAOA16PEBAABeg+ADAAC8BsEHAAB4DYIPAADwGgQfL/DFF1+oQ4cOCgoKUpUqVdSnTx+b7YcOHVKvXr0UHBys8PBwjR49Wvn5+eYU66VycnLUpk0bWSwWbdmyxWbbzz//rNtvv12BgYGKjIzU1KlTzSnSyxw4cEBxcXFq2LChgoKC1LhxYyUmJio3N9dmP86PeWbNmqUGDRooMDBQHTp00Pfff292SV4pOTlZN998sypXrqzw8HD16dNHu3fvttnnwoULGjp0qKpVq6ZKlSrpvvvu0/Hjx02pl+Dj4T799FP17dtXAwYM0NatW7VhwwY98sgj1u0FBQXq1auXcnNztXHjRi1YsEDz58/X+PHjTaza+zz33HOqXbu2XXt2dra6d++u+vXra9OmTXrppZc0YcIEvfXWWyZU6V127dqlwsJCvfnmm9q+fbtmzJihOXPmaOzYsdZ9OD/mWbx4sUaOHKnExET99NNPat26tWJiYnTixAmzS/M6a9eu1dChQ/Xdd99pxYoVysvLU/fu3XX27FnrPs8884z+3//7f/r444+1du1aHT16VPfee685BRvwWHl5eUadOnWMd955p8h9vvzyS8PHx8fIyMiwts2ePdsICQkxcnJyXFGm1/vyyy+NZs2aGdu3bzckGZs3b7Zue+ONN4wqVarYnIsxY8YYTZs2NaFSTJ061WjYsKH1OefHPO3btzeGDh1qfV5QUGDUrl3bSE5ONrEqGIZhnDhxwpBkrF271jAMw8jMzDT8/PyMjz/+2LrPzp07DUlGenq6y+ujx8eD/fTTT/r999/l4+OjqKgo1apVSz179tS2bdus+6Snp6tVq1aqWbOmtS0mJkbZ2dnavn27GWV7lePHj2vQoEF67733FBwcbLc9PT1dnTp1kr+/v7UtJiZGu3fv1qlTp1xZKiRlZWWpatWq1uecH3Pk5uZq06ZN6tatm7XNx8dH3bp1U3p6uomVQbr490SS9e/Kpk2blJeXZ3O+mjVrpnr16plyvgg+Huy3336TJE2YMEHjxo3TsmXLVKVKFXXu3Fl//vmnJCkjI8Mm9EiyPs/IyHBtwV7GMAzFxsZq8ODBateuncN9OD/uY+/evXrttdf0xBNPWNs4P+b497//rYKCAoe/e37v5iosLNSIESN066236sYbb5R08e+Cv7+/wsLCbPY163wRfMqh+Ph4WSyWqz4uzU+QpOeff1733Xef2rZtq3nz5slisejjjz82+VN4ruKen9dee02nT59WQkKC2SV7leKen8v9/vvv6tGjhx544AENGjTIpMoB9zd06FBt27ZNixYtMruUIlUwuwCU3KhRoxQbG3vVfRo1aqRjx45Jklq0aGFtDwgIUKNGjXTo0CFJUkREhN2VEJdm2kdERDixau9R3POzatUqpaen293Dpl27dnr00Ue1YMECRURE2F35wPm5PsU9P5ccPXpUXbp0UceOHe0mLXN+zFG9enX5+vo6/N3zezfPsGHDtGzZMq1bt05169a1tkdERCg3N1eZmZk2vT6mnS+XzyqCy2RlZRkBAQE2k5tzc3ON8PBw48033zQM47+Tm48fP27d58033zRCQkKMCxcuuLxmb3Lw4EHjl19+sT7S0tIMScYnn3xiHD582DCM/06ezc3Ntb4uISGBybMucuTIEeOGG24wHnroISM/P99uO+fHPO3btzeGDRtmfV5QUGDUqVOHyc0mKCwsNIYOHWrUrl3b2LNnj932S5ObP/nkE2vbrl27TJvcTPDxcE8//bRRp04dIy0tzdi1a5cRFxdnhIeHG3/++adhGIaRn59v3HjjjUb37t2NLVu2GMuXLzdq1KhhJCQkmFy599m/f7/dVV2ZmZlGzZo1jb59+xrbtm0zFi1aZAQHB1uDK8rOkSNHjCZNmhh/+9vfjCNHjhjHjh2zPi7h/Jhn0aJFRkBAgDF//nxjx44dxuOPP26EhYXZXKEK1xgyZIgRGhpqrFmzxubvyblz56z7DB482KhXr56xatUq48cffzSio6ON6OhoU+ol+Hi43NxcY9SoUUZ4eLhRuXJlo1u3bsa2bdts9jlw4IDRs2dPIygoyKhevboxatQoIy8vz6SKvZej4GMYhrF161bjtttuMwICAow6deoYKSkp5hToZebNm2dIcvi4HOfHPK+99ppRr149w9/f32jfvr3x3XffmV2SVyrq78m8efOs+5w/f9548sknjSpVqhjBwcHGPffcY/OfCFey/KdoAAAAj8dVXQAAwGsQfAAAgNcg+AAAAK9B8AEAAF6D4AMAALwGwQcAAHgNgg8AAPAaBB8AKCNr1qyRxWJRZmam2aUA+A+CD4Bya8KECWrTpo3ZZQAoRwg+ADxeXl6e2SUAcBMEHwCmKSwsVHJysho2bKigoCC1bt1an3zyiaT/DhOtXLlS7dq1U3BwsDp27Kjdu3dLkubPn6+kpCRt3bpVFotFFotF8+fPlyRZLBbNnj1bvXv3VsWKFTV58uSr1nHpvdLS0hQVFaWgoCB17dpVJ06c0FdffaXmzZsrJCREjzzyiM6dO2d9XU5OjoYPH67w8HAFBgbqtttu0w8//FA2vywAzmHKHcIAwDCMF154wWjWrJmxfPlyY9++fca8efOMgIAAY82aNcbq1asNSUaHDh2MNWvWGNu3bzduv/12o2PHjoZhGMa5c+eMUaNGGS1btrS7G7QkIzw83Jg7d66xb98+4+DBg1et49J73XLLLcb69euNn376yWjSpIlxxx13GN27dzd++uknY926dUa1atVsbkI6fPhwo3bt2saXX35pbN++3ejfv79RpUoV448//rA57qlTp8rmFwigxAg+AExx4cIFIzg42Ni4caNNe1xcnPHwww9bQ8M333xj3fbFF18Ykozz588bhmEYiYmJRuvWre2OLckYMWJEsWtx9F7JycmGJGPfvn3WtieeeMKIiYkxDMMwzpw5Y/j5+RkffPCBdXtubq5Ru3ZtY+rUqTbHJfgA7qOCWT1NALzb3r17de7cOf3973+3ac/NzVVUVJT1+V//+lfrn2vVqiVJOnHihOrVq3fV47dr167ENV3+XjVr1lRwcLAaNWpk0/b9999Lkvbt26e8vDzdeuut1u1+fn5q3769du7cWeL3BuAaBB8Apjhz5owk6YsvvlCdOnVstgUEBGjfvn2SLoaJSywWi6SLc4OupWLFiiWu6cr3uvz5pbbivDcA98XkZgCmaNGihQICAnTo0CE1adLE5hEZGVmsY/j7+6ugoKCMK3WscePG8vf314YNG6xteXl5+uGHH9SiRQtTagJwbfT4ADBF5cqV9eyzz+qZZ55RYWGhbrvtNmVlZWnDhg0KCQlR/fr1r3mMBg0aaP/+/dqyZYvq1q2rypUrKyAgwAXVX+xRGjJkiEaPHq2qVauqXr16mjp1qs6dO6e4uDiX1ACg5Ag+AEwzadIk1ahRQ8nJyfrtt98UFhamm266SWPHji3WkNJ9992nJUuWqEuXLsrMzNS8efMUGxtb9oX/R0pKigoLC9W3b1+dPn1a7dq1U1pamqpUqeKyGgCUjMUwDMPsIgAAAFyBOT4AAMBrEHwAeLzBgwerUqVKDh+DBw82uzwALsRQFwCPd+LECWVnZzvcFhISovDwcBdXBMAsBB8AAOA1GOoCAABeg+ADAAC8BsEHAAB4DYIPAADwGgQfAADgNQg+AADAaxB8AACA1yD4AAAAr/H/AcViq4mCWowBAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -588,7 +761,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEsklEQVR4nO3deXgU9eHH8c/mJAESrlwoR7iESEAUgRgEFGpA1CJYQVBAEKsSESwK+CsKigSpB8UDLCpoFUtFrIgXFBAKROQQD0SKNBiUhEPMRki4kvn9YbMlkGOz2d2Znbxfz7PPAzOzu9/9Znb3s99rHIZhGAIAALCpILMLAAAA4EuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQCWMG3aNDkcDreOdTgcmjZtmk/L06tXL/Xq1cuyjwfAfYQdAKUsWrRIDofDdQsJCdEFF1ygkSNH6scffzS7eJbTvHnzUvUVGxurK6+8Uu+8845XHr+goEDTpk3TJ5984pXHA2oiwg6AMj366KP661//qvnz56tfv356/fXX1bNnT504ccInz/fHP/5RhYWFPnlsX7vkkkv017/+VX/96181ceJEHThwQAMHDtT8+fOr/dgFBQWaPn06YQeohhCzCwDAmvr166fOnTtLku644w41atRITzzxhJYvX66bb77Z688XEhKikJDA/Ei64IILdOutt7r+P3z4cLVq1UrPPPOM7rrrLhNLBkCiZQeAm6688kpJ0t69e0tt//bbb3XTTTepQYMGqlWrljp37qzly5eXOub06dOaPn26WrdurVq1aqlhw4bq3r27Vq1a5TqmrDE7J0+e1IQJExQTE6O6devqhhtu0A8//HBe2UaOHKnmzZuft72sx1y4cKGuvvpqxcbGKjw8XElJSZo3b16V6qIy8fHxateunbKysio87tChQxo9erTi4uJUq1YtdezYUa+++qpr/759+xQTEyNJmj59uqurzNfjlQC7CcyfUQD8bt++fZKk+vXru7bt3LlTqampuuCCCzR58mTVrl1bf//73zVgwAC9/fbbuvHGGyX9GjoyMjJ0xx13qEuXLsrPz9fWrVu1fft2/eY3vyn3Oe+44w69/vrrGjp0qK644gqtWbNG/fv3r9brmDdvni6++GLdcMMNCgkJ0Xvvvad77rlHxcXFGjt2bLUeu8Tp06e1f/9+NWzYsNxjCgsL1atXL3333XdKT09XYmKi3nrrLY0cOVJ5eXm67777FBMTo3nz5unuu+/WjTfeqIEDB0qSOnTo4JVyAjWGAQBnWbhwoSHJ+Oc//2kcPnzY2L9/v7F06VIjJibGCA8PN/bv3+86tnfv3kZycrJx4sQJ17bi4mLjiiuuMFq3bu3a1rFjR6N///4VPu8jjzxinP2RtGPHDkOScc8995Q6bujQoYYk45FHHnFtGzFihNGsWbNKH9MwDKOgoOC849LS0owWLVqU2tazZ0+jZ8+eFZbZMAyjWbNmxjXXXGMcPnzYOHz4sPHFF18YQ4YMMSQZ9957b7mPN2fOHEOS8frrr7u2nTp1ykhJSTHq1Klj5OfnG4ZhGIcPHz7v9QKoGrqxAJSpT58+iomJUZMmTXTTTTepdu3aWr58uS688EJJ0tGjR7VmzRrdfPPN+uWXX3TkyBEdOXJEP/30k9LS0rRnzx7X7K169epp586d2rNnj9vP/8EHH0iSxo0bV2r7+PHjq/W6IiIiXP92Op06cuSIevbsqf/85z9yOp0ePebKlSsVExOjmJgYdezYUW+99ZZuu+02PfHEE+Xe54MPPlB8fLxuueUW17bQ0FCNGzdOx44d07p16zwqC4Dz0Y0FoEzPP/+82rRpI6fTqVdeeUXr169XeHi4a/93330nwzA0depUTZ06tczHOHTokC644AI9+uij+u1vf6s2bdqoffv26tu3r2677bYKu2O+//57BQUFqWXLlqW2X3TRRdV6XRs3btQjjzyizMxMFRQUlNrndDoVHR1d5cfs2rWrZsyYIYfDocjISLVr10716tWr8D7ff/+9WrduraCg0r8527Vr59oPwDsIOwDK1KVLF9dsrAEDBqh79+4aOnSodu/erTp16qi4uFiSNHHiRKWlpZX5GK1atZIk9ejRQ3v37tW7776rlStX6qWXXtIzzzyj+fPn64477qh2WctbjLCoqKjU//fu3avevXurbdu2evrpp9WkSROFhYXpgw8+0DPPPON6TVXVqFEj9enTx6P7AvA9wg6ASgUHBysjI0NXXXWVnnvuOU2ePFktWrSQ9GvXiztf9A0aNNDtt9+u22+/XceOHVOPHj00bdq0csNOs2bNVFxcrL1795Zqzdm9e/d5x9avX195eXnnbT+3deS9997TyZMntXz5cjVt2tS1fe3atZWW39uaNWumL7/8UsXFxaVad7799lvXfqn8IAfAfYzZAeCWXr16qUuXLpozZ45OnDih2NhY9erVSy+++KJycnLOO/7w4cOuf//000+l9tWpU0etWrXSyZMny32+fv36SZLmzp1bavucOXPOO7Zly5ZyOp368ssvXdtycnLOW8U4ODhYkmQYhmub0+nUwoULyy2Hr1x77bXKzc3VkiVLXNvOnDmjZ599VnXq1FHPnj0lSZGRkZJUZpgD4B5adgC47YEHHtDvfvc7LVq0SHfddZeef/55de/eXcnJyRozZoxatGihgwcPKjMzUz/88IO++OILSVJSUpJ69eqlyy67TA0aNNDWrVu1dOlSpaenl/tcl1xyiW655Ra98MILcjqduuKKK7R69Wp999135x07ZMgQTZo0STfeeKPGjRungoICzZs3T23atNH27dtdx11zzTUKCwvT9ddfr9///vc6duyYFixYoNjY2DIDmy/deeedevHFFzVy5Eht27ZNzZs319KlS7Vx40bNmTNHdevWlfTrgOqkpCQtWbJEbdq0UYMGDdS+fXu1b9/er+UFAprZ08EAWEvJ1PMtW7act6+oqMho2bKl0bJlS+PMmTOGYRjG3r17jeHDhxvx8fFGaGioccEFFxjXXXedsXTpUtf9ZsyYYXTp0sWoV6+eERERYbRt29Z4/PHHjVOnTrmOKWuaeGFhoTFu3DijYcOGRu3atY3rr7/e2L9/f5lTsVeuXGm0b9/eCAsLMy666CLj9ddfL/Mxly9fbnTo0MGoVauW0bx5c+OJJ54wXnnlFUOSkZWV5TquKlPPK5tWX97jHTx40Lj99tuNRo0aGWFhYUZycrKxcOHC8+67adMm47LLLjPCwsKYhg54wGEYZ7XnAgAA2AxjdgAAgK0RdgAAgK0RdgAAgK0RdgAAgK0RdgAAgK0RdgAAgK2xqKCk4uJiHThwQHXr1mVpdgAAAoRhGPrll1/UuHHj8y6qezbCjqQDBw6oSZMmZhcDAAB4YP/+/brwwgvL3U/YkVzLsu/fv19RUVEmlwYAALgjPz9fTZo0cX2Pl4ewo/9dVTgqKoqwAwBAgKlsCAoDlAEAgK0RdgAAgK0RdgAAgK0xZqcKioqKdPr0abOLgSoKDQ1VcHCw2cUAAJiEsOMGwzCUm5urvLw8s4sCD9WrV0/x8fGsowQANRBhxw0lQSc2NlaRkZF8YQYQwzBUUFCgQ4cOSZISEhJMLhEAwN8IO5UoKipyBZ2GDRuaXRx4ICIiQpJ06NAhxcbG0qUFADUMA5QrUTJGJzIy0uSSoDpK/n6MuQKAmoew4ya6rgIbfz8AqLkIOwAAwNYIO6gyh8Ohf/zjH2YXo5RPPvlEDoeDGXMAgPMQdlCuadOm6ZJLLjG7GABgCTnOQm3ae0Q5zkKzi4IqYjYWAACVWLIlW1OWfaViQwpySBkDkzX48qZmFwtuomXHxoqLi5WRkaHExERFRESoY8eOWrp0qaT/dfusXr1anTt3VmRkpK644grt3r1bkrRo0SJNnz5dX3zxhRwOhxwOhxYtWuR67CNHjujGG29UZGSkWrdureXLl7tVppLn/fjjj9WpUydFRETo6quv1qFDh/Thhx+qXbt2ioqK0tChQ1VQUOC638mTJzVu3DjFxsaqVq1a6t69u7Zs2eK9ygKAcuQ4C11BR5KKDemhZV/TwhNACDt+5O8m0IyMDL322muaP3++du7cqQkTJujWW2/VunXrXMf83//9n5566ilt3bpVISEhGjVqlCRp8ODB+sMf/qCLL75YOTk5ysnJ0eDBg133mz59um6++WZ9+eWXuvbaazVs2DAdPXrU7bJNmzZNzz33nDZt2qT9+/fr5ptv1pw5c7R48WK9//77WrlypZ599lnX8Q8++KDefvttvfrqq9q+fbtatWqltLS0Kj0nAHgi68hxV9ApUWQY2nekoOw7wHIIO36yZEu2Umet0dAFm5U6a42WbMn26fOdPHlSM2fO1CuvvKK0tDS1aNFCI0eO1K233qoXX3zRddzjjz+unj17KikpSZMnT9amTZt04sQJRUREqE6dOgoJCVF8fLzi4+Ndi/NJ0siRI3XLLbeoVatWmjlzpo4dO6bPPvvM7fLNmDFDqamp6tSpk0aPHq1169Zp3rx56tSpk6688krddNNNWrt2rSTp+PHjmjdvnv70pz+pX79+SkpK0oIFCxQREaGXX37Ze5UGAGVIbFRbQeesXhHscKh5I9ZfCxSEHT8wown0u+++U0FBgX7zm9+oTp06rttrr72mvXv3uo7r0KGD698ll1IoubRCRc6+X+3atRUVFeXW/cq6f1xcnCIjI9WiRYtS20oeb+/evTp9+rRSU1Nd+0NDQ9WlSxft2rXL7ecEAE8kREcoY2Cygv+7Xleww6GZA9srITqiknvCKhig7AcVNYH66s1y7NgxSdL777+vCy64oNS+8PBwV+AJDQ11bS9ZeK+4uLjSxz/7fiX3ded+Zd3f4XBU+/EAwJcGX95UPdrEaN+RAjVvFEnQCTCEHT8oaQI9O/D4ugk0KSlJ4eHhys7OVs+ePc/bf3brTnnCwsJUVFTki+JVScuWLRUWFqaNGzeqWbNmkn697MOWLVs0fvx4cwsHoMZIiI4g5AQowo4flDSBPrTsaxUZhl+aQOvWrauJEydqwoQJKi4uVvfu3eV0OrVx40ZFRUW5QkNFmjdvrqysLO3YsUMXXnih6tatq/DwcJ+VuTy1a9fW3XffrQceeEANGjRQ06ZNNXv2bBUUFGj06NF+Lw8AILAQdvzEjCbQxx57TDExMcrIyNB//vMf1atXT5deeqkeeught7qIBg0apGXLlumqq65SXl6eFi5cqJEjR/q83GWZNWuWiouLddttt+mXX35R586d9fHHH6t+/fqmlAcAEDgchmEYlR9mb/n5+YqOjpbT6VRUVFSpfSdOnFBWVpYSExNVq1Ytk0qI6uLvCAD2U9H399mYjQUAAGyNsAOvuuuuu0pNdT/7dtddd5ldPABADcSYHXjVo48+qokTJ5a5r6ImRgAAfIWwA6+KjY1VbGys2cUAAMCFbiwAAGBrhB03sZpvYOPvBwA1F91YlQgLC1NQUJAOHDigmJgYhYWFuS6rAOszDEOnTp3S4cOHFRQUpLCwMLOLBADwM8JOJYKCgpSYmKicnBwdOHDA7OLAQ5GRkWratKmCgmjMBICahrDjhrCwMDVt2lRnzpyxxLWiUDXBwcEKCQmhRQ4AaijCjptKrsx97tW5AQCAtdGmDwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbM3UsFNUVKSpU6cqMTFRERERatmypR577DEZhuE6xjAMPfzww0pISFBERIT69OmjPXv2lHqco0ePatiwYYqKilK9evU0evRoHTt2zN8vBwAAWJCpYeeJJ57QvHnz9Nxzz2nXrl164oknNHv2bD377LOuY2bPnq25c+dq/vz52rx5s2rXrq20tDSdOHHCdcywYcO0c+dOrVq1SitWrND69et15513mvGSAACAxTiMs5tR/Oy6665TXFycXn75Zde2QYMGKSIiQq+//roMw1Djxo31hz/8QRMnTpQkOZ1OxcXFadGiRRoyZIh27dqlpKQkbdmyRZ07d5YkffTRR7r22mv1ww8/qHHjxpWWIz8/X9HR0XI6nYqKivLNiwUAAF7l7ve3qS07V1xxhVavXq1///vfkqQvvvhCGzZsUL9+/SRJWVlZys3NVZ8+fVz3iY6OVteuXZWZmSlJyszMVL169VxBR5L69OmjoKAgbd68ucznPXnypPLz80vdAACAPYWY+eSTJ09Wfn6+2rZtq+DgYBUVFenxxx/XsGHDJEm5ubmSpLi4uFL3i4uLc+3Lzc1VbGxsqf0hISFq0KCB65hzZWRkaPr06d5+OQAAwIJMbdn5+9//rjfeeEOLFy/W9u3b9eqrr+rJJ5/Uq6++6tPnnTJlipxOp+u2f/9+nz4fAAAwj6ktOw888IAmT56sIUOGSJKSk5P1/fffKyMjQyNGjFB8fLwk6eDBg0pISHDd7+DBg7rkkkskSfHx8Tp06FCpxz1z5oyOHj3quv+5wsPDFR4e7oNXBAAArMbUlp2CggIFBZUuQnBwsIqLiyVJiYmJio+P1+rVq1378/PztXnzZqWkpEiSUlJSlJeXp23btrmOWbNmjYqLi9W1a1c/vAoAAGBlprbsXH/99Xr88cfVtGlTXXzxxfr888/19NNPa9SoUZIkh8Oh8ePHa8aMGWrdurUSExM1depUNW7cWAMGDJAktWvXTn379tWYMWM0f/58nT59Wunp6RoyZIhbM7EAAIC9mRp2nn32WU2dOlX33HOPDh06pMaNG+v3v/+9Hn74YdcxDz74oI4fP64777xTeXl56t69uz766CPVqlXLdcwbb7yh9PR09e7dW0FBQRo0aJDmzp1rxksCAAAWY+o6O1bBOjsAAASegFhnBwAAwNcIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNZMDzs//vijbr31VjVs2FARERFKTk7W1q1bXfsNw9DDDz+shIQERUREqE+fPtqzZ0+pxzh69KiGDRumqKgo1atXT6NHj9axY8f8/VIAAIAFmRp2fv75Z6Wmpio0NFQffvihvvnmGz311FOqX7++65jZs2dr7ty5mj9/vjZv3qzatWsrLS1NJ06ccB0zbNgw7dy5U6tWrdKKFSu0fv163XnnnWa8JAAAYDEOwzAMs5588uTJ2rhxo/71r3+Vud8wDDVu3Fh/+MMfNHHiREmS0+lUXFycFi1apCFDhmjXrl1KSkrSli1b1LlzZ0nSRx99pGuvvVY//PCDGjduXGk58vPzFR0dLafTqaioKO+9QAAA4DPufn+b2rKzfPlyde7cWb/73e8UGxurTp06acGCBa79WVlZys3NVZ8+fVzboqOj1bVrV2VmZkqSMjMzVa9ePVfQkaQ+ffooKChImzdvLvN5T548qfz8/FI3AABgT6aGnf/85z+aN2+eWrdurY8//lh33323xo0bp1dffVWSlJubK0mKi4srdb+4uDjXvtzcXMXGxpbaHxISogYNGriOOVdGRoaio6NdtyZNmnj7pQEAAIswNewUFxfr0ksv1cyZM9WpUyfdeeedGjNmjObPn+/T550yZYqcTqfrtn//fp8+HwAAMI+pYSchIUFJSUmltrVr107Z2dmSpPj4eEnSwYMHSx1z8OBB1774+HgdOnSo1P4zZ87o6NGjrmPOFR4erqioqFI3AABgT6aGndTUVO3evbvUtn//+99q1qyZJCkxMVHx8fFavXq1a39+fr42b96slJQUSVJKSory8vK0bds21zFr1qxRcXGxunbt6odXAQAArCzEzCefMGGCrrjiCs2cOVM333yzPvvsM/3lL3/RX/7yF0mSw+HQ+PHjNWPGDLVu3VqJiYmaOnWqGjdurAEDBkj6tSWob9++ru6v06dPKz09XUOGDHFrJhYAALA3U6eeS9KKFSs0ZcoU7dmzR4mJibr//vs1ZswY137DMPTII4/oL3/5i/Ly8tS9e3e98MILatOmjeuYo0ePKj09Xe+9956CgoI0aNAgzZ07V3Xq1HGrDEw9BwAg8Lj7/W162LECwg4AAIEnINbZAQAA8DXCjk3lOAu1ae8R5TgLzS4KAACmMnWAMnxjyZZsTVn2lYoNKcghZQxM1uDLm5pdLAAATEHLjs3kOAtdQUeSig3poWVf08IDAKixCDs2k3XkuCvolCgyDO07UmBOgQAAMBlhx2YSG9VWkKP0tmCHQ80bRZpTIAAATEbYsZmE6AhlDExWsOPXxBPscGjmwPZKiI4wuWQAAJiDAco2NPjypurRJkb7jhSoeaNIgg4AoEZzO+zk5+e7/aAszGe+hOgIQg4AAKpC2KlXr54cDkeFxxiGIYfDoaKiomoXDAAAwBvcDjtr1671ZTkA/FeOs1BZR44rsVFtWucAwAvcDjs9e/b0ZTkAiAUhAcAXPB6gnJeXp5dfflm7du2SJF188cUaNWqUoqOjvVY4oCYpb0HIHm1iaOEBgGrwaOr51q1b1bJlSz3zzDM6evSojh49qqefflotW7bU9u3bvV1GoEZgQUgA8A2PWnYmTJigG264QQsWLFBIyK8PcebMGd1xxx0aP3681q9f79VCAjVByYKQZwceFoQEgOrzuGVn0qRJrqAjSSEhIXrwwQe1detWrxUOqElYEBIAfMOjlp2oqChlZ2erbdu2pbbv379fdevW9UrBgJqIBSEBwPs8CjuDBw/W6NGj9eSTT+qKK66QJG3cuFEPPPCAbrnlFq8WEKhpWBASALzLo7Dz5JNPyuFwaPjw4Tpz5owkKTQ0VHfffbdmzZrl1QICAABUh8MwDKPyw8pWUFCgvXv3SpJatmypyMjAHEiZn5+v6OhoOZ1OLnUBAECAcPf7u1oXAo2MjFRycnJ1HgKwLFYyBgB78CjsnDhxQs8++6zWrl2rQ4cOqbi4uNR+1tpBoGMlYwCwD4/CzujRo7Vy5UrddNNN6tKlS6UXCAUCCSsZA4C9eBR2VqxYoQ8++ECpqaneLg9guopWMibsAEDg8WhRwQsuuID1dCwgx1moTXuPKMdZaHZRbKVkJeOzsZIxAAQuj8LOU089pUmTJun777/3dnngpiVbspU6a42GLtis1FlrtGRLttlFsg1WMgYAe/GoG6tz5846ceKEWrRoocjISIWGhpbaf/ToUa8UDmVjTInvsZIxANiHR2Hnlltu0Y8//qiZM2cqLi6OAcp+xpgS/2AlYwCwB4/CzqZNm5SZmamOHTt6uzxwA1fHBgDAfR6N2Wnbtq0KCxkUaxbGlAAA4D6PLhexcuVKTZ8+XY8//riSk5PPG7MTaJdcCNTLReQ4CxlTAgCosdz9/vYo7AQF/dogdO5YHcMw5HA4VFRUVNWHNFWghh0AAGoyn14ba+3atR4XDAAAwJ88Cjs9e/Z067h77rlHjz76qBo1auTJ0wAAAFSbRwOU3fX6668rPz/fl08BAABQIZ+GHQ+GAwEAAHiVT8MOAACA2Qg7AADA1gg7AADA1gg7AADA1nwadm699VYW6QMAAKbyaJ0dScrLy9Nnn32mQ4cOqbi4uNS+4cOHS5LmzZtXvdIBAABUk0dh57333tOwYcN07NgxRUVFlbpshMPhcIUdAAAAs3nUjfWHP/xBo0aN0rFjx5SXl6eff/7ZdTt69Ki3ywgAAOAxj8LOjz/+qHHjxikyMtLb5QEAAPAqj8JOWlqatm7d6u2yAAAAeJ3bY3aWL1/u+nf//v31wAMP6JtvvlFycrJCQ0NLHXvDDTd4r4QAAADV4DDcvIBVUJB7jUAOh0NFRUXVKpS/5efnKzo6Wk6nk6nyAAAECHe/v91u2Tl3ejkAAEAg8GjMzmuvvaaTJ0+et/3UqVN67bXXql0oAAAAb3G7G+tswcHBysnJUWxsbKntP/30k2JjY+nGAgAAPufu97dHLTuGYZRaSLDEDz/8oOjoaE8eEgAAwCeqtIJyp06d5HA45HA41Lt3b4WE/O/uRUVFysrKUt++fb1eSAAAAE9VKewMGDBAkrRjxw6lpaWpTp06rn1hYWFq3ry5Bg0a5NUCAgCAwJXjLFTWkeNKbFRbCdERppShSmHnkUcekSQ1b95cgwcPVq1atXxSKAAAEPiWbMnWlGVfqdiQghxSxsBkDb68qd/L4dEA5RKnTp0q86rnTZv6/4VUBwOUAQDwrhxnoVJnrVHxWSkj2OHQhslXea2Fx+vr7Jxtz549GjVqlDZt2lRqe8nA5UCbjQUAALwr68jxUkFHkooMQ/uOFPi9O8ujsDNy5EiFhIRoxYoVSkhIKHNmFgAAqLkSG9VWkEPntew0b+T/i4h7FHZ27Nihbdu2qW3btt4uDwAAsIGE6AhlDEzWQ8u+VpFhKNjh0MyB7U0ZpOxR2ElKStKRI0e8XRYAAGAjgy9vqh5tYrTvSIGaN4o0bTaWR4sKPvHEE3rwwQf1ySef6KefflJ+fn6pm6dmzZolh8Oh8ePHu7adOHFCY8eOVcOGDVWnTh0NGjRIBw8eLHW/7Oxs9e/fX5GRkYqNjdUDDzygM2fOeFwOAADgHQnREUpp2dC0oCN52LLTp08fSdLVV19darxOdQYob9myRS+++KI6dOhQavuECRP0/vvv66233lJ0dLTS09M1cOBAbdy4UdKvixn2799f8fHx2rRpk3JycjR8+HCFhoZq5syZnrw8r7HC2gIAANR0HoWdtWvXerUQx44d07Bhw7RgwQLNmDHDtd3pdOrll1/W4sWLdfXVV0uSFi5cqHbt2unTTz9Vt27dtHLlSn3zzTf65z//qbi4OF1yySV67LHHNGnSJE2bNk1hYWFeLau7rLK2AAAANZ1H3Vg9e/ZUUFCQFixYoMmTJ6tVq1bq2bOnsrOzFRwcXOXHGzt2rPr37+9qMSqxbds2nT59utT2tm3bqmnTpsrMzJQkZWZmKjk5WXFxca5j0tLSlJ+fr507d5b5fCdPnvRa11tZcpyFrqAj/ToS/aFlXyvHWejV5wEAAJXzKOy8/fbbSktLU0REhD7//HOdPHlS0q8tMVXtOvrb3/6m7du3KyMj47x9ubm5CgsLU7169Uptj4uLU25uruuYs4NOyf6SfWXJyMhQdHS069akSZMqlbkyFa0tYAU5zkJt2nuE8AUAqBE8CjszZszQ/PnztWDBAoWGhrq2p6amavv27W4/zv79+3XffffpjTfe8OulJ6ZMmSKn0+m67d+/36uPX7K2wNnMWlvgXEu2ZCt11hoNXbBZqbPWaMmWbLOLBACAT3kUdnbv3q0ePXqctz06Olp5eXluP862bdt06NAhXXrppQoJCVFISIjWrVunuXPnKiQkRHFxcTp16tR5j3nw4EHFx8dLkuLj48+bnVXy/5JjzhUeHq6oqKhSN28qWVsg+L+Dt81cW+BsdK8BAGoijwYox8fH67vvvlPz5s1Lbd+wYYNatGjh9uP07t1bX331Valtt99+u9q2batJkyapSZMmCg0N1erVq11XU9+9e7eys7OVkpIiSUpJSdHjjz+uQ4cOKTY2VpK0atUqRUVFKSkpyZOX5xVWWVvgbFZauhsAAH/xKOyMGTNG9913n1555RU5HA4dOHBAmZmZmjhxoqZOner249StW1ft27cvta127dpq2LCha/vo0aN1//33q0GDBoqKitK9996rlJQUdevWTZJ0zTXXKCkpSbfddptmz56t3Nxc/fGPf9TYsWMVHh7uycvzmoToCEuFCCst3Q0AgL94FHYmT56s4uJi9e7dWwUFBerRo4fCw8M1ceJE3XvvvV4t4DPPPKOgoCANGjRIJ0+eVFpaml544QXX/uDgYK1YsUJ33323UlJSVLt2bY0YMUKPPvqoV8thB1ZauhsAAH9xGIZhVH5Y2U6dOqXvvvtOx44dU1JSkurUqePNsvmNu5eIt4scZ6GlutcAAPCEu9/fHrXslAgLCzN1XAw8Y7XuNQAAfMmj2VgAAACBgrADAABsjbADAABsjbDjR1ymAQAA/6vWAGW4j6ugAwBgDlp2/IDLNAAAYB7Cjh9Y/SroAADYGWHHD6x8FXQAAOyOsOMHVr0KOgAANQEDlP3EildBBwCgJiDs+BGXaQAAwP/oxgIAALZG2EG1sVgiAMDK6MZCtbBYIgDA6mjZgcdYLBEAEAgIO/AYiyUCAAIBYQceY7FEAEAgIOzAYyyWCAAIBAxQRrWwWCIAwOoIO6g2FksEAFgZ3VgAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAcA4ubgvYC1PPAeAsXNwWsB9adgDgv7i4LWBPhB0A+C8ubguz0YXqG3RjAcB/lVzc9uzAw8Vt4S90ofoOLTsA8F9c3BZmoQvVt2jZAYCzcHFbmKGiLlTOweoj7KBacpyFyjpyXImNavOGhG1wcVv4G12ovkU3Fjy2ZEu2Umet0dAFm5U6a42WbMk2u0gAEJDoQvUth2EYRuWH2Vt+fr6io6PldDoVFRVldnECQo6zUKmz1pz3K2TD5Kt4cwKAh3KchXShVoG73990Y8Ej9C8DgPfRheobdGPBIyX9y2ejfxkAYEWEHXiE/mUAQKCgGwseY4ouACAQEHZQLfQvAwCsjm4sAABga4QdAABga4QdAABga4QdAABga4QdAABga4QdAABga4QdAPChHGehNu09ohxnodlFAWos1tkBAB9ZsiVbU5Z9pWJDCnJIGQOTNfjypmYXC6hxaNkBAB/IcRa6go4kFRvSQ8u+poUHMAFhBwB8IOvIcVfQKVFkGNp3pMCcAgE1GGEHAHwgsVFtBTlKbwt2ONS8UaQ5BQJqMMIOAPhAQnSEMgYmK9jxa+IJdjg0c2B7riUHmIABygDgI4Mvb6oebWK070iBmjeKJOgAJiHsAIAPJURHEHIAk9GNBQAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbM3UsJORkaHLL79cdevWVWxsrAYMGKDdu3eXOubEiRMaO3asGjZsqDp16mjQoEE6ePBgqWOys7PVv39/RUZGKjY2Vg888IDOnDnjz5eCKuDCiAAAfzI17Kxbt05jx47Vp59+qlWrVun06dO65pprdPz4cdcxEyZM0Hvvvae33npL69at04EDBzRw4EDX/qKiIvXv31+nTp3Spk2b9Oqrr2rRokV6+OGHzXhJqMSSLdlKnbVGQxdsVuqsNVqyJdvsIgEAbM5hGIZR+WH+cfjwYcXGxmrdunXq0aOHnE6nYmJitHjxYt10002SpG+//Vbt2rVTZmamunXrpg8//FDXXXedDhw4oLi4OEnS/PnzNWnSJB0+fFhhYWGVPm9+fr6io6PldDoVFRXl09dYk+U4C5U6a02p6wUFOxzaMPkq1iEBAFSZu9/flhqz43Q6JUkNGjSQJG3btk2nT59Wnz59XMe0bdtWTZs2VWZmpiQpMzNTycnJrqAjSWlpacrPz9fOnTvLfJ6TJ08qPz+/1A2+x4URAQBmsEzYKS4u1vjx45Wamqr27dtLknJzcxUWFqZ69eqVOjYuLk65ubmuY84OOiX7S/aVJSMjQ9HR0a5bkyZNvPxqUBYujAgAMINlws7YsWP19ddf629/+5vPn2vKlClyOp2u2/79+33+nODCiAA8x8QGVIclro2Vnp6uFStWaP369brwwgtd2+Pj43Xq1Cnl5eWVat05ePCg4uPjXcd89tlnpR6vZLZWyTHnCg8PV3h4uJdfBdzBhREBVNWSLdmasuwrFRtSkEPKGJiswZc3NbtYCCCmtuwYhqH09HS98847WrNmjRITE0vtv+yyyxQaGqrVq1e7tu3evVvZ2dlKSUmRJKWkpOirr77SoUOHXMesWrVKUVFRSkpK8s8LQZUkREcopWVDgg6ASuU4C11BR5KKDemhZV/TwmNhVmyFM7VlZ+zYsVq8eLHeffdd1a1b1zXGJjo6WhEREYqOjtbo0aN1//33q0GDBoqKitK9996rlJQUdevWTZJ0zTXXKCkpSbfddptmz56t3Nxc/fGPf9TYsWNpvQGAAFfRxAZ+MFmPVVvhTG3ZmTdvnpxOp3r16qWEhATXbcmSJa5jnnnmGV133XUaNGiQevToofj4eC1btsy1Pzg4WCtWrFBwcLBSUlJ06623avjw4Xr00UfNeEkAAoAVf3mibExsCBxWboWz1Do7ZmGdHaDmsOovT5RvyZZsPbTsaxUZhmtiA38z69m094iGLth83vY3x3RTSsuGPnlOd7+/LTFAGQD8obxfnj3axNAlYmFMbAgMJa1w5y4ca4VWOMtMPQcAX2Nhy8DFxAbrs/LyIrTsAKgxrPzLE7CCHGehso4cV2Kj2h6FFKu2whF2ANQYJb88zx3/YZUPZMBM3hrPlhAdYbn3FAOUxQBloKbJcRZa7pcnYKZAvVAzA5QBoBxW/OUJe6huN5BZ7L6eEWEHAIAqKivUBPKyBu6OZwvUMEfYAQCgCsoKNT3axAT0sgbujGcL5DBH2AEAwE3lrdU0Z0jHgO8GqmgmVaCvUUXYAQBYipW7Ssob2xLkcNhiWYPyxrMF+pgeFhUEAFjGki3ZSp21RkMXbFbqrDVasiXb7CKVUt61ui5tVt+yC+p5Q6Bfo4ywAwCwBCtfSLJERasED768qTZMvkrP3dJJf77lEvVoE2Nyab3Hyqsju4NuLACAJQRKV0lFY1vW//twwA7irYxVV0d2B2EHtmDlPn4A7gmky3mUNbYl0AfxuiNQ16iiGwsBz+p9/ADcE+hdJVxo1rpo2UFAqwm/pICaJJC7SgKpZaqmoWUHAc3Ov6RynIXatPeIpQZnApLvz82E6AiltGwYUEFHCvyWKTujZQcBza6/pAJ5pVLYmx3PTW+O+Qvklik7o2XHBmpyC4Adf0kFwvRb1Ex2PDd9MeYvUFum7IyWnQBnx19ZVWW3X1KBMv0WNY/dzk3G/NUctOwEMDv+yvKUnX5JBfpKpbAvu52bdh7zh9IIOwGMN6o92bFrDvZgt3PTbuEN5aMbK4DZdXAu7Nc1ZwcsXPkrf5+bvqz3kvD20LKvVWQYAR/eUD6HYRhG5YfZW35+vqKjo+V0OhUVFWVKGTx9Qy/Zkn3eG7WmjdlxF19WKFHVc4GxcebwV73nOAu9Ht74vPEPd7+/CTsyP+xU9w3tizeq3fBlhRJVPRdynIVKnbXmvBbUDZOvqtHvN19/mQdyvfN54z/ufn8zZsdk3hhkbKfBub7AQG6UKOtcmPL2V/pi/8/l3oexcec7e7r2FRlrNPP9b7z+fgrUevf086YmLyHiD4QdkwXqGzqQUMcoUda5UCxpwAubyl1fJdAHsXr7S/TcL3ND0l/+leX169IFar178nnD9f18j7BjskB9QwcS6hglyjoXJMmo4Nd3IM9A8sWXaFlf5pL3W0wDtd6r+nlDy7N/EHZMFqhv6EBCHaNEyblQ1gdfRb++B1/eVBsmX6U3x3TThslXBcT4C199iZYXGCXvt5hWpd7dacHyR1dRVT9vaHn2D6aeWwDTjH2vptaxVWaEWKUc0q/nQtv4uhrwwiYZ5wx+rai1LyE6wi9l91Zd+Wq145Iv8ylvf6Xic/b5osXUnXo/d0Dw6O6Juq5Dgo6fKnLVoz8HDVfl86Y6S4hY6X1ldczGkvmzsQB3VeXDzSozQqxSjrLKZbVlG7xZV76ezZTjLNTCDfv00ob/qNiQaXVY1us8W5BDmtS3rZ746FvLzuzy5Fy06vvK35h6XgWEHQSCqny4+XvabnkhzOrTh620bIMv6sofgc7sOty094iGLthc4TFB0nmtUJL05phuSmnZ0Cflqqqq1KPV31f+5O73N91YQACo6gULvdGF4W4rUkUhzOoXjvRX15Q7fFFX/ui+NbsOy+oGOlexJIdDVeq29Leq1GN558q2fT/ruo7WOJ+thgHKQACo6iDG6s5Aq2gWz9mDPCsbBMtMOPf5qq6stA6XLwYIuwadlzNoWvq1Hif3a2ubSQrlDRIf97fPy32v1nS07ABuMHsgYFUHMVbnmj8VtSKt//fhUq04d3RPrLA1wtNyuFvfFXWfBdrATX9fp8nfdeTLMSYlLVgLN2bppfVZpbqszu6+u6FjY8t0W1ZHeYPEK3qv1tQxPSUYsyPG7KBiVhkI6Mn4C0/GU5Q3BuL5oZ1075uflwo3QZJURgg7d+xAVcrhbn2Xd5xV/l6e8scYGH/XUVljTIIc0sbJV3v9NZbUX2RYkApOFQd8sKnIii8PKH3x5+dtf+6WThr3t89rxJgexuwAXlDVsTK+5Mn4C0/GU9QOC5ZDv66MWyLY4VCxYZS5+vCd3Vvo5Q1ZFbZGuFsOd+u7vOPaxte1zN/LU74eA2PGOV3mytWGtHBjlh66Nsmrz2X2GCJ/uqxZ/TJbfM/9ASJZa6ycGQg7QAWsNsDW1x/kJb/4zw06Mwe2V+fmDcr8YL29e3Pd3r25V1oj3K3v8o7bsu9nS/29rMiMc7q8QcQvrc/S7amJ/G08VF7XZ3khqCaPlSPsABWozoJfgebcX/zSr10Ny+5JUccm9SWpwjEl3vjCcre+yzvu8uZ8yFfGjHM6ITpCo7snasG/skptL5YIotVUXouvP8d/BQJmY6HKatII/5p0qYnyuhoKTv1vCKSvL5vgbn2Xd1zHJvVrzN/LU2ad06O6J+rcCUQEUe8oa8ZdIF7ixJcYoCwGKFeFlQZ/+nM2idkLp/mDlRYqc7e+yzvOKn8vK88KM6OOrLhqNQIbKyhXAWHHPVb5MsxxFuqVDVl6eUOWJUKXnfBl5D1W+mFgJVYJotVh5RBb0zAbC15nhcG6S7Zka/LbpQfQBuKMG6vy1oq7Nf3LwEqz+Kwm0GdLEWIDE2EHbjN7sG7JF0hZTZHMuPGe6n4Z8WVgjR8G8D5CbOBigDLcZvZg3bK+QEow0NEayvoymLLsK32x/2dzC+ZnXCbDnqp62RZYB2EHbimZgdWjTYxpI/zLux5MkEPMuKkGb86uK29G14DnN5W6Zk8gqE69mPHDoCbNkjQLITZw0Y2FSlmlW+LcBbSCJN3RI5FFyarB23/b8haPMxRYzf3eqBdfXXG8rPFQVnmP2p2/r1/mKzVxTB2zscRsrIpYZQbWuWUK9NkcVuCrv+3ZX7znenNMN6W0bOjxY/uDFc/5EmWFmh5tYixbXrsK5M8guwVjd7+/6cZChazYR13WAlqoOl/9bQdf3lTv3HNFwC4gZ8VzXip/cOy278u/RAZ8I1A/g8o7h2pC1ydhBxWij9qavDE+w5d/245N6mvWIHNXMva0jqx6zpcXwvTfX+hns0J54X3Vfd9bNcj7A2N2UKGK+qhrYr+vFXirGdrX4w98NWbFHdWpI6uOyyhv6YfLmte3XHn5bPA+b7zvzV4+xEyM2RFjdtxxbh+13fp9q8qsD3NfjCcJ5PEHZfFWHVmxXipa4bqy8vrrnK3pnw2+4M33vd1WSWcFZXjV2QvN1fSFtcz8MPfFYnWBvqLtubxVR1asl4payyoqb2XnrLeCUE3/bPAVb77vzWxxNRNhB1UWKKvD+uKXrNkf5jW5Gdpddq+jqoawys5Zb4b3QPlsCDTePqetGOR9jQHKqDKrDuA825It2UqdtUZDF2xW6qw1XlvQzuwBfmavYh0IqKPSKjpnvT07JxA+GwIR53T10bKDKqtsAKfZgxMr+iUrqVpls0KrQU1thq4K6uh/Kjpnvd0S443B3WZ/fliVJ+c0dfk/hB14pLw3XnmLnvnzDVfeB/jCDfv00ob/VKu53iozdazWDG3FD1Wr1ZFZKjtnvRnec5yFatIgUsvuSVHBqeIqB00GN1esKuc0dVkas7HEbCxvKWvGgMMh6delQCp8w3nzy7KscgRJUhkf6p7OYrLiTB2z8KEaGMo7Z701O6e654GVV64ONN6ckWi1HzHnYjYW/K6sFpWzo3R5g3m9/WVZ1i/Z0d2b6y//yip13LnN9VV5Y9Nq8CuzB2zDfeWds97o8vPGeRBog5utHAS8UZd2+xFD2LEIK79x3FXeRSDPVlbA8MWX5bkf4JL00oascpvr7fbG9pdA+4JC2aob3r1xHlhhPJy7rP55Ud26tOOPGNvMxnr++efVvHlz1apVS127dtVnn31mdpHc5quZQ/527oyBIIcqvT6SL2c3nX39mopmM/jzejHeuMyDlVhl9o3d6jXQeOM8CJQZR4FwfanKPu8qe6+YPevUF2zRsrNkyRLdf//9mj9/vrp27ao5c+YoLS1Nu3fvVmxsrNnFq5DdEvS5LSrr/324wsG8/vw1V15zvb9aJ6z+a9ATVhiwbcd6DTTeOg/Ke49aqeU7UFozy6pLd98rgdTK5i5bDFDu2rWrLr/8cj333HOSpOLiYjVp0kT33nuvJk+eXOn9zRygvGnvEQ1dsPm87W+O6aaUlg39WhZfqWwwr9nLl/tjYKTdB1+aNWDb7vUaaHxxHlgtzAbqOVfVcpv9ueyuGjNA+dSpU9q2bZumTJni2hYUFKQ+ffooMzPTxJK5x44J+lyVjQcwe00Uf7ROBMqvQU+ZNWDb7vUaaLx9Hlix5dsKrZmeqOp7xezPZW8L+LBz5MgRFRUVKS4urtT2uLg4ffvtt2Xe5+TJkzp58qTr//n5+T4tY0UC9Y3jbWbPbvL1G7smhFozUK/2ZtUwG4hBwJP3itmfy95kmwHKVZGRkaHo6GjXrUmTJqaWZ/DlTbVh8lV6c0w3bZh8lSWbCmuCswc0++KxA2HwZaChXu3NKgPgy+LLzwtfqOnvlYAfs3Pq1ClFRkZq6dKlGjBggGv7iBEjlJeXp3ffffe8+5TVstOkSRMWFYTPsRihb1Cv9hUoY0cChd3eKzVmzE5YWJguu+wyrV692hV2iouLtXr1aqWnp5d5n/DwcIWHh/uxlMCv7NQsbCXUq30FYpeRldXU90rAhx1Juv/++zVixAh17txZXbp00Zw5c3T8+HHdfvvtZhcNAFBNNfULGt5ji7AzePBgHT58WA8//LByc3N1ySWX6KOPPjpv0DIAAKh5An7MjjdwIVAAAAKPu9/fNXI2FgAAqDkIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNZscbmI6ipZRDo/P9/kkgAAAHeVfG9XdjEIwo6kX375RZLUpEkTk0sCAACq6pdfflF0dHS5+7k2lqTi4mIdOHBAdevWlcPhMLs4fpWfn68mTZpo//79XBesGqhH76EuvYN69B7q0jt8UY+GYeiXX35R48aNFRRU/sgcWnYkBQUF6cILLzS7GKaKioriTewF1KP3UJfeQT16D3XpHd6ux4padEowQBkAANgaYQcAANgaYaeGCw8P1yOPPKLw8HCzixLQqEfvoS69g3r0HurSO8ysRwYoAwAAW6NlBwAA2BphBwAA2BphBwAA2BphBwAA2BphpwZYv369rr/+ejVu3FgOh0P/+Mc/Su03DEMPP/ywEhISFBERoT59+mjPnj3mFNbiKqvLkSNHyuFwlLr17dvXnMJaWEZGhi6//HLVrVtXsbGxGjBggHbv3l3qmBMnTmjs2LFq2LCh6tSpo0GDBungwYMmldi63KnLXr16nXde3nXXXSaV2JrmzZunDh06uBa8S0lJ0Ycffujaz/novsrq0ozzkbBTAxw/flwdO3bU888/X+b+2bNna+7cuZo/f742b96s2rVrKy0tTSdOnPBzSa2vsrqUpL59+yonJ8d1e/PNN/1YwsCwbt06jR07Vp9++qlWrVql06dP65prrtHx48ddx0yYMEHvvfee3nrrLa1bt04HDhzQwIEDTSy1NblTl5I0ZsyYUufl7NmzTSqxNV144YWaNWuWtm3bpq1bt+rqq6/Wb3/7W+3cuVMS52NVVFaXkgnno4EaRZLxzjvvuP5fXFxsxMfHG3/6059c2/Ly8ozw8HDjzTffNKGEgePcujQMwxgxYoTx29/+1pTyBLJDhw4Zkox169YZhvHrORgaGmq89dZbrmN27dplSDIyMzPNKmZAOLcuDcMwevbsadx3333mFSpA1a9f33jppZc4H72gpC4Nw5zzkZadGi4rK0u5ubnq06ePa1t0dLS6du2qzMxME0sWuD755BPFxsbqoosu0t13362ffvrJ7CJZntPplCQ1aNBAkrRt2zadPn261HnZtm1bNW3alPOyEufWZYk33nhDjRo1Uvv27TVlyhQVFBSYUbyAUFRUpL/97W86fvy4UlJSOB+r4dy6LOHv85ELgdZwubm5kqS4uLhS2+Pi4lz74L6+fftq4MCBSkxM1N69e/XQQw+pX79+yszMVHBwsNnFs6Ti4mKNHz9eqampat++vaRfz8uwsDDVq1ev1LGclxUrqy4laejQoWrWrJkaN26sL7/8UpMmTdLu3bu1bNkyE0trPV999ZVSUlJ04sQJ1alTR++8846SkpK0Y8cOzscqKq8uJXPOR8IO4EVDhgxx/Ts5OVkdOnRQy5Yt9cknn6h3794mlsy6xo4dq6+//lobNmwwuygBr7y6vPPOO13/Tk5OVkJCgnr37q29e/eqZcuW/i6mZV100UXasWOHnE6nli5dqhEjRmjdunVmFysglVeXSUlJppyPdGPVcPHx8ZJ03qyCgwcPuvbBcy1atFCjRo303XffmV0US0pPT9eKFSu0du1aXXjhha7t8fHxOnXqlPLy8kodz3lZvvLqsixdu3aVJM7Lc4SFhalVq1a67LLLlJGRoY4dO+rPf/4z56MHyqvLsvjjfCTs1HCJiYmKj4/X6tWrXdvy8/O1efPmUv2r8MwPP/ygn376SQkJCWYXxVIMw1B6erreeecdrVmzRomJiaX2X3bZZQoNDS11Xu7evVvZ2dmcl+eorC7LsmPHDknivKxEcXGxTp48yfnoBSV1WRZ/nI90Y9UAx44dK5WYs7KytGPHDjVo0EBNmzbV+PHjNWPGDLVu3VqJiYmaOnWqGjdurAEDBphXaIuqqC4bNGig6dOna9CgQYqPj9fevXv14IMPqlWrVkpLSzOx1NYzduxYLV68WO+++67q1q3rGvcQHR2tiIgIRUdHa/To0br//vvVoEEDRUVF6d5771VKSoq6detmcumtpbK63Lt3rxYvXqxrr71WDRs21JdffqkJEyaoR48e6tChg8mlt44pU6aoX79+atq0qX755RctXrxYn3zyiT7++GPOxyqqqC5NOx/9OvcLpli7dq0h6bzbiBEjDMP4dfr51KlTjbi4OCM8PNzo3bu3sXv3bnMLbVEV1WVBQYFxzTXXGDExMUZoaKjRrFkzY8yYMUZubq7ZxbacsupQkrFw4ULXMYWFhcY999xj1K9f34iMjDRuvPFGIycnx7xCW1RldZmdnW306NHDaNCggREeHm60atXKeOCBBwyn02luwS1m1KhRRrNmzYywsDAjJibG6N27t7Fy5UrXfs5H91VUl2adjw7DMAzfRSkAAABzMWYHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHgKWdOnXK7CKcx4plAlA+wg4Av+rVq5fS09OVnp6u6OhoNWrUSFOnTlXJlWuaN2+uxx57TMOHD1dUVJTuvPNOSdKGDRt05ZVXKiIiQk2aNNG4ceN0/Phx1+O+8MILat26tWrVqqW4uDjddNNNrn1Lly5VcnKyIiIi1LBhQ/Xp08d13169emn8+PGlyjhgwACNHDnS9X9PywTAGgg7APzu1VdfVUhIiD777DP9+c9/1tNPP62XXnrJtf/JJ59Ux44d9fnnn2vq1Knau3ev+vbtq0GDBunLL7/UkiVLtGHDBqWnp0uStm7dqnHjxunRRx/V7t279dFHH6lHjx6SpJycHN1yyy0aNWqUdu3apU8++UQDBw5UVS8LWNUyAbAOLgQKwK969eqlQ4cOaefOnXI4HJKkyZMna/ny5frmm2/UvHlzderUSe+8847rPnfccYeCg4P14osvurZt2LBBPXv21PHjx/XBBx/o9ttv1w8//KC6deuWer7t27frsssu0759+9SsWbMyy3PJJZdozpw5rm0DBgxQvXr1tGjRIknyqEy1atWqVj0B8B5adgD4Xbdu3VxBR5JSUlK0Z88eFRUVSZI6d+5c6vgvvvhCixYtUp06dVy3tLQ0FRcXKysrS7/5zW/UrFkztWjRQrfddpveeOMNFRQUSJI6duyo3r17Kzk5Wb/73e+0YMEC/fzzz1Uuc1XLBMA6CDsALKd27dql/n/s2DH9/ve/144dO1y3L774Qnv27FHLli1Vt25dbd++XW+++aYSEhL08MMPq2PHjsrLy1NwcLBWrVqlDz/8UElJSXr22Wd10UUXuQJJUFDQeV1ap0+frnaZAFgHYQeA323evLnU/z/99FO1bt1awcHBZR5/6aWX6ptvvlGrVq3Ou4WFhUmSQkJC1KdPH82ePVtffvml9u3bpzVr1kiSHA6HUlNTNX36dH3++ecKCwtzdUnFxMQoJyfH9VxFRUX6+uuvK30N7pQJgDUQdgD4XXZ2tu6//37t3r1bb775pp599lndd9995R4/adIkbdq0Senp6dqxY4f27Nmjd9991zUYeMWKFZo7d6527Nih77//Xq+99pqKi4t10UUXafPmzZo5c6a2bt2q7OxsLVu2TIcPH1a7du0kSVdffbXef/99vf/++/r222919913Ky8vr9LXUFmZAFhHiNkFAFDzDB8+XIWFherSpYuCg4N13333uaZzl6VDhw5at26d/u///k9XXnmlDMNQy5YtNXjwYElSvXr1tGzZMk2bNk0nTpxQ69at9eabb+riiy/Wrl27tH79es2ZM0f5+flq1qyZnnrqKfXr10+SNGrUKH3xxRcaPny4QkJCNGHCBF111VWVvobKygTAOpiNBcCvypr9BAC+RDcWAACwNcIOAACwNbqxAACArdGyAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbO3/AW8G965BJW03AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATClJREFUeJzt3Xl4E2XiB/BvetKDpPRupRc3lXLIGUHOSsF6YItyyaGIa21BqCDgyqlSxFVRV0BZBdQFWVhYAS+Qc7EFC4giaBe6hRbpQWGbAD1p5vcHv46Epm2aJpnJ9Pt5njxPOzOZvDOdZr7zvu+8oxIEQQARERGRQjlJXQAiIiIiW2LYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIllYvHgxVCqVWcuqVCosXrzYpuUZPHgwBg8eLNv1EZH5GHaIyMj69euhUqnEl4uLC+666y5MmTIFv//+u9TFk53IyEij/RUYGIj77rsP27dvt8r6S0tLsXjxYhw4cMAq6yNqjhh2iMikpUuX4tNPP8WaNWswcuRIfPbZZxg0aBDKy8tt8nkvv/wyysrKbLJuW+vevTs+/fRTfPrpp5g9ezYuXbqEhIQErFmzpsnrLi0txZIlSxh2iJrAReoCEJE8jRw5Er169QIAPP300/D398frr7+OHTt24PHHH7f657m4uMDFxTG/ku666y488cQT4u+TJk1Cu3bt8Pbbb+PZZ5+VsGREBLBmh4jMdN999wEAsrOzjab/9ttvGD16NHx9fdGiRQv06tULO3bsMFqmqqoKS5YsQfv27dGiRQv4+flhwIAB2LNnj7iMqT47FRUVmDVrFgICAtCyZUs8/PDDuHjxYq2yTZkyBZGRkbWmm1rnunXrMHToUAQGBsLd3R3R0dFYvXp1o/ZFQ4KDg9G5c2fk5OTUu1xRURGmTp2KoKAgtGjRAt26dcOGDRvE+efPn0dAQAAAYMmSJWJTma37KxEpjWNeRhGR3Z0/fx4A0KpVK3Ha6dOn0b9/f9x1112YN28evLy88I9//AOjRo3CP//5Tzz66KMAboWOtLQ0PP300+jTpw/0ej2OHTuGEydO4P7776/zM59++ml89tlnGD9+PO69917s27cP8fHxTdqO1atX4+6778bDDz8MFxcX7Ny5E8899xwMBgOSk5ObtO4aVVVVyMvLg5+fX53LlJWVYfDgwTh37hxSUlIQFRWFLVu2YMqUKSgpKcHzzz+PgIAArF69GklJSXj00UeRkJAAAOjatatVyknUbAhERLdZt26dAED47rvvhMuXLwt5eXnC1q1bhYCAAMHd3V3Iy8sTlx02bJgQExMjlJeXi9MMBoNw7733Cu3btxendevWTYiPj6/3cxctWiTc/pV08uRJAYDw3HPPGS03fvx4AYCwaNEicdrkyZOFiIiIBtcpCIJQWlpaa7m4uDihTZs2RtMGDRokDBo0qN4yC4IgRERECMOHDxcuX74sXL58Wfjpp5+EsWPHCgCE6dOn17m+lStXCgCEzz77TJxWWVkpaLVawdvbW9Dr9YIgCMLly5drbS8RNQ6bsYjIpNjYWAQEBCAsLAyjR4+Gl5cXduzYgdatWwMArl69in379uHxxx/HtWvXUFxcjOLiYly5cgVxcXE4e/asePeWj48PTp8+jbNnz5r9+V999RUAYMaMGUbTZ86c2aTt8vDwEH/W6XQoLi7GoEGD8N///hc6nc6ide7evRsBAQEICAhAt27dsGXLFkycOBGvv/56ne/56quvEBwcjHHjxonTXF1dMWPGDFy/fh0HDx60qCxEVBubsYjIpPfffx8dOnSATqfDxx9/jEOHDsHd3V2cf+7cOQiCgAULFmDBggUm11FUVIS77roLS5cuxSOPPIIOHTqgS5cuGDFiBCZOnFhvc8yFCxfg5OSEtm3bGk3v2LFjk7br+++/x6JFi5CRkYHS0lKjeTqdDhqNptHr7Nu3L1599VWoVCp4enqic+fO8PHxqfc9Fy5cQPv27eHkZHzN2blzZ3E+EVkHww4RmdSnTx/xbqxRo0ZhwIABGD9+PLKysuDt7Q2DwQAAmD17NuLi4kyuo127dgCAgQMHIjs7G1988QV2796Nv/3tb3j77bexZs0aPP30000ua12DEVZXVxv9np2djWHDhqFTp0546623EBYWBjc3N3z11Vd4++23xW1qLH9/f8TGxlr0XiKyPYYdImqQs7Mz0tLSMGTIEPz1r3/FvHnz0KZNGwC3ml7MOdH7+vriySefxJNPPonr169j4MCBWLx4cZ1hJyIiAgaDAdnZ2Ua1OVlZWbWWbdWqFUpKSmpNv7N2ZOfOnaioqMCOHTsQHh4uTt+/f3+D5be2iIgI/PzzzzAYDEa1O7/99ps4H6g7yBGR+dhnh4jMMnjwYPTp0wcrV65EeXk5AgMDMXjwYHzwwQfIz8+vtfzly5fFn69cuWI0z9vbG+3atUNFRUWdnzdy5EgAwLvvvms0feXKlbWWbdu2LXQ6HX7++WdxWn5+fq1RjJ2dnQEAgiCI03Q6HdatW1dnOWzlgQceQEFBATZv3ixOu3nzJt577z14e3tj0KBBAABPT08AMBnmiMg8rNkhIrPNmTMHjz32GNavX49nn30W77//PgYMGICYmBhMmzYNbdq0QWFhITIyMnDx4kX89NNPAIDo6GgMHjwYPXv2hK+vL44dO4atW7ciJSWlzs/q3r07xo0bh1WrVkGn0+Hee+/F3r17ce7cuVrLjh07FnPnzsWjjz6KGTNmoLS0FKtXr0aHDh1w4sQJcbnhw4fDzc0NDz30EP70pz/h+vXrWLt2LQIDA00GNlt65pln8MEHH2DKlCk4fvw4IiMjsXXrVnz//fdYuXIlWrZsCeBWh+ro6Ghs3rwZHTp0gK+vL7p06YIuXbrYtbxEDk3q28GISF5qbj3PzMysNa+6ulpo27at0LZtW+HmzZuCIAhCdna2MGnSJCE4OFhwdXUV7rrrLuHBBx8Utm7dKr7v1VdfFfr06SP4+PgIHh4eQqdOnYTXXntNqKysFJcxdZt4WVmZMGPGDMHPz0/w8vISHnroISEvL8/krdi7d+8WunTpIri5uQkdO3YUPvvsM5Pr3LFjh9C1a1ehRYsWQmRkpPD6668LH3/8sQBAyMnJEZdrzK3nDd1WX9f6CgsLhSeffFLw9/cX3NzchJiYGGHdunW13pueni707NlTcHNz423oRBZQCcJt9blERERECsM+O0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgcVBCAwWDApUuX0LJlSw7NTkRE5CAEQcC1a9cQGhpa66G6t2PYAXDp0iWEhYVJXQwiIiKyQF5eHlq3bl3nfIYdQByWPS8vD2q1WuLSEBERkTn0ej3CwsLE83hdGHbwx1OF1Wo1ww4REZGDaagLCjsoExERkaIx7BAREZGiMewQERGRorHPDhERKVp1dTWqqqqkLgZZwNXVFc7Ozk1eD8MOEREpkiAIKCgoQElJidRFoSbw8fFBcHBwk8bBY9ghIiJFqgk6gYGB8PT05KCxDkYQBJSWlqKoqAgAEBISYvG6GHaIiEhxqqurxaDj5+cndXHIQh4eHgCAoqIiBAYGWtykxQ7KRESkODV9dDw9PSUuCTVVzd+wKf2uGHaIiEix2HTl+KzxN2TYISIiIkVj2CEiImomVCoV/vWvf0ldDCMHDhyASqWy6V1zDDvkMPJ1ZUjPLka+rkzqohARydrixYvRvXt3qYshG7wbixzC5sxczN92CgYBcFIBaQkxGNM7XOpiERGRA2DNDslevq5MDDoAYBCAl7b9whoeIlIsg8GAtLQ0REVFwcPDA926dcPWrVsB/NHss3fvXvTq1Quenp649957kZWVBQBYv349lixZgp9++gkqlQoqlQrr168X111cXIxHH30Unp6eaN++PXbs2GFWmWo+99tvv0WPHj3g4eGBoUOHoqioCF9//TU6d+4MtVqN8ePHo7S0VHxfRUUFZsyYgcDAQLRo0QIDBgxAZmam9XaWGRh2SPZyim+IQadGtSDgfHGp6TcQEVmZvZvR09LS8Mknn2DNmjU4ffo0Zs2ahSeeeAIHDx4Ul/nzn/+MN998E8eOHYOLiwueeuopAMCYMWPwwgsv4O6770Z+fj7y8/MxZswY8X1LlizB448/jp9//hkPPPAAJkyYgKtXr5pdtsWLF+Ovf/0r0tPTkZeXh8cffxwrV67Exo0b8eWXX2L37t147733xOVffPFF/POf/8SGDRtw4sQJtGvXDnFxcY36zKZi2CHZi/L3gtMddx46q1SI9Of4GURke5szc9F/+T6MX3sU/Zfvw+bMXJt+XkVFBZYtW4aPP/4YcXFxaNOmDaZMmYInnngCH3zwgbjca6+9hkGDBiE6Ohrz5s1Deno6ysvL4eHhAW9vb7i4uCA4OBjBwcHi4HwAMGXKFIwbNw7t2rXDsmXLcP36dfzwww9ml+/VV19F//790aNHD0ydOhUHDx7E6tWr0aNHD9x3330YPXo09u/fDwC4ceMGVq9ejTfeeAMjR45EdHQ01q5dCw8PD3z00UfW22kNYNixIXaotY4QjQfSEmLg/P9jLTirVFiW0AUhGo8G3klE1DRSNKOfO3cOpaWluP/+++Ht7S2+PvnkE2RnZ4vLde3aVfy55lEKNY9WqM/t7/Py8oJarTbrfabeHxQUBE9PT7Rp08ZoWs36srOzUVVVhf79+4vzXV1d0adPH/z6669mf2ZTSRp2IiMjxfbE21/JyckAgPLyciQnJ8PPzw/e3t5ITExEYWGh0Tpyc3MRHx8PT09PBAYGYs6cObh586YUm2PE3lcCSjemdzgOzxuCTdP64fC8IeycTER2IUUz+vXr1wEAX375JU6ePCm+zpw5I/bbAW6Fhho1A+8ZDIYG13/7+2rea8776vrcpq7PHiQNO5mZmWJ7Yn5+Pvbs2QMAeOyxxwAAs2bNws6dO7FlyxYcPHgQly5dQkJCgvj+6upqxMfHo7KyEunp6diwYQPWr1+PhQsXSrI9Ndih1jZCNB7QtvVjjQ4R2Y0UzejR0dFwd3dHbm4u2rVrZ/QKCwszax1ubm6orq62WRnN1bZtW7i5ueH7778Xp1VVVSEzMxPR0dF2K4ekt54HBAQY/b58+XK0bdsWgwYNgk6nw0cffYSNGzdi6NChAIB169ahc+fOOHLkCPr164fdu3fjzJkz+O677xAUFITu3bvjlVdewdy5c7F48WK4ublJsVn1XgnwRE1E5DhqmtFf2vYLqgXBLs3oLVu2xOzZszFr1iwYDAYMGDAAOp0O33//PdRqNSIiIhpcR2RkJHJycnDy5Em0bt0aLVu2hLu7u83KXBcvLy8kJSVhzpw58PX1RXh4OFasWIHS0lJMnTrVbuWQzTg7lZWV+Oyzz5CamgqVSoXjx4+jqqoKsbGx4jKdOnVCeHg4MjIy0K9fP2RkZCAmJgZBQUHiMnFxcUhKSsLp06fRo0cPk59VUVGBiooK8Xe9Xm/Vbam5Erg98LBDLRGRYxrTOxwDOwTgfHEpIv097XLR+sorryAgIABpaWn473//Cx8fH9xzzz146aWXzGoiSkxMxLZt2zBkyBCUlJRg3bp1mDJlis3Lbcry5cthMBgwceJEXLt2Db169cK3336LVq1a2a0MKkEQhIYXs71//OMfGD9+PHJzcxEaGoqNGzfiySefNAolANCnTx8MGTIEr7/+Op555hlcuHAB3377rTi/tLQUXl5e+OqrrzBy5EiTn7V48WIsWbKk1nSdTge1Wm2V7dmcmVvrSoD9TIiI7KO8vBw5OTmIiopCixYtpC4ONUF9f0u9Xg+NRtPg+Vs2NTsfffQRRo4cidDQUJt/1vz585Gamir+rtfrzW4HNZcUVwJERERUmyxuPb9w4QK+++47PP300+K04OBgVFZW1nowWGFhIYKDg8Vl7rw7q+b3mmVMcXd3h1qtNnrZAjvUEhGRo3j22WeNbnW//fXss89KXbwmkUXNzrp16xAYGIj4+HhxWs+ePeHq6oq9e/ciMTERAJCVlYXc3FxotVoAgFarxWuvvYaioiIEBgYCAPbs2QO1Wm3XXt5ERESObunSpZg9e7bJebaqFLAXycOOwWDAunXrMHnyZLi4/FEcjUaDqVOnIjU1Fb6+vlCr1Zg+fTq0Wi369esHABg+fDiio6MxceJErFixAgUFBXj55ZeRnJwsSa9zIiIiRxUYGChWHCiN5GHnu+++Q25urvhMj9u9/fbbcHJyQmJiIioqKhAXF4dVq1aJ852dnbFr1y4kJSVBq9XCy8sLkydPxtKlS+25CURERCRjsrkbS0rm9uYmIiLHUHMHT0REBDw9OeyHIystLcWFCxeUcTcWERGRtbi5ucHJyQmXLl1CQEAA3NzcxEcqkGMQBAGVlZW4fPkynJycmjRQMMMOEREpjpOTE6KiopCfn49Lly5JXRxqAk9PT4SHh8PJyfIbyBl2iIhIkdzc3BAeHo6bN2/K4jlR1HjOzs5wcXFpcq0cww4RESlWzVO573wyNzUvshhUkIiIiMhWGHaIiIhI0Rh2iIiISNEYdoiIJJSvK0N6djHydWVSF4VIsdhBmYhIIpszczF/2ykYBMBJBaQlxGBM73Cpi0WkOKzZISKSQL6uTAw6AGAQgJe2/cIaHiIbYNghIpJATvENMejUqBYEnC8ulaZARArGsENEJIEofy843TFOmrNKhUh/PseJyNoYdoiIJBCi8UBaQgyc/39kWGeVCssSuiBE4yFxyYiUhx2UiYgkMqZ3OAZ2CMD54lJE+nsy6BDZCMMOEZGEQjQeDDlENsZmLCIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjTJw87vv/+OJ554An5+fvDw8EBMTAyOHTsmzhcEAQsXLkRISAg8PDwQGxuLs2fPGq3j6tWrmDBhAtRqNXx8fDB16lRcv37d3ptCREREMiRp2Pnf//6H/v37w9XVFV9//TXOnDmDN998E61atRKXWbFiBd59912sWbMGR48ehZeXF+Li4lBeXi4uM2HCBJw+fRp79uzBrl27cOjQITzzzDNSbBIRERHJjEoQBEGqD583bx6+//57/Pvf/zY5XxAEhIaG4oUXXsDs2bMBADqdDkFBQVi/fj3Gjh2LX3/9FdHR0cjMzESvXr0AAN988w0eeOABXLx4EaGhoQ2WQ6/XQ6PRQKfTQa1WW28DiYiIyGbMPX9LWrOzY8cO9OrVC4899hgCAwPRo0cPrF27Vpyfk5ODgoICxMbGitM0Gg369u2LjIwMAEBGRgZ8fHzEoAMAsbGxcHJywtGjR01+bkVFBfR6vdGLiIiIlEnSsPPf//4Xq1evRvv27fHtt98iKSkJM2bMwIYNGwAABQUFAICgoCCj9wUFBYnzCgoKEBgYaDTfxcUFvr6+4jJ3SktLg0ajEV9hYWHW3jQiIiKSCUnDjsFgwD333INly5ahR48eeOaZZzBt2jSsWbPGpp87f/586HQ68ZWXl2fTzyMiIiLpSBp2QkJCEB0dbTStc+fOyM3NBQAEBwcDAAoLC42WKSwsFOcFBwejqKjIaP7Nmzdx9epVcZk7ubu7Q61WG72IiIhImSQNO/3790dWVpbRtP/85z+IiIgAAERFRSE4OBh79+4V5+v1ehw9ehRarRYAoNVqUVJSguPHj4vL7Nu3DwaDAX379rXDVhAREZGcuUj54bNmzcK9996LZcuW4fHHH8cPP/yADz/8EB9++CEAQKVSYebMmXj11VfRvn17REVFYcGCBQgNDcWoUaMA3KoJGjFihNj8VVVVhZSUFIwdO9asO7GIiIhI2SS99RwAdu3ahfnz5+Ps2bOIiopCamoqpk2bJs4XBAGLFi3Chx9+iJKSEgwYMACrVq1Chw4dxGWuXr2KlJQU7Ny5E05OTkhMTMS7774Lb29vs8rAW8+JiIgcj7nnb8nDjhww7BARETkehxhnh4iIiMjWGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiIyGbydWVIzy5Gvq5MsjK4SPbJREREpGibM3Mxf9spGATASQWkJcRgTO9wu5eDNTtERERkdfm6MjHoAIBBAF7a9oskNTwMO0RERGR1OcU3xKBTo1oQcL641O5lYdghIiIiq4vy94KTynias0qFSH9Pu5eFYYeIiIisLkTjgbSEGDirbiUeZ5UKyxK6IETjYfeysIMyERER2cSY3uEY2CEA54tLEenvKUnQARh2iIiIyIZCNB6ShZwabMYiIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkWTNOwsXrwYKpXK6NWpUydxfnl5OZKTk+Hn5wdvb28kJiaisLDQaB25ubmIj4+Hp6cnAgMDMWfOHNy8edPem0JEREQyJfmDQO+++25899134u8uLn8UadasWfjyyy+xZcsWaDQapKSkICEhAd9//z0AoLq6GvHx8QgODkZ6ejry8/MxadIkuLq6YtmyZXbfFiIiIpIfycOOi4sLgoODa03X6XT46KOPsHHjRgwdOhQAsG7dOnTu3BlHjhxBv379sHv3bpw5cwbfffcdgoKC0L17d7zyyiuYO3cuFi9eDDc3N3tvDhEREcmM5H12zp49i9DQULRp0wYTJkxAbm4uAOD48eOoqqpCbGysuGynTp0QHh6OjIwMAEBGRgZiYmIQFBQkLhMXFwe9Xo/Tp0/X+ZkVFRXQ6/VGLyIiIlImScNO3759sX79enzzzTdYvXo1cnJycN999+HatWsoKCiAm5sbfHx8jN4TFBSEgoICAEBBQYFR0KmZXzOvLmlpadBoNOIrLCzMuhtGREREsiFpM9bIkSPFn7t27Yq+ffsiIiIC//jHP+Dh4WGzz50/fz5SU1PF3/V6PQMPERGRQknejHU7Hx8fdOjQAefOnUNwcDAqKytRUlJitExhYaHYxyc4OLjW3Vk1v5vqB1TD3d0darXa6EVERETKJKuwc/36dWRnZyMkJAQ9e/aEq6sr9u7dK87PyspCbm4utFotAECr1eLUqVMoKioSl9mzZw/UajWio6PtXn4iIiKSH0mbsWbPno2HHnoIERERuHTpEhYtWgRnZ2eMGzcOGo0GU6dORWpqKnx9faFWqzF9+nRotVr069cPADB8+HBER0dj4sSJWLFiBQoKCvDyyy8jOTkZ7u7uUm4aERERyYSkYefixYsYN24crly5goCAAAwYMABHjhxBQEAAAODtt9+Gk5MTEhMTUVFRgbi4OKxatUp8v7OzM3bt2oWkpCRotVp4eXlh8uTJWLp0qVSbRERERDKjEgRBkLoQUtPr9dBoNNDpdOy/Q0RE5CDMPX/Lqs8OERERkbUx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsyFi+rgzp2cXI15VJXRQiIiKH5SJ1Aci0zZm5mL/tFAwC4KQC0hJiMKZ3uNTFIiIicjis2ZGhfF2ZGHQAwCAAL237hTU8REREFmDYkaGc4hti0KlRLQg4X1wqTYGIiIgcGMOODEX5e8FJZTzNWaVCpL+nNAUiIiJyYAw7MhSi8UBaQgycVbcSj7NKhWUJXRCi8ZC4ZORo2MmdiIgdlGVrTO9wDOwQgPPFpYj092TQoUZjJ3cioltYsyNjIRoPaNv6MehQo7GTOxHRHxh2iBSIndyJiP7AsEOkQOzkTkT0B4YdIgViJ3cioj+wgzKRQrGTOxHRLQw7RAoWovFgyCGiZo/NWEQmcHwaIiLlYM0O0R04Pg0RkbKYHXb0er3ZK1Wr1RYVhkhqdY1PM7BDAJuDiIgclNlhx8fHByqVqt5lBEGASqVCdXV1kwtGJIX6xqdh2CEickxmh539+/fbshxEslAzPs3tgYfj0xAROTazw86gQYNsWQ4iWagZn+albb+gWhA4Pg0RkQJY3EG5pKQEH330EX799VcAwN13342nnnoKGo3GaoUjkgLHpyEiUhaVIAhCw4sZO3bsGOLi4uDh4YE+ffoAADIzM1FWVobdu3fjnnvusXpBbUmv10Oj0UCn07FzNRERSSZfV4ac4huI8vfihZYZzD1/WzTOzqxZs/Dwww/j/Pnz2LZtG7Zt24acnBw8+OCDmDlzpqVlxvLly6FSqYzWUV5ejuTkZPj5+cHb2xuJiYkoLCw0el9ubi7i4+Ph6emJwMBAzJkzBzdv3rS4HERERPa2OTMX/Zfvw/i1R9F/+T5szsyVukiKYVHYOXbsGObOnQsXlz9awVxcXPDiiy/i2LFjFhUkMzMTH3zwAbp27Wo0fdasWdi5cye2bNmCgwcP4tKlS0hISBDnV1dXIz4+HpWVlUhPT8eGDRuwfv16LFy40KJyEBER2Vtdw15wYFPrsCjsqNVq5ObWTpx5eXlo2bJlo9d3/fp1TJgwAWvXrkWrVq3E6TqdDh999BHeeustDB06FD179sS6deuQnp6OI0eOAAB2796NM2fO4LPPPkP37t0xcuRIvPLKK3j//fdRWVlpyeYRERHZVX3DXlDTWRR2xowZg6lTp2Lz5s3Iy8tDXl4ePv/8czz99NMYN25co9eXnJyM+Ph4xMbGGk0/fvw4qqqqjKZ36tQJ4eHhyMjIAABkZGQgJiYGQUFB4jJxcXHQ6/U4ffq0yc+rqKiAXq83ehERKRUffyJ/NcNe3I7DXliPRXdj/eUvf4FKpcKkSZPEvjGurq5ISkrC8uXLG7Wuzz//HCdOnEBmZmateQUFBXBzc4OPj4/R9KCgIBQUFIjL3B50aubXzDMlLS0NS5YsaVQ5iYgcER9/4hg47IVtWRR23Nzc8M477yAtLQ3Z2dkAgLZt28LTs3EJNC8vD88//zz27NmDFi1aWFIUi8yfPx+pqani73q9HmFhYXb7fCIie+DjTxwLh72wnSY9CNTT0xMxMTEWv//48eMoKioyulW9uroahw4dwl//+ld8++23qKysRElJiVHtTmFhIYKDgwEAwcHB+OGHH4zWW3O3Vs0yd3J3d4e7u7vF5SYicgR8/InjCdF48G9jAxaFnfLycrz33nvYv38/ioqKYDAYjOafOHHCrPUMGzYMp06dMpr25JNPolOnTpg7dy7CwsLg6uqKvXv3IjExEQCQlZWF3NxcaLVaAIBWq8Vrr72GoqIiBAYGAgD27NkDtVqN6OhoSzaPiEgR+PgTolssCjtTp07F7t27MXr0aPTp06fBB4TWpWXLlujSpYvRNC8vL/j5+YnTp06ditTUVPj6+kKtVmP69OnQarXo168fAGD48OGIjo7GxIkTsWLFChQUFODll19GcnIya2+IqFljPxCiWywKO7t27cJXX32F/v37W7s8tbz99ttwcnJCYmIiKioqEBcXh1WrVonznZ2dsWvXLiQlJUGr1cLLywuTJ0/G0qVLbV42IiK5Yz8QIgsfFxEdHY3PP/+81gCAjoqPiyAiInI8Nn1cxJtvvom5c+fiwoULFheQiIiIyB4sasbq1asXysvL0aZNG3h6esLV1dVo/tWrV61SOCIiIqKmsijsjBs3Dr///juWLVuGoKAgizsoExEREdmaRWEnPT0dGRkZ6Natm7XLQ0RERGRVFvXZ6dSpE8rK+IwVIiIikj+Lws7y5cvxwgsv4MCBA7hy5QofqklERESyZdGt505OtzLSnX11BEGASqVCdXW1dUpnJ7z1nIiIyPGYe/62qM/O/v37LS4YERERkT1ZFHYGDRpk1nLPPfccli5dCn9/f0s+hoiIiKjJLOqzY67PPvuMfXiIiIhIUjYNOxZ0ByIiIiKyKpuGHSIiIiKpMewQERGRojHsEBERkaIx7BAREZGi2TTsPPHEExykj4iIiCRl0Tg7AFBSUoIffvgBRUVFMBgMRvMmTZoEAFi9enXTSkdERETURBaFnZ07d2LChAm4fv061Gq10WMjVCqVGHaIiIiIpGZRM9YLL7yAp556CtevX0dJSQn+97//ia+rV69au4xEREREFrMo7Pz++++YMWMGPD09rV0eIiIiIquyKOzExcXh2LFj1i4LERERkdWZ3Wdnx44d4s/x8fGYM2cOzpw5g5iYGLi6uhot+/DDD1uvhERERERNoBLMfICVk5N5lUAqlQrV1dVNKpS96fV6aDQa6HQ63ipPRETkIMw9f5tds3Pn7eVEREREjsCiPjuffPIJKioqak2vrKzEJ5980uRCEREREVmL2c1Yt3N2dkZ+fj4CAwONpl+5cgWBgYFsxiIiIiKbM/f8bVHNjiAIRgMJ1rh48SI0Go0lqyQiIiKyiUaNoNyjRw+oVCqoVCoMGzYMLi5/vL26uho5OTkYMWKE1QtJREREZKlGhZ1Ro0YBAE6ePIm4uDh4e3uL89zc3BAZGYnExESrFpCIiIioKRoVdhYtWgQAiIyMxJgxY9CiRQubFIqIiIjIWix6EOjkyZMB3Lr7ytRTz8PDw5teMiIiIiIrsCjsnD17Fk899RTS09ONptd0XHa0u7GIiIhIuSwKO1OmTIGLiwt27dqFkJAQk3dmEREREcmBRWHn5MmTOH78ODp16mTt8hARERFZlUXj7ERHR6O4uNjaZSEiIiKyOovCzuuvv44XX3wRBw4cwJUrV6DX641eRERERHJhUdiJjY3FkSNHMHToUAQGBqJVq1Zo1aoVfHx80KpVK7PXs3r1anTt2hVqtRpqtRparRZff/21OL+8vBzJycnw8/ODt7c3EhMTUVhYaLSO3NxcxMfHw9PTE4GBgZgzZw5u3rxpyWYRERGRAlnUZ2f//v1W+fDWrVtj+fLlaN++PQRBwIYNG/DII4/gxx9/xN13341Zs2bhyy+/xJYtW6DRaJCSkoKEhAR8//33AG6N2hwfH4/g4GCkp6cjPz8fkyZNgqurK5YtW2aVMhIREZFjs+hBoADw73//Gx988AGys7OxdetW3HXXXfj0008RFRWFAQMGWFwgX19fvPHGGxg9ejQCAgKwceNGjB49GgDw22+/oXPnzsjIyEC/fv3w9ddf48EHH8SlS5cQFBQEAFizZg3mzp2Ly5cvw83NzazP5INAiYiIHI9NHwT6z3/+E3FxcfDw8MCPP/6IiooKAIBOp7O4RqW6uhqff/45bty4Aa1Wi+PHj6OqqgqxsbHiMp06dUJ4eDgyMjIAABkZGYiJiRGDDgDExcVBr9fj9OnTdX5WRUUF+xkRERE1ExaFnVdffRVr1qzB2rVr4erqKk7v378/Tpw40ah1nTp1Ct7e3nB3d8ezzz6L7du3Izo6GgUFBXBzc4OPj4/R8kFBQSgoKAAAFBQUGAWdmvk18+qSlpYGjUYjvsLCwhpVZiIiInIcFoWdrKwsDBw4sNZ0jUaDkpKSRq2rY8eOOHnyJI4ePYqkpCRMnjwZZ86csaRYZps/fz50Op34ysvLs+nnERERkXQs6qAcHByMc+fOITIy0mj64cOH0aZNm0aty83NDe3atQMA9OzZE5mZmXjnnXcwZswYVFZWoqSkxKh2p7CwEMHBwWI5fvjhB6P11dytVbOMKe7u7nB3d29UOYmIiMgxWVSzM23aNDz//PM4evQoVCoVLl26hL///e+YPXs2kpKSmlQgg8GAiooK9OzZE66urti7d684LysrC7m5udBqtQAArVaLU6dOoaioSFxmz549UKvViI6OblI5iIiISBksqtmZN28eDAYDhg0bhtLSUgwcOBDu7u6YPXs2pk+fbvZ65s+fj5EjRyI8PBzXrl3Dxo0bceDAAXz77bfQaDSYOnUqUlNT4evrC7VajenTp0Or1aJfv34AgOHDhyM6OhoTJ07EihUrUFBQgJdffhnJycmsuSEiIiIATbj1HAAqKytx7tw5XL9+HdHR0fD29m7U+6dOnYq9e/ciPz8fGo0GXbt2xdy5c3H//fcDuDWo4AsvvIBNmzahoqICcXFxWLVqlVET1YULF5CUlIQDBw7Ay8sLkydPxvLly+HiYn6O463nJEf5ujLkFN9AlL8XQjQeUheHiEh2zD1/NynsKAXDDsnN5sxczN92CgYBcFIBaQkxGNM7XOpiERHJik3H2SEi28nXlYlBBwAMAvDStl+QryuTtmBERA6KYYdIZnKKb4hBp0a1IOB8cak0BSIicnAMO0QyE+XvBSeV8TRnlQqR/p7SFIiIyMEx7BDJTIjGA2kJMXBW3Uo8zioVliV0YSdlIiILWXTrORHZ1pje4RjYIQDni0sR6e/JoENE1AQMO0QyFaLxYMghIrICNmMRERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGR1eTrypCeXYx8XZnURRG5SF0AIiIiUobNmbmYv+0UDALgpALSEmIwpne41MVizQ4RERE1Xb6uTAw6AGAQgJe2/SKLGh6GHSIiImqynOIbYtCpUS0IOF9cKk2BbsOwQ0REiiDHviLNSZS/F5xUxtOcVSpE+ntKU6DbMOwQEZHD25yZi/7L92H82qPov3wfNmfmSl2kZidE44G0hBg4q24lHmeVCssSuiBE4yFxyQCVIAhCw4spm16vh0ajgU6ng1qtlro4RETUCPm6MvRfvs+oCcVZpcLheUNkcaJtbvJ1ZThfXIpIf0+b739zz9+8G4uIiBxafX1FGHbsL0TjIbv9zmYsIiJyaHLuK0LywLBD1ETsFEkkLTn3FSF5YDMWURPIdQAtouZmTO9wDOwQYLe+IuRYWLNDZCE5D6BF5AisXSsaovGAtq0fgw7VImnYSUtLQ+/evdGyZUsEBgZi1KhRyMrKMlqmvLwcycnJ8PPzg7e3NxITE1FYWGi0TG5uLuLj4+Hp6YnAwEDMmTMHN2/etOemUDMk5wG0iOSOt4qTPUkadg4ePIjk5GQcOXIEe/bsQVVVFYYPH44bN26Iy8yaNQs7d+7Eli1bcPDgQVy6dAkJCQni/OrqasTHx6OyshLp6enYsGED1q9fj4ULF0qxSdSMsFMkkWVYK0r2Jqtxdi5fvozAwEAcPHgQAwcOhE6nQ0BAADZu3IjRo0cDAH777Td07twZGRkZ6NevH77++ms8+OCDuHTpEoKCggAAa9aswdy5c3H58mW4ubk1+LkcZ4cstTkzFy9t+wXVgiB2imSfHaL6pWcXY/zao7Wmvz++B1p5uSHK38uqTVH5ujLkFN+w+npJeg45zo5OpwMA+Pr6AgCOHz+OqqoqxMbGist06tQJ4eHhYtjJyMhATEyMGHQAIC4uDklJSTh9+jR69OhR63MqKipQUVEh/q7X6221SaRw7BRJ1Hg1taK3NwOrVEDKxh8hwLqd/XkTAQEy6qBsMBgwc+ZM9O/fH126dAEAFBQUwM3NDT4+PkbLBgUFoaCgQFzm9qBTM79mnilpaWnQaDTiKywszMpbQ80JO0USNc6dt4o7qQAIQE32sVazFpvLqIZswk5ycjJ++eUXfP755zb/rPnz50On04mvvLw8m38mESkTx1myzJje4Tg8bwg2TeuHd8Z2x539KazR2Z83EVANWTRjpaSkYNeuXTh06BBat24tTg8ODkZlZSVKSkqMancKCwsRHBwsLvPDDz8Yra/mbq2aZe7k7u4Od3d3K28FETU3bCJpmprHCuTrymo1a1mjs7+p5jLeRNA8SVqzIwgCUlJSsH37duzbtw9RUVFG83v27AlXV1fs3btXnJaVlYXc3FxotVoAgFarxalTp1BUVCQus2fPHqjVakRHR9tnQ4io2WETifXYagRkjqxMNSSt2UlOTsbGjRvxxRdfoGXLlmIfG41GAw8PD2g0GkydOhWpqanw9fWFWq3G9OnTodVq0a9fPwDA8OHDER0djYkTJ2LFihUoKCjAyy+/jOTkZNbeEJHN8OGT1mWrzv68iYAAicPO6tWrAQCDBw82mr5u3TpMmTIFAPD222/DyckJiYmJqKioQFxcHFatWiUu6+zsjF27diEpKQlarRZeXl6YPHkyli5daq/NIKJmiE0k1merp2XL8SncZF+yGmdHKhxnh4gswXGWiKTlkOPsEBE5EjaREDkGhh0ioiZgEwmR/MlmnB0iInvguDhEzQ9rdoio2eC4OETNE2t2iKhZ4Lg4RM0Xww4RNQt8dABR88WwQ0TNQs24OLfjuDhEzQPDDhE1C3x0AFHzxQ7KRNRscFwcouaJYYeImhWOi0PU/LAZixSBY6cQEVFdWLNDDo9jpxARUX1Ys0MOjWOnEBFRQxh2yKFx7BQichRsbpcOm7HIodWMnXJ74OHYKUQkN2xulxZrdsihcewUIpI7NrdLjzU7MpSvK0NO8Q1E+XvxpG0Gjp1CRHJWX3M7v6/sg2FHZuqr6mQIqhvHTiEiuWJzu/QYdmTEVFXn/H+egpe7C34vKcPrX//G9l4iIgdT09z+0rZfUC0IkjS3N/eLZYYdGTFV1WkAkLLxR+Np/9/eO7BDQLM8aIlIWZR4Ir5zm6RsbmfnaIYdWTFV1VkXtvcSkZxYGliUeCKua5ukaG6vq3N0c7tY5t1YMnLnnUX1YXsvEcnF5sxc9F++D+PXHkX/5fuwOTPXrPcp8S6lhrbJ3mPtcCyyW1izIzM1VZ3fnSnEwi9Ow1QlD2+vJiK5aErNQWPvUnKE5q76tunQfy7b/QYUKTpHy/HvxLAjQ4f+cxmLdhgHHWeVCi+O6IiurX14ezVRE8nxy9hRmRNY6trfjTkRO0pzV13b5OnmVGcorC8ENZW9O0fL9e/EsCMzd14lAbcOmG3PadEtrJV0BSNSCLl+GTuqhgJLffvb3BOxI/U7qWubblRWmwyFx8//z+bbZq/O0XL+OzHsyIzJO7IEoLTSIE2BiBREzl/GUmpKTVd9gcWc/W3OidjRBuUztU35ujKToRAmbkqxxbbZo3O0nP9ODDsyw8GniGxHzl/GUrFGTVddgcXc/d3QidgRvxfv3Ka6QmHPiFYOt211kfPfiXdjyQyf9URkOzVfxreTy5exFKx5N1SIxgPatn4m++TczpL93djvxcbe8WSvO6TG9A7H4XlDsGlaPxyeN0S8HV0p3/ly3haVIAhmjOqibHq9HhqNBjqdDmq1WuriALj1z8dnPRFZ3+bM3FpX1821z056djHGrz1aa/qmaf2gbetn8j2NbfKy5v4253uxsTVVcunDpaTvfHtui7nnb4YdyDPsEJHtKOnEcqfGhJF8XRn6L99nfEMEgO3J95q8IcLSYGCv/W1qe5xVKhyeN6TOW9kbs3xjysG7/ezD3PM3m7GaAXsPYkUkd6aaXJSgsYP7mRrI1ADg0VXptd7blCYve+3vxg6gZ4sB9ywdYJFsi2FH4fiPR9Q8WBpGxvQOx7bntLh94HZT73WEkXgb20fI2n24lDgitFIw7CgY//GImo+mhJEbldW4s0PDne+1dedua9RAN7aDrLU71NoqELJ2vul467mC8TZbosZz1P4WTbnt15z32nIkXmt2Em7sAHrWHHDPFrdey6UDtaNj2FEwOY95QCRHjnxiaUoYMfe9thiJ1xYDPTZ2AD1rDbhn7UDIQTCth2FHwez9TBQiR6aEE0tTwoi577X2SLxKq4G2ZiBU2r6RkqR9dg4dOoSHHnoIoaGhUKlU+Ne//mU0XxAELFy4ECEhIfDw8EBsbCzOnj1rtMzVq1cxYcIEqNVq+Pj4YOrUqbh+/bodt0LeTA1iRUS1SdEB1xZ9MZpy55MUd6kpcaBHa+1HJe4bqUgadm7cuIFu3brh/fffNzl/xYoVePfdd7FmzRocPXoUXl5eiIuLQ3l5ubjMhAkTcPr0aezZswe7du3CoUOH8Mwzz9hrExyCUm+zJbIme59YeKfkLXIedVdqTd037Nj8B9kMKqhSqbB9+3aMGjUKwK1andDQULzwwguYPXs2AECn0yEoKAjr16/H2LFj8euvvyI6OhqZmZno1asXAOCbb77BAw88gIsXLyI0NNSsz+aggkQE2G90ZVsNZufIlDzQY1NZsm8cuf9ZY5h7/pZtn52cnBwUFBQgNjZWnKbRaNC3b19kZGRg7NixyMjIgI+Pjxh0ACA2NhZOTk44evQoHn30UZPrrqioQEVFhfi7Xq+33YYQkcOwRQdcU9gXo7a6+gJZeneco95VZ0pj+0kpof+Ztck27BQUFAAAgoKCjKYHBQWJ8woKChAYGGg038XFBb6+vuIypqSlpWHJkiVWLjERKYG1O+CawjslzWNp7URzqdWoC8N0bc1yUMH58+dDp9OJr7y8PKmLRETNCPupNMzSQVE5mCo7Npsi25qd4OBgAEBhYSFCQkLE6YWFhejevbu4TFFRkdH7bt68iatXr4rvN8Xd3R3u7u7WLzQRkZns1WTmqCytnbBFrYajNYlx2JHaZBt2oqKiEBwcjL1794rhRq/X4+jRo0hKSgIAaLValJSU4Pjx4+jZsycAYN++fTAYDOjbt69URW80R/tHIpI7R/mfskeTmaOytKnP2k2EjtokxjBtTNKwc/36dZw7d078PScnBydPnoSvry/Cw8Mxc+ZMvPrqq2jfvj2ioqKwYMEChIaGindsde7cGSNGjMC0adOwZs0aVFVVISUlBWPHjjX7TiypOeo/EpFc8X9KGSytnbBmrYajd/RlmP6DpLeeHzhwAEOGDKk1ffLkyVi/fj0EQcCiRYvw4YcfoqSkBAMGDMCqVavQoUMHcdmrV68iJSUFO3fuhJOTExITE/Huu+/C29vb7HJIdes5bz91fI5Sg1DD0crbWPyfUh5Lb0m3xq3s6dnFGL/2aK3pm6b1g7atn0XrJOtyiFvPBw8ejPqylkqlwtKlS7F06dI6l/H19cXGjRttUTybY495xyanGgRzQoycymsr/J9SHktrJ6xRq8G75pSjWd6NJRfsMe+45HTHhzkj8cqpvLbE/ylqrPpGGeZdc8oh2w7KzQF7zDsuudQgmNunQC7ltTVL/6eU3rzniOzxNzGntpMdfZWBYUdi/EdyTHKp3jY3xMilvPbQ2P+pO094c0d2QsxdGgYfCdmjybUxnY/Z0dfxsRlLBvigTstI+ZA7uVRvm9tsI5fy2ou5/1OmTnhpX/3W7B/OKSV7NblK8ZR7kg5rdqhecq3el0NnWylq5e78ezSm2Ya1iLWZOuHVcLTbjJXCXk2uzam2kxh2qB5yCBSmyGnsC2tUb5sbKOv6ezQmxLA63pipE97tlNivSe7sFULYZ7J5Ydghk+QUKO6kpM625gbKhv4eDDGWufOEdyde6ZvHmjXA9gwhrO1sPhh2yCQ5BwpHqn6u7yTQmEAp57+Ho7v9hPfzxRKs+CaLV/qNYIsaYHuGEF4oNA8MO2SSnAOFo1Q/N3QSaEyAkfPfQwlqTnjatn54uHuorK705dpvDrBtDTBDCFkTww6ZJPdAIffqZ3NOAo0JMHL6e8j55GsNcjrJyrXfXA3WOJKjYNihOlkrUNjq5Cink9KdzDkJNDbAyCHgyf3kqyRy7jdXgzWO5CgYdqheTQ0UzfXkaO5JoLEBRsqA5wgnX0dl6oLAEWpN5FTjSFQfhh2ymeZ8cmzMSUDONVS3c4STryOq64LAUWpN5FDjSNQQhh2ymeZ+clTaScBRTr5yVFdTbkMXBI5Sa+IogZ2aL4YdshmeHJV1EnCkk6+c1NeU29AFgdICMzkGJd6EwLBDNsOTo/Lw5Ns4DdXcmHNBoKTATPKn1H6WDDtkU1KfHJV4hSI1nnzN11DNjbUvCOR2vMutPFQ/JfezZNghm5Pq5KjUKxQ54knNNHNqbqx1QWDt472pf1P+/zkea/azlNt3AsMOKZKSr1Dkhie1uplbc9PUCwJrH+9N/Zvy/88xWaufpRy/E5wk/XQiG6nvCqU5yteVIT27GPm6Mquv19RJzdqf48jG9A7H4XlDsGlaPxyeN8QmX/rWPN6t8Tfl/59jqgnnzioVAFjUrCrX7wTW7JAi8U6wP9jyKqu5Dy9gLls35VrzeLfG35T/f46rqc2qcv1OYM2ORGx1pU23WOMKRQlsfZVVc1K7HU9q9mfN490af1P+/zm2mofiSnX82AJrdiQgx/ZMJZL6TjA5sPVVlpTDC8itA6TUrHW8W+tvyv+/5kmuQ46oBEEQGl5M2fR6PTQaDXQ6HdRqtU0/K19Xhv7L99Wq3j08b4jkBwM1jiOcbBtzvDVle/J1ZXY9qfGCwfbs/Tcl0xzhe8YUex0/5p6/WbNjZw1daTvqgd3cOMrJ1tyrrKZuj6V9Uiw53nmnj31wPCXpOcr3jClyO34Yduysvo57jnxgNyeOdrJtqDnBHttjKtRYerzLtQMkNW/WvlB1tO8ZuWPYsbO6rrQB8MB2EI54sq3vKsvW22Mq1AzsEGDx8c47fUgObg83h/5z2eoXqo74PSNnDDsSMHWlnZ5dzAPbQSjtZGvu9lizyWnl2G4WH+9y7QBJzcftAb7mxqOaw9laF6pK+56RGsOORO680uaB7TiUdrI1Z3us3eTkpFI16XiX6k4f9qmjOwO8qTt8rHGhqrTvGakx7MgED2zHorTbauvbnqb0HagrxN8T0arJx7u9O0CyTx0BpgP8nax1oaq07xkpMezICA9sx1LfydYRawDq2p6m9B2oL8Q70vHOzqJUw1SAVwFQ/f80a1+o2irUO+J3VFMw7MiM3G7Xo8ZTWg1AU5tY6ws1jnK8s7Oo9TnqybauAO8owR1Q3neUORh2iKxIiTUA1mhidZRQUxf2qbMua5xspQxLdQV4RzjGlfgdZQ6GHSIrUmoNgCM1OdkC+9RZjzVOtnKomXDUAK/U76iGMOyQQ7LFVZ011imHGgBbXfE66pe7tTT3wGctTT3ZNteaCWuRw3eUFBh2yOHY4qquMeusL0xIXQMghyteJWvugc8amnqyba41E9Yi9XeUVBTzIND3338fb7zxBgoKCtCtWze899576NOnj1nvteeDQKlpbPEg1cas09wwIcVDFPmQWXIUmzNza51szQ3lSjzOpeh/pJQHvTarB4Fu3rwZqampWLNmDfr27YuVK1ciLi4OWVlZCAwMlLp4ZnHUOxPszRZXdeauszHV51LUAPCKlxxFU5oElVYzIVVtbHOrpVRE2Hnrrbcwbdo0PPnkkwCANWvW4Msvv8THH3+MefPmSVy6hrHpwXy2aG82d51yDxPNtS2eHFNTTrZK6T/F/kf24yR1AZqqsrISx48fR2xsrDjNyckJsbGxyMjIMPmeiooK6PV6o5dU6jrY83VlkpVJzmqu6pxVt55IY42rOnPXWRMmbienMGGLfUMkVyEaD2jb+jn08V3fBRRZl8PX7BQXF6O6uhpBQUFG04OCgvDbb7+ZfE9aWhqWLFlij+I1SO61BXJki6s6c9bpCNXnSrniJWoOWBtrPw4fdiwxf/58pKamir/r9XqEhYVJUhYe7JaxRXuzOet0hDDR3NriiRyVI1xAKYXDhx1/f384OzujsLDQaHphYSGCg4NNvsfd3R3u7u72KF6DeLA7HoYJIrIWR7iAUgKHDztubm7o2bMn9u7di1GjRgEADAYD9u7di5SUFGkLZyYe7EREzRcvoGzP4cMOAKSmpmLy5Mno1asX+vTpg5UrV+LGjRvi3VmOgAc7ERGRbSgi7IwZMwaXL1/GwoULUVBQgO7du+Obb76p1WmZiIiImh/FjKDcFBxBmYiIyPGYe/52+HF2iIiIiOrDsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREiqaIx0U0Vc0g0nq9XuKSEBERkblqztsNPQyCYQfAtWvXAABhYWESl4SIiIga69q1a9BoNHXO57OxABgMBly6dAktW7aESqWSujh2o9frERYWhry8PD4TrIm4L62H+9I6uB+th/vSOmyxHwVBwLVr1xAaGgonp7p75rBmB4CTkxNat24tdTEko1ar+Q9sJdyX1sN9aR3cj9bDfWkd1t6P9dXo1GAHZSIiIlI0hh0iIiJSNIadZszd3R2LFi2Cu7u71EVxeNyX1sN9aR3cj9bDfWkdUu5HdlAmIiIiRWPNDhERESkaww4REREpGsMOERERKRrDDhERESkaw04zcOjQITz00EMIDQ2FSqXCv/71L6P5giBg4cKFCAkJgYeHB2JjY3H27FlpCitzDe3LKVOmQKVSGb1GjBghTWFlLC0tDb1790bLli0RGBiIUaNGISsry2iZ8vJyJCcnw8/PD97e3khMTERhYaFEJZYnc/bj4MGDax2Tzz77rEQllq/Vq1eja9eu4oB3Wq0WX3/9tTifx6P5GtqXUhyTDDvNwI0bN9CtWze8//77JuevWLEC7777LtasWYOjR4/Cy8sLcXFxKC8vt3NJ5a+hfQkAI0aMQH5+vvjatGmTHUvoGA4ePIjk5GQcOXIEe/bsQVVVFYYPH44bN26Iy8yaNQs7d+7Eli1bcPDgQVy6dAkJCQkSllp+zNmPADBt2jSjY3LFihUSlVi+WrdujeXLl+P48eM4duwYhg4dikceeQSnT58GwOOxMRral4AEx6RAzQoAYfv27eLvBoNBCA4OFt544w1xWklJieDu7i5s2rRJghI6jjv3pSAIwuTJk4VHHnlEkvI4sqKiIgGAcPDgQUEQbh2Drq6uwpYtW8Rlfv31VwGAkJGRIVUxZe/O/SgIgjBo0CDh+eefl65QDqxVq1bC3/72Nx6PVlCzLwVBmmOSNTvNXE5ODgoKChAbGytO02g06Nu3LzIyMiQsmeM6cOAAAgMD0bFjRyQlJeHKlStSF0n2dDodAMDX1xcAcPz4cVRVVRkdl506dUJ4eDiPy3rcuR9r/P3vf4e/vz+6dOmC+fPno7S0VIriOYzq6mp8/vnnuHHjBrRaLY/HJrhzX9aw9zHJB4E2cwUFBQCAoKAgo+lBQUHiPDLfiBEjkJCQgKioKGRnZ+Oll17CyJEjkZGRAWdnZ6mLJ0sGgwEzZ85E//790aVLFwC3jks3Nzf4+PgYLcvjsm6m9iMAjB8/HhEREQgNDcXPP/+MuXPnIisrC9u2bZOwtPJ06tQpaLValJeXw9vbG9u3b0d0dDROnjzJ47GR6tqXgDTHJMMOkRWNHTtW/DkmJgZdu3ZF27ZtceDAAQwbNkzCkslXcnIyfvnlFxw+fFjqoji0uvbjM888I/4cExODkJAQDBs2DNnZ2Wjbtq29iylrHTt2xMmTJ6HT6bB161ZMnjwZBw8elLpYDqmufRkdHS3JMclmrGYuODgYAGrdVVBYWCjOI8u1adMG/v7+OHfunNRFkaWUlBTs2rUL+/fvR+vWrcXpwcHBqKysRElJidHyPC5Nq2s/mtK3b18A4DFpgpubG9q1a4eePXsiLS0N3bp1wzvvvMPj0QJ17UtT7HFMMuw0c1FRUQgODsbevXvFaXq9HkePHjVqXyXLXLx4EVeuXEFISIjURZEVQRCQkpKC7du3Y9++fYiKijKa37NnT7i6uhodl1lZWcjNzeVxeZuG9qMpJ0+eBAAek2YwGAyoqKjg8WgFNfvSFHsck2zGagauX79ulJhzcnJw8uRJ+Pr6Ijw8HDNnzsSrr76K9u3bIyoqCgsWLEBoaChGjRolXaFlqr596evriyVLliAxMRHBwcHIzs7Giy++iHbt2iEuLk7CUstPcnIyNm7ciC+++AItW7YU+z1oNBp4eHhAo9Fg6tSpSE1Nha+vL9RqNaZPnw6tVot+/fpJXHr5aGg/ZmdnY+PGjXjggQfg5+eHn3/+GbNmzcLAgQPRtWtXiUsvL/Pnz8fIkSMRHh6Oa9euYePGjThw4AC+/fZbHo+NVN++lOyYtOu9XySJ/fv3CwBqvSZPniwIwq3bzxcsWCAEBQUJ7u7uwrBhw4SsrCxpCy1T9e3L0tJSYfjw4UJAQIDg6uoqRERECNOmTRMKCgqkLrbsmNqHAIR169aJy5SVlQnPPfec0KpVK8HT01N49NFHhfz8fOkKLUMN7cfc3Fxh4MCBgq+vr+Du7i60a9dOmDNnjqDT6aQtuAw99dRTQkREhODm5iYEBAQIw4YNE3bv3i3O5/Fovvr2pVTHpEoQBMF2UYqIiIhIWuyzQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0SyVllZKXURapFjmYiobgw7RGRXgwcPRkpKClJSUqDRaODv748FCxag5sk1kZGReOWVVzBp0iSo1Wo888wzAIDDhw/jvvvug4eHB8LCwjBjxgzcuHFDXO+qVavQvn17tGjRAkFBQRg9erQ4b+vWrYiJiYGHhwf8/PwQGxsrvnfw4MGYOXOmURlHjRqFKVOmiL9bWiYikgeGHSKyuw0bNsDFxQU//PAD3nnnHbz11lv429/+Js7/y1/+gm7duuHHH3/EggULkJ2djREjRiAxMRE///wzNm/ejMOHDyMlJQUAcOzYMcyYMQNLly5FVlYWvvnmGwwcOBAAkJ+fj3HjxuGpp57Cr7/+igMHDiAhIQGNfSxgY8tERPLBB4ESkV0NHjwYRUVFOH36NFQqFQBg3rx52LFjB86cOYPIyEj06NED27dvF9/z9NNPw9nZGR988IE47fDhwxg0aBBu3LiBr776Ck8++SQuXryIli1bGn3eiRMn0LNnT5w/fx4REREmy9O9e3esXLlSnDZq1Cj4+Phg/fr1AGBRmVq0aNGk/URE1sOaHSKyu379+olBBwC0Wi3Onj2L6upqAECvXr2Mlv/pp5+wfv16eHt7i6+4uDgYDAbk5OTg/vvvR0REBNq0aYOJEyfi73//O0pLSwEA3bp1w7BhwxATE4PHHnsMa9euxf/+979Gl7mxZSIi+WDYISLZ8fLyMvr9+vXr+NOf/oSTJ0+Kr59++glnz55F27Zt0bJlS5w4cQKbNm1CSEgIFi5ciG7duqGkpATOzs7Ys2cPvv76a0RHR+O9995Dx44dxUDi5ORUq0mrqqqqyWUiIvlg2CEiuzt69KjR70eOHEH79u3h7Oxscvl77rkHZ86cQbt27Wq93NzcAAAuLi6IjY3FihUr8PPPP+P8+fPYt28fAEClUqF///5YsmQJfvzxR7i5uYlNUgEBAcjPzxc/q7q6Gr/88kuD22BOmYhIHhh2iMjucnNzkZqaiqysLGzatAnvvfcenn/++TqXnzt3LtLT05GSkoKTJ0/i7Nmz+OKLL8TOwLt27cK7776LkydP4sKFC/jkk09gMBjQsWNHHD16FMuWLcOxY8eQm5uLbdu24fLly+jcuTMAYOjQofjyyy/x5Zdf4rfffkNSUhJKSkoa3IaGykRE8uEidQGIqPmZNGkSysrK0KdPHzg7O+P5558Xb+c2pWvXrjh48CD+/Oc/47777oMgCGjbti3GjBkDAPDx8cG2bduwePFilJeXo3379ti0aRPuvvtu/Prrrzh06BBWrlwJvV6PiIgIvPnmmxg5ciQA4KmnnsJPP/2ESZMmwcXFBbNmzcKQIUMa3IaGykRE8sG7sYjIrkzd/UREZEtsxiIiIiJFY9ghIiIiRWMzFhERESkaa3aIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjR/g+biL0EFlS1JwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -598,7 +771,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB+0lEQVR4nO3de3gU9d3//9cmkJBAEg45ckwIJ5EQkIMGlICggXqrEb2LclUOAp6gHqhWYqsCWoLWA61VsFilalEqglqlKuX4RZCCGAVUfhLBREmAaNlIEgIm8/uDO1sCOexudndmJ8/Hde11wezs7ntnJjOv/cxnPuMwDMMQAACATYSYXQAAAIAvEW4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AmGLu3LlyOBxuzetwODR37ly/1jNy5EiNHDnSsu8HwH2EG6CZW7ZsmRwOh+vRokULderUSVOmTNF3331ndnmWk5ycXGt5xcfH65JLLtHq1at98v7l5eWaO3euNm7c6JP3A5ojwg0ASdL8+fP18ssva8mSJRo3bpxeeeUVZWZm6sSJE375vN/+9reqqKjwy3v724ABA/Tyyy/r5Zdf1j333KNDhw5p/PjxWrJkSZPfu7y8XPPmzSPcAE3QwuwCAFjDuHHjNHjwYEnS9OnTFRsbq0cffVRvv/22fv7zn/v881q0aKEWLYJzF9SpUyf94he/cP1/0qRJ6tGjh5566indeuutJlYGQKLlBkA9LrnkEklSfn5+relffvmlrrvuOrVv316tWrXS4MGD9fbbb9ea59SpU5o3b5569uypVq1aqUOHDrr44ou1du1a1zx19bmprKzU3Xffrbi4OEVFRemqq67St99+e05tU6ZMUXJy8jnT63rPF198UZdeeqni4+MVHh6uvn37avHixR4ti8YkJibqvPPO04EDBxqc78iRI5o2bZoSEhLUqlUrpaen669//avr+YMHDyouLk6SNG/ePNepL3/3NwLsJjh/NgHwu4MHD0qS2rVr55q2d+9eDR8+XJ06ddKcOXPUunVr/f3vf1d2drbeeOMNXXPNNZJOh4zc3FxNnz5dQ4cOVWlpqXbu3Kldu3bpsssuq/czp0+frldeeUUTJ07UsGHDtH79el1xxRVN+h6LFy/W+eefr6uuukotWrTQP/7xD91+++2qrq7WzJkzm/TeNU6dOqXCwkJ16NCh3nkqKio0cuRI7d+/X7NmzVJKSopef/11TZkyRceOHdOdd96puLg4LV68WLfddpuuueYajR8/XpLUv39/n9QJNBsGgGbtxRdfNCQZ//rXv4yjR48ahYWFxsqVK424uDgjPDzcKCwsdM07evRoIy0tzThx4oRrWnV1tTFs2DCjZ8+ermnp6enGFVdc0eDnPvTQQ8aZu6C8vDxDknH77bfXmm/ixImGJOOhhx5yTZs8ebLRrVu3Rt/TMAyjvLz8nPmysrKM7t2715qWmZlpZGZmNlizYRhGt27djMsvv9w4evSocfToUePTTz81rr/+ekOS8ctf/rLe91u0aJEhyXjllVdc006ePGlkZGQYbdq0MUpLSw3DMIyjR4+e830BeIbTUgAkSWPGjFFcXJy6dOmi6667Tq1bt9bbb7+tzp07S5J++OEHrV+/Xj//+c/1448/qqSkRCUlJfr++++VlZWlr776ynV1Vdu2bbV371599dVXbn/+mjVrJEl33HFHrel33XVXk75XRESE699Op1MlJSXKzMzU119/LafT6dV7fvDBB4qLi1NcXJzS09P1+uuv68Ybb9Sjjz5a72vWrFmjxMRE3XDDDa5pLVu21B133KHjx49r06ZNXtUC4FyclgIgSXrmmWfUq1cvOZ1OvfDCC9q8ebPCw8Ndz+/fv1+GYeiBBx7QAw88UOd7HDlyRJ06ddL8+fN19dVXq1evXurXr5/Gjh2rG2+8scHTK998841CQkKUmppaa3rv3r2b9L0+/PBDPfTQQ9q2bZvKy8trPed0OhUTE+Pxe1544YV65JFH5HA4FBkZqfPOO09t27Zt8DXffPONevbsqZCQ2r8pzzvvPNfzAHyDcANAkjR06FDX1VLZ2dm6+OKLNXHiRO3bt09t2rRRdXW1JOmee+5RVlZWne/Ro0cPSdKIESOUn5+vt956Sx988IGef/55PfXUU1qyZImmT5/e5FrrG/yvqqqq1v/z8/M1evRo9enTR08++aS6dOmisLAwrVmzRk899ZTrO3kqNjZWY8aM8eq1APyPcAPgHKGhocrNzdWoUaP0pz/9SXPmzFH37t0lnT6V4s6BvX379po6daqmTp2q48ePa8SIEZo7d2694aZbt26qrq5Wfn5+rdaaffv2nTNvu3btdOzYsXOmn9368Y9//EOVlZV6++231bVrV9f0DRs2NFq/r3Xr1k2fffaZqqura7XefPnll67npfqDGwD30ecGQJ1GjhypoUOHatGiRTpx4oTi4+M1cuRIPffccyoqKjpn/qNHj7r+/f3339d6rk2bNurRo4cqKyvr/bxx48ZJkv74xz/Wmr5o0aJz5k1NTZXT6dRnn33mmlZUVHTOKMGhoaGSJMMwXNOcTqdefPHFeuvwl5/97GcqLi7WihUrXNN++uknPf3002rTpo0yMzMlSZGRkZJUZ3gD4B5abgDU695779X//u//atmyZbr11lv1zDPP6OKLL1ZaWppmzJih7t276/Dhw9q2bZu+/fZbffrpp5Kkvn37auTIkRo0aJDat2+vnTt3auXKlZo1a1a9nzVgwADdcMMNevbZZ+V0OjVs2DCtW7dO+/fvP2fe66+/Xvfdd5+uueYa3XHHHSovL9fixYvVq1cv7dq1yzXf5ZdfrrCwMF155ZW65ZZbdPz4cS1dulTx8fF1BjR/uvnmm/Xcc89pypQp+vjjj5WcnKyVK1fqww8/1KJFixQVFSXpdAfovn37asWKFerVq5fat2+vfv36qV+/fgGtFwhqZl+uBcBcNZeC79ix45znqqqqjNTUVCM1NdX46aefDMMwjPz8fGPSpElGYmKi0bJlS6NTp07G//zP/xgrV650ve6RRx4xhg4darRt29aIiIgw+vTpY/zud78zTp486Zqnrsu2KyoqjDvuuMPo0KGD0bp1a+PKK680CgsL67w0+oMPPjD69etnhIWFGb179zZeeeWVOt/z7bffNvr372+0atXKSE5ONh599FHjhRdeMCQZBw4ccM3nyaXgjV3mXt/7HT582Jg6daoRGxtrhIWFGWlpacaLL754zmu3bt1qDBo0yAgLC+OycMALDsM4o70WAAAgyNHnBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2EqzG8Svurpahw4dUlRUFMOcAwAQJAzD0I8//qiOHTuecwPaszW7cHPo0CF16dLF7DIAAIAXCgsL1blz5wbnaXbhpmaI88LCQkVHR5tcDQAAcEdpaam6dOniOo43pNmFm5pTUdHR0YQbAACCjDtdSuhQDAAAbIVwAwAAbIVwAwAAbKXZ9blxV1VVlU6dOmV2GXBTy5YtFRoaanYZAAALINycxTAMFRcX69ixY2aXAg+1bdtWiYmJjF8EAM0c4eYsNcEmPj5ekZGRHCiDgGEYKi8v15EjRyRJSUlJJlcEADAT4eYMVVVVrmDToUMHs8uBByIiIiRJR44cUXx8PKeoAKAZo0PxGWr62ERGRppcCbxRs97oKwUAzRvhpg6cigpOrDcAgES4AQAANkO4QdDYuHGjHA4HV7IBABpkarjJzc3VkCFDFBUVpfj4eGVnZ2vfvn0NvmbZsmVyOBy1Hq1atQpQxfY2d+5cDRgwwOwyAMASipwV2ppfoiJnhdmlwEOmXi21adMmzZw5U0OGDNFPP/2k+++/X5dffrk+//xztW7dut7XRUdH1wpB9LUIrFOnTqlly5ZmlwEAfrNiR4FyVu1WtSGFOKTc8WmaMKSr2WXBTaa23Lz33nuaMmWKzj//fKWnp2vZsmUqKCjQxx9/3ODrHA6HEhMTXY+EhIQAVWxt1dXVys3NVUpKiiIiIpSenq6VK1dK+u8pnXXr1mnw4MGKjIzUsGHDXCFx2bJlmjdvnj799FNXi9iyZcsknV7eixcv1lVXXaXWrVvrd7/7XYN11HzW+++/r4EDByoiIkKXXnqpjhw5on/+858677zzFB0drYkTJ6q8vNz1usrKSt1xxx2Kj49Xq1atdPHFF2vHjh3+WVgAUI8iZ4Ur2EhStSHdv2oPLThBxFJ9bpxOpySpffv2Dc53/PhxdevWTV26dNHVV1+tvXv31jtvZWWlSktLaz0CJdBNmrm5uXrppZe0ZMkS7d27V3fffbd+8YtfaNOmTa55fvOb3+iJJ57Qzp071aJFC910002SpAkTJuhXv/qVzj//fBUVFamoqEgTJkxwvW7u3Lm65pprtHv3btdrGjN37lz96U9/0tatW1VYWKif//znWrRokZYvX653331XH3zwgZ5++mnX/L/+9a/1xhtv6K9//at27dqlHj16KCsrSz/88IOPlhAANO5ASZkr2NSoMgwdLCmv+wWwHMsM4lddXa277rpLw4cPV79+/eqdr3fv3nrhhRfUv39/OZ1OPf744xo2bJj27t2rzp07nzN/bm6u5s2b58/S6xToJs3KykotWLBA//rXv5SRkSFJ6t69u7Zs2aLnnntON998syTpd7/7nTIzMyVJc+bM0RVXXKETJ04oIiJCbdq0UYsWLZSYmHjO+0+cOFFTp071qKZHHnlEw4cPlyRNmzZNOTk5ys/PV/fu3SVJ1113nTZs2KD77rtPZWVlWrx4sZYtW6Zx48ZJkpYuXaq1a9fqL3/5i+69917vFgwAeCgltrVCHKoVcEIdDiXHMgZasLBMy83MmTO1Z88evfbaaw3Ol5GRoUmTJmnAgAHKzMzUqlWrFBcXp+eee67O+XNycuR0Ol2PwsJCf5RfixlNmvv371d5ebkuu+wytWnTxvV46aWXlJ+f75qvf//+rn/X3Kag5rYFDRk8eLDHNZ35WQkJCYqMjHQFm5ppNZ+dn5+vU6dOucKQdPpmmEOHDtUXX3zh8WcDgLeSYiKUOz5Nof/XnzPU4dCC8f2UFBNhcmVwlyVabmbNmqV33nlHmzdvrrP1pSEtW7bUwIEDtX///jqfDw8PV3h4uC/KdFtDTZr++uM4fvy4JOndd99Vp06daj0XHh7uCjhndgSu6YhdXV3d6Ps31MG7Pmd/1tmdkB0Oh1ufDQCBNmFIV43oFaeDJeVKjo0k2AQZU1tuDMPQrFmztHr1aq1fv14pKSkev0dVVZV2795tqZsl1jRpnsnfTZp9+/ZVeHi4CgoK1KNHj1qPLl26uPUeYWFhqqqq8luNDUlNTVVYWJg+/PBD17RTp05px44d6tu3ryk1AWjekmIilJHagWAThExtuZk5c6aWL1+ut956S1FRUSouLpYkxcTEuG6EOGnSJHXq1Em5ubmSpPnz5+uiiy5Sjx49dOzYMf3+97/XN998o+nTp5v2Pc5W06R5/6o9qjKMgDRpRkVF6Z577tHdd9+t6upqXXzxxXI6nfrwww8VHR2tbt26NfoeycnJOnDggPLy8tS5c2dFRUUFrNWrdevWuu2223Tvvfeqffv26tq1qx577DGVl5dr2rRpAakBAGAPpoabxYsXS5JGjhxZa/qLL76oKVOmSJIKCgoUEvLfBqb//Oc/mjFjhoqLi9WuXTsNGjRIW7dutdyvezOaNB9++GHFxcUpNzdXX3/9tdq2basLLrhA999/v1unf6699lqtWrVKo0aN0rFjx2qth0BYuHChqqurdeONN+rHH3/U4MGD9f7776tdu3YBqwEAEPwchmEYjc9mH6WlpYqJiZHT6VR0dHSt506cOKEDBw4oJSWFUY+DEOsPAOyroeP32SxztRQAAIAvEG7gsVtvvbXW5eZnPm699VazywMANHOWuBQcwWX+/Pm655576nyusaZCAAD8jXADj8XHxys+Pt7sMgAAqBOnpQAAgK0QburAqLnBifUGAJA4LVVLWFiYQkJCdOjQIcXFxSksLMx1iwJYl2EYOnnypI4ePaqQkBCFhYWZXRIAwESEmzOEhIQoJSVFRUVFOnTokNnlwEORkZHq2rVrrUEfAQDND+HmLGFhYeratat++ukn0+6zBM+FhoaqRYsWtLQBAAg3dam5g/XZd7EGAADWR/s9AACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFVPDTW5uroYMGaKoqCjFx8crOztb+/bta/R1r7/+uvr06aNWrVopLS1Na9asCUC1AAAgGJgabjZt2qSZM2fqo48+0tq1a3Xq1CldfvnlKisrq/c1W7du1Q033KBp06bpk08+UXZ2trKzs7Vnz54AVg4AAKzKYRiGYXYRNY4ePar4+Hht2rRJI0aMqHOeCRMmqKysTO+8845r2kUXXaQBAwZoyZIljX5GaWmpYmJi5HQ6FR0d7bPaAQCA/3hy/LZUnxun0ylJat++fb3zbNu2TWPGjKk1LSsrS9u2batz/srKSpWWltZ6AAAA+7JMuKmurtZdd92l4cOHq1+/fvXOV1xcrISEhFrTEhISVFxcXOf8ubm5iomJcT26dOni07oBAIC1WCbczJw5U3v27NFrr73m0/fNycmR0+l0PQoLC336/gAAwFpamF2AJM2aNUvvvPOONm/erM6dOzc4b2Jiog4fPlxr2uHDh5WYmFjn/OHh4QoPD/dZrQAAwNpMbbkxDEOzZs3S6tWrtX79eqWkpDT6moyMDK1bt67WtLVr1yojI8NfZQIAgCBiasvNzJkztXz5cr311luKiopy9ZuJiYlRRESEJGnSpEnq1KmTcnNzJUl33nmnMjMz9cQTT+iKK67Qa6+9pp07d+rPf/6zad8DAABYh6ktN4sXL5bT6dTIkSOVlJTkeqxYscI1T0FBgYqKilz/HzZsmJYvX64///nPSk9P18qVK/Xmm2822AkZAAA0H5Ya5yYQGOcGAIDgE7Tj3AAAADQV4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4cYmipwV2ppfoiJnhdmlAABgqhZmF4CmW7GjQDmrdqvakEIcUu74NE0Y0tXssgAAMAUtN0GuyFnhCjaSVG1I96/aQwsOAKDZItwEuQMlZa5gU6PKMHSwpNycggAAMBnhJsilxLZWiKP2tFCHQ8mxkeYUBACAyQg3QS4pJkK549MU6jidcEIdDi0Y309JMREmVwYAgDnoUGwDE4Z01YhecTpYUq7k2EiCDQCgWSPc2ERSTAShBgAAcVoKAADYDOEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEG+D9FzgptzS/hjuoAEOQYoRiQtGJHgXJW7Va1IYU4pNzxaZowpKvZZQEAvEDLDZq9ImeFK9hIUrUh3b9qDy04ABCkCDdo9g6UlLmCTY0qw9DBknJzCgIANAnhBs1eSmxrhThqTwt1OJQcG2lOQQCAJjE13GzevFlXXnmlOnbsKIfDoTfffLPB+Tdu3CiHw3HOo7i4ODAFw5aSYiKUOz5NoY7TCSfU4dCC8f24yzoABClTOxSXlZUpPT1dN910k8aPH+/26/bt26fo6GjX/+Pj4/1RHpqRCUO6akSvOB0sKVdybCTBBgCCmKnhZty4cRo3bpzHr4uPj1fbtm19XxCataSYCEINANhAUPa5GTBggJKSknTZZZfpww8/NLucgGEcFgAAGhdU49wkJSVpyZIlGjx4sCorK/X8889r5MiR2r59uy644II6X1NZWanKykrX/0tLSwNVrk8xDgsAAO4JqnDTu3dv9e7d2/X/YcOGKT8/X0899ZRefvnlOl+Tm5urefPmBapEv6hvHJYRveI4jQIAwFmC8rTUmYYOHar9+/fX+3xOTo6cTqfrUVhYGMDqfINxWAAAcF9QtdzUJS8vT0lJSfU+Hx4ervDw8ABW5Hs147CcGXAYhwUAgLqZGm6OHz9eq9XlwIEDysvLU/v27dW1a1fl5OTou+++00svvSRJWrRokVJSUnT++efrxIkTev7557V+/Xp98MEHZn2FgKgZh+X+VXtUZRiMwwIAQAPcDjeedMQ9cwyahuzcuVOjRo1y/X/27NmSpMmTJ2vZsmUqKipSQUGB6/mTJ0/qV7/6lb777jtFRkaqf//++te//lXrPeyKcVgAAHCPwzAMo/HZpJCQEDkcjgbnMQxDDodDVVVVPinOH0pLSxUTEyOn0+l2CAP8pchZoQMlZUqJbU1gBYAGeHL8drvlZsOGDU0uDMB/cXk/APiH2+EmMzPTn3UAzQqX9wOA/3jdofjYsWP6y1/+oi+++EKSdP755+umm25STEyMz4oD7Kqhy/sJNwDQNF6Nc7Nz506lpqbqqaee0g8//KAffvhBTz75pFJTU7Vr1y5f1wjYTs3l/Wfi8n4A8A23OxSf6ZJLLlGPHj20dOlStWhxuvHnp59+0vTp0/X1119r8+bNPi/UV+hQDKtYsaPgnMv76XMDAHXz5PjtVbiJiIjQJ598oj59+tSa/vnnn2vw4MEqL7fuyLmEG1hJkbOCy/sBwA2eHL+9Oi0VHR1da/yZGoWFhYqKivLmLYFmKSkmQhmpHQg2AOBDXoWbCRMmaNq0aVqxYoUKCwtVWFio1157TdOnT9cNN9zg6xoBAADc5tXVUo8//rgcDocmTZqkn376SZLUsmVL3XbbbVq4cKFPCwQAAPCEV31uapSXlys/P1+SlJqaqshI61/pQZ8bAACCj19GKK5LZGSk0tLSmvIWAAAAPuVVuDlx4oSefvppbdiwQUeOHFF1dXWt5xnrBgAAmMWrcDNt2jR98MEHuu666zR06NBGb6gJAAAQKF6Fm3feeUdr1qzR8OHDfV0PAABAk3h1KXinTp0YzwYAAFiSV+HmiSee0H333advvvnG1/UAAAA0iVenpQYPHqwTJ06oe/fuioyMVMuWLWs9/8MPP/ikOAAAAE95FW5uuOEGfffdd1qwYIESEhLoUAwAACzDq3CzdetWbdu2Tenp6b6uBwAAoEm86nPTp08fVVRU+LoWAACAJvMq3CxcuFC/+tWvtHHjRn3//fcqLS2t9QAAADCLV/eWCgk5nYnO7mtjGIYcDoeqqqp8U50fcG8pAACCj9/vLbVhwwavCgMAAPA3r8JNZmamW/Pdfvvtmj9/vmJjY735GAAAAI951efGXa+88gp9cAAAQED5Ndx40Z0HAACgSfwabgAAAAKNcAMAAGyFcAMAAGyFcAMAAGzF43Dz008/af78+fr2228bnfcXv/gFA+UBAICA8mqE4qioKO3evVvJycl+KMm/GKEYAIDg48nx26vTUpdeeqk2bdrkVXEAAAD+5NUIxePGjdOcOXO0e/duDRo0SK1bt671/FVXXeWT4gAAADzVpBtn1vmG3DgTAAD4mN9vnFldXe1VYQAAAP7mVZ+bl156SZWVledMP3nypF566aUmFwUAAOAtr05LhYaGqqioSPHx8bWmf//994qPj+e0FAAA8Cm/Xy1lGIYcDsc507/99lvFxMR485YAAMAGipwV2ppfoiJnhWk1eNTnZuDAgXI4HHI4HBo9erRatPjvy6uqqnTgwAGNHTvW50UCAADrW7GjQDmrdqvakEIcUu74NE0Y0jXgdXgUbrKzsyVJeXl5ysrKUps2bVzPhYWFKTk5Wddee61PCwQAANZX5KxwBRtJqjak+1ft0YhecUqKiQhoLR6Fm4ceekiSlJycrAkTJqhVq1Z+KSpYFTkrdKCkTCmxrQO+IgEAMNOBkjJXsKlRZRg6WFJu7XBTY/LkyZJOXx115MiRcy4N79o18E1QZrNKUxwAAGZIiW2tEIdqBZxQh0PJsZEBr8WrDsVfffWVLrnkEkVERKhbt25KSUlRSkqKkpOTlZKS4usaLa++pjgzO1MBABBISTERyh2fptD/u+Ao1OHQgvH9TDmT4VXLzZQpU9SiRQu98847SkpKqvPKqebESk1xAACYZcKQrhrRK04HS8qVHBtp2jHQq3CTl5enjz/+WH369PF1PUHJSk1xAACYKSkmwvQf9l6dlurbt69KSkp8XUvQslJTHAAAzZ1XIxSvX79ev/3tb7VgwQKlpaWpZcuWtZ638si//hyhuMhZYXpT3Nm4ggsAYAeeHL+bfFfwM/vb1IxczO0XrIEruAAAduH3u4Jv2LDBq8IQOFYaTAkAgEDyqs9NZmamQkJCtHTpUs2ZM0c9evRQZmamCgoKFBoa6usag5aZ99do6AouAADszKtw88YbbygrK0sRERH65JNPVFlZKUlyOp1asGCBTwsMVit2FGj4wvWauHS7hi9crxU7CgL6+TVXcJ2JK7gAAM2BV+HmkUce0ZIlS7R06dJanYmHDx+uXbt2+ay4YGWFQf24ggsA0Fx51edm3759GjFixDnTY2JidOzYsabWFPSsMqifVQZTAgAgkLwKN4mJidq/f7+Sk5NrTd+yZYu6d+/ui7qCmpUG9bPCYEoAAASSV6elZsyYoTvvvFPbt2+Xw+HQoUOH9Le//U333HOPbrvtNl/XGHQ4JQQAgHm8Cjdz5szRxIkTNXr0aB0/flwjRozQ9OnTdcstt+iXv/yl2++zefNmXXnllerYsaMcDofefPPNRl+zceNGXXDBBQoPD1ePHj20bNkyb76C300Y0lVb5ozSqzMu0pY5oxhfBgCAAPEq3DgcDv3mN7/RDz/8oD179uijjz7S0aNH9fDDD3v0PmVlZUpPT9czzzzj1vwHDhzQFVdcoVGjRikvL0933XWXpk+frvfff9+br+F3STERykjtQIsNAAAB5NUIxf7gcDi0evVqZWdn1zvPfffdp3fffVd79uxxTbv++ut17Ngxvffee259TnMaoRgAALvw5PjtVcuNWbZt26YxY8bUmpaVlaVt27aZVBEAALAar66WMktxcbESEhJqTUtISFBpaakqKioUEXHu6Z/KykrXIIPS6eQHAADsK6habryRm5urmJgY16NLly5mlwQAAPwoqMJNYmKiDh8+XGva4cOHFR0dXWerjSTl5OTI6XS6HoWFhYEoFQAAmCSoTktlZGRozZo1taatXbtWGRkZ9b4mPDxc4eHh/i4NAABYhKktN8ePH1deXp7y8vIknb7UOy8vTwUFp28ymZOTo0mTJrnmv/XWW/X111/r17/+tb788ks9++yz+vvf/667777bjPIBAIAFmRpudu7cqYEDB2rgwIGSpNmzZ2vgwIF68MEHJUlFRUWuoCNJKSkpevfdd7V27Vqlp6friSee0PPPP6+srCxT6gcAANZjmXFuAoVxbpqmyFmhAyVlSoltzeCEAICA8eT4HVR9bmCuFTsKlLNqt6oNKcQh5Y5P47YSAADLCaqrpWCeImeFK9hIp+94fv+qPSpyVphbGAAAZyHcwC0HSspcwaZGlWHoYEm5OQUBAFAPwg3ckhLbWiGO2tNCHQ4lx0aaUxAAAPUg3MAtSTERyh2fplDH6YQT6nBowfh+dCoGAFgOHYrhtglDumpErzgdLClXcmwkwQYAYEmEG3gkKSaCUAMAsDROSwEAAFsh3AAAAFsh3AAAAFsh3MBjRc4Kbc0vYQA/AIAl0aEYHuEWDAAAq6PlBm7jFgwAgGBAuIHbuAUDACAYEG7gNm7BAAAIBoQbuI1bMAAAggEdiuERbsEAALA6wg08xi0YAABWxmkpAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABMwo2I/YNLwQEAMAE3IvYfWm4AAAgwbkTsX4QbAAACjBsR+xfhBgCAAONGxP5FuAEAIMC4EbF/0aEYAAATcCNi/yHcAABgEm5E7B+clgLQrDHOCGA/tNwAaLYYZwSwJ1puADRLjDMC2BfhBkCzxDgjgH0RbgA0S4wzAtgX4QZAs8Q4I4B90aEYQLPFOCOAPRFuADRrjDMC2A+npQAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbuB3Rc4Kbc0v4YaEAICAYBA/+NWKHQWuOy+HOKTc8WmaMKSr2WUBAGyMlhv4TZGzwhVsJKnakO5ftYcWHACAXxFu4DcHSspcwaZGlWHoYEm5OQUBAJoFwg38JiW2tUIctaeFOhxKjo00pyAgAOhjBpiPcAO/SYqJUO74NIU6TiecUIdDC8b34yaFsK0VOwo0fOF6TVy6XcMXrteKHQVmlwQ0Sw7DMIzGZ7OP0tJSxcTEyOl0Kjo62uxymoUiZ4UOlpQrOTaSYAPbKnJWaPjC9bVOxYY6HNoyZxTbPeADnhy/uVoKfpcUE8HOHbbXUB8ztn8EqyJnhQ6UlCkltnVQbceEGwDwgZo+Zme33NDHDMHK3aE8rBiA6HMDAD5AHzPfoVO2+dwdysOq/cwsEW6eeeYZJScnq1WrVrrwwgv173//u955ly1bJofDUevRqlWrAFYLAHWbMKSrtswZpVdnXKQtc0YxYKUXrHqwtKv6gqQ7Q3lYeSwz009LrVixQrNnz9aSJUt04YUXatGiRcrKytK+ffsUHx9f52uio6O1b98+1/8dDked8wFAoNHHzHv1HSxH9IpjmfpBQ6ed3DnNauV+Zqa33Dz55JOaMWOGpk6dqr59+2rJkiWKjIzUCy+8UO9rHA6HEhMTXY+EhIQAVgwA8AerDvxZX+tGMJ8+a6zVxZ3TrFYey8zUlpuTJ0/q448/Vk5OjmtaSEiIxowZo23bttX7uuPHj6tbt26qrq7WBRdcoAULFuj8888PRMkAAD+xYqfs+lo3gv2+ee60ukwY0lUjesXVO5RHTQC6f9UeVRmGpfqZmRpuSkpKVFVVdU7LS0JCgr788ss6X9O7d2+98MIL6t+/v5xOpx5//HENGzZMe/fuVefOnc+Zv7KyUpWVla7/l5aW+vZLAAB8wmoHy/paN/okRgX96TN3g2Rjp1kbC0BmMb3PjacyMjKUkZHh+v+wYcN03nnn6bnnntPDDz98zvy5ubmaN29eIEsEAHjJSgfL+lo3dhz8j2X7mrjLl0HSiv3MTA03sbGxCg0N1eHDh2tNP3z4sBITE916j5YtW2rgwIHav39/nc/n5ORo9uzZrv+XlpaqS5cu3hcNAPArqxws62vdGJLcznKnz7xhpSDpa6Z2KA4LC9OgQYO0bt0617Tq6mqtW7euVutMQ6qqqrR7924lJSXV+Xx4eLiio6NrPQAA1mDlTrn1dapN79LONmMaJcVEKCO1Q1DW3hDTT0vNnj1bkydP1uDBgzV06FAtWrRIZWVlmjp1qiRp0qRJ6tSpk3JzcyVJ8+fP10UXXaQePXro2LFj+v3vf69vvvlG06dPN/NrAAA8FAydcutr3bBzq4cdmB5uJkyYoKNHj+rBBx9UcXGxBgwYoPfee8/VybigoEAhIf9tYPrPf/6jGTNmqLi4WO3atdOgQYO0detW9e3b16yvgACz4lDfADwTTGPa1HeazCqnz3Au7gqOoBIMv/QANG5rfokmLt1+zvRXZ1ykjNQOJlQEq/Pk+G36IH6Au6w81DcAz1h5ADhPWbnfUHNFuEHQsOropQA8Z5cbjXIvLGsyvc8N4C4rjl4KwHvB3ik3mPoNNTe03CBo2OWXHoD/CuZLkWlNti5abhBUgv2XHgD7oDXZumi5QdAJ5l96AOyD1mTrouUGANAgu40t5cvvQ2uyNRFuAAD1stvYUv74PgzmZz2clgJga4xB4r1Ajy3l73XFWFnNBy03AGzLbq0OgdbQ1UC+bqkIxLry5/ex26m7YEfLDQBbasqvdFp7TgvUKMKBalHx1/dhID/rIdwAsCVvxyDhQPVfgboaKFDjxfjj+3Cqy5o4LQXAluoag0SSPvvuWL03ZmTE2XOdeTVQZFiIyk5WqchZ4dPlEcjxYnx9dVMgT91x6st9tNwAsKWkmAjdN7bPOdMfXfOlPi38T52vYcTZuiXFRKjghzJd8+xWv7RoBXq8GF+OlRWoU3e0KHqGcAPAttI6x5wzrVpS9rNb6zw42OFO1f7oLxSIUy8ThnTVljmj9OqMi7Rlzqig6fjtTTDzdB1x6stznJYCYFv1nZoy6jndVHOgun/VHlUZRtCNOOuvK44CderF3fFirHZ6xpNTXd6so0Ce+rILwg1gI1bb6ZutJqzkvLFb1Wc9V9/BIVhHnPVnfyEr3UPJqpf3uxPMvF1HVlr+wYLTUrAtO1zO68l3COQ5+WBathOGdNXqmcPk8OB0UzDev8yf/YU2/39HZZzx3g6HTGnRCvbTM96uI+5h5TlabkzAr2v/a8qvO6usH0++QyCv8rHqL+eGpHdpp4VBfLrJHf76dV+zbZ15THYY0ohecU16X28E++mZpqwjd1oUrbLvsgLCTYAF44Eh2DTlQG+V9ePpdwjUTt/duqy4kw3W003u8ld/obq2rWrJlEBRVzgIcUglx0/4/PJ0f2jqOmro1JdV9l1WQbgJIMbQCAxvD/RWWj+efgdf/Gp3J5C4U5eVd7J2v8GhPwKclfp7nB0OHI7TncN/+Wqe5ba1+vhjHVlp32UV9LkJIMbQCAxvL+e10vrx9Ds09Zy8u/11GqvLrD4RwdQH6Ez+qNvX/YWs1t+j5pLxZyYOlAy5TpdVG1LOG7vrHcPISny9jqy077IKWm4CyEq/gOzM26ZfK60fb76Dt78IPfnV11hd3rSaNfUUlpVbihoSTHVb7ZReUkyE2rUu01mbmmsMo4UWXpb+YKV9l1UQbgIo2MfQCCbe7Iyttn68/Q6e1ttYIDk7fDRUl6c72aYe4IO1Od6MupsaIq12Ss/TMYzszGr7Lisg3ASYL34BWbGzphV5szO24i9Uf9fQUCCpL3zUV5cnO1lfHOCD9eqZQNcdTK1E7vJmDCM7s9q+y2yEGxM05YBlx51UQ8wIclb7hepv9QUSSV6FD3d3sp4e4OvaFoK1OT6QdQdr65Y7Jgzpqj6JUcp+dmutcXiCYRvwh+a272oI4SaI2HknVZfmFuTMVFcg2Zpf4nXrgjs7WU8O8A21IAVjc3wg6/ZnK5EVWpGbwxhGZ7PCcrc6wk0QCdYmeG80tyBnpjN3lBmpHVzT/d264O4BvrFtIVib492tu6kHMn+tRyv9+AjWbcAbVlruVka4CSLB2gTvjeYU5MzU0I4yEK0L7hyU3NkWgrU5vrG6fXEg88d6tOJgjmcvSzu2bvCjz32EmyASrE3w3mhOQc4s7uwoA/GLuLEDfHPdFnx5IPP1evR0MEeHQ5ozro9uGZHapM91l11bN/jR5z7CTZBpLs2vzSnImcXdHaXZrSLNdVvw9YHMl+uxscB5djAzDCl3zZeSId2S6d+AY+fWjeYa9L1BuAlCZh9sAuXsICdJW/NLbNXMbKZg2lE2l1B/JiuvH28Gc5SkR//5pa4a0NGv68/OrRvNNeh7g3ADS6sJcnZtZjZTsO0ogyHU+7Kfh9XXT2ODOdbc9+lMgbjhpq9DodX67jTHoO8Nh2GcvfnZW2lpqWJiYuR0OhUdHW12OXBDkbNCwxeuP2dntWXOKP6wfaDIWcGO0gf8FcDrWj9WO+DW5bnN+adPRZ0hUH+3K3YUnBMKvVkXdvhRFQzbirs8OX7TcgPLs3MzsxUEQ4uI1fmzn8fZ6ydYDri3jEiVjNOnoqoV2Btu+mok+GDvuxMs24o/EG5geVbuewBIgQvgwXbAvSUzVVcN6GhKy2BTQ3uw/6gKtm3F10LMLgBoTE3fg1CHQ1JgfwHaTZGzQlvzS1TkrDC7FFupCeBn8kcAb+iAa1VJMRHKSO0QdH+vgVqn/hKM24ov0XKDoEAnuqZrzk3U/haozr+0YgaO1Tt0N6a5byt0KEaj7NQhzar8vYzplB0Ygeic7avOsr5k531EMHe4t+K20hR0KIbP8Gvf/wKxjIO9/0CwCETnbKu1Ytp9HxHMHe6ttq0EEn1uUK/6OqTRX8N3ArWMfdl/gH475rNKPxb2EdZnlW0l0Ag3qFdz75AWCIFaxr7qlL1iR4GGL1yviUu3a/jC9Vqxo8CndSK4sI+AVXFaCvVq7h3SAiGQy7ipTdTN/dJSnKup26+d++rAXLTcoF5cgu1/gV7GTWmi5lc6ztaU7ZdWQPgTV0uhUcF8tUCwCIZlzBVXqI+n2y/bErzB1VLwqWC+WiBYBMMyDvZxP+A/nm6/XL0HfyPcmIRzzQhGVr60lL+p4EF/PvcEepu2098Q4cYEdh8XAr5npZ2OFVuZ+JsKLrQCNi7Q27Td/obocxNgnGuGp+y20/E1X/1NWSlANhfB0NfMDIE+TgTLcYk+NxbGuebgZNaBj8uvG+eLvykCpDms2ApoBYE+TtjxuES4CbBgOdfMr9j/MvPAZ8edjq/5YqwVAqS1NPf9T6CPE8FyXPIE49wEWDCMHdPU8SfsNDy/2cPL+/K2Cf5m1npv6t8U4/dYC+PfmDP+ldWPS56i5cYEVr/ipCm/Yu3WvG92y0mwdLw0e7035W/Kjr9agxWtaP/lq+OEu61gVj4ueYNwYxKrnmtuysHcjjsmKwwvb/WdjlXWu7d/U8ESIH3Fyqd8zP4xYTVNPU54+qPDqsclbxBuUEt9B/PIsBBtzS9pcIfoyY7J7B2su5/flAOfL1szrLzTscMByeoB0ht1beNmt7A1hlY07529vq3yo8MshBvUUtfBPHtgR13z7NZGd4ju7pgCuYP1xQ7emwNfc9qx2OWAZOUA6am6tvERveIsv002t1Y0X6lrfXdpHxn0PzqagnCDc5x5MI8MC3EFG6nuHeKZAaKxHVMgD/q+3MEzvHzDpl+couf/3wFVKzCdEc1u+bOy+v7GFl2fHhTbpB1b0fypvvW96vYMW/zo8JYlrpZ65plnlJycrFatWunCCy/Uv//97wbnf/3119WnTx+1atVKaWlpWrNmTYAqbT5q7h5ddrKqwStJzr6yQZK2zBmlV2dcpC1zRp3TIuKvK1POvlKnvj/4nQd/CMiVMcF0lVNT1Kz/P/+/A5JDuvmS7nWud398ZnO+mqYh9f2NhTgcQbNNNuXu9f5i1atA61vf5SerbXcFlCdMDzcrVqzQ7Nmz9dBDD2nXrl1KT09XVlaWjhw5Uuf8W7du1Q033KBp06bpk08+UXZ2trKzs7Vnz54AV948NHSQri9ASKp3x+SPg35dBzuzd/B2vLTybHWt/79sORDwzwzkpfnBoL6/sQu6tbP9NukvVg7UDe1TJwzp2uCPTTszPdw8+eSTmjFjhqZOnaq+fftqyZIlioyM1AsvvFDn/H/4wx80duxY3XvvvTrvvPP08MMP64ILLtCf/vSnAFfePDR0kPamFcbXB/36Dnatw0JN38HbfcdixvgwjEnTuIb+xuy+TfqD1QN1Y/tUK7aCBYKpfW5Onjypjz/+WDk5Oa5pISEhGjNmjLZt21bna7Zt26bZs2fXmpaVlaU333yzzvkrKytVWVnp+n9paWnTC29m6jsH7m1HUl+eU2+sSbau/j+BPKdvp06qZzOjI7FdOi/7W0PbuJ23SX8Ihv5z9FM6l6nhpqSkRFVVVUpISKg1PSEhQV9++WWdrykuLq5z/uLi4jrnz83N1bx583xTcDNW1w6xKVc2+GoH29DBLiO1Azt4PzLjyhaupnEf27hvBEugZn3XZvurpXJycmq19JSWlqpLly4mVmQvZv9iaOxgxx+8f5mx/s3e5tC8EKiDk6nhJjY2VqGhoTp8+HCt6YcPH1ZiYmKdr0lMTPRo/vDwcIWHh/umYNTJ7ADBwc5cZqx/s7c5NC/sY4KPqR2Kw8LCNGjQIK1bt841rbq6WuvWrVNGRkadr8nIyKg1vyStXbu23vnRPDTXTnMAAoN9THAx/bTU7NmzNXnyZA0ePFhDhw7VokWLVFZWpqlTp0qSJk2apE6dOik3N1eSdOeddyozM1NPPPGErrjiCr322mvauXOn/vznP5v5NQAAgEWYHm4mTJigo0eP6sEHH1RxcbEGDBig9957z9VpuKCgQCEh/21gGjZsmJYvX67f/va3uv/++9WzZ0+9+eab6tevn1lfAQAAWIjDMAyj8dnso7S0VDExMXI6nYqOjja7HAAA4AZPjt+mD+IHAADgS4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK6aPUBxoNWMWlpaWmlwJAABwV81x252xh5tduPnxxx8lSV26dDG5EgAA4Kkff/xRMTExDc7T7G6/UF1drUOHDikqKkoOh8PscgKqtLRUXbp0UWFhIbeeaCKWpW+wHH2HZekbLEff8fWyNAxDP/74ozp27FjrnpN1aXYtNyEhIercubPZZZgqOjqaP1ofYVn6BsvRd1iWvsFy9B1fLsvGWmxq0KEYAADYCuEGAADYCuGmGQkPD9dDDz2k8PBws0sJeixL32A5+g7L0jdYjr5j5rJsdh2KAQCAvdFyAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwY0ObN2/WlVdeqY4dO8rhcOjNN9+s9bxhGHrwwQeVlJSkiIgIjRkzRl999ZU5xVpcY8tyypQpcjgctR5jx441p1gLy83N1ZAhQxQVFaX4+HhlZ2dr3759teY5ceKEZs6cqQ4dOqhNmza69tprdfjwYZMqtiZ3luPIkSPP2SZvvfVWkyq2rsWLF6t///6uAeYyMjL0z3/+0/U826N7GluOZm2PhBsbKisrU3p6up555pk6n3/sscf0xz/+UUuWLNH27dvVunVrZWVl6cSJEwGu1PoaW5aSNHbsWBUVFbker776agArDA6bNm3SzJkz9dFHH2nt2rU6deqULr/8cpWVlbnmufvuu/WPf/xDr7/+ujZt2qRDhw5p/PjxJlZtPe4sR0maMWNGrW3yscceM6li6+rcubMWLlyojz/+WDt37tSll16qq6++Wnv37pXE9uiuxpajZNL2aMDWJBmrV692/b+6utpITEw0fv/737umHTt2zAgPDzdeffVVEyoMHmcvS8MwjMmTJxtXX321KfUEsyNHjhiSjE2bNhmGcXobbNmypfH666+75vniiy8MSca2bdvMKtPyzl6OhmEYmZmZxp133mleUUGsXbt2xvPPP8/22EQ1y9EwzNseablpZg4cOKDi4mKNGTPGNS0mJkYXXnihtm3bZmJlwWvjxo2Kj49X7969ddttt+n77783uyTLczqdkqT27dtLkj7++GOdOnWq1nbZp08fde3ale2yAWcvxxp/+9vfFBsbq379+iknJ0fl5eVmlBc0qqqq9Nprr6msrEwZGRlsj146eznWMGN7bHY3zmzuiouLJUkJCQm1pickJLieg/vGjh2r8ePHKyUlRfn5+br//vs1btw4bdu2TaGhoWaXZ0nV1dW66667NHz4cPXr10/S6e0yLCxMbdu2rTUv22X96lqOkjRx4kR169ZNHTt21Geffab77rtP+/bt06pVq0ys1pp2796tjIwMnThxQm3atNHq1avVt29f5eXlsT16oL7lKJm3PRJugCa4/vrrXf9OS0tT//79lZqaqo0bN2r06NEmVmZdM2fO1J49e7RlyxazSwlq9S3Hm2++2fXvtLQ0JSUlafTo0crPz1dqamqgy7S03r17Ky8vT06nUytXrtTkyZO1adMms8sKOvUtx759+5q2PXJaqplJTEyUpHN6/R8+fNj1HLzXvXt3xcbGav/+/WaXYkmzZs3SO++8ow0bNqhz586u6YmJiTp58qSOHTtWa362y7rVtxzrcuGFF0oS22QdwsLC1KNHDw0aNEi5ublKT0/XH/7wB7ZHD9W3HOsSqO2RcNPMpKSkKDExUevWrXNNKy0t1fbt22udI4V3vv32W33//fdKSkoyuxRLMQxDs2bN0urVq7V+/XqlpKTUen7QoEFq2bJlre1y3759KigoYLs8Q2PLsS55eXmSxDbphurqalVWVrI9NlHNcqxLoLZHTkvZ0PHjx2ul4gMHDigvL0/t27dX165dddddd+mRRx5Rz549lZKSogceeEAdO3ZUdna2eUVbVEPLsn379po3b56uvfZaJSYmKj8/X7/+9a/Vo0cPZWVlmVi19cycOVPLly/XW2+9paioKFe/hZiYGEVERCgmJkbTpk3T7Nmz1b59e0VHR+uXv/ylMjIydNFFF5lcvXU0thzz8/O1fPly/exnP1OHDh302Wef6e6779aIESPUv39/k6u3lpycHI0bN05du3bVjz/+qOXLl2vjxo16//332R490NByNHV7DPj1WfC7DRs2GJLOeUyePNkwjNOXgz/wwANGQkKCER4ebowePdrYt2+fuUVbVEPLsry83Lj88suNuLg4o2XLlka3bt2MGTNmGMXFxWaXbTl1LUNJxosvvuiap6Kiwrj99tuNdu3aGZGRkcY111xjFBUVmVe0BTW2HAsKCowRI0YY7du3N8LDw40ePXoY9957r+F0Os0t3IJuuukmo1u3bkZYWJgRFxdnjB492vjggw9cz7M9uqeh5Wjm9ugwDMPwb3wCAAAIHPrcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcALCUkydPml3COaxYE4D6EW4A+NXIkSM1a9YszZo1SzExMYqNjdUDDzygmju/JCcn6+GHH9akSZMUHR2tm2++WZK0ZcsWXXLJJYqIiFCXLl10xx13qKyszPW+zz77rHr27KlWrVopISFB1113neu5lStXKi0tTREREerQoYPGjBnjeu3IkSN111131aoxOztbU6ZMcf3f25oAWAPhBoDf/fWvf1WLFi3073//W3/4wx/05JNP6vnnn3c9//jjjys9PV2ffPKJHnjgAeXn52vs2LG69tpr9dlnn2nFihXasmWLZs2aJUnauXOn7rjjDs2fP1/79u3Te++9pxEjRkiSioqKdMMNN+imm27SF198oY0bN2r8+PHy9DZ6ntYEwDq4cSYAvxo5cqSOHDmivXv3yuFwSJLmzJmjt99+W59//rmSk5M1cOBArV692vWa6dOnKzQ0VM8995xr2pYtW5SZmamysjKtWbNGU6dO1bfffquoqKhan7dr1y4NGjRIBw8eVLdu3eqsZ8CAAVq0aJFrWnZ2ttq2batly5ZJklc1tWrVqknLCYDv0HIDwO8uuugiV7CRpIyMDH311VeqqqqSJA0ePLjW/J9++qmWLVumNm3auB5ZWVmqrq7WgQMHdNlll6lbt27q3r27brzxRv3tb39TeXm5JCk9PV2jR49WWlqa/vd//1dLly7Vf/7zH49r9rQmANZBuAFgutatW9f6//Hjx3XLLbcoLy/P9fj000/11VdfKTU1VVFRUdq1a5deffVVJSUl6cEHH1R6erqOHTum0NBQrV27Vv/85z/Vt29fPf300+rdu7crgISEhJxziurUqVNNrgmAdRBuAPjd9u3ba/3/o48+Us+ePRUaGlrn/BdccIE+//xz9ejR45xHWFiYJKlFixYaM2aMHnvsMX322Wc6ePCg1q9fL0lyOBwaPny45s2bp08++URhYWGuU0xxcXEqKipyfVZVVZX27NnT6HdwpyYA1kC4AeB3BQUFmj17tvbt26dXX31VTz/9tO68885657/vvvu0detWzZo1S3l5efrqq6/01ltvuTrvvvPOO/rjH/+ovLw8ffPNN3rppZdUXV2t3r17a/v27VqwYIF27typgoICrVq1SkePHtV5550nSbr00kv17rvv6t1339WXX36p2267TceOHWv0OzRWEwDraGF2AQDsb9KkSaqoqNDQoUMVGhqqO++803V5dV369++vTZs26Te/+Y0uueQSGYah1NRUTZgwQZLUtm1brVq1SnPnztWJEyfUs2dPvfrqqzr//PP1xRdfaPPmzVq0aJFKS0vVrVs3PfHEExo3bpwk6aabbtKnn36qSZMmqUWLFrr77rs1atSoRr9DYzUBsA6ulgLgV3VdnQQA/sRpKQAAYCuEGwAAYCuclgIAALZCyw0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALCV/x/YBjhC2T2t0QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQNJJREFUeJzt3Xt0FPX9//HXJpCQAFmEXIWEhLsIBMtFIwooaES/KqJtlKPI1aogIvVCbFG0atBWpVULFqt4KUpFUAtqoVy/CLUgokCVn8RgUBIgWjaQhIDJ/P7wm5WQTbK72d2ZnTwf5+QcmJ3dfe/s7M5rP5/PfMZhGIYhAAAAm4gwuwAAAIBAItwAAABbIdwAAABbIdwAAABbIdwAAABbIdwAAABbIdwAAABbIdwAAABbIdwAAABbIdwAMMWcOXPkcDi8WtfhcGjOnDlBrWf48OEaPny4ZR8PgPcIN0Azt2jRIjkcDvdfixYt1LFjR40fP17ffvut2eVZTnp6eq3tlZiYqAsvvFDLly8PyOOXl5drzpw5Wr9+fUAeD2iOCDcAJEkPP/ywXn31VS1YsECjRo3Sa6+9pmHDhun48eNBeb7f/OY3qqioCMpjB1v//v316quv6tVXX9Xdd9+tAwcOaMyYMVqwYEGTH7u8vFwPPfQQ4QZoghZmFwDAGkaNGqWBAwdKkiZPnqz4+Hg9/vjjevfdd/WLX/wi4M/XokULtWgRnl9BHTt21I033uj+/7hx49StWzc9/fTTuvXWW02sDIBEyw2Aelx44YWSpPz8/FrLv/jiC1133XVq3769WrVqpYEDB+rdd9+ttc7Jkyf10EMPqXv37mrVqpU6dOigCy64QKtXr3av42nMTWVlpe666y4lJCSobdu2uuqqq/TNN9/UqW38+PFKT0+vs9zTY7700ku6+OKLlZiYqOjoaPXu3Vvz58/3aVs0Jjk5WWeddZYKCgoaXO/QoUOaNGmSkpKS1KpVK2VmZurll192375v3z4lJCRIkh566CF311ewxxsBdhOeP5sABN2+ffskSWeccYZ72e7duzVkyBB17NhRs2bNUuvWrfW3v/1No0eP1ltvvaVrrrlG0o8hIy8vT5MnT9bgwYNVWlqqbdu2afv27brkkkvqfc7Jkyfrtdde09ixY3X++edr7dq1uuKKK5r0OubPn6+zzz5bV111lVq0aKG///3vuv3221VdXa2pU6c26bFrnDx5Uvv371eHDh3qXaeiokLDhw/X3r17NW3aNGVkZOjNN9/U+PHjdeTIEd15551KSEjQ/Pnzddttt+maa67RmDFjJEn9+vULSJ1As2EAaNZeeuklQ5Lxz3/+0zh8+LCxf/9+Y+nSpUZCQoIRHR1t7N+/373uiBEjjL59+xrHjx93L6uurjbOP/98o3v37u5lmZmZxhVXXNHg8z744IPGqV9BO3bsMCQZt99+e631xo4da0gyHnzwQfeym2++2ejcuXOjj2kYhlFeXl5nvezsbKNLly61lg0bNswYNmxYgzUbhmF07tzZuPTSS43Dhw8bhw8fNj799FPj+uuvNyQZd9xxR72PN2/ePEOS8dprr7mXnThxwsjKyjLatGljlJaWGoZhGIcPH67zegH4hm4pAJKkkSNHKiEhQampqbruuuvUunVrvfvuu+rUqZMk6fvvv9fatWv1i1/8QkePHlVJSYlKSkr03XffKTs7W19++aX77Kp27dpp9+7d+vLLL71+/vfee0+SNH369FrLZ8yY0aTXFRMT4/63y+VSSUmJhg0bpq+++koul8uvx1y1apUSEhKUkJCgzMxMvfnmm7rpppv0+OOP13uf9957T8nJybrhhhvcy1q2bKnp06fr2LFj2rBhg1+1AKiLbikAkqTnnntOPXr0kMvl0osvvqiNGzcqOjraffvevXtlGIZmz56t2bNne3yMQ4cOqWPHjnr44Yd19dVXq0ePHurTp48uu+wy3XTTTQ12r3z99deKiIhQ165day3v2bNnk17Xhx9+qAcffFBbtmxReXl5rdtcLpecTqfPj3nuuefqkUcekcPhUGxsrM466yy1a9euwft8/fXX6t69uyIiav+mPOuss9y3AwgMwg0ASdLgwYPdZ0uNHj1aF1xwgcaOHas9e/aoTZs2qq6uliTdfffdys7O9vgY3bp1kyQNHTpU+fn5euedd7Rq1Sq98MILevrpp7VgwQJNnjy5ybXWN/lfVVVVrf/n5+drxIgR6tWrl5566imlpqYqKipK7733np5++mn3a/JVfHy8Ro4c6dd9AQQf4QZAHZGRkcrLy9NFF12kZ599VrNmzVKXLl0k/diV4s2BvX379powYYImTJigY8eOaejQoZozZ0694aZz586qrq5Wfn5+rdaaPXv21Fn3jDPO0JEjR+osP7314+9//7sqKyv17rvvKi0tzb183bp1jdYfaJ07d9Znn32m6urqWq03X3zxhft2qf7gBsB7jLkB4NHw4cM1ePBgzZs3T8ePH1diYqKGDx+u559/XkVFRXXWP3z4sPvf3333Xa3b2rRpo27duqmysrLe5xs1apQk6Y9//GOt5fPmzauzbteuXeVyufTZZ5+5lxUVFdWZJTgyMlKSZBiGe5nL5dJLL71Ubx3Bcvnll6u4uFhLlixxL/vhhx/0zDPPqE2bNho2bJgkKTY2VpI8hjcA3qHlBkC97rnnHv385z/XokWLdOutt+q5557TBRdcoL59+2rKlCnq0qWLDh48qC1btuibb77Rp59+Kknq3bu3hg8frgEDBqh9+/batm2bli5dqmnTptX7XP3799cNN9ygP/3pT3K5XDr//PO1Zs0a7d27t866119/ve677z5dc801mj59usrLyzV//nz16NFD27dvd6936aWXKioqSldeeaV++ctf6tixY1q4cKESExM9BrRguuWWW/T8889r/Pjx+vjjj5Wenq6lS5fqww8/1Lx589S2bVtJPw6A7t27t5YsWaIePXqoffv26tOnj/r06RPSeoGwZvbpWgDMVXMq+NatW+vcVlVVZXTt2tXo2rWr8cMPPxiGYRj5+fnGuHHjjOTkZKNly5ZGx44djf/5n/8xli5d6r7fI488YgwePNho166dERMTY/Tq1ct49NFHjRMnTrjX8XTadkVFhTF9+nSjQ4cORuvWrY0rr7zS2L9/v8dTo1etWmX06dPHiIqKMnr27Gm89tprHh/z3XffNfr162e0atXKSE9PNx5//HHjxRdfNCQZBQUF7vV8ORW8sdPc63u8gwcPGhMmTDDi4+ONqKgoo2/fvsZLL71U576bN282BgwYYERFRXFaOOAHh2Gc0l4LAAAQ5hhzAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbKXZTeJXXV2tAwcOqG3btkxzDgBAmDAMQ0ePHtWZZ55Z5wK0p2t24ebAgQNKTU01uwwAAOCH/fv3q1OnTg2u0+zCTc0U5/v371dcXJzJ1QAAAG+UlpYqNTXVfRxvSLMLNzVdUXFxcYQbAADCjDdDShhQDAAAbIVwAwAAbIVwAwAAbKXZjbkBADQfVVVVOnnypNllwEtRUVGNnubtDcINAMB2DMNQcXGxjhw5YnYp8EFERIQyMjIUFRXVpMch3AAAbKcm2CQmJio2NpZJW8NAzSS7RUVFSktLa9J7RrgBANhKVVWVO9h06NDB7HLgg4SEBB04cEA//PCDWrZs6ffjMKAYAGArNWNsYmNjTa4EvqrpjqqqqmrS4xBuAAC2RFdU+AnUe0a4AQAAtkK4AQAAIbF+/Xo5HI6gn8VGuIFlFbkqtDm/REWuCrNLAYCwMGfOHPXv39/sMkzH2VKwpCVbC5W7bKeqDSnCIeWN6aucQWlmlwUAtnDy5MkmnY1kdbTcwHKKXBXuYCNJ1YZ0/7JdtOAAsL3q6mrl5eUpIyNDMTExyszM1NKlSyX91KWzZs0aDRw4ULGxsTr//PO1Z88eSdKiRYv00EMP6dNPP5XD4ZDD4dCiRYsk/ThQd/78+brqqqvUunVrPfroow3WUfNc//jHP3TOOecoJiZGF198sQ4dOqT3339fZ511luLi4jR27FiVl5e771dZWanp06crMTFRrVq10gUXXKCtW7cGZ2M1gHADyykoKXMHmxpVhqF9JeWe7wAAQRTKLvK8vDy98sorWrBggXbv3q277rpLN954ozZs2OBe59e//rWefPJJbdu2TS1atNDEiRMlSTk5OfrVr36ls88+W0VFRSoqKlJOTo77fnPmzNE111yjnTt3uu/TmDlz5ujZZ5/V5s2btX//fv3iF7/QvHnztHjxYq1cuVKrVq3SM888417/3nvv1VtvvaWXX35Z27dvV7du3ZSdna3vv/8+QFvIO3RLwXIy4lsrwqFaASfS4VB6PHNWAAitUHaRV1ZW6rHHHtM///lPZWVlSZK6dOmiTZs26fnnn9ctt9wiSXr00Uc1bNgwSdKsWbN0xRVX6Pjx44qJiVGbNm3UokULJScn13n8sWPHasKECT7V9Mgjj2jIkCGSpEmTJik3N1f5+fnq0qWLJOm6667TunXrdN9996msrEzz58/XokWLNGrUKEnSwoULtXr1av3lL3/RPffc49+G8QMtN7CcFGeM8sb0VeT/zXcQ6XDosTF9lOKMMbkyAM1JqLvI9+7dq/Lycl1yySVq06aN+++VV15Rfn6+e71+/fq5/52SkiJJOnToUKOPP3DgQJ9rOvW5kpKSFBsb6w42Nctqnjs/P18nT550hyFJatmypQYPHqzPP//c5+duClpuYEk5g9I0tEeC9pWUKz0+lmADIOQa6iIPxnfSsWPHJEkrV65Ux44da90WHR3tDjinDgSumfSuurq60cdv3bq1zzWd/lynD0J2OBxePXeoEW5gWSnOGEINANOEuou8d+/eio6OVmFhobvb6VSntt7UJyoqqsmXLvBX165dFRUVpQ8//FCdO3eW9ONZWVu3btWMGTNCWgvhBgAAD2q6yO9ftktVhhH0LvK2bdvq7rvv1l133aXq6mpdcMEFcrlc+vDDDxUXF+cODA1JT09XQUGBduzYoU6dOqlt27aKjo4OSr2na926tW677Tbdc889at++vdLS0vTEE0+ovLxckyZNCkkNNQg3AADUI9Rd5L/97W+VkJCgvLw8ffXVV2rXrp1+9rOf6f777/eq++faa6/VsmXLdNFFF+nIkSN66aWXNH78+KDWfKq5c+equrpaN910k44ePaqBAwfqH//4h84444yQ1SBJDsMwjMZXs4/S0lI5nU65XC7FxcWZXQ4AIMCOHz+ugoICZWRkqFWrVmaXAx809N75cvzmbCkAAGArhBsAAJqZW2+9tdbp5qf+3XrrrWaX12SMuQEAoJl5+OGHdffdd3u8zQ5DNgg3AAA0M4mJiUpMTDS7jKChWwoAANgK4QYAYEtWnDkXDQvUCdx0SwEAbCUqKkoRERE6cOCAEhISFBUV5b5MAazLMAwdPnzY42UefEW4AQDYSkREhDIyMlRUVKQDBw6YXQ584HA41KlTJ0VGRjbpcQg3AADbiYqKUlpamn744QfTrrUE37Vs2bLJwUYi3AAAbKqme6OpXRwIPwwoBgAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtmJquMnLy9OgQYPUtm1bJSYmavTo0dqzZ0+j93vzzTfVq1cvtWrVSn379tV7770XgmoBAEA4MDXcbNiwQVOnTtW//vUvrV69WidPntSll16qsrKyeu+zefNm3XDDDZo0aZI++eQTjR49WqNHj9auXbtCWLlnRa4Kbc4vUZGrwuxSAABothyGYRhmF1Hj8OHDSkxM1IYNGzR06FCP6+Tk5KisrEwrVqxwLzvvvPPUv39/LViwoNHnKC0tldPplMvlUlxcXMBqX7K1ULnLdqrakCIcUt6YvsoZlBawxwcAoDnz5fhtqTE3LpdLktS+fft619myZYtGjhxZa1l2dra2bNnicf3KykqVlpbW+gu0IleFO9hIUrUh3b9sFy04AACYwDLhprq6WjNmzNCQIUPUp0+fetcrLi5WUlJSrWVJSUkqLi72uH5eXp6cTqf7LzU1NaB1S1JBSZk72NSoMgztKykP+HMBAICGWSbcTJ06Vbt27dIbb7wR0MfNzc2Vy+Vy/+3fvz+gjy9JGfGtFeGovSzS4VB6fGzAnwsAADTMEuFm2rRpWrFihdatW6dOnTo1uG5ycrIOHjxYa9nBgweVnJzscf3o6GjFxcXV+gu0FGeM8sb0VaTjx4QT6XDosTF9lOKMCfhzAQCAhrUw88kNw9Add9yh5cuXa/369crIyGj0PllZWVqzZo1mzJjhXrZ69WplZWUFsdLG5QxK09AeCdpXUq70+FiCDQAAJjE13EydOlWLFy/WO++8o7Zt27rHzTidTsXE/BgOxo0bp44dOyovL0+SdOedd2rYsGF68skndcUVV+iNN97Qtm3b9Oc//9m011EjxRlDqAEAwGSmdkvNnz9fLpdLw4cPV0pKivtvyZIl7nUKCwtVVFTk/v/555+vxYsX689//rMyMzO1dOlSvf322w0OQgYAAM2Hpea5CYVgzXMDAACCJ2znuQEAAGgqwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AhEiRq0Kb80tU5KowuxTA1lqYXQAANAdLthYqd9lOVRtShEPKG9NXOYPSzC4LsCVabgAgyIpcFe5gI0nVhnT/sl204ABBQrgBgCArKClzB5saVYahfSXl5hQE2BzhBgCCLCO+tSIctZdFOhxKj481pyDA5gg3ABBkKc4Y5Y3pq0jHjwkn0uHQY2P6KMUZY3JlgD0xoBgAQiBnUJqG9kjQvpJypcfHEmyAICLcAECIpDhjCDVACNAtBQAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbMXUcLNx40ZdeeWVOvPMM+VwOPT22283uP769evlcDjq/BUXF4emYAAAYHmmhpuysjJlZmbqueee8+l+e/bsUVFRkfsvMTExSBUCAIBw08LMJx81apRGjRrl8/0SExPVrl27wBcEAADCXliOuenfv79SUlJ0ySWX6MMPP2xw3crKSpWWltb6AwAA9hVW4SYlJUULFizQW2+9pbfeekupqakaPny4tm/fXu998vLy5HQ63X+pqakhrBgAAISawzAMw+wiJMnhcGj58uUaPXq0T/cbNmyY0tLS9Oqrr3q8vbKyUpWVle7/l5aWKjU1VS6XS3FxcU0pGQAAhEhpaamcTqdXx29Tx9wEwuDBg7Vp06Z6b4+OjlZ0dHQIKwIAAGYKq24pT3bs2KGUlBSzywAAABZhasvNsWPHtHfvXvf/CwoKtGPHDrVv315paWnKzc3Vt99+q1deeUWSNG/ePGVkZOjss8/W8ePH9cILL2jt2rVatWqVWS8BAABYjKnhZtu2bbrooovc/585c6Yk6eabb9aiRYtUVFSkwsJC9+0nTpzQr371K3377beKjY1Vv3799M9//rPWYwAAgObNMgOKQ8WXAUkAAMAafDl+h/2YGwAAYB1Frgptzi9RkavCtBrC/mwpAABgDUu2Fip32U5VG1KEQ8ob01c5g9JCXgctNwAAoMmKXBXuYCNJ1YZ0/7JdprTgEG4AAECTFZSUuYNNjSrD0L6S8pDXQrgBAABNlhHfWhGO2ssiHQ6lx8eGvBbCDQAAaLIUZ4zyxvRVpOPHhBPpcOixMX2U4owJeS0MKAYAAAGRMyhNQ3skaF9JudLjY00JNhLhBgAABFCKM8a0UFODbikAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArLbxdsbS01OsHjYuL86sYAACApvI63LRr104Oh6PBdQzDkMPhUFVVVZMLAwAA8IfX4WbdunXBrAMAACAgvA43w4YNC2YdAAAAAeF1uDndkSNH9Je//EWff/65JOnss8/WxIkT5XQ6A1YcAACAr/w6W2rbtm3q2rWrnn76aX3//ff6/vvv9dRTT6lr167avn17oGsEAADwmsMwDMPXO1144YXq1q2bFi5cqBYtfmz8+eGHHzR58mR99dVX2rhxY8ALDZTS0lI5nU65XC7LndVV5KpQQUmZMuJbK8UZY3Y5AABYhi/Hb7/CTUxMjD755BP16tWr1vL//Oc/GjhwoMrLy319yJCxarhZsrVQuct2qtqQIhxS3pi+yhmUZnZZAABYgi/Hb7+6peLi4lRYWFhn+f79+9W2bVt/HrJZK3JVuIONJFUb0v3LdqnIVWFuYQAAhCG/wk1OTo4mTZqkJUuWaP/+/dq/f7/eeOMNTZ48WTfccEOga7S9gpIyd7CpUWUY2ldi3RYwAACsyq+zpX7/+9/L4XBo3Lhx+uGHHyRJLVu21G233aa5c+cGtMDmICO+tSIcqhVwIh0OpcfHmlcUAABhyq8xNzXKy8uVn58vSeratatiY61/MLbymJv7l+1SlWEo0uHQY2P6MOYGAID/E/QBxeHMquFG+nHszb6ScqXHx3K2FAAAp/Dl+O1Xt9Tx48f1zDPPaN26dTp06JCqq6tr3c5cN/5JccYQagAAaCK/ws2kSZO0atUqXXfddRo8eHCjF9QEAAAIFb/CzYoVK/Tee+9pyJAhga4HAACgSfw6Fbxjx47MZwPbKHJVaHN+CfMKAYBN+BVunnzySd133336+uuvA10PEFJLthZqyNy1GrvwIw2Zu1ZLttadnBIAEF786pYaOHCgjh8/ri5duig2NlYtW7asdfv3338fkOKAYKpvZuihPRIY2A0AYcyvcHPDDTfo22+/1WOPPaakpCQGFCMsNTQzdLiGGy6+CgB+hpvNmzdry5YtyszMDHQ9QMjYbWZoLr4KAD/ya8xNr169VFHB4EuEtxRnjPLG9FXk/7U81swMHY4tHlx8FQB+4lfLzdy5c/WrX/1Kjz76qPr27VtnzI3VZv4F6pMzKE1DeySE/czQduxiAwB/+RVuLrvsMknSiBEjai03DEMOh0NVVVVNrwwIETvMDG23LjYAaAq/ws26desCXQeAJqjpYjv94qvhHtoAwB9BvXDm7bffrocffljx8fHBegqfWfnCmUBTcfFVAHbly/HbrwHF3nrttddUWloazKcAcIoUZ4yyunYg2ABo1oIaboLYKAQAAOBRUMMNAABAqBFuAACArRBuAACArRBuAMBmilwV2pxfwgzVaLZ8Djc//PCDHn74YX3zzTeNrnvjjTdyujUAhNCSrYUaMnetxi78SEPmrtWSrYVmlwSEnF/z3LRt21Y7d+5Uenp6EEoKLua5AWBXRa4KDZm7ts5M1ZtmXcT0AAh7QZ/n5uKLL9aGDRv8Kg4AEBwNXWMM1kQXYnD4dfmFUaNGadasWdq5c6cGDBig1q1b17r9qquuCkhxAADvcY2x8LJka6Fyl+1UtSFFOKS8MX2VMyjN7LJswa9uqYiI+ht8rH7hTLqlANjZkq2Fda4xxgHTeuhC9J0vx2+/Wm6qq6v9KgwAEFw5g9I0tEcC1xizuIa6EHnPms6vMTevvPKKKisr6yw/ceKEXnnllSYXBQDwH9cYs76aLsRT0YUYOH6FmwkTJsjlctVZfvToUU2YMKHJRQEAYGcpzhjljemrSMePCaemC5FAGhh+dUsZhiGHw1Fn+TfffCOn09nkogAAsDu6EIPHp3BzzjnnyOFwyOFwaMSIEWrR4qe7V1VVqaCgQJdddlnAiwQAwI5SnDGEmiDwKdyMHj1akrRjxw5lZ2erTZs27tuioqKUnp6ua6+91uvH27hxo373u9/p448/VlFRkZYvX+5+jvqsX79eM2fO1O7du5Wamqrf/OY3Gj9+vC8vAwAA2JhP4ebBBx+UJKWnpysnJ0etWrVq0pOXlZUpMzNTEydO1JgxYxpdv6CgQFdccYVuvfVW/fWvf9WaNWs0efJkpaSkKDs7u0m1AAAAe/BrnpsaJ06c0KFDh+qcGp6W5vucCg6Ho9GWm/vuu08rV67Url273Muuv/56HTlyRB988IFXz8M8NwAAhJ+gz3Pz5ZdfauLEidq8eXOt5TUDjYM1id+WLVs0cuTIWsuys7M1Y8aMeu9TWVlZ67T10tLSoNQGAACswa9wM378eLVo0UIrVqxQSkqKxzOngqG4uFhJSUm1liUlJam0tFQVFRWKiak7KCsvL08PPfRQSOoDAADm8yvc7NixQx9//LF69eoV6HoCLjc3VzNnznT/v7S0VKmpqSZWBAAAgsmvcNO7d2+VlJQEupZGJScn6+DBg7WWHTx4UHFxcR5bbSQpOjpa0dHRoSgPAABYgF8zFD/++OO69957tX79en333XcqLS2t9RcsWVlZWrNmTa1lq1evVlZWVtCeEwAAhBe/Wm5qBvVefPHFtcbb+Dqg+NixY9q7d6/7/wUFBdqxY4fat2+vtLQ05ebm6ttvv3Vfr+rWW2/Vs88+q3vvvVcTJ07U2rVr9be//U0rV67052UAAAAb8ivcrFu3LiBPvm3bNl100UXu/9eMjbn55pu1aNEiFRUVqbCw0H17RkaGVq5cqbvuukt/+MMf1KlTJ73wwgvMcQMAANz8nufmf//3f/X8888rPz9fS5cuVceOHfXqq68qIyNDF1xwQaDrDBjmuQEAIPz4cvz2a8zNW2+9pezsbMXExOiTTz5xzyPjcrn02GOP+fOQAAAAAeFXuHnkkUe0YMECLVy4UC1btnQvHzJkiLZv3x6w4gAAAHzlV7jZs2ePhg4dWme50+nUkSNHmloTAACA3/wKN8nJybXOcqqxadMmdenSpclFAc1RkatCm/NLVOSqMLsUAAhrfp0tNWXKFN1555168cUX5XA4dODAAW3ZskV33323Zs+eHegaAdtbsrVQuct2qtqQIhxS3pi+yhnk+wVoAQB+hptZs2apurpaI0aMUHl5uYYOHaro6GjdfffduuOOOwJdI2BrRa4Kd7CRpGpDun/ZLg3tkaAUp+eZtwEA9fMr3DgcDv3617/WPffco7179+rYsWPq3bu32rRpE+j6ANsrKClzB5saVYahfSXlhBsA8INf4aZGVFSUevfuHahagGYpI761IhyqFXAiHQ6lx8eaVxQAhDG/BhQDCJwUZ4zyxvRV5P9dyiTS4dBjY/rQagMAfmpSyw2AwMgZlKahPRK0r6Rc6fGxBBsAaALCDWARKc4YQg0ABADdUgAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYIN4CPilwV2pxfoiJXhdmlAAA8aGF2AUA4WbK1ULnLdqrakCIcUt6YvsoZlGZ2WQCAU9ByA3ipyFXhDjaSVG1I9y/bRQsOAFgM4QbwUkFJmTvY1KgyDO0rKTenIACAR4QbwEsZ8a0V4ai9LNLhUHp8rDkFAQA8ItwAXkpxxihvTF9FOn5MOJEOhx4b00cpzhiTKwMAnIoBxYAPcgalaWiPBO0rKVd6fCzBBgAsiHAD+CjFGUOoAYD/U+SqUEFJmTLiW1vmu5FwAwAA/GLV6TEYcwMAAHxm5ekxCDcAAMBnVp4eg3ADAAB8ZuXpMQg3AADAZ1aeHoMBxQCAsGPFM3SaI6tOj0G4AQCEFaueodNcWXF6DLqlAABhw8pn6MA6CDcAgLBh5TN0YB2EGwBA2LDyGTqwDsINACBsWPkMHVgHA4oBAGHFqmfowDoINwCAsGPFM3RgHXRLAYAPilwV2pxfwtk5gIXRcgMAXmJ+FSA80HIDAF5gfhUgfBBuAMALzK/SdHTpIVTolgIAL9TMr3JqwGF+Fe/RpYdQskTLzXPPPaf09HS1atVK5557rv7973/Xu+6iRYvkcDhq/bVq1SqE1QJojphfxX906SHUTG+5WbJkiWbOnKkFCxbo3HPP1bx585Sdna09e/YoMTHR433i4uK0Z88e9/8dDofH9QAgkJhfxT8NdemxDREMprfcPPXUU5oyZYomTJig3r17a8GCBYqNjdWLL75Y730cDoeSk5Pdf0lJSSGsGEBzluKMUVbXDhyUfcAlExBqpoabEydO6OOPP9bIkSPdyyIiIjRy5Eht2bKl3vsdO3ZMnTt3Vmpqqq6++mrt3r07FOUCAPxAl15oMXDb5G6pkpISVVVV1Wl5SUpK0hdffOHxPj179tSLL76ofv36yeVy6fe//73OP/987d69W506daqzfmVlpSorK93/Ly0tDeyLAAA0ii690GDg9o9M75byVVZWlsaNG6f+/ftr2LBhWrZsmRISEvT88897XD8vL09Op9P9l5qaGuKKEWj8KgHCUyi69Jrz9wMDt39iastNfHy8IiMjdfDgwVrLDx48qOTkZK8eo2XLljrnnHO0d+9ej7fn5uZq5syZ7v+XlpYScMIYv0oA1Ke5fz8wcPsnprbcREVFacCAAVqzZo17WXV1tdasWaOsrCyvHqOqqko7d+5USkqKx9ujo6MVFxdX6w/hiV8lAOpjxe+HULciMXD7J6Z3S82cOVMLFy7Uyy+/rM8//1y33XabysrKNGHCBEnSuHHjlJub617/4Ycf1qpVq/TVV19p+/btuvHGG/X1119r8uTJZr0EhAgzxAL2EegDv9nfD6e/niVbCzVk7lqNXfiRhsxdqyVbC4NeAwO3f2L6PDc5OTk6fPiwHnjgARUXF6t///764IMP3IOMCwsLFRHxUwb773//qylTpqi4uFhnnHGGBgwYoM2bN6t3795mvQSECDPEAvbw/IZ8zX3/CxkKXPeRmd8Pp3eH3Teqlx5//4tarUi5y3ZqaI+EoAcNBm7/yGEYhtH4avZRWloqp9Mpl8tFF1UYWrK1UPcv26Uqw3D/KmlOfepAOChyVaigpEwZ8a3rHFyf35ivvPdqnw0b6XBo06yL6qzb0ON4Ysb3Q5GrQkPmrq0Vqk4PWTVuGZqh+y/nh7i/fDl+m95yA98/wM0Zv0oAa6jve6uhQb1FrgrNfb/uNB+eBr36MzjYjO8HT91h1YbkkHR6vnlhY4EmDMngeysECDcma+6j+/2R4ozhywEwUX3fW/UN6q3pjikoKZOnvoIIqVb3UWOP05BQfz/U1x32i0Gd9Pq/99dat1pqlmcumcH0AcXNmacPcO5bOzn7B4BlNXRWUmODej2dzSP9OEbl1AO+L4ODzZ7Xpr5BvNNHdNfpL5UxgqFDy42JPDZnSnpkxef6zf+cRboHYDkNBY/GBvXWBIGacTE1g29/ObRrrcfzdnCwVVq+6+sOm3tt3zpjgFKcMQxFCAHCjYky4lt77JddubNI7+0s0txr6aICYC0NBY/Tw4unU5G9GRfjzeM0pesqGDx1h3l6rVYJZHbH2VIme2zlf/Tn/y3weFt9ZxAAgJkaOyupyFURkEG9DT3O5vwSjV34UZ37vD7lPGV17eD3cwaTpzOr+J73HmdLhZEJF2TohU0FHk8bbK7TZgOwtsZaXwI1qLehxwnHea+4PELoMKDYZDXNr54G2Vn9gwqg+QrFRTAbe/5wm42XyyOEDt1SFlHkqtBLHxbohY0FqpaYoA4AvBCoLrBQ8WaiwXAacBzKWn05fhNuLObUD6qksNnBAYSPcDp42lFDgSycBhyHulbCTQOsHm5qhNMODiB88N1iXU0dcBzK0GrG4Ghfjt+MubGghibJAgB/+frdYvYEecFi1dfVlCubh/oq5GZfhb0xnC1lQYyoB+AtX36t+/LdYtcWHiu/Ln/PADNjzh+rn61Gy40FMaIegDd8/bXu7XeLXVuPg/W6AtUS5O8ZYGa0olj9bDVabizIm9k5AQRGuA6u9efXurffLXZtPQ7G6wp0S5A/VzY3qxXFjKuwe4twY1FW3mmAcNFYcLFyF0Vj/D1Qe/PdEoqDpaf3JthBM9CvK1jdQb5OgmjmD+JQX4XdW4QbC7PqTgOEg8aCi9WuTeSrphyoG/tuCfbB0tN7IynoQTPQr8tKLVz8IK6NcAPAdrwJLlY6MPkj2AEkWAdLT+9N7rKdMoyfLiIczKAZyNdltUG1/CD+CeEGgO14E1ysdmDyR7B/rQfjYOnpvQn1tfUCee0rxkdaE+EGgO14E1zscmDy90Bt1kBqT+9NhEO1Wm6k8AmadAdZEzMU21C4nv0BBJI31/CRQndtIit9Ls0eSO3pvZHk1fuF5ovLLzTA7uHG7C8twEqsclFFK30uzZg2v746Tn9vrPJ+wZp8OX7TLWUj4X72B+CPhlpErDDA0mqfS6sMpPb03ljh/YI9EG5sxCpfWrAOK3WFBIOVWkTqY7XPpR0GUgON4fILNsJlG5oPb6Z7D/WF9EItXC4RYLXPpdWnzQcCgZYbG7HL2R9omDetFVbrCgkGq7WI1MeKn0s7nuFj91ZK+IZwYzN2/NLCT7wNLeFy4G+KcOpeseLn0krjW5oaTLztniQANR+EGxuy0pcWAsvb0BJOB35/WbFFpCF8Lj1r6rgpbwN/OIzPQuAQboAw4m1oCbcDv7+s2CIC7wWi+9SbwO/r89DCE/4IN0AY8SW0NJcDPy0i4SsQ3afeBH5fnocWHnsg3AAW5ukXpC+hhQN/+GlOrQaB6D71JvB7+zzNYSB+c0G4MUFz+vJCbb689w39giS02FM4tBoE8vsrUN2njQV+b5+nOQzEby64/EKIhcOXl1WFeyj05b23yhT5dhAu+004vOfB+v4K5fW9GnqecHgPmjNfjt9M4hdC4TLpmBWFy4R09U2u5+t739AvSHgvXPYbyfrveTC/v1KcMcrq2iHoAaKx52GCQ/ugWyqEaPL0T7j0gzf0q9bX9745nModbOGy39Sw+nveXL6/mstAfLuj5SaErDYNe7iw+i9aqfFftb6+91b6BXl6a5Q3l36wgnDYb05lpffck+b0/RWqliQEDy03IdRc5h4JNKv/opWkbfu+b/BXrT/vvRV+QZ7eGnXNOR21/JNvw2LMWEP7jVXH4VjhPa8P319oiNU+UwwoNkGoBs/ZyZKthXW+VK1yUD01AJzK00DEcHrvPQ2uPJ3VB1t62m8k2WZQvxkHlHDahxEaoTpRxpfjN+EGYcOKX6r1BYAISXnXhu9BU5I255do7MKPGl3v9SnnKatrhxBU5J9T9xtJtjkbxmpnXlrtlztCI5RnmPly/KZbCmHDinO7eBrXIUnPjD1HV/Q7M/QFBZCnbp3TWa170JNT95vN+SUeuw+3f/1fXdHPWvtWQ6w2WNpqQQuhY9WB5gwoRsCFy4DTQKhvkOXPOp9hTkEB5GmA67U/62jZAa/e8PR+SdK0xZ9Y+jTx01lpsDRTXDRvVh1oTssNAqq5/YKz+yBLTwNc787uabnuQW/VvF+nj5EyZO3TxE9npUH2Vv3ljtCw6ncg4QYBY7Wm8lCx4hkugZ4i/9THsGL3oC9yBqUpNipSd7y+o9bycDogW+mAYqWgBXNY8TuQcIOAac6/4Kx0wG9urWf+GJjePuwPyFY5oFgpaME8VvoOlAg3CCB+wZmvubae+crsA3KgWtasckCxStAKd5xxFjiEG9TSlA+X2QcMNO/WM1+ZdUC2a8uaVYJWuLLrfmEWwk0IhEsaD8SHi19w5qL1zDehPiDTsgZP2C8Cj1PBgyxcrkocyNM5uS6Leax+faLmzkqncMM62C8Cj5abIAqnNE53hn3YsfUsXFo/G0PLGjxhvwg8Wm6CyJs0bpUJ76w6ERP8Y6fWs3Bp/fQGLWvwhP0i8Gi5CaLG0riVBpAxGBhWFE6tn96yY8samo79IrAIN0HUUGCw4pe2VT9cvnRJ2KX7Aj+ya3cpZxbBE/aLwCHcBFl9gcGqX9pW+3D50rplpZYwqwuXEMhYBEjhs796w4qvxYo1NRXhJgQ8BQa+tBvnS+uWFVvCrMrbEGiFLzy6S2GnHy1WfC1WrCkQCDcm4Uu7cb60blm1JcxqvA2BVvrCs2p3KYLPTj9arPharFhToBBuTMSXdsN8ad2iJcw73oRAK37hWa27FKFhpx8tVnwtVqwpUDgV3GR2OmU30Hw5PZJTKb3jzSn/TCgGq7DTFBVWfC1WrClQaLmBpfnSukVLWOO86Q4NRCuYFcbrIPzZqfveiq/FijUFisMwDKPx1eyjtLRUTqdTLpdLcXFxZpcDizv1IC3JNgfsIldFgyFwydbCOl943o65sdJ4HdhDY/trOLHia7FiTZ74cvwm3JiEX7bWd+pBuqbl1lDzOWD784VX5KrQkLlr67T6bJp1UbPaz8Px8x2ONZuFbWUOX47fdEuZgF+21nf6oNpTfwFYYYBtKPgziNfOAxS9FY6f73Cs2Sxsq/DAgOIQC+TVt+G/xq7p5ekgfSoG2Hpm5wGK3gjHz3c41myWcN5WVrmOYajQchNi/LI1nze/vDwNqj1VhEPN5oDti8YuOWL3pvxw/HyHY81mKHJVaMVnB8JyWzXH1ibCTYgxH4u5vJ3D5fSDtMMhnTo6zTCkjf/vsO2/IPzh6ay15vLlGo6f73CsOdRO3X9PZ/VtZcV5q0KBbqkQYz4Wc/kyh0vOoDRtmnWRXp9ynt6+/Xyd2ttiyBrN0VZtaj51/qZwbsr3VTh+vsOx5lA6ff89VThsq+Y6b5UlWm6ee+45/e53v1NxcbEyMzP1zDPPaPDgwfWu/+abb2r27Nnat2+funfvrscff1yXX355CCtuGuZjMY+vv1JrBtVuzi/R6d9tZjdHh0trSDh3e/jTlRaOn+9Q1Byu3ZL1jb+bfcVZurxfiuVfS3NtmTO95WbJkiWaOXOmHnzwQW3fvl2ZmZnKzs7WoUOHPK6/efNm3XDDDZo0aZI++eQTjR49WqNHj9auXbtCXHnTMDOxOfz9lWq1gbLh1BpitW3nrSVbCzVk7lqNXfiRhsxdqyVbC72+bzh+voNZc1O2pdnq23/DIdhIzbdlzvR5bs4991wNGjRIzz77rCSpurpaqampuuOOOzRr1qw66+fk5KisrEwrVqxwLzvvvPPUv39/LViwoNHns8o8NzCXP3O4NGViu0DbnF+isQs/qrP89SnnKatrBxMqapiVtp03mK8ncOywLcNt//UkXCbqa0jYzHNz4sQJffzxx8rNzXUvi4iI0MiRI7VlyxaP99myZYtmzpxZa1l2drbefvttj+tXVlaqsrLS/f/S0tKmF46w588cLlbqbgi3pmYrbTtvhHNXmtXYYVuG2/7rSXO7+Kyp3VIlJSWqqqpSUlJSreVJSUkqLi72eJ/i4mKf1s/Ly5PT6XT/paamBqZ4NEtW6W4Ix6Zmq2w7b4RrV5oV2WVbhtP+CwuMuQm23NxcuVwu99/+/fvNLgkIiFPP5to066Kwaya3snAMj1bFtoQZTO2Wio+PV2RkpA4ePFhr+cGDB5WcnOzxPsnJyT6tHx0drejo6MAUDFhMc2tqDiU7dEVYBdsSoWZqy01UVJQGDBigNWvWuJdVV1drzZo1ysrK8nifrKysWutL0urVq+tdHwD8RVdE4LAtEUqmz3Mzc+ZM3XzzzRo4cKAGDx6sefPmqaysTBMmTJAkjRs3Th07dlReXp4k6c4779SwYcP05JNP6oorrtAbb7yhbdu26c9//rOZLwMAAFiE6eEmJydHhw8f1gMPPKDi4mL1799fH3zwgXvQcGFhoSIifmpgOv/887V48WL95je/0f3336/u3bvr7bffVp8+fcx6CQAAwEJMn+cm1JjnBgCA8OPL8dv2Z0sBAIDmhXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABsxfQZikOtZs7C0tJSkysBAADeqjluezP3cLMLN0ePHpUkpaammlwJAADw1dGjR+V0Ohtcp9ldfqG6uloHDhxQ27Zt5XA4zC4npEpLS5Wamqr9+/dz6YkmYlsGBtsxcNiWgcF2DJxAb0vDMHT06FGdeeaZta456Umza7mJiIhQp06dzC7DVHFxcXxoA4RtGRhsx8BhWwYG2zFwArktG2uxqcGAYgAAYCuEGwAAYCuEm2YkOjpaDz74oKKjo80uJeyxLQOD7Rg4bMvAYDsGjpnbstkNKAYAAPZGyw0AALAVwg0AALAVwg0AALAVwg0AALAVwo0Nbdy4UVdeeaXOPPNMORwOvf3227VuNwxDDzzwgFJSUhQTE6ORI0fqyy+/NKdYC2tsO44fP14Oh6PW32WXXWZOsRaWl5enQYMGqW3btkpMTNTo0aO1Z8+eWuscP35cU6dOVYcOHdSmTRtde+21OnjwoEkVW5c323L48OF19stbb73VpIqta/78+erXr597grmsrCy9//777tvZJ73T2HY0a38k3NhQWVmZMjMz9dxzz3m8/YknntAf//hHLViwQB999JFat26t7OxsHT9+PMSVWltj21GSLrvsMhUVFbn/Xn/99RBWGB42bNigqVOn6l//+pdWr16tkydP6tJLL1VZWZl7nbvuukt///vf9eabb2rDhg06cOCAxowZY2LV1uTNtpSkKVOm1Novn3jiCZMqtq5OnTpp7ty5+vjjj7Vt2zZdfPHFuvrqq7V7925J7JPeamw7SibtjwZsTZKxfPly9/+rq6uN5ORk43e/+5172ZEjR4zo6Gjj9ddfN6HC8HD6djQMw7j55puNq6++2pR6wtmhQ4cMScaGDRsMw/hx/2vZsqXx5ptvutf5/PPPDUnGli1bzCozLJy+LQ3DMIYNG2bceeed5hUVxs444wzjhRdeYJ9soprtaBjm7Y+03DQzBQUFKi4u1siRI93LnE6nzj33XG3ZssXEysLT+vXrlZiYqJ49e+q2227Td999Z3ZJludyuSRJ7du3lyR9/PHHOnnyZK19slevXkpLS2OfbMTp27LGX//6V8XHx6tPnz7Kzc1VeXm5GeWFjaqqKr3xxhsqKytTVlYW+6SfTt+ONczYH5vdhTObu+LiYklSUlJSreVJSUnu2+Cdyy67TGPGjFFGRoby8/N1//33a9SoUdqyZYsiIyPNLs+SqqurNWPGDA0ZMkR9+vSR9OM+GRUVpXbt2tVal32yYZ62pSSNHTtWnTt31plnnqnPPvtM9913n/bs2aNly5aZWK017dy5U1lZWTp+/LjatGmj5cuXq3fv3tqxYwf7pA/q246Sefsj4Qbw0/XXX+/+d9++fdWvXz917dpV69ev14gRI0yszLqmTp2qXbt2adOmTWaXEvbq25a33HKL+999+/ZVSkqKRowYofz8fHXt2jXUZVpaz549tWPHDrlcLi1dulQ333yzNmzYYHZZYae+7di7d2/T9ke6pZqZ5ORkSaoz6v/gwYPu2+CfLl26KD4+Xnv37jW7FEuaNm2aVqxYoXXr1qlTp07u5cnJyTpx4oSOHDlSa332yfrVty09OffccyWJ/dKDqKgodevWTQMGDFBeXp4yMzP1hz/8gX3SR/VtR09CtT8SbpqZjIwMJScna82aNe5lpaWl+uijj2r1kcJ333zzjb777julpKSYXYqlGIahadOmafny5Vq7dq0yMjJq3T5gwAC1bNmy1j65Z88eFRYWsk+eprFt6cmOHTskif3SC9XV1aqsrGSfbKKa7ehJqPZHuqVs6NixY7VScUFBgXbs2KH27dsrLS1NM2bM0COPPKLu3bsrIyNDs2fP1plnnqnRo0ebV7QFNbQd27dvr4ceekjXXnutkpOTlZ+fr3vvvVfdunVTdna2iVVbz9SpU7V48WK98847atu2rXvMgtPpVExMjJxOpyZNmqSZM2eqffv2iouL0x133KGsrCydd955JldvLY1ty/z8fC1evFiXX365OnTooM8++0x33XWXhg4dqn79+plcvbXk5uZq1KhRSktL09GjR7V48WKtX79e//jHP9gnfdDQdjR1fwz5+VkIunXr1hmS6vzdfPPNhmH8eDr47NmzjaSkJCM6OtoYMWKEsWfPHnOLtqCGtmN5eblx6aWXGgkJCUbLli2Nzp07G1OmTDGKi4vNLttyPG1DScZLL73kXqeiosK4/fbbjTPOOMOIjY01rrnmGqOoqMi8oi2qsW1ZWFhoDB061Gjfvr0RHR1tdOvWzbjnnnsMl8tlbuEWNHHiRKNz585GVFSUkZCQYIwYMcJYtWqV+3b2Se80tB3N3B8dhmEYwY1PAAAAocOYGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwCWcuLECbNLqMOKNQGoH+EGQFANHz5c06ZN07Rp0+R0OhUfH6/Zs2er5sov6enp+u1vf6tx48YpLi5Ot9xyiyRp06ZNuvDCCxUTE6PU1FRNnz5dZWVl7sf905/+pO7du6tVq1ZKSkrSdddd575t6dKl6tu3r2JiYtShQweNHDnSfd/hw4drxowZtWocPXq0xo8f7/6/vzUBsAbCDYCge/nll9WiRQv9+9//1h/+8Ac99dRTeuGFF9y3//73v1dmZqY++eQTzZ49W/n5+brssst07bXX6rPPPtOSJUu0adMmTZs2TZK0bds2TZ8+XQ8//LD27NmjDz74QEOHDpUkFRUV6YYbbtDEiRP1+eefa/369RozZox8vYyerzUBsA4unAkgqIYPH65Dhw5p9+7dcjgckqRZs2bp3Xff1X/+8x+lp6frnHPO0fLly933mTx5siIjI/X888+7l23atEnDhg1TWVmZ3nvvPU2YMEHffPON2rZtW+v5tm/frgEDBmjfvn3q3Lmzx3r69++vefPmuZeNHj1a7dq106JFiyTJr5patWrVpO0EIHBouQEQdOedd5472EhSVlaWvvzyS1VVVUmSBg4cWGv9Tz/9VIsWLVKbNm3cf9nZ2aqurlZBQYEuueQSde7cWV26dNFNN92kv/71ryovL5ckZWZmasSIEerbt69+/vOfa+HChfrvf//rc82+1gTAOgg3AEzXunXrWv8/duyYfvnLX2rHjh3uv08//VRffvmlunbtqrZt22r79u16/fXXlZKSogceeECZmZk6cuSIIiMjtXr1ar3//vvq3bu3nnnmGfXs2dMdQCIiIup0UZ08ebLJNQGwDsINgKD76KOPav3/X//6l7p3767IyEiP6//sZz/Tf/7zH3Xr1q3OX1RUlCSpRYsWGjlypJ544gl99tln2rdvn9auXStJcjgcGjJkiB566CF98sknioqKcncxJSQkqKioyP1cVVVV2rVrV6OvwZuaAFgD4QZA0BUWFmrmzJnas2ePXn/9dT3zzDO68847613/vvvu0+bNmzVt2jTt2LFDX375pd555x334N0VK1boj3/8o3bs2KGvv/5ar7zyiqqrq9WzZ0999NFHeuyxx7Rt2zYVFhZq2bJlOnz4sM466yxJ0sUXX6yVK1dq5cqV+uKLL3TbbbfpyJEjjb6GxmoCYB0tzC4AgP2NGzdOFRUVGjx4sCIjI3XnnXe6T6/2pF+/ftqwYYN+/etf68ILL5RhGOratatycnIkSe3atdOyZcs0Z84cHT9+XN27d9frr7+us88+W59//rk2btyoefPmqbS0VJ07d9aTTz6pUaNGSZImTpyoTz/9VOPGjVOLFi1011136aKLLmr0NTRWEwDr4GwpAEHl6ewkAAgmuqUAAICtEG4AAICt0C0FAABshZYbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK/8fU6uVc1bIHA8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -608,7 +781,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLcUlEQVR4nO3deXwU5eHH8e8mISEBknDlAIGES4gccigGEFAoSFGLYkVEBEGtCnIoCGgRUDFoa1W0gqUqWC+qoiJeUEAskEI4FbQIEQxKwiFmAwQIZJ/fHzT7YyGBzWY3uzv7eb9eeb1gZnb2mdljvvvMc9iMMUYAAAAWFebvAgAAAPgSYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQdAQJg2bZpsNptb29psNk2bNs2n5enRo4d69OgRsPsD4D7CDgAX8+bNk81mc/5FRESofv36GjZsmH7++Wd/Fy/gpKSkuJyvhIQEXXnllfrggw+8sv/CwkJNmzZNX375pVf2B4Qiwg6AUj322GP6xz/+oTlz5qhv375644031L17dx0/ftwnz/fHP/5Rx44d88m+fe3SSy/VP/7xD/3jH//Q+PHjtXfvXt14442aM2dOhfddWFio6dOnE3aACojwdwEABKa+ffuqY8eOkqQ777xTderU0VNPPaVFixbp5ptv9vrzRUREKCIiOL+S6tevr9tuu835/9tvv11NmzbVs88+q3vuucePJQMgUbMDwE1XXnmlJCk7O9tl+X//+1/ddNNNqlWrlqpWraqOHTtq0aJFLtucPHlS06dPV7NmzVS1alXVrl1bXbt21dKlS53blNZm58SJExo3bpzq1q2rGjVq6Prrr9dPP/10TtmGDRumlJSUc5aXts/XXntNV199tRISEhQVFaW0tDTNnj27XOfiQpKSktSyZUvt2rXrvNvt379fI0aMUGJioqpWraq2bdtq/vz5zvW7d+9W3bp1JUnTp0933irzdXslwGqC82cUgEq3e/duSVLNmjWdy7Zt26YuXbqofv36mjRpkqpVq6Z//vOf6t+/v95//33dcMMNkk6HjoyMDN155526/PLLVVBQoPXr12vjxo36zW9+U+Zz3nnnnXrjjTd06623qnPnzlq+fLn69etXoeOYPXu2LrnkEl1//fWKiIjQxx9/rPvuu08Oh0MjR46s0L5LnDx5Unv27FHt2rXL3ObYsWPq0aOHdu7cqVGjRik1NVXvvvuuhg0bpvz8fI0ZM0Z169bV7Nmzde+99+qGG27QjTfeKElq06aNV8oJhAwDAGd47bXXjCTzr3/9yxw4cMDs2bPHvPfee6Zu3bomKirK7Nmzx7ltz549TevWrc3x48edyxwOh+ncubNp1qyZc1nbtm1Nv379zvu8U6dONWd+JW3evNlIMvfdd5/LdrfeequRZKZOnepcNnToUNOoUaML7tMYYwoLC8/Zrk+fPqZx48Yuy7p37266d+9+3jIbY0yjRo1M7969zYEDB8yBAwfMli1bzC233GIkmfvvv7/M/T333HNGknnjjTecy4qKikx6erqpXr26KSgoMMYYc+DAgXOOF0D5cBsLQKl69eqlunXrqkGDBrrppptUrVo1LVq0SBdddJEk6dChQ1q+fLluvvlmHT58WAcPHtTBgwf1yy+/qE+fPtqxY4ez91Z8fLy2bdumHTt2uP38n376qSRp9OjRLsvHjh1boeOKjo52/ttut+vgwYPq3r27fvjhB9ntdo/2uWTJEtWtW1d169ZV27Zt9e6772rIkCF66qmnynzMp59+qqSkJA0aNMi5rEqVKho9erSOHDmilStXelQWAOfiNhaAUv31r39V8+bNZbfb9eqrr+qrr75SVFSUc/3OnTtljNGUKVM0ZcqUUvexf/9+1a9fX4899ph+97vfqXnz5mrVqpWuueYaDRky5Ly3Y3788UeFhYWpSZMmLssvvvjiCh3X6tWrNXXqVGVmZqqwsNBlnd1uV1xcXLn32alTJz3xxBOy2WyKiYlRy5YtFR8ff97H/Pjjj2rWrJnCwlx/c7Zs2dK5HoB3EHYAlOryyy939sbq37+/unbtqltvvVXbt29X9erV5XA4JEnjx49Xnz59St1H06ZNJUndunVTdna2PvroIy1ZskR///vf9eyzz2rOnDm68847K1zWsgYjLC4udvl/dna2evbsqRYtWugvf/mLGjRooMjISH366ad69tlnncdUXnXq1FGvXr08eiwA3yPsALig8PBwZWRk6KqrrtKLL76oSZMmqXHjxpJO33px50Jfq1Yt3XHHHbrjjjt05MgRdevWTdOmTSsz7DRq1EgOh0PZ2dkutTnbt28/Z9uaNWsqPz//nOVn1458/PHHOnHihBYtWqSGDRs6l69YseKC5fe2Ro0a6euvv5bD4XCp3fnvf//rXC+VHeQAuI82OwDc0qNHD11++eV67rnndPz4cSUkJKhHjx56+eWXlZube872Bw4ccP77l19+cVlXvXp1NW3aVCdOnCjz+fr27StJmjVrlsvy55577pxtmzRpIrvdrq+//tq5LDc395xRjMPDwyVJxhjnMrvdrtdee63McvjKb3/7W+Xl5WnBggXOZadOndILL7yg6tWrq3v37pKkmJgYSSo1zAFwDzU7ANw2YcIE/f73v9e8efN0zz336K9//au6du2q1q1b66677lLjxo21b98+ZWZm6qefftKWLVskSWlpaerRo4c6dOigWrVqaf369Xrvvfc0atSoMp/r0ksv1aBBg/TSSy/Jbrerc+fOWrZsmXbu3HnOtrfccosmTpyoG264QaNHj1ZhYaFmz56t5s2ba+PGjc7tevfurcjISF133XX6wx/+oCNHjmju3LlKSEgoNbD50t13362XX35Zw4YN04YNG5SSkqL33ntPq1ev1nPPPacaNWpIOt2gOi0tTQsWLFDz5s1Vq1YttWrVSq1atarU8gJBzd/dwQAElpKu51lZWeesKy4uNk2aNDFNmjQxp06dMsYYk52dbW6//XaTlJRkqlSpYurXr2+uvfZa89577zkf98QTT5jLL7/cxMfHm+joaNOiRQszY8YMU1RU5NymtG7ix44dM6NHjza1a9c21apVM9ddd53Zs2dPqV2xlyxZYlq1amUiIyPNxRdfbN54441S97lo0SLTpk0bU7VqVZOSkmKeeuop8+qrrxpJZteuXc7tytP1/ELd6sva3759+8wdd9xh6tSpYyIjI03r1q3Na6+9ds5j16xZYzp06GAiIyPphg54wGbMGfW5AAAAFkObHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGkMKijJ4XBo7969qlGjBkOzAwAQJIwxOnz4sOrVq3fOpLpnIuxI2rt3rxo0aODvYgAAAA/s2bNHF110UZnrCTuSc1j2PXv2KDY21s+lAQAA7igoKFCDBg2c1/GyEHb0/7MKx8bGEnYAAAgyF2qCQgNlAABgaYQdAABgaYQdAABgabTZAQBYWnFxsU6ePOnvYsADVapUUXh4eIX3Q9gBAFiSMUZ5eXnKz8/3d1FQAfHx8UpKSqrQOHiEHQCAJZUEnYSEBMXExDBobJAxxqiwsFD79++XJCUnJ3u8L8IOAMByiouLnUGndu3a/i4OPBQdHS1J2r9/vxISEjy+pUUDZQCA5ZS00YmJifFzSVBRJa9hRdpdEXYAAJbFravg543XkLADAAAsjbADAECIsNls+vDDD/1dDBdffvmlbDabT3vNEXZ8KNd+TGuyDyrXfszfRQEAhJBp06bp0ksv9XcxAga9sXxkQVaOJi/8Rg4jhdmkjBtba+BlDf1dLAAAQg41Oz6Qaz/mDDqS5DDSwwu3UsMDAHCLw+FQRkaGUlNTFR0drbZt2+q9996T9P+3fZYtW6aOHTsqJiZGnTt31vbt2yVJ8+bN0/Tp07VlyxbZbDbZbDbNmzfPue+DBw/qhhtuUExMjJo1a6ZFixa5VaaS5/3iiy/Url07RUdH6+qrr9b+/fv12WefqWXLloqNjdWtt96qwsJC5+NOnDih0aNHKyEhQVWrVlXXrl2VlZXlvZPlBsKOD+w6eNQZdEoUG6PdBwtLfwAAIKBVdrOEjIwMvf7665ozZ462bdumcePG6bbbbtPKlSud2zzyyCN65plntH79ekVERGj48OGSpIEDB+rBBx/UJZdcotzcXOXm5mrgwIHOx02fPl0333yzvv76a/32t7/V4MGDdejQIbfLNm3aNL344otas2aN9uzZo5tvvlnPPfec3nrrLX3yySdasmSJXnjhBef2Dz30kN5//33Nnz9fGzduVNOmTdWnT59yPWdFEXZ8ILVONYWd1VMu3GZTSh3GewCAYLMgK0ddZi7XrXPXqsvM5VqQlePT5ztx4oSefPJJvfrqq+rTp48aN26sYcOG6bbbbtPLL7/s3G7GjBnq3r270tLSNGnSJK1Zs0bHjx9XdHS0qlevroiICCUlJSkpKck5OJ8kDRs2TIMGDVLTpk315JNP6siRI1q3bp3b5XviiSfUpUsXtWvXTiNGjNDKlSs1e/ZstWvXTldeeaVuuukmrVixQpJ09OhRzZ49W3/605/Ut29fpaWlae7cuYqOjtYrr7zivZN2AYQdH0iOi1bGja0V/r+xAcJtNj15Yyslx0Vf4JEAgEDij2YJO3fuVGFhoX7zm9+oevXqzr/XX39d2dnZzu3atGnj/HfJVAolUyucz5mPq1atmmJjY916XGmPT0xMVExMjBo3buyyrGR/2dnZOnnypLp06eJcX6VKFV1++eX67rvv3H7OiqKBso8MvKyhujWvq90HC5VSJ4agAwBB6HzNEnz1vX7kyBFJ0ieffKL69eu7rIuKinIGnipVqjiXlwy853A4Lrj/Mx9X8lh3Hlfa4202W4X3VxkIOz6UHBdNyAGAIFbSLOHMwOPrZglpaWmKiopSTk6Ounfvfs76M2t3yhIZGani4mJfFK9cmjRposjISK1evVqNGjWSdHrah6ysLI0dO7bSykHYAQCgDCXNEh5euFXFxlRKs4QaNWpo/PjxGjdunBwOh7p27Sq73a7Vq1crNjbWGRrOJyUlRbt27dLmzZt10UUXqUaNGoqKivJZmctSrVo13XvvvZowYYJq1aqlhg0b6umnn1ZhYaFGjBhRaeUg7AAAcB7+aJbw+OOPq27dusrIyNAPP/yg+Ph4tW/fXg8//LBbt4gGDBighQsX6qqrrlJ+fr5ee+01DRs2zOflLs3MmTPlcDg0ZMgQHT58WB07dtQXX3yhmjVrVloZbMYYc+HNrK2goEBxcXGy2+2KjY31d3EAABV0/Phx7dq1S6mpqapataq/i4MKON9r6e71m95YAADA0gg7AABA99xzj0tX9zP/7rnnHn8Xr0JoswMAAPTYY49p/Pjxpa4L9iYehB0AAKCEhAQlJCT4uxg+wW0sAABgaYQdAIBlBdpIvig/b7yG3MYCAFhOZGSkwsLCtHfvXtWtW1eRkZHOKRUQHIwxKioq0oEDBxQWFqbIyEiP90XYAQBYTlhYmFJTU5Wbm6u9e/f6uziogJiYGDVs2FBhYZ7fjCLsAAAsKTIyUg0bNtSpU6cCYp4olF94eLgiIiIqXCtH2AEAWFbJrNxnz8yN0EIDZQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGl+DTvFxcWaMmWKUlNTFR0drSZNmujxxx+XMca5jTFGjz76qJKTkxUdHa1evXppx44dLvs5dOiQBg8erNjYWMXHx2vEiBE6cuRIZR8OAAAIQH4NO0899ZRmz56tF198Ud99952eeuopPf3003rhhRec2zz99NOaNWuW5syZo7Vr16patWrq06ePjh8/7txm8ODB2rZtm5YuXarFixfrq6++0t133+2PQwIAAAHGZs6sRqlk1157rRITE/XKK684lw0YMEDR0dF64403ZIxRvXr19OCDD2r8+PGSJLvdrsTERM2bN0+33HKLvvvuO6WlpSkrK0sdO3aUJH3++ef67W9/q59++kn16tW7YDkKCgoUFxcnu92u2NhY3xwsAADwKnev336t2encubOWLVum77//XpK0ZcsWrVq1Sn379pUk7dq1S3l5eerVq5fzMXFxcerUqZMyMzMlSZmZmYqPj3cGHUnq1auXwsLCtHbt2lKf98SJEyooKHD5AwAA1hThzyefNGmSCgoK1KJFC4WHh6u4uFgzZszQ4MGDJUl5eXmSpMTERJfHJSYmOtfl5eUpISHBZX1ERIRq1arl3OZsGRkZmj59urcPBwAABCC/1uz885//1Jtvvqm33npLGzdu1Pz58/XnP/9Z8+fP9+nzTp48WXa73fm3Z88enz4fAADwH7/W7EyYMEGTJk3SLbfcIklq3bq1fvzxR2VkZGjo0KFKSkqSJO3bt0/JycnOx+3bt0+XXnqpJCkpKUn79+932e+pU6d06NAh5+PPFhUVpaioKB8cEQAACDR+rdkpLCxUWJhrEcLDw+VwOCRJqampSkpK0rJly5zrCwoKtHbtWqWnp0uS0tPTlZ+frw0bNji3Wb58uRwOhzp16lQJRwEAAAKZX2t2rrvuOs2YMUMNGzbUJZdcok2bNukvf/mLhg8fLkmy2WwaO3asnnjiCTVr1kypqamaMmWK6tWrp/79+0uSWrZsqWuuuUZ33XWX5syZo5MnT2rUqFG65ZZb3OqJBQAArM2vYeeFF17QlClTdN9992n//v2qV6+e/vCHP+jRRx91bvPQQw/p6NGjuvvuu5Wfn6+uXbvq888/V9WqVZ3bvPnmmxo1apR69uypsLAwDRgwQLNmzfLHIQEAgADj13F2AgXj7AAAEHyCYpwdAAAAXyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAAS/N72Pn555912223qXbt2oqOjlbr1q21fv1653pjjB599FElJycrOjpavXr10o4dO1z2cejQIQ0ePFixsbGKj4/XiBEjdOTIkco+FAAAEID8GnZ+/fVXdenSRVWqVNFnn32mb7/9Vs8884xq1qzp3Obpp5/WrFmzNGfOHK1du1bVqlVTnz59dPz4cec2gwcP1rZt27R06VItXrxYX331le6++25/HBIAAAgwNmOM8deTT5o0SatXr9a///3vUtcbY1SvXj09+OCDGj9+vCTJbrcrMTFR8+bN0y233KLvvvtOaWlpysrKUseOHSVJn3/+uX7729/qp59+Ur169S5YjoKCAsXFxclutys2NtZ7BwgAAHzG3eu3X2t2Fi1apI4dO+r3v/+9EhIS1K5dO82dO9e5fteuXcrLy1OvXr2cy+Li4tSpUydlZmZKkjIzMxUfH+8MOpLUq1cvhYWFae3ataU+74kTJ1RQUODyBwAArMmvYeeHH37Q7Nmz1axZM33xxRe69957NXr0aM2fP1+SlJeXJ0lKTEx0eVxiYqJzXV5enhISElzWR0REqFatWs5tzpaRkaG4uDjnX4MGDbx9aAAAIED4New4HA61b99eTz75pNq1a6e7775bd911l+bMmePT5508ebLsdrvzb8+ePT59PgAA4D9+DTvJyclKS0tzWdayZUvl5ORIkpKSkiRJ+/btc9lm3759znVJSUnav3+/y/pTp07p0KFDzm3OFhUVpdjYWJc/AABgTX4NO126dNH27dtdln3//fdq1KiRJCk1NVVJSUlatmyZc31BQYHWrl2r9PR0SVJ6erry8/O1YcMG5zbLly+Xw+FQp06dKuEoAABAIIvw55OPGzdOnTt31pNPPqmbb75Z69at09/+9jf97W9/kyTZbDaNHTtWTzzxhJo1a6bU1FRNmTJF9erVU//+/SWdrgm65pprnLe/Tp48qVGjRumWW25xqycWAACwNr92PZekxYsXa/LkydqxY4dSU1P1wAMP6K677nKuN8Zo6tSp+tvf/qb8/Hx17dpVL730kpo3b+7c5tChQxo1apQ+/vhjhYWFacCAAZo1a5aqV6/uVhnoeg4AQPBx9/rt97ATCAg7AAAEn6AYZwcAAMDXCDuQJOXaj2lN9kHl2o/5uygAAHiVXxsoIzAsyMrR5IXfyGGkMJuUcWNrDbysob+LBQCAV1CzE+Jy7cecQUeSHEZ6eOFWangAAJZB2Alxuw4edQadEsXGaPfBQv8UCAAALyPshLjUOtUUZnNdFm6zKaVOjH8KBACAlxF2QlxyXLQybmytcNvpxBNus+nJG1spOS7azyUDAMA7aKAMDbysobo1r6vdBwuVUieGoAMAsBS3w05BQYHbO2VgvuCTHBdNyAEAWJLbYSc+Pl42m+282xhjZLPZVFxcXOGCAQAAeIPbYWfFihW+LAd0uhv4roNHlVqnGrUsAAB4idthp3v37r4sR8hjYD8AAHzD4wbK+fn5euWVV/Tdd99Jki655BINHz5ccXFxXitcqChrYL9uzetSwwMAQAV51PV8/fr1atKkiZ599lkdOnRIhw4d0l/+8hc1adJEGzdu9HYZLY+B/QAA8B2PanbGjRun66+/XnPnzlVExOldnDp1SnfeeafGjh2rr776yquFtLqSgf3ODDwM7AcAgHd4XLMzceJEZ9CRpIiICD300ENav3691woXKhjYDwAA3/GoZic2NlY5OTlq0aKFy/I9e/aoRo0aXilYqGFgPwAAfMOjsDNw4ECNGDFCf/7zn9W5c2dJ0urVqzVhwgQNGjTIqwUMJQzsBwCA93kUdv785z/LZrPp9ttv16lTpyRJVapU0b333quZM2d6tYAAAAAVYTPGmAtvVrrCwkJlZ2dLkpo0aaKYmOBsUFtQUKC4uDjZ7XamugAAIEi4e/2u0ESgMTExat26dUV2AR9jVGYAQKjzKOwcP35cL7zwglasWKH9+/fL4XC4rGesncDAqMwAAHgYdkaMGKElS5bopptu0uWXX37BCUJR+RiVGQCA0zwKO4sXL9ann36qLl26eLs88JLzjcpM2AEAhBKPBhWsX78+4+kEuJJRmc/kzqjMufZjWpN9ULn2Yz4sHQAAlcejsPPMM89o4sSJ+vHHH71dHniJJ6MyL8jKUZeZy3Xr3LXqMnO5FmTlVFZxAQDwGY9uY3Xs2FHHjx9X48aNFRMToypVqrisP3TokFcKh4opz6jMtPEBAFiVR2Fn0KBB+vnnn/Xkk08qMTGRBsoBzN1RmWnjAwCwKo/Czpo1a5SZmam2bdt6uzzwE2ZeBwBYlUdtdlq0aKFjx2jAaiXMvA4AsCqPpotYsmSJpk+frhkzZqh169bntNkJtikXmC7i/+XajzHzOgAgKLh7/fYo7ISFna4QOrutjjFGNptNxcXF5d2lXxF2AAAIPj6dG2vFihUeFwwAAKAyeRR2unfv7tZ29913nx577DHVqVPHk6cBAACoMI8aKLvrjTfeUEFBgS+fAgAA4Lx8GnY8aA4EAADgVT4NOwAAAP5G2AEAAJZG2AEAAJZG2AEAAJbm07Bz2223MUgfAADwK4/G2ZGk/Px8rVu3Tvv375fD4XBZd/vtt0uSZs+eXbHSAQAAVJBHYefjjz/W4MGDdeTIEcXGxrpMG2Gz2ZxhBwAAwN88uo314IMPavjw4Tpy5Ijy8/P166+/Ov8OHTrk7TICAAB4zKOw8/PPP2v06NGKiYnxdnkAAAC8yqOw06dPH61fv97bZQEAAPA6t9vsLFq0yPnvfv36acKECfr222/VunVrValSxWXb66+/3nslBAAAqACbcXMCq7Aw9yqBbDabiouLK1SoylZQUKC4uDjZ7Xa6ygMAECTcvX67XbNzdvdyAACAYOBRm53XX39dJ06cOGd5UVGRXn/99QoXCgAAwFvcvo11pvDwcOXm5iohIcFl+S+//KKEhARuYwEAAJ9z9/rtUc2OMcZlIMESP/30k+Li4jzZJQAAgE+UawTldu3ayWazyWazqWfPnoqI+P+HFxcXa9euXbrmmmu8XkgAAABPlSvs9O/fX5K0efNm9enTR9WrV3eui4yMVEpKigYMGODVAqLy5dqPadfBo0qtU03JcdH+Lg4AABVSrrAzdepUSVJKSooGDhyoqlWr+qRQ8J8FWTmavPAbOYwUZpMybmytgZc19HexAADwmEcNlEsUFRWVOut5w4bBdXGkgfJpufZj6jJzuRxnvCPCbTatmnQVNTwAgIDj9XF2zrRjxw4NHz5ca9ascVle0nA52Hpj4bRdB4+6BB1JKjZGuw8WEnYAAEHLo7AzbNgwRUREaPHixUpOTi61ZxaCT2qdagqz6ZyanZQ6TPgKAAheHoWdzZs3a8OGDWrRooW3ywM/So6LVsaNrfXwwq0qNkbhNpuevLEVtToAgKDmUdhJS0vTwYMHvV0WBICBlzVUt+Z1tftgoVLqxBB0AABBz6NBBZ966ik99NBD+vLLL/XLL7+ooKDA5c9TM2fOlM1m09ixY53Ljh8/rpEjR6p27dqqXr26BgwYoH379rk8LicnR/369VNMTIwSEhI0YcIEnTp1yuNyhLrkuGilN6lN0AEAWIJHNTu9evWSJF199dUu7XUq0kA5KytLL7/8stq0aeOyfNy4cfrkk0/07rvvKi4uTqNGjdKNN96o1atXSzo9mGG/fv2UlJSkNWvWKDc3V7fffruqVKmiJ5980pPDAwDAibHHgp9HYWfFihVeLcSRI0c0ePBgzZ07V0888YRzud1u1yuvvKK33npLV199tSTptddeU8uWLfWf//xHV1xxhZYsWaJvv/1W//rXv5SYmKhLL71Ujz/+uCZOnKhp06YpMjLSq2UFAIQOxh6zBo9uY3Xv3l1hYWGaO3euJk2apKZNm6p79+7KyclReHh4ufc3cuRI9evXz1ljVGLDhg06efKky/IWLVqoYcOGyszMlCRlZmaqdevWSkxMdG7Tp08fFRQUaNu2baU+34kTJ7x26w0AYE259mPOoCOd7qn68MKtyrUf82/BUG4ehZ33339fffr0UXR0tDZt2qQTJ05IOl0TU95bR++88442btyojIyMc9bl5eUpMjJS8fHxLssTExOVl5fn3ObMoFOyvmRdaTIyMhQXF+f8a9CgQbnKHGpy7ce0JvsgH3AAIeV8Y48huHgUdp544gnNmTNHc+fOVZUqVZzLu3Tpoo0bN7q9nz179mjMmDF68803K3XqicmTJ8tutzv/9uzZU2nPHWwWZOWoy8zlunXuWnWZuVwLsnL8XSQAqBQlY4+dibHHgpNHYWf79u3q1q3bOcvj4uKUn5/v9n42bNig/fv3q3379oqIiFBERIRWrlypWbNmKSIiQomJiSoqKjpnn/v27VNSUpIkKSkp6ZzeWSX/L9nmbFFRUYqNjXX5w7mowgUQykrGHgv/X0ccxh4LXh41UE5KStLOnTuVkpLisnzVqlVq3Lix2/vp2bOnvvnmG5dld9xxh1q0aKGJEyeqQYMGqlKlipYtW+acTX379u3KyclRenq6JCk9PV0zZszQ/v37lZCQIElaunSpYmNjlZaW5snh4X+YPgJAqGPsMWvwKOzcddddGjNmjF599VXZbDbt3btXmZmZGj9+vKZMmeL2fmrUqKFWrVq5LKtWrZpq167tXD5ixAg98MADqlWrlmJjY3X//fcrPT1dV1xxhSSpd+/eSktL05AhQ/T0008rLy9Pf/zjHzVy5EhFRUV5cnj4H6aPAIDTNTyEnODmUdiZNGmSHA6HevbsqcLCQnXr1k1RUVEaP3687r//fq8W8Nlnn1VYWJgGDBigEydOqE+fPnrppZec68PDw7V48WLde++9Sk9PV7Vq1TR06FA99thjXi1HKGL6CACAFdiMMebCm5WuqKhIO3fu1JEjR5SWlqbq1at7s2yVxt0p4kNVrv0YVbgAgIDj7vXbo5qdEpGRkbSLCQFU4QIAgplHvbEAAACCBWEHAABYGmEHAABYGmEHAYWpKQAA3lahBsqANzG7MADAF6jZQUBgagoAgK8QdhAQmF0YAOArhB0EBGYXBgD4CmEHAYHZhQEAvkIDZQQMZhcGAPgCYQcBhakpAADexm0sAABgaYQdeITB/wAAwYLbWCg3Bv8DAAQTanZQLgz+BwAINoQdlAuD/wEAgg1hB+XC4H8AgGBD2EG5MPgfACDY0EAZ5cbgfwCAYELYgUcY/A8AECy4jQUAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsBNEmHwTAIDyo+t5kGDyTQAAPEPNThBg8k0AADxH2AkCgTT5JrfSAADBhttYQaBk8s0zA48/Jt/kVhoAIBhRsxMEAmHyTW6lAQCCFTU7QcLfk2+e71Yac2QBAAIZYSeI+HPyzUC5leZNufZj2nXwqFLrVCOwAYCFcRsLbgmEW2netCArR11mLtetc9eqy8zlWpCV4+8iAQB8xGaMMRfezNoKCgoUFxcnu92u2NhYfxcnoOXaj/ntVpq35NqPqcvM5efUUq2adFXQHhMAhCJ3r9/cxkK5+PNWmrfQ/ggAQgu3sRByStofnSnY2x8BAMpG2EHIsVr7IwDA+XEbCyHJ3135AQCVh7CDkGWF9kcAgAvjNhYAALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wk6QyLUf05rsg8q1H/N3UQAACCqMsxMEFmTlaPLCb+QwUphNyrixtQZe1tDfxQIAIChQsxPgcu3HnEFHkhxGenjhVmp4AABwE2EnwJ1vhm4AAHBhhJ0AxwzdAABUDGEnwDFDNwAAFUMD5SDADN0AAHiOsBMkmKEbAADPcBsLAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYml/DTkZGhi677DLVqFFDCQkJ6t+/v7Zv3+6yzfHjxzVy5EjVrl1b1atX14ABA7Rv3z6XbXJyctSvXz/FxMQoISFBEyZM0KlTpyrzUACfYzJYAPCMX8POypUrNXLkSP3nP//R0qVLdfLkSfXu3VtHjx51bjNu3Dh9/PHHevfdd7Vy5Urt3btXN954o3N9cXGx+vXrp6KiIq1Zs0bz58/XvHnz9Oijj/rjkACfWJCVoy4zl+vWuWvVZeZyLcjK8XeRACBo2Iwx5sKbVY4DBw4oISFBK1euVLdu3WS321W3bl299dZbuummmyRJ//3vf9WyZUtlZmbqiiuu0GeffaZrr71We/fuVWJioiRpzpw5mjhxog4cOKDIyMgLPm9BQYHi4uJkt9sVGxvr02MEyivXfkxdZi53mSMt3GbTqklXMfYSgJDm7vU7oNrs2O12SVKtWrUkSRs2bNDJkyfVq1cv5zYtWrRQw4YNlZmZKUnKzMxU69atnUFHkvr06aOCggJt27at1Oc5ceKECgoKXP6AQMVksABQMQETdhwOh8aOHasuXbqoVatWkqS8vDxFRkYqPj7eZdvExETl5eU5tzkz6JSsL1lXmoyMDMXFxTn/GjRo4OWjAbyHyWABoGICJuyMHDlSW7du1TvvvOPz55o8ebLsdrvzb8+ePT5/zlBGw9qKYTJYAKiYgJgba9SoUVq8eLG++uorXXTRRc7lSUlJKioqUn5+vkvtzr59+5SUlOTcZt26dS77K+mtVbLN2aKiohQVFeXlo0BpFmTlaPLCb+QwUphNyrixtQZe1tDfxQo6TAYLAJ7za82OMUajRo3SBx98oOXLlys1NdVlfYcOHVSlShUtW7bMuWz79u3KyclRenq6JCk9PV3ffPON9u/f79xm6dKlio2NVVpaWuUcCEqVaz/mDDqS5DDSwwu3+q2GJ9hrmJLjopXepDZBBwDKya81OyNHjtRbb72ljz76SDVq1HC2sYmLi1N0dLTi4uI0YsQIPfDAA6pVq5ZiY2N1//33Kz09XVdccYUkqXfv3kpLS9OQIUP09NNPKy8vT3/84x81cuRIam/87HwNayv7gk0NEwCELr/W7MyePVt2u109evRQcnKy82/BggXObZ599llde+21GjBggLp166akpCQtXLjQuT48PFyLFy9WeHi40tPTddttt+n222/XY4895o9DCniVWbsRKA1rA62GCQBQuQJqnB1/CZVxdvxRu7EgK0cPL9yqYmOcDWsru0ZlTfZB3Tp37TnL377rCqU3qV2pZQEAeI+71++AaKAM3yurdqNb87o+vaUUCA1rS2qYzh6Uj67bABAaAqbrOXzLnwPT+bthLV23ASC0UbMTIkK9diMQapiCTa79mHYdPKrUOtU4XwCCGmEnRJTUbpzdfiaULmLJcdEhdbwVQe81AFZCA2WFTgNl6fSvdWo3cD5MPAogWNBAGaWidgNnKu1WVSCNjwQA3kDYAUJUabequjWvq1+OnAjp9l2oGNp6IRARdoAQVNpQBJPe/0a2/4UcmySbTTKG3mtwH229EKgIO0AIKu1WldHpcFPy7zAjvXhrO7VvVJOggwvy11hegDsYZwcIQaVN5XE2h6Ra1aK4UMEtG3781W9jeQEXQtgBQtDZAy2G6fStqzPRTgfuWpCVo/vf2nTOct5DCBTcxgIsorwNQ88eaPGr7w+E9DhM8EzJ7auzxzAJs4n3EAIGYQewAE8bhp45FAGjTMMTpbX/kqRZt7TTtW3rVX6BgFJwGwvwo1z7Ma3JPqhc+7EK7aO0hqGe7NPf85gh+JTW/ivcZlOHlJr+KRBQCsIO4CcLsnLUZeZy3Tp3rbrMXK4FWTke7cefk7wCTLSLYMBtLMAPvNlNN9QneYX/cQsUgY6aHQQVb9z2CQTerI3hlzVKU9mfFW6BIpBRs4OgYaXRWb1dG1Pyy3rjj7/KYYw6ptTyUkkRjKz0WQG8gZodBAVvNsINBL6ojfnq+wO6/+1Nuv/tzRVqA4TgFmyfFavU1iKwUbODoGDFmbi92c6BofpRIpg+K9RAobJQs4OgUFb31mBvhOutdg70yEKJYPmsBFsNFIIbYQdBgUa45xcsFzj4XrB8VgjoqEzcxkLQoHtr2UoucEz3ACk4PiulNdIPkxQTyW9wbynvFDJWZjPGlDLQd2gpKChQXFyc7Ha7YmNj/V0cwGO59mMBfYELRcF6wTm73L44jgVZOc6AXoK2O97hi/ZQgfhedvf6TdgRYQeAbwTrBefsct/Qrr4+2PSzTxoSb9nzq/q/tEbmrGEYVk26KmAuqMEm135MXWYuP2doi4qc00BtTO7u9Zv6QgQkuqMi2PmiAa63phg5n9LK/f7Gn33SkDjXfkzrdh/S2T+5y2q7w/eCe7zdHsoKjclps4NKd6FfpoH6CwIoD293Aa+s4QXKmsX8TN7oyn7m5/xspTWu53vBfd4etDSYhjMoCzU7qFQX+mVqhV8QgOT9HnKV1XuptHKfraI9/c7+nJ+977Mb1/O9UD7e7pFnhd6ehB1UGne+sNz9Qqc6G4EuWC84pZV7QPv6Xu3KXlbt0ZR+LbVq0lXn1NjQTb38Bl7WUKsmXaW377qi1HNaHme/J8Ikjeia4p2CVhJuY6HSuFMV6k71K9XZCBbe7AJe1vACkrQm+6BXGyyXVu7xfS72Wk+/sj7nv22TXOq+PbktE4g9h3yhrOMsbXnJsmqR4TpaVFyuc1Pynnht1W79fdUP+tu/d+nvq3YFzfcvYQeVxp0vrAuNF8O0CAg2yXHRPgshX31/wNnrxtvB/+xye/M4yjsuVHm3D+QfRN4MYWUdZ2nLJZ1z69CTc/P3VT8E5fcvXc9F1/PKdOa4GiVfWKV90MoaL2ZN9kHdOnftOdu/fdcVSm9S26dlh/eFyq9vX/BF9+LKVt5xodzZPpDPizdDWFnHufC+dN3w0ppzBmvUWT80z3yMu+cmEL9/3b1+U7ODSuVutX5ZvyK93csA/hPIv76DgRV6yJS3tsid7QP1vHi7Vrqs48za/es5yx2SVEa1hrvnJtd+TL8cORG03780UEalq8jkl8Ey708wq4zG3/SuqTh3GyyHWmN+d86LP86JtxtZl3Wcl6XUPGd5mFRmDzt3wkpJL9r7394sY6T/ff0G1fcvNTsIOsEw708wKG06gNdW7dLcf++SUflqW8p7OypQf30HE3fasfiz9sxftygvdF78dU6qRYaXutyducBKO5dlHWfbBjXLbMh+9tQc7oSVs3+YGElhRnrx1nZq36hm0HxeCTsISt5sLBmKzjcdQAl3q9k9uXhwO7J05Q0I5wv+/mzM7+9blGWdF3+ek6NFxaUuLyxynPdx5zuXZR1nWctLlsVEhqmwyOHWj8XSfpg4JNWqFhVU38GEHSDElDUdQGkuVNvi6cWDWdrP5WlAKCv4+6v2LFB6TJZ2XvxZo+hp9/kLncuyXv/Slp+9rOR23vnCtVV+mBB2gBDjznQAJS70pVaRiwe3I/+fLwKCvy5SgXyL0p8Xbk8Cvi/Ppbvh2io/TAg7QIgp7Qu/NGHSBb/UKnrx4Hbkab64qPnrIhXINQH+vnCXN+D76lyWN1xb4YcJYQcIMaV94fdvV08fbtqrYmMUZpPu7NpYd3RNueCXmr8vHlbhq4uaPy5Sgf6eGHhZQ7VIqqGs3b/qspSaatugZqU+f3kCvq/OpSfhOth/mDCooBhU0JsYJC54nD1AW3kHeDvfvlB+7g64GSwC9T3hrcbTlfld5+1zGcgDL5aXu9dvwo4IO97i7x4YQLC70EWNHxMV462LfGV81/n6tbZKuGYEZVSqQOmB4SkuIggE57tVwI+JivNG26jK+K6rjNfaCu1wyoOwA68I5B4YF8JFBIEu2H9MBApvtI3y9XddZb7Wwd4OpzyYLgJe4e7Q9YHGX9MWhNoQ/qgYb081EKq8Md2Mr7/reK19g5odeEWg98Aoiz9qpMqqSeJWWvCo7NcqkLtz+4Ivz29Fb9/46ruu5JirRYaH1GtdWQg78Bpf3AP29UWlsi8iZdUk5R87qac++y+30oKAP257JsdFa2LfFs73SLD8mPBEZZzfit6+8fZ3XWnTt5QMBWHl17oy0RtL9MYKVJV1UanMXglrsg/q1rlrz1lus0nmrMAVjN1Arc5fXXbP/CzYJE3q20J/6N7EZ8/nL1bqEu2uso554X3pbs9fFcrojYWgVpmN9CqzV0JpNUlhOnc042Bp3B1q/HHbs7RZp5/+fLuuv7Se5d4fwdzRwVNlHXNhkUPpTWr7p1AWRANlBKTKbqSXHBet9Ca1ff6FWloDyYl9W3jc4JGGzpXLW41Ty/O6hVKD1UDr6FAZn69AO2aromYHAcnKDTJLq0mKj6lS7gaPdJl3daH2Xd5o/+WNxqnlfd2s/Fk4WyB1dKisz1cgHbOV0WZHtNkJVFYZ4dNd5RkSPhTbNpzPhS5M3r5weTp8v6evG5+F8j++IsHWH5+vQJ1ew13+6k1Kmx0EvVAb4bM8PURCsW1DWS7Uvsub7b/O/EL3pD2Fp68bnwX3eSPY+uPzFcwD/AVDLTNhBwEtmL8AfMmftzYCbTygC12YvHXh8sYXekVeNz4LF+atYBtKtw4rKlhG96aBMhCEvDESrCcWZOWoy8zlunXuWnWZuVwLsnJ8+nzuuFADT280APXWSNv+et1Chbcac/M6uS9YGtBTswPIs9oKf9dwVPatjUD9BXehBp7eaADqzdsavnzdyvOe9Pf71xe8WSMTarcOPRUstWCEHYQ8T25PBMo96sq8tRHI7YQudGGq6IWrPF/o7oQIX7xu5XlPBsr719u83bOJW4fuGdE1Va+s2lXm6N6BEKzpjSV6Y4UyT3pdhGpPqFA97hLu9IjyV4goz2tT3tcxEC5U5RXsPZuCxZnvd0m6tk2S7rqysdo2qFnqNr74TNAbC3CDJ7UVgVzD4UuhPh7IhWqH/HmbrzzvSXe2LQk43/xsD8o523xdIxOMAdDbzn6/S9Lir/P06Td5LpMbB8qtb8IOQpon95uD5R61LwRrOwZvXZzOdxH1Zwguz3vyQtue/Wu9RKC00fI3q94CLK/S3u+S6/skkH4YWqY31l//+lelpKSoatWq6tSpk9atW+fvIiEIeNLrItR7alTW1BreUhk9yHLtx/TLkRN+G/a/PO/J821b2q/1M/mql02wTHtS3l55wXJcniitl2OJkvdJIE2FYYmanQULFuiBBx7QnDlz1KlTJz333HPq06ePtm/froSEBH8XDwHufLUVZdUIBGsNR6ipjGr0s2ckL5nBvrJDcHnek2VtW9av9RK+uFAFU01JeWoqgum4PFESmie//40cZ60reZ8E0q1vSzRQ7tSpky677DK9+OKLkiSHw6EGDRro/vvv16RJky74eBooozRW/7IKBWuyD+rWuWvPWf72XVd4ZUbp0hr7hkl64dZ2at+oZtCF4NKOp4QvpqkItkbv7pY32I6rInLtx/Taqt36+6ofXHpjnfk+8WWD8ZBpoFxUVKQNGzZo8uTJzmVhYWHq1auXMjMz/VgyBLNAalgHz/m6fVVpv/QdkmpViwrK90lpv8QfuuZitbko3icXqkBq0+EOd2sqgu24KiI5LloP92upO7qmlBloAqELf9CHnYMHD6q4uFiJiYkuyxMTE/Xf//631MecOHFCJ06ccP6/oKDAp2VE8AmlLysr83U1uhUbq1fmLdpgPH/unJ9gPK6KCoRAcz6WaaBcHhkZGYqLi3P+NWjQwN9FQoAJpIZ1qJiBlzXUqklX6e27rtCqSVd59TaMVRurV1Yj9GA9fxc6P8F6XFYW9G12ioqKFBMTo/fee0/9+/d3Lh86dKjy8/P10UcfnfOY0mp2GjRoQJsduHBnEDlAYhC7irLq+bPqcQWSkGmzExkZqQ4dOmjZsmXOsONwOLRs2TKNGjWq1MdERUUpKiqqEkuJYESPK7gr0KvwA51Vz59VjysYBX3YkaQHHnhAQ4cOVceOHXX55Zfrueee09GjR3XHHXf4u2gIcnxZAUDws0TYGThwoA4cOKBHH31UeXl5uvTSS/X555+f02gZAACEnqBvs+MNjLMDAEDwcff6HZK9sQAAQOgg7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEuzxHQRFVUyiHRBQYGfSwIAANxVct2+0GQQhB1Jhw8fliQ1aNDAzyUBAADldfjwYcXFxZW5nrmxJDkcDu3du1c1atSQzWZz6zEFBQVq0KCB9uzZE9LzaXEeTuM8cA5KcB5O4zycxnnw7Tkwxujw4cOqV6+ewsLKbplDzY6ksLAwXXTRRR49NjY2NmTfwGfiPJzGeeAclOA8nMZ5OI3z4LtzcL4anRI0UAYAAJZG2AEAAJZG2PFQVFSUpk6dqqioKH8Xxa84D6dxHjgHJTgPp3EeTuM8BMY5oIEyAACwNGp2AACApRF2AACApRF2AACApRF2AACApRF2zjB79my1adPGOfBRenq6PvvsM+f648ePa+TIkapdu7aqV6+uAQMGaN++fS77yMnJUb9+/RQTE6OEhARNmDBBp06dquxD8aqZM2fKZrNp7NixzmWhcC6mTZsmm83m8teiRQvn+lA4B5L0888/67bbblPt2rUVHR2t1q1ba/369c71xhg9+uijSk5OVnR0tHr16qUdO3a47OPQoUMaPHiwYmNjFR8frxEjRujIkSOVfSgeS0lJOee9YLPZNHLkSEmh814oLi7WlClTlJqaqujoaDVp0kSPP/64y7xEofB+OHz4sMaOHatGjRopOjpanTt3VlZWlnO9Fc/BV199peuuu0716tWTzWbThx9+6LLeW8f89ddf68orr1TVqlXVoEEDPf300945AAOnRYsWmU8++cR8//33Zvv27ebhhx82VapUMVu3bjXGGHPPPfeYBg0amGXLlpn169ebK664wnTu3Nn5+FOnTplWrVqZXr16mU2bNplPP/3U1KlTx0yePNlfh1Rh69atMykpKaZNmzZmzJgxzuWhcC6mTp1qLrnkEpObm+v8O3DggHN9KJyDQ4cOmUaNGplhw4aZtWvXmh9++MF88cUXZufOnc5tZs6caeLi4syHH35otmzZYq6//nqTmppqjh075tzmmmuuMW3btjX/+c9/zL///W/TtGlTM2jQIH8ckkf279/v8j5YunSpkWRWrFhhjAmN94IxxsyYMcPUrl3bLF682Ozatcu8++67pnr16ub55593bhMK74ebb77ZpKWlmZUrV5odO3aYqVOnmtjYWPPTTz8ZY6x5Dj799FPzyCOPmIULFxpJ5oMPPnBZ741jttvtJjEx0QwePNhs3brVvP322yY6Otq8/PLLFS4/YecCatasaf7+97+b/Px8U6VKFfPuu+8613333XdGksnMzDTGnH4zhIWFmby8POc2s2fPNrGxsebEiROVXvaKOnz4sGnWrJlZunSp6d69uzPshMq5mDp1qmnbtm2p60LlHEycONF07dq1zPUOh8MkJSWZP/3pT85l+fn5Jioqyrz99tvGGGO+/fZbI8lkZWU5t/nss8+MzWYzP//8s+8K70NjxowxTZo0MQ6HI2TeC8YY069fPzN8+HCXZTfeeKMZPHiwMSY03g+FhYUmPDzcLF682GV5+/btzSOPPBIS5+DssOOtY37ppZdMzZo1XT4TEydONBdffHGFy8xtrDIUFxfrnXfe0dGjR5Wenq4NGzbo5MmT6tWrl3ObFi1aqGHDhsrMzJQkZWZmqnXr1kpMTHRu06dPHxUUFGjbtm2VfgwVNXLkSPXr18/lmCWF1LnYsWOH6tWrp8aNG2vw4MHKycmRFDrnYNGiRerYsaN+//vfKyEhQe3atdPcuXOd63ft2qW8vDyX8xAXF6dOnTq5nIf4+Hh17NjRuU2vXr0UFhamtWvXVt7BeElRUZHeeOMNDR8+XDabLWTeC5LUuXNnLVu2TN9//70kacuWLVq1apX69u0rKTTeD6dOnVJxcbGqVq3qsjw6OlqrVq0KiXNwNm8dc2Zmprp166bIyEjnNn369NH27dv166+/VqiMTAR6lm+++Ubp6ek6fvy4qlevrg8++EBpaWnavHmzIiMjFR8f77J9YmKi8vLyJEl5eXkuX2Yl60vWBZN33nlHGzdudLkPXSIvLy8kzkWnTp00b948XXzxxcrNzdX06dN15ZVXauvWrSFzDn744QfNnj1bDzzwgB5++GFlZWVp9OjRioyM1NChQ53HUdpxnnkeEhISXNZHRESoVq1aQXMezvThhx8qPz9fw4YNkxQ6nwdJmjRpkgoKCtSiRQuFh4eruLhYM2bM0ODBgyUpJN4PNWrUUHp6uh5//HG1bNlSiYmJevvtt5WZmammTZuGxDk4m7eOOS8vT6mpqefso2RdzZo1PS4jYecsF198sTZv3iy73a733ntPQ4cO1cqVK/1drEq1Z88ejRkzRkuXLj3n10soKfm1Kklt2rRRp06d1KhRI/3zn/9UdHS0H0tWeRwOhzp27Kgnn3xSktSuXTtt3bpVc+bM0dChQ/1cOv945ZVX1LdvX9WrV8/fRal0//znP/Xmm2/qrbfe0iWXXKLNmzdr7NixqlevXki9H/7xj39o+PDhql+/vsLDw9W+fXsNGjRIGzZs8HfRUAZuY50lMjJSTZs2VYcOHZSRkaG2bdvq+eefV1JSkoqKipSfn++y/b59+5SUlCRJSkpKOqcHRsn/S7YJBhs2bND+/fvVvn17RUREKCIiQitXrtSsWbMUERGhxMTEkDkXZ4qPj1fz5s21c+fOkHk/JCcnKy0tzWVZy5YtnbfzSo6jtOM88zzs37/fZf2pU6d06NChoDkPJX788Uf961//0p133ulcFirvBUmaMGGCJk2apFtuuUWtW7fWkCFDNG7cOGVkZEgKnfdDkyZNtHLlSh05ckR79uzRunXrdPLkSTVu3DhkzsGZvHXMvvycEHYuwOFw6MSJE+rQoYOqVKmiZcuWOddt375dOTk5Sk9PlySlp6frm2++cXlBly5dqtjY2HMuGIGsZ8+e+uabb7R582bnX8eOHTV48GDnv0PlXJzpyJEjys7OVnJycsi8H7p06aLt27e7LPv+++/VqFEjSVJqaqqSkpJczkNBQYHWrl3rch7y8/NdfvUuX75cDodDnTp1qoSj8J7XXntNCQkJ6tevn3NZqLwXJKmwsFBhYa6XjfDwcDkcDkmh936oVq2akpOT9euvv+qLL77Q7373u5A7B5L3Xvf09HR99dVXOnnypHObpUuX6uKLL67QLSxJdD0/06RJk8zKlSvNrl27zNdff20mTZpkbDabWbJkiTHmdPfShg0bmuXLl5v169eb9PR0k56e7nx8SffS3r17m82bN5vPP//c1K1bN+i6l5bmzN5YxoTGuXjwwQfNl19+aXbt2mVWr15tevXqZerUqWP2799vjAmNc7Bu3ToTERFhZsyYYXbs2GHefPNNExMTY9544w3nNjNnzjTx8fHmo48+Ml9//bX53e9+V2qX03bt2pm1a9eaVatWmWbNmgV0N9vSFBcXm4YNG5qJEyeesy4U3gvGGDN06FBTv359Z9fzhQsXmjp16piHHnrIuU0ovB8+//xz89lnn5kffvjBLFmyxLRt29Z06tTJFBUVGWOseQ4OHz5sNm3aZDZt2mQkmb/85S9m06ZN5scffzTGeOeY8/PzTWJiohkyZIjZunWreeedd0xMTAxdz71t+PDhplGjRiYyMtLUrVvX9OzZ0xl0jDHm2LFj5r777jM1a9Y0MTEx5oYbbjC5ubku+9i9e7fp27eviY6ONnXq1DEPPvigOXnyZGUfitedHXZC4VwMHDjQJCcnm8jISFO/fn0zcOBAl/FlQuEcGGPMxx9/bFq1amWioqJMixYtzN/+9jeX9Q6Hw0yZMsUkJiaaqKgo07NnT7N9+3aXbX755RczaNAgU716dRMbG2vuuOMOc/jw4co8jAr74osvjKRzjs2Y0HkvFBQUmDFjxpiGDRuaqlWrmsaNG5tHHnnEpatwKLwfFixYYBo3bmwiIyNNUlKSGTlypMnPz3eut+I5WLFihZF0zt/QoUONMd475i1btpiuXbuaqKgoU79+fTNz5kyvlN9mzBlDXwIAAFgMbXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAeKRHjx4aO3asv4vhc9OmTdOll17q72IAqADCDoCQVFRUVKnPZ4zRqVOnKvU5AZxG2AFQbsOGDdPKlSv1/PPPy2azyWazaffu3dq6dav69u2r6tWrKzExUUOGDNHBgwedj+vRo4fuv/9+jR07VjVr1lRiYqLmzp2ro0eP6o477lCNGjXUtGlTffbZZ87HfPnll7LZbPrkk0/Upk0bVa1aVVdccYW2bt3qUqZVq1bpyiuvVHR0tBo0aKDRo0fr6NGjzvUpKSl6/PHHdfvttys2NlZ33323JGnixIlq3ry5YmJi1LhxY02ZMsU56/K8efM0ffp0bdmyxXmc8+bN0+7du2Wz2bR582bn/vPz82Wz2fTll1+6lPuzzz5Thw4dFBUVpVWrVsnhcCgjI0OpqamKjo5W27Zt9d5773n7JQJwBsIOgHJ7/vnnlZ6errvuuku5ubnKzc1VjRo1dPXVV6tdu3Zav369Pv/8c+3bt08333yzy2Pnz5+vOnXqaN26dbr//vt177336ve//706d+6sjRs3qnfv3hoyZIgKCwtdHjdhwgQ988wzysrKUt26dXXdddc5Q0l2drauueYaDRgwQF9//bUWLFigVatWadSoUS77+POf/6y2bdtq06ZNmjJliiSpRo0amjdvnr799ls9//zzmjt3rp599llJ0sCBA/Xggw/qkksucR7nwIEDy3WuJk2apJkzZ+q7775TmzZtlJGRoddff11z5szRtm3bNG7cON12221auXJlufYLoBy8Mp0ogJDTvXt3M2bMGOf/H3/8cdO7d2+Xbfbs2eMyU3j37t1N165dnetPnTplqlWrZoYMGeJclpubaySZzMxMY8z/z7b8zjvvOLf55ZdfTHR0tFmwYIExxpgRI0aYu+++2+W5//3vf5uwsDBz7NgxY4wxjRo1Mv3797/gcf3pT38yHTp0cP5/6tSppm3bti7b7Nq1y0gymzZtci779ddfjSSzYsUKl3J/+OGHzm2OHz9uYmJizJo1a1z2N2LECDNo0KALlg2AZyL8GbQAWMeWLVu0YsUKVa9e/Zx12dnZat68uSSpTZs2zuXh4eGqXbu2Wrdu7VyWmJgoSdq/f7/LPtLT053/rlWrli6++GJ99913zuf++uuv9eabbzq3McbI4XBo165datmypSSpY8eO55RtwYIFmjVrlrKzs3XkyBGdOnVKsbGx5T7+spz5nDt37lRhYaF+85vfuGxTVFSkdu3aee05Abgi7ADwiiNHjui6667TU089dc665ORk57+rVKniss5ms7kss9lskiSHw1Gu5/7DH/6g0aNHn7OuYcOGzn9Xq1bNZV1mZqYGDx6s6dOnq0+fPoqLi9M777yjZ5555rzPFxZ2ugWAMca5rOSW2tnOfM4jR45Ikj755BPVr1/fZbuoqKjzPicAzxF2AHgkMjJSxcXFzv+3b99e77//vlJSUhQR4f2vlv/85z/O4PLrr7/q+++/d9bYtG/fXt9++62aNm1arn2uWbNGjRo10iOPPOJc9uOPP7psc/ZxSlLdunUlSbm5uc4amTMbK5clLS1NUVFRysnJUffu3ctVVgCeo4EyAI+kpKRo7dq12r17tw4ePKiRI0fq0KFDGjRokLKyspSdna0vvvhCd9xxxzlhwROPPfaYli1bpq1bt2rYsGGqU6eO+vfvL+l0j6o1a9Zo1KhR2rx5s3bs2KGPPvronAbKZ2vWrJlycnL0zjvvKDs7W7NmzdIHH3xwznHu2rVLmzdv1sGDB3XixAlFR0friiuucDY8Xrlypf74xz9e8Bhq1Kih8ePHa9y4cZo/f76ys7O1ceNGvfDCC5o/f77H5wbA+RF2AHhk/PjxCg8PV1pamurWrauioiKtXr1axcXF6t27t1q3bq2xY8cqPj7eedunImbOnKkxY8aoQ4cOysvL08cff6zIyEhJp9sBrVy5Ut9//72uvPJKtWvXTo8++qjq1at33n1ef/31GjdunEaNGqVLL71Ua9ascfbSKjFgwABdc801uuqqq1S3bl29/fbbkqRXX31Vp06dUocOHTR27Fg98cQTbh3H448/rilTpigjI0MtW7bUNddco08++USpqakenBUA7rCZM286A0CA+fLLL3XVVVfp119/VXx8vL+LAyAIUbMDAAAsjbADAAAsjdtYAADA0qjZAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlvZ/5oPfigwJYygAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVCpJREFUeJzt3XlYVPXiP/D3sMriDLKjgeAuiXvqqLkUVzRuZVKZmamZfjPc09TK3ErIbrftppbX1PKaZlnXJVNzwRRSXHMpUkKhZJGUGZGd+fz+8Me5joDCMMuZM+/X88zzyDlnznzOmXHmfT7bUQkhBIiIiIgUysnWBSAiIiKyJIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0ikoUFCxZApVLVaVuVSoUFCxZYtDwDBgzAgAEDZLs/Iqo7hh0iMrJmzRqoVCrp4eLigmbNmmHMmDH4888/bV082QkPDzc6X4GBgbj//vvxzTffmGX/RUVFWLBgAfbv32+W/RE5IoYdIqrRokWL8Pnnn2PFihUYMmQI1q1bh/79+6OkpMQir/faa6+huLjYIvu2tM6dO+Pzzz/H559/jpkzZ+Ly5csYNmwYVqxY0eB9FxUVYeHChQw7RA3gYusCEJE8DRkyBN27dwcAPP/88/D398dbb72FLVu24MknnzT767m4uMDFxT6/kpo1a4ZnnnlG+vvZZ59Fq1at8O677+KFF16wYcmICGDNDhHV0f333w8ASE9PN1r+66+/4vHHH4evry8aNWqE7t27Y8uWLUbblJeXY+HChWjdujUaNWoEPz8/9O3bF7t375a2qanPTmlpKaZPn46AgAA0btwYjzzyCP74449qZRszZgzCw8OrLa9pn6tXr8YDDzyAwMBAuLu7IzIyEsuXL6/Xubib4OBgtG/fHhkZGXfcLi8vD+PGjUNQUBAaNWqETp06Ye3atdL6ixcvIiAgAACwcOFCqanM0v2ViJTGPi+jiMjqLl68CABo0qSJtOzs2bPo06cPmjVrhjlz5sDLywtffvklhg4diq+//hqPPfYYgJuhIyEhAc8//zx69OgBvV6Po0eP4vjx4/jb3/5W62s+//zzWLduHZ5++mn07t0be/fuRWxsbIOOY/ny5bj33nvxyCOPwMXFBVu3bsWLL74Ig8GA+Pj4Bu27Snl5ObKysuDn51frNsXFxRgwYAAuXLiASZMmISIiAps2bcKYMWNQUFCAqVOnIiAgAMuXL8fEiRPx2GOPYdiwYQCAjh07mqWcRA5DEBHdYvXq1QKA+OGHH8SVK1dEVlaW+Oqrr0RAQIBwd3cXWVlZ0rYPPvigiIqKEiUlJdIyg8EgevfuLVq3bi0t69Spk4iNjb3j686fP1/c+pV08uRJAUC8+OKLRts9/fTTAoCYP3++tGz06NGiefPmd92nEEIUFRVV2y4mJka0aNHCaFn//v1F//7971hmIYRo3ry5GDRokLhy5Yq4cuWKOHXqlHjqqacEADF58uRa9/fee+8JAGLdunXSsrKyMqHVaoW3t7fQ6/VCCCGuXLlS7XiJqH7YjEVENYqOjkZAQABCQ0Px+OOPw8vLC1u2bME999wDALh69Sr27t2LJ598EtevX0d+fj7y8/Px119/ISYmBufPn5dGb/n4+ODs2bM4f/58nV//u+++AwBMmTLFaPm0adMadFweHh7Sv3U6HfLz89G/f3/8/vvv0Ol0Ju1z165dCAgIQEBAADp16oRNmzZh1KhReOutt2p9znfffYfg4GCMGDFCWubq6oopU6agsLAQSUlJJpWFiKpjMxYR1eijjz5CmzZtoNPp8Omnn+LAgQNwd3eX1l+4cAFCCMybNw/z5s2rcR95eXlo1qwZFi1ahEcffRRt2rRBhw4dMHjwYIwaNeqOzTGXLl2Ck5MTWrZsabS8bdu2DTquQ4cOYf78+UhJSUFRUZHROp1OB41GU+999uzZE2+88QZUKhU8PT3Rvn17+Pj43PE5ly5dQuvWreHkZHzN2b59e2k9EZkHww4R1ahHjx7SaKyhQ4eib9++ePrpp5GWlgZvb28YDAYAwMyZMxETE1PjPlq1agUA6NevH9LT0/Hf//4Xu3btwr///W+8++67WLFiBZ5//vkGl7W2yQgrKyuN/k5PT8eDDz6Idu3a4Z///CdCQ0Ph5uaG7777Du+++650TPXl7++P6Ohok55LRJbHsENEd+Xs7IyEhAQMHDgQ//rXvzBnzhy0aNECwM2ml7r80Pv6+mLs2LEYO3YsCgsL0a9fPyxYsKDWsNO8eXMYDAakp6cb1eakpaVV27ZJkyYoKCiotvz22pGtW7eitLQUW7ZsQVhYmLR83759dy2/uTVv3hw///wzDAaDUe3Or7/+Kq0Hag9yRFR37LNDRHUyYMAA9OjRA++99x5KSkoQGBiIAQMG4OOPP0Z2dna17a9cuSL9+6+//jJa5+3tjVatWqG0tLTW1xsyZAgA4IMPPjBa/t5771XbtmXLltDpdPj555+lZdnZ2dVmMXZ2dgYACCGkZTqdDqtXr661HJby0EMPIScnBxs3bpSWVVRU4MMPP4S3tzf69+8PAPD09ASAGsMcEdUNa3aIqM5mzZqFJ554AmvWrMELL7yAjz76CH379kVUVBTGjx+PFi1aIDc3FykpKfjjjz9w6tQpAEBkZCQGDBiAbt26wdfXF0ePHsVXX32FSZMm1fpanTt3xogRI7Bs2TLodDr07t0be/bswYULF6pt+9RTT2H27Nl47LHHMGXKFBQVFWH58uVo06YNjh8/Lm03aNAguLm54eGHH8b//d//obCwECtXrkRgYGCNgc2SJkyYgI8//hhjxozBsWPHEB4ejq+++gqHDh3Ce++9h8aNGwO42aE6MjISGzduRJs2beDr64sOHTqgQ4cOVi0vkV2z9XAwIpKXqqHnqamp1dZVVlaKli1bipYtW4qKigohhBDp6eni2WefFcHBwcLV1VU0a9ZM/P3vfxdfffWV9Lw33nhD9OjRQ/j4+AgPDw/Rrl078eabb4qysjJpm5qGiRcXF4spU6YIPz8/4eXlJR5++GGRlZVV41DsXbt2iQ4dOgg3NzfRtm1bsW7duhr3uWXLFtGxY0fRqFEjER4eLt566y3x6aefCgAiIyND2q4+Q8/vNqy+tv3l5uaKsWPHCn9/f+Hm5iaioqLE6tWrqz03OTlZdOvWTbi5uXEYOpEJVELcUp9LREREpDDss0NERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGSQUBGAwGXL58GY0bN+bU7ERERHZCCIHr16+jadOm1W6qeyuGHQCXL19GaGiorYtBREREJsjKysI999xT63qGHUCalj0rKwtqtdrGpSEiIqK60Ov1CA0NlX7Ha8Owg//dVVitVjPsEBER2Zm7dUFhB2UiIiJSNIYdIiIiUjSGHSIiIlI09tkhIiJFq6ysRHl5ua2LQSZwdXWFs7Nzg/fDsENERIokhEBOTg4KCgpsXRRqAB8fHwQHBzdoHjyGHSIiUqSqoBMYGAhPT09OGmtnhBAoKipCXl4eACAkJMTkfTHsEBGR4lRWVkpBx8/Pz9bFIRN5eHgAAPLy8hAYGGhykxY7KBMRkeJU9dHx9PS0cUmooarew4b0u2LYISIixWLTlf0zx3vIsENERESKxrBDRETkIFQqFb799ltbF8PI/v37oVKpLDpqjmFHQbJ1xUhOz0e2rtjWRSEiIhtasGABOnfubOtiyAZHYynExtRMzN18GgYBOKmAhGFRGH5fmK2LRUREZHOs2VGAbF2xFHQAwCCAVzafYQ0PEZGdMhgMSEhIQEREBDw8PNCpUyd89dVXAP7X7LNnzx50794dnp6e6N27N9LS0gAAa9aswcKFC3Hq1CmoVCqoVCqsWbNG2nd+fj4ee+wxeHp6onXr1tiyZUudylT1ujt37kSXLl3g4eGBBx54AHl5edixYwfat28PtVqNp59+GkVFRdLzSktLMWXKFAQGBqJRo0bo27cvUlNTzXey6oBhRwEy8m9IQadKpRC4mF9U8xOIiKherN1NICEhAZ999hlWrFiBs2fPYvr06XjmmWeQlJQkbfPqq6/inXfewdGjR+Hi4oLnnnsOADB8+HC89NJLuPfee5GdnY3s7GwMHz5cet7ChQvx5JNP4ueff8ZDDz2EkSNH4urVq3Uu24IFC/Cvf/0LycnJyMrKwpNPPon33nsP69evx/bt27Fr1y58+OGH0vYvv/wyvv76a6xduxbHjx9Hq1atEBMTU6/XbCiGHQWI8PeC020j85xVKoT7c34JIqKG2piaiT6Je/H0ysPok7gXG1MzLfp6paWlWLJkCT799FPExMSgRYsWGDNmDJ555hl8/PHH0nZvvvkm+vfvj8jISMyZMwfJyckoKSmBh4cHvL294eLiguDgYAQHB0uT8wHAmDFjMGLECLRq1QpLlixBYWEhjhw5UufyvfHGG+jTpw+6dOmCcePGISkpCcuXL0eXLl1w//334/HHH8e+ffsAADdu3MDy5cvx9ttvY8iQIYiMjMTKlSvh4eGBVatWme+k3QXDjgKEaDyQMCwKzv9/LgJnlQpLhnVAiMbjLs+kmrCjNxFVsUU3gQsXLqCoqAh/+9vf4O3tLT0+++wzpKenS9t17NhR+nfVrRSqbq1wJ7c+z8vLC2q1uk7Pq+n5QUFB8PT0RIsWLYyWVe0vPT0d5eXl6NOnj7Te1dUVPXr0wC+//FLn12wom4ad8PBwqT3x1kd8fDwAoKSkBPHx8fDz84O3tzfi4uKQm5trtI/MzEzExsbC09MTgYGBmDVrFioqKmxxODY1/L4wHJwzEF+M74WDcwayc7KJrH0FR0TyZotuAoWFhQCA7du34+TJk9Lj3LlzUr8d4GZoqFI18Z7BYLjr/m99XtVz6/K82l63ofuzBpuGndTUVKk9MTs7G7t37wYAPPHEEwCA6dOnY+vWrdi0aROSkpJw+fJlDBs2THp+ZWUlYmNjUVZWhuTkZKxduxZr1qzB66+/bpPjsbUQjQe0Lf1Yo2MidvQmotvZoptAZGQk3N3dkZmZiVatWhk9QkND67QPNzc3VFZWWqyMddWyZUu4ubnh0KFD0rLy8nKkpqYiMjLSauWw6dDzgIAAo78TExPRsmVL9O/fHzqdDqtWrcL69evxwAMPAABWr16N9u3b46effkKvXr2wa9cunDt3Dj/88AOCgoLQuXNnLF68GLNnz8aCBQvg5uZmi8MiO3WnKzgGSCLHVNVN4JXNZ1AphFW6CTRu3BgzZ87E9OnTYTAY0LdvX+h0Ohw6dAhqtRrNmze/6z7Cw8ORkZGBkydP4p577kHjxo3h7u5usTLXxsvLCxMnTsSsWbPg6+uLsLAwLF26FEVFRRg3bpzVyiGbeXbKysqwbt06zJgxAyqVCseOHUN5eTmio6Olbdq1a4ewsDCkpKSgV69eSElJQVRUFIKCgqRtYmJiMHHiRJw9exZdunSp8bVKS0tRWloq/a3X6y13YGQ3qq7gbg087OhNRMPvC0O/NgG4mF+EcH9Pq1z8LF68GAEBAUhISMDvv/8OHx8fdO3aFa+88kqdmoji4uKwefNmDBw4EAUFBVi9ejXGjBlj8XLXJDExEQaDAaNGjcL169fRvXt37Ny5E02aNLFaGVRCCHH3zSzvyy+/xNNPP43MzEw0bdoU69evx9ixY41CCQD06NEDAwcOxFtvvYUJEybg0qVL2Llzp7S+qKgIXl5e+O677zBkyJAaX2vBggVYuHBhteU6nQ5qtdq8B0Z2ZWNqZrUrOPZ/IrI/JSUlyMjIQEREBBo1amTr4lAD3Om91Ov10Gg0d/39lk3NzqpVqzBkyBA0bdrU4q81d+5czJgxQ/pbr9fXuR2UlM0WV3BERGRZshh6funSJfzwww94/vnnpWXBwcEoKyurdmOw3NxcBAcHS9vcPjqr6u+qbWri7u4OtVpt9CCqwo7eROSIXnjhBaOh7rc+XnjhBVsXr0FkUbOzevVqBAYGIjY2VlrWrVs3uLq6Ys+ePYiLiwMApKWlITMzE1qtFgCg1Wrx5ptvIi8vD4GBgQCA3bt3Q61WW7WXNxERkb1btGgRZs6cWeM6e68UsHnYMRgMWL16NUaPHg0Xl/8VR6PRYNy4cZgxYwZ8fX2hVqsxefJkaLVa9OrVCwAwaNAgREZGYtSoUVi6dClycnLw2muvIT4+3ia9zomIiOxVYGCgVHGgNDYPOz/88AMyMzOle3rc6t1334WTkxPi4uJQWlqKmJgYLFu2TFrv7OyMbdu2YeLEidBqtfDy8sLo0aOxaNEiax4CERERyZhsRmPZUl17cxMRkX2oGsHTvHlzeHpy+gh7VlRUhEuXLiljNBYREZG5uLm5wcnJCZcvX0ZAQADc3NykWyqQfRBCoKysDFeuXIGTk1ODJgpm2CEiIsVxcnJCREQEsrOzcfnyZVsXhxrA09MTYWFhcHIyfQA5ww4RESmSm5sbwsLCUFFRIYv7RFH9OTs7w8XFpcG1cgw7RESkWFV35b79ztzkWGQxqSARERGRpTDsEBERkaIx7BAREZGiMexYULauGMnp+cjWFdu6KERERA6LHZQtZGNqJuZuPg2DAJxUQMKwKAy/L8zWxSIiInI4rNmxgGxdsRR0AMAggFc2n2ENDxERkQ0w7FhARv4NKehUqRQCF/OLbFMgIiIiB8awYwER/l5wum3+I2eVCuH+vD8LERGRtTHsWECIxgMJw6Lg/P9nfHRWqbBkWAeEaDxsXDIiIiLHww7KFjL8vjD0axOAi/lFCPf3ZNAhIiKyEYYdCwrReDDkEBER2RibsYiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNFsHnb+/PNPPPPMM/Dz84OHhweioqJw9OhRab0QAq+//jpCQkLg4eGB6OhonD9/3mgfV69exciRI6FWq+Hj44Nx48ahsLDQ2odCREREMmTTsHPt2jX06dMHrq6u2LFjB86dO4d33nkHTZo0kbZZunQpPvjgA6xYsQKHDx+Gl5cXYmJiUFJSIm0zcuRInD17Frt378a2bdtw4MABTJgwwRaHRERERDKjEkIIW734nDlzcOjQIfz44481rhdCoGnTpnjppZcwc+ZMAIBOp0NQUBDWrFmDp556Cr/88gsiIyORmpqK7t27AwC+//57PPTQQ/jjjz/QtGnTu5ZDr9dDo9FAp9NBrVab7wCJiIjIYur6+23Tmp0tW7age/fueOKJJxAYGIguXbpg5cqV0vqMjAzk5OQgOjpaWqbRaNCzZ0+kpKQAAFJSUuDj4yMFHQCIjo6Gk5MTDh8+XOPrlpaWQq/XGz2IiIhImWwadn7//XcsX74crVu3xs6dOzFx4kRMmTIFa9euBQDk5OQAAIKCgoyeFxQUJK3LyclBYGCg0XoXFxf4+vpK29wuISEBGo1GeoSGhpr70IiIiEgmbBp2DAYDunbtiiVLlqBLly6YMGECxo8fjxUrVlj0defOnQudTic9srKyLPp6REREZDs2DTshISGIjIw0Wta+fXtkZmYCAIKDgwEAubm5Rtvk5uZK64KDg5GXl2e0vqKiAlevXpW2uZ27uzvUarXRg4iIiJTJpmGnT58+SEtLM1r222+/oXnz5gCAiIgIBAcHY8+ePdJ6vV6Pw4cPQ6vVAgC0Wi0KCgpw7NgxaZu9e/fCYDCgZ8+eVjgKIiIikjMXW7749OnT0bt3byxZsgRPPvkkjhw5gk8++QSffPIJAEClUmHatGl444030Lp1a0RERGDevHlo2rQphg4dCuBmTdDgwYOl5q/y8nJMmjQJTz31VJ1GYhEREZGy2XToOQBs27YNc+fOxfnz5xEREYEZM2Zg/Pjx0nohBObPn49PPvkEBQUF6Nu3L5YtW4Y2bdpI21y9ehWTJk3C1q1b4eTkhLi4OHzwwQfw9vauUxk49JyIiMj+1PX32+ZhRw4YdoiIiOyPXcyzQ0RERGRpDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7VKNsXTGS0/ORrSu2dVGIiIgaxMXWBSD52ZiaibmbT8MgACcVkDAsCsPvC7N1sYiIiEzCmh0ykq0rloIOABgE8MrmM6zhISIiu8WwQ0Yy8m9IQadKpRC4mF9kmwIRERE1EMMOGYnw94KTyniZs0qFcH9P2xSIiIiogRh2yEiIxgMJw6LgrLqZeJxVKiwZ1gEhGg8bl4yIiMg07KBM1Qy/Lwz92gTgYn4Rwv09GXSIiMiuMexQjUI0Hgw5RESkCGzGIiIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFs2nYWbBgAVQqldGjXbt20vqSkhLEx8fDz88P3t7eiIuLQ25urtE+MjMzERsbC09PTwQGBmLWrFmoqKiw9qEQERGRTNn8RqD33nsvfvjhB+lvF5f/FWn69OnYvn07Nm3aBI1Gg0mTJmHYsGE4dOgQAKCyshKxsbEIDg5GcnIysrOz8eyzz8LV1RVLliyx+rEQERGR/Ng87Li4uCA4OLjacp1Oh1WrVmH9+vV44IEHAACrV69G+/bt8dNPP6FXr17YtWsXzp07hx9++AFBQUHo3LkzFi9ejNmzZ2PBggVwc3Oz9uEQERGRzNi8z8758+fRtGlTtGjRAiNHjkRmZiYA4NixYygvL0d0dLS0bbt27RAWFoaUlBQAQEpKCqKiohAUFCRtExMTA71ej7Nnz9b6mqWlpdDr9UYPIiIiUiabhp2ePXtizZo1+P7777F8+XJkZGTg/vvvx/Xr15GTkwM3Nzf4+PgYPScoKAg5OTkAgJycHKOgU7W+al1tEhISoNFopEdoaKh5D4yIiIhkw6bNWEOGDJH+3bFjR/Ts2RPNmzfHl19+CQ8PD4u97ty5czFjxgzpb71ez8BDRESkUDZvxrqVj48P2rRpgwsXLiA4OBhlZWUoKCgw2iY3N1fq4xMcHFxtdFbV3zX1A6ri7u4OtVpt9CAiIiJlklXYKSwsRHp6OkJCQtCtWze4urpiz5490vq0tDRkZmZCq9UCALRaLU6fPo28vDxpm927d0OtViMyMtLq5SciIiL5sWkz1syZM/Hwww+jefPmuHz5MubPnw9nZ2eMGDECGo0G48aNw4wZM+Dr6wu1Wo3JkydDq9WiV69eAIBBgwYhMjISo0aNwtKlS5GTk4PXXnsN8fHxcHd3t+WhERERkUzYNOz88ccfGDFiBP766y8EBASgb9+++OmnnxAQEAAAePfdd+Hk5IS4uDiUlpYiJiYGy5Ytk57v7OyMbdu2YeLEidBqtfDy8sLo0aOxaNEiWx0SERERyYxKCCFsXQhb0+v10Gg00Ol07L9DRERkJ+r6+y2rPjtERERE5sawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREFpGtK0Zyej6ydcU2LYeLTV+diIiIFGljaibmbj4NgwCcVEDCsCgMvy/MJmVhzQ4RERGZVbauWAo6AGAQwCubz9ishodhh4iIiMwqI/+GFHSqVAqBi/lFNikPww4RERGZVYS/F5xUxsucVSqE+3vapDwMOzIglw5cRERE5hCi8UDCsCg4q24mHmeVCkuGdUCIxsMm5WEHZRuTUwcuIiIicxl+Xxj6tQnAxfwihPt72izoAKzZsSm5deAiIiIypxCNB7Qt/WwadACGHZuSWwcuIiIiJWLYsSG5deAiIiJSIoYdG5JbBy4iIiIlYgdlG5NTBy4iIiIlYtiRgRCNB0MOERGRhbAZi+6K8wAREZE9Y80O3RHnASIiIntX57Cj1+vrvFO1Wm1SYUheapsHqF+bADa7ERGR3ahz2PHx8YFKpbrjNkIIqFQqVFZWNrhgZHt3mgeIYYeIiOxFncPOvn37LFkOkqGqeYBuDTycB4iIiOxNncNO//79LVkOkqGqeYBe2XwGlUJwHiAiIrJLJndQLigowKpVq/DLL78AAO69914899xz0Gg0Zisc2R7nASIiInunEkKIu29m7OjRo4iJiYGHhwd69OgBAEhNTUVxcTF27dqFrl27mr2glqTX66HRaKDT6di5ug6ydcXIyL+BCH8vhh8iIrKZuv5+mzTPzvTp0/HII4/g4sWL2Lx5MzZv3oyMjAz8/e9/x7Rp00wtMxITE6FSqYz2UVJSgvj4ePj5+cHb2xtxcXHIzc01el5mZiZiY2Ph6emJwMBAzJo1CxUVFSaXg2q3MTUTfRL34umVh9EncS82pmbaukhERER3ZFLYOXr0KGbPng0Xl/+1grm4uODll1/G0aNHTSpIamoqPv74Y3Ts2NFo+fTp07F161Zs2rQJSUlJuHz5MoYNGyatr6ysRGxsLMrKypCcnIy1a9dizZo1eP31100qB9WutqHonGyQiIjkzKSwo1arkZlZ/Yo+KysLjRs3rvf+CgsLMXLkSKxcuRJNmjSRlut0OqxatQr//Oc/8cADD6Bbt25YvXo1kpOT8dNPPwEAdu3ahXPnzmHdunXo3LkzhgwZgsWLF+Ojjz5CWVmZKYdHtbjTUHQiIiK5MinsDB8+HOPGjcPGjRuRlZWFrKwsbNiwAc8//zxGjBhR7/3Fx8cjNjYW0dHRRsuPHTuG8vJyo+Xt2rVDWFgYUlJSAAApKSmIiopCUFCQtE1MTAz0ej3Onj1b4+uVlpZCr9cbPazNHm/BUDUU/VYcik5ERHJn0misf/zjH1CpVHj22WelvjGurq6YOHEiEhMT67WvDRs24Pjx40hNTa22LicnB25ubvDx8TFaHhQUhJycHGmbW4NO1fqqdTVJSEjAwoUL61VOc7LXWzBwKDoREdkjk8KOm5sb3n//fSQkJCA9PR0A0LJlS3h61u8KPysrC1OnTsXu3bvRqFEjU4pikrlz52LGjBnS33q9HqGhoVZ5bXu/BQOHohMRkb1p0I1APT09ERUVZfLzjx07hry8PKOh6pWVlThw4AD+9a9/YefOnSgrK0NBQYFR7U5ubi6Cg4MBAMHBwThy5IjRfqtGa1Vtczt3d3e4u7ubXO6GUMItGEI0HnZTViIiIpPCTklJCT788EPs27cPeXl5MBgMRuuPHz9ep/08+OCDOH36tNGysWPHol27dpg9ezZCQ0Ph6uqKPXv2IC4uDgCQlpaGzMxMaLVaAIBWq8Wbb76JvLw8BAYGAgB2794NtVqNyMhIUw7PongLBiIiIusyKeyMGzcOu3btwuOPP44ePXrc9QahtWncuDE6dOhgtMzLywt+fn7S8nHjxmHGjBnw9fWFWq3G5MmTodVq0atXLwDAoEGDEBkZiVGjRmHp0qXIycnBa6+9hvj4eJvV3twJ+70QERFZl0lhZ9u2bfjuu+/Qp08fc5enmnfffRdOTk6Ii4tDaWkpYmJisGzZMmm9s7Mztm3bhokTJ0Kr1cLLywujR4/GokWLLF42U7HfCxERkfWYdLuIyMhIbNiwodoEgPaKt4sgIiKyPxa9XcQ777yD2bNn49KlSyYXkIiIiMgaTGrG6t69O0pKStCiRQt4enrC1dXVaP3Vq1fNUjgiIiKihjIp7IwYMQJ//vknlixZgqCgIJM7KBMRERFZmklhJzk5GSkpKejUqZO5y0NERERkVib12WnXrh2Ki+3nnk5ERETkuEwKO4mJiXjppZewf/9+/PXXXza/qSYRERFRbUwaeu7kdDMj3d5XRwgBlUqFyspK85TOSjj0nIiIyP7U9ffbpD47+/btM7lgRERERNZkUtjp379/nbZ78cUXsWjRIvj7+5vyMkREREQNZlKfnbpat24d+/AQERGRTVk07JjQHYiIiIjIrCwadoiIiIhsjWGHiIiIFI1hh4iIiBSNYYeIiIgUzaJh55lnnuEkfURERGRTJs2zAwAFBQU4cuQI8vLyYDAYjNY9++yzAIDly5c3rHREREREDWRS2Nm6dStGjhyJwsJCqNVqo9tGqFQqKewQERER2ZpJzVgvvfQSnnvuORQWFqKgoADXrl2THlevXjV3GYmIiIhMZlLY+fPPPzFlyhR4enqauzxEREREZmVS2ImJicHRo0fNXRYiIiIis6tzn50tW7ZI/46NjcWsWbNw7tw5REVFwdXV1WjbRx55xHwlJCIiImoAlajjDaycnOpWCaRSqVBZWdmgQlmbXq+HRqOBTqfjUHkiIiI7Udff7zrX7Nw+vJyIiIjIHpjUZ+ezzz5DaWlpteVlZWX47LPPGlwoIiIiInOpczPWrZydnZGdnY3AwECj5X/99RcCAwPZjEVEREQWV9ffb5NqdoQQRhMJVvnjjz+g0WhM2SURERGRRdRrBuUuXbpApVJBpVLhwQcfhIvL/55eWVmJjIwMDB482OyFJCIiIjJVvcLO0KFDAQAnT55ETEwMvL29pXVubm4IDw9HXFycWQtIRERE1BD1Cjvz588HAISHh2P48OFo1KiRRQpFREREZC4m3Qh09OjRAG6OvqrprudhYWENLxkRERGRGZgUds6fP4/nnnsOycnJRsurOi7b22gsIiIiUi6Tws6YMWPg4uKCbdu2ISQkpMaRWURERERyYFLYOXnyJI4dO4Z27dqZuzxEREREZmXSPDuRkZHIz883d1mIiIiIzM6ksPPWW2/h5Zdfxv79+/HXX39Br9cbPYiIiIjkwqSwEx0djZ9++gkPPPAAAgMD0aRJEzRp0gQ+Pj5o0qRJnfezfPlydOzYEWq1Gmq1GlqtFjt27JDWl5SUID4+Hn5+fvD29kZcXBxyc3ON9pGZmYnY2Fh4enoiMDAQs2bNQkVFhSmHRURERApkUp+dffv2meXF77nnHiQmJqJ169YQQmDt2rV49NFHceLECdx7772YPn06tm/fjk2bNkGj0WDSpEkYNmwYDh06BODmrM2xsbEIDg5GcnIysrOz8eyzz8LV1RVLliwxSxmJiIjIvpl0I1AA+PHHH/Hxxx8jPT0dX331FZo1a4bPP/8cERER6Nu3r8kF8vX1xdtvv43HH38cAQEBWL9+PR5//HEAwK+//or27dsjJSUFvXr1wo4dO/D3v/8dly9fRlBQEABgxYoVmD17Nq5cuQI3N7c6vSZvBEpERGR/LHoj0K+//hoxMTHw8PDAiRMnUFpaCgDQ6XQm16hUVlZiw4YNuHHjBrRaLY4dO4by8nJER0dL27Rr1w5hYWFISUkBAKSkpCAqKkoKOgAQExMDvV6Ps2fP1vpapaWl7GdERETkIEwKO2+88QZWrFiBlStXwtXVVVrep08fHD9+vF77On36NLy9veHu7o4XXngB33zzDSIjI5GTkwM3Nzf4+PgYbR8UFIScnBwAQE5OjlHQqVpfta42CQkJ0Gg00iM0NLReZSYiIiL7YVLYSUtLQ79+/aot12g0KCgoqNe+2rZti5MnT+Lw4cOYOHEiRo8ejXPnzplSrDqbO3cudDqd9MjKyrLo6xEREZHtmNRBOTg4GBcuXEB4eLjR8oMHD6JFixb12pebmxtatWoFAOjWrRtSU1Px/vvvY/jw4SgrK0NBQYFR7U5ubi6Cg4Olchw5csRof1Wjtaq2qYm7uzvc3d3rVU4iIiKyTybV7IwfPx5Tp07F4cOHoVKpcPnyZfznP//BzJkzMXHixAYVyGAwoLS0FN26dYOrqyv27NkjrUtLS0NmZia0Wi0AQKvV4vTp08jLy5O22b17N9RqNSIjIxtUDiIiIlIGk2p25syZA4PBgAcffBBFRUXo168f3N3dMXPmTEyePLnO+5k7dy6GDBmCsLAwXL9+HevXr8f+/fuxc+dOaDQajBs3DjNmzICvry/UajUmT54MrVaLXr16AQAGDRqEyMhIjBo1CkuXLkVOTg5ee+01xMfHs+aGiIiIADRg6DkAlJWV4cKFCygsLERkZCS8vb3r9fxx48Zhz549yM7OhkajQceOHTF79mz87W9/A3BzUsGXXnoJX3zxBUpLSxETE4Nly5YZNVFdunQJEydOxP79++Hl5YXRo0cjMTERLi51z3GOOPQ8W1eMjPwbiPD3QojGw9bFISIiqre6/n43KOwohaOFnY2pmZi7+TQMAnBSAQnDojD8vjBbF4uIiKheLDrPDtmvbF2xFHQAwCCAVzafQbau2LYFIyIishCGHQeTkX9DCjpVKoXAxfwi2xSIiIjIwhh2HEyEvxecVMbLnFUqhPt72qZAREREFsaw42BCNB5IGBYFZ9XNxOOsUmHJsA7spExERIpl0tBzsm/D7wtDvzYBuJhfhHB/TwYdIiJSNIYdBxWi8WDIISIih8BmLCIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHSIiIlI0hh0iIiJSNIYdIiIiUjSGHXIo2bpiJKfnI1tXbOuiEBGRlbjYugBE1rIxNRNzN5+GQQBOKiBhWBSG3xdm62IREZGFsWaHHEK2rlgKOgBgEMArm8+whoeIyAEw7JBDyMi/IQWdKpVC4GJ+kW0KREREVsOwI0PsV2J+Ef5ecFIZL3NWqRDu72mbAhERkdUw7MjMxtRM9Enci6dXHkafxL3YmJpp6yIpQojGAwnDouCsupl4nFUqLBnWASEaDxuXjIiILE0lhBB330zZ9Ho9NBoNdDod1Gq1zcqRrStGn8S9Rs0tzioVDs4ZyB9lM8nWFeNifhHC/T15TomI7Fxdf785GktG7tSvhD/M5hGi8eC5JCJyMGzGkhH2KyEiIjI/hh0ZYb8SIiJSCjkNtmEzlswMvy8M/doEsF8JERHZLblN4sqaHRkK0XhA29LP7oKOnFI8ERHZhhwncbVp2ElISMB9992Hxo0bIzAwEEOHDkVaWprRNiUlJYiPj4efnx+8vb0RFxeH3Nxco20yMzMRGxsLT09PBAYGYtasWaioqLDmoTg8DpknIiJAnpO42jTsJCUlIT4+Hj/99BN2796N8vJyDBo0CDdu3JC2mT59OrZu3YpNmzYhKSkJly9fxrBhw6T1lZWViI2NRVlZGZKTk7F27VqsWbMGr7/+ui0OySHJMcUTEZFtyHGwjazm2bly5QoCAwORlJSEfv36QafTISAgAOvXr8fjjz8OAPj111/Rvn17pKSkoFevXtixYwf+/ve/4/LlywgKCgIArFixArNnz8aVK1fg5uZ219eVyzw75nIq6xqOXLyKHuG+6BTaxOKvl5yej6dXHq62/IvxvaBt6Wfx1yciInnZmJqJVzafQaUQ0mAbS/TZsct5dnQ6HQDA19cXAHDs2DGUl5cjOjpa2qZdu3YICwuTwk5KSgqioqKkoAMAMTExmDhxIs6ePYsuXbpUe53S0lKUlpZKf+v1eksdktW99OVJfH38T+nvuK7N8M6TnS36mlUp/vbJEDlknojIMcltsI1sOigbDAZMmzYNffr0QYcOHQAAOTk5cHNzg4+Pj9G2QUFByMnJkba5NehUra9aV5OEhARoNBrpERoaauajsY1TWdeMgg4AfH38T5zKumbR1+WQeSIiup2cBtvIpmYnPj4eZ86cwcGDBy3+WnPnzsWMGTOkv/V6vdUDT7auGBn5NxDh72W2D8KRi1drXH704jWLN2fJLcUTERFVkUXYmTRpErZt24YDBw7gnnvukZYHBwejrKwMBQUFRrU7ubm5CA4OlrY5cuSI0f6qRmtVbXM7d3d3uLu7m/ko6s5S8w/0CPetcXn3cMv32wF4KwYiIpInmzZjCSEwadIkfPPNN9i7dy8iIiKM1nfr1g2urq7Ys2ePtCwtLQ2ZmZnQarUAAK1Wi9OnTyMvL0/aZvfu3VCr1YiMjLTOgdSDJUcudQptgriuzYyWxXVtZpVOykRERHJl05qd+Ph4rF+/Hv/973/RuHFjqY+NRqOBh4cHNBoNxo0bhxkzZsDX1xdqtRqTJ0+GVqtFr169AACDBg1CZGQkRo0ahaVLlyInJwevvfYa4uPjbVp7UxtL3+zznSc741ltcxy9eA3dw5sw6BARkcOzadhZvnw5AGDAgAFGy1evXo0xY8YAAN599104OTkhLi4OpaWliImJwbJly6RtnZ2dsW3bNkycOBFarRZeXl4YPXo0Fi1aZK3DqBdrjFzqFMqQQ0REVEVW8+zYirXn2bHW/ANERERKZpfz7DgKjlwiIiKyHoYdG+HIJSIiIuuQzaSCZDm8GzkRETky1uwonKXm9CEiIrIXrNlRMN6NnIiIiGFH0e40pw8REZGjYNhRsKo5fW7Fu5ETEZGjYdhRMN6NnIiIiB2UFY9z+hARkaNj2HEAnNOHiIgcGZuxiGSAcyEREVkOa3aIbIxzIRERWRZrdohsiHMhERFZHsMOkQ3Z21xIbG4jInvEZiwiG6qaC+nWwCPXuZDY3EZE9oo1O0Q2ZC9zIbG5jYjsGWt2yKKydcXIyL+BCH8v2f2Ay4U9zIV0p+Y2OZaXiOhWDDtkMWz2qDu5z4VkT81tRA3FizTlYTMWWQSbPZTFXprbyDaU1HF9Y2om+iTuxdMrD6NP4l5sTM2s83OVdB6UhjU7ZBFs9lCeW5vbPN2ccKOsEtm6Yr6fCne3Wg4l1eDWdpHWr03AXT/nSjoPSsSwQxbBZg9lCtF44MBvV/il7iDu9gPekHAgR6ZepNn7eXCEZjs2Y5FFsNlDmdg86ThOZV3DnLu81/Y2T9TdVF2k3aouF2n2fB4a0mxnT1izQxZjD6OMlM7cV2xsnnQMG1MzMefr07jtra72XtuyBtcStRFVF2mvbD6DSiHqfJFW1/MghxqUW8sAwK5rpOqDYccBWfM/nNxHGSmZJfoQsHlS+apq724POkD199rUcNBQluwfY8pFWl3Ogy369Nz+XX97GZ7vG+EwFy8qIURNn2mHotfrodFooNPpoFarbV0ci2InOseQrStGn8S91ULJwTkDG/wltjE1s9qXOj9DypGcno+nVx6utvxO3xfZumKr1eBa8rPdULWdB1uU+fbv+tmD2+Gt7381KoMTANRw8SKHc1lXdf39Zs2OA7H3TnRUd5ZsbmLzpHJl64px9UYZVIBRzY4TgG9e7I1OoU1qfJ41a3Dl3JRa23mwdplr+q5/a8evMNy2nQHAhL4tsOpghlVr5myBYceByPlLgszL0s1NbJ5UnltrAlSAFHiqfgBrCzrWZo9NqdYuc03f9QYAKhUgbivD2L7hGNs3XPEXLxyN5UBMHWlA9qWqnX72kHYcDUd1cntNgMDNH8Z/jeiCg3MGyqqZ0h5Helq7zLV918+p5TshROMBbUs/WZ/DhmLNjgOxVWdCsp7b2+mH3xeKvq380bV5E77PVKsaawIE4OftLsvPjT02pVqzzAd+u2JUg6NSQepb90inpnZ13syFYcfBWPM/nByGWTqSmtrpvziShQ1HspAYd7NjKd8Tqok9Ng3ZY1OqNcpc02g6lQD6tQmwWhnkiGHHAVnjw85RX9ZX09U5cLNJ4pXNZ1BQXH6zkyLfE7oNa31rZ28XCLX113H0vpkMO2R2HPVlG15uzrWuqxQCiTt+laq2+Z7Q7eyxacjS7PGizR5r6ayBHZTJ7Mw5dTrvIlx3N8oqa13nBONRGID9TGdP5nO3/0+O0FG1ruz11ij22IHbGlizQ2ZnrisLe7yqsqWazjtwM+jMHlJ9QjFe7TkWOf5/knMTkT1P1cFauupYs0NmZ44rC3u9qrKl28+7kwqYcH8LHJr7AP6vf0te7TkwOf5/kvsNKO19qg7W0hljzQ5ZREOvLOz5qsqW7nTeebXnuOT2/8ke+vWx07ay2LRm58CBA3j44YfRtGlTqFQqfPvtt0brhRB4/fXXERISAg8PD0RHR+P8+fNG21y9ehUjR46EWq2Gj48Pxo0bh8LCQiseBdWmIVcW9n5VZUt3Ou+82nNMcvv/1JB+fdbsxzf8vjAcnDMQX4zvJbvJFal+bBp2bty4gU6dOuGjjz6qcf3SpUvxwQcfYMWKFTh8+DC8vLwQExODkpISaZuRI0fi7Nmz2L17N7Zt24YDBw5gwoQJ1joEshB2siMyn6r/T1WBx+n/TzJnq/9PpoYvWzR98QJBGWzajDVkyBAMGTKkxnVCCLz33nt47bXX8OijjwIAPvvsMwQFBeHbb7/FU089hV9++QXff/89UlNT0b17dwDAhx9+iIceegj/+Mc/0LRpU6sdC5kfm12IzKtqRN7tI/OszZQmInto+iL5km2fnYyMDOTk5CA6OlpaptFo0LNnT6SkpOCpp55CSkoKfHx8pKADANHR0XBycsLhw4fx2GOP1bjv0tJSlJaWSn/r9XrLHQg1iKPO9kl1J+cRPXJx+6y6VRNN2jIo1PdipiH9jvgZIdmGnZycHABAUFCQ0fKgoCBpXU5ODgIDA43Wu7i4wNfXV9qmJgkJCVi4cKGZS0xE1ibH4dRyJLcOylXqczFj6pQW/IwQ4KBDz+fOnQudTic9srKybF0kIqonOQ6nliu5dVA2hSn9+PgZoSqyrdkJDg4GAOTm5iIkJERanpubi86dO0vb5OXlGT2voqICV69elZ5fE3d3d7i7u5u/0ERkNXKtrZAjpQyjNlfT1/FL19DEi81ajkS2YSciIgLBwcHYs2ePFG70ej0OHz6MiRMnAgC0Wi0KCgpw7NgxdOvWDQCwd+9eGAwG9OzZ01ZFJ1IcOfZ5sMd7ANnyPCqlw39Dm75UKmDS+hMQYLOWI7Fp2CksLMSFCxekvzMyMnDy5En4+voiLCwM06ZNwxtvvIHWrVsjIiIC8+bNQ9OmTTF06FAAQPv27TF48GCMHz8eK1asQHl5OSZNmoSnnnqKI7GIzESufR7srbZCDufR0Tr83/4ZcVLdHIlWlX04ostxqISw3SDE/fv3Y+DAgdWWjx49GmvWrIEQAvPnz8cnn3yCgoIC9O3bF8uWLUObNm2kba9evYpJkyZh69atcHJyQlxcHD744AN4e3vXuRx6vR4ajQY6nQ5qtdosx2YJcry6JmXL1hWjT+LearUnB+cMlM1nMFtXLPvaCns4j0pW9RnJLyzB5C9OVlv/xfhe0Lb0s37BGoi/CXX//bZpzc6AAQNwp6ylUqmwaNEiLFq0qNZtfH19sX79eksUT1bkcFVIjsce+sXYQ22FPZxHJav6jGTriu2u6bMm2bpifHowA6sOZvA3oY4ccjSWveGIAvOw5jTzSqGEUTxywPMoD0qYmX1jaiZ6J+zFyh8z+JtQD7LtoEz/w6vCO6tLVa4Sa8asUYVtb/1i5IrnUT7suaP27ZND3oq/CXfGsGMH7HHUibXUJcQoYZr524ONNcObPf84yAnPo3zYQ9NnTWq68K3C34Q7Y9ixA7wqrFldQ4y914zdHmxmD26Ht77/1arhzV5/HOSG51GZrNVRuKYLX8D2N3a1Bww7doJXhdXVNcTYc81YTYHurR2/wnDbdvYU3siyOELHuhpSy1rf96raUHoAz/eLwNg+EXyv74Jhx47wqtBYXUOMPdeM1RToDLg5MZqww/BGlqXEvmlyZmoTeUNGU/HC1zQMO2Q3br8Kqk+IsdcviNoC3ctD2mLpjjS7C29kOUrom2ZvTGki35iaiTlfG3cyru97xQvf+mPYIbtQ2xVrfUKMPX5B1Bboht8Xhkc6NbW78EaWY+990+xRXWqXb71IA8DRVDbCsEOyd7crVnsMMfVRW6BT+nGbgyP1X7Hnvmn26m61y7dfpI3rG8HRVDbCsEOyxytW2wQbew8KjtZ/xZ77ptmz2i5GarpIW3UwAyqgWs0OR1NZHsMOyR6vWK3P3oOCHPqv2CIs2mvfNHtX08VIjYMLBDChXwRW/XiRo6msjGGHZI9XrNYlh6DQULauDTQ1LJojILF5Ux5qu0gb2+dmuGEgtS6GHbILvGK1HlsHBXOwZW2gqWHR3mvTyNjdLtLs5f+SUjDskN2Q0xWrvfdnuRMlNBvasjbQlLCohNo0qo4XafLBsENUT0q/AldKs6G1fmhuD76mhEUl1KZRzeR0kebIGHaI6sFRrsCVckVq6R+a2oJvfcOiEmrTiOSMYYcUwxpNS450Ba70K9KGfl7uFHzrGxaVUptmD5TcBE21Y9ghRbBW01KEv1e1eTJ4BW5/zPF5uVvwrW9YVEptmpzZexO03IOanMvHsEN2z5pNSwd+u2L0twqcDMzemOvzYommJ6XXptmSvTdByz2oyb18TrYuAFFD3ekK25yqvixvfSmVCujXJsCsr0OWdbfPS7auGMnp+cjWFd9xP1VNT84qFQCw6UnmrPU9YQm1BbW7fUatRe7lA1izQwpgrc6dtc2IqsT+Okp2p89Lfa9O2fRkP+y5E7jc+wrKvXwAa3ZIAax1hV31ZXkre/mypP+p7fMCoNrV6dzNp+tUw6Nt6SebL3WqmT3XxMn9u0fu5QMAlRCilnuwOg69Xg+NRgOdTge1Wm3r4pCJsnXFFr/C3piaWW3EjJzapanubv+8JKfn4+mVh6ttN6FfBF55KNIGJSRLsPT3hKU66cr9u8dW5avr7zfDDhh2qH6sEaosQc4jJeQgW1eMPol7q1XHOwE4NPcBWZwzvofyZul7osn9u8cW5avr7zf77BDVU00jZuT+IyT3kRJyEKLxwLi+EVj5Y4bRcgPk0S+L76G8WeOeaHIfrSfn8rHPDlEDbUzNRJ/EvXh65WH0SdyLjamZ0rq6juyxJHsYKSEX/t7u1ZZZuu9BXT4jfA/lz5TRXnxfrYc1O0QNcKeruQO/XZHFlbg9jJSQg2xdMd76/tdqy18e0taifcDq8hnheyhfVbW6Xm7OvCeajDHskMNrSBNUbV9Wxy9dk80EZvY85NaaanovAaBjMx+LvF59mj34HsrT7WH1sS7N8O2Jy7wnmgyxGYssTg5NObW5UxNUXdQ25NIghGwmMLPnIbfWZO3hs/Vp9uB7KD81hdVvT1zG5he1+GJ8LxycM/CuNbl8X62HNTtkUXLuVGmO6eNru4Fj93BfWV2xcfK7u7P2zTjre1XP91BeagurRWUGaFv61Xk/fF+tg2GHLEYO96K5UxOVudrLa/uyqu2H01Yjt+Q8UkIurPnDY0q44nsoH+ZsguL7ankMO2Qxtu58d7daJUt/WdX0wynnmi66yZo/PLyqt2/P943Av3/MgAFsgpI7hh2yGFt2vqtLrZI1mi1u/eGUQ00XyQ+v6u3P7RctE/q2wNi+4Ubvo9zn3nI0DDtkMdbuA3GrutYqWfPK2tY1XUTUcDVdtKw6mIGxfcOlbViDKz8MO2RRtqqmr0+tkrWurDnMtDpe/RqT4/mQY5ls6W4XLazBlSeGHbI4W1TT27JWyZ7KZEu8+jUmx/MhxzLZ2t0uWuytBtdRwqxibgT60Ucf4e2330ZOTg46deqEDz/8ED169KjTc3kjUOWS443z5Fgma6vpppvOKhUOzhnokOdEjudDjmWSizvd4duezpu1wqwlA5VD3Qh048aNmDFjBlasWIGePXvivffeQ0xMDNLS0hAYGGjr4pENybHzpxzLZG22vPqV45WsHGsD5FgmubhT87y91OBaq7lNLrWDigg7//znPzF+/HiMHTsWALBixQps374dn376KebMmWPj0hHR7WzVf0kuX7y3k2N/LjmWSU7udNFiD1MKWCPMyqn/kt3fLqKsrAzHjh1DdHS0tMzJyQnR0dFISUmp8TmlpaXQ6/VGDyKyHltMky/nO0zL8bYBciyTPQnReEDb0k+258sat0cx5U7wlmL3NTv5+fmorKxEUFCQ0fKgoCD8+mv1OxgDQEJCAhYuXGiN4hFRLax99Sv3Zhk51gbIsUxkHtZobpNT7aDdhx1TzJ07FzNmzJD+1uv1CA0NtWGJiByTNfsvyemLtzZy7M8lxzKReVg6zMqp/5Ldhx1/f384OzsjNzfXaHlubi6Cg4NrfI67uzvc3d2tUTwikgk5ffESyYWlw6xcagftPuy4ubmhW7du2LNnD4YOHQoAMBgM2LNnDyZNmmTbwhGRrMjli5fIkcihdtDuww4AzJgxA6NHj0b37t3Ro0cPvPfee7hx44Y0OouIqIocvniJyLoUEXaGDx+OK1eu4PXXX0dOTg46d+6M77//vlqnZSIiInI8iplBuSE4gzIREZH9qevvt93Ps0NERER0Jww7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoirhdRENVTSKt1+ttXBIiIiKqq6rf7bvdDIJhB8D169cBAKGhoTYuCREREdXX9evXodFoal3Pe2MBMBgMuHz5Mho3bgyVSlXn5+n1eoSGhiIrK8uh76nF83ATz8NNPA838Tz8D8/FTTwPN5nzPAghcP36dTRt2hROTrX3zGHNDgAnJyfcc889Jj9frVY79Ae3Cs/DTTwPN/E83MTz8D88FzfxPNxkrvNwpxqdKuygTERERIrGsENERESKxrDTAO7u7pg/fz7c3d1tXRSb4nm4iefhJp6Hm3ge/ofn4iaeh5tscR7YQZmIiIgUjTU7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO7dZvnw5OnbsKE12pNVqsWPHDml9SUkJ4uPj4efnB29vb8TFxSE3N9doH5mZmYiNjYWnpycCAwMxa9YsVFRUWPtQzCoxMREqlQrTpk2TljnCuViwYAFUKpXRo127dtJ6RzgHVf78808888wz8PPzg4eHB6KionD06FFpvRACr7/+OkJCQuDh4YHo6GicP3/eaB9Xr17FyJEjoVar4ePjg3HjxqGwsNDah2Ky8PDwap8HlUqF+Ph4AI7zeaisrMS8efMQEREBDw8PtGzZEosXLza6P5EjfB6Am7cpmDZtGpo3bw4PDw/07t0bqamp0nqlnocDBw7g4YcfRtOmTaFSqfDtt98arTfXcf/888+4//770ahRI4SGhmLp0qWmFViQkS1btojt27eL3377TaSlpYlXXnlFuLq6ijNnzgghhHjhhRdEaGio2LNnjzh69Kjo1auX6N27t/T8iooK0aFDBxEdHS1OnDghvvvuO+Hv7y/mzp1rq0NqsCNHjojw8HDRsWNHMXXqVGm5I5yL+fPni3vvvVdkZ2dLjytXrkjrHeEcCCHE1atXRfPmzcWYMWPE4cOHxe+//y527twpLly4IG2TmJgoNBqN+Pbbb8WpU6fEI488IiIiIkRxcbG0zeDBg0WnTp3ETz/9JH788UfRqlUrMWLECFsckkny8vKMPgu7d+8WAMS+ffuEEI7zeXjzzTeFn5+f2LZtm8jIyBCbNm0S3t7e4v3335e2cYTPgxBCPPnkkyIyMlIkJSWJ8+fPi/nz5wu1Wi3++OMPIYRyz8N3330nXn31VbF582YBQHzzzTdG681x3DqdTgQFBYmRI0eKM2fOiC+++EJ4eHiIjz/+uN7lZdipgyZNmoh///vfoqCgQLi6uopNmzZJ63755RcBQKSkpAghbn4AnJycRE5OjrTN8uXLhVqtFqWlpVYve0Ndv35dtG7dWuzevVv0799fCjuOci7mz58vOnXqVOM6RzkHQggxe/Zs0bdv31rXGwwGERwcLN5++21pWUFBgXB3dxdffPGFEEKIc+fOCQAiNTVV2mbHjh1CpVKJP//803KFt6CpU6eKli1bCoPB4FCfh9jYWPHcc88ZLRs2bJgYOXKkEMJxPg9FRUXC2dlZbNu2zWh5165dxauvvuow5+H2sGOu4162bJlo0qSJ0f+N2bNni7Zt29a7jGzGuoPKykps2LABN27cgFarxbFjx1BeXo7o6Ghpm3bt2iEsLAwpKSkAgJSUFERFRSEoKEjaJiYmBnq9HmfPnrX6MTRUfHw8YmNjjY4ZgEOdi/Pnz6Np06Zo0aIFRo4ciczMTACOdQ62bNmC7t2744knnkBgYCC6dOmClStXSuszMjKQk5NjdC40Gg169uxpdC58fHzQvXt3aZvo6Gg4OTnh8OHD1jsYMykrK8O6devw3HPPQaVSOdTnoXfv3tizZw9+++03AMCpU6dw8OBBDBkyBIDjfB4qKipQWVmJRo0aGS338PDAwYMHHeY83M5cx52SkoJ+/frBzc1N2iYmJgZpaWm4du1avcrEG4HW4PTp09BqtSgpKYG3tze++eYbREZG4uTJk3Bzc4OPj4/R9kFBQcjJyQEA5OTkGH2RVa2vWmdPNmzYgOPHjxu1P1fJyclxiHPRs2dPrFmzBm3btkV2djYWLlyI+++/H2fOnHGYcwAAv//+O5YvX44ZM2bglVdeQWpqKqZMmQI3NzeMHj1aOpaajvXWcxEYGGi03sXFBb6+vnZ1Lqp8++23KCgowJgxYwA4zv8JAJgzZw70ej3atWsHZ2dnVFZW4s0338TIkSMBwGE+D40bN4ZWq8XixYvRvn17BAUF4YsvvkBKSgpatWrlMOfhduY67pycHERERFTbR9W6Jk2a1LlMDDs1aNu2LU6ePAmdToevvvoKo0ePRlJSkq2LZVVZWVmYOnUqdu/eXe2qxZFUXakCQMeOHdGzZ080b94cX375JTw8PGxYMusyGAzo3r07lixZAgDo0qULzpw5gxUrVmD06NE2Lp1trFq1CkOGDEHTpk1tXRSr+/LLL/Gf//wH69evx7333ouTJ09i2rRpaNq0qcN9Hj7//HM899xzaNasGZydndG1a1eMGDECx44ds3XR6BZsxqqBm5sbWrVqhW7duiEhIQGdOnXC+++/j+DgYJSVlaGgoMBo+9zcXAQHBwMAgoODq42+qPq7aht7cOzYMeTl5aFr165wcXGBi4sLkpKS8MEHH8DFxQVBQUEOcy5u5ePjgzZt2uDChQsO9XkICQlBZGSk0bL27dtLTXpVx1LTsd56LvLy8ozWV1RU4OrVq3Z1LgDg0qVL+OGHH/D8889Lyxzp8zBr1izMmTMHTz31FKKiojBq1ChMnz4dCQkJABzr89CyZUskJSWhsLAQWVlZOHLkCMrLy9GiRQuHOg+3Mtdxm/P/C8NOHRgMBpSWlqJbt25wdXXFnj17pHVpaWnIzMyEVqsFAGi1Wpw+fdroTdy9ezfUanW1Hws5e/DBB3H69GmcPHlSenTv3h0jR46U/u0o5+JWhYWFSE9PR0hIiEN9Hvr06YO0tDSjZb/99huaN28OAIiIiEBwcLDRudDr9Th8+LDRuSgoKDC64t27dy8MBgN69uxphaMwn9WrVyMwMBCxsbHSMkf6PBQVFcHJyfjnw9nZGQaDAYDjfR4AwMvLCyEhIbh27Rp27tyJRx991CHPA2C+91+r1eLAgQMoLy+Xttm9ezfatm1bryYsABx6frs5c+aIpKQkkZGRIX7++WcxZ84coVKpxK5du4QQN4eWhoWFib1794qjR48KrVYrtFqt9PyqoaWDBg0SJ0+eFN9//70ICAiwu6GlNbl1NJYQjnEuXnrpJbF//36RkZEhDh06JKKjo4W/v7/Iy8sTQjjGORDi5vQDLi4u4s033xTnz58X//nPf4Snp6dYt26dtE1iYqLw8fER//3vf8XPP/8sHn300RqHmnbp0kUcPnxYHDx4ULRu3Vr2Q2xvV1lZKcLCwsTs2bOrrXOUz8Po0aNFs2bNpKHnmzdvFv7+/uLll1+WtnGUz8P3338vduzYIX7//Xexa9cu0alTJ9GzZ09RVlYmhFDuebh+/bo4ceKEOHHihAAg/vnPf4oTJ06IS5cuCSHMc9wFBQUiKChIjBo1Spw5c0Zs2LBBeHp6cui5OTz33HOiefPmws3NTQQEBIgHH3xQCjpCCFFcXCxefPFF0aRJE+Hp6Skee+wxkZ2dbbSPixcviiFDhggPDw/h7+8vXnrpJVFeXm7tQzG728OOI5yL4cOHi5CQEOHm5iaaNWsmhg8fbjS3jCOcgypbt24VHTp0EO7u7qJdu3bik08+MVpvMBjEvHnzRFBQkHB3dxcPPvigSEtLM9rmr7/+EiNGjBDe3t5CrVaLsWPHiuvXr1vzMBps586dAkC1YxPCcT4Per1eTJ06VYSFhYlGjRqJFi1aiFdffdVoiLCjfB42btwoWrRoIdzc3ERwcLCIj48XBQUF0nqlnod9+/YJANUeo0ePFkKY77hPnTol+vbtK9zd3UWzZs1EYmKiSeVVCXHLlJdERERECsM+O0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7RGSSAQMGYNq0abYuhsUtWLAAnTt3tnUxiKgBGHaIyCGVlZVZ9fWEEKioqLDqaxLRTQw7RFRvY8aMQVJSEt5//32oVCqoVCpcvHgRZ86cwZAhQ+Dt7Y2goCCMGjUK+fn50vMGDBiAyZMnY9q0aWjSpAmCgoKwcuVK3LhxA2PHjkXjxo3RqlUr7NixQ3rO/v37oVKpsH37dnTs2BGNGjVCr169cObMGaMyHTx4EPfffz88PDwQGhqKKVOm4MaNG9L68PBwLF68GM8++yzUajUmTJgAAJg9ezbatGkDT09PtGjRAvPmzZPusrxmzRosXLgQp06dko5zzZo1uHjxIlQqFU6ePCntv6CgACqVCvv37zcq944dO9CtWze4u7vj4MGDMBgMSEhIQEREBDw8PNCpUyd89dVX5n6LiOgWDDtEVG/vv/8+tFotxo8fj+zsbGRnZ6Nx48Z44IEH0KVLFxw9ehTff/89cnNz8eSTTxo9d+3atfD398eRI0cwefJkTJw4EU888QR69+6N48ePY9CgQRg1ahSKioqMnjdr1iy88847SE1NRUBAAB5++GEplKSnp2Pw4MGIi4vDzz//jI0bN+LgwYOYNGmS0T7+8Y9/oFOnTjhx4gTmzZsHAGjcuDHWrFmDc+fO4f3338fKlSvx7rvvAgCGDx+Ol156Cffee690nMOHD6/XuZozZw4SExPxyy+/oGPHjkhISMBnn32GFStW4OzZs5g+fTqeeeYZJCUl1Wu/RFQPJt0+lIgcXv/+/cXUqVOlvxcvXiwGDRpktE1WVpbRHcL79+8v+vbtK62vqKgQXl5eYtSoUdKy7OxsAUCkpKQIIf53d+UNGzZI2/z111/Cw8NDbNy4UQghxLhx48SECROMXvvHH38UTk5Oori4WAghRPPmzcXQoUPvelxvv/226Natm/T3/PnzRadOnYy2ycjIEADEiRMnpGXXrl0TAMS+ffuMyv3tt99K25SUlAhPT0+RnJxstL9x48aJESNG3LVsRGQaF1sGLSJSjlOnTmHfvn3w9vauti49PR1t2rQBAHTs2FFa7uzsDD8/P0RFRUnLgoKCAAB5eXlG+9BqtdK/fX190bZtW/zyyy/Sa//888/4z3/+I20jhIDBYEBGRgbat28PAOjevXu1sm3cuBEffPAB0tPTUVhYiIqKCqjV6noff21ufc0LFy6gqKgIf/vb34y2KSsrQ5cuXcz2mkRkjGGHiMyisLAQDz/8MN56661q60JCQqR/u7q6Gq1TqVRGy1QqFQDAYDDU67X/7//+D1OmTKm2LiwsTPq3l5eX0bqUlBSMHDkSCxcuRExMDDQaDTZs2IB33nnnjq/n5HSzB4AQQlpW1aR2u1tfs7CwEACwfft2NGvWzGg7d3f3O74mEZmOYYeITOLm5obKykrp765du+Lrr79GeHg4XFzM/9Xy008/ScHl2rVr+O2336Qam65du+LcuXNo1apVvfaZnJyM5s2b49VXX5WWXbp0yWib248TAAICAgAA2dnZUo3MrZ2VaxMZGQl3d3dkZmaif//+9SorEZmOHZSJyCTh4eE4fPgwLl68iPz8fMTHx+Pq1asYMWIEUlNTkZ6ejp07d2Ls2LHVwoIpFi1ahD179uDMmTMYM2YM/P39MXToUAA3R1QlJydj0qRJOHnyJM6fP4///ve/1Too365169bIzMzEhg0bkJ6ejg8++ADffPNNtePMyMjAyZMnkZ+fj9LSUnh4eKBXr15Sx+OkpCS89tprdz2Gxo0bY+bMmZg+fTrWrl2L9PR0HD9+HB9++CHWrl1r8rkhojtj2CEik8ycORPOzs6IjIxEQEAAysrKcOjQIVRWVmLQoEGIiorCtGnT4OPjIzX7NERiYiKmTp2Kbt26IScnB1u3boWbmxuAm/2AkpKS8Ntvv+H+++9Hly5d8Prrr6Np06Z33OcjjzyC6dOnY9KkSejcuTOSk5OlUVpV4uLiMHjwYAwcOBABAQH44osvAACffvopKioq0K1bN0ybNg1vvPFGnY5j8eLFmDdvHhISEtC+fXsMHjwY27dvR0REhAlnhYjqQiVubXQmIpKZ/fv3Y+DAgbh27Rp8fHxsXRwiskOs2SEiIiJFY9ghIiIiRWMzFhERESkaa3aIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjRGHaIiIhI0Rh2iIiISNEYdoiIiEjR/h8vjnprlQGtkAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -618,13 +791,26 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJXElEQVR4nO3deXwU9eH/8fcmkJBAEo6cIJAAckO4NaAclYqUnxaxFfHgEGhVqCBqAa0CogZrVay1oFjFowpVEe+DchZBCkKQeKDEYKImQMRsgIQAyef3B99sWXKQbPacfT0fjzweMDO7+5nZ2Zn3fD6f+YzNGGMEAABgESG+LgAAAIA7EW4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4A+MT8+fNls9lqtazNZtP8+fM9Wp6hQ4dq6NChfvt+AGqPcAMEueXLl8tmszn+GjRooFatWmnixIn64YcffF08v5OcnOy0veLj43XxxRfrjTfecMv7FxcXa/78+dqwYYNb3g8IRoQbAJKk++67Ty+++KKWLl2qkSNH6qWXXtKQIUN0/Phxj3zen/70J5WUlHjkvT2tV69eevHFF/Xiiy/qjjvu0I8//qgxY8Zo6dKl9X7v4uJiLViwgHAD1EMDXxcAgH8YOXKk+vXrJ0maMmWKYmNj9dBDD+mtt97S1Vdf7fbPa9CggRo0CMxDUKtWrXT99dc7/j9+/Hh16NBBjz32mG666SYflgyARM0NgGpcfPHFkqSsrCyn6V999ZV+85vfqHnz5mrUqJH69eunt956y2mZkydPasGCBTr//PPVqFEjtWjRQhdddJHWrFnjWKaqPjelpaW67bbbFBcXp6ioKF1xxRX6/vvvK5Vt4sSJSk5OrjS9qvd87rnn9Itf/ELx8fEKDw9X165dtWTJkjpti3NJTExUly5dlJ2dXeNyBw8e1OTJk5WQkKBGjRopNTVVzz//vGP+/v37FRcXJ0lasGCBo+nL0/2NAKsJzMsmAB63f/9+SVKzZs0c0z7//HMNGjRIrVq10pw5c9S4cWP961//0ujRo/X666/ryiuvlHQ6ZKSnp2vKlCkaMGCAioqKtGPHDu3cuVO//OUvq/3MKVOm6KWXXtK1116rgQMHat26dRo1alS91mPJkiXq1q2brrjiCjVo0EBvv/22brnlFpWXl2vatGn1eu8KJ0+eVG5urlq0aFHtMiUlJRo6dKj27dun6dOnKyUlRa+++qomTpyowsJCzZgxQ3FxcVqyZIluvvlmXXnllRozZowkqWfPnm4pJxA0DICg9txzzxlJ5t///rc5dOiQyc3NNa+99pqJi4sz4eHhJjc317HsJZdcYnr06GGOHz/umFZeXm4GDhxozj//fMe01NRUM2rUqBo/d968eebMQ1BGRoaRZG655Ran5a699lojycybN88xbcKECaZt27bnfE9jjCkuLq603IgRI0y7du2cpg0ZMsQMGTKkxjIbY0zbtm3NpZdeag4dOmQOHTpkdu/eba655hojyfzhD3+o9v0WL15sJJmXXnrJMe3EiRMmLS3NNGnSxBQVFRljjDl06FCl9QVQNzRLAZAkDR8+XHFxcWrdurV+85vfqHHjxnrrrbd03nnnSZIOHz6sdevW6eqrr9aRI0dUUFCggoIC/fTTTxoxYoS++eYbx91VTZs21eeff65vvvmm1p//3nvvSZJuvfVWp+kzZ86s13pFREQ4/m2321VQUKAhQ4bo22+/ld1ud+k9P/roI8XFxSkuLk6pqal69dVXdcMNN+ihhx6q9jXvvfeeEhMTNW7cOMe0hg0b6tZbb9XRo0e1ceNGl8oCoDKapQBIkp588kl17NhRdrtdzz77rDZt2qTw8HDH/H379skYo3vuuUf33HNPle9x8OBBtWrVSvfdd59+/etfq2PHjurevbsuu+wy3XDDDTU2r3z33XcKCQlR+/btnaZ36tSpXuv18ccfa968edq6dauKi4ud5tntdsXExNT5PS+44ALdf//9stlsioyMVJcuXdS0adMaX/Pdd9/p/PPPV0iI8zVlly5dHPMBuAfhBoAkacCAAY67pUaPHq2LLrpI1157rfbu3asmTZqovLxcknTHHXdoxIgRVb5Hhw4dJEmDBw9WVlaW3nzzTX300Ud65pln9Nhjj2np0qWaMmVKvcta3eB/ZWVlTv/PysrSJZdcos6dO+vRRx9V69atFRYWpvfee0+PPfaYY53qKjY2VsOHD3fptQA8j3ADoJLQ0FClp6dr2LBh+tvf/qY5c+aoXbt2kk43pdTmxN68eXNNmjRJkyZN0tGjRzV48GDNnz+/2nDTtm1blZeXKysry6m2Zu/evZWWbdasmQoLCytNP7v24+2331ZpaaneeusttWnTxjF9/fr15yy/u7Vt21afffaZysvLnWpvvvrqK8d8qfrgBqD26HMDoEpDhw7VgAEDtHjxYh0/flzx8fEaOnSonnrqKeXl5VVa/tChQ45///TTT07zmjRpog4dOqi0tLTazxs5cqQk6a9//avT9MWLF1datn379rLb7frss88c0/Ly8iqNEhwaGipJMsY4ptntdj333HPVlsNTfvWrXyk/P18rV650TDt16pSeeOIJNWnSREOGDJEkRUZGSlKV4Q1A7VBzA6Bad955p377299q+fLluummm/Tkk0/qoosuUo8ePTR16lS1a9dOBw4c0NatW/X9999r9+7dkqSuXbtq6NCh6tu3r5o3b64dO3botdde0/Tp06v9rF69emncuHH6+9//LrvdroEDB2rt2rXat29fpWWvueYazZ49W1deeaVuvfVWFRcXa8mSJerYsaN27tzpWO7SSy9VWFiYLr/8cv3+97/X0aNHtWzZMsXHx1cZ0Dzpd7/7nZ566ilNnDhRn376qZKTk/Xaa6/p448/1uLFixUVFSXpdAforl27auXKlerYsaOaN2+u7t27q3v37l4tLxDQfH27FgDfqrgVfPv27ZXmlZWVmfbt25v27dubU6dOGWOMycrKMuPHjzeJiYmmYcOGplWrVub//b//Z1577TXH6+6//34zYMAA07RpUxMREWE6d+5sHnjgAXPixAnHMlXdtl1SUmJuvfVW06JFC9O4cWNz+eWXm9zc3Cpvjf7oo49M9+7dTVhYmOnUqZN56aWXqnzPt956y/Ts2dM0atTIJCcnm4ceesg8++yzRpLJzs52LFeXW8HPdZt7de934MABM2nSJBMbG2vCwsJMjx49zHPPPVfptVu2bDF9+/Y1YWFh3BYOuMBmzBn1tQAAAAGOPjcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSgm4Qv/Lycv3444+KiopimHMAAAKEMUZHjhxRy5YtKz2A9mxBF25+/PFHtW7d2tfFAAAALsjNzdV5551X4zJBF24qhjjPzc1VdHS0j0sDAABqo6ioSK1bt3acx2sSdOGmoikqOjqacAMAQICpTZcSOhQDAABLIdwAAABLIdwAAABLCbo+NwCA4FFWVqaTJ0/6uhiopbCwsHPe5l0bhBsAgOUYY5Sfn6/CwkJfFwV1EBISopSUFIWFhdXrfQg3AADLqQg28fHxioyMZNDWAFAxyG5eXp7atGlTr++McAMAsJSysjJHsGnRooWvi4M6iIuL048//qhTp06pYcOGLr8PHYoBAJZS0ccmMjLSxyVBXVU0R5WVldXrfQg3AABLoikq8LjrOyPcAAAASyHcAAAAr9iwYYNsNpvH72LzabhJT09X//79FRUVpfj4eI0ePVp79+6t8TXLly+XzWZz+mvUqJGXSlyzPHuJtmQVKM9e4uuiAACC0Pz589WrVy9fF8PnfHq31MaNGzVt2jT1799fp06d0l133aVLL71UX3zxhRo3blzt66Kjo51CkD+0q67cnqO5q/ao3EghNil9TA+N7d/G18UCAKCSkydP1utuJH/n05qbDz74QBMnTlS3bt2Umpqq5cuXKycnR59++mmNr7PZbEpMTHT8JSQkeKnEVcuzlziCjSSVG+muVZnU4AAA6qS8vFzp6elKSUlRRESEUlNT9dprr0n6X5PO2rVr1a9fP0VGRmrgwIGOi/3ly5drwYIF2r17t6NlY/ny5ZJOnzeXLFmiK664Qo0bN9YDDzxQYzkqPuvDDz9U7969FRERoV/84hc6ePCg3n//fXXp0kXR0dG69tprVVxc7HhdaWmpbr31VsXHx6tRo0a66KKLtH37ds9srBr4VZ8bu90uSWrevHmNyx09elRt27ZV69at9etf/1qff/55tcuWlpaqqKjI6c/dsguOOYJNhTJjtL+guOoXAAAChje7HKSnp+uFF17Q0qVL9fnnn+u2227T9ddfr40bNzqWufvuu/XII49ox44datCggW688UZJ0tixY3X77berW7duysvLU15ensaOHet43fz583XllVdqz549jtecy/z58/W3v/1NW7ZsUW5urq6++motXrxYL7/8st5991199NFHeuKJJxzL//GPf9Trr7+u559/Xjt37lSHDh00YsQIHT582E1bqHb8ZhC/8vJyzZw5U4MGDVL37t2rXa5Tp0569tln1bNnT9ntdv3lL3/RwIED9fnnn+u8886rtHx6eroWLFjgyaIrJbaxQmxyCjihNpuSYxljAQACmTe7HJSWlurBBx/Uv//9b6WlpUmS2rVrp82bN+upp57S7373O0nSAw88oCFDhkiS5syZo1GjRun48eOKiIhQkyZN1KBBAyUmJlZ6/2uvvVaTJk2qU5nuv/9+DRo0SJI0efJkzZ07V1lZWWrXrp0k6Te/+Y3Wr1+v2bNn69ixY1qyZImWL1+ukSNHSpKWLVumNWvW6B//+IfuvPNO1zaMC/ym5mbatGnKzMzUihUralwuLS1N48ePV69evTRkyBCtWrVKcXFxeuqpp6pcfu7cubLb7Y6/3Nxct5c9KSZC6WN6KPT/+v6E2mx6cEx3JcVEuP2zAADe4e0uB/v27VNxcbF++ctfqkmTJo6/F154QVlZWY7levbs6fh3UlKSJOngwYPnfP9+/frVuUxnflZCQoIiIyMdwaZiWsVnZ2Vl6eTJk44wJEkNGzbUgAED9OWXX9b5s+vDL2pupk+frnfeeUebNm2qsvalJg0bNlTv3r21b9++KueHh4crPDzcHcWs0dj+bTS4Y5z2FxQrOTaSYAMAAa6mLgeeOMYfPXpUkvTuu++qVatWTvPCw8MdAefMjsAVN9SUl5ef8/1rulGnOmd/1tmdkG02W60+29t8WnNjjNH06dP1xhtvaN26dUpJSanze5SVlWnPnj2O9OpLSTERSmvfgmADABZQ0eXgTJ7sctC1a1eFh4crJydHHTp0cPpr3bp1rd4jLCys3o8ucFX79u0VFhamjz/+2DHt5MmT2r59u7p27erVsvi05mbatGl6+eWX9eabbyoqKkr5+fmSpJiYGEVEnA4I48ePV6tWrZSeni5Juu+++3ThhReqQ4cOKiws1MMPP6zvvvtOU6ZM8dl6AACsp6LLwV2rMlVmjMe7HERFRemOO+7QbbfdpvLycl100UWy2+36+OOPFR0drbZt257zPZKTk5Wdna2MjAydd955ioqK8krrhXS6Zujmm2/WnXfeqebNm6tNmzb685//rOLiYk2ePNkrZajg03CzZMkSSdLQoUOdpj/33HOaOHGiJCknJ0chIf+rYPr55581depU5efnq1mzZurbt6+2bNni9VQIALA+b3c5WLhwoeLi4pSenq5vv/1WTZs2VZ8+fXTXXXfVqvnnqquu0qpVqzRs2DAVFhY6nU+9YdGiRSovL9cNN9ygI0eOqF+/fvrwww/VrFkzr5VBkmzGGHPuxayjqKhIMTExstvtio6O9nVxAABudvz4cWVnZyslJcVvRrBH7dT03dXl/O03d0sBAAC4A+EGAIAgc9NNNzndbn7m30033eTr4tWbX9wKDgAAvOe+++7THXfcUeU8K3TZINwAABBk4uPjFR8f7+tieAzNUgAAwFIINwAAS/LHkXNRM3fdwE2zFADAUsLCwhQSEqIff/xRcXFxCgsLczymAP7LGKNDhw5V+ZiHuiLcAAAsJSQkRCkpKcrLy9OPP/7o6+KgDmw2m8477zyFhobW630INwAAywkLC1ObNm106tQpnz1rCXXXsGHDegcbiXADALCoiuaN+jZxIPDQoRgAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFiKT8NNenq6+vfvr6ioKMXHx2v06NHau3fvOV/36quvqnPnzmrUqJF69Oih9957zwulBQAAgcCn4Wbjxo2aNm2aPvnkE61Zs0YnT57UpZdeqmPHjlX7mi1btmjcuHGaPHmydu3apdGjR2v06NHKzMz0YskBAIC/shljjK8LUeHQoUOKj4/Xxo0bNXjw4CqXGTt2rI4dO6Z33nnHMe3CCy9Ur169tHTp0nN+RlFRkWJiYmS32xUdHe22sgMAAM+py/nbr/rc2O12SVLz5s2rXWbr1q0aPny407QRI0Zo69atVS5fWlqqoqIipz8AAGBdfhNuysvLNXPmTA0aNEjdu3evdrn8/HwlJCQ4TUtISFB+fn6Vy6enpysmJsbx17p1a7eWGwAA+Be/CTfTpk1TZmamVqxY4db3nTt3rux2u+MvNzfXre8PAAD8SwNfF0CSpk+frnfeeUebNm3SeeedV+OyiYmJOnDggNO0AwcOKDExscrlw8PDFR4e7rayAgAA/+bTmhtjjKZPn6433nhD69atU0pKyjlfk5aWprVr1zpNW7NmjdLS0jxVTAAAEEB8WnMzbdo0vfzyy3rzzTcVFRXl6DcTExOjiIgISdL48ePVqlUrpaenS5JmzJihIUOG6JFHHtGoUaO0YsUK7dixQ08//bTP1gMAAPgPn9bcLFmyRHa7XUOHDlVSUpLjb+XKlY5lcnJylJeX5/j/wIED9fLLL+vpp59WamqqXnvtNa1evbrGTsgAACB4+NU4N97AODcAAASegB3nBgAAoL4INwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIIN0Eqz16iLVkFyrOX+LooAAC4VQNfFwDet3J7juau2qNyI4XYpPQxPTS2fxtfFwsAALeg5ibI5NlLHMFGksqNdNeqTGpwAACWQbgJMtkFxxzBpkKZMdpfUOybAgEA4GaEmyCTEttYITbnaaE2m5JjI31TIAAA3IxwE2SSYiKUPqaHQm2nE06ozaYHx3RXUkyEj0sGAIB70KE4CI3t30aDO8Zpf0GxkmMjCTYAAEsh3ASppJgIQg0AwJJolgIAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuLGYPHuJtmQV8JRvAEDQYoRiC1m5PUdzV+1RuZFCbFL6mB4a27+Nr4sFAIBXUXNjEXn2EkewkaRyI921KpMaHABA0CHcWER2wTFHsKlQZoz2FxT7pkAAAPgI4cYiUmIbK8TmPC3UZlNybKRvCgQAgI/4NNxs2rRJl19+uVq2bCmbzabVq1fXuPyGDRtks9kq/eXn53unwH4sKSZC6WN6KNR2OuGE2mx6cEx3nvwNAAg6Pu1QfOzYMaWmpurGG2/UmDFjav26vXv3Kjo62vH/+Ph4TxQv4Izt30aDO8Zpf0GxkmMjCTYAgKDk03AzcuRIjRw5ss6vi4+PV9OmTd1fIAtIiokg1AAAglpA9rnp1auXkpKS9Mtf/lIff/yxr4sTsBgTBwBgRQE1zk1SUpKWLl2qfv36qbS0VM8884yGDh2qbdu2qU+fPlW+prS0VKWlpY7/FxUVeau4fo0xcQAAVhVQ4aZTp07q1KmT4/8DBw5UVlaWHnvsMb344otVviY9PV0LFizwVhEDQnVj4gzuGEeTFgAg4AVks9SZBgwYoH379lU7f+7cubLb7Y6/3NxcL5bOPzEmDgDAygKq5qYqGRkZSkpKqnZ+eHi4wsPDvVgi/1cxJs6ZAYcxcQAAVuHTcHP06FGnWpfs7GxlZGSoefPmatOmjebOnasffvhBL7zwgiRp8eLFSklJUbdu3XT8+HE988wzWrdunT766CNfrUJAqhgT565VmSozhjFxAACWUutwU5eOuGeOQVOTHTt2aNiwYY7/z5o1S5I0YcIELV++XHl5ecrJyXHMP3HihG6//Xb98MMPioyMVM+ePfXvf//b6T1QO4yJAwCwKpsxxpx7MSkkJEQ2m63GZYwxstlsKisrc0vhPKGoqEgxMTGy2+21DmGekGcvUXbBMaXENiZYAABwDnU5f9e65mb9+vX1LhhO4zZsAAA8p9bhZsiQIZ4sR9DgNmwAADzL5Q7FhYWF+sc//qEvv/xSktStWzfdeOONiomJcVvhrKim27AJNwAA1J9L49zs2LFD7du312OPPabDhw/r8OHDevTRR9W+fXvt3LnT3WW0lIrbsM/EbdgAALhPrTsUn+niiy9Whw4dtGzZMjVocLry59SpU5oyZYq+/fZbbdq0ye0FdRd/6FC8cntOpduw6XMDAED16nL+dincREREaNeuXercubPT9C+++EL9+vVTcbH/jnTrD+FGOt33htuwAQConbqcv11qloqOjnYaf6ZCbm6uoqKiXHnLoJMUE6G09i0INgAAuJlL4Wbs2LGaPHmyVq5cqdzcXOXm5mrFihWaMmWKxo0b5+4yAgAA1JpLd0v95S9/kc1m0/jx43Xq1ClJUsOGDXXzzTdr0aJFbi0gAABAXbjU56ZCcXGxsrKyJEnt27dXZKT/3/HjL31uAABA7XlkhOKqREZGqkePHvV5CwAAALdyKdwcP35cTzzxhNavX6+DBw+qvLzcaT5j3QAAAF9xKdxMnjxZH330kX7zm99owIAB53ygJgAAgLe4FG7eeecdvffeexo0aJC7ywMAAFAvLt0K3qpVK8azAQAAfsmlcPPII49o9uzZ+u6779xdHgAAgHpxqVmqX79+On78uNq1a6fIyEg1bNjQaf7hw4fdUjgAAIC6cincjBs3Tj/88IMefPBBJSQk0KEYAAD4DZfCzZYtW7R161alpqa6uzwAAAD14lKfm86dO6ukpMTdZQEAAKg3l8LNokWLdPvtt2vDhg366aefVFRU5PQHAADgKy49Wyok5HQmOruvjTFGNptNZWVl7imdB/BsKQAAAo/Hny21fv16lwoGAADgaS6FmyFDhtRquVtuuUX33XefYmNjXfkYAACAOnOpz01tvfTSS/TBAQAAXuXRcONCdx4AAIB68Wi4AQAA8DbCDQAAsBTCDQAAsBTCDQAAsJQ6h5tTp07pvvvu0/fff3/OZa+//noGygMAAF7l0gjFUVFR2rNnj5KTkz1QJM9ihGIAAAJPXc7fLjVL/eIXv9DGjRtdKhwAAIAnuTRC8ciRIzVnzhzt2bNHffv2VePGjZ3mX3HFFW4pHAAAQF3V68GZVb4hD84EAABu5vEHZ5aXl7tUMAAAAE9zqc/NCy+8oNLS0krTT5w4oRdeeKHehQIAAHCVS81SoaGhysvLU3x8vNP0n376SfHx8TRLAQAAt/L43VLGGNlstkrTv//+e8XExLjylvCRPHuJtmQVKM9e4uuiAADgFnXqc9O7d2/ZbDbZbDZdcsklatDgfy8vKytTdna2LrvsMrcXEp6xcnuO5q7ao3Ijhdik9DE9NLZ/G18XCwCAeqlTuBk9erQkKSMjQyNGjFCTJk0c88LCwpScnKyrrrrKrQWEZ+TZSxzBRpLKjXTXqkwN7hinpJgI3xYOAIB6qFO4mTdvniQpOTlZY8eOVaNGjTxSKHhedsExR7CpUGaM9hcUE24ABLU8e4myC44pJbYxx8MA5dKt4BMmTJB0+u6ogwcPVro1vE0bmjb8XUpsY4XY5BRwQm02JcdG+q5QAOBjNNdbg0sdir/55htdfPHFioiIUNu2bZWSkqKUlBQlJycrJSXF3WWEByTFRCh9TA+F/l/H8FCbTQ+O6c5VCoCgVV1zPTdcBB6Xam4mTpyoBg0a6J133lFSUlKVd07B/43t30aDO8Zpf0GxkmMjCTYAghrN9dbhUrjJyMjQp59+qs6dO7u7PPCypJgIfrQAIJrrrcSlZqmuXbuqoKDA3WUBAMBnaK63DpdGKF63bp3+9Kc/6cEHH1SPHj3UsGFDp/n+PPIvIxSfG3cKAAhmefYSmuv9UF3O3/V+KviZ/W0qRi7m8QuBizsFAAD+yONPBV+/fr1LBYN/Y2A/AIAVuNTnZsiQIQoJCdGyZcs0Z84cdejQQUOGDFFOTo5CQ0PdXUZ4SU13CngKz7YCALibS+Hm9ddf14gRIxQREaFdu3aptLRUkmS32/Xggw+6tYDwnoo7Bc7kyTsFVm7P0aBF63Ttsm0atGidVm7P8cjnAACCi0vh5v7779fSpUu1bNkyp87EgwYN0s6dO91WOHiXN+8UYLAsAICnuNTnZu/evRo8eHCl6TExMSosLKxvmeBD3hrYj8GyAACe4lK4SUxM1L59+5ScnOw0ffPmzWrXrp07ygUf8sbAfgyWBQDwFJeapaZOnaoZM2Zo27Ztstls+vHHH/XPf/5Td9xxh26++WZ3lxEWxGBZAABPcSnczJkzR9dee60uueQSHT16VIMHD9aUKVP0+9//Xn/4wx9q/T6bNm3S5ZdfrpYtW8pms2n16tXnfM2GDRvUp08fhYeHq0OHDlq+fLkrqwA/MLZ/G22eM0yvTL1Qm+cMYzwdAIBbuBRubDab7r77bh0+fFiZmZn65JNPdOjQIS1cuLBO73Ps2DGlpqbqySefrNXy2dnZGjVqlIYNG6aMjAzNnDlTU6ZM0YcffujKasAPJMVEKK19C2psAABu49IIxZ5gs9n0xhtvaPTo0dUuM3v2bL377rvKzMx0TLvmmmtUWFioDz74oFafwwjFAAAEnrqcv12qufGVrVu3avjw4U7TRowYoa1bt/qoRAAAwN+4dLeUr+Tn5yshIcFpWkJCgoqKilRSUqKIiMpNG6WlpY5BBqXTyQ8AAFhXQNXcuCI9PV0xMTGOv9atW/u6SAAAwIMCKtwkJibqwIEDTtMOHDig6OjoKmttJGnu3Lmy2+2Ov9zcXG8UFQAA+EhANUulpaXpvffec5q2Zs0apaWlVfua8PBwhYeHe7poAADAT/i05ubo0aPKyMhQRkaGpNO3emdkZCgn5/QDFOfOnavx48c7lr/pppv07bff6o9//KO++uor/f3vf9e//vUv3Xbbbb4oPgAA8EM+DTc7duxQ79691bt3b0nSrFmz1Lt3b917772SpLy8PEfQkaSUlBS9++67WrNmjVJTU/XII4/omWee0YgRI3xSfgAA4H/8Zpwbb2Gcm+CUZy9RdsExpcQ2ZsBAAAhAdTl/B1SfG8AVK7fnaO6qPSo3UohNSh/Tg0c9AICFBdTdUkBd5dlLHMFGOv0U8rtWZSrPXuLbggEAPIZwA0vLLjjmCDYVyozR/oJi3xQIAOBxhBtYWkpsY4XYnKeF2mxKjo30TYEAAB5HuIGlJcVEKH1MD4XaTiecUJtND47pTqdiALAwOhTD8sb2b6PBHeO0v6BYybGRBBsAsDjCDYJCUkwEoQYAggTNUgAAwFIINwAAwFIINwAAwFIIN6iVPHuJtmQVMPgdAMDv0aEY58TjCwAAgYSaG9SIxxcAAAIN4QY14vEFAIBAQ7hBjXh8AQAg0BBuUCMeXwAACDR0KMY58fgCAEAgIdygVnh8AQAgUNAsBQAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwg2rxsEwAQCDiVnBUiYdlAgACFTU3qISHZQIAAhnhBpXwsEwAQCAj3KASHpYJAAhkhBtUwsMyAQCBjA7FqBIPywQABCrCDarFwzIBAIGIZik/xjgzAADUHTU3fopxZgAAcA01N36IcWYAAHAd4cYPMc4MAACuI9z4IcaZAQDAdYQbP8Q4MwAAuI4OxX6KcWYAAHAN4caPMc4MAAB1R7MUAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMIN4Kfy7CXaklXAA1MBoI4YxA/wQyu35zieDB9ik9LH9NDY/m18XSwACAjU3AB+Js9e4gg2klRupLtWZVKDAwC1RLgB/Ex2wTFHsKlQZoz2FxT7pkAAEGAIN36IvhbBLSW2sUJsztNCbTYlx0b6pkAAEGAIN35m5fYcDVq0Ttcu26ZBi9Zp5fYcXxcJXpYUE6H0MT0UajudcEJtNj04pjsPUQWAWrIZY8y5F7OOoqIixcTEyG63Kzo62tfFcZJnL9GgReucmiRCbTZtnjOME1sQyrOXaH9BsZJjI/n+AQS9upy/uVvKj9TU14KTW/BJionge4dfy7OXKLvgmFJiG7Ovwq8QbvxIRV+Ls2tu6GtRdxx0Ac9iuAL4M/rc+BGr9LXwdYdo+i0BnsVwBfB3fhFunnzySSUnJ6tRo0a64IIL9N///rfaZZcvXy6bzeb016hRIy+W1rPG9m+jzXOG6ZWpF2rznGEBdyXk62DBQdc1vg6kCCwMVwB/5/NmqZUrV2rWrFlaunSpLrjgAi1evFgjRozQ3r17FR8fX+VroqOjtXfvXsf/bTZblcsFqkDta1FdsBjcMc5r60O/pbqjeQF1RRM6/J3Pa24effRRTZ06VZMmTVLXrl21dOlSRUZG6tlnn632NTabTYmJiY6/hIQEL5YY1fGHqznGiKnZmTU0efYSvb37B2q6UGdWaUKHdfm05ubEiRP69NNPNXfuXMe0kJAQDR8+XFu3bq32dUePHlXbtm1VXl6uPn366MEHH1S3bt28UWTUwB+u5ioOunetylSZMRx0z3BmDU1F/qtqHAhqulAbY/u30eCOcQxXAL/k03BTUFCgsrKySjUvCQkJ+uqrr6p8TadOnfTss8+qZ8+estvt+stf/qKBAwfq888/13nnnVdp+dLSUpWWljr+X1RU5N6VgIO/BAsOupWd3WRY0+BW1HShtgK1CR3W5/M+N3WVlpamtLQ0x/8HDhyoLl266KmnntLChQsrLZ+enq4FCxZ4s4hBzV+CBQddZ1U1GVaFmi4AVuDTcBMbG6vQ0FAdOHDAafqBAweUmJhYq/do2LChevfurX379lU5f+7cuZo1a5bj/0VFRWrdurXrhcY5ESz8T1VNhmcKkfTEtb3Vp20zvjsAAc+nHYrDwsLUt29frV271jGtvLxca9eudaqdqUlZWZn27NmjpKSkKueHh4crOjra6Q8INmd3ALVJqrjJMNRmU/pVPTSqZ0uCDWqN4QPgz3zeLDVr1ixNmDBB/fr104ABA7R48WIdO3ZMkyZNkiSNHz9erVq1Unp6uiTpvvvu04UXXqgOHTqosLBQDz/8sL777jtNmTLFl6sB+L2zmwwl+bz5EIGJ4QPg73websaOHatDhw7p3nvvVX5+vnr16qUPPvjA0ck4JydHISH/q2D6+eefNXXqVOXn56tZs2bq27evtmzZoq5du/pqFYBa8/VjIc5uMiTUoK78YTwr4Fx4KjjgJVztwgq2ZBXo2mXbKk1/ZeqFSmvfwgclQrCoy/nb54P4AcHAE4+FoM8DfIGBMhEICDeAF7h79GZfP8MLwYvRiREIfN7nBggG7hy9mT4P8DV/Gc8KqA41N4AXuPNq1x+e4QUkxUQorX0Lgg38EjU3gJe462rXH57hBQD+jJobwIvccbVLnwcAqBk1N0AAGtu/jTonRmn7/p/VP7mZUls383WR4GO+HkMJ8CeEGyAAMWYOzsT+ADijWcrCGAfFmjwxZg4CF/sDJI73Z6PmxqK4krOumu6Wojki+Lhjf6BJK7BxvK+MmhsL4krO2hghFmeq7/7gqwEhqWlwD473VSPcWBDjoFgbd0vhTPXZH2o6MXoyfDDCtvtwvK8azVIWFGjjoFAlXneMEIszubo/VHdifO7jbD3zn2yPNHMwwrbrqjpWBtrx3lsINxZUcSV316pMlRnj11f2tBW7Likmwi+/U/iGK/tDVSfGEJu0bFO2Kia5M3zk2Uv0zmc/0mfMBdUdKwPpeO9NNmOMOfdi1lGXR6YHujx7ic+v7Guqlcmzl2jQonWVrjg2zxkW9D9MwFtWbs9xOjHeeFGylv0nu9Jyr0y9UGntW9Trc86ssTlTdb97anVPq82x0h+O955Wl/M3NTcW5usr+3PVytTlLg8OcoBnnN2kJUn/2Jzt1maOs5uizlRdTQO1uv9Tm2Olr4/3/oZwA4+oTbt6bduKOcghWHkr1J99YnR3M0dVJ2dJumdUF/2qZ1KVFzP0y/mf2hwruQB0RriBR9T2SuNcB1EOctbBwbdufBnq3d1hvbqTc1XBRrLOWE7u2ufPdaz01L4SyL9Zwg08ora1Muc6iFrlIBfsgqn2zR0nhPqEeneeUN31G6trp1cr3AHk6j5f3fdX3bHSUxeAgf6bJdzAI+pyMKvpIGqFg1ywC6baN3edEM41dkl14cWfT0h1qQ0K9DuAXN3nz/X9VXWsdHVf8UT5/QnhBh7jjqrtQD/IIXhq39x5Qqgu1H/2Q6Gue+aTKk9+gXBCqkttUCCP5eTKPu/q9+fKvuKJ8vsbRiiGRyXFRCitfYt6/SDG9m+jzXOG6ZWpF2rznGF+cyUarOo6cm2wPC7CnSPFVjXq8B8v66SH3v+q2mH2rThSbV2OH/70OIeq9nlJ+uz7wmpf4+r3V9t9Ze7re7Q792eXyx9ov1lqbhAQuM3RP7jS7BEstW/ubkI9u+biXFfTvm7C9WXnU39rjkuKidDskZ2V/t5XTtP//MFeXdGrZZXbpz7fX232lXJJo/++RYuC5DdLuAGCwLkGU6zNSak+zR6B3MRQW544IZwd6ms6+fnyhOTLcOGvzXE9WsVUmlZT0059v79z7SuSZILoN0u4ASyuphNPXU5K9W2HD4baN0+eEGpz8vPFCamu4cLdNTz+2j/ElZoYd31/FfvK3Nf3qPysecHymyXcABZW04nnYNFxzXl9T62fIeTrZo9A4ckTQm1Oft4+IdUlXHiihsdf98u61sScGfrq85iLCmP7t1HnxCiN/vsWGT/bNt5AuAEsrNqnPm/er2Wbv9VZszxabQ738Ler6dqGC081H/nzflnbmhhPNeultm6mRS5um/rUsPnD4H+EG/gNf/hBWE2VT32W9Mzmb52u5ip4q9oc1lHbcOHJ5iN/3i/PFUY93WfozG0TGRaiYyfKlGcvqdd4OzXxl87dhBv4BX/5QVhNVSeeyRcl6+kqnvocItXqqs7fag7ge7UJF55uPqppv/TnCydv9BlKionQpq8P1eoYW1XYmvv6HnVOjFJq62Y1fo4/de4m3MDn/OkHYUVVPfX5mbOe+hxik964ZeA5D15wH38+4briXKHXV81H/n7h5I0+Q3U5xtbnNnJ/6txNuIHP+dMPwqrOPvFUdZIh2HiPv59wPcXbzUeBcOHkjdBXl2NsVWFLqt1t5P7UuZtwA5/zpx9EsPDnPgpWFwgnXE/yZrOmOy+cPFnT5unfY12OsfW5jdyfOncTbuAydz592F9+EMGEvjO+UdsTrtWarXzBXRdO3qhp8+Tvsa7H2PrcRu4vF06EG7jE3T92f/lBAJ5WmxPuU5uytOj9r2SCrNnK3dxx4eSJmjZfBNe6HmPrcxu5P1w42Yyp6oZQ6yoqKlJMTIzsdruio6N9XZyAlGcv0aBF6yodnDfPGebzHRoIBCu351Q6aVSEl6c2Zin9fednEvH7qp88e4nLF05bsgp07bJtlaa/MvVClwbbC7T+VvXZdu5Wl/M3NTeoMzoAA/VT3VV0nr1Ei84KNhK/r/qqT02CO/sEBmJ/K3+ohXFFiK8LgMBT8WM/Ex2AYVV59hJtySpQnr3Ere+bFBOhtPYtnE4c2QXHKo0aLZ2+wuf35RsVTVuhttMHvfr0CazpwhDuRc0N6owOwAgW3m5CqO423NkjO/P78iF39QnkzlDvoc8NXObptljuFoGr3LHv+Kpv2Zn9cUJ0Otj8fkh7j32e1fnbcaSm/laoGX1u4BWebIsNtE538B/u2nd81beMOwfdxx+PI3y/3kGfG/id6jrdubvPA6zHnfuOL/uWVdUfB3Xjz8eRQP1+PdX/zBMIN/A7dLqDq9y577izIym8j+OIe63cnqNBi9bp2mXbNGjROq3cnuPrItWIZin4HW89SM6f2uHhHu7ed2hCCFx03nWfQLyFnZob+B1PXzEH2hUIas8T+06gNiEEO2re3CcQa8G4Wwp+yxN3YzG6cnDwp1FV4VvsC/XnL8dN7paCJXjibixGVw4OgTqqKtyPfaH+AnFsM8INggrt8MHB3/pU+Vt5UDW+p+qd3f9MOv3cLX/dVoQbBJVAvAKpwIG3dvxtbBN/Kw+qxvd0bhW1YIGwrehzg6Dk63b4ugaVQDiY+AN/6Rvgr+VB1fieas+X24o+N8A5+LIdvq5BJRBvw/QVf+tT5W/lsSJ31GjyPdVeoGwrwg1wBk83/bgSVALlYOIP/K1Plb+Vxx/V5zfnrhpNvqfaC5RtxTg3wP/x1Pg3Zw5Z7sp4Eb58DECg8cXYJjUNSc9YKzWrz2/OnY9X4HuqvUDZVtTcAPJc08/ZV5azL+tc56ueQO4E7QveHFW4NjUHjHJctfr+5txdo+mO7ylYOv0Hwj5NuAHkmaafqg7ef/5gr2aP7Kw/v7+3TkElEA4m/sRdfapqOlnV5eTMWCv/U7FNDx87Ua/fnCeaR+rzPQVbp39/36cJN4Bqd6Cs61VZdYGpZ6um2jxnWJ2Dir8fTLzN01fJ5zpZWakvVMW2bBwWqmMnyryyTW06/XfmJqxLOPGnGs1g6/QfCDVUhBtA5z5QunJVVlNgIqjUj6evkmtzsvJ1x0p3nWDO3JYVvLFNjU6Hm4pt6Eo48ZcaTSsF3XMJlBoqwg2CTnUnheoOlK5elfnTlaWVeOMq+Vwnq4p9yJUmRndw5QRT1X5/9ras4K1taiQ9cU1vtWgS7nI48YcLBV8HXW8JpBoqvwg3Tz75pB5++GHl5+crNTVVTzzxhAYMGFDt8q+++qruuece7d+/X+eff74eeugh/epXv/JiiRGoznVSqOpAWZ+rMn+5sqwPf6uC9sZVck0nq6o6ifc8r6nXvl9XTjDV7fdVbcsK3tqmfZOb+cV+VZ3a7P/BciETSDVUPr8VfOXKlZo1a5bmzZunnTt3KjU1VSNGjNDBgwerXH7Lli0aN26cJk+erF27dmn06NEaPXq0MjMzvVxyBBpXbx2t763YSTERSmvfwu9+/LXhqdvj68Mbt8ZXd7urpCo7iXszuNZ1OIGa9vuqtmUFb21Tf/5d1GX/H9u/jTbPGaZXpl6ozXOG+WVTTX0F0rAUPg83jz76qKZOnapJkyapa9euWrp0qSIjI/Xss89Wufzjjz+uyy67THfeeae6dOmihQsXqk+fPvrb3/7m5ZIj0LgyxowUmAdld3DnOCLu5K3vo6qTlav7kDvV9QRzrqvtM7flme/nrW3qr1zZ/wP5QqY2AulY6NNmqRMnTujTTz/V3LlzHdNCQkI0fPhwbd26tcrXbN26VbNmzXKaNmLECK1evbrK5UtLS1VaWur4f1FRUf0LjoBUn3ZxKzQv1ZU/V0F76/s4u5nSH/pW1LUJ5FxlPnNbRoaFqPhEuVe3qb/y5/3flwLlWOjTcFNQUKCysjIlJCQ4TU9ISNBXX31V5Wvy8/OrXD4/P7/K5dPT07VgwQL3FBgBrb7t4oFyUHYXfziR18QX34e/9K2oywmmNmUOtn27Nvx9//elQNhf/KJDsSfNnTvXqaanqKhIrVu39mGJ4EuBctXhD/zlRO5v/GUfqssJxl/KHEjY/wObT8NNbGysQkNDdeDAAafpBw4cUGJiYpWvSUxMrNPy4eHhCg8Pd0+BYQmBcNXhLzgpVi0Q96FALLOvsf8HLp92KA4LC1Pfvn21du1ax7Ty8nKtXbtWaWlpVb4mLS3NaXlJWrNmTbXLA6gfq3eSBGrC/h+YfN4sNWvWLE2YMEH9+vXTgAEDtHjxYh07dkyTJk2SJI0fP16tWrVSenq6JGnGjBkaMmSIHnnkEY0aNUorVqzQjh079PTTT/tyNQAAgJ/webgZO3asDh06pHvvvVf5+fnq1auXPvjgA0en4ZycHIWE/K+CaeDAgXr55Zf1pz/9SXfddZfOP/98rV69Wt27d/fVKgAAAD9iM8ZUMz6lNRUVFSkmJkZ2u13R0dG+Lg4AAKiFupy/fT6IHwAAgDsRbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKX4fIRib6sYs7CoqMjHJQEAALVVcd6uzdjDQRdujhw5Iklq3bq1j0sCAADq6siRI4qJialxmaB7/EJ5ebl+/PFHRUVFyWaz1fp1RUVFat26tXJzc4P6sQ1sB7ZBBbbDaWwHtkEFtsNpntoOxhgdOXJELVu2dHrmZFWCruYmJCRE5513nsuvj46ODuqdtgLbgW1Qge1wGtuBbVCB7XCaJ7bDuWpsKtChGAAAWArhBgAAWArhppbCw8M1b948hYeH+7ooPsV2YBtUYDucxnZgG1RgO5zmD9sh6DoUAwAAa6PmBgAAWArhBgAAWArhBgAAWArhBgAAWEpQh5slS5aoZ8+ejoGG0tLS9P777zvmHz9+XNOmTVOLFi3UpEkTXXXVVTpw4IDTe+Tk5GjUqFGKjIxUfHy87rzzTp06dcrbq+I2ixYtks1m08yZMx3TgmE7zJ8/Xzabzemvc+fOjvnBsA0q/PDDD7r++uvVokULRUREqEePHtqxY4djvjFG9957r5KSkhQREaHhw4frm2++cXqPw4cP67rrrlN0dLSaNm2qyZMn6+jRo95eFZclJydX2h9sNpumTZsmKTj2h7KyMt1zzz1KSUlRRESE2rdvr4ULFzo91ycY9gXp9HD/M2fOVNu2bRUREaGBAwdq+/btjvlW3A6bNm3S5ZdfrpYtW8pms2n16tVO8921zp999pkuvvhiNWrUSK1bt9af//xn96yACWJvvfWWeffdd83XX39t9u7da+666y7TsGFDk5mZaYwx5qabbjKtW7c2a9euNTt27DAXXnihGThwoOP1p06dMt27dzfDhw83u3btMu+9956JjY01c+fO9dUq1ct///tfk5ycbHr27GlmzJjhmB4M22HevHmmW7duJi8vz/F36NAhx/xg2AbGGHP48GHTtm1bM3HiRLNt2zbz7bffmg8//NDs27fPscyiRYtMTEyMWb16tdm9e7e54oorTEpKiikpKXEsc9lll5nU1FTzySefmP/85z+mQ4cOZty4cb5YJZccPHjQaV9Ys2aNkWTWr19vjAmO/eGBBx4wLVq0MO+8847Jzs42r776qmnSpIl5/PHHHcsEw75gjDFXX3216dq1q9m4caP55ptvzLx580x0dLT5/vvvjTHW3A7vvfeeufvuu82qVauMJPPGG284zXfHOtvtdpOQkGCuu+46k5mZaV555RUTERFhnnrqqXqXP6jDTVWaNWtmnnnmGVNYWGgaNmxoXn31Vce8L7/80kgyW7duNcac/vJDQkJMfn6+Y5klS5aY6OhoU1pa6vWy18eRI0fM+eefb9asWWOGDBniCDfBsh3mzZtnUlNTq5wXLNvAGGNmz55tLrroomrnl5eXm8TERPPwww87phUWFprw8HDzyiuvGGOM+eKLL4wks337dscy77//vrHZbOaHH37wXOE9aMaMGaZ9+/amvLw8aPaHUaNGmRtvvNFp2pgxY8x1111njAmefaG4uNiEhoaad955x2l6nz59zN133x0U2+HscOOudf773/9umjVr5vSbmD17tunUqVO9yxzUzVJnKisr04oVK3Ts2DGlpaXp008/1cmTJzV8+HDHMp07d1abNm20detWSdLWrVvVo0cPJSQkOJYZMWKEioqK9Pnnn3t9Hepj2rRpGjVqlNP6Sgqq7fDNN9+oZcuWateuna677jrl5ORICq5t8NZbb6lfv3767W9/q/j4ePXu3VvLli1zzM/OzlZ+fr7TtoiJidEFF1zgtC2aNm2qfv36OZYZPny4QkJCtG3bNu+tjJucOHFCL730km688UbZbLag2R8GDhyotWvX6uuvv5Yk7d69W5s3b9bIkSMlBc++cOrUKZWVlalRo0ZO0yMiIrR58+ag2Q5nctc6b926VYMHD1ZYWJhjmREjRmjv3r36+eef61XGoHtw5tn27NmjtLQ0HT9+XE2aNNEbb7yhrl27KiMjQ2FhYWratKnT8gkJCcrPz5ck5efnOx28KuZXzAsUK1as0M6dO53akCvk5+cHxXa44IILtHz5cnXq1El5eXlasGCBLr74YmVmZgbNNpCkb7/9VkuWLNGsWbN01113afv27br11lsVFhamCRMmONalqnU9c1vEx8c7zW/QoIGaN28eUNuiwurVq1VYWKiJEydKCp7fxJw5c1RUVKTOnTsrNDRUZWVleuCBB3TddddJUtDsC1FRUUpLS9PChQvVpUsXJSQk6JVXXtHWrVvVoUOHoNkOZ3LXOufn5yslJaXSe1TMa9asmctlDPpw06lTJ2VkZMhut+u1117ThAkTtHHjRl8Xy2tyc3M1Y8YMrVmzptKVSTCpuBqVpJ49e+qCCy5Q27Zt9a9//UsRERE+LJl3lZeXq1+/fnrwwQclSb1791ZmZqaWLl2qCRMm+Lh0vvGPf/xDI0eOVMuWLX1dFK/617/+pX/+8596+eWX1a1bN2VkZGjmzJlq2bJl0O0LL774om688Ua1atVKoaGh6tOnj8aNG6dPP/3U10VDNYK+WSosLEwdOnRQ3759lZ6ertTUVD3++ONKTEzUiRMnVFhY6LT8gQMHlJiYKElKTEysdIdExf8rlvF3n376qQ4ePKg+ffqoQYMGatCggTZu3Ki//vWvatCggRISEoJiO5ytadOm6tixo/bt2xc0+4IkJSUlqWvXrk7TunTp4miiq1iXqtb1zG1x8OBBp/mnTp3S4cOHA2pbSNJ3332nf//735oyZYpjWrDsD3feeafmzJmja665Rj169NANN9yg2267Tenp6ZKCa19o3769Nm7cqKNHjyo3N1f//e9/dfLkSbVr1y6otkMFd62zJ38nQR9uzlZeXq7S0lL17dtXDRs21Nq1ax3z9u7dq5ycHKWlpUmS0tLStGfPHqcvcM2aNYqOjq50gvBXl1xyifbs2aOMjAzHX79+/XTdddc5/h0M2+FsR48eVVZWlpKSkoJmX5CkQYMGae/evU7Tvv76a7Vt21aSlJKSosTERKdtUVRUpG3btjlti8LCQqer2nXr1qm8vFwXXHCBF9bCfZ577jnFx8dr1KhRjmnBsj8UFxcrJMT5FBEaGqry8nJJwbcvSFLjxo2VlJSkn3/+WR9++KF+/etfB+V2cNc6p6WladOmTTp58qRjmTVr1qhTp071apKSFNy3gs+ZM8ds3LjRZGdnm88++8zMmTPH2Gw289FHHxljTt/u2aZNG7Nu3TqzY8cOk5aWZtLS0hyvr7jd89JLLzUZGRnmgw8+MHFxcQF1u2dVzrxbypjg2A6333672bBhg8nOzjYff/yxGT58uImNjTUHDx40xgTHNjDm9HAADRo0MA888ID55ptvzD//+U8TGRlpXnrpJccyixYtMk2bNjVvvvmm+eyzz8yvf/3rKm8B7d27t9m2bZvZvHmzOf/88/36tteqlJWVmTZt2pjZs2dXmhcM+8OECRNMq1atHLeCr1q1ysTGxpo//vGPjmWCZV/44IMPzPvvv2++/fZb89FHH5nU1FRzwQUXmBMnThhjrLkdjhw5Ynbt2mV27dplJJlHH33U7Nq1y3z33XfGGPesc2FhoUlISDA33HCDyczMNCtWrDCRkZHcCl5fN954o2nbtq0JCwszcXFx5pJLLnEEG2OMKSkpMbfccotp1qyZiYyMNFdeeaXJy8tzeo/9+/ebkSNHmoiICBMbG2tuv/12c/LkSW+viludHW6CYTuMHTvWJCUlmbCwMNOqVSszduxYp7FdgmEbVHj77bdN9+7dTXh4uOncubN5+umnneaXl5ebe+65xyQkJJjw8HBzySWXmL179zot89NPP5lx48aZJk2amOjoaDNp0iRz5MgRb65GvX344YdGUqV1MyY49oeioiIzY8YM06ZNG9OoUSPTrl07c/fddzvdthss+8LKlStNu3btTFhYmElMTDTTpk0zhYWFjvlW3A7r1683kir9TZgwwRjjvnXevXu3ueiii0x4eLhp1aqVWbRokVvKbzPmjOEmAQAAAhx9bgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgDUytChQzVz5kxfF8Pj5s+fr169evm6GADqgXADICicOHHCq59njNGpU6e8+pkATiPcADiniRMnauPGjXr88cdls9lks9m0f/9+ZWZmauTIkWrSpIkSEhJ0ww03qKCgwPG6oUOH6g9/+INmzpypZs2aKSEhQcuWLdOxY8c0adIkRUVFqUOHDnr//fcdr9mwYYNsNpveffdd9ezZU40aNdKFF16ozMxMpzJt3rxZF198sSIiItS6dWvdeuutOnbsmGN+cnKyFi5cqPHjxys6Olq/+93vJEmzZ89Wx44dFRkZqXbt2umee+5xPJV4+fLlWrBggXbv3u1Yz+XLl2v//v2y2WzKyMhwvH9hYaFsNps2bNjgVO73339fffv2VXh4uDZv3qzy8nKlp6crJSVFERERSk1N1WuvveburwjAGQg3AM7p8ccfV1pamqZOnaq8vDzl5eUpKipKv/jFL9S7d2/t2LFDH3zwgQ4cOKCrr77a6bXPP/+8YmNj9d///ld/+MMfdPPNN+u3v/2tBg4cqJ07d+rSSy/VDTfcoOLiYqfX3XnnnXrkkUe0fft2xcXF6fLLL3eEkKysLF122WW66qqr9Nlnn2nlypXavHmzpk+f7vQef/nLX5Samqpdu3bpnnvukSRFRUVp+fLl+uKLL/T4449r2bJleuyxxyRJY8eO1e23365u3bo51nPs2LF12lZz5szRokWL9OWXX6pnz55KT0/XCy+8oKVLl+rzzz/Xbbfdpuuvv14bN26s0/sCqAO3PH4TgOWd/bT4hQsXmksvvdRpmdzcXKcnaQ8ZMsRcdNFFjvmnTp0yjRs3NjfccINjWl5enpFktm7daoz539OIV6xY4Vjmp59+MhEREWblypXGGGMmT55sfve73zl99n/+8x8TEhJiSkpKjDHGtG3b1owePfqc6/Xwww+bvn37Ov4/b948k5qa6rRMdna2kWR27drlmPbzzz8bSWb9+vVO5V69erVjmePHj5vIyEizZcsWp/ebPHmyGTdu3DnLBsA1DXwZrAAErt27d2v9+vVq0qRJpXlZWVnq2LGjJKlnz56O6aGhoWrRooV69OjhmJaQkCBJOnjwoNN7pKWlOf7dvHlzderUSV9++aXjsz/77DP985//dCxjjFF5ebmys7PVpUsXSVK/fv0qlW3lypX661//qqysLB09elSnTp1SdHR0nde/Omd+5r59+1RcXKxf/vKXTsucOHFCvXv3dttnAnBGuAHgkqNHj+ryyy/XQw89VGleUlKS498NGzZ0mmez2Zym2Ww2SVJ5eXmdPvv3v/+9br311krz2rRp4/h348aNneZt3bpV1113nRYsWKARI0YoJiZGK1as0COPPFLj54WEnG7BN8Y4plU0kZ3tzM88evSoJOndd99Vq1atnJYLDw+v8TMBuI5wA6BWwsLCVFZW5vh/nz599Prrrys5OVkNGrj/UPLJJ584gsrPP/+sr7/+2lEj06dPH33xxRfq0KFDnd5zy5Ytatu2re6++27HtO+++85pmbPXU5Li4uIkSXl5eY4alzM7F1ena9euCg8PV05OjoYMGVKnsgJwHR2KAdRKcnKytm3bpv3796ugoEDTpk3T4cOHNW7cOG3fvl1ZWVn68MMPNWnSpErhwBX33Xef1q5dq8zMTE2cOFGxsbEaPXq0pNN3PG3ZskXTp09XRkaGvvnmG7355puVOhSf7fzzz1dOTo5WrFihrKws/fWvf9Ubb7xRaT2zs7OVkZGhgoIClZaWKiIiQhdeeKGjo/DGjRv1pz/96ZzrEBUVpTvuuEO33Xabnn/+eWVlZWnnzp164okn9Pzzz7u8bQDUjHADoFbuuOMOhYaGqmvXroqLi9OJEyf08ccfq6ysTJdeeql69OihmTNnqmnTpo5mnPpYtGiRZsyYob59+yo/P19vv/22wsLCJJ3ux7Nx40Z9/fXXuvjii9W7d2/de++9atmyZY3vecUVV+i2227T9OnT1atXL23ZssVxF1WFq666SpdddpmGDRumuLg4vfLKK5KkZ599VqdOnVLfvn01c+ZM3X///bVaj4ULF+qee+5Renq6unTpossuu0zvvvuuUlJSXNgqAGrDZs5sRAYAH9uwYYOGDRumn3/+WU2bNvV1cQAEIGpuAACApRBuAACApdAsBQAALIWaGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCn/Hwm4xhZQNiCSAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAASI1JREFUeJzt3Xl8FPXh//H3JpCQAAlHTiAhAeQSCAiCAQRUKlJ+WsTWiBenVkUF8QItBc/g11rvgmIVjyqpiNaKB5TLIqmCgIIHSgwGNQEisgESAmQ/vz9otixJINlsdmdnX8/HYx8PMju7+5nZYea9n2scxhgjAAAAmwgLdAEAAAB8iXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADICDmzJkjh8NRq3UdDofmzJnToOUZNmyYhg0bZtn3A1B7hBsgxC1cuFAOh8P9aNSokdq2bavx48frxx9/DHTxLCctLc1jfyUkJOjss8/Wm2++6ZP3Ly0t1Zw5c7R69WqfvB8Qigg3ACRJ9957r15++WXNnz9fI0eO1CuvvKKhQ4fq0KFDDfJ5f/jDH1RWVtYg793QevfurZdfflkvv/yybrvtNv30008aM2aM5s+fX+/3Li0t1T333EO4AeqhUaALAMAaRo4cqX79+kmSJk+erLi4OD300EN6++23demll/r88xo1aqRGjYLzFNS2bVtdeeWV7r+vvvpqderUSY8++qiuu+66AJYMgETNDYAanH322ZKkvLw8j+Vff/21fvvb36pVq1Zq0qSJ+vXrp7fffttjnSNHjuiee+7RaaedpiZNmqh169YaPHiwli9f7l6nuj435eXluuWWWxQfH6/mzZvroosu0g8//FClbOPHj1daWlqV5dW95wsvvKBzzz1XCQkJioyMVPfu3TVv3rw67YtTSUpKUrdu3ZSfn3/S9Xbv3q1JkyYpMTFRTZo0UUZGhl588UX38zt27FB8fLwk6Z577nE3fTV0fyPAboLzZxOABrdjxw5JUsuWLd3LvvjiCw0aNEht27bVjBkz1LRpU/3973/X6NGj9cYbb+jiiy+WdCxkZGdna/Lkyerfv79KSkq0YcMGbdy4Ub/61a9q/MzJkyfrlVde0eWXX66BAwdq5cqVGjVqVL22Y968eTr99NN10UUXqVGjRvrnP/+pG264QS6XS1OmTKnXe1c6cuSIdu7cqdatW9e4TllZmYYNG6bt27frxhtvVHp6ul5//XWNHz9e+/bt09SpUxUfH6958+bp+uuv18UXX6wxY8ZIknr16uWTcgIhwwAIaS+88IKRZP71r3+ZPXv2mJ07d5rFixeb+Ph4ExkZaXbu3Ole97zzzjM9e/Y0hw4dci9zuVxm4MCB5rTTTnMvy8jIMKNGjTrp586ePdscfwravHmzkWRuuOEGj/Uuv/xyI8nMnj3bvWzcuHGmffv2p3xPY4wpLS2tst6IESNMhw4dPJYNHTrUDB069KRlNsaY9u3bm/PPP9/s2bPH7Nmzx3z22WfmsssuM5LMTTfdVOP7PfbYY0aSeeWVV9zLDh8+bDIzM02zZs1MSUmJMcaYPXv2VNleAHVDsxQASdLw4cMVHx+vlJQU/fa3v1XTpk319ttvq127dpKkvXv3auXKlbr00ku1f/9+FRcXq7i4WD///LNGjBihb7/91j26qkWLFvriiy/07bff1vrz3333XUnSzTff7LF82rRp9dquqKgo97+dTqeKi4s1dOhQfffdd3I6nV6957JlyxQfH6/4+HhlZGTo9ddf11VXXaWHHnqoxte8++67SkpK0tixY93LGjdurJtvvlkHDhzQmjVrvCoLgKpolgIgSXr66afVuXNnOZ1OPf/88/rwww8VGRnpfn779u0yxmjWrFmaNWtWte+xe/dutW3bVvfee69+85vfqHPnzurRo4cuuOACXXXVVSdtXvn+++8VFhamjh07eizv0qVLvbbro48+0uzZs5Wbm6vS0lKP55xOp2JjY+v8ngMGDND9998vh8Oh6OhodevWTS1atDjpa77//nuddtppCgvz/E3ZrVs39/MAfINwA0CS1L9/f/doqdGjR2vw4MG6/PLLtW3bNjVr1kwul0uSdNttt2nEiBHVvkenTp0kSUOGDFFeXp7+8Y9/aNmyZXruuef06KOPav78+Zo8eXK9y1rT5H8VFRUef+fl5em8885T165d9ec//1kpKSmKiIjQu+++q0cffdS9TXUVFxen4cOHe/VaAA2PcAOgivDwcGVnZ+ucc87RU089pRkzZqhDhw6SjjWl1ObC3qpVK02YMEETJkzQgQMHNGTIEM2ZM6fGcNO+fXu5XC7l5eV51NZs27atyrotW7bUvn37qiw/sfbjn//8p8rLy/X2228rNTXVvXzVqlWnLL+vtW/fXp9//rlcLpdH7c3XX3/tfl6qObgBqD363ACo1rBhw9S/f3899thjOnTokBISEjRs2DA988wzKiwsrLL+nj173P/++eefPZ5r1qyZOnXqpPLy8ho/b+TIkZKkJ554wmP5Y489VmXdjh07yul06vPPP3cvKywsrDJLcHh4uCTJGONe5nQ69cILL9RYjoby61//WkVFRcrJyXEvO3r0qJ588kk1a9ZMQ4cOlSRFR0dLUrXhDUDtUHMDoEa33367fve732nhwoW67rrr9PTTT2vw4MHq2bOnrrnmGnXo0EG7du1Sbm6ufvjhB3322WeSpO7du2vYsGHq27evWrVqpQ0bNmjx4sW68cYba/ys3r17a+zYsfrLX/4ip9OpgQMHasWKFdq+fXuVdS+77DLdeeeduvjii3XzzTertLRU8+bNU+fOnbVx40b3eueff74iIiJ04YUX6ve//70OHDigBQsWKCEhodqA1pCuvfZaPfPMMxo/frw+/fRTpaWlafHixfroo4/02GOPqXnz5pKOdYDu3r27cnJy1LlzZ7Vq1Uo9evRQjx49/FpeIKgFergWgMCqHAq+fv36Ks9VVFSYjh07mo4dO5qjR48aY4zJy8szV199tUlKSjKNGzc2bdu2Nf/v//0/s3jxYvfr7r//ftO/f3/TokULExUVZbp27WoeeOABc/jwYfc61Q3bLisrMzfffLNp3bq1adq0qbnwwgvNzp07qx0avWzZMtOjRw8TERFhunTpYl555ZVq3/Ptt982vXr1Mk2aNDFpaWnmoYceMs8//7yRZPLz893r1WUo+KmGudf0frt27TITJkwwcXFxJiIiwvTs2dO88MILVV67bt0607dvXxMREcGwcMALDmOOq68FAAAIcvS5AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAthJyk/i5XC799NNPat68OdOcAwAQJIwx2r9/v9q0aVPlBrQnCrlw89NPPyklJSXQxQAAAF7YuXOn2rVrd9J1Qi7cVE5xvnPnTsXExAS4NAAAoDZKSkqUkpLivo6fTMiFm8qmqJiYGMINAABBpjZdSuhQDAAAbIVwAwAAbIVwAwAAbCXk+twAAEJHRUWFjhw5EuhioJYiIiJOOcy7Ngg3AADbMcaoqKhI+/btC3RRUAdhYWFKT09XREREvd6HcAMAsJ3KYJOQkKDo6GgmbQ0ClZPsFhYWKjU1tV7fGeEGAGArFRUV7mDTunXrQBcHdRAfH6+ffvpJR48eVePGjb1+HzoUAwBspbKPTXR0dIBLgrqqbI6qqKio1/sQbgAAtkRTVPDx1XdGuAEAALZCuAEAAH6xevVqORyOBh/FRrgJYoXOMq3LK1ahsyzQRQEAWMCcOXPUu3fvQBcj4BgtFaRy1hdo5pItchkpzCFlj+mprDNTA10sAEAQOHLkSL1GI1kdNTdBqNBZ5g42kuQy0l1LtlKDAwBBzuVyKTs7W+np6YqKilJGRoYWL14s6X9NOitWrFC/fv0UHR2tgQMHatu2bZKkhQsX6p577tFnn30mh8Mhh8OhhQsXSjrWUXfevHm66KKL1LRpUz3wwAMnLUflZ33wwQfq06ePoqKidO6552r37t1677331K1bN8XExOjyyy9XaWmp+3Xl5eW6+eablZCQoCZNmmjw4MFav359w+yskyDcBKH84oPuYFOpwhjtKC6t/gUAAK/5swtAdna2XnrpJc2fP19ffPGFbrnlFl155ZVas2aNe527775bjzzyiDZs2KBGjRpp4sSJkqSsrCzdeuutOv3001VYWKjCwkJlZWW5XzdnzhxdfPHF2rJli/s1pzJnzhw99dRTWrdunXbu3KlLL71Ujz32mF599VUtXbpUy5Yt05NPPule/4477tAbb7yhF198URs3blSnTp00YsQI7d2710d7qHZolgpC6XFNFeaQR8AJdziUFsecDgDgS/7sAlBeXq4HH3xQ//rXv5SZmSlJ6tChg9auXatnnnlG1157rSTpgQce0NChQyVJM2bM0KhRo3To0CFFRUWpWbNmatSokZKSkqq8/+WXX64JEybUqUz333+/Bg0aJEmaNGmSZs6cqby8PHXo0EGS9Nvf/larVq3SnXfeqYMHD2revHlauHChRo4cKUlasGCBli9frr/+9a+6/fbbvdsxXqDmJgglx0Ype0xPhf93PoBwh0MPjumh5NioAJcMAOzD310Atm/frtLSUv3qV79Ss2bN3I+XXnpJeXl57vV69erl/ndycrIkaffu3ad8/379+tW5TMd/VmJioqKjo93BpnJZ5Wfn5eXpyJEj7jAkSY0bN1b//v311Vdf1fmz64OamyCVdWaqhnSO147iUqXFRRNsAMDHTtYFoCHOuQcOHJAkLV26VG3btvV4LjIy0h1wju8IXDnpncvlOuX7N23atM5lOvGzTuyE7HA4avXZ/ka4CWLJsVGEGgBoIP7uAtC9e3dFRkaqoKDA3ex0vONrb2oSERFR71sXeKtjx46KiIjQRx99pPbt20s6Nipr/fr1mjZtml/LQrgBAKAalV0A7lqyVRXGNHgXgObNm+u2227TLbfcIpfLpcGDB8vpdOqjjz5STEyMOzCcTFpamvLz87V582a1a9dOzZs3V2RkZIOU90RNmzbV9ddfr9tvv12tWrVSamqq/u///k+lpaWaNGmSX8pQiXADAEAN/N0F4L777lN8fLyys7P13XffqUWLFjrjjDN011131ar555JLLtGSJUt0zjnnaN++fXrhhRc0fvz4Bi3z8ebOnSuXy6WrrrpK+/fvV79+/fTBBx+oZcuWfiuDJDmMMebUq9lHSUmJYmNj5XQ6FRMTE+jiAAB87NChQ8rPz1d6erqaNGkS6OKgDk723dXl+s1oKQAAYCuEGwAAQsx1113nMdz8+Md1110X6OLVG31uAAAIMffee69uu+22ap+zQ5cNwg0AACEmISFBCQkJgS5Gg6FZCgAA2ArhBgBgS1acORcn56sB3DRLAQBsJSIiQmFhYfrpp58UHx+viIgI920KYF3GGO3Zs6fa2zzUFeEGAGArYWFhSk9PV2FhoX766adAFwd14HA41K5dO4WHh9frfQg3AADbiYiIUGpqqo4ePRqwey2h7ho3blzvYCMRbgAANlXZvFHfJg4EHzoUAwAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWwlouMnOztaZZ56p5s2bKyEhQaNHj9a2bdtO+brXX39dXbt2VZMmTdSzZ0+9++67figtAAAIBgENN2vWrNGUKVP0n//8R8uXL9eRI0d0/vnn6+DBgzW+Zt26dRo7dqwmTZqkTZs2afTo0Ro9erS2bt3qx5LDTgqdZVqXV6xCZ1mgiwIA8AGHMcYEuhCV9uzZo4SEBK1Zs0ZDhgypdp2srCwdPHhQ77zzjnvZWWedpd69e2v+/Pmn/IySkhLFxsbK6XQqJibGZ2VHcMpZX6CZS7bIZaQwh5Q9pqeyzkwNdLEAACeoy/XbUn1unE6nJKlVq1Y1rpObm6vhw4d7LBsxYoRyc3OrXb+8vFwlJSUeD0A6VmNTGWwkyWWku5ZspQYHAIKcZcKNy+XStGnTNGjQIPXo0aPG9YqKipSYmOixLDExUUVFRdWun52drdjYWPcjJSXFp+VG8MovPugONpUqjNGO4tLAFAgA4BOWCTdTpkzR1q1btWjRIp++78yZM+V0Ot2PnTt3+vT9EbzS45oqzOG5LNzhUFpcdGAKBADwCUuEmxtvvFHvvPOOVq1apXbt2p103aSkJO3atctj2a5du5SUlFTt+pGRkYqJifF4AJKUHBul7DE9Fe44lnDCHQ49OKaHkmOjAlwyAEB9NArkhxtjdNNNN+nNN9/U6tWrlZ6efsrXZGZmasWKFZo2bZp72fLly5WZmdmAJYVdZZ2ZqiGd47WjuFRpcdEEGwCwgYCGmylTpujVV1/VP/7xDzVv3tzdbyY2NlZRUccuMldffbXatm2r7OxsSdLUqVM1dOhQPfLIIxo1apQWLVqkDRs26Nlnnw3YdiC4JcdGEWoAwEYC2iw1b948OZ1ODRs2TMnJye5HTk6Oe52CggIVFha6/x44cKBeffVVPfvss8rIyNDixYv11ltvnbQTMgAACB2WmufGH5jnBgCA4BO089wAAADUF+EGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuHGhwqdZVqXV6xCZ1mgiwIAQMhqFOgC2EXO+gLNXLJFLiOFOaTsMT2VdWZqoIsFAEDIoebGBwqdZe5gI0kuI921ZCs1OAAABADhxgfyiw+6g02lCmO0o7g0MAUCACCEEW58ID2uqcIcnsvCHQ6lxUUHpkAAAIQwwo0PJMdGKXtMT4U7jiWccIdDD47poeTYqACXDACA0EOHYh/JOjNVQzrHa0dxqdLiogk2AAAECOHGh5Jjowg1AAAEGM1SAADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgIabj788ENdeOGFatOmjRwOh956662Trr969Wo5HI4qj6KiIv8UGAAAWF5Aw83BgweVkZGhp59+uk6v27ZtmwoLC92PhISEBiohAAAINo0C+eEjR47UyJEj6/y6hIQEtWjRwvcFAgAAQS8o+9z07t1bycnJ+tWvfqWPPvropOuWl5erpKTE4wEAAOwrqMJNcnKy5s+frzfeeENvvPGGUlJSNGzYMG3cuLHG12RnZys2Ntb9SElJ8WOJAQCAvzmMMSbQhZAkh8OhN998U6NHj67T64YOHarU1FS9/PLL1T5fXl6u8vJy998lJSVKSUmR0+lUTExMfYoMAAD8pKSkRLGxsbW6fge0z40v9O/fX2vXrq3x+cjISEVGRvqxRAAAIJCCqlmqOps3b1ZycnKgiwEAACwioDU3Bw4c0Pbt291/5+fna/PmzWrVqpVSU1M1c+ZM/fjjj3rppZckSY899pjS09N1+umn69ChQ3ruuee0cuVKLVu2LFCbAAAALCag4WbDhg0655xz3H9Pnz5dkjRu3DgtXLhQhYWFKigocD9/+PBh3Xrrrfrxxx8VHR2tXr166V//+pfHewAAgNBmmQ7F/lKXDkkAAMAa6nL9Dvo+N6i/QmeZ1uUVq9BZFuiiAABQb0E/Wgr1k7O+QDOXbJHLSGEOKXtMT2WdmRroYgEA4DVqbkJYobPMHWwkyWWku5ZspQYHABDUCDchLL/4oDvYVKowRjuKSwNTIAAAfIBwE8LS45oqzOG5LNzhUFpcdGAKBACADxBuQlhybJSyx/RUuONYwgl3OPTgmB5Kjo0KcMkAAPAeHYpDXNaZqRrSOV47ikuVFhdNsAEABD3CDZQcG0WoAQDYBs1SAADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3AADAVhrVdsWSkpJav2lMTIxXhQEAAKivWoebFi1ayOFwnHQdY4wcDocqKirqXTAAAABv1DrcrFq1qiHLAQAA4BO1DjdDhw5tyHIAAAD4RK3DzYn27dunv/71r/rqq68kSaeffromTpyo2NhYnxUOAACgrrwaLbVhwwZ17NhRjz76qPbu3au9e/fqz3/+szp27KiNGzf6uowAAAC15jDGmLq+6Oyzz1anTp20YMECNWp0rPLn6NGjmjx5sr777jt9+OGHPi+or5SUlCg2NlZOp5NRXQAA+FChs0z5xQeVHtdUybFRPn3vuly/vQo3UVFR2rRpk7p27eqx/Msvv1S/fv1UWlpa17f0G8INAAC+l7O+QDOXbJHLSGEOKXtMT2Wdmeqz96/L9durZqmYmBgVFBRUWb5z5041b97cm7cEAABBqtBZ5g42kuQy0l1LtqrQWRaQ8ngVbrKysjRp0iTl5ORo586d2rlzpxYtWqTJkydr7Nixvi4jAACwsPzig+5gU6nCGO0oDkxLjlejpf70pz/J4XDo6quv1tGjRyVJjRs31vXXX6+5c+f6tIAAAMDa0uOaKswhj4AT7nAoLS46IOXxqs9NpdLSUuXl5UmSOnbsqOjowGxEXdDnBgAA38tZX6C7lmxVhTEKdzj04JgeAetzU69wE4wINwAANIxCZ5l2FJcqLS46oKOlvGqWOnTokJ588kmtWrVKu3fvlsvl8nieuW4AAAg9ybFRPg813vAq3EyaNEnLli3Tb3/7W/Xv3/+UN9QEAADwF6/CzTvvvKN3331XgwYN8nV5AAAA6sWroeBt27ZlPhsbK3SWaV1eccDmJwAAoD68CjePPPKI7rzzTn3//fe+Lg8CLGd9gQbNXanLF3ysQXNXKmd91ckaAQCwMq+apfr166dDhw6pQ4cOio6OVuPGjT2e37t3r08KB/+qaYbJIZ3jLdFBDACA2vAq3IwdO1Y//vijHnzwQSUmJtKhuA4a8qZi9XWyGSatVlYAAGriVbhZt26dcnNzlZGR4evy2FpD31Ssvqw2wyQAAN7wqs9N165dVVZGZ9O6sNpNxaqTHBul7DE9Ff7fmrjKGSaptQEABBOvam7mzp2rW2+9VQ888IB69uxZpc8NM/9WFSxNPllnpmpI5/gGm2ESAICG5lW4ueCCCyRJ5513nsdyY4wcDocqKirqXzKbCaYmH6vMMAkAgDe8CjerVq3ydTlsr7LJ58SbihEiAADwrQa9ceYNN9yge++9V3FxcQ31EXUW6BtnNuRNxQAAsKu6XL+96lBcW6+88opKSkoa8iOCTnJslDI7tibYAADQQBo03DRgpRAAAEC1GjTcAAAA+BvhBgAA2ArhBgAA2Arhxk8KnWVal1dsqRmJAQCwozqHm6NHj+ree+/VDz/8cMp1r7zySmYr1rF7Sg2au1KXL/hYg+auVM76gkAXCQAA2/JqnpvmzZtry5YtSktLa4AiNSx/z3NT6CzToLkrq8xMvHbGOQwHBwCglhp8nptzzz1Xa9as8apwoeZk95QKBjSnAQCCjVe3Xxg5cqRmzJihLVu2qG/fvmratKnH8xdddJFPCmcHwXRPqRPlrC9w38k8zCFlj+mprDNTA10sAABOyqtmqbCwmit8rH7jzEDcfiFnfUGVe0pZPSTQnAYAsJK6XL+9qrlxuVxeFSxUZZ2ZqiGd44PqnlIna04LhvIDAEKXV31uXnrpJZWXl1dZfvjwYb300kv1LpQdBds9pSqb044XLM1pAIDQ5lW4mTBhgpxOZ5Xl+/fv14QJE+pdKARecmyUssf0VLjjWMKpbE4LlnAGAAhdXjVLGWPkcDiqLP/hhx8UGxtb70LBGoKxOQ0AgDqFmz59+sjhcMjhcOi8885To0b/e3lFRYXy8/N1wQUX+LyQCJzk2ChCDQAgqNQp3IwePVqStHnzZo0YMULNmjVzPxcREaG0tDRdcskltX6/Dz/8UA8//LA+/fRTFRYW6s0333R/Rk1Wr16t6dOn64svvlBKSor+8Ic/aPz48XXZDAAAYGN1CjezZ8+WJKWlpSkrK0tNmjSp14cfPHhQGRkZmjhxosaMGXPK9fPz8zVq1Chdd911+tvf/qYVK1Zo8uTJSk5O1ogRI+pVFgAAYA9ezXNT6fDhw9q9e3eVoeGpqXWfw8XhcJyy5ubOO+/U0qVLtXXrVveyyy67TPv27dP7779fq88JxDw3AACgfhp8nptvv/1WEydO1Lp16zyWV3Y0bqhJ/HJzczV8+HCPZSNGjNC0adNqfE15ebnHsPWSkpIGKRsAALAGr8LN+PHj1ahRI73zzjtKTk6uduRUQygqKlJiYqLHssTERJWUlKisrExRUVU7vmZnZ+uee+7xS/kAAEDgeRVuNm/erE8//VRdu3b1dXl8bubMmZo+fbr775KSEqWkpASwRAAAoCF5FW66d++u4uJiX5fllJKSkrRr1y6PZbt27VJMTEy1tTaSFBkZqcjISH8UDwAAWIBXMxQ/9NBDuuOOO7R69Wr9/PPPKikp8Xg0lMzMTK1YscJj2fLly5WZmdlgnwkAAIKLVzU3lZ16zz33XI/+NnXtUHzgwAFt377d/Xd+fr42b96sVq1aKTU1VTNnztSPP/7ovl/Vddddp6eeekp33HGHJk6cqJUrV+rvf/+7li5d6s1mAAAAG/Iq3KxatconH75hwwadc8457r8r+8aMGzdOCxcuVGFhoQoKCtzPp6ena+nSpbrlllv0+OOPq127dnruueeY4wYAALh5Pc/Nv//9bz3zzDPKy8vT4sWL1bZtW7388stKT0/X4MGDfV1On2GeGwAAgk9drt9e9bl54403NGLECEVFRWnTpk3ueWScTqcefPBBb94SAADAJ7wKN/fff7/mz5+vBQsWqHHjxu7lgwYN0saNG31WOAAAgLryKtxs27ZNQ4YMqbI8NjZW+/btq2+ZAAAAvOZVuElKSvIY5VRp7dq16tChQ70LBd8rdJZpXV6xCp1lgS4KAAANyqvRUtdcc42mTp2q559/Xg6HQz/99JNyc3N12223adasWb4uI+opZ32BZi7ZIpeRwhxS9pieyjqz7jc3BQAgGHgVbmbMmCGXy6XzzjtPpaWlGjJkiCIjI3Xbbbfppptu8nUZUQ+FzjJ3sJEkl5HuWrJVQzrHKzm2+lmdAQAIZl6FG4fDobvvvlu33367tm/frgMHDqh79+5q1qyZr8uHesovPugONpUqjNGO4lLCDQDAlrwKN5UiIiLUvXt3X5UFDSA9rqnCHPIIOOEOh9LiogNXKAAAGpBXHYoRPJJjo5Q9pqfC/3ubjHCHQw+O6UGtDQDAtupVc4PgkHVmqoZ0jteO4lKlxUUTbAAAtka4CRHJsVGEGgBASKBZCgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA1Fuhs0zr8opV6CwLdFHUKNAFAAAAwS1nfYFmLtkil5HCHFL2mJ7KOjM1YOWh5gYAAHit0FnmDjaS5DLSXUu2BrQGh3ADAAC8ll980B1sKlUYox3FpYEpkAg3AACgHtLjmirM4bks3OFQWlx0YAokwg0AAKiH5NgoZY/pqXDHsYQT7nDowTE9lBwbFbAy0aEYAADUS9aZqRrSOV47ikuVFhcd0GAjEW5gc4XOMuUXH1R6XNOA/2cDADtLjo2yzHmWcAPbstrQRACAf9DnBrZkxaGJAAD/INzAlqw4NBEA4B+EG9iSFYcmAgD8g3ADW7Li0EQAgH/QodgCGNHTMKw2NBEA4B+EmwBjRE/DstLQRACAf9AsFUCM6AEAwPcINwHEiB4AAHyPcBNAjOgBAMD3CDcBxIgeAAB8jw7FAcaIHgAAfItwYwGM6AEAwHdolvKTQmeZ1uUVMxIKAIAGRs2NHzCXDQAA/kPNTQNjLhsAAPyLcNPA7DyXDU1tAAArolmqgVXOZXN8wLHDXDY0tQEArMoSNTdPP/200tLS1KRJEw0YMECffPJJjesuXLhQDofD49GkSRM/lrZu7DiXDU1tAAArC3jNTU5OjqZPn6758+drwIABeuyxxzRixAht27ZNCQkJ1b4mJiZG27Ztc//tcDiqXc8q7DaXzcma2oJ92wAAwS/gNTd//vOfdc0112jChAnq3r275s+fr+joaD3//PM1vsbhcCgpKcn9SExM9GOJvZMcG6XMjq1tcfHnthEAACsLaLg5fPiwPv30Uw0fPty9LCwsTMOHD1dubm6Nrztw4IDat2+vlJQU/eY3v9EXX3zhj+Liv+zY1Aag9hhMAKsLaLNUcXGxKioqqtS8JCYm6uuvv672NV26dNHzzz+vXr16yel06k9/+pMGDhyoL774Qu3atauyfnl5ucrLy91/l5SU+HYjQpTdmtoA1A6DCRAMAt4sVVeZmZm6+uqr1bt3bw0dOlRLlixRfHy8nnnmmWrXz87OVmxsrPuRkpLi5xI3rED+grJTU5u/8csXwYjBBAgWAa25iYuLU3h4uHbt2uWxfNeuXUpKSqrVezRu3Fh9+vTR9u3bq31+5syZmj59uvvvkpIS2wQcfkEFJ743BCsGEyBYBLTmJiIiQn379tWKFSvcy1wul1asWKHMzMxavUdFRYW2bNmi5OTkap+PjIxUTEyMx8MO+AUVnILte6OGCcdjMAGCRcCbpaZPn64FCxboxRdf1FdffaXrr79eBw8e1IQJEyRJV199tWbOnOle/95779WyZcv03XffaePGjbryyiv1/fffa/LkyYHahICw88zHdhZM31vO+gINmrtSly/4WIPmrlTO+oJAFwl+cLJAy2ACBIuAz3OTlZWlPXv26I9//KOKiorUu3dvvf/+++5OxgUFBQoL+18G++WXX3TNNdeoqKhILVu2VN++fbVu3Tp17949UJsQENXNfCxJn/+4T5kdWwemUDilYJmxuroapplvbNGQzvFcyGyq0Fmm59fm669r80/aZMpgAgQDhzHGnHo1+ygpKVFsbKycTmfQN1E9syZP2e95jioLdzi0dsY5nHAsLGd9ge5aslUVxrh/+Vqtz826vGJdvuDjKsuvPbuD7hrVLQAlQkPKWV+gGW9s0YkXA84nwaXQWab84oNKj2vq/s6qWxas6nL9DnjNDbzXs11slWWB7txnp/9IDSUYfvmmxzWVQ6pysXtu7XeaMDjNkmWGdypr6ar7lRvo8wlqr7qBCpKqHbwQCudpwk0Qs1oTB6OAai85NsrSJ5Xk2Chdc3a6nv13vsdylxEXO5uprh9YJSs2maKqmpqRddz1oXLwwr6yI3rova9tf54OeIdieM9KnfuCbRQQTm3C4HRGxoSA6kZASccufHQWrh9/jTasLqC6VLVPZoUxmvvfYCPZ+zxNzU2Qs0oTB/Nf2E9leD6xfxDfp72c+D2HSZo8JF0TBqVb6ru2YlPKycrkz5rsLT84qywLkzxqbiqXhcp5mnBjA1Zo4rBaExl8wyrhGQ3L6t+zFZu8T1ammmqyG2K0YaGzTA+9X/V2RXf+uqtaRDX2+HFyxwVd9ND7X4fEeZpwA5/gV759WSE8o+FZ9Xv2Z1DwVZn8WZNdU5+pXm1bKLNj6yqhtUV045A4TxNu4DNW//UHIPhYscn7VGXyZ032qT7rxNAaKudpOhTDp7iZJgBfsuItH05VJn8O9vDms0LhPM0kfoCNWLHTJQLHLseDFSe+rE2ZCp1lfqsh8ednBUpdrt+EG8AmrNjpEoFzquMh2IJPQ168vd0XoRAorIRwcxKEG9hRobNMg+aurNLuztT5oelUxwNB+H/YF8GjLtdv+twAQa7QWaZ3Pv8paO42job3wn9vfnm8yuOBCTf/h31hX4yWAoLY8b86TxTucCg6Ikzr8oqDpukB9VfoLNOCE26bIR2rlUiLi7bk6KNAYV/YF+EGCFKFzrJq7+RcaUSPRF38l3VUt4eY/OKD1R4Tkwd3cF+wmXDzGCYftS+apYAg9fza/BqDjSS9t7WI6vYQVN0w5TBJEwanSQrcPen8dZ+lurDS/fngW9Tc2EywjYA4UbCX318KnWX669qqTQ+V7HoPGY6PU6vNbOH+nsjNyp12Q2VSu1BDuLERK59AaiPYy+9PNU25Lsm295Dh+Ki92lyw/XW7BSvePuFEVr31BLxHs5RNBHuv/2Avv79V2/TgkJ4a20drZ5yj3w/taKvqdo6PurPKLLQn67QLNBRqbmwi2Hv9B3v5/a2mpof/l9HGvY6dqts5PoIXnXYRCIQbm7DCCaQ+/SGsUP5gY6Wmh4bG8RG8atMHCPA1Zii2kUDef8UX/SGseP8YWAfHR3Dz9lYF/uxETod1a+P2Cydh53AjBeZeJ76c+p97teBkOD5Ciz87kdNh3frqcv2mWcpmAtEM4cv+EHZpRgl2Vv0Fy/EROvw5yioYRnShbgg3qDf6Q9gLv2BhBf7sRB4MHdat+oPDqhgKjnpjlk/7YMg1rKK66Q4a6keTPz+rrgqdZXpg6ZcaNHelLl/wsQbNXamc9QWBLpblUXMDn7DTsONQFgy/YBEa6jPKqq61HFYd0ZWzvqDK/eNoMqsdwg18xp8zntbmxEU1bt3RxAgr8eZHk7fNqlb7gVZZi1rdiB9+cJwa4QZBpbYnLvqNeMeqv2ARuuryo6m+HYOt1GH9VLdY4QfHyRFuEDRqe+Ji5EP9WO0XLFBbNTWrbvz+F7VsGly1uNXVokrHfqzxg+PUCDcIGrXtD0K/kfqz0i9YoLaqCwQOh3Tjq5tkFFy1uCfWooZJmjwkXRMGpfN/sxYINwgate0PQr+R0EQfK1QJBA7JGLn7rQS6Freuxyi1qN4j3MCSqjsJ1LY/CP1GQo8V+1gRtgLj+EBQfOCQbnpts8fz/q7FrTwOtvzo1EPvfV3nY5RaVO9w+wWbC8YT7KkuVLWdgp+p+kODL2//4StWDFuhqKGOjdqeV48/Dk4U6GM0GHH7BUgKzhNsbToD1/aXDL94QoPV+ljRod06GqIWtzY/vvKLD6ppRHiNwUaiH2BDI9zYVLCeYK12oYL1Wa2PFcewtfiy38qpzqvHBx/Hf/v71IR+gA2L2y/Y1MlOsFZm5WnQ7a7QWaZ1ecVBd6sFq93+g2PYepJjo5TZsXW9j4mTnVdPDD6nCjZ26Ado5XMGNTc2ZbVfs7XlzynXg0lDb1swNmEez0qjSujQbl8nO6/WNOlemCTXf9e744Iu6tWuRa2PUSuf06x+zqBDsY3lrC+ocoK10sF3MnXtDGz1/2j10dDbZsUOuQ3B3xcKOrTbU03n1Zr+Hy25IVOlh111Pg6sfE4L1DmDDsWQZK1fs3VVm87ANXXcC5b+RbXhj75TodBHJBAXCjq021NN59WaauwyUlrW+TOs3mcyGM4ZhBubs+sJ1qPjnlTl5nJW+49WV5XBbe/Bww1+EgnWJszasvqFAsGnpvOqr35QWj08BMM5g3CDoFOl414161jtP1pdnBjcTgxvvt42u/cR8deFwsr9I+A/vvhBafXwEAznDMINgk6NHff+ezKw4n+02qouuDnU8NsWzE2Yp+KPC4WV+0cg+ARDeLD6OYNwg6BT08XK2457VlJdcDOSnrysj1o3i2zQbbNrE+bJLhS+qG2h2QsNwerhQbL2OYNwg6Djy457VlNTcOub1tKyJ5FgUN2Fwle1LVbvH4HgZeXwYHWEGwSlYPhV441gqI4OVsdfKHxZ21KfZi/66YQmvveGR7hB0LLrrxq7Bjcr8WVti7eB1Fc1R1wogwv9s/yDcANYkF2Dm1VUV9sS5pCiI7y7I01dA6mvao64UAYX+mf5D/eWAhByTrwflXTsQnPxX9YpZ32B1+9Z2/sX+eLebzVdKK14nx8cE6z3/AtGhBsAISnrzFQtuSFTx9/j0l8BwRc31+RCaQ11uXkkN1X1H8INgJB18HBFjbNbNyRf3MmcC2Xg5awv0KC5K3X5go81aO7KU9b6We0O9nZGnxsAIWvLD84qy/wVEOrbcZyRdYHlbf8ZBgz4B+EGgN9YaWRPobNMD73/dZXld4zs4rey1bfjOBfKk2vI460+I+4YMNDwCDcA/MJqI3tquo1Hr7YtTvo6fwW02n4OF8rqNfTxVtOIO5oFrfEjhnCDkGOF/3ihxopDYL2ZfM9fAc1qQTDY+ON4q2wWnLFki0zlveCM9OE3e0L6u7LKsUuHYoSUunYAhG9YcWRPXTt3+mvoNUO8689fx9uQzvE6vke6UWh/V1Y6dqm5QciwYu1BqPDHnbm9UZc+K/66hxT3qqo/fx1v+cUHaxxtF4rflZWOXWpuEDKsWHsQKqw8BLa2k+/5a+g1Q7zrz1/HG9+VJyvtD2puEDKsWnsQKoJ9ZI8vhl7Xpr8XQ7x9wx/HG9+VJyvtD4cx5sRaNVsrKSlRbGysnE6nYmJiAl0c+FnO+oIq//Hs2PmPTtMNp9BZ5tUFs64dLb39HPhfMH1X/jg3NNT+qMv1m3CDkFPX/3iFzjJ9+v0vMsaoX1qrk3Y4tUKgsMpoBSuwyndS6CzToLkrq9Qarp1xjuUvhrCPYD831OX6TbMUQk5d5gXJWV+gGW9scXcadEiae0nVE4JVThp0mv4fq3wnkrU6WiI0hdq5gQ7FQA0qTwbHX5OMpJlvbPEY2niy4Y91uameL9Bp+hgrDUmVrNXR8mT8fbzCf0Lt3EDNjYVZpUo9VNU0g61L0tLPCzWqV7KSY6NqPGm8sHaHnlv7nV9rDug0fYzVakqs1NGyJlaq6bKyYD0vh9q5gXBjUZxoAq+6k0Gl+5d+pQff/UrZY3pqSOf4qtOwS+5gI/mvCjgYLqL+YMUTuZVHi4Vak4W3gvm8HGrnBjoUWxCdD60jZ32Bx/TqJ6r8Xj78Zo/HSWPS4DQ9++/8Kuu/ds1ZyuzYuoFLHVyjNxpKMIyMs0otwLq8Yl2+4OMqy/11vAYDu5yXg/ncEHQdip9++mk9/PDDKioqUkZGhp588kn179+/xvVff/11zZo1Szt27NBpp52mhx56SL/+9a/9WOKGZbUq9bqyygnbFyp/bW/8/hdtK9qvJ1Zu93i+8ns58Ve5JD23Nj9gNQfcTNHaNSWStWoBrFjTZTUbduwN6vNypVA5NwS8Q3FOTo6mT5+u2bNna+PGjcrIyNCIESO0e/fuatdft26dxo4dq0mTJmnTpk0aPXq0Ro8era1bt/q55A0nWDofVseO925Kjo3SqF5tNHZA6km/l+NnurXyjLyhpLazD/ub1To8c7yeXM76Ak1dtLnK8mA5L4eigDdLDRgwQGeeeaaeeuopSZLL5VJKSopuuukmzZgxo8r6WVlZOnjwoN555x33srPOOku9e/fW/PnzT/l5wdAsJQVHlfqJ7FJtezJ1/V6CuQoYDceqzUAcr1VVd16TjtUMZFczLQQaTtA0Sx0+fFiffvqpZs6c6V4WFham4cOHKzc3t9rX5Obmavr06R7LRowYobfeeqva9cvLy1VeXu7+u6SkpP4F9wOrV6lXJ9ib02qjrt9LqFQBo26s2gzE8VpVTaMmn7y8j0b1auP/AqFWAtosVVxcrIqKCiUmJnosT0xMVFFRUbWvKSoqqtP62dnZio2NdT9SUlJ8U3g/sGqVek2CuTmtLoLte4H10AwUPGo6r53RvmVgCoRaCXifm4Y2c+ZMOZ1O92Pnzp2BLpJtccIGai/rzFStnXGOXrvmLK2dcQ7NGxbFeS04BbRZKi4uTuHh4dq1a5fH8l27dikpKana1yQlJdVp/cjISEVGRvqmwDilYGxOAwKFZqDgwHkt+AS05iYiIkJ9+/bVihUr3MtcLpdWrFihzMzMal+TmZnpsb4kLV++vMb14X802wCwG85rwSXg89xMnz5d48aNU79+/dS/f3899thjOnjwoCZMmCBJuvrqq9W2bVtlZ2dLkqZOnaqhQ4fqkUce0ahRo7Ro0SJt2LBBzz77bCA3AwAAWETAw01WVpb27NmjP/7xjyoqKlLv3r31/vvvuzsNFxQUKCzsfxVMAwcO1Kuvvqo//OEPuuuuu3TaaafprbfeUo8ePQK1CQAAwEICPs+NvwXLPDcAAOB/6nL9tv1oKQAAEFoINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYCPkOxv1XOWVhSUhLgkgAAgNqqvG7XZu7hkAs3+/fvlySlpKQEuCQAAKCu9u/fr9jY2JOuE3K3X3C5XPrpp5/UvHlzORyOOr22pKREKSkp2rlzZ0jfuoH9cAz74Rj2wzHsh2PYD8ewH47x5X4wxmj//v1q06aNxz0nqxNyNTdhYWFq165dvd4jJiYmpA/WSuyHY9gPx7AfjmE/HMN+OIb9cIyv9sOpamwq0aEYAADYCuEGAADYCuGmDiIjIzV79mxFRkYGuigBxX44hv1wDPvhGPbDMeyHY9gPxwRqP4Rch2IAAGBv1NwAAABbIdwAAABbIdwAAABbIdwAAABbCflwM2/ePPXq1cs9wVBmZqbee+899/OHDh3SlClT1Lp1azVr1kyXXHKJdu3a5fEeBQUFGjVqlKKjo5WQkKDbb79dR48e9fem+MzcuXPlcDg0bdo097JQ2Q9z5syRw+HweHTt2tX9fKjsB0n68ccfdeWVV6p169aKiopSz549tWHDBvfzxhj98Y9/VHJysqKiojR8+HB9++23Hu+xd+9eXXHFFYqJiVGLFi00adIkHThwwN+b4rW0tLQqx4PD4dCUKVMkhc7xUFFRoVmzZik9PV1RUVHq2LGj7rvvPo97/ITC8SAdm/p/2rRpat++vaKiojRw4ECtX7/e/bwd98OHH36oCy+8UG3atJHD4dBbb73l8byvtvnzzz/X2WefrSZNmiglJUX/93//532hTYh7++23zdKlS80333xjtm3bZu666y7TuHFjs3XrVmOMMdddd51JSUkxK1asMBs2bDBnnXWWGThwoPv1R48eNT169DDDhw83mzZtMu+++66Ji4szM2fODNQm1csnn3xi0tLSTK9evczUqVPdy0NlP8yePducfvrpprCw0P3Ys2eP+/lQ2Q979+417du3N+PHjzcff/yx+e6778wHH3xgtm/f7l5n7ty5JjY21rz11lvms88+MxdddJFJT083ZWVl7nUuuOACk5GRYf7zn/+Yf//736ZTp05m7Nixgdgkr+zevdvjWFi+fLmRZFatWmWMCZ3j4YEHHjCtW7c277zzjsnPzzevv/66adasmXn88cfd64TC8WCMMZdeeqnp3r27WbNmjfn222/N7NmzTUxMjPnhhx+MMfbcD++++665++67zZIlS4wk8+abb3o874ttdjqdJjEx0VxxxRVm69at5rXXXjNRUVHmmWee8arMIR9uqtOyZUvz3HPPmX379pnGjRub119/3f3cV199ZSSZ3NxcY8yxLz0sLMwUFRW515k3b56JiYkx5eXlfi97fezfv9+cdtppZvny5Wbo0KHucBNK+2H27NkmIyOj2udCaT/ceeedZvDgwTU+73K5TFJSknn44Yfdy/bt22ciIyPNa6+9Zowx5ssvvzSSzPr1693rvPfee8bhcJgff/yx4QrfgKZOnWo6duxoXC5XSB0Po0aNMhMnTvRYNmbMGHPFFVcYY0LneCgtLTXh4eHmnXfe8Vh+xhlnmLvvvjsk9sOJ4cZX2/yXv/zFtGzZ0uP/xZ133mm6dOniVTlDvlnqeBUVFVq0aJEOHjyozMxMffrppzpy5IiGDx/uXqdr165KTU1Vbm6uJCk3N1c9e/ZUYmKie50RI0aopKREX3zxhd+3oT6mTJmiUaNGeWyvpJDbD99++63atGmjDh066IorrlBBQYGk0NoPb7/9tvr166ff/e53SkhIUJ8+fbRgwQL38/n5+SoqKvLYF7GxsRowYIDHvmjRooX69evnXmf48OEKCwvTxx9/7L+N8ZHDhw/rlVde0cSJE+VwOELqeBg4cKBWrFihb775RpL02Wefae3atRo5cqSk0Dkejh49qoqKCjVp0sRjeVRUlNauXRsy++F4vtrm3NxcDRkyRBEREe51RowYoW3btumXX36pc7lC7saZ1dmyZYsyMzN16NAhNWvWTG+++aa6d++uzZs3KyIiQi1atPBYPzExUUVFRZKkoqIijxNX5fOVzwWLRYsWaePGjR5tx5WKiopCZj8MGDBACxcuVJcuXVRYWKh77rlHZ599trZu3RpS++G7777TvHnzNH36dN11111av369br75ZkVERGjcuHHubaluW4/fFwkJCR7PN2rUSK1atQqqfVHprbfe0r59+zR+/HhJofX/YsaMGSopKVHXrl0VHh6uiooKPfDAA7riiiskKWSOh+bNmyszM1P33XefunXrpsTERL322mvKzc1Vp06dQmY/HM9X21xUVKT09PQq71H5XMuWLetULsKNpC5dumjz5s1yOp1avHixxo0bpzVr1gS6WH6zc+dOTZ06VcuXL6/yiyTUVP4SlaRevXppwIABat++vf7+978rKioqgCXzL5fLpX79+unBBx+UJPXp00dbt27V/PnzNW7cuACXLjD++te/auTIkWrTpk2gi+J3f//73/W3v/1Nr776qk4//XRt3rxZ06ZNU5s2bULueHj55Zc1ceJEtW3bVuHh4TrjjDM0duxYffrpp4EuGo5Ds5SkiIgIderUSX379lV2drYyMjL0+OOPKykpSYcPH9a+ffs81t+1a5eSkpIkSUlJSVVGR1T+XbmO1X366afavXu3zjjjDDVq1EiNGjXSmjVr9MQTT6hRo0ZKTEwMif1QnRYtWqhz587avn17yBwPkpScnKzu3bt7LOvWrZu7ia5yW6rb1uP3xe7duz2eP3r0qPbu3RtU+0KSvv/+e/3rX//S5MmT3ctC6Xi4/fbbNWPGDF122WXq2bOnrrrqKt1yyy3Kzs6WFFrHQ8eOHbVmzRodOHBAO3fu1CeffKIjR46oQ4cOIbUfKvlqm339f4VwUw2Xy6Xy8nL17dtXjRs31ooVK9zPbdu2TQUFBcrMzJQkZWZmasuWLR5f3PLlyxUTE1Pl4mBV5513nrZs2aLNmze7H/369dMVV1zh/nco7IfqHDhwQHl5eUpOTg6Z40GSBg0apG3btnks++abb9S+fXtJUnp6upKSkjz2RUlJiT7++GOPfbFv3z6PX7QrV66Uy+XSgAED/LAVvvPCCy8oISFBo0aNci8LpeOhtLRUYWGel4vw8HC5XC5JoXc8SFLTpk2VnJysX375RR988IF+85vfhOR+8NU2Z2Zm6sMPP9SRI0fc6yxfvlxdunSpc5OUJIaCz5gxw6xZs8bk5+ebzz//3MyYMcM4HA6zbNkyY8yxoZ6pqalm5cqVZsOGDSYzM9NkZma6X1851PP88883mzdvNu+//76Jj48PuqGeJzp+tJQxobMfbr31VrN69WqTn59vPvroIzN8+HATFxdndu/ebYwJnf3wySefmEaNGpkHHnjAfPvtt+Zvf/ubiY6ONq+88op7nblz55oWLVqYf/zjH+bzzz83v/nNb6od/tmnTx/z8ccfm7Vr15rTTjvN0kNeq1NRUWFSU1PNnXfeWeW5UDkexo0bZ9q2beseCr5kyRITFxdn7rjjDvc6oXI8vP/+++a9994z3333nVm2bJnJyMgwAwYMMIcPHzbG2HM/7N+/32zatMls2rTJSDJ//vOfzaZNm8z3339vjPHNNu/bt88kJiaaq666ymzdutUsWrTIREdHMxTcWxMnTjTt27c3ERERJj4+3px33nnuYGOMMWVlZeaGG24wLVu2NNHR0ebiiy82hYWFHu+xY8cOM3LkSBMVFWXi4uLMrbfeao4cOeLvTfGpE8NNqOyHrKwsk5ycbCIiIkzbtm1NVlaWx9wuobIfjDHmn//8p+nRo4eJjIw0Xbt2Nc8++6zH8y6Xy8yaNcskJiaayMhIc95555lt27Z5rPPzzz+bsWPHmmbNmpmYmBgzYcIEs3//fn9uRr198MEHRlKVbTMmdI6HkpISM3XqVJOammqaNGliOnToYO6++26PYbuhcjzk5OSYDh06mIiICJOUlGSmTJli9u3b537ejvth1apVRlKVx7hx44wxvtvmzz77zAwePNhERkaatm3bmrlz53pdZocxx00xCQAAEOTocwMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAOgVoYNG6Zp06YFuhgNbs6cOerdu3egiwGgHgg3AELC4cOH/fp5xhgdPXrUr58J4BjCDYBTGj9+vNasWaPHH39cDodDDodDO3bs0NatWzVy5Eg1a9ZMiYmJuuqqq1RcXOx+3bBhw3TTTTdp2rRpatmypRITE7VgwQIdPHhQEyZMUPPmzdWpUye999577tesXr1aDodDS5cuVa9evdSkSROdddZZ2rp1q0eZ1q5dq7PPPltRUVFKSUnRzTffrIMHD7qfT0tL03333aerr75aMTExuvbaayVJd955pzp37qzo6Gh16NBBs2bNct+JeOHChbrnnnv02Wefubdz4cKF2rFjhxwOhzZv3ux+/3379snhcGj16tUe5X7vvffUt29fRUZGau3atXK5XMrOzlZ6erqioqKUkZGhxYsX+/orAnAcwg2AU3r88ceVmZmpa665RoWFhSosLFTz5s117rnnqk+fPtqwYYPef/997dq1S5deeqnHa1988UXFxcXpk08+0U033aTrr79ev/vd7zRw4EBt3LhR559/vq666iqVlpZ6vO7222/XI488ovXr1ys+Pl4XXnihO4Tk5eXpggsu0CWXXKLPP/9cOTk5Wrt2rW688UaP9/jTn/6kjIwMbdq0SbNmzZIkNW/eXAsXLtSXX36pxx9/XAsWLNCjjz4qScrKytKtt96q008/3b2dWVlZddpXM2bM0Ny5c/XVV1+pV69eys7O1ksvvaT58+friy++0C233KIrr7xSa9asqdP7AqgDr2+5CSCknHin+Pvuu8+cf/75Huvs3LnT4w7aQ4cONYMHD3Y/f/ToUdO0aVNz1VVXuZcVFhYaSSY3N9cY8787EC9atMi9zs8//2yioqJMTk6OMcaYSZMmmWuvvdbjs//973+bsLAwU1ZWZowxpn379mb06NGn3K6HH37Y9O3b1/337NmzTUZGhsc6+fn5RpLZtGmTe9kvv/xiJJlVq1Z5lPutt95yr3Po0CETHR1t1q1b5/F+kyZNMmPHjj1l2QB4p1EggxWA4PXZZ59p1apVatasWZXn8vLy1LlzZ0lSr1693MvDw8PVunVr9ezZ070sMTFRkrR7926P98jMzHT/u1WrVurSpYu++uor92d//vnn+tvf/uZexxgjl8ul/Px8devWTZLUr1+/KmXLycnRE088oby8PB04cEBHjx5VTExMnbe/Jsd/5vbt21VaWqpf/epXHuscPnxYffr08dlnAvBEuAHglQMHDujCCy/UQw89VOW55ORk978bN27s8ZzD4fBY5nA4JEkul6tOn/373/9eN998c5XnUlNT3f9u2rSpx3O5ubm64oordM8992jEiBGKjY3VokWL9Mgjj5z088LCjrXgG2PcyyqbyE50/GceOHBAkrR06VK1bdvWY73IyMiTfiYA7xFuANRKRESEKioq3H+fccYZeuONN5SWlqZGjXx/KvnPf/7jDiq//PKLvvnmG3eNzBlnnKEvv/xSnTp1qtN7rlu3Tu3bt9fdd9/tXvb99997rHPidkpSfHy8JKmwsNBd43J85+KadO/eXZGRkSooKNDQoUPrVFYA3qNDMYBaSUtL08cff6wdO3aouLhYU6ZM0d69ezV27FitX79eeXl5+uCDDzRhwoQq4cAb9957r1asWKGtW7dq/PjxiouL0+jRoyUdG/G0bt063Xjjjdq8ebO+/fZb/eMf/6jSofhEp512mgoKCrRo0SLl5eXpiSee0JtvvlllO/Pz87V582YVFxervLxcUVFROuuss9wdhdesWaM//OEPp9yG5s2b67bbbtMtt9yiF198UXl5edq4caOefPJJvfjii17vGwAnR7gBUCu33XabwsPD1b17d8XHx+vw4cP66KOPVFFRofPPP189e/bUtGnT1KJFC3czTn3MnTtXU6dOVd++fVVUVKR//vOfioiIkHSsH8+aNWv0zTff6Oyzz1afPn30xz/+UW3atDnpe1500UW65ZZbdOONN6p3795at26dexRVpUsuuUQXXHCBzjnnHMXHx+u1116TJD3//PM6evSo+vbtq2nTpun++++v1Xbcd999mjVrlrKzs9WtWzddcMEFWrp0qdLT073YKwBqw2GOb0QGgABbvXq1zjnnHP3yyy9q0aJFoIsDIAhRcwMAAGyFcAMAAGyFZikAAGAr1NwAAABbIdwAAABbIdwAAABbIdwAAABbIdwAAABbIdwAAABbIdwAAABbIdwAAABbIdwAAABb+f95SF+lELeFFQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "[
,\n", + "
,\n", + "
,\n", + "
]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -638,7 +824,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding](./surrogate_embedding_doc.ipynb) file." + "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding](./surrogate_embedding_doc.md) file." ] } ], @@ -658,10 +844,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" - }, - "orig_nbformat": 4 + "version": "3.11.11" + } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training_test.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training_test.ipynb index ed528130..6e55e673 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training_test.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training_test.ipynb @@ -1,667 +1,692 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with PySMO Surrogate Object - Training Surrogate (Part 1)\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "## 1. Introduction\n", - "This notebook illustrates the use of the PySMO Polynomial surrogate trainer to produce an ML surrogate based on supercritical CO2 data from simulation using REFPROP package. PySMO also has other training methods like Radial Basis Function and Kriging surrogate models, but we focus on Polynomial surrogate model. \n", - "\n", - "There are several reasons to build surrogate models for complex processes, even when higher fidelity models already exist (e.g., reduce model size, improve convergence reliability, replace models with externally compiled code and make them fully-equation oriented).\n", - "\n", - "In this example, we intend to make a surrogate for the physical properties of S-CO2 to be embedded in the property package. This property package will be used to get the physical properties of S-CO2 in the flowsheet simulation. To learn more about property package, see the [IDAES-PSE](https://github.com/IDAES/idaes-pse) Github Page or IDAES [Read-the-docs](https://idaes-pse.readthedocs.io/en/latest/). \n", - "\n", - "\n", - "### 1.1 Need for ML Surrogates\n", - "\n", - "The properties predicted by the surrogate are enthalpy and entropy of the S-CO2 based on the \n", - "pressure and temperature of the system. The analytical equation of getting the enthalpy and entropy from pressure and temperature are in the differential form and would make the problem a DAE system. To counter this problem and keep the problem algebraic, we will use the ML surrogates and relate enthalpy and entropy with the pressure and temperature as an algebraic equation.\n", - "\n", - "### 1.2 Supercritical CO2 cycle process\n", - "\n", - "The following flowsheet will be used to optimize the design for the cooling of the fusion reactor using supercritical CO2 cycle. We shall focus on training the surrogate for this notebook and move to constructing the flowsheet and the properties package in the subsequent notebooks. The take away from this flowsheet is that, 3 variables can be measured in any given unit which are flow, pressure and temperature and other properties can be calculated using them. Thus, surrogate should have pressure and temperature as the inputs.\n", - "\n", - "In this example, we will train the model using polynomial regression for our data and then demonstrate that we can solve an optimization problem with that surrogate model. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"CO2_flowsheet.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Training and Validating Surrogate\n", - "\n", - "First, let's import the required Python and IDAES modules:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Import statements\n", - "import os\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", - "from idaes.core.surrogate.pysmo_surrogate import PysmoPolyTrainer, PysmoSurrogate\n", - "from idaes.core.surrogate.plotting.sm_plotter import (\n", - " surrogate_scatter2D,\n", - " surrogate_parity,\n", - " surrogate_residual,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.1 Importing Training and Validation Datasets\n", - "\n", - "In this section, we read the dataset from the CSV file located in this directory. 500 data points were simulated for S-CO2 physical properties using REFPROP package. This example is trained on the entire dataset because neural network can overfit on smaller dataset. The data is separated using an 80/20 split into training and validation data using the IDAES split_training_validation() method.\n", - "\n", - "We rename the column headers because they contained \".\", which may cause errors while reading the column names in subsequent code, thus as a good practice we change them to the variable names to be used in the property package. Further, the input variables are **pressure**, **temperature** , while the output variables are **enth_mol**, **entr_mol**, hence we create two new dataframes for the input and output variables. " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Import training data\n", - "np.set_printoptions(precision=6, suppress=True)\n", - "\n", - "csv_data = pd.read_csv(datafile_path(\"500_Points_DataSet.csv\"))\n", - "csv_data.columns.values[0:6] = [\n", - " \"pressure\",\n", - " \"temperature\",\n", - " \"enth_mol\",\n", - " \"entr_mol\",\n", - " \"CO2_enthalpy\",\n", - " \"CO2_entropy\",\n", - "]\n", - "data = csv_data.sample(n=500)\n", - "\n", - "input_data = data.iloc[:, :2]\n", - "output_data = data.iloc[:, 2:4]\n", - "\n", - "# # Define labels, and split training and validation data\n", - "input_labels = list(input_data.columns)\n", - "output_labels = list(output_data.columns)\n", - "\n", - "n_data = data[input_labels[0]].size\n", - "data_training, data_validation = split_training_validation(data, 0.8, seed=n_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.2 Training Surrogates with PySMO\n", - "\n", - "IDAES builds a model class for each type of PySMO surrogate model. In this case, we will call and build the Polynomial Regression class. Regression settings can be directly passed as class arguments, as shown below. In this example, allowed basis terms span a 5th order polynomial, a variable product as well as a extra features are defined, and data is internally cross-validated using 10 iterations of 80/20 splits to ensure a robust surrogate fit. Note that PySMO uses cross-validation of training data to adjust model coefficients and ensure a more accurate fit, while we separate the validation dataset pre-training in order to visualize the surrogate fits.\n", - "\n", - "Finally, after training the model we save the results and model expressions to a folder which contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; previous file will be overwritten.\n", - "\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "No iterations will be run.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "\n", - "Best surrogate model is of order 5 with a cross-val S.S. Error of 20466.657669\n", - "\n", - "------------------------------------------------------------\n", - "The final coefficients of the regression terms are: \n", - "\n", - "k | -534397.59515\n", - "(x_ 1 )^ 1 | -2733.579691\n", - "(x_ 2 )^ 1 | 1036.106357\n", - "(x_ 1 )^ 2 | 32.409203\n", - "(x_ 2 )^ 2 | -2.852387\n", - "(x_ 1 )^ 3 | 0.893563\n", - "(x_ 2 )^ 3 | 0.004018\n", - "(x_ 1 )^ 4 | -0.045284\n", - "(x_ 2 )^ 4 | -3e-06\n", - "(x_ 1 )^ 5 | 0.000564\n", - "(x_ 2 )^ 5 | 0.0\n", - "x_ 1 .x_ 2 | 4.372684\n", - "\n", - "The coefficients of the extra terms in additional_regression_features are:\n", - "\n", - "Coeff. additional_regression_features[ 1 ]: -0.002723\n", - "Coeff. additional_regression_features[ 2 ]: 3.6e-05\n", - "Coeff. additional_regression_features[ 3 ]: -0.050607\n", - "Coeff. additional_regression_features[ 4 ]: 169668.814595\n", - "Coeff. additional_regression_features[ 5 ]: -44.726026\n", - "\n", - "Regression model performance on training data:\n", - "Order: 5 / MAE: 134.972465 / MSE: 54613.278159 / R^2: 0.999601\n", - "\n", - "Results saved in solution.pickle\n", - "2023-08-19 23:48:46 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output enth_mol trained successfully\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; previous file will be overwritten.\n", - "\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "No iterations will be run.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "\n", - "Best surrogate model is of order 5 with a cross-val S.S. Error of 0.156437\n", - "\n", - "------------------------------------------------------------\n", - "The final coefficients of the regression terms are: \n", - "\n", - "k | -519.862457\n", - "(x_ 1 )^ 1 | -8.820865\n", - "(x_ 2 )^ 1 | 3.676641\n", - "(x_ 1 )^ 2 | 0.18002\n", - "(x_ 2 )^ 2 | -0.010217\n", - "(x_ 1 )^ 3 | -0.000783\n", - "(x_ 2 )^ 3 | 1.4e-05\n", - "(x_ 1 )^ 4 | -6.9e-05\n", - "(x_ 2 )^ 4 | -0.0\n", - "(x_ 1 )^ 5 | 1e-06\n", - "(x_ 2 )^ 5 | 0.0\n", - "x_ 1 .x_ 2 | 0.010367\n", - "\n", - "The coefficients of the extra terms in additional_regression_features are:\n", - "\n", - "Coeff. additional_regression_features[ 1 ]: -7e-06\n", - "Coeff. additional_regression_features[ 2 ]: 0.0\n", - "Coeff. additional_regression_features[ 3 ]: -0.000112\n", - "Coeff. additional_regression_features[ 4 ]: 484.312223\n", - "Coeff. additional_regression_features[ 5 ]: -0.1166\n", - "\n", - "Regression model performance on training data:\n", - "Order: 5 / MAE: 0.398072 / MSE: 0.495330 / R^2: 0.998873\n", - "\n", - "Results saved in solution.pickle\n", - "2023-08-19 23:49:20 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output entr_mol trained successfully\n" - ] - } - ], - "source": [ - "# Create PySMO trainer object\n", - "trainer = PysmoPolyTrainer(\n", - " input_labels=input_labels,\n", - " output_labels=output_labels,\n", - " training_dataframe=data_training,\n", - ")\n", - "\n", - "var = output_labels\n", - "trainer.config.extra_features = [\n", - " \"pressure*temperature*temperature\",\n", - " \"pressure*pressure*temperature*temperature\",\n", - " \"pressure*pressure*temperature\",\n", - " \"pressure/temperature\",\n", - " \"temperature/pressure\",\n", - "]\n", - "# Set PySMO options\n", - "trainer.config.maximum_polynomial_order = 5\n", - "trainer.config.multinomials = True\n", - "trainer.config.training_split = 0.8\n", - "trainer.config.number_of_crossvalidations = 10\n", - "\n", - "# Train surrogate (calls PySMO through IDAES Python wrapper)\n", - "poly_train = trainer.train_surrogate()\n", - "\n", - "# create callable surrogate object\n", - "xmin, xmax = [7, 306], [40, 1000]\n", - "input_bounds = {input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))}\n", - "poly_surr = PysmoSurrogate(poly_train, input_labels, output_labels, input_bounds)\n", - "# save model to JSON\n", - "model = poly_surr.save_to_file(\"pysmo_poly_surrogate.json\", overwrite=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.3 Visualizing surrogates\n", - "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACX30lEQVR4nO2deXgUxdbG38kKATIhG0lkSQjIoogCEgIKKJGgKHIDEtzYQbgEZZFNBcUNQZFduCqLCygI0YugSFj0qsSoKOKCXMwXNpOwBDJBIklI+vsjt5uZycx0T08v1T3n9zw+kpme7urq6qq3zjl1ysJxHAeCIAiCIAhCUwL0LgBBEARBEIQ/QiKMIAiCIAhCB0iEEQRBEARB6ACJMIIgCIIgCB0gEUYQBEEQBKEDJMIIgiAIgiB0gEQYQRAEQRCEDpAIIwiCIAiC0AESYQRBEARBEDpAIowgCILwyPr162GxWHDs2DG9i0IQpoJEGEEQuvPdd98hKysL1113HRo0aIDmzZtjyJAh+O9//1vn2N69e8NiscBisSAgIADh4eFo06YNHn74YeTk5Hh13Y8//hi9evVCbGwswsLC0LJlSwwZMgQ7d+5U6tbq8OKLL+Kjjz6q8/n+/fvxzDPPoLS0VLVrO/PMM88IdWmxWBAWFob27dvjqaeeQllZmSLX2LhxI5YsWaLIuQjCbJAIIwhCdxYsWICtW7eiT58+WLp0KcaNG4f//Oc/6NSpE3755Zc6xzdt2hTvvPMO3n77bbz88ssYMGAA9u/fj759+yIzMxNVVVWi13zllVcwYMAAWCwWzJ49G4sXL8agQYNw9OhRvP/++2rcJgDPImzevHmaijCeVatW4Z133sGrr76Ktm3b4oUXXkC/fv2gxNbCJMIIwj1BeheAIAhi6tSp2LhxI0JCQoTPMjMz0aFDB7z00kt49913HY63Wq146KGHHD576aWX8Oijj+K1115DYmIiFixY4PZ6V65cwXPPPYc77rgDu3btqvP9mTNnfLwjdigvL0dYWJjHYwYPHozo6GgAwPjx4zFo0CBkZ2fjm2++QWpqqhbFJAi/hCxhBEHoTvfu3R0EGAC0bt0a1113HQ4fPizpHIGBgVi2bBnat2+PFStWwGazuT323LlzKCsrQ48ePVx+Hxsb6/D35cuX8cwzz+Daa69FvXr1EB8fj4yMDOTn5wvHvPLKK+jevTuioqJQv359dO7cGVu2bHE4j8ViwaVLl/DWW28JLsARI0bgmWeewfTp0wEASUlJwnf2MVjvvvsuOnfujPr16yMyMhJDhw7FyZMnHc7fu3dvXH/99Thw4AB69uyJsLAwPPHEE5Lqz57bb78dAFBQUODxuNdeew3XXXcdQkNDkZCQgIkTJzpY8nr37o0dO3bg+PHjwj0lJiZ6XR6CMCtkCSMIgkk4jsPp06dx3XXXSf5NYGAg7r//fsyZMwdfffUV+vfv7/K42NhY1K9fHx9//DEmTZqEyMhIt+esrq7G3XffjT179mDo0KF47LHHcPHiReTk5OCXX35BcnIyAGDp0qUYMGAAHnzwQVRWVuL999/Hfffdh+3btwvleOeddzBmzBh07doV48aNAwAkJyejQYMG+O9//4v33nsPixcvFqxSMTExAIAXXngBc+bMwZAhQzBmzBicPXsWy5cvR8+ePfHjjz8iIiJCKG9JSQnuvPNODB06FA899BCaNGkiuf54eHEZFRXl9phnnnkG8+bNQ1paGiZMmIAjR45g1apV+O677/D1118jODgYTz75JGw2G06dOoXFixcDABo2bOh1eQjCtHAEQRAM8s4773AAuDVr1jh83qtXL+66665z+7sPP/yQA8AtXbrU4/nnzp3LAeAaNGjA3XnnndwLL7zAHThwoM5xa9eu5QBwr776ap3vampqhH+Xl5c7fFdZWcldf/313O233+7weYMGDbjhw4fXOdfLL7/MAeAKCgocPj927BgXGBjIvfDCCw6f//zzz1xQUJDD57169eIAcKtXr3Z73/Y8/fTTHADuyJEj3NmzZ7mCggLuX//6FxcaGso1adKEu3TpEsdxHLdu3TqHsp05c4YLCQnh+vbty1VXVwvnW7FiBQeAW7t2rfBZ//79uRYtWkgqD0H4G+SOJAiCOX7//XdMnDgRqampGD58uFe/5S0tFy9e9HjcvHnzsHHjRtx000347LPP8OSTT6Jz587o1KmTgwt069atiI6OxqRJk+qcw2KxCP+uX7++8O8LFy7AZrPh1ltvxQ8//OBV+Z3Jzs5GTU0NhgwZgnPnzgn/xcXFoXXr1ti3b5/D8aGhoRg5cqRX12jTpg1iYmKQlJSERx55BK1atcKOHTvcxpLt3r0blZWVmDx5MgICrg4jY8eORXh4OHbs2OH9jRKEH0LuSIIgmKK4uBj9+/eH1WrFli1bEBgY6NXv//rrLwBAo0aNRI+9//77cf/996OsrAx5eXlYv349Nm7ciHvuuQe//PIL6tWrh/z8fLRp0wZBQZ67y+3bt+P555/HwYMHUVFRIXxuL9TkcPToUXAch9atW7v8Pjg42OHva665pk58nRhbt25FeHg4goOD0bRpU8HF6o7jx48DqBVv9oSEhKBly5bC9wRBeIZEGEEQzGCz2XDnnXeitLQUX375JRISErw+B5/SolWrVpJ/Ex4ejjvuuAN33HEHgoOD8dZbbyEvLw+9evWS9Psvv/wSAwYMQM+ePfHaa68hPj4ewcHBWLduHTZu3Oj1PdhTU1MDi8WCTz/91KUgdY6xsrfISaVnz55CHBpBENpBIowgCCa4fPky7rnnHvz3v//F7t270b59e6/PUV1djY0bNyIsLAy33HKLrHJ06dIFb731FoqKigDUBs7n5eWhqqqqjtWJZ+vWrahXrx4+++wzhIaGCp+vW7euzrHuLGPuPk9OTgbHcUhKSsK1117r7e2oQosWLQAAR44cQcuWLYXPKysrUVBQgLS0NOEzXy2BBGFmKCaMIAjdqa6uRmZmJnJzc/HBBx/Iyk1VXV2NRx99FIcPH8ajjz6K8PBwt8eWl5cjNzfX5XeffvopgKuutkGDBuHcuXNYsWJFnWO5/yUzDQwMhMViQXV1tfDdsWPHXCZlbdCggcuErA0aNACAOt9lZGQgMDAQ8+bNq5M8leM4lJSUuL5JFUlLS0NISAiWLVvmUKY1a9bAZrM5rEpt0KCBx3QhBOHPkCWMIAjdmTZtGrZt24Z77rkH58+fr5Oc1Tkxq81mE44pLy/HH3/8gezsbOTn52Po0KF47rnnPF6vvLwc3bt3R7du3dCvXz80a9YMpaWl+Oijj/Dll19i4MCBuOmmmwAAw4YNw9tvv42pU6fi22+/xa233opLly5h9+7d+Oc//4l7770X/fv3x6uvvop+/frhgQcewJkzZ7By5Uq0atUKhw4dcrh2586dsXv3brz66qtISEhAUlISUlJS0LlzZwDAk08+iaFDhyI4OBj33HMPkpOT8fzzz2P27Nk4duwYBg4ciEaNGqGgoAAffvghxo0bh8cff9yn+veWmJgYzJ49G/PmzUO/fv0wYMAAHDlyBK+99hpuvvlmh+fVuXNnbNq0CVOnTsXNN9+Mhg0b4p577tG0vATBLHouzSQIguC4q6kV3P3n6diGDRtyrVu35h566CFu165dkq5XVVXFvfHGG9zAgQO5Fi1acKGhoVxYWBh30003cS+//DJXUVHhcHx5eTn35JNPcklJSVxwcDAXFxfHDR48mMvPzxeOWbNmDde6dWsuNDSUa9u2Lbdu3TohBYQ9v//+O9ezZ0+ufv36HACHdBXPPfccd80113ABAQF10lVs3bqVu+WWW7gGDRpwDRo04Nq2bctNnDiRO3LkiEPdeErf4QxfvrNnz3o8zjlFBc+KFSu4tm3bcsHBwVyTJk24CRMmcBcuXHA45q+//uIeeOABLiIiggNA6SoIwg4LxymwORhBEARBEAThFRQTRhAEQRAEoQMkwgiCIAiCIHSARBhBEARBEIQOkAgjCIIgCILQARJhBEEQBEEQOkAijCAIgiAIQgcoWSvD1NTUoLCwEI0aNaKtPwiCIAjCIHAch4sXLyIhIQEBAe7tXSTCGKawsBDNmjXTuxgEQRAEQcjg5MmTaNq0qdvvSYQxTKNGjQDUPkRP++ARBEEQBMEOZWVlaNasmTCOu4NEGMPwLsjw8HASYQRBEARhMMRCiSgwnyAIgiAIQgdIhBEEQRAEQegAiTCCIAiCIAgdIBFGEARBEAShAyTCCIIgCIIgdIBEGEEQBEEQhA6QCCMIgiAIgtABEmEEQRAEQRA6QCKMIAiCIAhCB0iEEQRBEARB6IBhRNiAAQPQvHlz1KtXD/Hx8Xj44YdRWFjocAzHcXjllVdw7bXXIjQ0FNdccw1eeOEFh2M+//xzdOrUCaGhoWjVqhXWr19f51orV65EYmIi6tWrh5SUFHz77bcO31++fBkTJ05EVFQUGjZsiEGDBuH06dMOx5w4cQL9+/dHWFgYYmNjMX36dFy5ckWZyiAIgiAIwvAYRoTddttt2Lx5M44cOYKtW7ciPz8fgwcPdjjmsccew5tvvolXXnkFv//+O7Zt24auXbsK3xcUFKB///647bbbcPDgQUyePBljxozBZ599JhyzadMmTJ06FU8//TR++OEHdOzYEenp6Thz5oxwzJQpU/Dxxx/jgw8+wBdffIHCwkJkZGQI31dXV6N///6orKzE/v378dZbb2H9+vWYO3euijVE+MqpU8C+fbX/JwiCIAjV4QzKv//9b85isXCVlZUcx3Hcb7/9xgUFBXG///6729/MmDGDu+666xw+y8zM5NLT04W/u3btyk2cOFH4u7q6mktISODmz5/PcRzHlZaWcsHBwdwHH3wgHHP48GEOAJebm8txHMd98sknXEBAAFdcXCwcs2rVKi48PJyrqKiQfI82m40DwNlsNsm/Ibzj3LlzXGFhIffKKxe4gIAaDuC4gIAa7pVXLnCFhYXcuXPn9C4iQRAEYTCkjt9BOmtAWZw/fx4bNmxA9+7dERwcDAD4+OOP0bJlS2zfvh39+vUDx3FIS0vDwoULERkZCQDIzc1FWlqaw7nS09MxefJkAEBlZSUOHDiA2bNnC98HBAQgLS0Nubm5AIADBw6gqqrK4Txt27ZF8+bNkZubi27duiE3NxcdOnRAkyZNHK4zYcIE/Prrr7jppptUqRctKCkpQWVlJQCgsDAABQVBSEq6goSEGgBASEgIoqKi9CyiZEpKSrBixQrYbI2wZMlkcFztbvc1NRZMnx6OP/9cC6v1IrKysgxzT4T32LdpVxipTRMEYSwMJcJmzpyJFStWoLy8HN26dcP27duF7/7v//4Px48fxwcffIC3334b1dXVmDJlCgYPHoy9e/cCAIqLix2EEQA0adIEZWVl+Pvvv3HhwgVUV1e7POb3338XzhESEoKIiIg6xxQXF3u8Dv+dOyoqKlBRUSH8XVZWJqVaNIMXLQDwww834eOP7wbHBcBiqcE992xHp04/AoBhRAs/8J4/HwWOc/TMc1wAzp+PhNV60eMAzSIkKqRj36YBwGZrhPPnoxAZWQKr9aLwuVHaNEEQxkJXETZr1iwsWLDA4zGHDx9G27ZtAQDTp0/H6NGjcfz4ccybNw/Dhg3D9u3bYbFYUFNTg4qKCrz99tu49tprAQBr1qxB586dceTIEbRp00b1+/GV+fPnY968eXoXwy38wG6zNRIEGFArWD7++G4kJ/9hSNESGVkCi6XGQYhZLDWIjDyvY6nkQaLCO+zbqqeJhdHaNME2LE6UWCyTP6CrCJs2bRpGjBjh8ZiWLVsK/46OjkZ0dDSuvfZatGvXDs2aNcM333yD1NRUxMfHIygoSBBgANCuXTsAtSsV27Rpg7i4uDqrGE+fPo3w8HDUr18fgYGBCAwMdHlMXFwcACAuLg6VlZUoLS11sIY5H+O8opI/J3+MK2bPno2pU6cKf5eVlaFZs2Ye60cPxCxHRsNqvYh77tleZwA24r2QqJCH2MSCIJTCeaLkDi0nSiyWyV/QVYTFxMQgJiZG1m9rampjkHj3XY8ePXDlyhXk5+cjOTkZAPDf//4XANCiRQsAQGpqKj755BOH8+Tk5CA1NRVArdLv3Lkz9uzZg4EDBwrX2bNnD7KysgAAnTt3RnBwMPbs2YNBgwYBAI4cOYITJ04I50lNTcULL7yAM2fOIDY2VrhOeHg42rdv7/aeQkNDERoaKqs+tERLy5FWs7NOnX5EcvIfOH8+EpGR53UZeJW8VxIV3mG2iQXBLlInQFpOlJyv5c6CTpM35TFETFheXh6+++473HLLLWjcuDHy8/MxZ84cJCcnC8InLS0NnTp1wqhRo7BkyRLU1NRg4sSJuOOOOwTr2Pjx47FixQrMmDEDo0aNwt69e7F582bs2LFDuNbUqVMxfPhwdOnSBV27dsWSJUtw6dIljBw5EgBgtVoxevRoTJ06FZGRkQgPD8ekSZOQmpqKbt26AQD69u2L9u3b4+GHH8bChQtRXFyMp556ChMnTjSEyBJDK8uRVNfaQw89JAhvX7BaL+o24CrtRiRR4R1mckkbFX91h7l71/XCkwWdUB5DiLCwsDBkZ2fj6aefxqVLlxAfH49+/frhqaeeEkRNQEAAPv74Y0yaNAk9e/ZEgwYNcOedd2LRokXCeZKSkrBjxw5MmTIFS5cuRdOmTfHmm28iPT1dOCYzMxNnz57F3LlzUVxcjBtvvBE7d+50CLRfvHgxAgICMGjQIFRUVCA9PR2vvfaa8H1gYCC2b9+OCRMmIDU1FQ0aNMDw4cPx7LPPalBb2qCF5cidaw2owR137EaPHrUrVt99913Dm8mVdiOSqPAOM7mkjYi/usNYEzxkQdceQ4iwDh06CCscPZGQkICtW7d6PKZ379748UfPjTwrK0twP7qiXr16WLlyJVauXOn2mBYtWtRxfZoNrSxHzh0DEICcnDsAQBBiZjGTK9UJkqjwHhZc0v6KP7rDWBQ8ZEHXHkOIMMK/cdUxABbs3p2G66//RXbnEBISouhxSuBLJ1hSUoJz584Jf5Oo8B49XdJELaxZh9SCRcFDFnTtIRFGSEYv0RIZWQKgBs67bPnaYUVFRSErK4upOBS5naA7dw6JCveUlJSgtLRU0rFaCnF/hkXrkFqwKHjIgq49JMIIyeglWqzWi7jjjt3/c0FahM+V6LBYiy+R2wlKdefw+LuokBqDlJmZiZiYGObaiVlh0TqkFqwKHrKgawuJMMIr9BqM+Niv3bvTmOqw1MBTJ3ju3DlRoevJnZORkYGEhAS/FxVSRavVatW0rvx1hSAPi9YhpbGfAHl617WcKDlfy50FXevJmz+8DyTCCMPQo0curr/+F7+YobnrBLOzswG4XyUm5s6Jjo42fKelNKzEILG8QlDNwdA+lpFV65CSsBgGwWKZWH4flIREGMEsrmZdesQ4aTEbczfD9HaVmD+5c6Ti6vnxgz5LMUisrhBUczB0dW5/cIexKBpYKxOr74PSkAgjmCUqKgoPPfQQ3n33XdFj1TKTazUb42eihYWFgrVLjoXGH9w5rnAnlEtLS7F582a3v2NVtLJknSssLHT4TMnB0N1vWHGHEWzAyvugBiTCCKZJTk7W1Uyu5WwsKipK8ibp7vAHd44zUoUyUPf5sShaWbHOuapXtQdDd+8XxTL6L6y8D2pBIoxQDaXceKx0vFrOxqRaaPg69uf8YFKFsrvnx5poZcU651yvp07FqzoYenq/KJbRf2HlfVALEmGEKpgtqFLr2ZgUC42nOvZXd467gdzT82NNtLJonfvhh5uwbdvdUDpXH4+S75c/rKjzJ1h8H5SERBihCmYLqtR6NibFrSi1jjMyMhAdHW36wcfTQC72/FgSray5lPl6dRZggHKDoVLvl9kmfwR774PSkAgjVMcMQZV6zMa8sdCIuXLi4+NVKycreBrIxZ4fL1Tt0VO0smSdc71tGBQdDJV6v8w2+SNqYel9UBoSYYSqmCWoUqvZmNSkieXl5SgvLwdgnjr2FU8DudjzY0Gospow01W9AjUYPfpNNG1apMg11Hi/1Jz86e3y1Pv6WsDq+6A0JMIIVTFTUKUWszEpSRPLy8sd0naYqY59QWwgZ302zWLCTMB9vToLMDmDoVrZ49WcmOjt8tT7+q5QQxSy+j4oDYkwQlWMHlSpx2xMrFMpKnIc/Ixex0oiJrRYn02zOqB4qldf0keoNdCqOTGR6spUy+Wp9/WdUVMUsvo+KAmJMEJVjB5UqcVsTIlZZGpqLvbvTwVgvDr2FalCOTMzE1ar1eXv/aGz9xap9epr/i416l5sYmKf0sUeOW3BXdwZoI3b0NP1tYA1UWg0SIQRiuDc2Zgpb5XasR2+zCKd415SU79GSkqe4erYF/zFbaE1Rq5XsckfvyuFK7yx2HiKOzt58iQ+/fRT0XP44jZkcdGT3qLQaJAII3xGipBg3Q2kF76s5nIV95Kbm4qUlDyH4/yhjlkUAmbAyPUqd/In1WIjFncmRYB5cz1vr68HLIpC1iERRviM1E7EOQ0Aq7NovfC2AxOLe6GtXtjFH1a36YFUFyrgu8XG27gzpS1ErC3IYVEUGgESYYTiuOtsWEgDwCpyOjCxuBcjbPVSUlKCs2fPoqqqyuX3QUFBiI2NZf4+vIHF1W1mwdmFeu7cOZeuR08THvtQCk9i2JsFMV9/nYrdu9MUtRCxtiCHNVFoFEiEEYpC5mh5yOnAWF70IMXSA0DyxttmEiQUyKwuntqJzdYIJ082c9iCyXnC4yza3LU9qe/f11+nIifnDgAWl9eTC2vvP2ui0CiQCCMUwxdztL+7Z7zpwNTKraQUUi09Q4YMqfOZP2Y4p0BmbbCfIDrjacLj3Pakvn9A7bPNyUkDL8CkXE8MVt9/1kShUSARRiiGXHM0uWe868BYX7UmVTBduXLF4W81XDasQ5ZjbXCeIDpjsdQgOLgSBQWJomJYyvtns9mwadMmnD8fBaX33GTt/ddbFBp9Ak8ijFAMueZoOSsEjf7iucKb1VxGujcplh61XDYsQ4HM2uFu/0ugto+64YZDWLNmjGQxLPX9c73lE4e0tN0+PWOW3n89RaEZJvAkwgjFUMIcLcUyYIYXj8fs+6NJeZ5quGyMgN6BzGacyLjD3QRx0KAtiIgoFQQYoKwYdu4TgRrcccdu9OiRKxxj1HfbHlas7u4mfIWFhS7bOgttnEQY4TNKmaOlWgZ8ya3FGqy5FpRE6vNUw2VjBPQMZDbTREYK7iaI119/GAUFiYqLYal94kMPPWSK+mUBTxO+7Oxst+OE3m2cRBjhM0oJCTmWATPE1Ji1E5b6PNVy2YihtyVIz0Bmf1mhKUUMqSGGjTy50vu9kIPYhM/TOKF3GycRRiiCEi+lt50hxdSwjdTnKcVlozR6WoL0DmR2hVlXaHoSQ3wOMbXEMGtCRQpGtZB6mvABYHqcIBFGMIO3naHeMTWEZ8SeZ3BwsHCs2KIEpQWJni5tNa0kcqwYZrAmy7lvFsWw3hjVQuppwsf6OEEijGAKb1YIUnJANpE6uMXExCArK0v3jPl6iBC9V4rxmMGaLNd6Y2SXoVZoZSH11QUqNuFjeZwgEUZIRq1YAbkrBP0hOaDW8RlKXM/bwU3PQc5XEcJS/Iwc6x7rVgIp+GLV9GeBJYbUrZ0A39q5Ui5QdxM+1scJEmGEJNSMFfBlRuqN5cxoaB2foeT1jDK4+SJCWI6fkWrdM5s12QyuVRYQm5y42o9Tbjv3RURLncCzPE6QCCMkoXasgDcvr9lza/FoHZ9h1HgQX/BFhLBaX95Y91i3EniDGVyrrCAW6K5W/KS3IlrKwgsed+OE3pAII2Sh52oqo8Zy+Oq6UqLOPZXB2cVg1hVz9igpQlipLynWPTMGpZvBtcoK7iYnhYUJePvtYapYGuWKaHd9ptS2q3cbJxFGeA0LJn/WBJYYvrqulKhzqWVQ6npqoXQclhKuCpbqS4p1T4mJDEvxcID5XKt64mpykpa2W9jbFVDe0qi0iDbKZJ1EGOEVYrOVc+fOMdGwWcMX15VSbhapsRdquHWUGrCVisNS0qXNmhtMqnXPl3eUxXg4M7lW9cKThVRtS6NaSXNZh0QY4RViLyLvg2ctmR9reOO6UqPz82S5Ufp6Sg7YSsVhKTlLFquv0tJSxMfHSyq3UqgdiMzq1mEsB2AbAVfvhX1slZqWRn8V0STCCK+QOlsxU/C20njrulJ6hihmuVH6emoGsPsSh6XUJEGsvjZv3qzJpESvBSt6u2L1XqjDmlvWV9yVVQuR5I8imkQY4RWuXsTUVPW2lzEqzh0zH/Qux3WldOcnZrlRu7NVKoBdi8FfykIGKfWlxaREjxgYFlyxesb+sOiWVRM1RJLeIlpvSIQRknAVK5CXl4L9+1Oxf38P5OamMhW8rSeeOmZvXH1qrWCTYulSa8WcUsJJi8Hfm4UMfH2dPNkUgAXNmp1UpAzeovVAz8qKRL0EDqtuWSVRWyQZJYBeLUiEEZLgX5TCwkIhPiA3NxUAG8HILOGpM/HG1adW5yRmucnIyEB0dLRi1+NRUjhpMfhLHWB58vNbMbNCUitoReJV9HbLqoUWIsmsAksKJMIIyURFRQkvIiszYC2RG/vhPHh74+pTq3PyZOmKjo5WJZBcyTaj9eAvNsCy4JbTAzMEUysR02X25+/PIkltSIQRshAbBPl4GXcdmNGCWeVsjgy4H7z1SI6pd+yFksJJy8FfygDrj5MSHiMHUysV0+Xr8zdaf0goB4kwQhZig6D9dhHOHZgRg1nlxH6IDd4jR97h4PZTu6PVwq3gajDxJoBdDD0yvUsZYP3NLae3oFcKpWK6fHn+RuwPCeUgEUZ4hdRB0J6zZ886dB6s7rknFamxH2KDt1puP0+o2YlLGUx8FU56BPFKGWDN4JbzBjMGU/sS0+XL8zdjcD9Z9qRDIozwCvvO9+jRo9i3b5/QUbjrPKqqqjyeU6s997SO/TCjdUSJvSedLYCAd52y1p231AHWLHswSsVMg6gSMV1m2/5KLs6TMXf9AFn2aiERRngN/+LYD7pyOw+tOh09Yj/MZh1Rau9JPSyAvuJpgM3MzITVanX7W7PM+s1s3ZAb02Xm7a/kYt9GPPUDRrLsqQmJMMJn5HYeWnY6SrlApVi39Ihb0gKpdWiWwUTqABsTE2NY8SEVs8ctybVaa7n9ldEwSz+gNiTCCJ+R23no2enIdYFKsW6ZMV7GFe7q0CyDiavnaLPZHNzrQUFBqKysRFFREQB9nqsWFiozxi3Z44vVWqvtr4yGWfoBtSERRvhMcHAFAA6Axe5TDsHB6q0o8gVfXaBSYj+MLrDE8FSHZhpMnFf1btq0SfQ3WlqD9Ii/MUPckiv0TrVhtvAFM/UDakIijPCZqqpQOAowALCgqsqzu02PTkeuiVyp2A8zxNWI1aHZBhMeFq1BWsffmM3FxFqqDb2FoJKYtR9QGhJhhGyCgmqbj9iMhz+OR2rMlM1mc3ttuWJFrolcCRejWeJqpNShmQYTV7BmDdJKHJnNxcRC6ABrQlBJzN4PKAGJMEI2sbGxAMRnPPxxPGIdX2lpKTZv3izq+pEjVnwxkVNcTS1S61CJwYRFyyGL1iCtxJEZXUx6T3i8EYIsvg9iuOsHvMGI9y0VEmGEbJw7j7lzz+LYsSAkJl5BQsLNAG52+3Io8cLIESusmMhZs6R4g1YbgLNqOWTRGqSVOGLl/WERX4SClPbL6vvgjNRJltTjzJ53jEQY4RP2jT4+HujcWflrKJHMlaW0EWKWFOekp/ZlY6Vz9VSHCQkJqohsViyHLFqDtBRH5GKqixZCQer7cPbsWV2tRkq7eM2ed4xEGKEb7maOSiSBdYaF2A8eMUuK/b6bzug529OzDlmyHLJqDVJTHJk5bkkJtBYKnq5hH8ahl9VIjXOzGAagBCTCCF2QYlpX+qVjxVQtxZLCitXHGT3qkMXOl1VrkBLxN65gaRLDMlq0VanXMJvViMUwACUgEUboghTTullfOjFLCktWHxZgpR2waA1SOv7GE/4usKSgRVuVcg25IQ8Au2KaxTAAJSARRuiOO9Eh5aUz6qoZd5YUFq0+esNK56u0NUiJtksWKvWR8px4tGirUq4hNeTBSEHurIYB+AqJMEJXxESHp5fOZrMxl8HcE1IsKaxYfVhCrB1ouZBBqfMpGcjNQts2K1KfU2ZmJgBthIKUa0gRamq5K9WcGLMaBuALJMIIXRETHZ5eOo7jJF2DlfgHT1aLc+fOITs7W7TztBcc/mTh8NQOWF3I4Ak5gdxGtfoaGanPyX4/US2Egtg1xCew6ljctVglqlbco16QCCN0RUx0uMs5FRISInnJNkuIdTxinaez4GBVZCiB1BgsgN2FDGJIHQzNniuJdbwVLWoIBW/eB8CzUFPK4u48MZC6st2b91LLuEc9IBFG6Iq35nv72X5RUZHwuZmC2V11nr6IDL0tKHKvL8VyCBj72UsdDNVOgaB3G2EdsefkvDWbO3wRClLi//jdRnjcCTUlYtfcTwwaAYBiljazxz2SCCN0x1tXk/Ns3wzB7J5mub6IDL2zbPt6fbEyGf3ZezsYit1vaWkp4uPjvSoDWdnEEXtOERERmggFsd9LFXlKxK55mhikpuYqGttq5nZnGBE2YMAAHDx4EGfOnEHjxo2RlpaGBQsWICEhAQDwzDPPYN68eXV+FxYWhkuXLgl/f/DBB5gzZw6OHTuG1q1bY8GCBbjrrruE7zmOw9NPP4033ngDpaWl6NGjB1atWoXWrVsLx5w/fx6TJk3Cxx9/jICAAAwaNAhLly5Fw4YNhWMOHTqEiRMn4rvvvkNMTAwmTZqEGTNmqFE1hkSKaV2q9ccMwezOsz3e0uOryJBqGVHLbad21nujP3tvB0Ox+928ebPXYsnsGcmVQMpzYkEoiFmN7C3ISsWuueqj9u9PZWJFsxEwjAi77bbb8MQTTyA+Ph5//vknHn/8cQwePBj79+8HADz++OMYP368w2/69OmDm2++Wfh7//79uP/++zF//nzcfffd2LhxIwYOHIgffvgB119/PQBg4cKFWLZsGd566y0kJSVhzpw5SE9Px2+//YZ69eoBAB588EEUFRUhJycHVVVVGDlyJMaNG4eNGzcCAMrKytC3b1+kpaVh9erV+PnnnzFq1ChERERg3LhxWlQX87jqLOS6mFhJYeArrjpxpUWGnnFzargNzfDsvRkMpdyvXLFkdKui2hhlZZ43YlCJ2DVXfRQQgNTUr5Gbm2qqdBJqYBgRNmXKFOHfLVq0wKxZszBw4EBUVVUhODgYDRs2dLBE/fTTT/jtt9+wevVq4bOlS5eiX79+mD59OgDgueeeQ05ODlasWIHVq1eD4zgsWbIETz31FO69914AwNtvv40mTZrgo48+wtChQ3H48GHs3LkT3333Hbp06QIAWL58Oe666y688sorSEhIwIYNG1BZWYm1a9ciJCQE1113HQ4ePIhXX32VRBjE40/kBMFKtSYYLfZFSZGhZ+yUWgO8WXIHSR0Mne8XADgOyM9v5fOzNLpVUQuMvjJPjSB3d31USkoeUlLymBetemMYEWbP+fPnsWHDBnTv3h3BwcEuj3nzzTdx7bXX4tZbbxU+y83NxdSpUx2OS09Px0cffQQAKCgoQHFxMdLS0oTvrVYrUlJSkJubi6FDhyI3NxcRERGCAAOAtLQ0BAQEIC8vD//4xz+Qm5uLnj17OjTk9PR0LFiwABcuXEDjxo2VqAbDYC98nANHXSF1MPB2U26946PkoJTI0NvKoeYAbxQLhT2+DIbJyX/AMTuLMs/SDFZFpTHbyjw1gtzF+igjvI96YigRNnPmTKxYsQLl5eXo1q0btm/f7vK4y5cvY8OGDZg1a5bD58XFxWjSpInDZ02aNEFxcbHwPf+Zp2NiY2Mdvg8KCkJkZKTDMUlJSXXOwX/nToRVVFSgoqJC+LusrMzlcUZCqvCxR+pg4G2HonZ8klooITL0tnJ4M8BLsVayuIWQN/gyGJ4/HwVA+WdpFquikphxZZ4aZfW2j2L1vdQDXUXYrFmzsGDBAo/HHD58GG3btgUATJ8+HaNHj8bx48cxb948DBs2DNu3b4fFYnH4zYcffoiLFy9i+PDhqpVdDebPn+9ycYGRERM0roSQN4OB3A6F9bQGSosMva0cUp+pN9ZKow+O3pRNq61xjGhVVBuW2xBLOPdR7ia5Dz30ENWpHbqKsGnTpmHEiBEej2nZsqXw7+joaERHR+Paa69Fu3bt0KxZM3zzzTdITU11+M2bb76Ju+++u45FKy4uDqdPn3b47PTp04iLixO+5z+zX+Z9+vRp3HjjjcIxZ86ccTjHlStXcP78eYfzuLqO/TVcMXv2bAd3aVlZGZo1a+b2eCNi/2Lm57dyK4TUHAz0ds1JQekZOAtWDinP1BtrpbepGIyIvVWwb9++2LVrl+rP0uhxT4Q2eJoAeprkhoWFaVVEQ6CrCIuJiUFMTIys39bU1ACAg/sOqI3r2rdvH7Zt21bnN6mpqdizZw8mT54sfJaTkyOIuKSkJMTFxWHPnj2C6CorK0NeXh4mTJggnKO0tBQHDhxA586dAQB79+5FTU0NUlJShGOefPJJYdEAf502bdp4jAcLDQ1FaGiojNowBs4vZm1ci3shpJaLSW/XnFSUmC16GzenNL5Y9Fi3VqqN6/xdiYiMLFF0kmK2uCdCG9RKq+NvGCImLC8vD9999x1uueUWNG7cGPn5+ZgzZw6Sk5PrWMHWrl2L+Ph43HnnnXXO89hjj6FXr15YtGgR+vfvj/fffx/ff/89Xn/9dQCAxWLB5MmT8fzzz6N169ZCioqEhAQMHDgQANCuXTv069cPY8eOxerVq1FVVYWsrCwMHTpUyFn2wAMPYN68eRg9ejRmzpyJX375BUuXLsXixYvVrSiGcfViOmMvhDxtV+SrONHbNaclese0yL0+deTS8ncpMUnxtY0YbcUxoRxapNUxO4YQYWFhYcjOzsbTTz+NS5cuIT4+Hv369cNTTz3lYDmqqanB+vXrMWLECAQGBtY5T/fu3bFx40Y89dRTeOKJJ9C6dWt89NFHQo4wAJgxYwYuXbqEcePGobS0FLfccgt27twp5AgDgA0bNiArKwt9+vQRkrUuW7ZM+N5qtWLXrl2YOHEiOnfujOjoaMydO9cQ6SnU6lBd55JxxF4IRUdHq+ZuYsE1pyV6D4BKtRd/7cjFBKn9hEXu+ym3jRg52z6JR3Xwp0muEhhChHXo0AF79+4VPS4gIAAnT570eMx9992H++67z+33FosFzz77LJ599lm3x0RGRgqJWd1xww034Msvv/RcYMZQM4WDuxeTd0lqLYQoAJltqCO/ipggFZuwqCk2pGbbLywsdDhWb4FjZPHIOv42yfUVQ4gwQhvU3OLG3YupZYyS0dMa+BPUkV/FF0GqldjwZK0DgEWLfmBK4NBWTerC2iTXfiJSWBiAgoIgJCVdQUJCbWy5npMCEmGEqkgJDLdaLyIzMxNWq1X4jRovhN7xUYR3sNaR64UvglQrseHOWpeXl1Jn6xr+mmfOnNF9YKTYQ/VgZZWt/UTE0zug16SARBjhFiX2GWRN+JDAYhup1srS0lKXvzXr8/VVkKotNlxZ64AaQYC5uia/c4aeAyPFHioHq6ts+bFH7B3Qy+pJIoxwiZLpAcw6MBLK406022w2bNq0Sfjb3dZXZo7h8cWyoLTY4N07586dE8rmbK1LTc3F/v09PF5T74HRaLGHLC8mYG3C7QyrgptEGFEHMtETeiKlkzbKllO+oKRlQUmx4S7OLDn5D0yevESw1gFwsIS5uqbeA6ORYg+NsJiA5QkQq4KbRBhRB707RoLwhFQrLctWAykoaVlQUmxIjTMDIHpNFgZGo8Qe0mIC32BVcJMII+rAQsdIEK6QaqU1gtVACkqWTWmxIfYsbLZGaNz4AkaPfhNVVSEur8nKwMhKELkUjOyp0HtixKLgJhFGCPBuDbGOUaqbxPmFs9lsqKqqEv4OCgpCRESEw/VZHhAJ/ZFqpSWrgWvciQ0+tssZT++kp2fhal/YpKTjLs+jx8DIahC5FLTwVKghlliZGLEmuEmEEQLO7o+5c8/i2LEgJCZeQULCzQBulvzySU386oyWlgm9Z2WE93hrpTWy1UAJpIoIfs8/bwZFd88iOLjS6zrXemBkPYjcE2p7KtQSSzQxcg2JMMIB+5cqPh743x7lXiP2IukdWK3m7gCEenjrvvL3+EZPYoPfcBmQNyi6exZVVaEe6zwjIwPBwcEOq131gNX32t3k0NNKVCVduGqLJa0nRqxbPUmEEZpgL7pcuSrkpr+Qi5q7AxDq4o37iuIbxcWGL4Oiq2dhszXyWOfR0dHMD4x6IdUKpYULVy2xpPXEiHWrJ4kwwgE1XHT2symgBoDlf/+x4x5SIjEtoR5yt5xiJfCbZXwdFJ2fhZQ6Z31g1AsxK1St8LraT6nZjtUSS3pMjFhuRyTCCAE1XHTOsykgoM4x9i92aWmpx82I1UDJxLSEOvgyaLO4IoolvB0UpVinpNQ5ywOj3rizQnEcAHjup+QunOLh3Z5qiSWaGDlCIowQUMNF52o25Yz9i71582ZN47D8PXDbSPjSJlhbEcUS3g6K7gSxfYwZf15v65wWy9Tizgpl/2/7fiojI0Nw8yq1cEpNsUQTo6uQCCPcooSLzt2echYLhBc7LW23blnP/T1w26xQzJF3eDsouhrofa1zqfFQQ4YMcUht43xuM4g01/2mI/b9VHR0tFcehLrbgmkfe0YTo1pIhBEuUcpF52429fff9ZCTkwaOC8Du3WmoX/+yLi5ACtw2J/4ccyTXmuTroOhrnUtdlcfvG2rUBLxScNVv8q5IHqX6KbG+XimxRBMj15AII+qghIvO/kVynk0BwJIlk8F3KHq6ACk+wbwYfSCWgzc5ntQYFJWocyn9jxnyTLkSy/ZJc537TVerytXe9cAT3oolf54YeYJEGFEHJVx0rl64Y8eOYdeuXSgoSJR9fqViRjyJRPsy+NusjDA23uR4io+PZ3JQFOt/zBDH6VksXz3O3gqlhmtQrK75WDNn5LYLfxNYUiARRtRBKReduxdO7vmVXL1JszJCDCMHiUsVKiyW310c6aVLDQSxYvQ4Tm82QbdH6Tgqsb7Y21gzwntIhBF1UNtFJ/f8Sq/eZHEAItjA6DsqGFmoOPcPfG7BLVvuExbymCWOU0ws33HHHcjJyRE9j1yLPYVj6A+JMEJASxedEqZ1d/EucjYjJgiekpISFBYWOnym9zZbrvAUU2T0BSd8/3DyZFNs3ToYHHc1ufPu3WlIS9uN3bvTDC8cxMRyUlKS6hZ7qX2xkS3DLEMijBBQ20UnN+u5KzyZ8O1zFTnDquWCYANXsTp5eSnIzU1lKpmvWEyRGSwcVutFnD//t0uRkpBQiMmTlxg+z5QUsSy1v/JGJHnbF6u1qTdBIoxwQs0XSCmRJyXehUXLBcE+zrE627bdDfu0AKwEgUuJKTJaQkxXky9PIsUMeaaUEsveiiRv+2K1N/X2Z0iEEZqihMgTM+HTNkSEr/BCX2ybLd79V1paiitXrjgcFxwcDOv/lrqp5aoRm5AYSajYCwM++74ckWK0Fc1KiGU5IklOezTDylTWIBFGGA5Ps2PqJAgl8LTdlr27yJXrW0tXjdwAfFaFird7fzqnUGA1LsnZVegct6qUWFa7/zPygg9WIRFGGA5Ps2MWcpARxsfdtjHuLDG88CosjK8TMK6mq0YspshVnidX7Zj1tu9OpBghhYJ7V2EjxROiqi2SjL7gg0VIhBGGQcrqTRZykPkTag3eeosCV2kSunfPRUpKXp3BzN79A3AArq7kU9sKK+aukyJSWAy6NtMWN1JdhUpY9dQWSWZY8MEaJMIIw+ApmNSXGBJA+Rxk/oBawlXN84oJO3ukxOo4u394AcajhavG15giFoOuzZhMWcxVqIRVTwuRZLQFH6xDIowwFFI6XTVzkBFXcR4glVqRqsZ5pVp7MjMzHX7nzg122223Yd++fR5jxwDtXDVKxBSxFk9pJIElBa3iqbQQSUZa8ME6JMIIU6BVDjLCNWrVmVLnlWrt4ThO0vliYmIAuIsdq3VJqumqUcNdR0HX6qJlPJXSIslM7mHWIBFGmAItc5ARjojVmbsdDADPz8Sb80p1TYmdMyIiQlI74r935f5JS9uNhIRCVV01arjrxETCuXPnDOcCZAk1XYVqiyQzuodZgUQYYRq0yEFG1EWszjztYAC4j+3y9rxSYsSkPF8p7aioqEj4t14xMkoPeK4WI6Sm5grf8/VNi1Pko1Zb0UIk0TNXBxJhBGEHLcH2Hql15m1sl7vzBgdXoqAgUVaMmFLPV6r729NvWIQXCfxWTfv390BubiplRVcQteKpSCQZExJhBGEHLcGuxZuVhFLqTE5sl6vz3nDDIaxZM0Z2jJhYWaW63JwtD3plzFcLfq9MoK7LtrS0lPncXCxB8VTeoXd6Gq0hEUYQkJaDDKgdbJ1/Z6YOAZCeIsJ+JaGnOvMlzs7+vMHBlYIA8/Y87s7pXFZvXG723xtZlDgP/mIu282bN5NL0gsonko6/pivkUQYQcB1R2mz2bBp0yaH4zZv3lznt0bvEMS2VHGH80pCd24Wb+Ps3Ln65OyGwN+bu21ibLZGsl2bZoFv+4WFhcjOzna74rOwMAFJSccB+Ff9KIGR+wctUSvtDcuQCCMMg9pmaikrJ83WIUiZebq7b7GVhHwCXW/jsJwFsdzziN0bpSK5SlRUlMOKz7S03cjJuQNXk89asHt3Gq6//he/c81rhb+54cTw5f00Ul2SCCMMgdpmalcvrb31xKwDttjMU+y+pdS1nDg7V+f19jye7g0ApSLxQEJCEfTI/u+vsLh1lJ74EsJgNJcmiTDCEKi5rZDYS+svucOcBVda2m5hM2rAt/tWamm+3PM431tqai6lIvEArRLWFqnJhAsLC132cSxZdpTAl1RBRnNpkggjDImS2wqJvbRiHYJzvJERO0RXQjMnJw2AfKGi1C4Gvp7H1b3l5qYCqIH9/fm7yPB2xSuhPGITvuzsbL+wkik1CTCCB4NEmJ9gJB+5GGq+WK7OnZz8h8cOwVUyUqN1iK73QAzwqSNUalWYr+dxJ6K7d/9aSMWghsgw2jsXFRWFzMxMYTEKbdSsPWITPlY2WFcbJSYBRvFgkAjzA4zmI/eEmi+Wu3NPnrzEbYfAuqlbKu5mnvYuSTkdoVLtyZfzuLu3lJQ8pKTkqSIyjPrO8XnNrv5NGzVriScLkFFEhVL4Ogkwyu4nJML8ADXjqbRGzRfL07lddQhGMHVLxd3Ms1OnH3H99b+47AiNklxSbFYtd6N3TxgtLoWHEovqi6e2KpaiRe4erWJoadFVKoQBME5cI4kwP8TdgCBnQ2StUfPFEju3fYdgxlmpu5mn1XoRI0fegejoaOFYVtuHOzzNqjMyMlS9Nz3EutyBkxKL6o+7tirWP8ndo9UTWlt0lWx/RolrJBHmZ3gaEJxf4iFDhiAiIgIAOx2vmi+W2LkzMjIA1NaTUUzdYkideSYkJDDx/L2BhXvTQ6z7OnAa7TmbEVdtVWrfp6TVVQ+LrpLtzwhxjSTC/AhvBwTn7PCZmZl1YkYAbQSa1G2FfHWTeDq3vbXEG4scywHaZrZ8sHBveoh1o7pC/Rmp/ZaYqNB60RKL4RdKujS1gESYH+FuQDh5sinOn/9b6KTdddrOW/jYo3aAsZoDqjcvrX1WcSmzUiMEaBtRYElF73vTOy7FKAOnv+Opf+N3jOBx1z/psWiJxfALFiZf3kAizI9wvSdcDbZuHSx00jfccAiHDt3gttPWc1at1kvjzUtbVFQkfCbF1E1WCf9GSfe5txZVIw2c/oqUZ5qQkCDpXHotWmKxLbEisKRAIsyPcB4QapNVWsBxtduTcFwAfvqpI/jtSpw7bTPPqqW+tL6Yus1cf4R7lIhL8caiymO0gdNMSBFXACQ/UzX2aPUGPSy6LIdxKAmJMD/AXTzVpUsNsGXLfU5Hu94vDqC99gD5pm6ySjhi9g5W6bgUORZVvV2h/opUwZyZmenwt6dnGh8fL3o+PRctKY0RwjiUgkSYH+AsHPiZk83WyIV7koO9EOM7bZpVX0XOS+8v9aekBYDF1blSUTMuRapF1ShL9M2GVMFcVVUl/FspK7maqwG1XGnoT2EcJML8BFedvatO2lVMGN/oaVYtH3+wSkidvQ4ZMkTS+ZxX5xpt1qtGWb21qBphib6ZkSKupD5TdxMcm83m8LeSqwFZWGlo9jAOEmF+iFi6h9tv3+syYaces2qzuK38wSohdVZ69uxZh7+dZ7lmnvX6ihSLKgsDJyFdXEl5pt5McHjrsT1y+0m9Vxr6KlC1KKOvkAjzQ5xfLJvN5pB+wl2nrfWs2mxxAZ7qzwi7FXiLOzG1b98+4d/Os1yx1bn+jphF9dy5c4iOjsaQIUNw5coV4Zjg4GCHHH9maWMsIzUEQYqVXKp7LiIiQlL8mFFQUqCyOk6QCPNT7BtjfHy829lOaWmpg1tIy1m1GeICpFolnHcrYLXDkIqzuEpL242EhCKHZ+dqlutpdS4hblH1tHWNfbLlyspKlJSUGLqNsY7UEARvreRauuf0FjhyBKo7WB0nSIQRANzHr3gSaDxazKqNGhfgblEEjxGFpRiuxFVOzh0ALA7PztUs193qXBJhV5FrkXaVbNnoYp9lvBFXUp+p1qus9RY4csI43PWprCJZhJWVlUk+aXh4uKzCEGyidydt9PQO7urPqMJSDE/iyv7ZuU4e7Hp1rr8j1aIKeDcIqTV4GjlGR0k8iaugIMfhV8pOHXqvstZD4Hgz6TBinypZhEVERMBisXg8huM4WCwWVFdX+1wwguDRu+NxRokBxujC0hOuxdVV+GeXlHTcq9W5/ozUbW3cDUJaDp56u7D0Rqpgjo2N9XqnDj1XWWspcORsJWfUPlWyCLMPpiUILWEpvYOcVUquRBlrwlJJ6u7M4N66JXV1LiFukXY3CP39dz3s3p2mmXXADLGcvqDmikK9VllrLXDkbCVn1D5Vsgjr1auXmuUgCLewlN5B6gAjluOKJWGpFO5SnxQWJtQRAXxdZWRkIDg4WNLqXEqp4Bl3g1BOThoAfawDRnQPKYGaFj49cr/JETi+egy8rUOj9qmyA/NLS0uxZs0aHD58GABw3XXXYdSoUQ7LoAnjwHoMB4tJJ10NMLVlFJ/1syQslcJ+9sq7yKzWi0hKOo7rr//F5bOLjo5mZvGH0XE3CClpHZC6IwJgXPcQi+id+81bgaOHS9qofaosEfb9998jPT0d9evXR9euXQEAr776Kl544QXs2rULnTp1UrSQhLo4vzDurDtax3Do3fHw2A88fD4vVwPMtm13w2KB5Fk/i8LSV/j24e2zI4HliJxJkatBKC1tt2CF5JFrHfB2T0SjuodYRO+kqd4KHC1XVYolH3d1HEvIEmFTpkzBgAED8MYbbwgrPK5cuYIxY8Zg8uTJ+M9//qNoIQl1sX8RPLkPtI7h0LvjAdwPPK5XAAaA42r/5W7Wz4qwlIpcCykLz86oeGtFEBuE6te/rIh1QOr7z++JaFT3EKvo8a4oJXDUXBhi9L5GtiXMXoABtcttZ8yYgS5duihWOEJbWHQfuHpx7IVBZWWlEJjJo+QL5y4GLDi4wuMKQMD1rN9IHYavLgUW7sEX9HLRe2tFcNWm7JMsq2UdEBtYjeoeIq6iRH+lZFwg62EzcpAlwsLDw3HixAm0bdvW4fOTJ0+iUaNGihSM0B4juA/0dJ162mIHqEHtCkDxHFdG6ST0TtSoJyylWZBiRXAug9pxdlIHVjO63FlFLYHiS/tWcmLvjTvcVWw6qwJNlgjLzMzE6NGj8corr6B79+4AgK+//hrTp0/H/fffr2gBeQYMGICDBw/izJkzaNy4MdLS0rBgwQIkJCQIx3z22Wd4+umn8euvv6JevXro2bMnFi1ahMTEROGYzz//HFOnTsWvv/6KZs2a4amnnsKIESMcrrVy5Uq8/PLLKC4uRseOHbF8+XIh9g0ALl++jGnTpuH9999HRUUF0tPT8dprr6FJkybCMSdOnMCECROwb98+NGzYEMOHD8f8+fPrJOhjCSO4D/RynbrqTA4dugGjR7+JqqoQREaeR35+K1PP+o2WidoXWEmz4IsVQa9Nlb1JQqolZrSi8LA0abBHyYm91HfN1c4QPCzmppOlCF555RVYLBYMGzZM2CQ2ODgYEyZMwEsvvaRoAXluu+02PPHEE4iPj8eff/6Jxx9/HIMHD8b+/fsBAAUFBbj33nsxdepUbNiwATabDVOmTEFGRgZ++OEH4Zj+/ftj/Pjx2LBhA/bs2YMxY8YgPj4e6enpAGof4NSpU7F69WqkpKRgyZIlSE9Px5EjRxAbGwugNiZux44d+OCDD2C1WpGVlYWMjAx8/fXXAIDq6mr0798fcXFx2L9/P4qKijBs2DAEBwfjxRdfVKV+lMBI7gOtXafuOpOqqhAkJR0HYO5Zv1apBlgcKPVKs8BieAAgPrBGREQw53JXQqSw2DZ5WJk0OKPmxN7TpJCV+5eCLBEWEhKCpUuXYv78+cjPzwcAJCcnIywsTNHC2TNlyhTh3y1atMCsWbMwcOBAVFVVITg4GAcOHEB1dTWef/55BATUPvDHH38c9957r3DM6tWrkZSUhEWLFgEA2rVrh6+++gqLFy8WRNirr76KsWPHYuTIkQCA1atXY8eOHVi7di1mzZoFm82GNWvWYOPGjbj99tsBAOvWrUO7du3wzTffoFu3bti1axd+++037N69G02aNMGNN96I5557DjNnzsQzzzzDTNC1K4wiJLR2nXqzGS8Ls34l0UoMsDib11oIlZSUCCtwWQ0PkPIusGZt8NW1zmLbdAdLudnUmth7ukeW7l8KPvnGwsLC0KFDB6XKIpnz589jw4YN6N69O4KDgwEAnTt3RkBAANatW4cRI0bgr7/+wjvvvIO0tDThmNzcXKSlpTmcKz09HZMnTwZQ+wIeOHAAs2fPFr4PCAhAWloacnNzAQAHDhxAVVWVw3natm2L5s2bIzc3F926dUNubi46dOjg4J5MT0/HhAkT8Ouvv+Kmm25yeV8VFRWoqKgQ/vZmv04l8bQvHSto7ToV60wyMjIQHR3t8rdGdnMA2okBvWLQXFk49BBCzgM9q+EBRrKYu8Nb17pR4iNZsZ6qmTbC0z0CYOL+vUGWCLt8+TKWL1+Offv24cyZM6ipqXH4nnf/Kc3MmTOxYsUKlJeXo1u3bti+fbvwXVJSEnbt2oUhQ4bgkUceQXV1NVJTU/HJJ58IxxQXFzsIIwBo0qQJysrK8Pfff+PChQuorq52eczvv/8unCMkJETYksb+mOLiYo/X4b9zx/z58zFv3jyJtaEcUl8Ed8cpbab3dD5+cNRjIPDUmfBC3xWVlZUoKSnRRYgp8WzExAD/TLw5pxS0iEETs3BoKYRcPafU1Fzs358KQFux46rd2Gw24d9GzMfEo4SlhNX4SLmTBqX7cDVXgXu6R8DCpPXYE7JE2OjRo7Fr1y4MHjwYXbt2Fd3Y2x2zZs3CggULPB5z+PBhYRXm9OnTMXr0aBw/fhzz5s3DsGHDsH37dlgsFhQXF2Ps2LEYPnw47r//fly8eBFz587F4MGDkZOTI7uMWjJ79mxMnTpV+LusrAzNmjVT/bq+vDBKr1aUej5AG9ep1LxenoJBebR2VSjlQhETvPzm0d6cUwytXApilgu9rD7O95+a+jVSUvI0ETtS283YsXfWmYyybvVVwlLEsrtLzqRBLVerWu1A7B5ZtB57QpYI2759Oz755BP06NHDp4tPmzatzspEZ1q2bCn8Ozo6GtHR0bj22mvRrl07NGvWDN988w1SU1OxcuVKWK1WLFy4UDj+3XffRbNmzZCXl4du3bohLi4Op0+fdjj/6dOnER4ejvr16yMwMBCBgYEuj4mLiwMAxMXFobKyEqWlpQ4dkPMx3377bZ1z8N+5IzQ0FKGhoR7rQy3kvjBKr1aUej4etV2nUgSqfU4mgJ2gUF9dKFJcCmrcq54uFVf3o3WcpKv7z81NRUpKHoBa13dCQoJqg5zUZxcREYH4+HhVyqAWvrqXWXH3uUPOpMEorlYesXs0mqtclgi75pprFMkHFhMTg5iYGFm/5V2gfAxVeXm5EJDPExgY6HCss3sSAHJycpCamgqgdtDp3Lkz9uzZg4EDBwq/3bNnD7KysgDUxp4FBwdjz549GDRoEADgyJEjOHHihHCe1NRUvPDCCzhz5oywojInJwfh4eFo3769rPtlHaU7J1/Pp6SVwJvBjuVZsrcuFFcClN8TElDvXvUKSPd0P1ouuBC7/+joaE2tTay63uTgq3uZ1cUS9vg6aWD1eUuNMzPK4jIeWSJs0aJFmDlzJlavXo0WLVooXaY65OXl4bvvvsMtt9yCxo0bIz8/H3PmzEFycrIgfPr374/Fixfj2WefFdyRTzzxBFq0aCEEwo8fPx4rVqzAjBkzMGrUKOzduxebN2/Gjh07hGtNnToVw4cPR5cuXdC1a1csWbIEly5dElZLWq1WjB49GlOnTkVkZCTCw8MxadIkpKamolu3bgCAvn37on379nj44YexcOFCFBcX46mnnsLEiRN1s3SpjdKdk9j5WAyEZ3mWLFcwuatHNe9VqTgsNTebVtMaxVJAPsuTCjn46l72Nj6SR+0+Sant0Fh+3lFRURgyZIjgdfDkBTHSKnVZIqxLly64fPkyWrZsibCwsDpByefPK9tZhIWFITs7G08//TQuXbqE+Ph49OvXD0899ZQgam6//XZs3LgRCxcuxMKFCxEWFobU1FTs3LkT9evXB1AbvL9jxw5MmTIFS5cuRdOmTfHmm28K6SmA2kS0Z8+exdy5c1FcXIwbb7wRO3fudAi0X7x4MQICAjBo0CCHZK08gYGB2L59OyZMmIDU1FQ0aNAAw4cPx7PPPqtovbCE0gOH2Pmio6Mlu0K0yu/D6ixZDcGk5r0qEYel1GbTJ082xfnzf9exCqhpjWJl9SHLkwpvUWq1npz4SB41Y0KVCIQ3wvN2jkF0Z7VzNUlnNV5Rlgi7//778eeff+LFF19EkyZNVA9679ChA/bu3St63NChQzF06FCPx/Tu3Rs//uhZ2WdlZQnuR1fUq1cPK1euxMqVK90e06JFizquTzOj9MCh1Pm0zO/DkgXDHm8Fk5TVqWrcq5LL2qUmrxTbbHrLlsGwX5molVWABZcKq5MKOfgqUqS2TU+oHVPla/9ltOftyWrnzSRdb2SJsP379yM3NxcdO3ZUujyEgVF64FDifFpmktbCgiHHqueNYJIqWtW4V7WWtUtd4OF8PxwHANpZBZRyKUlBCaGtl+tNLr6UyVPbtI+TBNiNqRJDjYmVWl4II1jtpCJLhLVt2xZ///230mUhTIDSqxXlno9/+e0HCi3iHdS0YMi16nkjmLwRo2rcq9KDtzf7HNrfz6VLDbBly30O51LbKqBmbiV7lBLaerne9ELK/bAcUyWG0hMrNb0QRrPaeUKWCHvppZcwbdo0vPDCC+jQoUOdmLDw8HBFCkewj6+JXtU4zlWusZMnm6k2c9LKguGtVU8J957YrJ71AFhv9znkrRo2WyNdXMtaCBclhTYr6VhYwKjWGbWy26uZ+oLV0A85yBJh/fr1AwD06dPH4XOO42CxWFBdXe17yQhDoPTsXYnzucs15oxSMyetLBj2SJlx+1ouT9dgcXWqK+Tuc8hKcLwWeBPcrEWKEqNiVOuMVv2Xkm5aM72fskTYvn37lC4HYWCUHnCVOp/zzNQZJWdOWudtkjrjllsusWsYJfDV285azT3vWERucLNRrT5qYmTrjNr9l1KC3YzvpywR1qtXL0nH/fOf/8Szzz7rdsZMEGriambKY+SZkxYzbqPO6l3hTeyaHlZNvfBFSJmpffhKaWkpAHNZZ5REScFuxvdTlgiTyrvvvovHH3+cRBihC65mpkANBg/egmbNThm2c9Rixm3kWT3gW5yekTpwX/BFSLHcPrTKC8hfy37LMtasM1rWhTuUFuyeysvfb1FRkcvvWRRoqoowrnaNN0HogruZ6fXXH65zrJHM11rMuI0+qzfjjFlpfBFSrLYPLfMCAq6Dyl0J/szMTM3bmtZ14Q6tBDsr9+stqoowgtAbTzNTPvDYiIOx0ukh+BmkzWaTdA0jiFajPVOt8VVIsZBQ1hkt8wK6wt31rFarKtfzBCsbc2sl2Fm5X28hEUaYHneuKKMEl/OolQrD0wzS/hpDhgxBRESEIUUrcRVfgpu1TCjrK1qv3mR9tajWSWT1DqI3StJcEmGE6VA6JxkrqOVikzozjIiIMJRo1QoW4m68wZd2pJeb19s61nr1JuurRfUQiN60FaXfIdYFsT0kwgjTYeZ4IC3KbJQZJAtIjUPhrYiu0KMt+rqFj5Z4E+vDo/XqTZZXi4oJRPtdRZRui1LOpXQsF+uC2BlVRdhDDz1E2fMJXTCiwGIBI80gWUBqDJL9CjpXsBYszBJyYn20Xr3J8mpRMYHovP2U1m1R6vMtLCwEIN63syyIXSFbhJWWluLbb7/FmTNnUFNT4/DdsGHDAACrVq3yrXQEQWiG0WaQrOGLgGUtWJhlpFhq5QaDy3WLsbpaFPBeILLaFnmxKCYSWRbErpAlwj7++GM8+OCD+OuvvxAeHg6LxSJ8Z7FYBBFGEIRxEJtBlpaWMhcTxko8llQBq7Wrl5X6UQpvhK63qzfluMX0Dj6XgjuBCAAFBYnMhR2IvSNiIpFlQewKWSJs2rRpGDVqFF588UWEhYUpXSaC0BX7gauwMAAFBUFISrqChIRai6/RBi6piM0gN2/ezJTbjKW8QFJcIFq7elmqHyWQInR9Wb0pJ70Fy/GnngRifn4rLFky2WVbtNlsuk22fHlHpApifocD+9/p2f5libA///wTjz76KAkwwnTYD1yeOgSjDFze4GoGmZa2W5P8SnLQOyeUPWICVg9XL0v1owRShK5SosgbMcBqP+BcF/zm62JtcdOmTbr0b67KtW3b3YiNLUbTpq4z4Nvj6tnbbDZs2rTJ4ThX8Zl69ueyRFh6ejq+//57tGzZUunyEISu8C+wWEfF4sAl1/XkPIP8++96yMlJA8cFYPfuNNSvf1m2xUYrd5jeCwrEXCB6BwvrXT9KIDXWx9f2ZKbYSFd1IaUt6tG/ud7rNwBr1oyR3F7lPns9+3PJImzbtm3Cv/v374/p06fjt99+Q4cOHRAcHOxw7IABA5QrIUHogFhHZZ9Z3hVam7idXU/urB6uZnxRUVHIzMzEpk2bYLM1wu7daQB8H4C0coexMmh6coHoGSysVf2oLbi1ivXRWzCrjbs9dfUOXHddLmXbK4vpdySLsIEDB9b57Nlnn63zmcViQXV1tU+FIohTp4CjR4HWrYGmTbW/vtigaW/i9kbwqIX94OfJ6uFukOS3VVFyANLKHabnoCk1BknPYGEt6kdNwa118LvRVtd5C98Wt227G/xkC7AgP7+VLtZR/rm5LlctSrRXVq3BkkWYcxoKglAafia9cWN9zJhhRU2NBQEBHBYutOGBB/7W1LokddCUI3jUxFerh1oDkJodoJ6DplgMkn1Mil6r57SoHzUFt9bB70ZbXScV+zaWnPwHLBaA4/hPLLq5XPnnW5sHLBuxscVYs2aMou2VFWu5K2TFhL399tvIzMxEaGiow+eVlZV4//33KUUF4TX8TNpma/S/VTu1aU9qaiyYPj0cf/65FlbrRU2tS2JL3Fl8sX21eqgxAKldT3oPmp7aY3x8vO6r57SuHzUEt9ZB0yxuTu4rUVFRGDJkCDZv3sycy9X++TZtWuSxvcqZsLB2v/bIEmEjR45Ev379EBsb6/D5xYsXMXLkSBJhhNfwg5TYy6K1dcmdewlg88VWwuqh9ACkRT2xPGiysHpOq/phcWIiFSNtTi4XfussFl2uzhbPuXPP4tixICQmXkFCws0AbpY9YWHxfnlkiTCO4xwStPKcOnVKiC0hCDmw/LI4w2JZ5Vo91ByA1Konfxg0fUGP+hET3GruU+gr3ro9jZwI1xfrqJr3bf+7+Higc2dZp6mD3tZyT3glwm666SZYLBZYLBb06dMHQUFXf15dXY2CggL069dP8UIS/oPeL4s3A5LeZXWHHKuHmnE3atWTc5lLS0tx5coVh2OCg4NRWVmJoqIipgdFNdAjkaiY4NZ7n0IxpJbFqIlwfV3kYLT7NsKOBl6JMH6F5MGDB5Geno6GDRsK34WEhCAxMRGDBg1StICE/6Gna0nKwFVaWiok/PNUVvtZP49WQsCTG9UdapZLrWdqb5UQ2yQb0HZwYMFSovVA6O0WOSzm25OCnE3FWcBXYa7GfattWdM7JlMMr0TY008/DQBITExEZmYm6tWrp0qhCEKqiFBjiyFX7gb7c4eEOFpb3JV13boczVJXSJ3JaTnj09Idxlp2eKNZDJTEmy1yfIEFkcvDYv4pdyhZJ77etxbvCevvl6yYsOHDhwOo7dDOnDlTJ31F8+bNfS8ZQYig5hZDns+dh06dPP9e69QVLM749CoTC/mAjGopkYs7wa1WoD5LIpeF9qYHSty3v70nrpAlwo4ePYpRo0Zh//79Dp/zAfuUrJXQAjW3GJJ67oyMDERHRwOQvjebUrBkCXAHC/vPsbA6z0iWEjm426dQrZWxrAzerLY3tfHX+1YDWSJsxIgRCAoKwvbt2xEfH+9ypSRBeIMv7jQ1UyCInTs6Ohrx8fGalYdHqiVgyJAhwrJ0Z1gQaUrDYtoQby0GRhDXrnBVJq1WEOslcllsb1og976d27Zz3KzZJyuukCXCDh48iAMHDqBt27ZKl4fwU3xxXanZ0cs5N0sZysWC1c0Wk8Ra2hBvLQYsudmUQIsVxHq6A1lrb1oh577F2raSz9FIExlZIqx9+/YuV34RhC/IfSnU7OjlnJvFDOV6B6prBWtpQ7y1GLDiZlMSNVc76+0WY629aYWc+/bUZpV8jkabyMgSYQsWLMCMGTPw4osvokOHDggODnb4Pjw8XJHCEYRU1Ozo5ZybpQzl/hY4zFL2fF8tJe7E87lz55iazTuj1cpYvdyBRsg/pQZK3rd921byORptIiNLhKWlpQEAbr/9dod4MArMJ/RETm4sNc+tZnl4xDovvS0FWsFq9nxfLCWexDOf9JSV2bwzWq2M1csdyOJqZC1Q6r6d23Za2m7VniPrcWayRNi+ffuULgdBuOXUKeDoUaB1a6BpU71L4x49cnWJDUL+EjjM2qDoq8XAlXjetu1uxMYWo2nTIuE4VmbzrtAqKbFe7kCzCSyp+Hrfrtr27t1pSEvbjd270xTbtBswhhdAlgjr1asXvvzyS/zrX/9Cfn4+tmzZgmuuuQbvvPMOkpKSlC4j4YfwgZUbN9bHjBlW1NRYEBDAYeFCGx544G+EhISoKnrknFsPIeA8CAG1s0q+8/KnwGGWBkVf24Ir8QwEYM2aMUwOJFqjhjvQSMHcRsbdxDAhoRCTJy9BcnI6unWL9nnTbqN4AWSJsK1bt+Lhhx/Ggw8+iB9//BEVFRUAAJvNhhdffBGffPKJooUk1Ecta5Oc8/KBlTZbo/9l2q51edfUWDB9ejj+/HMtrNaLyMrKUlz02HfEQ4YMcbkXIb9Jvatz69FJd+r0I/7+u54wi9y9Ow31619Gp04/iloK9Nxayez4UoeuxDPA7kCiNUpPeIwWzG1kPE0Mazd534LERN/r2ZvN5O3Ruv+TJcKef/55rF69GsOGDcP7778vfN6jRw88//zzihWO0IY1a4Bx44CaGiAgAHj9dWD0aP3Oy3esYi9RZWVlnRxdvuDcEbuLJRDriNXYSskZ+xm+zdZIEGBA3YHak6XAeUNlqffoj2hpKeHF87ZtdwMwvztZDkq2T9a2vWIFNdq8FBeyEvXs7Wby9mjZ/8kSYUeOHEHPnj3rfG61WlFaWuprmQiNKCkpwbFjVzBuXCxqanhrE/DIIxxuvPEMEhODZDVEpc6rtSvN/sWXu+2Qmlsp2RMVFYUhQ4Zg8+bNkuK+3AWq02AjDa0sJc5uttjYYqxZM8Yv3MmsoHUcEatuUKXbvCsX8smTTQFY0KzZSV+K6hIpYo+F/k+WCIuLi8Mff/yBxMREh8+/+uortGzZUolyESpTUlKCF154C7/+eh1qatIdvquutmD58k+RlHTc60GFf3ELChJRUzPcp/PqFXTrSyyBmlspOcNnwhcTq662VgKMEbTKClpZSng3W2FhIbKzs9G0aZFf5qHSC63jiFh2gyqd6sF+4ggA+fmtVOl/pMYLstL/yRJhY8eOxWOPPYa1a9fCYrGgsLAQubm5ePzxxzFnzhyly0iowPr1gf+LtwoAwAG4mmrEfgD3dlDhjxcTBlLP6+ol4gfAwsIAKOiNFFBiRaHUcygxCxYTq662VjJK0CqLqN15R0VFObQJlvKemR2tVxMbKaeVEqke+Imjmv2Pp3hBrff3lYIsETZr1izU1NSgT58+KC8vR8+ePREaGorHH38ckyZNUrqMhILwrsIZM2KFgPdaAVYrxJSaaStpxbJ3pdkPgO+8w2HhwlJhtaRSM0Ul3KBSzqFUDBrg/UDtL6krlEas8y4tLVUkTlHpvGesurxYQ+/VxKzmtFJ64qF2/yPWllnq/2SJMIvFgieffBLTp0/HH3/8gb/++gvt27dHw4YNlS4foSCeXIWABenpO9G+/W+KNUKlZ/DOA6Cr1ZJKDCRKCEhvg0/lxqA5X1NqGfUebIyKWOe9efNmRdqhkqv/WHZ5sYaeecdYcY85o4bVSO/+R+/r2yNLhPGEhISgffv2SpWFUBkxV6GSAoxHyazxUlZLKoUSAlLqOeR2cr7kSfPXPe98RUrnrVQ7VEoQGcnlxQJ6uH9Zco85IzfVA+B+oqB3/6P39e3xSYQRxoSlBugKd+JC69mLEgJSyjnkmsZ9tZZQrJH31E2OC3BcbZAxC1YLKbDq8tITvbe9Ysk95owvqR4ARwsrS3tustL/kQjzU1hpgK5wFhd8MKXa4lGPbYcA38Slt9YSvQcbM5Cc/Ac4zv4T6VYLvWOzWHV56Y3e216x5B5zxtd+175O9a5nFvs/EmF+jBYbTMtFD+uNEh2E1Je3vLwc5eXlALS1TOrdCbKMJ4Fks9mEf58/HwU5CVT1js1iyeWltxh1hZ5tnkXvhFSrFY9UC6ue9cxi/0cijPCItzMCLaxJcsWjFpnspbzk5eXlePfddx0+09Iy6Y8CSwypAgmQb7XQOys7Ky4vvcUoS7DknnNGrC/TOuegUsKdtTZFIoyoA5/cU44oYXGmAWiXyR4Qf8mLiooc/rYfjJOSjvt0bUIe3ggfJawWergFWXF56S1GWYLV/pJHynW1sLCaWbiTCCPq4Cq5pzew+BJomcneG6QMxhSfpT1irhVfLJd6uQXVdHnJtVJQjBqb/aU3+GJhldpuzCzcSYT5EXoFnvuKkuVmxSUDiA/GGRkZSEhIMHwnbTSkCgO5Qb1at0G1XV5yrRQsxagR8pFrYfWm3dhjNuFOIsyPYN307Q4ly82KSwYQH4yjo6OZexZmR0wYZGZmwmq1uv29lHaodRtU+72Xa6VgaUJkFvRY8CDXwiq13RQWFjocYzbhTiLMzzDqoK5UuVlahcSSICRqERMGVqvV522J9GiD9u+Pq4G6srJSiFX0ZaD2xkpB7V9ZtI6bUtLC6qnd2OchM6NwJxFG+B2s5EhjSRAStWglDPRqg2oO1N5aKaj9K4vWcVNKWVjdtZvY2GJUVYU6lN+Mwp1EGMEUp04BR48CrVsDTZuqdx1WcqSxIgiJWtQUBiwkilRzoJZjpaD2rw5axU0pYVFz127efHMMAMfym1G4kwgjdId3j2zcWB8zZlhRU2NBQACHhQtteOCBv5mMU/MFFgZjwhEt8jWxFpOp9EAt1UrhbftnMbEryxgtbspVuwE48AmRnctvNuFOIozQFd49YrM1wpIlk8FxFgBATY0F06eH488/18JqvehzHANLK0NZG4yVQsvBUulrafVMWHmmagzUUq0U3tS1mfNDqYXR4qZctRux8ptp4koijNAVviMW6zh8jWNgTfiYbcDQcrBU61pmeyaeUGuglmqlkFrXZs4PpRZGjJuybzfBwZVYs2aM2/LzycSdMeLEFSARRjCCFh2HEV9QoyB1EFRisNTyWmZFyfdNK/e62fJDqYVR4qY8tRtP5fc1mThrkAgjmMAoHYdR0TquRupmvka7lllQ8n3TwspstDgnpZD73hohbsq53djvRSm1/GaIFyQRRnhEq9WKgDE6DiOidVyNlhYLso7IR8n3Te2BzmhxTkrg7XtrxAU/9u1GzoIN+/pxNxljPV6QRBhRBz1XK7KSOsJMaBlXo6TFwt0s99y5c4pfy18w4kANGDPOyVe8fW9Zi3v1Fm/Lb3+cp8kY62EJJMIIB8RWK37zTQ6aNTuJcePugtVqZfqlJuqituVIKYuFFCuAP1pHfMWoA7W/hytIfW89PTd+UsPvjOAMC89dzvWNPhkjEUY4ILZaccuW+2Cx1CA//2onwLq5V09YilnQorNSymIhZfbqj9YRJTDqu+qv4QpKvLdmTvVh9MlYgPghbDBgwAA0b94c9erVQ3x8PB5++GGHjT0BYPPmzbjxxhsRFhaGFi1a4OWXX65zns8//xydOnVCaGgoWrVqhfXr19c5ZuXKlUhMTES9evWQkpKCb7/91uH7y5cvY+LEiYiKikLDhg0xaNAgnD592uGYEydOoH///ggLC0NsbCymT5+OK1eu+F4RGsEPcK7gOwGbrREAzwNmSUkJioqK3P5XXl4uqTysuUekwHd8r7/+utv/VqxYgZKSEk3K46mzUgreYsG3HaUsFjZbIxQUJAptTs1rEezgyn2alHS8zjM2Yv8gFSXe2zNnzjj87ep9Ath33bnC1VhlpMmYYSxht912G5544gnEx8fjzz//xOOPP47Bgwdj//79AIBPP/0UDz74IJYvX46+ffvi8OHDGDt2LOrXr4+srCwAQEFBAfr374/x48djw4YN2LNnD8aMGYP4+Hikp6cDADZt2oSpU6di9erVSElJwZIlS5Ceno4jR44gNjYWADBlyhTs2LEDH3zwAaxWK7KyspCRkYGvv/4aAFBdXY3+/fsjLi4O+/fvR1FREYYNG4bg4GC8+OKLOtSe9zib/52RMtOQGjj50EMPISwszO15WDCTy4G1VApqWo7UzDjvyRWjVnZ7gg2M6j5VEl/f25KSEmzevFn4W4mQBJYs/EZ3VRtGhE2ZMkX4d4sWLTBr1iwMHDgQVVVVCA4OxjvvvIOBAwdi/PjxAICWLVti9uzZWLBgASZOnAiLxYLVq1cjKSkJixYtAgC0a9cOX331FRYvXiyIsFdffRVjx47FyJEjAQCrV6/Gjh07sHbtWsyaNQs2mw1r1qzBxo0bcfvttwMA1q1bh3bt2uGbb75Bt27dsGvXLvz222/YvXs3mjRpghtvvBHPPfccZs6ciWeeecYwgwM/wJ082RRbtgyGveFUSicgNXAyLCzMVHlf3KF3KgU1Oyu1BksxV4wREzeyNIAZASXrwoh17+t7a3+/ZnVtGtlVbRgRZs/58+exYcMGdO/eHcHBwQCAioqKOtaU+vXr49SpUzh+/DgSExORm5uLtLQ0h2PS09MxefJkALWN9cCBA5g9e7bwfUBAANLS0pCbmwsAOHDgAKqqqhzO07ZtWzRv3hy5ubno1q0bcnNz0aFDBzRp0sThOhMmTMCvv/6Km266yeV9VVRUoKKiQvi7rKxMRu0oS+3qqcOorJTfCRg9cFIJWEmloGZnpUaHKxbvoVXiRqUGbxYHMH/ByHWv1Hubl5fic/wUq7sYGHVlvaFE2MyZM7FixQqUl5ejW7du2L59u/Bdeno6pkyZghEjRuC2227DH3/8IVi8ioqKkJiYiOLiYgdhBABNmjRBWVkZ/v77b1y4cAHV1dUuj/n9998BAMXFxQgJCUFERESdY4qLi4VjXJ2D/84d8+fPx7x587yoEe3wpRMweuCkr+gtQo2algBgI/heycGbNRe1P6GkeNDCoqb0e2uzNcL+/al1PvflfdJzcsnSfsC+oKsImzVrFhYsWODxmMOHD6Nt27YAgOnTp2P06NE4fvw45s2bh2HDhmH79u2wWCwYO3Ys8vPzcffdd6Oqqgrh4eF47LHH8MwzzyAgwBjrD2bPno2pU6cKf5eVlaFZs2Y6lsgRd53AuXPnPHY6LAykeqK3CDVyXA0L8R5qCie9XdT+ii/iQSuLmtLv7fnzUXC1Fi81NVdW29N7cmnkfs0eXUXYtGnTMGLECI/HtGzZUvh3dHQ0oqOjce2116Jdu3Zo1qwZvvnmG6SmpsJisWDBggV48cUXUVxcjJiYGOzZs8fhHHFxcXVWMZ4+fRrh4eGoX78+AgMDERgY6PKYuLg44RyVlZUoLS11sIY5H+O8opI/J3+MK0JDQxEaGuqxPtRGyqzBeeDgt5pw1+mwMJDqCQsilPWOyBk1A/19RSnhpJcVwYhxUUriq3jQ0h2n5HNw1Q8BNUhJyZN1Pr0nl4Dx+jVX6CrCYmJiEBMTI+u3NTW1S1LtY6gAIDAwENdccw0A4L333kNqaqpwjdTUVHzyyScOx+fk5CA1tdZEGxISgs6dO2PPnj0YOHCgcJ09e/YIKyw7d+6M4OBg7NmzB4MGDQIAHDlyBCdOnBDOk5qaihdeeAFnzpwRVlTm5OQgPDwc7du3l3W/WmE/uygtLXVYVQPIz0xs5MBJX/F3ESoHVme5SgknvawIesRFsSb6lBQPSrUH5zqy2WyoqqoS/g4KCnKY9MupMyn9kDeTGhYml2bAEDFheXl5+O6773DLLbegcePGyM/Px5w5c5CcnCwIn3PnzmHLli3o3bs3Ll++jHXr1uGDDz7AF198IZxn/PjxWLFiBWbMmIFRo0Zh79692Lx5M3bs2CEcM3XqVAwfPhxdunRB165dsWTJEly6dElYLWm1WjF69GhMnToVkZGRCA8Px6RJk5Camopu3boBAPr27Yv27dvj4YcfxsKFC1FcXIynnnoKEydO1N3S5Qp3nWRERASGDBmC0tJS7Nq1y+eBw6iBk3Jh2ZpjBFib5Yq1f347JUB8kNTLiqB1UDWLwfBKiQelhLTUOnJGTp156ocyMzO9Oh9NLpXBECIsLCwM2dnZePrpp3Hp0iXEx8ejX79+eOqppxxEzVtvvYXHH38cHMchNTUVn3/+Obp27Sp8n5SUhB07dmDKlClYunQpmjZtijfffFNITwHUNsSzZ89i7ty5KC4uxo033oidO3c6BNovXrwYAQEBGDRoECoqKpCeno7XXntN+D4wMBDbt2/HhAkTkJqaigYNGmD48OF49tlnVa4p7/GmA/B24NA7cFLvGTir1hxCHmLtn3fL83gaJJUQAr62by3coSyupFNKPCglpMXqyNc6kxrgL8cr5c8eDqUwhAjr0KED9u7d6/GY6OhoIY2EJ3r37o0ff/Tc0WRlZQnuR1fUq1cPK1euxMqVK90e06JFizquTxaR2kkC3g8ceooQVmbgLOc40lukGg137T84uBIFBYleDZK+CgFf27ce7lBW0rQAyogHNdxxznV0ww2HcOjQDT7VmdL9sJFXW7OIIUQYoQ1inaScgUOvQdxsqQCUFpWsiFQj4ar933DDIaxZM0byIKmUi9pXC5PW7lC9V9KVlJTAZrM5fOareFDaHeeqjn76qSMAi/C33DpT8h1mxcJvlkkkiTACgPRO0qjmZ6OlAnDuYOzjjTyhtPg0ikhVE3fCKTi4UhBggLRBUo0BTI6FSeugaj1X0kmdcAwZMgSxsbFe1b2S/aGrOuIFGA8r+RX1FjdSt8QzwiSSRJgfYj/A84O7N52k0QLsWXKDSEFuoK4vGE2kaomzcDp37hyys7NRUJAoS1goOSjItTBpHVSt50o6qVbDiIgIl8/GeUJUWlrq8L1S7jjXKSQ42AsxWn1Yi9Qt8YwwiSQR5me4G+CV6CRZjAHQ2w0iBykdh5KiyWgiVQ9cDc5i74wr66XSLhJfLExaWrVZWUnnbVuXOiHKzMyE1WoV/lYqhYSrmDBW+y09MGL/7gyJMD/D3QAv1kkOGTKkzlZN9rDqf2choaCvOAsuJUWTGToxvRB7Z5xXS/Io6SLxdvKkZ1C13qEMctq6VCua1WpVZA9TV3V0++17DRf+oRVm6N9JhBECnjrJiIgITTZKVhqjJxR0Flxpabuxe3eaYqLJDJ2YnsgRFkq6SLy1MGkdVM3SSjpf27paFmOxOqLVh+4xev8OkAgjnDDbC8+KG0QOrmbuOTlpcN7/zRfRZIZOTGukCgut4uy8FYJaWqxZWUkH+NbW1bQYu6ojNTLmmxEj9+88JML8HHcDRUZGBqKjowEY84U3Q7Z616ulAhQVTWboxLTGnbDgA/YB9ePsWLIwiaFl3+EqbQEfm+dLW1fbYuxcR0b0OuiF3m5uXyER5sd4Giiio6MN3RGwNAOXi7uZu71L0nkgkbNLgVFFqjNa5g3ydB4t4uzM0L6VxnPagtrP5A7YZDFmG6Ot2LeHRJif4g8B2UYfgNzN3Dt1+hHXX/8Lrr9+IDp2bICEhJsB3OzVoGu2QZyl5LNaxdkZ5dlohdS0BXKshma2GBsx6aneW+IpCYkwP4UCstlFipXKar2Ie++1+tQ5stax+gJLyWfJaqIvYhNM+1ALHnuh4SqPIqCM24s1wWPUpKdmmkSSCPMz+AFebKAwwgzCF1jrDO0xUwejF3omnzWz1cQIiE0wPYVauBYlV/cF9SX2jkXBY+Skp2bp/0iE+Rn2A/w115Rh5kwrqqstCAzksGBBGR544H7TD/Asua7cYeb6Vxu9ks+aMc7OiPhiiZQqSuQsXGJZ8PhDeAqrkAjzQ/gOY9o0IDMT+OMPoFUrC5o2jQAQoWfRNIEl15URYNlq6IyegwlZMNlACUukWDvyZeESi4KHwlP0g0SYn9O0ae1/BOEKI1gN7dF7MGGhDgjf47fUbEd6t1FXUByjfjgnISIIghAwmtWQH0zsocHEP7FaLyIp6bhPSYztUaodsdhGeeshXy6KY9QOsoQRhAEwkktQTygo3n9RMm2Bmu2I1TZq9KSnRoVEGOH36LmSTgosuQRZrSt/DIonYe6I0jF5aooSVgWPWNJTanPKQyKM8Gv0WknnDay4BFmuK38LimdJmLOE0veqZiZ2FrK8e2M9ZDHFhhkgEUb4LSyuUmIVI9SVP3X8zmLT3YDISqyeUVAzEzuLWd69mbwUFRUJn7GWYsPIkAgj/A6+kxNbpWQm15WvsLiii6iFZQul0qjtDlPTomoWa60RJmRGgkQYIRujxgfwneGxY1fwzjscamoswneBgRwmTboTiYlBTJZdL2gJO5v404ColTtMzfeetT7FmzrloQmZspAII2Rh9JiUqKgoREUBr78OPPIIUF0NBAYC//qXBZ07N9G7eB7RMjietwaKregiq6E+iA2I9nsfsjopkgrLGeeNipw6pQmZspAII2TBSrC4r4weDaSn87sGsJ+4VmvXk7MLZe7cszh2LAiJiVeQkHAzgJsNP7gbGXcDYnBwJQoKErFuXY4hg6ZdWdl5QelP1j+t8KZOWU2xYVRIhBF+j1F2DdBr8LEftOPjgc6dVbsU4SWuBsQbbjiENWvGGNZK5NlFRu4wNfC2TllNsWFESIQRqmLvDgGM7xLRA1pIQHjCfkAMDq4UBBhgTCuRmIssOfkPcocpjBwXIwspNswAiTBCVbKzs+t8ZhSXCCvQQgLCGWfBzQ+IBQWJprESubP8Tp68hNxhCiPFxchiig0zQCKM0BwjuERYw8gLCQjlcY7VO3fuHLKzsxULmmZh5bMnyy+5w5RHrE7NkmKDNUiEEYSBMNpCAkI9XA12SgRNs5IZXUxQkjtMecTqlASW8pAIIwgvYMFCoNRCAhbuhVAeX61ErKSCkCso5bjD7N+FwsIAFBQEISnpChISaoRzmvFdIBej/pAII2Thjy+l0XOj2ePrvZCAYxslrEQspILwJCgzMjIQHR3tcLycdmf/LngSnUZ4r72Bf4czMzNx8iSHEydC0bx5BeLirgAAgoKCEBERQe+yypAII2ThKj6Aj0uRitEGcrPkRgN8uxcziVGzoIZFQ69UEKWlpQ5/uxOU0dHRiI+P9/l6fBsXE51GeK+l4q/Ck0VIhBGy8eXlpIHcePCi2TntiDvMNGixjhpB03pkRi8pKcHmzZuFvz3tDqG0Nd6f8o/5o/BkFRJhhCKcOgV8800IbLZGkjosM1mVnOFFCmuWPF+QKpq1wGgWVK1Q+p71yIwuNR4tMzMTAFBUVARAmTguf9yOx5+EJ6uQCCN8Zs0aYNw4oKYmChbLZNGtdEJCQgwprqRi75I1iiVPbD9KT89Ly70syYKqLXqlgpASj6a0O80ft+PxR+HJGiTCCJ84dYoXYLV/c1wAduy4B3PnpggzUnv42Sk/gzU7RhCbvuxHqfVelma2oLKKHqkgxCw0Fy5cAFAr1rZtuxuAMu40f8s/5o/CkzVIhBE+cfToVQHGU11twcWLTaBAzCzTaGkBUgtfVsCxsHrODM+ANVhIWyBmodm1axcAIC8vBbwA4/HVneZv+cf8TXiyBokwwidatwYCAhyFWGBgbSLRU6dqRVrr1uZLKqq1BUgt5MaE2GyN8Ouv1+kaT2KWZ8AaLGRGl2KhsdkaITc31cWvyZ3mLf4mPFmCRBjhE02butpKB/jss6tuyoCA2mNGj9a7tL7Bz/xZsAD5Cn8vYhYHV9YOe/EDcAAsLn/rDiUC683wDFiGhXg6MQuNqwkEAHTvnutVG2DB8kf4LyTCCJ9x3koHAFq0uGodq6mpFWnp6ca2iPEWgn37gMWLjb2iyN7acc01ZZg504rqagsCAzksWFCGBx6436UYchY/tQKsVog5WytcDVpSA+uHDBmC2NhYt2KAVnX5B54sNO4mECkpeV5dgwXLn9aQ8GQHEmGEIthvpbNvn6s4sVqRxh9j1E4gKioK3boBAQEcamq8swCxBj+oTJsGZGbyItqCpk0jAES4/I1r64MF6ek70b79bxg58g5ER9/sdtCSGijN54pyt7qNVnWZE2/edyWDys0ksKTgj8KTVUiEEYrjKU6Mx8idQNOmwMKFNkyfHi50/mlpu3H+fG1ZjWiJEduPUsx92b79b7BaLyIhIcGrZyY3NQat6jIn9v2CzWbDpk2bhO9ctRUKKpcPi32rVMwUb0wijFAcd3Fizi+LkTuBESOq8eefS3D+fCQKCxOwe3eaywBx1ix5cpHrvvSEY2xZDbp3z0VKSp7HgdS+Pj0NwGapd3/EVRvytAjDk8uS2oF54GNJN26sjxkzrKipsSAggMPChTY88MDfzE7axbBwHMfpXQjCNWVlZbBarbDZbAgPD9e7OF5z6tTVODGx2YoRZzYlJSU4duwKunaNdXBNBgZyyMs7g8TEIEN2ClLw5tnaU1RUhNdffx02WyMsWTK5jmvTeYAdN25cnf0BKWO+f+CprVgsNZg8eYlHwT5kyBC0a9dOi6ISKsPHkoq1BZaSNEsdv8kSRqiGmIuL52rGfWOtpIyKisKhQ+7zpDHSF6iC1GfrDncr26SscmSlkyW0wd0ijLy8FPTtu9vt72JjY9UuGqER/KRLbEGOEZM0kwgjdMU5477SKynVtppIiX8j6uIqtoyHVjkS9rhrK/v3pwru64yMDERHRwvfkTXUnJhxQQ6JMEJXXGfcd1xJKRct9hmUGv9GOMIH1ttvOcNj9E6VUBar9SJSU3Oxf38Pp2+uivXo6Og6bmvCfJhxQQ6JMEJX1LQkabXPoHOeNBJg7nEVWJ+Xl4Lc3FTTdKqE8qSk5GH//lTYC3YS6/6J2VbEkggjdMUsliRfY6T8BX6V5dmzZ7Fp0yZYrRfRt+9upKTk0SpHwi1W60UMGGAuCwghHzNts0QijNAdsiT5F1FRUYbOE0dog7MAN5sFhCAAEmEEI5AlyVgoseDB3wWWfR0WFgagoCAISUlXkJBQ65v3dxEaFRWFzMxMh4StZrKAEARAIowgCC9xXvDgLus9Szl7WMO+Dj0lIvX3OrRarXoXgWAAo25zJwUSYYTfILZFDnEVT5auc+fOCf/2JCCMmLNHK/i6cd4Q3TlPmr/XoZkHX3/G2+TcZg5fIBFG+AWexALhiFRLl5iAIMQRSz7p75h58PU3fN12yKzPmEQYYVr42bGYWDDTLFqJWC3733sSryQgfMeMySeVxqyDrz9Rd9uh2m3eamosmD49HH/+uZa5bYe0gkQYYVr4WfS+fcDixXXFQo8ew9G7t3k6eaVjtcTEq5iAsHdbkrXCNWZMPmkPLT4gAHNvO+QrJMIIUxMVFYVu3VwnhE1JiTLV/o5SLVhSOzqxDtOdgACAgoJErFuXQ4H6EjBr6gVafEA4Q5bfupAII0yPWRLCSkWpWC0pHaazgMjPb/U/dwMF6nuDGVMv0OIDwhmzW37lQCKM8Av8KSGsUrFaUjtMXkBQoD7hCoodJOxR2/JrNBc4iTDCb/CXhLBKmvy96TBpsJWOP6VekBo7yMqAqcTiFsIzall+jegCJxFGECZDaZO/uw4zIyMD0dHROHfuHLKzsynewwv8KfWCWHvMzs5mZsCkRMTGxogucBJhBOEGbxMKsoQvJn+p1peEhASHgYjiPbzDKIO4Eu4dT+2RpQFT6cUtzpCVTRuMZJUnEUYQdviaUJAl5Jr8fbHSmHWln7+ipHvHXXtkccBUI77Rn61sWrvfjWSVJxFGEP/D6AkFve3oPFn6fLk/M67081e0cO+wOGCqIQzVtrKxjNbudyNZ5Q0nwioqKpCSkoKffvoJP/74I2688Ubhu0OHDmHixIn47rvvEBMTg0mTJmHGjBkOv//ggw8wZ84cHDt2DK1bt8aCBQtw1113Cd9zHIenn34ab7zxBkpLS9GjRw+sWrUKrVu3Fo45f/48Jk2ahI8//hgBAQEYNGgQli5dioYNG3pVFoItjJ5QUEpHV15ejsrKSixaVKqYpc+fgsz9FTmiROrzZnHAVFMY+usqYq0nrkaxyhtOhM2YMQMJCQn46aefHD4vKytD3759kZaWhtWrV+Pnn3/GqFGjEBERgXHjxgEA9u/fj/vvvx/z58/H3XffjY0bN2LgwIH44YcfcP311wMAFi5ciGXLluGtt95CUlIS5syZg/T0dPz222+oV68eAODBBx9EUVERcnJyUFVVhZEjR2LcuHHYuHGj5LIQ7MLizFwqnjq6kpISvP7664pb+vwpyNxfkfNOiLULfkEHwN6AqaYwZNH9alaMYJU3lAj79NNPsWvXLmzduhWffvqpw3cbNmxAZWUl1q5di5CQEFx33XU4ePAgXn31VUH4LF26FP369cP06dMBAM899xxycnKwYsUKrF69GhzHYcmSJXjqqadw7733AgDefvttNGnSBB999BGGDh2Kw4cPY+fOnfjuu+/QpUsXAMDy5ctx11134ZVXXkFCQoKksihFTU0Ns5YZo1FVVYUGDRqgQYMajBixE/v29UZ1dQCKi4Nw552fMP8yi6GmpY8ElrmRK0q8aResDZhqCUMjT/II5TGMCDt9+jTGjh2Ljz76CGFhYXW+z83NRc+ePR1M4Onp6ViwYAEuXLiAxo0bIzc3F1OnTnX4XXp6Oj766CMAQEFBAYqLi5GWliZ8b7VakZKSgtzcXAwdOhS5ubmIiIgQBBgApKWlISAgAHl5efjHP/4hqSyuqKioQEVFhfB3WVmZxzqprKxEQUEBauz34yFkU11djR49egAAevQARo/+GTU1Abh8uRw//HAYly/rXECFoEGAkANr1iotUEMYsuh+NQtGDI0whAjjOA4jRozA+PHj0aVLFxw7dqzOMcXFxUhKSnL4rEmTJsJ3jRs3RnFxsfCZ/THFxcXCcfa/c3dMbGysw/dBQUGIjIx0OEasLK6YP38+5s2b57oSnOA4DkVFRQgMDESzZs0QEBAg/iPCI5WVlSgtLXX4jOM4XLhwAW3atKnjAjcKfAB+eHhtG6FBgJCLkqKExQFTqzL5o6DVAiOGRugqwmbNmoUFCxZ4PObw4cPYtWsXLl68iNmzZ2tUMn2YPXu2g6WurKwMzZo1c3nslStXUF5ejoSEBJeWQcJ7AgICEBRU95WwWq2IiYlBSEiI4Vy/a9YA48bVbl4eEBCLu+++CZ06/UiDgA4YbTsVtWFxwNSyTKy5X82C0d4hXUXYtGnTMGLECI/HtGzZEnv37kVubi5CQ0MdvuvSpQsefPBBvPXWW4iLi8Pp06cdvuf/jouLE/7v6hj77/nP4uPjHY7hV2HGxcXhzJkzDue4cuUKzp8/L3od+2u4IjQ0tM49uqO6uhoAW2ZVsxIQEICAgAAEBwf7JMK0TP5aUlKCY8euYNy4WNTUXA3At1+FRYOAdhhxOxVAfcsQS/fKo1aZWLT8EfqjqwiLiYlBTEyM6HHLli3D888/L/xdWFiI9PR0bNq0CSkpKQCA1NRUPPnkk6iqqkJwcDAAICcnB23atBHcf6mpqdizZw8mT54snCsnJwepqakAgKSkJMTFxWHPnj2C6CorK0NeXh4mTJggnKO0tBQHDhxA586dAQB79+5FTU2NV2VRCovFouj55FBZCVy+DNSrBxi5/3Dn0nWuYzmdpKNFCnj99dpNxdWAH/ALChJRUzPc4TtahaUPRtxOBWDTWmVUqC4JVxgiJqx58+YOf/P5uJKTk9H0fyaFBx54APPmzcPo0aMxc+ZM/PLLL1i6dCkWL14s/O6xxx5Dr169sGjRIvTv3x/vv/8+vv/+e7z++usAagfbyZMn4/nnn0fr1q2FFBUJCQkYOHAgAKBdu3bo168fxo4di9WrV6OqqgpZWVkYOnQoEhISJJfFLJw9Cxw/fvXvFi0ACbqaSYKCghAbG1tnocPly5dRVlaGIUOGoEGDBl53kqdOXRVgQO3/H3kESE9XxyLGd/IUgM8eRkxPQKJAOaguCWdME81ttVqxa9cuFBQUoHPnzpg2bRrmzp3rkBKie/fu2LhxI15//XV07NgRW7ZswUcffSTkCANq85BNmjQJ48aNw80334y//voLO3fuFHKEAbXpMNq2bYs+ffrgrrvuwi233CIIOallMQOVlY4CDKj929NkfsSIEbBYLLBYLAgODkaTJk1wxx13YO3atV6t8ly/fj0iIiLkFdwDQUFBCAkJqfNfYGAgYmNjZXWiR49eFWA81dXAH38oVGg38AH4FkvtxaUG4JM7RD14YWwPCWOC8F8MYQlzJjExERzH1fn8hhtuwJdffunxt/fddx/uu+8+t99bLBY8++yzePbZZ90eExkZKSRmdYeUshgddykbKio8uyX79euHdevWobq6GqdPn8bOnTvx2GOPYcuWLdi2bZvL4Hgj07p1rQvSXogFBgKtWql/bU8B+BkZGYiOjnY4Xkt3iJE3SJcLrUwlCMIec412hGTsV2q5QspgbGccdEBsbUFoaKiwQOGaa65Bp06d0K1bN/Tp0wfr16/HmDFj8Oqrr2LdunX4v//7P0RGRuKee+7BwoUL0bBhQ3z++ecYOXIkgKvxWk8//TSeeeYZvPPOO1i6dCmOHDmCBg0a4Pbbb8eSJUvqpBXRipKSEgQGVmLhwvqYOdOK6moLAgM5LFhgQ2Dg3ygpUV/0uAvAj46OdliAoiVaxsixBq1MJQiCh0SYH2K/UssTYiu1QkJqY8CcY8LkeLNuv/12dOzYEdnZ2RgzZgwCAgKwbNkyJCUl4f/+7//wz3/+EzNmzMBrr72G7t27Y8mSJZg7dy6OHDkC4GqcYFVVFZ577jm0adMGZ86cwdSpUzFixAh88skn3hfKR5zr+dFHGwkD719/XQTvwWZtRZyauF61CTzyCIcbbzyDxMQgv6gLWplKENqihOFBDUiE+SFSV2BJOS4mBrBaa12QoaG+rY5s27YtDh06BAAOK1gTExPx/PPPY/z48XjttdcQEhICq9UKi8VSJ+XHqFGjhH+3bNkSy5YtE2L77DdY1wLn+nM38LK2Ik4tPK3arK62YPnyT5GUdNyvRKk/weogqDT+cp9GQinDgxqQCCN8JiREmdQUHMcJ7sXdu3dj/vz5+P3331FWVoYrV67g8uXLKC8v95ic9sCBA3jmmWfw008/4cKFC0Kw/4kTJ9C+fXvfC0nIRuqqTTOKUn/PEcXyIKgk/nKfRkNJw4PSkAgjmOHw4cNISkrCsWPHcPfdd2PChAl44YUXEBkZia+++gqjR49GZWWlWxF26dIlpKenIz09HRs2bEBMTAxOnDiB9PR0Uw7s7mB9wPfH4HR/zxHlfN82WyOcPx+FyMgSh+du9PeU5cGeuIq79qcHJMIIJti7dy9+/vlnTJkyBQcOHEBNTQ0WLVokJFDdvHmzw/EhISHCrgE8v//+O0pKSvDSSy8J2z19//332twAQxhhwGctOF2LLYXMKrC8xdOOAQShNqy1PxJhhOZUVFSguLjYIUXF/Pnzcffdd2PYsGH45ZdfUFVVheXLl+Oee+7B119/jdWrVzucIzExEX/99Rf27NmDjh07IiwsDM2bN0dISAiWL1+O8ePH45dffsFzzz2n013qixEGfFaC0426pZAREdsxwGywZHEh2Gx/JMIIWVy5csVjclV3m2EDwM6dOxEfH4+goCA0btwYHTt2xLJlyzB8+HAEBASgY8eOePXVV7FgwQLMnj0bPXv2xPz58zFs2DDhHN27d8f48eORmZmJkpISIUXF+vXr8cQTT2DZsmXo1KkTXnnlFQwYMEDx+yfMg1G3FHIF60HhRtwxQC6sWVwINtsfiTDCa65cuVJnE3NXxMbG1hFi69evx/r160V/O2XKFEyZMsXhs4cfftjh71WrVmHVqlUOn91///24//77HT5zldiXIJxhsYP2BiMEhYstyrDZbLrlrlMSFi0uBJtbuZlm2yJCOr4GbkvdXsibbYjMiK/1fOoUsG9f7f8J9TH6lkKugt8LChJhszXyeJyWiG2ltWnTJpSUlOhWPqXwJOgJ/ZC7lZuakCXMDzFC4LYZ8KWezZhRnlZtagfLrjCxRRlGcPuKwaLFxZ+x71M8tT89+h4SYX4KCSxtkFPPp05dFWAAn1EeSE839h6LRhD/rK3alIPWrjApcWjOgxsrizKUhr9PMUFv1nxwrMJy30MijCAY4+hRx82+AaC6GvjjD+VEmF6bZxtB/LsTCOfOnZPcUesZIK9lbJs3cWhDhgxxSDVjxpWDzoP93LlncexYEBITryAh4WYAN+s+0fBXWK1zEmEEwRitW9e6IO2FWGAg0KqVMuc3o6tTC7KzswGIB7brHSCvpSvMm+SkERERwt8su0t9xf6ZxscDnTvLOw/rK10JZSARRhAMUVJSgsDASixcWB8zZ1pRXW1BYCCHBQtsCAz8GyUl8jte2jzbNe5cQ3KzuuudHZ712DZaOSiO3kKe0A4SYQTBCM4d76OPNhJik/766yJef732czkdL22e7R7ehVRYWChYu5Sy1Ohl8ZET26aE5UWKi9HoqUC0gLY/8h9IhBFew28lpNRxRC3OHaq72CQ5Ha8/b54thaioKMlJW6WitcVHavC7K8ufEpYXqYKTVg4SxFVIhBFeExQUhNjYWNkZ8wn9YN1VxQJKWWq0tvj4sgLMV8uLFMGp9cpBiqkijACNkoQsWBVYn3/+OW677TZcuHDBIRDYE4mJiZg8eTImT56satlYgbU0DKwNlkpZavSw+OglKqQITi1XDlJMFWEU2BxJCdMyYsQIvPXWW3jkkUfqbMo9ceJEvPbaaxg+fLikrY0I+bCSp4nFwVIpa6E/WR2lCk6lVg6KQTFVhFEgEUZoTrNmzfD+++9j8eLFqF+/PgDg8uXL2LhxI5o3b65z6Qgt0XsloTuUshayZnVUGkpOqg1mzKlG1EIijNCcTp06IT8/H9nZ2XjwwQcB1OZgat68OZKSkoTjKioqMH36dLz//vsoKytDly5dsHjxYtx8883CMZ988gkmT56MkydPolu3bhg+fHid63311VeYPXs2vv/+e0RHR+Mf//gH5s+fjwYNGqh/s4Rk9M4d5Utguxrn0ROpgz4lJ1Ufvd8LQl1IhBG6MGrUKKxbt04QYWvXrsXIkSPx+eefC8fMmDEDW7duxVtvvYUWLVpg4cKFSE9Pxx9//IHIyEicPHkSGRkZmDhxIsaNG4fvv/8e06ZNc7hOfn4++vXrh+effx5r167F2bNnkZWVhaysLKxbt07LWyY8wELuKKW2NmF5ixQpeDvoa+Vi9Cd4gS72XrAs5AlpkAgjdNnC5qGHHsLs2bNx/PhxAMDXX3+N999/XxBhly5dwqpVq7B+/XrceeedAIA33ngDOTk5WLNmDaZPn45Vq1YhOTkZixYtAgC0adMGP//8MxYsWCBcZ/78+XjwwQeFoPvWrVtj2bJl6NWrF1atWoV69eppc8MSUHODa9Y3z2Yld5RSwohVgSUGC2KYuCrk9+0DFi+u+1706DEcvXsbt50RVyER5ufotYVNTEwM+vfvj/Xr14PjOPTv3x/R0dHC9/n5+aiqqkKPHj2Ez4KDg9G1a1ccPnwYAHD48GGkpKQ4nDc1NdXh759++gmHDh3Chg0bhM84jkNNTQ0KCgrQrl07NW5PFmpaUFi3zlDuKH3hxbeYGCbLi3ZERUWhWzfXW5ilpESB9Jc5IBHmx5w6dVWAAfwWNkB6ujYWsVGjRiErKwsAsHLlSlWu8ddff+GRRx7Bo48+Wuc7FhcBqCmCWJ41+9NKQhbhRfqxY1fwzjucsK0VAAQGcpg06U5Db2tl1MD2pk1rJ8aPPAJUV9cKsH/9SzuPBaE+JML8mKNHHWdYQO2L/scf2rzk/fr1Q2VlJSwWC9LT0x2+S05ORkhICL7++mu0aNECAFBVVYXvvvtOcC22a9cO27Ztc/jdN9984/B3p06d8Ntvv6GVUrtfE6ph9pWErBMVVWtdqTvoW9C5cxO9i+cV9hY7TzFuRrDsjR5dOzH+4w+gVSsSYGaDRJgf07q1a1O3VnolMDBQcC0GBgY6fNegQQNMmDAB06dPR2RkJJo3b46FCxeivLwco//nLx0/fjwWLVqE6dOnY8yYMThw4ECd/GIzZ85Et27dkJWVhTFjxqBBgwb47bffkJOTIyk/FaEuZlhJaDbMMOjbW/aefTYWHFdr2eO4AOzYcQ/mzk0xlGWvaVNjPgdCHBJhfgwLpu7w8HC337300kuoqanBww8/jIsXL6JLly747LPP0LhxYwC17sStW7diypQpWL58Obp27YoXX3wRo0aNEs5xww034IsvvsCTTz6JW2+9FRzHITk5GZmZmarfGyEO67Fq/ooZBv2oqCgcOuTK2m/BxYtNKKaKYAILx3Gc3oUgXFNWVgar1QqbzVZHrFy+fBkFBQVISkryeYXfqVPGnvWqjZJ1TRCEdpw6BbRoUdfaf+wY9XWEungav+0JcPsN4Tc0bQr07k2dEkEQ5oK39vPRDhTYTrAGuSMJgiAI02KGGDfCvJAIIwiCIEyNGWLcCHNC7kiCIAiCIAgdIBFGEARBEAShAyTCDA4tblUfqmOCIAhCDUiEGRQ+uamn/EqEMvB17JxQliAIgiB8gQLzDUpQUBDCwsJw9uxZBAcHIyCA9LQa1NTU4OzZswgLC0NQEL0uBEEQhHLQqGJQLBYL4uPjUVBQgOPHj+tdHFMTEBCA5s2bw2KxiB9MEARBEBIhEWZgQkJC0Lp1a3JJqkxISAhZGgmCIAjFIRFmcAICAmgrHYIgCIIwIDS9JwiCIAiC0AESYQRBEARBEDpAIowgCIIgCEIHKCaMYfgkoWVlZTqXhCAIgiAIqfDjtliybxJhDHPx4kUAQLNmzXQuCUEQBEEQ3nLx4kVYrVa331s42pOFWWpqalBYWIhGjRr5ZY6qsrIyNGvWDCdPnkR4eLjexTEsVI/KQPXoO1SHykD1qAxq1iPHcbh48SISEhI8pjgiSxjDBAQEoGnTpnoXQ3fCw8Opo1EAqkdloHr0HapDZaB6VAa16tGTBYyHAvMJgiAIgiB0gEQYQRAEQRCEDpAII5glNDQUTz/9NEJDQ/UuiqGhelQGqkffoTpUBqpHZWChHikwnyAIgiAIQgfIEkYQBEEQBKEDJMIIgiAIgiB0gEQYQRAEQRCEDpAIIwiCIAiC0AESYYTu/Oc//8E999yDhIQEWCwWfPTRRw7fcxyHuXPnIj4+HvXr10daWhqOHj2qT2EZRawOR4wYAYvF4vBfv3799Cksw8yfPx8333wzGjVqhNjYWAwcOBBHjhxxOOby5cuYOHEioqKi0LBhQwwaNAinT5/WqcRsIqUee/fuXadNjh8/XqcSs8mqVatwww03CMlEU1NT8emnnwrfU1uUhlg96tkWSYQRunPp0iV07NgRK1eudPn9woULsWzZMqxevRp5eXlo0KAB0tPTcfnyZY1Lyi5idQgA/fr1Q1FRkfDfe++9p2EJjcEXX3yBiRMn4ptvvkFOTg6qqqrQt29fXLp0SThmypQp+Pjjj/HBBx/giy++QGFhITIyMnQsNXtIqUcAGDt2rEObXLhwoU4lZpOmTZvipZdewoEDB/D999/j9ttvx7333otff/0VALVFqYjVI6BjW+QIgiEAcB9++KHwd01NDRcXF8e9/PLLwmelpaVcaGgo99577+lQQvZxrkOO47jhw4dz9957ry7lMTJnzpzhAHBffPEFx3G1bS84OJj74IMPhGMOHz7MAeByc3P1KibzONcjx3Fcr169uMcee0y/QhmUxo0bc2+++Sa1RR/h65Hj9G2LZAkjmKagoADFxcVIS0sTPrNarUhJSUFubq6OJTMen3/+OWJjY9GmTRtMmDABJSUleheJeWw2GwAgMjISAHDgwAFUVVU5tMe2bduiefPm1B494FyPPBs2bEB0dDSuv/56zJ49G+Xl5XoUzxBUV1fj/fffx6VLl5CamkptUSbO9cijV1ukDbwJpikuLgYANGnSxOHzJk2aCN8R4vTr1w8ZGRlISkpCfn4+nnjiCdx5553Izc1FYGCg3sVjkpqaGkyePBk9evTA9ddfD6C2PYaEhCAiIsLhWGqP7nFVjwDwwAMPoEWLFkhISMChQ4cwc+ZMHDlyBNnZ2TqWlj1+/vlnpKam4vLly2jYsCE+/PBDtG/fHgcPHqS26AXu6hHQty2SCCMIP2Do0KHCvzt06IAbbrgBycnJ+Pzzz9GnTx8dS8YuEydOxC+//IKvvvpK76IYGnf1OG7cOOHfHTp0QHx8PPr06YP8/HwkJydrXUxmadOmDQ4ePAibzYYtW7Zg+PDh+OKLL/QuluFwV4/t27fXtS2SO5Jgmri4OACos+Ln9OnTwneE97Rs2RLR0dH4448/9C4Kk2RlZWH79u3Yt28fmjZtKnweFxeHyspKlJaWOhxP7dE17urRFSkpKQBAbdKJkJAQtGrVCp07d8b8+fPRsWNHLF26lNqil7irR1do2RZJhBFMk5SUhLi4OOzZs0f4rKysDHl5eQ7+fMI7Tp06hZKSEsTHx+tdFKbgOA5ZWVn48MMPsXfvXiQlJTl837lzZwQHBzu0xyNHjuDEiRPUHu0Qq0dXHDx4EACoTYpQU1ODiooKaos+wtejK7Rsi+SOJHTnr7/+cphxFBQU4ODBg4iMjETz5s0xefJkPP/882jdujWSkpIwZ84cJCQkYODAgfoVmjE81WFkZCTmzZuHQYMGIS4uDvn5+ZgxYwZatWqF9PR0HUvNHhMnTsTGjRvx73//G40aNRJia6xWK+rXrw+r1YrRo0dj6tSpiIyMRHh4OCZNmoTU1FR069ZN59Kzg1g95ufnY+PGjbjrrrsQFRWFQ4cOYcqUKejZsyduuOEGnUvPDrNnz8add96J5s2b4+LFi9i4cSM+//xzfPbZZ9QWvcBTPereFnVZk0kQduzbt48DUOe/4cOHcxxXm6Zizpw5XJMmTbjQ0FCuT58+3JEjR/QtNGN4qsPy8nKub9++XExMDBccHMy1aNGCGzt2LFdcXKx3sZnDVR0C4NatWycc8/fff3P//Oc/ucaNG3NhYWHcP/7xD66oqEi/QjOIWD2eOHGC69mzJxcZGcmFhoZyrVq14qZPn87ZbDZ9C84Yo0aN4lq0aMGFhIRwMTExXJ8+fbhdu3YJ31NblIanetS7LVo4juPUl3oEQRAEQRCEPRQTRhAEQRAEoQMkwgiCIAiCIHSARBhBEARBEIQOkAgjCIIgCILQARJhBEEQBEEQOkAijCAIgiAIQgdIhBEEQRAEQegAiTCCIAiCIAgdIBFGEARBEAShAyTCCIIgZFBZWal3EerAYpkIgnAPiTCCIAgAvXv3RlZWFrKysmC1WhEdHY05c+aA39ktMTERzz33HIYNG4bw8HCMGzcOAPDVV1/h1ltvRf369dGsWTM8+uijuHTpknDe1157Da1bt0a9evXQpEkTDB48WPhuy5Yt6NChA+rXr4+oqCikpaUJv+3duzcmT57sUMaBAwdixIgRwt9yy0QQBBuQCCMIgvgfb731FoKCgvDtt99i6dKlePXVV/Hmm28K37/yyivo2LEjfvzxR8yZMwf5+fno168fBg0ahEOHDmHTpk346quvkJWVBQD4/vvv8eijj+LZZ5/FkSNHsHPnTvTs2RMAUFRUhPvvvx+jRo3C4cOH8fnnnyMjIwPebufrbZkIgmAH2sCbIAgCtZanM2fO4Ndff4XFYgEAzJo1C9u2bcNvv/2GxMRE3HTTTfjwww+F34wZMwaBgYH417/+JXz21VdfoVevXrh06RI++eQTjBw5EqdOnUKjRo0crvfDDz+gc+fOOHbsGFq0aOGyPDfeeCOWLFkifDZw4EBERERg/fr1ACCrTPXq1fOpngiCUA6yhBEEQfyPbt26CQIMAFJTU3H06FFUV1cDALp06eJw/E8//YT169ejYcOGwn/p6emoqalBQUEB7rjjDrRo0QItW7bEww8/jA0bNqC8vBwA0LFjR/Tp0wcdOnTAfffdhzfeeAMXLlzwuszelokgCHYgEUYQBCGRBg0aOPz9119/4ZFHHsHBgweF/3766SccPXoUycnJaNSoEX744Qe89957iI+Px9y5c9GxY0eUlpYiMDAQOTk5+PTTT9G+fXssX74cbdq0EYRSQEBAHddkVVWVz2UiCIIdSIQRBEH8j7y8PIe/v/nmG7Ru3RqBgYEuj+/UqRN+++03tGrVqs5/ISEhAICgoCCkpaVh4cKFOHToEI4dO4a9e/cCACwWC3r06IF58+bhxx9/REhIiOBajImJQVFRkXCt6upq/PLLL6L3IKVMBEGwAYkwgiCI/3HixAlMnToVR44cwXvvvYfly5fjsccec3v8zJkzsX//fmRlZeHgwYM4evQo/v3vfwtB8Nu3b8eyZctw8OBBHD9+HG+//TZqamrQpk0b5OXl4cUXX8T333+PEydOIDs7G2fPnkW7du0AALfffjt27NiBHTt24Pfff8eECRNQWloqeg9iZSIIgh2C9C4AQRAEKwwbNgx///03unbtisDAQDz22GNC2gdX3HDDDfjiiy/w5JNP4tZbbwXHcUhOTkZmZiYAICIiAtnZ2XjmmWdw+fJltG7dGu+99x6uu+46HD58GP/5z3+wZMkSlJWVoUWLFli0aBHuvPNOAMCoUaPw008/YdiwYQgKCsKUKVNw2223id6DWJkIgmAHWh1JEAQB16sRCYIg1ITckQRBEARBEDpAIowgCIIgCEIHyB1JEARBEAShA2QJIwiCIAiC0AESYQRBEARBEDpAIowgCIIgCEIHSIQRBEEQBEHoAIkwgiAIgiAIHSARRhAEQRAEoQMkwgiCIAiCIHSARBhBEARBEIQOkAgjCIIgCILQgf8HFkwbEKpg6twAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, + "cells": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHaklEQVR4nO3deVxU9f4/8NcZHBAQBlkFQUFccUvwiuOaBaLX5fpDr+RV09Ksvlqhpdlts9Wyuml5266VtrpXLmWCWakQGWpG7oSKAS4gA25s8/n9MZ3DnFnYZOf1fDx4JHM+c+bMXK68/Hze5/2RhBACRERERFSvNA19AUREREQtEUMYERERUQNgCCMiIiJqAAxhRERERA2AIYyIiIioATCEERERETUAhjAiIiKiBsAQRkRERNQAGMKIiIiIGgBDGBERVWj16tWQJAmnT59u6EshalYYwoiowe3fvx/z5s1Dz5494erqig4dOmDy5Mk4ceKE1dhbb70VkiRBkiRoNBq4u7ujW7dumD59OhISEqr1ulu3bsXw4cPh6+sLFxcXdOrUCZMnT8aOHTtq661ZefHFF/Hll19aPZ6UlIQlS5YgPz+/zl7b0pIlS5TPUpIkuLi4ICwsDE888QQKCgpq5TU+++wzLF++vFbORdTcMIQRUYN7+eWXsWnTJtx+++1YsWIF5syZgx9//BHh4eFIS0uzGh8YGIiPP/4YH330EV555RWMHz8eSUlJGDlyJOLi4lBSUlLpa7766qsYP348JEnCY489htdffx0TJ07EyZMnsXbt2rp4mwAqDmHPPPNMvYYw2dtvv42PP/4Y//nPf9C9e3e88MILGDVqFGpja2GGMCL7WjX0BRARLViwAJ999hkcHR2Vx+Li4tC7d2+89NJL+OSTT1TjdTodpk2bpnrspZdewoMPPoi33noLwcHBePnll+2+XmlpKZ577jlER0dj586dVscvXLhwk++o8bh27RpcXFwqHDNp0iR4e3sDAO677z5MnDgRmzdvxk8//QS9Xl8fl0nUInEmjIga3KBBg1QBDAC6dOmCnj174ujRo1U6h4ODA9544w2EhYVh5cqVMBgMdsdeunQJBQUFGDx4sM3jvr6+qu9v3LiBJUuWoGvXrmjdujX8/f0RGxuL9PR0Zcyrr76KQYMGwcvLC87OzoiIiMDGjRtV55EkCVevXsWaNWuUJcCZM2diyZIlWLhwIQAgJCREOWZeg/XJJ58gIiICzs7O8PT0xB133IHMzEzV+W+99Vb06tULqampGDZsGFxcXPDvf/+7Sp+fudtuuw0AkJGRUeG4t956Cz179oSTkxMCAgIwd+5c1Uzerbfeiu3bt+PMmTPKewoODq729RA1V5wJI6JGSQiB8+fPo2fPnlV+joODA6ZMmYInn3wSe/fuxZgxY2yO8/X1hbOzM7Zu3YoHHngAnp6eds9ZVlaGsWPHYteuXbjjjjvw0EMPobCwEAkJCUhLS0NoaCgAYMWKFRg/fjymTp2K4uJirF27Fv/85z+xbds25To+/vhjzJ49GwMGDMCcOXMAAKGhoXB1dcWJEyfw+eef4/XXX1dmpXx8fAAAL7zwAp588klMnjwZs2fPxsWLF/Hmm29i2LBhOHjwIDw8PJTrzc3NxejRo3HHHXdg2rRp8PPzq/LnJ5PDpZeXl90xS5YswTPPPIOoqCjcf//9OH78ON5++23s378f+/btg1arxeOPPw6DwYBz587h9ddfBwC0adOm2tdD1GwJIqJG6OOPPxYAxPvvv696fPjw4aJnz552n/fFF18IAGLFihUVnv+pp54SAISrq6sYPXq0eOGFF0RqaqrVuA8++EAAEP/5z3+sjhmNRuXP165dUx0rLi4WvXr1ErfddpvqcVdXVzFjxgyrc73yyisCgMjIyFA9fvr0aeHg4CBeeOEF1eO//fabaNWqlerx4cOHCwDinXfesfu+zT399NMCgDh+/Li4ePGiyMjIEO+++65wcnISfn5+4urVq0IIIT788EPVtV24cEE4OjqKkSNHirKyMuV8K1euFADEBx98oDw2ZswY0bFjxypdD1FLw+VIImp0jh07hrlz50Kv12PGjBnVeq4801JYWFjhuGeeeQafffYZ+vXrh2+//RaPP/44IiIiEB4erloC3bRpE7y9vfHAAw9YnUOSJOXPzs7Oyp8vX74Mg8GAoUOH4sCBA9W6fkubN2+G0WjE5MmTcenSJeWrXbt26NKlC3bv3q0a7+TkhLvuuqtar9GtWzf4+PggJCQE9957Lzp37ozt27fbrSVLTExEcXEx4uPjodGU/xq555574O7uju3bt1f/jRK1QFyOJKJGJScnB2PGjIFOp8PGjRvh4OBQredfuXIFAODm5lbp2ClTpmDKlCkoKChASkoKVq9ejc8++wzjxo1DWloaWrdujfT0dHTr1g2tWlX81+W2bdvw/PPP49ChQygqKlIeNw9qNXHy5EkIIdClSxebx7Varer79u3bW9XXVWbTpk1wd3eHVqtFYGCgssRqz5kzZwCYwps5R0dHdOrUSTlORBVjCCOiRsNgMGD06NHIz8/Hnj17EBAQUO1zyC0tOnfuXOXnuLu7Izo6GtHR0dBqtVizZg1SUlIwfPjwKj1/z549GD9+PIYNG4a33noL/v7+0Gq1+PDDD/HZZ59V+z2YMxqNkCQJ33zzjc1AalljZT4jV1XDhg1T6tCIqP4whBFRo3Djxg2MGzcOJ06cQGJiIsLCwqp9jrKyMnz22WdwcXHBkCFDanQd/fv3x5o1a5CdnQ3AVDifkpKCkpISq1kn2aZNm9C6dWt8++23cHJyUh7/8MMPrcbamxmz93hoaCiEEAgJCUHXrl2r+3bqRMeOHQEAx48fR6dOnZTHi4uLkZGRgaioKOWxm50JJGrOWBNGRA2urKwMcXFxSE5OxoYNG2rUm6qsrAwPPvggjh49igcffBDu7u52x167dg3Jyck2j33zzTcAypfaJk6ciEuXLmHlypVWY8VfzUwdHBwgSRLKysqUY6dPn7bZlNXV1dVmQ1ZXV1cAsDoWGxsLBwcHPPPMM1bNU4UQyM3Ntf0m61BUVBQcHR3xxhtvqK7p/fffh8FgUN2V6urqWmG7EKKWjDNhRNTgHn74YWzZsgXjxo1DXl6eVXNWy8asBoNBGXPt2jWcOnUKmzdvRnp6Ou644w4899xzFb7etWvXMGjQIAwcOBCjRo1CUFAQ8vPz8eWXX2LPnj2YMGEC+vXrBwC488478dFHH2HBggX4+eefMXToUFy9ehWJiYn4v//7P/zjH//AmDFj8J///AejRo3Cv/71L1y4cAH//e9/0blzZxw+fFj12hEREUhMTMR//vMfBAQEICQkBJGRkYiIiAAAPP7447jjjjug1Woxbtw4hIaG4vnnn8djjz2G06dPY8KECXBzc0NGRga++OILzJkzB4888shNff7V5ePjg8ceewzPPPMMRo0ahfHjx+P48eN466238Le//U31v1dERATWrVuHBQsW4G9/+xvatGmDcePG1ev1EjVaDXlrJhGREOWtFex9VTS2TZs2okuXLmLatGli586dVXq9kpIS8b///U9MmDBBdOzYUTg5OQkXFxfRr18/8corr4iioiLV+GvXronHH39chISECK1WK9q1aycmTZok0tPTlTHvv/++6NKli3BychLdu3cXH374odICwtyxY8fEsGHDhLOzswCgalfx3HPPifbt2wuNRmPVrmLTpk1iyJAhwtXVVbi6uoru3buLuXPniuPHj6s+m4rad1iSr+/ixYsVjrNsUSFbuXKl6N69u9BqtcLPz0/cf//94vLly6oxV65cEf/617+Eh4eHAMB2FURmJCFqYXMwIiIiIqoW1oQRERERNQCGMCIiIqIGwBBGRERE1AAYwoiIiIgaAEMYERERUQNgCCMiIiJqAGzW2ogZjUZkZWXBzc2NW38QERE1EUIIFBYWIiAgABqN/fkuhrBGLCsrC0FBQQ19GURERFQDmZmZCAwMtHucIawRc3NzA2D6H7GiffCIiIio8SgoKEBQUJDye9wehrBGTF6CdHd3ZwgjIiJqYiorJWJhPhEREVEDYAgjIiIiagAMYUREREQNgDVhTZzRaERxcXFDX0az5ujoWOEtxkRERDXBENaEFRcXIyMjA0ajsaEvpVnTaDQICQmBo6NjQ18KERE1IwxhTZQQAtnZ2XBwcEBQUBBnauqI3DA3OzsbHTp0YNNcIiKqNQxhTVRpaSmuXbuGgIAAuLi4NPTlNGs+Pj7IyspCaWkptFptQ18OERE1E5w+aaLKysoAgEtk9UD+jOXPnIiIqDYwhDVxXB6re/yMiYioLjCEERERETWAJhPCxo8fjw4dOqB169bw9/fH9OnTkZWVpRojhMCrr76Krl27wsnJCe3bt8cLL7ygGvP9998jPDwcTk5O6Ny5M1avXm31Wv/9738RHByM1q1bIzIyEj///LPq+I0bNzB37lx4eXmhTZs2mDhxIs6fP68ac/bsWYwZMwYuLi7w9fXFwoULUVpaWjsfBhERETV5TSaEjRgxAuvXr8fx48exadMmpKenY9KkSaoxDz30EFatWoVXX30Vx44dw5YtWzBgwADleEZGBsaMGYMRI0bg0KFDiI+Px+zZs/Htt98qY9atW4cFCxbg6aefxoEDB9C3b1/ExMTgwoULypj58+dj69at2LBhA3744QdkZWUhNjZWOV5WVoYxY8aguLgYSUlJWLNmDVavXo2nnnqqDj+hpmHmzJmQJAmSJEGr1cLPzw/R0dH44IMPqtVqY/Xq1fDw8Ki7CyUiombt3Dlg927TfxuMaKK++uorIUmSKC4uFkIIceTIEdGqVStx7Ngxu89ZtGiR6Nmzp+qxuLg4ERMTo3w/YMAAMXfuXOX7srIyERAQIJYuXSqEECI/P19otVqxYcMGZczRo0cFAJGcnCyEEOLrr78WGo1G5OTkKGPefvtt4e7uLoqKiqr8Hg0GgwAgDAaD1bHr16+LI0eOiOvXr1f5fOYuXboksrKy7H5dunSpRuetzIwZM8SoUaNEdna2OHfunEhNTRUvvPCCaNOmjRg9erQoKSmp0nk+/PBDodPp6uQaLd3sZ01ERI2D/Lvv1VcvC43GKAAhNBqjePXVy7X6u6+i39/mmmSLiry8PHz66acYNGiQ0jJg69at6NSpE7Zt24ZRo0ZBCIGoqCgsW7YMnp6eAIDk5GRERUWpzhUTE4P4+HgApuanqampeOyxx5TjGo0GUVFRSE5OBgCkpqaipKREdZ7u3bujQ4cOSE5OxsCBA5GcnIzevXvDz89P9Tr3338/fv/9d/Tr169OPpeqys3NxcqVKysdN2/ePHh5edX66zs5OaFdu3YAgPbt2yM8PBwDBw7E7bffjtWrV2P27Nn4z3/+gw8//BB//PEHPD09MW7cOCxbtgxt2rTB999/j7vuugtAedH8008/jSVLluDjjz/GihUrcPz4cbi6uuK2227D8uXL4evrW+vvg4iIGr/c3FwUFxcjPz8f//vfN8jMDMLGjRMBmH5/GI0SFi50x59/fgCdrrDOfvfZ0mSWIwHg0UcfhaurK7y8vHD27Fl89dVXyrE//vgDZ86cwYYNG/DRRx9h9erVSE1NVS1Z5uTkqIIRAPj5+aGgoADXr1/HpUuXUFZWZnNMTk6Ocg5HR0erpTDLMbbOIR+zp6ioCAUFBaqvulDVbY7qczuk2267DX379sXmzZsBmMLvG2+8gd9//x1r1qzBd999h0WLFgEABg0ahOXLl8Pd3R3Z2dnIzs7GI488AgAoKSnBc889h19//RVffvklTp8+jZkzZ9bb+yAiosYjPT0dK1euxHvvvYfFi09i+fJ4bNz4T1jGHyE0yMszTdhcvHix3q6vQUPY4sWLlfoge1/Hjh1Txi9cuBAHDx7Ezp074eDggDvvvBNCCACmzuZFRUX46KOPMHToUNx66614//33sXv3bhw/fryh3mK1LF26FDqdTvkKCgpq6EuqV927d8fp06cBAPHx8RgxYgSCg4Nx22234fnnn8f69esBmPp26XQ6SJKEdu3aoV27dmjTpg0A4O6778bo0aPRqVMnDBw4EG+88Qa++eYbXLlypaHeFhERNYDc3Fx88sknAACDwQ1bt46FEPZijxGennkATP+Yry8Nuhz58MMPVzpL0alTJ+XP3t7e8Pb2RteuXdGjRw8EBQXhp59+gl6vh7+/P1q1aoWuXbsq43v06AHAdKdit27d0K5dO6u7GM+fPw93d3c4OzvDwcEBDg4ONsfIy2ft2rVTpjXNZ8Msx1jeUSmfUx5jy2OPPYYFCxYo3xcUFLSoICaEUJYXExMTsXTpUhw7dgwFBQUoLS3FjRs3cO3atQp3CEhNTcWSJUvw66+/4vLly0qx/9mzZxEWFlYv74OIiBqe+WpOSkpkBQEMaKh2kA06E+bj44Pu3btX+GWvI7z8y7WoqAgAMHjwYJSWliI9PV0Zc+LECQBAx44dAQB6vR67du1SnSchIQF6vR6AaYYlIiJCNcZoNGLXrl3KmIiICGi1WtWY48eP4+zZs8oYvV6P3377TXVHZUJCAtzd3SsMAk5OTnB3d1d9tSRHjx5FSEgITp8+jbFjx6JPnz7YtGkTUlNT8d///hdAxUukV69eRUxMDNzd3fHpp59i//79+OKLLyp9HhERNW25ubnIzs7GsWPH8Ntvv+G3337DyZMnAZhmwZKS9BU+33w5sj41icL8lJQU7N+/H0OGDEHbtm2Rnp6OJ598EqGhoUrwiYqKQnh4OO6++24sX74cRqMRc+fORXR0tDI7dt9992HlypVYtGgR7r77bnz33XdYv349tm/frrzWggULMGPGDPTv3x8DBgzA8uXLcfXqVaUQXKfTYdasWViwYAE8PT3h7u6OBx54AHq9HgMHDgQAjBw5EmFhYZg+fTqWLVuGnJwcPPHEE5g7dy6cnJzq+dNrGr777jv89ttvmD9/PlJTU2E0GvHaa68pG5PLS5EyR0dHq22Ejh07htzcXLz00kvKDOIvv/xSP2+AiIgaRHp6urLsCJhCV16eF7TaIpSUBOPqVRdUNuckSeXLkfWpSYQwFxcXbN68GU8//TSuXr0Kf39/jBo1Ck888YQSajQaDbZu3YoHHngAw4YNg6urK0aPHo3XXntNOU9ISAi2b9+O+fPnY8WKFQgMDMSqVasQExOjjImLi8PFixfx1FNPIScnB7fccgt27NihKrR//fXXodFoMHHiRBQVFSEmJgZvvfWWctzBwQHbtm3D/fffD71eD1dXV8yYMQPPPvtsPXxajV9RURFycnJQVlaG8+fPY8eOHVi6dCnGjh2LO++8E2lpaSgpKcGbb76JcePGYd++fXjnnXdU5wgODsaVK1ewa9cu9O3bFy4uLujQoQMcHR3x5ptv4r777kNaWhqee+65BnqXRERU18zrvgBg3z49EhKiYApdAoAESTICMMJ+EDNi3Lht0OkK6/x6LUlCrmynRqegoAA6nQ4Gg8FqafLGjRvIyMhASEgIWrduXa3zZmdn47333qt03Jw5c+Dv71+tc1dm5syZWLNmDQCgVatWaNu2Lfr27Yt//etfmDFjhjLz9frrr+OVV15Bfn4+hg0bhqlTp+LOO+/E5cuXlVq8+++/Hxs2bEBubq7SouLzzz/Hv//9b2RnZyM8PByPPfYYxo8fj4MHD+KWW26p0TXfzGdNRER1x/z3mSmARUNuPaEmRx3rY5MmrUevXkeV72NjY9G7d++buq6Kfn+bYwhrxOoqhDV0n7CmhiGMiKjxkPt+AcClS5ewefNmGAxuWL48vsLie9uMmD9/uWoWbPLkycqNfTVV1RDWJJYjqXZ5eXlh3rx5FRarOzo6MoAREVGjYm8SIS/PqwoBzLQ8af59dHSi1TJkfTb3ZghroRiwiIioqbGcPDAvwpckYyVBTFLGSJIRUVGJGDw4WTkaGxuLgICAev39yBBGREREjZL50qPBYFAaegPAgQP9zBqwGtGjx1EcO9ZD+d4061U+8yVJRsyatQolJY7w9MyzmgGr7wAGMIQRERFRI1RR/bJ1B3wNjh4Nw9ChP6JTpwx4euYhPb2zMkaSTHdABgZmAwBGjBiBtm3bAgC0Wi18fHwaZIWIIYyIiIgaDXn269KlS6rH5aVHT89cZGYG2Vh6lLB371D0758Kna4Q4eEHERp6Cnl5nlYzX126dKn1u/9rgiGMiIiIGgV7s1+WS4+221CUd76XA5dOV2iz/5e93XjqG0MYERERNQq2Cu8zM4OwZctYlDdbrWgPyPLO9/KSY6tWrVR7PTemu/8ZwoiIiKhByEuPBoMBJSUluHz5snJMPftVObnuS575aixLjhVhCCMiIqJ6V73C+8qY7nyUC++biuq2liVq1L7//ntIkoT8/PwqPyc4OBjLly+vs2siIiJrtpYeMzKCce6cP37/vWe1Atj48dusAlhjqfuqCGfCqF7Je0fee++9Vptyz507F2+99RZmzJiB1atXN8wFEhFRvVMvPcqd7S073FsS6N37V0RFfacqvm+Ipqs1xRBG9S4oKAhr167F66+/DmdnZwCm/Rk/++wzdOjQoYGvjoiIapt509X8/HyUlpbizz//BGBr6VEy+6+9IGZEdLS6472sqQQwgMuR1ADCw8MRFBSEzZs3K49t3rwZHTp0QL9+/ZTHioqK8OCDD8LX1xetW7fGkCFDsH//ftW5vv76a3Tt2hXOzs4YMWKEqpuybO/evRg6dCicnZ0RFBSEBx98EFevXq2z90dEROXk2q/33nsP7733HtavX4/NmzcjJSUFQGX7PspBTGZERMR+zJ+/3CqA/f3vf8e8efOaTAADGMIIwLlzwO7dpv/Wl7vvvhsffvih8v0HH3yAu+66SzVm0aJF2LRpE9asWYMDBw6gc+fOiImJQV6e6fbjzMxMxMbGYty4cTh06BBmz56NxYsXq86Rnp6OUaNGYeLEiTh8+DDWrVuHvXv3Yt68eXX/JomIyKr2y5KnZy4kyVjBCAnDhu3GpEnrMX/+cowb97Vq+XH06NGYN28e/va3vzWpAAYwhLV4778PdOwI3Hab6b/vv18/rztt2jTs3bsXZ86cwZkzZ7Bv3z5MmzZNOX716lW8/fbbeOWVVzB69GiEhYXhf//7H5ydnfH+Xxf59ttvIzQ0FK+99hq6deuGqVOnYubMmarXWbp0KaZOnYr4+Hh06dIFgwYNwhtvvIGPPvoIN27cqJ83S0TUwuTm5iI7OxvZ2dlIS0tTHZML8A0GN6UL/pAhe8yCmFCNlyQjIiIOolevo1aNV6dNm4YBAwY0ufAlY01YC3buHDBnDmD86+feaATuvReIiQECA+v2tX18fDBmzBisXr0aQgiMGTMG3t7eyvH09HSUlJRg8ODBymNarRYDBgzA0aNHAQBHjx5FZGSk6rx6vV71/a+//orDhw/j008/VR4TQsBoNCIjIwM9evSoi7dHRNTimPf8Wrdunc0x1gX4Aqb5ILn2y4guXU7i5MkuADRWvb/kBqwNud9jbWIIa8FOniwPYLKyMuDUqboPYYBpSVJeFvzvf/9bJ69x5coV3HvvvXjwwQetjvEmACKi2lFZz6+8PC9otUU2CvDNi/ABQINTp7pg9uxVKClxbLR7PtYWhrAWrEsXQKNRBzEHB6Bz5/p5/VGjRqG4uBiSJCEmJkZ1LDQ0FI6Ojti3bx86duwIACgpKcH+/fsRHx8PAOjRowe2bNmiet5PP/2k+j48PBxHjhxB5/p6U0RELZC9ui/rPR8rr4ISQoOSEkeEhJyxOtYUen9VB0NYCxYYCLz3nmkJsqzMFMDefbd+ZsEAwMHBQVladHBwUB1zdXXF/fffj4ULF8LT0xMdOnTAsmXLcO3aNcyaNQsAcN999+G1117DwoULMXv2bKSmplr1F3v00UcxcOBAzJs3D7Nnz4arqyuOHDmChIQEu/9qIyKiqsnNzcXFixdx7Ngx1ePyno/qmS/zZUf7zPd/jI2NVUpVGtOej7WFIayFmzXLVAN26pRpBqy+ApjM3d3d7rGXXnoJRqMR06dPR2FhIfr3749vv/0Wbdu2BWBaTty0aRPmz5+PN998EwMGDMCLL76Iu+++WzlHnz598MMPP+Dxxx/H0KFDIYRAaGgo4uLi6vy9ERE1Z+np6fjkk0+sHq94z0d7AcwUzixrwLy9vZvV8qMlSQghKh9GDaGgoAA6nQ4Gg8EqrNy4cQMZGRkICQlB69atG+gKWwZ+1kREJnLxfX5+PtavX291/Nw5f6xaNRvVab4gSUYMGbIHnTplWNWANbW+X7KKfn+b40wYERERVaqi4nsA2LdPj4SEaFS23FhO4O9/34Zu3U5a9f0KCgpqlsuPlhjCiIiIyC559uvSpUuqx+W7Hj09c/HLLxHYs2cYqhPAwsKOYMCAAwBMrSe6dOnSIoKXOYYwIiIissne7Jd1vy+g8gBW3gts6NA9uP3275Uj7du3b9a1X/YwhBEREZFNlq0nbN/1WPnslyQZERWViICALKu6r/HjxyM0NLQ2L7vJYAhr4nhfRd3jZ0xELY28BHn69GnlsYrverRHICLiFwwbtkcVvOLi4qDT6Vrc8qMlhrAmSu6rVVxcDGdn5wa+muZN/pegZS8zIqLmyNYSpMHgVoMAZkR0dCIGD05WHpk8eTJ8fX1bdPAyxxDWRLVq1QouLi64ePEitFotNBruxV4XjEYjLl68CBcXF7Rqxf+7EFHzlpubixMnTqgeMxjc8PvvPasRwAQmTdqAoKBzqtmvadOmtdhlR3v4W6WJkiQJ/v7+yMjIwJkz1ls7UO3RaDTo0KEDJKmqd/0QETU9tmbArAvwK/t70Ijx47ehVy/Tbih9+vRBjx49msVm23WBIawJc3R0RJcuXezu2UW1w9HRkTONRNRs5Obm4sKFCzh37pzq98fly5dV486d88eWLWNR3njVfgCTJCP0+mRERqaoZr8GDhzYIu96rCqGsCZOo9GwizsREVVJZQ1XZQcO9LMIYPYYMWnSRqulR1lz23C7tjGEERERtRBVWTkxGNyqHMDMlx7NxcbGIiAggEuQlWAIIyIiasbk5cfS0lKrJUe571dubluUlbVC164ncORIT1QWwCTJiFmzViEwMNvmcQawqmEIIyIiaqYqWn40LTmOg3mt148/Dq/0nJJkxLhx25QANmLECPj4+MDDwwMAWnzvr+pgCCMiImpG5EarBoNB1WxVZt713rrYvqK7H223nujZsydDVw0xhBERETUTlRXe79unR0JCFCqv91KTZ7/k+q/IyEj07duXs143iSGMiIiomaio8N4UwKJRtY22BUxBzYhBg6xbT3Ts2JGtJ2oBQxgREVETJi8/AkBGRobqmMHghrw8LxQXt6pyAOvb91fcdtt3yMvztNpsW+br61tLV9+yMYQRERE1UZUV3le12/0tt/wCd/dCdO16Uim4txW+uPdj7WIIIyIiaqLsLT9ab7hdcbf7ESN+hE5XiODgYLRp0wtt2rRB27ZtERQUpIxj/VftYwgjIiJqQqqy/JiWFlalDbflgnt51mvkyJGs9apHDGFERESNWG5uLi5evIiSkhIUFhYiISHB5jjr5ceK9ez5G0aOTLC57Ej1gyGMiIioEZI73a9fv97uGHnmS6stqvLyo4nRZgDjXo/1iyGMiIiokanKRtvVKbw3MY2xXIKMjo5GSEgIa74aAEMYERFRI5Kbm4usrCybx8r3evTA7t23o7zpqq0AJgczU6+vsLDfUVLiaNV2IiQkhHVgDYQhjIiIqJGofK/Hsahqt/uIiF/Qq9fvdnt9ybgE2XAYwoiIiBoJey0nzp3zr1YAA4wYNmyPzfAVFxcHnU4HgG0nGhpDGBERUSORn5+v+t5gcENKSiSSkgah8povmUB0dKKq7URwcDAAhq7GhiGMiIioEcjNzVXdCVnd5UcTgaFDf8TgwcnKI8HBwaz5aqQYwoiIiOqZecNV2aVLl5Q/GwxuVQxg5ZttS5IRUVGJqgAGsOarMWMIIyIiqgdy8MrPz6+w9xcA/PjjUFQWwIYN242IiIMAYHez7WnTpnH5sRFjCCMiIqpjFd31KDdc9fTMhU5XCIPBDampEZWc0YiIiINK6LK32XZoaOjNXjrVIYYwIiKiOmbvrkfzhqvycqIkmZYX7TNi/PhtlW435OvrW/MLpnrBEEZERFRH5CVI83ovwDT7dfx4V3z99d8hBy4hNEhIiIbpLkjLDvgCvXv/im7dTiAo6JwqgMXGxsLb21t1ft4F2TQwhBEREdUiOXgZDAasW7fO6njFdz1KZv8t73gfHW1dcC8LCAhg4GqiGMKIiIhqSWW1X5mZQdVoOyEhJmYHwsKOWC09yrNfnPFq2hjCiIiIaoll7ZdcdJ+V5Y/ExKi/NtuuGkky2gxgAGe/mguGMCIiohqy7Pd1+vRp5c/mRffWNV6VEYiKKu96P2LECLRt2xatWrWCr68vA1gzwRBGRERUA5UtPaqXHasTwKxrwLp06cKu980QQxgREVE15ebmIisry+7xlJRIVFz3JdCt2xGcONHjr5kyIyIiUhESkmF19yM1XwxhRERE1WBvBkwuvM/La/vXhtsVkTBw4H78/e/f2u12b45bDzVPDGFERESVyM3NxcWLF1FSUoI///xTdcxgcENKSiSSkvSo+mbbRiV4VRS+Ro8ejdDQUNaANVMMYURERBWoqPZLXXxfVQLR0YkVhq/JkyezAL8FqM5PTYMaP348OnTogNatW8Pf3x/Tp09XrccvWbIEkiRZfbm6uqrOs2HDBnTv3h2tW7dG79698fXXX6uOCyHw1FNPwd/fH87OzoiKisLJkydVY/Ly8jB16lS4u7vDw8MDs2bNwpUrV1RjDh8+jKFDh6J169YICgrCsmXLavkTISKi+mCr7URGRjDOnfPHli3jqh3Ahg79UVV0Hxsbizlz5ihf8+bNQ48ePRjAWoAmE8JGjBiB9evX4/jx49i0aRPS09MxadIk5fgjjzyC7Oxs1VdYWBj++c9/KmOSkpIwZcoUzJo1CwcPHsSECRMwYcIEpKWlKWOWLVuGN954A++88w5SUlLg6uqKmJgY3LhxQxkzdepU/P7770hISMC2bdvw448/Ys6cOcrxgoICjBw5Eh07dkRqaipeeeUVLFmyBO+9914df0pERFSXDhzoh+XL47FmzQysWnUPqn/XYwJuv/171aPe3t7w9/dXvhi+Wg5JCCEa+iJqYsuWLZgwYQKKioqg1Wqtjv/666+45ZZb8OOPP2Lo0KEAgLi4OFy9ehXbtm1Txg0cOBC33HIL3nnnHQghEBAQgIcffhiPPPIIAMBgMMDPzw+rV6/GHXfcgaNHjyIsLAz79+9H//79AQA7duzA3//+d5w7dw4BAQF4++238fjjjyMnJ0cpply8eDG+/PJLHDt2rMrvsaCgADqdDgaDAe7u7jX+rIiIqGJyv6/8/HyUlpaqjl2+fBm7d++GweCG5cvjqznzBQBGTJq00e5dj/PmzWPwamaq+vu7SdaE5eXl4dNPP8WgQYNsBjAAWLVqFbp27aoEMABITk7GggULVONiYmLw5ZdfAgAyMjKQk5ODqKgo5bhOp0NkZCSSk5Nxxx13IDk5GR4eHkoAA4CoqChoNBqkpKTg//2//4fk5GQMGzZMdTdLTEwMXn75ZVy+fBlt27atjY+BiIhuUm5uLi5cuID169dXOjYvz6sKAcyI7t2P4dix7gA0kCQjxo3bhl69jtocPW3aNAawFqxJhbBHH30UK1euxLVr1zBw4EDVjJa5Gzdu4NNPP8XixYtVj+fk5MDPz0/1mJ+fH3JycpTj8mMVjfH19VUdb9WqFTw9PVVjQkJCrM4hH7MXwoqKilBUVKR8X1BQYHMcERHdvIoK7oHyLYc8PXOh0xXC0zMXgBH2K3mE0mTV9NyKW09MmzYNoaGhN/0+qOlq0JqwxYsX2yymN/8yX75buHAhDh48iJ07d8LBwQF33nknbK2mfvHFFygsLMSMGTPq8+3ctKVLl0Kn0ylfQUFBDX1JRETNlmXBvcxgcMPOnVF4/XVT7dfy5fE4cKAfACAiIhWmLYgsqQvudbpChIScsbnxtlx8zwBGDToT9vDDD2PmzJkVjunUqZPyZ29vb3h7e6Nr167o0aMHgoKC8NNPP0Gv16ues2rVKowdO9ZqRqtdu3Y4f/686rHz58+jXbt2ynH5MfPtIc6fP49bbrlFGXPhwgXVOUpLS5GXl6c6j63XMX8NWx577DHVcmlBQQGDGBFRPbHX70sIDbZsGQtJgtLd3kQuyrfeZsgebrxN5ho0hPn4+MDHx6dGzzUaTf8nMF++A0x1Xbt378aWLVusnqPX67Fr1y7Ex8crjyUkJCghLiQkBO3atcOuXbuU0FVQUICUlBTcf//9yjny8/ORmpqKiIgIAMB3330Ho9GIyMhIZczjjz+OkpISpWYtISEB3bp1q7AezMnJCU5OTjX4NIiI6GZU3u9Lg/KFF1MQ+/vft8HF5brdgvvJkyfDw8ND+d7R0ZEBjFSaRE1YSkoK9u/fjyFDhqBt27ZIT0/Hk08+idDQUKtZsA8++AD+/v4YPXq01XkeeughDB8+HK+99hrGjBmDtWvX4pdfflFaR0iShPj4eDz//PPo0qULQkJC8OSTTyIgIAATJkwAAPTo0QOjRo3CPffcg3feeQclJSWYN28e7rjjDgQEBAAA/vWvf+GZZ57BrFmz8OijjyItLQ0rVqzA66+/XrcfFBERVZvB4FaDhqsa+PjkIiTkjNURdrmnqmoSIczFxQWbN2/G008/jatXr8Lf3x+jRo3CE088oZo5MhqNWL16NWbOnAkHBwer8wwaNAifffYZnnjiCfz73/9Gly5d8OWXX6JXr17KmEWLFuHq1auYM2cO8vPzMWTIEOzYsQOtW7dWxnz66aeYN28ebr/9dmg0GkycOBFvvPGGclyn02Hnzp2YO3cuIiIi4O3tjaeeekrVS4yIiOqO3HLCnmvXrillIlW761HAvCeYJJm2HQJMdV7e3t4AONtF1dNk+4S1BOwTRkRUfZXd9Wjp3Dl/rFo1G/bvVTPVfCUmRkGI8rYT4eEHAQBz5sxR1RETNes+YURERPZUNAMmMxjckJkZhIyMYKSmRqAqbSd69UqrtO0EUXUwhBERUYuyb58eCQlRqLxLk0B0dIKq7QTDF9UmhjAiImo2cnNzcenSJdVj5k1X09J6ISEhGpXv+WjE7NmrEBiYXelrmu+OQlQdDGFERNQs2KoFM289IUnGv9pMVB7Axo/fZhXAoqOjrXZDYSE+3QyGMCIiahYsa8HOnfPHli1jIS87Vq0FhbA7A9atWzcGLqpVDGFERNSkye0oMjIylMcOHOiHLVvGofJZL0BuPyHf9WgZwGJjY9npnuoEQxgRETVZlkuQ8l2PFQcwueeXERERqejX7yBKShzt3vXIAEZ1hSGMiIgardzcXFy8eBElJSVWx65cuQKDwaB8X/nWQzIJMTE7EBZ2pMK7HaOjo7kESXWKIYyIiBql9PR0fPLJJ1Uaa1n/VRFJMlYawADTfsIMYFSXGMKIiKjRyc3NtRnAzNtNyCFKngGrOICp676q0u+LrSeorjGEERFRo2Or6/2+fXqrrYNCQ0/V2hLk5MmT4eHhAYCtJ6h+MIQREVGDsrXZtmXD1V27bsWePcMgF9sLocHWrWPRq9dvVWo9YW8JUt58m6GLGgJDGBERNZiq1H3t26dXBTCZEBr89lufKryK/SVI3vlIDYkhjIiIGoS9ui9zBoPbX/s82mo3Iew8bgRgWrLU65MRGZmiCmBy53vOflFDYwgjIqIGYbkEKff4AoCgoEzodIXIy/OC7YJ7+wFs9uxVFfb9CgkJgb+//01fP9HNYggjIqIGZ93h3rR/4+XLOlQ241VOIDo6sdJNt3nXIzUWDGFERNSgDAa3v1pMmActzV99vyTYDmASJElACDmIGREdnYjBg5Ptvk5cXBx8fHy4BEmNBkMYERHVGVt3PsrkOyDz8rzs3OFY8V2PQmgwadJ6uLpes7n0OHLkSAQHBwNgywlqnBjCiIioTlju62iPp2cuJMlYpVYT5iTJiKCgc3b7fnXt2pXBixq16v3EExERVZG9GTBLOl0h+vQ5DFPtV0WEMqayzvfTpk1jAKNGjzNhRERUKyyXHi0brppvOQRA9efDh/vAdu2XzFTz1atXGvLyPK2WH+WmqwCXHqnpYAgjIqKbVtnSo7y/o2nJUZ7xkpReXhUvRQrMnr1KueuRTVepuWAIIyKim2ar55f5TJd6f8fyGS8hNEhKGgTrNhTqDbdttZ2Q93rkzBc1VQxhRERUq8xnvao202W5DCkwdOiP6NQpw27D1WnTpiE0NLRWr5uovjGEERHRTcvPzwdQ3vNLDl2mmS497DdctUVCp04ZCAk5Y3UkOjoa3bp148wXNQsMYUREVCUV9fw6c8YUmGz3/DI1UzWpPIhJkhGennk2jzGAUXPCEEZERJWqTs8v27NeckG++VZDtsZZt55g7Rc1VwxhRERUqar2/EpL61XBUdNWQ6NHb4WLy3UYDB5ITIxS1Y5FRqaoAlhcXBy6d+9+k1dP1DgxhBERUbXJdz9qtUXIygrAlStt0L79n0hIiEJFS45CaODjk6vUe9nr+yXT6XR19RaIGhxDGBERVYt1zy85dFVefG9Z76XTFdrteg+YGq8SNVcMYUREZFNubi4uXLiA0tJSXL58GYD13Y/q0CXBdr8vAUBT6VZD5uLi4uDj48MaMGrWGMKIiMiKvUJ823c/mpNQXnxf9a2GzLEAn1oKhjAiIrJiqwN+ZmYQrl1zhvoOR0sCU6Z8DkfHElXosjX75e3tDX9//9q9cKImhCGMiKiFk/t/5efno7S0FACU5UfAVAO2Zcs4qGu/bBHo2/dXdOt2qkqvy3ovaukYwoiIWhjzpqsGgwHr1q2zO1auAbOu/VLr0+cgBgzYb3OPR5nc7wvgkiMRwBBGRNSiVLXpqtyC4upVl0pqwEx3PN5++26rJcfo6GiEhIQAYOgisoUhjIioGbPcaujSpUuq43LY8vTMhU5XCIPBDSkpkX/t9yhvN2S/9URFdzxyiyGiijGEERE1U5XNepn3+5IkIzp0OIMzZ4KhDlwVz4IJAYSGlteAyXc8cuaLqHIMYUREzdSFCxfsHrPs9yWEBmfOhNTgVTTIy/NUZsJ4xyNR1TGEERE1M/IS5MWLF1WPnzvnj7NnO6JDhzMoKXGqtNbLNvXSpGUHfN7xSFR1DGFERE2UZb0XYP9uxy+++Ad+/bUv5K72YWFHIEnGagex3r1/RVpaH2UJ07weLC4ujkuQRNXAEEZE1ARV5y7H48e7mgUwAJBw5EgYhg79EXv3Dq1WEOvW7QSior6z2QGfm20TVQ9DGBFRE2Q5A2aLeqNtSxIkyYj4+OUWd0PaJ0lGBAWds7vpNpciiaqHIYyIqAmoSasJ+wHM5Mcfh8PDoxAjRyYiMjIFx493wddfj4E6jJlqwCyXHvv374/Q0FBl9ot3QxJVH0MYEVEjl56ejk8++cTucctWE+PGbUPbtpersMyowZYtY+Hrm4PAwGwMGHAArVoJ1bmiohIREJBltfTYoUMHdO/evZbeIVHLxBBGRNSIVRbAbLWa2Lp1LGbNWmWj8N7WxtsarFo1G+PHb0N4+EGEhx9EaOgpmzVf5lxcXG7ujRERQxgRUWOVm5trFcAMBjdkZgYBAIKCMpGX52U14yWEBiUljhg3bhu2bBmL8uAlwV4Q27JlLEJDTyn1XrbC14gRI9C2bVu4uLggNDS0Vt4jUUvGEEZE1EhZFt/v26dHQkI0yu9yNGLo0D1WM15y7y5PzzxIkqmr/V9HYKrxskXddNWWnj17su6LqBYxhBERNQHWAQwANNizZxjCwo7g6NEeVr27MjKCbdSFaWB7L8jypqvy1kPmWHhPVPsYwoiIGjmDwQ0JCVGwvYm2hKNHe+COOz5Hbq4XOnQ4Cze3K8jICIZWW2RzliwqKhGJiVFmjxsxfvw2bj1EVM8YwoiIGhm5HUVaWhoAIC/PCxX18BJCg88/n/LXGCNMYc1U/xUa+gfS0zsBKJ8lCw8/iF690pCZGQgASu8vIqpfDGFERI2IrU74np65lWwxJFAe0szHaJCe3hmSZIRevw+RkSlK2DIV3x+1eTY2XSWqHwxhREQNwNa+jwBw+vRpq8d0ukJERSX+tSSpnu2qyv6PQmiQnKxHZGSK6vHo6Gi4ubkp32u1Wvj4+LD2i6ieMIQREdWzqu77CJjqwUzbCg2CeU1YdHQCAgKyUFysNVuKtE+I8rsfY2NjERAQwLBF1MAYwoiI6pnlDJjllkMy0x2R8uyXOQ0SEqIQHW0qsLd/x2M5uW0FYCq8ZwAjangMYUREDUi9ybYR0dGJGDw42U5LCnMaizsc5R5gpiXKTp3S8ccfoVZtK4io8ahyCCsoKKjySd3d3Wt0MURELYn1JtsaJCRE48YNJ+zdOxQVzWwBtmrBJMTE7EBY2BFlE+/Kth8iooZT5RDm4eEBSaroLwRACAFJklBWVnbTF0ZE1BzYKsC/dOkSANjccgiQsGfPMFQWwGwfFwgKOmtxB6R1+OLdj0SNQ5VD2O7du+vyOoiImpXc3FxcuHAB69evtzvG0zMXtvdyLF9aVBMYMSIR339/O4Sw3bi1pMQUsPr3748OHTpAq9VCp9MpI9j5nqjxqHIIGz58eF1eBxFRs2Hv7kfLAnydrhDR0Yk2ar/sFdlLcHQss9uSwrz4vkOHDujdu/dNvxciqjs1LszPz8/H+++/j6NHTc3+evbsibvvvlv1Ly4ioubKXp8voHy5UVbeZkIPy871gwcnA4BZkb39uxwlyYigoLM2e4NZFt+3asX7rogaO0kIIar7pF9++QUxMTFwdnbGgAEDAAD79+/H9evXsXPnToSHh9f6hbZEBQUF0Ol0MBgMvNmBqBGxnOmy12ICsLz7sZwkGREfv1wZbzC44ciRMHz77Sibr2ke3CzvqBw0KFnVDR8A5s2bx2VHogZS1d/fNfqn0vz58zF+/Hj873//U/61VVpaitmzZyM+Ph4//vhjza6aiKgJMJ8BMw9E5kEJsHX3Yznz5qmAqYg+LOwIvv12JNQ1YgIREb9g2LA9ytjw8IMIDT1l887HyZMnw9fXlwGMqAmoUQj75ZdfVAEMME19L1q0CP3796+1iyMiamxyc3OV5UbLkCWEBlu3jkVo6CnodIV27n6UGXH1qisMBjclRKWnd4Z6KbK8b5gsOjoanp6eNks/WHRP1LTUKIS5u7vj7Nmz6N69u+rxzMxM1T5kRETNieUyZGZmkFXIEkKDlJRIjByZWMHG26YWExs3/lOZPQsNPYWtW8fCPIRJEtCrV5ryfVxcnNXfu0TUdFW82ZgdcXFxmDVrFtatW4fMzExkZmZi7dq1mD17NqZMmVLb1wgAGD9+PDp06IDWrVvD398f06dPR1ZWlmrMt99+i4EDB8LNzQ0+Pj6YOHGi1Wa433//PcLDw+Hk5ITOnTtj9erVVq/13//+F8HBwWjdujUiIyPx888/q47fuHEDc+fOhZeXF9q0aYOJEyfi/PnzqjFnz57FmDFj4OLiAl9fXyxcuBClpaW18lkQUcOwXIbctGmizXFJSXqkpYWhsLAN9PpkmIrtZeWbbwPls2f2Al1enqfyvY+PTy29EyJqDGoUwl599VXExsbizjvvRHBwMIKDgzFz5kxMmjQJL7/8cm1fIwBgxIgRWL9+PY4fP45NmzYhPT0dkyZNUo5nZGTgH//4B2677TYcOnQI3377LS5duoTY2FjVmDFjxmDEiBE4dOgQ4uPjMXv2bHz77bfKmHXr1mHBggV4+umnceDAAfTt2xcxMTG4cOGCMmb+/PnYunUrNmzYgB9++AFZWVmq1ykrK8OYMWNQXFyMpKQkrFmzBqtXr8ZTTz1VJ58NEdWvimq9TDTYuPGfWLXqHiQlDbY6Znn3o3xXpCQZVY+bt5yYPHkylxqJmhtxE65evSoOHz4sDh8+LK5evXozp6q2r776SkiSJIqLi4UQQmzYsEG0atVKlJWVKWO2bNmiGrNo0SLRs2dP1Xni4uJETEyM8v2AAQPE3Llzle/LyspEQECAWLp0qRBCiPz8fKHVasWGDRuUMUePHhUARHJyshBCiK+//lpoNBqRk5OjjHn77beFu7u7KCoqqvJ7NBgMAoAwGAxVfg4R1Z2srCyxZMkSMWPGagGIWvwyiujob8X48V8JSSoTgBCSVCbGj/9KLFmyRCxZskRkZWU19Nsnoiqq6u/vGs2EyVxcXNC7d2/07t0bLi4utRIKqyIvLw+ffvopBg0aBK1WCwCIiIiARqPBhx9+iLKyMhgMBnz88ceIiopSxiQnJyMqKkp1rpiYGCQnm4pei4uLkZqaqhqj0WgQFRWljElNTUVJSYlqTPfu3dGhQwdlTHJyMnr37g0/Pz/V6xQUFOD333+3+76KiopQUFCg+iKixiM/Px8AlFovtWp3+zEjITExCqGhpxAfvxwzZqxGfPxy5S5LgFsNETVHNSrMv3HjBt58803s3r0bFy5cgNGo/svowIEDtXJxlh599FGsXLkS165dw8CBA7Ft2zblWEhICHbu3InJkyfj3nvvRVlZGfR6Pb7++mtlTE5OjioYAYCfnx8KCgpw/fp1XL58GWVlZTbHHDt2TDmHo6MjPDw8rMbk5ORU+DryMXuWLl2KZ555poqfBhHdLLnhqsFgQElJCQDgypUrKCgoQGlpKRwcHFTjU1JSAJjaSYwbt03VmuJvf0tB69Y38OOPw2G70sN+E1agvP4rJOQM7rorGt7e3sox3vVI1DzVKITNmjULO3fuxKRJkzBgwIBKN/a2Z/HixZXWkB09elS5G2jhwoWYNWsWzpw5g2eeeQZ33nkntm3bBkmSkJOTg3vuuQczZszAlClTUFhYiKeeegqTJk1CQkJCja+xPj322GNYsGCB8n1BQQGCgoIa8IqImi97DVe12iKUlDjZbLxqLjz8IK5fb42EBFOn+59/HojyPR/l/SDNg5f0152SgK2QZl7/5e3tDX9//1p5n0TUeNUohG3btg1ff/01Bg+2LDitnocffhgzZ86scEynTp2UP3t7e8Pb2xtdu3ZFjx49EBQUhJ9++gl6vR7//e9/odPpsGzZMmX8J598gqCgIKSkpGDgwIFo166d1V2M58+fh7u7O5ydneHg4AAHBwebY9q1awcAaNeuHYqLi5Gfn6+aDbMcY3lHpXxOeYwtTk5OcHJyqvDzIKLaYa/hqhycJMmIqKhEBARkK4HMvDN+YWEbJCREoTxQmYctASGsN+YWQoNBg/YhOVmvKuq33HKIiFqGGoWw9u3b10o/MB8fnxrfci0vgRYVFQEArl27Bo1G/ReevJQgj7VcngSAhIQE6PV6AKYp/4iICOzatQsTJkxQnrtr1y7MmzcPgKn2TKvVYteuXZg40XR7+vHjx3H27FnlPHq9Hi+88AIuXLgAX19f5XXc3d0RFhZWo/dLRHXD+k7H8tYR8sbakmREjx5HcfRoD2WrIPM2E5Yq2mA7MjIFkZEpyMwMxLVrznBxuY6goHOqAMb6L6KWoUYh7LXXXsOjjz6Kd955Bx07dqzta7KSkpKC/fv3Y8iQIWjbti3S09Px5JNPIjQ0VAk+Y8aMweuvv45nn31WWY7897//jY4dO6Jfv34AgPvuuw8rV67EokWLcPfdd+O7777D+vXrsX37duW1FixYgBkzZqB///4YMGAAli9fjqtXr+Kuu+4CAOh0OsyaNQsLFiyAp6cn3N3d8cADD0Cv12PgwIEAgJEjRyIsLAzTp0/HsmXLkJOTgyeeeAJz587lTBdRI1NxV/vyQHbkSBjKQ1dl9zTZqv8SiIpKNNum6KjNZ06bNo31X0QtRI1CWP/+/XHjxg106tQJLi4uyt2Hsry8vFq5OJmLiws2b96Mp59+GlevXoW/vz9GjRqFJ554Qgk1t912Gz777DMsW7YMy5Ytg4uLC/R6PXbs2AFnZ2cApuL97du3Y/78+VixYgUCAwOxatUqxMTEKK8VFxeHixcv4qmnnkJOTg5uueUW7NixQ1Vo//rrr0Oj0WDixIkoKipCTEwM3nrrLeW4g4MDtm3bhvvvvx96vR6urq6YMWMGnn322Vr9XIioauQCfHPy1kP2u9pbqqyuVA5etgKY9fZDI0eORJs2bZTvtVotfHx8GMCIWhBJCFHt+6qjoqJw9uxZzJo1C35+flZF7zNmzKi1C2zJqroLOxHZZ1mAb4utmrDK7ma0JTj4D5w+3cnq8UmT1qNXr/KZr2nTpiE0NLRa5yaipqOqv79rNBOWlJSE5ORk9O3bt8YXSERUHyxnwMyL6+WlwfDwgwgNPYW8PE9otcU4cqQnkpL0sB/CbNWEGXHmTLDNsUFB5wAAsbGxCAgI4GwXEQGoYQjr3r07rl+/XtvXQkR00yyXHuVlR0A94yXfkSg3RNXpCpU7IJOT9ai47ksuzhcATOfS65NtbFEEDBqUrIQ9b29vBjAiUtQohL300kt4+OGH8cILL6B3795WNWFcOiOihmCv95enp+lubvO7IIXQYMuWsXB0LEJQUKYSlCou1DdnCmKTJq1XZrpstZ6IjExRvuddj0RkrkYhbNSoUQCA22+/XfW4EAKSJKGsrOzmr4yIqJrs9f6SZ6qsw5Vpo23zWbE//giGdT2YvfowDVxdrykBzrKLvnnvL27ATUSWahTCdu/eXdvXQURUayx7fwmh+avGy7qBqnx869axuHxZhz17hsEygA0d+iOuXXNBamp/1THzLveAurbM0zNP1ftL7hlIRCSrUQgbPnx4lcb93//9H5599lnVHmhERHXN9pKiBj17puH333vZfI4QGuzZMxTWM14S/PzOY9OmSbAMZ+Z9v2JjY+3+Xce9H4nIlqoUPtTYJ598goKCgrp8CSIiK3LvL3OmJckkq8fNj9v+K9F0J6R1qJMQEJClfBcQEAB/f3+bXwxgRGRLnYawGrQgIyK6aTpdIcaN26YELrk+KzAwW/W4qdYLyj6R1gFNIDo6EUFBmTZDnbwUyXovIqqJGi1HEhE1JFsd8AF1Owp79Vny46a9G10ACLi43EBQUCacnW+oCuujosq73FdUdO/h4VHn75mImh+GMCJqUqrSAV8m9/6ylJ7e2UaHfCMGDUrGrFmrUFLiaFVYX1HRPVtPEFFNMIQRUZNiawasOizvnDTflDspaTCSk/UYN24bQkLOAAAGDhwId3d3eHh42JzxYtE9EdUUQxgRNWm2tiGqSGXNWOV2FaGhp6DTFaJPnz7w9/evzUsmIgJQxyFs2rRp7J5PRHXGVkPWyMiUCsOYfOdkZUEsL8+zSqGOiKimahzC8vPz8fPPP+PChQswGtV3Dd15550AgLfffvvmro6IyA7bDVkHIylJj/HjTd3vbc2SyXdObtkyFvZuELdswkpEVBdqFMK2bt2KqVOn4sqVK3B3d4ckmXeQlpQQRkRUXeZ3PhoMBpSUlKiO5+TkAKhoWdG0nHj9emskJkapZsnCwn5HSYkTQkNPYf785UhJiTTb79FUoG955yMRUV2RRA2aeXXt2hV///vf8eKLL8LFxaUurosAFBQUQKfTwWAwcFmXmh3zsJWVpUFGRit4e1/GDz98WqXnGwxuWL48voJlRVv7PaqDVvlsmSe02mKbd0XOmzePhfdEVC1V/f1do5mwP//8Ew8++CADGBHViHmbCXVdV1uMG9cP4eEHAaiL7gGolhZ1ukIMGbLHxl6PMvuPWRbf3357N7i5uaFVq1Zwc3ODVquFTqfjnY9EVKdqFMJiYmLwyy+/oFOnTrV9PUTUApQvN1rXdcnhSN3Ly7R1kPksFgDs3Wtrr8eqMS++Dw8P5x2QRFTvqhzCtmzZovx5zJgxWLhwIY4cOYLevXtDq9Wqxo4fP772rpCImgXz5Ue5s72tui4hNMjMDLTo5aVRHTcdUz9eXSy+J6KGVuUQNmHCBKvHnn32WavHJElCWVnZTV0UETVt584BJ08CXboAgYHWXe5Ny4zB0GqLbLSLEDh8uE+lLSTsHIF6ZsxWXRgAqIvv2fGeiBpClUOYZRsKIiJz8kzXZ585Y9EiHYxGCRqNwLJlBowcmaWMs+zt1aPHURw5EobysCThxInusB+g8FdwA9QzYbbGS1aPS5IRs2atQmBgNqKjo9GtWzfWfRFRg6jRXP5HH32EoqIiq8eLi4vx0Ucf3fRFEVHTIs90vfLK51i40B1Goyn0GI0SFi50x4cfJgCwXQN29GgP2C+il2/eNpr9WaBPn8MYP34bJMn0j0PTf+3VhkmqcePGbUNgYDYAMIARUYOqUWH+XXfdhVGjRsHX11f1eGFhIe666y72CSNqYeRaL3s1XnIBvL3jppBl69+EEoYP340ffxwOIcpnyg4f7oPbbvsO8fHLlfYS778/2+YypTzzVVLiiKlTI9Gr198A/I13PhJRg6vRTJgQQtWgVXbu3DnodLqbvigiaprkLYHMmRfA2zseHZ0IUxCD1TEfn0sVBruQkDMIDMzGuHHbzM4tlOfLM18hIWfQq5cH/P394e/vzwBGRA2uWjNh/fr1gyRJkCQJt99+O1q1Kn96WVkZMjIyMGrUqFq/SCJqGuQtgcxrvswL4O0dDw8/iF690lQd7OVjQUGZVsX7tu5sDA8/iNDQUxU2XmUBPhE1JtUKYfIdkocOHUJMTAzatGmjHHN0dERwcDAmTpxYqxdIRI2TrZYTgDoMWYagio7rdIWIjExBQEAWAIGgoHPKsYqCXVxcHHQ6HfLz81FaWmp1nWy8SkSNVY22LVqzZg3i4uLQunXrurgm+gu3LaLGwjxwHTt2BWlpRcjI2AnAVAem1RahpMRJtVG2JVubaZszv2sSMGLQoGRERqZYvIb17NacOXPYaJWIGpU63bZoxowZAEzFuBcuXLBqX9GhQ4eanJaIGiF7WwwBPWGqvbLe/Fredkhm2ZbCcozlXZOABklJg5GUNEh5Dfl5ISFnVOfmEiMRNVU1CmEnT57E3XffjaSkJNXjcsE+m7USNR/2thiStxEq/7P1noy2nmdrjK27Ji1fw/J5sbGxCAgI4BIjETVZNQphM2fORKtWrbBt2zb4+/vbvFOSiJoX+0FJzfzORXvPE0KDH38cil69jsDTM1e5a7Ky85uf29vbmwGMiJq0GoWwQ4cOITU1Fd27d6/t6yGiRqqqQcnyzkV7z0tN7Y/U1L8py4zjxm3Dli1jUVHnHO73SETNSY36hIWFhanuhiKi5k9uL2HZi8v8z5Z3LsrP0+uTbZzReplx9uxVsO4XZv/cRERNWY1mwl5++WUsWrQIL774Inr37g2tVqs6zjv5iJqn8PCDuHxZhz17hsFyo+xJkzao2kqY3w0ZGZmCpCQ97P27TwgNMjMD4ep63cYYCTExOxAWdoQ9v4ioWalRCIuKigIA3Hbbbap6MBbmEzVvBoMb9u4dCut9GjVwdb2mhCRbd0OOH7/NrEDferPtTZsmISoq0WZjVjmAxcbGwtvbmz2/iKhZqFEI2717d21fBxHVg3PngJMngS5dgMBA9THzXmDmzEsP7BfnG6HVFiMjIxhabZHNuyHj45crez1mZQUgISEK5rNeQmiQmBiFqKhEJCZG2WzMyrshiag5qVEIGz58OPbs2YN3330X6enp2LhxI9q3b4+PP/4YISEhtX2NRHQT5HD12WfOWLRIB6NRgkYjsGyZAf/613VlWU/uBQbYb6xqu8heoEePo8oG2raK8OW7GkNCzkCnK4SnZx4SEqKtrlUIDQICshAfvxy9ek1A376uCAjghttE1DzVKIRt2rQJ06dPx9SpU3Hw4EEUFRUBAAwGA1588UV8/fXXtXqRRFQ581kuwPRnb+/L2Lx5JQwGNyxfHg8hTEuARqOEhQvd8eefH/y1XVCkcp6KGqva2vtxyJA92Lt3qGrmy3K50fKuxrw8L1gvaQKAUemIP3q0M/z9/WrzIyIialRqFMKef/55vPPOO7jzzjuxdu1a5fHBgwfj+eefr7WLI6Kqef99YM4cwGgE5DJNIQCNxgNjx/ZD27aXbc5Opab2Q0TEQaSkmLYHqkpjVcu9H/PyvLBnz3CLK5JgusvRekkRsD+jFh2dyLsfiajFqFGLiuPHj2PYsGFWj8ub6BJR/cjNzUVq6nnMmSMg7x4mhOkLMM14bd06FlptkVlriXI//jgCr78ejwMH+gEAMjOD7C4lmtPpCs2WFnNtnFtg6NA9mDRpPUaP3g5HxyIYDG6q55u3u5AkI6KjEzB4cHkrC979SETNXY1mwtq1a4dTp04hODhY9fjevXvRqVOn2rguIrJDXnaUlxozMoJhNM6wO14IDUpKHCtohqrBli1jcf16ayQmRtk4gxFXr7rCYHCzOUul0xUiKirxrxqv8m2M9uyR76KUlPOMH1++tGk5o2Z+7mnTprH+i4iavRqFsHvuuQcPPfQQPvjgA0iShKysLCQnJ+ORRx7Bk08+WdvXSER/MV92lJcaQ0NPVdjJXq7HCgk5A0fHImzc+E8bozRWdyuaGAFI2Ljxn3Y35waAgIBs2GpbYfn9li3qvR+9vb2tzsUCfCJqKWoUwhYvXgyj0Yjbb78d165dw7Bhw+Dk5IRHHnkEDzzwQG1fI1GLl5ubi9OnSzFnji+MxvLiern1g/Usl6kw3rweS14OtB3YjLBdnWB/A22ZweCGq1ddKjiHOfXej/7+/tX5GIiImpUahTBJkvD4449j4cKFOHXqFK5cuYKwsDC0adOmtq+PqMXLzc3FypW2lx3lei3TbFh5LZgcwGbNWoXAwGzVHY+msGR+96IR0dHlvbnKWYcqy8251ecVULNuyCrf/UhERDUMYTJHR0eEhYXV1rUQkQ1yA1VbdxTKS422mqjKtWCWdzyagpURf//7Nri4XFdtNWTeJNW8aarl6wHWd1JaBy4JlmFv/Hju/UhEJLupEEZE9cdWjy7z1g/VCWiABj4+uQgJOQPANKNVHrhMvb8CArIr7F5vv3t++evPmrUK+fkeAKAKe0RExBBG1KTYu6OwpgENsDWjpcGePcOwZ89wZUYsICDL6g5Ge72+zGvRAgOzERiYbfO9sAUFEbV0DGFETYxOV2hzRqmmAc32jFZ5MX5iYhTi45crxf3m2xlZntdeYIuLi4NOp1O+5x2QREQMYUSNWm5urrKBtr39HM1VJ6DJ55MbudpbWpSL8dPTO9vczsher6/JkyfDw8ODgYuIyA6GMKJGSr4rErC/n2NVgpnMPKBZnq9Tp3Skp4fCVLRvve+jVltc4XZGd90Vrer5xeBFRFQ5hjCiRkq+K9Lefo5yh3tbG21bMg9rAKzOl57eBYARgwbtg6vrVdV59fpk5Oe3tbudEXt+ERHVDEMYUSNnr/2EefsIe41UAetZL70+2c7SowbJyXrExy9Hr15pSEmJRFKSHklJg2HdW0xd3E9ERNVXow28iaj+2N4g27qGy3yj7REjRgCwPYuWlKS3uZm3fDwzMxCZmUFIStKj/K8I0zKl+Ybb5sX9RERUfZwJI2rk7N2FWFEjVZm9HmFCWM9syefYuHESbP/7TIOJE9fD1fWaVRE+200QEVUfQxhRE2DrLkRn5xt2207s3r0bgL1eXoDcNb9371/x2299AGj+GicfsyZJRqXhqvnm2yzCJyKqGYYwonpy7hxw8iTQpQsQGFj951u2n6ioPQRQXowfFZWIhIQoWIcrjRLAAFFp93vzkMdCfCKim8cQRlSHcnNzUVxcjM8+c8aiRToYjRI0GoFlywz417+u3/Qskr2+YJbF+EOH7sHevUNtdLe3t+/jX49KRkycuJFbDhER1QGGMKI6Ivf5MhjcsHx5PIQwBR2jUcLChe74888PoNMVYt68eUoQk0MbAJw7d65KrzN58mQAwPr16wHYLsbfu3eo1T6QFc18AeWzX716HbU6xhowIqKbxxBGVEfkMGWvxYTcY0seZ96ctaqmTZuG0NBQZGeX789o7/UCArIQH78ceXme0GqL8f77s+0EMSMmTbKe/ZLrwFgDRkRUOxjCiOqYreJ4W3cyymGsOlxcXKwey8ryh72eXubLl+Z3XFpuvG1r9isgIIDhi4ioFjGEEdWxyjbQlveGlP8rs+xyb297Isv9JRMTo6Cu8RKIikq0ep55Yb9WW4ySEkerAn/OfhER1R2GMKJqqsldjhXdybh582ar8eaF9aZu9RLMZ6rk7Yny8/OVWjDAXl8wCTpdvs3rslfYL+PsFxFR3WEII6qC2rjL0VbgsbUBt2VhvXlrCcvtiUpLS1Xn02qLYApt6iC2ceMkFBeXh7fY2Fi0atXK6vmmc2ih0+k4+0VEVMcYwogqkJubi4sXL2LdunU4d87/r2L2yu9yrArLNhLyDJft2axy5kX9ly9ftjqf3PdLvSSpDm/s80VE1PAYwojsML9b8cCBftiyRQ445cwDUVZWlqq43rLGy5ytNhJySLLf5d7EvKhf7oxvPXtm3ffL/FqJiKjhNZkNvMePH48OHTqgdevW8Pf3x/Tp05GVlaUas379etxyyy1wcXFBx44d8corr1id5/vvv0d4eDicnJzQuXNnrF692mrMf//7XwQHB6N169aIjIzEzz//rDp+48YNzJ07F15eXmjTpg0mTpyI8+fPq8acPXsWY8aMgYuLC3x9fbFw4UKbSz/UeF28eBFAecCx9X8X80C0efNmvPfee8qXrVovWWVtK8aN22a2ybaxwo2zDQY3/P57zyr1/bK8I5OIiBpOk5kJGzFiBP7973/D398ff/75Jx555BFMmjQJSUlJAIBvvvkGU6dOxZtvvomRI0fi6NGjuOeee+Ds7Ix58+YBADIyMjBmzBjcd999+PTTT7Fr1y7Mnj0b/v7+iImJAQCsW7cOCxYswDvvvIPIyEgsX74cMTExOH78OHx9fQEA8+fPx/bt27FhwwbodDrMmzcPsbGx2LdvHwCgrKwMY8aMQbt27ZCUlITs7Gzceeed0Gq1ePHFFxvg06Pqys3Nxbp16wDYK3a3HYgqEhsbC8AU1mzPdglkZQUgJOSMVSG/6Tqsi/rVBfzWbSnkvSCre61ERFT3JCFMf003NVu2bMGECRNQVFQErVaLf/3rXygpKcGGDRuUMW+++SaWLVuGs2fPQpIkPProo9i+fTvS0tKUMXfccQfy8/OxY8cOAEBkZCT+9re/KctQRqMRQUFBeOCBB7B48WIYDAb4+Pjgs88+w6RJkwAAx44dQ48ePZCcnIyBAwfim2++wdixY5GVlQU/Pz8AwDvvvINHH30UFy9erHK38YKCAuh0OhgMBri7u9fK50ZVk52djffeew8AsG+fHgkJ0VAv8Rkxe/YqBAZmWz3XVrE9AMyZMwcAKjyvJBkRH78cOl0hIiMjlT5g165dQ0pKiup1ymvULLciKr+L0t4dmXPmzGFNGBFRHanq7+8mMxNmLi8vD59++ikGDRoErVYLACgqKrJqXOns7Ixz587hzJkzCA4ORnJyMqKiolRjYmJiEB8fD8DULDM1NRWPPfaYclyj0SAqKgrJyckAgNTUVJSUlKjO0717d3To0EEJYcnJyejdu7cSwOTXuf/++/H777+jX79+Nt9XUVERioqKlO8LCgpq8OlQbbLXdys6OtFmALNXbA+YasSuXLmijA0IyIZl7Zb5kqRl6DJnCnC2NuWWEBOzA2FhR5TQxdkvIqLGqcnUhAHAo48+CldXV3h5eeHs2bP46quvlGMxMTHYvHkzdu3aBaPRiBMnTuC1114DAGVLl5ycHFUwAgA/Pz8UFBTg+vXruHTpEsrKymyOycnJUc7h6OgIDw+PCsfYOod8zJ6lS5dCp9MpX0FBQVX9aKiO2Ou7FRCQZTXWXrG9weAGwLQMuXPnTmW8vCSpOrNF3ZbB4IaMjGDlHID5DJrtJVLzAGYP934kImp4DToTtnjxYrz88ssVjjl69Ci6d+8OAFi4cCFmzZqFM2fO4JlnnsGdd96Jbdu2QZIk3HPPPUhPT8fYsWNRUlICd3d3PPTQQ1iyZAk0mqaRNR977DEsWLBA+b6goIBBrI6Yb5RtS35+PoCqbzkEVF5sb0mnK0RUVKIyo2VZt2VrVi009JSNmbny6zJ//ogRI9C2bVul75eM/b+IiBqHBg1hDz/8MGbOnFnhmE6dOil/9vb2hre3N7p27YoePXogKCgIP/30E/R6PSRJwssvv4wXX3wROTk58PHxwa5du1TnaNeundVdjOfPn4e7uzucnZ3h4OAABwcHm2PatWunnKO4uBj5+fmq2TDLMZZ3VMrnlMfY4uTkBCcnpwo/D7p5lhtl26vhAirfcshcVQOb/HpZWf5/BSrTeaOiEpWly3Pn/G3Oqk2cuMnuptuzZqlr1Lp06cK6LyKiRqxBQ5iPjw98fHxq9Fyj0bSMY15DBQAODg5o3749AODzzz+HXq9XXkOv1+Prr79WjU9ISIBerwdgmiGIiIjArl27MGHCBOV1du3apdxhGRERAa1Wi127dmHixIkAgOPHj+Ps2bPKefR6PV544QVcuHBBuaMyISEB7u7uCAsLq9H7pdpjPgNWUQ2XrKIthwAgOjoaCQkJVQps9u5mFEKDxMQo9OqVhvT0znZ7kgHC5l2VtmrUuORIRNS4NYnC/JSUFOzfvx9DhgxB27ZtkZ6ejieffBKhoaFK8Ll06RI2btyIW2+9FTdu3MCHH36IDRs24IcfflDOc99992HlypVYtGgR7r77bnz33XdYv349tm/froxZsGABZsyYgf79+2PAgAFYvnw5rl69irvuugsAoNPpMGvWLCxYsACenp5wd3fHAw88AL1ej4EDBwIARo4cibCwMEyfPh3Lli1DTk4OnnjiCcydO5czXfXM1rKj+WbX9hqm2poRszX7NXnyZPj6+iIhIQFAxYGtsoaqQmiQmRlYYU+yoKBzVkEvKioRgwcnK+NiY2O55yMRURPQJEKYi4sLNm/ejKeffhpXr16Fv78/Ro0ahSeeeEIVatasWYNHHnkEQgjo9Xp8//33GDBggHI8JCQE27dvx/z587FixQoEBgZi1apVSo8wAIiLi8PFixfx1FNPIScnB7fccgt27NihKrR//fXXodFoMHHiRBQVFSEmJgZvvfWWctzBwQHbtm3D/fffD71eD1dXV8yYMQPPPvtsHX9SZM5y2dFSdWu4bPH19YWXlxfmzZuHCxcuYP369XYDW2XbEUmSEbm5npX2JKtsZo4BjIioaWiyfcJaAvYJuznmvb4A69ovg8ENy5fHW9VwyX26AGDQoEFWs5darRZt2rSBVquFj4+PEnhq8nrljAgMPIdz54JgXXRvvyeZpWnTpiE0NLTScUREVHeadZ8wouqyV/tVWQ2XvCNDRWxt3K2u/TJi0KBkREamQK9PRlLSYBtnkewGsPHjt1kFsMmTJ1u1SeFdj0RETQtDGDV7FdV+yUt7mZmBACQEBWVW+/yWNWfWtV8aJCUNRnKyHlFRiQCMsNVk1ZZhw35Q3SjAei8iouaDIYyanMp6fFnOCFVW+5We3rnSOySBiltZmLNX+yXfAdm792H89ltfWHbhN1E/1rXrSdU5GMCIiJoPhjBqUiortpfJLUWAivt3VXaHpGVPL3vbEZn/1/bm3FDO/9tvt8A0GwbI+zzKG22bjUSPHkeUZcgRI0agZ8+eDGBERM0IQxg1KRXNgNkbV1H/royMYJuzZJmZgUhJaY/kZL3Nnl7mQW3z5s2q58uvZ6vXVzlTrdikSRsASNi48Z8WxyUMGLBf+a5t27YMYEREzQxDGLUI9to62Jsl27hxEtQByv5G2xW9XkpKJJKS9LAdxjRwdb0GT8+8SjvtW25OT0RETV/T2FSRqAYsO8brdIUICTmjCk7yrJW8kbbtpUFrkmSEVltstbm25etFRqZAsl1zrwQtW9dgfpfm6NGj2XaCiKgZ4kwYNWkVFcvLTVRtLWHm5+dj/fr1ANSzZFevutpYGpSZliQlyYg+fQ7j/fdn26wRi4yMREpKCoCKGrSqg1ZFDVi5iTsRUfPEEEZNVlX2fbRXR+Xv768KaJcuXcLmzZthMLjZLKqXtwcKCMiCVlusBDBAXSMGAGvXnoenpxt0ukK7y52Wm20D9rdGIiKi5okhjJqk6uz7aI95QDMYDACsi/jNG63K57VXzJ+SEqkU8lfWELYq3e9l3IibiKh5YgijJqk29n1UP7d8967K9ma03YLCaHYnpelatmwZC1/fnArPN3LkSHh4eFh1v5exCz4RUfPFEEZNijwrVFHvL8BU81WdAGM7BNmuqLc1W9az5xH8/nsvi5EavP/+bGVGzFY47Nq1K0MWEVELxRBGTYpcbH/x4kWkp9vf91Euure1r2NlqlJrZt6CIjlZ/1cAK+8lJrNcJo2NjYW3tzcAznIREbV0DGHU5Hh5eaG4uLjSZUMAuHDhQrW2OKqs1iwuLg4lJSVKg1bzJUh7M2fmy6Te3t7w9/ev4TsnIqLmhCGMmrTK7iiUZ8QqYr7FUWW1ZjqdrsKxtlg2XiUiIgLYrJVINVMm15qZsxeibI0tJ5Tnmi+TEhERyTgTRmSmon0mKxtr3sxV7ilmb5mUiIiIIYyaJLmvV/n39jvnVzbm0qVL0Gq1yvcV1Zrl5+ejtLTU5litthglJY4MXkREVCUMYdQklZSUKH+uyt2MFY2Ri+zNybVmkydPhiRJWLduHQBTjZkpzAUrYa46ne7ZeJWIiGQMYdSkVaVzflXH2Jols+wfVpXAZ2ny5Mnw8PBgSwoiIlJhCKMmqVUr049uVTrnVzamomB18uRJ5bUqC3MjRoxA27ZtAQBarRY6nY7Bi4iI7GIIozqTm5tbrR5d1SHPUFXWOb+yMbaClbzdUGBgNnbv3q0sP1696lJhmOvSpQt7gBERUZUxhFGdyM3NxcqVKysdV5OO9ubkOxS3bBkLU8cV67sZK7rj0dZm3ObbDQFQPQ8wwryzC3uAERFRTTGEUZ2oaAasJuMqI0mAEKb/mpPrsQwGA0JDlyt3PAJARkYwtNoiG5txl8+Imc5bPktmGmsKYuwBRkREN4MhjJq0yuq0PDw8lCVC+S5G8xowwIjQ0D+Qnt4J1r2LNRBC/YgQGkyatB6urtfYioKIiG4KQxjVKrkO7NKlS3X6OnKrh8qK7i1bQliGNkCD9PTOMDVaVS81AkbVTBhgWn4MCjrH8EVERDeNIYxqTVXrwGqDl5cX5s2bh9OnS/HxxwJGY/k6pIODwAMPjEZwcCurejP7+z1KkCRhtdQIoErd8wH2ACMiouphCKNaU1v1XVXl5eUFLy/gvfeAe+8FysoABwfg3XclBAe3QnFxMbKzswFAmZmzdaekzN5So73u+bGxsfD29gZwc3d6EhFRy8QQRk3erFlATAxw6hTQuTPg7KyekStvxOpm427KcvaWGu11xPf29mZLCiIiqjGGMGpQtmrH5GW96vQYCww0fQFAdnb58ywbsZo21s7G7NmrcORITyQn66u01GjvGoiIiGqKIYwalK19G6tq2rRpCA0NtXvc1p2TCQnRMNV/mQLZxImbAAirGbCRI0eiTZs2AEzd+S23L+LyIxER3SyGMLpp9XVHpKVPPvnEZrPX/Px8APaK8E0F/JaBzHIPyODgYC41EhFRnWIIo5tSn3dE2mK5ZJmbm4v169cDqLgI36Q8kFlu6M2lRiIiqmv2fjsRVUlV74g0GNyQkREMg8GtVl9fnvWSXbx4UflzWlovi2arFp1XzY/81VsMAOLi4rjUSEREdY4zYVTnLIvjLZf+KmMwuCEzMwgAEBSUqardWr9+vbIkmZubi3Xr1gEA9u3TK8uN5cRfX5q//lt+zHwPSJ1OV7M3SkREVA0MYVSnKttWqDIHDvSzaCchMH78VlWIKy4uRm5uLrKysgAA5875IyEhCuoABgDlfcCysgKQmBhV4zsjiYiIbhZDGNWpyrYVKu/hlWsVggwGNxv9vCSrEGcwGJQZMHnWzfZKe3kfsJCQM+jVK81mE1YiIqL6wBBGdcZgcMPVqy5WxfHy0l9ly5SmJUjbne1TUiIxcmQiAKCkpER5PfW+kKpnITo6URW27DVhJSIiqg8MYVQnzAOWaSNsoypsAahwmbJ8GdK2pCQ9IiNTVCHK/r6QRkRHJ2Lw4OTafItEREQ3hSGMap31jJQGQhgxadJ6ZTkwIyPY7jIlgAqWFGXlS5oyWy0pJMmIWbNWITAwu8rXz/YURERUHxjC6KbYCiy2Z6Q0cHW9poQme4HJ0zOvghktWI0FgMuXLwOAsi+k5RKnrQA2efJkqy748vthewoiIqoPDGF0U7y8vDBv3jxVv7CsLA0+/ljAaLTdAkIuxo+KSqzgDkUj1DNhRkgSrJY0Tb3HfoHcVSI09JTdrYhkkydPRo8ePWrxUyAiIqo+hjC6aZYzR/7+wHvvAffeC5SVAQ4OAmPGbFNqvaw31M5S7lA0GNyQkhIJdXsJI8aP34bQ0FPK3Yzp6Z2xfHm83TqzivqR+fr61uGnQUREVDWSEMJ+G3FqUAUFBdDpdDAYDHB3d2/oy6mSc+eAkyeBLl1M3586BXTuDDg75+L06VIMGOCrmiHTaAQeeuh1q4BmTpKMiI9froS0zMwgbNo00Wop0/STrLH5PACIjY1FQEAAlxuJiKhOVfX3N2fCqNa8/z4wZw5gNAIajWk2bNYs+agXDh82HTNnNEqqYnxbtWBywX56eucKx9h7nhzCGMCIiKgxYQijasvNzbXaMzIrS4M5c8pnuYxG03JkTAwQGGga06WLKZyZBzEHB1FpMb4kGaHVFlfQA8z+TJhch8b9IImIqLFhCKNqyc3NxcqVK60ez8gIhtE4Q/VYWZlpOVIOYYGBlrViwMsvG3DlimmmyvJuSRNTbVdJiVOFAcxeTZg8C8b9IImIqLFhCKNqsZwBk9lqOeHgYKoHMzdrlml2TK4Vc3C4jvfes91eQq9PVhqyGgxuNkKaEZMmbVTdBWlevM9u+ERE1JgxhFGtsAxRDg4C774rKbNg5gIDy2fHcnPL+4yFhx+0G6Ls9QDr1euo1XUwfBERUVPAEEa1xjxEPfDAaERE+FX6HFt9xsxdunQJmzdvtjo/Z7qIiKipYwijWiXPRAUEmKrvbRXxy/Lz8yFJEnQ6HbKyNMjIaIWQkFLluY6OjvD29rZ5fiIioqaOIYzqjGURv9wp39MzVxWkLBu4mjdZjYuLq5Vr4X6QRETU2DCE0U2xF6zy8/NRWlqqfG8vaFlu9i2EBlu3jkVo6CnodIUQQth9DXP29oIEuB8kERE1TgxhVGMVzWCtX79eGXfunL/doGWrP5h5k9X1692wYsV8GI0SNBqBp576E7Gxl6HVapW2EwxZRETUFDGEUbXIy3qVzWDJDhzohy1bxkK9GXd50LLV2kJusmowuGH58gAIITeAlfDMMwEwGNZDpyvEvHnzGL6IiKjJst39ksgO+W7GQYNm2J3BMhjckJERrMyA2foxk4OWTleIqKhEAEblcbnJakWzZID9nmVERERNAWfCqNq8vLwwcKD1FkSSZERWVgA++uhOZYnSVpd786B14EA/JCZGATCNj4pKVJY0K5olIyIiauo4E0Y1Im9B5OBg+l4OUImJUaolSkBYPNOIWbNW2S3KT0yMgsHgBqC8QaskWc+SERERNXWcCaMak7cgSknJxb59a+xswi2Z/VkgOjoRgYHZAGB3ufH338PQs+cR6HSFbNBKRETNFkMY3ZTAQMDBoRhpaRVtwi2TEBCQBcBU2H/1qouN8QI7d45CQsJI5W5LNmglIqLmiCGMao3l/o6mpcjymTC5nsu8tYWpIF8eVz7e3t2WREREzQVDGFXZuXPAyZNAly6wuTE3oN7fMSsrQKkRk+u5CgvbWLSsMIW1rl2P4cSJ7qpzmfcLIyIiam4YwqhC8t6Pn33mjEWLdErT1GXLDPjXv67b3A5IXj4MCTmDXr3SlHqu9PTOeP/92bC+H0TCiRNdq30nJLciIiKipowhjOyS9340NU2NVzVNXbjQHX/++QEAIDw8DgaDm80ZKzmQWd4JaU0DvX4fkpP1qpkz+ZyxsbGqzbzZJZ+IiJq6JteioqioCLfccgskScKhQ4dUxw4fPoyhQ4eidevWCAoKwrJly6yev2HDBnTv3h2tW7dG79698fXXX6uOCyHw1FNPwd/fH87OzoiKisLJkydVY/Ly8jB16lS4u7vDw8MDs2bNwpUrV6p9LY2d3AzV3l2MKSmRWL48HtOnt8eKFfMBzEJ0dLTNc9m+c7KcJBkRGZmC+PjlmDFjNeLjlyv9wgDA29sb/v7+yhcDGBERNXVNLoQtWrQIAQEBVo8XFBRg5MiR6NixI1JTU/HKK69gyZIleO+995QxSUlJmDJlCmbNmoWDBw9iwoQJmDBhAtLS0pQxy5YtwxtvvIF33nkHKSkpcHV1RUxMDG7cuKGMmTp1Kn7//XckJCRg27Zt+PHHHzFnzpxqXUtTIjdNNSdJRiQl6ZVgJW8ptHHjTwBMG2rPmTMHsbGxds9hTq9PVi1jsg6MiIiauyYVwr755hvs3LkTr776qtWxTz/9FMXFxfjggw/Qs2dP3HHHHXjwwQfxn//8RxmzYsUKjBo1CgsXLkSPHj3w3HPPITw8HCtXrgRgmgVbvnw5nnjiCfzjH/9Anz598NFHHyErKwtffvklAODo0aPYsWMHVq1ahcjISAwZMgRvvvkm1q5di6ysrCpfS1Niq2mqXp8Me/tBAoCHhwf8/f2VJUTLc6iZZsGIiIhakiYTws6fP4977rkHH3/8MVxcXKyOJycnY9iwYapi7ZiYGBw/fhyXL19WxkRFRameFxMTg+TkZABARkYGcnJyVGN0Oh0iIyOVMcnJyfDw8ED//v2VMVFRUdBoNEhJSanytdhSVFSEgoIC1VdjER5+ULVUGBmZYnN2rKJCevkcgwbtg/lekePHV94Fn0X4RETU3DSJwnwhBGbOnIn77rsP/fv3x+nTp63G5OTkICQkRPWYn5+fcqxt27bIyclRHjMfk5OTo4wzf569Mb6+vqrjrVq1gqenp2pMZddiy9KlS/HMM8/Y/hAaATko5eV5wdMzV9UTrKpbCul0hRg5MhGRkSl2u+BPnjwZHh4eyvcswiciouaoQUPY4sWL8fLLL1c45ujRo9i5cycKCwvx2GOP1dOVNYzHHnsMCxYsUL4vKChAUFBQA16RmnmTVTl0xccvR16eJ7TaYpSUOCl3SV66dKnC2St7XfDj4uLQvXt3G88gIiJqXho0hD388MOYOXNmhWM6deqE7777DsnJyXByclId69+/P6ZOnYo1a9agXbt2OH/+vOq4/H27du2U/9oaY35cfszf31815pZbblHGXLhwQXWO0tJS5OXlVfo65q9hi5OTk9V7bEhZWRpkZATD0zMXAKw22966dSzi45fj8mVPq3AGbAYATJs2rVqv6ePjU6vvgYiIqLFq0BDm4+NTpV+6b7zxBp5//nnl+6ysLMTExGDdunWIjIwEAOj1ejz++OMoKSmBVqsFACQkJKBbt27K8p9er8euXbsQHx+vnCshIQF6vR4AEBISgnbt2mHXrl1K6CooKEBKSgruv/9+5Rz5+flITU1FREQEAOC7776D0Wis1rU0tMq637//PjBnji+MxhlKIb6tNhWZmYE2w5m83ZCLiwvmzZuH4uJi5Ofno7S01Oq1tFotdDodlx2JiKhlEU1QRkaGACAOHjyoPJafny/8/PzE9OnTRVpamli7dq1wcXER7777rjJm3759olWrVuLVV18VR48eFU8//bTQarXit99+U8a89NJLwsPDQ3z11Vfi8OHD4h//+IcICQkR169fV8aMGjVK9OvXT6SkpIi9e/eKLl26iClTplTrWqrCYDAIAMJgMNTgU7Jv1SohNBohANN/V61SH8/MLD8uf0lSmQDKrB6bNGm96jH5a8aMD8WSJUtEVlZWrV47ERFRY1fV39/NJoQJIcSvv/4qhgwZIpycnET79u3FSy+9ZPXc9evXi65duwpHR0fRs2dPsX37dtVxo9EonnzySeHn5yecnJzE7bffLo4fP64ak5ubK6ZMmSLatGkj3N3dxV133SUKCwurfS2VqYsQZitgOTiYHpd99511qAKEGDRo719hzBTAxo//Ssyf/5rymHk4mz//NYYwIiJqkar6+1sSQoiGnIkj+woKCqDT6WAwGODu7l4r59y9G7jtNtuP33qr6c/nzgEdOwJGsw4UkmTExImb4OFxGSUljqq7Gm0V7Mvd7ufMmaOqryMiImruqvr7u0m0qKDa06ULoNGoA5aDA9C5s+nPubm5cHAoxrJlznj0UR3KyqS/NtYGNm78pxKyQkLOKM8PDz+I0NBTdltOEBERkTWGsBYmMBB47z3g3nuBsjJTAHv3XdPj8obdsgcfdENmZiA2bpwEua+vZeG9zF7LCSIiIrKtyXTMp9ozaxZw+rRpCfL0adP3QPmG3TKdrhCurtdR0fZElTEYDDd/wURERM0QZ8JaqMBA260pLMkbb5u3p6hseyJzLDkkIiKyjTNhVCFbm3ebmrECGRnBMBjcAAAGg5vqe5n59kNERERUjjNhVKnQ0FOYOHETAIGgoHNIT++M5cvjlbsh+/Q5jMOH+9i8O5KIiIhsYwijClm2n4iKSkRiYpSqQ/6vv/YFICnf2yrcJyIiIjWGsBYkNzfXqvjenGURvcHgZrUlkXkAKyepvpML9xnCiIiI7GMIayEs209URV6el839IgEjKionrE7hPhERUUvFwvwWwtYMmL1iepl8Z6Q5STIiIiLV7uvINWGcBSMiIqoYZ8JaKHtbDQ0cOBA//fQTACA9vTPMO0zI40JDTyE1NQLqDG/EpEkbERR0ThXAHB0d6+cNERERNTEMYS2QrVovuZi+tLRUNcY8aAkBpeB+/PhtViGuV6+jAIDJkyfDw8MDjo6O8PLyqvf3R0RE1BQwhLVA9mq98vI88csvv9gdA5QX3IeHH8T06b4oKPBFUFAR2rULgVbbFT4+PgxeREREVcAQ1gJ5eubCurheXUxflTGDB3eEv79/3V4sERFRM8UQ1mKp20pIElBY2AaZmUEAAA+PyzbHmGO9FxERUc0xhLVAeXlesNXba9Wqe8weN9ocIy9Hjhw5ksuOREREN4EtKloI81krW60nAAF16LL+0TDv/8U9IYmIiG4OQ1gL4eXlhZEjRwKwvSm35ayXJcv+X76+vnV6vURERM0dlyNbiNzcXJSUlCjfh4cfRGjoKeTleUKrLcb778+2cTdkuYkTN6JXr6OIjY1FQEAAlyKJiIhuEkNYC2BvyyKdrlCZ2Ro3bpuqd5g5STIiKOgcAMDb25sBjIiIqBYwhLUAllsWGQxuyMvzgqdnrhLC5JmxzMxAHD/eFWlpfVSNWOVxvCOSiIiodjCEtTC2tisyLUuaQllxcWslgAFGREUlIjz8IAAgLi6Os2BERES1hCGsBbG1XdGWLWMhSVBCmWmvSHlJUoPExCj06pUGna4QPj4+DXXpREREzQ5DWAtibysieZNuW/VgQmgwePAM3HorOAtGRERUixjCWhC5P1hFd0FacnAAIiO9wPxFRERUu9gnrAWx7A9m6oovVGNMx0zHHRyAd98FAgPr9TKJiIhaBM6EtTDm/cGysgKQkBBtdrS8UH/48FmIiNAxgBEREdURhrAWwLKthNxu4qOP7oR5p3yNRsJTT0UiOHgwvLx09XmJRERELQ5DWAvg5eWFefPmqfqF7dvniNdfV69GG40SCgv9WP9FRERUDxjCWgjLOxsHDgQ0GsBoto+3gwPQuXM9XxgREVELxcL8FiowEHjvPVPwAliET0REVN84E9aCzZoFxMQAp06ZZsAYwIiIiOoPQ1gLFxjI8EVERNQQuBxJRERE1AAYwoiIiIgaAEMYERERUQNgCCMiIiJqAAxhRERERA2AIYyIiIioATCEERERETUAhjAiIiKiBsAQRkRERNQAGMKIiIiIGgBDGBEREVED4N6RjZgQAgBQUFDQwFdCREREVSX/3pZ/j9vDENaIFRYWAgCCgoIa+EqIiIiougoLC6HT6ewel0RlMY0ajNFoRFZWFtzc3CBJUo3PU1BQgKCgIGRmZsLd3b0Wr7Dp4Gdgws+BnwHAzwDgZyDj51A3n4EQAoWFhQgICIBGY7/yizNhjZhGo0FgYGCtnc/d3b3F/p9Mxs/AhJ8DPwOAnwHAz0DGz6H2P4OKZsBkLMwnIiIiagAMYUREREQNgCGsBXBycsLTTz8NJyenhr6UBsPPwISfAz8DgJ8BwM9Axs+hYT8DFuYTERERNQDOhBERERE1AIYwIiIiogbAEEZERETUABjCiIiIiBoAQ1gT9fbbb6NPnz5Kczm9Xo9vvvlGOX7jxg3MnTsXXl5eaNOmDSZOnIjz58+rznH27FmMGTMGLi4u8PX1xcKFC1FaWlrfb6XWvPTSS5AkCfHx8cpjLeFzWLJkCSRJUn11795dOd4SPgMA+PPPPzFt2jR4eXnB2dkZvXv3xi+//KIcF0Lgqaeegr+/P5ydnREVFYWTJ0+qzpGXl4epU6fC3d0dHh4emDVrFq5cuVLfb6VGgoODrX4OJEnC3LlzAbSMn4OysjI8+eSTCAkJgbOzM0JDQ/Hcc8+p9u9r7j8HgGmrnPj4eHTs2BHOzs4YNGgQ9u/frxxvjp/Bjz/+iHHjxiEgIACSJOHLL79UHa+t93z48GEMHToUrVu3RlBQEJYtW3ZzFy6oSdqyZYvYvn27OHHihDh+/Lj497//LbRarUhLSxNCCHHfffeJoKAgsWvXLvHLL7+IgQMHikGDBinPLy0tFb169RJRUVHi4MGD4uuvvxbe3t7isccea6i3dFN+/vlnERwcLPr06SMeeugh5fGW8Dk8/fTTomfPniI7O1v5unjxonK8JXwGeXl5omPHjmLmzJkiJSVF/PHHH+Lbb78Vp06dUsa89NJLQqfTiS+//FL8+uuvYvz48SIkJERcv35dGTNq1CjRt29f8dNPP4k9e/aIzp07iylTpjTEW6q2CxcuqH4GEhISBACxe/duIUTL+Dl44YUXhJeXl9i2bZvIyMgQGzZsEG3atBErVqxQxjT3nwMhhJg8ebIICwsTP/zwgzh58qR4+umnhbu7uzh37pwQonl+Bl9//bV4/PHHxebNmwUA8cUXX6iO18Z7NhgMws/PT0ydOlWkpaWJzz//XDg7O4t33323xtfNENaMtG3bVqxatUrk5+cLrVYrNmzYoBw7evSoACCSk5OFEKYfWI1GI3JycpQxb7/9tnB3dxdFRUX1fu03o7CwUHTp0kUkJCSI4cOHKyGspXwOTz/9tOjbt6/NYy3lM3j00UfFkCFD7B43Go2iXbt24pVXXlEey8/PF05OTuLzzz8XQghx5MgRAUDs379fGfPNN98ISZLEn3/+WXcXX0ceeughERoaKoxGY4v5ORgzZoy4++67VY/FxsaKqVOnCiFaxs/BtWvXhIODg9i2bZvq8fDwcPH444+3iM/AMoTV1nt+6623RNu2bVX/f3j00UdFt27danytXI5sBsrKyrB27VpcvXoVer0eqampKCkpQVRUlDKme/fu6NChA5KTkwEAycnJ6N27N/z8/JQxMTExKCgowO+//17v7+FmzJ07F2PGjFG9XwAt6nM4efIkAgIC0KlTJ0ydOhVnz54F0HI+gy1btqB///745z//CV9fX/Tr1w//+9//lOMZGRnIyclRfQ46nQ6RkZGqz8HDwwP9+/dXxkRFRUGj0SAlJaX+3kwtKC4uxieffIK7774bkiS1mJ+DQYMGYdeuXThx4gQA4Ndff8XevXsxevRoAC3j56C0tBRlZWVo3bq16nFnZ2fs3bu3RXwGlmrrPScnJ2PYsGFwdHRUxsTExOD48eO4fPlyja6NG3g3Yb/99hv0ej1u3LiBNm3a4IsvvkBYWBgOHToER0dHeHh4qMb7+fkhJycHAJCTk6P6y1Y+Lh9rKtauXYsDBw6o6h1kOTk5LeJziIyMxOrVq9GtWzdkZ2fjmWeewdChQ5GWltZiPoM//vgDb7/9NhYsWIB///vf2L9/Px588EE4OjpixowZyvuw9T7NPwdfX1/V8VatWsHT07PJfA6yL7/8Evn5+Zg5cyaAlvP/hcWLF6OgoADdu3eHg4MDysrK8MILL2Dq1KkA0CJ+Dtzc3KDX6/Hcc8+hR48e8PPzw+eff47k5GR07ty5RXwGlmrrPefk5CAkJMTqHPKxtm3bVvvaGMKasG7duuHQoUMwGAzYuHEjZsyYgR9++KGhL6veZGZm4qGHHkJCQoLVv/paEvlf+QDQp08fREZGomPHjli/fj2cnZ0b8Mrqj9FoRP/+/fHiiy8CAPr164e0tDS88847mDFjRgNfXf17//33MXr0aAQEBDT0pdSr9evX49NPP8Vnn32Gnj174tChQ4iPj0dAQECL+jn4+OOPcffdd6N9+/ZwcHBAeHg4pkyZgtTU1Ia+NLLA5cgmzNHREZ07d0ZERASWLl2Kvn37YsWKFWjXrh2Ki4uRn5+vGn/+/Hm0a9cOANCuXTurO6Pk7+UxjV1qaiouXLiA8PBwtGrVCq1atcIPP/yAN954A61atYKfn1+L+BwseXh4oGvXrjh16lSL+Vnw9/dHWFiY6rEePXooy7Ly+7D1Ps0/hwsXLqiOl5aWIi8vr8l8DgBw5swZJCYmYvbs2cpjLeXnYOHChVi8eDHuuOMO9O7dG9OnT8f8+fOxdOlSAC3n5yA0NBQ//PADrly5gszMTPz8888oKSlBp06dWsxnYK623nNd/H+EIawZMRqNKCoqQkREBLRaLXbt2qUcO378OM6ePQu9Xg8A0Ov1+O2331Q/dAkJCXB3d7f6ZdZY3X777fjtt99w6NAh5at///6YOnWq8ueW8DlYunLlCtLT0+Hv799ifhYGDx6M48ePqx47ceIEOnbsCAAICQlBu3btVJ9DQUEBUlJSVJ9Dfn6+arbgu+++g9FoRGRkZD28i9rx4YcfwtfXF2PGjFEeayk/B9euXYNGo/615uDgAKPRCKBl/RwAgKurK/z9/XH58mV8++23+Mc//tHiPgOg9v531+v1+PHHH1FSUqKMSUhIQLdu3Wq0FAmALSqaqsWLF4sffvhBZGRkiMOHD4vFixcLSZLEzp07hRCm29E7dOggvvvuO/HLL78IvV4v9Hq98nz5dvSRI0eKQ4cOiR07dggfH58mdTu6LeZ3RwrRMj6Hhx9+WHz//fciIyND7Nu3T0RFRQlvb29x4cIFIUTL+Ax+/vln0apVK/HCCy+IkydPik8//VS4uLiITz75RBnz0ksvCQ8PD/HVV1+Jw4cPi3/84x82b1Hv16+fSElJEXv37hVdunRp1LflWyorKxMdOnQQjz76qNWxlvBzMGPGDNG+fXulRcXmzZuFt7e3WLRokTKmJfwc7NixQ3zzzTfijz/+EDt37hR9+/YVkZGRori4WAjRPD+DwsJCcfDgQXHw4EEBQPznP/8RBw8eFGfOnBFC1M57zs/PF35+fmL69OkiLS1NrF27Vri4uLBFRUt09913i44dOwpHR0fh4+Mjbr/9diWACSHE9evXxf/93/+Jtm3bChcXF/H//t//E9nZ2apznD59WowePVo4OzsLb29v8fDDD4uSkpL6fiu1yjKEtYTPIS4uTvj7+wtHR0fRvn17ERcXp+qP1RI+AyGE2Lp1q+jVq5dwcnIS3bt3F++9957quNFoFE8++aTw8/MTTk5O4vbbbxfHjx9XjcnNzRVTpkwRbdq0Ee7u7uKuu+4ShYWF9fk2bsq3334rAFi9LyFaxs9BQUGBeOihh0SHDh1E69atRadOncTjjz+uainQEn4O1q1bJzp16iQcHR1Fu3btxNy5c0V+fr5yvDl+Brt37xYArL5mzJghhKi99/zrr7+KIUOGCCcnJ9G+fXvx0ksv3dR1S0KYtRImIiIionrBmjAiIiKiBsAQRkRERNQAGMKIiIiIGgBDGBEREVEDYAgjIiIiagAMYUREREQNgCGMiIiIqAEwhBERERE1AIYwImpWbr31VsTHxzf0ZdS5JUuW4JZbbmnoyyCim8AQRkTUiBQXF9fr6wkhUFpaWq+vSUQmDGFE1GzMnDkTP/zwA1asWAFJkiBJEk6fPo20tDSMHj0abdq0gZ+fH6ZPn45Lly4pz7v11lvxwAMPID4+Hm3btoWfnx/+97//4erVq7jrrrvg5uaGzp0745tvvlGe8/3330OSJGzfvh19+vRB69atMXDgQKSlpamuae/evRg6dCicnZ0RFBSEBx98EFevXlWOBwcH47nnnsOdd94Jd3d3zJkzBwDw6KOPomvXrnBxcUGnTp3w5JNPoqSkBACwevVqPPPMM/j111+V97l69WqcPn0akiTh0KFDyvnz8/MhSRK+//571XV/8803iIiIgJOTE/bu3Quj0YilS5ciJCQEzs7O6Nu3LzZu3Fjb/xMRkRmGMCJqNlasWAG9Xo977rkH2dnZyM7OhpubG2677Tb069cPv/zyC3bs2IHz589j8uTJqueuWbMG3t7e+Pnnn/HAAw/g/vvvxz//+U8MGjQIBw4cwMiRIzF9+nRcu3ZN9byFCxfitddew/79++Hj44Nx48YpYSk9PR2jRo3CxIkTcfjwYaxbtw579+7FvHnzVOd49dVX0bdvXxw8eBBPPvkkAMDNzQ2rV6/GkSNHsGLFCvzvf//D66+/DgCIi4vDww8/jJ49eyrvMy4urlqf1eLFi/HSSy/h6NGj6NOnD5YuXYqPPvoI77zzDn7//XfMnz8f06ZNww8//FCt8xJRNdzU9t9ERI3M8OHDxUMPPaR8/9xzz4mRI0eqxmRmZgoA4vjx48pzhgwZohwvLS0Vrq6uYvr06cpj2dnZAoBITk4WQgixe/duAUCsXbtWGZObmyucnZ3FunXrhBBCzJo1S8yZM0f12nv27BEajUZcv35dCCFEx44dxYQJEyp9X6+88oqIiIhQvn/66adF3759VWMyMjIEAHHw4EHlscuXLwsAYvfu3arr/vLLL5UxN27cEC4uLiIpKUl1vlmzZokpU6ZUem1EVDOtGjIAEhHVtV9//RW7d+9GmzZtrI6lp6eja9euAIA+ffoojzs4OMDLywu9e/dWHvPz8wMAXLhwQXUOvV6v/NnT0xPdunXD0aNHldc+fPgwPv30U2WMEAJGoxEZGRno0aMHAKB///5W17Zu3Tq88cYbSE9Px5UrV1BaWgp3d/dqv397zF/z1KlTuHbtGqKjo1VjiouL0a9fv1p7TSJSYwgjombtypUrGDduHF5++WWrY/7+/sqftVqt6pgkSarHJEkCABiNxmq99r333osHH3zQ6liHDh2UP7u6uqqOJScnY+rUqXjmmWcQExMDnU6HtWvX4rXXXqvw9TQaU4WJEEJ5TF4atWT+mleuXAEAbN++He3bt1eNc3JyqvA1iajmGMKIqFlxdHREWVmZ8n14eDg2bdqE4OBgtGpV+3/l/fTTT0qgunz5Mk6cOKHMcIWHh+PIkSPo3Llztc6ZlJSEjh074vHHH1ceO3PmjGqM5fsEAB8fHwBAdna2MoNlXqRvT1hYGJycnHD27FkMHz68WtdKRDXHwnwialaCg4ORkpKC06dP49KlS5g7dy7y8vIwZcoU7N+/H+np6fj2229x1113WYWYmnj22Wexa9cupKWlYebMmfD29saECRMAmO5wTEpKwrx583Do0CGcPHkSX331lVVhvqUuXbrg7NmzWLt2LdLT0/HGG2/giy++sHqfGRkZOHToEC5duoSioiI4Oztj4MCBSsH9Dz/8gCeeeKLS9+Dm5oZHHnkE8+fPx5o1a5Ceno4DBw7gzTffxJo1a2r82RBRxRjCiKhZeeSRR+Dg4ICwsDD4+PiguLgY+/btQ1lZGUaOHInevXsjPj4eHh4eyvLdzXjppZfw0EMPISIiAjk5Odi6dSscHR0BmOrMfvjhB5w4cQJDhw5Fv3798NRTTyEgIKDCc44fPx7z58/HvHnzcMsttyApKUm5a1I2ceJEjBo1CiNGjICPjw8+//xzAMAHH3yA0tJSREREID4+Hs8//3yV3sdzzz2HJ598EkuXLkWPHj0watQobN++HSEhITX4VIioKiRhXjxARERV8v3332PEiBG4fPkyPDw8GvpyiKgJ4kwYERERUQNgCCMiIiJqAFyOJCIiImoAnAkjIiIiagAMYUREREQNgCGMiIiIqAEwhBERERE1AIYwIiIiogbAEEZERETUABjCiIiIiBoAQxgRERFRA2AIIyIiImoA/x8XV8X3Pvc5BQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACH+klEQVR4nO2deXxTVd7/P+nK1qbQUtraQkthdJBFqYiFERCKwE9weECpC8oOOqAiDigP48K4IKCI4LgwIjgqCgJuODoURUelMooi4iADPEXAlqWBBqRCS3N/f2RuSNK7r+fefN+vFy9tcpOcnJx7zud8t+PhOI4DQRAEQRBEDBBndwMIgiAIgiCsgoQPQRAEQRAxAwkfgiAIgiBiBhI+BEEQBEHEDCR8CIIgCIKIGUj4EARBEAQRM5DwIQiCIAgiZiDhQxAEQRBEzEDChyAIgiCImIGED0EQBIOsXLkSHo8H+/fvt7spBOEqSPgQRIzy1VdfYdq0abj44ovRvHlztG3bFqNGjcJ//vOfRtf269cPHo8HHo8HcXFxSE1NxYUXXohbbrkFZWVlqj73vffeQ9++fZGZmYlmzZqhffv2GDVqFD788EOjvlojHnvsMbz99tuNHt+yZQseeugh1NTUmPbZ0Tz00EOhvvR4PGjWrBk6deqEP/3pTzh58qQhn7Fq1SosXrzYkPciCLdBwocgYpT58+dj3bp1GDBgAJ5++mlMnjwZ//znP9G9e3fs3Lmz0fW5ubl45ZVX8Le//Q0LFy7Etddeiy1btuDqq69GaWkp6uvrZT/ziSeewLXXXguPx4PZs2fjqaeewsiRI7Fnzx688cYbZnxNANLCZ+7cuZYKH57nnnsOr7zyChYtWoSLLroIjz76KAYPHgwjjk8k4UMQ4iTY3QCCIOxhxowZWLVqFZKSkkKPlZaWokuXLnj88cfx6quvRlzv9XoxevToiMcef/xx3HnnnXj22WeRn5+P+fPni37euXPn8PDDD2PgwIHYuHFjo+ePHj2q8xuxQ21tLZo1ayZ5zXXXXYeMjAwAwG233YaRI0di/fr1+PLLL1FcXGxFMwkiJiGLD0HEKL169YoQPQDQsWNHXHzxxdi1a5ei94iPj8eSJUvQqVMnPPPMM/D7/aLXVldX4+TJk+jdu7fg85mZmRF/nzlzBg899BB+85vfoEmTJsjOzsaIESOwb9++0DVPPPEEevXqhfT0dDRt2hRFRUVYu3ZtxPt4PB6cPn0aL7/8csi9NHbsWDz00EOYOXMmAKCgoCD0XHhMzauvvoqioiI0bdoUrVq1wg033ICDBw9GvH+/fv3QuXNnbNu2DX369EGzZs3wv//7v4r6L5z+/fsDACoqKiSve/bZZ3HxxRcjOTkZOTk5mDp1aoTFql+/fnj//ffx008/hb5Tfn6+6vYQhFshiw9BECE4jsORI0dw8cUXK35NfHw8brzxRtx///34/PPPcc011whel5mZiaZNm+K9997DHXfcgVatWom+Z0NDA4YOHYqPPvoIN9xwA+666y6cOnUKZWVl2LlzJwoLCwEATz/9NK699lrcfPPNqKurwxtvvIHrr78eGzZsCLXjlVdewcSJE3H55Zdj8uTJAIDCwkI0b94c//nPf/D666/jqaeeCllfWrduDQB49NFHcf/992PUqFGYOHEijh07hqVLl6JPnz749ttvkZaWFmqvz+fDkCFDcMMNN2D06NFo06aN4v7j4QVdenq66DUPPfQQ5s6di5KSEtx+++3YvXs3nnvuOXz11Vf44osvkJiYiDlz5sDv9+PQoUN46qmnAAAtWrRQ3R6CcC0cQRDEf3nllVc4ANzy5csjHu/bty938cUXi77urbfe4gBwTz/9tOT7P/DAAxwArnnz5tyQIUO4Rx99lNu2bVuj61566SUOALdo0aJGzwUCgdD/19bWRjxXV1fHde7cmevfv3/E482bN+fGjBnT6L0WLlzIAeAqKioiHt+/fz8XHx/PPfrooxGPf//991xCQkLE43379uUAcM8//7zo9w7nwQcf5ABwu3fv5o4dO8ZVVFRwL7zwApecnMy1adOGO336NMdxHLdixYqIth09epRLSkrirr76aq6hoSH0fs888wwHgHvppZdCj11zzTVcu3btFLWHIGINcnURBAEA+PHHHzF16lQUFxdjzJgxql7LWxROnToled3cuXOxatUqXHrppfjHP/6BOXPmoKioCN27d49wr61btw4ZGRm44447Gr2Hx+MJ/X/Tpk1D/3/ixAn4/X5ceeWV+Oabb1S1P5r169cjEAhg1KhRqK6uDv3LyspCx44dsXnz5ojrk5OTMW7cOFWfceGFF6J169YoKCjAlClT0KFDB7z//vuisUGbNm1CXV0dpk+fjri481P3pEmTkJqaivfff1/9FyWIGIRcXQRB4PDhw7jmmmvg9Xqxdu1axMfHq3r9L7/8AgBISUmRvfbGG2/EjTfeiJMnT2Lr1q1YuXIlVq1ahWHDhmHnzp1o0qQJ9u3bhwsvvBAJCdJT1IYNG/DII49g+/btOHv2bOjxcHGkhT179oDjOHTs2FHw+cTExIi/L7jggkbxUnKsW7cOqampSExMRG5ubsh9J8ZPP/0EICiYwklKSkL79u1DzxMEIQ0JH4KIcfx+P4YMGYKamhp89tlnyMnJUf0efPp7hw4dFL8mNTUVAwcOxMCBA5GYmIiXX34ZW7duRd++fRW9/rPPPsO1116LPn364Nlnn0V2djYSExOxYsUKrFq1SvV3CCcQCMDj8eCDDz4QFIHRMTPhliel9OnTJxRXRBCEdZDwIYgY5syZMxg2bBj+85//YNOmTejUqZPq92hoaMCqVavQrFkz/O53v9PUjssuuwwvv/wyqqqqAASDj7du3Yr6+vpG1hWedevWoUmTJvjHP/6B5OTk0OMrVqxodK2YBUjs8cLCQnAch4KCAvzmN79R+3VMoV27dgCA3bt3o3379qHH6+rqUFFRgZKSktBjei1eBOFmKMaHIGKUhoYGlJaWory8HG+++aam2jENDQ248847sWvXLtx5551ITU0Vvba2thbl5eWCz33wwQcAzrtxRo4cierqajzzzDONruX+W+AvPj4eHo8HDQ0Noef2798vWKiwefPmgkUKmzdvDgCNnhsxYgTi4+Mxd+7cRgUFOY6Dz+cT/pImUlJSgqSkJCxZsiSiTcuXL4ff74/IpmvevLlkaQGCiGXI4kMQMco999yDd999F8OGDcPx48cbFSyMLlbo9/tD19TW1mLv3r1Yv3499u3bhxtuuAEPP/yw5OfV1taiV69euOKKKzB48GDk5eWhpqYGb7/9Nj777DMMHz4cl156KQDg1ltvxd/+9jfMmDED//rXv3DllVfi9OnT2LRpE/7whz/g97//Pa655hosWrQIgwcPxk033YSjR4/iL3/5Czp06IAdO3ZEfHZRURE2bdqERYsWIScnBwUFBejZsyeKiooAAHPmzMENN9yAxMREDBs2DIWFhXjkkUcwe/Zs7N+/H8OHD0dKSgoqKirw1ltvYfLkyfjjH/+oq//V0rp1a8yePRtz587F4MGDce2112L37t149tln0aNHj4jfq6ioCKtXr8aMGTPQo0cPtGjRAsOGDbO0vQTBLHamlBEEYR98GrbYP6lrW7RowXXs2JEbPXo0t3HjRkWfV19fz/31r3/lhg8fzrVr145LTk7mmjVrxl166aXcwoULubNnz0ZcX1tby82ZM4crKCjgEhMTuaysLO66667j9u3bF7pm+fLlXMeOHbnk5GTuoosu4lasWBFKFw/nxx9/5Pr06cM1bdqUAxCR2v7www9zF1xwARcXF9cotX3dunXc7373O6558+Zc8+bNuYsuuoibOnUqt3v37oi+kUr1j4Zv37FjxySvi05n53nmmWe4iy66iEtMTOTatGnD3X777dyJEycirvnll1+4m266iUtLS+MAUGo7QYTh4TgDDoYhCIIgCIJwABTjQxAEQRBEzEDChyAIgiCImIGED0EQBEEQMQMJH4IgCIIgYgYSPgRBEARBxAwkfAiCIAiCiBmogGEUgUAAlZWVSElJobLvBEEQBOEQOI7DqVOnkJOTg7g4cbsOCZ8oKisrkZeXZ3czCIIgCILQwMGDB5Gbmyv6PAmfKFJSUgAEO07q3CGCIAiCINjh5MmTyMvLC63jYpDwiYJ3b6WmppLwIQiCIAiHIRemQsHNBEEQBEHEDCR8CIIgCIKIGUj4EARBEAQRM1CMD0EQBEEYQENDA+rr6+1uhmtJTExEfHy87vch4UMQBEEQOuA4DocPH0ZNTY3dTXE9aWlpyMrK0lVnj4QPQRAEQeiAFz2ZmZlo1qwZFb81AY7jUFtbi6NHjwIAsrOzNb8XCR+CIAiC0EhDQ0NI9KSnp9vdHFfTtGlTAMDRo0eRmZmp2e1Fwc0EQRAEoRE+pqdZs2Y2tyQ24PtZTywVCR+CIAiC0Am5t6zBiH4m4UMQBEEQRMxAwocgCIIgiJiBhI8D8Pl8qKqqQlVVFbZtO4K1a33Ytu1I6DGfz2d3EwmCIAiHMXbsWHg8Hng8HiQmJqJNmzYYOHAgXnrpJQQCAcXvs3LlSqSlpZnXUIOhrC7G8fl8eOaZZwAA33xzKd57byg4Lg4eTwDDhm1A9+7fAgCmTZtGGQUEQRAOw+fzoa6uTvT5pKQkU+f2wYMHY8WKFWhoaMCRI0fw4Ycf4q677sLatWvx7rvvIiHBfTLBfd/IZfA3hN+fEhI9AMBxcXjvvaEoLNwLr/eU5I1DEARBsEf4xlYKMze2ycnJyMrKAgBccMEF6N69O6644goMGDAAK1euxMSJE7Fo0SKsWLEC//d//4dWrVph2LBhWLBgAVq0aIFPPvkE48aNA3A+8PjBBx/EQw89hFdeeQVPP/00du/ejebNm6N///5YvHgxMjMzTfkuSiFXl0M4fjw9JHp4OC4Ox4+3sqlFBEEQhB6Ublit3tj2798f3bp1w/r16wEAcXFxWLJkCX744Qe8/PLL+PjjjzFr1iwAQK9evbB48WKkpqaGwi/++Mc/AgimnD/88MP47rvv8Pbbb2P//v0YO3aspd9FCMcIn3nz5qFHjx5ISUlBZmYmhg8fjt27d0dcc+bMGUydOhXp6elo0aIFRo4ciSNHjtjUYmNp1coHjyfS5+rxBNCq1XGbWkQQBEG4lYsuugj79+8HAEyfPh1XXXUV8vPz0b9/fzzyyCNYs2YNgKArzuv1wuPxICsrC1lZWWjRogUAYPz48RgyZAjat2+PK664AkuWLMEHH3yAX375xa6vBcBBwufTTz/F1KlT8eWXX6KsrAz19fW4+uqrcfr06dA1d999N9577z28+eab+PTTT1FZWYkRI0bY2Grj8HpPYdiwDSHxw8f4eL2nbG4ZQRAE4TY4jgu5rjZt2oQBAwbgggsuQEpKCm655Rb4fD7U1tZKvse2bdswbNgwtG3bFikpKejbty8A4MCBA6a3XwrHxPh8+OGHEX+vXLkSmZmZ2LZtG/r06QO/34/ly5dj1apV6N+/PwBgxYoV+O1vf4svv/wSV1xxhR3NNpTu3b9FYeFeHD/eCq1aHSfRQxAEQZjCrl27UFBQgP3792Po0KG4/fbb8eijj6JVq1b4/PPPMWHCBNTV1YlWrD59+jQGDRqEQYMG4bXXXkPr1q1x4MABDBo0yPaYVMcIn2j8fj8AoFWrYIzLtm3bUF9fj5KSktA1F110Edq2bYvy8nJR4XP27FmcPXs29PfJkydNbLV+vN5TJHgIgiAI0/j444/x/fff4+6778a2bdsQCATw5JNPIi4u6CTi3Vw8SUlJaGhoiHjsxx9/hM/nw+OPP468vDwAwNdff23NF5DBkcInEAhg+vTp6N27Nzp37gwgeDpuUlJSo1oCbdq0weHDh0Xfa968eZg7d66ZzXUc4emVlZVxqKhIQEHBOeTkBN1sRqZXHjoE7NkDdOwI5OYa8pYEQRCEQs6ePYvDhw9HpLPPmzcPQ4cOxa233oqdO3eivr4eS5cuxbBhw/DFF1/g+eefj3iP/Px8/PLLL/joo4/QrVs3NGvWDG3btkVSUhKWLl2K2267DTt37sTDDz9s07eMxDExPuFMnToVO3fuxBtvvKH7vWbPng2/3x/6d/DgQQNaaBxJSUmGXicHn165bNky3HbbV+jRozWuvz4dl13WGmPGfI9ly5bhmWeewb59+3R/1vLlQLt2QP/+wf8uX27AFyAIgiAU8+GHHyI7Oxv5+fkYPHgwNm/ejCVLluCdd95BfHw8unXrhkWLFmH+/Pno3LkzXnvtNcybNy/iPXr16oXbbrsNpaWlaN26NRYsWIDWrVtj5cqVePPNN9GpUyc8/vjjeOKJJ2z6lpF4OI7j7G6EGqZNm4Z33nkH//znP1FQUBB6/OOPP8aAAQNw4sSJCKtPu3btMH36dNx9992K3v/kyZPwer3w+/1ITU01uvmasLLAVVVVFZYtWwa/PwWLF0+PSqHnMHBgGXr3LgegvbaEz+fD/v3ncPnlmQgEzh84Fx/PYevWo8jPT6BijARBOIIzZ86goqICBQUFaNKkiarXslDHx2lI9bfS9dsxri6O43DHHXfgrbfewieffBIhegCgqKgIiYmJ+OijjzBy5EgAwO7du3HgwAEUFxfb0WTDUDPgjRJJQnWDAA82bSpB5847NRdN5G/0iop8BAJjIp5raPBg6dIPUFDwE93oBEG4nvT0dEybNs3Wys2xiGOEz9SpU7Fq1Sq88847SElJCcXteL1eNG3aFF6vFxMmTMCMGTPQqlUrpKam4o477kBxcbErMrqUYOTuoVUrH4AAor2hfNFErQHW/A3O1yUKF1fhdYnsjvonCIKwAhI11uOYGJ/nnnsOfr8f/fr1Q3Z2dujf6tWrQ9c89dRTGDp0KEaOHIk+ffogKysrVHkyFjCyCqjXewoDB24CEOkJNapoItUlIgiCIOzAMRYfJaFITZo0wV/+8hf85S9/saBF9hPt1qquro543u9PwfHj6WjVyqdJUPCxPJs2lUQcjGqUOKG6RARBEITVOEb4EJHIubWkTnJXQ+/e5ejceadp4oTqEhEEQRBW4hhXFxGJlLtK7CR3vz9F02d5vadQUPATCRSCIAjC8ZDwcSF6TnI3qh4QQRAEQbAIubpcQng8j1zGlBTp6ekYPXo0Xn31Vdlr3SCSrKxSTRAEQdgPCR8XIBTPM2zYhkaPKXVVFRYWmlZbQqlYqq2tRVVVleGfH054nJRUTJSS9H8SUARBEM6AhA/jiBUk5DO4xOJ5pk9fjOnTFwsGJfPiw8qK0DxKCnbV1tZGWJzEstP0Fjnk2yDWh4WFexUVajRSQBEEQbiFTz75BFdddVWjExWkyM/Px/Tp0zF9+nTT2kXCh2GUFCSUiucpKPgJ48YNREZGRug5XszYWSpd7v3CLT1SQsKoIodSfajESmaUgCIIgrCSsWPH4uWXX8aUKVMaHTw6depUPPvssxgzZgxWrlxpTwNNgoKbGUbJQsnH84QTHs+TkZERUfCRFx1GFjs0C6Oz08SQ68Pq6mr4fD7B1/p8vpD1TU9QOUEQhB3k5eXhjTfewK+//hp67MyZM1i1ahXatm1rY8vMg4SPw5GrgKw0psbvT0FFRb6kqPD5fKiqqhL9JyYOtGKVkBDqw+Li8tDz69evxzPPPNPo+/FWM746uJyAIgiCYI3u3bsjLy8v4pSD9evXo23btrj00ktDj509exZ33nknMjMz0aRJE/zud7/DV199FfFef//73/Gb3/wGTZs2xVVXXYX9+/c3+rzPP/8cV155JZo2bYq8vDzceeedOH36tGnfTwhydTkIsVgXvgLyJZdch4svTkZOTg8APRTH6CgpdmiHa0xPdppa+D7curUntmwpxpYtvVFeXizpWhOyhhUXl6O8vNiUStcEQbibQ4eAPXuAjh2B3FzrPnf8+PFYsWIFbr75ZgDASy+9hHHjxuGTTz4JXTNr1iysW7cOL7/8Mtq1a4cFCxZg0KBB2Lt3L1q1aoWDBw9ixIgRmDp1KiZPnoyvv/4a99xzT8Tn7Nu3D4MHD8YjjzyCl156CceOHcO0adMwbdo0rFixwrLvS8LHIciJk+DZWonIzm6j6n3l4lJ47HCN8ZYYrdlpWigvLwZvCBXrCz4oPPyIkPDfBwigV68v0LPnVhI9BEEoYvlyYPJkIBAA4uKAZcuACROs+ezRo0dj9uzZ+OmnnwAAX3zxBd54442Q8Dl9+jSee+45rFy5EkOGDAEA/PWvf0VZWRmWL1+OmTNn4rnnnkNhYSGefPJJAMCFF16I77//HvPnzw99zrx583DzzTeHApc7duyIJUuWoG/fvnjuuefQpEkTS74vCR8HoFScaEFrYK/ec8CUYuV5Xkr6QsjyFf37AHEoLy9Gz55bTWsrQRDu4dCh86IHCP53yhRg0CBrLD+tW7fGNddcg5UrV4LjOFxzzTURSTH79u1DfX09evfuHXosMTERl19+OXbt2gUA2LVrF3r27BnxvsXFxRF/f/fdd9ixYwdee+210GMcxyEQCKCiogK//e1vzfh6jSDh4wDEFuSDB3Ph9e7S9d5a3ElGnQOmFDPO8/L5fPD7/RGPyfWF3+9HfX19o/fSmxUWi1DdI4I4z54950UPT0MDsHevdS6v8ePHY9q0aQBg2kHfv/zyC6ZMmYI777yz0XNWBlKT8HEAQgsyAKxdex3q6s6Ljj179qC6uhrNmjVDYWGhovdW604y0/rEozQgW2vlaLF4Jbm+WL16daPX+P0pOH26GYAAwnMFhMSjGypdGwHVPSKISDp2DLq3wsVPfDzQoYN1bRg8eDDq6urg8XgwaNCgiOcKCwuRlJSEL774Au3atQMA1NfX46uvvgq5rX7729/i3XffjXjdl19+GfF39+7d8e9//xsdrPxiApDwYRh+oYxekM8TKTo2b94cemb06NGS4id8EZZyJ0Uv1lZYN5QUOdRjEZB6XzWutci4Hg68+IkWTCNGjEBOTg4t4v+F6h4RRCS5ucGYnilTgpae+HjghResDXCOj48Pua3i4+MjnmvevDluv/12zJw5E61atULbtm2xYMEC1NbWYsJ/A5Fuu+02PPnkk5g5cyYmTpyIbdu2Nar/c++99+KKK67AtGnTMHHiRDRv3hz//ve/UVZWpih5xihI+DAMLwAqKysBrEdS0lmsXXt9xDVioqO2tlbRe6sVF1ZlWlkpEqLjlZS41g4dysa77w7FeSuPBx4Ph5Ej1yAv71DE6zMyMkj0CEAuQoI4z4QJwZievXuDlh4rRQ9Pamqq6HOPP/44AoEAbrnlFpw6dQqXXXYZ/vGPf6Bly5YAgq6qdevW4e6778bSpUtx+eWX47HHHsP48eND79G1a1d8+umnmDNnDq688kpwHIfCwkKUlpaa/t3CIeHDOOnp6SFxkpd3UJfoMOKICjsyrcxES7wS/5roMlgcF4fmzWsb9QW5uM4TXvDRynIFBOEEcnOtFTxyFZnffvvt0P83adIES5YswZIlS0SvHzp0KIYOHRrx2Lhx4yL+7tGjBzZu3Cj6HkK1f4yGhI8DEHN5eTwB/O53n+GHHy5G27Y/ITdX/FBPvXV4tLrGWEbO1TJixIhQZkNNTQ3WrFkjkMF1nvBFm3+tm4N0pYR0TU0NPB4PvF5v6DG/3x8RJ+U2EU0QhDMg4eMAwt1Se/bsQWFh8PDRf/2rBz77rA8ADwAO3bp9h//5n3cE30NvHR6z427sQM7Vwh/3IfeaIJGLttBr3YRSIS2F35+Cli1PYMKEF1Ffn2R6uQKCIAiAhI9j4AVFdXU1vN5TOHWqBXbt6oSg6AEAD777rht69PiXpOWHR0sdHieJGiVocbWIvWbChBcj+t1Jli8t6A08FnIxFhT8ZFDrCIIgxCHh41AOHGiH86KHx4ODB9vKCh+r6/CwihZXi9hr+D6P1QwuKSEd/ZwVJRHUYETsG0EQzoGEj0Np2/YnBFOow8UPh7y8A5KvY23RMRuhRS28cKFUvFL4dUpfE4uiR0pICz3XsuUJRdlcVljN7DiDjnAnHMfZ3YSYwIh+JuHjMJo1awYAyM2tQrdu3+G777ohPMaHtzzw10UTSynEShe1SZOGIC0tDcD5IGZAuGCh0Gt47LYMKLVc+Hw+HDt2TLAKNQAkJCQgMzNT0XeREtIABJ+bMOFFSRejlVYzO86gI9xFYmIigGAJkaZNm9rcGvfDl2rh+10LJHwcRmFhIUaPHo3a2lqMGAF8//1ebN/eHJdcchpdusQDGCFZuVkurqWiokL0s7Us7HrdCGpeH31t+CGiUqSlpakORNbyGjNRKvJGjx6NV199VdF7KrFySAlpwCP4XH19kqSL0c66R1adQccK5ObTT3x8PNLS0nD06FEAwU2nxxMdhkDoheM41NbW4ujRo0hLS2tUZFENJHwcSLio6dIFuOkm5a+Vi2spKyuTfL0ak79eN4Ka1wOQvVbLouaUhVCpRUKusKXa95QT0mLPFRT8ZNnhs0phLfbNbFFCbj7jyMrKAoCQ+CHMIy0tLdTfWiHhEyMorcPDI7bgqzH5N46tUfeeel8fjp5ChXoXQrkFrLa2VtQ1CWhb4JQKNr8/BQcP5gEIFshUK0DkhLTUc2IVsu3IiGMp9o13RUq5Wnn0iBIj769Yx+PxIDs7G5mZmaIuZEI/iYmJuiw9PCR8YoT09HSUlpaGJlN+Yjt+PD3ib8Ccna/e91T7+vBJHBCONZFa1IxaCI2odwOoW+CU9tU331wadewGh2uvfU/R76JUSEs9N2rUKGbipFiJfVM7XrSKkvAK2gB71i4zsMKtFx8fb8jCTJgLCZ8YIryKrthEZ8bOV+97qn199HcrLi5XvagZtRAatVtW+j5K+8rvT4kSPQDgUfy7yBW0FKrcHA5rsSOsHJ8h1p9GulyjxRVL1i6zILceEQ4JnxhEaqJTsuCr3TnpFRFqXi/03crLi8GfnM6jtVCh3oVQbgHTu8Ap7augpa9xBWo1v4vUAsFS4DeP0LjlrR6sHp/h96dg69aeKC8vNswaE90HrFi7zIRVtx4Fl9sDCR8GsHrwS010cgt+9HlLYvABx4B+EaHm9WLfrVevLxotHloKFepZCOTcCUa4G5T2VdAFGCkGxa41ErsmeiU7ftbOoGvsijTHGpOYeJYJa5dVsOLWIyuUfZDwsRmzBn/0AlNTU4Njx44BkF4c5RZ8pYF74Z+tV0Soeb3Yd+vZcyt69twqu6iZdRirnDvBKHeDXF+dOHEidN21126IWFjNtnLYOdEr3cmPGzcwdDAtjx27bn486LXKyREuAviCqFrGgVMsFyy59Vi1QsUCJHxsxowCanILjNTiqPbgSKWuGSWZZFIofb3cwj98+GVo2bIodH10ESyzDmOVcyfodTcoFWybN29udN3Bg7kAgLy8Q6ZaOVgqFig2blk5XFb8MFzjrDHRIiBYCLXxuXNyOMlywapbjxUrVKxAwseFyO0kxMSNkoMjExLODxm5mzV64VSbvqz19UoX/nDCJ2UzJmc5F5Red2C0YKuursb69etlXxcUgi3/+9dvAQhXbjZjR29XjSQnLDJC4wEw1ionLK6CBSbDkRPALAlaOVgJYg+HJStUrEDChzGMXgyiJ/muXXdgx46ujcSN3M3HHyPAT15Kbla91hO1rxe6NloA2GVOlrNEGRFTJCU8xL53x44dZS0cZuzo9YgPPSLMKYtM9HgAAujVqxw9e241zConJwK0Hh3CctFPFoPYWbVCuRkSPgxh9E5UaJI/f7aXumwu/hiBqqqgCVzpzarXeqLm9XLXSvWv2PEWemMT1BSOlHq+pqZG9DOECiAaWaPF6FgEPeJDrwize5FRUsySR64GktLz1MSQEwFajg4x8x4zyuqo1+1uNCxaodwOCR9GMGMnKmzKjjxDRmk2VzRqrmch8FGuf6XcQnpiE5RYraQqN/NZdPzBqWoxelwZIc71iA+9bhUzFhk1h8MqPU/N6Ere0a/nsTKAX889plfw6nW7mwlrVigW5muzIeHDCGbsRIXjBIKZGzxKs7miUXo9K4GPSvrXLDeYlZNE9HcwclwZJaLkxIeUdSvaaiD2m9XU1Ai68IxeZNSMb6XjqFmzZqYGWNsVwC9FZWVlqD1Cn620744ePYpjx44JZp9effXV4DgOLVu2bFQxXOxzwzFTELBihWJlvjYbEj42w0/yShYDtZOh0CQvFOPD32RKdn9qd4uspGzK9a8TAl4B6fgJoe9QWLjXMAuHUSJKTnwotW5J/WZr1qyJmJzNsnLosUDZGQtjRwA/IP6do61Bcgur2PsoHTtayoMYLQhYtEKxMl+bDQkfm/F4gtYXucWAv06O6DN4hCb5/v0/Fpz0R4wY0aiGCRC5k9GzW7RTXMil8EtZMsL7004zr1T/iX2H6dMXG2bh0OsmUntQrhRKrE/hY9QsK4dQu5SIGacIbTWI3WMAUFGRj8rKbGzaVKLoO0v9Tkb0ndqF24zMNavGpFbcOEZ5SPjYTPhZRlKLgdiZR+GI7UqidxJiOwulGRxabkQWsmnE+lfOkqF2N2oGcv0n9R2MsnDodRMpmeijK4OLCQkt1iezfzOlCwUL94KRSAnaffs6YPHi6f/9rufd7Fq/s9q+M8uqZtT76hmTZrre3DZGoyHhwyTKrDvRaDU/lpaWonXr1rbH2JiBEnOymCUjMbEOFRX5TJh55fpPzhpjVEVivZYaNZ8nJSTE4tcqK3Ma1Z6yAjULhZ57gaXA0/C2lJaWhuJqTpw4gc2bN4sUSDwPx8Xh4MFcHD/+q2IBoabvvviiWLGFSQ0sWELMjsWxO/vRbEj4MIQZ6ezRhQuFdiler9f0ydKulE0pKwNf40csFmr58onMmHnl+k9JarLSGDGh407CsSIWQU5IeL2nUFKyCWVlA3F+QfVg06YSdO680/LJWc1CofVeYCnwVElbpKpPA8HvvHbtdQCU32NK++6LL4ojxoZRFgtWLCFmF410e4o9CR9GMDvtWCiomZ9ktAROq8XOlE21tT0SE+tCogfQ9lsYvTNX0n9GZIYoXVxLS0sj3K9WHqTLf6+cnCqIlWewWvioWSi03gssVUhW8hlSWaXBxwH+LDKl95iSvvP7U1BWVgIzxgarlhCjXXqspdgbDQkfRjA77ViscKHXe6pRBoxZsJKyySPmBquoyNf1Wxi5M1cbEKzXGqM0q8Pr9ZoqlpUICZZ2pUoWCqMzy1iqkCzUFqE+KSnZhJycSpw+3Rxr114f8R5S95ia++D48XQIHe5qxNhgaczxmOV6Y22+NhISPoxg5A2lpnChUAaMkbCYsskjdr6V3t/CyJRQvQUQAe3WGBaz8ABExF3ZvStVI2aMzOJhIc5ESVvE+sTvT1F1j6kJjBezNJWUbNI9NlgYc+EY7Slgeb42EhI+NsMPILkbSs1AU1O40GxYT9kU+lwjJzcjFigtfRPuaqurqwsdNcIj1+d2xTIozRAK70ujavJoQe34NmKcsxJnoqQt0SUyampqsGbNGk3znVLraPR7AwEMHLgJvXuXN7pWKWbVgeLR6ho32vWmdDwDaDSnKGkvK5DwsZnogfbAA8ewf38C8vPPISenB4AehsSDhMf4AADHAfv2dbBklyh3ynf4wszKDWOEmdeuBcoIV5vchGrW2WZiVji5vozOWjN7HNmZXcVSnImSM/7CXaLZ2dmGz3c8/Ng5duwYRoyox7Rpu3HwYDLy8s4iKysbwAgkJCRoOuPMzA2cnvvVDNeb3HdQ2t5Ro0ZpqpBtBSR8GCB8EGRnA0VF2t5HalcCAN991zXsaut3iSxlpQhhtJnXrgXKCFeb3ITKixGh99X7+2nZ2arJWtNL9Dg2qx/4zwoXgQBbcSZa2mLEfCclPL1eL5KSktCli7FziFlzktIwg/BjPfixYIfrTWl7papo233kBQkfFxG9KwkvBldRkY/ogD+rd4msl0M3elfHwgKl1dUmN6FKva8Zvx8LfckT/v3M7AdhgRWMb2IlzkTrwqvHYsb6BkovSo/14NHqejPKaikVZM/aHM9DwsdlRO6mslFaWioa8Kd04TDDrM9ScGY4Rk6UdgdC6nW1SQWmWu3Cs7svhTC7H+QE1vTpi22LbdIT86JXuLC+gdKD2nlR7JghwBrxKNVeVud4gISP6+FrrejZmRm9u2IpONNs7EwJVeNq48Wt3++PeFzI3WeXC8+oOkVGiXir+kHqHLaCgp8iFj+r4if0WEeNFC4sL65qkZoXAQj2kVYXrxG/gVx7WZ7jSfi4HL3ZCGbsrlgKzjQDVlJClVr5lIrbgQMHoqyszFK3k5F9aXRsjlX9wFJ8UzhGCCw9wkXvBoql4z8A8d9569aeKC8vNk3caf0NpMYl4GF6jifh43Ksqh2iJsuHpXgNM2AlhV+plU+puE1JSVH1vkZgZF9qic0RWhytDix16/2iV7joPfOMtTghsd95y5ZiqK1wrRQ9v4HcuGR5zJLwiQGsqB0iFngHNJ48WIzXMBpWgirVuoeU7v6sdOEZ3ZdKJ3tpC1HwMSv6wa33i17Lrx5ByGKckNDvXFxcji1bekdcZ6TlRM9vIDcuWR6zJHxMhDVTqh6U3CBqJg83l0O3G63uIbW7P7H3ZR2lk71SC5EV/eDG+0WvJcsoQWh3nJBcGRLezcVjpOVEy2+gNHyC5TFLwsckWDSl6kHuBlEyebAS++J2tLqH5ARBYmKios9n/fdTO9lrdQfI9YPcxkhJoLmTMUK46F1cWUi0ELpf+cKdgHLLiZaNtpbfQGp+CS+hwr8/i3M8CR+TYOkkZSOQukGUTh6sxL7EAlr6UE4QeL1eV/x+aid7qaDTq6/eBKBxWrFcPygNtFaC3YuIHrQIF6UbqJqaGtnfgZVEi+g2qk1K0bPR1vIbiPVpdGVuIViYI0j42Ex4UDALA0IKsRtEzeTB8veLdeQEQXV1daOaIayPWTHUTPbCZ98BW7YUo2fPrZoyq5S60cTK/vM4sf/1Wn7Dj6YIty5Ei0e+crCUVZ3VwHG1m0S1MUtmWt+dMB5J+FiE0mqcrLm+lNwgrBVHJLQjJQhWrCgz7WgGO5CyFACR2VtCQaaAfsuAnLU0LS3NllR1M1GyqNfW1goersuTlJQUqlEGaK+grcT6Z9ccpfU9lYQdxLr1nYSPBagJngs/j4WFgSd1g/B+aJaKIxLqUSJu9aR/R3+WXb+l0t1r+BlD/IalU6cfItKKAWMsA6y4WqxGzg24bNmy0N9im8bS0tLQ82ZUKA++t1/SqsQzevRoNGvWTPQzrBr3avoiludUEj4mo/amZNECpOTztfiJWUwpjUXExK3Sk9F5rDy8UwtKdrnhC1202OvWbQd27OhqaHouq64WO1HqBqyvrwegTTwqdfVwHKeoLa+++mroOjvHfawKabWQ8DEZsYF48GAujh//VTaYMdwCFA4L1iAj/cR2p5TGOkYEgFp1eKce9ByrsmNHV0yY8CLq65MMS891a40eI1AquLWeEK/E1XP+wGdlbZEa92JzOf9ZRsznRgpplq23eiHhYzLCgZEBrFt3XcTNEbSWKD+RF7BmByE3+I0w8bKQUkqIY1X6N0uIib36+iQUFPwk+3o1qeos1zuxE6WCW6t4VDJ38jFGSuuYKSnyaqZFyCghzbr1Vi+uFD5/+ctfsHDhQhw+fBjdunXD0qVLcfnll1vaBt7KET0QgQCC55h4AARvjnffHQqPB6LWDrtcQFbF4JB5lm2MSv920u+pVuyFWzW1pKqrrdETLqwqK+NQUZGAgoJzyMkJhNrjxAUpHDW/gdniUUlblIx7KyyhRvSFE6y3enCd8Fm9ejVmzJiB559/Hj179sTixYsxaNAg7N69G5mZmZa1I9qUOm3abrz22lacPt0ca9deH3V1HHhXcvQuwU4XkFUxOBTnwD5607+d9nvKiT2pE9GVLhpKEHIThwsrNanwThNDagW3mQUelbRFbtybaQmtra1t1F4j0tPdYL0VwnXCZ9GiRZg0aRLGjRsHAHj++efx/vvv46WXXsJ9991naVuiJ5mCgp/g96cI1gQJh98lAGBm0JkpwJTUjwnHaRO4W1C6sLglbkVK7Cmp2yO3aGit0aMk7gQA5s//l+NdE1K/QUKCsuXLqAKPcuJfbtwbZQmNdqOqyTxT+9u7wXorhKuET11dHbZt24bZs2eHHouLi0NJSQnKy8sFX3P27FmcPXs29PfJkydNaZuc6yv4Lwi/S2Bl0Jml+pXGOQjFOTltAnciShcMoevcEreix4ogd/+qrdHDL3jV1dXw+1Pwww8Xi1aU5s93it6kHD161HEuMrHfIC0tzfJaNHLjQWrcG2EJFXejpsh6CKRiMcVwg/VWCFcJn+rqajQ0NKBNmzYRj7dp0wY//vij4GvmzZuHuXPnmt42MddXq1bHsW9fB9FdAguDzgwB5vP5InYpgPCkQinu9qG3yJmZrgez0CP2opFbNKItmeHvHd2njd1b0//7vhzCN01AIOJQy+hNCl+jSGqBNHNToSQ2Sc1vYLZI02ItEhv3RlhCpdyoJSWbsGlTiaEbVLdYb6NxlfDRwuzZszFjxozQ3ydPnkReXp4pnxV+kyYlJWHLlmB2iNgugZVBZ4bqVxI/RCnu9qNmYTFSNNiFkRVt5e5fvkaSkmwZMfdWUPQExY/HE0D37tuwbVuPiHaozT4ya1OhNDZp2rRpzFQVVlplOryOjxRGWUKFfsOyshKEF9jkH9frIXCL9TYcVwmfjIwMxMfH48iRIxGPHzlyBFlZWYKvSU5ORnJyshXNi0BJRWSAjUFntgATmgQLC/dKTs6xHPfDan0Nt5TBN7J9UvevlmwZIesr4MGgQR8iEOAXv6hnNWQfmYHSmjh1dXVMHdOhZDxIjfvw+RwwxhIqPA7iTPMQONF6K4WrhE9SUhKKiorw0UcfYfjw4QCAQCCAjz76CNOmTbO3cQKI3VBmHiCnFbMEmNgkOHLkOsnJOVbjflg/5kPrZ/Jizu/3hyryhpOQkIC0tDRHCKdoxFy4WuLmxKyveXkHsHz5RETv+LVkH5kNK7GLRiI1Js2whIr9hr/73Wf47LMrwYsgrRtUN1hvpXCV8AGAGTNmYMyYMbjssstw+eWXY/HixTh9+nQoy4slpHbupaWl4DhONOvDDv+2GQJMbBIEONWTcyzE/ZhZYsAuS5KYmHNS0bTwvuMPOZVC6+IvZn2tr08WzBQdOXItOnfepeg9rBIddgsvqzHDEir0G3btugOff35e9JSUbNIcGuAW660YrhM+paWlOHbsGB544AEcPnwYl1xyCT788MNGAc9244TKmFYMfvEd7CHRyVlJQbhYwMgYKDstSUJiTioziTWBK3wv5wseqllfX4/169frWvyFrK9CZTL4+0jpe1iF3cLLDsyYw8N/w8TEOixfPjHCgrhpUwk6d96puV+dKmqU4DrhA5wPjmMZlitjWrnzl5oEhSZntwQ8C/VxuJuHd+2EE25Zk3OViGUM8e8T/fuxcmDsN99cinffHYpwl42YG4iVWCel97LX6w1dp3fxj7a+ank/O+M2WIhdVAor40wI/jesqMiXtSA61S1lBq4UPk6CtcqYduz8pSbB8MmZtb7SitI+FqK0tBSAvKtE6ow3QPr3k1q8wwWVkglfyaLBw/++0XEqQOR3q66uRk1NTSg1WwqjLVRC34fvE7Xj0+jFX+r9RowYgcTExEYlJISwKnHACQGzrFnmxcSLnAVx1KhRrrbgqIWEj82wFuhn1c5fafxQuHtATV+xvEtT0ndi/c5bhJS6StT+fkoPWuSRmvCVCjwpMSf03YQOe+Rfb6aFSnoR1HYvK138le7Wxd4vIyND0Xv4/Sl48slvmHK52wlrlvno8AM+Y0zO4idVIdwKDh0C9uwBOnYEcnNtbQoAEj62w3Kgn5luJTXxQ/wJyUr7ivXMp2iixYmSflfi2tDy+6ldvKV+P6UiWkrMAcKZSeHfLVjHhkN4JosZ7k+5RbCwcK/s+NSaLSN2v0SnSksh9B7hr5caL5WVlairq9NV7ZnlTCGxjZJWa56ZiPU1a+5Dvk9XrWqKWbO8CAQ8iIvjsGCBHzfd9Kutm08SPjbDaqCfFTe62kGvtK+U7r5YCJLVU31VaqIzOl06MbEOFRWNA3a1fk8lYg4IoFevcvTsuVXyu4Uf+WLFgiTWt9OnL5Ydn3oSBoQeUysmxO45oe/07rtDkZR0Fnl5B7F+/Xrd1Z5ZzRRS4s6ywjJvhJWaFfch36d+fwoWL54Ojgven4GABzNnpuLnn1+C13vKts0nCR8GYE2pA2y54MInd6m+ElsEWM0C01J9NfpgRrGJzsh06a5dd4QyRrRYVNSIMCX3gpRLTOn31INU3yppv5ETvVFiQqwg3tq11ysS5Eo3ESxYWKNRYsk7fbqZqZZ5rbFESoUvfy6iVeez8X0qNw/Ztfkk4cMIrCh1HpZccHomd5azwLRUX5U7mJF3XRiVLi2UJitnUQk/TFPse4ZPfqdORb6P3L0g5hJT+z21Ite3Su9lo+LQjFi0pPqUT41mZSNkFmICneOA4GYkEOojoy3zWmOJ5OZGPglg9erVtpzPxtI6Eg4JH5tg2d8NsOeC03JTsuSXF0JsUgjfXYu5S+RQ+/uJBZsrSZMNRyi+Sm7yKysrAxDMPPF4PKKVm8+dOycayMkvTlaMU633Rngfs5Yt1NjNGAnvegy3RrKwgKlFKitPvJgqTxw4LoDrrluDvLxDmsaYGbFESsaHXeezsbaO8JDwsQm9JmorspZYdMGpgSV3nRBik0L37t+ic+eduvtdze8nli2idscmNCaFvmdxcXmj69LS0iTPaOKD3IW+GwBLx6lc6nhGRkbE9dH3I2vZQsD573TwYC7WrbtOtSBnHbmsPDlLYpA4NG9eq1n02BVLZOdcyOI6QsLHRvSca2TWblFpmnl0WX6zgxK1CD25RVttTRqjUBKzJNbvchZAPceMCH1/vTs2fmwWFu7F9OmLsXVrT2zZUowtW3qjvLxYl+sx+rtp6S89SKWOKz1kkzWrZPA77UJdnXmC3C6UiE0xSyKPmOhXMs6UfL5ZriG7XU6shXKQ8HEgZu4WhSxRfr8/ovCZ35+C+fP/ZZlZXmt6utyiraYmjZGIWfuUVG62KnNGb0A5IJyxVl5eDH4hUbvIKxUxpaWl8Hq9hotZM9zTcjvx6upqU0W5WFvVCnInISU2o7/3vn0dROcP3rKn9veRE7tmuIZYdTnZBQkfB2PWblHqJrbDLK+0HgxfayTcGiV2rpEdxzGEI9THSq0EWt5by3voEVBCY1NvgKzd6dBmfL6weyVYPgA4L87NEuXh3ym6JpAbRI4QcmIz/HtLiX5e9NTV1UW4YcMRGg9yn2+Wa4hFl5NdkPBxMEb6baVcSXYU8QpvT7hLSkp4RVtw+J2/0iJtRCR6FlrxQFF9AbJ2p0Mb/fmNg4qDhRiXL58YMTaPHj1qqqDTC4vnQEXPafw8otbtIyYAhSzhSkIOlHy+2GfqPU7EKjHLevIOCR8HY5TfVmnMkFUBcmKuLTHhlZl5GPX1yY3a6/V6I6worMVTuBmtGWt6YfmoEjG6d/8WmZmHJcsGrFmzxnRXrFpXYvjrWOtT8TktRdbtM3DgwFCmoRRcMAAIgDpLuFa3k5OOE7HbOisHCR8HY5TfVmnMkFUBcmKurdOnmwkKL6XF9VjP8tKK0sXeSlFgdsaaEE47qiSc+vpkwbG5dWtPXH31JgDmu2JZX6zUoGROE3P7FBQUKOoH/nktGyolWYFKLdVKDwGWwgzLC8vjhISPwzHSbyt3A9sRIBd5JlMAQVeAJ+wKTvGEY3dmgxkoXeyHDBmCDz74QPa6UaNGhYKqtSxyZmasyWHVAbtGEP1dxVKpt2wpbnRkh5mwvFhpQcmcJoSSfuDjevRUSVeSFajHUu0mMWskJHxcgFF+WyU3sJUBco3PZOKrp3JhQkj5hOPGzAali70S0QMAa9asifhbrXVEbKKtqanBuXPnAACJiYkRrhLA+MmX9Vguvp8qKytDRRmLi8uxZUvvqCudb5G0Ey2iRK0AV7qh0mp90WupjjVRowQSPg7ELPOl0hvYqgA5sSMdRo5cg+bNaxsdpyDW3nDcnNmgZrFXen6Z1pII0RiVsaYEu2K51LoS09PTI67v2XMrtmw5n+4PON8iaTdyc1p0sUktAlzphkqr9cWNlmq7IeHjQMwyX+q1iBjtJxa74cPLxStpr56ifk5B7nTt8O8rdhAjiwe5asGOWC4j4ou83lO49lp3WSTtRm5OU1NsUgqlGyot1hc3WqrthoSPQzHLfKm2FD+PGX5iJTe8VHtramqQnZ0dE35uudO1eeuPmEDyeMCsW0gtduyQtcYXRYttN1sk7cKqPjXTEk7jwlhI+BCNMKIUv1EZREpueLH2hqcAO1nUKEHudG3e1SMmkPjMXDek+Bu5Q9YyjtW4HNPT01FaWhpRD8athQPtRKxPo4/eiUZqnrI6Y4rGhXGQ8CEMv4H1niWm1DUVDssZPGrRstg2LoQXCe/qUXIQoxtS/I3YIatxX/FoiS9q3bq1ovY42RVrNUr7KjqYXwixecpsSzLrRQCdDAkfwrAbmF+wlVZaFvs8Je2pqakJTVqsZ/CoQU+siNzp2rwAiBRIAQTLA3gaXes0jI7l0uK+0hJfFAuuWKtR0qdKKy/zR+FEY/ZvQuPCPEj4EAD0xwwJWXkOHszTVX9CCW6rxqzUQsVfJ7zYC5+uLVaSQOogRidh5kKhVFxrjS+ixct41PSpmqNwwjG7GKZV48KJFc/1QMKHMASxSqnRGO1GcWs1Zh65tPPwxT58Byvl6iktLQUARdc6zYxuxuSsRlxTBo7zUPL7usmVHo3e0AQnQsKHMJTGRQcjMdqNwmKNC6N2T0qtDPx7ZWdnq7J4kBldGXLiOvrgSMrAcRZyv6+bXOlCKD2yyA0ij4eED2EowllDQczY/bK2wzbqvCitLjy1VZYJeeTEtZArRCy+qLa21ryGEpqQ+n3l7sNo0RuO0zYOesMGnOQuI+FDGIpw1lAA1123NqLwoJGwtMNWG6Mjhlorg55JxUkTlh0oEddKK2G/+uqrrnIZuAGp37eiIl/yPpSK/wG0u4fsuCf1hA04zV1GwocwFLFJpHPnXYZ+jpXVmPVMQkoXxGi0WBm0TCqsnWjOqgiTEtdi7gE3x4U4GaHsU7HfV6kr3cjf2q57Uk/YgNPcZSR8CMNRaoHRI0qsSvXUMwnpiQ3Q4sLTMqkYZaEyAtZEmBJxLeYe+PXXJti0qcS1cSEsokQ0AxAdY0K/r5L70OgYIK1VwPViRNiAU7JsSfgQpiBmgeGPvTBClFix+GkVBlongPDFVkxAarUiKcHM95bDbhEmtHCWlpaivr4eAJCQkIC0tDQAQHV1NdavXy/qHigrKwF/2Cirh6S6CaWimc9olOOqq67C5s2bAUhv5Mxe6K0OrNYbNuCULFsSPoQhKLXe5OTkOHryVSoM1E4A4YvWqFGjcO7cudBzJ06cwObNPwEwdyJkLXvFShGm1dok5h5w4iGpTkaplYQXsXLXRVfTFtvImbnQ22U90XM0BotZtkKQ8CEMIRaqjKoRBmomAKWLlpkTodWTrJB1QmnFbzPQ6l4Qcg+UlGwKubl49Ez+Siw5drlHWETp2JG6Li0tDdOmTcOxY8caiSWA34xsNnWht8p6YuTRGKxl2YpBwocIcegQsGcP0LEjkJur/vVOFjVyqBUGaiYApYuRmROhlSZqOaFnd5yAWtEl5B5o2vSMYYekqnXhsGa5sxKlY0fpdeFHWghh5kJvlfUkugiqkNBLSEhAXV0dfD6f7DzPUpatGCR8CADA8uXA5MlAIADExQHLlgETJtjdKnZQKgyUxOhEXxeN2G7dzInQqPfWYp2Ixuo4AZ/PF7I2KV0Q5QKfjZr8lYpifrGyWzTajdKxo+Q6pVY0sxZ6K60n6enp8Pl8skIPUOYu1eMuswISPjGOz+fD/v3nMHlyJgKB4EGVgQAwZQqHSy45ivz8BFdbcpSiVBjodflJ7dbNnAiNeG+tAabRC4qVcQLRbVa6cAr9zuEH5wLmlFiQi3tySnCpWSgdO2rHmJwVzaxyGlZaT/QkFzjtJHkSPjEMP+lXVOQjEBgT8VxDgwdLl36AgoKfLAmIDLcUVFbGoaIiAQUF55CTEwBgf3yQGmGgtZ1KdutGn6tlhIWKR611AhBfUKza6Ua3Wc2CGP07qz0yRC1KXFhOCS41C6X3qZr7We6+5DNVo9H6W0dX97arCria5AKnxXiS8Ilh+EEqN1maHRAZvuuWmtztyEgxUhjIIbdbF5tg+c/X0jdmTlhyE6fYgpKZeRgtW57AhAkvor4+yfKDU4uLy7FlSzEA9aLLrPGp1IXllOBSM5G6TxMSEhRdF+6SlbsvMzIykJ2dbVj7mzVrZuh1WlAisp1cPoGED2H7ZMnfPHKTux0ZKWYKg+gKsnIC1OgJlseMyUnJxCm2oLz44kSEi46CgmAq/4gRI0wthxDd5uLiL9Cz51bL7gOpTDc1LiwnBJcajdJK7pmZmYrv56qqKgD2W9Gsrq2lRGQ7vXwCCR8CABuTJavxCWbcuEITh90C1CiUWieEz3XjIFb4LyMjw1KLSnl5MXr23BpxnVnWJrmFRG7xDbdkAOYe4aIGq6wCZm5Q7Lwv7cjQ0xL4LQar5RNI+BAh7I7El5vc/X5/6HEW44DUIDYhmO1OswKlAlZoQbFL+CpxM5ppbZJbIOQWX77uDEuuB6utAmZ+Nzs2hnZl6GmxcNlZ8V0LJHxsRG/dHBYw8jvITe58qiVrcUBGED1x8N/ZyCM+rEKNdSJ8QUlMrMPy5RNtcSkocTNa2f9CC4mcKGZtfBhhFbAzjsTKg5CF0GIBN6K/1Fq4nFg3ioSPTbihbo4Z30FuZ8ViHJBepCYOs+J6zEStdYI/9wqAbS4FltyMUuNh3LiBjQLcWRQ9Qqi1CtgdR6LEfVZbW4u6urpQPFA0en4btZYXvf2lJpFDaVwmq5DwsZhDh4AtW4BJkwCOCz4WrJsDDBrkDMuP2bV/pFxurMUB6d1hyU0cNTU1jhE+aibO8D6xMnNOT5v1IjVWlBZQdKIQBrRZBViII5G6d30+H5YtWyb7HlqFmVoxrre/1MRJ8UKPtflYKSR8LCTcQhJNQwOwd6+1wkdL0Sm7a//YnWERjhE7UrmJY82aNY5x32kNMLWzBohVn610rMiNh/DzzIxuo1kYZRVgLY7ELGFmlBjX0l9qxxBL87EaSPhYxKFD4qIHAOLjOaSkHIXPZ12lZC2Tvhm1f9TspllySRhxMKSSicNJ7jutY9fORduKz1b6G8qNB94lKASrAtkIq4AT4kiMEmZGiHEj+0uqzAJL87EaSPhYxJ494qLH4wngmms2YMMGYwJ01QQca/0cIwe82CF5hw8n4MCBZLRtexbNm59AWVkZADZS76PROtEI9WNJySYmvhNhHmKLpJ77ilWBrNcq4IQ4EqOFmZ7538j+UmKplJqPza4urRUSPhbg8/mQmnoOcXHnY2KA4M0/cuRa5OUdUmwhkMPKoGkjBUj0IXnCE8n568XigIRcAWa7AbRMNNHm7F9/bYKyshJwXBw2bSpB06ZnmNvRsoSTq8bKLZJKAvxZcvnIoXeTxLr7T6vQMGsMGxl3o3QtEpuPX331VSYtkSR8TCZcMQ8d2njC69x5l2GfFe1O0xM0rdRqZGTtHyMyBVasKBNcFMy8+bRMNOnp6SgtLcXq1avh96dg06YSiBXuU4vZosBu0WF3to8etJz7FJ715gSXD49RsSqsu/+0pp2bNYbNjLvRIrpZtESS8DGZ8B/dTBeNz+fDl18CgUDkTdLQAGzd6kPTpsrNp3an2mvdsUgtCmbefFonGq/XC8DYHZrZooAF0aH0t6ysrBS91i6LkJ5zn5zg8gnHqMBx1t1/Wu5/MzPWzIq7kRPdTrJEkvCxGDOqI/OLkd+fAo9neqMb8IsvXsbOnadkFyMlaepWIDeRhO+K+d2wnYuC3onGyB2aEQHXdr6/FsTaIGUJAOyxCOn5rZ2YOqynf5VajAB7F10jhIYR7TezNIPc/OokSyRAwscV8IuM3A0oVyFVSZr6qFGjzPsi/0Xuewjtiu1eFPRY8+zaoemFhclOTxvsMMHr+a2dmjqsFSmLEQvuP6OEhlHtN7M0g9T8CsBRlkiAhI/r0LoAK01T93g8gq+PRm/BN7Xfw45FQW9Jezt3aHphwe2itA0smOCN+K1ZTh02K+5L7jV2jkMjhIbR7TfLgik1v9q96dQCCR8XosedJje5er1ey4rNqfkediwKeic+u3ZoRvQJC5OdkjawYJUC9P3Wdla2VoIdcV81NTUA7B+Her+PGe03Q4TKza9Os0SS8GEQu0/hFppc+V1zZWUciorYypThsaK+j9GTih07NCe8vxFtsMsaYMYYYe3k9XCsPlrC5/NhzZo1ANgYh3owuv1Gi1Ah0X3wYC4AD/LyDgJg2xIphmLhc/LkScVvmpqaqqkxsQxrp3CHW1vCd82vvMKZluWVlJSkyC0h5w4w64aLnlTE2jpq1CikpaUJvodVv6/ZkxELk51cG+ywBphl/bBjTtAq4Mx2LYa3iYVxqAej22+0CE1PT8eoUaNCQnPfvg6CFlQWLZFSKBY+aWlpsvEdHMfB4/GgoaFBd8PcgtIfPScnhwnBE030rjkQ8Bh2GCkPP8GuWtUUTz99NwIBD+LiODzwwM8YMeIEEhMTQ6nfUgdcSmHEzRc+WUi5UPhJQgyrsonMtoDZVUFbqevHDmsACwdrGoEaAReOHa5Fpy26APvuy3D4TZycBXXcuIGNalCxspGPRrHw2bx5s5ntcC2sm6nlENo1G3kYaXgq/uLF08FxfBq9B3Pn5sDvXwOvVzwV347+1RtUa+aipzfg2qj39/v9oeuNHttyvzmf8cOCNYCFwGotaBFwdrkWxfq4tLSUaUuZFfOWkeNPTw0q1lAsfPr27WtmO1yN2TefmVYPIw8jFYJ/vdxNJfU5/HEX/DWVlXGoqEhAQcE55OQEUFdXB5/PZ9jvwHJQrdkTavj719TUiFq3+KNHAHMsXFLvx8pumpXAaiNQsoBqdS3qiYmS6mPeSmwlLBT45DF6/Dk9nioczcHNNTU1WL58OXbtCh65cPHFF2P8+PG2DLZYx4jFTmwRsGrXrOemCp9spG52oyYbVoNqecyeUNW+v9VuHRasrHaPASNRuoBquYf1CAUW+5gVV6cZfcOCBdUoNAmfr7/+GoMGDULTpk1x+eWXAwAWLVqERx99FBs3bkT38NMkCUvQO4lHLxbhBcKsiOUwoiy93M1u1GQT3VYg8kR1u1Ns7YIlt47drmOrxoDZ56apWUC13MN6hIIT7jO77gkj+0apBZV3bwu93u77MRpNwufuu+/Gtddei7/+9a9ISAi+xblz5zBx4kRMnz4d//znPw1tJGENUoPTzGwpHr0Cy8qJkD9RfdOmxiequ8kkrBRW3Dp2H6DKY8UYsMKtouSessu1yPp9JnVPhJ8ob8aYNLJvpCyo4e7ucPd2NKwdGKzZ4hMuegAgISEBs2bNwmWXXWZY44jYQ4/AsnIi5E9UF9sJS+18wyc9HhZ3RUphxeXAUnyFFW4BK85NU3JPGelaVFPOQq6P7cyIkrsnos+RM2pMqukbNZsEvW1jLYtRk/BJTU3FgQMHcNFFF0U8fvDgQaSkpBjSMIJQi9LFRioQGlBWQVduJyy18xU7PJO1XZFSWHE5sBBfYZf1wyyLm9J7yohxq/Q7RAutBx44hv37E5Cffw45OT0A9LB9I6H2njBqTCrtGwDMbBLsQJPwKS0txYQJE/DEE0+gV69eAIAvvvgCM2fOxI033mhoAwFg//79ePjhh/Hxxx/j8OHDyMnJwejRozFnzpyICWTHjh2YOnUqvvrqK7Ru3Rp33HEHZs2aZXh7CG0cOgTs2QN07Ajk5przGXLuMj2B0OHFvJTshMVTve0/0dxIWHU52BFfwWJ5BS1uFasFnFqrYfh3yM4GiooMaYZhqL0n/H6/YangSvqmqqpK0XtVVlY2ek8pWIrzk0KT8HniiSfg8Xhw66234ty5cwCAxMRE3H777Xj88ccNbSAA/PjjjwgEAnjhhRfQoUMH7Ny5E5MmTcLp06fxxBNPAAhWlr766qtRUlKC559/Ht9//z3Gjx+PtLQ0TJ482fA2uR2jUuTDixPOmuUNFSdcsMCPm276FbW1tYa2B5B2l+kNhOaLecnthPlK3AAbJ0mbCYvZHnb2s9U7ZDnrgha3itUCjhWroVGI3RMAUFGR30gYrF69mknrCj92lLTNSXObJuGTlJSEp59+GvPmzcO+ffsAAIWFhWjWrJmhjeMZPHgwBg8eHPq7ffv22L17N5577rmQ8HnttddQV1eHl156CUlJSbj44ouxfft2LFq0iISPBoyY+KSKE86cmYqff34JXu8pjB49WnLsmGG2NmKildoJCxXzYiUWxihYqZcTjZZ+ZiUoWgtqrQtqjiuwClathmqRuif27evw33lQWBjYafGVs9TItc1pc5uuQ0qbNWuGLl26GNUWVfj9frRq1Sr0d3l5Ofr06RMx8AYNGoT58+fjxIkTaNmypeD7nD17FmfPng39reZMMrcg5oIyKqBNTmQ0a9ZMl5lXjXWKb5NRE62aYGy37WpZqJcjhNp+ZikoWgtqrQss4YRAZTWIlQVhWRgYYalx2tymSficOXMGS5cuxebNm3H06FEEAoGI57/55htDGifG3r17sXTp0pC1BwAOHz6MgoKCiOvatGkTek5M+MybNw9z5841r7GMs3w5MHkyEAgAcXEw5QBSs3dzahZg3ret1T2jxwXoll1tOCwKAb0WECfGYKm1LrCC2kBlJ1jmhD6fVWEgJMjefXcoMjMPIzdXWRwQIH/PRWey2v07aRI+EyZMwMaNG3Hdddfh8ssvlz28VIz77rsP8+fPl7xm165dEdljP//8MwYPHozrr78ekyZN0vS54cyePRszZswI/X3y5Enk5eXpfl89WBEE7PP5sH//OUyenIlAgHdBwfADSAFrYkCUtNXn84VuQL8/BS1bnsCECS+ivj5Jcd0gPVYOFmNh3IiefparvWL3hB2O2LlpZloXzBAeSgOVnWyZExIGAIfKyhwUFPxkW7uEBBkQh+XLJyoSy0otdkKZrHb+TpqEz4YNG/D3v/8dvXv31vXh99xzD8aOHSt5Tfv27UP/X1lZiauuugq9evXCsmXLIq7LysrCkSNHIh7j/87KyhJ9/+TkZCQnJ6tsufHIBQEbOeHyE0hFRT4CgTERzxl5AGk4dp3kzSOXzaVm8tHTJ3b3g5vRG3OktPYKKwurmFvFLOuC3cKDhXIFagkXBiUlm1BWNhAAbyjwYNOmEnTuvNO2eUBYkCkXy0IWu+++O42dO9+W/U52/k6ahM8FF1xgSL2e1q1bo3Xr1oqu/fnnn3HVVVehqKgIK1asQFxc5A9VXFyMOXPmoL6+HomJiQCAsrIyXHjhhaJuLlaQCwL+8ssy5OUdxJw5YwyZUJTGuRg9MK2o/iyG0mwuMzD7xHQ3o7bImp6YIzHBcPBgLrzeXaHHWFpYhb6LWS5VJwoPuwkvgZGTU4XzoieIXe6uaEvNu+8OBaBNLEdb7HJyqnDw4PnXsJjirkn4PPnkk7j33nvx/PPPo127dka3qRE///wz+vXrh3bt2uGJJ57AsWPHQs/x1pybbroJc+fOxYQJE3Dvvfdi586dePrpp/HUU0+Z3j69yAUBr117PTyeAC644CTuuce4z41F14vS3bCRIoTVIGDW0WJh0NOHYrvfdeuuQ10dmzEyQlh1X9u9oNn9+UrhS2DoPYjZyPmDn5OCdXrWIzPzMJYvn2i4WGY1xV2T8Lnssstw5swZtG/fHs2aNQtZWHiOHzc2WLOsrAx79+7F3r17kRsV9MJxHADA6/Vi48aNmDp1KoqKipCRkYEHHnjAUansYhMvEFycZ83yol+/I4bG38Sa60Vu8hkxYgRycnIMFyEkatRjddCx2O6XpQwcKawsL2D3gmb356tBb+aaWS7G8Gtzc6sMz6pjOZNNk/C58cYb8fPPP+Oxxx5DmzZtNAc3K2Xs2LGysUAA0LVrV3z22WemtsVMom+MaAIBc+JvzHJBGVUE0UjkJp+MjAwSKQxi1ULXvfu3SEo6i7Vrr494nIUMHDmssizavaDZ/flq0XvEhpkuRjOP/2A1kw3QKHy2bNmC8vJydOvWzej2xDz8Tu3gwVysXXsdwneeZsbfmAGrLp5Ys3I5HbmFrqamxtA6UHl5Bx1bdsCKe8nuBc3uz9cCa0dsiLnOcnICyMmpM2ReZrl8hybhc9FFF+HXX381ui3EfwlaYHahrs758TesWk/sDLQm1CG30K1Zs0aXBTQ83mH9+vUxGfumBrsXNLs/3270xjZZlZ3H8n2kSfg8/vjjuOeee/Doo4+iS5cujWJ8UlNTDWlcrEOWCYJQttDptYCmp6dHvAfde+LYtaC5rcqzFoxw+ZqdncfqUTbhaBI+/LlZAwYMiHic4zh4PB40NDTobxkBQJtlItyMWVkZh4qKBBQUnENOTrDCthkHg7IOi/FGhDKEYt84Dti3r4OhcT5UdkAaMxY0PeUKjIxHcQJaY5ui+zi6irLRsBriEI4m4bN582aj2xHTGDmRyhXq4xcKOw4GtRMn3IyxiNTCFz5BFxbuxX8TOP+L8QGtRo8RJxyvoAYz+kdPuQIWYmWsREtsk5I+NqMsAOvjWpPw6du3r6Lr/vCHP+DPf/4zMjIytHxMzBA+ofDVV7WitFCf3oNBnQjrN2OsoXThA4KTvtYCa2qtCkZgd5VjszCyrVQQUR1aYpvk+s7IbEknCX1dp7PL8eqrr+KPf/wjCR8FqB0QcucGOTHzgYgtlNbpAbQHtNolQNxw8KnVOKUgodUYGdsU3scADCsL4DShb6rw4SJt04QCpM4RCp8U5M4NivXMB8JZyO08tQbUsiBAnFRszy6s7iMnWSeMim2K7uPi4nLDNsdOs96ZKnwIcaRuvFGjRqGmpgYbN24EID0piL0Hy6mEBBGO0qBNvZlWdggQpxXbswOr+8hp1glAf2yTUB+XlxcDCECsVpybIeFjA2piG/RMCpSSSzgBNW5ZrZlWdgkQcjnLY3UfsW6dMMMaJdbHvXp9gfLyYsPLArDutiThYwNqYhv0TgpUqM8+rDCnO8lkL4acW7a0tBRer1f09Uq+o10ChFzO8lAfnccsa5RYH/fsuRU9e27F8eOtcPPNPdG5s/6yAE5w7ZLwsRm5QUKTgjOxwpzuRJO9EHJuWa/XqzsD0a77iCWXM6si2e4+Ysk6YZY1Sv4eO4XOnQfpvs/kLKtiNYSsHnuqhc+5c+fw2GOPYfz48Y1OSo9m9OjRVMVZAiXmd7WTAhXqY2OCtyKoloXAXaMw2y1r5+LKgsuZRZHMQoVf1q0TekWZUB8fPJgLwIO8vIMGtjSInGVVqlSLlWNPtfBJSEjAwoULceutt8pe+9xzz2lqVKyg1PyuZuKM9UJ90RO82MRh5U1mxeRqxWcYLSitrpRspQCx4rup+T1YFMl2z1WsB54bcU+np6dj1KhRWLNmDYBgtXMz5wklllUWxp4mV1f//v3x6aefIj8/3+DmuJfwSYo396kxv6uJ1XGrqFFC+M2jJRvOaKyYXK34DDMsBlYsfHYdQxH93fx+P+rr6yOuSUhIQF1dHaqqqlR/Tz2/B0tWDjvnKpYDz428p9PS0gx/z2iU1hpiZexpEj5DhgzBfffdh++//x5FRUVo3rx5xPPXXnutIY1zC2KTlBHmdze7rPTAym7OisnVis8wy2Jg9sJnp1WBf0+fz4fVq1fLXq9GNGr9PVi5L1iA5fhJuXta6rwtsfFs5jwhVWsoKakA69d/y9TY0yR8/vCHPwAAFi1a1Og5OqS0MVKTrpT5fdSoUSG1LoSbXVZ6YWU3Z8XkavUEzsquTSl23yNmu5nU/B6s3Bd24oRT3uXuabljjYREtNnzhFitoaqq4OHYLI09TcInEAgY3Y6YRsz8npmZafuk7VRY2c1ZEVRrZeAuS7s2J2K0aFT7e7ByX9iJE05513tPh4toVoQeS2NPk/D529/+htLSUiQnJ0c8XldXhzfeeENR4DPRmBEjRoTONbP7xnM6dqfIhmNFUK1RnyEWMMub1lnatTkNM0Sj2t+DpfvCTlg95V1pphuPkqwvVoQeS2NPk/AZN24cBg8ejMzMzIjHT506hXHjxpHw0UhGRobjT0xnIZWcx840YiuCao3+DCUBsyzt2pyGGaJRy+/BQno9IYxcTFp1dXXIzaXGesiK0GNl7GkSPhzHwePxNHr80KFDkhVWiSAsFcwyEhZrhdhVudqKoFqjP0NJLApLuzanYYZoVPp7qBXJLG1gYg0l/WqVy9mIcWBXZqUUqoTPpZdeCo/HA4/HgwEDBiAh4fzLGxoaUFFRgcGDBxveSDfhtMBQNbBwBg5LBRytWBjM+gypccrKrs1pmCUalfweakQyixsYlrFDJOqxHiptr1HjwO56TUKoEj7Dhw8HAGzfvh2DBg1CixYtQs8lJSUhPz8fI0eONLSBbiLWAkPtsGyxeJM5DaUVxe3etTkRo0Sjll202anysYhdIlGr9VBNe40cB6zNt6qEz4MPPggAyM/PR2lpKZo0aWJKo9wGP/nIqXQ3LRp2WrZYu8mchtw4DQ/CD4cEpTBmmPqtEvhutlAbgV0iUav1UGk7KisrI/522zjQFOMzZswYAMFOPHr0aKP09rZt2+pvmYvgJ6n9+8/hlVc4BALn46Pi4znccccQ5OcnuGbRiDXLltuQ2026IQjfSswSKWbPF3Qfq8MKcWD0+WZiQi28TpAbx4Em4bNnzx6MHz8eW7ZsiXicD3qmAoaNSU9PR3o6sGwZMGUK0NAAxMcDL7zgQVFRG7ubZyiU8uxsKIDZeJy4qaH7WDlWiQMjRbRSoebGcaBJ+IwdOxYJCQnYsGEDsrOzBTO8CGEmTAAGDQL27gU6dABkDrh3JG5KeY7V7BYKYCbcdB+bjZXiwIj5RkyoZWYeRn19coQFyI3jQJPw2b59O7Zt24aLLrrI6PbEBLm57hQ8PE61GESLHL/fb/gZSyzDWtqpkaIzVgWsHpx6H9uB08SBmFB78cWJACItQG4cB5qET6dOnSQPSSNiE6P9z1aiNNtBCDWBiywvwCxlxBmZLUPp2dqJRcuflnvUaeJASKgBHABhV53bxoEm4TN//nzMmjULjz32GLp06YLExMSI51NTUw1pHOEsWFo41aJEvOhNz3fCAszKb2NktgylZ6uDNcuflei5R50kDoSEmpyrzk3jQJPwKSkpAQD0798/Ir6HgpsJVhZOozEiY4OFAo9OxMhsGbel5ZqBkzcwelErkp0mEsWs8omJdVi+fKKoq85tJSw0CZ/Nmzcb3Q6CYIrwCQ+AKRkbbj26xEiMzJZxY1quWThxMTMaJSLZaSIxur3hZ39JuercVsJCk/Dp27cvPvvsM7zwwgvYt28f1q5diwsuuACvvPIKCgoKjG4jQVhK9IRXXFxueMYGWR6UIZctEx5rKLfAuDEtlzAHNSKZFVGjlPD2aonLZDlOUSmahM+6detwyy234Oabb8a3336Ls2fPAghmwTz22GP4+9//bmgjCcIqhCa8LVuKDc3YIMuDcuSyZcILrQHS8VF2Zt64YbHQihO/u1EimfXvrtZiFR0DJWa1Zj1RQJPweeSRR/D888/j1ltvxRtvvBF6vHfv3njkkUcMaxxBWI3QhAfEobj4C5SXFxuSsUGWB+WIZcsAQEVFvqoAZbsyb9yyWGjBCQH9Qhghkvft24dXX31V9jq7v7uazw6/v6Ss1qzHKWoSPrt370afPn0aPe71elFTU6O3TYRLYX33A4hPeD17bkXPnlsNSc93Ws0Pu4k2we/b1wGLF0/X5CbUm3mjZQy7ZbHQglMz6vSKZJ/P10j0OOW7K8HpVmtNwicrKwt79+5Ffn5+xOOff/452rdvb0S7CJfB+s6PFy9yE96kSUOQlpYW8Tq17XVazQ87EMuW0TLhGpV5o3cMW7lYsLjJ0BvXZvV30iOSo9v5xRfF2LSpxDUxfU63WmsSPpMmTcJdd92Fl156CR6PB5WVlSgvL8cf//hH3H///Ua3kXABrKdyR/u6H3jgGPbvT0B+/jnk5PQA0EP3xOrkAo9WI5Z9omXCNSrzRq/1wqrFgkXXml7RZ9XGyYz09C++KEZZ2UAAwdIvWgUvS2LW6VZrTcLnvvvuQyAQwIABA1BbW4s+ffogOTkZf/zjH3HHHXcY3UaCsITwSSM7GygqMv79nZT6ajdC/aB1wjW6T7VYL6xaLFh0rekVfVa5zIy+R/3+FJSVlYAXPTxqBS9rYtbpVmtNwsfj8WDOnDmYOXMm9u7di19++QWdOnVCixYtjG4fQbgKEjX6YGHC1Wq9sLrtLMVhGCn6zC4FYeQ9evx4OvhjIMJR+91ZFLNOqlQdjSbhw5OUlIROnToZ1RaCIAhZpCZcoTMEjbai6bFeWLlYsBSHYZToM1LMWeE6EjsTq6Rkk6bfgCUxC4i7AllHl/AhCIKwAqWxF9F1fXiMdAHotV5YtViwFodhhOgzsr6OkpihUaNGhZIZjEhkAAIYOHATevcuV/U+PHaLWaWxTazHKZLwcRgsBbjpgY5rINQgFnsRXnIfsCZlWK31wq7Fwm63oM/ng9/vb9QmPcHCRok5uZgh/u+//vUD3TE0coJPze9ut5h1S5wiCR8HwXpKuFLouAb3YKUQl3sfK8eVGuuFnYuFXXEYaiwqmZmZir+7GWIuetx07boDO3Z01RVDo9RCOXr0aFW/u91iFnBHnCIJHwfBekq4FPxEIOejZt1ESpyHJSFuReyDnlRnOxcLO+IwlGZhpaWlGW5BUYPQuPnuu27Qm3pupth1clAxK5DwISyBnwg2bwaeeqqxj7p37zHo188duwkjcIJLkyUhbkXsg1PM/KzFYRhhiTOjvg4gdkSNvtRzHjPHgVODilmBhA9hGenp6bjiCiAuDggEzj8eHw/07JkO0jxBWLKkqMHOuC2rYh9Y6m8xWBJoWi1xQsJ/1KhROHfuHAAgMTERXq834nkt30ks6ypc/LBQmI81Met0SPgQlpKbCyxbBkyZAjQ0BEXPCy8EH2cNu6wuLFlSlGJ33BYLsQ8swYpA02KJs7JYn9C4EYrxsXscsSRm3QAJH8JyJkwABg0C9u4FOnRgV/Q40epiB6zUFqHYB/bQYomzulif0Ljp3/9j5sZRrM8zRkLCx4VEF3FjcSeQm8um4OFxotXFLuysLWJW7AdhDHoscWYKarlxQzE0woRbwSsr41BRkYCCgnPIyQnGLrC41ghBwseFCBVxI8uEc2G95pGdtUXIBWA/Qouh11sTel6rJc5MQR09bvx+P1avXi37ulgW0OFWcClLnBPWGhI+DkLPTUeWCWdid+yMEuyOr2F9knUz4othSwwbdmlorGqxxJktqCMPJc4mAS3DeZEobYlzwlpDwsdBCO1uoyvXEu6BldgZMcIXLaldfSzvkt2O0sVwxIgRyMjIiHitnJCwWlDHsqhRg93HZhgBCR+HQTenPdjhbmJ9giE3E8EjN1YzMjKQnZ2t+n0pYJ097D42wwhI+BCEDFa7m3gLidwEw4IlhUQNAehfDMPjhKKTMyjQmC3sdm0bAQkfgpDADndTuCXlggtO4t57vWho8CA+nsP8+Sdx0003kiWFYAo9i6Fw3Z58WeuqUuHvhCroTsPpljgSPgQhAD+pypnwzbK68BPxPfcApaV8zSMPcnPTAKSZ8pkEoQeti6HSuj3hcUJKxYqVxRDV4Ia0cCdb4kj4EIQAvNVl//5zeOUVDoHA+RL28fEc7rhjCPLzEyyZnFiveRRLkPVAGj2LoZx1VUuckNXFEJXgprRwp0LCx+HQGS7mkZ4ePD+s8REbHhQVtbG7eYTFUDVvczEzmJ+lDEmnpoW7aa0h4eNgDh0C9uxJx4gRdyIj44zodeG7UNqxqscJR2wQ5hN934i5TVhbsMzEyMXQzGwhFjMkWWyTFG7K4iTh41CWLwcmTw6ech4X1xLLlgUXaCmcumNlQayRu4kIxwmFJa3AyMXQzGwhFlOwWWyTHCytC3og4eNADh06L3qA4H+nTAlaJaQWZyeeP+VUsUa4F5bcJixg5H1nVrYQiynYLLYpViDh40D27DkvengaGoKuGLdZJZwo1gh34zQXhdMwK1uIxRRsFtsUC8TJX8IWZ8+exSWXXAKPx4Pt27dHPLdjxw5ceeWVaNKkCfLy8rBgwQJ7GmkyHTsCcVG/XHx8MP6EIAhz4V0U4YS7KKqrq1FVVYWqqir4fD47mugorAya9XpPoaDgJ6YEBottcjuOs/jMmjULOTk5+O677yIeP3nyJK6++mqUlJTg+eefx/fff4/x48cjLS0NkydPtqm15pCbK5Rp5D5rjxthIV6J0IeciyL67Dynu2HNHrNmBs26KROJMA5HCZ8PPvgAGzduxLp16/DBBx9EPPfaa6+hrq4OL730EpKSknDxxRdj+/btWLRokeuED0CZRk6E4pXcg5CLwo1ZXlYVADRrvLOYiURizH4cI3yOHDmCSZMm4e2330azZs0aPV9eXo4+ffpEDJZBgwZh/vz5OHHiBFq2bCn4vmfPnsXZs2dDf588edL4xpuEUKZRMMU96A4jMcQWFK/kbKIXovBYFLdmebFYAFAtrG0i1IoxN1R5Zg1HCB+O4zB27FjcdtttuOyyy7B///5G1xw+fBgFBQURj7Vp0yb0nJjwmTdvHubOnWt4m+0gMsUdilLc3QJ/sKGbJwFyk9lL9IJVXV2N9evXx0SWVyx8RytRep9SlWdzsFX43HfffZg/f77kNbt27cLGjRtx6tQpzJ492/A2zJ49GzNmzAj9ffLkSeTl5Rn+OWajJMXdzSbW8LgKN04C5CZjA6G+dUuWl5BlweutAeCe7+g0nFrlmXVsFT733HMPxo4dK3lN+/bt8fHHH6O8vBzJyckRz1122WW4+eab8fLLLyMrKwtHjhyJeJ7/OysrS/T9k5OTG72vE1GS4s6iv1sOLSLMjZMAucnYxYmF6KIRtyy0xLBhl6KwcK/jvyNLqHVfkfA0FluFT+vWrdG6dWvZ65YsWYJHHnkk9HdlZSUGDRqE1atXo2fPngCA4uJizJkzB/X19UhMTAQAlJWV4cILLxR1c7kJPsU9XPwIpbizJGqUEC7WqqursWJFmWBwpVvhJ0jelUewhxsK0clZFqZPX+z478gKatxXPG4Q1yzhiBiftm3bRvzdokULAEBhYSFy/2vOuOmmmzB37lxMmDAB9957L3bu3Imnn34aTz31lOXttQM3p7jzYm3VqqZYvHi6awJIxTJkeJS6twj7MaIQHQsxXFKWBSq2Zwxa3FduENcs4QjhowSv14uNGzdi6tSpKCoqQkZGBh544AFXprKL4eYU90OHgFmzvOA4DwDnB1cqyQKSWgTlRBNhPlJZXlLXCWFV2rgccpYFs6oqxyJq3VckPI3DkcInPz8fHMc1erxr16747LPPbGgRO7j1MM1gDJMn4jGn+bj5BVBupye3UNqROs2CNYI1jIyZYyVtXKtlwYkJEXajxX1FwtMYHCl8iNgjGMPERYgfp/m4+YVy82bgqaca7/R69x6Dfv2k47DsSCumjDJxjP6+LKSNS1kWRowYgYyMjIjrY1H0GgG5r+yDhA/hCHJzgQUL/Jg5M9XRk0R6ejquuEI4EL1nz3TIrR92ZHdQRpl1sJK9I2ZZyMjIQHZ2tmXtcDty7is3lyCxExI+MYzTqjyPHduAn39eLOvjZn0S0BqI7ven4PTpZpLmcda/OyFNLGXvUEXiIFLuKyeWIHECJHxiFCdWeU5PT8ecOWNcMVmqDUQPj/sAAqHF0eMJ4MEHKzF58o2WfXcKrDYPu9wftbW1iq4zSlhTRWLlxPr3NwMSPjGIkirPrMJPAk4UbtEoDUSPjvsA4sBxAVx33Rrk5R3C5Mk3yrofjApOduuZVCxhdfaOz+fDq6++GvpbTNiOHj3asEU4lisSk/vKfkj4xCBKqjyzjJOFmxr4iU8o7gOIQ/PmtYqywIwKTmYh8DZWsDJ7R2lGmdDh0HphJabJSnj31f795xpZrHmcYrl2KiR8YhClVZ5ZxenCTSnhE+Qrr0RmtMXHc7jjjiHIz0+QnSCNCk6OxUXKKliwAigRtkbH5cRSTBNwvv9WrWqKWbNaIRDwIC6Ow4IFftx0068keCyChE8MYnaVZ7NrvjhduKkhPT2Y6dX49/KgqKiNoZ9VXV0t+dvE2iJlJSwEscoJW7/fj9WrVwMwLi4nllK6ecur35/y3wr0wY1MIODBzJmp+Pnnl+D1nqK4Jgsg4ROjmFXl2YqaL24+nkMMI38vsRgO/oT76N+GtzLILVIUk6APuxc7OWFbX18PIDh+3n13KABj4nJipSIx3y9yAtONcU2sQcInhjGjyrNVNV/cfDyHGEb8XlqOyoi2RjzwwDHs35+A/PxzyMnpAaAHmehdgJyw/eWXXwAAW7f2BC96ePS6PGOpIjFZTu2HhA/hWNx6PIdZCMVwvPvuUGRmHkZubpXka8NFTXY2UFRkalMJm5CyvmzcuBF+fwrKy4sFXkkLt1Jiyb3HKiR8CCJGEMsOW758IqWlEyGkrC/CYwjo1atc1cLNQjC3ncSKe49VSPgQRIwgZGIHKC091lEjLsTcND17blX1mSwEc9tNLLn3WIOED0G4nOjg5PDAVB5KS49dlIiQmpoarFmzxlA3jZtFDcE2JHwIwuXwC1tlZSWA9cjMPIzlyydScCURQo0IITcN4XRI+BBEDJCenh7a0efmVlFwJSGKUJFCr7cm4hopN41b43L0EutxTSxBwocwFLq52SW8z6V27fTbxC7ih4e2xLBhl8oGwI8aNYpcWCJQXBM7kPAhDIVubnah34aQQ+nhoWKkpaVZ0UzHQvcWG5DwIQwn/OY+dCh4tlbHjlRzhwVo4iWUoPVcNrIWEk6AhA9hGsuXnz9FPS4ueMzEhAl2t4ogCDnkqgsPHDgQBQUFEa8hayHhFBpXoiIIAzh06LzoAYL/nTIl+DihDZ/Ph6qqKtF/Pp/P7iYSLoFPW/d4zp8EzHHAvn3Bk4DLysqQlJSE7Ozs0D8SPYRTIIsPYQp79kSeng4EDxTdu5dcXlqw4vBXgginsHAvOC78EX2HkRLOxk1hC2TxIUyhY8egeyuc+PjggaKEeqIXGb8/BRUV+fD7UySvIwitHD+eDrFCl0RswFuZn3yyBu3acejfH2jXjsOTT9Y42spMFh/CFHJzgzE9U6YELT3x8cALLzh/p2Am4fVToqmurg79v5IT1glCL3SKeGzDW5n9/hQsXjwdHOcBAAQCHsycmYqff34JXu8pR1qZSfgQpjFhAjBoUNC91aEDiR4plLqytKYZE4QSwrOy6BTx2IbfhMll+DnRykzChzCV3Fz3Cx4pSw2gLNtFyJV1/Hg6WrXyRSw0WtOMiSBCVYkLCs4hJycYkBbrmUnp6ekoLS3F6tWrAdDxFIQ7LX8kfAhCB9GWGjHBosYcLOXKcuMkZBXiVYkj+9iJpnsj8Xq9UX/TKeKxjBstfyR8CEIH4ZYaqcVUqTlYzpXlxknIKpRWJXai6Z4gzMRtlj8SPgRhAEbF3ihxZUlNQuFB0LHuthGD3IXS0Hl7hBBusvyR8CEIAzBqMVXqyoqehHgX24oVZZpdbLECuQuloTPdCLdDwocgDMCoxVTOlTVixAhkZGSguroa69evB2CMiy2WIHehPCRqCDdDwocgDMDIxVTKlZWRkYHs7OzQ35Terg23xSwQhNG42eVJwodgCieXRdezmEZPHmL+9OjrKF5FO26KWSAIo3Gzy5OED2E7fG2VVauaYtYsLwIBD+LiOCxY4MdNN/3qqJtL62KqdZKheBWCIMzCKfOuWkj4ELbi9LLoRpqDtXw/ildRjptN9+FQkUaCkIaED2ErTi+LzoI5mOJVlMHCb2U2VKSREMPJYQRGQ8KHYAInu2xYWEAoXkUZLPxWZkJFGolw3BRGYCQkfAgmiBWXjVG7rlhx2xDaoKB3wulhBGZCwodgBre7bJYvByZPBgIBIC4OWLYseIK9FmLBbUNox8kWVMIYnB5GYCYkfAimcKPLxufzYf/+c5g8OROBAL/rAqZM4XDJJUeRn5+gSaCQqCHEiBULKiEPieDGkPAhCBPhzc0VFfkIBMZEPNfQ4MHSpR+goOCnmDQ3E+ai5Ew3yvpyPySCG0PChyBMhDcjy+26YtHcTIhjVEq6mAV1/fr1lPUVQ7g9jEAtJHwciltSE2MlSJd2XYRSrEhJZy3ri2oPmY8bwwi0QsLHgRgZJGs3sRSkS7suQgl6UtKVbhBYyvqi2kPuwgmbchI+DuPQofOiB+CDZIFBg9gdZHK4cTLjb/7U1MjFhXZdhFK0iBO5jUR1dTXWr1/PVMAr1R5yPk6rF0TCx2Hs2XNe9PA0NAB79zpX+LiNSItcJoYOvTS0ayUIpWgVJ0pjf1hzvZplhYpVN5pVYQROrBdEwsdhdOwYdG+Fi5/4eKBDB/vaxDJWm10bW+Q8EbtWglCK2eKENderGVaoWHajWRVG4MR6QSR8HEZubjCmZ8qUoKUnPh544QWy9ghhRyyUkEWOKuYSWjFbnLDkejVD6MW6G81KMceS+1QOEj4OZMKEYEzP3r1BSw+JnsbYFQslZJFTcvM7PWuNMA+WxInZmCX0WArmdissuk/FIOHjUHJzSfBIYUcslM/nQ3x8HRYsaIp77/WiocGD+HgODz10GL///UAkJibC6/U2ep1bYwwI9nBC+QgzhJ6TrBFOhjX3qRgkfAhXYnUsVHgsAQDceWdK6OZvaDiF9euDj7sxloAwFjPFSSyVjwjHSdYIp+MECyUJH8KVWB0LFb2QiN38bo0lcAJOqC8CmC9OWBM1VlmhnGKNIMyHhA/hWigWinBafREeFttkFlZaoZxgjSDMh4QP4WooFip2cWJ9kViF+t+5OCFuLBoSPoTrCC9YJgSru3zCWJxYX4QwFicuyk7DiXFjJHwIVxEdZCwG7fJjB8roiV2cuCg7Eaf1HwkfwlUo3b3H6i7fKQG+RkIZPbGN0xZlwnxI+BBEjGBHJWtWoIwegiB44uQvIQhCDtZjCcQqWR86ZEtzbMHrPYWCgp9I9BBEjEMWH4IwAJZjCXw+H778EggEIj+7oQHYutWHpk3JHUAQROxAwocgDIJF8RCe0u3xTG8U4PvFFy9j505K6SYIInYgVxdBuBjeAsUH+Ho8QV9XdICvG4O9WXc/EgRhD2TxcRBUn4bQQ6wF+LLsfiQIwj4cJXzef/99/PnPf8aOHTvQpEkT9O3bF2+//Xbo+QMHDuD222/H5s2b0aJFC4wZMwbz5s1DQoKjvqYgVJ9GGbTLlybWSvbH8r1AEIQwjlEE69atw6RJk/DYY4+hf//+OHfuHHbu3Bl6vqGhAddccw2ysrKwZcsWVFVV4dZbb0ViYiIee+wxG1tuDFSfRhm0yycIgiCkcITwOXfuHO666y4sXLgQE8IKj3Tq1Cn0/xs3bsS///1vbNq0CW3atMEll1yChx9+GPfeey8eeuihmN3hxyIkapxHLBZWtAJyjxNEYxwhfL755hv8/PPPiIuLw6WXXorDhw/jkksuwcKFC9G5c2cAQHl5Obp06YI2bdqEXjdo0CDcfvvt+OGHH3DppZcKvvfZs2dx9uzZ0N8nT54098sQBAHAuSenOwVyjxOEMI7I6vq///s/AMBDDz2EP/3pT9iwYQNatmyJfv364fjx4Hk7hw8fjhA9AEJ/Hz58WPS9582bB6/XG/qXl5dn0rcgCIKHX5QXLnwdM2emIhCIPDl94cLX8cwzz8Dn89ncUudC7nGCEMZW4XPffffB4/FI/vvxxx8R+G+52Tlz5mDkyJEoKirCihUr4PF48Oabb+pqw+zZs+H3+0P/Dh48aMRXIxzKoUPA5s3uqWjMarC3kpPTw68j9OP3p6CiIh9+f4rdTTEcn8+Hqqoq0X8koIlwbHV13XPPPRg7dqzkNe3bt0dVVRWAyJie5ORktG/fHgcOHAAAZGVl4V//+lfEa48cORJ6Tozk5GQkJydraT7hMtx4lhXrwd50cro1fPPNpY0Oae3e/Vu7m2UI5NJjF1ZjzGwVPq1bt0br1q1lrysqKkJycjJ2796N3/3udwCA+vp67N+/H+3atQMAFBcX49FHH8XRo0eRmZkJACgrK0NqamqEYCIIIcTOsho0yPnBtixP9nRyuvn4/Smh/gWCFrX33huKwsK9ruhncumxCcuC1BHBzampqbjtttvw4IMPIi8vD+3atcPChQsBANdffz0A4Oqrr0anTp1wyy23YMGCBTh8+DD+9Kc/YerUqa6w6LDqsnALe/acFz08DQ3A3r3OFz6s4/TCiqzuanmk3IlO62vCObAsSB0hfABg4cKFSEhIwC233IJff/0VPXv2xMcff4yWLVsCAOLj47FhwwbcfvvtKC4uRvPmzTFmzBj8+c9/trnlxsC6y8LpdOwYdG+Fi5/4eKBDB/vaFEs4tbAiy7tanlhzJ/r9KTh+PB2tWvkcOaYI83GM8ElMTMQTTzyBJ554QvSadu3a4e9//7uFrbIWEjXmkZsbjOmZMiVo6YmPB154gaw9hDQs72p5Ysmd6OZYJqfDkiB1jPAhCLOZMCEY07N3b9DSY7TooSJ97oelyT3c7S3lTnSLe9ztsUxOhjVBSsKHIMLIzTVHlLgxY0wPboxZY21y593jx44dQ319veA1bjjHkIdimdiERUHqnlFPEBoxOzjVzRljWnFbzBqLkzvP6tWrZa9xQ6p3rMUyOQUWBSkJHyKmsSI4lTLGhOH7U0x41tXVoaqqSrEAsjO7isXJHXBGDJJeeKugXCyTk6yHboJFQUrCh4hpzF4YfD4fUlPPIS4uM3QsAwDEx3NISTkKny/B8TttPRglPO3OrrJ6cmc9hd5Koq2HDzxwDPv3JyA//xxycnoA6BFT/cEKLAtSEj4EYRLhi/HQoZHxH9dcswEbNgTjP9zgZtBK9OItFhwsJzzttmxYmTmlRuRFw1LwtZGE3z/Z2UBRkY2NIQCwLUhJ+BCESYQvslJZNU52MxiJkcHBVi3wdmROaRV5rAVfE+6HVUFKwocgLMKpRfqswMjgYCsXeKcEabMcfE0QVkPChyAI2zEqONiOBd5uUaMEVoOvCcIO4uQvIQiCMBc+ODgcLcHBUgu8W/H7U1BRkQ+/P0X0GqP6lyDcAFl8CIKwHaOCg1lMnZVCb3aWnFuP5cwaFqFsudiAhA8R07ixgrASWJzgjTil3UnnUulNwVfi1mM5s4Y17C6JQFgHCR8ipnFKcKqRRE/wYhlQVkzw0YJSLABcTng68VwqvSn4SuN2WM2sYQ27SyIQ1kHCh4h5zFrcWbUmhU/cUq4SKyZ4o4RnLAlYfrzIufVYEnkEwRIkfAjCJFhfjFlJcTbq+7tB1CghfFxdcMFJ3HuvFw0NHsTHc5g//yRuuulG14g8gjADEj4EYSIsLz6U4uxc+HF1zz1AaWnw3LcOHTzIzU0DkGZbu1iMHSOIaEj4EESM4rQMKEKY3Fw2Drul4GDCKVAdH4KIUfgMKL6+C8sZULGAkno8LEPBwYRTIIsPQcQwRqSQE/qhc7QIwjrI4kMQMY7XewoFBT+R6LEYPutKLMict/xQdpY1RPezmAWOfg/nQxYfgogxWE2zjzX47KzNm4GnnmocZN679xj068d2gLybCM+WW7WqKf78Zy8CAQ/i4jgsWODHTTf9SsHZLoGED0HEGKyn2ccS6enpuOIKIC4OCIQdpRUfD/TsmQ76CawlPT0dhw4Bs2ad/z0CAQ/uvTcNpaVp9Hu4BBI+BBGDkKhhh9xcYNkyYMoUoKEhKHpeeIGNTK1YZM+eSBEKBH+XvXvpN3ELJHwIgiBsZsIEYNAgvh4PLbB20rGjsAWuQwf72kQYCwU3EwRBMEBuLtCvn3NFj1tix3gLXHx88G+ywLkPD8dxnN2NYImTJ0/C6/XC7/cjNTXV7uYQBEE4hvDKzZWVcaioSEBBwTnk5ATNJ06KHTt0iCxwTkPp+k2uLoIgCMIQeFGzfDkweXLQXRQXF7SgTJhgc+NUwkpFbMJ4yNVFEARBGMahQ+dFDxD875QpwccJggVI+BAEQRCGIZUVRRAsQMKHIAiCMAw+KyocyooiWIKED0EQBGEYlBVFsA4FNxMEQRCGQnWJCJYh4UMQBEEYDmVFEaxCri6CIAiCIGIGEj4EQRAEQcQMJHwIgiAIgogZSPgQBEEQBBEzkPAhCIIgCCJmIOFDEARBEETMQMKHIAiCIIiYgYQPQRAEQRAxAwkfgiAIgiBiBhI+BEEQBEHEDCR8CIIgCIKIGeisrig4jgMAnDx50uaWEARBEAShFH7d5tdxMUj4RHHq1CkAQF5ens0tIQiCIAhCLadOnYLX6xV93sPJSaMYIxAIoLKyEikpKfB4PHY3x3JOnjyJvLw8HDx4EKmpqXY3x7FQPxoD9aN+qA+NgfrRGMzsR47jcOrUKeTk5CAuTjyShyw+UcTFxSE3N9fuZthOamoq3dwGQP1oDNSP+qE+NAbqR2Mwqx+lLD08FNxMEARBEETMQMKHIAiCIIiYgYQPEUFycjIefPBBJCcn290UR0P9aAzUj/qhPjQG6kdjYKEfKbiZIAiCIIiYgSw+BEEQBEHEDCR8CIIgCIKIGUj4EARBEAQRM5DwIQiCIAgiZiDhE6P885//xLBhw5CTkwOPx4O333474nmO4/DAAw8gOzsbTZs2RUlJCfbs2WNPYxlFrg/Hjh0Lj8cT8W/w4MH2NJZh5s2bhx49eiAlJQWZmZkYPnw4du/eHXHNmTNnMHXqVKSnp6NFixYYOXIkjhw5YlOL2URJP/br16/RmLzttttsajGbPPfcc+jatWuowF5xcTE++OCD0PM0FpUh1492jkUSPjHK6dOn0a1bN/zlL38RfH7BggVYsmQJnn/+eWzduhXNmzfHoEGDcObMGYtbyi5yfQgAgwcPRlVVVejf66+/bmELncGnn36KqVOn4ssvv0RZWRnq6+tx9dVX4/Tp06Fr7r77brz33nt488038emnn6KyshIjRoywsdXsoaQfAWDSpEkRY3LBggU2tZhNcnNz8fjjj2Pbtm34+uuv0b9/f/z+97/HDz/8AIDGolLk+hGwcSxyRMwDgHvrrbdCfwcCAS4rK4tbuHBh6LGamhouOTmZe/31121oIftE9yHHcdyYMWO43//+97a0x8kcPXqUA8B9+umnHMcFx15iYiL35ptvhq7ZtWsXB4ArLy+3q5nME92PHMdxffv25e666y77GuVQWrZsyb344os0FnXC9yPH2TsWyeJDNKKiogKHDx9GSUlJ6DGv14uePXuivLzcxpY5j08++QSZmZm48MILcfvtt8Pn89ndJObx+/0AgFatWgEAtm3bhvr6+ojxeNFFF6Ft27Y0HiWI7kee1157DRkZGejcuTNmz56N2tpaO5rnCBoaGvDGG2/g9OnTKC4uprGokeh+5LFrLNIhpUQjDh8+DABo06ZNxONt2rQJPUfIM3jwYIwYMQIFBQXYt28f/vd//xdDhgxBeXk54uPj7W4ekwQCAUyfPh29e/dG586dAQTHY1JSEtLS0iKupfEojlA/AsBNN92Edu3aIScnBzt27MC9996L3bt3Y/369Ta2lj2+//57FBcX48yZM2jRogXeeustdOrUCdu3b6exqAKxfgTsHYskfAjCJG644YbQ/3fp0gVdu3ZFYWEhPvnkEwwYMMDGlrHL1KlTsXPnTnz++ed2N8XRiPXj5MmTQ//fpUsXZGdnY8CAAdi3bx8KCwutbiazXHjhhdi+fTv8fj/Wrl2LMWPG4NNPP7W7WY5DrB87depk61gkVxfRiKysLABolKlw5MiR0HOEetq3b4+MjAzs3bvX7qYwybRp07BhwwZs3rwZubm5ocezsrJQV1eHmpqaiOtpPAoj1o9C9OzZEwBoTEaRlJSEDh06oKioCPPmzUO3bt3w9NNP01hUiVg/CmHlWCThQzSioKAAWVlZ+Oijj0KPnTx5Elu3bo3wzxLqOHToEHw+H7Kzs+1uClNwHIdp06bhrbfewscff4yCgoKI54uKipCYmBgxHnfv3o0DBw7QeAxDrh+F2L59OwDQmJQhEAjg7NmzNBZ1wvejEFaORXJ1xSi//PJLhLKuqKjA9u3b0apVK7Rt2xbTp0/HI488go4dO6KgoAD3338/cnJyMHz4cPsazRhSfdiqVSvMnTsXI0eORFZWFvbt24dZs2ahQ4cOGDRokI2tZo+pU6di1apVeOedd5CSkhKKlfB6vWjatCm8Xi8mTJiAGTNmoFWrVkhNTcUdd9yB4uJiXHHFFTa3nh3k+nHfvn1YtWoV/t//+39IT0/Hjh07cPfdd6NPnz7o2rWrza1nh9mzZ2PIkCFo27YtTp06hVWrVuGTTz7BP/7xDxqLKpDqR9vHoi25ZITtbN68mQPQ6N+YMWM4jgumtN9///1cmzZtuOTkZG7AgAHc7t277W00Y0j1YW1tLXf11VdzrVu35hITE7l27dpxkyZN4g4fPmx3s5lDqA8BcCtWrAhd8+uvv3J/+MMfuJYtW3LNmjXj/ud//oerqqqyr9EMItePBw4c4Pr06cO1atWKS05O5jp06MDNnDmT8/v99jacMcaPH8+1a9eOS0pK4lq3bs0NGDCA27hxY+h5GovKkOpHu8eih+M4znx5RRAEQRAEYT8U40MQBEEQRMxAwocgCIIgiJiBhA9BEARBEDEDCR+CIAiCIGIGEj4EQRAEQcQMJHwIgiAIgogZSPgQBEEQBBEzkPAhCIIgCCJmIOFDEARBEETMQMKHIAjHUFdXZ3cTGsFimwiCEIeED0EQttGvXz9MmzYN06ZNg9frRUZGBu6//37wJ+nk5+fj4Ycfxq233orU1FRMnjwZAPD555/jyiuvRNOmTZGXl4c777wTp0+fDr3vs88+i44dO6JJkyZo06YNrrvuutBza9euRZcuXdC0aVOkp6ejpKQk9Np+/fph+vTpEW0cPnw4xo4dG/pba5sIgmADEj4EQdjKyy+/jISEBPzrX//C008/jUWLFuHFF18MPf/EE0+gW7du+Pbbb3H//fdj3759GDx4MEaOHIkdO3Zg9erV+PzzzzFt2jQAwNdff40777wTf/7zn7F79258+OGH6NOnDwCgqqoKN954I8aPH49du3bhk08+wYgRI6D2yEK1bSIIgh3okFKCIGyjX79+OHr0KH744Qd4PB4AwH333Yd3330X//73v5Gfn49LL70Ub731Vug1EydORHx8PF544YXQY59//jn69u2L06dP4+9//zvGjRuHQ4cOISUlJeLzvvnmGxQVFWH//v1o166dYHsuueQSLF68OPTY8OHDkZaWhpUrVwKApjY1adJEVz8RBGEcZPEhCMJWrrjiipDoAYDi4mLs2bMHDQ0NAIDLLrss4vrvvvsOK1euRIsWLUL/Bg0ahEAggIqKCgwcOBDt2rVD+/btccstt+C1115DbW0tAKBbt24YMGAAunTpguuvvx5//etfceLECdVtVtsmgiDYgYQPQRBM07x584i/f/nlF0yZMgXbt28P/fvuu++wZ88eFBYWIiUlBd988w1ef/11ZGdn44EHHkC3bt1QU1OD+Ph4lJWV4YMPPkCnTp2wdOlSXHjhhSFxEhcX18jtVV9fr7tNBEGwAwkfgiBsZevWrRF/f/nll+jYsSPi4+MFr+/evTv+/e9/o0OHDo3+JSUlAQASEhJQUlKCBQsWYMeOHdi/fz8+/vhjAIDH40Hv3r0xd+5cfPvtt0hKSgq5rVq3bo2qqqrQZzU0NGDnzp2y30FJmwiCYAMSPgRB2MqBAwcwY8YM7N69G6+//jqWLl2Ku+66S/T6e++9F1u2bMG0adOwfft27NmzB++8804okHjDhg1YsmQJtm/fjp9++gl/+9vfEAgEcOGFF2Lr1q147LHH8PXXX+PAgQNYv349jh07ht/+9rcAgP79++P999/H+++/jx9//BG33347ampqZL+DXJsIgmCHBLsbQBBEbHPrrbfi119/xeWXX474+HjcddddoRRxIbp27YpPP/0Uc+bMwZVXXgmO41BYWIjS0lIAQFpaGtavX4+HHnoIZ86cQceOHfH666/j4osvxq5du/DPf/4TixcvxsmTJ9GuXTs8+eSTGDJkCABg/Pjx+O6773DrrbciISEBd999N6666irZ7yDXJoIg2IGyugiCsA2hLCqCIAgzIVcXQRAEQRAxAwkfgiAIgiBiBnJ1EQRBEAQRM5DFhyAIgiCImIGED0EQBEEQMQMJH4IgCIIgYgYSPgRBEARBxAwkfAiCIAiCiBlI+BAEQRAEETOQ8CEIgiAIImYg4UMQBEEQRMxAwocgCIIgiJjh/wN9s77nJ4/qUAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOBElEQVR4nO3deVxU9f4/8NewCgiDggsICqJXU9MUi9DSLNx+pbevmrRYapTWlYr2ut4Wb4vtWXZvq2lli1y1rlmWUNY1JW5pZqaZclExcAFlRDFZ5vz+mM7hnDNnm2FY5/V8PHwkM2fOfM7JOm8/n/fn/bYJgiCAiIiIyA8EtPQAiIiIiJoLAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AYDHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIiIj8BgMfIqJWaNmyZbDZbNi3b19LD4WoXWHgQ+SnvvvuO2RnZ2PgwIGIiIhAz549MX36dPz6669ux1500UWw2Wyw2WwICAhAVFQU+vXrh2uvvRZ5eXkefe/HH3+M0aNHo2vXrggPD0fv3r0xffp0fPbZZ766NDePP/44PvroI7fXN2/ejIcffhiVlZVN9t1qDz/8sHQvbTYbwsPDMWDAAPztb3/DiRMnfPId7733HhYtWuSTcxG1Nwx8iPzUk08+iVWrVuGSSy7BCy+8gDlz5uA///kPhg0bhh07drgdn5CQgHfeeQdvv/02nn76aUyePBmbN2/GuHHjkJmZidraWtPvfOaZZzB58mTYbDbcf//9eP755zF16lTs2bMHH3zwQVNcJgDjwGfBggXNGviIXn75Zbzzzjt47rnn0L9/fzz22GOYMGECfNE+kYEPkb6glh4AEbWMO+64A++99x5CQkKk1zIzM3H22WfjiSeewPLlyxXH2+12zJgxQ/HaE088gVtvvRX//Oc/kZSUhCeffFL3++rq6vDII49g7NixWL9+vdv7R44caeQVtR7V1dUIDw83PGbatGmIjY0FANx0002YOnUqVq9ejW+//Rbp6enNMUwiv8QZHyI/NWLECEXQAwB9+/bFwIEDsWvXLkvnCAwMxIsvvogBAwbgpZdegsPh0D22vLwcJ06cwMiRIzXf79q1q+Ln33//HQ8//DD+9Kc/oUOHDoiLi8OUKVNQVFQkHfPMM89gxIgRiImJQVhYGFJTU7Fy5UrFeWw2G06dOoW33npLWl6aNWsWHn74Ydx9990AgOTkZOk9eU7N8uXLkZqairCwMHTu3BlXXnklSkpKFOe/6KKLMGjQIGzZsgWjRo1CeHg4/vrXv1q6f3IXX3wxAKC4uNjwuH/+858YOHAgQkNDER8fj3nz5ilmrC666CJ88skn2L9/v3RNSUlJHo+HqL3ijA8RSQRBwOHDhzFw4EDLnwkMDMRVV12FBx54AN988w0uvfRSzeO6du2KsLAwfPzxx7jlllvQuXNn3XPW19fjsssuwxdffIErr7wSt912G6qqqpCXl4cdO3YgJSUFAPDCCy9g8uTJuOaaa1BTU4MPPvgAV1xxBdauXSuN45133sENN9yA8847D3PmzAEApKSkICIiAr/++ivef/99PP/889LsS5cuXQAAjz32GB544AFMnz4dN9xwA44ePYrFixdj1KhR+OGHHxAdHS2Nt6KiAhMnTsSVV16JGTNmoFu3bpbvn0gM6GJiYnSPefjhh7FgwQJkZGTg5ptvxu7du/Hyyy/ju+++w6ZNmxAcHIz58+fD4XDg4MGDeP755wEAHTt29Hg8RO2WQET0h3feeUcAICxZskTx+ujRo4WBAwfqfu7DDz8UAAgvvPCC4fkffPBBAYAQEREhTJw4UXjssceELVu2uB335ptvCgCE5557zu09p9Mp/b66ulrxXk1NjTBo0CDh4osvVrweEREhzJw50+1cTz/9tABAKC4uVry+b98+ITAwUHjssccUr//0009CUFCQ4vXRo0cLAIRXXnlF97rlHnroIQGAsHv3buHo0aNCcXGx8OqrrwqhoaFCt27dhFOnTgmCIAhLly5VjO3IkSNCSEiIMG7cOKG+vl4630svvSQAEN58803ptUsvvVTo1auXpfEQ+RsudRERAOCXX37BvHnzkJ6ejpkzZ3r0WXFGoaqqyvC4BQsW4L333sPQoUPx+eefY/78+UhNTcWwYcMUy2urVq1CbGwsbrnlFrdz2Gw26fdhYWHS748fPw6Hw4ELL7wQW7du9Wj8aqtXr4bT6cT06dNRXl4u/erevTv69u2LDRs2KI4PDQ3F7NmzPfqOfv36oUuXLkhOTsbcuXPRp08ffPLJJ7q5Qfn5+aipqUFOTg4CAhr+133jjTciKioKn3zyiecXSuSHuNRFRDh06BAuvfRS2O12rFy5EoGBgR59/uTJkwCAyMhI02OvuuoqXHXVVThx4gQKCwuxbNkyvPfee5g0aRJ27NiBDh06oKioCP369UNQkPH/otauXYtHH30U27Ztw5kzZ6TX5cGRN/bs2QNBENC3b1/N94ODgxU/9+jRwy1fysyqVasQFRWF4OBgJCQkSMt3evbv3w/AFTDJhYSEoHfv3tL7RGSMgQ+Rn3M4HJg4cSIqKyuxceNGxMfHe3wOcft7nz59LH8mKioKY8eOxdixYxEcHIy33noLhYWFGD16tKXPb9y4EZMnT8aoUaPwz3/+E3FxcQgODsbSpUvx3nvveXwNck6nEzabDevWrdMMAtU5M/KZJ6tGjRol5RURUfNh4EPkx37//XdMmjQJv/76K/Lz8zFgwACPz1FfX4/33nsP4eHhuOCCC7wax/Dhw/HWW2+hrKwMgCv5uLCwELW1tW6zK6JVq1ahQ4cO+PzzzxEaGiq9vnTpUrdj9WaA9F5PSUmBIAhITk7Gn/70J08vp0n06tULALB792707t1ber2mpgbFxcXIyMiQXmvsjBdRe8YcHyI/VV9fj8zMTBQUFOBf//qXV7Vj6uvrceutt2LXrl249dZbERUVpXtsdXU1CgoKNN9bt24dgIZlnKlTp6K8vBwvvfSS27HCHwX+AgMDYbPZUF9fL723b98+zUKFERERmkUKIyIiAMDtvSlTpiAwMBALFixwKygoCAIqKiq0L7IJZWRkICQkBC+++KJiTEuWLIHD4VDspouIiDAsLUDkzzjjQ+Sn7rzzTqxZswaTJk3CsWPH3AoWqosVOhwO6Zjq6mrs3bsXq1evRlFREa688ko88sgjht9XXV2NESNG4Pzzz8eECROQmJiIyspKfPTRR9i4cSMuv/xyDB06FABw3XXX4e2338Ydd9yB//73v7jwwgtx6tQp5Ofn4y9/+Qv+/Oc/49JLL8Vzzz2HCRMm4Oqrr8aRI0fwj3/8A3369MH27dsV352amor8/Hw899xziI+PR3JyMtLS0pCamgoAmD9/Pq688koEBwdj0qRJSElJwaOPPor7778f+/btw+WXX47IyEgUFxfjww8/xJw5c3DXXXc16v57qkuXLrj//vuxYMECTJgwAZMnT8bu3bvxz3/+E+eee67i31dqaipWrFiBO+64A+eeey46duyISZMmNet4iVqtltxSRkQtR9yGrffL6NiOHTsKffv2FWbMmCGsX7/e0vfV1tYKr7/+unD55ZcLvXr1EkJDQ4Xw8HBh6NChwtNPPy2cOXNGcXx1dbUwf/58ITk5WQgODha6d+8uTJs2TSgqKpKOWbJkidC3b18hNDRU6N+/v7B06VJpu7jcL7/8IowaNUoICwsTACi2tj/yyCNCjx49hICAALet7atWrRIuuOACISIiQoiIiBD69+8vzJs3T9i9e7fi3hht9VcTx3f06FHD49Tb2UUvvfSS0L9/fyE4OFjo1q2bcPPNNwvHjx9XHHPy5Enh6quvFqKjowUA3NpOJGMTBB80hiEiIiJqA5jjQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNFjBUcTqdKC0tRWRkJMu+ExERtRGCIKCqqgrx8fEICNCf12Hgo1JaWorExMSWHgYRERF5oaSkBAkJCbrvM/BRiYyMBOC6cUZ9h4iIiKj1OHHiBBITE6XnuB4GPiri8lZUVBQDHyIiojbGLE2Fyc1ERETkNxj4EBERkd9g4ENERER+gzk+XnA6naipqWnpYbRrISEhhtsRiYiIvMHAx0M1NTUoLi6G0+ls6aG0awEBAUhOTkZISEhLD4WIiNoRBj4eEAQBZWVlCAwMRGJiImckmohYRLKsrAw9e/ZkIUkiIvIZBj4eqKurQ3V1NeLj4xEeHt7Sw2nXunTpgtLSUtTV1SE4OLilh0NERO0Epyw8UF9fDwBcfmkG4j0W7zkREZEvMPDxApdemh7vMRERNQUGPkREROQ3GPgQERGR32Dg4wdmzZoFm80Gm82G4OBgdOvWDWPHjsWbb77p0bb8ZcuWITo6uukGSkRE7UJFRQXKyspQVlaGLVsOY+XKCmzZclh6raKiosXGxl1dzaiiosKw8GFISAhiYmKa5LsnTJiApUuXor6+HocPH8Znn32G2267DStXrsSaNWsQFMQ/CkRE1HgVFRV46aWXAABbtw7Fxx9fBkEIgM3mxKRJazFs2A8AgOzs7CZ75hnh066ZyP8gGGmqPwihoaHo3r07AKBHjx4YNmwYzj//fFxyySVYtmwZbrjhBjz33HNYunQp/ve//6Fz586YNGkSnnrqKXTs2BFfffUVZs+eDaAh8fihhx7Cww8/jHfeeQcvvPACdu/ejYiICFx88cVYtGgRunbt6vPrICKi1k38C77DESkFPQAgCAH4+OPLkJKyF3Z7VYt1QOBSVzOx+i+4Of8gXHzxxRgyZAhWr14NwFUt+cUXX8TPP/+Mt956C19++SXuueceAMCIESOwaNEiREVFSVOVd911FwCgtrYWjzzyCH788Ud89NFH2LdvH2bNmtVs10FERK3PsWMxUtAjEoQAHDvWuYVG5NJmAp+FCxfi3HPPRWRkJLp27YrLL78cu3fvVhzz+++/Y968eYiJiUHHjh0xdepUHD58uIVG3Db0798f+/btAwDk5ORgzJgxSEpKwsUXX4xHH30Uubm5AFzLcHa7HTabDd27d0f37t3RsWNHAMD111+PiRMnonfv3jj//PPx4osvYt26dTh58mRLXRYREbWwzp0rYLMp80htNic6dz7WQiNyaTOBz9dff4158+bh22+/RV5eHmprazFu3DicOnVKOub222/Hxx9/jH/961/4+uuvUVpaiilTprTgqFs/QRCkpav8/Hxccskl6NGjByIjI3HttdeioqIC1dXVhufYsmULJk2ahJ49eyIyMhKjR48GABw4cKDJx09ERK2T3V6FSZPWSsGPmONjt1e16LjaTI7PZ599pvh52bJl6Nq1K7Zs2YJRo0bB4XBgyZIleO+993DxxRcDAJYuXYqzzjoL3377Lc4///yWGHart2vXLiQnJ2Pfvn247LLLcPPNN+Oxxx5D586d8c033yArKws1NTW6LTpOnTqF8ePHY/z48Xj33XfRpUsXHDhwAOPHj2cHeyIiPzds2A9ISdmLY8c6o3PnYy0e9ABtKPBRczgcAIDOnV1rhVu2bEFtbS0yMjKkY/r374+ePXuioKBAN/A5c+YMzpw5I/184sSJJhx16/Lll1/ip59+wu23344tW7bA6XTi2WeflZqvistcopCQELcWEr/88gsqKirwxBNPIDExEQDw/fffN88FEBFRq2e3V7WKgEfUJgMfp9OJnJwcjBw5EoMGDQIAHDp0CCEhIW51Zrp164ZDhw7pnmvhwoVYsGBBUw63VThz5gwOHTqk2M6+cOFCXHbZZbjuuuuwY8cO1NbWYvHixZg0aRI2bdqEV155RXGOpKQknDx5El988QWGDBmC8PBw9OzZEyEhIVi8eDFuuukm7NixA4888kgLXSURETUXeYmW0tIAFBcHITm5DiEh5bqfcTgicexYDDp3Zh0fj8ybNw87duzAN9980+hz3X///bjjjjukn0+cOCHNXLQnn332GeLi4hAUFIROnTphyJAhePHFFzFz5kwEBARgyJAheO655/Dkk0/i/vvvx6hRo7Bw4UJcd9110jlGjBiBm266CZmZmaioqJC2sy9btgx//etf8eKLL2LYsGF45plnMHny5Ba8WiIiakpFRUVYvnw5AGDTpnTk5WUAEGv1FGLYMPfPqGv69OpVjdtua95xA4BNEASh+b/We9nZ2fj3v/+N//znP0hOTpZe//LLL3HJJZfg+PHjilmfXr16IScnB7fffrul8584cQJ2ux0OhwNRUVGK937//XcUFxcjOTkZHTp08GjcLV3Hp61pzL0mIqKmI3+euYKesQAaGkvbbE7k5CyC3V6FKVOmICgoCAcPAhMm9IfT2XBcYKCAwsIjSEoK8slzz+j5LddmZnwEQcAtt9yCDz/8EF999ZUi6AGA1NRUBAcH44svvsDUqVMBALt378aBAweQnp7eEkNWiImJQXZ2dotVbiYiIgIa30VAXqAwPz8D8qAHaKjVY7dXISgoCLm5uSguToLTeZbiuPp6GxYvXofk5P3N+pf+NhP4zJs3D++99x7+/e9/IzIyUsrbsdvtCAsLg91uR1ZWFu644w507twZUVFRuOWWW5Cent5qdnQxqCEiopbky9UHrQKFLg21eurq6gA01PSRHy+v6dOcu4DbTB2fl19+GQ6HAxdddBHi4uKkXytWrJCOef7553HZZZdh6tSpGDVqFLp37y5VJSYiIvJ3vuwioFWgEBAwdmy+2y6u1lTTp83M+FhJRerQoQP+8Y9/4B//+EczjIiIiKhlNXbZSr7LytMgRAxm5AnLGRn5GDmyQPP41lLTp80EPkRERNSgsctWRp3TrfI0mGkNNX3azFIXERERNWjMspVe53SHI9LjcdjtVUhO3t/iAY1VDHyIiIj8THN1Tg8ODvbp+XyBgQ8REVE74HBEorg4ydKsTWM6p4eEhFgaw8SJE1FbW2s+8GbGHB8iIqI2ztN8Ha3EZPkuq/JyZdsJeZK0vC6dw+GQdlerx1BUtPaP/J8k0+Rpo2DK1xj4UKN99dVXGDNmjFvVbCNJSUnIyclBTk5Ok46NiKg1aMzuK73PisGJXr5OSspet2BDHmDoJSY7HJF49tmtbsGKPElaPVa9Mbg2ZLsHY5mZmbDb7abX3hQY+PiBWbNm4a233sLcuXPdGo/OmzcP//znPzFz5kwsW7asZQZIRNSONWb3lZXPGuXrqAMfrS4C5eXlUs07o5kjo8BNbwzy38uDMbvdjri4OMPraioMfPxEYmIiPvjgAzz//PMICwsD4OqH9d5776Fnz54tPDoiovarMbuvPCkkqFcVWU1vdsVs5mjPnj0oLy9HUFCQNLsvzjppjUFNLxhrbkxu9hPDhg1DYmKiopL16tWr0bNnTwwdOlR67cyZM7j11lvRtWtXdOjQARdccAG+++47xbk+/fRT/OlPf0JYWBjGjBmDffv2uX3fN998gwsvvBBhYWFITEzErbfeilOnTjXZ9RERtaSKigqUlZVp/lLny3hyPvVntRKYzaoiW82f0Zu12blzAByOSGzYsAGrV69Gbm4uXnvtNbz22mvSM0VrDIB3ydNNjTM+LeTgQWDPHqBvXyAhoXm+8/rrr8fSpUtxzTXXAADefPNNzJ49G1999ZV0zD333INVq1bhrbfeQq9evfDUU09h/Pjx2Lt3Lzp37oySkhJMmTIF8+bNw5w5c/D999/jzjvvVHxPUVERJkyYgEcffRRvvvkmjh49iuzsbGRnZ2Pp0qXNc7FERM3E6lKWyKxast75jJahHn00GQ8+eBT79gUhKakO8fHnAjjXo/wZ7VkbAZ9/PgHr14+Tvk9v/OqcoaKiPrrJ0y2JgU8LWLIEmDMHcDqBgADgtdeArKym/94ZM2bg/vvvx/79+wEAmzZtwgcffCAFPqdOncLLL7+MZcuWYeLEiQCA119/HXl5eViyZAnuvvtuvPzyy0hJScGzzz4LAOjXrx9++uknPPnkk9L3LFy4ENdcc42UuNy3b1+8+OKLGD16NF5++WV06NCh6S+WiKiZeNJg08ruK08KDorLULGxsYiL64bUVOvjFpOmxVkl9U4vQIDYeV38vtOnOyA/P0N3/PLKzK2lRYUaA59mdvBgQ9ADuP45dy4wfnzTz/x06dIFl156KZYtWwZBEHDppZciNjZWer+oqAi1tbUYOXKk9FpwcDDOO+887Nq1CwCwa9cupKWlKc6bnp6u+PnHH3/E9u3b8e6770qvCYIAp9OJ4uJinHXWWU1xeURErZonu6/Un/v554GWE5it0JtVEoOVnTsH4PPPJ7h9nxj0WB1/a2hRocbAp5nt2dMQ9Ijq64G9e5tnyev6669HdnY2ADRZM9eTJ09i7ty5uPXWW93eYyI1EbV3ektBnuy+EslniOQzMIB7zox627vD4VAUENRKStZit1dhwICdWL9+nGq87snLngZf4r3ZsaNSeo3b2du5vn1dy1vy4CcwEOjTp3m+f8KECaipqYHNZsP48eMV76WkpCAkJASbNm1Cr169AAC1tbX47rvvpGWrs846C2vWrFF87ttvv1X8PGzYMOzcuRN9muuiiIh8RAweKisrUVdX5/Z+cHAw7Ha77sPaaCnL091X6hkiV9DjCn7UOTPyQoLeUAdrep3X5TM+6vFPmTIFQUFByM3N1fwO+b15+23lvdFrpNoUGPg0s4QEV07P3LmumZ7AQODVV5svwTkwMFBatgoMDFS8FxERgZtvvhl33303OnfujJ49e+Kpp55CdXU1sv5IQrrpppvw7LPP4u6778YNN9yALVu2uNX/uffee3H++ecjOzsbN9xwAyIiIrBz507k5eV5lABIRNScPE1SVj+szZayzKolq3dfac0QATaMH/8ZBgzYqZhlEVyVAr2iF6xp5eiEhf2uO35XnlGcok6QWCPI7N54kifVWAx8WkBWliunZ+9e10xPcwU9oqioKN33nnjiCTidTlx77bWoqqrC8OHD8fnnn6NTp04AXEtVq1atwu23347FixfjvPPOw+OPP47rr79eOsfgwYPx9ddfY/78+bjwwgshCAJSUlKQmZnZ5NdGROQtTx++6uPNlrKmTJmCOXNiLe++0pshEoOeKVOmIDY2FiEhIW5jUc/g6C2/WQnWjHZuaS1xac3ceLPM11QY+LSQhITmC3jMKjJ/9NFH0u87dOiAF198ES+++KLu8Zdddhkuu+wyxWuzZ89W/Hzuuedi/fr1uufQqv1DRNSWOBwORfVhs6UscUYkLg6Wdl+ZzRCJ5wOAsrIy6XPqGZzBg7dj+/bBmstv3gQkegnL1dXVutfi6TJfU2IBQyIiIg1iscCDB+M0u56vWLECFRUV0hKVrwoJqvtp5eQswsyZy5CTs0ixdVzrfFozOD/+OMRtRke8FrMu7cOHD8eYMWMwZMgQ03EvX74cFRUVmu+Z3ZvmxBkfIiIiFa3dVFp1a2pqatzyWhpbSFCrn5aa3vn08oLk5DM6ZrNK33//veb36y2dGY25tdT1YeBDREQko72byhUwrFmjXbdGHoRYXcoy4u0OJ73qy0bb4D0NSKwUYdTTGur6cKmLiIhIRnvWRBSAwsI0nfdantaS0pAhP+ouMbkSrudg9uyxSE7eL9ser73Mp5cMrV4GbM044+OFxmwbJGt4j4mopZh1Gi8oSEdaWqHhzIW6mCAARW0gsR6QXGMK+anzgtQzOBdf/KXmjE58fLzbdxot83XqdNyjZGhv8pqaGgMfD4h1b2pqahAWFtbCo2nfxP9hqGsNERE1FXWSsnK5q4HZridP6wHJmRXyq6iowNGjR3H8+HFFVWYAOP/88yEIAqKiotC5c2cA0K3cDGgHWkbLfB9/fBmyst7waHdWY/KVmgoDHw8EBQUhPDwcR48eRXBwMAICuFLYFJxOJ44ePYrw8HAEBfGPKBGZ05phARraNqgf+iLxoSt+PjMzE7W1tUhL+w0pKYtQUpKAVaum6T7o9+zZg/LycsvtIMwYBQiNLbBohdEynyAE4MCBnooKzuqlM71rb+7gxgifKh6w2WyIi4tDcXGx1OGcmkZAQAB69uwJm81mfjAR+bXGzLAAwIwZM7B8+XK31+12wG7fhZoa/V1PGzZsMD2/1g4ovV1RRhpbYNEK42U+AevXT5DaV8THl7otna1evVr33M3ZlsIIAx8PhYSEoG/fvs1aXtsfhYSEcEaNiCyx+v9jvWBDXXhPfZw6ZwYAiouTLAUtWjugAOjuiqqsrFQURTS7npKSRFRXhyE8/DQSE0savWPKfZlP3BHWsDNM7NKek7NI8/u82erenBj4eCEgIAAdOnRo6WEQEZEGrQev1S3YeseJ27C13ncFRdbbQbj2bmi3iMjNzbU0M7J161CsWXMZlJuzBUye/LHlreVyesnRwcE1OHCgJ9avn6A4Xp7nNGbMGGnmy+g+y5fBWnLpi4EPERG1G3qBiVE/KpFZ3yqt99esuQw2GzxqB6GmTpY2mxlxOCI1gh4AsGlelxUxMTHIzMyUOrzL6+1ERp5EXt443TwnsZej2f1TL4O11NIXAx8iImqV9BKWxW3h4pZwcSZB78E7deoqS1uwzfpWaSf+BkCsvqF+0Ov1p5LP+IivedKz6tixGOiV4ZOPt7y83KOZFfX2enHmrLQ0DvIKI3rtJvTuX0lJAo4dO+02I3bkyBEGPkRE1HbpBSoiTx7C3iQs68+wCJa2YJs10jSr7yN+n147CNf7wJAhDU1DxdeKivpoLgnJORwOaRyAE1rBj3y84gyLNzMrWrV8Gq4RSEnZK/0cHBwsjcv9/jilXXHqGTGry3q+xsCHiIgazWqgkp2dDcC1nCMv6CcXHBzsVqPGCr3AJTHxoGE/KpFZ3yr3QMYJV0Cg3w4iJWUvlPVYA/4IepSvGS0JqdntVZg8ea3bcpfedZltkRff15s5U/f6AhqCu8zMTGmmSO/+CIKyFpB8Ka4lEp4Z+BARUaNZfYAdOXIEubm5Hp9fb6eQ+nW9wMWoH9Xx48el35v1rVK/X1TUxzCg0lqW8qYoopo4jpKSBGlXV3R0JWprQ+FwRFo6j16watyyQxncqZfH5Pfn1KkIrFx5heJ9QXC1/Bg3Lt/KZTYJBj5ERNRs1DM8YuASHHwGtbWhmlvE9XYK6b2uF7joNchU1+Ixa6Qpf98sUPI2z0cv0Js+fTpsNhuOHz+OY8eOSd3Tt24diiVLbvCocahesGq2pJeeXqAYk7rdhHh/HI5IzfNs3mze8qMpMfAhIiKfs1Kgz6gnlPjQ1ktY7tr1kOEOotmzxyI2Nlaq3FxVVYW8vDzT8U2ZMgWxsbFuY62urkZ4eLjs8w63dhB1dXWKZSrxO7QqHQPutXysbL2Pjo6W6vyUlZXh+++/N91NZZX8nui37HAiLa1Q+knM25K3pSgvL8fq1atht1chPb0AmzePVJ3Ds9ktX2PgQ0REPmWlZo5ZTyjxoa2/U6inpZ1a6qUYs/GJiboN42wIcKqrq6XWFOJ55QnbZWVlut8xbNgWJCcXIzHxoDQ+rZkisyBGnvhcWVkJwHw3Wnl5uVs+lTqPSuue5OQsQmFhGjZvTgfgHqBlZmZK166XoJyWVih9XuTpLjZfY+BDREQ+Y3X2wawnlPjQ1k9YPmC4A0svQdhsfGIdG0+odyZpfceWLediy5ZUTJ7cEGRpLamZBTFa12W2G80sWVrvnuTkLMK4cflISyvUXcorKytz260nX/oSE7HNEsubEwMfIiI/5Mut53JmD26RUR6JMnlWO2E5IaHM0k4t9ZKW1fFp0VseO3LkCGpqalBcXKx7D1zcCyKqz2cWxGgx241mxuye6OU8yYNEefCnLoZolgfV3Bj4EBH5GU+2nnsa/Fh9cOv1hLLZnEhPL1Acq/fgNHug6lVxthpYyAMTrd1b8no0ZvdAJAYUeufTC2IA4/5gRvdCHWCpf/Yk2LLah6tLly6Kn/WCJ3VidHNg4ENE5Gesbj0vLS3VPFZrNkh8gJnNPshzaNQ9oXbuHIjNm9OxefNIFBSkK4KL2bPHSnkpVVVVqKurQ1BQECIjI6Xzie+vXr3acPnGyuyIMvFaWa/HLHlYq3ChyGZzIji4Rne5DQA6dTqOrKw3UFsbIm2ZX7Qox3THlnw3lRgkqQOswYMbiifKz+XpPTHbOaZOeNbSUv26GPgQEZEmo9yQGTNmICUlRfpZ/aB78MGj2LcvCElJdYiPPxfAuZp/u5c/rAsKGpJg1cFFcHCwpfybzMxMAMbLN2YzRe6J19br7ogzIl27HsLUqatQXJyELVtSIU8Orq0N1RxbYWEaCgrSFYFF587HPNqxpQ5O1A1Rf/xxCOQB3Jo1rh1ynt4TKzvHWqoJqRkGPkREfs7K1nO15cuXuy2FyX8fFwekpmp/VgyQKisrcfToUWzYsME0z0RdyVlvzOJxZss3RrV6zAr4qc8l0tueP3ZsPuLjS6WAQqu+jc3mVOx+EgMLq33GHI5IlJQkugUnGiNX/RyAJUtuUCy1ybf0OxwOrFixolG5Ua0NAx8iIj9mtnwhPlABIDGxxDCvwyoxQIqLi0N0dDQ2bNjgUZ6JlSUXsyW3MWPGSF3FxWanlZWVyM3N1e05pe7CbtTZXT6rkp+fgZycRbqtL8S8JnW9GzGAMrsvyoDLjLLvlvg98tmb2NhYqVaQyJuk69aKgQ8RkZ8Rm12aLV9s3TpU1Q9KwOTJH5tWBPaGWaAitpXwZMnFaPlGXa05MzNTqnOjNxajpSCr2/P1xgZAWuYSWekz5h5wmbFBq8Gp2exNY3eOtSYMfIiI/EhFRYWUK2O0fAHArQkmYPOqIrBVVgIVsyWXoCDlY029pKW3RKbOH9Ibi951W9mer/5u9djUDT4zMvJN+4xZWZZTEuD6d6qc+bEye9PatqV7i4EPEZEfkS9PGS1faDXXBHyf16HX50mLwxGJU6fCoZ6xkD+0o6OjNdsnANYrSquDE6BhaUys3NxwvCsHxmh7/qRJaw23w4uGDfsBp093kNpb5OdnICzsdyn3RmzDIb8uvWW5//f/PsGnn14K5b9DebBjcxujle3mrWlburcY+BAR+Sm7vQoZGfnIy8uAVksCrSURX+d1GG171gtaXA9sp86YtXcTWVkiMwqM+vbt65b3Aigf+Ort+eJ2dADSdnSt7x47dizy8vLgcERKQY/eGB0OBwRBkGa29Jaghg37AUFBgmpLvjqQtWH8+M8wYMBOxf2TX1Nr3pbuLQY+RER+auvWocjPbwh6MjLyFe0UJk9eq1juaqq8DrOHplbisM0mYOrUXEXvKwCKXlbyB7jZEplZYORwODQDH3lgoG5cevz4cWzYsB/FxUmG3y3WIvKmXQXgvgR15ZUXoK5uLMaNs+Haa/+LtWt/QXBwjdS9XWSzOaWgR9zJpRXEtKWgxgoGPkREfkjrQZ+fn4FBg3a4VUYuKUkAALcgo7noBQQAZDMhriWqpUvzFGOcPn06APNdSWZBx4oVK5CZmQm73e4WHMh3qQHu7UDMvltM3G7Mzin5ElRiYqKig/vPP38OAIbJyVo7udorBj5ERH7ISl0WMZjQC3iaK69DL3F45cppqKlxtXPQW6Iy26ll1CMLEPC//yUDsKFz5wpFAvT06dMVuT4icUu8nNl3i4nbWsdlZOT/kW/lHuQFB59BbW2oYf0lvaU4dXJyW8rRaSwGPkRE7YxRA1JxKchsdsEo32XKlCmIj49vtiUQ/RYQAX+85vo94P329oZ8p7GQJwBv3DgKGzeONu3PpUcMUlJS9iInZ5Hpjij5GEtL46WcH3nPLr0Eaq0yA+0xR6exGPgQEbUjVhuQGs1CmOW7xMbG+uxBaSVIA1wBQUjIGaxceYXiGK2t3PKZq5MnTyreM9o1Fh9fBvfKxsb9uYyqXpsFj4CyLYh8JufUqQgp6Vz8/jVrLpOKKFoZm8ifghorGPgQEbUj6iDC6MGsNwPSXO0JrAZposTEEs1ZKvmMj4urESgArF+/HoC1pSmjWjyA+z0wCmysBI9yWu0u3AX8ca3mYyN9DHyIiNow9YyJfJbEbMZB/fA1qg3TFO0JrAZpY8aMwYYNG3RnqQD18o+y/xTgqu+jlbwbFxeH6dOnIzc3V7cWj9Y9MAtsPAke9dpduHOqZnwatNX2ES2BgQ8RURtlNGNiZcZBbxdPS7QnMArSxJ5agPYslcMRiYkTlQX7zJZ/5OQzQWY5NlZnxTwJHq02RTXL8eFsjzUMfIiIPGCUkwI0b6Ko0YxJY5ermrM9gVmQdvr0acXx8jwdowad3i7/iOdPTt6PQYN2aN6D0tI4GM0IeRI8mrW7mDp1pWJnnVaRRH/doeUNBj5ERBZZzUnJzs5u9oRS9YxJRka+x8tVLdWewCxIW7dunfS6PLgDoBv0ANaXf4yuR+seiBWWlUtSgtRbS2Q1eDRrdzFo0C7TMQGuRqtdunRhMrMJBj5ERBYZzfR4c5yv6BUjzMjI112q0dJSW5+tLgspZ3ecGDhwp2HQo3W9ejN2mZmZqK2txenTpxWBlhbtpSkb4uNL3Y61GjzqtbuQf1YrL0t+PgY81jDwISLSYZQ43JrozZjEx5daqh0j583Ds7HLf1aWhdwTgAPw88+DoLXcpF4ako9TPmOnl0w9Y8YMhIeHKz4r7xvmmm3Sb5QKQKrybHY/srOzcfToUanRqdG/o+asndSeMfAhItJgZVnLaKu4L8fRmGKETb1cZTWY0Fr+czgc0u/NloX0E4Ddu4yrl4YA96DVKJm6pqYGKSkputdcVNQHymUuZaA2ffp09O/fX/fzcjExMSwy2MwY+BARaTh69Kjh+0YPTl/xRTFCwH2JxBcPUTEgs7p9Xv1Qr6hQtoAwCyKNa+xodxmXn1NdKNAomTo3N1c3T0v8rHKWyZVwLNKqF2SGQU3zYeBDRKSifiirmT04fcUXxQgB3zeg1JrlKSlJ9OieyK/NKGAaO3Ys8vLypOBO3i1eJO8ybuWcJSWJmkuDhYVpGDcu3218clZ2y3FXVevGwIeISOXIkSNur/lyq7g3rMwwNdcuLL2gRc3KPTELIiMjI6VjxeCusDANBQXplvOB5OcsKurzR/DkbvPmdKSlFf5RG8ihGSyaJWJPnz6dszetHAMfIiKZiooKtwaUmzalS32TrGwVl+euaPF0qcksOGip3T7uCcdK8nuizrERf/Y0iLTbqzBuXD7S0go9ygcShACUlCT8sUylVyyw4XtXrFihudxltqzozTIXNa92Gfj84x//wNNPP41Dhw5hyJAhWLx4Mc4777yWHhYRtQHqJY4vvrgIGzeOgrwhpNlWcaNlMpEntX7MggNfL2VZZVRxWH1PVq9erblUFxx8xjCIDArSfkwZ7YDSzgcSUFycbFIhWUBpaTySk/cD0F/uas7ijuR77S7wWbFiBe644w688sorSEtLw6JFizB+/Hjs3r0bXbt2benhEVEbsmlTuiLoEcm3ig8adDmGDIlAfPy5AM5VNL0E9PNyPKn101y9szylHWA4MW2a+3ZyraU6wLz9QnR0tGLLtxV2exUyMvKRlzcWDf/ubNiyJVUzIJIfk5+fgUGDdrgFMy1V3JF8r90FPs899xxuvPFGzJ49GwDwyiuv4JNPPsGbb76J++67r4VHR0RthcMR+cfyllbDyIat4hMnhiEurpvmOYzyctRLP0ZLUi3RO8sKvXGpt5NrLdU15NnIG3M6kZX1BhISyhSfN9ry7XA4UFtbi5MnT0qd2F1jc8D9310A0tM3KfKDrC6zcct5+9GuAp+amhps2bIF999/v/RaQEAAMjIyUFBQoPmZM2fO4MyZM9LPJ06caPJxElHrd+xYDLRzQQSMHdvQmkDvb/hmeTny7dUio+Wv1rq8otc0VD7Lpb0kpnVvA1Bbqz9jor43elviS0vj/mgpoWSzOZGWVijlBwUH12DJkhssz6QxqGkf2lXgU15ejvr6enTrpvzbV7du3fDLL79ofmbhwoVYsGBBcwyPiNoQvTyRCy/8D0aOdP1FSmsHT2VlJQDjvBzxfbPlr9a4vFJRUeE2W6XXNFScATp9ugPUFZZd9Jt8ioyuTX93mdZ3KWfJxH+2xpk0alrtKvDxxv3334877rhD+vnEiRNITExswRERUWvg3jjSibFj86WgB4Bm3mBdXR0A/byc0tJ4vP32dZYKH7a25RWzKs0HD8ZpznIJAqC9ZOhedVledNFqiwb33WXu3zVt2krNis6tdSaNmk67CnxiY2MRGBiIw4cPK14/fPgwunfvrvmZ0NBQhIaGNsfwiKiNMXooZmZmKh7KYiXj48ePA3AFToMHb8ePPw6B+IA/66xd0k4wwFrhQ/E79FpX1NTUoKysrFkCIKOig65rHQz1EpbxLipADHq0cnvEa1NTX6vR7jLAFXAmJh7Ufd+sRxa1L+0q8AkJCUFqaiq++OILXH755QAAp9OJL774AtnZ2S07OCJqE6wuL3Xp0kX6vVZrCYcjEtu3D4Z8x9CuXWd5VfjQausKeY6QGCiJyb9qQUFBiI6O9ipg0spfagjwlFyzXoB+7RzX59W5PWIOlFHvL5HesqTWTJInuEOrfWpXgQ8A3HHHHZg5cyaGDx+O8847D4sWLcKpU6ekXV5E1HY1tgu4Fd4sL2kdq5fjY9bVW4vV1hVHjx5FTEyMbqCk9zmrncSNrk0v6HHftu7841jj3B7Aeu8vrd1lGRn5iI8vdZupE5fQ1Oewct3UPrS7wCczMxNHjx7Fgw8+iEOHDuGcc87BZ5995pbwTERtS2O6gHuqsZ93OCJx6lS4Zo6PUeFDK4yCAbHasFagpNXmQf458Tgr99RohqWBcvlKvmRYVNTHNKHY035oVnN1YmNjGdD4uXYX+ACu/0i5tEXUvlhtamn0t/jmmDFS7i5ySgGCfJyDBu3QfEDv2bMHJSUlCAsLk5aigIaaP3r1cOTBQGlpqdt41I09tYIIT+6p1gzL4MHbsX37YMXn5Tk78iVDoyBlzJgx2LBhg1f90Kzk6nD5itpl4ENE7Ze3ndG9yZNp7NiAAAiCE9Om5SoqGes9oDds2GB4fr16OPKu4vL6QOJ4tPJr5EGE2T0VAy9xqz6gHbxcfPGXhvV85PTuQadOnQBYq1ZtNYiZPn261/lM1P4w8CGiNsXbzuhW82TUx1mZJTIaGxCAiIhq0w7lWmNRv965cwXUOUIAUFDg6ioujiE4+Axqa0Nx6lS4pQaievd0584BGDBgp2axRcA9eDGr5yPftm8UFInnMqux09q2+1PbwMCHiNoUX/StMnsoi6zOEmVmZloam7iMIzLKvdEb44gRBdi8eaTi+wUhQHEe+Y4mrUAJEBRBhF7OzuefT8D69eMMaw1pMZtBMrr/8qakVvJ2GNSQp8wKLBARtSriTIDroe7eBdyM3kPZ4Yh0O9ZqI1Fxu7jZ2MRlHMAVfD3/fA42bx7pNha9QoAOR+QfMztO1Qic2Lw5XRa4NHSSbygSKCcgJWWvdD+OHYtBRka+NG55orLe/XE4IlFcnKR534xm5czuv82m3B1mt1chOXk/6+yQz3DGh4janMZU2/V2qQzQX56xOksRHBwsncco9+bAgZ6aYywsTPsj8FFvHbdpvCZ/T811verdVRdcsBEbN17oNi71/dm0Kd1tZ5rrml3LbHo72jp3PmZ6/wVBHaRpY5IyeYuBDxG1Sd5W2/V2qcxoeSY6OtpSron4vlGlYZvNiZ49D2h2Dt+8OR3x8aXQDny0lrS0CwjabE4EB9e4zbx884170OPScH82bUpHXt5YyGeE1qy5DDabOMMkzha572gT/30Z3X+r95JLXOQtBj5E1CZY/Ru+2XFWkmbVrOwks/IgFtsvaOfUNCyNJSSUIT3dPZfHFZQImoHDBRdsxDffXOiW46MuICi+VlsbaqnAorwbvcMRiby8DLgHXgFomKixyV7T3tFmJWmZqKkw8CGiZuVtLR1f7uDxdKmsMctjWrQaoI4YUYABA35GbW2olMuzeXM61DM1iYkHNWvoNAQ9Tlx44Ub07l2suDb19TockRrBlxOpqVuwZUsqgIYKyIMG7UBxcRJOnQqHZ6mh2jva2BiUWhIDHyJqNt5WX/Y0WNI6Xl6DBtBfKquurnZ7zRc7ycRxisSHf0lJAgAbHA47liy5QTELMnmy9syIPHAIDq6RPufiWrIaPnyL7lZz8Wd18AXYsGXLubDZnEhP34S0tEIUFfXBokU50hi0ZoT+uCNu12t0j9gYlFoKAx8iajbeVF/2NFiyugVdz/Lly90CL2+Wx7TExMRg+vTpyM3NBQBFcrHWTqqcnEXIyVmkOTMiBg7FxUlez0bJg69Vq6ZBEBq+v6AgHQMG/Oy2xOcKAMXgx4mxY/MRFva723Wo75F6Kz9RS2HgQ0TNzpPqy54ESxUVFW4tG4wK5ZkVMdSaodEKQjzZYSS2oXCv8qycMRGDF/lWbq3xms1GjRs3DklJSVKX9uPHjysCELu9CseOndYMnkpKtHeXTZuWi4iIas2ltODgGtTWhrjdI/lWfqKWxMCHiJqdWc5MeXm52/KVWbC0b98+rF+/XnFOo0DJShHDpqwMbLSzC3BfJtIbr9lsVMeOHeFwOKRGpIB2RWit4Ckx0X13mZhnZLUFhUjcym+G29SpqTHwIaJmp72rybXFGmjoNyVvNmwWLKmDnoMH4xTNOeWBEgDLM06N2WGklWsk9r0y6nAu341VXJyE4OAzhuPVmo0Sg5ulS/MU16QOoNLTC5CWVqgZPCUklPlkiQ8A7HY7t6lTq8DAh4ianXtirQAgAEuW3KCb66M3K3HqVAQcjkjNh7teIT7AZhhEFRcXSwGKSN4t3coD2izXSGumJiMjH/Hxpejc+ZgiqVirRo86j8dKnyytWbPNm0di8+Z0TJ68VjOfyGiJb+zYsQCAvLw8w3th9Z4RNQcGPkTUIoYN+wFdux5S7EgymnnRChQEAVi58grDh7ucfPnIKC/GyoPcrIu7laaoekGFVpd3efKzerzq79GbHdJfXmtIpk5O3u/2rt4yVnJyMuLi4tCvXz/O5FCbwcCHiFqMXhE9vR1J8l1IK1dOg9Yylv7DXblMY7SEY9Y5HLDexwswzieaNu18REa6+lSJicfa12DTrYQ8ZcoUAK4lQqMlQb3CifJjPFnGEvNxGNRQW8LAh4iajTpx1Zv6OOIuJL2lH71zZmW9gYSEMuk1vdkWdZDiWn4qMwyCRPKcHnGpzCwpW5w1AVyVnTds2GB4DVo7pmJjYy3dU/clRrgdA7gCqaCgINTV1SE4OBh2u93tWjmLQ20VAx8iajbiLqnS0lKsXr3aUn0crV0+njzc5Ym6auolHIcj0i0hWuxLpbfzS6SX0+NN1WdPrsHqZ9XLa4WFaVJlaPUxsbGxUjBG1N4w8CGiZhUTE6NYJjJKni0vL0dsbCxmzJiB8PBwlJeXWwqYzBJyO3XqJCUqi+cEgMLCNLi3ZFAWFdTKPwL0c3qCg894VfXZk7YO8gaoVj5rt1dh3Lh8pKUVsm0E+R0GPkTUJIzaTKh3TOklz4oBCeBKJpYv6Vh5uGuds1+/fppLNA5HJAoK0g2vSV1rSO+a1Mtlgwdvx/btgw23hFdUVFi+L1OmTJHuhbjkJDZANfusp8cQtTcMfIjI56y2mdBiVE1Zveyl9+AeO3YsIiMjFVvQAeO8FLOCgi4NMzXyoEw9fnVOz/btg3XzcwDzre9q8fHxbtfhy8J/LCJI7RkDHyJqNPXsjtHshzxPRr4byexYQFlJWV2NWE6+Hd1s27nIaMeTi4CxY/PdcoLUQZpeTk9tbYjmVvHKykrU1dUpXtML/qZMmaIZ9ADWq0wDxjvSmLRM7R0DHyJqFP3ZHdcWbaMdTfKlK6v9uzx9KFvddq7Vrdxma2jMmZGRj5EjC6Tj9YI0s51q4jKVGLiJDUvNziu/HnFZSx2kMGAhMsfAh4gaxaiJaHp6geUdTd7sfpLzZDlNzqgRqWtc7jlEZkGaUeK13o4phyMSJSWJhm02nn12q25XeiKyhoEPEfmEdjuEdMs7msxmSiorK3W3WFtpOKpHXCI6evQoamtrUVVV9cfSU2/pmKCgP6Fz586ora01LRKo1zvLiHz8aoIQgMLCNBQUpOt2pSci6xj4EJFPaCcHByA9fZPbQ1srEDCbKcnNzdWc3bC6RKanoqICR48e1c0XksvMzARgrfCiXuJ1ZWUlAP0Ch+6c0v3z5vqISImBDxH5hF4wkJZWaLlejNlMyc8//4xOnTohODgYtbW1ABq3RKa3m0pv2Uz8TrMgTZ3HI6fO6THeTebEiBEF2Lx5pFfXR0TuGPgQkU+YBQNaD2mHw4EuXbq4nQdwBQTqz23YsMHtHGazL+Xl5bo7lbSKDhotK8lZWc4SBMHt/OqASns3mashqc0GRESc8qoAIhFpY+BDRD7jaW7LihUrkJ2djczMTGlmxNN8HbOAS9wqb5YEvHXrUEViMeC+rBQUpPxfppXCi/Lzq3uAjRxZoLGbrKELuyAEID8/AxkZ+cjPzzBdLiQicwx8iMinPK0GXFNTIzXB1MvXCQk5g8TEEt3u6VYCrtLSUqkIohgAifk24ve6t6tQLitFR0djxowZWL58uSe3RPO6XD3AgJEjC6Tx//zzAKxfP8Ht++PjS5GTs4jtJYh8gIEPETWK1Sq/enkz5eXlCA4OBqCfr7Ny5RXSTAcAzRkhMeByOCJRXJzk9j3q9hdAQ76NUZ6NelkpPDxc87qCg8+gtjZUczu99vltyMvLwKBBO6SxDxy4E3l543SbrzLgIWo8Bj5E1Ch6FYPlzT+Nlq/kAYlR9WRx9seVNqO9w0lrOSk+vswtGCktLVWcW+971ctK6l5aym3oYl6O+/Kc/nUpk5StdKtXY3sJIs8w8CFqJw4eBPbsAfr2BRISmve7jXJnPNlu7p7voqT32rFjnQG4V4l2LSe5ByPqHJyioj5Q5iG7dlOlpRXqzhq5b0PX7+Jut1chIyNfGo9IK0nZaNlO3pwUYHsJIm8w8CFqB5YsAebMAZxOICAAeO01ICurpUflord8VVKSALt9l9vx4oO/pCQBK1dOgzzvxjVrArfXOnc+prucJH6fXrCll9+jDnrUn/n554G6y2Na283Fdhd5eRkAzGsaab2uV/WZiKxj4EPUhlVUVGDfvjrMmdMVTqfrIe90AnPnCjjnnCNISgpq8RkBvWWeVaumoaZGe8eW68G/CzU1a92Wrk6disDmzenQCh6MmoyKwdaxY6dNm4qql6DS0tJQWFgIQHt5S01vu/nIkQUYNGiH10nKXNYiajwGPkRtlFh8r7g4CU7nTMV79fU2LF68DsnJ+xXbuOVd1EtLA1BcHITk5DrExzsBNM3Sibh8ZbZVXIt82ae0NF6xpTs9fZNiVsZoW7iLE6tWTfO4qSgAKejRXt4SVP909Sgzuh9a1ztjxgy3xGk5LmsR+QYDH6I2SgxgzB7c4nHyKsVGyca+anqpbv4ZEnIGK1deoThGvSQk3/kFQPp9587H8Pbb1ynydwoK0jFgwM+629rlgRLgBGCDIGgvfVlNKNZbThs//jMkJh7Azp0DUVCQjs2bR6KgIF1xX9X5Oep7xaCGqHkw8CFq46w+uMUAyCzZWK/ppXy2SIv64S3u9iotLcXq1auRmFhiGKC5LyEJEJez9Lq8L1lyg+629uTk/dKy0qlTEYZBl9XCi8HBZ+AKopTXMGDATgAw7KnF/Byi1oGBD1E74EnFZG96W+n1tFJTzxbFxMRIwZJRgKa9hNQwO6PV5R0QTHeKyWv7eNtUVCQGZq6gR7l13W6vQnFxktc9w4io+TDwIWon9B7cYu2ZHTsqUVychODgMx73fjKa6TE7Tr3kpRWgGTfqBNRd3tWzLoBxkGG1qahaZWUlcnNzdQIzJ6688n3067cXgLWO7UTU8hj4EDVCc9XOacz3rF69WraMdBZsNicGD96O7dsHe937Sa8Ksxa9AodAQ5FDo8KFgLLLe0lJAqqrw7Fu3f/zKMgwmhVT9+ACXAFbdHQ0AP2dXx98cJViic3T4oNE1PwY+BB5qblq5zT2e7RyerZvH4ysrDdQWxvi8bZqT5uIAsYFDgHtGRmxXo88gFDmATmlYEkdZOgFZpdfPhydOnVCVVUV8vLypNfF1hVqmZmZAPS35KuX2IyCK25FJ2odGPgQWaCecTl4sCEYAcTaOcD48b6b+TGr0RMR4bB0Hr2cntraECQn73c7vri42O01dTNPK1WYzVRUVEjnBdxnZFxjbwgg3JebAiAITkyblovExIPS9xsFZhs2bPBojLW1tQD0t+SL90BcYtNbMuOuLaLWg4EPkQmtGZfevRuCHlF9PbB3r28CH6s1eqzwNPdEPhOi5k1itBa9ZGl1ntLEiWejY8d+WL9+ve5yU0REtWKmx5vATG+GSL4ENmzYD+ja9ZC0k0wkv5fcuUXU+jHwITKgPbMjYM2acgQExEozMQAQGCggMvIIKioaXy3Zao2e6dOnS3koamL+jNluKqu5OlbG4+n1mdm8eTOmT59u+bsLC9N0AzMAmtdqNEMUHR2t2JKfkFDGPB6iNo6BD5GBPXu0ZnZsyM39BJdd1lnxALz44nwsXuzqBD5//kyfLG1oBS0ZGfk4dsx17rq6OgDmSylauSd6D3yjYKipEniNvlO8RrPvdjgi/2hloWSzOVFaGi8VQFRfq9kMkfq+Mo+HqG1j4EOko6KiAlFRdQgI6KqY2RFnGZKT9+u2U+jR4wTuvNM34zBq21BUtBbDhrk6hmdmZqJLly66AZB8GUnvgX/6dAfF+bUSl40e/A6Hw+N8FnUAlpGRLzX0BICTJ09a+m5XMOi+K2zYsC2yCs7K4Mbq0p3RzjQR83iI2gYGPkQa5Dkol13mPjMi7w8FwK2dwr332pGZ2ZAI3dgt73rf8/HHl6Fr10NISCjDihUrAFhrOaH3wNcLEOz2KowdOxaAKwdIr2aQJ2MAtAOwvDzX94jBz/r1693uhdZ3a++8ciI5eR+2bDnX7VpLShKQmHjQ8tIdgxqi9sGoYhiR35L/zX7YsB+Qk7MIM2cuQ07OIrcZEK0gor7ehsLCCrzwwkn06gVcfDHQq5crUdpbesHKG2/cgK1bh7qN3WjZRQwSlLS3a4v5MXl5eYaJz3JWc3j0el/l5WXA4Yi0dA6RuBQmXpfN5sTkyWulVhlqK1dOQ1FRH7fPMGeHqH3jjA+RBUbtDPSSbj/7bNUfO4Bcr8m3oicleZ4ArV/kT3vnktbyjF7CM+BEauoWbNmSCuXfh5w4dSoCDkek5vV7mhztyTXpNS/V+x6HIxKdOh3XrE/k2oo+Ccpu7a77lpOzCDk5i5izQ+QnGPgQNZJe0m1tbajmTJC4Fd3TLujuwUoDvS3lVhKeCwvTUFCQ/sdykICGdhCujuYrV16hme/jTSFDrWvKyMj/Y3nLPY/K6vdoHSPf7p+Sshdify058b4lJ+/H7NljFTV4mLND1D4x8CHyAa2kW7PGmGaJsnrf07XrIbzxxg1Qdwi3sqVc67zyjuKuxpsCJk78GOvWXQpBaGgUKp9VcjgiFcX8jOrlaHV1dzgaii+KuTx5eRlQV2q2suvKyjF6ic+swUPkfxj4EPmIejmsMVu/5ctU4vKUKCGhDJMnN+68Yl0avbyhurpgw1mlwsI0WGkSarWr+8iRBRg0aIel5qXq77FyjPaSmoCMjHzm8xD5GQY+RI1klH9itP3ajLjMIm/r4KvzmhVI7NnzgO5slcMRiYIC93o5gPusk9UkZ8AVKN5440TYbDZpd5iVooWdO1dA3a1dfYxWTtPYscpt88znIfIPlgOfEydOWD5pVFSUV4Mhamus5J+IM0EORySKi5M8SgQuKipSNNBUB1mNna3Qm5UyqlBcXJyk2UV9xIgCaTzl5eWKf+qNX01dhdrKrFlRUR8oc3e0Z8CMgsUZM2Ywn4fIT1gOfKKjo2Gz2QyPEQQBNpsN9fX1jR4YUUuy8rd/T/pCaQVI5eXlhgm0FRUVWL58ueE5tJKJPZ250AsI9F7Xm4VJSyuUfpYvzXk6fqvjAxr+HSgTo8VkZpcZM2YgPDxc9/xMYibyL5YDH0+7GhO1ZUaVeh0OB1asWGG56q9+gLQIdnuV7u4u+XebJROLXcHFoKesrEz32kJCQtyCI73ZI73X09ML/mgPYS3HSO8eiMUXjRjNEpn9O5g+fTpSUlIMz09E/sVy4DN69OimHAdRq2M2C2C1YafZw/nIkSOm32WWTCzuSLKaTJydnW0Y2NXW1iIoKAjR0dGK5Gr1rE16+iakpRW6BXrqQMWo+OLkyQ0zPw6HA3a7XTrGbJbI7N+BXgNXIvJfXic3V1ZWYsmSJdi1axcAYODAgbj++usV/9Mias+s7trS21FUWhqP5OT9yM3NRWZmptt/O2J+TFMkE9fU1Ohu3dZ7XWvWpqAgXbHEpReoWC2+WFtba/h96qXEpmqaSkTtl1eBz/fff4/x48cjLCwM5513HgDgueeew2OPPYb169dj2LBhPh0kUWtllH8yZswYbNiwQadInw35+RkYNGgH7PYqrFixQndJR7utgzKZWI83lZXVdXfEAMxs5sosULFSfPH48eMICgqy9H0idksnIk94FfjcfvvtmDx5Ml5//XXpf1J1dXW44YYbkJOTg//85z8+HSRRa6aXB9OpUyfp9/HxZdCrGmy3Vxku6VhJJtZidM7KykrNmR2jpTKzZSWzQEWv+KJ85kqeS2j2fdOnTzdcymLSMhFp8apJ6ffff497771XCnoAICgoCPfccw++//57nw2OqL3Qagoqr4ujNVMiNunUar7pbTKxeM7c3FxUVFS4fc69wrJrC77Yq0tvHA5HJE6dCte9RlFk5EmoA0C9zaJm1921a1fExcXp/mLQQ0RavJrxiYqKwoEDB9C/f3/F6yUlJYiM9KyjMlF7dfz4ccVSkyd1cdRLOmYFC9VLOlaWiczygfRmjNTjkB8HOKVZGq0AzdU6Qn/mSyTPeXrwwaPYty8ISUl1iI8/F8C5nM0hIq95FfhkZmYiKysLzzzzDEaMGAEA2LRpE+6++25cddVVPh0gAOzbtw+PPPIIvvzySxw6dAjx8fGYMWMG5s+fr/gf/vbt2zFv3jx899136NKlC2655Rbcc889Ph8P+Y+DB4E9e4C+fYGEBM8+++yzlfj44xxFEKDVBTw4+AzMKg8D+ktqWsX3rOw4UxcXlL9mlq8zfvxAfPvtfrfjgAAIghPTpuUiMfGgpURvm82J4GBlEGa326WluLg4IDXVbahERF7xKvB55plnYLPZcN1116Gurg4AEBwcjJtvvhlPPPGETwcIAL/88gucTideffVV9OnTBzt27MCNN96IU6dO4ZlnngHgqiw9btw4ZGRk4JVXXsFPP/2E66+/HtHR0ZgzZ47Px0Ttl5jc+957YbjnHjucThsCAgQ89ZQDV199GtXV1abn0AsccnIWKbqGi7MlrqDH1T1cPVMi1ujRojfzoZVMLAiuKsdino9WkUGR2YzRt99+q3scEICICNc9Uleqdh+XAEEIwJIlN3jV3Z2IyFNeBT4hISF44YUXsHDhQhQVFQEAUlJSDKujNsaECRMwYcIE6efevXtj9+7dePnll6XA591330VNTQ3efPNNhISEYODAgdi2bRuee+45Bj5kmZjc63BEYtGiHKk7udNpw913R+G3396E3V6lWw1YrHljZanJfbbEFfRkZb2hKOpn1jVcvgtL3tcrJWUvBEF+pH5laTWrNYr0jistjcfbb18nLX+NGFEg1fvRSnI2qnpNRORLjWpSGh4ejrPPPttXY/GIw+FA586dpZ8LCgowatQoxdLX+PHj8eSTT+L48eOKHTZyZ86cwZkzZ6SfPelJRq2fp0tVYgBhFriEh4cbBiNWAge976ittb4F22gXliufxlplafWWd6v1cbSOy8jIR35+hmL5a/PmkSgoSJdmdWprQy2NjYjI17wKfH7//XcsXrwYGzZswJEjR+B0KndybN261SeD07N3714sXrxYmu0BgEOHDiE5OVlxXLdu3aT39AKfhQsXYsGCBU03WGoxS5YAc+YATicQEAC89hqQlWXts1ZnPPRYCRysfodRLRqtXVhiEGPl/EZb3q12gE9J2YupU1cBEJCYeFC37pB8Vqex95eIyFteBT5ZWVlYv349pk2bhvPOO8+0eame++67D08++aThMbt27VLsHvvtt98wYcIEXHHFFbjxxhu9+l65+++/H3fccYf084kTJ5CYmNjo85JveTJzU1FRgX376jBnTlc4neJSFTB3roBzzjmCpKQg0x1BRoGLwxGJTz89jXPOOYz4eFfQr5VrYxY4mAVHU6ZMQXx8vNt55Utb8gRlrSDG6PxWKyMbzcBofaerQagyWVskzuokJ+83HBsLDxJRU/Eq8Fm7di0+/fRTjBw5slFffuedd2LWrFmGx/Tu3Vv6fWlpKcaMGYMRI0bgtddeUxzXvXt3HD58WPGa+HP37t11zx8aGorQ0FAPR07NwSzJWCvYEJd+iouT4HTOVLxXX2/D4sXrkJy8X7cxqJzZ1m31DEl2drbbOcwCB6PgKDY2Vvf61IySqbV2kgHWKyOrk6srKyuRm5ur+51ZWW9AvWVdJJ/VefTRZG5VJ6Jm51Xg06NHD5/U6+nSpQu6dOli6djffvsNY8aMQWpqKpYuXYqAAOX/sNPT0zF//nzU1tYiODgYAJCXl4d+/frpLnNR6yU+4A8ejMOSJTfoJhmrAxhxJsRsKcVqTyt54GI2Q2L1nEbfISdPVAZcsyB6S1unToXrBjHJyfs1z291uUkvuVovcPr1177QDnyUszribBa3qhNRc/Iq8Hn22Wdx77334pVXXkGvXr18PSY3v/32Gy666CL06tULzzzzDI4ePSq9J87mXH311ViwYAGysrJw7733YseOHXjhhRfw/PPPN/n4yPdqamqwdetQrFkjbvVuIJ+V0As2mqJ5pZUZEqtLNOpdYQ6HAytWrFAck5ub6/a5zMxM6ffq2ScrtYDUiczKreVOpKcXuH2nuJymnonRazz6n/+Mhrg1Xz4Wcbea3hIeEVFz8CrwGT58OH7//Xf07t0b4eHh0gyL6Ngx3yYo5uXlYe/evdi7dy8SVAkewh/7de12O9avX4958+YhNTUVsbGxePDBB7mVvQ2qqKjAjh2Vsvo2SlaTYK0m51plZYYkJiYG2dnZhrM/VpZy9JqLit3LtWafXGNzBT9agZ5RJebCwjQUFKS77b4ClPV+srOzpeBOv/GoWMFZUHyXuEWfQQ8RtSSvAp+rrroKv/32Gx5//HF069bN6+Rmq2bNmmWaCwQAgwcPxsaNG5t0LNS05Dk6gnCW2/ueztyY5dioGc3YWJ1FauxD3SiPSKQ3+zRtWi4iIqrdAj2jZToAKChIN0xyFtXU1CAuLg7Z2dkoLS0FsBohIWewcuUVqqsIwNSprrFcc00aBg1i/g4RtQ5eBT6bN29GQUEBhgwZ4uvxkJ8zytEB3Iv7+ZrWjI1YlBDwzSySfFeW/DsAazutAP3ZJ602EYDxMh1gs5TkLBcTEyNdQ2JiieFYBg0ab1jziIioOXkV+PTv3x+nT5/29ViIJHqzK00Z9IisbHX3dtnMqOAgYH2nlZWt8LGxsVLQZrZMp/XeqVMRUld2I02RT0VE1FS8CnyeeOIJ3HnnnXjsscdw9tlnu+X4REVF+WRw5N98naPTGhgVHLTbqzwq7Ge2FV4+y2IWnKjfEwRg5cordJfaAOWyoNFYWJOHiFoTrwIfsW/WJZdconhdEATYbDbU19c3fmTklxwOh+z32gm+Rqw+ZD15GDfFOQH9XB6jACUoSPmfrN7sk9hI1WpwIr5XUpKAlSunwUoPLV8lchMRNSevAp8NGzb4ehxEqKiokLZ0W0nwBdyDjaZ4GHtyTq38HTmxNo9RLo9RgBIdHY0ZM2Zg+fLlhmNevny5VOMoOzsbR48exYoVK0yX6U6csMOTHloMaoiorfEq8Bk9erSl4/7yl7/g73//u6LqK5EeMWCwkuBrVAumKR7GVs5plr8jZ5bLoxegeDKrJN7PmJgYRe0rLfJAU6sGD3toEVF70aju7GaWL1+Ou+66i4EPAdDezSQnzoZYSfDVaufQ0szyd+T0dq1pJRSLicrirFJZmTLB22xJUD6TpvUZAKpaPDaIwQ97aBFRe9OkgY9YXJBIPRviaVCgnnVo7Q9gvaU6+XWrqyYDNs2EYjFRuaKiAmVlZaaNSdVLguqATP2Z9PQCjW7qNowf/xkGDNiJ2bPHIjaWNXiIqH1o0sCH/JNRnRrA/GFttgNp+vTprfoBrLdUd/p0B+TnZyiuKSdnEUpKErBq1TSpH5nW0p7WMprZkqB4z+X3XuszBQXp0Gp3MWDATtjtVbq9uoiI2iIGPuRTZnkuVgv0mSX4tmZ6S3Vi0CP+LHZPj4g4bbq0p7VEaLYkKG81YfaZESM2SdWbubxFRO0ZAx/yKbM8F6sF+oDGFQpUM8ovqqyshM1mg91u13zf0yUevfwdvev2pHaP2feYfa60NA5ayctpaYVISyvEoEGXY8iQCMTHs8UEEbVPDHyoyWgtaaWk7PXqId8Ynuy20iNuDbdCa6kuIyNfMeMDNFy3N5WPxYBSfl6zzzkckcjPz4A86AEEZGTkS5+ZODEMcXHdLF0nEVFb5HHgU1dXh8cffxzXX3+9W6d0tRkzZrCKs5/SW9LKyVnU6PYG4tKL2S4xcbbCk91Weu8ZfY8WraW6sLDfda/bkyrV6oDyggs2IizsNHr2PICEhDLda9CabQNsiI8vVdwzIqL2zOPAJygoCE8//TSuu+4602NffvllrwZFbZ/RkpbRQz4zM1N3yQlQFgq0skssOztb8XmjxGqj98QEYaOlH3XQoF6qk193cHANamtDFVvXjWr3GNU42rhxFMSt54MHb8f27YMVM00jRxYAMF8aa+1J40REvuDVUtfFF1+Mr7/+GklJST4eDrVWVmdXRGYPWb2HvN1ut7SDSD4Wo4BFfpxRYjUAw6RreaKwetlLfm+mT5+O48ePIy8vT3PcdnsVior66I5XrNkjUtfu0Zu1Ecf8449DFD/n5Y0FAIwcWWC6pNa1a1fDe05E1B54FfhMnDgR9913H3766SekpqYiIiJC8f7kyZN9MjhqHazmyMhnV7zt2O3pUovVXWKA8SwUYNN87+efB2DgwJ26y15W7o1RsUD1eOU1e2pqalBTU6Oo3aOdOC1nc/s5Ly8DgwbtgN1ehUcfTcaDDx7Fvn1BSEqqYxIzEfkdrwKfv/zlLwCA5557zu09Niltf6zmt6iPM1rSUs9sAN41tPRkl5jZLJR7QCFg/foJyMsbp9srzCx/yEqxQPV4jYIpdUCp3qHl/jMANJzfFVh1Q2qq5umJiNo9rwIfp9Pp63FQO2GW5yLS67PlKU+2dJvNQukFFEazSHLqIEe9k0sQArB5c7rpeM0CTXlAWVoar9jVddZZu7Bz5wCot6uz1xYRkYtXgc/bb7+NzMxMhIaGKl6vqanBBx98YCnxmdqnpuiObsTTJTWjWSjxvZ9/HoD16ycoPmfUoRzQXnJTb193CUB6un6xQL1zqxO3xYAyOXk/Bg3aobieTZvSkZeXAcC7XXNERO2ZV4HP7NmzMWHCBLdkyKqqKsyePZuBj58zCmrE3BV1o02RN0GR2VZwq7NQ4nsDB+5EXt44j2oN6S25abWCEIsFerN1XS8Rury8XErAHjmywC0YIiIiF68CH0EQYLOp8wiAgwcPGm5FpvbBrBu4Hk+SpD0NfoyCmZiYGEyfPh25ubnSa0bX4MkskthRXm/JzajAoNb5HA4HamtrpTFaSYQGrAd3rNNDRP7Oo8Bn6NChsNlssNlsuOSSSxAU1PDx+vp6FBcXY8KECQZnoLbOSjdwPd4mSWux+gAXj5P397JyDVYKClZUVEjBlF6wNGzYD7qzL2lpaQgPD0d1dTUKCwsBACtWrJDe9yRxu7mXGImI2iqPAp/LL78cALBt2zaMHz8eHTt2lN4LCQlBUlISpk6d6tMBUuvhydZxq+fzZuYI8P5B78k1mM2aqL87JWUvpk5dBUBAYuJB08KEYrCjJt6X4OAzHrX3YFBDRGTOo8DnoYceAgAkJSUhMzMTHTp0aJJBUesiPujNZiA8WUZpzMyRyJsHvdk1WK0crebJ9RgFfOrzqCsxM1GZiKhxvMrxmTlzJgDX33iPHDnitr29Z8+ejR8ZtRri7Mq+fXV45x0BTmdDfldgoIBbbpmIpKQgy4GIr2eOPGFeUdpa5Wg5s+sZN24c1q9fD0A/QHI4IlFSkog1ay6DmAwtCAHYvn0wsrLeQG1tiNtSGfN1iIg851Xgs2fPHlx//fXYvHmz4nUx6ZkFDNufmJgYxMQAr70GzJ0L1NcDgYHAq6/akJrqWTdvT3JXfM3bitJGzK5HXBLWC5BOn+6gs/XddUxtbQiSk/crdnExX4eIyDteBT6zZs1CUFAQ1q5di7i4OM0dXtQ+ZWUB48cDe/cCffoACQmen8Ns1kVszyDnywe9J53QrbBaRFEvQBJr7miRn0e+i4uIiLzjVeCzbds2bNmyBf379/f1eKgNSEjwLuARmc26yBuCynm6zV3ePPTgwYNuY/DVdm+rs0j6fbb0gx7m9BAR+ZZXgc+AAQM0/1ZOZEQeVHgz61JaWoqamhpLsz9WawbJzZgxw3JgVVFRofhvwMr1uPfZ0mazOTF16krFzjAiIvINrwKfJ598Evfccw8ef/xxnH322QgODla8HxUV5ZPBUfui3oIurzYsp7frSX6s2eyPUfNQAJrnDw8Pt3QdekGV3iySvN7VsGE/ICTkDFauvELz3OIsz6BBu9zeYzIzEVHjeRX4ZGRkAAAuvvhiRX4Pk5vJjNmMitVt4VaLIarP6WohYQNg83obvVlHdtGUKVMQHx/v9vnExBKNJS8npk1zn+URt9czmZmIyDe8Cnw2bNjg63EQ4eDBOM1dTyEhZ5CYWOJ1kUTl0lJDsOGLbfRGgVpsbKwUrGRnZ6O0tBSrV6/WzQkSZ3nE3VsMdoiIfM+rwGf06NHYuHEjXn31VRQVFWHlypXo0aMH3nnnHSQnJ/t6jOQHtm4dqqhhIxKEAKxceYXh7Iw8iVkk5t9o7aRSn9/bbfRm9XvkOUAhISGK2R+jnKD4+HgGPERETcSrwGfVqlW49tprcc011+CHH37AmTNnALgaLD7++OP49NNPfTpIat/EAEJvdxOgPztjlsSsv5PKxWwbvUjepsIoqBKEAJSUJODYsdNYujRPMdbs7Gz20yIiamFeBT6PPvooXnnlFVx33XX44IMPpNdHjhyJRx991GeDI/9gNisj0pqdMcu3cd9J5Z7jY7aNXo9e/Z6VK6cBcF/6qqmpYR0eIqIW5lXgs3v3bowaNcrtdbvdjsrKysaOiVoxrWUlOW9mLLRnZcQ2KNYadAL6+TbDhv2A06c7yAoFOjFixGakpRVqLnFZaZ4qHpORkS9VXXZdQ8OYm7MVBxERWeNV4NO9e3fs3bsXSUlJite/+eYb9O7d2xfjolbIam0cq4UGxeUjvWRfAJZbSxjl2wBAfr68OnIACgrSkZbm3h3dbFeZwxGJwsI0FBSkS8dkZOQjPr4Up05FuG1Tb65WHEREZI1Xgc+NN96I2267DW+++SZsNhtKS0tRUFCAu+66Cw888ICvx0ithNUt5FaPU9f1efDBo/j55zPYtm2lFCjoJQCra9oY5dtERJy21BvMLFlZKwFbEAKQn5+BnJxF6Nz5mKXWFURE1HK8Cnzuu+8+OJ1OXHLJJaiursaoUaMQGhqKu+66C7fccouvx0jtmHxmKC4OSE0FLr10psfLaXpJzKtWTUNGRr7GewJKS+ORnLxfeqWkJFE3QAKguetMfkxy8n6fN0AlIiLf8irwsdlsmD9/Pu6++27s3bsXJ0+exIABA6Qu1ESN4c2uJnG5TG9G5oILNmLjxlFwJTYDgA35+RkYNGiHajZHSZyxKSxMg5VGor5ugEpERL7lVeAjCgkJwYABA3w1FiJNRgnV6n5ZWu0gBCEAYWGn0RD0NLwuzuZobaeX5xoVFKRrfr/WrI5e6woiImp5jQp8iJqap81GtdpB2GxO9Ox5QDf/Rm87/dSpKzFo0C4UFydpvj9w4E8YNy7PcpDDXltERC2PgU870xTbzfVY2fbdWFb7Yo0ZMwYbNmzQ3SGWkFCmm39z6FA3uLbPK4OixMSDAPTr9WgFPWJvLTUWJiQiah0Y+LQjvt5ubsRqM1EzZoGavC6U0Xd26tRJOk4vz0br9Q8//DN+/HEIXMtgArQKG+oFU/KgZ/r06ejatSuDGyKiVo6BTzvi6+3mauJSjdm2b6tLOp4sY5l9Z1CQ8o+yPM9Gq5oz4GqK2hD0AGLwc+WV76Nfv72K8xklLU+fPh1nnXWWpesgIqKWxcCHLBPr7mzYADz/vPu275EjZ+Kii1w/l5WV6Z5HXPbxJADTq9Mj1uKJjo6WagKVl5dL7SeMZokOHOgFdcIzYMOxYzEA9kJNL2k5Ojra8nUQEVHLYuBDHomJicH55wMBAYDT2fB6YCCQlhYDwPpym5pRzpBeno28OGBMTAwqKioU5zOaJerZcz/E5a0GAhITDwAA0tLSUFjoXt1ZjUnLRERtBwMf8khFRQUCA2vw1FNhuPdeO+rrbQgMFPDkkw4EBp7G0aMOS+dRz/aY5QxZybNRL50ZFSS026uQkFCGIUN+VOT4DBnyIxISXLNVPXr0YDd1IqJ2hoEPWaYOLG69NVLKeTl5sgqvvebdec1mZkRmxQHlAYoYSKmpZ4n+7//+jXPP/S9KSnoiMfGAFPSIGNQQEbUvDHzaAXFnlLyYX1NQz3z4qlCfWf6Ole8MCQmRxqcOpBq4zxI5HJGorQ3FgAE73c6rTpgmIqK2j/9nb+M8LfDX3KzU+jHL39GqjeNwOFBbWwsAKC/vgA0bALu9EoB2IAUA06a5ChKKzJbXunbt6t1FExFRq8XAp43zZmt6cyXjWq31Y5a/Y7fbERcXJx1fUVGBFStWaHxHJ0yaNBQpKXs1AymxICFgvrw2ffp0LnMREbVDDHz8xJQpUxAbG9tsybhW8nbkAZhR/o46UNNb0hK/IydnkWkitJXt8URE1P4w8PETsbGxilkTXzBaxrKStyPWBfJ215TRd5glQlvZHk9ERO0PAx/yitkylllgIc7ieDL7pE7iNvsOo+RrK9vjiYio/WHgQx6zkh8THR2NHj1OqGr9nMDVV1/l1XKbOolbnG3KyMhHfn6GV8GL2awQERG1Pwx8yDJxlsZsGUts1nnnnUBmJrB3L9Cnjw0JCdEAor36bq0aPWKwM2zYFiQnFyM6uhK1taFwOCJht1dhzJgx6Nq1q2JHWGVlJXJzc6WffbUln4iI2gYGPmSZmJOzb18d3nlHgNPZ0OohMFDALbdMRFJSkGI2JyHB9Utk1o3dbDZIa7Zpy5ZzsWVLKlzVlxu6qwMbAPimGz0REbUPDHzaOKtb0321hT0mJgYxMcBrrwFz5wL19a4+Xa++akNqajfDz1qtOWQUqOjV6AEaXlMvvckDrea+X0RE1Low8Gmj5DMnmZmZUjE/UVBQEKqrO6O4OAj9+gUgJqaTT78/KwsYP15cxlLO6uhRz/To7QozmhHSSmjWolf5ubE7yYiIqG1j4NMGWZk52bp1KNaunQSn04aAAOC5505i+nT9XBZvHvbqZSxPWC1uqKbejaXHaGs6gxoiIv/FwKcNMqvW3JAH48rBcTqB228Px/79rxkm8jZXLozVpqR6xN1YhYVp2Lw5Ha5lLidsNnBrOhERGWLg0w550vRTzpv2F97wdnxydnsVxo3LR1paobQd3XVubk0nIiJ9xokSrdCZM2dwzjnnwGazYdu2bYr3tm/fjgsvvBAdOnRAYmIinnrqqZYZZAsT82DkWqoqcUVFBcrKylBWVuZWeNCT8eklG9vtVUhO3i9tSxd/T0REpKXNzfjcc889iI+Px48//qh4/cSJExg3bhwyMjLwyiuv4KeffsL111+P6OhozJkzp4VG2zLEPJhPPpkkFQ+89FLzpZ/KykrD9z3NA9LLRTKrmlxeXu72XWJS8pEjRxR1eIiIiDzRpgKfdevWYf369Vi1ahXWrVuneO/dd99FTU0N3nzzTYSEhGDgwIHYtm0bnnvuOb8LfABXHsyDD6ahqqobIiOPYO1a88RhKwGFJ3lARru45FWTg4NrFIUHV69erfldrq30DbuyHA6H1KXdCLemExGRqM0EPocPH8aNN96Ijz76COHh4W7vFxQUYNSoUYqH3Pjx4/Hkk0/i+PHj6NRJezv3mTNncObMGennEydO+H7wzUgeXMTHOxEXB5SVOc0/aJG3eUB6u7iKivro7u46evSo9H2lpQEoLg5CcnId4uNd19OlSxduTSciIo+0icBHEATMmjULN910E4YPH459+/a5HXPo0CEkJycrXuvWrZv0nl7gs3DhQixYsMDnY24J6uCic+dDyMpqyK3xBYfD4XGXd71dXF27HjLc3SXO5hhtfc/OzvZ513kiImq/WjS5+b777oPNZjP89csvv2Dx4sWoqqrC/fff7/Mx3H///XA4HNKvkpISn3+Hr2kt3WgFFw8+2B1PP/2+tHTkCytWrEBFRYVHn9HbxfXrr311d3eJ9IImhyMSQPPtRCMiovahRWd87rzzTsyaNcvwmN69e+PLL79EQUEBQkNDFe8NHz4c11xzDd566y10794dhw8fVrwv/ty9e3fd84eGhrqdt7XTqj68aVMInn++cVvErfI02NCrtrxx42gATsjjb3F3l7hkd+pUeKO3vhMREYlaNPDp0qULunTpYnrciy++iEcffVT6ubS0FOPHj8eKFSuQlpYGAEhPT8f8+fNRW1uL4OBgAEBeXh769eunu8zVlqnzVs4/HwgIcBUrFOltEZfnAc2ePRZBQUGorKzE+vXrm2Ss4i6uNWsug7qnlisgcgU/4jKWOu9HLzgiIiLyVJvI8enZs6fi544dOwIAUlJSkPBHz4Srr74aCxYsQFZWFu69917s2LEDL7zwAp5//vlmH29LSEhQNw7V3sKulQdUX/+62/n0+mgZUXdel+cWDRv2A0JCzmDlyisUnxGEAEyblouIiGopmFm0KEextKUVHHG2h4iIvNEmAh8r7HY71q9fj3nz5iE1NRWxsbF48MEH/Woru7xxqNYWdq18mYceisNtt0UqAgl5cAQ4MXZsPkaOLDD8bnXNnobAqeHciYklbkteNpsTiYkHpWOKi5M0l7bkwRGDHiIi8labDHySkpIgCILb64MHD8bGjRtbYESth9g4VGsLu1aSsdNpU+TLqIMjIAB5eWMBQAp+Kisr3XZSyWd69HZhmRUuBLTzgdTBERERkbfaZOBD3tEKKgICBEW+jFZwBNiQn5+BQYN2wG6vQm5urm4hQ7MGpPLChVqzN1aCIyIiIm8x8PEjWkHFgw+WAlDOuKiTiQH3nVR6O7usNCAV+2rpMQuO5FiVmYiIPMHApx04eBDYswfo29e1zAXoBwTqoCIz8/9B3fUhNXULtmwZDsAmvWZ1J5XeUtWpUxFSSwor9IKjKVOmIDY2FgCrMhMRkecY+LRxS5YAc+a4trEHBLh2dmVludf60Wr5EBISopub45r1AQAbbDYnMjLyDYMWscGp1qySIAArV17hVnXZG7GxsazUTEREXmPg04YdPNgQ9ACuf86d69rZlZDQUOtHLzgCgF9++QWAdlKzK/gRIAgByM/PQFjY75pBS0VFhaLBaUrKXkydugrV1R3w6aeXQlw2U+f7yGdvqqursXz5ctNr5tIWERE1BgOfNmzPHmXBQsBVw2fv3oYlL6PgKCysQuqHpZ3UrCw2KA9a5Ix2dGnlCv388wAMHLjTbfaGDUeJiKipMfBpw/r2da/WHBgI9OnT8LNRcNSvX0OQoddWQk6vVYTD4fjjn5GK6syucwmQ5woBAtavn4C8vHGw20sxZ06ZFNAwqCEioqbWok1KybqKigqUlZUpfgUGluGppyoRGOiqaRQYCLz6asNsD9AQHMkFBgIxMccVlZXF3BzXLA0gLnPJaSU4V1Q0zBoVFqbB/Y+UDQ35Qg1BkCAEYMGCeDz99Pt46aWXPG58SkRE5A3O+LQB6qrIarfeGoljxzrjzjv/jLPPVvYlc29lATz77EmsXv2i23nE3BxAQGLiQbeeWfJ6OmKujbg0dfBgHDZvTtcYnRM33PAGDhzoifXrJyjekc8gscs6ERE1BwY+bYBZUCBu/Y6N/V3zfXkriz59gMDAKrz2mvIYvWrLKSl7MWjQ5RgyJALx8ecCOFdamqqoqEB5ebn0Wa0JxBEjCpCQUIbIyJPIyxvnts2dzUaJiKg5MfDxE2IrCwAoK1O+d/BgnFtujjyReeLEMMTFdVN8RpyFcu0Gy9HMDbLZnEhLKwTAisxERNQ6MPDxc3qzNXqJzCJxFkp7NxgAuAc2nlRkJiIiagoMfPyYe+2eBo2t1JyV9QYSEsrcjjdrV0FERNSUuKvLj1mdrTEqGqjeDSYuYWkFPURERC2NMz5+zGy2ZsqUKYiPjzetr8MlLCIiaisY+PgxvYRjcbYmNjZW2r2l7vllt1e6nasxAQ9bURARUXNg4NMGWA0KvDnOaLYmJCREUUNIueW9EyZNGmracHTKlCkIDw9HeHi44XhYtZmIiJoDA582QN1pXYsnwYMn5yv7Y++7OhHaqHeXHLupExFRa8LAp42QBzUHD7p6cPXtq2xP4e35rNBKhDbb8g5wCYuIiFoXBj5tzJIlDd3WAwJc7Siysnz/PWJeT3l5ORyOSJw6Fa6ZCC1ueZ8yZQpiY2MV5+ASFhERtTYMfNqQgwcbgh7A9c+5c13tKOQzP/JkZC1mAYl7Xo9YmdkpBT/qystc0iIioraAgU8bsmdPQ9Ajqq939eASAx+zhqai7Oxs3eBHDJrcCxwGQBCcmDYtF4mJB6Wgx+GIxKZNITj/fO+X3oiIiJoDCxi2IX37upa35AIDXY1HReqZHocjEsXFSXA4IhWvW+mGrl3gMAAREdVS0LN161AsWpSDK66IQa9eAp59thJlZWWoqKiwfF1ERETNhTM+bUhCgiunZ+5c10xPYCDw6qvK2Z7y8nLpeL2O61bpFTgU83rUM0JOpw133x2F3357E3Z7leGsEhERUUvgjE8bk5UF7NsHbNjg+qeY2Cwuca1evRqA/vZz9cyPEb12FOJsj9FOL8DarBIREVFz4oxPG5SQ4PpVUVGBsjJXcCGf6QGAkpJEw+3n5eXlUhXm5OQ6xMe7ghv19nOjAodmM0JEREStDQOfNkqdxOxwROLYsSR07lyBoqI+WLPmMrfPyIOSv/2tGB9/PFBzGSwzM1PxOb12FHotL9iri4iIWisGPm2UfBlJncsjCIB6FVMelJhVYa6trbU8DjYoJSKitoSBTxunFcRomTp1JQYN2gXAvApzUJBnfywa26CUiIiouTDwaeO0t5wr2WxOJCYelH42y82Jjo427OVVXl4uJVETERG1JQx82jitIAYQANj++L173o2V3BxuQyciovaIgU8bpw5ilEEPYLMBKSl73T7XmNwcq41H2aCUiIhaGwY+rZyVTuxiELNz5wB8/vkExXtGHdS9zc2JiYkxXAoD2KCUiIhaJwY+rZDYZPS998Jwzz12OJ02BAQIeOopB66++rTmTIrdXoUBA3Zi/fpxurk7Y8eORV5enk/GyKCGiIjaIgY+rYxYn8fhiMSiRTkQBNeylbodxIwZM9w+a5a7I9+t5ar7E4POnSvcZn24REVERO0VA59WRlw+MttyHh4eLi03yXdZGeXurFu3DoBxD68ZM2YgJibG0hIbERFRW8NeXa2UuFtLTt0OIiYmBnFxcYiNjVUcZ7dXITl5v2b+jlkPr+rqajz7bCV69RJw8cVgx3UiImpXGPi0UkYNQh2OSGzaFIKDf5Tm8WRpyqyx6NKlebj77ig4ncoltqeffh8vvfQSgx8iImrTuNTVimktW4nLVM8/H4CAAOC114CsLPNdVpWVlcjNzTUtXmi2xMaO60RE1JYx8Gnl5FvO1ctUTicwd66Ac845gqSkIMTFxVk6n1ECNDuuExFRe8bApw3Rmo2pr7dh8eJ1SE7ej+zsbLdt5uLW+PLycmknV0rKXuTkLNJMgGbHdSIias8Y+LQhZrMx8mWoiooKHDlyBLm5uXA4IlFYmIbNm3MAuO/kUmPHdSIiaq8Y+DQjK1vEjRKVrc7GiLWAAOXWdZEgBGDNmsuQkrJXN6hhx3UiImqPGPg0kyVLgDlzXHk5DUnJ7sdptYOwWqdHJH5WnROkFIDCwjSMG5dvWMyQiIioPWHg0wwOHmwIegAxKRkYP1575kedp1NaGoDi4iQpMLE6G6OVEyRXUJCOiIhTyM/P0CxmSERE1N4w8GkGe/Y0BD2i+npg717zqsiumaKucDpnehyYaOUEyQlCgBT0iD9//LHxEhjbWRARUVvGwKcZ9O3rWt6SBz+BgUCfPu7HyvOAAHGmyFVM0EpgIqfOCQIEADbZEe5Bkbxmz5QpUxRVodlxnYiI2jpWbm4GCQmunJ7AQNfPgYHAq6+6z/YsWQL06oU/WkUAL7zgPlMkr7JsxbBhPyAr6w0ATiiDHgEXXrjRsC1GbGws4uLipF8MeoiIqK3jjE8zycpy5fTs3eua6VEHPVp5QM8/D9hsgCA0HGdUTFBvGaq2NhTuMa4NvXsXo1MnB2v2EBGR32Dg04wSEvRzevTygG666SRefz0C9fU2BAQIePDBUkyZMhbBwcGw2+3SsUbLUEb1f5KT97NmDxER+Q0GPq2EVh6QzeZEWNhruPVWSIEJUIU/drZrVmoG3Gd+zOr/sGYPERH5CwY+rYSYBzR3rmumRys4Udu3rw7bt7sXRBRrAZWWlnpU/4eIiKi9Y+DTioh5QIWFFdi06S3D4GTr1qH4+9+7/lEQUcBTTzlw9dWnpSWvmJgYt07qnNkhIiJ/x8CnlUlIAAIDa7Bjh36A0lCR2bVLy+m04e67o/Dbb2/Cbq/SXQLzFGv2EBFRe8PApxUQO6iLysvLDY/Xqsgsr78jnstq4DJ9+nRER0crXmPNHiIiao8Y+LQweUNRq8y6tIu0+n6pMcAhIiJ/wsCnhRkFJXrNQ612aQfc+34RERH5MwY+rdTWrUPdAht5jy7u0iIiIvIcW1a0Qg3Jy8rmoQ5HpOI4u70Kycn7GfQQERFZxMCnFdJLXu7V65IWGhEREVH7wMCnFRKTl+VsNif27/+ihUZERETUPjDwaYXE5GUx+PG0eSjr7xAREWljcnMTU9foUXM4HJqvGyUvT5kyBbGxsZqf4/Z0IiIifW0q8Pnkk0/w97//Hdu3b0eHDh0wevRofPTRR9L7Bw4cwM0334wNGzagY8eOmDlzJhYuXIigoJa5TG9q9MjptZiIjY1FXFxcY4ZGRETkl9pM4LNq1SrceOONePzxx3HxxRejrq4OO3bskN6vr6/HpZdeiu7du2Pz5s0oKyvDddddh+DgYDz++OMtMmajmR45sXJyeXm51FSUiIiIfK9NBD51dXW47bbb8PTTTyMrK0t6fcCAAdLv169fj507dyI/Px/dunXDOeecg0ceeQT33nsvHn744Vad9xIdHe02g6NXvBBQtrTg0hYREZF1bSLw2bp1K3777TcEBARg6NChOHToEM455xw8/fTTGDRoEACgoKAAZ599Nrp16yZ9bvz48bj55pvx888/Y+jQoZrnPnPmDM6cOSP9fOLEiaa9GANivo9Z8UL1rJCvmpISERG1d21iV9f//vc/AMDDDz+Mv/3tb1i7di06deqEiy66CMeOufpTHTp0SBH0AJB+PnTokO65Fy5cCLvdLv1KTExsoqswVlFRgRUrVlguXihndUmNiIjI37Vo4HPffffBZrMZ/vrll1/gdLq2dc+fPx9Tp05Famoqli5dCpvNhn/961+NGsP9998Ph8Mh/SopKfHFpelyOCJRXJzkFsiIwYtR53W9z1ZWVjbpmImIiNqLFl3quvPOOzFr1izDY3r37o2ysjIAypye0NBQ9O7dGwcOHAAAdO/eHf/9738Vnz18+LD0np7Q0FCEhoZ6M3yPmS1hAfqd10tL4/H229dpfjY3N1dKkGbODxERkb4WDXy6dOmCLl26mB6XmpqK0NBQ7N69GxdccAEAoLa2Fvv27UOvXr0AAOnp6Xjsscdw5MgRdO3aFQCQl5eHqKgoRcDUUvSWsFJS9iqO0+q8npGRj/z8DM3PionPubm50jmY80NERKStTSQ3R0VF4aabbsJDDz2ExMRE9OrVC08//TQA4IorrgAAjBs3DgMGDMC1116Lp556CocOHcLf/vY3zJs3r9lmdNTkO8mMlrBCQkJw5MgR6XV18UKjz2rV+WHODxERkbY2EfgAwNNPP42goCBce+21OH36NNLS0vDll1+iU6dOAIDAwECsXbsWN998M9LT0xEREYGZM2fi73//e4uNOSYmBtnZ2aipqUFpaQDeeUeA02mT3g8MFHDnnX8G4FTM2ADuxQu1lr86dz7W5NdARETUntgEQRBaehCtyYkTJ2C32+FwOBAVFeXTcy9ZAsydC9TXA4GBwKuvAllZQFlZGV577TXDz8rzg1ycGDs2H/HxZW61fubMmcPKzkRE5FesPr/bzIxPe5CVBQweDHzzDXDBBcC552ofp1W8MCVlL5QhagDy8sYCsOkmShMREZESA59mtGQJMGcO4HQCAQHAa6+5giE5vZ1fx47FwL36gGvZTCvZmYiIiNy1iQKGbV1FRQW2bDmMOXME/FGSCE4nMHeugC1bDuPgwYMA9Hd+ORyR0jZ3PWKyMxEREelj4NPExA7tixd/pkhsBoD6ehsWL16HTz/9FIDxzi9xm3tD8KNMzWKyMxERkTkudTUxcWu5XmFCebBidsxf/hKKlJRFOHasM0pL46XaPuKSmLjM1ZobshIREbUkBj5NTGw8qlWYcNKktQCA4uIkKZF50qS1WLPmMrgm45QBTXx8PObPHy4FU6WlR7FvXxCSkuoQH38ugHNZuZmIiMgAA58mVltbK/1eXZiwqKgPFi3KUVRoDgv7HTYbIAiATbkyhqCgIEVQExcHpKY215UQERG1fQx8mplYmFArkdm1PR3Q260VHR3dMoMmIiJqJ5jc3EK0EpldAY9ymoe7tYiIiHyHgU8LMdueLuJuLSIiIt9h4NNC7PYqZGTkQ70t3cX1GndrERER+RZzfJpQRUUFqqr0KymPHFkAAMjLy4AyBrUBcCIr6w0kJJRhypQpiI+P524tIiKiRmLg00TEwoUirf5bgCv4sdsdWLnyCtUZAlBb65rhiY2NZdBDRETkAwx8mohYawfQ778lSkwsMSxcyCUuIiIi32COTxMz6r8lUrejkOf2ZGZmcraHiIjIRzjj08TM+m+J1MUNxffsdnuzjpeIiKg9Y+DTxKz06BKJxQ2JiIioaXCpq4npLWMBrh5d8iUvIiIialqc8WkGZj261MnORERE1DQY+DQTox5dH398Gbp2PYTa2lC37e7c0UVEROQ7DHyaiF7Aopfs/MYbNwAIQECAgKeecuDqq08jJCSEO7qIiIh8yCYIglbPBL914sQJ2O12OBwOREVFNepcFRUVqKmpQXl5OVavXg3Atb1dXOZqIEDenDQwENi3D0hIaNTXExER+Q2rz28mNzehmJgYxMXFITY2VnpNK9lZ3ZG9vh7Yu7c5R0pEROQfuNTVAuTJzsHBNViy5AbFDFBgINCnTwsOkIiIqJ3ijE8z0Mr3sdurkJy8HwkJZYoZoMBA4NVXucxFRETUFJjjo+LLHB85Md8HAEpLA1BcHITk5DrEx7sCnvLyDqio6IQ+fRj0EBERecrq85tLXc1E3J21ZAkwZw7gdAIBAcBrrwFZWUBcXAsPkIiIyA9wqasZHTzYEPQArn/Onet6nYiIiJoeA59mtGdPQ9Aj4g4uIiKi5sPApxn17eta3pLjDi4iIqLmw8CnGSUkuHJ6AgNdP3MHFxERUfNicnMzy8oCxo93LW9xBxcREVHzYuDTAhISGPAQERG1BC51ERERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkN9upSEQQBAHDixIkWHgkRERFZJT63xee4HgY+KlVVVQCAxMTEFh4JEREReaqqqgp2u133fZtgFhr5GafTidLSUkRGRsJms3l9nhMnTiAxMRElJSWIiory4QjbDt4DF94H3gOA9wDgPRDxPjTNPRAEAVVVVYiPj0dAgH4mD2d8VAICApCQkOCz80VFRfntH2wR74EL7wPvAcB7APAeiHgffH8PjGZ6RExuJiIiIr/BwIeIiIj8BgOfJhIaGoqHHnoIoaGhLT2UFsN74ML7wHsA8B4AvAci3oeWvQdMbiYiIiK/wRkfIiIi8hsMfIiIiMhvMPAhIiIiv8HAh4iIiPwGAx8PvPzyyxg8eLBUcCk9PR3r1q2T3v/9998xb948xMTEoGPHjpg6dSoOHz6sOMeBAwdw6aWXIjw8HF27dsXdd9+Nurq65r4Un3niiSdgs9mQk5MjveYP9+Hhhx+GzWZT/Orfv7/0vj/cAwD47bffMGPGDMTExCAsLAxnn302vv/+e+l9QRDw4IMPIi4uDmFhYcjIyMCePXsU5zh27BiuueYaREVFITo6GllZWTh58mRzX4pXkpKS3P4c2Gw2zJs3D4B//Dmor6/HAw88gOTkZISFhSElJQWPPPKIol9Se/9zALjaJOTk5KBXr14ICwvDiBEj8N1330nvt8d78J///AeTJk1CfHw8bDYbPvroI8X7vrrm7du348ILL0SHDh2QmJiIp556qnEDF8iyNWvWCJ988onw66+/Crt37xb++te/CsHBwcKOHTsEQRCEm266SUhMTBS++OIL4fvvvxfOP/98YcSIEdLn6+rqhEGDBgkZGRnCDz/8IHz66adCbGyscP/997fUJTXKf//7XyEpKUkYPHiwcNttt0mv+8N9eOihh4SBAwcKZWVl0q+jR49K7/vDPTh27JjQq1cvYdasWUJhYaHwv//9T/j888+FvXv3Ssc88cQTgt1uFz766CPhxx9/FCZPniwkJycLp0+flo6ZMGGCMGTIEOHbb78VNm7cKPTp00e46qqrWuKSPHbkyBHFn4G8vDwBgLBhwwZBEPzjz8Fjjz0mxMTECGvXrhWKi4uFf/3rX0LHjh2FF154QTqmvf85EARBmD59ujBgwADh66+/Fvbs2SM89NBDQlRUlHDw4EFBENrnPfj000+F+fPnC6tXrxYACB9++KHifV9cs8PhELp16yZcc801wo4dO4T3339fCAsLE1599VWvx83Ap5E6deokvPHGG0JlZaUQHBws/Otf/5Le27VrlwBAKCgoEATB9YckICBAOHTokHTMyy+/LERFRQlnzpxp9rE3RlVVldC3b18hLy9PGD16tBT4+Mt9eOihh4QhQ4Zovucv9+Dee+8VLrjgAt33nU6n0L17d+Hpp5+WXqusrBRCQ0OF999/XxAEQdi5c6cAQPjuu++kY9atWyfYbDbht99+a7rBN5HbbrtNSElJEZxOp9/8Obj00kuF66+/XvHalClThGuuuUYQBP/4c1BdXS0EBgYKa9euVbw+bNgwYf78+X5xD9SBj6+u+Z///KfQqVMnxX8P9957r9CvXz+vx8qlLi/V19fjgw8+wKlTp5Ceno4tW7agtrYWGRkZ0jH9+/dHz549UVBQAAAoKCjA2WefjW7duknHjB8/HidOnMDPP//c7NfQGPPmzcOll16quF4AfnUf9uzZg/j4ePTu3RvXXHMNDhw4AMB/7sGaNWswfPhwXHHFFejatSuGDh2K119/XXq/uLgYhw4dUtwHu92OtLQ0xX2Ijo7G8OHDpWMyMjIQEBCAwsLC5rsYH6ipqcHy5ctx/fXXw2az+c2fgxEjRuCLL77Ar7/+CgD48ccf8c0332DixIkA/OPPQV1dHerr69GhQwfF62FhYfjmm2/84h6o+eqaCwoKMGrUKISEhEjHjB8/Hrt378bx48e9GhublHrop59+Qnp6On7//Xd07NgRH374IQYMGIBt27YhJCQE0dHRiuO7deuGQ4cOAQAOHTqk+B+c+L74XlvxwQcfYOvWrYr1a9GhQ4f84j6kpaVh2bJl6NevH8rKyrBgwQJceOGF2LFjh9/cg//97394+eWXcccdd+Cvf/0rvvvuO9x6660ICQnBzJkzpevQuk75fejatavi/aCgIHTu3LnN3AfRRx99hMrKSsyaNQuA//y3cN999+HEiRPo378/AgMDUV9fj8ceewzXXHMNAPjFn4PIyEikp6fjkUcewVlnnYVu3brh/fffR0FBAfr06eMX90DNV9d86NAhJCcnu51DfK9Tp04ej42Bj4f69euHbdu2weFwYOXKlZg5cya+/vrrlh5WsykpKcFtt92GvLw8t7/d+BPxb7MAMHjwYKSlpaFXr17Izc1FWFhYC46s+TidTgwfPhyPP/44AGDo0KHYsWMHXnnlFcycObOFR9f8lixZgokTJyI+Pr6lh9KscnNz8e677+K9997DwIEDsW3bNuTk5CA+Pt6v/hy88847uP7669GjRw8EBgZi2LBhuOqqq7Bly5aWHhqpcKnLQyEhIejTpw9SU1OxcOFCDBkyBC+88AK6d++OmpoaVFZWKo4/fPgwunfvDgDo3r27244O8WfxmNZuy5YtOHLkCIYNG4agoCAEBQXh66+/xosvvoigoCB069bNL+6DWnR0NP70pz9h7969fvNnIS4uDgMGDFC8dtZZZ0lLfuJ1aF2n/D4cOXJE8X5dXR2OHTvWZu4DAOzfvx/5+fm44YYbpNf85c/B3Xffjfvuuw9XXnklzj77bFx77bW4/fbbsXDhQgD+8+cgJSUFX3/9NU6ePImSkhL897//RW1tLXr37u0390DOV9fcFP+NMPBpJKfTiTNnziA1NRXBwcH44osvpPd2796NAwcOID09HQCQnp6On376SfEvOi8vD1FRUW4PkNbqkksuwU8//YRt27ZJv4YPH45rrrlG+r0/3Ae1kydPoqioCHFxcX7zZ2HkyJHYvXu34rVff/0VvXr1AgAkJyeje/fuivtw4sQJFBYWKu5DZWWl4m/FX375JZxOJ9LS0prhKnxj6dKl6Nq1Ky699FLpNX/5c1BdXY2AAOWjJDAwEE6nE4B//TkAgIiICMTFxeH48eP4/PPP8ec//9nv7gHgu3/v6enp+M9//oPa2lrpmLy8PPTr18+rZS4A3M7uifvuu0/4+uuvheLiYmH79u3CfffdJ9hsNmH9+vWCILi2rvbs2VP48ssvhe+//15IT08X0tPTpc+LW1fHjRsnbNu2Tfjss8+ELl26tKmtq1rku7oEwT/uw5133il89dVXQnFxsbBp0yYhIyNDiI2NFY4cOSIIgn/cg//+979CUFCQ8Nhjjwl79uwR3n33XSE8PFxYvny5dMwTTzwhREdHC//+97+F7du3C3/+8581t7MOHTpUKCwsFL755huhb9++rXoLr1p9fb3Qs2dP4d5773V7zx/+HMycOVPo0aOHtJ199erVQmxsrHDPPfdIx/jDn4PPPvtMWLdunfC///1PWL9+vTBkyBAhLS1NqKmpEQShfd6Dqqoq4YcffhB++OEHAYDw3HPPCT/88IOwf/9+QRB8c82VlZVCt27dhGuvvVbYsWOH8MEHHwjh4eHczt5crr/+eqFXr15CSEiI0KVLF+GSSy6Rgh5BEITTp08Lf/nLX4ROnToJ4eHhwv/93/8JZWVlinPs27dPmDhxohAWFibExsYKd955p1BbW9vcl+JT6sDHH+5DZmamEBcXJ4SEhAg9evQQMjMzFfVr/OEeCIIgfPzxx8KgQYOE0NBQoX///sJrr72meN/pdAoPPPCA0K1bNyE0NFS45JJLhN27dyuOqaioEK666iqhY8eOQlRUlDB79myhqqqqOS+jUT7//HMBgNt1CYJ//Dk4ceKEcNtttwk9e/YUOnToIPTu3VuYP3++YvuxP/w5WLFihdC7d28hJCRE6N69uzBv3jyhsrJSer893oMNGzYIANx+zZw5UxAE313zjz/+KFxwwQVCaGio0KNHD+GJJ55o1LhtgiArr0lERETUjjHHh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AYDHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIGu2iiy5CTk5OSw+jyT388MM455xzWnoYRNQIDHyIyO/V1NQ06/cJgoC6urpm/U4icmHgQ0SNMmvWLHz99dd44YUXYLPZYLPZsG/fPuzYsQMTJ05Ex44d0a1bN1x77bUoLy+XPnfRRRfhlltuQU5ODjp16oRu3brh9ddfx6lTpzB79mxERkaiT58+WLdunfSZr776CjabDZ988gkGDx6MDh064Pzzz8eOHTsUY/rmm29w4YUXIiwsDImJibj11ltx6tQp6f2kpCQ88sgjuO666xAVFYU5c+YAAO6991786U9/Qnh4OHr37o0HHnhA6gq9bNkyLFiwAD/++KN0ncuWLcO+fftgs9mwbds26fyVlZWw2Wz46quvFONet24dUlNTERoaim+++QZOpxMLFy5EcnIywsLCMGTIEKxcudLX/4qISIaBDxE1ygsvvID09HTceOONKCsrQ1lZGSIjI3HxxRdj6NCh+P777/HZZ5/h8OHDmD59uuKzb731FmJjY/Hf//4Xt9xyC26++WZcccUVGDFiBLZu3Ypx48bh2muvRXV1teJzd999N5599ll899136NKlCyZNmiQFKEVFRZgwYQKmTp2K7du3Y8WKFfjmm2+QnZ2tOMczzzyDIUOG4IcffsADDzwAAIiMjMSyZcuwc+dOvPDCC3j99dfx/PPPAwAyMzNx5513YuDAgdJ1ZmZmenSv7rvvPjzxxBPYtWsXBg8ejIULF+Ltt9/GK6+8gp9//hm33347ZsyYga+//tqj8xKRBxrV4pSISBCE0aNHC7fddpv08yOPPCKMGzdOcUxJSYmii/no0aOFCy64QHq/rq5OiIiIEK699lrptbKyMgGAUFBQIAhCQzfoDz74QDqmoqJCCAsLE1asWCEIgiBkZWUJc+bMUXz3xo0bhYCAAOH06dOCIAhCr169hMsvv9z0up5++mkhNTVV+vmhhx4ShgwZojimuLhYACD88MMP0mvHjx8XAAgbNmxQjPujjz6Sjvn999+F8PBwYfPmzYrzZWVlCVdddZXp2IjIO0EtGXQRUfv0448/YsOGDejYsaPbe0VFRfjTn/4EABg8eLD0emBgIGJiYnD22WdLr3Xr1g0AcOTIEcU50tPTpd937twZ/fr1w65du6Tv3r59O959913pGEEQ4HQ6UVxcjLPOOgsAMHz4cLexrVixAi+++CKKiopw8uRJ1NXVISoqyuPr1yP/zr1796K6uhpjx45VHFNTU4OhQ4f67DuJSImBDxH53MmTJzFp0iQ8+eSTbu/FxcVJvw8ODla8Z7PZFK/ZbDYAgNPp9Oi7586di1tvvdXtvZ49e0q/j4iIULxXUFCAa665BgsWLMD48eNht9vxwQcf4NlnnzX8voAAV8aAIAjSa+Kym5r8O0+ePAkA+OSTT9CjRw/FcaGhoYbfSUTeY+BDRI0WEhKC+vp66edhw4Zh1apVSEpKQlCQ7/838+2330pBzPHjx/Hrr79KMznDhg3Dzp070adPH4/OuXnzZvTq1Qvz58+XXtu/f7/iGPV1AkCXLl0AAGVlZdJMjTzRWc+AAQMQGhqKAwcOYPTo0R6NlYi8x+RmImq0pKQkFBYWYt++fSgvL8e8efNw7NgxXHXVVfjuu+9QVFSEzz//HLNnz3YLHLzx97//HV988QV27NiBWbNmITY2FpdffjkA186szZs3Izs7G9u2bcOePXvw73//2y25Wa1v3744cOAAPvjgAxQVFeHFF1/Ehx9+6HadxcXF2LZtG8rLy3HmzBmEhYXh/PPPl5KWv/76a/ztb38zvYbIyEjcdddduP322/HWW2+hqKgIW7duxeLFi/HWW295fW+IyBgDHyJqtLvuuguBgYEYMGAAunTpgpqaGmzatAn19fUYN24czj77bOTk5CA6OlpaGmqMJ554ArfddhtSU1Nx6NAhfPzxxwgJCQHgyhv6+uuv8euvv+LCCy/E0KFD8eCDDyI+Pt7wnJMnT8btt9+O7OxsnHPOOdi8ebO020s0depUTJgwAWPGjEGXLl3w/vvvAwDefPNN1NXVITU1FTk5OXj00UctXccjjzyCBx54AAsXLsRZZ52FCRMm4JNPPkFycrIXd4WIrLAJ8oVpIqJW7KuvvsKYMWNw/PhxREdHt/RwiKgN4owPERER+Q0GPkREROQ3uNRFREREfoMzPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNBj5ERETkN/4/oCIjCbnlO2gAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with PySMO Surrogate Object - Training Surrogate (Part 1)\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "## 1. Introduction\n", + "This notebook illustrates the use of the PySMO Polynomial surrogate trainer to produce an ML surrogate based on supercritical CO2 data from simulation using REFPROP package. PySMO also has other training methods like Radial Basis Function and Kriging surrogate models, but we focus on Polynomial surrogate model. \n", + "\n", + "There are several reasons to build surrogate models for complex processes, even when higher fidelity models already exist (e.g., reduce model size, improve convergence reliability, replace models with externally compiled code and make them fully-equation oriented).\n", + "\n", + "In this example, we intend to make a surrogate for the physical properties of S-CO2 to be embedded in the property package. This property package will be used to get the physical properties of S-CO2 in the flowsheet simulation. To learn more about property package, see the [IDAES-PSE](https://github.com/IDAES/idaes-pse) Github Page or IDAES [Read-the-docs](https://idaes-pse.readthedocs.io/en/latest/). \n", + "\n", + "\n", + "### 1.1 Need for ML Surrogates\n", + "\n", + "The properties predicted by the surrogate are enthalpy and entropy of the S-CO2 based on the \n", + "pressure and temperature of the system. The analytical equation of getting the enthalpy and entropy from pressure and temperature are in the differential form and would make the problem a DAE system. To counter this problem and keep the problem algebraic, we will use the ML surrogates and relate enthalpy and entropy with the pressure and temperature as an algebraic equation.\n", + "\n", + "### 1.2 Supercritical CO2 cycle process\n", + "\n", + "The following flowsheet will be used to optimize the design for the cooling of the fusion reactor using supercritical CO2 cycle. We shall focus on training the surrogate for this notebook and move to constructing the flowsheet and the properties package in the subsequent notebooks. The take away from this flowsheet is that, 3 variables can be measured in any given unit which are flow, pressure and temperature and other properties can be calculated using them. Thus, surrogate should have pressure and temperature as the inputs.\n", + "\n", + "In this example, we will train the model using polynomial regression for our data and then demonstrate that we can solve an optimization problem with that surrogate model. " ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrfUlEQVR4nO3dd1QU198G8GfpTcCCgAqKFTX+xBIVoiYaEjTWRBNbVCIaNZbYARt2EXs30SjG3gUrKtYoEiRgBWwoFkAiUkTp9/3Dl4kjqKDA7sLzOWePzp27s9/dEfZxZu4dhRBCgIiIiIhUmoayCyAiIiKi92NoIyIiIlIDDG1EREREaoChjYiIiEgNMLQRERERqQGGNiIiIiI1wNBGREREpAYY2oiIiIjUAEMbERERkRpgaCMi+kgKhQLTpk1TdhkSZ2dnVKtWTdllEFEhY2gjohLJ29sbCoVCeujp6aF27doYPnw4YmNji/S1L1y4gGnTpiEhIaFQt/vFF1/I3lO5cuXw6aefYv369cjOzi6U15gzZw72799fKNsiosKlpewCiIiK0owZM2BjY4PU1FT89ddfWL16NQ4fPoxr167BwMCgUF7j5cuX0NL679fphQsXMH36dDg7O8PU1LRQXiNHlSpVMHfuXABAXFwc/vzzT7i4uODmzZvw9PT86O3PmTMH3bt3R9euXT96W0RUuBjaiKhEa9++PZo2bQoAGDhwIMqXL49FixbBx8cHvXr1+uDtZmdnIz09HXp6etDT0yusct/LxMQEP/74o7Q8ePBg1KlTBytWrMDMmTOhra1dbLUQUfHi6VEiKlXatm0LAIiMjAQALFiwAA4ODihfvjz09fXRpEkT7N69O9fzFAoFhg8fji1btqB+/frQ1dXF0aNHpXU517RNmzYN48ePBwDY2NhIpzLv3buHzz//HA0bNsyzrjp16sDJyanA78fAwAAtWrRASkoK4uLi3tovJSUFY8eOhZWVFXR1dVGnTh0sWLAAQgjZe0xJScHGjRulup2dnQtcExEVDR5pI6JS5c6dOwCA8uXLAwCWLl2Kzp07o0+fPkhPT8f27dvx/fff4+DBg+jQoYPsuSdPnsTOnTsxfPhwVKhQIc+L/b/77jvcvHkT27Ztw+LFi1GhQgUAgJmZGfr27YtBgwbh2rVr+OSTT6TnBAUF4ebNm5g8efIHvae7d+9CU1PzradihRDo3LkzTp06BRcXF9jZ2cHPzw/jx4/Ho0ePsHjxYgDApk2bMHDgQDRr1gw///wzAKBGjRofVBMRFQFBRFQCbdiwQQAQJ06cEHFxceLBgwdi+/btonz58kJfX188fPhQCCHEixcvZM9LT08Xn3zyiWjbtq2sHYDQ0NAQ169fz/VaAISHh4e0PH/+fAFAREZGyvolJCQIPT094erqKmsfOXKkMDQ0FM+fP3/ne/r888+Fra2tiIuLE3FxcSIsLEyMHDlSABCdOnWS+vXv319UrVpVWt6/f78AIGbNmiXbXvfu3YVCoRC3b9+W2gwNDUX//v3fWQcRKQdPjxJRiebo6AgzMzNYWVmhZ8+eMDIywr59+1C5cmUAgL6+vtT32bNnSExMRKtWrfDPP//k2tbnn3+OevXqfXAtJiYm6NKlC7Zt2yadlszKysKOHTvQtWtXGBoavncb4eHhMDMzg5mZGerWrYvly5ejQ4cOWL9+/Vufc/jwYWhqamLkyJGy9rFjx0IIgSNHjnzweyKi4sPTo0RUoq1cuRK1a9eGlpYWzM3NUadOHWho/Pf/1YMHD2LWrFkIDQ1FWlqa1K5QKHJty8bG5qPr6devH3bs2IFz586hdevWOHHiBGJjY9G3b998Pb9atWpYu3atNI1JrVq1ULFixXc+5/79+6hUqRLKlCkja69bt660nohUH0MbEZVozZo1k0aPvuncuXPo3LkzWrdujVWrVsHS0hLa2trYsGEDtm7dmqv/60flPpSTkxPMzc2xefNmtG7dGps3b4aFhQUcHR3z9XxDQ8N89yWikoWnR4mo1NqzZw/09PTg5+eHAQMGoH379oUSiPI6SpdDU1MTvXv3xu7du/Hs2TPs378fvXr1gqam5ke/7ttUrVoVjx8/RnJysqw9PDxcWp/jXbUTkXIxtBFRqaWpqQmFQoGsrCyp7d69ex99R4Cca9PedkeEvn374tmzZxg8eDCeP38um3etKHzzzTfIysrCihUrZO2LFy+GQqFA+/btpTZDQ8NCv5MDERUOnh4lolKrQ4cOWLRoEdq1a4fevXvjyZMnWLlyJWrWrIkrV6588HabNGkCAJg0aRJ69uwJbW1tdOrUSQpzjRo1wieffIJdu3ahbt26aNy4caG8n7fp1KkT2rRpg0mTJuHevXto2LAhjh07Bh8fH4waNUo2rUeTJk1w4sQJLFq0CJUqVYKNjQ2aN29epPURUf7wSBsRlVpt27bFH3/8gZiYGIwaNQrbtm3DvHnz8O23337Udj/99FPMnDkTly9fhrOzM3r16pVr4tt+/foBQL4HIHwMDQ0N+Pr6YtSoUTh48CBGjRqFGzduYP78+Vi0aJGs76JFi9CkSRNMnjwZvXr1wurVq4u8PiLKH4UQr02HTURExWLp0qUYPXo07t27B2tra2WXQ0RqgKGNiKiYCSHQsGFDlC9fHqdOnVJ2OUSkJnhNGxFRMUlJSYGvry9OnTqFq1evwsfHR9klEZEa4ZE2IqJicu/ePdjY2MDU1BS//PILZs+ereySiEiNMLQRERERqQGOHiUiIiJSAwxtRERERGqAAxFUWHZ2Nh4/fowyZcrw1jJERERqQgiB5ORkVKpUCRoahXd8jKFNhT1+/BhWVlbKLoOIiIg+wIMHD1ClSpVC2x5DmworU6YMgFc73djYWMnVEBERUX4kJSXByspK+h4vLAxtKiznlKixsTFDGxERkZop7EubOBCBiIiISA0wtBERERGpAYY2IiIiIjXAa9rUXFZWFjIyMpRdBhUDbW1taGpqKrsMIiJSEoY2NSWEQExMDBISEpRdChUjU1NTWFhYcN4+IqJSiKFNTeUEtooVK8LAwIBf4iWcEAIvXrzAkydPAACWlpZKroiIiIobQ5saysrKkgJb+fLllV0OFRN9fX0AwJMnT1CxYkWeKiUiKmU4EEEN5VzDZmBgoORKqLjl7HNex0hEVPowtKkxnhItfbjPiYhKL4Y2IiIiIjWgNqGtc+fOsLa2hp6eHiwtLdG3b188fvxY1kcIgQULFqB27drQ1dVF5cqVMXv2bFmf06dPo3HjxtDV1UXNmjXh7e2d67VWrlyJatWqQU9PD82bN8fff/8tW5+amophw4ahfPnyMDIyQrdu3RAbGyvrExUVhQ4dOsDAwAAVK1bE+PHjkZmZWTgfBhEREZU6ahPa2rRpg507dyIiIgJ79uzBnTt30L17d1mfX3/9FevWrcOCBQsQHh4OX19fNGvWTFofGRmJDh06oE2bNggNDcWoUaMwcOBA+Pn5SX127NiBMWPGwMPDA//88w8aNmwIJycnadQeAIwePRoHDhzArl27cObMGTx+/BjfffedtD4rKwsdOnRAeno6Lly4gI0bN8Lb2xtTp04twk9IPTg7O0OhUEChUEBbWxvm5ub46quvsH79emRnZ+d7O97e3jA1NS26QomIiFSNUFM+Pj5CoVCI9PR0IYQQN27cEFpaWiI8PPytz5kwYYKoX7++rK1Hjx7CyclJWm7WrJkYNmyYtJyVlSUqVaok5s6dK4QQIiEhQWhra4tdu3ZJfcLCwgQAERAQIIQQ4vDhw0JDQ0PExMRIfVavXi2MjY1FWlpavt9jYmKiACASExNl7S9fvhQ3btwQL1++zPe2VEX//v1Fu3btRHR0tHj48KEIDg4Ws2fPFkZGRqJ9+/YiIyMjX9vZsGGDMDExKdpiVZA673siotLibd/fH0ttjrS9Lj4+Hlu2bIGDgwO0tbUBAAcOHED16tVx8OBB2NjYoFq1ahg4cCDi4+Ol5wUEBMDR0VG2LScnJwQEBAAA0tPTERwcLOujoaEBR0dHqU9wcDAyMjJkfWxtbWFtbS31CQgIQIMGDWBubi57naSkJFy/fv2t7ystLQ1JSUmyR0mkq6sLCwsLVK5cGY0bN8bEiRPh4+ODI0eOSKerFy1ahAYNGsDQ0BBWVlb45Zdf8Pz5cwCvTnH/9NNPSExMlI7aTZs2DQCwadMmNG3aFGXKlIGFhQV69+4tO0pKREQEAL6+gIPDqz/VhVqFNldXVxgaGqJ8+fKIioqCj4+PtO7u3bu4f/8+du3ahT///BPe3t4IDg6WnUKNiYmRBSkAMDc3R1JSEl6+fIl///0XWVlZefaJiYmRtqGjo5Pr1NybffLaRs66t5k7dy5MTEykh5WVVT4/mVfX86WnpyvlIYTId51v07ZtWzRs2BB79+4F8CosL1u2DNevX8fGjRtx8uRJTJgwAQDg4OCAJUuWwNjYGNHR0YiOjsa4ceMAvJoKY+bMmbh8+TL279+Pe/fuwdnZ+aPrIyKiksXTEwgIePWnulDq5Lpubm6YN2/eO/uEhYXB1tYWADB+/Hi4uLjg/v37mD59Ovr164eDBw9CoVAgOzsbaWlp+PPPP1G7dm0AwB9//IEmTZogIiICderUKfL387Hc3d0xZswYaTkpKSnfwS0jIwNz584tqtLeyd3dHTo6Oh+9HVtbW1y5cgUAMGrUKKm9WrVqmDVrFoYMGYJVq1ZBR0cHJiYmUCgUsLCwkG1jwIAB0t+rV6+OZcuW4dNPP8Xz589hZGT00TUSEZF68/UF5s9Pw1df+aJKFRv8+GNTZZeUb0oNbWPHjn3vUZDq1atLf69QoQIqVKiA2rVro27durCyssLFixdhb28PS0tLaGlpSYENAOrWrQvg1UjOOnXqwMLCItcoz9jYWBgbG0NfXx+amprQ1NTMs09OOLCwsEB6ejoSEhJkR9ve7PPmiNOcbb4ZMl6nq6sLXV3dd34eJZkQQpqH7MSJE5g7dy7Cw8ORlJSEzMxMpKam4sWLF++cVDg4OBjTpk3D5cuX8ezZM2lwQ1RUFOrVq1cs74OIiFTX0qURcHTcDgCoX/8GOnVqAkA95sBUamgzMzODmZnZBz0358s4LS0NAPDZZ58hMzMTd+7cQY0aNQAAN2/eBABUrVoVAGBvb4/Dhw/LtnP8+HHY29sDAHR0dNCkSRP4+/uja9eu0uv4+/tj+PDhAIAmTZpAW1sb/v7+6NatGwAgIiICUVFR0nbs7e0xe/Zs6XZDOa9jbGxcZMFBW1sb7u7uRbLt/Lx2YQgLC4ONjQ3u3buHjh07YujQoZg9ezbKlSuHv/76Cy4uLkhPT39raEtJSYGTkxOcnJywZcsWmJmZISoqCk5OTkhPTy+UGomISD35+AicPLkRrVvfl9patWqlVpOWq8W9RwMDAxEUFISWLVuibNmyuHPnDqZMmYIaNWpIQcnR0RGNGzfGgAEDsGTJEmRnZ2PYsGH46quvpKNvQ4YMwYoVKzBhwgQMGDAAJ0+exM6dO3Ho0CHptcaMGYP+/fujadOmaNasGZYsWYKUlBT89NNPAAATExO4uLhgzJgxKFeuHIyNjTFixAjY29ujRYsWAICvv/4a9erVQ9++feHl5YWYmBhMnjwZw4YNK7IjaQqFolBOUSrLyZMncfXqVYwePRrBwcHIzs7GwoULoaHx6rLLnTt3yvrr6OggKytL1hYeHo6nT5/C09NTOq186dKl4nkDRESkshITExEaugTlyv3XVqfOz2jb1lJ5RX0AtQhtBgYG2Lt3Lzw8PJCSkgJLS0u0a9cOkydPlkKQhoYGDhw4gBEjRqB169YwNDRE+/btsXDhQmk7NjY2OHToEEaPHo2lS5eiSpUqWLduHZycnKQ+PXr0QFxcHKZOnYqYmBjY2dnh6NGjsoEFixcvhoaGBrp164a0tDQ4OTlh1apV0npNTU0cPHgQQ4cOhb29PQwNDdG/f3/MmDGjGD4t1ZeWloaYmBhkZWUhNjYWR48exdy5c9GxY0f069cP165dQ0ZGBpYvX45OnTrh/PnzWLNmjWwb1apVw/Pnz+Hv74+GDRvCwMAA1tbW0NHRwfLlyzFkyBBcu3YNM2fOVNK7JCIiVRAYGIijR49Ky0LoYerU8dJBAXWiEIUx9I+KRFJSEkxMTJCYmAhjY2OpPTU1FZGRkbCxsYGenp4SKyw4Z2dnbNy4EQCgpaWFsmXLomHDhujduzf69+8v/RAtXrwY8+fPR0JCAlq3bo0+ffqgX79+ePbsmXQt4dChQ7Fr1y48ffoUHh4emDZtGrZt24aJEyciOjoajRs3hru7Ozp37oyQkBDY2dkp6V0XHnXe90RExWnSpGxkZc2Hvn6q1Hb0qBMUiha4cKFoX/tt398fi6FNhZXE0EYfh/ueiOj9tm+PRkTE77I2X99RSEkxgZcX0Llz0b5+UYU2tTg9SkRERJQfR44cQUTEfzM4pKRYY948Z3h4qM+Ag7dhaCMiIiK1l5aWBs83Zsrdtq0HypWzhRoNEH0nhjYiIiJSazdv3sS2bdtkbf/7nyv8/PTg5qakoooAQxsRERGpJSEEFi3ahOfPI6W2xo0bo1OnTgCAb79VVmVFg6GNiIiI1E5SUhIWL14saxs4cCAqV66spIqKnvpNUkJERESlWlBQkCywpadrY8eOySU6sAE80kZERERqIjs7G3PnLkRm5guprVKlr7BhgwPeGINQIjG0ERERkcqLiYnBb7/9Jmv7/fdf8eiRKQYNUlJRxYyhjYiIiFSan58fLl68KC0/fFgZf/zhAnf3EjKXRz4xtFGJ5OzsjISEBOzfvx8A8MUXX8DOzg5Lliz54G0WxjaIiCj/0tPTMXfuXFnbjh0/ICKiLvbvL/o7G6gahjYqVq/fe1RbWxvW1tbo168fJk6cCC2tovvnuHfvXmhra+er7+nTp9GmTRvZfU4Lug0iIvo4t2/fxpYtW2Rtnp6uAF7NvVbaAhvA0EZK0K5dO2zYsAFpaWk4fPgwhg0bBm1tbbi7u8v6paenQ0dHp1Bes1y5ciqxDSIier/Nmzfjzp070nJWlh0WL+6CMWOA2bOVWJiSccoPKna6urqwsLBA1apVMXToUDg6OsLX1xfOzs7o2rUrZs+ejUqVKqFOnToAgAcPHuCHH36AqakpypUrhy5duuDevXvS9rKysjBmzBiYmpqifPnymDBhAoQQstf84osvMGrUKGk5LS0Nrq6usLKygq6uLmrWrIk//vgD9+7dQ5s2bQAAZcuWhUKhgLOzc57bePbsGfr164eyZcvCwMAA7du3x61bt6T13t7eMDU1hZ+fH+rWrQsjIyO0a9cO0dHRUp/Tp0+jWbNmMDQ0hKmpKT777DPcv3+/kD5pIiL1kpycjOnTp8sC2+bNLpgxowuSk0t3YAMY2kgF6OvrIz09HQDg7++PiIgIHD9+HAcPHkRGRgacnJxQpkwZnDt3DufPn5fCT85zFi5cCG9vb6xfvx5//fUX4uPjsW/fvne+Zr9+/bBt2zYsW7YMYWFh+O2332BkZAQrKyvs2bMHABAREYHo6GgsXbo0z204Ozvj0qVL8PX1RUBAAIQQ+Oabb5CRkSH1efHiBRYsWIBNmzbh7NmziIqKwrhx4wAAmZmZ6Nq1Kz7//HNcuXIFAQEB+Pnnn6EoKTfJIyIqgODgYCxatEhazsrSwKxZk/HDD1WUWJVq4elRUhohBPz9/eHn54cRI0YgLi4OhoaGWLdunXRadPPmzcjOzsa6deukMLNhwwaYmpri9OnT+Prrr7FkyRK4u7vju+++AwCsWbMGfn5+b33dmzdvYufOnTh+/DgcHR0BANWrV5fW55wGrVixouyattfdunULvr6+OH/+PBwcHAAAW7ZsgZWVFfbv34/vv/8eAJCRkYE1a9agRo0aAIDhw4djxowZAF7N5p2YmIiOHTtK6+vWrVvwD5KISI1lZ2djyZIlSE5OltoqVXLEhg2fYc+e0nnt2tvwSBvB1xdwcHj1Z3E4ePAgjIyMoKenh/bt26NHjx6YNm0aAKBBgway69guX76M27dvo0yZMjAyMoKRkRHKlSuH1NRU3LlzB4mJiYiOjkbz5s2l52hpaaFp06Zvff3Q0FBoamri888//+D3EBYWBi0tLdnrli9fHnXq1EFYWJjUZmBgIAUyALC0tMSTJ08AvAqHzs7OcHJyQqdOnbB06VLZqVMiopIuNjYWM2fOlAW2kSNHYtCgz3DhAgPbmxjaCJ6eQEAAim026TZt2iA0NBS3bt3Cy5cvsXHjRhgaGgKA9GeO58+fo0mTJggNDZU9bt68id69e3/Q6+vr63/0e8ivN0ebKhQK2fV2GzZsQEBAABwcHLBjxw7Url1bNhcREVFJdfz4caxZs0ZafvzYEn5+U1G2bFklVqXaGNoIbm6Avf2rP4uDoaEhatasCWtr6/dO89G4cWPcunULFStWRM2aNWUPExMTmJiYwNLSEoGBgdJzMjMzERwc/NZtNmjQANnZ2Thz5kye63OO9GVlZb11G3Xr1kVmZqbsdZ8+fYqIiAjUq1fvne/pTY0aNYK7uzsuXLiATz75BFu3bi3Q84mI1El6ejqmT5+OCxcuSG27dnXHunU/w82N1/S+C0MboXNnqOxh6D59+qBChQro0qULzp07h8jISJw+fRojR47Ew4cPAQC//vorPD09sX//foSHh+OXX35BQkLCW7dZrVo19O/fHwMGDMD+/fulbe7cuRMAULVqVSgUChw8eBBxcXF4/vx5rm3UqlULXbp0waBBg/DXX3/h8uXL+PHHH1G5cmV06dIlX+8tMjIS7u7uCAgIwP3793Hs2DHcunWL17URUYl1586dXJPlzps3AWFh9Uvt3GsFwdBGKs3AwABnz56FtbU1vvvuO9StWxcuLi5ITU2FsbExAGDs2LHo27cv+vfvD3t7e5QpUwbffvvtO7e7evVqdO/eHb/88gtsbW0xaNAgpKSkAAAqV66M6dOnw83NDebm5hg+fHie29iwYQOaNGmCjh07wt7eHkIIHD58ON8T8BoYGCA8PBzdunVD7dq18fPPP2PYsGEYPHhwAT4hIiL1sG3bNmzevFlaDg1tiO3bPWBnp499+zidR34oxJsTWpHKSEpKgomJCRITE6WAAgCpqamIjIyEjY0N9PT0lFghFTfueyJSN8+fP8fChQtlbX/88RMePbLGvn0l8+ja276/Pxan/CAiIqIiERISAt/XpiYQApg1axKysrQwcWLJDGxFiaGNiIiICpUQAkuXLkViYqLU5u/fBnfvtoa+PjByJE+HfgiGNiIiIio0cXFxWLVqlaxt2bIRSE8vhy1beHTtYzC0ERERUaHw9/fHX3/9JS3HxJhjzZrB0NNTYMcOBraPxdCmxjiGpPThPiciVZSRkYE5c+bI2nbv/g63bzeArS0wbx4DW2FgaFNDOVNKvHjxolhn9yfle/HiBYDcd1ogIlKWLVsicfv2n7K2pUvHo2JFAx5dK2QMbWpIU1MTpqam0j0sDQwMpJupU8kkhMCLFy/w5MkTmJqaQlNTU9klERFhx44duH07XFq+evUT+Pl147VrRYShTU1ZWFgAgBTcqHQwNTWV9j0RkbKkpKRgwYIFsra7d53x+HFVBrYixNCmphQKBSwtLVGxYkVkZGQouxwqBtra2jzCRkRKFxoaCh8fH1nbrFmT8OmnWnjtdqJUBBja1Jympia/yImIqMgJIbBixQrEx8dLbVevfo5+/b7Ap58Cbm5KLK6UYGgjIiKid/r333+xcuVKWdvy5cNhZlYenTvzdGhxYWgjIiKitzp16hTOnj0rLcfFVYC//y+oXVvBo2vFjKGNiIiIcsnMzMTsN+41tXfvt7h163/Yvp1H15SBoY2IiIhk7t27h40bN8raFi0ah/r1DRnYlIihjYiIiCS7du3CjRs3pOXr1+th167voa0Njg5VMoY2IiIiwosXLzB//nxZW82a/bF2bTXo6QFjxiipMJIwtBEREZVyV65cwb59+2RtS5ZMxLNn2ujTR0lFUS4MbURERKWUEAKrVq3Cv//+K7WdOdMKZ8605chQFcTQRkREVAo9ffoUK1askLWtWDEMqakVsG8fBxuoIoY2IiKiUubMmTM4ffq0tPz0aTmsWDEcCoWCgU2FMbQRERGVEnnNvbZ/fxdERdnB0BAYOZKBTZUxtBEREZUC9+/fh7e3t6xt+fJxqF3bEBs2MKypA4Y2IiKiEm7Pnj24du2atJydbYtFi3pg5EjgjQNvpMIY2oiIiEqovOZe69u3L6pXr47p05VUFH0wDWUXQERERIXv2rVruQLb8eMTUb16dSVVRB+LR9qIiIhKECEEvLx+Q2pqrNR27txnCA93xKpVSiyMPhpDGxERUQkRHx+P5cuXy9pWrvwFcXFmsLfnYAN1x9BGRERUApw7dw4nT56UlhMSTLF06UhoaSlgawve4aAEYGgjIiJSY3nNvZaZ2Qlt2jRGYOCrsMYjbCUDQxsREZGaevDgAdavXy9rW7BgLAAjJCczrJU0DG1ERERqaP/+/bh8+bK0/PhxLRw61BtZWcDo0UosjIoMQxsREZEaefnyJby8vGRtu3b9iDlzauC335RUFBULhjYiIiI1cf36dezevVvWduKEO+bM0eGp0FKAoY2IiEjFCSEwf/5avHwZLbVFRtrD2/treHgosTAqVgxtREREKuzZs2dYtmyZrO3w4SGYNMlcSRWRsjC0ERERqai1a8/j8eMT0nJSUhksXjwKLVpo8HRoKcTQRkREpGKysrIwZ84cZGdnS20HD3aAjk5TtGjBiXJLK4Y2IiIiFfLw4UP88ccfsrb9+8cgJKSMkioiVcHQRkREpCKWL/dBfHyotHz7dg3s3/8jtmxRXk2kOhjaiIiIlGzv3lRcvTpP1lajRh/4+dXEli28swG9wtBGRESkRJMnh0Fbe6es7X//c8e33+rgxx+VVBSpJIY2IiIiJfDxETh9+g+Ymj6S2oKCmuPnn9vxyBrlSUPZBeRX586dYW1tDT09PVhaWqJv3754/PixtH7atGlQKBS5HoaGhrLt7Nq1C7a2ttDT00ODBg1w+PBh2XohBKZOnQpLS0vo6+vD0dERt27dkvWJj49Hnz59YGxsDFNTU7i4uOD58+eyPleuXEGrVq2gp6cHKyurXLccISKi0ishIQGhoTNkgW3PnsEMbPROahPa2rRpg507dyIiIgJ79uzBnTt30L17d2n9uHHjEB0dLXvUq1cP33//vdTnwoUL6NWrF1xcXBASEoKuXbuia9euuHbtmtTHy8sLy5Ytw5o1axAYGAhDQ0M4OTkhNTVV6tOnTx9cv34dx48fx8GDB3H27Fn8/PPP0vqkpCR8/fXXqFq1KoKDgzF//nxMmzYNv//+exF/SkREpOrWrr2ApUuXSsspKQaYMmUKrlyxYGCjd1IIIYSyi/gQvr6+6Nq1K9LS0qCtrZ1r/eXLl2FnZ4ezZ8+iVatWAIAePXogJSUFBw8elPq1aNECdnZ2WLNmDYQQqFSpEsaOHYtx48YBABITE2Fubg5vb2/07NkTYWFhqFevHoKCgtC0aVMAwNGjR/HNN9/g4cOHqFSpElavXo1JkyYhJiYGOjo6AAA3Nzfs378f4eHh+X6PSUlJMDExQWJiIoyNjT/4syIiIuXLysrC7NmeECJTajtxoj1at26G2bOVWBgVuqL6/labI22vi4+Px5YtW+Dg4JBnYAOAdevWoXbt2lJgA4CAgAA4OjrK+jk5OSEgIAAAEBkZiZiYGFkfExMTNG/eXOoTEBAAU1NTKbABgKOjIzQ0NBAYGCj1ad26tRTYcl4nIiICz549+8h3T0RE6ubRo0eYNWuWLLCtWjUa584xsFH+qVVoc3V1haGhIcqXL4+oqCj4+Pjk2S81NRVbtmyBi4uLrD0mJgbm5vJ7tZmbmyMmJkZan9P2rj4VK1aUrdfS0kK5cuVkffLaxuuvkZe0tDQkJSXJHkREpN4OHjyIdevWScuRkTbw9JyKgQN5BoUKRqmhzc3NLc/BA68/Xj+dOH78eISEhODYsWPQ1NREv379kNfZ3X379iE5ORn9+/cvzrfz0ebOnQsTExPpYWVlpeySiIjoA6WmpmL69OkIDg6W2v75pxe++64fXr5U8AgbFZhSp/wYO3YsnJ2d39mnevXq0t8rVKiAChUqoHbt2qhbty6srKxw8eJF2Nvby56zbt06dOzYMdfRLgsLC8TGxsraYmNjYWFhIa3PabO0tJT1sbOzk/o8efJEto3MzEzEx8fLtpPX67z+Gnlxd3fHmDFjpOWkpCQGNyIiNRQeHo4dO3bI2tzc3KCrq6ukiqgkUGpoMzMzg5mZ2Qc9N+cmumlpabL2yMhInDp1Cr6+vrmeY29vD39/f4waNUpqO378uBT6bGxsYGFhAX9/fymkJSUlITAwEEOHDpW2kZCQgODgYDRp0gQAcPLkSWRnZ6N58+ZSn0mTJiEjI0O65u748eOoU6cOypYt+9b3pKuryx9oIiI1JoTAwoXeSEmJktoCAz9FQsI38PBQYmFUIqjF5LqBgYEICgpCy5YtUbZsWdy5cwdTpkxBjRo1ch1lW79+PSwtLdG+fftc2/n111/x+eefY+HChejQoQO2b9+OS5cuSVNxKBQKjBo1CrNmzUKtWrVgY2ODKVOmoFKlSujatSsAoG7dumjXrh0GDRqENWvWICMjA8OHD0fPnj1RqVIlAEDv3r0xffp0uLi4wNXVFdeuXcPSpUuxePHiov2giIhIaRITE7FkyRJZ22+//YzkZEveO5QKhVqENgMDA+zduxceHh5ISUmBpaUl2rVrh8mTJ8uOTGVnZ8Pb2xvOzs7Q1NTMtR0HBwds3boVkydPxsSJE1GrVi3s378fn3zyidRnwoQJSElJwc8//4yEhAS0bNkSR48ehZ6entRny5YtGD58OL788ktoaGigW7duWLZsmbTexMQEx44dw7Bhw9CkSRNUqFABU6dOlc3lRkREJce6dRfx6JGftPzypR6WLBmPxo014ObGe4dS4VDbedpKA87TRkSk2rKzs+Hl5SW7VCcz0wlLlrTAyJHgYINSqqi+v9XiSBsREZGq2b49GhER8jvd1K8/Ct27m2DmTCUVRSUaQxsREVEB+PoCPj6HYW0dJLVZW1vD2dkZCoVCiZVRSadWk+sSEREpi68vYGOThpCQ6bLAZmPTAz/99BMDGxU5HmkjIiJ6D19fYMqUm3B23iZrd3V1lQ1UIypKDG1ERETvIISAv/+f+O67e1JbfHwTBAV1RKNGHBlKxYenR4mIiN4iKSkJM2bMQLly96S2QYMGISioIwICAE9P5dVGpQ+PtBEREb3B1xdYu/ZvNG16RGrT1taGq6srNDU14eb2KrC5uSmxSCp1GNqIiIhek52djcDAhWja9IXUFh7+NbZt++8OPJ0787QoFT+GNiIiov+3fXsMIiJ+g47Of22+vr/Cw8NUaTUR5WBoIyIiArBq1VHExQVKy8+eVcHixQPg4cGpPEg1MLQREVGpNmlSOnR05srazp37ASNH1gWnXiNVwtBGRESl1q1bt6Cjs1XW1qCBKzw8OPcaqR6GNiIiKnV8fYHDhzfD0vKO1PbPP40QF9cZHh5KLIzoHRjaiIioVNmzJxnXri2CpeV/bceOuSA+vgrmzVNeXUTvw9BGRESlxqVLl3Dt2iFpOStLE40bu8PDQ1OJVRHlD0MbERGVeD4+2bh4cTH09J5LbZUqOWLQoM+UWBVRwTC0ERFRibZjRyzCw9fg9fu616s3Et9/X1Z5RRF9AIY2IiIqkXx9gb17j8HGJkBqe/SoEtauHQh7ewW+/16JxRF9AIY2IiIqcdLT0xESMhc2Nv+1ZWR0x7lz9VGnDu8ZSuqJoY2IiEqUzZvv4M6dzbK2CRMmQF9fH7NmKakookLA0EZERCWCry9w7NhWmJndktoePWqIjh27Ql9fiYURFRKGNiIiUnvPnz9HSMhCmJn911ar1gB4eFgpryiiQsbQRkREau2ff/7BgQMHpOXsbAWmTp0ETU3OvUYlC0MbERGpJSEEJk9eCh2dRKnt7Nm2+PXXVmBeo5KIoY2IiNTOkydPsHr1aujo/Nd29uwI/PprOXTurLy6iIoSQxsREamVEydO4Pz589JyTIw5/v13MPz9FUqsiqjoMbQREZFayMjIwJw5c2RtBw50g5PTJ1i9WklFERUjhjYiIlJ5W7bcxe3bm2Rt48ePh4eHgZIqIip+DG1ERKSyfH2Bo0e3w9w8Qmq7caMB+vT5DgbMa1TKMLQREZFKSklJQUjIApib/9d24sRPGD/emoMNqFRiaCMiIpWzYUMIoqJ8ZW2TJk2Chwe/tqj04r9+IiJSGUIILF++HM+ePZPaTp/+AqNHfw4tfmNRKccfASIiUglxcXFYtWqVrO2334bjp5/K83QoERjaiIhIBaxZcxKxseekZTMzMwwdOhQeHpx7jSgHQxsRESlNXnOvffvtt/jf//6npIqIVJeGsgsgIqLS6d69e7kC29Kl4xnYiN6CR9qIiKjYLV26EwkJYdJyVlZ9LF7cHSNHKrEoIhXH0EZERMUmJSUFCxYskLX1798f1apVw4wZSiqKSE3w9CgRERWLy5cv5wpsO3ZMQrVq1ZRTEJGa4ZE2IiIqUkIIzJu3EmlpT6W206dbIzCwDbZvV2JhRGqmwEfaNDU18eTJk1ztT58+haamZqEURUREJcPTp08xY8YMWWBbsWIYYmJeBTbOv0aUfwU+0iaEyLM9LS0NOjo6H10QERGVDL/9dhoxMWek5adPy2HduuEYPVqB2bOVWBiRmsp3aFu2bBkAQKFQYN26dTAyMpLWZWVl4ezZs7C1tS38ComISK1kZmZi9hupbP/+LvjmGzu8eKGkoohKgHyHtsWLFwN4daRtzZo1slOhOjo6qFatGtasWVP4FRIRkdq4f/8+vL29ZW379o3DjBmGPBVK9JEU4m3nO9+iTZs22Lt3L8qWLVtUNdH/S0pKgomJCRITE2FsbKzscoiI3mnPnj24du2atBwba4tVq3oosSIi5Siq7+8CX9N26tSpQntxIiJSfy9evMD8+fNlbdu29YOXl42SKiIqmQoc2gYMGPDO9evXr//gYoiISL14e1/F/ft7ZW2zZk1EzZraPB1KVMgKHNqePXsmW87IyMC1a9eQkJCAtm3bFlphRESkunKub359CqizZ1vi8eMv8emngJubEosjKqEKHNr27duXqy07OxtDhw5FjRo1CqUoIiJSXfHx8Vi+fLmsbdeuX5CZaQYvL869RlRUCjwQ4W0iIiLwxRdfIDo6ujA2R+BABCJSPWfPnpVd2/zsmSn++GMkkpMVSqyKSLWozECEt7lz5w4yMzMLa3NERKRC8pp77dChTggLa4yRI5VUFFEpU+DQNmbMGNmyEALR0dE4dOgQ+vfvX2iFERGRanjw4EGuQWarVo3FwIFG+PtvJRVFVAoVOLSFhITIljU0NGBmZoaFCxe+d2QpERGpl3379uHKlSvSckREbdy71wuxsUosiqiU4jxtRESUy8uXL+Hl5SVr27TpR2hp1cAbzURUTD74mrYnT54gIiICAFCnTh1UrFix0IoiIiLluXbtGvbs2SNrW7JkIn75RZs3eidSogKHtqSkJAwbNgzbtm1DdnY2AEBTUxM9evTAypUrYWJiUuhFEhFR0RNC4Pfff0dMTIzUdv68A54//wpvTNFJREqgUdAnDBo0CIGBgTh06BASEhKQkJCAgwcP4tKlSxg8eHBR1EhEREXs2bNnmDFjhiywrVo1FOfOfcWJcolURIHnaTM0NISfnx9atmwpaz937hzatWuHlJSUQi2wNOM8bURUHP766y/4+/tLy0lJZbBkySjUqqXByXKJPoDKzNNWvnz5PE+BmpiYoGzZsoVSFBERFb2srCzMmjUbwH//dz9woCNCQprAzQ28fo1IxRT49OjkyZMxZswY2SH0mJgYjB8/HlOmTCnU4oiIqGg8fPgQs2bNwuuBbeHCMYiMbIJ9+xjYiFRRgU+PNmrUCLdv30ZaWhqsra0BAFFRUdDV1UWtWrVkff/555/Cq7QU4ulRIioKPj4+CA0NlZb//bcGvvrqR54GJSokKnN6tEuXLlAoeI85IiJ1k5qainnz5snagoP7wNe3ppIqIqKCKHBomzZtWhGUQURERenGjRvYtWuXrG3pUnd4e+soqSIiKqgCh7bq1asjKCgI5cuXl7UnJCSgcePGuHv3bqEVR0REH0cIgQUL1uHFi8dSW0BAC5w/74QtWzgylEidFDi03bt3D1lZWbna09LS8PDhw0IpioiIPl5CQgKWLl0qa6tTZzD8/CwY2IjUUL5Hj/r6+sLX1xcA4OfnJy37+vpi3759mDlzJmxsbIqs0M6dO8Pa2hp6enqwtLRE37598fjxY1kfPz8/tGjRAmXKlIGZmRm6deuGe/fuyfqcPn0ajRs3hq6uLmrWrAlvb+9cr7Vy5UpUq1YNenp6aN68Of7++2/Z+tTUVAwbNgzly5eHkZERunXrhtg37p4cFRWFDh06wMDAABUrVsT48eORmZlZKJ8FEdH7rF17QRbYnj83xI4dU9CzpwUuXGBgI1JH+R49qqHxKt8pFAq8+RRtbW1Uq1YNCxcuRMeOHQu/SgCLFy+Gvb09LC0t8ejRI4wbNw4AcOHCBQBAZGQk6tatizFjxsDFxQWJiYkYPXo0kpOTpVGskZGR+OSTTzBkyBAMHDgQ/v7+GDVqFA4dOgQnJycAwI4dO9CvXz+sWbMGzZs3x5IlS7Br1y5ERERI91cdOnQoDh06BG9vb5iYmGD48OHQ0NDA+fPnAbya+8jOzg4WFhaYP38+oqOj0a9fPwwaNAhz5szJ93vm6FEiKqisrCzMnu0JIf77T+Jff32Dhw8/xbx5DGtExaGovr8LPOWHjY0NgoKCUKFChUIr4kP4+vqia9euSEtLg7a2Nnbv3o1evXohLS1NCpgHDhxAly5dpD6urq44dOgQrl27Jm2nZ8+eSEhIwNGjRwEAzZs3x6effooVK1YAALKzs2FlZYURI0bAzc0NiYmJMDMzw9atW9G9e3cAQHh4OOrWrYuAgAC0aNECR44cQceOHfH48WOYm5sDANasWQNXV1fExcVBRyd/F/4ytBFRQTx69Ajr1q2TtS1cOBqffGKM////LREVg6L6/i7w5LqRkZFKD2zx8fHYsmULHBwcoK2tDQBo0qQJNDQ0sGHDBmRlZSExMRGbNm2Co6Oj1CcgIACOjo6ybTk5OSEgIAAAkJ6ejuDgYFkfDQ0NODo6Sn2Cg4ORkZEh62Nrawtra2upT0BAABo0aCAFtpzXSUpKwvXr19/6vtLS0pCUlCR7EBHlx4EDB2SB7c6d6pg2bSqEMOa9Q4lKiAIPRJgxY8Y710+dOvWDi3kfV1dXrFixAi9evECLFi1w8OBBaZ2NjQ2OHTuGH374AYMHD0ZWVhbs7e1x+PBhqU9MTIwsSAGAubk5kpKS8PLlSzx79gxZWVl59gkPD5e2oaOjA1NT01x9cu4S8bbXyVn3NnPnzsX06dPz+WkQEeU999qWLb1x+3Yt1KkD3juUqAQp8JG2ffv2yR47d+7EvHnzsHDhQuzfv79A23Jzc4NCoXjnIycsAcD48eMREhKCY8eOQVNTE/369ZOur4uJicGgQYPQv39/BAUF4cyZM9DR0UH37t1zXYOnqtzd3ZGYmCg9Hjx4oOySiEiFhYeH5wps3t5uePiwFtzdgfBwBjaikqTAR9pCQkJytSUlJcHZ2RnffvttgbY1duxYODs7v7NP9erVpb9XqFABFSpUQO3atVG3bl1YWVnh4sWLsLe3x8qVK2FiYgIvLy+p/+bNm2FlZYXAwEC0aNECFhYWuUZ5xsbGwtjYGPr6+tDU1ISmpmaefSwsLAAAFhYWSE9PR0JCguxo25t93hxxmrPNnD550dXVha6u7js/DyIiIQQ2bNgg+49dYGAzJCS0R2SkEgsjoiJV4NCWF2NjY0yfPh2dOnVC37598/08MzMzmJmZfdBrZmdnA3h1HRgAvHjxQhqAkENTU1PW983TpQBw/Phx2NvbAwB0dHTQpEkT+Pv7o2vXrtJz/f39MXz4cACvrp3T1taGv78/unXrBgCIiIhAVFSUtB17e3vMnj0bT548kUacHj9+HMbGxqhXr94HvV8iIgCYNCkROjpLZG1r1vyMJ08ssW+fcmoiouJRKKENgHRKrygEBgYiKCgILVu2RNmyZXHnzh1MmTIFNWrUkIJShw4dsHjxYsyYMQO9evVCcnIyJk6ciKpVq6JRo0YAgCFDhmDFihWYMGECBgwYgJMnT2Lnzp04dOiQ9FpjxoxB//790bRpUzRr1gxLlixBSkoKfvrpJwCAiYkJXFxcMGbMGJQrVw7GxsYYMWIE7O3t0aJFCwDA119/jXr16qFv377w8vJCTEwMJk+ejGHDhvFIGhF9sIsXL0JHx09aTk3Vw+bN45GQoAE3N54KJSrpChzali1bJlsWQiA6OhqbNm1C+/btC62w1xkYGGDv3r3w8PBASkoKLC0t0a5dO0yePFkKQW3btsXWrVvh5eUFLy8vGBgYwN7eHkePHoW+vj6AV4MVDh06hNGjR2Pp0qWoUqUK1q1bJ83RBgA9evRAXFwcpk6dipiYGNjZ2eHo0aOygQWLFy+GhoYGunXrhrS0NDg5OWHVqlXSek1NTRw8eBBDhw6Fvb09DA0N0b9///cO4iAiyktWVha8vLyQnp4utR0+3A4hIc3xWhMRlXAfNE/b6zQ0NGBmZoa2bdvC3d0dZcqUKdQCSzPO00ZEjx8/xtq1a2VtixePQmKiCSpXBnj3QCLVU1Tf3wU+0hbJq1yJiIrFoUOHcOnSJWn5yZOq+Prr/vjzTwU8PcH514hKmQ+6pi0hIQG3b98GANSsWTPXnGVERPTh9u1Lw5UrnrK2bdt6IiKiDkJCwHuHEpVSBZqn7d69e+jQoQMqVKiA5s2bo3nz5qhQoQI6duyY68bsRERUcBEREbkC2+7dbgDqwNaWR9eISrN8H2l78OABWrRoAW1tbcycORN169YFANy4cQOrV6+Gvb09goKCUKVKlSIrloiopBJCYOPGjbh//77UFhTUBGfOdMSWLTyyRkQFGIjg4uKC27dvw8/PD3p6erJ1L1++RLt27VCrVq1cNyumD8eBCESlw+7dSbh+fbGszc9vEIBKnMqDSA0pfSDC0aNHsWPHjlyBDQD09fUxc+ZM9OzZs9AKIyIqDf7++29cv35EWk5L04GX1wTs3avJsEZEMvkObf/++y+qVav21vXVq1dHfHx8YdRERFTiZWdnY8GCBXj58qXUduzY17hwwR6VK/PoGhHllu/QZmlpiRs3brz1mrVr1669876aRET0SnR0NH7//XdZ26+//opGjUw5lQcRvVW+Q1vXrl0xbtw4+Pv757pf6JMnT+Dq6irdr5OIiPJ25MgR/P3339KylZUVfvrpJygUCnTuzCNsRPR2+R6I8OzZMzRv3hwxMTH48ccfYWtrCyEEwsLCsHXrVlhYWODixYsoV65cUddcanAgAlHJkZ6ejrlz58rafvjhB2kkPhGVHEofiFC2bFkEBgZi4sSJ2L59OxISEgAApqam6N27N+bMmcPARkSUh1u3bmHr1q2yNldX1zwHdhERvU2B7z0KvJpPKC4uDgBgZmYGhUJR6IURj7QRlQSbNm3C3bt3peXg4EY4daozkpOVWBQRFSmlH2l7nUKhQMWKFQutCCKikiYpKQmLF8vnXlu7diAePaqMiROVVBQRqbUPCm1ERPR2QUFBOHz4sLSsUGghLc0NiYmamDgRmD1bicURkdpiaCMiKiTZ2dlYtGgRUlJSpLZjxxwhxGe4cIFhjYg+DkMbEVEhiI2NxZo1a2Rt27ePRNmyZTnvGhEVCoY2IqKP5Ofnh4sXL0rLjx5Vwtq1A2Frq8CFC0osjIhKlHyFtmXLluV7gyNHjvzgYoiI1MnevS9x9aqXrG3nzu9x40Y9aGgA8+YpqTAiKpHyFdreHAH1NgqFgqGNiEqFoKAgXL16WNa2ePEEaGrqQ08PGDOGdzcgosKVr9AWGRlZ1HUQEamN6dOny5ZfvtTDvHmuAAB7e/CUKBEViQ++pi09PR2RkZGoUaMGtLR4aRwRlWy+vsCyZU/RqtWKN9q7IyysPrp3Bx494s3eiajoFDhtvXjxAiNGjMDGjRsBADdv3kT16tUxYsQIVK5cGW78jUVEJYSvL+Dp+SqI+foeRKtWwbL1s2ZNhJ6eNl68UFKBRFSqaBT0Ce7u7rh8+TJOnz4tu2+eo6MjduzYUajFEREpk6cnEBiYjZCQ6bCy+i+w3bxZC8uWeUBPTxu8jJeIikuBj7Tt378fO3bsQIsWLWT3HK1fvz7u3LlTqMURESnTsGGRcHL6U9bm5zcIQCVs2MCBBkRUvAoc2uLi4vK872hKSgpvHE9EJcbvv/+O6OhoWZuf31S4uSkY1ohIKQp8erRp06Y4dOiQtJwT1NatWwd7e/vCq4yISAlSU1Mxffp0WWBr1aoVPDw8cOECAxsRKU+Bj7TNmTMH7du3x40bN5CZmYmlS5fixo0buHDhAs6cOVMUNRIRFYvg4GAcPHhQ1jZ69GgYGxsrqSIiov8U+Ehby5YtERoaiszMTDRo0ADHjh1DxYoVERAQgCZNmhRFjURERW769OmywKZQaMHDw4OBjYhUhkIIIZRdBOUtKSkJJiYmSExM5BcHURGYNAlYv/4ZhgyR36pv9+7vUKZMA06SS0QfpKi+v/N1ejQpKSnfG2S4ICJ1ce3aEQwZ8resbfbsicjK0sa+fUoqiojoLfIV2kxNTfM9MjQrK+ujCiIiKmrZ2dmYOXMmGjf+r+3p0+rYu7cvtLSA8eM5nQcRqZ58hbZTp05Jf7937x7c3Nzg7OwsjRYNCAjAxo0bMXfu3KKpkoiokNy/fx/e3t6ytrVrXZCYWAXJycqpiYgoPwp8TduXX36JgQMHolevXrL2rVu34vfff8fp06cLs75Sjde0ERWuP/74Aw8fPpS1rV07FYmJCowcCcyeraTCiKhEUeo1ba8LCAjAmjVrcrU3bdoUAwcOLJSiiIgKU1paGjw9PWVtN258hgcPHLFqFU+FEpF6KPCUH1ZWVli7dm2u9nXr1sHKyqpQiiIiKiwhISG5AtvKlaPQp48jLlxgYCMi9VHgI22LFy9Gt27dcOTIETRv3hwA8Pfff+PWrVvYs2dPoRdIRPShpk+fLlvOzlZgxoypsLVlWCMi9VPgI23ffPMNbt26hU6dOiE+Ph7x8fHo1KkTbt68iW+++aYoaiQiei9fX8DB4dWfCQkJuQLb3r1dsXPnVNjbA/PmKalIIqKPwMl1VRgHIhDln4MDEBAA9OzpB1vbi7J1u3e7o0wZHbi58QgbERU9lRmIALz6X+wff/yBsLAwAED9+vUxYMAAmJiYFFphRETv4usLTJgAKBSvjpy5ugqEhs6Q9TEyqoo9e5wxezbDGhGpvwIfabt06RKcnJygr6+PZs2aAQCCgoLw8uVLHDt2DI1fn62SPgqPtBG9Xc6RNQCwsYlC//4bZOtr1RqA3r05OIqIil9RfX8XOLS1atUKNWvWxNq1a6Gl9epAXWZmJgYOHIi7d+/i7NmzhVZcacfQRvR2OUfaPvvMG9bW92Xr/Pym4sKF/N3FhYiosKnM6dFLly7JAhsAaGlpYcKECWjatGmhFUZE9DpfX8DTE9J1ae3apSMkRH4XlgsXWuDECSfeN5SISqQChzZjY2NERUXB1tZW1v7gwQOUKVOm0AojInqdp+er06F9+gDLl1/G/fv7Zes3bPgVT5+acrABEZVYBQ5tPXr0gIuLCxYsWAAHBwcAwPnz5zF+/Phct7YiIiosbm6vAtuYMTNw/778qo5p0zxQpw5471AiKtEKHNoWLFgAhUKBfv36ITMzEwCgra2NoUOH5pp1nIiosHz+eSLGjVsia7O27ox58xrB1pZzrxFRyffB87S9ePECd+7cAQDUqFEDBgYGhVoYcSACUY4TJ07g/Pnzsrb//c8N336rq6SKiIjeTmUGIuQwMDBAgwYNCq0QIqI3CSEwY4Z87rUHD6rgxg0XeHgoqSgiIiXJd2gbMGBAvvqtX7/+g4shIsrx8OFD/PHHH7K2DRuc8fRpVWzZoqSiiIiUKN+hzdvbG1WrVkWjRo3AO18RUVHatGkT7t69K2uzs5uCSpU0sGwZR4cSUemU79A2dOhQbNu2DZGRkfjpp5/w448/oly5ckVZGxGVIr6+wPz56XB0lM+9FhjYDAkJ7eHhAXTpoqTiiIhUgEZ+O65cuRLR0dGYMGECDhw4ACsrK/zwww/w8/PjkTci+mje3ldzBbYDB0YiIaE93NyUVBQRkQr54NGj9+/fh7e3N/78809kZmbi+vXrMDIyKuz6SjWOHqXSYs6cOcjIyJC1+fl5cKJcIlJLKjd6VENDAwqFAkIIZGVlFVpBRFR6JCUlYfHixbK2Awc6IjKyCZ4+VVJRREQqKt+nRwEgLS0N27Ztw1dffYXatWvj6tWrWLFiBaKioniUjYgK5OTJk7kC2//+5wodnSbYsEFJRRERqbB8H2n75ZdfsH37dlhZWWHAgAHYtm0bKlSoUJS1EVEJlNfca48fW+Lq1Z/h4QF8+62SCiMiUnH5vqZNQ0MD1tbWaNSoERQKxVv77d27t9CKK+14TRuVNI8fP8batWtlbSdP9kNsrA28vHj9GhGVDEq/pq1fv37vDGtERG/y9QU8PV/d7P358624deuWbP3ChVOQlFSgqzSIiEqtAk2uS0RUEJ6eQFBQBkJC5sjaL11qgsOHO3IqDyKiAvjg0aNERO8zePB1ODntlrXVrTscfn7lsW8fT4cSERUEQxsRFYl58+YhNTVV1ubx/3d5/+EHZVRERKTeGNqIqFAlJydj0aJFsrYbN77Bjh2fKqkiIqKSgaGNiArNmTNncPr0aVmbv/8EjBunr5yCiIhKEIY2IvpgOaNDXV0FQkPlc6/FxlbEqVNDERampOKIiEoYhjYi+mCenkBkZDRCQ3+Xtdeo8SP8/Gpg3jwlFUZEVAKpzQRJnTt3hrW1NfT09GBpaYm+ffvi8ePHsj47d+6EnZ0dDAwMULVqVcyfPz/Xdk6fPo3GjRtDV1cXNWvWzHMqk5UrV6JatWrQ09ND8+bN8ffff8vWp6amYtiwYShfvjyMjIzQrVs3xMbGyvpERUWhQ4cOMDAwQMWKFTF+/HhkZmZ+/AdBpAJ8fQEHB+Crr3ZgyBB5YJs/fzJ+/LEGLlzg6FAiosKkNqGtTZs22LlzJyIiIrBnzx7cuXMH3bt3l9YfOXIEffr0wZAhQ3Dt2jWsWrUKixcvxooVK6Q+kZGR6NChA9q0aYPQ0FCMGjUKAwcOhJ+fn9Rnx44dGDNmDDw8PPDPP/+gYcOGcHJywpMnT6Q+o0ePxoEDB7Br1y6cOXMGjx8/xnfffSetz8rKQocOHZCeno4LFy5g48aN8Pb2xtSpU4v4UyIqHl5emXBymg4NjXCpLSvLDgsWeODXXzWVWBkRUcmV79tYqRpfX1907doVaWlp0NbWRu/evZGRkYFdu3ZJfZYvXw4vLy9ERUVBoVDA1dUVhw4dwrVr16Q+PXv2REJCAo4ePQoAaN68OT799FMp7GVnZ8PKygojRoyAm5sbEhMTYWZmhq1bt0qhMTw8HHXr1kVAQABatGiBI0eOoGPHjnj8+DHMzc0BAGvWrIGrqyvi4uKgo6OTr/fI21iRKgoLC8POnTtlbcOGDeO9iImI/l9RfX+rzZG218XHx2PLli1wcHCAtrY2ACAtLQ16enqyfvr6+nj48CHu378PAAgICICjo6Osj5OTEwICAgAA6enpCA4OlvXR0NCAo6Oj1Cc4OBgZGRmyPra2trC2tpb6BAQEoEGDBlJgy3mdpKQkXL9+/a3vKy0tDUlJSbIHkarw9QXc3BbkCmx+fh4MbERExUCtQpurqysMDQ1Rvnx5REVFwcfHR1rn5OSEvXv3wt/fH9nZ2bh58yYWLlwIAIiOjgYAxMTEyIIUAJibmyMpKQkvX77Ev//+i6ysrDz7xMTESNvQ0dGBqanpO/vktY2cdW8zd+5cmJiYSA8rK6v8fjRERer58+cICZkOff0Uqe3ChXbYts2Dt6IiIiomSg1tbm5uUCgU73yEh/93zcz48eMREhKCY8eOQVNTE/369UPO2d1BgwZh+PDh6NixI3R0dNCiRQv07NkTwKujZerA3d0diYmJ0uPBgwfKLokI586dk/4DlGPevPFITm6O8HAONiAiKi5KnfJj7NixcHZ2fmef6tWrS3+vUKECKlSogNq1a6Nu3bqwsrLCxYsXYW9vD4VCgXnz5mHOnDmIiYmBmZkZ/P39ZduwsLDINcozNjYWxsbG0NfXh6amJjQ1NfPsY2FhIW0jPT0dCQkJsqNtb/Z5c8RpzjZz+uRFV1cXurq67/w8iIqLEAIzZsjnXktJKY+WLYfDzg48wkZEVMyUGtrMzMxgZmb2Qc/Nzs4G8Oo6sNdpamqicuXKAIBt27bB3t5eeg17e3scPnxY1v/48eOwt7cHAOjo6KBJkybw9/dH165dpdfx9/fH8OHDAQBNmjSBtrY2/P390a1bNwBAREQEoqKipO3Y29tj9uzZePLkCSpWrCi9jrGxMerVq/dB75eoOMXGxmLNmjWytj17emPWrFro3JlH14iIlEEtJtcNDAxEUFAQWrZsibJly+LOnTuYMmUKatSoIQWlf//9F7t378YXX3yB1NRUbNiwQZqSI8eQIUOwYsUKTJgwAQMGDMDJkyexc+dOHDp0SOozZswY9O/fH02bNkWzZs2wZMkSpKSk4KeffgIAmJiYwMXFBWPGjEG5cuVgbGyMESNGwN7eHi1atAAAfP3116hXrx769u0LLy8vxMTEYPLkyRg2bBiPpJHKW7p0FxISbsjaFi2ajE2bNBnWiIiUSC1Cm4GBAfbu3QsPDw+kpKTA0tIS7dq1w+TJk2UhaOPGjRg3bhyEELC3t8fp06fRrFkzab2NjQ0OHTqE0aNHY+nSpahSpQrWrVsHJycnqU+PHj0QFxeHqVOnIiYmBnZ2djh69KhsYMHixYuhoaGBbt26IS0tDU5OTli1apW0XlNTEwcPHsTQoUNhb28PQ0ND9O/fP9epJiJVkpmZidmzZ8vaLl/+H44f/xZbtvDoGhGRsqntPG2lAedpo+IyeXIEtLW3y9p27x6KzMyKmDePgY2IqCCK6vtbLY60EVHRWbx4MbS15XMC2tlNhYeHQkkVERFRXhjaiEqplJQULFiwQNZ28eJXOHLEQUkVERHRuzC0EZVC58+fx4kTJ2Rt8+ePx9atBkqqiIiI3oehjagU8fERCA2VD4hJSDDBsmWj4ObGa9eIiFQZQxtRKfHkyROEhq6WtW3d2guPH9fGvn0MbEREqo6hjagU2Lt3L65evSprmzlzMrS1NbFjBwMbEZE6YGgjKsGysrIwa9YsWVt0dH0cPNgdWVlArVoMbERE6oKhjaiEunXrFrZu3SprO39+CI4fN0edOoC9Pe8fSkSkThjaiEqgZcuW4dmzZ7I2O7upaNRIgefPwUEHRERqiKGNqAR58eIF5s+fL2s7ceJLhIa2lG5FxbBGRKSeNJRdABEVjnXrLuYKbJ98Mg6hoS3x/Dng6amkwoiIqFDwSBuRmstr7jUjIyOMHTsWAKCt/Sqw8fo1IiL1xtBGpMb+/fdfhIaulLXZ2PRAv3620jJPiRIRlQwMbURqaupUH2hqhsraGjachK5d+WNNRFQS8bc7kZrJmXtNU/O/ttjYuli9+gfY2wNduyqtNCIiKkIMbURq5M6dO9i8ebOsLSNjMNq1s0BoKK9bIyIqyRjaiNTEqlWrEBcXJ2ubOnUqFAoFAF63RkRU0jG0Eam4ly9fwsvLS9bWpk0btG7dWkkVERGRMjC0Eamwv//+G0eOHJG1jRkzBmXKlFFSRUREpCwMbUQqavr06bJlTU19HD48AY0avVrOmXuNp0WJiEoHhjYiFbNz51OEha2QtX3//fcYOLAeAgL+u7NBzt8Z2oiISgeGNiIVcuDAAYSF/SNrmzhxIrS1teHmJr+zAe9yQERUuiiEEELZRVDekpKSYGJigsTERBgbGyu7HCpC2dnZmDlzpqwtIqI27t3rhQsXlFQUERF9kKL6/uaRNiIl8vUFFi6MRNu2f8ra69QZBD+/SjySRkREEg1lF0BUmp0581uuwDZ16lQYGFRSUkVERKSqeKSNSAlSU1Mxb948vH7U3MKiNQYPbgPg1fVqHGhARESvY2gjKmbr11/CgweHZG2jR4+WXffw5qADIiIihjaiYvTm3GuZmTr49FN3vHmdaufOPMJGRERyDG1ExSA+Ph7Lly+XtVWr1g39+3+ipIqIiEjdMLQRFbHDhw8jKChI1pYz9xoREVF+MbQRFREfn2yEhsrnXqtevTr69u2rpIqIiEidMbQRFSJfX8DVFahQ4R4cHTfK1g0cOBCVK1dWUmVERKTuGNqICpGnJ9Cy5TpUqfJI1j516lQoFAolVUVERCUBQxtRIfD1BebPT4OTk6esvWXLlvjyyy+VVBUREZUkvCMCUSHYtOkfODrKA9uoUaPeGdh8fQEHh1d/EhERvQ9vGK/CeMN41efrC4SEyOde09DQwJQpU977XAeHV3c9sLcHbwpPRFSCFNX3N4+0EX2gZ8+e5QpsVat+i61bp8DW9v1H0NzcXgU23vWAiIjyg0faVBiPtKkmX1/gzz9D0aCBj6zd3d0dX3yhg4CAV8s8gkZEVDrxSBuRChBC4K+/lssCm5FRNXh4eEBHRwdubkDlyoCeHtCmjRILJSKiEoehjSif/v33X8yYMQOGhvFS2/LlwzBtWn/pVGjnzoC1NZCaCpw69d9zOeiAiIg+FkMbUT6cOnUKK1eulJbLly8PO7upSEurgOfPX83PliOva9U8PV8NOvCUDzAlIiLKN87TRvQOmZmZmD17tqyta9euaNiwIQBgy5ZXQez1gNa586vH69zccvcjIiIqCA5EUGEciKAcvr6vAtawYfdw+7b8VlTjxo2DoaGhkiojIiJ1wIEIREUs57ozV1egcuXdssAWE1MXjRp5yAIbr1MjIqLixCNtKoxH2oqXgwNw+fILTJgwX9bu798P587Z5JrCg5PjEhFRXnikjaiI5Bwx+/LLK7kC26xZExEXZ5PnJLg5Aw7atOERNyIiKno80qbCeKSteDg4CDRuvApmZv9Kba1atcLz522lwQNvDiyQP59H3IiI6D9F9f3N0aNUqj19+hROTitkbb/88gvMzMwAvDus5eDIUCIiKg4MbVRqnTlzBqdPn5aWy5YtixEjRkChUBRoO3lN8UFERFTYGNqo1Mlr7rXOnTujUaNGSqqIiIjo/RjaqFSJiorChg0bZG1jx46FkZGRkioiIiLKH4Y2KjX27t2Lq1evSst16tRBz549lVgRERFR/jG0UYnm6wssXPgCbdvKp/Lo27cvqlevrqSqiIiICo6hjUq0FSuuoW3bPbK2iRMnQltbW0kVERERfRhOrkslSs5EuT4+AmvWrMFnn/0X2BwcHODh4SEFNt6GioiI1AlDG5Uonp5AeHg8QkNnIDY2Vmq3tR2Kr776KlffgIBXfxIREak6nh6lEsXZ+Ryio09Ky8bGxvj111+hoZH7/yecFJeIiNQJQxupPV9fwN09C99/Pwuvz4trZdUJAwY0fuvzOCkuERGpE4Y2UnteXg/www/rZW1jxoxBmTJllFQRERFR4WNoI7W2f/9+fPXVZWnZ2LgmRo/uo8SKiIiIigZDG6kdX19gwYKX+PJLL1l7jRo/4scfayipKiIioqLF0EZqw9f31cABI6Pr+PLL3bJ17u7u0NHRUVJlRERERY+hjVReTliLihLo0GEtKlWKltbZ29vj66+/VmJ1RERExYOhjVSary/Qowegp/cMo0Ytk60bMmQIzM3NlVQZERFR8VK7yXXT0tJgZ2cHhUKB0NBQ2borV66gVatW0NPTg5WVFby8vHI9f9euXbC1tYWenh4aNGiAw4cPy9YLITB16lRYWlpCX18fjo6OuHXrlqxPfHw8+vTpA2NjY5iamsLFxQXPnz8vcC30fp6eQJMm52WBTUvLCFOmTGFgIyKiUkXtQtuECRNQqVKlXO1JSUn4+uuvUbVqVQQHB2P+/PmYNm0afv/9d6nPhQsX0KtXL7i4uCAkJARdu3ZF165dce3aNamPl5cXli1bhjVr1iAwMBCGhoZwcnJCamqq1KdPnz64fv06jh8/joMHD+Ls2bP4+eefC1QLvV3O7aX2789Cu3az8NVXJ6R1HTp0wKRJY/OcLJeIiKhEE2rk8OHDwtbWVly/fl0AECEhIdK6VatWibJly4q0tDSpzdXVVdSpU0da/uGHH0SHDh1k22zevLkYPHiwEEKI7OxsYWFhIebPny+tT0hIELq6umLbtm1CCCFu3LghAIigoCCpz5EjR4RCoRCPHj3Kdy35kZiYKACIxMTEAj1P3dnbC1G58gMxbdo02SMpKUnZpREREb1XUX1/q83hitjYWAwaNAibNm2CgYFBrvUBAQFo3bq1bAShk5MTIiIi8OzZM6mPo6Oj7HlOTk4ICAgAAERGRiImJkbWx8TEBM2bN5f6BAQEwNTUFE2bNpX6ODo6QkNDA4GBgfmuJS9paWlISkqSPUqj3r19MWjQH9Jy9erV4eHhwclyiYioVFOL0CaEgLOzM4YMGSILS6+LiYnJdY1TznJMTMw7+7y+/vXnva1PxYoVZeu1tLRQrly5977O66+Rl7lz58LExER6WFlZvbVvSZSamorp06fj6dMQqa13797o27evEqsiIiJSDUoNbW5ublAoFO98hIeHY/ny5UhOToa7u7syyy1y7u7uSExMlB4PHjxQdknFJiwsDPPmzZO1ubu7o1atWkqqiIiISLUodcqPsWPHwtnZ+Z19qlevjpMnTyIgIAC6urqydU2bNkWfPn2wceNGWFhYIDY2VrY+Z9nCwkL6M68+r6/PabO0tJT1sbOzk/o8efJEto3MzEzEx8e/93Vef4286Orq5nqPJU3OnGtubq9u1i6EwPr16/Hw4UOpT7NmzdC+fXslVklERKR6lBrazMzMYGZm9t5+y5Ytw6xZs6Tlx48fw8nJCTt27EDz5s0BvJpkddKkScjIyIC2tjYA4Pjx46hTpw7Kli0r9fH398eoUaOkbR0/fhz29vYAABsbG1hYWMDf318KaUlJSQgMDMTQoUOlbSQkJCA4OBhNmjQBAJw8eRLZ2dkFqqW08vQEAgKAPn2ADRsScP36Utn6wYMHvzPYEhERlVqFOqyhmERGRuYaPZqQkCDMzc1F3759xbVr18T27duFgYGB+O2336Q+58+fF1paWmLBggUiLCxMeHh4CG1tbXH16lWpj6enpzA1NRU+Pj7iypUrokuXLsLGxka8fPlS6tOuXTvRqFEjERgYKP766y9Rq1Yt0atXrwLVkh+qNnrUx+fVyE4fnw/v6+MjhJGREPb2F2QjQ728vERWVlbRFE5ERFSMiur7u8SENiGEuHz5smjZsqXQ1dUVlStXFp6enrmeu3PnTlG7dm2ho6Mj6tevLw4dOiRbn52dLaZMmSLMzc2Frq6u+PLLL0VERISsz9OnT0WvXr2EkZGRMDY2Fj/99JNITk4ucC3vo2qhzd5eCODVnx/aNzMzU8yYMVsW2AIDA4umYCIiIiUoqu9vhRBCKPNIH71dUlISTExMkJiYCGNjY2WXk+t6tIL2ffz4MdauXSvrN3r0aJV4b0RERIWlqL6/GdpUmKqFto9x8OBBBAcHS8vVqlVDv379oFAolFgVERFR4Suq72+1mKeN1EfOLah8fV8tp6WlYfr06bLA1rNnT/Tv35+BjYiIqACUOnqUSp6c0aGenkCdOhHYvn27bL2bm1uJn9aEiIioKDC0UaFycwM8PQW++84b27dHSe1NmzZFhw4dlFgZERGRemNoo0L1+eeJCAlZgpSU/9oGDRqESpUqKa8oIiKiEoChjQpNYGAgjh49Ki3r6upi/Pjx0NTUVGJVREREJQNDG3207OxseHl5IS0tTWqrXNkJAwe2UGJVREREJQtDG30wX19g5cpoODj8LmtfvHgU6tUzwcCBSiqMiIioBGJoow/m43MYDg5B0nJcnBVWrvwJenoKuLkpsTAiIqISiKGNCiwtLQ2enp6wtv6vrUePHrh50xb//JO/OyYQERFRwTC0UYHcvHkT27Ztk7W5urpCT08PtrYMa0REREWFd0QgyZt3M3idEAJ//vmnLLA1btwYHh4e0NPTK8YqiYiISieGNpK8fjeD1yUlJWHGjBmIjIyU2gICBqJTp07FXCEREVHpxdBGEjc3wN4eskEEf//9NxYvXiwta2ho49ixyfjll8pKqJCIiKj04jVtBODVKVFPz/8GEWRnZ2PhwoV48eKF1Cc8/Cv06uWAKVOUWCgREVEpxdBGAOSnRps1i8Fvv/0mW3/mzK84dcoU9+9zsAEREZEyMLQRgJwbvQM//uiH3367KLUbGFTGuHEuOHBAgdRUcP41IiIiJWFoIwBAu3bpCAmZi7i4/9p27PgeDx7UQ506r46u8QgbERGR8nAgAuHWrVuYO3eurG3PHldERtbD8+e5R5MSERFR8eORtlJu8+bNuHPnjrRsZ2eHLl26wMNDPjiBiIiIlIuhrZRKTk7GokWLZG0uLi6oUqWKtMxTokRERKqDoa0U2rAhFFFRPtKyhoYGJk6cCE1NTSVWRURERO/Ca9pKoXv3Dkh///LLLzFlyhQpsL3rVlZERESkPAxtpZCV1ddITLREvXoj0bJlS1lQe9utrIiIiEi5FEIIoewiKG9JSUkwMTFBYmIijI2Ni+x1HBxeBbWcW1i9fmcEIiIiKpii+v7mkTaS3XO0c2fgwgUGNiIiIlXDgQjEUaJERERqgEfaSjEOOiAiIlIfDG2lGAcdEBERqQ+GtlLs9WvZiIiISLXxmrZSjNeyERERqQ8eaSMiIiJSAwxtRERERGqAoY2IiIhIDTC0EREREakBhjYiIiIiNcDQRkRERKQGGNqIiIiI1ABDGxEREZEaYGgjIiIiUgMMbURERERqgKGNiIiISA0wtBERERGpAYY2IiIiIjWgpewC6O2EEACApKQkJVdCRERE+ZXzvZ3zPV5YGNpUWHJyMgDAyspKyZUQERFRQSUnJ8PExKTQtqcQhR0DqdBkZ2fj8ePHKFOmDBQKhbLLKVZJSUmwsrLCgwcPYGxsrOxy6DXcN6qL+0Z1cd+otsLeP0IIJCcno1KlStDQKLwr0XikTYVpaGigSpUqyi5DqYyNjfkLTkVx36gu7hvVxX2j2gpz/xTmEbYcHIhAREREpAYY2oiIiIjUAEMbqSRdXV14eHhAV1dX2aXQG7hvVBf3jerivlFt6rJ/OBCBiIiISA3wSBsRERGRGmBoIyIiIlIDDG1EREREaoChjYiIiEgNMLRRoUtLS4OdnR0UCgVCQ0Nl665cuYJWrVpBT08PVlZW8PLyyvX8Xbt2wdbWFnp6emjQoAEOHz4sWy+EwNSpU2FpaQl9fX04Ojri1q1bsj7x8fHo06cPjI2NYWpqChcXFzx//rzAtZQUnTt3hrW1NfT09GBpaYm+ffvi8ePHsj47d+6EnZ0dDAwMULVqVcyfPz/Xdk6fPo3GjRtDV1cXNWvWhLe3d64+K1euRLVq1aCnp4fmzZvj77//lq1PTU3FsGHDUL58eRgZGaFbt26IjY2V9YmKikKHDh1gYGCAihUrYvz48cjMzPz4D0IF5Wff+Pn5oUWLFihTpgzMzMzQrVs33Lt3T9aH+6ZovG//TJs2DQqFItfD0NBQth3+Xit8+fnZEUJgwYIFqF27NnR1dVG5cmXMnj1b1ketfnYEUSEbOXKkaN++vQAgQkJCpPbExERhbm4u+vTpI65duya2bdsm9PX1xW+//Sb1OX/+vNDU1BReXl7ixo0bYvLkyUJbW1tcvXpV6uPp6SlMTEzE/v37xeXLl0Xnzp2FjY2NePnypdSnXbt2omHDhuLixYvi3LlzombNmqJXr14FqqUkWbRokQgICBD37t0T58+fF/b29sLe3l5af/jwYaGlpSVWr14t7ty5Iw4ePCgsLS3F8uXLpT53794VBgYGYsyYMeLGjRti+fLlQlNTUxw9elTqs337dqGjoyPWr18vrl+/LgYNGiRMTU1FbGys1GfIkCHCyspK+Pv7i0uXLokWLVoIBwcHaX1mZqb45JNPhKOjowgJCRGHDx8WFSpUEO7u7kX8KSnH+/bN3bt3ha6urnB3dxe3b98WwcHBonXr1qJRo0ayPtw3ReN9+yc5OVlER0fLHvXq1RP9+/eX+vD3WtF4374RQogRI0aIOnXqCB8fH3H37l1x6dIlcezYMWm9uv3sMLRRoTp8+LCwtbUV169fzxXaVq1aJcqWLSvS0tKkNldXV1GnTh1p+YcffhAdOnSQbbN58+Zi8ODBQgghsrOzhYWFhZg/f760PiEhQejq6opt27YJIYS4ceOGACCCgoKkPkeOHBEKhUI8evQo37WUZD4+PkKhUIj09HQhhBC9evUS3bt3l/VZtmyZqFKlisjOzhZCCDFhwgRRv359WZ8ePXoIJycnablZs2Zi2LBh0nJWVpaoVKmSmDt3rhDi1b7S1tYWu3btkvqEhYUJACIgIEAI8erfkIaGhoiJiZH6rF69WhgbG8v2V0n15r7ZtWuX0NLSEllZWVIfX19fWR/um+Lz5v55U2hoqAAgzp49K7Xx91rxeHPf3LhxQ2hpaYnw8PC3PkfdfnZ4epQKTWxsLAYNGoRNmzbBwMAg1/qAgAC0bt0aOjo6UpuTkxMiIiLw7NkzqY+jo6PseU5OTggICAAAREZGIiYmRtbHxMQEzZs3l/oEBATA1NQUTZs2lfo4OjpCQ0MDgYGB+a6lpIqPj8eWLVvg4OAAbW1tAK9Oaevp6cn66evr4+HDh7h//z6A9++b9PR0BAcHy/poaGjA0dFR6hMcHIyMjAxZH1tbW1hbW8v2X4MGDWBubi57naSkJFy/fr2wPgaVlNe+adKkCTQ0NLBhwwZkZWUhMTERmzZtgqOjo9SH+6Z45LV/3rRu3TrUrl0brVq1ktr4e63o5bVvDhw4gOrVq+PgwYOwsbFBtWrVMHDgQMTHx0vPU7efHYY2KhRCCDg7O2PIkCGyXyqvi4mJkf2DBSAtx8TEvLPP6+tff97b+lSsWFG2XktLC+XKlXvv67z+GiWNq6srDA0NUb58eURFRcHHx0da5+TkhL1798Lf3x/Z2dm4efMmFi5cCACIjo4G8PbPLCkpCS9fvsS///6LrKys9+4bHR0dmJqavrMP981/+8bGxgbHjh3DxIkToaurC1NTUzx8+BA7d+6U+nDfFK137Z/XpaamYsuWLXBxcZG18/da0XnXvrl79y7u37+PXbt24c8//4S3tzeCg4PRvXt3qY+6/ewwtNE7ubm55XmR7euP8PBwLF++HMnJyXB3d1d2yaVGfvdNjvHjxyMkJATHjh2DpqYm+vXrB/H/N0QZNGgQhg8fjo4dO0JHRwctWrRAz549Abz6XyUVTGHum5iYGAwaNAj9+/dHUFAQzpw5Ax0dHXTv3l3qQwVTmPvndfv27UNycjL69+9fnG+nRCnMfZOdnY20tDT8+eefaNWqFb744gv88ccfOHXqFCIiIpT1Fj+KlrILINU2duxYODs7v7NP9erVcfLkSQQEBOS6b1vTpk3Rp08fbNy4ERYWFrlG0+QsW1hYSH/m1ef19TltlpaWsj52dnZSnydPnsi2kZmZifj4+Pe+zuuvoeryu29yVKhQARUqVEDt2rVRt25dWFlZ4eLFi7C3t4dCocC8efMwZ84cxMTEwMzMDP7+/rJtvO0zMzY2hr6+PjQ1NaGpqfne/Zeeno6EhATZ/0rf7PPmyKzSvG9WrlwJExMT2SjAzZs3w8rKCoGBgWjRogX3TQEV5v553bp169CxY8dcR1T4ey3/CnPfWFpaQktLC7Vr15b6161bF8CrkZx16tRRv5+dfF/9RvQO9+/fF1evXpUefn5+AoDYvXu3ePDggRDiv4tkX7+A193dPddAhI4dO8q2bW9vn+uC3QULFkjrExMT87xg99KlS1IfPz+/PC/YfVctJdn9+/cFAHHq1Km39unbt69sJNaECRPEJ598IuvTq1evXBfsDh8+XFrOysoSlStXznXB7u7du6U+4eHheV6w+/rIrN9++00YGxuL1NTUD3vDauTNfTNmzBjRrFkzWZ/Hjx8LAOL8+fNCCO6b4vS2n527d+8KhUIhDhw4kOs5/L1WPN7cNznfQ7dv35b65AwUiYiIEEKo388OQxsVicjIyFyjRxMSEoS5ubno27evuHbtmti+fbswMDDINeWHlpaWWLBggQgLCxMeHh55Do03NTUVPj4+4sqVK6JLly55Do1v1KiRCAwMFH/99ZeoVauWbGh8fmopKS5evCiWL18uQkJCxL1794S/v79wcHAQNWrUkH5ZxMXFidWrV4uwsDAREhIiRo4cKfT09ERgYKC0nZyh8ePHjxdhYWFi5cqVeQ6N19XVFd7e3uLGjRvi559/FqamprIRU0OGDBHW1tbi5MmT4tKlS7mG6ecMjf/6669FaGioOHr0qDAzMyuR00rkZ9/4+/sLhUIhpk+fLm7evCmCg4OFk5OTqFq1qnjx4oUQgvumqORn/+SYPHmyqFSpksjMzMy1Hf5eK3z52TdZWVmicePGonXr1uKff/4Rly5dEs2bNxdfffWVtB11+9lhaKMikVdoE0KIy5cvi5YtWwpdXV1RuXJl4enpmeu5O3fuFLVr1xY6Ojqifv364tChQ7L12dnZYsqUKcLc3Fzo6uqKL7/8UvpfU46nT5+KXr16CSMjI2FsbCx++uknkZycXOBaSoIrV66INm3aiHLlygldXV1RrVo1MWTIEPHw4UOpT1xcnGjRooUwNDQUBgYG4ssvvxQXL17Mta1Tp04JOzs7oaOjI6pXry42bNiQq8/y5cuFtbW10NHREc2aNcu1nZcvX4pffvlFlC1bVhgYGIhvv/1WREdHy/rcu3dPtG/fXujr64sKFSqIsWPHioyMjML5QFRIfvaNEEJs27ZNNGrUSBgaGgozMzPRuXNnERYWJuvDfVP48rt/srKyRJUqVcTEiRPfui3+Xitc+d03jx49Et99950wMjIS5ubmwtnZWTx9+lTWR51+dhRC8EpWIiIiIlXHYWFEREREaoChjYiIiEgNMLQRERERqQGGNiIiIiI1wNBGREREpAYY2oiIiIjUAEMbERERkRpgaCMiKgIKhQL79+9Xdhkyp0+fhkKhQEJCgrJLIaIPwNBGRPQRpk2bJt3Um4ioKDG0EREREakBhjYiKtWys7Mxd+5c2NjYQF9fHw0bNsTu3bsB/Hc60d/fH02bNoWBgQEcHBwQEREBAPD29sb06dNx+fJlKBQKKBQKeHt7S9v+999/8e2338LAwAC1atWCr69vvmrKeV0/Pz80atQI+vr6aNu2LZ48eYIjR46gbt26MDY2Ru/evfHixQvpeWlpaRg5ciQqVqwIPT09tGzZEkFBQYX3YRGRUjG0EVGpNnfuXPz5559Ys2YNrl+/jtGjR+PHH3/EmTNnpD6TJk3CwoULcenSJWhpaWHAgAEAgB49emDs2LGoX78+oqOjER0djR49ekjPmz59On744QdcuXIF33zzDfr06YP4+Ph81zZt2jSsWLECFy5cwIMHD/DDDz9gyZIl2Lp1Kw4dOoRjx45h+fLlUv8JEyZgz5492LhxI/755x/UrFkTTk5OBXpNIlJhBbq9PBFRCZKamioMDAzEhQsXZO0uLi6iV69e4tSpUwKAOHHihLTu0KFDAoB4+fKlEEIIDw8P0bBhw1zbBiAmT54sLT9//lwAEEeOHHlvXXm97ty5cwUAcefOHalt8ODBwsnJSdq+tra22LJli7Q+PT1dVKpUSXh5ecm2++zZs/fWQESqR0uJeZGISKlu376NFy9e4KuvvpK1p6eno1GjRtLy//73P+nvlpaWAIAnT57A2tr6ndt//XmGhoYwNjbGkydP8l3f6883NzeHgYEBqlevLmv7+++/AQB37txBRkYGPvvsM2m9trY2mjVrhrCwsHy/JhGpLoY2Iiq1nj9/DgA4dOgQKleuLFunq6uLO3fuAHgVfnIoFAoAr66Fe5/Xn5fz3Pw8L6/nKxSKj94eEak3XtNGRKVWvXr1oKuri6ioKNSsWVP2sLKyytc2dHR0kJWVVcSVvl+NGjWgo6OD8+fPS20ZGRkICgpCvXr1lFgZERUWHmkjolKrTJkyGDduHEaPHo3s7Gy0bNkSiYmJOH/+PIyNjVG1atX3bqNatWqIjIxEaGgoqlSpgjJlykBXV7cYqpczNDTE0KFDMX78eJQrVw7W1tbw8vLCixcv4OLiUuz1EFHhY2gjolJt5syZMDMzw9y5c3H37l2YmpqicePGmDhxYr5OPXbr1g179+5FmzZtkJCQgA0bNsDZ2bnoC8+Dp6cnsrOz0bdvXyQnJ6Np06bw8/ND2bJllVIPERUuhRBCKLsIIiIiIno3XtNGREREpAYY2oiIitmQIUNgZGSU52PIkCHKLo+IVBRPjxIRFbMnT54gKSkpz3XGxsaoWLFiMVdEROqAoY2IiIhIDfD0KBEREZEaYGgjIiIiUgMMbURERERqgKGNiIiISA0wtBERERGpAYY2IiIiIjXA0EZERESkBhjaiIiIiNTA/wGshenDJO+9bAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"CO2_flowsheet.png\"))" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXFklEQVR4nO3de1yO9/8H8Nfd+XxASZScFsacD7WZw/qJzdlsY0NzGjJDQ2FyLjnN+TCUOR9HGDmGqTGnCJlTNEpmKiqd7uv3R98uLhV3ubuv7u7X8/Hoket9XV33O/e2+7XP9bk+l0IQBAFEREREOkBP7gaIiIiINIXBh4iIiHQGgw8RERHpDAYfIiIi0hkMPkRERKQzGHyIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4i0kkKhwJQpU+RuQ+Tl5QUXFxe52yCit2DwISK1CQkJgUKhEL9MTEzw3nvvYcSIEXj06FGJvnZERASmTJmCpKQktZ63TZs2kt+pXLlyaNasGdauXQulUqmW15g1axZ2796tlnMR0ZsZyN0AEZU906ZNQ7Vq1fDixQv88ccfWL58OX7//XdER0fDzMxMLa+Rnp4OA4OX/wmLiIjA1KlT4eXlBRsbG7W8Rp4qVaogICAAAPD48WP8+uuvGDhwIP7++28EBga+8/lnzZqFzz//HN26dXvncxHRmzH4EJHadezYEU2bNgUADBo0COXLl8f8+fOxZ88e9O7du9jnVSqVyMzMhImJCUxMTNTV7ltZW1vjm2++Ebe/++47uLq6YsmSJZg+fToMDQ011gsRvRte6iKiEteuXTsAwN27dwEAc+fOhbu7O8qXLw9TU1M0adIEO3bsyPdzCoUCI0aMwMaNG/H+++/D2NgYBw8eFPflzfGZMmUKxo4dCwCoVq2aeFkqNjYWrVu3RoMGDQrsy9XVFZ6enkX+fczMzNCyZUukpqbi8ePHhR6XmpoKHx8fODk5wdjYGK6urpg7dy4EQZD8jqmpqVi3bp3Yt5eXV5F7IiLVcMSHiErc7du3AQDly5cHACxcuBBdunTB119/jczMTGzZsgW9evXCvn378Nlnn0l+9tixY9i2bRtGjBiBChUqFDiBuEePHvj777+xefNmLFiwABUqVAAA2NnZoW/fvhg8eDCio6NRr1498Wf++usv/P3335g0aVKxfqc7d+5AX1+/0MtqgiCgS5cuOH78OAYOHIiGDRsiLCwMY8eOxYMHD7BgwQIAwPr16zFo0CA0b94cQ4YMAQDUqFGjWD0RkQoEIiI1CQ4OFgAIR44cER4/fizExcUJW7ZsEcqXLy+YmpoK//zzjyAIgpCWlib5uczMTKFevXpCu3btJHUAgp6ennD16tV8rwVA8Pf3F7fnzJkjABDu3r0rOS4pKUkwMTERxo8fL6mPHDlSMDc3F54/f/7G36l169ZC7dq1hcePHwuPHz8Wrl+/LowcOVIAIHTu3Fk8rn///kLVqlXF7d27dwsAhBkzZkjO9/nnnwsKhUK4deuWWDM3Nxf69+//xj6ISD14qYuI1M7DwwN2dnZwcnLCV199BQsLC/z222+oXLkyAMDU1FQ89unTp0hOTkarVq1w4cKFfOdq3bo16tatW+xerK2t0bVrV2zevFm8xJSTk4OtW7eiW7duMDc3f+s5YmJiYGdnBzs7O9SpUweLFy/GZ599hrVr1xb6M7///jv09fUxcuRISd3HxweCIODAgQPF/p2IqPh4qYuI1G7p0qV47733YGBggIoVK8LV1RV6ei//P2vfvn2YMWMGLl26hIyMDLGuUCjynatatWrv3E+/fv2wdetWnDp1Ch9//DGOHDmCR48eoW/fvir9vIuLC3755RfxFv1atWrB3t7+jT9z7949ODo6wtLSUlKvU6eOuJ+INI/Bh4jUrnnz5uJdXa87deoUunTpgo8//hjLli1DpUqVYGhoiODgYGzatCnf8a+ODhWXp6cnKlasiA0bNuDjjz/Ghg0b4ODgAA8PD5V+3tzcXOVjiah046UuItKonTt3wsTEBGFhYRgwYAA6duyollBR0GhRHn19ffTp0wc7duzA06dPsXv3bvTu3Rv6+vrv/LqFqVq1Kh4+fIhnz55J6jExMeL+PG/qnYjUi8GHiDRKX18fCoUCOTk5Yi02NvadVy7Om6tT2MrNffv2xdOnT/Hdd9/h+fPnknV5SsKnn36KnJwcLFmyRFJfsGABFAoFOnbsKNbMzc3VvuI0ERWMl7qISKM+++wzzJ8/Hx06dECfPn2QmJiIpUuXombNmrh8+XKxz9ukSRMAwMSJE/HVV1/B0NAQnTt3FgNRo0aNUK9ePWzfvh116tRB48aN1fL7FKZz585o27YtJk6ciNjYWDRo0ACHDh3Cnj17MGrUKMkt602aNMGRI0cwf/58ODo6olq1amjRokWJ9kekqzjiQ0Qa1a5dO6xZswYJCQkYNWoUNm/ejNmzZ6N79+7vdN5mzZph+vTpiIqKgpeXF3r37p1vccF+/foBgMqTmt+Fnp4eQkNDMWrUKOzbtw+jRo3CtWvXMGfOHMyfP19y7Pz589GkSRNMmjQJvXv3xvLly0u8PyJdpRCEV5YQJSIqwxYuXIjRo0cjNjYWzs7OcrdDRDJg8CEinSAIAho0aIDy5cvj+PHjcrdDRDLhHB8iKtNSU1MRGhqK48eP48qVK9izZ4/cLRGRjDjiQ0RlWmxsLKpVqwYbGxsMHz4cM2fOlLslIpIRgw8RERHpDN7VRURERDqDwYeIiIh0Bic3v0apVOLhw4ewtLTkMvJERERaQhAEPHv2DI6OjpKHIr+Owec1Dx8+hJOTk9xtEBERUTHExcWhSpUqhe5n8HmNpaUlgNy/OCsrK5m7ISIiIlWkpKTAyclJ/BwvDIPPa/Iub1lZWTH4EBERaZm3TVPh5GYiIiLSGQw+REREpDMYfIiIiEhncI5PMeTk5CArK0vuNkgDDA0Noa+vL3cbRESkJgw+RSAIAhISEpCUlCR3K6RBNjY2cHBw4LpORERlAINPEeSFHnt7e5iZmfGDsIwTBAFpaWlITEwEAFSqVEnmjoiI6F0x+KgoJydHDD3ly5eXux3SEFNTUwBAYmIi7O3tedmLiEjLcXKzivLm9JiZmcncCWla3nvOeV1ERNqPwaeIeHlL9/A9JyIqOxh8iIiISGcw+BAREZHOYPDRAV5eXlAoFFAoFDA0NETFihXxf//3f1i7di2USqXK5wkJCYGNjU3JNUpERFTCGHx0RIcOHRAfH4/Y2FgcOHAAbdu2xQ8//IBOnTohOztb7vaIiIg0gsFHRxgbG8PBwQGVK1dG48aNMWHCBOzZswcHDhxASEgIAGD+/PmoX78+zM3N4eTkhOHDh+P58+cAgPDwcHz77bdITk4WR4+mTJkCAFi/fj2aNm0KS0tLODg4oE+fPuLaN0RERHlCQwF399zvcmHweQeCICAzM1OWL0EQ3rn/du3aoUGDBti1axcAQE9PD4sWLcLVq1exbt06HDt2DOPGjQMAuLu74+eff4aVlRXi4+MRHx+PH3/8EUDubd7Tp09HVFQUdu/ejdjYWHh5eb1zf0REVLYEBgKRkbnf5aI1CxgGBARg165diImJgampKdzd3TF79my4urqKx7x48QI+Pj7YsmULMjIy4OnpiWXLlqFixYol0lNWVhYCAgJK5Nxv4+fnByMjo3c+T+3atXH58mUAwKhRo8S6i4sLZsyYgaFDh2LZsmUwMjKCtbU1FAoFHBwcJOcYMGCA+Ofq1atj0aJFaNasGZ4/fw4LC4t37pGIiLRffHw8OnRYDVfXZujevYNsfWjNiM+JEyfg7e2NP//8E4cPH0ZWVhbat2+P1NRU8ZjRo0dj79692L59O06cOIGHDx+iR48eMnZd+gmCIK5Tc+TIEXzyySeoXLkyLC0t0bdvXzx58gRpaWlvPMf58+fRuXNnODs7w9LSEq1btwYA3L9/v8T7JyKi0m/v3r1YtWoVBEEJF5cz6Nz53a9aFJfWjPgcPHhQsh0SEgJ7e3ucP38eH3/8MZKTk7FmzRps2rQJ7dq1AwAEBwejTp06+PPPP9GyZUu192RoaAg/Pz+1n1fV11aH69evo1q1aoiNjUWnTp0wbNgwzJw5E+XKlcMff/yBgQMHIjMzs9AVq1NTU+Hp6QlPT09s3LgRdnZ2uH//Pjw9PZGZmamWHomISDulp6cjKChIUvvyyy9lXRhWa4LP65KTkwEA5cqVA5A76pCVlQUPDw/xmNq1a8PZ2RmRkZGFBp+MjAxkZGSI2ykpKSr3oFAo1HK5SS7Hjh3DlStXMHr0aJw/fx5KpRLz5s2Dnl7uQOC2bdskxxsZGSEnJ0dSi4mJwZMnTxAYGAgnJycAwLlz5zTzCxARUal19epV7NixQ1Lz9fWFsbGxTB3l0srgo1QqMWrUKHz44YeoV68egNwnpxsZGeVbZ6ZixYpISEgo9FwBAQGYOnVqSbZbKmRkZCAhIQE5OTl49OgRDh48iICAAHTq1An9+vVDdHQ0srKysHjxYnTu3BmnT5/GihUrJOdwcXHB8+fPcfToUTRo0ABmZmZwdnaGkZERFi9ejKFDhyI6OhrTp0+X6bckIiK5CYKAlStX4tGjR2KtefPm6Nixo4xdvaQ1c3xe5e3tjejoaGzZsuWdz+Xn54fk5GTxKy4uTg0dlj4HDx5EpUqV4OLigg4dOuD48eNYtGgR9uzZA319fTRo0ADz58/H7NmzUa9ePWzcuDHfxG13d3cMHToUX375Jezs7BAUFAQ7OzuEhIRg+/btqFu3LgIDAzF37lyZfksiIpLTkydPMG3aNEnoGTp0aKkJPQCgENRxX7QGjRgxAnv27MHJkydRrVo1sX7s2DF88sknePr0qWTUp2rVqhg1ahRGjx6t0vlTUlJgbW2N5ORkWFlZifUXL17g7t27qFatGkxMTNT2+1Dpx/eeiCi/0NDc29LbtgWOHwf69z+OhIST4n5ra2uMHDlSnD5R0gr7/H6d1lzqEgQB33//PX777TeEh4dLQg8ANGnSBIaGhjh69Ch69uwJALhx4wbu378PNzc3OVomIiIqs/LW5Dl/PgsTJszCq7NKunTpgkaNGsnX3BtoTfDx9vbGpk2bsGfPHlhaWorzdqytrWFqagpra2sMHDgQY8aMQbly5WBlZYXvv/8ebm5uJXJHFxERkS7z9QUmTLiNXr02SOo//vgjzM3NZerq7bQm+CxfvhwA0KZNG0k9ODhYXCV4wYIF0NPTQ8+ePSULGBIREZF6paRsQK9et8Xt999/H59//rmMHalGa4KPKlORTExMsHTpUixdulQDHREREemelJQULFiwQFL79ttv4ezsLFNHRaM1wYeIiIjkdebMGcmCwnp6evDz84OBgfbECe3plIiIiGSRk5ODoKAgyYr8N254YNOmD2XsqngYfIiIiKhQDx48wOrVqyW1Eyd+wKhRNvI09I4YfIiIiKhAe/bswaVLl8TtqlWron///rI+a+tdMfgQERGRRFpaGubMmSOpVa/eG337vidTR+qjlY+soNLJy8sL3bp1E7fbtGmDUaNGvdM51XEOIiJSTWgo0LPn5XyhZ9YsPyxfrv2hB+CIj07w8vLCunXrAACGhoZwdnZGv379MGHChBKdib9r1y4YGhqqdGx4eDjatm2b75EjRTkHEREVT+7jJwS4uS3FBx88Eevu7u5IT/8/NGmSu2BhWcDgoyM6dOiA4OBgZGRk4Pfff4e3tzcMDQ3h5+cnOS4zMxNGRkZqec1y5cqVinMQEdGbLV78GJ6e0gV/hw8fDjs7OwBAly5ydFUyeKlLRxgbG8PBwQFVq1bFsGHD4OHhgdDQUPHy1MyZM+Ho6AhXV1cAQFxcHL744gvY2NigXLly6Nq1K2JjY8Xz5eTkYMyYMbCxsUH58uUxbty4fItMvn6ZKiMjA+PHj4eTkxOMjY1Rs2ZNrFmzBrGxsWjbti0AwNbWFgqFQlyN+/VzPH36FP369YOtrS3MzMzQsWNH3Lx5U9wfEhICGxsbhIWFoU6dOrCwsECHDh0QHx8vHhMeHo7mzZvD3NwcNjY2+PDDD3Hv3j01/U0TEWmXw4cP46OPXoae1NRymDx5shh6yhoGHx1lamoqrsdw9OhR3LhxA4cPH8a+ffuQlZUFT09PWFpa4tSpUzh9+rQYIPJ+Zt68eQgJCcHatWvxxx9/4L///sNvv/32xtfs168fNm/ejEWLFuH69etYuXIlLCws4OTkhJ07dwLIfbBsfHw8Fi5cWOA5vLy8cO7cOYSGhiIyMhKCIODTTz9FVlaWeExaWhrmzp2L9evX4+TJk7h//z5+/PFHAEB2dja6deuG1q1b4/Lly4iMjMSQIUO0+g4FIqLiyMzMxNSpUxERESHWLl/ujo8++r5M/zeRl7p0jCAIOHr0KMLCwvD999/j8ePHMDc3x+rVq8VLXBs2bIBSqcTq1avFf/iDg4NhY2OD8PBwtG/fHj///DP8/PzQo0cPAMCKFSsQFhZW6Ov+/fff2LZtGw4fPgwPDw8AQPXq1cX9eZe07O3tJXN8XnXz5k2Ehobi9OnTcHd3BwBs3LgRTk5O2L17N3r16gUAyMrKwooVK1CjRg0AwIgRIzBt2jQAuUutJycno1OnTuL+OnXqFP0vkohIi928eRObNm2S1OrXHwt/fzOZOtIcjvjIJDQUcHfP/a4J+/btg4WFBUxMTNCxY0d8+eWXmDJlCgCgfv36knk9UVFRuHXrFiwtLWFhYQELCwuUK1cOL168wO3bt5GcnIz4+Hi0aNFC/BkDAwM0bdq00Ne/dOkS9PX10bp162L/DtevX4eBgYHkdcuXLw9XV1dcv35drJmZmYmhBgAqVaqExMREALkBy8vLC56enujcuTMWLlwouQxGRFSWCYKAdevWSULPlSsNMGWKPyZMKPuhB+CIj2wCA4HIyNzvmpg01rZtWyxfvhxGRkZwdHSU3M1lbm4uOfb58+do0qQJNm7cmO88xb3ma2pqWqyfK47X7wJTKBSS+UfBwcEYOXIkDh48iK1bt2LSpEk4fPgwWrZsqbEeiYg0LSkpKd80gg0bBiI9vQoAoAxf3ZLgiI9MfH0BNzfN3R5obm6OmjVrwtnZ+a23sDdu3Bg3b96Evb09atasKfmytraGtbU1KlWqhDNnzog/k52djfPnzxd6zvr160OpVOLEiRMF7s8bccrJySn0HHXq1EF2drbkdZ88eYIbN26gbt26b/ydXteoUSP4+fkhIiIC9erVyzfkS0RUlkREREhCjyAY4dChSZg3rwqWLcv9PJo9W8YGNYgjPjLp0qX03h749ddfY86cOejatSumTZuGKlWq4N69e9i1axfGjRuHKlWq4IcffkBgYCBq1aqF2rVrY/78+UhKSir0nC4uLujfvz8GDBiARYsWoUGDBrh37x4SExPxxRdfoGrVqlAoFNi3bx8+/fRTmJqawsLCQnKOWrVqoWvXrhg8eDBWrlwJS0tL+Pr6onLlyujatatKv9vdu3exatUqdOnSBY6Ojrhx4wZu3ryJfv36vctfGRFRqbR7dw4uXpwFPT2lWDtwoAOuXm2BjRtffg6V1s+jksARH8rHzMwMJ0+ehLOzM3r06IE6depg4MCBePHiBaysrAAAPj4+6Nu3L/r37w83NzdYWlqie/fubzzv8uXL8fnnn2P48OGoXbs2Bg8ejNTUVABA5cqVMXXqVPj6+qJixYoYMWJEgecIDg5GkyZN0KlTJ7i5uUEQBPz+++8qL3JoZmaGmJgY9OzZE++99x6GDBkCb29vfPfdd0X4GyIiKv3u37+PqKgZktDz/vujcfVqCzx/njvVQhcphNcXX9FxKSkpsLa2RnJysvghDwAvXrzA3bt3Ua1aNZiYmMjYIWka33si0jY7duzA1atXxe1bt2rg9u1vEBGRt0pz7lSLsjTSU9jn9+t4qYuIiKiMSE1Nxdy5cyW1rKxvcPt2DXFOaWmeaqEJDD5ERERlwKVLl7Bnzx5JbebMCWja1BCvrFGo8xh8iIiItJhSqcSiRYuQnJws1i5caIUDB9rB3r7sPFxUXRh8iIiItNSjR4+wYsUKSe3UKW8cPVoBAODsrNuXtQrC4FNEnAuue/ieE1FpdPDgQcm6ZgkJFREe/h1mz1bgwQNAEDjaUxAGHxXl3S6dlpam0VWISX5paWkA8q8ITUQkh4yMDAS+di/6gQM9ceZMPbi6cvLy2zD4qEhfXx82NjbiM5/MzMzK9NNrKXekJy0tDYmJibCxsYG+vr7cLRGRjouJicHWrVsltcDAcQBMNfo0AG3G4FMEDg4OACCGH9INNjY24ntPRCQHQRCwZs0aPHjwQKw1btwYf/7ZGQYGwMiRwMyZMjaoRbiA4WtUWQApJycHWVlZGu6M5GBoaMiRHiKS1dOnT7Fo0SJJbfDgwXB0dJSpo9KJCxiWIH19fX4YEhFRiTt16hSOHTsmbqemmmHfPh/4+/OJU8XF4ENERFTKZGdnY+Zr16727fsU5841g6urTE2VEQw+REREpUhsbCzWrVsnqc2dOwbPn1vCxAQICpKpsTKCwYeIiKiU2Lp1K2JiYsTtGzfew+bNvQEAlSsDy5bxVvV3xeBDREQks+fPn2PevHmSWkhIP2RlVYOFBe/aUicGHyIiIhmdO3cO+/fvl9RmzJiI7GwD7NnDER51Y/AhIiKSgVKpxPz585GamirWjh9vg9OnWyMnB/j8c4aeksDgQ0REpGHx8fFYtWqVpLZly/ewtS2HnTsZeEoSgw8REZEG7d+/H+fOnRO3HzxwxC+/DELt2gpERMjYmI5g8CEiItKAFy9eYPbs2ZLa1q1f4Pr1OgCA13ZRCWHwISIiKmHXrl3D9u3bJbWAgPHIyDCBqSkwejQvb2kKgw8REVEJEQQBq1atQkJCglg7c6YZjhz5FAYGwIQJvE1d0xh8iIiISsCTJ0+wZMkSSS0r6zskJTlgxw6O8MiFwYeIiEjNjh8/jpMnT4rbyclW+PnnH9CypR4nMMuMwYeIiEhNsrKyMGvWLEktNLQzLlxoDADw9ZWjK3oVgw8REZEa3LlzB+vXr5fU5szxQVqaBfT0gB49eHmrNGDwISIiekebNm3CzZs3xe2rV+ti+/ZeADiBubRh8CEiIiqmlJQULFiwQFJbu9YL9+9XBcDQUxox+BARERXD2bNnceDAAXFbqVRg5swJsLY24BPVSzEGHyIioiLIycnBrFlzoFRmiLXDhz1w+vSHMDEBgoM5l6c005O7ASIiIm3x4MEDzJgxQxJ6Vq36AZUqfQg3N2DrVoae0o4jPkRERCrYs2cPLl26JG7fu+eMyEgvPHigkK8pKjIGHyIiojdIT09HUFCQpLZp01eIi3PFli0yNUXFxuBDRERUiJ9+ugIDg12S2gcf+CIszBhz5vCyljZi8CEiInqNIAiYMGEZTEz+FWuRkW4YPrw9unQBuneXsTl6Jww+REREr/j333+xdOlSmJi8rC1bNgyJifZISeEoj7Zj8CEiIvqfI0eO4PTp0+L2f//ZYu3a77FxowKBgXzWVlnA4ENERDrvt98ycflywGu1boiKaoDatXNHeTjSUzYw+BARkU67efMmLl/eJKnNmTMWHTuawcyMozxlDYMPERHppD17BBw9+ivKl48VazdvfoA7d7pj0yaO8JRVDD5ERKRzkpOTcenSzyhf/mVt48YBmDvXiYGnjGPwISIinREaCmzeHInatQ+JtexsAxw75ou5c/UZenQAgw8REemE3btzcP58AGrXzhFrMTHt0bu3G6ZPl7Ex0igGHyIiKvM2bYrDzZtrYfDKp96oUaNgbW0tX1MkCwYfIiIqk0JDgcBAwMNjF/T1r4j1f/6pjqtXv0GjRgpe2tJBDD5ERFQm/fRTKnr0mCupHT/+NRISauLGjdxQxOCje/TkboCIiEjdfvrpUr7Q88EHfggPr4mgIMDNjevz6KoyGXyWLl0KFxcXmJiYoEWLFjh79qzcLRERkQYIgoCFCxfCwGCPWDt58iNs2eKP7t2NAOSO8kREcLRHV5W54LN161aMGTMG/v7+uHDhAho0aABPT08kJibK3RoREZWQiRMBZ+dHmDZtGpKSksT62rXeePjwE8yeLV9vVLooBEEQ5G5CnVq0aIFmzZphyZIlAAClUgknJyd8//338FVhXDMlJQXW1tZITk6GlZVVSbdLRETvKDQUWL48DC1b/inWnj+3w7x5w9CypQIRETI2Rxqj6ud3mRrxyczMxPnz5+Hh4SHW9PT04OHhgcjIyAJ/JiMjAykpKZIvIiIq/UJDgVatMnDx4lRJ6ImI6IlWrYajZUsF5/FQPmUq+Pz777/IyclBxYoVJfWKFSsiISGhwJ8JCAiAtbW1+OXk5KSJVomI6B2EhgITJ96Ah0egpL5kyTh4e9fjPB4qVJkKPsXh5+eH5ORk8SsuLk7uloiIqBATJwKWlgIOHFiLzz/fItbLl2+EsDB/rFljyrBDb1Sm1vGpUKEC9PX18ejRI0n90aNHcHBwKPBnjI2NYWxsrIn2iIjoHYSGAitWPMWPPy6S1N97bxB6966MESNkaoy0Spka8TEyMkKTJk1w9OhRsaZUKnH06FG4ubnJ2BkREb2LiROBuXP/wMiRL0NPZqYpfvrpJ/TuXVnGzkjblKkRHwAYM2YM+vfvj6ZNm6J58+b4+eefkZqaim+//Vbu1oiIqBiys7NhZDQTn3zysnbkyKcYO7YZ9MrU/76TJpS54PPll1/i8ePHmDx5MhISEtCwYUMcPHgw34RnIiIq/TZtuoebN0MktfDwMRg71pJzeahYytw6Pu+K6/gQEZUOCxduQ1LSdXG7Vq1a6NOnj4wdUWmm6ud3mRvxISIi7bZz53NER8+T1Pbv74uzZ6vL1BGVJbw6SkREsgsNBdzdgbVrL+QLPTNmTMCzZww9pB4c8SEiItkFBirh7r4AcXHPxdrx421gZ9cazZrxSeqkPgw+REQki9BQIDAQsLJKgKfnSsm+U6e+x5gx5TiBmdSOwYeIiGQxfjxQvfp+NG9+Tqw9fFgJ69cPRlqaQsbOqCxj8CEiIo2aOBFYuvQFRo+eLalv3doLt27VxdixMjVGOoHBh4iINCY0FNi9+xpGj94uqe/cOR6BgSa8tEUljsGHiIg0QhAEnDixCl98kSDWzp5tiqdPP8PlyzI2RjqFwYeIiErc9u3/4dq1xXh1XbmsrCF4+rQS79gijWLwISKiEvXTT+EwMDghbr94YYGZM0dDjw/aIhkw+BARUYnYvTsLUVGzYPDKJ82BA50wYUITPlyUZMPgQ0REanfnzh1ERa2X1DZs8MG8eRacwEyyYvAhIiK1WrBgE1JSborbd+7Uwbp1X8DfX8amiP6HwYeIiNRi585niI6eL6kFB3vBxKSqTB0R5cerrERE9E5CQ4G2bc/mCz1r1kyEqWlVBAXJ1BhRATjiQ0RExaZUKnHmzBy0afNCrB050g45Oa1w/76MjREVgsGHiIiK5eHDh/jll19gZPSy9ssvI+HsbMu1eajUYvAhIqIiCw0NxcWLF8XthAQnhId/i2XLFLxri0o1Bh8iIlJZeno6gl6btLN581coV84V16/L1BRRETD4EBGRSqKjo7Fz505JbdYsXxgZGXMCM2kNBh8iInojQRAQFLQcL148FmvnzrXEvn2e0NMDtm8HL2+R1uDt7EREVKh///0X06ZNk4SeYcOG4YMPPGFhAfj6MvSQdlEIgiDI3URpkpKSAmtrayQnJ8Pq1ccIExHpmMmTj0Jf/w9xOy3NFu7u36NrV4WMXREVTNXPb17qIiIiUWgoMGdOJjw8AqCv/7J+5UpX7NjRULa+iNSFwYeIiES//HILHh4bJbX163/E/PnmMnVEpF4MPkREBEEQsGDBBjRtekesxcbWR/fuPfhwUSpTGHyIiHRccnIyfv75Z0ltzZoBqFLFiROXqcxh8CEi0mF//vknwsLCxO3sbAOsW+cLc3N9PnaCyiQGHyIiHbR7dw4uXAiEvn62WGvfvj3c3NwwfbqMjRGVMK7jQ0SkY+Li4hAVNUMSelauHAU3NzcZuyLSDI74EBHpkF27duHKlSvi9p071bBhQ1/4+nJtHtINDD5ERDogLS0Nc+bMkdQ2bOiD9PRa+O03rr5MuoPBh4iojIuKisLu3bsltZkz/ZCVZQQ3N4Ye0i0MPkREZZQgCFi8eDGePn0q1k6d+hBHj3rAxASoUQO8c4t0Dic3ExGVAaGhgLt77ncASExMxLRp0yShZ/ny4Th2zAPlygFbtwLXr3O0h3QPR3yIiMqAwEAgMjL3u4nJIURGRor7/vuvAlatGo4xYxSYOVPGJolKgSKP+Ojr6yMxMTFf/cmTJ9B/9Yl2RESkMb6+wEcfZcLTc6ok9OzY0QOLFnmjUSOGHiKgGCM+giAUWM/IyICRkdE7N0REREUTGgqsWXMDHh5bJPWFC8fh6VNTmJpyLg9RHpWDz6JFiwAACoUCq1evhoWFhbgvJycHJ0+eRO3atdXfIRERFUoQBBw7FozGjePE2oULDfH3310REpJ76cvXl3N5iPKoHHwWLFgAIPdfshUrVkguaxkZGcHFxQUrVqxQf4dERFSgpKQkLFy4ELa2L2u//DII8fGVxbV5GHiIpFQOPnfv3gUAtG3bFrt27YLtq/+mERGRRp0+fRpHjhwRt7OyjBEQMBaAPkd4iN6gyHN8jh8/XhJ9EBGRCnbvzsalS7OgULycb3n9ekf06dMcLVrwshbR2xQ5+AwYMOCN+9euXVvsZoiIdF1o6Mt5OYB0js69e/cQFRUCxSuP1QoPH43Ro614WYtIRUUOPq8uhgUAWVlZiI6ORlJSEtq1a6e2xoiIdNGr6/EAL/+ckbEd165dE4+7ebMm9uz5Gs+eydQokZYqcvD57bff8tWUSiWGDRuGGjVqqKUpIiJd8uooj6+vdMRn/vxUtG07F69kHvz6a1/ExlbnLepExaAQCluYp4hu3LiBNm3aID4+Xh2nk01KSgqsra2RnJwMKysrudshIh3g7p47suPmBkREvKxfuHABe/fulRybmTkBx48bci4P0WtU/fxW2yMrbt++jezsbHWdjohIZ7w+yqNUKhEY+DOysl5exwoP/xjh4W3zhSMiKpoiB58xY8ZItgVBQHx8PPbv34/+/furrTEiorLs1ctbeROTQ0MBT88EuLuvlBy7b98InDtXniswE6lBkYPPxYsXJdt6enqws7PDvHnz3nrHFxER5Qacr78Gnj/PDT95l6x27/4d7u5/icfFxzvg11+HYMsWBVdgJlITtc3xKSs4x4eISlrenB4LC2DjRiA7+wWuXJktOWbbtl6IiakLX1/w4aJEKijxOT6JiYm4ceMGAMDV1RX29vbFPRURkU55dU6Pre0pHDt2TLI/MHA8DAxMxMdOEJH6FDn4pKSkwNvbG5s3b4ZSqQQA6Ovr48svv8TSpUthbW2t9iaJiMqSLl2Azp0FTJs2TVK/cKEJzp/vBBcXYPZshh6ikqBX1B8YPHgwzpw5g/379yMpKQlJSUnYt28fzp07h++++64keiQiKlMePHiQL/Rs3NgHoaGd4OwMXL/O0ENUUoo8x8fc3BxhYWH46KOPJPVTp06hQ4cOSE1NVWuDmsY5PkRUkn799Vfxoc95liyZhCdP9GFrCwQHM/QQFUeJzfEpX758gZezrK2t+cR2IiLkv1UdADIyMhCY9xyK/zl3rjGePOmMx49laJJIRxX5UtekSZMwZswYJCQkiLWEhASMHTsWP/30k1qbIyLSRq8/b+vixYv5Qk9m5vd48qQz1+Uh0rAiX+pq1KgRbt26hYyMDDg7OwMA7t+/D2NjY9SqVUty7IULF9TXqYbwUhcRvauJE4FFi4CRIwEjo6n59k+Z4s8VmInUrMQudXXt2hUKheKdmiMiKsuOHweMjZ/AyGiJpH7lSlfs3NkQFhZcgZlILkUOPlOmTCmBNoiIyo7evffgv/8uSWrLl/th4EAjuLlxBWYiORU5+FSvXh1//fUXypcvL6knJSWhcePGuHPnjtqaIyLSFqGhwOzZOWjffoakfvNmTWzc+DWA3JEgXt4ikleRg09sbCxycnLy1TMyMvDPP/+opSkiIm2zZs0NtG+/RVL79dchuHOnEhQKwNGRl7eISgOVg09oaKj457CwMMkt7Tk5OTh69CiqVaum3u6IiLTAzJnz0Ljxc0mtYcPJaNSIDxclKm1UvqtLTy/3zneFQoHXf8TQ0BAuLi6YN28eOnXqpP4uNYh3dRGRqp49e4b58+dLaidOeOD48Q951xaRhqn6+a3yOj5KpRJKpRLOzs5ITEwUt5VKJTIyMnDjxo0SCz2xsbEYOHAgqlWrBlNTU9SoUQP+/v7IzMyUHHf58mW0atUKJiYmcHJyQlBQUIn0Q0R07NixfKEnM3MsRo36UJzATESlT5Hn+Ly+1LomxMTEQKlUYuXKlahZsyaio6MxePBgpKamYu7cuQByk1779u3h4eGBFStW4MqVKxgwYABsbGwwZMgQjfdMRGVP7orMAjw9pc/Zevy4ApYu9YabGzBzJi9rEZVmRV7A8PUH671u8uTJ79SQqubMmYPly5eLd5EtX74cEydOREJCAoyMjAAAvr6+2L17N2JiYlQ+Ly91EdGrXn38xIoVcWjRYq1k//79ffHwYXVYWABBQQw9RHIpsQUMf/vtN8l2VlYW7t69CwMDA9SoUUNjwSc5ORnlypUTtyMjI/Hxxx+LoQcAPD09MXv2bDx9+rTQ54hlZGQgIyND3E5JSSm5polI6+Q9fuLYsbVo0SJOsm/atJ+gVOpxPg+RFily8Ll48WK+WkpKCry8vNC9e3e1NPU2t27dwuLFi8XLXEDu88Jev6usYsWK4r7Cgk9AQACmTs2/pDwREQCMHfsCly/PltTOn2+O06c7QqkETEw4n4dImxT5IaUFsbKywtSpU4v8kFJfX18oFIo3fr1+merBgwfo0KEDevXqhcGDB79z735+fkhOTha/4uLi3v5DRFQmhYYC7u653wHgr7/+yhd69u79AXv3doS9PeDmBmzdystbRNqkyCM+hckLDkXh4+MDLy+vNx5TvXp18c8PHz5E27Zt4e7ujlWrVkmOc3BwwKNHjyS1vG0HB4dCz29sbAxjY+Mi9U1EZdOrT1W/eFE6EpyTo4fp039CuXLgYyeItFiRg8+iRYsk24IgID4+HuvXr0fHjh2LdC47OzvY2dmpdOyDBw/Qtm1bNGnSBMHBweK6Qnnc3NwwceJEZGVlwdDQEABw+PBhuLq6FnqZi4gIeDmBuXJloGrVx/D0XCbZHxXVEwcP1gMApKdzPg+RNivyXV2vz6PR09ODnZ0d2rVrBz8/P1haWqq1QSA39LRp0wZVq1bFunXroK+vL+7LG81JTk6Gq6sr2rdvj/HjxyM6OhoDBgzAggULinQ7O+/qItI97u65Iz1ffrkTdepES/YdPjwB48YZ4swZYNEiYOTI3FvWiah0UfXzu8jBRw4hISH49ttvC9z3avuXL1+Gt7c3/vrrL1SoUAHff/89xo8fX6TXYvAh0g2v3qauVGYjKkqaZh49qoMOHb7g5SwiLVGiwScpKQm3bt0CANSsWRM2NjbFbrS0YfAh0g15ozzdul1Dw4bbJfuWLx+KR48q8jZ1Ii1SIuv4xMbGwtvbG2FhYeJIi0KhQIcOHbBkyRK4uLi8U9NERJri6wucPRsIQ8MMSX3KlMkAFLCw4G3qRGWRysEnLi4OLVu2hKGhIaZPn446deoAAK5du4bly5fDzc0Nf/31F6pUqVJizRIRqUNycjIuXvwZ/7sPAgBw/bon+vRpCVdXQKEAZs/mXVtEZZHKl7oGDhyIW7duISwsDCYmJpJ96enp6NChA2rVqoXVq1eXSKOawktdRGXb4cOHEfHa9aujR8fhxx9NGXSItJjaL3UdPHgQW7duzRd6AMDU1BTTp0/HV199VbxuiYhKmFKpxPTp0yU1U9NK2L17CNfkIdIhKq/c/O+//75xDk/16tXx33//qaMnIiK1io2NzRd6vLy8sHv3EHHBQiLSDSoHn0qVKuHatWuF7o+Ojn7jCslERJqU9/iJoKAVWLdunWRfWNhkVK1aFb6+L1dhJiLdoPKlrm7duuHHH3/E0aNH8622nJiYiPHjx6Nbt27q7o+IqFjmzUuHp2cQ0tNf1q5d+xCXL3tg9v8ev9WlCy9xEekalSc3P336FC1atEBCQgK++eYb1K5dG4Ig4Pr169i0aRMcHBzw559/oly5ciXdc4ni5GYi7RcZGYlDhw5JauHhoxEebsW1eYjKKLVPbra1tcWZM2cwYcIEbNmyBUlJSQAAGxsb9OnTB7NmzdL60ENE2k0QBEybNk1Se/HCBHp64zF6NJCRwctaRLquWCs3C4KAx48fA8h90KhCoVB7Y3LhiA+RdkpISMDKlSsltW3bvsC1a3VgYQE8eyZTY0SkESWycnMehUIBe3v7YjdHRKROW7duRUxMjKQ2d+5EdOhggPv3cx8sSkQEFDP4EBGVBllZWZg1a5akdvlyfRw40ANbtnDiMhHlx+BDRFrpypUr2LVrl6RWp85whIXZMfQQUaEYfIhI60ybNg2vT0+cO9cfz54BX3whU1NEpBUYfIhIazx9+hSLFi2S1I4f/wxnzjTFmDEyNUVEWkWl4PP6f2jeZCRnERJRCVi27AAePz4rqQUE+CIjwxhubsDMmTI1RkRaRaXgs2DBApVOplAoGHyISK0KerjovXvO2LDhW9jbA5aWXJuHiFSnUvC5e/duSfdBRJTP7du3sWHDBkltz54BSEtzwo4dnMBMREVX7Dk+mZmZuHv3LmrUqAEDA04VIiL1WrJkCZ48eSKpNWw4Gf7+ZWfBVCLSPJWfzp4nLS0NAwcOhJmZGd5//33cv38fAPD9998jMDBQ7Q0SkW5JTU3F1KlTJaEnIqI1GjXyR9euDD1E9G6KHHz8/PwQFRWF8PBwmJiYiHUPDw9s3bpVrc0RkW45deoU5s6dK6kdP+4Db+82vKxFRGpR5GtUu3fvxtatW9GyZUvJM7ref/993L59W63NEZFuKOjhoikploiMHMMnqRORWhV5xOfx48cFPqcrNTW1TD2slIg04+HDh/lCT/XqvREZOQZt2wLu7kBoqEzNEVGZU+Tg07RpU+zfv1/czgs7q1evhpubm/o6I6Iyb8OGDfjll18ktUOHJqFv3/cQEQEcPw5ERgKcPkhE6lLkS12zZs1Cx44dce3aNWRnZ2PhwoW4du0aIiIicOLEiZLokYjKmMzMTAQEBEhqt241wrlzXTB79suar29u6OE6PUSkLgrh9QfeqOD27dsIDAxEVFQUnj9/jsaNG2P8+PGoX79+SfSoUSkpKbC2tkZycjKsrKzkboeozLl48SJCX7t2tXr1CPzzT3m4uYFzeoioWFT9/C7WAjw1atTINzxNRPQ2U6dOzVcLDPTHmDG5l7U4skNEJU2l4JOSkqLyCTlKQkSve/LkCZYsWSKp7d7dFbduNcTWrVyBmYg0R6XgY2Njo/IdWzk5Oe/UEBGVLaGhobh48aKk9sEHfggLM8LGjQw9RKRZKgWf48ePi3+OjY2Fr68vvLy8xLu4IiMjsW7dunyTFYlId+Xk5GDGjBmS2q1bNXD79jfw9we6d5epMSLSaUWe3PzJJ59g0KBB6N27t6S+adMmrFq1CuHh4ersT+M4uZno3f3999/YvHmzpObqOhiLFjnC15ejPESkfqp+fhc5+JiZmSEqKgq1atWS1P/++280bNgQaWlpxeu4lGDwIXo38+fPx7NnzyS1hg0n8zlbRFSiVP38LvIChk5OTgXe0bV69Wo4OTkV9XREVEY8f/4cU6dOlYSeo0c/wZQp/pg9m6GHiEqHIt/OvmDBAvTs2RMHDhxAixYtAABnz57FzZs3sXPnTrU3SESlX3h4eL4FTIOCfkTDhuZwc+Nt6kRUehQ5+Hz66ae4efMmli1bhpiYGABA586dMXToUI74EOmYgh8uWh7z54/4334uSEhEpUuxFjCsUqUKZs2ape5eiEiL/PPPP1izZo2k9s033+Dq1Rr4/ffc0MORHiIqbYoVfJKSkrBmzRpcv34dAPD+++9jwIABsLa2VmtzRFQ6jRsXDHPz+5LaTz/9BD09PdSowbu2iKj0KvJdXefOnYOnpydMTU3RvHlzAMBff/2F9PR0HDp0CI0bNy6RRjWFd3URFe7FixeY/epTRAGcOdMMd+58iv9d+SYikkWJ3c7eqlUr1KxZE7/88gsMDHIHjLKzszFo0CDcuXMHJ0+efLfOZcbgQ1Swc+fOYf/+/ZLaqVMjkZZmy7V5iEh2JRZ8TE1NcfHiRdSuXVtSv3btGpo2bcp1fIjKmNBQ4OJF6cNFlUoFpk6dLFNHRET5ldg6PlZWVrh//36+elxcHCwtLYt6OiIqxR4/fpwv9Ozb1wNNmjD0EJF2KvLk5i+//BIDBw7E3Llz4e7uDgA4ffo0xo4dm+8xFkSkvXbt2oUrV65Iatu2TUBAgCEvaxGR1ipy8Jk7dy4UCgX69euH7OxsAIChoSGGDRuGwMBAtTdIRJqVnZ2NmTNnSmqPHrmiQ4ev4O8vU1NERGpS5Dk+edLS0nD79m0AQI0aNWBmZqbWxuTCOT6ky3799Tru3t0mqX333XdwcHCQqSMiItWo+vldrHV8gNyHldavX7+4P05EpcyMGbORk/NCUps8eTIUitznbIWGAoGB4B1cRKTVVA4+AwYMUOm4tWvXFrsZItK8HTtScPXqAkntwgVP7NnTUlILDAQiI3O/M/gQkbZSOfiEhISgatWqaNSoEYp5dYyISpnDhw/j6lXpw7R27RqH6dNN8x3r6/tyxIeISFupPMfH29sbmzdvRtWqVfHtt9/im2++Qbly5Uq6P43jHB/SBQU9XNTUtCLGjRsqU0dERO9G7ev4LF26FPHx8Rg3bhz27t0LJycnfPHFFwgLC+MIEJEWuXfvXr7QU7Nmf4YeItIJxb6r6969ewgJCcGvv/6K7OxsXL16FRYWFuruT+M44kNlWVDQKqSnx0tqU6f+hJYt9RARUcgPERFpgRK/q0tPTw8KhQKCICAnJ6e4pyEiDUhPT0dQUJCk5u7ujvT0/0PLlpy3Q0S6o0jBJyMjA7t27cLatWvxxx9/oFOnTliyZAk6dOgAPb0iP/2CiEpYaCiwadOfqFMnTFJ///1R+L//swbAO7SISLeoHHyGDx+OLVu2wMnJCQMGDMDmzZtRoUKFkuyNiN7Bnj0CLl2ahjp1XtaMjY1Rt64vAgMBIyOGHiLSPSrP8dHT04OzszMaNWokLmhWkF27dqmtOTlwjg+VBY8ePcKKFSsktV69eqFu3bpwd89dj8fNDZzXQ0Rlhtrn+PTr1++NgYeISodt27bh+vXrktrEiRNhYJD7rzvX4yEiXVakBQyJqPTKysrCrFmzJLV69eqhZ8+eAKSPnOBIDxHpqmLf1UVEpUd0dDR27twpqQ0fPhx2dnbiNh85QUTE4EOktUJDgXHjgC++mAF9femSEv7+/vmO5yUuIqJ3WMCwrOLkZtIWjRsnoWvXhZLap59+imbNmsnUERGRfEp8AUMiks/BgwfRtesZSW38+PEwMTGRqSMiIu3A4EOkRZRKJaZPny6pmZs74ccfB8jUERGRduFyy0Ra4s6dO/lCz4ABA9459ISGAu7uud+JiMo6jvgQaYGlS5fi33//ldQmT56slrW1eLcXEekSrRvxycjIQMOGDaFQKHDp0iXJvsuXL6NVq1YwMTGBk5NTvocyEmmbtLQ0TJ06VRJ6bt/+GI0a+attQVFf39xVnHm3FxHpAq0b8Rk3bhwcHR0RFRUlqaekpKB9+/bw8PDAihUrcOXKFQwYMAA2NjYYMmSITN0SFd/p06dx5MgRSW3MmDGwtLRU6+t06cKRHiLSHVoVfA4cOIBDhw5h586dOHDggGTfxo0bkZmZibVr18LIyAjvv/8+Ll26hPnz5zP4kFYRBAHTpk2T1CwsLODj4yNTR0REZYfWBJ9Hjx5h8ODB2L17N8zMzPLtj4yMxMcffwwjIyOx5unpidmzZ+Pp06ewtbUt8LwZGRnIyMgQt1NSUtTfPJEKch8pEQ9Pz1WS+ldffQVXV1eZuiIiKlu0Yo6PIAjw8vLC0KFD0bRp0wKPSUhIQMWKFSW1vO2EhIRCzx0QEABra2vxy8nJSX2NExXBoUMb84WeSZMmMfQQEamRrMHH19cXCoXijV8xMTFYvHgxnj17Bj8/P7X34Ofnh+TkZPErLi5O7a9BVJjQUKBVq0xMnToVdna3xHq5cg3h7+8PfX39dz4/b1UnInpJ1ktdPj4+8PLyeuMx1atXx7FjxxAZGQljY2PJvqZNm+Lrr7/GunXr4ODggEePHkn25207ODgUen5jY+N85yXSlF9/vQQPjz2S2ogRI1C+fHm1nJ+3qhMRSckafOzs7CRPjy7MokWLMGPGDHH74cOH8PT0xNatW9GiRQsAgJubGyZOnIisrCwYGhoCAA4fPgxXV9dC5/cQySF3Lg/g6TkV9etL9xX0cNF3wQeTEhFJaeVDSmNjY1GtWjVcvHgRDRs2BAAkJyfD1dUV7du3x/jx4xEdHY0BAwZgwYIFRbqriw8ppZIUGgp4e/+HQYMWS+qdO3dG48aNZeqKiEj7qfr5rRWTm1VhbW2NQ4cO4e7du2jSpAl8fHwwefJk3spOpUpo6N58ocfPz6/Q0MM5OkRE6qWVIz4liSM+VBJycnIkl2sBoFq1aujXrx+Al5e/fH2lc3Hc3XPn6Li5ARERmuyYiEi76NyID1FptX79zXyhZ9CgQbCx6SeO5rw6CflVfJwEEZF6ac0ChkTaaP/+/bhz55yklvdw0V69XoadwiYh83ESRETqxeBDVAJevHiB2bNnS2qVKrXDkCGtxO1Xww4DDhGRZjD4EKnZtWvXsH37dklt/PjxMDExkdQYdoiINI9zfIjUIPfuKwFBQSsloadZs2bw9/fHoUMmxb47i3d2ERGpD4MP0TvICyXTpj2Bp+c0pKe/fC5cRMR3yM7+FEDBk5dVDTSFTXwmIqKiY/AhegeBgYCxcTg6d14i1iwtLREW9hMOHXIQw0pBd2epGmh4ZxcRkfpwHZ/XcB0fepu828/HjctCVNQsyb68FZgLW5enoPO86RgiIlKNqp/fDD6vYfCht6ldG8jKuoN+/dZL6j4+PrCwsJCpKyIi3abq5zfv6iIqotatN8HR8aa4XbduXfTq1UvGjoiISFUMPkRvkXdJasyYFFy9ugCOji/3nTnjhUaNqsrXHBERFQmDD9FbBAYCOTlncfXqAbGmUCgQFjYBEREGSEriHB0iIm3B4EP0Bjk5OejYcQ6Uygyx9vffn+DLLz9Cw4YFP2aCiIhKLwYfokI8ePAAq1evltROnPgBx4/b4O7d3Kelc6SHiEi7MPgQFWDPnj24dOmSuO3s7AwvLy/s3avAixcc5SEi0lYMPkSvSE9PR1BQkKT21VdfwdXVFQCfr0VEpO0YfIj+58qVK9i1a5ek5uvrC2NjY5k6IiIidWPwIZ2We6u6gC5dliEj41+x7ubmhvbt28vYGRERlQQGH9Jpixf/C0/Ppch4edMWhg0bBnt7e/maIiKiEsOHlJLOOnLkCD76aKm4bWtri8mTJxcaelR9mjoREZVeHPEhnZOZmYmAgABJrVu3bmjQoMEbf+7Vp6lzgjMRkXZi8CGdkPfYiWHDbuLOnU2SfWPHjoWZmdlbz+HrywULiYi0HZ/O/ho+nb1scncX8N57v6JatVix9sEHH6B79+7yNUVERGqj6uc35/hQmfTqfJzk5GR4ek6ThJ4BAwYw9BAR6SBe6qIyKW8+zubNkbh48ZBYNzAwgK+vL/T19WXsjoiI5MLgQ2XSuHE5uHAhAPr6OWItJqY9Nm92k7ErIiKSG4MPlTmbNsXh5s21eHVQ58SJURg1ylq+poiIqFRg8KEyIzQU2L9/Fxwdr4i16tWr45tvvoFCoZCxMyIiKi0YfKhMSE1NxcWLc+Ho+LJWo8bX+OabmvI1RUREpQ6DD2m9S5cuYc+ePZKan58fjIyMZOqIiIhKKwYf0kp5Dxft3HkRMjOTxPqdOx+hZ89PwMxDREQFYfAhrbRkSSI8PZcjM/NlzdvbGxUqVJCvKSIiKvUYfEjrhIWF4cMP/xS37ezsMGzYME5gJiKit2LwIa2RkZGBwMBASa1nz56oV6+eTB0REZG24SMrqNR69bETN27cyBd6xo0bx9BDRERFwhEfKpVCQ4GvvwaePxdw7FgwLl6ME/c1atQIXbp0kbE7IiLSVgw+VCoFBgIGBk8xZcoiSX3QoEGoXLmyTF0REZG2Y/ChUiP3FnXA1xfw8voD8fFHxX0mJiYYO3Ys9PR4dZaIiIqPwYdKjcBA4OzZbFy8OFNS79ixI5o3by5TV0REVJbwf59JFq9OXM4zYsQ9/PSTNPSMGTOGoYeIiNSGIz4ki8BAIDIy93uXLsC2bdtw8+Z1cX+tWrXQp08fGTskIqKyiMGHZOHrmxt6fHyeY+rUeZJ9ffv2RfXq1WXqjIiIyjIGH9K4vEnMgwZdQHT0Xsm+CRMmwNDQUKbOiIiorGPwIY0KDQW++UaJIUMWIC7uuVhv06YNWrduLWNnRESkCzi5WYcVNMG4pF9v1KgE+PhMh6Xly9Dz/fffM/QQEZFGMPjosFcnGJeUV8PVnj370b//SnFfpUqVMHnyZJQrV67kGiAiInoFg48O8/UF3Nxyv7+rwkaPAgOBCxde4OLFqXB2PifWe/XqhSFDhvCJ6kREpFEKQRAEuZsoTVJSUmBtbY3k5GRYWVnJ3Y7WcHfPHT1ycwMiInJroaHAokXX0arVNsmx48ePh4mJiQxdEhFRWaXq5zdHfEglb5sP9ProkSAICA9fJQk9TZs2hb+/P0MPERHJhiM+r+GIT8EKGtEpzH///YfFixdLakOGDEGlSpVKsEMiItJlqn5+83Z2UknegoNvmw8UHh6OEydOiNsWFhYYPXo0Hy5KRESlAoMPqaRLl9yvwmRlZWHWrFmSWqdOndCkSZMS7oyIiEh1DD70zu7cuYP169dLaj4+PrCwsJCpIyIiooIx+FCR5T1ywtcXeP58E27evCnuq1OnDr744gsZuyMiIiocgw8VWWAgEB39DBcvzpfU+/fvDxcXF3maIiIiUgGDDxXZwIF/4Z9/fpfUJk6cCAMD/uNERESlGz+pSGVKpRJz585Fenq6WGvXrh1atWolY1dERESqY/AhlTx8+BC//PKLpDZy5EjY2trK1BEREVHRcXEVkihohebQ0FBJ6HFycsLkyZMZeoiISOtwxIckXn1i+//9XzqCgoIk+7/66iu4urrK1B0REdG7YfAhibwVmr/7LhpBQTtf2+cLY2NjmTojIiJ6dww+JNG5s4B//lmO2NjHYq1ly5bw9PSUsSsiIiL1YPAh0b///oulS5dKakOHDkXFihVl6oiIiEi9tGpy8/79+9GiRQuYmprC1tYW3bp1k+y/f/8+PvvsM5iZmcHe3h5jx45Fdna2PM1qmaNHj0pCj42NDX766SeGHiIiKlO0ZsRn586dGDx4MGbNmoV27dohOzsb0dHR4v6cnBx89tlncHBwQEREBOLj49GvXz8YGhrme3gmvVTQw0W7du2Khg0bytMQERFRCVIIgiDI3cTbZGdnw8XFBVOnTsXAgQMLPObAgQPo1KkTHj58KI5SrFixAuPHj8fjx49hZGSk0mulpKTA2toaycnJsLKyUtvvUBrdunULGzdulNR+/PFHmJuby9QRERFR8aj6+a0Vl7ouXLiABw8eQE9PD40aNUKlSpXQsWNHyYhPZGQk6tevL7k04+npiZSUFFy9erXQc2dkZCAlJUXyVdYJgoD169dLQk/9+vXh7+/P0ENERGWaVgSfO3fuAACmTJmCSZMmYd++fbC1tUWbNm3w33//AQASEhLyzUfJ205ISCj03AEBAbC2tha/nJycSui3kFfewoQ7diRj2rRp4t8pAAwYMAA9evSQsTsiIiLNkDX4+Pr6QqFQvPErJiYGSqUSQO6DMHv27IkmTZogODgYCoUC27dvf6ce/Pz8kJycLH7FxcWp41crdQIDAUH4E1ev/izWDAwMMGnSpDIb9oiIiF4n6+RmHx8feHl5vfGY6tWrIz4+HgBQt25dsW5sbIzq1avj/v37AAAHBwecPXtW8rOPHj0S9xXG2Ni4zC/Kl5OTgw4dAiEIL+9wa9++Pdzc3GTsioiISPNkDT52dnaws7N763FNmjSBsbExbty4gY8++ghA7t1IsbGxqFq1KgDAzc0NM2fORGJiIuzt7QEAhw8fhpWVlSQwabvQ0NzRG19foEuXtx8fFxeHtWvXSmonToyCv791CXVIRERUemnF7exWVlYYOnQo/P394eTkhKpVq2LOnDkAgF69egHIHcGoW7cu+vbti6CgICQkJGDSpEnw9vYuUyM6rz5L623B57fffsPly5fFbQuLati5sy98fRUl3CUREVHppBXBBwDmzJkDAwMD9O3bF+np6WjRogWOHTsmPiFcX18f+/btw7Bhw+Dm5gZzc3P0798f06ZNk7lz9cp7lpavb+HHpKWlicEwT58+fVCrVi34+JRwg0RERKWYVqzjo0navo5PVFQUdu/eLan5+fmpvI4RERGRNlL181trRnzozQRBwOLFi/H06VOxlpPzIY4c8UCjRqrNByIiIirrtGIdH12XtwZPaGjB+xMTEzFt2jRJ6FmyZDgWLPAQ5wMRERERR3y0wpsmNB86dAiRkZHitolJBdSuPRy1ainQti1w/Pib5wMRERHpEgYfLVDQhObMzEwEBARIjtuxowcsLetj/Higa1cNN0lERKQFGHy0QJcu0pGeGzduYMuWLZJj6tcfh7AwU47uEBERvQGDjxYRBAEhISHiatUA0LBhQ3T93/AOH7dFRET0Zgw+WiIpKQkLFy6U1AYNGoTKlSvL1BEREZH2YfDRAqdPn8aRI0fEbX19Yxw4MBaNGumDuYeIiEh1DD6lWHZ2NmbNmoVX15g8f74j/v23ucqPrSAiIqKXGHxKqXv37iEkJERSmzdvNBwdrRAU9PbHVhAREVF+DD6l0Pbt23Ht2jVxu2bNmrC0/Br16r18KjtHeoiIiIqOwacUSU1Nxdy5cyW1vn37Ijq6ujjCw8BDRERUfAw+pcSFCxewd+9eSW3ChAkwNDTEN98UvnIzERERqY7BR2ZKpRI///wznj17JtY+/vhjtG3bVtwuaOVmIiIiKjoGHxlt2ZKAGzdWSmojRoxA+fLlJTXO6SEiIlIPBh+ZHDhwADdunBW3HRwcMGTIECgUChm7IiIiKtsYfDQsIyMDgYGBkpqLSy/0719Xpo6IiIh0B4OPBl2/fh3btm2T1MaPHw8TExOZOiIiItItDD4asnfvXly4cEHcbtq0KT777DMZOyIiItI9enI3oCuuX78u/nnIkCFi6AkNBdzdc78TERFRyVIIrz4IipCSkgJra2skJyfDyspKbeeNjY3Fw4cP0bJlS+jpvcyb7u65a/S4uQEREWp7OSIiIp2i6uc3L3VpiIuLC1xcXPLV27YFrlzJ/U5EREQli5e6ZHb8OPD8ee53IiIiKlkMPjLz9c29zMVVmYmIiEoeL3XJjKsyExERaQ5HfIiIiEhnMPgQERGRzmDw0RCu10NERCQ/Bh8NCQzMXa/ntcd0ERERkQYx+GgI794iIiKSH+/q0hDevUVERCQ/jvgQERGRzmDwISIiIp3B4ENEREQ6g8GHiIiIdAaDDxEREekMBh8iIiLSGQw+REREpDMYfIiIiEhnMPgQERGRzmDwISIiIp3B4ENEREQ6g8GHiIiIdAaDDxEREekMPp39NYIgAABSUlJk7oSIiIhUlfe5nfc5XhgGn9c8e/YMAODk5CRzJ0RERFRUz549g7W1daH7FcLbopGOUSqVePjwISwtLaFQKORup0SlpKTAyckJcXFxsLKykrsdegXfm9KJ70vpxPel9NLkeyMIAp49ewZHR0fo6RU+k4cjPq/R09NDlSpV5G5Do6ysrPgfi1KK703pxPeldOL7Unpp6r1500hPHk5uJiIiIp3B4ENEREQ6g8FHhxkbG8Pf3x/GxsZyt0Kv4XtTOvF9KZ34vpRepfG94eRmIiIi0hkc8SEiIiKdweBDREREOoPBh4iIiHQGgw8RERHpDAYfHbZ//360aNECpqamsLW1Rbdu3ST779+/j88++wxmZmawt7fH2LFjkZ2dLU+zOiYjIwMNGzaEQqHApUuXJPsuX76MVq1awcTEBE5OTggKCpKnSR0SGxuLgQMHolq1ajA1NUWNGjXg7++PzMxMyXF8b+SxdOlSuLi4wMTEBC1atMDZs2flbkmnBAQEoFmzZrC0tIS9vT26deuGGzduSI558eIFvL29Ub58eVhYWKBnz5549OiRLP0y+OionTt3om/fvvj2228RFRWF06dPo0+fPuL+nJwcfPbZZ8jMzERERATWrVuHkJAQTJ48Wcaudce4cePg6OiYr56SkoL27dujatWqOH/+PObMmYMpU6Zg1apVMnSpO2JiYqBUKrFy5UpcvXoVCxYswIoVKzBhwgTxGL438ti6dSvGjBkDf39/XLhwAQ0aNICnpycSExPlbk1nnDhxAt7e3vjzzz9x+PBhZGVloX379khNTRWPGT16NPbu3Yvt27fjxIkTePjwIXr06CFPwwLpnKysLKFy5crC6tWrCz3m999/F/T09ISEhASxtnz5csHKykrIyMjQRJs66/fffxdq164tXL16VQAgXLx4Udy3bNkywdbWVvIejB8/XnB1dZWhU90WFBQkVKtWTdzmeyOP5s2bC97e3uJ2Tk6O4OjoKAQEBMjYlW5LTEwUAAgnTpwQBEEQkpKSBENDQ2H79u3iMdevXxcACJGRkRrvjyM+OujChQt48OAB9PT00KhRI1SqVAkdO3ZEdHS0eExkZCTq16+PihUrijVPT0+kpKTg6tWrcrStEx49eoTBgwdj/fr1MDMzy7c/MjISH3/8MYyMjMSap6cnbty4gadPn2qyVZ2XnJyMcuXKidt8bzQvMzMT58+fh4eHh1jT09ODh4cHIiMjZexMtyUnJwOA+O/H+fPnkZWVJXmfateuDWdnZ1neJwYfHXTnzh0AwJQpUzBp0iTs27cPtra2aNOmDf777z8AQEJCgiT0ABC3ExISNNuwjhAEAV5eXhg6dCiaNm1a4DF8X0qHW7duYfHixfjuu+/EGt8bzfv333+Rk5NT4N87/87loVQqMWrUKHz44YeoV68egNx//o2MjGBjYyM5Vq73icGnDPH19YVCoXjjV95cBQCYOHEievbsiSZNmiA4OBgKhQLbt2+X+bcoe1R9XxYvXoxnz57Bz89P7pZ1hqrvzasePHiADh06oFevXhg8eLBMnROVTt7e3oiOjsaWLVvkbqVQBnI3QOrj4+MDLy+vNx5TvXp1xMfHAwDq1q0r1o2NjVG9enXcv38fAODg4JDvzoi8GfgODg5q7LrsU/V9OXbsGCIjI/M906Zp06b4+uuvsW7dOjg4OOS7E4LvS/Gp+t7kefjwIdq2bQt3d/d8k5b53mhehQoVoK+vX+DfO//ONW/EiBHYt28fTp48iSpVqoh1BwcHZGZmIikpSTLqI9v7pPFZRSS75ORkwdjYWDK5OTMzU7C3txdWrlwpCMLLyc2PHj0Sj1m5cqVgZWUlvHjxQuM964J79+4JV65cEb/CwsIEAMKOHTuEuLg4QRBeTqDNzMwUf87Pz48TaDXgn3/+EWrVqiV89dVXQnZ2dr79fG/k0bx5c2HEiBHidk5OjlC5cmVObtYgpVIpeHt7C46OjsLff/+db3/e5OYdO3aItZiYGNkmNzP46KgffvhBqFy5shAWFibExMQIAwcOFOzt7YX//vtPEARByM7OFurVqye0b99euHTpknDw4EHBzs5O8PPzk7lz3XH37t18d3UlJSUJFStWFPr27StER0cLW7ZsEczMzMTASiXjn3/+EWrWrCl88sknwj///CPEx8eLX3n43shjy5YtgrGxsRASEiJcu3ZNGDJkiGBjYyO5I5VK1rBhwwRra2shPDxc8u9GWlqaeMzQoUMFZ2dn4dixY8K5c+cENzc3wc3NTZZ+GXx0VGZmpuDj4yPY29sLlpaWgoeHhxAdHS05JjY2VujYsaNgamoqVKhQQfDx8RGysrJk6lj3FBR8BEEQoqKihI8++kgwNjYWKleuLAQGBsrToA4JDg4WABT49Sq+N/JYvHix4OzsLBgZGQnNmzcX/vzzT7lb0imF/bsRHBwsHpOeni4MHz5csLW1FczMzITu3btL/sdBkxT/a5qIiIiozONdXURERKQzGHyIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4iIiHQGgw8RERHpDAYfIqISEh4eDoVCgaSkJLlbIaL/YfAhIq01ZcoUNGzYUO42iEiLMPgQUZmXlZUldwtEVEow+BCRbJRKJQICAlCtWjWYmpqiQYMG2LFjB4CXl4mOHj2Kpk2bwszMDO7u7rhx4wYAICQkBFOnTkVUVBQUCgUUCgVCQkIAAAqFAsuXL0eXLl1gbm6OmTNnvrGPvNcKCwtDo0aNYGpqinbt2iExMREHDhxAnTp1YGVlhT59+iAtLU38uYyMDIwcORL29vYwMTHBRx99hL/++qtk/rKISD1keUIYEZEgCDNmzBBq164tHDx4ULh9+7YQHBwsGBsbC+Hh4cLx48cFAEKLFi2E8PBw4erVq0KrVq0Ed3d3QRAEIS0tTfDx8RHef//9fE+DBiDY29sLa9euFW7fvi3cu3fvjX3kvVbLli2FP/74Q7hw4YJQs2ZNoXXr1kL79u2FCxcuCCdPnhTKly8vefDoyJEjBUdHR+H3338Xrl69KvTv31+wtbUVnjx5Ijnv06dPS+YvkIiKjMGHiGTx4sULwczMTIiIiJDUBw4cKPTu3VsMDUeOHBH37d+/XwAgpKenC4IgCP7+/kKDBg3ynRuAMGrUKJV7Kei1AgICBADC7du3xdp3330neHp6CoIgCM+fPxcMDQ2FjRs3ivszMzMFR0dHISgoSHJeBh+i0sNArpEmItJtt27dQlpaGv7v//5PUs/MzESjRo3E7Q8++ED8c6VKlQAAiYmJcHZ2fuP5mzZtWuSeXn2tihUrwszMDNWrV5fUzp49CwC4ffs2srKy8OGHH4r7DQ0N0bx5c1y/fr3Ir01EmsHgQ0SyeP78OQBg//79qFy5smSfsbExbt++DSA3TORRKBQAcucGvY25uXmRe3r9tV7dzqup8tpEVHpxcjMRyaJu3bowNjbG/fv3UbNmTcmXk5OTSucwMjJCTk5OCXdasBo1asDIyAinT58Wa1lZWfjrr79Qt25dWXoiorfjiA8RycLS0hI//vgjRo8eDaVSiY8++gjJyck4ffo0rKysULVq1beew8XFBXfv3sWlS5dQpUoVWFpawtjYWAPd544oDRs2DGPHjkW5cuXg7OyMoKAgpKWlYeDAgRrpgYiKjsGHiGQzffp02NnZISAgAHfu3IGNjQ0aN26MCRMmqHRJqWfPnti1axfatm2LpKQkBAcHw8vLq+Qb/5/AwEAolUr07dsXz549Q9OmTREWFgZbW1uN9UBERaMQBEGQuwkiIiIiTeAcHyIiItIZDD5EVOYNHToUFhYWBX4NHTpU7vaISIN4qYuIyrzExESkpKQUuM/Kygr29vYa7oiI5MLgQ0RERDqDl7qIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4iIiHQGgw8RERHpDAYfIiIi0hkMPkRERKQz/h8ZE1xgsXhGfQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Training and Validating Surrogate\n", + "\n", + "First, let's import the required Python and IDAES modules:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABo50lEQVR4nO3deXwTdf4/8FdaSGmhB6U3lLYUuaQU5LICBYSlVFYXwRVB5QYPDoVVAXdVQJdy7CrKIriooKsgXxUVQVxQrgUqdzmlP6iForTcTexBC838/igZcswkk6PNpHk9H48oTSYzn0wmM+/5fN6fz0cjCIIAIiIiIh/m5+kCEBEREXkaAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIvIas2fPhkajUbSsRqPB7Nmza7Q8ffr0QZ8+fVS7PiJSjgERETls1apV0Gg04qNevXpo2rQpRo8ejd9++83TxVOdxMREs/0VFRWFXr164auvvnLL+svKyjB79mxs377dLesj8kUMiIjIaXPnzsV//vMfLF++HJmZmfjkk0/Qu3dv3Lhxo0a297e//Q3l5eU1su6a1rFjR/znP//Bf/7zH7zwwgu4cOEChgwZguXLl7u87rKyMsyZM4cBEZEL6nm6AETkvTIzM9GlSxcAwPjx4xEREYEFCxZg/fr1ePTRR92+vXr16qFePe88bTVt2hRPPPGE+PfIkSPRsmVLvPXWW3j66ac9WDIiAlhDRERu1KtXLwBAXl6e2fOnTp3CI488gvDwcDRo0ABdunTB+vXrzZa5efMm5syZg7vuugsNGjRAkyZN0LNnT2zZskVcRiqHqKKiAtOmTUNkZCSCg4Px0EMP4ddff7Uq2+jRo5GYmGj1vNQ6V65cifvvvx9RUVEICAhAu3btsGzZMof2hT0xMTFo27Yt8vPzbS536dIljBs3DtHR0WjQoAFSU1Px0Ucfia+fPXsWkZGRAIA5c+aIzXI1nT9FVNd4560WEanS2bNnAQCNGzcWnztx4gR69OiBpk2bYubMmWjYsCH+7//+D4MHD8aXX36Jhx9+GEB1YJKVlYXx48ejW7du0Ov1OHDgAA4dOoQ//OEPstscP348PvnkE4wYMQL33Xcftm7dikGDBrn0OZYtW4a7774bDz30EOrVq4dvv/0Wzz77LAwGAyZNmuTSuo1u3ryJ8+fPo0mTJrLLlJeXo0+fPjhz5gwmT56MpKQkfP755xg9ejSKi4vx3HPPITIyEsuWLcMzzzyDhx9+GEOGDAEAdOjQwS3lJPIZAhGRg1auXCkAEH744Qfh8uXLwvnz54UvvvhCiIyMFAICAoTz58+Ly/br109ISUkRbty4IT5nMBiE++67T7jrrrvE51JTU4VBgwbZ3O5rr70mmJ62cnJyBADCs88+a7bciBEjBADCa6+9Jj43atQoISEhwe46BUEQysrKrJbLyMgQWrRoYfZc7969hd69e9sssyAIQkJCgjBgwADh8uXLwuXLl4UjR44Ijz32mABAmDJliuz6Fi9eLAAQPvnkE/G5yspKIS0tTWjUqJGg1+sFQRCEy5cvW31eInIMm8yIyGn9+/dHZGQk4uPj8cgjj6Bhw4ZYv349mjVrBgC4du0atm7dikcffRS///47rly5gitXruDq1avIyMjA6dOnxV5pYWFhOHHiBE6fPq14+9999x0AYOrUqWbPP//88y59rsDAQPHfOp0OV65cQe/evfHLL79Ap9M5tc7NmzcjMjISkZGRSE1Nxeeff44nn3wSCxYskH3Pd999h5iYGAwfPlx8rn79+pg6dSpKSkqwY8cOp8pCRNbYZEZETlu6dClatWoFnU6HDz/8EDt37kRAQID4+pkzZyAIAl555RW88sorkuu4dOkSmjZtirlz5+JPf/oTWrVqhfbt22PgwIF48sknbTb9nDt3Dn5+fkhOTjZ7vnXr1i59rt27d+O1115DdnY2ysrKzF7T6XQIDQ11eJ3du3fHG2+8AY1Gg6CgILRt2xZhYWE233Pu3Dncdddd8PMzv3dt27at+DoRuQcDIiJyWrdu3cReZoMHD0bPnj0xYsQI5ObmolGjRjAYDACAF154ARkZGZLraNmyJQAgPT0deXl5+Oabb7B582a8//77eOutt7B8+XKMHz/e5bLKDehYVVVl9ndeXh769euHNm3a4M0330R8fDy0Wi2+++47vPXWW+JnclRERAT69+/v1HuJqOYxICIit/D390dWVhb69u2Lf/3rX5g5cyZatGgBoLqZR0kwEB4ejjFjxmDMmDEoKSlBeno6Zs+eLRsQJSQkwGAwIC8vz6xWKDc312rZxo0bo7i42Op5y1qWb7/9FhUVFVi/fj2aN28uPr9t2za75Xe3hIQEHD16FAaDwayW6NSpU+LrgHywR0TKMYeIiNymT58+6NatGxYvXowbN24gKioKffr0wXvvvYfCwkKr5S9fviz+++rVq2avNWrUCC1btkRFRYXs9jIzMwEA77zzjtnzixcvtlo2OTkZOp0OR48eFZ8rLCy0Gi3a398fACAIgvicTqfDypUrZctRUx544AEUFRVh7dq14nO3bt3CkiVL0KhRI/Tu3RsAEBQUBACSAR8RKcMaIiJyqxdffBF//vOfsWrVKjz99NNYunQpevbsiZSUFEyYMAEtWrTAxYsXkZ2djV9//RVHjhwBALRr1w59+vRB586dER4ejgMHDuCLL77A5MmTZbfVsWNHDB8+HO+++y50Oh3uu+8+/Pjjjzhz5ozVso899hhmzJiBhx9+GFOnTkVZWRmWLVuGVq1a4dChQ+JyAwYMgFarxYMPPoinnnoKJSUlWLFiBaKioiSDupo0ceJEvPfeexg9ejQOHjyIxMREfPHFF9i9ezcWL16M4OBgANVJ4O3atcPatWvRqlUrhIeHo3379mjfvn2tlpfIq3m6mxsReR9jt/v9+/dbvVZVVSUkJycLycnJwq1btwRBEIS8vDxh5MiRQkxMjFC/fn2hadOmwh//+Efhiy++EN/3xhtvCN26dRPCwsKEwMBAoU2bNsLf//53obKyUlxGqot8eXm5MHXqVKFJkyZCw4YNhQcffFA4f/68ZDf0zZs3C+3btxe0Wq3QunVr4ZNPPpFc5/r164UOHToIDRo0EBITE4UFCxYIH374oQBAyM/PF5dzpNu9vSEF5NZ38eJFYcyYMUJERISg1WqFlJQUYeXKlVbv3bNnj9C5c2dBq9WyCz6REzSCYFIvTEREROSDmENEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwOzKiQwWDAhQsXEBwczGHyiYiIvIQgCPj9998RFxdnNVGyKQZECl24cAHx8fGeLgYRERE54fz582jWrJns6wyIFDIOkX/+/HmEhIR4uDRERESkhF6vR3x8vHgdl8OASCFjM1lISAgDIiIiIi9jL92FSdVERETk8xgQERERkc9jQEREREQ+jzlERETk86qqqnDz5k1PF4OcUL9+ffj7+7u8HgZERETkswRBQFFREYqLiz1dFHJBWFgYYmJiXBonkAERERH5LGMwFBUVhaCgIA6862UEQUBZWRkuXboEAIiNjXV6XQyIiIjIJ1VVVYnBUJMmTTxdHHJSYGAgAODSpUuIiopyuvmMSdVEROSTjDlDQUFBHi4Jucr4HbqSB8aAiIiIfBqbybyfO75DBkRERETk8xgQEREREYDqmpavv/7a08Uws337dmg0mhrvCciAqA4p1JVjT94VFOrKPV0UIiJSsdmzZ6Njx46eLoaqsJdZHbF2fwFmrTsGgwD4aYCsISkY1rW5p4tFRETkFVhDVAcU6srFYAgADALw8rrjrCkiIqqjDAYDsrKykJSUhMDAQKSmpuKLL74AcKeJ6ccff0SXLl0QFBSE++67D7m5uQCAVatWYc6cOThy5Ag0Gg00Gg1WrVolrvvKlSt4+OGHERQUhLvuugvr169XVCbjdv/73/+iU6dOCAwMxP33349Lly5h06ZNaNu2LUJCQjBixAiUlZWJ76uoqMDUqVMRFRWFBg0aoGfPnti/f7/7dpZCDIjqgPwrpWIwZFQlCDh7pUz6DURE5Ha1mbaQlZWFjz/+GMuXL8eJEycwbdo0PPHEE9ixY4e4zF//+lf885//xIEDB1CvXj2MHTsWADBs2DD85S9/wd13343CwkIUFhZi2LBh4vvmzJmDRx99FEePHsUDDzyAxx9/HNeuXVNcttmzZ+Nf//oX9uzZg/Pnz+PRRx/F4sWLsXr1amzcuBGbN2/GkiVLxOVfeuklfPnll/joo49w6NAhtGzZEhkZGQ5t0x0YENUBSREN4WfR49Bfo0FiBMfWICKqDWv3F6DH/K0YsWIveszfirX7C2psWxUVFZg3bx4+/PBDZGRkoEWLFhg9ejSeeOIJvPfee+Jyf//739G7d2+0a9cOM2fOxJ49e3Djxg0EBgaiUaNGqFevHmJiYhATEyMObggAo0ePxvDhw9GyZUvMmzcPJSUl2Ldvn+LyvfHGG+jRowc6deqEcePGYceOHVi2bBk6deqEXr164ZFHHsG2bdsAAKWlpVi2bBkWLVqEzMxMtGvXDitWrEBgYCA++OAD9+00BRgQ1QGxoYHIGpIC/9vjMPhrNJg3pD1iQwPtvJOIiFxV22kLZ86cQVlZGf7whz+gUaNG4uPjjz9GXl6euFyHDh3EfxuntDBOcWGL6fsaNmyIkJAQRe+Ten90dDSCgoLQokULs+eM68vLy8PNmzfRo0cP8fX69eujW7du+PnnnxVv0x2YVF1HDOvaHOmtInH2ShkSI4IYDBER1RJbaQs1cS4uKSkBAGzcuBFNmzY1ey0gIEAMiurXry8+bxy40GAw2F2/6fuM71XyPqn3azQal9dXWxgQ1SGxoYEMhIiIapkxbcE0KKrJtIV27dohICAABQUF6N27t9XrprVEcrRaLaqqqmqieA5JTk6GVqvF7t27kZCQAKB6+o39+/fj+eefr9WyMCAiIiJygTFt4eV1x1ElCDWethAcHIwXXngB06ZNg8FgQM+ePaHT6bB7926EhISIgYUtiYmJyM/PR05ODpo1a4bg4GAEBATUSHltadiwIZ555hm8+OKLCA8PR/PmzbFw4UKUlZVh3LhxtVoWBkREREQuqu20hddffx2RkZHIysrCL7/8grCwMNxzzz14+eWXFTVHDR06FOvWrUPfvn1RXFyMlStXYvTo0TVaZjnz58+HwWDAk08+id9//x1dunTBf//7XzRu3LhWy6ERBEGwvxjp9XqEhoZCp9MhJCTE08UhIiIX3bhxA/n5+UhKSkKDBg08XRxyga3vUun1m73MiIiIyOcxICIiIiK7nn76abNu/qaPp59+2tPFc5lHA6KdO3fiwQcfRFxcnOQMu8YhxS0fixYtEpdJTEy0en3+/Plm6zl69Ch69eqFBg0aID4+HgsXLqyNj0dERFRnzJ07Fzk5OZKPuXPnerp4LvNoUnVpaSlSU1MxduxYDBkyxOr1wsJCs783bdqEcePGYejQoWbPz507FxMmTBD/Dg4OFv+t1+sxYMAA9O/fH8uXL8exY8cwduxYhIWFYeLEiW7+RERERHVTVFQUoqKiPF2MGuPRgCgzMxOZmZmyr8fExJj9/c0336Bv375mI14C1QGQ5bJGn376KSorK/Hhhx9Cq9Xi7rvvRk5ODt58800GRERERATAi3KILl68iI0bN0qOSzB//nw0adIEnTp1wqJFi3Dr1i3xtezsbKSnp0Or1YrPZWRkIDc3F9evX5fdXkVFBfR6vdmDiIjqHjWOmkyOccd36DXjEH300UcIDg62alqbOnUq7rnnHoSHh2PPnj2YNWsWCgsL8eabbwIAioqKkJSUZPae6Oho8TW5cQ6ysrIwZ86cGvgkRESkBlqtFn5+frhw4QIiIyOh1WrFKS7IOwiCgMrKSly+fBl+fn5mlR+O8pqA6MMPP8Tjjz9uNb7A9OnTxX936NABWq0WTz31FLKyslwadXPWrFlm69br9YiPj3d6fUREpC5+fn5ISkpCYWEhLly44OnikAuCgoLQvHlz+Pk53/DlFQHR//73P+Tm5mLt2rV2l+3evTtu3bqFs2fPonXr1oiJicHFixfNljH+LZd3BFRPkOeJYcyJiKj2aLVaNG/eHLdu3VLF3F7kOH9/f9SrV8/l2j2vCIg++OADdO7cGampqXaXzcnJgZ+fn5gJn5aWhr/+9a+4efOmOOPuli1b0Lp161ofFpyIiNTHOCO75azs5Fs8mlRdUlIijmEAQJxorqCgQFxGr9fj888/x/jx463en52djcWLF+PIkSP45Zdf8Omnn2LatGl44oknxGBnxIgR0Gq1GDduHE6cOIG1a9fi7bffNmsOIyIiIt/m0RqiAwcOoG/fvuLfxiBl1KhRWLVqFQDgs88+gyAIGD58uNX7AwIC8Nlnn2H27NmoqKhAUlISpk2bZhbshIaGYvPmzZg0aRI6d+6MiIgIvPrqq+xyT0RERCJO7qoQJ3clIiLyPpzclYiIiEghBkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHP82hAtHPnTjz44IOIi4uDRqPB119/bfb66NGjodFozB4DBw40W+batWt4/PHHERISgrCwMIwbNw4lJSVmyxw9ehS9evVCgwYNEB8fj4ULF9b0RyMiIiIv4tGAqLS0FKmpqVi6dKnsMgMHDkRhYaH4WLNmjdnrjz/+OE6cOIEtW7Zgw4YN2LlzJyZOnCi+rtfrMWDAACQkJODgwYNYtGgRZs+ejX//+9819rmIiIjIu9Tz5MYzMzORmZlpc5mAgADExMRIvvbzzz/j+++/x/79+9GlSxcAwJIlS/DAAw/gH//4B+Li4vDpp5+isrISH374IbRaLe6++27k5OTgzTffNAuciIiIyHepPodo+/btiIqKQuvWrfHMM8/g6tWr4mvZ2dkICwsTgyEA6N+/P/z8/LB3715xmfT0dGi1WnGZjIwM5Obm4vr167LbraiogF6vN3sQERFR3aTqgGjgwIH4+OOP8eOPP2LBggXYsWMHMjMzUVVVBQAoKipCVFSU2Xvq1auH8PBwFBUVictER0ebLWP827iMlKysLISGhoqP+Ph4d340IiIiUhGPNpnZ89hjj4n/TklJQYcOHZCcnIzt27ejX79+NbrtWbNmYfr06eLfer2eQREREVEdpeoaIkstWrRAREQEzpw5AwCIiYnBpUuXzJa5desWrl27JuYdxcTE4OLFi2bLGP+Wy00CqnOXQkJCzB5ERERUN3lVQPTrr7/i6tWriI2NBQCkpaWhuLgYBw8eFJfZunUrDAYDunfvLi6zc+dO3Lx5U1xmy5YtaN26NRo3bly7H4CIiIhUyaMBUUlJCXJycpCTkwMAyM/PR05ODgoKClBSUoIXX3wRP/30E86ePYsff/wRf/rTn9CyZUtkZGQAANq2bYuBAwdiwoQJ2LdvH3bv3o3JkyfjscceQ1xcHABgxIgR0Gq1GDduHE6cOIG1a9fi7bffNmsOIyIiIt+mEQRB8NTGt2/fjr59+1o9P2rUKCxbtgyDBw/G4cOHUVxcjLi4OAwYMACvv/66WZL0tWvXMHnyZHz77bfw8/PD0KFD8c4776BRo0biMkePHsWkSZOwf/9+REREYMqUKZgxY4ZDZdXr9QgNDYVOp2PzGRERkZdQev32aEDkTRgQEREReR+l12+vyiEiIiIiqgkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4DIBxTqyrEn7woKdeWeLgoREZEq1fN0Aahmrd1fgFnrjsEgAH4aIGtICoZ1be7pYhEREakKa4jqsEJduRgMAYBBAF5ed5w1RURERBYYENVh+VdKxWDIqEoQcPZKmWcKREREpFIMiOqwpIiG8NOYP+ev0SAxIsgzBSIiIlIpBkR1WGxoILKGpMBfUx0V+Ws0mDekPWJDA22+j0nYRETka5hUXccN69oc6a0icfZKGRIjguwGQ0zCJiIiX8QaIh8QGxqItOQmimqGmIRNRES+iAERiZiETUREvooBEYmYhE1ERL6KARGJnE3CJiIi8nZMqiYzjiZhExER1QUMiMhKbGggAyEiIvIpbDIjIiIin8eAiIiIiHweAyIiIiLyeR4NiHbu3IkHH3wQcXFx0Gg0+Prrr8XXbt68iRkzZiAlJQUNGzZEXFwcRo4ciQsXLpitIzExERqNxuwxf/58s2WOHj2KXr16oUGDBoiPj8fChQtr4+MRERGRl/BoQFRaWorU1FQsXbrU6rWysjIcOnQIr7zyCg4dOoR169YhNzcXDz30kNWyc+fORWFhofiYMmWK+Jper8eAAQOQkJCAgwcPYtGiRZg9ezb+/e9/1+hnIyIiIu/h0V5mmZmZyMzMlHwtNDQUW7ZsMXvuX//6F7p164aCggI0b35nfq3g4GDExMRIrufTTz9FZWUlPvzwQ2i1Wtx9993IycnBm2++iYkTJ7rvw6hIoa4c+VdKkRTRkL3FiIiIFPCqHCKdTgeNRoOwsDCz5+fPn48mTZqgU6dOWLRoEW7duiW+lp2djfT0dGi1WvG5jIwM5Obm4vr167LbqqiogF6vN3t4g7X7C9Bj/laMWLEXPeZvxdr9BZ4uEhERkep5TUB048YNzJgxA8OHD0dISIj4/NSpU/HZZ59h27ZteOqppzBv3jy89NJL4utFRUWIjo42W5fx76KiItntZWVlITQ0VHzEx8e7+RO5HydnJSIico5XDMx48+ZNPProoxAEAcuWLTN7bfr06eK/O3ToAK1Wi6eeegpZWVkICAhwepuzZs0yW7der1d9UGRrclY2nREREclTfUBkDIbOnTuHrVu3mtUOSenevTtu3bqFs2fPonXr1oiJicHFixfNljH+LZd3BAABAQEuBVSeYJyc1TQo4uSsRERE9qm6ycwYDJ0+fRo//PADmjRpYvc9OTk58PPzQ1RUFAAgLS0NO3fuxM2bN8VltmzZgtatW6Nx48Y1VnZP4OSsREREzvFoDVFJSQnOnDkj/p2fn4+cnByEh4cjNjYWjzzyCA4dOoQNGzagqqpKzPkJDw+HVqtFdnY29u7di759+yI4OBjZ2dmYNm0annjiCTHYGTFiBObMmYNx48ZhxowZOH78ON5++2289dZbHvnMNY2TsxIRETlOIwiCYH+xmrF9+3b07dvX6vlRo0Zh9uzZSEpKknzftm3b0KdPHxw6dAjPPvssTp06hYqKCiQlJeHJJ5/E9OnTzZq7jh49ikmTJmH//v2IiIjAlClTMGPGDIfKqtfrERoaCp1OZ7fZjoiIiNRB6fXbowGRN2FARERE5H2UXr9VnUNEREREVBsYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PPqKV1Qr9crXmlISIhThSEiIiLyBMUBUVhYGDQajc1lBEGARqNBVVWVywUjIiIiqi2KA6Jt27bVZDmIiIiIPEZxQNS7d++aLAcRERGRxygOiCwVFxfjgw8+wM8//wwAuPvuuzF27FiEhoa6rXBEREREtcGpXmYHDhxAcnIy3nrrLVy7dg3Xrl3Dm2++ieTkZBw6dMjdZSQiIiKqURpBEARH39SrVy+0bNkSK1asQL161ZVMt27dwvjx4/HLL79g586dbi+op+n1eoSGhkKn07EXHRERkZdQev12KiAKDAzE4cOH0aZNG7PnT548iS5duqCsrMzxEqscAyIiIiLvo/T67VSTWUhICAoKCqyeP3/+PIKDg51ZJREREZHHOBUQDRs2DOPGjcPatWtx/vx5nD9/Hp999hnGjx+P4cOHu7uMRERERDXKqYDoH//4B4YMGYKRI0ciMTERiYmJGD16NB555BEsWLBA8Xp27tyJBx98EHFxcdBoNPj666/NXhcEAa+++ipiY2MRGBiI/v374/Tp02bLXLt2DY8//jhCQkIQFhaGcePGoaSkxGyZo0ePolevXmjQoAHi4+OxcOFCZz42ERER1VFOBURarRZvv/02rl+/jpycHOTk5ODatWt46623EBAQoHg9paWlSE1NxdKlSyVfX7hwId555x0sX74ce/fuRcOGDZGRkYEbN26Iyzz++OM4ceIEtmzZgg0bNmDnzp2YOHGi+Lper8eAAQOQkJCAgwcPYtGiRZg9ezb+/e9/O/PRiYiIqC4SVAKA8NVXX4l/GwwGISYmRli0aJH4XHFxsRAQECCsWbNGEARBOHnypABA2L9/v7jMpk2bBI1GI/z222+CIAjCu+++KzRu3FioqKgQl5kxY4bQunVrh8qn0+kEAIJOp3Pm4xEREZEHKL1+O1VDdOPGDSxatAgPPPAAunTpgnvuucfs4Q75+fkoKipC//79xedCQ0PRvXt3ZGdnAwCys7MRFhaGLl26iMv0798ffn5+2Lt3r7hMeno6tFqtuExGRgZyc3Nx/fp12e1XVFRAr9ebPYiIiKhucmqk6nHjxmHz5s145JFH0K1bN7uTvjqjqKgIABAdHW32fHR0tPhaUVERoqKizF6vV68ewsPDzZZJSkqyWofxtcaNG0tuPysrC3PmzHH9gxAREZHqORUQbdiwAd999x169Ojh7vKoxqxZszB9+nTxb71ej/j4eA+WiIiIiGqKU01mTZs2rfHxhmJiYgAAFy9eNHv+4sWL4msxMTG4dOmS2eu3bt3CtWvXzJaRWofpNqQEBAQgJCTE7EFERER1k1MB0T//+U/MmDED586dc3d5RElJSYiJicGPP/4oPqfX67F3716kpaUBANLS0lBcXIyDBw+Ky2zduhUGgwHdu3cXl9m5cydu3rwpLrNlyxa0bt1atrmMiIiIfItTAVGXLl1w48YNtGjRAsHBwQgPDzd7KFVSUiJ22weqE6lzcnJQUFAAjUaD559/Hm+88QbWr1+PY8eOYeTIkYiLi8PgwYMBAG3btsXAgQMxYcIE7Nu3D7t378bkyZPx2GOPIS4uDgAwYsQIaLVajBs3DidOnMDatWvx9ttvmzWHERERkW9zKodo+PDh+O233zBv3jxER0c7nVR94MAB9O3bV/zbGKSMGjUKq1atwksvvYTS0lJMnDgRxcXF6NmzJ77//ns0aNBAfM+nn36KyZMno1+/fvDz88PQoUPxzjvviK+HhoZi8+bNmDRpEjp37oyIiAi8+uqrZmMVERERkW9zanLXoKAgZGdnIzU1tSbKpEqc3JWIiMj71Ojkrm3atEF5ebnThSMiIiJSE6cCovnz5+Mvf/kLtm/fjqtXr3IAQyIiIvJqTjWZ+flVx1GWuUOCIECj0aCqqso9pVMRNpkRERF5H6XXb6eSqrdt2+Z0wYiIiIjUxqmAqHfv3oqWe/bZZzF37lxEREQ4sxkiIiKiWuFUDpFSn3zyCXOKiIiISPVqNCByIj2JiIiIqNbVaEBERERE5A0YEBEREZHPY0BEREREPo8BEREREfm8Gg2InnjiCQ5iSKpTqCvHnrwrKNRx+hkiIqrm1DhEAFBcXIx9+/bh0qVLMBgMZq+NHDkSALBs2TLXSkfkZmv3F2DWumMwCICfBsgakoJhXZt7ulhERORhTk3d8e233+Lxxx9HSUkJQkJCzKbw0Gg0uHbtmlsLqQacusP7FerK0WP+VhhMjnh/jQa7ZvZFbGig5wpGREQ1pkZnu//LX/6CsWPHoqSkBMXFxbh+/br4qIvBENUN+VdKzYIhAKgSBJy9UuaZAhERkWo4FRD99ttvmDp1KoKCgtxdHqIakxTREH7m8xHDX6NBYgSPYyIiX+dUQJSRkYEDBw64uyxENSo2NBBZQ1Lgf7uJ11+jwbwh7dlcRkREypOq169fL/570KBBePHFF3Hy5EmkpKSgfv36Zss+9NBD7ishkRsN69oc6a0icfZKGRIjghgMERERAAeSqv38lFUmaTQaVFVVuVQoNWJStW8r1JUj/0opkiIaMogiIvIiSq/fimuILLvWE/kKdtUnIqr7nMoh+vjjj1FRUWH1fGVlJT7++GOXC0WkFoW6cjEYAgCDALy87jgHdSRyEgdGJbVyKiAaM2YMdDqd1fO///47xowZ43KhiNSCXfWJ3Gft/gL0mL8VI1bsRY/5W7F2f4Gni0QkciogEgTBbDBGo19//RWhoaEuF4pILdhVn8g9WNtKaufQ1B2dOnWCRqOBRqNBv379UK/enbdXVVUhPz8fAwcOdHshiTzF2FX/5XXHUSUI7KpP5CRbta38PZEaOBQQDR48GACQk5ODjIwMNGrUSHxNq9UiMTERQ4cOdWsBiTyNXfWJXGesbbWcOoe1raQWDgVEr732GgAgMTERw4YNQ4MGDWqkUERqExsayECIyAWsbSW1c2pyV6PKykrJ2e6bN697XZI5DhERkesKdeWsbaVa5fZxiEydPn0aY8eOxZ49e8yeNyZb18WBGYmIyHWsbSW1ciogGj16NOrVq4cNGzYgNjZWsscZERERkbdwKiDKycnBwYMH0aZNG3eXh4iIiKjWOTUOUbt27XDlyhV3l4WIiIjII5wKiBYsWICXXnoJ27dvx9WrV6HX680eRERERN7EqV5mpjPfm+YP1eWkavYyIyIi8j412sts27ZtTheMqCYU6sqRf6UUSREN2YOFiIgc5lSTWe/eveHn54cVK1Zg5syZaNmyJXr37o2CggL4+/u7u4xENnHCSCIicpVTAdGXX36JjIwMBAYG4vDhw6ioqAAA6HQ6zJs3z60FTExMFOdPM31MmjQJANCnTx+r155++mmzdRQUFGDQoEEICgpCVFQUXnzxRdy6dcut5STP4ISRRFSbCnXl2JN3heeYOsipJrM33ngDy5cvx8iRI/HZZ5+Jz/fo0QNvvPGG2woHAPv37zfLSTp+/Dj+8Ic/4M9//rP43IQJEzB37lzx76CgO3PjVFVVYdCgQYiJicGePXtQWFiIkSNHon79+m4P3qj2ccJIIqota/cXiDdgfhoga0gKhnWtezMz+Cqnaohyc3ORnp5u9XxoaCiKi4tdLZOZyMhIxMTEiI8NGzYgOTkZvXv3FpcJCgoyW8Y0aWrz5s04efIkPvnkE3Ts2BGZmZl4/fXXsXTpUlRWVrq1rFT7jBNGmuKEkUTkbqyNrvucCohiYmJw5swZq+d37dqFFi1auFwoOZWVlfjkk08wduxYs95tn376KSIiItC+fXvMmjULZWVl4mvZ2dlISUlBdHS0+FxGRgb0ej1OnDghu62KigoOJ+AFjBNG+t8+HjhhJBHVBFu10VQ3ONVkNmHCBDz33HP48MMPodFocOHCBWRnZ+OFF17AK6+84u4yir7++msUFxdj9OjR4nMjRoxAQkIC4uLicPToUcyYMQO5ublYt24dAKCoqMgsGAIg/l1UVCS7raysLMyZM8f9H4IAuLdX2LCuzZHeKpITRhJRjTHWRpsGRayNrlucCohmzpwJg8GAfv36oaysDOnp6QgICMALL7yAKVOmuLuMog8++ACZmZmIi4sTn5s4caL475SUFMTGxqJfv37Iy8tDcnKy09uaNWsWpk+fLv6t1+sRHx/v9ProjppohzedMJJd8InI3Yy10S+vO44qQWBtdB3kVECk0Wjw17/+FS+++CLOnDmDkpIStGvXDo0aNXJ3+UTnzp3DDz/8INb8yOnevTsA4MyZM0hOTkZMTAz27dtntszFixcBVDf9yQkICEBAQICLpSZLcu3w6a0i3XJiYdIjEdUU1kbXbU7lEBlptVq0a9cO3bp1q9FgCABWrlyJqKgoDBo0yOZyOTk5AIDY2FgAQFpaGo4dO4ZLly6Jy2zZsgUhISFo165djZWXpNVkOzyTHomopsWGBiItuQmDoTrIpYCothgMBqxcuRKjRo1CvXp3KrXy8vLw+uuv4+DBgzh79izWr1+PkSNHIj09HR06dAAADBgwAO3atcOTTz6JI0eO4L///S/+9re/YdKkSawB8oCa7BXGpEciInKWVwREP/zwAwoKCjB27Fiz57VaLX744QcMGDAAbdq0wV/+8hcMHToU3377rbiMv78/NmzYAH9/f6SlpeGJJ57AyJEjzcYtotpTk73C2AWfiIic5dTkrr6Ik7u6V6GuvEba4dfuL7BKemQOERGR76rRyV2JXGXaK8ydmPRIRETOYEBEdU5NBVtERFR3eUUOEREREVFNYkBEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBHVokJdOfbkXUGhrtzTRSEiIhOc7Z6olqzdX4BZ647BIAB+GiBrSAqGdW3u6WIRERFYQ0RUKwp15WIwBAAGAXh53XHWFBERqQQDIqJakH+lVAyGjKoEAWevlHmmQEREZIYBEVEtSIpoCD+N+XP+Gg0SI4I8UyAiIjLDgEglmGxbt8WGBiJrSAr8NdVRkb9Gg3lD2iM2NNDDJSMiIoBJ1apgmWw7I7MNUpqGIimiIS+Ydciwrs2R3ioSZ6+UITEiiN8tEZGKMCDyMKlk26zvTgFgT6S6KDY0kIEQEZEKscnMw6SSbY3YE4mIiKh2MCDyMKlkW1PsiURERFTzGBB5mGWyrSX2RCIiIqp5zCFSAdNk26O/FmPh97moEgT2RPIRhbpy5F8pZRI9EZEHMSBSCWOybVpyEzzUMY49kXwEp/MgIlIHNpmpkDEwYjBUt3E6DyIi9WBAROQhnM6DiEg9GBAReQin8yAiUg8GREQewuk8iIjUg0nVRB7E6TyIiNSBARGRh3E6DyIiz2OTGalKoa4ce/KusKcVERHVKtYQkWpwTB4iIvIU1dcQzZ49GxqNxuzRpk0b8fUbN25g0qRJaNKkCRo1aoShQ4fi4sWLZusoKCjAoEGDEBQUhKioKLz44ou4detWbX8UsoFj8hARkSd5RQ3R3XffjR9++EH8u169O8WeNm0aNm7ciM8//xyhoaGYPHkyhgwZgt27dwMAqqqqMGjQIMTExGDPnj0oLCzEyJEjUb9+fcybN6/WPwtJszUmD/NryJdxahei2uEVAVG9evUQExNj9bxOp8MHH3yA1atX4/777wcArFy5Em3btsVPP/2Ee++9F5s3b8bJkyfxww8/IDo6Gh07dsTrr7+OGTNmYPbs2dBqtbX9cUiCcUwe06CIY/LUHl501YnNyES1R/VNZgBw+vRpxMXFoUWLFnj88cdRUFAAADh48CBu3ryJ/v37i8u2adMGzZs3R3Z2NgAgOzsbKSkpiI6OFpfJyMiAXq/HiRMnZLdZUVEBvV5v9vBmak9W5pg8nrN2fwF6zN+KESv2osf8rVi7v8DTRSKwGZmotqm+hqh79+5YtWoVWrdujcLCQsyZMwe9evXC8ePHUVRUBK1Wi7CwMLP3REdHo6ioCABQVFRkFgwZXze+JicrKwtz5sxx74fxEG+5y+SYPLVP7qKb3iqS+9/D2IxMVLtUHxBlZmaK/+7QoQO6d++OhIQE/N///R8CA2vupDBr1ixMnz5d/Fuv1yM+Pr7GtldTvO2CxzF5ahcvuurFZmSi2uUVTWamwsLC0KpVK5w5cwYxMTGorKxEcXGx2TIXL14Uc45iYmKsep0Z/5bKSzIKCAhASEiI2cMbcQLRmqP2ZkglOJ+aerEZmah2eV1AVFJSgry8PMTGxqJz586oX78+fvzxR/H13NxcFBQUIC0tDQCQlpaGY8eO4dKlS+IyW7ZsQUhICNq1a1fr5a9tvODVjLqSd8OLrroN69ocu2b2xZoJ92LXzL6qbOomqis0giAI9hfznBdeeAEPPvggEhIScOHCBbz22mvIycnByZMnERkZiWeeeQbfffcdVq1ahZCQEEyZMgUAsGfPHgDV3e47duyIuLg4LFy4EEVFRXjyyScxfvx4h7rd6/V6hIaGQqfTeV1t0dr9BXh53XFUCYJ4weOJ1XmFunL0mL/Vqilj18y+XhtIFOrKmbtFRHWS0uu36nOIfv31VwwfPhxXr15FZGQkevbsiZ9++gmRkZEAgLfeegt+fn4YOnQoKioqkJGRgXfffVd8v7+/PzZs2IBnnnkGaWlpaNiwIUaNGoW5c+d66iPVOiYru1ddzLth7hYR+TrV1xCphTfXEJF71cUaIiKiukrp9dvrcoiIPI15N0REdY/qm8yI1IjNkEREdQsDIiInuTPvhlNnEBF5FgMiIg/zlpHEiYjqMuYQEXkQ56siIlIHBkREHsSRxImI1IEBEZEHSY0k7gfgamkFa4mIiGoRAyIiD7Lswq8BIACYvPqwV08JQkTkbRgQEXmYcb6qfw3vBI2mOiACmE9ERFSbGBARqUBsaCDCG2mZT0RE5CEMiMghhbpy7Mm7wlqLGiCVT+Sv0SAxIsgzBSIi8iEMiEixtfsL0GP+VoxYsZf5LTWAU4IQEXkOJ3dVyNcnd+WEprWnUFfOKUGIiNxE6fWbI1WTIrbGy+FF273cOSUIEREpwyYzUoT5LUREZKku5ZUyICJF5PJbANSZHwMRESlX1/JKmUOkkK/nEBmZ5rfs/H+XOSkpEZEP8qa8UqXXb9YQkUNiQwORltwEADgpKRGRj6qL8zAyIFIRb2qLrYs/BiIiUqYu5pUyIFIJb2uLrekfgzcFh0REvqYujpvGHCKFajKHSO1tsYW6cuRfKUVSREOz8qzdX4CX1x1HlSCIPwZ35BCt3V/A3CQiF8n9boncyRvGTeM4RF5EzWP82ApOhnVtjvRWkW79MRTqyiVzk9JbRXp8XxB5C95UUG2pS+OmsclMBdTaFisXnJg2YxmTrN31g2BuEpFrlPxuicgaAyIVUNoWW9t5NZ4ITtQaHKqR1PHA3CviTQWRc9hkphL2mp88UQVuDE4sc5tqMjgxBoeWuUl1pUrWXSyPh3E9kxARHIAFm06xmcTHeeJ3S1QXMKlaIU8OzOippOtCXTlW7srH+//LhwFwa+K0km2rPVHPU6SOBylqSsyn2lVTHR6IvBGTqusQTyRdW9ZATOzZAmN6Jirenqs9XCwT9dhj5g6p40GKWhLz1a4uHls10eGBqK5jQOQFarsKXCop84Nd+RjTM1HR+93dvMceM+akjgcpbCaxry4fW3Wp9w9RbWBStReo7QGwXEnKdHcPF/aYsWY8HiyTz00x98o+HltEtccbOnywhshL1GYVuCs1Uu5u3lPzGE2eZDweVu7Ox/s77+R4vTSwNTo0C2MziQI8tohqh7fUxDIg8iK1VQXuSk8vdzfvsceMvNjQQLz8QDuM6ZHEXBEn+PKxVRfzpkidvGmwXQZEXqqmT2jO1ki5u9s8u+Hbx1wR53j7seXsOcBb7tapdtT0tcSbamLZ7V4hT3a7t+QNJzR3d5tnN3yqKd54bDl7DlD7vIlUu2rjWqKGY07p9ZtJ1V7GWxJB3T2lh7vXR2TkbceWK+cAubv1Q+eumyW82kuA9YYEWbKttq4ltd0pyBVsMvMy3lT9SETu58o5QCpvSqMBJq8+DAHVtQQPd2qKrw7/Jltr4A011GRfbV5LvGVcLNXXEGVlZaFr164IDg5GVFQUBg8ejNzcXLNl+vTpA41GY/Z4+umnzZYpKCjAoEGDEBQUhKioKLz44ou4detWbX4Ut+BcX+QrWAshzZVzgOXdup8GgAAYr4sGAfjy0G+ytQbeUkPtzWrruK/ta4k31MSqPiDasWMHJk2ahJ9++glbtmzBzZs3MWDAAJSWlpotN2HCBBQWFoqPhQsXiq9VVVVh0KBBqKysxJ49e/DRRx9h1apVePXVV2v747jMm6ofiZy1dn8BeszfihEr9qLH/K1Yu7/A00VSDVfPAcO6NseumX2xZsK9ePuxjrCXRGo6Bhknjq1ZtXnc81pizeuSqi9fvoyoqCjs2LED6enpAKpriDp27IjFixdLvmfTpk344x//iAsXLiA6OhoAsHz5csyYMQOXL1+GVqu1u101JVUD3pkIKoddgMmUGpIwvYE7zgFK5sUz3feFunLcl7XVLIjSANgz635+Ny7y5JyVdeVaIqfOJlXrdDoAQHh4uNnzn376KSIiItC+fXvMmjULZWV37liys7ORkpIiBkMAkJGRAb1ejxMnTkhup6KiAnq93uyhJt5Q/agEawLIEmshlHHHOUCqlmDoPU0dqzWwMWI6Keep476uXEvcwauSqg0GA55//nn06NED7du3F58fMWIEEhISEBcXh6NHj2LGjBnIzc3FunXrAABFRUVmwRAA8e+ioiLJbWVlZWHOnDk19EkI8K4Bu4xYm1XzfHnARE+QSnh9IaO1ZK1B/pVSqyY2QQA7dbgBj3vP86qAaNKkSTh+/Dh27dpl9vzEiRPFf6ekpCA2Nhb9+vVDXl4ekpOTndrWrFmzMH36dPFvvV6P+Ph45wpew7z1Iq20l4NaPh9719QOTw+YqJbjrTZZDu4pN9inrYu2L+43d/L0cU9eFBBNnjwZGzZswM6dO9GsWTOby3bv3h0AcObMGSQnJyMmJgb79u0zW+bixYsAgJiYGMl1BAQEICAgwA0ldw+5k403X6SV3BGp5fN5Y22WN/NUN121HG9qJXfR3vn/LtfKAH91PeDylu7pdZXqAyJBEDBlyhR89dVX2L59O5KSkuy+JycnBwAQGxsLAEhLS8Pf//53XLp0CVFRUQCALVu2ICQkBO3atauxsruL3Em6UFeOmV8eM+syO/PLY2gTE4zU+MYeLbMS9u6I1BSEcPyn2lfbU5Ko6XhTM8uLNgCzZGCDAMxad8yt+82XAlVOxeM5qg+IJk2ahNWrV+Obb75BcHCwmPMTGhqKwMBA5OXlYfXq1XjggQfQpEkTHD16FNOmTUN6ejo6dOgAABgwYADatWuHJ598EgsXLkRRURH+9re/YdKkSaqqBZJi6yR98Nx16/Z8AH9augcLhtbcCcOdd2q27ojUFISwqaDuU9PxpnamF+09eVes9ptBAFbuzsfLD7h2w1moK8eBs9d8MlDleaX2qT4gWrZsGYDqrvWmVq5cidGjR0Or1eKHH37A4sWLUVpaivj4eAwdOhR/+9vfxGX9/f2xYcMGPPPMM0hLS0PDhg0xatQozJ07tzY/ilNsnaRtjZhQUyeMmrhTcyZfobZ5sqmAaoeajjdvIrXfAOD9nfkY0yPJ6XOQ6bnGkjOBqjcFGI6eZ73ps6mZ6gMie8MkxcfHY8eOHXbXk5CQgO+++85dxao1tk7SiRFBuD3QrJWauLOt7SYFtSUZKmkqcHV/8MTmOWo73rxFbGggxvVMwor/5Zs9b4Dzvc8szzWWHA1UvanJzdHzrDd9NktqO9+pPiDydcaTtOkBb3qSnj80xSyPyKgm7mzlaqsOnr2OP6bWzMGstiRDe00FrgSi3nxiqyvUdrypia2L19ieSXj/f/lm5yFXzkFS5xrT9ToSqHpbbpgjTbfe9tlMqfF853UDM/oqY0WZZYXZsK7NsWfW/ZiYniR+mX4aYFi3eBw4e82t8+FIzX0DAFM/O1zjQ8ybDhymljmu3DkXUE3NEaWWfeVNOFCdNXsDqMaGBmL+UPdNAyH12/IDsHREJ+ya2dehC6e3DfTpyHnF2z6bkVrnxGNApHLGA8d4zAuwPnBiQwPx8gPtsPt2YGQQgNV7CzBlTQ7uy3Lf6M/G2irLg6Y2D2Y1jWztzrmAauLEpqZ9Rd5L6cXLdI40R4MWS1K/rayhKRjUIc7h35e3TYjtyHnF2z6bkVoDOTaZqZyjPV/et2jHFwDM+tJ9XWCHdW2OhgH1MHn1YcVlchc1Vg+7q4nF3Qm9atxX5J0cOQe5s8u4u35bSob3UFMeC6D8s3tr3ptaOzAwIFI5Rw4cuXZ3V5IbpXROaOyRg1mt3aLdcRFw94lNrfuKvI8nL17uCrDkAgw15rEYKf3sxs926Nx1GAQBXRLD7b5HCWOg2FDrj9LKKrcGjGoN5BgQqZwjB45c91c/wK0nL08dzGq9q3AXdyb0qmlfqfEOnJRT68XLUZYBhppqUY3jLWk0GnROaOzw9t09/IfUkAfuDhjV2IFBI9jr104AqucyCw0NhU6nQ0hISK1vv1BXrujAWbu/ADPXHROTrzUAZj7QBk+lm8/p5o6LlNIySb3P2W2v3V9gdWJWyx2d2qhhX6n5Dpwc4+zvXa325F3BiBV7rZ5fM+FepCU3qdFtm54Dd/6/y2Y9hTWo7j2s9HdSqCs3G/4DqL752TWzr+z3ZOscLLU+peu1t25PUXr9Zg2Rl3C0+nTJj6exet95CAAWbDqFsMD64g/MXRcpZ6qzXd22Gu8qlKrtE4Wn95Wa7sDJdXVtSglP1aJangMtAw8Bjk194mjzuNQ5OL1VpHhusjXkgb1md2+/AWJAVEd9tv+8+G/TCxEAj12k3HWB9MYTs6dOFI7sK3cHbMxjUg9H8kHs1R6o7e7fWZ5oCpQ6B0oxCMrzPh0J7KS2P3PdMUCoDsT8NMCMgW1kB/y1FTDWhRsgBkQeVhMnGJvTfUDw2EXK1Qukq/vK2fe7Y7tqP1HURMCmpjwmX2F6rALVv7ljv+mwYNMpRfkgto6D2grqazPoqu1aVFu1L6b8NMrzPh0J7KS2b5o0YxCABd+fkgyGLAcFVrJub7sBYkDkQTV1grF3IfLURcqVC6Sr+8rZ97vjO1L7icIdAZvURayuJON6C9Nj1Tg0jdy1V+o7tnUcXNLfMMtNtKx1diUhWO4z1FZNam3WOEudAzUa86BEc/tzx4YGKg4OlQZ2ch1vTMm99s5jnfDH1DiHPpuSCbDVVOvIgMhDarLWwN6FyFMXKWcvkK7uK2ff767vSO01Ja4GbLYuYp7OY/JWjl4kLI9VJT1lLL9jueNg5e58rNiZb7VOqdccTQi29RnUWJPqKrlzYHqrSBw8ex0aDXBPQmMAwLyNJ7Hi9nQoSoJDJYGd5fb9bgdjpt+t1HP+Gg06JzZ26rPZ6gGntpwjBkQeUtO1BrYuRJ68SDmzbVf3lbPvd9d3pPaaElcCNiUXMW/M+aoNckGPMxcJpU0xpiy/Y6njwE8DyWDI6N87883+djQh2JTaa1LdRe4caJwPUqrLu+XvypVaFcvt7/x/l+8ESKjOIQoLqu/UjWt8eBDWPZuGskqD3QmwL+lvmPWuU0MAzIDIQ2qj1sD0zs/0b+O/HT3o3NVV39F1OJo0aLn+Y7/qrJZTsq/d+R2puabElYDNVy5i7iYX9DhbS6KkKcSU1HcsdRyM7ZloNYu9PY4kBJvyZE2qkvOSkmYfpYMYyp1/Lb9/U8bflTvGHDLd/rCuzVFcfhPzb+eZLfj+FLKGpGDXzL6Kz1dSx3NachPZCbBX7jqLFbt+kax19OS5gwGRh9RGrYEzd5ruvGt1R3kA5ftKrjvpgu9PWa3zpczWDlcvu/odqbmmxDRgC9L6obSyCoW6crvlVXtzoJqYXjTlgh65APPQuesY1EG+ZsDyWNXc7iYkoPr7eGlga3RoFoYgrZ949y713VoG7gDwwa58h2qfHEkINuXu35vSmy8l5yVbXdUdSVq3x1ZNn79GgyCtn9PN/7aCuQWbTlnlh+2a2VfReEy2gnjJWkcA7+/6xWqicuNn9OS5gwGRB9VkrYEzd5ruvmt1tTym7O0rufUvfixV8gTToWmYonKruWbH3WJDAx2++1R7c2BNcbSm0yzh2SKJFrhzZyxX0zN59WFsPXUJXx3+Tfa7kQpmnDluLQN30+/Xkq2EYGfY+r0prcU5cPYasvOuYs3tcdik9pWt4HTWl8fQMKCemCBur6u6FHfmGwLVQcS8Ie1RWlnlcI2svYBvpUTAq7SmplBXjg1HL8i+Py25idX5YVzPRPxbotbR+Bk9ee5gQORhNVVr4GhThq2AxR3NIu5Yh619Jbd+P43G5RoMNdfsuJOzQasvBY2A4zWdVgnPNu6MjQGmZbOJAODLQ7+Jf8t9N5bHqrvzEY/+VoyFm3JtJgS7o1OI5Tre25mH+bdrMaQGE4wNDawepd8kJ8XIcl+ZrktqvB0DqgNQ43biw4NsdlWXYzp7u9LgWSrpeXzPFhjTMxGxoYE4cv66VRDq6NhAs9YdQ5DWX5zzTKpJVEktn1Suk1SZpAL19y2CMD8N8NWz9yE13nbidk1jQFRHOdqUYStgcUeziFzV6dXSCkVNM86s31+jwT0JjZ3u2aaWrqC1Re4YOHj2upjwKcfXg8Y2McGyuSNyzSB+qL74Wh6Tw7o2R5DWH1PW5NgsS23mWxi/37TkJngoNU42IdgWZ7tev7cjD1mb7jR7GwRg5pfHoLn9e/fTADMy22D+d9Lj5wB39tX6nAtm67IV1xi/23XPpjmUn2Xkr9Hg6G/FePz9nxxKE0hvFYnFj6XC7/b5y7g/jAGIZTAkdT47cv469p29hsqbBqtyGwRgypoc+GmAcT2TJPfB+J4t7DbByQVDGonxiozHj/F7njGwDRZ+bx5YezoYAhgQqY67LsRKmjJMt2Ur6HFHs4hVjgOqT0amd2KudLe0VUalNRjG/WGaE6CGrqDuZOv4kquun7LmMEorb9WZfeAKuaBx8NI9EFBd4zChVxLG9EwS96/cb8u0N47ld9ElMVx2tGDTdXgi38KZ4NfZAR8LdeWYv8k6B1AAzHJeFmySD4aMdp+5jKXb8iRfkwt4qgQBv14vt9tV3ZIxb8s0t8idaQtAdUC97tk0q0DiL/+XY1abKMcgVOeHWR5nfgDG9Ey0+V5buU4aAeL4VID8eXVGZht0aBqmqlplBkQq4u4xGWwFAlLberhTU7Mf0uBOcWZ3ra42ixjXcfDsdUz97LBLOUmOfl57J3G56l81dAV1F3vHV2xoIGZktkHWd+YXIAHOd6X2NvZuSOSCRsHk///+Xz7e35Uv7l+5YN3WHfHO/3fZ7G8NgCH3NMXXhy94Xa6WrVq189fLbXa9zr9SqmhMJSW1N+9uz5NclwbAipGdUV5pMDsvGU1efRjzh5r3ujLtqi6XtF7TaQsGAGWVBrPnjpy/rigYEtchABPTk/DB/846dFzZ6tVowJ1ehrbOqws35dqdKLa2MSBSiZoalEwqEDhy/rrVSUjqoP368AW8kHGnN5Y7mkViQwMR3qjmumo7U0Zb1b/uKpunph0xfb+S4yulaajk+w0CxJ5OrlJrc6SSGxK5mk5LlvvXkRsK43dlud6+baIwMi0BZZUGh3oCOsvVruhGsrVq7+6RzMUx9qpr3LA66Vnqwmu5341ByXwbNUUGmZwhAcCEjw8ia0iKbP6WZa8rpd+nI6kGB89ddzltYd/ZazKfXpq/RoMxPZIwpkeSQze7Yq7bl8dgsHjNdHTqmj6vuhsDIpWorfFc1u4vqB6C3+J5uerig2evI7zRnROeOy5mauuqbW9QO1fLVlvTjtj6bpQeX0kRDWUv8pNXH0ZJxS2rZFZHKPkscmO6ODN6s+Xycutw5IbEtKZzymeHZdtOLPev0mBdcr4p3GlefrhTU5u9zdzB2a7oxuYd030sNQ4YIJ+YrNFUf1YB1esd2D4G3x8vqt4OqptawoLqm2173pD2GNa1OR7qGIeDZ6+juLwSr3x9wqopaEbmndwVU8bve9fMvnj7sY5W+VtSvxV732dsaKDNWnfLfTnzy2NWz9tKW3hpYGurMea63U6UVsJybjJHf8vG38HKXWfx/q5fYBDMc5qkxiCS+mxqwoBIJWojSBDvPBUmB2oAsQpZyYlY6QXLHTlJ7mSr+leubEo/q9ILrSMX6plfHkNllQH920ZbJVzKfTdKj6/Y0EDMH5oi2VtHgHUyq62AxpmgQ6qK3ZkgQGp/ADB7bsbANkhpFoqkiIYO35AYazpt/Zac/f3abI4QrHubzfryGNrEBLstKVXJ9yS3THHZTSz4/pTZPpYaB0yOZX6OQQC+O1YEoPp8NCOzDZ7qnYy1+wvEfS8IwJlLJWJtmTHBu76/n9lxLAAIC6qPXTP7YuPRQryx8WezbRu/7y6J4W45FxfqyvHVYfPmq68O/4aRaQlm35VcjaBlwGLZ2880H2dczySM7ZmE1PjGGHpPU6tmM9NxqfwAjE+vrhVyR438y4PaYkzPRKsaJmfOq56mEQSll0ffptfrERoaCp1Oh5CQkBrZxtr9BVZBgjvv/PbkXcGIFXsVL68kqdPYBuzsIJBq6aptue+NOQFSZXPks8rt8zUT7hWr322tz9Z3pkH1vFHprSLNhscHzL8bManxV514d2y8W36oY5xs8LJmbwHe2XrG5n4z3Y7UZzGeqI13jLb2RaGu3Opz2NsucKdLs/HfDbX+ePjdPWbrsXUsm164Lbc96/YFWIqt8tr7/doLqE2PRyU0GmC+wppDe9tWcszKLSOVoGvZpCLFT1M9eagAwWbvOmMyuuX3a9y26TxqUt+P6XFj6zfj6LlYap/a2kem5ZRb7l/DzSdTNa05tff5j5y/jgNnryMxIghB2voujUvlCkfOqzVJ6fWbNUQqItUube/k5UgzguRMy7f/b3natRcMAebjbEiNdWEv/8kdOUnuIDUHj62cCUdyvezVzNhbn627LAHVtQNvD+8oW7thOdDiwPYx2HS7+WH+plNizoWx10dK01DxWBrevTmWbD1j8zgwrUU5cv661YzoK/6Xj/f/ly8GblJzZQVp/QA4Nh9XlSBgyY9n8Nn+AjE3xLhP5PJE5BgEYOH3uXi2TzL+ZdELaeH3ubi3Rbhkl3rJZozM1nZ7ztjrVZV/pRTprSKxa2ZfsVnOXlwkCObjy8gFqEpq2pTUJsrNeyaV+Cv1fWgAq27zf0yNQ6Gu3GYX9ypBwP6z1rk2wJ1cH9OEbLnfhdSAgXK1MfYu3nLfp60EfHu/ccvJVM0G9pTYn5brTY1vLFljqPR86648P28bo4wBkcqYBgn2aiIcrZWxPIHL3b0Zaw+k7phNGU+Skj0gBGDl7ny8/EA75R++Flj+0OXm4JHjTNOK1IkXqL4zvFpSYXN9UnkIpgyA7OCTUsP8G5sfAPOTqkGA2LvMtInJlFTwbDwG5AbFMy4/a90xfPXsfVajHhsE4OF394gD7SkJxI1W7yuQ/CzOVHlXCQLCgrSSzxuTfzUAhneLx5R+dzl14QRsB8CmwatGA8zMbIOn0pNx5NdiRfOJGYQ748sY96fltpQO7mivSVsuGLScwsL4/HyTqSGMNRnFZXfmz5r/3SlAAJ7qnWxzZGx/jQZdExvb7CZv/O3YC+zsfXdKbtjs3dBIJWlbltPe/rYa2NNGedyRd+ru3s5Kb3zV0NmCAZFK2fuhuWNU4TOXfscr35ywWmbu4LvxxL2JZomLliyHWZc6Qb2/M19RO7WzPwRHJ1S0/KHPyGzj8DghSmp8LD+L1OzSxup6P410jxnT9VnmIZjyA2QHn5Qa5l8JY14KNObl0txuWrIcUA2AZA6E5ToHL92DmZlt8NpDbfHaNyetulrvmtkXMzPbmA2cZ5TZPgb/PV6kqPnFGbYutILJhWj1vvNYve88JpqMNaT0wpl/pRTXSislL44Hz163Gs0663aQMLZnEt7/n/mM83I1u8Cd/SlVc2hJ7gKqJNCTWiYs0HqW9GFdm+Oh1DgcOncdggCx5qPH/K1m+T1Zm04BGuCp9OQ7uTK/FksO4CcXaJj+dpQGdq5cfO3dIA3r2hwFV8uwdLt5zaNljZut/S07sKfEsepq3qkz1xV3BDLuDsKcxYBIpez90FzplWY8CVwpuSH5elhg9Z3ysK7N0SYmWBx0zshymPXY0ECM65lkdRdrAOyOcuzsD0Eu+dZWDyzLH7rl3Sxgvg+lfui2TrK28meMD6lyaHAnKLI8aUt1xTXSAMgamiKeeKWaWx2pcTFlgPUbDQLQoVmY1SzY9nqTGIkXPQnG/f5U72RAA6sB3J5KT8Z/ss9KBvCuMiavGi+09mpQAeuxhqSY5m6ZdgeXCoAhU+OxYNMpPNQxDvOHmg8MOCOzDQBYjRllVHU7M9neCMu2LqBKggXLZeQu7LGhgWZDNsgdMws2ncJDqXHietOSm+ChjtYjY4s9nHbn4/2d+ZIjftsqjxx7+VaWfyu5QVq2w3owSKnJpeX2t62BPdceOI81e89Lnjuc4eh1xd75W0n+Wk0NOeMMBkQqtfvMFcnnjfkW7uiVJjUargYwa7tOjW9sdjKWG1RO6i4WqO6lJjfKsbM/BLnxLWy9X65ZT652xtYPXS74sPwsxvyZmQ/cyc2R61KtATCx1505iwDrKQuM/DTAnIfuRv920VYnGSWzUyvhB1hdpE27AJvu34Zaf5e3Z3rsPpWebDY9BADM23hSckJIV/mhOriPCmmAPXlXxNyds1fKEKT1kx0rB7B9vNma50nAnUDF+HvqnNBYctJX4yB3w7o2N2tiWrDpFMb1TJL9XMYcFMvgfXCnOIcHd3S0BsD0+JB7r9zwDgYBVhdfuUAhNjQQLz/Qzu4YOkprgezlW0nlX6W3isS4nkn44PbcXJb7VK52R+nk0sbyS92EnSr6HZ/dnsBWA+Clga1drlWRu64Eaf2wJ++K2Hnh4LnruFZagdnrT8qev5Xmr9XWkDNKMCBSoUJdOd7dLj3EvHFkUiXVwfbEhlZ3sTYOruWHOzUOppTcZVmuy8jRIEXJD8FW8q3c++XmUnusWzw+23deTP4c1q0ZLulv2A3ULE+ycmUSYJ6bM2NgG9lEyw925YtD5r+3Uz4YGtczSQyGbAVuSkf5BYAR3eOxdt+vVk1h9o4v4/alKK2dMl23ZXBnK7BwlB+AZ/okY/mOX6wuLKZTb5j2AJopMXK3Kanjzd6AdEB1QNsyKlgcYFFuW6aD3C34/pRZM6PUtAuAeXdtqd/uCxmtFdeYuNKUYeu9saGBks2jzjT5KAnA7JG6obHMt7L823TGew2qR3y2TBFwx42rVKcPwLyXnIDqDgAPdZQe58h0Xbb2j9R1ZXCnOLFXm73ftPH3cEl/w6qDhVz+mprGpWNApEL5V6THN/EDFLc7K6V0HZYBgFyuTMOAepi8+rDZex0JUpT8EOyNbyH1fssfOlB9971633mzfIzVe89j9d7zVu+vEgT8+PNFtIhs5NA8YKYMQvVJyzJ3yXQbxl57UvM3Gdex4n/5+GBXvlVXcYNQnctjHJPG1iCLpvw1Gky5/y5Muf8us1qZ/CulNnve2brwSwVVlvwALBnRSZzA0l6OlytM81meSEsw+5z3ZZnnssz88k4PyafSkwFBvqnPT2M9K7iS3nLhDbUouFZqFTDMMn5mmAeKUk1MBsF82gW58WUsf7umzbfGu36p370rTRlK3ivVPGralORocONK8OZID0cj00NaAPDB/85iTA/zWjtXb1zlOn1IHQ/2biaV7h/Ta0KQ1s+si7+Sc8nR34ptTrRrWt7qlIo41YxLx4BIheQurjMy29gNSpzhaGKh1A/LOHpxfONAxUGO5cnC8oRoq7xSPVH8AIyzMSmh8Ye+5Mczsj2UbPnb19X5K3Ink8z2Mdho0otLSpUgoGloIOY8dLdVPoxprz173azFHCiJ5wcv3SPWckjdhWs01RMwSuVdyNU6GccJMj3e5C4irwxqiwc6xIrrNB1MbuEm8wTZQR2qx1lRmuPlDM3t48q0dsJYtm+P/CbZRd809+2p3smIC2sgOT6O1KzgSoLjBvX9MGWNdcCwa2ZfyZwZuZuHMT2SMCglFvvPXkfXROmu1lLk8t2AO+M6udKUofS9xoDTtCkwLLA+ADgU3Liah6LkO7PHlQR1KbY+k5KmLVu1lvb2j/E3ojQ/0Lh944S2SnejaUqFGrrnMyBSIalAwZhYauTK3ZArgZTcyMmmY4o83Ml8EkqpIeaNpHIjwgLrm43LcvDcdQiCYDa+SnqrSCx+LBV+Gg2aNQ7ExqNFeH/XL4qSXdfsL5B83pKt0YJNRwd2pFlHgzujf5vWTFkGJkpOzgZAMu9EwJ0xaR7qGGd2F27cTpuYYMmLqNIRiI1BsNRYNFEhAWblMUuQTbW+2BfqyrHh6AVFOV72DL2nKUamJZh1BBCE6okkjcm6pjQajfVKcHtkXxNSoxfLzQoeGyrdycDU+I8PWn1vVYKAjUcLMahDrFUumFxNg+U4U0pGj5fLd1vxvztNcHLNu0qbMpTW/ko1BRpH0zd9zl5w42oeitQ5t2tiY+zNvy65vOWI2nKfz3T9jp5r7Y2jNGOgeW2iadOWVPO5M/unodbf7m9QA+Bft2t6bfWIe7hTU3x16DebKRWeCoSMGBCplK2I2ZW7IVe7N8olBZu2FX99+ILY1GI5xLzUCVvqhBik9ccF3Q2zqldjfgdgPQWDcS4d0/3RJibYqju+ktoXoHq9sx9qh1e/OSn5ugHA4Hf3YKbMCMeS67y9r0yrn/00wJLHOomJ7Ma7O3sXVODOGC9SNSkGwXxMmt0z7zfr9u/oidO0l5RpbYbZRKe3LxKm25WaHNX0GLUVTBqDaXF0bQ2Q2T4WG48VWi07pFMcOjYPwx/axUjmTsmd/DsnNLbuWKCpHsrAstxKq/ULdeVIjQ+z/kAm5I7BNzb+jHnf/Sy57yzPCYB5HonleUDut26recj0OzY271rW6jkTYMi9V66zgyV7F29HAjC5m0HTnmsrdubLBkPP3d8Sd8UE47fr5WY3Ce5u5rH1mdbuL6jeNqqP16f7tMCy7Xmyx4Iz6QnG48deMDR/aIpY0wtY38wZOy6kxjdG3zZRilMqPIEBkYrJRczORvvu6N6opGq5ShDEvJPH3//J5vbkTohSzRMCzGujjMtKzXBdJQhiLYGS0WNNaUxqQEx7UViVR5ButpLyyqC2iA5tYHUyMAhAk0YBVnf6MzLbSPYANH5205yYe5PCrYZGMF2/6UzdUseA6ajiSkcgNh5vxovIoXPXxQk5Tbdrb/wSezlIxgk7D527DoMgoHl4EDYdLzR7jwbA1zkXsO7wBcxef9JuzYblRXH+0BSrwEGqzEqq9eVGFHakpsvWvjM9J8jlkVTvq2uSv/U2McG4WlKhqAayShDQoan1MAtKKdlfcsebI7UvgLIATOnNoFRvWSMNgCXbzlh9v3IBriu18XKfCTCfGUAQgGXb8qzOQ44M/ihVblu13hoAc/90p6ervTIba6E7J1iP9aWmSV59KiBaunQpFi1ahKKiIqSmpmLJkiXo1q2bp4vlMGeTkd3RvdHygJc60dsawdpye4623ZvWRpk+J7cscKdHiOnosZbNkQ+lVs+SbawdMJbP1qi5gHyzlSljM5JUfhUA7D5zGe9a3N0t3JSLmZnWgyBKXWAsh0awZG/8KoNwZ1RxqROa3AjExt5P1esUFNfKAPLNZADwXL+WeKxbc/F9lsGiaZOsZa2bvZoNuYui0vwFqZsU0wFCLScTFd3O27L8uBoAU+5vaTVnnJLfpeRUPBqYBaaW6zTtTWcvSJMbZsFIycXeXjOIrYu+o0m27qhVV5JcbVrDayTA9kTFcgGYvX0o9ZkkE+xhfR5yZPBHS7b2g7253YzbOXj2OqCpDoKMXE0yr2k+ExCtXbsW06dPx/Lly9G9e3csXrwYGRkZyM3NRVRUlKeL5xBnDyp3dW80PeCnSsyz9NLAO4nR9rYnlyAtR3P7P0qavUwJAnDo3HUM6iDdFRmA5ACSpsuWVd60yv0wBgymF1/TsV4sm5Ey7q6eS8yUaTBkVCUIkoMgAtLzEcnV1BjLaNzncgGo6aji9kYg9gPwdO8WWLmrOu/EWAtneYGVO7bs5Vy98+MZxIVVl0PqQmbaJHu1tEKyCl6qZsPeRdGZk7KSOaYAiFN/WD0PoFV0sFO/S6ng3rJmRWp7xv/7ARjePR6f7b0z7ITxt2XvnOLOkYXlfo/OJNkav0fLHnRKbwZt3aDZCyAtB3W1F4BZHjszZSYStjw25c7jluchqe9P6XEuV3P3zu3mfXvrsJXbppYEaik+ExC9+eabmDBhAsaMGQMAWL58OTZu3IgPP/wQM2fO9HDpHOfMQeXO6Dw2NBDhjWQGHWsW5tD2bF3MTRnbq89cKlE0t5Ml00DGkQug6bLzJT6PcWoCy7FepJqR/nvcuhea1MXU3t25XDkHdQhEScUt2X0ul/BrHADQdDnT7Q7r2hzF5XeS3y2nIjAI1XeofoJ07zUjJWP0mN5ty13IyioNYhOgXDBh+RncPQCcI3NMyb1uHEDRcr66wZ1sjydjZHoeuFJyQ3ameKmLvAHAgx2aWg23YO+cUhMjC0sd5+4IUm11AJAKOuVu0MQeVDbyBU3XZ+9Ykzp2TKcusUXuvCp1HnKW3Db+mBpn971Kjg9nv9ua5hMBUWVlJQ4ePIhZs2aJz/n5+aF///7Izs6WfE9FRQUqKirEv/V6fY2X01HOHFTujM6V1Dg5Ms6R1MX8pYGt0axxoDgHkvFkYqudX4oG5iNwO8vW1ASWbemNG1on98pVbZsmD7tajWxvn0uNKm6vRqJQV17dndZWICNU9zYJbxgg+10rHe/FePGwd4w5EuS7ewA4R8eukfueAVjNV/f14Qt4IcP+EBSAea2IVELrkhGd0KxxoNl4MsbySAWO9rapppGFLcldjC07ANg6TizH4TEdhyss6E5Nqeb2XYwA6xsAe8ea3LFjOnWJLUrPQ65w9lqh5uPDHp8IiK5cuYKqqipER0ebPR8dHY1Tp6QHXMvKysKcOXNqo3i1zl0/GqUXI0e258io2LamJBjcKU7s4ik3ArezXKl2lqvaNiYPu6sa2VYZpfafvQBMycXfX6Mxy7+S4mgSrZJjzJGg2535C3I5PKajF1s2QUl9z84MsufI5zP2AHLXZ1fTyMKWbF2MXc0VA6R7+kmtz96x5sjUJY6W0Z2c2Yaajw97NILgaDaG97lw4QKaNm2KPXv2IC0tTXz+pZdewo4dO7B3716r90jVEMXHx0On0yEkJKRWyu0tCnXlHmkPttyuvb89Ye3+AsmqbTWUzZEyFOrKzbp4WzIGnUon5lWSRGs5PIO79pc71yX1WZRcMC3LY7lv/TUa7JrZ1+mmPLltuuuzyx3XnubufemO8sjtb6m5Cj1ZVndS2/Gh1+sRGhpq9/rtEwFRZWUlgoKC8MUXX2Dw4MHi86NGjUJxcTG++eYbu+tQukOJLKkh+HEH05OckZ+merRm00lplZDaJ966n9xRbrVdQJRQ6/flTfvyvZ15VoOmqrWsjlLT8cGAyEL37t3RrVs3LFmyBABgMBjQvHlzTJ48WVFSNQMiojsnOcvcCnKdmi4g3s6b9qU3ldVbKb1++0QOEQBMnz4do0aNQpcuXdCtWzcsXrwYpaWlYq8zIrJPrb1D6gLuW/fxpn3pTWWt63wmIBo2bBguX76MV199FUVFRejYsSO+//57q0RrIiIi8j0+02TmKjaZEREReR+l12+/WiwTERERkSoxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjn+czUHa4yDuit1+s9XBIiIiJSynjdtjcxBwMihX7//XcAQHx8vIdLQkRERI76/fffERoaKvs65zJTyGAw4MKFCwgODoZGo/F0cWqdXq9HfHw8zp8/z7ncXMD96DruQ/fgfnQP7kf3qMn9KAgCfv/9d8TFxcHPTz5TiDVECvn5+aFZs2aeLobHhYSE8EfvBtyPruM+dA/uR/fgfnSPmtqPtmqGjJhUTURERD6PARERERH5PAZEpEhAQABee+01BAQEeLooXo370XXch+7B/ege3I/uoYb9yKRqIiIi8nmsISIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgItHOnTvx4IMPIi4uDhqNBl9//bXZ64Ig4NVXX0VsbCwCAwPRv39/nD592jOFVTF7+3H06NHQaDRmj4EDB3qmsCqWlZWFrl27Ijg4GFFRURg8eDByc3PNlrlx4wYmTZqEJk2aoFGjRhg6dCguXrzooRKrk5L92KdPH6tj8umnn/ZQidVp2bJl6NChgzhwYFpaGjZt2iS+zmPRPnv70NPHIQMiEpWWliI1NRVLly6VfH3hwoV45513sHz5cuzduxcNGzZERkYGbty4UcslVTd7+xEABg4ciMLCQvGxZs2aWiyhd9ixYwcmTZqEn376CVu2bMHNmzcxYMAAlJaWistMmzYN3377LT7//HPs2LEDFy5cwJAhQzxYavVRsh8BYMKECWbH5MKFCz1UYnVq1qwZ5s+fj4MHD+LAgQO4//778ac//QknTpwAwGNRCXv7EPDwcSgQSQAgfPXVV+LfBoNBiImJERYtWiQ+V1xcLAQEBAhr1qzxQAm9g+V+FARBGDVqlPCnP/3JI+XxZpcuXRIACDt27BAEofr4q1+/vvD555+Ly/z8888CACE7O9tTxVQ9y/0oCILQu3dv4bnnnvNcobxU48aNhffff5/HoguM+1AQPH8csoaIFMnPz0dRURH69+8vPhcaGoru3bsjOzvbgyXzTtu3b0dUVBRat26NZ555BlevXvV0kVRPp9MBAMLDwwEABw8exM2bN82OyTZt2qB58+Y8Jm2w3I9Gn376KSIiItC+fXvMmjULZWVlniieV6iqqsJnn32G0tJSpKWl8Vh0guU+NPLkccjJXUmRoqIiAEB0dLTZ89HR0eJrpMzAgQMxZMgQJCUlIS8vDy+//DIyMzORnZ0Nf39/TxdPlQwGA55//nn06NED7du3B1B9TGq1WoSFhZkty2NSntR+BIARI0YgISEBcXFxOHr0KGbMmIHc3FysW7fOg6VVn2PHjiEtLQ03btxAo0aN8NVXX6Fdu3bIycnhsaiQ3D4EPH8cMiAiqmWPPfaY+O+UlBR06NABycnJ2L59O/r16+fBkqnXpEmTcPz4cezatcvTRfFqcvtx4sSJ4r9TUlIQGxuLfv36IS8vD8nJybVdTNVq3bo1cnJyoNPp8MUXX2DUqFHYsWOHp4vlVeT2Ybt27Tx+HLLJjBSJiYkBAKteExcvXhRfI+e0aNECEREROHPmjKeLokqTJ0/Ghg0bsG3bNjRr1kx8PiYmBpWVlSguLjZbnsekNLn9KKV79+4AwGPSglarRcuWLdG5c2dkZWUhNTUVb7/9No9FB8jtQym1fRwyICJFkpKSEBMTgx9//FF8Tq/XY+/evWbtv+S4X3/9FVevXkVsbKyni6IqgiBg8uTJ+Oqrr7B161YkJSWZvd65c2fUr1/f7JjMzc1FQUEBj0kT9vajlJycHADgMWmHwWBARUUFj0UXGPehlNo+DtlkRqKSkhKzSDw/Px85OTkIDw9H8+bN8fzzz+ONN97AXXfdhaSkJLzyyiuIi4vD4MGDPVdoFbK1H8PDwzFnzhwMHToUMTExyMvLw0svvYSWLVsiIyPDg6VWn0mTJmH16tX45ptvEBwcLOZihIaGIjAwEKGhoRg3bhymT5+O8PBwhISEYMqUKUhLS8O9997r4dKrh739mJeXh9WrV+OBBx5AkyZNcPToUUybNg3p6eno0KGDh0uvHrNmzUJmZiaaN2+O33//HatXr8b27dvx3//+l8eiQrb2oSqOQ4/1byPV2bZtmwDA6jFq1ChBEKq73r/yyitCdHS0EBAQIPTr10/Izc31bKFVyNZ+LCsrEwYMGCBERkYK9evXFxISEoQJEyYIRUVFni626kjtQwDCypUrxWXKy8uFZ599VmjcuLEQFBQkPPzww0JhYaHnCq1C9vZjQUGBkJ6eLoSHhwsBAQFCy5YthRdffFHQ6XSeLbjKjB07VkhISBC0Wq0QGRkp9OvXT9i8ebP4Oo9F+2ztQzUchxpBEITaCb2IiIiI1Ik5REREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQEZHXq6ys9HQRrKixTEQkjwEREalOnz59MHnyZEyePBmhoaGIiIjAK6+8AuNMQ4mJiXj99dcxcuRIhISEYOLEiQCAXbt2oVevXggMDER8fDymTp2K0tJScb3vvvsu7rrrLjRo0ADR0dF45JFHxNe++OILpKSkIDAwEE2aNEH//v3F9/bp0wfPP/+8WRkHDx6M0aNHi387WyYiUgcGRESkSh999BHq1auHffv24e2338abb76J999/X3z9H//4B1JTU3H48GG88soryMvLw8CBAzF06FAcPXoUa9euxa5duzB58mQAwIEDBzB16lTMnTsXubm5+P7775Geng4AKCwsxPDhwzF27Fj8/PPP2L59O4YMGQJHp3p0tExEpB6c3JWIVKdPnz64dOkSTpw4AY1GAwCYOXMm1q9fj5MnTyIxMRGdOnXCV199Jb5n/Pjx8Pf3x3vvvSc+t2vXLvTu3RulpaX47rvvMGbMGPz6668IDg42296hQ4fQuXNnnD17FgkJCZLl6dixIxYvXiw+N3jwYISFhWHVqlUA4FSZGjRo4NJ+IiL3YQ0REanSvffeKwZDAJCWlobTp0+jqqoKANClSxez5Y8cOYJVq1ahUaNG4iMjIwMGgwH5+fn4wx/+gISEBLRo0QJPPvkkPv30U5SVlQEAUlNT0a9fP6SkpODPf/4zVqxYgevXrztcZkfLRETqwYCIiLxSw4YNzf4uKSnBU089hZycHPFx5MgRnD59GsnJyQgODsahQ4ewZs0axMbG4tVXX0VqaiqKi4vh7++PLVu2YNOmTWjXrh2WLFmC1q1bi0GLn5+fVfPZzZs3XS4TEakHAyIiUqW9e/ea/f3TTz/hrrvugr+/v+Ty99xzD06ePImWLVtaPbRaLQCgXr166N+/PxYuXIijR4/i7Nmz2Lp1KwBAo9GgR48emDNnDg4fPgytVis2f0VGRqKwsFDcVlVVFY4fP273MygpExGpAwMiIlKlgoICTJ8+Hbm5uVizZg2WLFmC5557Tnb5GTNmYM+ePZg8eTJycnJw+vRpfPPNN2IC84YNG/DOO+8gJycH586dw8cffwyDwYDWrVtj7969mDdvHg4cOICCggKsW7cOly9fRtu2bQEA999/PzZu3IiNGzfi1KlTeOaZZ1BcXGz3M9grExGpRz1PF4CISMrIkSNRXl6Obt26wd/fH88995zYlV1Khw4dsGPHDvz1r39Fr169IAgCkpOTMWzYMABAWFgY1q1bh9mzZ+PGjRu46667sGbNGtx99934+eefsXPnTixevBh6vR4JCQn45z//iczMTADA2LFjceTIEYwcORL16tXDtGnT0LdvX7ufwV6ZiEg92MuMiFRHqlcXEVFNYpMZERER+TwGREREROTz2GRGREREPo81REREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8/4/NXj9NDYxwzoAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Import statements\n", + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", + "from idaes.core.surrogate.pysmo_surrogate import PysmoPolyTrainer, PysmoSurrogate\n", + "from idaes.core.surrogate.plotting.sm_plotter import (\n", + " surrogate_scatter2D,\n", + " surrogate_parity,\n", + " surrogate_residual,\n", + ")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaNUlEQVR4nO3deXwU5f0H8M8kkJCEZCGQQICEhHBEJATKoQgGEBQiVTlsEVq5PUE8flaCrRWsErCtRRHBokKtBakKigcelUsMIlc4VBBikABBCMIGkhAgO78/4iyzszOzs5vdndnk83690sru7Owzs3N853m+z/MIoiiKICIiIrKgMLMLQERERKSFgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoR1dqsWbMgCIKhZQVBwKxZswJangEDBmDAgAGWXR8RGcdAhagOWbZsGQRBcP41aNAArVu3xoQJE3Ds2DGzi2c5qampLvsrMTER119/PVavXu2X9VdUVGDWrFnYsGGDX9ZHVB8xUCGqg5566in8+9//xuLFi5GTk4M33ngD/fv3x4ULFwLyfX/6059QWVkZkHUHWrdu3fDvf/8b//73v/Hoo4/i+PHjGDlyJBYvXlzrdVdUVGD27NkMVIhqoYHZBSAi/8vJyUHPnj0BAFOmTEHz5s0xb948rFmzBr/97W/9/n0NGjRAgwaheTlp3bo1fv/73zv/PW7cOLRv3x7/+Mc/cO+995pYMiICWKNCVC9cf/31AIDCwkKX1/fv34/bb78d8fHxaNSoEXr27Ik1a9a4LHPp0iXMnj0bHTp0QKNGjdCsWTP069cPn332mXMZtRyVqqoqPPzww0hISEBsbCxuvfVWHD161K1sEyZMQGpqqtvrautcunQpbrjhBiQmJiIyMhKdO3fGokWLvNoXnrRs2RJXXXUVioqKdJc7efIkJk+ejBYtWqBRo0bIysrCv/71L+f7hw8fRkJCAgBg9uzZzualQOfnENU1ofkIREReOXz4MACgadOmzte++eYb9O3bF61bt0Zubi5iYmLw3//+F8OHD8c777yDESNGAKgJGPLy8jBlyhT07t0bZWVl2L59O3bu3Ikbb7xR8zunTJmCN954A2PHjsV1112HdevWYdiwYbXajkWLFuHqq6/GrbfeigYNGuD999/H/fffD4fDgalTp9Zq3ZJLly6huLgYzZo101ymsrISAwYMwKFDhzBt2jSkpaXhrbfewoQJE3D27Fk8+OCDSEhIwKJFi3DfffdhxIgRGDlyJACga9eufiknUb0hElGdsXTpUhGA+L///U88deqUWFxcLL799ttiQkKCGBkZKRYXFzuXHTRokJiZmSleuHDB+ZrD4RCvu+46sUOHDs7XsrKyxGHDhul+75NPPinKLycFBQUiAPH+++93WW7s2LEiAPHJJ590vjZ+/Hixbdu2HtcpiqJYUVHhttyQIUPEdu3aubzWv39/sX///rplFkVRbNu2rXjTTTeJp06dEk+dOiXu3r1bvOOOO0QA4gMPPKC5vvnz54sAxDfeeMP52sWLF8U+ffqIjRs3FsvKykRRFMVTp065bS8ReYdNP0R10ODBg5GQkIDk5GTcfvvtiImJwZo1a9CmTRsAwM8//4x169bht7/9Lc6dO4fS0lKUlpbi9OnTGDJkCA4ePOjsJdSkSRN88803OHjwoOHv/+ijjwAA06dPd3n9oYceqtV2RUVFOf/bbrejtLQU/fv3xw8//AC73e7TOj/99FMkJCQgISEBWVlZeOutt3DnnXdi3rx5mp/56KOP0LJlS4wZM8b5WsOGDTF9+nScP38eGzdu9KksROSOTT9EddDChQvRsWNH2O12vPbaa9i0aRMiIyOd7x86dAiiKOKJJ57AE088obqOkydPonXr1njqqadw2223oWPHjujSpQuGDh2KO++8U7cJ48cff0RYWBjS09NdXu/UqVOttuvLL7/Ek08+iS1btqCiosLlPbvdDpvN5vU6r7nmGjz99NMQBAHR0dG46qqr0KRJE93P/Pjjj+jQoQPCwlyf9a666irn+0TkHwxUiOqg3r17O3v9DB8+HP369cPYsWNx4MABNG7cGA6HAwDw6KOPYsiQIarraN++PQAgOzsbhYWFeO+99/Dpp5/ilVdewT/+8Q8sXrwYU6ZMqXVZtQaKq66udvl3YWEhBg0ahIyMDDz33HNITk5GREQEPvroI/zjH/9wbpO3mjdvjsGDB/v0WSIKPAYqRHVceHg48vLyMHDgQLz44ovIzc1Fu3btANQ0Vxi5ScfHx2PixImYOHEizp8/j+zsbMyaNUszUGnbti0cDgcKCwtdalEOHDjgtmzTpk1x9uxZt9eVtRLvv/8+qqqqsGbNGqSkpDhfX79+vcfy+1vbtm2xZ88eOBwOl1qV/fv3O98HtIMwIjKOOSpE9cCAAQPQu3dvzJ8/HxcuXEBiYiIGDBiAl19+GSUlJW7Lnzp1yvnfp0+fdnmvcePGaN++PaqqqjS/LycnBwDwwgsvuLw+f/58t2XT09Nht9uxZ88e52slJSVuo8OGh4cDAERRdL5mt9uxdOlSzXIEys0334wTJ05g5cqVztcuX76MBQsWoHHjxujfvz8AIDo6GgBUAzEiMoY1KkT1xB/+8Af85je/wbJly3Dvvfdi4cKF6NevHzIzM3HXXXehXbt2+Omnn7BlyxYcPXoUu3fvBgB07twZAwYMQI8ePRAfH4/t27fj7bffxrRp0zS/q1u3bhgzZgxeeukl2O12XHfddfj8889x6NAht2XvuOMOzJgxAyNGjMD06dNRUVGBRYsWoWPHjti5c6dzuZtuugkRERG45ZZbcM899+D8+fNYsmQJEhMTVYOtQLr77rvx8ssvY8KECdixYwdSU1Px9ttv48svv8T8+fMRGxsLoCb5t3Pnzli5ciU6duyI+Ph4dOnSBV26dAlqeYlCmtndjojIf6Tuydu2bXN7r7q6WkxPTxfT09PFy5cvi6IoioWFheK4cePEli1big0bNhRbt24t/vrXvxbffvtt5+eefvppsXfv3mKTJk3EqKgoMSMjQ3zmmWfEixcvOpdR60pcWVkpTp8+XWzWrJkYExMj3nLLLWJxcbFqd91PP/1U7NKlixgRESF26tRJfOONN1TXuWbNGrFr165io0aNxNTUVHHevHnia6+9JgIQi4qKnMt50z3ZU9drrfX99NNP4sSJE8XmzZuLERERYmZmprh06VK3z+bn54s9evQQIyIi2FWZyAeCKMrqUYmIiIgshDkqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILCukB3xzOBw4fvw4YmNjOVQ1ERFRiBBFEefOnUOrVq3cJvdUCulA5fjx40hOTja7GEREROSD4uJitGnTRneZkA5UpGGqi4uLERcXZ3JpiIiIyIiysjIkJyc77+N6QjpQkZp74uLiGKgQERGFGCNpG0ymJSIiIstioEJERESWxUCFiIiILCukc1SIiKj+qK6uxqVLl8wuBhkUERHhseuxEQxUiIjI0kRRxIkTJ3D27Fmzi0JeCAsLQ1paGiIiImq1HgYqRERkaVKQkpiYiOjoaA7wGQKkAVlLSkqQkpJSq9+MgQoREVlWdXW1M0hp1qyZ2cUhLyQkJOD48eO4fPkyGjZs6PN6mExLRESWJeWkREdHm1wS8pbU5FNdXV2r9TBQISIiy2NzT+jx12/GQIWIiIgsi4EKEREReW3Dhg0QBCHgvbEYqARBib0S+YWlKLFXml0UIiIKEbNmzUK3bt3MLobp2OsnwFZuO4KZq/bCIQJhApA3MhOje6WYXSwiIqojLl26VKteNVbHGpUAKrFXOoMUAHCIwOOr9rFmhYioHnA4HMjLy0NaWhqioqKQlZWFt99+G8CVZpPPP/8cPXv2RHR0NK677jocOHAAALBs2TLMnj0bu3fvhiAIEAQBy5YtA1CTpLpo0SLceuutiImJwTPPPKNbDum7PvnkE3Tv3h1RUVG44YYbcPLkSaxduxZXXXUV4uLiMHbsWFRUVDg/V1VVhenTpyMxMRGNGjVCv379sG3btsDsLB0MVAKoqLTcGaRIqkURh0sr1D9AREQBE+xm+Ly8PLz++utYvHgxvvnmGzz88MP4/e9/j40bNzqX+eMf/4i///3v2L59Oxo0aIBJkyYBAEaPHo3/+7//w9VXX42SkhKUlJRg9OjRzs/NmjULI0aMwN69e52f8WTWrFl48cUXkZ+fj+LiYvz2t7/F/PnzsXz5cnz44Yf49NNPsWDBAufyjz32GN555x3861//ws6dO9G+fXsMGTIEP//8s5/2kDGmN/0cO3YMM2bMwNq1a1FRUYH27dtj6dKl6Nmzp9lFq7W05jEIE+ASrIQLAlKbczwAIqJgCnYzfFVVFebMmYP//e9/6NOnDwCgXbt22Lx5M15++WXcfffdAIBnnnkG/fv3BwDk5uZi2LBhuHDhAqKiotC4cWM0aNAALVu2dFv/2LFjMXHiRK/K9PTTT6Nv374AgMmTJ2PmzJkoLCxEu3btAAC333471q9fjxkzZqC8vByLFi3CsmXLkJOTAwBYsmQJPvvsM7z66qv4wx/+4NuO8YGpNSpnzpxB37590bBhQ6xduxbffvst/v73v6Np06ZmFstvkmxRyBuZifBf+pKHCwLmjOyCJFuUySUjIqo/zGiGP3ToECoqKnDjjTeicePGzr/XX38dhYWFzuW6du3q/O+kpCQAwMmTJz2u35eHefl3tWjRAtHR0c4gRXpN+u7CwkJcunTJGdgAQMOGDdG7d2989913Xn93bZhaozJv3jwkJydj6dKlztfS0tJMLJH/je6VguyOCThcWoHU5tEMUoiIgkyvGT5Q1+Tz588DAD788EO0bt3a5b3IyEhnsCJPgpUGSHM4HB7XHxMT43WZlN+lTMAVBMHQdwebqTUqa9asQc+ePfGb3/wGiYmJ6N69O5YsWaK5fFVVFcrKylz+QkGSLQp90psxSCEiMoHUDC8X6Gb4zp07IzIyEkeOHEH79u1d/pKTkw2tIyIiotbDz/sqPT0dERER+PLLL52vXbp0Cdu2bUPnzp2DWhZTa1R++OEHLFq0CI888ggef/xxbNu2DdOnT0dERATGjx/vtnxeXh5mz55tQkmJiChUSc3wj6/ah2pRDEozfGxsLB599FE8/PDDcDgc6NevH+x2O7788kvExcWhbdu2HteRmpqKoqIiFBQUoE2bNoiNjUVkZGTAyiwXExOD++67D3/4wx8QHx+PlJQUPPvss6ioqMDkyZODUgaJqYGKw+FAz549MWfOHABA9+7dsW/fPixevFg1UJk5cyYeeeQR57/LysoMR6ZERFR/mdEM/5e//AUJCQnIy8vDDz/8gCZNmuBXv/oVHn/8cUNNLKNGjcKqVaswcOBAnD17FkuXLsWECRMCXm7J3Llz4XA4cOedd+LcuXPo2bMnPvnkk6DnkQqiKIqeFwuMtm3b4sYbb8Qrr7zifG3RokV4+umncezYMY+fLysrg81mg91uR1xcXCCLSkREJrhw4QKKioqQlpaGRo0amV0c8oLeb+fN/dvUHJW+ffs6B7eRfP/994aqxIiIiKjuMzVQefjhh/HVV19hzpw5OHToEJYvX45//vOfmDp1qpnFIiIiChn33nuvSxdo+d+9995rdvFqzdSmHwD44IMPMHPmTBw8eBBpaWl45JFHcNdddxn6LJt+iIjqNjb9eHby5EnNXrBxcXFITEwMcolq+Kvpx/SRaX/961/j17/+tdnFICIiCkmJiYmmBSPBwLl+iIiIyLIYqBARkeVZccRU0uevzBLTm36IiIi0REREICwsDMePH0dCQgIiIiKcQ82TdYmiiFOnTqkO1e8tBipERGRZYWFhSEtLQ0lJCY4fP252ccgLgiCgTZs2CA8Pr9V6GKgQEZGlRUREICUlBZcvXzZt7hvyXsOGDWsdpAAMVIiIKARITQi1bUag0MNkWiIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJZlaqAya9YsCILg8peRkWFmkYiIiMhCGphdgKuvvhr/+9//nP9u0MD0IhEREZFFmB4VNGjQAC1btjS7GERERGRBpueoHDx4EK1atUK7du3wu9/9DkeOHNFctqqqCmVlZS5/REREVHeZGqhcc801WLZsGT7++GMsWrQIRUVFuP7663Hu3DnV5fPy8mCz2Zx/ycnJQS4xERERBZMgiqJodiEkZ8+eRdu2bfHcc89h8uTJbu9XVVWhqqrK+e+ysjIkJyfDbrcjLi4umEUlIiIiH5WVlcFmsxm6f5ueoyLXpEkTdOzYEYcOHVJ9PzIyEpGRkUEuFREREZnF9BwVufPnz6OwsBBJSUlmF4WIiIgswNRA5dFHH8XGjRtx+PBh5OfnY8SIEQgPD8eYMWPMLBYRERFZhKlNP0ePHsWYMWNw+vRpJCQkoF+/fvjqq6+QkJBgZrGIiIjIIkwNVN58800zv56IiIgszlI5KkRERERyDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAxUQl9krkF5aixF5pdlGIiIgsqYHZBaivVm47gpmr9sIhAmECkDcyE6N7pZhdLCIiIkthjYoJSuyVziAFABwi8PiqfaxZISIiUmCgYoKi0nJnkCKpFkUcLq0wp0BEREQWxUDFBGnNYxAmuL4WLghIbR5tToGIiIgsioGKCZJsUcgbmYlwoSZaCRcEzBnZBUm2KN3PMfmWiIjqGybTmmR0rxRkd0zA4dIKpDaP9hikMPmWiIjqI0vVqMydOxeCIOChhx4yuyhBkWSLQp/0ZoZqUph8S0RE9ZFlApVt27bh5ZdfRteuXc0uiuUw+ZaIiOorSwQq58+fx+9+9zssWbIETZs2Nbs4lsPkWyIiqq8sEahMnToVw4YNw+DBg80uiiX5mnxLREQU6kxPpn3zzTexc+dObNu2zeOyVVVVqKqqcv67rKwskEWzFG+Tb4mIiOoCUwOV4uJiPPjgg/jss8/QqFEjj8vn5eVh9uzZQSiZNSXZohigEBFRvSKIoih6Xiww3n33XYwYMQLh4eHO16qrqyEIAsLCwlBVVeXynlqNSnJyMux2O+Li4oJadiIiIvJNWVkZbDabofu3qTUqgwYNwt69e11emzhxIjIyMjBjxgyXIAUAIiMjERkZGcwiEhERkYlMDVRiY2PRpUsXl9diYmLQrFkzt9eJiIio/rFEr5/6gMPfExERec/0Xj9KGzZsMLsIfsfh74mIiHzDGpUA4/D3REREvmOgEmAc/p6IiMh3DFQCjMPfExER+Y6BSoBx+HsiIiLfWS6Zti7i8PdERES+YaASJBz+noiIyHts+iEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZluFJCcvKygyvNC4uzqfCEBEREckZDlSaNGkCQRB0lxFFEYIgoLq6utYFIyIiIjIcqKxfvz6Q5SAiIiJyYzhQ6d+/fyDLQUREROTGcKCidPbsWbz66qv47rvvAABXX301Jk2aBJvN5rfCERERUf3mU6+f7du3Iz09Hf/4xz/w888/4+eff8Zzzz2H9PR07Ny5099lJCIionpKEEVR9PZD119/Pdq3b48lS5agQYOaSpnLly9jypQp+OGHH7Bp0ya/F1RNWVkZbDYb7HY7exoRERGFCG/u3z4FKlFRUdi1axcyMjJcXv/222/Rs2dPVFRUeLtKnzBQISIiCj3e3L99avqJi4vDkSNH3F4vLi5GbGysL6skIiIicuNToDJ69GhMnjwZK1euRHFxMYqLi/Hmm29iypQpGDNmjL/LSERERPWUT71+/va3v0EQBIwbNw6XL18GADRs2BD33Xcf5s6d69cCEhERUf3lU46KpKKiAoWFhQCA9PR0REdH+61gRjBHhYiIKPR4c//2eRwVAIiOjkZmZmZtVkFERESkyadA5cKFC1iwYAHWr1+PkydPwuFwuLzPsVSIiIjIH3wKVCZPnoxPP/0Ut99+O3r37u1xskIiIiIiX/gUqHzwwQf46KOP0LdvX3+Xh4iIiMjJp+7JrVu35ngpREREFHA+BSp///vfMWPGDPz444/+Lg8RERGRk09NPz179sSFCxfQrl07REdHo2HDhi7v//zzz34pHBEREdVvPgUqY8aMwbFjxzBnzhy0aNGCybREREQUED4FKvn5+diyZQuysrL8XR4iIiIiJ59yVDIyMlBZWenvshARERG58ClQmTt3Lv7v//4PGzZswOnTp1FWVubyR0REROQPPs31ExZWE98oc1NEUYQgCKiurvZP6TzgXD9EREShJ+Bz/axfv96nghERERF5w6dApX///oaWu//++/HUU0+hefPmvnwNERER1XM+5agY9cYbb+jmrCxatAhdu3ZFXFwc4uLi0KdPH6xduzaQRSIiIqIQEtBAxVP6S5s2bTB37lzs2LED27dvxw033IDbbrsN33zzTSCLRURERCHCp6Yff7nllltc/v3MM89g0aJF+Oqrr3D11VebVCoiIiKyClMDFbnq6mq89dZbKC8vR58+fcwuDhEREVmA6YHK3r170adPH1y4cAGNGzfG6tWr0blzZ9Vlq6qqUFVV5fw3x2whIiKq2wKao2JEp06dUFBQgK1bt+K+++7D+PHj8e2336oum5eXB5vN5vxLTk4OcmmJiIgomLwOVC5fvoynnnoKR48e9bjs73//e48DuURERKB9+/bo0aMH8vLykJWVheeff1512ZkzZ8Jutzv/iouLvS0+ERERhRCvA5UGDRrgr3/9Ky5fvuxx2UWLFnk9horD4XBp3pGLjIx0dmWW/oiIiKju8ilH5YYbbsDGjRuRmppaqy+fOXMmcnJykJKSgnPnzmH58uXYsGEDPvnkk1qtl4iIiOoGnwKVnJwc5ObmYu/evejRowdiYmJc3r/11lsNrefkyZMYN24cSkpKYLPZ0LVrV3zyySe48cYbfSkWERER1TG1mpRQdYWclJCIiIh0BHxSQofD4VPBiIiIiLzhU/fk119/XTXh9eLFi3j99ddrXSgiIiIiwMemn/DwcJSUlCAxMdHl9dOnTyMxMZFNP0RERKTJm/u3TzUqoihCEAS3148ePQqbzebLKomIiIjceJWj0r17dwiCAEEQMGjQIDRocOXj1dXVKCoqwtChQ/1eSCIiIqqfvApUhg8fDgAoKCjAkCFD0LhxY+d7ERERSE1NxahRo/xaQCIiIqq/vApUnnzySQBAamoqRo8ejUaNGgWkUERERESAj92Tx48fD6Cml8/JkyfduiunpKTUvmRERERU7/kUqBw8eBCTJk1Cfn6+y+tSkm2wev0QERFR3eZToDJhwgQ0aNAAH3zwAZKSklR7ABERERHVlk+BSkFBAXbs2IGMjAx/l4eIiIjIyadxVDp37ozS0lJ/l4XIayX2SuQXlqLEXml2UYiIKAB8qlGZN28eHnvsMcyZMweZmZlo2LChy/scJZaCYeW2I5i5ai8cIhAmAHkjMzG6FxO5iYjqklrPnizPTwl2Mi2H0K9bSuyVKCotR1rzGCTZojwu23fuOjhkR2+4IGBz7kCPnyUiInMFfPbk9evX+1QwIi3e1o4UlZa7BCkAUC2KOFxawUCFiKgO8SlHpX///ggLC8OSJUuQm5uL9u3bo3///jhy5AjCw8P9XUaq40rslc4gBQAcIvD4qn26eSdpzWMQpuhsFi4ISG0eHcCSEhFRsPkUqLzzzjsYMmQIoqKisGvXLlRVVQEA7HY75syZ49cCUt2nVzuiJckWhbyRmQj/pekxXBAwZ2QX1qYQEdUxPjX9PP3001i8eDHGjRuHN9980/l637598fTTT/utcFQ/SLUjynwTT7Ujo3ulILtjAg6XViC1eTSDFCKiOsinGpUDBw4gOzvb7XWbzYazZ8/WtkxUz9SmdiTJFoU+6c0YpBAR1VE+1ai0bNkShw4dQmpqqsvrmzdvRrt27fxRLqpnWDtCRERqfApU7rrrLjz44IN47bXXIAgCjh8/ji1btuDRRx/FE0884e8yUj2RZItigEJERC58ClRyc3PhcDgwaNAgVFRUIDs7G5GRkXj00UfxwAMP+LuMREREVE/5NOCb5OLFizh06BDOnz+Pzp07o3Hjxv4sm0cc8I2IiCj0BHzAN0lERAQ6d+5cm1UQERERafKp1w8RERFRMDBQISIiIstioEJERESWxUCFiIiILIuBCrkosVciv7BUd0JAIiKiYKlVrx+qW1ZuO+KcxThMAPJGZmJ0rxSzi0VERPUYa1QIQE1NihSkADUTBD6+al+talZYO0NERLXFGhUCABSVlrvMXgwA1aKIw6UVPg1rz9oZIiLyB9aoEAAgrXkMwgTX18IFAanNo71eVyBqZ4gosFgDSlbFQIUA1EwImDcyE+FCTbQSLgiYM7KLT7UperUzRGQ9K7cdQd+56zB2yVb0nbsOK7cdMbtIRE5s+iGn0b1SkN0xAYdLK5DaPNrnmYyl2hl5sBIuCIiOCEN+YSnSmsdwlmQii9CqAc3umMDzlCyBgQq5SLJF1friJNXOPL5qH6pFEeGCgOHdW2HES/nMWSGyGH/npxH5GwMVCgh57Ux0RJgzSAH4xEZkJVo1oL7kpxEFAnNUKGCSbFHok94M5RermbNCZFH+zE8jCgTWqFDA8YmNyNr8lZ9GFAisUaGA4xMbkfVJNaA8L8lqWKNCQcEnNiIi8gUDFQoaf/QoIiKi+oVNP0RERGRZDFSIiIjIskwNVPLy8tCrVy/ExsYiMTERw4cPx4EDB8wsEhEREVmIqYHKxo0bMXXqVHz11Vf47LPPcOnSJdx0000oLy83s1hERBRiOKli3SWIoih6Xiw4Tp06hcTERGzcuBHZ2dkely8rK4PNZoPdbkdcXFwQSkhERFazctsR53xFnKIjNHhz/7ZUjordbgcAxMfHm1wSIiIKBVqTKrJmpe6wTPdkh8OBhx56CH379kWXLl1Ul6mqqkJVVZXz32VlZcEqHhERWRAnVaz7LFOjMnXqVOzbtw9vvvmm5jJ5eXmw2WzOv+Tk5CCWkIiIrEaaokOOU3TULZYIVKZNm4YPPvgA69evR5s2bTSXmzlzJux2u/OvuLg4iKUkIiKr4RQddZ+pTT+iKOKBBx7A6tWrsWHDBqSlpekuHxkZicjIyCCVjoiIQgGn6KjbTA1Upk6diuXLl+O9995DbGwsTpw4AQCw2WyIiuKBRkRExnCKjrrL1O7JgiCovr506VJMmDDB4+fZPZmIiCj0eHP/Nr3ph4iIiEiLJZJpiYiIiNQwUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkQaSuyVyC8s5SysREQmsszsyURWsnLbEefU8WECkDcyE6N7pZhdLCKieoc1Kh7wqbp+kP/OJfZKZ5ACAA4ReHzVPh4DREQmYI2KDj5V1w/K33lKvzRnkCKpFkUcLq3gXCJEREHGGhUNak/VM1ftxe7iM+YWjPxK7Xd+5YsihCmmoQoXBKQ2jw5+AYmI6jkGKhqKSsvdnqodIjB8YT5WbjtiTqHI71R/ZwBT+rVD+C+TZoYLAuaM7MLaFCIiE7DpR0Na8xiECXC7iYmoyVfI7pjAG1cdoPY7hwsCJvZLxcR+qThcWoHU5tH8rYmITMIaFQ1Jtijkjcx0awIAruQrUOiTfme12pMkWxT6pDdjkEJEZCLWqOgY3SsFGS1jMXxhPuQVK8xXqFtG90pBdscE1p4QEVkQa1Q8yEpuirmj1J+4qe5g7QkRkTWxRsUAPnETERGZg4GKQVLOAhEREQUPm36IiIjIshioEBERkWUxUCEiIiLLYqBiMk56SEREpI3JtCbipIdERET6WKNiErXJ8B5ftc+yNSus+SEiIjOwRsUkapPhSUPzW60bNGt+iIjILKxRMYk0GZ6cFYfmD7WaHyIiqlsYqJhEbzI8K9Gr+SGqz9gcShQcbPoxUSgMzS/V/MiDFSvW/BAFE5tDiYKHNSoms/pkeKFS81MX8YndmtgcShRcrFEhj0Kh5qeu4RO7dYVSIjxRXcAaFTLE6jU/dQmf2K0tVBLhieoKBipU54R6kwkTmK2NzaFEwcWmH6pT6kKTCROYrY/NoUTBwxoVqjPqSpMJn9hDA5tDiYKDNSpUZ9SlJEc+sRMR1WCgQnVGIJtMSuyVKCotR1rzmKAFDUm2KAYoRFTvsemnjgj1BFJ/CFSTycptR9B37jqMXbIVfeeuw8ptR/xRXCIiMkAQRVH0vJg1lZWVwWazwW63Iy4uzuzimKYuJJD6U4m90m9NJiX2SvSdu86tlmZz7kDWdhAR+cib+zebfkKcVgJpRstYlF+sDmpThVX4s8mkLuW9EBGFIgYqBpiRn2CU1o10+Ev5EFnDUmvsKkxEZC7mqHhg9fwEtVEyAUAM8S66ViAFqDNyMthVmIjIJKxR0aHVrJLdMcEyNyopgfTxVftQLYoIA+BQLMOmCu8p835mDM1A1zZN2FWYiCjIGKjoCJX8BPmYG9ERYRjxUn7Amiqs3AzmL2oB6rMfH2ACLRGRCRio6Ail/AR5Aqm8hsWfTRX1pXdRqASoRET1AQMVHcpmlVDJTwjEqKah0AzmL6EUoBIR1XWmJtNu2rQJt9xyC1q1agVBEPDuu++aWRxVo3ulYHPuQKy461pszh1oiRoEI4O7+Xsekvo0oy/n2iEisg5Ta1TKy8uRlZWFSZMmYeTIkWYWRZeVhjI3q/mlvtUycK4dIgpldSmf0NRAJScnBzk5OWYWIaSY2fwSqs1gtWGlAJWIyKi6lk8YUjkqVVVVqKqqcv67rKzMxNJcEazI1ewkT9YyGFeXnmaIKHTUxXzCkApU8vLyMHv2bLOL4SKYkasVml9Yy+CZ2jGR3TGBgQsRBZzZD7SBEFIj086cORN2u935V1xcbGp5tCLXQI0Cq0zyDBOASf1SA/Jd5Bu1YyL3nb2WHt2YgoeznFOgqY1WHur5hCEVqERGRiIuLs7lz0xm9ISReiHdnZ0GUQSWfFHEm5+FqB0TIhC0YJasy+rTcVDdUBd7LYZU04/VmNkU88oXRZC+1mgbJPMmAk/tmFAK9WpY8l5dzBsg66pr+YSm1qicP38eBQUFKCgoAAAUFRWhoKAAR46ExpOGWZGrLzU5fJoLDrfmOQDKOSNDvRqWvFefxiEia/D3WFpmMrVGZfv27Rg4cKDz34888ggAYPz48Vi2bJlJpfKOcp6d8ovVKLFXBvTg8LYmx9enOdbA+Eb5NLPp+1P1qls3ubNCIjxRqDI1UBkwYABEUaeOPEQk2aKw6ftTQev94+2YJr5kgde1fvjBJu8dVdeqYcl79XEcIiJ/EcQQjhTKyspgs9lgt9tNTawtsVei79x1bk9LgZ5tt8Reaejm5235zNoeorrO6DlLVNd5c/8OqV4/VmVW+7PRNkhvc2m82R52tyQyri7lDVDdEArXcPb68YNQaH/2pvnB6PaweUgdc3uIKBSEyjWcNSp+ECr91v1ZAxPswe5CBXtXEVEoCKVrOGtU/KSuJUx62p66OExzbXGsDPI31s5RoITSNZyBih/VtXlw9LZn7zG722tWa+4KtlA68UNBfb9Jh0q1PPlfMI79UEhZkDBQIa+V2Csxb+1+t9cfG9qpXt5QJKF04ltdfb9Js3au/grWsR9KXeYZqARIXX4aVKs5AICubZoEvSxWEkonvpXxJs3aOSsKxjU92Md+qKQsMFAJgLr+NMiaA22hcuJbWX2+SUs3w5iIcJ5jFhKsa7oZx34opCyw14+fqUXEM1fttWQmta9CpZeTWer6WBmBHnch1Kep93X/yHuMjXgpHyO6t/b6HAuFMTFCTTB7x1jl2LfaccQaFT9Ti4gdIrD0yyI8fnNncwoVAKw5qJ+C8WQZyk1ovu4ftZvhu7uOY9X9fVBx0eG8UeUXlmo2PdT1mlyzBLOWwwrHvhWPIwYqfqbWLAIASzYVYVhmErKSm5pTsAAIhSpD8p9gtp+HYiBcm/2jdTOsuOhAn/RmHm8ezOsJnGA3dZt57Fv1OGLTj58l2aIwuV+a2+sigOEL8wM6AJjVquuobgn2VBGh1oRWm/2jV+VvpOnBrGk86gMzmrrNOvatehyxRiUAJvVLwytfFEHZMUaE5+jU18xyK1bXUd3CJGp9tdk/elX++YWlHpseYiLCVdcbHRFWp3sgBou8liM6IgzlF6tRYq80lDMUSvvequc4A5UASLJFYe6oTJenIIle26Y/27fNqK4LtZOSvGOF9nMrq+3+0aryN3LzKL9YrbrOD/ecwCubf4BDBAQByM3JwD3Z6b5v5C/8ea6HynUjyRaFTd+fMnyNDsWHR6ue44IoiiojYoQGb6aJNsPu4jMYvjDfpWYlXBCwOXeg2w9fYq9E37nr3C5Gassq5ReWYuySrW6vr7jrWvRJb1abTTAsFE/KUGG1C3mJvTKkckeCLRD7Z+W2I243D2WOivL6EQYAKvlyM3MycE9/34MVf57rVr5uyLuKl1+sRkxEOEa8lG/oGl2b67m35QrEdSEY57g392/WqNSS3k0kK7kp5o4yFp3WJrNc7YkrDDXVvsFQ2xodM2/EVgsClKx4IWcStb5A7B9PCZZqT8KT+6Xin18Uua1r3tr9uLVbK5/KqDr8wjt7ERPZAD3aNvVqnVapCVaWqai0HHuP2jHv4/0u11QBcGvO17pG+3o993Q9kl8PJIG4LljtHGegUgtGbiLKts3iM5V4f/cx9EyNdzkQ/Nm+DQAOACNeyg/Kja02QZaZN2IrBgFyVryQm8nqQWWgad08pP2S3TEBm3MHOoMZAFiyuQjKOnMH4HPXWtXhFwBMW77L63PIagP7qQUBcmova12jtXp/7jl6VrOW29ueXZL6cF1grx8feTMIUJItCkd+LsfwhfmYtnwXHlhRgOvy1rn0AKptZvnoXilYdX8fCLKeA8GattvXQYrMnGY8FKY4t2oGvhnkg6H1nbsuoL3nQolyv2z6/pSzt0iSLQq5ORlun6lNcqTauS7x9hyyyuBmgHYQoEYqs941OskWhRkq+/7Zjw+o7h9fe3ZJ6vp1gYGKBk9dfb25iUgHoXxxETVVpvL1j+6Vgs25A7HirmuxOXeg10/35Rer3Z6egnEA+xpk+fNG7G3X7FAIAqx0ITdTKASVnmgdn9Lru4vPeDx+leswsl/uyU7HzJwM54Xe1+RI6bsBuJzrSt6cQ1Ya4VovCJALFwSsvv86Q9fozNY2t9e09o/W9Wjnj1eOi7TmMdCIEQ0/GIbq8BVs+lFhpElg71G72+e0Dhatk0CtCrY2bYNmdi3zZZAif5XXlyYcq3bDk1M26YUBmNwv1at11IXmEqs1EXhLeXzOyMlAZmsb9h6zY95a1zwIreNX7RhPjo82tF/u6Z+OW7u18jk5Uu27N+cOxI7DZzD9zV21OoesMrCfVlONnBRIZSU3dZ5XADTL7M01Rm1ZQahpUhNx5bhREybAY4Bn9WZuT9jrR8FItrbaMgAw82b1rn9aywsA8mfe4NeT01PvAKsxUl61m608891oJr4v320FJfZKLN182NnN1OiFJtQvTpJA9qDwthzeBn1a574eI9ebcEHAvf3bYeGGQpfPhgH4UnZNqW2g6mnfB/IcCnaQrdyWx3I6oWvrJoiOCHNOYyBtszddlI3uH/myYQIgiq55MVqB1ItjuuPXWa00t0vvNwRg2oMMe/3UgpGnN60akq6tm6iuU3oyzl21161pZtP3p/x687DKE4pRnsrr9jQ6NAOl56vw6uYi59gQWs1dnrY9lPaVFKQAxpLn6lIibrDHdlC7Qfoa9BltUpAzcr2pFkW8pAhSgJpa2jUFx3FP/3S8vKkQc9fuh1iLQNXT9TBQ55C/gmxvuvIa2RZvzytv9o982fd3H8Pyr4td3neI7j2PwgUBPVL1p2XR+g2XflmEV74oCokHGQYqCkaq63xpNhjdKwUZLWNdxlUREZibR7C7lvn65CP/nFomvNpFIW/tfpdl1OoD5UOPeyqX1brhqfGl6SOQzSVmNCcFK6hUu0Fmd0zwOegz0qSgZOR6o7fOvLX78dUPp7H+wCnna74Gqkaudd6eQ56OH2+DAfn6gCs1BPLB2SSebsietmX74Z+9Pq/01qncF9JyKxRBClATpOTmZODZjw94FbDHRIS7PdCFCTXzz0kvSfs4o2VswMZmqQ0GKgpGnt58fcIrv1htuB9+qPD1ycfI57x5Gg1DzdOk9Ft4M4Kk1fkSGAcqB8fM5qRAB5VaN8jnx3TzOehTGzpAj9HrzWM5ndzyW+TkQYq3ZdYrv1r5jASuauOTKI+fEnslth/+GQdPnje8v+XHo5RoKsL1v+VqU7MofZdSGIDT5VXYXXzGq5u81rlUVFqu2hUaAJpEN3Tpgm50+AdRcR2Y1C8VSxRj7FSLIoa/lF+rGrhAYaCiwsjTm5nJo1bha/OC0c8ZfRoNFwSsur+Psx0ZgEubrD+aPfxdi+DN+nwJjAPRXBIKzUm+5pEUlZbj9Pkq1RskRPcajDABKD1/wdB8L/JrxZ6jZ12eiB8b2gld27jnQeitQ1qmSVRDzHxnLxyGtrKmzL5ca/SudUaal7TGJ3GINT0fszsmYNP3p5D7zl7NGzQAvL/nmMv3K49H+Wf11iPveWP0WNHrviyiJulVYuQmv7v4jEsqgPxc0rruSTXwm3MHGhpxXK3MYQBW3d8HiXGNnM3nLt9h0XObgYoGI09v3j7hJdmiMKJ7a7yz85jzteHdfRsh0gq8aV6Q30CMfs7I06iU8Z6VfKWd1sgkbt7wdy2CVi8QT+3nGS1jse3wGaQ1j0ZURAOPN0l/N5dYvfeNL7+T8jNaOQDy41CqRn9gRYHh75GuFX3Sm/ncA0d5vZF+3wWfH8Lyrz2PKzMjJ8Pr30mvefbljYUuTbFqNzdP45M4ALy47hCWbz2iG1wAwPKtxXjz62KXmgdv83+Amt90z7Gz+N0rXxk+Vnb8eEb1u9RGq/V0k1+57YhqUCZ1Rx7WtRXyRmaqBqHejG77c/lF9+AQQMVFh2qPQl++K1gYqBjgr6fpEnslVu865vLau7uO49EhnQwdeFZrNzRaQ6R2YzZas+TyNHrsLJ5de8B5Yk3JTsPEvmlu+8SfNVf+rkVQzbv5qOZir3fB9HXobG/axz2xco2g1u+k1+au9hlBAMJE12ZEedLozh/POLuMSp/xdgh5fzZhJdmiMGdkJto2j3Y2BYULAoZ3b4V3dx13niszVCYjLLFXYsePZ/BzeRXiYyKd5ddrpsnumOBMTp2ryBcDam5uOw6fQXxj7YcSpeVfew5SJEZqHiQCan5P5fH62FDXZjOjgYWS3ndr3eSdNSka2zdt+S6cr7p8Jafxl6YYefn1zjdlU5ha4C19Xn5trbh4CVP+tUNzWbMxUPHAn0/TvjyRan2/mU0REqPt18qbwbNrD2DGUONJYS5Po1men0b92ezh71oEvQu31gVTb+jsmav2IqNlrEuNkhFaSaN6x0AgmpOM8nR8av1OUvK6AOCu69Mwsd+VwFbtM6IIvDi2O+JjIt2OsSRbFJrGuOcP+DqEvD/dk53ucm4AwMCMREAEeqS6B1BqT/UCgJG/ao3Vu46pHmu5q/YC4i85IIJ684oAOMdWkR5K1God5LwdIEM6//qkN3Or6ZLKJx2b8ulLpKY1b2uClYN1Ale2TStPSOuBzVPzltS8k90xoWauOC/ON72mMKDmN1PLf5Ly+ZRBymM5nTyOFRMsDFR0+Ptp2tsnUq3vP1t5yXmC+KspQjqBBABzRxlfn6fmBa2LQtc2TbxKCpMYfRr1V7OHp99Mq8eBvOpb/pqnp0C1C6an4Gb4wnyvfjO14yr3nb3Op0+tY6rEXonoiHDMurUzmkZHOLtF5heWBrS2z8jDgl67vvT///yiCK9sLnJ+Xuu3/ZVOzYg0Oqjaz2F2u750bhidM0a5DSLg0iytJA8o9IIL+XE1b+1+3D8g3W28FzmplmPu2v0uZbq+Q3NsPliqGiRIE64qz3MAbue82m+hV9Mgp3XuvXBHzdglTaIaujVNSwEFcOXcAKC6z9X42v3bU+2VIALZHROc/5aSl9Vqau/t386v95jaYqCiw99P094+kWp9v5S8Blx5qo6OCHeb6NCIEnulS5Qvouam5c3FVi940LvRB6IXh1Z3v9qY3C/NmXgm/820ehxIJzYA1RuGXt6N2gXTU3Ajfwozsr2qNQnQT6RTPg0qn76NXsy8rbkz+rBgJJ9J7fPe1hBt+t69N42c2e36RvaXr7kdaqTchjAAPVOb4uvDZ1zed4jAJYcDM2++UvugVvMxulcKbu3WCjsOn8GWH05jxddH8MXBUoQJwPXtm2PzoVKXbZJPuKo8zz3te+VvKEB7ZFe1rr3ysUuyOybg+THdABFIjo9y1tps+v6UM6E/TACm9EszvM+VSc9Gr2OerhPykdD1JmB0iMBLGwrdui6bmVjLQEVHINrkvYmQVcdPgPuB6BA9J/Zp3SC2H/5Z9clqx+Ez+HVW7Q/KYDYX+KOZTr6f5F2cBQB3y3Ji9KpZpeBRPrKk/GSX5zt8eagUb35d7LzYqw2Rb+Qm7M0N0khvKvn6lMGstL3yp28juRpGfh/lcerNw4JWu77ethk9H6V8Dk9V92rXB61zLxC5Z0b2ly9ju6iNlCrvbRcdEYbhC/NVP/vKpiJ8OfMGt6YptZqPHqlwGZbfIQJfHjqNJeN6uORQ+HrzVKtNEgTXmgaJVtdetQcVZbO8MlhUdgXW40vSM+D5OiEfX0ovwVnt2DA7AGegokPvJmtk0CKt941GyGrf/9jQTs4ENyWtk1fvBiFoTC6m8bJPfG2G8eZCbvTJW2+dyv0kvzCLAF794jAm9k0D4PmpVO09+cmuHOcl+5enRql5YsbQDGS2sTmrjZPjo503hYqLlzD5Xztc1m10UjJp25UZ/yK0q8L1xnVw2WZo52ro/T7Sd8jnvpHnzah1DVZrekuyRalOzKmkNWCZNGmb8tjQe/qUEwC3dn2tc682QbXeMaz1cBUdEeaybWojZQsC0D25CXYeOet87Zq0prjz2lT0SG2KTd+fcrsWSrlR+YXuTTQS6UlemtVZTpkDoRVoFZVW+GUMKrX1O0T3Odf0uvZKc/1oJW9/rTIonNa+uTs7Da9+cVg36dkbWp0P5PcutV6REq0xesxOrGWg4oHaTdbTRcafCbjyp2+HKKJnajyaRLu3i0qUJ6+nG3iPtk1V29zFXz7rrwja22YYvX2odqH2NBuykcGmlPtJSb5vYyLCdcuv9QSq9kTjEIFNB0udyznEKyPwajUpyX8zvapradte21zkbL4KE2qas+Rjz6jdhORP4J4SIuWMNjcoh/FWW8fm3IFuN1VRvFJ9r5YQ7Da5m2wfatXoGX069mTuR/tdJpFT612S0TLW6x5KnsopUXu4Gd69lXM+LPlnpOvKz+UXER8TgTZNozDiJddaka1FZ7Dt8BmXz8hrRaTgR6+WxkhPQE95Q71Sm3pdu612ndAa5Vc5Jo5qQIOarr1a78sHTFMKAwCV8k/sW1NL688Rl6VrrVbnA62a+gVjuzvzs+S5N2bOai1hoGKA/Cbr6cYfiEGx1EZZ3Zw70K2rJOB+8nqqCk6yRWHuqEy3XItg92JQJqVq7UOtEWe1LnDy8RLklL+LkXZ7+b4tv1itu5yUTKd2sus90SjJF5OaV6DocaFVdQ2o9zSQqqJf+aIIc0dlok96M2R3TMD8O7IQJgho07SmZkK6cEvHiEuOigCM7N7a2QVWSa25QRnsCHAdxltrHdkdE1w+KOLKfpAfIzNX7cXq+69TrQXVq9HTO2e9yedQ7mMpaFFu07bD7mNyeOqh5Kmc8uXkAUV0RJjLpJ3KzwzreuVzWsel8jNaD2tqzQ5GewJ6yhvKSm7qVgsoNZN6MzeTcv1aY+J4avbXTN7WCNT0rgdA4HrVqD0gKveB9OAiTyK32jxoDFS85OnG748EXCM37c25AzGsayucr7rscsA9luM6JouRPBvpoFRO2x6sJCrlRWWySuKZND6DNxc45XgJSvLfRWuadUF0H1OjxF6J0+erVJ/MXriju0t3ULWT3ZccAYkDcKvaUKu6BrR7d0hE/NKLrOKSs6ZJrQZndK8Ul2NEEOC8qD06pBM+/+4n/Ondb1zWrTzGtJJQ9XaBtA61piet/SD1gFLrUaa2f3b8eAYHTpRpnrNpzWNUJ740Qu0jWrUD8uVFuPdQArxL7pduUFqDH364pwTDuiZ5vFaofY9WoLE5d6BzvytH2vVmwEetm6T0ujST+D+/KHLmfsiPV09zM+mNiWM00drtZg/3AdMA4NddW+KPwzrrXg/M4NyXXxZhyaaa/fiq4njz1CQaTAxUvLT3qN3tNU+Rtjf5A8rmCa2btvykPltxCXN/uSHPW7sfTaIauhxsRpJZk2xRiG/sv15ORvNL1C56r24uUm1qyP9Bf8RZ5QXO09Ow/HfR2k96zX4CrszeLC2vnG7dyBONVD2vNn6FEVrHl9oEakrOXmS//FtZK6B8klYmWG/6/hSeUAQpyqYotWRc5XepbZN8HWpV1aLKOqTgy9Mw457GtJD3TMvNyXAOyif/fqND1yu3ya12QCM4UO5/f835BABPf/gd5nz0nduNSWtEVHlekF6goZaHojYDuqft0Gsqls8krna8GpmbKcmmPiaON4nWejVXko/2nMAfh3U2tF1GqF1Xjb6m5pUv3CcmVPb2s8KcaQxUvFBir8S8j91HY5TXYhgNDOT05sJ4dXOR2/LKcTzmfbxf92AzWo2n1X4rjVlglDcHt1Zy26CMBHy+3/Up/M2txV5f4PRqLpS1T3r7qai0HCfLLrj19AkTawYI0xt7Q428hgICcOxMpVtioyi6duVUI00hoHVzMEIvYNALVLUCEGVT1I4fz+h+h/KmLwB4bGgn3WB7ePdWWKUx5oen4Hp38RnMUBlpVKI8Z2va+cvx5tfFzjwXvaR2NconayM3OeW2+HJtUX5GTu9asXTzYSz54ocrAaxYE5QaaRaRUx3w8eMDmJGToZro6Ymnh49qUUR+Yanb62rl8/TQCXgOLOTvT+6X5ta7R94luLbUrquAa57WjJwMlJ6rcslH07r+eqrZstLcXgxUvKB1knRt3cT53yX2SpceGp6q+DzOhaF4Xfm0auRg05qrQ0ntouYQXccs8MTbg1vriU8ZpAA1J/3d/drh1c1Fhi5wm74/pVtl3/qXqnHpqcNTW7daE4ADNa+pjeDo6alGbRp6iSALgADgwz0lePrD79yWe+q2q5EcH+2SCKh1TAmoGUTrC5VBtLToPbFr9QZSNkWJOj9CuCDgn+N+5dL1VETNzezWbq10b+yeakPUaA2HLnli2FW4WdYkoqxBk3dRV0tq10o6/kDxZA243uSM1GQo94PR5gPpM2rHkNYcWxP7pWLJFz84X5Nqqrwdf0ZzwMfWvg346KnZNEwAVmwtdntd+VBi5KHTW5P6pbnUUAD+6y2jNUijskZJWfOnvP7Kr0meAk4rze3FQMULnn5YtYjXU3Dg7eBLyqfVmIhwzVEWfam2c45FsTBft5bGm+2pFkWs2HoEY6650tYuH5DNyEBd0nZN7JeKif1SDY174WkkyAdW7HK2bY/o7j54mbKtW6t48vUY7X5qZLK2+JhI5/YN65qEOR9955ZD88S737h9t9Yx9eLY7hjWtRXe330MD6woUP1e4Zf/kTdn6dXAqd2YBUUtXM/UePXlUBN0R0U0MNT1VC/vQu7e/u1Uy7y7WH8clDDAJUhRGytH3kVdGTxJDyYLPj+I5V+73yz1xiYyUpOh3A/eSLJFqR5DeiOy1qZZROLvAR+V1wtlj65J/VJVxyyRP0xK2+fpodNbSbaapHNfhrPwRGuQRiOk3005LlRuToZuwGmlub28q9Ov56STJPyXQUaUB6JaTUKJvVJ3ndLF3ijpaRWoCYyUT5byDHNfygPU9GjRukh5orU9L6w7hD5563Bd3jqMXbIVfeeuw8ptNTO+ju6VUpMcnJmkuV55E0eSLUq1LVzOSAAoD8Te2XnMbV8ZyfFQrufxVfuwu1g96Ve+773JnwHcj70wRZOQ/DukC4xczQVHRIm9Ej1T493fB7BwbHfkz7wB+bk3YMVd12Jz7kCPEx7OHZXp9nuLv9TCSb+vtJzyYiON1aNWXr0Lotryci9tLHR+t2TltiMuwbeaKdenufzbU5d3AM5jMSu5qfOYvK59c9X1641NJN3IhnVt6fK6VJNh5Lz1RO/6pWTkNzFyHnrznUaN7pWCx4Z2cgl+785Ow+bcgZjUL83QseTtMedN2TbnDnQ5f1ZuO4K+c92vexIpWVXvN/Z0zOuRxtFRBt15a/fjbOUlt/JKAvHb+Yo1Kl7SepLwtZrMmaynMhOpGr3RBcOEKwMSaWX77/zxDJrG6Ef2RiJprSeENbuP65Zfr5Zm7b4S7c95UeuktQ3eqBZFHPzpnNfr0Ot+WjOFu+eePwKA3/Zq4/a6/NgrPX/BrVZEb7I2ZRdMtSepYV2vJAJLwbd8rhK131sqk7Lnj1pPC62aOmmsFKO5F86kT40aKVGlutvTiLKCYHwuIE83M7WxiQQBaNM0yuOAcmo1T/6sbjdaE+JLPkxtvtNIjYO0TExEuEtenrymy2i5/bl9SvKaIk9N4UZrvZ3HvErzoB7pAa/8YrXquTJv7X7cmtVKs+bfKt2UGaj4QB6cSP+uTTXZPf3TAQG6XWmBmqdevbE4HOKVAYm0uttK3fGMnBRaJ7HWyfXyxkLDARfguVu3nLKNXH7RUhskS7kNWr1E9LywrtCtZ8+QLi3w0d4Tmp/R634qn8JdbR8P6dICa/eegAhgxdfFePPrYrfJBqWLYIm9Uvd489QFU96VVO0C5GkeI2WZ2iU0dtsXUpNfhxaN0TM1XrOmTuoqq1YerRuYsnul3s3dUzIvoD3P0YyhvwzaBuNPlFINkvwcGdG9teqga55mvAW8f9L3dNM32uSidZPydaZ1ZfDr6Xoi5ylXTP57y8cE0kty9+f2yRntig1ojxel9r1Gp4iQjL0mGQ/c0AFJtijsLj6juowyn0yNL010/sZAxQdaJ1ZtInT5NO2bD53CwvWus42GCcDq+69zDlntaajsmIhwl8n0lCOlGjkptE5i5ck1c9VeZLSM9SpIkew5ehZ90pt5Nf+MWhKq2gVOuQ3y0Ve1kh6VRLj37Hl5Y6Hz5iXP6ZDGsZG6nyrLKOLKvkqMa+SSdK2WICqiZmAztd9ILdB5bKjr8O1JNv0umGrV9mozqso/Lz9uAOgm5gE1TX6SqQPTDXeVBYyNwvr4zZ0xLDPJ7eItv7nrJfOqkWq/Cop/Gc0XNTfHx3I66TaFyXkadE2aF0kURdVjXtpP3l5H/N2dVHmTqs361T7racwTQCVXSGV/eZOXpzdxqTJAVxt4z5tt1OuK7UstfFZyU8zVqU2Uu6Vra+d6tAaoVCZrW5UgensWB8DChQvx17/+FSdOnEBWVhYWLFiA3r17e/xcWVkZbDYb7HY74uLiglDSmoNcmhVTEi4I2Jw70PnE4I9qMvnNUD7DqNzKbUc8jsUhALg5syWuaRePP7/3rdv3/GnYVW4DP2kpsVfigz3H8cyH7gHJoKsS8Pl3+jPLqpHvO/n2aA1Bv+r+PppdOcMAvDC2u+akeNI2aDWdAMCI7q2wepd789WKu651qR6V/85rCo47xyKRXxw9Ja3Kl0+Oj8bYJVtVl1V+t9r2fHnoFBZuKKzp0gxgTO9kPDCoAwDoHq9yRue0AWpyAqSh7+VdJT0lRd/cpSU++eYn1WXCBOD5O7qhZ2q8V+WWyq42Bo5U6+YpP8UIve/Xk19Yqvnb6h3nWgOmaSVnero21VZt1q/12efHdMO05bvclpcf83r7D6g53ueOqgl6PJXP09Qcys8D3s0Mrvb9j+V0cuuKLdWm1WZ/Lv2yCK9sKlJtClKuR2vbZt7sOrdQICbK1OLN/dv0GpWVK1fikUceweLFi3HNNddg/vz5GDJkCA4cOIDExESzi+fGyJD0/viB7+mfjlu7uc/TIGdkLAYRwId7T+CjvSdUaxG0nmYlagPRqdEKUoZ3a4UbO7eoeQr6pelJTq8ngdr8M1ptrQB0J8WTSL/P7uIzblXIAoB3C9yDFLWqd3lVttY4NlLSqmoehWL5Vff3UV02DPpPPEm2KKwpOI4XZTVwIoDlXxdj+dfFmDcqEyO6t3aZ6Xh491Zux5M3c9qECa5D3yubk/60eh8+339S9bMf7zuB1VOvw7bDZ9y6yjrEK3k0UzwMdKikduxIF+YwARj5q9ZYvfOYai2Y0RwkX3NF9GoLpaaMMNF1BGSp5hRwv7mq9VDT6u3lz/yW2qxf67NQ+Q2U59veY3bddUs9IdWS370ZF0Sr+Vmr9tnoTN9aXbFrkycj1SZK8wRpTUAoX17ZFK6cANEqg7upMT1Qee6553DXXXdh4sSJAIDFixfjww8/xGuvvYbc3FyTS+cumF22jAQ90jKeumyKcL0gymmdiN48YWuRT1nuKa9Cvj2AevOT2jqUPDVrqU3f7sxhUQkU9C4enkbp1Ev6lC9fcdHhNvmeACBvVKbuMVBir8RcnSa33Hf2uvU2eXfXcTw6xHW8CKPd5AVBfWAraZtTm0drBikAnBO7qXWVdS4j1oyY6ZaQCs9Bm9YN6d1dx7F66nXOWgoAHgdbU/L1PFfeJJTEX5oW42Mi3R5K1LZFHnTKj/VAX5tqs36tz/ZIbap7sy6xV2KehyZlhwjnsPpK3owLYnQKAUC7Gcvbrti1TVaV1qs1AaHR77LS4G5qTO2efPHiRezYsQODBw92vhYWFobBgwdjy5YtbstXVVWhrKzM5S/YpIuOFbpsyRnpviaKNTNk/mnYVW7vKbtdejtrbLggYGZOhvOACgMwT3GT9WXfSSeh8ikkXHn39bA9etsVBmD2bVerNg0sGNtd96nCUzfH0b1SsPr+63S7oEvLj+6VgvzcG7BwbHe8OKamq7CnJxqtQdckItwvvGr7Rm071MosiMC17eJVvys6IsyZI6NFfuHW+x1VezYY7J6pdUOquOhwHkvScSXlE8m7fat9jdYIwEZJ3VZfHNNd9Xj5VdumqjlDRgJI+U00kNem2qxf77NqXXolRrY/DK7D6stfVxsXRE5tGg21m6JyNHC1mzoAn/aP8hrnKyPr0VrGSFd8M5lao1JaWorq6mq0aNHC5fUWLVpg/373KDovLw+zZ88OVvE0WaXLlpynpzbgygURgMeBnzxdIKTeMPKEv9G9UrxqrvJ13ymbvIp/rnSZTFFte/S2ywGgaXSE6tOQtL+0GKm+zUpu6jIQlLzpQbl8ks11RltPPCUhy38n+XapNWUpt0Nt8CwHgCKNi1fFRYdueZTbqtUzCVCfS0cUjQ1H7u2Tv16TYxiAKbLRaGsjyVYzV1L5xcuGq/uNJJmr9fYK1LWpNuvX+6xWjYORyUIn90vFP1UGeVvwywCH8u/wdK4qJz5US2jWu6lb8d5ghJUGd1NjetOPN2bOnIlHHnnE+e+ysjIkJyebUhZ/5aL4k/IG/uHeEmeylfJk83TCGrnhqJ2Q3jRX1YZ8HVnJTQ1f/H2tgtZj5OKkXAaAXy5megGqlGQIaE8v76mMUq8xiVb3a2VNifxGf9/AdPRrn6C6rVJgJp8FXOrBpMyJMnrh9KXt31OToz95s361bRnevRXe3XVcNx8hkNem2qzf289q/ZbK4/QVleNU7SHDyL5PskXh8WFXaY6A7emmbsV7gye1yZcJBlN7/Vy8eBHR0dF4++23MXz4cOfr48ePx9mzZ/Hee+/pft6MXj+hRq8XkqceSsqeFI/ldELX1k0s+6RgtMeVWg8ReeZ/qD0NAVfKHR0RhqO/THDYI/VK7ydft0trX+ntQ1+/T/kZT9/h7fpCmXJb6tK2GeHttcrbY8Vbwf6+YAnmceXN/dv07snXXHMNevfujQULFgAAHA4HUlJSMG3aNI/JtAxUAq+uXhDr6nYFgta+CsY+5O9ERgX7WOGxWTshFaisXLkS48ePx8svv4zevXtj/vz5+O9//4v9+/e75a4oMVAhIiIKPSE1jsro0aNx6tQp/PnPf8aJEyfQrVs3fPzxxx6DFCIiIqr7TK9RqQ3WqBAREYUeb+7fpo6jQkRERKSHgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCzL9CH0a0MaVLesrMzkkhAREZFR0n3byOD4IR2onDt3DgCQnJxsckmIiIjIW+fOnYPNZtNdJqTn+nE4HDh+/DhiY2MhCILZxQm6srIyJCcno7i4mHMd1QL3o39wP/oH96N/cD/6R6D2oyiKOHfuHFq1aoWwMP0slJCuUQkLC0ObNm3MLobp4uLieCL6Afejf3A/+gf3o39wP/pHIPajp5oUCZNpiYiIyLIYqBAREZFlMVAJYZGRkXjyyScRGRlpdlFCGvejf3A/+gf3o39wP/qHFfZjSCfTEhERUd3GGhUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZTFQCQGbNm3CLbfcglatWkEQBLz77rsu74uiiD//+c9ISkpCVFQUBg8ejIMHD5pTWAvztB8nTJgAQRBc/oYOHWpOYS0qLy8PvXr1QmxsLBITEzF8+HAcOHDAZZkLFy5g6tSpaNasGRo3boxRo0bhp59+MqnE1mRkPw4YMMDteLz33ntNKrE1LVq0CF27dnUORtanTx+sXbvW+T6PRWM87Uezj0UGKiGgvLwcWVlZWLhwoer7zz77LF544QUsXrwYW7duRUxMDIYMGYILFy4EuaTW5mk/AsDQoUNRUlLi/FuxYkUQS2h9GzduxNSpU/HVV1/hs88+w6VLl3DTTTehvLzcuczDDz+M999/H2+99RY2btyI48ePY+TIkSaW2nqM7EcAuOuuu1yOx2effdakEltTmzZtMHfuXOzYsQPbt2/HDTfcgNtuuw3ffPMNAB6LRnnaj4DJx6JIIQWAuHr1aue/HQ6H2LJlS/Gvf/2r87WzZ8+KkZGR4ooVK0woYWhQ7kdRFMXx48eLt912mynlCVUnT54UAYgbN24URbHm2GvYsKH41ltvOZf57rvvRADili1bzCqm5Sn3oyiKYv/+/cUHH3zQvEKFqKZNm4qvvPIKj8VakvajKJp/LLJGJcQVFRXhxIkTGDx4sPM1m82Ga665Blu2bDGxZKFpw4YNSExMRKdOnXDffffh9OnTZhfJ0ux2OwAgPj4eALBjxw5cunTJ5XjMyMhASkoKj0cdyv0o+c9//oPmzZujS5cumDlzJioqKswoXkiorq7Gm2++ifLycvTp04fHoo+U+1Fi5rEY0pMSEnDixAkAQIsWLVxeb9GihfM9Mmbo0KEYOXIk0tLSUFhYiMcffxw5OTnYsmULwsPDzS6e5TgcDjz00EPo27cvunTpAqDmeIyIiECTJk1cluXxqE1tPwLA2LFj0bZtW7Rq1Qp79uzBjBkzcODAAaxatcrE0lrP3r170adPH1y4cAGNGzfG6tWr0blzZxQUFPBY9ILWfgTMPxYZqBD94o477nD+d2ZmJrp27Yr09HRs2LABgwYNMrFk1jR16lTs27cPmzdvNrsoIU1rP959993O/87MzERSUhIGDRqEwsJCpKenB7uYltWpUycUFBTAbrfj7bffxvjx47Fx40azixVytPZj586dTT8W2fQT4lq2bAkAbpnsP/30k/M98k27du3QvHlzHDp0yOyiWM60adPwwQcfYP369WjTpo3z9ZYtW+LixYs4e/asy/I8HtVp7Uc111xzDQDweFSIiIhA+/bt0aNHD+Tl5SErKwvPP/88j0Uvae1HNcE+FhmohLi0tDS0bNkSn3/+ufO1srIybN261aV9kbx39OhRnD59GklJSWYXxTJEUcS0adOwevVqrFu3DmlpaS7v9+jRAw0bNnQ5Hg8cOIAjR47weJTxtB/VFBQUAACPRw8cDgeqqqp4LNaStB/VBPtYZNNPCDh//rxL5FpUVISCggLEx8cjJSUFDz30EJ5++ml06NABaWlpeOKJJ9CqVSsMHz7cvEJbkN5+jI+Px+zZszFq1Ci0bNkShYWFeOyxx9C+fXsMGTLExFJby9SpU7F8+XK89957iI2Ndbb122w2REVFwWazYfLkyXjkkUcQHx+PuLg4PPDAA+jTpw+uvfZak0tvHZ72Y2FhIZYvX46bb74ZzZo1w549e/Dwww8jOzsbXbt2Nbn01jFz5kzk5OQgJSUF586dw/Lly7FhwwZ88sknPBa9oLcfLXEsmtbfiAxbv369CMDtb/z48aIo1nRRfuKJJ8QWLVqIkZGR4qBBg8QDBw6YW2gL0tuPFRUV4k033SQmJCSIDRs2FNu2bSvedddd4okTJ8wutqWo7T8A4tKlS53LVFZWivfff7/YtGlTMTo6WhwxYoRYUlJiXqEtyNN+PHLkiJidnS3Gx8eLkZGRYvv27cU//OEPot1uN7fgFjNp0iSxbdu2YkREhJiQkCAOGjRI/PTTT53v81g0Rm8/WuFYFERRFIMTEhERERF5hzkqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIgoYC5evGh2EdxYsUxEpI2BChEZNmDAAEybNg3Tpk2DzWZD8+bN8cQTT0CaiSM1NRV/+ctfMG7cOMTFxeHuu+8GAGzevBnXX389oqKikJycjOnTp6O8vNy53pdeegkdOnRAo0aN0KJFC9x+++3O995++21kZmYiKioKzZo1w+DBg52fHTBgAB566CGXMg4fPhwTJkxw/tvXMhGRNTBQISKv/Otf/0KDBg3w9ddf4/nnn8dzzz2HV155xfn+3/72N2RlZWHXrl144oknUFhYiKFDh2LUqFHYs2cPVq5cic2bN2PatGkAgO3bt2P69Ol46qmncODAAXz88cfIzs4GAJSUlGDMmDGYNGkSvvvuO2zYsAEjR46Et1OUeVsmIrIOTkpIRIYNGDAAJ0+exDfffANBEAAAubm5WLNmDb799lukpqaie/fuWL16tfMzU6ZMQXh4OF5++WXna5s3b0b//v1RXl6Ojz76CBMnTsTRo0cRGxvr8n07d+5Ejx49cPjwYbRt21a1PN26dcP8+fOdrw0fPhxNmjTBsmXLAMCnMjVq1KhW+4mI/Ic1KkTklWuvvdYZpABAnz59cPDgQVRXVwMAevbs6bL87t27sWzZMjRu3Nj5N2TIEDgcDhQVFeHGG29E27Zt0a5dO9x55534z3/+g4qKCgBAVlYWBg0ahMzMTPzmN7/BkiVLcObMGa/L7G2ZiMg6GKgQkV/FxMS4/Pv8+fO45557UFBQ4PzbvXs3Dh48iPT0dMTGxmLnzp1YsWIFkpKS8Oc//xlZWVk4e/YswsPD8dlnn2Ht2rXo3LkzFixYgE6dOjmDibCwMLdmoEuXLtW6TERkHQxUiMgrW7dudfn3V199hQ4dOiA8PFx1+V/96lf49ttv0b59e7e/iIgIAECDBg0wePBgPPvss9izZw8OHz6MdevWAQAEQUDfvn0xe/Zs7Nq1CxEREc5mnISEBJSUlDi/q7q6Gvv27fO4DUbKRETWwECFiLxy5MgRPPLIIzhw4ABWrFiBBQsW4MEHH9RcfsaMGcjPz8e0adNQUFCAgwcP4r333nMmrn7wwQd44YUXUFBQgB9//BGvv/46HA4HOnXqhK1bt2LOnDnYvn07jhw5glWrVuHUqVO46qqrAAA33HADPvzwQ3z44YfYv38/7rvvPpw9e9bjNngqExFZRwOzC0BEoWXcuHGorKxE7969ER4ejgcffNDZ5VdN165dsXHjRvzxj3/E9ddfD1EUkZ6ejtGjRwMAmjRpglWrVmHWrFm4cOECOnTogBUrVuDqq6/Gd999h02bNmH+/PkoKytD27Zt8fe//x05OTkAgEmTJmH37t0YN24cGjRogIcffhgDBw70uA2eykRE1sFeP0RkmFovGyKiQGLTDxEREVkWAxUiIiKyLDb9EBERkWWxRoWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgs6/8B01+YvL+mRYAAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.1 Importing Training and Validation Datasets\n", + "\n", + "In this section, we read the dataset from the CSV file located in this directory. 500 data points were simulated for S-CO2 physical properties using REFPROP package. This example is trained on the entire dataset because neural network can overfit on smaller dataset. The data is separated using an 80/20 split into training and validation data using the IDAES split_training_validation() method.\n", + "\n", + "We rename the column headers because they contained \".\", which may cause errors while reading the column names in subsequent code, thus as a good practice we change them to the variable names to be used in the property package. Further, the input variables are **pressure**, **temperature** , while the output variables are **enth_mol**, **entr_mol**, hence we create two new dataframes for the input and output variables. " ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtOklEQVR4nO3deVxU5f4H8M8MOgjKorIbAmLuiKZppKKmVyRvZdrN1NyXFpfUMrWupbaA+ruldUu7Vlq3RW9lZpqluaaS4oKoFSlhWIJKCoggCDy/P2hOs5xZmWFmOJ/36zW+ZM6ZM885c+ac7zzP93kelRBCgIiIiEjB1K4uABEREZGrMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIo+xaNEiqFQqq9ZVqVRYtGiRU8vTr18/9OvXz223R0TWY0BERDZbt24dVCqV9GjQoAFatGiB8ePH4/fff3d18dxOdHS03vEKCQlBnz598Pnnnztk+6WlpVi0aBH27NnjkO0RKREDIiKy25IlS/Df//4Xq1evRnJyMj744AP07dsXN27ccMr7/fOf/0RZWZlTtu1sXbp0wX//+1/897//xVNPPYULFy5g2LBhWL16da23XVpaisWLFzMgIqqFBq4uABF5ruTkZHTv3h0AMHnyZAQFBWHp0qXYvHkzHnzwQYe/X4MGDdCggWdetlq0aIGHH35Y+nvs2LFo3bo1Xn31VTz66KMuLBkRAawhIiIH6tOnDwAgOztb7/mffvoJDzzwAJo1a4ZGjRqhe/fu2Lx5s946N2/exOLFi3HrrbeiUaNGaN68OXr37o0dO3ZI68jlEJWXl2P27NkIDg6Gn58f7r33Xvz2229GZRs/fjyio6ONnpfb5tq1a3HXXXchJCQE3t7e6NChA1atWmXTsbAkLCwM7du3R05Ojtn1Ll26hEmTJiE0NBSNGjVCfHw83nvvPWn5uXPnEBwcDABYvHix1Czn7PwpovrGM39qEZFbOnfuHACgadOm0nOnT59Gr1690KJFC8yfPx+NGzfG//73PwwdOhSfffYZ7r//fgA1gUlKSgomT56MHj16oLi4GEeOHMGxY8fwt7/9zeR7Tp48GR988AFGjRqFO++8E7t27cKQIUNqtR+rVq1Cx44dce+996JBgwb48ssv8fjjj6O6uhrTpk2r1ba1bt68ifPnz6N58+Ym1ykrK0O/fv1w9uxZTJ8+HTExMfjkk08wfvx4FBYW4oknnkBwcDBWrVqFxx57DPfffz+GDRsGAOjcubNDykmkGIKIyEZr164VAMS3334rLl++LM6fPy8+/fRTERwcLLy9vcX58+eldQcMGCDi4uLEjRs3pOeqq6vFnXfeKW699Vbpufj4eDFkyBCz7/v8888L3ctWRkaGACAef/xxvfVGjRolAIjnn39eem7cuHEiKirK4jaFEKK0tNRovaSkJNGqVSu95/r27Sv69u1rtsxCCBEVFSUGDRokLl++LC5fvixOnDghHnroIQFAzJgxw+T2VqxYIQCIDz74QHquoqJCJCQkiCZNmoji4mIhhBCXL1822l8isg2bzIjIbgMHDkRwcDAiIyPxwAMPoHHjxti8eTNuueUWAMCVK1ewa9cuPPjgg7h27RoKCgpQUFCAP/74A0lJSThz5ozUKy0wMBCnT5/GmTNnrH7/r776CgAwc+ZMvednzZpVq/3y8fGR/l9UVISCggL07dsXv/zyC4qKiuza5vbt2xEcHIzg4GDEx8fjk08+wZgxY7B06VKTr/nqq68QFhaGkSNHSs81bNgQM2fORElJCfbu3WtXWYjIGJvMiMhub7zxBtq0aYOioiK8++672LdvH7y9vaXlZ8+ehRACCxcuxMKFC2W3cenSJbRo0QJLlizBfffdhzZt2qBTp04YPHgwxowZY7bp59dff4VarUZsbKze823btq3Vfh04cADPP/880tLSUFpaqresqKgIAQEBNm+zZ8+eePHFF6FSqeDr64v27dsjMDDQ7Gt+/fVX3HrrrVCr9X+7tm/fXlpORI7BgIiI7NajRw+pl9nQoUPRu3dvjBo1CllZWWjSpAmqq6sBAE899RSSkpJkt9G6dWsAQGJiIrKzs/HFF19g+/btePvtt/Hqq69i9erVmDx5cq3LampAx6qqKr2/s7OzMWDAALRr1w6vvPIKIiMjodFo8NVXX+HVV1+V9slWQUFBGDhwoF2vJSLnY0BERA7h5eWFlJQU9O/fH//+978xf/58tGrVCkBNM481wUCzZs0wYcIETJgwASUlJUhMTMSiRYtMBkRRUVGorq5Gdna2Xq1QVlaW0bpNmzZFYWGh0fOGtSxffvklysvLsXnzZrRs2VJ6fvfu3RbL72hRUVHIzMxEdXW1Xi3RTz/9JC0HTAd7RGQ95hARkcP069cPPXr0wIoVK3Djxg2EhISgX79+eOutt5CXl2e0/uXLl6X///HHH3rLmjRpgtatW6O8vNzk+yUnJwMAXnvtNb3nV6xYYbRubGwsioqKkJmZKT2Xl5dnNFq0l5cXAEAIIT1XVFSEtWvXmiyHs9x9993Iz8/Hhg0bpOcqKyvx+uuvo0mTJujbty8AwNfXFwBkAz4isg5riIjIoebOnYt//OMfWLduHR599FG88cYb6N27N+Li4jBlyhS0atUKFy9eRFpaGn777TecOHECANChQwf069cP3bp1Q7NmzXDkyBF8+umnmD59usn36tKlC0aOHIk333wTRUVFuPPOO7Fz506cPXvWaN2HHnoI8+bNw/3334+ZM2eitLQUq1atQps2bXDs2DFpvUGDBkGj0eCee+7BI488gpKSEqxZswYhISGyQZ0zTZ06FW+99RbGjx+Po0ePIjo6Gp9++ikOHDiAFStWwM/PD0BNEniHDh2wYcMGtGnTBs2aNUOnTp3QqVOnOi0vkUdzdTc3IvI82m736enpRsuqqqpEbGysiI2NFZWVlUIIIbKzs8XYsWNFWFiYaNiwoWjRooX4+9//Lj799FPpdS+++KLo0aOHCAwMFD4+PqJdu3bipZdeEhUVFdI6cl3ky8rKxMyZM0Xz5s1F48aNxT333CPOnz8v2w19+/btolOnTkKj0Yi2bduKDz74QHabmzdvFp07dxaNGjUS0dHRYunSpeLdd98VAEROTo60ni3d7i0NKWBqexcvXhQTJkwQQUFBQqPRiLi4OLF27Vqj1x48eFB069ZNaDQadsEnsoNKCJ16YSIiIiIFYg4RERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixePAjFaqrq7GhQsX4Ofnx2HyiYiIPIQQAteuXUNERITRRMm6GBBZ6cKFC4iMjHR1MYiIiMgO58+fxy233GJyOQMiK2mHyD9//jz8/f1dXBoiIiKyRnFxMSIjI6X7uCkMiKykbSbz9/dnQERERORhLKW7MKmaiIiIFI8BERERESkeAyIiIiJSPOYQERGR4lVVVeHmzZuuLgbZoWHDhvDy8qr1dhgQERGRYgkhkJ+fj8LCQlcXhWohMDAQYWFhtRonkAEREREpljYYCgkJga+vLwfe9TBCCJSWluLSpUsAgPDwcLu3xYCIiIgUqaqqSgqGmjdv7urikJ18fHwAAJcuXUJISIjdzWdMqiYiIkXS5gz5+vq6uCRUW9rPsDZ5YAyIiIhI0dhM5vkc8RkyICIiIiLFY0BEREREAGpqWjZt2uTqYujZs2cPVCqV03sCMiBysbyiMhzMLkBeUZmri0JERAqxaNEidOnSxdXFcCvsZeZCG9JzsWDjSVQLQK0CUobFYcTtLV1dLCIiIsVhDZGL5BWVScEQAFQL4JmNp1hTREREFlVXVyMlJQUxMTHw8fFBfHw8Pv30UwB/NTHt3LkT3bt3h6+vL+68805kZWUBANatW4fFixfjxIkTUKlUUKlUWLdunbTtgoIC3H///fD19cWtt96KzZs3W1Um7ft+88036Nq1K3x8fHDXXXfh0qVL2LZtG9q3bw9/f3+MGjUKpaWl0uvKy8sxc+ZMhISEoFGjRujduzfS09Mdd7CsxIDIRXIKrkvBkFaVEDhXUCr/AiIicmt1mQKRkpKC999/H6tXr8bp06cxe/ZsPPzww9i7d6+0zrPPPot//etfOHLkCBo0aICJEycCAEaMGIEnn3wSHTt2RF5eHvLy8jBixAjpdYsXL8aDDz6IzMxM3H333Rg9ejSuXLliddkWLVqEf//73zh48CDOnz+PBx98ECtWrMBHH32ErVu3Yvv27Xj99del9Z9++ml89tlneO+993Ds2DG0bt0aSUlJNr2nIzAgcpGYoMZQG/QS9FKpEB3E8TCIiDzNhvRc9ErdhVFrDqFX6i5sSM912nuVl5fj5ZdfxrvvvoukpCS0atUK48ePx8MPP4y33npLWu+ll15C37590aFDB8yfPx8HDx7EjRs34OPjgyZNmqBBgwYICwtDWFiYNLghAIwfPx4jR45E69at8fLLL6OkpASHDx+2unwvvvgievXqha5du2LSpEnYu3cvVq1aha5du6JPnz544IEHsHv3bgDA9evXsWrVKixfvhzJycno0KED1qxZAx8fH7zzzjuOO2hWYEDkIuEBPkgZFgevP8dO8FKp8PKwTggP8LHwSiIicid1nQJx9uxZlJaW4m9/+xuaNGkiPd5//31kZ2dL63Xu3Fn6v3ZKC+0UF+bovq5x48bw9/e36nVyrw8NDYWvry9atWql95x2e9nZ2bh58yZ69eolLW/YsCF69OiBH3/80er3dAQmVbvQiNtbIrFNMM4VlCI6yJfBEBGRBzKXAuGM63pJSQkAYOvWrWjRooXeMm9vbykoatiwofS8duDC6upqi9vXfZ32tda8Tu71KpWq1turKwyIXCw8wIeBEBGRB9OmQOgGRc5MgejQoQO8vb2Rm5uLvn37Gi3XrSUyRaPRoKqqyhnFs0lsbCw0Gg0OHDiAqKgoADXTb6Snp2PWrFl1WhYGRERERLWgTYF4ZuMpVAnh9BQIPz8/PPXUU5g9ezaqq6vRu3dvFBUV4cCBA/D395cCC3Oio6ORk5ODjIwM3HLLLfDz84O3t7dTymtO48aN8dhjj2Hu3Llo1qwZWrZsiWXLlqG0tBSTJk2q07IwICIiIqqluk6BeOGFFxAcHIyUlBT88ssvCAwMxG233YZnnnnGquao4cOHY+PGjejfvz8KCwuxdu1ajB8/3qllNiU1NRXV1dUYM2YMrl27hu7du+Obb75B06ZN67QcKiGEsLwaFRcXIyAgAEVFRfD393d1cYiIqJZu3LiBnJwcxMTEoFGjRq4uDtWCuc/S2vs3e5kRERGR4jEgIiIiIoseffRRvW7+uo9HH33U1cWrNZcGRPv27cM999yDiIgI2Rl2tUOKGz6WL18urRMdHW20PDU1VW87mZmZ6NOnDxo1aoTIyEgsW7asLnaPiIio3liyZAkyMjJkH0uWLHF18WrNpUnV169fR3x8PCZOnIhhw4YZLc/Ly9P7e9u2bZg0aRKGDx+u9/ySJUswZcoU6W8/Pz/p/8XFxRg0aBAGDhyI1atX4+TJk5g4cSICAwMxdepUB+8RERFR/RQSEoKQkBBXF8NpXBoQJScnIzk52eTysLAwvb+/+OIL9O/fX2/ES6AmADJcV+vDDz9ERUUF3n33XWg0GnTs2BEZGRl45ZVXGBARERERAA/KIbp48SK2bt0qOy5Bamoqmjdvjq5du2L58uWorKyUlqWlpSExMREajUZ6LikpCVlZWbh69arJ9ysvL0dxcbHeg4iI6h93HDWZbOOIz9BjxiF677334OfnZ9S0NnPmTNx2221o1qwZDh48iAULFiAvLw+vvPIKACA/Px8xMTF6rwkNDZWWmRrnICUlBYsXL3bCnhARkTvQaDRQq9W4cOECgoODodFopCkuyDMIIVBRUYHLly9DrVbrVX7YymMConfffRejR482Gl9gzpw50v87d+4MjUaDRx55BCkpKbUadXPBggV62y4uLkZkZKTd2yMiIveiVqsRExODvLw8XLhwwdXFoVrw9fVFy5YtoVbb3/DlEQHRd999h6ysLGzYsMHiuj179kRlZSXOnTuHtm3bIiwsDBcvXtRbR/u3qbwjoGaCPFcMY05ERHVHo9GgZcuWqKysdIu5vch2Xl5eaNCgQa1r9zwiIHrnnXfQrVs3xMfHW1w3IyMDarVayoRPSEjAs88+i5s3b0oz7u7YsQNt27at82HBiYjI/WhnZDeclZ2UxaVJ1SUlJdIYBgCkieZyc3OldYqLi/HJJ59g8uTJRq9PS0vDihUrcOLECfzyyy/48MMPMXv2bDz88MNSsDNq1ChoNBpMmjQJp0+fxoYNG7By5Uq95jAiIiJSNpfWEB05cgT9+/eX/tYGKePGjcO6desAAOvXr4cQAiNHjjR6vbe3N9avX49FixahvLwcMTExmD17tl6wExAQgO3bt2PatGno1q0bgoKC8Nxzz7HLPREREUk4uauVOLkrERGR5+HkrkRERERWYkBEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBTPpQHRvn37cM899yAiIgIqlQqbNm3SWz5+/HioVCq9x+DBg/XWuXLlCkaPHg1/f38EBgZi0qRJKCkp0VsnMzMTffr0QaNGjRAZGYlly5Y5e9eIiIjIg7g0ILp+/Tri4+PxxhtvmFxn8ODByMvLkx4ff/yx3vLRo0fj9OnT2LFjB7Zs2YJ9+/Zh6tSp0vLi4mIMGjQIUVFROHr0KJYvX45FixbhP//5j9P2i4iIiDxLA1e+eXJyMpKTk82u4+3tjbCwMNllP/74I77++mukp6eje/fuAIDXX38dd999N/7v//4PERER+PDDD1FRUYF3330XGo0GHTt2REZGBl555RW9wImIiIiUy+1ziPbs2YOQkBC0bdsWjz32GP744w9pWVpaGgIDA6VgCAAGDhwItVqNQ4cOSeskJiZCo9FI6yQlJSErKwtXr141+b7l5eUoLi7WexAREVH95NYB0eDBg/H+++9j586dWLp0Kfbu3Yvk5GRUVVUBAPLz8xESEqL3mgYNGqBZs2bIz8+X1gkNDdVbR/u3dh05KSkpCAgIkB6RkZGO3DUiIiJyIy5tMrPkoYcekv4fFxeHzp07IzY2Fnv27MGAAQOc+t4LFizAnDlzpL+Li4sZFBEREdVTbl1DZKhVq1YICgrC2bNnAQBhYWG4dOmS3jqVlZW4cuWKlHcUFhaGixcv6q2j/dtUbhJQk7vk7++v9yAiIqL6yaMCot9++w1//PEHwsPDAQAJCQkoLCzE0aNHpXV27dqF6upq9OzZU1pn3759uHnzprTOjh070LZtWzRt2rRud4CIiIjckksDopKSEmRkZCAjIwMAkJOTg4yMDOTm5qKkpARz587F999/j3PnzmHnzp2477770Lp1ayQlJQEA2rdvj8GDB2PKlCk4fPgwDhw4gOnTp+Ohhx5CREQEAGDUqFHQaDSYNGkSTp8+jQ0bNmDlypV6zWFERESkbCohhHDVm+/Zswf9+/c3en7cuHFYtWoVhg4diuPHj6OwsBAREREYNGgQXnjhBb0k6StXrmD69On48ssvoVarMXz4cLz22mto0qSJtE5mZiamTZuG9PR0BAUFYcaMGZg3b55NZS0uLkZAQACKiorYfEZEROQhrL1/uzQg8iQMiIiIiDyPtfdvj8ohIiIiInIGBkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEClEXlEZDmYXIK+ozNVFISIicjsNXF0Acr4N6blYsPEkqgWgVgEpw+Iw4vaWri4WERGR22ANUT2XV1QmBUMAUC2AZzaeYk0RERGRDgZE9VxOwXUpGNKqEgLnCkpdUyAiIiI3xIConosJagy1Sv85L5UK0UG+rikQERGRG2JAVI/lFZUhp+A65iW3g5eqJiryUqnw8rBOCA/wcXHpiIiI3AeTquspw0TqeYPbofMtgYgO8mUwREREZIA1RPWQXCL1sq+zGAwRERGZwICoHmIiNRERkW0YENVDTKQmIiKyDQOieig8wAcpw+KYSE1ERGQlJlXXUyNub4nENsE4V1DK3CEiIiILGBDVY+EBPgyEiIiIrMAmMyIiIlI8BkRERESkeAyIiIiISPFcGhDt27cP99xzDyIiIqBSqbBp0yZp2c2bNzFv3jzExcWhcePGiIiIwNixY3HhwgW9bURHR0OlUuk9UlNT9dbJzMxEnz590KhRI0RGRmLZsmV1sXtERETkIVwaEF2/fh3x8fF44403jJaVlpbi2LFjWLhwIY4dO4aNGzciKysL9957r9G6S5YsQV5envSYMWOGtKy4uBiDBg1CVFQUjh49iuXLl2PRokX4z3/+49R9IyIiIs/h0l5mycnJSE5Oll0WEBCAHTt26D3373//Gz169EBubi5atmwpPe/n54ewsDDZ7Xz44YeoqKjAu+++C41Gg44dOyIjIwOvvPIKpk6d6rid8SDaSV9jghqzFxoRERE8LIeoqKgIKpUKgYGBes+npqaiefPm6Nq1K5YvX47KykppWVpaGhITE6HRaKTnkpKSkJWVhatXr5p8r/LychQXF+s96oMN6bnolboLo9YcQq/UXdiQnuvqIhEREbmcxwREN27cwLx58zBy5Ej4+/tLz8+cORPr16/H7t278cgjj+Dll1/G008/LS3Pz89HaGio3ra0f+fn55t8v5SUFAQEBEiPyMhIB+9R3ZOb9PWZjaeQV1Tm2oIRERG5mEcMzHjz5k08+OCDEEJg1apVesvmzJkj/b9z587QaDR45JFHkJKSAm9vb7vfc8GCBXrbLi4u9vigyNykr2w6IyIiJXP7gEgbDP3666/YtWuXXu2QnJ49e6KyshLnzp1D27ZtERYWhosXL+qto/3bVN4RAHh7e9cqoHJH2klfdYMiTvpKRETk5k1m2mDozJkz+Pbbb9G8eXOLr8nIyIBarUZISAgAICEhAfv27cPNmzeldXbs2IG2bduiadOmTiu7O+Kkr0RERPJcWkNUUlKCs2fPSn/n5OQgIyMDzZo1Q3h4OB544AEcO3YMW7ZsQVVVlZTz06xZM2g0GqSlpeHQoUPo378//Pz8kJaWhtmzZ+Phhx+Wgp1Ro0Zh8eLFmDRpEubNm4dTp05h5cqVePXVV12yz67GSV+JiIiMqYQQwvJqzrFnzx7079/f6Plx48Zh0aJFiImJkX3d7t270a9fPxw7dgyPP/44fvrpJ5SXlyMmJgZjxozBnDlz9Jq7MjMzMW3aNKSnpyMoKAgzZszAvHnzbCprcXExAgICUFRUZLHZjoiIiNyDtfdvlwZEnoQBERERkeex9v7t1jlERERERHWBAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSvgbUrFhcXW71Rf39/uwpDRERE5ApWB0SBgYFQqVRm1xFCQKVSoaqqqtYFIyIiIqorVgdEu3fvdmY5iIiIiFzG6oCob9++ziwHERERkctYHRAZKiwsxDvvvIMff/wRANCxY0dMnDgRAQEBDiscERERUV2wq5fZkSNHEBsbi1dffRVXrlzBlStX8MorryA2NhbHjh1zdBmJiIiInEolhBC2vqhPnz5o3bo11qxZgwYNaiqZKisrMXnyZPzyyy/Yt2+fwwvqasXFxQgICEBRURF70REREXkIa+/fdgVEPj4+OH78ONq1a6f3/A8//IDu3bujtLTU9hK7OQZEREREnsfa+7ddTWb+/v7Izc01ev78+fPw8/OzZ5NERERELmNXQDRixAhMmjQJGzZswPnz53H+/HmsX78ekydPxsiRIx1dRiIiIiKnsisg+r//+z8MGzYMY8eORXR0NKKjozF+/Hg88MADWLp0qdXb2bdvH+655x5ERERApVJh06ZNesuFEHjuuecQHh4OHx8fDBw4EGfOnNFb58qVKxg9ejT8/f0RGBiISZMmoaSkRG+dzMxM9OnTB40aNUJkZCSWLVtmz24TERFRPWVXQKTRaLBy5UpcvXoVGRkZyMjIwJUrV/Dqq6/C29vb6u1cv34d8fHxeOONN2SXL1u2DK+99hpWr16NQ4cOoXHjxkhKSsKNGzekdUaPHo3Tp09jx44d2LJlC/bt24epU6dKy4uLizFo0CBERUXh6NGjWL58ORYtWoT//Oc/9uw6ERER1UfCTQAQn3/+ufR3dXW1CAsLE8uXL5eeKywsFN7e3uLjjz8WQgjxww8/CAAiPT1dWmfbtm1CpVKJ33//XQghxJtvvimaNm0qysvLpXXmzZsn2rZta1P5ioqKBABRVFRkz+4RERGRC1h7/7arhujGjRtYvnw57r77bnTv3h233Xab3sMRcnJykJ+fj4EDB0rPBQQEoGfPnkhLSwMApKWlITAwEN27d5fWGThwINRqNQ4dOiStk5iYCI1GI62TlJSErKwsXL161eT7l5eXo7i4WO9BRERE9ZNdI1VPmjQJ27dvxwMPPIAePXpYnPTVHvn5+QCA0NBQvedDQ0OlZfn5+QgJCdFb3qBBAzRr1kxvnZiYGKNtaJc1bdpU9v1TUlKwePHi2u8IERERuT27AqItW7bgq6++Qq9evRxdHrexYMECzJkzR/q7uLgYkZGRLiwREREROYtdTWYtWrRw+nhDYWFhAICLFy/qPX/x4kVpWVhYGC5duqS3vLKyEleuXNFbR24buu8hx9vbG/7+/noPIiIiqp/sCoj+9a9/Yd68efj1118dXR5JTEwMwsLCsHPnTum54uJiHDp0CAkJCQCAhIQEFBYW4ujRo9I6u3btQnV1NXr27Cmts2/fPty8eVNaZ8eOHWjbtq3J5jIiIiJSFrsCou7du+PGjRto1aoV/Pz80KxZM72HtUpKSqRu+0BNInVGRgZyc3OhUqkwa9YsvPjii9i8eTNOnjyJsWPHIiIiAkOHDgUAtG/fHoMHD8aUKVNw+PBhHDhwANOnT8dDDz2EiIgIAMCoUaOg0WgwadIknD59Ghs2bMDKlSv1msOIiIhI2ezKIRo5ciR+//13vPzyywgNDbU7qfrIkSPo37+/9Lc2SBk3bhzWrVuHp59+GtevX8fUqVNRWFiI3r174+uvv0ajRo2k13z44YeYPn06BgwYALVajeHDh+O1116TlgcEBGD79u2YNm0aunXrhqCgIDz33HN6YxURERGRstk1uauvry/S0tIQHx/vjDK5JU7uSkRE5HmcOrlru3btUFZWZnfhiIiIiNyJXQFRamoqnnzySezZswd//PEHBzAkIiIij2ZXk5laXRNHGeYOCSGgUqlQVVXlmNK5ETaZEREReR5r7992JVXv3r3b7oIRERERuRu7AqK+fftatd7jjz+OJUuWICgoyJ63ISIiIqoTduUQWeuDDz5gThERERG5PacGRHakJxERERHVOacGRERERESegAERERERKR4DIiIiIlI8BkRERESkeE4NiB5++GEOYuggeUVlOJhdgLwiTplCRETkaHaNQwQAhYWFOHz4MC5duoTq6mq9ZWPHjgUArFq1qnalIwDAhvRcLNh4EtUCUKuAlGFxGHF7S1cXi4iIqN6wa+qOL7/8EqNHj0ZJSQn8/f31pvBQqVS4cuWKQwvpDlw1dUdeURl6pe5Ctc6n5KVSYf/8/ggP8KmzchAREXkip852/+STT2LixIkoKSlBYWEhrl69Kj3qYzDkSjkF1/WCIQCoEgLnCkpdUyAiIqJ6yK6A6Pfff8fMmTPh6+vr6PKQgZigxlDrz6ELL5UK0UE89kRERI5iV0CUlJSEI0eOOLosJCM8wAcpw+Lg9WezpJdKhZeHdWJzGRERkQNZnVS9efNm6f9DhgzB3Llz8cMPPyAuLg4NGzbUW/fee+91XAkJI25vicQ2wThXUIroIF8GQ0RERA5mdVK1Wm1dZZJKpUJVVVWtCuWOnJ1UnVdUhpyC64gJasyAh4iIyEGsvX9bXUNk2LWeHIfd6omIiFzLrhyi999/H+Xl5UbPV1RU4P333691oZQkr6hMCoYAoFoACzae5ACMREREdciugGjChAkoKioyev7atWuYMGFCrQulJHLd6qsFsPZAjmsKREREpEB2BURCCL3BGLV+++03BAQE1LpQSiLXrR4A3t6Xw1oiIiKiOmLT1B1du3aFSqWCSqXCgAED0KDBXy+vqqpCTk4OBg8e7PBC1mfhAT6Y1DsGa77TrxGqBnCuoJQJ1kRERHXApoBo6NChAICMjAwkJSWhSZMm0jKNRoPo6GgMHz7coQVUgom9Y/D2dznQbTnj4ItERER1x6aA6PnnnwcAREdHY8SIEWjUqJFTCqU04QE+SB0eh2c2nkKVEBx8kYiIqI7ZNbmrVkVFhexs9y1b1r8u43UxuWteURkHXyQiInIgh49DpOvMmTOYOHEiDh48qPe8Ntm6Pg7MWBfCA3wYCBEREbmAXQHR+PHj0aBBA2zZsgXh4eGyPc6IiIiIPIVdAVFGRgaOHj2Kdu3aObo8RERERHXOrnGIOnTogIKCAkeXhYiIiMgl7AqIli5diqeffhp79uzBH3/8geLiYr0HERERkSexq5eZ7sz3uvlD9Tmpui56mREREZFjObWX2e7du+0uGLmvvKIy5BRcR0xQY/Z2IyIiRbGryaxv375Qq9VYs2YN5s+fj9atW6Nv377Izc2Fl5eXo8tIdWBDei56pe7CqDWH0Ct1Fzak57q6SERERHXGroDos88+Q1JSEnx8fHD8+HGUl5cDAIqKivDyyy87tIDR0dHS/Gm6j2nTpgEA+vXrZ7Ts0Ucf1dtGbm4uhgwZAl9fX4SEhGDu3LmorKx0aDmdJa+oDAezC5w60WteURkWbDyJ6j8bT6sF8MzGU5xcloiIFMOuJrMXX3wRq1evxtixY7F+/Xrp+V69euHFF190WOEAID09XS8n6dSpU/jb3/6Gf/zjH9JzU6ZMwZIlS6S/fX3/mgOsqqoKQ4YMQVhYGA4ePIi8vDyMHTsWDRs2dHjw5mgb0nOlQEWtAlKGxWHE7Y4fBTyn4LoUDGlVCcHJZYmISDHsqiHKyspCYmKi0fMBAQEoLCysbZn0BAcHIywsTHps2bIFsbGx6Nu3r7SOr6+v3jq6SVPbt2/HDz/8gA8++ABdunRBcnIyXnjhBbzxxhuoqKhwaFkdqS5rbWKCGkNtMLYmJ5clIiIlsSsgCgsLw9mzZ42e379/P1q1alXrQplSUVGBDz74ABMnTtTr3fbhhx8iKCgInTp1woIFC1BaWiotS0tLQ1xcHEJDQ6XnkpKSUFxcjNOnT5t8r/LycpcOJ2Cu1sbRwgN8kDIsDl5/HlNOLktEREpjV5PZlClT8MQTT+Ddd9+FSqXChQsXkJaWhqeeegoLFy50dBklmzZtQmFhIcaPHy89N2rUKERFRSEiIgKZmZmYN28esrKysHHjRgBAfn6+XjAEQPo7Pz/f5HulpKRg8eLFjt8JK2lrbXSDIku1NrXpJTbi9pZIbBPMyWWJiEiR7AqI5s+fj+rqagwYMAClpaVITEyEt7c3nnrqKcyYMcPRZZS88847SE5ORkREhPTc1KlTpf/HxcUhPDwcAwYMQHZ2NmJjY+1+rwULFmDOnDnS38XFxYiMjLR7e7bS1to8s/EUqoSwWGtjb76RYRDFQIiIiJTIroBIpVLh2Wefxdy5c3H27FmUlJSgQ4cOaNKkiaPLJ/n111/x7bffSjU/pvTs2RMAcPbsWcTGxiIsLAyHDx/WW+fixYsAapr+TPH29oa3t3ctS1071tbamMo3SmwTbDbAqaukbSIiIndnVw6RlkajQYcOHdCjRw+nBkMAsHbtWoSEhGDIkCFm18vIyAAAhIeHAwASEhJw8uRJXLp0SVpnx44d8Pf3R4cOHZxWXkcJD/BBQmxzs4GNPflG7GpPRET0l1oFRHWluroaa9euxbhx49CgwV+VWtnZ2XjhhRdw9OhRnDt3Dps3b8bYsWORmJiIzp07AwAGDRqEDh06YMyYMThx4gS++eYb/POf/8S0adNcXgPkKPb0EqvLpG0iIiJ35xEB0bfffovc3FxMnDhR73mNRoNvv/0WgwYNQrt27fDkk09i+PDh+PLLL6V1vLy8sGXLFnh5eSEhIQEPP/wwxo4dqzdukaezp5cYu9oTERH9xa7JXZXIEyZ3zSsqs6mX2Ib0XKOkbeYQERFRfeLUyV3JPdnaS4xd7YmIiGowIFI4drUnIiLykBwiIiIiImdiQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIPlldUhoPZBcgrKnN1UYiIiDwaZ7v3UBvSc7Fg40lUC0CtAlKGxWHE7S1dXSwiIiKPxBoiD5RXVCYFQwBQLYBnNp5iTREREZGdGBB5oJyC61IwpFUlBM4VlLqmQERERB6OAZEHiglqDLVK/zkvlQrRQb6uKRAREZGHY0DkgcIDfJAyLA5eqpqoyEulwsvDOiE8wMfFJVMeJrYTEdUPTKr2UCNub4nENsE4V1CK6CBfBkMuYC6xPa+oDDkF1xET1JifDRGRB2BA5MHCA3x4s3URU4ntiW2Cse/ny+wBSETkYdhkRmQHU4ntx369yh6AREQeiAERkR1MJbZXC8EegEREHogBEZEdTCW2d49uxh6AREQeiDlEboJJuJ7HVGJ7yrA4PLPxFKqEYA9AIiIPwYDIDXAaDs8ll9jOHoBERJ6HTWYuxmk46qfwAB8kxDZnMERE5CEYELkYp+EgIiJyPQZELsZpOIiIiFyPAZGLcRoOIiIi12NStRtgEi4REZFrMSByE5yGg4iIyHXYZEYOxdnfiYjIE7GGiByG4ykREZGncvsaokWLFkGlUuk92rVrJy2/ceMGpk2bhubNm6NJkyYYPnw4Ll68qLeN3NxcDBkyBL6+vggJCcHcuXNRWVlZ17tSr3E8JSIi8mQeUUPUsWNHfPvtt9LfDRr8VezZs2dj69at+OSTTxAQEIDp06dj2LBhOHDgAACgqqoKQ4YMQVhYGA4ePIi8vDyMHTsWDRs2xMsvv1zn+2KJp07hYW48JU/aDyIiUiaPCIgaNGiAsLAwo+eLiorwzjvv4KOPPsJdd90FAFi7di3at2+P77//HnfccQe2b9+OH374Ad9++y1CQ0PRpUsXvPDCC5g3bx4WLVoEjUZT17tjkrVNTu4YNGnHU9INijieEhEReQq3bzIDgDNnziAiIgKtWrXC6NGjkZubCwA4evQobt68iYEDB0rrtmvXDi1btkRaWhoAIC0tDXFxcQgNDZXWSUpKQnFxMU6fPm3yPcvLy1FcXKz3cCZrm5w2pOeiV+oujFpzCL1Sd2FDeq5Ty2UtjqdkGhPNiYjcn9vXEPXs2RPr1q1D27ZtkZeXh8WLF6NPnz44deoU8vPzodFoEBgYqPea0NBQ5OfnAwDy8/P1giHtcu0yU1JSUrB48WLH7owZ1jQ5mQqaEtsEu0XgwfGUjDHRnIjIM7h9QJScnCz9v3PnzujZsyeioqLwv//9Dz4+zrvhLliwAHPmzJH+Li4uRmRkpNPez5omJ0/I0+F4Sn9x9wCWiIj+4hFNZroCAwPRpk0bnD17FmFhYaioqEBhYaHeOhcvXpRyjsLCwox6nWn/lstL0vL29oa/v7/ew5msaXLylHnP2ERUgxP3EhF5Do8LiEpKSpCdnY3w8HB069YNDRs2xM6dO6XlWVlZyM3NRUJCAgAgISEBJ0+exKVLl6R1duzYAX9/f3To0KHOy2/OiNtbYv/8/vh4yh3YP7+/UdOKJ+TpuGuOkyt4SgBLRESASgghLK/mOk899RTuueceREVF4cKFC3j++eeRkZGBH374AcHBwXjsscfw1VdfYd26dfD398eMGTMAAAcPHgRQ0+2+S5cuiIiIwLJly5Cfn48xY8Zg8uTJNnW7Ly4uRkBAAIqKipxeW2RJXlGZW+bp5BWVoVfqLqNmv/3z+7tVOevShvRcPLPxFKqEkAJY5hAREdUda+/fbp9D9Ntvv2HkyJH4448/EBwcjN69e+P7779HcHAwAODVV1+FWq3G8OHDUV5ejqSkJLz55pvS6728vLBlyxY89thjSEhIQOPGjTFu3DgsWbLEVbtUa+6ap+MJOU51jYnmRESewe1riNyFO9UQuSvWEBERkbux9v7tcTlE5L48IceJiIhIjts3mZFnYRMRERF5IgZE9Yi7TOnhrjlOREREpjAgqic4IjIREZH9mENUD1g7DxoRERHJY0BUD3BEZCIiotphQFQP1OWIyJyWg4iI6iMGRPVAXXV357QcRERUX3FgRit5wsCMzpzSg4MuEhGRJ6o3U3eQ9ZzZ3Z3TchARUX3GJjOyCmdudzzmYxERuQ8GRGQVTsvhWMzHIiJyL8whspIn5BDVBWfmKSkF87GIiOoOc4jIKTgtR+0xH4uIyP2wyYychjky8piPRUTkfhgQkVMwR8Z0QMh8LCIi98McIisxh8h6zJGxbrJd5mMRETmftfdv1hCRwyl9bjVrJ9sND/BBQmxzBkNERG6AARE5jLaJqLHGS9E5MkoPCImIPBF7mZFDGDYR3d+1BTYdv4AqIRSXI6NNmjZsMlRKQEhEZKu8ojLkFFxHTFBjl90rGBB5AHc4UcyRayLadPwCNj6egNKKasXlyGiTpp/ZeMotAkJ3P3+ISNmsybmsCwyI3Jy7nCjmmGoiKq2oRkJsc9cUysVG3N4SiW2CXZ407QnnDxEpl6mcy8Q2wXV+3WQOkRuzNjnX1TiujjxXJ017yvlDRMrlTjmXDIjcmDudKLoMx9exZ1wdRw3ayMEfTXPX84eISMudflCzycyNuVNyrjYP5eTvRVi67SejJhhbmogc1YzD5iDz3On8ISKS4045lxyY0UquGphxQ3qu0YlS1zd93cDDkK0DLjpq0MbabkcpicbucP4QEVnizIFqOblrPWGq5sXcDd2RN3vDPBRDtk5K6qiJTWuznfpUs2Tps3aX5G4iInPcYeJwBkQewPBEMXdDd/TNXi7w0GVrE4yjmnHs3Y479WioLWs/a3e40BARuTsmVXsYcz2HHN2rKK+oDFeuV0BlYrk9bb2OmtjU3u3Ul0Rj9iAjInIs1hB5GHM3dAHhkOYoQL/2QYWah0BN4PH04LbofEug3U0wjmrGsWc79SXR2FFNj0REVIMBkYexdEOv7c0+r6gMR85d0at9EH9u9/WHuqJbdFOH3HAd1Yxj63bcqUdDbdSXwI6IyF0wIPIwlm7o1t7s5ZJxzfUmqxaASlVTM6EthyvVJnG8PiQa15fAjojIXbDbvZVc1e3eFHNdFC11X5RLxk1sE2zUjV2X6s82M21tkSt7ZtWnXmK15cyuqkRE9YG1928GRFZyh4DIEd3p5cbvUauAaf1j8fqubNnXqFWA+DMY0vJSqbDx8QRcr6iq07F8HDWOERERKQPHIapnHFUrIpeMWy0gGwypAbw+qiuqhcCMjzP0llUJgaFvHKzzGiMmExMRkTO4fbf7lJQU3H777fDz80NISAiGDh2KrKwsvXX69esHlUql93j00Uf11snNzcWQIUPg6+uLkJAQzJ07F5WVlXW5K3aT62K94LOTdnWxlps3Ro6XSoWU4XEY0jkC3aObyb5GG5c4osu3tXOSudO8N0REVH+4fUC0d+9eTJs2Dd9//z127NiBmzdvYtCgQbh+/breelOmTEFeXp70WLZsmbSsqqoKQ4YMQUVFBQ4ePIj33nsP69atw3PPPVfXu2MX2VodAGv3n7N5W4bj98hZOKQ99s/vL9X4GL5GLjiqEgJbM/PsCoo2pOeiV+oujFpzCL1Sd2FDeq7V5WcyMREROYLH5RBdvnwZISEh2Lt3LxITEwHU1BB16dIFK1askH3Ntm3b8Pe//x0XLlxAaGgoAGD16tWYN28eLl++DI1GY/F9XZlDlFdUhjtTdsHwg1KrgAPz77IrGMgrKsOxX69i+kfHjXKDTOXjaBN4fTVq3P/mQdkEbFubz+zNCXJ1MrFS5kIjIvJ01t6/3b6GyFBRUREAoFmzZnrPf/jhhwgKCkKnTp2wYMEClJb+NfJwWloa4uLipGAIAJKSklBcXIzTp0/Lvk95eTmKi4v1Hq4SHuCDKX1ijJ6vFrB7hOXwAB8M6RyB1OHW17aEB/ggIbY54iObmqxlsrX5zN6Ro7VlcUUwYkuNFhEReQaPSqqurq7GrFmz0KtXL3Tq1El6ftSoUYiKikJERAQyMzMxb948ZGVlYePGjQCA/Px8vWAIgPR3fn6+7HulpKRg8eLFTtoT203oHYO39+c4fCA+e8fk0b5ua2YeXtz6o94yW5KcrRlg0J1qY+rTXGhERPQXj6ohmjZtGk6dOoX169frPT916lQkJSUhLi4Oo0ePxvvvv4/PP/8c2dny3citsWDBAhQVFUmP8+fP17b4teLM3BnD2hZrE5xrapnCzSY5W9qWpf1yt9oYZ8yFZu3xJqL6jdcC1/KYGqLp06djy5Yt2LdvH2655Raz6/bs2RMAcPbsWcTGxiIsLAyHDx/WW+fixYsAgLCwMNlteHt7w9vb2wEldxxnjrCsrYU5+VsRln79k9Xd+82NmGztUAGm9ssda2McPWUGB5kkpXGnGl93osRrgbudC24fEAkhMGPGDHz++efYs2cPYmKMc2kMZWRkAADCw8MBAAkJCXjppZdw6dIlhISEAAB27NgBf39/dOjQwWlldwZHzQGmy9SUHdYGIHIBjexQARtPol2YH+IjmxptQ26/3HHMIUdOmeGOAR+RMynxpq/LVACgxGuBO54Lbh8QTZs2DR999BG++OIL+Pn5STk/AQEB8PHxQXZ2Nj766CPcfffdaN68OTIzMzF79mwkJiaic+fOAIBBgwahQ4cOGDNmDJYtW4b8/Hz885//xLRp09yuFqiuGX4RDVkbgBgGNKYGgBz6xkGkDq858S39OpCrjVEBOHvpmkunqnBUTZ07BnxEzqLEm74ucwFAfb4WyF3n3fVccPuAaNWqVQBqutbrWrt2LcaPHw+NRoNvv/0WK1aswPXr1xEZGYnhw4fjn//8p7Sul5cXtmzZgsceewwJCQlo3Lgxxo0bhyVLltTlrjiVvVWPcl9EXfY2B8kFM0DNYI7PbDyFwtKbFpvmDGtjtK9f+MVpPPfFaaQOr5mDzRVVro6oqeOM9aQk9fmmb4mlAKC+XgtMBYHuei64fUBkaZikyMhI7N271+J2oqKi8NVXXzmqWG6lNlWPpgIXoHaJ29pgRq72qUoIpG77yWika7lfByNub4l2YX64742Des8LAPM/Oyn9312qXG3BGetJSay96btbXokjWAoA6uO1wFwQ6K4BoNsHRGRebase5b6ITye3RecWgbVultIGM9o5z7RUf04Wq8vcr4PrFVWy29fdhLtUudrKmYnyRLXlyODEmpu+O+aVOII1AUB9uxaYCwITYpu7ZQDIgMjD2VL1aOri5swvYnxkU6QOj8P8jSf/CoJETS6Q4QjZpn4dxAQ1NlpfjjtUudrDUYny9fGXNbmOM4ITc9cad80rkaP9rjXWeOF6RZXF75y1NUDO6DTjKid/LzJ6Tvc6744BIAMiD2dt1aOli5szv4iJbYL1ohmBmloitaiZk82aEbJTh8dh/mcnzQZF7lDl6ir19Zc1uYYzgxNT1xp3zSsxJNcr15rvnDsGAM6SV1SGpdt+Mnr+6cFt9fbb3QJAjxqYkYxZM2CjqYubdvAvZw8GllNw3SiQEQJ4fVRXfDzlDr2JZE0ZcXtLHFxwF14c2lF2uVoFt6hydQVLny+RrZwxAKkl2h93utztR46pXrnWfudcOeVQXTLVWafzLYF1XhZbsIaoHrD0y8PcxW3fz5edXrNgqhbrtqimNl0YwgN88PAd0WjopZaqntUAJifGYEKvmHp/kTGlLn9Z17ZZTvf1ANjE56ZckfTqCYnF5nrlumNtlqu4a9K0JQyI6glzVY+mTk5fjbpO2uxre6EzvAkrqerZGnV18bG1Wc7wc9N9vbYiwFN7CNZ3rgpO3P27balXrrvf8OuKJwS3clTCUr92AgAUFxcjICAARUVF8Pf3d3VxbLYhPdfo5Ixs5otRaw4ZrfvxlDuQENvc4WXIKyqz6kKneyOVq8Gqi7GHPC1BWe7zdWSAkVdUhl6pu4yCrv3z+8seH8Pgad7gdtK4U3K02wJgdbKqp31Gnsja76yS6H7XtJzxnasP3OX8sfb+zYDISp4eEAHGJ6etN7m6YKoWQUuFmoRsZzbxeWqCsiMuPqZGld2SeQEvbTVOkpQLnuXOKzVqEujNmdqnFd7e/4tVyaqe+hlR/aD9rvlq1CitqHb5Dd8T1eUPGgZEDlYfAiI5lmoW6vKkPXH+qtGYRZY4OoBzxyCxrsgFGQBMTu1i6rgczC6QrXk0N3SC+s8VrHkfJX9GnsrcdcTWLuzk+er6B42192/mECmcuTb7ujxpN6Tn1oxVZOPrHJ3I6Kquv65u/jE1Ga8Q8kGMuZwAUzlNj/VrhX/vzjZaX60CJveOwX++y5Etm+Hx94Tu2a7+PN2JYa3vlD4xmNA7xiivTEutAh7q0RIJrZqhe3QzxR+/+kI38HXX8aYYENVDtl6M5RKyLY1D4sgLvva95Ooq9ZrIUHNztnZAR3u4oneEOzT/mJqMV87CIe1xd+dws+NGySVUjri9JfwaNcTSbT+hGtDrIQgAb+/PsSpZ1dbPqK6DE3f4PJ0lr6gMR3+9CiGEVcGK4XVEAPjPdzl4e38O5iW3qzkXZM67jw7l4qNDuVAB0mTQ5Ln0gmIbZyqoSwyI6hlHXYzrsqu+ua6s4s9/pv5549z382Wbey7YckOs694R7jI6r7neM7q8VCqzwZCWqZrHR/rG4t4uEbI1koYT+WoN7RphNJibtZ9RXQcn7vJ5OoJcL0HdwVHNBSva1/5RUi57TlULyAZDhgSABZ+d9MjjRzWMgmI37qHHgKgeceTFuC676lu6GQsA73x3DhN6xdjcLdeeG2Jddv11RvOPqZwMc4FheIAPJvWOwRqZZivtZ2NrcKitedQO/Kl9X1NDRJia+27T8Qt4Kkl/hFtrPqMT56/q3cDrIjjxhOY8axj1EvyzNkd310wFK4avNZU7pm1Cs9RMXg143PGjv5j6wavtaOFOXfIZENUjjrwYm/oVfr2iyuEXfMP3kguODGeGtqZW6Mi5K3YHb3U1pLyjm+hM5WTc37UFPj/+u2xgqA2U/t45HG9/l2PUJLnx8QS7e9KYyx+Rc72iyugGWSUEjp67ir/HWz/vk6mcNGcHJ546IJ0uuR9WpmpzDIMVudeqVIBKJhdNDeCxfrF4c0+22aBIDXjU8XNHtjYbO7KZ2dR3ojbXFWdhQFSPOPpinNgmGCtHdgEE0C26qfRrvzbvYc0Es74aNe5/86Dd7yEXFGi52691RzbRmZtW4LNjv+v9rQ0MDZs/h93WApuOX9ArS3xkU7v2zVz+iKmausYaL9kcg5nrj+N6RaVVzV3mctI42rJltuSTGQYrr+86Y7SuEMAbo7riYPYf+OhwrvS5VANYtdc4yV6XCkDK8DjZ42fqWlLXOWPunkBvay25o5uZTX0n7L2uOBMDonrEkRdjU1+K2ryHLRPM2vsehs0khtzx17qjmujM5WIZqhICx369avRrftPxC0a/3Oy94Jsqj6maOu35IRfI2FK7Z66KnqMtW2ZtPplhsPLW3mx8dOi80XpqFfDb1TJ8rBMMaZl6jycGtMatIX6IbOaD6xVVyCsqs6oHrKNv5pbOfXdPoLe1c8yJ81dralYdnAPnKd8JBkT1jCNOPEtfInvew9b8Jnvew1LXfXf+te6IJjprb2RAzbGoFkK2abK0oloabLE2F3xz5TGsqTNVu2XuNba8r1oFfP74nUa/Si3NrWZvMFhXTa7OYPijx5AKwJL7OmJgh1C945QqM7s5ANwbH4FUg/wjc7xUKjzUoyX2/XxZqinWPfdMXUvahflZfY2x5nO1dO57QgK9uTSKzScu1Hwu4q9m9Y3HfndaM7MnfCcYENVDtT3xrMlFsvU97MlvsuU9zDWTqAG8PqqrzZPJOpMjqtkNt2HqRualUmFo1wijprDu0c1kAwdfjVrafm0u+Pt+viz7eWjLFB3ka7E3ktxrzB0DwPoqektzqwFw61//zqT9QfLxoVy8tuus3jIBoKmvRq+G4Y+ScpMBzxcZF8wGQ9ocI90EWwAmzz1T15KdP10yeY0B/gp2DQMBuc/VmnPf3RPo84rKkH25xOh5L5UK+89cxht7/mquNGxWN1zfV6PW6xhRXzEgIiPOSAx1drKpuWaSlOFxGNI5wiHvY461QY4jqtlNbUM37yuymY9e09dTSW2NatwMA6hqAdz/5kGkDItDZDNfuy/4UoAqs0x70zPMXzLscaQ7BpVc7Z6542iphlEuv0mrWtT0ntIdObu2tQ2uZKl8ppaHB/igTZif7DZVKut6k1nqRab9XA0/q4PZBSbPPblriUoFvLZTP3DTbj/z90KMfvt7m5pvrQl23DWBPq+oDO/uzzHqIAHUlO/p5LZI/Uq+Ns+QWlUz7IVcTV19xICIjDgjMdTZyaa2NJM4g7VBjiOq2U1to7D0pjSBqqUcLS25ru7a7W18PMHuC76pAFU7qCMAvek3tL2R1AY1BaaCGmuOo7kaRkv5VtWA0Z1cLhh09xwSufLpTo5saUyxblFNjQNVFXBLUx+9jg+Gn58awEM9IvHRYZmcItR04+98S6De56p7XE/+VmT0Ou25J9crVbZmWAU82rcVUr8y31wn97laE+y4YwK94VhRumrGjeqEwrKbVjVfqgCsGdsNU94/6tbNgo7EgKies/fXqzOS4JyZWGd0kUTNdBAh/o0c9h6m2BLkOKKa3dQ2dPM0bLlwmerqXlpRbfcFXzZABRAa0MjkPggBvDC0I2KD/YxulIZjGZk6Bsd+vYqmjS2f75byrXRrp7QMb4julENialJew/LN/+yk3uTIulOzaGvG2oX5ST8iwgN8kDo8zihokht+Qwjg36O6olljb+k4rU8/b/OPlLyiMiz92rgG47F+raR9072WFJTcwIyPM4zWf+j2lnhzr/ku/doyGQb51gY7zrqm2XPdNlcrC9R8znM/PWl1GaYkxsBH08Ds96y+zT/HgMiN1bYqvra/Xp2RBOfMxDrtxWnt/nN4e/8vJrt4WzPRpC3H3JYgxxHV7KZqw+TKsDUzD0MsjCxtrkwJsc3tvuBP6h2Dd/6cjkNbyzD9o+M1A/0Nbidb5oWbTiN1eJyU1A3IDxLoq/GSrbmY/tFxvTwgU+e79oZnKpF7Sp9WiA1pbPaG6C45JKa+57JBJ6DXg8hQNYChbx5EqoXmx7dkust7qVRGeXr2dLc2VXv3xu5sRDbzlcqlvZbIDQWiBrA+3bhXm5xqAWzOuIC4WwL0BjGNbOZr1Vg5jr6mWZPMLXeNOnLuilUdKqyhVkGaUkeueVL7PdNd39k9+uoCZ7u3Ul3Pdl/bYEZuRnC1Clj5UJd6PWGipZnQzR1Xe4+5rbOvb0jPlZ3nyxaG23g6ua3JwfMs7YvRlAwq6N0Q5Zi7eL21N1uqrVIBGNkzEusPnzc6PqbKrHvs5I6tHLlcFe12AJicTf3E+atGI2OrARxYcJf0/ubykO5M2WWU93Twz9c6k+5o5HJjdmn325pjJ8dcTY6pz2TB3e3wSGKs7Pq29kg1VW5T3yvD78Ok3tEmJws2RwWgz61B2H+2oM6aQQ17OhqeU9Zcv8yNvWaO9nuj+vM/AjC6JukeW8NaRV263xtbObvpmbPdezBHVMWbGlxtxscZbpnrUFvai8qV6xUmq3irhfHI1Qs2noSvxgstm/nWalRrW5qWHFHNLreNQJ+Gsl2lLSUEG1azq0TNoJymgh5zeSkHzhbgDZ0Z7QWA9YfO1+Tk6KgSAp1bBGLlQ12Mmjt0a1msHVtJbpUqIaTaQsMfBtrzPz6yKVKHm/7sdGshDmYX6AVVslTyTzuSYe84uebOcwWlSIhtbtSMLGBcqwaZG1y1AIa+cVB2rjJTn0nnFoGy5bW1BsVc7Z1cDZxcbQ5gerJgcwSAfWcKpL+11whHN4Nqv1snfyvSy/vr1TrI5OcJGPe8W/DZSQQ10dgVDBmOFg1A9ppkTfMkUFO7uHb/OTwzpL1N5XCnpmcGRG7IEVXx5nIk3Dkxzp5qU8MbhLmmFEPaINHcjcWactga5Fh7k7A0/5jchWtrZh5e3PqjxX3JKyrDlswLxoEzoBdIGI4BYzg/2PzPavISTF2Pq2E8w7W2SS46yFe2uUN7gW4s0zRmLRVgFAxpy2zLuFqmfn3fEdPUqFxCOHfeLXO947R0m2AN901ucuR2YX4Y+uZBo+YlgZobsG5OEWD62pL5e6FeU2dtmJrXzrB5WS4415bB3FhKtqgWwNoDOXjm7g612o6WqfOpWgDf6QRjWtrvg+yPXACT3jsq+z4vDu2I5744bbKmTa750lKz4Fv7zI8svua7XzChd7RN57+7ND0DNcea3Iz2gqPL1jwT7a8sL5X8T1bdXx3uYkN6Lnql7sKoNYfQK3UXNqTnWnyNqRuE9vipTfwCNmTpxqL7fgezC5BXVGa0fniADxJim9v9JTbctj3HIzzAB0M6hxudP2oAZy9fw5bMC8grKsNbe7NxZ8ouvLTVOHlVDf1AQhtA5BWV4eivV42DAJg/vmoA85PbSeeibi2M9jzVLa5AzRhGG9JzjW6ItugZ09Tkr2bD89/UZ2duwMjvc64aPefsbtcmh5dQ/fX+hrWTuvuW2CYYKx6KxxujumL//P5/1ZINizM6Z4C/aop0z73wAB/MG9zOaN1l27Jkvxf20tbeyZ03gOmaBW0ZRtzeEvvn98c/TdRY2HLze3tfjtG+mbsWmFrHmgFIDU1OrJn7T+6+YIqXSoUB7UP17gFqANP6xeLjKXdIn70t8orKsNTE4JtaAjU/pmzhiPudo7CGyA2ZaoIBYNPgWNpfh8d+vWpUQ+IO42Xosrfa1FTi6OsPdUXzJt5mq3jlmJrZXTu2hzZJ2NHNjqZmF5dr3rMmB2xy7xi8/V1OTe0Man5JLtx02mI5TOVfaAMIe1IO5yXX5JbcGx8hWwuT2CZYrwZJWzNhKlfBWnIBi64DZy9brNGwZToUAHh6cFun/qq1d6LMvKIyrN2fgzV/jk1jeP4mtgnG4vs6yp4jAsbfxbhbAozWM1ULWZtEWXO1d9YOIDukczhe/upHk8cs8/dCLP3qJ6NmXV3aSWy172vY1KVbg2puSAO5sb0sad7EW9qXlGFxWPDZSbNl1b12WVNzbe1nZO134e39ttUS2Zpy4EwMiNyUXFW3NtHQlptxzQXBByXllW5xwgHyX0B7q01N3SDMTUZrqglGBWDxfR3RzFeD26Ka4lLxDaz5LhuF128azcjtyGZHuWBQbuwU3ea9+cnt8Ehf4wRWw8Bq1O0t8fFhyzVLgP4YQXL5F5m/F+Le+Airm7C0gZ020dZUM6Etk4kabv/zx+/ET/nXzM5fZ8qbe7Ix+o6oWnXPN+SlVhnNu+Vour33rOm5JddEoz1/24X5YUtmnl5vQMBy87E1vSUdlShr6ryxVAbd64y53m4Jsc1xb3yEbL6Z7nYzfyvEqDXfy34vF3x2Eid+K8THh85LnQkA/SENTI3tpatdWBP8lK8/uvSybVm4I6YZcq+UorF3A6wZ1w2T3ztq8hq28fEEvfPB8PhZCtpMfUZyY0PJqbah2VhblsQ2wdg/v7/L5zpjLzMr1XUvM1229mIytx1Xn3CmLpK12UdLvbaMemQNbiv9upOjVgFdIgNxLLfQ4v58POUOm/MmDAPCg9kFGLXmkE3bAPR79eQVleHIuSt4Yn2GUQKxVcEF9HuIvLU3GykG1ePaz2Pfz5elX6lqAPff1kKaFkTLXNBmyFSPSGtqiLTHX6681nhjVFeLo5jrnj/WUKn+3HeDHle21JbIrWuYKzclMQYTesWY3Za1vfR0yZ0zct9Fc9872c8UwGujuqKbA6fQMVUGU4n/lq5/2mtk5m+FWPZ1ll4vTksDPFrj4yl3IPfKdZPNZi/c1xELv7Bck9u/XTB2/3TZ5HuYuiaZmq5Gy9Q115bzyFIPRXuCsdpiL7N6xFFJZ44eL8NWcjUhus1A9labWqoWlu2R5SvfI0tbLmuCIVubHU01uyW2CbYrcXjptp9wb3yE3oXFkLU3wnnJ7fSOm7kmEbnjOTYhSi/fRwBY9nUW7u0SYXcvPQB6M28b0p0PTW4gPy21Cnisb6ze3E1a0z86jpLyStm5rLQXbt399dWo8a/tP+v1RDIkBJDy1U+AgBQQ2lJbYhT49InBkM7hRrly73x3ThorxhRbm/yAmnNmamIM3vnunN2DEppKANaOQ+Wom59cGUw1v++f39/ijxftPggIvWbII+eu1DoYMhzba96nmXrn0fDbWmBgh1A8v1k+EVrX7p8u485WzXDwlyuy7yHHmoR8U/cVc+eRXG3YfW8cxAKDH0TmgjFn9eazFQMiF7PmV6Mz5sxxxSBY1gwFYG+1qalgT3c/dS+G2gvp0XNXMeNj+R5o5qhVsKnZUW5Ife2F+unktja++1+vP/brVbNJmtoaMd1RrHUvRobNWlqmBn/UTvxqeLxNjXZd21562hw4IYDfi8qwbFuW0U1abt4rXdr98/dtaDTukWF+jLlcMW2Z3p/UEyfOX8WRc1cRHeSLz4/9ji0n843ed+m2n3Bvl5raJ1tmYTe8af3nu79yf+SOLwCT32VTTX7mAnAvlQoTetXUPln6LtrSnKXl6F6uhmWw9gekpVo43V5rKhOdUyzRHmdtLVNOwXVcKr6B6xVVWPpAZ1wqvoEj566ie3RTqUbFcFoSU+f29zlXMK1/LFbtyZaaT58eXPMe2uOiy5rg2NR9xdT1YHr/1oiPDJDt6Zay7SdABTySGGtVMObo3nz2YEDkQtb+arSUdGZrcOOq+ZesuUha8yvOWpb2MzzAB82aXLfrl9+8we30mgcsTZ5pakh9wyk3bOGlUqFaCLPBkLYJ4d4uETh67ipUKuC2qJoLr7mbneE5B+hP/Gp4vtQmaDcVtGrLMaTzX+WTS8w2d9PXbbp6JDEWEQGNZMc9OnruKjJ/yzFKJjd1846PbIoQ/0Y4cu4KtsoEQ8BfibgCxp+Rdmws3X0DTN+0ZPNFVEDmb39NXGrqHDe8wU7u3Qo9WzWVzUMxDPTtDVjkzh9dttZwSz0chbDYqcDe/KbENsEmA1e5Od20zAWX2ucHdQw1Csa17zupTyu91xjWSJrqaVktgN6tg/HwHVE1zXy/F0rvIXcuyE6KC/MTKAN/fT/nDW4nNSNqO0G8tusszMWK2lpsqxOy9+VYbAZ2JgZELmJrrypTv6BtDW5cOQiWoy+S5li7n401XrKvbxvaBFkXS2SXAX81B1nTDm6putmWLD7dX5wvD+uEC0U3jNZRA3h9VFe9aRTCA3zw93jjcYzMMTfxq+FxtLeniK3nr1yNhKmbvlxPl+7RzWRvCjPWHzf5OVia1NUU7U34UvENo3GYAGDaR8eRcb4QE3vHSLVTZy9ds7r5VAgYzV83/7OTKK+sQrPG3lKujvZzTD93FbdHN8VP+dcw5X39YEiNmu7djrwZ6dbCzlx/3O4abqOR1AHZASN16fayVKuAib2jpWWmrg0rHoo3WbOUENsc8+9uV9MUqkNb86OtuTRl2ynjoNnctVf3PE8dHod5nxnPQaY72S0AKTA2tW1T31FzEygb1pbOS26HWwJ99Hotm7t+aROsTQVjhi/V/ohgQKQw9uQFyfUWsDW4cfUgWHU1FIC1k39er6iSff2iezuhtOKmyUHPtLUK5o6/9pfVwbNm8k1s2Cc1gM+n3ak3smyv1F1G681LbmcxUdhatjSF2To4pSODc2vfOzygZgydpdt+kpLCBcxf1L1UKvhq1NKQFwAsBkNq1HTB1+3qLmfNdzl4+7scDLutBTYe+93mmkLD9QWA5774AcBfgYNueeUSaa2ZcNWQtbXS2kD8eoV9vVzlalcFanp1yZ0nhgF2YusgfHemAGu+q7mxm+r6XhNIq8zWLNXUTl7H+sPnjaa4uDc+QvaaZok1117tuT1rfQYO5fyVMzS061/5edZe1019T+SOo1wT/7JtWVjxULzV+6gbtBkGY3KJ6q4eDoYBkYvY0mXUkcGNM/KRbKVtBjE1FIAj8ptkf5GojCf/TGwTbPJ4hAf4YOlw+XE/vFQqQKaZRnv8zSU620MFIGV4nN5Ny1TuTOdbAh3zprD9fLElcd/W89fSeaH73uamHVn69U/S+Ez924dg54+XTJZRrQKSOoVKIzmrANwdF2byc9XWTjX305icW86QAPDZsd+NnjfVBd5aAsbjOZlqeimtMDeyjT57mtztna7GVO2qYU2CtknNcBR1w2k4THV9105Ma6qW0zAheKpBbZr2mvZbYZlRLZI5uh0DLF3z0s/pJ1BvOn4BTyXVjHtly/fU0nfUUhO/qcBx4+MJ2JD+G9an58o2wVmabsjVw8EACguI3njjDSxfvhz5+fmIj4/H66+/jh49erikLOaaGKy94NgT3NjbtOEMcl8QR45dYtiMontj0M1ZMnc8tGXUHaNEu063qKYmE48dGQwBNcFcYptgveecFdwaXpyddb7YUn57e2kZDu1gmNhpKhjSdmtvqFbr9U4TgGzOkG4zJWD/pKq6HHH6WFMGW86Z2tTq2RIsa5nKD9Od3sWWiU2rhEBpRbXJc9qaXmsCpnv4xbUIkH3fxFuDcODsH3rNatr3tbfZXffHg9z1TreZ0BbmmvjNBY7xkTWJ4TMGtDYZ+BqeA46Y19GRFBMQbdiwAXPmzMHq1avRs2dPrFixAklJScjKykJISIhLymRLl1FT7cz23Kzc6SQ0/FXvyPwmS5MSai8o2ukM1H9+2eWO8zND2mNC72ijY5YyLE6va3i1ANbskx/cTUtujB1LuQjatnhH5O2YYyqYcMb5Ym35bTkvzK1rTWKnbv4RUDPzuCXacmubKV/e+oNDg+HakDvXrEmkNaWum9y154jud0xbWyp3vbTEsOu74bVXLrnfln021Rtr6QOdAUBKlC6tqIavRo3cK6V6Y4eZOret+fEg/Xg7kIM1+3L0mglt+VFpMgjVSbg3d02wNfC1J1B2FsUERK+88gqmTJmCCRMmAABWr16NrVu34t1338X8+fNdVi7Dk8HWC469Nyt3Ogm1nHGx1e6n3IjV2tFnzfXSkduWrsQ2wUY/5eW6YOual9xOtqpYm4tgSxKqI4MVS4GHM84Xa8pvy3lhbl1Lo05rR+rWbvNgdoHFWhrD1+QVlWGNQU81LTWAeXe3w/UblXht11kLW3aM+7u2QI+YZlYn0lriiiZ33bxDISCNQg9Y7kquWzNjGPzpntPmaiBtbY4yF+TLvZ8huXPblh8/b+vkrNnzo9KotgnyCffueA+pLUUERBUVFTh69CgWLFggPadWqzFw4ECkpaXJvqa8vBzl5eXS38XFxU4vJ2B/M1h9ODGdebE1ldRnOF+YrRePnALbu+13bhEo+wtVW05bk1Ad9fm7KuHeUvltOS/Mras9B+RuRF4qlV5gY2pbll5j6nz4e1w4nv17eyk4//fus+Z7HsovMuuJu1rjtd1n9RLEtXkmcuN72fOZuqrJXZujY8jcZ6SGfs2Mubm8LP0QsGWfLQX5lmq1avPjx1HfYXdqRahLigiICgoKUFVVhdDQUL3nQ0ND8dNP8glwKSkpWLx4cV0UT4875fjUNWfvu+GX3BEXD5vnutK52JkLBFxxQXKHhHs5tpwXltbVbVZ4e19Nt2xT2zPclm6Ss6nXyDaZAFIwpLtduVG45QJ1Q2rAKKHfS6XCrWF+RtvT7TburO+Rq5vc5YbyMFUzI8ea64Ct+2zuu20pR6c2P34c+R2uLz+0baGIgMgeCxYswJw5c6S/i4uLERkZWSfv7U4XnLrm7H03/JLX9uIh1TqY6In29OC2enMi2RLg1fUFyZ2DcVvOC0vrhgf44Jm7O1g1ErPhtgDbBrS0NO2FthkospmP3mz1uk2qqj+rjHQDMQBG7yGX5O+sgNadbpaGAxnqHkdrWBtEOGqfTQXNhmOH2cOdv8OeQBGTu1ZUVMDX1xeffvophg4dKj0/btw4FBYW4osvvrC4DVdO7krOY2liWGvlFZXJ9kTT9m7ypODW08rrjhxxDHW3ARgHYnLv4ajzWWnq+rg5+/34HdZn7f1bEQERAPTs2RM9evTA66+/DgCorq5Gy5YtMX36dKuSqhkQ1V+OvHjwQkSuxnPQPnV93Pg51R3Odm9gzpw5GDduHLp3744ePXpgxYoVuH79utTrjJTLkdX/7tSUQMrEc9A+rmii5ufkXhQTEI0YMQKXL1/Gc889h/z8fHTp0gVff/21UaI1ERERKY9imsxqi01mREREnsfa+7e6DstERERE5JYYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEUM3VHbWkH9C4uLnZxSYiIiMha2vu2pYk5GBBZ6dq1awCAyMhIF5eEiIiIbHXt2jUEBASYXM65zKxUXV2NCxcuwM/PDyqVyu7tFBcXIzIyEufPn1fsnGg8BjV4HHgMAB4DgMdAi8fBOcdACIFr164hIiICarXpTCHWEFlJrVbjlltucdj2/P39FXvCa/EY1OBx4DEAeAwAHgMtHgfHHwNzNUNaTKomIiIixWNARERERIrHgKiOeXt74/nnn4e3t7eri+IyPAY1eBx4DAAeA4DHQIvHwbXHgEnVREREpHisISIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiB1i1ahU6d+4sDSSVkJCAbdu2Sctv3LiBadOmoXnz5mjSpAmGDx+Oixcv6m0jNzcXQ4YMga+vL0JCQjB37lxUVlbW9a44TGpqKlQqFWbNmiU9V9+Pw6JFi6BSqfQe7dq1k5bX9/3X9fvvv+Phhx9G8+bN4ePjg7i4OBw5ckRaLoTAc889h/DwcPj4+GDgwIE4c+aM3jauXLmC0aNHw9/fH4GBgZg0aRJKSkrqelfsEh0dbXQuqFQqTJs2DYAyzoWqqiosXLgQMTEx8PHxQWxsLF544QW9+aTq+3kA1EwXMWvWLERFRcHHxwd33nkn0tPTpeX18Rjs27cP99xzDyIiIqBSqbBp0ya95Y7a58zMTPTp0weNGjVCZGQkli1bVruCC6q1zZs3i61bt4qff/5ZZGVliWeeeUY0bNhQnDp1SgghxKOPPioiIyPFzp07xZEjR8Qdd9wh7rzzTun1lZWVolOnTmLgwIHi+PHj4quvvhJBQUFiwYIFrtqlWjl8+LCIjo4WnTt3Fk888YT0fH0/Ds8//7zo2LGjyMvLkx6XL1+Wltf3/de6cuWKiIqKEuPHjxeHDh0Sv/zyi/jmm2/E2bNnpXVSU1NFQECA2LRpkzhx4oS49957RUxMjCgrK5PWGTx4sIiPjxfff/+9+O6770Tr1q3FyJEjXbFLNrt06ZLeebBjxw4BQOzevVsIoYxz4aWXXhLNmzcXW7ZsETk5OeKTTz4RTZo0EStXrpTWqe/ngRBCPPjgg6JDhw5i79694syZM+L5558X/v7+4rfffhNC1M9j8NVXX4lnn31WbNy4UQAQn3/+ud5yR+xzUVGRCA0NFaNHjxanTp0SH3/8sfDx8RFvvfWW3eVmQOQkTZs2FW+//bYoLCwUDRs2FJ988om07McffxQARFpamhCi5uRRq9UiPz9fWmfVqlXC399flJeX13nZa+PatWvi1ltvFTt27BB9+/aVAiIlHIfnn39exMfHyy5Twv5rzZs3T/Tu3dvk8urqahEWFiaWL18uPVdYWCi8vb3Fxx9/LIQQ4ocffhAARHp6urTOtm3bhEqlEr///rvzCu8kTzzxhIiNjRXV1dWKOReGDBkiJk6cqPfcsGHDxOjRo4UQyjgPSktLhZeXl9iyZYve87fddpt49tlnFXEMDAMiR+3zm2++KZo2bar3fZg3b55o27at3WVlk5mDVVVVYf369bh+/ToSEhJw9OhR3Lx5EwMHDpTWadeuHVq2bIm0tDQAQFpaGuLi4hAaGiqtk5SUhOLiYpw+fbrO96E2pk2bhiFDhujtLwDFHIczZ84gIiICrVq1wujRo5GbmwtAOfsPAJs3b0b37t3xj3/8AyEhIejatSvWrFkjLc/JyUF+fr7esQgICEDPnj31jkVgYCC6d+8urTNw4ECo1WocOnSo7nbGASoqKvDBBx9g4sSJUKlUijkX7rzzTuzcuRM///wzAODEiRPYv38/kpOTASjjPKisrERVVRUaNWqk97yPjw/279+viGNgyFH7nJaWhsTERGg0GmmdpKQkZGVl4erVq3aVjZO7OsjJkyeRkJCAGzduoEmTJvj888/RoUMHZGRkQKPRIDAwUG/90NBQ5OfnAwDy8/P1Lnza5dplnmL9+vU4duyYXvu4Vn5+fr0/Dj179sS6devQtm1b5OXlYfHixejTpw9OnTqliP3X+uWXX7Bq1SrMmTMHzzzzDNLT0zFz5kxoNBqMGzdO2he5fdU9FiEhIXrLGzRogGbNmnnUsQCATZs2obCwEOPHjwegjO8CAMyfPx/FxcVo164dvLy8UFVVhZdeegmjR48GAEWcB35+fkhISMALL7yA9u3bIzQ0FB9//DHS0tLQunVrRRwDQ47a5/z8fMTExBhtQ7usadOmNpeNAZGDtG3bFhkZGSgqKsKnn36KcePGYe/eva4uVp05f/48nnjiCezYscPo15BSaH/5AkDnzp3Rs2dPREVF4X//+x98fHxcWLK6VV1dje7du+Pll18GAHTt2hWnTp3C6tWrMW7cOBeXru698847SE5ORkREhKuLUqf+97//4cMPP8RHH32Ejh07IiMjA7NmzUJERISizoP//ve/mDhxIlq0aAEvLy/cdtttGDlyJI4ePerqopEBNpk5iEajQevWrdGtWzekpKQgPj4eK1euRFhYGCoqKlBYWKi3/sWLFxEWFgYACAsLM+phov1bu467O3r0KC5duoTbbrsNDRo0QIMGDbB371689tpraNCgAUJDQxVxHHQFBgaiTZs2OHv2rGLOAwAIDw9Hhw4d9J5r37691Hyo3Re5fdU9FpcuXdJbXllZiStXrnjUsfj111/x7bffYvLkydJzSjkX5s6di/nz5+Ohhx5CXFwcxowZg9mzZyMlJQWAcs6D2NhY7N27FyUlJTh//jwOHz6MmzdvolWrVoo5Broctc/O+I4wIHKS6upqlJeXo1u3bmjYsCF27twpLcvKykJubi4SEhIAAAkJCTh58qTeCbBjxw74+/sb3Vjc1YABA3Dy5ElkZGRIj+7du2P06NHS/5VwHHSVlJQgOzsb4eHhijkPAKBXr17IysrSe+7nn39GVFQUACAmJgZhYWF6x6K4uBiHDh3SOxaFhYV6v6J37dqF6upq9OzZsw72wjHWrl2LkJAQDBkyRHpOKedCaWkp1Gr9W4yXlxeqq6sBKOs8AIDGjRsjPDwcV69exTfffIP77rtPcccAcNznnpCQgH379uHmzZvSOjt27EDbtm3tai4DwG73jjB//nyxd+9ekZOTIzIzM8X8+fOFSqUS27dvF0LUdLFt2bKl2LVrlzhy5IhISEgQCQkJ0uu1XWwHDRokMjIyxNdffy2Cg4M9qoutHN1eZkLU/+Pw5JNPij179oicnBxx4MABMXDgQBEUFCQuXbokhKj/+691+PBh0aBBA/HSSy+JM2fOiA8//FD4+vqKDz74QFonNTVVBAYGii+++EJkZmaK++67T7bbbdeuXcWhQ4fE/v37xa233urWXY0NVVVViZYtW4p58+YZLVPCuTBu3DjRokULqdv9xo0bRVBQkHj66aeldZRwHnz99ddi27Zt4pdffhHbt28X8fHxomfPnqKiokIIUT+PwbVr18Tx48fF8ePHBQDxyiuviOPHj4tff/1VCOGYfS4sLBShoaFizJgx4tSpU2L9+vXC19eX3e5dbeLEiSIqKkpoNBoRHBwsBgwYIAVDQghRVlYmHn/8cdG0aVPh6+sr7r//fpGXl6e3jXPnzonk5GTh4+MjgoKCxJNPPilu3rxZ17viUIYBUX0/DiNGjBDh4eFCo9GIFi1aiBEjRuiNvVPf91/Xl19+KTp16iS8vb1Fu3btxH/+8x+95dXV1WLhwoUiNDRUeHt7iwEDBoisrCy9df744w8xcuRI0aRJE+Hv7y8mTJggrl27Vpe7USvffPONAGC0X0Io41woLi4WTzzxhGjZsqVo1KiRaNWqlXj22Wf1ukkr4TzYsGGDaNWqldBoNCIsLExMmzZNFBYWSsvr4zHYvXu3AGD0GDdunBDCcft84sQJ0bt3b+Ht7S1atGghUlNTa1VulRA6w4YSERERKRBziIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHgMiIjIafr164dZs2a5uhhOt2jRInTp0sXVxSCiWmBARERkQkVFRZ2+nxAClZWVdfqeRFSDAREROcX48eOxd+9erFy5EiqVCiqVCufOncOpU6eQnJyMJk2aIDQ0FGPGjEFBQYH0un79+mHGjBmYNWsWmjZtitDQUKxZswbXr1/HhAkT4Ofnh9atW2Pbtm3Sa/bs2QOVSoWtW7eic+fOaNSoEe644w6cOnVKr0z79+9Hnz594OPjg8jISMycORPXr1+XlkdHR+OFF17A2LFj4e/vj6lTpwIA5s2bhzZt2sDX1xetWrXCwoULpVm2161bh8WLF+PEiRPSfq5btw7nzp2DSqVCRkaGtP3CwkKoVCrs2bNHr9zbtm1Dt27d4O3tjf3796O6uhopKSmIiYmBj48P4uPj8emnnzr6IyIiHQyIiMgpVq5ciYSEBEyZMgV5eXnIy8uDn58f7rrrLnTt2hVHjhzB119/jYsXL+LBBx/Ue+17772HoKAgHD58GDNmzMBjjz2Gf/zjH7jzzjtx7NgxDBo0CGPGjEFpaane6+bOnYt//etfSE9PR3BwMO655x4pcMnOzsbgwYMxfPhwZGZmYsOGDdi/fz+mT5+ut43/+7//Q3x8PI4fP46FCxcCAPz8/LBu3Tr88MMPWLlyJdasWYNXX30VADBixAg8+eST6Nixo7SfI0aMsOlYzZ8/H6mpqfjxxx/RuXNnpKSk4P3338fq1atx+vRpzJ49Gw8//DD27t1r03aJyAa1mhqWiMiMvn37iieeeEL6+4UXXhCDBg3SW+f8+fN6s8L37dtX9O7dW1peWVkpGjduLMaMGSM9l5eXJwCItLQ0IcRfs2uvX79eWuePP/4QPj4+YsOGDUIIISZNmiSmTp2q997fffedUKvVoqysTAghRFRUlBg6dKjF/Vq+fLno1q2b9Pfzzz8v4uPj9dbJyckRAMTx48el565evSoAiN27d+uVe9OmTdI6N27cEL6+vuLgwYN625s0aZIYOXKkxbIRkX0auDIYIyJlOXHiBHbv3o0mTZoYLcvOzkabNm0AAJ07d5ae9/LyQvPmzREXFyc9FxoaCgC4dOmS3jYSEhKk/zdr1gxt27bFjz/+KL13ZmYmPvzwQ2kdIQSqq6uRk5OD9u3bAwC6d+9uVLYNGzbgtddeQ3Z2NkpKSlBZWQl/f3+b998U3fc8e/YsSktL8be//U1vnYqKCnTt2tVh70lE+hgQEVGdKSkpwT333IOlS5caLQsPD5f+37BhQ71lKpVK7zmVSgUAqK6utum9H3nkEcycOdNoWcuWLaX/N27cWG9ZWloaRo8ejcWLFyMpKQkBAQFYv349/vWvf5l9P7W6JiNBCCE9p22+M6T7niUlJQCArVu3okWLFnrreXt7m31PIrIfAyIichqNRoOqqirp79tuuw2fffYZoqOj0aCB4y8/33//vRTcXL16FT///LNU83Pbbbfhhx9+QOvWrW3a5sGDBxEVFYVnn31Weu7XX3/VW8dwPwEgODgYAJCXlyfV7OgmWJvSoUMHeHt7Izc3F3379rWprERkPyZVE5HTREdH49ChQzh37hwKCgowbdo0XLlyBSNHjkR6ejqys7PxzTffYMKECUYBhT2WLFmCnTt34tSpUxg/fjyCgoIwdOhQADU9xQ4ePIjp06cjIyMDZ86cwRdffGGUVG3o1ltvRW5uLtavX4/s7Gy89tpr+Pzzz432MycnBxkZGSgoKEB5eTl8fHxwxx13SMnSe/fuxT//+U+L++Dn54ennnoKs2fPxnvvvYfs7GwcO3YMr7/+Ot577z27jw0RmceAiIic5qmnnoKXlxc6dOiA4OBgVFRU4MCBA6iqqsKgQYMQFxeHWbNmITAwUGpiqo3U1FQ88cQT6NatG/Lz8/Hll19Co9EAqMlL2rt3L37++Wf06dMHXbt2xXPPPYeIiAiz27z33nsxe/ZsTJ8+HV26dMHBgwel3mdaw4cPx+DBg9G/f38EBwfj448/BgC8++67qKysRLdu3TBr1iy8+OKLVu3HCy+8gIULFyIlJQXt27fH4MGDsXXrVsTExNhxVIjIGiqh28BNROSB9uzZg/79++Pq1asIDAx0dXGIyAOxhoiIiIgUjwERERERKR6bzIiIiEjxWENEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREivf/P0yxqwCkR+gAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABd9ElEQVR4nO3deVwV5f4H8M8AgoCCGygoCGKKC5BpGu6WpVzL1O7NzMy1bmWZrWJdr9oieu+v/ZZ2rbRut7TFzFIrb7nkkuGCS6UpopJiSspBBUE5z+8PnPEsM2fjnDNz4PN+vewVc+bMeWbOnJnvPM/3eR5JCCFAREREZEBBeheAiIiISAsDFSIiIjIsBipERERkWAxUiIiIyLAYqBAREZFhMVAhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGRYDFSKqsVmzZkGSJJfWlSQJs2bN8ml5+vfvj/79+xt2e0TkOgYqRLXI4sWLIUmS8i8kJAQtW7bEuHHjcOzYMb2LZzhJSUlWxys2NhZ9+vTBZ5995pXtl5WVYdasWVi3bp1XtkdUFzFQIaqFnnnmGfznP//BggULkJWVhffffx/9+vXDhQsXfPJ5f/vb31BeXu6Tbfva1Vdfjf/85z/4z3/+g8cffxzHjx/HiBEjsGDBghpvu6ysDLNnz2agQlQDIXoXgIi8LysrC926dQMATJo0Cc2aNcO8efOwYsUK3H777V7/vJCQEISEBOblpGXLlrjrrruUv++++260bdsWL730Eu677z4dS0ZEAGtUiOqEPn36AADy8/Otlu/btw9//vOf0aRJE9SvXx/dunXDihUrrNa5ePEiZs+ejauuugr169dH06ZN0bt3b6xZs0ZZRy1HpaKiAo888ghiYmLQsGFDDB06FL/99ptd2caNG4ekpCS75WrbXLRoEa6//nrExsYiLCwMHTt2xPz58906Fs60aNECHTp0QEFBgcP1Tp48iYkTJ6J58+aoX78+MjIy8O677yqvHz58GDExMQCA2bNnK81Lvs7PIaptAvMRiIjccvjwYQBA48aNlWU//fQTevXqhZYtWyI7OxuRkZH46KOPMGzYMHz66acYPnw4gOqAIScnB5MmTUL37t1RWlqKbdu2YceOHbjxxhs1P3PSpEl4//33ceedd6Jnz5747rvvMGTIkBrtx/z589GpUycMHToUISEh+OKLL/DAAw/AbDZj8uTJNdq27OLFiygsLETTpk011ykvL0f//v1x8OBBPPjgg0hOTsbHH3+McePGoaSkBA8//DBiYmIwf/583H///Rg+fDhGjBgBAEhPT/dKOYnqDEFEtcaiRYsEAPG///1PnDp1ShQWFopPPvlExMTEiLCwMFFYWKise8MNN4i0tDRx4cIFZZnZbBY9e/YUV111lbIsIyNDDBkyxOHnzpw5U1heTvLy8gQA8cADD1itd+eddwoAYubMmcqysWPHitatWzvdphBClJWV2a03aNAg0aZNG6tl/fr1E/369XNYZiGEaN26tbjpppvEqVOnxKlTp8SuXbvEHXfcIQCIhx56SHN7L7/8sgAg3n//fWVZZWWlyMzMFA0aNBClpaVCCCFOnTplt79E5B42/RDVQgMHDkRMTAwSEhLw5z//GZGRkVixYgVatWoFADh9+jS+++473H777Th79iyKi4tRXFyMP/74A4MGDcKBAweUXkKNGjXCTz/9hAMHDrj8+atWrQIATJkyxWr51KlTa7Rf4eHhyv+bTCYUFxejX79+OHToEEwmk0fb/OabbxATE4OYmBhkZGTg448/xpgxYzBv3jzN96xatQotWrTAqFGjlGX16tXDlClTcO7cOaxfv96jshCRPTb9ENVCr7/+Otq1aweTyYR33nkHGzZsQFhYmPL6wYMHIYTAjBkzMGPGDNVtnDx5Ei1btsQzzzyDW2+9Fe3atUPnzp0xePBgjBkzxmETxpEjRxAUFISUlBSr5e3bt6/Rfm3atAkzZ87Eli1bUFZWZvWayWRCdHS029vs0aMHnnvuOUiShIiICHTo0AGNGjVy+J4jR47gqquuQlCQ9bNehw4dlNeJyDsYqBDVQt27d1d6/QwbNgy9e/fGnXfeif3796NBgwYwm80AgMcffxyDBg1S3Ubbtm0BAH379kV+fj4+//xzfPPNN3jrrbfw0ksvYcGCBZg0aVKNy6o1UFxVVZXV3/n5+bjhhhuQmpqKF198EQkJCQgNDcWqVavw0ksvKfvkrmbNmmHgwIEevZeIfI+BClEtFxwcjJycHAwYMAD/+te/kJ2djTZt2gCobq5w5SbdpEkTjB8/HuPHj8e5c+fQt29fzJo1SzNQad26NcxmM/Lz861qUfbv32+3buPGjVFSUmK33LZW4osvvkBFRQVWrFiBxMREZfnatWudlt/bWrdujd27d8NsNlvVquzbt095HdAOwojIdcxRIaoD+vfvj+7du+Pll1/GhQsXEBsbi/79++PNN99EUVGR3fqnTp1S/v+PP/6weq1BgwZo27YtKioqND8vKysLAPDqq69aLX/55Zft1k1JSYHJZMLu3buVZUVFRXajwwYHBwMAhBDKMpPJhEWLFmmWw1f+9Kc/4cSJE1i6dKmy7NKlS3jttdfQoEED9OvXDwAQEREBAKqBGBG5hjUqRHXEE088gb/85S9YvHgx7rvvPrz++uvo3bs30tLScM8996BNmzb4/fffsWXLFvz222/YtWsXAKBjx47o378/unbtiiZNmmDbtm345JNP8OCDD2p+1tVXX41Ro0bhjTfegMlkQs+ePfHtt9/i4MGDduvecccdmDZtGoYPH44pU6agrKwM8+fPR7t27bBjxw5lvZtuugmhoaG45ZZb8Ne//hXnzp3DwoULERsbqxps+dK9996LN998E+PGjcP27duRlJSETz75BJs2bcLLL7+Mhg0bAqhO/u3YsSOWLl2Kdu3aoUmTJujcuTM6d+7s1/ISBTS9ux0RkffI3ZNzc3PtXquqqhIpKSkiJSVFXLp0SQghRH5+vrj77rtFixYtRL169UTLli3FzTffLD755BPlfc8995zo3r27aNSokQgPDxepqani+eefF5WVlco6al2Jy8vLxZQpU0TTpk1FZGSkuOWWW0RhYaFqd91vvvlGdO7cWYSGhor27duL999/X3WbK1asEOnp6aJ+/foiKSlJzJs3T7zzzjsCgCgoKFDWc6d7srOu11rb+/3338X48eNFs2bNRGhoqEhLSxOLFi2ye+/mzZtF165dRWhoKLsqE3lAEsKiHpWIiIjIQJijQkRERIbFQIWIiIgMi4EKERERGRYDFSIiIjIsBipERERkWAxUiIiIyLACesA3s9mM48ePo2HDhhyqmoiIKEAIIXD27FnEx8fbTe5pK6ADlePHjyMhIUHvYhAREZEHCgsL0apVK4frBHSgIg9TXVhYiKioKJ1LQ0RERK4oLS1FQkKCch93JKADFbm5JyoqioEKERFRgHElbYPJtERERGRYDFSIiIjIsBioEBERkWEFdI4KERHVHVVVVbh48aLexSAXhYaGOu167AoGKkREZGhCCJw4cQIlJSV6F4XcEBQUhOTkZISGhtZoOwxUiIjI0OQgJTY2FhERERzgMwDIA7IWFRUhMTGxRt8ZAxUiIjKsqqoqJUhp2rSp3sUhN8TExOD48eO4dOkS6tWr5/F2mExLRESGJeekRERE6FwScpfc5FNVVVWj7TBQISIiw2NzT+Dx1nfGQIWIiIgMi4EKERERuW3dunWQJMnnvbEYqGgoMpVjc34xikzleheFiIjqoFmzZuHqq6/Wuxi6Y68fFUtzj2L6sj0wCyBIAnJGpGHktYl6F4uIiMjOxYsXa9SrxuhYo2KjyFSuBCkAYBbAU8v2smaFiIjcYjabkZOTg+TkZISHhyMjIwOffPIJgCvNJt9++y26deuGiIgI9OzZE/v37wcALF68GLNnz8auXbsgSRIkScLixYsBVCepzp8/H0OHDkVkZCSef/55h+WQP+vrr79Gly5dEB4ejuuvvx4nT57E6tWr0aFDB0RFReHOO+9EWVmZ8r6KigpMmTIFsbGxqF+/Pnr37o3c3FzfHCwHGKjYKCg+rwQpsiohcLi4TP0NREQUEPzdpJ+Tk4P33nsPCxYswE8//YRHHnkEd911F9avX6+s8/TTT+OFF17Atm3bEBISggkTJgAARo4cicceewydOnVCUVERioqKMHLkSOV9s2bNwvDhw7Fnzx7lPc7MmjUL//rXv7B582YUFhbi9ttvx8svv4wPPvgAK1euxDfffIPXXntNWf/JJ5/Ep59+infffRc7duxA27ZtMWjQIJw+fdpLR8g1ujf9HDt2DNOmTcPq1atRVlaGtm3bYtGiRejWrZsu5UluFokgCVbBSrAkIakZ+/ATEQUqfzfpV1RUYM6cOfjf//6HzMxMAECbNm2wceNGvPnmm7j33nsBAM8//zz69esHAMjOzsaQIUNw4cIFhIeHo0GDBggJCUGLFi3stn/nnXdi/PjxbpXpueeeQ69evQAAEydOxPTp05Gfn482bdoAAP785z9j7dq1mDZtGs6fP4/58+dj8eLFyMrKAgAsXLgQa9aswdtvv40nnnjCswPjAV1rVM6cOYNevXqhXr16WL16NX7++We88MILaNy4sW5liosOR86INARf7v8dLEmYM6Iz4qLDdSsTERF5To8m/YMHD6KsrAw33ngjGjRooPx77733kJ+fr6yXnp6u/H9cXBwA4OTJk06378nDvOVnNW/eHBEREUqQIi+TPzs/Px8XL15UAhsAqFevHrp3745ffvnF7c+uCV1rVObNm4eEhAQsWrRIWZacnKxjiaqNvDYRfdvF4HBxGZKaRTBIISIKYI6a9H11fT937hwAYOXKlWjZsqXVa2FhYUqwYpkEKw+QZjabnW4/MjLS7TLZfpZtAq4kSS59tr/pWqOyYsUKdOvWDX/5y18QGxuLLl26YOHChZrrV1RUoLS01Oqfr8RFhyMzpSmDFCKiACc36VvydZN+x44dERYWhqNHj6Jt27ZW/xISElzaRmhoaI2Hn/dUSkoKQkNDsWnTJmXZxYsXkZubi44dO/q1LLrWqBw6dAjz58/Ho48+iqeeegq5ubmYMmUKQkNDMXbsWLv1c3JyMHv2bB1KSkREgUpu0n9q2V5UCeGXJv2GDRvi8ccfxyOPPAKz2YzevXvDZDJh06ZNiIqKQuvWrZ1uIykpCQUFBcjLy0OrVq3QsGFDhIWF+azMliIjI3H//ffjiSeeQJMmTZCYmIh//OMfKCsrw8SJE/1SBpmugYrZbEa3bt0wZ84cAECXLl2wd+9eLFiwQDVQmT59Oh599FHl79LSUpcjUyIiqrv0aNJ/9tlnERMTg5ycHBw6dAiNGjXCNddcg6eeesqlJpbbbrsNy5Ytw4ABA1BSUoJFixZh3LhxPi+3bO7cuTCbzRgzZgzOnj2Lbt264euvv/Z7HqkkhBDOV/ON1q1b48Ybb8Rbb72lLJs/fz6ee+45HDt2zOn7S0tLER0dDZPJhKioKF8WlYiIdHDhwgUUFBQgOTkZ9evX17s45AZH3507929dc1R69eqlDG4j+/XXX12qEiMiIqLaT9dA5ZFHHsEPP/yAOXPm4ODBg/jggw/w73//G5MnT9azWERERAHjvvvus+oCbfnvvvvu07t4NaZr0w8AfPnll5g+fToOHDiA5ORkPProo7jnnntcei+bfoiIajc2/Th38uRJzV6wUVFRiI2N9XOJqnmr6Uf3kWlvvvlm3HzzzXoXg4iIKCDFxsbqFoz4A+f6ISIiIsNioEJERIZnxBFTyTFvZZbo3vRDRESkJTQ0FEFBQTh+/DhiYmIQGhqqDDVPxiWEwKlTp1SH6ncXAxUiIjKsoKAgJCcno6ioCMePH9e7OOQGSZLQqlUrBAcH12g7DFSIiMjQQkNDkZiYiEuXLuk29w25r169ejUOUgAGKkREFADkJoSaNiNQ4GEyLRERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsPSNVCZNWsWJEmy+peamqpnkYiIiMhAQvQuQKdOnfC///1P+TskRPciERERkUHoHhWEhISgRYsWeheDiIiIDEj3HJUDBw4gPj4ebdq0wejRo3H06FHNdSsqKlBaWmr1j4iIiGovXQOVHj16YPHixfjqq68wf/58FBQUoE+fPjh79qzq+jk5OYiOjlb+JSQk+LnERERE5E+SEELoXQhZSUkJWrdujRdffBETJ060e72iogIVFRXK36WlpUhISIDJZEJUVJQ/i0pEREQeKi0tRXR0tEv3b91zVCw1atQI7dq1w8GDB1VfDwsLQ1hYmJ9LRURERHrRPUfF0rlz55Cfn4+4uDi9i0JEREQGoGug8vjjj2P9+vU4fPgwNm/ejOHDhyM4OBijRo3Ss1hERERkELo2/fz2228YNWoU/vjjD8TExKB379744YcfEBMTo2exiIiIyCB0DVSWLFmi58cTERGRwRkqR4WIiIjIEgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUNFZkakcm/OLUWQq17soREREhhOidwHqsqW5RzF92R6YBRAkATkj0jDy2kS9i0VERGQYrFHRSZGpXAlSAMAsgKeW7WXNChERkQUGKjopKD6vBCmyKiFwuLhMnwIREREZEAMVnSQ3i0SQZL0sWJKQ1CxCnwIREREZEAMVP5OTZ4HqnJRgqTpaCZYkzBnRGXHR4XoWj4iIyFCYTOtHasmzG7MH4HBxGZKaRTBIISIismGoGpW5c+dCkiRMnTpV76J4nVbyLABkpjRlkEJERKTCMIFKbm4u3nzzTaSnp+tdFJ9g8iwREZH7DBGonDt3DqNHj8bChQvRuHFjvYvjE0yeJSIicp8hApXJkydjyJAhGDhwoN5F8Zm46HAmzxIREblJ92TaJUuWYMeOHcjNzXW6bkVFBSoqKpS/S0tLfVk0rxt5bSL6toth8iwREZGLdA1UCgsL8fDDD2PNmjWoX7++0/VzcnIwe/ZsP5TMd+KiwxmgEBERuUgSQgjnq/nG8uXLMXz4cAQHByvLqqqqIEkSgoKCUFFRYfWaWo1KQkICTCYToqKi/Fp2IiIi8kxpaSmio6Ndun/rWqNyww03YM+ePVbLxo8fj9TUVEybNs0qSAGAsLAwhIWF+bOIREREpCNdA5WGDRuic+fOVssiIyPRtGlTu+VERERU9xii1w9Vk4fX5wzKRERE1XTv9WNr3bp1ehdBF2rD64+8NlHvYhEREemKNSoGoDW8PmtWiIiormOgYgAcXp+IiEgdAxUD4PD6RERE6hioGACH1yciIlJnuGTauorD6xMREdljoGIgHF6fiIjIGpt+iIiIyLAYqBAREZFhMVAhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGRYDFSIiIjIsBipERERkWAxUiIiIyLAYqBAREZFhMVAhIiIiw2KgQkRERIbl8qSEpaWlLm80KirKo8IQERERWXI5UGnUqBEkSXK4jhACkiShqqqqxgUjIiIicjlQWbt2rS/LQURERGTH5UClX79+viwHERERkR2XAxVbJSUlePvtt/HLL78AADp16oQJEyYgOjraa4UjIiKius2jXj/btm1DSkoKXnrpJZw+fRqnT5/Giy++iJSUFOzYscPbZSQiIqI6ShJCCHff1KdPH7Rt2xYLFy5ESEh1pcylS5cwadIkHDp0CBs2bPB6QdWUlpYiOjoaJpOJPY2IiIgChDv3b48ClfDwcOzcuROpqalWy3/++Wd069YNZWVl7m7SIwxUiIiIAo8792+Pmn6ioqJw9OhRu+WFhYVo2LChJ5skIiIisuNRoDJy5EhMnDgRS5cuRWFhIQoLC7FkyRJMmjQJo0aN8nYZiYiIqI7yqNfP//3f/0GSJNx99924dOkSAKBevXq4//77MXfuXK8WkIiIiOouj3JUZGVlZcjPzwcApKSkICIiwmsFcwVzVIiIiAKPO/dvj8dRAYCIiAikpaXVZBNEREREmjwKVC5cuIDXXnsNa9euxcmTJ2E2m61e51gqRERE5A0eBSoTJ07EN998gz//+c/o3r2708kKiYiIiDzhUaDy5ZdfYtWqVejVq5e3y0NERESk8Kh7csuWLTleChEREfmcR4HKCy+8gGnTpuHIkSPeLg8RERGRwqOmn27duuHChQto06YNIiIiUK9ePavXT58+7ZXCERERUd3mUaAyatQoHDt2DHPmzEHz5s2ZTEtEREQ+4VGgsnnzZmzZsgUZGRneLg8RERGRwqMcldTUVJSXl3u7LERERERWPApU5s6di8ceewzr1q3DH3/8gdLSUqt/RERERN7g0Vw/QUHV8Y1tbooQApIkoaqqyjulc4Jz/RAREQUen8/1s3btWo8KRkREROQOjwKVfv36ubTeAw88gGeeeQbNmjXz5GOIiIiojvMoR8VV77//vsOclfnz5yM9PR1RUVGIiopCZmYmVq9e7csiERERUQDxaaDiLP2lVatWmDt3LrZv345t27bh+uuvx6233oqffvrJl8UiIiKiAOFR04+33HLLLVZ/P//885g/fz5++OEHdOrUSadSERERkVHoGqhYqqqqwscff4zz588jMzNT7+IQERGRAegeqOzZsweZmZm4cOECGjRogM8++wwdO3ZUXbeiogIVFRXK3xyzhYiIqHbzaY6KK9q3b4+8vDxs3boV999/P8aOHYuff/5Zdd2cnBxER0cr/xISEvxcWiIiIvIntwOVS5cu4ZlnnsFvv/3mdN277rrL6UAuoaGhaNu2Lbp27YqcnBxkZGTglVdeUV13+vTpMJlMyr/CwkJ3i09EREQBxO1AJSQkBP/85z9x6dIlp+vOnz/f7TFUzGazVfOOpbCwMKUrs/yPiIiIai+PclSuv/56rF+/HklJSTX68OnTpyMrKwuJiYk4e/YsPvjgA6xbtw5ff/11jbZLREREtYNHgUpWVhays7OxZ88edO3aFZGRkVavDx061KXtnDx5EnfffTeKiooQHR2N9PR0fP3117jxxhs9KRYRERHVMjWalFB1g5yUkIiIiBzw+aSEZrPZo4IRERERucOj7snvvfeeasJrZWUl3nvvvRoXioiIiAjwsOknODgYRUVFiI2NtVr+xx9/IDY2lk0/REREpMmd+7dHNSpCCEiSZLf8t99+Q3R0tCebJCIiIrLjVo5Kly5dIEkSJEnCDTfcgJCQK2+vqqpCQUEBBg8e7PVCEhERUd3kVqAybNgwAEBeXh4GDRqEBg0aKK+FhoYiKSkJt912m1cLSERERHWXW4HKzJkzAQBJSUkYOXIk6tev75NCEREREQEedk8eO3YsgOpePidPnrTrrpyYmFjzkhEREVGd51GgcuDAAUyYMAGbN2+2Wi4n2fqr1w8RERHVbh4FKuPGjUNISAi+/PJLxMXFqfYAIiIiIqopjwKVvLw8bN++Hampqd4uDxEREZHCo3FUOnbsiOLiYm+XxZCKTOXYnF+MIlO53kUhIiKqczyqUZk3bx6efPJJzJkzB2lpaahXr57V67VllNiluUcxfdkemAUQJAE5I9Iw8lomChMREflLjWdPtsxP8XcyrS+H0C8ylaPX3O9gtjg6wZKEjdkDEBcdbrVeQfF5JDeLtFpORERE6nw+e/LatWs9KlggKSg+bxWkAECVEDhcXKYEJKxxISIi8i2PclT69euHoKAgLFy4ENnZ2Wjbti369euHo0ePIjg42Ntl1EVys0gE2XRmCpYkJDWLAFBdkyIHKQBgFsBTy/Yyl4WIiMiLPApUPv30UwwaNAjh4eHYuXMnKioqAAAmkwlz5szxagH1EhcdjpwRaQi+3LQVLEmYM6KzUpviqMaFiIiIvMOjpp/nnnsOCxYswN13340lS5Yoy3v16oXnnnvOa4XT28hrE9G3XQwOF5chqVmEVQ6KXONim8Mi17gQERFRzXlUo7J//3707dvXbnl0dDRKSkpqWiZDiYsOR2ZKU7tEWWc1LkRERFRzHtWotGjRAgcPHkRSUpLV8o0bN6JNmzbeKFdAcFTjQkRERDXnUaByzz334OGHH8Y777wDSZJw/PhxbNmyBY8//jhmzJjh7TIaWlx0OAMUIiIiH/EoUMnOzobZbMYNN9yAsrIy9O3bF2FhYXj88cfx0EMPebuMREREVEd5NOCbrLKyEgcPHsS5c+fQsWNHNGjQwJtlc8qXA74RERGRb/h8wDdZaGgoOnbsWJNNEBEREWnyqNcPERERkT8wUCEiIiLDYqBCREREhsVAhYiIiAyLgYofFJnKsTm/mBMWEhERualGvX7IuaW5R5VZloMkIGdEGkZem6h3sYiIiAICa1R8qMhUrgQpQPUEhk8t2+t2zQprZIiIqK5ijYoPFRSft5pdGQCqhMDh4jKXh91njQwREdVlrFFxgac1GsnNIhEkWS8LliQkNYtw+XO9USNDREQUqBioOLE09yh6zf0Ody7cil5zv8PS3KMuvzcuOhw5I9IQLFVHK8GShDkjOrtcm+KoRoaIiKguYNOPA1o1Gn3bxbgcbIy8NhF928XgcHEZkppFuPS+IlM5CorPIzI0GEESrIIVd2pkiIiIAh0DFQe8kWMCVNeseJqTMrxLSyzfeRxVQrhdI0NERBToGKg4IOeY+KtGQ60GZ/nO41j2QCbKKs0u18gQERHVFsxRcaCmOSbu0qrBKas0IzOlKYMUIiKqc1ij4oQnOSae8ncNDhERkdGxRsUFcdHhfqnR8HcNDhERkdGxRsVg/FmDQ0REZHQMVAzInV5CREREtRmbfoiIiMiwGKgQERGRYekaqOTk5ODaa69Fw4YNERsbi2HDhmH//v16FomIiIgMRNdAZf369Zg8eTJ++OEHrFmzBhcvXsRNN92E8+fP61ksl3g6USERERG5ThJCCOer+cepU6cQGxuL9evXo2/fvk7XLy0tRXR0NEwmE6KiovxQwmq2w9znjEjDyGsT/fb5REREgcyd+7ehclRMJhMAoEmTJjqXRJvWRIWsWSEiIvI+w3RPNpvNmDp1Knr16oXOnTurrlNRUYGKigrl79LSUn8VT+GtiQqJiIjIOcPUqEyePBl79+7FkiVLNNfJyclBdHS08i8hIcGPJawmD3NvicPcExER+YYhApUHH3wQX375JdauXYtWrVpprjd9+nSYTCblX2FhoR9LWY3D3BMREfmPrk0/Qgg89NBD+Oyzz7Bu3TokJyc7XD8sLAxhYWF+Kp02DnNPRETkH7oGKpMnT8YHH3yAzz//HA0bNsSJEycAANHR0QgPN/bNn8PcExER+Z6u3ZMlSVJdvmjRIowbN87p+/XqnkxERESec+f+rXvTDxEREZEWQyTTEhEREalhoEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVJwoMpVjc34xZ0cmIiLSgWFmTzaipblHMX3ZHpgFECQBOSPSMPLaRL2LRUREVGewRkVDkalcCVIAwCyAp5btdalmhbUw+uN3QERUO7BGRUNB8XklSJFVCYHDxWUO5/hhLYz++B0QEdUerFHRkNwsEkE2UxEFSxKSmkVovqcmtTDkHc6+A9a0EBEFFgYqGuKiw5EzIg3BlydODJYkzBnR2WFtiqNaGPIPR9/B0tyj6DX3O9y5cCt6zf0OS3OP6lNIIiJyGZt+HBh5bSL6tovB4eIyJDWLcBikAFdqYSxvlM5qYci7tL6DiNAg1ZqWvu1inH6vRESkH9aoOBEXHY7MlKYu3cw8qYUh79L6Ds5XVrG2i4goALFGxcvcrYUh71P7DopM5aztIiIKQKxR8QF3amHIN2y/A9Z2EREFJtaoUJ3B2i4iosDDQIXqlLjocAYoREQBhE0/REREZFgMVIiIiMiwGKgQERGRYTFQoTqLw+kTERkfk2mpTuLEhUREgYE1KnUEaw+u4OSRRESBgzUqdQBrD6w5mriQXZeJiIyFNSq1HGsP7MkTF1ricPpERMbEQMVFgdp04qj2oK7icPpERIGDTT8uCOSmE7n2gJPxWeNw+kREgYE1Kk6403RixFoX1h5o4+SRRETGxxoVJ1xNvDRyrQtrD4iIKFCxRsUJVxIvAyFhlbUHREQUiBioOOFK00mgJKwasWmKiIjIETb9uMBZ00kgJKwauWmKiIhIC2tUXOSo6cToCauB0DRFRESkhjUqXmLkhFWOxEpERIGKgYoXxUWH63bjLzKVo6D4PJKbRQZk0xQREZEaNv3UAktzj6LX3O9w58Kt6DX3OyzNPWr1utGbpoyGScdERMYhCSGE89WMqbS0FNHR0TCZTIiKitK7OLooMpWj19zv7GpLNmYPsAtEikzlhmyaMhImHRMR+Z4792/WqAQ4d7pGcyyValo1Jkw6JiIyHuaoBDhX8k8c5a/UNY5qTJh0TERkPKxR8QNf5jw4yz9xlr9SlzirMXFlFGIiIvIv1qj4mD9yHrS6RmvdmPu2i6mTNQTOakzkoO+pZXtRJQSTjomIDICBig/5M1BQ6xrNpgxrrjSTGXk8HCIifzNC6gADFR/SO1Dg+CnWXK0x0XM8HCIiozBKL0gGKj6kd6DApgx7rDEhInLOSKkDuibTbtiwAbfccgvi4+MhSRKWL1+uZ3G8zggDrY28NhEbswfgw3uuw8bsAYYfE8Qfg62xmzYRkWPuDH3ha7rWqJw/fx4ZGRmYMGECRowYoWdRfMYIT/C2TRlGaHNUY5RqRiKiuk7vFgFLugYqWVlZyMrK0rMIfmGknAejBgNGqmYkIqrrjJQ6EFA5KhUVFaioqFD+Li0t1bE0xuBO7Yg/gwF3a230TjwmIiJrRmgRAAIsUMnJycHs2bP1LoZh2NaOTBucirRW0ZrBgb+CAU9qbYxUzUhERNWM0CIQUCPTTp8+HSaTSflXWFioW1n0nmFXrXYkZ/U+hyPQ+mPkVU/nyzFC4rG/6X0OEREFgoCqUQkLC0NYWJjexTBEnoda7YhMq0nHH22ONam1MUo1oz8Y4RwiIgoEARWoGIFRkj7VmkosaQUHvg4GatqEY4RqRm9wlKNjlHOIiCgQ6Nr0c+7cOeTl5SEvLw8AUFBQgLy8PBw9atyJ84zSt9y2qcSWo+DAl+OI1MUmHFvOJoI0yjlERBQIdK1R2bZtGwYMGKD8/eijjwIAxo4di8WLF+tUKseMlPRpWTuy+1gJ/rF6v+7dyIpM5UhoEoFlD2SirNLs9yYcvceIcaW2xEjnEBGR0ekaqPTv3x9CaLRdGJSR+pbL5ZFrSIZmxOua36GWd5GZ0lTXzzdC7pBtM5zRziEiIiOTRKBFChZKS0sRHR0Nk8mEqKgov352kam8TiR9uqrIVI5ec7+zqyXYmD3AL8dH78/3pBw8h4iornLn/h1Q3ZONRCvPw9ddTo3apVXvvAu9P1/mTo4O5xwiInKOvX68yNdND/5o2vA0x0PvvAu9P99SXepmTUTka6xR8RJPBzozyvYB571VHNG7t4/en69WHtaWEBHVHGtUvKDIVI4vdx/36fD0vh7+3htje+hdk+DNz9e79xAREVVjoFJDls0xtmybHmpy83PUtOGNm6q3AiG9B2zzxucbofcQERFVY6BSA7a1EJZsmx5qevPT6tK64ddTXrmpGinHQ08cNZaIyFgYqNSA1nw7M4Z0wJ/S45Qbm7dufrZNGwCsusLW5KaqFQgBwOb84jrTBOKvGaaJKHCwKVhfDFRqQKsWwjJIAbxz87P8ociDqG3OL/bqTdU2ENrw6yklEKorTSCsWSIiS2wK1h97/dSAbU+TIABPDm5vFyTINz9LWjc/tXFStHrjaG03IjTI47FW5N4qAHzey8iIjNZ7iMgojDqGky/5o7elERntu2aNSg2NvDYRJeUXMXf1PpgFMO+rfWgUUc8q4nZ1yHTbyH1i72TcnB7nsNnIdrvDusRj+Bubaxz91+UmEL17LxEZTV2tVaiL10EjftcMVGqoyFSOeav3QTjJE3F281OL3Bd+X4CF3xfYfablD8VyuxGhQUqQIm9j+qd7EBkWgq6tGwfUAG5607v3EpFR1IUEc60clLp2HTTqd82mnxpyZ+h2R4OAaSXmqrH9ocjbPV9ZZbcNM4AHP9gZcAO4EZExGGV6Cl9xNNBlbb4OqjXvGPW7Zo1KDXkr4lbbjiX5NUc/FEfbsI2MXclid7UJRN5WZGgwzldWIblZJAAwS56oFqjNtQqu1CDUxqZgreYdo37XDFRqyFn+iavd2uTtqI3LEixJWPZAJsoqzQ5/KLZlsSVHxrZjr0zsnYwJvZM1y+yo3GoD3sn5vQLGaePUC7s1UqBzNccuELmag1KbmoKdBWdG/K4lIVTuaAHCnWmifa3IVG4XcXuSlFRkKseiTQV4a0MBzLhSg2L7Pkc3wCJTObYfPoMpS3baRcbLHsi0ymORSQDm3pYGAC6XuchUbjWOi5ZgScLG7AG6n+z+ZsSkNED93CkylWP7kTMQQiCxSYRSM1bXvjPSpnaNC3Rq17Dafr3anF+MOxdutVv+4T3XKT0+/fFdu3P/Zo2Kl9hG3J4mJcVFh+OpP3XE+F7JSoLs+coqFJnKXQ6A4qLDcXNGOM5XXrKLjNXyWIDq2o/py/ZAiOr/d6XMrubVBHKWvKc1Iv5OSnO1nGrnDgBkf7oHtl+l5bnlznFgLVJgcva91aZaBZlRaxB8KblZJCTA6vdu2bxjxN8vAxUfqWm3trjocLsmmmlZqYiPru/yDVCtbbXIVO4wj8WWozI7y6uRGaGN0xM1qRHxZ7dGV8upFjxN/3QPhAS7IEV+/alle1FSfhHzLne/d3YcjFqLRI7Vlu9NLV/O2e+tNuagOLLh11NWf0uAEpwZ9Txgrx8fcWeQNzVqN5WcVfvw0Id5bmVl2/Y0kp8gbMumxVGZbTPiZRIAeVGgPqHUdKCnmn7/rpbxi13HXC6nWvBkBuCo8bdKCGWMIGfbr6uDYwW62vK9WfbeufX1zaq9eLQ46pFZm8jfteVPXpKAvu1iDH0esEbFR2papViT7srOyE8Qr313AB9sLbR6TZIAScAqP0atzPKTS992MdiYPUBpppITfgF4/QnFn1WS3qgR82aVsu2+O5q1W6ucajVgQUB1jYpWbzPY15hpbT8QBscyYrW2J7y1H0Wmcny5+7jq97bjyBk0jrxSO+FOLYW/aU0Qa5RxQIxC9WFFVF+rBYRhf78MVHyoJlWK7jSreNrL6Ob0eLtARQjgX3d2QZPIMM0yu1o96M2T299Vkt7opuetKmXbfZ+Wlao0xajRKqejiSezL+cn2W7nycHtMe+rfS4dB3ePmb+DBqNWa7tLbT/6totx+1g6CnYlqXr8JbVTTJKA7KxU/LVvSs12xIscPdgZ5WZrBM5+o0bsmgwwUPE5TxPQ4qLDnd6QJABPZrVXLrbuXoi1TtprbEaxtbyhAOpzAPnyiaWmiame3BC9VSNS0wREtX13FqQ4KqdW8NS3XQx2HDkDIYCEJuFWXeEbRdRTjkOQBEzonaS5r64eM38HDUYdcdNdavsx7dM9SnKkKz315BwOrSAFcNwcKC43Q0MAf+1njGDF0YOdUW62avwdrNv+RoMATLz8ezZyYjG7JxuU5YVcAjC4cwt8vfcEzDbryV3pAHjUzW5p7lG7E9PyIqc2/5DasP6WXdu8zZXudFrcvSHaXjj07pKpte+2WftBAF67s4tdkOktcrf5hRsKnN4QnR0zPbqE1uQcMhKt/bCkdSytrikOmvtcFQRg0/TrDXEjA6yvZTKt4R2MoKbXppooMpVj0cbDeGvjIbvP99c1j92TA5ztU5MA8M1Pv2P2rZ0w4/OfrNaVqzU9bV901Dyh9vT2lkqQEgTgj/MVVl2oXd1PV354njbDuPsUrXXh8MaP1dm4N1qvqeaVSMC0wan4x1f7rQLMIenxXiuT7XrbDp/GW98XuNR13Vkt0rbDp/3eFm7UETfdteeYyek6tseyyFSONT+fwMzPf1a+P288npoB1e9Mrzwg23nPnA2QqSdvXZtqQg5S1D7f3VQCX2OgYkBaSYmNI0J90r6odWNRK4fa9U2guj3b2VO2PKBYt6Qmdl2vHf3wPK2SdCe505dNA3Y5JoNTkdYqGsnNIp0eB3nfLXNIhAAaRdRTkpg9uRi7euHzJGnXlc+15eugwcjV2q6SJ0B1JghQjuXS3KOqY+R4g9p3pnceUKCM9aJ1bdpx5AzM4jQkSVImkvXFtcmVa6Pe36UlBio6U4tYtZ7+uiY1dnix9faF2NWEXsun7OnL9iAiNBjdkppYnfC2F0sJrg8sB3iWmOrOU7SveqyodjO/fLOxnGpAfk3tOPRtF2MVIQpUj3/y6p1d3J4VW6tMap+r1ZNC5m6irNb2ggC7c9UXT3KBPl6Gqz0Bp2WlKjc4bwcpSi4MruQ2yJydV0Z5OjcCtWuTJAGTP9h55W9Ujxa+q7DE69cmZ9dGo+V0MVDRkaOmBq2gw9HF1tsXYrvEq8vt2o4ufGYBPPRhnlVvBNt++4D9Nlz54bn7tOTOU7SvmgYc3VzUFlseB/nC/se5Crt15VmxPXnSWbSxwKULn6OyWw4SZUvrvNba3mt3drFqtnLlSc7Tm16gPHGrcfbgIAHI/lN1bxy527E3gxR5Co6Vu0/grY2H8O/vC/DWxgKH36/W/GI1fToPxKDHMpH56Oky3HFtApb8WAgz7GvDgerrw7RP7WsfcXn9mlybnF0bjTbUAAMVnTiLWB0FHY4utp5eiLV++Lbl2PDrKeXktq0RsCTvzyujrnbpKdBXVf+uBm++ahpwtVZKJh8H28RHLZ70gFJLhla78KkNtS2TB4lS277Wee2ol5mj99vW0rkzEm+g3cwckc9RR12Kh2bEO2yu0zJjSAdcEgL/WH0l72lYl3gs33nc6vcQG1VfM7dB6/stq7xo1XRp+R4AVjdvyyYPLYH4/Tv6Tu7snojUuAb4++c/u7y9Sb3bAKhOrvZ0/xxdG42W08VAxU9sfzSuRKz+evpzZe4gAFYDvFlmjGupulz9onWjlm+Cvs4XcPU4+qJpwDYAsiWP4msWV44DYN0F3FnioztPOgXF51UDj6zOcXbLbIfatmQWUEZDduW8Xrm7CEPS45wGg1oDUsm1dNMGp1qN66IVqBmpfd1TajfakdcmIiI0GA99mGe3vlkAO46ccRqkqM3z8qf0OMRFh2NoRrzV+f/4oPZWf2/OL9a8bmWmNLX7fod1icekd7er1qBqXUPkJg9Xp4Ew8vcv5+Y5aoL74MejcPAsYkcC0LRhqNJzrib7p3VtNFpOFwMVP9AaoMkIEasrP3y1ZFDbC4zak7dlXo1aFaaE6sHlrrFIGtP7CaimwaHWzSW1RUPkHj6DkrJKzF93yOrHbxscqd0MZGrNb+6cN1o1PCv3FGHVniLlBqE21LalYEnC7mMlGP3WD1fOi6xURIQGq54Lz638BXNW/YKcEWnYmD3gctJg9UzNlk+FjmqgzOLyGDI2y9V6uRipfV2LWld4+W/LphIJwD19kjEkPQ7nK6uQ2CRC9RhXHzf73n8AMOX6tmjfoiGuad3YqlbU9gZke/7b/u3sSdu2583wNzar18gBWPj9Ic3k/OnL9qh+X6484Pnq+3d2fXJn9Ghb7jTRPdA/xWosJV+d30bK6WKg4mNaP5qN2QMMEbE6++FrDjhmsx0B4N6+yXj7+8OqeTWRYSF40CJRDKjOs2gSGeZWdb6Rae2DWqCX3qqR1Y/f2c1AZhbax9lVE3sn422VPBWB6lmU5VFONYMlACOvbWV3scxZ5bhHinzuP5nV3m7QOsvj5agGygz7MUBsAzWjta+rsT0nhndpic92HlP+tgxGBYB/f1+Af19usguSgBHXtMSyHceUdaTLx69bUhPVQGJUj0SrwNnTG5ArT9pycKMVcDtqMpbJtUND0p131/fV928bOMq1Imo1PrbjXo3qnoAluYVuNb+psZzSRH4YSGsZjdfX5dd4/1xhlJwuBio+5uhHY4SI1dkPX2siO7WbxfheyRjfK1l1f7q2bqz5OVp5CaktGiIj4Ur+gpFpBaSpLRraLf/HV/sdDm7mKBfB0XF29sT35vp8zF29T7nY3pAag2/3WTfvCADbD59B1yT776v6ApyIJblH8cGP1lMvuEqe5NA2BjGL6p5MfdvFKDVQt76+2e798sVazqWQR8o9WXpB2XejtK9rfR9q58qnO44przu7uZkFsHzncSyf3BOFp8shSbAa6M+VB6Ca3IBcvW6p9my5/B9XxnF58IOdOFdxSbW7vqP988b3bxtIWm7LMqBXe5gTgMe/D0taNa5FpnJDnN/+xEDFTe42Tzj70egdsTr74WuV/8ms9laJd7bVx+58jtqTl1kAw17frNlWbQSW54JWQJp7+IxHT3eWE0d+uLVQNZdHq01ewuW5WPqlKGXcdLAYr6+98hQmAHy3Tz0HRZIsxm+xaVv/8MejNepJIkH7JmUGsGjjYTw1pAPOV1aprjOpdxv8tW8KhmbEKyPlLvy+wCpB+Oa0FhhzXWu8t+WI0pXW37WVjmoI3ZlwVEuVECirNOPmDPtB/vzxAOTKdUvtNz+xd5JSM+SMgH2TRpGpHAlNIrDsgUzNAd1qkl8h55RYNlWrfVdyQH9zhnpelpogCXj1ji5IaBKORZsKsDyvSHWdaVmpSG+pXeOqtX/AleRaALo3o3sTAxU3eNI8YbSkJDXOehgN79LS6olvWJd45WbhzsVQ63O0mjrULlRGodacoxbQXatSMxEEICI0yOlnbPj1FJb8WKjUgDw5uD36touxy/RXe6LLWb0Pu34rwVd7T2heROXtWr4sSUCrxtXBY2qLhlY1ZzW8t7q0jYXfH8L43kmaMz2Ptxi7w3KkXEtf7jnh1md6i9Y8OrY5BK70BJMufzFaqzh7gtb7AUhm+5sHgLdUmh21yEE9ALyzsbo7tLC4/mpNf+BJsOZubym5N54r36dcXjmwfPmOxugQn680gQYBuKNHAjLbNFV6txWZyjV79dju34q84+iZ853ymwZcm/spUHCuHxfVdH4SveeM8ZS/5mVxdJH425AOGHK5V4LtCLd6HEutY6JWyyTnqNjmXLgyeZztZ1j2ELJ8vyvzv6gJAjDtT1cmvrTNldDqmuwqT+eTmXJ9W4zqkaia9CkfL3f32dfz0ry5IV9p0tI6bpbzClmeE0ES0KttM2w6WGzV+6tvuxjVnjHemL9Gz8R1td+DFvl3NXfVPrtjKknA5mzPvlO1RGbb35szn0/uifOVVVeSnz/dY5e7J3v21k4Yk5mkWo7DxWXY/VuJ0ptNLWfJ0bXizQ35DvPDjDYnk4xz/XiBO92JAefVbEZ5wnFE7eLlr8REOS9h2Ov2vQTkHiPDu9gkEAKY1CcZE3on+/XYah2T9JaN7Ia1l6uq/333NZj03naHY0k4O+4CUH2/o/FOHJmWlWpVMyb30rCsmbHlyucEScBnD/QEANXvUza8Szw+23ncbvmr3x3Ev9YeVHoIWT6Ny0+Y7o5PozUvjTe8uT5fGW0YUD8+tjUglk17H2wtxPcHiiGhOlF6fK9kANXnwJD0FkhrFYUgSUKrxuFemb+mponrNQ1y5H1fubsIz638RXO9YEnCff3aKHlVtoRQT7h1Rm3/E5pEODyXeiQ3xo8FZ6zKYXlu39k9AZ9N7olXvz2Ib/edtHt/k8hQ1e3Kx0/uPQeo5yxp1SwXmcox18m0CpZNqoGKgYoKd7oT23bRDNRqNq2Llz8TEzMSGmPubeo9Pmx/vED1DUHOT5h+OSfDF2wvzFoTBUaEBlkFpM5mq7UdSyJIqu56GB1RD21cuBFbjl+RnZVqdbN0RMKVEUwB57005HLIT/Il5RftnnDl/ZPXyUhojM35xQ6bLsb1TMLyneqjp1r2jstMaap6fjrqHaS2z8XnLrg9caYzjm4U8nELktRzZFbsOo4Ptl5JuhQA3v7+MJpGhlmNFSNvy9Vri7MJMO0S1z/dg8iwEJemY/BW77y46HAMSY/D86t+Ua11kwegU6tJsWT7Xq2pG+RlAFSb5ZY9kOnw93ZzejxyD5+x+jzLVT/4sRAf/liI7D+l2gUqcrKzFldyXLQeDguKz7tUayk3qRr9YVkLAxUb7nQnfnJwe7/0Z/c1Z6OB+jPHxtWnLVs5q/cBEpSbr7eoXZhLyi6qJv8Of2Oz1VTpzgZtsx1LwiyAf1kkvF6T2Ai7Ck3VzQO4XKNis43dx0qQmdK0OkiToJyP8mBbcvWx7ecOVUnC1MoLWXh3V0SE1rN6kh+aEY8dR6ov3F2Tqi/CruYeyTduOTB1NOnhyt1FuDapseZvUq5xiQgNwgvf/IoNB4rtN3T5uFlO7eDJzVWrxlGr5snRd68V4Ci9omyWu3ptcRZIaPXic2U6Bq3rhKfXu7jo8OoA26bZIliS0C2pseYYLDIJV869XYVnsHDDISU/Sc4b++NcBRZezmUKkoBJvZNVa0PLKs2aPe0kAI0jQ50GEwLVv7/pWalWzTg5I9IcHh9Xagcte0g6e2jSKtu/vjuI54enOV7RoBio2HCnO7ErY5AEQua1s9FAbavgfb0vcdHhqPKgW8S81fswNCPe7fK5043U0QiTljcTraekIFzu3g3nTSg7jpbg7bFXgoQVecftak3mrd6H+Oj66JbURDXBuX/7GLtRTLWaQWwTv+V173lvu13iYvUTsf37bf+eNjhVGXcnCMCky00btmN67DhyBg9+sFO12U+rNkquTZK39d7EHthVeAbf/nISofWCcPD3c1ieZ9205OnDhG2vqnv6JGN872SHieCW/2/7mVpPwo7OC2dNrq4MdOZsjB5Hx0brOvH8yp/x9JCOHl0X/to3BRBXxmaSH4TOV1Y5Tk4FkHNbdQDw2Ed5drWtZgG734pZVCdga9UQZ6Y0rc4LutybTFh8jtrwCmrMAkhv1Qibsq93+Xqp1uFCbfoCtUEAx/dOdjitgqX/bj2KRuH18MTgVMcrGhADFRvudifWWjeQBjBz5eIlV8F7i6NROQFg3lf2T5t/SmuB1XtPaHdvFdY3YFcCRXe7kToLLuSbyZ5jJrvXggDMvrUTAGDmip9cqrI9XFyGiX2q5/VIaxVt97ptQClPainTGgBMq+lOyRV6Y7NqPoy7N/d5X+1Txt2Rc2JsyUHPb2fKVWsT1I6T1j7sO3EW/1p70KUmM9ug1NXmEgFYTcg3LSvVqvfGyO4J+NBmHA3bz9T6zT0wIAXz1+Wrll/rqVrm6rQcjprMHAVDWmX+cvcJrNpzwuq3485D2l/7pWDo1fF2uV2qtXtjrWv3dhWesQtSHDEDuLd3G7y9seBKzXhWexQUn8fJ0gs4X1mlOU6R5XFzFFDKtZzu/FbUeilZTl8AwCrZ1/Yc3JR9PRZtKsBbGwo0E3oB4PV1+YiKqOf1mmdfY6Biw53uxI76swfCEN4yVy9egHf65jsblXOiSvUsAIy5Lgkzbu6IHUfOYM3PJ+zGIbC8ebk6A29Nu5HaCpYkRIQGYZ5Ktb4ZwIzPf3KrN0y3pCtt2548DXvSPf58ZZVmDYar37ta09c/Vu/XrPFamntUM2lSJtdGWf7Ovth1DCXlF9E4IhQJjcNderK0nc5+0cYCq+YBV5pLgMs1bMv2KN2IJVQHY0OvjsdSm1FJbQMr2+8lyCKQS2wSYfdbVHuqti1rZGiw6v7adoWXb4rbD5/BlCU7XQ5i46LDMbF3suqklpbnn6szJdsGM87O2yez2iM8NMQqePjx8GnVsmqRu7iP7510pbeNg1GSLdl1Cd51XLW3jaPz3FEAp3YM5L+18scsc2z6t4/FkLQ4lFWaEREapJnI7mnNs54YqKhwpw++2rqOJu5y9LSvZ1ORoyr4YEnC7t+8kzTsyqicb28ssHtikccekZ++h6THW41DYHkDdnWuD2dPoPLF0tWxFVyttlYLUoIA9G0fg3X7rwzCdts1La1G5vX0adjdMSW8kUDtTm8xZ/MKyZ9vOcjXhl9PKeNGyFzt+XRfvzYoKD6P9384gjfW5lu9Ry251FGvKtvkynmr9+G6NvZ5XU8Orn5qB640kWl9L7bz5cj7DFg/Vdue11qD5JVV2j9jx0WH4+aMcJyvvORWEDuhd7Lm+DVVQmD74TMO892A6nNjz28muzwOR4GBZUBhuX73y9t0lUD1+ETyZ1n2tpFZHle5vJbBlHx8/to3BS0bhdtNDaJ1nteklt3RQ0qVEEpQYrnd7D/Z5//I+2ek6SRcwUBFg2106866zi70aicsAN2biuQg4FzFJbsnGU+Thl3p5m3LLKznswGqn6Qtk1UBaA465+rEZafPV9p9tlo3Uq3ZaiWpegTYoRnx2H74DCBVTxUAaM8Ybcm2hmDktYnYVXgG2w6fQbekxqrTBzgLKB09DbtzPrtTC6MWYGv1jDp46iyKz12wGgPH2Tlh2ZNI/jy1XCFXK77eWJdvN1eKJdvk0pLyiy5uufq9w97YjLkWeV27j6nfZAHHs9faLnf2AORJgOluEBsXHV6dAK0yZkiwJAEq573cPCld/tv2e7K9nqidT7bdd+X1MxIaY0D7GKzdbz3KsuWYQ5YErgRO8rbUVAlR3ZTyfYHDa7KjqUEs1XSiROWhSWOsFvnjLQPDoRnxKC27aHeuS0DADbfPQMVNrtR6OLrQa2XOW57oejcVuZs0rMXVbt625PlsQoODrHrByE+7ji5oAFSfgCVcqQLXGlxOAlSffNXyPADgmVs7YWCH5qpV3bbV+paTzMn7qDYMeEaCeoBiSSug9GZvLFdvYFpPiba/AfmmMWP5TwCsJ3bTelqUcGV2beDKGCpaPW1kcgCo1VPK1YDGLKA667czQlzJ64oIDbKa26gmv21X8uc86aHnThALXDk3LLvWy5/lKOnU0XGXrydqvyW1MU4s11//q3WQYjlgnlrvQcu8Lke1cP/eUGD1npo0rXpjPCq14652rC33b9rgVPt9lBBwDDEy7euvv45//vOfOHHiBDIyMvDaa6+he/fuTt/nz5FpAfer7tRGo3VnRE3LkSz15MnotI7eYzniqC25mjy+UX1M+TBP9SJyb582SImNtBvCPq1VtJKMa9ssAFyZR8O2TVpm+cRn+/3aDuql9h7b/QSudNl1NMpqTeg54rEr50WRqVyzR4/liJlLc48ie9ke5YZuGcjYTVeQlao5voY82JxlE5FlwOhOvlFN3ds3Wek9Ykv+bTtKKtfK5XF0HhWZyrHt8GkESZLVRIW+onb+uTPyrEwO3C0HHJSX//vuazDp3e2qgb7t+kEAPpvc06r2zdGIs5azE7tC65rs6Hcoj6b9kEoNqKcjfMufZztIoy05aHe2H+6eh94QUCPTLl26FI8++igWLFiAHj164OWXX8agQYOwf/9+xMbG6l08hSdVd2pPKq4maBppNkxPntScdfNWG4U2CMD9/dvYDXZl662Nh6xqKMziSldEORlX7e1mAc0gBbAONixzFY6dKVfthWT7Htv9tMz898ZEcWoXD3efhr3J1V4mjSPVa0Asu0lbNmnJY7No1UD+Y/V+ZGel2iXfSpeDS8saKeUpdFOB1ROyt6k9mTv6vI0HT+Ho6fMOk8pdSei0/O716Glo2Xwn/z3y2kTVQQG1OMrtqhJCNUjRWt8M65wcZ3lmQlTX2hWZLjgdt8mTplXbbu3yeVLTGlDLz3OUt6Y1073lfjjq3CA3b+vdS0j3QOXFF1/EPffcg/HjxwMAFixYgJUrV+Kdd95Bdna2zqW7wltDyTtLiAS0R7LUk7cTMs9XVtm3VaO6+5yzBzFHQYxWMq4r77VbF7BLlHOF1gWtJkGFEbu7u5oToTnwG6zbyuUmLUua0xW0aoTN06/H9sNnUFJeicYRoQ5rEN5yccZeT7lbUTP/8nluGWy7Omy62nlU0xwIT2k1785z0oMLACYPSEHvtjEOuyQDNkn1ErDsgUxkJDRWXV/t/HOUZxaEK6PGzln1i9W2LPNcPAks1Lq1B0nAa3d0UQJxb3CWt+ZopntnnRuEQHVCroDPRv52hfMpXH2osrIS27dvx8CBA5VlQUFBGDhwILZs2WK3fkVFBUpLS63++Yt8sbXkaa3HyGsTsTF7AF6/s4tdc2EQqquu9b4JqYmLDnd5fAA5IAu+PMWo7Q9E7XgGwbVuu3LbshazAO7pm+y3k1u6XCag5k9KarRuQkWmcq99hiecfce260kWX5qEKwN2OeLod1fdcyUed12XhCHp2t0ttZJ1n721Ez685zpM/1Oq3y+EZuE8uLEcFsAZZ3OR+YLWebn9yBmXHgh6t42xup7Ynk+237v8GXKNiavnH3Alz8zWtKxUJfCz3dbc26rHJ/nwnuuwMXuA29dkrQHymjYI83rwWB3kx2PubfbH4699U7Axe4DqfrjSuQGoronW83qja41KcXExqqqq0Lx5c6vlzZs3x7599lXtOTk5mD17tr+KZ8XTRDVH29NKiHSWTBkoHNXCqB3PJwe3t5/jBNXTny/ZWmg3hoajPBd50CZniWcAcNd1iXj/h6Me7aNl4p6vckX8NTGkJ1ytadNq2nHGG787rZqfgR2bK8H30Ix41ZmKZXJuTKPweq7PL+Qg/0EtwdqWOw9C/pyTS6Z1XsLBb81Z2Wy7ZqvlrKhN7ujs/LM9jyzHrXG2LU9/Y3p8J472QW0/XE1F8OWknq7QNZn2+PHjaNmyJTZv3ozMzExl+ZNPPon169dj61brpNOKigpUVFQof5eWliIhIcFvybSAb5IX9UyI1JvtvmslC6odI2WK9GMldlWbtgmGji58akl5WqrnC2mDIektvDKTrSs8SWaubWr6G3GWhGr5OZYjfKoN+6+VIKzWVCDfNDYdPIU3Lo84qxZsaw2b7s5TvKv76C2uJszXZN+8vU/+vtb6+zvxhG0ZB3VujlWX50yS+eJ6404yra6BSmVlJSIiIvDJJ59g2LBhyvKxY8eipKQEn3/+ucP3+7vXD/mHJxcTV9+jdeGwXW57YX0yqz3SWzbSLZgMhAue0blzXrmyrtp34ujp3lGwbZmnUdOEa6PciL21b4H+IBcI5bct45vr8+3mX/L29SZgAhUA6NGjB7p3747XXnsNAGA2m5GYmIgHH3zQaTItAxXyhNaFw9s3DW8zWnmI3wnAY1Bb+fp7DahAZenSpRg7dizefPNNdO/eHS+//DI++ugj7Nu3zy53xRYDFSIiosATUOOojBw5EqdOncLf//53nDhxAldffTW++uorp0EKERER1X6616jUBGtUiIiIAo87929dx1EhIiIicoSBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDEv3IfRrQh5Ut7S0VOeSEBERkavk+7Yrg+MHdKBy9uxZAEBCQoLOJSEiIiJ3nT17FtHR0Q7XCei5fsxmM44fP46GDRtCkqQabau0tBQJCQkoLCyss/MG8RjwGMh4HHgMAB4DgMdA5u3jIITA2bNnER8fj6Agx1koAV2jEhQUhFatWnl1m1FRUXX6ZAR4DAAeAxmPA48BwGMA8BjIvHkcnNWkyJhMS0RERIbFQIWIiIgMi4HKZWFhYZg5cybCwsL0LopueAx4DGQ8DjwGAI8BwGMg0/M4BHQyLREREdVurFEhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGVatDlTmz5+P9PR0ZYCazMxMrF69Wnn9woULmDx5Mpo2bYoGDRrgtttuw++//261jaNHj2LIkCGIiIhAbGwsnnjiCVy6dMnfu+I1c+fOhSRJmDp1qrKsth+HWbNmQZIkq3+pqanK67V9/2XHjh3DXXfdhaZNmyI8PBxpaWnYtm2b8roQAn//+98RFxeH8PBwDBw4EAcOHLDaxunTpzF69GhERUWhUaNGmDhxIs6dO+fvXfFYUlKS3bkgSRImT54MoG6cC1VVVZgxYwaSk5MRHh6OlJQUPPvss1ZzrtSFc+Hs2bOYOnUqWrdujfDwcPTs2RO5ubnK67XxGGzYsAG33HIL4uPjIUkSli9fbvW6t/Z59+7d6NOnD+rXr4+EhAT84x//qFnBRS22YsUKsXLlSvHrr7+K/fv3i6eeekrUq1dP7N27VwghxH333ScSEhLEt99+K7Zt2yauu+460bNnT+X9ly5dEp07dxYDBw4UO3fuFKtWrRLNmjUT06dP12uXauTHH38USUlJIj09XTz88MPK8tp+HGbOnCk6deokioqKlH+nTp1SXq/t+y+EEKdPnxatW7cW48aNE1u3bhWHDh0SX3/9tTh48KCyzty5c0V0dLRYvny52LVrlxg6dKhITk4W5eXlyjqDBw8WGRkZ4ocffhDff/+9aNu2rRg1apQeu+SRkydPWp0Ha9asEQDE2rVrhRB141x4/vnnRdOmTcWXX34pCgoKxMcffywaNGggXnnlFWWdunAu3H777aJjx45i/fr14sCBA2LmzJkiKipK/Pbbb0KI2nkMVq1aJZ5++mmxbNkyAUB89tlnVq97Y59NJpNo3ry5GD16tNi7d6/48MMPRXh4uHjzzTc9LnetDlTUNG7cWLz11luipKRE1KtXT3z88cfKa7/88osAILZs2SKEqP5Sg4KCxIkTJ5R15s+fL6KiokRFRYXfy14TZ8+eFVdddZVYs2aN6NevnxKo1IXjMHPmTJGRkaH6Wl3YfyGEmDZtmujdu7fm62azWbRo0UL885//VJaVlJSIsLAw8eGHHwohhPj5558FAJGbm6uss3r1aiFJkjh27JjvCu9DDz/8sEhJSRFms7nOnAtDhgwREyZMsFo2YsQIMXr0aCFE3TgXysrKRHBwsPjyyy+tll9zzTXi6aefrhPHwDZQ8dY+v/HGG6Jx48ZWv4dp06aJ9u3be1zWWt30Y6mqqgpLlizB+fPnkZmZie3bt+PixYsYOHCgsk5qaioSExOxZcsWAMCWLVuQlpaG5s2bK+sMGjQIpaWl+Omnn/y+DzUxefJkDBkyxGp/AdSZ43DgwAHEx8ejTZs2GD16NI4ePQqg7uz/ihUr0K1bN/zlL39BbGwsunTpgoULFyqvFxQU4MSJE1bHITo6Gj169LA6Do0aNUK3bt2UdQYOHIigoCBs3brVfzvjJZWVlXj//fcxYcIESJJUZ86Fnj174ttvv8Wvv/4KANi1axc2btyIrKwsAHXjXLh06RKqqqpQv359q+Xh4eHYuHFjnTgGtry1z1u2bEHfvn0RGhqqrDNo0CDs378fZ86c8ahsAT0poSv27NmDzMxMXLhwAQ0aNMBnn32Gjh07Ii8vD6GhoWjUqJHV+s2bN8eJEycAACdOnLC6IMmvy68FiiVLlmDHjh1W7a+yEydO1Prj0KNHDyxevBjt27dHUVERZs+ejT59+mDv3r11Yv8B4NChQ5g/fz4effRRPPXUU8jNzcWUKVMQGhqKsWPHKvuhtp+WxyE2Ntbq9ZCQEDRp0iRgjoOl5cuXo6SkBOPGjQNQN34LAJCdnY3S0lKkpqYiODgYVVVVeP755zF69GgAqBPnQsOGDZGZmYlnn30WHTp0QPPmzfHhhx9iy5YtaNu2bZ04Bra8tc8nTpxAcnKy3Tbk1xo3bux22Wp9oNK+fXvk5eXBZDLhk08+wdixY7F+/Xq9i+U3hYWFePjhh7FmzRq7p4e6Qn5SBID09HT06NEDrVu3xkcffYTw8HAdS+Y/ZrMZ3bp1w5w5cwAAXbp0wd69e7FgwQKMHTtW59Lp4+2330ZWVhbi4+P1LopfffTRR/jvf/+LDz74AJ06dUJeXh6mTp2K+Pj4OnUu/Oc//8GECRPQsmVLBAcH45prrsGoUaOwfft2vYtGNmp9009oaCjatm2Lrl27IicnBxkZGXjllVfQokULVFZWoqSkxGr933//HS1atAAAtGjRwi7jX/5bXsfotm/fjpMnT+Kaa65BSEgIQkJCsH79erz66qsICQlB8+bN68RxsNSoUSO0a9cOBw8erDPnQVxcHDp27Gi1rEOHDkoTmLwfavtpeRxOnjxp9fqlS5dw+vTpgDkOsiNHjuB///sfJk2apCyrK+fCE088gezsbNxxxx1IS0vDmDFj8MgjjyAnJwdA3TkXUlJSsH79epw7dw6FhYX48ccfcfHiRbRp06bOHANL3tpnX/xGan2gYstsNqOiogJdu3ZFvXr18O233yqv7d+/H0ePHkVmZiYAIDMzE3v27LH6YtasWYOoqCi7i75R3XDDDdizZw/y8vKUf926dcPo0aOV/68Lx8HSuXPnkJ+fj7i4uDpzHvTq1Qv79++3Wvbrr7+idevWAIDk5GS0aNHC6jiUlpZi69atVsehpKTE6onzu+++g9lsRo8ePfywF96zaNEixMbGYsiQIcqyunIulJWVISjI+tIfHBwMs9kMoO6dC5GRkYiLi8OZM2fw9ddf49Zbb61zxwDw3veemZmJDRs24OLFi8o6a9asQfv27T1q9gFQu7snZ2dni/Xr14uCggKxe/dukZ2dLSRJEt98840QororYmJiovjuu+/Etm3bRGZmpsjMzFTeL3dFvOmmm0ReXp746quvRExMTEB1RVRj2etHiNp/HB577DGxbt06UVBQIDZt2iQGDhwomjVrJk6ePCmEqP37L0R11/SQkBDx/PPPiwMHDoj//ve/IiIiQrz//vvKOnPnzhWNGjUSn3/+udi9e7e49dZbVbsmdunSRWzdulVs3LhRXHXVVYbujqmmqqpKJCYmimnTptm9VhfOhbFjx4qWLVsq3ZOXLVsmmjVrJp588kllnbpwLnz11Vdi9erV4tChQ+Kbb74RGRkZokePHqKyslIIUTuPwdmzZ8XOnTvFzp07BQDx4osvip07d4ojR44IIbyzzyUlJaJ58+ZizJgxYu/evWLJkiUiIiKC3ZO1TJgwQbRu3VqEhoaKmJgYccMNNyhBihBClJeXiwceeEA0btxYREREiOHDh4uioiKrbRw+fFhkZWWJ8PBw0axZM/HYY4+Jixcv+ntXvMo2UKntx2HkyJEiLi5OhIaGipYtW4qRI0dajR9S2/df9sUXX4jOnTuLsLAwkZqaKv79739bvW42m8WMGTNE8+bNRVhYmLjhhhvE/v37rdb5448/xKhRo0SDBg1EVFSUGD9+vDh79qw/d6PGvv76awHAbt+EqBvnQmlpqXj44YdFYmKiqF+/vmjTpo14+umnrbqT1oVzYenSpaJNmzYiNDRUtGjRQkyePFmUlJQor9fGY7B27VoBwO7f2LFjhRDe2+ddu3aJ3r17i7CwMNGyZUsxd+7cGpVbEsJiOEIiIiIiA6lzOSpEREQUOBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSI6qD+/ftj6tSpehfD52bNmoWrr75a72IQUQ0wUCGigFNZWenXzxNC4NKlS379TCKqxkCFqI4ZN24c1q9fj1deeQWSJEGSJBw+fBh79+5FVlYWGjRogObNm2PMmDEoLi5W3te/f3889NBDmDp1Kho3bozmzZtj4cKFOH/+PMaPH4+GDRuibdu2WL16tfKedevWQZIkrFy5Eunp6ahfvz6uu+467N2716pMGzduRJ8+fRAeHo6EhARMmTIF58+fV15PSkrCs88+i7vvvhtRUVG49957AQDTpk1Du3btEBERgTZt2mDGjBnKrK2LFy/G7NmzsWvXLmU/Fy9ejMOHD0OSJOTl5SnbLykpgSRJWLdunVW5V69eja5duyIsLAwbN26E2WxGTk4OkpOTER4ejoyMDHzyySfe/oqIyAIDFaI65pVXXkFmZibuueceFBUVoaioCA0bNsT111+PLl26YNu2bfjqq6/w+++/4/bbb7d677vvvotmzZrhxx9/xEMPPYT7778ff/nLX9CzZ0/s2LEDN910E8aMGYOysjKr9z3xxBN44YUXkJubi5iYGNxyyy1KQJGfn4/Bgwfjtttuw+7du7F06VJs3LgRDz74oNU2/u///g8ZGRnYuXMnZsyYAQBo2LAhFi9ejJ9//hmvvPIKFi5ciJdeegkAMHLkSDz22GPo1KmTsp8jR45061hlZ2dj7ty5+OWXX5Ceno6cnBy89957WLBgAX766Sc88sgjuOuuu7B+/Xq3tktEbqjRlIZEFJBsZ9B+9tlnxU033WS1TmFhodUsw/369RO9e/dWXr906ZKIjIwUY8aMUZYVFRUJAGLLli1CiCuztS5ZskRZ548//hDh4eFi6dKlQgghJk6cKO69916rz/7+++9FUFCQMr1869atxbBhw5zu1z//+U/RtWtX5e+ZM2eKjIwMq3UKCgoEALFz505l2ZkzZwQAsXbtWqtyL1++XFnnwoULIiIiQmzevNlqexMnTrSa5p6IvCtEzyCJiIxh165dWLt2LRo0aGD3Wn5+Ptq1awcASE9PV5YHBwejadOmSEtLU5Y1b94cAHDy5EmrbWRmZir/36RJE7Rv3x6//PKL8tm7d+/Gf//7X2UdIQTMZjMKCgrQoUMHAEC3bt3syrZ06VK8+uqryM/Px7lz53Dp0iVERUW5vf9aLD/z4MGDKCsrw4033mi1TmVlJbp06eK1zyQiawxUiAjnzp3DLbfcgnnz5tm9FhcXp/x/vXr1rF6TJMlqmSRJAACz2ezWZ//1r3/FlClT7F5LTExU/j8yMtLqtS1btmD06NGYPXs2Bg0ahOjoaCxZsgQvvPCCw88LCqpu8RZCKMvkZihblp957tw5AMDKlSvRsmVLq/XCwsIcfiYReY6BClEdFBoaiqqqKuXva665Bp9++imSkpIQEuL9y8IPP/ygBB1nzpzBr7/+qtSUXHPNNfj555/Rtm1bt7a5efNmtG7dGk8//bSy7MiRI1br2O4nAMTExAAAioqKlJoQy8RaLR07dkRYWBiOHj2Kfv36uVVWIvIck2mJ6qCkpCRs3boVhw8fRnFxMSZPnozTp09j1KhRyM3NRX5+Pr7++muMHz/e7kbviWeeeQbffvst9u7di3HjxqFZs2YYNmwYgOqeO5s3b8aDDz6IvLw8HDhwAJ9//rldMq2tq666CkePHsWSJUuQn5+PV199FZ999pndfhYUFCAvLw/FxcWoqKhAeHg4rrvuOiVJdv369fjb3/7mdB8aNmyIxx9/HI888gjeffdd5OfnY8eOHXjttdfw7rvvenxsiMgxBipEddDjjz+O4OBgdOzYETExMaisrMSmTZtQVVWFm266CWlpaZg6dSoaNWqkNJXUxNy5c/Hwww+ja9euOHHiBL744guEhoYCqM57Wb9+PX799Vf06dMHXbp0wd///nfEx8c73ObQoUPxyCOP4MEHH8TVV1+NzZs3K72BZLfddhsGDx6MAQMGICYmBh9++CEA4J133sGlS5fQtWtXTJ06Fc8995xL+/Hss89ixowZyMnJQYcOHTB48GCsXLkSycnJHhwVInKFJCwbaomIvGjdunUYMGAAzpw5g0aNGuldHCIKQKxRISIiIsNioEJERESGxaYfIiIiMizWqBAREZFhMVAhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGRYDFSIiIjIsBipERERkWAxUiIiIyLAYqBAREZFh/T8Zs6wqh35IbwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(poly_surr, data_training, filename=\"pysmo_poly_train_scatter2D.pdf\")\n", - "surrogate_parity(poly_surr, data_training, filename=\"pysmo_poly_train_parity.pdf\")\n", - "surrogate_residual(poly_surr, data_training, filename=\"pysmo_poly_train_residual.pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.4 Model Validation\n", - "\n", - "We check the fit on the validation set to see if the surrogate is fitting well. This step can be used to check for overfitting on the training set." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgxUlEQVR4nO3deVxU5eI/8M8wsgujLLLEKu5lLuSC5U6B1yV+4k3NXFIzvaKi5la5lWaaJi6prWIlLaZ1c01z65ZkilqZylUuagW4gAyoCcic3x98OTHAwDDMzDln5vN+vXgpc56ZeebMcOZznu2oBEEQQERERERW5SB1BYiIiIjsEUMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgREdUoOTkZKpUKly9flroqRDaFIYyIJHfixAkkJCTgwQcfhLu7O0JCQvDUU0/hv//9b5WyvXr1gkqlgkqlgoODAzw9PdGyZUuMHDkSBw4cqNPz7ty5Ez179kSTJk3g5uaGpk2b4qmnnsK+ffvM9dKqeO211/DVV19Vuf3YsWNYtGgR8vPzLfbclS1atEjclyqVCm5ubmjTpg1efvllFBQUmOU5UlJSkJSUZJbHIrI1DGFEJLnly5dj+/bt6Nu3L9asWYMJEybgu+++Q8eOHXH27Nkq5YOCgvDRRx/hww8/xBtvvIFBgwbh2LFjeOKJJzB06FCUlJTU+pwrV67EoEGDoFKpMG/ePKxevRrx8fG4ePEiPv30U0u8TAA1h7DFixdbNYSV27hxIz766CO8+eabaNWqFZYuXYrY2FiY49LCDGFEhjWQugJERDNmzEBKSgqcnJzE24YOHYq2bdvi9ddfx8cff6xXXqPR4JlnntG77fXXX8fUqVOxYcMGhIWFYfny5Qaf7/79+3j11Vfx+OOPY//+/VW2X79+vZ6vSD7u3r0LNze3GssMGTIEPj4+AICJEyciPj4eO3bswI8//oioqChrVJPILrEljIgk161bN70ABgDNmzfHgw8+iPPnzxv1GGq1GmvXrkWbNm2wfv16aLVag2Vv3ryJgoICPProo9Vub9Kkid7v9+7dw6JFi9CiRQu4uLggICAAgwcPRkZGhlhm5cqV6NatG7y9veHq6orIyEh88cUXeo+jUqlw584dbNmyRewCHDNmDBYtWoRZs2YBAMLDw8VtFcdgffzxx4iMjISrqyu8vLwwbNgw/P7773qP36tXLzz00ENIS0tDjx494ObmhhdffNGo/VdRnz59AACZmZk1ltuwYQMefPBBODs7IzAwEJMnT9ZryevVqxd2796NK1euiK8pLCyszvUhslVsCSMiWRIEAdeuXcODDz5o9H3UajWGDx+O+fPn4/vvv0f//v2rLdekSRO4urpi586dmDJlCry8vAw+ZmlpKQYMGICDBw9i2LBhmDZtGgoLC3HgwAGcPXsWERERAIA1a9Zg0KBBGDFiBIqLi/Hpp5/in//8J3bt2iXW46OPPsL48ePRuXNnTJgwAQAQEREBd3d3/Pe//8Unn3yC1atXi61Svr6+AIClS5di/vz5eOqppzB+/HjcuHED69atQ48ePXD69Gk0atRIrG9ubi769euHYcOG4ZlnnoGfn5/R+69cebj09vY2WGbRokVYvHgxoqOjMWnSJKSnp2Pjxo04ceIEfvjhBzg6OuKll16CVqvFH3/8gdWrVwMAGjZsWOf6ENksgYhIhj766CMBgPD+++/r3d6zZ0/hwQcfNHi/L7/8UgAgrFmzpsbHX7BggQBAcHd3F/r16ycsXbpUSEtLq1Lugw8+EAAIb775ZpVtOp1O/P/du3f1thUXFwsPPfSQ0KdPH73b3d3dhdGjR1d5rDfeeEMAIGRmZurdfvnyZUGtVgtLly7Vu/3XX38VGjRooHd7z549BQDCpk2bDL7uihYuXCgAENLT04UbN24ImZmZwttvvy04OzsLfn5+wp07dwRBEITNmzfr1e369euCk5OT8MQTTwilpaXi461fv14AIHzwwQfibf379xdCQ0ONqg+RvWF3JBHJzoULFzB58mRERUVh9OjRdbpveUtLYWFhjeUWL16MlJQUdOjQAd988w1eeuklREZGomPHjnpdoNu3b4ePjw+mTJlS5TFUKpX4f1dXV/H/t27dglarRffu3XHq1Kk61b+yHTt2QKfT4amnnsLNmzfFH39/fzRv3hyHDx/WK+/s7Ixnn322Ts/RsmVL+Pr6Ijw8HM8//zyaNWuG3bt3GxxL9u2336K4uBiJiYlwcPj7a+S5556Dp6cndu/eXfcXSmSH2B1JRLKSk5OD/v37Q6PR4IsvvoBara7T/W/fvg0A8PDwqLXs8OHDMXz4cBQUFOD48eNITk5GSkoKBg4ciLNnz8LFxQUZGRlo2bIlGjSo+XC5a9cuLFmyBGfOnEFRUZF4e8WgZoqLFy9CEAQ0b9682u2Ojo56vz/wwANVxtfVZvv27fD09ISjoyOCgoLELlZDrly5AqAsvFXk5OSEpk2bituJqGYMYUQkG1qtFv369UN+fj7+85//IDAwsM6PUb6kRbNmzYy+j6enJx5//HE8/vjjcHR0xJYtW3D8+HH07NnTqPv/5z//waBBg9CjRw9s2LABAQEBcHR0xObNm5GSklLn11CRTqeDSqXC3r17qw2klcdYVWyRM1aPHj3EcWhEZD0MYUQkC/fu3cPAgQPx3//+F99++y3atGlT58coLS1FSkoK3Nzc8Nhjj5lUj0ceeQRbtmxBdnY2gLKB88ePH0dJSUmVVqdy27dvh4uLC7755hs4OzuLt2/evLlKWUMtY4Zuj4iIgCAICA8PR4sWLer6ciwiNDQUAJCeno6mTZuKtxcXFyMzMxPR0dHibfVtCSSyZRwTRkSSKy0txdChQ5Gamopt27aZtDZVaWkppk6divPnz2Pq1Knw9PQ0WPbu3btITU2tdtvevXsB/N3VFh8fj5s3b2L9+vVVygr/t5ipWq2GSqVCaWmpuO3y5cvVLsrq7u5e7YKs7u7uAFBl2+DBg6FWq7F48eIqi6cKgoDc3NzqX6QFRUdHw8nJCWvXrtWr0/vvvw+tVqs3K9Xd3b3G5UKI7BlbwohIcjNnzsTXX3+NgQMHIi8vr8rirJUXZtVqtWKZu3fv4tKlS9ixYwcyMjIwbNgwvPrqqzU+3927d9GtWzd07doVsbGxCA4ORn5+Pr766iv85z//QVxcHDp06AAAGDVqFD788EPMmDEDP/30E7p37447d+7g22+/xb/+9S88+eST6N+/P958803Exsbi6aefxvXr1/HWW2+hWbNm+OWXX/SeOzIyEt9++y3efPNNBAYGIjw8HF26dEFkZCQA4KWXXsKwYcPg6OiIgQMHIiIiAkuWLMG8efNw+fJlxMXFwcPDA5mZmfjyyy8xYcIEvPDCC/Xa/3Xl6+uLefPmYfHixYiNjcWgQYOQnp6ODRs2oFOnTnrvV2RkJD777DPMmDEDnTp1QsOGDTFw4ECr1pdItqScmklEJAh/L61g6Kemsg0bNhSaN28uPPPMM8L+/fuNer6SkhLh3XffFeLi4oTQ0FDB2dlZcHNzEzp06CC88cYbQlFRkV75u3fvCi+99JIQHh4uODo6Cv7+/sKQIUOEjIwMscz7778vNG/eXHB2dhZatWolbN68WVwCoqILFy4IPXr0EFxdXQUAestVvPrqq8IDDzwgODg4VFmuYvv27cJjjz0muLu7C+7u7kKrVq2EyZMnC+np6Xr7pqblOyorr9+NGzdqLFd5iYpy69evF1q1aiU4OjoKfn5+wqRJk4Rbt27plbl9+7bw9NNPC40aNRIAcLkKogpUgmCGi4MRERERUZ1wTBgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgCGMiIiISAJcrFXGdDodsrKy4OHhwUt/EBERKYQgCCgsLERgYCAcHAy3dzGEyVhWVhaCg4OlrgYRERGZ4Pfff0dQUJDB7QxhMubh4QGg7E2s6Tp4REREJB8FBQUIDg4Wv8cNYQiTsfIuSE9PT4YwIiIihaltKBEH5hMRERFJgCGMiIiISAIMYUREREQS4JgwhdPpdCguLpa6GjbNycmpxinGREREpmAIU7Di4mJkZmZCp9NJXRWb5uDggPDwcDg5OUldFSIisiEMYQolCAKys7OhVqsRHBzMlhoLKV8wNzs7GyEhIVw0l4iIzIYhTKHu37+Pu3fvIjAwEG5ublJXx6b5+voiKysL9+/fh6Ojo9TVISIiG6GY5pNBgwYhJCQELi4uCAgIwMiRI5GVlaVXRhAErFy5Ei1atICzszMeeOABLF26VK/MkSNH0LFjRzg7O6NZs2ZITk6u8lxvvfUWwsLC4OLigi5duuCnn37S237v3j1MnjwZ3t7eaNiwIeLj43Ht2jW9MlevXkX//v3h5uaGJk2aYNasWbh//755dgaA0tJSAGAXmRWU7+PyfU5ERGQOiglhvXv3xueff4709HRs374dGRkZGDJkiF6ZadOm4b333sPKlStx4cIFfP311+jcubO4PTMzE/3790fv3r1x5swZJCYmYvz48fjmm2/EMp999hlmzJiBhQsX4tSpU2jXrh1iYmJw/fp1scz06dOxc+dObNu2DUePHkVWVhYGDx4sbi8tLUX//v1RXFyMY8eOYcuWLUhOTsaCBQvMvl/YPWZ53MdERGQRgkL9+9//FlQqlVBcXCwIgiCcO3dOaNCggXDhwgWD95k9e7bw4IMP6t02dOhQISYmRvy9c+fOwuTJk8XfS0tLhcDAQGHZsmWCIAhCfn6+4OjoKGzbtk0sc/78eQGAkJqaKgiCIOzZs0dwcHAQcnJyxDIbN24UPD09haKiIqNfo1arFQAIWq22yra//vpLOHfunPDXX38Z/XhkGu5rIuW5efOmkJWVZfDn5s2bUleRbFhN398VKXJMWF5eHrZu3Ypu3bqJY3R27tyJpk2bYteuXYiNjYUgCIiOjsaKFSvg5eUFAEhNTUV0dLTeY8XExCAxMRFA2WzDtLQ0zJs3T9zu4OCA6OhopKamAgDS0tJQUlKi9zitWrVCSEgIUlNT0bVrV6SmpqJt27bw8/PTe55Jkybht99+Q4cOHSyyX4iICMjNzcX69etrLZeQkABvb28r1IioeorpjgSAOXPmwN3dHd7e3rh69Sr+/e9/i9v+97//4cqVK9i2bRs+/PBDJCcnIy0tTa/LMicnRy8YAYCfnx8KCgrw119/4ebNmygtLa22TE5OjvgYTk5OaNSoUY1lqnuM8m2GFBUVoaCgQO/H1owZMwYqlQoqlQqOjo7w8/PD448/jg8++KBOS20kJydXeQ+IiABUWTtRq/VAZmYYtFqPGssRWZukIWzu3LniF7KhnwsXLojlZ82ahdOnT2P//v1Qq9UYNWoUBEEAULaUQFFRET788EN0794dvXr1wvvvv4/Dhw8jPT1dqpdYJ8uWLYNGoxF/goODLfZcubm5yM7ONviTm5trseeOjY1FdnY2Ll++jL1796J3796YNm0aBgwYYNbJC0REp051QFJSIrZsGY2kpEScOsWeCJIPSbsjZ86ciTFjxtRYpmnTpuL/fXx84OPjgxYtWqB169YIDg7Gjz/+iKioKAQEBKBBgwZo0aKFWL5169YAymYqtmzZEv7+/lVmMV67dg2enp5wdXWFWq2GWq2utoy/vz8AwN/fH8XFxcjPz9drialcpvKMyvLHLC9TnXnz5mHGjBni7wUFBRYJYlI31Ts7O4v74YEHHkDHjh3RtWtX9O3bF8nJyRg/fjzefPNNbN68Gf/73//g5eWFgQMHYsWKFWjYsCGOHDmCZ599FsDfg+YXLlyIRYsW4aOPPsKaNWuQnp4Od3d39OnTB0lJSWjSpInZXwcRyZtW64GdOwdAEMraGwTBATt3DkBExCVoNIUS145I4hDm6+sLX19fk+5b3nVVVFQEAHj00Udx//59ZGRkICIiAgDw3//+FwAQGhoKAIiKisKePXv0HufAgQOIiooCULYUQWRkJA4ePIi4uDjxeQ4ePIiEhAQAQGRkJBwdHXHw4EHEx8cDANLT03H16lXxcaKiorB06VJcv35d/PI/cOAAPD090aZNG4OvydnZGc7Ozibtj7owtgnemk31ffr0Qbt27bBjxw6MHz8eDg4OWLt2LcLDw/G///0P//rXvzB79mxs2LAB3bp1Q1JSEhYsWCC2cjZs2BAAUFJSgldffRUtW7bE9evXMWPGDIwZM6bK+05E0snNza3x+OLk5GSWE8C8PG8xgJUTBAfk5XkxhCmMtT4z1qaIgfnHjx/HiRMn8Nhjj6Fx48bIyMjA/PnzERERIQaf6OhodOzYEWPHjkVSUhJ0Oh0mT56Mxx9/XGwdmzhxItavX4/Zs2dj7NixOHToED7//HPs3r1bfK4ZM2Zg9OjReOSRR9C5c2ckJSXhzp07YsuLRqPBuHHjMGPGDHh5ecHT0xNTpkxBVFQUunbtCgB44okn0KZNG4wcORIrVqxATk4OXn75ZUyePNkqIUupWrVqhV9++QUAxMkSABAWFoYlS5Zg4sSJ2LBhA5ycnKDRaKBSqaq0LI4dO1b8f9OmTbF27Vp06tQJt2/fFoMa2TZbPVjbCmu2xHt55UKl0ukFMZVKBy+vvHo9LlmX1L03lqSIEObm5oYdO3Zg4cKFuHPnDgICAhAbG4uXX35ZDDUODg7YuXMnpkyZgh49esDd3R39+vXDqlWrxMcJDw/H7t27MX36dKxZswZBQUF47733EBMTI5YZOnQobty4gQULFiAnJwft27fHvn379Abar169Gg4ODoiPj0dRURFiYmKwYcMGcbtarcauXbswadIkREVFwd3dHaNHj8Yrr7xihb2lXIIgiN2L3377LZYtW4YLFy6goKAA9+/fx71793D37t0arxCQlpaGRYsW4eeff8atW7fEFtOrV6/W2ApJtqHywVqr9UBenje8vHL1Wj6UeLC2FdUNmq/uPTJHS7xGU4iBA3eJXZIqlQ4DB+5iK5jCWPMzY22KCGFt27bFoUOHai0XGBiI7du311imV69eOH36dI1lEhISxO7H6ri4uOCtt97CW2+9ZbBMaGgou8Dq6Pz58wgPD8fly5cxYMAATJo0CUuXLoWXlxe+//57jBs3DsXFxQZD2J07dxATE4OYmBhs3boVvr6+uHr1KmJiYmT3x8nWGsuouE9PnepQ5cu3Y8fTVcqRdGp6j8ylY8fTiIi4hLw8L3h55ckmgPEYYBprfGasSREhjGzfoUOH8Ouvv2L69OlIS0uDTqfDqlWrxAuTf/7553rlnZycqlxG6MKFC8jNzcXrr78uTmg4efKkdV5AHbC1xvI4IFv+LPkeVb6cm0ZTWO1jSnXZN1vuXrMkW/y7ZggjqysqKkJOTg5KS0tx7do17Nu3D8uWLcOAAQMwatQonD17FiUlJVi3bh0GDhyIH374AZs2bdJ7jLCwMNy+fRsHDx5Eu3bt4ObmhpCQEDg5OWHdunWYOHEizp49i1dffVWiV2kYW2ssjwOy5c+S75G3tzcSEhJk29Ikx8lR5mLJFj5b/LtmCCOr27dvn7ikSOPGjdGuXTusXbsWo0ePhoODA9q1a4c333wTy5cvx7x589CjRw8sW7YMo0aNEh+jW7dumDhxIoYOHYrc3FxxiYrk5GS8+OKLWLt2LTp27IiVK1di0KBBEr5aw2zxrE4uOCBb/iz9HimpBclQa7jSWLqFzxb/rhnC7JCxTfCWaKpPTk5GcnJyreWmT5+O6dOn6902cuRIvd83btyIjRs36t02fPhwDB8+XO+28gV95cYWz+rkggOy5Y/vURlbGuNk6RY+W/zMMITZIbk31dsLWzyrkxO5Dsimv9n7e2TrreGWaOGztc8MQ5idYsCSni2e1cmNoQHZJB25D5q3JltuDTdnC58tf2YYwogkZGtndVKTsqudjMOW+L/Zamu4uVv4bPkzwxBGJDG21hhW15lWtnywtiXc/2VstTXcEi18tvqZYQgjsjK21hjH1JlWtnqwJttR8W+7ptZwpR4DbLWFzxIYwoisjK01xrHlS5UoBVd1twxbPwbYagufJTCEEUlAqQdXqZhzkC+DhXG4qrtl2eI+s/UWPktgCCMiWTPnIF8GC+OxJZLqytZb+CyBIYyIZM2cg3wZLExjSwuKkmUxYNUNQxjZlCNHjqB37964desWGjVqZNR9wsLCkJiYiMTERIvWzd6Z2g1oqUG+DBbGsfUFRYmkxBBGVjVmzBhs2bIFzz//fJWLck+ePBkbNmzA6NGjjbq0ESlHfboBLTHIl8HCeLa8oGhdcTwhmRtDGFldcHAwPv30U6xevRqurq4AgHv37iElJQUhISES144sob7dgOZe1JbBwnhcbqAMxxOSJTjUXoTIvDp27Ijg4GDs2LFDvG3Hjh0ICQlBhw4dxNuKioowdepUNGnSBC4uLnjsscdw4sQJvcfas2cPWrRoAVdXV/Tu3RuXL1+u8nzff/89unfvDldXVwQHB2Pq1Km4c+eOxV4f1ezUqQ5ISkrEli2jkZSUiFOnOlRbrrpLlYSHX6kSkkyZaVUeLCqyx2BhjPKWyPL9Za/LDVR3IpGZGQat1qPGckQ1YUsY4Y8/gIsXgebNgaAg6zzn2LFjsXnzZowYMQIA8MEHH+DZZ5/FkSNHxDKzZ8/G9u3bsWXLFoSGhmLFihWIiYnBpUuX4OXlhd9//x2DBw/G5MmTMWHCBJw8eRIzZ87Ue56MjAzExsZiyZIl+OCDD3Djxg0kJCQgISEBmzdvts6LJVFdugEtOdOK6xjVDS+vpY/jCclcGMLs3PvvAxMmADod4OAAvPMOMG6c5Z/3mWeewbx583DlyhUAwA8//IBPP/1UDGF37tzBxo0bkZycjH79+gEA3n33XRw4cADvv/8+Zs2ahY0bNyIiIgKrVq0CALRs2RK//vorli9fLj7PsmXLMGLECHHQffPmzbF27Vr07NkTGzduhIuLi+VfLInq2g1oyW4dBoua2fJFk+uD4wnJnBjC7Ngff/wdwICyf59/HoiJsXyLmK+vL/r374/k5GQIgoD+/fvDx8dH3J6RkYGSkhI8+uij4m2Ojo7o3Lkzzp8/DwA4f/48unTpove4UVFRer///PPP+OWXX7B161bxNkEQoNPpkJmZidatW1vi5ZEBUo8vYrAwHtd8qh7HE1aPkxZMwxBmxy5e/DuAlSstBS5dsk635NixY5GQkAAAeOuttyzyHLdv38bzzz+PqVOnVtnGSQDWJ3U3IINF3XA/VCX1iYQccdKC6RjC7Fjz5mVdkBWDmFoNNGtmneePjY1FcXExVCoVYmJi9LZFRETAyckJP/zwA0JDQwEAJSUlOHHihNi12Lp1a3z99dd69/vxxx/1fu/YsSPOnTuHZtZ6URZmC2ebUncDyn3/kLxJfSIhR1wE2XQMYXYsKKhsDNjzz5e1gKnVwNtvW29wvlqtFrsW1Wq13jZ3d3dMmjQJs2bNgpeXF0JCQrBixQrcvXsX4/5v0NrEiROxatUqzJo1C+PHj0daWlqV9cXmzJmDrl27IiEhAePHj4e7uzvOnTuHAwcOGHXmVhtrhiIln22yG5BsidQnEnLGSQt1wxBm58aNKxsDdulSWQuYtQJYOU9PT4PbXn/9deh0OowcORKFhYV45JFH8M0336Bx48YAyroTt2/fjunTp2PdunXo3LkzXnvtNYwdO1Z8jIcffhhHjx7FSy+9hO7du0MQBERERGDo0KH1rru1Q5GSzzbZDUhKxxOJ2nHSQt0xhBGCgqwXvmpbCf+rr74S/+/i4oK1a9di7dq1BssPGDAAAwYM0Lvt2Wef1fu9U6dO2L9/v8HHqG5tMWMYG3YsEYqUeLbJgEVKxhOJ2nHSQt0xhBGZiaGWKUs8D882iazPngOWMThpoe4YwojMwJotUzzbJCI54qSFumMII6ona7dM8WyT5M4WZvGSaThpoW4YwojqydotUzzbJDlT8ixeMg0nLZiOIUzhBEGQugo2r7Z9LEXLlBzONq29PAdbVpRBybN4yTSctGA6hjCFKl9Xq7i4GK6urhLXxraVH1gqr2VWzlotU3I627RmawdbVpRLibN4yTT82zMNQ5hCNWjQAG5ubrhx4wYcHR3h4OBQ+52oznQ6HW7cuAE3Nzc0aKD/51Ix7NTUMmWuUCSns01rLs8h5VIgZDrO4iWqHUOYQqlUKgQEBCAzMxNXrlyRujo2zcHBASEhIVCpVHq3SxGK5Hq2aa3lOaz9XGQ6zuIlqh1DmII5OTmhefPmbAGwMCcnJ4MtjXINRdZkzS4ndm8pB2fxEtWOIUzhHBwc4OLiInU1yE5Zs8uJ3VvKwlm8RLVjCCMik1mzy4ndW8ojh1m8JF+c9cwQRkT1YM0uJ3ZvKYOcZvGSfHHWcxmGMCIzsNczOmt2ObF7SxnkNIuX5IvryZVhCCOqJ3s8o7Pm8hzWXgqE6s9WPudkHfY84YYhzE7Ya0uNNdjjOlbWbO1gywqR7bL3CTcMYXbAHltqpGQv61hZ87PCzyWRbbL3CTcMYXbAHltqpGLPzepEJA0l93TY+4QbhjAiM7H3ZnUisj6l93TY+4QbhjAiM7H3ZnUisj5bmGVoz+vJMYTZIXsZs2Rt9t6sTkTSUtJwCK4nV4YhzM4o6Y9Uaey9WZ2IpGPt4RD1HYfGWc9lGMLsCMcsWQbXsSIiqVlzOIS5xqHZesAyBkOYHeGYJcvgGR0RSc2awyFsYRyaXDCE2YHyFpja/kiV2FIjl6nZDFhEJCWphkNwiEv9MITZgYotNQ88UIA5czQoLVVBrRawfHkBnn56uCJbapQ+NZuIyJysPcuQQ1zqjyHMTpSHkJkzgaFDgUuXgGbNVAgKagSgkZRVMxmbxInI3kk5y5BDXOqPIcwOBQWV/dgSNokTUV3IZShDfUk5JpXL8tQfQxgpHpvEiaguKg9lMNSKrpShDFLVkcvy1B9DGCmevTeJ28oZPZG1VPx7qakVnUMZamfPq92bA0MYKZ49N4lzcgKR6diKbhqudm8+DGGkePbcJG7smTrP6ImqsvdWdFNxbUTzYQgjm8Am8TK8LiiR8azVim6LQwaUVl+5YggjxWKTuD7OECWqG2u0otvaJAAyL4YwUiw2if+NY1uITGPpVnROAqCaMISRotlDwDIGx7YQmc5QK7o58USJquNQexEikrvysS0V2csMUaK6MnaIgjmHMtR0okT2iy1hRDbAnmeIEtWVFEMZ7HkpHTKMIYwUxxZnGpmq4pl6TWNb7GVyApGxrH2M4IkSVYchjBSFi5Pq4+QEIuVQylI6PNG1HoYwUhQuTloVD4ZEymGNSQD1wSU1rEsxA/MHDRqEkJAQuLi4ICAgACNHjkRWVpa4fdGiRVCpVFV+3N3d9R5n27ZtaNWqFVxcXNC2bVvs2bNHb7sgCFiwYAECAgLg6uqK6OhoXLx4Ua9MXl4eRowYAU9PTzRq1Ajjxo3D7du39cr88ssv6N69O1xcXBAcHIwVK1aYeY/IU25uLrKzsw3+5ObmmvX5tFoPZGaGQav1MOvjEhGZgxSTAOqj8pIaSUmJ2LJlNJKSEnHqVIdqy5HpFNMS1rt3b7z44osICAjAn3/+iRdeeAFDhgzBsWPHAAAvvPACJk6cqHefvn37olOnTuLvx44dw/Dhw7Fs2TIMGDAAKSkpiIuLw6lTp/DQQw8BAFasWIG1a9diy5YtCA8Px/z58xETE4Nz587BxcUFADBixAhkZ2fjwIEDKCkpwbPPPosJEyYgJSUFAFBQUIAnnngC0dHR2LRpE3799VeMHTsWjRo1woQJE6yxuyRh7a5CLk5aP+xyILI8pQ4Z4JIa1qGYEDZ9+nTx/6GhoZg7dy7i4uJQUlICR0dHNGzYEA0bNhTL/Pzzzzh37hw2bdok3rZmzRrExsZi1qxZAIBXX30VBw4cwPr167Fp0yYIgoCkpCS8/PLLePLJJwEAH374Ifz8/PDVV19h2LBhOH/+PPbt24cTJ07gkUceAQCsW7cO//jHP7By5UoEBgZi69atKC4uxgcffAAnJyc8+OCDOHPmDN58802bDmHW7CrkAaJ+OLZO2RiglUWJ7wXXHrQOxYSwivLy8rB161Z069YNjo6O1ZZ577330KJFC3Tv3l28LTU1FTNmzNArFxMTg6+++goAkJmZiZycHERHR4vbNRoNunTpgtTUVAwbNgypqalo1KiRGMAAIDo6Gg4ODjh+/Dj+3//7f0hNTUWPHj30mpdjYmKwfPly3Lp1C40bNzbHbpA9S17HkAeI+qn8BW7ovWKXg/xwzA5ZA5fUsA5FhbA5c+Zg/fr1uHv3Lrp27Ypdu3ZVW+7evXvYunUr5s6dq3d7Tk4O/Pz89G7z8/NDTk6OuL38tprKNGnSRG97gwYN4OXlpVcmPDy8ymOUbzMUwoqKilBUVCT+XlBQUG05JbB0VyEPEObDbl15MLZ1i5fBIWvgkhrWIWkImzt3LpYvX15jmfPnz6NVq1YAgFmzZmHcuHG4cuUKFi9ejFGjRmHXrl1QqVR69/nyyy9RWFiI0aNHW6zulrBs2TIsXrxY6mrUmzW6CnmAMA9268pDXVq3Kpbhe0eWpJQlNZRM0hA2c+ZMjBkzpsYyTZs2Ff/v4+MDHx8ftGjRAq1bt0ZwcDB+/PFHREVF6d3nvffew4ABA6q0aPn7++PatWt6t127dg3+/v7i9vLbAgIC9Mq0b99eLHP9+nW9x7h//z7y8vL0Hqe656n4HNWZN2+eXndpQUEBgoODDZaXK0t2FXJxUvNit648mNK6xfeOrEHuS2oonaQhzNfXF76+vibdV6cru05exe47oGxc1+HDh/H1119XuU9UVBQOHjyIxMRE8bYDBw6IIS48PBz+/v44ePCgGLoKCgpw/PhxTJo0SXyM/Px8pKWlITIyEgBw6NAh6HQ6dOnSRSzz0ksviZMGyp+nZcuWNY4Hc3Z2hrOzswl7Q14s2VWo1JlGcsVuXXmpS+sW3zuyBKUtqaF0ihgTdvz4cZw4cQKPPfYYGjdujIyMDMyfPx8RERFVWsE++OADBAQEoF+/flUeZ9q0aejZsydWrVqF/v3749NPP8XJkyfxzjvvAABUKhUSExOxZMkSNG/eXFyiIjAwEHFxcQCA1q1bIzY2Fs899xw2bdqEkpISJCQkYNiwYQgMDAQAPP3001i8eDHGjRuHOXPm4OzZs1izZg1Wr15t2R0lE5buKmTAMh9268pLXVq3+N6RJfBE17oUEcLc3NywY8cOLFy4EHfu3EFAQABiY2Px8ssv67Uc6XQ6JCcnY8yYMVCr1VUep1u3bkhJScHLL7+MF198Ec2bN8dXX30lrhEGALNnz8adO3cwYcIE5Ofn47HHHsO+ffvENcIAYOvWrUhISEDfvn3h4OCA+Ph4rF27Vtyu0Wiwf/9+TJ48GZGRkfDx8cGCBQtsenkKgF2FSsVxHzWz5nIQdW3d4ntHlsCAZT0qQRAEqStB1SsoKIBGo4FWq4Wnp6fU1TEK1y9SBq4TZhxrLQeRnZ0ttsjXNCas/ESuvGxNJkyYoDe2lYisx9jvb0W0hJFy2PMXtpKwy8E4UiwHUVvrFsfsENkOhjAiO2XvAasurL0cRE0z0higiWwHQxgRUS0svRxEXVu3GLCsh0MsyJIYwoiIamHp5SDYuiVPvESUvFUMyFlZDsjMbIDw8PsIDCxbwkoJfzMMYUREtbDGchBy/7KwR7xElHxVDMg1vTdyD8gMYUSVsPuBqsPlIOwXLxElP+XH6NreG7kHZIYwogq4dAPVxBKXcGHolz9eIkq+lP7eMIQRVVD5y9DQGBBLn13xi1keLL0cBMccKQMvESVfSn9vGMKIDKhpnIElsTVOPiw9YJ5jjpSBl4iSL6W/NwxhRNWQcgyIXFrjqIw1gi7HHMkfxwTKl5LfG4YwsmmmduvJZZyBVK1xZF1y+bxRzSwxJpDMQ6nvDUMY2az6dOvJYZwBW0fshxw+b1SVrVwiimNM5YshjGxWfbr15DDOgK0j9kMOnzeqyhYW0bXVyR+2EpAZwsgumNKtJ/U4A7aO2BepP29UPSUFk+rY6uQPWwjIAEMY2YG6dOtVPmsyNM7AGmdXbB2xP0od10LyZ4vDG+QesIzBEEY2ry7denI7u2LriG2zlS4Vkj8Ob5AnhjCyeXXt1pP67EpOrXFkWXIL/WS7OLxBnhjCyOYprVuPX8z2he8jWYPSjoP2giGM7IIcu/U4bZyIrEmOx0F7xxBGNkvO3Xq8NBERSYGTP+SFIYxslpy79XhpIiLzYItyzeQy+YPvU/UYwsimKeGPmpcmIjKNrS5Eak5yOBlly79hDGFEErLFtXuIrMVWFyI1N6mDDVv+DWMII5IQ1+4hqj+ezCgHW/71MYQRSYhr9xDVn1xPZjgOSh/DclUMYUQS4to9RPUnx5MZjoOqSq5hWUoMYUQS49o9RPUjx5MZjoOqSo5hWWoMYUQSkPMaZkRKVNPJTH5+PgICAiSrG8dBlZFjWJYaQxiRBOQwbZzI1pR/mefleev9/vnnn0vW7WfJcVBKHHPGln99DGFEEpHbwZFIaSq3FMtxmQpLjYNS0pgztvwbxhBGRESK5O3tjaFDh+Kzzz6T7cw7S42DUtKYM0Mt//n5+bh//z4AwNHREcXFxcjOzha3y7Elz9wYwoiISLE0Gg0A+c68s8Y4KCWMOascpnJzc/H555+Lv9vr1Q4YwqgKJY4zICL7JueZd5YcByXXFsDa8GoHZRjCSI+SxhkQEZUzpcXJkiec1hoHJdcWQGMpNUSaC0MY6TH2rMPWz06IzImty9ZRlxYnS1/821ozoOXcAmgMpYfI+mIIoxoZOjARkXHYumxdhlqcKrNGd5g13k+lr72l9BBZXwxhZJASBnvWFVskyNqUNItNiYztzjNUzha6w5S89pbSQ2R9MYRRtWzhwFQZWyRIarZ4YiO1+nb7KbU7zJbW3lJyiKwvhjCqllIPTDVhiwRJyRZPbOSiPidNSu0Os7WrbhjbjWxrGMKoWko9MBmLLRJkbbZ4YmMLlNwdppSAVZ36diPbCoYwqpaSD0y1YYsEScHWT2yUzJ67w6Riay15pmIIIz0VzzpqOjAp+eyELRIkBVs+sbEF9todJiVbD1jGYAgjPfZwdsIWCbKkyjNwb968Kf6fLS7ywe4wkgOGMKpCyQHLGGyRkC+lLyFieAFQD/HzpeRZbLbEHk44Sf4YwsgusUVCfmxhCRFjFwAdPHgwfHx8xLL8spcG9zlJjSGM7IYtratji2xpCZHaJn/4+PggICBA4loSkdQYwshusPtBOZS+hAgnfxCRMRjCyK4wYMmfLSwhwskfplH6mECiumIIIyJZsYVWJE7+qDtbGBNIVFcMYUQkK7bSisTJH3VjS2MCiYzFEEZVsEuApGRLrUhcANQ0Sh8TSGQshjDSwy4BkgOltiJxAdD6s4UxgUTGYggjPewSIKnYwhIinIFbf7YwJpDIWAxhZBC7BMiabCXAyL1+cmcrYwKJjMEQRtVilwBJgQGGbGlMIFFtGMKoWuwSICKpKHVMIFFdMYRRtZTWJcAZnUTKZgtjAonqiiGMqqWkLgHO6CRSPlsZE0hUF0aHsIKCAqMf1NPT06TKkLwopUuAMzqJbAMDFtkbo0NYo0aNoFKpaiwjCAJUKhVKS0vrXTGShtK7BDijk4gq4lAFkjOjQ9jhw4ctWQ+SCSV3CXBGJxFVxKEKJHdGh7CePXtash4kI0o9GHFGJxFVxKEKJHcmD8zPz8/H+++/j/PnzwMAHnzwQYwdOxYajcZslSOqC6XN6CQi6+FQBZIjh9qLVHXy5ElERERg9erVyMvLQ15eHt58801ERETg1KlT5q4jkVHKZ3SqVDoAkPWMTiKyHkNDFbRaD4lrRvbOpJaw6dOnY9CgQXj33XfRoEHZQ9y/fx/jx49HYmIivvvuO7NWkshYSpnRSUTWw6EKJFcmt4TNmTNHDGAA0KBBA8yePRsnT540W+UqGjRoEEJCQuDi4oKAgACMHDkSWVlZemW++eYbdO3aFR4eHvD19UV8fDwuX76sV+bIkSPo2LEjnJ2d0axZMyQnJ1d5rrfeegthYWFwcXFBly5d8NNPP+ltv3fvHiZPngxvb280bNgQ8fHxuHbtml6Zq1evon///nBzc0OTJk0wa9Ys3L9/3yz7gvRVN6MzPPxKlYOrXGd0EpFllQ9VqIhDFUgOTGoJ8/T0xNWrV9GqVSu923///Xd4eFimebd379548cUXERAQgD///BMvvPAChgwZgmPHjgEAMjMz8eSTT2LGjBnYunUrtFotpk+fjsGDB4tdpJmZmejfvz8mTpyIrVu34uDBgxg/fjwCAgIQExMDAPjss88wY8YMbNq0CV26dEFSUhJiYmKQnp6OJk2aAChrCdy9eze2bdsGjUaDhIQEDB48GD/88AMAoLS0FP3794e/vz+OHTuG7OxsjBo1Co6Ojnjttdcssn/smZJndBKR5Slp8WmyLypBEIS63mnq1Kn48ssvsXLlSnTr1g0A8MMPP2DWrFmIj49HUlKSuetZxddff424uDgUFRXB0dERX3zxBYYPH46ioiI4OJQ18O3cuRNPPvmkWGbOnDnYvXs3zp49Kz7OsGHDkJ+fj3379gEAunTpgk6dOonTmnU6HYKDgzFlyhTMnTsXWq0Wvr6+SElJwZAhQwAAFy5cQOvWrZGamoquXbti7969GDBgALKysuDn5wcA2LRpE+bMmYMbN24Y3SJTUFAAjUYDrVbLBXCJiOooOzsb77zzjvh72ezIqkMVJkyYgICAACmqSDbK2O9vk7ojV65cicGDB2PUqFEICwtDWFgYxowZgyFDhmD58uUmV9pYeXl52Lp1K7p16wZHR0cAQGRkJBwcHLB582aUlpZCq9Xio48+QnR0tFgmNTUV0dHReo8VExOD1NRUAGXTlNPS0vTKODg4IDo6WiyTlpaGkpISvTKtWrVCSEiIWCY1NRVt27YVA1j58xQUFOC3334z+LqKiopQUFCg90NERKbhUAWSO5O6I52cnLBmzRosW7YMGRkZAICIiAi4ubmZtXKVzZkzB+vXr8fdu3fRtWtX7Nq1S9wWHh6O/fv346mnnsLzzz+P0tJSREVFYc+ePWKZnJwcvWAEAH5+figoKMBff/2FW7duobS0tNoyFy5cEB/DyckJjRo1qlImJyenxucp32bIsmXLsHjxYiP3BhER1YRDFUjuTGoJK+fm5oa2bduibdu2JgWwuXPnQqVS1fhTHn4AYNasWTh9+jT2798PtVqNUaNGobw3NScnB8899xxGjx6NEydO4OjRo3BycsKQIUNgQo+rJObNmwetViv+/P7771JXiYhI0by9vREQEGDwhwGMpGRSS9i9e/ewbt06HD58GNevX4dOpz/rxNi1wmbOnIkxY8bUWKZp06bi/318fODj44MWLVqgdevWCA4Oxo8//oioqCi89dZb0Gg0WLFihVj+448/RnBwMI4fP46uXbvC39+/yizGa9euwdPTE66urlCr1VCr1dWW8ff3BwD4+/ujuLgY+fn5eq1hlctUnlFZ/pjlZarj7OwMZ2fnGvcHERER2QaTQti4ceOwf/9+DBkyBJ07d671wt6G+Pr6wtfX16T7lge/oqIiAMDdu3fFAfnl1Gq1XtnK3ZMAcODAAURFRQEoa5aOjIzEwYMHERcXJ9734MGDSEhIAFA29szR0REHDx5EfHw8ACA9PR1Xr14VHycqKgpLly7F9evXxRmVBw4cgKenJ9q0aWPS6yUi4/CCzUSkFCbNjtRoNNizZw8effRRS9SpiuPHj+PEiRN47LHH0LhxY2RkZGD+/Pm4du0afvvtNzg7O+PQoUOIjo7GokWLMHz4cBQWFuLFF1/EhQsXcP78ebi6uiIzMxMPPfQQJk+ejLFjx+LQoUOYOnUqdu/erbdExejRo/H222+jc+fOSEpKwueff44LFy6I47omTZqEPXv2IDk5GZ6enpgyZQoAiMtllJaWon379ggMDMSKFSuQk5ODkSNHYvz48XVaooKzI4nqhhdsJiI5sOjsyAceeMBi64FVx83NDTt27EDfvn3RsmVLjBs3Dg8//DCOHj0qdt/16dMHKSkp+Oqrr9ChQwfExsbC2dkZ+/btg6urK4Cywfu7d+/GgQMH0K5dO6xatQrvvfeeGMAAYOjQoVi5ciUWLFiA9u3b48yZM9i3b5/eQPvVq1djwIABiI+PR48ePeDv748dO3aI29VqNXbt2gW1Wo2oqCg888wzGDVqFF555RUr7TEi+2TshZh5wWYikgOTWsL27t2LtWvXYtOmTQgNDbVEvQhsCSOqq+rXhfKGl1cu14UiIqsx9vvbpDFhjzzyCO7du4emTZvCzc1NXIerXF4eLwVBRNI6dapDlRXSO3Y8LXW1iIhEJoWw4cOH488//8Rrr70GPz8/kwfmExFZglbrIQYwoOxizTt3DkBExCVeqoaIZMOkEHbs2DGkpqaiXbt25q4PEVG95eV5iwGsnCA4IC/PiyGMiGTDpIH5rVq1wl9//WXuuhARmYWXVy5UKv31C1UqHby8OFSCiOTDpJaw119/HTNnzsTSpUvRtm3bKmPCOIicSB/XrrIujaYQAwfuqjImjK1gRCQnJoWw2NhYAEDfvn31bhcEASqVCqWlpfWvGZGN4NpV1lPxQswdO55GRMQl5OV5wcsrTy+A8YLNRCQHJoWww4cPm7seRDarcguYoWUTuHZV/cnxgs1sBSUiQ0wKYT179jSq3L/+9S+88sor8PHxMeVpiGwOl02wPDkFGraCElFNTBqYb6yPP/4YBQUFlnwKIsUwtGyCVmu9q0+QdXEFfyKqiUVDmAmL8RPZrJqWTSD7oNV6IDMzjMGbiACY2B1JRHVXvmxCxSDGZRPsB7uiiagyi7aEEdHfypdNKF+/issm2A92RRNRddgSRmRFNS2bQHWnlJmHXMGfiKrDEEZkYZXXpNJoCqv94uXaVXWjpJmH7IomoupYNIQ988wzXD2f7J4c166yBUqaecgV/ImoOiaHsPz8fPz000+4fv06dDr9a7SNGjUKALBx48b61Y7IRjBgWZ6hRXCtpbqu0fz8fPH/XMGfiCozKYTt3LkTI0aMwO3bt+Hp6QmVSiVuU6lUYggjIrIGqWceGts1OmHCP6DRaPRuYysokf0yKYTNnDkTY8eOxWuvvQY3Nzdz14mIyGiGZh5GRFyyWouYsV2eGo0GAQEBFq4NESmFSUtU/Pnnn5g6dSoDGBFJTo6L4HJRViIyhkktYTExMTh58iSaNm1q7voQEdWJ3GYeSt01SkTKYXQI+/rrr8X/9+/fH7NmzcK5c+fQtm1bODo66pUdNGiQ+WpIRFQDOc08lEPXKNkfpayXV1e2+roqMjqExcXFVbntlVdeqXKbSqVCaWlpvSpFRFSbijMK5TLzkIuymsYevmwtRUnr5dWFrb6uyowOYZWXoSAikpIc11+TW9eoEtjLl62lKGm9vLqw1ddVmUljwj788EMMHToUzs7OercXFxfj008/5RIVpBg8A1c2ub03cuoaVYrKf3+G1ntT+pettRjafzdv3qxSVknHN6nXAbQUk0LYs88+i9jYWDRp0kTv9sLCQjz77LMMYaQIlc/ADf2R8wy8Zgyy8uwaVSJOaqifmvbfjh07qr2PEo5vtvy5MCmECYKgt0BruT/++KPKQoREclUxONT0R84zcMPYlVRGjl2jSsNJDfVj6v6T+/HN1j8XdQphHTp0gEqlgkqlQt++fdGgwd93Ly0tRWZmJmJjY81eSSJLsvU/ckuyl3EbxmDAqh9Oaqif2vafUrvzbP1zUacQVj5D8syZM4iJiUHDhg3FbU5OTggLC0N8fLxZK0hkabb+R25NSj3Qk/Q4qaF+atp/Su7Os/XPRZ1C2MKFCwEAYWFhGDp0KFxcXCxSKSJrsvU/cmtR8oGepMdJDfVjaP8BUHRLv61/LkwaEzZ69GgAZV0M169fr7J8RUhISP1rRmQltv5Hbg3s0iVzqGlSA1WvtkkhmZlhimzpt5fJLiaFsIsXL2Ls2LE4duyY3u3lA/a5WCspDQ/+9cMuXTJV5S9Rjaaw2s+M0r9sjVXX2caGJoXcvHkTO3bsUGxLv71MdjEphI0ZMwYNGjTArl27EBAQUO1MSSKlMXTwryt7XLJBqQd6kp69fNkaw9TZxjXtGyW39NvDe25SCDtz5gzS0tLQqlUrc9eHyGqMPbOuyxm4va49puQDPUnPlv4W6sOcs42N7c67e/du3StKZmNSCGvTpk21q+8SKYklzsDtbe0xexm3QSSF+sw29vb2xjPPPIOPP/4YgOGW/o8//tjmTgqVxKQQtnz5csyePRuvvfYa2rZtC0dHR73tnp6eZqkckaVZ6sBjLwPV2ZVEZBnmmG3s5uZmVDlbOSlUIpNCWHR0NACgT58+euPBODCfqIw9DVRnwCIyL0udxHEdP/kxKYQdPnzY3PUgsikcqE5EprLESRzX8ZMnh9qLVNWzZ084ODjg3Xffxdy5c9GsWTP07NkTV69ehVqtNncdiRSnfKC6SlW2hh4HqlN95ObmIjs72+BPbm6u1FUkMyo/iauoPidxhlrWtFqPeteV6seklrDt27dj5MiRGDFiBE6fPo2ioiIAgFarxWuvvYY9e/aYtZJESsS1x+RFqUuH8CLp9sfcs43taXiE0pgUwpYsWYJNmzZh1KhR+PTTT8XbH330USxZssRslSNSOnOtPUb1o+QgUzk4GhrXw8HVymep2cYcHiFfJoWw9PR09OjRo8rtGo0G+fn59a0TkWJZYu0xqj9bCTIc12PbLDXbmOv4yZdJIczf3x+XLl1CWFiY3u3ff/89mjZtao56ESkSl2yQP6UGGXtZ9sTemfPYwHX85M+kEPbcc89h2rRp+OCDD6BSqZCVlYXU1FS88MILmD9/vrnrSKQoDFjypeQgw3E9VFc8KZQ/k0LY3LlzodPp0LdvX9y9exc9evSAs7MzXnjhBUyZMsXcdSQiMgslBxmO6yFTMGDJm0lLVKhUKrz00kvIy8vD2bNn8eOPP+LGjRt49dVXzV0/IiKzMffUf2visidEtseklrByTk5OaNOmjbnqQkRkUUofoMxlT4hsS71CGBGR0igtyFQeNG1o2RMOriZSHoYwIrJ5Sg4yHFxNZLtUgiAIUleCqldQUACNRgOtVgtPT0+pq0OkaEpdMZ+IlMfY72+2hJHNqPglm5XlgMzMBggPv4/AwLKBzPyStW9874lIbhjCyCZUvCxNTYtxyvGyNEREZJ9MWqKCSG7KW8AMLcap1XrolSMiIpIaQxjZlJoW4yQiIpIThjCyKUpejJOIiOwLQxjZFK4qTkRESsGB+WRzlLYYJxER2SeGMLJJhhbjJCIikguGMCKyaVyklYjkiiGMbIKxl5uR42VpyHIqrh9XE64fR0RSYAgjm8Dr61F1Kn8etFoP5OV5w8srV6+7muvHEVkOW6MNYwgj/PEHcPEi0Lw5EBQkdW1MZ69/xGScmq6kQGQsBoq6YWt0zRjC7FT5gSQlxRWzZ2ug06ng4CBgxQotnn76Lx5IyKYYupJCRMQlTuAgozFQ1B1bo2vGEGaHyg8kWq0HkpISIQgqAIBOp8KsWZ74888PoNEU8kBCNqOmKykwhJGxGCjqh63RVTGE2aHyA0RtX0w8kJCtKL+SQsXPO6+kQPXBQFE3bI2uHlfMt2O8xA/ZC15JgUyRm5uL7Oxs8efmzZsADAcKrdZDyurKGq/rWz3FhLBBgwYhJCQELi4uCAgIwMiRI5GVlaVX5vPPP0f79u3h5uaG0NBQvPHGG1Ue58iRI+jYsSOcnZ3RrFkzJCcnVynz1ltvISwsDC4uLujSpQt++uknve337t3D5MmT4e3tjYYNGyI+Ph7Xrl3TK3P16lX0798fbm5uaNKkCWbNmoX79+/Xf0eYEb+YyJ507HgaiYlJGD06GYmJSWy1oBqVD9t45513xJ8dO3YAYKAwBU/6q6eYENa7d298/vnnSE9Px/bt25GRkYEhQ4aI2/fu3YsRI0Zg4sSJOHv2LDZs2IDVq1frDaLMzMxE//790bt3b5w5cwaJiYkYP348vvnmG7HMZ599hhkzZmDhwoU4deoU2rVrh5iYGFy/fl0sM336dOzcuRPbtm3D0aNHkZWVhcGDB4vbS0tL0b9/fxQXF+PYsWPYsmULkpOTsWDBAgvvpbrjFxPZssrrwmk0hQgPv1LlRIPrx1Fl1Y3/yswMg1brwUBhAp70V08lCIIgdSVM8fXXXyMuLg5FRUVwdHTE008/jZKSEmzbtk0ss27dOqxYsQJXr16FSqXCnDlzsHv3bpw9e1YsM2zYMOTn52Pfvn0AgC5duqBTp05ieNPpdAgODsaUKVMwd+5caLVa+Pr6IiUlRQyBFy5cQOvWrZGamoquXbti7969GDBgALKysuDn5wcA2LRpE+bMmYMbN24YfcAvKCiARqOBVquFp6enWfYbAGRnZ+Odd96ptdyECRMQEBBgtuclkgKXFCBTVDxOVjf+C4DBMWE8dv6t8vdN2WSGqtf1tbV9Zuz3tyIH5ufl5WHr1q3o1q0bHB0dAQBFRUVwc3PTK+fq6oo//vgDV65cQVhYGFJTUxEdHa1XJiYmBomJiQDKznzS0tIwb948cbuDgwOio6ORmpoKAEhLS0NJSYne47Rq1QohISFiCEtNTUXbtm3FAFb+PJMmTcJvv/2GDh06VPu6ioqKUFRUJP5eUFBgwt4hoooYsKg+DI3/SkxMQmJiUrWBgv5WXWt0dfvKXlujFRXC5syZg/Xr1+Pu3bvo2rUrdu3aJW6LiYnB9OnTMWbMGPTu3RuXLl3CqlWrAJQl8bCwMOTk5OgFIwDw8/NDQUEB/vrrL9y6dQulpaXVlrlw4QIAICcnB05OTmjUqFGVMjk5OWKZ6h6jfJshy5Ytw+LFi+uwR4gsjy1JZM9qGv9VXdc2YL+Bojq8mknNJA1hc+fOxfLly2ssc/78ebRq1QoAMGvWLIwbNw5XrlzB4sWLMWrUKOzatQsqlQrPPfccMjIyMGDAAJSUlMDT0xPTpk3DokWL4OCgjKFv8+bNw4wZM8TfCwoKEBwcbPbn4XUWyVhcnJLsXW3LmwwePBg+Pj7iNnsOFIZwfxgmaQibOXMmxowZU2OZpk2biv/38fGBj48PWrRogdatWyM4OBg//vgjoqKioFKpsHz5crz22mvIycmBr68vDh48qPcY/v7+VWYxXrt2DZ6ennB1dYVarYZara62jL+/v/gYxcXFyM/P12sNq1ym8ozK8scsL1MdZ2dnODs717g/zIFnJmQsY9eK45pyZKvKB5RXHv9V3gLm4+NjU2OZyLokDWG+vr7w9fU16b46XdkMi4pjqABArVbjgQceAAB88skniIqKEp8jKioKe/bs0St/4MABREVFASgLHpGRkTh48CDi4uLE5zl48CASEhIAAJGRkXB0dMTBgwcRHx8PAEhPT8fVq1fFx4mKisLSpUtx/fp1NGnSRHweT09PtGnTxqTXa24MWGQKQyuEE9myjh1PIyLiEsd/kdkpYkzY8ePHceLECTz22GNo3LgxMjIyMH/+fERERIjB5+bNm/jiiy/Qq1cv3Lt3D5s3bxaXkCg3ceJErF+/HrNnz8bYsWNx6NAhfP7559i9e7dYZsaMGRg9ejQeeeQRdO7cGUlJSbhz5w6effZZAIBGo8G4ceMwY8YMeHl5wdPTE1OmTEFUVBS6du0KAHjiiSfQpk0bjBw5EitWrEBOTg5efvllTJ482SotXUSWwBXCyZ5wQDlZgyJCmJubG3bs2IGFCxfizp07CAgIQGxsLF5++WW9ULNlyxa88MILEAQBUVFROHLkCDp37ixuDw8Px+7duzF9+nSsWbMGQUFBeO+99xATEyOWGTp0KG7cuIEFCxYgJycH7du3x759+/QG2q9evRoODg6Ij49HUVERYmJisGHDBnG7Wq3Grl27MGnSJERFRcHd3R2jR4/GK6+8YuE9RWQZvOQI2RsO2yBrUOw6YfbAUuuEERmrfI2fzMwwbNkyusr20aOTER5+xebW+CEi2yDV7G6bXieMiKyLF8AmIqWpPLvb0JhWKWd3M4QRUa1qmyFGRCQ3FVvAahrTKuXsboYwIjKo4qDjmmaIcXAyEcmVnMe0MoQRkUEcnExESlfTVQ8YwohI1hiwiEjJ5DymlSGMbAqvc0hEUuIxSH7kPKaVIYwkY+6DFa9zSGRdDBz6lDAbz17J9aoHDGFkFnU9GFsiMPE6h0TWw5OeqpQwG8+eGbrqgZQYwqjeTDkYMzARKVvlv01DrT72+Dcs59l49sTYWdtSzu5mCKN6M/Ygm5WVJZa9efOmJasEgBebJrIWXldUn5xn49kTJczuZggjq9mxY4fVnotfCkTWIadWH7mMUZPzbDx7I/eucIYwkgVztlrJ6UuByNbJpdVHToPi5Twbj+SFIYwkZ+5WK7l8KRDZA7m0+shtULxcZ+ORvDjUXoSobrRaD2RmhkGr9TCqbHWtVsbc15DyL4WK2BVAZBnlrT7lf3NSt/pY4phiKo2mEOHhVxjAyCC2hJFZ1bVVy5ytVuUzXGrrCuB1DonMS06tPlK2hCthNh7JC0MYmY0pY7Fq68qoy8Gq8kyYBQtu4PLlBggLu4/AwE4AOkk+E4bIVlT+2zS0BpO1A4eU3aNKmI1H8sIQRvVWfpA15gy08mDZ8larXbsGQqdTQa0WsHx5AZ5+erhJB6uK5QMCgMjIer44IqqWXAOH1IPiGbCoLhjCqN7KD8aXL9/HRx8J0OlU4jYHB0E8AzXUVdmx42ksWNAFhYV+aNZMhaCgRgAaSfJaiMh4dQ0c1lpCQk7do0Q1YQgjs/D29oa3N/DOO8DzzwOlpYBaDaxadQf5+YW1dlWGhTUATyCJbJe1l5CQ4yVqiCpjCCOzGjcOiIkBLl0CmjUDgoIaIjc3AYcPA6tXV+2qfPTR0ejVi034RLbO0ktIcFA8KRFDGJldUFDZTzlvb2907Qo4OAC6CitHqNVAly7ebAEjsiOWWkxZrmPUiGrCEEZWERRUtavy7bf1wxoR2T5LLiHBgEVKwxBGVlO1q1LqGhHZD15XkUh+GMLIqip3VRKR5VUeFG8Ir6toHLkEWlI+hjAiIhtXOTAYmpnI6yrWTk4XCiflYwgjIrIjdb20mKUodQkJuV0onJSNF/AmIrITUl7c2taWkJDThcJJudgSRkRkJ6S8uLWtLSEh5b4k28EQRkRkJ6SemaiUgGUMqfcl2QZ2RxIR2YnymYkqVdmqyUqcmSgX3JdkDmwJIyKyI0qemSg33JdUXwxhREQ2rvJgd0MzE5UyKF5OlDrLk+SBIYyIyMbZ2qB4KdnaLE+SlkoQBEHqSlD1CgoKoNFooNVq4enpKXV1SEJcoZtIPvj3SLUx9vubLWFEMienS84QkW3N8iRpcXYkkcwZu/I2V+gmIlIWhjAiIiIiCTCEEREREUmAIYyIiIhIAhyYT6QwWq0H8vK84eWVy/WJiMhiKs4CzcpyQGZmA4SH30dgYNlVAjgLtP4YwogU5NSpDti5cwAEwUG8TErHjqelrhYR2ZiKs7JrOu5wVnb9sDuSSCG0Wg/xQAgAguCAnTsHQKv1kLhmRGRrylvAajvucFZ2/TCEEclc+crbeXne4oGwnCA4IC/PS68cEZG51HbcofphdySRzJVfcuby5fv46CMBOp1K3KZWC5gypR/CwhqwS4CIzM7LKxcqlU4viKlUOnh55UlYK9vBljAiBfD29kZkpB/eeUcFtbrsNrUaePttFSIj/RjAiMgiNJpCDBy4CypV2WD88jFhnBRkHmwJI1KQceOAmBjg0iWgWTMgKEjqGhGRrevY8TQiIi4hL88LXl55DGBmxBBGpDBBQQxftoTLAJASaDSFDF8WwBBGRCQRLgNAJJ0//gAuXgSaN5fuxJZjwoiIJMJlAEiujJ1trbRZ2bm5ucjOzsaqVfkIDRXQpw8QGipg1ap8ZGdnIzc316r1YUsYEZHEaloGgF1AJIXyWdk1nQAorau8vOVZq/VAUlIiBKFsprlOp8KsWZ74888PoNEUWrXlmSGMiEhiXAaA5EhJAcsY5YGytpMea7Y8szuSiEhiXAaAyHrKT3oqkuqkhy1hREQywGUAiKyj/KSn8kQYKf7mGMKIiGSCywAQWYdcTnoYwoiIiMjuyOGkh2PCiIgkYqvLABCRcdgSRkQkEVtcBoCIjMcQRkQkIQYsIuuQY8szQxgRERHZPDm2PDOEERERkV2QW8szB+YTERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgRERGRBBQXwoqKitC+fXuoVCqcOXNGb9svv/yC7t27w8XFBcHBwVixYkWV+2/btg2tWrWCi4sL2rZtiz179uhtFwQBCxYsQEBAAFxdXREdHY2LFy/qlcnLy8OIESPg6emJRo0aYdy4cbh9+3ad60JERET2S3EhbPbs2QgMDKxye0FBAZ544gmEhoYiLS0Nb7zxBhYtWoR33nlHLHPs2DEMHz4c48aNw+nTpxEXF4e4uDicPXtWLLNixQqsXbsWmzZtwvHjx+Hu7o6YmBjcu3dPLDNixAj89ttvOHDgAHbt2oXvvvsOEyZMqFNdiIjq6o8/gMOHy/4lIhsgKMiePXuEVq1aCb/99psAQDh9+rS4bcOGDULjxo2FoqIi8bY5c+YILVu2FH9/6qmnhP79++s9ZpcuXYTnn39eEARB0Ol0gr+/v/DGG2+I2/Pz8wVnZ2fhk08+EQRBEM6dOycAEE6cOCGW2bt3r6BSqYQ///zT6LoYQ6vVCgAErVZbp/sRke24efOmkJWVJaxceUtwcNAJgCA4OOiElStvCVlZWcLNmzelriIRVWLs97diWsKuXbuG5557Dh999BHc3NyqbE9NTUWPHj30LjcQExOD9PR03Lp1SywTHR2td7+YmBikpqYCADIzM5GTk6NXRqPRoEuXLmKZ1NRUNGrUCI888ohYJjo6Gg4ODjh+/LjRdalOUVERCgoK9H6IyH7l5uZi/fr1eOONTzBrlid0OhUAQKdTYdYsT7zxxidYv349cnNzJa4pEZlCESFMEASMGTMGEydO1As/FeXk5MDPz0/vtvLfc3JyaixTcXvF+xkq06RJE73tDRo0gJeXV63PU/E5qrNs2TJoNBrxJzg42GBZImtjV5j1lV9eJS/PG5XPmQXBAXl5XnrliEhZJA1hc+fOhUqlqvHnwoULWLduHQoLCzFv3jwpq2tx8+bNg1arFX9+//13qatEBAB4/30gNBTo06fs3/ffl7pG9sXLKxcqlU7vNpVKBy+vvDo9Tm5uLrKzs5GdnY20tGv44otcpKVdE29jixqRdUl67ciZM2dizJgxNZZp2rQpDh06hNTUVDg7O+tte+SRRzBixAhs2bIF/v7+uHbtmt728t/9/f3Ff6srU3F7+W0BAQF6Zdq3by+WuX79ut5j3L9/H3l5ebU+T8XnqI6zs3OV10gkpdzcXFy+fB8TJjSp0BUGPP+8gPbtryMsrIHsrsVmizSaQgwcuAs7dw6AIDhApdJh4MBd0GgKjX6M8q5NADh1qkOVx+rY8TQAICEhge8pkZVIGsJ8fX3h6+tba7m1a9diyZIl4u9ZWVmIiYnBZ599hi5dugAAoqKi8NJLL6GkpASOjo4AgAMHDqBly5Zo3LixWObgwYNITEwUH+vAgQOIiooCAISHh8Pf3x8HDx4UQ1dBQQGOHz+OSZMmiY+Rn5+PtLQ0REZGAgAOHToEnU5Xp7oQyV35l3ZmZhh0utF620pLVVi3bi/Cw6/wS9tKOnY8jYiIS8jL84KXV16dAhjwd5elVushBjCgrFtz584BiIi4BI2mkF2bRFakiDFhISEheOihh8SfFi1aAAAiIiIQFBQEAHj66afh5OSEcePG4bfffsNnn32GNWvWYMaMGeLjTJs2Dfv27cOqVatw4cIFLFq0CCdPnkRCQgIAQKVSITExEUuWLMHXX3+NX3/9FaNGjUJgYCDi4uIAAK1bt0ZsbCyee+45/PTTT/jhhx+QkJCAYcOGiUtnGFMXIrkr/zKurSuMX9rWo9EUIjz8Sp0DWEW1jS8jIutRRAgzhkajwf79+5GZmYnIyEjMnDkTCxYs0Fu/q1u3bkhJScE777yDdu3a4YsvvsBXX32Fhx56SCwze/ZsTJkyBRMmTECnTp1w+/Zt7Nu3Dy4uLmKZrVu3olWrVujbty/+8Y9/4LHHHtNbA8yYuhApRXlXWHkQM6UrjOTDXOPLiKj+JO2ONFVYWBgEQahy+8MPP4z//Oc/Nd73n//8J/75z38a3K5SqfDKK6/glVdeMVjGy8sLKSkpNT6PMXUhUor6doWRfJhjfBkRmYciQxgRWZ9GU8gvaiuruNagOcqVY6gmkgeGMCIimfL29kZCQkKN4+6cnJxMmhjBUE0kPYYwIiIZ48xTIttlMwPziYjIMEt1bRKR6dgSRkTV4pe2bbFk1yYRmUYlVDfNkGShoKAAGo0GWq0Wnp6eUleH7FBubi6/tImI6sjY72+2hBGRQQxYRESWwzFhRERERBJgCCMiIiKSAEMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEuCK+URERArDS4rZBoYwIiIiBcnNzcX69etrLZeQkMAgJnPsjiQiIlKQmlrATClH0mEIIyIiIpIAQxgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgCGMiIhIQZycnPR+12o9kJkZBq3Wo8ZyJD9crJWIiEhBvL29kZCQgOLiYqSkuOKVVzTQ6VRwcBCwYoUWTz/9F1fMVwiVIAiC1JWg6hUUFECj0UCr1cLT01Pq6hARkYz88QcQGgrodH/fplYDly8DQUGSVYtg/Pc3uyOJiIgU6OJF/QAGAKWlwKVL0tSH6o4hjIiISIGaNwccKn2Lq9VAs2bS1IfqjiGMiIhIgYKCgHfeKQteQNm/b7/Nrkgl4cB8IiIihRo3DoiJKeuCbNaMAUxpGMKIiIgULCiI4Uup2B1JREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgNeOlDFBEAAABQUFEteEiIiIjFX+vV3+PW4IQ5iMFRYWAgCCg4MlrgkRERHVVWFhITQajcHtKqG2mEaS0el0yMrKgoeHB1QqldTVsaqCggIEBwfj999/h6enp9TVUSzuR/PhvjQP7kfz4b40D0vsR0EQUFhYiMDAQDg4GB75xZYwGXNwcEBQUJDU1ZCUp6cnDy5mwP1oPtyX5sH9aD7cl+Zh7v1YUwtYOQ7MJyIiIpIAQxgRERGRBBjCSJacnZ2xcOFCODs7S10VReN+NB/uS/PgfjQf7kvzkHI/cmA+ERERkQTYEkZEREQkAYYwIiIiIgkwhBERERFJgCGMiIiISAIMYSSZ7777DgMHDkRgYCBUKhW++uorve2CIGDBggUICAiAq6sroqOjcfHiRWkqK3O17csxY8ZApVLp/cTGxkpTWRlbtmwZOnXqBA8PDzRp0gRxcXFIT0/XK3Pv3j1MnjwZ3t7eaNiwIeLj43Ht2jWJaixPxuzHXr16VflMTpw4UaIay9fGjRvx8MMPiwuJRkVFYe/eveJ2fh6NV9u+lOIzyRBGkrlz5w7atWuHt956q9rtK1aswNq1a7Fp0yYcP34c7u7uiImJwb1796xcU/mrbV8CQGxsLLKzs8WfTz75xIo1VIajR49i8uTJ+PHHH3HgwAGUlJTgiSeewJ07d8Qy06dPx86dO7Ft2zYcPXoUWVlZGDx4sIS1lh9j9iMAPPfcc3qfyRUrVkhUY/kKCgrC66+/jrS0NJw8eRJ9+vTBk08+id9++w0AP491Udu+BCT4TApEMgBA+PLLL8XfdTqd4O/vL7zxxhvibfn5+YKzs7PwySefSFBD5ai8LwVBEEaPHi08+eSTktRHya5fvy4AEI4ePSoIQtln0NHRUdi2bZtY5vz58wIAITU1Vapqyl7l/SgIgtCzZ09h2rRp0lVKwRo3biy89957/DyaQfm+FARpPpNsCSNZyszMRE5ODqKjo8XbNBoNunTpgtTUVAlrplxHjhxBkyZN0LJlS0yaNAm5ublSV0n2tFotAMDLywsAkJaWhpKSEr3PZatWrRASEsLPZQ0q78dyW7duhY+PDx566CHMmzcPd+/elaJ6ilFaWopPP/0Ud+7cQVRUFD+P9VB5X5az9meSF/AmWcrJyQEA+Pn56d3u5+cnbiPjxcbGYvDgwQgPD0dGRgZefPFF9OvXD6mpqVCr1VJXT5Z0Oh0SExPx6KOP4qGHHgJQ9rl0cnJCo0aN9Mryc2lYdfsRAJ5++mmEhoYiMDAQv/zyC+bMmYP09HTs2LFDwtrK06+//oqoqCjcu3cPDRs2xJdffok2bdrgzJkz/DzWkaF9CUjzmWQII7IDw4YNE//ftm1bPPzww4iIiMCRI0fQt29fCWsmX5MnT8bZs2fx/fffS10VRTO0HydMmCD+v23btggICEDfvn2RkZGBiIgIa1dT1lq2bIkzZ85Aq9Xiiy++wOjRo3H06FGpq6VIhvZlmzZtJPlMsjuSZMnf3x8AqszyuXbtmriNTNe0aVP4+Pjg0qVLUldFlhISErBr1y4cPnwYQUFB4u3+/v4oLi5Gfn6+Xnl+LqtnaD9Wp0uXLgDAz2Q1nJyc0KxZM0RGRmLZsmVo164d1qxZw8+jCQzty+pY4zPJEEayFB4eDn9/fxw8eFC8raCgAMePH9frvyfT/PHHH8jNzUVAQIDUVZEVQRCQkJCAL7/8EocOHUJ4eLje9sjISDg6Oup9LtPT03H16lV+LiuobT9W58yZMwDAz6QRdDodioqK+Hk0g/J9WR1rfCbZHUmSuX37tt4ZRmZmJs6cOQMvLy+EhIQgMTERS5YsQfPmzREeHo758+cjMDAQcXFx0lVapmral15eXli8eDHi4+Ph7++PjIwMzJ49G82aNUNMTIyEtZafyZMnIyUlBf/+97/h4eEhjqvRaDRwdXWFRqPBuHHjMGPGDHh5ecHT0xNTpkxBVFQUunbtKnHt5aO2/ZiRkYGUlBT84x//gLe3N3755RdMnz4dPXr0wMMPPyxx7eVl3rx56NevH0JCQlBYWIiUlBQcOXIE33zzDT+PdVTTvpTsM2nVuZhEFRw+fFgAUOVn9OjRgiCULVMxf/58wc/PT3B2dhb69u0rpKenS1tpmappX969e1d44oknBF9fX8HR0VEIDQ0VnnvuOSEnJ0fqastOdfsQgLB582axzF9//SX861//Eho3biy4ubkJ/+///T8hOztbukrLUG378erVq0KPHj0ELy8vwdnZWWjWrJkwa9YsQavVSltxGRo7dqwQGhoqODk5Cb6+vkLfvn2F/fv3i9v5eTReTftSqs+kShAEwXIRj4iIiIiqwzFhRERERBJgCCMiIiKSAEMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIyQXFxsdRVqEKOdSIiwxjCiIgA9OrVCwkJCUhISIBGo4GPjw/mz5+P8iu7hYWF4dVXX8WoUaPg6emJCRMmAAC+//57dO/eHa6urggODsbUqVNx584d8XE3bNiA5s2bw8XFBX5+fhgyZIi47YsvvkDbtm3h6uoKb29vREdHi/ft1asXEhMT9eoYFxeHMWPGiL+bWicikgeGMCKi/7NlyxY0aNAAP/30E9asWYM333wT7733nrh95cqVaNeuHU6fPo358+cjIyMDsbGxiI+Pxy+//ILPPvsM33//PRISEgAAJ0+exNSpU/HKK68gPT0d+/btQ48ePQAA2dnZGD58OMaOHYvz58/jyJEjGDx4MOp6Od+61omI5IMX8CYiQlnL0/Xr1/Hbb79BpVIBAObOnYuvv/4a586dQ1hYGDp06IAvv/xSvM/48eOhVqvx9ttvi7d9//336NmzJ+7cuYM9e/bg2WefxR9//AEPDw+95zt16hQiIyNx+fJlhIaGVluf9u3bIykpSbwtLi4OjRo1QnJyMgCYVCcXF5d67SciMh+2hBER/Z+uXbuKAQwAoqKicPHiRZSWlgIAHnnkEb3yP//8M5KTk9GwYUPxJyYmBjqdDpmZmXj88ccRGhqKpk2bYuTIkdi6dSvu3r0LAGjXrh369u2Ltm3b4p///Cfeffdd3Lp1q851rmudiEg+GMKIiIzk7u6u9/vt27fx/PPP48yZM+LPzz//jIsXLyIiIgIeHh44deoUPvnkEwQEBGDBggVo164d8vPzoVarceDAAezduxdt2rTBunXr0LJlSzEoOTg4VOmaLCkpqXediEg+GMKIiP7P8ePH9X7/8ccf0bx5c6jV6mrLd+zYEefOnUOzZs2q/Dg5OQEAGjRogOjoaKxYsQK//PILLl++jEOHDgEAVCoVHn30USxevBinT5+Gk5OT2LXo6+uL7Oxs8blKS0tx9uzZWl+DMXUiInlgCCMi+j9Xr17FjBkzkJ6ejk8++QTr1q3DtGnTDJafM2cOjh07hoSEBJw5cwYXL17Ev//9b3EQ/K5du7B27VqcOXMGV65cwYcffgidToeWLVvi+PHjeO2113Dy5ElcvXoVO3bswI0bN9C6dWsAQJ8+fbB7927s3r0bFy5cwKRJk5Cfn1/ra6itTkQkHw2krgARkVyMGjUKf/31Fzp37gy1Wo1p06aJyz5U5+GHH8bRo0fx0ksvoXv37hAEARERERg6dCgAoFGjRtixYwcWLVqEe/fuoXnz5vjkk0/w4IMP4vz58/juu++QlJSEgoIChIaGYtWqVejXrx8AYOzYsfj5558xatQoNGjQANOnT0fv3r1rfQ211YmI5IOzI4mIUP1sRCIiS2J3JBEREZEEGMKIiIiIJMDuSCIiIiIJsCWMiIiISAIMYUREREQSYAgjIiIikgBDGBEREZEEGMKIiIiIJMAQRkRERCQBhjAiIiIiCTCEEREREUmAIYyIiIhIAv8fokYhtfbx9AEAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Import training data\n", + "np.set_printoptions(precision=6, suppress=True)\n", + "\n", + "csv_data = pd.read_csv(datafile_path(\"500_Points_DataSet.csv\"))\n", + "csv_data.columns.values[0:6] = [\n", + " \"pressure\",\n", + " \"temperature\",\n", + " \"enth_mol\",\n", + " \"entr_mol\",\n", + " \"CO2_enthalpy\",\n", + " \"CO2_entropy\",\n", + "]\n", + "data = csv_data.sample(n=500)\n", + "\n", + "input_data = data.iloc[:, :2]\n", + "output_data = data.iloc[:, 2:4]\n", + "\n", + "# # Define labels, and split training and validation data\n", + "input_labels = list(input_data.columns)\n", + "output_labels = list(output_data.columns)\n", + "\n", + "n_data = data[input_labels[0]].size\n", + "data_training, data_validation = split_training_validation(data, 0.8, seed=n_data)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrrElEQVR4nO3deVxV1fo/8M8GGRUOMsigIIhzmgoWYg6ZKHoVrz/xOmQOqZldUVFzypwy0yxzyNJswkpzSOs6Fw7ZIKE5ZJaSEk4BKiAHnAA56/cH37M9+0wMAocDn/frdV5x9l5nn7V33MvTWs96liSEECAiIiKiSmVj6Q4QERER1UQMwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiMisuLg4SJKES5cuWborRNUKgzAisrjjx48jJiYGjz32GGrXro2AgAAMGjQIf/31l0Hbp59+GpIkQZIk2NjYwNXVFc2aNcPw4cMRHx9fqu/dtWsXunbtinr16sHZ2RmNGjXCoEGDsH///vK6NQNvvPEGvvnmG4PjR48exYIFC5CdnV1h361vwYIF8rOUJAnOzs5o2bIlXn31VeTk5JTLd2zatAkrV64sl2sRVTcMwojI4t58801s374d3bt3x6pVqzBu3Dj88MMPCAkJwdmzZw3aN2jQAJ9//jk+++wzvPXWW+jXrx+OHj2Knj17YvDgwSgoKCj2O99++23069cPkiRh9uzZWLFiBaKjo3HhwgVs3ry5Im4TgPkgbOHChZUahGmtXbsWn3/+Od555x00b94cixcvRq9evVAeWwszCCMyrZalO0BENHXqVGzatAn29vbyscGDB6N169ZYunQpvvjiC0V7lUqF5557TnFs6dKlmDRpEt5//30EBgbizTffNPl9Dx48wKJFi9CjRw989913Budv3LjxiHdUddy9exfOzs5m2wwcOBCenp4AgPHjxyM6Oho7duzAL7/8gvDw8MroJlGNxJEwIrK4jh07KgIwAGjSpAkee+wxnDt3rkTXsLW1xerVq9GyZUusWbMGarXaZNuMjAzk5OTgqaeeMnq+Xr16ivf379/HggUL0LRpUzg6OsLX1xcDBgxAcnKy3Obtt99Gx44d4eHhAScnJ4SGhuKrr75SXEeSJNy5cwcbNmyQpwBHjRqFBQsWYPr06QCAoKAg+ZxuDtYXX3yB0NBQODk5wd3dHUOGDMHVq1cV13/66afRqlUrnDhxAl26dIGzszNeeeWVEj0/Xc888wwAICUlxWy7999/H4899hgcHBzg5+eHCRMmKEbynn76aezZsweXL1+W7ykwMLDU/SGqrjgSRkRVkhAC169fx2OPPVbiz9ja2mLo0KGYO3cufvrpJ/Tp08dou3r16sHJyQm7du3CxIkT4e7ubvKahYWF6Nu3Lw4ePIghQ4Zg8uTJyM3NRXx8PM6ePYvg4GAAwKpVq9CvXz8MGzYM+fn52Lx5M/7zn/9g9+7dcj8+//xzjB07Fk8++STGjRsHAAgODkbt2rXx119/4csvv8SKFSvkUSkvLy8AwOLFizF37lwMGjQIY8eOxc2bN/Huu++iS5cuOHXqFNzc3OT+ZmZmonfv3hgyZAiee+45eHt7l/j5aWmDSw8PD5NtFixYgIULFyIiIgIvvfQSkpKSsHbtWhw/fhw///wz7OzsMGfOHKjValy7dg0rVqwAANSpU6fU/SGqtgQRURX0+eefCwDi448/Vhzv2rWreOyxx0x+7uuvvxYAxKpVq8xef968eQKAqF27tujdu7dYvHixOHHihEG7Tz75RAAQ77zzjsE5jUYj/3z37l3Fufz8fNGqVSvxzDPPKI7Xrl1bjBw50uBab731lgAgUlJSFMcvXbokbG1txeLFixXHf//9d1GrVi3F8a5duwoAYt26dSbvW9f8+fMFAJGUlCRu3rwpUlJSxAcffCAcHByEt7e3uHPnjhBCiE8//VTRtxs3bgh7e3vRs2dPUVhYKF9vzZo1AoD45JNP5GN9+vQRDRs2LFF/iGoaTkcSUZVz/vx5TJgwAeHh4Rg5cmSpPqsdacnNzTXbbuHChdi0aRPatWuHb7/9FnPmzEFoaChCQkIUU6Dbt2+Hp6cnJk6caHANSZLkn52cnOSfb926BbVajc6dO+PkyZOl6r++HTt2QKPRYNCgQcjIyJBfPj4+aNKkCQ4fPqxo7+DggOeff75U39GsWTN4eXkhKCgIL774Iho3bow9e/aYzCU7cOAA8vPzERsbCxubh39GXnjhBbi6umLPnj2lv1GiGojTkURUpaSnp6NPnz5QqVT46quvYGtrW6rP3759GwDg4uJSbNuhQ4di6NChyMnJQWJiIuLi4rBp0yZERUXh7NmzcHR0RHJyMpo1a4Zatcz/3+Xu3bvx+uuv4/Tp08jLy5OP6wZqZXHhwgUIIdCkSROj5+3s7BTv69evb5BfV5zt27fD1dUVdnZ2aNCggTzFasrly5cBFAVvuuzt7dGoUSP5PBGZxyCMiKoMtVqN3r17Izs7Gz/++CP8/PxKfQ1tSYvGjRuX+DOurq7o0aMHevToATs7O2zYsAGJiYno2rVriT7/448/ol+/fujSpQvef/99+Pr6ws7ODp9++ik2bdpU6nvQpdFoIEkS9u3bZzQg1c+x0h2RK6kuXbrIeWhEVHkYhBFRlXD//n1ERUXhr7/+woEDB9CyZctSX6OwsBCbNm2Cs7MzOnXqVKZ+tG/fHhs2bEBaWhqAosT5xMREFBQUGIw6aW3fvh2Ojo749ttv4eDgIB//9NNPDdqaGhkzdTw4OBhCCAQFBaFp06alvZ0K0bBhQwBAUlISGjVqJB/Pz89HSkoKIiIi5GOPOhJIVJ0xJ4yILK6wsBCDBw9GQkICtm3bVqbaVIWFhZg0aRLOnTuHSZMmwdXV1WTbu3fvIiEhwei5ffv2AXg41RYdHY2MjAysWbPGoK34v2Kmtra2kCQJhYWF8rlLly4ZLcpau3ZtowVZa9euDQAG5wYMGABbW1ssXLjQoHiqEAKZmZnGb7ICRUREwN7eHqtXr1b06eOPP4ZarVasSq1du7bZciFENRlHwojI4qZNm4adO3ciKioKWVlZBsVZ9QuzqtVquc3du3dx8eJF7NixA8nJyRgyZAgWLVpk9vvu3r2Ljh07okOHDujVqxf8/f2RnZ2Nb775Bj/++CP69++Pdu3aAQBGjBiBzz77DFOnTsWxY8fQuXNn3LlzBwcOHMB///tf/Pvf/0afPn3wzjvvoFevXnj22Wdx48YNvPfee2jcuDHOnDmj+O7Q0FAcOHAA77zzDvz8/BAUFISwsDCEhoYCAObMmYMhQ4bAzs4OUVFRCA4Oxuuvv47Zs2fj0qVL6N+/P1xcXJCSkoKvv/4a48aNw8svv/xIz7+0vLy8MHv2bCxcuBC9evVCv379kJSUhPfffx9PPPGE4t9XaGgotmzZgqlTp+KJJ55AnTp1EBUVVan9JaqyLLk0k4hIiIelFUy9zLWtU6eOaNKkiXjuuefEd999V6LvKygoEB9++KHo37+/aNiwoXBwcBDOzs6iXbt24q233hJ5eXmK9nfv3hVz5swRQUFBws7OTvj4+IiBAweK5ORkuc3HH38smjRpIhwcHETz5s3Fp59+KpeA0HX+/HnRpUsX4eTkJAAoylUsWrRI1K9fX9jY2BiUq9i+fbvo1KmTqF27tqhdu7Zo3ry5mDBhgkhKSlI8G3PlO/Rp+3fz5k2z7fRLVGitWbNGNG/eXNjZ2Qlvb2/x0ksviVu3bina3L59Wzz77LPCzc1NAGC5CiIdkhDlsDkYEREREZUKc8KIiIiILIBBGBEREZEFMAgjIiIisgAGYUREREQWwCCMiIiIyAIYhBERERFZAIu1VmEajQapqalwcXHh1h9ERERWQgiB3Nxc+Pn5wcbG9HgXg7AqLDU1Ff7+/pbuBhEREZXB1atX0aBBA5PnGYRVYS4uLgCK/iWa2wePiIiIqo6cnBz4+/vLf8dNYRBWhWmnIF1dXRmEERERWZniUomYmE9ERERkAQzCiIiIiCyAQRgRERGRBTAnzMppNBrk5+dbuhvVmr29vdklxkRERGXBIMyK5efnIyUlBRqNxtJdqdZsbGwQFBQEe3t7S3eFiIiqEQZhVkoIgbS0NNja2sLf358jNRVEWzA3LS0NAQEBLJpLRETlhkGYlXrw4AHu3r0LPz8/ODs7W7o71ZqXlxdSU1Px4MED2NnZWbo7RERUTVjN8Em/fv0QEBAAR0dH+Pr6Yvjw4UhNTVW0EULg7bffRtOmTeHg4ID69etj8eLFijbff/89QkJC4ODggMaNGyMuLs7gu9577z0EBgbC0dERYWFhOHbsmOL8/fv3MWHCBHh4eKBOnTqIjo7G9evXFW2uXLmCPn36wNnZGfXq1cP06dPx4MGD8nkYAAoLCwGAU2SVQPuMtc+ciIioPFhNENatWzds3boVSUlJ2L59O5KTkzFw4EBFm8mTJ+Ojjz7C22+/jfPnz2Pnzp148skn5fMpKSno06cPunXrhtOnTyM2NhZjx47Ft99+K7fZsmULpk6divnz5+PkyZNo06YNIiMjcePGDbnNlClTsGvXLmzbtg1HjhxBamoqBgwYIJ8vLCxEnz59kJ+fj6NHj2LDhg2Ii4vDvHnzyv25cHqs4vEZExFRhRBW6n//+5+QJEnk5+cLIYT4888/Ra1atcT58+dNfmbGjBniscceUxwbPHiwiIyMlN8/+eSTYsKECfL7wsJC4efnJ5YsWSKEECI7O1vY2dmJbdu2yW3OnTsnAIiEhAQhhBB79+4VNjY2Ij09XW6zdu1a4erqKvLy8kp8j2q1WgAQarXa4Ny9e/fEn3/+Ke7du1fi61HZ8FkTEVUPGRkZIjU11eQrIyOjXL7H3N9vXVaZE5aVlYWNGzeiY8eOco7Orl270KhRI+zevRu9evWCEAIRERFYtmwZ3N3dAQAJCQmIiIhQXCsyMhKxsbEAilYbnjhxArNnz5bP29jYICIiAgkJCQCAEydOoKCgQHGd5s2bIyAgAAkJCejQoQMSEhLQunVreHt7K77npZdewh9//IF27dpVyHMhIiIi4zIzM7FmzZpi28XExMDDw6MSemRF05EAMHPmTNSuXRseHh64cuUK/ve//8nn/v77b1y+fBnbtm3DZ599hri4OJw4cUIxZZmenq4IjADA29sbOTk5uHfvHjIyMlBYWGi0TXp6unwNe3t7uLm5mW1j7Brac6bk5eUhJydH8apuRo0aBUmSIEkS7Ozs4O3tjR49euCTTz4pVamNuLg4g38HREREpujX1FSrXZCSEgi12sVsu4pk0SBs1qxZ8h9kU6/z58/L7adPn45Tp07hu+++g62tLUaMGAEhBICiUgJ5eXn47LPP0LlzZzz99NP4+OOPcfjwYSQlJVnqFktlyZIlUKlU8svf37/CviszMxNpaWkmX5mZmRX23b169UJaWhouXbqEffv2oVu3bpg8eTL69u1brosXiIiIjDl5sh1WrozFhg0jsXJlLE6etMwMlUWnI6dNm4ZRo0aZbdOoUSP5Z09PT3h6eqJp06Zo0aIF/P398csvvyA8PBy+vr6oVasWmjZtKrdv0aIFgKKVis2aNYOPj4/BKsbr16/D1dUVTk5OsLW1ha2trdE2Pj4+AAAfHx/k5+cjOztbMRKj30Z/RaX2mto2xsyePRtTp06V3+fk5FRIIGbpIVkHBwf5OdSvXx8hISHo0KEDunfvjri4OIwdOxbvvPMOPv30U/z9999wd3dHVFQUli1bhjp16uD777/H888/D+Bh0vz8+fOxYMECfP7551i1ahWSkpJQu3ZtPPPMM1i5ciXq1atX7vdBRETWR612wa5dfSFE0TiUEDbYtasvgoMvQqXKrdS+WHQkzMvLC82bNzf7MlWCQTt1lZeXBwB46qmn8ODBAyQnJ8tt/vrrLwBAw4YNAQDh4eE4ePCg4jrx8fEIDw8HUFSKIDQ0VNFGo9Hg4MGDcpvQ0FDY2dkp2iQlJeHKlStym/DwcPz++++KFZXx8fFwdXVFy5YtTT4PBwcHuLq6Kl4VoaRDrZU5JPvMM8+gTZs22LFjB4CiXLzVq1fjjz/+wIYNG3Do0CHMmDEDANCxY0esXLkSrq6u8sjdyy+/DAAoKCjAokWL8Ntvv+Gbb77BpUuXig30iYioesjMzMT58+fx+++/G7wuXLgAAMjK8pADMC0hbJCV5V7p/bWKxPzExEQcP34cnTp1Qt26dZGcnIy5c+ciODhYDnwiIiIQEhKC0aNHY+XKldBoNJgwYQJ69Oghj46NHz8ea9aswYwZMzB69GgcOnQIW7duxZ49e+Tvmjp1KkaOHIn27dvjySefxMqVK3Hnzh155EWlUmHMmDGYOnUq3N3d4erqiokTJyI8PBwdOnQAAPTs2RMtW7bE8OHDsWzZMqSnp+PVV1/FhAkT4ODgUMlPz3o0b94cZ86cAQB5sQQABAYG4vXXX8f48ePx/vvvw97eHiqVCpIkGYwsjh49Wv65UaNGWL16NZ544gncvn0bderUqZT7ICKiypWZmYmbN29iy5YtxbZ1d8+EJGkUgZgkaeDunlWRXTTKKoIwZ2dn7NixA/Pnz8edO3fg6+uLXr164dVXX5WDGhsbG+zatQsTJ05Ely5dULt2bfTu3RvLly+XrxMUFIQ9e/ZgypQpWLVqFRo0aICPPvoIkZGRcpvBgwfj5s2bmDdvHtLT09G2bVvs379fkWi/YsUK2NjYIDo6Gnl5eYiMjMT7778vn7e1tcXu3bvx0ksvITw8HLVr18bIkSPx2muvVcLTsl5CCHl68cCBA1iyZAnOnz+PnJwcPHjwAPfv38fdu3fN7hBw4sQJLFiwAL/99htu3bolj5heuXLF7CgkERFZJ/0UG7XaBVlZHrCzy0N2dl0AgL//VXmqUaXKRVTUbnlKUpI0iIraXelTkYCVBGGtW7fGoUOHim3n5+eH7du3m23z9NNP49SpU2bbxMTEICYmxuR5R0dHvPfee3jvvfdMtmnYsCH27t1rvsOkcO7cOQQFBeHSpUvo27cvXnrpJSxevBju7u746aefMGbMGOTn55sMwu7cuYPIyEhERkZi48aN8PLywpUrVxAZGVmpU6tERFSxMjMzkZ+fD7VarUj9OXmynU6+lwCgLbYt0K/fLoSEFP39Dwk5heDgi8jKcoe7e5ZFAjDASoIwqv4OHTqE33//HVOmTMGJEyeg0WiwfPlyeWPyrVu3Ktrb29sbbCN0/vx5ZGZmYunSpfKChl9//bVyboCIiCqF8ZGvQNjZ5SkS7h8GYEU/6yffq1S5RoOvytwOkEEYVbq8vDykp6ejsLAQ169fx/79+7FkyRL07dsXI0aMwNmzZ1FQUIB3330XUVFR+Pnnn7Fu3TrFNQIDA3H79m0cPHgQbdq0gbOzMwICAmBvb493330X48ePx9mzZ7Fo0SIL3SUREVUEUyNf+nle+rTJ9ypVLgYMGABPT0+DNvb29pVWqBWwsmKtVD3s378fvr6+CAwMRK9evXD48GGsXr0a//vf/2Bra4s2bdrgnXfewZtvvolWrVph48aNWLJkieIaHTt2xPjx4zF48GB4eXlh2bJl8PLyQlxcHLZt24aWLVti6dKlePvtty10l0REVN4yMzPlmRFjpSaKpiCN002+9/T0hK+vr8GrMgMwgCNhNVJJh1orYkg2Li4OcXFxxbabMmUKpkyZojg2fPhwxfu1a9di7dq1imNDhw7F0KFDFce0BX2JiMi66eb3Gis1UTQFKfT+CYsm35vDIKwG8vDwQExMjNlk9coekiUiIioNY6UmikiQJA2GDPkSBQVF+0v7+1+rcgEYwCCsxmKARURE1iw5uTFMTXQIYQN7+wI0a3bR6PnKTL43h0EYERERWRVtPpip1HZjxVd79OiBunXrol69elVmIIJBGBEREVmUtu6XKfopMsbzwYro538NGDAAfn5+VSbw0sUgjIiIiCxGv+6XKbpF1I3ng2kwcOBXBvlfVTUAAxiEERERkYVkZmYiNTVVcUy77ZC7e6YimNIdKTO19VCrVucAFE09BgUFVflFZgzCiIiIqFKZ2nBbv/hqVNRueashQJlQb27roWbNmlXp4EuLQRgRERFVGlPTj9eu+WLnzofJ9kLYGGw1VN1KLDEIIyIiokqjH0Cp1S5ITAzD0aMdodzvUbnVkJa1BFglwW2LqFr5/vvvIUkSsrOzS/yZwMBArFy5ssL6RERUk2VmZiItLU1+ZWRkyOdOnmyHFSticfToU9APwADjpSaqEwZhVKlGjRoFSZIwfvx4g3MTJkyAJEkYNWpU5XeMiIjKnXbqcf369fJrx44dAIqv9QVUza2GyhODMKp0/v7+2Lx5M+7duycfu3//PjZt2oSAgAAL9oyIiMqTsanHlJRAeQWkuVpfY8d+pEjKr44YhFGlCwkJgb+/v/xfQwCwY8cOBAQEoF27dvKxvLw8TJo0CfXq1YOjoyM6deqE48ePK661d+9eNG3aFE5OTujWrRsuXbpk8H0//fQTOnfuDCcnJ/j7+2PSpEm4c+dOhd0fEREZOnmyHVaujMWGDSOxYkUs/v47EJKkMWinXRXZoEGa4nhV2WqoPDEII1y7Bhw+XPTPyjJ69Gh8+umn8vtPPvkEzz//vKLNjBkzsH37dmzYsAEnT55E48aNERkZiaysovyAq1evYsCAAYiKisLp06cxduxYzJo1S3GN5ORk9OrVC9HR0Thz5gy2bNmCn376SVH0j4iIKpZ26vHhyJcNfvyxC1q0OKcTiGnQsePPiI1dqRgBGzBgAGJiYqpVQr4WV0fWcB9/DIwbB2g0gI0NsH49MGZMxX/vc889h9mzZ+Py5csAgJ9//hmbN2/G999/DwC4c+cO1q5di7i4OPTu3RsA8OGHHyI+Ph4ff/wxpk+fjrVr1yI4OBjLly8HUFQX5vfff8ebb74pf8+SJUswbNgwxMbGAgCaNGmC1atXo2vXrli7di0cHR0r/maJiGo441OPEs6da4ExYz5CQYG9Qa0vrapc8f5RMQirwa5dexiAAUX/fPFFIDISaNCgYr/by8sLffr0QVxcHIQQ6NOnDzw9PeXzycnJKCgowFNPPSUfs7Ozw5NPPolz54oqIp87dw5hYWGK64aHhyve//bbbzhz5gw2btwoHxNCQKPRICUlBS1atKiI2yMiqlFM7f2oXQnp7p4JQAP9CTghbFBQYI+goMsGnx00aFCV2my7IjAIq8EuXHgYgGkVFgIXL1Z8EAYUTUlqpwXfe++9CvmO27dv48UXX8SkSZMMznERABHRoyvJ3o8qVS569DiA+Pge0C1FoVuCYsCAAfJ/jFtTwdVHwSCsBmvSpGgKUjcQs7UFGjeunO/v1asX8vPzIUkSIiMjFeeCg4Nhb2+Pn3/+GQ0bNgQAFBQU4Pjx4/LUYosWLbBz507F53755RfF+5CQEPz5559oXFk3RURUjRkb8dKt+wWY3vvxqacSAAAHDkQotiXStvH09ISvr28F30HVwiCsBmvQoCgH7MUXi0bAbG2BDz6onFEwALC1tZWnFm1tbRXnateujZdeegnTp0+Hu7s7AgICsGzZMty9exdj/i9pbfz48Vi+fDmmT5+OsWPH4sSJE4iLi1NcZ+bMmejQoQNiYmIwduxY1K5dG3/++Sfi4+OL/S83IiJ6GHip1WqDvR71Fbf341NPJaBVq7NG93usiRiE1XBjxhTlgF28WDQCVlkBmJarq6vJc0uXLoVGo8Hw4cORm5uL9u3b49tvv0XdunUBFE0nbt++HVOmTMG7776LJ598Em+88QZGjx4tX+Pxxx/HkSNHMGfOHHTu3BlCCAQHB2Pw4MEVfm9ERNbO3FSj/oiX/gpIY3s/AkVTk8aCr+pYgqI4khBCWLoTZFxOTg5UKhXUarVBsHL//n2kpKQgKCiIK/wqGJ81EdVUaWlpWL9+vcFxYyNedevewoYNIw3ajhwZh6Cgy4qcL33VLQfM3N9vXRwJIyIiohJRq11w9aq/0RGvMWM+giRpFKUodBPva2LOV3EYhBEREVGxdEe/9GlLTURF7TYYIavpeV/mMAgjIiIime4KSO3KR8OK90raEa+goMsIDr7IxPsSYhBGREREAEwn4he32bbuiBcT70uOQZiV47qKisdnTETVUXJyMu7evas4duvWLcV77QpIO7s8g3wvQIOBA7+Cv/81RdBlLAG/uiXelxcGYVZKW1crPz8fTk5OFu5N9aYdltevZUZEZK2Sk5PxxRdfmG2jvwLy8cfP4MyZxxX5Xq1anTP4XHXe67G8MQizUrVq1YKzszNu3rwJOzs72NgYHyamR6PRaHDz5k04OzujVi3+z4WIqgf9ETB9xmp+nTnzuMnNtgcNGgQ3NzeOeJUS/6pYKUmS4Ovri5SUFFy+bLjxKZUfGxsbBAQEQJKk4hsTEVmha9d8ceVKQwQEXEaDBmlGc8B0N9uuifs8VgQGYVbM3t4eTZo0MbpzPZUfe3t7jjQSUbX19df/xm+/tUHRxtoCbdr8hmeeOcSaX5WAQZiVs7GxYRV3IiIqk2vXfHUCMACQ8NtvbfDEE8dY86sSMAgjIiKq5nRrfwEPV0FeudIQDwMwLQlXrwYgPDyRNb8qGIMwIiKiaszcJtwBAZcBCCgDMQF//ysAWPOrojEIIyIismL6o1z61Gq13vui2l/u7plo0CANbdr8ZpAT1qBBGgCgW7duaNKkieLzTMQvPwzCiIiIrJS5US5j9Gt/RUXtxv/7f//DE08cw9WrAfD3vyIHYABQv359JuBXIAZhREREVkJ/1Eu7t2NJGKv9tWtXXwQHX0SDBmkYPrw56tYNl9s7OzsjODi4/DpPBhiEERERWYGSjHrpTjXq53KZqv2VleUOlSoXTZo04ahXJWMQRkREZAWKqwlpbKoxJOSUfN7dPdNs7S+qfKxASUREZOVMTTWq1S5yG5UqF1FRuyFJGgBg7a8qgCNhREREVq64qUatkJBTrP1VhTAIIyIiskK6+V+pqb7Qr/dlaqqRtb+qDgZhREREVVxmZqZiJaRu/hegQVHwpSy4GhFxQA62Bg0aBDc3N5PXZ+0vy2AQRkREVIXpr4rUz/8ynt4twc8vVX5Xr149BllVEBPziYiIqjD9VZFXr/ob5H/p052KHDx4MAOwKoojYURERBZQ3HZDxqYItdOQhjSQJCjKU2inIlUqVXl2m8oRgzAiIqJKVtLthmJiYuSfDachtTTo1283Vz1aIQZhRERElUx/BMxUpXvddsbKUADAwIFfoVWrcwDAVY9WhkEYERGRBZmrdJ+dnS2vajRV8d7f/xoAYMCAAfD09FRcm6seqzYm5hMREVlIcZXut27dCrVaDaD4iveenp7w9fVVvBiAVW0cCSMiIqogppLvtTW/TFW6T0wMQ8+eBwAABQUF8jlWvK9eGIQRERFVgJIk3xubYgSAo0fDERaWCJUqF7VqKf9Us+J99cEgjIiIqAKYKz+hpVLlIjw8AUePPqV35uG+j25uboiJiSl1OQuq+hiEERERVQJTKyDDwhJx9Gg4dNO09fd9ZIBVPTEIIyIiqmD6KyAjIg7gqacSABSNhvXrt9tghSTzvao/BmFEREQVyNgKyPj4HgAgB2JMuK+ZWKKCiIioAhkvsiohPj5CLkUBFI2IBQVdZgBWgzAIIyIiqkDaFZCGipLvi8NVj9UXpyOJiIgqkEqVi4iIA/83BSnJx3WT741Vuwe46rG6YxBGRERkgqliq1rmgiTdESxt7ld8fAQAw+R7bbV7qlkYhBERERlRkmKrADB48GCoVCrFMW1wNnjwYGzZsgVAUSDWqtVZJt+TjEEYERGRESUptgoA69fvNVr/KyYmxiA4M1Xtnmomq0nM79evHwICAuDo6AhfX18MHz4cqamp8vkFCxZAkiSDV+3atRXX2bZtG5o3bw5HR0e0bt0ae/fuVZwXQmDevHnw9fWFk5MTIiIicOHCBUWbrKwsDBs2DK6urnBzc8OYMWNw+/ZtRZszZ86gc+fOcHR0hL+/P5YtW1bOT4SIiMpTZmYm0tLS5Jd2f0cttdoFKSmBihWNJ0+2w8qVsdiwYSRWrozFyZPt5HP5+fklTqpn8n3NZDUjYd26dcMrr7wCX19f/PPPP3j55ZcxcOBAHD16FADw8ssvY/z48YrPdO/eHU888YT8/ujRoxg6dCiWLFmCvn37YtOmTejfvz9OnjyJVq1aAQCWLVuG1atXY8OGDQgKCsLcuXMRGRmJP//8E46OjgCAYcOGIS0tDfHx8SgoKMDzzz+PcePGYdOmTQCAnJwc9OzZExEREVi3bh1+//13jB49Gm5ubhg3blxlPC4iIiqF4qYe9YutRkXtRnDwRYP6X7t29UVw8EV5tMvDw4NbDpFJkhBCWLoTZbFz5070798feXl5sLOzMzj/22+/oW3btvjhhx/QuXNnAEXz9nfu3MHu3bvldh06dEDbtm2xbt06CCHg5+eHadOm4eWXXwYAqNVqeHt7Iy4uDkOGDMG5c+fQsmVLHD9+HO3btwcA7N+/H//6179w7do1+Pn5Ye3atZgzZw7S09Pl/7qZNWsWvvnmG5w/f77E95iTkwOVSgW1Wg1XV9cyPysiIjIvLS0N69evN3pOrXbBypWxilpfkqRBdPR2fPXVfwzajxwZh6Cgyxg3bhyT7Wuokv79tprpSF1ZWVnYuHEjOnbsaDQAA4CPPvoITZs2lQMwAEhISEBERISiXWRkJBISilatpKSkID09XdFGpVIhLCxMbpOQkAA3Nzc5AAOAiIgI2NjYIDExUW7TpUsXxfByZGQkkpKScOvWrUe8eyIiqmhqtQvOnm2JY8dCceJEiEGx1aL3wqD+l/6ej0TmWM10JADMnDkTa9aswd27d9GhQwfFiJau+/fvY+PGjZg1a5bieHp6Ory9vRXHvL29kZ6eLp/XHjPXpl69eorztWrVgru7u6JNUFCQwTW05+rWrWu033l5ecjLy5Pf5+TkGG1HRETlS61Wyz+fPNkOO3dGQbemFyCgX+PL3/8aoqK45yOVnUVHwmbNmmU0mV73pTt9N336dJw6dQrfffcdbG1tMWLECBibTf3666+Rm5uLkSNHVubtPLIlS5ZApVLJL39/f0t3iYio2svMzJTLSKjVLti5sy+UARj+733R3xvdYCsk5BRiY1di5Mg4xMauREjIqUrtO1k3i46ETZs2DaNGjTLbplGjRvLPnp6e8PT0RNOmTdGiRQv4+/vjl19+QXh4uOIzH330Efr27WswouXj44Pr168rjl2/fh0+Pj7yee0x3Xn869evo23btnKbGzduKK7x4MEDZGVlKa5j7Ht0v8OY2bNnY+rUqfL7nJwcBmJERBVMN2k+MTEMpscnJERG7kfLln8qRrtYdoLKyqJBmJeXF7y8vMr0WY2maB5ed/oOKMrrOnz4MHbu3GnwmfDwcBw8eBCxsbHysfj4eDmICwoKgo+PDw4ePCgHXTk5OUhMTMRLL70kXyM7OxsnTpxAaGgoAODQoUPQaDQICwuT28yZMwcFBQVyzlp8fDyaNWtmcioSABwcHODg4FCGp0FERI9KrXZBQkK4yfOSpDEIwMxh2QkqjlXkhCUmJuL48ePo1KkT6tati+TkZMydOxfBwcEGo2CffPIJfH190bt3b4PrTJ48GV27dsXy5cvRp08fbN68Gb/++qu8IkaSJMTGxuL1119HkyZN5BIVfn5+6N+/PwCgRYsW6NWrF1544QWsW7cOBQUFiImJwZAhQ+Dn5wcAePbZZ7Fw4UKMGTMGM2fOxNmzZ7Fq1SqsWLGiYh8UERGVWVaWh0ECvpZ+vpexKvm6WHaCSsIqgjBnZ2fs2LED8+fPx507d+Dr64tevXrh1VdfVYwcaTQaxMXFYdSoUbC1tTW4TseOHbFp0ya8+uqreOWVV9CkSRN88803co0wAJgxYwbu3LmDcePGITs7G506dcL+/fvlGmEAsHHjRsTExKB79+6wsbFBdHQ0Vq9eLZ9XqVT47rvvMGHCBISGhsLT0xPz5s1jjTAiIgsobv9HbVK+u3smJEmjF4hp8K9/7UGzZhf0piBVLD9Bj8xq64TVBKwTRkT0aPSLsKrVLka3GNIyVpTVWLI9a4CROSX9+20VI2FERERloTsCVpIAKyTkFIKDLxa7yTbzvag8MAgjIqJqT612KXaLIS1Tqx0HDBgAT09P5ntRuWEQRkRE1YpuDph2E25jSfdC2CAry73Eqx39/PwYfFG5YhBGRETVhvEcsEDk59cySLrX3WJo0KBBcHNzM3ldjn5RRWAQRkRE1YapHLCH2w4V/VO/5ISbmxsT7anSMQgjIiKrUFypCd1kef0csIfbEEkANBgz5iM0aJBWYX0lKgkGYUREVOXpTzOa0qNHDwDmC68CNigo4OpGsjwGYUREVGVpR7+0CfZa2npfdnZ5KChwkOt+xcfHAzBVeLWIbi6YFktOkCUwCCMioirJ1OiXsVwv/bpfKlUuoqJ2m2ynzQUbMGAAVz2SxTAIIyKiKkk//0utdsHVq/5Gc72M1f3SLbxqZ5ePggJ7gwKsnp6eDMDIYhiEERGRRZlKuNedglSOfhlnrO6XqcKrRFUBgzAiIrKYkiTcG650NM5YrhdRVWb+N5qIiKgCGZtyTEkJhFrtIh8zv9JRAIBBrlfPnj1L9P1MyCdL4kgYERFVCaY22HZ3zwSggXLcQIOBA7+Cm1u20VyvwMBAxMTEFFtXjPlgZEkMwoiIyOLMbbBdRFK0lyTA3/+a2XwvBlhU1TEIIyIiizO3wXZRACYZPWcqCOM0I1kDBmFERGRxxoqr6ibamzvXo0cPBAUFyec4zUjWgon5RERkcdriqpKkAaBMtDd3DgCCgoLg6+srvxiAkbXgSBgREZW7kmy2rR8s6RZX1U+0N3eOyFoxCCMionJV0s22Y2JiDHK3zBVXZeFVqm4YhBERUbkyVvsrK8tD3mRb648//kDdunXRu3dvODk5oVatWnBzc5PPZ2dnY+vWrcV+H5PwyVoxCCMiogqjX/srIuIA/PzS4O6eicOHDxu0j4mJkacpfX19WeuLqjUGYUREVCGM1f6Kj++BonITGnTsmICwsETF6Jh+wMUAi6ozro4kIqIKYXy7IW29LxscPfoUVq6MxcmT7Sq7a0RVAoMwIiIqF5mZmUhLS0NGRgaAh7W/zNFWxtfdK5KopuB0JBERPTJjKyK19b0eTkkK6Fe+B4qvfk9UXTEIIyKiR2ZqRWRw8EXExq5EVpY7UlP9EB8fAf1JGN3q90Q1CYMwIiIqE92CrNopSMBwRWRU1G6EhJxCUNBltGp1FomJYUhICFec5ygY1UQMwoiIqNSSk5PxxRdfyO+LRr4CYWeXZ7AicteuvggOvigXW+3Z8wDCwhJZ/Z5qPAZhRERUKpmZmYoATHfkC9BAf7rRWM6Xqer3LLxKNQmDMCIiKpUbN27IP6vVLti5sy8eBl6GCfi6OV/dunVD3bp1FdfTVspn4VWqaRiEERFRiWVmZiq2Evrhh84wrHYkQZI0RnO+mjRpAl9f38rrMFEVxiCMiKiG0E2kN6YkI1G6n//553CcONHeSCsNxoz5CAUF9sz5IjKDQRgRUQ1grI6XMTExMQAMS05oaVdBqtUu/1duwrDuV8eOCWjQIM3o55nzRfQQgzAiohrA3AiYrqSkJMTHx8vvtfW+3N0zFSNaWVkeMLbpiiRpEBaWKL8fMGAAPD09AXCzbSJ9DMKIiGogU8GVbgBmqt4X8HBLIuXekAIREQcU1/P09GQOGJEJDMKIiKqp0hZT1Q3MABRb70u5JZEGPXocwFNPJSj6wOlHItMYhBERVUOmcsDUahejwdW9e444cCBCDszCwxP0RrkM632FhJxCcPBFk0VXn3vuOU4/EpnBIIyIqBoytZfjnTvORoMrbQCmfZ+QEA79wqvG9ng0VXR18ODBCA4OLp+bIaqmGIQREVVzhhXtlcVUAf3crqJArGPHn8u8x6OXl1d5dZ+o2mIQRkRUjelPPxaNbGkgSUIOriIiDihGwoCHqxxN7fGou+pRH1dBEpUMgzAiomosK8vDYJQLsEF09FbUrn1XDq6cnO4bJOtrgy5jo19c9Uj06BiEERFVI9oVkdrVkMZKSUiSBv7+1xTBVXFJ9vq46pHo0TEIIyKyYrplKNRqNbZs2SKf0ybj6043msvtMpdkr1Kp5PecbiQqHwzCiIislLmtiPRrgUVEHICfX6rBKJd+gKWPARdRxWEQRkRkpUyVobCzyzOoBXbgQARiY1cajHR5eXkxyCKyEAZhRETVgGEZCtOFVrUrGznKRWRZDMKIiKxQZmamnHxvvAyFshaYbqFVrmwkqhoYhBERWRn9XDDjZSgkeVVkaQutElHlYBBGRGRl9HPB7OzyjJahGDPmIxQU2Jeo5AQRVT4GYURElUi3pIQxpc3TUuaCFU1Bake+GjRIe/QOE1GFYRBGRFRJzJWU0BUTE1OiQMwwF0wCUDQCZi4AY6FVoqqBQRgRUSUxVVLC3T1TMV1obqRMl6ktiQoKlEHWoEGD4ObmBoB1v4iqEgZhREQWoF9MNSpqN0JCTpXqGqa2JNKughwwYAD8/PwYdBFVUfr/CUVERBVMfxpRCBvs2tUXarVLqa6jUuUiKmo3JEkDAAarID09PRmAEVVhHAkjIqpkxqYRdYuplkZpN94moqqDQRgRUTkztQJSW1y1uGnE4ugn1pvaeJsJ+ERVG4MwIqJyVJIVkNppRP2csJKOYnl4eCAmJqZcS10QUeUrcRCWk5NT4ou6urqWqTNERNaupCsgH3UakQEWkfUrcRDm5uYGSZLMthFCQJIkFBYWPnLHiIisXXErIE1NI969e7cyu0lEFlLiIOzw4cMV2Q8iomrF1ArI4OCLxY56ffHFFyUu2EpE1qvEQVjXrl0rsh9ERNVKSVdAPmrBViKyXmVOzM/OzsbHH3+Mc+fOAQAee+wxjB49GiqVqtw6R0RkrUqyArI8CrYSkfUqU7HWX3/9FcHBwVixYgWysrKQlZWFd955B8HBwTh58mR595GIyOoUV0i1vAq2EpH1KtNI2JQpU9CvXz98+OGHqFWr6BIPHjzA2LFjERsbix9++KFcO0lEZI3MrYAsz4KtRGSdyjwSNnPmTDkAA4BatWphxowZ+PXXX8utc7r69euHgIAAODo6wtfXF8OHD0dqaqqizbfffosOHTrAxcUFXl5eiI6OxqVLlxRtvv/+e4SEhMDBwQGNGzdGXFycwXe99957CAwMhKOjI8LCwnDs2DHF+fv372PChAnw8PBAnTp1EB0djevXryvaXLlyBX369IGzszPq1auH6dOn48GDB+XyLIio6jJWSDUo6LJBYKWdrtRVmoKtRGT9yjQS5urqiitXrqB58+aK41evXoWLS8UMpXfr1g2vvPIKfH198c8//+Dll1/GwIEDcfToUQBASkoK/v3vf2Pq1KnYuHEj1Go1pkyZggEDBshTpCkpKejTpw/Gjx+PjRs34uDBgxg7dix8fX0RGRkJANiyZQumTp2KdevWISwsDCtXrkRkZCSSkpJQr149AEUjgXv27MG2bdugUqkQExODAQMG4OeffwYAFBYWok+fPvDx8cHRo0eRlpaGESNGwM7ODm+88UaFPB8iqhqKK6SakZGBHTt2PHLBViKyfpIQQpT2Q5MmTcLXX3+Nt99+Gx07dgQA/Pzzz5g+fTqio6OxcuXK8u6ngZ07d6J///7Iy8uDnZ0dvvrqKwwdOhR5eXmwsSka4Nu1axf+/e9/y21mzpyJPXv24OzZs/J1hgwZguzsbOzfvx8AEBYWhieeeEKueK3RaODv74+JEydi1qxZUKvV8PLywqZNmzBw4EAAwPnz59GiRQskJCSgQ4cO2LdvH/r27YvU1FR4e3sDANatW4eZM2fi5s2bJd5KJCcnByqVCmq1mgVwiaqJtLQ0rF+/Xn5ftDrScLpy3Lhx8PX1tUQXiegRlfTvd5mmI99++20MGDAAI0aMQGBgIAIDAzFq1CgMHDgQb775Zpk7XVJZWVnYuHEjOnbsCDs7OwBAaGgobGxs8Omnn6KwsBBqtRqff/45IiIi5DYJCQmIiIhQXCsyMhIJCQkAipaEnzhxQtHGxsYGERERcpsTJ06goKBA0aZ58+YICAiQ2yQkJKB169ZyAKb9npycHPzxxx8m7ysvLw85OTmKFxFVLyWdruS+j0TVX5mmI+3t7bFq1SosWbIEycnJAIDg4GA4OzuXa+f0zZw5E2vWrMHdu3fRoUMH7N69Wz4XFBSE7777DoMGDcKLL76IwsJChIeHY+/evXKb9PR0RWAEAN7e3sjJycG9e/dw69YtFBYWGm1z/vx5+Rr29vZwc3MzaJOenm72e7TnTFmyZAkWLlxYwqdBRNaI+z4SkVaZRsK0nJ2d0bp1a7Ru3bpMAdisWbMgSZLZlzb4AYDp06fj1KlT+O6772Bra4sRI0ZAO5uanp6OF154ASNHjsTx48dx5MgR2NvbY+DAgSjDjKtFzJ49G2q1Wn5dvXrV0l0iogrg4eEBX19fky8GYEQ1Q5lGwu7fv493330Xhw8fxo0bN6DRKFf4lLRW2LRp0zBq1CizbRo1aiT/7OnpCU9PTzRt2hQtWrSAv78/fvnlF4SHh+O9996DSqXCsmXL5PZffPEF/P39kZiYiA4dOsDHx8dgFeP169fh6uoKJycn2NrawtbW1mgbHx8fAICPjw/y8/ORnZ2tGA3Tb6O/olJ7TW0bYxwcHODg4GD2eRAREVH1UKYgbMyYMfjuu+8wcOBAPPnkk8Vu7G2Kl5cXvLy8yvRZbeCXl5cHoGjDW21Cvpatra2irf70JADEx8cjPDwcQNEUQGhoKA4ePIj+/fvLnz148CBiYmIAFOWe2dnZ4eDBg4iOjgYAJCUl4cqVK/J1wsPDsXjxYty4cUNeURkfHw9XV1e0bNmyTPdLRBUnMzOT04NEVOnKtDpSpVJh7969eOqppyqiTwYSExNx/PhxdOrUCXXr1kVycjLmzp2L69ev448//oCDgwMOHTqEiIgILFiwAEOHDkVubi5eeeUVnD9/HufOnYOTkxNSUlLQqlUrTJgwAaNHj8ahQ4cwadIk7NmzR1GiYuTIkfjggw/w5JNPYuXKldi6dSvOnz8v53W99NJL2Lt3L+Li4uDq6oqJEycCgFwuo7CwEG3btoWfnx+WLVuG9PR0DB8+HGPHji1ViQqujiSqeJmZmfJqaHO4oTYRlVSFro6sX79+hdUDM8bZ2Rk7duxA9+7d0axZM4wZMwaPP/44jhw5Ik/fPfPMM9i0aRO++eYbtGvXDr169YKDgwP2798PJycnAEXJ+3v27EF8fDzatGmD5cuX46OPPpIDMAAYPHgw3n77bcybNw9t27bF6dOnsX//fkWi/YoVK9C3b19ER0ejS5cu8PHxwY4dO+Tztra22L17N2xtbREeHo7nnnsOI0aMwGuvvVZJT4yISqqkG2VzQ20iKm9lGgnbt28fVq9ejXXr1qFhw4YV0S8CR8KIKoPxul0ecHfPZN0uIiqTkv79LlNOWPv27XH//n00atQIzs7Och0urawsbrtBRNbn5Ml2BhXsQ0JOWbpbRFRNlSkIGzp0KP755x+88cYb8Pb2LnNiPhFRVaFWu8gBGFC0mfauXX0RHHyRWwkRUYUoUxB29OhRJCQkoE2bNuXdHyIii8jK8pADMC0hbJCV5c4gjIgqRJkS85s3b4579+6Vd1+IiCzG3T0TkqSseShJGri7M72CiCpGmUbCli5dimnTpmHx4sVo3bq1QU4Yk8iJqDKUZ30vlSoXUVG7DXLCOApGRBWlTEFYr169AADdu3dXHBdCQJIkFBYWPnrPiIjMKK/6XrobZYeEnEJw8EVkZbnD3T1LEYBxQ20iKm9lCsIOHz5c3v0gIioV/REwU6UlUlNTFW31R8e4oTYRWUqZgrCuXbuWqN1///tfvPbaa/D09CzL1xARlYi50hK6hZS19EfHGGARkSWUKTG/pL744gvk5ORU5FcQUQ1nqrSEWm16Vw9WvyeiqqBMI2ElVYZi/EREpWKutIT2vP4UJRFRVVChQRgRUUXTlpbQDcQkSYPUVD989tkIVr8noiqrQqcjiYgqmra0hLbGlyRpEBFxAAcORJRqipKIqLJxJIyIqixzdcAyMjLkn/VLS7D6PRFZAwZhRFQllbQOmJZKlasIsIxNUbL6PRFVJRUahD333HOsnk9EZVLSFYwDBgyQy+BkZGRgx44drH5PRFahzEFYdnY2jh07hhs3bkCjUe63NmLECADA2rVrH613RFQjZWZmKqYbAdPFWD09PeHr6wuA1e+JyLqUKQjbtWsXhg0bhtu3b8PV1RWSJMnnJEmSgzAiotIyNg1prhirLla/JyJrUqYgbNq0aRg9ejTeeOMNODs7l3efiKgGM7YdkbFirMHBF41OLzLAIiJrUaYSFf/88w8mTZrEAIyIKtzVq/5mi7ESEVmrMgVhkZGR+PXXX8u7L0RECidPtsP27dEGx7nSkYiqgxJPR+7cuVP+uU+fPpg+fTr+/PNPtG7dGnZ2doq2/fr1K78eElGNpD8N+ZBypaNarZYT84mIrEmJg7D+/fsbHHvttdcMjkmShMLCwkfqFBHVLLpFWbWrIo0VXAWAgQO/QqtW5+T3W7ZsQUxMDHPBiMjqlDgI0y9DQURUHkwVZTW1J6S//zWDtiWtKUZEVJWUKSfss88+Q15ensHx/Px8fPbZZ4/cKSKq2jIzM5GWlmbylZmZWeJrGVsNmZISCAAGe0J26vQjsrI8uAckEVULkhBClPZDtra2SEtLQ7169RTHMzMzUa9ePU5HlpOcnByoVCqo1WruPEBVhv7IlakiqoMGDYKbm5v83lR9rrS0NKxfvx6A8Xpg9+45Ij4+AkX/zSgASAa1wsaNG8e8MCKqMkr697tMdcKEEIoCrVrXrl2DSqUqyyWJyErojlyZK6K6detWg8+ay90yVg9s586+KPq/Gu2gvSSfM1crjIjIGpQqCGvXrh0kSYIkSejevTtq1Xr48cLCQqSkpKBXr17l3kkiqnpKW0QVMJ+7ZTwR3wamxuq1tcIYhBGRtSpVEKZdIXn69GlERkaiTp068jl7e3sEBgYiOtqwpg8RVT/GgibdIqrGpijNMZaIXzT9CGhHwHSxVhgRWbtSBWHz588HAAQGBmLw4MFwdHSskE4RUdVnavViaqofPvtsRLH7POpTqXIREXEA8fE98DDokgBoIEni/75HmRPGUTAismZlygkbOXIkgKKphRs3bhiUrwgICHj0nhFRlaZS5SIqarciJywi4gAOHIgo1RSlLj+/NBiOetkgOnorate+Czu7fBQU2MPdPUtxPXt7+3K8MyKiylGmIOzChQsYPXo0jh49qjiuTdjn6kiimiEk5BSCgy8iK8sd7u5ZZqcoVapcuRAr8HC1pG4AZa42mEqVi27duqFu3boAgFq1asHNzc3kqksioqquTEHYqFGjUKtWLezevRu+vr5GV0oSkXXRrVpvjKlgR6XKVYxKGQuitLlbO3bsUHxWu1py0KBB2Lp1q9HRNd1pxyZNmrAUBRFVG2UKwk6fPo0TJ06gefPm5d0fIrKAktb+iomJMTv1V1wQpU8b9OnWHNQfXeO0IxFVV2UKwlq2bKmYViAi61bS2l/5+fnw9fVFTEyM4jNqtRpbtmwBYDyIMhXUaXl4eBhcUx+nHYmouilTEPbmm29ixowZeOONN9C6dWvY2dkpzrO6O5F1KmntL/1gSDcwy8jIwI4dO+T25oI6XQywiKimKVMQFhERAQB45plnFPlgTMwnsm7FJdabYyyIUqtdsHNnX2gr3rPSPRHRQ2UKwg4fPlze/SCiKsDU6sSyFkVNTAzDwy2HirDSPRFREf09Qkqka9eusLGxwYcffohZs2ahcePG6Nq1K65cuQJbW9vy7iMRVRJtYr0kFdX+00+sz8jIQFpaGjIzM4u9llrtgoSEcCNnWOmeiAgo40jY9u3bMXz4cAwbNgynTp1CXl4egKLk3DfeeAN79+4t104SUcXQlqXQXWhjbnWibokJc5txA6b2ggQ6dkzgKBgREcoYhL3++utYt24dRowYgc2bN8vHn3rqKbz++uvl1jkiqjj6ZSl06db+MrWy0dxKRsD01GZYWKL8niUniKgmK1MQlpSUhC5duhgcV6lUyM7OftQ+EVEl0A+ijAVbJV3ZaExxNcMGDRrEFZFEVKOVKQjz8fHBxYsXERgYqDj+008/oVGjRuXRLyKqRMaCreDgiyUqV6FPd3TL3NSmboFWIqKaqExB2AsvvIDJkyfjk08+gSRJSE1NRUJCAl5++WXMnTu3vPtIRBXIVG2w6OjtZSpXwcKrREQlU6YgbNasWdBoNOjevTvu3r2LLl26wMHBAS+//DImTpxY3n0kogpkqjYYIMpcroIBFhFR8cpUokKSJMyZMwdZWVk4e/YsfvnlF9y8eROLFi0q7/4RUQXTJtDrkiQN/P2vmS1XQUREj6ZMI2Fa9vb2aNmyZXn1hYgswFwCvbmcLiIiejSPFIQRUfVgLtjSLVehi+UliIgeDYMwohpKP4gyFWwNGjQIbm5uBp9l3hcR0aNhEEZUQ3EVIxGRZTEII6oCtNsHAUBqqg1SUmohKOgB/PyKkuIrKhhigEVEZDkMwogsTHf7IHMV6ovbq5GIiKxLmUpUEFH50Y6AmSqaqla7KNoREVH1wCCMqIowVTQ1K8vdQj0iIqKKxCCMqIowVTS1JBXqiYjI+jAII6oitEVTWaGeiKhmYGI+URXCCvVERDUHgzCiKsZU0VQiIqpeGIQRWYmMjAwALKBKRFRdMAgjsrCS7sG4Y8cO+WfWDCMisn4MwogsTHf7oIyMDEWwpVa7ICvLA+7umYopSv2aYboV943h6BkRUdXDIIyoBK5dAy5cAJo0ARo0KP/rGwuQzFXP105NAoBarcaWLVuK/Q6OnhERVS0MwohM0I4ubdrkhBkzVNBoJNjYCCxbpsazz96r0NElU9Xzg4MvQqXKVYyWGftsSUbPiIjIshiEERmh3c9RrXbBypWxEEICAGg0EqZPd8U//3wClSq3wkaXzFXPV6lyTQZa5kbPiIioamEQRmSEdtSouGCookaXtNXzdb9bWz3fVKBV3OgZERFVLayYT2SGpbYSMlU9H4DJTb659yQRkXWxmiCsX79+CAgIgKOjI3x9fTF8+HCkpqYq2mzduhVt27aFs7MzGjZsiLfeesvgOt9//z1CQkLg4OCAxo0bIy4uzqDNe++9h8DAQDg6OiIsLAzHjh1TnL9//z4mTJgADw8P1KlTB9HR0bh+/bqizZUrV9CnTx84OzujXr16mD59Oh48ePDoD4IqVWVvJZSdnS3/HBJyCrGxKzFyZBxiY1ciJOSU2UCLe08SEVkXqwnCunXrhq1btyIpKQnbt29HcnIyBg4cKJ/ft28fhg0bhvHjx+Ps2bN4//33sWLFCqxZs0Zuk5KSgj59+qBbt244ffo0YmNjMXbsWHz77bdymy1btmDq1KmYP38+Tp48iTZt2iAyMhI3btyQ20yZMgW7du3Ctm3bcOTIEaSmpmLAgAHy+cLCQvTp0wf5+fk4evQoNmzYgLi4OMybN6+CnxJVBGPBUEWRJMnYUfknc4EW954kIrIukhBCWLoTZbFz5070798feXl5sLOzw7PPPouCggJs27ZNbvPuu+9i2bJluHLlCiRJwsyZM7Fnzx6cPXtWbjNkyBBkZ2dj//79AICwsDA88cQTcvCm0Wjg7++PiRMnYtasWVCr1fDy8sKmTZvkIPD8+fNo0aIFEhIS0KFDB+zbtw99+/ZFamoqvL29AQDr1q3DzJkzcfPmzRIX58zJyYFKpYJarYarq2u5PDcqmbS0NKxfv77YduPGjYOvr2+FfK+p3K/iku+LpiYN954s774SEZFxJf37bTUjYbqysrKwceNGdOzYEXZ2dgCAvLw8ODo6Kto5OTnh2rVruHz5MgAgISEBERERijaRkZFISEgAUJSMfeLECUUbGxsbREREyG1OnDiBgoICRZvmzZsjICBAbpOQkIDWrVvLAZj2e3JycvDHH3+YvK+8vDzk5OQoXlQzmUqyV6tdih2ZU6lyERR02WAErKTBPxERVQ6rWh05c+ZMrFmzBnfv3kWHDh2we/du+VxkZCSmTJmCUaNGoVu3brh48SKWL18OoGh0ITAwEOnp6YrACAC8vb2Rk5ODe/fu4datWygsLDTa5vz58wCA9PR02Nvbw83NzaBNenq63MbYNbTnTFmyZAkWLlxYiidClqZbNFXXo9YQK25VpqlNvgcNGmTwu1ke/SEiovJn0SBs1qxZePPNN822OXfuHJo3bw4AmD59OsaMGYPLly9j4cKFGDFiBHbv3g1JkvDCCy8gOTkZffv2RUFBAVxdXTF58mQsWLAANjbWMeA3e/ZsTJ06VX6fk5MDf39/C/ao5irLfo76HqWGmLkSFQAwYMAAeHp6Kj7DQIuIyLpYNAibNm0aRo0aZbZNo0aN5J89PT3h6emJpk2bokWLFvD398cvv/yC8PBwSJKEN998E2+88QbS09Ph5eWFgwcPKq7h4+NjsIrx+vXrcHV1hZOTE2xtbWFra2u0jY+Pj3yN/Px8ZGdnK0Yc9Nvor6jUXlPbxhgHBwc4ODiYfR5UOXT3c9Snv7+jKY9SQ0ybZK+f+6Ud/fL09GR+FxGRlbNoEObl5QUvL68yfVajKVoBlpeXpzhua2uL+vXrAwC+/PJLhIeHy98RHh6OvXv3KtrHx8cjPDwcQNFIQmhoKA4ePIj+/fvL33Pw4EHExMQAAEJDQ2FnZ4eDBw8iOjoaAJCUlIQrV67I1wkPD8fixYtx48YN1KtXT/4eV1dXtGzZskz3S5WvpKNKpqrXP6qQkFMIDr5oNMmeiIisn1XkhCUmJuL48ePo1KkT6tati+TkZMydOxfBwcFy4JORkYGvvvoKTz/9NO7fv49PP/1ULiGhNX78eKxZswYzZszA6NGjcejQIWzduhV79uyR20ydOhUjR45E+/bt8eSTT2LlypW4c+cOnn/+eQCASqXCmDFjMHXqVLi7u8PV1RUTJ05EeHg4OnToAADo2bMnWrZsieHDh2PZsmVIT0/Hq6++igkTJnCkq5op722C9KdBTeV+McmeiMj6WUUQ5uzsjB07dmD+/Pm4c+cOfH190atXL7z66quKoGbDhg14+eWXIYRAeHg4vv/+ezz55JPy+aCgIOzZswdTpkzBqlWr0KBBA3z00UeIjIyU2wwePBg3b97EvHnzkJ6ejrZt22L//v2KRPsVK1bAxsYG0dHRyMvLQ2RkJN5//335vK2tLXbv3o2XXnoJ4eHhqF27NkaOHInXXnutgp8UVaaK2CbI3DSoFnO/iIiqB6utE1YTsE5Y1aSt5ZWSEogNG0YanB85Mg5BQZfN1uXKzMxkoEVEVE2V9O+3VYyEEVVFxa1gNCUzM1Oxk4OpnLJHWV1JRERVH4MwojIqbgWjKbojYOZyyh5ldSUREVV9DMKISkk3Kd7cCsbikucrIqeMiIisB4MwolIqr+T54qriExFR9cYgjKgMyiNXq6w5ZUREVD0wCCOrZ+mVhmX9/rLmlBERUfXAIIysin7Ao1arsWXLlmI/Vx4rDY0FW/rfX9qVjqyKT0RUczEIoypLP+jJzs7G1q1by3StR11pqF9WwpiyrnQ0VRWfiIiqNwZhVCWVJOipTIYjYMoRr9KsdCzplkPcmoiIqHpjEEZVTmZmJlJTU8v02YraTFuXsRGvunVvlXilI7cmIiIigEEYVTGPMgJW3ptp6/YpIyMDgOnaXmPGfFSqlY4MsIiIyKb4JkSVpzS5W2q1C1JSAqFWu5gMjtRql0fqjzYo3LFjBwDg6lV/oyNeBQX2iIraDUnSAABXOhIRUbE4EkZWSX/UKzw8oUIKnxrbYkifdsQrKOgyVzoSEVGJMQgjq6Cb6wXAYNTr6NHwCi18qj/S9pByxIsrHYmIqKQYhFGVV5JRL8AG4eE/IyEh3Gjh00ddaWhsiyEAGDjwK7Rqda7Yz3OlIxER6WMQRlWasVyvhIRwABropjRKkgZhYYkIC0tEmzbRaNXKEX5+TwB4olxWGpraYsjf/5qi3aBBg+Dm5qY4xpWORERkDIMwqtJMJcJ37Phw1MvWVuDNN3Pw7LNDKyzgKW6LoQEDBsDPz4/BFhERlRiDMKqyTp5sh507jSfCL1jgDh8fNTIz66JxYwkNGrgBcCv1dxS376NarZZ/NrfFkKenJwMwIiIqFQZhVKVoc6e005D6VVQe1v96Ch4edR/pu/RrkpWk0CsT74mIqLwwCKMqRVtN/vBhYMUKw0T4devUiI5+qlxGnYyVnyhroVcm3hMRUWkxCKMqx8PDAx06ADY2gEbz8LitLfCvf9VFec/6Fbfvo7Fke11MvCciorJgEEZVUoMGwPr1wIsvAoWFRQHYBx8UHS9vxspP6BZ6dXNzg6+vb/l/MRER1WgMwqjKGjMGiIwELl4EGjcufQBWXNJ9dnY2ANPlJ8qr0CsREZExDMKoSmvQoGyjX6XZCLy48hNEREQVgUEYVUv6I2DGVj7qHjNXfoKIiKgiMAijas/YykcARldDMvgiIqLKwiCMqjVjKx937uwLSYLJ1ZD6WH6CiIgqAoMwqtaMb7xtAyGUR3RXQw4YMACenp4AWH6CiIgqDoMwqtaMrXwENIqRMEC5GtLT05MlKYiIqMIZliQnqka0Kx8lqajqqyRp0K/fboNjXA1JRESVjSNhVO2ZWvnI1ZBERGRJDMKoWtJPpje28TY34yYiIktiEEbVknYjcN16YWq1Glu2bCn2s1wNSURElUESQn+dGFUVOTk5UKlUUKvVcHV1tXR3Hllx2whVxkrEqtAHIiKq3kr695sjYVQpSrqNUExMTIUGQQywiIioquDqSKoU5kafytKOiIjI2jEIIyIiIrIABmFEREREFsAgjIiIiMgCmJhPFqFWuyArywPu7pllrtWlu9IxNdUGKSm1EBT0AH5+RZXwudKRiIiqMgZhVOlOnmyHXbv6QggbecugkJBTpbqG7mpLc9er6NWWREREZcXpSKpUarWLHDABRZto79rVF2q1S6muox0BK+56XG1JRERVFYMwqhTaKvRZWR5ywKQlhA2ystwV7UqquOsRERFVVZyOpEqh3Ubo0qUH+PxzAY1Gks/Z2gpMnNgbgYG1Sj116O6eCUnSKAIxSdLA3T2r3PpORERUETgSRpXGw8MDoaHeWL9egq1t0TFbW+CDDySEhnqXKXdLpcpFVNRuSFJRMr42J4wbcxMRUVXHkTCqdGPGAJGRwMWLQOPGQIMGj3a9kJBTCA6+iKwsd7i7ZzEAIyIiq8AgjCyiQQPAyamoxERa2qOXmFCpchl8ERGRVWEQRhZR2hIT164BFy4ATZo8+sgZERFRVcCcMLKIkpaYSE1NxfLl2WjYUOCZZ4CGDQWWL8+GWq0u0feUdrUlERFRZeFIGFmUuRITKlUuPv00HitXxkKIotWUGo2E6dNd8c8/n0ClAgYNGgQ3Nzej12bFfCIiqsoYhJFFFVdiorggzc3NDb6+vpXaZyIiovLA6UiyqOJKTGiDNF2sA0ZERNUBR8LI4syVmNAGafqJ+1wJSURE1o5BGFUJ5kpMsA4YERFVRwzCyCqwDhgREVU3zAkji2DpCCIiquk4EkYWod3QW1svTF9GRgZ27NhRyb0iIiKqPAzCyGLM1fAq6UgZR9SIiMhaMQijKqm4kTKAxViJiMi6MQijKosBFhERVWdMzCciIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC7C6ICwvLw9t27aFJEk4ffq04tyZM2fQuXNnODo6wt/fH8uWLTP4/LZt29C8eXM4OjqidevW2Lt3r+K8EALz5s2Dr68vnJycEBERgQsXLijaZGVlYdiwYXB1dYWbmxvGjBmD27dvl7ovREREVHNZXRA2Y8YM+Pn5GRzPyclBz5490bBhQ5w4cQJvvfUWFixYgPXr18ttjh49iqFDh2LMmDE4deoU+vfvj/79++Ps2bNym2XLlmH16tVYt24dEhMTUbt2bURGRuL+/ftym2HDhuGPP/5AfHw8du/ejR9++AHjxo0rVV+qk2vXgMOHi/5JREREJSSsyN69e0Xz5s3FH3/8IQCIU6dOyefef/99UbduXZGXlycfmzlzpmjWrJn8ftCgQaJPnz6Ka4aFhYkXX3xRCCGERqMRPj4+4q233pLPZ2dnCwcHB/Hll18KIYT4888/BQBx/Phxuc2+ffuEJEnin3/+KXFfSkKtVgsAQq1Wl+pzlSEjI0OkpqaKt9++JWxsNAIQwsZGI95++5ZITU0VGRkZlu4iERGRRZT077fVjIRdv34dL7zwAj7//HM4OzsbnE9ISECXLl0U29hERkYiKSkJt27dkttEREQoPhcZGYmEhAQAQEpKCtLT0xVtVCoVwsLC5DYJCQlwc3ND+/bt5TYRERGwsbFBYmJiiftiTF5eHnJychSvqigzMxNr1qzBW299ienTXaHRSAAAjUbC9OmueOutL7FmzRpkZmZauKdERERVl1UEYUIIjBo1CuPHj1cEP7rS09Ph7e2tOKZ9n56ebraN7nndz5lqU69ePcX5WrVqwd3dvdjv0f0OY5YsWQKVSiW//P39TbatTPrTjdqthLKyPKAfxwthg6wsd0U7IiIiMmTRIGzWrFmQJMns6/z583j33XeRm5uL2bNnW7K7FW727NlQq9Xy6+rVq5buEj7+GGjYEHjmmaJ/fvwxkJ2dDQBwd8+EJGkU7SVJA3f3LAv0lIiIyLpYdO/IadOmYdSoUWbbNGrUCIcOHUJCQgIcHBwU59q3b49hw4Zhw4YN8PHxwfXr1xXnte99fHzkfxpro3tee8zX11fRpm3btnKbGzduKK7x4MEDZGVlFfs9ut9hjIODg8E9WkpmZiYuXXqAcePq6Uw3AuPGCUyevA8qFZCc3BhCPPyMJGkQFbUbKlWuhXpNRERkPSwahHl5ecHLy6vYdqtXr8brr78uv09NTUVkZCS2bNmCsLAwAEB4eDjmzJmDgoIC2NnZAQDi4+PRrFkz1K1bV25z8OBBxMbGyteKj49HeHg4ACAoKAg+Pj44ePCgHHTl5OQgMTERL730knyN7OxsnDhxAqGhoQCAQ4cOQaPRlKovVZk25yslJRAazUjFOY1Gkqcbd+3qC93BVCGA4OCLldlVIiIiq2UVOWEBAQFo1aqV/GratCkAIDg4GA0aNAAAPPvss7C3t8eYMWPwxx9/YMuWLVi1ahWmTp0qX2fy5MnYv38/li9fjvPnz2PBggX49ddfERMTAwCQJAmxsbF4/fXXsXPnTvz+++8YMWIE/Pz80L9/fwBAixYt0KtXL7zwwgs4duwYfv75Z8TExGDIkCFy6YyS9KUq0+ZymZtuNJYPBjzMByMiIiLzrCIIKwmVSoXvvvsOKSkpCA0NxbRp0zBv3jxF/a6OHTti06ZNWL9+Pdq0aYOvvvoK33zzDVq1aiW3mTFjBiZOnIhx48bhiSeewO3bt7F//344OjrKbTZu3IjmzZuje/fu+Ne//oVOnTopaoCVpC/WQKXKRVTUbjkQ051uZD4YERHRo5GE0M3qoaokJycHKpUKarUarq6ulfa9aWlpiqBSrXZBVpY73N2zFPleJ0+2w65dfSGEjRyghYScks+PGzdOkVtHRERUE5T077dFc8LIOqhUuUaT7UNCTiE4+KLRAA2Aok4aERERKTEIo0diKkAbPHgwPDw8LNAjIiIi61BtcsKoalGpVJbuAhERUZXGIIwqBKciiYiIzON0JBkoaQA1ePBgoyNe9vb2nIokIiIqBoMwMuDh4YGYmBizez8y0CIiIno0DMLIKAZYREREFYs5YUREREQWwCCMiIiIyAIYhBERERFZAIMwIiIiIgtgEEZERERkAQzCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsCK+TVEZmYmtyEiIiKqQhiE1QCZmZlYs2ZNse1iYmIYiBEREVUSTkfWAOZGwMrSjoiIiB4dgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjIiIisgAGYUREREQWwCCsBrC3t1e8V6tdkJISCLXaxWw7IiIiqjgs1loDeHh4ICYmBvn5+di0yQmvvaaCRiPBxkZg2TI1nn32HivmExERVTJJCCEs3QkyLicnByqVCmq1Gq6uro98vWvXgIYNAY3m4TFbW+DSJaBBg0e+PBEREaHkf785HVmDXLigDMAAoLAQuHjRMv0hIiKqyRiE1SBNmgA2ev/GbW2Bxo0t0x8iIqKajEFYDdKgAbB+fVHgBRT984MPOBVJRERkCUzMr2HGjAEiI4umIBs3ZgBGRERkKQzCaqAGDRh8ERERWRqnI4mIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjIiIisgDuHVmFCSEAADk5ORbuCREREZWU9u+29u+4KQzCqrDc3FwAgL+/v4V7QkRERKWVm5sLlUpl8rwkigvTyGI0Gg1SU1Ph4uICSZJK9JmcnBz4+/vj6tWrcHV1reAeVl18DkX4HPgMtPgcivA58BloVeRzEEIgNzcXfn5+sLExnfnFkbAqzMbGBg0aNCjTZ11dXWv0/7i0+ByK8DnwGWjxORThc+Az0Kqo52BuBEyLiflEREREFsAgjIiIiMgCGIRVMw4ODpg/fz4cHBws3RWL4nMowufAZ6DF51CEz4HPQKsqPAcm5hMRERFZAEfCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsAgzAqsXbsWjz/+uFxQLjw8HPv27ZPP379/HxMmTICHhwfq1KmD6OhoXL9+XXGNK1euoE+fPnB2dka9evUwffp0PHjwoLJvpdwsXboUkiQhNjZWPlZTnsOCBQsgSZLi1bx5c/l8TXkO//zzD5577jl4eHjAyckJrVu3xq+//iqfF0Jg3rx58PX1hZOTEyIiInDhwgXFNbKysjBs2DC4urrCzc0NY8aMwe3btyv7VsosMDDQ4HdBkiRMmDABQM35XSgsLMTcuXMRFBQEJycnBAcHY9GiRYp9+2rC70Nubi5iY2PRsGFDODk5oWPHjjh+/Lh8vjo+gx9++AFRUVHw8/ODJEn45ptvFOfL657PnDmDzp07w9HREf7+/li2bFn53ICgKm/nzp1iz5494q+//hJJSUnilVdeEXZ2duLs2bNCCCHGjx8v/P39xcGDB8Wvv/4qOnToIDp27Ch//sGDB6JVq1YiIiJCnDp1Suzdu1d4enqK2bNnW+qWHsmxY8dEYGCgePzxx8XkyZPl4zXlOcyfP1889thjIi0tTX7dvHlTPl8TnkNWVpZo2LChGDVqlEhMTBR///23+Pbbb8XFixflNkuXLhUqlUp888034rfffhP9+vUTQUFB4t69e3KbXr16iTZt2ohffvlF/Pjjj6Jx48Zi6NChlrilMrlx44bi9yA+Pl4AEIcPHxZC1IzfBSGEWLx4sfDw8BC7d+8WKSkpYtu2baJOnTpi1apVcpua8PswaNAg0bJlS3HkyBFx4cIFMX/+fOHq6iquXbsmhKiez2Dv3r1izpw5YseOHQKA+PrrrxXny+Oe1Wq18Pb2FsOGDRNnz54VX375pXBychIffPDBI/efQZiVqlu3rvjoo49Edna2sLOzE9u2bZPPnTt3TgAQCQkJQoiiX1IbGxuRnp4ut1m7dq1wdXUVeXl5ld73R5GbmyuaNGki4uPjRdeuXeUgrCY9h/nz54s2bdoYPVdTnsPMmTNFp06dTJ7XaDTCx8dHvPXWW/Kx7Oxs4eDgIL788kshhBB//vmnACCOHz8ut9m3b5+QJEn8888/Fdf5CjR58mQRHBwsNBpNjfldEEKIPn36iNGjRyuODRgwQAwbNkwIUTN+H+7evStsbW3F7t27FcdDQkLEnDlzasQz0A/Cyuue33//fVG3bl3F/yZmzpwpmjVr9sh95nSklSksLMTmzZtx584dhIeH48SJEygoKEBERITcpnnz5ggICEBCQgIAICEhAa1bt4a3t7fcJjIyEjk5Ofjjjz8q/R4exYQJE9CnTx/F/QKocc/hwoUL8PPzQ6NGjTBs2DBcuXIFQM15Djt37kT79u3xn//8B/Xq1UO7du3w4YcfyudTUlKQnp6ueA4qlQphYWGK5+Dm5ob27dvLbSIiImBjY4PExMTKu5lykp+fjy+++AKjR4+GJEk15ncBADp27IiDBw/ir7/+AgD89ttv+Omnn9C7d28ANeP34cGDBygsLISjo6PiuJOTE3766aca8Qz0ldc9JyQkoEuXLrC3t5fbREZGIikpCbdu3XqkPnIDbyvx+++/Izw8HPfv30edOnXw9ddfo2XLljh9+jTs7e3h5uamaO/t7Y309HQAQHp6uuL/ZLXnteesxebNm3Hy5ElFjoNWenp6jXkOYWFhiIuLQ7NmzZCWloaFCxeic+fOOHv2bI15Dn///TfWrl2LqVOn4pVXXsHx48cxadIk2NvbY+TIkfJ9GLtP3edQr149xflatWrB3d3dap6Drm+++QbZ2dkYNWoUgJr1v4lZs2YhJycHzZs3h62tLQoLC7F48WIMGzYMAGrE74OLiwvCw8OxaNEitGjRAt7e3vjyyy+RkJCAxo0b14hnoK+87jk9PR1BQUEG19Ceq1u3bpn7yCDMSjRr1gynT5+GWq3GV199hZEjR+LIkSOW7laluXr1KiZPnoz4+HiD/9KrabT/dQ8Ajz/+OMLCwtCwYUNs3boVTk5OFuxZ5dFoNGjfvj3eeOMNAEC7du1w9uxZrFu3DiNHjrRw7yzj448/Ru/eveHn52fprlS6rVu3YuPGjdi0aRMee+wxnD59GrGxsfDz86tRvw+ff/45Ro8ejfr168PW1hYhISEYOnQoTpw4YemukQmcjrQS9vb2aNy4MUJDQ7FkyRK0adMGq1atgo+PD/Lz85Gdna1of/36dfj4+AAAfHx8DFZEad9r21R1J06cwI0bNxASEoJatWqhVq1aOHLkCFavXo1atWrB29u7RjwHY9zc3NC0aVNcvHixxvw++Pr6omXLlopjLVq0kKdltfdh7D51n8ONGzcU5x88eICsrCyreQ5aly9fxoEDBzB27Fj5WE35XQCA6dOnY9asWRgyZAhat26N4cOHY8qUKViyZAmAmvP7EBwcjCNHjuD27du4evUqjh07hoKCAjRq1KjGPANd5XXPFfm/EwZhVkqj0SAvLw+hoaGws7PDwYMH5XNJSUm4cuUKwsPDAQDh4eH4/fffFb9o8fHxcHV1NfhDVlV1794dv//+O06fPi2/2rdvj2HDhsk/14TnYMzt27eRnJwMX1/fGvP78NRTTyEpKUlx7K+//kLDhg0BAEFBQfDx8VE8h5ycHCQmJiqeQ3Z2tmKU4NChQ9BoNAgLC6uEuyg/n376KerVq4c+ffrIx2rK7wIA3L17FzY2yj9ntra20Gg0AGre70Pt2rXh6+uLW7du4dtvv8W///3vGvcMgPL79x4eHo4ffvgBBQUFcpv4+Hg0a9bskaYiAbBEhTWYNWuWOHLkiEhJSRFnzpwRs2bNEpIkie+++04IUbQMPSAgQBw6dEj8+uuvIjw8XISHh8uf1y5D79mzpzh9+rTYv3+/8PLysrpl6Pp0V0cKUXOew7Rp08T3338vUlJSxM8//ywiIiKEp6enuHHjhhCiZjyHY8eOiVq1aonFixeLCxcuiI0bNwpnZ2fxxRdfyG2WLl0q3NzcxP/+9z9x5swZ8e9//9vo0vR27dqJxMRE8dNPP4kmTZpU6eX4xhQWFoqAgAAxc+ZMg3M14XdBCCFGjhwp6tevL5eo2LFjh/D09BQzZsyQ29SE34f9+/eLffv2ib///lt89913ok2bNiIsLEzk5+cLIarnM8jNzRWnTp0Sp06dEgDEO++8I06dOiUuX74shCife87Ozhbe3t5i+PDh4uzZs2Lz5s3C2dmZJSpqitGjR4uGDRsKe3t74eXlJbp37y4HYEIIce/ePfHf//5X1K1bVzg7O4v/9//+n0hLS1Nc49KlS6J3797CyclJeHp6imnTpomCgoLKvpVypR+E1ZTnMHjwYOHr6yvs7e1F/fr1xeDBgxX1sWrKc9i1a5do1aqVcHBwEM2bNxfr169XnNdoNGLu3LnC29tbODg4iO7du4ukpCRFm8zMTDF06FBRp04d4erqKp5//nmRm5tbmbfxyL799lsBwODehKg5vws5OTli8uTJIiAgQDg6OopGjRqJOXPmKEoK1ITfhy1btohGjRoJe3t74ePjIyZMmCCys7Pl89XxGRw+fFgAMHiNHDlSCFF+9/zbb7+JTp06CQcHB1G/fn2xdOnScum/JIROSWEiIiIiqhTMCSMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjomrl6aefRmxsrKW7UeEWLFiAtm3bWrobRPQIGIQREVUh+fn5lfp9Qgg8ePCgUr+TiIowCCOiamPUqFE4cuQIVq1aBUmSIEkSLl26hLNnz6J3796oU6cOvL29MXz4cGRkZMife/rppzFx4kTExsaibt268Pb2xocffog7d+7g+eefh4uLCxo3box9+/bJn/n+++8hSRL27NmDxx9/HI6OjujQoQPOnj2r6NNPP/2Ezp07w8nJCf7+/pg0aRLu3Lkjnw8MDMSiRYswYsQIuLq6Yty4cQCAmTNnomnTpnB2dkajRo0wd+5cFBQUAADi4uKwcOFC/Pbbb/J9xsXF4dKlS5AkCadPn5avn52dDUmS8P333yv6vW/fPoSGhsLBwQE//fQTNBoNlixZgqCgIDg5OaFNmzb46quvyvtfERHpYBBGRNXGqlWrEB4ejhdeeAFpaWlIS0uDi4sLnnnmGbRr1w6//vor9u/fj+vXr2PQoEGKz27YsAGenp44duwYJk6ciJdeegn/+c9/0LFjR5w8eRI9e/bE8OHDcffuXcXnpk+fjuXLl+P48ePw8vJCVFSUHCwlJyejV69eiI6OxpkzZ7Blyxb89NNPiImJUVzj7bffRps2bXDq1CnMnTsXAODi4oK4uDj8+eefWLVqFT788EOsWLECADB48GBMmzYNjz32mHyfgwcPLtWzmjVrFpYuXYpz587h8ccfx5IlS/DZZ59h3bp1+OOPPzBlyhQ899xzOHLkSKmuS0SlUC7bgBMRVRFdu3YVkydPlt8vWrRI9OzZU9Hm6tWrAoBISkqSP9OpUyf5/IMHD0Tt2rXF8OHD5WNpaWkCgEhISBBCCHH48GEBQGzevFluk5mZKZycnMSWLVuEEEKMGTNGjBs3TvHdP/74o7CxsRH37t0TQgjRsGFD0b9//2Lv66233hKhoaHy+/nz54s2bdoo2qSkpAgA4tSpU/KxW7duCQDi8OHDin5/8803cpv79+8LZ2dncfToUcX1xowZI4YOHVps34iobGpZMgAkIqpov/32Gw4fPow6deoYnEtOTkbTpk0BAI8//rh83NbWFh4eHmjdurV8zNvbGwBw48YNxTXCw8Pln93d3dGsWTOcO3dO/u4zZ85g48aNchshBDQaDVJSUtCiRQsAQPv27Q36tmXLFqxevRrJycm4ffs2Hjx4AFdX11Lfvym633nx4kXcvXsXPXr0ULTJz89Hu3btyu07iUiJQRgRVWu3b99GVFQU3nzzTYNzvr6+8s92dnaKc5IkKY5JkgQA0Gg0pfruF198EZMmTTI4FxAQIP9cu3ZtxbmEhAQMGzYMCxcuRGRkJFQqFTZv3ozly5eb/T4bm6IMEyGEfEw7NapP9ztv374NANizZw/q16+vaOfg4GD2O4mo7BiEEVG1Ym9vj8LCQvl9SEgItm/fjsDAQNSqVf7/l/fLL7/IAdWtW7fw119/ySNcISEh+PPPP9G4ceNSXfPo0aNo2LAh5syZIx+7fPmyoo3+fQKAl5cXACAtLU0ewdJN0jelZcuWcHBwwJUrV9C1a9dS9ZWIyo6J+URUrQQGBiIxMRGXLl1CRkYGJkyYgKysLAwdOhTHjx9HcnIyvv32Wzz//PMGQUxZvPbaazh48CDOnj2LUaNGwdPTE/379wdQtMLx6NGjiImJwenTp3HhwgX873//M0jM19ekSRNcuXIFmzdvRnJyMlavXo2vv/7a4D5TUlJw+vRpZGRkIC8vD05OTujQoYOccH/kyBG8+uqrxd6Di4sLXn75ZUyZMgUbNmxAcnIyTp48iXfffRcbNmwo87MhIvMYhBFRtfLyyy/D1tYWLVu2hJeXF/Lz8/Hzzz+jsLAQPXv2ROvWrREbGws3Nzd5+u5RLF26FJMnT0ZoaCjS09Oxa9cu2NvbAyjKMzty5Aj++usvdO7cGe3atcO8efPg5+dn9pr9+vXDlClTEBMTg7Zt2+Lo0aPyqkmt6Oho9OrVC926dYOXlxe+/PJLAMAnn3yCBw8eIDQ0FLGxsXj99ddLdB+LFi3C3LlzsWTJErRo0QK9evXCnj17EBQUVIanQkQlIQnd5AEiIiqR77//Ht26dcOtW7fg5uZm6e4QkRXiSBgRERGRBTAIIyIiIrIATkcSERERWQBHwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILOD/A1M3HSEaHErLAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2 Training Surrogates with PySMO\n", + "\n", + "IDAES builds a model class for each type of PySMO surrogate model. In this case, we will call and build the Polynomial Regression class. Regression settings can be directly passed as class arguments, as shown below. In this example, allowed basis terms span a 5th order polynomial, a variable product as well as a extra features are defined, and data is internally cross-validated using 10 iterations of 80/20 splits to ensure a robust surrogate fit. Note that PySMO uses cross-validation of training data to adjust model coefficients and ensure a more accurate fit, while we separate the validation dataset pre-training in order to visualize the surrogate fits.\n", + "\n", + "Finally, after training the model we save the results and model expressions to a folder which contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPs0lEQVR4nO3deVxU9f4/8NewigijLLIEAgJXr6ZeQTOy1NQCv2r508rylmuaBprZdcubaYtLqbllVtelvFreUuuqWVqZZZqVSupNSbyQG7gMOaAmIHN+f3BnYoAZZjtzttfz8eChzBxmPjMM57zO5/P+fI5OEAQBRERERBrgI3UDiIiIiLyFwYeIiIg0g8GHiIiINIPBh4iIiDSDwYeIiIg0g8GHiIiINIPBh4iIiDSDwYeIiIg0g8GHiIiINIPBh4hIhtauXQudTofCwkKpm0KkKgw+RBr1ww8/ICcnB23btkVwcDBatGiBhx56CL/88kudbXv06AGdTgedTgcfHx+EhoaiVatWeOyxx7Br1y6nnnfr1q3o3r07mjdvjsaNG6Nly5Z46KGH8Omnn3rqpdUxZ84cfPTRR3Vu37dvH2bNmoUrV66I9ty1zZo1y/Je6nQ6NG7cGG3atMHf//53lJaWeuQ5NmzYgMWLF3vksYjUhsGHSKPmz5+PTZs2oVevXliyZAnGjBmDr7/+GmlpaTh27Fid7ePi4rBu3Tq8++67ePXVV3Hfffdh3759uPfeezF48GBUVlY2+JwLFizAfffdB51Oh+nTp+O1117DoEGDcPLkSbz//vtivEwA9oPP7NmzvRp8zN544w2sW7cOixYtQuvWrfHyyy8jKysLnrh8IoMPkW1+UjeAiKQxadIkbNiwAQEBAZbbBg8ejHbt2mHevHn45z//abW9Xq/Ho48+anXbvHnzMGHCBKxYsQKJiYmYP3++zee7efMmXnzxRdxzzz3YuXNnnfsvXrzo5iuSj+vXr6Nx48Z2t3nggQcQEREBABg7diwGDRqEzZs347vvvkNGRoY3mkmkSezxIdKoO+64wyr0AEBqairatm2L48ePO/QYvr6+WLp0Kdq0aYPly5fDaDTa3Pby5csoLS1F165d672/efPmVt/fuHEDs2bNwp/+9Cc0atQIMTExGDhwIE6dOmXZZsGCBbjjjjsQHh6OoKAgpKen48MPP7R6HJ1Oh2vXruGdd96xDC8NHz4cs2bNwuTJkwEASUlJlvtq1tT885//RHp6OoKCghAWFoaHH34YZ86csXr8Hj164NZbb8XBgwfRrVs3NG7cGM8++6xD719NPXv2BAAUFBTY3W7FihVo27YtAgMDERsbi+zsbKseqx49emD79u349ddfLa8pMTHR6fYQqRV7fIjIQhAEXLhwAW3btnX4Z3x9ffHII4/gueeew969e9G3b996t2vevDmCgoKwdetWjB8/HmFhYTYfs6qqCv369cMXX3yBhx9+GE899RTKysqwa9cuHDt2DMnJyQCAJUuW4L777sNf//pXVFRU4P3338eDDz6Ibdu2Wdqxbt06PP7447jtttswZswYAEBycjKCg4Pxyy+/4L333sNrr71m6X2JjIwEALz88st47rnn8NBDD+Hxxx/HpUuXsGzZMnTr1g2HDx9G06ZNLe01GAzo06cPHn74YTz66KOIiopy+P0zMwe68PBwm9vMmjULs2fPRu/evTFu3Djk5eXhjTfewA8//IBvv/0W/v7+mDFjBoxGI86ePYvXXnsNANCkSROn20OkWgIR0f+sW7dOACCsWrXK6vbu3bsLbdu2tflzW7ZsEQAIS5Yssfv4M2fOFAAIwcHBQp8+fYSXX35ZOHjwYJ3tVq9eLQAQFi1aVOc+k8lk+f/169et7quoqBBuvfVWoWfPnla3BwcHC8OGDavzWK+++qoAQCgoKLC6vbCwUPD19RVefvllq9uPHj0q+Pn5Wd3evXt3AYCwcuVKm6+7pueff14AIOTl5QmXLl0SCgoKhDfffFMIDAwUoqKihGvXrgmCIAhr1qyxatvFixeFgIAA4d577xWqqqosj7d8+XIBgLB69WrLbX379hUSEhIcag+R1nCoi4gAACdOnEB2djYyMjIwbNgwp37W3KNQVlZmd7vZs2djw4YN6NixIz777DPMmDED6enpSEtLsxpe27RpEyIiIjB+/Pg6j6HT6Sz/DwoKsvz/t99+g9FoxF133YVDhw451f7aNm/eDJPJhIceegiXL1+2fEVHRyM1NRW7d++22j4wMBAjRoxw6jlatWqFyMhIJCUl4YknnkBKSgq2b99uszbo888/R0VFBSZOnAgfnz923aNHj0ZoaCi2b9/u/Asl0iAOdRERiouL0bdvX+j1enz44Yfw9fV16uevXr0KAAgJCWlw20ceeQSPPPIISktLceDAAaxduxYbNmxA//79cezYMTRq1AinTp1Cq1at4Odnfxe1bds2vPTSS8jNzUV5ebnl9prhyBUnT56EIAhITU2t935/f3+r72+55ZY69VIN2bRpE0JDQ+Hv74+4uDjL8J0tv/76K4DqwFRTQEAAWrZsabmfiOxj8CHSOKPRiD59+uDKlSv45ptvEBsb6/RjmKe/p6SkOPwzoaGhuOeee3DPPffA398f77zzDg4cOIDu3bs79PPffPMN7rvvPnTr1g0rVqxATEwM/P39sWbNGmzYsMHp11CTyWSCTqfDjh076g2BtWtmavY8Oapbt26WuiIi8h4GHyINu3HjBvr3749ffvkFn3/+Odq0aeP0Y1RVVWHDhg1o3Lgx7rzzTpfa0alTJ7zzzjsoKioCUF18fODAAVRWVtbpXTHbtGkTGjVqhM8++wyBgYGW29esWVNnW1s9QLZuT05OhiAISEpKwp/+9CdnX44oEhISAAB5eXlo2bKl5faKigoUFBSgd+/eltvc7fEiUjPW+BBpVFVVFQYPHoz9+/fjgw8+cGntmKqqKkyYMAHHjx/HhAkTEBoaanPb69evY//+/fXet2PHDgB/DOMMGjQIly9fxvLly+tsK/xvgT9fX1/odDpUVVVZ7issLKx3ocLg4OB6FykMDg4GgDr3DRw4EL6+vpg9e3adBQUFQYDBYKj/RYqod+/eCAgIwNKlS63atGrVKhiNRqvZdMHBwXaXFiDSMvb4EGnUM888g3//+9/o378/SkpK6ixYWHuxQqPRaNnm+vXryM/Px+bNm3Hq1Ck8/PDDePHFF+0+3/Xr13HHHXfg9ttvR1ZWFuLj43HlyhV89NFH+OabbzBgwAB07NgRADB06FC8++67mDRpEr7//nvcdddduHbtGj7//HM8+eSTuP/++9G3b18sWrQIWVlZGDJkCC5evIjXX38dKSkpOHLkiNVzp6en4/PPP8eiRYsQGxuLpKQkdOnSBenp6QCAGTNm4OGHH4a/vz/69++P5ORkvPTSS5g+fToKCwsxYMAAhISEoKCgAFu2bMGYMWPwt7/9za3331mRkZGYPn06Zs+ejaysLNx3333Iy8vDihUr0LlzZ6vfV3p6OjZu3IhJkyahc+fOaNKkCfr37+/V9hLJlpRTyohIOuZp2La+7G3bpEkTITU1VXj00UeFnTt3OvR8lZWVwttvvy0MGDBASEhIEAIDA4XGjRsLHTt2FF599VWhvLzcavvr168LM2bMEJKSkgR/f38hOjpaeOCBB4RTp05Ztlm1apWQmpoqBAYGCq1btxbWrFljmS5e04kTJ4Ru3boJQUFBAgCrqe0vvviicMsttwg+Pj51prZv2rRJuPPOO4Xg4GAhODhYaN26tZCdnS3k5eVZvTf2pvrXZm7fpUuX7G5Xezq72fLly4XWrVsL/v7+QlRUlDBu3Djht99+s9rm6tWrwpAhQ4SmTZsKADi1nagGnSB44MIwRERERArAGh8iIiLSDAYfIiIi0gwGHyIiItIMBh8iIiLSDAYfIiIi0gzFBJ+5c+eic+fOCAkJQfPmzTFgwADk5eVZbXPjxg1kZ2cjPDwcTZo0waBBg3DhwgWJWkxERERyo5jp7FlZWXj44YfRuXNn3Lx5E88++yyOHTuGn3/+2bL66rhx47B9+3asXbsWer0eOTk58PHxwbfffuvw85hMJpw/fx4hISFc9p2IiEghBEFAWVkZYmNj4eNjp19H0lWE3HDx4kUBgLBnzx5BEAThypUrgr+/v/DBBx9Ytjl+/LgAQNi/f7/Dj3vmzBm7i7rxi1/84he/+MUv+X6dOXPG7nFesZesMF+HJiwsDABw8OBBVFZWWl2or3Xr1mjRogX279+P22+/vd7HKS8vR3l5ueV74X8dYGfOnLF73SEiIiKSj9LSUsTHxyMkJMTudooMPiaTCRMnTkTXrl1x6623AgCKi4sREBCApk2bWm0bFRWF4uJim481d+5czJ49u87toaGhDD5EREQK01CZimKKm2vKzs7GsWPH8P7777v9WNOnT4fRaLR8nTlzxgMtJCIiIjlSXI9PTk4Otm3bhq+//hpxcXGW26Ojo1FRUYErV65Y9fpcuHAB0dHRNh8vMDAQgYGBYjaZiIiIZEIxPT6CICAnJwdbtmzBl19+iaSkJKv709PT4e/vjy+++MJyW15eHk6fPo2MjAxvN5eIiIhkSDE9PtnZ2diwYQM+/vhjhISEWOp29Ho9goKCoNfrMWrUKEyaNAlhYWEIDQ3F+PHjkZGRYbOwmYiIiLRFMev42CpWWrNmDYYPHw6gegHDZ555Bu+99x7Ky8uRmZmJFStW2B3qqq20tBR6vR5Go5HFzURERArh6PFbMcHHWxh8iIiIlMfR47dianyIiIiI3MXgQ0RERJrB4ENERESaweBDREREmqGY6exE7jIYDKioqLB5f0BAAMLDw73YIiIi8jYGH9IEg8GA5cuXW743GkNQUhKOsDAD9Poyy+05OTkMP0REKsbgQ5pQs6fn0KGO2Lq1HwTBBzqdCf37b0Na2uE62xERkfow+IiIQyvyYzSGWEIPAAiCD7Zu7Yfk5Hyrnh8iIlInBh+R1B5asYVDK95VUhJuCT1mguCDkpIwBh8iIg3grC6RODpkwqEV7woLM0CnM1ndptOZEBZWIlGLiIjImxh8SFP0+jL077/NEn7MNT7s7SEi0gYOdZHmpKUdRnJyPkpKwhAWVsLQQ0SkIQw+pEl6fRkDDxGRBnGoy0uMxhAUFCTCaAyRuimaFBAQ4NHtiIhImdjj4wX21o0h57myTEB4eDhycnK4vIBIuHQDESkFg4/IuG6MZ7mzTAAPvOLgqthEpCQMPiIxD5k0tG4Mh1acw2UC5IerYhORkjD4iMQ8tFJYeBPr1gkwmXSW+3x9BYwf3weJiX48A3aTrd4F8j72bhKREjD4iCg8PBzh4cBbbwFPPAFUVQG+vsCbb+qQnh4ldfMUz1u1U1qrX3H19XJVbCJSAgYfLxg1CsjMBPLzgZQUIC5O6hYpn7d6F7R26RF3Xq95Veya4YerYhOR3DD4eElcHAOPJ3mrd0HpNUXO9t6483rNq2LX7oVjbw8RyQmDDymSVL0LSqop8kRvlbOvl6tiE5HcMfiQIknRu6C09Zjc7a1y9fXaWhX78uXLNn9GbXVSRCRfDD6kKDWn/9vrXfD0MgFqmLHkTO+NM6/X0fd68+bNdu9XS52UXHmjSF9rEwFImRh8yGlS7txqrsBsNBpRWVlZZxs/Pz9UVFTAYDB4rB1Kn7HkbO+NM6+3oVWxL1++3GDoAeRbJ6UG3ijS50KWpBQMPuQUOcxyCg8Ph8FgwMaNG73WDiXPWHKlt8rZ1+vMe6ykOim1qB0qbf0O3AmfXMiSlILBh5wil1lO3tiR16TkGUuu9FaJ9XqVVielRmL/DtQwLEzqxuBDbpHD2buYO3KpaopscWWY0ZneGzFfLw+I0vPG70Dpw8Kkfgw+5DI5nL2LvSOX01XdXR1mdKb3RszXywOiY8SsofPG70DJw8KkDQw+KiBFsbFczt69sSOXSyGms8OMrvbeiPV6eUBsmNg1dN74HSh5WJi0gcFH4aQqNpbL2TsPprbJqbcK4AHREWLX0HnrdyDXhSw53Z4ABh/Fk6rYWC6BQ8sHU0fqq9zZiXvqICG3OiklEaOGzluhxNZCllKRw4xUkgcGH5URq9jYfBA0r74rp8Ah17NLMYldX+XJg4Tcep6UwpO/49qh0lYocSd8OvqzUgVcucxIJekx+KiIWAdDWwdBKc/evbEjlytv1Fd5+iDBUOMcT/+OvRE+lRZw5TAjlaTB4KMSYh4M7e3IagaOgQMHIiIiwis7N6XtZD1JivoqHiS8S4zfsTf+FpTy9yaHGalKoNaaKAYflfDmwdDWQTAiIgIxMTEefS57lPgH5wnerq/iQcL75FJDp0ZymZHqSWIEFDVfgoTBRyW8taPkQVA65mG7huqrPDm8p8aDhBLIqYZOap4+qMtlRqqniFW0reZLkDD4qIQ3dpQ8CEqr9vDezJmXUFjoh8TEm4iN7Qygs8e7ntV2kJA7zoCzJsZBXW29aWIXbatxv8/go3De3FHyIPgHqca+az5mTAyQnu7xp7CitoOE3Gm5dq0+YhzU1d6b5ul6PDXu9xl8FM6bO0oeBKtpaT0QtR8k5Ejpnxm50kJvmhilCGrc7zP4qABX3vUub18ZXgpaOEiojVpn4NTkTm+G2nvTxBqSUuN+n8GHGsSDoG1qLfZW+0FCbbTQC+mJvzWlvnZHiDkkpbZFYhl8qEE8CNZPjUV/NWnt96lkau+FVPvfmieIPSQlt0uQuIPBhxzCg2Bdaiz6I+VTYy8k/9Ya5ukhKblfgsQdDD5ELlJj0R8pm1p7Rvi3Vj+DwQCj0Wj53pOlCGru6WfwIXKRGov+SNnU1jMixaKdSmGrrqv2kNRDDz2E5s2buxRQlBhqHMHgQ+QGtRX9kbKprWdEikU7lcLReq2mTZtq8v2xh8GHyEnuXBleC1OOSTpq7IX09qKdpH4MPiQLSgoEro59a2HKMUmPvZDa5OkVm9WMwYckp8RA4Eo71D7lmKTjTi8kKZ8aZ/KJicGHPM7Z3hstBgLuqMiT1DwDh+xT60w+MTH4kEe523ujhUDAHRWJgaFGm9Q2k88bfBrehMhx9fXeFBQkwmgMsbudedv6AkHtn1U6ezsqIiJnmGfy1aTkmXzewB4fEo2zvTdaOXNR25RjIvI+rnHkOgYfmVDSrCZHuDKco5VAoMYpx0TkXa6ucaS2Y40rGHxkQImzmhriSu+N1IHAmzsETjkmUjY5BAhn1zhS47HGFQw+MuDobCUlzWpytfdGqkDgjR0CpxwTqYNSA4QWZ9DWh8GHROFM740cAoE3dgicckxaJ4deEk9QQ4DQwgxaWxh8ZEgtK3A62nsjt0Ag5g5BCTt1IjHU7iWxtZ+TWy9JQ5QYILS+pAaDj8wo8Y+oJld7b+Syo9P6DoFILDVPbOzt5+TcS1Kbt/cXnuox08oMWlsYfGREDQddufXeOEvrOwStceZAUnPb8+d9UFDgh6Skm4iNNdXZlmxTw37OzJv7C0/WFWllBq0tDD4yopaDrpx3/rYOdJcvXwbAHYJceKMWxJmhFwCWbe31VihtmEYKatnPAd7dX3iyrkjqGbRSY/CRER50xeXIGZPWdwhy4K1aEFeGXhrqrVDSMI1UvLWf80Z4lmp/4YmSCC0vqcHgIwNcgdM7HD1j0vIOQQ68XQvizNCLmnorpOKNsODNQmpv7y/cGSqUwwxaOWDwkQFXV+Ak1zV0xqTVHYKceKsWxJkww15ZzxA7LIgdnqUMEO6Eb6XXYHoKg49MOLsCJ7muoQPqwIEDERERUefntLBDkBNv9a44E2Y4FOo5tsKCJ4kVnqUMEO6Gb+7DGHxIgxo6oEZERCAmJkai1pGZt3pXnA0zHAp1jaO9H57sJREzPEsVIBi+3afK4PP666/j1VdfRXFxMTp06IBly5bhtttuk7pZJBMcrlAGb+7gnQ0z3uitUBspeknU+rfO8O0e1QWfjRs3YtKkSVi5ciW6dOmCxYsXIzMzE3l5eWjevLnUzbNJLUu5KwHPmJRDrB28wWCwLGFgxjAjPm/vw9T0t87CZM9RXfBZtGgRRo8ejREjRgAAVq5cie3bt2P16tWYNm2axK2rn1IveOcoOYY6njEph6cDiaMzfsycOZDwoCM/Svlbd2Q/ycJkz1BV8KmoqMDBgwcxffp0y20+Pj7o3bs39u/fX+/PlJeXo7y83PJ9aWmp6O2sTY1XZzeTU6jjGZMyiF0L4uiMn4EDByI2NtbyueRBR7nk3pvnzPR71h+6T1XB5/Lly6iqqkJUVJTV7VFRUThx4kS9PzN37lzMnj3bG81zmFouUgrI6yrGnMqpDN76PTU04yciIsLqOfi5UA4pCqndocbrmMmZqoKPK6ZPn45JkyZZvi8tLUV8fLxk7VH6RUrtkcNr48FLGbzxe+JihOql1JMcNV3HTM5UFXwiIiLg6+uLCxcuWN1+4cIFREdH1/szgYGBCAwM9EbzGqTmD72aXxspk1pn/FA1uYUaRzCMe4dPw5soR0BAANLT0/HFF19YbjOZTPjiiy+QkZEhYcscY+9Dr3Rqfm2kTOYZPzpd9dXVlTzjh9TBHMZrYhj3PFX1+ADApEmTMGzYMHTq1Am33XYbFi9ejGvXrllmecmZms9A1fzaSLmUMuNHa2rOcDp/3gcFBX5ISrqJ2NjqUCDHYSpPUNP0ezlTXfAZPHgwLl26hJkzZ6K4uBh/+ctf8Omnn9YpeJYjNX/o1fzaSNnkPuNHa2rOcLJXF6jU5T0awjAuPtUFH6D6DyInJ0fqZjis5swCex96ucxAcBX/oEkOlDbjR2vMPT0N1QWqeYYTw7i4VBl8lEapMxAcwbVzSG7U/PemJloq9GUY9y4GH5lQ606WBxmSI37e5E9LdYHcT3oXgw+Jjn+sROQsrdUFcj/pPQw+REQkS6wLJDEw+JDL5HjxUSJSFxb6yosalhpg8CGXyOnio0REJD61LDXA4EMukdPFR4nIu8Ts7VXLDCc19IzUppalBhh8yG1yuPgoEXlH7d5eWyc9rp71q2GGk1p6RmxR+lIDDD7kFl58lEhbagYSewd1d876lRgGalJLz4gtSl9qgMGH3KL05E/qxeJ7cfGkp2Fq3T8qfakBBh9yi9KTP6kzILD4XnxqPah7kpr3j0peaoDBh9yi9OSvdWoNCCy+F19DB/UrV64gJiZGqubJgtr3j0pdaoDBh9ym5OSvdY4e+JUcEFh8L476Duq9e39u+fv/17/+pbjALAbuH+WHwYdcwouPqpOtnhGlYh2KuNLSDuP33xth167eEAQffP55bwQF3fBIgbOr5DiNXKk9I7WpZakBBh9yiRqmnJI1JfeM1K5Tunz5MgDWoYjNaAzB55/3BiCPYKn2aeTO8nT9nlr2+ww+5DK5f7jJcUruGbFXp6Tm4lKp1Dybl1uwlMs0cjn0jIi13pIa9vsMPkQkuwOYMxoqZFZzcakUwsPDMXjwYGzcuFG2wVLqz7Mceka8sd6SUjH4EJFsD2DOsrWDZ3GpZ+n1+v/963yw9MbyCWJ+nh1tv1x6RpTcmysWBh8iUkXPSEM7eBbfi8OZYCn25S7MxPo8e6v9niR175ccMfgQaVjNA7+9A5gSAkJDO/iBAwciIiLCcp8SijCVwtFZS94cfhGjp0+Jw0dq6c31JAYfIg2TQy2CpzS0g4+IiND8gnqe4m7xrreGX8SaRq6k4SM19OZ6GoMPkcYpIdQ4gjt473E3MCt9+EVp7bfX+2Ve+sFMKSc67mDwISLVYCGz97hzcBRr+MVb08iVOHxUX++X0RiChQsPybpGSQwMPkSkaFxFXHnE6p3z1tCtEnoXG/q8K6VGSQwMPkSkaGqqU9ISsXrnvPV7lnvvYn1/F5cvX8bmzZsVVaMkBgYfIlI8hhrXeWNdHVuUfg0rubdfrTVW7mLwISLSKHuX+6jJUzUfcriUgzuU3n4zJdYoeRKDDxGRRjV0uQ9b27lK6cOSSm+/mRJqlMTE4ENERHaLXT1J7qGgIUpvv5nca5TE5NPwJkREpGa2il2NxhCJW0Zi0uvLkJT0q6ZCD8DgQ0SkefaKXUk91FKj5C4OdZFqSTlbhUhJtF7sqhVqqVFyF4MPqZISr6JMJBWtF7tqCfd3DD6kUkq8ijKRlLRc7ErawhofUjUWbRLZVt/lPuordlV7zQdpC3t8SNW0vkKpt7CeSpnEqvng54HkjMGHVI1Fm+Lz9uq/5Fme/p3w80Byx6EuUjVz0aZOZwIAFm2KwNE6KdZTaQM/DyR37PEh1WPRpnfZmkFH2sTPA8kNgw9pgtyvoqwW3rrsASkDPw8kRxzqIlXiCqXexxl0VBM/DyRX7PEhVeIKpd7HGXRUEz8PJFcMPqRaDDXexRl0VBM/DyRXHOoiIo/gDDqqiZ8Hkiv2+JDX1Vzc7Px5HxQU+CEp6SZiY6t3kByCUpaadVL2ZtCxnkob+HkgudMJgiBI3Qg5KS0thV6vh9FoRGhoqNTNUZ2ai5vZm/HBxc2UhSv1Uk38PJAUHD1+s8eHvMq8M7Q14yM5OR96fRkXN1MYHsSoJn4eSM4YfEgSnPFBYmKPAxHZwuBDkuCMD+WSe6jgtaKIyB4GH5KEecZH7Rof9vbImxJCBa8VRUT2MPiQZHgNLeVRYqjgtaKIqCYGH5IUr6GlbHIPFbxWFBHVxuBDRC6Re6hoaOYgEWkTV24mr+LFQ9VBCRegtDdzkIi0iz0+5FViXTxU7jON1EYuyxHU93u/fPkyAM4cJKL6MfiQ13k6gNSeaWSr7oTTlz1HDqGioRlmnDlIRPVh8CHFq3nGb6/uRE4zjdwldQ+XHEKFI79PXiuKiGpj8CHV0Eoxq5Rr6cj5ApS2evpGjLgHERERVtty6JNIuxh8SDXkUncitto9HbYO+GL0cIlVo+Uuez19ERERiImJ8Wp7iEi+GHxINeRQd+JtUkwpl1tPiVZ6+ojIMzidnVTDXHei05kAQPXFrEqYUu4NnLZORM5gjw+pipYug6GVob2GaLGnj4hcxx4fUh29vgxJSb+q/uBvPuDXpMUDvtZ6+ojIPezxIcXT6mrQcphSLiU5zzAjIvli8CHFk+tMI2/Q0tBebVr+vROR6xh8SBW0dHCr3YNh6wr3Wujp0NLvnYg8g8GHSGHY00GeIPXq30RSUUTwKSwsxIsvvogvv/wSxcXFiI2NxaOPPooZM2ZYndUeOXIE2dnZ+OGHHxAZGYnx48djypQpErZcW86eBU6eBFJTgbg4qVujbjwgkTukXP2bSGqKCD4nTpyAyWTCm2++iZSUFBw7dgyjR4/GtWvXsGDBAgBAaWkp7r33XvTu3RsrV67E0aNHMXLkSDRt2hRjxoyR+BWol/msccOGIEyZoofJpIOPj4BXXjFiyJDfedZIJEOOruqtpuvbEZkpIvhkZWUhKyvL8n3Lli2Rl5eHN954wxJ81q9fj4qKCqxevRoBAQFo27YtcnNzsWjRIgYfkZjPGo3GECxePBGCoAMAmEw6TJ4cinPnVkOvL+NZI5HM2brsCZEaORx8SktLHX7Q0NBQlxrjDKPRiLCwP1Zm3b9/P7p162Y19JWZmYn58+fjt99+Q7Nmzep9nPLycpSXl1u+d+Z1ukMNw0Lms8GGFtLjWSORfElx2RM1YI2UcjkcfJo2bQqdTmd3G0EQoNPpUFVV5XbD7MnPz8eyZcssvT0AUFxcjKSkJKvtoqKiLPfZCj5z587F7NmzxWtsPVatAsaMAUwmwMcHeOstYNQorzbBo7hyLpEy8TpnrmGNlLI5HHx2797t8SefNm0a5s+fb3eb48ePo3Xr1pbvz507h6ysLDz44IMYPXq0222YPn06Jk2aZPm+tLQU8fHxbj9ufQwGAwoLb2LMmOYwmczDQsATTwj4y18uIjHRT5F/JFpfSI9IqXjZE9ewRkrZHA4+3bt39/iTP/PMMxg+fLjdbVq2bGn5//nz53H33XfjjjvuwFtvvWW1XXR0NC5cuGB1m/n76Ohom48fGBiIwMBAJ1vuPPMZQkFBIkymYVb3VVXpsGzZDiQl/arYMwQtL6RHtnE4QN7YWyuuy5cv17lN7p95LfzNulzcfOXKFaxatQrHjx8HALRt2xYjR46EXq93+DEiIyMRGRnp0Lbnzp3D3XffjfT0dKxZswY+PtZnKRkZGZgxYwYqKyvh7+8PANi1axdatWplc5jLm8wfpIZ2NEo+Q7C1kB5pE4cD5I+9tZ5hqzh88+bN9W4v18+8Vv5mXQo+P/74IzIzMxEUFITbbrsNALBo0SK8/PLL2LlzJ9LS0jzayHPnzqFHjx5ISEjAggULcOnSJct95t6cIUOGYPbs2Rg1ahSmTp2KY8eOYcmSJXjttdc82hZ3cUdDWsHhAPnidc48x5XicLl+5rXyN+tS8Hn66adx33334e2334afX/VD3Lx5E48//jgmTpyIr7/+2qON3LVrF/Lz85Gfn4+4WlOgBEEAAOj1euzcuRPZ2dlIT09HREQEZs6cKcup7BwWIi3ilGn54OrfnsHicGVyucenZugBAD8/P0yZMgWdOnXyWOPMhg8f3mAtEAC0b98e33zzjcefXwxqGBbS6lXRyXlKnDKt9loHJbddLhoqDld62Fd6+21xKfiEhobi9OnTVrOtAODMmTMICQnxSMNI/njWSI5Q4lmxVmodyD32ajaVGPZrUnr77XEp+AwePBijRo3CggULcMcddwAAvv32W0yePBmPPPKIRxtI8sadPjVEiVOma4d5W2e+Sq91oGrO9u6Ze7Ft1WwCUFzYr0mJJyvOcCn4LFiwADqdDkOHDsXNmzcBAP7+/hg3bhzmzZvn0QYSkbIpfcq0ms98ybXevdq93TNnXkJhoR9CQy9i377DKChIVFzYr0mJJyvO8Gl4k7oCAgKwZMkS/Pbbb8jNzUVubi5KSkrw2muveWVNHCViPQxplfmsWKczAYCiZjLaOvM1GjmkrxauzmQKDw9HTEwMYmJikJ4ehUGDwnHrrU0B/BH2a6oZ9o1Go/sNF1FD7Vc6ty5S2rhxY7Rr185TbVE11sOQ1qhhyrTaz3zJsxoaAjN/ZjZu3CjL+jBH2y/nv1lHuBR8bty4gWXLlmH37t24ePEiTCbrZHjo0CGPNE5t5PYhJxKTGsK+0ofpyHnuzGQKDw/HQw89hH/9618NLlsix/owW0N4iYk3ERvbGUBn2f/NOsKl4DNq1Cjs3LkTDzzwAG677bYGL15KRNqk9B0kFxzVFk/UczVt2tTyfyUuW1LzbzYmBkhPl7AxInEp+Gzbtg2ffPIJunbt6un2EBHJChcc1QaxZjKpdS0cJXMp+Nxyyy1cr4eIVKt2DYOtM3el1zrQH8So5+KMQHlyKfgsXLgQU6dOxcqVK5GQkODpNhERSUoN9UnkHE/Xc6l9LRwlcyn4dOrUCTdu3EDLli3RuHFjy9XQzUpKWPhHRMrGUKMNYs1k4oxA+XIp+DzyyCM4d+4c5syZg6ioKBY3ExGRIok1k4kzAuXLpeCzb98+7N+/Hx06dPB0e4iIiLzKkzOZtLIWjpK5FHxat26N33//3dNtISIiUjStrIWjZC4Fn3nz5uGZZ57Byy+/jHbt2tWp8QkNDfVI44hImZy96CORmmhhLRwl0wmCIDj7Qz4+1WOWtWt7BEGATqdDVVWVZ1ongdLSUuj1ehiNRgY4Ihe4ctFHIiJ3OXr8dqnHZ/fu3S43jIjUrXZPj60F3OS4ZD8RqZ9Lwad79+4Obffkk0/ihRdeQEREhCtPQ0QKxwXciEhufBrexHX//Oc/UVpaKuZTEJFM2VrAzWjkqu9EJB1Rg48L5UNEpBL2FnAjIpKKqMGHiLTLvIBbTVzAjYikxuBDRKIwL+BmDj+1F3AjIpKCS8XNRESOSEs7jOTkfJSUhCEsrIShh4gkx+BDRB5Veyl+vb6s3sDDJfuJSApOB5+bN29izpw5GDlyJOLi4uxu++ijj3IRQCIXKHnl49pL9tdHzu0nInVzaeXmkJAQHD16FImJiSI0SVpcuZmkxpWPiYicJ+rKzT179sSePXtUGXzUTsk9CVrBlY+JiMTjUvDp06cPpk2bhqNHjyI9PR3BwcFW9993330eaRzZ52yIYU+C8nDlYyIiz3Ip+Dz55JMAgEWLFtW5T+kXKVUKV0KMoz0EzvYksBdJHLZWPk5OzufsKCIiF7kUfEwmU8MbkajECjHOYi+SeOytfMzgQ1rCkyvyJJeCz7vvvovBgwcjMDDQ6vaKigq8//77GDp0qEcaR+67fPlyvf/3FLkEMDUyr3xcM/xw5WPSGp5ckae5FHxGjBiBrKwsNG/e3Or2srIyjBgxgsFHRjZv3ix1E8hF5pWPa9f4sLeHtITF/uRpLgUfQRCg0+nq3H727Fno9Xq3G0VE1bjyMdEfWOzvOA4P2uZU8OnYsSN0Oh10Oh169eoFP78/fryqqgoFBQXIysryeCNJHLbOnOT2mFrDlY9Jy2ofsM1D9Cz2dxyHB+1zKvgMGDAAAJCbm4vMzEw0adLEcl9AQAASExMxaNAgjzaQHONs4BDjzIlnY57BlY9Jq+wdsFns7zgOD9rnVPB5/vnnAQCJiYkYPHgwGjVqJEqjyDnOBo6Gzpxc6Ung2ZhnMdSQFtk7YLPY3zU8Ia3LpRqfYcOGAaj+kF68eLHO9PYWLVq43zKyyxxOXAkcts6cunYdhh49XDvo8myMiDypvgM2i/2dwxPS+rkUfE6ePImRI0di3759Vrebi565gKH4zMMhu3cDr73mXOCo78zJ1xfo0iUczmYecwBr6GyM9ShE5ChbB+yJExdj4sTFLPZ3EE9I6+dS8Bk+fDj8/Pywbds2xMTE1DvDi8QXHh6O228HfHyAmp1uvr6C3e5f8zTp7dv7o6pKB19f4M03gbg419pgrke55ZZSTJ2q/99jCpg/vxRDhjzCehQicoq9A3ZS0q8s9ncQhwfr51Lwyc3NxcGDB9G6dWtPt4ecFBcHvPUW8MQTQFVVdc/NwoXXcOXKHzuG+grb0tIO46WX7oLB0AwpKa6FHjNzqHnmGWDwYCA/H0hJ0SEurimApq4/MBFpUkMH7IEDByIiIsJyH0+u6se1wOrnUvBp06aNKKsAk2tGjQIyM82BA4iLawKDoboXZsOGILzwgh4mkw4+PgJeecWIIUN+/9+OopnH2xIX516IIiJq6IAdERGBmJgYiVupDFwLrC6Xgs/8+fMxZcoUzJkzB+3atYO/v7/V/aGhoR5pHDmuduAIDw/H2bPAlCl/DIOZTDpMndoUgwc3dbqWh4jIm3jAdh3XArPPpeDTu3dvAEDPnj2t6ntY3CwvJ09a1/4A1cNh+fnslSEi+eEB2zO4Fph9LgWf3bt3e7odJILU1PoKn6uHw4iI5IYHbM/he2SbS8Gne/fu+Oabb/Dmm2/i1KlT+PDDD3HLLbdg3bp1SEpK8nQbyUX1FT67OnuLiMgbeMAmsfk0vEldmzZtQmZmJoKCgnD48GGUl5cDAIxGI+bMmePRBpJ7Ro0CCguB3bur/x01SuoWERERScel4PPSSy9h5cqVePvtt60Km7t27YpDhw55rHHkGXFxQI8e7OkhIiJyKfjk5eWhW7dudW7X6/W4cuWKu20iIiIiEoVLwSc6Ohr5+fl1bt+7dy9atmzpdqOIiIiIxOBS8Bk9ejSeeuopHDhwADqdDufPn8f69evxt7/9DePGjfN0G4mIiIg8wqVZXdOmTYPJZEKvXr1w/fp1dOvWDYGBgfjb3/6G8ePHe7qNRET0PwaDgdO9idygEwRBcPWHKyoqkJ+fj6tXr6JNmzZo0qSJJ9smidLSUuj1ehiNRq5ATUSyYjAYsHz5csv39V2HDwBycnIYfkhzHD1+u9TjYxYQEIA2bdq48xBEROSgmj09hw51rHMtq7S0w3W2I/K2mr2S58/7oKDAD0lJNxEbW72artS9km4FHyIi8j6jMcQSegBAEHywdWs/JCfna/KaVhz+k4+avZL2wrmUvZIMPkREClNSEm4JPWaC4IOSkjDNBR8O/8mLOYA2FM6l7JVk8CEiUpiwMAN0OpNV+NHpTAgLK5GwVdLg8J88yTmcuzSdnYiIpKPXl6F//23Q6aprJswHeakPKFKy1cNgNIZI3DJtMofzmuQSztnjQ0SkQGlph5GcnI+SkjCEhZVIFnrkUl8j5x4GLTKH89o9cHL4XTD4EBEplF5fJumBRE71NRz+kx+5hPPaGHyIiBQiICDAo9u5S071NXLuYdAyqcN5fRh8iIgUIjw8HDk5ObIYWqpJLtPr5drDQPLC4ENEpCBynJItp/oaOfYwaInceiXrw+BDRERukbK+RgkHWi2Ra69kTQw+REQq5o1ZV1LW1yjhQKs1cn+vGXyIiFTKm7OupKyvkfuBluSFwYeISKW8PeuK9TWkBFy5mYhI5cRa1Zj1NaREiuvxKS8vR5cuXfDTTz/h8OHD+Mtf/mK578iRI8jOzsYPP/yAyMhIjB8/HlOmTJGusUREMiDWrCvW15ASKS74TJkyBbGxsfjpp5+sbi8tLcW9996L3r17Y+XKlTh69ChGjhyJpk2bYsyYMRK1lohIemLOumKoIaVRVPDZsWMHdu7ciU2bNmHHjh1W961fvx4VFRVYvXo1AgIC0LZtW+Tm5mLRokUMPkQkCblcx4qrGhP9QTHB58KFCxg9ejQ++ugjNG7cuM79+/fvR7du3azGkjMzMzF//nz89ttvaNasmTebS0QaJ6frWAFc1ZjITBHBRxAEDB8+HGPHjkWnTp1QWFhYZ5vi4mIkJSVZ3RYVFWW5z1bwKS8vR3l5ueX70tJSzzWciDRLTtexMuOsKyKJZ3VNmzYNOp3O7teJEyewbNkylJWVYfr06R5vw9y5c6HX6y1f8fHxHn8OItIusWZUOYKzrojqkrTH55lnnsHw4cPtbtOyZUt8+eWX2L9/PwIDA63u69SpE/7617/inXfeQXR0NC5cuGB1v/n76Ohom48/ffp0TJo0yfJ9aWkpww8BkE99BimblNex4qwrorokDT6RkZGIjIxscLulS5fipZdesnx//vx5ZGZmYuPGjejSpQsAICMjAzNmzEBlZSX8/f0BALt27UKrVq3s1vcEBgbWCVREteszbPFWfQYpl5TXsQLUM+uq5onI+fM+KCjwQ1LSTcTGmgAwwJHjFFHj06JFC6vvmzRpAgBITk5GXFwcAGDIkCGYPXs2Ro0ahalTp+LYsWNYsmQJXnvtNa+3l5TP0boLb9ZnkDJxRpX7ap6I2KuX4okIOUIRwccRer0eO3fuRHZ2NtLT0xEREYGZM2dyKjsRSY4zqtxjPsGwVS+VnJwPvb6MJyLkEEUGn8TERAiCUOf29u3b45tvvpGgRURE9nFGlfukrJci9eC1uoiIRMAZVZ5nrpeqyZv1UqQOiuzxISKSO86o8jzWS5EnMPgQEYmEocbzWC9F7mLwIXKArcsNEJH3sV6K3MHgQ1SPmnUX9qbPsj6DiEhZGHyI6mGuzygsvIkXXmgOQdABqJ5Bsn17f8yc2QWJiX4cyiDyAhaKkycx+BDZEB4ejiNHAJP1JBJUVelQVhYFZh4i72ChOHkSgw+RHampgI+Pdfjx9QVSUqRrE5EWMdSQp3AdHyI74uKAt96qDjtA9b9vvll9OxERKQ97fIgaMGoUkJkJ5OdX9/Qw9BARKReDD5ED4uIYeIiI1IBDXURERKQZDD5ERESkGQw+REREpBkMPkRERKQZDD5ERESkGQw+REREpBkMPkRERKQZDD5EREQydPYssHt39b/kOQw+REREMmEwGFBUVISFC68gIUFAz55AQoKAhQuvoKioCAaDQeomKh5XbiYizTEYDLzSN8mOwWDA8uXLYTSGYPHiiRAEHQDAZNJh8uRQnDu3Gnp9GXJycvj5dAODDxFpivngYmY0hqCkJBxhYQbo9WWW23lwIW8zh/GSknAIgvWAjCD4oKQkDHp9md3QTg1j8CEiTal50Dh0qCO2bu0HQfCBTmdC//7bkJZ2uM52RN4UFmaATmeyCj86nQlhYSUStko9WONDRJpkNIZYQg9QfUa9dWs/GI0hEreMtE6vL0P//tug05kAwBLKa/ZIkuvY40NEmtTQcAKRlNLSDiM5OR8lJWEICyvhZ9KDGHyISJM4nEByp9eXMfCIgENdRKRJHE4g0ib2+BCRZnE4gUh7GHyISNM4nEByERAQ4NHtqH4MPkSkKTy4kFyFh4cjJyeHi2uKTCcIgiB1I+SktLQUer0eRqMRoaGhUjeHiETAlZuJ1MfR4zd7fIhIcxhqiKRx9ixw8iSQmgrExUnTBs7qIiIiItGtWgUkJOB/F16t/l4KDD5EREQkGoPBgIMHL2DMGAGm6tUjYDIBTzwh4ODBC16/4jyHuoiIiEgU5osCFxQkwmQaZnVfVZUOy5btQFLSr169KDB7fIiIiEgU5kkE5pXSa6q5Uro3LwrM4ENERESiktNK6RzqIiIiItHJZaV0Bh8iIiLyCjmslM6hLiIiItIMBh8iIiLSDAYfIiIi0gwGHyIiIhKFHC8KzOJmIiIiEoUcrzjP4ENERESikdtFgTnURURERJrB4ENERESaweBDREREmsHgQ0RERJrB4EMkY2fPArt3V/9LRETuY/AhkqlVq4CEBKBnz+p/V62SukXaxPBJpC4MPkQydPYsMGYMYDJVf28yAU88wYOvtxgMBhQVFWHhwitISBD+Fz4FLFx4BUVFRTAYDFI3kYhcxHV8iGTo5Mk/Qo9ZVRWQnw/ExUnTJq0wGAxYvnw5jMYQLF48EYKgAwCYTDpMnhyKc+dWQ68vQ05OjuzWJyGihrHHh0hmDAYDQkMvwMdHsLrd11dASMgF9jaIzLzCbElJOATBehcpCD4oKQmz2o6IlIU9PkQyYu5tAIB+/Tpi69Z+EAQf6HQm9O27Ddu2HQYA9jZ4QViYATqdySr86HQmhIWVSNgqInIXgw+RjNTsRUhLO4zk5HyUlIQhLKwEen1ZvduROPT6MvTvv80qfPbvv83q90BEysPgQyRjen0ZD7QSshc+HWUwGCxB9fx5HxQU+CEp6SZiY6uLuLx9gUYirWPwISKyw53wWXPo8tChjnV6j9LSOHRJ5G0sbiYiEom5p8doDLGEHqC6SHrr1n4wGkOstiMi8TH4EBGJrKEZYkTkPQw+REQ1BAQEeHQ74I8ZYjVxhhiRNFjjQ0RUQ3h4OHJycuwOPzlbkMwZYkTyweBDJCNi9DaQ88QoNPbEDDEich+DD5GMiNHbQPLB5QmIpMfgQyQzDDVEROJhcTMRkUg4dEkkP+zxISISCYcuieRHUT0+27dvR5cuXRAUFIRmzZphwIABVvefPn0affv2RePGjdG8eXNMnjwZN2/elKaxRESoDj8xMTE2vxh6iLxLMT0+mzZtwujRozFnzhz07NkTN2/exLFjxyz3V1VVoW/fvoiOjsa+fftQVFSEoUOHwt/fH3PmzJGw5URERCQXOkEQBKkb0ZCbN28iMTERs2fPxqhRo+rdZseOHejXrx/Onz+PqKgoAMDKlSsxdepUXLp0yeEx9NLSUuj1ehiNRoSGhnrsNRAREZF4HD1+K2Ko69ChQzh37hx8fHzQsWNHxMTEoE+fPlY9Pvv370e7du0soQcAMjMzUVpaiv/85z9SNJuIiIhkRhHB57///S8AYNasWfj73/+Obdu2oVmzZujRowdKSqqXfC8uLrYKPQAs3xcXF9t87PLycpSWllp9ERERkTpJGnymTZsGnU5n9+vEiRMwmaqvcTNjxgwMGjQI6enpWLNmDXQ6HT744AO32jB37lzo9XrLV3x8vCdeGhEREcmQpMXNzzzzDIYPH253m5YtW6KoqAgA0KZNG8vtgYGBaNmyJU6fPg0AiI6Oxvfff2/1sxcuXLDcZ8v06dMxadIky/elpaUNhh+TyWR3eiq5LyAgAD4+iuiQJCIiBZE0+ERGRiIyMrLB7dLT0xEYGIi8vDzceeedAIDKykoUFhYiISEBAJCRkYGXX34ZFy9eRPPmzQEAu3btQmhoqFVgqi0wMBCBgYEOt7miogIFBQWWXigSh4+PD5KSkriwGxEReZQiprOHhoZi7NixeP755xEfH4+EhAS8+uqrAIAHH3wQAHDvvfeiTZs2eOyxx/DKK6+guLgYf//735Gdne1UsLFHEAQUFRXB19cX8fHx7JEQiclkwvnz51FUVIQWLVpAp9NJ3SQiIlIJRQQfAHj11Vfh5+eHxx57DL///ju6dOmCL7/8Es2aNQMA+Pr6Ytu2bRg3bhwyMjIQHByMYcOG4YUXXvBYG27evInr168jNjYWjRs39tjjUl2RkZE4f/48bt68CX9/f6mbQ0REKqGIdXy8yd46ADdu3EBBQQESExMRFBQkUQu14ffff0dhYSGSkpLQqFEjqZtDREQyp6p1fOSGQy/i43tMRERiYPAhIiIizWDw0YDhw4db1kXy9/dHVFQU7rnnHqxevdqp2Wlr165F06ZNxWsoERGRyBh8NCIrKwtFRUUoLCzEjh07cPfdd+Opp55Cv379eAV7IiLSDAYfLzIYDCgqKrL5ZTAYRHvuwMBAREdH45ZbbkFaWhqeffZZfPzxx9ixYwfWrl0LAFi0aBHatWuH4OBgxMfH48knn8TVq1cBAF999RVGjBgBo9Fo6T2aNWsWAGDdunXo1KkTQkJCEB0djSFDhuDixYuivRYiIiJXKWY6u9IZDAYsX768we1ycnIQHh7uhRYBPXv2RIcOHbB582Y8/vjj8PHxwdKlS5GUlIT//ve/ePLJJzFlyhSsWLECd9xxBxYvXoyZM2ciLy8PANCkSRMA1YtJvvjii2jVqhUuXryISZMmYfjw4fjkk0+88jqIiIgcxeDjJY5e4sLbl8Jo3bo1jhw5AgCYOHGi5fbExES89NJLGDt2LFasWIGAgADo9XrodLo6lwAZOXKk5f8tW7bE0qVL0blzZ1y9etUSjoiIiOSAQ10aJwiCZer4559/jl69euGWW25BSEgIHnvsMRgMBly/ft3uYxw8eBD9+/dHixYtEBISgu7duwOA5TpqREREcsHgo3HHjx9HUlISCgsL0a9fP7Rv3x6bNm3CwYMH8frrrwOw3wt17do1ZGZmIjQ0FOvXr8cPP/yALVu2NPhzREREUuBQl4Z9+eWXOHr0KJ5++mkcPHgQJpMJCxcutFyD7F//+pfV9gEBAaiqqrK67cSJEzAYDJg3b57lqvY//vijd14AERGRk9jjoxHl5eUoLi7GuXPncOjQIcyZMwf3338/+vXrh6FDhyIlJQWVlZVYtmwZ/vvf/2LdunVYuXKl1WMkJibi6tWr+OKLL3D58mVcv34dLVq0QEBAgOXn/v3vf+PFF1+U6FUSERHZx+CjEZ9++iliYmKQmJiIrKws7N69G0uXLsXHH38MX19fdOjQAYsWLcL8+fNx6623Yv369Zg7d67VY9xxxx0YO3YsBg8ejMjISLzyyiuIjIzE2rVr8cEHH6BNmzaYN28eFixYINGrJCIiso8XKa3FkYuUunLhzKKiIrz11lsNbjdmzBjExMQ49dhq5M57TURE2sOLlMpMQECAR7cjIiIi57G42UvCw8ORk5Njd6ZTQECA1xYvJCIi0iIGHy9iqCEiIpIWh7qIiIhIM9jjQ0RE5ACDwcByBRVg8CEiImqAHC80Ta7hUBcREVED5HqhaXIegw8RERFpBoMPERERaQaDD7ntq6++gk6nw5UrVxz+mcTERCxevFi0NhEREdWHwUcDhg8fDp1Oh7Fjx9a5Lzs7GzqdDsOHD/d+w4iIiLyMwUcj4uPj8f777+P333+33Hbjxg1s2LABLVq0kLBlRERE3sPgoxFpaWmIj4/H5s2bLbdt3rwZLVq0QMeOHS23lZeXY8KECWjevDkaNWqEO++8Ez/88IPVY33yySf405/+hKCgINx9990oLCys83x79+7FXXfdhaCgIMTHx2PChAm4du2aaK+PiIjIEQw+GjJy5EisWbPG8v3q1asxYsQIq22mTJmCTZs24Z133sGhQ4eQkpKCzMxMlJSUAADOnDmDgQMHon///sjNzcXjjz+OadOmWT3GqVOnkJWVhUGDBuHIkSPYuHEj9u7di5ycHPFfJBGRCHihafXgAoYSOXsWOHkSSE0F4uK885yPPvoopk+fjl9//RUA8O233+L999/HV199BQC4du0a3njjDaxduxZ9+vQBALz99tvYtWsXVq1ahcmTJ+ONN95AcnIyFi5cCABo1aoVjh49ivnz51ueZ+7cufjrX/+KiRMnAgBSU1OxdOlSdO/eHW+88QYaNWrknRdMROQhvNC0ejD4SGDVKmDMGMBkAnx8gLfeAkaNEv95IyMj0bdvX6xduxaCIKBv376IiIiw3H/q1ClUVlaia9eultv8/f1x22234fjx4wCA48ePo0uXLlaPm5GRYfX9Tz/9hCNHjmD9+vWW2wRBgMlkQkFBAf785z+L8fKIiETFUKMODD5edvbsH6EHqP73iSeAzEzv9PyMHDnSMuT0+uuvi/IcV69exRNPPIEJEybUuY+F1ESkBlL02pNnsMbHy06e/CP0mFVVAfn53nn+rKwsVFRUoLKyEpmZmVb3JScnIyAgAN9++63ltsrKSvzwww9o06YNAODPf/4zvv/+e6uf++6776y+T0tLw88//4yUlJQ6Xxz/JiKlW7UKSEgAevas/nfVKqlbRM5g8PGy1NTq4a2afH2BlBTvPL+vry+OHz+On3/+Gb6+vlb3BQcHY9y4cZg8eTI+/fRT/Pzzzxg9ejSuX7+OUf8bixs7dixOnjyJyZMnIy8vDxs2bMDatWutHmfq1KnYt28fcnJykJubi5MnT+Ljjz9mcTMRKZ6tXvuzZ6VtFzmOwcfL4uKqa3rMmcPXF3jzTe92lYaGhiI0NLTe++bNm4dBgwbhscceQ1paGvLz8/HZZ5+hWbNmAKqHqjZt2oSPPvoIHTp0wMqVKzFnzhyrx2jfvj327NmDX375BXfddRc6duyImTNnIjY2VvTXRkQkJql77cl9OkEQBKkbISelpaXQ6/UwGo11wsGNGzdQUFCApKQkt2cmnT1b/YeSksLx4fp48r0mIvKUs2erh7dqhh9fX6CwkPtyqdk7ftfEHh+JxMUBPXrwD4WISEnk0GtP7uGsLiIiIieMGlU9E5e99srE4ENEROSkuDgGHqXiUBcRERFpBoMPERERaQaDjws4EU58fI+JiEgMDD5OMC/4Z+8ideQZ5ve49iKLRERE7mBxsxP8/PzQuHFjXLp0Cf7+/vCpvQQzeYTJZMKlS5fQuHFj+PnxI0pERJ7Do4oTdDodYmJiUFBQgF9//VXq5qiaj48PWrRoAZ1OJ3VTiIhIRRh8nBQQEIDU1FQOd4ksICCAPWpERORxDD4u8PHx4WUUiIiIFIin1ERERKQZDD5ERESkGQw+REREpBms8anFvHBeaWmpxC0hIiIiR5mP2w0tgMvgU0tZWRkAID4+XuKWEBERkbPKysqg1+tt3q8TeG0AKyaTCefPn0dISIjm1pApLS1FfHw8zpw5g9DQUKmbo1h8Hz2H76Vn8H30HL6XniHG+ygIAsrKyhAbG2t3ORT2+NTi4+ODuLg4qZshqdDQUP5BewDfR8/he+kZfB89h++lZ3j6fbTX02PG4mYiIiLSDAYfIiIi0gwGH7IIDAzE888/j8DAQKmbomh8Hz2H76Vn8H30HL6XniHl+8jiZiIiItIM9vgQERGRZjD4EBERkWYw+BAREZFmMPgQERGRZjD4aMzXX3+N/v37IzY2FjqdDh999JHV/YIgYObMmYiJiUFQUBB69+6NkydPStNYmWvovRw+fDh0Op3VV1ZWljSNlbG5c+eic+fOCAkJQfPmzTFgwADk5eVZbXPjxg1kZ2cjPDwcTZo0waBBg3DhwgWJWixPjryPPXr0qPOZHDt2rEQtlq833ngD7du3tyyul5GRgR07dlju5+fRcQ29l1J8Jhl8NObatWvo0KEDXn/99Xrvf+WVV7B06VKsXLkSBw4cQHBwMDIzM3Hjxg0vt1T+GnovASArKwtFRUWWr/fee8+LLVSGPXv2IDs7G9999x127dqFyspK3Hvvvbh27Zplm6effhpbt27FBx98gD179uD8+fMYOHCghK2WH0feRwAYPXq01WfylVdekajF8hUXF4d58+bh4MGD+PHHH9GzZ0/cf//9+M9//gOAn0dnNPReAhJ8JgXSLADCli1bLN+bTCYhOjpaePXVVy23XblyRQgMDBTee+89CVqoHLXfS0EQhGHDhgn333+/JO1RsosXLwoAhD179giCUP0Z9Pf3Fz744APLNsePHxcACPv375eqmbJX+30UBEHo3r278NRTT0nXKAVr1qyZ8I9//IOfRw8wv5eCIM1nkj0+ZFFQUIDi4mL07t3bcpter0eXLl2wf/9+CVumXF999RWaN2+OVq1aYdy4cTAYDFI3SfaMRiMAICwsDABw8OBBVFZWWn0uW7dujRYtWvBzaUft99Fs/fr1iIiIwK233orp06fj+vXrUjRPMaqqqvD+++/j2rVryMjI4OfRDbXfSzNvfyZ5kVKyKC4uBgBERUVZ3R4VFWW5jxyXlZWFgQMHIikpCadOncKzzz6LPn36YP/+/fD19ZW6ebJkMpkwceJEdO3aFbfeeiuA6s9lQEAAmjZtarUtP5e21fc+AsCQIUOQkJCA2NhYHDlyBFOnTkVeXh42b94sYWvl6ejRo8jIyMCNGzfQpEkTbNmyBW3atEFubi4/j06y9V4C0nwmGXyIRPLwww9b/t+uXTu0b98eycnJ+Oqrr9CrVy8JWyZf2dnZOHbsGPbu3St1UxTN1vs4ZswYy//btWuHmJgY9OrVC6dOnUJycrK3mylrrVq1Qm5uLoxGIz788EMMGzYMe/bskbpZimTrvWzTpo0kn0kOdZFFdHQ0ANSZnXDhwgXLfeS6li1bIiIiAvn5+VI3RZZycnKwbds27N69G3FxcZbbo6OjUVFRgStXrlhtz89l/Wy9j/Xp0qULAPAzWY+AgACkpKQgPT0dc+fORYcOHbBkyRJ+Hl1g672sjzc+kww+ZJGUlITo6Gh88cUXlttKS0tx4MABq/FYcs3Zs2dhMBgQExMjdVNkRRAE5OTkYMuWLfjyyy+RlJRkdX96ejr8/f2tPpd5eXk4ffo0P5c1NPQ+1ic3NxcA+Jl0gMlkQnl5OT+PHmB+L+vjjc8kh7o05urVq1ZJuqCgALm5uQgLC0OLFi0wceJEvPTSS0hNTUVSUhKee+45xMbGYsCAAdI1WqbsvZdhYWGYPXs2Bg0ahOjoaJw6dQpTpkxBSkoKMjMzJWy1/GRnZ2PDhg34+OOPERISYqmT0Ov1CAoKgl6vx6hRozBp0iSEhYUhNDQU48ePR0ZGBm6//XaJWy8fDb2Pp06dwoYNG/B///d/CA8Px5EjR/D000+jW7duaN++vcStl5fp06ejT58+aNGiBcrKyrBhwwZ89dVX+Oyzz/h5dJK991Kyz6RX55CR5Hbv3i0AqPM1bNgwQRCqp7Q/99xzQlRUlBAYGCj06tVLyMvLk7bRMmXvvbx+/bpw7733CpGRkYK/v7+QkJAgjB49WiguLpa62bJT33sIQFizZo1lm99//1148sknhWbNmgmNGzcW/t//+39CUVGRdI2WoYbex9OnTwvdunUTwsLChMDAQCElJUWYPHmyYDQapW24DI0cOVJISEgQAgIChMjISKFXr17Czp07Lffz8+g4e++lVJ9JnSAIgnixioiIiEg+WONDREREmsHgQ0RERJrB4ENERESaweBDREREmsHgQ0RERJrB4ENERESaweBDREREmsHgQ0RERJrB4ENERESaweBDRIpRUVEhdRPqkGObiMg2Bh8ikkyPHj2Qk5ODnJwc6PV6RERE4LnnnoP5SjqJiYl48cUXMXToUISGhmLMmDEAgL179+Kuu+5CUFAQ4uPjMWHCBFy7ds3yuCtWrEBqaioaNWqEqKgoPPDAA5b7PvzwQ7Rr1w5BQUEIDw9H7969LT/bo0cPTJw40aqNAwYMwPDhwy3fu9omIpIHBh8iktQ777wDPz8/fP/991iyZAkWLVqEf/zjH5b7FyxYgA4dOuDw4cN47rnncOrUKWRlZWHQoEE4cuQINm7ciL179yInJwcA8OOPP2LChAl44YUXkJeXh08//RTdunUDABQVFeGRRx7ByJEjcfz4cXz11VcYOHAgnL1kobNtIiL54EVKiUgyPXr0wMWLF/Gf//wHOp0OADBt2jT8+9//xs8//4zExER07NgRW7ZssfzM448/Dl9fX7z55puW2/bu3Yvu3bvj2rVr+OSTTzBixAicPXsWISEhVs936NAhpKeno7CwEAkJCfW25y9/+QsWL15suW3AgAFo2rQp1q5dCwAutalRo0ZuvU9E5Dns8SEiSd1+++2W0AMAGRkZOHnyJKqqqgAAnTp1str+p59+wtq1a9GkSRPLV2ZmJkwmEwoKCnDPPfcgISEBLVu2xGOPPYb169fj+vXrAIAOHTqgV69eaNeuHR588EG8/fbb+O2335xus7NtIiL5YPAhIlkLDg62+v7q1at44oknkJuba/n66aefcPLkSSQnJyMkJASHDh3Ce++9h5iYGMycORMdOnTAlStX4Ovri127dmHHjh1o06YNli1bhlatWlnCiY+PT51hr8rKSrfbRETyweBDRJI6cOCA1fffffcdUlNT4evrW+/2aWlp+Pnnn5GSklLnKyAgAADg5+eH3r1745VXXsGRI0dQWFiIL7/8EgCg0+nQtWtXzJ49G4cPH0ZAQIBl2CoyMhJFRUWW56qqqsKxY8cafA2OtImI5IHBh4gkdfr0aUyaNAl5eXl47733sGzZMjz11FM2t586dSr27duHnJwc5Obm4uTJk/j4448thcTbtm3D0qVLkZubi19//RXvvvsuTCYTWrVqhQMHDmDOnDn48ccfcfr0aWzevBmXLl3Cn//8ZwBAz549sX37dmzfvh0nTpzAuHHjcOXKlQZfQ0NtIiL58JO6AUSkbUOHDsXvv/+O2267Db6+vnjqqacsU8Tr0759e+zZswczZszAXXfdBUEQkJycjMGDBwMAmjZtis2bN2PWrFm4ceMGUlNT8d5776Ft27Y4fvw4vv76ayxevBilpaVISEjAwoUL0adPHwDAyJEj8dNPP2Ho0KHw8/PD008/jbvvvrvB19BQm4hIPjiri4gkU98sKiIiMXGoi4iIiDSDwYeIiIg0g0NdREREpBns8SEiIiLNYPAhIiIizWDwISIiIs1g8CEiIiLNYPAhIiIizWDwISIiIs1g8CEiIiLNYPAhIiIizWDwISIiIs34/2GiY/EoyBLqAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "No iterations will be run.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "\n", + "Best surrogate model is of order 5 with a cross-val S.S. Error of 20466.657669\n", + "\n", + "------------------------------------------------------------\n", + "The final coefficients of the regression terms are: \n", + "\n", + "k | -534397.59515\n", + "(x_ 1 )^ 1 | -2733.579691\n", + "(x_ 2 )^ 1 | 1036.106357\n", + "(x_ 1 )^ 2 | 32.409203\n", + "(x_ 2 )^ 2 | -2.852387\n", + "(x_ 1 )^ 3 | 0.893563\n", + "(x_ 2 )^ 3 | 0.004018\n", + "(x_ 1 )^ 4 | -0.045284\n", + "(x_ 2 )^ 4 | -3e-06\n", + "(x_ 1 )^ 5 | 0.000564\n", + "(x_ 2 )^ 5 | 0.0\n", + "x_ 1 .x_ 2 | 4.372684\n", + "\n", + "The coefficients of the extra terms in additional_regression_features are:\n", + "\n", + "Coeff. additional_regression_features[ 1 ]: -0.002723\n", + "Coeff. additional_regression_features[ 2 ]: 3.6e-05\n", + "Coeff. additional_regression_features[ 3 ]: -0.050607\n", + "Coeff. additional_regression_features[ 4 ]: 169668.814595\n", + "Coeff. additional_regression_features[ 5 ]: -44.726026\n", + "\n", + "Regression model performance on training data:\n", + "Order: 5 / MAE: 134.972465 / MSE: 54613.278159 / R^2: 0.999601\n", + "\n", + "Results saved in solution.pickle\n", + "2023-08-19 23:48:46 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output enth_mol trained successfully\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "No iterations will be run.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "\n", + "Best surrogate model is of order 5 with a cross-val S.S. Error of 0.156437\n", + "\n", + "------------------------------------------------------------\n", + "The final coefficients of the regression terms are: \n", + "\n", + "k | -519.862457\n", + "(x_ 1 )^ 1 | -8.820865\n", + "(x_ 2 )^ 1 | 3.676641\n", + "(x_ 1 )^ 2 | 0.18002\n", + "(x_ 2 )^ 2 | -0.010217\n", + "(x_ 1 )^ 3 | -0.000783\n", + "(x_ 2 )^ 3 | 1.4e-05\n", + "(x_ 1 )^ 4 | -6.9e-05\n", + "(x_ 2 )^ 4 | -0.0\n", + "(x_ 1 )^ 5 | 1e-06\n", + "(x_ 2 )^ 5 | 0.0\n", + "x_ 1 .x_ 2 | 0.010367\n", + "\n", + "The coefficients of the extra terms in additional_regression_features are:\n", + "\n", + "Coeff. additional_regression_features[ 1 ]: -7e-06\n", + "Coeff. additional_regression_features[ 2 ]: 0.0\n", + "Coeff. additional_regression_features[ 3 ]: -0.000112\n", + "Coeff. additional_regression_features[ 4 ]: 484.312223\n", + "Coeff. additional_regression_features[ 5 ]: -0.1166\n", + "\n", + "Regression model performance on training data:\n", + "Order: 5 / MAE: 0.398072 / MSE: 0.495330 / R^2: 0.998873\n", + "\n", + "Results saved in solution.pickle\n", + "2023-08-19 23:49:20 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output entr_mol trained successfully\n" + ] + } + ], + "source": [ + "# Create PySMO trainer object\n", + "trainer = PysmoPolyTrainer(\n", + " input_labels=input_labels,\n", + " output_labels=output_labels,\n", + " training_dataframe=data_training,\n", + ")\n", + "\n", + "var = output_labels\n", + "trainer.config.extra_features = [\n", + " \"pressure*temperature*temperature\",\n", + " \"pressure*pressure*temperature*temperature\",\n", + " \"pressure*pressure*temperature\",\n", + " \"pressure/temperature\",\n", + " \"temperature/pressure\",\n", + "]\n", + "# Set PySMO options\n", + "trainer.config.maximum_polynomial_order = 5\n", + "trainer.config.multinomials = True\n", + "trainer.config.training_split = 0.8\n", + "trainer.config.number_of_crossvalidations = 10\n", + "\n", + "# Train surrogate (calls PySMO through IDAES Python wrapper)\n", + "poly_train = trainer.train_surrogate()\n", + "\n", + "# create callable surrogate object\n", + "xmin, xmax = [7, 306], [40, 1000]\n", + "input_bounds = {input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))}\n", + "poly_surr = PysmoSurrogate(poly_train, input_labels, output_labels, input_bounds)\n", + "# save model to JSON\n", + "model = poly_surr.save_to_file(\"pysmo_poly_surrogate.json\", overwrite=True)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZC0lEQVR4nO3deVhU9eI/8PewDALCIIssooBomqYmWIaVlnlFH5fbV2+SqbnmkpikueXNJXOr3L1p9TM1y7SSuqlZLpllcs1cUm9GSpgbqIAMKMk2n98f3JkYmBlmObNx3q/nmUfmnDNnPucwNW8+q0IIIUBEREQkAx7OLgARERGRozD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQEbmgTZs2QaFQ4OLFi84uClG9wuBDJFPHjh1Damoq2rZtC39/fzRr1gyDBg3Cb7/9VuvYxx57DAqFAgqFAh4eHggMDESrVq0wbNgw7Nu3z6L33blzJ7p164bGjRvDz88PzZs3x6BBg/DVV19JdWm1LFq0CJ9//nmt7UeOHMG8efNQWFhot/euad68ebp7qVAo4OfnhzZt2uCf//wnioqKJHmPrVu3YuXKlZKci6i+YfAhkqmlS5dix44deOKJJ7Bq1SqMHTsW3333HRISEnD27Nlax0dHR2PLli14//338cYbb6B///44cuQIevbsiZSUFJSXl9f5nm+++Sb69+8PhUKBWbNmYcWKFRg4cCDOnz+Pbdu22eMyAZgOPvPnz3do8NFat24dtmzZguXLl6N169ZYuHAhevXqBSmWT2TwITLOy9kFICLnmDJlCrZu3QqlUqnblpKSgnbt2mHJkiX44IMP9I5XqVQYOnSo3rYlS5bghRdewFtvvYXY2FgsXbrU6PtVVFRgwYIF+Nvf/oa9e/fW2n/jxg0br8h1lJSUwM/Pz+Qx//jHPxAaGgoAGD9+PAYOHIj09HT85z//QVJSkiOKSSRLrPEhkqkuXbrohR4AaNmyJdq2bYtz586ZdQ5PT0+sXr0abdq0wdq1a6FWq40em5eXh6KiIjz88MMG9zdu3Fjv+d27dzFv3jzcc889aNCgASIjIzFgwABkZWXpjnnzzTfRpUsXhISEwNfXF4mJifj000/1zqNQKHDnzh1s3rxZ17w0YsQIzJs3D9OmTQMAxMXF6fZV71PzwQcfIDExEb6+vggODsbTTz+Ny5cv653/sccew3333Yfjx4+ja9eu8PPzw8svv2zW/auue/fuAIDs7GyTx7311lto27YtfHx8EBUVhYkTJ+rVWD322GPYvXs3/vjjD901xcbGWlweovqKNT5EpCOEwPXr19G2bVuzX+Pp6YnBgwfjlVdeweHDh9GnTx+DxzVu3Bi+vr7YuXMnJk2ahODgYKPnrKysRN++fXHgwAE8/fTTmDx5MoqLi7Fv3z6cPXsW8fHxAIBVq1ahf//+GDJkCMrKyrBt2zY89dRT2LVrl64cW7ZswZgxY/Dggw9i7NixAID4+Hj4+/vjt99+w0cffYQVK1boal/CwsIAAAsXLsQrr7yCQYMGYcyYMbh58ybWrFmDrl274uTJkwgKCtKVNz8/H71798bTTz+NoUOHIjw83Oz7p6UNdCEhIUaPmTdvHubPn48ePXpgwoQJyMzMxLp163Ds2DH88MMP8Pb2xuzZs6FWq3HlyhWsWLECANCwYUOLy0NUbwkiov/ZsmWLACA2bNigt71bt26ibdu2Rl/32WefCQBi1apVJs8/Z84cAUD4+/uL3r17i4ULF4rjx4/XOu69994TAMTy5ctr7dNoNLqfS0pK9PaVlZWJ++67T3Tv3l1vu7+/vxg+fHitc73xxhsCgMjOztbbfvHiReHp6SkWLlyot/3MmTPCy8tLb3u3bt0EALF+/Xqj113d3LlzBQCRmZkpbt68KbKzs8Xbb78tfHx8RHh4uLhz544QQoiNGzfqle3GjRtCqVSKnj17isrKSt351q5dKwCI9957T7etT58+IiYmxqzyEMkNm7qICADw66+/YuLEiUhKSsLw4cMteq22RqG4uNjkcfPnz8fWrVvRsWNHfP3115g9ezYSExORkJCg17y2Y8cOhIaGYtKkSbXOoVAodD/7+vrqfr516xbUajUeffRRnDhxwqLy15Seng6NRoNBgwYhLy9P94iIiEDLli1x8OBBveN9fHwwcuRIi96jVatWCAsLQ1xcHMaNG4cWLVpg9+7dRvsG7d+/H2VlZUhLS4OHx1//637uuecQGBiI3bt3W36hRDLEpi4iQm5uLvr06QOVSoVPP/0Unp6eFr3+9u3bAICAgIA6jx08eDAGDx6MoqIiHD16FJs2bcLWrVvRr18/nD17Fg0aNEBWVhZatWoFLy/T/4vatWsXXnvtNZw6dQqlpaW67dXDkTXOnz8PIQRatmxpcL+3t7fe8yZNmtTqL1WXHTt2IDAwEN7e3oiOjtY13xnzxx9/AKgKTNUplUo0b95ct5+ITGPwIZI5tVqN3r17o7CwEN9//z2ioqIsPod2+HuLFi3Mfk1gYCD+9re/4W9/+xu8vb2xefNmHD16FN26dTPr9d9//z369++Prl274q233kJkZCS8vb2xceNGbN261eJrqE6j0UChUGDPnj0GQ2DNPjPVa57M1bVrV12/IiJyHAYfIhm7e/cu+vXrh99++w379+9HmzZtLD5HZWUltm7dCj8/PzzyyCNWlaNTp07YvHkzcnJyAFR1Pj569CjKy8tr1a5o7dixAw0aNMDXX38NHx8f3faNGzfWOtZYDZCx7fHx8RBCIC4uDvfcc4+ll2MXMTExAIDMzEw0b95ct72srAzZ2dno0aOHbputNV5E9Rn7+BDJVGVlJVJSUpCRkYFPPvnEqrljKisr8cILL+DcuXN44YUXEBgYaPTYkpISZGRkGNy3Z88eAH814wwcOBB5eXlYu3ZtrWPF/yb48/T0hEKhQGVlpW7fxYsXDU5U6O/vb3CSQn9/fwCotW/AgAHw9PTE/Pnza00oKIRAfn6+4Yu0ox49ekCpVGL16tV6ZdqwYQPUarXeaDp/f3+TUwsQyRlrfIhkaurUqfjiiy/Qr18/FBQU1JqwsOZkhWq1WndMSUkJLly4gPT0dGRlZeHpp5/GggULTL5fSUkJunTpgoceegi9evVC06ZNUVhYiM8//xzff/89nnzySXTs2BEA8Oyzz+L999/HlClT8OOPP+LRRx/FnTt3sH//fjz//PP4+9//jj59+mD58uXo1asXnnnmGdy4cQP/+te/0KJFC5w+fVrvvRMTE7F//34sX74cUVFRiIuLQ+fOnZGYmAgAmD17Np5++ml4e3ujX79+iI+Px2uvvYZZs2bh4sWLePLJJxEQEIDs7Gx89tlnGDt2LF566SWb7r+lwsLCMGvWLMyfPx+9evVC//79kZmZibfeegsPPPCA3u8rMTER27dvx5QpU/DAAw+gYcOG6Nevn0PLS+SynDmkjIicRzsM29jD1LENGzYULVu2FEOHDhV79+416/3Ky8vFu+++K5588kkRExMjfHx8hJ+fn+jYsaN44403RGlpqd7xJSUlYvbs2SIuLk54e3uLiIgI8Y9//ENkZWXpjtmwYYNo2bKl8PHxEa1btxYbN27UDRev7tdffxVdu3YVvr6+AoDe0PYFCxaIJk2aCA8Pj1pD23fs2CEeeeQR4e/vL/z9/UXr1q3FxIkTRWZmpt69MTXUvyZt+W7evGnyuJrD2bXWrl0rWrduLby9vUV4eLiYMGGCuHXrlt4xt2/fFs8884wICgoSADi0nagahRASLAxDRERE5AbYx4eIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZMNtgs/ixYvxwAMPICAgAI0bN8aTTz6JzMxMvWPu3r2LiRMnIiQkBA0bNsTAgQNx/fp1J5WYiIiIXI3bDGfv1asXnn76aTzwwAOoqKjAyy+/jLNnz+KXX37Rzb46YcIE7N69G5s2bYJKpUJqaio8PDzwww8/mP0+Go0G165dQ0BAAKd9JyIichNCCBQXFyMqKgoeHibqdZw6i5ANbty4IQCIQ4cOCSGEKCwsFN7e3uKTTz7RHXPu3DkBQGRkZJh93suXL5uc1I0PPvjggw8++HDdx+XLl01+z7vtkhXadWiCg4MBAMePH0d5ebneQn2tW7dGs2bNkJGRgYceesjgeUpLS1FaWqp7Lv5XAXb58mWT6w4RERGR6ygqKkLTpk0REBBg8ji3DD4ajQZpaWl4+OGHcd999wEAcnNzoVQqERQUpHdseHg4cnNzjZ5r8eLFmD9/fq3tgYGBDD5ERERupq5uKm7Tubm6iRMn4uzZs9i2bZvN55o1axbUarXucfnyZQlKSERERK7I7Wp8UlNTsWvXLnz33XeIjo7WbY+IiEBZWRkKCwv1an2uX7+OiIgIo+fz8fGBj4+PPYtMRERELsJtanyEEEhNTcVnn32Gb775BnFxcXr7ExMT4e3tjQMHDui2ZWZm4tKlS0hKSnJ0cYmIiMgFuU2Nz8SJE7F161b8+9//RkBAgK7fjkqlgq+vL1QqFUaPHo0pU6YgODgYgYGBmDRpEpKSkox2bLaWRqNBWVmZpOckfUql0vRwRCIiIiu4zTw+xjorbdy4ESNGjABQNYHh1KlT8dFHH6G0tBTJycl46623TDZ11VRUVASVSgW1Wm2wc3NZWRmys7Oh0Wisug4yj4eHB+Li4qBUKp1dFCIicgN1fX9ruU3wcRRTN04IgUuXLqG8vLzuCZLIatpJJL29vdGsWTNOJElERHUyN/i4TVOXK6ioqEBJSQmioqLg5+fn7OLUa2FhYbh27RoqKirg7e3t7OIQEVE9wSoLC1RWVgIAm18cQHuPtfeciIhICgw+VmDTi/3xHhMRkT0w+BAREZFssI8PERER1Sk/P9/kVC5KpRIhISEOLJF1GHxkYMSIEdi8eTMAwMvLC8HBwWjfvj0GDx6MESNGmD06bdOmTUhLS0NhYaEdS0tERK4mPz8fa9eu1T1XqwNQUBCC4OB8qFTFuu2pqakuH34YfBzImWm5V69e2LhxIyorK3H9+nV89dVXmDx5Mj799FN88cUX8PLiR4GIiAyr/t114kRH7NzZF0J4QKHQoF+/XUhIOFnrOFfFbzsHqZmWjbFXWvbx8dFN5NikSRMkJCTgoYcewhNPPIFNmzZhzJgxWL58OTZu3Ijff/8dwcHB6NevH15//XU0bNgQ3377LUaOHAngr47Hc+fOxbx587BlyxasWrUKmZmZ8Pf3R/fu3bFy5Uo0btxY8usgInK0+tLEIwW1OkAXegBACA/s3NkX8fEX9Gp+XBmDj4OYm4IdmZa7d++ODh06ID09HWPGjIGHhwdWr16NuLg4/P7773j++ecxffp0vPXWW+jSpQtWrlyJOXPmIDMzEwDQsGFDAEB5eTkWLFiAVq1a4caNG5gyZQpGjBiBL7/80mHXQkRkD87+o9XVFBSE6EKPlhAeKCgIZvAh99C6dWucPn0aAJCWlqbbHhsbi9deew3jx4/HW2+9BaVSCZVKBYVCUWsJkFGjRul+bt68OVavXo0HHngAt2/f1oUjIiJ35Ip/tDpTcHA+FAqNXvhRKDQIDi5wYqksw+HsMieE0DVd7d+/H0888QSaNGmCgIAADBs2DPn5+SgpKTF5juPHj6Nfv35o1qwZAgIC0K1bNwDApUuX7F5+IiJyHJWqGP367YJCUbVepbaPj7vU9gCs8ZG9c+fOIS4uDhcvXkTfvn0xYcIELFy4EMHBwTh8+DBGjx6NsrIyo0t03LlzB8nJyUhOTsaHH36IsLAwXLp0CcnJybL5C4iISE4SEk4iPv4CCgqCERxc4FahB2DwkbVvvvkGZ86cwYsvvojjx49Do9Fg2bJluuHtH3/8sd7xSqWy1hISv/76K/Lz87FkyRI0bdoUAPDTTz855gKIiMgpVKpitws8WmzqkonS0lLk5ubi6tWrOHHiBBYtWoS///3v6Nu3L5599lm0aNEC5eXlWLNmDX7//Xds2bIF69ev1ztHbGwsbt++jQMHDiAvLw8lJSVo1qwZlEql7nVffPEFFixY4KSrJCKyL7U6ANnZsVCrA5xdFIcyd41Kd1jLkjU+MvHVV18hMjISXl5eaNSoETp06IDVq1dj+PDh8PDwQIcOHbB8+XIsXboUs2bNQteuXbF48WI8++yzunN06dIF48ePR0pKCvLz83XD2Tdt2oSXX34Zq1evRkJCAt58803079/fiVdLRCQ9U/PXSM3VhtCHhIQgNTVVr0yFhYWoqKjQPff29kZZWRlycnKcUkZzKYQQwtmFcCVFRUVQqVRQq9UIDAzU23f37l1kZ2cjLi4ODRo0sOi8HBJpGVvuNRGRVHJycvDOO+9ArQ7AypVptUYzpaWthEpVjLFjxyIyMlKS93SH7wtXnMnZ1Pd3dazxcRBDabkmV03HRERypW26qWv+GimbeNxhCL07z+TM4ONADDVERO5F+0frxYsV2LJFQKNR6PZ5egpMmtQbsbFedv3/u7HaFFfgjjM5M/gQERGZEBISgpAQ4J13gHHjgMpKwNMTePttBRITw+363qZqU/Ly8gBY31ogRT8id5zJmcGHiIjIDKNHA8nJwIULQIsWQHS0fd+vrtqU9PR03bGW9qWRqh+RO87kzOBDRERkpuho+wceLUtqU2rW3NRVm6NWq80qQ119dLQzOdeslXLV2h6AwYeIiMglGapNATS4c8cfanWA0XBhbm1Odbb0I3K3mZwZfIiIiFxQzdoUQANAgU8/fcrkPEKWjqSSYn4id5rJmcGHiIjIhVQfGq+tTbl8ORo7dvwDQlSNKrNk9JSp2hxrR2WZO3y/sLAQJSUlRtd71J7LkaOeGXyIiEg2pJoR2Z4zK1ef9y0vLw/p6ekoKPjTqtFTddXmWDsqS1vGmzdvYvv27UaPq7nmoytMdMjgQzb79ttv8fjjj+PWrVsICgoy6zWxsbFIS0tDWlqaXctGRKQl1UgmR8ysXPN11oyeMlWbA1SFHm/vUqtHZYWEhNQKf6Zql1xlokMuUioDI0aMgEKhwPjx42vtmzhxIhQKBUaMGOH4ghEROZBUMyIb+rI3tHCplF/m2v4+CoUGAMwaPWWsNufo0c5YuTINmzcPx4YNY9C+/WmLzmvMiRMddedduTINJ0501O0zFsKcsdgra3xkomnTpti2bRtWrFgBX19fAFXrYW3duhXNmjVzcumIiBxPihmRLe0YbGkTmaH+PoZGTxnqc2NsVFhGRpJeADl9uj1Gj/5/KC9XmnVeQ+rqK+RKEx0y+MhEQkICsrKykJ6ejiFDhgAA0tPT0axZM8TFxemOKy0txbRp07Bt2zYUFRWhU6dOWLFiBR544AHdMV9++SXS0tJw+fJlPPTQQxg+fHit9zt8+DBmzZqFn376CaGhofi///s/LF68GP7+/va/WCKiOkgxksnSjsHWNJHZss6joTl2kpIycOTIw3rHCeGB8nIl4uL+wOOPP47GjRtDpVJZ1E+prmDjShMdsqnLSa5cAQ4erPrXUUaNGoWNGzfqnr/33nsYOXKk3jHTp0/Hjh07sHnzZpw4cQItWrRAcnIyCgqqPpyXL1/GgAED0K9fP5w6dQpjxozBzJkz9c6RlZWFXr16YeDAgTh9+jS2b9+Ow4cPIzU11f4XSURuJT8/Hzk5OUYf+fn5kr+nVM0upr7sDbG2qS0kJASRkZFGHzXDSc1aorS0lRg+fBPS0laic+ejumYtreoB5ODBg9i+fbvFnbO1wcbYea1pqrMX1vg4wYYNwNixgEYDeHhUrf8yerT933fo0KGYNWsW/vjjDwDADz/8gG3btuHbb78FANy5cwfr1q3Dpk2b0Lt3bwDAu+++i3379mHDhg2YNm0a1q1bh/j4eCxbtgwA0KpVK5w5cwZLly7Vvc/ixYsxZMgQXcflli1bYvXq1ejWrRvWrVuHBg0a2P9iicjlOaKTsCFSNbu4Ui1GdYZqibSjwwCYNdOyqZBWvblOu16YOTM4u8pEhww+Dnblyl+hB6j6d9y4qvVf7D0NelhYGPr06YNNmzZBCIE+ffogNDRUtz8rKwvl5eV4+OG/qkG9vb3x4IMP4ty5cwCAc+fOoXPnznrnTUpK0nv+888/4/Tp0/jwww9124QQ0Gg0yM7Oxr333muPyyMiNyNVZ2NLSRVYbF2uwZ6rrtdVC6QNIN7eZSgv9zE5E3R1psKqOcHGFSY6ZPBxsPPn/wo9WpWVVYveOWL9l1GjRumanP71r3/Z5T1u376NcePG4YUXXqi1jx2picgYY0FAW6ugZeuEd1KuL2VJLUZhYaHuZ1N9jAoLCxEZGWlxWUzR1gJdu3YN6enpUKmKkZXVwuJ+Tuas3WXNfTS3E7UUGHwcrGXLquat6uHH07NqpV9H6NWrF8rKyqBQKJCcnKy3Lz4+HkqlEj/88ANiYmIAAOXl5Th27Jiu2eree+/FF198ofe6//znP3rPExIS8Msvv6CFoy6KiNyeqSBQfRVyLWuav2wZIWXsPIDxL/uax1VUVACou1O09jipVZ93x9oZm2syFlYHDBiga1HgzM0yFx1d1adn3Liqmh5PT+Dttx232q+np6eu2crT01Nvn7+/PyZMmIBp06YhODgYzZo1w+uvv46SkhKM/l8npPHjx2PZsmWYNm0axowZg+PHj2PTpk1655kxYwYeeughpKamYsyYMfD398cvv/yCffv2WbxwHhHVf9Z8CVvT/GXLCCkpz+MKQ7ulKIO5I+P8/PwcHm5MYfBxgtGjq/r0XLhQVdPjqNCjFRgYaHTfkiVLoNFoMGzYMBQXF6NTp074+uuv0ahRIwBVTVU7duzAiy++iDVr1uDBBx/EokWLMGrUKN052rdvj0OHDmH27Nl49NFHIYRAfHw8UlJS7H5tROR+6hodJWU/GKm+fG05T3BwPgABQKHb5uhO0Zb2c9J2aNY2O9Y1K/SyZSecuiyFKQw+ThId7bjAU7NGpqbPP/9c93ODBg2wevVqrF692ujxffv2Rd++ffW21RwW/8ADD2Dv3r1Gz3Hx4kWTZSIi+TD2JXztWhTef/9Zm+bacSXe3t7VnukHHyGMHWc9Q5MlWjIKq/p5atbWm5oVWjtBojOXpTCFwYeIiJzK0Jdwjx77sX9/D5v7oLgSlUoFoCo01J5G769mJu1xtjBnqgBz+zkZCizGwuqRI0nQXpur/s4YfIiIyClMdTa2pQ+KPVdOl4Ij5v8xt3Zl5Mi/6U1rAtR9f7QdmquHU1OzQjtjWQpTGHyIiMgp6ppoz5pw4KxJES0h5XB6W4WGhlo0dL5mh+YePfYjKuqa7vdSfR0wwDUmdKyJwYeIiJzGWPiwNhwYWjndUOdoZ/Q3MXc4ffX5fqq/1pagJsVkiYY6NO/f3wNpaSt153SVQGcKg48VRPVeaGQXvMdE8iTVXDuANAuRSsnYMHi1Wo3t27frnn/88ccGX29tLZVU98Gc5kdXWZbCFAYfC2jnvSkrK4Ovr6+TS1O/af/HUHOuISKq36Saa0eqCfqkZk5wkbKWSsr7YG7fJFdYlsIUBh8LeHl5wc/PDzdv3oS3tzc8PLi4vT1oNBrcvHkTfn5+8PLiR5RIbqToe+MKkwRaQ+paKinvg619kxy5LIUp/FaxgEKhQGRkJLKzs3UrnJN9eHh4oFmzZlAoFHUfTERUg6uunG6KpbUzpkavaefrkeI+mNv8OGjQIAQFBRk9hytMXggw+FhMqVSiZcuWLjMRU32lVCpZo0ZEVnOlkVPmsqR2xtzRa3XdB3NqYaRqfnQVDD5W8PDwQIMGDZxdDCIiMsEdOtpWZ0ntjLl/fA8YMABjx4ZizpybuHjRC7GxFYiKegDAAxaFFXcJNeZg8CEiIqeScsJBa1dOdwX2qKXSztMTGQkkJkpYWDfG4ENEREbZexZkqSccdPdmGWtrqaSYp0cuGHyIiMggR8yCbI8JB1011Bhjay2Vq81X5OoYfIiIZMicmhxHz4Is1y9wW2qpXHW+IlfG4ENEJDPm1uSkpKTofrZ3KJH7F7i1tVTuOl+RM3G8MBGRzBiqycnOjoVaHaC3vby8XLffUCipebwtTH2Bk3HakWDVufp8Rc7GGh8iIhkzpybHEbUK7jjhoDNp+/tIMU+P3DD4EBHZkb1HRdnC3OYlR4QSd5xwsC72/N3X7Bdk6zw9csLgQ0RkJ44YFWWLumpybt26BcBxocRdJhw0J9AAsPvvvvrrOE+P+Rh8iIjsxNzRTs5aAqeumpyDBw/qttsrlLjbhIPmhtlBgwbpPbf3iDgyH4MPEZFMmVOTU/MLW+pQ4owJB21pgjJ3iH9FRYXuZ7kO03dVDD5ERA7iirPrmqrJMfWFPWDAAISGhkoSShzZzFezxsbY78ScJihzAo3ch+m7IgYfIiIHcKW/+s1pXqrrC1u7BpS7qV5jY+p3UlZWZrBmKC8vD4D5gYbz7LgeBh8iIjtztb/6TTUv5eXlIT093SFf2NWDRWFhoa55KDfXC5cu+SA+XoNWrfwBSN/cVdfvpLCwEB9//LHR15t7fzhM3/Uw+BAR2Zmj/uq3pO9KXSHC1i/suspSUlKCDz74QPdc2+R07Vok9u/vYbAWRsrRb3X9Tqr30alePm2TmLn3pz4O03d3DD5ERHbmiL/6pR46b8sXtrn9aLSqNzkBAoACQO1aGEtGQBkLXtqmKkt+J8aaxMy9P+4yTF8uGHyIiOzEkbPr2mNBUWu/sM3tR6MtZ/UmJ23o0bKmZsyc4GVusDPVJGbq/nh7e+udx9WH6csJgw8RkZ04a3ZdWzpSSzmvjjl9mww1OVVnTc2YucHLnGBXV5OYsfsTFhbm8GH6ZB4GHyIiO3L07Lq2dqSWcl4dc/o2GWpy0jZ32dofxpx7YSy4aNXVJKYd1l8dA41rY/AhIqpHpOhILdWXtjn9aAw1OfXosR9RUdds7g9jy73QNlXV1STmrsP65axeBp9//etfeOONN5Cbm4sOHTpgzZo1ePDBB51dLCIiu3Ol4dPm9qOxV+dfa2prgKoam+o1XuycXL/Uu+Czfft2TJkyBevXr0fnzp2xcuVKJCcnIzMzE40bN3Z28YjICVx5hXSp2Wv4tLX30NzQUFeTkzVsqa3Jz883q3zsnOx+6l3wWb58OZ577jmMHDkSALB+/Xrs3r0b7733HmbOnOnk0hGRozl6hXRXCFlS11DYusyDVKGmpKQEOTk5RvcburfW3gtnrCFGjlGvgk9ZWRmOHz+OWbNm6bZ5eHigR48eyMjIMPia0tJSlJaW6p4XFRXZvZxE5DiOXCHd0SGrOnuucm7JMg+WvMfQoUPh5+cHQH/mZi1vb2+oVCoAxic8NBS+arI2eDHU1E/1Kvjk5eWhsrIS4eHhetvDw8Px66+/GnzN4sWLMX/+fEcUj4hcgD0XCrXHXDrmckQNhbkjxqwpS10dhKvX9NQVvswNXmymkqd6FXysMWvWLEyZMkX3vKioCE2bNnViiYjIXhy5UKgzFiW1dw2FJaOk7FUWc8IXm6nIlHoVfEJDQ+Hp6Ynr16/rbb9+/ToiIiIMvsbHxwc+Pj6OKB4ROZEjFwp1tUVJpeIKI8bMDV8MNWSM8eky3ZBSqURiYiIOHDig26bRaHDgwAEkJSU5sWRE5GymvjDd+b0cSTtKSqHQAIBTFtzUhq/quNo5WaJe1fgAwJQpUzB8+HB06tQJDz74IFauXIk7d+7oRnkRkTw5srbCFWpG7MXUKCntAqDXrnkgO9sLcXEViIqqCilSNS1xtXOyVb0LPikpKbh58ybmzJmD3Nxc3H///fjqq69qdXgmInlx5Bdmff9yNjZKKj093WTfJqlGs3FCQbJFvQs+QNV/XIaGNBKR/FQfuWPqC1PqET716cvZ3HtTV98mKUez2WPCQ5KHehl8iIi0HDnCx55z6ThTXfcwLy8P6enpkqwTZgyHqJNUGHyIqN5z1Aif+jyM2pwy27NvU32+t+RYDD5ERBKS8xevvfs2yfneknQYfIiISDL1qW8T1U8MPkRUL7jC4qBURdu3Sa0OQHZ2rG7Jjry8PP4eyOkYfIjI7TlzcVAyzNCwdiAdAH8P5FwMPkTk9py5OKirsqUGrPprzZmMsOZIKkcOayeyFIMPEdUrzlgc1NXUrAEzFgQN1bxUf625kxFqR1xdu3bN7sPaiWzF4ENE9UZ9XRzUUtVrVEyFF0M1L9ptltbahISE6LbV5yU7yP0x+BBRveEuNQ2O6ohtSxC05V7W9yU7yL0x+BBRveGomgZb+884qiO2LeHF1nvJYe3kqhh8iKjecERNg63BxdaO2OaELi1bwosU95LraZErYvAhonrF3jUN5o5IMuc4Sztim9tpedCgQQBsDy+staH6iMGHiNyeMxcHNRY+zHmdpf1v6uq0XBVSQvDf/6p1x9kaXiypteFCouQOGHyIyO05awFLUzU2eXl5Jt/blv43hkLTF1/0hUJR9fP772vQr98NXVmMhRepZ1LmQqLkDhh8iKhecPSXaV01Nunp6XrH1+zzY0v/G0OhCfCAEDBYluplrl47pS1j9bLZWmvDUEOujsGHiMgKxmpsLl+ORkHBn3V2Vral/42h0FRTzdojc+fzYa0N1XcMPkREVjAcPjTYseMfZndWNtX/pnpTGVAVNtTqqr47NUMToAGg+N+jSvXaI0v7EzHUUH3G4ENEZAVj4UOIqvBhLFyY0xFbrQ7AsmUnTHaYjo+/gIEDdwAQaNr0CrKyWhitPXKXiR2JHIHBh4jIAtWDS/Uamzt3/PHpp0/pHWsoXBhqSsrLy9P1tzFniLuxY4zVHnEJCaK/MPgQEVmgZnDRhha1OsDscGGsKcmcJqm6jjFUg8MlJIj+wuBDRGQhQ8FFinBhTpOUtc1WnIyQqAqDDxGRRGwNF+Y0Sdm6DAUDD8kdgw8RkQ2knDXanFqjrKwWuvl6ANQ6ZsCAAQgNDQUAqNVqbN++3eJrIKrPGHyIiGwg9bw3pmqNtP17gL9qe4SoGuGlFRoaisjISABAZGQk5+QhqoHBh4jITOasjC5FiDBWa2RsxmZT/XsYaoj0MfgQEZmh5sroxtRcmsIc5jY1mdO/h81WRKYx+BARmaFmTY+xVdlN1QgZU1dzmXbIfF19gFJSUljDQ1QHBh8iIguZM8mgpaToA6RSqWwqA5EcGF/hjoiIajE2gaBaHeCwMqhUxYiL+4ND04mswOBDRGQBUxMI2ou5/XbYv4eobmzqIiKLOGpkk6tyxrpXUg+ZJ5IzBh8iMlvNkU3GOvhaM7LJXThr3av6ej+JHI3Bh4jMVr3GwVQHX2tGNrkTrntF5L7Yx4eILOYKHXwdzdDSFIY6GLOfDZFrY40PEVnM2hXCq3N0XyFb34/9bIjqBwYfIrKYrR187TkLsj3fj6GGyP2xqYuILKbt4KtQaADUXiG8Lub2AZKqr5Cj34+IXBdrfIjIKlJ28DU2OsxeHP1+ROQ6GHyIyGrGVhG3hD2Wf3Cl9yMi18KmLiIym9QzCDt6dJgcR6MRkT7W+BCR2aQe2STF6DBLOPr9iMj1MPgQkUWkHNnk6OUfnLHcBBG5FjZ1EZHT2Do6zNXfj4hcD2t8iNxE9Qn4rl3zQHa2F+LiKhAVVfUl7k6T51XvA2RqdJhUsyA7+v2IyHUphBDC2YVwJUVFRVCpVFCr1QgMDHR2cYgA6E/AZ2pUkjstDupuMzcTkWsz9/ubNT5EbkD7hW1sVFJ8/AWoVMVuNQGfo0MGQw0RAQw+RG7FVUclsTaFiNwFgw+RG3HEqCRLQ4yj190iIrIFgw+RG9GOSqrZx0eq2h5rQgzXwSIid8LgQ+RmpFwjqyYpQgzXwSIiV8bgQ+SGpFgjyxyWhhiug0VEro7Bh4gMsjTE1DXijIjIFXDmZiI3IPXioHWxZjFPUyPOiIhcBWt8iJzI3BFUUi8OaqwseXl5AKwbNs91sIjIHTD4EDlJzRFUxvrTaEdQ2XMoeM2yWBNi7D3ijIhICgw+RE5SvfbGVH8aU7U8Uk0cWPMcloQYroNFRO6EwYfIyaztFGzPiQPV6gA0anQLo0f/P5SXK02GGEc0wxERSYXBh8jJrF2GombQMNZUZunEgYZqn+Li/gAADBgwAFFRUbVCDEMNEbkLBh8iJ5OiU7BU8+fUVfsUGhrKkENEbo3D2YmcTNufRqHQAIDFnYKtGXpuDIekE1F9xxofIhdgyzIUUq7YziHpRFTfscaHyEWoVMWIi/vD6rBSnbVhxdbaJyIiV8caHyInkWo2Zinmz+GQdCKSCwYfIieRchi4rSu2c0g6EckFgw+RE9kSJGrWvhhbsd3cWhqGGiKSAwYfIjdlay2NVLM+ExG5E7cIPhcvXsSCBQvwzTffIDc3F1FRURg6dChmz56t99fs6dOnMXHiRBw7dgxhYWGYNGkSpk+f7sSSk7u4cgU4fx5o2RKIjnZ2acxnbTCx56zPRESuzC2Cz6+//gqNRoO3334bLVq0wNmzZ/Hcc8/hzp07ePPNNwEARUVF6NmzJ3r06IH169fjzJkzGDVqFIKCgjB27FgnXwG5Im2Nx9atvpg+XQWNRgEPD4HXX1fjmWf+rNc1HubO5mzprM9ERK7OLYJPr1690KtXL93z5s2bIzMzE+vWrdMFnw8//BBlZWV47733oFQq0bZtW5w6dQrLly9n8KFatDUeanUAVq5MgxAKAIBGo8C0aYG4evU9qFTFsqnxMLbcBRFRfWN28CkqKjL7pIGBgVYVxhJqtRrBwX/NJpuRkYGuXbvqNX0lJydj6dKluHXrFho1amTwPKWlpSgtLdU9t+Q6yb7s2fykrcmoa/I/OdR4mFruIi8vT+/Y+lwLRkTyYHbwCQoKgkKhMHmMEAIKhQKVlZU2F8yUCxcuYM2aNbraHgDIzc1FXFyc3nHh4eG6fcaCz+LFizF//nz7FZassmEDMHYsoNEAHh7AO+8Ao0dL/z5yn6m4rrW50tPTa71GLrVgRFQ/mR18Dh48KPmbz5w5E0uXLjV5zLlz59C6dWvd86tXr6JXr1546qmn8Nxzz9lchlmzZmHKlCm650VFRWjatKnN5yXr5Ofn4+LFCowd2xgajbb5CRg3TuD++28gNtZL0i9dKSb/c2fWLHchh1owIqq/zA4+3bp1k/zNp06dihEjRpg8pnnz5rqfr127hscffxxdunTBO++8o3dcREQErl+/rrdN+zwiIsLo+X18fODj42NhycketP1usrNjodEM19tXWanAmjV7EBf3h+Q1DrZO/mcpVxpGbk2NV15eHpu8iMhtWd25ubCwEBs2bMC5c+cAAG3btsWoUaOgUqnMPkdYWBjCwsLMOvbq1at4/PHHkZiYiI0bN8LDQ/+v1KSkJMyePRvl5eXw9vYGAOzbtw+tWrUy2sxFrkUbBur6MrZHjYOxyf+k5mrDyE3VeBnr8Kxt/mKTFxG5I6uCz08//YTk5GT4+vriwQcfBAAsX74cCxcuxN69e5GQkCBpIa9evYrHHnsMMTExePPNN3Hz5k3dPm1tzjPPPIP58+dj9OjRmDFjBs6ePYtVq1ZhxYoVkpaF7K8+Nz+5yjDyutbmMtXh2VFlJCKyB6uCz4svvoj+/fvj3XffhZdX1SkqKiowZswYpKWl4bvvvpO0kPv27cOFCxdw4cIFRNcY3iOEAACoVCrs3bsXEydORGJiIkJDQzFnzhwOZXdTjm5+chZnDSMPCQnBoEGD8PHHHwPQr/Gqq8MzEZE7s7rGp3roAQAvLy9Mnz4dnTp1kqxwWiNGjKizLxAAtG/fHt9//73k70/OYc/mJ6lWRreFJcPItWWRsmkpKChI77k2hN2542eww/Ply9FQqc5J9v5ERM5gVfAJDAzEpUuX9EZbAcDly5cREBAgScGI7MnZq5FbM4wcsF+/muohDNAAEAD0p6/YseMfKCur3eRFROROrAo+KSkpGD16NN5880106dIFAPDDDz9g2rRpGDx4sKQFJLIXZ3bMrWsYubEmsLr61VgzYqxmCAOqh5+/ysgmLyKqD6wKPm+++SYUCgWeffZZVFRUAAC8vb0xYcIELFmyRNICEtVHpkaumdOx2BBrR4wZCmGAB7p2PYjvvntcb2tdc/wQEbm6mv+3M4tSqcSqVatw69YtnDp1CqdOnUJBQQFWrFjBOXHIaq7Q78ZRtCPXFAoNAOgCDgCDTWBqdd1NyNVHO5pSs0ZIG8KqUyg0uOee8wa3y2VWayKqn2xapNTPzw/t2rWTqiwkc87ud+MIdQ0jz86OtXgmZaCqtmf79u1WlcXY9AHR0TkmpxWoDwGUiOTHquBz9+5drFmzBgcPHsSNGzeg0ej/VXjixAlJCkfy486hxhzGwl1eXh7S09OtXjvMUFisa6h8zbLMmXMTFy96ITa2Av7+96C8PA6DBnnpbY+KegDAA24fQIlIvqwKPqNHj8bevXvxj3/8Aw8++GCdi5cS0V9MBQapJm80t59Q9bJERgKJidpn4XrH/bWdiMi9WRV8du3ahS+//BIPP/yw1OUhkj1bJ29UqwPwxRd9oe3Cx9FYRER/sSr4NGnShPP1EEmoZn8ZY5M3mtOv5ujRzqg5boGjsYiIqlgVfJYtW4YZM2Zg/fr1iImJkbpMRLIjVcdutToAGRlJBvZwNBYREWBl8OnUqRPu3r2L5s2bw8/PT7caulZBAf8HS2QpKToLG56TB+jSJYOjsYiIYGXwGTx4MK5evYpFixYhPDycnZuJXISxUWGdOx8FAAwaNIijsYhI1qwKPkeOHEFGRgY6dOggdXmIyAp1zcmjre1p3LixM4tJROR0VgWf1q1b488//5S6LERkJVNz8nDuHSKiv1gVfJYsWYKpU6di4cKFaNeuXa0+PoGBgZIUjshRrFnc09UYn5OHiIi0FEIIYemLPDyq+g/U7NsjhIBCoUBlZaU0pXOCoqIiqFQqqNVqBjiZsHZxTyIich3mfn9bVeNz8OBBqwtG5Gpq1vQYW+rBVI0QERG5B6uCT7du3cw67vnnn8err76K0NBQa96GyOHMXeqBiIjcU+0JPyT0wQcfoKioyJ5vQSQZtTpAF3qAv5Z6UKs5SzkRUX1h1+BjRfchIqcxNPmfdqkHIiKqH+wafIjciXbyv+oUCi71QERUnzD4EP2PdvI/bfipOfkfERG5P6s6NxPVVwkJJxEffwEFBcEIDi5g6CEiqmcYfEj2ai7aqVIVGww8XNyTiMj9WRx8KioqsGjRIowaNQrR0dEmjx06dCgnASTJ2Gt25ZrLPUh5biIici1WzdwcEBCAM2fOIDY21g5Fci7O3OyaOLsyERGZYteZm7t3745Dhw7Vy+BDtbnCOlacXZmIiKRgVfDp3bs3Zs6ciTNnziAxMRH+/v56+/v37y9J4cjxaoacwsJCfPzxx3W+zpE1LZxdmYiIrGVV8Hn++ecBAMuXL6+1z90XKZUzc5uTDLl27ZpeYLJXLZCx2ZXj4y9wBBYREdXJquCj0WjqPojcji3NROnp6bW22aMWyNTsyvYIPq7QzEdERNKxKvi8//77SElJgY+Pj972srIybNu2Dc8++6wkhSPHyc/PR15enqTntEd/G+3sytXDj71mV2aHaiKi+seqmZtHjhwJtVpda3txcTFGjhxpc6HIsbRf8IZqbVyNI2dXNtShOjs7ttaipexQTUTkPqyq8RFCQKFQ1Np+5coVqFQqmwtFjuVuX9zOmF3ZVIdqYzVlbAYjInI9FgWfjh07QqFQQKFQ4IknnoCX118vr6ysRHZ2Nnr16iV5Icl1GBpGbmxouZTsPbuyob482kBTV4dqUzVlbAYjInItFgWfJ598EgBw6tQpJCcno2HDhrp9SqUSsbGxGDhwoKQFJOepGWgM1XoAcMjQcnvOrlxXXx5zOlRzXiEiIvdgUfCZO3cuACA2NhYpKSlo0KCBXQpFzlcz5PTosR/79/fQq/X44ou+UCjgsKHl9qo5qWtyxLo6VHNeISIi92FVH5/hw4cDqPrCuHHjRq3h7c2aNbO9ZOQ0hpp2qoeev3ig5oIn9hxa7gjGQky/frtqbVepijmvEBGRm7Eq+Jw/fx6jRo3CkSNH9LZrOz1zAkP3ZqxpR6EQEKJ6p3aNXo0PoF8T4m6rmZsKMcY6VDt6XiEiIrKNVcFnxIgR8PLywq5duxAZGWlwhBe5L2NNO7NnF2PxYhUqKwFPT4GlS4sAADNmqFBZqdBte+aZwW45oqmuEGOoQ7Uj5xUiIiLbWRV8Tp06hePHj6N169ZSl4ecwFDNTFJSBjIykvSadtLSHsa4ccCFC0CLFgpERwcBAFJSam4LcmTxJVNXiBkwYABCQ0MBVI34Sk9P180rZKgZjIiIXI9VwadNmzaSz/JLzlN9xNTWrb549VUVNBoFFAqB8eNvY8yYO4iNfVhXgxMdrf/66Oja29xRXSEmNDQUkZGRtV7njHmFiIjIOlYFn6VLl2L69OlYtGgR2rVrB29vb739gYGBkhSOHCckJARXrgDTpwPavupCKPDuuw0xe3ZDuFmrldXMDTH2nleIiIjsw6rg06NHDwBA9+7d9fr3sHOzezt//q/Qo1VZWdWMVR9qdIyxJsTYc14hIiKyH6uCz8GDB6UuB7mAli0BDw/98OPpCbRo4bwyOYK1IYahhojI/VgVfLp164bvv/8eb7/9NrKysvDpp5+iSZMm2LJlC+Li4qQuIzlIdDTwzjvAuHH438gt4O2363dtjxZDDBGRPFi1OvuOHTuQnJwMX19fnDx5EqWlpQAAtVqNRYsWSVpAcqzRo4GLF4GDB6v+HT3a2SUiIiKSjlXB57XXXsP69evx7rvv6nVsfvjhh3HixAnJCkfOER0NPPaYPGp6iIhIXqwKPpmZmejatWut7SqVCoWFhbaWiYiIiMgurAo+ERERuHDhQq3thw8fRvPmzW0uFBEREZE9WBV8nnvuOUyePBlHjx6FQqHAtWvX8OGHH+Kll17ChAkTpC4jERERkSSsGtU1c+ZMaDQaPPHEEygpKUHXrl3h4+ODl156CZMmTZK6jCRj+fn5nCuHiIgkoxBCCGtfXFZWhgsXLuD27dto06YNGjZsKGXZnKKoqAgqlQpqtZozUDtZfn4+1q5dq3uuVgegoCAEwcH5ehMMpqamMvwQEcmcud/fVtX4aCmVSrRp08aWUxAZVb2m58SJjrXW0EpIOFnrOFOq1x5du+aB7GwvxMVVICqqasZG1h4REdV/NgUfIkdQqwN0oQcAhPDAzp19ER9/ASpVscEFc2uGmOq1R6ZCFGuPiIjqNwYfcnkFBSG60KMlhAcKCoKhUhVj48Z9dTaBaWt66gpR5tYeERGRe2LwIZcXHJwPhUKjF34UCg2CgwssbgKrK0QREVH9ZtVwdiJHUqmK0a/fLigUVX1xtAEHgMHaG7U6wOi5tCGqOm2IIiKi+o81PuSS8vPz9fruJCScRHz8BRQUBCM4uAAqVTGys2Mtrr3RhqiatUSs7SEikgcGH3I5poaxx8X9odtuqgnMFEMhioiI5IHBh1yOucPYbam9UamKGXiIiGSIwYdcVl0jsADW3hARkWUYfMhlmTsCy5zaG6VSadZ7mnscERG5JwYfclnW9uHRqh5iQkJCkJqaynW/iIhkjsGHHK6uhUfVajWAuvvwDBgwAKGhoQbPYSjEMNQQERGDDzmUuQuPapnqwxMaGorIyEiHlJuIiOoHBh9yKHNHbFXHEVhERCQVztxMTmFsxJapWZdrYkdkIiKylNvV+JSWlqJz5874+eefcfLkSdx///26fadPn8bEiRNx7NgxhIWFYdKkSZg+fbrzCktG1TVia9CgQQgKCjL6enZEJiIia7hd8Jk+fTqioqLw888/620vKipCz5490aNHD6xfvx5nzpzBqFGjEBQUhLFjxzqptGRMXSO2goKC2H+HiIgk51bBZ8+ePdi7dy927NiBPXv26O378MMPUVZWhvfeew9KpRJt27bFqVOnsHz5cgYfB6prxFZhYSEArplFRETO4TbB5/r163juuefw+eefw8/Pr9b+jIwMdO3aVa/fR3JyMpYuXYpbt26hUaNGjiyuLEk5YouIiMge3CL4CCEwYsQIjB8/Hp06dcLFixdrHZObm4u4uDi9beHh4bp9xoJPaWkpSktLdc+LioqkK7jMcMQWERG5OqeO6po5cyYUCoXJx6+//oo1a9aguLgYs2bNkrwMixcvhkql0j2aNm0q+XvIDUdsERGRq3Jqjc/UqVMxYsQIk8c0b94c33zzDTIyMuDj46O3r1OnThgyZAg2b96MiIgIXL9+XW+/9nlERITR88+aNQtTpkzRPS8qKqpX4aeuPjf2GB1V14itlJQUqFQqh5aJiIgIcHLwCQsLQ1hYWJ3HrV69Gq+99pru+bVr15CcnIzt27ejc+fOAICkpCTMnj0b5eXl8Pb2BgDs27cPrVq1Mtm/x8fHp1agqi9q9rkxJjU1VdKgYWrEllodgB9+UOL++z0QFaUBwKBDRESO4xZ9fJo1a6b3vGHDhgCA+Ph4REdHAwCeeeYZzJ8/H6NHj8aMGTNw9uxZrFq1CitWrHB4eV2FqZoea44zl7ERW1lZLYz2+5E6fBERERniFsHHHCqVCnv37sXEiRORmJiI0NBQzJkzh0PZnaTmiC0AWLkyrVa/n/j4C1CpiiUPX0RERIa4ZfCJjY2FEKLW9vbt2+P77793QonIkOojtrKzY032+yEiInIErtVFkjE1Ekvb76e66jM1ExEROYJb1viQawoJCUFqaqpes1VeXh7S09M5UzMREbkEBh+SlKkOypypmYiInI3BR0bqWkLCEThTMxERORODTz1Wvc+NqSUkOEsyERHJBYNPPabtc3PxYgVefbUxhFAAqBpNtXt3P8yZ0xmxsV52nT/H3FDF8EVERI7A4FPPhYSE4PRpQKM/oAqVlQoUF4fD3nMGGurwXBNnbiYiIkdh8JGBli0BDw/98OPpCbRo4Zj3Z6ghIiJXwXl8ZCA6GnjnnaqwA1T9+/bbVduJiIjkhDU+MjF6NJCcDFy4UFXTw9BDRERyxOAjI9HRDDxERCRvbOoiIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwIatduQIcPFj1LxERkTtg8CGL5OfnIycnB8uWFSImRqB7dyAmRmDZskLk5OQgPz/f2UUkIiIyijM3y0x+fr7VK6Xn5+dj7dq1UKsDsHJlGoRQAAA0GgWmTQvE1avvQaUqRmpqKhcmJSIil8TgIyPa4KKlVgegoCAEwcH5UKmKdduNBRdtYCooCIEQ+pWFQnigoCAYKlWxyWBFRETkTAw+MlI9kJw40RE7d/aFEB5QKDTo128XEhJO1jrOkODgfCgUGr3wo1BoEBxcYJ+CExERSYR9fGRIrQ7QhR6gqrZm586+UKsDzHq9SlWMfv12QaHQAIAuOFWvNSIiInJFrPGRobqaqsyRkHAS8fEXUFAQjODgAoYeIiJyCww+MiRVU5VKVczAQ0REboVNXTLEpioiIpIr1vjIFJuqiIhIjhh8ZMzSpiqlUinpcURERI7G4CMjtgaXkJAQpKamWj0BIhERkbMphBDC2YVwJUVFRVCpVFCr1QgMDHR2cSRny8zNRERErsrc72/W+MiMJaHmyhXg/HmgZUsgOtqOhSIiInIQjuoigzZsAGJi8L9FSKueExERuTsGH9KTn5+P48evY+xYAU3VaHdoNMC4cQLHj1/n6utEROTW2NRFOtpFTLOzY6HRDNfbV1mpwJo1exAX9wdXXyciIrfFGh/S0XZ61s7sXF31mZ25+joREbkrBh+qhTM7ExFRfcWmLjKIMzsTEVF9xOBDRnERUiIiqm/Y1EVERESyweBDREREssHgQ0RERLLB4EM6XH2diIjqO3ZuJh2uvk5ERPUdgw/pYaghIqL6jE1dREREJBsMPkRERCQbDD5EREQkGww+REREJBsMPi7qyhXg4MGqf4mIiEgaDD4uaMMGICYG6N696t8NG2ofw2BERERkOQYfF3PlCjB2LKDRVD3XaIBx46q25+fnIycnB8uWFSImRvwvGAksW1aInJwc5OfnO7fwRERELo7z+LiY8+f/Cj1alZXA8eNqnDq1Fmp1AFauTIMQCgCARqPAtGmBuHr1PahUxUhNTeVcPEREREawxseF5OfnIzDwOjw8hN52T08BP79rAICCghAIof9rE8IDBQXBAGBy1mUiIiK5Y42Pi8jPz8fatWsBAH37dsTOnX0hhAcUCg369NmFI0dOAgCCg/OhUGj0wo9CoUFwcIFTyk1EROROGHxcRPWamoSEk4iPv4CCgmAEBxdApSrW7VOpitGv3y69YNSv3y69Y4iIiMgwBh8XpVIVGw0z8fEXMHDgDgACTZteYeghIiIyE4OPmzlxomOt2p6EhJPOLhYREZFbYOdmN6JWB+hCD1DVqXnnzr5QqwOcXDIiIiL3wODjRuoa0UVERESmMfi4Ee2IrupqjuhSKpWOLhYREZHbYPBxI9oRXdrwU3NEV0pKCicvJCIiMoGdm12EuTU1poe6q+xVPCIionqBwcdFhISEIDU11eDMy3l5eUhPT9c9NzXUnYiIiIxj8HEhbKYiIiKyL/bxcQPmNoOxYzMREZFprPFxA6aawbSUSiVrjIiIiOrgVjU+u3fvRufOneHr64tGjRrhySef1Nt/6dIl9OnTB35+fmjcuDGmTZuGiooK5xRWYiEhIYiMjDT6YOghIiKqm9vU+OzYsQPPPfccFi1ahO7du6OiogJnz57V7a+srESfPn0QERGBI0eOICcnB88++yy8vb2xaNEiJ5aciIiIXIVCCCGcXYi6VFRUIDY2FvPnz8fo0aMNHrNnzx707dsX165dQ3h4OABg/fr1mDFjBm7evGl2/5eioiKoVCqo1WoEBgZKdg1ERERkP+Z+f7tFU9eJEydw9epVeHh4oGPHjoiMjETv3r31anwyMjLQrl07XegBgOTkZBQVFeG///2vM4pNRERELsYtgs/vv/8OAJg3bx7++c9/YteuXWjUqBEee+wxFBRULdeQm5urF3oA6J7n5uYaPXdpaSmKior0HkRERFQ/OTX4zJw5EwqFwuTj119/hUZTtUTD7NmzMXDgQCQmJmLjxo1QKBT45JNPbCrD4sWLoVKpdI+mTZtKcWlERETkgpzauXnq1KkYMWKEyWOaN2+OnJwcAECbNm102318fNC8eXNcunQJABAREYEff/xR77XXr1/X7TNm1qxZmDJliu55UVERww8REVE95dTgExYWhrCwsDqPS0xMhI+PDzIzM/HII48AAMrLy3Hx4kXExMQAAJKSkrBw4ULcuHEDjRs3BgDs27cPgYGBeoGpJh8fH/j4+EhwNUREROTq3GI4e2BgIMaPH4+5c+eiadOmiImJwRtvvAEAeOqppwAAPXv2RJs2bTBs2DC8/vrryM3NxT//+U9MnDiRwYaIiIgAuEnwAYA33ngDXl5eGDZsGP7880907twZ33zzDRo1agQA8PT0xK5duzBhwgQkJSXB398fw4cPx6uvvurkkhMREZGrcIt5fByJ8/gQERG5n3o1jw8RERGRFBh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDa8nF2A+iw/Px9lZWVG9yuVSoSEhDiwRERERPLG4GMn+fn5WLt2bZ3HpaamMvwQERE5CJu67MRUTY81xxEREZHtGHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHzsRKlUSnocERER2Y4TGNpJSEgIUlNTOXMzERGRC2HwsSOGGiIiItfCpi4HuXIFOHiw6l8iIiJyDgYfB9iwAYiJAbp3r/p3wwZnl4iIiEieGHzs7MoVYOxYQKOpeq7RAOPGseaHiIjIGRh87Oz8+b9Cj1ZlJXDhgnPKQ0REJGcMPnbWsiXgUeMue3oCLVo4pzxERERyxuBjZ9HRwDvvVIUdoOrft9+u2k5ERESOxeHsDjB6NJCcXNW81aIFQw8REZGzMPg4SHQ0Aw8REZGzsamLiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDa3XVIIQAABQVFTm5JERERGQu7fe29nvcGAafGoqLiwEATZs2dXJJiIiIyFLFxcVQqVRG9ytEXdFIZjQaDa5du4aAgAAoFAqzXlNUVISmTZvi8uXLCAwMtHMJXRfvQxXeB94DLd6HKrwPvAda9rwPQggUFxcjKioKHh7Ge/KwxqcGDw8PREdHW/XawMBAWX+gtXgfqvA+8B5o8T5U4X3gPdCy130wVdOjxc7NREREJBsMPkRERCQbDD4S8PHxwdy5c+Hj4+PsojgV70MV3gfeAy3ehyq8D7wHWq5wH9i5mYiIiGSDNT5EREQkGww+REREJBsMPkRERCQbDD5EREQkGww+Rqxbtw7t27fXTbKUlJSEPXv26PbfvXsXEydOREhICBo2bIiBAwfi+vXreue4dOkS+vTpAz8/PzRu3BjTpk1DRUWFoy9FMkuWLIFCoUBaWppum1zuw7x586BQKPQerVu31u2Xy324evUqhg4dipCQEPj6+qJdu3b46aefdPuFEJgzZw4iIyPh6+uLHj164Pz583rnKCgowJAhQxAYGIigoCCMHj0at2/fdvSlWC02NrbWZ0GhUGDixIkA5PNZqKysxCuvvIK4uDj4+voiPj4eCxYs0FsnSQ6fh+LiYqSlpSEmJga+vr7o0qULjh07pttfH+/Bd999h379+iEqKgoKhQKff/653n6prvn06dN49NFH0aBBAzRt2hSvv/66NBcgyKAvvvhC7N69W/z2228iMzNTvPzyy8Lb21ucPXtWCCHE+PHjRdOmTcWBAwfETz/9JB566CHRpUsX3esrKirEfffdJ3r06CFOnjwpvvzySxEaGipmzZrlrEuyyY8//ihiY2NF+/btxeTJk3Xb5XIf5s6dK9q2bStycnJ0j5s3b+r2y+E+FBQUiJiYGDFixAhx9OhR8fvvv4uvv/5aXLhwQXfMkiVLhEqlEp9//rn4+eefRf/+/UVcXJz4888/dcf06tVLdOjQQfznP/8R33//vWjRooUYPHiwMy7JKjdu3ND7HOzbt08AEAcPHhRCyOOzIIQQCxcuFCEhIWLXrl0iOztbfPLJJ6Jhw4Zi1apVumPk8HkYNGiQaNOmjTh06JA4f/68mDt3rggMDBRXrlwRQtTPe/Dll1+K2bNni/T0dAFAfPbZZ3r7pbhmtVotwsPDxZAhQ8TZs2fFRx99JHx9fcXbb79tc/kZfCzQqFEj8f/+3/8ThYWFwtvbW3zyySe6fefOnRMAREZGhhCi6oPh4eEhcnNzdcesW7dOBAYGitLSUoeX3RbFxcWiZcuWYt++faJbt2664COn+zB37lzRoUMHg/vkch9mzJghHnnkEaP7NRqNiIiIEG+88YZuW2FhofDx8REfffSREEKIX375RQAQx44d0x2zZ88eoVAoxNWrV+1XeDuaPHmyiI+PFxqNRjafBSGE6NOnjxg1apTetgEDBoghQ4YIIeTxeSgpKRGenp5i165detsTEhLE7NmzZXEPagYfqa75rbfeEo0aNdL7b2LGjBmiVatWNpeZTV1mqKysxLZt23Dnzh0kJSXh+PHjKC8vR48ePXTHtG7dGs2aNUNGRgYAICMjA+3atUN4eLjumOTkZBQVFeG///2vw6/BFhMnTkSfPn30rheA7O7D+fPnERUVhebNm2PIkCG4dOkSAPnchy+++AKdOnXCU089hcaNG6Njx4549913dfuzs7ORm5urdx9UKhU6d+6sdx+CgoLQqVMn3TE9evSAh4cHjh496riLkUhZWRk++OADjBo1CgqFQjafBQDo0qULDhw4gN9++w0A8PPPP+Pw4cPo3bs3AHl8HioqKlBZWYkGDRrobff19cXhw4dlcQ9qkuqaMzIy0LVrVyiVSt0xycnJyMzMxK1bt2wqIxcpNeHMmTNISkrC3bt30bBhQ3z22Wdo06YNTp06BaVSiaCgIL3jw8PDkZubCwDIzc3V+x+bdr92n7vYtm0bTpw4oddmrZWbmyub+9C5c2ds2rQJrVq1Qk5ODubPn49HH30UZ8+elc19+P3337Fu3TpMmTIFL7/8Mo4dO4YXXngBSqUSw4cP112Hoeusfh8aN26st9/LywvBwcFucx+q+/zzz1FYWIgRI0YAkNd/EzNnzkRRURFat24NT09PVFZWYuHChRgyZAgAyOLzEBAQgKSkJCxYsAD33nsvwsPD8dFHHyEjIwMtWrSQxT2oSaprzs3NRVxcXK1zaPc1atTI6jIy+JjQqlUrnDp1Cmq1Gp9++imGDx+OQ4cOObtYDnP58mVMnjwZ+/btq/UXjdxo/4oFgPbt26Nz586IiYnBxx9/DF9fXyeWzHE0Gg06deqERYsWAQA6duyIs2fPYv369Rg+fLiTS+ccGzZsQO/evREVFeXsojjcxx9/jA8//BBbt25F27ZtcerUKaSlpSEqKkpWn4ctW7Zg1KhRaNKkCTw9PZGQkIDBgwfj+PHjzi4aGcGmLhOUSiVatGiBxMRELF68GB06dMCqVasQERGBsrIyFBYW6h1//fp1REREAAAiIiJqjeTQPtce4+qOHz+OGzduICEhAV5eXvDy8sKhQ4ewevVqeHl5ITw8XBb3wZCgoCDcc889uHDhgmw+D5GRkWjTpo3etnvvvVfX5Ke9DkPXWf0+3LhxQ29/RUUFCgoK3OY+aP3xxx/Yv38/xowZo9sml88CAEybNg0zZ87E008/jXbt2mHYsGF48cUXsXjxYgDy+TzEx8fj0KFDuH37Ni5fvowff/wR5eXlaN68uWzuQXVSXbM9/zth8LGARqNBaWkpEhMT4e3tjQMHDuj2ZWZm4tKlS0hKSgIAJCUl4cyZM3q/3H379iEwMLDWl4ereuKJJ3DmzBmcOnVK9+jUqROGDBmi+1kO98GQ27dvIysrC5GRkbL5PDz88MPIzMzU2/bbb78hJiYGABAXF4eIiAi9+1BUVISjR4/q3YfCwkK9v4a/+eYbaDQadO7c2QFXIZ2NGzeicePG6NOnj26bXD4LAFBSUgIPD/2vEE9PT2g0GgDy+zz4+/sjMjISt27dwtdff42///3vsrsHgHS/96SkJHz33XcoLy/XHbNv3z60atXKpmYuABzObszMmTPFoUOHRHZ2tjh9+rSYOXOmUCgUYu/evUKIqiGrzZo1E99884346aefRFJSkkhKStK9XjtktWfPnuLUqVPiq6++EmFhYW43ZLWm6qO6hJDPfZg6dar49ttvRXZ2tvjhhx9Ejx49RGhoqLhx44YQQh734ccffxReXl5i4cKF4vz58+LDDz8Ufn5+4oMPPtAds2TJEhEUFCT+/e9/i9OnT4u///3vBoexduzYURw9elQcPnxYtGzZ0qWH7hpSWVkpmjVrJmbMmFFrnxw+C0IIMXz4cNGkSRPdcPb09HQRGhoqpk+frjtGDp+Hr776SuzZs0f8/vvvYu/evaJDhw6ic+fOoqysTAhRP+9BcXGxOHnypDh58qQAIJYvXy5Onjwp/vjjDyGENNdcWFgowsPDxbBhw8TZs2fFtm3bhJ+fH4ez29OoUaNETEyMUCqVIiwsTDzxxBO60COEEH/++ad4/vnnRaNGjYSfn5/4v//7P5GTk6N3josXL4revXsLX19fERoaKqZOnSrKy8sdfSmSqhl85HIfUlJSRGRkpFAqlaJJkyYiJSVFb/4audyHnTt3ivvuu0/4+PiI1q1bi3feeUdvv0ajEa+88ooIDw8XPj4+4oknnhCZmZl6x+Tn54vBgweLhg0bisDAQDFy5EhRXFzsyMuw2ddffy0A1Lo2IeTzWSgqKhKTJ08WzZo1Ew0aNBDNmzcXs2fP1ht+LIfPw/bt20Xz5s2FUqkUERERYuLEiaKwsFC3vz7eg4MHDwoAtR7Dhw8XQkh3zT///LN45JFHhI+Pj2jSpIlYsmSJJOVXCFFtmk0iIiKieox9fIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iMhmjz32GNLS0pxdDLubN28e7r//fmcXg4hswOBDRLJXVlbm0PcTQqCiosKh70lEVRh8iMgmI0aMwKFDh7Bq1SooFAooFApcvHgRZ8+eRe/evdGwYUOEh4dj2LBhyMvL073usccew6RJk5CWloZGjRohPDwc7777Lu7cuYORI0ciICAALVq0wJ49e3Sv+fbbb6FQKLB79260b98eDRo0wEMPPYSzZ8/qlenw4cN49NFH4evri6ZNm+KFF17AnTt3dPtjY2OxYMECPPvsswgMDMTYsWMBADNmzMA999wDPz8/NG/eHK+88opudehNmzZh/vz5+Pnnn3XXuWnTJly8eBEKhQKnTp3Snb+wsBAKhQLffvutXrn37NmDxMRE+Pj44PDhw9BoNFi8eDHi4uLg6+uLDh064NNPP5X6V0RE1TD4EJFNVq1ahaSkJDz33HPIyclBTk4OAgIC0L17d3Ts2BE//fQTvvrqK1y/fh2DBg3Se+3mzZsRGhqKH3/8EZMmTcKECRPw1FNPoUuXLjhx4gR69uyJYcOGoaSkRO9106ZNw7Jly3Ds2DGEhYWhX79+uoCSlZWFXr16YeDAgTh9+jS2b9+Ow4cPIzU1Ve8cb775Jjp06ICTJ0/ilVdeAQAEBARg06ZN+OWXX7Bq1Sq8++67WLFiBQAgJSUFU6dORdu2bXXXmZKSYtG9mjlzJpYsWYJz586hffv2WLx4Md5//32sX78e//3vf/Hiiy9i6NChOHTokEXnJSILSLLUKRHJWrdu3cTkyZN1zxcsWCB69uypd8zly5f1VjTv1q2beOSRR3T7KyoqhL+/vxg2bJhuW05OjgAgMjIyhBB/rQq9bds23TH5+fnC19dXbN++XQghxOjRo8XYsWP13vv7778XHh4e4s8//xRCCBETEyOefPLJOq/rjTfeEImJibrnc+fOFR06dNA7Jjs7WwAQJ0+e1G27deuWACAOHjyoV+7PP/9cd8zdu3eFn5+fOHLkiN75Ro8eLQYPHlxn2YjIOl7ODF1EVD/9/PPPOHjwIBo2bFhrX1ZWFu655x4AQPv27XXbPT09ERISgnbt2um2hYeHAwBu3Lihd46kpCTdz8HBwWjVqhXOnTune+/Tp0/jww8/1B0jhIBGo0F2djbuvfdeAECnTp1qlW379u1YvXo1srKycPv2bVRUVCAwMNDi6zem+nteuHABJSUl+Nvf/qZ3TFlZGTp27CjZexKRPgYfIpLc7du30a9fPyxdurTWvsjISN3P3t7eevsUCoXeNoVCAQDQaDQWvfe4cePwwgsv1NrXrFkz3c/+/v56+zIyMjBkyBDMnz8fycnJUKlU2LZtG5YtW2by/Tw8qnoMCCF027TNbjVVf8/bt28DAHbv3o0mTZroHefj42PyPYnIegw+RGQzpVKJyspK3fOEhATs2LEDsbGx8PKS/n8z//nPf3Qh5tatW/jtt990NTkJCQn45Zdf0KJFC4vOeeTIEcTExGD27Nm6bX/88YfeMTWvEwDCwsIAADk5ObqamuodnY1p06YNfHx8cOnSJXTr1s2ishKR9di5mYhsFhsbi6NHj+LixYvIy8vDxIkTUVBQgMGDB+PYsWPIysrC119/jZEjR9YKDtZ49dVXceDAAZw9exYjRoxAaGgonnzySQBVI7OOHDmC1NRUnDp1CufPn8e///3vWp2ba2rZsiUuXbqEbdu2ISsrC6tXr8Znn31W6zqzs7Nx6tQp5OXlobS0FL6+vnjooYd0nZYPHTqEf/7zn3VeQ0BAAF566SW8+OKL2Lx5M7KysnDixAmsWbMGmzdvtvreEJFpDD5EZLOXXnoJnp6eaNOmDcLCwlBWVoYffvgBlZWV6NmzJ9q1a4e0tDQEBQXpmoZssWTJEkyePBmJiYnIzc3Fzp07oVQqAVT1Gzp06BB+++03PProo+jYsSPmzJmDqKgok+fs378/XnzxRaSmpuL+++/HkSNHdKO9tAYOHIhevXrh8ccfR1hYGD766CMAwHvvvYeKigokJiYiLS0Nr732mlnXsWDBArzyyitYvHgx7r33XvTq1Qu7d+9GXFycFXeFiMyhENUbpomIXNi3336Lxx9/HLdu3UJQUJCzi0NEbog1PkRERCQbDD5EREQkG2zqIiIiItlgjQ8RERHJBoMPERERyQaDDxEREckGgw8RERHJBoMPERERyQaDDxEREckGgw8RERHJBoMPERERyQaDDxEREcnG/wdmed262Vc8gQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.3 Visualizing surrogates\n", + "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAHHCAYAAAAGU9SoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdhUlEQVR4nO3deXxM1/8/8NdkX0iCrEiIPZYvESXjg1abCkVo+RRVpEIbtdQWEkVEW9LYd/1UK6r22mINjbWSKmnsEhohfEiiJQkh+/n94Zf7MWZCEpPM9no+HvNgzj1z5z1zK3n1nHvPlQkhBIiIiIhI6xlpugAiIiIiKhsGNyIiIiIdweBGREREpCMY3IiIiIh0BIMbERERkY5gcCMiIiLSEQxuRERERDqCwY2IiIhIRzC4EREREekIBjciotckk8kwa9YsTZch8ff3R/369TVdBhFVAgY3ItJLkZGRkMlk0sPCwgJNmjTBmDFjkJ6eXqnvHRsbi1mzZiEzM1Ot+33rrbcUPlPNmjXxxhtv4Mcff0RxcbFa3mPOnDnYtWuXWvZFROpnoukCiIgq0+zZs+Hu7o7c3Fz89ttvWLVqFfbv349Lly7ByspKLe/x9OlTmJj878dpbGwswsLC4O/vDzs7O7W8R4m6deti7ty5AID79+/jp59+QkBAAK5du4bw8PDX3v+cOXPQv39/9O3b97X3RUTqx+BGRHqtR48eaNeuHQBgxIgRqFWrFhYuXIjdu3dj0KBBFd5vcXEx8vPzYWFhAQsLC3WV+0q2trb4+OOPpeefffYZmjZtiuXLl+Orr76CqalpldVCRFWPU6VEZFDefvttAEBKSgoAYP78+ejYsSNq1aoFS0tLeHl54ZdfflF6nUwmw5gxY7Bhwwa0aNEC5ubmOHjwoLSt5By3WbNmISgoCADg7u4uTWvevHkTb775Jlq3bq2yrqZNm8LX17fcn8fKygre3t7IycnB/fv3S+2Xk5ODSZMmwdXVFebm5mjatCnmz58PIYTCZ8zJycG6deukuv39/ctdExFVHo64EZFBSU5OBgDUqlULALBkyRL4+flh8ODByM/Px+bNm/Hvf/8be/fuRc+ePRVee+TIEWzduhVjxoyBvb29ygsAPvjgA1y7dg2bNm3CokWLYG9vDwBwcHDAkCFDMHLkSFy6dAktW7aUXnPmzBlcu3YN06dPr9BnunHjBoyNjUudlhVCwM/PD0ePHkVAQADatGmD6OhoBAUF4b///S8WLVoEAFi/fj1GjBiB9u3b49NPPwUANGzYsEI1EVElEUREemjt2rUCgPj111/F/fv3xe3bt8XmzZtFrVq1hKWlpbhz544QQognT54ovC4/P1+0bNlSvP322wrtAISRkZG4fPmy0nsBEKGhodLzefPmCQAiJSVFoV9mZqawsLAQU6dOVWgfN26csLa2Fo8fP37pZ3rzzTdFs2bNxP3798X9+/fF1atXxbhx4wQA0bt3b6nfsGHDRL169aTnu3btEgDE119/rbC//v37C5lMJv766y+pzdraWgwbNuyldRCR5nCqlIj0mo+PDxwcHODq6oqBAweiWrVq2LlzJ+rUqQMAsLS0lPo+fPgQWVlZ6Ny5M/7880+lfb355pto3rx5hWuxtbVFnz59sGnTJmmKsqioCFu2bEHfvn1hbW39yn0kJibCwcEBDg4O8PDwwLJly9CzZ0/8+OOPpb5m//79MDY2xrhx4xTaJ02aBCEEDhw4UOHPRERVi1OlRKTXVqxYgSZNmsDExAROTk5o2rQpjIz+9/+se/fuxddff41z584hLy9PapfJZEr7cnd3f+16hg4dii1btuDkyZPo0qULfv31V6Snp2PIkCFlen39+vXx/fffS0ucNG7cGI6Oji99za1bt1C7dm1Ur15dod3Dw0PaTkS6gcGNiPRa+/btpatKX3Ty5En4+fmhS5cuWLlyJVxcXGBqaoq1a9di48aNSv2fH52rKF9fXzg5OeHnn39Gly5d8PPPP8PZ2Rk+Pj5ler21tXWZ+xKR/uFUKREZrO3bt8PCwgLR0dEYPnw4evTooZZQpGq0roSxsTE++ugj/PLLL3j48CF27dqFQYMGwdjY+LXftzT16tXD3bt38ejRI4X2xMREaXuJl9VORJrH4EZEBsvY2BgymQxFRUVS282bN1/7zgEl56qVdueEIUOG4OHDh/jss8/w+PFjhXXZKsN7772HoqIiLF++XKF90aJFkMlk6NGjh9RmbW2t9js+EJH6cKqUiAxWz549sXDhQnTv3h0fffQRMjIysGLFCjRq1AgXLlyo8H69vLwAAF9++SUGDhwIU1NT9O7dWwp0np6eaNmyJbZt2wYPDw+0bdtWLZ+nNL1790bXrl3x5Zdf4ubNm2jdujUOHTqE3bt3Y/z48QpLfnh5eeHXX3/FwoULUbt2bbi7u6NDhw6VWh8RlR1H3IjIYL399tv44YcfkJaWhvHjx2PTpk349ttv8f7777/Wft944w189dVXOH/+PPz9/TFo0CClxXGHDh0KAGW+KOF1GBkZISoqCuPHj8fevXsxfvx4XLlyBfPmzcPChQsV+i5cuBBeXl6YPn06Bg0ahFWrVlV6fURUdjIhnls2m4iIqsSSJUswYcIE3Lx5E25ubpouh4h0BIMbEVEVE0KgdevWqFWrFo4eParpcohIh/AcNyKiKpKTk4OoqCgcPXoUFy9exO7duzVdEhHpGI64ERFVkZs3b8Ld3R12dnb4/PPP8c0332i6JCLSMQxuRERERDqCV5USERER6QgGNyIiIiIdwYsTtFhxcTHu3r2L6tWr8zY0REREOkIIgUePHqF27dowMlLvGBmDmxa7e/cuXF1dNV0GERERVcDt27dRt25dte6TwU2LVa9eHcCzA29jY6PhaoiIiKgssrOz4erqKv0eVycGNy1WMj1qY2PD4EZERKRjKuM0J16cQERERKQjGNyIiIiIdASDGxEREZGO4DluOq6oqAgFBQWaLoOqgKmpKYyNjTVdBhERaRCDm44SQiAtLQ2ZmZmaLoWqkJ2dHZydnbmuHxGRgWJw01Eloc3R0RFWVlb8Ra7nhBB48uQJMjIyAAAuLi4aroiIiDSBwU0HFRUVSaGtVq1ami6HqoilpSUAICMjA46Ojpw2JSIyQDpzcYKfnx/c3NxgYWEBFxcXDBkyBHfv3lXoI4TA/Pnz0aRJE5ibm6NOnTr45ptvFPocO3YMbdu2hbm5ORo1aoTIyEil91qxYgXq168PCwsLdOjQAX/88YfC9tzcXIwePRq1atVCtWrV0K9fP6Snpyv0SU1NRc+ePWFlZQVHR0cEBQWhsLBQLd9FyTltVlZWatkf6Y6SY87zGomIDJPOBLeuXbti69atSEpKwvbt25GcnIz+/fsr9Pniiy+wZs0azJ8/H4mJiYiKikL79u2l7SkpKejZsye6du2Kc+fOYfz48RgxYgSio6OlPlu2bMHEiRMRGhqKP//8E61bt4avr680RQUAEyZMwJ49e7Bt2zYcP34cd+/exQcffCBtLyoqQs+ePZGfn4/Y2FisW7cOkZGRmDlzplq/E06PGh4ecyIiAyd01O7du4VMJhP5+flCCCGuXLkiTExMRGJiYqmvmTJlimjRooVC24ABA4Svr6/0vH379mL06NHS86KiIlG7dm0xd+5cIYQQmZmZwtTUVGzbtk3qc/XqVQFAxMXFCSGE2L9/vzAyMhJpaWlSn1WrVgkbGxuRl5dX5s+YlZUlAIisrCyF9qdPn4orV66Ip0+flnlfpB947ImItF9pv7/VQWdG3J734MEDbNiwAR07doSpqSkAYM+ePWjQoAH27t0Ld3d31K9fHyNGjMCDBw+k18XFxcHHx0dhX76+voiLiwMA5OfnIz4+XqGPkZERfHx8pD7x8fEoKChQ6NOsWTO4ublJfeLi4tCqVSs4OTkpvE92djYuX75c6ufKy8tDdna2woOIiIiohE4Ft6lTp8La2hq1atVCamoqdu/eLW27ceMGbt26hW3btuGnn35CZGQk4uPjFaZT09LSFMIUADg5OSE7OxtPnz7F33//jaKiIpV90tLSpH2YmZnBzs7upX1U7aNkW2nmzp0LW1tb6eHq6lrGb0Z3+Pv7QyaTQSaTwdTUFE5OTnj33Xfx448/ori4uMz7iYyMVDoGRERE+k6jwS04OFj6JV7aIzExUeofFBSEhIQEHDp0CMbGxhg6dCiEEACA4uJi5OXl4aeffkLnzp3x1ltv4YcffsDRo0eRlJSkqY9YLiEhIcjKypIet2/f1nRJlaJ79+64d+8ebt68iQMHDqBr16744osv0KtXL7VdwEFERPQyurqAvUaXA5k0aRL8/f1f2qdBgwbS3+3t7WFvb48mTZrAw8MDrq6u+P333yGXy+Hi4gITExM0adJE6u/h4QHg2RWeTZs2hbOzs9LVn+np6bCxsYGlpSWMjY1hbGysso+zszMAwNnZGfn5+cjMzFQY8Xmxz4tXopbss6SPKubm5jA3N3/p96EPzM3Npe+hTp06aNu2Lby9vfHOO+8gMjISI0aMwMKFC7F27VrcuHEDNWvWRO/evREREYFq1arh2LFj+OSTTwD872T90NBQzJo1C+vXr8eSJUuQlJQEa2trvP3221i8eDEcHR019nmJiEi77NixAxcvXsSjR47o0mUU/Pw0XVHZaXTEzcHBAc2aNXvpw8zMTOVrS6bV8vLyAAD/+te/UFhYiOTkZKnPtWvXAAD16tUDAMjlcsTExCjs5/Dhw5DL5QAAMzMzeHl5KfQpLi5GTEyM1MfLywumpqYKfZKSkpCamir1kcvluHjxosKVqIcPH4aNjQ2aN29egW/q1YQQyM/P18ijZNTzdbz99tto3bo1duzYAeDZuYVLly7F5cuXsW7dOhw5cgRTpkwBAHTs2BGLFy+GjY0N7t27h3v37mHy5MkAni2T8dVXX+H8+fPYtWsXbt68+cr/OSAiIsPw9OlThIWF4eLFiwCA6tUzEB7++r/DqpJOLMB7+vRpnDlzBp06dUKNGjWQnJyMGTNmoGHDhlJY8vHxQdu2bTF8+HAsXrwYxcXFGD16NN59911pFC4wMBDLly/HlClTMHz4cBw5cgRbt27Fvn37pPeaOHEihg0bhnbt2qF9+/ZYvHgxcnJypBEeW1tbBAQEYOLEiahZsyZsbGwwduxYyOVyeHt7AwC6deuG5s2bY8iQIYiIiEBaWhqmT5+O0aNHV9qIWkFBAebOnVsp+36VkJCQUgN2eTRr1gwXLlwAAIwfP15qr1+/Pr7++msEBgZi5cqVMDMzg62tLWQymdII5vDhw6W/N2jQAEuXLsUbb7yBx48fo1q1aq9dIxER6aZLly5h+/btCm2HD09DcLBuLbOkE8HNysoKO3bsQGhoKHJycuDi4oLu3btj+vTpUhAyMjLCnj17MHbsWHTp0gXW1tbo0aMHFixYIO3H3d0d+/btw4QJE7BkyRLUrVsXa9asga+vr9RnwIABuH//PmbOnIm0tDS0adMGBw8eVLjYYNGiRTAyMkK/fv2Ql5cHX19frFy5UtpubGyMvXv3YtSoUZDL5bC2tsawYcMwe/bsKvi2dJcQQpr6/PXXXzF37lwkJiYiOzsbhYWFyM3NxZMnT1668HB8fDxmzZqF8+fP4+HDh9LIbGpqaqWNdhIRkfYSQuA///mPwsWBHTt2xLvvvovQUA0WVkEyoY55LqoU2dnZsLW1RVZWFmxsbKT23NxcpKSkwN3dHRYWFgCe/YepqZMsTU1Ny7wwrL+/PzIzM7Fr1y6lbf/3f/8HNzc3LF++HM2aNcOoUaMwYMAA1KxZE7/99hsCAgLw8OFD2NnZITIyEuPHj0dmZqb0+pycHNSrVw++vr4IDAyEg4MDUlNT4evri4SEBLRp00Y9H1iDVB17IiJSLT09HatXr1ZoCwwMVFr5Qd1K+/2tDjox4kavJpPJ1DJdqSlHjhzBxYsXMWHCBMTHx6O4uBgLFiyAkdGz0zC3bt2q0N/MzAxFRUUKbYmJifjnn38QHh4uLaVy9uzZqvkARESkVcLCwhSeV69eHePHj5d+r+gqBjeqcnl5eUhLS0NRURHS09Nx8OBBzJ07F7169cLQoUNx6dIlFBQUYNmyZejduzdOnTql9H9M9evXx+PHjxETE4PWrVvDysoKbm5uMDMzw7JlyxAYGIhLly7hq6++0tCnJCIiTcjJycH8+fMV2o4f98GRI//SUEXqpduxk3TSwYMH4eLigvr166N79+44evQoli5dit27d8PY2BitW7fGwoUL8e2336Jly5bYsGGD0oUXHTt2RGBgIAYMGAAHBwdERETAwcEBkZGR2LZtG5o3b47w8HClf7xERKS/wsLClH7u79rVH3K5foQ2gOe4abXynONGhoHHnohItRenRoFna3xqAs9xIyIiIlLhypUr2LZtm1K7pkJbZWNwIyIiIp2kapTtp5+GwMmpgU4u9VEWPMeNiIiIdIoQQmVo8/QMhZNTAwQHa6CoKsIRNyIiItIZkZGRuHXrllJ7dHQoQkOhU/cdrQgGNyIiItIJqkbZWrachAULqun1KNvzGNyIiIhIqz169AgLFy5Uai+5AKFfv6quSHMY3IiIiEhrqRplq1+/PoYNG6aBajSPwY2IiIi0kqrQNnPmzDLfH1sfMbgRERGRVjlz5gz279+v1K6va7OVB5cDIb3k7++Pvn37Ss/feustjB8//rX2qY59EBHRy4WFhSmFtqtXu8PTk6EN4IgbVTF/f3+sW7cOAGBqago3NzcMHToU06ZNg4lJ5f3nuGPHDpiampap77Fjx9C1a1c8fPgQdnZ2FdoHERGVn6qp0ejoUMTGaqAYLcXgRlWue/fuWLt2LfLy8rB//36MHj0apqamCAkJUeiXn58PMzMztbxnzZo1tWIfRESkbOnSpXj48KFS+/z5odiwQQMFaTFOlVKVMzc3h7OzM+rVq4dRo0bBx8cHUVFR0vTmN998g9q1a6Np06YAgNu3b+PDDz+EnZ0datasiT59+uDmzZvS/oqKijBx4kTY2dmhVq1amDJlCoQQCu/54jRnXl4epk6dCldXV5ibm6NRo0b44YcfcPPmTXTt2hUAUKNGDchkMvj7+6vcx8OHDzF06FDUqFEDVlZW6NGjB65fvy5tj4yMhJ2dHaKjo+Hh4YFq1aqhe/fuuHfvntTn2LFjaN++PaytrWFnZ4d//etfKheWJCLSV2FhYUqhrVmzUYiOfhba9H1B3fJicCONs7S0RH5+PgAgJiYGSUlJOHz4MPbu3YuCggL4+vqievXqOHnyJE6dOiUFoJLXLFiwAJGRkfjxxx/x22+/4cGDB9i5c+dL33Po0KHYtGkTli5diqtXr+K7775DtWrV4Orqiu3btwMAkpKScO/ePSxZskTlPvz9/XH27FlERUUhLi4OQgi89957KCgokPo8efIE8+fPx/r163HixAmkpqZi8uTJAIDCwkL07dsXb775Ji5cuIC4uDh8+umnBn21FBEZjsePH6ucGg0NDcWAAY6IjWVoU4VTpaQxQgjExMQgOjoaY8eOxf3792FtbY01a9ZIU6Q///wziouLsWbNGinQrF27FnZ2djh27Bi6deuGxYsXIyQkBB988AEAYPXq1YiOji71fa9du4atW7fi8OHD8PHxAQA0aNBA2l4yJero6Khwjtvzrl+/jqioKJw6dQodO3YEAGzYsAGurq7YtWsX/v3vfwMACgoKsHr1ajRs2BAAMGbMGMyePRsAkJ2djaysLPTq1Uva7uHhUf4vkohIx6gKbACvGi0LjrgRoqKAjh2f/VkV9u7di2rVqsHCwgI9evTAgAEDMGvWLABAq1atFM5rO3/+PP766y9Ur14d1apVQ7Vq1VCzZk3k5uYiOTkZWVlZuHfvHjp06CC9xsTEBO3atSv1/c+dOwdjY2O8+eabFf4MV69ehYmJicL71qpVC02bNsXVq1elNisrKymUAYCLiwsyMjIAPAuI/v7+8PX1Re/evbFkyRKFaVQiIn2kKrQtXDidV42WEUfcCOHhQFzcsz+rYli6a9euWLVqFczMzFC7dm2Fq0mtra0V+j5+/BheXl7YoOLsVAcHhwq9v6WlZYVeVxEvXoUqk8kUzr9bu3Ytxo0bh4MHD2LLli2YPn06Dh8+DG9v7yqrkYioKpw7dw67d+9Wao+ODsX69ZwWLSuOuBGCgwG5HFV2g15ra2s0atQIbm5ur1wCpG3btrh+/TocHR3RqFEjhYetrS1sbW3h4uKC06dPS68pLCxEfHx8qfts1aoViouLcfz4cZXbS0b8ioqKSt2Hh4cHCgsLFd73n3/+QVJSEpo3b/7Sz/QiT09PhISEIDY2Fi1btsTGjRvL9XoiIm0XFhamFNpatmyJ0NBQnstWTgxuBD8/aO0/nMGDB8Pe3h59+vTByZMnkZKSgmPHjmHcuHG4c+cOAOCLL75AeHg4du3ahcTERHz++efIzMwsdZ8l97gbPnw4du3aJe1z69atAIB69epBJpNh7969uH//Ph4/fqy0j8aNG6NPnz4YOXIkfvvtN5w/fx4ff/wx6tSpgz59+pTps6WkpCAkJARxcXG4desWDh06hOvXr/M8NyLSK6VdgNDPkO4Mr0YMbqTVrKyscOLECbi5ueGDDz6Ah4cHAgICkJubCxsbGwDApEmTMGTIEAwbNgxyuRzVq1fH+++//9L9rlq1Cv3798fnn3+OZs2aYeTIkcjJyQEA1KlTB2FhYQgODoaTkxPGjBmjch9r166Fl5cXevXqBblcDiEE9u/fX+ZFeq2srJCYmIh+/fqhSZMm+PTTTzF69Gh89tln5fiGiIi0U0RERKmhjSpOJl5c8Iq0RnZ2NmxtbZGVlSWFFADIzc1FSkoK3N3dYWFhocEKqarx2BORLlAV2P74Yxj27atf9cVoQGm/v9WBFycQERGRWjx9+hQRERFK7dHRoVV2HrW+Y3AjIiKi1/aytdk4O6o+PMeNiIiIXouq0Pbrr8Fcm60ScMSNiIiIKuTixYvYsWOHUrunJ0fZKguDmw7jdSWGh8eciLSFqlE2KysrBAUFaaAaw8HgpoNKlpt48uRJld4FgDTvyZMnAJTvyEBEVJW4zIfmMLjpIGNjY9jZ2Un3vLSyspJuwE76SQiBJ0+eICMjA3Z2djA2NtZ0SURkgL799lvk5uYqtTO0VR0GNx3l7OwMAFJ4I8NgZ2cnHXsioqqkapTt8uVe2LrVSwPVGC4GNx0lk8ng4uICR0dHFBQUaLocqgKmpqYcaSOiKldQUIA5c+YotXNtNs1gcNNxxsbG/GVORESVgmuzaR+u40ZERERKVIW2+fMnIjqaiU2TOOJGREREksTERGzZskWpfdOmUNStC06PahiDGxEREQHg1KguYHAjIiIirs2mIxjciIiIDNjy5cvxzz//KLUztGknBjciIiIDpWqULTW1HX74oacGqqGy4FWlREREBqa4uFhlaIuODkWfPgxt2owjbkRERAaEFyDoNo64ERERGQhVoW3lykCuzaZDOOJGRESk527cuIH169crtXt6hqJhQ67NpksY3IiIiPTYy6ZGAcDPryqrodfFqVIiIiI9pSq0tWkzE9HRoYiK0kBB9No44kZERKRnVq9ejfT0dKV2T89QhIcDcXFAeDhH23QRgxsREZEeUTXK5uTkhMDAQOl5eDjPa9NVDG5ERER6QAiB2bNnK7W/eAcEPz+OtOkyBjciIiId96oLEEh/8OIEIiIiHaYqtJ05MxSengxt+ogjbkRERDooLS0N3333nVI7R9n0G4MbERGRjuHUqOHiVCkREZEOURXaDh2azqlRA8ERNyIiIh2wceNGXL9+XamdN4c3LAxuREREWo5To1SCwY2IiEiLqQptDGyGi8GNiIhIC3GUjVRhcCMiItIyqkLbpUu9sW1bWw1UQ9qEwY2IiEhLZGZmYsmSJUrt0dGhvLcoAWBwIyIi0govmxrl7CiVYHAjIiLSMFWhLTg4GObm5hqohrQZgxsREZGGHDhwAH/88YdSOy9AoNIwuBEREWkArxqlitCZW175+fnBzc0NFhYWcHFxwZAhQ3D37l1p+6xZsyCTyZQe1tbWCvvZtm0bmjVrBgsLC7Rq1Qr79+9X2C6EwMyZM+Hi4gJLS0v4+PgorVT94MEDDB48GDY2NrCzs0NAQAAeP36s0OfChQvo3LkzLCws4OrqioiICDV/I0REpKtKW5uNoY1eRWeCW9euXbF161YkJSVh+/btSE5ORv/+/aXtkydPxr179xQezZs3x7///W+pT2xsLAYNGoSAgAAkJCSgb9++6Nu3Ly5duiT1iYiIwNKlS7F69WqcPn0a1tbW8PX1RW5urtRn8ODBuHz5Mg4fPoy9e/fixIkT+PTTT6Xt2dnZ6NatG+rVq4f4+HjMmzcPs2bNwn/+859K/paIiEibhYWFcUFdei0yIYTQdBEVERUVhb59+yIvLw+mpqZK28+fP482bdrgxIkT6Ny5MwBgwIAByMnJwd69e6V+3t7eaNOmDVavXg0hBGrXro1JkyZh8uTJAICsrCw4OTkhMjISAwcOxNWrV9G8eXOcOXMG7dq1AwAcPHgQ7733Hu7cuYPatWtj1apV+PLLL5GWlgYzMzMAz04y3bVrFxITE8v8GbOzs2Fra4usrCzY2NhU+LsiIiLNUxXYunTpgq5du2qgGqpMlfn7W2dG3J734MEDbNiwAR07dlQZ2gBgzZo1aNKkiRTaACAuLg4+Pj4K/Xx9fREXFwcASElJQVpamkIfW1tbdOjQQeoTFxcHOzs7KbQBgI+PD4yMjHD69GmpT5cuXaTQVvI+SUlJePjwYamfKy8vD9nZ2QoPIiLSbU+ePFEZ2qKjQxnaqNx0KrhNnToV1tbWqFWrFlJTU7F7926V/XJzc7FhwwYEBAQotKelpcHJyUmhzcnJCWlpadL2kraX9XF0dFTYbmJigpo1ayr0UbWP599Dlblz58LW1lZ6uLq6ltqXiIi0X1hYGObNm6fUzgV1qaI0GtyCg4NVXlDw/OP5qcWgoCAkJCTg0KFDMDY2xtChQ6Fqpnfnzp149OgRhg0bVpUf57WFhIQgKytLety+fVvTJRERUQWpGmVr2XIiQkNDERsL+PlpoCjSeRpdDmTSpEnw9/d/aZ8GDRpIf7e3t4e9vT2aNGkCDw8PuLq64vfff4dcLld4zZo1a9CrVy+lUS9nZ2ekp6crtKWnp8PZ2VnaXtLm4uKi0KdNmzZSn4yMDIV9FBYW4sGDBwr7UfU+z7+HKubm5lxskYhIx504cQJHjx5Vap81KxRyOdCvnwaKIr2h0eDm4OAABweHCr22uLgYwLPzwp6XkpKCo0ePIioqSuk1crkcMTExGD9+vNR2+PBhKfi5u7vD2dkZMTExUlDLzs7G6dOnMWrUKGkfmZmZiI+Ph5eXFwDgyJEjKC4uRocOHaQ+X375JQoKCqRz8A4fPoymTZuiRo0aFfq8RESk/Upbmy0//1lo4/QovS6dWID39OnTOHPmDDp16oQaNWogOTkZM2bMQMOGDZVG23788Ue4uLigR48eSvv54osv8Oabb2LBggXo2bMnNm/ejLNnz0rLdMhkMowfPx5ff/01GjduDHd3d8yYMQO1a9dG3759AQAeHh7o3r07Ro4cidWrV6OgoABjxozBwIEDUbt2bQDARx99hLCwMAQEBGDq1Km4dOkSlixZgkWLFlXuF0VERBrDZT6oKuhEcLOyssKOHTsQGhqKnJwcuLi4oHv37pg+fbrC1GJxcTEiIyPh7+8PY2Njpf107NgRGzduxPTp0zFt2jQ0btwYu3btQsuWLaU+U6ZMQU5ODj799FNkZmaiU6dOOHjwICwsLKQ+GzZswJgxY/DOO+/AyMgI/fr1w9KlS6Xttra2OHToEEaPHg0vLy/Y29tj5syZCmu9ERGRfuAdEKgq6ew6boaA67gREWk3VaHtxcXfyfBU5u9vnRhxIyIi0iaFhYX45ptvlNo5ykaVjcGNiIioHDg1SprE4EZERFRGqkLb559/XuEVEojKi8GNiIjoFS5fvoxffvlFqZ2jbFTVGNyIiIheglOjpE0Y3IiIiFT48kvAzIxrs5F2YXAjIiJ6QVhYGMzMlNsZ2kjTGNyIiIieo2pq1NHRUbr1IZEmMbgREREBEEJg9uzZSu0cZSNtwuBGREQGjxcgkK5gcCMiIoOmKrSdOTMEe/c20EA1RC/H4EZERAbpxo0bWL9+vVJ7dHQogoM1UBBRGTC4ERGRwXnZ1ChnR0mbGWm6ACIioqqkKrRFR8+ApycTG2k/jrgREZFBmDNnIQoKHim1c5SNdAmDGxER6T1eNUr6gsGNiIj0mqrQ5ukZCj8/DRRD9JoY3IiISC9xlI30EYMbERHpHVWhrXfv3mjbtq0GqiFSHwY3IiLSG+np6Vi9erVSO0fZSF8wuBERkV7g1CgZAgY3IiLSeapC27Rp02BqaqqBaogqD4MbERHprJ9//hnJyclK7RxlI33F4EZERDqJU6NkiHjLKyIi0jmqb1sVyttWkd7jiBsREekM3hyeDB1H3IiISCeoCm3JyZ04ykYGhSNuRESk1bKzs7Fo0SKldp7LRoaIwY2IiLQWL0AgUsTgRkREWklVaJs8eTKsra01UA2RdmBwIyIirbJnzx78+eefSu2enqFgZiNDx+BGRERag1OjRC/H4EZERFpBVWjz9AyFn58GiiHSUgxuRESkURxlIyo7ruNGREQaoyq0ZWQ04dpsRKXgiBsREVW5vLw8hIeHK7VzapTo5RjciIioSnFqlKjiGNyIiKjKqAptHh6j8eGH9hqohkj3MLgREVGli42NxeHDh5XaZ80KhVwOfPihBooi0kEMbkREVKlKmxr19HwW2oKDq7ggIh3G4EZERJXmVWuz8UIEovJhcCMiIrXjBQhElaPc67gZGxsjIyNDqf2ff/6BsbGxWooiIiLdpSq05eVZcW02IjUo94ibEEJle15eHszMzF67ICIi0k1FRUX4+uuvldo5ykakPmUObkuXLgUAyGQyrFmzBtWqVZO2FRUV4cSJE2jWrJn6KyQiIq3HqVGiqlHm4LZo0SIAz0bcVq9erTAtamZmhvr162P16tXqr5CIiLSaqtA2ZMgQNGjQQAPVEOm3Mge3lJQUAEDXrl2xY8cO1KhRo9KKIiIi7Xfp0iVs375dqZ2jbESVp9znuB09erQy6iAiIh3CqVEizSh3cBs+fPhLt//4448VLoaIiLSfqtA2c+ZMyGQyDVRDZFjKHdwePnyo8LygoACXLl1CZmYm3n77bbUVRkRE2uVld0BgZiOqGuUObjt37lRqKy4uxqhRo9CwYUO1FEVERNqFU6NE2kEmSluYrZySkpLw1ltv4d69e+rYHQHIzs6Gra0tsrKyYGNjo+lyiMgACSEwe/ZspXYGNqLSVebvb7Xd8io5ORmFhYXq2h0REWkYR9mItE+5g9vEiRMVngshcO/ePezbtw/Dhg1TW2FERKQ5qkJbr1694OXlpYFqiKhEuYNbQkKCwnMjIyM4ODhgwYIFr7zilIiItNuNGzewfv16pXaOshFpB67jRkREADg1SqQLKnyOW0ZGBpKSkgAATZs2haOjo9qKIiKiqqUqtB0+/CWmTFHbqdBEpAbl/heZnZ2N0aNHY9OmTSguLgYAGBsbY8CAAVixYgVsbW3VXiQREVWOb775RuWFZaGhoeBAG5H2MSrvC0aOHInTp09j3759yMzMRGZmJvbu3YuzZ8/is88+q4waiYioEoSFhZUa2ohIO5V7HTdra2tER0ejU6dOCu0nT55E9+7dkZOTo9YCDRnXcSOiyqJqapSBjUg9tGodt1q1aqmcDrW1tUWNGjXUUhQREVUOXoBApNvKPVU6ffp0TJw4EWlpaVJbWloagoKCMGPGDLUWR0RE6qMqtDk4dGBoI9Ih5Z4q9fT0xF9//YW8vDy4ubkBAFJTU2Fubo7GjRsr9P3zzz/VV6kB4lQpEanD33//jRUrVii1M7ARVQ6tmirt06cPZDKZWosgIqLKwalRIv2itpvMk/pxxI2IXoeq0HbkSBCOH7fSQDVEhqMyf3+X+xy3Bg0a4J9//lFqz8zMRIMGDdRSlCp+fn5wc3ODhYUFXFxcMGTIENy9e1ehT3R0NLy9vVG9enU4ODigX79+uHnzpkKfY8eOoW3btjA3N0ejRo0QGRmp9F4rVqxA/fr1YWFhgQ4dOuCPP/5Q2J6bm4vRo0ejVq1aqFatGvr164f09HSFPqmpqejZsyesrKzg6OiIoKAglZfdExGp28aNG1WGtujoUEyaxNBGpMvKHdxu3ryJoqIipfa8vDzcuXNHLUWp0rVrV2zduhVJSUnYvn07kpOT0b9/f2l7SkoK+vTpg7fffhvnzp1DdHQ0/v77b3zwwQcKfXr27ImuXbvi3LlzGD9+PEaMGIHo6Gipz5YtWzBx4kSEhobizz//ROvWreHr64uMjAypz4QJE7Bnzx5s27YNx48fx927dxXep6ioCD179kR+fj5iY2Oxbt06REZGYubMmZX2/RARAc9G2a5fv67UHhoaithYwM9PA0URkdqUeao0KioKANC3b1+sW7dOYUmQoqIixMTE4PDhw9JtsCpbVFQU+vbti7y8PJiamuKXX37BoEGDkJeXByOjZ3l0z5496NOnj9Rn6tSp2LdvHy5duiTtZ+DAgcjMzMTBgwcBAB06dMAbb7yB5cuXAwCKi4vh6uqKsWPHIjg4GFlZWXBwcMDGjRul4JiYmAgPDw/ExcXB29sbBw4cQK9evXD37l04OTkBAFavXo2pU6fi/v37MDMzK9Nn5FQpEZUH12Yj0g5acXFC3759AQAymQzDhg1T2GZqaor69etjwYIFai2uNA8ePMCGDRvQsWNHmJqaAgC8vLxgZGSEtWvXwt/fH48fP8b69evh4+Mj9YmLi4OPj4/Cvnx9fTF+/HgAQH5+PuLj4xESEiJtNzIygo+PD+Li4gAA8fHxKCgoUNhPs2bN4ObmJgW3uLg4tGrVSgptJe8zatQoXL58GZ6enio/V15eHvLy8qTn2dnZr/EtEZGh4AUIRIajzFOlxcXFKC4uhpubGzIyMqTnxcXFyMvLQ1JSEnr16lWZtWLq1KmwtrZGrVq1kJqait27d0vb3N3dcejQIUybNg3m5uaws7PDnTt3sHXrVqlPWlqaQpgCACcnJ2RnZ+Pp06f4+++/UVRUpLJPybp1aWlpMDMzg52d3Uv7qNpHybbSzJ07F7a2ttLD1dW1jN8MERkqVaGtRYsWDG1Eeqrc57ilpKTA3t5eLW8eHBwMmUz20kdiYqLUPygoCAkJCTh06BCMjY0xdOhQlMz0pqWlYeTIkRg2bBjOnDmD48ePw8zMDP3794euXDgbEhKCrKws6XH79m1Nl0REWionJ6fUqdHnz/8lIv1S7nXcZs+e/dLt5TkBf9KkSfD3939pn+evVLW3t4e9vT2aNGkCDw8PuLq64vfff4dcLseKFStga2uLiIgIqf/PP/8MV1dXnD59Gt7e3nB2dla6+jM9PR02NjawtLSEsbExjI2NVfZxdnYGADg7OyM/Px+ZmZkKo24v9nnxStSSfZb0UcXc3Bzm5uYv/T6IiDg1SmS4yh3cdu7cqfC8oKAAKSkpMDExQcOGDcsV3BwcHODg4FDeEgA8m7oFIJ0T9uTJE+mihBLGxsYKfeVyOfbv36/Q5/Dhw5DL5QAAMzMzeHl5ISYmRjqnr7i4GDExMRgzZgyAZ+fSmZqaIiYmBv369QMAJCUlITU1VdqPXC7HN998g4yMDDg6OkrvY2Njg+bNm1fo8xIRAapD27hx43ivaCIDUe7glpCQoNSWnZ0Nf39/vP/++2op6kWnT5/GmTNn0KlTJ9SoUQPJycmYMWMGGjZsKIWlnj17YtGiRZg9ezYGDRqER48eYdq0aahXr550MUBgYCCWL1+OKVOmYPjw4Thy5Ai2bt2Kffv2Se81ceJEDBs2DO3atUP79u2xePFi5OTk4JNPPgEA2NraIiAgABMnTkTNmjVhY2ODsWPHQi6Xw9vbGwDQrVs3NG/eHEOGDEFERATS0tIwffp0jB49miNqRFQhhw4dki6Seh5H2YgMi9runHDx4kX07t1bacFbde37iy++wPnz55GTkwMXFxd0794d06dPR506daR+mzdvRkREBK5duwYrKyvI5XJ8++23aNasmdTn2LFjmDBhAq5cuYK6detixowZStO1y5cvx7x585CWloY2bdpg6dKl6NChg7Q9NzcXkyZNwqZNm5CXlwdfX1+sXLlSYRr01q1bGDVqFI4dOwZra2sMGzYM4eHhMDEpe1bmciBEBHBqlEjXVObvb7UFt99++w29e/fGw4cP1bE7AoMbEXFtNiJdpBXruJVYunSpwnMhBO7du4f169ejR48eaiuMiMiQcZSNiFQpd3BbtGiRwnMjIyM4ODhg2LBhCgvXEhFRxagKbRYWDpg69XMNVENE2qTcwS0lJaUy6iAiMngFBQWYM2eOUvusWaGQy4GpUzVQFBFplXIHNwDIzMzEX3/9BQBo1KiR0l0EiIiofEqbGvX0fBbagoOruCAi0krlCm43b97E6NGjER0dLd2NQCaToXv37li+fDnq169fGTUSEek1VaEtICAAdevWBQD4+VV1RUSkrcoc3G7fvg1vb2+Ympriq6++goeHBwDgypUrWLVqFeRyOc6cOSP9oCEiopeLj4/H3r17ldp5AQIRlabMy4EEBATgr7/+QnR0NCwsLBS2PX36FN27d0fjxo2xZs2aSinUEHE5ECL9xatGifSXViwHcvDgQWzZskUptAGApaUlvvrqKwwcOFCtxRER6SNVoW3mzJmQyWQaqIaIdEmZg9vff//90nPYGjRogAcPHqijJiIivcRRNiJ6XUav7vKMi4sLrly5Uur2S5cuKdzyiYiI/oehjYjUoczBrW/fvpg8eTLu37+vtC0jIwNTp05F37591VkbEZHOE0KoDG3R0aHw9GRoI6LyKfPFCQ8fPkSHDh2QlpaGjz/+GM2aNYMQAlevXsXGjRvh7OyM33//HTVr1qzsmg0GL04g0m0cZSMyTFpxcUKNGjVw+vRpTJs2DZs3b0ZmZiYAwM7ODh999BHmzJnD0EZE9P+pCm0JCQMwfHgzDVRDRPqizCNuzxNCSFOmDg4OvBKqknDEjUj3XL9+HRs3blRq5ygbkeHQihG358lkMjg6Oqq1ECIiXcepUSKqbBUKbkREpEhVaJsxYwaMjMp8DRgR0SsxuBERvYaIiAg8ffpUqZ2jbERUGRjciIgqiFOjRFTVGNyIiCqgtLXZYmM1UAwRGYwyBbelS5eWeYfjxo2rcDFERNqutFG26OhQBAdXcTFEZHDKtByIu7t72XYmk+HGjRuvXRQ9w+VAiLSLqtB29Wp3bN7cQQPVEJG20vhyICkpKWp9UyIiXZKRkYFVq1YptXOUjYiqWoXPccvPz0dKSgoaNmwIExOeKkdE+ullFyDwGgQiqmrlXmDoyZMnCAgIgJWVFVq0aIHU1FQAwNixYxEeHq72AomINEVVaAsJCeFVo0SkMeUObiEhITh//jyOHTsGCwsLqd3HxwdbtmxRa3FERJqwc+dOlaEtNDQUZmZmGqiIiOiZcs9x7tq1C1u2bIG3t7fCPUpbtGiB5ORktRZHRFSVoqKAhASuzUZE2qvcwe3+/fsq71Oak5PDm80TkU5TFdpmzQpFtWrg+WxEpBXKHdzatWuHffv2YezYsQAghbU1a9ZALpertzoioipQ2gUI338fCktLgMtTEpG2KHdwmzNnDnr06IErV66gsLAQS5YswZUrVxAbG4vjx49XRo1ERJVGVWhzcemKTz/twlE2ItI65b44oVOnTjh37hwKCwvRqlUrHDp0CI6OjoiLi4OXl1dl1EhEpHY5OTkqQ9usWaGIjOyigYqIiF6tQguwNWzYEN9//726ayEiqhKlTY1u3hwKuRxcVJeItFaZglt2dnaZd8hbMxGRNlMV2lq1CsL8+Vb49lvAz08DRRERlVGZgpudnV2ZrxgtKip6rYKIiCrDyZMnceTIEaX2kmU+PvigqisiIiq/MgW3o0ePSn+/efMmgoOD4e/vL11FGhcXh3Xr1mHu3LmVUyUR0Wt42W2riIh0iUwIIcrzgnfeeQcjRozAoEGDFNo3btyI//znPzh27Jg66zNo2dnZsLW1RVZWFqegiSqotDsgEBFVlsr8/V3u4GZlZYXz58+jcePGCu3Xrl1DmzZt8OTJE7UWaMgY3IgqjqNsRKQplfn7u9zLgbi6uqq8onTNmjVwdXVVS1FERK9DVWhLSmrP0EZEOq/cy4EsWrQI/fr1w4EDB9ChQwcAwB9//IHr169j+/btai+QiKis8vPzVZ5ru2lTKCIiNFAQEZGalXuqFADu3LmDlStXIjExEQDg4eGBwMBAjripGadKicqutKnRWbOerc0WG1vFBRGRwarM398VWoC3bt26mDNnjloLISKqKFWhbdy4cTh5sgYX1CUivVKh4JaZmYkffvgBV69eBQC0aNECw4cPh62trVqLIyJ6mQsXLmDnzp1K7SXnsvn5cUFdItIv5Z4qPXv2LHx9fWFpaYn27dsDAM6cOYOnT5/i0KFDaNu2baUUaog4VUpUOl41SkTaSquWA+ncuTMaNWqE77//HiYmzwbsCgsLMWLECNy4cQMnTpxQa4GGjMGNSDWuzUZE2kyrznE7e/asQmgDABMTE0yZMgXt2rVTa3FERM8rbZTN05OhjYgMQ7nXcbOxsUFqaqpS++3bt1G9enW1FEVE9CJVoe3Bg3rw9AzleWxEZDDKPeI2YMAABAQEYP78+ejYsSMA4NSpUwgKClK6DRYR0esqLi7GV199pdTOqVEiMkTlDm7z58+HTCbD0KFDUVhYCAAwNTXFqFGjEB4ervYCichw8QIEIiJFFVqAFwCePHmC5ORkAEDDhg1hZWWl1sKIFyeQYVMV2gICAlC3bl0NVENEVHZadXFCCSsrK7Rq1UqdtRARITk5GT///LNSO0fZiIjKEdyGDx9epn4//vhjhYshIsPGqVEiopcrc3CLjIxEvXr14OnpiQrOrhIRlUpVaJs5cyZkMpkGqiEi0k5lDm6jRo3Cpk2bkJKSgk8++QQff/wxatasWZm1EZGei4oCTp1aCiurh0rbOMpGRKSszOu4rVixAvfu3cOUKVOwZ88euLq64sMPP0R0dDRH4IioQhISwpRCm4WFBUMbEVEpKnxV6a1btxAZGYmffvoJhYWFuHz5MqpVq6bu+gwaryolfSWEwOzZs5XaGdiISB9o5VWlRkZGkMlkEEKgqKhInTURkR7jBQhERBVXrlte5eXlYdOmTXj33XfRpEkTXLx4EcuXL0dqaipH24jolVSFtgEDBjC0ERGVUZlH3D7//HNs3rwZrq6uGD58ODZt2gR7e/vKrI2I9ERaWhq+++47pXYGNiKi8inzOW5GRkZwc3ODp6fnSy/P37Fjh9qKM3Q8x430AadGicjQaMU5bkOHDuV6SkRULqpC2/Tp02FsbKyBaoiIdF+5FuAlIiqLjRs34vr160rtHGUjIno9Fb6qlIhIFU6NEhFVHgY3IlIbVaGNgY2ISH0Y3IiowqKigPBwwNdX9ShbdHQomNuIiNSHwY2IKqy00Fa3bg/88EN7BAdroCgiIj3G4EZEFZKVlQVf38VK7dHRoYiNBQICqr4mIiJ9V647J2iSn58f3NzcYGFhARcXFwwZMgR3795V6LN161a0adMGVlZWqFevHubNm6e0n2PHjqFt27YwNzdHo0aNVF4tu2LFCtSvXx8WFhbo0KED/vjjD4Xtubm5GD16NGrVqoVq1aqhX79+SE9PV+iTmpqKnj17wsrKCo6OjggKCkJhYeHrfxFEWiAsLAyLFy9Wao+ODuUoGxFRJdKZ4Na1a1ds3boVSUlJ2L59O5KTk9G/f39p+4EDBzB48GAEBgbi0qVLWLlyJRYtWoTly5dLfVJSUtCzZ0907doV586dw/jx4zFixAhER0dLfbZs2YKJEyciNDQUf/75J1q3bg1fX19kZGRIfSZMmIA9e/Zg27ZtOH78OO7evYsPPvhA2l5UVISePXsiPz8fsbGxWLduHSIjIzFz5sxK/paIKp+qCxD+7/+mIjT02Uibn58GiiIiMhBlvnOCtomKikLfvn2Rl5cHU1NTfPTRRygoKMC2bdukPsuWLUNERARSU1Mhk8kwdepU7Nu3D5cuXZL6DBw4EJmZmTh48CAAoEOHDnjjjTekwFdcXAxXV1eMHTsWwcHByMrKgoODAzZu3CgFx8TERHh4eCAuLg7e3t44cOAAevXqhbt378LJyQkAsHr1akydOhX379+HmZlZmT4j75xA2uTXX3/FqVOnlNp51SgRkaLK/P2tMyNuz3vw4AE2bNiAjh07wtTUFACQl5cHCwsLhX6Wlpa4c+cObt26BQCIi4uDj4+PQh9fX1/ExcUBAPLz8xEfH6/Qx8jICD4+PlKf+Ph4FBQUKPRp1qwZ3NzcpD5xcXFo1aqVFNpK3ic7OxuXL18u9XPl5eUhOztb4UGkDcLCwhjaiIi0gE4Ft6lTp8La2hq1atVCamoqdu/eLW3z9fXFjh07EBMTg+LiYly7dg0LFiwAANy7dw/AsxtdPx+mAMDJyQnZ2dl4+vQp/v77bxQVFansk5aWJu3DzMwMdnZ2L+2jah8l20ozd+5c2NraSg9XV9eyfjVElaa0tdkY2oiIqp5Gg1twcDBkMtlLH4mJiVL/oKAgJCQk4NChQzA2NsbQoUNRMtM7cuRIjBkzBr169YKZmRm8vb0xcOBAAM9GzXRBSEgIsrKypMft27c1XRIZsLCwMJWhzdOTgY2ISFM0uhzIpEmT4O/v/9I+DRo0kP5ub28Pe3t7NGnSBB4eHnB1dcXvv/8OuVwOmUyGb7/9FnPmzEFaWhocHBwQExOjsA9nZ2elqz/T09NhY2MDS0tLGBsbw9jYWGUfZ2dnaR/5+fnIzMxUGHV7sc+LV6KW7LOkjyrm5uYwNzd/6fdBVBVUBbauXbuiS5cuGqiGiIhKaDS4OTg4wMHBoUKvLS4uBvDsvLDnGRsbo06dOgCATZs2QS6XS+8hl8uxf/9+hf6HDx+GXC4HAJiZmcHLywsxMTHo27ev9D4xMTEYM2YMAMDLywumpqaIiYlBv379AABJSUlITU2V9iOXy/HNN98gIyMDjo6O0vvY2NigefPmFfq8RFUhNzcX3377rVI7p0WJiLSDTizAe/r0aZw5cwadOnVCjRo1kJycjBkzZqBhw4ZSWPr777/xyy+/4K233kJubi7Wrl0rLddRIjAwEMuXL8eUKVMwfPhwHDlyBFu3bsW+ffukPhMnTsSwYcPQrl07tG/fHosXL0ZOTg4++eQTAICtrS0CAgIwceJE1KxZEzY2Nhg7dizkcjm8vb0BAN26dUPz5s0xZMgQREREIC0tDdOnT8fo0aM5okZaizeHJyLSfjoR3KysrLBjxw6EhoYiJycHLi4u6N69O6ZPn64QhNatW4fJkydDCAG5XI5jx46hffv20nZ3d3fs27cPEyZMwJIlS1C3bl2sWbMGvr6+Up8BAwbg/v37mDlzJtLS0tCmTRscPHhQ4WKDRYsWwcjICP369UNeXh58fX2xcuVKabuxsTH27t2LUaNGQS6Xw9raGsOGDcPs2bMr+ZsiqhhVoe3YsYk4erS6BqohIqLS6Ow6boaA67hRZUtISEBUVJRSe8kdELiYLhFR+VXm72+dGHEjIvV72dQoZ0eJiLQTgxuRASptbTYiItJuDG5EBoQXIBAR6TYGNyIDoXoxXU/48UQ2IiKdweBGpOeKiorw9ddfK7VzlI2ISPcwuBHpMU6NEhHpFwY3Ij2lKrSNGTMGtWrV0kA1RESkDgxuRHrmxo0bWL9+vVI7R9mIiHQfgxuRHuHUKBGRfmNwI9ITqkLbzJkzIZPJNFANERFVBgY3Ih33888/Izk5Wamdo2xERPqHwY1Ih6kaZbOxaYJt2wbB05P3GiUi0jcMbkQ6SAiB2bNnK7Vv2hQKmQxITATCwxnciIj0DYMbkY4p7QKE6OhQJCUBTZsCcjkQHFzFhRERUaVjcCPSIapC22effQZnZ2d4ej4bZQsO5kgbEZG+MtJ0AUT0av/884/K0BYaGoo//nBGx47PnsfGMrQREekzjrgRablXrc0WHg7ExfGcNiIiQ8DgRqTFyrI2W3Dw/6ZIiYhIvzG4EWmhY8eO4fjx40rtJaNsUVGK57NxpI2IyDAwuBFpGVWjbC1atED//v2l55weJSIyTAxuRFqktAsQXsTpUSIiw8TgRqQFvv76axQVFSm1l3bbKk6PEhEZJgY3Ig1TNcrWuLE/PvqongaqISIibcbgRqQhOTk5mD9/vlI7bw5PRESlYXAj0oBXrc1GRESkCoMbURVTFdqmT58OY2NjDVRDRES6hMGNqIqsW3cFN29uU2rnKBsREZUVgxtRFVA1ytawYUN8/PHHGqiGiIh0FYMbUSVTFdo8PUO5nAcREZUbgxtRJdm2bRuuXLmi1M6pUSIiqigGN6JKoGqU7ZNPPoGbm5sGqiEiIn3B4EakRgUFBZgzZ45SO0fZiIhIHRjciNSEa7MREVFlY3AjUgNVoS0kJARmZmYaqIaIiPQVgxvRa0hNTcXatWuV2jnKRkRElYHBjaiCVI2yeXh44MMPP9RANUREZAgY3IgqQFVo4ygbERFVNgY3onI4duwYjh8/rtTO0EZERFWBwY2ojFSNsg0aNAhNmjTRQDVERGSIGNyIXqGoqAhff/21UjtH2YiIqKoxuBG9RHh4OPLy8pTaGdqIiEgTGNyIXhAVBYSHA76+ylOjU6dOhYWFhdQnOBi8WTwREVUZI00XQKRtli79W2VoCw0NhYWFBYBnoS0u7tmfREREVYUjbkTPCQsLQ+fOim3NmjXDgAEDFNqCg/834kZERFRVGNyI/r/yrM3m58cpUiIiqnoMbmTwzp8/j127dim18wIEIiLSNgxuZNBUjbJ9/PHHaNiwoQaqISIiejkGNzJIQgjMnj1bqZ2jbEREpM0Y3MigREUBhw5tgIPDX0rbGNqIiEjbMbiR3nt+zbWEhDA4OChunzx5MqytrTVTHBERUTkwuJHeCw8Hzp9/goSEeUrbOMpGRES6hMGN9J6v71fw9S1WaGvevDn+/e9/a6giIiKiimFwI72m6qrRmTNnQiaTaaAaIiKi18PgRnrp7t27+P7775XaOTVKRES6jMGN9I6qUbbhw4fD1dVVA9UQERGpD4Mb6Q2uzUZERPqOwY30wpkzZ7B//36FNgcHB3z++ecaqoiIiEj9GNxI56maGg0KCoKVlZUGqiEiIqo8DG6ks/Lz8zF37lyldk6NEhGRvmJwI520ceNGXL9+XaGtc+fOePvttzVUERERUeVjcCOdw7XZiIjIUDG4kc64f/8+Vq5cqdTOqVEiIjIUDG6kE1SNsg0ZMgQNGjTQQDVERESaweBGWk9VaOMoGxERGSIGN9JaFy5cwM6dOxXarK2tMXnyZA1VREREpFlGmi6gvPLy8tCmTRvIZDKcO3dOYduFCxfQuXNnWFhYwNXVFREREUqv37ZtG5o1awYLCwu0atVKadFWIQRmzpwJFxcXWFpawsfHR+nqxQcPHmDw4MGwsbGBnZ0dAgIC8Pjx43LXQqULCwtTCm0TJkxgaCMiIoOmc8FtypQpqF27tlJ7dnY2unXrhnr16iE+Ph7z5s3DrFmz8J///EfqExsbi0GDBiEgIAAJCQno27cv+vbti0uXLkl9IiIisHTpUqxevRqnT5+GtbU1fH19kZubK/UZPHgwLl++jMOHD2Pv3r04ceIEPv3003LVQqoVFhaWOjVqY2OjgYqIiIi0h0wIITRdRFkdOHAAEydOxPbt29GiRQskJCSgTZs2AIBVq1bhyy+/RFpaGszMzAAAwcHB2LVrFxITEwEAAwYMQE5ODvbu3Svt09vbG23atMHq1ashhEDt2rUxadIkaWQnKysLTk5OiIyMxMCBA3H16lU0b94cZ86cQbt27QAABw8exHvvvYc7d+6gdu3aZaqlLLKzs2Fra4usrCyDCC07d+7EhQsXFNreeOMNvPfeexqqiIiIqPwq8/e3zoy4paenY+TIkVi/fr3KWxnFxcWhS5cuUlACAF9fXyQlJeHhw4dSHx8fH4XX+fr6Ii4uDgCQkpKCtLQ0hT62trbo0KGD1CcuLg52dnZSaAMAHx8fGBkZ4fTp02WuRZW8vDxkZ2crPPRdVBTQseOzqdEXQ9uMGTMY2oiIiJ6jE8FNCAF/f38EBgYqBKbnpaWlwcnJSaGt5HlaWtpL+zy//fnXldbH0dFRYbuJiQlq1qz5yvd5/j1UmTt3LmxtbaWHq6trqX31xZIlD+Hrq3pq1MhIJ/7zJCIiqjIa/c0YHBwMmUz20kdiYiKWLVuGR48eISQkRJPlVrqQkBBkZWVJj9u3b2u6pEq1ZMkSdOmyVKHtww8/5FIfREREpdDociCTJk2Cv7//S/s0aNAAR44cQVxcHMzNzRW2tWvXDoMHD8a6devg7OyM9PR0he0lz52dnaU/VfV5fntJm4uLi0KfknPpnJ2dkZGRobCPwsJCPHjw4JXv8/x7qGJubq70GfVFVBQQHg4EBwN+flybjYiIqCI0GtwcHBzg4ODwyn5Lly7F119/LT2/e/cufH19sWXLFnTo0AEAIJfL8eWXX6KgoACmpqYAgMOHD6Np06aoUaOG1CcmJgbjx4+X9nX48GHI5XIAgLu7O5ydnRETEyMFtezsbJw+fRqjRo2S9pGZmYn4+Hh4eXkBAI4cOYLi4uJy1WJowsOBuDggKCgVCQlrFbbJZDLMnDlTQ5URERHpDp26qrTEzZs34e7urnBVaVZWFpo2bYpu3bph6tSpuHTpEoYPH45FixZJS3XExsbizTffRHh4OHr27InNmzdjzpw5+PPPP9GyZUsAwLfffovw8HCsW7cO7u7umDFjBi5cuIArV67AwsICANCjRw+kp6dj9erVKCgowCeffIJ27dph48aNZa6lLPTpqtKoKOC33+bD2jpHoX3ixImoXr26hqoiIiJSv8r8/a03d06wtbXFoUOHMHr0aHh5ecHe3h4zZ85UCEodO3bExo0bMX36dEybNg2NGzfGrl27pNAGPFsnLicnB59++ikyMzPRqVMnHDx4UAptALBhwwaMGTMG77zzDoyMjNCvXz8sXbq0XLUYEiEEEhJmw9pasZ1To0REROWjkyNuhkIfRtwePHiAZcuWKbR17doVXbp00VBFRERElYsjbqSTTpw4gaNHjyq0zZgxg8t8EBERVRCDG6ldYWEhvvnmG4W23r17o23bthqqiIiISD8wuJFa3b59Gz/++KNC26RJk1CtWjUNVURERKQ/GNxIbXbt2oXz589Lzxs3boyPPvpIgxURERHpFwY3em1Pnz5FRESEQtvHH3+Mhg0baqgiIiIi/cTgRq/lypUr2LZtm0JbSEgIzMzMNFQRERGR/mJwowoRQmDNmjW4e/eu1CaXy9GtWzcNVkVERKTfGNyo3DIzM7FkyRKFtsDAQDg5OWmoIiIiIsPA4EblEhsbi8OHD0vPra2tMXHiRK7NRkREVAUY3KhMioqKEB4ejsLCQqntvffewxtvvKHBqoiIiAwLgxu90n//+1+sWbNGoW3ChAk6exsuIiIiXcXgRi+1d+9exMfHS8/d3d0xZMgQyGQyDVZFRERkmBjcSKW8vDyEh4crtA0aNAhNmjTRUEVERETE4EZKkpKSsHnzZoW24OBgmJuba6giIiIiAhjc6DlCCKxbtw63bt2S2tq1a4eePXtqsCoiIiIqweBGAICsrCwsXrxYoW3kyJGoXbu2ZgoiIiIiJQxuhD/++AMHDhyQnpubmyMoKAjGxsYarIqIiIhexOBmwIqLizF//nw8ffpUauvWrRvkcrkGqyIiIqLSMLgZqLS0NHz33XcKbV988QXs7Ow0UxARERG9EoObATp58iSOHDkiPa9bty6GDx/OtdmIiIi0HIObATp58qT09w8//BAeHh4arIaIiIjKisHNAPXu3Rt//fUXevToAQsLC02XQ0RERGXE4GaAWrVqhVatWmm6DCIiIionI00XQERERERlw+BGREREpCMY3IiIiIh0BIMbERERkY5gcDNAUVFAx47P/iQiIiLdweBmgMLDgbi4Z38SERGR7mBwM0DBwYBc/uxPIiIi0h1cx80A+fk9exAREZFu4YgbERERkY5gcCMiIiLSEQxuRERERDqCwY2IiIhIRzC4EREREekIBjciIiIiHcHgRkRERKQjGNyIiIiIdASDGxEREZGOYHAjIiIi0hEMbkREREQ6gsGNiIiISEcwuBERERHpCBNNF0ClE0IAALKzszVcCREREZVVye/tkt/j6sTgpsUePXoEAHB1ddVwJURERFRejx49gq2trVr3KROVEQdJLYqLi3H37l1Ur14dMplM0+VUuuzsbLi6uuL27duwsbHRdDn0Ah4f7cbjo914fLSbuo+PEAKPHj1C7dq1YWSk3rPSOOKmxYyMjFC3bl1Nl1HlbGxs+INNi/H4aDceH+3G46Pd1Hl81D3SVoIXJxARERHpCAY3IiIiIh3B4EZaw9zcHKGhoTA3N9d0KaQCj4924/HRbjw+2k2Xjg8vTiAiIiLSERxxIyIiItIRDG5EREREOoLBjYiIiEhHMLgRERER6QgGN1KLvLw8tGnTBjKZDOfOnVPYduHCBXTu3BkWFhZwdXVFRESE0uu3bduGZs2awcLCAq1atcL+/fsVtgshMHPmTLi4uMDS0hI+Pj64fv26Qp8HDx5g8ODBsLGxgZ2dHQICAvD48eNy16JP/Pz84ObmBgsLC7i4uGDIkCG4e/euQp+tW7eiTZs2sLKyQr169TBv3jyl/Rw7dgxt27aFubk5GjVqhMjISKU+K1asQP369WFhYYEOHTrgjz/+UNiem5uL0aNHo1atWqhWrRr69euH9PR0hT6pqano2bMnrKys4OjoiKCgIBQWFr7+F6GlynJ8oqOj4e3tjerVq8PBwQH9+vXDzZs3Ffrw+FSeVx2jWbNmQSaTKT2sra0V9sOfcZWjLP+GhBCYP38+mjRpAnNzc9SpUwfffPONQh+d+jckiNRg3LhxokePHgKASEhIkNqzsrKEk5OTGDx4sLh06ZLYtGmTsLS0FN99953U59SpU8LY2FhERESIK1euiOnTpwtTU1Nx8eJFqU94eLiwtbUVu3btEufPnxd+fn7C3d1dPH36VOrTvXt30bp1a/H777+LkydPikaNGolBgwaVqxZ9s3DhQhEXFydu3rwpTp06JeRyuZDL5dL2/fv3CxMTE7Fq1SqRnJws9u7dK1xcXMSyZcukPjdu3BBWVlZi4sSJ4sqVK2LZsmXC2NhYHDx4UOqzefNmYWZmJn788Udx+fJlMXLkSGFnZyfS09OlPoGBgcLV1VXExMSIs2fPCm9vb9GxY0dpe2FhoWjZsqXw8fERCQkJYv/+/cLe3l6EhIRU8rekOa86Pjdu3BDm5uYiJCRE/PXXXyI+Pl506dJFeHp6KvTh8ak8rzpGjx49Evfu3VN4NG/eXAwbNkzqw59xledVx0cIIcaOHSuaNm0qdu/eLW7cuCHOnj0rDh06JG3XtX9DDG702vbv3y+aNWsmLl++rBTcVq5cKWrUqCHy8vKktqlTp4qmTZtKzz/88EPRs2dPhX126NBBfPbZZ0IIIYqLi4Wzs7OYN2+etD0zM1OYm5uLTZs2CSGEuHLligAgzpw5I/U5cOCAkMlk4r///W+Za9F3u3fvFjKZTOTn5wshhBg0aJDo37+/Qp+lS5eKunXriuLiYiGEEFOmTBEtWrRQ6DNgwADh6+srPW/fvr0YPXq09LyoqEjUrl1bzJ07Vwjx7HiZmpqKbdu2SX2uXr0qAIi4uDghxLP/joyMjERaWprUZ9WqVcLGxkbhmOmzF4/Ptm3bhImJiSgqKpL6REVFKfTh8alaLx6jF507d04AECdOnJDa+DOu6rx4fK5cuSJMTExEYmJiqa/RtX9DnCql15Keno6RI0di/fr1sLKyUtoeFxeHLl26wMzMTGrz9fVFUlISHj58KPXx8fFReJ2vry/i4uIAACkpKUhLS1PoY2triw4dOkh94uLiYGdnh3bt2kl9fHx8YGRkhNOnT5e5Fn324MEDbNiwAR07doSpqSmAZ1PcFhYWCv0sLS1x584d3Lp1C8Crj09+fj7i4+MV+hgZGcHHx0fqEx8fj4KCAoU+zZo1g5ubm8IxbNWqFZycnBTeJzs7G5cvX1bX16C1VB0fLy8vGBkZYe3atSgqKkJWVhbWr18PHx8fqQ+PT9VRdYxetGbNGjRp0gSdO3eW2vgzrmqoOj579uxBgwYNsHfvXri7u6N+/foYMWIEHjx4IL1O1/4NMbhRhQkh4O/vj8DAQIUfJs9LS0tT+I8UgPQ8LS3tpX2e3/7860rr4+joqLDdxMQENWvWfOX7PP8e+mjq1KmwtrZGrVq1kJqait27d0vbfH19sWPHDsTExKC4uBjXrl3DggULAAD37t0DUPr3lp2djadPn+Lvv/9GUVHRK4+PmZkZ7OzsXtqHx0fx+Li7u+PQoUOYNm0azM3NYWdnhzt37mDr1q1SHx6fyveyY/S83NxcbNiwAQEBAQrt/BlXuV52fG7cuIFbt25h27Zt+OmnnxAZGYn4+Hj0799f6qNr/4YY3EhJcHCwypNtn38kJiZi2bJlePToEUJCQjRdskEp6/EpERQUhISEBBw6dAjGxsYYOnQoxP+/YcrIkSMxZswY9OrVC2ZmZvD29sbAgQMBPPs/Sio/dR6ftLQ0jBw5EsOGDcOZM2dw/PhxmJmZoX///lIfKj91HqPn7dy5E48ePcKwYcOq8uPoHXUen+LiYuTl5eGnn35C586d8dZbb+GHH37A0aNHkZSUpKmP+FpMNF0AaZ9JkybB39//pX0aNGiAI0eOIC4uTunebu3atcPgwYOxbt06ODs7K11VU/Lc2dlZ+lNVn+e3l7S5uLgo9GnTpo3UJyMjQ2EfhYWFePDgwSvf5/n30AVlPT4l7O3tYW9vjyZNmsDDwwOurq74/fffIZfLIZPJ8O2332LOnDlIS0uDg4MDYmJiFPZR2vdmY2MDS0tLGBsbw9jY+JXHMD8/H5mZmQr/R/pinxev0jL047NixQrY2toqXBn4888/w9XVFadPn4a3tzePTwWo8xg9b82aNejVq5fSqAp/xpWPOo+Pi4sLTExM0KRJE6m/h4cHgGdXeDZt2lT3/g2V+Ww4ohfcunVLXLx4UXpER0cLAOKXX34Rt2/fFkL872TZ50/kDQkJUbo4oVevXgr7lsvlSifuzp8/X9qelZWl8sTds2fPSn2io6NVnrj7slr03a1btwQAcfTo0VL7DBkyROGqrClTpoiWLVsq9Bk0aJDSibtjxoyRnhcVFYk6deoonbj7yy+/SH0SExNVnrj7/FVa3333nbCxsRG5ubkV+8A65sXjM3HiRNG+fXuFPnfv3hUAxKlTp4QQPD5VrbR/Qzdu3BAymUzs2bNH6TX8GVd1Xjw+Jb+X/vrrL6lPyQUkSUlJQgjd+zfE4EZqk5KSonRVaWZmpnBychJDhgwRly5dEps3bxZWVlZKy4GYmJiI+fPni6tXr4rQ0FCVl8rb2dmJ3bt3iwsXLog+ffqovFTe09NTnD59Wvz222+icePGCpfKl6UWffL777+LZcuWiYSEBHHz5k0RExMjOnbsKBo2bCj9kLh//75YtWqVuHr1qkhISBDjxo0TFhYW4vTp09J+Si6VDwoKElevXhUrVqxQeam8ubm5iIyMFFeuXBGffvqpsLOzU7h6KjAwULi5uYkjR46Is2fPKl22X3KpfLdu3cS5c+fEwYMHhYODg94uN1GW4xMTEyNkMpkICwsT165dE/Hx8cLX11fUq1dPPHnyRAjB41OZynKMSkyfPl3Url1bFBYWKu2HP+MqR1mOT1FRkWjbtq3o0qWL+PPPP8XZs2dFhw4dxLvvvivtR9f+DTG4kdqoCm5CCHH+/HnRqVMnYW5uLurUqSPCw8OVXrt161bRpEkTYWZmJlq0aCH27dunsL24uFjMmDFDODk5CXNzc/HOO+9I/7dU4p9//hGDBg0S1apVEzY2NuKTTz4Rjx49Knct+uLChQuia9euombNmsLc3FzUr19fBAYGijt37kh97t+/L7y9vYW1tbWwsrIS77zzjvj999+V9nX06FHRpk0bYWZmJho0aCDWrl2r1GfZsmXCzc1NmJmZifbt2yvt5+nTp+Lzzz8XNWrUEFZWVuL9998X9+7dU+hz8+ZN0aNHD2FpaSns7e3FpEmTREFBgXq+EC1TluMjhBCbNm0Snp6ewtraWjg4OAg/Pz9x9epVhT48PpWjrMeoqKhI1K1bV0ybNq3UffFnnPqV9fj897//FR988IGoVq2acHJyEv7+/uKff/5R6KNL/4ZkQvAMVyIiIiJdwMvGiIiIiHQEgxsRERGRjmBwIyIiItIRDG5EREREOoLBjYiIiEhHMLgRERER6QgGNyIiIiIdweBGRFQJZDIZdu3apekyFBw7dgwymQyZmZmaLoWIKojBjYjoNcyaNUu6ETgRUWVjcCMiIiLSEQxuRGTQiouLMXfuXLi7u8PS0hKtW7fGL7/8AuB/U4sxMTFo164drKys0LFjRyQlJQEAIiMjERYWhvPnz0Mmk0EmkyEyMlLa999//433338fVlZWaNy4MaKiospUU8n7RkdHw9PTE5aWlnj77beRkZGBAwcOwMPDAzY2Nvjoo4/w5MkT6XV5eXkYN24cHB0dYWFhgU6dOuHMmTPq+7KISOMY3IjIoM2dOxc//fQTVq9ejcuXL2PChAn4+OOPcfz4canPl19+iQULFuDs2bMwMTHB8OHDAQADBgzApEmT0KJFC9y7dw/37t3DgAEDpNeFhYXhww8/xIULF/Dee+9h8ODBePDgQZlrmzVrFpYvX47Y2Fjcvn0bH374IRYvXoyNGzdi3759OHToEJYtWyb1nzJlCrZv345169bhzz//RKNGjeDr61uu9yQiLVeuW9ITEemR3NxcYWVlJWJjYxXaAwICxKBBg8TRo0cFAPHrr79K2/bt2ycAiKdPnwohhAgNDRWtW7dW2jcAMX36dOn548ePBQBx4MCBV9al6n3nzp0rAIjk5GSp7bPPPhO+vr7S/k1NTcWGDRuk7fn5+aJ27doiIiJCYb8PHz58ZQ1EpJ1MNJgZiYg06q+//sKTJ0/w7rvvKrTn5+fD09NTev5///d/0t9dXFwAABkZGXBzc3vp/p9/nbW1NWxsbJCRkVHm+p5/vZOTE6ysrNCgQQOFtj/++AMAkJycjIKCAvzrX/+StpuamqJ9+/a4evVqmd+TiLQbgxsRGazHjx8DAPbt24c6deoobDM3N0dycjKAZwGohEwmA/Ds3LhXef51Ja8ty+tUvV4mk732/ohI9/EcNyIyWM2bN4e5uTlSU1PRqFEjhYerq2uZ9mFmZoaioqJKrvTVGjZsCDMzM5w6dUpqKygowJkzZ9C8eXMNVkZE6sQRNyIyWNWrV8fkyZMxYcIEFBcXo1OnTsjKysKpU6dgY2ODevXqvXIf9evXR0pKCs6dO4e6deuievXqMDc3r4LqFVlbW2PUqFEICgpCzZo14ebmhoiICDx58gQBAQFVXg8RVQ4GNyIyaF999RUcHBwwd+5c3LhxA3Z2dmjbti2mTZtWpmnIfv36YceOHejatSsyMzOxdu1a+Pv7V37hKoSHh6O4uBhDhgzBo0eP0K5dO0RHR6NGjRoaqYeI1E8mhBCaLoKIiIiIXo3nuBERERHpCAY3IqIqFhgYiGrVqql8BAYGaro8ItJinColIqpiGRkZyM7OVrnNxsYGjo6OVVwREekKBjciIiIiHcGpUiIiIiIdweBGREREpCMY3IiIiIh0BIMbERERkY5gcCMiIiLSEQxuRERERDqCwY2IiIhIRzC4EREREemI/wfIwUKhYZuBRgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACX30lEQVR4nO2deXgUxdbG38kKATIhG0lkSQjIoogCEgIKKJGgKHIDEtzYQbgEZZFNBcUNQZFduCqLCygI0YugSFj0qsSoKOKCXMwXNpOwBDJBIklI+vsjt5uZycx0T08v1T3n9zw+kpme7urq6qq3zjl1ysJxHAeCIAiCIAhCUwL0LgBBEARBEIQ/QiKMIAiCIAhCB0iEEQRBEARB6ACJMIIgCIIgCB0gEUYQBEEQBKEDJMIIgiAIgiB0gEQYQRAEQRCEDpAIIwiCIAiC0AESYQRBEARBEDpAIowgCILwyPr162GxWHDs2DG9i0IQpoJEGEEQuvPdd98hKysL1113HRo0aIDmzZtjyJAh+O9//1vn2N69e8NiscBisSAgIADh4eFo06YNHn74YeTk5Hh13Y8//hi9evVCbGwswsLC0LJlSwwZMgQ7d+5U6tbq8OKLL+Kjjz6q8/n+/fvxzDPPoLS0VLVrO/PMM88IdWmxWBAWFob27dvjqaeeQllZmSLX2LhxI5YsWaLIuQjCbJAIIwhCdxYsWICtW7eiT58+WLp0KcaNG4f//Oc/6NSpE3755Zc6xzdt2hTvvPMO3n77bbz88ssYMGAA9u/fj759+yIzMxNVVVWi13zllVcwYMAAWCwWzJ49G4sXL8agQYNw9OhRvP/++2rcJgDPImzevHmaijCeVatW4Z133sGrr76Ktm3b4oUXXkC/fv2gxNbCJMIIwj1BeheAIAhi6tSp2LhxI0JCQoTPMjMz0aFDB7z00kt49913HY63Wq146KGHHD576aWX8Oijj+K1115DYmIiFixY4PZ6V65cwXPPPYc77rgDu3btqvP9mTNnfLwjdigvL0dYWJjHYwYPHozo6GgAwPjx4zFo0CBkZ2fjm2++QWpqqhbFJAi/hCxhBEHoTvfu3R0EGAC0bt0a1113HQ4fPizpHIGBgVi2bBnat2+PFStWwGazuT323LlzKCsrQ48ePVx+Hxsb6/D35cuX8cwzz+Daa69FvXr1EB8fj4yMDOTn5wvHvPLKK+jevTuioqJQv359dO7cGVu2bHE4j8ViwaVLl/DWW28JLsARI0bgmWeewfTp0wEASUlJwnf2MVjvvvsuOnfujPr16yMyMhJDhw7FyZMnHc7fu3dvXH/99Thw4AB69uyJsLAwPPHEE5Lqz57bb78dAFBQUODxuNdeew3XXXcdQkNDkZCQgIkTJzpY8nr37o0dO3bg+PHjwj0lJiZ6XR6CMCtkCSMIgkk4jsPp06dx3XXXSf5NYGAg7r//fsyZMwdfffUV+vfv7/K42NhY1K9fHx9//DEmTZqEyMhIt+esrq7G3XffjT179mDo0KF47LHHcPHiReTk5OCXX35BcnIyAGDp0qUYMGAAHnzwQVRWVuL999/Hfffdh+3btwvleOeddzBmzBh07doV48aNAwAkJyejQYMG+O9//4v33nsPixcvFqxSMTExAIAXXngBc+bMwZAhQzBmzBicPXsWy5cvR8+ePfHjjz8iIiJCKG9JSQnuvPNODB06FA899BCaNGkiuf54eHEZFRXl9phnnnkG8+bNQ1paGiZMmIAjR45g1apV+O677/D1118jODgYTz75JGw2G06dOoXFixcDABo2bOh1eQjCtHAEQRAM8s4773AAuDVr1jh83qtXL+66665z+7sPP/yQA8AtXbrU4/nnzp3LAeAaNGjA3XnnndwLL7zAHThwoM5xa9eu5QBwr776ap3vampqhH+Xl5c7fFdZWcldf/313O233+7weYMGDbjhw4fXOdfLL7/MAeAKCgocPj927BgXGBjIvfDCCw6f//zzz1xQUJDD57169eIAcKtXr3Z73/Y8/fTTHADuyJEj3NmzZ7mCggLuX//6FxcaGso1adKEu3TpEsdxHLdu3TqHsp05c4YLCQnh+vbty1VXVwvnW7FiBQeAW7t2rfBZ//79uRYtWkgqD0H4G+SOJAiCOX7//XdMnDgRqampGD58uFe/5S0tFy9e9HjcvHnzsHHjRtx000347LPP8OSTT6Jz587o1KmTgwt069atiI6OxqRJk+qcw2KxCP+uX7++8O8LFy7AZrPh1ltvxQ8//OBV+Z3Jzs5GTU0NhgwZgnPnzgn/xcXFoXXr1ti3b5/D8aGhoRg5cqRX12jTpg1iYmKQlJSERx55BK1atcKOHTvcxpLt3r0blZWVmDx5MgICrg4jY8eORXh4OHbs2OH9jRKEH0LuSIIgmKK4uBj9+/eH1WrFli1bEBgY6NXv//rrLwBAo0aNRI+9//77cf/996OsrAx5eXlYv349Nm7ciHvuuQe//PIL6tWrh/z8fLRp0wZBQZ67y+3bt+P555/HwYMHUVFRIXxuL9TkcPToUXAch9atW7v8Pjg42OHva665pk58nRhbt25FeHg4goOD0bRpU8HF6o7jx48DqBVv9oSEhKBly5bC9wRBeIZEGEEQzGCz2XDnnXeitLQUX375JRISErw+B5/SolWrVpJ/Ex4ejjvuuAN33HEHgoOD8dZbbyEvLw+9evWS9Psvv/wSAwYMQM+ePfHaa68hPj4ewcHBWLduHTZu3Oj1PdhTU1MDi8WCTz/91KUgdY6xsrfISaVnz55CHBpBENpBIowgCCa4fPky7rnnHvz3v//F7t270b59e6/PUV1djY0bNyIsLAy33HKLrHJ06dIFb731FoqKigDUBs7n5eWhqqqqjtWJZ+vWrahXrx4+++wzhIaGCp+vW7euzrHuLGPuPk9OTgbHcUhKSsK1117r7e2oQosWLQAAR44cQcuWLYXPKysrUVBQgLS0NOEzXy2BBGFmKCaMIAjdqa6uRmZmJnJzc/HBBx/Iyk1VXV2NRx99FIcPH8ajjz6K8PBwt8eWl5cjNzfX5XeffvopgKuutkGDBuHcuXNYsWJFnWO5/yUzDQwMhMViQXV1tfDdsWPHXCZlbdCggcuErA0aNACAOt9lZGQgMDAQ8+bNq5M8leM4lJSUuL5JFUlLS0NISAiWLVvmUKY1a9bAZrM5rEpt0KCBx3QhBOHPkCWMIAjdmTZtGrZt24Z77rkH58+fr5Oc1Tkxq81mE44pLy/HH3/8gezsbOTn52Po0KF47rnnPF6vvLwc3bt3R7du3dCvXz80a9YMpaWl+Oijj/Dll19i4MCBuOmmmwAAw4YNw9tvv42pU6fi22+/xa233opLly5h9+7d+Oc//4l7770X/fv3x6uvvop+/frhgQcewJkzZ7By5Uq0atUKhw4dcrh2586dsXv3brz66qtISEhAUlISUlJS0LlzZwDAk08+iaFDhyI4OBj33HMPkpOT8fzzz2P27Nk4duwYBg4ciEaNGqGgoAAffvghxo0bh8cff9yn+veWmJgYzJ49G/PmzUO/fv0wYMAAHDlyBK+99hpuvvlmh+fVuXNnbNq0CVOnTsXNN9+Mhg0b4p577tG0vATBLHouzSQIguC4q6kV3P3n6diGDRtyrVu35h566CFu165dkq5XVVXFvfHGG9zAgQO5Fi1acKGhoVxYWBh30003cS+//DJXUVHhcHx5eTn35JNPcklJSVxwcDAXFxfHDR48mMvPzxeOWbNmDde6dWsuNDSUa9u2Lbdu3TohBYQ9v//+O9ezZ0+ufv36HACHdBXPPfccd80113ABAQF10lVs3bqVu+WWW7gGDRpwDRo04Nq2bctNnDiRO3LkiEPdeErf4QxfvrNnz3o8zjlFBc+KFSu4tm3bcsHBwVyTJk24CRMmcBcuXHA45q+//uIeeOABLiIiggNA6SoIwg4LxymwORhBEARBEAThFRQTRhAEQRAEoQMkwgiCIAiCIHSARBhBEARBEIQOkAgjCIIgCILQARJhBEEQBEEQOkAijCAIgiAIQgcoWSvD1NTUoLCwEI0aNaKtPwiCIAjCIHAch4sXLyIhIQEBAe7tXSTCGKawsBDNmjXTuxgEQRAEQcjg5MmTaNq0qdvvSYQxTKNGjQDUPkRP++ARBEEQBMEOZWVlaNasmTCOu4NEGMPwLsjw8HASYQRBEARhMMRCiSgwnyAIgiAIQgdIhBEEQRAEQegAiTCCIAiCIAgdIBFGEARBEAShAyTCCIIgCIIgdIBEGEEQBEEQhA6QCCMIgiAIgtABEmEEQRAEQRA6QCKMIAiCIAhCB0iEEQRBEARB6IBhRNiAAQPQvHlz1KtXD/Hx8Xj44YdRWFjocAzHcXjllVdw7bXXIjQ0FNdccw1eeOEFh2M+//xzdOrUCaGhoWjVqhXWr19f51orV65EYmIi6tWrh5SUFHz77bcO31++fBkTJ05EVFQUGjZsiEGDBuH06dMOx5w4cQL9+/dHWFgYYmNjMX36dFy5ckWZyiAIgiAIwvAYRoTddttt2Lx5M44cOYKtW7ciPz8fgwcPdjjmsccew5tvvolXXnkFv//+O7Zt24auXbsK3xcUFKB///647bbbcPDgQUyePBljxozBZ599JhyzadMmTJ06FU8//TR++OEHdOzYEenp6Thz5oxwzJQpU/Dxxx/jgw8+wBdffIHCwkJkZGQI31dXV6N///6orKzE/v378dZbb2H9+vWYO3euijVE+MqpU8C+fbX/JwiCIAjV4QzKv//9b85isXCVlZUcx3Hcb7/9xgUFBXG///6729/MmDGDu+666xw+y8zM5NLT04W/u3btyk2cOFH4u7q6mktISODmz5/PcRzHlZaWcsHBwdwHH3wgHHP48GEOAJebm8txHMd98sknXEBAAFdcXCwcs2rVKi48PJyrqKiQfI82m40DwNlsNsm/Ibzj3LlzXGFhIffKKxe4gIAaDuC4gIAa7pVXLnCFhYXcuXPn9C4iQRAEYTCkjt9BOmtAWZw/fx4bNmxA9+7dERwcDAD4+OOP0bJlS2zfvh39+vUDx3FIS0vDwoULERkZCQDIzc1FWlqaw7nS09MxefJkAEBlZSUOHDiA2bNnC98HBAQgLS0Nubm5AIADBw6gqqrK4Txt27ZF8+bNkZubi27duiE3NxcdOnRAkyZNHK4zYcIE/Prrr7jppptUqRctKCkpQWVlJQCgsDAABQVBSEq6goSEGgBASEgIoqKi9CyiZEpKSrBixQrYbI2wZMlkcFztbvc1NRZMnx6OP/9cC6v1IrKysgxzT4T32LdpVxipTRMEYSwMJcJmzpyJFStWoLy8HN26dcP27duF7/7v//4Px48fxwcffIC3334b1dXVmDJlCgYPHoy9e/cCAIqLix2EEQA0adIEZWVl+Pvvv3HhwgVUV1e7POb3338XzhESEoKIiIg6xxQXF3u8Dv+dOyoqKlBRUSH8XVZWJqVaNIMXLQDwww834eOP7wbHBcBiqcE992xHp04/AoBhRAs/8J4/HwWOc/TMc1wAzp+PhNV60eMAzSIkKqRj36YBwGZrhPPnoxAZWQKr9aLwuVHaNEEQxkJXETZr1iwsWLDA4zGHDx9G27ZtAQDTp0/H6NGjcfz4ccybNw/Dhg3D9u3bYbFYUFNTg4qKCrz99tu49tprAQBr1qxB586dceTIEbRp00b1+/GV+fPnY968eXoXwy38wG6zNRIEGFArWD7++G4kJ/9hSNESGVkCi6XGQYhZLDWIjDyvY6nkQaLCO+zbqqeJhdHaNME2LE6UWCyTP6CrCJs2bRpGjBjh8ZiWLVsK/46OjkZ0dDSuvfZatGvXDs2aNcM333yD1NRUxMfHIygoSBBgANCuXTsAtSsV27Rpg7i4uDqrGE+fPo3w8HDUr18fgYGBCAwMdHlMXFwcACAuLg6VlZUoLS11sIY5H+O8opI/J3+MK2bPno2pU6cKf5eVlaFZs2Ye60cPxCxHRsNqvYh77tleZwA24r2QqJCH2MSCIJTCeaLkDi0nSiyWyV/QVYTFxMQgJiZG1m9rampjkHj3XY8ePXDlyhXk5+cjOTkZAPDf//4XANCiRQsAQGpqKj755BOH8+Tk5CA1NRVArdLv3Lkz9uzZg4EDBwrX2bNnD7KysgAAnTt3RnBwMPbs2YNBgwYBAI4cOYITJ04I50lNTcULL7yAM2fOIDY2VrhOeHg42rdv7/aeQkNDERoaKqs+tERLy5FWs7NOnX5EcvIfOH8+EpGR53UZeJW8VxIV3mG2iQXBLlInQFpOlJyv5c6CTpM35TFETFheXh6+++473HLLLWjcuDHy8/MxZ84cJCcnC8InLS0NnTp1wqhRo7BkyRLU1NRg4sSJuOOOOwTr2Pjx47FixQrMmDEDo0aNwt69e7F582bs2LFDuNbUqVMxfPhwdOnSBV27dsWSJUtw6dIljBw5EgBgtVoxevRoTJ06FZGRkQgPD8ekSZOQmpqKbt26AQD69u2L9u3b4+GHH8bChQtRXFyMp556ChMnTjSEyBJDK8uRVNfaQw89JAhvX7BaL+o24CrtRiRR4R1mckkbFX91h7l71/XCkwWdUB5DiLCwsDBkZ2fj6aefxqVLlxAfH49+/frhqaeeEkRNQEAAPv74Y0yaNAk9e/ZEgwYNcOedd2LRokXCeZKSkrBjxw5MmTIFS5cuRdOmTfHmm28iPT1dOCYzMxNnz57F3LlzUVxcjBtvvBE7d+50CLRfvHgxAgICMGjQIFRUVCA9PR2vvfaa8H1gYCC2b9+OCRMmIDU1FQ0aNMDw4cPx7LPPalBb2qCF5cidaw2owR137EaPHrUrVt99913Dm8mVdiOSqPAOM7mkjYi/usNYEzxkQdceQ4iwDh06CCscPZGQkICtW7d6PKZ379748UfPjTwrK0twP7qiXr16WLlyJVauXOn2mBYtWtRxfZoNrSxHzh0DEICcnDsAQBBiZjGTK9UJkqjwHhZc0v6KP7rDWBQ8ZEHXHkOIMMK/cdUxABbs3p2G66//RXbnEBISouhxSuBLJ1hSUoJz584Jf5Oo8B49XdJELaxZh9SCRcFDFnTtIRFGSEYv0RIZWQKgBs67bPnaYUVFRSErK4upOBS5naA7dw6JCveUlJSgtLRU0rFaCnF/hkXrkFqwKHjIgq49JMIIyeglWqzWi7jjjt3/c0FahM+V6LBYiy+R2wlKdefw+LuokBqDlJmZiZiYGObaiVlh0TqkFqwKHrKgawuJMMIr9BqM+Niv3bvTmOqw1MBTJ3ju3DlRoevJnZORkYGEhAS/FxVSRavVatW0rvx1hSAPi9YhpbGfAHl617WcKDlfy50FXevJmz+8DyTCCMPQo0curr/+F7+YobnrBLOzswG4XyUm5s6Jjo42fKelNKzEILG8QlDNwdA+lpFV65CSsBgGwWKZWH4flIREGMEsrmZdesQ4aTEbczfD9HaVmD+5c6Ti6vnxgz5LMUisrhBUczB0dW5/cIexKBpYKxOr74PSkAgjmCUqKgoPPfQQ3n33XdFj1TKTazUb42eihYWFgrVLjoXGH9w5rnAnlEtLS7F582a3v2NVtLJknSssLHT4TMnB0N1vWHGHEWzAyvugBiTCCKZJTk7W1Uyu5WwsKipK8ibp7vAHd44zUoUyUPf5sShaWbHOuapXtQdDd+8XxTL6L6y8D2pBIoxQDaXceKx0vFrOxqRaaPg69uf8YFKFsrvnx5poZcU651yvp07FqzoYenq/KJbRf2HlfVALEmGEKpgtqFLr2ZgUC42nOvZXd467gdzT82NNtLJonfvhh5uwbdvdUDpXH4+S75c/rKjzJ1h8H5SERBihCmYLqtR6NibFrSi1jjMyMhAdHW36wcfTQC72/FgSray5lPl6dRZggHKDoVLvl9kmfwR774PSkAgjVMcMQZV6zMa8sdCIuXLi4+NVKycreBrIxZ4fL1Tt0VO0smSdc71tGBQdDJV6v8w2+SNqYel9UBoSYYSqmCWoUqvZmNSkieXl5SgvLwdgnjr2FU8DudjzY0Gospow01W9AjUYPfpNNG1apMg11Hi/1Jz86e3y1Pv6WsDq+6A0JMIIVTFTUKUWszEpSRPLy8sd0naYqY59QWwgZ302zWLCTMB9vToLMDmDoVrZ49WcmOjt8tT7+q5QQxSy+j4oDYkwQlWMHlSpx2xMrFMpKnIc/Ixex0oiJrRYn02zOqB4qldf0keoNdCqOTGR6spUy+Wp9/WdUVMUsvo+KAmJMEJVjB5UqcVsTIlZZGpqLvbvTwVgvDr2FalCOTMzE1ar1eXv/aGz9xap9epr/i416l5sYmKf0sUeOW3BXdwZoI3b0NP1tYA1UWg0SIQRiuDc2Zgpb5XasR2+zCKd415SU79GSkqe4erYF/zFbaE1Rq5XsckfvyuFK7yx2HiKOzt58iQ+/fRT0XP44jZkcdGT3qLQaJAII3xGipBg3Q2kF76s5nIV95Kbm4qUlDyH4/yhjlkUAmbAyPUqd/In1WIjFncmRYB5cz1vr68HLIpC1iERRviM1E7EOQ0Aq7NovfC2AxOLe6GtXtjFH1a36YFUFyrgu8XG27gzpS1ErC3IYVEUGgESYYTiuOtsWEgDwCpyOjCxuBcjbPVSUlKCs2fPoqqqyuX3QUFBiI2NZf4+vIHF1W1mwdmFeu7cOZeuR08THvtQCk9i2JsFMV9/nYrdu9MUtRCxtiCHNVFoFEiEEYpC5mh5yOnAWF70IMXSA0DyxttmEiQUyKwuntqJzdYIJ082c9iCyXnC4yza3LU9qe/f11+nIifnDgAWl9eTC2vvP2ui0CiQCCMUwxdztL+7Z7zpwNTKraQUUi09Q4YMqfOZP2Y4p0BmbbCfIDrjacLj3Pakvn9A7bPNyUkDL8CkXE8MVt9/1kShUSARRiiGXHM0uWe868BYX7UmVTBduXLF4W81XDasQ5ZjbXCeIDpjsdQgOLgSBQWJomJYyvtns9mwadMmnD8fBaX33GTt/ddbFBp9Ak8ijFAMueZoOSsEjf7iucKb1VxGujcplh61XDYsQ4HM2uFu/0ugto+64YZDWLNmjGQxLPX9c73lE4e0tN0+PWOW3n89RaEZJvAkwgjFUMIcLcUyYIYXj8fs+6NJeZ5quGyMgN6BzGacyLjD3QRx0KAtiIgoFQQYoKwYdu4TgRrcccdu9OiRKxxj1HfbHlas7u4mfIWFhS7bOgttnEQY4TNKmaOlWgZ8ya3FGqy5FpRE6vNUw2VjBPQMZDbTREYK7iaI119/GAUFiYqLYal94kMPPWSK+mUBTxO+7Oxst+OE3m2cRBjhM0oJCTmWATPE1Ji1E5b6PNVy2YihtyVIz0Bmf1mhKUUMqSGGjTy50vu9kIPYhM/TOKF3GycRRiiCEi+lt50hxdSwjdTnKcVlozR6WoL0DmR2hVlXaHoSQ3wOMbXEMGtCRQpGtZB6mvABYHqcIBFGMIO3naHeMTWEZ8SeZ3BwsHCs2KIEpQWJni5tNa0kcqwYZrAmy7lvFsWw3hjVQuppwsf6OEEijGAKb1YIUnJANpE6uMXExCArK0v3jPl6iBC9V4rxmMGaLNd6Y2SXoVZoZSH11QUqNuFjeZwgEUZIRq1YAbkrBP0hOaDW8RlKXM/bwU3PQc5XEcJS/Iwc6x7rVgIp+GLV9GeBJYbUrZ0A39q5Ui5QdxM+1scJEmGEJNSMFfBlRuqN5cxoaB2foeT1jDK4+SJCWI6fkWrdM5s12QyuVRYQm5y42o9Tbjv3RURLncCzPE6QCCMkoXasgDcvr9lza/FoHZ9h1HgQX/BFhLBaX95Y91i3EniDGVyrrCAW6K5W/KS3IlrKwgsed+OE3pAII2Sh52oqo8Zy+Oq6UqLOPZXB2cVg1hVz9igpQlipLynWPTMGpZvBtcoK7iYnhYUJePvtYapYGuWKaHd9ptS2q3cbJxFGeA0LJn/WBJYYvrqulKhzqWVQ6npqoXQclhKuCpbqS4p1T4mJDEvxcID5XKt64mpykpa2W9jbFVDe0qi0iDbKZJ1EGOEVYrOVc+fOMdGwWcMX15VSbhapsRdquHWUGrCVisNS0qXNmhtMqnXPl3eUxXg4M7lW9cKThVRtS6NaSXNZh0QY4RViLyLvg2ctmR9reOO6UqPz82S5Ufp6Sg7YSsVhKTlLFquv0tJSxMfHSyq3UqgdiMzq1mEsB2AbAVfvhX1slZqWRn8V0STCCK+QOlsxU/C20njrulJ6hihmuVH6emoGsPsSh6XUJEGsvjZv3qzJpESvBSt6u2L1XqjDmlvWV9yVVQuR5I8imkQY4RWuXsTUVPW2lzEqzh0zH/Qux3WldOcnZrlRu7NVKoBdi8FfykIGKfWlxaREjxgYFlyxesb+sOiWVRM1RJLeIlpvSIQRknAVK5CXl4L9+1Oxf38P5OamMhW8rSeeOmZvXH1qrWCTYulSa8WcUsJJi8Hfm4UMfH2dPNkUgAXNmp1UpAzeovVAz8qKRL0EDqtuWSVRWyQZJYBeLUiEEZLgX5TCwkIhPiA3NxUAG8HILOGpM/HG1adW5yRmucnIyEB0dLRi1+NRUjhpMfhLHWB58vNbMbNCUitoReJV9HbLqoUWIsmsAksKJMIIyURFRQkvIiszYC2RG/vhPHh74+pTq3PyZOmKjo5WJZBcyTaj9eAvNsCy4JbTAzMEUysR02X25+/PIkltSIQRshAbBPl4GXcdmNGCWeVsjgy4H7z1SI6pd+yFksJJy8FfygDrj5MSHiMHUysV0+Xr8zdaf0goB4kwQhZig6D9dhHOHZgRg1nlxH6IDd4jR97h4PZTu6PVwq3gajDxJoBdDD0yvUsZYP3NLae3oFcKpWK6fHn+RuwPCeUgEUZ4hdRB0J6zZ886dB6s7rknFamxH2KDt1puP0+o2YlLGUx8FU56BPFKGWDN4JbzBjMGU/sS0+XL8zdjcD9Z9qRDIozwCvvO9+jRo9i3b5/QUbjrPKqqqjyeU6s997SO/TCjdUSJvSedLYCAd52y1p231AHWLHswSsVMg6gSMV1m2/5KLs6TMXf9AFn2aiERRngN/+LYD7pyOw+tOh09Yj/MZh1Rau9JPSyAvuJpgM3MzITVanX7W7PM+s1s3ZAb02Xm7a/kYt9GPPUDRrLsqQmJMMJn5HYeWnY6SrlApVi39Ihb0gKpdWiWwUTqABsTE2NY8SEVs8ctybVaa7n9ldEwSz+gNiTCCJ+R23no2enIdYFKsW6ZMV7GFe7q0CyDiavnaLPZHNzrQUFBqKysRFFREQB9nqsWFiozxi3Z44vVWqvtr4yGWfoBtSERRvhMcHAFAA6Axe5TDsHB6q0o8gVfXaBSYj+MLrDE8FSHZhpMnFf1btq0SfQ3WlqD9Ii/MUPckiv0TrVhtvAFM/UDakIijPCZqqpQOAowALCgqsqzu02PTkeuiVyp2A8zxNWI1aHZBhMeFq1BWsffmM3FxFqqDb2FoJKYtR9QGhJhhGyCgmqbj9iMhz+OR2rMlM1mc3ttuWJFrolcCRejWeJqpNShmQYTV7BmDdJKHJnNxcRC6ABrQlBJzN4PKAGJMEI2sbGxAMRnPPxxPGIdX2lpKTZv3izq+pEjVnwxkVNcTS1S61CJwYRFyyGL1iCtxJEZXUx6T3i8EYIsvg9iuOsHvMGI9y0VEmGEbJw7j7lzz+LYsSAkJl5BQsLNAG52+3Io8cLIESusmMhZs6R4g1YbgLNqOWTRGqSVOGLl/WERX4SClPbL6vvgjNRJltTjzJ53jEQY4RP2jT4+HujcWflrKJHMlaW0EWKWFOekp/ZlY6Vz9VSHCQkJqohsViyHLFqDtBRH5GKqixZCQer7cPbsWV2tRkq7eM2ed4xEGKEb7maOSiSBdYaF2A8eMUuK/b6bzug529OzDlmyHLJqDVJTHJk5bkkJtBYKnq5hH8ahl9VIjXOzGAagBCTCCF2QYlpX+qVjxVQtxZLCitXHGT3qkMXOl1VrkBLxN65gaRLDMlq0VanXMJvViMUwACUgEUboghTTullfOjFLCktWHxZgpR2waA1SOv7GE/4usKSgRVuVcg25IQ8Au2KaxTAAJSARRuiOO9Eh5aUz6qoZd5YUFq0+esNK56u0NUiJtksWKvWR8px4tGirUq4hNeTBSEHurIYB+AqJMEJXxESHp5fOZrMxl8HcE1IsKaxYfVhCrB1ouZBBqfMpGcjNQts2K1KfU2ZmJgBthIKUa0gRamq5K9WcGLMaBuALJMIIXRETHZ5eOo7jJF2DlfgHT1aLc+fOITs7W7TztBcc/mTh8NQOWF3I4Ak5gdxGtfoaGanPyX4/US2Egtg1xCew6ljctVglqlbco16QCCN0RUx0uMs5FRISInnJNkuIdTxinaez4GBVZCiB1BgsgN2FDGJIHQzNniuJdbwVLWoIBW/eB8CzUFPK4u48MZC6st2b91LLuEc9IBFG6Iq35nv72X5RUZHwuZmC2V11nr6IDL0tKHKvL8VyCBj72UsdDNVOgaB3G2EdsefkvDWbO3wRClLi//jdRnjcCTUlYtfcTwwaAYBiljazxz2SCCN0x1tXk/Ns3wzB7J5mub6IDL2zbPt6fbEyGf3ZezsYit1vaWkp4uPjvSoDWdnEEXtOERERmggFsd9LFXlKxK55mhikpuYqGttq5nZnGBE2YMAAHDx4EGfOnEHjxo2RlpaGBQsWICEhAQDwzDPPYN68eXV+FxYWhkuXLgl/f/DBB5gzZw6OHTuG1q1bY8GCBbjrrruE7zmOw9NPP4033ngDpaWl6NGjB1atWoXWrVsLx5w/fx6TJk3Cxx9/jICAAAwaNAhLly5Fw4YNhWMOHTqEiRMn4rvvvkNMTAwmTZqEGTNmqFE1hkSKaV2q9ccMwezOsz3e0uOryJBqGVHLbad21nujP3tvB0Ox+928ebPXYsnsGcmVQMpzYkEoiFmN7C3ISsWuueqj9u9PZWJFsxEwjAi77bbb8MQTTyA+Ph5//vknHn/8cQwePBj79+8HADz++OMYP368w2/69OmDm2++Wfh7//79uP/++zF//nzcfffd2LhxIwYOHIgffvgB119/PQBg4cKFWLZsGd566y0kJSVhzpw5SE9Px2+//YZ69eoBAB588EEUFRUhJycHVVVVGDlyJMaNG4eNGzcCAMrKytC3b1+kpaVh9erV+PnnnzFq1ChERERg3LhxWlQX87jqLOS6mFhJYeArrjpxpUWGnnFzargNzfDsvRkMpdyvXLFkdKui2hhlZZ43YlCJ2DVXfRQQgNTUr5Gbm2qqdBJqYBgRNmXKFOHfLVq0wKxZszBw4EBUVVUhODgYDRs2dLBE/fTTT/jtt9+wevVq4bOlS5eiX79+mD59OgDgueeeQ05ODlasWIHVq1eD4zgsWbIETz31FO69914AwNtvv40mTZrgo48+wtChQ3H48GHs3LkT3333Hbp06QIAWL58Oe666y688sorSEhIwIYNG1BZWYm1a9ciJCQE1113HQ4ePIhXX32VRBjE40/kBMFKtSYYLfZFSZGhZ+yUWgO8WXIHSR0Mne8XADgOyM9v5fOzNLpVUQuMvjJPjSB3d31USkoeUlLymBetemMYEWbP+fPnsWHDBnTv3h3BwcEuj3nzzTdx7bXX4tZbbxU+y83NxdSpUx2OS09Px0cffQQAKCgoQHFxMdLS0oTvrVYrUlJSkJubi6FDhyI3NxcRERGCAAOAtLQ0BAQEIC8vD//4xz+Qm5uLnj17OjTk9PR0LFiwABcuXEDjxo2VqAbDYC98nANHXSF1MPB2U26946PkoJTI0NvKoeYAbxQLhT2+DIbJyX/AMTuLMs/SDFZFpTHbyjw1gtzF+igjvI96YigRNnPmTKxYsQLl5eXo1q0btm/f7vK4y5cvY8OGDZg1a5bD58XFxWjSpInDZ02aNEFxcbHwPf+Zp2NiY2Mdvg8KCkJkZKTDMUlJSXXOwX/nToRVVFSgoqJC+LusrMzlcUZCqvCxR+pg4G2HonZ8klooITL0tnJ4M8BLsVayuIWQN/gyGJ4/HwVA+WdpFquikphxZZ4aZfW2j2L1vdQDXUXYrFmzsGDBAo/HHD58GG3btgUATJ8+HaNHj8bx48cxb948DBs2DNu3b4fFYnH4zYcffoiLFy9i+PDhqpVdDebPn+9ycYGRERM0roSQN4OB3A6F9bQGSosMva0cUp+pN9ZKow+O3pRNq61xjGhVVBuW2xBLOPdR7ia5Dz30ENWpHbqKsGnTpmHEiBEej2nZsqXw7+joaERHR+Paa69Fu3bt0KxZM3zzzTdITU11+M2bb76Ju+++u45FKy4uDqdPn3b47PTp04iLixO+5z+zX+Z9+vRp3HjjjcIxZ86ccTjHlStXcP78eYfzuLqO/TVcMXv2bAd3aVlZGZo1a+b2eCNi/2Lm57dyK4TUHAz0ds1JQekZOAtWDinP1BtrpbepGIyIvVWwb9++2LVrl+rP0uhxT4Q2eJoAeprkhoWFaVVEQ6CrCIuJiUFMTIys39bU1ACAg/sOqI3r2rdvH7Zt21bnN6mpqdizZw8mT54sfJaTkyOIuKSkJMTFxWHPnj2C6CorK0NeXh4mTJggnKO0tBQHDhxA586dAQB79+5FTU0NUlJShGOefPJJYdEAf502bdp4jAcLDQ1FaGiojNowBs4vZm1ci3shpJaLSW/XnFSUmC16GzenNL5Y9Fi3VqqN6/xdiYiMLFF0kmK2uCdCG9RKq+NvGCImLC8vD9999x1uueUWNG7cGPn5+ZgzZw6Sk5PrWMHWrl2L+Ph43HnnnXXO89hjj6FXr15YtGgR+vfvj/fffx/ff/89Xn/9dQCAxWLB5MmT8fzzz6N169ZCioqEhAQMHDgQANCuXTv069cPY8eOxerVq1FVVYWsrCwMHTpUyFn2wAMPYN68eRg9ejRmzpyJX375BUuXLsXixYvVrSiGcfViOmMvhDxtV+SrONHbNaclese0yL0+deTS8ncpMUnxtY0YbcUxoRxapNUxO4YQYWFhYcjOzsbTTz+NS5cuIT4+Hv369cNTTz3lYDmqqanB+vXrMWLECAQGBtY5T/fu3bFx40Y89dRTeOKJJ9C6dWt89NFHQo4wAJgxYwYuXbqEcePGobS0FLfccgt27twp5AgDgA0bNiArKwt9+vQRkrUuW7ZM+N5qtWLXrl2YOHEiOnfujOjoaMydO9cQ6SnU6lBd55JxxF4IRUdHq+ZuYsE1pyV6D4BKtRd/7cjFBKn9hEXu+ym3jRg52z6JR3Xwp0muEhhChHXo0AF79+4VPS4gIAAnT570eMx9992H++67z+33FosFzz77LJ599lm3x0RGRgqJWd1xww034Msvv/RcYMZQM4WDuxeTd0lqLYQoAJltqCO/ipggFZuwqCk2pGbbLywsdDhWb4FjZPHIOv42yfUVQ4gwQhvU3OLG3YupZYyS0dMa+BPUkV/FF0GqldjwZK0DgEWLfmBK4NBWTerC2iTXfiJSWBiAgoIgJCVdQUJCbWy5npMCEmGEqkgJDLdaLyIzMxNWq1X4jRovhN7xUYR3sNaR64UvglQrseHOWpeXl1Jn6xr+mmfOnNF9YKTYQ/VgZZWt/UTE0zug16SARBjhFiX2GWRN+JDAYhup1srS0lKXvzXr8/VVkKotNlxZ64AaQYC5uia/c4aeAyPFHioHq6ts+bFH7B3Qy+pJIoxwiZLpAcw6MBLK406022w2bNq0Sfjb3dZXZo7h8cWyoLTY4N07586dE8rmbK1LTc3F/v09PF5T74HRaLGHLC8mYG3C7QyrgptEGFEHMtETeiKlkzbKllO+oKRlQUmx4S7OLDn5D0yevESw1gFwsIS5uqbeA6ORYg+NsJiA5QkQq4KbRBhRB707RoLwhFQrLctWAykoaVlQUmxIjTMDIHpNFgZGo8Qe0mIC32BVcJMII+rAQsdIEK6QaqU1gtVACkqWTWmxIfYsbLZGaNz4AkaPfhNVVSEur8nKwMhKELkUjOyp0HtixKLgJhFGCPBuDbGOUaqbxPmFs9lsqKqqEv4OCgpCRESEw/VZHhAJ/ZFqpSWrgWvciQ0+tssZT++kp2fhal/YpKTjLs+jx8DIahC5FLTwVKghlliZGLEmuEmEEQLO7o+5c8/i2LEgJCZeQULCzQBulvzySU386oyWlgm9Z2WE93hrpTWy1UAJpIoIfs8/bwZFd88iOLjS6zrXemBkPYjcE2p7KtQSSzQxcg2JMMIB+5cqPh743x7lXiP2IukdWK3m7gCEenjrvvL3+EZPYoPfcBmQNyi6exZVVaEe6zwjIwPBwcEOq131gNX32t3k0NNKVCVduGqLJa0nRqxbPUmEEZpgL7pcuSrkpr+Qi5q7AxDq4o37iuIbxcWGL4Oiq2dhszXyWOfR0dHMD4x6IdUKpYULVy2xpPXEiHWrJ4kwwgE1XHT2symgBoDlf/+x4x5SIjEtoR5yt5xiJfCbZXwdFJ2fhZQ6Z31g1AsxK1St8LraT6nZjtUSS3pMjFhuRyTCCAE1XHTOsykgoM4x9i92aWmpx82I1UDJxLSEOvgyaLO4IoolvB0UpVinpNQ5ywOj3rizQnEcAHjup+QunOLh3Z5qiSWaGDlCIowQUMNF52o25Yz9i71582ZN47D8PXDbSPjSJlhbEcUS3g6K7gSxfYwZf15v65wWy9Tizgpl/2/7fiojI0Nw8yq1cEpNsUQTo6uQCCPcooSLzt2echYLhBc7LW23blnP/T1w26xQzJF3eDsouhrofa1zqfFQQ4YMcUht43xuM4g01/2mI/b9VHR0tFcehLrbgmkfe0YTo1pIhBEuUcpF52429fff9ZCTkwaOC8Du3WmoX/+yLi5ACtw2J/4ccyTXmuTroOhrnUtdlcfvG2rUBLxScNVv8q5IHqX6KbG+XimxRBMj15AII+qghIvO/kVynk0BwJIlk8F3KHq6ACk+wbwYfSCWgzc5ntQYFJWocyn9jxnyTLkSy/ZJc537TVerytXe9cAT3oolf54YeYJEGFEHJVx0rl64Y8eOYdeuXSgoSJR9fqViRjyJRPsy+NusjDA23uR4io+PZ3JQFOt/zBDH6VksXz3O3gqlhmtQrK75WDNn5LYLfxNYUiARRtRBKReduxdO7vmVXL1JszJCDCMHiUsVKiyW310c6aVLDQSxYvQ4Tm82QbdH6Tgqsb7Y21gzwntIhBF1UNtFJ/f8Sq/eZHEAItjA6DsqGFmoOPcPfG7BLVvuExbymCWOU0ws33HHHcjJyRE9j1yLPYVj6A+JMEJASxedEqZ1d/EucjYjJgiekpISFBYWOnym9zZbrvAUU2T0BSd8/3DyZFNs3ToYHHc1ufPu3WlIS9uN3bvTDC8cxMRyUlKS6hZ7qX2xkS3DLEMijBBQ20UnN+u5KzyZ8O1zFTnDquWCYANXsTp5eSnIzU1lKpmvWEyRGSwcVutFnD//t0uRkpBQiMmTlxg+z5QUsSy1v/JGJHnbF6u1qTdBIoxwQs0XSCmRJyXehUXLBcE+zrE627bdDfu0AKwEgUuJKTJaQkxXky9PIsUMeaaUEsveiiRv+2K1N/X2Z0iEEZqihMgTM+HTNkSEr/BCX2ybLd79V1paiitXrjgcFxwcDOv/lrqp5aoRm5AYSajYCwM++74ckWK0Fc1KiGU5IklOezTDylTWIBFGGA5Ps2PqJAgl8LTdlr27yJXrW0tXjdwAfFaFird7fzqnUGA1LsnZVegct6qUWFa7/zPygg9WIRFGGA5Ps2MWcpARxsfdtjHuLDG88CosjK8TMK6mq0YspshVnidX7Zj1tu9OpBghhYJ7V2EjxROiqi2SjL7gg0VIhBGGQcrqTRZykPkTag3eeosCV2kSunfPRUpKXp3BzN79A3AArq7kU9sKK+aukyJSWAy6NtMWN1JdhUpY9dQWSWZY8MEaJMIIw+ApmNSXGBJA+Rxk/oBawlXN84oJO3ukxOo4u394AcajhavG15giFoOuzZhMWcxVqIRVTwuRZLQFH6xDIowwFFI6XTVzkBFXcR4glVqRqsZ5pVp7MjMzHX7nzg122223Yd++fR5jxwDtXDVKxBSxFk9pJIElBa3iqbQQSUZa8ME6JMIIU6BVDjLCNWrVmVLnlWrt4ThO0vliYmIAuIsdq3VJqumqUcNdR0HX6qJlPJXSIslM7mHWIBFGmAItc5ARjojVmbsdDADPz8Sb80p1TYmdMyIiQlI74r935f5JS9uNhIRCVV01arjrxETCuXPnDOcCZAk1XYVqiyQzuodZgUQYYRq0yEFG1EWszjztYAC4j+3y9rxSYsSkPF8p7aioqEj4t14xMkoPeK4WI6Sm5grf8/VNi1Pko1Zb0UIk0TNXBxJhBGEHLcH2Hql15m1sl7vzBgdXoqAgUVaMmFLPV6r729NvWIQXCfxWTfv390BubiplRVcQteKpSCQZExJhBGEHLcGuxZuVhFLqTE5sl6vz3nDDIaxZM0Z2jJhYWaW63JwtD3plzFcLfq9MoK7LtrS0lPncXCxB8VTeoXd6Gq0hEUYQkJaDDKgdbJ1/Z6YOAZCeIsJ+JaGnOvMlzs7+vMHBlYIA8/Y87s7pXFZvXG723xtZlDgP/mIu282bN5NL0gsonko6/pivkUQYQcB1R2mz2bBp0yaH4zZv3lznt0bvEMS2VHGH80pCd24Wb+Ps3Ln65OyGwN+bu21ibLZGsl2bZoFv+4WFhcjOzna74rOwMAFJSccB+Ff9KIGR+wctUSvtDcuQCCMMg9pmaikrJ83WIUiZebq7b7GVhHwCXW/jsJwFsdzziN0bpSK5SlRUlMOKz7S03cjJuQNXk89asHt3Gq6//he/c81rhb+54cTw5f00Ul2SCCMMgdpmalcvrb31xKwDttjMU+y+pdS1nDg7V+f19jye7g0ApSLxQEJCEfTI/u+vsLh1lJ74EsJgNJcmiTDCEKi5rZDYS+svucOcBVda2m5hM2rAt/tWamm+3PM431tqai6lIvEArRLWFqnJhAsLC132cSxZdpTAl1RBRnNpkggjDImS2wqJvbRiHYJzvJERO0RXQjMnJw2AfKGi1C4Gvp7H1b3l5qYCqIH9/fm7yPB2xSuhPGITvuzsbL+wkik1CTCCB4NEmJ9gJB+5GGq+WK7OnZz8h8cOwVUyUqN1iK73QAzwqSNUalWYr+dxJ6K7d/9aSMWghsgw2jsXFRWFzMxMYTEKbdSsPWITPlY2WFcbJSYBRvFgkAjzA4zmI/eEmi+Wu3NPnrzEbYfAuqlbKu5mnvYuSTkdoVLtyZfzuLu3lJQ8pKTkqSIyjPrO8XnNrv5NGzVriScLkFFEhVL4Ogkwyu4nJML8ADXjqbRGzRfL07lddQhGMHVLxd3Ms1OnH3H99b+47AiNklxSbFYtd6N3TxgtLoWHEovqi6e2KpaiRe4erWJoadFVKoQBME5cI4kwP8TdgCBnQ2StUfPFEju3fYdgxlmpu5mn1XoRI0fegejoaOFYVtuHOzzNqjMyMlS9Nz3EutyBkxKL6o+7tirWP8ndo9UTWlt0lWx/RolrJBHmZ3gaEJxf4iFDhiAiIgIAOx2vmi+W2LkzMjIA1NaTUUzdYkideSYkJDDx/L2BhXvTQ6z7OnAa7TmbEVdtVWrfp6TVVQ+LrpLtzwhxjSTC/AhvBwTn7PCZmZl1YkYAbQSa1G2FfHWTeDq3vbXEG4scywHaZrZ8sHBveoh1o7pC/Rmp/ZaYqNB60RKL4RdKujS1gESYH+FuQDh5sinOn/9b6KTdddrOW/jYo3aAsZoDqjcvrX1WcSmzUiMEaBtRYElF73vTOy7FKAOnv+Opf+N3jOBx1z/psWiJxfALFiZf3kAizI9wvSdcDbZuHSx00jfccAiHDt3gttPWc1at1kvjzUtbVFQkfCbF1E1WCf9GSfe5txZVIw2c/oqUZ5qQkCDpXHotWmKxLbEisKRAIsyPcB4QapNVWsBxtduTcFwAfvqpI/jtSpw7bTPPqqW+tL6Yus1cf4R7lIhL8caiymO0gdNMSBFXACQ/UzX2aPUGPSy6LIdxKAmJMD/AXTzVpUsNsGXLfU5Hu94vDqC99gD5pm6ySjhi9g5W6bgUORZVvV2h/opUwZyZmenwt6dnGh8fL3o+PRctKY0RwjiUgkSYH+AsHPiZk83WyIV7koO9EOM7bZpVX0XOS+8v9aekBYDF1blSUTMuRapF1ShL9M2GVMFcVVUl/FspK7maqwG1XGnoT2EcJML8BFedvatO2lVMGN/oaVYtH3+wSkidvQ4ZMkTS+ZxX5xpt1qtGWb21qBphib6ZkSKupD5TdxMcm83m8LeSqwFZWGlo9jAOEmF+iFi6h9tv3+syYaces2qzuK38wSohdVZ69uxZh7+dZ7lmnvX6ihSLKgsDJyFdXEl5pt5McHjrsT1y+0m9Vxr6KlC1KKOvkAjzQ5xfLJvN5pB+wl2nrfWs2mxxAZ7qzwi7FXiLOzG1b98+4d/Os1yx1bn+jphF9dy5c4iOjsaQIUNw5coV4Zjg4GCHHH9maWMsIzUEQYqVXKp7LiIiQlL8mFFQUqCyOk6QCPNT7BtjfHy829lOaWmpg1tIy1m1GeICpFolnHcrYLXDkIqzuEpL242EhCKHZ+dqlutpdS4hblH1tHWNfbLlyspKlJSUGLqNsY7UEARvreRauuf0FjhyBKo7WB0nSIQRANzHr3gSaDxazKqNGhfgblEEjxGFpRiuxFVOzh0ALA7PztUs193qXBJhV5FrkXaVbNnoYp9lvBFXUp+p1qus9RY4csI43PWprCJZhJWVlUk+aXh4uKzCEGyidydt9PQO7urPqMJSDE/iyv7ZuU4e7Hp1rr8j1aIKeDcIqTV4GjlGR0k8iaugIMfhV8pOHXqvstZD4Hgz6TBinypZhEVERMBisXg8huM4WCwWVFdX+1wwguDRu+NxRokBxujC0hOuxdVV+GeXlHTcq9W5/ozUbW3cDUJaDp56u7D0Rqpgjo2N9XqnDj1XWWspcORsJWfUPlWyCLMPpiUILWEpvYOcVUquRBlrwlJJ6u7M4N66JXV1LiFukXY3CP39dz3s3p2mmXXADLGcvqDmikK9VllrLXDkbCVn1D5Vsgjr1auXmuUgCLewlN5B6gAjluOKJWGpFO5SnxQWJtQRAXxdZWRkIDg4WNLqXEqp4Bl3g1BOThoAfawDRnQPKYGaFj49cr/JETi+egy8rUOj9qmyA/NLS0uxZs0aHD58GABw3XXXYdSoUQ7LoAnjwHoMB4tJJ10NMLVlFJ/1syQslcJ+9sq7yKzWi0hKOo7rr//F5bOLjo5mZvGH0XE3CClpHZC6IwJgXPcQi+id+81bgaOHS9qofaosEfb9998jPT0d9evXR9euXQEAr776Kl544QXs2rULnTp1UrSQhLo4vzDurDtax3Do3fHw2A88fD4vVwPMtm13w2KB5Fk/i8LSV/j24e2zI4HliJxJkatBKC1tt2CF5JFrHfB2T0SjuodYRO+kqd4KHC1XVYolH3d1HEvIEmFTpkzBgAED8MYbbwgrPK5cuYIxY8Zg8uTJ+M9//qNoIQl1sX8RPLkPtI7h0LvjAdwPPK5XAAaA42r/5W7Wz4qwlIpcCykLz86oeGtFEBuE6te/rIh1QOr7z++JaFT3EKvo8a4oJXDUXBhi9L5GtiXMXoABtcttZ8yYgS5duihWOEJbWHQfuHpx7IVBZWWlEJjJo+QL5y4GLDi4wuMKQMD1rN9IHYavLgUW7sEX9HLRe2tFcNWm7JMsq2UdEBtYjeoeIq6iRH+lZFwg62EzcpAlwsLDw3HixAm0bdvW4fOTJ0+iUaNGihSM0B4juA/0dJ162mIHqEHtCkDxHFdG6ST0TtSoJyylWZBiRXAug9pxdlIHVjO63FlFLYHiS/tWcmLvjTvcVWw6qwJNlgjLzMzE6NGj8corr6B79+4AgK+//hrTp0/H/fffr2gBeQYMGICDBw/izJkzaNy4MdLS0rBgwQIkJCQIx3z22Wd4+umn8euvv6JevXro2bMnFi1ahMTEROGYzz//HFOnTsWvv/6KZs2a4amnnsKIESMcrrVy5Uq8/PLLKC4uRseOHbF8+XIh9g0ALl++jGnTpuH9999HRUUF0tPT8dprr6FJkybCMSdOnMCECROwb98+NGzYEMOHD8f8+fPrJOhjCSO4D/RynbrqTA4dugGjR7+JqqoQREaeR35+K1PP+o2WidoXWEmz4IsVQa9Nlb1JQqolZrSi8LA0abBHyYm91HfN1c4QPCzmppOlCF555RVYLBYMGzZM2CQ2ODgYEyZMwEsvvaRoAXluu+02PPHEE4iPj8eff/6Jxx9/HIMHD8b+/fsBAAUFBbj33nsxdepUbNiwATabDVOmTEFGRgZ++OEH4Zj+/ftj/Pjx2LBhA/bs2YMxY8YgPj4e6enpAGof4NSpU7F69WqkpKRgyZIlSE9Px5EjRxAbGwugNiZux44d+OCDD2C1WpGVlYWMjAx8/fXXAIDq6mr0798fcXFx2L9/P4qKijBs2DAEBwfjxRdfVKV+lMBI7gOtXafuOpOqqhAkJR0HYO5Zv1apBlgcKPVKs8BieAAgPrBGREQw53JXQqSw2DZ5WJk0OKPmxN7TpJCV+5eCLBEWEhKCpUuXYv78+cjPzwcAJCcnIywsTNHC2TNlyhTh3y1atMCsWbMwcOBAVFVVITg4GAcOHEB1dTWef/55BATUPvDHH38c9957r3DM6tWrkZSUhEWLFgEA2rVrh6+++gqLFy8WRNirr76KsWPHYuTIkQCA1atXY8eOHVi7di1mzZoFm82GNWvWYOPGjbj99tsBAOvWrUO7du3wzTffoFu3bti1axd+++037N69G02aNMGNN96I5557DjNnzsQzzzzDTNC1K4wiJLR2nXqzGS8Ls34l0UoMsDib11oIlZSUCCtwWQ0PkPIusGZt8NW1zmLbdAdLudnUmth7ukeW7l8KPvnGwsLC0KFDB6XKIpnz589jw4YN6N69O4KDgwEAnTt3RkBAANatW4cRI0bgr7/+wjvvvIO0tDThmNzcXKSlpTmcKz09HZMnTwZQ+wIeOHAAs2fPFr4PCAhAWloacnNzAQAHDhxAVVWVw3natm2L5s2bIzc3F926dUNubi46dOjg4J5MT0/HhAkT8Ouvv+Kmm25yeV8VFRWoqKgQ/vZmv04l8bQvHSto7ToV60wyMjIQHR3t8rdGdnMA2okBvWLQXFk49BBCzgM9q+EBRrKYu8Nb17pR4iNZsZ6qmTbC0z0CYOL+vUGWCLt8+TKWL1+Offv24cyZM6ipqXH4nnf/Kc3MmTOxYsUKlJeXo1u3bti+fbvwXVJSEnbt2oUhQ4bgkUceQXV1NVJTU/HJJ58IxxQXFzsIIwBo0qQJysrK8Pfff+PChQuorq52eczvv/8unCMkJETYksb+mOLiYo/X4b9zx/z58zFv3jyJtaEcUl8Ed8cpbab3dD5+cNRjIPDUmfBC3xWVlZUoKSnRRYgp8WzExAD/TLw5pxS0iEETs3BoKYRcPafU1Fzs358KQFux46rd2Gw24d9GzMfEo4SlhNX4SLmTBqX7cDVXgXu6R8DCpPXYE7JE2OjRo7Fr1y4MHjwYXbt2Fd3Y2x2zZs3CggULPB5z+PBhYRXm9OnTMXr0aBw/fhzz5s3DsGHDsH37dlgsFhQXF2Ps2LEYPnw47r//fly8eBFz587F4MGDkZOTI7uMWjJ79mxMnTpV+LusrAzNmjVT/bq+vDBKr1aUej5AG9ep1LxenoJBebR2VSjlQhETvPzm0d6cUwytXApilgu9rD7O95+a+jVSUvI0ETtS283YsXfWmYyybvVVwlLEsrtLzqRBLVerWu1A7B5ZtB57QpYI2759Oz755BP06NHDp4tPmzatzspEZ1q2bCn8Ozo6GtHR0bj22mvRrl07NGvWDN988w1SU1OxcuVKWK1WLFy4UDj+3XffRbNmzZCXl4du3bohLi4Op0+fdjj/6dOnER4ejvr16yMwMBCBgYEuj4mLiwMAxMXFobKyEqWlpQ4dkPMx3377bZ1z8N+5IzQ0FKGhoR7rQy3kvjBKr1aUej4etV2nUgSqfU4mgJ2gUF9dKFJcCmrcq54uFVf3o3WcpKv7z81NRUpKHoBa13dCQoJqg5zUZxcREYH4+HhVyqAWvrqXWXH3uUPOpMEorlYesXs0mqtclgi75pprFMkHFhMTg5iYGFm/5V2gfAxVeXm5EJDPExgY6HCss3sSAHJycpCamgqgdtDp3Lkz9uzZg4EDBwq/3bNnD7KysgDUxp4FBwdjz549GDRoEADgyJEjOHHihHCe1NRUvPDCCzhz5oywojInJwfh4eFo3769rPtlHaU7J1/Pp6SVwJvBjuVZsrcuFFcClN8TElDvXvUKSPd0P1ouuBC7/+joaE2tTay63uTgq3uZ1cUS9vg6aWD1eUuNMzPK4jIeWSJs0aJFmDlzJlavXo0WLVooXaY65OXl4bvvvsMtt9yCxo0bIz8/H3PmzEFycrIgfPr374/Fixfj2WefFdyRTzzxBFq0aCEEwo8fPx4rVqzAjBkzMGrUKOzduxebN2/Gjh07hGtNnToVw4cPR5cuXdC1a1csWbIEly5dElZLWq1WjB49GlOnTkVkZCTCw8MxadIkpKamolu3bgCAvn37on379nj44YexcOFCFBcX46mnnsLEiRN1s3SpjdKdk9j5WAyEZ3mWLFcwuatHNe9VqTgsNTebVtMaxVJAPsuTCjn46l72Nj6SR+0+Sant0Fh+3lFRURgyZIjgdfDkBTHSKnVZIqxLly64fPkyWrZsibCwsDpByefPK9tZhIWFITs7G08//TQuXbqE+Ph49OvXD0899ZQgam6//XZs3LgRCxcuxMKFCxEWFobU1FTs3LkT9evXB1AbvL9jxw5MmTIFS5cuRdOmTfHmm28K6SmA2kS0Z8+exdy5c1FcXIwbb7wRO3fudAi0X7x4MQICAjBo0CCHZK08gYGB2L59OyZMmIDU1FQ0aNAAw4cPx7PPPqtovbCE0gOH2Pmio6Mlu0K0yu/D6ixZDcGk5r0qEYel1GbTJ082xfnzf9exCqhpjWJl9SHLkwpvUWq1npz4SB41Y0KVCIQ3wvN2jkF0Z7VzNUlnNV5Rlgi7//778eeff+LFF19EkyZNVA9679ChA/bu3St63NChQzF06FCPx/Tu3Rs//uhZ2WdlZQnuR1fUq1cPK1euxMqVK90e06JFizquTzOj9MCh1Pm0zO/DkgXDHm8Fk5TVqWrcq5LL2qUmrxTbbHrLlsGwX5molVWABZcKq5MKOfgqUqS2TU+oHVPla/9ltOftyWrnzSRdb2SJsP379yM3NxcdO3ZUujyEgVF64FDifFpmktbCgiHHqueNYJIqWtW4V7WWtUtd4OF8PxwHANpZBZRyKUlBCaGtl+tNLr6UyVPbtI+TBNiNqRJDjYmVWl4II1jtpCJLhLVt2xZ///230mUhTIDSqxXlno9/+e0HCi3iHdS0YMi16nkjmLwRo2rcq9KDtzf7HNrfz6VLDbBly30O51LbKqBmbiV7lBLaerne9ELK/bAcUyWG0hMrNb0QRrPaeUKWCHvppZcwbdo0vPDCC+jQoUOdmLDw8HBFCkewj6+JXtU4zlWusZMnm6k2c9LKguGtVU8J957YrJ71AFhv9znkrRo2WyNdXMtaCBclhTYr6VhYwKjWGbWy26uZ+oLV0A85yBJh/fr1AwD06dPH4XOO42CxWFBdXe17yQhDoPTsXYnzucs15oxSMyetLBj2SJlx+1ouT9dgcXWqK+Tuc8hKcLwWeBPcrEWKEqNiVOuMVv2Xkm5aM72fskTYvn37lC4HYWCUHnCVOp/zzNQZJWdOWudtkjrjllsusWsYJfDV285azT3vWERucLNRrT5qYmTrjNr9l1KC3YzvpywR1qtXL0nH/fOf/8Szzz7rdsZMEGriambKY+SZkxYzbqPO6l3hTeyaHlZNvfBFSJmpffhKaWkpAHNZZ5REScFuxvdTlgiTyrvvvovHH3+cRBihC65mpkANBg/egmbNThm2c9Rixm3kWT3gW5yekTpwX/BFSLHcPrTKC8hfy37LMtasM1rWhTuUFuyeysvfb1FRkcvvWRRoqoowrnaNN0HogruZ6fXXH65zrJHM11rMuI0+qzfjjFlpfBFSrLYPLfMCAq6Dyl0J/szMTM3bmtZ14Q6tBDsr9+stqoowgtAbTzNTPvDYiIOx0ukh+BmkzWaTdA0jiFajPVOt8VVIsZBQ1hkt8wK6wt31rFarKtfzBCsbc2sl2Fm5X28hEUaYHneuKKMEl/OolQrD0wzS/hpDhgxBRESEIUUrcRVfgpu1TCjrK1qv3mR9tajWSWT1DqI3StJcEmGE6VA6JxkrqOVikzozjIiIMJRo1QoW4m68wZd2pJeb19s61nr1JuurRfUQiN60FaXfIdYFsT0kwgjTYeZ4IC3KbJQZJAtIjUPhrYiu0KMt+rqFj5Z4E+vDo/XqTZZXi4oJRPtdRZRui1LOpXQsF+uC2BlVRdhDDz1E2fMJXTCiwGIBI80gWUBqDJL9CjpXsBYszBJyYn20Xr3J8mpRMYHovP2U1m1R6vMtLCwEIN63syyIXSFbhJWWluLbb7/FmTNnUFNT4/DdsGHDAACrVq3yrXQEQWiG0WaQrOGLgGUtWJhlpFhq5QaDy3WLsbpaFPBeILLaFnmxKCYSWRbErpAlwj7++GM8+OCD+OuvvxAeHg6LxSJ8Z7FYBBFGEIRxEJtBlpaWMhcTxko8llQBq7Wrl5X6UQpvhK63qzfluMX0Dj6XgjuBCAAFBYnMhR2IvSNiIpFlQewKWSJs2rRpGDVqFF588UWEhYUpXSaC0BX7gauwMAAFBUFISrqChIRai6/RBi6piM0gN2/ezJTbjKW8QFJcIFq7elmqHyWQInR9Wb0pJ70Fy/GnngRifn4rLFky2WVbtNlsuk22fHlHpApifocD+9/p2f5libA///wTjz76KAkwwnTYD1yeOgSjDFze4GoGmZa2W5P8SnLQOyeUPWICVg9XL0v1owRShK5SosgbMcBqP+BcF/zm62JtcdOmTbr0b67KtW3b3YiNLUbTpq4z4Nvj6tnbbDZs2rTJ4ThX8Zl69ueyRFh6ejq+//57tGzZUunyEISu8C+wWEfF4sAl1/XkPIP8++96yMlJA8cFYPfuNNSvf1m2xUYrd5jeCwrEXCB6BwvrXT9KIDXWx9f2ZKbYSFd1IaUt6tG/ud7rNwBr1oyR3F7lPns9+3PJImzbtm3Cv/v374/p06fjt99+Q4cOHRAcHOxw7IABA5QrIUHogFhHZZ9Z3hVam7idXU/urB6uZnxRUVHIzMzEpk2bYLM1wu7daQB8H4C0coexMmh6coHoGSysVf2oLbi1ivXRWzCrjbs9dfUOXHddLmXbK4vpdySLsIEDB9b57Nlnn63zmcViQXV1tU+FIohTp4CjR4HWrYGmTbW/vtigaW/i9kbwqIX94OfJ6uFukOS3VVFyANLKHabnoCk1BknPYGEt6kdNwa118LvRVtd5C98Wt227G/xkC7AgP7+VLtZR/rm5LlctSrRXVq3BkkWYcxoKglAafia9cWN9zJhhRU2NBQEBHBYutOGBB/7W1LokddCUI3jUxFerh1oDkJodoJ6DplgMkn1Mil6r57SoHzUFt9bB70ZbXScV+zaWnPwHLBaA4/hPLLq5XPnnW5sHLBuxscVYs2aMou2VFWu5K2TFhL399tvIzMxEaGiow+eVlZV4//33KUUF4TX8TNpma/S/VTu1aU9qaiyYPj0cf/65FlbrRU2tS2JL3Fl8sX21eqgxAKldT3oPmp7aY3x8vO6r57SuHzUEt9ZB0yxuTu4rUVFRGDJkCDZv3sycy9X++TZtWuSxvcqZsLB2v/bIEmEjR45Ev379EBsb6/D5xYsXMXLkSBJhhNfwg5TYy6K1dcmdewlg88VWwuqh9ACkRT2xPGiysHpOq/phcWIiFSNtTi4XfussFl2uzhbPuXPP4tixICQmXkFCws0AbpY9YWHxfnlkiTCO4xwStPKcOnVKiC0hCDmw/LI4w2JZ5Vo91ByA1Konfxg0fUGP+hET3GruU+gr3ro9jZwI1xfrqJr3bf+7+Higc2dZp6mD3tZyT3glwm666SZYLBZYLBb06dMHQUFXf15dXY2CggL069dP8UIS/oPeL4s3A5LeZXWHHKuHmnE3atWTc5lLS0tx5coVh2OCg4NRWVmJoqIipgdFNdAjkaiY4NZ7n0IxpJbFqIlwfV3kYLT7NsKOBl6JMH6F5MGDB5Geno6GDRsK34WEhCAxMRGDBg1StICE/6Gna0nKwFVaWiok/PNUVvtZP49WQsCTG9UdapZLrWdqb5UQ2yQb0HZwYMFSovVA6O0WOSzm25OCnE3FWcBXYa7GfattWdM7JlMMr0TY008/DQBITExEZmYm6tWrp0qhCEKqiFBjiyFX7gb7c4eEOFpb3JV13boczVJXSJ3JaTnj09Idxlp2eKNZDJTEmy1yfIEFkcvDYv4pdyhZJ77etxbvCevvl6yYsOHDhwOo7dDOnDlTJ31F8+bNfS8ZQYig5hZDns+dh06dPP9e69QVLM749CoTC/mAjGopkYs7wa1WoD5LIpeF9qYHSty3v70nrpAlwo4ePYpRo0Zh//79Dp/zAfuUrJXQAjW3GJJ67oyMDERHRwOQvjebUrBkCXAHC/vPsbA6z0iWEjm426dQrZWxrAzerLY3tfHX+1YDWSJsxIgRCAoKwvbt2xEfH+9ypSRBeIMv7jQ1UyCInTs6Ohrx8fGalYdHqiVgyJAhwrJ0Z1gQaUrDYtoQby0GRhDXrnBVJq1WEOslcllsb1og976d27Zz3KzZJyuukCXCDh48iAMHDqBt27ZKl4fwU3xxXanZ0cs5N0sZysWC1c0Wk8Ra2hBvLQYsudmUQIsVxHq6A1lrb1oh577F2raSz9FIExlZIqx9+/YuV34RhC/IfSnU7OjlnJvFDOV6B6prBWtpQ7y1GLDiZlMSNVc76+0WY629aYWc+/bUZpV8jkabyMgSYQsWLMCMGTPw4osvokOHDggODnb4Pjw8XJHCEYRU1Ozo5ZybpQzl/hY4zFL2fF8tJe7E87lz55iazTuj1cpYvdyBRsg/pQZK3rd921byORptIiNLhKWlpQEAbr/9dod4MArMJ/RETm4sNc+tZnl4xDovvS0FWsFq9nxfLCWexDOf9JSV2bwzWq2M1csdyOJqZC1Q6r6d23Za2m7VniPrcWayRNi+ffuULgdBuOXUKeDoUaB1a6BpU71L4x49cnWJDUL+EjjM2qDoq8XAlXjetu1uxMYWo2nTIuE4VmbzrtAqKbFe7kCzCSyp+Hrfrtr27t1pSEvbjd270xTbtBswhhdAlgjr1asXvvzyS/zrX/9Cfn4+tmzZgmuuuQbvvPMOkpKSlC4j4YfwgZUbN9bHjBlW1NRYEBDAYeFCGx544G+EhISoKnrknFsPIeA8CAG1s0q+8/KnwGGWBkVf24Ir8QwEYM2aMUwOJFqjhjvQSMHcRsbdxDAhoRCTJy9BcnI6unWL9nnTbqN4AWSJsK1bt+Lhhx/Ggw8+iB9//BEVFRUAAJvNhhdffBGffPKJooUk1Ecta5Oc8/KBlTZbo/9l2q51edfUWDB9ejj+/HMtrNaLyMrKUlz02HfEQ4YMcbkXIb9Jvatz69FJd+r0I/7+u54wi9y9Ow31619Gp04/iloK9Nxayez4UoeuxDPA7kCiNUpPeIwWzG1kPE0Mazd534LERN/r2ZvN5O3Ruv+TJcKef/55rF69GsOGDcP7778vfN6jRw88//zzihWO0IY1a4Bx44CaGiAgAHj9dWD0aP3Oy3esYi9RZWVlnRxdvuDcEbuLJRDriNXYSskZ+xm+zdZIEGBA3YHak6XAeUNlqffoj2hpKeHF87ZtdwMwvztZDkq2T9a2vWIFNdq8FBeyEvXs7Wby9mjZ/8kSYUeOHEHPnj3rfG61WlFaWuprmQiNKCkpwbFjVzBuXCxqanhrE/DIIxxuvPEMEhODZDVEpc6rtSvN/sWXu+2Qmlsp2RMVFYUhQ4Zg8+bNkuK+3AWq02AjDa0sJc5uttjYYqxZM8Yv3MmsoHUcEatuUKXbvCsX8smTTQFY0KzZSV+K6hIpYo+F/k+WCIuLi8Mff/yBxMREh8+/+uortGzZUolyESpTUlKCF154C7/+eh1qatIdvquutmD58k+RlHTc60GFf3ELChJRUzPcp/PqFXTrSyyBmlspOcNnwhcTq662VgKMEbTKClpZSng3W2FhIbKzs9G0aZFf5qHSC63jiFh2gyqd6sF+4ggA+fmtVOl/pMYLstL/yRJhY8eOxWOPPYa1a9fCYrGgsLAQubm5ePzxxzFnzhyly0iowPr1gf+LtwoAwAG4mmrEfgD3dlDhjxcTBlLP6+ol4gfAwsIAKOiNFFBiRaHUcygxCxYTq662VjJK0CqLqN15R0VFObQJlvKemR2tVxMbKaeVEqke+Imjmv2Pp3hBrff3lYIsETZr1izU1NSgT58+KC8vR8+ePREaGorHH38ckyZNUrqMhILwrsIZM2KFgPdaAVYrxJSaaStpxbJ3pdkPgO+8w2HhwlJhtaRSM0Ul3KBSzqFUDBrg/UDtL6krlEas8y4tLVUkTlHpvGesurxYQ+/VxKzmtFJ64qF2/yPWllnq/2SJMIvFgieffBLTp0/HH3/8gb/++gvt27dHw4YNlS4foSCeXIWABenpO9G+/W+KNUKlZ/DOA6Cr1ZJKDCRKCEhvg0/lxqA5X1NqGfUebIyKWOe9efNmRdqhkqv/WHZ5sYaeecdYcY85o4bVSO/+R+/r2yNLhPGEhISgffv2SpWFUBkxV6GSAoxHyazxUlZLKoUSAlLqOeR2cr7kSfPXPe98RUrnrVQ7VEoQGcnlxQJ6uH9Zco85IzfVA+B+oqB3/6P39e3xSYQRxoSlBugKd+JC69mLEgJSyjnkmsZ9tZZQrJH31E2OC3BcbZAxC1YLKbDq8tITvbe9Ysk95owvqR4ARwsrS3tustL/kQjzU1hpgK5wFhd8MKXa4lGPbYcA38Slt9YSvQcbM5Cc/Ac4zv4T6VYLvWOzWHV56Y3e216x5B5zxtd+175O9a5nFvs/EmF+jBYbTMtFD+uNEh2E1Je3vLwc5eXlALS1TOrdCbKMJ4Fks9mEf58/HwU5CVT1js1iyeWltxh1hZ5tnkXvhFSrFY9UC6ue9cxi/0cijPCItzMCLaxJcsWjFpnspbzk5eXlePfddx0+09Iy6Y8CSwypAgmQb7XQOys7Ky4vvcUoS7DknnNGrC/TOuegUsKdtTZFIoyoA5/cU44oYXGmAWiXyR4Qf8mLiooc/rYfjJOSjvt0bUIe3ggfJawWergFWXF56S1GWYLV/pJHynW1sLCaWbiTCCPq4Cq5pzew+BJomcneG6QMxhSfpT1irhVfLJd6uQXVdHnJtVJQjBqb/aU3+GJhldpuzCzcSYT5EXoFnvuKkuVmxSUDiA/GGRkZSEhIMHwnbTSkCgO5Qb1at0G1XV5yrRQsxagR8pFrYfWm3dhjNuFOIsyPYN307Q4ly82KSwYQH4yjo6OZexZmR0wYZGZmwmq1uv29lHaodRtU+72Xa6VgaUJkFvRY8CDXwiq13RQWFjocYzbhTiLMzzDqoK5UuVlahcSSICRqERMGVqvV522J9GiD9u+Pq4G6srJSiFX0ZaD2xkpB7V9ZtI6bUtLC6qnd2OchM6NwJxFG+B2s5EhjSRAStWglDPRqg2oO1N5aKaj9K4vWcVNKWVjdtZvY2GJUVYU6lN+Mwp1EGMEUp04BR48CrVsDTZuqdx1WcqSxIgiJWtQUBiwkilRzoJZjpaD2rw5axU0pYVFz127efHMMAMfym1G4kwgjdId3j2zcWB8zZlhRU2NBQACHhQtteOCBv5mMU/MFFgZjwhEt8jWxFpOp9EAt1UrhbftnMbEryxgtbspVuwE48AmRnctvNuFOIozQFd49YrM1wpIlk8FxFgBATY0F06eH488/18JqvehzHANLK0NZG4yVQsvBUulrafVMWHmmagzUUq0U3tS1mfNDqYXR4qZctRux8ptp4koijNAVviMW6zh8jWNgTfiYbcDQcrBU61pmeyaeUGuglmqlkFrXZs4PpRZGjJuybzfBwZVYs2aM2/LzycSdMeLEFSARRjCCFh2HEV9QoyB1EFRisNTyWmZFyfdNK/e62fJDqYVR4qY8tRtP5fc1mThrkAgjmMAoHYdR0TquRupmvka7lllQ8n3TwspstDgnpZD73hohbsq53djvRSm1/GaIFyQRRnhEq9WKgDE6DiOidVyNlhYLso7IR8n3Te2BzmhxTkrg7XtrxAU/9u1GzoIN+/pxNxljPV6QRBhRBz1XK7KSOsJMaBlXo6TFwt0s99y5c4pfy18w4kANGDPOyVe8fW9Zi3v1Fm/Lb3+cp8kY62EJJMIIB8RWK37zTQ6aNTuJcePugtVqZfqlJuqituVIKYuFFCuAP1pHfMWoA7W/hytIfW89PTd+UsPvjOAMC89dzvWNPhkjEUY4ILZaccuW+2Cx1CA//2onwLq5V09YilnQorNSymIhZfbqj9YRJTDqu+qv4QpKvLdmTvVh9MlYgPghbDBgwAA0b94c9erVQ3x8PB5++GGHjT0BYPPmzbjxxhsRFhaGFi1a4OWXX65zns8//xydOnVCaGgoWrVqhfXr19c5ZuXKlUhMTES9evWQkpKCb7/91uH7y5cvY+LEiYiKikLDhg0xaNAgnD592uGYEydOoH///ggLC0NsbCymT5+OK1eu+F4RGsEPcK7gOwGbrREAzwNmSUkJioqK3P5XXl4uqTysuUekwHd8r7/+utv/VqxYgZKSEk3K46mzUgreYsG3HaUsFjZbIxQUJAptTs1rEezgyn2alHS8zjM2Yv8gFSXe2zNnzjj87ep9Ath33bnC1VhlpMmYYSxht912G5544gnEx8fjzz//xOOPP47Bgwdj//79AIBPP/0UDz74IJYvX46+ffvi8OHDGDt2LOrXr4+srCwAQEFBAfr374/x48djw4YN2LNnD8aMGYP4+Hikp6cDADZt2oSpU6di9erVSElJwZIlS5Ceno4jR44gNjYWADBlyhTs2LEDH3zwAaxWK7KyspCRkYGvv/4aAFBdXY3+/fsjLi4O+/fvR1FREYYNG4bg4GC8+OKLOtSe9zib/52RMtOQGjj50EMPISwszO15WDCTy4G1VApqWo7UzDjvyRWjVnZ7gg2M6j5VEl/f25KSEmzevFn4W4mQBJYs/EZ3VRtGhE2ZMkX4d4sWLTBr1iwMHDgQVVVVCA4OxjvvvIOBAwdi/PjxAICWLVti9uzZWLBgASZOnAiLxYLVq1cjKSkJixYtAgC0a9cOX331FRYvXiyIsFdffRVjx47FyJEjAQCrV6/Gjh07sHbtWsyaNQs2mw1r1qzBxo0bcfvttwMA1q1bh3bt2uGbb75Bt27dsGvXLvz222/YvXs3mjRpghtvvBHPPfccZs6ciWeeecYwgwM/wJ082RRbtgyGveFUSicgNXAyLCzMVHlf3KF3KgU1Oyu1BksxV4wREzeyNIAZASXrwoh17+t7a3+/ZnVtGtlVbRgRZs/58+exYcMGdO/eHcHBwQCAioqKOtaU+vXr49SpUzh+/DgSExORm5uLtLQ0h2PS09MxefJkALWN9cCBA5g9e7bwfUBAANLS0pCbmwsAOHDgAKqqqhzO07ZtWzRv3hy5ubno1q0bcnNz0aFDBzRp0sThOhMmTMCvv/6Km266yeV9VVRUoKKiQvi7rKxMRu0oS+3qqcOorJTfCRg9cFIJWEmloGZnpUaHKxbvoVXiRqUGbxYHMH/ByHWv1Hubl5fic/wUq7sYGHVlvaFE2MyZM7FixQqUl5ejW7du2L59u/Bdeno6pkyZghEjRuC2227DH3/8IVi8ioqKkJiYiOLiYgdhBABNmjRBWVkZ/v77b1y4cAHV1dUuj/n9998BAMXFxQgJCUFERESdY4qLi4VjXJ2D/84d8+fPx7x587yoEe3wpRMweuCkr+gtQo2algBgI/heycGbNRe1P6GkeNDCoqb0e2uzNcL+/al1PvflfdJzcsnSfsC+oKsImzVrFhYsWODxmMOHD6Nt27YAgOnTp2P06NE4fvw45s2bh2HDhmH79u2wWCwYO3Ys8vPzcffdd6Oqqgrh4eF47LHH8MwzzyAgwBjrD2bPno2pU6cKf5eVlaFZs2Y6lsgRd53AuXPnPHY6LAykeqK3CDVyXA0L8R5qCie9XdT+ii/iQSuLmtLv7fnzUXC1Fi81NVdW29N7cmnkfs0eXUXYtGnTMGLECI/HtGzZUvh3dHQ0oqOjce2116Jdu3Zo1qwZvvnmG6SmpsJisWDBggV48cUXUVxcjJiYGOzZs8fhHHFxcXVWMZ4+fRrh4eGoX78+AgMDERgY6PKYuLg44RyVlZUoLS11sIY5H+O8opI/J3+MK0JDQxEaGuqxPtRGyqzBeeDgt5pw1+mwMJDqCQsilPWOyBk1A/19RSnhpJcVwYhxUUriq3jQ0h2n5HNw1Q8BNUhJyZN1Pr0nl4Dx+jVX6CrCYmJiEBMTI+u3NTW1S1LtY6gAIDAwENdccw0A4L333kNqaqpwjdTUVHzyyScOx+fk5CA1tdZEGxISgs6dO2PPnj0YOHCgcJ09e/YIKyw7d+6M4OBg7NmzB4MGDQIAHDlyBCdOnBDOk5qaihdeeAFnzpwRVlTm5OQgPDwc7du3l3W/WmE/uygtLXVYVQPIz0xs5MBJX/F3ESoHVme5SgknvawIesRFsSb6lBQPSrUH5zqy2WyoqqoS/g4KCnKY9MupMyn9kDeTGhYml2bAEDFheXl5+O6773DLLbegcePGyM/Px5w5c5CcnCwIn3PnzmHLli3o3bs3Ll++jHXr1uGDDz7AF198IZxn/PjxWLFiBWbMmIFRo0Zh79692Lx5M3bs2CEcM3XqVAwfPhxdunRB165dsWTJEly6dElYLWm1WjF69GhMnToVkZGRCA8Px6RJk5Camopu3boBAPr27Yv27dvj4YcfxsKFC1FcXIynnnoKEydO1N3S5Qp3nWRERASGDBmC0tJS7Nq1y+eBw6iBk3Jh2ZpjBFib5Yq1f347JUB8kNTLiqB1UDWLwfBKiQelhLTUOnJGTp156ocyMzO9Oh9NLpXBECIsLCwM2dnZePrpp3Hp0iXEx8ejX79+eOqppxxEzVtvvYXHH38cHMchNTUVn3/+Obp27Sp8n5SUhB07dmDKlClYunQpmjZtijfffFNITwHUNsSzZ89i7ty5KC4uxo033oidO3c6BNovXrwYAQEBGDRoECoqKpCeno7XXntN+D4wMBDbt2/HhAkTkJqaigYNGmD48OF49tlnVa4p7/GmA/B24NA7cFLvGTir1hxCHmLtn3fL83gaJJUQAr62by3coSyupFNKPCglpMXqyNc6kxrgL8cr5c8eDqUwhAjr0KED9u7d6/GY6OhoIY2EJ3r37o0ff/Tc0WRlZQnuR1fUq1cPK1euxMqVK90e06JFizquTxaR2kkC3g8ceooQVmbgLOc40lukGg137T84uBIFBYleDZK+CgFf27ce7lBW0rQAyogHNdxxznV0ww2HcOjQDT7VmdL9sJFXW7OIIUQYoQ1inaScgUOvQdxsqQCUFpWsiFQj4ar933DDIaxZM0byIKmUi9pXC5PW7lC9V9KVlJTAZrM5fOareFDaHeeqjn76qSMAi/C33DpT8h1mxcJvlkkkiTACgPRO0qjmZ6OlAnDuYOzjjTyhtPg0ikhVE3fCKTi4UhBggLRBUo0BTI6FSeugaj1X0kmdcAwZMgSxsbFe1b2S/aGrOuIFGA8r+RX1FjdSt8QzwiSSRJgfYj/A84O7N52k0QLsWXKDSEFuoK4vGE2kaomzcDp37hyys7NRUJAoS1goOSjItTBpHVSt50o6qVbDiIgIl8/GeUJUWlrq8L1S7jjXKSQ42AsxWn1Yi9Qt8YwwiSQR5me4G+CV6CRZjAHQ2w0iBykdh5KiyWgiVQ9cDc5i74wr66XSLhJfLExaWrVZWUnnbVuXOiHKzMyE1WoV/lYqhYSrmDBW+y09MGL/7gyJMD/D3QAv1kkOGTKkzlZN9rDqf2choaCvOAsuJUWTGToxvRB7Z5xXS/Io6SLxdvKkZ1C13qEMctq6VCua1WpVZA9TV3V0++17DRf+oRVm6N9JhBECnjrJiIgITTZKVhqjJxR0Flxpabuxe3eaYqLJDJ2YnsgRFkq6SLy1MGkdVM3SSjpf27paFmOxOqLVh+4xev8OkAgjnDDbC8+KG0QOrmbuOTlpcN7/zRfRZIZOTGukCgut4uy8FYJaWqxZWUkH+NbW1bQYu6ojNTLmmxEj9+88JML8HHcDRUZGBqKjowEY84U3Q7Z616ulAhQVTWboxLTGnbDgA/YB9ePsWLIwiaFl3+EqbQEfm+dLW1fbYuxcR0b0OuiF3m5uXyER5sd4Giiio6MN3RGwNAOXi7uZu71L0nkgkbNLgVFFqjNa5g3ydB4t4uzM0L6VxnPagtrP5A7YZDFmG6Ot2LeHRJif4g8B2UYfgNzN3Dt1+hHXX/8Lrr9+IDp2bICEhJsB3OzVoGu2QZyl5LNaxdkZ5dlohdS0BXKshma2GBsx6aneW+IpCYkwP4UCstlFipXKar2Ie++1+tQ5stax+gJLyWfJaqIvYhNM+1ALHnuh4SqPIqCM24s1wWPUpKdmmkSSCPMz+AFebKAwwgzCF1jrDO0xUwejF3omnzWz1cQIiE0wPYVauBYlV/cF9SX2jkXBY+Skp2bp/0iE+Rn2A/w115Rh5kwrqqstCAzksGBBGR544H7TD/Asua7cYeb6Vxu9ks+aMc7OiPhiiZQqSuQsXGJZ8PhDeAqrkAjzQ/gOY9o0IDMT+OMPoFUrC5o2jQAQoWfRNIEl15URYNlq6IyegwlZMNlACUukWDvyZeESi4KHwlP0g0SYn9O0ae1/BOEKI1gN7dF7MGGhDgjf47fUbEd6t1FXUByjfjgnISIIghAwmtWQH0zsocHEP7FaLyIp6bhPSYztUaodsdhGeeshXy6KY9QOsoQRhAEwkktQTygo3n9RMm2Bmu2I1TZq9KSnRoVEGOH36LmSTgosuQRZrSt/DIonYe6I0jF5aooSVgWPWNJTanPKQyKM8Gv0WknnDay4BFmuK38LimdJmLOE0veqZiZ2FrK8e2M9ZDHFhhkgEUb4LSyuUmIVI9SVP3X8zmLT3YDISqyeUVAzEzuLWd69mbwUFRUJn7GWYsPIkAgj/A6+kxNbpWQm15WvsLiii6iFZQul0qjtDlPTomoWa60RJmRGgkQYIRujxgfwneGxY1fwzjscamoswneBgRwmTboTiYlBTJZdL2gJO5v404ColTtMzfeetT7FmzrloQmZspAII2Rh9JiUqKgoREUBr78OPPIIUF0NBAYC//qXBZ07N9G7eB7RMjietwaKregiq6E+iA2I9nsfsjopkgrLGeeNipw6pQmZspAII2TBSrC4r4weDaSn87sGsJ+4VmvXk7MLZe7cszh2LAiJiVeQkHAzgJsNP7gbGXcDYnBwJQoKErFuXY4hg6ZdWdl5QelP1j+t8KZOWU2xYVRIhBF+j1F2DdBr8LEftOPjgc6dVbsU4SWuBsQbbjiENWvGGNZK5NlFRu4wNfC2TllNsWFESIQRqmLvDgGM7xLRA1pIQHjCfkAMDq4UBBhgTCuRmIssOfkPcocpjBwXIwspNswAiTBCVbKzs+t8ZhSXCCvQQgLCGWfBzQ+IBQWJprESubP8Tp68hNxhCiPFxchiig0zQCKM0BwjuERYw8gLCQjlcY7VO3fuHLKzsxULmmZh5bMnyy+5w5RHrE7NkmKDNUiEEYSBMNpCAkI9XA12SgRNs5IZXUxQkjtMecTqlASW8pAIIwgvYMFCoNRCAhbuhVAeX61ErKSCkCso5bjD7N+FwsIAFBQEISnpChISaoRzmvFdIBej/pAII2Thjy+l0XOj2ePrvZCAYxslrEQspILwJCgzMjIQHR3tcLycdmf/LngSnUZ4r72Bf4czMzNx8iSHEydC0bx5BeLirgAAgoKCEBERQe+yypAII2ThKj6Aj0uRitEGcrPkRgN8uxcziVGzoIZFQ69UEKWlpQ5/uxOU0dHRiI+P9/l6fBsXE51GeK+l4q/Ck0VIhBGy8eXlpIHcePCi2TntiDvMNGixjhpB03pkRi8pKcHmzZuFvz3tDqG0Nd6f8o/5o/BkFRJhhCKcOgV8800IbLZGkjosM1mVnOFFCmuWPF+QKpq1wGgWVK1Q+p71yIwuNR4tMzMTAFBUVARAmTguf9yOx5+EJ6uQCCN8Zs0aYNw4oKYmChbLZNGtdEJCQgwprqRi75I1iiVPbD9KT89Ly70syYKqLXqlgpASj6a0O80ft+PxR+HJGiTCCJ84dYoXYLV/c1wAduy4B3PnpggzUnv42Sk/gzU7RhCbvuxHqfVelma2oLKKHqkgxCw0Fy5cAFAr1rZtuxuAMu40f8s/5o/CkzVIhBE+cfToVQHGU11twcWLTaBAzCzTaGkBUgtfVsCxsHrODM+ANVhIWyBmodm1axcAIC8vBbwA4/HVneZv+cf8TXiyBokwwidatwYCAhyFWGBgbSLRU6dqRVrr1uZLKqq1BUgt5MaE2GyN8Ouv1+kaT2KWZ8AaLGRGl2KhsdkaITc31cWvyZ3mLf4mPFmCRBjhE02butpKB/jss6tuyoCA2mNGj9a7tL7Bz/xZsAD5Cn8vYhYHV9YOe/EDcAAsLn/rDiUC683wDFiGhXg6MQuNqwkEAHTvnutVG2DB8kf4LyTCCJ9x3koHAFq0uGodq6mpFWnp6ca2iPEWgn37gMWLjb2iyN7acc01ZZg504rqagsCAzksWFCGBx6436UYchY/tQKsVog5WytcDVpSA+uHDBmC2NhYt2KAVnX5B54sNO4mECkpeV5dgwXLn9aQ8GQHEmGEIthvpbNvn6s4sVqRxh9j1E4gKioK3boBAQEcamq8swCxBj+oTJsGZGbyItqCpk0jAES4/I1r64MF6ek70b79bxg58g5ER9/sdtCSGijN54pyt7qNVnWZE2/edyWDys0ksKTgj8KTVUiEEYrjKU6Mx8idQNOmwMKFNkyfHi50/mlpu3H+fG1ZjWiJEduPUsx92b79b7BaLyIhIcGrZyY3NQat6jIn9v2CzWbDpk2bhO9ctRUKKpcPi32rVMwUb0wijFAcd3Fizi+LkTuBESOq8eefS3D+fCQKCxOwe3eaywBx1ix5cpHrvvSEY2xZDbp3z0VKSp7HgdS+Pj0NwGapd3/EVRvytAjDk8uS2oF54GNJN26sjxkzrKipsSAggMPChTY88MDfzE7axbBwHMfpXQjCNWVlZbBarbDZbAgPD9e7OF5z6tTVODGx2YoRZzYlJSU4duwKunaNdXBNBgZyyMs7g8TEIEN2ClLw5tnaU1RUhNdffx02WyMsWTK5jmvTeYAdN25cnf0BKWO+f+CprVgsNZg8eYlHwT5kyBC0a9dOi6ISKsPHkoq1BZaSNEsdv8kSRqiGmIuL52rGfWOtpIyKisKhQ+7zpDHSF6iC1GfrDncr26SscmSlkyW0wd0ijLy8FPTtu9vt72JjY9UuGqER/KRLbEGOEZM0kwgjdMU5477SKynVtppIiX8j6uIqtoyHVjkS9rhrK/v3pwru64yMDERHRwvfkTXUnJhxQQ6JMEJXXGfcd1xJKRct9hmUGv9GOMIH1ttvOcNj9E6VUBar9SJSU3Oxf38Pp2+uivXo6Og6bmvCfJhxQQ6JMEJX1LQkabXPoHOeNBJg7nEVWJ+Xl4Lc3FTTdKqE8qSk5GH//lTYC3YS6/6J2VbEkggjdMUsliRfY6T8BX6V5dmzZ7Fp0yZYrRfRt+9upKTk0SpHwi1W60UMGGAuCwghHzNts0QijNAdsiT5F1FRUYbOE0dog7MAN5sFhCAAEmEEI5AlyVgoseDB3wWWfR0WFgagoCAISUlXkJBQ65v3dxEaFRWFzMxMh4StZrKAEARAIowgCC9xXvDgLus9Szl7WMO+Dj0lIvX3OrRarXoXgWAAo25zJwUSYYTfILZFDnEVT5auc+fOCf/2JCCMmLNHK/i6cd4Q3TlPmr/XoZkHX3/G2+TcZg5fIBFG+AWexALhiFRLl5iAIMQRSz7p75h58PU3fN12yKzPmEQYYVr42bGYWDDTLFqJWC3733sSryQgfMeMySeVxqyDrz9Rd9uh2m3eamosmD49HH/+uZa5bYe0gkQYYVr4WfS+fcDixXXFQo8ew9G7t3k6eaVjtcTEq5iAsHdbkrXCNWZMPmkPLT4gAHNvO+QrJMIIUxMVFYVu3VwnhE1JiTLV/o5SLVhSOzqxDtOdgACAgoJErFuXQ4H6EjBr6gVafEA4Q5bfupAII0yPWRLCSkWpWC0pHaazgMjPb/U/dwMF6nuDGVMv0OIDwhmzW37lQCKM8Av8KSGsUrFaUjtMXkBQoD7hCoodJOxR2/JrNBc4iTDCb/CXhLBKmvy96TBpsJWOP6VekBo7yMqAqcTiFsIzall+jegCJxFGECZDaZO/uw4zIyMD0dHROHfuHLKzsynewwv8KfWCWHvMzs5mZsCkRMTGxogucBJhBOEGbxMKsoQvJn+p1peEhASHgYjiPbzDKIO4Eu4dT+2RpQFT6cUtzpCVTRuMZJUnEUYQdviaUJAl5Jr8fbHSmHWln7+ipHvHXXtkccBUI77Rn61sWrvfjWSVJxFGEP/D6AkFve3oPFn6fLk/M67081e0cO+wOGCqIQzVtrKxjNbudyNZ5Q0nwioqKpCSkoKffvoJP/74I2688Ubhu0OHDmHixIn47rvvEBMTg0mTJmHGjBkOv//ggw8wZ84cHDt2DK1bt8aCBQtw1113Cd9zHIenn34ab7zxBkpLS9GjRw+sWrUKrVu3Fo45f/48Jk2ahI8//hgBAQEYNGgQli5dioYNG3pVFoItjJ5QUEpHV15ejsrKSixaVKqYpc+fgsz9FTmiROrzZnHAVFMY+usqYq0nrkaxyhtOhM2YMQMJCQn46aefHD4vKytD3759kZaWhtWrV+Pnn3/GqFGjEBERgXHjxgEA9u/fj/vvvx/z58/H3XffjY0bN2LgwIH44YcfcP311wMAFi5ciGXLluGtt95CUlIS5syZg/T0dPz222+oV68eAODBBx9EUVERcnJyUFVVhZEjR2LcuHHYuHGj5LIQ7MLizFwqnjq6kpISvP7664pb+vwpyNxfkfNOiLULfkEHwN6AqaYwZNH9alaMYJU3lAj79NNPsWvXLmzduhWffvqpw3cbNmxAZWUl1q5di5CQEFx33XU4ePAgXn31VUH4LF26FP369cP06dMBAM899xxycnKwYsUKrF69GhzHYcmSJXjqqadw7733AgDefvttNGnSBB999BGGDh2Kw4cPY+fOnfjuu+/QpUsXAMDy5ctx11134ZVXXkFCQoKksihFTU0Ns5YZo1FVVYUGDRqgQYMajBixE/v29UZ1dQCKi4Nw552fMP8yi6GmpY8ElrmRK0q8aResDZhqCUMjT/II5TGMCDt9+jTGjh2Ljz76CGFhYXW+z83NRc+ePR1M4Onp6ViwYAEuXLiAxo0bIzc3F1OnTnX4XXp6Oj766CMAQEFBAYqLi5GWliZ8b7VakZKSgtzcXAwdOhS5ubmIiIgQBBgApKWlISAgAHl5efjHP/4hqSyuqKioQEVFhfB3WVmZxzqprKxEQUEBauz34yFkU11djR49egAAevQARo/+GTU1Abh8uRw//HAYly/rXECFoEGAkANr1iotUEMYsuh+NQtGDI0whAjjOA4jRozA+PHj0aVLFxw7dqzOMcXFxUhKSnL4rEmTJsJ3jRs3RnFxsfCZ/THFxcXCcfa/c3dMbGysw/dBQUGIjIx0OEasLK6YP38+5s2b57oSnOA4DkVFRQgMDESzZs0QEBAg/iPCI5WVlSgtLXX4jOM4XLhwAW3atKnjAjcKfAB+eHhtG6FBgJCLkqKExQFTqzL5o6DVAiOGRugqwmbNmoUFCxZ4PObw4cPYtWsXLl68iNmzZ2tUMn2YPXu2g6WurKwMzZo1c3nslStXUF5ejoSEBJeWQcJ7AgICEBRU95WwWq2IiYlBSEiI4Vy/a9YA48bVbl4eEBCLu+++CZ06/UiDgA4YbTsVtWFxwNSyTKy5X82C0d4hXUXYtGnTMGLECI/HtGzZEnv37kVubi5CQ0MdvuvSpQsefPBBvPXWW4iLi8Pp06cdvuf/jouLE/7v6hj77/nP4uPjHY7hV2HGxcXhzJkzDue4cuUKzp8/L3od+2u4IjQ0tM49uqO6uhoAW2ZVsxIQEICAgAAEBwf7JMK0TP5aUlKCY8euYNy4WNTUXA3At1+FRYOAdhhxOxVAfcsQS/fKo1aZWLT8EfqjqwiLiYlBTEyM6HHLli3D888/L/xdWFiI9PR0bNq0CSkpKQCA1NRUPPnkk6iqqkJwcDAAICcnB23atBHcf6mpqdizZw8mT54snCsnJwepqakAgKSkJMTFxWHPnj2C6CorK0NeXh4mTJggnKO0tBQHDhxA586dAQB79+5FTU2NV2VRCovFouj55FBZCVy+DNSrBxi5/3Dn0nWuYzmdpKNFCnj99dpNxdWAH/ALChJRUzPc4TtahaUPRtxOBWDTWmVUqC4JVxgiJqx58+YOf/P5uJKTk9H0fyaFBx54APPmzcPo0aMxc+ZM/PLLL1i6dCkWL14s/O6xxx5Dr169sGjRIvTv3x/vv/8+vv/+e7z++usAagfbyZMn4/nnn0fr1q2FFBUJCQkYOHAgAKBdu3bo168fxo4di9WrV6OqqgpZWVkYOnQoEhISJJfFLJw9Cxw/fvXvFi0ACbqaSYKCghAbG1tnocPly5dRVlaGIUOGoEGDBl53kqdOXRVgQO3/H3kESE9XxyLGd/IUgM8eRkxPQKJAOaguCWdME81ttVqxa9cuFBQUoHPnzpg2bRrmzp3rkBKie/fu2LhxI15//XV07NgRW7ZswUcffSTkCANq85BNmjQJ48aNw80334y//voLO3fuFHKEAbXpMNq2bYs+ffrgrrvuwi233CIIOallMQOVlY4CDKj929NkfsSIEbBYLLBYLAgODkaTJk1wxx13YO3atV6t8ly/fj0iIiLkFdwDQUFBCAkJqfNfYGAgYmNjZXWiR49eFWA81dXAH38oVGg38AH4FkvtxaUG4JM7RD14YWwPCWOC8F8MYQlzJjExERzH1fn8hhtuwJdffunxt/fddx/uu+8+t99bLBY8++yzePbZZ90eExkZKSRmdYeUshgddykbKio8uyX79euHdevWobq6GqdPn8bOnTvx2GOPYcuWLdi2bZvL4Hgj07p1rQvSXogFBgKtWql/bU8B+BkZGYiOjnY4Xkt3iJE3SJcLrUwlCMIec412hGTsV2q5QspgbGccdEBsbUFoaKiwQOGaa65Bp06d0K1bN/Tp0wfr16/HmDFj8Oqrr2LdunX4v//7P0RGRuKee+7BwoUL0bBhQ3z++ecYOXIkgKvxWk8//TSeeeYZvPPOO1i6dCmOHDmCBg0a4Pbbb8eSJUvqpBXRipKSEgQGVmLhwvqYOdOK6moLAgM5LFhgQ2Dg3ygpUV/0uAvAj46OdliAoiVaxsixBq1MJQiCh0SYH2K/UssTYiu1QkJqY8CcY8LkeLNuv/12dOzYEdnZ2RgzZgwCAgKwbNkyJCUl4f/+7//wz3/+EzNmzMBrr72G7t27Y8mSJZg7dy6OHDkC4GqcYFVVFZ577jm0adMGZ86cwdSpUzFixAh88skn3hfKR5zr+dFHGwkD719/XQTvwWZtRZyauF61CTzyCIcbbzyDxMQgv6gLWplKENqihOFBDUiE+SFSV2BJOS4mBrBaa12QoaG+rY5s27YtDh06BAAOK1gTExPx/PPPY/z48XjttdcQEhICq9UKi8VSJ+XHqFGjhH+3bNkSy5YtE2L77DdY1wLn+nM38LK2Ik4tPK3arK62YPnyT5GUdNyvRKk/weogqDT+cp9GQinDgxqQCCN8JiREmdQUHMcJ7sXdu3dj/vz5+P3331FWVoYrV67g8uXLKC8v95ic9sCBA3jmmWfw008/4cKFC0Kw/4kTJ9C+fXvfC0nIRuqqTTOKUn/PEcXyIKgk/nKfRkNJw4PSkAgjmOHw4cNISkrCsWPHcPfdd2PChAl44YUXEBkZia+++gqjR49GZWWlWxF26dIlpKenIz09HRs2bEBMTAxOnDiB9PR0Uw7s7mB9wPfH4HR/zxHlfN82WyOcPx+FyMgSh+du9PeU5cGeuIq79qcHJMIIJti7dy9+/vlnTJkyBQcOHEBNTQ0WLVokJFDdvHmzw/EhISHCrgE8v//+O0pKSvDSSy8J2z19//332twAQxhhwGctOF2LLYXMKrC8xdOOAQShNqy1PxJhhOZUVFSguLjYIUXF/Pnzcffdd2PYsGH45ZdfUFVVheXLl+Oee+7B119/jdWrVzucIzExEX/99Rf27NmDjh07IiwsDM2bN0dISAiWL1+O8ePH45dffsFzzz2n013qixEGfFaC0426pZAREdsxwGywZHEh2Gx/JMIIWVy5csVjclV3m2EDwM6dOxEfH4+goCA0btwYHTt2xLJlyzB8+HAEBASgY8eOePXVV7FgwQLMnj0bPXv2xPz58zFs2DDhHN27d8f48eORmZmJkpISIUXF+vXr8cQTT2DZsmXo1KkTXnnlFQwYMEDx+yfMg1G3FHIF60HhRtwxQC6sWVwINtsfiTDCa65cuVJnE3NXxMbG1hFi69evx/r160V/O2XKFEyZMsXhs4cfftjh71WrVmHVqlUOn91///24//77HT5zldiXIJxhsYP2BiMEhYstyrDZbLrlrlMSFi0uBJtbuZlm2yJCOr4GbkvdXsibbYjMiK/1fOoUsG9f7f8J9TH6lkKugt8LChJhszXyeJyWiG2ltWnTJpSUlOhWPqXwJOgJ/ZC7lZuakCXMDzFC4LYZ8KWezZhRnlZtagfLrjCxRRlGcPuKwaLFxZ+x71M8tT89+h4SYX4KCSxtkFPPp05dFWAAn1EeSE839h6LRhD/rK3alIPWrjApcWjOgxsrizKUhr9PMUFv1nxwrMJy30MijCAY4+hRx82+AaC6GvjjD+VEmF6bZxtB/LsTCOfOnZPcUesZIK9lbJs3cWhDhgxxSDVjxpWDzoP93LlncexYEBITryAh4WYAN+s+0fBXWK1zEmEEwRitW9e6IO2FWGAg0KqVMuc3o6tTC7KzswGIB7brHSCvpSvMm+SkERERwt8su0t9xf6ZxscDnTvLOw/rK10JZSARRhAMUVJSgsDASixcWB8zZ1pRXW1BYCCHBQtsCAz8GyUl8jte2jzbNe5cQ3KzuuudHZ712DZaOSiO3kKe0A4SYQTBCM4d76OPNhJik/766yJef732czkdL22e7R7ehVRYWChYu5Sy1Ohl8ZET26aE5UWKi9HoqUC0gLY/8h9IhBFew28lpNRxRC3OHaq72CQ5Ha8/b54thaioKMlJW6WitcVHavC7K8ufEpYXqYKTVg4SxFVIhBFeExQUhNjYWNkZ8wn9YN1VxQJKWWq0tvj4sgLMV8uLFMGp9cpBiqkijACNkoQsWBVYn3/+OW677TZcuHDBIRDYE4mJiZg8eTImT56satlYgbU0DKwNlkpZavSw+OglKqQITi1XDlJMFWEU2BxJCdMyYsQIvPXWW3jkkUfqbMo9ceJEvPbaaxg+fLikrY0I+bCSp4nFwVIpa6E/WR2lCk6lVg6KQTFVhFEgEUZoTrNmzfD+++9j8eLFqF+/PgDg8uXL2LhxI5o3b65z6Qgt0XsloTuUshayZnVUGkpOqg1mzKlG1EIijNCcTp06IT8/H9nZ2XjwwQcB1OZgat68OZKSkoTjKioqMH36dLz//vsoKytDly5dsHjxYtx8883CMZ988gkmT56MkydPolu3bhg+fHid63311VeYPXs2vv/+e0RHR+Mf//gH5s+fjwYNGqh/s4Rk9M4d5Utguxrn0ROpgz4lJ1Ufvd8LQl1IhBG6MGrUKKxbt04QYWvXrsXIkSPx+eefC8fMmDEDW7duxVtvvYUWLVpg4cKFSE9Pxx9//IHIyEicPHkSGRkZmDhxIsaNG4fvv/8e06ZNc7hOfn4++vXrh+effx5r167F2bNnkZWVhaysLKxbt07LWyY8wELuKKW2NmF5ixQpeDvoa+Vi9Cd4gS72XrAs5AlpkAgjdNnC5qGHHsLs2bNx/PhxAMDXX3+N999/XxBhly5dwqpVq7B+/XrceeedAIA33ngDOTk5WLNmDaZPn45Vq1YhOTkZixYtAgC0adMGP//8MxYsWCBcZ/78+XjwwQeFoPvWrVtj2bJl6NWrF1atWoV69eppc8MSUHODa9Y3z2Yld5RSwohVgSUGC2KYuCrk9+0DFi+u+1706DEcvXsbt50RVyER5ufotYVNTEwM+vfvj/Xr14PjOPTv3x/R0dHC9/n5+aiqqkKPHj2Ez4KDg9G1a1ccPnwYAHD48GGkpKQ4nDc1NdXh759++gmHDh3Chg0bhM84jkNNTQ0KCgrQrl07NW5PFmpaUFi3zlDuKH3hxbeYGCbLi3ZERUWhWzfXW5ilpESB9Jc5IBHmx5w6dVWAAfwWNkB6ujYWsVGjRiErKwsAsHLlSlWu8ddff+GRRx7Bo48+Wuc7FhcBqCmCWJ41+9NKQhbhRfqxY1fwzjucsK0VAAQGcpg06U5Db2tl1MD2pk1rJ8aPPAJUV9cKsH/9SzuPBaE+JML8mKNHHWdYQO2L/scf2rzk/fr1Q2VlJSwWC9LT0x2+S05ORkhICL7++mu0aNECAFBVVYXvvvtOcC22a9cO27Ztc/jdN9984/B3p06d8Ntvv6GVUrtfE6ph9pWErBMVVWtdqTvoW9C5cxO9i+cV9hY7TzFuRrDsjR5dOzH+4w+gVSsSYGaDRJgf07q1a1O3VnolMDBQcC0GBgY6fNegQQNMmDAB06dPR2RkJJo3b46FCxeivLwco//nLx0/fjwWLVqE6dOnY8yYMThw4ECd/GIzZ85Et27dkJWVhTFjxqBBgwb47bffkJOTIyk/FaEuZlhJaDbMMOjbW/aefTYWHFdr2eO4AOzYcQ/mzk0xlGWvaVNjPgdCHBJhfgwLpu7w8HC337300kuoqanBww8/jIsXL6JLly747LPP0LhxYwC17sStW7diypQpWL58Obp27YoXX3wRo0aNEs5xww034IsvvsCTTz6JW2+9FRzHITk5GZmZmarfGyEO67Fq/ooZBv2oqCgcOuTK2m/BxYtNKKaKYAILx3Gc3oUgXFNWVgar1QqbzVZHrFy+fBkFBQVISkryeYXfqVPGnvWqjZJ1TRCEdpw6BbRoUdfaf+wY9XWEungav+0JcPsN4Tc0bQr07k2dEkEQ5oK39vPRDhTYTrAGuSMJgiAI02KGGDfCvJAIIwiCIEyNGWLcCHNC7kiCIAiCIAgdIBFGEARBEAShAyTCDA4tblUfqmOCIAhCDUiEGRQ+uamn/EqEMvB17JxQliAIgiB8gQLzDUpQUBDCwsJw9uxZBAcHIyCA9LQa1NTU4OzZswgLC0NQEL0uBEEQhHLQqGJQLBYL4uPjUVBQgOPHj+tdHFMTEBCA5s2bw2KxiB9MEARBEBIhEWZgQkJC0Lp1a3JJqkxISAhZGgmCIAjFIRFmcAICAmgrHYIgCIIwIDS9JwiCIAiC0AESYQRBEARBEDpAIowgCIIgCEIHKCaMYfgkoWVlZTqXhCAIgiAIqfDjtliybxJhDHPx4kUAQLNmzXQuCUEQBEEQ3nLx4kVYrVa331s42pOFWWpqalBYWIhGjRr5ZY6qsrIyNGvWDCdPnkR4eLjexTEsVI/KQPXoO1SHykD1qAxq1iPHcbh48SISEhI8pjgiSxjDBAQEoGnTpnoXQ3fCw8Opo1EAqkdloHr0HapDZaB6VAa16tGTBYyHAvMJgiAIgiB0gEQYQRAEQRCEDpAII5glNDQUTz/9NEJDQ/UuiqGhelQGqkffoTpUBqpHZWChHikwnyAIgiAIQgfIEkYQBEEQBKEDJMIIgiAIgiB0gEQYQRAEQRCEDpAIIwiCIAiC0AESYYTu/Oc//8E999yDhIQEWCwWfPTRRw7fcxyHuXPnIj4+HvXr10daWhqOHj2qT2EZRawOR4wYAYvF4vBfv3799Cksw8yfPx8333wzGjVqhNjYWAwcOBBHjhxxOOby5cuYOHEioqKi0LBhQwwaNAinT5/WqcRsIqUee/fuXadNjh8/XqcSs8mqVatwww03CMlEU1NT8emnnwrfU1uUhlg96tkWSYQRunPp0iV07NgRK1eudPn9woULsWzZMqxevRp5eXlo0KAB0tPTcfnyZY1Lyi5idQgA/fr1Q1FRkfDfe++9p2EJjcEXX3yBiRMn4ptvvkFOTg6qqqrQt29fXLp0SThmypQp+Pjjj/HBBx/giy++QGFhITIyMnQsNXtIqUcAGDt2rEObXLhwoU4lZpOmTZvipZdewoEDB/D999/j9ttvx7333otff/0VALVFqYjVI6BjW+QIgiEAcB9++KHwd01NDRcXF8e9/PLLwmelpaVcaGgo99577+lQQvZxrkOO47jhw4dz9957ry7lMTJnzpzhAHBffPEFx3G1bS84OJj74IMPhGMOHz7MAeByc3P1KibzONcjx3Fcr169uMcee0y/QhmUxo0bc2+++Sa1RR/h65Hj9G2LZAkjmKagoADFxcVIS0sTPrNarUhJSUFubq6OJTMen3/+OWJjY9GmTRtMmDABJSUleheJeWw2GwAgMjISAHDgwAFUVVU5tMe2bduiefPm1B494FyPPBs2bEB0dDSuv/56zJ49G+Xl5XoUzxBUV1fj/fffx6VLl5CamkptUSbO9cijV1ukDbwJpikuLgYANGnSxOHzJk2aCN8R4vTr1w8ZGRlISkpCfn4+nnjiCdx5553Izc1FYGCg3sVjkpqaGkyePBk9evTA9ddfD6C2PYaEhCAiIsLhWGqP7nFVjwDwwAMPoEWLFkhISMChQ4cwc+ZMHDlyBNnZ2TqWlj1+/vlnpKam4vLly2jYsCE+/PBDtG/fHgcPHqS26AXu6hHQty2SCCMIP2Do0KHCvzt06IAbbrgBycnJ+Pzzz9GnTx8dS8YuEydOxC+//IKvvvpK76IYGnf1OG7cOOHfHTp0QHx8PPr06YP8/HwkJydrXUxmadOmDQ4ePAibzYYtW7Zg+PDh+OKLL/QuluFwV4/t27fXtS2SO5Jgmri4OACos+Ln9OnTwneE97Rs2RLR0dH4448/9C4Kk2RlZWH79u3Yt28fmjZtKnweFxeHyspKlJaWOhxP7dE17urRFSkpKQBAbdKJkJAQtGrVCp07d8b8+fPRsWNHLF26lNqil7irR1do2RZJhBFMk5SUhLi4OOzZs0f4rKysDHl5eQ7+fMI7Tp06hZKSEsTHx+tdFKbgOA5ZWVn48MMPsXfvXiQlJTl837lzZwQHBzu0xyNHjuDEiRPUHu0Qq0dXHDx4EACoTYpQU1ODiooKaos+wtejK7Rsi+SOJHTnr7/+cphxFBQU4ODBg4iMjETz5s0xefJkPP/882jdujWSkpIwZ84cJCQkYODAgfoVmjE81WFkZCTmzZuHQYMGIS4uDvn5+ZgxYwZatWqF9PR0HUvNHhMnTsTGjRvx73//G40aNRJia6xWK+rXrw+r1YrRo0dj6tSpiIyMRHh4OCZNmoTU1FR069ZN59Kzg1g95ufnY+PGjbjrrrsQFRWFQ4cOYcqUKejZsyduuOEGnUvPDrNnz8add96J5s2b4+LFi9i4cSM+//xzfPbZZ9QWvcBTPereFnVZk0kQduzbt48DUOe/4cOHcxxXm6Zizpw5XJMmTbjQ0FCuT58+3JEjR/QtNGN4qsPy8nKub9++XExMDBccHMy1aNGCGzt2LFdcXKx3sZnDVR0C4NatWycc8/fff3P//Oc/ucaNG3NhYWHcP/7xD66oqEi/QjOIWD2eOHGC69mzJxcZGcmFhoZyrVq14qZPn87ZbDZ9C84Yo0aN4lq0aMGFhIRwMTExXJ8+fbhdu3YJ31NblIanetS7LVo4juPUl3oEQRAEQRCEPRQTRhAEQRAEoQMkwgiCIAiCIHSARBhBEARBEIQOkAgjCIIgCILQARJhBEEQBEEQOkAijCAIgiAIQgdIhBEEQRAEQegAiTCCIAiCIAgdIBFGEARBEAShAyTCCIIgZFBZWal3EerAYpkIgnAPiTCCIAgAvXv3RlZWFrKysmC1WhEdHY05c+aA39ktMTERzz33HIYNG4bw8HCMGzcOAPDVV1/h1ltvRf369dGsWTM8+uijuHTpknDe1157Da1bt0a9evXQpEkTDB48WPhuy5Yt6NChA+rXr4+oqCikpaUJv+3duzcmT57sUMaBAwdixIgRwt9yy0QQBBuQCCMIgvgfb731FoKCgvDtt99i6dKlePXVV/Hmm28K37/yyivo2LEjfvzxR8yZMwf5+fno168fBg0ahEOHDmHTpk346quvkJWVBQD4/vvv8eijj+LZZ5/FkSNHsHPnTvTs2RMAUFRUhPvvvx+jRo3C4cOH8fnnnyMjIwPebufrbZkIgmAH2sCbIAgCtZanM2fO4Ndff4XFYgEAzJo1C9u2bcNvv/2GxMRE3HTTTfjwww+F34wZMwaBgYH417/+JXz21VdfoVevXrh06RI++eQTjBw5EqdOnUKjRo0crvfDDz+gc+fOOHbsGFq0aOGyPDfeeCOWLFkifDZw4EBERERg/fr1ACCrTPXq1fOpngiCUA6yhBEEQfyPbt26CQIMAFJTU3H06FFUV1cDALp06eJw/E8//YT169ejYcOGwn/p6emoqalBQUEB7rjjDrRo0QItW7bEww8/jA0bNqC8vBwA0LFjR/Tp0wcdOnTAfffdhzfeeAMXLlzwuszelokgCHYgEUYQBCGRBg0aOPz9119/4ZFHHsHBgweF/3766SccPXoUycnJaNSoEX744Qe89957iI+Px9y5c9GxY0eUlpYiMDAQOTk5+PTTT9G+fXssX74cbdq0EYRSQEBAHddkVVWVz2UiCIIdSIQRBEH8j7y8PIe/v/nmG7Ru3RqBgYEuj+/UqRN+++03tGrVqs5/ISEhAICgoCCkpaVh4cKFOHToEI4dO4a9e/cCACwWC3r06IF58+bhxx9/REhIiOBajImJQVFRkXCt6upq/PLLL6L3IKVMBEGwAYkwgiCI/3HixAlMnToVR44cwXvvvYfly5fjsccec3v8zJkzsX//fmRlZeHgwYM4evQo/v3vfwtB8Nu3b8eyZctw8OBBHD9+HG+//TZqamrQpk0b5OXl4cUXX8T333+PEydOIDs7G2fPnkW7du0AALfffjt27NiBHTt24Pfff8eECRNQWloqeg9iZSIIgh2C9C4AQRAEKwwbNgx///03unbtisDAQDz22GNC2gdX3HDDDfjiiy/w5JNP4tZbbwXHcUhOTkZmZiYAICIiAtnZ2XjmmWdw+fJltG7dGu+99x6uu+46HD58GP/5z3+wZMkSlJWVoUWLFli0aBHuvPNOAMCoUaPw008/YdiwYQgKCsKUKVNw2223id6DWJkIgmAHWh1JEAQB16sRCYIg1ITckQRBEARBEDpAIowgCIIgCEIHyB1JEARBEAShA2QJIwiCIAiC0AESYQRBEARBEDpAIowgCIIgCEIHSIQRBEEQBEHoAIkwgiAIgiAIHSARRhAEQRAEoQMkwgiCIAiCIHSARBhBEARBEIQOkAgjCIIgCILQgf8HFkwbEKpg6twAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHaklEQVR4nO3deVxU9f4/8NcZHBAQBlkFQUFccUvwiuOaBaLX5fpDr+RV09Ksvlqhpdlts9Wyuml5266VtrpXLmWCWakQGWpG7oSKAS4gA25s8/n9MZ3DnFnYZOf1fDx4JHM+c+bMXK68/Hze5/2RhBACRERERFSvNA19AUREREQtEUMYERERUQNgCCMiIiJqAAxhRERERA2AIYyIiIioATCEERERETUAhjAiIiKiBsAQRkRERNQAGMKIiIiIGgBDGBERVWj16tWQJAmnT59u6EshalYYwoiowe3fvx/z5s1Dz5494erqig4dOmDy5Mk4ceKE1dhbb70VkiRBkiRoNBq4u7ujW7dumD59OhISEqr1ulu3bsXw4cPh6+sLFxcXdOrUCZMnT8aOHTtq661ZefHFF/Hll19aPZ6UlIQlS5YgPz+/zl7b0pIlS5TPUpIkuLi4ICwsDE888QQKCgpq5TU+++wzLF++vFbORdTcMIQRUYN7+eWXsWnTJtx+++1YsWIF5syZgx9//BHh4eFIS0uzGh8YGIiPP/4YH330EV555RWMHz8eSUlJGDlyJOLi4lBSUlLpa7766qsYP348JEnCY489htdffx0TJ07EyZMnsXbt2rp4mwAqDmHPPPNMvYYw2dtvv42PP/4Y//nPf9C9e3e88MILGDVqFGpja2GGMCL7WjX0BRARLViwAJ999hkcHR2Vx+Li4tC7d2+89NJL+OSTT1TjdTodpk2bpnrspZdewoMPPoi33noLwcHBePnll+2+XmlpKZ577jlER0dj586dVscvXLhwk++o8bh27RpcXFwqHDNp0iR4e3sDAO677z5MnDgRmzdvxk8//QS9Xl8fl0nUInEmjIga3KBBg1QBDAC6dOmCnj174ujRo1U6h4ODA9544w2EhYVh5cqVMBgMdsdeunQJBQUFGDx4sM3jvr6+qu9v3LiBJUuWoGvXrmjdujX8/f0RGxuL9PR0Zcyrr76KQYMGwcvLC87OzoiIiMDGjRtV55EkCVevXsWaNWuUJcCZM2diyZIlWLhwIQAgJCREOWZeg/XJJ58gIiICzs7O8PT0xB133IHMzEzV+W+99Vb06tULqampGDZsGFxcXPDvf/+7Sp+fudtuuw0AkJGRUeG4t956Cz179oSTkxMCAgIwd+5c1Uzerbfeiu3bt+PMmTPKewoODq729RA1V5wJI6JGSQiB8+fPo2fPnlV+joODA6ZMmYInn3wSe/fuxZgxY2yO8/X1hbOzM7Zu3YoHHngAnp6eds9ZVlaGsWPHYteuXbjjjjvw0EMPobCwEAkJCUhLS0NoaCgAYMWKFRg/fjymTp2K4uJirF27Fv/85z+xbds25To+/vhjzJ49GwMGDMCcOXMAAKGhoXB1dcWJEyfw+eef4/XXX1dmpXx8fAAAL7zwAp588klMnjwZs2fPxsWLF/Hmm29i2LBhOHjwIDw8PJTrzc3NxejRo3HHHXdg2rRp8PPzq/LnJ5PDpZeXl90xS5YswTPPPIOoqCjcf//9OH78ON5++23s378f+/btg1arxeOPPw6DwYBz587h9ddfBwC0adOm2tdD1GwJIqJG6OOPPxYAxPvvv696fPjw4aJnz552n/fFF18IAGLFihUVnv+pp54SAISrq6sYPXq0eOGFF0RqaqrVuA8++EAAEP/5z3+sjhmNRuXP165dUx0rLi4WvXr1ErfddpvqcVdXVzFjxgyrc73yyisCgMjIyFA9fvr0aeHg4CBeeOEF1eO//fabaNWqlerx4cOHCwDinXfesfu+zT399NMCgDh+/Li4ePGiyMjIEO+++65wcnISfn5+4urVq0IIIT788EPVtV24cEE4OjqKkSNHirKyMuV8K1euFADEBx98oDw2ZswY0bFjxypdD1FLw+VIImp0jh07hrlz50Kv12PGjBnVeq4801JYWFjhuGeeeQafffYZ+vXrh2+//RaPP/44IiIiEB4erloC3bRpE7y9vfHAAw9YnUOSJOXPzs7Oyp8vX74Mg8GAoUOH4sCBA9W6fkubN2+G0WjE5MmTcenSJeWrXbt26NKlC3bv3q0a7+TkhLvuuqtar9GtWzf4+PggJCQE9957Lzp37ozt27fbrSVLTExEcXEx4uPjodGU/xq555574O7uju3bt1f/jRK1QFyOJKJGJScnB2PGjIFOp8PGjRvh4OBQredfuXIFAODm5lbp2ClTpmDKlCkoKChASkoKVq9ejc8++wzjxo1DWloaWrdujfT0dHTr1g2tWlX81+W2bdvw/PPP49ChQygqKlIeNw9qNXHy5EkIIdClSxebx7Varer79u3bW9XXVWbTpk1wd3eHVqtFYGCgssRqz5kzZwCYwps5R0dHdOrUSTlORBVjCCOiRsNgMGD06NHIz8/Hnj17EBAQUO1zyC0tOnfuXOXnuLu7Izo6GtHR0dBqtVizZg1SUlIwfPjwKj1/z549GD9+PIYNG4a33noL/v7+0Gq1+PDDD/HZZ59V+z2YMxqNkCQJ33zzjc1AalljZT4jV1XDhg1T6tCIqP4whBFRo3Djxg2MGzcOJ06cQGJiIsLCwqp9jrKyMnz22WdwcXHBkCFDanQd/fv3x5o1a5CdnQ3AVDifkpKCkpISq1kn2aZNm9C6dWt8++23cHJyUh7/8MMPrcbamxmz93hoaCiEEAgJCUHXrl2r+3bqRMeOHQEAx48fR6dOnZTHi4uLkZGRgaioKOWxm50JJGrOWBNGRA2urKwMcXFxSE5OxoYNG2rUm6qsrAwPPvggjh49igcffBDu7u52x167dg3Jyck2j33zzTcAypfaJk6ciEuXLmHlypVWY8VfzUwdHBwgSRLKysqUY6dPn7bZlNXV1dVmQ1ZXV1cAsDoWGxsLBwcHPPPMM1bNU4UQyM3Ntf0m61BUVBQcHR3xxhtvqK7p/fffh8FgUN2V6urqWmG7EKKWjDNhRNTgHn74YWzZsgXjxo1DXl6eVXNWy8asBoNBGXPt2jWcOnUKmzdvRnp6Ou644w4899xzFb7etWvXMGjQIAwcOBCjRo1CUFAQ8vPz8eWXX2LPnj2YMGEC+vXrBwC488478dFHH2HBggX4+eefMXToUFy9ehWJiYn4v//7P/zjH//AmDFj8J///AejRo3Cv/71L1y4cAH//e9/0blzZxw+fFj12hEREUhMTMR//vMfBAQEICQkBJGRkYiIiAAAPP7447jjjjug1Woxbtw4hIaG4vnnn8djjz2G06dPY8KECXBzc0NGRga++OILzJkzB4888shNff7V5ePjg8ceewzPPPMMRo0ahfHjx+P48eN466238Le//U31v1dERATWrVuHBQsW4G9/+xvatGmDcePG1ev1EjVaDXlrJhGREOWtFex9VTS2TZs2okuXLmLatGli586dVXq9kpIS8b///U9MmDBBdOzYUTg5OQkXFxfRr18/8corr4iioiLV+GvXronHH39chISECK1WK9q1aycmTZok0tPTlTHvv/++6NKli3BychLdu3cXH374odICwtyxY8fEsGHDhLOzswCgalfx3HPPifbt2wuNRmPVrmLTpk1iyJAhwtXVVbi6uoru3buLuXPniuPHj6s+m4rad1iSr+/ixYsVjrNsUSFbuXKl6N69u9BqtcLPz0/cf//94vLly6oxV65cEf/617+Eh4eHAMB2FURmJCFqYXMwIiIiIqoW1oQRERERNQCGMCIiIqIGwBBGRERE1AAYwoiIiIgaAEMYERERUQNgCCMiIiJqAGzW2ogZjUZkZWXBzc2NW38QERE1EUIIFBYWIiAgABqN/fkuhrBGLCsrC0FBQQ19GURERFQDmZmZCAwMtHucIawRc3NzA2D6H7GiffCIiIio8SgoKEBQUJDye9wehrBGTF6CdHd3ZwgjIiJqYiorJWJhPhEREVEDYAgjIiIiagAMYUREREQNgDVhTZzRaERxcXFDX0az5ujoWOEtxkRERDXBENaEFRcXIyMjA0ajsaEvpVnTaDQICQmBo6NjQ18KERE1IwxhTZQQAtnZ2XBwcEBQUBBnauqI3DA3OzsbHTp0YNNcIiKqNQxhTVRpaSmuXbuGgIAAuLi4NPTlNGs+Pj7IyspCaWkptFptQ18OERE1E5w+aaLKysoAgEtk9UD+jOXPnIiIqDYwhDVxXB6re/yMiYioLjCEERERETWAJhPCxo8fjw4dOqB169bw9/fH9OnTkZWVpRojhMCrr76Krl27wsnJCe3bt8cLL7ygGvP9998jPDwcTk5O6Ny5M1avXm31Wv/9738RHByM1q1bIzIyEj///LPq+I0bNzB37lx4eXmhTZs2mDhxIs6fP68ac/bsWYwZMwYuLi7w9fXFwoULUVpaWjsfBhERETV5TSaEjRgxAuvXr8fx48exadMmpKenY9KkSaoxDz30EFatWoVXX30Vx44dw5YtWzBgwADleEZGBsaMGYMRI0bg0KFDiI+Px+zZs/Htt98qY9atW4cFCxbg6aefxoEDB9C3b1/ExMTgwoULypj58+dj69at2LBhA3744QdkZWUhNjZWOV5WVoYxY8aguLgYSUlJWLNmDVavXo2nnnqqDj+hpmHmzJmQJAmSJEGr1cLPzw/R0dH44IMPqtVqY/Xq1fDw8Ki7CyUiombt3Dlg927TfxuMaKK++uorIUmSKC4uFkIIceTIEdGqVStx7Ngxu89ZtGiR6Nmzp+qxuLg4ERMTo3w/YMAAMXfuXOX7srIyERAQIJYuXSqEECI/P19otVqxYcMGZczRo0cFAJGcnCyEEOLrr78WGo1G5OTkKGPefvtt4e7uLoqKiqr8Hg0GgwAgDAaD1bHr16+LI0eOiOvXr1f5fOYuXboksrKy7H5dunSpRuetzIwZM8SoUaNEdna2OHfunEhNTRUvvPCCaNOmjRg9erQoKSmp0nk+/PBDodPp6uQaLd3sZ01ERI2D/Lvv1VcvC43GKAAhNBqjePXVy7X6u6+i39/mmmSLiry8PHz66acYNGiQ0jJg69at6NSpE7Zt24ZRo0ZBCIGoqCgsW7YMnp6eAIDk5GRERUWpzhUTE4P4+HgApuanqampeOyxx5TjGo0GUVFRSE5OBgCkpqaipKREdZ7u3bujQ4cOSE5OxsCBA5GcnIzevXvDz89P9Tr3338/fv/9d/Tr169OPpeqys3NxcqVKysdN2/ePHh5edX66zs5OaFdu3YAgPbt2yM8PBwDBw7E7bffjtWrV2P27Nn4z3/+gw8//BB//PEHPD09MW7cOCxbtgxt2rTB999/j7vuugtAedH8008/jSVLluDjjz/GihUrcPz4cbi6uuK2227D8uXL4evrW+vvg4iIGr/c3FwUFxcjPz8f//vfN8jMDMLGjRMBmH5/GI0SFi50x59/fgCdrrDOfvfZ0mSWIwHg0UcfhaurK7y8vHD27Fl89dVXyrE//vgDZ86cwYYNG/DRRx9h9erVSE1NVS1Z5uTkqIIRAPj5+aGgoADXr1/HpUuXUFZWZnNMTk6Ocg5HR0erpTDLMbbOIR+zp6ioCAUFBaqvulDVbY7qczuk2267DX379sXmzZsBmMLvG2+8gd9//x1r1qzBd999h0WLFgEABg0ahOXLl8Pd3R3Z2dnIzs7GI488AgAoKSnBc889h19//RVffvklTp8+jZkzZ9bb+yAiosYjPT0dK1euxHvvvYfFi09i+fJ4bNz4T1jGHyE0yMszTdhcvHix3q6vQUPY4sWLlfoge1/Hjh1Txi9cuBAHDx7Ezp074eDggDvvvBNCCACmzuZFRUX46KOPMHToUNx66614//33sXv3bhw/fryh3mK1LF26FDqdTvkKCgpq6EuqV927d8fp06cBAPHx8RgxYgSCg4Nx22234fnnn8f69esBmPp26XQ6SJKEdu3aoV27dmjTpg0A4O6778bo0aPRqVMnDBw4EG+88Qa++eYbXLlypaHeFhERNYDc3Fx88sknAACDwQ1bt46FEPZijxGennkATP+Yry8Nuhz58MMPVzpL0alTJ+XP3t7e8Pb2RteuXdGjRw8EBQXhp59+gl6vh7+/P1q1aoWuXbsq43v06AHAdKdit27d0K5dO6u7GM+fPw93d3c4OzvDwcEBDg4ONsfIy2ft2rVTpjXNZ8Msx1jeUSmfUx5jy2OPPYYFCxYo3xcUFLSoICaEUJYXExMTsXTpUhw7dgwFBQUoLS3FjRs3cO3atQp3CEhNTcWSJUvw66+/4vLly0qx/9mzZxEWFlYv74OIiBqe+WpOSkpkBQEMaKh2kA06E+bj44Pu3btX+GWvI7z8y7WoqAgAMHjwYJSWliI9PV0Zc+LECQBAx44dAQB6vR67du1SnSchIQF6vR6AaYYlIiJCNcZoNGLXrl3KmIiICGi1WtWY48eP4+zZs8oYvV6P3377TXVHZUJCAtzd3SsMAk5OTnB3d1d9tSRHjx5FSEgITp8+jbFjx6JPnz7YtGkTUlNT8d///hdAxUukV69eRUxMDNzd3fHpp59i//79+OKLLyp9HhERNW25ubnIzs7GsWPH8Ntvv+G3337DyZMnAZhmwZKS9BU+33w5sj41icL8lJQU7N+/H0OGDEHbtm2Rnp6OJ598EqGhoUrwiYqKQnh4OO6++24sX74cRqMRc+fORXR0tDI7dt9992HlypVYtGgR7r77bnz33XdYv349tm/frrzWggULMGPGDPTv3x8DBgzA8uXLcfXqVaUQXKfTYdasWViwYAE8PT3h7u6OBx54AHq9HgMHDgQAjBw5EmFhYZg+fTqWLVuGnJwcPPHEE5g7dy6cnJzq+dNrGr777jv89ttvmD9/PlJTU2E0GvHaa68pG5PLS5EyR0dHq22Ejh07htzcXLz00kvKDOIvv/xSP2+AiIgaRHp6urLsCJhCV16eF7TaIpSUBOPqVRdUNuckSeXLkfWpSYQwFxcXbN68GU8//TSuXr0Kf39/jBo1Ck888YQSajQaDbZu3YoHHngAw4YNg6urK0aPHo3XXntNOU9ISAi2b9+O+fPnY8WKFQgMDMSqVasQExOjjImLi8PFixfx1FNPIScnB7fccgt27NihKrR//fXXodFoMHHiRBQVFSEmJgZvvfWWctzBwQHbtm3D/fffD71eD1dXV8yYMQPPPvtsPXxajV9RURFycnJQVlaG8+fPY8eOHVi6dCnGjh2LO++8E2lpaSgpKcGbb76JcePGYd++fXjnnXdU5wgODsaVK1ewa9cu9O3bFy4uLujQoQMcHR3x5ptv4r777kNaWhqee+65BnqXRERU18zrvgBg3z49EhKiYApdAoAESTICMMJ+EDNi3Lht0OkK6/x6LUlCrmynRqegoAA6nQ4Gg8FqafLGjRvIyMhASEgIWrduXa3zZmdn47333qt03Jw5c+Dv71+tc1dm5syZWLNmDQCgVatWaNu2Lfr27Yt//etfmDFjhjLz9frrr+OVV15Bfn4+hg0bhqlTp+LOO+/E5cuXlVq8+++/Hxs2bEBubq7SouLzzz/Hv//9b2RnZyM8PByPPfYYxo8fj4MHD+KWW26p0TXfzGdNRER1x/z3mSmARUNuPaEmRx3rY5MmrUevXkeV72NjY9G7d++buq6Kfn+bYwhrxOoqhDV0n7CmhiGMiKjxkPt+AcClS5ewefNmGAxuWL48vsLie9uMmD9/uWoWbPLkycqNfTVV1RDWJJYjqXZ5eXlh3rx5FRarOzo6MoAREVGjYm8SIS/PqwoBzLQ8af59dHSi1TJkfTb3ZghroRiwiIioqbGcPDAvwpckYyVBTFLGSJIRUVGJGDw4WTkaGxuLgICAev39yBBGREREjZL50qPBYFAaegPAgQP9zBqwGtGjx1EcO9ZD+d4061U+8yVJRsyatQolJY7w9MyzmgGr7wAGMIQRERFRI1RR/bJ1B3wNjh4Nw9ChP6JTpwx4euYhPb2zMkaSTHdABgZmAwBGjBiBtm3bAgC0Wi18fHwaZIWIIYyIiIgaDXn269KlS6rH5aVHT89cZGYG2Vh6lLB371D0758Kna4Q4eEHERp6Cnl5nlYzX126dKn1u/9rgiGMiIiIGgV7s1+WS4+221CUd76XA5dOV2iz/5e93XjqG0MYERERNQq2Cu8zM4OwZctYlDdbrWgPyPLO9/KSY6tWrVR7PTemu/8ZwoiIiKhByEuPBoMBJSUluHz5snJMPftVObnuS575aixLjhVhCCMiIqJ6V73C+8qY7nyUC++biuq2liVq1L7//ntIkoT8/PwqPyc4OBjLly+vs2siIiJrtpYeMzKCce6cP37/vWe1Atj48dusAlhjqfuqCGfCqF7Je0fee++9Vptyz507F2+99RZmzJiB1atXN8wFEhFRvVMvPcqd7S073FsS6N37V0RFfacqvm+Ipqs1xRBG9S4oKAhr167F66+/DmdnZwCm/Rk/++wzdOjQoYGvjoiIapt509X8/HyUlpbizz//BGBr6VEy+6+9IGZEdLS6472sqQQwgMuR1ADCw8MRFBSEzZs3K49t3rwZHTp0QL9+/ZTHioqK8OCDD8LX1xetW7fGkCFDsH//ftW5vv76a3Tt2hXOzs4YMWKEqpuybO/evRg6dCicnZ0RFBSEBx98EFevXq2z90dEROXk2q/33nsP7733HtavX4/NmzcjJSUFQGX7PspBTGZERMR+zJ+/3CqA/f3vf8e8efOaTAADGMIIwLlzwO7dpv/Wl7vvvhsffvih8v0HH3yAu+66SzVm0aJF2LRpE9asWYMDBw6gc+fOiImJQV6e6fbjzMxMxMbGYty4cTh06BBmz56NxYsXq86Rnp6OUaNGYeLEiTh8+DDWrVuHvXv3Yt68eXX/JomIyKr2y5KnZy4kyVjBCAnDhu3GpEnrMX/+cowb97Vq+XH06NGYN28e/va3vzWpAAYwhLV4778PdOwI3Hab6b/vv18/rztt2jTs3bsXZ86cwZkzZ7Bv3z5MmzZNOX716lW8/fbbeOWVVzB69GiEhYXhf//7H5ydnfH+Xxf59ttvIzQ0FK+99hq6deuGqVOnYubMmarXWbp0KaZOnYr4+Hh06dIFgwYNwhtvvIGPPvoIN27cqJ83S0TUwuTm5iI7OxvZ2dlIS0tTHZML8A0GN6UL/pAhe8yCmFCNlyQjIiIOolevo1aNV6dNm4YBAwY0ufAlY01YC3buHDBnDmD86+feaATuvReIiQECA+v2tX18fDBmzBisXr0aQgiMGTMG3t7eyvH09HSUlJRg8ODBymNarRYDBgzA0aNHAQBHjx5FZGSk6rx6vV71/a+//orDhw/j008/VR4TQsBoNCIjIwM9evSoi7dHRNTimPf8Wrdunc0x1gX4Aqb5ILn2y4guXU7i5MkuADRWvb/kBqwNud9jbWIIa8FOniwPYLKyMuDUqboPYYBpSVJeFvzvf/9bJ69x5coV3HvvvXjwwQetjvEmACKi2lFZz6+8PC9otUU2CvDNi/ABQINTp7pg9uxVKClxbLR7PtYWhrAWrEsXQKNRBzEHB6Bz5/p5/VGjRqG4uBiSJCEmJkZ1LDQ0FI6Ojti3bx86duwIACgpKcH+/fsRHx8PAOjRowe2bNmiet5PP/2k+j48PBxHjhxB5/p6U0RELZC9ui/rPR8rr4ISQoOSEkeEhJyxOtYUen9VB0NYCxYYCLz3nmkJsqzMFMDefbd+ZsEAwMHBQVladHBwUB1zdXXF/fffj4ULF8LT0xMdOnTAsmXLcO3aNcyaNQsAcN999+G1117DwoULMXv2bKSmplr1F3v00UcxcOBAzJs3D7Nnz4arqyuOHDmChIQEu/9qIyKiqsnNzcXFixdx7Ngx1ePyno/qmS/zZUf7zPd/jI2NVUpVGtOej7WFIayFmzXLVAN26pRpBqy+ApjM3d3d7rGXXnoJRqMR06dPR2FhIfr3749vv/0Wbdu2BWBaTty0aRPmz5+PN998EwMGDMCLL76Iu+++WzlHnz598MMPP+Dxxx/H0KFDIYRAaGgo4uLi6vy9ERE1Z+np6fjkk0+sHq94z0d7AcwUzixrwLy9vZvV8qMlSQghKh9GDaGgoAA6nQ4Gg8EqrNy4cQMZGRkICQlB69atG+gKWwZ+1kREJnLxfX5+PtavX291/Nw5f6xaNRvVab4gSUYMGbIHnTplWNWANbW+X7KKfn+b40wYERERVaqi4nsA2LdPj4SEaFS23FhO4O9/34Zu3U5a9f0KCgpqlsuPlhjCiIiIyC559uvSpUuqx+W7Hj09c/HLLxHYs2cYqhPAwsKOYMCAAwBMrSe6dOnSIoKXOYYwIiIissne7Jd1vy+g8gBW3gts6NA9uP3275Uj7du3b9a1X/YwhBEREZFNlq0nbN/1WPnslyQZERWViICALKu6r/HjxyM0NLQ2L7vJYAhr4nhfRd3jZ0xELY28BHn69GnlsYrverRHICLiFwwbtkcVvOLi4qDT6Vrc8qMlhrAmSu6rVVxcDGdn5wa+muZN/pegZS8zIqLmyNYSpMHgVoMAZkR0dCIGD05WHpk8eTJ8fX1bdPAyxxDWRLVq1QouLi64ePEitFotNBruxV4XjEYjLl68CBcXF7Rqxf+7EFHzlpubixMnTqgeMxjc8PvvPasRwAQmTdqAoKBzqtmvadOmtdhlR3v4W6WJkiQJ/v7+yMjIwJkz1ls7UO3RaDTo0KEDJKmqd/0QETU9tmbArAvwK/t70Ijx47ehVy/Tbih9+vRBjx49msVm23WBIawJc3R0RJcuXezu2UW1w9HRkTONRNRs5Obm4sKFCzh37pzq98fly5dV486d88eWLWNR3njVfgCTJCP0+mRERqaoZr8GDhzYIu96rCqGsCZOo9GwizsREVVJZQ1XZQcO9LMIYPYYMWnSRqulR1lz23C7tjGEERERtRBVWTkxGNyqHMDMlx7NxcbGIiAggEuQlWAIIyIiasbk5cfS0lKrJUe571dubluUlbVC164ncORIT1QWwCTJiFmzViEwMNvmcQawqmEIIyIiaqYqWn40LTmOg3mt148/Dq/0nJJkxLhx25QANmLECPj4+MDDwwMAWnzvr+pgCCMiImpG5EarBoNB1WxVZt713rrYvqK7H223nujZsydDVw0xhBERETUTlRXe79unR0JCFCqv91KTZ7/k+q/IyEj07duXs143iSGMiIiomaio8N4UwKJRtY22BUxBzYhBg6xbT3Ts2JGtJ2oBQxgREVETJi8/AkBGRobqmMHghrw8LxQXt6pyAOvb91fcdtt3yMvztNpsW+br61tLV9+yMYQRERE1UZUV3le12/0tt/wCd/dCdO16Uim4txW+uPdj7WIIIyIiaqLsLT9ab7hdcbf7ESN+hE5XiODgYLRp0wtt2rRB27ZtERQUpIxj/VftYwgjIiJqQqqy/JiWFlalDbflgnt51mvkyJGs9apHDGFERESNWG5uLi5evIiSkhIUFhYiISHB5jjr5ceK9ez5G0aOTLC57Ej1gyGMiIioEZI73a9fv97uGHnmS6stqvLyo4nRZgDjXo/1iyGMiIiokanKRtvVKbw3MY2xXIKMjo5GSEgIa74aAEMYERFRI5Kbm4usrCybx8r3evTA7t23o7zpqq0AJgczU6+vsLDfUVLiaNV2IiQkhHVgDYQhjIiIqJGofK/Hsahqt/uIiF/Qq9fvdnt9ybgE2XAYwoiIiBoJey0nzp3zr1YAA4wYNmyPzfAVFxcHnU4HgG0nGhpDGBERUSORn5+v+t5gcENKSiSSkgah8povmUB0dKKq7URwcDAAhq7GhiGMiIioEcjNzVXdCVnd5UcTgaFDf8TgwcnKI8HBwaz5aqQYwoiIiOqZecNV2aVLl5Q/GwxuVQxg5ZttS5IRUVGJqgAGsOarMWMIIyIiqgdy8MrPz6+w9xcA/PjjUFQWwIYN242IiIMAYHez7WnTpnH5sRFjCCMiIqpjFd31KDdc9fTMhU5XCIPBDampEZWc0YiIiINK6LK32XZoaOjNXjrVIYYwIiKiOmbvrkfzhqvycqIkmZYX7TNi/PhtlW435OvrW/MLpnrBEEZERFRH5CVI83ovwDT7dfx4V3z99d8hBy4hNEhIiIbpLkjLDvgCvXv/im7dTiAo6JwqgMXGxsLb21t1ft4F2TQwhBEREdUiOXgZDAasW7fO6njFdz1KZv8t73gfHW1dcC8LCAhg4GqiGMKIiIhqSWW1X5mZQdVoOyEhJmYHwsKOWC09yrNfnPFq2hjCiIiIaoll7ZdcdJ+V5Y/ExKi/NtuuGkky2gxgAGe/mguGMCIiohqy7Pd1+vRp5c/mRffWNV6VEYiKKu96P2LECLRt2xatWrWCr68vA1gzwRBGRERUA5UtPaqXHasTwKxrwLp06cKu980QQxgREVE15ebmIisry+7xlJRIVFz3JdCt2xGcONHjr5kyIyIiUhESkmF19yM1XwxhRERE1WBvBkwuvM/La/vXhtsVkTBw4H78/e/f2u12b45bDzVPDGFERESVyM3NxcWLF1FSUoI///xTdcxgcENKSiSSkvSo+mbbRiV4VRS+Ro8ejdDQUNaANVMMYURERBWoqPZLXXxfVQLR0YkVhq/JkyezAL8FqM5PTYMaP348OnTogNatW8Pf3x/Tp09XrccvWbIEkiRZfbm6uqrOs2HDBnTv3h2tW7dG79698fXXX6uOCyHw1FNPwd/fH87OzoiKisLJkydVY/Ly8jB16lS4u7vDw8MDs2bNwpUrV1RjDh8+jKFDh6J169YICgrCsmXLavkTISKi+mCr7URGRjDOnfPHli3jqh3Ahg79UVV0Hxsbizlz5ihf8+bNQ48ePRjAWoAmE8JGjBiB9evX4/jx49i0aRPS09MxadIk5fgjjzyC7Oxs1VdYWBj++c9/KmOSkpIwZcoUzJo1CwcPHsSECRMwYcIEpKWlKWOWLVuGN954A++88w5SUlLg6uqKmJgY3LhxQxkzdepU/P7770hISMC2bdvw448/Ys6cOcrxgoICjBw5Eh07dkRqaipeeeUVLFmyBO+9914df0pERFSXDhzoh+XL47FmzQysWnUPqn/XYwJuv/171aPe3t7w9/dXvhi+Wg5JCCEa+iJqYsuWLZgwYQKKioqg1Wqtjv/666+45ZZb8OOPP2Lo0KEAgLi4OFy9ehXbtm1Txg0cOBC33HIL3nnnHQghEBAQgIcffhiPPPIIAMBgMMDPzw+rV6/GHXfcgaNHjyIsLAz79+9H//79AQA7duzA3//+d5w7dw4BAQF4++238fjjjyMnJ0cpply8eDG+/PJLHDt2rMrvsaCgADqdDgaDAe7u7jX+rIiIqGJyv6/8/HyUlpaqjl2+fBm7d++GweCG5cvjqznzBQBGTJq00e5dj/PmzWPwamaq+vu7SdaE5eXl4dNPP8WgQYNsBjAAWLVqFbp27aoEMABITk7GggULVONiYmLw5ZdfAgAyMjKQk5ODqKgo5bhOp0NkZCSSk5Nxxx13IDk5GR4eHkoAA4CoqChoNBqkpKTg//2//4fk5GQMGzZMdTdLTEwMXn75ZVy+fBlt27atjY+BiIhuUm5uLi5cuID169dXOjYvz6sKAcyI7t2P4dix7gA0kCQjxo3bhl69jtocPW3aNAawFqxJhbBHH30UK1euxLVr1zBw4EDVjJa5Gzdu4NNPP8XixYtVj+fk5MDPz0/1mJ+fH3JycpTj8mMVjfH19VUdb9WqFTw9PVVjQkJCrM4hH7MXwoqKilBUVKR8X1BQYHMcERHdvIoK7oHyLYc8PXOh0xXC0zMXgBH2K3mE0mTV9NyKW09MmzYNoaGhN/0+qOlq0JqwxYsX2yymN/8yX75buHAhDh48iJ07d8LBwQF33nknbK2mfvHFFygsLMSMGTPq8+3ctKVLl0Kn0ylfQUFBDX1JRETNlmXBvcxgcMPOnVF4/XVT7dfy5fE4cKAfACAiIhWmLYgsqQvudbpChIScsbnxtlx8zwBGDToT9vDDD2PmzJkVjunUqZPyZ29vb3h7e6Nr167o0aMHgoKC8NNPP0Gv16ues2rVKowdO9ZqRqtdu3Y4f/686rHz58+jXbt2ynH5MfPtIc6fP49bbrlFGXPhwgXVOUpLS5GXl6c6j63XMX8NWx577DHVcmlBQQGDGBFRPbHX70sIDbZsGQtJgtLd3kQuyrfeZsgebrxN5ho0hPn4+MDHx6dGzzUaTf8nMF++A0x1Xbt378aWLVusnqPX67Fr1y7Ex8crjyUkJCghLiQkBO3atcOuXbuU0FVQUICUlBTcf//9yjny8/ORmpqKiIgIAMB3330Ho9GIyMhIZczjjz+OkpISpWYtISEB3bp1q7AezMnJCU5OTjX4NIiI6GZU3u9Lg/KFF1MQ+/vft8HF5brdgvvJkyfDw8ND+d7R0ZEBjFSaRE1YSkoK9u/fjyFDhqBt27ZIT0/Hk08+idDQUKtZsA8++AD+/v4YPXq01XkeeughDB8+HK+99hrGjBmDtWvX4pdfflFaR0iShPj4eDz//PPo0qULQkJC8OSTTyIgIAATJkwAAPTo0QOjRo3CPffcg3feeQclJSWYN28e7rjjDgQEBAAA/vWvf+GZZ57BrFmz8OijjyItLQ0rVqzA66+/XrcfFBERVZvB4FaDhqsa+PjkIiTkjNURdrmnqmoSIczFxQWbN2/G008/jatXr8Lf3x+jRo3CE088oZo5MhqNWL16NWbOnAkHBwer8wwaNAifffYZnnjiCfz73/9Gly5d8OWXX6JXr17KmEWLFuHq1auYM2cO8vPzMWTIEOzYsQOtW7dWxnz66aeYN28ebr/9dmg0GkycOBFvvPGGclyn02Hnzp2YO3cuIiIi4O3tjaeeekrVS4yIiOqO3HLCnmvXrillIlW761HAvCeYJJm2HQJMdV7e3t4AONtF1dNk+4S1BOwTRkRUfZXd9Wjp3Dl/rFo1G/bvVTPVfCUmRkGI8rYT4eEHAQBz5sxR1RETNes+YURERPZUNAMmMxjckJkZhIyMYKSmRqAqbSd69UqrtO0EUXUwhBERUYuyb58eCQlRqLxLk0B0dIKq7QTDF9UmhjAiImo2cnNzcenSJdVj5k1X09J6ISEhGpXv+WjE7NmrEBiYXelrmu+OQlQdDGFERNQs2KoFM289IUnGv9pMVB7Axo/fZhXAoqOjrXZDYSE+3QyGMCIiahYsa8HOnfPHli1jIS87Vq0FhbA7A9atWzcGLqpVDGFERNSkye0oMjIylMcOHOiHLVvGofJZL0BuPyHf9WgZwGJjY9npnuoEQxgRETVZlkuQ8l2PFQcwueeXERERqejX7yBKShzt3vXIAEZ1hSGMiIgardzcXFy8eBElJSVWx65cuQKDwaB8X/nWQzIJMTE7EBZ2pMK7HaOjo7kESXWKIYyIiBql9PR0fPLJJ1Uaa1n/VRFJMlYawADTfsIMYFSXGMKIiKjRyc3NtRnAzNtNyCFKngGrOICp676q0u+LrSeorjGEERFRo2Or6/2+fXqrrYNCQ0/V2hLk5MmT4eHhAYCtJ6h+MIQREVGDsrXZtmXD1V27bsWePcMgF9sLocHWrWPRq9dvVWo9YW8JUt58m6GLGgJDGBERNZiq1H3t26dXBTCZEBr89lufKryK/SVI3vlIDYkhjIiIGoS9ui9zBoPbX/s82mo3Iew8bgRgWrLU65MRGZmiCmBy53vOflFDYwgjIqIGYbkEKff4AoCgoEzodIXIy/OC7YJ7+wFs9uxVFfb9CgkJgb+//01fP9HNYggjIqIGZ93h3rR/4+XLOlQ241VOIDo6sdJNt3nXIzUWDGFERNSgDAa3v1pMmActzV99vyTYDmASJElACDmIGREdnYjBg5Ptvk5cXBx8fHy4BEmNBkMYERHVGVt3PsrkOyDz8rzs3OFY8V2PQmgwadJ6uLpes7n0OHLkSAQHBwNgywlqnBjCiIioTlju62iPp2cuJMlYpVYT5iTJiKCgc3b7fnXt2pXBixq16v3EExERVZG9GTBLOl0h+vQ5DFPtV0WEMqayzvfTpk1jAKNGjzNhRERUKyyXHi0brppvOQRA9efDh/vAdu2XzFTz1atXGvLyPK2WH+WmqwCXHqnpYAgjIqKbVtnSo7y/o2nJUZ7xkpReXhUvRQrMnr1KueuRTVepuWAIIyKim2ar55f5TJd6f8fyGS8hNEhKGgTrNhTqDbdttZ2Q93rkzBc1VQxhRERUq8xnvao202W5DCkwdOiP6NQpw27D1WnTpiE0NLRWr5uovjGEERHRTcvPzwdQ3vNLDl2mmS497DdctUVCp04ZCAk5Y3UkOjoa3bp148wXNQsMYUREVCUV9fw6c8YUmGz3/DI1UzWpPIhJkhGennk2jzGAUXPCEEZERJWqTs8v27NeckG++VZDtsZZt55g7Rc1VwxhRERUqar2/EpL61XBUdNWQ6NHb4WLy3UYDB5ITIxS1Y5FRqaoAlhcXBy6d+9+k1dP1DgxhBERUbXJdz9qtUXIygrAlStt0L79n0hIiEJFS45CaODjk6vUe9nr+yXT6XR19RaIGhxDGBERVYt1zy85dFVefG9Z76XTFdrteg+YGq8SNVcMYUREZFNubi4uXLiA0tJSXL58GYD13Y/q0CXBdr8vAUBT6VZD5uLi4uDj48MaMGrWGMKIiMiKvUJ823c/mpNQXnxf9a2GzLEAn1oKhjAiIrJiqwN+ZmYQrl1zhvoOR0sCU6Z8DkfHElXosjX75e3tDX9//9q9cKImhCGMiKiFk/t/5efno7S0FACU5UfAVAO2Zcs4qGu/bBHo2/dXdOt2qkqvy3ovaukYwoiIWhjzpqsGgwHr1q2zO1auAbOu/VLr0+cgBgzYb3OPR5nc7wvgkiMRwBBGRNSiVLXpqtyC4upVl0pqwEx3PN5++26rJcfo6GiEhIQAYOgisoUhjIioGbPcaujSpUuq43LY8vTMhU5XCIPBDSkpkX/t9yhvN2S/9URFdzxyiyGiijGEERE1U5XNepn3+5IkIzp0OIMzZ4KhDlwVz4IJAYSGlteAyXc8cuaLqHIMYUREzdSFCxfsHrPs9yWEBmfOhNTgVTTIy/NUZsJ4xyNR1TGEERE1M/IS5MWLF1WPnzvnj7NnO6JDhzMoKXGqtNbLNvXSpGUHfN7xSFR1DGFERE2UZb0XYP9uxy+++Ad+/bUv5K72YWFHIEnGagex3r1/RVpaH2UJ07weLC4ujkuQRNXAEEZE1ARV5y7H48e7mgUwAJBw5EgYhg79EXv3Dq1WEOvW7QSior6z2QGfm20TVQ9DGBFRE2Q5A2aLeqNtSxIkyYj4+OUWd0PaJ0lGBAWds7vpNpciiaqHIYyIqAmoSasJ+wHM5Mcfh8PDoxAjRyYiMjIFx493wddfj4E6jJlqwCyXHvv374/Q0FBl9ot3QxJVH0MYEVEjl56ejk8++cTucctWE+PGbUPbtpersMyowZYtY+Hrm4PAwGwMGHAArVoJ1bmiohIREJBltfTYoUMHdO/evZbeIVHLxBBGRNSIVRbAbLWa2Lp1LGbNWmWj8N7WxtsarFo1G+PHb0N4+EGEhx9EaOgpmzVf5lxcXG7ujRERQxgRUWOVm5trFcAMBjdkZgYBAIKCMpGX52U14yWEBiUljhg3bhu2bBmL8uAlwV4Q27JlLEJDTyn1XrbC14gRI9C2bVu4uLggNDS0Vt4jUUvGEEZE1EhZFt/v26dHQkI0yu9yNGLo0D1WM15y7y5PzzxIkqmr/V9HYKrxskXddNWWnj17su6LqBYxhBERNQHWAQwANNizZxjCwo7g6NEeVr27MjKCbdSFaWB7L8jypqvy1kPmWHhPVPsYwoiIGjmDwQ0JCVGwvYm2hKNHe+COOz5Hbq4XOnQ4Cze3K8jICIZWW2RzliwqKhGJiVFmjxsxfvw2bj1EVM8YwoiIGhm5HUVaWhoAIC/PCxX18BJCg88/n/LXGCNMYc1U/xUa+gfS0zsBKJ8lCw8/iF690pCZGQgASu8vIqpfDGFERI2IrU74np65lWwxJFAe0szHaJCe3hmSZIRevw+RkSlK2DIV3x+1eTY2XSWqHwxhREQNwNa+jwBw+vRpq8d0ukJERSX+tSSpnu2qyv6PQmiQnKxHZGSK6vHo6Gi4ubkp32u1Wvj4+LD2i6ieMIQREdWzqu77CJjqwUzbCg2CeU1YdHQCAgKyUFysNVuKtE+I8rsfY2NjERAQwLBF1MAYwoiI6pnlDJjllkMy0x2R8uyXOQ0SEqIQHW0qsLd/x2M5uW0FYCq8ZwAjangMYUREDUi9ybYR0dGJGDw42U5LCnMaizsc5R5gpiXKTp3S8ccfoVZtK4io8ahyCCsoKKjySd3d3Wt0MURELYn1JtsaJCRE48YNJ+zdOxQVzWwBtmrBJMTE7EBY2BFlE+/Kth8iooZT5RDm4eEBSaroLwRACAFJklBWVnbTF0ZE1BzYKsC/dOkSANjccgiQsGfPMFQWwGwfFwgKOmtxB6R1+OLdj0SNQ5VD2O7du+vyOoiImpXc3FxcuHAB69evtzvG0zMXtvdyLF9aVBMYMSIR339/O4Sw3bi1pMQUsPr3748OHTpAq9VCp9MpI9j5nqjxqHIIGz58eF1eBxFRs2Hv7kfLAnydrhDR0Yk2ar/sFdlLcHQss9uSwrz4vkOHDujdu/dNvxciqjs1LszPz8/H+++/j6NHTc3+evbsibvvvlv1Ly4ioubKXp8voHy5UVbeZkIPy871gwcnA4BZkb39uxwlyYigoLM2e4NZFt+3asX7rogaO0kIIar7pF9++QUxMTFwdnbGgAEDAAD79+/H9evXsXPnToSHh9f6hbZEBQUF0Ol0MBgMvNmBqBGxnOmy12ICsLz7sZwkGREfv1wZbzC44ciRMHz77Sibr2ke3CzvqBw0KFnVDR8A5s2bx2VHogZS1d/fNfqn0vz58zF+/Hj873//U/61VVpaitmzZyM+Ph4//vhjza6aiKgJMJ8BMw9E5kEJsHX3Yznz5qmAqYg+LOwIvv12JNQ1YgIREb9g2LA9ytjw8IMIDT1l887HyZMnw9fXlwGMqAmoUQj75ZdfVAEMME19L1q0CP3796+1iyMiamxyc3OV5UbLkCWEBlu3jkVo6CnodIV27n6UGXH1qisMBjclRKWnd4Z6KbK8b5gsOjoanp6eNks/WHRP1LTUKIS5u7vj7Nmz6N69u+rxzMxM1T5kRETNieUyZGZmkFXIEkKDlJRIjByZWMHG26YWExs3/lOZPQsNPYWtW8fCPIRJEtCrV5ryfVxcnNXfu0TUdFW82ZgdcXFxmDVrFtatW4fMzExkZmZi7dq1mD17NqZMmVLb1wgAGD9+PDp06IDWrVvD398f06dPR1ZWlmrMt99+i4EDB8LNzQ0+Pj6YOHGi1Wa433//PcLDw+Hk5ITOnTtj9erVVq/13//+F8HBwWjdujUiIyPx888/q47fuHEDc+fOhZeXF9q0aYOJEyfi/PnzqjFnz57FmDFj4OLiAl9fXyxcuBClpaW18lkQUcOwXIbctGmizXFJSXqkpYWhsLAN9PpkmIrtZeWbbwPls2f2Al1enqfyvY+PTy29EyJqDGoUwl599VXExsbizjvvRHBwMIKDgzFz5kxMmjQJL7/8cm1fIwBgxIgRWL9+PY4fP45NmzYhPT0dkyZNUo5nZGTgH//4B2677TYcOnQI3377LS5duoTY2FjVmDFjxmDEiBE4dOgQ4uPjMXv2bHz77bfKmHXr1mHBggV4+umnceDAAfTt2xcxMTG4cOGCMmb+/PnYunUrNmzYgB9++AFZWVmq1ykrK8OYMWNQXFyMpKQkrFmzBqtXr8ZTTz1VJ58NEdWvimq9TDTYuPGfWLXqHiQlDbY6Znn3o3xXpCQZVY+bt5yYPHkylxqJmhtxE65evSoOHz4sDh8+LK5evXozp6q2r776SkiSJIqLi4UQQmzYsEG0atVKlJWVKWO2bNmiGrNo0SLRs2dP1Xni4uJETEyM8v2AAQPE3Llzle/LyspEQECAWLp0qRBCiPz8fKHVasWGDRuUMUePHhUARHJyshBCiK+//lpoNBqRk5OjjHn77beFu7u7KCoqqvJ7NBgMAoAwGAxVfg4R1Z2srCyxZMkSMWPGagGIWvwyiujob8X48V8JSSoTgBCSVCbGj/9KLFmyRCxZskRkZWU19Nsnoiqq6u/vGs2EyVxcXNC7d2/07t0bLi4utRIKqyIvLw+ffvopBg0aBK1WCwCIiIiARqPBhx9+iLKyMhgMBnz88ceIiopSxiQnJyMqKkp1rpiYGCQnm4pei4uLkZqaqhqj0WgQFRWljElNTUVJSYlqTPfu3dGhQwdlTHJyMnr37g0/Pz/V6xQUFOD333+3+76KiopQUFCg+iKixiM/Px8AlFovtWp3+zEjITExCqGhpxAfvxwzZqxGfPxy5S5LgFsNETVHNSrMv3HjBt58803s3r0bFy5cgNGo/svowIEDtXJxlh599FGsXLkS165dw8CBA7Ft2zblWEhICHbu3InJkyfj3nvvRVlZGfR6Pb7++mtlTE5OjioYAYCfnx8KCgpw/fp1XL58GWVlZTbHHDt2TDmHo6MjPDw8rMbk5ORU+DryMXuWLl2KZ555poqfBhHdLLnhqsFgQElJCQDgypUrKCgoQGlpKRwcHFTjU1JSAJjaSYwbt03VmuJvf0tB69Y38OOPw2G70sN+E1agvP4rJOQM7rorGt7e3sox3vVI1DzVKITNmjULO3fuxKRJkzBgwIBKN/a2Z/HixZXWkB09elS5G2jhwoWYNWsWzpw5g2eeeQZ33nkntm3bBkmSkJOTg3vuuQczZszAlClTUFhYiKeeegqTJk1CQkJCja+xPj322GNYsGCB8n1BQQGCgoIa8IqImi97DVe12iKUlDjZbLxqLjz8IK5fb42EBFOn+59/HojyPR/l/SDNg5f0152SgK2QZl7/5e3tDX9//1p5n0TUeNUohG3btg1ff/01Bg+2LDitnocffhgzZ86scEynTp2UP3t7e8Pb2xtdu3ZFjx49EBQUhJ9++gl6vR7//e9/odPpsGzZMmX8J598gqCgIKSkpGDgwIFo166d1V2M58+fh7u7O5ydneHg4AAHBwebY9q1awcAaNeuHYqLi5Gfn6+aDbMcY3lHpXxOeYwtTk5OcHJyqvDzIKLaYa/hqhycJMmIqKhEBARkK4HMvDN+YWEbJCREoTxQmYctASGsN+YWQoNBg/YhOVmvKuq33HKIiFqGGoWw9u3b10o/MB8fnxrfci0vgRYVFQEArl27Bo1G/ReevJQgj7VcngSAhIQE6PV6AKYp/4iICOzatQsTJkxQnrtr1y7MmzcPgKn2TKvVYteuXZg40XR7+vHjx3H27FnlPHq9Hi+88AIuXLgAX19f5XXc3d0RFhZWo/dLRHXD+k7H8tYR8sbakmREjx5HcfRoD2WrIPM2E5Yq2mA7MjIFkZEpyMwMxLVrznBxuY6goHOqAMb6L6KWoUYh7LXXXsOjjz6Kd955Bx07dqzta7KSkpKC/fv3Y8iQIWjbti3S09Px5JNPIjQ0VAk+Y8aMweuvv45nn31WWY7897//jY4dO6Jfv34AgPvuuw8rV67EokWLcPfdd+O7777D+vXrsX37duW1FixYgBkzZqB///4YMGAAli9fjqtXr+Kuu+4CAOh0OsyaNQsLFiyAp6cn3N3d8cADD0Cv12PgwIEAgJEjRyIsLAzTp0/HsmXLkJOTgyeeeAJz587lTBdRI1NxV/vyQHbkSBjKQ1dl9zTZqv8SiIpKNNum6KjNZ06bNo31X0QtRI1CWP/+/XHjxg106tQJLi4uyt2Hsry8vFq5OJmLiws2b96Mp59+GlevXoW/vz9GjRqFJ554Qgk1t912Gz777DMsW7YMy5Ytg4uLC/R6PXbs2AFnZ2cApuL97du3Y/78+VixYgUCAwOxatUqxMTEKK8VFxeHixcv4qmnnkJOTg5uueUW7NixQ1Vo//rrr0Oj0WDixIkoKipCTEwM3nrrLeW4g4MDtm3bhvvvvx96vR6urq6YMWMGnn322Vr9XIioauQCfHPy1kP2u9pbqqyuVA5etgKY9fZDI0eORJs2bZTvtVotfHx8GMCIWhBJCFHt+6qjoqJw9uxZzJo1C35+flZF7zNmzKi1C2zJqroLOxHZZ1mAb4utmrDK7ma0JTj4D5w+3cnq8UmT1qNXr/KZr2nTpiE0NLRa5yaipqOqv79rNBOWlJSE5ORk9O3bt8YXSERUHyxnwMyL6+WlwfDwgwgNPYW8PE9otcU4cqQnkpL0sB/CbNWEGXHmTLDNsUFB5wAAsbGxCAgI4GwXEQGoYQjr3r07rl+/XtvXQkR00yyXHuVlR0A94yXfkSg3RNXpCpU7IJOT9ai47ksuzhcATOfS65NtbFEEDBqUrIQ9b29vBjAiUtQohL300kt4+OGH8cILL6B3795WNWFcOiOihmCv95enp+lubvO7IIXQYMuWsXB0LEJQUKYSlCou1DdnCmKTJq1XZrpstZ6IjExRvuddj0RkrkYhbNSoUQCA22+/XfW4EAKSJKGsrOzmr4yIqJrs9f6SZ6qsw5Vpo23zWbE//giGdT2YvfowDVxdrykBzrKLvnnvL27ATUSWahTCdu/eXdvXQURUayx7fwmh+avGy7qBqnx869axuHxZhz17hsEygA0d+iOuXXNBamp/1THzLveAurbM0zNP1ftL7hlIRCSrUQgbPnx4lcb93//9H5599lnVHmhERHXN9pKiBj17puH333vZfI4QGuzZMxTWM14S/PzOY9OmSbAMZ+Z9v2JjY+3+Xce9H4nIlqoUPtTYJ598goKCgrp8CSIiK3LvL3OmJckkq8fNj9v+K9F0J6R1qJMQEJClfBcQEAB/f3+bXwxgRGRLnYawGrQgIyK6aTpdIcaN26YELrk+KzAwW/W4qdYLyj6R1gFNIDo6EUFBmTZDnbwUyXovIqqJGi1HEhE1JFsd8AF1Owp79Vny46a9G10ACLi43EBQUCacnW+oCuujosq73FdUdO/h4VHn75mImh+GMCJqUqrSAV8m9/6ylJ7e2UaHfCMGDUrGrFmrUFLiaFVYX1HRPVtPEFFNMIQRUZNiawasOizvnDTflDspaTCSk/UYN24bQkLOAAAGDhwId3d3eHh42JzxYtE9EdUUQxgRNWm2tiGqSGXNWOV2FaGhp6DTFaJPnz7w9/evzUsmIgJQxyFs2rRp7J5PRHXGVkPWyMiUCsOYfOdkZUEsL8+zSqGOiKimahzC8vPz8fPPP+PChQswGtV3Dd15550AgLfffvvmro6IyA7bDVkHIylJj/HjTd3vbc2SyXdObtkyFvZuELdswkpEVBdqFMK2bt2KqVOn4sqVK3B3d4ckmXeQlpQQRkRUXeZ3PhoMBpSUlKiO5+TkAKhoWdG0nHj9emskJkapZsnCwn5HSYkTQkNPYf785UhJiTTb79FUoG955yMRUV2RRA2aeXXt2hV///vf8eKLL8LFxaUurosAFBQUQKfTwWAwcFmXmh3zsJWVpUFGRit4e1/GDz98WqXnGwxuWL48voJlRVv7PaqDVvlsmSe02mKbd0XOmzePhfdEVC1V/f1do5mwP//8Ew8++CADGBHViHmbCXVdV1uMG9cP4eEHAaiL7gGolhZ1ukIMGbLHxl6PMvuPWRbf3357N7i5uaFVq1Zwc3ODVquFTqfjnY9EVKdqFMJiYmLwyy+/oFOnTrV9PUTUApQvN1rXdcnhSN3Ly7R1kPksFgDs3Wtrr8eqMS++Dw8P5x2QRFTvqhzCtmzZovx5zJgxWLhwIY4cOYLevXtDq9Wqxo4fP772rpCImgXz5Ue5s72tui4hNMjMDLTo5aVRHTcdUz9eXSy+J6KGVuUQNmHCBKvHnn32WavHJElCWVnZTV0UETVt584BJ08CXboAgYHWXe5Ny4zB0GqLbLSLEDh8uE+lLSTsHIF6ZsxWXRgAqIvv2fGeiBpClUOYZRsKIiJz8kzXZ585Y9EiHYxGCRqNwLJlBowcmaWMs+zt1aPHURw5EobysCThxInusB+g8FdwA9QzYbbGS1aPS5IRs2atQmBgNqKjo9GtWzfWfRFRg6jRXP5HH32EoqIiq8eLi4vx0Ucf3fRFEVHTIs90vfLK51i40B1Goyn0GI0SFi50x4cfJgCwXQN29GgP2C+il2/eNpr9WaBPn8MYP34bJMn0j0PTf+3VhkmqcePGbUNgYDYAMIARUYOqUWH+XXfdhVGjRsHX11f1eGFhIe666y72CSNqYeRaL3s1XnIBvL3jppBl69+EEoYP340ffxwOIcpnyg4f7oPbbvsO8fHLlfYS778/2+YypTzzVVLiiKlTI9Gr198A/I13PhJRg6vRTJgQQtWgVXbu3DnodLqbvigiaprkLYHMmRfA2zseHZ0IUxCD1TEfn0sVBruQkDMIDMzGuHHbzM4tlOfLM18hIWfQq5cH/P394e/vzwBGRA2uWjNh/fr1gyRJkCQJt99+O1q1Kn96WVkZMjIyMGrUqFq/SCJqGuQtgcxrvswL4O0dDw8/iF690lQd7OVjQUGZVsX7tu5sDA8/iNDQUxU2XmUBPhE1JtUKYfIdkocOHUJMTAzatGmjHHN0dERwcDAmTpxYqxdIRI2TrZYTgDoMWYagio7rdIWIjExBQEAWAIGgoHPKsYqCXVxcHHQ6HfLz81FaWmp1nWy8SkSNVY22LVqzZg3i4uLQunXrurgm+gu3LaLGwjxwHTt2BWlpRcjI2AnAVAem1RahpMRJtVG2JVubaZszv2sSMGLQoGRERqZYvIb17NacOXPYaJWIGpU63bZoxowZAEzFuBcuXLBqX9GhQ4eanJaIGiF7WwwBPWGqvbLe/Fredkhm2ZbCcozlXZOABklJg5GUNEh5Dfl5ISFnVOfmEiMRNVU1CmEnT57E3XffjaSkJNXjcsE+m7USNR/2thiStxEq/7P1noy2nmdrjK27Ji1fw/J5sbGxCAgI4BIjETVZNQphM2fORKtWrbBt2zb4+/vbvFOSiJoX+0FJzfzORXvPE0KDH38cil69jsDTM1e5a7Ky85uf29vbmwGMiJq0GoWwQ4cOITU1Fd27d6/t6yGiRqqqQcnyzkV7z0tN7Y/U1L8py4zjxm3Dli1jUVHnHO73SETNSY36hIWFhanuhiKi5k9uL2HZi8v8z5Z3LsrP0+uTbZzReplx9uxVsO4XZv/cRERNWY1mwl5++WUsWrQIL774Inr37g2tVqs6zjv5iJqn8PCDuHxZhz17hsFyo+xJkzao2kqY3w0ZGZmCpCQ97P27TwgNMjMD4ep63cYYCTExOxAWdoQ9v4ioWalRCIuKigIA3Hbbbap6MBbmEzVvBoMb9u4dCut9GjVwdb2mhCRbd0OOH7/NrEDferPtTZsmISoq0WZjVjmAxcbGwtvbmz2/iKhZqFEI2717d21fBxHVg3PngJMngS5dgMBA9THzXmDmzEsP7BfnG6HVFiMjIxhabZHNuyHj45crez1mZQUgISEK5rNeQmiQmBiFqKhEJCZG2WzMyrshiag5qVEIGz58OPbs2YN3330X6enp2LhxI9q3b4+PP/4YISEhtX2NRHQT5HD12WfOWLRIB6NRgkYjsGyZAf/613VlWU/uBQbYb6xqu8heoEePo8oG2raK8OW7GkNCzkCnK4SnZx4SEqKtrlUIDQICshAfvxy9ek1A376uCAjghttE1DzVKIRt2rQJ06dPx9SpU3Hw4EEUFRUBAAwGA1588UV8/fXXtXqRRFQ581kuwPRnb+/L2Lx5JQwGNyxfHg8hTEuARqOEhQvd8eefH/y1XVCkcp6KGqva2vtxyJA92Lt3qGrmy3K50fKuxrw8L1gvaQKAUemIP3q0M/z9/WrzIyIialRqFMKef/55vPPOO7jzzjuxdu1a5fHBgwfj+eefr7WLI6Kqef99YM4cwGgE5DJNIQCNxgNjx/ZD27aXbc5Opab2Q0TEQaSkmLYHqkpjVcu9H/PyvLBnz3CLK5JgusvRekkRsD+jFh2dyLsfiajFqFGLiuPHj2PYsGFWj8ub6BJR/cjNzUVq6nnMmSMg7x4mhOkLMM14bd06FlptkVlriXI//jgCr78ejwMH+gEAMjOD7C4lmtPpCs2WFnNtnFtg6NA9mDRpPUaP3g5HxyIYDG6q55u3u5AkI6KjEzB4cHkrC979SETNXY1mwtq1a4dTp04hODhY9fjevXvRqVOn2rguIrJDXnaUlxozMoJhNM6wO14IDUpKHCtohqrBli1jcf16ayQmRtk4gxFXr7rCYHCzOUul0xUiKirxrxqv8m2M9uyR76KUlPOMH1++tGk5o2Z+7mnTprH+i4iavRqFsHvuuQcPPfQQPvjgA0iShKysLCQnJ+ORRx7Bk08+WdvXSER/MV92lJcaQ0NPVdjJXq7HCgk5A0fHImzc+E8bozRWdyuaGAFI2Ljxn3Y35waAgIBs2GpbYfn9li3qvR+9vb2tzsUCfCJqKWoUwhYvXgyj0Yjbb78d165dw7Bhw+Dk5IRHHnkEDzzwQG1fI1GLl5ubi9OnSzFnji+MxvLiern1g/Usl6kw3rweS14OtB3YjLBdnWB/A22ZweCGq1ddKjiHOfXej/7+/tX5GIiImpUahTBJkvD4449j4cKFOHXqFK5cuYKwsDC0adOmtq+PqMXLzc3FypW2lx3lei3TbFh5LZgcwGbNWoXAwGzVHY+msGR+96IR0dHlvbnKWYcqy8251ecVULNuyCrf/UhERDUMYTJHR0eEhYXV1rUQkQ1yA1VbdxTKS422mqjKtWCWdzyagpURf//7Nri4XFdtNWTeJNW8aarl6wHWd1JaBy4JlmFv/Hju/UhEJLupEEZE9cdWjy7z1g/VCWiABj4+uQgJOQPANKNVHrhMvb8CArIr7F5vv3t++evPmrUK+fkeAKAKe0RExBBG1KTYu6OwpgENsDWjpcGePcOwZ89wZUYsICDL6g5Ge72+zGvRAgOzERiYbfO9sAUFEbV0DGFETYxOV2hzRqmmAc32jFZ5MX5iYhTi45crxf3m2xlZntdeYIuLi4NOp1O+5x2QREQMYUSNWm5urrKBtr39HM1VJ6DJ55MbudpbWpSL8dPTO9vczsher6/JkyfDw8ODgYuIyA6GMKJGSr4rErC/n2NVgpnMPKBZnq9Tp3Skp4fCVLRvve+jVltc4XZGd90Vrer5xeBFRFQ5hjCiRkq+K9Lefo5yh3tbG21bMg9rAKzOl57eBYARgwbtg6vrVdV59fpk5Oe3tbudEXt+ERHVDEMYUSNnr/2EefsIe41UAetZL70+2c7SowbJyXrExy9Hr15pSEmJRFKSHklJg2HdW0xd3E9ERNVXow28iaj+2N4g27qGy3yj7REjRgCwPYuWlKS3uZm3fDwzMxCZmUFIStKj/K8I0zKl+Ybb5sX9RERUfZwJI2rk7N2FWFEjVZm9HmFCWM9syefYuHESbP/7TIOJE9fD1fWaVRE+200QEVUfQxhRE2DrLkRn5xt2207s3r0bgL1eXoDcNb9371/x2299AGj+GicfsyZJRqXhqvnm2yzCJyKqGYYwonpy7hxw8iTQpQsQGFj951u2n6ioPQRQXowfFZWIhIQoWIcrjRLAAFFp93vzkMdCfCKim8cQRlSHcnNzUVxcjM8+c8aiRToYjRI0GoFlywz417+u3/Qskr2+YJbF+EOH7sHevUNtdLe3t+/jX49KRkycuJFbDhER1QGGMKI6Ivf5MhjcsHx5PIQwBR2jUcLChe74888PoNMVYt68eUoQk0MbAJw7d65KrzN58mQAwPr16wHYLsbfu3eo1T6QFc18AeWzX716HbU6xhowIqKbxxBGVEfkMGWvxYTcY0seZ96ctaqmTZuG0NBQZGeX789o7/UCArIQH78ceXme0GqL8f77s+0EMSMmTbKe/ZLrwFgDRkRUOxjCiOqYreJ4W3cyymGsOlxcXKwey8ryh72eXubLl+Z3XFpuvG1r9isgIIDhi4ioFjGEEdWxyjbQlveGlP8rs+xyb297Isv9JRMTo6Cu8RKIikq0ep55Yb9WW4ySEkerAn/OfhER1R2GMKJqqsldjhXdybh582ar8eaF9aZu9RLMZ6rk7Yny8/OVWjDAXl8wCTpdvs3rslfYL+PsFxFR3WEII6qC2rjL0VbgsbUBt2VhvXlrCcvtiUpLS1Xn02qLYApt6iC2ceMkFBeXh7fY2Fi0atXK6vmmc2ih0+k4+0VEVMcYwogqkJubi4sXL2LdunU4d87/r2L2yu9yrArLNhLyDJft2axy5kX9ly9ftjqf3PdLvSSpDm/s80VE1PAYwojsML9b8cCBftiyRQ445cwDUVZWlqq43rLGy5ytNhJySLLf5d7EvKhf7oxvPXtm3ffL/FqJiKjhNZkNvMePH48OHTqgdevW8Pf3x/Tp05GVlaUas379etxyyy1wcXFBx44d8corr1id5/vvv0d4eDicnJzQuXNnrF692mrMf//7XwQHB6N169aIjIzEzz//rDp+48YNzJ07F15eXmjTpg0mTpyI8+fPq8acPXsWY8aMgYuLC3x9fbFw4UKbSz/UeF28eBFAecCx9X8X80C0efNmvPfee8qXrVovWWVtK8aN22a2ybaxwo2zDQY3/P57zyr1/bK8I5OIiBpOk5kJGzFiBP7973/D398ff/75Jx555BFMmjQJSUlJAIBvvvkGU6dOxZtvvomRI0fi6NGjuOeee+Ds7Ix58+YBADIyMjBmzBjcd999+PTTT7Fr1y7Mnj0b/v7+iImJAQCsW7cOCxYswDvvvIPIyEgsX74cMTExOH78OHx9fQEA8+fPx/bt27FhwwbodDrMmzcPsbGx2LdvHwCgrKwMY8aMQbt27ZCUlITs7Gzceeed0Gq1ePHFFxvg06Pqys3Nxbp16wDYK3a3HYgqEhsbC8AU1mzPdglkZQUgJOSMVSG/6Tqsi/rVBfzWbSnkvSCre61ERFT3JCFMf003NVu2bMGECRNQVFQErVaLf/3rXygpKcGGDRuUMW+++SaWLVuGs2fPQpIkPProo9i+fTvS0tKUMXfccQfy8/OxY8cOAEBkZCT+9re/KctQRqMRQUFBeOCBB7B48WIYDAb4+Pjgs88+w6RJkwAAx44dQ48ePZCcnIyBAwfim2++wdixY5GVlQU/Pz8AwDvvvINHH30UFy9erHK38YKCAuh0OhgMBri7u9fK50ZVk52djffeew8AsG+fHgkJ0VAv8Rkxe/YqBAZmWz3XVrE9AMyZMwcAKjyvJBkRH78cOl0hIiMjlT5g165dQ0pKiup1ymvULLciKr+L0t4dmXPmzGFNGBFRHanq7+8mMxNmLi8vD59++ikGDRoErVYLACgqKrJqXOns7Ixz587hzJkzCA4ORnJyMqKiolRjYmJiEB8fD8DULDM1NRWPPfaYclyj0SAqKgrJyckAgNTUVJSUlKjO0717d3To0EEJYcnJyejdu7cSwOTXuf/++/H777+jX79+Nt9XUVERioqKlO8LCgpq8OlQbbLXdys6OtFmALNXbA+YasSuXLmijA0IyIZl7Zb5kqRl6DJnCnC2NuWWEBOzA2FhR5TQxdkvIqLGqcnUhAHAo48+CldXV3h5eeHs2bP46quvlGMxMTHYvHkzdu3aBaPRiBMnTuC1114DAGVLl5ycHFUwAgA/Pz8UFBTg+vXruHTpEsrKymyOycnJUc7h6OgIDw+PCsfYOod8zJ6lS5dCp9MpX0FBQVX9aKiO2Ou7FRCQZTXWXrG9weAGwLQMuXPnTmW8vCSpOrNF3ZbB4IaMjGDlHID5DJrtJVLzAGYP934kImp4DToTtnjxYrz88ssVjjl69Ci6d+8OAFi4cCFmzZqFM2fO4JlnnsGdd96Jbdu2QZIk3HPPPUhPT8fYsWNRUlICd3d3PPTQQ1iyZAk0mqaRNR977DEsWLBA+b6goIBBrI6Yb5RtS35+PoCqbzkEVF5sb0mnK0RUVKIyo2VZt2VrVi009JSNmbny6zJ//ogRI9C2bVul75eM/b+IiBqHBg1hDz/8MGbOnFnhmE6dOil/9vb2hre3N7p27YoePXogKCgIP/30E/R6PSRJwssvv4wXX3wROTk58PHxwa5du1TnaNeundVdjOfPn4e7uzucnZ3h4OAABwcHm2PatWunnKO4uBj5+fmq2TDLMZZ3VMrnlMfY4uTkBCcnpwo/D7p5lhtl26vhAirfcshcVQOb/HpZWf5/BSrTeaOiEpWly3Pn/G3Oqk2cuMnuptuzZqlr1Lp06cK6LyKiRqxBQ5iPjw98fHxq9Fyj0bSMY15DBQAODg5o3749AODzzz+HXq9XXkOv1+Prr79WjU9ISIBerwdgmiGIiIjArl27MGHCBOV1du3apdxhGRERAa1Wi127dmHixIkAgOPHj+Ps2bPKefR6PV544QVcuHBBuaMyISEB7u7uCAsLq9H7pdpjPgNWUQ2XrKIthwAgOjoaCQkJVQps9u5mFEKDxMQo9OqVhvT0znZ7kgHC5l2VtmrUuORIRNS4NYnC/JSUFOzfvx9DhgxB27ZtkZ6ejieffBKhoaFK8Ll06RI2btyIW2+9FTdu3MCHH36IDRs24IcfflDOc99992HlypVYtGgR7r77bnz33XdYv349tm/froxZsGABZsyYgf79+2PAgAFYvnw5rl69irvuugsAoNPpMGvWLCxYsACenp5wd3fHAw88AL1ej4EDBwIARo4cibCwMEyfPh3Lli1DTk4OnnjiCcydO5czXfXM1rKj+WbX9hqm2poRszX7NXnyZPj6+iIhIQFAxYGtsoaqQmiQmRlYYU+yoKBzVkEvKioRgwcnK+NiY2O55yMRURPQJEKYi4sLNm/ejKeffhpXr16Fv78/Ro0ahSeeeEIVatasWYNHHnkEQgjo9Xp8//33GDBggHI8JCQE27dvx/z587FixQoEBgZi1apVSo8wAIiLi8PFixfx1FNPIScnB7fccgt27NihKrR//fXXodFoMHHiRBQVFSEmJgZvvfWWctzBwQHbtm3D/fffD71eD1dXV8yYMQPPPvtsHX9SZM5y2dFSdWu4bPH19YWXlxfmzZuHCxcuYP369XYDW2XbEUmSEbm5npX2JKtsZo4BjIioaWiyfcJaAvYJuznmvb4A69ovg8ENy5fHW9VwyX26AGDQoEFWs5darRZt2rSBVquFj4+PEnhq8nrljAgMPIdz54JgXXRvvyeZpWnTpiE0NLTScUREVHeadZ8wouqyV/tVWQ2XvCNDRWxt3K2u/TJi0KBkREamQK9PRlLSYBtnkewGsPHjt1kFsMmTJ1u1SeFdj0RETQtDGDV7FdV+yUt7mZmBACQEBWVW+/yWNWfWtV8aJCUNRnKyHlFRiQCMsNVk1ZZhw35Q3SjAei8iouaDIYyanMp6fFnOCFVW+5We3rnSOySBiltZmLNX+yXfAdm792H89ltfWHbhN1E/1rXrSdU5GMCIiJoPhjBqUiortpfJLUWAivt3VXaHpGVPL3vbEZn/1/bm3FDO/9tvt8A0GwbI+zzKG22bjUSPHkeUZcgRI0agZ8+eDGBERM0IQxg1KRXNgNkbV1H/royMYJuzZJmZgUhJaY/kZL3Nnl7mQW3z5s2q58uvZ6vXVzlTrdikSRsASNi48Z8WxyUMGLBf+a5t27YMYEREzQxDGLUI9to62Jsl27hxEtQByv5G2xW9XkpKJJKS9LAdxjRwdb0GT8+8SjvtW25OT0RETV/T2FSRqAYsO8brdIUICTmjCk7yrJW8kbbtpUFrkmSEVltstbm25etFRqZAsl1zrwQtW9dgfpfm6NGj2XaCiKgZ4kwYNWkVFcvLTVRtLWHm5+dj/fr1ANSzZFevutpYGpSZliQlyYg+fQ7j/fdn26wRi4yMREpKCoCKGrSqg1ZFDVi5iTsRUfPEEEZNVlX2fbRXR+Xv768KaJcuXcLmzZthMLjZLKqXtwcKCMiCVlusBDBAXSMGAGvXnoenpxt0ukK7y52Wm20D9rdGIiKi5okhjJqk6uz7aI95QDMYDACsi/jNG63K57VXzJ+SEqkU8lfWELYq3e9l3IibiKh5YgijJqk29n1UP7d8967K9ma03YLCaHYnpelatmwZC1/fnArPN3LkSHh4eFh1v5exCz4RUfPFEEZNijwrVFHvL8BU81WdAGM7BNmuqLc1W9az5xH8/nsvi5EavP/+bGVGzFY47Nq1K0MWEVELxRBGTYpcbH/x4kWkp9vf91Euure1r2NlqlJrZt6CIjlZ/1cAK+8lJrNcJo2NjYW3tzcAznIREbV0DGHU5Hh5eaG4uLjSZUMAuHDhQrW2OKqs1iwuLg4lJSVKg1bzJUh7M2fmy6Te3t7w9/ev4TsnIqLmhCGMmrTK7iiUZ8QqYr7FUWW1ZjqdrsKxtlg2XiUiIgLYrJVINVMm15qZsxeibI0tJ5Tnmi+TEhERyTgTRmSmon0mKxtr3sxV7ilmb5mUiIiIIYyaJLmvV/n39jvnVzbm0qVL0Gq1yvcV1Zrl5+ejtLTU5litthglJY4MXkREVCUMYdQklZSUKH+uyt2MFY2Ri+zNybVmkydPhiRJWLduHQBTjZkpzAUrYa46ne7ZeJWIiGQMYdSkVaVzflXH2Jols+wfVpXAZ2ny5Mnw8PBgSwoiIlJhCKMmqVUr049uVTrnVzamomB18uRJ5bUqC3MjRoxA27ZtAQBarRY6nY7Bi4iI7GIIozqTm5tbrR5d1SHPUFXWOb+yMbaClbzdUGBgNnbv3q0sP1696lJhmOvSpQt7gBERUZUxhFGdyM3NxcqVKysdV5OO9ubkOxS3bBkLU8cV67sZK7rj0dZm3ObbDQFQPQ8wwryzC3uAERFRTTGEUZ2oaAasJuMqI0mAEKb/mpPrsQwGA0JDlyt3PAJARkYwtNoiG5txl8+Imc5bPktmGmsKYuwBRkREN4MhjJq0yuq0PDw8lCVC+S5G8xowwIjQ0D+Qnt4J1r2LNRBC/YgQGkyatB6urtfYioKIiG4KQxjVKrkO7NKlS3X6OnKrh8qK7i1bQliGNkCD9PTOMDVaVS81AkbVTBhgWn4MCjrH8EVERDeNIYxqTVXrwGqDl5cX5s2bh9OnS/HxxwJGY/k6pIODwAMPjEZwcCurejP7+z1KkCRhtdQIoErd8wH2ACMiouphCKNaU1v1XVXl5eUFLy/gvfeAe+8FysoABwfg3XclBAe3QnFxMbKzswFAmZmzdaekzN5So73u+bGxsfD29gZwc3d6EhFRy8QQRk3erFlATAxw6hTQuTPg7KyekStvxOpm427KcvaWGu11xPf29mZLCiIiqjGGMGpQtmrH5GW96vQYCww0fQFAdnb58ywbsZo21s7G7NmrcORITyQn66u01GjvGoiIiGqKIYwalK19G6tq2rRpCA0NtXvc1p2TCQnRMNV/mQLZxImbAAirGbCRI0eiTZs2AEzd+S23L+LyIxER3SyGMLpp9XVHpKVPPvnEZrPX/Px8APaK8E0F/JaBzHIPyODgYC41EhFRnWIIo5tSn3dE2mK5ZJmbm4v169cDqLgI36Q8kFlu6M2lRiIiqmv2fjsRVUlV74g0GNyQkREMg8GtVl9fnvWSXbx4UflzWlovi2arFp1XzY/81VsMAOLi4rjUSEREdY4zYVTnLIvjLZf+KmMwuCEzMwgAEBSUqardWr9+vbIkmZubi3Xr1gEA9u3TK8uN5cRfX5q//lt+zHwPSJ1OV7M3SkREVA0MYVSnKttWqDIHDvSzaCchMH78VlWIKy4uRm5uLrKysgAA5875IyEhCuoABgDlfcCysgKQmBhV4zsjiYiIbhZDGNWpyrYVKu/hlWsVggwGNxv9vCSrEGcwGJQZMHnWzfZKe3kfsJCQM+jVK81mE1YiIqL6wBBGdcZgcMPVqy5WxfHy0l9ly5SmJUjbne1TUiIxcmQiAKCkpER5PfW+kKpnITo6URW27DVhJSIiqg8MYVQnzAOWaSNsoypsAahwmbJ8GdK2pCQ9IiNTVCHK/r6QRkRHJ2Lw4OTafItEREQ3hSGMap31jJQGQhgxadJ6ZTkwIyPY7jIlgAqWFGXlS5oyWy0pJMmIWbNWITAwu8rXz/YURERUHxjC6KbYCiy2Z6Q0cHW9poQme4HJ0zOvghktWI0FgMuXLwOAsi+k5RKnrQA2efJkqy748vthewoiIqoPDGF0U7y8vDBv3jxVv7CsLA0+/ljAaLTdAkIuxo+KSqzgDkUj1DNhRkgSrJY0Tb3HfoHcVSI09JTdrYhkkydPRo8ePWrxUyAiIqo+hjC6aZYzR/7+wHvvAffeC5SVAQ4OAmPGbFNqvaw31M5S7lA0GNyQkhIJdXsJI8aP34bQ0FPK3Yzp6Z2xfHm83TqzivqR+fr61uGnQUREVDWSEMJ+G3FqUAUFBdDpdDAYDHB3d2/oy6mSc+eAkyeBLl1M3586BXTuDDg75+L06VIMGOCrmiHTaAQeeuh1q4BmTpKMiI9froS0zMwgbNo00Wop0/STrLH5PACIjY1FQEAAlxuJiKhOVfX3N2fCqNa8/z4wZw5gNAIajWk2bNYs+agXDh82HTNnNEqqYnxbtWBywX56eucKx9h7nhzCGMCIiKgxYQijasvNzbXaMzIrS4M5c8pnuYxG03JkTAwQGGga06WLKZyZBzEHB1FpMb4kGaHVFlfQA8z+TJhch8b9IImIqLFhCKNqyc3NxcqVK60ez8gIhtE4Q/VYWZlpOVIOYYGBlrViwMsvG3DlimmmyvJuSRNTbVdJiVOFAcxeTZg8C8b9IImIqLFhCKNqsZwBk9lqOeHgYKoHMzdrlml2TK4Vc3C4jvfes91eQq9PVhqyGgxuNkKaEZMmbVTdBWlevM9u+ERE1JgxhFGtsAxRDg4C774rKbNg5gIDy2fHcnPL+4yFhx+0G6Ls9QDr1euo1XUwfBERUVPAEEa1xjxEPfDAaERE+FX6HFt9xsxdunQJmzdvtjo/Z7qIiKipYwijWiXPRAUEmKrvbRXxy/Lz8yFJEnQ6HbKyNMjIaIWQkFLluY6OjvD29rZ5fiIioqaOIYzqjGURv9wp39MzVxWkLBu4mjdZjYuLq5Vr4X6QRETU2DCE0U2xF6zy8/NRWlqqfG8vaFlu9i2EBlu3jkVo6CnodIUQQth9DXP29oIEuB8kERE1TgxhVGMVzWCtX79eGXfunL/doGWrP5h5k9X1692wYsV8GI0SNBqBp576E7Gxl6HVapW2EwxZRETUFDGEUbXIy3qVzWDJDhzohy1bxkK9GXd50LLV2kJusmowuGH58gAIITeAlfDMMwEwGNZDpyvEvHnzGL6IiKjJst39ksgO+W7GQYNm2J3BMhjckJERrMyA2foxk4OWTleIqKhEAEblcbnJakWzZID9nmVERERNAWfCqNq8vLwwcKD1FkSSZERWVgA++uhOZYnSVpd786B14EA/JCZGATCNj4pKVJY0K5olIyIiauo4E0Y1Im9B5OBg+l4OUImJUaolSkBYPNOIWbNW2S3KT0yMgsHgBqC8QaskWc+SERERNXWcCaMak7cgSknJxb59a+xswi2Z/VkgOjoRgYHZAGB3ufH338PQs+cR6HSFbNBKRETNFkMY3ZTAQMDBoRhpaRVtwi2TEBCQBcBU2H/1qouN8QI7d45CQsJI5W5LNmglIqLmiCGMao3l/o6mpcjymTC5nsu8tYWpIF8eVz7e3t2WREREzQVDGFXZuXPAyZNAly6wuTE3oN7fMSsrQKkRk+u5CgvbWLSsMIW1rl2P4cSJ7qpzmfcLIyIiam4YwqhC8t6Pn33mjEWLdErT1GXLDPjXv67b3A5IXj4MCTmDXr3SlHqu9PTOeP/92bC+H0TCiRNdq30nJLciIiKipowhjOyS9340NU2NVzVNXbjQHX/++QEAIDw8DgaDm80ZKzmQWd4JaU0DvX4fkpP1qpkz+ZyxsbGqzbzZJZ+IiJq6JteioqioCLfccgskScKhQ4dUxw4fPoyhQ4eidevWCAoKwrJly6yev2HDBnTv3h2tW7dG79698fXXX6uOCyHw1FNPwd/fH87OzoiKisLJkydVY/Ly8jB16lS4u7vDw8MDs2bNwpUrV6p9LY2d3AzV3l2MKSmRWL48HtOnt8eKFfMBzEJ0dLTNc9m+c7KcJBkRGZmC+PjlmDFjNeLjlyv9wgDA29sb/v7+yhcDGBERNXVNLoQtWrQIAQEBVo8XFBRg5MiR6NixI1JTU/HKK69gyZIleO+995QxSUlJmDJlCmbNmoWDBw9iwoQJmDBhAtLS0pQxy5YtwxtvvIF33nkHKSkpcHV1RUxMDG7cuKGMmTp1Kn7//XckJCRg27Zt+PHHHzFnzpxqXUtTIjdNNSdJRiQl6ZVgJW8ptHHjTwBMG2rPmTMHsbGxds9hTq9PVi1jsg6MiIiauyYVwr755hvs3LkTr776qtWxTz/9FMXFxfjggw/Qs2dP3HHHHXjwwQfxn//8RxmzYsUKjBo1CgsXLkSPHj3w3HPPITw8HCtXrgRgmgVbvnw5nnjiCfzjH/9Anz598NFHHyErKwtffvklAODo0aPYsWMHVq1ahcjISAwZMgRvvvkm1q5di6ysrCpfS1Niq2mqXp8Me/tBAoCHhwf8/f2VJUTLc6iZZsGIiIhakiYTws6fP4977rkHH3/8MVxcXKyOJycnY9iwYapi7ZiYGBw/fhyXL19WxkRFRameFxMTg+TkZABARkYGcnJyVGN0Oh0iIyOVMcnJyfDw8ED//v2VMVFRUdBoNEhJSanytdhSVFSEgoIC1VdjER5+ULVUGBmZYnN2rKJCevkcgwbtg/lekePHV94Fn0X4RETU3DSJwnwhBGbOnIn77rsP/fv3x+nTp63G5OTkICQkRPWYn5+fcqxt27bIyclRHjMfk5OTo4wzf569Mb6+vqrjrVq1gqenp2pMZddiy9KlS/HMM8/Y/hAaATko5eV5wdMzV9UTrKpbCul0hRg5MhGRkSl2u+BPnjwZHh4eyvcswiciouaoQUPY4sWL8fLLL1c45ujRo9i5cycKCwvx2GOP1dOVNYzHHnsMCxYsUL4vKChAUFBQA16RmnmTVTl0xccvR16eJ7TaYpSUOCl3SV66dKnC2St7XfDj4uLQvXt3G88gIiJqXho0hD388MOYOXNmhWM6deqE7777DsnJyXByclId69+/P6ZOnYo1a9agXbt2OH/+vOq4/H27du2U/9oaY35cfszf31815pZbblHGXLhwQXWO0tJS5OXlVfo65q9hi5OTk9V7bEhZWRpkZATD0zMXAKw22966dSzi45fj8mVPq3AGbAYATJs2rVqv6ePjU6vvgYiIqLFq0BDm4+NTpV+6b7zxBp5//nnl+6ysLMTExGDdunWIjIwEAOj1ejz++OMoKSmBVqsFACQkJKBbt27K8p9er8euXbsQHx+vnCshIQF6vR4AEBISgnbt2mHXrl1K6CooKEBKSgruv/9+5Rz5+flITU1FREQEAOC7776D0Wis1rU0tMq637//PjBnji+MxhlKIb6tNhWZmYE2w5m83ZCLiwvmzZuH4uJi5Ofno7S01Oq1tFotdDodlx2JiKhlEU1QRkaGACAOHjyoPJafny/8/PzE9OnTRVpamli7dq1wcXER7777rjJm3759olWrVuLVV18VR48eFU8//bTQarXit99+U8a89NJLwsPDQ3z11Vfi8OHD4h//+IcICQkR169fV8aMGjVK9OvXT6SkpIi9e/eKLl26iClTplTrWqrCYDAIAMJgMNTgU7Jv1SohNBohANN/V61SH8/MLD8uf0lSmQDKrB6bNGm96jH5a8aMD8WSJUtEVlZWrV47ERFRY1fV39/NJoQJIcSvv/4qhgwZIpycnET79u3FSy+9ZPXc9evXi65duwpHR0fRs2dPsX37dtVxo9EonnzySeHn5yecnJzE7bffLo4fP64ak5ubK6ZMmSLatGkj3N3dxV133SUKCwurfS2VqYsQZitgOTiYHpd99511qAKEGDRo719hzBTAxo//Ssyf/5rymHk4mz//NYYwIiJqkar6+1sSQoiGnIkj+woKCqDT6WAwGODu7l4r59y9G7jtNtuP33qr6c/nzgEdOwJGsw4UkmTExImb4OFxGSUljqq7Gm0V7Mvd7ufMmaOqryMiImruqvr7u0m0qKDa06ULoNGoA5aDA9C5s+nPubm5cHAoxrJlznj0UR3KyqS/NtYGNm78pxKyQkLOKM8PDz+I0NBTdltOEBERkTWGsBYmMBB47z3g3nuBsjJTAHv3XdPj8obdsgcfdENmZiA2bpwEua+vZeG9zF7LCSIiIrKtyXTMp9ozaxZw+rRpCfL0adP3QPmG3TKdrhCurtdR0fZElTEYDDd/wURERM0QZ8JaqMBA260pLMkbb5u3p6hseyJzLDkkIiKyjTNhVCFbm3ebmrECGRnBMBjcAAAGg5vqe5n59kNERERUjjNhVKnQ0FOYOHETAIGgoHNIT++M5cvjlbsh+/Q5jMOH+9i8O5KIiIhsYwijClm2n4iKSkRiYpSqQ/6vv/YFICnf2yrcJyIiIjWGsBYkNzfXqvjenGURvcHgZrUlkXkAKyepvpML9xnCiIiI7GMIayEs209URV6el839IgEjKionrE7hPhERUUvFwvwWwtYMmL1iepl8Z6Q5STIiIiLV7uvINWGcBSMiIqoYZ8JaKHtbDQ0cOBA//fQTACA9vTPMO0zI40JDTyE1NQLqDG/EpEkbERR0ThXAHB0d6+cNERERNTEMYS2QrVovuZi+tLRUNcY8aAkBpeB+/PhtViGuV6+jAIDJkyfDw8MDjo6O8PLyqvf3R0RE1BQwhLVA9mq98vI88csvv9gdA5QX3IeHH8T06b4oKPBFUFAR2rULgVbbFT4+PgxeREREVcAQ1gJ5eubCurheXUxflTGDB3eEv79/3V4sERFRM8UQ1mKp20pIElBY2AaZmUEAAA+PyzbHmGO9FxERUc0xhLVAeXlesNXba9Wqe8weN9ocIy9Hjhw5ksuOREREN4EtKloI81krW60nAAF16LL+0TDv/8U9IYmIiG4OQ1gL4eXlhZEjRwKwvSm35ayXJcv+X76+vnV6vURERM0dlyNbiNzcXJSUlCjfh4cfRGjoKeTleUKrLcb778+2cTdkuYkTN6JXr6OIjY1FQEAAlyKJiIhuEkNYC2BvyyKdrlCZ2Ro3bpuqd5g5STIiKOgcAMDb25sBjIiIqBYwhLUAllsWGQxuyMvzgqdnrhLC5JmxzMxAHD/eFWlpfVSNWOVxvCOSiIiodjCEtTC2tisyLUuaQllxcWslgAFGREUlIjz8IAAgLi6Os2BERES1hCGsBbG1XdGWLWMhSVBCmWmvSHlJUoPExCj06pUGna4QPj4+DXXpREREzQ5DWAtibysieZNuW/VgQmgwePAM3HorOAtGRERUixjCWhC5P1hFd0FacnAAIiO9wPxFRERUu9gnrAWx7A9m6oovVGNMx0zHHRyAd98FAgPr9TKJiIhaBM6EtTDm/cGysgKQkBBtdrS8UH/48FmIiNAxgBEREdURhrAWwLKthNxu4qOP7oR5p3yNRsJTT0UiOHgwvLx09XmJRERELQ5DWAvg5eWFefPmqfqF7dvniNdfV69GG40SCgv9WP9FRERUDxjCWgjLOxsHDgQ0GsBoto+3gwPQuXM9XxgREVELxcL8FiowEHjvPVPwAliET0REVN84E9aCzZoFxMQAp06ZZsAYwIiIiOoPQ1gLFxjI8EVERNQQuBxJRERE1AAYwoiIiIgaAEMYERERUQNgCCMiIiJqAAxhRERERA2AIYyIiIioATCEERERETUAhjAiIiKiBsAQRkRERNQAGMKIiIiIGgBDGBEREVED4N6RjZgQAgBQUFDQwFdCREREVSX/3pZ/j9vDENaIFRYWAgCCgoIa+EqIiIiougoLC6HT6ewel0RlMY0ajNFoRFZWFtzc3CBJUo3PU1BQgKCgIGRmZsLd3b0Wr7Dp4Gdgws+BnwHAzwDgZyDj51A3n4EQAoWFhQgICIBGY7/yizNhjZhGo0FgYGCtnc/d3b3F/p9Mxs/AhJ8DPwOAnwHAz0DGz6H2P4OKZsBkLMwnIiIiagAMYUREREQNgCGsBXBycsLTTz8NJyenhr6UBsPPwISfAz8DgJ8BwM9Axs+hYT8DFuYTERERNQDOhBERERE1AIYwIiIiogbAEEZERETUABjCiIiIiBoAQ1gT9fbbb6NPnz5Kczm9Xo9vvvlGOX7jxg3MnTsXXl5eaNOmDSZOnIjz58+rznH27FmMGTMGLi4u8PX1xcKFC1FaWlrfb6XWvPTSS5AkCfHx8cpjLeFzWLJkCSRJUn11795dOd4SPgMA+PPPPzFt2jR4eXnB2dkZvXv3xi+//KIcF0Lgqaeegr+/P5ydnREVFYWTJ0+qzpGXl4epU6fC3d0dHh4emDVrFq5cuVLfb6VGgoODrX4OJEnC3LlzAbSMn4OysjI8+eSTCAkJgbOzM0JDQ/Hcc8+p9u9r7j8HgGmrnPj4eHTs2BHOzs4YNGgQ9u/frxxvjp/Bjz/+iHHjxiEgIACSJOHLL79UHa+t93z48GEMHToUrVu3RlBQEJYtW3ZzFy6oSdqyZYvYvn27OHHihDh+/Lj497//LbRarUhLSxNCCHHfffeJoKAgsWvXLvHLL7+IgQMHikGDBinPLy0tFb169RJRUVHi4MGD4uuvvxbe3t7isccea6i3dFN+/vlnERwcLPr06SMeeugh5fGW8Dk8/fTTomfPniI7O1v5unjxonK8JXwGeXl5omPHjmLmzJkiJSVF/PHHH+Lbb78Vp06dUsa89NJLQqfTiS+//FL8+uuvYvz48SIkJERcv35dGTNq1CjRt29f8dNPP4k9e/aIzp07iylTpjTEW6q2CxcuqH4GEhISBACxe/duIUTL+Dl44YUXhJeXl9i2bZvIyMgQGzZsEG3atBErVqxQxjT3nwMhhJg8ebIICwsTP/zwgzh58qR4+umnhbu7uzh37pwQonl+Bl9//bV4/PHHxebNmwUA8cUXX6iO18Z7NhgMws/PT0ydOlWkpaWJzz//XDg7O4t33323xtfNENaMtG3bVqxatUrk5+cLrVYrNmzYoBw7evSoACCSk5OFEKYfWI1GI3JycpQxb7/9tnB3dxdFRUX1fu03o7CwUHTp0kUkJCSI4cOHKyGspXwOTz/9tOjbt6/NYy3lM3j00UfFkCFD7B43Go2iXbt24pVXXlEey8/PF05OTuLzzz8XQghx5MgRAUDs379fGfPNN98ISZLEn3/+WXcXX0ceeughERoaKoxGY4v5ORgzZoy4++67VY/FxsaKqVOnCiFaxs/BtWvXhIODg9i2bZvq8fDwcPH444+3iM/AMoTV1nt+6623RNu2bVX/f3j00UdFt27danytXI5sBsrKyrB27VpcvXoVer0eqampKCkpQVRUlDKme/fu6NChA5KTkwEAycnJ6N27N/z8/JQxMTExKCgowO+//17v7+FmzJ07F2PGjFG9XwAt6nM4efIkAgIC0KlTJ0ydOhVnz54F0HI+gy1btqB///745z//CV9fX/Tr1w//+9//lOMZGRnIyclRfQ46nQ6RkZGqz8HDwwP9+/dXxkRFRUGj0SAlJaX+3kwtKC4uxieffIK7774bkiS1mJ+DQYMGYdeuXThx4gQA4Ndff8XevXsxevRoAC3j56C0tBRlZWVo3bq16nFnZ2fs3bu3RXwGlmrrPScnJ2PYsGFwdHRUxsTExOD48eO4fPlyja6NG3g3Yb/99hv0ej1u3LiBNm3a4IsvvkBYWBgOHToER0dHeHh4qMb7+fkhJycHAJCTk6P6y1Y+Lh9rKtauXYsDBw6o6h1kOTk5LeJziIyMxOrVq9GtWzdkZ2fjmWeewdChQ5GWltZiPoM//vgDb7/9NhYsWIB///vf2L9/Px588EE4OjpixowZyvuw9T7NPwdfX1/V8VatWsHT07PJfA6yL7/8Evn5+Zg5cyaAlvP/hcWLF6OgoADdu3eHg4MDysrK8MILL2Dq1KkA0CJ+Dtzc3KDX6/Hcc8+hR48e8PPzw+eff47k5GR07ty5RXwGlmrrPefk5CAkJMTqHPKxtm3bVvvaGMKasG7duuHQoUMwGAzYuHEjZsyYgR9++KGhL6veZGZm4qGHHkJCQoLVv/paEvlf+QDQp08fREZGomPHjli/fj2cnZ0b8Mrqj9FoRP/+/fHiiy8CAPr164e0tDS88847mDFjRgNfXf17//33MXr0aAQEBDT0pdSr9evX49NPP8Vnn32Gnj174tChQ4iPj0dAQECL+jn4+OOPcffdd6N9+/ZwcHBAeHg4pkyZgtTU1Ia+NLLA5cgmzNHREZ07d0ZERASWLl2Kvn37YsWKFWjXrh2Ki4uRn5+vGn/+/Hm0a9cOANCuXTurO6Pk7+UxjV1qaiouXLiA8PBwtGrVCq1atcIPP/yAN954A61atYKfn1+L+BwseXh4oGvXrjh16lSL+Vnw9/dHWFiY6rEePXooy7Ly+7D1Ps0/hwsXLqiOl5aWIi8vr8l8DgBw5swZJCYmYvbs2cpjLeXnYOHChVi8eDHuuOMO9O7dG9OnT8f8+fOxdOlSAC3n5yA0NBQ//PADrly5gszMTPz8888oKSlBp06dWsxnYK623nNd/H+EIawZMRqNKCoqQkREBLRaLXbt2qUcO378OM6ePQu9Xg8A0Ov1+O2331Q/dAkJCXB3d7f6ZdZY3X777fjtt99w6NAh5at///6YOnWq8ueW8DlYunLlCtLT0+Hv799ifhYGDx6M48ePqx47ceIEOnbsCAAICQlBu3btVJ9DQUEBUlJSVJ9Dfn6+arbgu+++g9FoRGRkZD28i9rx4YcfwtfXF2PGjFEeayk/B9euXYNGo/615uDgAKPRCKBl/RwAgKurK/z9/XH58mV8++23+Mc//tHiPgOg9v531+v1+PHHH1FSUqKMSUhIQLdu3Wq0FAmALSqaqsWLF4sffvhBZGRkiMOHD4vFixcLSZLEzp07hRCm29E7dOggvvvuO/HLL78IvV4v9Hq98nz5dvSRI0eKQ4cOiR07dggfH58mdTu6LeZ3RwrRMj6Hhx9+WHz//fciIyND7Nu3T0RFRQlvb29x4cIFIUTL+Ax+/vln0apVK/HCCy+IkydPik8//VS4uLiITz75RBnz0ksvCQ8PD/HVV1+Jw4cPi3/84x82b1Hv16+fSElJEXv37hVdunRp1LflWyorKxMdOnQQjz76qNWxlvBzMGPGDNG+fXulRcXmzZuFt7e3WLRokTKmJfwc7NixQ3zzzTfijz/+EDt37hR9+/YVkZGRori4WAjRPD+DwsJCcfDgQXHw4EEBQPznP/8RBw8eFGfOnBFC1M57zs/PF35+fmL69OkiLS1NrF27Vri4uLBFRUt09913i44dOwpHR0fh4+Mjbr/9diWACSHE9evXxf/93/+Jtm3bChcXF/H//t//E9nZ2apznD59WowePVo4OzsLb29v8fDDD4uSkpL6fiu1yjKEtYTPIS4uTvj7+wtHR0fRvn17ERcXp+qP1RI+AyGE2Lp1q+jVq5dwcnIS3bt3F++9957quNFoFE8++aTw8/MTTk5O4vbbbxfHjx9XjcnNzRVTpkwRbdq0Ee7u7uKuu+4ShYWF9fk2bsq3334rAFi9LyFaxs9BQUGBeOihh0SHDh1E69atRadOncTjjz+uainQEn4O1q1bJzp16iQcHR1Fu3btxNy5c0V+fr5yvDl+Brt37xYArL5mzJghhKi99/zrr7+KIUOGCCcnJ9G+fXvx0ksv3dR1S0KYtRImIiIionrBmjAiIiKiBsAQRkRERNQAGMKIiIiIGgBDGBEREVEDYAgjIiIiagAMYUREREQNgCGMiIiIqAEwhBERERE1AIYwImpWbr31VsTHxzf0ZdS5JUuW4JZbbmnoyyCim8AQRkTUiBQXF9fr6wkhUFpaWq+vSUQmDGFE1GzMnDkTP/zwA1asWAFJkiBJEk6fPo20tDSMHj0abdq0gZ+fH6ZPn45Lly4pz7v11lvxwAMPID4+Hm3btoWfnx/+97//4erVq7jrrrvg5uaGzp0745tvvlGe8/3330OSJGzfvh19+vRB69atMXDgQKSlpamuae/evRg6dCicnZ0RFBSEBx98EFevXlWOBwcH47nnnsOdd94Jd3d3zJkzBwDw6KOPomvXrnBxcUGnTp3w5JNPoqSkBACwevVqPPPMM/j111+V97l69WqcPn0akiTh0KFDyvnz8/MhSRK+//571XV/8803iIiIgJOTE/bu3Quj0YilS5ciJCQEzs7O6Nu3LzZu3Fjb/xMRkRmGMCJqNlasWAG9Xo977rkH2dnZyM7OhpubG2677Tb069cPv/zyC3bs2IHz589j8uTJqueuWbMG3t7e+Pnnn/HAAw/g/vvvxz//+U8MGjQIBw4cwMiRIzF9+nRcu3ZN9byFCxfitddew/79++Hj44Nx48YpYSk9PR2jRo3CxIkTcfjwYaxbtw579+7FvHnzVOd49dVX0bdvXxw8eBBPPvkkAMDNzQ2rV6/GkSNHsGLFCvzvf//D66+/DgCIi4vDww8/jJ49eyrvMy4urlqf1eLFi/HSSy/h6NGj6NOnD5YuXYqPPvoI77zzDn7//XfMnz8f06ZNww8//FCt8xJRNdzU9t9ERI3M8OHDxUMPPaR8/9xzz4mRI0eqxmRmZgoA4vjx48pzhgwZohwvLS0Vrq6uYvr06cpj2dnZAoBITk4WQgixe/duAUCsXbtWGZObmyucnZ3FunXrhBBCzJo1S8yZM0f12nv27BEajUZcv35dCCFEx44dxYQJEyp9X6+88oqIiIhQvn/66adF3759VWMyMjIEAHHw4EHlscuXLwsAYvfu3arr/vLLL5UxN27cEC4uLiIpKUl1vlmzZokpU6ZUem1EVDOtGjIAEhHVtV9//RW7d+9GmzZtrI6lp6eja9euAIA+ffoojzs4OMDLywu9e/dWHvPz8wMAXLhwQXUOvV6v/NnT0xPdunXD0aNHldc+fPgwPv30U2WMEAJGoxEZGRno0aMHAKB///5W17Zu3Tq88cYbSE9Px5UrV1BaWgp3d/dqv397zF/z1KlTuHbtGqKjo1VjiouL0a9fv1p7TSJSYwgjombtypUrGDduHF5++WWrY/7+/sqftVqt6pgkSarHJEkCABiNxmq99r333osHH3zQ6liHDh2UP7u6uqqOJScnY+rUqXjmmWcQExMDnU6HtWvX4rXXXqvw9TQaU4WJEEJ5TF4atWT+mleuXAEAbN++He3bt1eNc3JyqvA1iajmGMKIqFlxdHREWVmZ8n14eDg2bdqE4OBgtGpV+3/l/fTTT0qgunz5Mk6cOKHMcIWHh+PIkSPo3Llztc6ZlJSEjh074vHHH1ceO3PmjGqM5fsEAB8fHwBAdna2MoNlXqRvT1hYGJycnHD27FkMHz68WtdKRDXHwnwialaCg4ORkpKC06dP49KlS5g7dy7y8vIwZcoU7N+/H+np6fj2229x1113WYWYmnj22Wexa9cupKWlYebMmfD29saECRMAmO5wTEpKwrx583Do0CGcPHkSX331lVVhvqUuXbrg7NmzWLt2LdLT0/HGG2/giy++sHqfGRkZOHToEC5duoSioiI4Oztj4MCBSsH9Dz/8gCeeeKLS9+Dm5oZHHnkE8+fPx5o1a5Ceno4DBw7gzTffxJo1a2r82RBRxRjCiKhZeeSRR+Dg4ICwsDD4+PiguLgY+/btQ1lZGUaOHInevXsjPj4eHh4eyvLdzXjppZfw0EMPISIiAjk5Odi6dSscHR0BmOrMfvjhB5w4cQJDhw5Fv3798NRTTyEgIKDCc44fPx7z58/HvHnzcMsttyApKUm5a1I2ceJEjBo1CiNGjICPjw8+//xzAMAHH3yA0tJSREREID4+Hs8//3yV3sdzzz2HJ598EkuXLkWPHj0watQobN++HSEhITX4VIioKiRhXjxARERV8v3332PEiBG4fPkyPDw8GvpyiKgJ4kwYERERUQNgCCMiIiJqAFyOJCIiImoAnAkjIiIiagAMYUREREQNgCGMiIiIqAEwhBERERE1AIYwIiIiogbAEEZERETUABjCiIiIiBoAQxgRERFRA2AIIyIiImoA/x8XV8X3Pvc5BQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACH+klEQVR4nO2deXxTVd7/P+nK1qbQUtraQkthdJBFqYiFERCKwE9weECpC8oOOqAiDigP48K4IKCI4LgwIjgqCgJuODoURUelMooi4iADPEXAlqWBBqRCS3N/f2RuSNK7r+fefN+vFy9tcpOcnJx7zud8t+PhOI4DQRAEQRBEDBBndwMIgiAIgiCsgoQPQRAEQRAxAwkfgiAIgiBiBhI+BEEQBEHEDCR8CIIgCIKIGUj4EARBEAQRM5DwIQiCIAgiZiDhQxAEQRBEzEDChyAIgiCImIGED0EQBIOsXLkSHo8H+/fvt7spBOEqSPgQRIzy1VdfYdq0abj44ovRvHlztG3bFqNGjcJ//vOfRtf269cPHo8HHo8HcXFxSE1NxYUXXohbbrkFZWVlqj73vffeQ9++fZGZmYlmzZqhffv2GDVqFD788EOjvlojHnvsMbz99tuNHt+yZQseeugh1NTUmPbZ0Tz00EOhvvR4PGjWrBk6deqEP/3pTzh58qQhn7Fq1SosXrzYkPciCLdBwocgYpT58+dj3bp1GDBgAJ5++mlMnjwZ//znP9G9e3fs3Lmz0fW5ubl45ZVX8Le//Q0LFy7Etddeiy1btuDqq69GaWkp6uvrZT/ziSeewLXXXguPx4PZs2fjqaeewsiRI7Fnzx688cYbZnxNANLCZ+7cuZYKH57nnnsOr7zyChYtWoSLLroIjz76KAYPHgwjjk8k4UMQ4iTY3QCCIOxhxowZWLVqFZKSkkKPlZaWokuXLnj88cfx6quvRlzv9XoxevToiMcef/xx3HnnnXj22WeRn5+P+fPni37euXPn8PDDD2PgwIHYuHFjo+ePHj2q8xuxQ21tLZo1ayZ5zXXXXYeMjAwAwG233YaRI0di/fr1+PLLL1FcXGxFMwkiJiGLD0HEKL169YoQPQDQsWNHXHzxxdi1a5ei94iPj8eSJUvQqVMnPPPMM/D7/aLXVldX4+TJk+jdu7fg85mZmRF/nzlzBg899BB+85vfoEmTJsjOzsaIESOwb9++0DVPPPEEevXqhfT0dDRt2hRFRUVYu3ZtxPt4PB6cPn0aL7/8csi9NHbsWDz00EOYOXMmAKCgoCD0XHhMzauvvoqioiI0bdoUrVq1wg033ICDBw9GvH+/fv3QuXNnbNu2DX369EGzZs3wv//7v4r6L5z+/fsDACoqKiSve/bZZ3HxxRcjOTkZOTk5mDp1aoTFql+/fnj//ffx008/hb5Tfn6+6vYQhFshiw9BECE4jsORI0dw8cUXK35NfHw8brzxRtx///34/PPPcc011whel5mZiaZNm+K9997DHXfcgVatWom+Z0NDA4YOHYqPPvoIN9xwA+666y6cOnUKZWVl2LlzJwoLCwEATz/9NK699lrcfPPNqKurwxtvvIHrr78eGzZsCLXjlVdewcSJE3H55Zdj8uTJAIDCwkI0b94c//nPf/D666/jqaeeCllfWrduDQB49NFHcf/992PUqFGYOHEijh07hqVLl6JPnz749ttvkZaWFmqvz+fDkCFDcMMNN2D06NFo06aN4v7j4QVdenq66DUPPfQQ5s6di5KSEtx+++3YvXs3nnvuOXz11Vf44osvkJiYiDlz5sDv9+PQoUN46qmnAAAtWrRQ3R6CcC0cQRDEf3nllVc4ANzy5csjHu/bty938cUXi77urbfe4gBwTz/9tOT7P/DAAxwArnnz5tyQIUO4Rx99lNu2bVuj61566SUOALdo0aJGzwUCgdD/19bWRjxXV1fHde7cmevfv3/E482bN+fGjBnT6L0WLlzIAeAqKioiHt+/fz8XHx/PPfrooxGPf//991xCQkLE43379uUAcM8//7zo9w7nwQcf5ABwu3fv5o4dO8ZVVFRwL7zwApecnMy1adOGO336NMdxHLdixYqIth09epRLSkrirr76aq6hoSH0fs888wwHgHvppZdCj11zzTVcu3btFLWHIGINcnURBAEA+PHHHzF16lQUFxdjzJgxql7LWxROnToled3cuXOxatUqXHrppfjHP/6BOXPmoKioCN27d49wr61btw4ZGRm44447Gr2Hx+MJ/X/Tpk1D/3/ixAn4/X5ceeWV+Oabb1S1P5r169cjEAhg1KhRqK6uDv3LyspCx44dsXnz5ojrk5OTMW7cOFWfceGFF6J169YoKCjAlClT0KFDB7z//vuisUGbNm1CXV0dpk+fjri481P3pEmTkJqaivfff1/9FyWIGIRcXQRB4PDhw7jmmmvg9Xqxdu1axMfHq3r9L7/8AgBISUmRvfbGG2/EjTfeiJMnT2Lr1q1YuXIlVq1ahWHDhmHnzp1o0qQJ9u3bhwsvvBAJCdJT1IYNG/DII49g+/btOHv2bOjxcHGkhT179oDjOHTs2FHw+cTExIi/L7jggkbxUnKsW7cOqampSExMRG5ubsh9J8ZPP/0EICiYwklKSkL79u1DzxMEIQ0JH4KIcfx+P4YMGYKamhp89tlnyMnJUf0efPp7hw4dFL8mNTUVAwcOxMCBA5GYmIiXX34ZW7duRd++fRW9/rPPPsO1116LPn364Nlnn0V2djYSExOxYsUKrFq1SvV3CCcQCMDj8eCDDz4QFIHRMTPhliel9OnTJxRXRBCEdZDwIYgY5syZMxg2bBj+85//YNOmTejUqZPq92hoaMCqVavQrFkz/O53v9PUjssuuwwvv/wyqqqqAASDj7du3Yr6+vpG1hWedevWoUmTJvjHP/6B5OTk0OMrVqxodK2YBUjs8cLCQnAch4KCAvzmN79R+3VMoV27dgCA3bt3o3379qHH6+rqUFFRgZKSktBjei1eBOFmKMaHIGKUhoYGlJaWory8HG+++aam2jENDQ248847sWvXLtx5551ITU0Vvba2thbl5eWCz33wwQcAzrtxRo4cierqajzzzDONruX+W+AvPj4eHo8HDQ0Noef2798vWKiwefPmgkUKmzdvDgCNnhsxYgTi4+Mxd+7cRgUFOY6Dz+cT/pImUlJSgqSkJCxZsiSiTcuXL4ff74/IpmvevLlkaQGCiGXI4kMQMco999yDd999F8OGDcPx48cbFSyMLlbo9/tD19TW1mLv3r1Yv3499u3bhxtuuAEPP/yw5OfV1taiV69euOKKKzB48GDk5eWhpqYGb7/9Nj777DMMHz4cl156KQDg1ltvxd/+9jfMmDED//rXv3DllVfi9OnT2LRpE/7whz/g97//Pa655hosWrQIgwcPxk033YSjR4/iL3/5Czp06IAdO3ZEfHZRURE2bdqERYsWIScnBwUFBejZsyeKiooAAHPmzMENN9yAxMREDBs2DIWFhXjkkUcwe/Zs7N+/H8OHD0dKSgoqKirw1ltvYfLkyfjjH/+oq//V0rp1a8yePRtz587F4MGDce2112L37t149tln0aNHj4jfq6ioCKtXr8aMGTPQo0cPtGjRAsOGDbO0vQTBLHamlBEEYR98GrbYP6lrW7RowXXs2JEbPXo0t3HjRkWfV19fz/31r3/lhg8fzrVr145LTk7mmjVrxl166aXcwoULubNnz0ZcX1tby82ZM4crKCjgEhMTuaysLO66667j9u3bF7pm+fLlXMeOHbnk5GTuoosu4lasWBFKFw/nxx9/5Pr06cM1bdqUAxCR2v7www9zF1xwARcXF9cotX3dunXc7373O6558+Zc8+bNuYsuuoibOnUqt3v37oi+kUr1j4Zv37FjxySvi05n53nmmWe4iy66iEtMTOTatGnD3X777dyJEycirvnll1+4m266iUtLS+MAUGo7QYTh4TgDDoYhCIIgCIJwABTjQxAEQRBEzEDChyAIgiCImIGED0EQBEEQMQMJH4IgCIIgYgYSPgRBEARBxAwkfAiCIAiCiBmogGEUgUAAlZWVSElJobLvBEEQBOEQOI7DqVOnkJOTg7g4cbsOCZ8oKisrkZeXZ3czCIIgCILQwMGDB5Gbmyv6PAmfKFJSUgAEO07q3CGCIAiCINjh5MmTyMvLC63jYpDwiYJ3b6WmppLwIQiCIAiHIRemQsHNBEEQBEHEDCR8CIIgCIKIGUj4EARBEAQRM1CMD0EQBEEYQENDA+rr6+1uhmtJTExEfHy87vch4UMQBEEQOuA4DocPH0ZNTY3dTXE9aWlpyMrK0lVnj4QPQRAEQeiAFz2ZmZlo1qwZFb81AY7jUFtbi6NHjwIAsrOzNb8XCR+CIAiC0EhDQ0NI9KSnp9vdHFfTtGlTAMDRo0eRmZmp2e1Fwc0EQRAEoRE+pqdZs2Y2tyQ24PtZTywVCR+CIAiC0Am5t6zBiH4m4UMQBEEQRMxAwocgCIIgiJiBhI8D8Pl8qKqqQlVVFbZtO4K1a33Ytu1I6DGfz2d3EwmCIAiHMXbsWHg8Hng8HiQmJqJNmzYYOHAgXnrpJQQCAcXvs3LlSqSlpZnXUIOhrC7G8fl8eOaZZwAA33xzKd57byg4Lg4eTwDDhm1A9+7fAgCmTZtGGQUEQRAOw+fzoa6uTvT5pKQkU+f2wYMHY8WKFWhoaMCRI0fw4Ycf4q677sLatWvx7rvvIiHBfTLBfd/IZfA3hN+fEhI9AMBxcXjvvaEoLNwLr/eU5I1DEARBsEf4xlYKMze2ycnJyMrKAgBccMEF6N69O6644goMGDAAK1euxMSJE7Fo0SKsWLEC//d//4dWrVph2LBhWLBgAVq0aIFPPvkE48aNA3A+8PjBBx/EQw89hFdeeQVPP/00du/ejebNm6N///5YvHgxMjMzTfkuSiFXl0M4fjw9JHp4OC4Ox4+3sqlFBEEQhB6Ublit3tj2798f3bp1w/r16wEAcXFxWLJkCX744Qe8/PLL+PjjjzFr1iwAQK9evbB48WKkpqaGwi/++Mc/AgimnD/88MP47rvv8Pbbb2P//v0YO3aspd9FCMcIn3nz5qFHjx5ISUlBZmYmhg8fjt27d0dcc+bMGUydOhXp6elo0aIFRo4ciSNHjtjUYmNp1coHjyfS5+rxBNCq1XGbWkQQBEG4lYsuugj79+8HAEyfPh1XXXUV8vPz0b9/fzzyyCNYs2YNgKArzuv1wuPxICsrC1lZWWjRogUAYPz48RgyZAjat2+PK664AkuWLMEHH3yAX375xa6vBcBBwufTTz/F1KlT8eWXX6KsrAz19fW4+uqrcfr06dA1d999N9577z28+eab+PTTT1FZWYkRI0bY2Grj8HpPYdiwDSHxw8f4eL2nbG4ZQRAE4TY4jgu5rjZt2oQBAwbgggsuQEpKCm655Rb4fD7U1tZKvse2bdswbNgwtG3bFikpKejbty8A4MCBA6a3XwrHxPh8+OGHEX+vXLkSmZmZ2LZtG/r06QO/34/ly5dj1apV6N+/PwBgxYoV+O1vf4svv/wSV1xxhR3NNpTu3b9FYeFeHD/eCq1aHSfRQxAEQZjCrl27UFBQgP3792Po0KG4/fbb8eijj6JVq1b4/PPPMWHCBNTV1YlWrD59+jQGDRqEQYMG4bXXXkPr1q1x4MABDBo0yPaYVMcIn2j8fj8AoFWrYIzLtm3bUF9fj5KSktA1F110Edq2bYvy8nJR4XP27FmcPXs29PfJkydNbLV+vN5TJHgIgiAI0/j444/x/fff4+6778a2bdsQCATw5JNPIi4u6CTi3Vw8SUlJaGhoiHjsxx9/hM/nw+OPP468vDwAwNdff23NF5DBkcInEAhg+vTp6N27Nzp37gwgeDpuUlJSo1oCbdq0weHDh0Xfa968eZg7d66ZzXUc4emVlZVxqKhIQEHBOeTkBN1sRqZXHjoE7NkDdOwI5OYa8pYEQRCEQs6ePYvDhw9HpLPPmzcPQ4cOxa233oqdO3eivr4eS5cuxbBhw/DFF1/g+eefj3iP/Px8/PLLL/joo4/QrVs3NGvWDG3btkVSUhKWLl2K2267DTt37sTDDz9s07eMxDExPuFMnToVO3fuxBtvvKH7vWbPng2/3x/6d/DgQQNaaBxJSUmGXicHn165bNky3HbbV+jRozWuvz4dl13WGmPGfI9ly5bhmWeewb59+3R/1vLlQLt2QP/+wf8uX27AFyAIgiAU8+GHHyI7Oxv5+fkYPHgwNm/ejCVLluCdd95BfHw8unXrhkWLFmH+/Pno3LkzXnvtNcybNy/iPXr16oXbbrsNpaWlaN26NRYsWIDWrVtj5cqVePPNN9GpUyc8/vjjeOKJJ2z6lpF4OI7j7G6EGqZNm4Z33nkH//znP1FQUBB6/OOPP8aAAQNw4sSJCKtPu3btMH36dNx9992K3v/kyZPwer3w+/1ITU01uvmasLLAVVVVFZYtWwa/PwWLF0+PSqHnMHBgGXr3LgegvbaEz+fD/v3ncPnlmQgEzh84Fx/PYevWo8jPT6BijARBOIIzZ86goqICBQUFaNKkiarXslDHx2lI9bfS9dsxri6O43DHHXfgrbfewieffBIhegCgqKgIiYmJ+OijjzBy5EgAwO7du3HgwAEUFxfb0WTDUDPgjRJJQnWDAA82bSpB5847NRdN5G/0iop8BAJjIp5raPBg6dIPUFDwE93oBEG4nvT0dEybNs3Wys2xiGOEz9SpU7Fq1Sq88847SElJCcXteL1eNG3aFF6vFxMmTMCMGTPQqlUrpKam4o477kBxcbErMrqUYOTuoVUrH4AAor2hfNFErQHW/A3O1yUKF1fhdYnsjvonCIKwAhI11uOYGJ/nnnsOfr8f/fr1Q3Z2dujf6tWrQ9c89dRTGDp0KEaOHIk+ffogKysrVHkyFjCyCqjXewoDB24CEOkJNapoItUlIgiCIOzAMRYfJaFITZo0wV/+8hf85S9/saBF9hPt1qquro543u9PwfHj6WjVyqdJUPCxPJs2lUQcjGqUOKG6RARBEITVOEb4EJHIubWkTnJXQ+/e5ejceadp4oTqEhEEQRBW4hhXFxGJlLtK7CR3vz9F02d5vadQUPATCRSCIAjC8ZDwcSF6TnI3qh4QQRAEQbAIubpcQng8j1zGlBTp6ekYPXo0Xn31Vdlr3SCSrKxSTRAEQdgPCR8XIBTPM2zYhkaPKXVVFRYWmlZbQqlYqq2tRVVVleGfH054nJRUTJSS9H8SUARBEM6AhA/jiBUk5DO4xOJ5pk9fjOnTFwsGJfPiw8qK0DxKCnbV1tZGWJzEstP0Fjnk2yDWh4WFexUVajRSQBEEQbiFTz75BFdddVWjExWkyM/Px/Tp0zF9+nTT2kXCh2GUFCSUiucpKPgJ48YNREZGRug5XszYWSpd7v3CLT1SQsKoIodSfajESmaUgCIIgrCSsWPH4uWXX8aUKVMaHTw6depUPPvssxgzZgxWrlxpTwNNgoKbGUbJQsnH84QTHs+TkZERUfCRFx1GFjs0C6Oz08SQ68Pq6mr4fD7B1/p8vpD1TU9QOUEQhB3k5eXhjTfewK+//hp67MyZM1i1ahXatm1rY8vMg4SPw5GrgKw0psbvT0FFRb6kqPD5fKiqqhL9JyYOtGKVkBDqw+Li8tDz69evxzPPPNPo+/FWM746uJyAIgiCYI3u3bsjLy8v4pSD9evXo23btrj00ktDj509exZ33nknMjMz0aRJE/zud7/DV199FfFef//73/Gb3/wGTZs2xVVXXYX9+/c3+rzPP/8cV155JZo2bYq8vDzceeedOH36tGnfTwhydTkIsVgXvgLyJZdch4svTkZOTg8APRTH6CgpdmiHa0xPdppa+D7curUntmwpxpYtvVFeXizpWhOyhhUXl6O8vNiUStcEQbibQ4eAPXuAjh2B3FzrPnf8+PFYsWIFbr75ZgDASy+9hHHjxuGTTz4JXTNr1iysW7cOL7/8Mtq1a4cFCxZg0KBB2Lt3L1q1aoWDBw9ixIgRmDp1KiZPnoyvv/4a99xzT8Tn7Nu3D4MHD8YjjzyCl156CceOHcO0adMwbdo0rFixwrLvS8LHIciJk+DZWonIzm6j6n3l4lJ47HCN8ZYYrdlpWigvLwZvCBXrCz4oPPyIkPDfBwigV68v0LPnVhI9BEEoYvlyYPJkIBAA4uKAZcuACROs+ezRo0dj9uzZ+OmnnwAAX3zxBd54442Q8Dl9+jSee+45rFy5EkOGDAEA/PWvf0VZWRmWL1+OmTNn4rnnnkNhYSGefPJJAMCFF16I77//HvPnzw99zrx583DzzTeHApc7duyIJUuWoG/fvnjuuefQpEkTS74vCR8HoFScaEFrYK/ec8CUYuV5Xkr6QsjyFf37AHEoLy9Gz55bTWsrQRDu4dCh86IHCP53yhRg0CBrLD+tW7fGNddcg5UrV4LjOFxzzTURSTH79u1DfX09evfuHXosMTERl19+OXbt2gUA2LVrF3r27BnxvsXFxRF/f/fdd9ixYwdee+210GMcxyEQCKCiogK//e1vzfh6jSDh4wDEFuSDB3Ph9e7S9d5a3ElGnQOmFDPO8/L5fPD7/RGPyfWF3+9HfX19o/fSmxUWi1DdI4I4z54950UPT0MDsHevdS6v8ePHY9q0aQBg2kHfv/zyC6ZMmYI777yz0XNWBlKT8HEAQgsyAKxdex3q6s6Ljj179qC6uhrNmjVDYWGhovdW604y0/rEozQgW2vlaLF4Jbm+WL16daPX+P0pOH26GYAAwnMFhMSjGypdGwHVPSKISDp2DLq3wsVPfDzQoYN1bRg8eDDq6urg8XgwaNCgiOcKCwuRlJSEL774Au3atQMA1NfX46uvvgq5rX7729/i3XffjXjdl19+GfF39+7d8e9//xsdrPxiApDwYRh+oYxekM8TKTo2b94cemb06NGS4id8EZZyJ0Uv1lZYN5QUOdRjEZB6XzWutci4Hg68+IkWTCNGjEBOTg4t4v+F6h4RRCS5ucGYnilTgpae+HjghResDXCOj48Pua3i4+MjnmvevDluv/12zJw5E61atULbtm2xYMEC1NbWYsJ/A5Fuu+02PPnkk5g5cyYmTpyIbdu2Nar/c++99+KKK67AtGnTMHHiRDRv3hz//ve/UVZWpih5xihI+DAMLwAqKysBrEdS0lmsXXt9xDVioqO2tlbRe6sVF1ZlWlkpEqLjlZS41g4dysa77w7FeSuPBx4Ph5Ej1yAv71DE6zMyMkj0CEAuQoI4z4QJwZievXuDlh4rRQ9Pamqq6HOPP/44AoEAbrnlFpw6dQqXXXYZ/vGPf6Bly5YAgq6qdevW4e6778bSpUtx+eWX47HHHsP48eND79G1a1d8+umnmDNnDq688kpwHIfCwkKUlpaa/t3CIeHDOOnp6SFxkpd3UJfoMOKICjsyrcxES7wS/5roMlgcF4fmzWsb9QW5uM4TXvDRynIFBOEEcnOtFTxyFZnffvvt0P83adIES5YswZIlS0SvHzp0KIYOHRrx2Lhx4yL+7tGjBzZu3Cj6HkK1f4yGhI8DEHN5eTwB/O53n+GHHy5G27Y/ITdX/FBPvXV4tLrGWEbO1TJixIhQZkNNTQ3WrFkjkMF1nvBFm3+tm4N0pYR0TU0NPB4PvF5v6DG/3x8RJ+U2EU0QhDMg4eMAwt1Se/bsQWFh8PDRf/2rBz77rA8ADwAO3bp9h//5n3cE30NvHR6z427sQM7Vwh/3IfeaIJGLttBr3YRSIS2F35+Cli1PYMKEF1Ffn2R6uQKCIAiAhI9j4AVFdXU1vN5TOHWqBXbt6oSg6AEAD777rht69PiXpOWHR0sdHieJGiVocbWIvWbChBcj+t1Jli8t6A08FnIxFhT8ZFDrCIIgxCHh41AOHGiH86KHx4ODB9vKCh+r6/CwihZXi9hr+D6P1QwuKSEd/ZwVJRHUYETsG0EQzoGEj0Np2/YnBFOow8UPh7y8A5KvY23RMRuhRS28cKFUvFL4dUpfE4uiR0pICz3XsuUJRdlcVljN7DiDjnAnHMfZ3YSYwIh+JuHjMJo1awYAyM2tQrdu3+G777ohPMaHtzzw10UTSynEShe1SZOGIC0tDcD5IGZAuGCh0Gt47LYMKLVc+Hw+HDt2TLAKNQAkJCQgMzNT0XeREtIABJ+bMOFFSRejlVYzO86gI9xFYmIigGAJkaZNm9rcGvfDl2rh+10LJHwcRmFhIUaPHo3a2lqMGAF8//1ebN/eHJdcchpdusQDGCFZuVkurqWiokL0s7Us7HrdCGpeH31t+CGiUqSlpakORNbyGjNRKvJGjx6NV199VdF7KrFySAlpwCP4XH19kqSL0c66R1adQccK5ObTT3x8PNLS0nD06FEAwU2nxxMdhkDoheM41NbW4ujRo0hLS2tUZFENJHwcSLio6dIFuOkm5a+Vi2spKyuTfL0ak79eN4Ka1wOQvVbLouaUhVCpRUKusKXa95QT0mLPFRT8ZNnhs0phLfbNbFFCbj7jyMrKAoCQ+CHMIy0tLdTfWiHhEyMorcPDI7bgqzH5N46tUfeeel8fjp5ChXoXQrkFrLa2VtQ1CWhb4JQKNr8/BQcP5gEIFshUK0DkhLTUc2IVsu3IiGMp9o13RUq5Wnn0iBIj769Yx+PxIDs7G5mZmaIuZEI/iYmJuiw9PCR8YoT09HSUlpaGJlN+Yjt+PD3ib8Ccna/e91T7+vBJHBCONZFa1IxaCI2odwOoW+CU9tU331wadewGh2uvfU/R76JUSEs9N2rUKGbipFiJfVM7XrSKkvAK2gB71i4zsMKtFx8fb8jCTJgLCZ8YIryKrthEZ8bOV+97qn199HcrLi5XvagZtRAatVtW+j5K+8rvT4kSPQDgUfy7yBW0FKrcHA5rsSOsHJ8h1p9GulyjxRVL1i6zILceEQ4JnxhEaqJTsuCr3TnpFRFqXi/03crLi8GfnM6jtVCh3oVQbgHTu8Ap7augpa9xBWo1v4vUAsFS4DeP0LjlrR6sHp/h96dg69aeKC8vNswaE90HrFi7zIRVtx4Fl9sDCR8GsHrwS010cgt+9HlLYvABx4B+EaHm9WLfrVevLxotHloKFepZCOTcCUa4G5T2VdAFGCkGxa41ErsmeiU7ftbOoGvsijTHGpOYeJYJa5dVsOLWIyuUfZDwsRmzBn/0AlNTU4Njx44BkF4c5RZ8pYF74Z+tV0Soeb3Yd+vZcyt69twqu6iZdRirnDvBKHeDXF+dOHEidN21126IWFjNtnLYOdEr3cmPGzcwdDAtjx27bn486LXKyREuAviCqFrGgVMsFyy59Vi1QsUCJHxsxowCanILjNTiqPbgSKWuGSWZZFIofb3cwj98+GVo2bIodH10ESyzDmOVcyfodTcoFWybN29udN3Bg7kAgLy8Q6ZaOVgqFig2blk5XFb8MFzjrDHRIiBYCLXxuXNyOMlywapbjxUrVKxAwseFyO0kxMSNkoMjExLODxm5mzV64VSbvqz19UoX/nDCJ2UzJmc5F5Red2C0YKuursb69etlXxcUgi3/+9dvAQhXbjZjR29XjSQnLDJC4wEw1ionLK6CBSbDkRPALAlaOVgJYg+HJStUrEDChzGMXgyiJ/muXXdgx46ujcSN3M3HHyPAT15Kbla91hO1rxe6NloA2GVOlrNEGRFTJCU8xL53x44dZS0cZuzo9YgPPSLMKYtM9HgAAujVqxw9e241zConJwK0Hh3CctFPFoPYWbVCuRkSPgxh9E5UaJI/f7aXumwu/hiBqqqgCVzpzarXeqLm9XLXSvWv2PEWemMT1BSOlHq+pqZG9DOECiAaWaPF6FgEPeJDrwize5FRUsySR64GktLz1MSQEwFajg4x8x4zyuqo1+1uNCxaodwOCR9GMGMnKmzKjjxDRmk2VzRqrmch8FGuf6XcQnpiE5RYraQqN/NZdPzBqWoxelwZIc71iA+9bhUzFhk1h8MqPU/N6Ere0a/nsTKAX889plfw6nW7mwlrVigW5muzIeHDCGbsRIXjBIKZGzxKs7miUXo9K4GPSvrXLDeYlZNE9HcwclwZJaLkxIeUdSvaaiD2m9XU1Ai68IxeZNSMb6XjqFmzZqYGWNsVwC9FZWVlqD1Cn620744ePYpjx44JZp9effXV4DgOLVu2bFQxXOxzwzFTELBihWJlvjYbEj42w0/yShYDtZOh0CQvFOPD32RKdn9qd4uspGzK9a8TAl4B6fgJoe9QWLjXMAuHUSJKTnwotW5J/WZr1qyJmJzNsnLosUDZGQtjRwA/IP6do61Bcgur2PsoHTtayoMYLQhYtEKxMl+bDQkfm/F4gtYXucWAv06O6DN4hCb5/v0/Fpz0R4wY0aiGCRC5k9GzW7RTXMil8EtZMsL7004zr1T/iX2H6dMXG2bh0OsmUntQrhRKrE/hY9QsK4dQu5SIGacIbTWI3WMAUFGRj8rKbGzaVKLoO0v9Tkb0ndqF24zMNavGpFbcOEZ5SPjYTPhZRlKLgdiZR+GI7UqidxJiOwulGRxabkQWsmnE+lfOkqF2N2oGcv0n9R2MsnDodRMpmeijK4OLCQkt1iezfzOlCwUL94KRSAnaffs6YPHi6f/9rufd7Fq/s9q+M8uqZtT76hmTZrre3DZGoyHhwyTKrDvRaDU/lpaWonXr1rbH2JiBEnOymCUjMbEOFRX5TJh55fpPzhpjVEVivZYaNZ8nJSTE4tcqK3Ma1Z6yAjULhZ57gaXA0/C2lJaWhuJqTpw4gc2bN4sUSDwPx8Xh4MFcHD/+q2IBoabvvviiWLGFSQ0sWELMjsWxO/vRbEj4MIQZ6ezRhQuFdiler9f0ydKulE0pKwNf40csFmr58onMmHnl+k9JarLSGDGh407CsSIWQU5IeL2nUFKyCWVlA3F+QfVg06YSdO680/LJWc1CofVeYCnwVElbpKpPA8HvvHbtdQCU32NK++6LL4ojxoZRFgtWLCFmF410e4o9CR9GMDvtWCiomZ9ktAROq8XOlE21tT0SE+tCogfQ9lsYvTNX0n9GZIYoXVxLS0sj3K9WHqTLf6+cnCqIlWewWvioWSi03gssVUhW8hlSWaXBxwH+LDKl95iSvvP7U1BWVgIzxgarlhCjXXqspdgbDQkfRjA77ViscKHXe6pRBoxZsJKyySPmBquoyNf1Wxi5M1cbEKzXGqM0q8Pr9ZoqlpUICZZ2pUoWCqMzy1iqkCzUFqE+KSnZhJycSpw+3Rxr114f8R5S95ia++D48XQIHe5qxNhgaczxmOV6Y22+NhISPoxg5A2lpnChUAaMkbCYsskjdr6V3t/CyJRQvQUQAe3WGBaz8ABExF3ZvStVI2aMzOJhIc5ESVvE+sTvT1F1j6kJjBezNJWUbNI9NlgYc+EY7Slgeb42EhI+NsMPILkbSs1AU1O40GxYT9kU+lwjJzcjFigtfRPuaqurqwsdNcIj1+d2xTIozRAK70ujavJoQe34NmKcsxJnoqQt0SUyampqsGbNGk3znVLraPR7AwEMHLgJvXuXN7pWKWbVgeLR6ho32vWmdDwDaDSnKGkvK5DwsZnogfbAA8ewf38C8vPPISenB4AehsSDhMf4AADHAfv2dbBklyh3ynf4wszKDWOEmdeuBcoIV5vchGrW2WZiVji5vozOWjN7HNmZXcVSnImSM/7CXaLZ2dmGz3c8/Ng5duwYRoyox7Rpu3HwYDLy8s4iKysbwAgkJCRoOuPMzA2cnvvVDNeb3HdQ2t5Ro0ZpqpBtBSR8GCB8EGRnA0VF2t5HalcCAN991zXsaut3iSxlpQhhtJnXrgXKCFeb3ITKixGh99X7+2nZ2arJWtNL9Dg2qx/4zwoXgQBbcSZa2mLEfCclPL1eL5KSktCli7FziFlzktIwg/BjPfixYIfrTWl7papo233kBQkfFxG9KwkvBldRkY/ogD+rd4msl0M3elfHwgKl1dUmN6FKva8Zvx8LfckT/v3M7AdhgRWMb2IlzkTrwqvHYsb6BkovSo/14NHqejPKaikVZM/aHM9DwsdlRO6mslFaWioa8Kd04TDDrM9ScGY4Rk6UdgdC6nW1SQWmWu3Cs7svhTC7H+QE1vTpi22LbdIT86JXuLC+gdKD2nlR7JghwBrxKNVeVud4gISP6+FrrejZmRm9u2IpONNs7EwJVeNq48Wt3++PeFzI3WeXC8+oOkVGiXir+kHqHLaCgp8iFj+r4if0WEeNFC4sL65qkZoXAQj2kVYXrxG/gVx7WZ7jSfi4HL3ZCGbsrlgKzjQDVlJClVr5lIrbgQMHoqyszFK3k5F9aXRsjlX9wFJ8UzhGCCw9wkXvBoql4z8A8d9569aeKC8vNk3caf0NpMYl4GF6jifh43Ksqh2iJsuHpXgNM2AlhV+plU+puE1JSVH1vkZgZF9qic0RWhytDix16/2iV7joPfOMtTghsd95y5ZiqK1wrRQ9v4HcuGR5zJLwiQGsqB0iFngHNJ48WIzXMBpWgirVuoeU7v6sdOEZ3ZdKJ3tpC1HwMSv6wa33i17Lrx5ByGKckNDvXFxcji1bekdcZ6TlRM9vIDcuWR6zJHxMhDVTqh6U3CBqJg83l0O3G63uIbW7P7H3ZR2lk71SC5EV/eDG+0WvJcsoQWh3nJBcGRLezcVjpOVEy2+gNHyC5TFLwsckWDSl6kHuBlEyebAS++J2tLqH5ARBYmKios9n/fdTO9lrdQfI9YPcxkhJoLmTMUK46F1cWUi0ELpf+cKdgHLLiZaNtpbfQGp+CS+hwr8/i3M8CR+TYOkkZSOQukGUTh6sxL7EAlr6UE4QeL1eV/x+aid7qaDTq6/eBKBxWrFcPygNtFaC3YuIHrQIF6UbqJqaGtnfgZVEi+g2qk1K0bPR1vIbiPVpdGVuIViYI0j42Ex4UDALA0IKsRtEzeTB8veLdeQEQXV1daOaIayPWTHUTPbCZ98BW7YUo2fPrZoyq5S60cTK/vM4sf/1Wn7Dj6YIty5Ei0e+crCUVZ3VwHG1m0S1MUtmWt+dMB5J+FiE0mqcrLm+lNwgrBVHJLQjJQhWrCgz7WgGO5CyFACR2VtCQaaAfsuAnLU0LS3NllR1M1GyqNfW1goersuTlJQUqlEGaK+grcT6Z9ccpfU9lYQdxLr1nYSPBagJngs/j4WFgSd1g/B+aJaKIxLqUSJu9aR/R3+WXb+l0t1r+BlD/IalU6cfItKKAWMsA6y4WqxGzg24bNmy0N9im8bS0tLQ82ZUKA++t1/SqsQzevRoNGvWTPQzrBr3avoiludUEj4mo/amZNECpOTztfiJWUwpjUXExK3Sk9F5rDy8UwtKdrnhC1202OvWbQd27OhqaHouq64WO1HqBqyvrwegTTwqdfVwHKeoLa+++mroOjvHfawKabWQ8DEZsYF48GAujh//VTaYMdwCFA4L1iAj/cR2p5TGOkYEgFp1eKce9ByrsmNHV0yY8CLq65MMS891a40eI1AquLWeEK/E1XP+wGdlbZEa92JzOf9ZRsznRgpplq23eiHhYzLCgZEBrFt3XcTNEbSWKD+RF7BmByE3+I0w8bKQUkqIY1X6N0uIib36+iQUFPwk+3o1qeos1zuxE6WCW6t4VDJ38jFGSuuYKSnyaqZFyCghzbr1Vi+uFD5/+ctfsHDhQhw+fBjdunXD0qVLcfnll1vaBt7KET0QgQCC55h4AARvjnffHQqPB6LWDrtcQFbF4JB5lm2MSv920u+pVuyFWzW1pKqrrdETLqwqK+NQUZGAgoJzyMkJhNrjxAUpHDW/gdniUUlblIx7KyyhRvSFE6y3enCd8Fm9ejVmzJiB559/Hj179sTixYsxaNAg7N69G5mZmZa1I9qUOm3abrz22lacPt0ca9deH3V1HHhXcvQuwU4XkFUxOBTnwD5607+d9nvKiT2pE9GVLhpKEHIThwsrNanwThNDagW3mQUelbRFbtybaQmtra1t1F4j0tPdYL0VwnXCZ9GiRZg0aRLGjRsHAHj++efx/vvv46WXXsJ9991naVuiJ5mCgp/g96cI1gQJh98lAGBm0JkpwJTUjwnHaRO4W1C6sLglbkVK7Cmp2yO3aGit0aMk7gQA5s//l+NdE1K/QUKCsuXLqAKPcuJfbtwbZQmNdqOqyTxT+9u7wXorhKuET11dHbZt24bZs2eHHouLi0NJSQnKy8sFX3P27FmcPXs29PfJkydNaZuc6yv4Lwi/S2Bl0Jml+pXGOQjFOTltAnciShcMoevcEreix4ogd/+qrdHDL3jV1dXw+1Pwww8Xi1aU5s93it6kHD161HEuMrHfIC0tzfJaNHLjQWrcG2EJFXejpsh6CKRiMcVwg/VWCFcJn+rqajQ0NKBNmzYRj7dp0wY//vij4GvmzZuHuXPnmt42MddXq1bHsW9fB9FdAguDzgwB5vP5InYpgPCkQinu9qG3yJmZrgez0CP2opFbNKItmeHvHd2njd1b0//7vhzCN01AIOJQy+hNCl+jSGqBNHNToSQ2Sc1vYLZI02ItEhv3RlhCpdyoJSWbsGlTiaEbVLdYb6NxlfDRwuzZszFjxozQ3ydPnkReXp4pnxV+kyYlJWHLlmB2iNgugZVBZ4bqVxI/RCnu9qNmYTFSNNiFkRVt5e5fvkaSkmwZMfdWUPQExY/HE0D37tuwbVuPiHaozT4ya1OhNDZp2rRpzFQVVlplOryOjxRGWUKFfsOyshKEF9jkH9frIXCL9TYcVwmfjIwMxMfH48iRIxGPHzlyBFlZWYKvSU5ORnJyshXNi0BJRWSAjUFntgATmgQLC/dKTs6xHPfDan0Nt5TBN7J9UvevlmwZIesr4MGgQR8iEOAXv6hnNWQfmYHSmjh1dXVMHdOhZDxIjfvw+RwwxhIqPA7iTPMQONF6K4WrhE9SUhKKiorw0UcfYfjw4QCAQCCAjz76CNOmTbO3cQKI3VBmHiCnFbMEmNgkOHLkOsnJOVbjflg/5kPrZ/Jizu/3hyryhpOQkIC0tDRHCKdoxFy4WuLmxKyveXkHsHz5RETv+LVkH5kNK7GLRiI1Js2whIr9hr/73Wf47LMrwYsgrRtUN1hvpXCV8AGAGTNmYMyYMbjssstw+eWXY/HixTh9+nQoy4slpHbupaWl4DhONOvDDv+2GQJMbBIEONWTcyzE/ZhZYsAuS5KYmHNS0bTwvuMPOZVC6+IvZn2tr08WzBQdOXItOnfepeg9rBIddgsvqzHDEir0G3btugOff35e9JSUbNIcGuAW660YrhM+paWlOHbsGB544AEcPnwYl1xyCT788MNGAc9244TKmFYMfvEd7CHRyVlJQbhYwMgYKDstSUJiTioziTWBK3wv5wseqllfX4/169frWvyFrK9CZTL4+0jpe1iF3cLLDsyYw8N/w8TEOixfPjHCgrhpUwk6d96puV+dKmqU4DrhA5wPjmMZlitjWrnzl5oEhSZntwQ8C/VxuJuHd+2EE25Zk3OViGUM8e8T/fuxcmDsN99cinffHYpwl42YG4iVWCel97LX6w1dp3fxj7a+ank/O+M2WIhdVAor40wI/jesqMiXtSA61S1lBq4UPk6CtcqYduz8pSbB8MmZtb7SitI+FqK0tBSAvKtE6ow3QPr3k1q8wwWVkglfyaLBw/++0XEqQOR3q66uRk1NTSg1WwqjLVRC34fvE7Xj0+jFX+r9RowYgcTExEYlJISwKnHACQGzrFnmxcSLnAVx1KhRrrbgqIWEj82wFuhn1c5fafxQuHtATV+xvEtT0ndi/c5bhJS6StT+fkoPWuSRmvCVCjwpMSf03YQOe+Rfb6aFSnoR1HYvK138le7Wxd4vIyND0Xv4/Sl48slvmHK52wlrlvno8AM+Y0zO4idVIdwKDh0C9uwBOnYEcnNtbQoAEj62w3Kgn5luJTXxQ/wJyUr7ivXMp2iixYmSflfi2tDy+6ldvKV+P6UiWkrMAcKZSeHfLVjHhkN4JosZ7k+5RbCwcK/s+NSaLSN2v0SnSksh9B7hr5caL5WVlairq9NV7ZnlTCGxjZJWa56ZiPU1a+5Dvk9XrWqKWbO8CAQ8iIvjsGCBHzfd9Kutm08SPjbDaqCfFTe62kGvtK+U7r5YCJLVU31VaqIzOl06MbEOFRWNA3a1fk8lYg4IoFevcvTsuVXyu4Uf+WLFgiTWt9OnL5Ydn3oSBoQeUysmxO45oe/07rtDkZR0Fnl5B7F+/Xrd1Z5ZzRRS4s6ywjJvhJWaFfch36d+fwoWL54Ojgven4GABzNnpuLnn1+C13vKts0nCR8GYE2pA2y54MInd6m+ElsEWM0C01J9NfpgRrGJzsh06a5dd4QyRrRYVNSIMCX3gpRLTOn31INU3yppv5ETvVFiQqwg3tq11ysS5Eo3ESxYWKNRYsk7fbqZqZZ5rbFESoUvfy6iVeez8X0qNw/Ztfkk4cMIrCh1HpZccHomd5azwLRUX5U7mJF3XRiVLi2UJitnUQk/TFPse4ZPfqdORb6P3L0g5hJT+z21Ite3Su9lo+LQjFi0pPqUT41mZSNkFmICneOA4GYkEOojoy3zWmOJ5OZGPglg9erVtpzPxtI6Eg4JH5tg2d8NsOeC03JTsuSXF0JsUgjfXYu5S+RQ+/uJBZsrSZMNRyi+Sm7yKysrAxDMPPF4PKKVm8+dOycayMkvTlaMU633Rngfs5Yt1NjNGAnvegy3RrKwgKlFKitPvJgqTxw4LoDrrluDvLxDmsaYGbFESsaHXeezsbaO8JDwsQm9JmorspZYdMGpgSV3nRBik0L37t+ic+eduvtdze8nli2idscmNCaFvmdxcXmj69LS0iTPaOKD3IW+GwBLx6lc6nhGRkbE9dH3I2vZQsD573TwYC7WrbtOtSBnHbmsPDlLYpA4NG9eq1n02BVLZOdcyOI6QsLHRvSca2TWblFpmnl0WX6zgxK1CD25RVttTRqjUBKzJNbvchZAPceMCH1/vTs2fmwWFu7F9OmLsXVrT2zZUowtW3qjvLxYl+sx+rtp6S89SKWOKz1kkzWrZPA77UJdnXmC3C6UiE0xSyKPmOhXMs6UfL5ZriG7XU6shXKQ8HEgZu4WhSxRfr8/ovCZ35+C+fP/ZZlZXmt6utyiraYmjZGIWfuUVG62KnNGb0A5IJyxVl5eDH4hUbvIKxUxpaWl8Hq9hotZM9zTcjvx6upqU0W5WFvVCnInISU2o7/3vn0dROcP3rKn9veRE7tmuIZYdTnZBQkfB2PWblHqJrbDLK+0HgxfayTcGiV2rpEdxzGEI9THSq0EWt5by3voEVBCY1NvgKzd6dBmfL6weyVYPgA4L87NEuXh3ym6JpAbRI4QcmIz/HtLiX5e9NTV1UW4YcMRGg9yn2+Wa4hFl5NdkPBxMEb6baVcSXYU8QpvT7hLSkp4RVtw+J2/0iJtRCR6FlrxQFF9AbJ2p0Mb/fmNg4qDhRiXL58YMTaPHj1qqqDTC4vnQEXPafw8otbtIyYAhSzhSkIOlHy+2GfqPU7EKjHLevIOCR8HY5TfVmnMkFUBcmKuLTHhlZl5GPX1yY3a6/V6I6worMVTuBmtGWt6YfmoEjG6d/8WmZmHJcsGrFmzxnRXrFpXYvjrWOtT8TktRdbtM3DgwFCmoRRcMAAIgDpLuFa3k5OOE7HbOisHCR8HY5TfVmnMkFUBcmKurdOnmwkKL6XF9VjP8tKK0sXeSlFgdsaaEE47qiSc+vpkwbG5dWtPXH31JgDmu2JZX6zUoGROE3P7FBQUKOoH/nktGyolWYFKLdVKDwGWwgzLC8vjhISPwzHSbyt3A9sRIBd5JlMAQVeAJ+wKTvGEY3dmgxkoXeyHDBmCDz74QPa6UaNGhYKqtSxyZmasyWHVAbtGEP1dxVKpt2wpbnRkh5mwvFhpQcmcJoSSfuDjevRUSVeSFajHUu0mMWskJHxcgFF+WyU3sJUBco3PZOKrp3JhQkj5hOPGzAali70S0QMAa9asifhbrXVEbKKtqanBuXPnAACJiYkRrhLA+MmX9Vguvp8qKytDRRmLi8uxZUvvqCudb5G0Ey2iRK0AV7qh0mp90WupjjVRowQSPg7ELPOl0hvYqgA5sSMdRo5cg+bNaxsdpyDW3nDcnNmgZrFXen6Z1pII0RiVsaYEu2K51LoS09PTI67v2XMrtmw5n+4PON8iaTdyc1p0sUktAlzphkqr9cWNlmq7IeHjQMwyX+q1iBjtJxa74cPLxStpr56ifk5B7nTt8O8rdhAjiwe5asGOWC4j4ou83lO49lp3WSTtRm5OU1NsUgqlGyot1hc3WqrthoSPQzHLfKm2FD+PGX5iJTe8VHtramqQnZ0dE35uudO1eeuPmEDyeMCsW0gtduyQtcYXRYttN1sk7cKqPjXTEk7jwlhI+BCNMKIUv1EZREpueLH2hqcAO1nUKEHudG3e1SMmkPjMXDek+Bu5Q9YyjtW4HNPT01FaWhpRD8athQPtRKxPo4/eiUZqnrI6Y4rGhXGQ8CEMv4H1niWm1DUVDssZPGrRstg2LoQXCe/qUXIQoxtS/I3YIatxX/FoiS9q3bq1ovY42RVrNUr7KjqYXwixecpsSzLrRQCdDAkfwrAbmF+wlVZaFvs8Je2pqakJTVqsZ/CoQU+siNzp2rwAiBRIAQTLA3gaXes0jI7l0uK+0hJfFAuuWKtR0qdKKy/zR+FEY/ZvQuPCPEj4EAD0xwwJWXkOHszTVX9CCW6rxqzUQsVfJ7zYC5+uLVaSQOogRidh5kKhVFxrjS+ixct41PSpmqNwwjG7GKZV48KJFc/1QMKHMASxSqnRGO1GcWs1Zh65tPPwxT58Byvl6iktLQUARdc6zYxuxuSsRlxTBo7zUPL7usmVHo3e0AQnQsKHMJTGRQcjMdqNwmKNC6N2T0qtDPx7ZWdnq7J4kBldGXLiOvrgSMrAcRZyv6+bXOlCKD2yyA0ij4eED2EowllDQczY/bK2wzbqvCitLjy1VZYJeeTEtZArRCy+qLa21ryGEpqQ+n3l7sNo0RuO0zYOesMGnOQuI+FDGIpw1lAA1123NqLwoJGwtMNWG6Mjhlorg55JxUkTlh0oEddKK2G/+uqrrnIZuAGp37eiIl/yPpSK/wG0u4fsuCf1hA04zV1GwocwFLFJpHPnXYZ+jpXVmPVMQkoXxGi0WBm0TCqsnWjOqgiTEtdi7gE3x4U4GaHsU7HfV6kr3cjf2q57Uk/YgNPcZSR8CMNRaoHRI0qsSvXUMwnpiQ3Q4sLTMqkYZaEyAtZEmBJxLeYe+PXXJti0qcS1cSEsokQ0AxAdY0K/r5L70OgYIK1VwPViRNiAU7JsSfgQpiBmgeGPvTBClFix+GkVBlongPDFVkxAarUiKcHM95bDbhEmtHCWlpaivr4eAJCQkIC0tDQAQHV1NdavXy/qHigrKwF/2Cirh6S6CaWimc9olOOqq67C5s2bAUhv5Mxe6K0OrNYbNuCULFsSPoQhKLXe5OTkOHryVSoM1E4A4YvWqFGjcO7cudBzJ06cwObNPwEwdyJkLXvFShGm1dok5h5w4iGpTkaplYQXsXLXRVfTFtvImbnQ22U90XM0BotZtkKQ8CEMIRaqjKoRBmomAKWLlpkTodWTrJB1QmnFbzPQ6l4Qcg+UlGwKubl49Ez+Siw5drlHWETp2JG6Li0tDdOmTcOxY8caiSWA34xsNnWht8p6YuTRGKxl2YpBwocIcegQsGcP0LEjkJur/vVOFjVyqBUGaiYApYuRmROhlSZqOaFnd5yAWtEl5B5o2vSMYYekqnXhsGa5sxKlY0fpdeFHWghh5kJvlfUkugiqkNBLSEhAXV0dfD6f7DzPUpatGCR8CADA8uXA5MlAIADExQHLlgETJtjdKnZQKgyUxOhEXxeN2G7dzInQqPfWYp2Ixuo4AZ/PF7I2KV0Q5QKfjZr8lYpifrGyWzTajdKxo+Q6pVY0sxZ6K60n6enp8Pl8skIPUOYu1eMuswISPjGOz+fD/v3nMHlyJgKB4EGVgQAwZQqHSy45ivz8BFdbcpSiVBjodflJ7dbNnAiNeG+tAabRC4qVcQLRbVa6cAr9zuEH5wLmlFiQi3tySnCpWSgdO2rHmJwVzaxyGlZaT/QkFzjtJHkSPjEMP+lXVOQjEBgT8VxDgwdLl36AgoKfLAmIDLcUVFbGoaIiAQUF55CTEwBgf3yQGmGgtZ1KdutGn6tlhIWKR611AhBfUKza6Ua3Wc2CGP07qz0yRC1KXFhOCS41C6X3qZr7We6+5DNVo9H6W0dX97arCria5AKnxXiS8Ilh+EEqN1maHRAZvuuWmtztyEgxUhjIIbdbF5tg+c/X0jdmTlhyE6fYgpKZeRgtW57AhAkvor4+yfKDU4uLy7FlSzEA9aLLrPGp1IXllOBSM5G6TxMSEhRdF+6SlbsvMzIykJ2dbVj7mzVrZuh1WlAisp1cPoGED2H7ZMnfPHKTux0ZKWYKg+gKsnIC1OgJlseMyUnJxCm2oLz44kSEi46CgmAq/4gRI0wthxDd5uLiL9Cz51bL7gOpTDc1LiwnBJcajdJK7pmZmYrv56qqKgD2W9Gsrq2lRGQ7vXwCCR8CABuTJavxCWbcuEITh90C1CiUWieEz3XjIFb4LyMjw1KLSnl5MXr23BpxnVnWJrmFRG7xDbdkAOYe4aIGq6wCZm5Q7Lwv7cjQ0xL4LQar5RNI+BAh7I7El5vc/X5/6HEW44DUIDYhmO1OswKlAlZoQbFL+CpxM5ppbZJbIOQWX77uDEuuB6utAmZ+Nzs2hnZl6GmxcNlZ8V0LJHxsRG/dHBYw8jvITe58qiVrcUBGED1x8N/ZyCM+rEKNdSJ8QUlMrMPy5RNtcSkocTNa2f9CC4mcKGZtfBhhFbAzjsTKg5CF0GIBN6K/1Fq4nFg3ioSPTbihbo4Z30FuZ8ViHJBepCYOs+J6zEStdYI/9wqAbS4FltyMUuNh3LiBjQLcWRQ9Qqi1CtgdR6LEfVZbW4u6urpQPFA0en4btZYXvf2lJpFDaVwmq5DwsZhDh4AtW4BJkwCOCz4WrJsDDBrkDMuP2bV/pFxurMUB6d1hyU0cNTU1jhE+aibO8D6xMnNOT5v1IjVWlBZQdKIQBrRZBViII5G6d30+H5YtWyb7HlqFmVoxrre/1MRJ8UKPtflYKSR8LCTcQhJNQwOwd6+1wkdL0Sm7a//YnWERjhE7UrmJY82aNY5x32kNMLWzBohVn610rMiNh/DzzIxuo1kYZRVgLY7ELGFmlBjX0l9qxxBL87EaSPhYxKFD4qIHAOLjOaSkHIXPZ12lZC2Tvhm1f9TspllySRhxMKSSicNJ7jutY9fORduKz1b6G8qNB94lKASrAtkIq4AT4kiMEmZGiHEj+0uqzAJL87EaSPhYxJ494qLH4wngmms2YMMGYwJ01QQca/0cIwe82CF5hw8n4MCBZLRtexbNm59AWVkZADZS76PROtEI9WNJySYmvhNhHmKLpJ77ilWBrNcq4IQ4EqOFmZ7538j+UmKplJqPza4urRUSPhbg8/mQmnoOcXHnY2KA4M0/cuRa5OUdUmwhkMPKoGkjBUj0IXnCE8n568XigIRcAWa7AbRMNNHm7F9/bYKyshJwXBw2bSpB06ZnmNvRsoSTq8bKLZJKAvxZcvnIoXeTxLr7T6vQMGsMGxl3o3QtEpuPX331VSYtkSR8TCZcMQ8d2njC69x5l2GfFe1O0xM0rdRqZGTtHyMyBVasKBNcFMy8+bRMNOnp6SgtLcXq1avh96dg06YSiBXuU4vZosBu0WF3to8etJz7FJ715gSXD49RsSqsu/+0pp2bNYbNjLvRIrpZtESS8DGZ8B/dTBeNz+fDl18CgUDkTdLQAGzd6kPTpsrNp3an2mvdsUgtCmbefFonGq/XC8DYHZrZooAF0aH0t6ysrBS91i6LkJ5zn5zg8gnHqMBx1t1/Wu5/MzPWzIq7kRPdTrJEkvCxGDOqI/OLkd+fAo9neqMb8IsvXsbOnadkFyMlaepWIDeRhO+K+d2wnYuC3onGyB2aEQHXdr6/FsTaIGUJAOyxCOn5rZ2YOqynf5VajAB7F10jhIYR7TezNIPc/OokSyRAwscV8IuM3A0oVyFVSZr6qFGjzPsi/0Xuewjtiu1eFPRY8+zaoemFhclOTxvsMMHr+a2dmjqsFSmLEQvuP6OEhlHtN7M0g9T8CsBRlkiAhI/r0LoAK01T93g8gq+PRm/BN7Xfw45FQW9Jezt3aHphwe2itA0smOCN+K1ZTh02K+5L7jV2jkMjhIbR7TfLgik1v9q96dQCCR8XosedJje5er1ey4rNqfkediwKeic+u3ZoRvQJC5OdkjawYJUC9P3Wdla2VoIdcV81NTUA7B+Her+PGe03Q4TKza9Os0SS8GEQu0/hFppc+V1zZWUciorYypThsaK+j9GTih07NCe8vxFtsMsaYMYYYe3k9XCsPlrC5/NhzZo1ANgYh3owuv1Gi1Ah0X3wYC4AD/LyDgJg2xIphmLhc/LkScVvmpqaqqkxsQxrp3CHW1vCd82vvMKZluWVlJSkyC0h5w4w64aLnlTE2jpq1CikpaUJvodVv6/ZkxELk51cG+ywBphl/bBjTtAq4Mx2LYa3iYVxqAej22+0CE1PT8eoUaNCQnPfvg6CFlQWLZFSKBY+aWlpsvEdHMfB4/GgoaFBd8PcgtIfPScnhwnBE030rjkQ8Bh2GCkPP8GuWtUUTz99NwIBD+LiODzwwM8YMeIEEhMTQ6nfUgdcSmHEzRc+WUi5UPhJQgyrsonMtoDZVUFbqevHDmsACwdrGoEaAReOHa5Fpy26APvuy3D4TZycBXXcuIGNalCxspGPRrHw2bx5s5ntcC2sm6nlENo1G3kYaXgq/uLF08FxfBq9B3Pn5sDvXwOvVzwV347+1RtUa+aipzfg2qj39/v9oeuNHttyvzmf8cOCNYCFwGotaBFwdrkWxfq4tLSUaUuZFfOWkeNPTw0q1lAsfPr27WtmO1yN2TefmVYPIw8jFYJ/vdxNJfU5/HEX/DWVlXGoqEhAQcE55OQEUFdXB5/PZ9jvwHJQrdkTavj719TUiFq3+KNHAHMsXFLvx8pumpXAaiNQsoBqdS3qiYmS6mPeSmwlLBT45DF6/Dk9nioczcHNNTU1WL58OXbtCh65cPHFF2P8+PG2DLZYx4jFTmwRsGrXrOemCp9spG52oyYbVoNqecyeUNW+v9VuHRasrHaPASNRuoBquYf1CAUW+5gVV6cZfcOCBdUoNAmfr7/+GoMGDULTpk1x+eWXAwAWLVqERx99FBs3bkT38NMkCUvQO4lHLxbhBcKsiOUwoiy93M1u1GQT3VYg8kR1u1Ns7YIlt47drmOrxoDZ56apWUC13MN6hIIT7jO77gkj+0apBZV3bwu93u77MRpNwufuu+/Gtddei7/+9a9ISAi+xblz5zBx4kRMnz4d//znPw1tJGENUoPTzGwpHr0Cy8qJkD9RfdOmxiequ8kkrBRW3Dp2H6DKY8UYsMKtouSessu1yPp9JnVPhJ8ob8aYNLJvpCyo4e7ucPd2NKwdGKzZ4hMuegAgISEBs2bNwmWXXWZY44jYQ4/AsnIi5E9UF9sJS+18wyc9HhZ3RUphxeXAUnyFFW4BK85NU3JPGelaVFPOQq6P7cyIkrsnos+RM2pMqukbNZsEvW1jLYtRk/BJTU3FgQMHcNFFF0U8fvDgQaSkpBjSMIJQi9LFRioQGlBWQVduJyy18xU7PJO1XZFSWHE5sBBfYZf1wyyLm9J7yohxq/Q7RAutBx44hv37E5Cffw45OT0A9LB9I6H2njBqTCrtGwDMbBLsQJPwKS0txYQJE/DEE0+gV69eAIAvvvgCM2fOxI033mhoAwFg//79ePjhh/Hxxx/j8OHDyMnJwejRozFnzpyICWTHjh2YOnUqvvrqK7Ru3Rp33HEHZs2aZXh7CG0cOgTs2QN07Ajk5przGXLuMj2B0OHFvJTshMVTve0/0dxIWHU52BFfwWJ5BS1uFasFnFqrYfh3yM4GiooMaYZhqL0n/H6/YangSvqmqqpK0XtVVlY2ek8pWIrzk0KT8HniiSfg8Xhw66234ty5cwCAxMRE3H777Xj88ccNbSAA/PjjjwgEAnjhhRfQoUMH7Ny5E5MmTcLp06fxxBNPAAhWlr766qtRUlKC559/Ht9//z3Gjx+PtLQ0TJ482fA2uR2jUuTDixPOmuUNFSdcsMCPm276FbW1tYa2B5B2l+kNhOaLecnthPlK3AAbJ0mbCYvZHnb2s9U7ZDnrgha3itUCjhWroVGI3RMAUFGR30gYrF69mknrCj92lLTNSXObJuGTlJSEp59+GvPmzcO+ffsAAIWFhWjWrJmhjeMZPHgwBg8eHPq7ffv22L17N5577rmQ8HnttddQV1eHl156CUlJSbj44ouxfft2LFq0iISPBoyY+KSKE86cmYqff34JXu8pjB49WnLsmGG2NmKildoJCxXzYiUWxihYqZcTjZZ+ZiUoWgtqrQtqjiuwClathmqRuif27evw33lQWBjYafGVs9TItc1pc5uuQ0qbNWuGLl26GNUWVfj9frRq1Sr0d3l5Ofr06RMx8AYNGoT58+fjxIkTaNmypeD7nD17FmfPng39reZMMrcg5oIyKqBNTmQ0a9ZMl5lXjXWKb5NRE62aYGy37WpZqJcjhNp+ZikoWgtqrQss4YRAZTWIlQVhWRgYYalx2tymSficOXMGS5cuxebNm3H06FEEAoGI57/55htDGifG3r17sXTp0pC1BwAOHz6MgoKCiOvatGkTek5M+MybNw9z5841r7GMs3w5MHkyEAgAcXEw5QBSs3dzahZg3ret1T2jxwXoll1tOCwKAb0WECfGYKm1LrCC2kBlJ1jmhD6fVWEgJMjefXcoMjMPIzdXWRwQIH/PRWey2v07aRI+EyZMwMaNG3Hdddfh8ssvlz28VIz77rsP8+fPl7xm165dEdljP//8MwYPHozrr78ekyZN0vS54cyePRszZswI/X3y5Enk5eXpfl89WBEE7PP5sH//OUyenIlAgHdBwfADSAFrYkCUtNXn84VuQL8/BS1bnsCECS+ivj5Jcd0gPVYOFmNh3IiefparvWL3hB2O2LlpZloXzBAeSgOVnWyZExIGAIfKyhwUFPxkW7uEBBkQh+XLJyoSy0otdkKZrHb+TpqEz4YNG/D3v/8dvXv31vXh99xzD8aOHSt5Tfv27UP/X1lZiauuugq9evXCsmXLIq7LysrCkSNHIh7j/87KyhJ9/+TkZCQnJ6tsufHIBQEbOeHyE0hFRT4CgTERzxl5AGk4dp3kzSOXzaVm8tHTJ3b3g5vRG3OktPYKKwurmFvFLOuC3cKDhXIFagkXBiUlm1BWNhAAbyjwYNOmEnTuvNO2eUBYkCkXy0IWu+++O42dO9+W/U52/k6ahM8FF1xgSL2e1q1bo3Xr1oqu/fnnn3HVVVehqKgIK1asQFxc5A9VXFyMOXPmoL6+HomJiQCAsrIyXHjhhaJuLlaQCwL+8ssy5OUdxJw5YwyZUJTGuRg9MK2o/iyG0mwuMzD7xHQ3o7bImp6YIzHBcPBgLrzeXaHHWFpYhb6LWS5VJwoPuwkvgZGTU4XzoieIXe6uaEvNu+8OBaBNLEdb7HJyqnDw4PnXsJjirkn4PPnkk7j33nvx/PPPo127dka3qRE///wz+vXrh3bt2uGJJ57AsWPHQs/x1pybbroJc+fOxYQJE3Dvvfdi586dePrpp/HUU0+Z3j69yAUBr117PTyeAC644CTuuce4z41F14vS3bCRIoTVIGDW0WJh0NOHYrvfdeuuQ10dmzEyQlh1X9u9oNn9+UrhS2DoPYjZyPmDn5OCdXrWIzPzMJYvn2i4WGY1xV2T8Lnssstw5swZtG/fHs2aNQtZWHiOHzc2WLOsrAx79+7F3r17kRsV9MJxHADA6/Vi48aNmDp1KoqKipCRkYEHHnjAUansYhMvEFycZ83yol+/I4bG38Sa60Vu8hkxYgRycnIMFyEkatRjddCx2O6XpQwcKawsL2D3gmb356tBb+aaWS7G8Gtzc6sMz6pjOZNNk/C58cYb8fPPP+Oxxx5DmzZtNAc3K2Xs2LGysUAA0LVrV3z22WemtsVMom+MaAIBc+JvzHJBGVUE0UjkJp+MjAwSKQxi1ULXvfu3SEo6i7Vrr494nIUMHDmssizavaDZ/flq0XvEhpkuRjOP/2A1kw3QKHy2bNmC8vJydOvWzej2xDz8Tu3gwVysXXsdwneeZsbfmAGrLp5Ys3I5HbmFrqamxtA6UHl5Bx1bdsCKe8nuBc3uz9cCa0dsiLnOcnICyMmpM2ReZrl8hybhc9FFF+HXX381ui3EfwlaYHahrs758TesWk/sDLQm1CG30K1Zs0aXBTQ83mH9+vUxGfumBrsXNLs/3270xjZZlZ3H8n2kSfg8/vjjuOeee/Doo4+iS5cujWJ8UlNTDWlcrEOWCYJQttDptYCmp6dHvAfde+LYtaC5rcqzFoxw+ZqdncfqUTbhaBI+/LlZAwYMiHic4zh4PB40NDTobxkBQJtlItyMWVkZh4qKBBQUnENOTrDCthkHg7IOi/FGhDKEYt84Dti3r4OhcT5UdkAaMxY0PeUKjIxHcQJaY5ui+zi6irLRsBriEI4m4bN582aj2xHTGDmRyhXq4xcKOw4GtRMn3IyxiNTCFz5BFxbuxX8TOP+L8QGtRo8RJxyvoAYz+kdPuQIWYmWsREtsk5I+NqMsAOvjWpPw6du3r6Lr/vCHP+DPf/4zMjIytHxMzBA+ofDVV7WitFCf3oNBnQjrN2OsoXThA4KTvtYCa2qtCkZgd5VjszCyrVQQUR1aYpvk+s7IbEknCX1dp7PL8eqrr+KPf/wjCR8FqB0QcucGOTHzgYgtlNbpAbQHtNolQNxw8KnVOKUgodUYGdsU3scADCsL4DShb6rw4SJt04QCpM4RCp8U5M4NivXMB8JZyO08tQbUsiBAnFRszy6s7iMnWSeMim2K7uPi4nLDNsdOs96ZKnwIcaRuvFGjRqGmpgYbN24EID0piL0Hy6mEBBGO0qBNvZlWdggQpxXbswOr+8hp1glAf2yTUB+XlxcDCECsVpybIeFjA2piG/RMCpSSSzgBNW5ZrZlWdgkQcjnLY3UfsW6dMMMaJdbHvXp9gfLyYsPLArDutiThYwNqYhv0TgpUqM8+rDCnO8lkL4acW7a0tBRer1f09Uq+o10ChFzO8lAfnccsa5RYH/fsuRU9e27F8eOtcPPNPdG5s/6yAE5w7ZLwsRm5QUKTgjOxwpzuRJO9EHJuWa/XqzsD0a77iCWXM6si2e4+Ysk6YZY1Sv4eO4XOnQfpvs/kLKtiNYSsHnuqhc+5c+fw2GOPYfz48Y1OSo9m9OjRVMVZAiXmd7WTAhXqY2OCtyKoloXAXaMw2y1r5+LKgsuZRZHMQoVf1q0TekWZUB8fPJgLwIO8vIMGtjSInGVVqlSLlWNPtfBJSEjAwoULceutt8pe+9xzz2lqVKyg1PyuZuKM9UJ90RO82MRh5U1mxeRqxWcYLSitrpRspQCx4rup+T1YFMl2z1WsB54bcU+np6dj1KhRWLNmDYBgtXMz5wklllUWxp4mV1f//v3x6aefIj8/3+DmuJfwSYo396kxv6uJ1XGrqFFC+M2jJRvOaKyYXK34DDMsBlYsfHYdQxH93fx+P+rr6yOuSUhIQF1dHaqqqlR/Tz2/B0tWDjvnKpYDz428p9PS0gx/z2iU1hpiZexpEj5DhgzBfffdh++//x5FRUVo3rx5xPPXXnutIY1zC2KTlBHmdze7rPTAym7OisnVis8wy2Jg9sJnp1WBf0+fz4fVq1fLXq9GNGr9PVi5L1iA5fhJuXta6rwtsfFs5jwhVWsoKakA69d/y9TY0yR8/vCHPwAAFi1a1Og5OqS0MVKTrpT5fdSoUSG1LoSbXVZ6YWU3Z8XkavUEzsquTSl23yNmu5nU/B6s3Bd24oRT3uXuabljjYREtNnzhFitoaqq4OHYLI09TcInEAgY3Y6YRsz8npmZafuk7VRY2c1ZEVRrZeAuS7s2J2K0aFT7e7ByX9iJE05513tPh4toVoQeS2NPk/D529/+htLSUiQnJ0c8XldXhzfeeENR4DPRmBEjRoTONbP7xnM6dqfIhmNFUK1RnyEWMMub1lnatTkNM0Sj2t+DpfvCTlg95V1pphuPkqwvVoQeS2NPk/AZN24cBg8ejMzMzIjHT506hXHjxpHw0UhGRobjT0xnIZWcx840YiuCao3+DCUBsyzt2pyGGaJRy+/BQno9IYxcTFp1dXXIzaXGesiK0GNl7GkSPhzHwePxNHr80KFDkhVWiSAsFcwyEhZrhdhVudqKoFqjP0NJLApLuzanYYZoVPp7qBXJLG1gYg0l/WqVy9mIcWBXZqUUqoTPpZdeCo/HA4/HgwEDBiAh4fzLGxoaUFFRgcGDBxveSDfhtMBQNbBwBg5LBRytWBjM+gypccrKrs1pmCUalfweakQyixsYlrFDJOqxHiptr1HjwO56TUKoEj7Dhw8HAGzfvh2DBg1CixYtQs8lJSUhPz8fI0eONLSBbiLWAkPtsGyxeJM5DaUVxe3etTkRo0Sjll202anysYhdIlGr9VBNe40cB6zNt6qEz4MPPggAyM/PR2lpKZo0aWJKo9wGP/nIqXQ3LRp2WrZYu8mchtw4DQ/CD4cEpTBmmPqtEvhutlAbgV0iUav1UGk7KisrI/522zjQFOMzZswYAMFOPHr0aKP09rZt2+pvmYvgJ6n9+8/hlVc4BALn46Pi4znccccQ5OcnuGbRiDXLltuQ2026IQjfSswSKWbPF3Qfq8MKcWD0+WZiQi28TpAbx4Em4bNnzx6MHz8eW7ZsiXicD3qmAoaNSU9PR3o6sGwZMGUK0NAAxMcDL7zgQVFRG7ubZyiU8uxsKIDZeJy4qaH7WDlWiQMjRbRSoebGcaBJ+IwdOxYJCQnYsGEDsrOzBTO8CGEmTAAGDQL27gU6dABkDrh3JG5KeY7V7BYKYCbcdB+bjZXiwIj5RkyoZWYeRn19coQFyI3jQJPw2b59O7Zt24aLLrrI6PbEBLm57hQ8PE61GESLHL/fb/gZSyzDWtqpkaIzVgWsHpx6H9uB08SBmFB78cWJACItQG4cB5qET6dOnSQPSSNiE6P9z1aiNNtBCDWBiywvwCxlxBmZLUPp2dqJRcuflnvUaeJASKgBHABhV53bxoEm4TN//nzMmjULjz32GLp06YLExMSI51NTUw1pHOEsWFo41aJEvOhNz3fCAszKb2NktgylZ6uDNcuflei5R50kDoSEmpyrzk3jQJPwKSkpAQD0798/Ir6HgpsJVhZOozEiY4OFAo9OxMhsGbel5ZqBkzcwelErkp0mEsWs8omJdVi+fKKoq85tJSw0CZ/Nmzcb3Q6CYIrwCQ+AKRkbbj26xEiMzJZxY1quWThxMTMaJSLZaSIxur3hZ39JuercVsJCk/Dp27cvPvvsM7zwwgvYt28f1q5diwsuuACvvPIKCgoKjG4jQVhK9IRXXFxueMYGWR6UIZctEx5rKLfAuDEtlzAHNSKZFVGjlPD2aonLZDlOUSmahM+6detwyy234Oabb8a3336Ls2fPAghmwTz22GP4+9//bmgjCcIqhCa8LVuKDc3YIMuDcuSyZcILrQHS8VF2Zt64YbHQihO/u1EimfXvrtZiFR0DJWa1Zj1RQJPweeSRR/D888/j1ltvxRtvvBF6vHfv3njkkUcMaxxBWI3QhAfEobj4C5SXFxuSsUGWB+WIZcsAQEVFvqoAZbsyb9yyWGjBCQH9Qhghkvft24dXX31V9jq7v7uazw6/v6Ss1qzHKWoSPrt370afPn0aPe71elFTU6O3TYRLYX33A4hPeD17bkXPnlsNSc93Ws0Pu4k2we/b1wGLF0/X5CbUm3mjZQy7ZbHQglMz6vSKZJ/P10j0OOW7K8HpVmtNwicrKwt79+5Ffn5+xOOff/452rdvb0S7CJfB+s6PFy9yE96kSUOQlpYW8Tq17XVazQ87EMuW0TLhGpV5o3cMW7lYsLjJ0BvXZvV30iOSo9v5xRfF2LSpxDUxfU63WmsSPpMmTcJdd92Fl156CR6PB5WVlSgvL8cf//hH3H///Ua3kXABrKdyR/u6H3jgGPbvT0B+/jnk5PQA0EP3xOrkAo9WI5Z9omXCNSrzRq/1wqrFgkXXml7RZ9XGyYz09C++KEZZ2UAAwdIvWgUvS2LW6VZrTcLnvvvuQyAQwIABA1BbW4s+ffogOTkZf/zjH3HHHXcY3UaCsITwSSM7GygqMv79nZT6ajdC/aB1wjW6T7VYL6xaLFh0rekVfVa5zIy+R/3+FJSVlYAXPTxqBS9rYtbpVmtNwsfj8WDOnDmYOXMm9u7di19++QWdOnVCixYtjG4fQbgKEjX6YGHC1Wq9sLrtLMVhGCn6zC4FYeQ9evx4OvhjIMJR+91ZFLNOqlQdjSbhw5OUlIROnToZ1RaCIAhZpCZcoTMEjbai6bFeWLlYsBSHYZToM1LMWeE6EjsTq6Rkk6bfgCUxC4i7AllHl/AhCIKwAqWxF9F1fXiMdAHotV5YtViwFodhhOgzsr6OkpihUaNGhZIZjEhkAAIYOHATevcuV/U+PHaLWaWxTazHKZLwcRgsBbjpgY5rINQgFnsRXnIfsCZlWK31wq7Fwm63oM/ng9/vb9QmPcHCRok5uZgh/u+//vUD3TE0coJPze9ut5h1S5wiCR8HwXpKuFLouAb3YKUQl3sfK8eVGuuFnYuFXXEYaiwqmZmZir+7GWIuetx07boDO3Z01RVDo9RCOXr0aFW/u91iFnBHnCIJHwfBekq4FPxEIOejZt1ESpyHJSFuReyDnlRnOxcLO+IwlGZhpaWlGW5BUYPQuPnuu27Qm3pupth1clAxK5DwISyBnwg2bwaeeqqxj7p37zHo188duwkjcIJLkyUhbkXsg1PM/KzFYRhhiTOjvg4gdkSNvtRzHjPHgVODilmBhA9hGenp6bjiCiAuDggEzj8eHw/07JkO0jxBWLKkqMHOuC2rYh9Y6m8xWBJoWi1xQsJ/1KhROHfuHAAgMTERXq834nkt30ks6ypc/LBQmI81Met0SPgQlpKbCyxbBkyZAjQ0BEXPCy8EH2cNu6wuLFlSlGJ33BYLsQ8swYpA02KJs7JYn9C4EYrxsXscsSRm3QAJH8JyJkwABg0C9u4FOnRgV/Q40epiB6zUFqHYB/bQYomzulif0Ljp3/9j5sZRrM8zRkLCx4VEF3FjcSeQm8um4OFxotXFLuysLWJW7AdhDHoscWYKarlxQzE0woRbwSsr41BRkYCCgnPIyQnGLrC41ghBwseFCBVxI8uEc2G95pGdtUXIBWA/Qouh11sTel6rJc5MQR09bvx+P1avXi37ulgW0OFWcClLnBPWGhI+DkLPTUeWCWdid+yMEuyOr2F9knUz4othSwwbdmlorGqxxJktqCMPJc4mAS3DeZEobYlzwlpDwsdBCO1uoyvXEu6BldgZMcIXLaldfSzvkt2O0sVwxIgRyMjIiHitnJCwWlDHsqhRg93HZhgBCR+HQTenPdjhbmJ9giE3E8EjN1YzMjKQnZ2t+n0pYJ097D42wwhI+BCEDFa7m3gLidwEw4IlhUQNAehfDMPjhKKTMyjQmC3sdm0bAQkfgpDADndTuCXlggtO4t57vWho8CA+nsP8+Sdx0003kiWFYAo9i6Fw3Z58WeuqUuHvhCroTsPpljgSPgQhAD+pypnwzbK68BPxPfcApaV8zSMPcnPTAKSZ8pkEoQeti6HSuj3hcUJKxYqVxRDV4Ia0cCdb4kj4EIQAvNVl//5zeOUVDoHA+RL28fEc7rhjCPLzEyyZnFiveRRLkPVAGj2LoZx1VUuckNXFEJXgprRwp0LCx+HQGS7mkZ4ePD+s8REbHhQVtbG7eYTFUDVvczEzmJ+lDEmnpoW7aa0h4eNgDh0C9uxJx4gRdyIj44zodeG7UNqxqscJR2wQ5hN934i5TVhbsMzEyMXQzGwhFjMkWWyTFG7K4iTh41CWLwcmTw6ech4X1xLLlgUXaCmcumNlQayRu4kIxwmFJa3AyMXQzGwhFlOwWWyTHCytC3og4eNADh06L3qA4H+nTAlaJaQWZyeeP+VUsUa4F5bcJixg5H1nVrYQiynYLLYpViDh40D27DkvengaGoKuGLdZJZwo1gh34zQXhdMwK1uIxRRsFtsUC8TJX8IWZ8+exSWXXAKPx4Pt27dHPLdjxw5ceeWVaNKkCfLy8rBgwQJ7GmkyHTsCcVG/XHx8MP6EIAhz4V0U4YS7KKqrq1FVVYWqqir4fD47mugorAya9XpPoaDgJ6YEBottcjuOs/jMmjULOTk5+O677yIeP3nyJK6++mqUlJTg+eefx/fff4/x48cjLS0NkydPtqm15pCbK5Rp5D5rjxthIV6J0IeciyL67Dynu2HNHrNmBs26KROJMA5HCZ8PPvgAGzduxLp16/DBBx9EPPfaa6+hrq4OL730EpKSknDxxRdj+/btWLRokeuED0CZRk6E4pXcg5CLwo1ZXlYVADRrvLOYiURizH4cI3yOHDmCSZMm4e2330azZs0aPV9eXo4+ffpEDJZBgwZh/vz5OHHiBFq2bCn4vmfPnsXZs2dDf588edL4xpuEUKZRMMU96A4jMcQWFK/kbKIXovBYFLdmebFYAFAtrG0i1IoxN1R5Zg1HCB+O4zB27FjcdtttuOyyy7B///5G1xw+fBgFBQURj7Vp0yb0nJjwmTdvHubOnWt4m+0gMsUdilLc3QJ/sKGbJwFyk9lL9IJVXV2N9evXx0SWVyx8RytRep9SlWdzsFX43HfffZg/f77kNbt27cLGjRtx6tQpzJ492/A2zJ49GzNmzAj9ffLkSeTl5Rn+OWajJMXdzSbW8LgKN04C5CZjA6G+dUuWl5BlweutAeCe7+g0nFrlmXVsFT733HMPxo4dK3lN+/bt8fHHH6O8vBzJyckRz1122WW4+eab8fLLLyMrKwtHjhyJeJ7/OysrS/T9k5OTG72vE1GS4s6iv1sOLSLMjZMAucnYxYmF6KIRtyy0xLBhl6KwcK/jvyNLqHVfkfA0FluFT+vWrdG6dWvZ65YsWYJHHnkk9HdlZSUGDRqE1atXo2fPngCA4uJizJkzB/X19UhMTAQAlJWV4cILLxR1c7kJPsU9XPwIpbizJGqUEC7WqqursWJFmWBwpVvhJ0jelUewhxsK0clZFqZPX+z478gKatxXPG4Q1yzhiBiftm3bRvzdokULAEBhYSFy/2vOuOmmmzB37lxMmDAB9957L3bu3Imnn34aTz31lOXttQM3p7jzYm3VqqZYvHi6awJIxTJkeJS6twj7MaIQHQsxXFKWBSq2Zwxa3FduENcs4QjhowSv14uNGzdi6tSpKCoqQkZGBh544AFXprKL4eYU90OHgFmzvOA4DwDnB1cqyQKSWgTlRBNhPlJZXlLXCWFV2rgccpYFs6oqxyJq3VckPI3DkcInPz8fHMc1erxr16747LPPbGgRO7j1MM1gDJMn4jGn+bj5BVBupye3UNqROs2CNYI1jIyZYyVtXKtlwYkJEXajxX1FwtMYHCl8iNgjGMPERYgfp/m4+YVy82bgqaca7/R69x6Dfv2k47DsSCumjDJxjP6+LKSNS1kWRowYgYyMjIjrY1H0GgG5r+yDhA/hCHJzgQUL/Jg5M9XRk0R6ejquuEI4EL1nz3TIrR92ZHdQRpl1sJK9I2ZZyMjIQHZ2tmXtcDty7is3lyCxExI+MYzTqjyPHduAn39eLOvjZn0S0BqI7ven4PTpZpLmcda/OyFNLGXvUEXiIFLuKyeWIHECJHxiFCdWeU5PT8ecOWNcMVmqDUQPj/sAAqHF0eMJ4MEHKzF58o2WfXcKrDYPu9wftbW1iq4zSlhTRWLlxPr3NwMSPjGIkirPrMJPAk4UbtEoDUSPjvsA4sBxAVx33Rrk5R3C5Mk3yrofjApOduuZVCxhdfaOz+fDq6++GvpbTNiOHj3asEU4lisSk/vKfkj4xCBKqjyzjJOFmxr4iU8o7gOIQ/PmtYqywIwKTmYh8DZWsDJ7R2lGmdDh0HphJabJSnj31f795xpZrHmcYrl2KiR8YhClVZ5ZxenCTSnhE+Qrr0RmtMXHc7jjjiHIz0+QnSCNCk6OxUXKKliwAigRtkbH5cRSTBNwvv9WrWqKWbNaIRDwIC6Ow4IFftx0068keCyChE8MYnaVZ7NrvjhduKkhPT2Y6dX49/KgqKiNoZ9VXV0t+dvE2iJlJSwEscoJW7/fj9WrVwMwLi4nllK6ecur35/y3wr0wY1MIODBzJmp+Pnnl+D1nqK4Jgsg4ROjmFXl2YqaL24+nkMMI38vsRgO/oT76N+GtzLILVIUk6APuxc7OWFbX18PIDh+3n13KABj4nJipSIx3y9yAtONcU2sQcInhjGjyrNVNV/cfDyHGEb8XlqOyoi2RjzwwDHs35+A/PxzyMnpAaAHmehdgJyw/eWXXwAAW7f2BC96ePS6PGOpIjFZTu2HhA/hWNx6PIdZCMVwvPvuUGRmHkZubpXka8NFTXY2UFRkalMJm5CyvmzcuBF+fwrKy4sFXkkLt1Jiyb3HKiR8CCJGEMsOW758IqWlEyGkrC/CYwjo1atc1cLNQjC3ncSKe49VSPgQRIwgZGIHKC091lEjLsTcND17blX1mSwEc9tNLLn3WIOED0G4nOjg5PDAVB5KS49dlIiQmpoarFmzxlA3jZtFDcE2JHwIwuXwC1tlZSWA9cjMPIzlyydScCURQo0IITcN4XRI+BBEDJCenh7a0efmVlFwJSGKUJFCr7cm4hopN41b43L0EutxTSxBwocwFLq52SW8z6V27fTbxC7ih4e2xLBhl8oGwI8aNYpcWCJQXBM7kPAhDIVubnah34aQQ+nhoWKkpaVZ0UzHQvcWG5DwIQwn/OY+dCh4tlbHjlRzhwVo4iWUoPVcNrIWEk6AhA9hGsuXnz9FPS4ueMzEhAl2t4ogCDnkqgsPHDgQBQUFEa8hayHhFBpXoiIIAzh06LzoAYL/nTIl+DihDZ/Ph6qqKtF/Pp/P7iYSLoFPW/d4zp8EzHHAvn3Bk4DLysqQlJSE7Ozs0D8SPYRTIIsPYQp79kSeng4EDxTdu5dcXlqw4vBXgginsHAvOC78EX2HkRLOxk1hC2TxIUyhY8egeyuc+PjggaKEeqIXGb8/BRUV+fD7UySvIwitHD+eDrFCl0RswFuZn3yyBu3acejfH2jXjsOTT9Y42spMFh/CFHJzgzE9U6YELT3x8cALLzh/p2Am4fVToqmurg79v5IT1glCL3SKeGzDW5n9/hQsXjwdHOcBAAQCHsycmYqff34JXu8pR1qZSfgQpjFhAjBoUNC91aEDiR4plLqytKYZE4QSwrOy6BTx2IbfhMll+DnRykzChzCV3Fz3Cx4pSw2gLNtFyJV1/Hg6WrXyRSw0WtOMiSBCVYkLCs4hJycYkBbrmUnp6ekoLS3F6tWrAdDxFIQ7LX8kfAhCB9GWGjHBosYcLOXKcuMkZBXiVYkj+9iJpnsj8Xq9UX/TKeKxjBstfyR8CEIH4ZYaqcVUqTlYzpXlxknIKpRWJXai6Z4gzMRtlj8SPgRhAEbF3ihxZUlNQuFB0LHuthGD3IXS0Hl7hBBusvyR8CEIAzBqMVXqyoqehHgX24oVZZpdbLECuQuloTPdCLdDwocgDMCoxVTOlTVixAhkZGSguroa69evB2CMiy2WIHehPCRqCDdDwocgDMDIxVTKlZWRkYHs7OzQ35Terg23xSwQhNG42eVJwodgCieXRdezmEZPHmL+9OjrKF5FO26KWSAIo3Gzy5OED2E7fG2VVauaYtYsLwIBD+LiOCxY4MdNN/3qqJtL62KqdZKheBWCIMzCKfOuWkj4ELbi9LLoRpqDtXw/ildRjptN9+FQkUaCkIaED2ErTi+LzoI5mOJVlMHCb2U2VKSREMPJYQRGQ8KHYAInu2xYWEAoXkUZLPxWZkJFGolw3BRGYCQkfAgmiBWXjVG7rlhx2xDaoKB3wulhBGZCwodgBre7bJYvByZPBgIBIC4OWLYseIK9FmLBbUNox8kWVMIYnB5GYCYkfAimcKPLxufzYf/+c5g8OROBAL/rAqZM4XDJJUeRn5+gSaCQqCHEiBULKiEPieDGkPAhCBPhzc0VFfkIBMZEPNfQ4MHSpR+goOCnmDQ3E+ai5Ew3yvpyPySCG0PChyBMhDcjy+26YtHcTIhjVEq6mAV1/fr1lPUVQ7g9jEAtJHwciltSE2MlSJd2XYRSrEhJZy3ri2oPmY8bwwi0QsLHgRgZJGs3sRSkS7suQgl6UtKVbhBYyvqi2kPuwgmbchI+DuPQofOiB+CDZIFBg9gdZHK4cTLjb/7U1MjFhXZdhFK0iBO5jUR1dTXWr1/PVMAr1R5yPk6rF0TCx2Hs2XNe9PA0NAB79zpX+LiNSItcJoYOvTS0ayUIpWgVJ0pjf1hzvZplhYpVN5pVYQROrBdEwsdhdOwYdG+Fi5/4eKBDB/vaxDJWm10bW+Q8EbtWglCK2eKENderGVaoWHajWRVG4MR6QSR8HEZubjCmZ8qUoKUnPh544QWy9ghhRyyUkEWOKuYSWjFbnLDkejVD6MW6G81KMceS+1QOEj4OZMKEYEzP3r1BSw+JnsbYFQslZJFTcvM7PWuNMA+WxInZmCX0WArmdissuk/FIOHjUHJzSfBIYUcslM/nQ3x8HRYsaIp77/WiocGD+HgODz10GL///UAkJibC6/U2ep1bYwwI9nBC+QgzhJ6TrBFOhjX3qRgkfAhXYnUsVHgsAQDceWdK6OZvaDiF9euDj7sxloAwFjPFSSyVjwjHSdYIp+MECyUJH8KVWB0LFb2QiN38bo0lcAJOqC8CmC9OWBM1VlmhnGKNIMyHhA/hWigWinBafREeFttkFlZaoZxgjSDMh4QP4WooFip2cWJ9kViF+t+5OCFuLBoSPoTrCC9YJgSru3zCWJxYX4QwFicuyk7DiXFjJHwIVxEdZCwG7fJjB8roiV2cuCg7Eaf1HwkfwlUo3b3H6i7fKQG+RkIZPbGN0xZlwnxI+BBEjGBHJWtWoIwegiB44uQvIQhCDtZjCcQqWR86ZEtzbMHrPYWCgp9I9BBEjEMWH4IwAJZjCXw+H778EggEIj+7oQHYutWHpk3JHUAQROxAwocgDIJF8RCe0u3xTG8U4PvFFy9j505K6SYIInYgVxdBuBjeAsUH+Ho8QV9XdICvG4O9WXc/EgRhD2TxcRBUn4bQQ6wF+LLsfiQIwj4cJXzef/99/PnPf8aOHTvQpEkT9O3bF2+//Xbo+QMHDuD222/H5s2b0aJFC4wZMwbz5s1DQoKjvqYgVJ9GGbTLlybWSvbH8r1AEIQwjlEE69atw6RJk/DYY4+hf//+OHfuHHbu3Bl6vqGhAddccw2ysrKwZcsWVFVV4dZbb0ViYiIee+wxG1tuDFSfRhm0yycIgiCkcITwOXfuHO666y4sXLgQE8IKj3Tq1Cn0/xs3bsS///1vbNq0CW3atMEll1yChx9+GPfeey8eeuihmN3hxyIkapxHLBZWtAJyjxNEYxwhfL755hv8/PPPiIuLw6WXXorDhw/jkksuwcKFC9G5c2cAQHl5Obp06YI2bdqEXjdo0CDcfvvt+OGHH3DppZcKvvfZs2dx9uzZ0N8nT54098sQBAHAuSenOwVyjxOEMI7I6vq///s/AMBDDz2EP/3pT9iwYQNatmyJfv364fjx4Hk7hw8fjhA9AEJ/Hz58WPS9582bB6/XG/qXl5dn0rcgCIKHX5QXLnwdM2emIhCIPDl94cLX8cwzz8Dn89ncUudC7nGCEMZW4XPffffB4/FI/vvxxx8R+G+52Tlz5mDkyJEoKirCihUr4PF48Oabb+pqw+zZs+H3+0P/Dh48aMRXIxzKoUPA5s3uqWjMarC3kpPTw68j9OP3p6CiIh9+f4rdTTEcn8+Hqqoq0X8koIlwbHV13XPPPRg7dqzkNe3bt0dVVRWAyJie5ORktG/fHgcOHAAAZGVl4V//+lfEa48cORJ6Tozk5GQkJydraT7hMtx4lhXrwd50cro1fPPNpY0Oae3e/Vu7m2UI5NJjF1ZjzGwVPq1bt0br1q1lrysqKkJycjJ2796N3/3udwCA+vp67N+/H+3atQMAFBcX49FHH8XRo0eRmZkJACgrK0NqamqEYCIIIcTOsho0yPnBtixP9nRyuvn4/Smh/gWCFrX33huKwsK9ruhncumxCcuC1BHBzampqbjtttvw4IMPIi8vD+3atcPChQsBANdffz0A4Oqrr0anTp1wyy23YMGCBTh8+DD+9Kc/YerUqa6w6LDqsnALe/acFz08DQ3A3r3OFz6s4/TCiqzuanmk3IlO62vCObAsSB0hfABg4cKFSEhIwC233IJff/0VPXv2xMcff4yWLVsCAOLj47FhwwbcfvvtKC4uRvPmzTFmzBj8+c9/trnlxsC6y8LpdOwYdG+Fi5/4eKBDB/vaFEs4tbAiy7tanlhzJ/r9KTh+PB2tWvkcOaYI83GM8ElMTMQTTzyBJ554QvSadu3a4e9//7uFrbIWEjXmkZsbjOmZMiVo6YmPB154gaw9hDQs72p5Ysmd6OZYJqfDkiB1jPAhCLOZMCEY07N3b9DSY7TooSJ97oelyT3c7S3lTnSLe9ztsUxOhjVBSsKHIMLIzTVHlLgxY0wPboxZY21y593jx44dQ319veA1bjjHkIdimdiERUHqnlFPEBoxOzjVzRljWnFbzBqLkzvP6tWrZa9xQ6p3rMUyOQUWBSkJHyKmsSI4lTLGhOH7U0x41tXVoaqqSrEAsjO7isXJHXBGDJJeeKugXCyTk6yHboJFQUrCh4hpzF4YfD4fUlPPIS4uM3QsAwDEx3NISTkKny/B8TttPRglPO3OrrJ6cmc9hd5Koq2HDzxwDPv3JyA//xxycnoA6BFT/cEKLAtSEj4EYRLhi/HQoZHxH9dcswEbNgTjP9zgZtBK9OItFhwsJzzttmxYmTmlRuRFw1LwtZGE3z/Z2UBRkY2NIQCwLUhJ+BCESYQvslJZNU52MxiJkcHBVi3wdmROaRV5rAVfE+6HVUFKwocgLMKpRfqswMjgYCsXeKcEabMcfE0QVkPChyAI2zEqONiOBd5uUaMEVoOvCcIO4uQvIQiCMBc+ODgcLcHBUgu8W/H7U1BRkQ+/P0X0GqP6lyDcAFl8CIKwHaOCg1lMnZVCb3aWnFuP5cwaFqFsudiAhA8R07ixgrASWJzgjTil3UnnUulNwVfi1mM5s4Y17C6JQFgHCR8ipnFKcKqRRE/wYhlQVkzw0YJSLABcTng68VwqvSn4SuN2WM2sYQ27SyIQ1kHCh4h5zFrcWbUmhU/cUq4SKyZ4o4RnLAlYfrzIufVYEnkEwRIkfAjCJFhfjFlJcTbq+7tB1CghfFxdcMFJ3HuvFw0NHsTHc5g//yRuuulG14g8gjADEj4EYSIsLz6U4uxc+HF1zz1AaWnw3LcOHTzIzU0DkGZbu1iMHSOIaEj4EESM4rQMKEKY3Fw2Drul4GDCKVAdH4KIUfgMKL6+C8sZULGAkno8LEPBwYRTIIsPQcQwRqSQE/qhc7QIwjrI4kMQMY7XewoFBT+R6LEYPutKLMict/xQdpY1RPezmAWOfg/nQxYfgogxWE2zjzX47KzNm4GnnmocZN679xj068d2gLybCM+WW7WqKf78Zy8CAQ/i4jgsWODHTTf9SsHZLoGED0HEGKyn2ccS6enpuOIKIC4OCIQdpRUfD/TsmQ76CawlPT0dhw4Bs2ad/z0CAQ/uvTcNpaVp9Hu4BBI+BBGDkKhhh9xcYNkyYMoUoKEhKHpeeIGNTK1YZM+eSBEKBH+XvXvpN3ELJHwIgiBsZsIEYNAgvh4PLbB20rGjsAWuQwf72kQYCwU3EwRBMEBuLtCvn3NFj1tix3gLXHx88G+ywLkPD8dxnN2NYImTJ0/C6/XC7/cjNTXV7uYQBEE4hvDKzZWVcaioSEBBwTnk5ATNJ06KHTt0iCxwTkPp+k2uLoIgCMIQeFGzfDkweXLQXRQXF7SgTJhgc+NUwkpFbMJ4yNVFEARBGMahQ+dFDxD875QpwccJggVI+BAEQRCGIZUVRRAsQMKHIAiCMAw+KyocyooiWIKED0EQBGEYlBVFsA4FNxMEQRCGQnWJCJYh4UMQBEEYDmVFEaxCri6CIAiCIGIGEj4EQRAEQcQMJHwIgiAIgogZSPgQBEEQBBEzkPAhCIIgCCJmIOFDEARBEETMQMKHIAiCIIiYgYQPQRAEQRAxAwkfgiAIgiBiBhI+BEEQBEHEDCR8CIIgCIKIGeisrig4jgMAnDx50uaWEARBEAShFH7d5tdxMUj4RHHq1CkAQF5ens0tIQiCIAhCLadOnYLX6xV93sPJSaMYIxAIoLKyEikpKfB4PHY3x3JOnjyJvLw8HDx4EKmpqXY3x7FQPxoD9aN+qA+NgfrRGMzsR47jcOrUKeTk5CAuTjyShyw+UcTFxSE3N9fuZthOamoq3dwGQP1oDNSP+qE+NAbqR2Mwqx+lLD08FNxMEARBEETMQMKHIAiCIIiYgYQPEUFycjIefPBBJCcn290UR0P9aAzUj/qhPjQG6kdjYKEfKbiZIAiCIIiYgSw+BEEQBEHEDCR8CIIgCIKIGUj4EARBEAQRM5DwIQiCIAgiZiDhE6P885//xLBhw5CTkwOPx4O333474nmO4/DAAw8gOzsbTZs2RUlJCfbs2WNPYxlFrg/Hjh0Lj8cT8W/w4MH2NJZh5s2bhx49eiAlJQWZmZkYPnw4du/eHXHNmTNnMHXqVKSnp6NFixYYOXIkjhw5YlOL2URJP/br16/RmLzttttsajGbPPfcc+jatWuowF5xcTE++OCD0PM0FpUh1492jkUSPjHK6dOn0a1bN/zlL38RfH7BggVYsmQJnn/+eWzduhXNmzfHoEGDcObMGYtbyi5yfQgAgwcPRlVVVejf66+/bmELncGnn36KqVOn4ssvv0RZWRnq6+tx9dVX4/Tp06Fr7r77brz33nt488038emnn6KyshIjRoywsdXsoaQfAWDSpEkRY3LBggU2tZhNcnNz8fjjj2Pbtm34+uuv0b9/f/z+97/HDz/8AIDGolLk+hGwcSxyRMwDgHvrrbdCfwcCAS4rK4tbuHBh6LGamhouOTmZe/31121oIftE9yHHcdyYMWO43//+97a0x8kcPXqUA8B9+umnHMcFx15iYiL35ptvhq7ZtWsXB4ArLy+3q5nME92PHMdxffv25e666y77GuVQWrZsyb344os0FnXC9yPH2TsWyeJDNKKiogKHDx9GSUlJ6DGv14uePXuivLzcxpY5j08++QSZmZm48MILcfvtt8Pn89ndJObx+/0AgFatWgEAtm3bhvr6+ojxeNFFF6Ft27Y0HiWI7kee1157DRkZGejcuTNmz56N2tpaO5rnCBoaGvDGG2/g9OnTKC4uprGokeh+5LFrLNIhpUQjDh8+DABo06ZNxONt2rQJPUfIM3jwYIwYMQIFBQXYt28f/vd//xdDhgxBeXk54uPj7W4ekwQCAUyfPh29e/dG586dAQTHY1JSEtLS0iKupfEojlA/AsBNN92Edu3aIScnBzt27MC9996L3bt3Y/369Ta2lj2+//57FBcX48yZM2jRogXeeustdOrUCdu3b6exqAKxfgTsHYskfAjCJG644YbQ/3fp0gVdu3ZFYWEhPvnkEwwYMMDGlrHL1KlTsXPnTnz++ed2N8XRiPXj5MmTQ//fpUsXZGdnY8CAAdi3bx8KCwutbiazXHjhhdi+fTv8fj/Wrl2LMWPG4NNPP7W7WY5DrB87depk61gkVxfRiKysLABolKlw5MiR0HOEetq3b4+MjAzs3bvX7qYwybRp07BhwwZs3rwZubm5ocezsrJQV1eHmpqaiOtpPAoj1o9C9OzZEwBoTEaRlJSEDh06oKioCPPmzUO3bt3w9NNP01hUiVg/CmHlWCThQzSioKAAWVlZ+Oijj0KPnTx5Elu3bo3wzxLqOHToEHw+H7Kzs+1uClNwHIdp06bhrbfewscff4yCgoKI54uKipCYmBgxHnfv3o0DBw7QeAxDrh+F2L59OwDQmJQhEAjg7NmzNBZ1wvejEFaORXJ1xSi//PJLhLKuqKjA9u3b0apVK7Rt2xbTp0/HI488go4dO6KgoAD3338/cnJyMHz4cPsazRhSfdiqVSvMnTsXI0eORFZWFvbt24dZs2ahQ4cOGDRokI2tZo+pU6di1apVeOedd5CSkhKKlfB6vWjatCm8Xi8mTJiAGTNmoFWrVkhNTcUdd9yB4uJiXHHFFTa3nh3k+nHfvn1YtWoV/t//+39IT0/Hjh07cPfdd6NPnz7o2rWrza1nh9mzZ2PIkCFo27YtTp06hVWrVuGTTz7BP/7xDxqLKpDqR9vHoi25ZITtbN68mQPQ6N+YMWM4jgumtN9///1cmzZtuOTkZG7AgAHc7t277W00Y0j1YW1tLXf11VdzrVu35hITE7l27dpxkyZN4g4fPmx3s5lDqA8BcCtWrAhd8+uvv3J/+MMfuJYtW3LNmjXj/ud//oerqqqyr9EMItePBw4c4Pr06cO1atWKS05O5jp06MDNnDmT8/v99jacMcaPH8+1a9eOS0pK4lq3bs0NGDCA27hxY+h5GovKkOpHu8eih+M4znx5RRAEQRAEYT8U40MQBEEQRMxAwocgCIIgiJiBhA9BEARBEDEDCR+CIAiCIGIGEj4EQRAEQcQMJHwIgiAIgogZSPgQBEEQBBEzkPAhCIIgCCJmIOFDEARBEETMQMKHIAjHUFdXZ3cTGsFimwiCEIeED0EQttGvXz9MmzYN06ZNg9frRUZGBu6//37wJ+nk5+fj4Ycfxq233orU1FRMnjwZAPD555/jyiuvRNOmTZGXl4c777wTp0+fDr3vs88+i44dO6JJkyZo06YNrrvuutBza9euRZcuXdC0aVOkp6ejpKQk9Np+/fph+vTpEW0cPnw4xo4dG/pba5sIgmADEj4EQdjKyy+/jISEBPzrX//C008/jUWLFuHFF18MPf/EE0+gW7du+Pbbb3H//fdj3759GDx4MEaOHIkdO3Zg9erV+PzzzzFt2jQAwNdff40777wTf/7zn7F79258+OGH6NOnDwCgqqoKN954I8aPH49du3bhk08+wYgRI6D2yEK1bSIIgh3okFKCIGyjX79+OHr0KH744Qd4PB4AwH333Yd3330X//73v5Gfn49LL70Ub731Vug1EydORHx8PF544YXQY59//jn69u2L06dP4+9//zvGjRuHQ4cOISUlJeLzvvnmGxQVFWH//v1o166dYHsuueQSLF68OPTY8OHDkZaWhpUrVwKApjY1adJEVz8RBGEcZPEhCMJWrrjiipDoAYDi4mLs2bMHDQ0NAIDLLrss4vrvvvsOK1euRIsWLUL/Bg0ahEAggIqKCgwcOBDt2rVD+/btccstt+C1115DbW0tAKBbt24YMGAAunTpguuvvx5//etfceLECdVtVtsmgiDYgYQPQRBM07x584i/f/nlF0yZMgXbt28P/fvuu++wZ88eFBYWIiUlBd988w1ef/11ZGdn44EHHkC3bt1QU1OD+Ph4lJWV4YMPPkCnTp2wdOlSXHjhhSFxEhcX18jtVV9fr7tNBEGwAwkfgiBsZevWrRF/f/nll+jYsSPi4+MFr+/evTv+/e9/o0OHDo3+JSUlAQASEhJQUlKCBQsWYMeOHdi/fz8+/vhjAIDH40Hv3r0xd+5cfPvtt0hKSgq5rVq3bo2qqqrQZzU0NGDnzp2y30FJmwiCYAMSPgRB2MqBAwcwY8YM7N69G6+//jqWLl2Ku+66S/T6e++9F1u2bMG0adOwfft27NmzB++8804okHjDhg1YsmQJtm/fjp9++gl/+9vfEAgEcOGFF2Lr1q147LHH8PXXX+PAgQNYv349jh07ht/+9rcAgP79++P999/H+++/jx9//BG33347ampqZL+DXJsIgmCHBLsbQBBEbHPrrbfi119/xeWXX474+HjcddddoRRxIbp27YpPP/0Uc+bMwZVXXgmO41BYWIjS0lIAQFpaGtavX4+HHnoIZ86cQceOHfH666/j4osvxq5du/DPf/4TixcvxsmTJ9GuXTs8+eSTGDJkCABg/Pjx+O6773DrrbciISEBd999N6666irZ7yDXJoIg2IGyugiCsA2hLCqCIAgzIVcXQRAEQRAxAwkfgiAIgiBiBnJ1EQRBEAQRM5DFhyAIgiCImIGED0EQBEEQMQMJH4IgCIIgYgYSPgRBEARBxAwkfAiCIAiCiBlI+BAEQRAEETOQ8CEIgiAIImYg4UMQBEEQRMxAwocgCIIgiJjh/wN9s77nJ4/qUAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOBElEQVR4nO3deVxU9f4/8NewCgiDggsICqJXU9MUi9DSLNx+pbevmrRYapTWlYr2ut4Wb4vtWXZvq2lli1y1rlmWUNY1JW5pZqaZclExcAFlRDFZ5vz+mM7hnDNnm2FY5/V8PHwkM2fOfM7JOm8/n/fn/bYJgiCAiIiIyA8EtPQAiIiIiJoLAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AYDHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIiIj8BgMfIqJWaNmyZbDZbNi3b19LD4WoXWHgQ+SnvvvuO2RnZ2PgwIGIiIhAz549MX36dPz6669ux1500UWw2Wyw2WwICAhAVFQU+vXrh2uvvRZ5eXkefe/HH3+M0aNHo2vXrggPD0fv3r0xffp0fPbZZ766NDePP/44PvroI7fXN2/ejIcffhiVlZVN9t1qDz/8sHQvbTYbwsPDMWDAAPztb3/DiRMnfPId7733HhYtWuSTcxG1Nwx8iPzUk08+iVWrVuGSSy7BCy+8gDlz5uA///kPhg0bhh07drgdn5CQgHfeeQdvv/02nn76aUyePBmbN2/GuHHjkJmZidraWtPvfOaZZzB58mTYbDbcf//9eP755zF16lTs2bMHH3zwQVNcJgDjwGfBggXNGviIXn75Zbzzzjt47rnn0L9/fzz22GOYMGECfNE+kYEPkb6glh4AEbWMO+64A++99x5CQkKk1zIzM3H22WfjiSeewPLlyxXH2+12zJgxQ/HaE088gVtvvRX//Oc/kZSUhCeffFL3++rq6vDII49g7NixWL9+vdv7R44caeQVtR7V1dUIDw83PGbatGmIjY0FANx0002YOnUqVq9ejW+//Rbp6enNMUwiv8QZHyI/NWLECEXQAwB9+/bFwIEDsWvXLkvnCAwMxIsvvogBAwbgpZdegsPh0D22vLwcJ06cwMiRIzXf79q1q+Ln33//HQ8//DD+9Kc/oUOHDoiLi8OUKVNQVFQkHfPMM89gxIgRiImJQVhYGFJTU7Fy5UrFeWw2G06dOoW33npLWl6aNWsWHn74Ydx9990AgOTkZOk9eU7N8uXLkZqairCwMHTu3BlXXnklSkpKFOe/6KKLMGjQIGzZsgWjRo1CeHg4/vrXv1q6f3IXX3wxAKC4uNjwuH/+858YOHAgQkNDER8fj3nz5ilmrC666CJ88skn2L9/v3RNSUlJHo+HqL3ijA8RSQRBwOHDhzFw4EDLnwkMDMRVV12FBx54AN988w0uvfRSzeO6du2KsLAwfPzxx7jlllvQuXNn3XPW19fjsssuwxdffIErr7wSt912G6qqqpCXl4cdO3YgJSUFAPDCCy9g8uTJuOaaa1BTU4MPPvgAV1xxBdauXSuN45133sENN9yA8847D3PmzAEApKSkICIiAr/++ivef/99PP/889LsS5cuXQAAjz32GB544AFMnz4dN9xwA44ePYrFixdj1KhR+OGHHxAdHS2Nt6KiAhMnTsSVV16JGTNmoFu3bpbvn0gM6GJiYnSPefjhh7FgwQJkZGTg5ptvxu7du/Hyyy/ju+++w6ZNmxAcHIz58+fD4XDg4MGDeP755wEAHTt29Hg8RO2WQET0h3feeUcAICxZskTx+ujRo4WBAwfqfu7DDz8UAAgvvPCC4fkffPBBAYAQEREhTJw4UXjssceELVu2uB335ptvCgCE5557zu09p9Mp/b66ulrxXk1NjTBo0CDh4osvVrweEREhzJw50+1cTz/9tABAKC4uVry+b98+ITAwUHjssccUr//0009CUFCQ4vXRo0cLAIRXXnlF97rlHnroIQGAsHv3buHo0aNCcXGx8OqrrwqhoaFCt27dhFOnTgmCIAhLly5VjO3IkSNCSEiIMG7cOKG+vl4630svvSQAEN58803ptUsvvVTo1auXpfEQ+RsudRERAOCXX37BvHnzkJ6ejpkzZ3r0WXFGoaqqyvC4BQsW4L333sPQoUPx+eefY/78+UhNTcWwYcMUy2urVq1CbGwsbrnlFrdz2Gw26fdhYWHS748fPw6Hw4ELL7wQW7du9Wj8aqtXr4bT6cT06dNRXl4u/erevTv69u2LDRs2KI4PDQ3F7NmzPfqOfv36oUuXLkhOTsbcuXPRp08ffPLJJ7q5Qfn5+aipqUFOTg4CAhr+133jjTciKioKn3zyiecXSuSHuNRFRDh06BAuvfRS2O12rFy5EoGBgR59/uTJkwCAyMhI02OvuuoqXHXVVThx4gQKCwuxbNkyvPfee5g0aRJ27NiBDh06oKioCP369UNQkPH/otauXYtHH30U27Ztw5kzZ6TX5cGRN/bs2QNBENC3b1/N94ODgxU/9+jRwy1fysyqVasQFRWF4OBgJCQkSMt3evbv3w/AFTDJhYSEoHfv3tL7RGSMgQ+Rn3M4HJg4cSIqKyuxceNGxMfHe3wOcft7nz59LH8mKioKY8eOxdixYxEcHIy33noLhYWFGD16tKXPb9y4EZMnT8aoUaPwz3/+E3FxcQgODsbSpUvx3nvveXwNck6nEzabDevWrdMMAtU5M/KZJ6tGjRol5RURUfNh4EPkx37//XdMmjQJv/76K/Lz8zFgwACPz1FfX4/33nsP4eHhuOCCC7wax/Dhw/HWW2+hrKwMgCv5uLCwELW1tW6zK6JVq1ahQ4cO+PzzzxEaGiq9vnTpUrdj9WaA9F5PSUmBIAhITk7Gn/70J08vp0n06tULALB792707t1ber2mpgbFxcXIyMiQXmvsjBdRe8YcHyI/VV9fj8zMTBQUFOBf//qXV7Vj6uvrceutt2LXrl249dZbERUVpXtsdXU1CgoKNN9bt24dgIZlnKlTp6K8vBwvvfSS27HCHwX+AgMDYbPZUF9fL723b98+zUKFERERmkUKIyIiAMDtvSlTpiAwMBALFixwKygoCAIqKiq0L7IJZWRkICQkBC+++KJiTEuWLIHD4VDspouIiDAsLUDkzzjjQ+Sn7rzzTqxZswaTJk3CsWPH3AoWqosVOhwO6Zjq6mrs3bsXq1evRlFREa688ko88sgjht9XXV2NESNG4Pzzz8eECROQmJiIyspKfPTRR9i4cSMuv/xyDB06FABw3XXX4e2338Ydd9yB//73v7jwwgtx6tQp5Ofn4y9/+Qv+/Oc/49JLL8Vzzz2HCRMm4Oqrr8aRI0fwj3/8A3369MH27dsV352amor8/Hw899xziI+PR3JyMtLS0pCamgoAmD9/Pq688koEBwdj0qRJSElJwaOPPor7778f+/btw+WXX47IyEgUFxfjww8/xJw5c3DXXXc16v57qkuXLrj//vuxYMECTJgwAZMnT8bu3bvxz3/+E+eee67i31dqaipWrFiBO+64A+eeey46duyISZMmNet4iVqtltxSRkQtR9yGrffL6NiOHTsKffv2FWbMmCGsX7/e0vfV1tYKr7/+unD55ZcLvXr1EkJDQ4Xw8HBh6NChwtNPPy2cOXNGcXx1dbUwf/58ITk5WQgODha6d+8uTJs2TSgqKpKOWbJkidC3b18hNDRU6N+/v7B06VJpu7jcL7/8IowaNUoICwsTACi2tj/yyCNCjx49hICAALet7atWrRIuuOACISIiQoiIiBD69+8vzJs3T9i9e7fi3hht9VcTx3f06FHD49Tb2UUvvfSS0L9/fyE4OFjo1q2bcPPNNwvHjx9XHHPy5Enh6quvFqKjowUA3NpOJGMTBB80hiEiIiJqA5jjQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNFjBUcTqdKC0tRWRkJMu+ExERtRGCIKCqqgrx8fEICNCf12Hgo1JaWorExMSWHgYRERF5oaSkBAkJCbrvM/BRiYyMBOC6cUZ9h4iIiKj1OHHiBBITE6XnuB4GPiri8lZUVBQDHyIiojbGLE2Fyc1ERETkNxj4EBERkd9g4ENERER+gzk+XnA6naipqWnpYbRrISEhhtsRiYiIvMHAx0M1NTUoLi6G0+ls6aG0awEBAUhOTkZISEhLD4WIiNoRBj4eEAQBZWVlCAwMRGJiImckmohYRLKsrAw9e/ZkIUkiIvIZBj4eqKurQ3V1NeLj4xEeHt7Sw2nXunTpgtLSUtTV1SE4OLilh0NERO0Epyw8UF9fDwBcfmkG4j0W7zkREZEvMPDxApdemh7vMRERNQUGPkREROQ3GPgQERGR32Dg4wdmzZoFm80Gm82G4OBgdOvWDWPHjsWbb77p0bb8ZcuWITo6uukGSkRE7UJFRQXKyspQVlaGLVsOY+XKCmzZclh6raKiosXGxl1dzaiiosKw8GFISAhiYmKa5LsnTJiApUuXor6+HocPH8Znn32G2267DStXrsSaNWsQFMQ/CkRE1HgVFRV46aWXAABbtw7Fxx9fBkEIgM3mxKRJazFs2A8AgOzs7CZ75hnh066ZyP8gGGmqPwihoaHo3r07AKBHjx4YNmwYzj//fFxyySVYtmwZbrjhBjz33HNYunQp/ve//6Fz586YNGkSnnrqKXTs2BFfffUVZs+eDaAh8fihhx7Cww8/jHfeeQcvvPACdu/ejYiICFx88cVYtGgRunbt6vPrICKi1k38C77DESkFPQAgCAH4+OPLkJKyF3Z7VYt1QOBSVzOx+i+4Of8gXHzxxRgyZAhWr14NwFUt+cUXX8TPP/+Mt956C19++SXuueceAMCIESOwaNEiREVFSVOVd911FwCgtrYWjzzyCH788Ud89NFH2LdvH2bNmtVs10FERK3PsWMxUtAjEoQAHDvWuYVG5NJmAp+FCxfi3HPPRWRkJLp27YrLL78cu3fvVhzz+++/Y968eYiJiUHHjh0xdepUHD58uIVG3Db0798f+/btAwDk5ORgzJgxSEpKwsUXX4xHH30Uubm5AFzLcHa7HTabDd27d0f37t3RsWNHAMD111+PiRMnonfv3jj//PPx4osvYt26dTh58mRLXRYREbWwzp0rYLMp80htNic6dz7WQiNyaTOBz9dff4158+bh22+/RV5eHmprazFu3DicOnVKOub222/Hxx9/jH/961/4+uuvUVpaiilTprTgqFs/QRCkpav8/Hxccskl6NGjByIjI3HttdeioqIC1dXVhufYsmULJk2ahJ49eyIyMhKjR48GABw4cKDJx09ERK2T3V6FSZPWSsGPmONjt1e16LjaTI7PZ599pvh52bJl6Nq1K7Zs2YJRo0bB4XBgyZIleO+993DxxRcDAJYuXYqzzjoL3377Lc4///yWGHart2vXLiQnJ2Pfvn247LLLcPPNN+Oxxx5D586d8c033yArKws1NTW6LTpOnTqF8ePHY/z48Xj33XfRpUsXHDhwAOPHj2cHeyIiPzds2A9ISdmLY8c6o3PnYy0e9ABtKPBRczgcAIDOnV1rhVu2bEFtbS0yMjKkY/r374+ePXuioKBAN/A5c+YMzpw5I/184sSJJhx16/Lll1/ip59+wu23344tW7bA6XTi2WeflZqvistcopCQELcWEr/88gsqKirwxBNPIDExEQDw/fffN88FEBFRq2e3V7WKgEfUJgMfp9OJnJwcjBw5EoMGDQIAHDp0CCEhIW51Zrp164ZDhw7pnmvhwoVYsGBBUw63VThz5gwOHTqk2M6+cOFCXHbZZbjuuuuwY8cO1NbWYvHixZg0aRI2bdqEV155RXGOpKQknDx5El988QWGDBmC8PBw9OzZEyEhIVi8eDFuuukm7NixA4888kgLXSURETUXeYmW0tIAFBcHITm5DiEh5bqfcTgicexYDDp3Zh0fj8ybNw87duzAN9980+hz3X///bjjjjukn0+cOCHNXLQnn332GeLi4hAUFIROnTphyJAhePHFFzFz5kwEBARgyJAheO655/Dkk0/i/vvvx6hRo7Bw4UJcd9110jlGjBiBm266CZmZmaioqJC2sy9btgx//etf8eKLL2LYsGF45plnMHny5Ba8WiIiakpFRUVYvnw5AGDTpnTk5WUAEGv1FGLYMPfPqGv69OpVjdtua95xA4BNEASh+b/We9nZ2fj3v/+N//znP0hOTpZe//LLL3HJJZfg+PHjilmfXr16IScnB7fffrul8584cQJ2ux0OhwNRUVGK937//XcUFxcjOTkZHTp08GjcLV3Hp61pzL0mIqKmI3+euYKesQAaGkvbbE7k5CyC3V6FKVOmICgoCAcPAhMm9IfT2XBcYKCAwsIjSEoK8slzz+j5LddmZnwEQcAtt9yCDz/8EF999ZUi6AGA1NRUBAcH44svvsDUqVMBALt378aBAweQnp7eEkNWiImJQXZ2dotVbiYiIgIa30VAXqAwPz8D8qAHaKjVY7dXISgoCLm5uSguToLTeZbiuPp6GxYvXofk5P3N+pf+NhP4zJs3D++99x7+/e9/IzIyUsrbsdvtCAsLg91uR1ZWFu644w507twZUVFRuOWWW5Cent5qdnQxqCEiopbky9UHrQKFLg21eurq6gA01PSRHy+v6dOcu4DbTB2fl19+GQ6HAxdddBHi4uKkXytWrJCOef7553HZZZdh6tSpGDVqFLp37y5VJSYiIvJ3vuwioFWgEBAwdmy+2y6u1lTTp83M+FhJRerQoQP+8Y9/4B//+EczjIiIiKhlNXbZSr7LytMgRAxm5AnLGRn5GDmyQPP41lLTp80EPkRERNSgsctWRp3TrfI0mGkNNX3azFIXERERNWjMspVe53SHI9LjcdjtVUhO3t/iAY1VDHyIiIj8THN1Tg8ODvbp+XyBgQ8REVE74HBEorg4ydKsTWM6p4eEhFgaw8SJE1FbW2s+8GbGHB8iIqI2ztN8Ha3EZPkuq/JyZdsJeZK0vC6dw+GQdlerx1BUtPaP/J8k0+Rpo2DK1xj4UKN99dVXGDNmjFvVbCNJSUnIyclBTk5Ok46NiKg1aMzuK73PisGJXr5OSspet2BDHmDoJSY7HJF49tmtbsGKPElaPVa9Mbg2ZLsHY5mZmbDb7abX3hQY+PiBWbNm4a233sLcuXPdGo/OmzcP//znPzFz5kwsW7asZQZIRNSONWb3lZXPGuXrqAMfrS4C5eXlUs07o5kjo8BNbwzy38uDMbvdjri4OMPraioMfPxEYmIiPvjgAzz//PMICwsD4OqH9d5776Fnz54tPDoiovarMbuvPCkkqFcVWU1vdsVs5mjPnj0oLy9HUFCQNLsvzjppjUFNLxhrbkxu9hPDhg1DYmKiopL16tWr0bNnTwwdOlR67cyZM7j11lvRtWtXdOjQARdccAG+++47xbk+/fRT/OlPf0JYWBjGjBmDffv2uX3fN998gwsvvBBhYWFITEzErbfeilOnTjXZ9RERtaSKigqUlZVp/lLny3hyPvVntRKYzaoiW82f0Zu12blzAByOSGzYsAGrV69Gbm4uXnvtNbz22mvSM0VrDIB3ydNNjTM+LeTgQWDPHqBvXyAhoXm+8/rrr8fSpUtxzTXXAADefPNNzJ49G1999ZV0zD333INVq1bhrbfeQq9evfDUU09h/Pjx2Lt3Lzp37oySkhJMmTIF8+bNw5w5c/D999/jzjvvVHxPUVERJkyYgEcffRRvvvkmjh49iuzsbGRnZ2Pp0qXNc7FERM3E6lKWyKxast75jJahHn00GQ8+eBT79gUhKakO8fHnAjjXo/wZ7VkbAZ9/PgHr14+Tvk9v/OqcoaKiPrrJ0y2JgU8LWLIEmDMHcDqBgADgtdeArKym/94ZM2bg/vvvx/79+wEAmzZtwgcffCAFPqdOncLLL7+MZcuWYeLEiQCA119/HXl5eViyZAnuvvtuvPzyy0hJScGzzz4LAOjXrx9++uknPPnkk9L3LFy4ENdcc42UuNy3b1+8+OKLGD16NF5++WV06NCh6S+WiKiZeNJg08ruK08KDorLULGxsYiL64bUVOvjFpOmxVkl9U4vQIDYeV38vtOnOyA/P0N3/PLKzK2lRYUaA59mdvBgQ9ADuP45dy4wfnzTz/x06dIFl156KZYtWwZBEHDppZciNjZWer+oqAi1tbUYOXKk9FpwcDDOO+887Nq1CwCwa9cupKWlKc6bnp6u+PnHH3/E9u3b8e6770qvCYIAp9OJ4uJinHXWWU1xeURErZonu6/Un/v554GWE5it0JtVEoOVnTsH4PPPJ7h9nxj0WB1/a2hRocbAp5nt2dMQ9Ijq64G9e5tnyev6669HdnY2ADRZM9eTJ09i7ty5uPXWW93eYyI1EbV3ektBnuy+EslniOQzMIB7zox627vD4VAUENRKStZit1dhwICdWL9+nGq87snLngZf4r3ZsaNSeo3b2du5vn1dy1vy4CcwEOjTp3m+f8KECaipqYHNZsP48eMV76WkpCAkJASbNm1Cr169AAC1tbX47rvvpGWrs846C2vWrFF87ttvv1X8PGzYMOzcuRN9muuiiIh8RAweKisrUVdX5/Z+cHAw7Ha77sPaaCnL091X6hkiV9DjCn7UOTPyQoLeUAdrep3X5TM+6vFPmTIFQUFByM3N1fwO+b15+23lvdFrpNoUGPg0s4QEV07P3LmumZ7AQODVV5svwTkwMFBatgoMDFS8FxERgZtvvhl33303OnfujJ49e+Kpp55CdXU1sv5IQrrpppvw7LPP4u6778YNN9yALVu2uNX/uffee3H++ecjOzsbN9xwAyIiIrBz507k5eV5lABIRNScPE1SVj+szZayzKolq3dfac0QATaMH/8ZBgzYqZhlEVyVAr2iF6xp5eiEhf2uO35XnlGcok6QWCPI7N54kifVWAx8WkBWliunZ+9e10xPcwU9oqioKN33nnjiCTidTlx77bWoqqrC8OHD8fnnn6NTp04AXEtVq1atwu23347FixfjvPPOw+OPP47rr79eOsfgwYPx9ddfY/78+bjwwgshCAJSUlKQmZnZ5NdGROQtTx++6uPNlrKmTJmCOXNiLe++0pshEoOeKVOmIDY2FiEhIW5jUc/g6C2/WQnWjHZuaS1xac3ceLPM11QY+LSQhITmC3jMKjJ/9NFH0u87dOiAF198ES+++KLu8Zdddhkuu+wyxWuzZ89W/Hzuuedi/fr1uufQqv1DRNSWOBwORfVhs6UscUYkLg6Wdl+ZzRCJ5wOAsrIy6XPqGZzBg7dj+/bBmstv3gQkegnL1dXVutfi6TJfU2IBQyIiIg1iscCDB+M0u56vWLECFRUV0hKVrwoJqvtp5eQswsyZy5CTs0ixdVzrfFozOD/+OMRtRke8FrMu7cOHD8eYMWMwZMgQ03EvX74cFRUVmu+Z3ZvmxBkfIiIiFa3dVFp1a2pqatzyWhpbSFCrn5aa3vn08oLk5DM6ZrNK33//veb36y2dGY25tdT1YeBDREQko72byhUwrFmjXbdGHoRYXcoy4u0OJ73qy0bb4D0NSKwUYdTTGur6cKmLiIhIRnvWRBSAwsI0nfdantaS0pAhP+ouMbkSrudg9uyxSE7eL9ser73Mp5cMrV4GbM044+OFxmwbJGt4j4mopZh1Gi8oSEdaWqHhzIW6mCAARW0gsR6QXGMK+anzgtQzOBdf/KXmjE58fLzbdxot83XqdNyjZGhv8pqaGgMfD4h1b2pqahAWFtbCo2nfxP9hqGsNERE1FXWSsnK5q4HZridP6wHJmRXyq6iowNGjR3H8+HFFVWYAOP/88yEIAqKiotC5c2cA0K3cDGgHWkbLfB9/fBmyst7waHdWY/KVmgoDHw8EBQUhPDwcR48eRXBwMAICuFLYFJxOJ44ePYrw8HAEBfGPKBGZ05phARraNqgf+iLxoSt+PjMzE7W1tUhL+w0pKYtQUpKAVaum6T7o9+zZg/LycsvtIMwYBQiNLbBohdEynyAE4MCBnooKzuqlM71rb+7gxgifKh6w2WyIi4tDcXGx1OGcmkZAQAB69uwJm81mfjAR+bXGzLAAwIwZM7B8+XK31+12wG7fhZoa/V1PGzZsMD2/1g4ovV1RRhpbYNEK42U+AevXT5DaV8THl7otna1evVr33M3ZlsIIAx8PhYSEoG/fvs1aXtsfhYSEcEaNiCyx+v9jvWBDXXhPfZw6ZwYAiouTLAUtWjugAOjuiqqsrFQURTS7npKSRFRXhyE8/DQSE0savWPKfZlP3BHWsDNM7NKek7NI8/u82erenBj4eCEgIAAdOnRo6WEQEZEGrQev1S3YeseJ27C13ncFRdbbQbj2bmi3iMjNzbU0M7J161CsWXMZlJuzBUye/LHlreVyesnRwcE1OHCgJ9avn6A4Xp7nNGbMGGnmy+g+y5fBWnLpi4EPERG1G3qBiVE/KpFZ3yqt99esuQw2GzxqB6GmTpY2mxlxOCI1gh4AsGlelxUxMTHIzMyUOrzL6+1ERp5EXt443TwnsZej2f1TL4O11NIXAx8iImqV9BKWxW3h4pZwcSZB78E7deoqS1uwzfpWaSf+BkCsvqF+0Ov1p5LP+IivedKz6tixGOiV4ZOPt7y83KOZFfX2enHmrLQ0DvIKI3rtJvTuX0lJAo4dO+02I3bkyBEGPkRE1HbpBSoiTx7C3iQs68+wCJa2YJs10jSr7yN+n147CNf7wJAhDU1DxdeKivpoLgnJORwOaRyAE1rBj3y84gyLNzMrWrV8Gq4RSEnZK/0cHBwsjcv9/jilXXHqGTGry3q+xsCHiIgazWqgkp2dDcC1nCMv6CcXHBzsVqPGCr3AJTHxoGE/KpFZ3yr3QMYJV0Cg3w4iJWUvlPVYA/4IepSvGS0JqdntVZg8ea3bcpfedZltkRff15s5U/f6AhqCu8zMTGmmSO/+CIKyFpB8Ka4lEp4Z+BARUaNZfYAdOXIEubm5Hp9fb6eQ+nW9wMWoH9Xx48el35v1rVK/X1TUxzCg0lqW8qYoopo4jpKSBGlXV3R0JWprQ+FwRFo6j16watyyQxncqZfH5Pfn1KkIrFx5heJ9QXC1/Bg3Lt/KZTYJBj5ERNRs1DM8YuASHHwGtbWhmlvE9XYK6b2uF7joNchU1+Ixa6Qpf98sUPI2z0cv0Js+fTpsNhuOHz+OY8eOSd3Tt24diiVLbvCocahesGq2pJeeXqAYk7rdhHh/HI5IzfNs3mze8qMpMfAhIiKfs1Kgz6gnlPjQ1ktY7tr1kOEOotmzxyI2Nlaq3FxVVYW8vDzT8U2ZMgWxsbFuY62urkZ4eLjs8w63dhB1dXWKZSrxO7QqHQPutXysbL2Pjo6W6vyUlZXh+++/N91NZZX8nui37HAiLa1Q+knM25K3pSgvL8fq1atht1chPb0AmzePVJ3Ds9ktX2PgQ0REPmWlZo5ZTyjxoa2/U6inpZ1a6qUYs/GJiboN42wIcKqrq6XWFOJ55QnbZWVlut8xbNgWJCcXIzHxoDQ+rZkisyBGnvhcWVkJwHw3Wnl5uVs+lTqPSuue5OQsQmFhGjZvTgfgHqBlZmZK166XoJyWVih9XuTpLjZfY+BDREQ+Y3X2wawnlPjQ1k9YPmC4A0svQdhsfGIdG0+odyZpfceWLediy5ZUTJ7cEGRpLamZBTFa12W2G80sWVrvnuTkLMK4cflISyvUXcorKytz260nX/oSE7HNEsubEwMfIiI/5Mut53JmD26RUR6JMnlWO2E5IaHM0k4t9ZKW1fFp0VseO3LkCGpqalBcXKx7D1zcCyKqz2cWxGgx241mxuye6OU8yYNEefCnLoZolgfV3Bj4EBH5GU+2nnsa/Fh9cOv1hLLZnEhPL1Acq/fgNHug6lVxthpYyAMTrd1b8no0ZvdAJAYUeufTC2IA4/5gRvdCHWCpf/Yk2LLah6tLly6Kn/WCJ3VidHNg4ENE5Gesbj0vLS3VPFZrNkh8gJnNPshzaNQ9oXbuHIjNm9OxefNIFBSkK4KL2bPHSnkpVVVVqKurQ1BQECIjI6Xzie+vXr3acPnGyuyIMvFaWa/HLHlYq3ChyGZzIji4Rne5DQA6dTqOrKw3UFsbIm2ZX7Qox3THlnw3lRgkqQOswYMbiifKz+XpPTHbOaZOeNbSUv26GPgQEZEmo9yQGTNmICUlRfpZ/aB78MGj2LcvCElJdYiPPxfAuZp/u5c/rAsKGpJg1cFFcHCwpfybzMxMAMbLN2YzRe6J19br7ogzIl27HsLUqatQXJyELVtSIU8Orq0N1RxbYWEaCgrSFYFF587HPNqxpQ5O1A1Rf/xxCOQB3Jo1rh1ynt4TKzvHWqoJqRkGPkREfs7K1nO15cuXuy2FyX8fFwekpmp/VgyQKisrcfToUWzYsME0z0RdyVlvzOJxZss3RrV6zAr4qc8l0tueP3ZsPuLjS6WAQqu+jc3mVOx+EgMLq33GHI5IlJQkugUnGiNX/RyAJUtuUCy1ybf0OxwOrFixolG5Ua0NAx8iIj9mtnwhPlABIDGxxDCvwyoxQIqLi0N0dDQ2bNjgUZ6JlSUXsyW3MWPGSF3FxWanlZWVyM3N1e05pe7CbtTZXT6rkp+fgZycRbqtL8S8JnW9GzGAMrsvyoDLjLLvlvg98tmb2NhYqVaQyJuk69aKgQ8RkZ8Rm12aLV9s3TpU1Q9KwOTJH5tWBPaGWaAitpXwZMnFaPlGXa05MzNTqnOjNxajpSCr2/P1xgZAWuYSWekz5h5wmbFBq8Gp2exNY3eOtSYMfIiI/EhFRYWUK2O0fAHArQkmYPOqIrBVVgIVsyWXoCDlY029pKW3RKbOH9Ibi951W9mer/5u9djUDT4zMvJN+4xZWZZTEuD6d6qc+bEye9PatqV7i4EPEZEfkS9PGS1faDXXBHyf16HX50mLwxGJU6fCoZ6xkD+0o6OjNdsnANYrSquDE6BhaUys3NxwvCsHxmh7/qRJaw23w4uGDfsBp093kNpb5OdnICzsdyn3RmzDIb8uvWW5//f/PsGnn14K5b9DebBjcxujle3mrWlburcY+BAR+Sm7vQoZGfnIy8uAVksCrSURX+d1GG171gtaXA9sp86YtXcTWVkiMwqM+vbt65b3Aigf+Ort+eJ2dADSdnSt7x47dizy8vLgcERKQY/eGB0OBwRBkGa29Jaghg37AUFBgmpLvjqQtWH8+M8wYMBOxf2TX1Nr3pbuLQY+RER+auvWocjPbwh6MjLyFe0UJk9eq1juaqq8DrOHplbisM0mYOrUXEXvKwCKXlbyB7jZEplZYORwODQDH3lgoG5cevz4cWzYsB/FxUmG3y3WIvKmXQXgvgR15ZUXoK5uLMaNs+Haa/+LtWt/QXBwjdS9XWSzOaWgR9zJpRXEtKWgxgoGPkREfkjrQZ+fn4FBg3a4VUYuKUkAALcgo7noBQQAZDMhriWqpUvzFGOcPn06APNdSWZBx4oVK5CZmQm73e4WHMh3qQHu7UDMvltM3G7Mzin5ElRiYqKig/vPP38OAIbJyVo7udorBj5ERH7ISl0WMZjQC3iaK69DL3F45cppqKlxtXPQW6Iy26ll1CMLEPC//yUDsKFz5wpFAvT06dMVuT4icUu8nNl3i4nbWsdlZOT/kW/lHuQFB59BbW2oYf0lvaU4dXJyW8rRaSwGPkRE7YxRA1JxKchsdsEo32XKlCmIj49vtiUQ/RYQAX+85vo94P329oZ8p7GQJwBv3DgKGzeONu3PpUcMUlJS9iInZ5Hpjij5GEtL46WcH3nPLr0Eaq0yA+0xR6exGPgQEbUjVhuQGs1CmOW7xMbG+uxBaSVIA1wBQUjIGaxceYXiGK2t3PKZq5MnTyreM9o1Fh9fBvfKxsb9uYyqXpsFj4CyLYh8JufUqQgp6Vz8/jVrLpOKKFoZm8ifghorGPgQEbUj6iDC6MGsNwPSXO0JrAZposTEEs1ZKvmMj4urESgArF+/HoC1pSmjWjyA+z0wCmysBI9yWu0u3AX8ca3mYyN9DHyIiNow9YyJfJbEbMZB/fA1qg3TFO0JrAZpY8aMwYYNG3RnqQD18o+y/xTgqu+jlbwbFxeH6dOnIzc3V7cWj9Y9MAtsPAke9dpduHOqZnwatNX2ES2BgQ8RURtlNGNiZcZBbxdPS7QnMArSxJ5agPYslcMRiYkTlQX7zJZ/5OQzQWY5NlZnxTwJHq02RTXL8eFsjzUMfIiIPGCUkwI0b6Ko0YxJY5ermrM9gVmQdvr0acXx8jwdowad3i7/iOdPTt6PQYN2aN6D0tI4GM0IeRI8mrW7mDp1pWJnnVaRRH/doeUNBj5ERBZZzUnJzs5u9oRS9YxJRka+x8tVLdWewCxIW7dunfS6PLgDoBv0ANaXf4yuR+seiBWWlUtSgtRbS2Q1eDRrdzFo0C7TMQGuRqtdunRhMrMJBj5ERBYZzfR4c5yv6BUjzMjI112q0dJSW5+tLgspZ3ecGDhwp2HQo3W9ejN2mZmZqK2txenTpxWBlhbtpSkb4uNL3Y61GjzqtbuQf1YrL0t+PgY81jDwISLSYZQ43JrozZjEx5daqh0j583Ds7HLf1aWhdwTgAPw88+DoLXcpF4ako9TPmOnl0w9Y8YMhIeHKz4r7xvmmm3Sb5QKQKrybHY/srOzcfToUanRqdG/o+asndSeMfAhItJgZVnLaKu4L8fRmGKETb1cZTWY0Fr+czgc0u/NloX0E4Ddu4yrl4YA96DVKJm6pqYGKSkputdcVNQHymUuZaA2ffp09O/fX/fzcjExMSwy2MwY+BARaTh69Kjh+0YPTl/xRTFCwH2JxBcPUTEgs7p9Xv1Qr6hQtoAwCyKNa+xodxmXn1NdKNAomTo3N1c3T0v8rHKWyZVwLNKqF2SGQU3zYeBDRKSifiirmT04fcUXxQgB3zeg1JrlKSlJ9OieyK/NKGAaO3Ys8vLypOBO3i1eJO8ybuWcJSWJmkuDhYVpGDcu3218clZ2y3FXVevGwIeISOXIkSNur/lyq7g3rMwwNdcuLL2gRc3KPTELIiMjI6VjxeCusDANBQXplvOB5OcsKurzR/DkbvPmdKSlFf5RG8ihGSyaJWJPnz6dszetHAMfIiKZiooKtwaUmzalS32TrGwVl+euaPF0qcksOGip3T7uCcdK8nuizrERf/Y0iLTbqzBuXD7S0go9ygcShACUlCT8sUylVyyw4XtXrFihudxltqzozTIXNa92Gfj84x//wNNPP41Dhw5hyJAhWLx4Mc4777yWHhYRtQHqJY4vvrgIGzeOgrwhpNlWcaNlMpEntX7MggNfL2VZZVRxWH1PVq9erblUFxx8xjCIDArSfkwZ7YDSzgcSUFycbFIhWUBpaTySk/cD0F/uas7ijuR77S7wWbFiBe644w688sorSEtLw6JFizB+/Hjs3r0bXbt2benhEVEbsmlTuiLoEcm3ig8adDmGDIlAfPy5AM5VNL0E9PNyPKn101y9szylHWA4MW2a+3ZyraU6wLz9QnR0tGLLtxV2exUyMvKRlzcWDf/ubNiyJVUzIJIfk5+fgUGDdrgFMy1V3JF8r90FPs899xxuvPFGzJ49GwDwyiuv4JNPPsGbb76J++67r4VHR0RthcMR+cfyllbDyIat4hMnhiEurpvmOYzyctRLP0ZLUi3RO8sKvXGpt5NrLdU15NnIG3M6kZX1BhISyhSfN9ry7XA4UFtbi5MnT0qd2F1jc8D9310A0tM3KfKDrC6zcct5+9GuAp+amhps2bIF999/v/RaQEAAMjIyUFBQoPmZM2fO4MyZM9LPJ06caPJxElHrd+xYDLRzQQSMHdvQmkDvb/hmeTny7dUio+Wv1rq8otc0VD7Lpb0kpnVvA1Bbqz9jor43elviS0vj/mgpoWSzOZGWVijlBwUH12DJkhssz6QxqGkf2lXgU15ejvr6enTrpvzbV7du3fDLL79ofmbhwoVYsGBBcwyPiNoQvTyRCy/8D0aOdP1FSmsHT2VlJQDjvBzxfbPlr9a4vFJRUeE2W6XXNFScATp9ugPUFZZd9Jt8ioyuTX93mdZ3KWfJxH+2xpk0alrtKvDxxv3334877rhD+vnEiRNITExswRERUWvg3jjSibFj86WgB4Bm3mBdXR0A/byc0tJ4vP32dZYKH7a25RWzKs0HD8ZpznIJAqC9ZOhedVledNFqiwb33WXu3zVt2krNis6tdSaNmk67CnxiY2MRGBiIw4cPK14/fPgwunfvrvmZ0NBQhIaGNsfwiKiNMXooZmZmKh7KYiXj48ePA3AFToMHb8ePPw6B+IA/66xd0k4wwFrhQ/E79FpX1NTUoKysrFkCIKOig65rHQz1EpbxLipADHq0cnvEa1NTX6vR7jLAFXAmJh7Ufd+sRxa1L+0q8AkJCUFqaiq++OILXH755QAAp9OJL774AtnZ2S07OCJqE6wuL3Xp0kX6vVZrCYcjEtu3D4Z8x9CuXWd5VfjQausKeY6QGCiJyb9qQUFBiI6O9ipg0spfagjwlFyzXoB+7RzX59W5PWIOlFHvL5HesqTWTJInuEOrfWpXgQ8A3HHHHZg5cyaGDx+O8847D4sWLcKpU6ekXV5E1HY1tgu4Fd4sL2kdq5fjY9bVW4vV1hVHjx5FTEyMbqCk9zmrncSNrk0v6HHftu7841jj3B7Aeu8vrd1lGRn5iI8vdZupE5fQ1Oewct3UPrS7wCczMxNHjx7Fgw8+iEOHDuGcc87BZ5995pbwTERtS2O6gHuqsZ93OCJx6lS4Zo6PUeFDK4yCAbHasFagpNXmQf458Tgr99RohqWBcvlKvmRYVNTHNKHY035oVnN1YmNjGdD4uXYX+ACu/0i5tEXUvlhtamn0t/jmmDFS7i5ySgGCfJyDBu3QfEDv2bMHJSUlCAsLk5aigIaaP3r1cOTBQGlpqdt41I09tYIIT+6p1gzL4MHbsX37YMXn5Tk78iVDoyBlzJgx2LBhg1f90Kzk6nD5itpl4ENE7Ze3ndG9yZNp7NiAAAiCE9Om5SoqGes9oDds2GB4fr16OPKu4vL6QOJ4tPJr5EGE2T0VAy9xqz6gHbxcfPGXhvV85PTuQadOnQBYq1ZtNYiZPn261/lM1P4w8CGiNsXbzuhW82TUx1mZJTIaGxCAiIhq0w7lWmNRv965cwXUOUIAUFDg6ioujiE4+Axqa0Nx6lS4pQaievd0584BGDBgp2axRcA9eDGr5yPftm8UFInnMqux09q2+1PbwMCHiNoUX/StMnsoi6zOEmVmZloam7iMIzLKvdEb44gRBdi8eaTi+wUhQHEe+Y4mrUAJEBRBhF7OzuefT8D69eMMaw1pMZtBMrr/8qakVvJ2GNSQp8wKLBARtSriTIDroe7eBdyM3kPZ4Yh0O9ZqI1Fxu7jZ2MRlHMAVfD3/fA42bx7pNha9QoAOR+QfMztO1Qic2Lw5XRa4NHSSbygSKCcgJWWvdD+OHYtBRka+NG55orLe/XE4IlFcnKR534xm5czuv82m3B1mt1chOXk/6+yQz3DGh4janMZU2/V2qQzQX56xOksRHBwsncco9+bAgZ6aYywsTPsj8FFvHbdpvCZ/T811verdVRdcsBEbN17oNi71/dm0Kd1tZ5rrml3LbHo72jp3PmZ6/wVBHaRpY5IyeYuBDxG1Sd5W2/V2qcxoeSY6OtpSron4vlGlYZvNiZ49D2h2Dt+8OR3x8aXQDny0lrS0CwjabE4EB9e4zbx884170OPScH82bUpHXt5YyGeE1qy5DDabOMMkzha572gT/30Z3X+r95JLXOQtBj5E1CZY/Ru+2XFWkmbVrOwks/IgFtsvaOfUNCyNJSSUIT3dPZfHFZQImoHDBRdsxDffXOiW46MuICi+VlsbaqnAorwbvcMRiby8DLgHXgFomKixyV7T3tFmJWmZqKkw8CGiZuVtLR1f7uDxdKmsMctjWrQaoI4YUYABA35GbW2olMuzeXM61DM1iYkHNWvoNAQ9Tlx44Ub07l2suDb19TockRrBlxOpqVuwZUsqgIYKyIMG7UBxcRJOnQqHZ6mh2jva2BiUWhIDHyJqNt5WX/Y0WNI6Xl6DBtBfKquurnZ7zRc7ycRxisSHf0lJAgAbHA47liy5QTELMnmy9syIPHAIDq6RPufiWrIaPnyL7lZz8Wd18AXYsGXLubDZnEhP34S0tEIUFfXBokU50hi0ZoT+uCNu12t0j9gYlFoKAx8iajbeVF/2NFiyugVdz/Lly90CL2+Wx7TExMRg+vTpyM3NBQBFcrHWTqqcnEXIyVmkOTMiBg7FxUlez0bJg69Vq6ZBEBq+v6AgHQMG/Oy2xOcKAMXgx4mxY/MRFva723Wo75F6Kz9RS2HgQ0TNzpPqy54ESxUVFW4tG4wK5ZkVMdSaodEKQjzZYSS2oXCv8qycMRGDF/lWbq3xms1GjRs3DklJSVKX9uPHjysCELu9CseOndYMnkpKtHeXTZuWi4iIas2ltODgGtTWhrjdI/lWfqKWxMCHiJqdWc5MeXm52/KVWbC0b98+rF+/XnFOo0DJShHDpqwMbLSzC3BfJtIbr9lsVMeOHeFwOKRGpIB2RWit4Ckx0X13mZhnZLUFhUjcym+G29SpqTHwIaJmp72rybXFGmjoNyVvNmwWLKmDnoMH4xTNOeWBEgDLM06N2WGklWsk9r0y6nAu341VXJyE4OAzhuPVmo0Sg5ulS/MU16QOoNLTC5CWVqgZPCUklPlkiQ8A7HY7t6lTq8DAh4ianXtirQAgAEuW3KCb66M3K3HqVAQcjkjNh7teIT7AZhhEFRcXSwGKSN4t3coD2izXSGumJiMjH/Hxpejc+ZgiqVirRo86j8dKnyytWbPNm0di8+Z0TJ68VjOfyGiJb+zYsQCAvLw8w3th9Z4RNQcGPkTUIoYN+wFdux5S7EgymnnRChQEAVi58grDh7ucfPnIKC/GyoPcrIu7laaoekGFVpd3efKzerzq79GbHdJfXmtIpk5O3u/2rt4yVnJyMuLi4tCvXz/O5FCbwcCHiFqMXhE9vR1J8l1IK1dOg9Yylv7DXblMY7SEY9Y5HLDexwswzieaNu18REa6+lSJicfa12DTrYQ8ZcoUAK4lQqMlQb3CifJjPFnGEvNxGNRQW8LAh4iajTpx1Zv6OOIuJL2lH71zZmW9gYSEMuk1vdkWdZDiWn4qMwyCRPKcHnGpzCwpW5w1AVyVnTds2GB4DVo7pmJjYy3dU/clRrgdA7gCqaCgINTV1SE4OBh2u93tWjmLQ20VAx8iajbiLqnS0lKsXr3aUn0crV0+njzc5Ym6auolHIcj0i0hWuxLpbfzS6SX0+NN1WdPrsHqZ9XLa4WFaVJlaPUxsbGxUjBG1N4w8CGiZhUTE6NYJjJKni0vL0dsbCxmzJiB8PBwlJeXWwqYzBJyO3XqJCUqi+cEgMLCNLi3ZFAWFdTKPwL0c3qCg894VfXZk7YO8gaoVj5rt1dh3Lh8pKUVsm0E+R0GPkTUJIzaTKh3TOklz4oBCeBKJpYv6Vh5uGuds1+/fppLNA5HJAoK0g2vSV1rSO+a1Mtlgwdvx/btgw23hFdUVFi+L1OmTJHuhbjkJDZANfusp8cQtTcMfIjI56y2mdBiVE1Zveyl9+AeO3YsIiMjFVvQAeO8FLOCgi4NMzXyoEw9fnVOz/btg3XzcwDzre9q8fHxbtfhy8J/LCJI7RkDHyJqNPXsjtHshzxPRr4byexYQFlJWV2NWE6+Hd1s27nIaMeTi4CxY/PdcoLUQZpeTk9tbYjmVvHKykrU1dUpXtML/qZMmaIZ9ADWq0wDxjvSmLRM7R0DHyJqFP3ZHdcWbaMdTfKlK6v9uzx9KFvddq7Vrdxma2jMmZGRj5EjC6Tj9YI0s51q4jKVGLiJDUvNziu/HnFZSx2kMGAhMsfAh4gaxaiJaHp6geUdTd7sfpLzZDlNzqgRqWtc7jlEZkGaUeK13o4phyMSJSWJhm02nn12q25XeiKyhoEPEfmEdjuEdMs7msxmSiorK3W3WFtpOKpHXCI6evQoamtrUVVV9cfSU2/pmKCgP6Fz586ora01LRKo1zvLiHz8aoIQgMLCNBQUpOt2pSci6xj4EJFPaCcHByA9fZPbQ1srEDCbKcnNzdWc3bC6RKanoqICR48e1c0XksvMzARgrfCiXuJ1ZWUlAP0Ch+6c0v3z5vqISImBDxH5hF4wkJZWaLlejNlMyc8//4xOnTohODgYtbW1ABq3RKa3m0pv2Uz8TrMgTZ3HI6fO6THeTebEiBEF2Lx5pFfXR0TuGPgQkU+YBQNaD2mHw4EuXbq4nQdwBQTqz23YsMHtHGazL+Xl5bo7lbSKDhotK8lZWc4SBMHt/OqASns3mashqc0GRESc8qoAIhFpY+BDRD7jaW7LihUrkJ2djczMTGlmxNN8HbOAS9wqb5YEvHXrUEViMeC+rBQUpPxfppXCi/Lzq3uAjRxZoLGbrKELuyAEID8/AxkZ+cjPzzBdLiQicwx8iMinPK0GXFNTIzXB1MvXCQk5g8TEEt3u6VYCrtLSUqkIohgAifk24ve6t6tQLitFR0djxowZWL58uSe3RPO6XD3AgJEjC6Tx//zzAKxfP8Ht++PjS5GTs4jtJYh8gIEPETWK1Sq/enkz5eXlCA4OBqCfr7Ny5RXSTAcAzRkhMeByOCJRXJzk9j3q9hdAQ76NUZ6NelkpPDxc87qCg8+gtjZUczu99vltyMvLwKBBO6SxDxy4E3l543SbrzLgIWo8Bj5E1Ch6FYPlzT+Nlq/kAYlR9WRx9seVNqO9w0lrOSk+vswtGCktLVWcW+971ctK6l5aym3oYl6O+/Kc/nUpk5StdKtXY3sJIs8w8CFqJw4eBPbsAfr2BRISmve7jXJnPNlu7p7voqT32rFjnQG4V4l2LSe5ByPqHJyioj5Q5iG7dlOlpRXqzhq5b0PX7+Jut1chIyNfGo9IK0nZaNlO3pwUYHsJIm8w8CFqB5YsAebMAZxOICAAeO01ICurpUflord8VVKSALt9l9vx4oO/pCQBK1dOgzzvxjVrArfXOnc+prucJH6fXrCll9+jDnrUn/n554G6y2Na283Fdhd5eRkAzGsaab2uV/WZiKxj4EPUhlVUVGDfvjrMmdMVTqfrIe90AnPnCjjnnCNISgpq8RkBvWWeVaumoaZGe8eW68G/CzU1a92Wrk6disDmzenQCh6MmoyKwdaxY6dNm4qql6DS0tJQWFgIQHt5S01vu/nIkQUYNGiH10nKXNYiajwGPkRtlFh8r7g4CU7nTMV79fU2LF68DsnJ+xXbuOVd1EtLA1BcHITk5DrExzsBNM3Sibh8ZbZVXIt82ae0NF6xpTs9fZNiVsZoW7iLE6tWTfO4qSgAKejRXt4SVP909Sgzuh9a1ztjxgy3xGk5LmsR+QYDH6I2SgxgzB7c4nHyKsVGyca+anqpbv4ZEnIGK1deoThGvSQk3/kFQPp9587H8Pbb1ynydwoK0jFgwM+629rlgRLgBGCDIGgvfVlNKNZbThs//jMkJh7Azp0DUVCQjs2bR6KgIF1xX9X5Oep7xaCGqHkw8CFq46w+uMUAyCzZWK/ppXy2SIv64S3u9iotLcXq1auRmFhiGKC5LyEJEJez9Lq8L1lyg+629uTk/dKy0qlTEYZBl9XCi8HBZ+AKopTXMGDATgAw7KnF/Byi1oGBD1E74EnFZG96W+n1tFJTzxbFxMRIwZJRgKa9hNQwO6PV5R0QTHeKyWv7eNtUVCQGZq6gR7l13W6vQnFxktc9w4io+TDwIWon9B7cYu2ZHTsqUVychODgMx73fjKa6TE7Tr3kpRWgGTfqBNRd3tWzLoBxkGG1qahaZWUlcnNzdQIzJ6688n3067cXgLWO7UTU8hj4EDVCc9XOacz3rF69WraMdBZsNicGD96O7dsHe937Sa8Ksxa9AodAQ5FDo8KFgLLLe0lJAqqrw7Fu3f/zKMgwmhVT9+ACXAFbdHQ0AP2dXx98cJViic3T4oNE1PwY+BB5qblq5zT2e7RyerZvH4ysrDdQWxvi8bZqT5uIAsYFDgHtGRmxXo88gFDmATmlYEkdZOgFZpdfPhydOnVCVVUV8vLypNfF1hVqmZmZAPS35KuX2IyCK25FJ2odGPgQWaCecTl4sCEYAcTaOcD48b6b+TGr0RMR4bB0Hr2cntraECQn73c7vri42O01dTNPK1WYzVRUVEjnBdxnZFxjbwgg3JebAiAITkyblovExIPS9xsFZhs2bPBojLW1tQD0t+SL90BcYtNbMuOuLaLWg4EPkQmtGZfevRuCHlF9PbB3r28CH6s1eqzwNPdEPhOi5k1itBa9ZGl1ntLEiWejY8d+WL9+ve5yU0REtWKmx5vATG+GSL4ENmzYD+ja9ZC0k0wkv5fcuUXU+jHwITKgPbMjYM2acgQExEozMQAQGCggMvIIKioaXy3Zao2e6dOnS3koamL+jNluKqu5OlbG4+n1mdm8eTOmT59u+bsLC9N0AzMAmtdqNEMUHR2t2JKfkFDGPB6iNo6BD5GBPXu0ZnZsyM39BJdd1lnxALz44nwsXuzqBD5//kyfLG1oBS0ZGfk4dsx17rq6OgDmSylauSd6D3yjYKipEniNvlO8RrPvdjgi/2hloWSzOVFaGi8VQFRfq9kMkfq+Mo+HqG1j4EOko6KiAlFRdQgI6KqY2RFnGZKT9+u2U+jR4wTuvNM34zBq21BUtBbDhrk6hmdmZqJLly66AZB8GUnvgX/6dAfF+bUSl40e/A6Hw+N8FnUAlpGRLzX0BICTJ09a+m5XMOi+K2zYsC2yCs7K4Mbq0p3RzjQR83iI2gYGPkQa5Dkol13mPjMi7w8FwK2dwr332pGZ2ZAI3dgt73rf8/HHl6Fr10NISCjDihUrAFhrOaH3wNcLEOz2KowdOxaAKwdIr2aQJ2MAtAOwvDzX94jBz/r1693uhdZ3a++8ciI5eR+2bDnX7VpLShKQmHjQ8tIdgxqi9sGoYhiR35L/zX7YsB+Qk7MIM2cuQ07OIrcZEK0gor7ehsLCCrzwwkn06gVcfDHQq5crUdpbesHKG2/cgK1bh7qN3WjZRQwSlLS3a4v5MXl5eYaJz3JWc3j0el/l5WXA4Yi0dA6RuBQmXpfN5sTkyWulVhlqK1dOQ1FRH7fPMGeHqH3jjA+RBUbtDPSSbj/7bNUfO4Bcr8m3oicleZ4ArV/kT3vnktbyjF7CM+BEauoWbNmSCuXfh5w4dSoCDkek5vV7mhztyTXpNS/V+x6HIxKdOh3XrE/k2oo+Ccpu7a77lpOzCDk5i5izQ+QnGPgQNZJe0m1tbajmTJC4Fd3TLujuwUoDvS3lVhKeCwvTUFCQ/sdykICGdhCujuYrV16hme/jTSFDrWvKyMj/Y3nLPY/K6vdoHSPf7p+Sshdify058b4lJ+/H7NljFTV4mLND1D4x8CHyAa2kW7PGmGaJsnrf07XrIbzxxg1Qdwi3sqVc67zyjuKuxpsCJk78GOvWXQpBaGgUKp9VcjgiFcX8jOrlaHV1dzgaii+KuTx5eRlQV2q2suvKyjF6ic+swUPkfxj4EPmIejmsMVu/5ctU4vKUKCGhDJMnN+68Yl0avbyhurpgw1mlwsI0WGkSarWr+8iRBRg0aIel5qXq77FyjPaSmoCMjHzm8xD5GQY+RI1klH9itP3ajLjMIm/r4KvzmhVI7NnzgO5slcMRiYIC93o5gPusk9UkZ8AVKN5440TYbDZpd5iVooWdO1dA3a1dfYxWTtPYscpt88znIfIPlgOfEydOWD5pVFSUV4Mhamus5J+IM0EORySKi5M8SgQuKipSNNBUB1mNna3Qm5UyqlBcXJyk2UV9xIgCaTzl5eWKf+qNX01dhdrKrFlRUR8oc3e0Z8CMgsUZM2Ywn4fIT1gOfKKjo2Gz2QyPEQQBNpsN9fX1jR4YUUuy8rd/T/pCaQVI5eXlhgm0FRUVWL58ueE5tJKJPZ250AsI9F7Xm4VJSyuUfpYvzXk6fqvjAxr+HSgTo8VkZpcZM2YgPDxc9/xMYibyL5YDH0+7GhO1ZUaVeh0OB1asWGG56q9+gLQIdnuV7u4u+XebJROLXcHFoKesrEz32kJCQtyCI73ZI73X09ML/mgPYS3HSO8eiMUXjRjNEpn9O5g+fTpSUlIMz09E/sVy4DN69OimHAdRq2M2C2C1YafZw/nIkSOm32WWTCzuSLKaTJydnW0Y2NXW1iIoKAjR0dGK5Gr1rE16+iakpRW6BXrqQMWo+OLkyQ0zPw6HA3a7XTrGbJbI7N+BXgNXIvJfXic3V1ZWYsmSJdi1axcAYODAgbj++usV/9Mias+s7trS21FUWhqP5OT9yM3NRWZmptt/O2J+TFMkE9fU1Ohu3dZ7XWvWpqAgXbHEpReoWC2+WFtba/h96qXEpmqaSkTtl1eBz/fff4/x48cjLCwM5513HgDgueeew2OPPYb169dj2LBhPh0kUWtllH8yZswYbNiwQadInw35+RkYNGgH7PYqrFixQndJR7utgzKZWI83lZXVdXfEAMxs5sosULFSfPH48eMICgqy9H0idksnIk94FfjcfvvtmDx5Ml5//XXpf1J1dXW44YYbkJOTg//85z8+HSRRa6aXB9OpUyfp9/HxZdCrGmy3Vxku6VhJJtZidM7KykrNmR2jpTKzZSWzQEWv+KJ85kqeS2j2fdOnTzdcymLSMhFp8apJ6ffff497771XCnoAICgoCPfccw++//57nw2OqL3Qagoqr4ujNVMiNunUar7pbTKxeM7c3FxUVFS4fc69wrJrC77Yq0tvHA5HJE6dCte9RlFk5EmoA0C9zaJm1921a1fExcXp/mLQQ0RavJrxiYqKwoEDB9C/f3/F6yUlJYiM9KyjMlF7dfz4ccVSkyd1cdRLOmYFC9VLOlaWiczygfRmjNTjkB8HOKVZGq0AzdU6Qn/mSyTPeXrwwaPYty8ISUl1iI8/F8C5nM0hIq95FfhkZmYiKysLzzzzDEaMGAEA2LRpE+6++25cddVVPh0gAOzbtw+PPPIIvvzySxw6dAjx8fGYMWMG5s+fr/gf/vbt2zFv3jx899136NKlC2655Rbcc889Ph8P+Y+DB4E9e4C+fYGEBM8+++yzlfj44xxFEKDVBTw4+AzMKg8D+ktqWsX3rOw4UxcXlL9mlq8zfvxAfPvtfrfjgAAIghPTpuUiMfGgpURvm82J4GBlEGa326WluLg4IDXVbahERF7xKvB55plnYLPZcN1116Gurg4AEBwcjJtvvhlPPPGETwcIAL/88gucTideffVV9OnTBzt27MCNN96IU6dO4ZlnngHgqiw9btw4ZGRk4JVXXsFPP/2E66+/HtHR0ZgzZ47Px0Ttl5jc+957YbjnHjucThsCAgQ89ZQDV199GtXV1abn0AsccnIWKbqGi7MlrqDH1T1cPVMi1ujRojfzoZVMLAiuKsdino9WkUGR2YzRt99+q3scEICICNc9Uleqdh+XAEEIwJIlN3jV3Z2IyFNeBT4hISF44YUXsHDhQhQVFQEAUlJSDKujNsaECRMwYcIE6efevXtj9+7dePnll6XA591330VNTQ3efPNNhISEYODAgdi2bRuee+45Bj5kmZjc63BEYtGiHKk7udNpw913R+G3396E3V6lWw1YrHljZanJfbbEFfRkZb2hKOpn1jVcvgtL3tcrJWUvBEF+pH5laTWrNYr0jistjcfbb18nLX+NGFEg1fvRSnI2qnpNRORLjWpSGh4ejrPPPttXY/GIw+FA586dpZ8LCgowatQoxdLX+PHj8eSTT+L48eOKHTZyZ86cwZkzZ6SfPelJRq2fp0tVYgBhFriEh4cbBiNWAge976ittb4F22gXliufxlplafWWd6v1cbSOy8jIR35+hmL5a/PmkSgoSJdmdWprQy2NjYjI17wKfH7//XcsXrwYGzZswJEjR+B0KndybN261SeD07N3714sXrxYmu0BgEOHDiE5OVlxXLdu3aT39AKfhQsXYsGCBU03WGoxS5YAc+YATicQEAC89hqQlWXts1ZnPPRYCRysfodRLRqtXVhiEGPl/EZb3q12gE9J2YupU1cBEJCYeFC37pB8Vqex95eIyFteBT5ZWVlYv349pk2bhvPOO8+0eame++67D08++aThMbt27VLsHvvtt98wYcIEXHHFFbjxxhu9+l65+++/H3fccYf084kTJ5CYmNjo85JveTJzU1FRgX376jBnTlc4neJSFTB3roBzzjmCpKQg0x1BRoGLwxGJTz89jXPOOYz4eFfQr5VrYxY4mAVHU6ZMQXx8vNt55Utb8gRlrSDG6PxWKyMbzcBofaerQagyWVskzuokJ+83HBsLDxJRU/Eq8Fm7di0+/fRTjBw5slFffuedd2LWrFmGx/Tu3Vv6fWlpKcaMGYMRI0bgtddeUxzXvXt3HD58WPGa+HP37t11zx8aGorQ0FAPR07NwSzJWCvYEJd+iouT4HTOVLxXX2/D4sXrkJy8X7cxqJzZ1m31DEl2drbbOcwCB6PgKDY2Vvf61IySqbV2kgHWKyOrk6srKyuRm5ur+51ZWW9AvWVdJJ/VefTRZG5VJ6Jm51Xg06NHD5/U6+nSpQu6dOli6djffvsNY8aMQWpqKpYuXYqAAOX/sNPT0zF//nzU1tYiODgYAJCXl4d+/frpLnNR6yU+4A8ejMOSJTfoJhmrAxhxJsRsKcVqTyt54GI2Q2L1nEbfISdPVAZcsyB6S1unToXrBjHJyfs1z291uUkvuVovcPr1177QDnyUszribBa3qhNRc/Iq8Hn22Wdx77334pVXXkGvXr18PSY3v/32Gy666CL06tULzzzzDI4ePSq9J87mXH311ViwYAGysrJw7733YseOHXjhhRfw/PPPN/n4yPdqamqwdetQrFkjbvVuIJ+V0As2mqJ5pZUZEqtLNOpdYQ6HAytWrFAck5ub6/a5zMxM6ffq2ScrtYDUiczKreVOpKcXuH2nuJymnonRazz6n/+Mhrg1Xz4Wcbea3hIeEVFz8CrwGT58OH7//Xf07t0b4eHh0gyL6Ngx3yYo5uXlYe/evdi7dy8SVAkewh/7de12O9avX4958+YhNTUVsbGxePDBB7mVvQ2qqKjAjh2Vsvo2SlaTYK0m51plZYYkJiYG2dnZhrM/VpZy9JqLit3LtWafXGNzBT9agZ5RJebCwjQUFKS77b4ClPV+srOzpeBOv/GoWMFZUHyXuEWfQQ8RtSSvAp+rrroKv/32Gx5//HF069bN6+Rmq2bNmmWaCwQAgwcPxsaNG5t0LNS05Dk6gnCW2/ueztyY5dioGc3YWJ1FauxD3SiPSKQ3+zRtWi4iIqrdAj2jZToAKChIN0xyFtXU1CAuLg7Z2dkoLS0FsBohIWewcuUVqqsIwNSprrFcc00aBg1i/g4RtQ5eBT6bN29GQUEBhgwZ4uvxkJ8zytEB3Iv7+ZrWjI1YlBDwzSySfFeW/DsAazutAP3ZJ602EYDxMh1gs5TkLBcTEyNdQ2JiieFYBg0ab1jziIioOXkV+PTv3x+nT5/29ViIJHqzK00Z9IisbHX3dtnMqOAgYH2nlZWt8LGxsVLQZrZMp/XeqVMRUld2I02RT0VE1FS8CnyeeOIJ3HnnnXjsscdw9tlnu+X4REVF+WRw5N98naPTGhgVHLTbqzwq7Ge2FV4+y2IWnKjfEwRg5cordJfaAOWyoNFYWJOHiFoTrwIfsW/WJZdconhdEATYbDbU19c3fmTklxwOh+z32gm+Rqw+ZD15GDfFOQH9XB6jACUoSPmfrN7sk9hI1WpwIr5XUpKAlSunwUoPLV8lchMRNSevAp8NGzb4ehxEqKiokLZ0W0nwBdyDjaZ4GHtyTq38HTmxNo9RLo9RgBIdHY0ZM2Zg+fLlhmNevny5VOMoOzsbR48exYoVK0yX6U6csMOTHloMaoiorfEq8Bk9erSl4/7yl7/g73//u6LqK5EeMWCwkuBrVAumKR7GVs5plr8jZ5bLoxegeDKrJN7PmJgYRe0rLfJAU6sGD3toEVF70aju7GaWL1+Ou+66i4EPAdDezSQnzoZYSfDVaufQ0szyd+T0dq1pJRSLicrirFJZmTLB22xJUD6TpvUZAKpaPDaIwQ97aBFRe9OkgY9YXJBIPRviaVCgnnVo7Q9gvaU6+XWrqyYDNs2EYjFRuaKiAmVlZaaNSdVLguqATP2Z9PQCjW7qNowf/xkGDNiJ2bPHIjaWNXiIqH1o0sCH/JNRnRrA/GFttgNp+vTprfoBrLdUd/p0B+TnZyiuKSdnEUpKErBq1TSpH5nW0p7WMprZkqB4z+X3XuszBQXp0Gp3MWDATtjtVbq9uoiI2iIGPuRTZnkuVgv0mSX4tmZ6S3Vi0CP+LHZPj4g4bbq0p7VEaLYkKG81YfaZESM2SdWbubxFRO0ZAx/yKbM8F6sF+oDGFQpUM8ovqqyshM1mg91u13zf0yUevfwdvev2pHaP2feYfa60NA5ayctpaYVISyvEoEGXY8iQCMTHs8UEEbVPDHyoyWgtaaWk7PXqId8Ynuy20iNuDbdCa6kuIyNfMeMDNFy3N5WPxYBSfl6zzzkckcjPz4A86AEEZGTkS5+ZODEMcXHdLF0nEVFb5HHgU1dXh8cffxzXX3+9W6d0tRkzZrCKs5/SW9LKyVnU6PYG4tKL2S4xcbbCk91Weu8ZfY8WraW6sLDfda/bkyrV6oDyggs2IizsNHr2PICEhDLda9CabQNsiI8vVdwzIqL2zOPAJygoCE8//TSuu+4602NffvllrwZFbZ/RkpbRQz4zM1N3yQlQFgq0skssOztb8XmjxGqj98QEYaOlH3XQoF6qk193cHANamtDFVvXjWr3GNU42rhxFMSt54MHb8f27YMVM00jRxYAMF8aa+1J40REvuDVUtfFF1+Mr7/+GklJST4eDrVWVmdXRGYPWb2HvN1ut7SDSD4Wo4BFfpxRYjUAw6RreaKwetlLfm+mT5+O48ePIy8vT3PcdnsVior66I5XrNkjUtfu0Zu1Ecf8449DFD/n5Y0FAIwcWWC6pNa1a1fDe05E1B54FfhMnDgR9913H3766SekpqYiIiJC8f7kyZN9MjhqHazmyMhnV7zt2O3pUovVXWKA8SwUYNN87+efB2DgwJ26y15W7o1RsUD1eOU1e2pqalBTU6Oo3aOdOC1nc/s5Ly8DgwbtgN1ehUcfTcaDDx7Fvn1BSEqqYxIzEfkdrwKfv/zlLwCA5557zu09Niltf6zmt6iPM1rSUs9sAN41tPRkl5jZLJR7QCFg/foJyMsbp9srzCx/yEqxQPV4jYIpdUCp3qHl/jMANJzfFVh1Q2qq5umJiNo9rwIfp9Pp63FQO2GW5yLS67PlKU+2dJvNQukFFEazSHLqIEe9k0sQArB5c7rpeM0CTXlAWVoar9jVddZZu7Bz5wCot6uz1xYRkYtXgc/bb7+NzMxMhIaGKl6vqanBBx98YCnxmdqnpuiObsTTJTWjWSjxvZ9/HoD16ycoPmfUoRzQXnJTb193CUB6un6xQL1zqxO3xYAyOXk/Bg3aobieTZvSkZeXAcC7XXNERO2ZV4HP7NmzMWHCBLdkyKqqKsyePZuBj58zCmrE3BV1o02RN0GR2VZwq7NQ4nsDB+5EXt44j2oN6S25abWCEIsFerN1XS8Rury8XErAHjmywC0YIiIiF68CH0EQYLOp8wiAgwcPGm5FpvbBrBu4Hk+SpD0NfoyCmZiYGEyfPh25ubnSa0bX4MkskthRXm/JzajAoNb5HA4HamtrpTFaSYQGrAd3rNNDRP7Oo8Bn6NChsNlssNlsuOSSSxAU1PDx+vp6FBcXY8KECQZnoLbOSjdwPd4mSWux+gAXj5P397JyDVYKClZUVEjBlF6wNGzYD7qzL2lpaQgPD0d1dTUKCwsBACtWrJDe9yRxu7mXGImI2iqPAp/LL78cALBt2zaMHz8eHTt2lN4LCQlBUlISpk6d6tMBUuvhydZxq+fzZuYI8P5B78k1mM2aqL87JWUvpk5dBUBAYuJB08KEYrCjJt6X4OAzHrX3YFBDRGTOo8DnoYceAgAkJSUhMzMTHTp0aJJBUesiPujNZiA8WUZpzMyRyJsHvdk1WK0crebJ9RgFfOrzqCsxM1GZiKhxvMrxmTlzJgDX33iPHDnitr29Z8+ejR8ZtRri7Mq+fXV45x0BTmdDfldgoIBbbpmIpKQgy4GIr2eOPGFeUdpa5Wg5s+sZN24c1q9fD0A/QHI4IlFSkog1ay6DmAwtCAHYvn0wsrLeQG1tiNtSGfN1iIg851Xgs2fPHlx//fXYvHmz4nUx6ZkFDNufmJgYxMQAr70GzJ0L1NcDgYHAq6/akJrqWTdvT3JXfM3bitJGzK5HXBLWC5BOn+6gs/XddUxtbQiSk/crdnExX4eIyDteBT6zZs1CUFAQ1q5di7i4OM0dXtQ+ZWUB48cDe/cCffoACQmen8Ns1kVszyDnywe9J53QrbBaRFEvQBJr7miRn0e+i4uIiLzjVeCzbds2bNmyBf379/f1eKgNSEjwLuARmc26yBuCynm6zV3ePPTgwYNuY/DVdm+rs0j6fbb0gx7m9BAR+ZZXgc+AAQM0/1ZOZEQeVHgz61JaWoqamhpLsz9WawbJzZgxw3JgVVFRofhvwMr1uPfZ0mazOTF16krFzjAiIvINrwKfJ598Evfccw8ef/xxnH322QgODla8HxUV5ZPBUfui3oIurzYsp7frSX6s2eyPUfNQAJrnDw8Pt3QdekGV3iySvN7VsGE/ICTkDFauvELz3OIsz6BBu9zeYzIzEVHjeRX4ZGRkAAAuvvhiRX4Pk5vJjNmMitVt4VaLIarP6WohYQNg83obvVlHdtGUKVMQHx/v9vnExBKNJS8npk1zn+URt9czmZmIyDe8Cnw2bNjg63EQ4eDBOM1dTyEhZ5CYWOJ1kUTl0lJDsOGLbfRGgVpsbKwUrGRnZ6O0tBSrV6/WzQkSZ3nE3VsMdoiIfM+rwGf06NHYuHEjXn31VRQVFWHlypXo0aMH3nnnHSQnJ/t6jOQHtm4dqqhhIxKEAKxceYXh7Iw8iVkk5t9o7aRSn9/bbfRm9XvkOUAhISGK2R+jnKD4+HgGPERETcSrwGfVqlW49tprcc011+CHH37AmTNnALgaLD7++OP49NNPfTpIat/EAEJvdxOgPztjlsSsv5PKxWwbvUjepsIoqBKEAJSUJODYsdNYujRPMdbs7Gz20yIiamFeBT6PPvooXnnlFVx33XX44IMPpNdHjhyJRx991GeDI/9gNisj0pqdMcu3cd9J5Z7jY7aNXo9e/Z6VK6cBcF/6qqmpYR0eIqIW5lXgs3v3bowaNcrtdbvdjsrKysaOiVoxrWUlOW9mLLRnZcQ2KNYadAL6+TbDhv2A06c7yAoFOjFixGakpRVqLnFZaZ4qHpORkS9VXXZdQ8OYm7MVBxERWeNV4NO9e3fs3bsXSUlJite/+eYb9O7d2xfjolbIam0cq4UGxeUjvWRfAJZbSxjl2wBAfr68OnIACgrSkZbm3h3dbFeZwxGJwsI0FBSkS8dkZOQjPr4Up05FuG1Tb65WHEREZI1Xgc+NN96I2267DW+++SZsNhtKS0tRUFCAu+66Cw888ICvx0ithNUt5FaPU9f1efDBo/j55zPYtm2lFCjoJQCra9oY5dtERJy21BvMLFlZKwFbEAKQn5+BnJxF6Nz5mKXWFURE1HK8Cnzuu+8+OJ1OXHLJJaiursaoUaMQGhqKu+66C7fccouvx0jtmHxmKC4OSE0FLr10psfLaXpJzKtWTUNGRr7GewJKS+ORnLxfeqWkJFE3QAKguetMfkxy8n6fN0AlIiLf8irwsdlsmD9/Pu6++27s3bsXJ0+exIABA6Qu1ESN4c2uJnG5TG9G5oILNmLjxlFwJTYDgA35+RkYNGiHajZHSZyxKSxMg5VGor5ugEpERL7lVeAjCgkJwYABA3w1FiJNRgnV6n5ZWu0gBCEAYWGn0RD0NLwuzuZobaeX5xoVFKRrfr/WrI5e6woiImp5jQp8iJqap81GtdpB2GxO9Ox5QDf/Rm87/dSpKzFo0C4UFydpvj9w4E8YNy7PcpDDXltERC2PgU870xTbzfVY2fbdWFb7Yo0ZMwYbNmzQ3SGWkFCmm39z6FA3uLbPK4OixMSDAPTr9WgFPWJvLTUWJiQiah0Y+LQjvt5ubsRqM1EzZoGavC6U0Xd26tRJOk4vz0br9Q8//DN+/HEIXMtgArQKG+oFU/KgZ/r06ejatSuDGyKiVo6BTzvi6+3mauJSjdm2b6tLOp4sY5l9Z1CQ8o+yPM9Gq5oz4GqK2hD0AGLwc+WV76Nfv72K8xklLU+fPh1nnXWWpesgIqKWxcCHLBPr7mzYADz/vPu275EjZ+Kii1w/l5WV6Z5HXPbxJADTq9Mj1uKJjo6WagKVl5dL7SeMZokOHOgFdcIzYMOxYzEA9kJNL2k5Ojra8nUQEVHLYuBDHomJicH55wMBAYDT2fB6YCCQlhYDwPpym5pRzpBeno28OGBMTAwqKioU5zOaJerZcz/E5a0GAhITDwAA0tLSUFjoXt1ZjUnLRERtBwMf8khFRQUCA2vw1FNhuPdeO+rrbQgMFPDkkw4EBp7G0aMOS+dRz/aY5QxZybNRL50ZFSS026uQkFCGIUN+VOT4DBnyIxISXLNVPXr0YDd1IqJ2hoEPWaYOLG69NVLKeTl5sgqvvebdec1mZkRmxQHlAYoYSKmpZ4n+7//+jXPP/S9KSnoiMfGAFPSIGNQQEbUvDHzaAXFnlLyYX1NQz3z4qlCfWf6Ole8MCQmRxqcOpBq4zxI5HJGorQ3FgAE73c6rTpgmIqK2j/9nb+M8LfDX3KzU+jHL39GqjeNwOFBbWwsAKC/vgA0bALu9EoB2IAUA06a5ChKKzJbXunbt6t1FExFRq8XAp43zZmt6cyXjWq31Y5a/Y7fbERcXJx1fUVGBFStWaHxHJ0yaNBQpKXs1AymxICFgvrw2ffp0LnMREbVDDHz8xJQpUxAbG9tsybhW8nbkAZhR/o46UNNb0hK/IydnkWkitJXt8URE1P4w8PETsbGxilkTXzBaxrKStyPWBfJ215TRd5glQlvZHk9ERO0PAx/yitkylllgIc7ieDL7pE7iNvsOo+RrK9vjiYio/WHgQx6zkh8THR2NHj1OqGr9nMDVV1/l1XKbOolbnG3KyMhHfn6GV8GL2awQERG1Pwx8yDJxlsZsGUts1nnnnUBmJrB3L9Cnjw0JCdEAor36bq0aPWKwM2zYFiQnFyM6uhK1taFwOCJht1dhzJgx6Nq1q2JHWGVlJXJzc6WffbUln4iI2gYGPmSZmJOzb18d3nlHgNPZ0OohMFDALbdMRFJSkGI2JyHB9Utk1o3dbDZIa7Zpy5ZzsWVLKlzVlxu6qwMbAPimGz0REbUPDHzaOKtb0321hT0mJgYxMcBrrwFz5wL19a4+Xa++akNqajfDz1qtOWQUqOjV6AEaXlMvvckDrea+X0RE1Low8Gmj5DMnmZmZUjE/UVBQEKqrO6O4OAj9+gUgJqaTT78/KwsYP15cxlLO6uhRz/To7QozmhHSSmjWolf5ubE7yYiIqG1j4NMGWZk52bp1KNaunQSn04aAAOC5505i+nT9XBZvHvbqZSxPWC1uqKbejaXHaGs6gxoiIv/FwKcNMqvW3JAH48rBcTqB228Px/79rxkm8jZXLozVpqR6xN1YhYVp2Lw5Ha5lLidsNnBrOhERGWLg0w550vRTzpv2F97wdnxydnsVxo3LR1paobQd3XVubk0nIiJ9xokSrdCZM2dwzjnnwGazYdu2bYr3tm/fjgsvvBAdOnRAYmIinnrqqZYZZAsT82DkWqoqcUVFBcrKylBWVuZWeNCT8eklG9vtVUhO3i9tSxd/T0REpKXNzfjcc889iI+Px48//qh4/cSJExg3bhwyMjLwyiuv4KeffsL111+P6OhozJkzp4VG2zLEPJhPPpkkFQ+89FLzpZ/KykrD9z3NA9LLRTKrmlxeXu72XWJS8pEjRxR1eIiIiDzRpgKfdevWYf369Vi1ahXWrVuneO/dd99FTU0N3nzzTYSEhGDgwIHYtm0bnnvuOb8LfABXHsyDD6ahqqobIiOPYO1a88RhKwGFJ3lARru45FWTg4NrFIUHV69erfldrq30DbuyHA6H1KXdCLemExGRqM0EPocPH8aNN96Ijz76COHh4W7vFxQUYNSoUYqH3Pjx4/Hkk0/i+PHj6NRJezv3mTNncObMGennEydO+H7wzUgeXMTHOxEXB5SVOc0/aJG3eUB6u7iKivro7u46evSo9H2lpQEoLg5CcnId4uNd19OlSxduTSciIo+0icBHEATMmjULN910E4YPH459+/a5HXPo0CEkJycrXuvWrZv0nl7gs3DhQixYsMDnY24J6uCic+dDyMpqyK3xBYfD4XGXd71dXF27HjLc3SXO5hhtfc/OzvZ513kiImq/WjS5+b777oPNZjP89csvv2Dx4sWoqqrC/fff7/Mx3H///XA4HNKvkpISn3+Hr2kt3WgFFw8+2B1PP/2+tHTkCytWrEBFRYVHn9HbxfXrr311d3eJ9IImhyMSQPPtRCMiovahRWd87rzzTsyaNcvwmN69e+PLL79EQUEBQkNDFe8NHz4c11xzDd566y10794dhw8fVrwv/ty9e3fd84eGhrqdt7XTqj68aVMInn++cVvErfI02NCrtrxx42gATsjjb3F3l7hkd+pUeKO3vhMREYlaNPDp0qULunTpYnrciy++iEcffVT6ubS0FOPHj8eKFSuQlpYGAEhPT8f8+fNRW1uL4OBgAEBeXh769eunu8zVlqnzVs4/HwgIcBUrFOltEZfnAc2ePRZBQUGorKzE+vXrm2Ss4i6uNWsug7qnlisgcgU/4jKWOu9HLzgiIiLyVJvI8enZs6fi544dOwIAUlJSkPBHz4Srr74aCxYsQFZWFu69917s2LEDL7zwAp5//vlmH29LSEhQNw7V3sKulQdUX/+62/n0+mgZUXdel+cWDRv2A0JCzmDlyisUnxGEAEyblouIiGopmFm0KEextKUVHHG2h4iIvNEmAh8r7HY71q9fj3nz5iE1NRWxsbF48MEH/Woru7xxqNYWdq18mYceisNtt0UqAgl5cAQ4MXZsPkaOLDD8bnXNnobAqeHciYklbkteNpsTiYkHpWOKi5M0l7bkwRGDHiIi8labDHySkpIgCILb64MHD8bGjRtbYESth9g4VGsLu1aSsdNpU+TLqIMjIAB5eWMBQAp+Kisr3XZSyWd69HZhmRUuBLTzgdTBERERkbfaZOBD3tEKKgICBEW+jFZwBNiQn5+BQYN2wG6vQm5urm4hQ7MGpPLChVqzN1aCIyIiIm8x8PEjWkHFgw+WAlDOuKiTiQH3nVR6O7usNCAV+2rpMQuO5FiVmYiIPMHApx04eBDYswfo29e1zAXoBwTqoCIz8/9B3fUhNXULtmwZDsAmvWZ1J5XeUtWpUxFSSwor9IKjKVOmIDY2FgCrMhMRkecY+LRxS5YAc+a4trEHBLh2dmVludf60Wr5EBISopub45r1AQAbbDYnMjLyDYMWscGp1qySIAArV17hVnXZG7GxsazUTEREXmPg04YdPNgQ9ACuf86d69rZlZDQUOtHLzgCgF9++QWAdlKzK/gRIAgByM/PQFjY75pBS0VFhaLBaUrKXkydugrV1R3w6aeXQlw2U+f7yGdvqqursXz5ctNr5tIWERE1BgOfNmzPHmXBQsBVw2fv3oYlL6PgKCysQuqHpZ3UrCw2KA9a5Ix2dGnlCv388wAMHLjTbfaGDUeJiKipMfBpw/r2da/WHBgI9OnT8LNRcNSvX0OQoddWQk6vVYTD4fjjn5GK6syucwmQ5woBAtavn4C8vHGw20sxZ06ZFNAwqCEioqbWok1KybqKigqUlZUpfgUGluGppyoRGOiqaRQYCLz6asNsD9AQHMkFBgIxMccVlZXF3BzXLA0gLnPJaSU4V1Q0zBoVFqbB/Y+UDQ35Qg1BkCAEYMGCeDz99Pt46aWXPG58SkRE5A3O+LQB6qrIarfeGoljxzrjzjv/jLPPVvYlc29lATz77EmsXv2i23nE3BxAQGLiQbeeWfJ6OmKujbg0dfBgHDZvTtcYnRM33PAGDhzoifXrJyjekc8gscs6ERE1BwY+bYBZUCBu/Y6N/V3zfXkriz59gMDAKrz2mvIYvWrLKSl7MWjQ5RgyJALx8ecCOFdamqqoqEB5ebn0Wa0JxBEjCpCQUIbIyJPIyxvnts2dzUaJiKg5MfDxE2IrCwAoK1O+d/BgnFtujjyReeLEMMTFdVN8RpyFcu0Gy9HMDbLZnEhLKwTAisxERNQ6MPDxc3qzNXqJzCJxFkp7NxgAuAc2nlRkJiIiagoMfPyYe+2eBo2t1JyV9QYSEsrcjjdrV0FERNSUuKvLj1mdrTEqGqjeDSYuYWkFPURERC2NMz5+zGy2ZsqUKYiPjzetr8MlLCIiaisY+PgxvYRjcbYmNjZW2r2l7vllt1e6nasxAQ9bURARUXNg4NMGWA0KvDnOaLYmJCREUUNIueW9EyZNGmracHTKlCkIDw9HeHi44XhYtZmIiJoDA582QN1pXYsnwYMn5yv7Y++7OhHaqHeXHLupExFRa8LAp42QBzUHD7p6cPXtq2xP4e35rNBKhDbb8g5wCYuIiFoXBj5tzJIlDd3WAwJc7Siysnz/PWJeT3l5ORyOSJw6Fa6ZCC1ueZ8yZQpiY2MV5+ASFhERtTYMfNqQgwcbgh7A9c+5c13tKOQzP/JkZC1mAYl7Xo9YmdkpBT/qystc0iIioraAgU8bsmdPQ9Ajqq939eASAx+zhqai7Oxs3eBHDJrcCxwGQBCcmDYtF4mJB6Wgx+GIxKZNITj/fO+X3oiIiJoDCxi2IX37upa35AIDXY1HReqZHocjEsXFSXA4IhWvW+mGrl3gMAAREdVS0LN161AsWpSDK66IQa9eAp59thJlZWWoqKiwfF1ERETNhTM+bUhCgiunZ+5c10xPYCDw6qvK2Z7y8nLpeL2O61bpFTgU83rUM0JOpw133x2F3357E3Z7leGsEhERUUvgjE8bk5UF7NsHbNjg+qeY2Cwuca1evRqA/vZz9cyPEb12FOJsj9FOL8DarBIREVFz4oxPG5SQ4PpVUVGBsjJXcCGf6QGAkpJEw+3n5eXlUhXm5OQ6xMe7ghv19nOjAodmM0JEREStDQOfNkqdxOxwROLYsSR07lyBoqI+WLPmMrfPyIOSv/2tGB9/PFBzGSwzM1PxOb12FHotL9iri4iIWisGPm2UfBlJncsjCIB6FVMelJhVYa6trbU8DjYoJSKitoSBTxunFcRomTp1JQYN2gXAvApzUJBnfywa26CUiIiouTDwaeO0t5wr2WxOJCYelH42y82Jjo427OVVXl4uJVETERG1JQx82jitIAYQANj++L173o2V3BxuQyciovaIgU8bpw5ilEEPYLMBKSl73T7XmNwcq41H2aCUiIhaGwY+rZyVTuxiELNz5wB8/vkExXtGHdS9zc2JiYkxXAoD2KCUiIhaJwY+rZDYZPS998Jwzz12OJ02BAQIeOopB66++rTmTIrdXoUBA3Zi/fpxurk7Y8eORV5enk/GyKCGiIjaIgY+rYxYn8fhiMSiRTkQBNeylbodxIwZM9w+a5a7I9+t5ar7E4POnSvcZn24REVERO0VA59WRlw+MttyHh4eLi03yXdZGeXurFu3DoBxD68ZM2YgJibG0hIbERFRW8NeXa2UuFtLTt0OIiYmBnFxcYiNjVUcZ7dXITl5v2b+jlkPr+rqajz7bCV69RJw8cVgx3UiImpXGPi0UkYNQh2OSGzaFIKDf5Tm8WRpyqyx6NKlebj77ig4ncoltqeffh8vvfQSgx8iImrTuNTVimktW4nLVM8/H4CAAOC114CsLPNdVpWVlcjNzTUtXmi2xMaO60RE1JYx8Gnl5FvO1ctUTicwd66Ac845gqSkIMTFxVk6n1ECNDuuExFRe8bApw3Rmo2pr7dh8eJ1SE7ej+zsbLdt5uLW+PLycmknV0rKXuTkLNJMgGbHdSIias8Y+LQhZrMx8mWoiooKHDlyBLm5uXA4IlFYmIbNm3MAuO/kUmPHdSIiaq8Y+DQjK1vEjRKVrc7GiLWAAOXWdZEgBGDNmsuQkrJXN6hhx3UiImqPGPg0kyVLgDlzXHk5DUnJ7sdptYOwWqdHJH5WnROkFIDCwjSMG5dvWMyQiIioPWHg0wwOHmwIegAxKRkYP1575kedp1NaGoDi4iQpMLE6G6OVEyRXUJCOiIhTyM/P0CxmSERE1N4w8GkGe/Y0BD2i+npg717zqsiumaKucDpnehyYaOUEyQlCgBT0iD9//LHxEhjbWRARUVvGwKcZ9O3rWt6SBz+BgUCfPu7HyvOAAHGmyFVM0EpgIqfOCQIEADbZEe5Bkbxmz5QpUxRVodlxnYiI2jpWbm4GCQmunJ7AQNfPgYHAq6+6z/YsWQL06oU/WkUAL7zgPlMkr7JsxbBhPyAr6w0ATiiDHgEXXrjRsC1GbGws4uLipF8MeoiIqK3jjE8zycpy5fTs3eua6VEHPVp5QM8/D9hsgCA0HGdUTFBvGaq2NhTuMa4NvXsXo1MnB2v2EBGR32Dg04wSEvRzevTygG666SRefz0C9fU2BAQIePDBUkyZMhbBwcGw2+3SsUbLUEb1f5KT97NmDxER+Q0GPq2EVh6QzeZEWNhruPVWSIEJUIU/drZrVmoG3Gd+zOr/sGYPERH5CwY+rYSYBzR3rmumRys4Udu3rw7bt7sXRBRrAZWWlnpU/4eIiKi9Y+DTioh5QIWFFdi06S3D4GTr1qH4+9+7/lEQUcBTTzlw9dWnpSWvmJgYt07qnNkhIiJ/x8CnlUlIAAIDa7Bjh36A0lCR2bVLy+m04e67o/Dbb2/Cbq/SXQLzFGv2EBFRe8PApxUQO6iLysvLDY/Xqsgsr78jnstq4DJ9+nRER0crXmPNHiIiao8Y+LQweUNRq8y6tIu0+n6pMcAhIiJ/wsCnhRkFJXrNQ612aQfc+34RERH5MwY+rdTWrUPdAht5jy7u0iIiIvIcW1a0Qg3Jy8rmoQ5HpOI4u70Kycn7GfQQERFZxMCnFdJLXu7V65IWGhEREVH7wMCnFRKTl+VsNif27/+ihUZERETUPjDwaYXE5GUx+PG0eSjr7xAREWljcnMTU9foUXM4HJqvGyUvT5kyBbGxsZqf4/Z0IiIifW0q8Pnkk0/w97//Hdu3b0eHDh0wevRofPTRR9L7Bw4cwM0334wNGzagY8eOmDlzJhYuXIigoJa5TG9q9MjptZiIjY1FXFxcY4ZGRETkl9pM4LNq1SrceOONePzxx3HxxRejrq4OO3bskN6vr6/HpZdeiu7du2Pz5s0oKyvDddddh+DgYDz++OMtMmajmR45sXJyeXm51FSUiIiIfK9NBD51dXW47bbb8PTTTyMrK0t6fcCAAdLv169fj507dyI/Px/dunXDOeecg0ceeQT33nsvHn744Vad9xIdHe02g6NXvBBQtrTg0hYREZF1bSLw2bp1K3777TcEBARg6NChOHToEM455xw8/fTTGDRoEACgoKAAZ599Nrp16yZ9bvz48bj55pvx888/Y+jQoZrnPnPmDM6cOSP9fOLEiaa9GANivo9Z8UL1rJCvmpISERG1d21iV9f//vc/AMDDDz+Mv/3tb1i7di06deqEiy66CMeOufpTHTp0SBH0AJB+PnTokO65Fy5cCLvdLv1KTExsoqswVlFRgRUrVlguXihndUmNiIjI37Vo4HPffffBZrMZ/vrll1/gdLq2dc+fPx9Tp05Famoqli5dCpvNhn/961+NGsP9998Ph8Mh/SopKfHFpelyOCJRXJzkFsiIwYtR53W9z1ZWVjbpmImIiNqLFl3quvPOOzFr1izDY3r37o2ysjIAypye0NBQ9O7dGwcOHAAAdO/eHf/9738Vnz18+LD0np7Q0FCEhoZ6M3yPmS1hAfqd10tL4/H229dpfjY3N1dKkGbODxERkb4WDXy6dOmCLl26mB6XmpqK0NBQ7N69GxdccAEAoLa2Fvv27UOvXr0AAOnp6Xjsscdw5MgRdO3aFQCQl5eHqKgoRcDUUvSWsFJS9iqO0+q8npGRj/z8DM3PionPubm50jmY80NERKStTSQ3R0VF4aabbsJDDz2ExMRE9OrVC08//TQA4IorrgAAjBs3DgMGDMC1116Lp556CocOHcLf/vY3zJs3r9lmdNTkO8mMlrBCQkJw5MgR6XV18UKjz2rV+WHODxERkbY2EfgAwNNPP42goCBce+21OH36NNLS0vDll1+iU6dOAIDAwECsXbsWN998M9LT0xEREYGZM2fi73//e4uNOSYmBtnZ2aipqUFpaQDeeUeA02mT3g8MFHDnnX8G4FTM2ADuxQu1lr86dz7W5NdARETUntgEQRBaehCtyYkTJ2C32+FwOBAVFeXTcy9ZAsydC9TXA4GBwKuvAllZQFlZGV577TXDz8rzg1ycGDs2H/HxZW61fubMmcPKzkRE5FesPr/bzIxPe5CVBQweDHzzDXDBBcC552ofp1W8MCVlL5QhagDy8sYCsOkmShMREZESA59mtGQJMGcO4HQCAQHAa6+5giE5vZ1fx47FwL36gGvZTCvZmYiIiNy1iQKGbV1FRQW2bDmMOXME/FGSCE4nMHeugC1bDuPgwYMA9Hd+ORyR0jZ3PWKyMxEREelj4NPExA7tixd/pkhsBoD6ehsWL16HTz/9FIDxzi9xm3tD8KNMzWKyMxERkTkudTUxcWu5XmFCebBidsxf/hKKlJRFOHasM0pL46XaPuKSmLjM1ZobshIREbUkBj5NTGw8qlWYcNKktQCA4uIkKZF50qS1WLPmMrgm45QBTXx8PObPHy4FU6WlR7FvXxCSkuoQH38ugHNZuZmIiMgAA58mVltbK/1eXZiwqKgPFi3KUVRoDgv7HTYbIAiATbkyhqCgIEVQExcHpKY215UQERG1fQx8mplYmFArkdm1PR3Q260VHR3dMoMmIiJqJ5jc3EK0EpldAY9ymoe7tYiIiHyHgU8LMdueLuJuLSIiIt9h4NNC7PYqZGTkQ70t3cX1GndrERER+RZzfJpQRUUFqqr0KymPHFkAAMjLy4AyBrUBcCIr6w0kJJRhypQpiI+P524tIiKiRmLg00TEwoUirf5bgCv4sdsdWLnyCtUZAlBb65rhiY2NZdBDRETkAwx8mohYawfQ778lSkwsMSxcyCUuIiIi32COTxMz6r8lUrejkOf2ZGZmcraHiIjIRzjj08TM+m+J1MUNxffsdnuzjpeIiKg9Y+DTxKz06BKJxQ2JiIioaXCpq4npLWMBrh5d8iUvIiIialqc8WkGZj261MnORERE1DQY+DQTox5dH398Gbp2PYTa2lC37e7c0UVEROQ7DHyaiF7Aopfs/MYbNwAIQECAgKeecuDqq08jJCSEO7qIiIh8yCYIglbPBL914sQJ2O12OBwOREVFNepcFRUVqKmpQXl5OVavXg3Atb1dXOZqIEDenDQwENi3D0hIaNTXExER+Q2rz28mNzehmJgYxMXFITY2VnpNK9lZ3ZG9vh7Yu7c5R0pEROQfuNTVAuTJzsHBNViy5AbFDFBgINCnTwsOkIiIqJ3ijE8z0Mr3sdurkJy8HwkJZYoZoMBA4NVXucxFRETUFJjjo+LLHB85Md8HAEpLA1BcHITk5DrEx7sCnvLyDqio6IQ+fRj0EBERecrq85tLXc1E3J21ZAkwZw7gdAIBAcBrrwFZWUBcXAsPkIiIyA9wqasZHTzYEPQArn/Onet6nYiIiJoeA59mtGdPQ9Aj4g4uIiKi5sPApxn17eta3pLjDi4iIqLmw8CnGSUkuHJ6AgNdP3MHFxERUfNicnMzy8oCxo93LW9xBxcREVHzYuDTAhISGPAQERG1BC51ERERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkN9upSEQQBAHDixIkWHgkRERFZJT63xee4HgY+KlVVVQCAxMTEFh4JEREReaqqqgp2u133fZtgFhr5GafTidLSUkRGRsJms3l9nhMnTiAxMRElJSWIiory4QjbDt4DF94H3gOA9wDgPRDxPjTNPRAEAVVVVYiPj0dAgH4mD2d8VAICApCQkOCz80VFRfntH2wR74EL7wPvAcB7APAeiHgffH8PjGZ6RExuJiIiIr/BwIeIiIj8BgOfJhIaGoqHHnoIoaGhLT2UFsN74ML7wHsA8B4AvAci3oeWvQdMbiYiIiK/wRkfIiIi8hsMfIiIiMhvMPAhIiIiv8HAh4iIiPwGAx8PvPzyyxg8eLBUcCk9PR3r1q2T3v/9998xb948xMTEoGPHjpg6dSoOHz6sOMeBAwdw6aWXIjw8HF27dsXdd9+Nurq65r4Un3niiSdgs9mQk5MjveYP9+Hhhx+GzWZT/Orfv7/0vj/cAwD47bffMGPGDMTExCAsLAxnn302vv/+e+l9QRDw4IMPIi4uDmFhYcjIyMCePXsU5zh27BiuueYaREVFITo6GllZWTh58mRzX4pXkpKS3P4c2Gw2zJs3D4B//Dmor6/HAw88gOTkZISFhSElJQWPPPKIol9Se/9zALjaJOTk5KBXr14ICwvDiBEj8N1330nvt8d78J///AeTJk1CfHw8bDYbPvroI8X7vrrm7du348ILL0SHDh2QmJiIp556qnEDF8iyNWvWCJ988onw66+/Crt37xb++te/CsHBwcKOHTsEQRCEm266SUhMTBS++OIL4fvvvxfOP/98YcSIEdLn6+rqhEGDBgkZGRnCDz/8IHz66adCbGyscP/997fUJTXKf//7XyEpKUkYPHiwcNttt0mv+8N9eOihh4SBAwcKZWVl0q+jR49K7/vDPTh27JjQq1cvYdasWUJhYaHwv//9T/j888+FvXv3Ssc88cQTgt1uFz766CPhxx9/FCZPniwkJycLp0+flo6ZMGGCMGTIEOHbb78VNm7cKPTp00e46qqrWuKSPHbkyBHFn4G8vDwBgLBhwwZBEPzjz8Fjjz0mxMTECGvXrhWKi4uFf/3rX0LHjh2FF154QTqmvf85EARBmD59ujBgwADh66+/Fvbs2SM89NBDQlRUlHDw4EFBENrnPfj000+F+fPnC6tXrxYACB9++KHifV9cs8PhELp16yZcc801wo4dO4T3339fCAsLE1599VWvx83Ap5E6deokvPHGG0JlZaUQHBws/Otf/5Le27VrlwBAKCgoEATB9YckICBAOHTokHTMyy+/LERFRQlnzpxp9rE3RlVVldC3b18hLy9PGD16tBT4+Mt9eOihh4QhQ4Zovucv9+Dee+8VLrjgAt33nU6n0L17d+Hpp5+WXqusrBRCQ0OF999/XxAEQdi5c6cAQPjuu++kY9atWyfYbDbht99+a7rBN5HbbrtNSElJEZxOp9/8Obj00kuF66+/XvHalClThGuuuUYQBP/4c1BdXS0EBgYKa9euVbw+bNgwYf78+X5xD9SBj6+u+Z///KfQqVMnxX8P9957r9CvXz+vx8qlLi/V19fjgw8+wKlTp5Ceno4tW7agtrYWGRkZ0jH9+/dHz549UVBQAAAoKCjA2WefjW7duknHjB8/HidOnMDPP//c7NfQGPPmzcOll16quF4AfnUf9uzZg/j4ePTu3RvXXHMNDhw4AMB/7sGaNWswfPhwXHHFFejatSuGDh2K119/XXq/uLgYhw4dUtwHu92OtLQ0xX2Ijo7G8OHDpWMyMjIQEBCAwsLC5rsYH6ipqcHy5ctx/fXXw2az+c2fgxEjRuCLL77Ar7/+CgD48ccf8c0332DixIkA/OPPQV1dHerr69GhQwfF62FhYfjmm2/84h6o+eqaCwoKMGrUKISEhEjHjB8/Hrt378bx48e9GhublHrop59+Qnp6On7//Xd07NgRH374IQYMGIBt27YhJCQE0dHRiuO7deuGQ4cOAQAOHTqk+B+c+L74XlvxwQcfYOvWrYr1a9GhQ4f84j6kpaVh2bJl6NevH8rKyrBgwQJceOGF2LFjh9/cg//97394+eWXcccdd+Cvf/0rvvvuO9x6660ICQnBzJkzpevQuk75fejatavi/aCgIHTu3LnN3AfRRx99hMrKSsyaNQuA//y3cN999+HEiRPo378/AgMDUV9fj8ceewzXXHMNAPjFn4PIyEikp6fjkUcewVlnnYVu3brh/fffR0FBAfr06eMX90DNV9d86NAhJCcnu51DfK9Tp04ej42Bj4f69euHbdu2weFwYOXKlZg5cya+/vrrlh5WsykpKcFtt92GvLw8t7/d+BPxb7MAMHjwYKSlpaFXr17Izc1FWFhYC46s+TidTgwfPhyPP/44AGDo0KHYsWMHXnnlFcycObOFR9f8lixZgokTJyI+Pr6lh9KscnNz8e677+K9997DwIEDsW3bNuTk5CA+Pt6v/hy88847uP7669GjRw8EBgZi2LBhuOqqq7Bly5aWHhqpcKnLQyEhIejTpw9SU1OxcOFCDBkyBC+88AK6d++OmpoaVFZWKo4/fPgwunfvDgDo3r27244O8WfxmNZuy5YtOHLkCIYNG4agoCAEBQXh66+/xosvvoigoCB069bNL+6DWnR0NP70pz9h7969fvNnIS4uDgMGDFC8dtZZZ0lLfuJ1aF2n/D4cOXJE8X5dXR2OHTvWZu4DAOzfvx/5+fm44YYbpNf85c/B3Xffjfvuuw9XXnklzj77bFx77bW4/fbbsXDhQgD+8+cgJSUFX3/9NU6ePImSkhL897//RW1tLXr37u0390DOV9fcFP+NMPBpJKfTiTNnziA1NRXBwcH44osvpPd2796NAwcOID09HQCQnp6On376SfEvOi8vD1FRUW4PkNbqkksuwU8//YRt27ZJv4YPH45rrrlG+r0/3Ae1kydPoqioCHFxcX7zZ2HkyJHYvXu34rVff/0VvXr1AgAkJyeje/fuivtw4sQJFBYWKu5DZWWl4m/FX375JZxOJ9LS0prhKnxj6dKl6Nq1Ky699FLpNX/5c1BdXY2AAOWjJDAwEE6nE4B//TkAgIiICMTFxeH48eP4/PPP8ec//9nv7gHgu3/v6enp+M9//oPa2lrpmLy8PPTr18+rZS4A3M7uifvuu0/4+uuvheLiYmH79u3CfffdJ9hsNmH9+vWCILi2rvbs2VP48ssvhe+//15IT08X0tPTpc+LW1fHjRsnbNu2Tfjss8+ELl26tKmtq1rku7oEwT/uw5133il89dVXQnFxsbBp0yYhIyNDiI2NFY4cOSIIgn/cg//+979CUFCQ8Nhjjwl79uwR3n33XSE8PFxYvny5dMwTTzwhREdHC//+97+F7du3C3/+8581t7MOHTpUKCwsFL755huhb9++rXoLr1p9fb3Qs2dP4d5773V7zx/+HMycOVPo0aOHtJ199erVQmxsrHDPPfdIx/jDn4PPPvtMWLdunfC///1PWL9+vTBkyBAhLS1NqKmpEQShfd6Dqqoq4YcffhB++OEHAYDw3HPPCT/88IOwf/9+QRB8c82VlZVCt27dhGuvvVbYsWOH8MEHHwjh4eHczt5crr/+eqFXr15CSEiI0KVLF+GSSy6Rgh5BEITTp08Lf/nLX4ROnToJ4eHhwv/93/8JZWVlinPs27dPmDhxohAWFibExsYKd955p1BbW9vcl+JT6sDHH+5DZmamEBcXJ4SEhAg9evQQMjMzFfVr/OEeCIIgfPzxx8KgQYOE0NBQoX///sJrr72meN/pdAoPPPCA0K1bNyE0NFS45JJLhN27dyuOqaioEK666iqhY8eOQlRUlDB79myhqqqqOS+jUT7//HMBgNt1CYJ//Dk4ceKEcNtttwk9e/YUOnToIPTu3VuYP3++YvuxP/w5WLFihdC7d28hJCRE6N69uzBv3jyhsrJSer893oMNGzYIANx+zZw5UxAE313zjz/+KFxwwQVCaGio0KNHD+GJJ55o1LhtgiArr0lERETUjjHHh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AYDHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIGu2iiy5CTk5OSw+jyT388MM455xzWnoYRNQIDHyIyO/V1NQ06/cJgoC6urpm/U4icmHgQ0SNMmvWLHz99dd44YUXYLPZYLPZsG/fPuzYsQMTJ05Ex44d0a1bN1x77bUoLy+XPnfRRRfhlltuQU5ODjp16oRu3brh9ddfx6lTpzB79mxERkaiT58+WLdunfSZr776CjabDZ988gkGDx6MDh064Pzzz8eOHTsUY/rmm29w4YUXIiwsDImJibj11ltx6tQp6f2kpCQ88sgjuO666xAVFYU5c+YAAO6991786U9/Qnh4OHr37o0HHnhA6gq9bNkyLFiwAD/++KN0ncuWLcO+fftgs9mwbds26fyVlZWw2Wz46quvFONet24dUlNTERoaim+++QZOpxMLFy5EcnIywsLCMGTIEKxcudLX/4qISIaBDxE1ygsvvID09HTceOONKCsrQ1lZGSIjI3HxxRdj6NCh+P777/HZZ5/h8OHDmD59uuKzb731FmJjY/Hf//4Xt9xyC26++WZcccUVGDFiBLZu3Ypx48bh2muvRXV1teJzd999N5599ll899136NKlCyZNmiQFKEVFRZgwYQKmTp2K7du3Y8WKFfjmm2+QnZ2tOMczzzyDIUOG4IcffsADDzwAAIiMjMSyZcuwc+dOvPDCC3j99dfx/PPPAwAyMzNx5513YuDAgdJ1ZmZmenSv7rvvPjzxxBPYtWsXBg8ejIULF+Ltt9/GK6+8gp9//hm33347ZsyYga+//tqj8xKRBxrV4pSISBCE0aNHC7fddpv08yOPPCKMGzdOcUxJSYmii/no0aOFCy64QHq/rq5OiIiIEK699lrptbKyMgGAUFBQIAhCQzfoDz74QDqmoqJCCAsLE1asWCEIgiBkZWUJc+bMUXz3xo0bhYCAAOH06dOCIAhCr169hMsvv9z0up5++mkhNTVV+vmhhx4ShgwZojimuLhYACD88MMP0mvHjx8XAAgbNmxQjPujjz6Sjvn999+F8PBwYfPmzYrzZWVlCVdddZXp2IjIO0EtGXQRUfv0448/YsOGDejYsaPbe0VFRfjTn/4EABg8eLD0emBgIGJiYnD22WdLr3Xr1g0AcOTIEcU50tPTpd937twZ/fr1w65du6Tv3r59O959913pGEEQ4HQ6UVxcjLPOOgsAMHz4cLexrVixAi+++CKKiopw8uRJ1NXVISoqyuPr1yP/zr1796K6uhpjx45VHFNTU4OhQ4f67DuJSImBDxH53MmTJzFp0iQ8+eSTbu/FxcVJvw8ODla8Z7PZFK/ZbDYAgNPp9Oi7586di1tvvdXtvZ49e0q/j4iIULxXUFCAa665BgsWLMD48eNht9vxwQcf4NlnnzX8voAAV8aAIAjSa+Kym5r8O0+ePAkA+OSTT9CjRw/FcaGhoYbfSUTeY+BDRI0WEhKC+vp66edhw4Zh1apVSEpKQlCQ7/838+2330pBzPHjx/Hrr79KMznDhg3Dzp070adPH4/OuXnzZvTq1Qvz58+XXtu/f7/iGPV1AkCXLl0AAGVlZdJMjTzRWc+AAQMQGhqKAwcOYPTo0R6NlYi8x+RmImq0pKQkFBYWYt++fSgvL8e8efNw7NgxXHXVVfjuu+9QVFSEzz//HLNnz3YLHLzx97//HV988QV27NiBWbNmITY2FpdffjkA186szZs3Izs7G9u2bcOePXvw73//2y25Wa1v3744cOAAPvjgAxQVFeHFF1/Ehx9+6HadxcXF2LZtG8rLy3HmzBmEhYXh/PPPl5KWv/76a/ztb38zvYbIyEjcdddduP322/HWW2+hqKgIW7duxeLFi/HWW295fW+IyBgDHyJqtLvuuguBgYEYMGAAunTpgpqaGmzatAn19fUYN24czj77bOTk5CA6OlpaGmqMJ554ArfddhtSU1Nx6NAhfPzxxwgJCQHgyhv6+uuv8euvv+LCCy/E0KFD8eCDDyI+Pt7wnJMnT8btt9+O7OxsnHPOOdi8ebO020s0depUTJgwAWPGjEGXLl3w/vvvAwDefPNN1NXVITU1FTk5OXj00UctXccjjzyCBx54AAsXLsRZZ52FCRMm4JNPPkFycrIXd4WIrLAJ8oVpIqJW7KuvvsKYMWNw/PhxREdHt/RwiKgN4owPERER+Q0GPkREROQ3uNRFREREfoMzPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNBj5ERETkN/4/oCIjCbnlO2gAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrfUlEQVR4nO3dd1QU198G8GfpTcCCgAqKFTX+xBIVoiYaEjTWRBNbVCIaNZbYARt2EXs30SjG3gUrKtYoEiRgBWwoFkAiUkTp9/3Dl4kjqKDA7sLzOWePzp27s9/dEfZxZu4dhRBCgIiIiIhUmoayCyAiIiKi92NoIyIiIlIDDG1EREREaoChjYiIiEgNMLQRERERqQGGNiIiIiI1wNBGREREpAYY2oiIiIjUAEMbERERkRpgaCMi+kgKhQLTpk1TdhkSZ2dnVKtWTdllEFEhY2gjohLJ29sbCoVCeujp6aF27doYPnw4YmNji/S1L1y4gGnTpiEhIaFQt/vFF1/I3lO5cuXw6aefYv369cjOzi6U15gzZw72799fKNsiosKlpewCiIiK0owZM2BjY4PU1FT89ddfWL16NQ4fPoxr167BwMCgUF7j5cuX0NL679fphQsXMH36dDg7O8PU1LRQXiNHlSpVMHfuXABAXFwc/vzzT7i4uODmzZvw9PT86O3PmTMH3bt3R9euXT96W0RUuBjaiKhEa9++PZo2bQoAGDhwIMqXL49FixbBx8cHvXr1+uDtZmdnIz09HXp6etDT0yusct/LxMQEP/74o7Q8ePBg1KlTBytWrMDMmTOhra1dbLUQUfHi6VEiKlXatm0LAIiMjAQALFiwAA4ODihfvjz09fXRpEkT7N69O9fzFAoFhg8fji1btqB+/frQ1dXF0aNHpXU517RNmzYN48ePBwDY2NhIpzLv3buHzz//HA0bNsyzrjp16sDJyanA78fAwAAtWrRASkoK4uLi3tovJSUFY8eOhZWVFXR1dVGnTh0sWLAAQgjZe0xJScHGjRulup2dnQtcExEVDR5pI6JS5c6dOwCA8uXLAwCWLl2Kzp07o0+fPkhPT8f27dvx/fff4+DBg+jQoYPsuSdPnsTOnTsxfPhwVKhQIc+L/b/77jvcvHkT27Ztw+LFi1GhQgUAgJmZGfr27YtBgwbh2rVr+OSTT6TnBAUF4ebNm5g8efIHvae7d+9CU1PzradihRDo3LkzTp06BRcXF9jZ2cHPzw/jx4/Ho0ePsHjxYgDApk2bMHDgQDRr1gw///wzAKBGjRofVBMRFQFBRFQCbdiwQQAQJ06cEHFxceLBgwdi+/btonz58kJfX188fPhQCCHEixcvZM9LT08Xn3zyiWjbtq2sHYDQ0NAQ169fz/VaAISHh4e0PH/+fAFAREZGyvolJCQIPT094erqKmsfOXKkMDQ0FM+fP3/ne/r888+Fra2tiIuLE3FxcSIsLEyMHDlSABCdOnWS+vXv319UrVpVWt6/f78AIGbNmiXbXvfu3YVCoRC3b9+W2gwNDUX//v3fWQcRKQdPjxJRiebo6AgzMzNYWVmhZ8+eMDIywr59+1C5cmUAgL6+vtT32bNnSExMRKtWrfDPP//k2tbnn3+OevXqfXAtJiYm6NKlC7Zt2yadlszKysKOHTvQtWtXGBoavncb4eHhMDMzg5mZGerWrYvly5ejQ4cOWL9+/Vufc/jwYWhqamLkyJGy9rFjx0IIgSNHjnzweyKi4sPTo0RUoq1cuRK1a9eGlpYWzM3NUadOHWho/Pf/1YMHD2LWrFkIDQ1FWlqa1K5QKHJty8bG5qPr6devH3bs2IFz586hdevWOHHiBGJjY9G3b998Pb9atWpYu3atNI1JrVq1ULFixXc+5/79+6hUqRLKlCkja69bt660nohUH0MbEZVozZo1k0aPvuncuXPo3LkzWrdujVWrVsHS0hLa2trYsGEDtm7dmqv/60flPpSTkxPMzc2xefNmtG7dGps3b4aFhQUcHR3z9XxDQ8N89yWikoWnR4mo1NqzZw/09PTg5+eHAQMGoH379oUSiPI6SpdDU1MTvXv3xu7du/Hs2TPs378fvXr1gqam5ke/7ttUrVoVjx8/RnJysqw9PDxcWp/jXbUTkXIxtBFRqaWpqQmFQoGsrCyp7d69ex99R4Cca9PedkeEvn374tmzZxg8eDCeP38um3etKHzzzTfIysrCihUrZO2LFy+GQqFA+/btpTZDQ8NCv5MDERUOnh4lolKrQ4cOWLRoEdq1a4fevXvjyZMnWLlyJWrWrIkrV6588HabNGkCAJg0aRJ69uwJbW1tdOrUSQpzjRo1wieffIJdu3ahbt26aNy4caG8n7fp1KkT2rRpg0mTJuHevXto2LAhjh07Bh8fH4waNUo2rUeTJk1w4sQJLFq0CJUqVYKNjQ2aN29epPURUf7wSBsRlVpt27bFH3/8gZiYGIwaNQrbtm3DvHnz8O23337Udj/99FPMnDkTly9fhrOzM3r16pVr4tt+/foBQL4HIHwMDQ0N+Pr6YtSoUTh48CBGjRqFGzduYP78+Vi0aJGs76JFi9CkSRNMnjwZvXr1wurVq4u8PiLKH4UQr02HTURExWLp0qUYPXo07t27B2tra2WXQ0RqgKGNiKiYCSHQsGFDlC9fHqdOnVJ2OUSkJnhNGxFRMUlJSYGvry9OnTqFq1evwsfHR9klEZEa4ZE2IqJicu/ePdjY2MDU1BS//PILZs+ereySiEiNMLQRERERqQGOHiUiIiJSAwxtRERERGqAAxFUWHZ2Nh4/fowyZcrw1jJERERqQgiB5ORkVKpUCRoahXd8jKFNhT1+/BhWVlbKLoOIiIg+wIMHD1ClSpVC2x5DmworU6YMgFc73djYWMnVEBERUX4kJSXByspK+h4vLAxtKiznlKixsTFDGxERkZop7EubOBCBiIiISA0wtBERERGpAYY2IiIiIjXAa9rUXFZWFjIyMpRdBhUDbW1taGpqKrsMIiJSEoY2NSWEQExMDBISEpRdChUjU1NTWFhYcN4+IqJSiKFNTeUEtooVK8LAwIBf4iWcEAIvXrzAkydPAACWlpZKroiIiIobQ5saysrKkgJb+fLllV0OFRN9fX0AwJMnT1CxYkWeKiUiKmU4EEEN5VzDZmBgoORKqLjl7HNex0hEVPowtKkxnhItfbjPiYhKL4Y2IiIiIjWgNqGtc+fOsLa2hp6eHiwtLdG3b188fvxY1kcIgQULFqB27drQ1dVF5cqVMXv2bFmf06dPo3HjxtDV1UXNmjXh7e2d67VWrlyJatWqQU9PD82bN8fff/8tW5+amophw4ahfPnyMDIyQrdu3RAbGyvrExUVhQ4dOsDAwAAVK1bE+PHjkZmZWTgfBhEREZU6ahPa2rRpg507dyIiIgJ79uzBnTt30L17d1mfX3/9FevWrcOCBQsQHh4OX19fNGvWTFofGRmJDh06oE2bNggNDcWoUaMwcOBA+Pn5SX127NiBMWPGwMPDA//88w8aNmwIJycnadQeAIwePRoHDhzArl27cObMGTx+/BjfffedtD4rKwsdOnRAeno6Lly4gI0bN8Lb2xtTp04twk9IPTg7O0OhUEChUEBbWxvm5ub46quvsH79emRnZ+d7O97e3jA1NS26QomIiFSNUFM+Pj5CoVCI9PR0IYQQN27cEFpaWiI8PPytz5kwYYKoX7++rK1Hjx7CyclJWm7WrJkYNmyYtJyVlSUqVaok5s6dK4QQIiEhQWhra4tdu3ZJfcLCwgQAERAQIIQQ4vDhw0JDQ0PExMRIfVavXi2MjY1FWlpavt9jYmKiACASExNl7S9fvhQ3btwQL1++zPe2VEX//v1Fu3btRHR0tHj48KEIDg4Ws2fPFkZGRqJ9+/YiIyMjX9vZsGGDMDExKdpiVZA673siotLibd/fH0ttjrS9Lj4+Hlu2bIGDgwO0tbUBAAcOHED16tVx8OBB2NjYoFq1ahg4cCDi4+Ol5wUEBMDR0VG2LScnJwQEBAAA0tPTERwcLOujoaEBR0dHqU9wcDAyMjJkfWxtbWFtbS31CQgIQIMGDWBubi57naSkJFy/fv2t7ystLQ1JSUmyR0mkq6sLCwsLVK5cGY0bN8bEiRPh4+ODI0eOSKerFy1ahAYNGsDQ0BBWVlb45Zdf8Pz5cwCvTnH/9NNPSExMlI7aTZs2DQCwadMmNG3aFGXKlIGFhQV69+4tO0pKREQEAL6+gIPDqz/VhVqFNldXVxgaGqJ8+fKIioqCj4+PtO7u3bu4f/8+du3ahT///BPe3t4IDg6WnUKNiYmRBSkAMDc3R1JSEl6+fIl///0XWVlZefaJiYmRtqGjo5Pr1NybffLaRs66t5k7dy5MTEykh5WVVT4/mVfX86WnpyvlIYTId51v07ZtWzRs2BB79+4F8CosL1u2DNevX8fGjRtx8uRJTJgwAQDg4OCAJUuWwNjYGNHR0YiOjsa4ceMAvJoKY+bMmbh8+TL279+Pe/fuwdnZ+aPrIyKiksXTEwgIePWnulDq5Lpubm6YN2/eO/uEhYXB1tYWADB+/Hi4uLjg/v37mD59Ovr164eDBw9CoVAgOzsbaWlp+PPPP1G7dm0AwB9//IEmTZogIiICderUKfL387Hc3d0xZswYaTkpKSnfwS0jIwNz584tqtLeyd3dHTo6Oh+9HVtbW1y5cgUAMGrUKKm9WrVqmDVrFoYMGYJVq1ZBR0cHJiYmUCgUsLCwkG1jwIAB0t+rV6+OZcuW4dNPP8Xz589hZGT00TUSEZF68/UF5s9Pw1df+aJKFRv8+GNTZZeUb0oNbWPHjn3vUZDq1atLf69QoQIqVKiA2rVro27durCyssLFixdhb28PS0tLaGlpSYENAOrWrQvg1UjOOnXqwMLCItcoz9jYWBgbG0NfXx+amprQ1NTMs09OOLCwsEB6ejoSEhJkR9ve7PPmiNOcbb4ZMl6nq6sLXV3dd34eJZkQQpqH7MSJE5g7dy7Cw8ORlJSEzMxMpKam4sWLF++cVDg4OBjTpk3D5cuX8ezZM2lwQ1RUFOrVq1cs74OIiFTX0qURcHTcDgCoX/8GOnVqAkA95sBUamgzMzODmZnZBz0358s4LS0NAPDZZ58hMzMTd+7cQY0aNQAAN2/eBABUrVoVAGBvb4/Dhw/LtnP8+HHY29sDAHR0dNCkSRP4+/uja9eu0uv4+/tj+PDhAIAmTZpAW1sb/v7+6NatGwAgIiICUVFR0nbs7e0xe/Zs6XZDOa9jbGxcZMFBW1sb7u7uRbLt/Lx2YQgLC4ONjQ3u3buHjh07YujQoZg9ezbKlSuHv/76Cy4uLkhPT39raEtJSYGTkxOcnJywZcsWmJmZISoqCk5OTkhPTy+UGomISD35+AicPLkRrVvfl9patWqlVpOWq8W9RwMDAxEUFISWLVuibNmyuHPnDqZMmYIaNWpIQcnR0RGNGzfGgAEDsGTJEmRnZ2PYsGH46quvpKNvQ4YMwYoVKzBhwgQMGDAAJ0+exM6dO3Ho0CHptcaMGYP+/fujadOmaNasGZYsWYKUlBT89NNPAAATExO4uLhgzJgxKFeuHIyNjTFixAjY29ujRYsWAICvv/4a9erVQ9++feHl5YWYmBhMnjwZw4YNK7IjaQqFolBOUSrLyZMncfXqVYwePRrBwcHIzs7GwoULoaHx6rLLnTt3yvrr6OggKytL1hYeHo6nT5/C09NTOq186dKl4nkDRESkshITExEaugTlyv3XVqfOz2jb1lJ5RX0AtQhtBgYG2Lt3Lzw8PJCSkgJLS0u0a9cOkydPlkKQhoYGDhw4gBEjRqB169YwNDRE+/btsXDhQmk7NjY2OHToEEaPHo2lS5eiSpUqWLduHZycnKQ+PXr0QFxcHKZOnYqYmBjY2dnh6NGjsoEFixcvhoaGBrp164a0tDQ4OTlh1apV0npNTU0cPHgQQ4cOhb29PQwNDdG/f3/MmDGjGD4t1ZeWloaYmBhkZWUhNjYWR48exdy5c9GxY0f069cP165dQ0ZGBpYvX45OnTrh/PnzWLNmjWwb1apVw/Pnz+Hv74+GDRvCwMAA1tbW0NHRwfLlyzFkyBBcu3YNM2fOVNK7JCIiVRAYGIijR49Ky0LoYerU8dJBAXWiEIUx9I+KRFJSEkxMTJCYmAhjY2OpPTU1FZGRkbCxsYGenp4SKyw4Z2dnbNy4EQCgpaWFsmXLomHDhujduzf69+8v/RAtXrwY8+fPR0JCAlq3bo0+ffqgX79+ePbsmXQt4dChQ7Fr1y48ffoUHh4emDZtGrZt24aJEyciOjoajRs3hru7Ozp37oyQkBDY2dkp6V0XHnXe90RExWnSpGxkZc2Hvn6q1Hb0qBMUiha4cKFoX/tt398fi6FNhZXE0EYfh/ueiOj9tm+PRkTE77I2X99RSEkxgZcX0Llz0b5+UYU2tTg9SkRERJQfR44cQUTEfzM4pKRYY948Z3h4qM+Ag7dhaCMiIiK1l5aWBs83Zsrdtq0HypWzhRoNEH0nhjYiIiJSazdv3sS2bdtkbf/7nyv8/PTg5qakoooAQxsRERGpJSEEFi3ahOfPI6W2xo0bo1OnTgCAb79VVmVFg6GNiIiI1E5SUhIWL14saxs4cCAqV66spIqKnvpNUkJERESlWlBQkCywpadrY8eOySU6sAE80kZERERqIjs7G3PnLkRm5guprVKlr7BhgwPeGINQIjG0ERERkcqLiYnBb7/9Jmv7/fdf8eiRKQYNUlJRxYyhjYiIiFSan58fLl68KC0/fFgZf/zhAnf3EjKXRz4xtFGJ5OzsjISEBOzfvx8A8MUXX8DOzg5Lliz54G0WxjaIiCj/0tPTMXfuXFnbjh0/ICKiLvbvL/o7G6gahjYqVq/fe1RbWxvW1tbo168fJk6cCC2tovvnuHfvXmhra+er7+nTp9GmTRvZfU4Lug0iIvo4t2/fxpYtW2Rtnp6uAF7NvVbaAhvA0EZK0K5dO2zYsAFpaWk4fPgwhg0bBm1tbbi7u8v6paenQ0dHp1Bes1y5ciqxDSIier/Nmzfjzp070nJWlh0WL+6CMWOA2bOVWJiSccoPKna6urqwsLBA1apVMXToUDg6OsLX1xfOzs7o2rUrZs+ejUqVKqFOnToAgAcPHuCHH36AqakpypUrhy5duuDevXvS9rKysjBmzBiYmpqifPnymDBhAoQQstf84osvMGrUKGk5LS0Nrq6usLKygq6uLmrWrIk//vgD9+7dQ5s2bQAAZcuWhUKhgLOzc57bePbsGfr164eyZcvCwMAA7du3x61bt6T13t7eMDU1hZ+fH+rWrQsjIyO0a9cO0dHRUp/Tp0+jWbNmMDQ0hKmpKT777DPcv3+/kD5pIiL1kpycjOnTp8sC2+bNLpgxowuSk0t3YAMY2kgF6OvrIz09HQDg7++PiIgIHD9+HAcPHkRGRgacnJxQpkwZnDt3DufPn5fCT85zFi5cCG9vb6xfvx5//fUX4uPjsW/fvne+Zr9+/bBt2zYsW7YMYWFh+O2332BkZAQrKyvs2bMHABAREYHo6GgsXbo0z204Ozvj0qVL8PX1RUBAAIQQ+Oabb5CRkSH1efHiBRYsWIBNmzbh7NmziIqKwrhx4wAAmZmZ6Nq1Kz7//HNcuXIFAQEB+Pnnn6EoKTfJIyIqgODgYCxatEhazsrSwKxZk/HDD1WUWJVq4elRUhohBPz9/eHn54cRI0YgLi4OhoaGWLdunXRadPPmzcjOzsa6deukMLNhwwaYmpri9OnT+Prrr7FkyRK4u7vju+++AwCsWbMGfn5+b33dmzdvYufOnTh+/DgcHR0BANWrV5fW55wGrVixouyattfdunULvr6+OH/+PBwcHAAAW7ZsgZWVFfbv34/vv/8eAJCRkYE1a9agRo0aAIDhw4djxowZAF7N5p2YmIiOHTtK6+vWrVvwD5KISI1lZ2djyZIlSE5OltoqVXLEhg2fYc+e0nnt2tvwSBvB1xdwcHj1Z3E4ePAgjIyMoKenh/bt26NHjx6YNm0aAKBBgway69guX76M27dvo0yZMjAyMoKRkRHKlSuH1NRU3LlzB4mJiYiOjkbz5s2l52hpaaFp06Zvff3Q0FBoamri888//+D3EBYWBi0tLdnrli9fHnXq1EFYWJjUZmBgIAUyALC0tMSTJ08AvAqHzs7OcHJyQqdOnbB06VLZqVMiopIuNjYWM2fOlAW2kSNHYtCgz3DhAgPbmxjaCJ6eQEAAim026TZt2iA0NBS3bt3Cy5cvsXHjRhgaGgKA9GeO58+fo0mTJggNDZU9bt68id69e3/Q6+vr63/0e8ivN0ebKhQK2fV2GzZsQEBAABwcHLBjxw7Url1bNhcREVFJdfz4caxZs0ZafvzYEn5+U1G2bFklVqXaGNoIbm6Avf2rP4uDoaEhatasCWtr6/dO89G4cWPcunULFStWRM2aNWUPExMTmJiYwNLSEoGBgdJzMjMzERwc/NZtNmjQANnZ2Thz5kye63OO9GVlZb11G3Xr1kVmZqbsdZ8+fYqIiAjUq1fvne/pTY0aNYK7uzsuXLiATz75BFu3bi3Q84mI1El6ejqmT5+OCxcuSG27dnXHunU/w82N1/S+C0MboXNnqOxh6D59+qBChQro0qULzp07h8jISJw+fRojR47Ew4cPAQC//vorPD09sX//foSHh+OXX35BQkLCW7dZrVo19O/fHwMGDMD+/fulbe7cuRMAULVqVSgUChw8eBBxcXF4/vx5rm3UqlULXbp0waBBg/DXX3/h8uXL+PHHH1G5cmV06dIlX+8tMjIS7u7uCAgIwP3793Hs2DHcunWL17URUYl1586dXJPlzps3AWFh9Uvt3GsFwdBGKs3AwABnz56FtbU1vvvuO9StWxcuLi5ITU2FsbExAGDs2LHo27cv+vfvD3t7e5QpUwbffvvtO7e7evVqdO/eHb/88gtsbW0xaNAgpKSkAAAqV66M6dOnw83NDebm5hg+fHie29iwYQOaNGmCjh07wt7eHkIIHD58ON8T8BoYGCA8PBzdunVD7dq18fPPP2PYsGEYPHhwAT4hIiL1sG3bNmzevFlaDg1tiO3bPWBnp499+zidR34oxJsTWpHKSEpKgomJCRITE6WAAgCpqamIjIyEjY0N9PT0lFghFTfueyJSN8+fP8fChQtlbX/88RMePbLGvn0l8+ja276/Pxan/CAiIqIiERISAt/XpiYQApg1axKysrQwcWLJDGxFiaGNiIiICpUQAkuXLkViYqLU5u/fBnfvtoa+PjByJE+HfgiGNiIiIio0cXFxWLVqlaxt2bIRSE8vhy1beHTtYzC0ERERUaHw9/fHX3/9JS3HxJhjzZrB0NNTYMcOBraPxdCmxjiGpPThPiciVZSRkYE5c+bI2nbv/g63bzeArS0wbx4DW2FgaFNDOVNKvHjxolhn9yfle/HiBYDcd1ogIlKWLVsicfv2n7K2pUvHo2JFAx5dK2QMbWpIU1MTpqam0j0sDQwMpJupU8kkhMCLFy/w5MkTmJqaQlNTU9klERFhx44duH07XFq+evUT+Pl147VrRYShTU1ZWFgAgBTcqHQwNTWV9j0RkbKkpKRgwYIFsra7d53x+HFVBrYixNCmphQKBSwtLVGxYkVkZGQouxwqBtra2jzCRkRKFxoaCh8fH1nbrFmT8OmnWnjtdqJUBBja1Jympia/yImIqMgJIbBixQrEx8dLbVevfo5+/b7Ap58Cbm5KLK6UYGgjIiKid/r333+xcuVKWdvy5cNhZlYenTvzdGhxYWgjIiKitzp16hTOnj0rLcfFVYC//y+oXVvBo2vFjKGNiIiIcsnMzMTsN+41tXfvt7h163/Yvp1H15SBoY2IiIhk7t27h40bN8raFi0ah/r1DRnYlIihjYiIiCS7du3CjRs3pOXr1+th167voa0Njg5VMoY2IiIiwosXLzB//nxZW82a/bF2bTXo6QFjxiipMJIwtBEREZVyV65cwb59+2RtS5ZMxLNn2ujTR0lFUS4MbURERKWUEAKrVq3Cv//+K7WdOdMKZ8605chQFcTQRkREVAo9ffoUK1askLWtWDEMqakVsG8fBxuoIoY2IiKiUubMmTM4ffq0tPz0aTmsWDEcCoWCgU2FMbQRERGVEnnNvbZ/fxdERdnB0BAYOZKBTZUxtBEREZUC9+/fh7e3t6xt+fJxqF3bEBs2MKypA4Y2IiKiEm7Pnj24du2atJydbYtFi3pg5EjgjQNvpMIY2oiIiEqovOZe69u3L6pXr47p05VUFH0wDWUXQERERIXv2rVruQLb8eMTUb16dSVVRB+LR9qIiIhKECEEvLx+Q2pqrNR27txnCA93xKpVSiyMPhpDGxERUQkRHx+P5cuXy9pWrvwFcXFmsLfnYAN1x9BGRERUApw7dw4nT56UlhMSTLF06UhoaSlgawve4aAEYGgjIiJSY3nNvZaZ2Qlt2jRGYOCrsMYjbCUDQxsREZGaevDgAdavXy9rW7BgLAAjJCczrJU0DG1ERERqaP/+/bh8+bK0/PhxLRw61BtZWcDo0UosjIoMQxsREZEaefnyJby8vGRtu3b9iDlzauC335RUFBULhjYiIiI1cf36dezevVvWduKEO+bM0eGp0FKAoY2IiEjFCSEwf/5avHwZLbVFRtrD2/treHgosTAqVgxtREREKuzZs2dYtmyZrO3w4SGYNMlcSRWRsjC0ERERqai1a8/j8eMT0nJSUhksXjwKLVpo8HRoKcTQRkREpGKysrIwZ84cZGdnS20HD3aAjk5TtGjBiXJLK4Y2IiIiFfLw4UP88ccfsrb9+8cgJKSMkioiVcHQRkREpCKWL/dBfHyotHz7dg3s3/8jtmxRXk2kOhjaiIiIlGzv3lRcvTpP1lajRh/4+dXEli28swG9wtBGRESkRJMnh0Fbe6es7X//c8e33+rgxx+VVBSpJIY2IiIiJfDxETh9+g+Ymj6S2oKCmuPnn9vxyBrlSUPZBeRX586dYW1tDT09PVhaWqJv3754/PixtH7atGlQKBS5HoaGhrLt7Nq1C7a2ttDT00ODBg1w+PBh2XohBKZOnQpLS0vo6+vD0dERt27dkvWJj49Hnz59YGxsDFNTU7i4uOD58+eyPleuXEGrVq2gp6cHKyurXLccISKi0ishIQGhoTNkgW3PnsEMbPROahPa2rRpg507dyIiIgJ79uzBnTt30L17d2n9uHHjEB0dLXvUq1cP33//vdTnwoUL6NWrF1xcXBASEoKuXbuia9euuHbtmtTHy8sLy5Ytw5o1axAYGAhDQ0M4OTkhNTVV6tOnTx9cv34dx48fx8GDB3H27Fn8/PPP0vqkpCR8/fXXqFq1KoKDgzF//nxMmzYNv//+exF/SkREpOrWrr2ApUuXSsspKQaYMmUKrlyxYGCjd1IIIYSyi/gQvr6+6Nq1K9LS0qCtrZ1r/eXLl2FnZ4ezZ8+iVatWAIAePXogJSUFBw8elPq1aNECdnZ2WLNmDYQQqFSpEsaOHYtx48YBABITE2Fubg5vb2/07NkTYWFhqFevHoKCgtC0aVMAwNGjR/HNN9/g4cOHqFSpElavXo1JkyYhJiYGOjo6AAA3Nzfs378f4eHh+X6PSUlJMDExQWJiIoyNjT/4syIiIuXLysrC7NmeECJTajtxoj1at26G2bOVWBgVuqL6/labI22vi4+Px5YtW+Dg4JBnYAOAdevWoXbt2lJgA4CAgAA4OjrK+jk5OSEgIAAAEBkZiZiYGFkfExMTNG/eXOoTEBAAU1NTKbABgKOjIzQ0NBAYGCj1ad26tRTYcl4nIiICz549+8h3T0RE6ubRo0eYNWuWLLCtWjUa584xsFH+qVVoc3V1haGhIcqXL4+oqCj4+Pjk2S81NRVbtmyBi4uLrD0mJgbm5vJ7tZmbmyMmJkZan9P2rj4VK1aUrdfS0kK5cuVkffLaxuuvkZe0tDQkJSXJHkREpN4OHjyIdevWScuRkTbw9JyKgQN5BoUKRqmhzc3NLc/BA68/Xj+dOH78eISEhODYsWPQ1NREv379kNfZ3X379iE5ORn9+/cvzrfz0ebOnQsTExPpYWVlpeySiIjoA6WmpmL69OkIDg6W2v75pxe++64fXr5U8AgbFZhSp/wYO3YsnJ2d39mnevXq0t8rVKiAChUqoHbt2qhbty6srKxw8eJF2Nvby56zbt06dOzYMdfRLgsLC8TGxsraYmNjYWFhIa3PabO0tJT1sbOzk/o8efJEto3MzEzEx8fLtpPX67z+Gnlxd3fHmDFjpOWkpCQGNyIiNRQeHo4dO3bI2tzc3KCrq6ukiqgkUGpoMzMzg5mZ2Qc9N+cmumlpabL2yMhInDp1Cr6+vrmeY29vD39/f4waNUpqO378uBT6bGxsYGFhAX9/fymkJSUlITAwEEOHDpW2kZCQgODgYDRp0gQAcPLkSWRnZ6N58+ZSn0mTJiEjI0O65u748eOoU6cOypYt+9b3pKuryx9oIiI1JoTAwoXeSEmJktoCAz9FQsI38PBQYmFUIqjF5LqBgYEICgpCy5YtUbZsWdy5cwdTpkxBjRo1ch1lW79+PSwtLdG+fftc2/n111/x+eefY+HChejQoQO2b9+OS5cuSVNxKBQKjBo1CrNmzUKtWrVgY2ODKVOmoFKlSujatSsAoG7dumjXrh0GDRqENWvWICMjA8OHD0fPnj1RqVIlAEDv3r0xffp0uLi4wNXVFdeuXcPSpUuxePHiov2giIhIaRITE7FkyRJZ22+//YzkZEveO5QKhVqENgMDA+zduxceHh5ISUmBpaUl2rVrh8mTJ8uOTGVnZ8Pb2xvOzs7Q1NTMtR0HBwds3boVkydPxsSJE1GrVi3s378fn3zyidRnwoQJSElJwc8//4yEhAS0bNkSR48ehZ6entRny5YtGD58OL788ktoaGigW7duWLZsmbTexMQEx44dw7Bhw9CkSRNUqFABU6dOlc3lRkREJce6dRfx6JGftPzypR6WLBmPxo014ObGe4dS4VDbedpKA87TRkSk2rKzs+Hl5SW7VCcz0wlLlrTAyJHgYINSqqi+v9XiSBsREZGq2b49GhER8jvd1K8/Ct27m2DmTCUVRSUaQxsREVEB+PoCPj6HYW0dJLVZW1vD2dkZCoVCiZVRSadWk+sSEREpi68vYGOThpCQ6bLAZmPTAz/99BMDGxU5HmkjIiJ6D19fYMqUm3B23iZrd3V1lQ1UIypKDG1ERETvIISAv/+f+O67e1JbfHwTBAV1RKNGHBlKxYenR4mIiN4iKSkJM2bMQLly96S2QYMGISioIwICAE9P5dVGpQ+PtBEREb3B1xdYu/ZvNG16RGrT1taGq6srNDU14eb2KrC5uSmxSCp1GNqIiIhek52djcDAhWja9IXUFh7+NbZt++8OPJ0787QoFT+GNiIiov+3fXsMIiJ+g47Of22+vr/Cw8NUaTUR5WBoIyIiArBq1VHExQVKy8+eVcHixQPg4cGpPEg1MLQREVGpNmlSOnR05srazp37ASNH1gWnXiNVwtBGRESl1q1bt6Cjs1XW1qCBKzw8OPcaqR6GNiIiKnV8fYHDhzfD0vKO1PbPP40QF9cZHh5KLIzoHRjaiIioVNmzJxnXri2CpeV/bceOuSA+vgrmzVNeXUTvw9BGRESlxqVLl3Dt2iFpOStLE40bu8PDQ1OJVRHlD0MbERGVeD4+2bh4cTH09J5LbZUqOWLQoM+UWBVRwTC0ERFRibZjRyzCw9fg9fu616s3Et9/X1Z5RRF9AIY2IiIqkXx9gb17j8HGJkBqe/SoEtauHQh7ewW+/16JxRF9AIY2IiIqcdLT0xESMhc2Nv+1ZWR0x7lz9VGnDu8ZSuqJoY2IiEqUzZvv4M6dzbK2CRMmQF9fH7NmKakookLA0EZERCWCry9w7NhWmJndktoePWqIjh27Ql9fiYURFRKGNiIiUnvPnz9HSMhCmJn911ar1gB4eFgpryiiQsbQRkREau2ff/7BgQMHpOXsbAWmTp0ETU3OvUYlC0MbERGpJSEEJk9eCh2dRKnt7Nm2+PXXVmBeo5KIoY2IiNTOkydPsHr1aujo/Nd29uwI/PprOXTurLy6iIoSQxsREamVEydO4Pz589JyTIw5/v13MPz9FUqsiqjoMbQREZFayMjIwJw5c2RtBw50g5PTJ1i9WklFERUjhjYiIlJ5W7bcxe3bm2Rt48ePh4eHgZIqIip+DG1ERKSyfH2Bo0e3w9w8Qmq7caMB+vT5DgbMa1TKMLQREZFKSklJQUjIApib/9d24sRPGD/emoMNqFRiaCMiIpWzYUMIoqJ8ZW2TJk2Chwe/tqj04r9+IiJSGUIILF++HM+ePZPaTp/+AqNHfw4tfmNRKccfASIiUglxcXFYtWqVrO2334bjp5/K83QoERjaiIhIBaxZcxKxseekZTMzMwwdOhQeHpx7jSgHQxsRESlNXnOvffvtt/jf//6npIqIVJeGsgsgIqLS6d69e7kC29Kl4xnYiN6CR9qIiKjYLV26EwkJYdJyVlZ9LF7cHSNHKrEoIhXH0EZERMUmJSUFCxYskLX1798f1apVw4wZSiqKSE3w9CgRERWLy5cv5wpsO3ZMQrVq1ZRTEJGa4ZE2IiIqUkIIzJu3EmlpT6W206dbIzCwDbZvV2JhRGqmwEfaNDU18eTJk1ztT58+haamZqEURUREJcPTp08xY8YMWWBbsWIYYmJeBTbOv0aUfwU+0iaEyLM9LS0NOjo6H10QERGVDL/9dhoxMWek5adPy2HduuEYPVqB2bOVWBiRmsp3aFu2bBkAQKFQYN26dTAyMpLWZWVl4ezZs7C1tS38ComISK1kZmZi9hupbP/+LvjmGzu8eKGkoohKgHyHtsWLFwN4daRtzZo1slOhOjo6qFatGtasWVP4FRIRkdq4f/8+vL29ZW379o3DjBmGPBVK9JEU4m3nO9+iTZs22Lt3L8qWLVtUNdH/S0pKgomJCRITE2FsbKzscoiI3mnPnj24du2atBwba4tVq3oosSIi5Siq7+8CX9N26tSpQntxIiJSfy9evMD8+fNlbdu29YOXl42SKiIqmQoc2gYMGPDO9evXr//gYoiISL14e1/F/ft7ZW2zZk1EzZraPB1KVMgKHNqePXsmW87IyMC1a9eQkJCAtm3bFlphRESkunKub359CqizZ1vi8eMv8emngJubEosjKqEKHNr27duXqy07OxtDhw5FjRo1CqUoIiJSXfHx8Vi+fLmsbdeuX5CZaQYvL869RlRUCjwQ4W0iIiLwxRdfIDo6ujA2R+BABCJSPWfPnpVd2/zsmSn++GMkkpMVSqyKSLWozECEt7lz5w4yMzMLa3NERKRC8pp77dChTggLa4yRI5VUFFEpU+DQNmbMGNmyEALR0dE4dOgQ+vfvX2iFERGRanjw4EGuQWarVo3FwIFG+PtvJRVFVAoVOLSFhITIljU0NGBmZoaFCxe+d2QpERGpl3379uHKlSvSckREbdy71wuxsUosiqiU4jxtRESUy8uXL+Hl5SVr27TpR2hp1cAbzURUTD74mrYnT54gIiICAFCnTh1UrFix0IoiIiLluXbtGvbs2SNrW7JkIn75RZs3eidSogKHtqSkJAwbNgzbtm1DdnY2AEBTUxM9evTAypUrYWJiUuhFEhFR0RNC4Pfff0dMTIzUdv68A54//wpvTNFJREqgUdAnDBo0CIGBgTh06BASEhKQkJCAgwcP4tKlSxg8eHBR1EhEREXs2bNnmDFjhiywrVo1FOfOfcWJcolURIHnaTM0NISfnx9atmwpaz937hzatWuHlJSUQi2wNOM8bURUHP766y/4+/tLy0lJZbBkySjUqqXByXKJPoDKzNNWvnz5PE+BmpiYoGzZsoVSFBERFb2srCzMmjUbwH//dz9woCNCQprAzQ28fo1IxRT49OjkyZMxZswY2SH0mJgYjB8/HlOmTCnU4oiIqGg8fPgQs2bNwuuBbeHCMYiMbIJ9+xjYiFRRgU+PNmrUCLdv30ZaWhqsra0BAFFRUdDV1UWtWrVkff/555/Cq7QU4ulRIioKPj4+CA0NlZb//bcGvvrqR54GJSokKnN6tEuXLlAoeI85IiJ1k5qainnz5snagoP7wNe3ppIqIqKCKHBomzZtWhGUQURERenGjRvYtWuXrG3pUnd4e+soqSIiKqgCh7bq1asjKCgI5cuXl7UnJCSgcePGuHv3bqEVR0REH0cIgQUL1uHFi8dSW0BAC5w/74QtWzgylEidFDi03bt3D1lZWbna09LS8PDhw0IpioiIPl5CQgKWLl0qa6tTZzD8/CwY2IjUUL5Hj/r6+sLX1xcA4OfnJy37+vpi3759mDlzJmxsbIqs0M6dO8Pa2hp6enqwtLRE37598fjxY1kfPz8/tGjRAmXKlIGZmRm6deuGe/fuyfqcPn0ajRs3hq6uLmrWrAlvb+9cr7Vy5UpUq1YNenp6aN68Of7++2/Z+tTUVAwbNgzly5eHkZERunXrhtg37p4cFRWFDh06wMDAABUrVsT48eORmZlZKJ8FEdH7rF17QRbYnj83xI4dU9CzpwUuXGBgI1JH+R49qqHxKt8pFAq8+RRtbW1Uq1YNCxcuRMeOHQu/SgCLFy+Gvb09LC0t8ejRI4wbNw4AcOHCBQBAZGQk6tatizFjxsDFxQWJiYkYPXo0kpOTpVGskZGR+OSTTzBkyBAMHDgQ/v7+GDVqFA4dOgQnJycAwI4dO9CvXz+sWbMGzZs3x5IlS7Br1y5ERERI91cdOnQoDh06BG9vb5iYmGD48OHQ0NDA+fPnAbya+8jOzg4WFhaYP38+oqOj0a9fPwwaNAhz5szJ93vm6FEiKqisrCzMnu0JIf77T+Jff32Dhw8/xbx5DGtExaGovr8LPOWHjY0NgoKCUKFChUIr4kP4+vqia9euSEtLg7a2Nnbv3o1evXohLS1NCpgHDhxAly5dpD6urq44dOgQrl27Jm2nZ8+eSEhIwNGjRwEAzZs3x6effooVK1YAALKzs2FlZYURI0bAzc0NiYmJMDMzw9atW9G9e3cAQHh4OOrWrYuAgAC0aNECR44cQceOHfH48WOYm5sDANasWQNXV1fExcVBRyd/F/4ytBFRQTx69Ajr1q2TtS1cOBqffGKM////LREVg6L6/i7w5LqRkZFKD2zx8fHYsmULHBwcoK2tDQBo0qQJNDQ0sGHDBmRlZSExMRGbNm2Co6Oj1CcgIACOjo6ybTk5OSEgIAAAkJ6ejuDgYFkfDQ0NODo6Sn2Cg4ORkZEh62Nrawtra2upT0BAABo0aCAFtpzXSUpKwvXr19/6vtLS0pCUlCR7EBHlx4EDB2SB7c6d6pg2bSqEMOa9Q4lKiAIPRJgxY8Y710+dOvWDi3kfV1dXrFixAi9evECLFi1w8OBBaZ2NjQ2OHTuGH374AYMHD0ZWVhbs7e1x+PBhqU9MTIwsSAGAubk5kpKS8PLlSzx79gxZWVl59gkPD5e2oaOjA1NT01x9cu4S8bbXyVn3NnPnzsX06dPz+WkQEeU999qWLb1x+3Yt1KkD3juUqAQp8JG2ffv2yR47d+7EvHnzsHDhQuzfv79A23Jzc4NCoXjnIycsAcD48eMREhKCY8eOQVNTE/369ZOur4uJicGgQYPQv39/BAUF4cyZM9DR0UH37t1zXYOnqtzd3ZGYmCg9Hjx4oOySiEiFhYeH5wps3t5uePiwFtzdgfBwBjaikqTAR9pCQkJytSUlJcHZ2RnffvttgbY1duxYODs7v7NP9erVpb9XqFABFSpUQO3atVG3bl1YWVnh4sWLsLe3x8qVK2FiYgIvLy+p/+bNm2FlZYXAwEC0aNECFhYWuUZ5xsbGwtjYGPr6+tDU1ISmpmaefSwsLAAAFhYWSE9PR0JCguxo25t93hxxmrPNnD550dXVha6u7js/DyIiIQQ2bNgg+49dYGAzJCS0R2SkEgsjoiJV4NCWF2NjY0yfPh2dOnVC37598/08MzMzmJmZfdBrZmdnA3h1HRgAvHjxQhqAkENTU1PW983TpQBw/Phx2NvbAwB0dHTQpEkT+Pv7o2vXrtJz/f39MXz4cACvrp3T1taGv78/unXrBgCIiIhAVFSUtB17e3vMnj0bT548kUacHj9+HMbGxqhXr94HvV8iIgCYNCkROjpLZG1r1vyMJ08ssW+fcmoiouJRKKENgHRKrygEBgYiKCgILVu2RNmyZXHnzh1MmTIFNWrUkIJShw4dsHjxYsyYMQO9evVCcnIyJk6ciKpVq6JRo0YAgCFDhmDFihWYMGECBgwYgJMnT2Lnzp04dOiQ9FpjxoxB//790bRpUzRr1gxLlixBSkoKfvrpJwCAiYkJXFxcMGbMGJQrVw7GxsYYMWIE7O3t0aJFCwDA119/jXr16qFv377w8vJCTEwMJk+ejGHDhvFIGhF9sIsXL0JHx09aTk3Vw+bN45GQoAE3N54KJSrpChzali1bJlsWQiA6OhqbNm1C+/btC62w1xkYGGDv3r3w8PBASkoKLC0t0a5dO0yePFkKQW3btsXWrVvh5eUFLy8vGBgYwN7eHkePHoW+vj6AV4MVDh06hNGjR2Pp0qWoUqUK1q1bJ83RBgA9evRAXFwcpk6dipiYGNjZ2eHo0aOygQWLFy+GhoYGunXrhrS0NDg5OWHVqlXSek1NTRw8eBBDhw6Fvb09DA0N0b9///cO4iAiyktWVha8vLyQnp4utR0+3A4hIc3xWhMRlXAfNE/b6zQ0NGBmZoa2bdvC3d0dZcqUKdQCSzPO00ZEjx8/xtq1a2VtixePQmKiCSpXBnj3QCLVU1Tf3wU+0hbJq1yJiIrFoUOHcOnSJWn5yZOq+Prr/vjzTwU8PcH514hKmQ+6pi0hIQG3b98GANSsWTPXnGVERPTh9u1Lw5UrnrK2bdt6IiKiDkJCwHuHEpVSBZqn7d69e+jQoQMqVKiA5s2bo3nz5qhQoQI6duyY68bsRERUcBEREbkC2+7dbgDqwNaWR9eISrN8H2l78OABWrRoAW1tbcycORN169YFANy4cQOrV6+Gvb09goKCUKVKlSIrloiopBJCYOPGjbh//77UFhTUBGfOdMSWLTyyRkQFGIjg4uKC27dvw8/PD3p6erJ1L1++RLt27VCrVq1cNyumD8eBCESlw+7dSbh+fbGszc9vEIBKnMqDSA0pfSDC0aNHsWPHjlyBDQD09fUxc+ZM9OzZs9AKIyIqDf7++29cv35EWk5L04GX1wTs3avJsEZEMvkObf/++y+qVav21vXVq1dHfHx8YdRERFTiZWdnY8GCBXj58qXUduzY17hwwR6VK/PoGhHllu/QZmlpiRs3brz1mrVr1669876aRET0SnR0NH7//XdZ26+//opGjUw5lQcRvVW+Q1vXrl0xbtw4+Pv757pf6JMnT+Dq6irdr5OIiPJ25MgR/P3339KylZUVfvrpJygUCnTuzCNsRPR2+R6I8OzZMzRv3hwxMTH48ccfYWtrCyEEwsLCsHXrVlhYWODixYsoV65cUddcanAgAlHJkZ6ejrlz58rafvjhB2kkPhGVHEofiFC2bFkEBgZi4sSJ2L59OxISEgAApqam6N27N+bMmcPARkSUh1u3bmHr1q2yNldX1zwHdhERvU2B7z0KvJpPKC4uDgBgZmYGhUJR6IURj7QRlQSbNm3C3bt3peXg4EY4daozkpOVWBQRFSmlH2l7nUKhQMWKFQutCCKikiYpKQmLF8vnXlu7diAePaqMiROVVBQRqbUPCm1ERPR2QUFBOHz4sLSsUGghLc0NiYmamDgRmD1bicURkdpiaCMiKiTZ2dlYtGgRUlJSpLZjxxwhxGe4cIFhjYg+DkMbEVEhiI2NxZo1a2Rt27ePRNmyZTnvGhEVCoY2IqKP5Ofnh4sXL0rLjx5Vwtq1A2Frq8CFC0osjIhKlHyFtmXLluV7gyNHjvzgYoiI1MnevS9x9aqXrG3nzu9x40Y9aGgA8+YpqTAiKpHyFdreHAH1NgqFgqGNiEqFoKAgXL16WNa2ePEEaGrqQ08PGDOGdzcgosKVr9AWGRlZ1HUQEamN6dOny5ZfvtTDvHmuAAB7e/CUKBEViQ++pi09PR2RkZGoUaMGtLR4aRwRlWy+vsCyZU/RqtWKN9q7IyysPrp3Bx494s3eiajoFDhtvXjxAiNGjMDGjRsBADdv3kT16tUxYsQIVK5cGW78jUVEJYSvL+Dp+SqI+foeRKtWwbL1s2ZNhJ6eNl68UFKBRFSqaBT0Ce7u7rh8+TJOnz4tu2+eo6MjduzYUajFEREpk6cnEBiYjZCQ6bCy+i+w3bxZC8uWeUBPTxu8jJeIikuBj7Tt378fO3bsQIsWLWT3HK1fvz7u3LlTqMURESnTsGGRcHL6U9bm5zcIQCVs2MCBBkRUvAoc2uLi4vK872hKSgpvHE9EJcbvv/+O6OhoWZuf31S4uSkY1ohIKQp8erRp06Y4dOiQtJwT1NatWwd7e/vCq4yISAlSU1Mxffp0WWBr1aoVPDw8cOECAxsRKU+Bj7TNmTMH7du3x40bN5CZmYmlS5fixo0buHDhAs6cOVMUNRIRFYvg4GAcPHhQ1jZ69GgYGxsrqSIiov8U+Ehby5YtERoaiszMTDRo0ADHjh1DxYoVERAQgCZNmhRFjURERW769OmywKZQaMHDw4OBjYhUhkIIIZRdBOUtKSkJJiYmSExM5BcHURGYNAlYv/4ZhgyR36pv9+7vUKZMA06SS0QfpKi+v/N1ejQpKSnfG2S4ICJ1ce3aEQwZ8resbfbsicjK0sa+fUoqiojoLfIV2kxNTfM9MjQrK+ujCiIiKmrZ2dmYOXMmGjf+r+3p0+rYu7cvtLSA8eM5nQcRqZ58hbZTp05Jf7937x7c3Nzg7OwsjRYNCAjAxo0bMXfu3KKpkoiokNy/fx/e3t6ytrVrXZCYWAXJycqpiYgoPwp8TduXX36JgQMHolevXrL2rVu34vfff8fp06cLs75Sjde0ERWuP/74Aw8fPpS1rV07FYmJCowcCcyeraTCiKhEUeo1ba8LCAjAmjVrcrU3bdoUAwcOLJSiiIgKU1paGjw9PWVtN258hgcPHLFqFU+FEpF6KPCUH1ZWVli7dm2u9nXr1sHKyqpQiiIiKiwhISG5AtvKlaPQp48jLlxgYCMi9VHgI22LFy9Gt27dcOTIETRv3hwA8Pfff+PWrVvYs2dPoRdIRPShpk+fLlvOzlZgxoypsLVlWCMi9VPgI23ffPMNbt26hU6dOiE+Ph7x8fHo1KkTbt68iW+++aYoaiQiei9fX8DB4dWfCQkJuQLb3r1dsXPnVNjbA/PmKalIIqKPwMl1VRgHIhDln4MDEBAA9OzpB1vbi7J1u3e7o0wZHbi58QgbERU9lRmIALz6X+wff/yBsLAwAED9+vUxYMAAmJiYFFphRETv4usLTJgAKBSvjpy5ugqEhs6Q9TEyqoo9e5wxezbDGhGpvwIfabt06RKcnJygr6+PZs2aAQCCgoLw8uVLHDt2DI1fn62SPgqPtBG9Xc6RNQCwsYlC//4bZOtr1RqA3r05OIqIil9RfX8XOLS1atUKNWvWxNq1a6Gl9epAXWZmJgYOHIi7d+/i7NmzhVZcacfQRvR2OUfaPvvMG9bW92Xr/Pym4sKF/N3FhYiosKnM6dFLly7JAhsAaGlpYcKECWjatGmhFUZE9DpfX8DTE9J1ae3apSMkRH4XlgsXWuDECSfeN5SISqQChzZjY2NERUXB1tZW1v7gwQOUKVOm0AojInqdp+er06F9+gDLl1/G/fv7Zes3bPgVT5+acrABEZVYBQ5tPXr0gIuLCxYsWAAHBwcAwPnz5zF+/Phct7YiIiosbm6vAtuYMTNw/778qo5p0zxQpw5471AiKtEKHNoWLFgAhUKBfv36ITMzEwCgra2NoUOH5pp1nIiosHz+eSLGjVsia7O27ox58xrB1pZzrxFRyffB87S9ePECd+7cAQDUqFEDBgYGhVoYcSACUY4TJ07g/Pnzsrb//c8N336rq6SKiIjeTmUGIuQwMDBAgwYNCq0QIqI3CSEwY4Z87rUHD6rgxg0XeHgoqSgiIiXJd2gbMGBAvvqtX7/+g4shIsrx8OFD/PHHH7K2DRuc8fRpVWzZoqSiiIiUKN+hzdvbG1WrVkWjRo3AO18RUVHatGkT7t69K2uzs5uCSpU0sGwZR4cSUemU79A2dOhQbNu2DZGRkfjpp5/w448/oly5ckVZGxGVIr6+wPz56XB0lM+9FhjYDAkJ7eHhAXTpoqTiiIhUgEZ+O65cuRLR0dGYMGECDhw4ACsrK/zwww/w8/PjkTci+mje3ldzBbYDB0YiIaE93NyUVBQRkQr54NGj9+/fh7e3N/78809kZmbi+vXrMDIyKuz6SjWOHqXSYs6cOcjIyJC1+fl5cKJcIlJLKjd6VENDAwqFAkIIZGVlFVpBRFR6JCUlYfHixbK2Awc6IjKyCZ4+VVJRREQqKt+nRwEgLS0N27Ztw1dffYXatWvj6tWrWLFiBaKioniUjYgK5OTJk7kC2//+5wodnSbYsEFJRRERqbB8H2n75ZdfsH37dlhZWWHAgAHYtm0bKlSoUJS1EVEJlNfca48fW+Lq1Z/h4QF8+62SCiMiUnH5vqZNQ0MD1tbWaNSoERQKxVv77d27t9CKK+14TRuVNI8fP8batWtlbSdP9kNsrA28vHj9GhGVDEq/pq1fv37vDGtERG/y9QU8PV/d7P358624deuWbP3ChVOQlFSgqzSIiEqtAk2uS0RUEJ6eQFBQBkJC5sjaL11qgsOHO3IqDyKiAvjg0aNERO8zePB1ODntlrXVrTscfn7lsW8fT4cSERUEQxsRFYl58+YhNTVV1ubx/3d5/+EHZVRERKTeGNqIqFAlJydj0aJFsrYbN77Bjh2fKqkiIqKSgaGNiArNmTNncPr0aVmbv/8EjBunr5yCiIhKEIY2IvpgOaNDXV0FQkPlc6/FxlbEqVNDERampOKIiEoYhjYi+mCenkBkZDRCQ3+Xtdeo8SP8/Gpg3jwlFUZEVAKpzQRJnTt3hrW1NfT09GBpaYm+ffvi8ePHsj47d+6EnZ0dDAwMULVqVcyfPz/Xdk6fPo3GjRtDV1cXNWvWzHMqk5UrV6JatWrQ09ND8+bN8ffff8vWp6amYtiwYShfvjyMjIzQrVs3xMbGyvpERUWhQ4cOMDAwQMWKFTF+/HhkZmZ+/AdBpAJ8fQEHB+Crr3ZgyBB5YJs/fzJ+/LEGLlzg6FAiosKkNqGtTZs22LlzJyIiIrBnzx7cuXMH3bt3l9YfOXIEffr0wZAhQ3Dt2jWsWrUKixcvxooVK6Q+kZGR6NChA9q0aYPQ0FCMGjUKAwcOhJ+fn9Rnx44dGDNmDDw8PPDPP/+gYcOGcHJywpMnT6Q+o0ePxoEDB7Br1y6cOXMGjx8/xnfffSetz8rKQocOHZCeno4LFy5g48aN8Pb2xtSpU4v4UyIqHl5emXBymg4NjXCpLSvLDgsWeODXXzWVWBkRUcmV79tYqRpfX1907doVaWlp0NbWRu/evZGRkYFdu3ZJfZYvXw4vLy9ERUVBoVDA1dUVhw4dwrVr16Q+PXv2REJCAo4ePQoAaN68OT799FMp7GVnZ8PKygojRoyAm5sbEhMTYWZmhq1bt0qhMTw8HHXr1kVAQABatGiBI0eOoGPHjnj8+DHMzc0BAGvWrIGrqyvi4uKgo6OTr/fI21iRKgoLC8POnTtlbcOGDeO9iImI/l9RfX+rzZG218XHx2PLli1wcHCAtrY2ACAtLQ16enqyfvr6+nj48CHu378PAAgICICjo6Osj5OTEwICAgAA6enpCA4OlvXR0NCAo6Oj1Cc4OBgZGRmyPra2trC2tpb6BAQEoEGDBlJgy3mdpKQkXL9+/a3vKy0tDUlJSbIHkarw9QXc3BbkCmx+fh4MbERExUCtQpurqysMDQ1Rvnx5REVFwcfHR1rn5OSEvXv3wt/fH9nZ2bh58yYWLlwIAIiOjgYAxMTEyIIUAJibmyMpKQkvX77Ev//+i6ysrDz7xMTESNvQ0dGBqanpO/vktY2cdW8zd+5cmJiYSA8rK6v8fjRERer58+cICZkOff0Uqe3ChXbYts2Dt6IiIiomSg1tbm5uUCgU73yEh/93zcz48eMREhKCY8eOQVNTE/369UPO2d1BgwZh+PDh6NixI3R0dNCiRQv07NkTwKujZerA3d0diYmJ0uPBgwfKLokI586dk/4DlGPevPFITm6O8HAONiAiKi5KnfJj7NixcHZ2fmef6tWrS3+vUKECKlSogNq1a6Nu3bqwsrLCxYsXYW9vD4VCgXnz5mHOnDmIiYmBmZkZ/P39ZduwsLDINcozNjYWxsbG0NfXh6amJjQ1NfPsY2FhIW0jPT0dCQkJsqNtb/Z5c8RpzjZz+uRFV1cXurq67/w8iIqLEAIzZsjnXktJKY+WLYfDzg48wkZEVMyUGtrMzMxgZmb2Qc/Nzs4G8Oo6sNdpamqicuXKAIBt27bB3t5eeg17e3scPnxY1v/48eOwt7cHAOjo6KBJkybw9/dH165dpdfx9/fH8OHDAQBNmjSBtrY2/P390a1bNwBAREQEoqKipO3Y29tj9uzZePLkCSpWrCi9jrGxMerVq/dB75eoOMXGxmLNmjWytj17emPWrFro3JlH14iIlEEtJtcNDAxEUFAQWrZsibJly+LOnTuYMmUKatSoIQWlf//9F7t378YXX3yB1NRUbNiwQZqSI8eQIUOwYsUKTJgwAQMGDMDJkyexc+dOHDp0SOozZswY9O/fH02bNkWzZs2wZMkSpKSk4KeffgIAmJiYwMXFBWPGjEG5cuVgbGyMESNGwN7eHi1atAAAfP3116hXrx769u0LLy8vxMTEYPLkyRg2bBiPpJHKW7p0FxISbsjaFi2ajE2bNBnWiIiUSC1Cm4GBAfbu3QsPDw+kpKTA0tIS7dq1w+TJk2UhaOPGjRg3bhyEELC3t8fp06fRrFkzab2NjQ0OHTqE0aNHY+nSpahSpQrWrVsHJycnqU+PHj0QFxeHqVOnIiYmBnZ2djh69KhsYMHixYuhoaGBbt26IS0tDU5OTli1apW0XlNTEwcPHsTQoUNhb28PQ0ND9O/fP9epJiJVkpmZidmzZ8vaLl/+H44f/xZbtvDoGhGRsqntPG2lAedpo+IyeXIEtLW3y9p27x6KzMyKmDePgY2IqCCK6vtbLY60EVHRWbx4MbS15XMC2tlNhYeHQkkVERFRXhjaiEqplJQULFiwQNZ28eJXOHLEQUkVERHRuzC0EZVC58+fx4kTJ2Rt8+ePx9atBkqqiIiI3oehjagU8fERCA2VD4hJSDDBsmWj4ObGa9eIiFQZQxtRKfHkyROEhq6WtW3d2guPH9fGvn0MbEREqo6hjagU2Lt3L65evSprmzlzMrS1NbFjBwMbEZE6YGgjKsGysrIwa9YsWVt0dH0cPNgdWVlArVoMbERE6oKhjaiEunXrFrZu3SprO39+CI4fN0edOoC9Pe8fSkSkThjaiEqgZcuW4dmzZ7I2O7upaNRIgefPwUEHRERqiKGNqAR58eIF5s+fL2s7ceJLhIa2lG5FxbBGRKSeNJRdABEVjnXrLuYKbJ98Mg6hoS3x/Dng6amkwoiIqFDwSBuRmstr7jUjIyOMHTsWAKCt/Sqw8fo1IiL1xtBGpMb+/fdfhIaulLXZ2PRAv3620jJPiRIRlQwMbURqaupUH2hqhsraGjachK5d+WNNRFQS8bc7kZrJmXtNU/O/ttjYuli9+gfY2wNduyqtNCIiKkIMbURq5M6dO9i8ebOsLSNjMNq1s0BoKK9bIyIqyRjaiNTEqlWrEBcXJ2ubOnUqFAoFAF63RkRU0jG0Eam4ly9fwsvLS9bWpk0btG7dWkkVERGRMjC0Eamwv//+G0eOHJG1jRkzBmXKlFFSRUREpCwMbUQqavr06bJlTU19HD48AY0avVrOmXuNp0WJiEoHhjYiFbNz51OEha2QtX3//fcYOLAeAgL+u7NBzt8Z2oiISgeGNiIVcuDAAYSF/SNrmzhxIrS1teHmJr+zAe9yQERUuiiEEELZRVDekpKSYGJigsTERBgbGyu7HCpC2dnZmDlzpqwtIqI27t3rhQsXlFQUERF9kKL6/uaRNiIl8vUFFi6MRNu2f8ra69QZBD+/SjySRkREEg1lF0BUmp0581uuwDZ16lQYGFRSUkVERKSqeKSNSAlSU1Mxb948vH7U3MKiNQYPbgPg1fVqHGhARESvY2gjKmbr11/CgweHZG2jR4+WXffw5qADIiIihjaiYvTm3GuZmTr49FN3vHmdaufOPMJGRERyDG1ExSA+Ph7Lly+XtVWr1g39+3+ipIqIiEjdMLQRFbHDhw8jKChI1pYz9xoREVF+MbQRFREfn2yEhsrnXqtevTr69u2rpIqIiEidMbQRFSJfX8DVFahQ4R4cHTfK1g0cOBCVK1dWUmVERKTuGNqICpGnJ9Cy5TpUqfJI1j516lQoFAolVUVERCUBQxtRIfD1BebPT4OTk6esvWXLlvjyyy+VVBUREZUkvCMCUSHYtOkfODrKA9uoUaPeGdh8fQEHh1d/EhERvQ9vGK/CeMN41efrC4SEyOde09DQwJQpU977XAeHV3c9sLcHbwpPRFSCFNX3N4+0EX2gZ8+e5QpsVat+i61bp8DW9v1H0NzcXgU23vWAiIjyg0faVBiPtKkmX1/gzz9D0aCBj6zd3d0dX3yhg4CAV8s8gkZEVDrxSBuRChBC4K+/lssCm5FRNXh4eEBHRwdubkDlyoCeHtCmjRILJSKiEoehjSif/v33X8yYMQOGhvFS2/LlwzBtWn/pVGjnzoC1NZCaCpw69d9zOeiAiIg+FkMbUT6cOnUKK1eulJbLly8PO7upSEurgOfPX83PliOva9U8PV8NOvCUDzAlIiLKN87TRvQOmZmZmD17tqyta9euaNiwIQBgy5ZXQez1gNa586vH69zccvcjIiIqCA5EUGEciKAcvr6vAtawYfdw+7b8VlTjxo2DoaGhkiojIiJ1wIEIREUs57ozV1egcuXdssAWE1MXjRp5yAIbr1MjIqLixCNtKoxH2oqXgwNw+fILTJgwX9bu798P587Z5JrCg5PjEhFRXnikjaiI5Bwx+/LLK7kC26xZExEXZ5PnJLg5Aw7atOERNyIiKno80qbCeKSteDg4CDRuvApmZv9Kba1atcLz522lwQNvDiyQP59H3IiI6D9F9f3N0aNUqj19+hROTitkbb/88gvMzMwAvDus5eDIUCIiKg4MbVRqnTlzBqdPn5aWy5YtixEjRkChUBRoO3lN8UFERFTYGNqo1Mlr7rXOnTujUaNGSqqIiIjo/RjaqFSJiorChg0bZG1jx46FkZGRkioiIiLKH4Y2KjX27t2Lq1evSst16tRBz549lVgRERFR/jG0UYnm6wssXPgCbdvKp/Lo27cvqlevrqSqiIiICo6hjUq0FSuuoW3bPbK2iRMnQltbW0kVERERfRhOrkslSs5EuT4+AmvWrMFnn/0X2BwcHODh4SEFNt6GioiI1AlDG5Uonp5AeHg8QkNnIDY2Vmq3tR2Kr776KlffgIBXfxIREak6nh6lEsXZ+Ryio09Ky8bGxvj111+hoZH7/yecFJeIiNQJQxupPV9fwN09C99/Pwuvz4trZdUJAwY0fuvzOCkuERGpE4Y2UnteXg/www/rZW1jxoxBmTJllFQRERFR4WNoI7W2f/9+fPXVZWnZ2LgmRo/uo8SKiIiIigZDG6kdX19gwYKX+PJLL1l7jRo/4scfayipKiIioqLF0EZqw9f31cABI6Pr+PLL3bJ17u7u0NHRUVJlRERERY+hjVReTliLihLo0GEtKlWKltbZ29vj66+/VmJ1RERExYOhjVSary/Qowegp/cMo0Ytk60bMmQIzM3NlVQZERFR8VK7yXXT0tJgZ2cHhUKB0NBQ2borV66gVatW0NPTg5WVFby8vHI9f9euXbC1tYWenh4aNGiAw4cPy9YLITB16lRYWlpCX18fjo6OuHXrlqxPfHw8+vTpA2NjY5iamsLFxQXPnz8vcC30fp6eQJMm52WBTUvLCFOmTGFgIyKiUkXtQtuECRNQqVKlXO1JSUn4+uuvUbVqVQQHB2P+/PmYNm0afv/9d6nPhQsX0KtXL7i4uCAkJARdu3ZF165dce3aNamPl5cXli1bhjVr1iAwMBCGhoZwcnJCamqq1KdPnz64fv06jh8/joMHD+Ls2bP4+eefC1QLvV3O7aX2789Cu3az8NVXJ6R1HTp0wKRJY/OcLJeIiKhEE2rk8OHDwtbWVly/fl0AECEhIdK6VatWibJly4q0tDSpzdXVVdSpU0da/uGHH0SHDh1k22zevLkYPHiwEEKI7OxsYWFhIebPny+tT0hIELq6umLbtm1CCCFu3LghAIigoCCpz5EjR4RCoRCPHj3Kdy35kZiYKACIxMTEAj1P3dnbC1G58gMxbdo02SMpKUnZpREREb1XUX1/q83hitjYWAwaNAibNm2CgYFBrvUBAQFo3bq1bAShk5MTIiIi8OzZM6mPo6Oj7HlOTk4ICAgAAERGRiImJkbWx8TEBM2bN5f6BAQEwNTUFE2bNpX6ODo6QkNDA4GBgfmuJS9paWlISkqSPUqj3r19MWjQH9Jy9erV4eHhwclyiYioVFOL0CaEgLOzM4YMGSILS6+LiYnJdY1TznJMTMw7+7y+/vXnva1PxYoVZeu1tLRQrly5977O66+Rl7lz58LExER6WFlZvbVvSZSamorp06fj6dMQqa13797o27evEqsiIiJSDUoNbW5ublAoFO98hIeHY/ny5UhOToa7u7syyy1y7u7uSExMlB4PHjxQdknFJiwsDPPmzZO1ubu7o1atWkqqiIiISLUodcqPsWPHwtnZ+Z19qlevjpMnTyIgIAC6urqydU2bNkWfPn2wceNGWFhYIDY2VrY+Z9nCwkL6M68+r6/PabO0tJT1sbOzk/o8efJEto3MzEzEx8e/93Vef4286Orq5nqPJU3OnGtubq9u1i6EwPr16/Hw4UOpT7NmzdC+fXslVklERKR6lBrazMzMYGZm9t5+y5Ytw6xZs6Tlx48fw8nJCTt27EDz5s0BvJpkddKkScjIyIC2tjYA4Pjx46hTpw7Kli0r9fH398eoUaOkbR0/fhz29vYAABsbG1hYWMDf318KaUlJSQgMDMTQoUOlbSQkJCA4OBhNmjQBAJw8eRLZ2dkFqqW08vQEAgKAPn2ADRsScP36Utn6wYMHvzPYEhERlVqFOqyhmERGRuYaPZqQkCDMzc1F3759xbVr18T27duFgYGB+O2336Q+58+fF1paWmLBggUiLCxMeHh4CG1tbXH16lWpj6enpzA1NRU+Pj7iypUrokuXLsLGxka8fPlS6tOuXTvRqFEjERgYKP766y9Rq1Yt0atXrwLVkh+qNnrUx+fVyE4fnw/v6+MjhJGREPb2F2QjQ728vERWVlbRFE5ERFSMiur7u8SENiGEuHz5smjZsqXQ1dUVlStXFp6enrmeu3PnTlG7dm2ho6Mj6tevLw4dOiRbn52dLaZMmSLMzc2Frq6u+PLLL0VERISsz9OnT0WvXr2EkZGRMDY2Fj/99JNITk4ucC3vo2qhzd5eCODVnx/aNzMzU8yYMVsW2AIDA4umYCIiIiUoqu9vhRBCKPNIH71dUlISTExMkJiYCGNjY2WXk+t6tIL2ffz4MdauXSvrN3r0aJV4b0RERIWlqL6/GdpUmKqFto9x8OBBBAcHS8vVqlVDv379oFAolFgVERFR4Suq72+1mKeN1EfOLah8fV8tp6WlYfr06bLA1rNnT/Tv35+BjYiIqACUOnqUSp6c0aGenkCdOhHYvn27bL2bm1uJn9aEiIioKDC0UaFycwM8PQW++84b27dHSe1NmzZFhw4dlFgZERGRemNoo0L1+eeJCAlZgpSU/9oGDRqESpUqKa8oIiKiEoChjQpNYGAgjh49Ki3r6upi/Pjx0NTUVGJVREREJQNDG3207OxseHl5IS0tTWqrXNkJAwe2UGJVREREJQtDG30wX19g5cpoODj8LmtfvHgU6tUzwcCBSiqMiIioBGJoow/m43MYDg5B0nJcnBVWrvwJenoKuLkpsTAiIqISiKGNCiwtLQ2enp6wtv6vrUePHrh50xb//JO/OyYQERFRwTC0UYHcvHkT27Ztk7W5urpCT08PtrYMa0REREWFd0QgyZt3M3idEAJ//vmnLLA1btwYHh4e0NPTK8YqiYiISieGNpK8fjeD1yUlJWHGjBmIjIyU2gICBqJTp07FXCEREVHpxdBGEjc3wN4eskEEf//9NxYvXiwta2ho49ixyfjll8pKqJCIiKj04jVtBODVKVFPz/8GEWRnZ2PhwoV48eKF1Cc8/Cv06uWAKVOUWCgREVEpxdBGAOSnRps1i8Fvv/0mW3/mzK84dcoU9+9zsAEREZEyMLQRgJwbvQM//uiH3367KLUbGFTGuHEuOHBAgdRUcP41IiIiJWFoIwBAu3bpCAmZi7i4/9p27PgeDx7UQ506r46u8QgbERGR8nAgAuHWrVuYO3eurG3PHldERtbD8+e5R5MSERFR8eORtlJu8+bNuHPnjrRsZ2eHLl26wMNDPjiBiIiIlIuhrZRKTk7GokWLZG0uLi6oUqWKtMxTokRERKqDoa0U2rAhFFFRPtKyhoYGJk6cCE1NTSVWRURERO/Ca9pKoXv3Dkh///LLLzFlyhQpsL3rVlZERESkPAxtpZCV1ddITLREvXoj0bJlS1lQe9utrIiIiEi5FEIIoewiKG9JSUkwMTFBYmIijI2Ni+x1HBxeBbWcW1i9fmcEIiIiKpii+v7mkTaS3XO0c2fgwgUGNiIiIlXDgQjEUaJERERqgEfaSjEOOiAiIlIfDG2lGAcdEBERqQ+GtlLs9WvZiIiISLXxmrZSjNeyERERqQ8eaSMiIiJSAwxtRERERGqAoY2IiIhIDTC0EREREakBhjYiIiIiNcDQRkRERKQGGNqIiIiI1ABDGxEREZEaYGgjIiIiUgMMbURERERqgKGNiIiISA0wtBERERGpAYY2IiIiIjWgpewC6O2EEACApKQkJVdCRERE+ZXzvZ3zPV5YGNpUWHJyMgDAyspKyZUQERFRQSUnJ8PExKTQtqcQhR0DqdBkZ2fj8ePHKFOmDBQKhbLLKVZJSUmwsrLCgwcPYGxsrOxy6DXcN6qL+0Z1cd+otsLeP0IIJCcno1KlStDQKLwr0XikTYVpaGigSpUqyi5DqYyNjfkLTkVx36gu7hvVxX2j2gpz/xTmEbYcHIhAREREpAYY2oiIiIjUAEMbqSRdXV14eHhAV1dX2aXQG7hvVBf3jerivlFt6rJ/OBCBiIiISA3wSBsRERGRGmBoIyIiIlIDDG1EREREaoChjYiIiEgNMLRRoUtLS4OdnR0UCgVCQ0Nl665cuYJWrVpBT08PVlZW8PLyyvX8Xbt2wdbWFnp6emjQoAEOHz4sWy+EwNSpU2FpaQl9fX04Ojri1q1bsj7x8fHo06cPjI2NYWpqChcXFzx//rzAtZQUnTt3hrW1NfT09GBpaYm+ffvi8ePHsj47d+6EnZ0dDAwMULVqVcyfPz/Xdk6fPo3GjRtDV1cXNWvWhLe3d64+K1euRLVq1aCnp4fmzZvj77//lq1PTU3FsGHDUL58eRgZGaFbt26IjY2V9YmKikKHDh1gYGCAihUrYvz48cjMzPz4D0IF5Wff+Pn5oUWLFihTpgzMzMzQrVs33Lt3T9aH+6ZovG//TJs2DQqFItfD0NBQth3+Xit8+fnZEUJgwYIFqF27NnR1dVG5cmXMnj1b1ketfnYEUSEbOXKkaN++vQAgQkJCpPbExERhbm4u+vTpI65duya2bdsm9PX1xW+//Sb1OX/+vNDU1BReXl7ixo0bYvLkyUJbW1tcvXpV6uPp6SlMTEzE/v37xeXLl0Xnzp2FjY2NePnypdSnXbt2omHDhuLixYvi3LlzombNmqJXr14FqqUkWbRokQgICBD37t0T58+fF/b29sLe3l5af/jwYaGlpSVWr14t7ty5Iw4ePCgsLS3F8uXLpT53794VBgYGYsyYMeLGjRti+fLlQlNTUxw9elTqs337dqGjoyPWr18vrl+/LgYNGiRMTU1FbGys1GfIkCHCyspK+Pv7i0uXLokWLVoIBwcHaX1mZqb45JNPhKOjowgJCRGHDx8WFSpUEO7u7kX8KSnH+/bN3bt3ha6urnB3dxe3b98WwcHBonXr1qJRo0ayPtw3ReN9+yc5OVlER0fLHvXq1RP9+/eX+vD3WtF4374RQogRI0aIOnXqCB8fH3H37l1x6dIlcezYMWm9uv3sMLRRoTp8+LCwtbUV169fzxXaVq1aJcqWLSvS0tKkNldXV1GnTh1p+YcffhAdOnSQbbN58+Zi8ODBQgghsrOzhYWFhZg/f760PiEhQejq6opt27YJIYS4ceOGACCCgoKkPkeOHBEKhUI8evQo37WUZD4+PkKhUIj09HQhhBC9evUS3bt3l/VZtmyZqFKlisjOzhZCCDFhwgRRv359WZ8ePXoIJycnablZs2Zi2LBh0nJWVpaoVKmSmDt3rhDi1b7S1tYWu3btkvqEhYUJACIgIEAI8erfkIaGhoiJiZH6rF69WhgbG8v2V0n15r7ZtWuX0NLSEllZWVIfX19fWR/um+Lz5v55U2hoqAAgzp49K7Xx91rxeHPf3LhxQ2hpaYnw8PC3PkfdfnZ4epQKTWxsLAYNGoRNmzbBwMAg1/qAgAC0bt0aOjo6UpuTkxMiIiLw7NkzqY+jo6PseU5OTggICAAAREZGIiYmRtbHxMQEzZs3l/oEBATA1NQUTZs2lfo4OjpCQ0MDgYGB+a6lpIqPj8eWLVvg4OAAbW1tAK9Oaevp6cn66evr4+HDh7h//z6A9++b9PR0BAcHy/poaGjA0dFR6hMcHIyMjAxZH1tbW1hbW8v2X4MGDWBubi57naSkJFy/fr2wPgaVlNe+adKkCTQ0NLBhwwZkZWUhMTERmzZtgqOjo9SH+6Z45LV/3rRu3TrUrl0brVq1ktr4e63o5bVvDhw4gOrVq+PgwYOwsbFBtWrVMHDgQMTHx0vPU7efHYY2KhRCCDg7O2PIkCGyXyqvi4mJkf2DBSAtx8TEvLPP6+tff97b+lSsWFG2XktLC+XKlXvv67z+GiWNq6srDA0NUb58eURFRcHHx0da5+TkhL1798Lf3x/Z2dm4efMmFi5cCACIjo4G8PbPLCkpCS9fvsS///6LrKys9+4bHR0dmJqavrMP981/+8bGxgbHjh3DxIkToaurC1NTUzx8+BA7d+6U+nDfFK137Z/XpaamYsuWLXBxcZG18/da0XnXvrl79y7u37+PXbt24c8//4S3tzeCg4PRvXt3qY+6/ewwtNE7ubm55XmR7euP8PBwLF++HMnJyXB3d1d2yaVGfvdNjvHjxyMkJATHjh2DpqYm+vXrB/H/N0QZNGgQhg8fjo4dO0JHRwctWrRAz549Abz6XyUVTGHum5iYGAwaNAj9+/dHUFAQzpw5Ax0dHXTv3l3qQwVTmPvndfv27UNycjL69+9fnG+nRCnMfZOdnY20tDT8+eefaNWqFb744gv88ccfOHXqFCIiIpT1Fj+KlrILINU2duxYODs7v7NP9erVcfLkSQQEBOS6b1vTpk3Rp08fbNy4ERYWFrlG0+QsW1hYSH/m1ef19TltlpaWsj52dnZSnydPnsi2kZmZifj4+Pe+zuuvoeryu29yVKhQARUqVEDt2rVRt25dWFlZ4eLFi7C3t4dCocC8efMwZ84cxMTEwMzMDP7+/rJtvO0zMzY2hr6+PjQ1NaGpqfne/Zeeno6EhATZ/0rf7PPmyKzSvG9WrlwJExMT2SjAzZs3w8rKCoGBgWjRogX3TQEV5v553bp169CxY8dcR1T4ey3/CnPfWFpaQktLC7Vr15b6161bF8CrkZx16tRRv5+dfF/9RvQO9+/fF1evXpUefn5+AoDYvXu3ePDggRDiv4tkX7+A193dPddAhI4dO8q2bW9vn+uC3QULFkjrExMT87xg99KlS1IfPz+/PC/YfVctJdn9+/cFAHHq1Km39unbt69sJNaECRPEJ598IuvTq1evXBfsDh8+XFrOysoSlStXznXB7u7du6U+4eHheV6w+/rIrN9++00YGxuL1NTUD3vDauTNfTNmzBjRrFkzWZ/Hjx8LAOL8+fNCCO6b4vS2n527d+8KhUIhDhw4kOs5/L1WPN7cNznfQ7dv35b65AwUiYiIEEKo388OQxsVicjIyFyjRxMSEoS5ubno27evuHbtmti+fbswMDDINeWHlpaWWLBggQgLCxMeHh55Do03NTUVPj4+4sqVK6JLly55Do1v1KiRCAwMFH/99ZeoVauWbGh8fmopKS5evCiWL18uQkJCxL1794S/v79wcHAQNWrUkH5ZxMXFidWrV4uwsDAREhIiRo4cKfT09ERgYKC0nZyh8ePHjxdhYWFi5cqVeQ6N19XVFd7e3uLGjRvi559/FqamprIRU0OGDBHW1tbi5MmT4tKlS7mG6ecMjf/6669FaGioOHr0qDAzMyuR00rkZ9/4+/sLhUIhpk+fLm7evCmCg4OFk5OTqFq1qnjx4oUQgvumqORn/+SYPHmyqFSpksjMzMy1Hf5eK3z52TdZWVmicePGonXr1uKff/4Rly5dEs2bNxdfffWVtB11+9lhaKMikVdoE0KIy5cvi5YtWwpdXV1RuXJl4enpmeu5O3fuFLVr1xY6Ojqifv364tChQ7L12dnZYsqUKcLc3Fzo6uqKL7/8UvpfU46nT5+KXr16CSMjI2FsbCx++uknkZycXOBaSoIrV66INm3aiHLlygldXV1RrVo1MWTIEPHw4UOpT1xcnGjRooUwNDQUBgYG4ssvvxQXL17Mta1Tp04JOzs7oaOjI6pXry42bNiQq8/y5cuFtbW10NHREc2aNcu1nZcvX4pffvlFlC1bVhgYGIhvv/1WREdHy/rcu3dPtG/fXujr64sKFSqIsWPHioyMjML5QFRIfvaNEEJs27ZNNGrUSBgaGgozMzPRuXNnERYWJuvDfVP48rt/srKyRJUqVcTEiRPfui3+Xitc+d03jx49Et99950wMjIS5ubmwtnZWTx9+lTWR51+dhRC8EpWIiIiIlXHYWFEREREaoChjYiIiEgNMLQRERERqQGGNiIiIiI1wNBGREREpAYY2oiIiIjUAEMbERERkRpgaCMiKgIKhQL79+9Xdhkyp0+fhkKhQEJCgrJLIaIPwNBGRPQRpk2bJt3Um4ioKDG0EREREakBhjYiKtWys7Mxd+5c2NjYQF9fHw0bNsTu3bsB/Hc60d/fH02bNoWBgQEcHBwQEREBAPD29sb06dNx+fJlKBQKKBQKeHt7S9v+999/8e2338LAwAC1atWCr69vvmrKeV0/Pz80atQI+vr6aNu2LZ48eYIjR46gbt26MDY2Ru/evfHixQvpeWlpaRg5ciQqVqwIPT09tGzZEkFBQYX3YRGRUjG0EVGpNnfuXPz5559Ys2YNrl+/jtGjR+PHH3/EmTNnpD6TJk3CwoULcenSJWhpaWHAgAEAgB49emDs2LGoX78+oqOjER0djR49ekjPmz59On744QdcuXIF33zzDfr06YP4+Ph81zZt2jSsWLECFy5cwIMHD/DDDz9gyZIl2Lp1Kw4dOoRjx45h+fLlUv8JEyZgz5492LhxI/755x/UrFkTTk5OBXpNIlJhBbq9PBFRCZKamioMDAzEhQsXZO0uLi6iV69e4tSpUwKAOHHihLTu0KFDAoB4+fKlEEIIDw8P0bBhw1zbBiAmT54sLT9//lwAEEeOHHlvXXm97ty5cwUAcefOHalt8ODBwsnJSdq+tra22LJli7Q+PT1dVKpUSXh5ecm2++zZs/fWQESqR0uJeZGISKlu376NFy9e4KuvvpK1p6eno1GjRtLy//73P+nvlpaWAIAnT57A2tr6ndt//XmGhoYwNjbGkydP8l3f6883NzeHgYEBqlevLmv7+++/AQB37txBRkYGPvvsM2m9trY2mjVrhrCwsHy/JhGpLoY2Iiq1nj9/DgA4dOgQKleuLFunq6uLO3fuAHgVfnIoFAoAr66Fe5/Xn5fz3Pw8L6/nKxSKj94eEak3XtNGRKVWvXr1oKuri6ioKNSsWVP2sLKyytc2dHR0kJWVVcSVvl+NGjWgo6OD8+fPS20ZGRkICgpCvXr1lFgZERUWHmkjolKrTJkyGDduHEaPHo3s7Gy0bNkSiYmJOH/+PIyNjVG1atX3bqNatWqIjIxEaGgoqlSpgjJlykBXV7cYqpczNDTE0KFDMX78eJQrVw7W1tbw8vLCixcv4OLiUuz1EFHhY2gjolJt5syZMDMzw9y5c3H37l2YmpqicePGmDhxYr5OPXbr1g179+5FmzZtkJCQgA0bNsDZ2bnoC8+Dp6cnsrOz0bdvXyQnJ6Np06bw8/ND2bJllVIPERUuhRBCKLsIIiIiIno3XtNGREREpAYY2oiIitmQIUNgZGSU52PIkCHKLo+IVBRPjxIRFbMnT54gKSkpz3XGxsaoWLFiMVdEROqAoY2IiIhIDfD0KBEREZEaYGgjIiIiUgMMbURERERqgKGNiIiISA0wtBERERGpAYY2IiIiIjXA0EZERESkBhjaiIiIiNTA/wGshenDJO+9bAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXFklEQVR4nO3de1yO9/8H8Nfd+XxASZScFsacD7WZw/qJzdlsY0NzGjJDQ2FyLjnN+TCUOR9HGDmGqTGnCJlTNEpmKiqd7uv3R98uLhV3ubuv7u7X8/Hoket9XV33O/e2+7XP9bk+l0IQBAFEREREOkBP7gaIiIiINIXBh4iIiHQGgw8RERHpDAYfIiIi0hkMPkRERKQzGHyIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4i0kkKhwJQpU+RuQ+Tl5QUXFxe52yCit2DwISK1CQkJgUKhEL9MTEzw3nvvYcSIEXj06FGJvnZERASmTJmCpKQktZ63TZs2kt+pXLlyaNasGdauXQulUqmW15g1axZ2796tlnMR0ZsZyN0AEZU906ZNQ7Vq1fDixQv88ccfWL58OX7//XdER0fDzMxMLa+Rnp4OA4OX/wmLiIjA1KlT4eXlBRsbG7W8Rp4qVaogICAAAPD48WP8+uuvGDhwIP7++28EBga+8/lnzZqFzz//HN26dXvncxHRmzH4EJHadezYEU2bNgUADBo0COXLl8f8+fOxZ88e9O7du9jnVSqVyMzMhImJCUxMTNTV7ltZW1vjm2++Ebe/++47uLq6YsmSJZg+fToMDQ011gsRvRte6iKiEteuXTsAwN27dwEAc+fOhbu7O8qXLw9TU1M0adIEO3bsyPdzCoUCI0aMwMaNG/H+++/D2NgYBw8eFPflzfGZMmUKxo4dCwCoVq2aeFkqNjYWrVu3RoMGDQrsy9XVFZ6enkX+fczMzNCyZUukpqbi8ePHhR6XmpoKHx8fODk5wdjYGK6urpg7dy4EQZD8jqmpqVi3bp3Yt5eXV5F7IiLVcMSHiErc7du3AQDly5cHACxcuBBdunTB119/jczMTGzZsgW9evXCvn378Nlnn0l+9tixY9i2bRtGjBiBChUqFDiBuEePHvj777+xefNmLFiwABUqVAAA2NnZoW/fvhg8eDCio6NRr1498Wf++usv/P3335g0aVKxfqc7d+5AX1+/0MtqgiCgS5cuOH78OAYOHIiGDRsiLCwMY8eOxYMHD7BgwQIAwPr16zFo0CA0b94cQ4YMAQDUqFGjWD0RkQoEIiI1CQ4OFgAIR44cER4/fizExcUJW7ZsEcqXLy+YmpoK//zzjyAIgpCWlib5uczMTKFevXpCu3btJHUAgp6ennD16tV8rwVA8Pf3F7fnzJkjABDu3r0rOS4pKUkwMTERxo8fL6mPHDlSMDc3F54/f/7G36l169ZC7dq1hcePHwuPHz8Wrl+/LowcOVIAIHTu3Fk8rn///kLVqlXF7d27dwsAhBkzZkjO9/nnnwsKhUK4deuWWDM3Nxf69+//xj6ISD14qYuI1M7DwwN2dnZwcnLCV199BQsLC/z222+oXLkyAMDU1FQ89unTp0hOTkarVq1w4cKFfOdq3bo16tatW+xerK2t0bVrV2zevFm8xJSTk4OtW7eiW7duMDc3f+s5YmJiYGdnBzs7O9SpUweLFy/GZ599hrVr1xb6M7///jv09fUxcuRISd3HxweCIODAgQPF/p2IqPh4qYuI1G7p0qV47733YGBggIoVK8LV1RV6ei//P2vfvn2YMWMGLl26hIyMDLGuUCjynatatWrv3E+/fv2wdetWnDp1Ch9//DGOHDmCR48eoW/fvir9vIuLC3755RfxFv1atWrB3t7+jT9z7949ODo6wtLSUlKvU6eOuJ+INI/Bh4jUrnnz5uJdXa87deoUunTpgo8//hjLli1DpUqVYGhoiODgYGzatCnf8a+ODhWXp6cnKlasiA0bNuDjjz/Ghg0b4ODgAA8PD5V+3tzcXOVjiah046UuItKonTt3wsTEBGFhYRgwYAA6duyollBR0GhRHn19ffTp0wc7duzA06dPsXv3bvTu3Rv6+vrv/LqFqVq1Kh4+fIhnz55J6jExMeL+PG/qnYjUi8GHiDRKX18fCoUCOTk5Yi02NvadVy7Om6tT2MrNffv2xdOnT/Hdd9/h+fPnknV5SsKnn36KnJwcLFmyRFJfsGABFAoFOnbsKNbMzc3VvuI0ERWMl7qISKM+++wzzJ8/Hx06dECfPn2QmJiIpUuXombNmrh8+XKxz9ukSRMAwMSJE/HVV1/B0NAQnTt3FgNRo0aNUK9ePWzfvh116tRB48aN1fL7FKZz585o27YtJk6ciNjYWDRo0ACHDh3Cnj17MGrUKMkt602aNMGRI0cwf/58ODo6olq1amjRokWJ9kekqzjiQ0Qa1a5dO6xZswYJCQkYNWoUNm/ejNmzZ6N79+7vdN5mzZph+vTpiIqKgpeXF3r37p1vccF+/foBgMqTmt+Fnp4eQkNDMWrUKOzbtw+jRo3CtWvXMGfOHMyfP19y7Pz589GkSRNMmjQJvXv3xvLly0u8PyJdpRCEV5YQJSIqwxYuXIjRo0cjNjYWzs7OcrdDRDJg8CEinSAIAho0aIDy5cvj+PHjcrdDRDLhHB8iKtNSU1MRGhqK48eP48qVK9izZ4/cLRGRjDjiQ0RlWmxsLKpVqwYbGxsMHz4cM2fOlLslIpIRgw8RERHpDN7VRURERDqDwYeIiIh0Bic3v0apVOLhw4ewtLTkMvJERERaQhAEPHv2DI6OjpKHIr+Owec1Dx8+hJOTk9xtEBERUTHExcWhSpUqhe5n8HmNpaUlgNy/OCsrK5m7ISIiIlWkpKTAyclJ/BwvDIPPa/Iub1lZWTH4EBERaZm3TVPh5GYiIiLSGQw+REREpDMYfIiIiEhncI5PMeTk5CArK0vuNkgDDA0Noa+vL3cbRESkJgw+RSAIAhISEpCUlCR3K6RBNjY2cHBw4LpORERlAINPEeSFHnt7e5iZmfGDsIwTBAFpaWlITEwEAFSqVEnmjoiI6F0x+KgoJydHDD3ly5eXux3SEFNTUwBAYmIi7O3tedmLiEjLcXKzivLm9JiZmcncCWla3nvOeV1ERNqPwaeIeHlL9/A9JyIqOxh8iIiISGcw+BAREZHOYPDRAV5eXlAoFFAoFDA0NETFihXxf//3f1i7di2USqXK5wkJCYGNjU3JNUpERFTCGHx0RIcOHRAfH4/Y2FgcOHAAbdu2xQ8//IBOnTohOztb7vaIiIg0gsFHRxgbG8PBwQGVK1dG48aNMWHCBOzZswcHDhxASEgIAGD+/PmoX78+zM3N4eTkhOHDh+P58+cAgPDwcHz77bdITk4WR4+mTJkCAFi/fj2aNm0KS0tLODg4oE+fPuLaN0RERHlCQwF399zvcmHweQeCICAzM1OWL0EQ3rn/du3aoUGDBti1axcAQE9PD4sWLcLVq1exbt06HDt2DOPGjQMAuLu74+eff4aVlRXi4+MRHx+PH3/8EUDubd7Tp09HVFQUdu/ejdjYWHh5eb1zf0REVLYEBgKRkbnf5aI1CxgGBARg165diImJgampKdzd3TF79my4urqKx7x48QI+Pj7YsmULMjIy4OnpiWXLlqFixYol0lNWVhYCAgJK5Nxv4+fnByMjo3c+T+3atXH58mUAwKhRo8S6i4sLZsyYgaFDh2LZsmUwMjKCtbU1FAoFHBwcJOcYMGCA+Ofq1atj0aJFaNasGZ4/fw4LC4t37pGIiLRffHw8OnRYDVfXZujevYNsfWjNiM+JEyfg7e2NP//8E4cPH0ZWVhbat2+P1NRU8ZjRo0dj79692L59O06cOIGHDx+iR48eMnZd+gmCIK5Tc+TIEXzyySeoXLkyLC0t0bdvXzx58gRpaWlvPMf58+fRuXNnODs7w9LSEq1btwYA3L9/v8T7JyKi0m/v3r1YtWoVBEEJF5cz6Nz53a9aFJfWjPgcPHhQsh0SEgJ7e3ucP38eH3/8MZKTk7FmzRps2rQJ7dq1AwAEBwejTp06+PPPP9GyZUu192RoaAg/Pz+1n1fV11aH69evo1q1aoiNjUWnTp0wbNgwzJw5E+XKlcMff/yBgQMHIjMzs9AVq1NTU+Hp6QlPT09s3LgRdnZ2uH//Pjw9PZGZmamWHomISDulp6cjKChIUvvyyy9lXRhWa4LP65KTkwEA5cqVA5A76pCVlQUPDw/xmNq1a8PZ2RmRkZGFBp+MjAxkZGSI2ykpKSr3oFAo1HK5SS7Hjh3DlStXMHr0aJw/fx5KpRLz5s2Dnl7uQOC2bdskxxsZGSEnJ0dSi4mJwZMnTxAYGAgnJycAwLlz5zTzCxARUal19epV7NixQ1Lz9fWFsbGxTB3l0srgo1QqMWrUKHz44YeoV68egNwnpxsZGeVbZ6ZixYpISEgo9FwBAQGYOnVqSbZbKmRkZCAhIQE5OTl49OgRDh48iICAAHTq1An9+vVDdHQ0srKysHjxYnTu3BmnT5/GihUrJOdwcXHB8+fPcfToUTRo0ABmZmZwdnaGkZERFi9ejKFDhyI6OhrTp0+X6bckIiK5CYKAlStX4tGjR2KtefPm6Nixo4xdvaQ1c3xe5e3tjejoaGzZsuWdz+Xn54fk5GTxKy4uTg0dlj4HDx5EpUqV4OLigg4dOuD48eNYtGgR9uzZA319fTRo0ADz58/H7NmzUa9ePWzcuDHfxG13d3cMHToUX375Jezs7BAUFAQ7OzuEhIRg+/btqFu3LgIDAzF37lyZfksiIpLTkydPMG3aNEnoGTp0aKkJPQCgENRxX7QGjRgxAnv27MHJkydRrVo1sX7s2DF88sknePr0qWTUp2rVqhg1ahRGjx6t0vlTUlJgbW2N5ORkWFlZifUXL17g7t27qFatGkxMTNT2+1Dpx/eeiCi/0NDc29LbtgWOHwf69z+OhIST4n5ra2uMHDlSnD5R0gr7/H6d1lzqEgQB33//PX777TeEh4dLQg8ANGnSBIaGhjh69Ch69uwJALhx4wbu378PNzc3OVomIiIqs/LW5Dl/PgsTJszCq7NKunTpgkaNGsnX3BtoTfDx9vbGpk2bsGfPHlhaWorzdqytrWFqagpra2sMHDgQY8aMQbly5WBlZYXvv/8ebm5uJXJHFxERkS7z9QUmTLiNXr02SOo//vgjzM3NZerq7bQm+CxfvhwA0KZNG0k9ODhYXCV4wYIF0NPTQ8+ePSULGBIREZF6paRsQK9et8Xt999/H59//rmMHalGa4KPKlORTExMsHTpUixdulQDHREREemelJQULFiwQFL79ttv4ezsLFNHRaM1wYeIiIjkdebMGcmCwnp6evDz84OBgfbECe3plIiIiGSRk5ODoKAgyYr8N254YNOmD2XsqngYfIiIiKhQDx48wOrVqyW1Eyd+wKhRNvI09I4YfIiIiKhAe/bswaVLl8TtqlWron///rI+a+tdMfgQERGRRFpaGubMmSOpVa/eG337vidTR+qjlY+soNLJy8sL3bp1E7fbtGmDUaNGvdM51XEOIiJSTWgo0LPn5XyhZ9YsPyxfrv2hB+CIj07w8vLCunXrAACGhoZwdnZGv379MGHChBKdib9r1y4YGhqqdGx4eDjatm2b75EjRTkHEREVT+7jJwS4uS3FBx88Eevu7u5IT/8/NGmSu2BhWcDgoyM6dOiA4OBgZGRk4Pfff4e3tzcMDQ3h5+cnOS4zMxNGRkZqec1y5cqVinMQEdGbLV78GJ6e0gV/hw8fDjs7OwBAly5ydFUyeKlLRxgbG8PBwQFVq1bFsGHD4OHhgdDQUPHy1MyZM+Ho6AhXV1cAQFxcHL744gvY2NigXLly6Nq1K2JjY8Xz5eTkYMyYMbCxsUH58uUxbty4fItMvn6ZKiMjA+PHj4eTkxOMjY1Rs2ZNrFmzBrGxsWjbti0AwNbWFgqFQlyN+/VzPH36FP369YOtrS3MzMzQsWNH3Lx5U9wfEhICGxsbhIWFoU6dOrCwsECHDh0QHx8vHhMeHo7mzZvD3NwcNjY2+PDDD3Hv3j01/U0TEWmXw4cP46OPXoae1NRymDx5shh6yhoGHx1lamoqrsdw9OhR3LhxA4cPH8a+ffuQlZUFT09PWFpa4tSpUzh9+rQYIPJ+Zt68eQgJCcHatWvxxx9/4L///sNvv/32xtfs168fNm/ejEWLFuH69etYuXIlLCws4OTkhJ07dwLIfbBsfHw8Fi5cWOA5vLy8cO7cOYSGhiIyMhKCIODTTz9FVlaWeExaWhrmzp2L9evX4+TJk7h//z5+/PFHAEB2dja6deuG1q1b4/Lly4iMjMSQIUO0+g4FIqLiyMzMxNSpUxERESHWLl/ujo8++r5M/zeRl7p0jCAIOHr0KMLCwvD999/j8ePHMDc3x+rVq8VLXBs2bIBSqcTq1avFf/iDg4NhY2OD8PBwtG/fHj///DP8/PzQo0cPAMCKFSsQFhZW6Ov+/fff2LZtGw4fPgwPDw8AQPXq1cX9eZe07O3tJXN8XnXz5k2Ehobi9OnTcHd3BwBs3LgRTk5O2L17N3r16gUAyMrKwooVK1CjRg0AwIgRIzBt2jQAuUutJycno1OnTuL+OnXqFP0vkohIi928eRObNm2S1OrXHwt/fzOZOtIcjvjIJDQUcHfP/a4J+/btg4WFBUxMTNCxY0d8+eWXmDJlCgCgfv36knk9UVFRuHXrFiwtLWFhYQELCwuUK1cOL168wO3bt5GcnIz4+Hi0aNFC/BkDAwM0bdq00Ne/dOkS9PX10bp162L/DtevX4eBgYHkdcuXLw9XV1dcv35drJmZmYmhBgAqVaqExMREALkBy8vLC56enujcuTMWLlwouQxGRFSWCYKAdevWSULPlSsNMGWKPyZMKPuhB+CIj2wCA4HIyNzvmpg01rZtWyxfvhxGRkZwdHSU3M1lbm4uOfb58+do0qQJNm7cmO88xb3ma2pqWqyfK47X7wJTKBSS+UfBwcEYOXIkDh48iK1bt2LSpEk4fPgwWrZsqbEeiYg0LSkpKd80gg0bBiI9vQoAoAxf3ZLgiI9MfH0BNzfN3R5obm6OmjVrwtnZ+a23sDdu3Bg3b96Evb09atasKfmytraGtbU1KlWqhDNnzog/k52djfPnzxd6zvr160OpVOLEiRMF7s8bccrJySn0HHXq1EF2drbkdZ88eYIbN26gbt26b/ydXteoUSP4+fkhIiIC9erVyzfkS0RUlkREREhCjyAY4dChSZg3rwqWLcv9PJo9W8YGNYgjPjLp0qX03h749ddfY86cOejatSumTZuGKlWq4N69e9i1axfGjRuHKlWq4IcffkBgYCBq1aqF2rVrY/78+UhKSir0nC4uLujfvz8GDBiARYsWoUGDBrh37x4SExPxxRdfoGrVqlAoFNi3bx8+/fRTmJqawsLCQnKOWrVqoWvXrhg8eDBWrlwJS0tL+Pr6onLlyujatatKv9vdu3exatUqdOnSBY6Ojrhx4wZu3ryJfv36vctfGRFRqbR7dw4uXpwFPT2lWDtwoAOuXm2BjRtffg6V1s+jksARH8rHzMwMJ0+ehLOzM3r06IE6depg4MCBePHiBaysrAAAPj4+6Nu3L/r37w83NzdYWlqie/fubzzv8uXL8fnnn2P48OGoXbs2Bg8ejNTUVABA5cqVMXXqVPj6+qJixYoYMWJEgecIDg5GkyZN0KlTJ7i5uUEQBPz+++8qL3JoZmaGmJgY9OzZE++99x6GDBkCb29vfPfdd0X4GyIiKv3u37+PqKgZktDz/vujcfVqCzx/njvVQhcphNcXX9FxKSkpsLa2RnJysvghDwAvXrzA3bt3Ua1aNZiYmMjYIWka33si0jY7duzA1atXxe1bt2rg9u1vEBGRt0pz7lSLsjTSU9jn9+t4qYuIiKiMSE1Nxdy5cyW1rKxvcPt2DXFOaWmeaqEJDD5ERERlwKVLl7Bnzx5JbebMCWja1BCvrFGo8xh8iIiItJhSqcSiRYuQnJws1i5caIUDB9rB3r7sPFxUXRh8iIiItNSjR4+wYsUKSe3UKW8cPVoBAODsrNuXtQrC4FNEnAuue/ieE1FpdPDgQcm6ZgkJFREe/h1mz1bgwQNAEDjaUxAGHxXl3S6dlpam0VWISX5paWkA8q8ITUQkh4yMDAS+di/6gQM9ceZMPbi6cvLy2zD4qEhfXx82NjbiM5/MzMzK9NNrKXekJy0tDYmJibCxsYG+vr7cLRGRjouJicHWrVsltcDAcQBMNfo0AG3G4FMEDg4OACCGH9INNjY24ntPRCQHQRCwZs0aPHjwQKw1btwYf/7ZGQYGwMiRwMyZMjaoRbiA4WtUWQApJycHWVlZGu6M5GBoaMiRHiKS1dOnT7Fo0SJJbfDgwXB0dJSpo9KJCxiWIH19fX4YEhFRiTt16hSOHTsmbqemmmHfPh/4+/OJU8XF4ENERFTKZGdnY+Zr16727fsU5841g6urTE2VEQw+REREpUhsbCzWrVsnqc2dOwbPn1vCxAQICpKpsTKCwYeIiKiU2Lp1K2JiYsTtGzfew+bNvQEAlSsDy5bxVvV3xeBDREQks+fPn2PevHmSWkhIP2RlVYOFBe/aUicGHyIiIhmdO3cO+/fvl9RmzJiI7GwD7NnDER51Y/AhIiKSgVKpxPz585GamirWjh9vg9OnWyMnB/j8c4aeksDgQ0REpGHx8fFYtWqVpLZly/ewtS2HnTsZeEoSgw8REZEG7d+/H+fOnRO3HzxwxC+/DELt2gpERMjYmI5g8CEiItKAFy9eYPbs2ZLa1q1f4Pr1OgCA13ZRCWHwISIiKmHXrl3D9u3bJbWAgPHIyDCBqSkwejQvb2kKgw8REVEJEQQBq1atQkJCglg7c6YZjhz5FAYGwIQJvE1d0xh8iIiISsCTJ0+wZMkSSS0r6zskJTlgxw6O8MiFwYeIiEjNjh8/jpMnT4rbyclW+PnnH9CypR4nMMuMwYeIiEhNsrKyMGvWLEktNLQzLlxoDADw9ZWjK3oVgw8REZEa3LlzB+vXr5fU5szxQVqaBfT0gB49eHmrNGDwISIiekebNm3CzZs3xe2rV+ti+/ZeADiBubRh8CEiIiqmlJQULFiwQFJbu9YL9+9XBcDQUxox+BARERXD2bNnceDAAXFbqVRg5swJsLY24BPVSzEGHyIioiLIycnBrFlzoFRmiLXDhz1w+vSHMDEBgoM5l6c005O7ASIiIm3x4MEDzJgxQxJ6Vq36AZUqfQg3N2DrVoae0o4jPkRERCrYs2cPLl26JG7fu+eMyEgvPHigkK8pKjIGHyIiojdIT09HUFCQpLZp01eIi3PFli0yNUXFxuBDRERUiJ9+ugIDg12S2gcf+CIszBhz5vCyljZi8CEiInqNIAiYMGEZTEz+FWuRkW4YPrw9unQBuneXsTl6Jww+REREr/j333+xdOlSmJi8rC1bNgyJifZISeEoj7Zj8CEiIvqfI0eO4PTp0+L2f//ZYu3a77FxowKBgXzWVlnA4ENERDrvt98ycflywGu1boiKaoDatXNHeTjSUzYw+BARkU67efMmLl/eJKnNmTMWHTuawcyMozxlDYMPERHppD17BBw9+ivKl48VazdvfoA7d7pj0yaO8JRVDD5ERKRzkpOTcenSzyhf/mVt48YBmDvXiYGnjGPwISIinREaCmzeHInatQ+JtexsAxw75ou5c/UZenQAgw8REemE3btzcP58AGrXzhFrMTHt0bu3G6ZPl7Ex0igGHyIiKvM2bYrDzZtrYfDKp96oUaNgbW0tX1MkCwYfIiIqk0JDgcBAwMNjF/T1r4j1f/6pjqtXv0GjRgpe2tJBDD5ERFQm/fRTKnr0mCupHT/+NRISauLGjdxQxOCje/TkboCIiEjdfvrpUr7Q88EHfggPr4mgIMDNjevz6KoyGXyWLl0KFxcXmJiYoEWLFjh79qzcLRERkQYIgoCFCxfCwGCPWDt58iNs2eKP7t2NAOSO8kREcLRHV5W54LN161aMGTMG/v7+uHDhAho0aABPT08kJibK3RoREZWQiRMBZ+dHmDZtGpKSksT62rXeePjwE8yeLV9vVLooBEEQ5G5CnVq0aIFmzZphyZIlAAClUgknJyd8//338FVhXDMlJQXW1tZITk6GlZVVSbdLRETvKDQUWL48DC1b/inWnj+3w7x5w9CypQIRETI2Rxqj6ud3mRrxyczMxPnz5+Hh4SHW9PT04OHhgcjIyAJ/JiMjAykpKZIvIiIq/UJDgVatMnDx4lRJ6ImI6IlWrYajZUsF5/FQPmUq+Pz777/IyclBxYoVJfWKFSsiISGhwJ8JCAiAtbW1+OXk5KSJVomI6B2EhgITJ96Ah0egpL5kyTh4e9fjPB4qVJkKPsXh5+eH5ORk8SsuLk7uloiIqBATJwKWlgIOHFiLzz/fItbLl2+EsDB/rFljyrBDb1Sm1vGpUKEC9PX18ejRI0n90aNHcHBwKPBnjI2NYWxsrIn2iIjoHYSGAitWPMWPPy6S1N97bxB6966MESNkaoy0Spka8TEyMkKTJk1w9OhRsaZUKnH06FG4ubnJ2BkREb2LiROBuXP/wMiRL0NPZqYpfvrpJ/TuXVnGzkjblKkRHwAYM2YM+vfvj6ZNm6J58+b4+eefkZqaim+//Vbu1oiIqBiys7NhZDQTn3zysnbkyKcYO7YZ9MrU/76TJpS54PPll1/i8ePHmDx5MhISEtCwYUMcPHgw34RnIiIq/TZtuoebN0MktfDwMRg71pJzeahYytw6Pu+K6/gQEZUOCxduQ1LSdXG7Vq1a6NOnj4wdUWmm6ud3mRvxISIi7bZz53NER8+T1Pbv74uzZ6vL1BGVJbw6SkREsgsNBdzdgbVrL+QLPTNmTMCzZww9pB4c8SEiItkFBirh7r4AcXHPxdrx421gZ9cazZrxSeqkPgw+REQki9BQIDAQsLJKgKfnSsm+U6e+x5gx5TiBmdSOwYeIiGQxfjxQvfp+NG9+Tqw9fFgJ69cPRlqaQsbOqCxj8CEiIo2aOBFYuvQFRo+eLalv3doLt27VxdixMjVGOoHBh4iINCY0FNi9+xpGj94uqe/cOR6BgSa8tEUljsGHiIg0QhAEnDixCl98kSDWzp5tiqdPP8PlyzI2RjqFwYeIiErc9u3/4dq1xXh1XbmsrCF4+rQS79gijWLwISKiEvXTT+EwMDghbr94YYGZM0dDjw/aIhkw+BARUYnYvTsLUVGzYPDKJ82BA50wYUITPlyUZMPgQ0REanfnzh1ERa2X1DZs8MG8eRacwEyyYvAhIiK1WrBgE1JSborbd+7Uwbp1X8DfX8amiP6HwYeIiNRi585niI6eL6kFB3vBxKSqTB0R5cerrERE9E5CQ4G2bc/mCz1r1kyEqWlVBAXJ1BhRATjiQ0RExaZUKnHmzBy0afNCrB050g45Oa1w/76MjREVgsGHiIiK5eHDh/jll19gZPSy9ssvI+HsbMu1eajUYvAhIqIiCw0NxcWLF8XthAQnhId/i2XLFLxri0o1Bh8iIlJZeno6gl6btLN581coV84V16/L1BRRETD4EBGRSqKjo7Fz505JbdYsXxgZGXMCM2kNBh8iInojQRAQFLQcL148FmvnzrXEvn2e0NMDtm8HL2+R1uDt7EREVKh///0X06ZNk4SeYcOG4YMPPGFhAfj6MvSQdlEIgiDI3URpkpKSAmtrayQnJ8Pq1ccIExHpmMmTj0Jf/w9xOy3NFu7u36NrV4WMXREVTNXPb17qIiIiUWgoMGdOJjw8AqCv/7J+5UpX7NjRULa+iNSFwYeIiES//HILHh4bJbX163/E/PnmMnVEpF4MPkREBEEQsGDBBjRtekesxcbWR/fuPfhwUSpTGHyIiHRccnIyfv75Z0ltzZoBqFLFiROXqcxh8CEi0mF//vknwsLCxO3sbAOsW+cLc3N9PnaCyiQGHyIiHbR7dw4uXAiEvn62WGvfvj3c3NwwfbqMjRGVMK7jQ0SkY+Li4hAVNUMSelauHAU3NzcZuyLSDI74EBHpkF27duHKlSvi9p071bBhQ1/4+nJtHtINDD5ERDogLS0Nc+bMkdQ2bOiD9PRa+O03rr5MuoPBh4iojIuKisLu3bsltZkz/ZCVZQQ3N4Ye0i0MPkREZZQgCFi8eDGePn0q1k6d+hBHj3rAxASoUQO8c4t0Dic3ExGVAaGhgLt77ncASExMxLRp0yShZ/ny4Th2zAPlygFbtwLXr3O0h3QPR3yIiMqAwEAgMjL3u4nJIURGRor7/vuvAlatGo4xYxSYOVPGJolKgSKP+Ojr6yMxMTFf/cmTJ9B/9Yl2RESkMb6+wEcfZcLTc6ok9OzY0QOLFnmjUSOGHiKgGCM+giAUWM/IyICRkdE7N0REREUTGgqsWXMDHh5bJPWFC8fh6VNTmJpyLg9RHpWDz6JFiwAACoUCq1evhoWFhbgvJycHJ0+eRO3atdXfIRERFUoQBBw7FozGjePE2oULDfH3310REpJ76cvXl3N5iPKoHHwWLFgAIPdfshUrVkguaxkZGcHFxQUrVqxQf4dERFSgpKQkLFy4ELa2L2u//DII8fGVxbV5GHiIpFQOPnfv3gUAtG3bFrt27YLtq/+mERGRRp0+fRpHjhwRt7OyjBEQMBaAPkd4iN6gyHN8jh8/XhJ9EBGRCnbvzsalS7OgULycb3n9ekf06dMcLVrwshbR2xQ5+AwYMOCN+9euXVvsZoiIdF1o6Mt5OYB0js69e/cQFRUCxSuP1QoPH43Ro614WYtIRUUOPq8uhgUAWVlZiI6ORlJSEtq1a6e2xoiIdNGr6/EAL/+ckbEd165dE4+7ebMm9uz5Gs+eydQokZYqcvD57bff8tWUSiWGDRuGGjVqqKUpIiJd8uooj6+vdMRn/vxUtG07F69kHvz6a1/ExlbnLepExaAQCluYp4hu3LiBNm3aID4+Xh2nk01KSgqsra2RnJwMKysrudshIh3g7p47suPmBkREvKxfuHABe/fulRybmTkBx48bci4P0WtU/fxW2yMrbt++jezsbHWdjohIZ7w+yqNUKhEY+DOysl5exwoP/xjh4W3zhSMiKpoiB58xY8ZItgVBQHx8PPbv34/+/furrTEiorLs1ctbeROTQ0MBT88EuLuvlBy7b98InDtXniswE6lBkYPPxYsXJdt6enqws7PDvHnz3nrHFxER5Qacr78Gnj/PDT95l6x27/4d7u5/icfFxzvg11+HYMsWBVdgJlITtc3xKSs4x4eISlrenB4LC2DjRiA7+wWuXJktOWbbtl6IiakLX1/w4aJEKijxOT6JiYm4ceMGAMDV1RX29vbFPRURkU55dU6Pre0pHDt2TLI/MHA8DAxMxMdOEJH6FDn4pKSkwNvbG5s3b4ZSqQQA6Ovr48svv8TSpUthbW2t9iaJiMqSLl2Azp0FTJs2TVK/cKEJzp/vBBcXYPZshh6ikqBX1B8YPHgwzpw5g/379yMpKQlJSUnYt28fzp07h++++64keiQiKlMePHiQL/Rs3NgHoaGd4OwMXL/O0ENUUoo8x8fc3BxhYWH46KOPJPVTp06hQ4cOSE1NVWuDmsY5PkRUkn799Vfxoc95liyZhCdP9GFrCwQHM/QQFUeJzfEpX758gZezrK2t+cR2IiLkv1UdADIyMhCY9xyK/zl3rjGePOmMx49laJJIRxX5UtekSZMwZswYJCQkiLWEhASMHTsWP/30k1qbIyLSRq8/b+vixYv5Qk9m5vd48qQz1+Uh0rAiX+pq1KgRbt26hYyMDDg7OwMA7t+/D2NjY9SqVUty7IULF9TXqYbwUhcRvauJE4FFi4CRIwEjo6n59k+Z4s8VmInUrMQudXXt2hUKheKdmiMiKsuOHweMjZ/AyGiJpH7lSlfs3NkQFhZcgZlILkUOPlOmTCmBNoiIyo7evffgv/8uSWrLl/th4EAjuLlxBWYiORU5+FSvXh1//fUXypcvL6knJSWhcePGuHPnjtqaIyLSFqGhwOzZOWjffoakfvNmTWzc+DWA3JEgXt4ikleRg09sbCxycnLy1TMyMvDPP/+opSkiIm2zZs0NtG+/RVL79dchuHOnEhQKwNGRl7eISgOVg09oaKj457CwMMkt7Tk5OTh69CiqVaum3u6IiLTAzJnz0Ljxc0mtYcPJaNSIDxclKm1UvqtLTy/3zneFQoHXf8TQ0BAuLi6YN28eOnXqpP4uNYh3dRGRqp49e4b58+dLaidOeOD48Q951xaRhqn6+a3yOj5KpRJKpRLOzs5ITEwUt5VKJTIyMnDjxo0SCz2xsbEYOHAgqlWrBlNTU9SoUQP+/v7IzMyUHHf58mW0atUKJiYmcHJyQlBQUIn0Q0R07NixfKEnM3MsRo36UJzATESlT5Hn+Ly+1LomxMTEQKlUYuXKlahZsyaio6MxePBgpKamYu7cuQByk1779u3h4eGBFStW4MqVKxgwYABsbGwwZMgQjfdMRGVP7orMAjw9pc/Zevy4ApYu9YabGzBzJi9rEZVmRV7A8PUH671u8uTJ79SQqubMmYPly5eLd5EtX74cEydOREJCAoyMjAAAvr6+2L17N2JiYlQ+Ly91EdGrXn38xIoVcWjRYq1k//79ffHwYXVYWABBQQw9RHIpsQUMf/vtN8l2VlYW7t69CwMDA9SoUUNjwSc5ORnlypUTtyMjI/Hxxx+LoQcAPD09MXv2bDx9+rTQ54hlZGQgIyND3E5JSSm5polI6+Q9fuLYsbVo0SJOsm/atJ+gVOpxPg+RFily8Ll48WK+WkpKCry8vNC9e3e1NPU2t27dwuLFi8XLXEDu88Jev6usYsWK4r7Cgk9AQACmTs2/pDwREQCMHfsCly/PltTOn2+O06c7QqkETEw4n4dImxT5IaUFsbKywtSpU4v8kFJfX18oFIo3fr1+merBgwfo0KEDevXqhcGDB79z735+fkhOTha/4uLi3v5DRFQmhYYC7u653wHgr7/+yhd69u79AXv3doS9PeDmBmzdystbRNqkyCM+hckLDkXh4+MDLy+vNx5TvXp18c8PHz5E27Zt4e7ujlWrVkmOc3BwwKNHjyS1vG0HB4dCz29sbAxjY+Mi9U1EZdOrT1W/eFE6EpyTo4fp039CuXLgYyeItFiRg8+iRYsk24IgID4+HuvXr0fHjh2LdC47OzvY2dmpdOyDBw/Qtm1bNGnSBMHBweK6Qnnc3NwwceJEZGVlwdDQEABw+PBhuLq6FnqZi4gIeDmBuXJloGrVx/D0XCbZHxXVEwcP1gMApKdzPg+RNivyXV2vz6PR09ODnZ0d2rVrBz8/P1haWqq1QSA39LRp0wZVq1bFunXroK+vL+7LG81JTk6Gq6sr2rdvj/HjxyM6OhoDBgzAggULinQ7O+/qItI97u65Iz1ffrkTdepES/YdPjwB48YZ4swZYNEiYOTI3FvWiah0UfXzu8jBRw4hISH49ttvC9z3avuXL1+Gt7c3/vrrL1SoUAHff/89xo8fX6TXYvAh0g2v3qauVGYjKkqaZh49qoMOHb7g5SwiLVGiwScpKQm3bt0CANSsWRM2NjbFbrS0YfAh0g15ozzdul1Dw4bbJfuWLx+KR48q8jZ1Ii1SIuv4xMbGwtvbG2FhYeJIi0KhQIcOHbBkyRK4uLi8U9NERJri6wucPRsIQ8MMSX3KlMkAFLCw4G3qRGWRysEnLi4OLVu2hKGhIaZPn446deoAAK5du4bly5fDzc0Nf/31F6pUqVJizRIRqUNycjIuXvwZ/7sPAgBw/bon+vRpCVdXQKEAZs/mXVtEZZHKl7oGDhyIW7duISwsDCYmJpJ96enp6NChA2rVqoXVq1eXSKOawktdRGXb4cOHEfHa9aujR8fhxx9NGXSItJjaL3UdPHgQW7duzRd6AMDU1BTTp0/HV199VbxuiYhKmFKpxPTp0yU1U9NK2L17CNfkIdIhKq/c/O+//75xDk/16tXx33//qaMnIiK1io2NzRd6vLy8sHv3EHHBQiLSDSoHn0qVKuHatWuF7o+Ojn7jCslERJqU9/iJoKAVWLdunWRfWNhkVK1aFb6+L1dhJiLdoPKlrm7duuHHH3/E0aNH8622nJiYiPHjx6Nbt27q7o+IqFjmzUuHp2cQ0tNf1q5d+xCXL3tg9v8ev9WlCy9xEekalSc3P336FC1atEBCQgK++eYb1K5dG4Ig4Pr169i0aRMcHBzw559/oly5ciXdc4ni5GYi7RcZGYlDhw5JauHhoxEebsW1eYjKKLVPbra1tcWZM2cwYcIEbNmyBUlJSQAAGxsb9OnTB7NmzdL60ENE2k0QBEybNk1Se/HCBHp64zF6NJCRwctaRLquWCs3C4KAx48fA8h90KhCoVB7Y3LhiA+RdkpISMDKlSsltW3bvsC1a3VgYQE8eyZTY0SkESWycnMehUIBe3v7YjdHRKROW7duRUxMjKQ2d+5EdOhggPv3cx8sSkQEFDP4EBGVBllZWZg1a5akdvlyfRw40ANbtnDiMhHlx+BDRFrpypUr2LVrl6RWp85whIXZMfQQUaEYfIhI60ybNg2vT0+cO9cfz54BX3whU1NEpBUYfIhIazx9+hSLFi2S1I4f/wxnzjTFmDEyNUVEWkWl4PP6f2jeZCRnERJRCVi27AAePz4rqQUE+CIjwxhubsDMmTI1RkRaRaXgs2DBApVOplAoGHyISK0KerjovXvO2LDhW9jbA5aWXJuHiFSnUvC5e/duSfdBRJTP7du3sWHDBkltz54BSEtzwo4dnMBMREVX7Dk+mZmZuHv3LmrUqAEDA04VIiL1WrJkCZ48eSKpNWw4Gf7+ZWfBVCLSPJWfzp4nLS0NAwcOhJmZGd5//33cv38fAPD9998jMDBQ7Q0SkW5JTU3F1KlTJaEnIqI1GjXyR9euDD1E9G6KHHz8/PwQFRWF8PBwmJiYiHUPDw9s3bpVrc0RkW45deoU5s6dK6kdP+4Db+82vKxFRGpR5GtUu3fvxtatW9GyZUvJM7ref/993L59W63NEZFuKOjhoikploiMHMMnqRORWhV5xOfx48cFPqcrNTW1TD2slIg04+HDh/lCT/XqvREZOQZt2wLu7kBoqEzNEVGZU+Tg07RpU+zfv1/czgs7q1evhpubm/o6I6Iyb8OGDfjll18ktUOHJqFv3/cQEQEcPw5ERgKcPkhE6lLkS12zZs1Cx44dce3aNWRnZ2PhwoW4du0aIiIicOLEiZLokYjKmMzMTAQEBEhqt241wrlzXTB79suar29u6OE6PUSkLgrh9QfeqOD27dsIDAxEVFQUnj9/jsaNG2P8+PGoX79+SfSoUSkpKbC2tkZycjKsrKzkboeozLl48SJCX7t2tXr1CPzzT3m4uYFzeoioWFT9/C7WAjw1atTINzxNRPQ2U6dOzVcLDPTHmDG5l7U4skNEJU2l4JOSkqLyCTlKQkSve/LkCZYsWSKp7d7dFbduNcTWrVyBmYg0R6XgY2Njo/IdWzk5Oe/UEBGVLaGhobh48aKk9sEHfggLM8LGjQw9RKRZKgWf48ePi3+OjY2Fr68vvLy8xLu4IiMjsW7dunyTFYlId+Xk5GDGjBmS2q1bNXD79jfw9we6d5epMSLSaUWe3PzJJ59g0KBB6N27t6S+adMmrFq1CuHh4ersT+M4uZno3f3999/YvHmzpObqOhiLFjnC15ejPESkfqp+fhc5+JiZmSEqKgq1atWS1P/++280bNgQaWlpxeu4lGDwIXo38+fPx7NnzyS1hg0n8zlbRFSiVP38LvIChk5OTgXe0bV69Wo4OTkV9XREVEY8f/4cU6dOlYSeo0c/wZQp/pg9m6GHiEqHIt/OvmDBAvTs2RMHDhxAixYtAABnz57FzZs3sXPnTrU3SESlX3h4eL4FTIOCfkTDhuZwc+Nt6kRUehQ5+Hz66ae4efMmli1bhpiYGABA586dMXToUI74EOmYgh8uWh7z54/4334uSEhEpUuxFjCsUqUKZs2ape5eiEiL/PPPP1izZo2k9s033+Dq1Rr4/ffc0MORHiIqbYoVfJKSkrBmzRpcv34dAPD+++9jwIABsLa2VmtzRFQ6jRsXDHPz+5LaTz/9BD09PdSowbu2iKj0KvJdXefOnYOnpydMTU3RvHlzAMBff/2F9PR0HDp0CI0bNy6RRjWFd3URFe7FixeY/epTRAGcOdMMd+58iv9d+SYikkWJ3c7eqlUr1KxZE7/88gsMDHIHjLKzszFo0CDcuXMHJ0+efLfOZcbgQ1Swc+fOYf/+/ZLaqVMjkZZmy7V5iEh2JRZ8TE1NcfHiRdSuXVtSv3btGpo2bcp1fIjKmNBQ4OJF6cNFlUoFpk6dLFNHRET5ldg6PlZWVrh//36+elxcHCwtLYt6OiIqxR4/fpwv9Ozb1wNNmjD0EJF2KvLk5i+//BIDBw7E3Llz4e7uDgA4ffo0xo4dm+8xFkSkvXbt2oUrV65Iatu2TUBAgCEvaxGR1ipy8Jk7dy4UCgX69euH7OxsAIChoSGGDRuGwMBAtTdIRJqVnZ2NmTNnSmqPHrmiQ4ev4O8vU1NERGpS5Dk+edLS0nD79m0AQI0aNWBmZqbWxuTCOT6ky3799Tru3t0mqX333XdwcHCQqSMiItWo+vldrHV8gNyHldavX7+4P05EpcyMGbORk/NCUps8eTIUitznbIWGAoGB4B1cRKTVVA4+AwYMUOm4tWvXFrsZItK8HTtScPXqAkntwgVP7NnTUlILDAQiI3O/M/gQkbZSOfiEhISgatWqaNSoEYp5dYyISpnDhw/j6lXpw7R27RqH6dNN8x3r6/tyxIeISFupPMfH29sbmzdvRtWqVfHtt9/im2++Qbly5Uq6P43jHB/SBQU9XNTUtCLGjRsqU0dERO9G7ev4LF26FPHx8Rg3bhz27t0LJycnfPHFFwgLC+MIEJEWuXfvXr7QU7Nmf4YeItIJxb6r6969ewgJCcGvv/6K7OxsXL16FRYWFuruT+M44kNlWVDQKqSnx0tqU6f+hJYt9RARUcgPERFpgRK/q0tPTw8KhQKCICAnJ6e4pyEiDUhPT0dQUJCk5u7ujvT0/0PLlpy3Q0S6o0jBJyMjA7t27cLatWvxxx9/oFOnTliyZAk6dOgAPb0iP/2CiEpYaCiwadOfqFMnTFJ///1R+L//swbAO7SISLeoHHyGDx+OLVu2wMnJCQMGDMDmzZtRoUKFkuyNiN7Bnj0CLl2ahjp1XtaMjY1Rt64vAgMBIyOGHiLSPSrP8dHT04OzszMaNWokLmhWkF27dqmtOTlwjg+VBY8ePcKKFSsktV69eqFu3bpwd89dj8fNDZzXQ0Rlhtrn+PTr1++NgYeISodt27bh+vXrktrEiRNhYJD7rzvX4yEiXVakBQyJqPTKysrCrFmzJLV69eqhZ8+eAKSPnOBIDxHpqmLf1UVEpUd0dDR27twpqQ0fPhx2dnbiNh85QUTE4EOktUJDgXHjgC++mAF9femSEv7+/vmO5yUuIqJ3WMCwrOLkZtIWjRsnoWvXhZLap59+imbNmsnUERGRfEp8AUMiks/BgwfRtesZSW38+PEwMTGRqSMiIu3A4EOkRZRKJaZPny6pmZs74ccfB8jUERGRduFyy0Ra4s6dO/lCz4ABA9459ISGAu7uud+JiMo6jvgQaYGlS5fi33//ldQmT56slrW1eLcXEekSrRvxycjIQMOGDaFQKHDp0iXJvsuXL6NVq1YwMTGBk5NTvocyEmmbtLQ0TJ06VRJ6bt/+GI0a+attQVFf39xVnHm3FxHpAq0b8Rk3bhwcHR0RFRUlqaekpKB9+/bw8PDAihUrcOXKFQwYMAA2NjYYMmSITN0SFd/p06dx5MgRSW3MmDGwtLRU6+t06cKRHiLSHVoVfA4cOIBDhw5h586dOHDggGTfxo0bkZmZibVr18LIyAjvv/8+Ll26hPnz5zP4kFYRBAHTpk2T1CwsLODj4yNTR0REZYfWBJ9Hjx5h8ODB2L17N8zMzPLtj4yMxMcffwwjIyOx5unpidmzZ+Pp06ewtbUt8LwZGRnIyMgQt1NSUtTfPJEKch8pEQ9Pz1WS+ldffQVXV1eZuiIiKlu0Yo6PIAjw8vLC0KFD0bRp0wKPSUhIQMWKFSW1vO2EhIRCzx0QEABra2vxy8nJSX2NExXBoUMb84WeSZMmMfQQEamRrMHH19cXCoXijV8xMTFYvHgxnj17Bj8/P7X34Ofnh+TkZPErLi5O7a9BVJjQUKBVq0xMnToVdna3xHq5cg3h7+8PfX39dz4/b1UnInpJ1ktdPj4+8PLyeuMx1atXx7FjxxAZGQljY2PJvqZNm+Lrr7/GunXr4ODggEePHkn25207ODgUen5jY+N85yXSlF9/vQQPjz2S2ogRI1C+fHm1nJ+3qhMRSckafOzs7CRPjy7MokWLMGPGDHH74cOH8PT0xNatW9GiRQsAgJubGyZOnIisrCwYGhoCAA4fPgxXV9dC5/cQySF3Lg/g6TkV9etL9xX0cNF3wQeTEhFJaeVDSmNjY1GtWjVcvHgRDRs2BAAkJyfD1dUV7du3x/jx4xEdHY0BAwZgwYIFRbqriw8ppZIUGgp4e/+HQYMWS+qdO3dG48aNZeqKiEj7qfr5rRWTm1VhbW2NQ4cO4e7du2jSpAl8fHwwefJk3spOpUpo6N58ocfPz6/Q0MM5OkRE6qWVIz4liSM+VBJycnIkl2sBoFq1aujXrx+Al5e/fH2lc3Hc3XPn6Li5ARERmuyYiEi76NyID1FptX79zXyhZ9CgQbCx6SeO5rw6CflVfJwEEZF6ac0ChkTaaP/+/bhz55yklvdw0V69XoadwiYh83ESRETqxeBDVAJevHiB2bNnS2qVKrXDkCGtxO1Xww4DDhGRZjD4EKnZtWvXsH37dklt/PjxMDExkdQYdoiINI9zfIjUIPfuKwFBQSsloadZs2bw9/fHoUMmxb47i3d2ERGpD4MP0TvICyXTpj2Bp+c0pKe/fC5cRMR3yM7+FEDBk5dVDTSFTXwmIqKiY/AhegeBgYCxcTg6d14i1iwtLREW9hMOHXIQw0pBd2epGmh4ZxcRkfpwHZ/XcB0fepu828/HjctCVNQsyb68FZgLW5enoPO86RgiIlKNqp/fDD6vYfCht6ldG8jKuoN+/dZL6j4+PrCwsJCpKyIi3abq5zfv6iIqotatN8HR8aa4XbduXfTq1UvGjoiISFUMPkRvkXdJasyYFFy9ugCOji/3nTnjhUaNqsrXHBERFQmDD9FbBAYCOTlncfXqAbGmUCgQFjYBEREGSEriHB0iIm3B4EP0Bjk5OejYcQ6Uygyx9vffn+DLLz9Cw4YFP2aCiIhKLwYfokI8ePAAq1evltROnPgBx4/b4O7d3Kelc6SHiEi7MPgQFWDPnj24dOmSuO3s7AwvLy/s3avAixcc5SEi0lYMPkSvSE9PR1BQkKT21VdfwdXVFQCfr0VEpO0YfIj+58qVK9i1a5ek5uvrC2NjY5k6IiIidWPwIZ2We6u6gC5dliEj41+x7ubmhvbt28vYGRERlQQGH9Jpixf/C0/Ppch4edMWhg0bBnt7e/maIiKiEsOHlJLOOnLkCD76aKm4bWtri8mTJxcaelR9mjoREZVeHPEhnZOZmYmAgABJrVu3bmjQoMEbf+7Vp6lzgjMRkXZi8CGdkPfYiWHDbuLOnU2SfWPHjoWZmdlbz+HrywULiYi0HZ/O/ho+nb1scncX8N57v6JatVix9sEHH6B79+7yNUVERGqj6uc35/hQmfTqfJzk5GR4ek6ThJ4BAwYw9BAR6SBe6qIyKW8+zubNkbh48ZBYNzAwgK+vL/T19WXsjoiI5MLgQ2XSuHE5uHAhAPr6OWItJqY9Nm92k7ErIiKSG4MPlTmbNsXh5s21eHVQ58SJURg1ylq+poiIqFRg8KEyIzQU2L9/Fxwdr4i16tWr45tvvoFCoZCxMyIiKi0YfKhMSE1NxcWLc+Ho+LJWo8bX+OabmvI1RUREpQ6DD2m9S5cuYc+ePZKan58fjIyMZOqIiIhKKwYf0kp5Dxft3HkRMjOTxPqdOx+hZ89PwMxDREQFYfAhrbRkSSI8PZcjM/NlzdvbGxUqVJCvKSIiKvUYfEjrhIWF4cMP/xS37ezsMGzYME5gJiKit2LwIa2RkZGBwMBASa1nz56oV6+eTB0REZG24SMrqNR69bETN27cyBd6xo0bx9BDRERFwhEfKpVCQ4GvvwaePxdw7FgwLl6ME/c1atQIXbp0kbE7IiLSVgw+VCoFBgIGBk8xZcoiSX3QoEGoXLmyTF0REZG2Y/ChUiP3FnXA1xfw8voD8fFHxX0mJiYYO3Ys9PR4dZaIiIqPwYdKjcBA4OzZbFy8OFNS79ixI5o3by5TV0REVJbwf59JFq9OXM4zYsQ9/PSTNPSMGTOGoYeIiNSGIz4ki8BAIDIy93uXLsC2bdtw8+Z1cX+tWrXQp08fGTskIqKyiMGHZOHrmxt6fHyeY+rUeZJ9ffv2RfXq1WXqjIiIyjIGH9K4vEnMgwZdQHT0Xsm+CRMmwNDQUKbOiIiorGPwIY0KDQW++UaJIUMWIC7uuVhv06YNWrduLWNnRESkCzi5WYcVNMG4pF9v1KgE+PhMh6Xly9Dz/fffM/QQEZFGMPjosFcnGJeUV8PVnj370b//SnFfpUqVMHnyZJQrV67kGiAiInoFg48O8/UF3Nxyv7+rwkaPAgOBCxde4OLFqXB2PifWe/XqhSFDhvCJ6kREpFEKQRAEuZsoTVJSUmBtbY3k5GRYWVnJ3Y7WcHfPHT1ycwMiInJroaHAokXX0arVNsmx48ePh4mJiQxdEhFRWaXq5zdHfEglb5sP9ProkSAICA9fJQk9TZs2hb+/P0MPERHJhiM+r+GIT8EKGtEpzH///YfFixdLakOGDEGlSpVKsEMiItJlqn5+83Z2UknegoNvmw8UHh6OEydOiNsWFhYYPXo0Hy5KRESlAoMPqaRLl9yvwmRlZWHWrFmSWqdOndCkSZMS7oyIiEh1DD70zu7cuYP169dLaj4+PrCwsJCpIyIiooIx+FCR5T1ywtcXeP58E27evCnuq1OnDr744gsZuyMiIiocgw8VWWAgEB39DBcvzpfU+/fvDxcXF3maIiIiUgGDDxXZwIF/4Z9/fpfUJk6cCAMD/uNERESlGz+pSGVKpRJz585Fenq6WGvXrh1atWolY1dERESqY/AhlTx8+BC//PKLpDZy5EjY2trK1BEREVHRcXEVkihohebQ0FBJ6HFycsLkyZMZeoiISOtwxIckXn1i+//9XzqCgoIk+7/66iu4urrK1B0REdG7YfAhibwVmr/7LhpBQTtf2+cLY2NjmTojIiJ6dww+JNG5s4B//lmO2NjHYq1ly5bw9PSUsSsiIiL1YPAh0b///oulS5dKakOHDkXFihVl6oiIiEi9tGpy8/79+9GiRQuYmprC1tYW3bp1k+y/f/8+PvvsM5iZmcHe3h5jx45Fdna2PM1qmaNHj0pCj42NDX766SeGHiIiKlO0ZsRn586dGDx4MGbNmoV27dohOzsb0dHR4v6cnBx89tlncHBwQEREBOLj49GvXz8YGhrme3gmvVTQw0W7du2Khg0bytMQERFRCVIIgiDI3cTbZGdnw8XFBVOnTsXAgQMLPObAgQPo1KkTHj58KI5SrFixAuPHj8fjx49hZGSk0mulpKTA2toaycnJsLKyUtvvUBrdunULGzdulNR+/PFHmJuby9QRERFR8aj6+a0Vl7ouXLiABw8eQE9PD40aNUKlSpXQsWNHyYhPZGQk6tevL7k04+npiZSUFFy9erXQc2dkZCAlJUXyVdYJgoD169dLQk/9+vXh7+/P0ENERGWaVgSfO3fuAACmTJmCSZMmYd++fbC1tUWbNm3w33//AQASEhLyzUfJ205ISCj03AEBAbC2tha/nJycSui3kFfewoQ7diRj2rRp4t8pAAwYMAA9evSQsTsiIiLNkDX4+Pr6QqFQvPErJiYGSqUSQO6DMHv27IkmTZogODgYCoUC27dvf6ce/Pz8kJycLH7FxcWp41crdQIDAUH4E1ev/izWDAwMMGnSpDIb9oiIiF4n6+RmHx8feHl5vfGY6tWrIz4+HgBQt25dsW5sbIzq1avj/v37AAAHBwecPXtW8rOPHj0S9xXG2Ni4zC/Kl5OTgw4dAiEIL+9wa9++Pdzc3GTsioiISPNkDT52dnaws7N763FNmjSBsbExbty4gY8++ghA7t1IsbGxqFq1KgDAzc0NM2fORGJiIuzt7QEAhw8fhpWVlSQwabvQ0NzRG19foEuXtx8fFxeHtWvXSmonToyCv791CXVIRERUemnF7exWVlYYOnQo/P394eTkhKpVq2LOnDkAgF69egHIHcGoW7cu+vbti6CgICQkJGDSpEnw9vYuUyM6rz5L623B57fffsPly5fFbQuLati5sy98fRUl3CUREVHppBXBBwDmzJkDAwMD9O3bF+np6WjRogWOHTsmPiFcX18f+/btw7Bhw+Dm5gZzc3P0798f06ZNk7lz9cp7lpavb+HHpKWlicEwT58+fVCrVi34+JRwg0RERKWYVqzjo0navo5PVFQUdu/eLan5+fmpvI4RERGRNlL181trRnzozQRBwOLFi/H06VOxlpPzIY4c8UCjRqrNByIiIirrtGIdH12XtwZPaGjB+xMTEzFt2jRJ6FmyZDgWLPAQ5wMRERERR3y0wpsmNB86dAiRkZHitolJBdSuPRy1ainQti1w/Pib5wMRERHpEgYfLVDQhObMzEwEBARIjtuxowcsLetj/Higa1cNN0lERKQFGHy0QJcu0pGeGzduYMuWLZJj6tcfh7AwU47uEBERvQGDjxYRBAEhISHiatUA0LBhQ3T93/AOH7dFRET0Zgw+WiIpKQkLFy6U1AYNGoTKlSvL1BEREZH2YfDRAqdPn8aRI0fEbX19Yxw4MBaNGumDuYeIiEh1DD6lWHZ2NmbNmoVX15g8f74j/v23ucqPrSAiIqKXGHxKqXv37iEkJERSmzdvNBwdrRAU9PbHVhAREVF+DD6l0Pbt23Ht2jVxu2bNmrC0/Br16r18KjtHeoiIiIqOwacUSU1Nxdy5cyW1vn37Ijq6ujjCw8BDRERUfAw+pcSFCxewd+9eSW3ChAkwNDTEN98UvnIzERERqY7BR2ZKpRI///wznj17JtY+/vhjtG3bVtwuaOVmIiIiKjoGHxlt2ZKAGzdWSmojRoxA+fLlJTXO6SEiIlIPBh+ZHDhwADdunBW3HRwcMGTIECgUChm7IiIiKtsYfDQsIyMDgYGBkpqLSy/0719Xpo6IiIh0B4OPBl2/fh3btm2T1MaPHw8TExOZOiIiItItDD4asnfvXly4cEHcbtq0KT777DMZOyIiItI9enI3oCuuX78u/nnIkCFi6AkNBdzdc78TERFRyVIIrz4IipCSkgJra2skJyfDyspKbeeNjY3Fw4cP0bJlS+jpvcyb7u65a/S4uQEREWp7OSIiIp2i6uc3L3VpiIuLC1xcXPLV27YFrlzJ/U5EREQli5e6ZHb8OPD8ee53IiIiKlkMPjLz9c29zMVVmYmIiEoeL3XJjKsyExERaQ5HfIiIiEhnMPgQERGRzmDw0RCu10NERCQ/Bh8NCQzMXa/ntcd0ERERkQYx+GgI794iIiKSH+/q0hDevUVERCQ/jvgQERGRzmDwISIiIp3B4ENEREQ6g8GHiIiIdAaDDxEREekMBh8iIiLSGQw+REREpDMYfIiIiEhnMPgQERGRzmDwISIiIp3B4ENEREQ6g8GHiIiIdAaDDxEREekMPp39NYIgAABSUlJk7oSIiIhUlfe5nfc5XhgGn9c8e/YMAODk5CRzJ0RERFRUz549g7W1daH7FcLbopGOUSqVePjwISwtLaFQKORup0SlpKTAyckJcXFxsLKykrsdegXfm9KJ70vpxPel9NLkeyMIAp49ewZHR0fo6RU+k4cjPq/R09NDlSpV5G5Do6ysrPgfi1KK703pxPeldOL7Unpp6r1500hPHk5uJiIiIp3B4ENEREQ6g8FHhxkbG8Pf3x/GxsZyt0Kv4XtTOvF9KZ34vpRepfG94eRmIiIi0hkc8SEiIiKdweBDREREOoPBh4iIiHQGgw8RERHpDAYfHbZ//360aNECpqamsLW1Rbdu3ST779+/j88++wxmZmawt7fH2LFjkZ2dLU+zOiYjIwMNGzaEQqHApUuXJPsuX76MVq1awcTEBE5OTggKCpKnSR0SGxuLgQMHolq1ajA1NUWNGjXg7++PzMxMyXF8b+SxdOlSuLi4wMTEBC1atMDZs2flbkmnBAQEoFmzZrC0tIS9vT26deuGGzduSI558eIFvL29Ub58eVhYWKBnz5549OiRLP0y+OionTt3om/fvvj2228RFRWF06dPo0+fPuL+nJwcfPbZZ8jMzERERATWrVuHkJAQTJ48Wcaudce4cePg6OiYr56SkoL27dujatWqOH/+PObMmYMpU6Zg1apVMnSpO2JiYqBUKrFy5UpcvXoVCxYswIoVKzBhwgTxGL438ti6dSvGjBkDf39/XLhwAQ0aNICnpycSExPlbk1nnDhxAt7e3vjzzz9x+PBhZGVloX379khNTRWPGT16NPbu3Yvt27fjxIkTePjwIXr06CFPwwLpnKysLKFy5crC6tWrCz3m999/F/T09ISEhASxtnz5csHKykrIyMjQRJs66/fffxdq164tXL16VQAgXLx4Udy3bNkywdbWVvIejB8/XnB1dZWhU90WFBQkVKtWTdzmeyOP5s2bC97e3uJ2Tk6O4OjoKAQEBMjYlW5LTEwUAAgnTpwQBEEQkpKSBENDQ2H79u3iMdevXxcACJGRkRrvjyM+OujChQt48OAB9PT00KhRI1SqVAkdO3ZEdHS0eExkZCTq16+PihUrijVPT0+kpKTg6tWrcrStEx49eoTBgwdj/fr1MDMzy7c/MjISH3/8MYyMjMSap6cnbty4gadPn2qyVZ2XnJyMcuXKidt8bzQvMzMT58+fh4eHh1jT09ODh4cHIiMjZexMtyUnJwOA+O/H+fPnkZWVJXmfateuDWdnZ1neJwYfHXTnzh0AwJQpUzBp0iTs27cPtra2aNOmDf777z8AQEJCgiT0ABC3ExISNNuwjhAEAV5eXhg6dCiaNm1a4DF8X0qHW7duYfHixfjuu+/EGt8bzfv333+Rk5NT4N87/87loVQqMWrUKHz44YeoV68egNx//o2MjGBjYyM5Vq73icGnDPH19YVCoXjjV95cBQCYOHEievbsiSZNmiA4OBgKhQLbt2+X+bcoe1R9XxYvXoxnz57Bz89P7pZ1hqrvzasePHiADh06oFevXhg8eLBMnROVTt7e3oiOjsaWLVvkbqVQBnI3QOrj4+MDLy+vNx5TvXp1xMfHAwDq1q0r1o2NjVG9enXcv38fAODg4JDvzoi8GfgODg5q7LrsU/V9OXbsGCIjI/M906Zp06b4+uuvsW7dOjg4OOS7E4LvS/Gp+t7kefjwIdq2bQt3d/d8k5b53mhehQoVoK+vX+DfO//ONW/EiBHYt28fTp48iSpVqoh1BwcHZGZmIikpSTLqI9v7pPFZRSS75ORkwdjYWDK5OTMzU7C3txdWrlwpCMLLyc2PHj0Sj1m5cqVgZWUlvHjxQuM964J79+4JV65cEb/CwsIEAMKOHTuEuLg4QRBeTqDNzMwUf87Pz48TaDXgn3/+EWrVqiV89dVXQnZ2dr79fG/k0bx5c2HEiBHidk5OjlC5cmVObtYgpVIpeHt7C46OjsLff/+db3/e5OYdO3aItZiYGNkmNzP46KgffvhBqFy5shAWFibExMQIAwcOFOzt7YX//vtPEARByM7OFurVqye0b99euHTpknDw4EHBzs5O8PPzk7lz3XH37t18d3UlJSUJFStWFPr27StER0cLW7ZsEczMzMTASiXjn3/+EWrWrCl88sknwj///CPEx8eLX3n43shjy5YtgrGxsRASEiJcu3ZNGDJkiGBjYyO5I5VK1rBhwwRra2shPDxc8u9GWlqaeMzQoUMFZ2dn4dixY8K5c+cENzc3wc3NTZZ+GXx0VGZmpuDj4yPY29sLlpaWgoeHhxAdHS05JjY2VujYsaNgamoqVKhQQfDx8RGysrJk6lj3FBR8BEEQoqKihI8++kgwNjYWKleuLAQGBsrToA4JDg4WABT49Sq+N/JYvHix4OzsLBgZGQnNmzcX/vzzT7lb0imF/bsRHBwsHpOeni4MHz5csLW1FczMzITu3btL/sdBkxT/a5qIiIiozONdXURERKQzGHyIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4iIiHQGgw8RERHpDAYfIqISEh4eDoVCgaSkJLlbIaL/YfAhIq01ZcoUNGzYUO42iEiLMPgQUZmXlZUldwtEVEow+BCRbJRKJQICAlCtWjWYmpqiQYMG2LFjB4CXl4mOHj2Kpk2bwszMDO7u7rhx4wYAICQkBFOnTkVUVBQUCgUUCgVCQkIAAAqFAsuXL0eXLl1gbm6OmTNnvrGPvNcKCwtDo0aNYGpqinbt2iExMREHDhxAnTp1YGVlhT59+iAtLU38uYyMDIwcORL29vYwMTHBRx99hL/++qtk/rKISD1keUIYEZEgCDNmzBBq164tHDx4ULh9+7YQHBwsGBsbC+Hh4cLx48cFAEKLFi2E8PBw4erVq0KrVq0Ed3d3QRAEIS0tTfDx8RHef//9fE+DBiDY29sLa9euFW7fvi3cu3fvjX3kvVbLli2FP/74Q7hw4YJQs2ZNoXXr1kL79u2FCxcuCCdPnhTKly8vefDoyJEjBUdHR+H3338Xrl69KvTv31+wtbUVnjx5Ijnv06dPS+YvkIiKjMGHiGTx4sULwczMTIiIiJDUBw4cKPTu3VsMDUeOHBH37d+/XwAgpKenC4IgCP7+/kKDBg3ynRuAMGrUKJV7Kei1AgICBADC7du3xdp3330neHp6CoIgCM+fPxcMDQ2FjRs3ivszMzMFR0dHISgoSHJeBh+i0sNArpEmItJtt27dQlpaGv7v//5PUs/MzESjRo3E7Q8++ED8c6VKlQAAiYmJcHZ2fuP5mzZtWuSeXn2tihUrwszMDNWrV5fUzp49CwC4ffs2srKy8OGHH4r7DQ0N0bx5c1y/fr3Ir01EmsHgQ0SyeP78OQBg//79qFy5smSfsbExbt++DSA3TORRKBQAcucGvY25uXmRe3r9tV7dzqup8tpEVHpxcjMRyaJu3bowNjbG/fv3UbNmTcmXk5OTSucwMjJCTk5OCXdasBo1asDIyAinT58Wa1lZWfjrr79Qt25dWXoiorfjiA8RycLS0hI//vgjRo8eDaVSiY8++gjJyck4ffo0rKysULVq1beew8XFBXfv3sWlS5dQpUoVWFpawtjYWAPd544oDRs2DGPHjkW5cuXg7OyMoKAgpKWlYeDAgRrpgYiKjsGHiGQzffp02NnZISAgAHfu3IGNjQ0aN26MCRMmqHRJqWfPnti1axfatm2LpKQkBAcHw8vLq+Qb/5/AwEAolUr07dsXz549Q9OmTREWFgZbW1uN9UBERaMQBEGQuwkiIiIiTeAcHyIiItIZDD5EVOYNHToUFhYWBX4NHTpU7vaISIN4qYuIyrzExESkpKQUuM/Kygr29vYa7oiI5MLgQ0RERDqDl7qIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4iIiHQGgw8RERHpDAYfIiIi0hkMPkRERKQz/h8ZE1xgsXhGfQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABo50lEQVR4nO3deXwTdf4/8FdaSGmhB6U3lLYUuaQU5LICBYSlVFYXwRVB5QYPDoVVAXdVQJdy7CrKIriooKsgXxUVQVxQrgUqdzmlP6iForTcTexBC838/igZcswkk6PNpHk9H48oTSYzn0wmM+/5fN6fz0cjCIIAIiIiIh/m5+kCEBEREXkaAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIvIas2fPhkajUbSsRqPB7Nmza7Q8ffr0QZ8+fVS7PiJSjgERETls1apV0Gg04qNevXpo2rQpRo8ejd9++83TxVOdxMREs/0VFRWFXr164auvvnLL+svKyjB79mxs377dLesj8kUMiIjIaXPnzsV//vMfLF++HJmZmfjkk0/Qu3dv3Lhxo0a297e//Q3l5eU1su6a1rFjR/znP//Bf/7zH7zwwgu4cOEChgwZguXLl7u87rKyMsyZM4cBEZEL6nm6AETkvTIzM9GlSxcAwPjx4xEREYEFCxZg/fr1ePTRR92+vXr16qFePe88bTVt2hRPPPGE+PfIkSPRsmVLvPXWW3j66ac9WDIiAlhDRERu1KtXLwBAXl6e2fOnTp3CI488gvDwcDRo0ABdunTB+vXrzZa5efMm5syZg7vuugsNGjRAkyZN0LNnT2zZskVcRiqHqKKiAtOmTUNkZCSCg4Px0EMP4ddff7Uq2+jRo5GYmGj1vNQ6V65cifvvvx9RUVEICAhAu3btsGzZMof2hT0xMTFo27Yt8vPzbS536dIljBs3DtHR0WjQoAFSU1Px0Ucfia+fPXsWkZGRAIA5c+aIzXI1nT9FVNd4560WEanS2bNnAQCNGzcWnztx4gR69OiBpk2bYubMmWjYsCH+7//+D4MHD8aXX36Jhx9+GEB1YJKVlYXx48ejW7du0Ov1OHDgAA4dOoQ//OEPstscP348PvnkE4wYMQL33Xcftm7dikGDBrn0OZYtW4a7774bDz30EOrVq4dvv/0Wzz77LAwGAyZNmuTSuo1u3ryJ8+fPo0mTJrLLlJeXo0+fPjhz5gwmT56MpKQkfP755xg9ejSKi4vx3HPPITIyEsuWLcMzzzyDhx9+GEOGDAEAdOjQwS3lJPIZAhGRg1auXCkAEH744Qfh8uXLwvnz54UvvvhCiIyMFAICAoTz58+Ly/br109ISUkRbty4IT5nMBiE++67T7jrrrvE51JTU4VBgwbZ3O5rr70mmJ62cnJyBADCs88+a7bciBEjBADCa6+9Jj43atQoISEhwe46BUEQysrKrJbLyMgQWrRoYfZc7969hd69e9sssyAIQkJCgjBgwADh8uXLwuXLl4UjR44Ijz32mABAmDJliuz6Fi9eLAAQPvnkE/G5yspKIS0tTWjUqJGg1+sFQRCEy5cvW31eInIMm8yIyGn9+/dHZGQk4uPj8cgjj6Bhw4ZYv349mjVrBgC4du0atm7dikcffRS///47rly5gitXruDq1avIyMjA6dOnxV5pYWFhOHHiBE6fPq14+9999x0AYOrUqWbPP//88y59rsDAQPHfOp0OV65cQe/evfHLL79Ap9M5tc7NmzcjMjISkZGRSE1Nxeeff44nn3wSCxYskH3Pd999h5iYGAwfPlx8rn79+pg6dSpKSkqwY8cOp8pCRNbYZEZETlu6dClatWoFnU6HDz/8EDt37kRAQID4+pkzZyAIAl555RW88sorkuu4dOkSmjZtirlz5+JPf/oTWrVqhfbt22PgwIF48sknbTb9nDt3Dn5+fkhOTjZ7vnXr1i59rt27d+O1115DdnY2ysrKzF7T6XQIDQ11eJ3du3fHG2+8AY1Gg6CgILRt2xZhYWE233Pu3Dncdddd8PMzv3dt27at+DoRuQcDIiJyWrdu3cReZoMHD0bPnj0xYsQI5ObmolGjRjAYDACAF154ARkZGZLraNmyJQAgPT0deXl5+Oabb7B582a8//77eOutt7B8+XKMHz/e5bLKDehYVVVl9ndeXh769euHNm3a4M0330R8fDy0Wi2+++47vPXWW+JnclRERAT69+/v1HuJqOYxICIit/D390dWVhb69u2Lf/3rX5g5cyZatGgBoLqZR0kwEB4ejjFjxmDMmDEoKSlBeno6Zs+eLRsQJSQkwGAwIC8vz6xWKDc312rZxo0bo7i42Op5y1qWb7/9FhUVFVi/fj2aN28uPr9t2za75Xe3hIQEHD16FAaDwayW6NSpU+LrgHywR0TKMYeIiNymT58+6NatGxYvXowbN24gKioKffr0wXvvvYfCwkKr5S9fviz+++rVq2avNWrUCC1btkRFRYXs9jIzMwEA77zzjtnzixcvtlo2OTkZOp0OR48eFZ8rLCy0Gi3a398fACAIgvicTqfDypUrZctRUx544AEUFRVh7dq14nO3bt3CkiVL0KhRI/Tu3RsAEBQUBACSAR8RKcMaIiJyqxdffBF//vOfsWrVKjz99NNYunQpevbsiZSUFEyYMAEtWrTAxYsXkZ2djV9//RVHjhwBALRr1w59+vRB586dER4ejgMHDuCLL77A5MmTZbfVsWNHDB8+HO+++y50Oh3uu+8+/Pjjjzhz5ozVso899hhmzJiBhx9+GFOnTkVZWRmWLVuGVq1a4dChQ+JyAwYMgFarxYMPPoinnnoKJSUlWLFiBaKioiSDupo0ceJEvPfeexg9ejQOHjyIxMREfPHFF9i9ezcWL16M4OBgANVJ4O3atcPatWvRqlUrhIeHo3379mjfvn2tlpfIq3m6mxsReR9jt/v9+/dbvVZVVSUkJycLycnJwq1btwRBEIS8vDxh5MiRQkxMjFC/fn2hadOmwh//+Efhiy++EN/3xhtvCN26dRPCwsKEwMBAoU2bNsLf//53obKyUlxGqot8eXm5MHXqVKFJkyZCw4YNhQcffFA4f/68ZDf0zZs3C+3btxe0Wq3QunVr4ZNPPpFc5/r164UOHToIDRo0EBITE4UFCxYIH374oQBAyM/PF5dzpNu9vSEF5NZ38eJFYcyYMUJERISg1WqFlJQUYeXKlVbv3bNnj9C5c2dBq9WyCz6REzSCYFIvTEREROSDmENEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwOzKiQwWDAhQsXEBwczGHyiYiIvIQgCPj9998RFxdnNVGyKQZECl24cAHx8fGeLgYRERE54fz582jWrJns6wyIFDIOkX/+/HmEhIR4uDRERESkhF6vR3x8vHgdl8OASCFjM1lISAgDIiIiIi9jL92FSdVERETk8xgQERERkc9jQEREREQ+jzlERETk86qqqnDz5k1PF4OcUL9+ffj7+7u8HgZERETkswRBQFFREYqLiz1dFHJBWFgYYmJiXBonkAERERH5LGMwFBUVhaCgIA6862UEQUBZWRkuXboEAIiNjXV6XQyIiIjIJ1VVVYnBUJMmTTxdHHJSYGAgAODSpUuIiopyuvmMSdVEROSTjDlDQUFBHi4Jucr4HbqSB8aAiIiIfBqbybyfO75DBkRERETk8xgQEREREYDqmpavv/7a08Uws337dmg0mhrvCciAqA4p1JVjT94VFOrKPV0UIiJSsdmzZ6Njx46eLoaqsJdZHbF2fwFmrTsGgwD4aYCsISkY1rW5p4tFRETkFVhDVAcU6srFYAgADALw8rrjrCkiIqqjDAYDsrKykJSUhMDAQKSmpuKLL74AcKeJ6ccff0SXLl0QFBSE++67D7m5uQCAVatWYc6cOThy5Ag0Gg00Gg1WrVolrvvKlSt4+OGHERQUhLvuugvr169XVCbjdv/73/+iU6dOCAwMxP33349Lly5h06ZNaNu2LUJCQjBixAiUlZWJ76uoqMDUqVMRFRWFBg0aoGfPnti/f7/7dpZCDIjqgPwrpWIwZFQlCDh7pUz6DURE5Ha1mbaQlZWFjz/+GMuXL8eJEycwbdo0PPHEE9ixY4e4zF//+lf885//xIEDB1CvXj2MHTsWADBs2DD85S9/wd13343CwkIUFhZi2LBh4vvmzJmDRx99FEePHsUDDzyAxx9/HNeuXVNcttmzZ+Nf//oX9uzZg/Pnz+PRRx/F4sWLsXr1amzcuBGbN2/GkiVLxOVfeuklfPnll/joo49w6NAhtGzZEhkZGQ5t0x0YENUBSREN4WfR49Bfo0FiBMfWICKqDWv3F6DH/K0YsWIveszfirX7C2psWxUVFZg3bx4+/PBDZGRkoEWLFhg9ejSeeOIJvPfee+Jyf//739G7d2+0a9cOM2fOxJ49e3Djxg0EBgaiUaNGqFevHmJiYhATEyMObggAo0ePxvDhw9GyZUvMmzcPJSUl2Ldvn+LyvfHGG+jRowc6deqEcePGYceOHVi2bBk6deqEXr164ZFHHsG2bdsAAKWlpVi2bBkWLVqEzMxMtGvXDitWrEBgYCA++OAD9+00BRgQ1QGxoYHIGpIC/9vjMPhrNJg3pD1iQwPtvJOIiFxV22kLZ86cQVlZGf7whz+gUaNG4uPjjz9GXl6euFyHDh3EfxuntDBOcWGL6fsaNmyIkJAQRe+Ten90dDSCgoLQokULs+eM68vLy8PNmzfRo0cP8fX69eujW7du+PnnnxVv0x2YVF1HDOvaHOmtInH2ShkSI4IYDBER1RJbaQs1cS4uKSkBAGzcuBFNmzY1ey0gIEAMiurXry8+bxy40GAw2F2/6fuM71XyPqn3azQal9dXWxgQ1SGxoYEMhIiIapkxbcE0KKrJtIV27dohICAABQUF6N27t9XrprVEcrRaLaqqqmqieA5JTk6GVqvF7t27kZCQAKB6+o39+/fj+eefr9WyMCAiIiJygTFt4eV1x1ElCDWethAcHIwXXngB06ZNg8FgQM+ePaHT6bB7926EhISIgYUtiYmJyM/PR05ODpo1a4bg4GAEBATUSHltadiwIZ555hm8+OKLCA8PR/PmzbFw4UKUlZVh3LhxtVoWBkREREQuqu20hddffx2RkZHIysrCL7/8grCwMNxzzz14+eWXFTVHDR06FOvWrUPfvn1RXFyMlStXYvTo0TVaZjnz58+HwWDAk08+id9//x1dunTBf//7XzRu3LhWy6ERBEGwvxjp9XqEhoZCp9MhJCTE08UhIiIX3bhxA/n5+UhKSkKDBg08XRxyga3vUun1m73MiIiIyOcxICIiIiK7nn76abNu/qaPp59+2tPFc5lHA6KdO3fiwQcfRFxcnOQMu8YhxS0fixYtEpdJTEy0en3+/Plm6zl69Ch69eqFBg0aID4+HgsXLqyNj0dERFRnzJ07Fzk5OZKPuXPnerp4LvNoUnVpaSlSU1MxduxYDBkyxOr1wsJCs783bdqEcePGYejQoWbPz507FxMmTBD/Dg4OFv+t1+sxYMAA9O/fH8uXL8exY8cwduxYhIWFYeLEiW7+RERERHVTVFQUoqKiPF2MGuPRgCgzMxOZmZmyr8fExJj9/c0336Bv375mI14C1QGQ5bJGn376KSorK/Hhhx9Cq9Xi7rvvRk5ODt58800GRERERATAi3KILl68iI0bN0qOSzB//nw0adIEnTp1wqJFi3Dr1i3xtezsbKSnp0Or1YrPZWRkIDc3F9evX5fdXkVFBfR6vdmDiIjqHjWOmkyOccd36DXjEH300UcIDg62alqbOnUq7rnnHoSHh2PPnj2YNWsWCgsL8eabbwIAioqKkJSUZPae6Oho8TW5cQ6ysrIwZ86cGvgkRESkBlqtFn5+frhw4QIiIyOh1WrFKS7IOwiCgMrKSly+fBl+fn5mlR+O8pqA6MMPP8Tjjz9uNb7A9OnTxX936NABWq0WTz31FLKyslwadXPWrFlm69br9YiPj3d6fUREpC5+fn5ISkpCYWEhLly44OnikAuCgoLQvHlz+Pk53/DlFQHR//73P+Tm5mLt2rV2l+3evTtu3bqFs2fPonXr1oiJicHFixfNljH+LZd3BFRPkOeJYcyJiKj2aLVaNG/eHLdu3VLF3F7kOH9/f9SrV8/l2j2vCIg++OADdO7cGampqXaXzcnJgZ+fn5gJn5aWhr/+9a+4efOmOOPuli1b0Lp161ofFpyIiNTHOCO75azs5Fs8mlRdUlIijmEAQJxorqCgQFxGr9fj888/x/jx463en52djcWLF+PIkSP45Zdf8Omnn2LatGl44oknxGBnxIgR0Gq1GDduHE6cOIG1a9fi7bffNmsOIyIiIt/m0RqiAwcOoG/fvuLfxiBl1KhRWLVqFQDgs88+gyAIGD58uNX7AwIC8Nlnn2H27NmoqKhAUlISpk2bZhbshIaGYvPmzZg0aRI6d+6MiIgIvPrqq+xyT0RERCJO7qoQJ3clIiLyPpzclYiIiEghBkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHP82hAtHPnTjz44IOIi4uDRqPB119/bfb66NGjodFozB4DBw40W+batWt4/PHHERISgrCwMIwbNw4lJSVmyxw9ehS9evVCgwYNEB8fj4ULF9b0RyMiIiIv4tGAqLS0FKmpqVi6dKnsMgMHDkRhYaH4WLNmjdnrjz/+OE6cOIEtW7Zgw4YN2LlzJyZOnCi+rtfrMWDAACQkJODgwYNYtGgRZs+ejX//+9819rmIiIjIu9Tz5MYzMzORmZlpc5mAgADExMRIvvbzzz/j+++/x/79+9GlSxcAwJIlS/DAAw/gH//4B+Li4vDpp5+isrISH374IbRaLe6++27k5OTgzTffNAuciIiIyHepPodo+/btiIqKQuvWrfHMM8/g6tWr4mvZ2dkICwsTgyEA6N+/P/z8/LB3715xmfT0dGi1WnGZjIwM5Obm4vr167LbraiogF6vN3sQERFR3aTqgGjgwIH4+OOP8eOPP2LBggXYsWMHMjMzUVVVBQAoKipCVFSU2Xvq1auH8PBwFBUVictER0ebLWP827iMlKysLISGhoqP+Ph4d340IiIiUhGPNpnZ89hjj4n/TklJQYcOHZCcnIzt27ejX79+NbrtWbNmYfr06eLfer2eQREREVEdpeoaIkstWrRAREQEzpw5AwCIiYnBpUuXzJa5desWrl27JuYdxcTE4OLFi2bLGP+Wy00CqnOXQkJCzB5ERERUN3lVQPTrr7/i6tWriI2NBQCkpaWhuLgYBw8eFJfZunUrDAYDunfvLi6zc+dO3Lx5U1xmy5YtaN26NRo3bly7H4CIiIhUyaMBUUlJCXJycpCTkwMAyM/PR05ODgoKClBSUoIXX3wRP/30E86ePYsff/wRf/rTn9CyZUtkZGQAANq2bYuBAwdiwoQJ2LdvH3bv3o3JkyfjscceQ1xcHABgxIgR0Gq1GDduHE6cOIG1a9fi7bffNmsOIyIiIt+mEQRB8NTGt2/fjr59+1o9P2rUKCxbtgyDBw/G4cOHUVxcjLi4OAwYMACvv/66WZL0tWvXMHnyZHz77bfw8/PD0KFD8c4776BRo0biMkePHsWkSZOwf/9+REREYMqUKZgxY4ZDZdXr9QgNDYVOp2PzGRERkZdQev32aEDkTRgQEREReR+l12+vyiEiIiIiqgkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4DIBxTqyrEn7woKdeWeLgoREZEq1fN0Aahmrd1fgFnrjsEgAH4aIGtICoZ1be7pYhEREakKa4jqsEJduRgMAYBBAF5ed5w1RURERBYYENVh+VdKxWDIqEoQcPZKmWcKREREpFIMiOqwpIiG8NOYP+ev0SAxIsgzBSIiIlIpBkR1WGxoILKGpMBfUx0V+Ws0mDekPWJDA22+j0nYRETka5hUXccN69oc6a0icfZKGRIjguwGQ0zCJiIiX8QaIh8QGxqItOQmimqGmIRNRES+iAERiZiETUREvooBEYmYhE1ERL6KARGJnE3CJiIi8nZMqiYzjiZhExER1QUMiMhKbGggAyEiIvIpbDIjIiIin8eAiIiIiHweAyIiIiLyeR4NiHbu3IkHH3wQcXFx0Gg0+Prrr8XXbt68iRkzZiAlJQUNGzZEXFwcRo4ciQsXLpitIzExERqNxuwxf/58s2WOHj2KXr16oUGDBoiPj8fChQtr4+MRERGRl/BoQFRaWorU1FQsXbrU6rWysjIcOnQIr7zyCg4dOoR169YhNzcXDz30kNWyc+fORWFhofiYMmWK+Jper8eAAQOQkJCAgwcPYtGiRZg9ezb+/e9/1+hnIyIiIu/h0V5mmZmZyMzMlHwtNDQUW7ZsMXvuX//6F7p164aCggI0b35nfq3g4GDExMRIrufTTz9FZWUlPvzwQ2i1Wtx9993IycnBm2++iYkTJ7rvw6hIoa4c+VdKkRTRkL3FiIiIFPCqHCKdTgeNRoOwsDCz5+fPn48mTZqgU6dOWLRoEW7duiW+lp2djfT0dGi1WvG5jIwM5Obm4vr167LbqqiogF6vN3t4g7X7C9Bj/laMWLEXPeZvxdr9BZ4uEhERkep5TUB048YNzJgxA8OHD0dISIj4/NSpU/HZZ59h27ZteOqppzBv3jy89NJL4utFRUWIjo42W5fx76KiItntZWVlITQ0VHzEx8e7+RO5HydnJSIico5XDMx48+ZNPProoxAEAcuWLTN7bfr06eK/O3ToAK1Wi6eeegpZWVkICAhwepuzZs0yW7der1d9UGRrclY2nREREclTfUBkDIbOnTuHrVu3mtUOSenevTtu3bqFs2fPonXr1oiJicHFixfNljH+LZd3BAABAQEuBVSeYJyc1TQo4uSsRERE9qm6ycwYDJ0+fRo//PADmjRpYvc9OTk58PPzQ1RUFAAgLS0NO3fuxM2bN8VltmzZgtatW6Nx48Y1VnZP4OSsREREzvFoDVFJSQnOnDkj/p2fn4+cnByEh4cjNjYWjzzyCA4dOoQNGzagqqpKzPkJDw+HVqtFdnY29u7di759+yI4OBjZ2dmYNm0annjiCTHYGTFiBObMmYNx48ZhxowZOH78ON5++2289dZbHvnMNY2TsxIRETlOIwiCYH+xmrF9+3b07dvX6vlRo0Zh9uzZSEpKknzftm3b0KdPHxw6dAjPPvssTp06hYqKCiQlJeHJJ5/E9OnTzZq7jh49ikmTJmH//v2IiIjAlClTMGPGDIfKqtfrERoaCp1OZ7fZjoiIiNRB6fXbowGRN2FARERE5H2UXr9VnUNEREREVBsYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PPqKV1Qr9crXmlISIhThSEiIiLyBMUBUVhYGDQajc1lBEGARqNBVVWVywUjIiIiqi2KA6Jt27bVZDmIiIiIPEZxQNS7d++aLAcRERGRxygOiCwVFxfjgw8+wM8//wwAuPvuuzF27FiEhoa6rXBEREREtcGpXmYHDhxAcnIy3nrrLVy7dg3Xrl3Dm2++ieTkZBw6dMjdZSQiIiKqURpBEARH39SrVy+0bNkSK1asQL161ZVMt27dwvjx4/HLL79g586dbi+op+n1eoSGhkKn07EXHRERkZdQev12KiAKDAzE4cOH0aZNG7PnT548iS5duqCsrMzxEqscAyIiIiLvo/T67VSTWUhICAoKCqyeP3/+PIKDg51ZJREREZHHOBUQDRs2DOPGjcPatWtx/vx5nD9/Hp999hnGjx+P4cOHu7uMRERERDXKqYDoH//4B4YMGYKRI0ciMTERiYmJGD16NB555BEsWLBA8Xp27tyJBx98EHFxcdBoNPj666/NXhcEAa+++ipiY2MRGBiI/v374/Tp02bLXLt2DY8//jhCQkIQFhaGcePGoaSkxGyZo0ePolevXmjQoAHi4+OxcOFCZz42ERER1VFOBURarRZvv/02rl+/jpycHOTk5ODatWt46623EBAQoHg9paWlSE1NxdKlSyVfX7hwId555x0sX74ce/fuRcOGDZGRkYEbN26Iyzz++OM4ceIEtmzZgg0bNmDnzp2YOHGi+Lper8eAAQOQkJCAgwcPYtGiRZg9ezb+/e9/O/PRiYiIqC4SVAKA8NVXX4l/GwwGISYmRli0aJH4XHFxsRAQECCsWbNGEARBOHnypABA2L9/v7jMpk2bBI1GI/z222+CIAjCu+++KzRu3FioqKgQl5kxY4bQunVrh8qn0+kEAIJOp3Pm4xEREZEHKL1+O1VDdOPGDSxatAgPPPAAunTpgnvuucfs4Q75+fkoKipC//79xedCQ0PRvXt3ZGdnAwCys7MRFhaGLl26iMv0798ffn5+2Lt3r7hMeno6tFqtuExGRgZyc3Nx/fp12e1XVFRAr9ebPYiIiKhucmqk6nHjxmHz5s145JFH0K1bN7uTvjqjqKgIABAdHW32fHR0tPhaUVERoqKizF6vV68ewsPDzZZJSkqyWofxtcaNG0tuPysrC3PmzHH9gxAREZHqORUQbdiwAd999x169Ojh7vKoxqxZszB9+nTxb71ej/j4eA+WiIiIiGqKU01mTZs2rfHxhmJiYgAAFy9eNHv+4sWL4msxMTG4dOmS2eu3bt3CtWvXzJaRWofpNqQEBAQgJCTE7EFERER1k1MB0T//+U/MmDED586dc3d5RElJSYiJicGPP/4oPqfX67F3716kpaUBANLS0lBcXIyDBw+Ky2zduhUGgwHdu3cXl9m5cydu3rwpLrNlyxa0bt1atrmMiIiIfItTAVGXLl1w48YNtGjRAsHBwQgPDzd7KFVSUiJ22weqE6lzcnJQUFAAjUaD559/Hm+88QbWr1+PY8eOYeTIkYiLi8PgwYMBAG3btsXAgQMxYcIE7Nu3D7t378bkyZPx2GOPIS4uDgAwYsQIaLVajBs3DidOnMDatWvx9ttvmzWHERERkW9zKodo+PDh+O233zBv3jxER0c7nVR94MAB9O3bV/zbGKSMGjUKq1atwksvvYTS0lJMnDgRxcXF6NmzJ77//ns0aNBAfM+nn36KyZMno1+/fvDz88PQoUPxzjvviK+HhoZi8+bNmDRpEjp37oyIiAi8+uqrZmMVERERkW9zanLXoKAgZGdnIzU1tSbKpEqc3JWIiMj71Ojkrm3atEF5ebnThSMiIiJSE6cCovnz5+Mvf/kLtm/fjqtXr3IAQyIiIvJqTjWZ+flVx1GWuUOCIECj0aCqqso9pVMRNpkRERF5H6XXb6eSqrdt2+Z0wYiIiIjUxqmAqHfv3oqWe/bZZzF37lxEREQ4sxkiIiKiWuFUDpFSn3zyCXOKiIiISPVqNCByIj2JiIiIqNbVaEBERERE5A0YEBEREZHPY0BEREREPo8BEREREfm8Gg2InnjiCQ5iSKpTqCvHnrwrKNRx+hkiIqrm1DhEAFBcXIx9+/bh0qVLMBgMZq+NHDkSALBs2TLXSkfkZmv3F2DWumMwCICfBsgakoJhXZt7ulhERORhTk3d8e233+Lxxx9HSUkJQkJCzKbw0Gg0uHbtmlsLqQacusP7FerK0WP+VhhMjnh/jQa7ZvZFbGig5wpGREQ1pkZnu//LX/6CsWPHoqSkBMXFxbh+/br4qIvBENUN+VdKzYIhAKgSBJy9UuaZAhERkWo4FRD99ttvmDp1KoKCgtxdHqIakxTREH7m8xHDX6NBYgSPYyIiX+dUQJSRkYEDBw64uyxENSo2NBBZQ1Lgf7uJ11+jwbwh7dlcRkREypOq169fL/570KBBePHFF3Hy5EmkpKSgfv36Zss+9NBD7ishkRsN69oc6a0icfZKGRIjghgMERERAAeSqv38lFUmaTQaVFVVuVQoNWJStW8r1JUj/0opkiIaMogiIvIiSq/fimuILLvWE/kKdtUnIqr7nMoh+vjjj1FRUWH1fGVlJT7++GOXC0WkFoW6cjEYAgCDALy87jgHdSRyEgdGJbVyKiAaM2YMdDqd1fO///47xowZ43KhiNSCXfWJ3Gft/gL0mL8VI1bsRY/5W7F2f4Gni0QkciogEgTBbDBGo19//RWhoaEuF4pILdhVn8g9WNtKaufQ1B2dOnWCRqOBRqNBv379UK/enbdXVVUhPz8fAwcOdHshiTzF2FX/5XXHUSUI7KpP5CRbta38PZEaOBQQDR48GACQk5ODjIwMNGrUSHxNq9UiMTERQ4cOdWsBiTyNXfWJXGesbbWcOoe1raQWDgVEr732GgAgMTERw4YNQ4MGDWqkUERqExsayECIyAWsbSW1c2pyV6PKykrJ2e6bN697XZI5DhERkesKdeWsbaVa5fZxiEydPn0aY8eOxZ49e8yeNyZb18WBGYmIyHWsbSW1ciogGj16NOrVq4cNGzYgNjZWsscZERERkbdwKiDKycnBwYMH0aZNG3eXh4iIiKjWOTUOUbt27XDlyhV3l4WIiIjII5wKiBYsWICXXnoJ27dvx9WrV6HX680eRERERN7EqV5mpjPfm+YP1eWkavYyIyIi8j412sts27ZtTheMqCYU6sqRf6UUSREN2YOFiIgc5lSTWe/eveHn54cVK1Zg5syZaNmyJXr37o2CggL4+/u7u4xENnHCSCIicpVTAdGXX36JjIwMBAYG4vDhw6ioqAAA6HQ6zJs3z60FTExMFOdPM31MmjQJANCnTx+r155++mmzdRQUFGDQoEEICgpCVFQUXnzxRdy6dcut5STP4ISRRFSbCnXl2JN3heeYOsipJrM33ngDy5cvx8iRI/HZZ5+Jz/fo0QNvvPGG2woHAPv37zfLSTp+/Dj+8Ic/4M9//rP43IQJEzB37lzx76CgO3PjVFVVYdCgQYiJicGePXtQWFiIkSNHon79+m4P3qj2ccJIIqota/cXiDdgfhoga0gKhnWtezMz+Cqnaohyc3ORnp5u9XxoaCiKi4tdLZOZyMhIxMTEiI8NGzYgOTkZvXv3FpcJCgoyW8Y0aWrz5s04efIkPvnkE3Ts2BGZmZl4/fXXsXTpUlRWVrq1rFT7jBNGmuKEkUTkbqyNrvucCohiYmJw5swZq+d37dqFFi1auFwoOZWVlfjkk08wduxYs95tn376KSIiItC+fXvMmjULZWVl4mvZ2dlISUlBdHS0+FxGRgb0ej1OnDghu62KigoOJ+AFjBNG+t8+HjhhJBHVBFu10VQ3ONVkNmHCBDz33HP48MMPodFocOHCBWRnZ+OFF17AK6+84u4yir7++msUFxdj9OjR4nMjRoxAQkIC4uLicPToUcyYMQO5ublYt24dAKCoqMgsGAIg/l1UVCS7raysLMyZM8f9H4IAuLdX2LCuzZHeKpITRhJRjTHWRpsGRayNrlucCohmzpwJg8GAfv36oaysDOnp6QgICMALL7yAKVOmuLuMog8++ACZmZmIi4sTn5s4caL475SUFMTGxqJfv37Iy8tDcnKy09uaNWsWpk+fLv6t1+sRHx/v9ProjppohzedMJJd8InI3Yy10S+vO44qQWBtdB3kVECk0Wjw17/+FS+++CLOnDmDkpIStGvXDo0aNXJ3+UTnzp3DDz/8INb8yOnevTsA4MyZM0hOTkZMTAz27dtntszFixcBVDf9yQkICEBAQICLpSZLcu3w6a0i3XJiYdIjEdUU1kbXbU7lEBlptVq0a9cO3bp1q9FgCABWrlyJqKgoDBo0yOZyOTk5AIDY2FgAQFpaGo4dO4ZLly6Jy2zZsgUhISFo165djZWXpNVkOzyTHomopsWGBiItuQmDoTrIpYCothgMBqxcuRKjRo1CvXp3KrXy8vLw+uuv4+DBgzh79izWr1+PkSNHIj09HR06dAAADBgwAO3atcOTTz6JI0eO4L///S/+9re/YdKkSawB8oCa7BXGpEciInKWVwREP/zwAwoKCjB27Fiz57VaLX744QcMGDAAbdq0wV/+8hcMHToU3377rbiMv78/NmzYAH9/f6SlpeGJJ57AyJEjzcYtotpTk73C2AWfiIic5dTkrr6Ik7u6V6GuvEba4dfuL7BKemQOERGR76rRyV2JXGXaK8ydmPRIRETOYEBEdU5NBVtERFR3eUUOEREREVFNYkBEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBHVokJdOfbkXUGhrtzTRSEiIhOc7Z6olqzdX4BZ647BIAB+GiBrSAqGdW3u6WIRERFYQ0RUKwp15WIwBAAGAXh53XHWFBERqQQDIqJakH+lVAyGjKoEAWevlHmmQEREZIYBEVEtSIpoCD+N+XP+Gg0SI4I8UyAiIjLDgEglmGxbt8WGBiJrSAr8NdVRkb9Gg3lD2iM2NNDDJSMiIoBJ1apgmWw7I7MNUpqGIimiIS+Ydciwrs2R3ioSZ6+UITEiiN8tEZGKMCDyMKlk26zvTgFgT6S6KDY0kIEQEZEKscnMw6SSbY3YE4mIiKh2MCDyMKlkW1PsiURERFTzGBB5mGWyrSX2RCIiIqp5zCFSAdNk26O/FmPh97moEgT2RPIRhbpy5F8pZRI9EZEHMSBSCWOybVpyEzzUMY49kXwEp/MgIlIHNpmpkDEwYjBUt3E6DyIi9WBAROQhnM6DiEg9GBAReQin8yAiUg8GREQewuk8iIjUg0nVRB7E6TyIiNSBARGRh3E6DyIiz2OTGalKoa4ce/KusKcVERHVKtYQkWpwTB4iIvIU1dcQzZ49GxqNxuzRpk0b8fUbN25g0qRJaNKkCRo1aoShQ4fi4sWLZusoKCjAoEGDEBQUhKioKLz44ou4detWbX8UsoFj8hARkSd5RQ3R3XffjR9++EH8u169O8WeNm0aNm7ciM8//xyhoaGYPHkyhgwZgt27dwMAqqqqMGjQIMTExGDPnj0oLCzEyJEjUb9+fcybN6/WPwtJszUmD/NryJdxahei2uEVAVG9evUQExNj9bxOp8MHH3yA1atX4/777wcArFy5Em3btsVPP/2Ee++9F5s3b8bJkyfxww8/IDo6Gh07dsTrr7+OGTNmYPbs2dBqtbX9cUiCcUwe06CIY/LUHl501YnNyES1R/VNZgBw+vRpxMXFoUWLFnj88cdRUFAAADh48CBu3ryJ/v37i8u2adMGzZs3R3Z2NgAgOzsbKSkpiI6OFpfJyMiAXq/HiRMnZLdZUVEBvV5v9vBmak9W5pg8nrN2fwF6zN+KESv2osf8rVi7v8DTRSKwGZmotqm+hqh79+5YtWoVWrdujcLCQsyZMwe9evXC8ePHUVRUBK1Wi7CwMLP3REdHo6ioCABQVFRkFgwZXze+JicrKwtz5sxx74fxEG+5y+SYPLVP7qKb3iqS+9/D2IxMVLtUHxBlZmaK/+7QoQO6d++OhIQE/N///R8CA2vupDBr1ixMnz5d/Fuv1yM+Pr7GtldTvO2CxzF5ahcvuurFZmSi2uUVTWamwsLC0KpVK5w5cwYxMTGorKxEcXGx2TIXL14Uc45iYmKsep0Z/5bKSzIKCAhASEiI2cMbcQLRmqP2ZkglOJ+aerEZmah2eV1AVFJSgry8PMTGxqJz586oX78+fvzxR/H13NxcFBQUIC0tDQCQlpaGY8eO4dKlS+IyW7ZsQUhICNq1a1fr5a9tvODVjLqSd8OLrroN69ocu2b2xZoJ92LXzL6qbOomqis0giAI9hfznBdeeAEPPvggEhIScOHCBbz22mvIycnByZMnERkZiWeeeQbfffcdVq1ahZCQEEyZMgUAsGfPHgDV3e47duyIuLg4LFy4EEVFRXjyyScxfvx4h7rd6/V6hIaGQqfTeV1t0dr9BXh53XFUCYJ4weOJ1XmFunL0mL/Vqilj18y+XhtIFOrKmbtFRHWS0uu36nOIfv31VwwfPhxXr15FZGQkevbsiZ9++gmRkZEAgLfeegt+fn4YOnQoKioqkJGRgXfffVd8v7+/PzZs2IBnnnkGaWlpaNiwIUaNGoW5c+d66iPVOiYru1ddzLth7hYR+TrV1xCphTfXEJF71cUaIiKiukrp9dvrcoiIPI15N0REdY/qm8yI1IjNkEREdQsDIiInuTPvhlNnEBF5FgMiIg/zlpHEiYjqMuYQEXkQ56siIlIHBkREHsSRxImI1IEBEZEHSY0k7gfgamkFa4mIiGoRAyIiD7Lswq8BIACYvPqwV08JQkTkbRgQEXmYcb6qfw3vBI2mOiACmE9ERFSbGBARqUBsaCDCG2mZT0RE5CEMiMghhbpy7Mm7wlqLGiCVT+Sv0SAxIsgzBSIi8iEMiEixtfsL0GP+VoxYsZf5LTWAU4IQEXkOJ3dVyNcnd+WEprWnUFfOKUGIiNxE6fWbI1WTIrbGy+FF273cOSUIEREpwyYzUoT5LUREZKku5ZUyICJF5PJbANSZHwMRESlX1/JKmUOkkK/nEBmZ5rfs/H+XOSkpEZEP8qa8UqXXb9YQkUNiQwORltwEADgpKRGRj6qL8zAyIFIRb2qLrYs/BiIiUqYu5pUyIFIJb2uLrekfgzcFh0REvqYujpvGHCKFajKHSO1tsYW6cuRfKUVSREOz8qzdX4CX1x1HlSCIPwZ35BCt3V/A3CQiF8n9boncyRvGTeM4RF5EzWP82ApOhnVtjvRWkW79MRTqyiVzk9JbRXp8XxB5C95UUG2pS+OmsclMBdTaFisXnJg2YxmTrN31g2BuEpFrlPxuicgaAyIVUNoWW9t5NZ4ITtQaHKqR1PHA3CviTQWRc9hkphL2mp88UQVuDE4sc5tqMjgxBoeWuUl1pUrWXSyPh3E9kxARHIAFm06xmcTHeeJ3S1QXMKlaIU8OzOippOtCXTlW7srH+//LhwFwa+K0km2rPVHPU6SOBylqSsyn2lVTHR6IvBGTqusQTyRdW9ZATOzZAmN6Jirenqs9XCwT9dhj5g6p40GKWhLz1a4uHls10eGBqK5jQOQFarsKXCop84Nd+RjTM1HR+93dvMceM+akjgcpbCaxry4fW3Wp9w9RbWBStReo7QGwXEnKdHcPF/aYsWY8HiyTz00x98o+HltEtccbOnywhshL1GYVuCs1Uu5u3lPzGE2eZDweVu7Ox/s77+R4vTSwNTo0C2MziQI8tohqh7fUxDIg8iK1VQXuSk8vdzfvsceMvNjQQLz8QDuM6ZHEXBEn+PKxVRfzpkidvGmwXQZEXqqmT2jO1ki5u9s8u+Hbx1wR53j7seXsOcBb7tapdtT0tcSbamLZ7V4hT3a7t+QNJzR3d5tnN3yqKd54bDl7DlD7vIlUu2rjWqKGY07p9ZtJ1V7GWxJB3T2lh7vXR2TkbceWK+cAubv1Q+eumyW82kuA9YYEWbKttq4ltd0pyBVsMvMy3lT9SETu58o5QCpvSqMBJq8+DAHVtQQPd2qKrw7/Jltr4A011GRfbV5LvGVcLNXXEGVlZaFr164IDg5GVFQUBg8ejNzcXLNl+vTpA41GY/Z4+umnzZYpKCjAoEGDEBQUhKioKLz44ou4detWbX4Ut+BcX+QrWAshzZVzgOXdup8GgAAYr4sGAfjy0G+ytQbeUkPtzWrruK/ta4k31MSqPiDasWMHJk2ahJ9++glbtmzBzZs3MWDAAJSWlpotN2HCBBQWFoqPhQsXiq9VVVVh0KBBqKysxJ49e/DRRx9h1apVePXVV2v747jMm6ofiZy1dn8BeszfihEr9qLH/K1Yu7/A00VSDVfPAcO6NseumX2xZsK9ePuxjrCXRGo6Bhknjq1ZtXnc81pizeuSqi9fvoyoqCjs2LED6enpAKpriDp27IjFixdLvmfTpk344x//iAsXLiA6OhoAsHz5csyYMQOXL1+GVqu1u101JVUD3pkIKoddgMmUGpIwvYE7zgFK5sUz3feFunLcl7XVLIjSANgz635+Ny7y5JyVdeVaIqfOJlXrdDoAQHh4uNnzn376KSIiItC+fXvMmjULZWV37liys7ORkpIiBkMAkJGRAb1ejxMnTkhup6KiAnq93uyhJt5Q/agEawLIEmshlHHHOUCqlmDoPU0dqzWwMWI6Keep476uXEvcwauSqg0GA55//nn06NED7du3F58fMWIEEhISEBcXh6NHj2LGjBnIzc3FunXrAABFRUVmwRAA8e+ioiLJbWVlZWHOnDk19EkI8K4Bu4xYm1XzfHnARE+QSnh9IaO1ZK1B/pVSqyY2QQA7dbgBj3vP86qAaNKkSTh+/Dh27dpl9vzEiRPFf6ekpCA2Nhb9+vVDXl4ekpOTndrWrFmzMH36dPFvvV6P+Ph45wpew7z1Iq20l4NaPh9719QOTw+YqJbjrTZZDu4pN9inrYu2L+43d/L0cU9eFBBNnjwZGzZswM6dO9GsWTOby3bv3h0AcObMGSQnJyMmJgb79u0zW+bixYsAgJiYGMl1BAQEICAgwA0ldw+5k403X6SV3BGp5fN5Y22WN/NUN121HG9qJXfR3vn/LtfKAH91PeDylu7pdZXqAyJBEDBlyhR89dVX2L59O5KSkuy+JycnBwAQGxsLAEhLS8Pf//53XLp0CVFRUQCALVu2ICQkBO3atauxsruL3Em6UFeOmV8eM+syO/PLY2gTE4zU+MYeLbMS9u6I1BSEcPyn2lfbU5Ko6XhTM8uLNgCzZGCDAMxad8yt+82XAlVOxeM5qg+IJk2ahNWrV+Obb75BcHCwmPMTGhqKwMBA5OXlYfXq1XjggQfQpEkTHD16FNOmTUN6ejo6dOgAABgwYADatWuHJ598EgsXLkRRURH+9re/YdKkSaqqBZJi6yR98Nx16/Z8AH9augcLhtbcCcOdd2q27ojUFISwqaDuU9PxpnamF+09eVes9ptBAFbuzsfLD7h2w1moK8eBs9d8MlDleaX2qT4gWrZsGYDqrvWmVq5cidGjR0Or1eKHH37A4sWLUVpaivj4eAwdOhR/+9vfxGX9/f2xYcMGPPPMM0hLS0PDhg0xatQozJ07tzY/ilNsnaRtjZhQUyeMmrhTcyZfobZ5sqmAaoeajjdvIrXfAOD9nfkY0yPJ6XOQ6bnGkjOBqjcFGI6eZ73ps6mZ6gMie8MkxcfHY8eOHXbXk5CQgO+++85dxao1tk7SiRFBuD3QrJWauLOt7SYFtSUZKmkqcHV/8MTmOWo73rxFbGggxvVMwor/5Zs9b4Dzvc8szzWWHA1UvanJzdHzrDd9NktqO9+pPiDydcaTtOkBb3qSnj80xSyPyKgm7mzlaqsOnr2OP6bWzMGstiRDe00FrgSi3nxiqyvUdrypia2L19ieSXj/f/lm5yFXzkFS5xrT9ToSqHpbbpgjTbfe9tlMqfF853UDM/oqY0WZZYXZsK7NsWfW/ZiYniR+mX4aYFi3eBw4e82t8+FIzX0DAFM/O1zjQ8ybDhymljmu3DkXUE3NEaWWfeVNOFCdNXsDqMaGBmL+UPdNAyH12/IDsHREJ+ya2dehC6e3DfTpyHnF2z6bkVrnxGNApHLGA8d4zAuwPnBiQwPx8gPtsPt2YGQQgNV7CzBlTQ7uy3Lf6M/G2irLg6Y2D2Y1jWztzrmAauLEpqZ9Rd5L6cXLdI40R4MWS1K/rayhKRjUIc7h35e3TYjtyHnF2z6bkVoDOTaZqZyjPV/et2jHFwDM+tJ9XWCHdW2OhgH1MHn1YcVlchc1Vg+7q4nF3Qm9atxX5J0cOQe5s8u4u35bSob3UFMeC6D8s3tr3ptaOzAwIFI5Rw4cuXZ3V5IbpXROaOyRg1mt3aLdcRFw94lNrfuKvI8nL17uCrDkAgw15rEYKf3sxs926Nx1GAQBXRLD7b5HCWOg2FDrj9LKKrcGjGoN5BgQqZwjB45c91c/wK0nL08dzGq9q3AXdyb0qmlfqfEOnJRT68XLUZYBhppqUY3jLWk0GnROaOzw9t09/IfUkAfuDhjV2IFBI9jr104AqucyCw0NhU6nQ0hISK1vv1BXrujAWbu/ADPXHROTrzUAZj7QBk+lm8/p5o6LlNIySb3P2W2v3V9gdWJWyx2d2qhhX6n5Dpwc4+zvXa325F3BiBV7rZ5fM+FepCU3qdFtm54Dd/6/y2Y9hTWo7j2s9HdSqCs3G/4DqL752TWzr+z3ZOscLLU+peu1t25PUXr9Zg2Rl3C0+nTJj6exet95CAAWbDqFsMD64g/MXRcpZ6qzXd22Gu8qlKrtE4Wn95Wa7sDJdXVtSglP1aJangMtAw8Bjk194mjzuNQ5OL1VpHhusjXkgb1md2+/AWJAVEd9tv+8+G/TCxEAj12k3HWB9MYTs6dOFI7sK3cHbMxjUg9H8kHs1R6o7e7fWZ5oCpQ6B0oxCMrzPh0J7KS2P3PdMUCoDsT8NMCMgW1kB/y1FTDWhRsgBkQeVhMnGJvTfUDw2EXK1Qukq/vK2fe7Y7tqP1HURMCmpjwmX2F6rALVv7ljv+mwYNMpRfkgto6D2grqazPoqu1aVFu1L6b8NMrzPh0J7KS2b5o0YxCABd+fkgyGLAcFVrJub7sBYkDkQTV1grF3IfLURcqVC6Sr+8rZ97vjO1L7icIdAZvURayuJON6C9Nj1Tg0jdy1V+o7tnUcXNLfMMtNtKx1diUhWO4z1FZNam3WOEudAzUa86BEc/tzx4YGKg4OlQZ2ch1vTMm99s5jnfDH1DiHPpuSCbDVVOvIgMhDarLWwN6FyFMXKWcvkK7uK2ff767vSO01Ja4GbLYuYp7OY/JWjl4kLI9VJT1lLL9jueNg5e58rNiZb7VOqdccTQi29RnUWJPqKrlzYHqrSBw8ex0aDXBPQmMAwLyNJ7Hi9nQoSoJDJYGd5fb9bgdjpt+t1HP+Gg06JzZ26rPZ6gGntpwjBkQeUtO1BrYuRJ68SDmzbVf3lbPvd9d3pPaaElcCNiUXMW/M+aoNckGPMxcJpU0xpiy/Y6njwE8DyWDI6N87883+djQh2JTaa1LdRe4caJwPUqrLu+XvypVaFcvt7/x/l+8ESKjOIQoLqu/UjWt8eBDWPZuGskqD3QmwL+lvmPWuU0MAzIDIQ2qj1sD0zs/0b+O/HT3o3NVV39F1OJo0aLn+Y7/qrJZTsq/d+R2puabElYDNVy5i7iYX9DhbS6KkKcSU1HcsdRyM7ZloNYu9PY4kBJvyZE2qkvOSkmYfpYMYyp1/Lb9/U8bflTvGHDLd/rCuzVFcfhPzb+eZLfj+FLKGpGDXzL6Kz1dSx3NachPZCbBX7jqLFbt+kax19OS5gwGRh9RGrYEzd5ruvGt1R3kA5ftKrjvpgu9PWa3zpczWDlcvu/odqbmmxDRgC9L6obSyCoW6crvlVXtzoJqYXjTlgh65APPQuesY1EG+ZsDyWNXc7iYkoPr7eGlga3RoFoYgrZ949y713VoG7gDwwa58h2qfHEkINuXu35vSmy8l5yVbXdUdSVq3x1ZNn79GgyCtn9PN/7aCuQWbTlnlh+2a2VfReEy2gnjJWkcA7+/6xWqicuNn9OS5gwGRB9VkrYEzd5ruvmt1tTym7O0rufUvfixV8gTToWmYonKruWbH3WJDAx2++1R7c2BNcbSm0yzh2SKJFrhzZyxX0zN59WFsPXUJXx3+Tfa7kQpmnDluLQN30+/Xkq2EYGfY+r0prcU5cPYasvOuYs3tcdik9pWt4HTWl8fQMKCemCBur6u6FHfmGwLVQcS8Ie1RWlnlcI2svYBvpUTAq7SmplBXjg1HL8i+Py25idX5YVzPRPxbotbR+Bk9ee5gQORhNVVr4GhThq2AxR3NIu5Yh619Jbd+P43G5RoMNdfsuJOzQasvBY2A4zWdVgnPNu6MjQGmZbOJAODLQ7+Jf8t9N5bHqrvzEY/+VoyFm3JtJgS7o1OI5Tre25mH+bdrMaQGE4wNDawepd8kJ8XIcl+ZrktqvB0DqgNQ43biw4NsdlWXYzp7u9LgWSrpeXzPFhjTMxGxoYE4cv66VRDq6NhAs9YdQ5DWX5zzTKpJVEktn1Suk1SZpAL19y2CMD8N8NWz9yE13nbidk1jQFRHOdqUYStgcUeziFzV6dXSCkVNM86s31+jwT0JjZ3u2aaWrqC1Re4YOHj2upjwKcfXg8Y2McGyuSNyzSB+qL74Wh6Tw7o2R5DWH1PW5NgsS23mWxi/37TkJngoNU42IdgWZ7tev7cjD1mb7jR7GwRg5pfHoLn9e/fTADMy22D+d9Lj5wB39tX6nAtm67IV1xi/23XPpjmUn2Xkr9Hg6G/FePz9nxxKE0hvFYnFj6XC7/b5y7g/jAGIZTAkdT47cv469p29hsqbBqtyGwRgypoc+GmAcT2TJPfB+J4t7DbByQVDGonxiozHj/F7njGwDRZ+bx5YezoYAhgQqY67LsRKmjJMt2Ur6HFHs4hVjgOqT0amd2KudLe0VUalNRjG/WGaE6CGrqDuZOv4kquun7LmMEorb9WZfeAKuaBx8NI9EFBd4zChVxLG9EwS96/cb8u0N47ld9ElMVx2tGDTdXgi38KZ4NfZAR8LdeWYv8k6B1AAzHJeFmySD4aMdp+5jKXb8iRfkwt4qgQBv14vt9tV3ZIxb8s0t8idaQtAdUC97tk0q0DiL/+XY1abKMcgVOeHWR5nfgDG9Ey0+V5buU4aAeL4VID8eXVGZht0aBqmqlplBkQq4u4xGWwFAlLberhTU7Mf0uBOcWZ3ra42ixjXcfDsdUz97LBLOUmOfl57J3G56l81dAV1F3vHV2xoIGZktkHWd+YXIAHOd6X2NvZuSOSCRsHk///+Xz7e35Uv7l+5YN3WHfHO/3fZ7G8NgCH3NMXXhy94Xa6WrVq189fLbXa9zr9SqmhMJSW1N+9uz5NclwbAipGdUV5pMDsvGU1efRjzh5r3ujLtqi6XtF7TaQsGAGWVBrPnjpy/rigYEtchABPTk/DB/846dFzZ6tVowJ1ehrbOqws35dqdKLa2MSBSiZoalEwqEDhy/rrVSUjqoP368AW8kHGnN5Y7mkViQwMR3qjmumo7U0Zb1b/uKpunph0xfb+S4yulaajk+w0CxJ5OrlJrc6SSGxK5mk5LlvvXkRsK43dlud6+baIwMi0BZZUGh3oCOsvVruhGsrVq7+6RzMUx9qpr3LA66Vnqwmu5341ByXwbNUUGmZwhAcCEjw8ia0iKbP6WZa8rpd+nI6kGB89ddzltYd/ZazKfXpq/RoMxPZIwpkeSQze7Yq7bl8dgsHjNdHTqmj6vuhsDIpWorfFc1u4vqB6C3+J5uerig2evI7zRnROeOy5mauuqbW9QO1fLVlvTjtj6bpQeX0kRDWUv8pNXH0ZJxS2rZFZHKPkscmO6ODN6s+Xycutw5IbEtKZzymeHZdtOLPev0mBdcr4p3GlefrhTU5u9zdzB2a7oxuYd030sNQ4YIJ+YrNFUf1YB1esd2D4G3x8vqt4OqptawoLqm2173pD2GNa1OR7qGIeDZ6+juLwSr3x9wqopaEbmndwVU8bve9fMvnj7sY5W+VtSvxV732dsaKDNWnfLfTnzy2NWz9tKW3hpYGurMea63U6UVsJybjJHf8vG38HKXWfx/q5fYBDMc5qkxiCS+mxqwoBIJWojSBDvPBUmB2oAsQpZyYlY6QXLHTlJ7mSr+leubEo/q9ILrSMX6plfHkNllQH920ZbJVzKfTdKj6/Y0EDMH5oi2VtHgHUyq62AxpmgQ6qK3ZkgQGp/ADB7bsbANkhpFoqkiIYO35AYazpt/Zac/f3abI4QrHubzfryGNrEBLstKVXJ9yS3THHZTSz4/pTZPpYaB0yOZX6OQQC+O1YEoPp8NCOzDZ7qnYy1+wvEfS8IwJlLJWJtmTHBu76/n9lxLAAIC6qPXTP7YuPRQryx8WezbRu/7y6J4W45FxfqyvHVYfPmq68O/4aRaQlm35VcjaBlwGLZ2880H2dczySM7ZmE1PjGGHpPU6tmM9NxqfwAjE+vrhVyR438y4PaYkzPRKsaJmfOq56mEQSll0ffptfrERoaCp1Oh5CQkBrZxtr9BVZBgjvv/PbkXcGIFXsVL68kqdPYBuzsIJBq6aptue+NOQFSZXPks8rt8zUT7hWr322tz9Z3pkH1vFHprSLNhscHzL8bManxV514d2y8W36oY5xs8LJmbwHe2XrG5n4z3Y7UZzGeqI13jLb2RaGu3Opz2NsucKdLs/HfDbX+ePjdPWbrsXUsm164Lbc96/YFWIqt8tr7/doLqE2PRyU0GmC+wppDe9tWcszKLSOVoGvZpCLFT1M9eagAwWbvOmMyuuX3a9y26TxqUt+P6XFj6zfj6LlYap/a2kem5ZRb7l/DzSdTNa05tff5j5y/jgNnryMxIghB2voujUvlCkfOqzVJ6fWbNUQqItUube/k5UgzguRMy7f/b3natRcMAebjbEiNdWEv/8kdOUnuIDUHj62cCUdyvezVzNhbn627LAHVtQNvD+8oW7thOdDiwPYx2HS7+WH+plNizoWx10dK01DxWBrevTmWbD1j8zgwrUU5cv661YzoK/6Xj/f/ly8GblJzZQVp/QA4Nh9XlSBgyY9n8Nn+AjE3xLhP5PJE5BgEYOH3uXi2TzL+ZdELaeH3ubi3Rbhkl3rJZozM1nZ7ztjrVZV/pRTprSKxa2ZfsVnOXlwkCObjy8gFqEpq2pTUJsrNeyaV+Cv1fWgAq27zf0yNQ6Gu3GYX9ypBwP6z1rk2wJ1cH9OEbLnfhdSAgXK1MfYu3nLfp60EfHu/ccvJVM0G9pTYn5brTY1vLFljqPR86648P28bo4wBkcqYBgn2aiIcrZWxPIHL3b0Zaw+k7phNGU+Skj0gBGDl7ny8/EA75R++Flj+0OXm4JHjTNOK1IkXqL4zvFpSYXN9UnkIpgyA7OCTUsP8G5sfAPOTqkGA2LvMtInJlFTwbDwG5AbFMy4/a90xfPXsfVajHhsE4OF394gD7SkJxI1W7yuQ/CzOVHlXCQLCgrSSzxuTfzUAhneLx5R+dzl14QRsB8CmwatGA8zMbIOn0pNx5NdiRfOJGYQ748sY96fltpQO7mivSVsuGLScwsL4/HyTqSGMNRnFZXfmz5r/3SlAAJ7qnWxzZGx/jQZdExvb7CZv/O3YC+zsfXdKbtjs3dBIJWlbltPe/rYa2NNGedyRd+ru3s5Kb3zV0NmCAZFK2fuhuWNU4TOXfscr35ywWmbu4LvxxL2JZomLliyHWZc6Qb2/M19RO7WzPwRHJ1S0/KHPyGzj8DghSmp8LD+L1OzSxup6P410jxnT9VnmIZjyA2QHn5Qa5l8JY14KNObl0txuWrIcUA2AZA6E5ToHL92DmZlt8NpDbfHaNyetulrvmtkXMzPbmA2cZ5TZPgb/PV6kqPnFGbYutILJhWj1vvNYve88JpqMNaT0wpl/pRTXSislL44Hz163Gs0663aQMLZnEt7/n/mM83I1u8Cd/SlVc2hJ7gKqJNCTWiYs0HqW9GFdm+Oh1DgcOncdggCx5qPH/K1m+T1Zm04BGuCp9OQ7uTK/FksO4CcXaJj+dpQGdq5cfO3dIA3r2hwFV8uwdLt5zaNljZut/S07sKfEsepq3qkz1xV3BDLuDsKcxYBIpez90FzplWY8CVwpuSH5elhg9Z3ysK7N0SYmWBx0zshymPXY0ECM65lkdRdrAOyOcuzsD0Eu+dZWDyzLH7rl3Sxgvg+lfui2TrK28meMD6lyaHAnKLI8aUt1xTXSAMgamiKeeKWaWx2pcTFlgPUbDQLQoVmY1SzY9nqTGIkXPQnG/f5U72RAA6sB3J5KT8Z/ss9KBvCuMiavGi+09mpQAeuxhqSY5m6ZdgeXCoAhU+OxYNMpPNQxDvOHmg8MOCOzDQBYjRllVHU7M9neCMu2LqBKggXLZeQu7LGhgWZDNsgdMws2ncJDqXHietOSm+ChjtYjY4s9nHbn4/2d+ZIjftsqjxx7+VaWfyu5QVq2w3owSKnJpeX2t62BPdceOI81e89Lnjuc4eh1xd75W0n+Wk0NOeMMBkQqtfvMFcnnjfkW7uiVJjUargYwa7tOjW9sdjKWG1RO6i4WqO6lJjfKsbM/BLnxLWy9X65ZT652xtYPXS74sPwsxvyZmQ/cyc2R61KtATCx1505iwDrKQuM/DTAnIfuRv920VYnGSWzUyvhB1hdpE27AJvu34Zaf5e3Z3rsPpWebDY9BADM23hSckJIV/mhOriPCmmAPXlXxNyds1fKEKT1kx0rB7B9vNma50nAnUDF+HvqnNBYctJX4yB3w7o2N2tiWrDpFMb1TJL9XMYcFMvgfXCnOIcHd3S0BsD0+JB7r9zwDgYBVhdfuUAhNjQQLz/Qzu4YOkprgezlW0nlX6W3isS4nkn44PbcXJb7VK52R+nk0sbyS92EnSr6HZ/dnsBWA+Clga1drlWRu64Eaf2wJ++K2Hnh4LnruFZagdnrT8qev5Xmr9XWkDNKMCBSoUJdOd7dLj3EvHFkUiXVwfbEhlZ3sTYOruWHOzUOppTcZVmuy8jRIEXJD8FW8q3c++XmUnusWzw+23deTP4c1q0ZLulv2A3ULE+ycmUSYJ6bM2NgG9lEyw925YtD5r+3Uz4YGtczSQyGbAVuSkf5BYAR3eOxdt+vVk1h9o4v4/alKK2dMl23ZXBnK7BwlB+AZ/okY/mOX6wuLKZTb5j2AJopMXK3Kanjzd6AdEB1QNsyKlgcYFFuW6aD3C34/pRZM6PUtAuAeXdtqd/uCxmtFdeYuNKUYeu9saGBks2jzjT5KAnA7JG6obHMt7L823TGew2qR3y2TBFwx42rVKcPwLyXnIDqDgAPdZQe58h0Xbb2j9R1ZXCnOLFXm73ftPH3cEl/w6qDhVz+mprGpWNApEL5V6THN/EDFLc7K6V0HZYBgFyuTMOAepi8+rDZex0JUpT8EOyNbyH1fssfOlB9971633mzfIzVe89j9d7zVu+vEgT8+PNFtIhs5NA8YKYMQvVJyzJ3yXQbxl57UvM3Gdex4n/5+GBXvlVXcYNQnctjHJPG1iCLpvw1Gky5/y5Muf8us1qZ/CulNnve2brwSwVVlvwALBnRSZzA0l6OlytM81meSEsw+5z3ZZnnssz88k4PyafSkwFBvqnPT2M9K7iS3nLhDbUouFZqFTDMMn5mmAeKUk1MBsF82gW58WUsf7umzbfGu36p370rTRlK3ivVPGralORocONK8OZID0cj00NaAPDB/85iTA/zWjtXb1zlOn1IHQ/2biaV7h/Ta0KQ1s+si7+Sc8nR34ptTrRrWt7qlIo41YxLx4BIheQurjMy29gNSpzhaGKh1A/LOHpxfONAxUGO5cnC8oRoq7xSPVH8AIyzMSmh8Ye+5Mczsj2UbPnb19X5K3Ink8z2Mdho0otLSpUgoGloIOY8dLdVPoxprz173azFHCiJ5wcv3SPWckjdhWs01RMwSuVdyNU6GccJMj3e5C4irwxqiwc6xIrrNB1MbuEm8wTZQR2qx1lRmuPlDM3t48q0dsJYtm+P/CbZRd809+2p3smIC2sgOT6O1KzgSoLjBvX9MGWNdcCwa2ZfyZwZuZuHMT2SMCglFvvPXkfXROmu1lLk8t2AO+M6udKUofS9xoDTtCkwLLA+ADgU3Liah6LkO7PHlQR1KbY+k5KmLVu1lvb2j/E3ojQ/0Lh944S2SnejaUqFGrrnMyBSIalAwZhYauTK3ZArgZTcyMmmY4o83Ml8EkqpIeaNpHIjwgLrm43LcvDcdQiCYDa+SnqrSCx+LBV+Gg2aNQ7ExqNFeH/XL4qSXdfsL5B83pKt0YJNRwd2pFlHgzujf5vWTFkGJkpOzgZAMu9EwJ0xaR7qGGd2F27cTpuYYMmLqNIRiI1BsNRYNFEhAWblMUuQTbW+2BfqyrHh6AVFOV72DL2nKUamJZh1BBCE6okkjcm6pjQajfVKcHtkXxNSoxfLzQoeGyrdycDU+I8PWn1vVYKAjUcLMahDrFUumFxNg+U4U0pGj5fLd1vxvztNcHLNu0qbMpTW/ko1BRpH0zd9zl5w42oeitQ5t2tiY+zNvy65vOWI2nKfz3T9jp5r7Y2jNGOgeW2iadOWVPO5M/unodbf7m9QA+Bft2t6bfWIe7hTU3x16DebKRWeCoSMGBCplK2I2ZW7IVe7N8olBZu2FX99+ILY1GI5xLzUCVvqhBik9ccF3Q2zqldjfgdgPQWDcS4d0/3RJibYqju+ktoXoHq9sx9qh1e/OSn5ugHA4Hf3YKbMCMeS67y9r0yrn/00wJLHOomJ7Ma7O3sXVODOGC9SNSkGwXxMmt0z7zfr9u/oidO0l5RpbYbZRKe3LxKm25WaHNX0GLUVTBqDaXF0bQ2Q2T4WG48VWi07pFMcOjYPwx/axUjmTsmd/DsnNLbuWKCpHsrAstxKq/ULdeVIjQ+z/kAm5I7BNzb+jHnf/Sy57yzPCYB5HonleUDut26recj0OzY271rW6jkTYMi9V66zgyV7F29HAjC5m0HTnmsrdubLBkPP3d8Sd8UE47fr5WY3Ce5u5rH1mdbuL6jeNqqP16f7tMCy7Xmyx4Iz6QnG48deMDR/aIpY0wtY38wZOy6kxjdG3zZRilMqPIEBkYrJRczORvvu6N6opGq5ShDEvJPH3//J5vbkTohSzRMCzGujjMtKzXBdJQhiLYGS0WNNaUxqQEx7UViVR5ButpLyyqC2iA5tYHUyMAhAk0YBVnf6MzLbSPYANH5205yYe5PCrYZGMF2/6UzdUseA6ajiSkcgNh5vxovIoXPXxQk5Tbdrb/wSezlIxgk7D527DoMgoHl4EDYdLzR7jwbA1zkXsO7wBcxef9JuzYblRXH+0BSrwEGqzEqq9eVGFHakpsvWvjM9J8jlkVTvq2uSv/U2McG4WlKhqAayShDQoan1MAtKKdlfcsebI7UvgLIATOnNoFRvWSMNgCXbzlh9v3IBriu18XKfCTCfGUAQgGXb8qzOQ44M/ihVblu13hoAc/90p6ervTIba6E7J1iP9aWmSV59KiBaunQpFi1ahKKiIqSmpmLJkiXo1q2bp4vlMGeTkd3RvdHygJc60dsawdpye4623ZvWRpk+J7cscKdHiOnosZbNkQ+lVs+SbawdMJbP1qi5gHyzlSljM5JUfhUA7D5zGe9a3N0t3JSLmZnWgyBKXWAsh0awZG/8KoNwZ1RxqROa3AjExt5P1esUFNfKAPLNZADwXL+WeKxbc/F9lsGiaZOsZa2bvZoNuYui0vwFqZsU0wFCLScTFd3O27L8uBoAU+5vaTVnnJLfpeRUPBqYBaaW6zTtTWcvSJMbZsFIycXeXjOIrYu+o0m27qhVV5JcbVrDayTA9kTFcgGYvX0o9ZkkE+xhfR5yZPBHS7b2g7253YzbOXj2OqCpDoKMXE0yr2k+ExCtXbsW06dPx/Lly9G9e3csXrwYGRkZyM3NRVRUlKeL5xBnDyp3dW80PeCnSsyz9NLAO4nR9rYnlyAtR3P7P0qavUwJAnDo3HUM6iDdFRmA5ACSpsuWVd60yv0wBgymF1/TsV4sm5Ey7q6eS8yUaTBkVCUIkoMgAtLzEcnV1BjLaNzncgGo6aji9kYg9gPwdO8WWLmrOu/EWAtneYGVO7bs5Vy98+MZxIVVl0PqQmbaJHu1tEKyCl6qZsPeRdGZk7KSOaYAiFN/WD0PoFV0sFO/S6ng3rJmRWp7xv/7ARjePR6f7b0z7ITxt2XvnOLOkYXlfo/OJNkav0fLHnRKbwZt3aDZCyAtB3W1F4BZHjszZSYStjw25c7jluchqe9P6XEuV3P3zu3mfXvrsJXbppYEaik+ExC9+eabmDBhAsaMGQMAWL58OTZu3IgPP/wQM2fO9HDpHOfMQeXO6Dw2NBDhjWQGHWsW5tD2bF3MTRnbq89cKlE0t5Ml00DGkQug6bLzJT6PcWoCy7FepJqR/nvcuhea1MXU3t25XDkHdQhEScUt2X0ul/BrHADQdDnT7Q7r2hzF5XeS3y2nIjAI1XeofoJ07zUjJWP0mN5ty13IyioNYhOgXDBh+RncPQCcI3NMyb1uHEDRcr66wZ1sjydjZHoeuFJyQ3ameKmLvAHAgx2aWg23YO+cUhMjC0sd5+4IUm11AJAKOuVu0MQeVDbyBU3XZ+9Ykzp2TKcusUXuvCp1HnKW3Db+mBpn971Kjg9nv9ua5hMBUWVlJQ4ePIhZs2aJz/n5+aF///7Izs6WfE9FRQUqKirEv/V6fY2X01HOHFTujM6V1Dg5Ms6R1MX8pYGt0axxoDgHkvFkYqudX4oG5iNwO8vW1ASWbemNG1on98pVbZsmD7tajWxvn0uNKm6vRqJQV17dndZWICNU9zYJbxgg+10rHe/FePGwd4w5EuS7ewA4R8eukfueAVjNV/f14Qt4IcP+EBSAea2IVELrkhGd0KxxoNl4MsbySAWO9rapppGFLcldjC07ANg6TizH4TEdhyss6E5Nqeb2XYwA6xsAe8ea3LFjOnWJLUrPQ65w9lqh5uPDHp8IiK5cuYKqqipER0ebPR8dHY1Tp6QHXMvKysKcOXNqo3i1zl0/GqUXI0e258io2LamJBjcKU7s4ik3ArezXKl2lqvaNiYPu6sa2VYZpfafvQBMycXfX6Mxy7+S4mgSrZJjzJGg2535C3I5PKajF1s2QUl9z84MsufI5zP2AHLXZ1fTyMKWbF2MXc0VA6R7+kmtz96x5sjUJY6W0Z2c2Yaajw97NILgaDaG97lw4QKaNm2KPXv2IC0tTXz+pZdewo4dO7B3716r90jVEMXHx0On0yEkJKRWyu0tCnXlHmkPttyuvb89Ye3+AsmqbTWUzZEyFOrKzbp4WzIGnUon5lWSRGs5PIO79pc71yX1WZRcMC3LY7lv/TUa7JrZ1+mmPLltuuuzyx3XnubufemO8sjtb6m5Cj1ZVndS2/Gh1+sRGhpq9/rtEwFRZWUlgoKC8MUXX2Dw4MHi86NGjUJxcTG++eYbu+tQukOJLKkh+HEH05OckZ+merRm00lplZDaJ966n9xRbrVdQJRQ6/flTfvyvZ15VoOmqrWsjlLT8cGAyEL37t3RrVs3LFmyBABgMBjQvHlzTJ48WVFSNQMiojsnOcvcCnKdmi4g3s6b9qU3ldVbKb1++0QOEQBMnz4do0aNQpcuXdCtWzcsXrwYpaWlYq8zIrJPrb1D6gLuW/fxpn3pTWWt63wmIBo2bBguX76MV199FUVFRejYsSO+//57q0RrIiIi8j0+02TmKjaZEREReR+l12+/WiwTERERkSoxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjn+czUHa4yDuit1+s9XBIiIiJSynjdtjcxBwMihX7//XcAQHx8vIdLQkRERI76/fffERoaKvs65zJTyGAw4MKFCwgODoZGo/F0cWqdXq9HfHw8zp8/z7ncXMD96DruQ/fgfnQP7kf3qMn9KAgCfv/9d8TFxcHPTz5TiDVECvn5+aFZs2aeLobHhYSE8EfvBtyPruM+dA/uR/fgfnSPmtqPtmqGjJhUTURERD6PARERERH5PAZEpEhAQABee+01BAQEeLooXo370XXch+7B/ege3I/uoYb9yKRqIiIi8nmsISIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgItHOnTvx4IMPIi4uDhqNBl9//bXZ64Ig4NVXX0VsbCwCAwPRv39/nD592jOFVTF7+3H06NHQaDRmj4EDB3qmsCqWlZWFrl27Ijg4GFFRURg8eDByc3PNlrlx4wYmTZqEJk2aoFGjRhg6dCguXrzooRKrk5L92KdPH6tj8umnn/ZQidVp2bJl6NChgzhwYFpaGjZt2iS+zmPRPnv70NPHIQMiEpWWliI1NRVLly6VfH3hwoV45513sHz5cuzduxcNGzZERkYGbty4UcslVTd7+xEABg4ciMLCQvGxZs2aWiyhd9ixYwcmTZqEn376CVu2bMHNmzcxYMAAlJaWistMmzYN3377LT7//HPs2LEDFy5cwJAhQzxYavVRsh8BYMKECWbH5MKFCz1UYnVq1qwZ5s+fj4MHD+LAgQO4//778ac//QknTpwAwGNRCXv7EPDwcSgQSQAgfPXVV+LfBoNBiImJERYtWiQ+V1xcLAQEBAhr1qzxQAm9g+V+FARBGDVqlPCnP/3JI+XxZpcuXRIACDt27BAEofr4q1+/vvD555+Ly/z8888CACE7O9tTxVQ9y/0oCILQu3dv4bnnnvNcobxU48aNhffff5/HoguM+1AQPH8csoaIFMnPz0dRURH69+8vPhcaGoru3bsjOzvbgyXzTtu3b0dUVBRat26NZ555BlevXvV0kVRPp9MBAMLDwwEABw8exM2bN82OyTZt2qB58+Y8Jm2w3I9Gn376KSIiItC+fXvMmjULZWVlniieV6iqqsJnn32G0tJSpKWl8Vh0guU+NPLkccjJXUmRoqIiAEB0dLTZ89HR0eJrpMzAgQMxZMgQJCUlIS8vDy+//DIyMzORnZ0Nf39/TxdPlQwGA55//nn06NED7du3B1B9TGq1WoSFhZkty2NSntR+BIARI0YgISEBcXFxOHr0KGbMmIHc3FysW7fOg6VVn2PHjiEtLQ03btxAo0aN8NVXX6Fdu3bIycnhsaiQ3D4EPH8cMiAiqmWPPfaY+O+UlBR06NABycnJ2L59O/r16+fBkqnXpEmTcPz4cezatcvTRfFqcvtx4sSJ4r9TUlIQGxuLfv36IS8vD8nJybVdTNVq3bo1cnJyoNPp8MUXX2DUqFHYsWOHp4vlVeT2Ybt27Tx+HLLJjBSJiYkBAKteExcvXhRfI+e0aNECEREROHPmjKeLokqTJ0/Ghg0bsG3bNjRr1kx8PiYmBpWVlSguLjZbnsekNLn9KKV79+4AwGPSglarRcuWLdG5c2dkZWUhNTUVb7/9No9FB8jtQym1fRwyICJFkpKSEBMTgx9//FF8Tq/XY+/evWbtv+S4X3/9FVevXkVsbKyni6IqgiBg8uTJ+Oqrr7B161YkJSWZvd65c2fUr1/f7JjMzc1FQUEBj0kT9vajlJycHADgMWmHwWBARUUFj0UXGPehlNo+DtlkRqKSkhKzSDw/Px85OTkIDw9H8+bN8fzzz+ONN97AXXfdhaSkJLzyyiuIi4vD4MGDPVdoFbK1H8PDwzFnzhwMHToUMTExyMvLw0svvYSWLVsiIyPDg6VWn0mTJmH16tX45ptvEBwcLOZihIaGIjAwEKGhoRg3bhymT5+O8PBwhISEYMqUKUhLS8O9997r4dKrh739mJeXh9WrV+OBBx5AkyZNcPToUUybNg3p6eno0KGDh0uvHrNmzUJmZiaaN2+O33//HatXr8b27dvx3//+l8eiQrb2oSqOQ4/1byPV2bZtmwDA6jFq1ChBEKq73r/yyitCdHS0EBAQIPTr10/Izc31bKFVyNZ+LCsrEwYMGCBERkYK9evXFxISEoQJEyYIRUVFni626kjtQwDCypUrxWXKy8uFZ599VmjcuLEQFBQkPPzww0JhYaHnCq1C9vZjQUGBkJ6eLoSHhwsBAQFCy5YthRdffFHQ6XSeLbjKjB07VkhISBC0Wq0QGRkp9OvXT9i8ebP4Oo9F+2ztQzUchxpBEITaCb2IiIiI1Ik5REREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQEZHXq6ys9HQRrKixTEQkjwEREalOnz59MHnyZEyePBmhoaGIiIjAK6+8AuNMQ4mJiXj99dcxcuRIhISEYOLEiQCAXbt2oVevXggMDER8fDymTp2K0tJScb3vvvsu7rrrLjRo0ADR0dF45JFHxNe++OILpKSkIDAwEE2aNEH//v3F9/bp0wfPP/+8WRkHDx6M0aNHi387WyYiUgcGRESkSh999BHq1auHffv24e2338abb76J999/X3z9H//4B1JTU3H48GG88soryMvLw8CBAzF06FAcPXoUa9euxa5duzB58mQAwIEDBzB16lTMnTsXubm5+P7775Geng4AKCwsxPDhwzF27Fj8/PPP2L59O4YMGQJHp3p0tExEpB6c3JWIVKdPnz64dOkSTpw4AY1GAwCYOXMm1q9fj5MnTyIxMRGdOnXCV199Jb5n/Pjx8Pf3x3vvvSc+t2vXLvTu3RulpaX47rvvMGbMGPz6668IDg42296hQ4fQuXNnnD17FgkJCZLl6dixIxYvXiw+N3jwYISFhWHVqlUA4FSZGjRo4NJ+IiL3YQ0REanSvffeKwZDAJCWlobTp0+jqqoKANClSxez5Y8cOYJVq1ahUaNG4iMjIwMGgwH5+fn4wx/+gISEBLRo0QJPPvkkPv30U5SVlQEAUlNT0a9fP6SkpODPf/4zVqxYgevXrztcZkfLRETqwYCIiLxSw4YNzf4uKSnBU089hZycHPFx5MgRnD59GsnJyQgODsahQ4ewZs0axMbG4tVXX0VqaiqKi4vh7++PLVu2YNOmTWjXrh2WLFmC1q1bi0GLn5+fVfPZzZs3XS4TEakHAyIiUqW9e/ea/f3TTz/hrrvugr+/v+Ty99xzD06ePImWLVtaPbRaLQCgXr166N+/PxYuXIijR4/i7Nmz2Lp1KwBAo9GgR48emDNnDg4fPgytVis2f0VGRqKwsFDcVlVVFY4fP273MygpExGpAwMiIlKlgoICTJ8+Hbm5uVizZg2WLFmC5557Tnb5GTNmYM+ePZg8eTJycnJw+vRpfPPNN2IC84YNG/DOO+8gJycH586dw8cffwyDwYDWrVtj7969mDdvHg4cOICCggKsW7cOly9fRtu2bQEA999/PzZu3IiNGzfi1KlTeOaZZ1BcXGz3M9grExGpRz1PF4CISMrIkSNRXl6Obt26wd/fH88995zYlV1Khw4dsGPHDvz1r39Fr169IAgCkpOTMWzYMABAWFgY1q1bh9mzZ+PGjRu46667sGbNGtx99934+eefsXPnTixevBh6vR4JCQn45z//iczMTADA2LFjceTIEYwcORL16tXDtGnT0LdvX7ufwV6ZiEg92MuMiFRHqlcXEVFNYpMZERER+TwGREREROTz2GRGREREPo81REREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8/4/NXj9NDYxwzoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaNUlEQVR4nO3deXwU5f0H8M8kkJCEZCGQQICEhHBEJATKoQgGEBQiVTlsEVq5PUE8flaCrRWsErCtRRHBokKtBakKigcelUsMIlc4VBBikABBCMIGkhAgO78/4iyzszOzs5vdndnk83690sru7Owzs3N853m+z/MIoiiKICIiIrKgMLMLQERERKSFgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoR1dqsWbMgCIKhZQVBwKxZswJangEDBmDAgAGWXR8RGcdAhagOWbZsGQRBcP41aNAArVu3xoQJE3Ds2DGzi2c5qampLvsrMTER119/PVavXu2X9VdUVGDWrFnYsGGDX9ZHVB8xUCGqg5566in8+9//xuLFi5GTk4M33ngD/fv3x4ULFwLyfX/6059QWVkZkHUHWrdu3fDvf/8b//73v/Hoo4/i+PHjGDlyJBYvXlzrdVdUVGD27NkMVIhqoYHZBSAi/8vJyUHPnj0BAFOmTEHz5s0xb948rFmzBr/97W/9/n0NGjRAgwaheTlp3bo1fv/73zv/PW7cOLRv3x7/+Mc/cO+995pYMiICWKNCVC9cf/31AIDCwkKX1/fv34/bb78d8fHxaNSoEXr27Ik1a9a4LHPp0iXMnj0bHTp0QKNGjdCsWTP069cPn332mXMZtRyVqqoqPPzww0hISEBsbCxuvfVWHD161K1sEyZMQGpqqtvrautcunQpbrjhBiQmJiIyMhKdO3fGokWLvNoXnrRs2RJXXXUVioqKdJc7efIkJk+ejBYtWqBRo0bIysrCv/71L+f7hw8fRkJCAgBg9uzZzualQOfnENU1ofkIREReOXz4MACgadOmzte++eYb9O3bF61bt0Zubi5iYmLw3//+F8OHD8c777yDESNGAKgJGPLy8jBlyhT07t0bZWVl2L59O3bu3Ikbb7xR8zunTJmCN954A2PHjsV1112HdevWYdiwYbXajkWLFuHqq6/GrbfeigYNGuD999/H/fffD4fDgalTp9Zq3ZJLly6huLgYzZo101ymsrISAwYMwKFDhzBt2jSkpaXhrbfewoQJE3D27Fk8+OCDSEhIwKJFi3DfffdhxIgRGDlyJACga9eufiknUb0hElGdsXTpUhGA+L///U88deqUWFxcLL799ttiQkKCGBkZKRYXFzuXHTRokJiZmSleuHDB+ZrD4RCvu+46sUOHDs7XsrKyxGHDhul+75NPPinKLycFBQUiAPH+++93WW7s2LEiAPHJJ590vjZ+/Hixbdu2HtcpiqJYUVHhttyQIUPEdu3aubzWv39/sX///rplFkVRbNu2rXjTTTeJp06dEk+dOiXu3r1bvOOOO0QA4gMPPKC5vvnz54sAxDfeeMP52sWLF8U+ffqIjRs3FsvKykRRFMVTp065bS8ReYdNP0R10ODBg5GQkIDk5GTcfvvtiImJwZo1a9CmTRsAwM8//4x169bht7/9Lc6dO4fS0lKUlpbi9OnTGDJkCA4ePOjsJdSkSRN88803OHjwoOHv/+ijjwAA06dPd3n9oYceqtV2RUVFOf/bbrejtLQU/fv3xw8//AC73e7TOj/99FMkJCQgISEBWVlZeOutt3DnnXdi3rx5mp/56KOP0LJlS4wZM8b5WsOGDTF9+nScP38eGzdu9KksROSOTT9EddDChQvRsWNH2O12vPbaa9i0aRMiIyOd7x86dAiiKOKJJ57AE088obqOkydPonXr1njqqadw2223oWPHjujSpQuGDh2KO++8U7cJ48cff0RYWBjS09NdXu/UqVOttuvLL7/Ek08+iS1btqCiosLlPbvdDpvN5vU6r7nmGjz99NMQBAHR0dG46qqr0KRJE93P/Pjjj+jQoQPCwlyf9a666irn+0TkHwxUiOqg3r17O3v9DB8+HP369cPYsWNx4MABNG7cGA6HAwDw6KOPYsiQIarraN++PQAgOzsbhYWFeO+99/Dpp5/ilVdewT/+8Q8sXrwYU6ZMqXVZtQaKq66udvl3YWEhBg0ahIyMDDz33HNITk5GREQEPvroI/zjH/9wbpO3mjdvjsGDB/v0WSIKPAYqRHVceHg48vLyMHDgQLz44ovIzc1Fu3btANQ0Vxi5ScfHx2PixImYOHEizp8/j+zsbMyaNUszUGnbti0cDgcKCwtdalEOHDjgtmzTpk1x9uxZt9eVtRLvv/8+qqqqsGbNGqSkpDhfX79+vcfy+1vbtm2xZ88eOBwOl1qV/fv3O98HtIMwIjKOOSpE9cCAAQPQu3dvzJ8/HxcuXEBiYiIGDBiAl19+GSUlJW7Lnzp1yvnfp0+fdnmvcePGaN++PaqqqjS/LycnBwDwwgsvuLw+f/58t2XT09Nht9uxZ88e52slJSVuo8OGh4cDAERRdL5mt9uxdOlSzXIEys0334wTJ05g5cqVztcuX76MBQsWoHHjxujfvz8AIDo6GgBUAzEiMoY1KkT1xB/+8Af85je/wbJly3Dvvfdi4cKF6NevHzIzM3HXXXehXbt2+Omnn7BlyxYcPXoUu3fvBgB07twZAwYMQI8ePRAfH4/t27fj7bffxrRp0zS/q1u3bhgzZgxeeukl2O12XHfddfj8889x6NAht2XvuOMOzJgxAyNGjMD06dNRUVGBRYsWoWPHjti5c6dzuZtuugkRERG45ZZbcM899+D8+fNYsmQJEhMTVYOtQLr77rvx8ssvY8KECdixYwdSU1Px9ttv48svv8T8+fMRGxsLoCb5t3Pnzli5ciU6duyI+Ph4dOnSBV26dAlqeYlCmtndjojIf6Tuydu2bXN7r7q6WkxPTxfT09PFy5cvi6IoioWFheK4cePEli1big0bNhRbt24t/vrXvxbffvtt5+eefvppsXfv3mKTJk3EqKgoMSMjQ3zmmWfEixcvOpdR60pcWVkpTp8+XWzWrJkYExMj3nLLLWJxcbFqd91PP/1U7NKlixgRESF26tRJfOONN1TXuWbNGrFr165io0aNxNTUVHHevHnia6+9JgIQi4qKnMt50z3ZU9drrfX99NNP4sSJE8XmzZuLERERYmZmprh06VK3z+bn54s9evQQIyIi2FWZyAeCKMrqUYmIiIgshDkqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILCukB3xzOBw4fvw4YmNjOVQ1ERFRiBBFEefOnUOrVq3cJvdUCulA5fjx40hOTja7GEREROSD4uJitGnTRneZkA5UpGGqi4uLERcXZ3JpiIiIyIiysjIkJyc77+N6QjpQkZp74uLiGKgQERGFGCNpG0ymJSIiIstioEJERESWxUCFiIiILCukc1SIiKj+qK6uxqVLl8wuBhkUERHhseuxEQxUiIjI0kRRxIkTJ3D27Fmzi0JeCAsLQ1paGiIiImq1HgYqRERkaVKQkpiYiOjoaA7wGQKkAVlLSkqQkpJSq9+MgQoREVlWdXW1M0hp1qyZ2cUhLyQkJOD48eO4fPkyGjZs6PN6mExLRESWJeWkREdHm1wS8pbU5FNdXV2r9TBQISIiy2NzT+jx12/GQIWIiIgsi4EKEREReW3Dhg0QBCHgvbEYqARBib0S+YWlKLFXml0UIiIKEbNmzUK3bt3MLobp2OsnwFZuO4KZq/bCIQJhApA3MhOje6WYXSwiIqojLl26VKteNVbHGpUAKrFXOoMUAHCIwOOr9rFmhYioHnA4HMjLy0NaWhqioqKQlZWFt99+G8CVZpPPP/8cPXv2RHR0NK677jocOHAAALBs2TLMnj0bu3fvhiAIEAQBy5YtA1CTpLpo0SLceuutiImJwTPPPKNbDum7PvnkE3Tv3h1RUVG44YYbcPLkSaxduxZXXXUV4uLiMHbsWFRUVDg/V1VVhenTpyMxMRGNGjVCv379sG3btsDsLB0MVAKoqLTcGaRIqkURh0sr1D9AREQBE+xm+Ly8PLz++utYvHgxvvnmGzz88MP4/e9/j40bNzqX+eMf/4i///3v2L59Oxo0aIBJkyYBAEaPHo3/+7//w9VXX42SkhKUlJRg9OjRzs/NmjULI0aMwN69e52f8WTWrFl48cUXkZ+fj+LiYvz2t7/F/PnzsXz5cnz44Yf49NNPsWDBAufyjz32GN555x3861//ws6dO9G+fXsMGTIEP//8s5/2kDGmN/0cO3YMM2bMwNq1a1FRUYH27dtj6dKl6Nmzp9lFq7W05jEIE+ASrIQLAlKbczwAIqJgCnYzfFVVFebMmYP//e9/6NOnDwCgXbt22Lx5M15++WXcfffdAIBnnnkG/fv3BwDk5uZi2LBhuHDhAqKiotC4cWM0aNAALVu2dFv/2LFjMXHiRK/K9PTTT6Nv374AgMmTJ2PmzJkoLCxEu3btAAC333471q9fjxkzZqC8vByLFi3CsmXLkJOTAwBYsmQJPvvsM7z66qv4wx/+4NuO8YGpNSpnzpxB37590bBhQ6xduxbffvst/v73v6Np06ZmFstvkmxRyBuZifBf+pKHCwLmjOyCJFuUySUjIqo/zGiGP3ToECoqKnDjjTeicePGzr/XX38dhYWFzuW6du3q/O+kpCQAwMmTJz2u35eHefl3tWjRAtHR0c4gRXpN+u7CwkJcunTJGdgAQMOGDdG7d2989913Xn93bZhaozJv3jwkJydj6dKlztfS0tJMLJH/je6VguyOCThcWoHU5tEMUoiIgkyvGT5Q1+Tz588DAD788EO0bt3a5b3IyEhnsCJPgpUGSHM4HB7XHxMT43WZlN+lTMAVBMHQdwebqTUqa9asQc+ePfGb3/wGiYmJ6N69O5YsWaK5fFVVFcrKylz+QkGSLQp90psxSCEiMoHUDC8X6Gb4zp07IzIyEkeOHEH79u1d/pKTkw2tIyIiotbDz/sqPT0dERER+PLLL52vXbp0Cdu2bUPnzp2DWhZTa1R++OEHLFq0CI888ggef/xxbNu2DdOnT0dERATGjx/vtnxeXh5mz55tQkmJiChUSc3wj6/ah2pRDEozfGxsLB599FE8/PDDcDgc6NevH+x2O7788kvExcWhbdu2HteRmpqKoqIiFBQUoE2bNoiNjUVkZGTAyiwXExOD++67D3/4wx8QHx+PlJQUPPvss6ioqMDkyZODUgaJqYGKw+FAz549MWfOHABA9+7dsW/fPixevFg1UJk5cyYeeeQR57/LysoMR6ZERFR/mdEM/5e//AUJCQnIy8vDDz/8gCZNmuBXv/oVHn/8cUNNLKNGjcKqVaswcOBAnD17FkuXLsWECRMCXm7J3Llz4XA4cOedd+LcuXPo2bMnPvnkk6DnkQqiKIqeFwuMtm3b4sYbb8Qrr7zifG3RokV4+umncezYMY+fLysrg81mg91uR1xcXCCLSkREJrhw4QKKioqQlpaGRo0amV0c8oLeb+fN/dvUHJW+ffs6B7eRfP/994aqxIiIiKjuMzVQefjhh/HVV19hzpw5OHToEJYvX45//vOfmDp1qpnFIiIiChn33nuvSxdo+d+9995rdvFqzdSmHwD44IMPMHPmTBw8eBBpaWl45JFHcNdddxn6LJt+iIjqNjb9eHby5EnNXrBxcXFITEwMcolq+Kvpx/SRaX/961/j17/+tdnFICIiCkmJiYmmBSPBwLl+iIiIyLIYqBARkeVZccRU0uevzBLTm36IiIi0REREICwsDMePH0dCQgIiIiKcQ82TdYmiiFOnTqkO1e8tBipERGRZYWFhSEtLQ0lJCY4fP252ccgLgiCgTZs2CA8Pr9V6GKgQEZGlRUREICUlBZcvXzZt7hvyXsOGDWsdpAAMVIiIKARITQi1bUag0MNkWiIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJZlaqAya9YsCILg8peRkWFmkYiIiMhCGphdgKuvvhr/+9//nP9u0MD0IhEREZFFmB4VNGjQAC1btjS7GERERGRBpueoHDx4EK1atUK7du3wu9/9DkeOHNFctqqqCmVlZS5/REREVHeZGqhcc801WLZsGT7++GMsWrQIRUVFuP7663Hu3DnV5fPy8mCz2Zx/ycnJQS4xERERBZMgiqJodiEkZ8+eRdu2bfHcc89h8uTJbu9XVVWhqqrK+e+ysjIkJyfDbrcjLi4umEUlIiIiH5WVlcFmsxm6f5ueoyLXpEkTdOzYEYcOHVJ9PzIyEpGRkUEuFREREZnF9BwVufPnz6OwsBBJSUlmF4WIiIgswNRA5dFHH8XGjRtx+PBh5OfnY8SIEQgPD8eYMWPMLBYRERFZhKlNP0ePHsWYMWNw+vRpJCQkoF+/fvjqq6+QkJBgZrGIiIjIIkwNVN58800zv56IiIgszlI5KkRERERyDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAxUQl9krkF5aixF5pdlGIiIgsqYHZBaivVm47gpmr9sIhAmECkDcyE6N7pZhdLCIiIkthjYoJSuyVziAFABwi8PiqfaxZISIiUmCgYoKi0nJnkCKpFkUcLq0wp0BEREQWxUDFBGnNYxAmuL4WLghIbR5tToGIiIgsioGKCZJsUcgbmYlwoSZaCRcEzBnZBUm2KN3PMfmWiIjqGybTmmR0rxRkd0zA4dIKpDaP9hikMPmWiIjqI0vVqMydOxeCIOChhx4yuyhBkWSLQp/0ZoZqUph8S0RE9ZFlApVt27bh5ZdfRteuXc0uiuUw+ZaIiOorSwQq58+fx+9+9zssWbIETZs2Nbs4lsPkWyIiqq8sEahMnToVw4YNw+DBg80uiiX5mnxLREQU6kxPpn3zzTexc+dObNu2zeOyVVVVqKqqcv67rKwskEWzFG+Tb4mIiOoCUwOV4uJiPPjgg/jss8/QqFEjj8vn5eVh9uzZQSiZNSXZohigEBFRvSKIoih6Xiww3n33XYwYMQLh4eHO16qrqyEIAsLCwlBVVeXynlqNSnJyMux2O+Li4oJadiIiIvJNWVkZbDabofu3qTUqgwYNwt69e11emzhxIjIyMjBjxgyXIAUAIiMjERkZGcwiEhERkYlMDVRiY2PRpUsXl9diYmLQrFkzt9eJiIio/rFEr5/6gMPfExERec/0Xj9KGzZsMLsIfsfh74mIiHzDGpUA4/D3REREvmOgEmAc/p6IiMh3DFQCjMPfExER+Y6BSoBx+HsiIiLfWS6Zti7i8PdERES+YaASJBz+noiIyHts+iEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZluFJCcvKygyvNC4uzqfCEBEREckZDlSaNGkCQRB0lxFFEYIgoLq6utYFIyIiIjIcqKxfvz6Q5SAiIiJyYzhQ6d+/fyDLQUREROTGcKCidPbsWbz66qv47rvvAABXX301Jk2aBJvN5rfCERERUf3mU6+f7du3Iz09Hf/4xz/w888/4+eff8Zzzz2H9PR07Ny5099lJCIionpKEEVR9PZD119/Pdq3b48lS5agQYOaSpnLly9jypQp+OGHH7Bp0ya/F1RNWVkZbDYb7HY7exoRERGFCG/u3z4FKlFRUdi1axcyMjJcXv/222/Rs2dPVFRUeLtKnzBQISIiCj3e3L99avqJi4vDkSNH3F4vLi5GbGysL6skIiIicuNToDJ69GhMnjwZK1euRHFxMYqLi/Hmm29iypQpGDNmjL/LSERERPWUT71+/va3v0EQBIwbNw6XL18GADRs2BD33Xcf5s6d69cCEhERUf3lU46KpKKiAoWFhQCA9PR0REdH+61gRjBHhYiIKPR4c//2eRwVAIiOjkZmZmZtVkFERESkyadA5cKFC1iwYAHWr1+PkydPwuFwuLzPsVSIiIjIH3wKVCZPnoxPP/0Ut99+O3r37u1xskIiIiIiX/gUqHzwwQf46KOP0LdvX3+Xh4iIiMjJp+7JrVu35ngpREREFHA+BSp///vfMWPGDPz444/+Lg8RERGRk09NPz179sSFCxfQrl07REdHo2HDhi7v//zzz34pHBEREdVvPgUqY8aMwbFjxzBnzhy0aNGCybREREQUED4FKvn5+diyZQuysrL8XR4iIiIiJ59yVDIyMlBZWenvshARERG58ClQmTt3Lv7v//4PGzZswOnTp1FWVubyR0REROQPPs31ExZWE98oc1NEUYQgCKiurvZP6TzgXD9EREShJ+Bz/axfv96nghERERF5w6dApX///oaWu//++/HUU0+hefPmvnwNERER1XM+5agY9cYbb+jmrCxatAhdu3ZFXFwc4uLi0KdPH6xduzaQRSIiIqIQEtBAxVP6S5s2bTB37lzs2LED27dvxw033IDbbrsN33zzTSCLRURERCHCp6Yff7nllltc/v3MM89g0aJF+Oqrr3D11VebVCoiIiKyClMDFbnq6mq89dZbKC8vR58+fcwuDhEREVmA6YHK3r170adPH1y4cAGNGzfG6tWr0blzZ9Vlq6qqUFVV5fw3x2whIiKq2wKao2JEp06dUFBQgK1bt+K+++7D+PHj8e2336oum5eXB5vN5vxLTk4OcmmJiIgomLwOVC5fvoynnnoKR48e9bjs73//e48DuURERKB9+/bo0aMH8vLykJWVheeff1512ZkzZ8Jutzv/iouLvS0+ERERhRCvA5UGDRrgr3/9Ky5fvuxx2UWLFnk9horD4XBp3pGLjIx0dmWW/oiIiKju8ilH5YYbbsDGjRuRmppaqy+fOXMmcnJykJKSgnPnzmH58uXYsGEDPvnkk1qtl4iIiOoGnwKVnJwc5ObmYu/evejRowdiYmJc3r/11lsNrefkyZMYN24cSkpKYLPZ0LVrV3zyySe48cYbfSkWERER1TG1mpRQdYWclJCIiIh0BHxSQofD4VPBiIiIiLzhU/fk119/XTXh9eLFi3j99ddrXSgiIiIiwMemn/DwcJSUlCAxMdHl9dOnTyMxMZFNP0RERKTJm/u3TzUqoihCEAS3148ePQqbzebLKomIiIjceJWj0r17dwiCAEEQMGjQIDRocOXj1dXVKCoqwtChQ/1eSCIiIqqfvApUhg8fDgAoKCjAkCFD0LhxY+d7ERERSE1NxahRo/xaQCIiIqq/vApUnnzySQBAamoqRo8ejUaNGgWkUERERESAj92Tx48fD6Cml8/JkyfduiunpKTUvmRERERU7/kUqBw8eBCTJk1Cfn6+y+tSkm2wev0QERFR3eZToDJhwgQ0aNAAH3zwAZKSklR7ABERERHVlk+BSkFBAXbs2IGMjAx/l4eIiIjIyadxVDp37ozS0lJ/l4XIayX2SuQXlqLEXml2UYiIKAB8qlGZN28eHnvsMcyZMweZmZlo2LChy/scJZaCYeW2I5i5ai8cIhAmAHkjMzG6FxO5iYjqklrPnizPTwl2Mi2H0K9bSuyVKCotR1rzGCTZojwu23fuOjhkR2+4IGBz7kCPnyUiInMFfPbk9evX+1QwIi3e1o4UlZa7BCkAUC2KOFxawUCFiKgO8SlHpX///ggLC8OSJUuQm5uL9u3bo3///jhy5AjCw8P9XUaq40rslc4gBQAcIvD4qn26eSdpzWMQpuhsFi4ISG0eHcCSEhFRsPkUqLzzzjsYMmQIoqKisGvXLlRVVQEA7HY75syZ49cCUt2nVzuiJckWhbyRmQj/pekxXBAwZ2QX1qYQEdUxPjX9PP3001i8eDHGjRuHN9980/l637598fTTT/utcFQ/SLUjynwTT7Ujo3ulILtjAg6XViC1eTSDFCKiOsinGpUDBw4gOzvb7XWbzYazZ8/WtkxUz9SmdiTJFoU+6c0YpBAR1VE+1ai0bNkShw4dQmpqqsvrmzdvRrt27fxRLqpnWDtCRERqfApU7rrrLjz44IN47bXXIAgCjh8/ji1btuDRRx/FE0884e8yUj2RZItigEJERC58ClRyc3PhcDgwaNAgVFRUIDs7G5GRkXj00UfxwAMP+LuMREREVE/5NOCb5OLFizh06BDOnz+Pzp07o3Hjxv4sm0cc8I2IiCj0BHzAN0lERAQ6d+5cm1UQERERafKp1w8RERFRMDBQISIiIstioEJERESWxUCFiIiILIuBCrkosVciv7BUd0JAIiKiYKlVrx+qW1ZuO+KcxThMAPJGZmJ0rxSzi0VERPUYa1QIQE1NihSkADUTBD6+al+talZYO0NERLXFGhUCABSVlrvMXgwA1aKIw6UVPg1rz9oZIiLyB9aoEAAgrXkMwgTX18IFAanNo71eVyBqZ4gosFgDSlbFQIUA1EwImDcyE+FCTbQSLgiYM7KLT7UperUzRGQ9K7cdQd+56zB2yVb0nbsOK7cdMbtIRE5s+iGn0b1SkN0xAYdLK5DaPNrnmYyl2hl5sBIuCIiOCEN+YSnSmsdwlmQii9CqAc3umMDzlCyBgQq5SLJF1friJNXOPL5qH6pFEeGCgOHdW2HES/nMWSGyGH/npxH5GwMVCgh57Ux0RJgzSAH4xEZkJVo1oL7kpxEFAnNUKGCSbFHok94M5RermbNCZFH+zE8jCgTWqFDA8YmNyNr8lZ9GFAisUaGA4xMbkfVJNaA8L8lqWKNCQcEnNiIi8gUDFQoaf/QoIiKi+oVNP0RERGRZDFSIiIjIskwNVPLy8tCrVy/ExsYiMTERw4cPx4EDB8wsEhEREVmIqYHKxo0bMXXqVHz11Vf47LPPcOnSJdx0000oLy83s1hERBRiOKli3SWIoih6Xiw4Tp06hcTERGzcuBHZ2dkely8rK4PNZoPdbkdcXFwQSkhERFazctsR53xFnKIjNHhz/7ZUjordbgcAxMfHm1wSIiIKBVqTKrJmpe6wTPdkh8OBhx56CH379kWXLl1Ul6mqqkJVVZXz32VlZcEqHhERWRAnVaz7LFOjMnXqVOzbtw9vvvmm5jJ5eXmw2WzOv+Tk5CCWkIiIrEaaokOOU3TULZYIVKZNm4YPPvgA69evR5s2bTSXmzlzJux2u/OvuLg4iKUkIiKr4RQddZ+pTT+iKOKBBx7A6tWrsWHDBqSlpekuHxkZicjIyCCVjoiIQgGn6KjbTA1Upk6diuXLl+O9995DbGwsTpw4AQCw2WyIiuKBRkRExnCKjrrL1O7JgiCovr506VJMmDDB4+fZPZmIiCj0eHP/Nr3ph4iIiEiLJZJpiYiIiNQwUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkQaSuyVyC8s5SysREQmsszsyURWsnLbEefU8WECkDcyE6N7pZhdLCKieoc1Kh7wqbp+kP/OJfZKZ5ACAA4ReHzVPh4DREQmYI2KDj5V1w/K33lKvzRnkCKpFkUcLq3gXCJEREHGGhUNak/VM1ftxe7iM+YWjPxK7Xd+5YsihCmmoQoXBKQ2jw5+AYmI6jkGKhqKSsvdnqodIjB8YT5WbjtiTqHI71R/ZwBT+rVD+C+TZoYLAuaM7MLaFCIiE7DpR0Na8xiECXC7iYmoyVfI7pjAG1cdoPY7hwsCJvZLxcR+qThcWoHU5tH8rYmITMIaFQ1Jtijkjcx0awIAruQrUOiTfme12pMkWxT6pDdjkEJEZCLWqOgY3SsFGS1jMXxhPuQVK8xXqFtG90pBdscE1p4QEVkQa1Q8yEpuirmj1J+4qe5g7QkRkTWxRsUAPnETERGZg4GKQVLOAhEREQUPm36IiIjIshioEBERkWUxUCEiIiLLYqBiMk56SEREpI3JtCbipIdERET6WKNiErXJ8B5ftc+yNSus+SEiIjOwRsUkapPhSUPzW60bNGt+iIjILKxRMYk0GZ6cFYfmD7WaHyIiqlsYqJhEbzI8K9Gr+SGqz9gcShQcbPoxUSgMzS/V/MiDFSvW/BAFE5tDiYKHNSoms/pkeKFS81MX8YndmtgcShRcrFEhj0Kh5qeu4RO7dYVSIjxRXcAaFTLE6jU/dQmf2K0tVBLhieoKBipU54R6kwkTmK2NzaFEwcWmH6pT6kKTCROYrY/NoUTBwxoVqjPqSpMJn9hDA5tDiYKDNSpUZ9SlJEc+sRMR1WCgQnVGIJtMSuyVKCotR1rzmKAFDUm2KAYoRFTvsemnjgj1BFJ/CFSTycptR9B37jqMXbIVfeeuw8ptR/xRXCIiMkAQRVH0vJg1lZWVwWazwW63Iy4uzuzimKYuJJD6U4m90m9NJiX2SvSdu86tlmZz7kDWdhAR+cib+zebfkKcVgJpRstYlF+sDmpThVX4s8mkLuW9EBGFIgYqBpiRn2CU1o10+Ev5EFnDUmvsKkxEZC7mqHhg9fwEtVEyAUAM8S66ViAFqDNyMthVmIjIJKxR0aHVrJLdMcEyNyopgfTxVftQLYoIA+BQLMOmCu8p835mDM1A1zZN2FWYiCjIGKjoCJX8BPmYG9ERYRjxUn7Amiqs3AzmL2oB6rMfH2ACLRGRCRio6Ail/AR5Aqm8hsWfTRX1pXdRqASoRET1AQMVHcpmlVDJTwjEqKah0AzmL6EUoBIR1XWmJtNu2rQJt9xyC1q1agVBEPDuu++aWRxVo3ulYHPuQKy461pszh1oiRoEI4O7+Xsekvo0oy/n2iEisg5Ta1TKy8uRlZWFSZMmYeTIkWYWRZeVhjI3q/mlvtUycK4dIgpldSmf0NRAJScnBzk5OWYWIaSY2fwSqs1gtWGlAJWIyKi6lk8YUjkqVVVVqKqqcv67rKzMxNJcEazI1ewkT9YyGFeXnmaIKHTUxXzCkApU8vLyMHv2bLOL4SKYkasVml9Yy+CZ2jGR3TGBgQsRBZzZD7SBEFIj086cORN2u935V1xcbGp5tCLXQI0Cq0zyDBOASf1SA/Jd5Bu1YyL3nb2WHt2YgoeznFOgqY1WHur5hCEVqERGRiIuLs7lz0xm9ISReiHdnZ0GUQSWfFHEm5+FqB0TIhC0YJasy+rTcVDdUBd7LYZU04/VmNkU88oXRZC+1mgbJPMmAk/tmFAK9WpY8l5dzBsg66pr+YSm1qicP38eBQUFKCgoAAAUFRWhoKAAR46ExpOGWZGrLzU5fJoLDrfmOQDKOSNDvRqWvFefxiEia/D3WFpmMrVGZfv27Rg4cKDz34888ggAYPz48Vi2bJlJpfKOcp6d8ovVKLFXBvTg8LYmx9enOdbA+Eb5NLPp+1P1qls3ubNCIjxRqDI1UBkwYABEUaeOPEQk2aKw6ftTQev94+2YJr5kgde1fvjBJu8dVdeqYcl79XEcIiJ/EcQQjhTKyspgs9lgt9tNTawtsVei79x1bk9LgZ5tt8Reaejm5235zNoeorrO6DlLVNd5c/8OqV4/VmVW+7PRNkhvc2m82R52tyQyri7lDVDdEArXcPb68YNQaH/2pvnB6PaweUgdc3uIKBSEyjWcNSp+ECr91v1ZAxPswe5CBXtXEVEoCKVrOGtU/KSuJUx62p66OExzbXGsDPI31s5RoITSNZyBih/VtXlw9LZn7zG722tWa+4KtlA68UNBfb9Jh0q1PPlfMI79UEhZkDBQIa+V2Csxb+1+t9cfG9qpXt5QJKF04ltdfb9Js3au/grWsR9KXeYZqARIXX4aVKs5AICubZoEvSxWEkonvpXxJs3aOSsKxjU92Md+qKQsMFAJgLr+NMiaA22hcuJbWX2+SUs3w5iIcJ5jFhKsa7oZx34opCyw14+fqUXEM1fttWQmta9CpZeTWer6WBmBHnch1Kep93X/yHuMjXgpHyO6t/b6HAuFMTFCTTB7x1jl2LfaccQaFT9Ti4gdIrD0yyI8fnNncwoVAKw5qJ+C8WQZyk1ovu4ftZvhu7uOY9X9fVBx0eG8UeUXlmo2PdT1mlyzBLOWwwrHvhWPIwYqfqbWLAIASzYVYVhmErKSm5pTsAAIhSpD8p9gtp+HYiBcm/2jdTOsuOhAn/RmHm8ezOsJnGA3dZt57Fv1OGLTj58l2aIwuV+a2+sigOEL8wM6AJjVquuobgn2VBGh1oRWm/2jV+VvpOnBrGk86gMzmrrNOvatehyxRiUAJvVLwytfFEHZMUaE5+jU18xyK1bXUd3CJGp9tdk/elX++YWlHpseYiLCVdcbHRFWp3sgBou8liM6IgzlF6tRYq80lDMUSvvequc4A5UASLJFYe6oTJenIIle26Y/27fNqK4LtZOSvGOF9nMrq+3+0aryN3LzKL9YrbrOD/ecwCubf4BDBAQByM3JwD3Z6b5v5C/8ea6HynUjyRaFTd+fMnyNDsWHR6ue44IoiiojYoQGb6aJNsPu4jMYvjDfpWYlXBCwOXeg2w9fYq9E37nr3C5Gassq5ReWYuySrW6vr7jrWvRJb1abTTAsFE/KUGG1C3mJvTKkckeCLRD7Z+W2I243D2WOivL6EQYAKvlyM3MycE9/34MVf57rVr5uyLuKl1+sRkxEOEa8lG/oGl2b67m35QrEdSEY57g392/WqNSS3k0kK7kp5o4yFp3WJrNc7YkrDDXVvsFQ2xodM2/EVgsClKx4IWcStb5A7B9PCZZqT8KT+6Xin18Uua1r3tr9uLVbK5/KqDr8wjt7ERPZAD3aNvVqnVapCVaWqai0HHuP2jHv4/0u11QBcGvO17pG+3o993Q9kl8PJIG4LljtHGegUgtGbiLKts3iM5V4f/cx9EyNdzkQ/Nm+DQAOACNeyg/Kja02QZaZN2IrBgFyVryQm8nqQWWgad08pP2S3TEBm3MHOoMZAFiyuQjKOnMH4HPXWtXhFwBMW77L63PIagP7qQUBcmova12jtXp/7jl6VrOW29ueXZL6cF1grx8feTMIUJItCkd+LsfwhfmYtnwXHlhRgOvy1rn0AKptZvnoXilYdX8fCLKeA8GattvXQYrMnGY8FKY4t2oGvhnkg6H1nbsuoL3nQolyv2z6/pSzt0iSLQq5ORlun6lNcqTauS7x9hyyyuBmgHYQoEYqs941OskWhRkq+/7Zjw+o7h9fe3ZJ6vp1gYGKBk9dfb25iUgHoXxxETVVpvL1j+6Vgs25A7HirmuxOXeg10/35Rer3Z6egnEA+xpk+fNG7G3X7FAIAqx0ITdTKASVnmgdn9Lru4vPeDx+leswsl/uyU7HzJwM54Xe1+RI6bsBuJzrSt6cQ1Ya4VovCJALFwSsvv86Q9fozNY2t9e09o/W9Wjnj1eOi7TmMdCIEQ0/GIbq8BVs+lFhpElg71G72+e0Dhatk0CtCrY2bYNmdi3zZZAif5XXlyYcq3bDk1M26YUBmNwv1at11IXmEqs1EXhLeXzOyMlAZmsb9h6zY95a1zwIreNX7RhPjo82tF/u6Z+OW7u18jk5Uu27N+cOxI7DZzD9zV21OoesMrCfVlONnBRIZSU3dZ5XADTL7M01Rm1ZQahpUhNx5bhREybAY4Bn9WZuT9jrR8FItrbaMgAw82b1rn9aywsA8mfe4NeT01PvAKsxUl61m608891oJr4v320FJfZKLN182NnN1OiFJtQvTpJA9qDwthzeBn1a574eI9ebcEHAvf3bYeGGQpfPhgH4UnZNqW2g6mnfB/IcCnaQrdyWx3I6oWvrJoiOCHNOYyBtszddlI3uH/myYQIgiq55MVqB1ItjuuPXWa00t0vvNwRg2oMMe/3UgpGnN60akq6tm6iuU3oyzl21161pZtP3p/x687DKE4pRnsrr9jQ6NAOl56vw6uYi59gQWs1dnrY9lPaVFKQAxpLn6lIibrDHdlC7Qfoa9BltUpAzcr2pFkW8pAhSgJpa2jUFx3FP/3S8vKkQc9fuh1iLQNXT9TBQ55C/gmxvuvIa2RZvzytv9o982fd3H8Pyr4td3neI7j2PwgUBPVL1p2XR+g2XflmEV74oCokHGQYqCkaq63xpNhjdKwUZLWNdxlUREZibR7C7lvn65CP/nFomvNpFIW/tfpdl1OoD5UOPeyqX1brhqfGl6SOQzSVmNCcFK6hUu0Fmd0zwOegz0qSgZOR6o7fOvLX78dUPp7H+wCnna74Gqkaudd6eQ56OH2+DAfn6gCs1BPLB2SSebsietmX74Z+9Pq/01qncF9JyKxRBClATpOTmZODZjw94FbDHRIS7PdCFCTXzz0kvSfs4o2VswMZmqQ0GKgpGnt58fcIrv1htuB9+qPD1ycfI57x5Gg1DzdOk9Ft4M4Kk1fkSGAcqB8fM5qRAB5VaN8jnx3TzOehTGzpAj9HrzWM5ndzyW+TkQYq3ZdYrv1r5jASuauOTKI+fEnslth/+GQdPnje8v+XHo5RoKsL1v+VqU7MofZdSGIDT5VXYXXzGq5u81rlUVFqu2hUaAJpEN3Tpgm50+AdRcR2Y1C8VSxRj7FSLIoa/lF+rGrhAYaCiwsjTm5nJo1bha/OC0c8ZfRoNFwSsur+Psx0ZgEubrD+aPfxdi+DN+nwJjAPRXBIKzUm+5pEUlZbj9Pkq1RskRPcajDABKD1/wdB8L/JrxZ6jZ12eiB8b2gld27jnQeitQ1qmSVRDzHxnLxyGtrKmzL5ca/SudUaal7TGJ3GINT0fszsmYNP3p5D7zl7NGzQAvL/nmMv3K49H+Wf11iPveWP0WNHrviyiJulVYuQmv7v4jEsqgPxc0rruSTXwm3MHGhpxXK3MYQBW3d8HiXGNnM3nLt9h0XObgYoGI09v3j7hJdmiMKJ7a7yz85jzteHdfRsh0gq8aV6Q30CMfs7I06iU8Z6VfKWd1sgkbt7wdy2CVi8QT+3nGS1jse3wGaQ1j0ZURAOPN0l/N5dYvfeNL7+T8jNaOQDy41CqRn9gRYHh75GuFX3Sm/ncA0d5vZF+3wWfH8Lyrz2PKzMjJ8Pr30mvefbljYUuTbFqNzdP45M4ALy47hCWbz2iG1wAwPKtxXjz62KXmgdv83+Amt90z7Gz+N0rXxk+Vnb8eEb1u9RGq/V0k1+57YhqUCZ1Rx7WtRXyRmaqBqHejG77c/lF9+AQQMVFh2qPQl++K1gYqBjgr6fpEnslVu865vLau7uO49EhnQwdeFZrNzRaQ6R2YzZas+TyNHrsLJ5de8B5Yk3JTsPEvmlu+8SfNVf+rkVQzbv5qOZir3fB9HXobG/axz2xco2g1u+k1+au9hlBAMJE12ZEedLozh/POLuMSp/xdgh5fzZhJdmiMGdkJto2j3Y2BYULAoZ3b4V3dx13niszVCYjLLFXYsePZ/BzeRXiYyKd5ddrpsnumOBMTp2ryBcDam5uOw6fQXxj7YcSpeVfew5SJEZqHiQCan5P5fH62FDXZjOjgYWS3ndr3eSdNSka2zdt+S6cr7p8Jafxl6YYefn1zjdlU5ha4C19Xn5trbh4CVP+tUNzWbMxUPHAn0/TvjyRan2/mU0REqPt18qbwbNrD2DGUONJYS5Po1men0b92ezh71oEvQu31gVTb+jsmav2IqNlrEuNkhFaSaN6x0AgmpOM8nR8av1OUvK6AOCu69Mwsd+VwFbtM6IIvDi2O+JjIt2OsSRbFJrGuOcP+DqEvD/dk53ucm4AwMCMREAEeqS6B1BqT/UCgJG/ao3Vu46pHmu5q/YC4i85IIJ684oAOMdWkR5K1God5LwdIEM6//qkN3Or6ZLKJx2b8ulLpKY1b2uClYN1Ale2TStPSOuBzVPzltS8k90xoWauOC/ON72mMKDmN1PLf5Ly+ZRBymM5nTyOFRMsDFR0+Ptp2tsnUq3vP1t5yXmC+KspQjqBBABzRxlfn6fmBa2LQtc2TbxKCpMYfRr1V7OHp99Mq8eBvOpb/pqnp0C1C6an4Gb4wnyvfjO14yr3nb3Op0+tY6rEXonoiHDMurUzmkZHOLtF5heWBrS2z8jDgl67vvT///yiCK9sLnJ+Xuu3/ZVOzYg0Oqjaz2F2u750bhidM0a5DSLg0iytJA8o9IIL+XE1b+1+3D8g3W28FzmplmPu2v0uZbq+Q3NsPliqGiRIE64qz3MAbue82m+hV9Mgp3XuvXBHzdglTaIaujVNSwEFcOXcAKC6z9X42v3bU+2VIALZHROc/5aSl9Vqau/t386v95jaYqCiw99P094+kWp9v5S8Blx5qo6OCHeb6NCIEnulS5Qvouam5c3FVi940LvRB6IXh1Z3v9qY3C/NmXgm/820ehxIJzYA1RuGXt6N2gXTU3Ajfwozsr2qNQnQT6RTPg0qn76NXsy8rbkz+rBgJJ9J7fPe1hBt+t69N42c2e36RvaXr7kdaqTchjAAPVOb4uvDZ1zed4jAJYcDM2++UvugVvMxulcKbu3WCjsOn8GWH05jxddH8MXBUoQJwPXtm2PzoVKXbZJPuKo8zz3te+VvKEB7ZFe1rr3ysUuyOybg+THdABFIjo9y1tps+v6UM6E/TACm9EszvM+VSc9Gr2OerhPykdD1JmB0iMBLGwrdui6bmVjLQEVHINrkvYmQVcdPgPuB6BA9J/Zp3SC2H/5Z9clqx+Ez+HVW7Q/KYDYX+KOZTr6f5F2cBQB3y3Ji9KpZpeBRPrKk/GSX5zt8eagUb35d7LzYqw2Rb+Qm7M0N0khvKvn6lMGstL3yp28juRpGfh/lcerNw4JWu77ethk9H6V8Dk9V92rXB61zLxC5Z0b2ly9ju6iNlCrvbRcdEYbhC/NVP/vKpiJ8OfMGt6YptZqPHqlwGZbfIQJfHjqNJeN6uORQ+HrzVKtNEgTXmgaJVtdetQcVZbO8MlhUdgXW40vSM+D5OiEfX0ovwVnt2DA7AGegokPvJmtk0CKt941GyGrf/9jQTs4ENyWtk1fvBiFoTC6m8bJPfG2G8eZCbvTJW2+dyv0kvzCLAF794jAm9k0D4PmpVO09+cmuHOcl+5enRql5YsbQDGS2sTmrjZPjo503hYqLlzD5Xztc1m10UjJp25UZ/yK0q8L1xnVw2WZo52ro/T7Sd8jnvpHnzah1DVZrekuyRalOzKmkNWCZNGmb8tjQe/qUEwC3dn2tc682QbXeMaz1cBUdEeaybWojZQsC0D25CXYeOet87Zq0prjz2lT0SG2KTd+fcrsWSrlR+YXuTTQS6UlemtVZTpkDoRVoFZVW+GUMKrX1O0T3Odf0uvZKc/1oJW9/rTIonNa+uTs7Da9+cVg36dkbWp0P5PcutV6REq0xesxOrGWg4oHaTdbTRcafCbjyp2+HKKJnajyaRLu3i0qUJ6+nG3iPtk1V29zFXz7rrwja22YYvX2odqH2NBuykcGmlPtJSb5vYyLCdcuv9QSq9kTjEIFNB0udyznEKyPwajUpyX8zvapradte21zkbL4KE2qas+Rjz6jdhORP4J4SIuWMNjcoh/FWW8fm3IFuN1VRvFJ9r5YQ7Da5m2wfatXoGX069mTuR/tdJpFT612S0TLW6x5KnsopUXu4Gd69lXM+LPlnpOvKz+UXER8TgTZNozDiJddaka1FZ7Dt8BmXz8hrRaTgR6+WxkhPQE95Q71Sm3pdu612ndAa5Vc5Jo5qQIOarr1a78sHTFMKAwCV8k/sW1NL688Rl6VrrVbnA62a+gVjuzvzs+S5N2bOai1hoGKA/Cbr6cYfiEGx1EZZ3Zw70K2rJOB+8nqqCk6yRWHuqEy3XItg92JQJqVq7UOtEWe1LnDy8RLklL+LkXZ7+b4tv1itu5yUTKd2sus90SjJF5OaV6DocaFVdQ2o9zSQqqJf+aIIc0dlok96M2R3TMD8O7IQJgho07SmZkK6cEvHiEuOigCM7N7a2QVWSa25QRnsCHAdxltrHdkdE1w+KOLKfpAfIzNX7cXq+69TrQXVq9HTO2e9yedQ7mMpaFFu07bD7mNyeOqh5Kmc8uXkAUV0RJjLpJ3KzwzreuVzWsel8jNaD2tqzQ5GewJ6yhvKSm7qVgsoNZN6MzeTcv1aY+J4avbXTN7WCNT0rgdA4HrVqD0gKveB9OAiTyK32jxoDFS85OnG748EXCM37c25AzGsayucr7rscsA9luM6JouRPBvpoFRO2x6sJCrlRWWySuKZND6DNxc45XgJSvLfRWuadUF0H1OjxF6J0+erVJ/MXriju0t3ULWT3ZccAYkDcKvaUKu6BrR7d0hE/NKLrOKSs6ZJrQZndK8Ul2NEEOC8qD06pBM+/+4n/Ondb1zWrTzGtJJQ9XaBtA61piet/SD1gFLrUaa2f3b8eAYHTpRpnrNpzWNUJ740Qu0jWrUD8uVFuPdQArxL7pduUFqDH364pwTDuiZ5vFaofY9WoLE5d6BzvytH2vVmwEetm6T0ujST+D+/KHLmfsiPV09zM+mNiWM00drtZg/3AdMA4NddW+KPwzrrXg/M4NyXXxZhyaaa/fiq4njz1CQaTAxUvLT3qN3tNU+Rtjf5A8rmCa2btvykPltxCXN/uSHPW7sfTaIauhxsRpJZk2xRiG/sv15ORvNL1C56r24uUm1qyP9Bf8RZ5QXO09Ow/HfR2k96zX4CrszeLC2vnG7dyBONVD2vNn6FEVrHl9oEakrOXmS//FtZK6B8klYmWG/6/hSeUAQpyqYotWRc5XepbZN8HWpV1aLKOqTgy9Mw457GtJD3TMvNyXAOyif/fqND1yu3ya12QCM4UO5/f835BABPf/gd5nz0nduNSWtEVHlekF6goZaHojYDuqft0Gsqls8krna8GpmbKcmmPiaON4nWejVXko/2nMAfh3U2tF1GqF1Xjb6m5pUv3CcmVPb2s8KcaQxUvFBir8S8j91HY5TXYhgNDOT05sJ4dXOR2/LKcTzmfbxf92AzWo2n1X4rjVlglDcHt1Zy26CMBHy+3/Up/M2txV5f4PRqLpS1T3r7qai0HCfLLrj19AkTawYI0xt7Q428hgICcOxMpVtioyi6duVUI00hoHVzMEIvYNALVLUCEGVT1I4fz+h+h/KmLwB4bGgn3WB7ePdWWKUx5oen4Hp38RnMUBlpVKI8Z2va+cvx5tfFzjwXvaR2NconayM3OeW2+HJtUX5GTu9asXTzYSz54ocrAaxYE5QaaRaRUx3w8eMDmJGToZro6Ymnh49qUUR+Yanb62rl8/TQCXgOLOTvT+6X5ta7R94luLbUrquAa57WjJwMlJ6rcslH07r+eqrZstLcXgxUvKB1knRt3cT53yX2SpceGp6q+DzOhaF4Xfm0auRg05qrQ0ntouYQXccs8MTbg1vriU8ZpAA1J/3d/drh1c1Fhi5wm74/pVtl3/qXqnHpqcNTW7daE4ADNa+pjeDo6alGbRp6iSALgADgwz0lePrD79yWe+q2q5EcH+2SCKh1TAmoGUTrC5VBtLToPbFr9QZSNkWJOj9CuCDgn+N+5dL1VETNzezWbq10b+yeakPUaA2HLnli2FW4WdYkoqxBk3dRV0tq10o6/kDxZA243uSM1GQo94PR5gPpM2rHkNYcWxP7pWLJFz84X5Nqqrwdf0ZzwMfWvg346KnZNEwAVmwtdntd+VBi5KHTW5P6pbnUUAD+6y2jNUijskZJWfOnvP7Kr0meAk4rze3FQMULnn5YtYjXU3Dg7eBLyqfVmIhwzVEWfam2c45FsTBft5bGm+2pFkWs2HoEY6650tYuH5DNyEBd0nZN7JeKif1SDY174WkkyAdW7HK2bY/o7j54mbKtW6t48vUY7X5qZLK2+JhI5/YN65qEOR9955ZD88S737h9t9Yx9eLY7hjWtRXe330MD6woUP1e4Zf/kTdn6dXAqd2YBUUtXM/UePXlUBN0R0U0MNT1VC/vQu7e/u1Uy7y7WH8clDDAJUhRGytH3kVdGTxJDyYLPj+I5V+73yz1xiYyUpOh3A/eSLJFqR5DeiOy1qZZROLvAR+V1wtlj65J/VJVxyyRP0xK2+fpodNbSbaapHNfhrPwRGuQRiOk3005LlRuToZuwGmlub28q9Ov56STJPyXQUaUB6JaTUKJvVJ3ndLF3ijpaRWoCYyUT5byDHNfygPU9GjRukh5orU9L6w7hD5563Bd3jqMXbIVfeeuw8ptNTO+ju6VUpMcnJmkuV55E0eSLUq1LVzOSAAoD8Te2XnMbV8ZyfFQrufxVfuwu1g96Ve+773JnwHcj70wRZOQ/DukC4xczQVHRIm9Ej1T493fB7BwbHfkz7wB+bk3YMVd12Jz7kCPEx7OHZXp9nuLv9TCSb+vtJzyYiON1aNWXr0Lotryci9tLHR+t2TltiMuwbeaKdenufzbU5d3AM5jMSu5qfOYvK59c9X1641NJN3IhnVt6fK6VJNh5Lz1RO/6pWTkNzFyHnrznUaN7pWCx4Z2cgl+785Ow+bcgZjUL83QseTtMedN2TbnDnQ5f1ZuO4K+c92vexIpWVXvN/Z0zOuRxtFRBt15a/fjbOUlt/JKAvHb+Yo1Kl7SepLwtZrMmaynMhOpGr3RBcOEKwMSaWX77/zxDJrG6Ef2RiJprSeENbuP65Zfr5Zm7b4S7c95UeuktQ3eqBZFHPzpnNfr0Ot+WjOFu+eePwKA3/Zq4/a6/NgrPX/BrVZEb7I2ZRdMtSepYV2vJAJLwbd8rhK131sqk7Lnj1pPC62aOmmsFKO5F86kT40aKVGlutvTiLKCYHwuIE83M7WxiQQBaNM0yuOAcmo1T/6sbjdaE+JLPkxtvtNIjYO0TExEuEtenrymy2i5/bl9SvKaIk9N4UZrvZ3HvErzoB7pAa/8YrXquTJv7X7cmtVKs+bfKt2UGaj4QB6cSP+uTTXZPf3TAQG6XWmBmqdevbE4HOKVAYm0uttK3fGMnBRaJ7HWyfXyxkLDARfguVu3nLKNXH7RUhskS7kNWr1E9LywrtCtZ8+QLi3w0d4Tmp/R634qn8JdbR8P6dICa/eegAhgxdfFePPrYrfJBqWLYIm9Uvd489QFU96VVO0C5GkeI2WZ2iU0dtsXUpNfhxaN0TM1XrOmTuoqq1YerRuYsnul3s3dUzIvoD3P0YyhvwzaBuNPlFINkvwcGdG9teqga55mvAW8f9L3dNM32uSidZPydaZ1ZfDr6Xoi5ylXTP57y8cE0kty9+f2yRntig1ojxel9r1Gp4iQjL0mGQ/c0AFJtijsLj6juowyn0yNL010/sZAxQdaJ1ZtInT5NO2bD53CwvWus42GCcDq+69zDlntaajsmIhwl8n0lCOlGjkptE5i5ck1c9VeZLSM9SpIkew5ehZ90pt5Nf+MWhKq2gVOuQ3y0Ve1kh6VRLj37Hl5Y6Hz5iXP6ZDGsZG6nyrLKOLKvkqMa+SSdK2WICqiZmAztd9ILdB5bKjr8O1JNv0umGrV9mozqso/Lz9uAOgm5gE1TX6SqQPTDXeVBYyNwvr4zZ0xLDPJ7eItv7nrJfOqkWq/Cop/Gc0XNTfHx3I66TaFyXkadE2aF0kURdVjXtpP3l5H/N2dVHmTqs361T7racwTQCVXSGV/eZOXpzdxqTJAVxt4z5tt1OuK7UstfFZyU8zVqU2Uu6Vra+d6tAaoVCZrW5UgensWB8DChQvx17/+FSdOnEBWVhYWLFiA3r17e/xcWVkZbDYb7HY74uLiglDSmoNcmhVTEi4I2Jw70PnE4I9qMvnNUD7DqNzKbUc8jsUhALg5syWuaRePP7/3rdv3/GnYVW4DP2kpsVfigz3H8cyH7gHJoKsS8Pl3+jPLqpHvO/n2aA1Bv+r+PppdOcMAvDC2u+akeNI2aDWdAMCI7q2wepd789WKu651qR6V/85rCo47xyKRXxw9Ja3Kl0+Oj8bYJVtVl1V+t9r2fHnoFBZuKKzp0gxgTO9kPDCoAwDoHq9yRue0AWpyAqSh7+VdJT0lRd/cpSU++eYn1WXCBOD5O7qhZ2q8V+WWyq42Bo5U6+YpP8UIve/Xk19Yqvnb6h3nWgOmaSVnero21VZt1q/12efHdMO05bvclpcf83r7D6g53ueOqgl6PJXP09Qcys8D3s0Mrvb9j+V0cuuKLdWm1WZ/Lv2yCK9sKlJtClKuR2vbZt7sOrdQICbK1OLN/dv0GpWVK1fikUceweLFi3HNNddg/vz5GDJkCA4cOIDExESzi+fGyJD0/viB7+mfjlu7uc/TIGdkLAYRwId7T+CjvSdUaxG0nmYlagPRqdEKUoZ3a4UbO7eoeQr6pelJTq8ngdr8M1ptrQB0J8WTSL/P7uIzblXIAoB3C9yDFLWqd3lVttY4NlLSqmoehWL5Vff3UV02DPpPPEm2KKwpOI4XZTVwIoDlXxdj+dfFmDcqEyO6t3aZ6Xh491Zux5M3c9qECa5D3yubk/60eh8+339S9bMf7zuB1VOvw7bDZ9y6yjrEK3k0UzwMdKikduxIF+YwARj5q9ZYvfOYai2Y0RwkX3NF9GoLpaaMMNF1BGSp5hRwv7mq9VDT6u3lz/yW2qxf67NQ+Q2U59veY3bddUs9IdWS370ZF0Sr+Vmr9tnoTN9aXbFrkycj1SZK8wRpTUAoX17ZFK6cANEqg7upMT1Qee6553DXXXdh4sSJAIDFixfjww8/xGuvvYbc3FyTS+cumF22jAQ90jKeumyKcL0gymmdiN48YWuRT1nuKa9Cvj2AevOT2jqUPDVrqU3f7sxhUQkU9C4enkbp1Ev6lC9fcdHhNvmeACBvVKbuMVBir8RcnSa33Hf2uvU2eXfXcTw6xHW8CKPd5AVBfWAraZtTm0drBikAnBO7qXWVdS4j1oyY6ZaQCs9Bm9YN6d1dx7F66nXOWgoAHgdbU/L1PFfeJJTEX5oW42Mi3R5K1LZFHnTKj/VAX5tqs36tz/ZIbap7sy6xV2KehyZlhwjnsPpK3owLYnQKAUC7Gcvbrti1TVaV1qs1AaHR77LS4G5qTO2efPHiRezYsQODBw92vhYWFobBgwdjy5YtbstXVVWhrKzM5S/YpIuOFbpsyRnpviaKNTNk/mnYVW7vKbtdejtrbLggYGZOhvOACgMwT3GT9WXfSSeh8ikkXHn39bA9etsVBmD2bVerNg0sGNtd96nCUzfH0b1SsPr+63S7oEvLj+6VgvzcG7BwbHe8OKamq7CnJxqtQdckItwvvGr7Rm071MosiMC17eJVvys6IsyZI6NFfuHW+x1VezYY7J6pdUOquOhwHkvScSXlE8m7fat9jdYIwEZJ3VZfHNNd9Xj5VdumqjlDRgJI+U00kNem2qxf77NqXXolRrY/DK7D6stfVxsXRE5tGg21m6JyNHC1mzoAn/aP8hrnKyPr0VrGSFd8M5lao1JaWorq6mq0aNHC5fUWLVpg/373KDovLw+zZ88OVvE0WaXLlpynpzbgygURgMeBnzxdIKTeMPKEv9G9UrxqrvJ13ymbvIp/rnSZTFFte/S2ywGgaXSE6tOQtL+0GKm+zUpu6jIQlLzpQbl8ks11RltPPCUhy38n+XapNWUpt0Nt8CwHgCKNi1fFRYdueZTbqtUzCVCfS0cUjQ1H7u2Tv16TYxiAKbLRaGsjyVYzV1L5xcuGq/uNJJmr9fYK1LWpNuvX+6xWjYORyUIn90vFP1UGeVvwywCH8u/wdK4qJz5US2jWu6lb8d5ghJUGd1NjetOPN2bOnIlHHnnE+e+ysjIkJyebUhZ/5aL4k/IG/uHeEmeylfJk83TCGrnhqJ2Q3jRX1YZ8HVnJTQ1f/H2tgtZj5OKkXAaAXy5megGqlGQIaE8v76mMUq8xiVb3a2VNifxGf9/AdPRrn6C6rVJgJp8FXOrBpMyJMnrh9KXt31OToz95s361bRnevRXe3XVcNx8hkNem2qzf289q/ZbK4/QVleNU7SHDyL5PskXh8WFXaY6A7emmbsV7gye1yZcJBlN7/Vy8eBHR0dF4++23MXz4cOfr48ePx9mzZ/Hee+/pft6MXj+hRq8XkqceSsqeFI/ldELX1k0s+6RgtMeVWg8ReeZ/qD0NAVfKHR0RhqO/THDYI/VK7ydft0trX+ntQ1+/T/kZT9/h7fpCmXJb6tK2GeHttcrbY8Vbwf6+YAnmceXN/dv07snXXHMNevfujQULFgAAHA4HUlJSMG3aNI/JtAxUAq+uXhDr6nYFgta+CsY+5O9ERgX7WOGxWTshFaisXLkS48ePx8svv4zevXtj/vz5+O9//4v9+/e75a4oMVAhIiIKPSE1jsro0aNx6tQp/PnPf8aJEyfQrVs3fPzxxx6DFCIiIqr7TK9RqQ3WqBAREYUeb+7fpo6jQkRERKSHgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCzL9CH0a0MaVLesrMzkkhAREZFR0n3byOD4IR2onDt3DgCQnJxsckmIiIjIW+fOnYPNZtNdJqTn+nE4HDh+/DhiY2MhCILZxQm6srIyJCcno7i4mHMd1QL3o39wP/oH96N/cD/6R6D2oyiKOHfuHFq1aoWwMP0slJCuUQkLC0ObNm3MLobp4uLieCL6Afejf3A/+gf3o39wP/pHIPajp5oUCZNpiYiIyLIYqBAREZFlMVAJYZGRkXjyyScRGRlpdlFCGvejf3A/+gf3o39wP/qHFfZjSCfTEhERUd3GGhUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZTFQCQGbNm3CLbfcglatWkEQBLz77rsu74uiiD//+c9ISkpCVFQUBg8ejIMHD5pTWAvztB8nTJgAQRBc/oYOHWpOYS0qLy8PvXr1QmxsLBITEzF8+HAcOHDAZZkLFy5g6tSpaNasGRo3boxRo0bhp59+MqnE1mRkPw4YMMDteLz33ntNKrE1LVq0CF27dnUORtanTx+sXbvW+T6PRWM87Uezj0UGKiGgvLwcWVlZWLhwoer7zz77LF544QUsXrwYW7duRUxMDIYMGYILFy4EuaTW5mk/AsDQoUNRUlLi/FuxYkUQS2h9GzduxNSpU/HVV1/hs88+w6VLl3DTTTehvLzcuczDDz+M999/H2+99RY2btyI48ePY+TIkSaW2nqM7EcAuOuuu1yOx2effdakEltTmzZtMHfuXOzYsQPbt2/HDTfcgNtuuw3ffPMNAB6LRnnaj4DJx6JIIQWAuHr1aue/HQ6H2LJlS/Gvf/2r87WzZ8+KkZGR4ooVK0woYWhQ7kdRFMXx48eLt912mynlCVUnT54UAYgbN24URbHm2GvYsKH41ltvOZf57rvvRADili1bzCqm5Sn3oyiKYv/+/cUHH3zQvEKFqKZNm4qvvPIKj8VakvajKJp/LLJGJcQVFRXhxIkTGDx4sPM1m82Ga665Blu2bDGxZKFpw4YNSExMRKdOnXDffffh9OnTZhfJ0ux2OwAgPj4eALBjxw5cunTJ5XjMyMhASkoKj0cdyv0o+c9//oPmzZujS5cumDlzJioqKswoXkiorq7Gm2++ifLycvTp04fHoo+U+1Fi5rEY0pMSEnDixAkAQIsWLVxeb9GihfM9Mmbo0KEYOXIk0tLSUFhYiMcffxw5OTnYsmULwsPDzS6e5TgcDjz00EPo27cvunTpAqDmeIyIiECTJk1cluXxqE1tPwLA2LFj0bZtW7Rq1Qp79uzBjBkzcODAAaxatcrE0lrP3r170adPH1y4cAGNGzfG6tWr0blzZxQUFPBY9ILWfgTMPxYZqBD94o477nD+d2ZmJrp27Yr09HRs2LABgwYNMrFk1jR16lTs27cPmzdvNrsoIU1rP959993O/87MzERSUhIGDRqEwsJCpKenB7uYltWpUycUFBTAbrfj7bffxvjx47Fx40azixVytPZj586dTT8W2fQT4lq2bAkAbpnsP/30k/M98k27du3QvHlzHDp0yOyiWM60adPwwQcfYP369WjTpo3z9ZYtW+LixYs4e/asy/I8HtVp7Uc111xzDQDweFSIiIhA+/bt0aNHD+Tl5SErKwvPP/88j0Uvae1HNcE+FhmohLi0tDS0bNkSn3/+ufO1srIybN261aV9kbx39OhRnD59GklJSWYXxTJEUcS0adOwevVqrFu3DmlpaS7v9+jRAw0bNnQ5Hg8cOIAjR47weJTxtB/VFBQUAACPRw8cDgeqqqp4LNaStB/VBPtYZNNPCDh//rxL5FpUVISCggLEx8cjJSUFDz30EJ5++ml06NABaWlpeOKJJ9CqVSsMHz7cvEJbkN5+jI+Px+zZszFq1Ci0bNkShYWFeOyxx9C+fXsMGTLExFJby9SpU7F8+XK89957iI2Ndbb122w2REVFwWazYfLkyXjkkUcQHx+PuLg4PPDAA+jTpw+uvfZak0tvHZ72Y2FhIZYvX46bb74ZzZo1w549e/Dwww8jOzsbXbt2Nbn01jFz5kzk5OQgJSUF586dw/Lly7FhwwZ88sknPBa9oLcfLXEsmtbfiAxbv369CMDtb/z48aIo1nRRfuKJJ8QWLVqIkZGR4qBBg8QDBw6YW2gL0tuPFRUV4k033SQmJCSIDRs2FNu2bSvedddd4okTJ8wutqWo7T8A4tKlS53LVFZWivfff7/YtGlTMTo6WhwxYoRYUlJiXqEtyNN+PHLkiJidnS3Gx8eLkZGRYvv27cU//OEPot1uN7fgFjNp0iSxbdu2YkREhJiQkCAOGjRI/PTTT53v81g0Rm8/WuFYFERRFIMTEhERERF5hzkqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIgoYC5evGh2EdxYsUxEpI2BChEZNmDAAEybNg3Tpk2DzWZD8+bN8cQTT0CaiSM1NRV/+ctfMG7cOMTFxeHuu+8GAGzevBnXX389oqKikJycjOnTp6O8vNy53pdeegkdOnRAo0aN0KJFC9x+++3O995++21kZmYiKioKzZo1w+DBg52fHTBgAB566CGXMg4fPhwTJkxw/tvXMhGRNTBQISKv/Otf/0KDBg3w9ddf4/nnn8dzzz2HV155xfn+3/72N2RlZWHXrl144oknUFhYiKFDh2LUqFHYs2cPVq5cic2bN2PatGkAgO3bt2P69Ol46qmncODAAXz88cfIzs4GAJSUlGDMmDGYNGkSvvvuO2zYsAEjR46Et1OUeVsmIrIOTkpIRIYNGDAAJ0+exDfffANBEAAAubm5WLNmDb799lukpqaie/fuWL16tfMzU6ZMQXh4OF5++WXna5s3b0b//v1RXl6Ojz76CBMnTsTRo0cRGxvr8n07d+5Ejx49cPjwYbRt21a1PN26dcP8+fOdrw0fPhxNmjTBsmXLAMCnMjVq1KhW+4mI/Ic1KkTklWuvvdYZpABAnz59cPDgQVRXVwMAevbs6bL87t27sWzZMjRu3Nj5N2TIEDgcDhQVFeHGG29E27Zt0a5dO9x55534z3/+g4qKCgBAVlYWBg0ahMzMTPzmN7/BkiVLcObMGa/L7G2ZiMg6GKgQkV/FxMS4/Pv8+fO45557UFBQ4PzbvXs3Dh48iPT0dMTGxmLnzp1YsWIFkpKS8Oc//xlZWVk4e/YswsPD8dlnn2Ht2rXo3LkzFixYgE6dOjmDibCwMLdmoEuXLtW6TERkHQxUiMgrW7dudfn3V199hQ4dOiA8PFx1+V/96lf49ttv0b59e7e/iIgIAECDBg0wePBgPPvss9izZw8OHz6MdevWAQAEQUDfvn0xe/Zs7Nq1CxEREc5mnISEBJSUlDi/q7q6Gvv27fO4DUbKRETWwECFiLxy5MgRPPLIIzhw4ABWrFiBBQsW4MEHH9RcfsaMGcjPz8e0adNQUFCAgwcP4r333nMmrn7wwQd44YUXUFBQgB9//BGvv/46HA4HOnXqhK1bt2LOnDnYvn07jhw5glWrVuHUqVO46qqrAAA33HADPvzwQ3z44YfYv38/7rvvPpw9e9bjNngqExFZRwOzC0BEoWXcuHGorKxE7969ER4ejgcffNDZ5VdN165dsXHjRvzxj3/E9ddfD1EUkZ6ejtGjRwMAmjRpglWrVmHWrFm4cOECOnTogBUrVuDqq6/Gd999h02bNmH+/PkoKytD27Zt8fe//x05OTkAgEmTJmH37t0YN24cGjRogIcffhgDBw70uA2eykRE1sFeP0RkmFovGyKiQGLTDxEREVkWAxUiIiKyLDb9EBERkWWxRoWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgs6/8B01+YvL+mRYAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtOklEQVR4nO3deVxU5f4H8M8MOgjKorIbAmLuiKZppKKmVyRvZdrN1NyXFpfUMrWupbaA+ruldUu7Vlq3RW9lZpqluaaS4oKoFSlhWIJKCoggCDy/P2hOs5xZmWFmOJ/36zW+ZM6ZM885c+ac7zzP93kelRBCgIiIiEjB1K4uABEREZGrMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIo+xaNEiqFQqq9ZVqVRYtGiRU8vTr18/9OvXz223R0TWY0BERDZbt24dVCqV9GjQoAFatGiB8ePH4/fff3d18dxOdHS03vEKCQlBnz598Pnnnztk+6WlpVi0aBH27NnjkO0RKREDIiKy25IlS/Df//4Xq1evRnJyMj744AP07dsXN27ccMr7/fOf/0RZWZlTtu1sXbp0wX//+1/897//xVNPPYULFy5g2LBhWL16da23XVpaisWLFzMgIqqFBq4uABF5ruTkZHTv3h0AMHnyZAQFBWHp0qXYvHkzHnzwQYe/X4MGDdCggWdetlq0aIGHH35Y+nvs2LFo3bo1Xn31VTz66KMuLBkRAawhIiIH6tOnDwAgOztb7/mffvoJDzzwAJo1a4ZGjRqhe/fu2Lx5s946N2/exOLFi3HrrbeiUaNGaN68OXr37o0dO3ZI68jlEJWXl2P27NkIDg6Gn58f7r33Xvz2229GZRs/fjyio6ONnpfb5tq1a3HXXXchJCQE3t7e6NChA1atWmXTsbAkLCwM7du3R05Ojtn1Ll26hEmTJiE0NBSNGjVCfHw83nvvPWn5uXPnEBwcDABYvHix1Czn7PwpovrGM39qEZFbOnfuHACgadOm0nOnT59Gr1690KJFC8yfPx+NGzfG//73PwwdOhSfffYZ7r//fgA1gUlKSgomT56MHj16oLi4GEeOHMGxY8fwt7/9zeR7Tp48GR988AFGjRqFO++8E7t27cKQIUNqtR+rVq1Cx44dce+996JBgwb48ssv8fjjj6O6uhrTpk2r1ba1bt68ifPnz6N58+Ym1ykrK0O/fv1w9uxZTJ8+HTExMfjkk08wfvx4FBYW4oknnkBwcDBWrVqFxx57DPfffz+GDRsGAOjcubNDykmkGIKIyEZr164VAMS3334rLl++LM6fPy8+/fRTERwcLLy9vcX58+eldQcMGCDi4uLEjRs3pOeqq6vFnXfeKW699Vbpufj4eDFkyBCz7/v8888L3ctWRkaGACAef/xxvfVGjRolAIjnn39eem7cuHEiKirK4jaFEKK0tNRovaSkJNGqVSu95/r27Sv69u1rtsxCCBEVFSUGDRokLl++LC5fvixOnDghHnroIQFAzJgxw+T2VqxYIQCIDz74QHquoqJCJCQkiCZNmoji4mIhhBCXL1822l8isg2bzIjIbgMHDkRwcDAiIyPxwAMPoHHjxti8eTNuueUWAMCVK1ewa9cuPPjgg7h27RoKCgpQUFCAP/74A0lJSThz5ozUKy0wMBCnT5/GmTNnrH7/r776CgAwc+ZMvednzZpVq/3y8fGR/l9UVISCggL07dsXv/zyC4qKiuza5vbt2xEcHIzg4GDEx8fjk08+wZgxY7B06VKTr/nqq68QFhaGkSNHSs81bNgQM2fORElJCfbu3WtXWYjIGJvMiMhub7zxBtq0aYOioiK8++672LdvH7y9vaXlZ8+ehRACCxcuxMKFC2W3cenSJbRo0QJLlizBfffdhzZt2qBTp04YPHgwxowZY7bp59dff4VarUZsbKze823btq3Vfh04cADPP/880tLSUFpaqresqKgIAQEBNm+zZ8+eePHFF6FSqeDr64v27dsjMDDQ7Gt+/fVX3HrrrVCr9X+7tm/fXlpORI7BgIiI7NajRw+pl9nQoUPRu3dvjBo1CllZWWjSpAmqq6sBAE899RSSkpJkt9G6dWsAQGJiIrKzs/HFF19g+/btePvtt/Hqq69i9erVmDx5cq3LampAx6qqKr2/s7OzMWDAALRr1w6vvPIKIiMjodFo8NVXX+HVV1+V9slWQUFBGDhwoF2vJSLnY0BERA7h5eWFlJQU9O/fH//+978xf/58tGrVCkBNM481wUCzZs0wYcIETJgwASUlJUhMTMSiRYtMBkRRUVGorq5Gdna2Xq1QVlaW0bpNmzZFYWGh0fOGtSxffvklysvLsXnzZrRs2VJ6fvfu3RbL72hRUVHIzMxEdXW1Xi3RTz/9JC0HTAd7RGQ95hARkcP069cPPXr0wIoVK3Djxg2EhISgX79+eOutt5CXl2e0/uXLl6X///HHH3rLmjRpgtatW6O8vNzk+yUnJwMAXnvtNb3nV6xYYbRubGwsioqKkJmZKT2Xl5dnNFq0l5cXAEAIIT1XVFSEtWvXmiyHs9x9993Iz8/Hhg0bpOcqKyvx+uuvo0mTJujbty8AwNfXFwBkAz4isg5riIjIoebOnYt//OMfWLduHR599FG88cYb6N27N+Li4jBlyhS0atUKFy9eRFpaGn777TecOHECANChQwf069cP3bp1Q7NmzXDkyBF8+umnmD59usn36tKlC0aOHIk333wTRUVFuPPOO7Fz506cPXvWaN2HHnoI8+bNw/3334+ZM2eitLQUq1atQps2bXDs2DFpvUGDBkGj0eCee+7BI488gpKSEqxZswYhISGyQZ0zTZ06FW+99RbGjx+Po0ePIjo6Gp9++ikOHDiAFStWwM/PD0BNEniHDh2wYcMGtGnTBs2aNUOnTp3QqVOnOi0vkUdzdTc3IvI82m736enpRsuqqqpEbGysiI2NFZWVlUIIIbKzs8XYsWNFWFiYaNiwoWjRooX4+9//Lj799FPpdS+++KLo0aOHCAwMFD4+PqJdu3bipZdeEhUVFdI6cl3ky8rKxMyZM0Xz5s1F48aNxT333CPOnz8v2w19+/btolOnTkKj0Yi2bduKDz74QHabmzdvFp07dxaNGjUS0dHRYunSpeLdd98VAEROTo60ni3d7i0NKWBqexcvXhQTJkwQQUFBQqPRiLi4OLF27Vqj1x48eFB069ZNaDQadsEnsoNKCJ16YSIiIiIFYg4RERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixePAjFaqrq7GhQsX4Ofnx2HyiYiIPIQQAteuXUNERITRRMm6GBBZ6cKFC4iMjHR1MYiIiMgO58+fxy233GJyOQMiK2mHyD9//jz8/f1dXBoiIiKyRnFxMSIjI6X7uCkMiKykbSbz9/dnQERERORhLKW7MKmaiIiIFI8BERERESkeAyIiIiJSPOYQERGR4lVVVeHmzZuuLgbZoWHDhvDy8qr1dhgQERGRYgkhkJ+fj8LCQlcXhWohMDAQYWFhtRonkAEREREpljYYCgkJga+vLwfe9TBCCJSWluLSpUsAgPDwcLu3xYCIiIgUqaqqSgqGmjdv7urikJ18fHwAAJcuXUJISIjdzWdMqiYiIkXS5gz5+vq6uCRUW9rPsDZ5YAyIiIhI0dhM5vkc8RkyICIiIiLFY0BEREREAGpqWjZt2uTqYujZs2cPVCqV03sCMiBysbyiMhzMLkBeUZmri0JERAqxaNEidOnSxdXFcCvsZeZCG9JzsWDjSVQLQK0CUobFYcTtLV1dLCIiIsVhDZGL5BWVScEQAFQL4JmNp1hTREREFlVXVyMlJQUxMTHw8fFBfHw8Pv30UwB/NTHt3LkT3bt3h6+vL+68805kZWUBANatW4fFixfjxIkTUKlUUKlUWLdunbTtgoIC3H///fD19cWtt96KzZs3W1Um7ft+88036Nq1K3x8fHDXXXfh0qVL2LZtG9q3bw9/f3+MGjUKpaWl0uvKy8sxc+ZMhISEoFGjRujduzfS09Mdd7CsxIDIRXIKrkvBkFaVEDhXUCr/AiIicmt1mQKRkpKC999/H6tXr8bp06cxe/ZsPPzww9i7d6+0zrPPPot//etfOHLkCBo0aICJEycCAEaMGIEnn3wSHTt2RF5eHvLy8jBixAjpdYsXL8aDDz6IzMxM3H333Rg9ejSuXLliddkWLVqEf//73zh48CDOnz+PBx98ECtWrMBHH32ErVu3Yvv27Xj99del9Z9++ml89tlneO+993Ds2DG0bt0aSUlJNr2nIzAgcpGYoMZQG/QS9FKpEB3E8TCIiDzNhvRc9ErdhVFrDqFX6i5sSM912nuVl5fj5ZdfxrvvvoukpCS0atUK48ePx8MPP4y33npLWu+ll15C37590aFDB8yfPx8HDx7EjRs34OPjgyZNmqBBgwYICwtDWFiYNLghAIwfPx4jR45E69at8fLLL6OkpASHDx+2unwvvvgievXqha5du2LSpEnYu3cvVq1aha5du6JPnz544IEHsHv3bgDA9evXsWrVKixfvhzJycno0KED1qxZAx8fH7zzzjuOO2hWYEDkIuEBPkgZFgevP8dO8FKp8PKwTggP8LHwSiIicid1nQJx9uxZlJaW4m9/+xuaNGkiPd5//31kZ2dL63Xu3Fn6v3ZKC+0UF+bovq5x48bw9/e36nVyrw8NDYWvry9atWql95x2e9nZ2bh58yZ69eolLW/YsCF69OiBH3/80er3dAQmVbvQiNtbIrFNMM4VlCI6yJfBEBGRBzKXAuGM63pJSQkAYOvWrWjRooXeMm9vbykoatiwofS8duDC6upqi9vXfZ32tda8Tu71KpWq1turKwyIXCw8wIeBEBGRB9OmQOgGRc5MgejQoQO8vb2Rm5uLvn37Gi3XrSUyRaPRoKqqyhnFs0lsbCw0Gg0OHDiAqKgoADXTb6Snp2PWrFl1WhYGRERERLWgTYF4ZuMpVAnh9BQIPz8/PPXUU5g9ezaqq6vRu3dvFBUV4cCBA/D395cCC3Oio6ORk5ODjIwM3HLLLfDz84O3t7dTymtO48aN8dhjj2Hu3Llo1qwZWrZsiWXLlqG0tBSTJk2q07IwICIiIqqluk6BeOGFFxAcHIyUlBT88ssvCAwMxG233YZnnnnGquao4cOHY+PGjejfvz8KCwuxdu1ajB8/3qllNiU1NRXV1dUYM2YMrl27hu7du+Obb75B06ZN67QcKiGEsLwaFRcXIyAgAEVFRfD393d1cYiIqJZu3LiBnJwcxMTEoFGjRq4uDtWCuc/S2vs3e5kRERGR4jEgIiIiIoseffRRvW7+uo9HH33U1cWrNZcGRPv27cM999yDiIgI2Rl2tUOKGz6WL18urRMdHW20PDU1VW87mZmZ6NOnDxo1aoTIyEgsW7asLnaPiIio3liyZAkyMjJkH0uWLHF18WrNpUnV169fR3x8PCZOnIhhw4YZLc/Ly9P7e9u2bZg0aRKGDx+u9/ySJUswZcoU6W8/Pz/p/8XFxRg0aBAGDhyI1atX4+TJk5g4cSICAwMxdepUB+8RERFR/RQSEoKQkBBXF8NpXBoQJScnIzk52eTysLAwvb+/+OIL9O/fX2/ES6AmADJcV+vDDz9ERUUF3n33XWg0GnTs2BEZGRl45ZVXGBARERERAA/KIbp48SK2bt0qOy5Bamoqmjdvjq5du2L58uWorKyUlqWlpSExMREajUZ6LikpCVlZWbh69arJ9ysvL0dxcbHeg4iI6h93HDWZbOOIz9BjxiF677334OfnZ9S0NnPmTNx2221o1qwZDh48iAULFiAvLw+vvPIKACA/Px8xMTF6rwkNDZWWmRrnICUlBYsXL3bCnhARkTvQaDRQq9W4cOECgoODodFopCkuyDMIIVBRUYHLly9DrVbrVX7YymMConfffRejR482Gl9gzpw50v87d+4MjUaDRx55BCkpKbUadXPBggV62y4uLkZkZKTd2yMiIveiVqsRExODvLw8XLhwwdXFoVrw9fVFy5YtoVbb3/DlEQHRd999h6ysLGzYsMHiuj179kRlZSXOnTuHtm3bIiwsDBcvXtRbR/u3qbwjoGaCPFcMY05ERHVHo9GgZcuWqKysdIu5vch2Xl5eaNCgQa1r9zwiIHrnnXfQrVs3xMfHW1w3IyMDarVayoRPSEjAs88+i5s3b0oz7u7YsQNt27at82HBiYjI/WhnZDeclZ2UxaVJ1SUlJdIYBgCkieZyc3OldYqLi/HJJ59g8uTJRq9PS0vDihUrcOLECfzyyy/48MMPMXv2bDz88MNSsDNq1ChoNBpMmjQJp0+fxoYNG7By5Uq95jAiIiJSNpfWEB05cgT9+/eX/tYGKePGjcO6desAAOvXr4cQAiNHjjR6vbe3N9avX49FixahvLwcMTExmD17tl6wExAQgO3bt2PatGno1q0bgoKC8Nxzz7HLPREREUk4uauVOLkrERGR5+HkrkRERERWYkBEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBTPpQHRvn37cM899yAiIgIqlQqbNm3SWz5+/HioVCq9x+DBg/XWuXLlCkaPHg1/f38EBgZi0qRJKCkp0VsnMzMTffr0QaNGjRAZGYlly5Y5e9eIiIjIg7g0ILp+/Tri4+PxxhtvmFxn8ODByMvLkx4ff/yx3vLRo0fj9OnT2LFjB7Zs2YJ9+/Zh6tSp0vLi4mIMGjQIUVFROHr0KJYvX45FixbhP//5j9P2i4iIiDxLA1e+eXJyMpKTk82u4+3tjbCwMNllP/74I77++mukp6eje/fuAIDXX38dd999N/7v//4PERER+PDDD1FRUYF3330XGo0GHTt2REZGBl555RW9wImIiIiUy+1ziPbs2YOQkBC0bdsWjz32GP744w9pWVpaGgIDA6VgCAAGDhwItVqNQ4cOSeskJiZCo9FI6yQlJSErKwtXr141+b7l5eUoLi7WexAREVH95NYB0eDBg/H+++9j586dWLp0Kfbu3Yvk5GRUVVUBAPLz8xESEqL3mgYNGqBZs2bIz8+X1gkNDdVbR/u3dh05KSkpCAgIkB6RkZGO3DUiIiJyIy5tMrPkoYcekv4fFxeHzp07IzY2Fnv27MGAAQOc+t4LFizAnDlzpL+Li4sZFBEREdVTbl1DZKhVq1YICgrC2bNnAQBhYWG4dOmS3jqVlZW4cuWKlHcUFhaGixcv6q2j/dtUbhJQk7vk7++v9yAiIqL6yaMCot9++w1//PEHwsPDAQAJCQkoLCzE0aNHpXV27dqF6upq9OzZU1pn3759uHnzprTOjh070LZtWzRt2rRud4CIiIjckksDopKSEmRkZCAjIwMAkJOTg4yMDOTm5qKkpARz587F999/j3PnzmHnzp2477770Lp1ayQlJQEA2rdvj8GDB2PKlCk4fPgwDhw4gOnTp+Ohhx5CREQEAGDUqFHQaDSYNGkSTp8+jQ0bNmDlypV6zWFERESkbCohhHDVm+/Zswf9+/c3en7cuHFYtWoVhg4diuPHj6OwsBAREREYNGgQXnjhBb0k6StXrmD69On48ssvoVarMXz4cLz22mto0qSJtE5mZiamTZuG9PR0BAUFYcaMGZg3b55NZS0uLkZAQACKiorYfEZEROQhrL1/uzQg8iQMiIiIiDyPtfdvj8ohIiIiInIGBkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEClEXlEZDmYXIK+ozNVFISIicjsNXF0Acr4N6blYsPEkqgWgVgEpw+Iw4vaWri4WERGR22ANUT2XV1QmBUMAUC2AZzaeYk0RERGRDgZE9VxOwXUpGNKqEgLnCkpdUyAiIiI3xIConosJagy1Sv85L5UK0UG+rikQERGRG2JAVI/lFZUhp+A65iW3g5eqJiryUqnw8rBOCA/wcXHpiIiI3AeTquspw0TqeYPbofMtgYgO8mUwREREZIA1RPWQXCL1sq+zGAwRERGZwICoHmIiNRERkW0YENVDTKQmIiKyDQOieig8wAcpw+KYSE1ERGQlJlXXUyNub4nENsE4V1DK3CEiIiILGBDVY+EBPgyEiIiIrMAmMyIiIlI8BkRERESkeAyIiIiISPFcGhDt27cP99xzDyIiIqBSqbBp0yZp2c2bNzFv3jzExcWhcePGiIiIwNixY3HhwgW9bURHR0OlUuk9UlNT9dbJzMxEnz590KhRI0RGRmLZsmV1sXtERETkIVwaEF2/fh3x8fF44403jJaVlpbi2LFjWLhwIY4dO4aNGzciKysL9957r9G6S5YsQV5envSYMWOGtKy4uBiDBg1CVFQUjh49iuXLl2PRokX4z3/+49R9IyIiIs/h0l5mycnJSE5Oll0WEBCAHTt26D3373//Gz169EBubi5atmwpPe/n54ewsDDZ7Xz44YeoqKjAu+++C41Gg44dOyIjIwOvvPIKpk6d6rid8SDaSV9jghqzFxoRERE8LIeoqKgIKpUKgYGBes+npqaiefPm6Nq1K5YvX47KykppWVpaGhITE6HRaKTnkpKSkJWVhatXr5p8r/LychQXF+s96oMN6bnolboLo9YcQq/UXdiQnuvqIhEREbmcxwREN27cwLx58zBy5Ej4+/tLz8+cORPr16/H7t278cgjj+Dll1/G008/LS3Pz89HaGio3ra0f+fn55t8v5SUFAQEBEiPyMhIB+9R3ZOb9PWZjaeQV1Tm2oIRERG5mEcMzHjz5k08+OCDEEJg1apVesvmzJkj/b9z587QaDR45JFHkJKSAm9vb7vfc8GCBXrbLi4u9vigyNykr2w6IyIiJXP7gEgbDP3666/YtWuXXu2QnJ49e6KyshLnzp1D27ZtERYWhosXL+qto/3bVN4RAHh7e9cqoHJH2klfdYMiTvpKRETk5k1m2mDozJkz+Pbbb9G8eXOLr8nIyIBarUZISAgAICEhAfv27cPNmzeldXbs2IG2bduiadOmTiu7O+Kkr0RERPJcWkNUUlKCs2fPSn/n5OQgIyMDzZo1Q3h4OB544AEcO3YMW7ZsQVVVlZTz06xZM2g0GqSlpeHQoUPo378//Pz8kJaWhtmzZ+Phhx+Wgp1Ro0Zh8eLFmDRpEubNm4dTp05h5cqVePXVV12yz67GSV+JiIiMqYQQwvJqzrFnzx7079/f6Plx48Zh0aJFiImJkX3d7t270a9fPxw7dgyPP/44fvrpJ5SXlyMmJgZjxozBnDlz9Jq7MjMzMW3aNKSnpyMoKAgzZszAvHnzbCprcXExAgICUFRUZLHZjoiIiNyDtfdvlwZEnoQBERERkeex9v7t1jlERERERHWBAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSvgbUrFhcXW71Rf39/uwpDRERE5ApWB0SBgYFQqVRm1xFCQKVSoaqqqtYFIyIiIqorVgdEu3fvdmY5iIiIiFzG6oCob9++ziwHERERkctYHRAZKiwsxDvvvIMff/wRANCxY0dMnDgRAQEBDiscERERUV2wq5fZkSNHEBsbi1dffRVXrlzBlStX8MorryA2NhbHjh1zdBmJiIiInEolhBC2vqhPnz5o3bo11qxZgwYNaiqZKisrMXnyZPzyyy/Yt2+fwwvqasXFxQgICEBRURF70REREXkIa+/fdgVEPj4+OH78ONq1a6f3/A8//IDu3bujtLTU9hK7OQZEREREnsfa+7ddTWb+/v7Izc01ev78+fPw8/OzZ5NERERELmNXQDRixAhMmjQJGzZswPnz53H+/HmsX78ekydPxsiRIx1dRiIiIiKnsisg+r//+z8MGzYMY8eORXR0NKKjozF+/Hg88MADWLp0qdXb2bdvH+655x5ERERApVJh06ZNesuFEHjuuecQHh4OHx8fDBw4EGfOnNFb58qVKxg9ejT8/f0RGBiISZMmoaSkRG+dzMxM9OnTB40aNUJkZCSWLVtmz24TERFRPWVXQKTRaLBy5UpcvXoVGRkZyMjIwJUrV/Dqq6/C29vb6u1cv34d8fHxeOONN2SXL1u2DK+99hpWr16NQ4cOoXHjxkhKSsKNGzekdUaPHo3Tp09jx44d2LJlC/bt24epU6dKy4uLizFo0CBERUXh6NGjWL58ORYtWoT//Oc/9uw6ERER1UfCTQAQn3/+ufR3dXW1CAsLE8uXL5eeKywsFN7e3uLjjz8WQgjxww8/CAAiPT1dWmfbtm1CpVKJ33//XQghxJtvvimaNm0qysvLpXXmzZsn2rZta1P5ioqKBABRVFRkz+4RERGRC1h7/7arhujGjRtYvnw57r77bnTv3h233Xab3sMRcnJykJ+fj4EDB0rPBQQEoGfPnkhLSwMApKWlITAwEN27d5fWGThwINRqNQ4dOiStk5iYCI1GI62TlJSErKwsXL161eT7l5eXo7i4WO9BRERE9ZNdI1VPmjQJ27dvxwMPPIAePXpYnPTVHvn5+QCA0NBQvedDQ0OlZfn5+QgJCdFb3qBBAzRr1kxvnZiYGKNtaJc1bdpU9v1TUlKwePHi2u8IERERuT27AqItW7bgq6++Qq9evRxdHrexYMECzJkzR/q7uLgYkZGRLiwREREROYtdTWYtWrRw+nhDYWFhAICLFy/qPX/x4kVpWVhYGC5duqS3vLKyEleuXNFbR24buu8hx9vbG/7+/noPIiIiqp/sCoj+9a9/Yd68efj1118dXR5JTEwMwsLCsHPnTum54uJiHDp0CAkJCQCAhIQEFBYW4ujRo9I6u3btQnV1NXr27Cmts2/fPty8eVNaZ8eOHWjbtq3J5jIiIiJSFrsCou7du+PGjRto1aoV/Pz80KxZM72HtUpKSqRu+0BNInVGRgZyc3OhUqkwa9YsvPjii9i8eTNOnjyJsWPHIiIiAkOHDgUAtG/fHoMHD8aUKVNw+PBhHDhwANOnT8dDDz2EiIgIAMCoUaOg0WgwadIknD59Ghs2bMDKlSv1msOIiIhI2ezKIRo5ciR+//13vPzyywgNDbU7qfrIkSPo37+/9Lc2SBk3bhzWrVuHp59+GtevX8fUqVNRWFiI3r174+uvv0ajRo2k13z44YeYPn06BgwYALVajeHDh+O1116TlgcEBGD79u2YNm0aunXrhqCgIDz33HN6YxURERGRstk1uauvry/S0tIQHx/vjDK5JU7uSkRE5HmcOrlru3btUFZWZnfhiIiIiNyJXQFRamoqnnzySezZswd//PEHBzAkIiIij2ZXk5laXRNHGeYOCSGgUqlQVVXlmNK5ETaZEREReR5r7992JVXv3r3b7oIRERERuRu7AqK+fftatd7jjz+OJUuWICgoyJ63ISIiIqoTduUQWeuDDz5gThERERG5PacGRHakJxERERHVOacGRERERESegAERERERKR4DIiIiIlI8BkRERESkeE4NiB5++GEOYuggeUVlOJhdgLwiTplCRETkaHaNQwQAhYWFOHz4MC5duoTq6mq9ZWPHjgUArFq1qnalIwDAhvRcLNh4EtUCUKuAlGFxGHF7S1cXi4iIqN6wa+qOL7/8EqNHj0ZJSQn8/f31pvBQqVS4cuWKQwvpDlw1dUdeURl6pe5Ctc6n5KVSYf/8/ggP8KmzchAREXkip852/+STT2LixIkoKSlBYWEhrl69Kj3qYzDkSjkF1/WCIQCoEgLnCkpdUyAiIqJ6yK6A6Pfff8fMmTPh6+vr6PKQgZigxlDrz6ELL5UK0UE89kRERI5iV0CUlJSEI0eOOLosJCM8wAcpw+Lg9WezpJdKhZeHdWJzGRERkQNZnVS9efNm6f9DhgzB3Llz8cMPPyAuLg4NGzbUW/fee+91XAkJI25vicQ2wThXUIroIF8GQ0RERA5mdVK1Wm1dZZJKpUJVVVWtCuWOnJ1UnVdUhpyC64gJasyAh4iIyEGsvX9bXUNk2LWeHIfd6omIiFzLrhyi999/H+Xl5UbPV1RU4P333691oZQkr6hMCoYAoFoACzae5ACMREREdciugGjChAkoKioyev7atWuYMGFCrQulJHLd6qsFsPZAjmsKREREpEB2BURCCL3BGLV+++03BAQE1LpQSiLXrR4A3t6Xw1oiIiKiOmLT1B1du3aFSqWCSqXCgAED0KDBXy+vqqpCTk4OBg8e7PBC1mfhAT6Y1DsGa77TrxGqBnCuoJQJ1kRERHXApoBo6NChAICMjAwkJSWhSZMm0jKNRoPo6GgMHz7coQVUgom9Y/D2dznQbTnj4ItERER1x6aA6PnnnwcAREdHY8SIEWjUqJFTCqU04QE+SB0eh2c2nkKVEBx8kYiIqI7ZNbmrVkVFhexs9y1b1r8u43UxuWteURkHXyQiInIgh49DpOvMmTOYOHEiDh48qPe8Ntm6Pg7MWBfCA3wYCBEREbmAXQHR+PHj0aBBA2zZsgXh4eGyPc6IiIiIPIVdAVFGRgaOHj2Kdu3aObo8RERERHXOrnGIOnTogIKCAkeXhYiIiMgl7AqIli5diqeffhp79uzBH3/8geLiYr0HERERkSexq5eZ7sz3uvlD9Tmpui56mREREZFjObWX2e7du+0uGLmvvKIy5BRcR0xQY/Z2IyIiRbGryaxv375Qq9VYs2YN5s+fj9atW6Nv377Izc2Fl5eXo8tIdWBDei56pe7CqDWH0Ct1Fzak57q6SERERHXGroDos88+Q1JSEnx8fHD8+HGUl5cDAIqKivDyyy87tIDR0dHS/Gm6j2nTpgEA+vXrZ7Ts0Ucf1dtGbm4uhgwZAl9fX4SEhGDu3LmorKx0aDmdJa+oDAezC5w60WteURkWbDyJ6j8bT6sF8MzGU5xcloiIFMOuJrMXX3wRq1evxtixY7F+/Xrp+V69euHFF190WOEAID09XS8n6dSpU/jb3/6Gf/zjH9JzU6ZMwZIlS6S/fX3/mgOsqqoKQ4YMQVhYGA4ePIi8vDyMHTsWDRs2dHjw5mgb0nOlQEWtAlKGxWHE7Y4fBTyn4LoUDGlVCcHJZYmISDHsqiHKyspCYmKi0fMBAQEoLCysbZn0BAcHIywsTHps2bIFsbGx6Nu3r7SOr6+v3jq6SVPbt2/HDz/8gA8++ABdunRBcnIyXnjhBbzxxhuoqKhwaFkdqS5rbWKCGkNtMLYmJ5clIiIlsSsgCgsLw9mzZ42e379/P1q1alXrQplSUVGBDz74ABMnTtTr3fbhhx8iKCgInTp1woIFC1BaWiotS0tLQ1xcHEJDQ6XnkpKSUFxcjNOnT5t8r/LycpcOJ2Cu1sbRwgN8kDIsDl5/HlNOLktEREpjV5PZlClT8MQTT+Ddd9+FSqXChQsXkJaWhqeeegoLFy50dBklmzZtQmFhIcaPHy89N2rUKERFRSEiIgKZmZmYN28esrKysHHjRgBAfn6+XjAEQPo7Pz/f5HulpKRg8eLFjt8JK2lrbXSDIku1NrXpJTbi9pZIbBPMyWWJiEiR7AqI5s+fj+rqagwYMAClpaVITEyEt7c3nnrqKcyYMcPRZZS88847SE5ORkREhPTc1KlTpf/HxcUhPDwcAwYMQHZ2NmJjY+1+rwULFmDOnDnS38XFxYiMjLR7e7bS1to8s/EUqoSwWGtjb76RYRDFQIiIiJTIroBIpVLh2Wefxdy5c3H27FmUlJSgQ4cOaNKkiaPLJ/n111/x7bffSjU/pvTs2RMAcPbsWcTGxiIsLAyHDx/WW+fixYsAapr+TPH29oa3t3ctS1071tbamMo3SmwTbDbAqaukbSIiIndnVw6RlkajQYcOHdCjRw+nBkMAsHbtWoSEhGDIkCFm18vIyAAAhIeHAwASEhJw8uRJXLp0SVpnx44d8Pf3R4cOHZxWXkcJD/BBQmxzs4GNPflG7GpPRET0l1oFRHWluroaa9euxbhx49CgwV+VWtnZ2XjhhRdw9OhRnDt3Dps3b8bYsWORmJiIzp07AwAGDRqEDh06YMyYMThx4gS++eYb/POf/8S0adNcXgPkKPb0EqvLpG0iIiJ35xEB0bfffovc3FxMnDhR73mNRoNvv/0WgwYNQrt27fDkk09i+PDh+PLLL6V1vLy8sGXLFnh5eSEhIQEPP/wwxo4dqzdukaezp5cYu9oTERH9xa7JXZXIEyZ3zSsqs6mX2Ib0XKOkbeYQERFRfeLUyV3JPdnaS4xd7YmIiGowIFI4drUnIiLykBwiIiIiImdiQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIPlldUhoPZBcgrKnN1UYiIiDwaZ7v3UBvSc7Fg40lUC0CtAlKGxWHE7S1dXSwiIiKPxBoiD5RXVCYFQwBQLYBnNp5iTREREZGdGBB5oJyC61IwpFUlBM4VlLqmQERERB6OAZEHiglqDLVK/zkvlQrRQb6uKRAREZGHY0DkgcIDfJAyLA5eqpqoyEulwsvDOiE8wMfFJVMeJrYTEdUPTKr2UCNub4nENsE4V1CK6CBfBkMuYC6xPa+oDDkF1xET1JifDRGRB2BA5MHCA3x4s3URU4ntiW2Cse/ny+wBSETkYdhkRmQHU4ntx369yh6AREQeiAERkR1MJbZXC8EegEREHogBEZEdTCW2d49uxh6AREQeiDlEboJJuJ7HVGJ7yrA4PLPxFKqEYA9AIiIPwYDIDXAaDs8ll9jOHoBERJ6HTWYuxmk46qfwAB8kxDZnMERE5CEYELkYp+EgIiJyPQZELsZpOIiIiFyPAZGLcRoOIiIi12NStRtgEi4REZFrMSByE5yGg4iIyHXYZEYOxdnfiYjIE7GGiByG4ykREZGncvsaokWLFkGlUuk92rVrJy2/ceMGpk2bhubNm6NJkyYYPnw4Ll68qLeN3NxcDBkyBL6+vggJCcHcuXNRWVlZ17tSr3E8JSIi8mQeUUPUsWNHfPvtt9LfDRr8VezZs2dj69at+OSTTxAQEIDp06dj2LBhOHDgAACgqqoKQ4YMQVhYGA4ePIi8vDyMHTsWDRs2xMsvv1zn+2KJp07hYW48JU/aDyIiUiaPCIgaNGiAsLAwo+eLiorwzjvv4KOPPsJdd90FAFi7di3at2+P77//HnfccQe2b9+OH374Ad9++y1CQ0PRpUsXvPDCC5g3bx4WLVoEjUZT17tjkrVNTu4YNGnHU9INijieEhEReQq3bzIDgDNnziAiIgKtWrXC6NGjkZubCwA4evQobt68iYEDB0rrtmvXDi1btkRaWhoAIC0tDXFxcQgNDZXWSUpKQnFxMU6fPm3yPcvLy1FcXKz3cCZrm5w2pOeiV+oujFpzCL1Sd2FDeq5Ty2UtjqdkGhPNiYjcn9vXEPXs2RPr1q1D27ZtkZeXh8WLF6NPnz44deoU8vPzodFoEBgYqPea0NBQ5OfnAwDy8/P1giHtcu0yU1JSUrB48WLH7owZ1jQ5mQqaEtsEu0XgwfGUjDHRnIjIM7h9QJScnCz9v3PnzujZsyeioqLwv//9Dz4+zrvhLliwAHPmzJH+Li4uRmRkpNPez5omJ0/I0+F4Sn9x9wCWiIj+4hFNZroCAwPRpk0bnD17FmFhYaioqEBhYaHeOhcvXpRyjsLCwox6nWn/lstL0vL29oa/v7/ew5msaXLylHnP2ERUgxP3EhF5Do8LiEpKSpCdnY3w8HB069YNDRs2xM6dO6XlWVlZyM3NRUJCAgAgISEBJ0+exKVLl6R1duzYAX9/f3To0KHOy2/OiNtbYv/8/vh4yh3YP7+/UdOKJ+TpuGuOkyt4SgBLRESASgghLK/mOk899RTuueceREVF4cKFC3j++eeRkZGBH374AcHBwXjsscfw1VdfYd26dfD398eMGTMAAAcPHgRQ0+2+S5cuiIiIwLJly5Cfn48xY8Zg8uTJNnW7Ly4uRkBAAIqKipxeW2RJXlGZW+bp5BWVoVfqLqNmv/3z+7tVOevShvRcPLPxFKqEkAJY5hAREdUda+/fbp9D9Ntvv2HkyJH4448/EBwcjN69e+P7779HcHAwAODVV1+FWq3G8OHDUV5ejqSkJLz55pvS6728vLBlyxY89thjSEhIQOPGjTFu3DgsWbLEVbtUa+6ap+MJOU51jYnmRESewe1riNyFO9UQuSvWEBERkbux9v7tcTlE5L48IceJiIhIjts3mZFnYRMRERF5IgZE9Yi7TOnhrjlOREREpjAgqic4IjIREZH9mENUD1g7DxoRERHJY0BUD3BEZCIiotphQFQP1OWIyJyWg4iI6iMGRPVAXXV357QcRERUX3FgRit5wsCMzpzSg4MuEhGRJ6o3U3eQ9ZzZ3Z3TchARUX3GJjOyCmdudzzmYxERuQ8GRGQVTsvhWMzHIiJyL8whspIn5BDVBWfmKSkF87GIiOoOc4jIKTgtR+0xH4uIyP2wyYychjky8piPRUTkfhgQkVMwR8Z0QMh8LCIi98McIisxh8h6zJGxbrJd5mMRETmftfdv1hCRwyl9bjVrJ9sND/BBQmxzBkNERG6AARE5jLaJqLHGS9E5MkoPCImIPBF7mZFDGDYR3d+1BTYdv4AqIRSXI6NNmjZsMlRKQEhEZKu8ojLkFFxHTFBjl90rGBB5AHc4UcyRayLadPwCNj6egNKKasXlyGiTpp/ZeMotAkJ3P3+ISNmsybmsCwyI3Jy7nCjmmGoiKq2oRkJsc9cUysVG3N4SiW2CXZ407QnnDxEpl6mcy8Q2wXV+3WQOkRuzNjnX1TiujjxXJ017yvlDRMrlTjmXDIjcmDudKLoMx9exZ1wdRw3ayMEfTXPX84eISMudflCzycyNuVNyrjYP5eTvRVi67SejJhhbmogc1YzD5iDz3On8ISKS4045lxyY0UquGphxQ3qu0YlS1zd93cDDkK0DLjpq0MbabkcpicbucP4QEVnizIFqOblrPWGq5sXcDd2RN3vDPBRDtk5K6qiJTWuznfpUs2Tps3aX5G4iInPcYeJwBkQewPBEMXdDd/TNXi7w0GVrE4yjmnHs3Y479WioLWs/a3e40BARuTsmVXsYcz2HHN2rKK+oDFeuV0BlYrk9bb2OmtjU3u3Ul0Rj9iAjInIs1hB5GHM3dAHhkOYoQL/2QYWah0BN4PH04LbofEug3U0wjmrGsWc79SXR2FFNj0REVIMBkYexdEOv7c0+r6gMR85d0at9EH9u9/WHuqJbdFOH3HAd1Yxj63bcqUdDbdSXwI6IyF0wIPIwlm7o1t7s5ZJxzfUmqxaASlVTM6EthyvVJnG8PiQa15fAjojIXbDbvZVc1e3eFHNdFC11X5RLxk1sE2zUjV2X6s82M21tkSt7ZtWnXmK15cyuqkRE9YG1928GRFZyh4DIEd3p5cbvUauAaf1j8fqubNnXqFWA+DMY0vJSqbDx8QRcr6iq07F8HDWOERERKQPHIapnHFUrIpeMWy0gGwypAbw+qiuqhcCMjzP0llUJgaFvHKzzGiMmExMRkTO4fbf7lJQU3H777fDz80NISAiGDh2KrKwsvXX69esHlUql93j00Uf11snNzcWQIUPg6+uLkJAQzJ07F5WVlXW5K3aT62K94LOTdnWxlps3Ro6XSoWU4XEY0jkC3aObyb5GG5c4osu3tXOSudO8N0REVH+4fUC0d+9eTJs2Dd9//z127NiBmzdvYtCgQbh+/breelOmTEFeXp70WLZsmbSsqqoKQ4YMQUVFBQ4ePIj33nsP69atw3PPPVfXu2MX2VodAGv3n7N5W4bj98hZOKQ99s/vL9X4GL5GLjiqEgJbM/PsCoo2pOeiV+oujFpzCL1Sd2FDeq7V5WcyMREROYLH5RBdvnwZISEh2Lt3LxITEwHU1BB16dIFK1askH3Ntm3b8Pe//x0XLlxAaGgoAGD16tWYN28eLl++DI1GY/F9XZlDlFdUhjtTdsHwg1KrgAPz77IrGMgrKsOxX69i+kfHjXKDTOXjaBN4fTVq3P/mQdkEbFubz+zNCXJ1MrFS5kIjIvJ01t6/3b6GyFBRUREAoFmzZnrPf/jhhwgKCkKnTp2wYMEClJb+NfJwWloa4uLipGAIAJKSklBcXIzTp0/Lvk95eTmKi4v1Hq4SHuCDKX1ijJ6vFrB7hOXwAB8M6RyB1OHW17aEB/ggIbY54iObmqxlsrX5zN6Ro7VlcUUwYkuNFhEReQaPSqqurq7GrFmz0KtXL3Tq1El6ftSoUYiKikJERAQyMzMxb948ZGVlYePGjQCA/Px8vWAIgPR3fn6+7HulpKRg8eLFTtoT203oHYO39+c4fCA+e8fk0b5ua2YeXtz6o94yW5KcrRlg0J1qY+rTXGhERPQXj6ohmjZtGk6dOoX169frPT916lQkJSUhLi4Oo0ePxvvvv4/PP/8c2dny3citsWDBAhQVFUmP8+fP17b4teLM3BnD2hZrE5xrapnCzSY5W9qWpf1yt9oYZ8yFZu3xJqL6jdcC1/KYGqLp06djy5Yt2LdvH2655Raz6/bs2RMAcPbsWcTGxiIsLAyHDx/WW+fixYsAgLCwMNlteHt7w9vb2wEldxxnjrCsrYU5+VsRln79k9Xd+82NmGztUAGm9ssda2McPWUGB5kkpXGnGl93osRrgbudC24fEAkhMGPGDHz++efYs2cPYmKMc2kMZWRkAADCw8MBAAkJCXjppZdw6dIlhISEAAB27NgBf39/dOjQwWlldwZHzQGmy9SUHdYGIHIBjexQARtPol2YH+IjmxptQ26/3HHMIUdOmeGOAR+RMynxpq/LVACgxGuBO54Lbh8QTZs2DR999BG++OIL+Pn5STk/AQEB8PHxQXZ2Nj766CPcfffdaN68OTIzMzF79mwkJiaic+fOAIBBgwahQ4cOGDNmDJYtW4b8/Hz885//xLRp09yuFqiuGX4RDVkbgBgGNKYGgBz6xkGkDq858S39OpCrjVEBOHvpmkunqnBUTZ07BnxEzqLEm74ucwFAfb4WyF3n3fVccPuAaNWqVQBqutbrWrt2LcaPHw+NRoNvv/0WK1aswPXr1xEZGYnhw4fjn//8p7Sul5cXtmzZgsceewwJCQlo3Lgxxo0bhyVLltTlrjiVvVWPcl9EXfY2B8kFM0DNYI7PbDyFwtKbFpvmDGtjtK9f+MVpPPfFaaQOr5mDzRVVro6oqeOM9aQk9fmmb4mlAKC+XgtMBYHuei64fUBkaZikyMhI7N271+J2oqKi8NVXXzmqWG6lNlWPpgIXoHaJ29pgRq72qUoIpG77yWika7lfByNub4l2YX64742Des8LAPM/Oyn9312qXG3BGetJSay96btbXokjWAoA6uO1wFwQ6K4BoNsHRGRebase5b6ITye3RecWgbVultIGM9o5z7RUf04Wq8vcr4PrFVWy29fdhLtUudrKmYnyRLXlyODEmpu+O+aVOII1AUB9uxaYCwITYpu7ZQDIgMjD2VL1aOri5swvYnxkU6QOj8P8jSf/CoJETS6Q4QjZpn4dxAQ1NlpfjjtUudrDUYny9fGXNbmOM4ITc9cad80rkaP9rjXWeOF6RZXF75y1NUDO6DTjKid/LzJ6Tvc6744BIAMiD2dt1aOli5szv4iJbYL1ohmBmloitaiZk82aEbJTh8dh/mcnzQZF7lDl6ir19Zc1uYYzgxNT1xp3zSsxJNcr15rvnDsGAM6SV1SGpdt+Mnr+6cFt9fbb3QJAjxqYkYxZM2CjqYubdvAvZw8GllNw3SiQEQJ4fVRXfDzlDr2JZE0ZcXtLHFxwF14c2lF2uVoFt6hydQVLny+RrZwxAKkl2h93utztR46pXrnWfudcOeVQXTLVWafzLYF1XhZbsIaoHrD0y8PcxW3fz5edXrNgqhbrtqimNl0YwgN88PAd0WjopZaqntUAJifGYEKvmHp/kTGlLn9Z17ZZTvf1ANjE56ZckfTqCYnF5nrlumNtlqu4a9K0JQyI6glzVY+mTk5fjbpO2uxre6EzvAkrqerZGnV18bG1Wc7wc9N9vbYiwFN7CNZ3rgpO3P27balXrrvf8OuKJwS3clTCUr92AgAUFxcjICAARUVF8Pf3d3VxbLYhPdfo5Ixs5otRaw4ZrfvxlDuQENvc4WXIKyqz6kKneyOVq8Gqi7GHPC1BWe7zdWSAkVdUhl6pu4yCrv3z+8seH8Pgad7gdtK4U3K02wJgdbKqp31Gnsja76yS6H7XtJzxnasP3OX8sfb+zYDISp4eEAHGJ6etN7m6YKoWQUuFmoRsZzbxeWqCsiMuPqZGld2SeQEvbTVOkpQLnuXOKzVqEujNmdqnFd7e/4tVyaqe+hlR/aD9rvlq1CitqHb5Dd8T1eUPGgZEDlYfAiI5lmoW6vKkPXH+qtGYRZY4OoBzxyCxrsgFGQBMTu1i6rgczC6QrXk0N3SC+s8VrHkfJX9GnsrcdcTWLuzk+er6B42192/mECmcuTb7ujxpN6Tn1oxVZOPrHJ3I6Kquv65u/jE1Ga8Q8kGMuZwAUzlNj/VrhX/vzjZaX60CJveOwX++y5Etm+Hx94Tu2a7+PN2JYa3vlD4xmNA7xiivTEutAh7q0RIJrZqhe3QzxR+/+kI38HXX8aYYENVDtl6M5RKyLY1D4sgLvva95Ooq9ZrIUHNztnZAR3u4oneEOzT/mJqMV87CIe1xd+dws+NGySVUjri9JfwaNcTSbT+hGtDrIQgAb+/PsSpZ1dbPqK6DE3f4PJ0lr6gMR3+9CiGEVcGK4XVEAPjPdzl4e38O5iW3qzkXZM67jw7l4qNDuVAB0mTQ5Ln0gmIbZyqoSwyI6hlHXYzrsqu+ua6s4s9/pv5549z382Wbey7YckOs694R7jI6r7neM7q8VCqzwZCWqZrHR/rG4t4uEbI1koYT+WoN7RphNJibtZ9RXQcn7vJ5OoJcL0HdwVHNBSva1/5RUi57TlULyAZDhgSABZ+d9MjjRzWMgmI37qHHgKgeceTFuC676lu6GQsA73x3DhN6xdjcLdeeG2Jddv11RvOPqZwMc4FheIAPJvWOwRqZZivtZ2NrcKitedQO/Kl9X1NDRJia+27T8Qt4Kkl/hFtrPqMT56/q3cDrIjjxhOY8axj1EvyzNkd310wFK4avNZU7pm1Cs9RMXg143PGjv5j6wavtaOFOXfIZENUjjrwYm/oVfr2iyuEXfMP3kguODGeGtqZW6Mi5K3YHb3U1pLyjm+hM5WTc37UFPj/+u2xgqA2U/t45HG9/l2PUJLnx8QS7e9KYyx+Rc72iyugGWSUEjp67ir/HWz/vk6mcNGcHJ546IJ0uuR9WpmpzDIMVudeqVIBKJhdNDeCxfrF4c0+22aBIDXjU8XNHtjYbO7KZ2dR3ojbXFWdhQFSPOPpinNgmGCtHdgEE0C26qfRrvzbvYc0Es74aNe5/86Dd7yEXFGi52691RzbRmZtW4LNjv+v9rQ0MDZs/h93WApuOX9ArS3xkU7v2zVz+iKmausYaL9kcg5nrj+N6RaVVzV3mctI42rJltuSTGQYrr+86Y7SuEMAbo7riYPYf+OhwrvS5VANYtdc4yV6XCkDK8DjZ42fqWlLXOWPunkBvay25o5uZTX0n7L2uOBMDonrEkRdjU1+K2ryHLRPM2vsehs0khtzx17qjmujM5WIZqhICx369avRrftPxC0a/3Oy94Jsqj6maOu35IRfI2FK7Z66KnqMtW2ZtPplhsPLW3mx8dOi80XpqFfDb1TJ8rBMMaZl6jycGtMatIX6IbOaD6xVVyCsqs6oHrKNv5pbOfXdPoLe1c8yJ81dralYdnAPnKd8JBkT1jCNOPEtfInvew9b8Jnvew1LXfXf+te6IJjprb2RAzbGoFkK2abK0oloabLE2F3xz5TGsqTNVu2XuNba8r1oFfP74nUa/Si3NrWZvMFhXTa7OYPijx5AKwJL7OmJgh1C945QqM7s5ANwbH4FUg/wjc7xUKjzUoyX2/XxZqinWPfdMXUvahflZfY2x5nO1dO57QgK9uTSKzScu1Hwu4q9m9Y3HfndaM7MnfCcYENVDtT3xrMlFsvU97MlvsuU9zDWTqAG8PqqrzZPJOpMjqtkNt2HqRualUmFo1wijprDu0c1kAwdfjVrafm0u+Pt+viz7eWjLFB3ka7E3ktxrzB0DwPoqektzqwFw61//zqT9QfLxoVy8tuus3jIBoKmvRq+G4Y+ScpMBzxcZF8wGQ9ocI90EWwAmzz1T15KdP10yeY0B/gp2DQMBuc/VmnPf3RPo84rKkH25xOh5L5UK+89cxht7/mquNGxWN1zfV6PW6xhRXzEgIiPOSAx1drKpuWaSlOFxGNI5wiHvY461QY4jqtlNbUM37yuymY9e09dTSW2NatwMA6hqAdz/5kGkDItDZDNfuy/4UoAqs0x70zPMXzLscaQ7BpVc7Z6542iphlEuv0mrWtT0ntIdObu2tQ2uZKl8ppaHB/igTZif7DZVKut6k1nqRab9XA0/q4PZBSbPPblriUoFvLZTP3DTbj/z90KMfvt7m5pvrQl23DWBPq+oDO/uzzHqIAHUlO/p5LZI/Uq+Ns+QWlUz7IVcTV19xICIjDgjMdTZyaa2NJM4g7VBjiOq2U1to7D0pjSBqqUcLS25ru7a7W18PMHuC76pAFU7qCMAvek3tL2R1AY1BaaCGmuOo7kaRkv5VtWA0Z1cLhh09xwSufLpTo5saUyxblFNjQNVFXBLUx+9jg+Gn58awEM9IvHRYZmcItR04+98S6De56p7XE/+VmT0Ou25J9crVbZmWAU82rcVUr8y31wn97laE+y4YwK94VhRumrGjeqEwrKbVjVfqgCsGdsNU94/6tbNgo7EgKies/fXqzOS4JyZWGd0kUTNdBAh/o0c9h6m2BLkOKKa3dQ2dPM0bLlwmerqXlpRbfcFXzZABRAa0MjkPggBvDC0I2KD/YxulIZjGZk6Bsd+vYqmjS2f75byrXRrp7QMb4julENialJew/LN/+yk3uTIulOzaGvG2oX5ST8iwgN8kDo8zihokht+Qwjg36O6olljb+k4rU8/b/OPlLyiMiz92rgG47F+raR9072WFJTcwIyPM4zWf+j2lnhzr/ku/doyGQb51gY7zrqm2XPdNlcrC9R8znM/PWl1GaYkxsBH08Ds96y+zT/HgMiN1bYqvra/Xp2RBOfMxDrtxWnt/nN4e/8vJrt4WzPRpC3H3JYgxxHV7KZqw+TKsDUzD0MsjCxtrkwJsc3tvuBP6h2Dd/6cjkNbyzD9o+M1A/0Nbidb5oWbTiN1eJyU1A3IDxLoq/GSrbmY/tFxvTwgU+e79oZnKpF7Sp9WiA1pbPaG6C45JKa+57JBJ6DXg8hQNYChbx5EqoXmx7dkust7qVRGeXr2dLc2VXv3xu5sRDbzlcqlvZbIDQWiBrA+3bhXm5xqAWzOuIC4WwL0BjGNbOZr1Vg5jr6mWZPMLXeNOnLuilUdKqyhVkGaUkeueVL7PdNd39k9+uoCZ7u3Ul3Pdl/bYEZuRnC1Clj5UJd6PWGipZnQzR1Xe4+5rbOvb0jPlZ3nyxaG23g6ua3JwfMs7YvRlAwq6N0Q5Zi7eL21N1uqrVIBGNkzEusPnzc6PqbKrHvs5I6tHLlcFe12AJicTf3E+atGI2OrARxYcJf0/ubykO5M2WWU93Twz9c6k+5o5HJjdmn325pjJ8dcTY6pz2TB3e3wSGKs7Pq29kg1VW5T3yvD78Ok3tEmJws2RwWgz61B2H+2oM6aQQ17OhqeU9Zcv8yNvWaO9nuj+vM/AjC6JukeW8NaRV263xtbObvpmbPdezBHVMWbGlxtxscZbpnrUFvai8qV6xUmq3irhfHI1Qs2noSvxgstm/nWalRrW5qWHFHNLreNQJ+Gsl2lLSUEG1azq0TNoJymgh5zeSkHzhbgDZ0Z7QWA9YfO1+Tk6KgSAp1bBGLlQ12Mmjt0a1msHVtJbpUqIaTaQsMfBtrzPz6yKVKHm/7sdGshDmYX6AVVslTyTzuSYe84uebOcwWlSIhtbtSMLGBcqwaZG1y1AIa+cVB2rjJTn0nnFoGy5bW1BsVc7Z1cDZxcbQ5gerJgcwSAfWcKpL+11whHN4Nqv1snfyvSy/vr1TrI5OcJGPe8W/DZSQQ10dgVDBmOFg1A9ppkTfMkUFO7uHb/OTwzpL1N5XCnpmcGRG7IEVXx5nIk3Dkxzp5qU8MbhLmmFEPaINHcjcWactga5Fh7k7A0/5jchWtrZh5e3PqjxX3JKyrDlswLxoEzoBdIGI4BYzg/2PzPavISTF2Pq2E8w7W2SS46yFe2uUN7gW4s0zRmLRVgFAxpy2zLuFqmfn3fEdPUqFxCOHfeLXO947R0m2AN901ucuR2YX4Y+uZBo+YlgZobsG5OEWD62pL5e6FeU2dtmJrXzrB5WS4415bB3FhKtqgWwNoDOXjm7g612o6WqfOpWgDf6QRjWtrvg+yPXACT3jsq+z4vDu2I5744bbKmTa750lKz4Fv7zI8svua7XzChd7RN57+7ND0DNcea3Iz2gqPL1jwT7a8sL5X8T1bdXx3uYkN6Lnql7sKoNYfQK3UXNqTnWnyNqRuE9vipTfwCNmTpxqL7fgezC5BXVGa0fniADxJim9v9JTbctj3HIzzAB0M6hxudP2oAZy9fw5bMC8grKsNbe7NxZ8ouvLTVOHlVDf1AQhtA5BWV4eivV42DAJg/vmoA85PbSeeibi2M9jzVLa5AzRhGG9JzjW6ItugZ09Tkr2bD89/UZ2duwMjvc64aPefsbtcmh5dQ/fX+hrWTuvuW2CYYKx6KxxujumL//P5/1ZINizM6Z4C/aop0z73wAB/MG9zOaN1l27Jkvxf20tbeyZ03gOmaBW0ZRtzeEvvn98c/TdRY2HLze3tfjtG+mbsWmFrHmgFIDU1OrJn7T+6+YIqXSoUB7UP17gFqANP6xeLjKXdIn70t8orKsNTE4JtaAjU/pmzhiPudo7CGyA2ZaoIBYNPgWNpfh8d+vWpUQ+IO42Xosrfa1FTi6OsPdUXzJt5mq3jlmJrZXTu2hzZJ2NHNjqZmF5dr3rMmB2xy7xi8/V1OTe0Man5JLtx02mI5TOVfaAMIe1IO5yXX5JbcGx8hWwuT2CZYrwZJWzNhKlfBWnIBi64DZy9brNGwZToUAHh6cFun/qq1d6LMvKIyrN2fgzV/jk1jeP4mtgnG4vs6yp4jAsbfxbhbAozWM1ULWZtEWXO1d9YOIDukczhe/upHk8cs8/dCLP3qJ6NmXV3aSWy172vY1KVbg2puSAO5sb0sad7EW9qXlGFxWPDZSbNl1b12WVNzbe1nZO134e39ttUS2Zpy4EwMiNyUXFW3NtHQlptxzQXBByXllW5xwgHyX0B7q01N3SDMTUZrqglGBWDxfR3RzFeD26Ka4lLxDaz5LhuF128azcjtyGZHuWBQbuwU3ea9+cnt8Ehf4wRWw8Bq1O0t8fFhyzVLgP4YQXL5F5m/F+Le+Airm7C0gZ020dZUM6Etk4kabv/zx+/ET/nXzM5fZ8qbe7Ix+o6oWnXPN+SlVhnNu+Vour33rOm5JddEoz1/24X5YUtmnl5vQMBy87E1vSUdlShr6ryxVAbd64y53m4Jsc1xb3yEbL6Z7nYzfyvEqDXfy34vF3x2Eid+K8THh85LnQkA/SENTI3tpatdWBP8lK8/uvSybVm4I6YZcq+UorF3A6wZ1w2T3ztq8hq28fEEvfPB8PhZCtpMfUZyY0PJqbah2VhblsQ2wdg/v7/L5zpjLzMr1XUvM1229mIytx1Xn3CmLpK12UdLvbaMemQNbiv9upOjVgFdIgNxLLfQ4v58POUOm/MmDAPCg9kFGLXmkE3bAPR79eQVleHIuSt4Yn2GUQKxVcEF9HuIvLU3GykG1ePaz2Pfz5elX6lqAPff1kKaFkTLXNBmyFSPSGtqiLTHX6681nhjVFeLo5jrnj/WUKn+3HeDHle21JbIrWuYKzclMQYTesWY3Za1vfR0yZ0zct9Fc9872c8UwGujuqKbA6fQMVUGU4n/lq5/2mtk5m+FWPZ1ll4vTksDPFrj4yl3IPfKdZPNZi/c1xELv7Bck9u/XTB2/3TZ5HuYuiaZmq5Gy9Q115bzyFIPRXuCsdpiL7N6xFFJZ44eL8NWcjUhus1A9labWqoWlu2R5SvfI0tbLmuCIVubHU01uyW2CbYrcXjptp9wb3yE3oXFkLU3wnnJ7fSOm7kmEbnjOTYhSi/fRwBY9nUW7u0SYXcvPQB6M28b0p0PTW4gPy21Cnisb6ze3E1a0z86jpLyStm5rLQXbt399dWo8a/tP+v1RDIkBJDy1U+AgBQQ2lJbYhT49InBkM7hRrly73x3ThorxhRbm/yAmnNmamIM3vnunN2DEppKANaOQ+Wom59cGUw1v++f39/ijxftPggIvWbII+eu1DoYMhzba96nmXrn0fDbWmBgh1A8v1k+EVrX7p8u485WzXDwlyuy7yHHmoR8U/cVc+eRXG3YfW8cxAKDH0TmgjFn9eazFQMiF7PmV6Mz5sxxxSBY1gwFYG+1qalgT3c/dS+G2gvp0XNXMeNj+R5o5qhVsKnZUW5Ife2F+unktja++1+vP/brVbNJmtoaMd1RrHUvRobNWlqmBn/UTvxqeLxNjXZd21562hw4IYDfi8qwbFuW0U1abt4rXdr98/dtaDTukWF+jLlcMW2Z3p/UEyfOX8WRc1cRHeSLz4/9ji0n843ed+m2n3Bvl5raJ1tmYTe8af3nu79yf+SOLwCT32VTTX7mAnAvlQoTetXUPln6LtrSnKXl6F6uhmWw9gekpVo43V5rKhOdUyzRHmdtLVNOwXVcKr6B6xVVWPpAZ1wqvoEj566ie3RTqUbFcFoSU+f29zlXMK1/LFbtyZaaT58eXPMe2uOiy5rg2NR9xdT1YHr/1oiPDJDt6Zay7SdABTySGGtVMObo3nz2YEDkQtb+arSUdGZrcOOq+ZesuUha8yvOWpb2MzzAB82aXLfrl9+8we30mgcsTZ5pakh9wyk3bOGlUqFaCLPBkLYJ4d4uETh67ipUKuC2qJoLr7mbneE5B+hP/Gp4vtQmaDcVtGrLMaTzX+WTS8w2d9PXbbp6JDEWEQGNZMc9OnruKjJ/yzFKJjd1846PbIoQ/0Y4cu4KtsoEQ8BfibgCxp+Rdmws3X0DTN+0ZPNFVEDmb39NXGrqHDe8wU7u3Qo9WzWVzUMxDPTtDVjkzh9dttZwSz0chbDYqcDe/KbENsEmA1e5Od20zAWX2ucHdQw1Csa17zupTyu91xjWSJrqaVktgN6tg/HwHVE1zXy/F0rvIXcuyE6KC/MTKAN/fT/nDW4nNSNqO0G8tusszMWK2lpsqxOy9+VYbAZ2JgZELmJrrypTv6BtDW5cOQiWoy+S5li7n401XrKvbxvaBFkXS2SXAX81B1nTDm6putmWLD7dX5wvD+uEC0U3jNZRA3h9VFe9aRTCA3zw93jjcYzMMTfxq+FxtLeniK3nr1yNhKmbvlxPl+7RzWRvCjPWHzf5OVia1NUU7U34UvENo3GYAGDaR8eRcb4QE3vHSLVTZy9ds7r5VAgYzV83/7OTKK+sQrPG3lKujvZzTD93FbdHN8VP+dcw5X39YEiNmu7djrwZ6dbCzlx/3O4abqOR1AHZASN16fayVKuAib2jpWWmrg0rHoo3WbOUENsc8+9uV9MUqkNb86OtuTRl2ynjoNnctVf3PE8dHod5nxnPQaY72S0AKTA2tW1T31FzEygb1pbOS26HWwJ99Hotm7t+aROsTQVjhi/V/ohgQKQw9uQFyfUWsDW4cfUgWHU1FIC1k39er6iSff2iezuhtOKmyUHPtLUK5o6/9pfVwbNm8k1s2Cc1gM+n3ak3smyv1F1G681LbmcxUdhatjSF2To4pSODc2vfOzygZgydpdt+kpLCBcxf1L1UKvhq1NKQFwAsBkNq1HTB1+3qLmfNdzl4+7scDLutBTYe+93mmkLD9QWA5774AcBfgYNueeUSaa2ZcNWQtbXS2kD8eoV9vVzlalcFanp1yZ0nhgF2YusgfHemAGu+q7mxm+r6XhNIq8zWLNXUTl7H+sPnjaa4uDc+QvaaZok1117tuT1rfQYO5fyVMzS061/5edZe1019T+SOo1wT/7JtWVjxULzV+6gbtBkGY3KJ6q4eDoYBkYvY0mXUkcGNM/KRbKVtBjE1FIAj8ptkf5GojCf/TGwTbPJ4hAf4YOlw+XE/vFQqQKaZRnv8zSU620MFIGV4nN5Ny1TuTOdbAh3zprD9fLElcd/W89fSeaH73uamHVn69U/S+Ez924dg54+XTJZRrQKSOoVKIzmrANwdF2byc9XWTjX305icW86QAPDZsd+NnjfVBd5aAsbjOZlqeimtMDeyjT57mtztna7GVO2qYU2CtknNcBR1w2k4THV9105Ma6qW0zAheKpBbZr2mvZbYZlRLZI5uh0DLF3z0s/pJ1BvOn4BTyXVjHtly/fU0nfUUhO/qcBx4+MJ2JD+G9an58o2wVmabsjVw8EACguI3njjDSxfvhz5+fmIj4/H66+/jh49erikLOaaGKy94NgT3NjbtOEMcl8QR45dYtiMontj0M1ZMnc8tGXUHaNEu063qKYmE48dGQwBNcFcYptgveecFdwaXpyddb7YUn57e2kZDu1gmNhpKhjSdmtvqFbr9U4TgGzOkG4zJWD/pKq6HHH6WFMGW86Z2tTq2RIsa5nKD9Od3sWWiU2rhEBpRbXJc9qaXmsCpnv4xbUIkH3fxFuDcODsH3rNatr3tbfZXffHg9z1TreZ0BbmmvjNBY7xkTWJ4TMGtDYZ+BqeA46Y19GRFBMQbdiwAXPmzMHq1avRs2dPrFixAklJScjKykJISIhLymRLl1FT7cz23Kzc6SQ0/FXvyPwmS5MSai8o2ukM1H9+2eWO8zND2mNC72ijY5YyLE6va3i1ANbskx/cTUtujB1LuQjatnhH5O2YYyqYcMb5Ym35bTkvzK1rTWKnbv4RUDPzuCXacmubKV/e+oNDg+HakDvXrEmkNaWum9y154jud0xbWyp3vbTEsOu74bVXLrnfln021Rtr6QOdAUBKlC6tqIavRo3cK6V6Y4eZOret+fEg/Xg7kIM1+3L0mglt+VFpMgjVSbg3d02wNfC1J1B2FsUERK+88gqmTJmCCRMmAABWr16NrVu34t1338X8+fNdVi7Dk8HWC469Nyt3Ogm1nHGx1e6n3IjV2tFnzfXSkduWrsQ2wUY/5eW6YOual9xOtqpYm4tgSxKqI4MVS4GHM84Xa8pvy3lhbl1Lo05rR+rWbvNgdoHFWhrD1+QVlWGNQU81LTWAeXe3w/UblXht11kLW3aM+7u2QI+YZlYn0lriiiZ33bxDISCNQg9Y7kquWzNjGPzpntPmaiBtbY4yF+TLvZ8huXPblh8/b+vkrNnzo9KotgnyCffueA+pLUUERBUVFTh69CgWLFggPadWqzFw4ECkpaXJvqa8vBzl5eXS38XFxU4vJ2B/M1h9ODGdebE1ldRnOF+YrRePnALbu+13bhEo+wtVW05bk1Ad9fm7KuHeUvltOS/Mras9B+RuRF4qlV5gY2pbll5j6nz4e1w4nv17eyk4//fus+Z7HsovMuuJu1rjtd1n9RLEtXkmcuN72fOZuqrJXZujY8jcZ6SGfs2Mubm8LP0QsGWfLQX5lmq1avPjx1HfYXdqRahLigiICgoKUFVVhdDQUL3nQ0ND8dNP8glwKSkpWLx4cV0UT4875fjUNWfvu+GX3BEXD5vnutK52JkLBFxxQXKHhHs5tpwXltbVbVZ4e19Nt2xT2zPclm6Ss6nXyDaZAFIwpLtduVG45QJ1Q2rAKKHfS6XCrWF+RtvT7TburO+Rq5vc5YbyMFUzI8ea64Ct+2zuu20pR6c2P34c+R2uLz+0baGIgMgeCxYswJw5c6S/i4uLERkZWSfv7U4XnLrm7H03/JLX9uIh1TqY6In29OC2enMi2RLg1fUFyZ2DcVvOC0vrhgf44Jm7O1g1ErPhtgDbBrS0NO2FthkospmP3mz1uk2qqj+rjHQDMQBG7yGX5O+sgNadbpaGAxnqHkdrWBtEOGqfTQXNhmOH2cOdv8OeQBGTu1ZUVMDX1xeffvophg4dKj0/btw4FBYW4osvvrC4DVdO7krOY2liWGvlFZXJ9kTT9m7ypODW08rrjhxxDHW3ARgHYnLv4ajzWWnq+rg5+/34HdZn7f1bEQERAPTs2RM9evTA66+/DgCorq5Gy5YtMX36dKuSqhkQ1V+OvHjwQkSuxnPQPnV93Pg51R3Odm9gzpw5GDduHLp3744ePXpgxYoVuH79utTrjJTLkdX/7tSUQMrEc9A+rmii5ufkXhQTEI0YMQKXL1/Gc889h/z8fHTp0gVff/21UaI1ERERKY9imsxqi01mREREnsfa+7e6DstERERE5JYYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEUM3VHbWkH9C4uLnZxSYiIiMha2vu2pYk5GBBZ6dq1awCAyMhIF5eEiIiIbHXt2jUEBASYXM65zKxUXV2NCxcuwM/PDyqVyu7tFBcXIzIyEufPn1fsnGg8BjV4HHgMAB4DgMdAi8fBOcdACIFr164hIiICarXpTCHWEFlJrVbjlltucdj2/P39FXvCa/EY1OBx4DEAeAwAHgMtHgfHHwNzNUNaTKomIiIixWNARERERIrHgKiOeXt74/nnn4e3t7eri+IyPAY1eBx4DAAeA4DHQIvHwbXHgEnVREREpHisISIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiB1i1ahU6d+4sDSSVkJCAbdu2Sctv3LiBadOmoXnz5mjSpAmGDx+Oixcv6m0jNzcXQ4YMga+vL0JCQjB37lxUVlbW9a44TGpqKlQqFWbNmiU9V9+Pw6JFi6BSqfQe7dq1k5bX9/3X9fvvv+Phhx9G8+bN4ePjg7i4OBw5ckRaLoTAc889h/DwcPj4+GDgwIE4c+aM3jauXLmC0aNHw9/fH4GBgZg0aRJKSkrqelfsEh0dbXQuqFQqTJs2DYAyzoWqqiosXLgQMTEx8PHxQWxsLF544QW9+aTq+3kA1EwXMWvWLERFRcHHxwd33nkn0tPTpeX18Rjs27cP99xzDyIiIqBSqbBp0ya95Y7a58zMTPTp0weNGjVCZGQkli1bVruCC6q1zZs3i61bt4qff/5ZZGVliWeeeUY0bNhQnDp1SgghxKOPPioiIyPFzp07xZEjR8Qdd9wh7rzzTun1lZWVolOnTmLgwIHi+PHj4quvvhJBQUFiwYIFrtqlWjl8+LCIjo4WnTt3Fk888YT0fH0/Ds8//7zo2LGjyMvLkx6XL1+Wltf3/de6cuWKiIqKEuPHjxeHDh0Sv/zyi/jmm2/E2bNnpXVSU1NFQECA2LRpkzhx4oS49957RUxMjCgrK5PWGTx4sIiPjxfff/+9+O6770Tr1q3FyJEjXbFLNrt06ZLeebBjxw4BQOzevVsIoYxz4aWXXhLNmzcXW7ZsETk5OeKTTz4RTZo0EStXrpTWqe/ngRBCPPjgg6JDhw5i79694syZM+L5558X/v7+4rfffhNC1M9j8NVXX4lnn31WbNy4UQAQn3/+ud5yR+xzUVGRCA0NFaNHjxanTp0SH3/8sfDx8RFvvfWW3eVmQOQkTZs2FW+//bYoLCwUDRs2FJ988om07McffxQARFpamhCi5uRRq9UiPz9fWmfVqlXC399flJeX13nZa+PatWvi1ltvFTt27BB9+/aVAiIlHIfnn39exMfHyy5Twv5rzZs3T/Tu3dvk8urqahEWFiaWL18uPVdYWCi8vb3Fxx9/LIQQ4ocffhAARHp6urTOtm3bhEqlEr///rvzCu8kTzzxhIiNjRXV1dWKOReGDBkiJk6cqPfcsGHDxOjRo4UQyjgPSktLhZeXl9iyZYve87fddpt49tlnFXEMDAMiR+3zm2++KZo2bar3fZg3b55o27at3WVlk5mDVVVVYf369bh+/ToSEhJw9OhR3Lx5EwMHDpTWadeuHVq2bIm0tDQAQFpaGuLi4hAaGiqtk5SUhOLiYpw+fbrO96E2pk2bhiFDhujtLwDFHIczZ84gIiICrVq1wujRo5GbmwtAOfsPAJs3b0b37t3xj3/8AyEhIejatSvWrFkjLc/JyUF+fr7esQgICEDPnj31jkVgYCC6d+8urTNw4ECo1WocOnSo7nbGASoqKvDBBx9g4sSJUKlUijkX7rzzTuzcuRM///wzAODEiRPYv38/kpOTASjjPKisrERVVRUaNWqk97yPjw/279+viGNgyFH7nJaWhsTERGg0GmmdpKQkZGVl4erVq3aVjZO7OsjJkyeRkJCAGzduoEmTJvj888/RoUMHZGRkQKPRIDAwUG/90NBQ5OfnAwDy8/P1Lnza5dplnmL9+vU4duyYXvu4Vn5+fr0/Dj179sS6devQtm1b5OXlYfHixejTpw9OnTqliP3X+uWXX7Bq1SrMmTMHzzzzDNLT0zFz5kxoNBqMGzdO2he5fdU9FiEhIXrLGzRogGbNmnnUsQCATZs2obCwEOPHjwegjO8CAMyfPx/FxcVo164dvLy8UFVVhZdeegmjR48GAEWcB35+fkhISMALL7yA9u3bIzQ0FB9//DHS0tLQunVrRRwDQ47a5/z8fMTExBhtQ7usadOmNpeNAZGDtG3bFhkZGSgqKsKnn36KcePGYe/eva4uVp05f/48nnjiCezYscPo15BSaH/5AkDnzp3Rs2dPREVF4X//+x98fHxcWLK6VV1dje7du+Pll18GAHTt2hWnTp3C6tWrMW7cOBeXru698847SE5ORkREhKuLUqf+97//4cMPP8RHH32Ejh07IiMjA7NmzUJERISizoP//ve/mDhxIlq0aAEvLy/cdtttGDlyJI4ePerqopEBNpk5iEajQevWrdGtWzekpKQgPj4eK1euRFhYGCoqKlBYWKi3/sWLFxEWFgYACAsLM+phov1bu467O3r0KC5duoTbbrsNDRo0QIMGDbB371689tpraNCgAUJDQxVxHHQFBgaiTZs2OHv2rGLOAwAIDw9Hhw4d9J5r37691Hyo3Re5fdU9FpcuXdJbXllZiStXrnjUsfj111/x7bffYvLkydJzSjkX5s6di/nz5+Ohhx5CXFwcxowZg9mzZyMlJQWAcs6D2NhY7N27FyUlJTh//jwOHz6MmzdvolWrVoo5Broctc/O+I4wIHKS6upqlJeXo1u3bmjYsCF27twpLcvKykJubi4SEhIAAAkJCTh58qTeCbBjxw74+/sb3Vjc1YABA3Dy5ElkZGRIj+7du2P06NHS/5VwHHSVlJQgOzsb4eHhijkPAKBXr17IysrSe+7nn39GVFQUACAmJgZhYWF6x6K4uBiHDh3SOxaFhYV6v6J37dqF6upq9OzZsw72wjHWrl2LkJAQDBkyRHpOKedCaWkp1Gr9W4yXlxeqq6sBKOs8AIDGjRsjPDwcV69exTfffIP77rtPcccAcNznnpCQgH379uHmzZvSOjt27EDbtm3tai4DwG73jjB//nyxd+9ekZOTIzIzM8X8+fOFSqUS27dvF0LUdLFt2bKl2LVrlzhy5IhISEgQCQkJ0uu1XWwHDRokMjIyxNdffy2Cg4M9qoutHN1eZkLU/+Pw5JNPij179oicnBxx4MABMXDgQBEUFCQuXbokhKj/+691+PBh0aBBA/HSSy+JM2fOiA8//FD4+vqKDz74QFonNTVVBAYGii+++EJkZmaK++67T7bbbdeuXcWhQ4fE/v37xa233urWXY0NVVVViZYtW4p58+YZLVPCuTBu3DjRokULqdv9xo0bRVBQkHj66aeldZRwHnz99ddi27Zt4pdffhHbt28X8fHxomfPnqKiokIIUT+PwbVr18Tx48fF8ePHBQDxyiuviOPHj4tff/1VCOGYfS4sLBShoaFizJgx4tSpU2L9+vXC19eX3e5dbeLEiSIqKkpoNBoRHBwsBgwYIAVDQghRVlYmHn/8cdG0aVPh6+sr7r//fpGXl6e3jXPnzonk5GTh4+MjgoKCxJNPPilu3rxZ17viUIYBUX0/DiNGjBDh4eFCo9GIFi1aiBEjRuiNvVPf91/Xl19+KTp16iS8vb1Fu3btxH/+8x+95dXV1WLhwoUiNDRUeHt7iwEDBoisrCy9df744w8xcuRI0aRJE+Hv7y8mTJggrl27Vpe7USvffPONAGC0X0Io41woLi4WTzzxhGjZsqVo1KiRaNWqlXj22Wf1ukkr4TzYsGGDaNWqldBoNCIsLExMmzZNFBYWSsvr4zHYvXu3AGD0GDdunBDCcft84sQJ0bt3b+Ht7S1atGghUlNTa1VulRA6w4YSERERKRBziIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHgMiIjIafr164dZs2a5uhhOt2jRInTp0sXVxSCiWmBARERkQkVFRZ2+nxAClZWVdfqeRFSDAREROcX48eOxd+9erFy5EiqVCiqVCufOncOpU6eQnJyMJk2aIDQ0FGPGjEFBQYH0un79+mHGjBmYNWsWmjZtitDQUKxZswbXr1/HhAkT4Ofnh9atW2Pbtm3Sa/bs2QOVSoWtW7eic+fOaNSoEe644w6cOnVKr0z79+9Hnz594OPjg8jISMycORPXr1+XlkdHR+OFF17A2LFj4e/vj6lTpwIA5s2bhzZt2sDX1xetWrXCwoULpVm2161bh8WLF+PEiRPSfq5btw7nzp2DSqVCRkaGtP3CwkKoVCrs2bNHr9zbtm1Dt27d4O3tjf3796O6uhopKSmIiYmBj48P4uPj8emnnzr6IyIiHQyIiMgpVq5ciYSEBEyZMgV5eXnIy8uDn58f7rrrLnTt2hVHjhzB119/jYsXL+LBBx/Ue+17772HoKAgHD58GDNmzMBjjz2Gf/zjH7jzzjtx7NgxDBo0CGPGjEFpaane6+bOnYt//etfSE9PR3BwMO655x4pcMnOzsbgwYMxfPhwZGZmYsOGDdi/fz+mT5+ut43/+7//Q3x8PI4fP46FCxcCAPz8/LBu3Tr88MMPWLlyJdasWYNXX30VADBixAg8+eST6Nixo7SfI0aMsOlYzZ8/H6mpqfjxxx/RuXNnpKSk4P3338fq1atx+vRpzJ49Gw8//DD27t1r03aJyAa1mhqWiMiMvn37iieeeEL6+4UXXhCDBg3SW+f8+fN6s8L37dtX9O7dW1peWVkpGjduLMaMGSM9l5eXJwCItLQ0IcRfs2uvX79eWuePP/4QPj4+YsOGDUIIISZNmiSmTp2q997fffedUKvVoqysTAghRFRUlBg6dKjF/Vq+fLno1q2b9Pfzzz8v4uPj9dbJyckRAMTx48el565evSoAiN27d+uVe9OmTdI6N27cEL6+vuLgwYN625s0aZIYOXKkxbIRkX0auDIYIyJlOXHiBHbv3o0mTZoYLcvOzkabNm0AAJ07d5ae9/LyQvPmzREXFyc9FxoaCgC4dOmS3jYSEhKk/zdr1gxt27bFjz/+KL13ZmYmPvzwQ2kdIQSqq6uRk5OD9u3bAwC6d+9uVLYNGzbgtddeQ3Z2NkpKSlBZWQl/f3+b998U3fc8e/YsSktL8be//U1vnYqKCnTt2tVh70lE+hgQEVGdKSkpwT333IOlS5caLQsPD5f+37BhQ71lKpVK7zmVSgUAqK6utum9H3nkEcycOdNoWcuWLaX/N27cWG9ZWloaRo8ejcWLFyMpKQkBAQFYv349/vWvf5l9P7W6JiNBCCE9p22+M6T7niUlJQCArVu3okWLFnrreXt7m31PIrIfAyIichqNRoOqqirp79tuuw2fffYZoqOj0aCB4y8/33//vRTcXL16FT///LNU83Pbbbfhhx9+QOvWrW3a5sGDBxEVFYVnn31Weu7XX3/VW8dwPwEgODgYAJCXlyfV7OgmWJvSoUMHeHt7Izc3F3379rWprERkPyZVE5HTREdH49ChQzh37hwKCgowbdo0XLlyBSNHjkR6ejqys7PxzTffYMKECUYBhT2WLFmCnTt34tSpUxg/fjyCgoIwdOhQADU9xQ4ePIjp06cjIyMDZ86cwRdffGGUVG3o1ltvRW5uLtavX4/s7Gy89tpr+Pzzz432MycnBxkZGSgoKEB5eTl8fHxwxx13SMnSe/fuxT//+U+L++Dn54ennnoKs2fPxnvvvYfs7GwcO3YMr7/+Ot577z27jw0RmceAiIic5qmnnoKXlxc6dOiA4OBgVFRU4MCBA6iqqsKgQYMQFxeHWbNmITAwUGpiqo3U1FQ88cQT6NatG/Lz8/Hll19Co9EAqMlL2rt3L37++Wf06dMHXbt2xXPPPYeIiAiz27z33nsxe/ZsTJ8+HV26dMHBgwel3mdaw4cPx+DBg9G/f38EBwfj448/BgC8++67qKysRLdu3TBr1iy8+OKLVu3HCy+8gIULFyIlJQXt27fH4MGDsXXrVsTExNhxVIjIGiqh28BNROSB9uzZg/79++Pq1asIDAx0dXGIyAOxhoiIiIgUjwERERERKR6bzIiIiEjxWENEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREivf/P0yxqwCkR+gAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABd9ElEQVR4nO3deVwV5f4H8M8AgoCCGygoCGKKC5BpGu6WpVzL1O7NzMy1bmWZrWJdr9oieu+v/ZZ2rbRut7TFzFIrb7nkkuGCS6UpopJiSspBBUE5z+8PnPEsM2fjnDNz4PN+vewVc+bMeWbOnJnvPM/3eR5JCCFAREREZEBBeheAiIiISAsDFSIiIjIsBipERERkWAxUiIiIyLAYqBAREZFhMVAhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGRYDFSKqsVmzZkGSJJfWlSQJs2bN8ml5+vfvj/79+xt2e0TkOgYqRLXI4sWLIUmS8i8kJAQtW7bEuHHjcOzYMb2LZzhJSUlWxys2NhZ9+vTBZ5995pXtl5WVYdasWVi3bp1XtkdUFzFQIaqFnnnmGfznP//BggULkJWVhffffx/9+vXDhQsXfPJ5f/vb31BeXu6Tbfva1Vdfjf/85z/4z3/+g8cffxzHjx/HiBEjsGDBghpvu6ysDLNnz2agQlQDIXoXgIi8LysrC926dQMATJo0Cc2aNcO8efOwYsUK3H777V7/vJCQEISEBOblpGXLlrjrrruUv++++260bdsWL730Eu677z4dS0ZEAGtUiOqEPn36AADy8/Otlu/btw9//vOf0aRJE9SvXx/dunXDihUrrNa5ePEiZs+ejauuugr169dH06ZN0bt3b6xZs0ZZRy1HpaKiAo888ghiYmLQsGFDDB06FL/99ptd2caNG4ekpCS75WrbXLRoEa6//nrExsYiLCwMHTt2xPz58906Fs60aNECHTp0QEFBgcP1Tp48iYkTJ6J58+aoX78+MjIy8O677yqvHz58GDExMQCA2bNnK81Lvs7PIaptAvMRiIjccvjwYQBA48aNlWU//fQTevXqhZYtWyI7OxuRkZH46KOPMGzYMHz66acYPnw4gOqAIScnB5MmTUL37t1RWlqKbdu2YceOHbjxxhs1P3PSpEl4//33ceedd6Jnz5747rvvMGTIkBrtx/z589GpUycMHToUISEh+OKLL/DAAw/AbDZj8uTJNdq27OLFiygsLETTpk011ykvL0f//v1x8OBBPPjgg0hOTsbHH3+McePGoaSkBA8//DBiYmIwf/583H///Rg+fDhGjBgBAEhPT/dKOYnqDEFEtcaiRYsEAPG///1PnDp1ShQWFopPPvlExMTEiLCwMFFYWKise8MNN4i0tDRx4cIFZZnZbBY9e/YUV111lbIsIyNDDBkyxOHnzpw5U1heTvLy8gQA8cADD1itd+eddwoAYubMmcqysWPHitatWzvdphBClJWV2a03aNAg0aZNG6tl/fr1E/369XNYZiGEaN26tbjpppvEqVOnxKlTp8SuXbvEHXfcIQCIhx56SHN7L7/8sgAg3n//fWVZZWWlyMzMFA0aNBClpaVCCCFOnTplt79E5B42/RDVQgMHDkRMTAwSEhLw5z//GZGRkVixYgVatWoFADh9+jS+++473H777Th79iyKi4tRXFyMP/74A4MGDcKBAweUXkKNGjXCTz/9hAMHDrj8+atWrQIATJkyxWr51KlTa7Rf4eHhyv+bTCYUFxejX79+OHToEEwmk0fb/OabbxATE4OYmBhkZGTg448/xpgxYzBv3jzN96xatQotWrTAqFGjlGX16tXDlClTcO7cOaxfv96jshCRPTb9ENVCr7/+Otq1aweTyYR33nkHGzZsQFhYmPL6wYMHIYTAjBkzMGPGDNVtnDx5Ei1btsQzzzyDW2+9Fe3atUPnzp0xePBgjBkzxmETxpEjRxAUFISUlBSr5e3bt6/Rfm3atAkzZ87Eli1bUFZWZvWayWRCdHS029vs0aMHnnvuOUiShIiICHTo0AGNGjVy+J4jR47gqquuQlCQ9bNehw4dlNeJyDsYqBDVQt27d1d6/QwbNgy9e/fGnXfeif3796NBgwYwm80AgMcffxyDBg1S3Ubbtm0BAH379kV+fj4+//xzfPPNN3jrrbfw0ksvYcGCBZg0aVKNy6o1UFxVVZXV3/n5+bjhhhuQmpqKF198EQkJCQgNDcWqVavw0ksvKfvkrmbNmmHgwIEevZeIfI+BClEtFxwcjJycHAwYMAD/+te/kJ2djTZt2gCobq5w5SbdpEkTjB8/HuPHj8e5c+fQt29fzJo1SzNQad26NcxmM/Lz861qUfbv32+3buPGjVFSUmK33LZW4osvvkBFRQVWrFiBxMREZfnatWudlt/bWrdujd27d8NsNlvVquzbt095HdAOwojIdcxRIaoD+vfvj+7du+Pll1/GhQsXEBsbi/79++PNN99EUVGR3fqnTp1S/v+PP/6weq1BgwZo27YtKioqND8vKysLAPDqq69aLX/55Zft1k1JSYHJZMLu3buVZUVFRXajwwYHBwMAhBDKMpPJhEWLFmmWw1f+9Kc/4cSJE1i6dKmy7NKlS3jttdfQoEED9OvXDwAQEREBAKqBGBG5hjUqRHXEE088gb/85S9YvHgx7rvvPrz++uvo3bs30tLScM8996BNmzb4/fffsWXLFvz222/YtWsXAKBjx47o378/unbtiiZNmmDbtm345JNP8OCDD2p+1tVXX41Ro0bhjTfegMlkQs+ePfHtt9/i4MGDduvecccdmDZtGoYPH44pU6agrKwM8+fPR7t27bBjxw5lvZtuugmhoaG45ZZb8Ne//hXnzp3DwoULERsbqxps+dK9996LN998E+PGjcP27duRlJSETz75BJs2bcLLL7+Mhg0bAqhO/u3YsSOWLl2Kdu3aoUmTJujcuTM6d+7s1/ISBTS9ux0RkffI3ZNzc3PtXquqqhIpKSkiJSVFXLp0SQghRH5+vrj77rtFixYtRL169UTLli3FzTffLD755BPlfc8995zo3r27aNSokQgPDxepqani+eefF5WVlco6al2Jy8vLxZQpU0TTpk1FZGSkuOWWW0RhYaFqd91vvvlGdO7cWYSGhor27duL999/X3WbK1asEOnp6aJ+/foiKSlJzJs3T7zzzjsCgCgoKFDWc6d7srOu11rb+/3338X48eNFs2bNRGhoqEhLSxOLFi2ye+/mzZtF165dRWhoKLsqE3lAEsKiHpWIiIjIQJijQkRERIbFQIWIiIgMi4EKERERGRYDFSIiIjIsBipERERkWAxUiIiIyLACesA3s9mM48ePo2HDhhyqmoiIKEAIIXD27FnEx8fbTe5pK6ADlePHjyMhIUHvYhAREZEHCgsL0apVK4frBHSgIg9TXVhYiKioKJ1LQ0RERK4oLS1FQkKCch93JKADFbm5JyoqioEKERFRgHElbYPJtERERGRYDFSIiIjIsBioEBERkWEFdI4KERHVHVVVVbh48aLexSAXhYaGOu167AoGKkREZGhCCJw4cQIlJSV6F4XcEBQUhOTkZISGhtZoOwxUiIjI0OQgJTY2FhERERzgMwDIA7IWFRUhMTGxRt8ZAxUiIjKsqqoqJUhp2rSp3sUhN8TExOD48eO4dOkS6tWr5/F2mExLRESGJeekRERE6FwScpfc5FNVVVWj7TBQISIiw2NzT+Dx1nfGQIWIiIgMi4EKERERuW3dunWQJMnnvbEYqGgoMpVjc34xikzleheFiIjqoFmzZuHqq6/Wuxi6Y68fFUtzj2L6sj0wCyBIAnJGpGHktYl6F4uIiMjOxYsXa9SrxuhYo2KjyFSuBCkAYBbAU8v2smaFiIjcYjabkZOTg+TkZISHhyMjIwOffPIJgCvNJt9++y26deuGiIgI9OzZE/v37wcALF68GLNnz8auXbsgSRIkScLixYsBVCepzp8/H0OHDkVkZCSef/55h+WQP+vrr79Gly5dEB4ejuuvvx4nT57E6tWr0aFDB0RFReHOO+9EWVmZ8r6KigpMmTIFsbGxqF+/Pnr37o3c3FzfHCwHGKjYKCg+rwQpsiohcLi4TP0NREQUEPzdpJ+Tk4P33nsPCxYswE8//YRHHnkEd911F9avX6+s8/TTT+OFF17Atm3bEBISggkTJgAARo4cicceewydOnVCUVERioqKMHLkSOV9s2bNwvDhw7Fnzx7lPc7MmjUL//rXv7B582YUFhbi9ttvx8svv4wPPvgAK1euxDfffIPXXntNWf/JJ5/Ep59+infffRc7duxA27ZtMWjQIJw+fdpLR8g1ujf9HDt2DNOmTcPq1atRVlaGtm3bYtGiRejWrZsu5UluFokgCVbBSrAkIakZ+/ATEQUqfzfpV1RUYM6cOfjf//6HzMxMAECbNm2wceNGvPnmm7j33nsBAM8//zz69esHAMjOzsaQIUNw4cIFhIeHo0GDBggJCUGLFi3stn/nnXdi/PjxbpXpueeeQ69evQAAEydOxPTp05Gfn482bdoAAP785z9j7dq1mDZtGs6fP4/58+dj8eLFyMrKAgAsXLgQa9aswdtvv40nnnjCswPjAV1rVM6cOYNevXqhXr16WL16NX7++We88MILaNy4sW5liosOR86INARf7v8dLEmYM6Iz4qLDdSsTERF5To8m/YMHD6KsrAw33ngjGjRooPx77733kJ+fr6yXnp6u/H9cXBwA4OTJk06378nDvOVnNW/eHBEREUqQIi+TPzs/Px8XL15UAhsAqFevHrp3745ffvnF7c+uCV1rVObNm4eEhAQsWrRIWZacnKxjiaqNvDYRfdvF4HBxGZKaRTBIISIKYI6a9H11fT937hwAYOXKlWjZsqXVa2FhYUqwYpkEKw+QZjabnW4/MjLS7TLZfpZtAq4kSS59tr/pWqOyYsUKdOvWDX/5y18QGxuLLl26YOHChZrrV1RUoLS01Oqfr8RFhyMzpSmDFCKiACc36VvydZN+x44dERYWhqNHj6Jt27ZW/xISElzaRmhoaI2Hn/dUSkoKQkNDsWnTJmXZxYsXkZubi44dO/q1LLrWqBw6dAjz58/Ho48+iqeeegq5ubmYMmUKQkNDMXbsWLv1c3JyMHv2bB1KSkREgUpu0n9q2V5UCeGXJv2GDRvi8ccfxyOPPAKz2YzevXvDZDJh06ZNiIqKQuvWrZ1uIykpCQUFBcjLy0OrVq3QsGFDhIWF+azMliIjI3H//ffjiSeeQJMmTZCYmIh//OMfKCsrw8SJE/1SBpmugYrZbEa3bt0wZ84cAECXLl2wd+9eLFiwQDVQmT59Oh599FHl79LSUpcjUyIiqrv0aNJ/9tlnERMTg5ycHBw6dAiNGjXCNddcg6eeesqlJpbbbrsNy5Ytw4ABA1BSUoJFixZh3LhxPi+3bO7cuTCbzRgzZgzOnj2Lbt264euvv/Z7HqkkhBDOV/ON1q1b48Ybb8Rbb72lLJs/fz6ee+45HDt2zOn7S0tLER0dDZPJhKioKF8WlYiIdHDhwgUUFBQgOTkZ9evX17s45AZH3507929dc1R69eqlDG4j+/XXX12qEiMiIqLaT9dA5ZFHHsEPP/yAOXPm4ODBg/jggw/w73//G5MnT9azWERERAHjvvvus+oCbfnvvvvu07t4NaZr0w8AfPnll5g+fToOHDiA5ORkPProo7jnnntcei+bfoiIajc2/Th38uRJzV6wUVFRiI2N9XOJqnmr6Uf3kWlvvvlm3HzzzXoXg4iIKCDFxsbqFoz4A+f6ISIiIsNioEJERIZnxBFTyTFvZZbo3vRDRESkJTQ0FEFBQTh+/DhiYmIQGhqqDDVPxiWEwKlTp1SH6ncXAxUiIjKsoKAgJCcno6ioCMePH9e7OOQGSZLQqlUrBAcH12g7DFSIiMjQQkNDkZiYiEuXLuk29w25r169ejUOUgAGKkREFADkJoSaNiNQ4GEyLRERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsPSNVCZNWsWJEmy+peamqpnkYiIiMhAQvQuQKdOnfC///1P+TskRPciERERkUHoHhWEhISgRYsWeheDiIiIDEj3HJUDBw4gPj4ebdq0wejRo3H06FHNdSsqKlBaWmr1j4iIiGovXQOVHj16YPHixfjqq68wf/58FBQUoE+fPjh79qzq+jk5OYiOjlb+JSQk+LnERERE5E+SEELoXQhZSUkJWrdujRdffBETJ060e72iogIVFRXK36WlpUhISIDJZEJUVJQ/i0pEREQeKi0tRXR0tEv3b91zVCw1atQI7dq1w8GDB1VfDwsLQ1hYmJ9LRURERHrRPUfF0rlz55Cfn4+4uDi9i0JEREQGoGug8vjjj2P9+vU4fPgwNm/ejOHDhyM4OBijRo3Ss1hERERkELo2/fz2228YNWoU/vjjD8TExKB379744YcfEBMTo2exiIiIyCB0DVSWLFmi58cTERGRwRkqR4WIiIjIEgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUNFZkakcm/OLUWQq17soREREhhOidwHqsqW5RzF92R6YBRAkATkj0jDy2kS9i0VERGQYrFHRSZGpXAlSAMAsgKeW7WXNChERkQUGKjopKD6vBCmyKiFwuLhMnwIREREZEAMVnSQ3i0SQZL0sWJKQ1CxCnwIREREZEAMVP5OTZ4HqnJRgqTpaCZYkzBnRGXHR4XoWj4iIyFCYTOtHasmzG7MH4HBxGZKaRTBIISIismGoGpW5c+dCkiRMnTpV76J4nVbyLABkpjRlkEJERKTCMIFKbm4u3nzzTaSnp+tdFJ9g8iwREZH7DBGonDt3DqNHj8bChQvRuHFjvYvjE0yeJSIicp8hApXJkydjyJAhGDhwoN5F8Zm46HAmzxIREblJ92TaJUuWYMeOHcjNzXW6bkVFBSoqKpS/S0tLfVk0rxt5bSL6toth8iwREZGLdA1UCgsL8fDDD2PNmjWoX7++0/VzcnIwe/ZsP5TMd+KiwxmgEBERuUgSQgjnq/nG8uXLMXz4cAQHByvLqqqqIEkSgoKCUFFRYfWaWo1KQkICTCYToqKi/Fp2IiIi8kxpaSmio6Ndun/rWqNyww03YM+ePVbLxo8fj9TUVEybNs0qSAGAsLAwhIWF+bOIREREpCNdA5WGDRuic+fOVssiIyPRtGlTu+VERERU9xii1w9Vk4fX5wzKRERE1XTv9WNr3bp1ehdBF2rD64+8NlHvYhEREemKNSoGoDW8PmtWiIiormOgYgAcXp+IiEgdAxUD4PD6RERE6hioGACH1yciIlJnuGTauorD6xMREdljoGIgHF6fiIjIGpt+iIiIyLAYqBAREZFhMVAhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGRYDFSIiIjIsBipERERkWAxUiIiIyLAYqBAREZFhMVAhIiIiw2KgQkRERIbl8qSEpaWlLm80KirKo8IQERERWXI5UGnUqBEkSXK4jhACkiShqqqqxgUjIiIicjlQWbt2rS/LQURERGTH5UClX79+viwHERERkR2XAxVbJSUlePvtt/HLL78AADp16oQJEyYgOjraa4UjIiKius2jXj/btm1DSkoKXnrpJZw+fRqnT5/Giy++iJSUFOzYscPbZSQiIqI6ShJCCHff1KdPH7Rt2xYLFy5ESEh1pcylS5cwadIkHDp0CBs2bPB6QdWUlpYiOjoaJpOJPY2IiIgChDv3b48ClfDwcOzcuROpqalWy3/++Wd069YNZWVl7m7SIwxUiIiIAo8792+Pmn6ioqJw9OhRu+WFhYVo2LChJ5skIiIisuNRoDJy5EhMnDgRS5cuRWFhIQoLC7FkyRJMmjQJo0aN8nYZiYiIqI7yqNfP//3f/0GSJNx99924dOkSAKBevXq4//77MXfuXK8WkIiIiOouj3JUZGVlZcjPzwcApKSkICIiwmsFcwVzVIiIiAKPO/dvj8dRAYCIiAikpaXVZBNEREREmjwKVC5cuIDXXnsNa9euxcmTJ2E2m61e51gqRERE5A0eBSoTJ07EN998gz//+c/o3r2708kKiYiIiDzhUaDy5ZdfYtWqVejVq5e3y0NERESk8Kh7csuWLTleChEREfmcR4HKCy+8gGnTpuHIkSPeLg8RERGRwqOmn27duuHChQto06YNIiIiUK9ePavXT58+7ZXCERERUd3mUaAyatQoHDt2DHPmzEHz5s2ZTEtEREQ+4VGgsnnzZmzZsgUZGRneLg8RERGRwqMcldTUVJSXl3u7LERERERWPApU5s6di8ceewzr1q3DH3/8gdLSUqt/RERERN7g0Vw/QUHV8Y1tbooQApIkoaqqyjulc4Jz/RAREQUen8/1s3btWo8KRkREROQOjwKVfv36ubTeAw88gGeeeQbNmjXz5GOIiIiojvMoR8VV77//vsOclfnz5yM9PR1RUVGIiopCZmYmVq9e7csiERERUQDxaaDiLP2lVatWmDt3LrZv345t27bh+uuvx6233oqffvrJl8UiIiKiAOFR04+33HLLLVZ/P//885g/fz5++OEHdOrUSadSERERkVHoGqhYqqqqwscff4zz588jMzNT7+IQERGRAegeqOzZsweZmZm4cOECGjRogM8++wwdO3ZUXbeiogIVFRXK3xyzhYiIqHbzaY6KK9q3b4+8vDxs3boV999/P8aOHYuff/5Zdd2cnBxER0cr/xISEvxcWiIiIvIntwOVS5cu4ZlnnsFvv/3mdN277rrL6UAuoaGhaNu2Lbp27YqcnBxkZGTglVdeUV13+vTpMJlMyr/CwkJ3i09EREQBxO1AJSQkBP/85z9x6dIlp+vOnz/f7TFUzGazVfOOpbCwMKUrs/yPiIiIai+PclSuv/56rF+/HklJSTX68OnTpyMrKwuJiYk4e/YsPvjgA6xbtw5ff/11jbZLREREtYNHgUpWVhays7OxZ88edO3aFZGRkVavDx061KXtnDx5EnfffTeKiooQHR2N9PR0fP3117jxxhs9KRYRERHVMjWalFB1g5yUkIiIiBzw+aSEZrPZo4IRERERucOj7snvvfeeasJrZWUl3nvvvRoXioiIiAjwsOknODgYRUVFiI2NtVr+xx9/IDY2lk0/REREpMmd+7dHNSpCCEiSZLf8t99+Q3R0tCebJCIiIrLjVo5Kly5dIEkSJEnCDTfcgJCQK2+vqqpCQUEBBg8e7PVCEhERUd3kVqAybNgwAEBeXh4GDRqEBg0aKK+FhoYiKSkJt912m1cLSERERHWXW4HKzJkzAQBJSUkYOXIk6tev75NCEREREQEedk8eO3YsgOpePidPnrTrrpyYmFjzkhEREVGd51GgcuDAAUyYMAGbN2+2Wi4n2fqr1w8RERHVbh4FKuPGjUNISAi+/PJLxMXFqfYAIiIiIqopjwKVvLw8bN++Hampqd4uDxEREZHCo3FUOnbsiOLiYm+XxZCKTOXYnF+MIlO53kUhIiKqczyqUZk3bx6efPJJzJkzB2lpaahXr57V67VllNiluUcxfdkemAUQJAE5I9Iw8lomChMREflLjWdPtsxP8XcyrS+H0C8ylaPX3O9gtjg6wZKEjdkDEBcdbrVeQfF5JDeLtFpORERE6nw+e/LatWs9KlggKSg+bxWkAECVEDhcXKYEJKxxISIi8i2PclT69euHoKAgLFy4ENnZ2Wjbti369euHo0ePIjg42Ntl1EVys0gE2XRmCpYkJDWLAFBdkyIHKQBgFsBTy/Yyl4WIiMiLPApUPv30UwwaNAjh4eHYuXMnKioqAAAmkwlz5szxagH1EhcdjpwRaQi+3LQVLEmYM6KzUpviqMaFiIiIvMOjpp/nnnsOCxYswN13340lS5Yoy3v16oXnnnvOa4XT28hrE9G3XQwOF5chqVmEVQ6KXONim8Mi17gQERFRzXlUo7J//3707dvXbnl0dDRKSkpqWiZDiYsOR2ZKU7tEWWc1LkRERFRzHtWotGjRAgcPHkRSUpLV8o0bN6JNmzbeKFdAcFTjQkRERDXnUaByzz334OGHH8Y777wDSZJw/PhxbNmyBY8//jhmzJjh7TIaWlx0OAMUIiIiH/EoUMnOzobZbMYNN9yAsrIy9O3bF2FhYXj88cfx0EMPebuMREREVEd5NOCbrLKyEgcPHsS5c+fQsWNHNGjQwJtlc8qXA74RERGRb/h8wDdZaGgoOnbsWJNNEBEREWnyqNcPERERkT8wUCEiIiLDYqBCREREhsVAhYiIiAyLgYofFJnKsTm/mBMWEhERualGvX7IuaW5R5VZloMkIGdEGkZem6h3sYiIiAICa1R8qMhUrgQpQPUEhk8t2+t2zQprZIiIqK5ijYoPFRSft5pdGQCqhMDh4jKXh91njQwREdVlrFFxgac1GsnNIhEkWS8LliQkNYtw+XO9USNDREQUqBioOLE09yh6zf0Ody7cil5zv8PS3KMuvzcuOhw5I9IQLFVHK8GShDkjOrtcm+KoRoaIiKguYNOPA1o1Gn3bxbgcbIy8NhF928XgcHEZkppFuPS+IlM5CorPIzI0GEESrIIVd2pkiIiIAh0DFQe8kWMCVNeseJqTMrxLSyzfeRxVQrhdI0NERBToGKg4IOeY+KtGQ60GZ/nO41j2QCbKKs0u18gQERHVFsxRcaCmOSbu0qrBKas0IzOlKYMUIiKqc1ij4oQnOSae8ncNDhERkdGxRsUFcdHhfqnR8HcNDhERkdGxRsVg/FmDQ0REZHQMVAzInV5CREREtRmbfoiIiMiwGKgQERGRYekaqOTk5ODaa69Fw4YNERsbi2HDhmH//v16FomIiIgMRNdAZf369Zg8eTJ++OEHrFmzBhcvXsRNN92E8+fP61ksl3g6USERERG5ThJCCOer+cepU6cQGxuL9evXo2/fvk7XLy0tRXR0NEwmE6KiovxQwmq2w9znjEjDyGsT/fb5REREgcyd+7ehclRMJhMAoEmTJjqXRJvWRIWsWSEiIvI+w3RPNpvNmDp1Knr16oXOnTurrlNRUYGKigrl79LSUn8VT+GtiQqJiIjIOcPUqEyePBl79+7FkiVLNNfJyclBdHS08i8hIcGPJawmD3NvicPcExER+YYhApUHH3wQX375JdauXYtWrVpprjd9+nSYTCblX2FhoR9LWY3D3BMREfmPrk0/Qgg89NBD+Oyzz7Bu3TokJyc7XD8sLAxhYWF+Kp02DnNPRETkH7oGKpMnT8YHH3yAzz//HA0bNsSJEycAANHR0QgPN/bNn8PcExER+Z6u3ZMlSVJdvmjRIowbN87p+/XqnkxERESec+f+rXvTDxEREZEWQyTTEhEREalhoEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVJwoMpVjc34xZ0cmIiLSgWFmTzaipblHMX3ZHpgFECQBOSPSMPLaRL2LRUREVGewRkVDkalcCVIAwCyAp5btdalmhbUw+uN3QERUO7BGRUNB8XklSJFVCYHDxWUO5/hhLYz++B0QEdUerFHRkNwsEkE2UxEFSxKSmkVovqcmtTDkHc6+A9a0EBEFFgYqGuKiw5EzIg3BlydODJYkzBnR2WFtiqNaGPIPR9/B0tyj6DX3O9y5cCt6zf0OS3OP6lNIIiJyGZt+HBh5bSL6tovB4eIyJDWLcBikAFdqYSxvlM5qYci7tL6DiNAg1ZqWvu1inH6vRESkH9aoOBEXHY7MlKYu3cw8qYUh79L6Ds5XVrG2i4goALFGxcvcrYUh71P7DopM5aztIiIKQKxR8QF3amHIN2y/A9Z2EREFJtaoUJ3B2i4iosDDQIXqlLjocAYoREQBhE0/REREZFgMVIiIiMiwGKgQERGRYTFQoTqLw+kTERkfk2mpTuLEhUREgYE1KnUEaw+u4OSRRESBgzUqdQBrD6w5mriQXZeJiIyFNSq1HGsP7MkTF1ricPpERMbEQMVFgdp04qj2oK7icPpERIGDTT8uCOSmE7n2gJPxWeNw+kREgYE1Kk6403RixFoX1h5o4+SRRETGxxoVJ1xNvDRyrQtrD4iIKFCxRsUJVxIvAyFhlbUHREQUiBioOOFK00mgJKwasWmKiIjIETb9uMBZ00kgJKwauWmKiIhIC2tUXOSo6cToCauB0DRFRESkhjUqXmLkhFWOxEpERIGKgYoXxUWH63bjLzKVo6D4PJKbRQZk0xQREZEaNv3UAktzj6LX3O9w58Kt6DX3OyzNPWr1utGbpoyGScdERMYhCSGE89WMqbS0FNHR0TCZTIiKitK7OLooMpWj19zv7GpLNmYPsAtEikzlhmyaMhImHRMR+Z4792/WqAQ4d7pGcyyValo1Jkw6JiIyHuaoBDhX8k8c5a/UNY5qTJh0TERkPKxR8QNf5jw4yz9xlr9SlzirMXFlFGIiIvIv1qj4mD9yHrS6RmvdmPu2i6mTNQTOakzkoO+pZXtRJQSTjomIDICBig/5M1BQ6xrNpgxrrjSTGXk8HCIifzNC6gADFR/SO1Dg+CnWXK0x0XM8HCIiozBKL0gGKj6kd6DApgx7rDEhInLOSKkDuibTbtiwAbfccgvi4+MhSRKWL1+uZ3G8zggDrY28NhEbswfgw3uuw8bsAYYfE8Qfg62xmzYRkWPuDH3ha7rWqJw/fx4ZGRmYMGECRowYoWdRfMYIT/C2TRlGaHNUY5RqRiKiuk7vFgFLugYqWVlZyMrK0rMIfmGknAejBgNGqmYkIqrrjJQ6EFA5KhUVFaioqFD+Li0t1bE0xuBO7Yg/gwF3a230TjwmIiJrRmgRAAIsUMnJycHs2bP1LoZh2NaOTBucirRW0ZrBgb+CAU9qbYxUzUhERNWM0CIQUCPTTp8+HSaTSflXWFioW1n0nmFXrXYkZ/U+hyPQ+mPkVU/nyzFC4rG/6X0OEREFgoCqUQkLC0NYWJjexTBEnoda7YhMq0nHH22ONam1MUo1oz8Y4RwiIgoEARWoGIFRkj7VmkosaQUHvg4GatqEY4RqRm9wlKNjlHOIiCgQ6Nr0c+7cOeTl5SEvLw8AUFBQgLy8PBw9atyJ84zSt9y2qcSWo+DAl+OI1MUmHFvOJoI0yjlERBQIdK1R2bZtGwYMGKD8/eijjwIAxo4di8WLF+tUKseMlPRpWTuy+1gJ/rF6v+7dyIpM5UhoEoFlD2SirNLs9yYcvceIcaW2xEjnEBGR0ekaqPTv3x9CaLRdGJSR+pbL5ZFrSIZmxOua36GWd5GZ0lTXzzdC7pBtM5zRziEiIiOTRKBFChZKS0sRHR0Nk8mEqKgov352kam8TiR9uqrIVI5ec7+zqyXYmD3AL8dH78/3pBw8h4iornLn/h1Q3ZONRCvPw9ddTo3apVXvvAu9P1/mTo4O5xwiInKOvX68yNdND/5o2vA0x0PvvAu9P99SXepmTUTka6xR8RJPBzozyvYB571VHNG7t4/en69WHtaWEBHVHGtUvKDIVI4vdx/36fD0vh7+3htje+hdk+DNz9e79xAREVVjoFJDls0xtmybHmpy83PUtOGNm6q3AiG9B2zzxucbofcQERFVY6BSA7a1EJZsmx5qevPT6tK64ddTXrmpGinHQ08cNZaIyFgYqNSA1nw7M4Z0wJ/S45Qbm7dufrZNGwCsusLW5KaqFQgBwOb84jrTBOKvGaaJKHCwKVhfDFRqQKsWwjJIAbxz87P8ociDqG3OL/bqTdU2ENrw6yklEKorTSCsWSIiS2wK1h97/dSAbU+TIABPDm5vFyTINz9LWjc/tXFStHrjaG03IjTI47FW5N4qAHzey8iIjNZ7iMgojDqGky/5o7elERntu2aNSg2NvDYRJeUXMXf1PpgFMO+rfWgUUc8q4nZ1yHTbyH1i72TcnB7nsNnIdrvDusRj+Bubaxz91+UmEL17LxEZTV2tVaiL10EjftcMVGqoyFSOeav3QTjJE3F281OL3Bd+X4CF3xfYfablD8VyuxGhQUqQIm9j+qd7EBkWgq6tGwfUAG5607v3EpFR1IUEc60clLp2HTTqd82mnxpyZ+h2R4OAaSXmqrH9ocjbPV9ZZbcNM4AHP9gZcAO4EZExGGV6Cl9xNNBlbb4OqjXvGPW7Zo1KDXkr4lbbjiX5NUc/FEfbsI2MXclid7UJRN5WZGgwzldWIblZJAAwS56oFqjNtQqu1CDUxqZgreYdo37XDFRqyFn+iavd2uTtqI3LEixJWPZAJsoqzQ5/KLZlsSVHxrZjr0zsnYwJvZM1y+yo3GoD3sn5vQLGaePUC7s1UqBzNccuELmag1KbmoKdBWdG/K4lIVTuaAHCnWmifa3IVG4XcXuSlFRkKseiTQV4a0MBzLhSg2L7Pkc3wCJTObYfPoMpS3baRcbLHsi0ymORSQDm3pYGAC6XuchUbjWOi5ZgScLG7AG6n+z+ZsSkNED93CkylWP7kTMQQiCxSYRSM1bXvjPSpnaNC3Rq17Dafr3anF+MOxdutVv+4T3XKT0+/fFdu3P/Zo2Kl9hG3J4mJcVFh+OpP3XE+F7JSoLs+coqFJnKXQ6A4qLDcXNGOM5XXrKLjNXyWIDq2o/py/ZAiOr/d6XMrubVBHKWvKc1Iv5OSnO1nGrnDgBkf7oHtl+l5bnlznFgLVJgcva91aZaBZlRaxB8KblZJCTA6vdu2bxjxN8vAxUfqWm3trjocLsmmmlZqYiPru/yDVCtbbXIVO4wj8WWozI7y6uRGaGN0xM1qRHxZ7dGV8upFjxN/3QPhAS7IEV+/alle1FSfhHzLne/d3YcjFqLRI7Vlu9NLV/O2e+tNuagOLLh11NWf0uAEpwZ9Txgrx8fcWeQNzVqN5WcVfvw0Id5bmVl2/Y0kp8gbMumxVGZbTPiZRIAeVGgPqHUdKCnmn7/rpbxi13HXC6nWvBkBuCo8bdKCGWMIGfbr6uDYwW62vK9WfbeufX1zaq9eLQ46pFZm8jfteVPXpKAvu1iDH0esEbFR2papViT7srOyE8Qr313AB9sLbR6TZIAScAqP0atzPKTS992MdiYPUBpppITfgF4/QnFn1WS3qgR82aVsu2+O5q1W6ucajVgQUB1jYpWbzPY15hpbT8QBscyYrW2J7y1H0Wmcny5+7jq97bjyBk0jrxSO+FOLYW/aU0Qa5RxQIxC9WFFVF+rBYRhf78MVHyoJlWK7jSreNrL6Ob0eLtARQjgX3d2QZPIMM0yu1o96M2T299Vkt7opuetKmXbfZ+Wlao0xajRKqejiSezL+cn2W7nycHtMe+rfS4dB3ePmb+DBqNWa7tLbT/6totx+1g6CnYlqXr8JbVTTJKA7KxU/LVvSs12xIscPdgZ5WZrBM5+o0bsmgwwUPE5TxPQ4qLDnd6QJABPZrVXLrbuXoi1TtprbEaxtbyhAOpzAPnyiaWmiame3BC9VSNS0wREtX13FqQ4KqdW8NS3XQx2HDkDIYCEJuFWXeEbRdRTjkOQBEzonaS5r64eM38HDUYdcdNdavsx7dM9SnKkKz315BwOrSAFcNwcKC43Q0MAf+1njGDF0YOdUW62avwdrNv+RoMATLz8ezZyYjG7JxuU5YVcAjC4cwt8vfcEzDbryV3pAHjUzW5p7lG7E9PyIqc2/5DasP6WXdu8zZXudFrcvSHaXjj07pKpte+2WftBAF67s4tdkOktcrf5hRsKnN4QnR0zPbqE1uQcMhKt/bCkdSytrikOmvtcFQRg0/TrDXEjA6yvZTKt4R2MoKbXppooMpVj0cbDeGvjIbvP99c1j92TA5ztU5MA8M1Pv2P2rZ0w4/OfrNaVqzU9bV901Dyh9vT2lkqQEgTgj/MVVl2oXd1PV354njbDuPsUrXXh8MaP1dm4N1qvqeaVSMC0wan4x1f7rQLMIenxXiuT7XrbDp/GW98XuNR13Vkt0rbDp/3eFm7UETfdteeYyek6tseyyFSONT+fwMzPf1a+P288npoB1e9Mrzwg23nPnA2QqSdvXZtqQg5S1D7f3VQCX2OgYkBaSYmNI0J90r6odWNRK4fa9U2guj3b2VO2PKBYt6Qmdl2vHf3wPK2SdCe505dNA3Y5JoNTkdYqGsnNIp0eB3nfLXNIhAAaRdRTkpg9uRi7euHzJGnXlc+15eugwcjV2q6SJ0B1JghQjuXS3KOqY+R4g9p3pnceUKCM9aJ1bdpx5AzM4jQkSVImkvXFtcmVa6Pe36UlBio6U4tYtZ7+uiY1dnix9faF2NWEXsun7OnL9iAiNBjdkppYnfC2F0sJrg8sB3iWmOrOU7SveqyodjO/fLOxnGpAfk3tOPRtF2MVIQpUj3/y6p1d3J4VW6tMap+r1ZNC5m6irNb2ggC7c9UXT3KBPl6Gqz0Bp2WlKjc4bwcpSi4MruQ2yJydV0Z5OjcCtWuTJAGTP9h55W9Ujxa+q7DE69cmZ9dGo+V0MVDRkaOmBq2gw9HF1tsXYrvEq8vt2o4ufGYBPPRhnlVvBNt++4D9Nlz54bn7tOTOU7SvmgYc3VzUFlseB/nC/se5Crt15VmxPXnSWbSxwKULn6OyWw4SZUvrvNba3mt3drFqtnLlSc7Tm16gPHGrcfbgIAHI/lN1bxy527E3gxR5Co6Vu0/grY2H8O/vC/DWxgKH36/W/GI1fToPxKDHMpH56Oky3HFtApb8WAgz7GvDgerrw7RP7WsfcXn9mlybnF0bjTbUAAMVnTiLWB0FHY4utp5eiLV++Lbl2PDrKeXktq0RsCTvzyujrnbpKdBXVf+uBm++ahpwtVZKJh8H28RHLZ70gFJLhla78KkNtS2TB4lS277Wee2ol5mj99vW0rkzEm+g3cwckc9RR12Kh2bEO2yu0zJjSAdcEgL/WH0l72lYl3gs33nc6vcQG1VfM7dB6/stq7xo1XRp+R4AVjdvyyYPLYH4/Tv6Tu7snojUuAb4++c/u7y9Sb3bAKhOrvZ0/xxdG42W08VAxU9sfzSuRKz+evpzZe4gAFYDvFlmjGupulz9onWjlm+Cvs4XcPU4+qJpwDYAsiWP4msWV44DYN0F3FnioztPOgXF51UDj6zOcXbLbIfatmQWUEZDduW8Xrm7CEPS45wGg1oDUsm1dNMGp1qN66IVqBmpfd1TajfakdcmIiI0GA99mGe3vlkAO46ccRqkqM3z8qf0OMRFh2NoRrzV+f/4oPZWf2/OL9a8bmWmNLX7fod1icekd7er1qBqXUPkJg9Xp4Ew8vcv5+Y5aoL74MejcPAsYkcC0LRhqNJzrib7p3VtNFpOFwMVP9AaoMkIEasrP3y1ZFDbC4zak7dlXo1aFaaE6sHlrrFIGtP7CaimwaHWzSW1RUPkHj6DkrJKzF93yOrHbxscqd0MZGrNb+6cN1o1PCv3FGHVniLlBqE21LalYEnC7mMlGP3WD1fOi6xURIQGq54Lz638BXNW/YKcEWnYmD3gctJg9UzNlk+FjmqgzOLyGDI2y9V6uRipfV2LWld4+W/LphIJwD19kjEkPQ7nK6uQ2CRC9RhXHzf73n8AMOX6tmjfoiGuad3YqlbU9gZke/7b/u3sSdu2583wNzar18gBWPj9Ic3k/OnL9qh+X6484Pnq+3d2fXJn9Ghb7jTRPdA/xWosJV+d30bK6WKg4mNaP5qN2QMMEbE6++FrDjhmsx0B4N6+yXj7+8OqeTWRYSF40CJRDKjOs2gSGeZWdb6Rae2DWqCX3qqR1Y/f2c1AZhbax9lVE3sn422VPBWB6lmU5VFONYMlACOvbWV3scxZ5bhHinzuP5nV3m7QOsvj5agGygz7MUBsAzWjta+rsT0nhndpic92HlP+tgxGBYB/f1+Af19usguSgBHXtMSyHceUdaTLx69bUhPVQGJUj0SrwNnTG5ArT9pycKMVcDtqMpbJtUND0p131/fV928bOMq1Imo1PrbjXo3qnoAluYVuNb+psZzSRH4YSGsZjdfX5dd4/1xhlJwuBio+5uhHY4SI1dkPX2siO7WbxfheyRjfK1l1f7q2bqz5OVp5CaktGiIj4Ur+gpFpBaSpLRraLf/HV/sdDm7mKBfB0XF29sT35vp8zF29T7nY3pAag2/3WTfvCADbD59B1yT776v6ApyIJblH8cGP1lMvuEqe5NA2BjGL6p5MfdvFKDVQt76+2e798sVazqWQR8o9WXpB2XejtK9rfR9q58qnO44przu7uZkFsHzncSyf3BOFp8shSbAa6M+VB6Ca3IBcvW6p9my5/B9XxnF58IOdOFdxSbW7vqP988b3bxtIWm7LMqBXe5gTgMe/D0taNa5FpnJDnN/+xEDFTe42Tzj70egdsTr74WuV/8ms9laJd7bVx+58jtqTl1kAw17frNlWbQSW54JWQJp7+IxHT3eWE0d+uLVQNZdHq01ewuW5WPqlKGXcdLAYr6+98hQmAHy3Tz0HRZIsxm+xaVv/8MejNepJIkH7JmUGsGjjYTw1pAPOV1aprjOpdxv8tW8KhmbEKyPlLvy+wCpB+Oa0FhhzXWu8t+WI0pXW37WVjmoI3ZlwVEuVECirNOPmDPtB/vzxAOTKdUvtNz+xd5JSM+SMgH2TRpGpHAlNIrDsgUzNAd1qkl8h55RYNlWrfVdyQH9zhnpelpogCXj1ji5IaBKORZsKsDyvSHWdaVmpSG+pXeOqtX/AleRaALo3o3sTAxU3eNI8YbSkJDXOehgN79LS6olvWJd45WbhzsVQ63O0mjrULlRGodacoxbQXatSMxEEICI0yOlnbPj1FJb8WKjUgDw5uD36touxy/RXe6LLWb0Pu34rwVd7T2heROXtWr4sSUCrxtXBY2qLhlY1ZzW8t7q0jYXfH8L43kmaMz2Ptxi7w3KkXEtf7jnh1md6i9Y8OrY5BK70BJMufzFaqzh7gtb7AUhm+5sHgLdUmh21yEE9ALyzsbo7tLC4/mpNf+BJsOZubym5N54r36dcXjmwfPmOxugQn680gQYBuKNHAjLbNFV6txWZyjV79dju34q84+iZ853ymwZcm/spUHCuHxfVdH4SveeM8ZS/5mVxdJH425AOGHK5V4LtCLd6HEutY6JWyyTnqNjmXLgyeZztZ1j2ELJ8vyvzv6gJAjDtT1cmvrTNldDqmuwqT+eTmXJ9W4zqkaia9CkfL3f32dfz0ry5IV9p0tI6bpbzClmeE0ES0KttM2w6WGzV+6tvuxjVnjHemL9Gz8R1td+DFvl3NXfVPrtjKknA5mzPvlO1RGbb35szn0/uifOVVVeSnz/dY5e7J3v21k4Yk5mkWo7DxWXY/VuJ0ptNLWfJ0bXizQ35DvPDjDYnk4xz/XiBO92JAefVbEZ5wnFE7eLlr8REOS9h2Ov2vQTkHiPDu9gkEAKY1CcZE3on+/XYah2T9JaN7Ia1l6uq/333NZj03naHY0k4O+4CUH2/o/FOHJmWlWpVMyb30rCsmbHlyucEScBnD/QEANXvUza8Szw+23ncbvmr3x3Ev9YeVHoIWT6Ny0+Y7o5PozUvjTe8uT5fGW0YUD8+tjUglk17H2wtxPcHiiGhOlF6fK9kANXnwJD0FkhrFYUgSUKrxuFemb+mponrNQ1y5H1fubsIz638RXO9YEnCff3aKHlVtoRQT7h1Rm3/E5pEODyXeiQ3xo8FZ6zKYXlu39k9AZ9N7olXvz2Ib/edtHt/k8hQ1e3Kx0/uPQeo5yxp1SwXmcox18m0CpZNqoGKgYoKd7oT23bRDNRqNq2Llz8TEzMSGmPubeo9Pmx/vED1DUHOT5h+OSfDF2wvzFoTBUaEBlkFpM5mq7UdSyJIqu56GB1RD21cuBFbjl+RnZVqdbN0RMKVEUwB57005HLIT/Il5RftnnDl/ZPXyUhojM35xQ6bLsb1TMLyneqjp1r2jstMaap6fjrqHaS2z8XnLrg9caYzjm4U8nELktRzZFbsOo4Ptl5JuhQA3v7+MJpGhlmNFSNvy9Vri7MJMO0S1z/dg8iwEJemY/BW77y46HAMSY/D86t+Ua11kwegU6tJsWT7Xq2pG+RlAFSb5ZY9kOnw93ZzejxyD5+x+jzLVT/4sRAf/liI7D+l2gUqcrKzFldyXLQeDguKz7tUayk3qRr9YVkLAxUb7nQnfnJwe7/0Z/c1Z6OB+jPHxtWnLVs5q/cBEpSbr7eoXZhLyi6qJv8Of2Oz1VTpzgZtsx1LwiyAf1kkvF6T2Ai7Ck3VzQO4XKNis43dx0qQmdK0OkiToJyP8mBbcvWx7ecOVUnC1MoLWXh3V0SE1rN6kh+aEY8dR6ov3F2Tqi/CruYeyTduOTB1NOnhyt1FuDapseZvUq5xiQgNwgvf/IoNB4rtN3T5uFlO7eDJzVWrxlGr5snRd68V4Ci9omyWu3ptcRZIaPXic2U6Bq3rhKfXu7jo8OoA26bZIliS0C2pseYYLDIJV869XYVnsHDDISU/Sc4b++NcBRZezmUKkoBJvZNVa0PLKs2aPe0kAI0jQ50GEwLVv7/pWalWzTg5I9IcHh9Xagcte0g6e2jSKtu/vjuI54enOV7RoBio2HCnO7ErY5AEQua1s9FAbavgfb0vcdHhqPKgW8S81fswNCPe7fK5043U0QiTljcTraekIFzu3g3nTSg7jpbg7bFXgoQVecftak3mrd6H+Oj66JbURDXBuX/7GLtRTLWaQWwTv+V173lvu13iYvUTsf37bf+eNjhVGXcnCMCky00btmN67DhyBg9+sFO12U+rNkquTZK39d7EHthVeAbf/nISofWCcPD3c1ieZ9205OnDhG2vqnv6JGN872SHieCW/2/7mVpPwo7OC2dNrq4MdOZsjB5Hx0brOvH8yp/x9JCOHl0X/to3BRBXxmaSH4TOV1Y5Tk4FkHNbdQDw2Ed5drWtZgG734pZVCdga9UQZ6Y0rc4LutybTFh8jtrwCmrMAkhv1Qibsq93+Xqp1uFCbfoCtUEAx/dOdjitgqX/bj2KRuH18MTgVMcrGhADFRvudifWWjeQBjBz5eIlV8F7i6NROQFg3lf2T5t/SmuB1XtPaHdvFdY3YFcCRXe7kToLLuSbyZ5jJrvXggDMvrUTAGDmip9cqrI9XFyGiX2q5/VIaxVt97ptQClPainTGgBMq+lOyRV6Y7NqPoy7N/d5X+1Txt2Rc2JsyUHPb2fKVWsT1I6T1j7sO3EW/1p70KUmM9ug1NXmEgFYTcg3LSvVqvfGyO4J+NBmHA3bz9T6zT0wIAXz1+Wrll/rqVrm6rQcjprMHAVDWmX+cvcJrNpzwuq3485D2l/7pWDo1fF2uV2qtXtjrWv3dhWesQtSHDEDuLd3G7y9seBKzXhWexQUn8fJ0gs4X1mlOU6R5XFzFFDKtZzu/FbUeilZTl8AwCrZ1/Yc3JR9PRZtKsBbGwo0E3oB4PV1+YiKqOf1mmdfY6Biw53uxI76swfCEN4yVy9egHf65jsblXOiSvUsAIy5Lgkzbu6IHUfOYM3PJ+zGIbC8ebk6A29Nu5HaCpYkRIQGYZ5Ktb4ZwIzPf3KrN0y3pCtt2548DXvSPf58ZZVmDYar37ta09c/Vu/XrPFamntUM2lSJtdGWf7Ovth1DCXlF9E4IhQJjcNderK0nc5+0cYCq+YBV5pLgMs1bMv2KN2IJVQHY0OvjsdSm1FJbQMr2+8lyCKQS2wSYfdbVHuqti1rZGiw6v7adoWXb4rbD5/BlCU7XQ5i46LDMbF3suqklpbnn6szJdsGM87O2yez2iM8NMQqePjx8GnVsmqRu7iP7510pbeNg1GSLdl1Cd51XLW3jaPz3FEAp3YM5L+18scsc2z6t4/FkLQ4lFWaEREapJnI7mnNs54YqKhwpw++2rqOJu5y9LSvZ1ORoyr4YEnC7t+8kzTsyqicb28ssHtikccekZ++h6THW41DYHkDdnWuD2dPoPLF0tWxFVyttlYLUoIA9G0fg3X7rwzCdts1La1G5vX0adjdMSW8kUDtTm8xZ/MKyZ9vOcjXhl9PKeNGyFzt+XRfvzYoKD6P9384gjfW5lu9Ry251FGvKtvkynmr9+G6NvZ5XU8Orn5qB640kWl9L7bz5cj7DFg/Vdue11qD5JVV2j9jx0WH4+aMcJyvvORWEDuhd7Lm+DVVQmD74TMO892A6nNjz28muzwOR4GBZUBhuX73y9t0lUD1+ETyZ1n2tpFZHle5vJbBlHx8/to3BS0bhdtNDaJ1nteklt3RQ0qVEEpQYrnd7D/Z5//I+2ek6SRcwUBFg2106866zi70aicsAN2biuQg4FzFJbsnGU+Thl3p5m3LLKznswGqn6Qtk1UBaA465+rEZafPV9p9tlo3Uq3ZaiWpegTYoRnx2H74DCBVTxUAaM8Ybcm2hmDktYnYVXgG2w6fQbekxqrTBzgLKB09DbtzPrtTC6MWYGv1jDp46iyKz12wGgPH2Tlh2ZNI/jy1XCFXK77eWJdvN1eKJdvk0pLyiy5uufq9w97YjLkWeV27j6nfZAHHs9faLnf2AORJgOluEBsXHV6dAK0yZkiwJAEq573cPCld/tv2e7K9nqidT7bdd+X1MxIaY0D7GKzdbz3KsuWYQ5YErgRO8rbUVAlR3ZTyfYHDa7KjqUEs1XSiROWhSWOsFvnjLQPDoRnxKC27aHeuS0DADbfPQMVNrtR6OLrQa2XOW57oejcVuZs0rMXVbt625PlsQoODrHrByE+7ji5oAFSfgCVcqQLXGlxOAlSffNXyPADgmVs7YWCH5qpV3bbV+paTzMn7qDYMeEaCeoBiSSug9GZvLFdvYFpPiba/AfmmMWP5TwCsJ3bTelqUcGV2beDKGCpaPW1kcgCo1VPK1YDGLKA667czQlzJ64oIDbKa26gmv21X8uc86aHnThALXDk3LLvWy5/lKOnU0XGXrydqvyW1MU4s11//q3WQYjlgnlrvQcu8Lke1cP/eUGD1npo0rXpjPCq14652rC33b9rgVPt9lBBwDDEy7euvv45//vOfOHHiBDIyMvDaa6+he/fuTt/nz5FpAfer7tRGo3VnRE3LkSz15MnotI7eYzniqC25mjy+UX1M+TBP9SJyb582SImNtBvCPq1VtJKMa9ssAFyZR8O2TVpm+cRn+/3aDuql9h7b/QSudNl1NMpqTeg54rEr50WRqVyzR4/liJlLc48ie9ke5YZuGcjYTVeQlao5voY82JxlE5FlwOhOvlFN3ds3Wek9Ykv+bTtKKtfK5XF0HhWZyrHt8GkESZLVRIW+onb+uTPyrEwO3C0HHJSX//vuazDp3e2qgb7t+kEAPpvc06r2zdGIs5azE7tC65rs6Hcoj6b9kEoNqKcjfMufZztIoy05aHe2H+6eh94QUCPTLl26FI8++igWLFiAHj164OWXX8agQYOwf/9+xMbG6l08hSdVd2pPKq4maBppNkxPntScdfNWG4U2CMD9/dvYDXZl662Nh6xqKMziSldEORlX7e1mAc0gBbAONixzFY6dKVfthWT7Htv9tMz898ZEcWoXD3efhr3J1V4mjSPVa0Asu0lbNmnJY7No1UD+Y/V+ZGel2iXfSpeDS8saKeUpdFOB1ROyt6k9mTv6vI0HT+Ho6fMOk8pdSei0/O716Glo2Xwn/z3y2kTVQQG1OMrtqhJCNUjRWt8M65wcZ3lmQlTX2hWZLjgdt8mTplXbbu3yeVLTGlDLz3OUt6Y1073lfjjq3CA3b+vdS0j3QOXFF1/EPffcg/HjxwMAFixYgJUrV+Kdd95Bdna2zqW7wltDyTtLiAS0R7LUk7cTMs9XVtm3VaO6+5yzBzFHQYxWMq4r77VbF7BLlHOF1gWtJkGFEbu7u5oToTnwG6zbyuUmLUua0xW0aoTN06/H9sNnUFJeicYRoQ5rEN5yccZeT7lbUTP/8nluGWy7Omy62nlU0xwIT2k1785z0oMLACYPSEHvtjEOuyQDNkn1ErDsgUxkJDRWXV/t/HOUZxaEK6PGzln1i9W2LPNcPAks1Lq1B0nAa3d0UQJxb3CWt+ZopntnnRuEQHVCroDPRv52hfMpXH2osrIS27dvx8CBA5VlQUFBGDhwILZs2WK3fkVFBUpLS63++Yt8sbXkaa3HyGsTsTF7AF6/s4tdc2EQqquu9b4JqYmLDnd5fAA5IAu+PMWo7Q9E7XgGwbVuu3LbshazAO7pm+y3k1u6XCag5k9KarRuQkWmcq99hiecfce260kWX5qEKwN2OeLod1fdcyUed12XhCHp2t0ttZJ1n721Ez685zpM/1Oq3y+EZuE8uLEcFsAZZ3OR+YLWebn9yBmXHgh6t42xup7Ynk+237v8GXKNiavnH3Alz8zWtKxUJfCz3dbc26rHJ/nwnuuwMXuA29dkrQHymjYI83rwWB3kx2PubfbH4699U7Axe4DqfrjSuQGoronW83qja41KcXExqqqq0Lx5c6vlzZs3x7599lXtOTk5mD17tr+KZ8XTRDVH29NKiHSWTBkoHNXCqB3PJwe3t5/jBNXTny/ZWmg3hoajPBd50CZniWcAcNd1iXj/h6Me7aNl4p6vckX8NTGkJ1ytadNq2nHGG787rZqfgR2bK8H30Ix41ZmKZXJuTKPweq7PL+Qg/0EtwdqWOw9C/pyTS6Z1XsLBb81Z2Wy7ZqvlrKhN7ujs/LM9jyzHrXG2LU9/Y3p8J472QW0/XE1F8OWknq7QNZn2+PHjaNmyJTZv3ozMzExl+ZNPPon169dj61brpNOKigpUVFQof5eWliIhIcFvybSAb5IX9UyI1JvtvmslC6odI2WK9GMldlWbtgmGji58akl5WqrnC2mDIektvDKTrSs8SWaubWr6G3GWhGr5OZYjfKoN+6+VIKzWVCDfNDYdPIU3Lo84qxZsaw2b7s5TvKv76C2uJszXZN+8vU/+vtb6+zvxhG0ZB3VujlWX50yS+eJ6404yra6BSmVlJSIiIvDJJ59g2LBhyvKxY8eipKQEn3/+ucP3+7vXD/mHJxcTV9+jdeGwXW57YX0yqz3SWzbSLZgMhAue0blzXrmyrtp34ujp3lGwbZmnUdOEa6PciL21b4H+IBcI5bct45vr8+3mX/L29SZgAhUA6NGjB7p3747XXnsNAGA2m5GYmIgHH3zQaTItAxXyhNaFw9s3DW8zWnmI3wnAY1Bb+fp7DahAZenSpRg7dizefPNNdO/eHS+//DI++ugj7Nu3zy53xRYDFSIiosATUOOojBw5EqdOncLf//53nDhxAldffTW++uorp0EKERER1X6616jUBGtUiIiIAo87929dx1EhIiIicoSBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDEv3IfRrQh5Ut7S0VOeSEBERkavk+7Yrg+MHdKBy9uxZAEBCQoLOJSEiIiJ3nT17FtHR0Q7XCei5fsxmM44fP46GDRtCkqQabau0tBQJCQkoLCyss/MG8RjwGMh4HHgMAB4DgMdA5u3jIITA2bNnER8fj6Agx1koAV2jEhQUhFatWnl1m1FRUXX6ZAR4DAAeAxmPA48BwGMA8BjIvHkcnNWkyJhMS0RERIbFQIWIiIgMi4HKZWFhYZg5cybCwsL0LopueAx4DGQ8DjwGAI8BwGMg0/M4BHQyLREREdVurFEhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGVatDlTmz5+P9PR0ZYCazMxMrF69Wnn9woULmDx5Mpo2bYoGDRrgtttuw++//261jaNHj2LIkCGIiIhAbGwsnnjiCVy6dMnfu+I1c+fOhSRJmDp1qrKsth+HWbNmQZIkq3+pqanK67V9/2XHjh3DXXfdhaZNmyI8PBxpaWnYtm2b8roQAn//+98RFxeH8PBwDBw4EAcOHLDaxunTpzF69GhERUWhUaNGmDhxIs6dO+fvXfFYUlKS3bkgSRImT54MoG6cC1VVVZgxYwaSk5MRHh6OlJQUPPvss1ZzrtSFc+Hs2bOYOnUqWrdujfDwcPTs2RO5ubnK67XxGGzYsAG33HIL4uPjIUkSli9fbvW6t/Z59+7d6NOnD+rXr4+EhAT84x//qFnBRS22YsUKsXLlSvHrr7+K/fv3i6eeekrUq1dP7N27VwghxH333ScSEhLEt99+K7Zt2yauu+460bNnT+X9ly5dEp07dxYDBw4UO3fuFKtWrRLNmjUT06dP12uXauTHH38USUlJIj09XTz88MPK8tp+HGbOnCk6deokioqKlH+nTp1SXq/t+y+EEKdPnxatW7cW48aNE1u3bhWHDh0SX3/9tTh48KCyzty5c0V0dLRYvny52LVrlxg6dKhITk4W5eXlyjqDBw8WGRkZ4ocffhDff/+9aNu2rRg1apQeu+SRkydPWp0Ha9asEQDE2rVrhRB141x4/vnnRdOmTcWXX34pCgoKxMcffywaNGggXnnlFWWdunAu3H777aJjx45i/fr14sCBA2LmzJkiKipK/Pbbb0KI2nkMVq1aJZ5++mmxbNkyAUB89tlnVq97Y59NJpNo3ry5GD16tNi7d6/48MMPRXh4uHjzzTc9LnetDlTUNG7cWLz11luipKRE1KtXT3z88cfKa7/88osAILZs2SKEqP5Sg4KCxIkTJ5R15s+fL6KiokRFRYXfy14TZ8+eFVdddZVYs2aN6NevnxKo1IXjMHPmTJGRkaH6Wl3YfyGEmDZtmujdu7fm62azWbRo0UL885//VJaVlJSIsLAw8eGHHwohhPj5558FAJGbm6uss3r1aiFJkjh27JjvCu9DDz/8sEhJSRFms7nOnAtDhgwREyZMsFo2YsQIMXr0aCFE3TgXysrKRHBwsPjyyy+tll9zzTXi6aefrhPHwDZQ8dY+v/HGG6Jx48ZWv4dp06aJ9u3be1zWWt30Y6mqqgpLlizB+fPnkZmZie3bt+PixYsYOHCgsk5qaioSExOxZcsWAMCWLVuQlpaG5s2bK+sMGjQIpaWl+Omnn/y+DzUxefJkDBkyxGp/AdSZ43DgwAHEx8ejTZs2GD16NI4ePQqg7uz/ihUr0K1bN/zlL39BbGwsunTpgoULFyqvFxQU4MSJE1bHITo6Gj169LA6Do0aNUK3bt2UdQYOHIigoCBs3brVfzvjJZWVlXj//fcxYcIESJJUZ86Fnj174ttvv8Wvv/4KANi1axc2btyIrKwsAHXjXLh06RKqqqpQv359q+Xh4eHYuHFjnTgGtry1z1u2bEHfvn0RGhqqrDNo0CDs378fZ86c8ahsAT0poSv27NmDzMxMXLhwAQ0aNMBnn32Gjh07Ii8vD6GhoWjUqJHV+s2bN8eJEycAACdOnLC6IMmvy68FiiVLlmDHjh1W7a+yEydO1Prj0KNHDyxevBjt27dHUVERZs+ejT59+mDv3r11Yv8B4NChQ5g/fz4effRRPPXUU8jNzcWUKVMQGhqKsWPHKvuhtp+WxyE2Ntbq9ZCQEDRp0iRgjoOl5cuXo6SkBOPGjQNQN34LAJCdnY3S0lKkpqYiODgYVVVVeP755zF69GgAqBPnQsOGDZGZmYlnn30WHTp0QPPmzfHhhx9iy5YtaNu2bZ04Bra8tc8nTpxAcnKy3Tbk1xo3bux22Wp9oNK+fXvk5eXBZDLhk08+wdixY7F+/Xq9i+U3hYWFePjhh7FmzRq7p4e6Qn5SBID09HT06NEDrVu3xkcffYTw8HAdS+Y/ZrMZ3bp1w5w5cwAAXbp0wd69e7FgwQKMHTtW59Lp4+2330ZWVhbi4+P1LopfffTRR/jvf/+LDz74AJ06dUJeXh6mTp2K+Pj4OnUu/Oc//8GECRPQsmVLBAcH45prrsGoUaOwfft2vYtGNmp9009oaCjatm2Lrl27IicnBxkZGXjllVfQokULVFZWoqSkxGr933//HS1atAAAtGjRwi7jX/5bXsfotm/fjpMnT+Kaa65BSEgIQkJCsH79erz66qsICQlB8+bN68RxsNSoUSO0a9cOBw8erDPnQVxcHDp27Gi1rEOHDkoTmLwfavtpeRxOnjxp9fqlS5dw+vTpgDkOsiNHjuB///sfJk2apCyrK+fCE088gezsbNxxxx1IS0vDmDFj8MgjjyAnJwdA3TkXUlJSsH79epw7dw6FhYX48ccfcfHiRbRp06bOHANL3tpnX/xGan2gYstsNqOiogJdu3ZFvXr18O233yqv7d+/H0ePHkVmZiYAIDMzE3v27LH6YtasWYOoqCi7i75R3XDDDdizZw/y8vKUf926dcPo0aOV/68Lx8HSuXPnkJ+fj7i4uDpzHvTq1Qv79++3Wvbrr7+idevWAIDk5GS0aNHC6jiUlpZi69atVsehpKTE6onzu+++g9lsRo8ePfywF96zaNEixMbGYsiQIcqyunIulJWVISjI+tIfHBwMs9kMoO6dC5GRkYiLi8OZM2fw9ddf49Zbb61zxwDw3veemZmJDRs24OLFi8o6a9asQfv27T1q9gFQu7snZ2dni/Xr14uCggKxe/dukZ2dLSRJEt98840QororYmJiovjuu+/Etm3bRGZmpsjMzFTeL3dFvOmmm0ReXp746quvRExMTEB1RVRj2etHiNp/HB577DGxbt06UVBQIDZt2iQGDhwomjVrJk6ePCmEqP37L0R11/SQkBDx/PPPiwMHDoj//ve/IiIiQrz//vvKOnPnzhWNGjUSn3/+udi9e7e49dZbVbsmdunSRWzdulVs3LhRXHXVVYbujqmmqqpKJCYmimnTptm9VhfOhbFjx4qWLVsq3ZOXLVsmmjVrJp588kllnbpwLnz11Vdi9erV4tChQ+Kbb74RGRkZokePHqKyslIIUTuPwdmzZ8XOnTvFzp07BQDx4osvip07d4ojR44IIbyzzyUlJaJ58+ZizJgxYu/evWLJkiUiIiKC3ZO1TJgwQbRu3VqEhoaKmJgYccMNNyhBihBClJeXiwceeEA0btxYREREiOHDh4uioiKrbRw+fFhkZWWJ8PBw0axZM/HYY4+Jixcv+ntXvMo2UKntx2HkyJEiLi5OhIaGipYtW4qRI0dajR9S2/df9sUXX4jOnTuLsLAwkZqaKv79739bvW42m8WMGTNE8+bNRVhYmLjhhhvE/v37rdb5448/xKhRo0SDBg1EVFSUGD9+vDh79qw/d6PGvv76awHAbt+EqBvnQmlpqXj44YdFYmKiqF+/vmjTpo14+umnrbqT1oVzYenSpaJNmzYiNDRUtGjRQkyePFmUlJQor9fGY7B27VoBwO7f2LFjhRDe2+ddu3aJ3r17i7CwMNGyZUsxd+7cGpVbEsJiOEIiIiIiA6lzOSpEREQUOBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSI6qD+/ftj6tSpehfD52bNmoWrr75a72IQUQ0wUCGigFNZWenXzxNC4NKlS379TCKqxkCFqI4ZN24c1q9fj1deeQWSJEGSJBw+fBh79+5FVlYWGjRogObNm2PMmDEoLi5W3te/f3889NBDmDp1Kho3bozmzZtj4cKFOH/+PMaPH4+GDRuibdu2WL16tfKedevWQZIkrFy5Eunp6ahfvz6uu+467N2716pMGzduRJ8+fRAeHo6EhARMmTIF58+fV15PSkrCs88+i7vvvhtRUVG49957AQDTpk1Du3btEBERgTZt2mDGjBnKrK2LFy/G7NmzsWvXLmU/Fy9ejMOHD0OSJOTl5SnbLykpgSRJWLdunVW5V69eja5duyIsLAwbN26E2WxGTk4OkpOTER4ejoyMDHzyySfe/oqIyAIDFaI65pVXXkFmZibuueceFBUVoaioCA0bNsT111+PLl26YNu2bfjqq6/w+++/4/bbb7d677vvvotmzZrhxx9/xEMPPYT7778ff/nLX9CzZ0/s2LEDN910E8aMGYOysjKr9z3xxBN44YUXkJubi5iYGNxyyy1KQJGfn4/Bgwfjtttuw+7du7F06VJs3LgRDz74oNU2/u///g8ZGRnYuXMnZsyYAQBo2LAhFi9ejJ9//hmvvPIKFi5ciJdeegkAMHLkSDz22GPo1KmTsp8jR45061hlZ2dj7ty5+OWXX5Ceno6cnBy89957WLBgAX766Sc88sgjuOuuu7B+/Xq3tktEbqjRlIZEFJBsZ9B+9tlnxU033WS1TmFhodUsw/369RO9e/dWXr906ZKIjIwUY8aMUZYVFRUJAGLLli1CiCuztS5ZskRZ548//hDh4eFi6dKlQgghJk6cKO69916rz/7+++9FUFCQMr1869atxbBhw5zu1z//+U/RtWtX5e+ZM2eKjIwMq3UKCgoEALFz505l2ZkzZwQAsXbtWqtyL1++XFnnwoULIiIiQmzevNlqexMnTrSa5p6IvCtEzyCJiIxh165dWLt2LRo0aGD3Wn5+Ptq1awcASE9PV5YHBwejadOmSEtLU5Y1b94cAHDy5EmrbWRmZir/36RJE7Rv3x6//PKL8tm7d+/Gf//7X2UdIQTMZjMKCgrQoUMHAEC3bt3syrZ06VK8+uqryM/Px7lz53Dp0iVERUW5vf9aLD/z4MGDKCsrw4033mi1TmVlJbp06eK1zyQiawxUiAjnzp3DLbfcgnnz5tm9FhcXp/x/vXr1rF6TJMlqmSRJAACz2ezWZ//1r3/FlClT7F5LTExU/j8yMtLqtS1btmD06NGYPXs2Bg0ahOjoaCxZsgQvvPCCw88LCqpu8RZCKMvkZihblp957tw5AMDKlSvRsmVLq/XCwsIcfiYReY6BClEdFBoaiqqqKuXva665Bp9++imSkpIQEuL9y8IPP/ygBB1nzpzBr7/+qtSUXHPNNfj555/Rtm1bt7a5efNmtG7dGk8//bSy7MiRI1br2O4nAMTExAAAioqKlJoQy8RaLR07dkRYWBiOHj2Kfv36uVVWIvIck2mJ6qCkpCRs3boVhw8fRnFxMSZPnozTp09j1KhRyM3NRX5+Pr7++muMHz/e7kbviWeeeQbffvst9u7di3HjxqFZs2YYNmwYgOqeO5s3b8aDDz6IvLw8HDhwAJ9//rldMq2tq666CkePHsWSJUuQn5+PV199FZ999pndfhYUFCAvLw/FxcWoqKhAeHg4rrvuOiVJdv369fjb3/7mdB8aNmyIxx9/HI888gjeffdd5OfnY8eOHXjttdfw7rvvenxsiMgxBipEddDjjz+O4OBgdOzYETExMaisrMSmTZtQVVWFm266CWlpaZg6dSoaNWqkNJXUxNy5c/Hwww+ja9euOHHiBL744guEhoYCqM57Wb9+PX799Vf06dMHXbp0wd///nfEx8c73ObQoUPxyCOP4MEHH8TVV1+NzZs3K72BZLfddhsGDx6MAQMGICYmBh9++CEA4J133sGlS5fQtWtXTJ06Fc8995xL+/Hss89ixowZyMnJQYcOHTB48GCsXLkSycnJHhwVInKFJCwbaomIvGjdunUYMGAAzpw5g0aNGuldHCIKQKxRISIiIsNioEJERESGxaYfIiIiMizWqBAREZFhMVAhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGRYDFSIiIjIsBipERERkWAxUiIiIyLAYqBAREZFh/T8Zs6wqh35IbwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(poly_surr, data_training, filename=\"pysmo_poly_train_scatter2D.pdf\")\n", + "surrogate_parity(poly_surr, data_training, filename=\"pysmo_poly_train_parity.pdf\")\n", + "surrogate_residual(poly_surr, data_training, filename=\"pysmo_poly_train_residual.pdf\")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHHCAYAAABa2ZeMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJvElEQVR4nO3dd3hUVf7H8c8kpEIKJSGUhKoU8QcIgokFYZHAqsCKuogCEURREBEsRJQQEIiIKFjAFSmrKFiRBSUiRVTiqkiREhQkUgOoJBGQ1Pv7gzDrOBNMwmTulPfreebJ3nPv3PkOdzEfzjn3XIthGIYAAAAgP7MLAAAAcBcEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAeyWKxaOLEiWaXYZWUlKTGjRubXQaAC0QwAuA0CxculMVisb6Cg4N18cUXa+TIkTp69GiVfvbGjRs1ceJE5eTkOPW81157rc13qlWrli6//HLNnz9fJSUlTvmMqVOnatmyZU45F4ALU83sAgB4n0mTJqlJkyY6c+aMPv/8c82ZM0cffvihtm/frtDQUKd8xu+//65q1f73n7CNGzcqNTVVSUlJioyMdMpnnNOwYUNNmzZNknT8+HH9+9//1tChQ/X9998rLS3tgs8/depU3Xzzzerbt+8FnwvAhSEYAXC6Xr16qWPHjpKku+66S7Vr19bMmTP1wQcf6Lbbbqv0eUtKSlRQUKDg4GAFBwc7q9y/FBERoTvuuMO6fc8996hFixZ64YUXNHnyZAUEBLisFgBVi6E0AFWuW7dukqR9+/ZJkmbMmKGEhATVrl1bISEh6tChg9555x2791ksFo0cOVKLFy/WJZdcoqCgIK1atcq679wco4kTJ+rhhx+WJDVp0sQ67JWVlaUuXbqobdu2Dutq0aKFEhMTK/x9QkNDdcUVV+jUqVM6fvx4mcedOnVKY8eOVWxsrIKCgtSiRQvNmDFDhmHYfMdTp05p0aJF1rqTkpIqXBMA56DHCECV27t3rySpdu3akqRZs2apd+/euv3221VQUKAlS5bolltu0YoVK3T99dfbvHft2rV66623NHLkSNWpU8fhBOebbrpJ33//vd588009++yzqlOnjiQpKipKAwcO1LBhw7R9+3a1adPG+p6vv/5a33//vR5//PFKfacff/xR/v7+ZQ7bGYah3r17a926dRo6dKjatWun9PR0Pfzwwzp06JCeffZZSdJrr72mu+66S506ddLdd98tSWrWrFmlagLgBAYAOMmCBQsMScYnn3xiHD9+3Dhw4ICxZMkSo3bt2kZISIhx8OBBwzAM4/Tp0zbvKygoMNq0aWN069bNpl2S4efnZ+zYscPusyQZKSkp1u2nn37akGTs27fP5ricnBwjODjYePTRR23aR40aZVSvXt04efLkeb9Tly5djJYtWxrHjx83jh8/buzatcsYNWqUIcm48cYbrccNHjzYaNSokXV72bJlhiTjySeftDnfzTffbFgsFmPPnj3WturVqxuDBw8+bx0AXIOhNABO1717d0VFRSk2Nlb9+/dXjRo19P7776tBgwaSpJCQEOuxJ06cUG5urq6++mp9++23dufq0qWLWrduXelaIiIi1KdPH7355pvWIazi4mItXbpUffv2VfXq1f/yHJmZmYqKilJUVJRatWql559/Xtdff73mz59f5ns+/PBD+fv7a9SoUTbtY8eOlWEY+uijjyr9nQBUHYbSADjdiy++qIsvvljVqlVT3bp11aJFC/n5/e/fYStWrNCTTz6pLVu2KD8/39pusVjsztWkSZMLrmfQoEFaunSpPvvsM11zzTX65JNPdPToUQ0cOLBc72/cuLFeeeUV6xIEF110kaKjo8/7np9++kn169dXWFiYTXurVq2s+wG4H4IRAKfr1KmT9a60P/vss8/Uu3dvXXPNNXrppZdUr149BQQEaMGCBXrjjTfsjv9j71JlJSYmqm7dunr99dd1zTXX6PXXX1dMTIy6d+9ervdXr1693McC8GwMpQFwqXfffVfBwcFKT0/XkCFD1KtXL6eEDke9Tef4+/trwIABeuedd3TixAktW7ZMt912m/z9/S/4c8vSqFEjHT58WL/99ptNe2ZmpnX/OeerHYBrEYwAuJS/v78sFouKi4utbVlZWRe88vO5uUJlrXw9cOBAnThxQvfcc49Onjxpsy5RVfj73/+u4uJivfDCCzbtzz77rCwWi3r16mVtq169utNX7AZQOQylAXCp66+/XjNnzlTPnj01YMAAHTt2TC+++KKaN2+ubdu2Vfq8HTp0kCSNHz9e/fv3V0BAgG688UZrYGrfvr3atGmjt99+W61atdJll13mlO9TlhtvvFFdu3bV+PHjlZWVpbZt2+rjjz/WBx98oNGjR9vckt+hQwd98sknmjlzpurXr68mTZqoc+fOVVofAMfoMQLgUt26ddOrr76q7OxsjR49Wm+++aaeeuop/eMf/7ig815++eWaPHmytm7dqqSkJN122212iy8OGjRIkso96fpC+Pn5afny5Ro9erRWrFih0aNHa+fOnXr66ac1c+ZMm2NnzpypDh066PHHH9dtt92mOXPmVHl9AByzGMYflmAFAC82a9YsPfjgg8rKylJcXJzZ5QBwQwQjAD7BMAy1bdtWtWvX1rp168wuB4CbYo4RAK926tQpLV++XOvWrdN3332nDz74wOySALgxeowAeLWsrCw1adJEkZGRuu+++zRlyhSzSwLgxghGAAAApbgrDQAAoJTHBKNp06bp8ssvV1hYmKKjo9W3b1/t3r3b5pgzZ85oxIgRql27tmrUqKF+/frp6NGjJlUMAAA8jccMpfXs2VP9+/fX5ZdfrqKiIj322GPavn27du7caV3A7d5779XKlSu1cOFCRUREaOTIkfLz89MXX3xR7s8pKSnR4cOHFRYWxjL9AAB4CMMw9Ntvv6l+/fo2D62uzIk80rFjxwxJxqeffmoYhmHk5OQYAQEBxttvv209ZteuXYYkIyMjo9znPXDggCGJFy9evHjx4uWBrwMHDlxQvvDY2/Vzc3MlSbVq1ZIkbdq0SYWFhTYPo2zZsqXi4uKUkZGhK664wuF58vPzlZ+fb902SjvQDhw4oPDw8KoqHwAAOFFeXp5iY2MVFhZ2QefxyGBUUlKi0aNH68orr1SbNm0kSdnZ2QoMDFRkZKTNsXXr1lV2dnaZ55o2bZpSU1Pt2sPDwwlGAAB4mAudBuMxk6//aMSIEdq+fbuWLFlywedKTk5Wbm6u9XXgwAEnVAgAADyRx/UYjRw5UitWrNCGDRvUsGFDa3tMTIwKCgqUk5Nj02t09OhRxcTElHm+oKAgBQUFVWXJAADAQ3hMj5FhGBo5cqTef/99rV27Vk2aNLHZ36FDBwUEBGjNmjXWtt27d2v//v2Kj493dbkAAMADeUyP0YgRI/TGG2/ogw8+UFhYmHXeUEREhEJCQhQREaGhQ4dqzJgxqlWrlsLDw3X//fcrPj6+zInXlVVcXKzCwkKnnhPuKSAgQP7+/maXAQBwEY9Zx6isyVQLFixQUlKSpLMLPI4dO1Zvvvmm8vPzlZiYqJdeeum8Q2l/lpeXp4iICOXm5tpNvjYMQ9nZ2crJyans14AHioyMVExMDOtaAYAbO9/v74rwmGDkKuf7gz1y5IhycnIUHR2t0NBQflF6OcMwdPr0aR07dkyRkZGqV6+e2SUBAMrgrGDkMUNpZisuLraGotq1a5tdDlwkJCREknTs2DFFR0czrAYAXs5jJl+b7dycotDQUJMrgaudu+bMKwMA70cwqiCGz3wP1xwAfAfBCAAAoBTBCAAAoBTByAckJSXJYrHIYrEoICBAdevW1XXXXaf58+erpKSk3OdZuHCh3bPoAADwJgQjH9GzZ08dOXJEWVlZ+uijj9S1a1c98MADuuGGG1RUVGR2eQAAuAWCkY8ICgpSTEyMGjRooMsuu0yPPfaYPvjgA3300UdauHChJGnmzJm69NJLVb16dcXGxuq+++7TyZMnJUnr16/XnXfeqdzcXGvv08SJEyVJr732mjp27KiwsDDFxMRowIABOnbsmEnfFADgrj74wFBCQomWLze7krIRjC6AYRgqKCgw5eWMdTm7deumtm3b6r333pMk+fn5afbs2dqxY4cWLVqktWvX6pFHHpEkJSQk6LnnnlN4eLiOHDmiI0eO6KGHHpJ09jb2yZMna+vWrVq2bJmysrKsq5EDACBJ69at05Ytk9Sq1UKlpZldTdlY4PECFBYWatq0aaZ8dnJysgIDAy/4PC1bttS2bdskSaNHj7a2N27cWE8++aSGDx+ul156SYGBgYqIiJDFYrF7xMqQIUOs/7tp06aaPXu2Lr/8cp08eVI1atS44BoBAJ6rsLBQU6dOtW7HxR1Q796GJPdcCoVg5OMMw7Cu0/PJJ59o2rRpyszMVF5enoqKinTmzBmdPn36vAtbbtq0SRMnTtTWrVt14sQJ64Tu/fv3q3Xr1i75HgAA95OZmamlS5fatD300EOqXt09Q5FEMLogAQEBSk5ONu2znWHXrl1q0qSJsrKydMMNN+jee+/VlClTVKtWLX3++ecaOnSoCgoKygxGp06dUmJiohITE7V48WJFRUVp//79SkxMVEFBgVNqBAB4ntTUVJvtNm3aqF+/fiZVU34EowtgsVicMpxllrVr1+q7777Tgw8+qE2bNqmkpETPPPOM/PzOTj176623bI4PDAxUcXGxTVtmZqZ++eUXpaWlKTY2VpL0zTffuOYLAADczsGDB/Xqq6/atA0ZMsT6O8LdEYx8RH5+vrKzs1VcXKyjR49q1apVmjZtmm644QYNGjRI27dvV2FhoZ5//nndeOON+uKLLzR37lybczRu3FgnT57UmjVr1LZtW4WGhiouLk6BgYF6/vnnNXz4cG3fvl2TJ0826VsCAMw0a9Ys5eTk2LQ5a06sq3BXmo9YtWqV6tWrp8aNG6tnz55at26dZs+erQ8++ED+/v5q27atZs6cqaeeekpt2rTR4sWL7SaWJyQkaPjw4frnP/+pqKgoTZ8+XVFRUVq4cKHefvtttW7dWmlpaZoxY4ZJ3xIAYIbCwkKlpqbahKKwsDClpKR4VCiSJIvhjPu+vUheXp4iIiKUm5ur8PBwa/uZM2e0b98+NWnSRMHBwSZWCFfj2gNA2b788kulp6fbtN15552Ki4vT8uVSWpo0bpzUu3fV1lHW7++KYigNAABUyp8nWEvShAkTrHc7p6VJGRlnf1Z1MHIWghEAAKiQJUsOa/fuV2zaOnXqpF69etm0jRv3vx4jT0EwAgAA5eaol+js2kTV7dp79/acnqJzCEYAAOAvFRUVacqUKXbtKSkpJlRTdQhGAADgvJYsWaLdu3fbtH35ZSfl5vaSl+UighEAACibo6Gzdu0eV3q6v0fNHSovghEAALCTlZWlRYsW2bWfGzrr08fVFbkGwQgAANhw1EtUWDhQTz7Z1IRqXIuVrwEAgCTJMAyHoWjixBTNmuX9oUiixwhOlJSUpJycHC1btkySdO2116pdu3Z67rnnKn1OZ5wDAPDXZsyYoVOnTtm1FxSkqEYNadQoE4oyAcHIByQlJVnHiQMCAhQXF6dBgwbpscceU7VqVfd/gffee08BAQHlOnb9+vXq2rWrTpw4ocjIyEqdAwBQOY56iZ5++iH93/9V18aNkoO79L0WwchH9OzZUwsWLFB+fr4+/PBDjRgxQgEBAUpOTrY5rqCgwGkP/KtVq5ZbnAMA4Nju3bu1ZMkSu/aCghT93/951orVzsIcIx8RFBSkmJgYNWrUSPfee6+6d++u5cuXKykpSX379tWUKVNUv359tWjRQpJ04MAB3XrrrYqMjFStWrXUp08fZWVlWc9XXFysMWPGKDIyUrVr19YjjzyiPz+P+Nprr9Xo0aOt2/n5+Xr00UcVGxuroKAgNW/eXK+++qqysrLUtWtXSVLNmjVlsViUlJTk8BwnTpzQoEGDVLNmTYWGhqpXr1764YcfrPsXLlyoyMhIpaenq1WrVqpRo4Z69uypI0eOWI9Zv369OnXqpOrVqysyMlJXXnmlfvrpJyf9SQOAZ0hNTbULRfv3t9LEiSlat07auNHzVq12BoKRjwoJCVFBQYEkac2aNdq9e7dWr16tFStWqLCwUImJiQoLC9Nnn32mL774whowzr3nmWee0cKFCzV//nx9/vnn+vXXX/X++++f9zMHDRqkN998U7Nnz9auXbv08ssvq0aNGoqNjdW7774r6ey/Xo4cOaJZs2Y5PEdSUpK++eYbLV++XBkZGTIMQ3//+99VWFhoPeb06dOaMWOGXnvtNW3YsEH79+/XQw89JOnsyq19+/ZVly5dtG3bNmVkZOjuu++2PvAQAHyBo6Gzp55KUZ8+tyo+3jd7is5hKM3HGIahNWvWKD09Xffff7+OHz+u6tWra968edYhtNdff10lJSWaN2+eNTAsWLBAkZGRWr9+vXr06KHnnntOycnJuummmyRJc+fOVXp6epmf+/333+utt97S6tWr1b17d0lS06b/u8Ph3JBZdHS0zRyjP/rhhx+0fPlyffHFF0pISJAkLV68WLGxsVq2bJluueUWSVJhYaHmzp2rZs2aSZJGjhypSZMmSZLy8vKUm5urG264wbq/VatWFf+DBAAP5CgQSdKMGSl68EHPfLaZs9FjZJLly6WEhLM/XWHFihWqUaOGgoOD1atXL/3zn//UxIkTJUmXXnqpzbyirVu3as+ePQoLC1ONGjVUo0YN1apVS2fOnNHevXuVm5urI0eOqHPnztb3VKtWTR07dizz87ds2SJ/f3916dKl0t9h165dqlatms3n1q5dWy1atNCuXbusbaGhodbQI0n16tXTsWPHJJ0NYElJSUpMTNSNN96oWbNm2QyzAYC3chSKbrnlFqWkpOi333xrgvX50GNkkrQ0KSPj7E9XpPOuXbtqzpw5CgwMVP369W3uRvvzE5FPnjypDh06aPHixXbniYqKqtTnh4SEVOp9lfHnu9gsFovN/KcFCxZo1KhRWrVqlZYuXarHH39cq1ev1hVXXOGyGgHAVY4ePaq5c+fatXvbw1+dhR4jk4wbJ5eO41avXl3NmzdXXFzcX96if9lll+mHH35QdHS0mjdvbvOKiIhQRESE6tWrp//+97/W9xQVFWnTpk1lnvPSSy9VSUmJPv30U4f7z/VYFRcXl3mOVq1aqaioyOZzf/nlF+3evVutW7c+73f6s/bt2ys5OVkbN25UmzZt9MYbb1To/QDgCVJTUx2GovR0QlFZCEYm6d3bfWf833777apTp4769Omjzz77TPv27dP69es1atQoHTx4UJL0wAMPKC0tTcuWLVNmZqbuu+8+5eTklHnOxo0ba/DgwRoyZIiWLVtmPedbb70lSWrUqJEsFotWrFih48eP6+TJk3bnuOiii9SnTx8NGzZMn3/+ubZu3ao77rhDDRo0UJ9yPrRn3759Sk5OVkZGhn766Sd9/PHH+uGHH5hnBMDrOBo6mzfvCaWnp/j05Oq/QjCCndDQUG3YsEFxcXG66aab1KpVKw0dOlRnzpxReHi4JGns2LEaOHCgBg8erPj4eIWFhekf//jHec87Z84c3XzzzbrvvvvUsmVLDRs2zLrKaoMGDZSamqpx48apbt26GjlypMNzLFiwQB06dNANN9yg+Ph4GYahDz/8sNyLQIaGhiozM1P9+vXTxRdfrLvvvlsjRozQPffcU4E/IQBwX9OnTy/zsR7Vq/u57T/K3YXF+PPiMz4uLy9PERERys3NtYYASTpz5oz27dunJk2aKDg42MQK4WpcewCewlEgysxsoS1b+qtmzbPTN7w1FJX1+7uimHwNAICHO3PmjJ566im79okTzz7nbPFi7w1EzkYwAgDAg5W1NlFBQYr1Jh9CUfkRjAAA8FCOQtEll4zWzTdHmFCNdyAYAQDgYT744ANt2bLFrp21iS4cd6VVEHPVfQ/XHIA7SU1NdRiKWJvIOegxKqdzt4OfPn3apas4w3ynT5+WZL+iNgC4kmEY1uc+/lFBQYrWrfPtB786E8GonPz9/RUZGWl95lZoaChPZPdyhmHo9OnTOnbsmCIjI+Xv7292SQB8VFkTrCdOPDvBeuNGFxfkxQhGFRATEyNJ1nAE3xAZGWm99gDgao5C0ebN/9Qll7R06aOlfAXBqAIsFovq1aun6OhoFRYWml0OXCAgIICeIgCm2LZtm95//3279vT0FHqIqhDBqBL8/f35ZQkAqDJlDZ3xnLOqRzACAMCNOApFEyZMkMViEXfjVz2CEQAAbqCsXiLWJnItghEAACZzFIratWunPn36mFCNbyMYAQBgkp9//lkvvviiXXt6egrDZiYhGAEAYAImWLsnghEAAC7mKBQ9+uijCg4OpqfIZAQjAABcZMqUKSoqKrJrb98+RcHBJhQEOwQjAABcoKyhs/btU9S7t4uLQZkIRgAAVKGioiJNmTLFrp0VrN0TwQgAgCrCBGvPQzACAKAKOApFQ4cOVcOGDZlg7cYIRgAAONHq1au10cEYGStYewaCEQAATsJjPTwfwQgAACdwFIomTkzRBx+YUAwqjWAEAMAFKKuXaNKkFN18s7gV38MQjAAAqITx46XAQPtQVL/+dRo2LIEJ1h6KYAQAQAUtXrxPgYH/tmtnLpHnIxgBAFBOy5dLmzczwdqb+ZldAAAAnsJRKEpPf0Lt2xOKvAU9RgAA/IXz3YZPR5F38coeoxdffFGNGzdWcHCwOnfurK+++srskgAAHspRKPr110b0Enkpr+sxWrp0qcaMGaO5c+eqc+fOeu6555SYmKjdu3crOjra7PIAAB7i1KlTmjFjhl07c4m8m8UwDMPsIpypc+fOuvzyy/XCCy9IkkpKShQbG6v7779f48rxxL68vDxFREQoNzdX4eHhVV0uAMANsYK153HW72+v6jEqKCjQpk2blJycbG3z8/NT9+7dlZGR4fA9+fn5ys/Pt27n5eVVeZ0AAPflKBSNGTNGYWFhJlQDV/OqYPTzzz+ruLhYdevWtWmvW7euMjMzHb5n2rRpZf7LAADgO5599k3l5X1v104vkW/xysnXFZGcnKzc3Fzr68CBA2aXBABwsdTUVEIRJHlZj1GdOnXk7++vo0eP2rQfPXpUMTExDt8TFBSkoKAgV5QHAHAzhmFo0qRJdu0EIt/lVT1GgYGB6tChg9asWWNtKykp0Zo1axQfH29iZQAAd5OamuowFM2YQSjyZV7VYySdnSA3ePBgdezYUZ06ddJzzz2nU6dO6c477zS7NACAm3A0t7So6CY999ylGjXKhILgNrwuGP3zn//U8ePHNWHCBGVnZ6tdu3ZatWqV3YRsAIDv2bBhg9atW2fXfm7obPJkV1cEd+N16xhdKNYxAgDvw8NfvR/rGAEAUE6OQhGBCI4QjAAAXosVrFFRBCMAgFdyFIpatGih/v37m1ANPAXBCADgVQ4dOqR58+bZtdNLhPIgGAEAvAZDZ7hQBCMAgFdwFIqSk5MVGBhoQjXwVAQjAIDH4jZ8OJtXPRIEAOBbCEVwNnqMAAAeZfly6emn89W9e5rdPgIRLhTBCADgUTZvTlX37vbthCI4A0NpAACP4WiCdUbGXWrfnlAE56DHCADg9pYsWaLdu3fbtdNLBGcjGAEA3BprE8GVCEYAALflKBQRiFCVCEYAALdDLxHMQjACALiNshZs3LChmx544GoTKoKvIRgBANzCt99+q82b/2PXnp6eonHjpN69TSgKPodgBAAw3fmGzhg9gysRjAAApnIUiiZMmCCLxWJCNfB1BCMAgCmYYA13xMrXAACXcxSKiooCWMEapqPHCADgMidOnNDs2bPt2uklgrsgGAEAXKKsoTN6ieBOCEYAgCrnKBQ9+OCDCg8PN6EaoGwEIwBAlUlNnSTJsGtn6AzuimAEAKgS3HUGT0QwAgA4VUlJiSZPnmzXTiCCJyAYAQCchl4ieDqCEQDAKRyFoltvvVWtWrUyoRqgcghGAIALsmLFCm3atMmunV4ieCKCEQCg0hg6g7chGAEAKsVRKCIQwdMRjAAAFUIvEbwZwQgAUG6OQlGLFi3Uv39/E6oBnI9gBAD4S3v37tXrr79u104vEbwNwQgAcF4MncGXEIwAAGVyFIratn1MffsGmFANUPUIRgAAO/QSwVf5mV0AAMC9EIrgy+gxAgBIkn7//XdNnz7drp1ABF9CMAIA0EsElGIoDQB8nKNQNHfuPUpPJxTB99BjBAA+6pVXXtHhw4ft2pcsSVFEhDRunAlFASYjGAGADzrf0BmjZ/BlBCMA8CGGYWjSpEl27cwlAs4iGAGAj2CCNfDXCEYA4MWWL5fS0qTERPtQdN111ykhIcGEqgD3RTACAC/2xhtfKTHxI7t2eokAxwhGAOClUlNT1aqVfTuhCCgbwQgAvJCj+UQTJkyQxWIxoRrAcxCMAMCLMMEauDAEIwDwEo5CUZ06dTRixAgTqgE8U4WDkb+/v44cOaLo6Gib9l9++UXR0dEqLi52WnEAgL/2888/68UXX7Rrb98+Rb17m1AQ4MEqHIwMw3DYnp+fr8DAwAsuCABQfmUNnU2cmKL4eBGMgAoqdzCaPXu2JMlisWjevHmqUaOGdV9xcbE2bNigli1bOr9CAIBDjkLR9OkPKzY2VPHxPOsMqIxyB6Nnn31W0tkeo7lz58rf39+6LzAwUI0bN9bcuXOdXyEAwEZZvUTt26eobduzgYieIqByyh2M9u3bJ0nq2rWr3nvvPdWsWbPKigIAOPZXd50RiIALU+E5RuvWrauKOgAA57FsWbG2bn3Srp3b8AHnqnAwGjJkyHn3z58/v9LFAADssTYR4DoVDkYnTpyw2S4sLNT27duVk5Ojbt26Oa0wAIDjUNSs2UDdcUdTE6oBvF+Fg9H7779v11ZSUqJ7771XzZo1c0pRAODrVq5cqW+++cau/dxt+HfcYUJRgA/wc8pJ/Pw0ZswY651rAIDKS01NdRiK2rdP4TZ8oIo57ZEge/fuVVFRkbNOBwA+ydHQWXp6ivUWfO46A6pWhYPRmDFjbLYNw9CRI0e0cuVKDR482GmFAYAvOd8Ea+ZYA65T4WC0efNmm20/Pz9FRUXpmWee+cs71gAA9hyFok6dOqlXr14mVAP4NtYxAgCT7NmzR4sXL7Zr5zZ8wDyVnmN07Ngx7d69W5LUokULRUdHO60oAPB2rE0EuKcK35WWl5engQMHqn79+urSpYu6dOmiBg0a6I477lBubm5V1KisrCwNHTpUTZo0UUhIiJo1a6aUlBQVFBTYHLdt2zZdffXVCg4OVmxsrKZPn14l9QDAhXAUih5//HFCEeAGKtxjNGzYMG3evFkrV65UfHy8JCkjI0MPPPCA7rnnHi1ZssTpRWZmZqqkpEQvv/yymjdvru3bt2vYsGE6deqUZsyYIelsYOvRo4e6d++uuXPn6rvvvtOQIUMUGRmpu+++2+k1AUBF0UsEuD+LYRhGRd5QvXp1paen66qrrrJp/+yzz9SzZ0+dOnXKqQWW5emnn9acOXP0448/SpLmzJmj8ePHKzs7W4GBgZKkcePGadmyZcrMzCz3efPy8hQREaHc3FyFh4dXSe0AfMPy5VJa2tl1hzZvJhQBVclZv78r3GNUu3ZtRURE2LVHRESoZs2alS6konJzc1WrVi3rdkZGhq655hprKJKkxMREPfXUUzpx4kSZteXn5ys/P9+6nZeXV3VFA/ApaWnStm2ntHnzDLt9BCLAPVV4jtHjjz+uMWPGKDs729qWnZ2thx9+WE888YRTiyvLnj179Pzzz+uee+6xqaFu3bo2x53b/mOtfzZt2jRFRERYX7GxsVVTNACfk5iYqocftg9F6emEIsBdVTgYzZkzR19++aXi4uLUvHlzNW/eXHFxcdq4caNefvllXXbZZdbXXxk3bpwsFst5X38eBjt06JB69uypW265RcOGDato+XaSk5OVm5trfR04cOCCzwnA9yxfLiUknP0pOZ5P1KrVSOsq1gDcU4WH0vr06SOLxeKUDx87dqySkpLOe0zTpv97gvThw4fVtWtXJSQk6F//+pfNcTExMTp69KhN27ntmJiYMs8fFBSkoKCgClYOALbS0qSMDGnDhjnavPmY3f5zQ2e33urqygBURIWD0cSJE5324VFRUYqKiirXsYcOHVLXrl3VoUMHLViwQH5+tp1d8fHxGj9+vAoLCxUQECBJWr16tVq0aOHSuU8AfBMTrAHvUOGhtKZNm+qXX36xa8/JybHp3XGmQ4cO6dprr1VcXJxmzJih48ePKzs722bu0IABAxQYGKihQ4dqx44dWrp0qWbNmmX3bDcAcDbDMByGorPPOSMUAZ6kwj1GWVlZKi4utmvPz8/XwYMHnVLUn61evVp79uzRnj171LBhQ5t951YbiIiI0Mcff6wRI0aoQ4cOqlOnjiZMmMAaRgCqVFlrE7VvTyACPFG51zFaXjqjsG/fvlq0aJHNLfvFxcVas2aNVq9ebX1MiKdiHSMA5eUoFG3b1lfvvddW8fHSxo0mFAX4KJevY9S3b19JksVi0eDBg232BQQEqHHjxnrmmWcqXQgAeIpvvvlGK1eutGtPSUnR8uXSkSPizjPAQ5U7GJWUlEiSmjRpoq+//lp16tSpsqIAwF2VNXS2ffvZobPevc++AHimCs8x2rdvX1XUAQBuz1EomjEjRSdPSjVqmFAQAKercDCaNGnSefdPmDCh0sUAgDs638NfCwqk2bOlUaNcXBSAKlHhh8i2b9/eZruwsFD79u1TtWrV1KxZM3377bdOLdDVmHwN4I8chaIjRy7R3Lk3m1ANgLKY9hDZzZs3OywmKSlJ//jHPypdCAC4k6NHj2ru3Ll27TzSA/BuFe4xKst3332nG2+8UVlZWc44nWnoMQJwvqEzAO7JWb+/K7zydVnOPYQVADyZo1A0bdo4pacTigBfUOGhtNmzZ9tsG4ahI0eO6LXXXlOvXr2cVhgAuNKkSZPkqAO9ffsUXXYZ6xIBvqLCQ2lNmjSx2fbz81NUVJS6deum5ORkhYWFObVAV2MoDfA9DJ0Bns+0ydesYwTAWxQWFmrq1Kl27RMnpig+XiIXAb6nwsFIknJycrRnzx5JUvPmzRUZGenMmgCgyp3v4a/x8QydAb6qQsEoKytLI0aMUHp6unUs3mKxqGfPnnrhhRfUuHHjqqgRAJzKUSi666671KBBA0k80gPwZeUORgcOHNAVV1yhgIAATZ48Wa1atZIk7dy5U3PmzFF8fLy+/vprNWzYsMqKBYALsXLlSn3zzTd27cwlAnBOuSdfDx06VHv27FF6erqCg4Nt9v3+++/q2bOnLrroIs2bN69KCnUVJl8D3okJ1oB3c/nk61WrVmnp0qV2oUiSQkJCNHnyZPXv37/ShQBAVXEUighEABwpdzD6+eefzzuHqGnTpvr111+dURMAOAW9RAAqqtzBqF69etq5c2eZc4i2b9+umJgYpxUGABfCUSjq3r27rrzyShOqAeApyh2M+vbtq4ceekhr1qxRVFSUzb5jx47p0UcfVd++fZ1dHwBUyJ49e7R48WK7dnqJAJRHuSdfnzhxQp07d1Z2drbuuOMOtWzZUoZhaNeuXXrjjTcUExOjL7/8UrVq1arqmqsUk68Bz8XQGeC7XD75umbNmvrvf/+rxx57TEuWLFFOTo4kKTIyUgMGDNDUqVM9PhQB8FyOQlG7dk+oTx+nPSsbgA+o8LPSpLMPjj1+/LgkKSoqShaLxemFmYUeI8Cz0EsEQDLxWWnS2dWuo6OjK/2hAOAMjkJRw4YNNXToUBOqAeANKhWMAMBMJ0+e1DPPPGPXTi8RgAtFMALgURg6A1CVCEYAPIajUDRmzBiFhYWZUA0Ab0QwAuD25s+frwMHDti100sEwNnKFYxmz55d7hOOGjWq0sUAwJ8xdAbAlcp1u36TJk3KdzKLRT/++OMFF2UmbtcH3INhGJo0aZJdO4EIgCMuvV1/3759lf4AAKiosnqJ0tNTRC4CUJUqvSRsQUGBdu/eraKiImfWA8DHOQpFTZsOUHp6isaNM6EgAD6lwpOvT58+rfvvv1+LFi2SJH3//fdq2rSp7r//fjVo0EDj+C8XgErYtGmTVqxYYdd+buhs4EBXVwTAF1W4xyg5OVlbt27V+vXrFRwcbG3v3r27li5d6tTiAPiG1NTU84YiAHCVCvcYLVu2TEuXLtUVV1xh84y0Sy65RHv37nVqcQC8n6OhMwIRALNUOBgdP37c4XPSTp065VUPkwVQtc53G/7y5VJamjRunNS7t4sLA+DTKjyU1rFjR61cudK6fS4MzZs3T/Hx8c6rDIDXchSKduy4SkuW/C8UZWSc/QkArlThHqOpU6eqV69e2rlzp4qKijRr1izt3LlTGzdu1KeffloVNQLwEj///LNefPFFu/aUlBQlJEiZmdIjj0gWi9SihbgLDYDLVbjH6KqrrtKWLVtUVFSkSy+9VB9//LGio6OVkZGhDh06VEWNALxAampqmaFIOhuC4uPPhqLMTKlWLYbRALheuVa+9iWsfA04n6Ohs9Wrx+uRR6rZhR/mFwGoDGf9/i5XMMrLyyv3CT09TBCMAOcp6+Gv7dunEHoAOJVLHwkSGRlZ7jvOiouLK10MAO/hqJeoWbNmuuOOO0yoBgDKp1zBaN26ddb/nZWVpXHjxikpKcl6F1pGRoYWLVqkadOmVU2VADxGYWGhpk6datfuaG0ihs0AuJsKzzH629/+prvuuku33XabTfsbb7yhf/3rX1q/fr0z63M5htKAyjvf2kSOJCScvS0/Pl7auLEqKwPg7Zz1+7vCd6VlZGSoY8eOdu0dO3bUV199VelCAHg2R6HogQceOO8q1ufuROO2fADuosLBKDY2Vq+88opd+7x58xQbG+uUogB4js8//7zMx3pERkae9729e5/tKWIYDYC7qPACj88++6z69eunjz76SJ07d5YkffXVV/rhhx/07rvvOr1AAO6rokNnAODuKrWO0cGDB/XSSy8pMzNTktSqVSsNHz7cK3qMmGMElA8PfwXgTly6jpEvIRgB50cvEQB35NJ1jP4sJydHr776qnbt2iVJuuSSSzRkyBBFRERUuhAA7s9RKOrfv79atGhhQjUA4HwV7jH65ptvlJiYqJCQEHXq1EmS9PXXX+v333/Xxx9/rMsuu6xKCnUVeowAez/99JMWLlxo104vEQB3YdpQ2tVXX63mzZvrlVdeUbVqZzucioqKdNddd+nHH3/Uhg0bKl2MOyAYAbYYOgPgCUwLRiEhIdq8ebNatmxp075z50517NhRp0+frnQx7oBgBPyPo1A0YcKEcj8iCABcxbQ5RuHh4dq/f79dMDpw4IDCwsIqXQgA9zF58mSVlJTYtdNLBMDbVTgY/fOf/9TQoUM1Y8YMJSQkSJK++OILPfzww3aPCQHgOc49tywx0b6XKD4+Xj169DChKgBwrQoHoxkzZshisWjQoEEqKiqSJAUEBOjee+9VWlqa0wsE4BozZ55UYuIzdu30EgHwJZVex+j06dPau3evJKlZs2YKDQ11amFmYY4RfM3y5dLmzUywBuDZTF3HSJJCQ0N16aWXVvqDAbgHR6Ho0UcfVXBwsAnVAIC5yh2MhgwZUq7j5s+fX+liALjO6tWrtXHjRrt2eokA+LJyB6OFCxeqUaNGat++vXiKCODZHN2GHxMTo3vuuceEagDAfZQ7GN1777168803tW/fPt1555264447VKtWraqsDYATnb3rrESJiZPt9tFLBABn+ZX3wBdffFFHjhzRI488ov/85z+KjY3VrbfeqvT0dHqQAA+weXMqoQgA/kKl70o79+ykf//73yoqKtKOHTtUo0YNZ9fnctyVBm/kaOjsvvvuU1RUlAnVAIDzmX5Xmp+fnywWiwzDUHFxcaULAFB1MjMztXTpUrt2eokAwLFyD6VJUn5+vt58801dd911uvjii/Xdd9/phRde0P79+72itwjwJqmpqYQiAKigcvcY3XfffVqyZIliY2M1ZMgQvfnmm6pTp05V1gagkhwNnRGIAOCvlXuOkZ+fn+Li4tS+ffvzPln7vffec1pxZmCOETyZo0AkEYoAeD+XzzEaNGjQeQMRAPOU9ViPm2++WZdccokJFQGAZ6rQAo/uID8/X507d9bWrVu1efNmtWvXzrpv27ZtGjFihL7++mtFRUXp/vvv1yOPPGJesYALnDhxQps3z7Zrp5cIACqu0nelmeWRRx5R/fr1tXXrVpv2vLw89ejRQ927d9fcuXP13XffaciQIYqMjNTdd99tUrVA1WLoDACcy6OC0UcffaSPP/5Y7777rj766CObfYsXL1ZBQYHmz5+vwMBAXXLJJdqyZYtmzpxJMIJXchSKnnjiCfn5VehmUwDAH3hMMDp69KiGDRumZcuWKTQ01G5/RkaGrrnmGgUGBlrbEhMT9dRTT+nEiROqWbOmw/Pm5+crPz/fup2Xl+f84gEnev/997Vt2za7dnqJAODCecQ/LQ3DUFJSkoYPH66OHTs6PCY7O1t169a1aTu3nZ2dXea5p02bpoiICOsrNjbWeYUDTpaammoXiq666ipCEQA4ianBaNy4cbJYLOd9ZWZm6vnnn9dvv/2m5ORkp9eQnJys3Nxc6+vAgQNO/wzgQhUWFpa5NtHf/vY3EyoCAO9k6lDa2LFjlZSUdN5jmjZtqrVr1yojI0NBQUE2+zp27Kjbb79dixYtUkxMjI4ePWqz/9x2TExMmecPCgqyOy/gTphgDQCuY2owioqKKtdDLGfPnq0nn3zSun348GElJiZq6dKl6ty5syQpPj5e48ePV2FhoQICAiRJq1evVosWLcqcXwS4O0ehqE2bh9SvX3UTqgEA7+cRk6/j4uJsts89l61Zs2Zq2LChJGnAgAFKTU3V0KFD9eijj2r79u2aNWuWnn32WZfXC1yo7777zuEq8vQSAUDV8ohgVB4RERH6+OOPNWLECHXo0EF16tTRhAkTuFUfHmP5ciktTUpMtO8lat68uW6//XYTqgIA31LuZ6X5Cp6VBrMkJBhKTJxk104vEQD8NZc/Kw1A1Zk3b54SEw/ZtROKAMC1CEaAyRxNsL7vvvvKdWMCAMC5CEaASX755Re98MILdu30EgGAeQhGgAkc9RI1aNBAd911lwnVAADOIRgBLuYoFE2YMEEWi8WEagAAf+QRz0oDvEF6enqZj/X4YyhavlxKSDj7EwDgWvQYAS7gKBDdcccdatasmV17WpqUkXH2Z+/erqgOAHAOwQioQmfOnNFTTz1l136+Cdbjxp0NRePGVWVlAABHCEZAFansw19796anCADMQjACqoCjUDR+/HhVq8ZfOQBwZ/xXGnCirVu3atmyZXbtrE0EAJ6BYAQ4iaNeosTERF1xxRUmVAMAqAyCEXCBSkpKNHnyZLt2eokAwPMQjIALkJaWpvz8fLt2QhEAeCaCEVBJjobOxo4dqxo1aphQDQDAGQhGQAUdPHhQr776ql07vUQA4PkIRkAFOOolatOmjfr162dCNQAAZyMYAeVU1nPOAADeg2AE/IWlS5cqMzPTrp1QBADeh2AEnIejXqK7775b9erVM6EaAEBV8zO7AMBdLF8uJSSc/ZmXl1fm0BmhCAC8Fz1GQKm0NCkjQ9q8OVWbN9vuCwsL05gxY8wpDADgMgQjQGd7iX79VZo40b6XaMKECbJYLCZUBQBwNYIRIOn117/RbbettGtngjUA+BaCEXxeamqqLrnEtu3mm2/WJX9uBAB4PYIRfFZxcbGefPJJu3Z6iQDAdxGM4JPmzZunQ4cO2bTVrl1bI0eONKkiAIA7IBjB5zi6Df+xxx5TQECACdUAANwJwQg+49ChQ5o3b55dO0NnAIBzCEbwCY56ifr06aN27dq5vhgAgNsiGMGrGYahSZMm2bXTSwQAcIRgBK+1YsUKbdq0ya6dUAQAKAvBCF7J0dDZ2LFjVaNGDROqAQB4Ch4iC4/2xwe/SlJubm6ZD38lFAEA/go9RvBo5x78mpZ29uGvf3bllVeqe/fuJlQGAPBEBCN4tHHjzoaixETHvUQAAFQEwQgeLSbmKyUmfmTXTigCAFQGwQgey9FcouHDh6tu3bomVAMA8AYEI3icwsJCTZ061a6dXiIAwIUiGMGj/Pvf/9a+ffts2i6//HL9/e9/N6kiAIA3IRjBYzgaOnviiSfk58eqEwAA5yAYwe0dOHBA8+fPt2tn6AwA4GwEI7g1R71Ed955p+Li4kyoBgDg7QhGcEslJSWaPHmyXTu9RACAqkQwgttZtWqV/vvf/9q0NWrUSElJSeYUBADwGQQjuBVHQ2fJyckKDAw0oRoAgK8hGMEtnDhxQrNnz7ZrZ+gMAOBKBCOYzlEv0U033aRLL73UhGoAAL6MYARTOQpF9BIBAMxCMIIpvv76a3344Yc2bYGBgUpOTjapIgAACEYwgaNeojFjxigsLMyEagAA+B+epQCnW75cSkg4+/OPfv/99zKHzghFAAB3QI8RnC4tTcrIOPvz3HafPi/qzJmfbY7r2rWrrrnmGhMqBADAMYIRnG7cuLNh6NzPxMRUnTlje8yECRNksVjMKRAAgDIQjOB0vXuffR08eFCJia/a7eeuMwCAuyIYoUo4mks0fPhw1a1b14RqAAAoH4IRnIqHvwIAPBnBCE6zc+dOvf322zZtTLAGAHgSghEuyPLl/5tg/WdPPPGE/PxYEQIA4DkIRrggM2eeVGLiMzZtF110kQYMGGBSRQAAVB7BCJX2/fffq2vXN23a7r//ftWqVcukigAAuDAEI1SYYRhauHCh9u/fb9POBGsAgKcjGKFCcnJyNGvWLJu2u+66Sw0aNDCpIgAAnIdghHL7/PPPtWbNGut2cHCwHnroIfn7+5tYFQAAzkMwwl8qKirSlClTbNp69eqlTp06mVQRAABVg2CE8/rpp5+0cOFCm7YxY8YoLCzMnIIAAKhCBCOU6a233tKuXbus2xdffLFuu+02EysCAKBqedTqeytXrlTnzp0VEhKimjVrqm/fvjb79+/fr+uvv16hoaGKjo7Www8/rKKiInOK9WAnT55UamqqTSgaNGgQoQgA4PU8psfo3Xff1bBhwzR16lR169ZNRUVF2r59u3V/cXGxrr/+esXExGjjxo06cuSIBg0apICAAE2dOtXEyj3Lpk2btGLFCpu2xx57TAEBASZVBACA61gMwzDMLuKvFBUVqXHjxkpNTdXQoUMdHvPRRx/phhtu0OHDh61PcJ87d64effRRHT9+XIGBgeX6rLy8PEVERCg3N1fh4eFO+w7urqSkRDNnztSpU6esbddee626dOliYlUAAJSPs35/e8RQ2rfffqtDhw7Jz89P7du3V7169dSrVy+bHqOMjAxdeuml1lAkSYmJicrLy9OOHTvMKNtjHDlyRJMnT7YJRffffz+hCADgczxiKO3HH3+UJE2cOFEzZ85U48aN9cwzz+jaa6/V999/r1q1aik7O9smFEmybmdnZ5d57vz8fOXn51u38/LyquAbuK+VK1fqm2++sW7Xr19fd911lywWi4lVAQBgDlN7jMaNGyeLxXLeV2ZmpkpKSiRJ48ePV79+/dShQwctWLBAFotFb7/99gXVMG3aNEVERFhfsbGxzvhqbu/MmTNKTU21CUW33nqrhg0bRigCAPgsU3uMxo4dq6SkpPMe07RpUx05ckSS1Lp1a2t7UFCQmjZtan1eV0xMjL766iub9x49etS6ryzJyckaM2aMdTsvL8/rw9HOnTvtAuW4ceMUFBRkUkUAALgHU4NRVFSUoqKi/vK4Dh06KCgoSLt379ZVV10lSSosLFRWVpYaNWokSYqPj9eUKVN07NgxRUdHS5JWr16t8PBwm0D1Z0FBQT4TCAzD0Msvv2wNjJLUqVMn9erVy8SqAABwHx4xxyg8PFzDhw9XSkqKYmNj1ahRIz399NOSpFtuuUWS1KNHD7Vu3VoDBw7U9OnTlZ2drccff1wjRozwmeBzPr/88oteeOEFm7bhw4fbzcsCAMCXeUQwkqSnn35a1apV08CBA/X777+rc+fOWrt2rWrWrClJ8vf314oVK3TvvfcqPj5e1atX1+DBgzVp0iSTKzffunXrtGHDBut2RESERo0aJT8/j7gpEQAAl/GIdYxcyZvWMSosLLRb3LJ3795q3769SRUBAFA1nPX722N6jFAxe/fu1euvv27T9tBDD6l69eomVQQAgPsjGHmh119/XXv37rVut2nTRv369TOxIgAAPAPByIvk5eXp2WeftWkbMmSI1y8/AACAsxCMvMSXX36p9PR067a/v7+Sk5Pl7+9vYlUAAHgWgpGHKy4u1lNPPaXCwkJr23XXXaeEhAQTqwIAwDMRjDzYwYMH9eqrr9q0jR49WhERESZVBACAZyMYeaj3339f27Zts243adJEAwcO5DlnAABcAIKRhzl9+rR11e9zbr/9djVv3tykigAA8B4EIw+ydetWLVu2zKYtOTlZgYGB5hQEAICXIRh5AMMwNHv2bOXk5FjbrrrqKv3tb38zrygAALwQwcjNHTt2THPmzLFpGzFihOrUqWNSRQAAeC+CkRtLT0/Xl19+ad2Ojo7W8OHDmWANAEAVIRi5ofz8fKWlpdm09evXT23atDGpIgAAfAPByM3s3r1bS5YssWl75JFHFBISYlJFAAD4DoKRmzAMQ/Pnz9fBgwetbZdddpluvPFGE6sCAMC3EIzcwIkTJzR79mybtmHDhql+/fomVQQAgG8iGJnss88+09q1a63boaGhGjt2rPz8/EysCgAA30QwMklRUZGmTJli03b99derY8eOJlUEAAAIRibIysrSokWLbNrGjBmjsLAwkyoCAAASwcjllixZot27d1u3W7Roof79+5tYEQAAOIdg5CK//fabZs6cadM2ePBgNW7c2JyCAACAHYKRi/w5FI0fP17VqvHHDwCAO+E3s4u0atVKu3btUrdu3XT11VebXQ4AAHCAYOQit956q9klAACAv8BiOQAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRi6yfLmUkHD2JwAAcE8EIxdJS5MyMs7+BAAA7olg5CLjxknx8Wd/AgAA98QjQVykd++zLwAA4L7oMQIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChVzewC3I1hGJKkvLw8kysBAADlde739rnf45VFMPqT3377TZIUGxtrciUAAKCifvvtN0VERFT6/RbjQqOVlykpKdHhw4cVFhYmi8VidjkukZeXp9jYWB04cEDh4eFml4Ny4Jp5Fq6X5+GaeZZz12vnzp1q0aKF/PwqP1OIHqM/8fPzU8OGDc0uwxTh4eH8B8DDcM08C9fL83DNPEuDBg0uKBRJTL4GAACwIhgBAACUIhhBQUFBSklJUVBQkNmloJy4Zp6F6+V5uGaexZnXi8nXAAAApegxAgAAKEUwAgAAKEUwAgAAKEUwAgAAKEUwglauXKnOnTsrJCRENWvWVN++fW3279+/X9dff71CQ0MVHR2thx9+WEVFReYUC6v8/Hy1a9dOFotFW7Zssdm3bds2XX311QoODlZsbKymT59uTpE+LisrS0OHDlWTJk0UEhKiZs2aKSUlRQUFBTbHcb3cy4svvqjGjRsrODhYnTt31ldffWV2SZA0bdo0XX755QoLC1N0dLT69u2r3bt32xxz5swZjRgxQrVr11aNGjXUr18/HT16tEKfQzDyce+++64GDhyoO++8U1u3btUXX3yhAQMGWPcXFxfr+uuvV0FBgTZu3KhFixZp4cKFmjBhgolVQ5IeeeQR1a9f3649Ly9PPXr0UKNGjbRp0yY9/fTTmjhxov71r3+ZUKVvy8zMVElJiV5++WXt2LFDzz77rObOnavHHnvMegzXy70sXbpUY8aMUUpKir799lu1bdtWiYmJOnbsmNml+bxPP/1UI0aM0JdffqnVq1ersLBQPXr00KlTp6zHPPjgg/rPf/6jt99+W59++qkOHz6sm266qWIfZMBnFRYWGg0aNDDmzZtX5jEffvih4efnZ2RnZ1vb5syZY4SHhxv5+fmuKBMOfPjhh0bLli2NHTt2GJKMzZs3W/e99NJLRs2aNW2uz6OPPmq0aNHChErxZ9OnTzeaNGli3eZ6uZdOnToZI0aMsG4XFxcb9evXN6ZNm2ZiVXDk2LFjhiTj008/NQzDMHJycoyAgADj7bffth6za9cuQ5KRkZFR7vPSY+TDvv32Wx06dEh+fn5q37696tWrp169emn79u3WYzIyMnTppZeqbt261rbExETl5eVpx44dZpTt844ePaphw4bptddeU2hoqN3+jIwMXXPNNQoMDLS2JSYmavfu3Tpx4oQrS4UDubm5qlWrlnWb6+U+CgoKtGnTJnXv3t3a5ufnp+7duysjI8PEyuBIbm6uJFn/Pm3atEmFhYU2169ly5aKi4ur0PUjGPmwH3/8UZI0ceJEPf7441qxYoVq1qypa6+9Vr/++qskKTs72yYUSbJuZ2dnu7ZgyDAMJSUlafjw4erYsaPDY7hm7mvPnj16/vnndc8991jbuF7u4+eff1ZxcbHD68G1cC8lJSUaPXq0rrzySrVp00bS2b8vgYGBioyMtDm2otePYOSFxo0bJ4vFct7XubkPkjR+/Hj169dPHTp00IIFC2SxWPT222+b/C18S3mv2fPPP6/ffvtNycnJZpfs08p7vf7o0KFD6tmzp2655RYNGzbMpMoB7zBixAht375dS5Yscfq5qzn9jDDd2LFjlZSUdN5jmjZtqiNHjkiSWrdubW0PCgpS06ZNtX//fklSTEyM3R0Z52b4x8TEOLFq31bea7Z27VplZGTYPQ+oY8eOuv3227Vo0SLFxMTY3YXBNXOu8l6vcw4fPqyuXbsqISHBblI118t91KlTR/7+/g6vB9fCfYwcOVIrVqzQhg0b1LBhQ2t7TEyMCgoKlJOTY9NrVOHr5+zJUPAcubm5RlBQkM3k64KCAiM6Otp4+eWXDcP43+Tro0ePWo95+eWXjfDwcOPMmTMur9nX/fTTT8Z3331nfaWnpxuSjHfeecc4cOCAYRj/m8xbUFBgfV9ycjKTeU1y8OBB46KLLjL69+9vFBUV2e3nermXTp06GSNHjrRuFxcXGw0aNGDytRsoKSkxRowYYdSvX9/4/vvv7fafm3z9zjvvWNsyMzMrPPmaYOTjHnjgAaNBgwZGenq6kZmZaQwdOtSIjo42fv31V8MwDKOoqMho06aN0aNHD2PLli3GqlWrjKioKCM5OdnkymEYhrFv3z67u9JycnKMunXrGgMHDjS2b99uLFmyxAgNDbWGXbjOwYMHjebNmxt/+9vfjIMHDxpHjhyxvs7hermXJUuWGEFBQcbChQuNnTt3GnfffbcRGRlpc2cuzHHvvfcaERERxvr1623+Lp0+fdp6zPDhw424uDhj7dq1xjfffGPEx8cb8fHxFfocgpGPKygoMMaOHWtER0cbYWFhRvfu3Y3t27fbHJOVlWX06tXLCAkJMerUqWOMHTvWKCwsNKli/JGjYGQYhrF161bjqquuMoKCgowGDRoYaWlp5hTo4xYsWGBIcvj6I66Xe3n++eeNuLg4IzAw0OjUqZPx5Zdfml0SDKPMv0sLFiywHvP7778b9913n1GzZk0jNDTU+Mc//mHzD5HysJR+GAAAgM/jrjQAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAqCLr16+XxWJRTk6O2aUAKCeCEQCPNXHiRLVr187sMgB4EYIRAK9XWFhodgkAPATBCIBpSkpKNG3aNDVp0kQhISFq27at3nnnHUn/G4Zas2aNOnbsqNDQUCUkJGj37t2SpIULFyo1NVVbt26VxWKRxWLRwoULJUkWi0Vz5sxR7969Vb16dU2ZMuW8dZz7rPT0dLVv314hISHq1q2bjh07po8++kitWrVSeHi4BgwYoNOnT1vfl5+fr1GjRik6OlrBwcG66qqr9PXXX1fNHxYA13DqE94AoAKefPJJo2XLlsaqVauMvXv3GgsWLDCCgoKM9evXG+vWrTMkGZ07dzbWr19v7Nixw7j66quNhIQEwzAM4/Tp08bYsWONSy65xO4p25KM6OhoY/78+cbevXuNn3766bx1nPusK664wvj888+Nb7/91mjevLnRpUsXo0ePHsa3335rbNiwwahdu7bNA15HjRpl1K9f3/jwww+NHTt2GIMHDzZq1qxp/PLLLzbnPXHiRNX8AQJwOoIRAFOcOXPGCA0NNTZu3GjTPnToUOO2226zhopPPvnEum/lypWGJOP33383DMMwUlJSjLZt29qdW5IxevToctfi6LOmTZtmSDL27t1rbbvnnnuMxMREwzAM4+TJk0ZAQICxePFi6/6CggKjfv36xvTp023OSzACPEc1s3qqAPi2PXv26PTp07ruuuts2gsKCtS+fXvr9v/93/9Z/3e9evUkSceOHVNcXNx5z9+xY8cK1/THz6pbt65CQ0PVtGlTm7avvvpKkrR3714VFhbqyiuvtO4PCAhQp06dtGvXrgp/NgD3QDACYIqTJ09KklauXKkGDRrY7AsKCtLevXslnQ0b51gsFkln5yb9lerVq1e4pj9/1h+3z7WV57MBeC4mXwMwRevWrRUUFKT9+/erefPmNq/Y2NhynSMwMFDFxcVVXKljzZo1U2BgoL744gtrW2Fhob7++mu1bt3alJoAXDh6jACYIiwsTA899JAefPBBlZSU6KqrrlJubq6++OILhYeHq1GjRn95jsaNG2vfvn3asmWLGjZsqLCwMAUFBbmg+rM9Uvfee68efvhh1apVS3FxcZo+fbpOnz6toUOHuqQGAM5HMAJgmsmTJysqKkrTpk3Tjz/+qMjISF122WV67LHHyjVk1a9fP7333nvq2rWrcnJytGDBAiUlJVV94aXS0tJUUlKigQMH6rffflPHjh2Vnp6umjVruqwGAM5lMQzDMLsIAAAAd8AcIwAAgFIEIwBeb/jw4apRo4bD1/Dhw80uD4AbYSgNgNc7duyY8vLyHO4LDw9XdHS0iysC4K4IRgAAAKUYSgMAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAACj1/1j+WUwWRiX3AAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.4 Model Validation\n", + "\n", + "We check the fit on the validation set to see if the surrogate is fitting well. This step can be used to check for overfitting on the training set." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEsklEQVR4nO3deXgU9eHH8c/mJAESrlwoR7iESEAUgRgEFGpA1CJYQVBAEKsSESwK+CsKigSpB8UDLCpoFUtFrIgXFBAKROQQD0SKNBiUhEPMRki4kvn9YbMlkGOz2d2Znbxfz7PPAzOzu9/9Znb3s99rHIZhGAIAALCpILMLAAAA4EuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQCWMG3aNDkcDreOdTgcmjZtmk/L06tXL/Xq1cuyjwfAfYQdAKUsWrRIDofDdQsJCdEFF1ygkSNH6scffzS7eJbTvHnzUvUVGxurK6+8Uu+8845XHr+goEDTpk3TJ5984pXHA2oiwg6AMj366KP661//qvnz56tfv356/fXX1bNnT504ccInz/fHP/5RhYWFPnlsX7vkkkv017/+VX/96181ceJEHThwQAMHDtT8+fOr/dgFBQWaPn06YQeohhCzCwDAmvr166fOnTtLku644w41atRITzzxhJYvX66bb77Z688XEhKikJDA/Ei64IILdOutt7r+P3z4cLVq1UrPPPOM7rrrLhNLBkCiZQeAm6688kpJ0t69e0tt//bbb3XTTTepQYMGqlWrljp37qzly5eXOub06dOaPn26WrdurVq1aqlhw4bq3r27Vq1a5TqmrDE7J0+e1IQJExQTE6O6devqhhtu0A8//HBe2UaOHKnmzZuft72sx1y4cKGuvvpqxcbGKjw8XElJSZo3b16V6qIy8fHxateunbKysio87tChQxo9erTi4uJUq1YtdezYUa+++qpr/759+xQTEyNJmj59uqurzNfjlQC7CcyfUQD8bt++fZKk+vXru7bt3LlTqampuuCCCzR58mTVrl1bf//73zVgwAC9/fbbuvHGGyX9GjoyMjJ0xx13qEuXLsrPz9fWrVu1fft2/eY3vyn3Oe+44w69/vrrGjp0qK644gqtWbNG/fv3r9brmDdvni6++GLdcMMNCgkJ0Xvvvad77rlHxcXFGjt2bLUeu8Tp06e1f/9+NWzYsNxjCgsL1atXL3333XdKT09XYmKi3nrrLY0cOVJ5eXm67777FBMTo3nz5unuu+/WjTfeqIEDB0qSOnTo4JVyAjWGAQBnWbhwoSHJ+Oc//2kcPnzY2L9/v7F06VIjJibGCA8PN/bv3+86tnfv3kZycrJx4sQJ17bi4mLjiiuuMFq3bu3a1rFjR6N///4VPu8jjzxinP2RtGPHDkOScc8995Q6bujQoYYk45FHHnFtGzFihNGsWbNKH9MwDKOgoOC849LS0owWLVqU2tazZ0+jZ8+eFZbZMAyjWbNmxjXXXGMcPnzYOHz4sPHFF18YQ4YMMSQZ9957b7mPN2fOHEOS8frrr7u2nTp1ykhJSTHq1Klj5OfnG4ZhGIcPHz7v9QKoGrqxAJSpT58+iomJUZMmTXTTTTepdu3aWr58uS688EJJ0tGjR7VmzRrdfPPN+uWXX3TkyBEdOXJEP/30k9LS0rRnzx7X7K169epp586d2rNnj9vP/8EHH0iSxo0bV2r7+PHjq/W6IiIiXP92Op06cuSIevbsqf/85z9yOp0ePebKlSsVExOjmJgYdezYUW+99ZZuu+02PfHEE+Xe54MPPlB8fLxuueUW17bQ0FCNGzdOx44d07p16zwqC4Dz0Y0FoEzPP/+82rRpI6fTqVdeeUXr169XeHi4a/93330nwzA0depUTZ06tczHOHTokC644AI9+uij+u1vf6s2bdqoffv26tu3r2677bYKu2O+//57BQUFqWXLlqW2X3TRRdV6XRs3btQjjzyizMxMFRQUlNrndDoVHR1d5cfs2rWrZsyYIYfDocjISLVr10716tWr8D7ff/+9WrduraCg0r8527Vr59oPwDsIOwDK1KVLF9dsrAEDBqh79+4aOnSodu/erTp16qi4uFiSNHHiRKWlpZX5GK1atZIk9ejRQ3v37tW7776rlStX6qWXXtIzzzyj+fPn64477qh2WctbjLCoqKjU//fu3avevXurbdu2evrpp9WkSROFhYXpgw8+0DPPPON6TVXVqFEj9enTx6P7AvA9wg6ASgUHBysjI0NXXXWVnnvuOU2ePFktWrSQ9GvXiztf9A0aNNDtt9+u22+/XceOHVOPHj00bdq0csNOs2bNVFxcrL1795Zqzdm9e/d5x9avX195eXnnbT+3deS9997TyZMntXz5cjVt2tS1fe3atZWW39uaNWumL7/8UsXFxaVad7799lvXfqn8IAfAfYzZAeCWXr16qUuXLpozZ45OnDih2NhY9erVSy+++KJycnLOO/7w4cOuf//000+l9tWpU0etWrXSyZMny32+fv36SZLmzp1bavucOXPOO7Zly5ZyOp368ssvXdtycnLOW8U4ODhYkmQYhmub0+nUwoULyy2Hr1x77bXKzc3VkiVLXNvOnDmjZ599VnXq1FHPnj0lSZGRkZJUZpgD4B5adgC47YEHHtDvfvc7LVq0SHfddZeef/55de/eXcnJyRozZoxatGihgwcPKjMzUz/88IO++OILSVJSUpJ69eqlyy67TA0aNNDWrVu1dOlSpaenl/tcl1xyiW655Ra98MILcjqduuKKK7R69Wp999135x07ZMgQTZo0STfeeKPGjRungoICzZs3T23atNH27dtdx11zzTUKCwvT9ddfr9///vc6duyYFixYoNjY2DIDmy/deeedevHFFzVy5Eht27ZNzZs319KlS7Vx40bNmTNHdevWlfTrgOqkpCQtWbJEbdq0UYMGDdS+fXu1b9/er+UFAprZ08EAWEvJ1PMtW7act6+oqMho2bKl0bJlS+PMmTOGYRjG3r17jeHDhxvx8fFGaGioccEFFxjXXXedsXTpUtf9ZsyYYXTp0sWoV6+eERERYbRt29Z4/PHHjVOnTrmOKWuaeGFhoTFu3DijYcOGRu3atY3rr7/e2L9/f5lTsVeuXGm0b9/eCAsLMy666CLj9ddfL/Mxly9fbnTo0MGoVauW0bx5c+OJJ54wXnnlFUOSkZWV5TquKlPPK5tWX97jHTx40Lj99tuNRo0aGWFhYUZycrKxcOHC8+67adMm47LLLjPCwsKYhg54wGEYZ7XnAgAA2AxjdgAAgK0RdgAAgK0RdgAAgK0RdgAAgK0RdgAAgK0RdgAAgK2xqKCk4uJiHThwQHXr1mVpdgAAAoRhGPrll1/UuHHj8y6qezbCjqQDBw6oSZMmZhcDAAB4YP/+/brwwgvL3U/YkVzLsu/fv19RUVEmlwYAALgjPz9fTZo0cX2Pl4ewo/9dVTgqKoqwAwBAgKlsCAoDlAEAgK0RdgAAgK0RdgAAgK0xZqcKioqKdPr0abOLgSoKDQ1VcHCw2cUAAJiEsOMGwzCUm5urvLw8s4sCD9WrV0/x8fGsowQANRBhxw0lQSc2NlaRkZF8YQYQwzBUUFCgQ4cOSZISEhJMLhEAwN8IO5UoKipyBZ2GDRuaXRx4ICIiQpJ06NAhxcbG0qUFADUMA5QrUTJGJzIy0uSSoDpK/n6MuQKAmoew4ya6rgIbfz8AqLkIOwAAwNYIO6gyh8Ohf/zjH2YXo5RPPvlEDoeDGXMAgPMQdlCuadOm6ZJLLjG7GABgCTnOQm3ae0Q5zkKzi4IqYjYWAACVWLIlW1OWfaViQwpySBkDkzX48qZmFwtuomXHxoqLi5WRkaHExERFRESoY8eOWrp0qaT/dfusXr1anTt3VmRkpK644grt3r1bkrRo0SJNnz5dX3zxhRwOhxwOhxYtWuR67CNHjujGG29UZGSkWrdureXLl7tVppLn/fjjj9WpUydFRETo6quv1qFDh/Thhx+qXbt2ioqK0tChQ1VQUOC638mTJzVu3DjFxsaqVq1a6t69u7Zs2eK9ygKAcuQ4C11BR5KKDemhZV/TwhNACDt+5O8m0IyMDL322muaP3++du7cqQkTJujWW2/VunXrXMf83//9n5566ilt3bpVISEhGjVqlCRp8ODB+sMf/qCLL75YOTk5ysnJ0eDBg133mz59um6++WZ9+eWXuvbaazVs2DAdPXrU7bJNmzZNzz33nDZt2qT9+/fr5ptv1pw5c7R48WK9//77WrlypZ599lnX8Q8++KDefvttvfrqq9q+fbtatWqltLS0Kj0nAHgi68hxV9ApUWQY2nekoOw7wHIIO36yZEu2Umet0dAFm5U6a42WbMn26fOdPHlSM2fO1CuvvKK0tDS1aNFCI0eO1K233qoXX3zRddzjjz+unj17KikpSZMnT9amTZt04sQJRUREqE6dOgoJCVF8fLzi4+Ndi/NJ0siRI3XLLbeoVatWmjlzpo4dO6bPPvvM7fLNmDFDqamp6tSpk0aPHq1169Zp3rx56tSpk6688krddNNNWrt2rSTp+PHjmjdvnv70pz+pX79+SkpK0oIFCxQREaGXX37Ze5UGAGVIbFRbQeesXhHscKh5I9ZfCxSEHT8wown0u+++U0FBgX7zm9+oTp06rttrr72mvXv3uo7r0KGD698ll1IoubRCRc6+X+3atRUVFeXW/cq6f1xcnCIjI9WiRYtS20oeb+/evTp9+rRSU1Nd+0NDQ9WlSxft2rXL7ecEAE8kREcoY2Cygv+7Xleww6GZA9srITqiknvCKhig7AcVNYH66s1y7NgxSdL777+vCy64oNS+8PBwV+AJDQ11bS9ZeK+4uLjSxz/7fiX3ded+Zd3f4XBU+/EAwJcGX95UPdrEaN+RAjVvFEnQCTCEHT8oaQI9O/D4ugk0KSlJ4eHhys7OVs+ePc/bf3brTnnCwsJUVFTki+JVScuWLRUWFqaNGzeqWbNmkn697MOWLVs0fvx4cwsHoMZIiI4g5AQowo4flDSBPrTsaxUZhl+aQOvWrauJEydqwoQJKi4uVvfu3eV0OrVx40ZFRUW5QkNFmjdvrqysLO3YsUMXXnih6tatq/DwcJ+VuTy1a9fW3XffrQceeEANGjRQ06ZNNXv2bBUUFGj06NF+Lw8AILAQdvzEjCbQxx57TDExMcrIyNB//vMf1atXT5deeqkeeught7qIBg0apGXLlumqq65SXl6eFi5cqJEjR/q83GWZNWuWiouLddttt+mXX35R586d9fHHH6t+/fqmlAcAEDgchmEYlR9mb/n5+YqOjpbT6VRUVFSpfSdOnFBWVpYSExNVq1Ytk0qI6uLvCAD2U9H399mYjQUAAGyNsAOvuuuuu0pNdT/7dtddd5ldPABADcSYHXjVo48+qokTJ5a5r6ImRgAAfIWwA6+KjY1VbGys2cUAAMCFbiwAAGBrhB03sZpvYOPvBwA1F91YlQgLC1NQUJAOHDigmJgYhYWFuS6rAOszDEOnTp3S4cOHFRQUpLCwMLOLBADwM8JOJYKCgpSYmKicnBwdOHDA7OLAQ5GRkWratKmCgmjMBICahrDjhrCwMDVt2lRnzpyxxLWiUDXBwcEKCQmhRQ4AaijCjptKrsx97tW5AQCAtdGmDwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbM3UsFNUVKSpU6cqMTFRERERatmypR577DEZhuE6xjAMPfzww0pISFBERIT69OmjPXv2lHqco0ePatiwYYqKilK9evU0evRoHTt2zN8vBwAAWJCpYeeJJ57QvHnz9Nxzz2nXrl164oknNHv2bD377LOuY2bPnq25c+dq/vz52rx5s2rXrq20tDSdOHHCdcywYcO0c+dOrVq1SitWrND69et15513mvGSAACAxTiMs5tR/Oy6665TXFycXn75Zde2QYMGKSIiQq+//roMw1Djxo31hz/8QRMnTpQkOZ1OxcXFadGiRRoyZIh27dqlpKQkbdmyRZ07d5YkffTRR7r22mv1ww8/qHHjxpWWIz8/X9HR0XI6nYqKivLNiwUAAF7l7ve3qS07V1xxhVavXq1///vfkqQvvvhCGzZsUL9+/SRJWVlZys3NVZ8+fVz3iY6OVteuXZWZmSlJyszMVL169VxBR5L69OmjoKAgbd68ucznPXnypPLz80vdAACAPYWY+eSTJ09Wfn6+2rZtq+DgYBUVFenxxx/XsGHDJEm5ubmSpLi4uFL3i4uLc+3Lzc1VbGxsqf0hISFq0KCB65hzZWRkaPr06d5+OQAAwIJMbdn5+9//rjfeeEOLFy/W9u3b9eqrr+rJJ5/Uq6++6tPnnTJlipxOp+u2f/9+nz4fAAAwj6ktOw888IAmT56sIUOGSJKSk5P1/fffKyMjQyNGjFB8fLwk6eDBg0pISHDd7+DBg7rkkkskSfHx8Tp06FCpxz1z5oyOHj3quv+5wsPDFR4e7oNXBAAArMbUlp2CggIFBZUuQnBwsIqLiyVJiYmJio+P1+rVq1378/PztXnzZqWkpEiSUlJSlJeXp23btrmOWbNmjYqLi9W1a1c/vAoAAGBlprbsXH/99Xr88cfVtGlTXXzxxfr888/19NNPa9SoUZIkh8Oh8ePHa8aMGWrdurUSExM1depUNW7cWAMGDJAktWvXTn379tWYMWM0f/58nT59Wunp6RoyZIhbM7EAAIC9mRp2nn32WU2dOlX33HOPDh06pMaNG+v3v/+9Hn74YdcxDz74oI4fP64777xTeXl56t69uz766CPVqlXLdcwbb7yh9PR09e7dW0FBQRo0aJDmzp1rxksCAAAWY+o6O1bBOjsAAASegFhnBwAAwNcIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNZMDzs//vijbr31VjVs2FARERFKTk7W1q1bXfsNw9DDDz+shIQERUREqE+fPtqzZ0+pxzh69KiGDRumqKgo1atXT6NHj9axY8f8/VIAAIAFmRp2fv75Z6Wmpio0NFQffvihvvnmGz311FOqX7++65jZs2dr7ty5mj9/vjZv3qzatWsrLS1NJ06ccB0zbNgw7dy5U6tWrdKKFSu0fv163XnnnWa8JAAAYDEOwzAMs5588uTJ2rhxo/71r3+Vud8wDDVu3Fh/+MMfNHHiREmS0+lUXFycFi1apCFDhmjXrl1KSkrSli1b1LlzZ0nSRx99pGuvvVY//PCDGjduXGk58vPzFR0dLafTqaioKO+9QAAA4DPufn+b2rKzfPlyde7cWb/73e8UGxurTp06acGCBa79WVlZys3NVZ8+fVzboqOj1bVrV2VmZkqSMjMzVa9ePVfQkaQ+ffooKChImzdvLvN5T548qfz8/FI3AABgT6aGnf/85z+aN2+eWrdurY8//lh33323xo0bp1dffVWSlJubK0mKi4srdb+4uDjXvtzcXMXGxpbaHxISogYNGriOOVdGRoaio6NdtyZNmnj7pQEAAIswNewUFxfr0ksv1cyZM9WpUyfdeeedGjNmjObPn+/T550yZYqcTqfrtn//fp8+HwAAMI+pYSchIUFJSUmltrVr107Z2dmSpPj4eEnSwYMHSx1z8OBB1774+HgdOnSo1P4zZ87o6NGjrmPOFR4erqioqFI3AABgT6aGndTUVO3evbvUtn//+99q1qyZJCkxMVHx8fFavXq1a39+fr42b96slJQUSVJKSory8vK0bds21zFr1qxRcXGxunbt6odXAQAArCzEzCefMGGCrrjiCs2cOVM333yzPvvsM/3lL3/RX/7yF0mSw+HQ+PHjNWPGDLVu3VqJiYmaOnWqGjdurAEDBkj6tSWob9++ru6v06dPKz09XUOGDHFrJhYAALA3U6eeS9KKFSs0ZcoU7dmzR4mJibr//vs1ZswY137DMPTII4/oL3/5i/Ly8tS9e3e98MILatOmjeuYo0ePKj09Xe+9956CgoI0aNAgzZ07V3Xq1HGrDEw9BwAg8Lj7/W162LECwg4AAIEnINbZAQAA8DXCjk3lOAu1ae8R5TgLzS4KAACmMnWAMnxjyZZsTVn2lYoNKcghZQxM1uDLm5pdLAAATEHLjs3kOAtdQUeSig3poWVf08IDAKixCDs2k3XkuCvolCgyDO07UmBOgQAAMBlhx2YSG9VWkKP0tmCHQ80bRZpTIAAATEbYsZmE6AhlDExWsOPXxBPscGjmwPZKiI4wuWQAAJiDAco2NPjypurRJkb7jhSoeaNIgg4AoEZzO+zk5+e7/aAszGe+hOgIQg4AAKpC2KlXr54cDkeFxxiGIYfDoaKiomoXDAAAwBvcDjtr1671ZTkA/FeOs1BZR44rsVFtWucAwAvcDjs9e/b0ZTkAiAUhAcAXPB6gnJeXp5dfflm7du2SJF188cUaNWqUoqOjvVY4oCYpb0HIHm1iaOEBgGrwaOr51q1b1bJlSz3zzDM6evSojh49qqefflotW7bU9u3bvV1GoEZgQUgA8A2PWnYmTJigG264QQsWLFBIyK8PcebMGd1xxx0aP3681q9f79VCAjVByYKQZwceFoQEgOrzuGVn0qRJrqAjSSEhIXrwwQe1detWrxUOqElYEBIAfMOjlp2oqChlZ2erbdu2pbbv379fdevW9UrBgJqIBSEBwPs8CjuDBw/W6NGj9eSTT+qKK66QJG3cuFEPPPCAbrnlFq8WEKhpWBASALzLo7Dz5JNPyuFwaPjw4Tpz5owkKTQ0VHfffbdmzZrl1QICAABUh8MwDKPyw8pWUFCgvXv3SpJatmypyMjAHEiZn5+v6OhoOZ1OLnUBAECAcPf7u1oXAo2MjFRycnJ1HgKwLFYyBgB78CjsnDhxQs8++6zWrl2rQ4cOqbi4uNR+1tpBoGMlYwCwD4/CzujRo7Vy5UrddNNN6tKlS6UXCAUCCSsZA4C9eBR2VqxYoQ8++ECpqaneLg9guopWMibsAEDg8WhRwQsuuID1dCwgx1moTXuPKMdZaHZRbKVkJeOzsZIxAAQuj8LOU089pUmTJun777/3dnngpiVbspU6a42GLtis1FlrtGRLttlFsg1WMgYAe/GoG6tz5846ceKEWrRoocjISIWGhpbaf/ToUa8UDmVjTInvsZIxANiHR2Hnlltu0Y8//qiZM2cqLi6OAcp+xpgS/2AlYwCwB4/CzqZNm5SZmamOHTt6uzxwA1fHBgDAfR6N2Wnbtq0KCxkUaxbGlAAA4D6PLhexcuVKTZ8+XY8//riSk5PPG7MTaJdcCNTLReQ4CxlTAgCosdz9/vYo7AQF/dogdO5YHcMw5HA4VFRUVNWHNFWghh0AAGoyn14ba+3atR4XDAAAwJ88Cjs9e/Z067h77rlHjz76qBo1auTJ0wAAAFSbRwOU3fX6668rPz/fl08BAABQIZ+GHQ+GAwEAAHiVT8MOAACA2Qg7AADA1gg7AADA1gg7AADA1nwadm699VYW6QMAAKbyaJ0dScrLy9Nnn32mQ4cOqbi4uNS+4cOHS5LmzZtXvdIBAABUk0dh57333tOwYcN07NgxRUVFlbpshMPhcIUdAAAAs3nUjfWHP/xBo0aN0rFjx5SXl6eff/7ZdTt69Ki3ywgAAOAxj8LOjz/+qHHjxikyMtLb5QEAAPAqj8JOWlqatm7d6u2yAAAAeJ3bY3aWL1/u+nf//v31wAMP6JtvvlFycrJCQ0NLHXvDDTd4r4QAAADV4DDcvIBVUJB7jUAOh0NFRUXVKpS/5efnKzo6Wk6nk6nyAAAECHe/v91u2Tl3ejkAAEAg8GjMzmuvvaaTJ0+et/3UqVN67bXXql0oAAAAb3G7G+tswcHBysnJUWxsbKntP/30k2JjY+nGAgAAPufu97dHLTuGYZRaSLDEDz/8oOjoaE8eEgAAwCeqtIJyp06d5HA45HA41Lt3b4WE/O/uRUVFysrKUt++fb1eSAAAAE9VKewMGDBAkrRjxw6lpaWpTp06rn1hYWFq3ry5Bg0a5NUCAgCAwJXjLFTWkeNKbFRbCdERppShSmHnkUcekSQ1b95cgwcPVq1atXxSKAAAEPiWbMnWlGVfqdiQghxSxsBkDb68qd/L4dEA5RKnTp0q86rnTZv6/4VUBwOUAQDwrhxnoVJnrVHxWSkj2OHQhslXea2Fx+vr7Jxtz549GjVqlDZt2lRqe8nA5UCbjQUAALwr68jxUkFHkooMQ/uOFPi9O8ujsDNy5EiFhIRoxYoVSkhIKHNmFgAAqLkSG9VWkEPntew0b+T/i4h7FHZ27Nihbdu2qW3btt4uDwAAsIGE6AhlDEzWQ8u+VpFhKNjh0MyB7U0ZpOxR2ElKStKRI0e8XRYAAGAjgy9vqh5tYrTvSIGaN4o0bTaWR4sKPvHEE3rwwQf1ySef6KefflJ+fn6pm6dmzZolh8Oh8ePHu7adOHFCY8eOVcOGDVWnTh0NGjRIBw8eLHW/7Oxs9e/fX5GRkYqNjdUDDzygM2fOeFwOAADgHQnREUpp2dC0oCN52LLTp08fSdLVV19darxOdQYob9myRS+++KI6dOhQavuECRP0/vvv66233lJ0dLTS09M1cOBAbdy4UdKvixn2799f8fHx2rRpk3JycjR8+HCFhoZq5syZnrw8r7HC2gIAANR0HoWdtWvXerUQx44d07Bhw7RgwQLNmDHDtd3pdOrll1/W4sWLdfXVV0uSFi5cqHbt2unTTz9Vt27dtHLlSn3zzTf65z//qbi4OF1yySV67LHHNGnSJE2bNk1hYWFeLau7rLK2AAAANZ1H3Vg9e/ZUUFCQFixYoMmTJ6tVq1bq2bOnsrOzFRwcXOXHGzt2rPr37+9qMSqxbds2nT59utT2tm3bqmnTpsrMzJQkZWZmKjk5WXFxca5j0tLSlJ+fr507d5b5fCdPnvRa11tZcpyFrqAj/ToS/aFlXyvHWejV5wEAAJXzKOy8/fbbSktLU0REhD7//HOdPHlS0q8tMVXtOvrb3/6m7du3KyMj47x9ubm5CgsLU7169Uptj4uLU25uruuYs4NOyf6SfWXJyMhQdHS069akSZMqlbkyFa0tYAU5zkJt2nuE8AUAqBE8CjszZszQ/PnztWDBAoWGhrq2p6amavv27W4/zv79+3XffffpjTfe8OulJ6ZMmSKn0+m67d+/36uPX7K2wNnMWlvgXEu2ZCt11hoNXbBZqbPWaMmWbLOLBACAT3kUdnbv3q0ePXqctz06Olp5eXluP862bdt06NAhXXrppQoJCVFISIjWrVunuXPnKiQkRHFxcTp16tR5j3nw4EHFx8dLkuLj48+bnVXy/5JjzhUeHq6oqKhSN28qWVsg+L+Dt81cW+BsdK8BAGoijwYox8fH67vvvlPz5s1Lbd+wYYNatGjh9uP07t1bX331Valtt99+u9q2batJkyapSZMmCg0N1erVq11XU9+9e7eys7OVkpIiSUpJSdHjjz+uQ4cOKTY2VpK0atUqRUVFKSkpyZOX5xVWWVvgbFZauhsAAH/xKOyMGTNG9913n1555RU5HA4dOHBAmZmZmjhxoqZOner249StW1ft27cvta127dpq2LCha/vo0aN1//33q0GDBoqKitK9996rlJQUdevWTZJ0zTXXKCkpSbfddptmz56t3Nxc/fGPf9TYsWMVHh7uycvzmoToCEuFCCst3Q0AgL94FHYmT56s4uJi9e7dWwUFBerRo4fCw8M1ceJE3XvvvV4t4DPPPKOgoCANGjRIJ0+eVFpaml544QXX/uDgYK1YsUJ33323UlJSVLt2bY0YMUKPPvqoV8thB1ZauhsAAH9xGIZhVH5Y2U6dOqXvvvtOx44dU1JSkurUqePNsvmNu5eIt4scZ6GlutcAAPCEu9/fHrXslAgLCzN1XAw8Y7XuNQAAfMmj2VgAAACBgrADAABsjbADAABsjbDjR1ymAQAA/6vWAGW4j6ugAwBgDlp2/IDLNAAAYB7Cjh9Y/SroAADYGWHHD6x8FXQAAOyOsOMHVr0KOgAANQEDlP3EildBBwCgJiDs+BGXaQAAwP/oxgIAALZG2EG1sVgiAMDK6MZCtbBYIgDA6mjZgcdYLBEAEAgIO/AYiyUCAAIBYQceY7FEAEAgIOzAYyyWCAAIBAxQRrWwWCIAwOoIO6g2FksEAFgZ3VgAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAcA4ubgvYC1PPAeAsXNwWsB9adgDgv7i4LWBPhB0A+C8ubguz0YXqG3RjAcB/lVzc9uzAw8Vt4S90ofoOLTsA8F9c3BZmoQvVt2jZAYCzcHFbmKGiLlTOweoj7KBacpyFyjpyXImNavOGhG1wcVv4G12ovkU3Fjy2ZEu2Umet0dAFm5U6a42WbMk2u0gAEJDoQvUth2EYRuWH2Vt+fr6io6PldDoVFRVldnECQo6zUKmz1pz3K2TD5Kt4cwKAh3KchXShVoG73990Y8Ej9C8DgPfRheobdGPBIyX9y2ejfxkAYEWEHXiE/mUAQKCgGwseY4ouACAQEHZQLfQvAwCsjm4sAABga4QdAABga4QdAABga4QdAABga4QdAABga4QdAABga4QdAPChHGehNu09ohxnodlFAWos1tkBAB9ZsiVbU5Z9pWJDCnJIGQOTNfjypmYXC6hxaNkBAB/IcRa6go4kFRvSQ8u+poUHMAFhBwB8IOvIcVfQKVFkGNp3pMCcAgE1GGEHAHwgsVFtBTlKbwt2ONS8UaQ5BQJqMMIOAPhAQnSEMgYmK9jxa+IJdjg0c2B7riUHmIABygDgI4Mvb6oebWK070iBmjeKJOgAJiHsAIAPJURHEHIAk9GNBQAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbM3UsJORkaHLL79cdevWVWxsrAYMGKDdu3eXOubEiRMaO3asGjZsqDp16mjQoEE6ePBgqWOys7PVv39/RUZGKjY2Vg888IDOnDnjz5eCKuDCiAAAfzI17Kxbt05jx47Vp59+qlWrVun06dO65pprdPz4cdcxEyZM0Hvvvae33npL69at04EDBzRw4EDX/qKiIvXv31+nTp3Spk2b9Oqrr2rRokV6+OGHzXhJqMSSLdlKnbVGQxdsVuqsNVqyJdvsIgEAbM5hGIZR+WH+cfjwYcXGxmrdunXq0aOHnE6nYmJitHjxYt10002SpG+//Vbt2rVTZmamunXrpg8//FDXXXedDhw4oLi4OEnS/PnzNWnSJB0+fFhhYWGVPm9+fr6io6PldDoVFRXl09dYk+U4C5U6a02p6wUFOxzaMPkq1iEBAFSZu9/flhqz43Q6JUkNGjSQJG3btk2nT59Wnz59XMe0bdtWTZs2VWZmpiQpMzNTycnJrqAjSWlpacrPz9fOnTvLfJ6TJ08qPz+/1A2+x4URAQBmsEzYKS4u1vjx45Wamqr27dtLknJzcxUWFqZ69eqVOjYuLk65ubmuY84OOiX7S/aVJSMjQ9HR0a5bkyZNvPxqUBYujAgAMINlws7YsWP19ddf629/+5vPn2vKlClyOp2u2/79+33+nODCiAA8x8QGVIclro2Vnp6uFStWaP369brwwgtd2+Pj43Xq1Cnl5eWVat05ePCg4uPjXcd89tlnpR6vZLZWyTHnCg8PV3h4uJdfBdzBhREBVNWSLdmasuwrFRtSkEPKGJiswZc3NbtYCCCmtuwYhqH09HS98847WrNmjRITE0vtv+yyyxQaGqrVq1e7tu3evVvZ2dlKSUmRJKWkpOirr77SoUOHXMesWrVKUVFRSkpK8s8LQZUkREcopWVDgg6ASuU4C11BR5KKDemhZV/TwmNhVmyFM7VlZ+zYsVq8eLHeffdd1a1b1zXGJjo6WhEREYqOjtbo0aN1//33q0GDBoqKitK9996rlJQUdevWTZJ0zTXXKCkpSbfddptmz56t3Nxc/fGPf9TYsWNpvQGAAFfRxAZ+MFmPVVvhTG3ZmTdvnpxOp3r16qWEhATXbcmSJa5jnnnmGV133XUaNGiQevToofj4eC1btsy1Pzg4WCtWrFBwcLBSUlJ06623avjw4Xr00UfNeEkAAoAVf3mibExsCBxWboWz1Do7ZmGdHaDmsOovT5RvyZZsPbTsaxUZhmtiA38z69m094iGLth83vY3x3RTSsuGPnlOd7+/LTFAGQD8obxfnj3axNAlYmFMbAgMJa1w5y4ca4VWOMtMPQcAX2Nhy8DFxAbrs/LyIrTsAKgxrPzLE7CCHGehso4cV2Kj2h6FFKu2whF2ANQYJb88zx3/YZUPZMBM3hrPlhAdYbn3FAOUxQBloKbJcRZa7pcnYKZAvVAzA5QBoBxW/OUJe6huN5BZ7L6eEWEHAIAqKivUBPKyBu6OZwvUMEfYAQCgCsoKNT3axAT0sgbujGcL5DBH2AEAwE3lrdU0Z0jHgO8GqmgmVaCvUUXYAQBYipW7Ssob2xLkcNhiWYPyxrMF+pgeFhUEAFjGki3ZSp21RkMXbFbqrDVasiXb7CKVUt61ui5tVt+yC+p5Q6Bfo4ywAwCwBCtfSLJERasED768qTZMvkrP3dJJf77lEvVoE2Nyab3Hyqsju4NuLACAJQRKV0lFY1vW//twwA7irYxVV0d2B2EHtmDlPn4A7gmky3mUNbYl0AfxuiNQ16iiGwsBz+p9/ADcE+hdJVxo1rpo2UFAqwm/pICaJJC7SgKpZaqmoWUHAc3Ov6RynIXatPeIpQZnApLvz82E6AiltGwYUEFHCvyWKTujZQcBza6/pAJ5pVLYmx3PTW+O+Qvklik7o2XHBmpyC4Adf0kFwvRb1Ex2PDd9MeYvUFum7IyWnQBnx19ZVWW3X1KBMv0WNY/dzk3G/NUctOwEMDv+yvKUnX5JBfpKpbAvu52bdh7zh9IIOwGMN6o92bFrDvZgt3PTbuEN5aMbK4DZdXAu7Nc1ZwcsXPkrf5+bvqz3kvD20LKvVWQYAR/eUD6HYRhG5YfZW35+vqKjo+V0OhUVFWVKGTx9Qy/Zkn3eG7WmjdlxF19WKFHVc4GxcebwV73nOAu9Ht74vPEPd7+/CTsyP+xU9w3tizeq3fBlhRJVPRdynIVKnbXmvBbUDZOvqtHvN19/mQdyvfN54z/ufn8zZsdk3hhkbKfBub7AQG6UKOtcmPL2V/pi/8/l3oexcec7e7r2FRlrNPP9b7z+fgrUevf086YmLyHiD4QdkwXqGzqQUMcoUda5UCxpwAubyl1fJdAHsXr7S/TcL3ND0l/+leX169IFar178nnD9f18j7BjskB9QwcS6hglyjoXJMmo4Nd3IM9A8sWXaFlf5pL3W0wDtd6r+nlDy7N/EHZMFqhv6EBCHaNEyblQ1gdfRb++B1/eVBsmX6U3x3TThslXBcT4C199iZYXGCXvt5hWpd7dacHyR1dRVT9vaHn2D6aeWwDTjH2vptaxVWaEWKUc0q/nQtv4uhrwwiYZ5wx+rai1LyE6wi9l91Zd+Wq145Iv8ylvf6Xic/b5osXUnXo/d0Dw6O6Juq5Dgo6fKnLVoz8HDVfl86Y6S4hY6X1ldczGkvmzsQB3VeXDzSozQqxSjrLKZbVlG7xZV76ezZTjLNTCDfv00ob/qNiQaXVY1us8W5BDmtS3rZ746FvLzuzy5Fy06vvK35h6XgWEHQSCqny4+XvabnkhzOrTh620bIMv6sofgc7sOty094iGLthc4TFB0nmtUJL05phuSmnZ0Cflqqqq1KPV31f+5O73N91YQACo6gULvdGF4W4rUkUhzOoXjvRX15Q7fFFX/ui+NbsOy+oGOlexJIdDVeq29Leq1GN558q2fT/ruo7WOJ+thgHKQACo6iDG6s5Aq2gWz9mDPCsbBMtMOPf5qq6stA6XLwYIuwadlzNoWvq1Hif3a2ubSQrlDRIf97fPy32v1nS07ABuMHsgYFUHMVbnmj8VtSKt//fhUq04d3RPrLA1wtNyuFvfFXWfBdrATX9fp8nfdeTLMSYlLVgLN2bppfVZpbqszu6+u6FjY8t0W1ZHeYPEK3qv1tQxPSUYsyPG7KBiVhkI6Mn4C0/GU5Q3BuL5oZ1075uflwo3QZJURgg7d+xAVcrhbn2Xd5xV/l6e8scYGH/XUVljTIIc0sbJV3v9NZbUX2RYkApOFQd8sKnIii8PKH3x5+dtf+6WThr3t89rxJgexuwAXlDVsTK+5Mn4C0/GU9QOC5ZDv66MWyLY4VCxYZS5+vCd3Vvo5Q1ZFbZGuFsOd+u7vOPaxte1zN/LU74eA2PGOV3mytWGtHBjlh66Nsmrz2X2GCJ/uqxZ/TJbfM/9ASJZa6ycGQg7QAWsNsDW1x/kJb/4zw06Mwe2V+fmDcr8YL29e3Pd3r25V1oj3K3v8o7bsu9nS/29rMiMc7q8QcQvrc/S7amJ/G08VF7XZ3khqCaPlSPsABWozoJfgebcX/zSr10Ny+5JUccm9SWpwjEl3vjCcre+yzvu8uZ8yFfGjHM6ITpCo7snasG/skptL5YIotVUXouvP8d/BQJmY6HKatII/5p0qYnyuhoKTv1vCKSvL5vgbn2Xd1zHJvVrzN/LU2ad06O6J+rcCUQEUe8oa8ZdIF7ixJcYoCwGKFeFlQZ/+nM2idkLp/mDlRYqc7e+yzvOKn8vK88KM6OOrLhqNQIbKyhXAWHHPVb5MsxxFuqVDVl6eUOWJUKXnfBl5D1W+mFgJVYJotVh5RBb0zAbC15nhcG6S7Zka/LbpQfQBuKMG6vy1oq7Nf3LwEqz+Kwm0GdLEWIDE2EHbjN7sG7JF0hZTZHMuPGe6n4Z8WVgjR8G8D5CbOBigDLcZvZg3bK+QEow0NEayvoymLLsK32x/2dzC+ZnXCbDnqp62RZYB2EHbimZgdWjTYxpI/zLux5MkEPMuKkGb86uK29G14DnN5W6Zk8gqE69mPHDoCbNkjQLITZw0Y2FSlmlW+LcBbSCJN3RI5FFyarB23/b8haPMxRYzf3eqBdfXXG8rPFQVnmP2p2/r1/mKzVxTB2zscRsrIpYZQbWuWUK9NkcVuCrv+3ZX7znenNMN6W0bOjxY/uDFc/5EmWFmh5tYixbXrsK5M8guwVjd7+/6cZChazYR13WAlqoOl/9bQdf3lTv3HNFwC4gZ8VzXip/cOy278u/RAZ8I1A/g8o7h2pC1ydhBxWij9qavDE+w5d/245N6mvWIHNXMva0jqx6zpcXwvTfX+hns0J54X3Vfd9bNcj7A2N2UKGK+qhrYr+vFXirGdrX4w98NWbFHdWpI6uOyyhv6YfLmte3XHn5bPA+b7zvzV4+xEyM2RFjdtxxbh+13fp9q8qsD3NfjCcJ5PEHZfFWHVmxXipa4bqy8vrrnK3pnw2+4M33vd1WSWcFZXjV2QvN1fSFtcz8MPfFYnWBvqLtubxVR1asl4payyoqb2XnrLeCUE3/bPAVb77vzWxxNRNhB1UWKKvD+uKXrNkf5jW5Gdpddq+jqoawys5Zb4b3QPlsCDTePqetGOR9jQHKqDKrDuA825It2UqdtUZDF2xW6qw1XlvQzuwBfmavYh0IqKPSKjpnvT07JxA+GwIR53T10bKDKqtsAKfZgxMr+iUrqVpls0KrQU1thq4K6uh/Kjpnvd0S443B3WZ/fliVJ+c0dfk/hB14pLw3XnmLnvnzDVfeB/jCDfv00ob/VKu53iozdazWDG3FD1Wr1ZFZKjtnvRnec5yFatIgUsvuSVHBqeIqB00GN1esKuc0dVkas7HEbCxvKWvGgMMh6delQCp8w3nzy7KscgRJUhkf6p7OYrLiTB2z8KEaGMo7Z701O6e654GVV64ONN6ckWi1HzHnYjYW/K6sFpWzo3R5g3m9/WVZ1i/Z0d2b6y//yip13LnN9VV5Y9Nq8CuzB2zDfeWds97o8vPGeRBog5utHAS8UZd2+xFD2LEIK79x3FXeRSDPVlbA8MWX5bkf4JL00oascpvr7fbG9pdA+4JC2aob3r1xHlhhPJy7rP55Ud26tOOPGNvMxnr++efVvHlz1apVS127dtVnn31mdpHc5quZQ/527oyBIIcqvT6SL2c3nX39mopmM/jzejHeuMyDlVhl9o3d6jXQeOM8CJQZR4FwfanKPu8qe6+YPevUF2zRsrNkyRLdf//9mj9/vrp27ao5c+YoLS1Nu3fvVmxsrNnFq5DdEvS5LSrr/324wsG8/vw1V15zvb9aJ6z+a9ATVhiwbcd6DTTeOg/Ke49aqeU7UFozy6pLd98rgdTK5i5bDFDu2rWrLr/8cj333HOSpOLiYjVp0kT33nuvJk+eXOn9zRygvGnvEQ1dsPm87W+O6aaUlg39WhZfqWwwr9nLl/tjYKTdB1+aNWDb7vUaaHxxHlgtzAbqOVfVcpv9ueyuGjNA+dSpU9q2bZumTJni2hYUFKQ+ffooMzPTxJK5x44J+lyVjQcwe00Uf7ROBMqvQU+ZNWDb7vUaaLx9Hlix5dsKrZmeqOp7xezPZW8L+LBz5MgRFRUVKS4urtT2uLg4ffvtt2Xe5+TJkzp58qTr//n5+T4tY0UC9Y3jbWbPbvL1G7smhFozUK/2ZtUwG4hBwJP3itmfy95kmwHKVZGRkaHo6GjXrUmTJqaWZ/DlTbVh8lV6c0w3bZh8lSWbCmuCswc0++KxA2HwZaChXu3NKgPgy+LLzwtfqOnvlYAfs3Pq1ClFRkZq6dKlGjBggGv7iBEjlJeXp3ffffe8+5TVstOkSRMWFYTPsRihb1Cv9hUoY0cChd3eKzVmzE5YWJguu+wyrV692hV2iouLtXr1aqWnp5d5n/DwcIWHh/uxlMCv7NQsbCXUq30FYpeRldXU90rAhx1Juv/++zVixAh17txZXbp00Zw5c3T8+HHdfvvtZhcNAFBNNfULGt5ji7AzePBgHT58WA8//LByc3N1ySWX6KOPPjpv0DIAAKh5An7MjjdwIVAAAAKPu9/fNXI2FgAAqDkIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNZscbmI6ipZRDo/P9/kkgAAAHeVfG9XdjEIwo6kX375RZLUpEkTk0sCAACq6pdfflF0dHS5+7k2lqTi4mIdOHBAdevWlcPhMLs4fpWfn68mTZpo//79XBesGqhH76EuvYN69B7q0jt8UY+GYeiXX35R48aNFRRU/sgcWnYkBQUF6cILLzS7GKaKioriTewF1KP3UJfeQT16D3XpHd6ux4padEowQBkAANgaYQcAANgaYaeGCw8P1yOPPKLw8HCzixLQqEfvoS69g3r0HurSO8ysRwYoAwAAW6NlBwAA2BphBwAA2BphBwAA2BphBwAA2BphpwZYv369rr/+ejVu3FgOh0P/+Mc/Su03DEMPP/ywEhISFBERoT59+mjPnj3mFNbiKqvLkSNHyuFwlLr17dvXnMJaWEZGhi6//HLVrVtXsbGxGjBggHbv3l3qmBMnTmjs2LFq2LCh6tSpo0GDBungwYMmldi63KnLXr16nXde3nXXXSaV2JrmzZunDh06uBa8S0lJ0Ycffujaz/novsrq0ozzkbBTAxw/flwdO3bU888/X+b+2bNna+7cuZo/f742b96s2rVrKy0tTSdOnPBzSa2vsrqUpL59+yonJ8d1e/PNN/1YwsCwbt06jR07Vp9++qlWrVql06dP65prrtHx48ddx0yYMEHvvfee3nrrLa1bt04HDhzQwIEDTSy1NblTl5I0ZsyYUufl7NmzTSqxNV144YWaNWuWtm3bpq1bt+rqq6/Wb3/7W+3cuVMS52NVVFaXkgnno4EaRZLxzjvvuP5fXFxsxMfHG3/6059c2/Ly8ozw8HDjzTffNKGEgePcujQMwxgxYoTx29/+1pTyBLJDhw4Zkox169YZhvHrORgaGmq89dZbrmN27dplSDIyMzPNKmZAOLcuDcMwevbsadx3333mFSpA1a9f33jppZc4H72gpC4Nw5zzkZadGi4rK0u5ubnq06ePa1t0dLS6du2qzMxME0sWuD755BPFxsbqoosu0t13362ffvrJ7CJZntPplCQ1aNBAkrRt2zadPn261HnZtm1bNW3alPOyEufWZYk33nhDjRo1Uvv27TVlyhQVFBSYUbyAUFRUpL/97W86fvy4UlJSOB+r4dy6LOHv85ELgdZwubm5kqS4uLhS2+Pi4lz74L6+fftq4MCBSkxM1N69e/XQQw+pX79+yszMVHBwsNnFs6Ti4mKNHz9eqampat++vaRfz8uwsDDVq1ev1LGclxUrqy4laejQoWrWrJkaN26sL7/8UpMmTdLu3bu1bNkyE0trPV999ZVSUlJ04sQJ1alTR++8846SkpK0Y8cOzscqKq8uJXPOR8IO4EVDhgxx/Ts5OVkdOnRQy5Yt9cknn6h3794mlsy6xo4dq6+//lobNmwwuygBr7y6vPPOO13/Tk5OVkJCgnr37q29e/eqZcuW/i6mZV100UXasWOHnE6nli5dqhEjRmjdunVmFysglVeXSUlJppyPdGPVcPHx8ZJ03qyCgwcPuvbBcy1atFCjRo303XffmV0US0pPT9eKFSu0du1aXXjhha7t8fHxOnXqlPLy8kodz3lZvvLqsixdu3aVJM7Lc4SFhalVq1a67LLLlJGRoY4dO+rPf/4z56MHyqvLsvjjfCTs1HCJiYmKj4/X6tWrXdvy8/O1efPmUv2r8MwPP/ygn376SQkJCWYXxVIMw1B6erreeecdrVmzRomJiaX2X3bZZQoNDS11Xu7evVvZ2dmcl+eorC7LsmPHDknivKxEcXGxTp48yfnoBSV1WRZ/nI90Y9UAx44dK5WYs7KytGPHDjVo0EBNmzbV+PHjNWPGDLVu3VqJiYmaOnWqGjdurAEDBphXaIuqqC4bNGig6dOna9CgQYqPj9fevXv14IMPqlWrVkpLSzOx1NYzduxYLV68WO+++67q1q3rGvcQHR2tiIgIRUdHa/To0br//vvVoEEDRUVF6d5771VKSoq6detmcumtpbK63Lt3rxYvXqxrr71WDRs21JdffqkJEyaoR48e6tChg8mlt44pU6aoX79+atq0qX755RctXrxYn3zyiT7++GPOxyqqqC5NOx/9OvcLpli7dq0h6bzbiBEjDMP4dfr51KlTjbi4OCM8PNzo3bu3sXv3bnMLbVEV1WVBQYFxzTXXGDExMUZoaKjRrFkzY8yYMUZubq7ZxbacsupQkrFw4ULXMYWFhcY999xj1K9f34iMjDRuvPFGIycnx7xCW1RldZmdnW306NHDaNCggREeHm60atXKeOCBBwyn02luwS1m1KhRRrNmzYywsDAjJibG6N27t7Fy5UrXfs5H91VUl2adjw7DMAzfRSkAAABzMWYHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHgKWdOnXK7CKcx4plAlA+wg4Av+rVq5fS09OVnp6u6OhoNWrUSFOnTlXJlWuaN2+uxx57TMOHD1dUVJTuvPNOSdKGDRt05ZVXKiIiQk2aNNG4ceN0/Phx1+O+8MILat26tWrVqqW4uDjddNNNrn1Lly5VcnKyIiIi1LBhQ/Xp08d13169emn8+PGlyjhgwACNHDnS9X9PywTAGgg7APzu1VdfVUhIiD777DP9+c9/1tNPP62XXnrJtf/JJ59Ux44d9fnnn2vq1Knau3ev+vbtq0GDBunLL7/UkiVLtGHDBqWnp0uStm7dqnHjxunRRx/V7t279dFHH6lHjx6SpJycHN1yyy0aNWqUdu3apU8++UQDBw5UVS8LWNUyAbAOLgQKwK969eqlQ4cOaefOnXI4HJKkyZMna/ny5frmm2/UvHlzderUSe+8847rPnfccYeCg4P14osvurZt2LBBPXv21PHjx/XBBx/o9ttv1w8//KC6deuWer7t27frsssu0759+9SsWbMyy3PJJZdozpw5rm0DBgxQvXr1tGjRIknyqEy1atWqVj0B8B5adgD4Xbdu3VxBR5JSUlK0Z88eFRUVSZI6d+5c6vgvvvhCixYtUp06dVy3tLQ0FRcXKysrS7/5zW/UrFkztWjRQrfddpveeOMNFRQUSJI6duyo3r17Kzk5Wb/73e+0YMEC/fzzz1Uuc1XLBMA6CDsALKd27dql/n/s2DH9/ve/144dO1y3L774Qnv27FHLli1Vt25dbd++XW+++aYSEhL08MMPq2PHjsrLy1NwcLBWrVqlDz/8UElJSXr22Wd10UUXuQJJUFDQeV1ap0+frnaZAFgHYQeA323evLnU/z/99FO1bt1awcHBZR5/6aWX6ptvvlGrVq3Ou4WFhUmSQkJC1KdPH82ePVtffvml9u3bpzVr1kiSHA6HUlNTNX36dH3++ecKCwtzdUnFxMQoJyfH9VxFRUX6+uuvK30N7pQJgDUQdgD4XXZ2tu6//37t3r1bb775pp599lndd9995R4/adIkbdq0Senp6dqxY4f27Nmjd9991zUYeMWKFZo7d6527Nih77//Xq+99pqKi4t10UUXafPmzZo5c6a2bt2q7OxsLVu2TIcPH1a7du0kSVdffbXef/99vf/++/r222919913Ky8vr9LXUFmZAFhHiNkFAFDzDB8+XIWFherSpYuCg4N13333uaZzl6VDhw5at26d/u///k9XXnmlDMNQy5YtNXjwYElSvXr1tGzZMk2bNk0nTpxQ69at9eabb+riiy/Wrl27tH79es2ZM0f5+flq1qyZnnrqKfXr10+SNGrUKH3xxRcaPny4QkJCNGHCBF111VWVvobKygTAOpiNBcCvypr9BAC+RDcWAACwNcIOAACwNbqxAACArdGyAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbO3/AW8G965BJW03AAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgxUlEQVR4nO3deVxU5eI/8M8wsgujLLLEKu5lLuSC5U6B1yV+4k3NXFIzvaKi5la5lWaaJi6prWIlLaZ1c01z65ZkilqZylUuagW4gAyoCcic3x98OTHAwDDMzDln5vN+vXgpc56ZeebMcOZznu2oBEEQQERERERW5SB1BYiIiIjsEUMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgREdUoOTkZKpUKly9flroqRDaFIYyIJHfixAkkJCTgwQcfhLu7O0JCQvDUU0/hv//9b5WyvXr1gkqlgkqlgoODAzw9PdGyZUuMHDkSBw4cqNPz7ty5Ez179kSTJk3g5uaGpk2b4qmnnsK+ffvM9dKqeO211/DVV19Vuf3YsWNYtGgR8vPzLfbclS1atEjclyqVCm5ubmjTpg1efvllFBQUmOU5UlJSkJSUZJbHIrI1DGFEJLnly5dj+/bt6Nu3L9asWYMJEybgu+++Q8eOHXH27Nkq5YOCgvDRRx/hww8/xBtvvIFBgwbh2LFjeOKJJzB06FCUlJTU+pwrV67EoEGDoFKpMG/ePKxevRrx8fG4ePEiPv30U0u8TAA1h7DFixdbNYSV27hxIz766CO8+eabaNWqFZYuXYrY2FiY49LCDGFEhjWQugJERDNmzEBKSgqcnJzE24YOHYq2bdvi9ddfx8cff6xXXqPR4JlnntG77fXXX8fUqVOxYcMGhIWFYfny5Qaf7/79+3j11Vfx+OOPY//+/VW2X79+vZ6vSD7u3r0LNze3GssMGTIEPj4+AICJEyciPj4eO3bswI8//oioqChrVJPILrEljIgk161bN70ABgDNmzfHgw8+iPPnzxv1GGq1GmvXrkWbNm2wfv16aLVag2Vv3ryJgoICPProo9Vub9Kkid7v9+7dw6JFi9CiRQu4uLggICAAgwcPRkZGhlhm5cqV6NatG7y9veHq6orIyEh88cUXeo+jUqlw584dbNmyRewCHDNmDBYtWoRZs2YBAMLDw8VtFcdgffzxx4iMjISrqyu8vLwwbNgw/P7773qP36tXLzz00ENIS0tDjx494ObmhhdffNGo/VdRnz59AACZmZk1ltuwYQMefPBBODs7IzAwEJMnT9ZryevVqxd2796NK1euiK8pLCyszvUhslVsCSMiWRIEAdeuXcODDz5o9H3UajWGDx+O+fPn4/vvv0f//v2rLdekSRO4urpi586dmDJlCry8vAw+ZmlpKQYMGICDBw9i2LBhmDZtGgoLC3HgwAGcPXsWERERAIA1a9Zg0KBBGDFiBIqLi/Hpp5/in//8J3bt2iXW46OPPsL48ePRuXNnTJgwAQAQEREBd3d3/Pe//8Unn3yC1atXi61Svr6+AIClS5di/vz5eOqppzB+/HjcuHED69atQ48ePXD69Gk0atRIrG9ubi769euHYcOG4ZlnnoGfn5/R+69cebj09vY2WGbRokVYvHgxoqOjMWnSJKSnp2Pjxo04ceIEfvjhBzg6OuKll16CVqvFH3/8gdWrVwMAGjZsWOf6ENksgYhIhj766CMBgPD+++/r3d6zZ0/hwQcfNHi/L7/8UgAgrFmzpsbHX7BggQBAcHd3F/r16ycsXbpUSEtLq1Lugw8+EAAIb775ZpVtOp1O/P/du3f1thUXFwsPPfSQ0KdPH73b3d3dhdGjR1d5rDfeeEMAIGRmZurdfvnyZUGtVgtLly7Vu/3XX38VGjRooHd7z549BQDCpk2bDL7uihYuXCgAENLT04UbN24ImZmZwttvvy04OzsLfn5+wp07dwRBEITNmzfr1e369euCk5OT8MQTTwilpaXi461fv14AIHzwwQfibf379xdCQ0ONqg+RvWF3JBHJzoULFzB58mRERUVh9OjRdbpveUtLYWFhjeUWL16MlJQUdOjQAd988w1eeuklREZGomPHjnpdoNu3b4ePjw+mTJlS5TFUKpX4f1dXV/H/t27dglarRffu3XHq1Kk61b+yHTt2QKfT4amnnsLNmzfFH39/fzRv3hyHDx/WK+/s7Ixnn322Ts/RsmVL+Pr6Ijw8HM8//zyaNWuG3bt3GxxL9u2336K4uBiJiYlwcPj7a+S5556Dp6cndu/eXfcXSmSH2B1JRLKSk5OD/v37Q6PR4IsvvoBara7T/W/fvg0A8PDwqLXs8OHDMXz4cBQUFOD48eNITk5GSkoKBg4ciLNnz8LFxQUZGRlo2bIlGjSo+XC5a9cuLFmyBGfOnEFRUZF4e8WgZoqLFy9CEAQ0b9682u2Ojo56vz/wwANVxtfVZvv27fD09ISjoyOCgoLELlZDrly5AqAsvFXk5OSEpk2bituJqGYMYUQkG1qtFv369UN+fj7+85//IDAwsM6PUb6kRbNmzYy+j6enJx5//HE8/vjjcHR0xJYtW3D8+HH07NnTqPv/5z//waBBg9CjRw9s2LABAQEBcHR0xObNm5GSklLn11CRTqeDSqXC3r17qw2klcdYVWyRM1aPHj3EcWhEZD0MYUQkC/fu3cPAgQPx3//+F99++y3atGlT58coLS1FSkoK3Nzc8Nhjj5lUj0ceeQRbtmxBdnY2gLKB88ePH0dJSUmVVqdy27dvh4uLC7755hs4OzuLt2/evLlKWUMtY4Zuj4iIgCAICA8PR4sWLer6ciwiNDQUAJCeno6mTZuKtxcXFyMzMxPR0dHibfVtCSSyZRwTRkSSKy0txdChQ5Gamopt27aZtDZVaWkppk6divPnz2Pq1Knw9PQ0WPbu3btITU2tdtvevXsB/N3VFh8fj5s3b2L9+vVVygr/t5ipWq2GSqVCaWmpuO3y5cvVLsrq7u5e7YKs7u7uAFBl2+DBg6FWq7F48eIqi6cKgoDc3NzqX6QFRUdHw8nJCWvXrtWr0/vvvw+tVqs3K9Xd3b3G5UKI7BlbwohIcjNnzsTXX3+NgQMHIi8vr8rirJUXZtVqtWKZu3fv4tKlS9ixYwcyMjIwbNgwvPrqqzU+3927d9GtWzd07doVsbGxCA4ORn5+Pr766iv85z//QVxcHDp06AAAGDVqFD788EPMmDEDP/30E7p37447d+7g22+/xb/+9S88+eST6N+/P958803Exsbi6aefxvXr1/HWW2+hWbNm+OWXX/SeOzIyEt9++y3efPNNBAYGIjw8HF26dEFkZCQA4KWXXsKwYcPg6OiIgQMHIiIiAkuWLMG8efNw+fJlxMXFwcPDA5mZmfjyyy8xYcIEvPDCC/Xa/3Xl6+uLefPmYfHixYiNjcWgQYOQnp6ODRs2oFOnTnrvV2RkJD777DPMmDEDnTp1QsOGDTFw4ECr1pdItqScmklEJAh/L61g6Kemsg0bNhSaN28uPPPMM8L+/fuNer6SkhLh3XffFeLi4oTQ0FDB2dlZcHNzEzp06CC88cYbQlFRkV75u3fvCi+99JIQHh4uODo6Cv7+/sKQIUOEjIwMscz7778vNG/eXHB2dhZatWolbN68WVwCoqILFy4IPXr0EFxdXQUAestVvPrqq8IDDzwgODg4VFmuYvv27cJjjz0muLu7C+7u7kKrVq2EyZMnC+np6Xr7pqblOyorr9+NGzdqLFd5iYpy69evF1q1aiU4OjoKfn5+wqRJk4Rbt27plbl9+7bw9NNPC40aNRIAcLkKogpUgmCGi4MRERERUZ1wTBgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgCGMiIiISAJcrFXGdDodsrKy4OHhwUt/EBERKYQgCCgsLERgYCAcHAy3dzGEyVhWVhaCg4OlrgYRERGZ4Pfff0dQUJDB7QxhMubh4QGg7E2s6Tp4REREJB8FBQUIDg4Wv8cNYQiTsfIuSE9PT4YwIiIihaltKBEH5hMRERFJgCGMiIiISAIMYUREREQS4JgwhdPpdCguLpa6GjbNycmpxinGREREpmAIU7Di4mJkZmZCp9NJXRWb5uDggPDwcDg5OUldFSIisiEMYQolCAKys7OhVqsRHBzMlhoLKV8wNzs7GyEhIVw0l4iIzIYhTKHu37+Pu3fvIjAwEG5ublJXx6b5+voiKysL9+/fh6Ojo9TVISIiG6GY5pNBgwYhJCQELi4uCAgIwMiRI5GVlaVXRhAErFy5Ei1atICzszMeeOABLF26VK/MkSNH0LFjRzg7O6NZs2ZITk6u8lxvvfUWwsLC4OLigi5duuCnn37S237v3j1MnjwZ3t7eaNiwIeLj43Ht2jW9MlevXkX//v3h5uaGJk2aYNasWbh//755dgaA0tJSAGAXmRWU7+PyfU5ERGQOiglhvXv3xueff4709HRs374dGRkZGDJkiF6ZadOm4b333sPKlStx4cIFfP311+jcubO4PTMzE/3790fv3r1x5swZJCYmYvz48fjmm2/EMp999hlmzJiBhQsX4tSpU2jXrh1iYmJw/fp1scz06dOxc+dObNu2DUePHkVWVhYGDx4sbi8tLUX//v1RXFyMY8eOYcuWLUhOTsaCBQvMvl/YPWZ53MdERGQRgkL9+9//FlQqlVBcXCwIgiCcO3dOaNCggXDhwgWD95k9e7bw4IMP6t02dOhQISYmRvy9c+fOwuTJk8XfS0tLhcDAQGHZsmWCIAhCfn6+4OjoKGzbtk0sc/78eQGAkJqaKgiCIOzZs0dwcHAQcnJyxDIbN24UPD09haKiIqNfo1arFQAIWq22yra//vpLOHfunPDXX38Z/XhkGu5rIuW5efOmkJWVZfDn5s2bUleRbFhN398VKXJMWF5eHrZu3Ypu3bqJY3R27tyJpk2bYteuXYiNjYUgCIiOjsaKFSvg5eUFAEhNTUV0dLTeY8XExCAxMRFA2WzDtLQ0zJs3T9zu4OCA6OhopKamAgDS0tJQUlKi9zitWrVCSEgIUlNT0bVrV6SmpqJt27bw8/PTe55Jkybht99+Q4cOHSyyX4iICMjNzcX69etrLZeQkABvb28r1IioeorpjgSAOXPmwN3dHd7e3rh69Sr+/e9/i9v+97//4cqVK9i2bRs+/PBDJCcnIy0tTa/LMicnRy8YAYCfnx8KCgrw119/4ebNmygtLa22TE5OjvgYTk5OaNSoUY1lqnuM8m2GFBUVoaCgQO/H1owZMwYqlQoqlQqOjo7w8/PD448/jg8++KBOS20kJydXeQ+IiABUWTtRq/VAZmYYtFqPGssRWZukIWzu3LniF7KhnwsXLojlZ82ahdOnT2P//v1Qq9UYNWoUBEEAULaUQFFRET788EN0794dvXr1wvvvv4/Dhw8jPT1dqpdYJ8uWLYNGoxF/goODLfZcubm5yM7ONviTm5trseeOjY1FdnY2Ll++jL1796J3796YNm0aBgwYYNbJC0REp051QFJSIrZsGY2kpEScOsWeCJIPSbsjZ86ciTFjxtRYpmnTpuL/fXx84OPjgxYtWqB169YIDg7Gjz/+iKioKAQEBKBBgwZo0aKFWL5169YAymYqtmzZEv7+/lVmMV67dg2enp5wdXWFWq2GWq2utoy/vz8AwN/fH8XFxcjPz9drialcpvKMyvLHLC9TnXnz5mHGjBni7wUFBRYJYlI31Ts7O4v74YEHHkDHjh3RtWtX9O3bF8nJyRg/fjzefPNNbN68Gf/73//g5eWFgQMHYsWKFWjYsCGOHDmCZ599FsDfg+YXLlyIRYsW4aOPPsKaNWuQnp4Od3d39OnTB0lJSWjSpInZXwcRyZtW64GdOwdAEMraGwTBATt3DkBExCVoNIUS145I4hDm6+sLX19fk+5b3nVVVFQEAHj00Udx//59ZGRkICIiAgDw3//+FwAQGhoKAIiKisKePXv0HufAgQOIiooCULYUQWRkJA4ePIi4uDjxeQ4ePIiEhAQAQGRkJBwdHXHw4EHEx8cDANLT03H16lXxcaKiorB06VJcv35d/PI/cOAAPD090aZNG4OvydnZGc7Ozibtj7owtgnemk31ffr0Qbt27bBjxw6MHz8eDg4OWLt2LcLDw/G///0P//rXvzB79mxs2LAB3bp1Q1JSEhYsWCC2cjZs2BAAUFJSgldffRUtW7bE9evXMWPGDIwZM6bK+05E0snNza3x+OLk5GSWE8C8PG8xgJUTBAfk5XkxhCmMtT4z1qaIgfnHjx/HiRMn8Nhjj6Fx48bIyMjA/PnzERERIQaf6OhodOzYEWPHjkVSUhJ0Oh0mT56Mxx9/XGwdmzhxItavX4/Zs2dj7NixOHToED7//HPs3r1bfK4ZM2Zg9OjReOSRR9C5c2ckJSXhzp07YsuLRqPBuHHjMGPGDHh5ecHT0xNTpkxBVFQUunbtCgB44okn0KZNG4wcORIrVqxATk4OXn75ZUyePNkqIUupWrVqhV9++QUAxMkSABAWFoYlS5Zg4sSJ2LBhA5ycnKDRaKBSqaq0LI4dO1b8f9OmTbF27Vp06tQJt2/fFoMa2TZbPVjbCmu2xHt55UKl0ukFMZVKBy+vvHo9LlmX1L03lqSIEObm5oYdO3Zg4cKFuHPnDgICAhAbG4uXX35ZDDUODg7YuXMnpkyZgh49esDd3R39+vXDqlWrxMcJDw/H7t27MX36dKxZswZBQUF47733EBMTI5YZOnQobty4gQULFiAnJwft27fHvn379Abar169Gg4ODoiPj0dRURFiYmKwYcMGcbtarcauXbswadIkREVFwd3dHaNHj8Yrr7xihb2lXIIgiN2L3377LZYtW4YLFy6goKAA9+/fx71793D37t0arxCQlpaGRYsW4eeff8atW7fEFtOrV6/W2ApJtqHywVqr9UBenje8vHL1Wj6UeLC2FdUNmq/uPTJHS7xGU4iBA3eJXZIqlQ4DB+5iK5jCWPMzY22KCGFt27bFoUOHai0XGBiI7du311imV69eOH36dI1lEhISxO7H6ri4uOCtt97CW2+9ZbBMaGgou8Dq6Pz58wgPD8fly5cxYMAATJo0CUuXLoWXlxe+//57jBs3DsXFxQZD2J07dxATE4OYmBhs3boVvr6+uHr1KmJiYmT3x8nWGsuouE9PnepQ5cu3Y8fTVcqRdGp6j8ylY8fTiIi4hLw8L3h55ckmgPEYYBprfGasSREhjGzfoUOH8Ouvv2L69OlIS0uDTqfDqlWrxAuTf/7553rlnZycqlxG6MKFC8jNzcXrr78uTmg4efKkdV5AHbC1xvI4IFv+LPkeVb6cm0ZTWO1jSnXZN1vuXrMkW/y7ZggjqysqKkJOTg5KS0tx7do17Nu3D8uWLcOAAQMwatQonD17FiUlJVi3bh0GDhyIH374AZs2bdJ7jLCwMNy+fRsHDx5Eu3bt4ObmhpCQEDg5OWHdunWYOHEizp49i1dffVWiV2kYW2ssjwOy5c+S75G3tzcSEhJk29Ikx8lR5mLJFj5b/LtmCCOr27dvn7ikSOPGjdGuXTusXbsWo0ePhoODA9q1a4c333wTy5cvx7x589CjRw8sW7YMo0aNEh+jW7dumDhxIoYOHYrc3FxxiYrk5GS8+OKLWLt2LTp27IiVK1di0KBBEr5aw2zxrE4uOCBb/iz9HimpBclQa7jSWLqFzxb/rhnC7JCxTfCWaKpPTk5GcnJyreWmT5+O6dOn6902cuRIvd83btyIjRs36t02fPhwDB8+XO+28gV95cYWz+rkggOy5Y/vURlbGuNk6RY+W/zMMITZIbk31dsLWzyrkxO5Dsimv9n7e2TrreGWaOGztc8MQ5idYsCSni2e1cmNoQHZJB25D5q3JltuDTdnC58tf2YYwogkZGtndVKTsqudjMOW+L/Zamu4uVv4bPkzwxBGJDG21hhW15lWtnywtiXc/2VstTXcEi18tvqZYQgjsjK21hjH1JlWtnqwJttR8W+7ptZwpR4DbLWFzxIYwoisjK01xrHlS5UoBVd1twxbPwbYagufJTCEEUlAqQdXqZhzkC+DhXG4qrtl2eI+s/UWPktgCCMiWTPnIF8GC+OxJZLqytZb+CyBIYyIZM2cg3wZLExjSwuKkmUxYNUNQxjZlCNHjqB37964desWGjVqZNR9wsLCkJiYiMTERIvWzd6Z2g1oqUG+DBbGsfUFRYmkxBBGVjVmzBhs2bIFzz//fJWLck+ePBkbNmzA6NGjjbq0ESlHfboBLTHIl8HCeLa8oGhdcTwhmRtDGFldcHAwPv30U6xevRqurq4AgHv37iElJQUhISES144sob7dgOZe1JbBwnhcbqAMxxOSJTjUXoTIvDp27Ijg4GDs2LFDvG3Hjh0ICQlBhw4dxNuKioowdepUNGnSBC4uLnjsscdw4sQJvcfas2cPWrRoAVdXV/Tu3RuXL1+u8nzff/89unfvDldXVwQHB2Pq1Km4c+eOxV4f1ezUqQ5ISkrEli2jkZSUiFOnOlRbrrpLlYSHX6kSkkyZaVUeLCqyx2BhjPKWyPL9Za/LDVR3IpGZGQat1qPGckQ1YUsY4Y8/gIsXgebNgaAg6zzn2LFjsXnzZowYMQIA8MEHH+DZZ5/FkSNHxDKzZ8/G9u3bsWXLFoSGhmLFihWIiYnBpUuX4OXlhd9//x2DBw/G5MmTMWHCBJw8eRIzZ87Ue56MjAzExsZiyZIl+OCDD3Djxg0kJCQgISEBmzdvts6LJVFdugEtOdOK6xjVDS+vpY/jCclcGMLs3PvvAxMmADod4OAAvPMOMG6c5Z/3mWeewbx583DlyhUAwA8//IBPP/1UDGF37tzBxo0bkZycjH79+gEA3n33XRw4cADvv/8+Zs2ahY0bNyIiIgKrVq0CALRs2RK//vorli9fLj7PsmXLMGLECHHQffPmzbF27Vr07NkTGzduhIuLi+VfLInq2g1oyW4dBoua2fJFk+uD4wnJnBjC7Ngff/wdwICyf59/HoiJsXyLmK+vL/r374/k5GQIgoD+/fvDx8dH3J6RkYGSkhI8+uij4m2Ojo7o3Lkzzp8/DwA4f/48unTpove4UVFRer///PPP+OWXX7B161bxNkEQoNPpkJmZidatW1vi5ZEBUo8vYrAwHtd8qh7HE1aPkxZMwxBmxy5e/DuAlSstBS5dsk635NixY5GQkAAAeOuttyzyHLdv38bzzz+PqVOnVtnGSQDWJ3U3IINF3XA/VCX1iYQccdKC6RjC7Fjz5mVdkBWDmFoNNGtmneePjY1FcXExVCoVYmJi9LZFRETAyckJP/zwA0JDQwEAJSUlOHHihNi12Lp1a3z99dd69/vxxx/1fu/YsSPOnTuHZtZ6URZmC2ebUncDyn3/kLxJfSIhR1wE2XQMYXYsKKhsDNjzz5e1gKnVwNtvW29wvlqtFrsW1Wq13jZ3d3dMmjQJs2bNgpeXF0JCQrBixQrcvXsX4/5v0NrEiROxatUqzJo1C+PHj0daWlqV9cXmzJmDrl27IiEhAePHj4e7uzvOnTuHAwcOGHXmVhtrhiIln22yG5BsidQnEnLGSQt1wxBm58aNKxsDdulSWQuYtQJYOU9PT4PbXn/9deh0OowcORKFhYV45JFH8M0336Bx48YAyroTt2/fjunTp2PdunXo3LkzXnvtNYwdO1Z8jIcffhhHjx7FSy+9hO7du0MQBERERGDo0KH1rru1Q5GSzzbZDUhKxxOJ2nHSQt0xhBGCgqwXvmpbCf+rr74S/+/i4oK1a9di7dq1BssPGDAAAwYM0Lvt2Wef1fu9U6dO2L9/v8HHqG5tMWMYG3YsEYqUeLbJgEVKxhOJ2nHSQt0xhBGZiaGWKUs8D882iazPngOWMThpoe4YwojMwJotUzzbJCI54qSFumMII6ona7dM8WyT5M4WZvGSaThpoW4YwojqydotUzzbJDlT8ixeMg0nLZiOIUzhBEGQugo2r7Z9LEXLlBzONq29PAdbVpRBybN4yTSctGA6hjCFKl9Xq7i4GK6urhLXxraVH1gqr2VWzlotU3I627RmawdbVpRLibN4yTT82zMNQ5hCNWjQAG5ubrhx4wYcHR3h4OBQ+52oznQ6HW7cuAE3Nzc0aKD/51Ix7NTUMmWuUCSns01rLs8h5VIgZDrO4iWqHUOYQqlUKgQEBCAzMxNXrlyRujo2zcHBASEhIVCpVHq3SxGK5Hq2aa3lOaz9XGQ6zuIlqh1DmII5OTmhefPmbAGwMCcnJ4MtjXINRdZkzS4ndm8pB2fxEtWOIUzhHBwc4OLiInU1yE5Zs8uJ3VvKwlm8RLVjCCMik1mzy4ndW8ojh1m8JF+c9cwQRkT1YM0uJ3ZvKYOcZvGSfHHWcxmGMCIzsNczOmt2ObF7SxnkNIuX5IvryZVhCCOqJ3s8o7Pm8hzWXgqE6s9WPudkHfY84YYhzE7Ya0uNNdjjOlbWbO1gywqR7bL3CTcMYXbAHltqpGQv61hZ87PCzyWRbbL3CTcMYXbAHltqpGLPzepEJA0l93TY+4QbhjAiM7H3ZnUisj6l93TY+4QbhjAiM7H3ZnUisj5bmGVoz+vJMYTZIXsZs2Rt9t6sTkTSUtJwCK4nV4YhzM4o6Y9Uaey9WZ2IpGPt4RD1HYfGWc9lGMLsCMcsWQbXsSIiqVlzOIS5xqHZesAyBkOYHeGYJcvgGR0RSc2awyFsYRyaXDCE2YHyFpja/kiV2FIjl6nZDFhEJCWphkNwiEv9MITZgYotNQ88UIA5czQoLVVBrRawfHkBnn56uCJbapQ+NZuIyJysPcuQQ1zqjyHMTpSHkJkzgaFDgUuXgGbNVAgKagSgkZRVMxmbxInI3kk5y5BDXOqPIcwOBQWV/dgSNokTUV3IZShDfUk5JpXL8tQfQxgpHpvEiaguKg9lMNSKrpShDFLVkcvy1B9DGCmevTeJ28oZPZG1VPx7qakVnUMZamfPq92bA0MYKZ49N4lzcgKR6diKbhqudm8+DGGkePbcJG7smTrP6ImqsvdWdFNxbUTzYQgjm8Am8TK8LiiR8azVim6LQwaUVl+5YggjxWKTuD7OECWqG2u0otvaJAAyL4YwUiw2if+NY1uITGPpVnROAqCaMISRotlDwDIGx7YQmc5QK7o58USJquNQexEikrvysS0V2csMUaK6MnaIgjmHMtR0okT2iy1hRDbAnmeIEtWVFEMZ7HkpHTKMIYwUxxZnGpmq4pl6TWNb7GVyApGxrH2M4IkSVYchjBSFi5Pq4+QEIuVQylI6PNG1HoYwUhQuTloVD4ZEymGNSQD1wSU1rEsxA/MHDRqEkJAQuLi4ICAgACNHjkRWVpa4fdGiRVCpVFV+3N3d9R5n27ZtaNWqFVxcXNC2bVvs2bNHb7sgCFiwYAECAgLg6uqK6OhoXLx4Ua9MXl4eRowYAU9PTzRq1Ajjxo3D7du39cr88ssv6N69O1xcXBAcHIwVK1aYeY/IU25uLrKzsw3+5ObmmvX5tFoPZGaGQav1MOvjEhGZgxSTAOqj8pIaSUmJ2LJlNJKSEnHqVIdqy5HpFNMS1rt3b7z44osICAjAn3/+iRdeeAFDhgzBsWPHAAAvvPACJk6cqHefvn37olOnTuLvx44dw/Dhw7Fs2TIMGDAAKSkpiIuLw6lTp/DQQw8BAFasWIG1a9diy5YtCA8Px/z58xETE4Nz587BxcUFADBixAhkZ2fjwIEDKCkpwbPPPosJEyYgJSUFAFBQUIAnnngC0dHR2LRpE3799VeMHTsWjRo1woQJE6yxuyRh7a5CLk5aP+xyILI8pQ4Z4JIa1qGYEDZ9+nTx/6GhoZg7dy7i4uJQUlICR0dHNGzYEA0bNhTL/Pzzzzh37hw2bdok3rZmzRrExsZi1qxZAIBXX30VBw4cwPr167Fp0yYIgoCkpCS8/PLLePLJJwEAH374Ifz8/PDVV19h2LBhOH/+PPbt24cTJ07gkUceAQCsW7cO//jHP7By5UoEBgZi69atKC4uxgcffAAnJyc8+OCDOHPmDN58802bDmHW7CrkAaJ+OLZO2RiglUWJ7wXXHrQOxYSwivLy8rB161Z069YNjo6O1ZZ577330KJFC3Tv3l28LTU1FTNmzNArFxMTg6+++goAkJmZiZycHERHR4vbNRoNunTpgtTUVAwbNgypqalo1KiRGMAAIDo6Gg4ODjh+/Dj+3//7f0hNTUWPHj30mpdjYmKwfPly3Lp1C40bNzbHbpA9S17HkAeI+qn8BW7ovWKXg/xwzA5ZA5fUsA5FhbA5c+Zg/fr1uHv3Lrp27Ypdu3ZVW+7evXvYunUr5s6dq3d7Tk4O/Pz89G7z8/NDTk6OuL38tprKNGnSRG97gwYN4OXlpVcmPDy8ymOUbzMUwoqKilBUVCT+XlBQUG05JbB0VyEPEObDbl15MLZ1i5fBIWvgkhrWIWkImzt3LpYvX15jmfPnz6NVq1YAgFmzZmHcuHG4cuUKFi9ejFGjRmHXrl1QqVR69/nyyy9RWFiI0aNHW6zulrBs2TIsXrxY6mrUmzW6CnmAMA9268pDXVq3Kpbhe0eWpJQlNZRM0hA2c+ZMjBkzpsYyTZs2Ff/v4+MDHx8ftGjRAq1bt0ZwcDB+/PFHREVF6d3nvffew4ABA6q0aPn7++PatWt6t127dg3+/v7i9vLbAgIC9Mq0b99eLHP9+nW9x7h//z7y8vL0Hqe656n4HNWZN2+eXndpQUEBgoODDZaXK0t2FXJxUvNit648mNK6xfeOrEHuS2oonaQhzNfXF76+vibdV6cru05exe47oGxc1+HDh/H1119XuU9UVBQOHjyIxMRE8bYDBw6IIS48PBz+/v44ePCgGLoKCgpw/PhxTJo0SXyM/Px8pKWlITIyEgBw6NAh6HQ6dOnSRSzz0ksviZMGyp+nZcuWNY4Hc3Z2hrOzswl7Q14s2VWo1JlGcsVuXXmpS+sW3zuyBKUtqaF0ihgTdvz4cZw4cQKPPfYYGjdujIyMDMyfPx8RERFVWsE++OADBAQEoF+/flUeZ9q0aejZsydWrVqF/v3749NPP8XJkyfxzjvvAABUKhUSExOxZMkSNG/eXFyiIjAwEHFxcQCA1q1bIzY2Fs899xw2bdqEkpISJCQkYNiwYQgMDAQAPP3001i8eDHGjRuHOXPm4OzZs1izZg1Wr15t2R0lE5buKmTAMh9268pLXVq3+N6RJfBE17oUEcLc3NywY8cOLFy4EHfu3EFAQABiY2Px8ssv67Uc6XQ6JCcnY8yYMVCr1VUep1u3bkhJScHLL7+MF198Ec2bN8dXX30lrhEGALNnz8adO3cwYcIE5Ofn47HHHsO+ffvENcIAYOvWrUhISEDfvn3h4OCA+Ph4rF27Vtyu0Wiwf/9+TJ48GZGRkfDx8cGCBQtsenkKgF2FSsVxHzWz5nIQdW3d4ntHlsCAZT0qQRAEqStB1SsoKIBGo4FWq4Wnp6fU1TEK1y9SBq4TZhxrLQeRnZ0ttsjXNCas/ESuvGxNJkyYoDe2lYisx9jvb0W0hJFy2PMXtpKwy8E4UiwHUVvrFsfsENkOhjAiO2XvAasurL0cRE0z0higiWwHQxgRUS0svRxEXVu3GLCsh0MsyJIYwoiIamHp5SDYuiVPvESUvFUMyFlZDsjMbIDw8PsIDCxbwkoJfzMMYUREtbDGchBy/7KwR7xElHxVDMg1vTdyD8gMYUSVsPuBqsPlIOwXLxElP+XH6NreG7kHZIYwogq4dAPVxBKXcGHolz9eIkq+lP7eMIQRVVD5y9DQGBBLn13xi1keLL0cBMccKQMvESVfSn9vGMKIDKhpnIElsTVOPiw9YJ5jjpSBl4iSL6W/NwxhRNWQcgyIXFrjqIw1gi7HHMkfxwTKl5LfG4YwsmmmduvJZZyBVK1xZF1y+bxRzSwxJpDMQ6nvDUMY2az6dOvJYZwBW0fshxw+b1SVrVwiimNM5YshjGxWfbr15DDOgK0j9kMOnzeqyhYW0bXVyR+2EpAZwsgumNKtJ/U4A7aO2BepP29UPSUFk+rY6uQPWwjIAEMY2YG6dOtVPmsyNM7AGmdXbB2xP0od10LyZ4vDG+QesIzBEEY2ry7denI7u2LriG2zlS4Vkj8Ob5AnhjCyeXXt1pP67EpOrXFkWXIL/WS7OLxBnhjCyOYprVuPX8z2he8jWYPSjoP2giGM7IIcu/U4bZyIrEmOx0F7xxBGNkvO3Xq8NBERSYGTP+SFIYxslpy79XhpIiLzYItyzeQy+YPvU/UYwsimKeGPmpcmIjKNrS5Eak5yOBlly79hDGFEErLFtXuIrMVWFyI1N6mDDVv+DWMII5IQ1+4hqj+ezCgHW/71MYQRSYhr9xDVn1xPZjgOSh/DclUMYUQS4to9RPUnx5MZjoOqSq5hWUoMYUQS49o9RPUjx5MZjoOqSo5hWWoMYUQSkPMaZkRKVNPJTH5+PgICAiSrG8dBlZFjWJYaQxiRBOQwbZzI1pR/mefleev9/vnnn0vW7WfJcVBKHHPGln99DGFEEpHbwZFIaSq3FMtxmQpLjYNS0pgztvwbxhBGRESK5O3tjaFDh+Kzzz6T7cw7S42DUtKYM0Mt//n5+bh//z4AwNHREcXFxcjOzha3y7Elz9wYwoiISLE0Gg0A+c68s8Y4KCWMOascpnJzc/H555+Lv9vr1Q4YwqgKJY4zICL7JueZd5YcByXXFsDa8GoHZRjCSI+SxhkQEZUzpcXJkiec1hoHJdcWQGMpNUSaC0MY6TH2rMPWz06IzImty9ZRlxYnS1/821ozoOXcAmgMpYfI+mIIoxoZOjARkXHYumxdhlqcKrNGd5g13k+lr72l9BBZXwxhZJASBnvWFVskyNqUNItNiYztzjNUzha6w5S89pbSQ2R9MYRRtWzhwFQZWyRIarZ4YiO1+nb7KbU7zJbW3lJyiKwvhjCqllIPTDVhiwRJyRZPbOSiPidNSu0Os7WrbhjbjWxrGMKoWko9MBmLLRJkbbZ4YmMLlNwdppSAVZ36diPbCoYwqpaSD0y1YYsEScHWT2yUzJ67w6Riay15pmIIIz0VzzpqOjAp+eyELRIkBVs+sbEF9todJiVbD1jGYAgjPfZwdsIWCbKkyjNwb968Kf6fLS7ywe4wkgOGMKpCyQHLGGyRkC+lLyFieAFQD/HzpeRZbLbEHk44Sf4YwsgusUVCfmxhCRFjFwAdPHgwfHx8xLL8spcG9zlJjSGM7IYtratji2xpCZHaJn/4+PggICBA4loSkdQYwshusPtBOZS+hAgnfxCRMRjCyK4wYMmfLSwhwskfplH6mECiumIIIyJZsYVWJE7+qDtbGBNIVFcMYUQkK7bSisTJH3VjS2MCiYzFEEZVsEuApGRLrUhcANQ0Sh8TSGQshjDSwy4BkgOltiJxAdD6s4UxgUTGYggjPewSIKnYwhIinIFbf7YwJpDIWAxhZBC7BMiabCXAyL1+cmcrYwKJjMEQRtVilwBJgQGGbGlMIFFtGMKoWuwSICKpKHVMIFFdMYRRtZTWJcAZnUTKZgtjAonqiiGMqqWkLgHO6CRSPlsZE0hUF0aHsIKCAqMf1NPT06TKkLwopUuAMzqJbAMDFtkbo0NYo0aNoFKpaiwjCAJUKhVKS0vrXTGShtK7BDijk4gq4lAFkjOjQ9jhw4ctWQ+SCSV3CXBGJxFVxKEKJHdGh7CePXtash4kI0o9GHFGJxFVxKEKJHcmD8zPz8/H+++/j/PnzwMAHnzwQYwdOxYajcZslSOqC6XN6CQi6+FQBZIjh9qLVHXy5ElERERg9erVyMvLQ15eHt58801ERETg1KlT5q4jkVHKZ3SqVDoAkPWMTiKyHkNDFbRaD4lrRvbOpJaw6dOnY9CgQXj33XfRoEHZQ9y/fx/jx49HYmIivvvuO7NWkshYSpnRSUTWw6EKJFcmt4TNmTNHDGAA0KBBA8yePRsnT540W+UqGjRoEEJCQuDi4oKAgACMHDkSWVlZemW++eYbdO3aFR4eHvD19UV8fDwuX76sV+bIkSPo2LEjnJ2d0axZMyQnJ1d5rrfeegthYWFwcXFBly5d8NNPP+ltv3fvHiZPngxvb280bNgQ8fHxuHbtml6Zq1evon///nBzc0OTJk0wa9Ys3L9/3yz7gvRVN6MzPPxKlYOrXGd0EpFllQ9VqIhDFUgOTGoJ8/T0xNWrV9GqVSu923///Xd4eFimebd379548cUXERAQgD///BMvvPAChgwZgmPHjgEAMjMz8eSTT2LGjBnYunUrtFotpk+fjsGDB4tdpJmZmejfvz8mTpyIrVu34uDBgxg/fjwCAgIQExMDAPjss88wY8YMbNq0CV26dEFSUhJiYmKQnp6OJk2aAChrCdy9eze2bdsGjUaDhIQEDB48GD/88AMAoLS0FP3794e/vz+OHTuG7OxsjBo1Co6Ojnjttdcssn/smZJndBKR5Slp8WmyLypBEIS63mnq1Kn48ssvsXLlSnTr1g0A8MMPP2DWrFmIj49HUlKSuetZxddff424uDgUFRXB0dERX3zxBYYPH46ioiI4OJQ18O3cuRNPPvmkWGbOnDnYvXs3zp49Kz7OsGHDkJ+fj3379gEAunTpgk6dOonTmnU6HYKDgzFlyhTMnTsXWq0Wvr6+SElJwZAhQwAAFy5cQOvWrZGamoquXbti7969GDBgALKysuDn5wcA2LRpE+bMmYMbN24Y3SJTUFAAjUYDrVbLBXCJiOooOzsb77zzjvh72ezIqkMVJkyYgICAACmqSDbK2O9vk7ojV65cicGDB2PUqFEICwtDWFgYxowZgyFDhmD58uUmV9pYeXl52Lp1K7p16wZHR0cAQGRkJBwcHLB582aUlpZCq9Xio48+QnR0tFgmNTUV0dHReo8VExOD1NRUAGXTlNPS0vTKODg4IDo6WiyTlpaGkpISvTKtWrVCSEiIWCY1NRVt27YVA1j58xQUFOC3334z+LqKiopQUFCg90NERKbhUAWSO5O6I52cnLBmzRosW7YMGRkZAICIiAi4ubmZtXKVzZkzB+vXr8fdu3fRtWtX7Nq1S9wWHh6O/fv346mnnsLzzz+P0tJSREVFYc+ePWKZnJwcvWAEAH5+figoKMBff/2FW7duobS0tNoyFy5cEB/DyckJjRo1qlImJyenxucp32bIsmXLsHjxYiP3BhER1YRDFUjuTGoJK+fm5oa2bduibdu2JgWwuXPnQqVS1fhTHn4AYNasWTh9+jT2798PtVqNUaNGobw3NScnB8899xxGjx6NEydO4OjRo3BycsKQIUNgQo+rJObNmwetViv+/P7771JXiYhI0by9vREQEGDwhwGMpGRSS9i9e/ewbt06HD58GNevX4dOpz/rxNi1wmbOnIkxY8bUWKZp06bi/318fODj44MWLVqgdevWCA4Oxo8//oioqCi89dZb0Gg0WLFihVj+448/RnBwMI4fP46uXbvC39+/yizGa9euwdPTE66urlCr1VCr1dWW8ff3BwD4+/ujuLgY+fn5eq1hlctUnlFZ/pjlZarj7OwMZ2fnGvcHERER2QaTQti4ceOwf/9+DBkyBJ07d671wt6G+Pr6wtfX16T7lge/oqIiAMDdu3fFAfnl1Gq1XtnK3ZMAcODAAURFRQEoa5aOjIzEwYMHERcXJ9734MGDSEhIAFA29szR0REHDx5EfHw8ACA9PR1Xr14VHycqKgpLly7F9evXxRmVBw4cgKenJ9q0aWPS6yUi4/CCzUSkFCbNjtRoNNizZw8effRRS9SpiuPHj+PEiRN47LHH0LhxY2RkZGD+/Pm4du0afvvtNzg7O+PQoUOIjo7GokWLMHz4cBQWFuLFF1/EhQsXcP78ebi6uiIzMxMPPfQQJk+ejLFjx+LQoUOYOnUqdu/erbdExejRo/H222+jc+fOSEpKwueff44LFy6I47omTZqEPXv2IDk5GZ6enpgyZQoAiMtllJaWon379ggMDMSKFSuQk5ODkSNHYvz48XVaooKzI4nqhhdsJiI5sOjsyAceeMBi64FVx83NDTt27EDfvn3RsmVLjBs3Dg8//DCOHj0qdt/16dMHKSkp+Oqrr9ChQwfExsbC2dkZ+/btg6urK4Cywfu7d+/GgQMH0K5dO6xatQrvvfeeGMAAYOjQoVi5ciUWLFiA9u3b48yZM9i3b5/eQPvVq1djwIABiI+PR48ePeDv748dO3aI29VqNXbt2gW1Wo2oqCg888wzGDVqFF555RUr7TEi+2TshZh5wWYikgOTWsL27t2LtWvXYtOmTQgNDbVEvQhsCSOqq+rXhfKGl1cu14UiIqsx9vvbpDFhjzzyCO7du4emTZvCzc1NXIerXF4eLwVBRNI6dapDlRXSO3Y8LXW1iIhEJoWw4cOH488//8Rrr70GPz8/kwfmExFZglbrIQYwoOxizTt3DkBExCVeqoaIZMOkEHbs2DGkpqaiXbt25q4PEVG95eV5iwGsnCA4IC/PiyGMiGTDpIH5rVq1wl9//WXuuhARmYWXVy5UKv31C1UqHby8OFSCiOTDpJaw119/HTNnzsTSpUvRtm3bKmPCOIicSB/XrrIujaYQAwfuqjImjK1gRCQnJoWw2NhYAEDfvn31bhcEASqVCqWlpfWvGZGN4NpV1lPxQswdO55GRMQl5OV5wcsrTy+A8YLNRCQHJoWww4cPm7seRDarcguYoWUTuHZV/cnxgs1sBSUiQ0wKYT179jSq3L/+9S+88sor8PHxMeVpiGwOl02wPDkFGraCElFNTBqYb6yPP/4YBQUFlnwKIsUwtGyCVmu9q0+QdXEFfyKqiUVDmAmL8RPZrJqWTSD7oNV6IDMzjMGbiACY2B1JRHVXvmxCxSDGZRPsB7uiiagyi7aEEdHfypdNKF+/issm2A92RRNRddgSRmRFNS2bQHWnlJmHXMGfiKrDEEZkYZXXpNJoCqv94uXaVXWjpJmH7IomoupYNIQ988wzXD2f7J4c166yBUqaecgV/ImoOiaHsPz8fPz000+4fv06dDr9a7SNGjUKALBx48b61Y7IRjBgWZ6hRXCtpbqu0fz8fPH/XMGfiCozKYTt3LkTI0aMwO3bt+Hp6QmVSiVuU6lUYggjIrIGqWceGts1OmHCP6DRaPRuYysokf0yKYTNnDkTY8eOxWuvvQY3Nzdz14mIyGiGZh5GRFyyWouYsV2eGo0GAQEBFq4NESmFSUtU/Pnnn5g6dSoDGBFJTo6L4HJRViIyhkktYTExMTh58iSaNm1q7voQEdWJ3GYeSt01SkTKYXQI+/rrr8X/9+/fH7NmzcK5c+fQtm1bODo66pUdNGiQ+WpIRFQDOc08lEPXKNkfpayXV1e2+roqMjqExcXFVbntlVdeqXKbSqVCaWlpvSpFRFSbijMK5TLzkIuymsYevmwtRUnr5dWFrb6uyowOYZWXoSAikpIc11+TW9eoEtjLl62lKGm9vLqw1ddVmUljwj788EMMHToUzs7OercXFxfj008/5RIVpBg8A1c2ub03cuoaVYrKf3+G1ntT+pettRjafzdv3qxSVknHN6nXAbQUk0LYs88+i9jYWDRp0kTv9sLCQjz77LMMYaQIlc/ADf2R8wy8Zgyy8uwaVSJOaqifmvbfjh07qr2PEo5vtvy5MCmECYKgt0BruT/++KPKQoREclUxONT0R84zcMPYlVRGjl2jSsNJDfVj6v6T+/HN1j8XdQphHTp0gEqlgkqlQt++fdGgwd93Ly0tRWZmJmJjY81eSSJLsvU/ckuyl3EbxmDAqh9Oaqif2vafUrvzbP1zUacQVj5D8syZM4iJiUHDhg3FbU5OTggLC0N8fLxZK0hkabb+R25NSj3Qk/Q4qaF+atp/Su7Os/XPRZ1C2MKFCwEAYWFhGDp0KFxcXCxSKSJrsvU/cmtR8oGepMdJDfVjaP8BUHRLv61/LkwaEzZ69GgAZV0M169fr7J8RUhISP1rRmQltv5Hbg3s0iVzqGlSA1WvtkkhmZlhimzpt5fJLiaFsIsXL2Ls2LE4duyY3u3lA/a5WCspDQ/+9cMuXTJV5S9Rjaaw2s+M0r9sjVXX2caGJoXcvHkTO3bsUGxLv71MdjEphI0ZMwYNGjTArl27EBAQUO1MSSKlMXTwryt7XLJBqQd6kp69fNkaw9TZxjXtGyW39NvDe25SCDtz5gzS0tLQqlUrc9eHyGqMPbOuyxm4va49puQDPUnPlv4W6sOcs42N7c67e/du3StKZmNSCGvTpk21q+8SKYklzsDtbe0xexm3QSSF+sw29vb2xjPPPIOPP/4YgOGW/o8//tjmTgqVxKQQtnz5csyePRuvvfYa2rZtC0dHR73tnp6eZqkckaVZ6sBjLwPV2ZVEZBnmmG3s5uZmVDlbOSlUIpNCWHR0NACgT58+euPBODCfqIw9DVRnwCIyL0udxHEdP/kxKYQdPnzY3PUgsikcqE5EprLESRzX8ZMnh9qLVNWzZ084ODjg3Xffxdy5c9GsWTP07NkTV69ehVqtNncdiRSnfKC6SlW2hh4HqlN95ObmIjs72+BPbm6u1FUkMyo/iauoPidxhlrWtFqPeteV6seklrDt27dj5MiRGDFiBE6fPo2ioiIAgFarxWuvvYY9e/aYtZJESsS1x+RFqUuH8CLp9sfcs43taXiE0pgUwpYsWYJNmzZh1KhR+PTTT8XbH330USxZssRslSNSOnOtPUb1o+QgUzk4GhrXw8HVymep2cYcHiFfJoWw9PR09OjRo8rtGo0G+fn59a0TkWJZYu0xqj9bCTIc12PbLDXbmOv4yZdJIczf3x+XLl1CWFiY3u3ff/89mjZtao56ESkSl2yQP6UGGXtZ9sTemfPYwHX85M+kEPbcc89h2rRp+OCDD6BSqZCVlYXU1FS88MILmD9/vrnrSKQoDFjypeQgw3E9VFc8KZQ/k0LY3LlzodPp0LdvX9y9exc9evSAs7MzXnjhBUyZMsXcdSQiMgslBxmO6yFTMGDJm0lLVKhUKrz00kvIy8vD2bNn8eOPP+LGjRt49dVXzV0/IiKzMffUf2visidEtseklrByTk5OaNOmjbnqQkRkUUofoMxlT4hsS71CGBGR0igtyFQeNG1o2RMOriZSHoYwIrJ5Sg4yHFxNZLtUgiAIUleCqldQUACNRgOtVgtPT0+pq0OkaEpdMZ+IlMfY72+2hJHNqPglm5XlgMzMBggPv4/AwLKBzPyStW9874lIbhjCyCZUvCxNTYtxyvGyNEREZJ9MWqKCSG7KW8AMLcap1XrolSMiIpIaQxjZlJoW4yQiIpIThjCyKUpejJOIiOwLQxjZFK4qTkRESsGB+WRzlLYYJxER2SeGMLJJhhbjJCIikguGMCKyaVyklYjkiiGMbIKxl5uR42VpyHIqrh9XE64fR0RSYAgjm8Dr61F1Kn8etFoP5OV5w8srV6+7muvHEVkOW6MNYwgj/PEHcPEi0Lw5EBQkdW1MZ69/xGScmq6kQGQsBoq6YWt0zRjC7FT5gSQlxRWzZ2ug06ng4CBgxQotnn76Lx5IyKYYupJCRMQlTuAgozFQ1B1bo2vGEGaHyg8kWq0HkpISIQgqAIBOp8KsWZ74888PoNEU8kBCNqOmKykwhJGxGCjqh63RVTGE2aHyA0RtX0w8kJCtKL+SQsXPO6+kQPXBQFE3bI2uHlfMt2O8xA/ZC15JgUyRm5uL7Oxs8efmzZsADAcKrdZDyurKGq/rWz3FhLBBgwYhJCQELi4uCAgIwMiRI5GVlaVX5vPPP0f79u3h5uaG0NBQvPHGG1Ue58iRI+jYsSOcnZ3RrFkzJCcnVynz1ltvISwsDC4uLujSpQt++uknve337t3D5MmT4e3tjYYNGyI+Ph7Xrl3TK3P16lX0798fbm5uaNKkCWbNmoX79+/Xf0eYEb+YyJ507HgaiYlJGD06GYmJSWy1oBqVD9t45513xJ8dO3YAYKAwBU/6q6eYENa7d298/vnnSE9Px/bt25GRkYEhQ4aI2/fu3YsRI0Zg4sSJOHv2LDZs2IDVq1frDaLMzMxE//790bt3b5w5cwaJiYkYP348vvnmG7HMZ599hhkzZmDhwoU4deoU2rVrh5iYGFy/fl0sM336dOzcuRPbtm3D0aNHkZWVhcGDB4vbS0tL0b9/fxQXF+PYsWPYsmULkpOTsWDBAgvvpbrjFxPZssrrwmk0hQgPv1LlRIPrx1Fl1Y3/yswMg1brwUBhAp70V08lCIIgdSVM8fXXXyMuLg5FRUVwdHTE008/jZKSEmzbtk0ss27dOqxYsQJXr16FSqXCnDlzsHv3bpw9e1YsM2zYMOTn52Pfvn0AgC5duqBTp05ieNPpdAgODsaUKVMwd+5caLVa+Pr6IiUlRQyBFy5cQOvWrZGamoquXbti7969GDBgALKysuDn5wcA2LRpE+bMmYMbN24YfcAvKCiARqOBVquFp6enWfYbAGRnZ+Odd96ptdyECRMQEBBgtuclkgKXFCBTVDxOVjf+C4DBMWE8dv6t8vdN2WSGqtf1tbV9Zuz3tyIH5ufl5WHr1q3o1q0bHB0dAQBFRUVwc3PTK+fq6oo//vgDV65cQVhYGFJTUxEdHa1XJiYmBomJiQDKznzS0tIwb948cbuDgwOio6ORmpoKAEhLS0NJSYne47Rq1QohISFiCEtNTUXbtm3FAFb+PJMmTcJvv/2GDh06VPu6ioqKUFRUJP5eUFBgwt4hoooYsKg+DI3/SkxMQmJiUrWBgv5WXWt0dfvKXlujFRXC5syZg/Xr1+Pu3bvo2rUrdu3aJW6LiYnB9OnTMWbMGPTu3RuXLl3CqlWrAJQl8bCwMOTk5OgFIwDw8/NDQUEB/vrrL9y6dQulpaXVlrlw4QIAICcnB05OTmjUqFGVMjk5OWKZ6h6jfJshy5Ytw+LFi+uwR4gsjy1JZM9qGv9VXdc2YL+Bojq8mknNJA1hc+fOxfLly2ssc/78ebRq1QoAMGvWLIwbNw5XrlzB4sWLMWrUKOzatQsqlQrPPfccMjIyMGDAAJSUlMDT0xPTpk3DokWL4OCgjKFv8+bNw4wZM8TfCwoKEBwcbPbn4XUWyVhcnJLsXW3LmwwePBg+Pj7iNnsOFIZwfxgmaQibOXMmxowZU2OZpk2biv/38fGBj48PWrRogdatWyM4OBg//vgjoqKioFKpsHz5crz22mvIycmBr68vDh48qPcY/v7+VWYxXrt2DZ6ennB1dYVarYZara62jL+/v/gYxcXFyM/P12sNq1ym8ozK8scsL1MdZ2dnODs717g/zIFnJmQsY9eK45pyZKvKB5RXHv9V3gLm4+NjU2OZyLokDWG+vr7w9fU16b46XdkMi4pjqABArVbjgQceAAB88skniIqKEp8jKioKe/bs0St/4MABREVFASgLHpGRkTh48CDi4uLE5zl48CASEhIAAJGRkXB0dMTBgwcRHx8PAEhPT8fVq1fFx4mKisLSpUtx/fp1NGnSRHweT09PtGnTxqTXa24MWGQKQyuEE9myjh1PIyLiEsd/kdkpYkzY8ePHceLECTz22GNo3LgxMjIyMH/+fERERIjB5+bNm/jiiy/Qq1cv3Lt3D5s3bxaXkCg3ceJErF+/HrNnz8bYsWNx6NAhfP7559i9e7dYZsaMGRg9ejQeeeQRdO7cGUlJSbhz5w6effZZAIBGo8G4ceMwY8YMeHl5wdPTE1OmTEFUVBS6du0KAHjiiSfQpk0bjBw5EitWrEBOTg5efvllTJ482SotXUSWwBXCyZ5wQDlZgyJCmJubG3bs2IGFCxfizp07CAgIQGxsLF5++WW9ULNlyxa88MILEAQBUVFROHLkCDp37ixuDw8Px+7duzF9+nSsWbMGQUFBeO+99xATEyOWGTp0KG7cuIEFCxYgJycH7du3x759+/QG2q9evRoODg6Ij49HUVERYmJisGHDBnG7Wq3Grl27MGnSJERFRcHd3R2jR4/GK6+8YuE9RWQZvOQI2RsO2yBrUOw6YfbAUuuEERmrfI2fzMwwbNkyusr20aOTER5+xebW+CEi2yDV7G6bXieMiKyLF8AmIqWpPLvb0JhWKWd3M4QRUa1qmyFGRCQ3FVvAahrTKuXsboYwIjKo4qDjmmaIcXAyEcmVnMe0MoQRkUEcnExESlfTVQ8YwohI1hiwiEjJ5DymlSGMbAqvc0hEUuIxSH7kPKaVIYwkY+6DFa9zSGRdDBz6lDAbz17J9aoHDGFkFnU9GFsiMPE6h0TWw5OeqpQwG8+eGbrqgZQYwqjeTDkYMzARKVvlv01DrT72+Dcs59l49sTYWdtSzu5mCKN6M/Ygm5WVJZa9efOmJasEgBebJrIWXldUn5xn49kTJczuZggjq9mxY4fVnotfCkTWIadWH7mMUZPzbDx7I/eucIYwkgVztlrJ6UuByNbJpdVHToPi5Twbj+SFIYwkZ+5WK7l8KRDZA7m0+shtULxcZ+ORvDjUXoSobrRaD2RmhkGr9TCqbHWtVsbc15DyL4WK2BVAZBnlrT7lf3NSt/pY4phiKo2mEOHhVxjAyCC2hJFZ1bVVy5ytVuUzXGrrCuB1DonMS06tPlK2hCthNh7JC0MYmY0pY7Fq68qoy8Gq8kyYBQtu4PLlBggLu4/AwE4AOkk+E4bIVlT+2zS0BpO1A4eU3aNKmI1H8sIQRvVWfpA15gy08mDZ8larXbsGQqdTQa0WsHx5AZ5+erhJB6uK5QMCgMjIer44IqqWXAOH1IPiGbCoLhjCqN7KD8aXL9/HRx8J0OlU4jYHB0E8AzXUVdmx42ksWNAFhYV+aNZMhaCgRgAaSfJaiMh4dQ0c1lpCQk7do0Q1YQgjs/D29oa3N/DOO8DzzwOlpYBaDaxadQf5+YW1dlWGhTUATyCJbJe1l5CQ4yVqiCpjCCOzGjcOiIkBLl0CmjUDgoIaIjc3AYcPA6tXV+2qfPTR0ejVi034RLbO0ktIcFA8KRFDGJldUFDZTzlvb2907Qo4OAC6CitHqNVAly7ebAEjsiOWWkxZrmPUiGrCEEZWERRUtavy7bf1wxoR2T5LLiHBgEVKwxBGVlO1q1LqGhHZD15XkUh+GMLIqip3VRKR5VUeFG8Ir6toHLkEWlI+hjAiIhtXOTAYmpnI6yrWTk4XCiflYwgjIrIjdb20mKUodQkJuV0onJSNF/AmIrITUl7c2taWkJDThcJJudgSRkRkJ6S8uLWtLSEh5b4k28EQRkRkJ6SemaiUgGUMqfcl2QZ2RxIR2YnymYkqVdmqyUqcmSgX3JdkDmwJIyKyI0qemSg33JdUXwxhREQ2rvJgd0MzE5UyKF5OlDrLk+SBIYyIyMbZ2qB4KdnaLE+SlkoQBEHqSlD1CgoKoNFooNVq4enpKXV1SEJcoZtIPvj3SLUx9vubLWFEMienS84QkW3N8iRpcXYkkcwZu/I2V+gmIlIWhjAiIiIiCTCEEREREUmAIYyIiIhIAhyYT6QwWq0H8vK84eWVy/WJiMhiKs4CzcpyQGZmA4SH30dgYNlVAjgLtP4YwogU5NSpDti5cwAEwUG8TErHjqelrhYR2ZiKs7JrOu5wVnb9sDuSSCG0Wg/xQAgAguCAnTsHQKv1kLhmRGRrylvAajvucFZ2/TCEEclc+crbeXne4oGwnCA4IC/PS68cEZG51HbcofphdySRzJVfcuby5fv46CMBOp1K3KZWC5gypR/CwhqwS4CIzM7LKxcqlU4viKlUOnh55UlYK9vBljAiBfD29kZkpB/eeUcFtbrsNrUaePttFSIj/RjAiMgiNJpCDBy4CypV2WD88jFhnBRkHmwJI1KQceOAmBjg0iWgWTMgKEjqGhGRrevY8TQiIi4hL88LXl55DGBmxBBGpDBBQQxftoTLAJASaDSFDF8WwBBGRCQRLgNAJJ0//gAuXgSaN5fuxJZjwoiIJMJlAEiujJ1trbRZ2bm5ucjOzsaqVfkIDRXQpw8QGipg1ap8ZGdnIzc316r1YUsYEZHEaloGgF1AJIXyWdk1nQAorau8vOVZq/VAUlIiBKFsprlOp8KsWZ74888PoNEUWrXlmSGMiEhiXAaA5EhJAcsY5YGytpMea7Y8szuSiEhiXAaAyHrKT3oqkuqkhy1hREQywGUAiKyj/KSn8kQYKf7mGMKIiGSCywAQWYdcTnoYwoiIiMjuyOGkh2PCiIgkYqvLABCRcdgSRkQkEVtcBoCIjMcQRkQkIQYsIuuQY8szQxgRERHZPDm2PDOEERERkV2QW8szB+YTERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgRERGRBBQXwoqKitC+fXuoVCqcOXNGb9svv/yC7t27w8XFBcHBwVixYkWV+2/btg2tWrWCi4sL2rZtiz179uhtFwQBCxYsQEBAAFxdXREdHY2LFy/qlcnLy8OIESPg6emJRo0aYdy4cbh9+3ad60JERET2S3EhbPbs2QgMDKxye0FBAZ544gmEhoYiLS0Nb7zxBhYtWoR33nlHLHPs2DEMHz4c48aNw+nTpxEXF4e4uDicPXtWLLNixQqsXbsWmzZtwvHjx+Hu7o6YmBjcu3dPLDNixAj89ttvOHDgAHbt2oXvvvsOEyZMqFNdiIjq6o8/gMOHy/4lIhsgKMiePXuEVq1aCb/99psAQDh9+rS4bcOGDULjxo2FoqIi8bY5c+YILVu2FH9/6qmnhP79++s9ZpcuXYTnn39eEARB0Ol0gr+/v/DGG2+I2/Pz8wVnZ2fhk08+EQRBEM6dOycAEE6cOCGW2bt3r6BSqYQ///zT6LoYQ6vVCgAErVZbp/sRke24efOmkJWVJaxceUtwcNAJgCA4OOiElStvCVlZWcLNmzelriIRVWLs97diWsKuXbuG5557Dh999BHc3NyqbE9NTUWPHj30LjcQExOD9PR03Lp1SywTHR2td7+YmBikpqYCADIzM5GTk6NXRqPRoEuXLmKZ1NRUNGrUCI888ohYJjo6Gg4ODjh+/LjRdalOUVERCgoK9H6IyH7l5uZi/fr1eOONTzBrlid0OhUAQKdTYdYsT7zxxidYv349cnNzJa4pEZlCESFMEASMGTMGEydO1As/FeXk5MDPz0/vtvLfc3JyaixTcXvF+xkq06RJE73tDRo0gJeXV63PU/E5qrNs2TJoNBrxJzg42GBZImtjV5j1lV9eJS/PG5XPmQXBAXl5XnrliEhZJA1hc+fOhUqlqvHnwoULWLduHQoLCzFv3jwpq2tx8+bNg1arFX9+//13qatEBAB4/30gNBTo06fs3/ffl7pG9sXLKxcqlU7vNpVKBy+vvDo9Tm5uLrKzs5GdnY20tGv44otcpKVdE29jixqRdUl67ciZM2dizJgxNZZp2rQpDh06hNTUVDg7O+tte+SRRzBixAhs2bIF/v7+uHbtmt728t/9/f3Ff6srU3F7+W0BAQF6Zdq3by+WuX79ut5j3L9/H3l5ebU+T8XnqI6zs3OV10gkpdzcXFy+fB8TJjSp0BUGPP+8gPbtryMsrIHsrsVmizSaQgwcuAs7dw6AIDhApdJh4MBd0GgKjX6M8q5NADh1qkOVx+rY8TQAICEhge8pkZVIGsJ8fX3h6+tba7m1a9diyZIl4u9ZWVmIiYnBZ599hi5dugAAoqKi8NJLL6GkpASOjo4AgAMHDqBly5Zo3LixWObgwYNITEwUH+vAgQOIiooCAISHh8Pf3x8HDx4UQ1dBQQGOHz+OSZMmiY+Rn5+PtLQ0REZGAgAOHToEnU5Xp7oQyV35l3ZmZhh0utF620pLVVi3bi/Cw6/wS9tKOnY8jYiIS8jL84KXV16dAhjwd5elVushBjCgrFtz584BiIi4BI2mkF2bRFakiDFhISEheOihh8SfFi1aAAAiIiIQFBQEAHj66afh5OSEcePG4bfffsNnn32GNWvWYMaMGeLjTJs2Dfv27cOqVatw4cIFLFq0CCdPnkRCQgIAQKVSITExEUuWLMHXX3+NX3/9FaNGjUJgYCDi4uIAAK1bt0ZsbCyee+45/PTTT/jhhx+QkJCAYcOGiUtnGFMXIrkr/zKurSuMX9rWo9EUIjz8Sp0DWEW1jS8jIutRRAgzhkajwf79+5GZmYnIyEjMnDkTCxYs0Fu/q1u3bkhJScE777yDdu3a4YsvvsBXX32Fhx56SCwze/ZsTJkyBRMmTECnTp1w+/Zt7Nu3Dy4uLmKZrVu3olWrVujbty/+8Y9/4LHHHtNbA8yYuhApRXlXWHkQM6UrjOTDXOPLiKj+JO2ONFVYWBgEQahy+8MPP4z//Oc/Nd73n//8J/75z38a3K5SqfDKK6/glVdeMVjGy8sLKSkpNT6PMXUhUor6doWRfJhjfBkRmYciQxgRWZ9GU8gvaiuruNagOcqVY6gmkgeGMCIimfL29kZCQkKN4+6cnJxMmhjBUE0kPYYwIiIZ48xTIttlMwPziYjIMEt1bRKR6dgSRkTV4pe2bbFk1yYRmUYlVDfNkGShoKAAGo0GWq0Wnp6eUleH7FBubi6/tImI6sjY72+2hBGRQQxYRESWwzFhRERERBJgCCMiIiKSAEMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEuCK+URERArDS4rZBoYwIiIiBcnNzcX69etrLZeQkMAgJnPsjiQiIlKQmlrATClH0mEIIyIiIpIAQxgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgCGMiIhIQZycnPR+12o9kJkZBq3Wo8ZyJD9crJWIiEhBvL29kZCQgOLiYqSkuOKVVzTQ6VRwcBCwYoUWTz/9F1fMVwiVIAiC1JWg6hUUFECj0UCr1cLT01Pq6hARkYz88QcQGgrodH/fplYDly8DQUGSVYtg/Pc3uyOJiIgU6OJF/QAGAKWlwKVL0tSH6o4hjIiISIGaNwccKn2Lq9VAs2bS1IfqjiGMiIhIgYKCgHfeKQteQNm/b7/Nrkgl4cB8IiIihRo3DoiJKeuCbNaMAUxpGMKIiIgULCiI4Uup2B1JREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgNeOlDFBEAAABQUFEteEiIiIjFX+vV3+PW4IQ5iMFRYWAgCCg4MlrgkRERHVVWFhITQajcHtKqG2mEaS0el0yMrKgoeHB1QqldTVsaqCggIEBwfj999/h6enp9TVUSzuR/PhvjQP7kfz4b40D0vsR0EQUFhYiMDAQDg4GB75xZYwGXNwcEBQUJDU1ZCUp6cnDy5mwP1oPtyX5sH9aD7cl+Zh7v1YUwtYOQ7MJyIiIpIAQxgRERGRBBjCSJacnZ2xcOFCODs7S10VReN+NB/uS/PgfjQf7kvzkHI/cmA+ERERkQTYEkZEREQkAYYwIiIiIgkwhBERERFJgCGMiIiISAIMYSSZ7777DgMHDkRgYCBUKhW++uorve2CIGDBggUICAiAq6sroqOjcfHiRWkqK3O17csxY8ZApVLp/cTGxkpTWRlbtmwZOnXqBA8PDzRp0gRxcXFIT0/XK3Pv3j1MnjwZ3t7eaNiwIeLj43Ht2jWJaixPxuzHXr16VflMTpw4UaIay9fGjRvx8MMPiwuJRkVFYe/eveJ2fh6NV9u+lOIzyRBGkrlz5w7atWuHt956q9rtK1aswNq1a7Fp0yYcP34c7u7uiImJwb1796xcU/mrbV8CQGxsLLKzs8WfTz75xIo1VIajR49i8uTJ+PHHH3HgwAGUlJTgiSeewJ07d8Qy06dPx86dO7Ft2zYcPXoUWVlZGDx4sIS1lh9j9iMAPPfcc3qfyRUrVkhUY/kKCgrC66+/jrS0NJw8eRJ9+vTBk08+id9++w0AP491Udu+BCT4TApEMgBA+PLLL8XfdTqd4O/vL7zxxhvibfn5+YKzs7PwySefSFBD5ai8LwVBEEaPHi08+eSTktRHya5fvy4AEI4ePSoIQtln0NHRUdi2bZtY5vz58wIAITU1Vapqyl7l/SgIgtCzZ09h2rRp0lVKwRo3biy89957/DyaQfm+FARpPpNsCSNZyszMRE5ODqKjo8XbNBoNunTpgtTUVAlrplxHjhxBkyZN0LJlS0yaNAm5ublSV0n2tFotAMDLywsAkJaWhpKSEr3PZatWrRASEsLPZQ0q78dyW7duhY+PDx566CHMmzcPd+/elaJ6ilFaWopPP/0Ud+7cQVRUFD+P9VB5X5az9meSF/AmWcrJyQEA+Pn56d3u5+cnbiPjxcbGYvDgwQgPD0dGRgZefPFF9OvXD6mpqVCr1VJXT5Z0Oh0SExPx6KOP4qGHHgJQ9rl0cnJCo0aN9Mryc2lYdfsRAJ5++mmEhoYiMDAQv/zyC+bMmYP09HTs2LFDwtrK06+//oqoqCjcu3cPDRs2xJdffok2bdrgzJkz/DzWkaF9CUjzmWQII7IDw4YNE//ftm1bPPzww4iIiMCRI0fQt29fCWsmX5MnT8bZs2fx/fffS10VRTO0HydMmCD+v23btggICEDfvn2RkZGBiIgIa1dT1lq2bIkzZ85Aq9Xiiy++wOjRo3H06FGpq6VIhvZlmzZtJPlMsjuSZMnf3x8AqszyuXbtmriNTNe0aVP4+Pjg0qVLUldFlhISErBr1y4cPnwYQUFB4u3+/v4oLi5Gfn6+Xnl+LqtnaD9Wp0uXLgDAz2Q1nJyc0KxZM0RGRmLZsmVo164d1qxZw8+jCQzty+pY4zPJEEayFB4eDn9/fxw8eFC8raCgAMePH9frvyfT/PHHH8jNzUVAQIDUVZEVQRCQkJCAL7/8EocOHUJ4eLje9sjISDg6Oup9LtPT03H16lV+LiuobT9W58yZMwDAz6QRdDodioqK+Hk0g/J9WR1rfCbZHUmSuX37tt4ZRmZmJs6cOQMvLy+EhIQgMTERS5YsQfPmzREeHo758+cjMDAQcXFx0lVapmral15eXli8eDHi4+Ph7++PjIwMzJ49G82aNUNMTIyEtZafyZMnIyUlBf/+97/h4eEhjqvRaDRwdXWFRqPBuHHjMGPGDHh5ecHT0xNTpkxBVFQUunbtKnHt5aO2/ZiRkYGUlBT84x//gLe3N3755RdMnz4dPXr0wMMPPyxx7eVl3rx56NevH0JCQlBYWIiUlBQcOXIE33zzDT+PdVTTvpTsM2nVuZhEFRw+fFgAUOVn9OjRgiCULVMxf/58wc/PT3B2dhb69u0rpKenS1tpmappX969e1d44oknBF9fX8HR0VEIDQ0VnnvuOSEnJ0fqastOdfsQgLB582axzF9//SX861//Eho3biy4ubkJ/+///T8hOztbukrLUG378erVq0KPHj0ELy8vwdnZWWjWrJkwa9YsQavVSltxGRo7dqwQGhoqODk5Cb6+vkLfvn2F/fv3i9v5eTReTftSqs+kShAEwXIRj4iIiIiqwzFhRERERBJgCCMiIiKSAEMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIyQXFxsdRVqEKOdSIiwxjCiIgA9OrVCwkJCUhISIBGo4GPjw/mz5+P8iu7hYWF4dVXX8WoUaPg6emJCRMmAAC+//57dO/eHa6urggODsbUqVNx584d8XE3bNiA5s2bw8XFBX5+fhgyZIi47YsvvkDbtm3h6uoKb29vREdHi/ft1asXEhMT9eoYFxeHMWPGiL+bWicikgeGMCKi/7NlyxY0aNAAP/30E9asWYM333wT7733nrh95cqVaNeuHU6fPo358+cjIyMDsbGxiI+Pxy+//ILPPvsM33//PRISEgAAJ0+exNSpU/HKK68gPT0d+/btQ48ePQAA2dnZGD58OMaOHYvz58/jyJEjGDx4MOp6Od+61omI5IMX8CYiQlnL0/Xr1/Hbb79BpVIBAObOnYuvv/4a586dQ1hYGDp06IAvv/xSvM/48eOhVqvx9ttvi7d9//336NmzJ+7cuYM9e/bg2WefxR9//AEPDw+95zt16hQiIyNx+fJlhIaGVluf9u3bIykpSbwtLi4OjRo1QnJyMgCYVCcXF5d67SciMh+2hBER/Z+uXbuKAQwAoqKicPHiRZSWlgIAHnnkEb3yP//8M5KTk9GwYUPxJyYmBjqdDpmZmXj88ccRGhqKpk2bYuTIkdi6dSvu3r0LAGjXrh369u2Ltm3b4p///Cfeffdd3Lp1q851rmudiEg+GMKIiIzk7u6u9/vt27fx/PPP48yZM+LPzz//jIsXLyIiIgIeHh44deoUPvnkEwQEBGDBggVo164d8vPzoVarceDAAezduxdt2rTBunXr0LJlSzEoOTg4VOmaLCkpqXediEg+GMKIiP7P8ePH9X7/8ccf0bx5c6jV6mrLd+zYEefOnUOzZs2q/Dg5OQEAGjRogOjoaKxYsQK//PILLl++jEOHDgEAVCoVHn30USxevBinT5+Gk5OT2LXo6+uL7Oxs8blKS0tx9uzZWl+DMXUiInlgCCMi+j9Xr17FjBkzkJ6ejk8++QTr1q3DtGnTDJafM2cOjh07hoSEBJw5cwYXL17Ev//9b3EQ/K5du7B27VqcOXMGV65cwYcffgidToeWLVvi+PHjeO2113Dy5ElcvXoVO3bswI0bN9C6dWsAQJ8+fbB7927s3r0bFy5cwKRJk5Cfn1/ra6itTkQkHw2krgARkVyMGjUKf/31Fzp37gy1Wo1p06aJyz5U5+GHH8bRo0fx0ksvoXv37hAEARERERg6dCgAoFGjRtixYwcWLVqEe/fuoXnz5vjkk0/w4IMP4vz58/juu++QlJSEgoIChIaGYtWqVejXrx8AYOzYsfj5558xatQoNGjQANOnT0fv3r1rfQ211YmI5IOzI4mIUP1sRCIiS2J3JBEREZEEGMKIiIiIJMDuSCIiIiIJsCWMiIiISAIMYUREREQSYAgjIiIikgBDGBEREZEEGMKIiIiIJMAQRkRERCQBhjAiIiIiCTCEEREREUmAIYyIiIhIAv8fokYhtfbx9AEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrrElEQVR4nO3deVxV1fo/8M8GGRUOMsigIIhzmgoWYg6ZKHoVrz/xOmQOqZldUVFzypwy0yxzyNJswkpzSOs6Fw7ZIKE5ZJaSEk4BKiAHnAA56/cH37M9+0wMAocDn/frdV5x9l5nn7V33MvTWs96liSEECAiIiKiSmVj6Q4QERER1UQMwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiMisuLg4SJKES5cuWborRNUKgzAisrjjx48jJiYGjz32GGrXro2AgAAMGjQIf/31l0Hbp59+GpIkQZIk2NjYwNXVFc2aNcPw4cMRHx9fqu/dtWsXunbtinr16sHZ2RmNGjXCoEGDsH///vK6NQNvvPEGvvnmG4PjR48exYIFC5CdnV1h361vwYIF8rOUJAnOzs5o2bIlXn31VeTk5JTLd2zatAkrV64sl2sRVTcMwojI4t58801s374d3bt3x6pVqzBu3Dj88MMPCAkJwdmzZw3aN2jQAJ9//jk+++wzvPXWW+jXrx+OHj2Knj17YvDgwSgoKCj2O99++23069cPkiRh9uzZWLFiBaKjo3HhwgVs3ry5Im4TgPkgbOHChZUahGmtXbsWn3/+Od555x00b94cixcvRq9evVAeWwszCCMyrZalO0BENHXqVGzatAn29vbyscGDB6N169ZYunQpvvjiC0V7lUqF5557TnFs6dKlmDRpEt5//30EBgbizTffNPl9Dx48wKJFi9CjRw989913Budv3LjxiHdUddy9exfOzs5m2wwcOBCenp4AgPHjxyM6Oho7duzAL7/8gvDw8MroJlGNxJEwIrK4jh07KgIwAGjSpAkee+wxnDt3rkTXsLW1xerVq9GyZUusWbMGarXaZNuMjAzk5OTgqaeeMnq+Xr16ivf379/HggUL0LRpUzg6OsLX1xcDBgxAcnKy3Obtt99Gx44d4eHhAScnJ4SGhuKrr75SXEeSJNy5cwcbNmyQpwBHjRqFBQsWYPr06QCAoKAg+ZxuDtYXX3yB0NBQODk5wd3dHUOGDMHVq1cV13/66afRqlUrnDhxAl26dIGzszNeeeWVEj0/Xc888wwAICUlxWy7999/H4899hgcHBzg5+eHCRMmKEbynn76aezZsweXL1+W7ykwMLDU/SGqrjgSRkRVkhAC169fx2OPPVbiz9ja2mLo0KGYO3cufvrpJ/Tp08dou3r16sHJyQm7du3CxIkT4e7ubvKahYWF6Nu3Lw4ePIghQ4Zg8uTJyM3NRXx8PM6ePYvg4GAAwKpVq9CvXz8MGzYM+fn52Lx5M/7zn/9g9+7dcj8+//xzjB07Fk8++STGjRsHAAgODkbt2rXx119/4csvv8SKFSvkUSkvLy8AwOLFizF37lwMGjQIY8eOxc2bN/Huu++iS5cuOHXqFNzc3OT+ZmZmonfv3hgyZAiee+45eHt7l/j5aWmDSw8PD5NtFixYgIULFyIiIgIvvfQSkpKSsHbtWhw/fhw///wz7OzsMGfOHKjValy7dg0rVqwAANSpU6fU/SGqtgQRURX0+eefCwDi448/Vhzv2rWreOyxx0x+7uuvvxYAxKpVq8xef968eQKAqF27tujdu7dYvHixOHHihEG7Tz75RAAQ77zzjsE5jUYj/3z37l3Fufz8fNGqVSvxzDPPKI7Xrl1bjBw50uBab731lgAgUlJSFMcvXbokbG1txeLFixXHf//9d1GrVi3F8a5duwoAYt26dSbvW9f8+fMFAJGUlCRu3rwpUlJSxAcffCAcHByEt7e3uHPnjhBCiE8//VTRtxs3bgh7e3vRs2dPUVhYKF9vzZo1AoD45JNP5GN9+vQRDRs2LFF/iGoaTkcSUZVz/vx5TJgwAeHh4Rg5cmSpPqsdacnNzTXbbuHChdi0aRPatWuHb7/9FnPmzEFoaChCQkIUU6Dbt2+Hp6cnJk6caHANSZLkn52cnOSfb926BbVajc6dO+PkyZOl6r++HTt2QKPRYNCgQcjIyJBfPj4+aNKkCQ4fPqxo7+DggOeff75U39GsWTN4eXkhKCgIL774Iho3bow9e/aYzCU7cOAA8vPzERsbCxubh39GXnjhBbi6umLPnj2lv1GiGojTkURUpaSnp6NPnz5QqVT46quvYGtrW6rP3759GwDg4uJSbNuhQ4di6NChyMnJQWJiIuLi4rBp0yZERUXh7NmzcHR0RHJyMpo1a4Zatcz/3+Xu3bvx+uuv4/Tp08jLy5OP6wZqZXHhwgUIIdCkSROj5+3s7BTv69evb5BfV5zt27fD1dUVdnZ2aNCggTzFasrly5cBFAVvuuzt7dGoUSP5PBGZxyCMiKoMtVqN3r17Izs7Gz/++CP8/PxKfQ1tSYvGjRuX+DOurq7o0aMHevToATs7O2zYsAGJiYno2rVriT7/448/ol+/fujSpQvef/99+Pr6ws7ODp9++ik2bdpU6nvQpdFoIEkS9u3bZzQg1c+x0h2RK6kuXbrIeWhEVHkYhBFRlXD//n1ERUXhr7/+woEDB9CyZctSX6OwsBCbNm2Cs7MzOnXqVKZ+tG/fHhs2bEBaWhqAosT5xMREFBQUGIw6aW3fvh2Ojo749ttv4eDgIB//9NNPDdqaGhkzdTw4OBhCCAQFBaFp06alvZ0K0bBhQwBAUlISGjVqJB/Pz89HSkoKIiIi5GOPOhJIVJ0xJ4yILK6wsBCDBw9GQkICtm3bVqbaVIWFhZg0aRLOnTuHSZMmwdXV1WTbu3fvIiEhwei5ffv2AXg41RYdHY2MjAysWbPGoK34v2Kmtra2kCQJhYWF8rlLly4ZLcpau3ZtowVZa9euDQAG5wYMGABbW1ssXLjQoHiqEAKZmZnGb7ICRUREwN7eHqtXr1b06eOPP4ZarVasSq1du7bZciFENRlHwojI4qZNm4adO3ciKioKWVlZBsVZ9QuzqtVquc3du3dx8eJF7NixA8nJyRgyZAgWLVpk9vvu3r2Ljh07okOHDujVqxf8/f2RnZ2Nb775Bj/++CP69++Pdu3aAQBGjBiBzz77DFOnTsWxY8fQuXNn3LlzBwcOHMB///tf/Pvf/0afPn3wzjvvoFevXnj22Wdx48YNvPfee2jcuDHOnDmj+O7Q0FAcOHAA77zzDvz8/BAUFISwsDCEhoYCAObMmYMhQ4bAzs4OUVFRCA4Oxuuvv47Zs2fj0qVL6N+/P1xcXJCSkoKvv/4a48aNw8svv/xIz7+0vLy8MHv2bCxcuBC9evVCv379kJSUhPfffx9PPPGE4t9XaGgotmzZgqlTp+KJJ55AnTp1EBUVVan9JaqyLLk0k4hIiIelFUy9zLWtU6eOaNKkiXjuuefEd999V6LvKygoEB9++KHo37+/aNiwoXBwcBDOzs6iXbt24q233hJ5eXmK9nfv3hVz5swRQUFBws7OTvj4+IiBAweK5ORkuc3HH38smjRpIhwcHETz5s3Fp59+KpeA0HX+/HnRpUsX4eTkJAAoylUsWrRI1K9fX9jY2BiUq9i+fbvo1KmTqF27tqhdu7Zo3ry5mDBhgkhKSlI8G3PlO/Rp+3fz5k2z7fRLVGitWbNGNG/eXNjZ2Qlvb2/x0ksviVu3bina3L59Wzz77LPCzc1NAGC5CiIdkhDlsDkYEREREZUKc8KIiIiILIBBGBEREZEFMAgjIiIisgAGYUREREQWwCCMiIiIyAIYhBERERFZAIu1VmEajQapqalwcXHh1h9ERERWQgiB3Nxc+Pn5wcbG9HgXg7AqLDU1Ff7+/pbuBhEREZXB1atX0aBBA5PnGYRVYS4uLgCK/iWa2wePiIiIqo6cnBz4+/vLf8dNYRBWhWmnIF1dXRmEERERWZniUomYmE9ERERkAQzCiIiIiCyAQRgRERGRBTAnzMppNBrk5+dbuhvVmr29vdklxkRERGXBIMyK5efnIyUlBRqNxtJdqdZsbGwQFBQEe3t7S3eFiIiqEQZhVkoIgbS0NNja2sLf358jNRVEWzA3LS0NAQEBLJpLRETlhkGYlXrw4AHu3r0LPz8/ODs7W7o71ZqXlxdSU1Px4MED2NnZWbo7RERUTVjN8Em/fv0QEBAAR0dH+Pr6Yvjw4UhNTVW0EULg7bffRtOmTeHg4ID69etj8eLFijbff/89QkJC4ODggMaNGyMuLs7gu9577z0EBgbC0dERYWFhOHbsmOL8/fv3MWHCBHh4eKBOnTqIjo7G9evXFW2uXLmCPn36wNnZGfXq1cP06dPx4MGD8nkYAAoLCwGAU2SVQPuMtc+ciIioPFhNENatWzds3boVSUlJ2L59O5KTkzFw4EBFm8mTJ+Ojjz7C22+/jfPnz2Pnzp148skn5fMpKSno06cPunXrhtOnTyM2NhZjx47Ft99+K7fZsmULpk6divnz5+PkyZNo06YNIiMjcePGDbnNlClTsGvXLmzbtg1HjhxBamoqBgwYIJ8vLCxEnz59kJ+fj6NHj2LDhg2Ii4vDvHnzyv25cHqs4vEZExFRhRBW6n//+5+QJEnk5+cLIYT4888/Ra1atcT58+dNfmbGjBniscceUxwbPHiwiIyMlN8/+eSTYsKECfL7wsJC4efnJ5YsWSKEECI7O1vY2dmJbdu2yW3OnTsnAIiEhAQhhBB79+4VNjY2Ij09XW6zdu1a4erqKvLy8kp8j2q1WgAQarXa4Ny9e/fEn3/+Ke7du1fi61HZ8FkTEVUPGRkZIjU11eQrIyOjXL7H3N9vXVaZE5aVlYWNGzeiY8eOco7Orl270KhRI+zevRu9evWCEAIRERFYtmwZ3N3dAQAJCQmIiIhQXCsyMhKxsbEAilYbnjhxArNnz5bP29jYICIiAgkJCQCAEydOoKCgQHGd5s2bIyAgAAkJCejQoQMSEhLQunVreHt7K77npZdewh9//IF27dpVyHMhIiIi4zIzM7FmzZpi28XExMDDw6MSemRF05EAMHPmTNSuXRseHh64cuUK/ve//8nn/v77b1y+fBnbtm3DZ599hri4OJw4cUIxZZmenq4IjADA29sbOTk5uHfvHjIyMlBYWGi0TXp6unwNe3t7uLm5mW1j7Brac6bk5eUhJydH8apuRo0aBUmSIEkS7Ozs4O3tjR49euCTTz4pVamNuLg4g38HREREpujX1FSrXZCSEgi12sVsu4pk0SBs1qxZ8h9kU6/z58/L7adPn45Tp07hu+++g62tLUaMGAEhBICiUgJ5eXn47LPP0LlzZzz99NP4+OOPcfjwYSQlJVnqFktlyZIlUKlU8svf37/CviszMxNpaWkmX5mZmRX23b169UJaWhouXbqEffv2oVu3bpg8eTL69u1brosXiIiIjDl5sh1WrozFhg0jsXJlLE6etMwMlUWnI6dNm4ZRo0aZbdOoUSP5Z09PT3h6eqJp06Zo0aIF/P398csvvyA8PBy+vr6oVasWmjZtKrdv0aIFgKKVis2aNYOPj4/BKsbr16/D1dUVTk5OsLW1ha2trdE2Pj4+AAAfHx/k5+cjOztbMRKj30Z/RaX2mto2xsyePRtTp06V3+fk5FRIIGbpIVkHBwf5OdSvXx8hISHo0KEDunfvjri4OIwdOxbvvPMOPv30U/z9999wd3dHVFQUli1bhjp16uD777/H888/D+Bh0vz8+fOxYMECfP7551i1ahWSkpJQu3ZtPPPMM1i5ciXq1atX7vdBRETWR612wa5dfSFE0TiUEDbYtasvgoMvQqXKrdS+WHQkzMvLC82bNzf7MlWCQTt1lZeXBwB46qmn8ODBAyQnJ8tt/vrrLwBAw4YNAQDh4eE4ePCg4jrx8fEIDw8HUFSKIDQ0VNFGo9Hg4MGDcpvQ0FDY2dkp2iQlJeHKlStym/DwcPz++++KFZXx8fFwdXVFy5YtTT4PBwcHuLq6Kl4VoaRDrZU5JPvMM8+gTZs22LFjB4CiXLzVq1fjjz/+wIYNG3Do0CHMmDEDANCxY0esXLkSrq6u8sjdyy+/DAAoKCjAokWL8Ntvv+Gbb77BpUuXig30iYioesjMzMT58+fx+++/G7wuXLgAAMjK8pADMC0hbJCV5V7p/bWKxPzExEQcP34cnTp1Qt26dZGcnIy5c+ciODhYDnwiIiIQEhKC0aNHY+XKldBoNJgwYQJ69Oghj46NHz8ea9aswYwZMzB69GgcOnQIW7duxZ49e+Tvmjp1KkaOHIn27dvjySefxMqVK3Hnzh155EWlUmHMmDGYOnUq3N3d4erqiokTJyI8PBwdOnQAAPTs2RMtW7bE8OHDsWzZMqSnp+PVV1/FhAkT4ODgUMlPz3o0b94cZ86cAQB5sQQABAYG4vXXX8f48ePx/vvvw97eHiqVCpIkGYwsjh49Wv65UaNGWL16NZ544gncvn0bderUqZT7ICKiypWZmYmbN29iy5YtxbZ1d8+EJGkUgZgkaeDunlWRXTTKKoIwZ2dn7NixA/Pnz8edO3fg6+uLXr164dVXX5WDGhsbG+zatQsTJ05Ely5dULt2bfTu3RvLly+XrxMUFIQ9e/ZgypQpWLVqFRo0aICPPvoIkZGRcpvBgwfj5s2bmDdvHtLT09G2bVvs379fkWi/YsUK2NjYIDo6Gnl5eYiMjMT7778vn7e1tcXu3bvx0ksvITw8HLVr18bIkSPx2muvVcLTsl5CCHl68cCBA1iyZAnOnz+PnJwcPHjwAPfv38fdu3fN7hBw4sQJLFiwAL/99htu3bolj5heuXLF7CgkERFZJ/0UG7XaBVlZHrCzy0N2dl0AgL//VXmqUaXKRVTUbnlKUpI0iIraXelTkYCVBGGtW7fGoUOHim3n5+eH7du3m23z9NNP49SpU2bbxMTEICYmxuR5R0dHvPfee3jvvfdMtmnYsCH27t1rvsOkcO7cOQQFBeHSpUvo27cvXnrpJSxevBju7u746aefMGbMGOTn55sMwu7cuYPIyEhERkZi48aN8PLywpUrVxAZGVmpU6tERFSxMjMzkZ+fD7VarUj9OXmynU6+lwCgLbYt0K/fLoSEFP39Dwk5heDgi8jKcoe7e5ZFAjDASoIwqv4OHTqE33//HVOmTMGJEyeg0WiwfPlyeWPyrVu3Ktrb29sbbCN0/vx5ZGZmYunSpfKChl9//bVyboCIiCqF8ZGvQNjZ5SkS7h8GYEU/6yffq1S5RoOvytwOkEEYVbq8vDykp6ejsLAQ169fx/79+7FkyRL07dsXI0aMwNmzZ1FQUIB3330XUVFR+Pnnn7Fu3TrFNQIDA3H79m0cPHgQbdq0gbOzMwICAmBvb493330X48ePx9mzZ7Fo0SIL3SUREVUEUyNf+nle+rTJ9ypVLgYMGABPT0+DNvb29pVWqBWwsmKtVD3s378fvr6+CAwMRK9evXD48GGsXr0a//vf/2Bra4s2bdrgnXfewZtvvolWrVph48aNWLJkieIaHTt2xPjx4zF48GB4eXlh2bJl8PLyQlxcHLZt24aWLVti6dKlePvtty10l0REVN4yMzPlmRFjpSaKpiCN002+9/T0hK+vr8GrMgMwgCNhNVJJh1orYkg2Li4OcXFxxbabMmUKpkyZojg2fPhwxfu1a9di7dq1imNDhw7F0KFDFce0BX2JiMi66eb3Gis1UTQFKfT+CYsm35vDIKwG8vDwQExMjNlk9coekiUiIioNY6UmikiQJA2GDPkSBQVF+0v7+1+rcgEYwCCsxmKARURE1iw5uTFMTXQIYQN7+wI0a3bR6PnKTL43h0EYERERWRVtPpip1HZjxVd79OiBunXrol69elVmIIJBGBEREVmUtu6XKfopMsbzwYro538NGDAAfn5+VSbw0sUgjIiIiCxGv+6XKbpF1I3ng2kwcOBXBvlfVTUAAxiEERERkYVkZmYiNTVVcUy77ZC7e6YimNIdKTO19VCrVucAFE09BgUFVflFZgzCiIiIqFKZ2nBbv/hqVNRueashQJlQb27roWbNmlXp4EuLQRgRERFVGlPTj9eu+WLnzofJ9kLYGGw1VN1KLDEIIyIiokqjH0Cp1S5ITAzD0aMdodzvUbnVkJa1BFglwW2LqFr5/vvvIUkSsrOzS/yZwMBArFy5ssL6RERUk2VmZiItLU1+ZWRkyOdOnmyHFSticfToU9APwADjpSaqEwZhVKlGjRoFSZIwfvx4g3MTJkyAJEkYNWpU5XeMiIjKnXbqcf369fJrx44dAIqv9QVUza2GyhODMKp0/v7+2Lx5M+7duycfu3//PjZt2oSAgAAL9oyIiMqTsanHlJRAeQWkuVpfY8d+pEjKr44YhFGlCwkJgb+/v/xfQwCwY8cOBAQEoF27dvKxvLw8TJo0CfXq1YOjoyM6deqE48ePK661d+9eNG3aFE5OTujWrRsuXbpk8H0//fQTOnfuDCcnJ/j7+2PSpEm4c+dOhd0fEREZOnmyHVaujMWGDSOxYkUs/v47EJKkMWinXRXZoEGa4nhV2WqoPDEII1y7Bhw+XPTPyjJ69Gh8+umn8vtPPvkEzz//vKLNjBkzsH37dmzYsAEnT55E48aNERkZiaysovyAq1evYsCAAYiKisLp06cxduxYzJo1S3GN5ORk9OrVC9HR0Thz5gy2bNmCn376SVH0j4iIKpZ26vHhyJcNfvyxC1q0OKcTiGnQsePPiI1dqRgBGzBgAGJiYqpVQr4WV0fWcB9/DIwbB2g0gI0NsH49MGZMxX/vc889h9mzZ+Py5csAgJ9//hmbN2/G999/DwC4c+cO1q5di7i4OPTu3RsA8OGHHyI+Ph4ff/wxpk+fjrVr1yI4OBjLly8HUFQX5vfff8ebb74pf8+SJUswbNgwxMbGAgCaNGmC1atXo2vXrli7di0cHR0r/maJiGo441OPEs6da4ExYz5CQYG9Qa0vrapc8f5RMQirwa5dexiAAUX/fPFFIDISaNCgYr/by8sLffr0QVxcHIQQ6NOnDzw9PeXzycnJKCgowFNPPSUfs7Ozw5NPPolz54oqIp87dw5hYWGK64aHhyve//bbbzhz5gw2btwoHxNCQKPRICUlBS1atKiI2yMiqlFM7f2oXQnp7p4JQAP9CTghbFBQYI+goMsGnx00aFCV2my7IjAIq8EuXHgYgGkVFgIXL1Z8EAYUTUlqpwXfe++9CvmO27dv48UXX8SkSZMMznERABHRoyvJ3o8qVS569DiA+Pge0C1FoVuCYsCAAfJ/jFtTwdVHwSCsBmvSpGgKUjcQs7UFGjeunO/v1asX8vPzIUkSIiMjFeeCg4Nhb2+Pn3/+GQ0bNgQAFBQU4Pjx4/LUYosWLbBz507F53755RfF+5CQEPz5559oXFk3RURUjRkb8dKt+wWY3vvxqacSAAAHDkQotiXStvH09ISvr28F30HVwiCsBmvQoCgH7MUXi0bAbG2BDz6onFEwALC1tZWnFm1tbRXnateujZdeegnTp0+Hu7s7AgICsGzZMty9exdj/i9pbfz48Vi+fDmmT5+OsWPH4sSJE4iLi1NcZ+bMmejQoQNiYmIwduxY1K5dG3/++Sfi4+OL/S83IiJ6GHip1WqDvR71Fbf341NPJaBVq7NG93usiRiE1XBjxhTlgF28WDQCVlkBmJarq6vJc0uXLoVGo8Hw4cORm5uL9u3b49tvv0XdunUBFE0nbt++HVOmTMG7776LJ598Em+88QZGjx4tX+Pxxx/HkSNHMGfOHHTu3BlCCAQHB2Pw4MEVfm9ERNbO3FSj/oiX/gpIY3s/AkVTk8aCr+pYgqI4khBCWLoTZFxOTg5UKhXUarVBsHL//n2kpKQgKCiIK/wqGJ81EdVUaWlpWL9+vcFxYyNedevewoYNIw3ajhwZh6Cgy4qcL33VLQfM3N9vXRwJIyIiohJRq11w9aq/0RGvMWM+giRpFKUodBPva2LOV3EYhBEREVGxdEe/9GlLTURF7TYYIavpeV/mMAgjIiIime4KSO3KR8OK90raEa+goMsIDr7IxPsSYhBGREREAEwn4he32bbuiBcT70uOQZiV47qKisdnTETVUXJyMu7evas4duvWLcV77QpIO7s8g3wvQIOBA7+Cv/81RdBlLAG/uiXelxcGYVZKW1crPz8fTk5OFu5N9aYdltevZUZEZK2Sk5PxxRdfmG2jvwLy8cfP4MyZxxX5Xq1anTP4XHXe67G8MQizUrVq1YKzszNu3rwJOzs72NgYHyamR6PRaHDz5k04OzujVi3+z4WIqgf9ETB9xmp+nTnzuMnNtgcNGgQ3NzeOeJUS/6pYKUmS4Ovri5SUFFy+bLjxKZUfGxsbBAQEQJKk4hsTEVmha9d8ceVKQwQEXEaDBmlGc8B0N9uuifs8VgQGYVbM3t4eTZo0MbpzPZUfe3t7jjQSUbX19df/xm+/tUHRxtoCbdr8hmeeOcSaX5WAQZiVs7GxYRV3IiIqk2vXfHUCMACQ8NtvbfDEE8dY86sSMAgjIiKq5nRrfwEPV0FeudIQDwMwLQlXrwYgPDyRNb8qGIMwIiKiaszcJtwBAZcBCCgDMQF//ysAWPOrojEIIyIismL6o1z61Gq13vui2l/u7plo0CANbdr8ZpAT1qBBGgCgW7duaNKkieLzTMQvPwzCiIiIrJS5US5j9Gt/RUXtxv/7f//DE08cw9WrAfD3vyIHYABQv359JuBXIAZhREREVkJ/1Eu7t2NJGKv9tWtXXwQHX0SDBmkYPrw56tYNl9s7OzsjODi4/DpPBhiEERERWYGSjHrpTjXq53KZqv2VleUOlSoXTZo04ahXJWMQRkREZAWKqwlpbKoxJOSUfN7dPdNs7S+qfKxASUREZOVMTTWq1S5yG5UqF1FRuyFJGgBg7a8qgCNhREREVq64qUatkJBTrP1VhTAIIyIiskK6+V+pqb7Qr/dlaqqRtb+qDgZhREREVVxmZqZiJaRu/hegQVHwpSy4GhFxQA62Bg0aBDc3N5PXZ+0vy2AQRkREVIXpr4rUz/8ynt4twc8vVX5Xr149BllVEBPziYiIqjD9VZFXr/ob5H/p052KHDx4MAOwKoojYURERBZQ3HZDxqYItdOQhjSQJCjKU2inIlUqVXl2m8oRgzAiIqJKVtLthmJiYuSfDachtTTo1283Vz1aIQZhRERElUx/BMxUpXvddsbKUADAwIFfoVWrcwDAVY9WhkEYERGRBZmrdJ+dnS2vajRV8d7f/xoAYMCAAfD09FRcm6seqzYm5hMREVlIcZXut27dCrVaDaD4iveenp7w9fVVvBiAVW0cCSMiIqogppLvtTW/TFW6T0wMQ8+eBwAABQUF8jlWvK9eGIQRERFVgJIk3xubYgSAo0fDERaWCJUqF7VqKf9Us+J99cEgjIiIqAKYKz+hpVLlIjw8AUePPqV35uG+j25uboiJiSl1OQuq+hiEERERVQJTKyDDwhJx9Gg4dNO09fd9ZIBVPTEIIyIiqmD6KyAjIg7gqacSABSNhvXrt9tghSTzvao/BmFEREQVyNgKyPj4HgAgB2JMuK+ZWKKCiIioAhkvsiohPj5CLkUBFI2IBQVdZgBWgzAIIyIiqkDaFZCGipLvi8NVj9UXpyOJiIgqkEqVi4iIA/83BSnJx3WT741Vuwe46rG6YxBGRERkgqliq1rmgiTdESxt7ld8fAQAw+R7bbV7qlkYhBERERlRkmKrADB48GCoVCrFMW1wNnjwYGzZsgVAUSDWqtVZJt+TjEEYERGRESUptgoA69fvNVr/KyYmxiA4M1Xtnmomq0nM79evHwICAuDo6AhfX18MHz4cqamp8vkFCxZAkiSDV+3atRXX2bZtG5o3bw5HR0e0bt0ae/fuVZwXQmDevHnw9fWFk5MTIiIicOHCBUWbrKwsDBs2DK6urnBzc8OYMWNw+/ZtRZszZ86gc+fOcHR0hL+/P5YtW1bOT4SIiMpTZmYm0tLS5Jd2f0cttdoFKSmBihWNJ0+2w8qVsdiwYSRWrozFyZPt5HP5+fklTqpn8n3NZDUjYd26dcMrr7wCX19f/PPPP3j55ZcxcOBAHD16FADw8ssvY/z48YrPdO/eHU888YT8/ujRoxg6dCiWLFmCvn37YtOmTejfvz9OnjyJVq1aAQCWLVuG1atXY8OGDQgKCsLcuXMRGRmJP//8E46OjgCAYcOGIS0tDfHx8SgoKMDzzz+PcePGYdOmTQCAnJwc9OzZExEREVi3bh1+//13jB49Gm5ubhg3blxlPC4iIiqF4qYe9YutRkXtRnDwRYP6X7t29UVw8EV5tMvDw4NbDpFJkhBCWLoTZbFz5070798feXl5sLOzMzj/22+/oW3btvjhhx/QuXNnAEXz9nfu3MHu3bvldh06dEDbtm2xbt06CCHg5+eHadOm4eWXXwYAqNVqeHt7Iy4uDkOGDMG5c+fQsmVLHD9+HO3btwcA7N+/H//6179w7do1+Pn5Ye3atZgzZw7S09Pl/7qZNWsWvvnmG5w/f77E95iTkwOVSgW1Wg1XV9cyPysiIjIvLS0N69evN3pOrXbBypWxilpfkqRBdPR2fPXVfwzajxwZh6Cgyxg3bhyT7Wuokv79tprpSF1ZWVnYuHEjOnbsaDQAA4CPPvoITZs2lQMwAEhISEBERISiXWRkJBISilatpKSkID09XdFGpVIhLCxMbpOQkAA3Nzc5AAOAiIgI2NjYIDExUW7TpUsXxfByZGQkkpKScOvWrUe8eyIiqmhqtQvOnm2JY8dCceJEiEGx1aL3wqD+l/6ej0TmWM10JADMnDkTa9aswd27d9GhQwfFiJau+/fvY+PGjZg1a5bieHp6Ory9vRXHvL29kZ6eLp/XHjPXpl69eorztWrVgru7u6JNUFCQwTW05+rWrWu033l5ecjLy5Pf5+TkGG1HRETlS61Wyz+fPNkOO3dGQbemFyCgX+PL3/8aoqK45yOVnUVHwmbNmmU0mV73pTt9N336dJw6dQrfffcdbG1tMWLECBibTf3666+Rm5uLkSNHVubtPLIlS5ZApVLJL39/f0t3iYio2svMzJTLSKjVLti5sy+UARj+733R3xvdYCsk5BRiY1di5Mg4xMauREjIqUrtO1k3i46ETZs2DaNGjTLbplGjRvLPnp6e8PT0RNOmTdGiRQv4+/vjl19+QXh4uOIzH330Efr27WswouXj44Pr168rjl2/fh0+Pj7yee0x3Xn869evo23btnKbGzduKK7x4MEDZGVlKa5j7Ht0v8OY2bNnY+rUqfL7nJwcBmJERBVMN2k+MTEMpscnJERG7kfLln8qRrtYdoLKyqJBmJeXF7y8vMr0WY2maB5ed/oOKMrrOnz4MHbu3GnwmfDwcBw8eBCxsbHysfj4eDmICwoKgo+PDw4ePCgHXTk5OUhMTMRLL70kXyM7OxsnTpxAaGgoAODQoUPQaDQICwuT28yZMwcFBQVyzlp8fDyaNWtmcioSABwcHODg4FCGp0FERI9KrXZBQkK4yfOSpDEIwMxh2QkqjlXkhCUmJuL48ePo1KkT6tati+TkZMydOxfBwcEGo2CffPIJfH190bt3b4PrTJ48GV27dsXy5cvRp08fbN68Gb/++qu8IkaSJMTGxuL1119HkyZN5BIVfn5+6N+/PwCgRYsW6NWrF1544QWsW7cOBQUFiImJwZAhQ+Dn5wcAePbZZ7Fw4UKMGTMGM2fOxNmzZ7Fq1SqsWLGiYh8UERGVWVaWh0ECvpZ+vpexKvm6WHaCSsIqgjBnZ2fs2LED8+fPx507d+Dr64tevXrh1VdfVYwcaTQaxMXFYdSoUbC1tTW4TseOHbFp0ya8+uqreOWVV9CkSRN88803co0wAJgxYwbu3LmDcePGITs7G506dcL+/fvlGmEAsHHjRsTExKB79+6wsbFBdHQ0Vq9eLZ9XqVT47rvvMGHCBISGhsLT0xPz5s1jjTAiIgsobv9HbVK+u3smJEmjF4hp8K9/7UGzZhf0piBVLD9Bj8xq64TVBKwTRkT0aPSLsKrVLka3GNIyVpTVWLI9a4CROSX9+20VI2FERERloTsCVpIAKyTkFIKDLxa7yTbzvag8MAgjIqJqT612KXaLIS1Tqx0HDBgAT09P5ntRuWEQRkRE1YpuDph2E25jSfdC2CAry73Eqx39/PwYfFG5YhBGRETVhvEcsEDk59cySLrX3WJo0KBBcHNzM3ldjn5RRWAQRkRE1YapHLCH2w4V/VO/5ISbmxsT7anSMQgjIiKrUFypCd1kef0csIfbEEkANBgz5iM0aJBWYX0lKgkGYUREVOXpTzOa0qNHDwDmC68CNigo4OpGsjwGYUREVGVpR7+0CfZa2npfdnZ5KChwkOt+xcfHAzBVeLWIbi6YFktOkCUwCCMioirJ1OiXsVwv/bpfKlUuoqJ2m2ynzQUbMGAAVz2SxTAIIyKiKkk//0utdsHVq/5Gc72M1f3SLbxqZ5ePggJ7gwKsnp6eDMDIYhiEERGRRZlKuNedglSOfhlnrO6XqcKrRFUBgzAiIrKYkiTcG650NM5YrhdRVWb+N5qIiKgCGZtyTEkJhFrtIh8zv9JRAIBBrlfPnj1L9P1MyCdL4kgYERFVCaY22HZ3zwSggXLcQIOBA7+Cm1u20VyvwMBAxMTEFFtXjPlgZEkMwoiIyOLMbbBdRFK0lyTA3/+a2XwvBlhU1TEIIyIiizO3wXZRACYZPWcqCOM0I1kDBmFERGRxxoqr6ibamzvXo0cPBAUFyec4zUjWgon5RERkcdriqpKkAaBMtDd3DgCCgoLg6+srvxiAkbXgSBgREZW7kmy2rR8s6RZX1U+0N3eOyFoxCCMionJV0s22Y2JiDHK3zBVXZeFVqm4YhBERUbkyVvsrK8tD3mRb648//kDdunXRu3dvODk5oVatWnBzc5PPZ2dnY+vWrcV+H5PwyVoxCCMiogqjX/srIuIA/PzS4O6eicOHDxu0j4mJkacpfX19WeuLqjUGYUREVCGM1f6Kj++BonITGnTsmICwsETF6Jh+wMUAi6ozro4kIqIKYXy7IW29LxscPfoUVq6MxcmT7Sq7a0RVAoMwIiIqF5mZmUhLS0NGRgaAh7W/zNFWxtfdK5KopuB0JBERPTJjKyK19b0eTkkK6Fe+B4qvfk9UXTEIIyKiR2ZqRWRw8EXExq5EVpY7UlP9EB8fAf1JGN3q90Q1CYMwIiIqE92CrNopSMBwRWRU1G6EhJxCUNBltGp1FomJYUhICFec5ygY1UQMwoiIqNSSk5PxxRdfyO+LRr4CYWeXZ7AicteuvggOvigXW+3Z8wDCwhJZ/Z5qPAZhRERUKpmZmYoATHfkC9BAf7rRWM6Xqer3LLxKNQmDMCIiKpUbN27IP6vVLti5sy8eBl6GCfi6OV/dunVD3bp1FdfTVspn4VWqaRiEERFRiWVmZiq2Evrhh84wrHYkQZI0RnO+mjRpAl9f38rrMFEVxiCMiKiG0E2kN6YkI1G6n//553CcONHeSCsNxoz5CAUF9sz5IjKDQRgRUQ1grI6XMTExMQAMS05oaVdBqtUu/1duwrDuV8eOCWjQIM3o55nzRfQQgzAiohrA3AiYrqSkJMTHx8vvtfW+3N0zFSNaWVkeMLbpiiRpEBaWKL8fMGAAPD09AXCzbSJ9DMKIiGogU8GVbgBmqt4X8HBLIuXekAIREQcU1/P09GQOGJEJDMKIiKqp0hZT1Q3MABRb70u5JZEGPXocwFNPJSj6wOlHItMYhBERVUOmcsDUahejwdW9e444cCBCDszCwxP0RrkM632FhJxCcPBFk0VXn3vuOU4/EpnBIIyIqBoytZfjnTvORoMrbQCmfZ+QEA79wqvG9ng0VXR18ODBCA4OLp+bIaqmGIQREVVzhhXtlcVUAf3crqJArGPHn8u8x6OXl1d5dZ+o2mIQRkRUjelPPxaNbGkgSUIOriIiDihGwoCHqxxN7fGou+pRH1dBEpUMgzAiomosK8vDYJQLsEF09FbUrn1XDq6cnO4bJOtrgy5jo19c9Uj06BiEERFVI9oVkdrVkMZKSUiSBv7+1xTBVXFJ9vq46pHo0TEIIyKyYrplKNRqNbZs2SKf0ybj6043msvtMpdkr1Kp5PecbiQqHwzCiIislLmtiPRrgUVEHICfX6rBKJd+gKWPARdRxWEQRkRkpUyVobCzyzOoBXbgQARiY1cajHR5eXkxyCKyEAZhRETVgGEZCtOFVrUrGznKRWRZDMKIiKxQZmamnHxvvAyFshaYbqFVrmwkqhoYhBERWRn9XDDjZSgkeVVkaQutElHlYBBGRGRl9HPB7OzyjJahGDPmIxQU2Jeo5AQRVT4GYURElUi3pIQxpc3TUuaCFU1Bake+GjRIe/QOE1GFYRBGRFRJzJWU0BUTE1OiQMwwF0wCUDQCZi4AY6FVoqqBQRgRUSUxVVLC3T1TMV1obqRMl6ktiQoKlEHWoEGD4ObmBoB1v4iqEgZhREQWoF9MNSpqN0JCTpXqGqa2JNKughwwYAD8/PwYdBFVUfr/CUVERBVMfxpRCBvs2tUXarVLqa6jUuUiKmo3JEkDAAarID09PRmAEVVhHAkjIqpkxqYRdYuplkZpN94moqqDQRgRUTkztQJSW1y1uGnE4ugn1pvaeJsJ+ERVG4MwIqJyVJIVkNppRP2csJKOYnl4eCAmJqZcS10QUeUrcRCWk5NT4ou6urqWqTNERNaupCsgH3UakQEWkfUrcRDm5uYGSZLMthFCQJIkFBYWPnLHiIisXXErIE1NI969e7cyu0lEFlLiIOzw4cMV2Q8iomrF1ArI4OCLxY56ffHFFyUu2EpE1qvEQVjXrl0rsh9ERNVKSVdAPmrBViKyXmVOzM/OzsbHH3+Mc+fOAQAee+wxjB49GiqVqtw6R0RkrUqyArI8CrYSkfUqU7HWX3/9FcHBwVixYgWysrKQlZWFd955B8HBwTh58mR595GIyOoUV0i1vAq2EpH1KtNI2JQpU9CvXz98+OGHqFWr6BIPHjzA2LFjERsbix9++KFcO0lEZI3MrYAsz4KtRGSdyjwSNnPmTDkAA4BatWphxowZ+PXXX8utc7r69euHgIAAODo6wtfXF8OHD0dqaqqizbfffosOHTrAxcUFXl5eiI6OxqVLlxRtvv/+e4SEhMDBwQGNGzdGXFycwXe99957CAwMhKOjI8LCwnDs2DHF+fv372PChAnw8PBAnTp1EB0djevXryvaXLlyBX369IGzszPq1auH6dOn48GDB+XyLIio6jJWSDUo6LJBYKWdrtRVmoKtRGT9yjQS5urqiitXrqB58+aK41evXoWLS8UMpXfr1g2vvPIKfH198c8//+Dll1/GwIEDcfToUQBASkoK/v3vf2Pq1KnYuHEj1Go1pkyZggEDBshTpCkpKejTpw/Gjx+PjRs34uDBgxg7dix8fX0RGRkJANiyZQumTp2KdevWISwsDCtXrkRkZCSSkpJQr149AEUjgXv27MG2bdugUqkQExODAQMG4OeffwYAFBYWok+fPvDx8cHRo0eRlpaGESNGwM7ODm+88UaFPB8iqhqKK6SakZGBHTt2PHLBViKyfpIQQpT2Q5MmTcLXX3+Nt99+Gx07dgQA/Pzzz5g+fTqio6OxcuXK8u6ngZ07d6J///7Iy8uDnZ0dvvrqKwwdOhR5eXmwsSka4Nu1axf+/e9/y21mzpyJPXv24OzZs/J1hgwZguzsbOzfvx8AEBYWhieeeEKueK3RaODv74+JEydi1qxZUKvV8PLywqZNmzBw4EAAwPnz59GiRQskJCSgQ4cO2LdvH/r27YvU1FR4e3sDANatW4eZM2fi5s2bJd5KJCcnByqVCmq1mgVwiaqJtLQ0rF+/Xn5ftDrScLpy3Lhx8PX1tUQXiegRlfTvd5mmI99++20MGDAAI0aMQGBgIAIDAzFq1CgMHDgQb775Zpk7XVJZWVnYuHEjOnbsCDs7OwBAaGgobGxs8Omnn6KwsBBqtRqff/45IiIi5DYJCQmIiIhQXCsyMhIJCQkAipaEnzhxQtHGxsYGERERcpsTJ06goKBA0aZ58+YICAiQ2yQkJKB169ZyAKb9npycHPzxxx8m7ysvLw85OTmKFxFVLyWdruS+j0TVX5mmI+3t7bFq1SosWbIEycnJAIDg4GA4OzuXa+f0zZw5E2vWrMHdu3fRoUMH7N69Wz4XFBSE7777DoMGDcKLL76IwsJChIeHY+/evXKb9PR0RWAEAN7e3sjJycG9e/dw69YtFBYWGm1z/vx5+Rr29vZwc3MzaJOenm72e7TnTFmyZAkWLlxYwqdBRNaI+z4SkVaZRsK0nJ2d0bp1a7Ru3bpMAdisWbMgSZLZlzb4AYDp06fj1KlT+O6772Bra4sRI0ZAO5uanp6OF154ASNHjsTx48dx5MgR2NvbY+DAgSjDjKtFzJ49G2q1Wn5dvXrV0l0iogrg4eEBX19fky8GYEQ1Q5lGwu7fv493330Xhw8fxo0bN6DRKFf4lLRW2LRp0zBq1CizbRo1aiT/7OnpCU9PTzRt2hQtWrSAv78/fvnlF4SHh+O9996DSqXCsmXL5PZffPEF/P39kZiYiA4dOsDHx8dgFeP169fh6uoKJycn2NrawtbW1mgbHx8fAICPjw/y8/ORnZ2tGA3Tb6O/olJ7TW0bYxwcHODg4GD2eRAREVH1UKYgbMyYMfjuu+8wcOBAPPnkk8Vu7G2Kl5cXvLy8yvRZbeCXl5cHoGjDW21Cvpatra2irf70JADEx8cjPDwcQNEUQGhoKA4ePIj+/fvLnz148CBiYmIAFOWe2dnZ4eDBg4iOjgYAJCUl4cqVK/J1wsPDsXjxYty4cUNeURkfHw9XV1e0bNmyTPdLRBUnMzOT04NEVOnKtDpSpVJh7969eOqppyqiTwYSExNx/PhxdOrUCXXr1kVycjLmzp2L69ev448//oCDgwMOHTqEiIgILFiwAEOHDkVubi5eeeUVnD9/HufOnYOTkxNSUlLQqlUrTJgwAaNHj8ahQ4cwadIk7NmzR1GiYuTIkfjggw/w5JNPYuXKldi6dSvOnz8v53W99NJL2Lt3L+Li4uDq6oqJEycCgFwuo7CwEG3btoWfnx+WLVuG9PR0DB8+HGPHji1ViQqujiSqeJmZmfJqaHO4oTYRlVSFro6sX79+hdUDM8bZ2Rk7duxA9+7d0axZM4wZMwaPP/44jhw5Ik/fPfPMM9i0aRO++eYbtGvXDr169YKDgwP2798PJycnAEXJ+3v27EF8fDzatGmD5cuX46OPPpIDMAAYPHgw3n77bcybNw9t27bF6dOnsX//fkWi/YoVK9C3b19ER0ejS5cu8PHxwY4dO+Tztra22L17N2xtbREeHo7nnnsOI0aMwGuvvVZJT4yISqqkG2VzQ20iKm9lGgnbt28fVq9ejXXr1qFhw4YV0S8CR8KIKoPxul0ecHfPZN0uIiqTkv79LlNOWPv27XH//n00atQIzs7Och0urawsbrtBRNbn5Ml2BhXsQ0JOWbpbRFRNlSkIGzp0KP755x+88cYb8Pb2LnNiPhFRVaFWu8gBGFC0mfauXX0RHHyRWwkRUYUoUxB29OhRJCQkoE2bNuXdHyIii8jK8pADMC0hbJCV5c4gjIgqRJkS85s3b4579+6Vd1+IiCzG3T0TkqSseShJGri7M72CiCpGmUbCli5dimnTpmHx4sVo3bq1QU4Yk8iJqDKUZ30vlSoXUVG7DXLCOApGRBWlTEFYr169AADdu3dXHBdCQJIkFBYWPnrPiIjMKK/6XrobZYeEnEJw8EVkZbnD3T1LEYBxQ20iKm9lCsIOHz5c3v0gIioV/REwU6UlUlNTFW31R8e4oTYRWUqZgrCuXbuWqN1///tfvPbaa/D09CzL1xARlYi50hK6hZS19EfHGGARkSWUKTG/pL744gvk5ORU5FcQUQ1nqrSEWm16Vw9WvyeiqqBMI2ElVYZi/EREpWKutIT2vP4UJRFRVVChQRgRUUXTlpbQDcQkSYPUVD989tkIVr8noiqrQqcjiYgqmra0hLbGlyRpEBFxAAcORJRqipKIqLJxJIyIqixzdcAyMjLkn/VLS7D6PRFZAwZhRFQllbQOmJZKlasIsIxNUbL6PRFVJRUahD333HOsnk9EZVLSFYwDBgyQy+BkZGRgx44drH5PRFahzEFYdnY2jh07hhs3bkCjUe63NmLECADA2rVrH613RFQjZWZmKqYbAdPFWD09PeHr6wuA1e+JyLqUKQjbtWsXhg0bhtu3b8PV1RWSJMnnJEmSgzAiotIyNg1prhirLla/JyJrUqYgbNq0aRg9ejTeeOMNODs7l3efiKgGM7YdkbFirMHBF41OLzLAIiJrUaYSFf/88w8mTZrEAIyIKtzVq/5mi7ESEVmrMgVhkZGR+PXXX8u7L0RECidPtsP27dEGx7nSkYiqgxJPR+7cuVP+uU+fPpg+fTr+/PNPtG7dGnZ2doq2/fr1K78eElGNpD8N+ZBypaNarZYT84mIrEmJg7D+/fsbHHvttdcMjkmShMLCwkfqFBHVLLpFWbWrIo0VXAWAgQO/QqtW5+T3W7ZsQUxMDHPBiMjqlDgI0y9DQURUHkwVZTW1J6S//zWDtiWtKUZEVJWUKSfss88+Q15ensHx/Px8fPbZZ4/cKSKq2jIzM5GWlmbylZmZWeJrGVsNmZISCAAGe0J26vQjsrI8uAckEVULkhBClPZDtra2SEtLQ7169RTHMzMzUa9ePU5HlpOcnByoVCqo1WruPEBVhv7IlakiqoMGDYKbm5v83lR9rrS0NKxfvx6A8Xpg9+45Ij4+AkX/zSgASAa1wsaNG8e8MCKqMkr697tMdcKEEIoCrVrXrl2DSqUqyyWJyErojlyZK6K6detWg8+ay90yVg9s586+KPq/Gu2gvSSfM1crjIjIGpQqCGvXrh0kSYIkSejevTtq1Xr48cLCQqSkpKBXr17l3kkiqnpKW0QVMJ+7ZTwR3wamxuq1tcIYhBGRtSpVEKZdIXn69GlERkaiTp068jl7e3sEBgYiOtqwpg8RVT/GgibdIqrGpijNMZaIXzT9CGhHwHSxVhgRWbtSBWHz588HAAQGBmLw4MFwdHSskE4RUdVnavViaqofPvtsRLH7POpTqXIREXEA8fE98DDokgBoIEni/75HmRPGUTAismZlygkbOXIkgKKphRs3bhiUrwgICHj0nhFRlaZS5SIqarciJywi4gAOHIgo1RSlLj+/NBiOetkgOnorate+Czu7fBQU2MPdPUtxPXt7+3K8MyKiylGmIOzChQsYPXo0jh49qjiuTdjn6kiimiEk5BSCgy8iK8sd7u5ZZqcoVapcuRAr8HC1pG4AZa42mEqVi27duqFu3boAgFq1asHNzc3kqksioqquTEHYqFGjUKtWLezevRu+vr5GV0oSkXXRrVpvjKlgR6XKVYxKGQuitLlbO3bsUHxWu1py0KBB2Lp1q9HRNd1pxyZNmrAUBRFVG2UKwk6fPo0TJ06gefPm5d0fIrKAktb+iomJMTv1V1wQpU8b9OnWHNQfXeO0IxFVV2UKwlq2bKmYViAi61bS2l/5+fnw9fVFTEyM4jNqtRpbtmwBYDyIMhXUaXl4eBhcUx+nHYmouilTEPbmm29ixowZeOONN9C6dWvY2dkpzrO6O5F1KmntL/1gSDcwy8jIwI4dO+T25oI6XQywiKimKVMQFhERAQB45plnFPlgTMwnsm7FJdabYyyIUqtdsHNnX2gr3rPSPRHRQ2UKwg4fPlze/SCiKsDU6sSyFkVNTAzDwy2HirDSPRFREf09Qkqka9eusLGxwYcffohZs2ahcePG6Nq1K65cuQJbW9vy7iMRVRJtYr0kFdX+00+sz8jIQFpaGjIzM4u9llrtgoSEcCNnWOmeiAgo40jY9u3bMXz4cAwbNgynTp1CXl4egKLk3DfeeAN79+4t104SUcXQlqXQXWhjbnWibokJc5txA6b2ggQ6dkzgKBgREcoYhL3++utYt24dRowYgc2bN8vHn3rqKbz++uvl1jkiqjj6ZSl06db+MrWy0dxKRsD01GZYWKL8niUniKgmK1MQlpSUhC5duhgcV6lUyM7OftQ+EVEl0A+ijAVbJV3ZaExxNcMGDRrEFZFEVKOVKQjz8fHBxYsXERgYqDj+008/oVGjRuXRLyKqRMaCreDgiyUqV6FPd3TL3NSmboFWIqKaqExB2AsvvIDJkyfjk08+gSRJSE1NRUJCAl5++WXMnTu3vPtIRBXIVG2w6OjtZSpXwcKrREQlU6YgbNasWdBoNOjevTvu3r2LLl26wMHBAS+//DImTpxY3n0kogpkqjYYIMpcroIBFhFR8cpUokKSJMyZMwdZWVk4e/YsfvnlF9y8eROLFi0q7/4RUQXTJtDrkiQN/P2vmS1XQUREj6ZMI2Fa9vb2aNmyZXn1hYgswFwCvbmcLiIiejSPFIQRUfVgLtjSLVehi+UliIgeDYMwohpKP4gyFWwNGjQIbm5uBp9l3hcR0aNhEEZUQ3EVIxGRZTEII6oCtNsHAUBqqg1SUmohKOgB/PyKkuIrKhhigEVEZDkMwogsTHf7IHMV6ovbq5GIiKxLmUpUEFH50Y6AmSqaqla7KNoREVH1wCCMqIowVTQ1K8vdQj0iIqKKxCCMqIowVTS1JBXqiYjI+jAII6oitEVTWaGeiKhmYGI+URXCCvVERDUHgzCiKsZU0VQiIqpeGIQRWYmMjAwALKBKRFRdMAgjsrCS7sG4Y8cO+WfWDCMisn4MwogsTHf7oIyMDEWwpVa7ICvLA+7umYopSv2aYboV943h6BkRUdXDIIyoBK5dAy5cAJo0ARo0KP/rGwuQzFXP105NAoBarcaWLVuK/Q6OnhERVS0MwohM0I4ubdrkhBkzVNBoJNjYCCxbpsazz96r0NElU9Xzg4MvQqXKVYyWGftsSUbPiIjIshiEERmh3c9RrXbBypWxEEICAGg0EqZPd8U//3wClSq3wkaXzFXPV6lyTQZa5kbPiIioamEQRmSEdtSouGCookaXtNXzdb9bWz3fVKBV3OgZERFVLayYT2SGpbYSMlU9H4DJTb659yQRkXWxmiCsX79+CAgIgKOjI3x9fTF8+HCkpqYq2mzduhVt27aFs7MzGjZsiLfeesvgOt9//z1CQkLg4OCAxo0bIy4uzqDNe++9h8DAQDg6OiIsLAzHjh1TnL9//z4mTJgADw8P1KlTB9HR0bh+/bqizZUrV9CnTx84OzujXr16mD59Oh48ePDoD4IqVWVvJZSdnS3/HBJyCrGxKzFyZBxiY1ciJOSU2UCLe08SEVkXqwnCunXrhq1btyIpKQnbt29HcnIyBg4cKJ/ft28fhg0bhvHjx+Ps2bN4//33sWLFCqxZs0Zuk5KSgj59+qBbt244ffo0YmNjMXbsWHz77bdymy1btmDq1KmYP38+Tp48iTZt2iAyMhI3btyQ20yZMgW7du3Ctm3bcOTIEaSmpmLAgAHy+cLCQvTp0wf5+fk4evQoNmzYgLi4OMybN6+CnxJVBGPBUEWRJMnYUfknc4EW954kIrIukhBCWLoTZbFz5070798feXl5sLOzw7PPPouCggJs27ZNbvPuu+9i2bJluHLlCiRJwsyZM7Fnzx6cPXtWbjNkyBBkZ2dj//79AICwsDA88cQTcvCm0Wjg7++PiRMnYtasWVCr1fDy8sKmTZvkIPD8+fNo0aIFEhIS0KFDB+zbtw99+/ZFamoqvL29AQDr1q3DzJkzcfPmzRIX58zJyYFKpYJarYarq2u5PDcqmbS0NKxfv77YduPGjYOvr2+FfK+p3K/iku+LpiYN954s774SEZFxJf37bTUjYbqysrKwceNGdOzYEXZ2dgCAvLw8ODo6Kto5OTnh2rVruHz5MgAgISEBERERijaRkZFISEgAUJSMfeLECUUbGxsbREREyG1OnDiBgoICRZvmzZsjICBAbpOQkIDWrVvLAZj2e3JycvDHH3+YvK+8vDzk5OQoXlQzmUqyV6tdih2ZU6lyERR02WAErKTBPxERVQ6rWh05c+ZMrFmzBnfv3kWHDh2we/du+VxkZCSmTJmCUaNGoVu3brh48SKWL18OoGh0ITAwEOnp6YrACAC8vb2Rk5ODe/fu4datWygsLDTa5vz58wCA9PR02Nvbw83NzaBNenq63MbYNbTnTFmyZAkWLlxYiidClqZbNFXXo9YQK25VpqlNvgcNGmTwu1ke/SEiovJn0SBs1qxZePPNN822OXfuHJo3bw4AmD59OsaMGYPLly9j4cKFGDFiBHbv3g1JkvDCCy8gOTkZffv2RUFBAVxdXTF58mQsWLAANjbWMeA3e/ZsTJ06VX6fk5MDf39/C/ao5irLfo76HqWGmLkSFQAwYMAAeHp6Kj7DQIuIyLpYNAibNm0aRo0aZbZNo0aN5J89PT3h6emJpk2bokWLFvD398cvv/yC8PBwSJKEN998E2+88QbS09Ph5eWFgwcPKq7h4+NjsIrx+vXrcHV1hZOTE2xtbWFra2u0jY+Pj3yN/Px8ZGdnK0Yc9Nvor6jUXlPbxhgHBwc4ODiYfR5UOXT3c9Snv7+jKY9SQ0ybZK+f+6Ud/fL09GR+FxGRlbNoEObl5QUvL68yfVajKVoBlpeXpzhua2uL+vXrAwC+/PJLhIeHy98RHh6OvXv3KtrHx8cjPDwcQNFIQmhoKA4ePIj+/fvL33Pw4EHExMQAAEJDQ2FnZ4eDBw8iOjoaAJCUlIQrV67I1wkPD8fixYtx48YN1KtXT/4eV1dXtGzZskz3S5WvpKNKpqrXP6qQkFMIDr5oNMmeiIisn1XkhCUmJuL48ePo1KkT6tati+TkZMydOxfBwcFy4JORkYGvvvoKTz/9NO7fv49PP/1ULiGhNX78eKxZswYzZszA6NGjcejQIWzduhV79uyR20ydOhUjR45E+/bt8eSTT2LlypW4c+cOnn/+eQCASqXCmDFjMHXqVLi7u8PV1RUTJ05EeHg4OnToAADo2bMnWrZsieHDh2PZsmVIT0/Hq6++igkTJnCkq5op722C9KdBTeV+McmeiMj6WUUQ5uzsjB07dmD+/Pm4c+cOfH190atXL7z66quKoGbDhg14+eWXIYRAeHg4vv/+ezz55JPy+aCgIOzZswdTpkzBqlWr0KBBA3z00UeIjIyU2wwePBg3b97EvHnzkJ6ejrZt22L//v2KRPsVK1bAxsYG0dHRyMvLQ2RkJN5//335vK2tLXbv3o2XXnoJ4eHhqF27NkaOHInXXnutgp8UVaaK2CbI3DSoFnO/iIiqB6utE1YTsE5Y1aSt5ZWSEogNG0YanB85Mg5BQZfN1uXKzMxkoEVEVE2V9O+3VYyEEVVFxa1gNCUzM1Oxk4OpnLJHWV1JRERVH4MwojIqbgWjKbojYOZyyh5ldSUREVV9DMKISkk3Kd7cCsbikucrIqeMiIisB4MwolIqr+T54qriExFR9cYgjKgMyiNXq6w5ZUREVD0wCCOrZ+mVhmX9/rLmlBERUfXAIIysin7Ao1arsWXLlmI/Vx4rDY0FW/rfX9qVjqyKT0RUczEIoypLP+jJzs7G1q1by3StR11pqF9WwpiyrnQ0VRWfiIiqNwZhVCWVJOipTIYjYMoRr9KsdCzplkPcmoiIqHpjEEZVTmZmJlJTU8v02YraTFuXsRGvunVvlXilI7cmIiIigEEYVTGPMgJW3ptp6/YpIyMDgOnaXmPGfFSqlY4MsIiIyKb4JkSVpzS5W2q1C1JSAqFWu5gMjtRql0fqjzYo3LFjBwDg6lV/oyNeBQX2iIraDUnSAABXOhIRUbE4EkZWSX/UKzw8oUIKnxrbYkifdsQrKOgyVzoSEVGJMQgjq6Cb6wXAYNTr6NHwCi18qj/S9pByxIsrHYmIqKQYhFGVV5JRL8AG4eE/IyEh3Gjh00ddaWhsiyEAGDjwK7Rqda7Yz3OlIxER6WMQRlWasVyvhIRwABropjRKkgZhYYkIC0tEmzbRaNXKEX5+TwB4olxWGpraYsjf/5qi3aBBg+Dm5qY4xpWORERkDIMwqtJMJcJ37Phw1MvWVuDNN3Pw7LNDKyzgKW6LoQEDBsDPz4/BFhERlRiDMKqyTp5sh507jSfCL1jgDh8fNTIz66JxYwkNGrgBcCv1dxS376NarZZ/NrfFkKenJwMwIiIqFQZhVKVoc6e005D6VVQe1v96Ch4edR/pu/RrkpWk0CsT74mIqLwwCKMqRVtN/vBhYMUKw0T4devUiI5+qlxGnYyVnyhroVcm3hMRUWkxCKMqx8PDAx06ADY2gEbz8LitLfCvf9VFec/6Fbfvo7Fke11MvCciorJgEEZVUoMGwPr1wIsvAoWFRQHYBx8UHS9vxspP6BZ6dXNzg6+vb/l/MRER1WgMwqjKGjMGiIwELl4EGjcufQBWXNJ9dnY2ANPlJ8qr0CsREZExDMKoSmvQoGyjX6XZCLy48hNEREQVgUEYVUv6I2DGVj7qHjNXfoKIiKgiMAijas/YykcARldDMvgiIqLKwiCMqjVjKx937uwLSYLJ1ZD6WH6CiIgqAoMwqtaMb7xtAyGUR3RXQw4YMACenp4AWH6CiIgqDoMwqtaMrXwENIqRMEC5GtLT05MlKYiIqMIZliQnqka0Kx8lqajqqyRp0K/fboNjXA1JRESVjSNhVO2ZWvnI1ZBERGRJDMKoWtJPpje28TY34yYiIktiEEbVknYjcN16YWq1Glu2bCn2s1wNSURElUESQn+dGFUVOTk5UKlUUKvVcHV1tXR3Hllx2whVxkrEqtAHIiKq3kr695sjYVQpSrqNUExMTIUGQQywiIioquDqSKoU5kafytKOiIjI2jEIIyIiIrIABmFEREREFsAgjIiIiMgCmJhPFqFWuyArywPu7pllrtWlu9IxNdUGKSm1EBT0AH5+RZXwudKRiIiqMgZhVOlOnmyHXbv6QggbecugkJBTpbqG7mpLc9er6NWWREREZcXpSKpUarWLHDABRZto79rVF2q1S6muox0BK+56XG1JRERVFYMwqhTaKvRZWR5ywKQlhA2ystwV7UqquOsRERFVVZyOpEqh3Ubo0qUH+PxzAY1Gks/Z2gpMnNgbgYG1Sj116O6eCUnSKAIxSdLA3T2r3PpORERUETgSRpXGw8MDoaHeWL9egq1t0TFbW+CDDySEhnqXKXdLpcpFVNRuSFJRMr42J4wbcxMRUVXHkTCqdGPGAJGRwMWLQOPGQIMGj3a9kJBTCA6+iKwsd7i7ZzEAIyIiq8AgjCyiQQPAyamoxERa2qOXmFCpchl8ERGRVWEQRhZR2hIT164BFy4ATZo8+sgZERFRVcCcMLKIkpaYSE1NxfLl2WjYUOCZZ4CGDQWWL8+GWq0u0feUdrUlERFRZeFIGFmUuRITKlUuPv00HitXxkKIotWUGo2E6dNd8c8/n0ClAgYNGgQ3Nzej12bFfCIiqsoYhJFFFVdiorggzc3NDb6+vpXaZyIiovLA6UiyqOJKTGiDNF2sA0ZERNUBR8LI4syVmNAGafqJ+1wJSURE1o5BGFUJ5kpMsA4YERFVRwzCyCqwDhgREVU3zAkji2DpCCIiquk4EkYWod3QW1svTF9GRgZ27NhRyb0iIiKqPAzCyGLM1fAq6UgZR9SIiMhaMQijKqm4kTKAxViJiMi6MQijKosBFhERVWdMzCciIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC7C6ICwvLw9t27aFJEk4ffq04tyZM2fQuXNnODo6wt/fH8uWLTP4/LZt29C8eXM4OjqidevW2Lt3r+K8EALz5s2Dr68vnJycEBERgQsXLijaZGVlYdiwYXB1dYWbmxvGjBmD27dvl7ovREREVHNZXRA2Y8YM+Pn5GRzPyclBz5490bBhQ5w4cQJvvfUWFixYgPXr18ttjh49iqFDh2LMmDE4deoU+vfvj/79++Ps2bNym2XLlmH16tVYt24dEhMTUbt2bURGRuL+/ftym2HDhuGPP/5AfHw8du/ejR9++AHjxo0rVV+qk2vXgMOHi/5JREREJSSsyN69e0Xz5s3FH3/8IQCIU6dOyefef/99UbduXZGXlycfmzlzpmjWrJn8ftCgQaJPnz6Ka4aFhYkXX3xRCCGERqMRPj4+4q233pLPZ2dnCwcHB/Hll18KIYT4888/BQBx/Phxuc2+ffuEJEnin3/+KXFfSkKtVgsAQq1Wl+pzlSEjI0OkpqaKt9++JWxsNAIQwsZGI95++5ZITU0VGRkZlu4iERGRRZT077fVjIRdv34dL7zwAj7//HM4OzsbnE9ISECXLl0U29hERkYiKSkJt27dkttEREQoPhcZGYmEhAQAQEpKCtLT0xVtVCoVwsLC5DYJCQlwc3ND+/bt5TYRERGwsbFBYmJiiftiTF5eHnJychSvqigzMxNr1qzBW299ienTXaHRSAAAjUbC9OmueOutL7FmzRpkZmZauKdERERVl1UEYUIIjBo1CuPHj1cEP7rS09Ph7e2tOKZ9n56ebraN7nndz5lqU69ePcX5WrVqwd3dvdjv0f0OY5YsWQKVSiW//P39TbatTPrTjdqthLKyPKAfxwthg6wsd0U7IiIiMmTRIGzWrFmQJMns6/z583j33XeRm5uL2bNnW7K7FW727NlQq9Xy6+rVq5buEj7+GGjYEHjmmaJ/fvwxkJ2dDQBwd8+EJGkU7SVJA3f3LAv0lIiIyLpYdO/IadOmYdSoUWbbNGrUCIcOHUJCQgIcHBwU59q3b49hw4Zhw4YN8PHxwfXr1xXnte99fHzkfxpro3tee8zX11fRpm3btnKbGzduKK7x4MEDZGVlFfs9ut9hjIODg8E9WkpmZiYuXXqAcePq6Uw3AuPGCUyevA8qFZCc3BhCPPyMJGkQFbUbKlWuhXpNRERkPSwahHl5ecHLy6vYdqtXr8brr78uv09NTUVkZCS2bNmCsLAwAEB4eDjmzJmDgoIC2NnZAQDi4+PRrFkz1K1bV25z8OBBxMbGyteKj49HeHg4ACAoKAg+Pj44ePCgHHTl5OQgMTERL730knyN7OxsnDhxAqGhoQCAQ4cOQaPRlKovVZk25yslJRAazUjFOY1Gkqcbd+3qC93BVCGA4OCLldlVIiIiq2UVOWEBAQFo1aqV/GratCkAIDg4GA0aNAAAPPvss7C3t8eYMWPwxx9/YMuWLVi1ahWmTp0qX2fy5MnYv38/li9fjvPnz2PBggX49ddfERMTAwCQJAmxsbF4/fXXsXPnTvz+++8YMWIE/Pz80L9/fwBAixYt0KtXL7zwwgs4duwYfv75Z8TExGDIkCFy6YyS9KUq0+ZymZtuNJYPBjzMByMiIiLzrCIIKwmVSoXvvvsOKSkpCA0NxbRp0zBv3jxF/a6OHTti06ZNWL9+Pdq0aYOvvvoK33zzDVq1aiW3mTFjBiZOnIhx48bhiSeewO3bt7F//344OjrKbTZu3IjmzZuje/fu+Ne//oVOnTopaoCVpC/WQKXKRVTUbjkQ051uZD4YERHRo5GE0M3qoaokJycHKpUKarUarq6ulfa9aWlpiqBSrXZBVpY73N2zFPleJ0+2w65dfSGEjRyghYScks+PGzdOkVtHRERUE5T077dFc8LIOqhUuUaT7UNCTiE4+KLRAA2Aok4aERERKTEIo0diKkAbPHgwPDw8LNAjIiIi61BtcsKoalGpVJbuAhERUZXGIIwqBKciiYiIzON0JBkoaQA1ePBgoyNe9vb2nIokIiIqBoMwMuDh4YGYmBizez8y0CIiIno0DMLIKAZYREREFYs5YUREREQWwCCMiIiIyAIYhBERERFZAIMwIiIiIgtgEEZERERkAQzCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsCK+TVEZmYmtyEiIiKqQhiE1QCZmZlYs2ZNse1iYmIYiBEREVUSTkfWAOZGwMrSjoiIiB4dgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjIiIisgAGYUREREQWwCCsBrC3t1e8V6tdkJISCLXaxWw7IiIiqjgs1loDeHh4ICYmBvn5+di0yQmvvaaCRiPBxkZg2TI1nn32HivmExERVTJJCCEs3QkyLicnByqVCmq1Gq6uro98vWvXgIYNAY3m4TFbW+DSJaBBg0e+PBEREaHkf785HVmDXLigDMAAoLAQuHjRMv0hIiKqyRiE1SBNmgA2ev/GbW2Bxo0t0x8iIqKajEFYDdKgAbB+fVHgBRT984MPOBVJRERkCUzMr2HGjAEiI4umIBs3ZgBGRERkKQzCaqAGDRh8ERERWRqnI4mIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjIiIisgDuHVmFCSEAADk5ORbuCREREZWU9u+29u+4KQzCqrDc3FwAgL+/v4V7QkRERKWVm5sLlUpl8rwkigvTyGI0Gg1SU1Ph4uICSZJK9JmcnBz4+/vj6tWrcHV1reAeVl18DkX4HPgMtPgcivA58BloVeRzEEIgNzcXfn5+sLExnfnFkbAqzMbGBg0aNCjTZ11dXWv0/7i0+ByK8DnwGWjxORThc+Az0Kqo52BuBEyLiflEREREFsAgjIiIiMgCGIRVMw4ODpg/fz4cHBws3RWL4nMowufAZ6DF51CEz4HPQKsqPAcm5hMRERFZAEfCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsAgzAqsXbsWjz/+uFxQLjw8HPv27ZPP379/HxMmTICHhwfq1KmD6OhoXL9+XXGNK1euoE+fPnB2dka9evUwffp0PHjwoLJvpdwsXboUkiQhNjZWPlZTnsOCBQsgSZLi1bx5c/l8TXkO//zzD5577jl4eHjAyckJrVu3xq+//iqfF0Jg3rx58PX1hZOTEyIiInDhwgXFNbKysjBs2DC4urrCzc0NY8aMwe3btyv7VsosMDDQ4HdBkiRMmDABQM35XSgsLMTcuXMRFBQEJycnBAcHY9GiRYp9+2rC70Nubi5iY2PRsGFDODk5oWPHjjh+/Lh8vjo+gx9++AFRUVHw8/ODJEn45ptvFOfL657PnDmDzp07w9HREf7+/li2bFn53ICgKm/nzp1iz5494q+//hJJSUnilVdeEXZ2duLs2bNCCCHGjx8v/P39xcGDB8Wvv/4qOnToIDp27Ch//sGDB6JVq1YiIiJCnDp1Suzdu1d4enqK2bNnW+qWHsmxY8dEYGCgePzxx8XkyZPl4zXlOcyfP1889thjIi0tTX7dvHlTPl8TnkNWVpZo2LChGDVqlEhMTBR///23+Pbbb8XFixflNkuXLhUqlUp888034rfffhP9+vUTQUFB4t69e3KbXr16iTZt2ohffvlF/Pjjj6Jx48Zi6NChlrilMrlx44bi9yA+Pl4AEIcPHxZC1IzfBSGEWLx4sfDw8BC7d+8WKSkpYtu2baJOnTpi1apVcpua8PswaNAg0bJlS3HkyBFx4cIFMX/+fOHq6iquXbsmhKiez2Dv3r1izpw5YseOHQKA+PrrrxXny+Oe1Wq18Pb2FsOGDRNnz54VX375pXBychIffPDBI/efQZiVqlu3rvjoo49Edna2sLOzE9u2bZPPnTt3TgAQCQkJQoiiX1IbGxuRnp4ut1m7dq1wdXUVeXl5ld73R5GbmyuaNGki4uPjRdeuXeUgrCY9h/nz54s2bdoYPVdTnsPMmTNFp06dTJ7XaDTCx8dHvPXWW/Kx7Oxs4eDgIL788kshhBB//vmnACCOHz8ut9m3b5+QJEn8888/Fdf5CjR58mQRHBwsNBpNjfldEEKIPn36iNGjRyuODRgwQAwbNkwIUTN+H+7evStsbW3F7t27FcdDQkLEnDlzasQz0A/Cyuue33//fVG3bl3F/yZmzpwpmjVr9sh95nSklSksLMTmzZtx584dhIeH48SJEygoKEBERITcpnnz5ggICEBCQgIAICEhAa1bt4a3t7fcJjIyEjk5Ofjjjz8q/R4exYQJE9CnTx/F/QKocc/hwoUL8PPzQ6NGjTBs2DBcuXIFQM15Djt37kT79u3xn//8B/Xq1UO7du3w4YcfyudTUlKQnp6ueA4qlQphYWGK5+Dm5ob27dvLbSIiImBjY4PExMTKu5lykp+fjy+++AKjR4+GJEk15ncBADp27IiDBw/ir7/+AgD89ttv+Omnn9C7d28ANeP34cGDBygsLISjo6PiuJOTE3766aca8Qz0ldc9JyQkoEuXLrC3t5fbREZGIikpCbdu3XqkPnIDbyvx+++/Izw8HPfv30edOnXw9ddfo2XLljh9+jTs7e3h5uamaO/t7Y309HQAQHp6uuL/ZLXnteesxebNm3Hy5ElFjoNWenp6jXkOYWFhiIuLQ7NmzZCWloaFCxeic+fOOHv2bI15Dn///TfWrl2LqVOn4pVXXsHx48cxadIk2NvbY+TIkfJ9GLtP3edQr149xflatWrB3d3dap6Drm+++QbZ2dkYNWoUgJr1v4lZs2YhJycHzZs3h62tLQoLC7F48WIMGzYMAGrE74OLiwvCw8OxaNEitGjRAt7e3vjyyy+RkJCAxo0b14hnoK+87jk9PR1BQUEG19Ceq1u3bpn7yCDMSjRr1gynT5+GWq3GV199hZEjR+LIkSOW7laluXr1KiZPnoz4+HiD/9KrabT/dQ8Ajz/+OMLCwtCwYUNs3boVTk5OFuxZ5dFoNGjfvj3eeOMNAEC7du1w9uxZrFu3DiNHjrRw7yzj448/Ru/eveHn52fprlS6rVu3YuPGjdi0aRMee+wxnD59GrGxsfDz86tRvw+ff/45Ro8ejfr168PW1hYhISEYOnQoTpw4YemukQmcjrQS9vb2aNy4MUJDQ7FkyRK0adMGq1atgo+PD/Lz85Gdna1of/36dfj4+AAAfHx8DFZEad9r21R1J06cwI0bNxASEoJatWqhVq1aOHLkCFavXo1atWrB29u7RjwHY9zc3NC0aVNcvHixxvw++Pr6omXLlopjLVq0kKdltfdh7D51n8ONGzcU5x88eICsrCyreQ5aly9fxoEDBzB27Fj5WE35XQCA6dOnY9asWRgyZAhat26N4cOHY8qUKViyZAmAmvP7EBwcjCNHjuD27du4evUqjh07hoKCAjRq1KjGPANd5XXPFfm/EwZhVkqj0SAvLw+hoaGws7PDwYMH5XNJSUm4cuUKwsPDAQDh4eH4/fffFb9o8fHxcHV1NfhDVlV1794dv//+O06fPi2/2rdvj2HDhsk/14TnYMzt27eRnJwMX1/fGvP78NRTTyEpKUlx7K+//kLDhg0BAEFBQfDx8VE8h5ycHCQmJiqeQ3Z2tmKU4NChQ9BoNAgLC6uEuyg/n376KerVq4c+ffrIx2rK7wIA3L17FzY2yj9ntra20Gg0AGre70Pt2rXh6+uLW7du4dtvv8W///3vGvcMgPL79x4eHo4ffvgBBQUFcpv4+Hg0a9bskaYiAbBEhTWYNWuWOHLkiEhJSRFnzpwRs2bNEpIkie+++04IUbQMPSAgQBw6dEj8+uuvIjw8XISHh8uf1y5D79mzpzh9+rTYv3+/8PLysrpl6Pp0V0cKUXOew7Rp08T3338vUlJSxM8//ywiIiKEp6enuHHjhhCiZjyHY8eOiVq1aonFixeLCxcuiI0bNwpnZ2fxxRdfyG2WLl0q3NzcxP/+9z9x5swZ8e9//9vo0vR27dqJxMRE8dNPP4kmTZpU6eX4xhQWFoqAgAAxc+ZMg3M14XdBCCFGjhwp6tevL5eo2LFjh/D09BQzZsyQ29SE34f9+/eLffv2ib///lt89913ok2bNiIsLEzk5+cLIarnM8jNzRWnTp0Sp06dEgDEO++8I06dOiUuX74shCife87Ozhbe3t5i+PDh4uzZs2Lz5s3C2dmZJSpqitGjR4uGDRsKe3t74eXlJbp37y4HYEIIce/ePfHf//5X1K1bVzg7O4v/9//+n0hLS1Nc49KlS6J3797CyclJeHp6imnTpomCgoLKvpVypR+E1ZTnMHjwYOHr6yvs7e1F/fr1xeDBgxX1sWrKc9i1a5do1aqVcHBwEM2bNxfr169XnNdoNGLu3LnC29tbODg4iO7du4ukpCRFm8zMTDF06FBRp04d4erqKp5//nmRm5tbmbfxyL799lsBwODehKg5vws5OTli8uTJIiAgQDg6OopGjRqJOXPmKEoK1ITfhy1btohGjRoJe3t74ePjIyZMmCCys7Pl89XxGRw+fFgAMHiNHDlSCFF+9/zbb7+JTp06CQcHB1G/fn2xdOnScum/JIROSWEiIiIiqhTMCSMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjomrl6aefRmxsrKW7UeEWLFiAtm3bWrobRPQIGIQREVUh+fn5lfp9Qgg8ePCgUr+TiIowCCOiamPUqFE4cuQIVq1aBUmSIEkSLl26hLNnz6J3796oU6cOvL29MXz4cGRkZMife/rppzFx4kTExsaibt268Pb2xocffog7d+7g+eefh4uLCxo3box9+/bJn/n+++8hSRL27NmDxx9/HI6OjujQoQPOnj2r6NNPP/2Ezp07w8nJCf7+/pg0aRLu3Lkjnw8MDMSiRYswYsQIuLq6Yty4cQCAmTNnomnTpnB2dkajRo0wd+5cFBQUAADi4uKwcOFC/Pbbb/J9xsXF4dKlS5AkCadPn5avn52dDUmS8P333yv6vW/fPoSGhsLBwQE//fQTNBoNlixZgqCgIDg5OaFNmzb46quvyvtfERHpYBBGRNXGqlWrEB4ejhdeeAFpaWlIS0uDi4sLnnnmGbRr1w6//vor9u/fj+vXr2PQoEGKz27YsAGenp44duwYJk6ciJdeegn/+c9/0LFjR5w8eRI9e/bE8OHDcffuXcXnpk+fjuXLl+P48ePw8vJCVFSUHCwlJyejV69eiI6OxpkzZ7Blyxb89NNPiImJUVzj7bffRps2bXDq1CnMnTsXAODi4oK4uDj8+eefWLVqFT788EOsWLECADB48GBMmzYNjz32mHyfgwcPLtWzmjVrFpYuXYpz587h8ccfx5IlS/DZZ59h3bp1+OOPPzBlyhQ899xzOHLkSKmuS0SlUC7bgBMRVRFdu3YVkydPlt8vWrRI9OzZU9Hm6tWrAoBISkqSP9OpUyf5/IMHD0Tt2rXF8OHD5WNpaWkCgEhISBBCCHH48GEBQGzevFluk5mZKZycnMSWLVuEEEKMGTNGjBs3TvHdP/74o7CxsRH37t0TQgjRsGFD0b9//2Lv66233hKhoaHy+/nz54s2bdoo2qSkpAgA4tSpU/KxW7duCQDi8OHDin5/8803cpv79+8LZ2dncfToUcX1xowZI4YOHVps34iobGpZMgAkIqpov/32Gw4fPow6deoYnEtOTkbTpk0BAI8//rh83NbWFh4eHmjdurV8zNvbGwBw48YNxTXCw8Pln93d3dGsWTOcO3dO/u4zZ85g48aNchshBDQaDVJSUtCiRQsAQPv27Q36tmXLFqxevRrJycm4ffs2Hjx4AFdX11Lfvym633nx4kXcvXsXPXr0ULTJz89Hu3btyu07iUiJQRgRVWu3b99GVFQU3nzzTYNzvr6+8s92dnaKc5IkKY5JkgQA0Gg0pfruF198EZMmTTI4FxAQIP9cu3ZtxbmEhAQMGzYMCxcuRGRkJFQqFTZv3ozly5eb/T4bm6IMEyGEfEw7NapP9ztv374NANizZw/q16+vaOfg4GD2O4mo7BiEEVG1Ym9vj8LCQvl9SEgItm/fjsDAQNSqVf7/l/fLL7/IAdWtW7fw119/ySNcISEh+PPPP9G4ceNSXfPo0aNo2LAh5syZIx+7fPmyoo3+fQKAl5cXACAtLU0ewdJN0jelZcuWcHBwwJUrV9C1a9dS9ZWIyo6J+URUrQQGBiIxMRGXLl1CRkYGJkyYgKysLAwdOhTHjx9HcnIyvv32Wzz//PMGQUxZvPbaazh48CDOnj2LUaNGwdPTE/379wdQtMLx6NGjiImJwenTp3HhwgX873//M0jM19ekSRNcuXIFmzdvRnJyMlavXo2vv/7a4D5TUlJw+vRpZGRkIC8vD05OTujQoYOccH/kyBG8+uqrxd6Di4sLXn75ZUyZMgUbNmxAcnIyTp48iXfffRcbNmwo87MhIvMYhBFRtfLyyy/D1tYWLVu2hJeXF/Lz8/Hzzz+jsLAQPXv2ROvWrREbGws3Nzd5+u5RLF26FJMnT0ZoaCjS09Oxa9cu2NvbAyjKMzty5Aj++usvdO7cGe3atcO8efPg5+dn9pr9+vXDlClTEBMTg7Zt2+Lo0aPyqkmt6Oho9OrVC926dYOXlxe+/PJLAMAnn3yCBw8eIDQ0FLGxsXj99ddLdB+LFi3C3LlzsWTJErRo0QK9evXCnj17EBQUVIanQkQlIQnd5AEiIiqR77//Ht26dcOtW7fg5uZm6e4QkRXiSBgRERGRBTAIIyIiIrIATkcSERERWQBHwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILOD/A1M3HSEaHErLAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPs0lEQVR4nO3deVxU9f4/8NewigijLLIEAgJXr6ZeQTOy1NQCv2r508rylmuaBprZdcubaYtLqbllVtelvFreUuuqWVqZZZqVSupNSbyQG7gMOaAmIHN+f3BnYoAZZjtzttfz8eChzBxmPjMM57zO5/P+fI5OEAQBRERERBrgI3UDiIiIiLyFwYeIiIg0g8GHiIiINIPBh4iIiDSDwYeIiIg0g8GHiIiINIPBh4iIiDSDwYeIiIg0g8GHiIiINIPBh4hIhtauXQudTofCwkKpm0KkKgw+RBr1ww8/ICcnB23btkVwcDBatGiBhx56CL/88kudbXv06AGdTgedTgcfHx+EhoaiVatWeOyxx7Br1y6nnnfr1q3o3r07mjdvjsaNG6Nly5Z46KGH8Omnn3rqpdUxZ84cfPTRR3Vu37dvH2bNmoUrV66I9ty1zZo1y/Je6nQ6NG7cGG3atMHf//53lJaWeuQ5NmzYgMWLF3vksYjUhsGHSKPmz5+PTZs2oVevXliyZAnGjBmDr7/+GmlpaTh27Fid7ePi4rBu3Tq8++67ePXVV3Hfffdh3759uPfeezF48GBUVlY2+JwLFizAfffdB51Oh+nTp+O1117DoEGDcPLkSbz//vtivEwA9oPP7NmzvRp8zN544w2sW7cOixYtQuvWrfHyyy8jKysLnrh8IoMPkW1+UjeAiKQxadIkbNiwAQEBAZbbBg8ejHbt2mHevHn45z//abW9Xq/Ho48+anXbvHnzMGHCBKxYsQKJiYmYP3++zee7efMmXnzxRdxzzz3YuXNnnfsvXrzo5iuSj+vXr6Nx48Z2t3nggQcQEREBABg7diwGDRqEzZs347vvvkNGRoY3mkmkSezxIdKoO+64wyr0AEBqairatm2L48ePO/QYvr6+WLp0Kdq0aYPly5fDaDTa3Pby5csoLS1F165d672/efPmVt/fuHEDs2bNwp/+9Cc0atQIMTExGDhwIE6dOmXZZsGCBbjjjjsQHh6OoKAgpKen48MPP7R6HJ1Oh2vXruGdd96xDC8NHz4cs2bNwuTJkwEASUlJlvtq1tT885//RHp6OoKCghAWFoaHH34YZ86csXr8Hj164NZbb8XBgwfRrVs3NG7cGM8++6xD719NPXv2BAAUFBTY3W7FihVo27YtAgMDERsbi+zsbKseqx49emD79u349ddfLa8pMTHR6fYQqRV7fIjIQhAEXLhwAW3btnX4Z3x9ffHII4/gueeew969e9G3b996t2vevDmCgoKwdetWjB8/HmFhYTYfs6qqCv369cMXX3yBhx9+GE899RTKysqwa9cuHDt2DMnJyQCAJUuW4L777sNf//pXVFRU4P3338eDDz6Ibdu2Wdqxbt06PP7447jtttswZswYAEBycjKCg4Pxyy+/4L333sNrr71m6X2JjIwEALz88st47rnn8NBDD+Hxxx/HpUuXsGzZMnTr1g2HDx9G06ZNLe01GAzo06cPHn74YTz66KOIiopy+P0zMwe68PBwm9vMmjULs2fPRu/evTFu3Djk5eXhjTfewA8//IBvv/0W/v7+mDFjBoxGI86ePYvXXnsNANCkSROn20OkWgIR0f+sW7dOACCsWrXK6vbu3bsLbdu2tflzW7ZsEQAIS5Yssfv4M2fOFAAIwcHBQp8+fYSXX35ZOHjwYJ3tVq9eLQAQFi1aVOc+k8lk+f/169et7quoqBBuvfVWoWfPnla3BwcHC8OGDavzWK+++qoAQCgoKLC6vbCwUPD19RVefvllq9uPHj0q+Pn5Wd3evXt3AYCwcuVKm6+7pueff14AIOTl5QmXLl0SCgoKhDfffFMIDAwUoqKihGvXrgmCIAhr1qyxatvFixeFgIAA4d577xWqqqosj7d8+XIBgLB69WrLbX379hUSEhIcag+R1nCoi4gAACdOnEB2djYyMjIwbNgwp37W3KNQVlZmd7vZs2djw4YN6NixIz777DPMmDED6enpSEtLsxpe27RpEyIiIjB+/Pg6j6HT6Sz/DwoKsvz/t99+g9FoxF133YVDhw451f7aNm/eDJPJhIceegiXL1+2fEVHRyM1NRW7d++22j4wMBAjRoxw6jlatWqFyMhIJCUl4YknnkBKSgq2b99uszbo888/R0VFBSZOnAgfnz923aNHj0ZoaCi2b9/u/Asl0iAOdRERiouL0bdvX+j1enz44Yfw9fV16uevXr0KAAgJCWlw20ceeQSPPPIISktLceDAAaxduxYbNmxA//79cezYMTRq1AinTp1Cq1at4Odnfxe1bds2vPTSS8jNzUV5ebnl9prhyBUnT56EIAhITU2t935/f3+r72+55ZY69VIN2bRpE0JDQ+Hv74+4uDjL8J0tv/76K4DqwFRTQEAAWrZsabmfiOxj8CHSOKPRiD59+uDKlSv45ptvEBsb6/RjmKe/p6SkOPwzoaGhuOeee3DPPffA398f77zzDg4cOIDu3bs79PPffPMN7rvvPnTr1g0rVqxATEwM/P39sWbNGmzYsMHp11CTyWSCTqfDjh076g2BtWtmavY8Oapbt26WuiIi8h4GHyINu3HjBvr3749ffvkFn3/+Odq0aeP0Y1RVVWHDhg1o3Lgx7rzzTpfa0alTJ7zzzjsoKioCUF18fODAAVRWVtbpXTHbtGkTGjVqhM8++wyBgYGW29esWVNnW1s9QLZuT05OhiAISEpKwp/+9CdnX44oEhISAAB5eXlo2bKl5faKigoUFBSgd+/eltvc7fEiUjPW+BBpVFVVFQYPHoz9+/fjgw8+cGntmKqqKkyYMAHHjx/HhAkTEBoaanPb69evY//+/fXet2PHDgB/DOMMGjQIly9fxvLly+tsK/xvgT9fX1/odDpUVVVZ7issLKx3ocLg4OB6FykMDg4GgDr3DRw4EL6+vpg9e3adBQUFQYDBYKj/RYqod+/eCAgIwNKlS63atGrVKhiNRqvZdMHBwXaXFiDSMvb4EGnUM888g3//+9/o378/SkpK6ixYWHuxQqPRaNnm+vXryM/Px+bNm3Hq1Ck8/PDDePHFF+0+3/Xr13HHHXfg9ttvR1ZWFuLj43HlyhV89NFH+OabbzBgwAB07NgRADB06FC8++67mDRpEr7//nvcdddduHbtGj7//HM8+eSTuP/++9G3b18sWrQIWVlZGDJkCC5evIjXX38dKSkpOHLkiNVzp6en4/PPP8eiRYsQGxuLpKQkdOnSBenp6QCAGTNm4OGHH4a/vz/69++P5ORkvPTSS5g+fToKCwsxYMAAhISEoKCgAFu2bMGYMWPwt7/9za3331mRkZGYPn06Zs+ejaysLNx3333Iy8vDihUr0LlzZ6vfV3p6OjZu3IhJkyahc+fOaNKkCfr37+/V9hLJlpRTyohIOuZp2La+7G3bpEkTITU1VXj00UeFnTt3OvR8lZWVwttvvy0MGDBASEhIEAIDA4XGjRsLHTt2FF599VWhvLzcavvr168LM2bMEJKSkgR/f38hOjpaeOCBB4RTp05Ztlm1apWQmpoqBAYGCq1btxbWrFljmS5e04kTJ4Ru3boJQUFBAgCrqe0vvviicMsttwg+Pj51prZv2rRJuPPOO4Xg4GAhODhYaN26tZCdnS3k5eVZvTf2pvrXZm7fpUuX7G5Xezq72fLly4XWrVsL/v7+QlRUlDBu3Djht99+s9rm6tWrwpAhQ4SmTZsKADi1nagGnSB44MIwRERERArAGh8iIiLSDAYfIiIi0gwGHyIiItIMBh8iIiLSDAYfIiIi0gzFBJ+5c+eic+fOCAkJQfPmzTFgwADk5eVZbXPjxg1kZ2cjPDwcTZo0waBBg3DhwgWJWkxERERyo5jp7FlZWXj44YfRuXNn3Lx5E88++yyOHTuGn3/+2bL66rhx47B9+3asXbsWer0eOTk58PHxwbfffuvw85hMJpw/fx4hISFc9p2IiEghBEFAWVkZYmNj4eNjp19H0lWE3HDx4kUBgLBnzx5BEAThypUrgr+/v/DBBx9Ytjl+/LgAQNi/f7/Dj3vmzBm7i7rxi1/84he/+MUv+X6dOXPG7nFesZesMF+HJiwsDABw8OBBVFZWWl2or3Xr1mjRogX279+P22+/vd7HKS8vR3l5ueV74X8dYGfOnLF73SEiIiKSj9LSUsTHxyMkJMTudooMPiaTCRMnTkTXrl1x6623AgCKi4sREBCApk2bWm0bFRWF4uJim481d+5czJ49u87toaGhDD5EREQK01CZimKKm2vKzs7GsWPH8P7777v9WNOnT4fRaLR8nTlzxgMtJCIiIjlSXI9PTk4Otm3bhq+//hpxcXGW26Ojo1FRUYErV65Y9fpcuHAB0dHRNh8vMDAQgYGBYjaZiIiIZEIxPT6CICAnJwdbtmzBl19+iaSkJKv709PT4e/vjy+++MJyW15eHk6fPo2MjAxvN5eIiIhkSDE9PtnZ2diwYQM+/vhjhISEWOp29Ho9goKCoNfrMWrUKEyaNAlhYWEIDQ3F+PHjkZGRYbOwmYiIiLRFMev42CpWWrNmDYYPHw6gegHDZ555Bu+99x7Ky8uRmZmJFStW2B3qqq20tBR6vR5Go5HFzURERArh6PFbMcHHWxh8iIiIlMfR47dianyIiIiI3MXgQ0RERJrB4ENERESaweBDREREmqGY6exE7jIYDKioqLB5f0BAAMLDw73YIiIi8jYGH9IEg8GA5cuXW743GkNQUhKOsDAD9Poyy+05OTkMP0REKsbgQ5pQs6fn0KGO2Lq1HwTBBzqdCf37b0Na2uE62xERkfow+IiIQyvyYzSGWEIPAAiCD7Zu7Yfk5Hyrnh8iIlInBh+R1B5asYVDK95VUhJuCT1mguCDkpIwBh8iIg3grC6RODpkwqEV7woLM0CnM1ndptOZEBZWIlGLiIjImxh8SFP0+jL077/NEn7MNT7s7SEi0gYOdZHmpKUdRnJyPkpKwhAWVsLQQ0SkIQw+pEl6fRkDDxGRBnGoy0uMxhAUFCTCaAyRuimaFBAQ4NHtiIhImdjj4wX21o0h57myTEB4eDhycnK4vIBIuHQDESkFg4/IuG6MZ7mzTAAPvOLgqthEpCQMPiIxD5k0tG4Mh1acw2UC5IerYhORkjD4iMQ8tFJYeBPr1gkwmXSW+3x9BYwf3weJiX48A3aTrd4F8j72bhKREjD4iCg8PBzh4cBbbwFPPAFUVQG+vsCbb+qQnh4ldfMUz1u1U1qrX3H19XJVbCJSAgYfLxg1CsjMBPLzgZQUIC5O6hYpn7d6F7R26RF3Xq95Veya4YerYhOR3DD4eElcHAOPJ3mrd0HpNUXO9t6483rNq2LX7oVjbw8RyQmDDymSVL0LSqop8kRvlbOvl6tiE5HcMfiQIknRu6C09Zjc7a1y9fXaWhX78uXLNn9GbXVSRCRfDD6kKDWn/9vrXfD0MgFqmLHkTO+NM6/X0fd68+bNdu9XS52UXHmjSF9rEwFImRh8yGlS7txqrsBsNBpRWVlZZxs/Pz9UVFTAYDB4rB1Kn7HkbO+NM6+3oVWxL1++3GDoAeRbJ6UG3ijS50KWpBQMPuQUOcxyCg8Ph8FgwMaNG73WDiXPWHKlt8rZ1+vMe6ykOim1qB0qbf0O3AmfXMiSlILBh5wil1lO3tiR16TkGUuu9FaJ9XqVVielRmL/DtQwLEzqxuBDbpHD2buYO3KpaopscWWY0ZneGzFfLw+I0vPG70Dpw8Kkfgw+5DI5nL2LvSOX01XdXR1mdKb3RszXywOiY8SsofPG70DJw8KkDQw+KiBFsbFczt69sSOXSyGms8OMrvbeiPV6eUBsmNg1dN74HSh5WJi0gcFH4aQqNpbL2TsPprbJqbcK4AHREWLX0HnrdyDXhSw53Z4ABh/Fk6rYWC6BQ8sHU0fqq9zZiXvqICG3OiklEaOGzluhxNZCllKRw4xUkgcGH5URq9jYfBA0r74rp8Ah17NLMYldX+XJg4Tcep6UwpO/49qh0lYocSd8OvqzUgVcucxIJekx+KiIWAdDWwdBKc/evbEjlytv1Fd5+iDBUOMcT/+OvRE+lRZw5TAjlaTB4KMSYh4M7e3IagaOgQMHIiIiwis7N6XtZD1JivoqHiS8S4zfsTf+FpTy9yaHGalKoNaaKAYflfDmwdDWQTAiIgIxMTEefS57lPgH5wnerq/iQcL75FJDp0ZymZHqSWIEFDVfgoTBRyW8taPkQVA65mG7huqrPDm8p8aDhBLIqYZOap4+qMtlRqqniFW0reZLkDD4qIQ3dpQ8CEqr9vDezJmXUFjoh8TEm4iN7Qygs8e7ntV2kJA7zoCzJsZBXW29aWIXbatxv8/go3De3FHyIPgHqca+az5mTAyQnu7xp7CitoOE3Gm5dq0+YhzU1d6b5ul6PDXu9xl8FM6bO0oeBKtpaT0QtR8k5Ejpnxm50kJvmhilCGrc7zP4qABX3vUub18ZXgpaOEiojVpn4NTkTm+G2nvTxBqSUuN+n8GHGsSDoG1qLfZW+0FCbbTQC+mJvzWlvnZHiDkkpbZFYhl8qEE8CNZPjUV/NWnt96lkau+FVPvfmieIPSQlt0uQuIPBhxzCg2Bdaiz6I+VTYy8k/9Ya5ukhKblfgsQdDD5ELlJj0R8pm1p7Rvi3Vj+DwQCj0Wj53pOlCGru6WfwIXKRGov+SNnU1jMixaKdSmGrrqv2kNRDDz2E5s2buxRQlBhqHMHgQ+QGtRX9kbKprWdEikU7lcLReq2mTZtq8v2xh8GHyEnuXBleC1OOSTpq7IX09qKdpH4MPiQLSgoEro59a2HKMUmPvZDa5OkVm9WMwYckp8RA4Eo71D7lmKTjTi8kKZ8aZ/KJicGHPM7Z3hstBgLuqMiT1DwDh+xT60w+MTH4kEe523ujhUDAHRWJgaFGm9Q2k88bfBrehMhx9fXeFBQkwmgMsbudedv6AkHtn1U6ezsqIiJnmGfy1aTkmXzewB4fEo2zvTdaOXNR25RjIvI+rnHkOgYfmVDSrCZHuDKco5VAoMYpx0TkXa6ucaS2Y40rGHxkQImzmhriSu+N1IHAmzsETjkmUjY5BAhn1zhS47HGFQw+MuDobCUlzWpytfdGqkDgjR0CpxwTqYNSA4QWZ9DWh8GHROFM740cAoE3dgicckxaJ4deEk9QQ4DQwgxaWxh8ZEgtK3A62nsjt0Ag5g5BCTt1IjHU7iWxtZ+TWy9JQ5QYILS+pAaDj8wo8Y+oJld7b+Syo9P6DoFILDVPbOzt5+TcS1Kbt/cXnuox08oMWlsYfGREDQddufXeOEvrOwStceZAUnPb8+d9UFDgh6Skm4iNNdXZlmxTw37OzJv7C0/WFWllBq0tDD4yopaDrpx3/rYOdJcvXwbAHYJceKMWxJmhFwCWbe31VihtmEYKatnPAd7dX3iyrkjqGbRSY/CRER50xeXIGZPWdwhy4K1aEFeGXhrqrVDSMI1UvLWf80Z4lmp/4YmSCC0vqcHgIwNcgdM7HD1j0vIOQQ68XQvizNCLmnorpOKNsODNQmpv7y/cGSqUwwxaOWDwkQFXV+Ak1zV0xqTVHYKceKsWxJkww15ZzxA7LIgdnqUMEO6Eb6XXYHoKg49MOLsCJ7muoQPqwIEDERERUefntLBDkBNv9a44E2Y4FOo5tsKCJ4kVnqUMEO6Gb+7DGHxIgxo6oEZERCAmJkai1pGZt3pXnA0zHAp1jaO9H57sJREzPEsVIBi+3afK4PP666/j1VdfRXFxMTp06IBly5bhtttuk7pZJBMcrlAGb+7gnQ0z3uitUBspeknU+rfO8O0e1QWfjRs3YtKkSVi5ciW6dOmCxYsXIzMzE3l5eWjevLnUzbNJLUu5KwHPmJRDrB28wWCwLGFgxjAjPm/vw9T0t87CZM9RXfBZtGgRRo8ejREjRgAAVq5cie3bt2P16tWYNm2axK2rn1IveOcoOYY6njEph6cDiaMzfsycOZDwoCM/Svlbd2Q/ycJkz1BV8KmoqMDBgwcxffp0y20+Pj7o3bs39u/fX+/PlJeXo7y83PJ9aWmp6O2sTY1XZzeTU6jjGZMyiF0L4uiMn4EDByI2NtbyueRBR7nk3pvnzPR71h+6T1XB5/Lly6iqqkJUVJTV7VFRUThx4kS9PzN37lzMnj3bG81zmFouUgrI6yrGnMqpDN76PTU04yciIsLqOfi5UA4pCqndocbrmMmZqoKPK6ZPn45JkyZZvi8tLUV8fLxk7VH6RUrtkcNr48FLGbzxe+JihOql1JMcNV3HTM5UFXwiIiLg6+uLCxcuWN1+4cIFREdH1/szgYGBCAwM9EbzGqTmD72aXxspk1pn/FA1uYUaRzCMe4dPw5soR0BAANLT0/HFF19YbjOZTPjiiy+QkZEhYcscY+9Dr3Rqfm2kTOYZPzpd9dXVlTzjh9TBHMZrYhj3PFX1+ADApEmTMGzYMHTq1Am33XYbFi9ejGvXrllmecmZms9A1fzaSLmUMuNHa2rOcDp/3gcFBX5ISrqJ2NjqUCDHYSpPUNP0ezlTXfAZPHgwLl26hJkzZ6K4uBh/+ctf8Omnn9YpeJYjNX/o1fzaSNnkPuNHa2rOcLJXF6jU5T0awjAuPtUFH6D6DyInJ0fqZjis5swCex96ucxAcBX/oEkOlDbjR2vMPT0N1QWqeYYTw7i4VBl8lEapMxAcwbVzSG7U/PemJloq9GUY9y4GH5lQ606WBxmSI37e5E9LdYHcT3oXgw+Jjn+sROQsrdUFcj/pPQw+REQkS6wLJDEw+JDL5HjxUSJSFxb6yosalhpg8CGXyOnio0REJD61LDXA4EMukdPFR4nIu8Ts7VXLDCc19IzUppalBhh8yG1yuPgoEXlH7d5eWyc9rp71q2GGk1p6RmxR+lIDDD7kFl58lEhbagYSewd1d876lRgGalJLz4gtSl9qgMGH3KL05E/qxeJ7cfGkp2Fq3T8qfakBBh9yi9KTP6kzILD4XnxqPah7kpr3j0peaoDBh9yi9OSvdWoNCCy+F19DB/UrV64gJiZGqubJgtr3j0pdaoDBh9ym5OSvdY4e+JUcEFh8L476Duq9e39u+fv/17/+pbjALAbuH+WHwYdcwouPqpOtnhGlYh2KuNLSDuP33xth167eEAQffP55bwQF3fBIgbOr5DiNXKk9I7WpZakBBh9yiRqmnJI1JfeM1K5Tunz5MgDWoYjNaAzB55/3BiCPYKn2aeTO8nT9nlr2+ww+5DK5f7jJcUruGbFXp6Tm4lKp1Dybl1uwlMs0cjn0jIi13pIa9vsMPkQkuwOYMxoqZFZzcakUwsPDMXjwYGzcuFG2wVLqz7Mceka8sd6SUjH4EJFsD2DOsrWDZ3GpZ+n1+v/963yw9MbyCWJ+nh1tv1x6RpTcmysWBh8iUkXPSEM7eBbfi8OZYCn25S7MxPo8e6v9niR175ccMfgQaVjNA7+9A5gSAkJDO/iBAwciIiLCcp8SijCVwtFZS94cfhGjp0+Jw0dq6c31JAYfIg2TQy2CpzS0g4+IiND8gnqe4m7xrreGX8SaRq6k4SM19OZ6GoMPkcYpIdQ4gjt473E3MCt9+EVp7bfX+2Ve+sFMKSc67mDwISLVYCGz97hzcBRr+MVb08iVOHxUX++X0RiChQsPybpGSQwMPkSkaFxFXHnE6p3z1tCtEnoXG/q8K6VGSQwMPkSkaGqqU9ISsXrnvPV7lnvvYn1/F5cvX8bmzZsVVaMkBgYfIlI8hhrXeWNdHVuUfg0rubdfrTVW7mLwISLSKHuX+6jJUzUfcriUgzuU3n4zJdYoeRKDDxGRRjV0uQ9b27lK6cOSSm+/mRJqlMTE4ENERHaLXT1J7qGgIUpvv5nca5TE5NPwJkREpGa2il2NxhCJW0Zi0uvLkJT0q6ZCD8DgQ0SkefaKXUk91FKj5C4OdZFqSTlbhUhJtF7sqhVqqVFyF4MPqZISr6JMJBWtF7tqCfd3DD6kUkq8ijKRlLRc7ErawhofUjUWbRLZVt/lPuordlV7zQdpC3t8SNW0vkKpt7CeSpnEqvng54HkjMGHVI1Fm+Lz9uq/5Fme/p3w80Byx6EuUjVz0aZOZwIAFm2KwNE6KdZTaQM/DyR37PEh1WPRpnfZmkFH2sTPA8kNgw9pgtyvoqwW3rrsASkDPw8kRxzqIlXiCqXexxl0VBM/DyRX7PEhVeIKpd7HGXRUEz8PJFcMPqRaDDXexRl0VBM/DyRXHOoiIo/gDDqqiZ8Hkiv2+JDX1Vzc7Px5HxQU+CEp6SZiY6t3kByCUpaadVL2ZtCxnkob+HkgudMJgiBI3Qg5KS0thV6vh9FoRGhoqNTNUZ2ai5vZm/HBxc2UhSv1Uk38PJAUHD1+s8eHvMq8M7Q14yM5OR96fRkXN1MYHsSoJn4eSM4YfEgSnPFBYmKPAxHZwuBDkuCMD+WSe6jgtaKIyB4GH5KEecZH7Rof9vbImxJCBa8VRUT2MPiQZHgNLeVRYqjgtaKIqCYGH5IUr6GlbHIPFbxWFBHVxuBDRC6Re6hoaOYgEWkTV24mr+LFQ9VBCRegtDdzkIi0iz0+5FViXTxU7jON1EYuyxHU93u/fPkyAM4cJKL6MfiQ13k6gNSeaWSr7oTTlz1HDqGioRlmnDlIRPVh8CHFq3nGb6/uRE4zjdwldQ+XHEKFI79PXiuKiGpj8CHV0Eoxq5Rr6cj5ApS2evpGjLgHERERVtty6JNIuxh8SDXkUncitto9HbYO+GL0cIlVo+Uuez19ERERiImJ8Wp7iEi+GHxINeRQd+JtUkwpl1tPiVZ6+ojIMzidnVTDXHei05kAQPXFrEqYUu4NnLZORM5gjw+pipYug6GVob2GaLGnj4hcxx4fUh29vgxJSb+q/uBvPuDXpMUDvtZ6+ojIPezxIcXT6mrQcphSLiU5zzAjIvli8CHFk+tMI2/Q0tBebVr+vROR6xh8SBW0dHCr3YNh6wr3Wujp0NLvnYg8g8GHSGHY00GeIPXq30RSUUTwKSwsxIsvvogvv/wSxcXFiI2NxaOPPooZM2ZYndUeOXIE2dnZ+OGHHxAZGYnx48djypQpErZcW86eBU6eBFJTgbg4qVujbjwgkTukXP2bSGqKCD4nTpyAyWTCm2++iZSUFBw7dgyjR4/GtWvXsGDBAgBAaWkp7r33XvTu3RsrV67E0aNHMXLkSDRt2hRjxoyR+BWol/msccOGIEyZoofJpIOPj4BXXjFiyJDfedZIJEOOruqtpuvbEZkpIvhkZWUhKyvL8n3Lli2Rl5eHN954wxJ81q9fj4qKCqxevRoBAQFo27YtcnNzsWjRIgYfkZjPGo3GECxePBGCoAMAmEw6TJ4cinPnVkOvL+NZI5HM2brsCZEaORx8SktLHX7Q0NBQlxrjDKPRiLCwP1Zm3b9/P7p162Y19JWZmYn58+fjt99+Q7Nmzep9nPLycpSXl1u+d+Z1ukMNw0Lms8GGFtLjWSORfElx2RM1YI2UcjkcfJo2bQqdTmd3G0EQoNPpUFVV5XbD7MnPz8eyZcssvT0AUFxcjKSkJKvtoqKiLPfZCj5z587F7NmzxWtsPVatAsaMAUwmwMcHeOstYNQorzbBo7hyLpEy8TpnrmGNlLI5HHx2797t8SefNm0a5s+fb3eb48ePo3Xr1pbvz507h6ysLDz44IMYPXq0222YPn06Jk2aZPm+tLQU8fHxbj9ufQwGAwoLb2LMmOYwmczDQsATTwj4y18uIjHRT5F/JFpfSI9IqXjZE9ewRkrZHA4+3bt39/iTP/PMMxg+fLjdbVq2bGn5//nz53H33XfjjjvuwFtvvWW1XXR0NC5cuGB1m/n76Ohom48fGBiIwMBAJ1vuPPMZQkFBIkymYVb3VVXpsGzZDiQl/arYMwQtL6RHtnE4QN7YWyuuy5cv17lN7p95LfzNulzcfOXKFaxatQrHjx8HALRt2xYjR46EXq93+DEiIyMRGRnp0Lbnzp3D3XffjfT0dKxZswY+PtZnKRkZGZgxYwYqKyvh7+8PANi1axdatWplc5jLm8wfpIZ2NEo+Q7C1kB5pE4cD5I+9tZ5hqzh88+bN9W4v18+8Vv5mXQo+P/74IzIzMxEUFITbbrsNALBo0SK8/PLL2LlzJ9LS0jzayHPnzqFHjx5ISEjAggULcOnSJct95t6cIUOGYPbs2Rg1ahSmTp2KY8eOYcmSJXjttdc82hZ3cUdDWsHhAPnidc48x5XicLl+5rXyN+tS8Hn66adx33334e2334afX/VD3Lx5E48//jgmTpyIr7/+2qON3LVrF/Lz85Gfn4+4WlOgBEEAAOj1euzcuRPZ2dlIT09HREQEZs6cKcup7BwWIi3ilGn54OrfnsHicGVyucenZugBAD8/P0yZMgWdOnXyWOPMhg8f3mAtEAC0b98e33zzjcefXwxqGBbS6lXRyXlKnDKt9loHJbddLhoqDld62Fd6+21xKfiEhobi9OnTVrOtAODMmTMICQnxSMNI/njWSI5Q4lmxVmodyD32ajaVGPZrUnr77XEp+AwePBijRo3CggULcMcddwAAvv32W0yePBmPPPKIRxtI8sadPjVEiVOma4d5W2e+Sq91oGrO9u6Ze7Ft1WwCUFzYr0mJJyvOcCn4LFiwADqdDkOHDsXNmzcBAP7+/hg3bhzmzZvn0QYSkbIpfcq0ms98ybXevdq93TNnXkJhoR9CQy9i377DKChIVFzYr0mJJyvO8Gl4k7oCAgKwZMkS/Pbbb8jNzUVubi5KSkrw2muveWVNHCViPQxplfmsWKczAYCiZjLaOvM1GjmkrxauzmQKDw9HTEwMYmJikJ4ehUGDwnHrrU0B/BH2a6oZ9o1Go/sNF1FD7Vc6ty5S2rhxY7Rr185TbVE11sOQ1qhhyrTaz3zJsxoaAjN/ZjZu3CjL+jBH2y/nv1lHuBR8bty4gWXLlmH37t24ePEiTCbrZHjo0CGPNE5t5PYhJxKTGsK+0ofpyHnuzGQKDw/HQw89hH/9618NLlsix/owW0N4iYk3ERvbGUBn2f/NOsKl4DNq1Cjs3LkTDzzwAG677bYGL15KRNqk9B0kFxzVFk/UczVt2tTyfyUuW1LzbzYmBkhPl7AxInEp+Gzbtg2ffPIJunbt6un2EBHJChcc1QaxZjKpdS0cJXMp+Nxyyy1cr4eIVKt2DYOtM3el1zrQH8So5+KMQHlyKfgsXLgQU6dOxcqVK5GQkODpNhERSUoN9UnkHE/Xc6l9LRwlcyn4dOrUCTdu3EDLli3RuHFjy9XQzUpKWPhHRMrGUKMNYs1k4oxA+XIp+DzyyCM4d+4c5syZg6ioKBY3ExGRIok1k4kzAuXLpeCzb98+7N+/Hx06dPB0e4iIiLzKkzOZtLIWjpK5FHxat26N33//3dNtISIiUjStrIWjZC4Fn3nz5uGZZ57Byy+/jHbt2tWp8QkNDfVI44hImZy96CORmmhhLRwl0wmCIDj7Qz4+1WOWtWt7BEGATqdDVVWVZ1ongdLSUuj1ehiNRgY4Ihe4ctFHIiJ3OXr8dqnHZ/fu3S43jIjUrXZPj60F3OS4ZD8RqZ9Lwad79+4Obffkk0/ihRdeQEREhCtPQ0QKxwXciEhufBrexHX//Oc/UVpaKuZTEJFM2VrAzWjkqu9EJB1Rg48L5UNEpBL2FnAjIpKKqMGHiLTLvIBbTVzAjYikxuBDRKIwL+BmDj+1F3AjIpKCS8XNRESOSEs7jOTkfJSUhCEsrIShh4gkx+BDRB5Veyl+vb6s3sDDJfuJSApOB5+bN29izpw5GDlyJOLi4uxu++ijj3IRQCIXKHnl49pL9tdHzu0nInVzaeXmkJAQHD16FImJiSI0SVpcuZmkxpWPiYicJ+rKzT179sSePXtUGXzUTsk9CVrBlY+JiMTjUvDp06cPpk2bhqNHjyI9PR3BwcFW9993330eaRzZ52yIYU+C8nDlYyIiz3Ip+Dz55JMAgEWLFtW5T+kXKVUKV0KMoz0EzvYksBdJHLZWPk5OzufsKCIiF7kUfEwmU8MbkajECjHOYi+SeOytfMzgQ1rCkyvyJJeCz7vvvovBgwcjMDDQ6vaKigq8//77GDp0qEcaR+67fPlyvf/3FLkEMDUyr3xcM/xw5WPSGp5ckae5FHxGjBiBrKwsNG/e3Or2srIyjBgxgsFHRjZv3ix1E8hF5pWPa9f4sLeHtITF/uRpLgUfQRCg0+nq3H727Fno9Xq3G0VE1bjyMdEfWOzvOA4P2uZU8OnYsSN0Oh10Oh169eoFP78/fryqqgoFBQXIysryeCNJHLbOnOT2mFrDlY9Jy2ofsM1D9Cz2dxyHB+1zKvgMGDAAAJCbm4vMzEw0adLEcl9AQAASExMxaNAgjzaQHONs4BDjzIlnY57BlY9Jq+wdsFns7zgOD9rnVPB5/vnnAQCJiYkYPHgwGjVqJEqjyDnOBo6Gzpxc6Ung2ZhnMdSQFtk7YLPY3zU8Ia3LpRqfYcOGAaj+kF68eLHO9PYWLVq43zKyyxxOXAkcts6cunYdhh49XDvo8myMiDypvgM2i/2dwxPS+rkUfE6ePImRI0di3759Vrebi565gKH4zMMhu3cDr73mXOCo78zJ1xfo0iUczmYecwBr6GyM9ShE5ChbB+yJExdj4sTFLPZ3EE9I6+dS8Bk+fDj8/Pywbds2xMTE1DvDi8QXHh6O228HfHyAmp1uvr6C3e5f8zTp7dv7o6pKB19f4M03gbg419pgrke55ZZSTJ2q/99jCpg/vxRDhjzCehQicoq9A3ZS0q8s9ncQhwfr51Lwyc3NxcGDB9G6dWtPt4ecFBcHvPUW8MQTQFVVdc/NwoXXcOXKHzuG+grb0tIO46WX7oLB0AwpKa6FHjNzqHnmGWDwYCA/H0hJ0SEurimApq4/MBFpUkMH7IEDByIiIsJyH0+u6se1wOrnUvBp06aNKKsAk2tGjQIyM82BA4iLawKDoboXZsOGILzwgh4mkw4+PgJeecWIIUN+/9+OopnH2xIX516IIiJq6IAdERGBmJgYiVupDFwLrC6Xgs/8+fMxZcoUzJkzB+3atYO/v7/V/aGhoR5pHDmuduAIDw/H2bPAlCl/DIOZTDpMndoUgwc3dbqWh4jIm3jAdh3XArPPpeDTu3dvAEDPnj2t6ntY3CwvJ09a1/4A1cNh+fnslSEi+eEB2zO4Fph9LgWf3bt3e7odJILU1PoKn6uHw4iI5IYHbM/he2SbS8Gne/fu+Oabb/Dmm2/i1KlT+PDDD3HLLbdg3bp1SEpK8nQbyUX1FT67OnuLiMgbeMAmsfk0vEldmzZtQmZmJoKCgnD48GGUl5cDAIxGI+bMmePRBpJ7Ro0CCguB3bur/x01SuoWERERScel4PPSSy9h5cqVePvtt60Km7t27YpDhw55rHHkGXFxQI8e7OkhIiJyKfjk5eWhW7dudW7X6/W4cuWKu20iIiIiEoVLwSc6Ohr5+fl1bt+7dy9atmzpdqOIiIiIxOBS8Bk9ejSeeuopHDhwADqdDufPn8f69evxt7/9DePGjfN0G4mIiIg8wqVZXdOmTYPJZEKvXr1w/fp1dOvWDYGBgfjb3/6G8ePHe7qNRET0PwaDgdO9idygEwRBcPWHKyoqkJ+fj6tXr6JNmzZo0qSJJ9smidLSUuj1ehiNRq5ATUSyYjAYsHz5csv39V2HDwBycnIYfkhzHD1+u9TjYxYQEIA2bdq48xBEROSgmj09hw51rHMtq7S0w3W2I/K2mr2S58/7oKDAD0lJNxEbW72artS9km4FHyIi8j6jMcQSegBAEHywdWs/JCfna/KaVhz+k4+avZL2wrmUvZIMPkREClNSEm4JPWaC4IOSkjDNBR8O/8mLOYA2FM6l7JVk8CEiUpiwMAN0OpNV+NHpTAgLK5GwVdLg8J88yTmcuzSdnYiIpKPXl6F//23Q6aprJswHeakPKFKy1cNgNIZI3DJtMofzmuQSztnjQ0SkQGlph5GcnI+SkjCEhZVIFnrkUl8j5x4GLTKH89o9cHL4XTD4EBEplF5fJumBRE71NRz+kx+5hPPaGHyIiBQiICDAo9u5S071NXLuYdAyqcN5fRh8iIgUIjw8HDk5ObIYWqpJLtPr5drDQPLC4ENEpCBynJItp/oaOfYwaInceiXrw+BDRERukbK+RgkHWi2Ra69kTQw+REQq5o1ZV1LW1yjhQKs1cn+vGXyIiFTKm7OupKyvkfuBluSFwYeISKW8PeuK9TWkBFy5mYhI5cRa1Zj1NaREiuvxKS8vR5cuXfDTTz/h8OHD+Mtf/mK578iRI8jOzsYPP/yAyMhIjB8/HlOmTJGusUREMiDWrCvW15ASKS74TJkyBbGxsfjpp5+sbi8tLcW9996L3r17Y+XKlTh69ChGjhyJpk2bYsyYMRK1lohIemLOumKoIaVRVPDZsWMHdu7ciU2bNmHHjh1W961fvx4VFRVYvXo1AgIC0LZtW+Tm5mLRokUMPkQkCblcx4qrGhP9QTHB58KFCxg9ejQ++ugjNG7cuM79+/fvR7du3azGkjMzMzF//nz89ttvaNasmTebS0QaJ6frWAFc1ZjITBHBRxAEDB8+HGPHjkWnTp1QWFhYZ5vi4mIkJSVZ3RYVFWW5z1bwKS8vR3l5ueX70tJSzzWciDRLTtexMuOsKyKJZ3VNmzYNOp3O7teJEyewbNkylJWVYfr06R5vw9y5c6HX6y1f8fHxHn8OItIusWZUOYKzrojqkrTH55lnnsHw4cPtbtOyZUt8+eWX2L9/PwIDA63u69SpE/7617/inXfeQXR0NC5cuGB1v/n76Ohom48/ffp0TJo0yfJ9aWkpww8BkE99BimblNex4qwrorokDT6RkZGIjIxscLulS5fipZdesnx//vx5ZGZmYuPGjejSpQsAICMjAzNmzEBlZSX8/f0BALt27UKrVq3s1vcEBgbWCVREteszbPFWfQYpl5TXsQLUM+uq5onI+fM+KCjwQ1LSTcTGmgAwwJHjFFHj06JFC6vvmzRpAgBITk5GXFwcAGDIkCGYPXs2Ro0ahalTp+LYsWNYsmQJXnvtNa+3l5TP0boLb9ZnkDJxRpX7ap6I2KuX4okIOUIRwccRer0eO3fuRHZ2NtLT0xEREYGZM2dyKjsRSY4zqtxjPsGwVS+VnJwPvb6MJyLkEEUGn8TERAiCUOf29u3b45tvvpGgRURE9nFGlfukrJci9eC1uoiIRMAZVZ5nrpeqyZv1UqQOiuzxISKSO86o8jzWS5EnMPgQEYmEocbzWC9F7mLwIXKArcsNEJH3sV6K3MHgQ1SPmnUX9qbPsj6DiEhZGHyI6mGuzygsvIkXXmgOQdABqJ5Bsn17f8yc2QWJiX4cyiDyAhaKkycx+BDZEB4ejiNHAJP1JBJUVelQVhYFZh4i72ChOHkSgw+RHampgI+Pdfjx9QVSUqRrE5EWMdSQp3AdHyI74uKAt96qDjtA9b9vvll9OxERKQ97fIgaMGoUkJkJ5OdX9/Qw9BARKReDD5ED4uIYeIiI1IBDXURERKQZDD5ERESkGQw+REREpBkMPkRERKQZDD5ERESkGQw+REREpBkMPkRERKQZDD5EREQydPYssHt39b/kOQw+REREMmEwGFBUVISFC68gIUFAz55AQoKAhQuvoKioCAaDQeomKh5XbiYizTEYDLzSN8mOwWDA8uXLYTSGYPHiiRAEHQDAZNJh8uRQnDu3Gnp9GXJycvj5dAODDxFpivngYmY0hqCkJBxhYQbo9WWW23lwIW8zh/GSknAIgvWAjCD4oKQkDHp9md3QTg1j8CEiTal50Dh0qCO2bu0HQfCBTmdC//7bkJZ2uM52RN4UFmaATmeyCj86nQlhYSUStko9WONDRJpkNIZYQg9QfUa9dWs/GI0hEreMtE6vL0P//tug05kAwBLKa/ZIkuvY40NEmtTQcAKRlNLSDiM5OR8lJWEICyvhZ9KDGHyISJM4nEByp9eXMfCIgENdRKRJHE4g0ib2+BCRZnE4gUh7GHyISNM4nEByERAQ4NHtqH4MPkSkKTy4kFyFh4cjJyeHi2uKTCcIgiB1I+SktLQUer0eRqMRoaGhUjeHiETAlZuJ1MfR4zd7fIhIcxhqiKRx9ixw8iSQmgrExUnTBs7qIiIiItGtWgUkJOB/F16t/l4KDD5EREQkGoPBgIMHL2DMGAGm6tUjYDIBTzwh4ODBC16/4jyHuoiIiEgU5osCFxQkwmQaZnVfVZUOy5btQFLSr169KDB7fIiIiEgU5kkE5pXSa6q5Uro3LwrM4ENERESiktNK6RzqIiIiItHJZaV0Bh8iIiLyCjmslM6hLiIiItIMBh8iIiLSDAYfIiIi0gwGHyIiIhKFHC8KzOJmIiIiEoUcrzjP4ENERESikdtFgTnURURERJrB4ENERESaweBDREREmsHgQ0RERJrB4EMkY2fPArt3V/9LRETuY/AhkqlVq4CEBKBnz+p/V62SukXaxPBJpC4MPkQydPYsMGYMYDJVf28yAU88wYOvtxgMBhQVFWHhwitISBD+Fz4FLFx4BUVFRTAYDFI3kYhcxHV8iGTo5Mk/Qo9ZVRWQnw/ExUnTJq0wGAxYvnw5jMYQLF48EYKgAwCYTDpMnhyKc+dWQ68vQ05OjuzWJyGihrHHh0hmDAYDQkMvwMdHsLrd11dASMgF9jaIzLzCbElJOATBehcpCD4oKQmz2o6IlIU9PkQyYu5tAIB+/Tpi69Z+EAQf6HQm9O27Ddu2HQYA9jZ4QViYATqdySr86HQmhIWVSNgqInIXgw+RjNTsRUhLO4zk5HyUlIQhLKwEen1ZvduROPT6MvTvv80qfPbvv83q90BEysPgQyRjen0ZD7QSshc+HWUwGCxB9fx5HxQU+CEp6SZiY6uLuLx9gUYirWPwISKyw53wWXPo8tChjnV6j9LSOHRJ5G0sbiYiEom5p8doDLGEHqC6SHrr1n4wGkOstiMi8TH4EBGJrKEZYkTkPQw+REQ1BAQEeHQ74I8ZYjVxhhiRNFjjQ0RUQ3h4OHJycuwOPzlbkMwZYkTyweBDJCNi9DaQ88QoNPbEDDEich+DD5GMiNHbQPLB5QmIpMfgQyQzDDVEROJhcTMRkUg4dEkkP+zxISISCYcuieRHUT0+27dvR5cuXRAUFIRmzZphwIABVvefPn0affv2RePGjdG8eXNMnjwZN2/elKaxRESoDj8xMTE2vxh6iLxLMT0+mzZtwujRozFnzhz07NkTN2/exLFjxyz3V1VVoW/fvoiOjsa+fftQVFSEoUOHwt/fH3PmzJGw5URERCQXOkEQBKkb0ZCbN28iMTERs2fPxqhRo+rdZseOHejXrx/Onz+PqKgoAMDKlSsxdepUXLp0yeEx9NLSUuj1ehiNRoSGhnrsNRAREZF4HD1+K2Ko69ChQzh37hx8fHzQsWNHxMTEoE+fPlY9Pvv370e7du0soQcAMjMzUVpaiv/85z9SNJuIiIhkRhHB57///S8AYNasWfj73/+Obdu2oVmzZujRowdKSqqXfC8uLrYKPQAs3xcXF9t87PLycpSWllp9ERERkTpJGnymTZsGnU5n9+vEiRMwmaqvcTNjxgwMGjQI6enpWLNmDXQ6HT744AO32jB37lzo9XrLV3x8vCdeGhEREcmQpMXNzzzzDIYPH253m5YtW6KoqAgA0KZNG8vtgYGBaNmyJU6fPg0AiI6Oxvfff2/1sxcuXLDcZ8v06dMxadIky/elpaUNhh+TyWR3eiq5LyAgAD4+iuiQJCIiBZE0+ERGRiIyMrLB7dLT0xEYGIi8vDzceeedAIDKykoUFhYiISEBAJCRkYGXX34ZFy9eRPPmzQEAu3btQmhoqFVgqi0wMBCBgYEOt7miogIFBQWWXigSh4+PD5KSkriwGxEReZQiprOHhoZi7NixeP755xEfH4+EhAS8+uqrAIAHH3wQAHDvvfeiTZs2eOyxx/DKK6+guLgYf//735Gdne1UsLFHEAQUFRXB19cX8fHx7JEQiclkwvnz51FUVIQWLVpAp9NJ3SQiIlIJRQQfAHj11Vfh5+eHxx57DL///ju6dOmCL7/8Es2aNQMA+Pr6Ytu2bRg3bhwyMjIQHByMYcOG4YUXXvBYG27evInr168jNjYWjRs39tjjUl2RkZE4f/48bt68CX9/f6mbQ0REKqGIdXy8yd46ADdu3EBBQQESExMRFBQkUQu14ffff0dhYSGSkpLQqFEjqZtDREQyp6p1fOSGQy/i43tMRERiYPAhIiIizWDw0YDhw4db1kXy9/dHVFQU7rnnHqxevdqp2Wlr165F06ZNxWsoERGRyBh8NCIrKwtFRUUoLCzEjh07cPfdd+Opp55Cv379eAV7IiLSDAYfLzIYDCgqKrL5ZTAYRHvuwMBAREdH45ZbbkFaWhqeffZZfPzxx9ixYwfWrl0LAFi0aBHatWuH4OBgxMfH48knn8TVq1cBAF999RVGjBgBo9Fo6T2aNWsWAGDdunXo1KkTQkJCEB0djSFDhuDixYuivRYiIiJXKWY6u9IZDAYsX768we1ycnIQHh7uhRYBPXv2RIcOHbB582Y8/vjj8PHxwdKlS5GUlIT//ve/ePLJJzFlyhSsWLECd9xxBxYvXoyZM2ciLy8PANCkSRMA1YtJvvjii2jVqhUuXryISZMmYfjw4fjkk0+88jqIiIgcxeDjJY5e4sLbl8Jo3bo1jhw5AgCYOHGi5fbExES89NJLGDt2LFasWIGAgADo9XrodLo6lwAZOXKk5f8tW7bE0qVL0blzZ1y9etUSjoiIiOSAQ10aJwiCZer4559/jl69euGWW25BSEgIHnvsMRgMBly/ft3uYxw8eBD9+/dHixYtEBISgu7duwOA5TpqREREcsHgo3HHjx9HUlISCgsL0a9fP7Rv3x6bNm3CwYMH8frrrwOw3wt17do1ZGZmIjQ0FOvXr8cPP/yALVu2NPhzREREUuBQl4Z9+eWXOHr0KJ5++mkcPHgQJpMJCxcutFyD7F//+pfV9gEBAaiqqrK67cSJEzAYDJg3b57lqvY//vijd14AERGRk9jjoxHl5eUoLi7GuXPncOjQIcyZMwf3338/+vXrh6FDhyIlJQWVlZVYtmwZ/vvf/2LdunVYuXKl1WMkJibi6tWr+OKLL3D58mVcv34dLVq0QEBAgOXn/v3vf+PFF1+U6FUSERHZx+CjEZ9++iliYmKQmJiIrKws7N69G0uXLsXHH38MX19fdOjQAYsWLcL8+fNx6623Yv369Zg7d67VY9xxxx0YO3YsBg8ejMjISLzyyiuIjIzE2rVr8cEHH6BNmzaYN28eFixYINGrJCIiso8XKa3FkYuUunLhzKKiIrz11lsNbjdmzBjExMQ49dhq5M57TURE2sOLlMpMQECAR7cjIiIi57G42UvCw8ORk5Njd6ZTQECA1xYvJCIi0iIGHy9iqCEiIpIWh7qIiIhIM9jjQ0RE5ACDwcByBRVg8CEiImqAHC80Ta7hUBcREVED5HqhaXIegw8RERFpBoMPERERaQaDD7ntq6++gk6nw5UrVxz+mcTERCxevFi0NhEREdWHwUcDhg8fDp1Oh7Fjx9a5Lzs7GzqdDsOHD/d+w4iIiLyMwUcj4uPj8f777+P333+33Hbjxg1s2LABLVq0kLBlRERE3sPgoxFpaWmIj4/H5s2bLbdt3rwZLVq0QMeOHS23lZeXY8KECWjevDkaNWqEO++8Ez/88IPVY33yySf405/+hKCgINx9990oLCys83x79+7FXXfdhaCgIMTHx2PChAm4du2aaK+PiIjIEQw+GjJy5EisWbPG8v3q1asxYsQIq22mTJmCTZs24Z133sGhQ4eQkpKCzMxMlJSUAADOnDmDgQMHon///sjNzcXjjz+OadOmWT3GqVOnkJWVhUGDBuHIkSPYuHEj9u7di5ycHPFfJBGRCHihafXgAoYSOXsWOHkSSE0F4uK885yPPvoopk+fjl9//RUA8O233+L999/HV199BQC4du0a3njjDaxduxZ9+vQBALz99tvYtWsXVq1ahcmTJ+ONN95AcnIyFi5cCABo1aoVjh49ivnz51ueZ+7cufjrX/+KiRMnAgBSU1OxdOlSdO/eHW+88QYaNWrknRdMROQhvNC0ejD4SGDVKmDMGMBkAnx8gLfeAkaNEv95IyMj0bdvX6xduxaCIKBv376IiIiw3H/q1ClUVlaia9eultv8/f1x22234fjx4wCA48ePo0uXLlaPm5GRYfX9Tz/9hCNHjmD9+vWW2wRBgMlkQkFBAf785z+L8fKIiETFUKMODD5edvbsH6EHqP73iSeAzEzv9PyMHDnSMuT0+uuvi/IcV69exRNPPIEJEybUuY+F1ESkBlL02pNnsMbHy06e/CP0mFVVAfn53nn+rKwsVFRUoLKyEpmZmVb3JScnIyAgAN9++63ltsrKSvzwww9o06YNAODPf/4zvv/+e6uf++6776y+T0tLw88//4yUlJQ6Xxz/JiKlW7UKSEgAevas/nfVKqlbRM5g8PGy1NTq4a2afH2BlBTvPL+vry+OHz+On3/+Gb6+vlb3BQcHY9y4cZg8eTI+/fRT/Pzzzxg9ejSuX7+OUf8bixs7dixOnjyJyZMnIy8vDxs2bMDatWutHmfq1KnYt28fcnJykJubi5MnT+Ljjz9mcTMRKZ6tXvuzZ6VtFzmOwcfL4uKqa3rMmcPXF3jzTe92lYaGhiI0NLTe++bNm4dBgwbhscceQ1paGvLz8/HZZ5+hWbNmAKqHqjZt2oSPPvoIHTp0wMqVKzFnzhyrx2jfvj327NmDX375BXfddRc6duyImTNnIjY2VvTXRkQkJql77cl9OkEQBKkbISelpaXQ6/UwGo11wsGNGzdQUFCApKQkt2cmnT1b/YeSksLx4fp48r0mIvKUs2erh7dqhh9fX6CwkPtyqdk7ftfEHh+JxMUBPXrwD4WISEnk0GtP7uGsLiIiIieMGlU9E5e99srE4ENEROSkuDgGHqXiUBcRERFpBoMPERERaQaDjws4EU58fI+JiEgMDD5OMC/4Z+8ideQZ5ve49iKLRERE7mBxsxP8/PzQuHFjXLp0Cf7+/vCpvQQzeYTJZMKlS5fQuHFj+PnxI0pERJ7Do4oTdDodYmJiUFBQgF9//VXq5qiaj48PWrRoAZ1OJ3VTiIhIRRh8nBQQEIDU1FQOd4ksICCAPWpERORxDD4u8PHx4WUUiIiIFIin1ERERKQZDD5ERESkGQw+REREpBms8anFvHBeaWmpxC0hIiIiR5mP2w0tgMvgU0tZWRkAID4+XuKWEBERkbPKysqg1+tt3q8TeG0AKyaTCefPn0dISIjm1pApLS1FfHw8zpw5g9DQUKmbo1h8Hz2H76Vn8H30HL6XniHG+ygIAsrKyhAbG2t3ORT2+NTi4+ODuLg4qZshqdDQUP5BewDfR8/he+kZfB89h++lZ3j6fbTX02PG4mYiIiLSDAYfIiIi0gwGH7IIDAzE888/j8DAQKmbomh8Hz2H76Vn8H30HL6XniHl+8jiZiIiItIM9vgQERGRZjD4EBERkWYw+BAREZFmMPgQERGRZjD4aMzXX3+N/v37IzY2FjqdDh999JHV/YIgYObMmYiJiUFQUBB69+6NkydPStNYmWvovRw+fDh0Op3VV1ZWljSNlbG5c+eic+fOCAkJQfPmzTFgwADk5eVZbXPjxg1kZ2cjPDwcTZo0waBBg3DhwgWJWixPjryPPXr0qPOZHDt2rEQtlq833ngD7du3tyyul5GRgR07dlju5+fRcQ29l1J8Jhl8NObatWvo0KEDXn/99Xrvf+WVV7B06VKsXLkSBw4cQHBwMDIzM3Hjxg0vt1T+GnovASArKwtFRUWWr/fee8+LLVSGPXv2IDs7G9999x127dqFyspK3Hvvvbh27Zplm6effhpbt27FBx98gD179uD8+fMYOHCghK2WH0feRwAYPXq01WfylVdekajF8hUXF4d58+bh4MGD+PHHH9GzZ0/cf//9+M9//gOAn0dnNPReAhJ8JgXSLADCli1bLN+bTCYhOjpaePXVVy23XblyRQgMDBTee+89CVqoHLXfS0EQhGHDhgn333+/JO1RsosXLwoAhD179giCUP0Z9Pf3Fz744APLNsePHxcACPv375eqmbJX+30UBEHo3r278NRTT0nXKAVr1qyZ8I9//IOfRw8wv5eCIM1nkj0+ZFFQUIDi4mL07t3bcpter0eXLl2wf/9+CVumXF999RWaN2+OVq1aYdy4cTAYDFI3SfaMRiMAICwsDABw8OBBVFZWWn0uW7dujRYtWvBzaUft99Fs/fr1iIiIwK233orp06fj+vXrUjRPMaqqqvD+++/j2rVryMjI4OfRDbXfSzNvfyZ5kVKyKC4uBgBERUVZ3R4VFWW5jxyXlZWFgQMHIikpCadOncKzzz6LPn36YP/+/fD19ZW6ebJkMpkwceJEdO3aFbfeeiuA6s9lQEAAmjZtarUtP5e21fc+AsCQIUOQkJCA2NhYHDlyBFOnTkVeXh42b94sYWvl6ejRo8jIyMCNGzfQpEkTbNmyBW3atEFubi4/j06y9V4C0nwmGXyIRPLwww9b/t+uXTu0b98eycnJ+Oqrr9CrVy8JWyZf2dnZOHbsGPbu3St1UxTN1vs4ZswYy//btWuHmJgY9OrVC6dOnUJycrK3mylrrVq1Qm5uLoxGIz788EMMGzYMe/bskbpZimTrvWzTpo0kn0kOdZFFdHQ0ANSZnXDhwgXLfeS6li1bIiIiAvn5+VI3RZZycnKwbds27N69G3FxcZbbo6OjUVFRgStXrlhtz89l/Wy9j/Xp0qULAPAzWY+AgACkpKQgPT0dc+fORYcOHbBkyRJ+Hl1g672sjzc+kww+ZJGUlITo6Gh88cUXlttKS0tx4MABq/FYcs3Zs2dhMBgQExMjdVNkRRAE5OTkYMuWLfjyyy+RlJRkdX96ejr8/f2tPpd5eXk4ffo0P5c1NPQ+1ic3NxcA+Jl0gMlkQnl5OT+PHmB+L+vjjc8kh7o05urVq1ZJuqCgALm5uQgLC0OLFi0wceJEvPTSS0hNTUVSUhKee+45xMbGYsCAAdI1WqbsvZdhYWGYPXs2Bg0ahOjoaJw6dQpTpkxBSkoKMjMzJWy1/GRnZ2PDhg34+OOPERISYqmT0Ov1CAoKgl6vx6hRozBp0iSEhYUhNDQU48ePR0ZGBm6//XaJWy8fDb2Pp06dwoYNG/B///d/CA8Px5EjR/D000+jW7duaN++vcStl5fp06ejT58+aNGiBcrKyrBhwwZ89dVX+Oyzz/h5dJK991Kyz6RX55CR5Hbv3i0AqPM1bNgwQRCqp7Q/99xzQlRUlBAYGCj06tVLyMvLk7bRMmXvvbx+/bpw7733CpGRkYK/v7+QkJAgjB49WiguLpa62bJT33sIQFizZo1lm99//1148sknhWbNmgmNGzcW/t//+39CUVGRdI2WoYbex9OnTwvdunUTwsLChMDAQCElJUWYPHmyYDQapW24DI0cOVJISEgQAgIChMjISKFXr17Czp07Lffz8+g4e++lVJ9JnSAIgnixioiIiEg+WONDREREmsHgQ0RERJrB4ENERESaweBDREREmsHgQ0RERJrB4ENERESaweBDREREmsHgQ0RERJrB4ENERESaweBDRIpRUVEhdRPqkGObiMg2Bh8ikkyPHj2Qk5ODnJwc6PV6RERE4LnnnoP5SjqJiYl48cUXMXToUISGhmLMmDEAgL179+Kuu+5CUFAQ4uPjMWHCBFy7ds3yuCtWrEBqaioaNWqEqKgoPPDAA5b7PvzwQ7Rr1w5BQUEIDw9H7969LT/bo0cPTJw40aqNAwYMwPDhwy3fu9omIpIHBh8iktQ777wDPz8/fP/991iyZAkWLVqEf/zjH5b7FyxYgA4dOuDw4cN47rnncOrUKWRlZWHQoEE4cuQINm7ciL179yInJwcA8OOPP2LChAl44YUXkJeXh08//RTdunUDABQVFeGRRx7ByJEjcfz4cXz11VcYOHAgnL1kobNtIiL54EVKiUgyPXr0wMWLF/Gf//wHOp0OADBt2jT8+9//xs8//4zExER07NgRW7ZssfzM448/Dl9fX7z55puW2/bu3Yvu3bvj2rVr+OSTTzBixAicPXsWISEhVs936NAhpKeno7CwEAkJCfW25y9/+QsWL15suW3AgAFo2rQp1q5dCwAutalRo0ZuvU9E5Dns8SEiSd1+++2W0AMAGRkZOHnyJKqqqgAAnTp1str+p59+wtq1a9GkSRPLV2ZmJkwmEwoKCnDPPfcgISEBLVu2xGOPPYb169fj+vXrAIAOHTqgV69eaNeuHR588EG8/fbb+O2335xus7NtIiL5YPAhIlkLDg62+v7q1at44oknkJuba/n66aefcPLkSSQnJyMkJASHDh3Ce++9h5iYGMycORMdOnTAlStX4Ovri127dmHHjh1o06YNli1bhlatWlnCiY+PT51hr8rKSrfbRETyweBDRJI6cOCA1fffffcdUlNT4evrW+/2aWlp+Pnnn5GSklLnKyAgAADg5+eH3r1745VXXsGRI0dQWFiIL7/8EgCg0+nQtWtXzJ49G4cPH0ZAQIBl2CoyMhJFRUWW56qqqsKxY8cafA2OtImI5IHBh4gkdfr0aUyaNAl5eXl47733sGzZMjz11FM2t586dSr27duHnJwc5Obm4uTJk/j4448thcTbtm3D0qVLkZubi19//RXvvvsuTCYTWrVqhQMHDmDOnDn48ccfcfr0aWzevBmXLl3Cn//8ZwBAz549sX37dmzfvh0nTpzAuHHjcOXKlQZfQ0NtIiL58JO6AUSkbUOHDsXvv/+O2267Db6+vnjqqacsU8Tr0759e+zZswczZszAXXfdBUEQkJycjMGDBwMAmjZtis2bN2PWrFm4ceMGUlNT8d5776Ft27Y4fvw4vv76ayxevBilpaVISEjAwoUL0adPHwDAyJEj8dNPP2Ho0KHw8/PD008/jbvvvrvB19BQm4hIPjiri4gkU98sKiIiMXGoi4iIiDSDwYeIiIg0g0NdREREpBns8SEiIiLNYPAhIiIizWDwISIiIs1g8CEiIiLNYPAhIiIizWDwISIiIs1g8CEiIiLNYPAhIiIizWDwISIiIs34/2GiY/EoyBLqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZC0lEQVR4nO3deVhU9eI/8PewDALCIIssooBomqYmWIaVlnlFH5fbV2+SqbnmkpikueXNJXOr3L1p9TM1y7SSuqlZLpllcs1cUm9GSpgbqIAMKMk2n98f3JkYmBlmObNx3q/nmUfmnDNnPucwNW8+q0IIIUBEREQkAx7OLgARERGRozD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQEbmgTZs2QaFQ4OLFi84uClG9wuBDJFPHjh1Damoq2rZtC39/fzRr1gyDBg3Cb7/9VuvYxx57DAqFAgqFAh4eHggMDESrVq0wbNgw7Nu3z6L33blzJ7p164bGjRvDz88PzZs3x6BBg/DVV19JdWm1LFq0CJ9//nmt7UeOHMG8efNQWFhot/euad68ebp7qVAo4OfnhzZt2uCf//wnioqKJHmPrVu3YuXKlZKci6i+YfAhkqmlS5dix44deOKJJ7Bq1SqMHTsW3333HRISEnD27Nlax0dHR2PLli14//338cYbb6B///44cuQIevbsiZSUFJSXl9f5nm+++Sb69+8PhUKBWbNmYcWKFRg4cCDOnz+Pbdu22eMyAZgOPvPnz3do8NFat24dtmzZguXLl6N169ZYuHAhevXqBSmWT2TwITLOy9kFICLnmDJlCrZu3QqlUqnblpKSgnbt2mHJkiX44IMP9I5XqVQYOnSo3rYlS5bghRdewFtvvYXY2FgsXbrU6PtVVFRgwYIF+Nvf/oa9e/fW2n/jxg0br8h1lJSUwM/Pz+Qx//jHPxAaGgoAGD9+PAYOHIj09HT85z//QVJSkiOKSSRLrPEhkqkuXbrohR4AaNmyJdq2bYtz586ZdQ5PT0+sXr0abdq0wdq1a6FWq40em5eXh6KiIjz88MMG9zdu3Fjv+d27dzFv3jzcc889aNCgASIjIzFgwABkZWXpjnnzzTfRpUsXhISEwNfXF4mJifj000/1zqNQKHDnzh1s3rxZ17w0YsQIzJs3D9OmTQMAxMXF6fZV71PzwQcfIDExEb6+vggODsbTTz+Ny5cv653/sccew3333Yfjx4+ja9eu8PPzw8svv2zW/auue/fuAIDs7GyTx7311lto27YtfHx8EBUVhYkTJ+rVWD322GPYvXs3/vjjD901xcbGWlweovqKNT5EpCOEwPXr19G2bVuzX+Pp6YnBgwfjlVdeweHDh9GnTx+DxzVu3Bi+vr7YuXMnJk2ahODgYKPnrKysRN++fXHgwAE8/fTTmDx5MoqLi7Fv3z6cPXsW8fHxAIBVq1ahf//+GDJkCMrKyrBt2zY89dRT2LVrl64cW7ZswZgxY/Dggw9i7NixAID4+Hj4+/vjt99+w0cffYQVK1boal/CwsIAAAsXLsQrr7yCQYMGYcyYMbh58ybWrFmDrl274uTJkwgKCtKVNz8/H71798bTTz+NoUOHIjw83Oz7p6UNdCEhIUaPmTdvHubPn48ePXpgwoQJyMzMxLp163Ds2DH88MMP8Pb2xuzZs6FWq3HlyhWsWLECANCwYUOLy0NUbwkiov/ZsmWLACA2bNigt71bt26ibdu2Rl/32WefCQBi1apVJs8/Z84cAUD4+/uL3r17i4ULF4rjx4/XOu69994TAMTy5ctr7dNoNLqfS0pK9PaVlZWJ++67T3Tv3l1vu7+/vxg+fHitc73xxhsCgMjOztbbfvHiReHp6SkWLlyot/3MmTPCy8tLb3u3bt0EALF+/Xqj113d3LlzBQCRmZkpbt68KbKzs8Xbb78tfHx8RHh4uLhz544QQoiNGzfqle3GjRtCqVSKnj17isrKSt351q5dKwCI9957T7etT58+IiYmxqzyEMkNm7qICADw66+/YuLEiUhKSsLw4cMteq22RqG4uNjkcfPnz8fWrVvRsWNHfP3115g9ezYSExORkJCg17y2Y8cOhIaGYtKkSbXOoVAodD/7+vrqfr516xbUajUeffRRnDhxwqLy15Seng6NRoNBgwYhLy9P94iIiEDLli1x8OBBveN9fHwwcuRIi96jVatWCAsLQ1xcHMaNG4cWLVpg9+7dRvsG7d+/H2VlZUhLS4OHx1//637uuecQGBiI3bt3W36hRDLEpi4iQm5uLvr06QOVSoVPP/0Unp6eFr3+9u3bAICAgIA6jx08eDAGDx6MoqIiHD16FJs2bcLWrVvRr18/nD17Fg0aNEBWVhZatWoFLy/T/4vatWsXXnvtNZw6dQqlpaW67dXDkTXOnz8PIQRatmxpcL+3t7fe8yZNmtTqL1WXHTt2IDAwEN7e3oiOjtY13xnzxx9/AKgKTNUplUo0b95ct5+ITGPwIZI5tVqN3r17o7CwEN9//z2ioqIsPod2+HuLFi3Mfk1gYCD+9re/4W9/+xu8vb2xefNmHD16FN26dTPr9d9//z369++Prl274q233kJkZCS8vb2xceNGbN261eJrqE6j0UChUGDPnj0GQ2DNPjPVa57M1bVrV12/IiJyHAYfIhm7e/cu+vXrh99++w379+9HmzZtLD5HZWUltm7dCj8/PzzyyCNWlaNTp07YvHkzcnJyAFR1Pj569CjKy8tr1a5o7dixAw0aNMDXX38NHx8f3faNGzfWOtZYDZCx7fHx8RBCIC4uDvfcc4+ll2MXMTExAIDMzEw0b95ct72srAzZ2dno0aOHbputNV5E9Rn7+BDJVGVlJVJSUpCRkYFPPvnEqrljKisr8cILL+DcuXN44YUXEBgYaPTYkpISZGRkGNy3Z88eAH814wwcOBB5eXlYu3ZtrWPF/yb48/T0hEKhQGVlpW7fxYsXDU5U6O/vb3CSQn9/fwCotW/AgAHw9PTE/Pnza00oKIRAfn6+4Yu0ox49ekCpVGL16tV6ZdqwYQPUarXeaDp/f3+TUwsQyRlrfIhkaurUqfjiiy/Qr18/FBQU1JqwsOZkhWq1WndMSUkJLly4gPT0dGRlZeHpp5/GggULTL5fSUkJunTpgoceegi9evVC06ZNUVhYiM8//xzff/89nnzySXTs2BEA8Oyzz+L999/HlClT8OOPP+LRRx/FnTt3sH//fjz//PP4+9//jj59+mD58uXo1asXnnnmGdy4cQP/+te/0KJFC5w+fVrvvRMTE7F//34sX74cUVFRiIuLQ+fOnZGYmAgAmD17Np5++ml4e3ujX79+iI+Px2uvvYZZs2bh4sWLePLJJxEQEIDs7Gx89tlnGDt2LF566SWb7r+lwsLCMGvWLMyfPx+9evVC//79kZmZibfeegsPPPCA3u8rMTER27dvx5QpU/DAAw+gYcOG6Nevn0PLS+SynDmkjIicRzsM29jD1LENGzYULVu2FEOHDhV79+416/3Ky8vFu+++K5588kkRExMjfHx8hJ+fn+jYsaN44403RGlpqd7xJSUlYvbs2SIuLk54e3uLiIgI8Y9//ENkZWXpjtmwYYNo2bKl8PHxEa1btxYbN27UDRev7tdffxVdu3YVvr6+AoDe0PYFCxaIJk2aCA8Pj1pD23fs2CEeeeQR4e/vL/z9/UXr1q3FxIkTRWZmpt69MTXUvyZt+W7evGnyuJrD2bXWrl0rWrduLby9vUV4eLiYMGGCuHXrlt4xt2/fFs8884wICgoSADi0nagahRASLAxDRERE5AbYx4eIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZMNtgs/ixYvxwAMPICAgAI0bN8aTTz6JzMxMvWPu3r2LiRMnIiQkBA0bNsTAgQNx/fp1J5WYiIiIXI3bDGfv1asXnn76aTzwwAOoqKjAyy+/jLNnz+KXX37Rzb46YcIE7N69G5s2bYJKpUJqaio8PDzwww8/mP0+Go0G165dQ0BAAKd9JyIichNCCBQXFyMqKgoeHibqdZw6i5ANbty4IQCIQ4cOCSGEKCwsFN7e3uKTTz7RHXPu3DkBQGRkZJh93suXL5uc1I0PPvjggw8++HDdx+XLl01+z7vtkhXadWiCg4MBAMePH0d5ebneQn2tW7dGs2bNkJGRgYceesjgeUpLS1FaWqp7Lv5XAXb58mWT6w4RERGR6ygqKkLTpk0REBBg8ji3DD4ajQZpaWl4+OGHcd999wEAcnNzoVQqERQUpHdseHg4cnNzjZ5r8eLFmD9/fq3tgYGBDD5ERERupq5uKm7Tubm6iRMn4uzZs9i2bZvN55o1axbUarXucfnyZQlKSERERK7I7Wp8UlNTsWvXLnz33XeIjo7WbY+IiEBZWRkKCwv1an2uX7+OiIgIo+fz8fGBj4+PPYtMRERELsJtanyEEEhNTcVnn32Gb775BnFxcXr7ExMT4e3tjQMHDui2ZWZm4tKlS0hKSnJ0cYmIiMgFuU2Nz8SJE7F161b8+9//RkBAgK7fjkqlgq+vL1QqFUaPHo0pU6YgODgYgYGBmDRpEpKSkox2bLaWRqNBWVmZpOckfUql0vRwRCIiIiu4zTw+xjorbdy4ESNGjABQNYHh1KlT8dFHH6G0tBTJycl46623TDZ11VRUVASVSgW1Wm2wc3NZWRmys7Oh0Wisug4yj4eHB+Li4qBUKp1dFCIicgN1fX9ruU3wcRRTN04IgUuXLqG8vLzuCZLIatpJJL29vdGsWTNOJElERHUyN/i4TVOXK6ioqEBJSQmioqLg5+fn7OLUa2FhYbh27RoqKirg7e3t7OIQEVE9wSoLC1RWVgIAm18cQHuPtfeciIhICgw+VmDTi/3xHhMRkT0w+BAREZFssI8PERER1Sk/P9/kVC5KpRIhISEOLJF1GHxkYMSIEdi8eTMAwMvLC8HBwWjfvj0GDx6MESNGmD06bdOmTUhLS0NhYaEdS0tERK4mPz8fa9eu1T1XqwNQUBCC4OB8qFTFuu2pqakuH34YfBzImWm5V69e2LhxIyorK3H9+nV89dVXmDx5Mj799FN88cUX8PLiR4GIiAyr/t114kRH7NzZF0J4QKHQoF+/XUhIOFnrOFfFbzsHqZmWjbFXWvbx8dFN5NikSRMkJCTgoYcewhNPPIFNmzZhzJgxWL58OTZu3Ijff/8dwcHB6NevH15//XU0bNgQ3377LUaOHAngr47Hc+fOxbx587BlyxasWrUKmZmZ8Pf3R/fu3bFy5Uo0btxY8usgInK0+tLEIwW1OkAXegBACA/s3NkX8fEX9Gp+XBmDj4OYm4IdmZa7d++ODh06ID09HWPGjIGHhwdWr16NuLg4/P7773j++ecxffp0vPXWW+jSpQtWrlyJOXPmIDMzEwDQsGFDAEB5eTkWLFiAVq1a4caNG5gyZQpGjBiBL7/80mHXQkRkD87+o9XVFBSE6EKPlhAeKCgIZvAh99C6dWucPn0aAJCWlqbbHhsbi9deew3jx4/HW2+9BaVSCZVKBYVCUWsJkFGjRul+bt68OVavXo0HHngAt2/f1oUjIiJ35Ip/tDpTcHA+FAqNXvhRKDQIDi5wYqksw+HsMieE0DVd7d+/H0888QSaNGmCgIAADBs2DPn5+SgpKTF5juPHj6Nfv35o1qwZAgIC0K1bNwDApUuX7F5+IiJyHJWqGP367YJCUbVepbaPj7vU9gCs8ZG9c+fOIS4uDhcvXkTfvn0xYcIELFy4EMHBwTh8+DBGjx6NsrIyo0t03LlzB8nJyUhOTsaHH36IsLAwXLp0CcnJybL5C4iISE4SEk4iPv4CCgqCERxc4FahB2DwkbVvvvkGZ86cwYsvvojjx49Do9Fg2bJluuHtH3/8sd7xSqWy1hISv/76K/Lz87FkyRI0bdoUAPDTTz855gKIiMgpVKpitws8WmzqkonS0lLk5ubi6tWrOHHiBBYtWoS///3v6Nu3L5599lm0aNEC5eXlWLNmDX7//Xds2bIF69ev1ztHbGwsbt++jQMHDiAvLw8lJSVo1qwZlEql7nVffPEFFixY4KSrJCKyL7U6ANnZsVCrA5xdFIcyd41Kd1jLkjU+MvHVV18hMjISXl5eaNSoETp06IDVq1dj+PDh8PDwQIcOHbB8+XIsXboUs2bNQteuXbF48WI8++yzunN06dIF48ePR0pKCvLz83XD2Tdt2oSXX34Zq1evRkJCAt58803079/fiVdLRCQ9U/PXSM3VhtCHhIQgNTVVr0yFhYWoqKjQPff29kZZWRlycnKcUkZzKYQQwtmFcCVFRUVQqVRQq9UIDAzU23f37l1kZ2cjLi4ODRo0sOi8HBJpGVvuNRGRVHJycvDOO+9ArQ7AypVptUYzpaWthEpVjLFjxyIyMlKS93SH7wtXnMnZ1Pd3dazxcRBDabkmV03HRERypW26qWv+GimbeNxhCL07z+TM4ONADDVERO5F+0frxYsV2LJFQKNR6PZ5egpMmtQbsbFedv3/u7HaFFfgjjM5M/gQERGZEBISgpAQ4J13gHHjgMpKwNMTePttBRITw+363qZqU/Ly8gBY31ogRT8id5zJmcGHiIjIDKNHA8nJwIULQIsWQHS0fd+vrtqU9PR03bGW9qWRqh+RO87kzOBDRERkpuho+wceLUtqU2rW3NRVm6NWq80qQ119dLQzOdeslXLV2h6AwYeIiMglGapNATS4c8cfanWA0XBhbm1Odbb0I3K3mZwZfIiIiFxQzdoUQANAgU8/fcrkPEKWjqSSYn4id5rJmcGHiIjIhVQfGq+tTbl8ORo7dvwDQlSNKrNk9JSp2hxrR2WZO3y/sLAQJSUlRtd71J7LkaOeGXyIiEg2pJoR2Z4zK1ef9y0vLw/p6ekoKPjTqtFTddXmWDsqS1vGmzdvYvv27UaPq7nmoytMdMjgQzb79ttv8fjjj+PWrVsICgoy6zWxsbFIS0tDWlqaXctGRKQl1UgmR8ysXPN11oyeMlWbA1SFHm/vUqtHZYWEhNQKf6Zql1xlokMuUioDI0aMgEKhwPjx42vtmzhxIhQKBUaMGOH4ghEROZBUMyIb+rI3tHCplF/m2v4+CoUGAMwaPWWsNufo0c5YuTINmzcPx4YNY9C+/WmLzmvMiRMddedduTINJ0501O0zFsKcsdgra3xkomnTpti2bRtWrFgBX19fAFXrYW3duhXNmjVzcumIiBxPihmRLe0YbGkTmaH+PoZGTxnqc2NsVFhGRpJeADl9uj1Gj/5/KC9XmnVeQ+rqK+RKEx0y+MhEQkICsrKykJ6ejiFDhgAA0tPT0axZM8TFxemOKy0txbRp07Bt2zYUFRWhU6dOWLFiBR544AHdMV9++SXS0tJw+fJlPPTQQxg+fHit9zt8+DBmzZqFn376CaGhofi///s/LF68GP7+/va/WCKiOkgxksnSjsHWNJHZss6joTl2kpIycOTIw3rHCeGB8nIl4uL+wOOPP47GjRtDpVJZ1E+prmDjShMdsqnLSa5cAQ4erPrXUUaNGoWNGzfqnr/33nsYOXKk3jHTp0/Hjh07sHnzZpw4cQItWrRAcnIyCgqqPpyXL1/GgAED0K9fP5w6dQpjxozBzJkz9c6RlZWFXr16YeDAgTh9+jS2b9+Ow4cPIzU11f4XSURuJT8/Hzk5OUYf+fn5kr+nVM0upr7sDbG2qS0kJASRkZFGHzXDSc1aorS0lRg+fBPS0laic+ejumYtreoB5ODBg9i+fbvFnbO1wcbYea1pqrMX1vg4wYYNwNixgEYDeHhUrf8yerT933fo0KGYNWsW/vjjDwDADz/8gG3btuHbb78FANy5cwfr1q3Dpk2b0Lt3bwDAu+++i3379mHDhg2YNm0a1q1bh/j4eCxbtgwA0KpVK5w5cwZLly7Vvc/ixYsxZMgQXcflli1bYvXq1ejWrRvWrVuHBg0a2P9iicjlOaKTsCFSNbu4Ui1GdYZqibSjwwCYNdOyqZBWvblOu16YOTM4u8pEhww+Dnblyl+hB6j6d9y4qvVf7D0NelhYGPr06YNNmzZBCIE+ffogNDRUtz8rKwvl5eV4+OG/qkG9vb3x4IMP4ty5cwCAc+fOoXPnznrnTUpK0nv+888/4/Tp0/jwww9124QQ0Gg0yM7Oxr333muPyyMiNyNVZ2NLSRVYbF2uwZ6rrtdVC6QNIN7eZSgv9zE5E3R1psKqOcHGFSY6ZPBxsPPn/wo9WpWVVYveOWL9l1GjRumanP71r3/Z5T1u376NcePG4YUXXqi1jx2picgYY0FAW6ugZeuEd1KuL2VJLUZhYaHuZ1N9jAoLCxEZGWlxWUzR1gJdu3YN6enpUKmKkZXVwuJ+Tuas3WXNfTS3E7UUGHwcrGXLquat6uHH07NqpV9H6NWrF8rKyqBQKJCcnKy3Lz4+HkqlEj/88ANiYmIAAOXl5Th27Jiu2eree+/FF198ofe6//znP3rPExIS8Msvv6CFoy6KiNyeqSBQfRVyLWuav2wZIWXsPIDxL/uax1VUVACou1O09jipVZ93x9oZm2syFlYHDBiga1HgzM0yFx1d1adn3Liqmh5PT+Dttx232q+np6eu2crT01Nvn7+/PyZMmIBp06YhODgYzZo1w+uvv46SkhKM/l8npPHjx2PZsmWYNm0axowZg+PHj2PTpk1655kxYwYeeughpKamYsyYMfD398cvv/yCffv2WbxwHhHVf9Z8CVvT/GXLCCkpz+MKQ7ulKIO5I+P8/PwcHm5MYfBxgtGjq/r0XLhQVdPjqNCjFRgYaHTfkiVLoNFoMGzYMBQXF6NTp074+uuv0ahRIwBVTVU7duzAiy++iDVr1uDBBx/EokWLMGrUKN052rdvj0OHDmH27Nl49NFHIYRAfHw8UlJS7H5tROR+6hodJWU/GKm+fG05T3BwPgABQKHb5uhO0Zb2c9J2aNY2O9Y1K/SyZSecuiyFKQw+ThId7bjAU7NGpqbPP/9c93ODBg2wevVqrF692ujxffv2Rd++ffW21RwW/8ADD2Dv3r1Gz3Hx4kWTZSIi+TD2JXztWhTef/9Zm+bacSXe3t7VnukHHyGMHWc9Q5MlWjIKq/p5atbWm5oVWjtBojOXpTCFwYeIiJzK0Jdwjx77sX9/D5v7oLgSlUoFoCo01J5G769mJu1xtjBnqgBz+zkZCizGwuqRI0nQXpur/s4YfIiIyClMdTa2pQ+KPVdOl4Ij5v8xt3Zl5Mi/6U1rAtR9f7QdmquHU1OzQjtjWQpTGHyIiMgp6ppoz5pw4KxJES0h5XB6W4WGhlo0dL5mh+YePfYjKuqa7vdSfR0wwDUmdKyJwYeIiJzGWPiwNhwYWjndUOdoZ/Q3MXc4ffX5fqq/1pagJsVkiYY6NO/f3wNpaSt153SVQGcKg48VRPVeaGQXvMdE8iTVXDuANAuRSsnYMHi1Wo3t27frnn/88ccGX29tLZVU98Gc5kdXWZbCFAYfC2jnvSkrK4Ovr6+TS1O/af/HUHOuISKq36Saa0eqCfqkZk5wkbKWSsr7YG7fJFdYlsIUBh8LeHl5wc/PDzdv3oS3tzc8PLi4vT1oNBrcvHkTfn5+8PLiR5RIbqToe+MKkwRaQ+paKinvg619kxy5LIUp/FaxgEKhQGRkJLKzs3UrnJN9eHh4oFmzZlAoFHUfTERUg6uunG6KpbUzpkavaefrkeI+mNv8OGjQIAQFBRk9hytMXggw+FhMqVSiZcuWLjMRU32lVCpZo0ZEVnOlkVPmsqR2xtzRa3XdB3NqYaRqfnQVDD5W8PDwQIMGDZxdDCIiMsEdOtpWZ0ntjLl/fA8YMABjx4ZizpybuHjRC7GxFYiKegDAAxaFFXcJNeZg8CEiIqeScsJBa1dOdwX2qKXSztMTGQkkJkpYWDfG4ENEREbZexZkqSccdPdmGWtrqaSYp0cuGHyIiMggR8yCbI8JB1011Bhjay2Vq81X5OoYfIiIZMicmhxHz4Is1y9wW2qpXHW+IlfG4ENEJDPm1uSkpKTofrZ3KJH7F7i1tVTuOl+RM3G8MBGRzBiqycnOjoVaHaC3vby8XLffUCipebwtTH2Bk3HakWDVufp8Rc7GGh8iIhkzpybHEbUK7jjhoDNp+/tIMU+P3DD4EBHZkb1HRdnC3OYlR4QSd5xwsC72/N3X7Bdk6zw9csLgQ0RkJ44YFWWLumpybt26BcBxocRdJhw0J9AAsPvvvvrrOE+P+Rh8iIjsxNzRTs5aAqeumpyDBw/qttsrlLjbhIPmhtlBgwbpPbf3iDgyH4MPEZFMmVOTU/MLW+pQ4owJB21pgjJ3iH9FRYXuZ7kO03dVDD5ERA7iirPrmqrJMfWFPWDAAISGhkoSShzZzFezxsbY78ScJihzAo3ch+m7IgYfIiIHcKW/+s1pXqrrC1u7BpS7qV5jY+p3UlZWZrBmKC8vD4D5gYbz7LgeBh8iIjtztb/6TTUv5eXlIT093SFf2NWDRWFhoa55KDfXC5cu+SA+XoNWrfwBSN/cVdfvpLCwEB9//LHR15t7fzhM3/Uw+BAR2Zmj/uq3pO9KXSHC1i/suspSUlKCDz74QPdc2+R07Vok9u/vYbAWRsrRb3X9Tqr30alePm2TmLn3pz4O03d3DD5ERHbmiL/6pR46b8sXtrn9aLSqNzkBAoACQO1aGEtGQBkLXtqmKkt+J8aaxMy9P+4yTF8uGHyIiOzEkbPr2mNBUWu/sM3tR6MtZ/UmJ23o0bKmZsyc4GVusDPVJGbq/nh7e+udx9WH6csJgw8RkZ04a3ZdWzpSSzmvjjl9mww1OVVnTc2YucHLnGBXV5OYsfsTFhbm8GH6ZB4GHyIiO3L07Lq2dqSWcl4dc/o2GWpy0jZ32dofxpx7YSy4aNXVJKYd1l8dA41rY/AhIqpHpOhILdWXtjn9aAw1OfXosR9RUdds7g9jy73QNlXV1STmrsP65axeBp9//etfeOONN5Cbm4sOHTpgzZo1ePDBB51dLCIiu3Ol4dPm9qOxV+dfa2prgKoam+o1XuycXL/Uu+Czfft2TJkyBevXr0fnzp2xcuVKJCcnIzMzE40bN3Z28YjICVx5hXSp2Wv4tLX30NzQUFeTkzVsqa3Jz883q3zsnOx+6l3wWb58OZ577jmMHDkSALB+/Xrs3r0b7733HmbOnOnk0hGRozl6hXRXCFlS11DYusyDVKGmpKQEOTk5RvcburfW3gtnrCFGjlGvgk9ZWRmOHz+OWbNm6bZ5eHigR48eyMjIMPia0tJSlJaW6p4XFRXZvZxE5DiOXCHd0SGrOnuucm7JMg+WvMfQoUPh5+cHQH/mZi1vb2+oVCoAxic8NBS+arI2eDHU1E/1Kvjk5eWhsrIS4eHhetvDw8Px66+/GnzN4sWLMX/+fEcUj4hcgD0XCrXHXDrmckQNhbkjxqwpS10dhKvX9NQVvswNXmymkqd6FXysMWvWLEyZMkX3vKioCE2bNnViiYjIXhy5UKgzFiW1dw2FJaOk7FUWc8IXm6nIlHoVfEJDQ+Hp6Ynr16/rbb9+/ToiIiIMvsbHxwc+Pj6OKB4ROZEjFwp1tUVJpeIKI8bMDV8MNWSM8eky3ZBSqURiYiIOHDig26bRaHDgwAEkJSU5sWRE5GymvjDd+b0cSTtKSqHQAIBTFtzUhq/quNo5WaJe1fgAwJQpUzB8+HB06tQJDz74IFauXIk7d+7oRnkRkTw5srbCFWpG7MXUKCntAqDXrnkgO9sLcXEViIqqCilSNS1xtXOyVb0LPikpKbh58ybmzJmD3Nxc3H///fjqq69qdXgmInlx5Bdmff9yNjZKKj093WTfJqlGs3FCQbJFvQs+QNV/XIaGNBKR/FQfuWPqC1PqET716cvZ3HtTV98mKUez2WPCQ5KHehl8iIi0HDnCx55z6ThTXfcwLy8P6enpkqwTZgyHqJNUGHyIqN5z1Aif+jyM2pwy27NvU32+t+RYDD5ERBKS8xevvfs2yfneknQYfIiISDL1qW8T1U8MPkRUL7jC4qBURdu3Sa0OQHZ2rG7Jjry8PP4eyOkYfIjI7TlzcVAyzNCwdiAdAH8P5FwMPkTk9py5OKirsqUGrPprzZmMsOZIKkcOayeyFIMPEdUrzlgc1NXUrAEzFgQN1bxUf625kxFqR1xdu3bN7sPaiWzF4ENE9UZ9XRzUUtVrVEyFF0M1L9ptltbahISE6LbV5yU7yP0x+BBRveEuNQ2O6ohtSxC05V7W9yU7yL0x+BBRveGomgZb+884qiO2LeHF1nvJYe3kqhh8iKjecERNg63BxdaO2OaELi1bwosU95LraZErYvAhonrF3jUN5o5IMuc4Sztim9tpedCgQQBsDy+staH6iMGHiNyeMxcHNRY+zHmdpf1v6uq0XBVSQvDf/6p1x9kaXiypteFCouQOGHyIyO05awFLUzU2eXl5Jt/blv43hkLTF1/0hUJR9fP772vQr98NXVmMhRepZ1LmQqLkDhh8iKhecPSXaV01Nunp6XrH1+zzY0v/G0OhCfCAEDBYluplrl47pS1j9bLZWmvDUEOujsGHiMgKxmpsLl+ORkHBn3V2Vral/42h0FRTzdojc+fzYa0N1XcMPkREVjAcPjTYseMfZndWNtX/pnpTGVAVNtTqqr47NUMToAGg+N+jSvXaI0v7EzHUUH3G4ENEZAVj4UOIqvBhLFyY0xFbrQ7AsmUnTHaYjo+/gIEDdwAQaNr0CrKyWhitPXKXiR2JHIHBh4jIAtWDS/Uamzt3/PHpp0/pHWsoXBhqSsrLy9P1tzFniLuxY4zVHnEJCaK/MPgQEVmgZnDRhha1OsDscGGsKcmcJqm6jjFUg8MlJIj+wuBDRGQhQ8FFinBhTpOUtc1WnIyQqAqDDxGRRGwNF+Y0Sdm6DAUDD8kdgw8RkQ2knDXanFqjrKwWuvl6ANQ6ZsCAAQgNDQUAqNVqbN++3eJrIKrPGHyIiGwg9bw3pmqNtP17gL9qe4SoGuGlFRoaisjISABAZGQk5+QhqoHBh4jITOasjC5FiDBWa2RsxmZT/XsYaoj0MfgQEZmh5sroxtRcmsIc5jY1mdO/h81WRKYx+BARmaFmTY+xVdlN1QgZU1dzmXbIfF19gFJSUljDQ1QHBh8iIguZM8mgpaToA6RSqWwqA5EcGF/hjoiIajE2gaBaHeCwMqhUxYiL+4ND04mswOBDRGQBUxMI2ou5/XbYv4eobmzqIiKLOGpkk6tyxrpXUg+ZJ5IzBh8iMlvNkU3GOvhaM7LJXThr3av6ej+JHI3Bh4jMVr3GwVQHX2tGNrkTrntF5L7Yx4eILOYKHXwdzdDSFIY6GLOfDZFrY40PEVnM2hXCq3N0XyFb34/9bIjqBwYfIrKYrR187TkLsj3fj6GGyP2xqYuILKbt4KtQaADUXiG8Lub2AZKqr5Cj34+IXBdrfIjIKlJ28DU2OsxeHP1+ROQ6GHyIyGrGVhG3hD2Wf3Cl9yMi18KmLiIym9QzCDt6dJgcR6MRkT7W+BCR2aQe2STF6DBLOPr9iMj1MPgQkUWkHNnk6OUfnLHcBBG5FjZ1EZHT2Do6zNXfj4hcD2t8iNxE9Qn4rl3zQHa2F+LiKhAVVfUl7k6T51XvA2RqdJhUsyA7+v2IyHUphBDC2YVwJUVFRVCpVFCr1QgMDHR2cYgA6E/AZ2pUkjstDupuMzcTkWsz9/ubNT5EbkD7hW1sVFJ8/AWoVMVuNQGfo0MGQw0RAQw+RG7FVUclsTaFiNwFgw+RG3HEqCRLQ4yj190iIrIFgw+RG9GOSqrZx0eq2h5rQgzXwSIid8LgQ+RmpFwjqyYpQgzXwSIiV8bgQ+SGpFgjyxyWhhiug0VEro7Bh4gMsjTE1DXijIjIFXDmZiI3IPXioHWxZjFPUyPOiIhcBWt8iJzI3BFUUi8OaqwseXl5AKwbNs91sIjIHTD4EDlJzRFUxvrTaEdQ2XMoeM2yWBNi7D3ijIhICgw+RE5SvfbGVH8aU7U8Uk0cWPMcloQYroNFRO6EwYfIyaztFGzPiQPV6gA0anQLo0f/P5SXK02GGEc0wxERSYXBh8jJrF2GombQMNZUZunEgYZqn+Li/gAADBgwAFFRUbVCDEMNEbkLBh8iJ5OiU7BU8+fUVfsUGhrKkENEbo3D2YmcTNufRqHQAIDFnYKtGXpuDIekE1F9xxofIhdgyzIUUq7YziHpRFTfscaHyEWoVMWIi/vD6rBSnbVhxdbaJyIiV8caHyInkWo2Zinmz+GQdCKSCwYfIieRchi4rSu2c0g6EckFgw+RE9kSJGrWvhhbsd3cWhqGGiKSAwYfIjdlay2NVLM+ExG5E7cIPhcvXsSCBQvwzTffIDc3F1FRURg6dChmz56t99fs6dOnMXHiRBw7dgxhYWGYNGkSpk+f7sSSk7u4cgU4fx5o2RKIjnZ2acxnbTCx56zPRESuzC2Cz6+//gqNRoO3334bLVq0wNmzZ/Hcc8/hzp07ePPNNwEARUVF6NmzJ3r06IH169fjzJkzGDVqFIKCgjB27FgnXwG5Im2Nx9atvpg+XQWNRgEPD4HXX1fjmWf+rNc1HubO5mzprM9ERK7OLYJPr1690KtXL93z5s2bIzMzE+vWrdMFnw8//BBlZWV47733oFQq0bZtW5w6dQrLly9n8KFatDUeanUAVq5MgxAKAIBGo8C0aYG4evU9qFTFsqnxMLbcBRFRfWN28CkqKjL7pIGBgVYVxhJqtRrBwX/NJpuRkYGuXbvqNX0lJydj6dKluHXrFho1amTwPKWlpSgtLdU9t+Q6yb7s2fykrcmoa/I/OdR4mFruIi8vT+/Y+lwLRkTyYHbwCQoKgkKhMHmMEAIKhQKVlZU2F8yUCxcuYM2aNbraHgDIzc1FXFyc3nHh4eG6fcaCz+LFizF//nz7FZassmEDMHYsoNEAHh7AO+8Ao0dL/z5yn6m4rrW50tPTa71GLrVgRFQ/mR18Dh48KPmbz5w5E0uXLjV5zLlz59C6dWvd86tXr6JXr1546qmn8Nxzz9lchlmzZmHKlCm650VFRWjatKnN5yXr5Ofn4+LFCowd2xgajbb5CRg3TuD++28gNtZL0i9dKSb/c2fWLHchh1owIqq/zA4+3bp1k/zNp06dihEjRpg8pnnz5rqfr127hscffxxdunTBO++8o3dcREQErl+/rrdN+zwiIsLo+X18fODj42NhycketP1usrNjodEM19tXWanAmjV7EBf3h+Q1DrZO/mcpVxpGbk2NV15eHpu8iMhtWd25ubCwEBs2bMC5c+cAAG3btsWoUaOgUqnMPkdYWBjCwsLMOvbq1at4/PHHkZiYiI0bN8LDQ/+v1KSkJMyePRvl5eXw9vYGAOzbtw+tWrUy2sxFrkUbBur6MrZHjYOxyf+k5mrDyE3VeBnr8Kxt/mKTFxG5I6uCz08//YTk5GT4+vriwQcfBAAsX74cCxcuxN69e5GQkCBpIa9evYrHHnsMMTExePPNN3Hz5k3dPm1tzjPPPIP58+dj9OjRmDFjBs6ePYtVq1ZhxYoVkpaF7K8+Nz+5yjDyutbmMtXh2VFlJCKyB6uCz4svvoj+/fvj3XffhZdX1SkqKiowZswYpKWl4bvvvpO0kPv27cOFCxdw4cIFRNcY3iOEAACoVCrs3bsXEydORGJiIkJDQzFnzhwOZXdTjm5+chZnDSMPCQnBoEGD8PHHHwPQr/Gqq8MzEZE7s7rGp3roAQAvLy9Mnz4dnTp1kqxwWiNGjKizLxAAtG/fHt9//73k70/OYc/mJ6lWRreFJcPItWWRsmkpKChI77k2hN2542eww/Ply9FQqc5J9v5ERM5gVfAJDAzEpUuX9EZbAcDly5cREBAgScGI7MnZq5FbM4wcsF+/muohDNAAEAD0p6/YseMfKCur3eRFROROrAo+KSkpGD16NN5880106dIFAPDDDz9g2rRpGDx4sKQFJLIXZ3bMrWsYubEmsLr61VgzYqxmCAOqh5+/ysgmLyKqD6wKPm+++SYUCgWeffZZVFRUAAC8vb0xYcIELFmyRNICEtVHpkaumdOx2BBrR4wZCmGAB7p2PYjvvntcb2tdc/wQEbm6mv+3M4tSqcSqVatw69YtnDp1CqdOnUJBQQFWrFjBOXHIaq7Q78ZRtCPXFAoNAOgCDgCDTWBqdd1NyNVHO5pSs0ZIG8KqUyg0uOee8wa3y2VWayKqn2xapNTPzw/t2rWTqiwkc87ud+MIdQ0jz86OtXgmZaCqtmf79u1WlcXY9AHR0TkmpxWoDwGUiOTHquBz9+5drFmzBgcPHsSNGzeg0ej/VXjixAlJCkfy486hxhzGwl1eXh7S09OtXjvMUFisa6h8zbLMmXMTFy96ITa2Av7+96C8PA6DBnnpbY+KegDAA24fQIlIvqwKPqNHj8bevXvxj3/8Aw8++GCdi5cS0V9MBQapJm80t59Q9bJERgKJidpn4XrH/bWdiMi9WRV8du3ahS+//BIPP/yw1OUhkj1bJ29UqwPwxRd9oe3Cx9FYRER/sSr4NGnShPP1EEmoZn8ZY5M3mtOv5ujRzqg5boGjsYiIqlgVfJYtW4YZM2Zg/fr1iImJkbpMRLIjVcdutToAGRlJBvZwNBYREWBl8OnUqRPu3r2L5s2bw8/PT7caulZBAf8HS2QpKToLG56TB+jSJYOjsYiIYGXwGTx4MK5evYpFixYhPDycnZuJXISxUWGdOx8FAAwaNIijsYhI1qwKPkeOHEFGRgY6dOggdXmIyAp1zcmjre1p3LixM4tJROR0VgWf1q1b488//5S6LERkJVNz8nDuHSKiv1gVfJYsWYKpU6di4cKFaNeuXa0+PoGBgZIUjshRrFnc09UYn5OHiIi0FEIIYemLPDyq+g/U7NsjhIBCoUBlZaU0pXOCoqIiqFQqqNVqBjiZsHZxTyIich3mfn9bVeNz8OBBqwtG5Gpq1vQYW+rBVI0QERG5B6uCT7du3cw67vnnn8err76K0NBQa96GyOHMXeqBiIjcU+0JPyT0wQcfoKioyJ5vQSQZtTpAF3qAv5Z6UKs5SzkRUX1h1+BjRfchIqcxNPmfdqkHIiKqH+wafIjciXbyv+oUCi71QERUnzD4EP2PdvI/bfipOfkfERG5P6s6NxPVVwkJJxEffwEFBcEIDi5g6CEiqmcYfEj2ai7aqVIVGww8XNyTiMj9WRx8KioqsGjRIowaNQrR0dEmjx06dCgnASTJ2Gt25ZrLPUh5biIici1WzdwcEBCAM2fOIDY21g5Fci7O3OyaOLsyERGZYteZm7t3745Dhw7Vy+BDtbnCOlacXZmIiKRgVfDp3bs3Zs6ciTNnziAxMRH+/v56+/v37y9J4cjxaoacwsJCfPzxx3W+zpE1LZxdmYiIrGVV8Hn++ecBAMuXL6+1z90XKZUzc5uTDLl27ZpeYLJXLZCx2ZXj4y9wBBYREdXJquCj0WjqPojcji3NROnp6bW22aMWyNTsyvYIPq7QzEdERNKxKvi8//77SElJgY+Pj972srIybNu2Dc8++6wkhSPHyc/PR15enqTntEd/G+3sytXDj71mV2aHaiKi+seqmZtHjhwJtVpda3txcTFGjhxpc6HIsbRf8IZqbVyNI2dXNtShOjs7ttaipexQTUTkPqyq8RFCQKFQ1Np+5coVqFQqmwtFjuVuX9zOmF3ZVIdqYzVlbAYjInI9FgWfjh07QqFQQKFQ4IknnoCX118vr6ysRHZ2Nnr16iV5Icl1GBpGbmxouZTsPbuyob482kBTV4dqUzVlbAYjInItFgWfJ598EgBw6tQpJCcno2HDhrp9SqUSsbGxGDhwoKQFJOepGWgM1XoAcMjQcnvOrlxXXx5zOlRzXiEiIvdgUfCZO3cuACA2NhYpKSlo0KCBXQpFzlcz5PTosR/79/fQq/X44ou+UCjgsKHl9qo5qWtyxLo6VHNeISIi92FVH5/hw4cDqPrCuHHjRq3h7c2aNbO9ZOQ0hpp2qoeev3ig5oIn9hxa7gjGQky/frtqbVepijmvEBGRm7Eq+Jw/fx6jRo3CkSNH9LZrOz1zAkP3ZqxpR6EQEKJ6p3aNXo0PoF8T4m6rmZsKMcY6VDt6XiEiIrKNVcFnxIgR8PLywq5duxAZGWlwhBe5L2NNO7NnF2PxYhUqKwFPT4GlS4sAADNmqFBZqdBte+aZwW45oqmuEGOoQ7Uj5xUiIiLbWRV8Tp06hePHj6N169ZSl4ecwFDNTFJSBjIykvSadtLSHsa4ccCFC0CLFgpERwcBAFJSam4LcmTxJVNXiBkwYABCQ0MBVI34Sk9P180rZKgZjIiIXI9VwadNmzaSz/JLzlN9xNTWrb549VUVNBoFFAqB8eNvY8yYO4iNfVhXgxMdrf/66Oja29xRXSEmNDQUkZGRtV7njHmFiIjIOlYFn6VLl2L69OlYtGgR2rVrB29vb739gYGBkhSOHCckJARXrgDTpwPavupCKPDuuw0xe3ZDuFmrldXMDTH2nleIiIjsw6rg06NHDwBA9+7d9fr3sHOzezt//q/Qo1VZWdWMVR9qdIyxJsTYc14hIiKyH6uCz8GDB6UuB7mAli0BDw/98OPpCbRo4bwyOYK1IYahhojI/VgVfLp164bvv/8eb7/9NrKysvDpp5+iSZMm2LJlC+Li4qQuIzlIdDTwzjvAuHH438gt4O2363dtjxZDDBGRPFi1OvuOHTuQnJwMX19fnDx5EqWlpQAAtVqNRYsWSVpAcqzRo4GLF4GDB6v+HT3a2SUiIiKSjlXB57XXXsP69evx7rvv6nVsfvjhh3HixAnJCkfOER0NPPaYPGp6iIhIXqwKPpmZmejatWut7SqVCoWFhbaWiYiIiMgurAo+ERERuHDhQq3thw8fRvPmzW0uFBEREZE9WBV8nnvuOUyePBlHjx6FQqHAtWvX8OGHH+Kll17ChAkTpC4jERERkSSsGtU1c+ZMaDQaPPHEEygpKUHXrl3h4+ODl156CZMmTZK6jCRj+fn5nCuHiIgkoxBCCGtfXFZWhgsXLuD27dto06YNGjZsKGXZnKKoqAgqlQpqtZozUDtZfn4+1q5dq3uuVgegoCAEwcH5ehMMpqamMvwQEcmcud/fVtX4aCmVSrRp08aWUxAZVb2m58SJjrXW0EpIOFnrOFOq1x5du+aB7GwvxMVVICqqasZG1h4REdV/NgUfIkdQqwN0oQcAhPDAzp19ER9/ASpVscEFc2uGmOq1R6ZCFGuPiIjqNwYfcnkFBSG60KMlhAcKCoKhUhVj48Z9dTaBaWt66gpR5tYeERGRe2LwIZcXHJwPhUKjF34UCg2CgwssbgKrK0QREVH9ZtVwdiJHUqmK0a/fLigUVX1xtAEHgMHaG7U6wOi5tCGqOm2IIiKi+o81PuSS8vPz9fruJCScRHz8BRQUBCM4uAAqVTGys2Mtrr3RhqiatUSs7SEikgcGH3I5poaxx8X9odtuqgnMFEMhioiI5IHBh1yOucPYbam9UamKGXiIiGSIwYdcVl0jsADW3hARkWUYfMhlmTsCy5zaG6VSadZ7mnscERG5JwYfclnW9uHRqh5iQkJCkJqaynW/iIhkjsGHHK6uhUfVajWAuvvwDBgwAKGhoQbPYSjEMNQQERGDDzmUuQuPapnqwxMaGorIyEiHlJuIiOoHBh9yKHNHbFXHEVhERCQVztxMTmFsxJapWZdrYkdkIiKylNvV+JSWlqJz5874+eefcfLkSdx///26fadPn8bEiRNx7NgxhIWFYdKkSZg+fbrzCktG1TVia9CgQQgKCjL6enZEJiIia7hd8Jk+fTqioqLw888/620vKipCz5490aNHD6xfvx5nzpzBqFGjEBQUhLFjxzqptGRMXSO2goKC2H+HiIgk51bBZ8+ePdi7dy927NiBPXv26O378MMPUVZWhvfeew9KpRJt27bFqVOnsHz5cgYfB6prxFZhYSEArplFRETO4TbB5/r163juuefw+eefw8/Pr9b+jIwMdO3aVa/fR3JyMpYuXYpbt26hUaNGjiyuLEk5YouIiMge3CL4CCEwYsQIjB8/Hp06dcLFixdrHZObm4u4uDi9beHh4bp9xoJPaWkpSktLdc+LioqkK7jMcMQWERG5OqeO6po5cyYUCoXJx6+//oo1a9aguLgYs2bNkrwMixcvhkql0j2aNm0q+XvIDUdsERGRq3Jqjc/UqVMxYsQIk8c0b94c33zzDTIyMuDj46O3r1OnThgyZAg2b96MiIgIXL9+XW+/9nlERITR88+aNQtTpkzRPS8qKqpX4aeuPjf2GB1V14itlJQUqFQqh5aJiIgIcHLwCQsLQ1hYWJ3HrV69Gq+99pru+bVr15CcnIzt27ejc+fOAICkpCTMnj0b5eXl8Pb2BgDs27cPrVq1Mtm/x8fHp1agqi9q9rkxJjU1VdKgYWrEllodgB9+UOL++z0QFaUBwKBDRESO4xZ9fJo1a6b3vGHDhgCA+Ph4REdHAwCeeeYZzJ8/H6NHj8aMGTNw9uxZrFq1CitWrHB4eV2FqZoea44zl7ERW1lZLYz2+5E6fBERERniFsHHHCqVCnv37sXEiRORmJiI0NBQzJkzh0PZnaTmiC0AWLkyrVa/n/j4C1CpiiUPX0RERIa4ZfCJjY2FEKLW9vbt2+P77793QonIkOojtrKzY032+yEiInIErtVFkjE1Ekvb76e66jM1ExEROYJb1viQawoJCUFqaqpes1VeXh7S09M5UzMREbkEBh+SlKkOypypmYiInI3BR0bqWkLCEThTMxERORODTz1Wvc+NqSUkOEsyERHJBYNPPabtc3PxYgVefbUxhFAAqBpNtXt3P8yZ0xmxsV52nT/H3FDF8EVERI7A4FPPhYSE4PRpQKM/oAqVlQoUF4fD3nMGGurwXBNnbiYiIkdh8JGBli0BDw/98OPpCbRo4Zj3Z6ghIiJXwXl8ZCA6GnjnnaqwA1T9+/bbVduJiIjkhDU+MjF6NJCcDFy4UFXTw9BDRERyxOAjI9HRDDxERCRvbOoiIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwIatduQIcPFj1LxERkTtg8CGL5OfnIycnB8uWFSImRqB7dyAmRmDZskLk5OQgPz/f2UUkIiIyijM3y0x+fr7VK6Xn5+dj7dq1UKsDsHJlGoRQAAA0GgWmTQvE1avvQaUqRmpqKhcmJSIil8TgIyPa4KKlVgegoCAEwcH5UKmKdduNBRdtYCooCIEQ+pWFQnigoCAYKlWxyWBFRETkTAw+MlI9kJw40RE7d/aFEB5QKDTo128XEhJO1jrOkODgfCgUGr3wo1BoEBxcYJ+CExERSYR9fGRIrQ7QhR6gqrZm586+UKsDzHq9SlWMfv12QaHQAIAuOFWvNSIiInJFrPGRobqaqsyRkHAS8fEXUFAQjODgAoYeIiJyCww+MiRVU5VKVczAQ0REboVNXTLEpioiIpIr1vjIFJuqiIhIjhh8ZMzSpiqlUinpcURERI7G4CMjtgaXkJAQpKamWj0BIhERkbMphBDC2YVwJUVFRVCpVFCr1QgMDHR2cSRny8zNRERErsrc72/W+MiMJaHmyhXg/HmgZUsgOtqOhSIiInIQjuoigzZsAGJi8L9FSKueExERuTsGH9KTn5+P48evY+xYAU3VaHdoNMC4cQLHj1/n6utEROTW2NRFOtpFTLOzY6HRDNfbV1mpwJo1exAX9wdXXyciIrfFGh/S0XZ61s7sXF31mZ25+joREbkrBh+qhTM7ExFRfcWmLjKIMzsTEVF9xOBDRnERUiIiqm/Y1EVERESyweBDREREssHgQ0RERLLB4EM6XH2diIjqO3ZuJh2uvk5ERPUdgw/pYaghIqL6jE1dREREJBsMPkRERCQbDD5EREQkGww+REREJBsMPi7qyhXg4MGqf4mIiEgaDD4uaMMGICYG6N696t8NG2ofw2BERERkOQYfF3PlCjB2LKDRVD3XaIBx46q25+fnIycnB8uWFSImRvwvGAksW1aInJwc5OfnO7fwRERELo7z+LiY8+f/Cj1alZXA8eNqnDq1Fmp1AFauTIMQCgCARqPAtGmBuHr1PahUxUhNTeVcPEREREawxseF5OfnIzDwOjw8hN52T08BP79rAICCghAIof9rE8IDBQXBAGBy1mUiIiK5Y42Pi8jPz8fatWsBAH37dsTOnX0hhAcUCg369NmFI0dOAgCCg/OhUGj0wo9CoUFwcIFTyk1EROROGHxcRPWamoSEk4iPv4CCgmAEBxdApSrW7VOpitGv3y69YNSv3y69Y4iIiMgwBh8XpVIVGw0z8fEXMHDgDgACTZteYeghIiIyE4OPmzlxomOt2p6EhJPOLhYREZFbYOdmN6JWB+hCD1DVqXnnzr5QqwOcXDIiIiL3wODjRuoa0UVERESmMfi4Ee2IrupqjuhSKpWOLhYREZHbYPBxI9oRXdrwU3NEV0pKCicvJCIiMoGdm12EuTU1poe6q+xVPCIionqBwcdFhISEIDU11eDMy3l5eUhPT9c9NzXUnYiIiIxj8HEhbKYiIiKyL/bxcQPmNoOxYzMREZFprPFxA6aawbSUSiVrjIiIiOrgVjU+u3fvRufOneHr64tGjRrhySef1Nt/6dIl9OnTB35+fmjcuDGmTZuGiooK5xRWYiEhIYiMjDT6YOghIiKqm9vU+OzYsQPPPfccFi1ahO7du6OiogJnz57V7a+srESfPn0QERGBI0eOICcnB88++yy8vb2xaNEiJ5aciIiIXIVCCCGcXYi6VFRUIDY2FvPnz8fo0aMNHrNnzx707dsX165dQ3h4OABg/fr1mDFjBm7evGl2/5eioiKoVCqo1WoEBgZKdg1ERERkP+Z+f7tFU9eJEydw9epVeHh4oGPHjoiMjETv3r31anwyMjLQrl07XegBgOTkZBQVFeG///2vM4pNRERELsYtgs/vv/8OAJg3bx7++c9/YteuXWjUqBEee+wxFBRULdeQm5urF3oA6J7n5uYaPXdpaSmKior0HkRERFQ/OTX4zJw5EwqFwuTj119/hUZTtUTD7NmzMXDgQCQmJmLjxo1QKBT45JNPbCrD4sWLoVKpdI+mTZtKcWlERETkgpzauXnq1KkYMWKEyWOaN2+OnJwcAECbNm102318fNC8eXNcunQJABAREYEff/xR77XXr1/X7TNm1qxZmDJliu55UVERww8REVE95dTgExYWhrCwsDqPS0xMhI+PDzIzM/HII48AAMrLy3Hx4kXExMQAAJKSkrBw4ULcuHEDjRs3BgDs27cPgYGBeoGpJh8fH/j4+EhwNUREROTq3GI4e2BgIMaPH4+5c+eiadOmiImJwRtvvAEAeOqppwAAPXv2RJs2bTBs2DC8/vrryM3NxT//+U9MnDiRwYaIiIgAuEnwAYA33ngDXl5eGDZsGP7880907twZ33zzDRo1agQA8PT0xK5duzBhwgQkJSXB398fw4cPx6uvvurkkhMREZGrcIt5fByJ8/gQERG5n3o1jw8RERGRFBh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDa8nF2A+iw/Px9lZWVG9yuVSoSEhDiwRERERPLG4GMn+fn5WLt2bZ3HpaamMvwQERE5CJu67MRUTY81xxEREZHtGHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHzsRKlUSnocERER2Y4TGNpJSEgIUlNTOXMzERGRC2HwsSOGGiIiItfCpi4HuXIFOHiw6l8iIiJyDgYfB9iwAYiJAbp3r/p3wwZnl4iIiEieGHzs7MoVYOxYQKOpeq7RAOPGseaHiIjIGRh87Oz8+b9Cj1ZlJXDhgnPKQ0REJGcMPnbWsiXgUeMue3oCLVo4pzxERERyxuBjZ9HRwDvvVIUdoOrft9+u2k5ERESOxeHsDjB6NJCcXNW81aIFQw8REZGzMPg4SHQ0Aw8REZGzsamLiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDa3XVIIQAABQVFTm5JERERGQu7fe29nvcGAafGoqLiwEATZs2dXJJiIiIyFLFxcVQqVRG9ytEXdFIZjQaDa5du4aAgAAoFAqzXlNUVISmTZvi8uXLCAwMtHMJXRfvQxXeB94DLd6HKrwPvAda9rwPQggUFxcjKioKHh7Ge/KwxqcGDw8PREdHW/XawMBAWX+gtXgfqvA+8B5o8T5U4X3gPdCy130wVdOjxc7NREREJBsMPkRERCQbDD4S8PHxwdy5c+Hj4+PsojgV70MV3gfeAy3ehyq8D7wHWq5wH9i5mYiIiGSDNT5EREQkGww+REREJBsMPkRERCQbDD5EREQkGww+Rqxbtw7t27fXTbKUlJSEPXv26PbfvXsXEydOREhICBo2bIiBAwfi+vXreue4dOkS+vTpAz8/PzRu3BjTpk1DRUWFoy9FMkuWLIFCoUBaWppum1zuw7x586BQKPQerVu31u2Xy324evUqhg4dipCQEPj6+qJdu3b46aefdPuFEJgzZw4iIyPh6+uLHj164Pz583rnKCgowJAhQxAYGIigoCCMHj0at2/fdvSlWC02NrbWZ0GhUGDixIkA5PNZqKysxCuvvIK4uDj4+voiPj4eCxYs0FsnSQ6fh+LiYqSlpSEmJga+vr7o0qULjh07pttfH+/Bd999h379+iEqKgoKhQKff/653n6prvn06dN49NFH0aBBAzRt2hSvv/66NBcgyKAvvvhC7N69W/z2228iMzNTvPzyy8Lb21ucPXtWCCHE+PHjRdOmTcWBAwfETz/9JB566CHRpUsX3esrKirEfffdJ3r06CFOnjwpvvzySxEaGipmzZrlrEuyyY8//ihiY2NF+/btxeTJk3Xb5XIf5s6dK9q2bStycnJ0j5s3b+r2y+E+FBQUiJiYGDFixAhx9OhR8fvvv4uvv/5aXLhwQXfMkiVLhEqlEp9//rn4+eefRf/+/UVcXJz4888/dcf06tVLdOjQQfznP/8R33//vWjRooUYPHiwMy7JKjdu3ND7HOzbt08AEAcPHhRCyOOzIIQQCxcuFCEhIWLXrl0iOztbfPLJJ6Jhw4Zi1apVumPk8HkYNGiQaNOmjTh06JA4f/68mDt3rggMDBRXrlwRQtTPe/Dll1+K2bNni/T0dAFAfPbZZ3r7pbhmtVotwsPDxZAhQ8TZs2fFRx99JHx9fcXbb79tc/kZfCzQqFEj8f/+3/8ThYWFwtvbW3zyySe6fefOnRMAREZGhhCi6oPh4eEhcnNzdcesW7dOBAYGitLSUoeX3RbFxcWiZcuWYt++faJbt2664COn+zB37lzRoUMHg/vkch9mzJghHnnkEaP7NRqNiIiIEG+88YZuW2FhofDx8REfffSREEKIX375RQAQx44d0x2zZ88eoVAoxNWrV+1XeDuaPHmyiI+PFxqNRjafBSGE6NOnjxg1apTetgEDBoghQ4YIIeTxeSgpKRGenp5i165detsTEhLE7NmzZXEPagYfqa75rbfeEo0aNdL7b2LGjBmiVatWNpeZTV1mqKysxLZt23Dnzh0kJSXh+PHjKC8vR48ePXTHtG7dGs2aNUNGRgYAICMjA+3atUN4eLjumOTkZBQVFeG///2vw6/BFhMnTkSfPn30rheA7O7D+fPnERUVhebNm2PIkCG4dOkSAPnchy+++AKdOnXCU089hcaNG6Njx4549913dfuzs7ORm5urdx9UKhU6d+6sdx+CgoLQqVMn3TE9evSAh4cHjh496riLkUhZWRk++OADjBo1CgqFQjafBQDo0qULDhw4gN9++w0A8PPPP+Pw4cPo3bs3AHl8HioqKlBZWYkGDRrobff19cXhw4dlcQ9qkuqaMzIy0LVrVyiVSt0xycnJyMzMxK1bt2wqIxcpNeHMmTNISkrC3bt30bBhQ3z22Wdo06YNTp06BaVSiaCgIL3jw8PDkZubCwDIzc3V+x+bdr92n7vYtm0bTpw4oddmrZWbmyub+9C5c2ds2rQJrVq1Qk5ODubPn49HH30UZ8+elc19+P3337Fu3TpMmTIFL7/8Mo4dO4YXXngBSqUSw4cP112Hoeusfh8aN26st9/LywvBwcFucx+q+/zzz1FYWIgRI0YAkNd/EzNnzkRRURFat24NT09PVFZWYuHChRgyZAgAyOLzEBAQgKSkJCxYsAD33nsvwsPD8dFHHyEjIwMtWrSQxT2oSaprzs3NRVxcXK1zaPc1atTI6jIy+JjQqlUrnDp1Cmq1Gp9++imGDx+OQ4cOObtYDnP58mVMnjwZ+/btq/UXjdxo/4oFgPbt26Nz586IiYnBxx9/DF9fXyeWzHE0Gg06deqERYsWAQA6duyIs2fPYv369Rg+fLiTS+ccGzZsQO/evREVFeXsojjcxx9/jA8//BBbt25F27ZtcerUKaSlpSEqKkpWn4ctW7Zg1KhRaNKkCTw9PZGQkIDBgwfj+PHjzi4aGcGmLhOUSiVatGiBxMRELF68GB06dMCqVasQERGBsrIyFBYW6h1//fp1REREAAAiIiJqjeTQPtce4+qOHz+OGzduICEhAV5eXvDy8sKhQ4ewevVqeHl5ITw8XBb3wZCgoCDcc889uHDhgmw+D5GRkWjTpo3etnvvvVfX5Ke9DkPXWf0+3LhxQ29/RUUFCgoK3OY+aP3xxx/Yv38/xowZo9sml88CAEybNg0zZ87E008/jXbt2mHYsGF48cUXsXjxYgDy+TzEx8fj0KFDuH37Ni5fvowff/wR5eXlaN68uWzuQXVSXbM9/zth8LGARqNBaWkpEhMT4e3tjQMHDuj2ZWZm4tKlS0hKSgIAJCUl4cyZM3q/3H379iEwMLDWl4ereuKJJ3DmzBmcOnVK9+jUqROGDBmi+1kO98GQ27dvIysrC5GRkbL5PDz88MPIzMzU2/bbb78hJiYGABAXF4eIiAi9+1BUVISjR4/q3YfCwkK9v4a/+eYbaDQadO7c2QFXIZ2NGzeicePG6NOnj26bXD4LAFBSUgIPD/2vEE9PT2g0GgDy+zz4+/sjMjISt27dwtdff42///3vsrsHgHS/96SkJHz33XcoLy/XHbNv3z60atXKpmYuABzObszMmTPFoUOHRHZ2tjh9+rSYOXOmUCgUYu/evUKIqiGrzZo1E99884346aefRFJSkkhKStK9XjtktWfPnuLUqVPiq6++EmFhYW43ZLWm6qO6hJDPfZg6dar49ttvRXZ2tvjhhx9Ejx49RGhoqLhx44YQQh734ccffxReXl5i4cKF4vz58+LDDz8Ufn5+4oMPPtAds2TJEhEUFCT+/e9/i9OnT4u///3vBoexduzYURw9elQcPnxYtGzZ0qWH7hpSWVkpmjVrJmbMmFFrnxw+C0IIMXz4cNGkSRPdcPb09HQRGhoqpk+frjtGDp+Hr776SuzZs0f8/vvvYu/evaJDhw6ic+fOoqysTAhRP+9BcXGxOHnypDh58qQAIJYvXy5Onjwp/vjjDyGENNdcWFgowsPDxbBhw8TZs2fFtm3bhJ+fH4ez29OoUaNETEyMUCqVIiwsTDzxxBO60COEEH/++ad4/vnnRaNGjYSfn5/4v//7P5GTk6N3josXL4revXsLX19fERoaKqZOnSrKy8sdfSmSqhl85HIfUlJSRGRkpFAqlaJJkyYiJSVFb/4audyHnTt3ivvuu0/4+PiI1q1bi3feeUdvv0ajEa+88ooIDw8XPj4+4oknnhCZmZl6x+Tn54vBgweLhg0bisDAQDFy5EhRXFzsyMuw2ddffy0A1Lo2IeTzWSgqKhKTJ08WzZo1Ew0aNBDNmzcXs2fP1ht+LIfPw/bt20Xz5s2FUqkUERERYuLEiaKwsFC3vz7eg4MHDwoAtR7Dhw8XQkh3zT///LN45JFHhI+Pj2jSpIlYsmSJJOVXCFFtmk0iIiKieox9fIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iMhmjz32GNLS0pxdDLubN28e7r//fmcXg4hswOBDRLJXVlbm0PcTQqCiosKh70lEVRh8iMgmI0aMwKFDh7Bq1SooFAooFApcvHgRZ8+eRe/evdGwYUOEh4dj2LBhyMvL073usccew6RJk5CWloZGjRohPDwc7777Lu7cuYORI0ciICAALVq0wJ49e3Sv+fbbb6FQKLB79260b98eDRo0wEMPPYSzZ8/qlenw4cN49NFH4evri6ZNm+KFF17AnTt3dPtjY2OxYMECPPvsswgMDMTYsWMBADNmzMA999wDPz8/NG/eHK+88opudehNmzZh/vz5+Pnnn3XXuWnTJly8eBEKhQKnTp3Snb+wsBAKhQLffvutXrn37NmDxMRE+Pj44PDhw9BoNFi8eDHi4uLg6+uLDh064NNPP5X6V0RE1TD4EJFNVq1ahaSkJDz33HPIyclBTk4OAgIC0L17d3Ts2BE//fQTvvrqK1y/fh2DBg3Se+3mzZsRGhqKH3/8EZMmTcKECRPw1FNPoUuXLjhx4gR69uyJYcOGoaSkRO9106ZNw7Jly3Ds2DGEhYWhX79+uoCSlZWFXr16YeDAgTh9+jS2b9+Ow4cPIzU1Ve8cb775Jjp06ICTJ0/ilVdeAQAEBARg06ZN+OWXX7Bq1Sq8++67WLFiBQAgJSUFU6dORdu2bXXXmZKSYtG9mjlzJpYsWYJz586hffv2WLx4Md5//32sX78e//3vf/Hiiy9i6NChOHTokEXnJSILSLLUKRHJWrdu3cTkyZN1zxcsWCB69uypd8zly5f1VjTv1q2beOSRR3T7KyoqhL+/vxg2bJhuW05OjgAgMjIyhBB/rQq9bds23TH5+fnC19dXbN++XQghxOjRo8XYsWP13vv7778XHh4e4s8//xRCCBETEyOefPLJOq/rjTfeEImJibrnc+fOFR06dNA7Jjs7WwAQJ0+e1G27deuWACAOHjyoV+7PP/9cd8zdu3eFn5+fOHLkiN75Ro8eLQYPHlxn2YjIOl7ODF1EVD/9/PPPOHjwIBo2bFhrX1ZWFu655x4AQPv27XXbPT09ERISgnbt2um2hYeHAwBu3Lihd46kpCTdz8HBwWjVqhXOnTune+/Tp0/jww8/1B0jhIBGo0F2djbuvfdeAECnTp1qlW379u1YvXo1srKycPv2bVRUVCAwMNDi6zem+nteuHABJSUl+Nvf/qZ3TFlZGTp27CjZexKRPgYfIpLc7du30a9fPyxdurTWvsjISN3P3t7eevsUCoXeNoVCAQDQaDQWvfe4cePwwgsv1NrXrFkz3c/+/v56+zIyMjBkyBDMnz8fycnJUKlU2LZtG5YtW2by/Tw8qnoMCCF027TNbjVVf8/bt28DAHbv3o0mTZroHefj42PyPYnIegw+RGQzpVKJyspK3fOEhATs2LEDsbGx8PKS/n8z//nPf3Qh5tatW/jtt990NTkJCQn45Zdf0KJFC4vOeeTIEcTExGD27Nm6bX/88YfeMTWvEwDCwsIAADk5ObqamuodnY1p06YNfHx8cOnSJXTr1s2ishKR9di5mYhsFhsbi6NHj+LixYvIy8vDxIkTUVBQgMGDB+PYsWPIysrC119/jZEjR9YKDtZ49dVXceDAAZw9exYjRoxAaGgonnzySQBVI7OOHDmC1NRUnDp1CufPn8e///3vWp2ba2rZsiUuXbqEbdu2ISsrC6tXr8Znn31W6zqzs7Nx6tQp5OXlobS0FL6+vnjooYd0nZYPHTqEf/7zn3VeQ0BAAF566SW8+OKL2Lx5M7KysnDixAmsWbMGmzdvtvreEJFpDD5EZLOXXnoJnp6eaNOmDcLCwlBWVoYffvgBlZWV6NmzJ9q1a4e0tDQEBQXpmoZssWTJEkyePBmJiYnIzc3Fzp07oVQqAVT1Gzp06BB+++03PProo+jYsSPmzJmDqKgok+fs378/XnzxRaSmpuL+++/HkSNHdKO9tAYOHIhevXrh8ccfR1hYGD766CMAwHvvvYeKigokJiYiLS0Nr732mlnXsWDBArzyyitYvHgx7r33XvTq1Qu7d+9GXFycFXeFiMyhENUbpomIXNi3336Lxx9/HLdu3UJQUJCzi0NEbog1PkRERCQbDD5EREQkG2zqIiIiItlgjQ8RERHJBoMPERERyQaDDxEREckGgw8RERHJBoMPERERyQaDDxEREckGgw8RERHJBoMPERERyQaDDxEREcnG/wdmed262Vc8gQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAHHCAYAAAAGU9SoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdhUlEQVR4nO3deXxM1/8/8NdkX0iCrEiIPZYvESXjg1abCkVo+RRVpEIbtdQWEkVEW9LYd/1UK6r22mINjbWSKmnsEhohfEiiJQkh+/n94Zf7MWZCEpPM9no+HvNgzj1z5z1zK3n1nHvPlQkhBIiIiIhI6xlpugAiIiIiKhsGNyIiIiIdweBGREREpCMY3IiIiIh0BIMbERERkY5gcCMiIiLSEQxuRERERDqCwY2IiIhIRzC4EREREekIBjciotckk8kwa9YsTZch8ff3R/369TVdBhFVAgY3ItJLkZGRkMlk0sPCwgJNmjTBmDFjkJ6eXqnvHRsbi1mzZiEzM1Ot+33rrbcUPlPNmjXxxhtv4Mcff0RxcbFa3mPOnDnYtWuXWvZFROpnoukCiIgq0+zZs+Hu7o7c3Fz89ttvWLVqFfbv349Lly7ByspKLe/x9OlTmJj878dpbGwswsLC4O/vDzs7O7W8R4m6deti7ty5AID79+/jp59+QkBAAK5du4bw8PDX3v+cOXPQv39/9O3b97X3RUTqx+BGRHqtR48eaNeuHQBgxIgRqFWrFhYuXIjdu3dj0KBBFd5vcXEx8vPzYWFhAQsLC3WV+0q2trb4+OOPpeefffYZmjZtiuXLl+Orr76CqalpldVCRFWPU6VEZFDefvttAEBKSgoAYP78+ejYsSNq1aoFS0tLeHl54ZdfflF6nUwmw5gxY7Bhwwa0aNEC5ubmOHjwoLSt5By3WbNmISgoCADg7u4uTWvevHkTb775Jlq3bq2yrqZNm8LX17fcn8fKygre3t7IycnB/fv3S+2Xk5ODSZMmwdXVFebm5mjatCnmz58PIYTCZ8zJycG6deukuv39/ctdExFVHo64EZFBSU5OBgDUqlULALBkyRL4+flh8ODByM/Px+bNm/Hvf/8be/fuRc+ePRVee+TIEWzduhVjxoyBvb29ygsAPvjgA1y7dg2bNm3CokWLYG9vDwBwcHDAkCFDMHLkSFy6dAktW7aUXnPmzBlcu3YN06dPr9BnunHjBoyNjUudlhVCwM/PD0ePHkVAQADatGmD6OhoBAUF4b///S8WLVoEAFi/fj1GjBiB9u3b49NPPwUANGzYsEI1EVElEUREemjt2rUCgPj111/F/fv3xe3bt8XmzZtFrVq1hKWlpbhz544QQognT54ovC4/P1+0bNlSvP322wrtAISRkZG4fPmy0nsBEKGhodLzefPmCQAiJSVFoV9mZqawsLAQU6dOVWgfN26csLa2Fo8fP37pZ3rzzTdFs2bNxP3798X9+/fF1atXxbhx4wQA0bt3b6nfsGHDRL169aTnu3btEgDE119/rbC//v37C5lMJv766y+pzdraWgwbNuyldRCR5nCqlIj0mo+PDxwcHODq6oqBAweiWrVq2LlzJ+rUqQMAsLS0lPo+fPgQWVlZ6Ny5M/7880+lfb355pto3rx5hWuxtbVFnz59sGnTJmmKsqioCFu2bEHfvn1hbW39yn0kJibCwcEBDg4O8PDwwLJly9CzZ0/8+OOPpb5m//79MDY2xrhx4xTaJ02aBCEEDhw4UOHPRERVi1OlRKTXVqxYgSZNmsDExAROTk5o2rQpjIz+9/+se/fuxddff41z584hLy9PapfJZEr7cnd3f+16hg4dii1btuDkyZPo0qULfv31V6Snp2PIkCFlen39+vXx/fffS0ucNG7cGI6Oji99za1bt1C7dm1Ur15dod3Dw0PaTkS6gcGNiPRa+/btpatKX3Ty5En4+fmhS5cuWLlyJVxcXGBqaoq1a9di48aNSv2fH52rKF9fXzg5OeHnn39Gly5d8PPPP8PZ2Rk+Pj5ler21tXWZ+xKR/uFUKREZrO3bt8PCwgLR0dEYPnw4evTooZZQpGq0roSxsTE++ugj/PLLL3j48CF27dqFQYMGwdjY+LXftzT16tXD3bt38ejRI4X2xMREaXuJl9VORJrH4EZEBsvY2BgymQxFRUVS282bN1/7zgEl56qVdueEIUOG4OHDh/jss8/w+PFjhXXZKsN7772HoqIiLF++XKF90aJFkMlk6NGjh9RmbW2t9js+EJH6cKqUiAxWz549sXDhQnTv3h0fffQRMjIysGLFCjRq1AgXLlyo8H69vLwAAF9++SUGDhwIU1NT9O7dWwp0np6eaNmyJbZt2wYPDw+0bdtWLZ+nNL1790bXrl3x5Zdf4ubNm2jdujUOHTqE3bt3Y/z48QpLfnh5eeHXX3/FwoULUbt2bbi7u6NDhw6VWh8RlR1H3IjIYL399tv44YcfkJaWhvHjx2PTpk349ttv8f7777/Wft944w189dVXOH/+PPz9/TFo0CClxXGHDh0KAGW+KOF1GBkZISoqCuPHj8fevXsxfvx4XLlyBfPmzcPChQsV+i5cuBBeXl6YPn06Bg0ahFWrVlV6fURUdjIhnls2m4iIqsSSJUswYcIE3Lx5E25ubpouh4h0BIMbEVEVE0KgdevWqFWrFo4eParpcohIh/AcNyKiKpKTk4OoqCgcPXoUFy9exO7duzVdEhHpGI64ERFVkZs3b8Ld3R12dnb4/PPP8c0332i6JCLSMQxuRERERDqCV5USERER6QgGNyIiIiIdwYsTtFhxcTHu3r2L6tWr8zY0REREOkIIgUePHqF27dowMlLvGBmDmxa7e/cuXF1dNV0GERERVcDt27dRt25dte6TwU2LVa9eHcCzA29jY6PhaoiIiKgssrOz4erqKv0eVycGNy1WMj1qY2PD4EZERKRjKuM0J16cQERERKQjGNyIiIiIdASDGxEREZGO4DluOq6oqAgFBQWaLoOqgKmpKYyNjTVdBhERaRCDm44SQiAtLQ2ZmZmaLoWqkJ2dHZydnbmuHxGRgWJw01Eloc3R0RFWVlb8Ra7nhBB48uQJMjIyAAAuLi4aroiIiDSBwU0HFRUVSaGtVq1ami6HqoilpSUAICMjA46Ojpw2JSIyQDpzcYKfnx/c3NxgYWEBFxcXDBkyBHfv3lXoI4TA/Pnz0aRJE5ibm6NOnTr45ptvFPocO3YMbdu2hbm5ORo1aoTIyEil91qxYgXq168PCwsLdOjQAX/88YfC9tzcXIwePRq1atVCtWrV0K9fP6Snpyv0SU1NRc+ePWFlZQVHR0cEBQWhsLBQLd9FyTltVlZWatkf6Y6SY87zGomIDJPOBLeuXbti69atSEpKwvbt25GcnIz+/fsr9Pniiy+wZs0azJ8/H4mJiYiKikL79u2l7SkpKejZsye6du2Kc+fOYfz48RgxYgSio6OlPlu2bMHEiRMRGhqKP//8E61bt4avr680RQUAEyZMwJ49e7Bt2zYcP34cd+/exQcffCBtLyoqQs+ePZGfn4/Y2FisW7cOkZGRmDlzplq/E06PGh4ecyIiAyd01O7du4VMJhP5+flCCCGuXLkiTExMRGJiYqmvmTJlimjRooVC24ABA4Svr6/0vH379mL06NHS86KiIlG7dm0xd+5cIYQQmZmZwtTUVGzbtk3qc/XqVQFAxMXFCSGE2L9/vzAyMhJpaWlSn1WrVgkbGxuRl5dX5s+YlZUlAIisrCyF9qdPn4orV66Ip0+flnlfpB947ImItF9pv7/VQWdG3J734MEDbNiwAR07doSpqSkAYM+ePWjQoAH27t0Ld3d31K9fHyNGjMCDBw+k18XFxcHHx0dhX76+voiLiwMA5OfnIz4+XqGPkZERfHx8pD7x8fEoKChQ6NOsWTO4ublJfeLi4tCqVSs4OTkpvE92djYuX75c6ufKy8tDdna2woOIiIiohE4Ft6lTp8La2hq1atVCamoqdu/eLW27ceMGbt26hW3btuGnn35CZGQk4uPjFaZT09LSFMIUADg5OSE7OxtPnz7F33//jaKiIpV90tLSpH2YmZnBzs7upX1U7aNkW2nmzp0LW1tb6eHq6lrGb0Z3+Pv7QyaTQSaTwdTUFE5OTnj33Xfx448/ori4uMz7iYyMVDoGRERE+k6jwS04OFj6JV7aIzExUeofFBSEhIQEHDp0CMbGxhg6dCiEEACA4uJi5OXl4aeffkLnzp3x1ltv4YcffsDRo0eRlJSkqY9YLiEhIcjKypIet2/f1nRJlaJ79+64d+8ebt68iQMHDqBr16744osv0KtXL7VdwEFERPQyurqAvUaXA5k0aRL8/f1f2qdBgwbS3+3t7WFvb48mTZrAw8MDrq6u+P333yGXy+Hi4gITExM0adJE6u/h4QHg2RWeTZs2hbOzs9LVn+np6bCxsYGlpSWMjY1hbGysso+zszMAwNnZGfn5+cjMzFQY8Xmxz4tXopbss6SPKubm5jA3N3/p96EPzM3Npe+hTp06aNu2Lby9vfHOO+8gMjISI0aMwMKFC7F27VrcuHEDNWvWRO/evREREYFq1arh2LFj+OSTTwD872T90NBQzJo1C+vXr8eSJUuQlJQEa2trvP3221i8eDEcHR019nmJiEi77NixAxcvXsSjR47o0mUU/Pw0XVHZaXTEzcHBAc2aNXvpw8zMTOVrS6bV8vLyAAD/+te/UFhYiOTkZKnPtWvXAAD16tUDAMjlcsTExCjs5/Dhw5DL5QAAMzMzeHl5KfQpLi5GTEyM1MfLywumpqYKfZKSkpCamir1kcvluHjxosKVqIcPH4aNjQ2aN29egW/q1YQQyM/P18ijZNTzdbz99tto3bo1duzYAeDZuYVLly7F5cuXsW7dOhw5cgRTpkwBAHTs2BGLFy+GjY0N7t27h3v37mHy5MkAni2T8dVXX+H8+fPYtWsXbt68+cr/OSAiIsPw9OlThIWF4eLFiwCA6tUzEB7++r/DqpJOLMB7+vRpnDlzBp06dUKNGjWQnJyMGTNmoGHDhlJY8vHxQdu2bTF8+HAsXrwYxcXFGD16NN59911pFC4wMBDLly/HlClTMHz4cBw5cgRbt27Fvn37pPeaOHEihg0bhnbt2qF9+/ZYvHgxcnJypBEeW1tbBAQEYOLEiahZsyZsbGwwduxYyOVyeHt7AwC6deuG5s2bY8iQIYiIiEBaWhqmT5+O0aNHV9qIWkFBAebOnVsp+36VkJCQUgN2eTRr1gwXLlwAAIwfP15qr1+/Pr7++msEBgZi5cqVMDMzg62tLWQymdII5vDhw6W/N2jQAEuXLsUbb7yBx48fo1q1aq9dIxER6aZLly5h+/btCm2HD09DcLBuLbOkE8HNysoKO3bsQGhoKHJycuDi4oLu3btj+vTpUhAyMjLCnj17MHbsWHTp0gXW1tbo0aMHFixYIO3H3d0d+/btw4QJE7BkyRLUrVsXa9asga+vr9RnwIABuH//PmbOnIm0tDS0adMGBw8eVLjYYNGiRTAyMkK/fv2Ql5cHX19frFy5UtpubGyMvXv3YtSoUZDL5bC2tsawYcMwe/bsKvi2dJcQQpr6/PXXXzF37lwkJiYiOzsbhYWFyM3NxZMnT1668HB8fDxmzZqF8+fP4+HDh9LIbGpqaqWNdhIRkfYSQuA///mPwsWBHTt2xLvvvovQUA0WVkEyoY55LqoU2dnZsLW1RVZWFmxsbKT23NxcpKSkwN3dHRYWFgCe/YepqZMsTU1Ny7wwrL+/PzIzM7Fr1y6lbf/3f/8HNzc3LF++HM2aNcOoUaMwYMAA1KxZE7/99hsCAgLw8OFD2NnZITIyEuPHj0dmZqb0+pycHNSrVw++vr4IDAyEg4MDUlNT4evri4SEBLRp00Y9H1iDVB17IiJSLT09HatXr1ZoCwwMVFr5Qd1K+/2tDjox4kavJpPJ1DJdqSlHjhzBxYsXMWHCBMTHx6O4uBgLFiyAkdGz0zC3bt2q0N/MzAxFRUUKbYmJifjnn38QHh4uLaVy9uzZqvkARESkVcLCwhSeV69eHePHj5d+r+gqBjeqcnl5eUhLS0NRURHS09Nx8OBBzJ07F7169cLQoUNx6dIlFBQUYNmyZejduzdOnTql9H9M9evXx+PHjxETE4PWrVvDysoKbm5uMDMzw7JlyxAYGIhLly7hq6++0tCnJCIiTcjJycH8+fMV2o4f98GRI//SUEXqpduxk3TSwYMH4eLigvr166N79+44evQoli5dit27d8PY2BitW7fGwoUL8e2336Jly5bYsGGD0oUXHTt2RGBgIAYMGAAHBwdERETAwcEBkZGR2LZtG5o3b47w8HClf7xERKS/wsLClH7u79rVH3K5foQ2gOe4abXynONGhoHHnohItRenRoFna3xqAs9xIyIiIlLhypUr2LZtm1K7pkJbZWNwIyIiIp2kapTtp5+GwMmpgU4u9VEWPMeNiIiIdIoQQmVo8/QMhZNTAwQHa6CoKsIRNyIiItIZkZGRuHXrllJ7dHQoQkOhU/cdrQgGNyIiItIJqkbZWrachAULqun1KNvzGNyIiIhIqz169AgLFy5Uai+5AKFfv6quSHMY3IiIiEhrqRplq1+/PoYNG6aBajSPwY2IiIi0kqrQNnPmzDLfH1sfMbgRERGRVjlz5gz279+v1K6va7OVB5cDIb3k7++Pvn37Ss/feustjB8//rX2qY59EBHRy4WFhSmFtqtXu8PTk6EN4IgbVTF/f3+sW7cOAGBqago3NzcMHToU06ZNg4lJ5f3nuGPHDpiampap77Fjx9C1a1c8fPgQdnZ2FdoHERGVn6qp0ejoUMTGaqAYLcXgRlWue/fuWLt2LfLy8rB//36MHj0apqamCAkJUeiXn58PMzMztbxnzZo1tWIfRESkbOnSpXj48KFS+/z5odiwQQMFaTFOlVKVMzc3h7OzM+rVq4dRo0bBx8cHUVFR0vTmN998g9q1a6Np06YAgNu3b+PDDz+EnZ0datasiT59+uDmzZvS/oqKijBx4kTY2dmhVq1amDJlCoQQCu/54jRnXl4epk6dCldXV5ibm6NRo0b44YcfcPPmTXTt2hUAUKNGDchkMvj7+6vcx8OHDzF06FDUqFEDVlZW6NGjB65fvy5tj4yMhJ2dHaKjo+Hh4YFq1aqhe/fuuHfvntTn2LFjaN++PaytrWFnZ4d//etfKheWJCLSV2FhYUqhrVmzUYiOfhba9H1B3fJicCONs7S0RH5+PgAgJiYGSUlJOHz4MPbu3YuCggL4+vqievXqOHnyJE6dOiUFoJLXLFiwAJGRkfjxxx/x22+/4cGDB9i5c+dL33Po0KHYtGkTli5diqtXr+K7775DtWrV4Orqiu3btwMAkpKScO/ePSxZskTlPvz9/XH27FlERUUhLi4OQgi89957KCgokPo8efIE8+fPx/r163HixAmkpqZi8uTJAIDCwkL07dsXb775Ji5cuIC4uDh8+umnBn21FBEZjsePH6ucGg0NDcWAAY6IjWVoU4VTpaQxQgjExMQgOjoaY8eOxf3792FtbY01a9ZIU6Q///wziouLsWbNGinQrF27FnZ2djh27Bi6deuGxYsXIyQkBB988AEAYPXq1YiOji71fa9du4atW7fi8OHD8PHxAQA0aNBA2l4yJero6Khwjtvzrl+/jqioKJw6dQodO3YEAGzYsAGurq7YtWsX/v3vfwMACgoKsHr1ajRs2BAAMGbMGMyePRsAkJ2djaysLPTq1Uva7uHhUf4vkohIx6gKbACvGi0LjrgRoqKAjh2f/VkV9u7di2rVqsHCwgI9evTAgAEDMGvWLABAq1atFM5rO3/+PP766y9Ur14d1apVQ7Vq1VCzZk3k5uYiOTkZWVlZuHfvHjp06CC9xsTEBO3atSv1/c+dOwdjY2O8+eabFf4MV69ehYmJicL71qpVC02bNsXVq1elNisrKymUAYCLiwsyMjIAPAuI/v7+8PX1Re/evbFkyRKFaVQiIn2kKrQtXDidV42WEUfcCOHhQFzcsz+rYli6a9euWLVqFczMzFC7dm2Fq0mtra0V+j5+/BheXl7YoOLsVAcHhwq9v6WlZYVeVxEvXoUqk8kUzr9bu3Ytxo0bh4MHD2LLli2YPn06Dh8+DG9v7yqrkYioKpw7dw67d+9Wao+ODsX69ZwWLSuOuBGCgwG5HFV2g15ra2s0atQIbm5ur1wCpG3btrh+/TocHR3RqFEjhYetrS1sbW3h4uKC06dPS68pLCxEfHx8qfts1aoViouLcfz4cZXbS0b8ioqKSt2Hh4cHCgsLFd73n3/+QVJSEpo3b/7Sz/QiT09PhISEIDY2Fi1btsTGjRvL9XoiIm0XFhamFNpatmyJ0NBQnstWTgxuBD8/aO0/nMGDB8Pe3h59+vTByZMnkZKSgmPHjmHcuHG4c+cOAOCLL75AeHg4du3ahcTERHz++efIzMwsdZ8l97gbPnw4du3aJe1z69atAIB69epBJpNh7969uH//Ph4/fqy0j8aNG6NPnz4YOXIkfvvtN5w/fx4ff/wx6tSpgz59+pTps6WkpCAkJARxcXG4desWDh06hOvXr/M8NyLSK6VdgNDPkO4Mr0YMbqTVrKyscOLECbi5ueGDDz6Ah4cHAgICkJubCxsbGwDApEmTMGTIEAwbNgxyuRzVq1fH+++//9L9rlq1Cv3798fnn3+OZs2aYeTIkcjJyQEA1KlTB2FhYQgODoaTkxPGjBmjch9r166Fl5cXevXqBblcDiEE9u/fX+ZFeq2srJCYmIh+/fqhSZMm+PTTTzF69Gh89tln5fiGiIi0U0RERKmhjSpOJl5c8Iq0RnZ2NmxtbZGVlSWFFADIzc1FSkoK3N3dYWFhocEKqarx2BORLlAV2P74Yxj27atf9cVoQGm/v9WBFycQERGRWjx9+hQRERFK7dHRoVV2HrW+Y3AjIiKi1/aytdk4O6o+PMeNiIiIXouq0Pbrr8Fcm60ScMSNiIiIKuTixYvYsWOHUrunJ0fZKguDmw7jdSWGh8eciLSFqlE2KysrBAUFaaAaw8HgpoNKlpt48uRJld4FgDTvyZMnAJTvyEBEVJW4zIfmMLjpIGNjY9jZ2Un3vLSyspJuwE76SQiBJ0+eICMjA3Z2djA2NtZ0SURkgL799lvk5uYqtTO0VR0GNx3l7OwMAFJ4I8NgZ2cnHXsioqqkapTt8uVe2LrVSwPVGC4GNx0lk8ng4uICR0dHFBQUaLocqgKmpqYcaSOiKldQUIA5c+YotXNtNs1gcNNxxsbG/GVORESVgmuzaR+u40ZERERKVIW2+fMnIjqaiU2TOOJGREREksTERGzZskWpfdOmUNStC06PahiDGxEREQHg1KguYHAjIiIirs2mIxjciIiIDNjy5cvxzz//KLUztGknBjciIiIDpWqULTW1HX74oacGqqGy4FWlREREBqa4uFhlaIuODkWfPgxt2owjbkRERAaEFyDoNo64ERERGQhVoW3lykCuzaZDOOJGRESk527cuIH169crtXt6hqJhQ67NpksY3IiIiPTYy6ZGAcDPryqrodfFqVIiIiI9pSq0tWkzE9HRoYiK0kBB9No44kZERKRnVq9ejfT0dKV2T89QhIcDcXFAeDhH23QRgxsREZEeUTXK5uTkhMDAQOl5eDjPa9NVDG5ERER6QAiB2bNnK7W/eAcEPz+OtOkyBjciIiId96oLEEh/8OIEIiIiHaYqtJ05MxSengxt+ogjbkRERDooLS0N3333nVI7R9n0G4MbERGRjuHUqOHiVCkREZEOURXaDh2azqlRA8ERNyIiIh2wceNGXL9+XamdN4c3LAxuREREWo5To1SCwY2IiEiLqQptDGyGi8GNiIhIC3GUjVRhcCMiItIyqkLbpUu9sW1bWw1UQ9qEwY2IiEhLZGZmYsmSJUrt0dGhvLcoAWBwIyIi0govmxrl7CiVYHAjIiLSMFWhLTg4GObm5hqohrQZgxsREZGGHDhwAH/88YdSOy9AoNIwuBEREWkArxqlitCZW175+fnBzc0NFhYWcHFxwZAhQ3D37l1p+6xZsyCTyZQe1tbWCvvZtm0bmjVrBgsLC7Rq1Qr79+9X2C6EwMyZM+Hi4gJLS0v4+PgorVT94MEDDB48GDY2NrCzs0NAQAAeP36s0OfChQvo3LkzLCws4OrqioiICDV/I0REpKtKW5uNoY1eRWeCW9euXbF161YkJSVh+/btSE5ORv/+/aXtkydPxr179xQezZs3x7///W+pT2xsLAYNGoSAgAAkJCSgb9++6Nu3Ly5duiT1iYiIwNKlS7F69WqcPn0a1tbW8PX1RW5urtRn8ODBuHz5Mg4fPoy9e/fixIkT+PTTT6Xt2dnZ6NatG+rVq4f4+HjMmzcPs2bNwn/+859K/paIiEibhYWFcUFdei0yIYTQdBEVERUVhb59+yIvLw+mpqZK28+fP482bdrgxIkT6Ny5MwBgwIAByMnJwd69e6V+3t7eaNOmDVavXg0hBGrXro1JkyZh8uTJAICsrCw4OTkhMjISAwcOxNWrV9G8eXOcOXMG7dq1AwAcPHgQ7733Hu7cuYPatWtj1apV+PLLL5GWlgYzMzMAz04y3bVrFxITE8v8GbOzs2Fra4usrCzY2NhU+LsiIiLNUxXYunTpgq5du2qgGqpMlfn7W2dG3J734MEDbNiwAR07dlQZ2gBgzZo1aNKkiRTaACAuLg4+Pj4K/Xx9fREXFwcASElJQVpamkIfW1tbdOjQQeoTFxcHOzs7KbQBgI+PD4yMjHD69GmpT5cuXaTQVvI+SUlJePjwYamfKy8vD9nZ2QoPIiLSbU+ePFEZ2qKjQxnaqNx0KrhNnToV1tbWqFWrFlJTU7F7926V/XJzc7FhwwYEBAQotKelpcHJyUmhzcnJCWlpadL2kraX9XF0dFTYbmJigpo1ayr0UbWP599Dlblz58LW1lZ6uLq6ltqXiIi0X1hYGObNm6fUzgV1qaI0GtyCg4NVXlDw/OP5qcWgoCAkJCTg0KFDMDY2xtChQ6Fqpnfnzp149OgRhg0bVpUf57WFhIQgKytLety+fVvTJRERUQWpGmVr2XIiQkNDERsL+PlpoCjSeRpdDmTSpEnw9/d/aZ8GDRpIf7e3t4e9vT2aNGkCDw8PuLq64vfff4dcLld4zZo1a9CrVy+lUS9nZ2ekp6crtKWnp8PZ2VnaXtLm4uKi0KdNmzZSn4yMDIV9FBYW4sGDBwr7UfU+z7+HKubm5lxskYhIx504cQJHjx5Vap81KxRyOdCvnwaKIr2h0eDm4OAABweHCr22uLgYwLPzwp6XkpKCo0ePIioqSuk1crkcMTExGD9+vNR2+PBhKfi5u7vD2dkZMTExUlDLzs7G6dOnMWrUKGkfmZmZiI+Ph5eXFwDgyJEjKC4uRocOHaQ+X375JQoKCqRz8A4fPoymTZuiRo0aFfq8RESk/Upbmy0//1lo4/QovS6dWID39OnTOHPmDDp16oQaNWogOTkZM2bMQMOGDZVG23788Ue4uLigR48eSvv54osv8Oabb2LBggXo2bMnNm/ejLNnz0rLdMhkMowfPx5ff/01GjduDHd3d8yYMQO1a9dG3759AQAeHh7o3r07Ro4cidWrV6OgoABjxozBwIEDUbt2bQDARx99hLCwMAQEBGDq1Km4dOkSlixZgkWLFlXuF0VERBrDZT6oKuhEcLOyssKOHTsQGhqKnJwcuLi4oHv37pg+fbrC1GJxcTEiIyPh7+8PY2Njpf107NgRGzduxPTp0zFt2jQ0btwYu3btQsuWLaU+U6ZMQU5ODj799FNkZmaiU6dOOHjwICwsLKQ+GzZswJgxY/DOO+/AyMgI/fr1w9KlS6Xttra2OHToEEaPHg0vLy/Y29tj5syZCmu9ERGRfuAdEKgq6ew6boaA67gREWk3VaHtxcXfyfBU5u9vnRhxIyIi0iaFhYX45ptvlNo5ykaVjcGNiIioHDg1SprE4EZERFRGqkLb559/XuEVEojKi8GNiIjoFS5fvoxffvlFqZ2jbFTVGNyIiIheglOjpE0Y3IiIiFT48kvAzIxrs5F2YXAjIiJ6QVhYGMzMlNsZ2kjTGNyIiIieo2pq1NHRUbr1IZEmMbgREREBEEJg9uzZSu0cZSNtwuBGREQGjxcgkK5gcCMiIoOmKrSdOTMEe/c20EA1RC/H4EZERAbpxo0bWL9+vVJ7dHQogoM1UBBRGTC4ERGRwXnZ1ChnR0mbGWm6ACIioqqkKrRFR8+ApycTG2k/jrgREZFBmDNnIQoKHim1c5SNdAmDGxER6T1eNUr6gsGNiIj0mqrQ5ukZCj8/DRRD9JoY3IiISC9xlI30EYMbERHpHVWhrXfv3mjbtq0GqiFSHwY3IiLSG+np6Vi9erVSO0fZSF8wuBERkV7g1CgZAgY3IiLSeapC27Rp02BqaqqBaogqD4MbERHprJ9//hnJyclK7RxlI33F4EZERDqJU6NkiHjLKyIi0jmqb1sVyttWkd7jiBsREekM3hyeDB1H3IiISCeoCm3JyZ04ykYGhSNuRESk1bKzs7Fo0SKldp7LRoaIwY2IiLQWL0AgUsTgRkREWklVaJs8eTKsra01UA2RdmBwIyIirbJnzx78+eefSu2enqFgZiNDx+BGRERag1OjRC/H4EZERFpBVWjz9AyFn58GiiHSUgxuRESkURxlIyo7ruNGREQaoyq0ZWQ04dpsRKXgiBsREVW5vLw8hIeHK7VzapTo5RjciIioSnFqlKjiGNyIiKjKqAptHh6j8eGH9hqohkj3MLgREVGli42NxeHDh5XaZ80KhVwOfPihBooi0kEMbkREVKlKmxr19HwW2oKDq7ggIh3G4EZERJXmVWuz8UIEovJhcCMiIrXjBQhElaPc67gZGxsjIyNDqf2ff/6BsbGxWooiIiLdpSq05eVZcW02IjUo94ibEEJle15eHszMzF67ICIi0k1FRUX4+uuvldo5ykakPmUObkuXLgUAyGQyrFmzBtWqVZO2FRUV4cSJE2jWrJn6KyQiIq3HqVGiqlHm4LZo0SIAz0bcVq9erTAtamZmhvr162P16tXqr5CIiLSaqtA2ZMgQNGjQQAPVEOm3Mge3lJQUAEDXrl2xY8cO1KhRo9KKIiIi7Xfp0iVs375dqZ2jbESVp9znuB09erQy6iAiIh3CqVEizSh3cBs+fPhLt//4448VLoaIiLSfqtA2c+ZMyGQyDVRDZFjKHdwePnyo8LygoACXLl1CZmYm3n77bbUVRkRE2uVld0BgZiOqGuUObjt37lRqKy4uxqhRo9CwYUO1FEVERNqFU6NE2kEmSluYrZySkpLw1ltv4d69e+rYHQHIzs6Gra0tsrKyYGNjo+lyiMgACSEwe/ZspXYGNqLSVebvb7Xd8io5ORmFhYXq2h0REWkYR9mItE+5g9vEiRMVngshcO/ePezbtw/Dhg1TW2FERKQ5qkJbr1694OXlpYFqiKhEuYNbQkKCwnMjIyM4ODhgwYIFr7zilIiItNuNGzewfv16pXaOshFpB67jRkREADg1SqQLKnyOW0ZGBpKSkgAATZs2haOjo9qKIiKiqqUqtB0+/CWmTFHbqdBEpAbl/heZnZ2N0aNHY9OmTSguLgYAGBsbY8CAAVixYgVsbW3VXiQREVWOb775RuWFZaGhoeBAG5H2MSrvC0aOHInTp09j3759yMzMRGZmJvbu3YuzZ8/is88+q4waiYioEoSFhZUa2ohIO5V7HTdra2tER0ejU6dOCu0nT55E9+7dkZOTo9YCDRnXcSOiyqJqapSBjUg9tGodt1q1aqmcDrW1tUWNGjXUUhQREVUOXoBApNvKPVU6ffp0TJw4EWlpaVJbWloagoKCMGPGDLUWR0RE6qMqtDk4dGBoI9Ih5Z4q9fT0xF9//YW8vDy4ubkBAFJTU2Fubo7GjRsr9P3zzz/VV6kB4lQpEanD33//jRUrVii1M7ARVQ6tmirt06cPZDKZWosgIqLKwalRIv2itpvMk/pxxI2IXoeq0HbkSBCOH7fSQDVEhqMyf3+X+xy3Bg0a4J9//lFqz8zMRIMGDdRSlCp+fn5wc3ODhYUFXFxcMGTIENy9e1ehT3R0NLy9vVG9enU4ODigX79+uHnzpkKfY8eOoW3btjA3N0ejRo0QGRmp9F4rVqxA/fr1YWFhgQ4dOuCPP/5Q2J6bm4vRo0ejVq1aqFatGvr164f09HSFPqmpqejZsyesrKzg6OiIoKAglZfdExGp28aNG1WGtujoUEyaxNBGpMvKHdxu3ryJoqIipfa8vDzcuXNHLUWp0rVrV2zduhVJSUnYvn07kpOT0b9/f2l7SkoK+vTpg7fffhvnzp1DdHQ0/v77b3zwwQcKfXr27ImuXbvi3LlzGD9+PEaMGIHo6Gipz5YtWzBx4kSEhobizz//ROvWreHr64uMjAypz4QJE7Bnzx5s27YNx48fx927dxXep6ioCD179kR+fj5iY2Oxbt06REZGYubMmZX2/RARAc9G2a5fv67UHhoaithYwM9PA0URkdqUeao0KioKANC3b1+sW7dOYUmQoqIixMTE4PDhw9JtsCpbVFQU+vbti7y8PJiamuKXX37BoEGDkJeXByOjZ3l0z5496NOnj9Rn6tSp2LdvHy5duiTtZ+DAgcjMzMTBgwcBAB06dMAbb7yB5cuXAwCKi4vh6uqKsWPHIjg4GFlZWXBwcMDGjRul4JiYmAgPDw/ExcXB29sbBw4cQK9evXD37l04OTkBAFavXo2pU6fi/v37MDMzK9Nn5FQpEZUH12Yj0g5acXFC3759AQAymQzDhg1T2GZqaor69etjwYIFai2uNA8ePMCGDRvQsWNHmJqaAgC8vLxgZGSEtWvXwt/fH48fP8b69evh4+Mj9YmLi4OPj4/Cvnx9fTF+/HgAQH5+PuLj4xESEiJtNzIygo+PD+Li4gAA8fHxKCgoUNhPs2bN4ObmJgW3uLg4tGrVSgptJe8zatQoXL58GZ6enio/V15eHvLy8qTn2dnZr/EtEZGh4AUIRIajzFOlxcXFKC4uhpubGzIyMqTnxcXFyMvLQ1JSEnr16lWZtWLq1KmwtrZGrVq1kJqait27d0vb3N3dcejQIUybNg3m5uaws7PDnTt3sHXrVqlPWlqaQpgCACcnJ2RnZ+Pp06f4+++/UVRUpLJPybp1aWlpMDMzg52d3Uv7qNpHybbSzJ07F7a2ttLD1dW1jN8MERkqVaGtRYsWDG1Eeqrc57ilpKTA3t5eLW8eHBwMmUz20kdiYqLUPygoCAkJCTh06BCMjY0xdOhQlMz0pqWlYeTIkRg2bBjOnDmD48ePw8zMDP3794euXDgbEhKCrKws6XH79m1Nl0REWionJ6fUqdHnz/8lIv1S7nXcZs+e/dLt5TkBf9KkSfD3939pn+evVLW3t4e9vT2aNGkCDw8PuLq64vfff4dcLseKFStga2uLiIgIqf/PP/8MV1dXnD59Gt7e3nB2dla6+jM9PR02NjawtLSEsbExjI2NVfZxdnYGADg7OyM/Px+ZmZkKo24v9nnxStSSfZb0UcXc3Bzm5uYv/T6IiDg1SmS4yh3cdu7cqfC8oKAAKSkpMDExQcOGDcsV3BwcHODg4FDeEgA8m7oFIJ0T9uTJE+mihBLGxsYKfeVyOfbv36/Q5/Dhw5DL5QAAMzMzeHl5ISYmRjqnr7i4GDExMRgzZgyAZ+fSmZqaIiYmBv369QMAJCUlITU1VdqPXC7HN998g4yMDDg6OkrvY2Njg+bNm1fo8xIRAapD27hx43ivaCIDUe7glpCQoNSWnZ0Nf39/vP/++2op6kWnT5/GmTNn0KlTJ9SoUQPJycmYMWMGGjZsKIWlnj17YtGiRZg9ezYGDRqER48eYdq0aahXr550MUBgYCCWL1+OKVOmYPjw4Thy5Ai2bt2Kffv2Se81ceJEDBs2DO3atUP79u2xePFi5OTk4JNPPgEA2NraIiAgABMnTkTNmjVhY2ODsWPHQi6Xw9vbGwDQrVs3NG/eHEOGDEFERATS0tIwffp0jB49miNqRFQhhw4dki6Seh5H2YgMi9runHDx4kX07t1bacFbde37iy++wPnz55GTkwMXFxd0794d06dPR506daR+mzdvRkREBK5duwYrKyvI5XJ8++23aNasmdTn2LFjmDBhAq5cuYK6detixowZStO1y5cvx7x585CWloY2bdpg6dKl6NChg7Q9NzcXkyZNwqZNm5CXlwdfX1+sXLlSYRr01q1bGDVqFI4dOwZra2sMGzYM4eHhMDEpe1bmciBEBHBqlEjXVObvb7UFt99++w29e/fGw4cP1bE7AoMbEXFtNiJdpBXruJVYunSpwnMhBO7du4f169ejR48eaiuMiMiQcZSNiFQpd3BbtGiRwnMjIyM4ODhg2LBhCgvXEhFRxagKbRYWDpg69XMNVENE2qTcwS0lJaUy6iAiMngFBQWYM2eOUvusWaGQy4GpUzVQFBFplXIHNwDIzMzEX3/9BQBo1KiR0l0EiIiofEqbGvX0fBbagoOruCAi0krlCm43b97E6NGjER0dLd2NQCaToXv37li+fDnq169fGTUSEek1VaEtICAAdevWBQD4+VV1RUSkrcoc3G7fvg1vb2+Ympriq6++goeHBwDgypUrWLVqFeRyOc6cOSP9oCEiopeLj4/H3r17ldp5AQIRlabMy4EEBATgr7/+QnR0NCwsLBS2PX36FN27d0fjxo2xZs2aSinUEHE5ECL9xatGifSXViwHcvDgQWzZskUptAGApaUlvvrqKwwcOFCtxRER6SNVoW3mzJmQyWQaqIaIdEmZg9vff//90nPYGjRogAcPHqijJiIivcRRNiJ6XUav7vKMi4sLrly5Uur2S5cuKdzyiYiI/oehjYjUoczBrW/fvpg8eTLu37+vtC0jIwNTp05F37591VkbEZHOE0KoDG3R0aHw9GRoI6LyKfPFCQ8fPkSHDh2QlpaGjz/+GM2aNYMQAlevXsXGjRvh7OyM33//HTVr1qzsmg0GL04g0m0cZSMyTFpxcUKNGjVw+vRpTJs2DZs3b0ZmZiYAwM7ODh999BHmzJnD0EZE9P+pCm0JCQMwfHgzDVRDRPqizCNuzxNCSFOmDg4OvBKqknDEjUj3XL9+HRs3blRq5ygbkeHQihG358lkMjg6Oqq1ECIiXcepUSKqbBUKbkREpEhVaJsxYwaMjMp8DRgR0SsxuBERvYaIiAg8ffpUqZ2jbERUGRjciIgqiFOjRFTVGNyIiCqgtLXZYmM1UAwRGYwyBbelS5eWeYfjxo2rcDFERNqutFG26OhQBAdXcTFEZHDKtByIu7t72XYmk+HGjRuvXRQ9w+VAiLSLqtB29Wp3bN7cQQPVEJG20vhyICkpKWp9UyIiXZKRkYFVq1YptXOUjYiqWoXPccvPz0dKSgoaNmwIExOeKkdE+ullFyDwGgQiqmrlXmDoyZMnCAgIgJWVFVq0aIHU1FQAwNixYxEeHq72AomINEVVaAsJCeFVo0SkMeUObiEhITh//jyOHTsGCwsLqd3HxwdbtmxRa3FERJqwc+dOlaEtNDQUZmZmGqiIiOiZcs9x7tq1C1u2bIG3t7fCPUpbtGiB5ORktRZHRFSVoqKAhASuzUZE2qvcwe3+/fsq71Oak5PDm80TkU5TFdpmzQpFtWrg+WxEpBXKHdzatWuHffv2YezYsQAghbU1a9ZALpertzoioipQ2gUI338fCktLgMtTEpG2KHdwmzNnDnr06IErV66gsLAQS5YswZUrVxAbG4vjx49XRo1ERJVGVWhzcemKTz/twlE2ItI65b44oVOnTjh37hwKCwvRqlUrHDp0CI6OjoiLi4OXl1dl1EhEpHY5OTkqQ9usWaGIjOyigYqIiF6tQguwNWzYEN9//726ayEiqhKlTY1u3hwKuRxcVJeItFaZglt2dnaZd8hbMxGRNlMV2lq1CsL8+Vb49lvAz08DRRERlVGZgpudnV2ZrxgtKip6rYKIiCrDyZMnceTIEaX2kmU+PvigqisiIiq/MgW3o0ePSn+/efMmgoOD4e/vL11FGhcXh3Xr1mHu3LmVUyUR0Wt42W2riIh0iUwIIcrzgnfeeQcjRozAoEGDFNo3btyI//znPzh27Jg66zNo2dnZsLW1RVZWFqegiSqotDsgEBFVlsr8/V3u4GZlZYXz58+jcePGCu3Xrl1DmzZt8OTJE7UWaMgY3IgqjqNsRKQplfn7u9zLgbi6uqq8onTNmjVwdXVVS1FERK9DVWhLSmrP0EZEOq/cy4EsWrQI/fr1w4EDB9ChQwcAwB9//IHr169j+/btai+QiKis8vPzVZ5ru2lTKCIiNFAQEZGalXuqFADu3LmDlStXIjExEQDg4eGBwMBAjripGadKicqutKnRWbOerc0WG1vFBRGRwarM398VWoC3bt26mDNnjloLISKqKFWhbdy4cTh5sgYX1CUivVKh4JaZmYkffvgBV69eBQC0aNECw4cPh62trVqLIyJ6mQsXLmDnzp1K7SXnsvn5cUFdItIv5Z4qPXv2LHx9fWFpaYn27dsDAM6cOYOnT5/i0KFDaNu2baUUaog4VUpUOl41SkTaSquWA+ncuTMaNWqE77//HiYmzwbsCgsLMWLECNy4cQMnTpxQa4GGjMGNSDWuzUZE2kyrznE7e/asQmgDABMTE0yZMgXt2rVTa3FERM8rbZTN05OhjYgMQ7nXcbOxsUFqaqpS++3bt1G9enW1FEVE9CJVoe3Bg3rw9AzleWxEZDDKPeI2YMAABAQEYP78+ejYsSMA4NSpUwgKClK6DRYR0esqLi7GV199pdTOqVEiMkTlDm7z58+HTCbD0KFDUVhYCAAwNTXFqFGjEB4ervYCichw8QIEIiJFFVqAFwCePHmC5ORkAEDDhg1hZWWl1sKIFyeQYVMV2gICAlC3bl0NVENEVHZadXFCCSsrK7Rq1UqdtRARITk5GT///LNSO0fZiIjKEdyGDx9epn4//vhjhYshIsPGqVEiopcrc3CLjIxEvXr14OnpiQrOrhIRlUpVaJs5cyZkMpkGqiEi0k5lDm6jRo3Cpk2bkJKSgk8++QQff/wxatasWZm1EZGei4oCTp1aCiurh0rbOMpGRKSszOu4rVixAvfu3cOUKVOwZ88euLq64sMPP0R0dDRH4IioQhISwpRCm4WFBUMbEVEpKnxV6a1btxAZGYmffvoJhYWFuHz5MqpVq6bu+gwaryolfSWEwOzZs5XaGdiISB9o5VWlRkZGkMlkEEKgqKhInTURkR7jBQhERBVXrlte5eXlYdOmTXj33XfRpEkTXLx4EcuXL0dqaipH24jolVSFtgEDBjC0ERGVUZlH3D7//HNs3rwZrq6uGD58ODZt2gR7e/vKrI2I9ERaWhq+++47pXYGNiKi8inzOW5GRkZwc3ODp6fnSy/P37Fjh9qKM3Q8x430AadGicjQaMU5bkOHDuV6SkRULqpC2/Tp02FsbKyBaoiIdF+5FuAlIiqLjRs34vr160rtHGUjIno9Fb6qlIhIFU6NEhFVHgY3IlIbVaGNgY2ISH0Y3IiowqKigPBwwNdX9ShbdHQomNuIiNSHwY2IKqy00Fa3bg/88EN7BAdroCgiIj3G4EZEFZKVlQVf38VK7dHRoYiNBQICqr4mIiJ9V647J2iSn58f3NzcYGFhARcXFwwZMgR3795V6LN161a0adMGVlZWqFevHubNm6e0n2PHjqFt27YwNzdHo0aNVF4tu2LFCtSvXx8WFhbo0KED/vjjD4Xtubm5GD16NGrVqoVq1aqhX79+SE9PV+iTmpqKnj17wsrKCo6OjggKCkJhYeHrfxFEWiAsLAyLFy9Wao+ODuUoGxFRJdKZ4Na1a1ds3boVSUlJ2L59O5KTk9G/f39p+4EDBzB48GAEBgbi0qVLWLlyJRYtWoTly5dLfVJSUtCzZ0907doV586dw/jx4zFixAhER0dLfbZs2YKJEyciNDQUf/75J1q3bg1fX19kZGRIfSZMmIA9e/Zg27ZtOH78OO7evYsPPvhA2l5UVISePXsiPz8fsbGxWLduHSIjIzFz5sxK/paIKp+qCxD+7/+mIjT02Uibn58GiiIiMhBlvnOCtomKikLfvn2Rl5cHU1NTfPTRRygoKMC2bdukPsuWLUNERARSU1Mhk8kwdepU7Nu3D5cuXZL6DBw4EJmZmTh48CAAoEOHDnjjjTekwFdcXAxXV1eMHTsWwcHByMrKgoODAzZu3CgFx8TERHh4eCAuLg7e3t44cOAAevXqhbt378LJyQkAsHr1akydOhX379+HmZlZmT4j75xA2uTXX3/FqVOnlNp51SgRkaLK/P2tMyNuz3vw4AE2bNiAjh07wtTUFACQl5cHCwsLhX6Wlpa4c+cObt26BQCIi4uDj4+PQh9fX1/ExcUBAPLz8xEfH6/Qx8jICD4+PlKf+Ph4FBQUKPRp1qwZ3NzcpD5xcXFo1aqVFNpK3ic7OxuXL18u9XPl5eUhOztb4UGkDcLCwhjaiIi0gE4Ft6lTp8La2hq1atVCamoqdu/eLW3z9fXFjh07EBMTg+LiYly7dg0LFiwAANy7dw/AsxtdPx+mAMDJyQnZ2dl4+vQp/v77bxQVFansk5aWJu3DzMwMdnZ2L+2jah8l20ozd+5c2NraSg9XV9eyfjVElaa0tdkY2oiIqp5Gg1twcDBkMtlLH4mJiVL/oKAgJCQk4NChQzA2NsbQoUNRMtM7cuRIjBkzBr169YKZmRm8vb0xcOBAAM9GzXRBSEgIsrKypMft27c1XRIZsLCwMJWhzdOTgY2ISFM0uhzIpEmT4O/v/9I+DRo0kP5ub28Pe3t7NGnSBB4eHnB1dcXvv/8OuVwOmUyGb7/9FnPmzEFaWhocHBwQExOjsA9nZ2elqz/T09NhY2MDS0tLGBsbw9jYWGUfZ2dnaR/5+fnIzMxUGHV7sc+LV6KW7LOkjyrm5uYwNzd/6fdBVBVUBbauXbuiS5cuGqiGiIhKaDS4OTg4wMHBoUKvLS4uBvDsvLDnGRsbo06dOgCATZs2QS6XS+8hl8uxf/9+hf6HDx+GXC4HAJiZmcHLywsxMTHo27ev9D4xMTEYM2YMAMDLywumpqaIiYlBv379AABJSUlITU2V9iOXy/HNN98gIyMDjo6O0vvY2NigefPmFfq8RFUhNzcX3377rVI7p0WJiLSDTizAe/r0aZw5cwadOnVCjRo1kJycjBkzZqBhw4ZSWPr777/xyy+/4K233kJubi7Wrl0rLddRIjAwEMuXL8eUKVMwfPhwHDlyBFu3bsW+ffukPhMnTsSwYcPQrl07tG/fHosXL0ZOTg4++eQTAICtrS0CAgIwceJE1KxZEzY2Nhg7dizkcjm8vb0BAN26dUPz5s0xZMgQREREIC0tDdOnT8fo0aM5okZaizeHJyLSfjoR3KysrLBjxw6EhoYiJycHLi4u6N69O6ZPn64QhNatW4fJkydDCAG5XI5jx46hffv20nZ3d3fs27cPEyZMwJIlS1C3bl2sWbMGvr6+Up8BAwbg/v37mDlzJtLS0tCmTRscPHhQ4WKDRYsWwcjICP369UNeXh58fX2xcuVKabuxsTH27t2LUaNGQS6Xw9raGsOGDcPs2bMr+ZsiqhhVoe3YsYk4erS6BqohIqLS6Ow6boaA67hRZUtISEBUVJRSe8kdELiYLhFR+VXm72+dGHEjIvV72dQoZ0eJiLQTgxuRASptbTYiItJuDG5EBoQXIBAR6TYGNyIDoXoxXU/48UQ2IiKdweBGpOeKiorw9ddfK7VzlI2ISPcwuBHpMU6NEhHpFwY3Ij2lKrSNGTMGtWrV0kA1RESkDgxuRHrmxo0bWL9+vVI7R9mIiHQfgxuRHuHUKBGRfmNwI9ITqkLbzJkzIZPJNFANERFVBgY3Ih33888/Izk5Wamdo2xERPqHwY1Ih6kaZbOxaYJt2wbB05P3GiUi0jcMbkQ6SAiB2bNnK7Vv2hQKmQxITATCwxnciIj0DYMbkY4p7QKE6OhQJCUBTZsCcjkQHFzFhRERUaVjcCPSIapC22effQZnZ2d4ej4bZQsO5kgbEZG+MtJ0AUT0av/884/K0BYaGoo//nBGx47PnsfGMrQREekzjrgRablXrc0WHg7ExfGcNiIiQ8DgRqTFyrI2W3Dw/6ZIiYhIvzG4EWmhY8eO4fjx40rtJaNsUVGK57NxpI2IyDAwuBFpGVWjbC1atED//v2l55weJSIyTAxuRFqktAsQXsTpUSIiw8TgRqQFvv76axQVFSm1l3bbKk6PEhEZJgY3Ig1TNcrWuLE/PvqongaqISIibcbgRqQhOTk5mD9/vlI7bw5PRESlYXAj0oBXrc1GRESkCoMbURVTFdqmT58OY2NjDVRDRES6hMGNqIqsW3cFN29uU2rnKBsREZUVgxtRFVA1ytawYUN8/PHHGqiGiIh0FYMbUSVTFdo8PUO5nAcREZUbgxtRJdm2bRuuXLmi1M6pUSIiqigGN6JKoGqU7ZNPPoGbm5sGqiEiIn3B4EakRgUFBZgzZ45SO0fZiIhIHRjciNSEa7MREVFlY3AjUgNVoS0kJARmZmYaqIaIiPQVgxvRa0hNTcXatWuV2jnKRkRElYHBjaiCVI2yeXh44MMPP9RANUREZAgY3IgqQFVo4ygbERFVNgY3onI4duwYjh8/rtTO0EZERFWBwY2ojFSNsg0aNAhNmjTRQDVERGSIGNyIXqGoqAhff/21UjtH2YiIqKoxuBG9RHh4OPLy8pTaGdqIiEgTGNyIXhAVBYSHA76+ylOjU6dOhYWFhdQnOBi8WTwREVUZI00XQKRtli79W2VoCw0NhYWFBYBnoS0u7tmfREREVYUjbkTPCQsLQ+fOim3NmjXDgAEDFNqCg/834kZERFRVGNyI/r/yrM3m58cpUiIiqnoMbmTwzp8/j127dim18wIEIiLSNgxuZNBUjbJ9/PHHaNiwoQaqISIiejkGNzJIQgjMnj1bqZ2jbEREpM0Y3MigREUBhw5tgIPDX0rbGNqIiEjbMbiR3nt+zbWEhDA4OChunzx5MqytrTVTHBERUTkwuJHeCw8Hzp9/goSEeUrbOMpGRES6hMGN9J6v71fw9S1WaGvevDn+/e9/a6giIiKiimFwI72m6qrRmTNnQiaTaaAaIiKi18PgRnrp7t27+P7775XaOTVKRES6jMGN9I6qUbbhw4fD1dVVA9UQERGpD4Mb6Q2uzUZERPqOwY30wpkzZ7B//36FNgcHB3z++ecaqoiIiEj9GNxI56maGg0KCoKVlZUGqiEiIqo8DG6ks/Lz8zF37lyldk6NEhGRvmJwI520ceNGXL9+XaGtc+fOePvttzVUERERUeVjcCOdw7XZiIjIUDG4kc64f/8+Vq5cqdTOqVEiIjIUDG6kE1SNsg0ZMgQNGjTQQDVERESaweBGWk9VaOMoGxERGSIGN9JaFy5cwM6dOxXarK2tMXnyZA1VREREpFlGmi6gvPLy8tCmTRvIZDKcO3dOYduFCxfQuXNnWFhYwNXVFREREUqv37ZtG5o1awYLCwu0atVKadFWIQRmzpwJFxcXWFpawsfHR+nqxQcPHmDw4MGwsbGBnZ0dAgIC8Pjx43LXQqULCwtTCm0TJkxgaCMiIoOmc8FtypQpqF27tlJ7dnY2unXrhnr16iE+Ph7z5s3DrFmz8J///EfqExsbi0GDBiEgIAAJCQno27cv+vbti0uXLkl9IiIisHTpUqxevRqnT5+GtbU1fH19kZubK/UZPHgwLl++jMOHD2Pv3r04ceIEPv3003LVQqoVFhaWOjVqY2OjgYqIiIi0h0wIITRdRFkdOHAAEydOxPbt29GiRQskJCSgTZs2AIBVq1bhyy+/RFpaGszMzAAAwcHB2LVrFxITEwEAAwYMQE5ODvbu3Svt09vbG23atMHq1ashhEDt2rUxadIkaWQnKysLTk5OiIyMxMCBA3H16lU0b94cZ86cQbt27QAABw8exHvvvYc7d+6gdu3aZaqlLLKzs2Fra4usrCyDCC07d+7EhQsXFNreeOMNvPfeexqqiIiIqPwq8/e3zoy4paenY+TIkVi/fr3KWxnFxcWhS5cuUlACAF9fXyQlJeHhw4dSHx8fH4XX+fr6Ii4uDgCQkpKCtLQ0hT62trbo0KGD1CcuLg52dnZSaAMAHx8fGBkZ4fTp02WuRZW8vDxkZ2crPPRdVBTQseOzqdEXQ9uMGTMY2oiIiJ6jE8FNCAF/f38EBgYqBKbnpaWlwcnJSaGt5HlaWtpL+zy//fnXldbH0dFRYbuJiQlq1qz5yvd5/j1UmTt3LmxtbaWHq6trqX31xZIlD+Hrq3pq1MhIJ/7zJCIiqjIa/c0YHBwMmUz20kdiYiKWLVuGR48eISQkRJPlVrqQkBBkZWVJj9u3b2u6pEq1ZMkSdOmyVKHtww8/5FIfREREpdDociCTJk2Cv7//S/s0aNAAR44cQVxcHMzNzRW2tWvXDoMHD8a6devg7OyM9PR0he0lz52dnaU/VfV5fntJm4uLi0KfknPpnJ2dkZGRobCPwsJCPHjw4JXv8/x7qGJubq70GfVFVBQQHg4EBwN+flybjYiIqCI0GtwcHBzg4ODwyn5Lly7F119/LT2/e/cufH19sWXLFnTo0AEAIJfL8eWXX6KgoACmpqYAgMOHD6Np06aoUaOG1CcmJgbjx4+X9nX48GHI5XIAgLu7O5ydnRETEyMFtezsbJw+fRqjRo2S9pGZmYn4+Hh4eXkBAI4cOYLi4uJy1WJowsOBuDggKCgVCQlrFbbJZDLMnDlTQ5URERHpDp26qrTEzZs34e7urnBVaVZWFpo2bYpu3bph6tSpuHTpEoYPH45FixZJS3XExsbizTffRHh4OHr27InNmzdjzpw5+PPPP9GyZUsAwLfffovw8HCsW7cO7u7umDFjBi5cuIArV67AwsICANCjRw+kp6dj9erVKCgowCeffIJ27dph48aNZa6lLPTpqtKoKOC33+bD2jpHoX3ixImoXr26hqoiIiJSv8r8/a03d06wtbXFoUOHMHr0aHh5ecHe3h4zZ85UCEodO3bExo0bMX36dEybNg2NGzfGrl27pNAGPFsnLicnB59++ikyMzPRqVMnHDx4UAptALBhwwaMGTMG77zzDoyMjNCvXz8sXbq0XLUYEiEEEhJmw9pasZ1To0REROWjkyNuhkIfRtwePHiAZcuWKbR17doVXbp00VBFRERElYsjbqSTTpw4gaNHjyq0zZgxg8t8EBERVRCDG6ldYWEhvvnmG4W23r17o23bthqqiIiISD8wuJFa3b59Gz/++KNC26RJk1CtWjUNVURERKQ/GNxIbXbt2oXz589Lzxs3boyPPvpIgxURERHpFwY3em1Pnz5FRESEQtvHH3+Mhg0baqgiIiIi/cTgRq/lypUr2LZtm0JbSEgIzMzMNFQRERGR/mJwowoRQmDNmjW4e/eu1CaXy9GtWzcNVkVERKTfGNyo3DIzM7FkyRKFtsDAQDg5OWmoIiIiIsPA4EblEhsbi8OHD0vPra2tMXHiRK7NRkREVAUY3KhMioqKEB4ejsLCQqntvffewxtvvKHBqoiIiAwLgxu90n//+1+sWbNGoW3ChAk6exsuIiIiXcXgRi+1d+9exMfHS8/d3d0xZMgQyGQyDVZFRERkmBjcSKW8vDyEh4crtA0aNAhNmjTRUEVERETE4EZKkpKSsHnzZoW24OBgmJuba6giIiIiAhjc6DlCCKxbtw63bt2S2tq1a4eePXtqsCoiIiIqweBGAICsrCwsXrxYoW3kyJGoXbu2ZgoiIiIiJQxuhD/++AMHDhyQnpubmyMoKAjGxsYarIqIiIhexOBmwIqLizF//nw8ffpUauvWrRvkcrkGqyIiIqLSMLgZqLS0NHz33XcKbV988QXs7Ow0UxARERG9EoObATp58iSOHDkiPa9bty6GDx/OtdmIiIi0HIObATp58qT09w8//BAeHh4arIaIiIjKisHNAPXu3Rt//fUXevToAQsLC02XQ0RERGXE4GaAWrVqhVatWmm6DCIiIionI00XQERERERlw+BGREREpCMY3IiIiIh0BIMbERERkY5gcDNAUVFAx47P/iQiIiLdweBmgMLDgbi4Z38SERGR7mBwM0DBwYBc/uxPIiIi0h1cx80A+fk9exAREZFu4YgbERERkY5gcCMiIiLSEQxuRERERDqCwY2IiIhIRzC4EREREekIBjciIiIiHcHgRkRERKQjGNyIiIiIdASDGxEREZGOYHAjIiIi0hEMbkREREQ6gsGNiIiISEcwuBERERHpCBNNF0ClE0IAALKzszVcCREREZVVye/tkt/j6sTgpsUePXoEAHB1ddVwJURERFRejx49gq2trVr3KROVEQdJLYqLi3H37l1Ur14dMplM0+VUuuzsbLi6uuL27duwsbHRdDn0Ah4f7cbjo914fLSbuo+PEAKPHj1C7dq1YWSk3rPSOOKmxYyMjFC3bl1Nl1HlbGxs+INNi/H4aDceH+3G46Pd1Hl81D3SVoIXJxARERHpCAY3IiIiIh3B4EZaw9zcHKGhoTA3N9d0KaQCj4924/HRbjw+2k2Xjg8vTiAiIiLSERxxIyIiItIRDG5EREREOoLBjYiIiEhHMLgRERER6QgGN1KLvLw8tGnTBjKZDOfOnVPYduHCBXTu3BkWFhZwdXVFRESE0uu3bduGZs2awcLCAq1atcL+/fsVtgshMHPmTLi4uMDS0hI+Pj64fv26Qp8HDx5g8ODBsLGxgZ2dHQICAvD48eNy16JP/Pz84ObmBgsLC7i4uGDIkCG4e/euQp+tW7eiTZs2sLKyQr169TBv3jyl/Rw7dgxt27aFubk5GjVqhMjISKU+K1asQP369WFhYYEOHTrgjz/+UNiem5uL0aNHo1atWqhWrRr69euH9PR0hT6pqano2bMnrKys4OjoiKCgIBQWFr7+F6GlynJ8oqOj4e3tjerVq8PBwQH9+vXDzZs3Ffrw+FSeVx2jWbNmQSaTKT2sra0V9sOfcZWjLP+GhBCYP38+mjRpAnNzc9SpUwfffPONQh+d+jckiNRg3LhxokePHgKASEhIkNqzsrKEk5OTGDx4sLh06ZLYtGmTsLS0FN99953U59SpU8LY2FhERESIK1euiOnTpwtTU1Nx8eJFqU94eLiwtbUVu3btEufPnxd+fn7C3d1dPH36VOrTvXt30bp1a/H777+LkydPikaNGolBgwaVqxZ9s3DhQhEXFydu3rwpTp06JeRyuZDL5dL2/fv3CxMTE7Fq1SqRnJws9u7dK1xcXMSyZcukPjdu3BBWVlZi4sSJ4sqVK2LZsmXC2NhYHDx4UOqzefNmYWZmJn788Udx+fJlMXLkSGFnZyfS09OlPoGBgcLV1VXExMSIs2fPCm9vb9GxY0dpe2FhoWjZsqXw8fERCQkJYv/+/cLe3l6EhIRU8rekOa86Pjdu3BDm5uYiJCRE/PXXXyI+Pl506dJFeHp6KvTh8ak8rzpGjx49Evfu3VN4NG/eXAwbNkzqw59xledVx0cIIcaOHSuaNm0qdu/eLW7cuCHOnj0rDh06JG3XtX9DDG702vbv3y+aNWsmLl++rBTcVq5cKWrUqCHy8vKktqlTp4qmTZtKzz/88EPRs2dPhX126NBBfPbZZ0IIIYqLi4Wzs7OYN2+etD0zM1OYm5uLTZs2CSGEuHLligAgzpw5I/U5cOCAkMlk4r///W+Za9F3u3fvFjKZTOTn5wshhBg0aJDo37+/Qp+lS5eKunXriuLiYiGEEFOmTBEtWrRQ6DNgwADh6+srPW/fvr0YPXq09LyoqEjUrl1bzJ07Vwjx7HiZmpqKbdu2SX2uXr0qAIi4uDghxLP/joyMjERaWprUZ9WqVcLGxkbhmOmzF4/Ptm3bhImJiSgqKpL6REVFKfTh8alaLx6jF507d04AECdOnJDa+DOu6rx4fK5cuSJMTExEYmJiqa/RtX9DnCql15Keno6RI0di/fr1sLKyUtoeFxeHLl26wMzMTGrz9fVFUlISHj58KPXx8fFReJ2vry/i4uIAACkpKUhLS1PoY2triw4dOkh94uLiYGdnh3bt2kl9fHx8YGRkhNOnT5e5Fn324MEDbNiwAR07doSpqSmAZ1PcFhYWCv0sLS1x584d3Lp1C8Crj09+fj7i4+MV+hgZGcHHx0fqEx8fj4KCAoU+zZo1g5ubm8IxbNWqFZycnBTeJzs7G5cvX1bX16C1VB0fLy8vGBkZYe3atSgqKkJWVhbWr18PHx8fqQ+PT9VRdYxetGbNGjRp0gSdO3eW2vgzrmqoOj579uxBgwYNsHfvXri7u6N+/foYMWIEHjx4IL1O1/4NMbhRhQkh4O/vj8DAQIUfJs9LS0tT+I8UgPQ8LS3tpX2e3/7860rr4+joqLDdxMQENWvWfOX7PP8e+mjq1KmwtrZGrVq1kJqait27d0vbfH19sWPHDsTExKC4uBjXrl3DggULAAD37t0DUPr3lp2djadPn+Lvv/9GUVHRK4+PmZkZ7OzsXtqHx0fx+Li7u+PQoUOYNm0azM3NYWdnhzt37mDr1q1SHx6fyveyY/S83NxcbNiwAQEBAQrt/BlXuV52fG7cuIFbt25h27Zt+OmnnxAZGYn4+Hj0799f6qNr/4YY3EhJcHCwypNtn38kJiZi2bJlePToEUJCQjRdskEp6/EpERQUhISEBBw6dAjGxsYYOnQoxP+/YcrIkSMxZswY9OrVC2ZmZvD29sbAgQMBPPs/Sio/dR6ftLQ0jBw5EsOGDcOZM2dw/PhxmJmZoX///lIfKj91HqPn7dy5E48ePcKwYcOq8uPoHXUen+LiYuTl5eGnn35C586d8dZbb+GHH37A0aNHkZSUpKmP+FpMNF0AaZ9JkybB39//pX0aNGiAI0eOIC4uTunebu3atcPgwYOxbt06ODs7K11VU/Lc2dlZ+lNVn+e3l7S5uLgo9GnTpo3UJyMjQ2EfhYWFePDgwSvf5/n30AVlPT4l7O3tYW9vjyZNmsDDwwOurq74/fffIZfLIZPJ8O2332LOnDlIS0uDg4MDYmJiFPZR2vdmY2MDS0tLGBsbw9jY+JXHMD8/H5mZmQr/R/pinxev0jL047NixQrY2toqXBn4888/w9XVFadPn4a3tzePTwWo8xg9b82aNejVq5fSqAp/xpWPOo+Pi4sLTExM0KRJE6m/h4cHgGdXeDZt2lT3/g2V+Ww4ohfcunVLXLx4UXpER0cLAOKXX34Rt2/fFkL872TZ50/kDQkJUbo4oVevXgr7lsvlSifuzp8/X9qelZWl8sTds2fPSn2io6NVnrj7slr03a1btwQAcfTo0VL7DBkyROGqrClTpoiWLVsq9Bk0aJDSibtjxoyRnhcVFYk6deoonbj7yy+/SH0SExNVnrj7/FVa3333nbCxsRG5ubkV+8A65sXjM3HiRNG+fXuFPnfv3hUAxKlTp4QQPD5VrbR/Qzdu3BAymUzs2bNH6TX8GVd1Xjw+Jb+X/vrrL6lPyQUkSUlJQgjd+zfE4EZqk5KSonRVaWZmpnBychJDhgwRly5dEps3bxZWVlZKy4GYmJiI+fPni6tXr4rQ0FCVl8rb2dmJ3bt3iwsXLog+ffqovFTe09NTnD59Wvz222+icePGCpfKl6UWffL777+LZcuWiYSEBHHz5k0RExMjOnbsKBo2bCj9kLh//75YtWqVuHr1qkhISBDjxo0TFhYW4vTp09J+Si6VDwoKElevXhUrVqxQeam8ubm5iIyMFFeuXBGffvqpsLOzU7h6KjAwULi5uYkjR46Is2fPKl22X3KpfLdu3cS5c+fEwYMHhYODg94uN1GW4xMTEyNkMpkICwsT165dE/Hx8cLX11fUq1dPPHnyRAjB41OZynKMSkyfPl3Url1bFBYWKu2HP+MqR1mOT1FRkWjbtq3o0qWL+PPPP8XZs2dFhw4dxLvvvivtR9f+DTG4kdqoCm5CCHH+/HnRqVMnYW5uLurUqSPCw8OVXrt161bRpEkTYWZmJlq0aCH27dunsL24uFjMmDFDODk5CXNzc/HOO+9I/7dU4p9//hGDBg0S1apVEzY2NuKTTz4Rjx49Knct+uLChQuia9euombNmsLc3FzUr19fBAYGijt37kh97t+/L7y9vYW1tbWwsrIS77zzjvj999+V9nX06FHRpk0bYWZmJho0aCDWrl2r1GfZsmXCzc1NmJmZifbt2yvt5+nTp+Lzzz8XNWrUEFZWVuL9998X9+7dU+hz8+ZN0aNHD2FpaSns7e3FpEmTREFBgXq+EC1TluMjhBCbNm0Snp6ewtraWjg4OAg/Pz9x9epVhT48PpWjrMeoqKhI1K1bV0ybNq3UffFnnPqV9fj897//FR988IGoVq2acHJyEv7+/uKff/5R6KNL/4ZkQvAMVyIiIiJdwMvGiIiIiHQEgxsRERGRjmBwIyIiItIRDG5EREREOoLBjYiIiEhHMLgRERER6QgGNyIiIiIdweBGRFQJZDIZdu3apekyFBw7dgwymQyZmZmaLoWIKojBjYjoNcyaNUu6ETgRUWVjcCMiIiLSEQxuRGTQiouLMXfuXLi7u8PS0hKtW7fGL7/8AuB/U4sxMTFo164drKys0LFjRyQlJQEAIiMjERYWhvPnz0Mmk0EmkyEyMlLa999//433338fVlZWaNy4MaKiospUU8n7RkdHw9PTE5aWlnj77beRkZGBAwcOwMPDAzY2Nvjoo4/w5MkT6XV5eXkYN24cHB0dYWFhgU6dOuHMmTPq+7KISOMY3IjIoM2dOxc//fQTVq9ejcuXL2PChAn4+OOPcfz4canPl19+iQULFuDs2bMwMTHB8OHDAQADBgzApEmT0KJFC9y7dw/37t3DgAEDpNeFhYXhww8/xIULF/Dee+9h8ODBePDgQZlrmzVrFpYvX47Y2Fjcvn0bH374IRYvXoyNGzdi3759OHToEJYtWyb1nzJlCrZv345169bhzz//RKNGjeDr61uu9yQiLVeuW9ITEemR3NxcYWVlJWJjYxXaAwICxKBBg8TRo0cFAPHrr79K2/bt2ycAiKdPnwohhAgNDRWtW7dW2jcAMX36dOn548ePBQBx4MCBV9al6n3nzp0rAIjk5GSp7bPPPhO+vr7S/k1NTcWGDRuk7fn5+aJ27doiIiJCYb8PHz58ZQ1EpJ1MNJgZiYg06q+//sKTJ0/w7rvvKrTn5+fD09NTev5///d/0t9dXFwAABkZGXBzc3vp/p9/nbW1NWxsbJCRkVHm+p5/vZOTE6ysrNCgQQOFtj/++AMAkJycjIKCAvzrX/+StpuamqJ9+/a4evVqmd+TiLQbgxsRGazHjx8DAPbt24c6deoobDM3N0dycjKAZwGohEwmA/Ds3LhXef51Ja8ty+tUvV4mk732/ohI9/EcNyIyWM2bN4e5uTlSU1PRqFEjhYerq2uZ9mFmZoaioqJKrvTVGjZsCDMzM5w6dUpqKygowJkzZ9C8eXMNVkZE6sQRNyIyWNWrV8fkyZMxYcIEFBcXo1OnTsjKysKpU6dgY2ODevXqvXIf9evXR0pKCs6dO4e6deuievXqMDc3r4LqFVlbW2PUqFEICgpCzZo14ebmhoiICDx58gQBAQFVXg8RVQ4GNyIyaF999RUcHBwwd+5c3LhxA3Z2dmjbti2mTZtWpmnIfv36YceOHejatSsyMzOxdu1a+Pv7V37hKoSHh6O4uBhDhgzBo0eP0K5dO0RHR6NGjRoaqYeI1E8mhBCaLoKIiIiIXo3nuBERERHpCAY3IqIqFhgYiGrVqql8BAYGaro8ItJinColIqpiGRkZyM7OVrnNxsYGjo6OVVwREekKBjciIiIiHcGpUiIiIiIdweBGREREpCMY3IiIiIh0BIMbERERkY5gcCMiIiLSEQxuRERERDqCwY2IiIhIRzC4EREREemI/wfIwUKhYZuBRgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHHCAYAAABa2ZeMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJvElEQVR4nO3dd3hUVf7H8c8kpEIKJSGUhKoU8QcIgokFYZHAqsCKuogCEURREBEsRJQQEIiIKFjAFSmrKFiRBSUiRVTiqkiREhQkUgOoJBGQ1Pv7gzDrOBNMwmTulPfreebJ3nPv3PkOdzEfzjn3XIthGIYAAAAgP7MLAAAAcBcEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAeyWKxaOLEiWaXYZWUlKTGjRubXQaAC0QwAuA0CxculMVisb6Cg4N18cUXa+TIkTp69GiVfvbGjRs1ceJE5eTkOPW81157rc13qlWrli6//HLNnz9fJSUlTvmMqVOnatmyZU45F4ALU83sAgB4n0mTJqlJkyY6c+aMPv/8c82ZM0cffvihtm/frtDQUKd8xu+//65q1f73n7CNGzcqNTVVSUlJioyMdMpnnNOwYUNNmzZNknT8+HH9+9//1tChQ/X9998rLS3tgs8/depU3Xzzzerbt+8FnwvAhSEYAXC6Xr16qWPHjpKku+66S7Vr19bMmTP1wQcf6Lbbbqv0eUtKSlRQUKDg4GAFBwc7q9y/FBERoTvuuMO6fc8996hFixZ64YUXNHnyZAUEBLisFgBVi6E0AFWuW7dukqR9+/ZJkmbMmKGEhATVrl1bISEh6tChg9555x2791ksFo0cOVKLFy/WJZdcoqCgIK1atcq679wco4kTJ+rhhx+WJDVp0sQ67JWVlaUuXbqobdu2Dutq0aKFEhMTK/x9QkNDdcUVV+jUqVM6fvx4mcedOnVKY8eOVWxsrIKCgtSiRQvNmDFDhmHYfMdTp05p0aJF1rqTkpIqXBMA56DHCECV27t3rySpdu3akqRZs2apd+/euv3221VQUKAlS5bolltu0YoVK3T99dfbvHft2rV66623NHLkSNWpU8fhBOebbrpJ33//vd588009++yzqlOnjiQpKipKAwcO1LBhw7R9+3a1adPG+p6vv/5a33//vR5//PFKfacff/xR/v7+ZQ7bGYah3r17a926dRo6dKjatWun9PR0Pfzwwzp06JCeffZZSdJrr72mu+66S506ddLdd98tSWrWrFmlagLgBAYAOMmCBQsMScYnn3xiHD9+3Dhw4ICxZMkSo3bt2kZISIhx8OBBwzAM4/Tp0zbvKygoMNq0aWN069bNpl2S4efnZ+zYscPusyQZKSkp1u2nn37akGTs27fP5ricnBwjODjYePTRR23aR40aZVSvXt04efLkeb9Tly5djJYtWxrHjx83jh8/buzatcsYNWqUIcm48cYbrccNHjzYaNSokXV72bJlhiTjySeftDnfzTffbFgsFmPPnj3WturVqxuDBw8+bx0AXIOhNABO1717d0VFRSk2Nlb9+/dXjRo19P7776tBgwaSpJCQEOuxJ06cUG5urq6++mp9++23dufq0qWLWrduXelaIiIi1KdPH7355pvWIazi4mItXbpUffv2VfXq1f/yHJmZmYqKilJUVJRatWql559/Xtdff73mz59f5ns+/PBD+fv7a9SoUTbtY8eOlWEY+uijjyr9nQBUHYbSADjdiy++qIsvvljVqlVT3bp11aJFC/n5/e/fYStWrNCTTz6pLVu2KD8/39pusVjsztWkSZMLrmfQoEFaunSpPvvsM11zzTX65JNPdPToUQ0cOLBc72/cuLFeeeUV6xIEF110kaKjo8/7np9++kn169dXWFiYTXurVq2s+wG4H4IRAKfr1KmT9a60P/vss8/Uu3dvXXPNNXrppZdUr149BQQEaMGCBXrjjTfsjv9j71JlJSYmqm7dunr99dd1zTXX6PXXX1dMTIy6d+9ervdXr1693McC8GwMpQFwqXfffVfBwcFKT0/XkCFD1KtXL6eEDke9Tef4+/trwIABeuedd3TixAktW7ZMt912m/z9/S/4c8vSqFEjHT58WL/99ptNe2ZmpnX/OeerHYBrEYwAuJS/v78sFouKi4utbVlZWRe88vO5uUJlrXw9cOBAnThxQvfcc49Onjxpsy5RVfj73/+u4uJivfDCCzbtzz77rCwWi3r16mVtq169utNX7AZQOQylAXCp66+/XjNnzlTPnj01YMAAHTt2TC+++KKaN2+ubdu2Vfq8HTp0kCSNHz9e/fv3V0BAgG688UZrYGrfvr3atGmjt99+W61atdJll13mlO9TlhtvvFFdu3bV+PHjlZWVpbZt2+rjjz/WBx98oNGjR9vckt+hQwd98sknmjlzpurXr68mTZqoc+fOVVofAMfoMQLgUt26ddOrr76q7OxsjR49Wm+++aaeeuop/eMf/7ig815++eWaPHmytm7dqqSkJN122212iy8OGjRIkso96fpC+Pn5afny5Ro9erRWrFih0aNHa+fOnXr66ac1c+ZMm2NnzpypDh066PHHH9dtt92mOXPmVHl9AByzGMYflmAFAC82a9YsPfjgg8rKylJcXJzZ5QBwQwQjAD7BMAy1bdtWtWvX1rp168wuB4CbYo4RAK926tQpLV++XOvWrdN3332nDz74wOySALgxeowAeLWsrCw1adJEkZGRuu+++zRlyhSzSwLgxghGAAAApbgrDQAAoJTHBKNp06bp8ssvV1hYmKKjo9W3b1/t3r3b5pgzZ85oxIgRql27tmrUqKF+/frp6NGjJlUMAAA8jccMpfXs2VP9+/fX5ZdfrqKiIj322GPavn27du7caV3A7d5779XKlSu1cOFCRUREaOTIkfLz89MXX3xR7s8pKSnR4cOHFRYWxjL9AAB4CMMw9Ntvv6l+/fo2D62uzIk80rFjxwxJxqeffmoYhmHk5OQYAQEBxttvv209ZteuXYYkIyMjo9znPXDggCGJFy9evHjx4uWBrwMHDlxQvvDY2/Vzc3MlSbVq1ZIkbdq0SYWFhTYPo2zZsqXi4uKUkZGhK664wuF58vPzlZ+fb902SjvQDhw4oPDw8KoqHwAAOFFeXp5iY2MVFhZ2QefxyGBUUlKi0aNH68orr1SbNm0kSdnZ2QoMDFRkZKTNsXXr1lV2dnaZ55o2bZpSU1Pt2sPDwwlGAAB4mAudBuMxk6//aMSIEdq+fbuWLFlywedKTk5Wbm6u9XXgwAEnVAgAADyRx/UYjRw5UitWrNCGDRvUsGFDa3tMTIwKCgqUk5Nj02t09OhRxcTElHm+oKAgBQUFVWXJAADAQ3hMj5FhGBo5cqTef/99rV27Vk2aNLHZ36FDBwUEBGjNmjXWtt27d2v//v2Kj493dbkAAMADeUyP0YgRI/TGG2/ogw8+UFhYmHXeUEREhEJCQhQREaGhQ4dqzJgxqlWrlsLDw3X//fcrPj6+zInXlVVcXKzCwkKnnhPuKSAgQP7+/maXAQBwEY9Zx6isyVQLFixQUlKSpLMLPI4dO1Zvvvmm8vPzlZiYqJdeeum8Q2l/lpeXp4iICOXm5tpNvjYMQ9nZ2crJyans14AHioyMVExMDOtaAYAbO9/v74rwmGDkKuf7gz1y5IhycnIUHR2t0NBQflF6OcMwdPr0aR07dkyRkZGqV6+e2SUBAMrgrGDkMUNpZisuLraGotq1a5tdDlwkJCREknTs2DFFR0czrAYAXs5jJl+b7dycotDQUJMrgaudu+bMKwMA70cwqiCGz3wP1xwAfAfBCAAAoBTBCAAAoBTByAckJSXJYrHIYrEoICBAdevW1XXXXaf58+erpKSk3OdZuHCh3bPoAADwJgQjH9GzZ08dOXJEWVlZ+uijj9S1a1c98MADuuGGG1RUVGR2eQAAuAWCkY8ICgpSTEyMGjRooMsuu0yPPfaYPvjgA3300UdauHChJGnmzJm69NJLVb16dcXGxuq+++7TyZMnJUnr16/XnXfeqdzcXGvv08SJEyVJr732mjp27KiwsDDFxMRowIABOnbsmEnfFADgrj74wFBCQomWLze7krIRjC6AYRgqKCgw5eWMdTm7deumtm3b6r333pMk+fn5afbs2dqxY4cWLVqktWvX6pFHHpEkJSQk6LnnnlN4eLiOHDmiI0eO6KGHHpJ09jb2yZMna+vWrVq2bJmysrKsq5EDACBJ69at05Ytk9Sq1UKlpZldTdlY4PECFBYWatq0aaZ8dnJysgIDAy/4PC1bttS2bdskSaNHj7a2N27cWE8++aSGDx+ul156SYGBgYqIiJDFYrF7xMqQIUOs/7tp06aaPXu2Lr/8cp08eVI1atS44BoBAJ6rsLBQU6dOtW7HxR1Q796GJPdcCoVg5OMMw7Cu0/PJJ59o2rRpyszMVF5enoqKinTmzBmdPn36vAtbbtq0SRMnTtTWrVt14sQJ64Tu/fv3q3Xr1i75HgAA95OZmamlS5fatD300EOqXt09Q5FEMLogAQEBSk5ONu2znWHXrl1q0qSJsrKydMMNN+jee+/VlClTVKtWLX3++ecaOnSoCgoKygxGp06dUmJiohITE7V48WJFRUVp//79SkxMVEFBgVNqBAB4ntTUVJvtNm3aqF+/fiZVU34EowtgsVicMpxllrVr1+q7777Tgw8+qE2bNqmkpETPPPOM/PzOTj176623bI4PDAxUcXGxTVtmZqZ++eUXpaWlKTY2VpL0zTffuOYLAADczsGDB/Xqq6/atA0ZMsT6O8LdEYx8RH5+vrKzs1VcXKyjR49q1apVmjZtmm644QYNGjRI27dvV2FhoZ5//nndeOON+uKLLzR37lybczRu3FgnT57UmjVr1LZtW4WGhiouLk6BgYF6/vnnNXz4cG3fvl2TJ0826VsCAMw0a9Ys5eTk2LQ5a06sq3BXmo9YtWqV6tWrp8aNG6tnz55at26dZs+erQ8++ED+/v5q27atZs6cqaeeekpt2rTR4sWL7SaWJyQkaPjw4frnP/+pqKgoTZ8+XVFRUVq4cKHefvtttW7dWmlpaZoxY4ZJ3xIAYIbCwkKlpqbahKKwsDClpKR4VCiSJIvhjPu+vUheXp4iIiKUm5ur8PBwa/uZM2e0b98+NWnSRMHBwSZWCFfj2gNA2b788kulp6fbtN15552Ki4vT8uVSWpo0bpzUu3fV1lHW7++KYigNAABUyp8nWEvShAkTrHc7p6VJGRlnf1Z1MHIWghEAAKiQJUsOa/fuV2zaOnXqpF69etm0jRv3vx4jT0EwAgAA5eaol+js2kTV7dp79/acnqJzCEYAAOAvFRUVacqUKXbtKSkpJlRTdQhGAADgvJYsWaLdu3fbtH35ZSfl5vaSl+UighEAACibo6Gzdu0eV3q6v0fNHSovghEAALCTlZWlRYsW2bWfGzrr08fVFbkGwQgAANhw1EtUWDhQTz7Z1IRqXIuVrwEAgCTJMAyHoWjixBTNmuX9oUiixwhOlJSUpJycHC1btkySdO2116pdu3Z67rnnKn1OZ5wDAPDXZsyYoVOnTtm1FxSkqEYNadQoE4oyAcHIByQlJVnHiQMCAhQXF6dBgwbpscceU7VqVfd/gffee08BAQHlOnb9+vXq2rWrTpw4ocjIyEqdAwBQOY56iZ5++iH93/9V18aNkoO79L0WwchH9OzZUwsWLFB+fr4+/PBDjRgxQgEBAUpOTrY5rqCgwGkP/KtVq5ZbnAMA4Nju3bu1ZMkSu/aCghT93/951orVzsIcIx8RFBSkmJgYNWrUSPfee6+6d++u5cuXKykpSX379tWUKVNUv359tWjRQpJ04MAB3XrrrYqMjFStWrXUp08fZWVlWc9XXFysMWPGKDIyUrVr19YjjzyiPz+P+Nprr9Xo0aOt2/n5+Xr00UcVGxuroKAgNW/eXK+++qqysrLUtWtXSVLNmjVlsViUlJTk8BwnTpzQoEGDVLNmTYWGhqpXr1764YcfrPsXLlyoyMhIpaenq1WrVqpRo4Z69uypI0eOWI9Zv369OnXqpOrVqysyMlJXXnmlfvrpJyf9SQOAZ0hNTbULRfv3t9LEiSlat07auNHzVq12BoKRjwoJCVFBQYEkac2aNdq9e7dWr16tFStWqLCwUImJiQoLC9Nnn32mL774whowzr3nmWee0cKFCzV//nx9/vnn+vXXX/X++++f9zMHDRqkN998U7Nnz9auXbv08ssvq0aNGoqNjdW7774r6ey/Xo4cOaJZs2Y5PEdSUpK++eYbLV++XBkZGTIMQ3//+99VWFhoPeb06dOaMWOGXnvtNW3YsEH79+/XQw89JOnsyq19+/ZVly5dtG3bNmVkZOjuu++2PvAQAHyBo6Gzp55KUZ8+tyo+3jd7is5hKM3HGIahNWvWKD09Xffff7+OHz+u6tWra968edYhtNdff10lJSWaN2+eNTAsWLBAkZGRWr9+vXr06KHnnntOycnJuummmyRJc+fOVXp6epmf+/333+utt97S6tWr1b17d0lS06b/u8Ph3JBZdHS0zRyjP/rhhx+0fPlyffHFF0pISJAkLV68WLGxsVq2bJluueUWSVJhYaHmzp2rZs2aSZJGjhypSZMmSZLy8vKUm5urG264wbq/VatWFf+DBAAP5CgQSdKMGSl68EHPfLaZs9FjZJLly6WEhLM/XWHFihWqUaOGgoOD1atXL/3zn//UxIkTJUmXXnqpzbyirVu3as+ePQoLC1ONGjVUo0YN1apVS2fOnNHevXuVm5urI0eOqHPnztb3VKtWTR07dizz87ds2SJ/f3916dKl0t9h165dqlatms3n1q5dWy1atNCuXbusbaGhodbQI0n16tXTsWPHJJ0NYElJSUpMTNSNN96oWbNm2QyzAYC3chSKbrnlFqWkpOi333xrgvX50GNkkrQ0KSPj7E9XpPOuXbtqzpw5CgwMVP369W3uRvvzE5FPnjypDh06aPHixXbniYqKqtTnh4SEVOp9lfHnu9gsFovN/KcFCxZo1KhRWrVqlZYuXarHH39cq1ev1hVXXOGyGgHAVY4ePaq5c+fatXvbw1+dhR4jk4wbJ5eO41avXl3NmzdXXFzcX96if9lll+mHH35QdHS0mjdvbvOKiIhQRESE6tWrp//+97/W9xQVFWnTpk1lnvPSSy9VSUmJPv30U4f7z/VYFRcXl3mOVq1aqaioyOZzf/nlF+3evVutW7c+73f6s/bt2ys5OVkbN25UmzZt9MYbb1To/QDgCVJTUx2GovR0QlFZCEYm6d3bfWf833777apTp4769Omjzz77TPv27dP69es1atQoHTx4UJL0wAMPKC0tTcuWLVNmZqbuu+8+5eTklHnOxo0ba/DgwRoyZIiWLVtmPedbb70lSWrUqJEsFotWrFih48eP6+TJk3bnuOiii9SnTx8NGzZMn3/+ubZu3ao77rhDDRo0UJ9yPrRn3759Sk5OVkZGhn766Sd9/PHH+uGHH5hnBMDrOBo6mzfvCaWnp/j05Oq/QjCCndDQUG3YsEFxcXG66aab1KpVKw0dOlRnzpxReHi4JGns2LEaOHCgBg8erPj4eIWFhekf//jHec87Z84c3XzzzbrvvvvUsmVLDRs2zLrKaoMGDZSamqpx48apbt26GjlypMNzLFiwQB06dNANN9yg+Ph4GYahDz/8sNyLQIaGhiozM1P9+vXTxRdfrLvvvlsjRozQPffcU4E/IQBwX9OnTy/zsR7Vq/u57T/K3YXF+PPiMz4uLy9PERERys3NtYYASTpz5oz27dunJk2aKDg42MQK4WpcewCewlEgysxsoS1b+qtmzbPTN7w1FJX1+7uimHwNAICHO3PmjJ566im79okTzz7nbPFi7w1EzkYwAgDAg5W1NlFBQYr1Jh9CUfkRjAAA8FCOQtEll4zWzTdHmFCNdyAYAQDgYT744ANt2bLFrp21iS4cd6VVEHPVfQ/XHIA7SU1NdRiKWJvIOegxKqdzt4OfPn3apas4w3ynT5+WZL+iNgC4kmEY1uc+/lFBQYrWrfPtB786E8GonPz9/RUZGWl95lZoaChPZPdyhmHo9OnTOnbsmCIjI+Xv7292SQB8VFkTrCdOPDvBeuNGFxfkxQhGFRATEyNJ1nAE3xAZGWm99gDgao5C0ebN/9Qll7R06aOlfAXBqAIsFovq1aun6OhoFRYWml0OXCAgIICeIgCm2LZtm95//3279vT0FHqIqhDBqBL8/f35ZQkAqDJlDZ3xnLOqRzACAMCNOApFEyZMkMViEXfjVz2CEQAAbqCsXiLWJnItghEAACZzFIratWunPn36mFCNbyMYAQBgkp9//lkvvviiXXt6egrDZiYhGAEAYAImWLsnghEAAC7mKBQ9+uijCg4OpqfIZAQjAABcZMqUKSoqKrJrb98+RcHBJhQEOwQjAABcoKyhs/btU9S7t4uLQZkIRgAAVKGioiJNmTLFrp0VrN0TwQgAgCrCBGvPQzACAKAKOApFQ4cOVcOGDZlg7cYIRgAAONHq1au10cEYGStYewaCEQAATsJjPTwfwQgAACdwFIomTkzRBx+YUAwqjWAEAMAFKKuXaNKkFN18s7gV38MQjAAAqITx46XAQPtQVL/+dRo2LIEJ1h6KYAQAQAUtXrxPgYH/tmtnLpHnIxgBAFBOy5dLmzczwdqb+ZldAAAAnsJRKEpPf0Lt2xOKvAU9RgAA/IXz3YZPR5F38coeoxdffFGNGzdWcHCwOnfurK+++srskgAAHspRKPr110b0Enkpr+sxWrp0qcaMGaO5c+eqc+fOeu6555SYmKjdu3crOjra7PIAAB7i1KlTmjFjhl07c4m8m8UwDMPsIpypc+fOuvzyy/XCCy9IkkpKShQbG6v7779f48rxxL68vDxFREQoNzdX4eHhVV0uAMANsYK153HW72+v6jEqKCjQpk2blJycbG3z8/NT9+7dlZGR4fA9+fn5ys/Pt27n5eVVeZ0AAPflKBSNGTNGYWFhJlQDV/OqYPTzzz+ruLhYdevWtWmvW7euMjMzHb5n2rRpZf7LAADgO5599k3l5X1v104vkW/xysnXFZGcnKzc3Fzr68CBA2aXBABwsdTUVEIRJHlZj1GdOnXk7++vo0eP2rQfPXpUMTExDt8TFBSkoKAgV5QHAHAzhmFo0qRJdu0EIt/lVT1GgYGB6tChg9asWWNtKykp0Zo1axQfH29iZQAAd5OamuowFM2YQSjyZV7VYySdnSA3ePBgdezYUZ06ddJzzz2nU6dO6c477zS7NACAm3A0t7So6CY999ylGjXKhILgNrwuGP3zn//U8ePHNWHCBGVnZ6tdu3ZatWqV3YRsAIDv2bBhg9atW2fXfm7obPJkV1cEd+N16xhdKNYxAgDvw8NfvR/rGAEAUE6OQhGBCI4QjAAAXosVrFFRBCMAgFdyFIpatGih/v37m1ANPAXBCADgVQ4dOqR58+bZtdNLhPIgGAEAvAZDZ7hQBCMAgFdwFIqSk5MVGBhoQjXwVAQjAIDH4jZ8OJtXPRIEAOBbCEVwNnqMAAAeZfly6emn89W9e5rdPgIRLhTBCADgUTZvTlX37vbthCI4A0NpAACP4WiCdUbGXWrfnlAE56DHCADg9pYsWaLdu3fbtdNLBGcjGAEA3BprE8GVCEYAALflKBQRiFCVCEYAALdDLxHMQjACALiNshZs3LChmx544GoTKoKvIRgBANzCt99+q82b/2PXnp6eonHjpN69TSgKPodgBAAw3fmGzhg9gysRjAAApnIUiiZMmCCLxWJCNfB1BCMAgCmYYA13xMrXAACXcxSKiooCWMEapqPHCADgMidOnNDs2bPt2uklgrsgGAEAXKKsoTN6ieBOCEYAgCrnKBQ9+OCDCg8PN6EaoGwEIwBAlUlNnSTJsGtn6AzuimAEAKgS3HUGT0QwAgA4VUlJiSZPnmzXTiCCJyAYAQCchl4ieDqCEQDAKRyFoltvvVWtWrUyoRqgcghGAIALsmLFCm3atMmunV4ieCKCEQCg0hg6g7chGAEAKsVRKCIQwdMRjAAAFUIvEbwZwQgAUG6OQlGLFi3Uv39/E6oBnI9gBAD4S3v37tXrr79u104vEbwNwQgAcF4MncGXEIwAAGVyFIratn1MffsGmFANUPUIRgAAO/QSwVf5mV0AAMC9EIrgy+gxAgBIkn7//XdNnz7drp1ABF9CMAIA0EsElGIoDQB8nKNQNHfuPUpPJxTB99BjBAA+6pVXXtHhw4ft2pcsSVFEhDRunAlFASYjGAGADzrf0BmjZ/BlBCMA8CGGYWjSpEl27cwlAs4iGAGAj2CCNfDXCEYA4MWWL5fS0qTERPtQdN111ykhIcGEqgD3RTACAC/2xhtfKTHxI7t2eokAxwhGAOClUlNT1aqVfTuhCCgbwQgAvJCj+UQTJkyQxWIxoRrAcxCMAMCLMMEauDAEIwDwEo5CUZ06dTRixAgTqgE8U4WDkb+/v44cOaLo6Gib9l9++UXR0dEqLi52WnEAgL/2888/68UXX7Rrb98+Rb17m1AQ4MEqHIwMw3DYnp+fr8DAwAsuCABQfmUNnU2cmKL4eBGMgAoqdzCaPXu2JMlisWjevHmqUaOGdV9xcbE2bNigli1bOr9CAIBDjkLR9OkPKzY2VPHxPOsMqIxyB6Nnn31W0tkeo7lz58rf39+6LzAwUI0bN9bcuXOdXyEAwEZZvUTt26eobduzgYieIqByyh2M9u3bJ0nq2rWr3nvvPdWsWbPKigIAOPZXd50RiIALU+E5RuvWrauKOgAA57FsWbG2bn3Srp3b8AHnqnAwGjJkyHn3z58/v9LFAADssTYR4DoVDkYnTpyw2S4sLNT27duVk5Ojbt26Oa0wAIDjUNSs2UDdcUdTE6oBvF+Fg9H7779v11ZSUqJ7771XzZo1c0pRAODrVq5cqW+++cau/dxt+HfcYUJRgA/wc8pJ/Pw0ZswY651rAIDKS01NdRiK2rdP4TZ8oIo57ZEge/fuVVFRkbNOBwA+ydHQWXp6ivUWfO46A6pWhYPRmDFjbLYNw9CRI0e0cuVKDR482GmFAYAvOd8Ea+ZYA65T4WC0efNmm20/Pz9FRUXpmWee+cs71gAA9hyFok6dOqlXr14mVAP4NtYxAgCT7NmzR4sXL7Zr5zZ8wDyVnmN07Ngx7d69W5LUokULRUdHO60oAPB2rE0EuKcK35WWl5engQMHqn79+urSpYu6dOmiBg0a6I477lBubm5V1KisrCwNHTpUTZo0UUhIiJo1a6aUlBQVFBTYHLdt2zZdffXVCg4OVmxsrKZPn14l9QDAhXAUih5//HFCEeAGKtxjNGzYMG3evFkrV65UfHy8JCkjI0MPPPCA7rnnHi1ZssTpRWZmZqqkpEQvv/yymjdvru3bt2vYsGE6deqUZsyYIelsYOvRo4e6d++uuXPn6rvvvtOQIUMUGRmpu+++2+k1AUBF0UsEuD+LYRhGRd5QvXp1paen66qrrrJp/+yzz9SzZ0+dOnXKqQWW5emnn9acOXP0448/SpLmzJmj8ePHKzs7W4GBgZKkcePGadmyZcrMzCz3efPy8hQREaHc3FyFh4dXSe0AfMPy5VJa2tl1hzZvJhQBVclZv78r3GNUu3ZtRURE2LVHRESoZs2alS6konJzc1WrVi3rdkZGhq655hprKJKkxMREPfXUUzpx4kSZteXn5ys/P9+6nZeXV3VFA/ApaWnStm2ntHnzDLt9BCLAPVV4jtHjjz+uMWPGKDs729qWnZ2thx9+WE888YRTiyvLnj179Pzzz+uee+6xqaFu3bo2x53b/mOtfzZt2jRFRERYX7GxsVVTNACfk5iYqocftg9F6emEIsBdVTgYzZkzR19++aXi4uLUvHlzNW/eXHFxcdq4caNefvllXXbZZdbXXxk3bpwsFst5X38eBjt06JB69uypW265RcOGDato+XaSk5OVm5trfR04cOCCzwnA9yxfLiUknP0pOZ5P1KrVSOsq1gDcU4WH0vr06SOLxeKUDx87dqySkpLOe0zTpv97gvThw4fVtWtXJSQk6F//+pfNcTExMTp69KhN27ntmJiYMs8fFBSkoKCgClYOALbS0qSMDGnDhjnavPmY3f5zQ2e33urqygBURIWD0cSJE5324VFRUYqKiirXsYcOHVLXrl3VoUMHLViwQH5+tp1d8fHxGj9+vAoLCxUQECBJWr16tVq0aOHSuU8AfBMTrAHvUOGhtKZNm+qXX36xa8/JybHp3XGmQ4cO6dprr1VcXJxmzJih48ePKzs722bu0IABAxQYGKihQ4dqx44dWrp0qWbNmmX3bDcAcDbDMByGorPPOSMUAZ6kwj1GWVlZKi4utmvPz8/XwYMHnVLUn61evVp79uzRnj171LBhQ5t951YbiIiI0Mcff6wRI0aoQ4cOqlOnjiZMmMAaRgCqVFlrE7VvTyACPFG51zFaXjqjsG/fvlq0aJHNLfvFxcVas2aNVq9ebX1MiKdiHSMA5eUoFG3b1lfvvddW8fHSxo0mFAX4KJevY9S3b19JksVi0eDBg232BQQEqHHjxnrmmWcqXQgAeIpvvvlGK1eutGtPSUnR8uXSkSPizjPAQ5U7GJWUlEiSmjRpoq+//lp16tSpsqIAwF2VNXS2ffvZobPevc++AHimCs8x2rdvX1XUAQBuz1EomjEjRSdPSjVqmFAQAKercDCaNGnSefdPmDCh0sUAgDs638NfCwqk2bOlUaNcXBSAKlHhh8i2b9/eZruwsFD79u1TtWrV1KxZM3377bdOLdDVmHwN4I8chaIjRy7R3Lk3m1ANgLKY9hDZzZs3OywmKSlJ//jHPypdCAC4k6NHj2ru3Ll27TzSA/BuFe4xKst3332nG2+8UVlZWc44nWnoMQJwvqEzAO7JWb+/K7zydVnOPYQVADyZo1A0bdo4pacTigBfUOGhtNmzZ9tsG4ahI0eO6LXXXlOvXr2cVhgAuNKkSZPkqAO9ffsUXXYZ6xIBvqLCQ2lNmjSx2fbz81NUVJS6deum5ORkhYWFObVAV2MoDfA9DJ0Bns+0ydesYwTAWxQWFmrq1Kl27RMnpig+XiIXAb6nwsFIknJycrRnzx5JUvPmzRUZGenMmgCgyp3v4a/x8QydAb6qQsEoKytLI0aMUHp6unUs3mKxqGfPnnrhhRfUuHHjqqgRAJzKUSi666671KBBA0k80gPwZeUORgcOHNAVV1yhgIAATZ48Wa1atZIk7dy5U3PmzFF8fLy+/vprNWzYsMqKBYALsXLlSn3zzTd27cwlAnBOuSdfDx06VHv27FF6erqCg4Nt9v3+++/q2bOnLrroIs2bN69KCnUVJl8D3okJ1oB3c/nk61WrVmnp0qV2oUiSQkJCNHnyZPXv37/ShQBAVXEUighEABwpdzD6+eefzzuHqGnTpvr111+dURMAOAW9RAAqqtzBqF69etq5c2eZc4i2b9+umJgYpxUGABfCUSjq3r27rrzyShOqAeApyh2M+vbtq4ceekhr1qxRVFSUzb5jx47p0UcfVd++fZ1dHwBUyJ49e7R48WK7dnqJAJRHuSdfnzhxQp07d1Z2drbuuOMOtWzZUoZhaNeuXXrjjTcUExOjL7/8UrVq1arqmqsUk68Bz8XQGeC7XD75umbNmvrvf/+rxx57TEuWLFFOTo4kKTIyUgMGDNDUqVM9PhQB8FyOQlG7dk+oTx+nPSsbgA+o8LPSpLMPjj1+/LgkKSoqShaLxemFmYUeI8Cz0EsEQDLxWWnS2dWuo6OjK/2hAOAMjkJRw4YNNXToUBOqAeANKhWMAMBMJ0+e1DPPPGPXTi8RgAtFMALgURg6A1CVCEYAPIajUDRmzBiFhYWZUA0Ab0QwAuD25s+frwMHDti100sEwNnKFYxmz55d7hOOGjWq0sUAwJ8xdAbAlcp1u36TJk3KdzKLRT/++OMFF2UmbtcH3INhGJo0aZJdO4EIgCMuvV1/3759lf4AAKiosnqJ0tNTRC4CUJUqvSRsQUGBdu/eraKiImfWA8DHOQpFTZsOUHp6isaNM6EgAD6lwpOvT58+rfvvv1+LFi2SJH3//fdq2rSp7r//fjVo0EDj+C8XgErYtGmTVqxYYdd+buhs4EBXVwTAF1W4xyg5OVlbt27V+vXrFRwcbG3v3r27li5d6tTiAPiG1NTU84YiAHCVCvcYLVu2TEuXLtUVV1xh84y0Sy65RHv37nVqcQC8n6OhMwIRALNUOBgdP37c4XPSTp065VUPkwVQtc53G/7y5VJamjRunNS7t4sLA+DTKjyU1rFjR61cudK6fS4MzZs3T/Hx8c6rDIDXchSKduy4SkuW/C8UZWSc/QkArlThHqOpU6eqV69e2rlzp4qKijRr1izt3LlTGzdu1KeffloVNQLwEj///LNefPFFu/aUlBQlJEiZmdIjj0gWi9SihbgLDYDLVbjH6KqrrtKWLVtUVFSkSy+9VB9//LGio6OVkZGhDh06VEWNALxAampqmaFIOhuC4uPPhqLMTKlWLYbRALheuVa+9iWsfA04n6Ohs9Wrx+uRR6rZhR/mFwGoDGf9/i5XMMrLyyv3CT09TBCMAOcp6+Gv7dunEHoAOJVLHwkSGRlZ7jvOiouLK10MAO/hqJeoWbNmuuOOO0yoBgDKp1zBaN26ddb/nZWVpXHjxikpKcl6F1pGRoYWLVqkadOmVU2VADxGYWGhpk6datfuaG0ihs0AuJsKzzH629/+prvuuku33XabTfsbb7yhf/3rX1q/fr0z63M5htKAyjvf2kSOJCScvS0/Pl7auLEqKwPg7Zz1+7vCd6VlZGSoY8eOdu0dO3bUV199VelCAHg2R6HogQceOO8q1ufuROO2fADuosLBKDY2Vq+88opd+7x58xQbG+uUogB4js8//7zMx3pERkae9729e5/tKWIYDYC7qPACj88++6z69eunjz76SJ07d5YkffXVV/rhhx/07rvvOr1AAO6rokNnAODuKrWO0cGDB/XSSy8pMzNTktSqVSsNHz7cK3qMmGMElA8PfwXgTly6jpEvIRgB50cvEQB35NJ1jP4sJydHr776qnbt2iVJuuSSSzRkyBBFRERUuhAA7s9RKOrfv79atGhhQjUA4HwV7jH65ptvlJiYqJCQEHXq1EmS9PXXX+v333/Xxx9/rMsuu6xKCnUVeowAez/99JMWLlxo104vEQB3YdpQ2tVXX63mzZvrlVdeUbVqZzucioqKdNddd+nHH3/Uhg0bKl2MOyAYAbYYOgPgCUwLRiEhIdq8ebNatmxp075z50517NhRp0+frnQx7oBgBPyPo1A0YcKEcj8iCABcxbQ5RuHh4dq/f79dMDpw4IDCwsIqXQgA9zF58mSVlJTYtdNLBMDbVTgY/fOf/9TQoUM1Y8YMJSQkSJK++OILPfzww3aPCQHgOc49tywx0b6XKD4+Xj169DChKgBwrQoHoxkzZshisWjQoEEqKiqSJAUEBOjee+9VWlqa0wsE4BozZ55UYuIzdu30EgHwJZVex+j06dPau3evJKlZs2YKDQ11amFmYY4RfM3y5dLmzUywBuDZTF3HSJJCQ0N16aWXVvqDAbgHR6Ho0UcfVXBwsAnVAIC5yh2MhgwZUq7j5s+fX+liALjO6tWrtXHjRrt2eokA+LJyB6OFCxeqUaNGat++vXiKCODZHN2GHxMTo3vuuceEagDAfZQ7GN1777168803tW/fPt1555264447VKtWraqsDYATnb3rrESJiZPt9tFLBABn+ZX3wBdffFFHjhzRI488ov/85z+KjY3VrbfeqvT0dHqQAA+weXMqoQgA/kKl70o79+ykf//73yoqKtKOHTtUo0YNZ9fnctyVBm/kaOjsvvvuU1RUlAnVAIDzmX5Xmp+fnywWiwzDUHFxcaULAFB1MjMztXTpUrt2eokAwLFyD6VJUn5+vt58801dd911uvjii/Xdd9/phRde0P79+72itwjwJqmpqYQiAKigcvcY3XfffVqyZIliY2M1ZMgQvfnmm6pTp05V1gagkhwNnRGIAOCvlXuOkZ+fn+Li4tS+ffvzPln7vffec1pxZmCOETyZo0AkEYoAeD+XzzEaNGjQeQMRAPOU9ViPm2++WZdccokJFQGAZ6rQAo/uID8/X507d9bWrVu1efNmtWvXzrpv27ZtGjFihL7++mtFRUXp/vvv1yOPPGJesYALnDhxQps3z7Zrp5cIACqu0nelmeWRRx5R/fr1tXXrVpv2vLw89ejRQ927d9fcuXP13XffaciQIYqMjNTdd99tUrVA1WLoDACcy6OC0UcffaSPP/5Y7777rj766CObfYsXL1ZBQYHmz5+vwMBAXXLJJdqyZYtmzpxJMIJXchSKnnjiCfn5VehmUwDAH3hMMDp69KiGDRumZcuWKTQ01G5/RkaGrrnmGgUGBlrbEhMT9dRTT+nEiROqWbOmw/Pm5+crPz/fup2Xl+f84gEnev/997Vt2za7dnqJAODCecQ/LQ3DUFJSkoYPH66OHTs6PCY7O1t169a1aTu3nZ2dXea5p02bpoiICOsrNjbWeYUDTpaammoXiq666ipCEQA4ianBaNy4cbJYLOd9ZWZm6vnnn9dvv/2m5ORkp9eQnJys3Nxc6+vAgQNO/wzgQhUWFpa5NtHf/vY3EyoCAO9k6lDa2LFjlZSUdN5jmjZtqrVr1yojI0NBQUE2+zp27Kjbb79dixYtUkxMjI4ePWqz/9x2TExMmecPCgqyOy/gTphgDQCuY2owioqKKtdDLGfPnq0nn3zSun348GElJiZq6dKl6ty5syQpPj5e48ePV2FhoQICAiRJq1evVosWLcqcXwS4O0ehqE2bh9SvX3UTqgEA7+cRk6/j4uJsts89l61Zs2Zq2LChJGnAgAFKTU3V0KFD9eijj2r79u2aNWuWnn32WZfXC1yo7777zuEq8vQSAUDV8ohgVB4RERH6+OOPNWLECHXo0EF16tTRhAkTuFUfHmP5ciktTUpMtO8lat68uW6//XYTqgIA31LuZ6X5Cp6VBrMkJBhKTJxk104vEQD8NZc/Kw1A1Zk3b54SEw/ZtROKAMC1CEaAyRxNsL7vvvvKdWMCAMC5CEaASX755Re98MILdu30EgGAeQhGgAkc9RI1aNBAd911lwnVAADOIRgBLuYoFE2YMEEWi8WEagAAf+QRz0oDvEF6enqZj/X4YyhavlxKSDj7EwDgWvQYAS7gKBDdcccdatasmV17WpqUkXH2Z+/erqgOAHAOwQioQmfOnNFTTz1l136+Cdbjxp0NRePGVWVlAABHCEZAFansw19796anCADMQjACqoCjUDR+/HhVq8ZfOQBwZ/xXGnCirVu3atmyZXbtrE0EAJ6BYAQ4iaNeosTERF1xxRUmVAMAqAyCEXCBSkpKNHnyZLt2eokAwPMQjIALkJaWpvz8fLt2QhEAeCaCEVBJjobOxo4dqxo1aphQDQDAGQhGQAUdPHhQr776ql07vUQA4PkIRkAFOOolatOmjfr162dCNQAAZyMYAeVU1nPOAADeg2AE/IWlS5cqMzPTrp1QBADeh2AEnIejXqK7775b9erVM6EaAEBV8zO7AMBdLF8uJSSc/ZmXl1fm0BmhCAC8Fz1GQKm0NCkjQ9q8OVWbN9vuCwsL05gxY8wpDADgMgQjQGd7iX79VZo40b6XaMKECbJYLCZUBQBwNYIRIOn117/RbbettGtngjUA+BaCEXxeamqqLrnEtu3mm2/WJX9uBAB4PYIRfFZxcbGefPJJu3Z6iQDAdxGM4JPmzZunQ4cO2bTVrl1bI0eONKkiAIA7IBjB5zi6Df+xxx5TQECACdUAANwJwQg+49ChQ5o3b55dO0NnAIBzCEbwCY56ifr06aN27dq5vhgAgNsiGMGrGYahSZMm2bXTSwQAcIRgBK+1YsUKbdq0ya6dUAQAKAvBCF7J0dDZ2LFjVaNGDROqAQB4Ch4iC4/2xwe/SlJubm6ZD38lFAEA/go9RvBo5x78mpZ29uGvf3bllVeqe/fuJlQGAPBEBCN4tHHjzoaixETHvUQAAFQEwQgeLSbmKyUmfmTXTigCAFQGwQgey9FcouHDh6tu3bomVAMA8AYEI3icwsJCTZ061a6dXiIAwIUiGMGj/Pvf/9a+ffts2i6//HL9/e9/N6kiAIA3IRjBYzgaOnviiSfk58eqEwAA5yAYwe0dOHBA8+fPt2tn6AwA4GwEI7g1R71Ed955p+Li4kyoBgDg7QhGcEslJSWaPHmyXTu9RACAqkQwgttZtWqV/vvf/9q0NWrUSElJSeYUBADwGQQjuBVHQ2fJyckKDAw0oRoAgK8hGMEtnDhxQrNnz7ZrZ+gMAOBKBCOYzlEv0U033aRLL73UhGoAAL6MYARTOQpF9BIBAMxCMIIpvv76a3344Yc2bYGBgUpOTjapIgAACEYwgaNeojFjxigsLMyEagAA+B+epQCnW75cSkg4+/OPfv/99zKHzghFAAB3QI8RnC4tTcrIOPvz3HafPi/qzJmfbY7r2rWrrrnmGhMqBADAMYIRnG7cuLNh6NzPxMRUnTlje8yECRNksVjMKRAAgDIQjOB0vXuffR08eFCJia/a7eeuMwCAuyIYoUo4mks0fPhw1a1b14RqAAAoH4IRnIqHvwIAPBnBCE6zc+dOvf322zZtTLAGAHgSghEuyPLl/5tg/WdPPPGE/PxYEQIA4DkIRrggM2eeVGLiMzZtF110kQYMGGBSRQAAVB7BCJX2/fffq2vXN23a7r//ftWqVcukigAAuDAEI1SYYRhauHCh9u/fb9POBGsAgKcjGKFCcnJyNGvWLJu2u+66Sw0aNDCpIgAAnIdghHL7/PPPtWbNGut2cHCwHnroIfn7+5tYFQAAzkMwwl8qKirSlClTbNp69eqlTp06mVQRAABVg2CE8/rpp5+0cOFCm7YxY8YoLCzMnIIAAKhCBCOU6a233tKuXbus2xdffLFuu+02EysCAKBqedTqeytXrlTnzp0VEhKimjVrqm/fvjb79+/fr+uvv16hoaGKjo7Www8/rKKiInOK9WAnT55UamqqTSgaNGgQoQgA4PU8psfo3Xff1bBhwzR16lR169ZNRUVF2r59u3V/cXGxrr/+esXExGjjxo06cuSIBg0apICAAE2dOtXEyj3Lpk2btGLFCpu2xx57TAEBASZVBACA61gMwzDMLuKvFBUVqXHjxkpNTdXQoUMdHvPRRx/phhtu0OHDh61PcJ87d64effRRHT9+XIGBgeX6rLy8PEVERCg3N1fh4eFO+w7urqSkRDNnztSpU6esbddee626dOliYlUAAJSPs35/e8RQ2rfffqtDhw7Jz89P7du3V7169dSrVy+bHqOMjAxdeuml1lAkSYmJicrLy9OOHTvMKNtjHDlyRJMnT7YJRffffz+hCADgczxiKO3HH3+UJE2cOFEzZ85U48aN9cwzz+jaa6/V999/r1q1aik7O9smFEmybmdnZ5d57vz8fOXn51u38/LyquAbuK+VK1fqm2++sW7Xr19fd911lywWi4lVAQBgDlN7jMaNGyeLxXLeV2ZmpkpKSiRJ48ePV79+/dShQwctWLBAFotFb7/99gXVMG3aNEVERFhfsbGxzvhqbu/MmTNKTU21CUW33nqrhg0bRigCAPgsU3uMxo4dq6SkpPMe07RpUx05ckSS1Lp1a2t7UFCQmjZtan1eV0xMjL766iub9x49etS6ryzJyckaM2aMdTsvL8/rw9HOnTvtAuW4ceMUFBRkUkUAALgHU4NRVFSUoqKi/vK4Dh06KCgoSLt379ZVV10lSSosLFRWVpYaNWokSYqPj9eUKVN07NgxRUdHS5JWr16t8PBwm0D1Z0FBQT4TCAzD0Msvv2wNjJLUqVMn9erVy8SqAABwHx4xxyg8PFzDhw9XSkqKYmNj1ahRIz399NOSpFtuuUWS1KNHD7Vu3VoDBw7U9OnTlZ2drccff1wjRozwmeBzPr/88oteeOEFm7bhw4fbzcsCAMCXeUQwkqSnn35a1apV08CBA/X777+rc+fOWrt2rWrWrClJ8vf314oVK3TvvfcqPj5e1atX1+DBgzVp0iSTKzffunXrtGHDBut2RESERo0aJT8/j7gpEQAAl/GIdYxcyZvWMSosLLRb3LJ3795q3769SRUBAFA1nPX722N6jFAxe/fu1euvv27T9tBDD6l69eomVQQAgPsjGHmh119/XXv37rVut2nTRv369TOxIgAAPAPByIvk5eXp2WeftWkbMmSI1y8/AACAsxCMvMSXX36p9PR067a/v7+Sk5Pl7+9vYlUAAHgWgpGHKy4u1lNPPaXCwkJr23XXXaeEhAQTqwIAwDMRjDzYwYMH9eqrr9q0jR49WhERESZVBACAZyMYeaj3339f27Zts243adJEAwcO5DlnAABcAIKRhzl9+rR11e9zbr/9djVv3tykigAA8B4EIw+ydetWLVu2zKYtOTlZgYGB5hQEAICXIRh5AMMwNHv2bOXk5FjbrrrqKv3tb38zrygAALwQwcjNHTt2THPmzLFpGzFihOrUqWNSRQAAeC+CkRtLT0/Xl19+ad2Ojo7W8OHDmWANAEAVIRi5ofz8fKWlpdm09evXT23atDGpIgAAfAPByM3s3r1bS5YssWl75JFHFBISYlJFAAD4DoKRmzAMQ/Pnz9fBgwetbZdddpluvPFGE6sCAMC3EIzcwIkTJzR79mybtmHDhql+/fomVQQAgG8iGJnss88+09q1a63boaGhGjt2rPz8/EysCgAA30QwMklRUZGmTJli03b99derY8eOJlUEAAAIRibIysrSokWLbNrGjBmjsLAwkyoCAAASwcjllixZot27d1u3W7Roof79+5tYEQAAOIdg5CK//fabZs6cadM2ePBgNW7c2JyCAACAHYKRi/w5FI0fP17VqvHHDwCAO+E3s4u0atVKu3btUrdu3XT11VebXQ4AAHCAYOQit956q9klAACAv8BiOQAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRi6yfLmUkHD2JwAAcE8EIxdJS5MyMs7+BAAA7olg5CLjxknx8Wd/AgAA98QjQVykd++zLwAA4L7oMQIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChVzewC3I1hGJKkvLw8kysBAADlde739rnf45VFMPqT3377TZIUGxtrciUAAKCifvvtN0VERFT6/RbjQqOVlykpKdHhw4cVFhYmi8VidjkukZeXp9jYWB04cEDh4eFml4Ny4Jp5Fq6X5+GaeZZz12vnzp1q0aKF/PwqP1OIHqM/8fPzU8OGDc0uwxTh4eH8B8DDcM08C9fL83DNPEuDBg0uKBRJTL4GAACwIhgBAACUIhhBQUFBSklJUVBQkNmloJy4Zp6F6+V5uGaexZnXi8nXAAAApegxAgAAKEUwAgAAKEUwAgAAKEUwAgAAKEUwglauXKnOnTsrJCRENWvWVN++fW3279+/X9dff71CQ0MVHR2thx9+WEVFReYUC6v8/Hy1a9dOFotFW7Zssdm3bds2XX311QoODlZsbKymT59uTpE+LisrS0OHDlWTJk0UEhKiZs2aKSUlRQUFBTbHcb3cy4svvqjGjRsrODhYnTt31ldffWV2SZA0bdo0XX755QoLC1N0dLT69u2r3bt32xxz5swZjRgxQrVr11aNGjXUr18/HT16tEKfQzDyce+++64GDhyoO++8U1u3btUXX3yhAQMGWPcXFxfr+uuvV0FBgTZu3KhFixZp4cKFmjBhgolVQ5IeeeQR1a9f3649Ly9PPXr0UKNGjbRp0yY9/fTTmjhxov71r3+ZUKVvy8zMVElJiV5++WXt2LFDzz77rObOnavHHnvMegzXy70sXbpUY8aMUUpKir799lu1bdtWiYmJOnbsmNml+bxPP/1UI0aM0JdffqnVq1ersLBQPXr00KlTp6zHPPjgg/rPf/6jt99+W59++qkOHz6sm266qWIfZMBnFRYWGg0aNDDmzZtX5jEffvih4efnZ2RnZ1vb5syZY4SHhxv5+fmuKBMOfPjhh0bLli2NHTt2GJKMzZs3W/e99NJLRs2aNW2uz6OPPmq0aNHChErxZ9OnTzeaNGli3eZ6uZdOnToZI0aMsG4XFxcb9evXN6ZNm2ZiVXDk2LFjhiTj008/NQzDMHJycoyAgADj7bffth6za9cuQ5KRkZFR7vPSY+TDvv32Wx06dEh+fn5q37696tWrp169emn79u3WYzIyMnTppZeqbt261rbExETl5eVpx44dZpTt844ePaphw4bptddeU2hoqN3+jIwMXXPNNQoMDLS2JSYmavfu3Tpx4oQrS4UDubm5qlWrlnWb6+U+CgoKtGnTJnXv3t3a5ufnp+7duysjI8PEyuBIbm6uJFn/Pm3atEmFhYU2169ly5aKi4ur0PUjGPmwH3/8UZI0ceJEPf7441qxYoVq1qypa6+9Vr/++qskKTs72yYUSbJuZ2dnu7ZgyDAMJSUlafjw4erYsaPDY7hm7mvPnj16/vnndc8991jbuF7u4+eff1ZxcbHD68G1cC8lJSUaPXq0rrzySrVp00bS2b8vgYGBioyMtDm2otePYOSFxo0bJ4vFct7XubkPkjR+/Hj169dPHTp00IIFC2SxWPT222+b/C18S3mv2fPPP6/ffvtNycnJZpfs08p7vf7o0KFD6tmzp2655RYNGzbMpMoB7zBixAht375dS5Yscfq5qzn9jDDd2LFjlZSUdN5jmjZtqiNHjkiSWrdubW0PCgpS06ZNtX//fklSTEyM3R0Z52b4x8TEOLFq31bea7Z27VplZGTYPQ+oY8eOuv3227Vo0SLFxMTY3YXBNXOu8l6vcw4fPqyuXbsqISHBblI118t91KlTR/7+/g6vB9fCfYwcOVIrVqzQhg0b1LBhQ2t7TEyMCgoKlJOTY9NrVOHr5+zJUPAcubm5RlBQkM3k64KCAiM6Otp4+eWXDcP43+Tro0ePWo95+eWXjfDwcOPMmTMur9nX/fTTT8Z3331nfaWnpxuSjHfeecc4cOCAYRj/m8xbUFBgfV9ycjKTeU1y8OBB46KLLjL69+9vFBUV2e3nermXTp06GSNHjrRuFxcXGw0aNGDytRsoKSkxRowYYdSvX9/4/vvv7fafm3z9zjvvWNsyMzMrPPmaYOTjHnjgAaNBgwZGenq6kZmZaQwdOtSIjo42fv31V8MwDKOoqMho06aN0aNHD2PLli3GqlWrjKioKCM5OdnkymEYhrFv3z67u9JycnKMunXrGgMHDjS2b99uLFmyxAgNDbWGXbjOwYMHjebNmxt/+9vfjIMHDxpHjhyxvs7hermXJUuWGEFBQcbChQuNnTt3GnfffbcRGRlpc2cuzHHvvfcaERERxvr1623+Lp0+fdp6zPDhw424uDhj7dq1xjfffGPEx8cb8fHxFfocgpGPKygoMMaOHWtER0cbYWFhRvfu3Y3t27fbHJOVlWX06tXLCAkJMerUqWOMHTvWKCwsNKli/JGjYGQYhrF161bjqquuMoKCgowGDRoYaWlp5hTo4xYsWGBIcvj6I66Xe3n++eeNuLg4IzAw0OjUqZPx5Zdfml0SDKPMv0sLFiywHvP7778b9913n1GzZk0jNDTU+Mc//mHzD5HysJR+GAAAgM/jrjQAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAqCLr16+XxWJRTk6O2aUAKCeCEQCPNXHiRLVr187sMgB4EYIRAK9XWFhodgkAPATBCIBpSkpKNG3aNDVp0kQhISFq27at3nnnHUn/G4Zas2aNOnbsqNDQUCUkJGj37t2SpIULFyo1NVVbt26VxWKRxWLRwoULJUkWi0Vz5sxR7969Vb16dU2ZMuW8dZz7rPT0dLVv314hISHq1q2bjh07po8++kitWrVSeHi4BgwYoNOnT1vfl5+fr1GjRik6OlrBwcG66qqr9PXXX1fNHxYA13DqE94AoAKefPJJo2XLlsaqVauMvXv3GgsWLDCCgoKM9evXG+vWrTMkGZ07dzbWr19v7Nixw7j66quNhIQEwzAM4/Tp08bYsWONSy65xO4p25KM6OhoY/78+cbevXuNn3766bx1nPusK664wvj888+Nb7/91mjevLnRpUsXo0ePHsa3335rbNiwwahdu7bNA15HjRpl1K9f3/jwww+NHTt2GIMHDzZq1qxp/PLLLzbnPXHiRNX8AQJwOoIRAFOcOXPGCA0NNTZu3GjTPnToUOO2226zhopPPvnEum/lypWGJOP33383DMMwUlJSjLZt29qdW5IxevToctfi6LOmTZtmSDL27t1rbbvnnnuMxMREwzAM4+TJk0ZAQICxePFi6/6CggKjfv36xvTp023OSzACPEc1s3qqAPi2PXv26PTp07ruuuts2gsKCtS+fXvr9v/93/9Z/3e9evUkSceOHVNcXNx5z9+xY8cK1/THz6pbt65CQ0PVtGlTm7avvvpKkrR3714VFhbqyiuvtO4PCAhQp06dtGvXrgp/NgD3QDACYIqTJ09KklauXKkGDRrY7AsKCtLevXslnQ0b51gsFkln5yb9lerVq1e4pj9/1h+3z7WV57MBeC4mXwMwRevWrRUUFKT9+/erefPmNq/Y2NhynSMwMFDFxcVVXKljzZo1U2BgoL744gtrW2Fhob7++mu1bt3alJoAXDh6jACYIiwsTA899JAefPBBlZSU6KqrrlJubq6++OILhYeHq1GjRn95jsaNG2vfvn3asmWLGjZsqLCwMAUFBbmg+rM9Uvfee68efvhh1apVS3FxcZo+fbpOnz6toUOHuqQGAM5HMAJgmsmTJysqKkrTpk3Tjz/+qMjISF122WV67LHHyjVk1a9fP7333nvq2rWrcnJytGDBAiUlJVV94aXS0tJUUlKigQMH6rffflPHjh2Vnp6umjVruqwGAM5lMQzDMLsIAAAAd8AcIwAAgFIEIwBeb/jw4apRo4bD1/Dhw80uD4AbYSgNgNc7duyY8vLyHO4LDw9XdHS0iysC4K4IRgAAAKUYSgMAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAACj1/1j+WUwWRiX3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEsklEQVR4nO3deXgU9eHH8c/mJAESrlwoR7iESEAUgRgEFGpA1CJYQVBAEKsSESwK+CsKigSpB8UDLCpoFUtFrIgXFBAKROQQD0SKNBiUhEPMRki4kvn9YbMlkGOz2d2Znbxfz7PPAzOzu9/9Znb3s99rHIZhGAIAALCpILMLAAAA4EuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQCWMG3aNDkcDreOdTgcmjZtmk/L06tXL/Xq1cuyjwfAfYQdAKUsWrRIDofDdQsJCdEFF1ygkSNH6scffzS7eJbTvHnzUvUVGxurK6+8Uu+8845XHr+goEDTpk3TJ5984pXHA2oiwg6AMj366KP661//qvnz56tfv356/fXX1bNnT504ccInz/fHP/5RhYWFPnlsX7vkkkv017/+VX/96181ceJEHThwQAMHDtT8+fOr/dgFBQWaPn06YQeohhCzCwDAmvr166fOnTtLku644w41atRITzzxhJYvX66bb77Z688XEhKikJDA/Ei64IILdOutt7r+P3z4cLVq1UrPPPOM7rrrLhNLBkCiZQeAm6688kpJ0t69e0tt//bbb3XTTTepQYMGqlWrljp37qzly5eXOub06dOaPn26WrdurVq1aqlhw4bq3r27Vq1a5TqmrDE7J0+e1IQJExQTE6O6devqhhtu0A8//HBe2UaOHKnmzZuft72sx1y4cKGuvvpqxcbGKjw8XElJSZo3b16V6qIy8fHxateunbKysio87tChQxo9erTi4uJUq1YtdezYUa+++qpr/759+xQTEyNJmj59uqurzNfjlQC7CcyfUQD8bt++fZKk+vXru7bt3LlTqampuuCCCzR58mTVrl1bf//73zVgwAC9/fbbuvHGGyX9GjoyMjJ0xx13qEuXLsrPz9fWrVu1fft2/eY3vyn3Oe+44w69/vrrGjp0qK644gqtWbNG/fv3r9brmDdvni6++GLdcMMNCgkJ0Xvvvad77rlHxcXFGjt2bLUeu8Tp06e1f/9+NWzYsNxjCgsL1atXL3333XdKT09XYmKi3nrrLY0cOVJ5eXm67777FBMTo3nz5unuu+/WjTfeqIEDB0qSOnTo4JVyAjWGAQBnWbhwoSHJ+Oc//2kcPnzY2L9/v7F06VIjJibGCA8PN/bv3+86tnfv3kZycrJx4sQJ17bi4mLjiiuuMFq3bu3a1rFjR6N///4VPu8jjzxinP2RtGPHDkOScc8995Q6bujQoYYk45FHHnFtGzFihNGsWbNKH9MwDKOgoOC849LS0owWLVqU2tazZ0+jZ8+eFZbZMAyjWbNmxjXXXGMcPnzYOHz4sPHFF18YQ4YMMSQZ9957b7mPN2fOHEOS8frrr7u2nTp1ykhJSTHq1Klj5OfnG4ZhGIcPHz7v9QKoGrqxAJSpT58+iomJUZMmTXTTTTepdu3aWr58uS688EJJ0tGjR7VmzRrdfPPN+uWXX3TkyBEdOXJEP/30k9LS0rRnzx7X7K169epp586d2rNnj9vP/8EHH0iSxo0bV2r7+PHjq/W6IiIiXP92Op06cuSIevbsqf/85z9yOp0ePebKlSsVExOjmJgYdezYUW+99ZZuu+02PfHEE+Xe54MPPlB8fLxuueUW17bQ0FCNGzdOx44d07p16zwqC4Dz0Y0FoEzPP/+82rRpI6fTqVdeeUXr169XeHi4a/93330nwzA0depUTZ06tczHOHTokC644AI9+uij+u1vf6s2bdqoffv26tu3r2677bYKu2O+//57BQUFqWXLlqW2X3TRRdV6XRs3btQjjzyizMxMFRQUlNrndDoVHR1d5cfs2rWrZsyYIYfDocjISLVr10716tWr8D7ff/+9WrduraCg0r8527Vr59oPwDsIOwDK1KVLF9dsrAEDBqh79+4aOnSodu/erTp16qi4uFiSNHHiRKWlpZX5GK1atZIk9ejRQ3v37tW7776rlStX6qWXXtIzzzyj+fPn64477qh2WctbjLCoqKjU//fu3avevXurbdu2evrpp9WkSROFhYXpgw8+0DPPPON6TVXVqFEj9enTx6P7AvA9wg6ASgUHBysjI0NXXXWVnnvuOU2ePFktWrSQ9GvXiztf9A0aNNDtt9+u22+/XceOHVOPHj00bdq0csNOs2bNVFxcrL1795Zqzdm9e/d5x9avX195eXnnbT+3deS9997TyZMntXz5cjVt2tS1fe3atZWW39uaNWumL7/8UsXFxaVad7799lvXfqn8IAfAfYzZAeCWXr16qUuXLpozZ45OnDih2NhY9erVSy+++KJycnLOO/7w4cOuf//000+l9tWpU0etWrXSyZMny32+fv36SZLmzp1bavucOXPOO7Zly5ZyOp368ssvXdtycnLOW8U4ODhYkmQYhmub0+nUwoULyy2Hr1x77bXKzc3VkiVLXNvOnDmjZ599VnXq1FHPnj0lSZGRkZJUZpgD4B5adgC47YEHHtDvfvc7LVq0SHfddZeef/55de/eXcnJyRozZoxatGihgwcPKjMzUz/88IO++OILSVJSUpJ69eqlyy67TA0aNNDWrVu1dOlSpaenl/tcl1xyiW655Ra98MILcjqduuKKK7R69Wp999135x07ZMgQTZo0STfeeKPGjRungoICzZs3T23atNH27dtdx11zzTUKCwvT9ddfr9///vc6duyYFixYoNjY2DIDmy/deeedevHFFzVy5Eht27ZNzZs319KlS7Vx40bNmTNHdevWlfTrgOqkpCQtWbJEbdq0UYMGDdS+fXu1b9/er+UFAprZ08EAWEvJ1PMtW7act6+oqMho2bKl0bJlS+PMmTOGYRjG3r17jeHDhxvx8fFGaGioccEFFxjXXXedsXTpUtf9ZsyYYXTp0sWoV6+eERERYbRt29Z4/PHHjVOnTrmOKWuaeGFhoTFu3DijYcOGRu3atY3rr7/e2L9/f5lTsVeuXGm0b9/eCAsLMy666CLj9ddfL/Mxly9fbnTo0MGoVauW0bx5c+OJJ54wXnnlFUOSkZWV5TquKlPPK5tWX97jHTx40Lj99tuNRo0aGWFhYUZycrKxcOHC8+67adMm47LLLjPCwsKYhg54wGEYZ7XnAgAA2AxjdgAAgK0RdgAAgK0RdgAAgK0RdgAAgK0RdgAAgK0RdgAAgK2xqKCk4uJiHThwQHXr1mVpdgAAAoRhGPrll1/UuHHj8y6qezbCjqQDBw6oSZMmZhcDAAB4YP/+/brwwgvL3U/YkVzLsu/fv19RUVEmlwYAALgjPz9fTZo0cX2Pl4ewo/9dVTgqKoqwAwBAgKlsCAoDlAEAgK0RdgAAgK0RdgAAgK0xZqcKioqKdPr0abOLgSoKDQ1VcHCw2cUAAJiEsOMGwzCUm5urvLw8s4sCD9WrV0/x8fGsowQANRBhxw0lQSc2NlaRkZF8YQYQwzBUUFCgQ4cOSZISEhJMLhEAwN8IO5UoKipyBZ2GDRuaXRx4ICIiQpJ06NAhxcbG0qUFADUMA5QrUTJGJzIy0uSSoDpK/n6MuQKAmoew4ya6rgIbfz8AqLkIOwAAwNYIO6gyh8Ohf/zjH2YXo5RPPvlEDoeDGXMAgPMQdlCuadOm6ZJLLjG7GABgCTnOQm3ae0Q5zkKzi4IqYjYWAACVWLIlW1OWfaViQwpySBkDkzX48qZmFwtuomXHxoqLi5WRkaHExERFRESoY8eOWrp0qaT/dfusXr1anTt3VmRkpK644grt3r1bkrRo0SJNnz5dX3zxhRwOhxwOhxYtWuR67CNHjujGG29UZGSkWrdureXLl7tVppLn/fjjj9WpUydFRETo6quv1qFDh/Thhx+qXbt2ioqK0tChQ1VQUOC638mTJzVu3DjFxsaqVq1a6t69u7Zs2eK9ygKAcuQ4C11BR5KKDemhZV/TwhNACDt+5O8m0IyMDL322muaP3++du7cqQkTJujWW2/VunXrXMf83//9n5566ilt3bpVISEhGjVqlCRp8ODB+sMf/qCLL75YOTk5ysnJ0eDBg133mz59um6++WZ9+eWXuvbaazVs2DAdPXrU7bJNmzZNzz33nDZt2qT9+/fr5ptv1pw5c7R48WK9//77WrlypZ599lnX8Q8++KDefvttvfrqq9q+fbtatWqltLS0Kj0nAHgi68hxV9ApUWQY2nekoOw7wHIIO36yZEu2Umet0dAFm5U6a42WbMn26fOdPHlSM2fO1CuvvKK0tDS1aNFCI0eO1K233qoXX3zRddzjjz+unj17KikpSZMnT9amTZt04sQJRUREqE6dOgoJCVF8fLzi4+Ndi/NJ0siRI3XLLbeoVatWmjlzpo4dO6bPPvvM7fLNmDFDqamp6tSpk0aPHq1169Zp3rx56tSpk6688krddNNNWrt2rSTp+PHjmjdvnv70pz+pX79+SkpK0oIFCxQREaGXX37Ze5UGAGVIbFRbQeesXhHscKh5I9ZfCxSEHT8wown0u+++U0FBgX7zm9+oTp06rttrr72mvXv3uo7r0KGD698ll1IoubRCRc6+X+3atRUVFeXW/cq6f1xcnCIjI9WiRYtS20oeb+/evTp9+rRSU1Nd+0NDQ9WlSxft2rXL7ecEAE8kREcoY2Cygv+7Xleww6GZA9srITqiknvCKhig7AcVNYH66s1y7NgxSdL777+vCy64oNS+8PBwV+AJDQ11bS9ZeK+4uLjSxz/7fiX3ded+Zd3f4XBU+/EAwJcGX95UPdrEaN+RAjVvFEnQCTCEHT8oaQI9O/D4ugk0KSlJ4eHhys7OVs+ePc/bf3brTnnCwsJUVFTki+JVScuWLRUWFqaNGzeqWbNmkn697MOWLVs0fvx4cwsHoMZIiI4g5AQowo4flDSBPrTsaxUZhl+aQOvWrauJEydqwoQJKi4uVvfu3eV0OrVx40ZFRUW5QkNFmjdvrqysLO3YsUMXXnih6tatq/DwcJ+VuTy1a9fW3XffrQceeEANGjRQ06ZNNXv2bBUUFGj06NF+Lw8AILAQdvzEjCbQxx57TDExMcrIyNB//vMf1atXT5deeqkeeught7qIBg0apGXLlumqq65SXl6eFi5cqJEjR/q83GWZNWuWiouLddttt+mXX35R586d9fHHH6t+/fqmlAcAEDgchmEYlR9mb/n5+YqOjpbT6VRUVFSpfSdOnFBWVpYSExNVq1Ytk0qI6uLvCAD2U9H399mYjQUAAGyNsAOvuuuuu0pNdT/7dtddd5ldPABADcSYHXjVo48+qokTJ5a5r6ImRgAAfIWwA6+KjY1VbGys2cUAAMCFbiwAAGBrhB03sZpvYOPvBwA1F91YlQgLC1NQUJAOHDigmJgYhYWFuS6rAOszDEOnTp3S4cOHFRQUpLCwMLOLBADwM8JOJYKCgpSYmKicnBwdOHDA7OLAQ5GRkWratKmCgmjMBICahrDjhrCwMDVt2lRnzpyxxLWiUDXBwcEKCQmhRQ4AaijCjptKrsx97tW5AQCAtdGmDwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbM3UsFNUVKSpU6cqMTFRERERatmypR577DEZhuE6xjAMPfzww0pISFBERIT69OmjPXv2lHqco0ePatiwYYqKilK9evU0evRoHTt2zN8vBwAAWJCpYeeJJ57QvHnz9Nxzz2nXrl164oknNHv2bD377LOuY2bPnq25c+dq/vz52rx5s2rXrq20tDSdOHHCdcywYcO0c+dOrVq1SitWrND69et15513mvGSAACAxTiMs5tR/Oy6665TXFycXn75Zde2QYMGKSIiQq+//roMw1Djxo31hz/8QRMnTpQkOZ1OxcXFadGiRRoyZIh27dqlpKQkbdmyRZ07d5YkffTRR7r22mv1ww8/qHHjxpWWIz8/X9HR0XI6nYqKivLNiwUAAF7l7ve3qS07V1xxhVavXq1///vfkqQvvvhCGzZsUL9+/SRJWVlZys3NVZ8+fVz3iY6OVteuXZWZmSlJyszMVL169VxBR5L69OmjoKAgbd68ucznPXnypPLz80vdAACAPYWY+eSTJ09Wfn6+2rZtq+DgYBUVFenxxx/XsGHDJEm5ubmSpLi4uFL3i4uLc+3Lzc1VbGxsqf0hISFq0KCB65hzZWRkaPr06d5+OQAAwIJMbdn5+9//rjfeeEOLFy/W9u3b9eqrr+rJJ5/Uq6++6tPnnTJlipxOp+u2f/9+nz4fAAAwj6ktOw888IAmT56sIUOGSJKSk5P1/fffKyMjQyNGjFB8fLwk6eDBg0pISHDd7+DBg7rkkkskSfHx8Tp06FCpxz1z5oyOHj3quv+5wsPDFR4e7oNXBAAArMbUlp2CggIFBZUuQnBwsIqLiyVJiYmJio+P1+rVq1378/PztXnzZqWkpEiSUlJSlJeXp23btrmOWbNmjYqLi9W1a1c/vAoAAGBlprbsXH/99Xr88cfVtGlTXXzxxfr888/19NNPa9SoUZIkh8Oh8ePHa8aMGWrdurUSExM1depUNW7cWAMGDJAktWvXTn379tWYMWM0f/58nT59Wunp6RoyZIhbM7EAAIC9mRp2nn32WU2dOlX33HOPDh06pMaNG+v3v/+9Hn74YdcxDz74oI4fP64777xTeXl56t69uz766CPVqlXLdcwbb7yh9PR09e7dW0FBQRo0aJDmzp1rxksCAAAWY+o6O1bBOjsAAASegFhnBwAAwNcIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNZMDzs//vijbr31VjVs2FARERFKTk7W1q1bXfsNw9DDDz+shIQERUREqE+fPtqzZ0+pxzh69KiGDRumqKgo1atXT6NHj9axY8f8/VIAAIAFmRp2fv75Z6Wmpio0NFQffvihvvnmGz311FOqX7++65jZs2dr7ty5mj9/vjZv3qzatWsrLS1NJ06ccB0zbNgw7dy5U6tWrdKKFSu0fv163XnnnWa8JAAAYDEOwzAMs5588uTJ2rhxo/71r3+Vud8wDDVu3Fh/+MMfNHHiREmS0+lUXFycFi1apCFDhmjXrl1KSkrSli1b1LlzZ0nSRx99pGuvvVY//PCDGjduXGk58vPzFR0dLafTqaioKO+9QAAA4DPufn+b2rKzfPlyde7cWb/73e8UGxurTp06acGCBa79WVlZys3NVZ8+fVzboqOj1bVrV2VmZkqSMjMzVa9ePVfQkaQ+ffooKChImzdvLvN5T548qfz8/FI3AABgT6aGnf/85z+aN2+eWrdurY8//lh33323xo0bp1dffVWSlJubK0mKi4srdb+4uDjXvtzcXMXGxpbaHxISogYNGriOOVdGRoaio6NdtyZNmnj7pQEAAIswNewUFxfr0ksv1cyZM9WpUyfdeeedGjNmjObPn+/T550yZYqcTqfrtn//fp8+HwAAMI+pYSchIUFJSUmltrVr107Z2dmSpPj4eEnSwYMHSx1z8OBB1774+HgdOnSo1P4zZ87o6NGjrmPOFR4erqioqFI3AABgT6aGndTUVO3evbvUtn//+99q1qyZJCkxMVHx8fFavXq1a39+fr42b96slJQUSVJKSory8vK0bds21zFr1qxRcXGxunbt6odXAQAArCzEzCefMGGCrrjiCs2cOVM333yzPvvsM/3lL3/RX/7yF0mSw+HQ+PHjNWPGDLVu3VqJiYmaOnWqGjdurAEDBkj6tSWob9++ru6v06dPKz09XUOGDHFrJhYAALA3U6eeS9KKFSs0ZcoU7dmzR4mJibr//vs1ZswY137DMPTII4/oL3/5i/Ly8tS9e3e98MILatOmjeuYo0ePKj09Xe+9956CgoI0aNAgzZ07V3Xq1HGrDEw9BwAg8Lj7/W162LECwg4AAIEnINbZAQAA8DXCjk3lOAu1ae8R5TgLzS4KAACmMnWAMnxjyZZsTVn2lYoNKcghZQxM1uDLm5pdLAAATEHLjs3kOAtdQUeSig3poWVf08IDAKixCDs2k3XkuCvolCgyDO07UmBOgQAAMBlhx2YSG9VWkKP0tmCHQ80bRZpTIAAATEbYsZmE6AhlDExWsOPXxBPscGjmwPZKiI4wuWQAAJiDAco2NPjypurRJkb7jhSoeaNIgg4AoEZzO+zk5+e7/aAszGe+hOgIQg4AAKpC2KlXr54cDkeFxxiGIYfDoaKiomoXDAAAwBvcDjtr1671ZTkA/FeOs1BZR44rsVFtWucAwAvcDjs9e/b0ZTkAiAUhAcAXPB6gnJeXp5dfflm7du2SJF188cUaNWqUoqOjvVY4oCYpb0HIHm1iaOEBgGrwaOr51q1b1bJlSz3zzDM6evSojh49qqefflotW7bU9u3bvV1GoEZgQUgA8A2PWnYmTJigG264QQsWLFBIyK8PcebMGd1xxx0aP3681q9f79VCAjVByYKQZwceFoQEgOrzuGVn0qRJrqAjSSEhIXrwwQe1detWrxUOqElYEBIAfMOjlp2oqChlZ2erbdu2pbbv379fdevW9UrBgJqIBSEBwPs8CjuDBw/W6NGj9eSTT+qKK66QJG3cuFEPPPCAbrnlFq8WEKhpWBASALzLo7Dz5JNPyuFwaPjw4Tpz5owkKTQ0VHfffbdmzZrl1QICAABUh8MwDKPyw8pWUFCgvXv3SpJatmypyMjAHEiZn5+v6OhoOZ1OLnUBAECAcPf7u1oXAo2MjFRycnJ1HgKwLFYyBgB78CjsnDhxQs8++6zWrl2rQ4cOqbi4uNR+1tpBoGMlYwCwD4/CzujRo7Vy5UrddNNN6tKlS6UXCAUCCSsZA4C9eBR2VqxYoQ8++ECpqaneLg9guopWMibsAEDg8WhRwQsuuID1dCwgx1moTXuPKMdZaHZRbKVkJeOzsZIxAAQuj8LOU089pUmTJun777/3dnngpiVbspU6a42GLtis1FlrtGRLttlFsg1WMgYAe/GoG6tz5846ceKEWrRoocjISIWGhpbaf/ToUa8UDmVjTInvsZIxANiHR2Hnlltu0Y8//qiZM2cqLi6OAcp+xpgS/2AlYwCwB4/CzqZNm5SZmamOHTt6uzxwA1fHBgDAfR6N2Wnbtq0KCxkUaxbGlAAA4D6PLhexcuVKTZ8+XY8//riSk5PPG7MTaJdcCNTLReQ4CxlTAgCosdz9/vYo7AQF/dogdO5YHcMw5HA4VFRUVNWHNFWghh0AAGoyn14ba+3atR4XDAAAwJ88Cjs9e/Z067h77rlHjz76qBo1auTJ0wAAAFSbRwOU3fX6668rPz/fl08BAABQIZ+GHQ+GAwEAAHiVT8MOAACA2Qg7AADA1gg7AADA1gg7AADA1nwadm699VYW6QMAAKbyaJ0dScrLy9Nnn32mQ4cOqbi4uNS+4cOHS5LmzZtXvdIBAABUk0dh57333tOwYcN07NgxRUVFlbpshMPhcIUdAAAAs3nUjfWHP/xBo0aN0rFjx5SXl6eff/7ZdTt69Ki3ywgAAOAxj8LOjz/+qHHjxikyMtLb5QEAAPAqj8JOWlqatm7d6u2yAAAAeJ3bY3aWL1/u+nf//v31wAMP6JtvvlFycrJCQ0NLHXvDDTd4r4QAAADV4DDcvIBVUJB7jUAOh0NFRUXVKpS/5efnKzo6Wk6nk6nyAAAECHe/v91u2Tl3ejkAAEAg8GjMzmuvvaaTJ0+et/3UqVN67bXXql0oAAAAb3G7G+tswcHBysnJUWxsbKntP/30k2JjY+nGAgAAPufu97dHLTuGYZRaSLDEDz/8oOjoaE8eEgAAwCeqtIJyp06d5HA45HA41Lt3b4WE/O/uRUVFysrKUt++fb1eSAAAAE9VKewMGDBAkrRjxw6lpaWpTp06rn1hYWFq3ry5Bg0a5NUCAgCAwJXjLFTWkeNKbFRbCdERppShSmHnkUcekSQ1b95cgwcPVq1atXxSKAAAEPiWbMnWlGVfqdiQghxSxsBkDb68qd/L4dEA5RKnTp0q86rnTZv6/4VUBwOUAQDwrhxnoVJnrVHxWSkj2OHQhslXea2Fx+vr7Jxtz549GjVqlDZt2lRqe8nA5UCbjQUAALwr68jxUkFHkooMQ/uOFPi9O8ujsDNy5EiFhIRoxYoVSkhIKHNmFgAAqLkSG9VWkEPntew0b+T/i4h7FHZ27Nihbdu2qW3btt4uDwAAsIGE6AhlDEzWQ8u+VpFhKNjh0MyB7U0ZpOxR2ElKStKRI0e8XRYAAGAjgy9vqh5tYrTvSIGaN4o0bTaWR4sKPvHEE3rwwQf1ySef6KefflJ+fn6pm6dmzZolh8Oh8ePHu7adOHFCY8eOVcOGDVWnTh0NGjRIBw8eLHW/7Oxs9e/fX5GRkYqNjdUDDzygM2fOeFwOAADgHQnREUpp2dC0oCN52LLTp08fSdLVV19darxOdQYob9myRS+++KI6dOhQavuECRP0/vvv66233lJ0dLTS09M1cOBAbdy4UdKvixn2799f8fHx2rRpk3JycjR8+HCFhoZq5syZnrw8r7HC2gIAANR0HoWdtWvXerUQx44d07Bhw7RgwQLNmDHDtd3pdOrll1/W4sWLdfXVV0uSFi5cqHbt2unTTz9Vt27dtHLlSn3zzTf65z//qbi4OF1yySV67LHHNGnSJE2bNk1hYWFeLau7rLK2AAAANZ1H3Vg9e/ZUUFCQFixYoMmTJ6tVq1bq2bOnsrOzFRwcXOXHGzt2rPr37+9qMSqxbds2nT59utT2tm3bqmnTpsrMzJQkZWZmKjk5WXFxca5j0tLSlJ+fr507d5b5fCdPnvRa11tZcpyFrqAj/ToS/aFlXyvHWejV5wEAAJXzKOy8/fbbSktLU0REhD7//HOdPHlS0q8tMVXtOvrb3/6m7du3KyMj47x9ubm5CgsLU7169Uptj4uLU25uruuYs4NOyf6SfWXJyMhQdHS069akSZMqlbkyFa0tYAU5zkJt2nuE8AUAqBE8CjszZszQ/PnztWDBAoWGhrq2p6amavv27W4/zv79+3XffffpjTfe8OulJ6ZMmSKn0+m67d+/36uPX7K2wNnMWlvgXEu2ZCt11hoNXbBZqbPWaMmWbLOLBACAT3kUdnbv3q0ePXqctz06Olp5eXluP862bdt06NAhXXrppQoJCVFISIjWrVunuXPnKiQkRHFxcTp16tR5j3nw4EHFx8dLkuLj48+bnVXy/5JjzhUeHq6oqKhSN28qWVsg+L+Dt81cW+BsdK8BAGoijwYox8fH67vvvlPz5s1Lbd+wYYNatGjh9uP07t1bX331Valtt99+u9q2batJkyapSZMmCg0N1erVq11XU9+9e7eys7OVkpIiSUpJSdHjjz+uQ4cOKTY2VpK0atUqRUVFKSkpyZOX5xVWWVvgbFZauhsAAH/xKOyMGTNG9913n1555RU5HA4dOHBAmZmZmjhxoqZOner249StW1ft27cvta127dpq2LCha/vo0aN1//33q0GDBoqKitK9996rlJQUdevWTZJ0zTXXKCkpSbfddptmz56t3Nxc/fGPf9TYsWMVHh7uycvzmoToCEuFCCst3Q0AgL94FHYmT56s4uJi9e7dWwUFBerRo4fCw8M1ceJE3XvvvV4t4DPPPKOgoCANGjRIJ0+eVFpaml544QXX/uDgYK1YsUJ33323UlJSVLt2bY0YMUKPPvqoV8thB1ZauhsAAH9xGIZhVH5Y2U6dOqXvvvtOx44dU1JSkurUqePNsvmNu5eIt4scZ6GlutcAAPCEu9/fHrXslAgLCzN1XAw8Y7XuNQAAfMmj2VgAAACBgrADAABsjbADAABsjbDjR1ymAQAA/6vWAGW4j6ugAwBgDlp2/IDLNAAAYB7Cjh9Y/SroAADYGWHHD6x8FXQAAOyOsOMHVr0KOgAANQEDlP3EildBBwCgJiDs+BGXaQAAwP/oxgIAALZG2EG1sVgiAMDK6MZCtbBYIgDA6mjZgcdYLBEAEAgIO/AYiyUCAAIBYQceY7FEAEAgIOzAYyyWCAAIBAxQRrWwWCIAwOoIO6g2FksEAFgZ3VgAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAcA4ubgvYC1PPAeAsXNwWsB9adgDgv7i4LWBPhB0A+C8ubguz0YXqG3RjAcB/lVzc9uzAw8Vt4S90ofoOLTsA8F9c3BZmoQvVt2jZAYCzcHFbmKGiLlTOweoj7KBacpyFyjpyXImNavOGhG1wcVv4G12ovkU3Fjy2ZEu2Umet0dAFm5U6a42WbMk2u0gAEJDoQvUth2EYRuWH2Vt+fr6io6PldDoVFRVldnECQo6zUKmz1pz3K2TD5Kt4cwKAh3KchXShVoG73990Y8Ej9C8DgPfRheobdGPBIyX9y2ejfxkAYEWEHXiE/mUAQKCgGwseY4ouACAQEHZQLfQvAwCsjm4sAABga4QdAABga4QdAABga4QdAABga4QdAABga4QdAABga4QdAPChHGehNu09ohxnodlFAWos1tkBAB9ZsiVbU5Z9pWJDCnJIGQOTNfjypmYXC6hxaNkBAB/IcRa6go4kFRvSQ8u+poUHMAFhBwB8IOvIcVfQKVFkGNp3pMCcAgE1GGEHAHwgsVFtBTlKbwt2ONS8UaQ5BQJqMMIOAPhAQnSEMgYmK9jxa+IJdjg0c2B7riUHmIABygDgI4Mvb6oebWK070iBmjeKJOgAJiHsAIAPJURHEHIAk9GNBQAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbM3UsJORkaHLL79cdevWVWxsrAYMGKDdu3eXOubEiRMaO3asGjZsqDp16mjQoEE6ePBgqWOys7PVv39/RUZGKjY2Vg888IDOnDnjz5eCKuDCiAAAfzI17Kxbt05jx47Vp59+qlWrVun06dO65pprdPz4cdcxEyZM0Hvvvae33npL69at04EDBzRw4EDX/qKiIvXv31+nTp3Spk2b9Oqrr2rRokV6+OGHzXhJqMSSLdlKnbVGQxdsVuqsNVqyJdvsIgEAbM5hGIZR+WH+cfjwYcXGxmrdunXq0aOHnE6nYmJitHjxYt10002SpG+//Vbt2rVTZmamunXrpg8//FDXXXedDhw4oLi4OEnS/PnzNWnSJB0+fFhhYWGVPm9+fr6io6PldDoVFRXl09dYk+U4C5U6a02p6wUFOxzaMPkq1iEBAFSZu9/flhqz43Q6JUkNGjSQJG3btk2nT59Wnz59XMe0bdtWTZs2VWZmpiQpMzNTycnJrqAjSWlpacrPz9fOnTvLfJ6TJ08qPz+/1A2+x4URAQBmsEzYKS4u1vjx45Wamqr27dtLknJzcxUWFqZ69eqVOjYuLk65ubmuY84OOiX7S/aVJSMjQ9HR0a5bkyZNvPxqUBYujAgAMINlws7YsWP19ddf629/+5vPn2vKlClyOp2u2/79+33+nODCiAA8x8QGVIclro2Vnp6uFStWaP369brwwgtd2+Pj43Xq1Cnl5eWVat05ePCg4uPjXcd89tlnpR6vZLZWyTHnCg8PV3h4uJdfBdzBhREBVNWSLdmasuwrFRtSkEPKGJiswZc3NbtYCCCmtuwYhqH09HS98847WrNmjRITE0vtv+yyyxQaGqrVq1e7tu3evVvZ2dlKSUmRJKWkpOirr77SoUOHXMesWrVKUVFRSkpK8s8LQZUkREcopWVDgg6ASuU4C11BR5KKDemhZV/TwmNhVmyFM7VlZ+zYsVq8eLHeffdd1a1b1zXGJjo6WhEREYqOjtbo0aN1//33q0GDBoqKitK9996rlJQUdevWTZJ0zTXXKCkpSbfddptmz56t3Nxc/fGPf9TYsWNpvQGAAFfRxAZ+MFmPVVvhTG3ZmTdvnpxOp3r16qWEhATXbcmSJa5jnnnmGV133XUaNGiQevToofj4eC1btsy1Pzg4WCtWrFBwcLBSUlJ06623avjw4Xr00UfNeEkAAoAVf3mibExsCBxWboWz1Do7ZmGdHaDmsOovT5RvyZZsPbTsaxUZhmtiA38z69m094iGLth83vY3x3RTSsuGPnlOd7+/LTFAGQD8obxfnj3axNAlYmFMbAgMJa1w5y4ca4VWOMtMPQcAX2Nhy8DFxAbrs/LyIrTsAKgxrPzLE7CCHGehso4cV2Kj2h6FFKu2whF2ANQYJb88zx3/YZUPZMBM3hrPlhAdYbn3FAOUxQBloKbJcRZa7pcnYKZAvVAzA5QBoBxW/OUJe6huN5BZ7L6eEWEHAIAqKivUBPKyBu6OZwvUMEfYAQCgCsoKNT3axAT0sgbujGcL5DBH2AEAwE3lrdU0Z0jHgO8GqmgmVaCvUUXYAQBYipW7Ssob2xLkcNhiWYPyxrMF+pgeFhUEAFjGki3ZSp21RkMXbFbqrDVasiXb7CKVUt61ui5tVt+yC+p5Q6Bfo4ywAwCwBCtfSLJERasED768qTZMvkrP3dJJf77lEvVoE2Nyab3Hyqsju4NuLACAJQRKV0lFY1vW//twwA7irYxVV0d2B2EHtmDlPn4A7gmky3mUNbYl0AfxuiNQ16iiGwsBz+p9/ADcE+hdJVxo1rpo2UFAqwm/pICaJJC7SgKpZaqmoWUHAc3Ov6RynIXatPeIpQZnApLvz82E6AiltGwYUEFHCvyWKTujZQcBza6/pAJ5pVLYmx3PTW+O+Qvklik7o2XHBmpyC4Adf0kFwvRb1Ex2PDd9MeYvUFum7IyWnQBnx19ZVWW3X1KBMv0WNY/dzk3G/NUctOwEMDv+yvKUnX5JBfpKpbAvu52bdh7zh9IIOwGMN6o92bFrDvZgt3PTbuEN5aMbK4DZdXAu7Nc1ZwcsXPkrf5+bvqz3kvD20LKvVWQYAR/eUD6HYRhG5YfZW35+vqKjo+V0OhUVFWVKGTx9Qy/Zkn3eG7WmjdlxF19WKFHVc4GxcebwV73nOAu9Ht74vPEPd7+/CTsyP+xU9w3tizeq3fBlhRJVPRdynIVKnbXmvBbUDZOvqtHvN19/mQdyvfN54z/ufn8zZsdk3hhkbKfBub7AQG6UKOtcmPL2V/pi/8/l3oexcec7e7r2FRlrNPP9b7z+fgrUevf086YmLyHiD4QdkwXqGzqQUMcoUda5UCxpwAubyl1fJdAHsXr7S/TcL3ND0l/+leX169IFar178nnD9f18j7BjskB9QwcS6hglyjoXJMmo4Nd3IM9A8sWXaFlf5pL3W0wDtd6r+nlDy7N/EHZMFqhv6EBCHaNEyblQ1gdfRb++B1/eVBsmX6U3x3TThslXBcT4C199iZYXGCXvt5hWpd7dacHyR1dRVT9vaHn2D6aeWwDTjH2vptaxVWaEWKUc0q/nQtv4uhrwwiYZ5wx+rai1LyE6wi9l91Zd+Wq145Iv8ylvf6Xic/b5osXUnXo/d0Dw6O6Juq5Dgo6fKnLVoz8HDVfl86Y6S4hY6X1ldczGkvmzsQB3VeXDzSozQqxSjrLKZbVlG7xZV76ezZTjLNTCDfv00ob/qNiQaXVY1us8W5BDmtS3rZ746FvLzuzy5Fy06vvK35h6XgWEHQSCqny4+XvabnkhzOrTh620bIMv6sofgc7sOty094iGLthc4TFB0nmtUJL05phuSmnZ0Cflqqqq1KPV31f+5O73N91YQACo6gULvdGF4W4rUkUhzOoXjvRX15Q7fFFX/ui+NbsOy+oGOlexJIdDVeq29Leq1GN558q2fT/ruo7WOJ+thgHKQACo6iDG6s5Aq2gWz9mDPCsbBMtMOPf5qq6stA6XLwYIuwadlzNoWvq1Hif3a2ubSQrlDRIf97fPy32v1nS07ABuMHsgYFUHMVbnmj8VtSKt//fhUq04d3RPrLA1wtNyuFvfFXWfBdrATX9fp8nfdeTLMSYlLVgLN2bppfVZpbqszu6+u6FjY8t0W1ZHeYPEK3qv1tQxPSUYsyPG7KBiVhkI6Mn4C0/GU5Q3BuL5oZ1075uflwo3QZJURgg7d+xAVcrhbn2Xd5xV/l6e8scYGH/XUVljTIIc0sbJV3v9NZbUX2RYkApOFQd8sKnIii8PKH3x5+dtf+6WThr3t89rxJgexuwAXlDVsTK+5Mn4C0/GU9QOC5ZDv66MWyLY4VCxYZS5+vCd3Vvo5Q1ZFbZGuFsOd+u7vOPaxte1zN/LU74eA2PGOV3mytWGtHBjlh66Nsmrz2X2GCJ/uqxZ/TJbfM/9ASJZa6ycGQg7QAWsNsDW1x/kJb/4zw06Mwe2V+fmDcr8YL29e3Pd3r25V1oj3K3v8o7bsu9nS/29rMiMc7q8QcQvrc/S7amJ/G08VF7XZ3khqCaPlSPsABWozoJfgebcX/zSr10Ny+5JUccm9SWpwjEl3vjCcre+yzvu8uZ8yFfGjHM6ITpCo7snasG/skptL5YIotVUXouvP8d/BQJmY6HKatII/5p0qYnyuhoKTv1vCKSvL5vgbn2Xd1zHJvVrzN/LU2ad06O6J+rcCUQEUe8oa8ZdIF7ixJcYoCwGKFeFlQZ/+nM2idkLp/mDlRYqc7e+yzvOKn8vK88KM6OOrLhqNQIbKyhXAWHHPVb5MsxxFuqVDVl6eUOWJUKXnfBl5D1W+mFgJVYJotVh5RBb0zAbC15nhcG6S7Zka/LbpQfQBuKMG6vy1oq7Nf3LwEqz+Kwm0GdLEWIDE2EHbjN7sG7JF0hZTZHMuPGe6n4Z8WVgjR8G8D5CbOBigDLcZvZg3bK+QEow0NEayvoymLLsK32x/2dzC+ZnXCbDnqp62RZYB2EHbimZgdWjTYxpI/zLux5MkEPMuKkGb86uK29G14DnN5W6Zk8gqE69mPHDoCbNkjQLITZw0Y2FSlmlW+LcBbSCJN3RI5FFyarB23/b8haPMxRYzf3eqBdfXXG8rPFQVnmP2p2/r1/mKzVxTB2zscRsrIpYZQbWuWUK9NkcVuCrv+3ZX7znenNMN6W0bOjxY/uDFc/5EmWFmh5tYixbXrsK5M8guwVjd7+/6cZChazYR13WAlqoOl/9bQdf3lTv3HNFwC4gZ8VzXip/cOy278u/RAZ8I1A/g8o7h2pC1ydhBxWij9qavDE+w5d/245N6mvWIHNXMva0jqx6zpcXwvTfX+hns0J54X3Vfd9bNcj7A2N2UKGK+qhrYr+vFXirGdrX4w98NWbFHdWpI6uOyyhv6YfLmte3XHn5bPA+b7zvzV4+xEyM2RFjdtxxbh+13fp9q8qsD3NfjCcJ5PEHZfFWHVmxXipa4bqy8vrrnK3pnw2+4M33vd1WSWcFZXjV2QvN1fSFtcz8MPfFYnWBvqLtubxVR1asl4payyoqb2XnrLeCUE3/bPAVb77vzWxxNRNhB1UWKKvD+uKXrNkf5jW5Gdpddq+jqoawys5Zb4b3QPlsCDTePqetGOR9jQHKqDKrDuA825It2UqdtUZDF2xW6qw1XlvQzuwBfmavYh0IqKPSKjpnvT07JxA+GwIR53T10bKDKqtsAKfZgxMr+iUrqVpls0KrQU1thq4K6uh/Kjpnvd0S443B3WZ/fliVJ+c0dfk/hB14pLw3XnmLnvnzDVfeB/jCDfv00ob/VKu53iozdazWDG3FD1Wr1ZFZKjtnvRnec5yFatIgUsvuSVHBqeIqB00GN1esKuc0dVkas7HEbCxvKWvGgMMh6delQCp8w3nzy7KscgRJUhkf6p7OYrLiTB2z8KEaGMo7Z701O6e654GVV64ONN6ckWi1HzHnYjYW/K6sFpWzo3R5g3m9/WVZ1i/Z0d2b6y//yip13LnN9VV5Y9Nq8CuzB2zDfeWds97o8vPGeRBog5utHAS8UZd2+xFD2LEIK79x3FXeRSDPVlbA8MWX5bkf4JL00oascpvr7fbG9pdA+4JC2aob3r1xHlhhPJy7rP55Ud26tOOPGNvMxnr++efVvHlz1apVS127dtVnn31mdpHc5quZQ/527oyBIIcqvT6SL2c3nX39mopmM/jzejHeuMyDlVhl9o3d6jXQeOM8CJQZR4FwfanKPu8qe6+YPevUF2zRsrNkyRLdf//9mj9/vrp27ao5c+YoLS1Nu3fvVmxsrNnFq5DdEvS5LSrr/324wsG8/vw1V15zvb9aJ6z+a9ATVhiwbcd6DTTeOg/Ke49aqeU7UFozy6pLd98rgdTK5i5bDFDu2rWrLr/8cj333HOSpOLiYjVp0kT33nuvJk+eXOn9zRygvGnvEQ1dsPm87W+O6aaUlg39WhZfqWwwr9nLl/tjYKTdB1+aNWDb7vUaaHxxHlgtzAbqOVfVcpv9ueyuGjNA+dSpU9q2bZumTJni2hYUFKQ+ffooMzPTxJK5x44J+lyVjQcwe00Uf7ROBMqvQU+ZNWDb7vUaaLx9Hlix5dsKrZmeqOp7xezPZW8L+LBz5MgRFRUVKS4urtT2uLg4ffvtt2Xe5+TJkzp58qTr//n5+T4tY0UC9Y3jbWbPbvL1G7smhFozUK/2ZtUwG4hBwJP3itmfy95kmwHKVZGRkaHo6GjXrUmTJqaWZ/DlTbVh8lV6c0w3bZh8lSWbCmuCswc0++KxA2HwZaChXu3NKgPgy+LLzwtfqOnvlYAfs3Pq1ClFRkZq6dKlGjBggGv7iBEjlJeXp3ffffe8+5TVstOkSRMWFYTPsRihb1Cv9hUoY0cChd3eKzVmzE5YWJguu+wyrV692hV2iouLtXr1aqWnp5d5n/DwcIWHh/uxlMCv7NQsbCXUq30FYpeRldXU90rAhx1Juv/++zVixAh17txZXbp00Zw5c3T8+HHdfvvtZhcNAFBNNfULGt5ji7AzePBgHT58WA8//LByc3N1ySWX6KOPPjpv0DIAAKh5An7MjjdwIVAAAAKPu9/fNXI2FgAAqDkIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNZscbmI6ipZRDo/P9/kkgAAAHeVfG9XdjEIwo6kX375RZLUpEkTk0sCAACq6pdfflF0dHS5+7k2lqTi4mIdOHBAdevWlcPhMLs4fpWfn68mTZpo//79XBesGqhH76EuvYN69B7q0jt8UY+GYeiXX35R48aNFRRU/sgcWnYkBQUF6cILLzS7GKaKioriTewF1KP3UJfeQT16D3XpHd6ux4padEowQBkAANgaYQcAANgaYaeGCw8P1yOPPKLw8HCzixLQqEfvoS69g3r0HurSO8ysRwYoAwAAW6NlBwAA2BphBwAA2BphBwAA2BphBwAA2BphpwZYv369rr/+ejVu3FgOh0P/+Mc/Su03DEMPP/ywEhISFBERoT59+mjPnj3mFNbiKqvLkSNHyuFwlLr17dvXnMJaWEZGhi6//HLVrVtXsbGxGjBggHbv3l3qmBMnTmjs2LFq2LCh6tSpo0GDBungwYMmldi63KnLXr16nXde3nXXXSaV2JrmzZunDh06uBa8S0lJ0Ycffujaz/novsrq0ozzkbBTAxw/flwdO3bU888/X+b+2bNna+7cuZo/f742b96s2rVrKy0tTSdOnPBzSa2vsrqUpL59+yonJ8d1e/PNN/1YwsCwbt06jR07Vp9++qlWrVql06dP65prrtHx48ddx0yYMEHvvfee3nrrLa1bt04HDhzQwIEDTSy1NblTl5I0ZsyYUufl7NmzTSqxNV144YWaNWuWtm3bpq1bt+rqq6/Wb3/7W+3cuVMS52NVVFaXkgnno4EaRZLxzjvvuP5fXFxsxMfHG3/6059c2/Ly8ozw8HDjzTffNKGEgePcujQMwxgxYoTx29/+1pTyBLJDhw4Zkox169YZhvHrORgaGmq89dZbrmN27dplSDIyMzPNKmZAOLcuDcMwevbsadx3333mFSpA1a9f33jppZc4H72gpC4Nw5zzkZadGi4rK0u5ubnq06ePa1t0dLS6du2qzMxME0sWuD755BPFxsbqoosu0t13362ffvrJ7CJZntPplCQ1aNBAkrRt2zadPn261HnZtm1bNW3alPOyEufWZYk33nhDjRo1Uvv27TVlyhQVFBSYUbyAUFRUpL/97W86fvy4UlJSOB+r4dy6LOHv85ELgdZwubm5kqS4uLhS2+Pi4lz74L6+fftq4MCBSkxM1N69e/XQQw+pX79+yszMVHBwsNnFs6Ti4mKNHz9eqampat++vaRfz8uwsDDVq1ev1LGclxUrqy4laejQoWrWrJkaN26sL7/8UpMmTdLu3bu1bNkyE0trPV999ZVSUlJ04sQJ1alTR++8846SkpK0Y8cOzscqKq8uJXPOR8IO4EVDhgxx/Ts5OVkdOnRQy5Yt9cknn6h3794mlsy6xo4dq6+//lobNmwwuygBr7y6vPPOO13/Tk5OVkJCgnr37q29e/eqZcuW/i6mZV100UXasWOHnE6nli5dqhEjRmjdunVmFysglVeXSUlJppyPdGPVcPHx8ZJ03qyCgwcPuvbBcy1atFCjRo303XffmV0US0pPT9eKFSu0du1aXXjhha7t8fHxOnXqlPLy8kodz3lZvvLqsixdu3aVJM7Lc4SFhalVq1a67LLLlJGRoY4dO+rPf/4z56MHyqvLsvjjfCTs1HCJiYmKj4/X6tWrXdvy8/O1efPmUv2r8MwPP/ygn376SQkJCWYXxVIMw1B6erreeecdrVmzRomJiaX2X3bZZQoNDS11Xu7evVvZ2dmcl+eorC7LsmPHDknivKxEcXGxTp48yfnoBSV1WRZ/nI90Y9UAx44dK5WYs7KytGPHDjVo0EBNmzbV+PHjNWPGDLVu3VqJiYmaOnWqGjdurAEDBphXaIuqqC4bNGig6dOna9CgQYqPj9fevXv14IMPqlWrVkpLSzOx1NYzduxYLV68WO+++67q1q3rGvcQHR2tiIgIRUdHa/To0br//vvVoEEDRUVF6d5771VKSoq6detmcumtpbK63Lt3rxYvXqxrr71WDRs21JdffqkJEyaoR48e6tChg8mlt44pU6aoX79+atq0qX755RctXrxYn3zyiT7++GPOxyqqqC5NOx/9OvcLpli7dq0h6bzbiBEjDMP4dfr51KlTjbi4OCM8PNzo3bu3sXv3bnMLbVEV1WVBQYFxzTXXGDExMUZoaKjRrFkzY8yYMUZubq7ZxbacsupQkrFw4ULXMYWFhcY999xj1K9f34iMjDRuvPFGIycnx7xCW1RldZmdnW306NHDaNCggREeHm60atXKeOCBBwyn02luwS1m1KhRRrNmzYywsDAjJibG6N27t7Fy5UrXfs5H91VUl2adjw7DMAzfRSkAAABzMWYHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHgKWdOnXK7CKcx4plAlA+wg4Av+rVq5fS09OVnp6u6OhoNWrUSFOnTlXJlWuaN2+uxx57TMOHD1dUVJTuvPNOSdKGDRt05ZVXKiIiQk2aNNG4ceN0/Phx1+O+8MILat26tWrVqqW4uDjddNNNrn1Lly5VcnKyIiIi1LBhQ/Xp08d13169emn8+PGlyjhgwACNHDnS9X9PywTAGgg7APzu1VdfVUhIiD777DP9+c9/1tNPP62XXnrJtf/JJ59Ux44d9fnnn2vq1Knau3ev+vbtq0GDBunLL7/UkiVLtGHDBqWnp0uStm7dqnHjxunRRx/V7t279dFHH6lHjx6SpJycHN1yyy0aNWqUdu3apU8++UQDBw5UVS8LWNUyAbAOLgQKwK969eqlQ4cOaefOnXI4HJKkyZMna/ny5frmm2/UvHlzderUSe+8847rPnfccYeCg4P14osvurZt2LBBPXv21PHjx/XBBx/o9ttv1w8//KC6deuWer7t27frsssu0759+9SsWbMyy3PJJZdozpw5rm0DBgxQvXr1tGjRIknyqEy1atWqVj0B8B5adgD4Xbdu3VxBR5JSUlK0Z88eFRUVSZI6d+5c6vgvvvhCixYtUp06dVy3tLQ0FRcXKysrS7/5zW/UrFkztWjRQrfddpveeOMNFRQUSJI6duyo3r17Kzk5Wb/73e+0YMEC/fzzz1Uuc1XLBMA6CDsALKd27dql/n/s2DH9/ve/144dO1y3L774Qnv27FHLli1Vt25dbd++XW+++aYSEhL08MMPq2PHjsrLy1NwcLBWrVqlDz/8UElJSXr22Wd10UUXuQJJUFDQeV1ap0+frnaZAFgHYQeA323evLnU/z/99FO1bt1awcHBZR5/6aWX6ptvvlGrVq3Ou4WFhUmSQkJC1KdPH82ePVtffvml9u3bpzVr1kiSHA6HUlNTNX36dH3++ecKCwtzdUnFxMQoJyfH9VxFRUX6+uuvK30N7pQJgDUQdgD4XXZ2tu6//37t3r1bb775pp599lndd9995R4/adIkbdq0Senp6dqxY4f27Nmjd9991zUYeMWKFZo7d6527Nih77//Xq+99pqKi4t10UUXafPmzZo5c6a2bt2q7OxsLVu2TIcPH1a7du0kSVdffbXef/99vf/++/r222919913Ky8vr9LXUFmZAFhHiNkFAFDzDB8+XIWFherSpYuCg4N13333uaZzl6VDhw5at26d/u///k9XXnmlDMNQy5YtNXjwYElSvXr1tGzZMk2bNk0nTpxQ69at9eabb+riiy/Wrl27tH79es2ZM0f5+flq1qyZnnrqKfXr10+SNGrUKH3xxRcaPny4QkJCNGHCBF111VWVvobKygTAOpiNBcCvypr9BAC+RDcWAACwNcIOAACwNbqxAACArdGyAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbO3/AW8G965BJW03AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB+0lEQVR4nO3de3gU9d3//9cmkJBAEg45ckwIJ5EQkIMGlICggXqrEb2LclUOAp6gHqhWYqsCWoLWA61VsFilalEqglqlKuX4RZCCGAVUfhLBREmAaNlIEgIm8/uDO1sCOexudndmJ8/Hde11wezs7ntnJjOv/cxnPuMwDMMQAACATYSYXQAAAIAvEW4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AmGLu3LlyOBxuzetwODR37ly/1jNy5EiNHDnSsu8HwH2EG6CZW7ZsmRwOh+vRokULderUSVOmTNF3331ndnmWk5ycXGt5xcfH65JLLtHq1at98v7l5eWaO3euNm7c6JP3A5ojwg0ASdL8+fP18ssva8mSJRo3bpxeeeUVZWZm6sSJE375vN/+9reqqKjwy3v724ABA/Tyyy/r5Zdf1j333KNDhw5p/PjxWrJkSZPfu7y8XPPmzSPcAE3QwuwCAFjDuHHjNHjwYEnS9OnTFRsbq0cffVRvv/22fv7zn/v881q0aKEWLYJzF9SpUyf94he/cP1/0qRJ6tGjh5566indeuutJlYGQKLlBkA9LrnkEklSfn5+relffvmlrrvuOrVv316tWrXS4MGD9fbbb9ea59SpU5o3b5569uypVq1aqUOHDrr44ou1du1a1zx19bmprKzU3Xffrbi4OEVFRemqq67St99+e05tU6ZMUXJy8jnT63rPF198UZdeeqni4+MVHh6uvn37avHixR4ti8YkJibqvPPO04EDBxqc78iRI5o2bZoSEhLUqlUrpaen669//avr+YMHDyouLk6SNG/ePNepL3/3NwLsJjh/NgHwu4MHD0qS2rVr55q2d+9eDR8+XJ06ddKcOXPUunVr/f3vf1d2drbeeOMNXXPNNZJOh4zc3FxNnz5dQ4cOVWlpqXbu3Kldu3bpsssuq/czp0+frldeeUUTJ07UsGHDtH79el1xxRVN+h6LFy/W+eefr6uuukotWrTQP/7xD91+++2qrq7WzJkzm/TeNU6dOqXCwkJ16NCh3nkqKio0cuRI7d+/X7NmzVJKSopef/11TZkyRceOHdOdd96puLg4LV68WLfddpuuueYajR8/XpLUv39/n9QJNBsGgGbtxRdfNCQZ//rXv4yjR48ahYWFxsqVK424uDgjPDzcKCwsdM07evRoIy0tzThx4oRrWnV1tTFs2DCjZ8+ermnp6enGFVdc0eDnPvTQQ8aZu6C8vDxDknH77bfXmm/ixImGJOOhhx5yTZs8ebLRrVu3Rt/TMAyjvLz8nPmysrKM7t2715qWmZlpZGZmNlizYRhGt27djMsvv9w4evSocfToUePTTz81rr/+ekOS8ctf/rLe91u0aJEhyXjllVdc006ePGlkZGQYbdq0MUpLSw3DMIyjR4+e830BeIbTUgAkSWPGjFFcXJy6dOmi6667Tq1bt9bbb7+tzp07S5J++OEHrV+/Xj//+c/1448/qqSkRCUlJfr++++VlZWlr776ynV1Vdu2bbV371599dVXbn/+mjVrJEl33HFHrel33XVXk75XRESE699Op1MlJSXKzMzU119/LafT6dV7fvDBB4qLi1NcXJzS09P1+uuv68Ybb9Sjjz5a72vWrFmjxMRE3XDDDa5pLVu21B133KHjx49r06ZNXtUC4FyclgIgSXrmmWfUq1cvOZ1OvfDCC9q8ebPCw8Ndz+/fv1+GYeiBBx7QAw88UOd7HDlyRJ06ddL8+fN19dVXq1evXurXr5/Gjh2rG2+8scHTK998841CQkKUmppaa3rv3r2b9L0+/PBDPfTQQ9q2bZvKy8trPed0OhUTE+Pxe1544YV65JFH5HA4FBkZqfPOO09t27Zt8DXffPONevbsqZCQ2r8pzzvvPNfzAHyDcANAkjR06FDX1VLZ2dm6+OKLNXHiRO3bt09t2rRRdXW1JOmee+5RVlZWne/Ro0cPSdKIESOUn5+vt956Sx988IGef/55PfXUU1qyZImmT5/e5FrrG/yvqqqq1v/z8/M1evRo9enTR08++aS6dOmisLAwrVmzRk899ZTrO3kqNjZWY8aM8eq1APyPcAPgHKGhocrNzdWoUaP0pz/9SXPmzFH37t0lnT6V4s6BvX379po6daqmTp2q48ePa8SIEZo7d2694aZbt26qrq5Wfn5+rdaaffv2nTNvu3btdOzYsXOmn9368Y9//EOVlZV6++231bVrV9f0DRs2NFq/r3Xr1k2fffaZqqura7XefPnll67npfqDGwD30ecGQJ1GjhypoUOHatGiRTpx4oTi4+M1cuRIPffccyoqKjpn/qNHj7r+/f3339d6rk2bNurRo4cqKyvr/bxx48ZJkv74xz/Wmr5o0aJz5k1NTZXT6dRnn33mmlZUVHTOKMGhoaGSJMMwXNOcTqdefPHFeuvwl5/97GcqLi7WihUrXNN++uknPf3002rTpo0yMzMlSZGRkZJUZ3gD4B5abgDU695779X//u//atmyZbr11lv1zDPP6OKLL1ZaWppmzJih7t276/Dhw9q2bZu+/fZbffrpp5Kkvn37auTIkRo0aJDat2+vnTt3auXKlZo1a1a9nzVgwADdcMMNevbZZ+V0OjVs2DCtW7dO+/fvP2fe66+/Xvfdd5+uueYa3XHHHSovL9fixYvVq1cv7dq1yzXf5ZdfrrCwMF155ZW65ZZbdPz4cS1dulTx8fF1BjR/uvnmm/Xcc89pypQp+vjjj5WcnKyVK1fqww8/1KJFixQVFSXpdAfovn37asWKFerVq5fat2+vfv36qV+/fgGtFwhqZl+uBcBcNZeC79ix45znqqqqjNTUVCM1NdX46aefDMMwjPz8fGPSpElGYmKi0bJlS6NTp07G//zP/xgrV650ve6RRx4xhg4darRt29aIiIgw+vTpY/zud78zTp486Zqnrsu2KyoqjDvuuMPo0KGD0bp1a+PKK680CgsL67w0+oMPPjD69etnhIWFGb179zZeeeWVOt/z7bffNvr372+0atXKSE5ONh599FHjhRdeMCQZBw4ccM3nyaXgjV3mXt/7HT582Jg6daoRGxtrhIWFGWlpacaLL754zmu3bt1qDBo0yAgLC+OycMALDsM4o70WAAAgyNHnBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2EqzG8Svurpahw4dUlRUFMOcAwAQJAzD0I8//qiOHTuecwPaszW7cHPo0CF16dLF7DIAAIAXCgsL1blz5wbnaXbhpmaI88LCQkVHR5tcDQAAcEdpaam6dOniOo43pNmFm5pTUdHR0YQbAACCjDtdSuhQDAAAbIVwAwAAbIVwAwAAbKXZ9blxV1VVlU6dOmV2GXBTy5YtFRoaanYZAAALINycxTAMFRcX69ixY2aXAg+1bdtWiYmJjF8EAM0c4eYsNcEmPj5ekZGRHCiDgGEYKi8v15EjRyRJSUlJJlcEADAT4eYMVVVVrmDToUMHs8uBByIiIiRJR44cUXx8PKeoAKAZo0PxGWr62ERGRppcCbxRs97oKwUAzRvhpg6cigpOrDcAgES4AQAANkO4QdDYuHGjHA4HV7IBABpkarjJzc3VkCFDFBUVpfj4eGVnZ2vfvn0NvmbZsmVyOBy1Hq1atQpQxfY2d+5cDRgwwOwyAMASipwV2ppfoiJnhdmlwEOmXi21adMmzZw5U0OGDNFPP/2k+++/X5dffrk+//xztW7dut7XRUdH1wpB9LUIrFOnTqlly5ZmlwEAfrNiR4FyVu1WtSGFOKTc8WmaMKSr2WXBTaa23Lz33nuaMmWKzj//fKWnp2vZsmUqKCjQxx9/3ODrHA6HEhMTXY+EhIQAVWxt1dXVys3NVUpKiiIiIpSenq6VK1dK+u8pnXXr1mnw4MGKjIzUsGHDXCFx2bJlmjdvnj799FNXi9iyZcsknV7eixcv1lVXXaXWrVvrd7/7XYN11HzW+++/r4EDByoiIkKXXnqpjhw5on/+858677zzFB0drYkTJ6q8vNz1usrKSt1xxx2Kj49Xq1atdPHFF2vHjh3+WVgAUI8iZ4Ur2EhStSHdv2oPLThBxFJ9bpxOpySpffv2Dc53/PhxdevWTV26dNHVV1+tvXv31jtvZWWlSktLaz0CJdBNmrm5uXrppZe0ZMkS7d27V3fffbd+8YtfaNOmTa55fvOb3+iJJ57Qzp071aJFC910002SpAkTJuhXv/qVzj//fBUVFamoqEgTJkxwvW7u3Lm65pprtHv3btdrGjN37lz96U9/0tatW1VYWKif//znWrRokZYvX653331XH3zwgZ5++mnX/L/+9a/1xhtv6K9//at27dqlHj16KCsrSz/88IOPlhAANO5ASZkr2NSoMgwdLCmv+wWwHMsM4lddXa277rpLw4cPV79+/eqdr3fv3nrhhRfUv39/OZ1OPf744xo2bJj27t2rzp07nzN/bm6u5s2b58/S6xToJs3KykotWLBA//rXv5SRkSFJ6t69u7Zs2aLnnntON998syTpd7/7nTIzMyVJc+bM0RVXXKETJ04oIiJCbdq0UYsWLZSYmHjO+0+cOFFTp071qKZHHnlEw4cPlyRNmzZNOTk5ys/PV/fu3SVJ1113nTZs2KD77rtPZWVlWrx4sZYtW6Zx48ZJkpYuXaq1a9fqL3/5i+69917vFgwAeCgltrVCHKoVcEIdDiXHMgZasLBMy83MmTO1Z88evfbaaw3Ol5GRoUmTJmnAgAHKzMzUqlWrFBcXp+eee67O+XNycuR0Ol2PwsJCf5RfixlNmvv371d5ebkuu+wytWnTxvV46aWXlJ+f75qvf//+rn/X3Kag5rYFDRk8eLDHNZ35WQkJCYqMjHQFm5ppNZ+dn5+vU6dOucKQdPpmmEOHDtUXX3zh8WcDgLeSYiKUOz5Nof/XnzPU4dCC8f2UFBNhcmVwlyVabmbNmqV33nlHmzdvrrP1pSEtW7bUwIEDtX///jqfDw8PV3h4uC/KdFtDTZr++uM4fvy4JOndd99Vp06daj0XHh7uCjhndgSu6YhdXV3d6Ps31MG7Pmd/1tmdkB0Oh1ufDQCBNmFIV43oFaeDJeVKjo0k2AQZU1tuDMPQrFmztHr1aq1fv14pKSkev0dVVZV2795tqZsl1jRpnsnfTZp9+/ZVeHi4CgoK1KNHj1qPLl26uPUeYWFhqqqq8luNDUlNTVVYWJg+/PBD17RTp05px44d6tu3ryk1AWjekmIilJHagWAThExtuZk5c6aWL1+ut956S1FRUSouLpYkxcTEuG6EOGnSJHXq1Em5ubmSpPnz5+uiiy5Sjx49dOzYMf3+97/XN998o+nTp5v2Pc5W06R5/6o9qjKMgDRpRkVF6Z577tHdd9+t6upqXXzxxXI6nfrwww8VHR2tbt26NfoeycnJOnDggPLy8tS5c2dFRUUFrNWrdevWuu2223Tvvfeqffv26tq1qx577DGVl5dr2rRpAakBAGAPpoabxYsXS5JGjhxZa/qLL76oKVOmSJIKCgoUEvLfBqb//Oc/mjFjhoqLi9WuXTsNGjRIW7dutdyvezOaNB9++GHFxcUpNzdXX3/9tdq2basLLrhA999/v1unf6699lqtWrVKo0aN0rFjx2qth0BYuHChqqurdeONN+rHH3/U4MGD9f7776tdu3YBqwEAEPwchmEYjc9mH6WlpYqJiZHT6VR0dHSt506cOKEDBw4oJSWFUY+DEOsPAOyroeP32SxztRQAAIAvEG7gsVtvvbXW5eZnPm699VazywMANHOWuBQcwWX+/Pm655576nyusaZCAAD8jXADj8XHxys+Pt7sMgAAqBOnpQAAgK0QburAqLnBifUGAJA4LVVLWFiYQkJCdOjQIcXFxSksLMx1iwJYl2EYOnnypI4ePaqQkBCFhYWZXRIAwESEmzOEhIQoJSVFRUVFOnTokNnlwEORkZHq2rVrrUEfAQDND+HmLGFhYeratat++ukn0+6zBM+FhoaqRYsWtLQBAAg3dam5g/XZd7EGAADWR/s9AACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFVPDTW5uroYMGaKoqCjFx8crOztb+/bta/R1r7/+uvr06aNWrVopLS1Na9asCUC1AAAgGJgabjZt2qSZM2fqo48+0tq1a3Xq1CldfvnlKisrq/c1W7du1Q033KBp06bpk08+UXZ2trKzs7Vnz54AVg4AAKzKYRiGYXYRNY4ePar4+Hht2rRJI0aMqHOeCRMmqKysTO+8845r2kUXXaQBAwZoyZIljX5GaWmpYmJi5HQ6FR0d7bPaAQCA/3hy/LZUnxun0ylJat++fb3zbNu2TWPGjKk1LSsrS9u2batz/srKSpWWltZ6AAAA+7JMuKmurtZdd92l4cOHq1+/fvXOV1xcrISEhFrTEhISVFxcXOf8ubm5iomJcT26dOni07oBAIC1WCbczJw5U3v27NFrr73m0/fNycmR0+l0PQoLC336/gAAwFpamF2AJM2aNUvvvPOONm/erM6dOzc4b2Jiog4fPlxr2uHDh5WYmFjn/OHh4QoPD/dZrQAAwNpMbbkxDEOzZs3S6tWrtX79eqWkpDT6moyMDK1bt67WtLVr1yojI8NfZQIAgCBiasvNzJkztXz5cr311luKiopy9ZuJiYlRRESEJGnSpEnq1KmTcnNzJUl33nmnMjMz9cQTT+iKK67Qa6+9pp07d+rPf/6zad8DAABYh6ktN4sXL5bT6dTIkSOVlJTkeqxYscI1T0FBgYqKilz/HzZsmJYvX64///nPSk9P18qVK/Xmm2822AkZAAA0H5Ya5yYQGOcGAIDgE7Tj3AAAADQV4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4cYmipwV2ppfoiJnhdmlAABgqhZmF4CmW7GjQDmrdqvakEIcUu74NE0Y0tXssgAAMAUtN0GuyFnhCjaSVG1I96/aQwsOAKDZItwEuQMlZa5gU6PKMHSwpNycggAAMBnhJsilxLZWiKP2tFCHQ8mxkeYUBACAyQg3QS4pJkK549MU6jidcEIdDi0Y309JMREmVwYAgDnoUGwDE4Z01YhecTpYUq7k2EiCDQCgWSPc2ERSTAShBgAAcVoKAADYDOEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEG+D9FzgptzS/hjuoAEOQYoRiQtGJHgXJW7Va1IYU4pNzxaZowpKvZZQEAvEDLDZq9ImeFK9hIUrUh3b9qDy04ABCkCDdo9g6UlLmCTY0qw9DBknJzCgIANAnhBs1eSmxrhThqTwt1OJQcG2lOQQCAJjE13GzevFlXXnmlOnbsKIfDoTfffLPB+Tdu3CiHw3HOo7i4ODAFw5aSYiKUOz5NoY7TCSfU4dCC8f24yzoABClTOxSXlZUpPT1dN910k8aPH+/26/bt26fo6GjX/+Pj4/1RHpqRCUO6akSvOB0sKVdybCTBBgCCmKnhZty4cRo3bpzHr4uPj1fbtm19XxCataSYCEINANhAUPa5GTBggJKSknTZZZfpww8/NLucgGEcFgAAGhdU49wkJSVpyZIlGjx4sCorK/X8889r5MiR2r59uy644II6X1NZWanKykrX/0tLSwNVrk8xDgsAAO4JqnDTu3dv9e7d2/X/YcOGKT8/X0899ZRefvnlOl+Tm5urefPmBapEv6hvHJYRveI4jQIAwFmC8rTUmYYOHar9+/fX+3xOTo6cTqfrUVhYGMDqfINxWAAAcF9QtdzUJS8vT0lJSfU+Hx4ervDw8ABW5Hs147CcGXAYhwUAgLqZGm6OHz9eq9XlwIEDysvLU/v27dW1a1fl5OTou+++00svvSRJWrRokVJSUnT++efrxIkTev7557V+/Xp98MEHZn2FgKgZh+X+VXtUZRiMwwIAQAPcDjeedMQ9cwyahuzcuVOjRo1y/X/27NmSpMmTJ2vZsmUqKipSQUGB6/mTJ0/qV7/6lb777jtFRkaqf//++te//lXrPeyKcVgAAHCPwzAMo/HZpJCQEDkcjgbnMQxDDodDVVVVPinOH0pLSxUTEyOn0+l2CAP8pchZoQMlZUqJbU1gBYAGeHL8drvlZsOGDU0uDMB/cXk/APiH2+EmMzPTn3UAzQqX9wOA/3jdofjYsWP6y1/+oi+++EKSdP755+umm25STEyMz4oD7Kqhy/sJNwDQNF6Nc7Nz506lpqbqqaee0g8//KAffvhBTz75pFJTU7Vr1y5f1wjYTs3l/Wfi8n4A8A23OxSf6ZJLLlGPHj20dOlStWhxuvHnp59+0vTp0/X1119r8+bNPi/UV+hQDKtYsaPgnMv76XMDAHXz5PjtVbiJiIjQJ598oj59+tSa/vnnn2vw4MEqL7fuyLmEG1hJkbOCy/sBwA2eHL+9Oi0VHR1da/yZGoWFhYqKivLmLYFmKSkmQhmpHQg2AOBDXoWbCRMmaNq0aVqxYoUKCwtVWFio1157TdOnT9cNN9zg6xoBAADc5tXVUo8//rgcDocmTZqkn376SZLUsmVL3XbbbVq4cKFPCwQAAPCEV31uapSXlys/P1+SlJqaqshI61/pQZ8bAACCj19GKK5LZGSk0tLSmvIWAAAAPuVVuDlx4oSefvppbdiwQUeOHFF1dXWt5xnrBgAAmMWrcDNt2jR98MEHuu666zR06NBGb6gJAAAQKF6Fm3feeUdr1qzR8OHDfV0PAABAk3h1KXinTp0YzwYAAFiSV+HmiSee0H333advvvnG1/UAAAA0iVenpQYPHqwTJ06oe/fuioyMVMuWLWs9/8MPP/ikOAAAAE95FW5uuOEGfffdd1qwYIESEhLoUAwAACzDq3CzdetWbdu2Tenp6b6uBwAAoEm86nPTp08fVVRU+LoWAACAJvMq3CxcuFC/+tWvtHHjRn3//fcqLS2t9QAAADCLV/eWCgk5nYnO7mtjGIYcDoeqqqp8U50fcG8pAACCj9/vLbVhwwavCgMAAPA3r8JNZmamW/Pdfvvtmj9/vmJjY735GAAAAI951efGXa+88gp9cAAAQED5Ndx40Z0HAACgSfwabgAAAAKNcAMAAGyFcAMAAGyFcAMAAGzF43Dz008/af78+fr2228bnfcXv/gFA+UBAICA8mqE4qioKO3evVvJycl+KMm/GKEYAIDg48nx26vTUpdeeqk2bdrkVXEAAAD+5NUIxePGjdOcOXO0e/duDRo0SK1bt671/FVXXeWT4gAAADzVpBtn1vmG3DgTAAD4mN9vnFldXe1VYQAAAP7mVZ+bl156SZWVledMP3nypF566aUmFwUAAOAtr05LhYaGqqioSPHx8bWmf//994qPj+e0FAAA8Cm/Xy1lGIYcDsc507/99lvFxMR485YAAMAGipwV2ppfoiJnhWk1eNTnZuDAgXI4HHI4HBo9erRatPjvy6uqqnTgwAGNHTvW50UCAADrW7GjQDmrdqvakEIcUu74NE0Y0jXgdXgUbrKzsyVJeXl5ysrKUps2bVzPhYWFKTk5Wddee61PCwQAANZX5KxwBRtJqjak+1ft0YhecUqKiQhoLR6Fm4ceekiSlJycrAkTJqhVq1Z+KSpYFTkrdKCkTCmxrQO+IgEAMNOBkjJXsKlRZRg6WFJu7XBTY/LkyZJOXx115MiRcy4N79o18E1QZrNKUxwAAGZIiW2tEIdqBZxQh0PJsZEBr8WrDsVfffWVLrnkEkVERKhbt25KSUlRSkqKkpOTlZKS4usaLa++pjgzO1MBABBISTERyh2fptD/u+Ao1OHQgvH9TDmT4VXLzZQpU9SiRQu98847SkpKqvPKqebESk1xAACYZcKQrhrRK04HS8qVHBtp2jHQq3CTl5enjz/+WH369PF1PUHJSk1xAACYKSkmwvQf9l6dlurbt69KSkp8XUvQslJTHAAAzZ1XIxSvX79ev/3tb7VgwQKlpaWpZcuWtZ638si//hyhuMhZYXpT3Nm4ggsAYAeeHL+bfFfwM/vb1IxczO0XrIEruAAAduH3u4Jv2LDBq8IQOFYaTAkAgEDyqs9NZmamQkJCtHTpUs2ZM0c9evRQZmamCgoKFBoa6usag5aZ99do6AouAADszKtw88YbbygrK0sRERH65JNPVFlZKUlyOp1asGCBTwsMVit2FGj4wvWauHS7hi9crxU7CgL6+TVXcJ2JK7gAAM2BV+HmkUce0ZIlS7R06dJanYmHDx+uXbt2+ay4YGWFQf24ggsA0Fx51edm3759GjFixDnTY2JidOzYsabWFPSsMqifVQZTAgAgkLwKN4mJidq/f7+Sk5NrTd+yZYu6d+/ui7qCmpUG9bPCYEoAAASSV6elZsyYoTvvvFPbt2+Xw+HQoUOH9Le//U333HOPbrvtNl/XGHQ4JQQAgHm8Cjdz5szRxIkTNXr0aB0/flwjRozQ9OnTdcstt+iXv/yl2++zefNmXXnllerYsaMcDofefPPNRl+zceNGXXDBBQoPD1ePHj20bNkyb76C300Y0lVb5ozSqzMu0pY5oxhfBgCAAPEq3DgcDv3mN7/RDz/8oD179uijjz7S0aNH9fDDD3v0PmVlZUpPT9czzzzj1vwHDhzQFVdcoVGjRikvL0933XWXpk+frvfff9+br+F3STERykjtQIsNAAAB5NUIxf7gcDi0evVqZWdn1zvPfffdp3fffVd79uxxTbv++ut17Ngxvffee259TnMaoRgAALvw5PjtVcuNWbZt26YxY8bUmpaVlaVt27aZVBEAALAar66WMktxcbESEhJqTUtISFBpaakqKioUEXHu6Z/KykrXIIPS6eQHAADsK6habryRm5urmJgY16NLly5mlwQAAPwoqMJNYmKiDh8+XGva4cOHFR0dXWerjSTl5OTI6XS6HoWFhYEoFQAAmCSoTktlZGRozZo1taatXbtWGRkZ9b4mPDxc4eHh/i4NAABYhKktN8ePH1deXp7y8vIknb7UOy8vTwUFp28ymZOTo0mTJrnmv/XWW/X111/r17/+tb788ks9++yz+vvf/667777bjPIBAIAFmRpudu7cqYEDB2rgwIGSpNmzZ2vgwIF68MEHJUlFRUWuoCNJKSkpevfdd7V27Vqlp6friSee0PPPP6+srCxT6gcAANZjmXFuAoVxbpqmyFmhAyVlSoltzeCEAICA8eT4HVR9bmCuFTsKlLNqt6oNKcQh5Y5P47YSAADLCaqrpWCeImeFK9hIp+94fv+qPSpyVphbGAAAZyHcwC0HSspcwaZGlWHoYEm5OQUBAFAPwg3ckhLbWiGO2tNCHQ4lx0aaUxAAAPUg3MAtSTERyh2fplDH6YQT6nBowfh+dCoGAFgOHYrhtglDumpErzgdLClXcmwkwQYAYEmEG3gkKSaCUAMAsDROSwEAAFsh3AAAAFsh3AAAAFsh3MBjRc4Kbc0vYQA/AIAl0aEYHuEWDAAAq6PlBm7jFgwAgGBAuIHbuAUDACAYEG7gNm7BAAAIBoQbuI1bMAAAggEdiuERbsEAALA6wg08xi0YAABWxmkpAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABMwo2I/YNLwQEAMAE3IvYfWm4AAAgwbkTsX4QbAAACjBsR+xfhBgCAAONGxP5FuAEAIMC4EbF/0aEYAAATcCNi/yHcAABgEm5E7B+clgLQrDHOCGA/tNwAaLYYZwSwJ1puADRLjDMC2BfhBkCzxDgjgH0RbgA0S4wzAtgX4QZAs8Q4I4B90aEYQLPFOCOAPRFuADRrjDMC2A+npQAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbuB3Rc4Kbc0v4YaEAICAYBA/+NWKHQWuOy+HOKTc8WmaMKSr2WUBAGyMlhv4TZGzwhVsJKnakO5ftYcWHACAXxFu4DcHSspcwaZGlWHoYEm5OQUBAJoFwg38JiW2tUIctaeFOhxKjo00pyAgAOhjBpiPcAO/SYqJUO74NIU6TiecUIdDC8b34yaFsK0VOwo0fOF6TVy6XcMXrteKHQVmlwQ0Sw7DMIzGZ7OP0tJSxcTEyOl0Kjo62uxymoUiZ4UOlpQrOTaSYAPbKnJWaPjC9bVOxYY6HNoyZxTbPeADnhy/uVoKfpcUE8HOHbbXUB8ztn8EqyJnhQ6UlCkltnVQbceEGwDwgZo+Zme33NDHDMHK3aE8rBiA6HMDAD5AHzPfoVO2+dwdysOq/cwsEW6eeeYZJScnq1WrVrrwwgv173//u955ly1bJofDUevRqlWrAFYLAHWbMKSrtswZpVdnXKQtc0YxYKUXrHqwtKv6gqQ7Q3lYeSwz009LrVixQrNnz9aSJUt04YUXatGiRcrKytK+ffsUHx9f52uio6O1b98+1/8dDked8wFAoNHHzHv1HSxH9IpjmfpBQ6ed3DnNauV+Zqa33Dz55JOaMWOGpk6dqr59+2rJkiWKjIzUCy+8UO9rHA6HEhMTXY+EhIQAVgwA8AerDvxZX+tGMJ8+a6zVxZ3TrFYey8zUlpuTJ0/q448/Vk5OjmtaSEiIxowZo23bttX7uuPHj6tbt26qrq7WBRdcoAULFuj8888PRMkAAD+xYqfs+lo3gv2+ee60ukwY0lUjesXVO5RHTQC6f9UeVRmGpfqZmRpuSkpKVFVVdU7LS0JCgr788ss6X9O7d2+98MIL6t+/v5xOpx5//HENGzZMe/fuVefOnc+Zv7KyUpWVla7/l5aW+vZLAAB8wmoHy/paN/okRgX96TN3g2Rjp1kbC0BmMb3PjacyMjKUkZHh+v+wYcN03nnn6bnnntPDDz98zvy5ubmaN29eIEsEAHjJSgfL+lo3dhz8j2X7mrjLl0HSiv3MTA03sbGxCg0N1eHDh2tNP3z4sBITE916j5YtW2rgwIHav39/nc/n5ORo9uzZrv+XlpaqS5cu3hcNAPArqxws62vdGJLcznKnz7xhpSDpa6Z2KA4LC9OgQYO0bt0617Tq6mqtW7euVutMQ6qqqrR7924lJSXV+Xx4eLiio6NrPQAA1mDlTrn1dapN79LONmMaJcVEKCO1Q1DW3hDTT0vNnj1bkydP1uDBgzV06FAtWrRIZWVlmjp1qiRp0qRJ6tSpk3JzcyVJ8+fP10UXXaQePXro2LFj+v3vf69vvvlG06dPN/NrAAA8FAydcutr3bBzq4cdmB5uJkyYoKNHj+rBBx9UcXGxBgwYoPfee8/VybigoEAhIf9tYPrPf/6jGTNmqLi4WO3atdOgQYO0detW9e3b16yvgACz4lDfADwTTGPa1HeazCqnz3Au7gqOoBIMv/QANG5rfokmLt1+zvRXZ1ykjNQOJlQEq/Pk+G36IH6Au6w81DcAz1h5ADhPWbnfUHNFuEHQsOropQA8Z5cbjXIvLGsyvc8N4C4rjl4KwHvB3ik3mPoNNTe03CBo2OWXHoD/CuZLkWlNti5abhBUgv2XHgD7oDXZumi5QdAJ5l96AOyD1mTrouUGANAgu40t5cvvQ2uyNRFuAAD1stvYUv74PgzmZz2clgJga4xB4r1Ajy3l73XFWFnNBy03AGzLbq0OgdbQ1UC+bqkIxLry5/ex26m7YEfLDQBbasqvdFp7TgvUKMKBalHx1/dhID/rIdwAsCVvxyDhQPVfgboaKFDjxfjj+3Cqy5o4LQXAluoag0SSPvvuWL03ZmTE2XOdeTVQZFiIyk5WqchZ4dPlEcjxYnx9dVMgT91x6st9tNwAsKWkmAjdN7bPOdMfXfOlPi38T52vYcTZuiXFRKjghzJd8+xWv7RoBXq8GF+OlRWoU3e0KHqGcAPAttI6x5wzrVpS9rNb6zw42OFO1f7oLxSIUy8ThnTVljmj9OqMi7Rlzqig6fjtTTDzdB1x6stznJYCYFv1nZoy6jndVHOgun/VHlUZRtCNOOuvK44CderF3fFirHZ6xpNTXd6so0Ce+rILwg1gI1bb6ZutJqzkvLFb1Wc9V9/BIVhHnPVnfyEr3UPJqpf3uxPMvF1HVlr+wYLTUrAtO1zO68l3COQ5+WBathOGdNXqmcPk8OB0UzDev8yf/YU2/39HZZzx3g6HTGnRCvbTM96uI+5h5TlabkzAr2v/a8qvO6usH0++QyCv8rHqL+eGpHdpp4VBfLrJHf76dV+zbZ15THYY0ohecU16X28E++mZpqwjd1oUrbLvsgLCTYAF44Eh2DTlQG+V9ePpdwjUTt/duqy4kw3W003u8ld/obq2rWrJlEBRVzgIcUglx0/4/PJ0f2jqOmro1JdV9l1WQbgJIMbQCAxvD/RWWj+efgdf/Gp3J5C4U5eVd7J2v8GhPwKclfp7nB0OHI7TncN/+Wqe5ba1+vhjHVlp32UV9LkJIMbQCAxvL+e10vrx9Ds09Zy8u/11GqvLrD4RwdQH6Ez+qNvX/YWs1t+j5pLxZyYOlAy5TpdVG1LOG7vrHcPISny9jqy077IKWm4CyEq/gOzM26ZfK60fb76Dt78IPfnV11hd3rSaNfUUlpVbihoSTHVb7ZReUkyE2rUu01mbmmsMo4UWXpb+YKV9l1UQbgIo2MfQCCbe7Iyttn68/Q6e1ttYIDk7fDRUl6c72aYe4IO1Od6MupsaIq12Ss/TMYzszGr7Lisg3ASYL34BWbGzphV5szO24i9Uf9fQUCCpL3zUV5cnO1lfHOCD9eqZQNcdTK1E7vJmDCM7s9q+y2yEGxM05YBlx51UQ8wIclb7hepv9QUSSV6FD3d3sp4e4OvaFoK1OT6QdQdr65Y7Jgzpqj6JUcp+dmutcXiCYRvwh+a272oI4SaI2HknVZfmFuTMVFcg2Zpf4nXrgjs7WU8O8A21IAVjc3wg6/ZnK5EVWpGbwxhGZ7PCcrc6wk0QCdYmeG80tyBnpjN3lBmpHVzT/d264O4BvrFtIVib492tu6kHMn+tRyv9+AjWbcAbVlruVka4CSLB2gTvjeYU5MzU0I4yEK0L7hyU3NkWgrU5vrG6fXEg88d6tOJgjmcvSzu2bvCjz32EmyASrE3w3mhOQc4s7uwoA/GLuLEDfHPdFnx5IPP1evR0MEeHQ5ozro9uGZHapM91l11bN/jR5z7CTZBpLs2vzSnImcXdHaXZrSLNdVvw9YHMl+uxscB5djAzDCl3zZeSId2S6d+AY+fWjeYa9L1BuAlCZh9sAuXsICdJW/NLbNXMbKZg2lE2l1B/JiuvH28Gc5SkR//5pa4a0NGv68/OrRvNNeh7g3ADS6sJcnZtZjZTsO0ogyHU+7Kfh9XXT2ODOdbc9+lMgbjhpq9DodX67jTHoO8Nh2GcvfnZW2lpqWJiYuR0OhUdHW12OXBDkbNCwxeuP2dntWXOKP6wfaDIWcGO0gf8FcDrWj9WO+DW5bnN+adPRZ0hUH+3K3YUnBMKvVkXdvhRFQzbirs8OX7TcgPLs3MzsxUEQ4uI1fmzn8fZ6ydYDri3jEiVjNOnoqoV2Btu+mok+GDvuxMs24o/EG5geVbuewBIgQvgwXbAvSUzVVcN6GhKy2BTQ3uw/6gKtm3F10LMLgBoTE3fg1CHQ1JgfwHaTZGzQlvzS1TkrDC7FFupCeBn8kcAb+iAa1VJMRHKSO0QdH+vgVqn/hKM24ov0XKDoEAnuqZrzk3U/haozr+0YgaO1Tt0N6a5byt0KEaj7NQhzar8vYzplB0Ygeic7avOsr5k531EMHe4t+K20hR0KIbP8Gvf/wKxjIO9/0CwCETnbKu1Ytp9HxHMHe6ttq0EEn1uUK/6OqTRX8N3ArWMfdl/gH475rNKPxb2EdZnlW0l0Ag3qFdz75AWCIFaxr7qlL1iR4GGL1yviUu3a/jC9Vqxo8CndSK4sI+AVXFaCvVq7h3SAiGQy7ipTdTN/dJSnKup26+d++rAXLTcoF5cgu1/gV7GTWmi5lc6ztaU7ZdWQPgTV0uhUcF8tUCwCIZlzBVXqI+n2y/bErzB1VLwqWC+WiBYBMMyDvZxP+A/nm6/XL0HfyPcmIRzzQhGVr60lL+p4EF/PvcEepu2098Q4cYEdh8XAr5npZ2OFVuZ+JsKLrQCNi7Q27Td/obocxNgnGuGp+y20/E1X/1NWSlANhfB0NfMDIE+TgTLcYk+NxbGuebgZNaBj8uvG+eLvykCpDms2ApoBYE+TtjxuES4CbBgOdfMr9j/MvPAZ8edjq/5YqwVAqS1NPf9T6CPE8FyXPIE49wEWDCMHdPU8SfsNDy/2cPL+/K2Cf5m1npv6t8U4/dYC+PfmDP+ldWPS56i5cYEVr/ipCm/Yu3WvG92y0mwdLw0e7035W/Kjr9agxWtaP/lq+OEu61gVj4ueYNwYxKrnmtuysHcjjsmKwwvb/WdjlXWu7d/U8ESIH3Fyqd8zP4xYTVNPU54+qPDqsclbxBuUEt9B/PIsBBtzS9pcIfoyY7J7B2su5/flAOfL1szrLzTscMByeoB0ht1beNmt7A1hlY07529vq3yo8MshBvUUtfBPHtgR13z7NZGd4ju7pgCuYP1xQ7emwNfc9qx2OWAZOUA6am6tvERveIsv002t1Y0X6lrfXdpHxn0PzqagnCDc5x5MI8MC3EFG6nuHeKZAaKxHVMgD/q+3MEzvHzDpl+couf/3wFVKzCdEc1u+bOy+v7GFl2fHhTbpB1b0fypvvW96vYMW/zo8JYlrpZ65plnlJycrFatWunCCy/Uv//97wbnf/3119WnTx+1atVKaWlpWrNmTYAqbT5q7h5ddrKqwStJzr6yQZK2zBmlV2dcpC1zRp3TIuKvK1POvlKnvj/4nQd/CMiVMcF0lVNT1Kz/P/+/A5JDuvmS7nWud398ZnO+mqYh9f2NhTgcQbNNNuXu9f5i1atA61vf5SerbXcFlCdMDzcrVqzQ7Nmz9dBDD2nXrl1KT09XVlaWjhw5Uuf8W7du1Q033KBp06bpk08+UXZ2trKzs7Vnz54AV948NHSQri9ASKp3x+SPg35dBzuzd/B2vLTybHWt/79sORDwzwzkpfnBoL6/sQu6tbP9NukvVg7UDe1TJwzp2uCPTTszPdw8+eSTmjFjhqZOnaq+fftqyZIlioyM1AsvvFDn/H/4wx80duxY3XvvvTrvvPP08MMP64ILLtCf/vSnAFfePDR0kPamFcbXB/36Dnatw0JN38HbfcdixvgwjEnTuIb+xuy+TfqD1QN1Y/tUK7aCBYKpfW5Onjypjz/+WDk5Oa5pISEhGjNmjLZt21bna7Zt26bZs2fXmpaVlaU333yzzvkrKytVWVnp+n9paWnTC29m6jsH7m1HUl+eU2+sSbau/j+BPKdvp06qZzOjI7FdOi/7W0PbuJ23SX8Ihv5z9FM6l6nhpqSkRFVVVUpISKg1PSEhQV9++WWdrykuLq5z/uLi4jrnz83N1bx583xTcDNW1w6xKVc2+GoH29DBLiO1Azt4PzLjyhaupnEf27hvBEugZn3XZvurpXJycmq19JSWlqpLly4mVmQvZv9iaOxgxx+8f5mx/s3e5tC8EKiDk6nhJjY2VqGhoTp8+HCt6YcPH1ZiYmKdr0lMTPRo/vDwcIWHh/umYNTJ7ADBwc5cZqx/s7c5NC/sY4KPqR2Kw8LCNGjQIK1bt841rbq6WuvWrVNGRkadr8nIyKg1vyStXbu23vnRPDTXTnMAAoN9THAx/bTU7NmzNXnyZA0ePFhDhw7VokWLVFZWpqlTp0qSJk2apE6dOik3N1eSdOeddyozM1NPPPGErrjiCr322mvauXOn/vznP5v5NQAAgEWYHm4mTJigo0eP6sEHH1RxcbEGDBig9957z9VpuKCgQCEh/21gGjZsmJYvX67f/va3uv/++9WzZ0+9+eab6tevn1lfAQAAWIjDMAyj8dnso7S0VDExMXI6nYqOjja7HAAA4AZPjt+mD+IHAADgS4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK6aPUBxoNWMWlpaWmlwJAABwV81x252xh5tduPnxxx8lSV26dDG5EgAA4Kkff/xRMTExDc7T7G6/UF1drUOHDikqKkoOh8PscgKqtLRUXbp0UWFhIbeeaCKWpW+wHH2HZekbLEff8fWyNAxDP/74ozp27FjrnpN1aXYtNyEhIercubPZZZgqOjqaP1ofYVn6BsvRd1iWvsFy9B1fLsvGWmxq0KEYAADYCuEGAADYCuGmGQkPD9dDDz2k8PBws0sJeixL32A5+g7L0jdYjr5j5rJsdh2KAQCAvdFyAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwY0ObN2/WlVdeqY4dO8rhcOjNN9+s9bxhGHrwwQeVlJSkiIgIjRkzRl999ZU5xVpcY8tyypQpcjgctR5jx441p1gLy83N1ZAhQxQVFaX4+HhlZ2dr3759teY5ceKEZs6cqQ4dOqhNmza69tprdfjwYZMqtiZ3luPIkSPP2SZvvfVWkyq2rsWLF6t///6uAeYyMjL0z3/+0/U826N7GluOZm2PhBsbKisrU3p6up555pk6n3/sscf0xz/+UUuWLNH27dvVunVrZWVl6cSJEwGu1PoaW5aSNHbsWBUVFbker776agArDA6bNm3SzJkz9dFHH2nt2rU6deqULr/8cpWVlbnmufvuu/WPf/xDr7/+ujZt2qRDhw5p/PjxJlZtPe4sR0maMWNGrW3yscceM6li6+rcubMWLlyojz/+WDt37tSll16qq6++Wnv37pXE9uiuxpajZNL2aMDWJBmrV692/b+6utpITEw0fv/737umHTt2zAgPDzdeffVVEyoMHmcvS8MwjMmTJxtXX321KfUEsyNHjhiSjE2bNhmGcXobbNmypfH666+75vniiy8MSca2bdvMKtPyzl6OhmEYmZmZxp133mleUUGsXbt2xvPPP8/22EQ1y9EwzNseablpZg4cOKDi4mKNGTPGNS0mJkYXXnihtm3bZmJlwWvjxo2Kj49X7969ddttt+n77783uyTLczqdkqT27dtLkj7++GOdOnWq1nbZp08fde3ale2yAWcvxxp/+9vfFBsbq379+iknJ0fl5eVmlBc0qqqq9Nprr6msrEwZGRlsj146eznWMGN7bHY3zmzuiouLJUkJCQm1pickJLieg/vGjh2r8ePHKyUlRfn5+br//vs1btw4bdu2TaGhoWaXZ0nV1dW66667NHz4cPXr10/S6e0yLCxMbdu2rTUv22X96lqOkjRx4kR169ZNHTt21Geffab77rtP+/bt06pVq0ys1pp2796tjIwMnThxQm3atNHq1avVt29f5eXlsT16oL7lKJm3PRJugCa4/vrrXf9OS0tT//79lZqaqo0bN2r06NEmVmZdM2fO1J49e7RlyxazSwlq9S3Hm2++2fXvtLQ0JSUlafTo0crPz1dqamqgy7S03r17Ky8vT06nUytXrtTkyZO1adMms8sKOvUtx759+5q2PXJaqplJTEyUpHN6/R8+fNj1HLzXvXt3xcbGav/+/WaXYkmzZs3SO++8ow0bNqhz586u6YmJiTp58qSOHTtWa362y7rVtxzrcuGFF0oS22QdwsLC1KNHDw0aNEi5ublKT0/XH/7wB7ZHD9W3HOsSqO2RcNPMpKSkKDExUevWrXNNKy0t1fbt22udI4V3vv32W33//fdKSkoyuxRLMQxDs2bN0urVq7V+/XqlpKTUen7QoEFq2bJlre1y3759KigoYLs8Q2PLsS55eXmSxDbphurqalVWVrI9NlHNcqxLoLZHTkvZ0PHjx2ul4gMHDigvL0/t27dX165dddddd+mRRx5Rz549lZKSogceeEAdO3ZUdna2eUVbVEPLsn379po3b56uvfZaJSYmKj8/X7/+9a/Vo0cPZWVlmVi19cycOVPLly/XW2+9paioKFe/hZiYGEVERCgmJkbTpk3T7Nmz1b59e0VHR+uXv/ylMjIydNFFF5lcvXU0thzz8/O1fPly/exnP1OHDh302Wef6e6779aIESPUv39/k6u3lpycHI0bN05du3bVjz/+qOXLl2vjxo16//332R490NByNHV7DPj1WfC7DRs2GJLOeUyePNkwjNOXgz/wwANGQkKCER4ebowePdrYt2+fuUVbVEPLsry83Lj88suNuLg4o2XLlka3bt2MGTNmGMXFxWaXbTl1LUNJxosvvuiap6Kiwrj99tuNdu3aGZGRkcY111xjFBUVmVe0BTW2HAsKCowRI0YY7du3N8LDw40ePXoY9957r+F0Os0t3IJuuukmo1u3bkZYWJgRFxdnjB492vjggw9cz7M9uqeh5Wjm9ugwDMPwb3wCAAAIHPrcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcALCUkydPml3COaxYE4D6EW4A+NXIkSM1a9YszZo1SzExMYqNjdUDDzygmju/JCcn6+GHH9akSZMUHR2tm2++WZK0ZcsWXXLJJYqIiFCXLl10xx13qKyszPW+zz77rHr27KlWrVopISFB1113neu5lStXKi0tTREREerQoYPGjBnjeu3IkSN111131aoxOztbU6ZMcf3f25oAWAPhBoDf/fWvf1WLFi3073//W3/4wx/05JNP6vnnn3c9//jjjys9PV2ffPKJHnjgAeXn52vs2LG69tpr9dlnn2nFihXasmWLZs2aJUnauXOn7rjjDs2fP1/79u3Te++9pxEjRkiSioqKdMMNN+imm27SF198oY0bN2r8+PHy9DZ6ntYEwDq4cSYAvxo5cqSOHDmivXv3yuFwSJLmzJmjt99+W59//rmSk5M1cOBArV692vWa6dOnKzQ0VM8995xr2pYtW5SZmamysjKtWbNGU6dO1bfffquoqKhan7dr1y4NGjRIBw8eVLdu3eqsZ8CAAVq0aJFrWnZ2ttq2batly5ZJklc1tWrVqknLCYDv0HIDwO8uuugiV7CRpIyMDH311VeqqqqSJA0ePLjW/J9++qmWLVumNm3auB5ZWVmqrq7WgQMHdNlll6lbt27q3r27brzxRv3tb39TeXm5JCk9PV2jR49WWlqa/vd//1dLly7Vf/7zH49r9rQmANZBuAFgutatW9f6//Hjx3XLLbcoLy/P9fj000/11VdfKTU1VVFRUdq1a5deffVVJSUl6cEHH1R6erqOHTum0NBQrV27Vv/85z/Vt29fPf300+rdu7crgISEhJxziurUqVNNrgmAdRBuAPjd9u3ba/3/o48+Us+ePRUaGlrn/BdccIE+//xz9ejR45xHWFiYJKlFixYaM2aMHnvsMX322Wc6ePCg1q9fL0lyOBwaPny45s2bp08++URhYWGuU0xxcXEqKipyfVZVVZX27NnT6HdwpyYA1kC4AeB3BQUFmj17tvbt26dXX31VTz/9tO68885657/vvvu0detWzZo1S3l5efrqq6/01ltvuTrvvvPOO/rjH/+ovLw8ffPNN3rppZdUXV2t3r17a/v27VqwYIF27typgoICrVq1SkePHtV5550nSbr00kv17rvv6t1339WXX36p2267TceOHWv0OzRWEwDraGF2AQDsb9KkSaqoqNDQoUMVGhqqO++803V5dV369++vTZs26Te/+Y0uueQSGYah1NRUTZgwQZLUtm1brVq1SnPnztWJEyfUs2dPvfrqqzr//PP1xRdfaPPmzVq0aJFKS0vVrVs3PfHEExo3bpwk6aabbtKnn36qSZMmqUWLFrr77rs1atSoRr9DYzUBsA6ulgLgV3VdnQQA/sRpKQAAYCuEGwAAYCuclgIAALZCyw0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALCV/x/YBjhC2T2t0QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLcUlEQVR4nO3deXwU5eHH8e8mISEBknDlAIGES4gccigGEFAoSFGLYkVEBEGtCnIoCGgRUDFoa1W0gqUqWC+qoiJeUEAskEI4FbQIEQxKwiFmAwQIZJ/fHzT7YyGBzWY3uzv7eb9eeb1gZnb2mdljvvvMc9iMMUYAAAAWFebvAgAAAPgSYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQdAQJg2bZpsNptb29psNk2bNs2n5enRo4d69OgRsPsD4D7CDgAX8+bNk81mc/5FRESofv36GjZsmH7++Wd/Fy/gpKSkuJyvhIQEXXnllfrggw+8sv/CwkJNmzZNX375pVf2B4Qiwg6AUj322GP6xz/+oTlz5qhv375644031L17dx0/ftwnz/fHP/5Rx44d88m+fe3SSy/VP/7xD/3jH//Q+PHjtXfvXt14442aM2dOhfddWFio6dOnE3aACojwdwEABKa+ffuqY8eOkqQ777xTderU0VNPPaVFixbp5ptv9vrzRUREKCIiOL+S6tevr9tuu835/9tvv11NmzbVs88+q3vuucePJQMgUbMDwE1XXnmlJCk7O9tl+X//+1/ddNNNqlWrlqpWraqOHTtq0aJFLtucPHlS06dPV7NmzVS1alXVrl1bXbt21dKlS53blNZm58SJExo3bpzq1q2rGjVq6Prrr9dPP/10TtmGDRumlJSUc5aXts/XXntNV199tRISEhQVFaW0tDTNnj27XOfiQpKSktSyZUvt2rXrvNvt379fI0aMUGJioqpWraq2bdtq/vz5zvW7d+9W3bp1JUnTp0933irzdXslwGqC82cUgEq3e/duSVLNmjWdy7Zt26YuXbqofv36mjRpkqpVq6Z//vOf6t+/v95//33dcMMNkk6HjoyMDN155526/PLLVVBQoPXr12vjxo36zW9+U+Zz3nnnnXrjjTd06623qnPnzlq+fLn69etXoeOYPXu2LrnkEl1//fWKiIjQxx9/rPvuu08Oh0MjR46s0L5LnDx5Unv27FHt2rXL3ObYsWPq0aOHdu7cqVGjRik1NVXvvvuuhg0bpvz8fI0ZM0Z169bV7Nmzde+99+qGG27QjTfeKElq06aNV8oJhAwDAGd47bXXjCTzr3/9yxw4cMDs2bPHvPfee6Zu3bomKirK7Nmzx7ltz549TevWrc3x48edyxwOh+ncubNp1qyZc1nbtm1Nv379zvu8U6dONWd+JW3evNlIMvfdd5/LdrfeequRZKZOnepcNnToUNOoUaML7tMYYwoLC8/Zrk+fPqZx48Yuy7p37266d+9+3jIbY0yjRo1M7969zYEDB8yBAwfMli1bzC233GIkmfvvv7/M/T333HNGknnjjTecy4qKikx6erqpXr26KSgoMMYYc+DAgXOOF0D5cBsLQKl69eqlunXrqkGDBrrppptUrVo1LVq0SBdddJEk6dChQ1q+fLluvvlmHT58WAcPHtTBgwf1yy+/qE+fPtqxY4ez91Z8fLy2bdumHTt2uP38n376qSRp9OjRLsvHjh1boeOKjo52/ttut+vgwYPq3r27fvjhB9ntdo/2uWTJEtWtW1d169ZV27Zt9e6772rIkCF66qmnynzMp59+qqSkJA0aNMi5rEqVKho9erSOHDmilStXelQWAOfiNhaAUv31r39V8+bNZbfb9eqrr+qrr75SVFSUc/3OnTtljNGUKVM0ZcqUUvexf/9+1a9fX4899ph+97vfqXnz5mrVqpWuueYaDRky5Ly3Y3788UeFhYWpSZMmLssvvvjiCh3X6tWrNXXqVGVmZqqwsNBlnd1uV1xcXLn32alTJz3xxBOy2WyKiYlRy5YtFR8ff97H/Pjjj2rWrJnCwlx/c7Zs2dK5HoB3EHYAlOryyy939sbq37+/unbtqltvvVXbt29X9erV5XA4JEnjx49Xnz59St1H06ZNJUndunVTdna2PvroIy1ZskR///vf9eyzz2rOnDm68847K1zWsgYjLC4udvl/dna2evbsqRYtWugvf/mLGjRooMjISH366ad69tlnncdUXnXq1FGvXr08eiwA3yPsALig8PBwZWRk6KqrrtKLL76oSZMmqXHjxpJO33px50Jfq1Yt3XHHHbrjjjt05MgRdevWTdOmTSsz7DRq1EgOh0PZ2dkutTnbt28/Z9uaNWsqPz//nOVn1458/PHHOnHihBYtWqSGDRs6l69YseKC5fe2Ro0a6euvv5bD4XCp3fnvf//rXC+VHeQAuI82OwDc0qNHD11++eV67rnndPz4cSUkJKhHjx56+eWXlZube872Bw4ccP77l19+cVlXvXp1NW3aVCdOnCjz+fr27StJmjVrlsvy55577pxtmzRpIrvdrq+//tq5LDc395xRjMPDwyVJxhjnMrvdrtdee63McvjKb3/7W+Xl5WnBggXOZadOndILL7yg6tWrq3v37pKkmJgYSSo1zAFwDzU7ANw2YcIE/f73v9e8efN0zz336K9//au6du2q1q1b66677lLjxo21b98+ZWZm6qefftKWLVskSWlpaerRo4c6dOigWrVqaf369Xrvvfc0atSoMp/r0ksv1aBBg/TSSy/Jbrerc+fOWrZsmXbu3HnOtrfccosmTpyoG264QaNHj1ZhYaFmz56t5s2ba+PGjc7tevfurcjISF133XX6wx/+oCNHjmju3LlKSEgoNbD50t13362XX35Zw4YN04YNG5SSkqL33ntPq1ev1nPPPacaNWpIOt2gOi0tTQsWLFDz5s1Vq1YttWrVSq1atarU8gJBzd/dwQAElpKu51lZWeesKy4uNk2aNDFNmjQxp06dMsYYk52dbW6//XaTlJRkqlSpYurXr2+uvfZa89577zkf98QTT5jLL7/cxMfHm+joaNOiRQszY8YMU1RU5NymtG7ix44dM6NHjza1a9c21apVM9ddd53Zs2dPqV2xlyxZYlq1amUiIyPNxRdfbN54441S97lo0SLTpk0bU7VqVZOSkmKeeuop8+qrrxpJZteuXc7tytP1/ELd6sva3759+8wdd9xh6tSpYyIjI03r1q3Na6+9ds5j16xZYzp06GAiIyPphg54wGbMGfW5AAAAFkObHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGkMKijJ4XBo7969qlGjBkOzAwAQJIwxOnz4sOrVq3fOpLpnIuxI2rt3rxo0aODvYgAAAA/s2bNHF110UZnrCTuSc1j2PXv2KDY21s+lAQAA7igoKFCDBg2c1/GyEHb0/7MKx8bGEnYAAAgyF2qCQgNlAABgaYQdAABgaYQdAABgabTZAQBYWnFxsU6ePOnvYsADVapUUXh4eIX3Q9gBAFiSMUZ5eXnKz8/3d1FQAfHx8UpKSqrQOHiEHQCAJZUEnYSEBMXExDBobJAxxqiwsFD79++XJCUnJ3u8L8IOAMByiouLnUGndu3a/i4OPBQdHS1J2r9/vxISEjy+pUUDZQCA5ZS00YmJifFzSVBRJa9hRdpdEXYAAJbFravg543XkLADAAAsjbADAECIsNls+vDDD/1dDBdffvmlbDabT3vNEXZ8KNd+TGuyDyrXfszfRQEAhJBp06bp0ksv9XcxAga9sXxkQVaOJi/8Rg4jhdmkjBtba+BlDf1dLAAAQg41Oz6Qaz/mDDqS5DDSwwu3UsMDAHCLw+FQRkaGUlNTFR0drbZt2+q9996T9P+3fZYtW6aOHTsqJiZGnTt31vbt2yVJ8+bN0/Tp07VlyxbZbDbZbDbNmzfPue+DBw/qhhtuUExMjJo1a6ZFixa5VaaS5/3iiy/Url07RUdH6+qrr9b+/fv12WefqWXLloqNjdWtt96qwsJC5+NOnDih0aNHKyEhQVWrVlXXrl2VlZXlvZPlBsKOD+w6eNQZdEoUG6PdBwtLfwAAIKBVdrOEjIwMvf7665ozZ462bdumcePG6bbbbtPKlSud2zzyyCN65plntH79ekVERGj48OGSpIEDB+rBBx/UJZdcotzcXOXm5mrgwIHOx02fPl0333yzvv76a/32t7/V4MGDdejQIbfLNm3aNL344otas2aN9uzZo5tvvlnPPfec3nrrLX3yySdasmSJXnjhBef2Dz30kN5//33Nnz9fGzduVNOmTdWnT59yPWdFEXZ8ILVONYWd1VMu3GZTSh3GewCAYLMgK0ddZi7XrXPXqsvM5VqQlePT5ztx4oSefPJJvfrqq+rTp48aN26sYcOG6bbbbtPLL7/s3G7GjBnq3r270tLSNGnSJK1Zs0bHjx9XdHS0qlevroiICCUlJSkpKck5OJ8kDRs2TIMGDVLTpk315JNP6siRI1q3bp3b5XviiSfUpUsXtWvXTiNGjNDKlSs1e/ZstWvXTldeeaVuuukmrVixQpJ09OhRzZ49W3/605/Ut29fpaWlae7cuYqOjtYrr7zivZN2AYQdH0iOi1bGja0V/r+xAcJtNj15Yyslx0Vf4JEAgEDij2YJO3fuVGFhoX7zm9+oevXqzr/XX39d2dnZzu3atGnj/HfJVAolUyucz5mPq1atmmJjY916XGmPT0xMVExMjBo3buyyrGR/2dnZOnnypLp06eJcX6VKFV1++eX67rvv3H7OiqKBso8MvKyhujWvq90HC5VSJ4agAwBB6HzNEnz1vX7kyBFJ0ieffKL69eu7rIuKinIGnipVqjiXlwy853A4Lrj/Mx9X8lh3Hlfa4202W4X3VxkIOz6UHBdNyAGAIFbSLOHMwOPrZglpaWmKiopSTk6Ounfvfs76M2t3yhIZGani4mJfFK9cmjRposjISK1evVqNGjWSdHrah6ysLI0dO7bSykHYAQCgDCXNEh5euFXFxlRKs4QaNWpo/PjxGjdunBwOh7p27Sq73a7Vq1crNjbWGRrOJyUlRbt27dLmzZt10UUXqUaNGoqKivJZmctSrVo13XvvvZowYYJq1aqlhg0b6umnn1ZhYaFGjBhRaeUg7AAAcB7+aJbw+OOPq27dusrIyNAPP/yg+Ph4tW/fXg8//LBbt4gGDBighQsX6qqrrlJ+fr5ee+01DRs2zOflLs3MmTPlcDg0ZMgQHT58WB07dtQXX3yhmjVrVloZbMYYc+HNrK2goEBxcXGy2+2KjY31d3EAABV0/Phx7dq1S6mpqapataq/i4MKON9r6e71m95YAADA0gg7AABA99xzj0tX9zP/7rnnHn8Xr0JoswMAAPTYY49p/Pjxpa4L9iYehB0AAKCEhAQlJCT4uxg+wW0sAABgaYQdAIBlBdpIvig/b7yG3MYCAFhOZGSkwsLCtHfvXtWtW1eRkZHOKRUQHIwxKioq0oEDBxQWFqbIyEiP90XYAQBYTlhYmFJTU5Wbm6u9e/f6uziogJiYGDVs2FBhYZ7fjCLsAAAsKTIyUg0bNtSpU6cCYp4olF94eLgiIiIqXCtH2AEAWFbJrNxnz8yN0EIDZQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGl+DTvFxcWaMmWKUlNTFR0drSZNmujxxx+XMca5jTFGjz76qJKTkxUdHa1evXppx44dLvs5dOiQBg8erNjYWMXHx2vEiBE6cuRIZR8OAAAIQH4NO0899ZRmz56tF198Ud99952eeuopPf3003rhhRec2zz99NOaNWuW5syZo7Vr16patWrq06ePjh8/7txm8ODB2rZtm5YuXarFixfrq6++0t133+2PQwIAAAHGZs6sRqlk1157rRITE/XKK684lw0YMEDR0dF64403ZIxRvXr19OCDD2r8+PGSJLvdrsTERM2bN0+33HKLvvvuO6WlpSkrK0sdO3aUJH3++ef67W9/q59++kn16tW7YDkKCgoUFxcnu92u2NhY3xwsAADwKnev336t2encubOWLVum77//XpK0ZcsWrVq1Sn379pUk7dq1S3l5eerVq5fzMXFxcerUqZMyMzMlSZmZmYqPj3cGHUnq1auXwsLCtHbt2lKf98SJEyooKHD5AwAA1hThzyefNGmSCgoK1KJFC4WHh6u4uFgzZszQ4MGDJUl5eXmSpMTERJfHJSYmOtfl5eUpISHBZX1ERIRq1arl3OZsGRkZmj59urcPBwAABCC/1uz885//1Jtvvqm33npLGzdu1Pz58/XnP/9Z8+fP9+nzTp48WXa73fm3Z88enz4fAADwH7/W7EyYMEGTJk3SLbfcIklq3bq1fvzxR2VkZGjo0KFKSkqSJO3bt0/JycnOx+3bt0+XXnqpJCkpKUn79+932e+pU6d06NAh5+PPFhUVpaioKB8cEQAACDR+rdkpLCxUWJhrEcLDw+VwOCRJqampSkpK0rJly5zrCwoKtHbtWqWnp0uS0tPTlZ+frw0bNji3Wb58uRwOhzp16lQJRwEAAAKZX2t2rrvuOs2YMUMNGzbUJZdcok2bNukvf/mLhg8fLkmy2WwaO3asnnjiCTVr1kypqamaMmWK6tWrp/79+0uSWrZsqWuuuUZ33XWX5syZo5MnT2rUqFG65ZZb3OqJBQAArM2vYeeFF17QlClTdN9992n//v2qV6+e/vCHP+jRRx91bvPQQw/p6NGjuvvuu5Wfn6+uXbvq888/V9WqVZ3bvPnmmxo1apR69uypsLAwDRgwQLNmzfLHIQEAgADj13F2AgXj7AAAEHyCYpwdAAAAXyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAAS/N72Pn555912223qXbt2oqOjlbr1q21fv1653pjjB599FElJycrOjpavXr10o4dO1z2cejQIQ0ePFixsbGKj4/XiBEjdOTIkco+FAAAEID8GnZ+/fVXdenSRVWqVNFnn32mb7/9Vs8884xq1qzp3Obpp5/WrFmzNGfOHK1du1bVqlVTnz59dPz4cec2gwcP1rZt27R06VItXrxYX331le6++25/HBIAAAgwNmOM8deTT5o0SatXr9a///3vUtcbY1SvXj09+OCDGj9+vCTJbrcrMTFR8+bN0y233KLvvvtOaWlpysrKUseOHSVJn3/+uX7729/qp59+Ur169S5YjoKCAsXFxclutys2NtZ7BwgAAHzG3eu3X2t2Fi1apI4dO+r3v/+9EhIS1K5dO82dO9e5fteuXcrLy1OvXr2cy+Li4tSpUydlZmZKkjIzMxUfH+8MOpLUq1cvhYWFae3ataU+74kTJ1RQUODyBwAArMmvYeeHH37Q7Nmz1axZM33xxRe69957NXr0aM2fP1+SlJeXJ0lKTEx0eVxiYqJzXV5enhISElzWR0REqFatWs5tzpaRkaG4uDjnX4MGDbx9aAAAIED4New4HA61b99eTz75pNq1a6e7775bd911l+bMmePT5508ebLsdrvzb8+ePT59PgAA4D9+DTvJyclKS0tzWdayZUvl5ORIkpKSkiRJ+/btc9lm3759znVJSUnav3+/y/pTp07p0KFDzm3OFhUVpdjYWJc/AABgTX4NO126dNH27dtdln3//fdq1KiRJCk1NVVJSUlatmyZc31BQYHWrl2r9PR0SVJ6erry8/O1YcMG5zbLly+Xw+FQp06dKuEoAABAIIvw55OPGzdOnTt31pNPPqmbb75Z69at09/+9jf97W9/kyTZbDaNHTtWTzzxhJo1a6bU1FRNmTJF9erVU//+/SWdrgm65pprnLe/Tp48qVGjRumWW25xqycWAACwNr92PZekxYsXa/LkydqxY4dSU1P1wAMP6K677nKuN8Zo6tSp+tvf/qb8/Hx17dpVL730kpo3b+7c5tChQxo1apQ+/vhjhYWFacCAAZo1a5aqV6/uVhnoeg4AQPBx9/rt97ATCAg7AAAEn6AYZwcAAMDXCDuQJOXaj2lN9kHl2o/5uygAAHiVXxsoIzAsyMrR5IXfyGGkMJuUcWNrDbysob+LBQCAV1CzE+Jy7cecQUeSHEZ6eOFWangAAJZB2Alxuw4edQadEsXGaPfBQv8UCAAALyPshLjUOtUUZnNdFm6zKaVOjH8KBACAlxF2QlxyXLQybmytcNvpxBNus+nJG1spOS7azyUDAMA7aKAMDbysobo1r6vdBwuVUieGoAMAsBS3w05BQYHbO2VgvuCTHBdNyAEAWJLbYSc+Pl42m+282xhjZLPZVFxcXOGCAQAAeIPbYWfFihW+LAd0uhv4roNHlVqnGrUsAAB4idthp3v37r4sR8hjYD8AAHzD4wbK+fn5euWVV/Tdd99Jki655BINHz5ccXFxXitcqChrYL9uzetSwwMAQAV51PV8/fr1atKkiZ599lkdOnRIhw4d0l/+8hc1adJEGzdu9HYZLY+B/QAA8B2PanbGjRun66+/XnPnzlVExOldnDp1SnfeeafGjh2rr776yquFtLqSgf3ODDwM7AcAgHd4XLMzceJEZ9CRpIiICD300ENav3691woXKhjYDwAA3/GoZic2NlY5OTlq0aKFy/I9e/aoRo0aXilYqGFgPwAAfMOjsDNw4ECNGDFCf/7zn9W5c2dJ0urVqzVhwgQNGjTIqwUMJQzsBwCA93kUdv785z/LZrPp9ttv16lTpyRJVapU0b333quZM2d6tYAAAAAVYTPGmAtvVrrCwkJlZ2dLkpo0aaKYmOBsUFtQUKC4uDjZ7XamugAAIEi4e/2u0ESgMTExat26dUV2AR9jVGYAQKjzKOwcP35cL7zwglasWKH9+/fL4XC4rGesncDAqMwAAHgYdkaMGKElS5bopptu0uWXX37BCUJR+RiVGQCA0zwKO4sXL9ann36qLl26eLs88JLzjcpM2AEAhBKPBhWsX78+4+kEuJJRmc/kzqjMufZjWpN9ULn2Yz4sHQAAlcejsPPMM89o4sSJ+vHHH71dHniJJ6MyL8jKUZeZy3Xr3LXqMnO5FmTlVFZxAQDwGY9uY3Xs2FHHjx9X48aNFRMToypVqrisP3TokFcKh4opz6jMtPEBAFiVR2Fn0KBB+vnnn/Xkk08qMTGRBsoBzN1RmWnjAwCwKo/Czpo1a5SZmam2bdt6uzzwE2ZeBwBYlUdtdlq0aKFjx2jAaiXMvA4AsCqPpotYsmSJpk+frhkzZqh169bntNkJtikXmC7i/+XajzHzOgAgKLh7/fYo7ISFna4QOrutjjFGNptNxcXF5d2lXxF2AAAIPj6dG2vFihUeFwwAAKAyeRR2unfv7tZ29913nx577DHVqVPHk6cBAACoMI8aKLvrjTfeUEFBgS+fAgAA4Lx8GnY8aA4EAADgVT4NOwAAAP5G2AEAAJZG2AEAAJZG2AEAAJbm07Bz2223MUgfAADwK4/G2ZGk/Px8rVu3Tvv375fD4XBZd/vtt0uSZs+eXbHSAQAAVJBHYefjjz/W4MGDdeTIEcXGxrpMG2Gz2ZxhBwAAwN88uo314IMPavjw4Tpy5Ijy8/P166+/Ov8OHTrk7TICAAB4zKOw8/PPP2v06NGKiYnxdnkAAAC8yqOw06dPH61fv97bZQEAAPA6t9vsLFq0yPnvfv36acKECfr222/VunVrValSxWXb66+/3nslBAAAqACbcXMCq7Aw9yqBbDabiouLK1SoylZQUKC4uDjZ7Xa6ygMAECTcvX67XbNzdvdyAACAYOBRm53XX39dJ06cOGd5UVGRXn/99QoXCgAAwFvcvo11pvDwcOXm5iohIcFl+S+//KKEhARuYwEAAJ9z9/rtUc2OMcZlIMESP/30k+Li4jzZJQAAgE+UawTldu3ayWazyWazqWfPnoqI+P+HFxcXa9euXbrmmmu8XkgAAABPlSvs9O/fX5K0efNm9enTR9WrV3eui4yMVEpKigYMGODVAqLy5dqPadfBo0qtU03JcdH+Lg4AABVSrrAzdepUSVJKSooGDhyoqlWr+qRQ8J8FWTmavPAbOYwUZpMybmytgZc19HexAADwmEcNlEsUFRWVOut5w4bBdXGkgfJpufZj6jJzuRxnvCPCbTatmnQVNTwAgIDj9XF2zrRjxw4NHz5ca9ascVle0nA52Hpj4bRdB4+6BB1JKjZGuw8WEnYAAEHLo7AzbNgwRUREaPHixUpOTi61ZxaCT2qdagqz6ZyanZQ6TPgKAAheHoWdzZs3a8OGDWrRooW3ywM/So6LVsaNrfXwwq0qNkbhNpuevLEVtToAgKDmUdhJS0vTwYMHvV0WBICBlzVUt+Z1tftgoVLqxBB0AABBz6NBBZ966ik99NBD+vLLL/XLL7+ooKDA5c9TM2fOlM1m09ixY53Ljh8/rpEjR6p27dqqXr26BgwYoH379rk8LicnR/369VNMTIwSEhI0YcIEnTp1yuNyhLrkuGilN6lN0AEAWIJHNTu9evWSJF199dUu7XUq0kA5KytLL7/8stq0aeOyfNy4cfrkk0/07rvvKi4uTqNGjdKNN96o1atXSzo9mGG/fv2UlJSkNWvWKDc3V7fffruqVKmiJ5980pPDAwDAibHHgp9HYWfFihVeLcSRI0c0ePBgzZ07V0888YRzud1u1yuvvKK33npLV199tSTptddeU8uWLfWf//xHV1xxhZYsWaJvv/1W//rXv5SYmKhLL71Ujz/+uCZOnKhp06YpMjLSq2UFAIQOxh6zBo9uY3Xv3l1hYWGaO3euJk2apKZNm6p79+7KyclReHh4ufc3cuRI9evXz1ljVGLDhg06efKky/IWLVqoYcOGyszMlCRlZmaqdevWSkxMdG7Tp08fFRQUaNu2baU+34kTJ7x26w0AYE259mPOoCOd7qn68MKtyrUf82/BUG4ehZ33339fffr0UXR0tDZt2qQTJ05IOl0TU95bR++88442btyojIyMc9bl5eUpMjJS8fHxLssTExOVl5fn3ObMoFOyvmRdaTIyMhQXF+f8a9CgQbnKHGpy7ce0JvsgH3AAIeV8Y48huHgUdp544gnNmTNHc+fOVZUqVZzLu3Tpoo0bN7q9nz179mjMmDF68803K3XqicmTJ8tutzv/9uzZU2nPHWwWZOWoy8zlunXuWnWZuVwLsnL8XSQAqBQlY4+dibHHgpNHYWf79u3q1q3bOcvj4uKUn5/v9n42bNig/fv3q3379oqIiFBERIRWrlypWbNmKSIiQomJiSoqKjpnn/v27VNSUpIkKSkp6ZzeWSX/L9nmbFFRUYqNjXX5w7mowgUQykrGHgv/X0ccxh4LXh41UE5KStLOnTuVkpLisnzVqlVq3Lix2/vp2bOnvvnmG5dld9xxh1q0aKGJEyeqQYMGqlKlipYtW+acTX379u3KyclRenq6JCk9PV0zZszQ/v37lZCQIElaunSpYmNjlZaW5snh4X+YPgJAqGPsMWvwKOzcddddGjNmjF599VXZbDbt3btXmZmZGj9+vKZMmeL2fmrUqKFWrVq5LKtWrZpq167tXD5ixAg98MADqlWrlmJjY3X//fcrPT1dV1xxhSSpd+/eSktL05AhQ/T0008rLy9Pf/zjHzVy5EhFRUV5cnj4H6aPAIDTNTyEnODmUdiZNGmSHA6HevbsqcLCQnXr1k1RUVEaP3687r//fq8W8Nlnn1VYWJgGDBigEydOqE+fPnrppZec68PDw7V48WLde++9Sk9PV7Vq1TR06FA99thjXi1HKGL6CACAFdiMMebCm5WuqKhIO3fu1JEjR5SWlqbq1at7s2yVxt0p4kNVrv0YVbgAgIDj7vXbo5qdEpGRkbSLCQFU4QIAgplHvbEAAACCBWEHAABYGmEHAABYGmEHAYWpKQAA3lahBsqANzG7MADAF6jZQUBgagoAgK8QdhAQmF0YAOArhB0EBGYXBgD4CmEHAYHZhQEAvkIDZQQMZhcGAPgCYQcBhakpAADexm0sAABgaYQdeITB/wAAwYLbWCg3Bv8DAAQTanZQLgz+BwAINoQdlAuD/wEAgg1hB+XC4H8AgGBD2EG5MPgfACDY0EAZ5cbgfwCAYELYgUcY/A8AECy4jQUAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsBNEmHwTAIDyo+t5kGDyTQAAPEPNThBg8k0AADxH2AkCgTT5JrfSAADBhttYQaBk8s0zA48/Jt/kVhoAIBhRsxMEAmHyTW6lAQCCFTU7QcLfk2+e71Yac2QBAAIZYSeI+HPyzUC5leZNufZj2nXwqFLrVCOwAYCFcRsLbgmEW2netCArR11mLtetc9eqy8zlWpCV4+8iAQB8xGaMMRfezNoKCgoUFxcnu92u2NhYfxcnoOXaj/ntVpq35NqPqcvM5efUUq2adFXQHhMAhCJ3r9/cxkK5+PNWmrfQ/ggAQgu3sRByStofnSnY2x8BAMpG2EHIsVr7IwDA+XEbCyHJ3135AQCVh7CDkGWF9kcAgAvjNhYAALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wk6QyLUf05rsg8q1H/N3UQAACCqMsxMEFmTlaPLCb+QwUphNyrixtQZe1tDfxQIAIChQsxPgcu3HnEFHkhxGenjhVmp4AABwE2EnwJ1vhm4AAHBhhJ0AxwzdAABUDGEnwDFDNwAAFUMD5SDADN0AAHiOsBMkmKEbAADPcBsLAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYml/DTkZGhi677DLVqFFDCQkJ6t+/v7Zv3+6yzfHjxzVy5EjVrl1b1atX14ABA7Rv3z6XbXJyctSvXz/FxMQoISFBEyZM0KlTpyrzUACfYzJYAPCMX8POypUrNXLkSP3nP//R0qVLdfLkSfXu3VtHjx51bjNu3Dh9/PHHevfdd7Vy5Urt3btXN954o3N9cXGx+vXrp6KiIq1Zs0bz58/XvHnz9Oijj/rjkACfWJCVoy4zl+vWuWvVZeZyLcjK8XeRACBo2Iwx5sKbVY4DBw4oISFBK1euVLdu3WS321W3bl299dZbuummmyRJ//3vf9WyZUtlZmbqiiuu0GeffaZrr71We/fuVWJioiRpzpw5mjhxog4cOKDIyMgLPm9BQYHi4uJkt9sVGxvr02MEyivXfkxdZi53mSMt3GbTqklXMfYSgJDm7vU7oNrs2O12SVKtWrUkSRs2bNDJkyfVq1cv5zYtWrRQw4YNlZmZKUnKzMxU69atnUFHkvr06aOCggJt27at1Oc5ceKECgoKXP6AQMVksABQMQETdhwOh8aOHasuXbqoVatWkqS8vDxFRkYqPj7eZdvExETl5eU5tzkz6JSsL1lXmoyMDMXFxTn/GjRo4OWjAbyHyWABoGICJuyMHDlSW7du1TvvvOPz55o8ebLsdrvzb8+ePT5/zlBGw9qKYTJYAKiYgJgba9SoUVq8eLG++uorXXTRRc7lSUlJKioqUn5+vkvtzr59+5SUlOTcZt26dS77K+mtVbLN2aKiohQVFeXlo0BpFmTlaPLCb+QwUphNyrixtQZe1tDfxQo6TAYLAJ7za82OMUajRo3SBx98oOXLlys1NdVlfYcOHVSlShUtW7bMuWz79u3KyclRenq6JCk9PV3ffPON9u/f79xm6dKlio2NVVpaWuUcCEqVaz/mDDqS5DDSwwu3+q2GJ9hrmJLjopXepDZBBwDKya81OyNHjtRbb72ljz76SDVq1HC2sYmLi1N0dLTi4uI0YsQIPfDAA6pVq5ZiY2N1//33Kz09XVdccYUkqXfv3kpLS9OQIUP09NNPKy8vT3/84x81cuRIam/87HwNayv7gk0NEwCELr/W7MyePVt2u109evRQcnKy82/BggXObZ599llde+21GjBggLp166akpCQtXLjQuT48PFyLFy9WeHi40tPTddttt+n222/XY4895o9DCniVWbsRKA1rA62GCQBQuQJqnB1/CZVxdvxRu7EgK0cPL9yqYmOcDWsru0ZlTfZB3Tp37TnL377rCqU3qV2pZQEAeI+71++AaKAM3yurdqNb87o+vaUUCA1rS2qYzh6Uj67bABAaAqbrOXzLnwPT+bthLV23ASC0UbMTIkK9diMQapiCTa79mHYdPKrUOtU4XwCCGmEnRJTUbpzdfiaULmLJcdEhdbwVQe81AFZCA2WFTgNl6fSvdWo3cD5MPAogWNBAGaWidgNnKu1WVSCNjwQA3kDYAUJUabequjWvq1+OnAjp9l2oGNp6IRARdoAQVNpQBJPe/0a2/4UcmySbTTKG3mtwH229EKgIO0AIKu1WldHpcFPy7zAjvXhrO7VvVJOggwvy11hegDsYZwcIQaVN5XE2h6Ra1aK4UMEtG3781W9jeQEXQtgBQtDZAy2G6fStqzPRTgfuWpCVo/vf2nTOct5DCBTcxgIsorwNQ88eaPGr7w+E9DhM8EzJ7auzxzAJs4n3EAIGYQewAE8bhp45FAGjTMMTpbX/kqRZt7TTtW3rVX6BgFJwGwvwo1z7Ma3JPqhc+7EK7aO0hqGe7NPf85gh+JTW/ivcZlOHlJr+KRBQCsIO4CcLsnLUZeZy3Tp3rbrMXK4FWTke7cefk7wCTLSLYMBtLMAPvNlNN9QneYX/cQsUgY6aHQQVb9z2CQTerI3hlzVKU9mfFW6BIpBRs4OgYaXRWb1dG1Pyy3rjj7/KYYw6ptTyUkkRjKz0WQG8gZodBAVvNsINBL6ojfnq+wO6/+1Nuv/tzRVqA4TgFmyfFavU1iKwUbODoGDFmbi92c6BofpRIpg+K9RAobJQs4OgUFb31mBvhOutdg70yEKJYPmsBFsNFIIbYQdBgUa45xcsFzj4XrB8VgjoqEzcxkLQoHtr2UoucEz3ACk4PiulNdIPkxQTyW9wbynvFDJWZjPGlDLQd2gpKChQXFyc7Ha7YmNj/V0cwGO59mMBfYELRcF6wTm73L44jgVZOc6AXoK2O97hi/ZQgfhedvf6TdgRYQeAbwTrBefsct/Qrr4+2PSzTxoSb9nzq/q/tEbmrGEYVk26KmAuqMEm135MXWYuP2doi4qc00BtTO7u9Zv6QgQkuqMi2PmiAa63phg5n9LK/f7Gn33SkDjXfkzrdh/S2T+5y2q7w/eCe7zdHsoKjclps4NKd6FfpoH6CwIoD293Aa+s4QXKmsX8TN7oyn7m5/xspTWu53vBfd4etDSYhjMoCzU7qFQX+mVqhV8QgOT9HnKV1XuptHKfraI9/c7+nJ+977Mb1/O9UD7e7pFnhd6ehB1UGne+sNz9Qqc6G4EuWC84pZV7QPv6Xu3KXlbt0ZR+LbVq0lXn1NjQTb38Bl7WUKsmXaW377qi1HNaHme/J8Ikjeia4p2CVhJuY6HSuFMV6k71K9XZCBbe7AJe1vACkrQm+6BXGyyXVu7xfS72Wk+/sj7nv22TXOq+PbktE4g9h3yhrOMsbXnJsmqR4TpaVFyuc1Pynnht1W79fdUP+tu/d+nvq3YFzfcvYQeVxp0vrAuNF8O0CAg2yXHRPgshX31/wNnrxtvB/+xye/M4yjsuVHm3D+QfRN4MYWUdZ2nLJZ1z69CTc/P3VT8E5fcvXc9F1/PKdOa4GiVfWKV90MoaL2ZN9kHdOnftOdu/fdcVSm9S26dlh/eFyq9vX/BF9+LKVt5xodzZPpDPizdDWFnHufC+dN3w0ppzBmvUWT80z3yMu+cmEL9/3b1+U7ODSuVutX5ZvyK93csA/hPIv76DgRV6yJS3tsid7QP1vHi7Vrqs48za/es5yx2SVEa1hrvnJtd+TL8cORG03780UEalq8jkl8Ey708wq4zG3/SuqTh3GyyHWmN+d86LP86JtxtZl3Wcl6XUPGd5mFRmDzt3wkpJL9r7394sY6T/ff0G1fcvNTsIOsEw708wKG06gNdW7dLcf++SUflqW8p7OypQf30HE3fasfiz9sxftygvdF78dU6qRYaXutyducBKO5dlHWfbBjXLbMh+9tQc7oSVs3+YGElhRnrx1nZq36hm0HxeCTsISt5sLBmKzjcdQAl3q9k9uXhwO7J05Q0I5wv+/mzM7+9blGWdF3+ek6NFxaUuLyxynPdx5zuXZR1nWctLlsVEhqmwyOHWj8XSfpg4JNWqFhVU38GEHSDElDUdQGkuVNvi6cWDWdrP5WlAKCv4+6v2LFB6TJZ2XvxZo+hp9/kLncuyXv/Slp+9rOR23vnCtVV+mBB2gBDjznQAJS70pVaRiwe3I/+fLwKCvy5SgXyL0p8Xbk8Cvi/Ppbvh2io/TAg7QIgp7Qu/NGHSBb/UKnrx4Hbkab64qPnrIhXINQH+vnCXN+D76lyWN1xb4YcJYQcIMaV94fdvV08fbtqrYmMUZpPu7NpYd3RNueCXmr8vHlbhq4uaPy5Sgf6eGHhZQ7VIqqGs3b/qspSaatugZqU+f3kCvq/OpSfhOth/mDCooBhU0JsYJC54nD1AW3kHeDvfvlB+7g64GSwC9T3hrcbTlfld5+1zGcgDL5aXu9dvwo4IO97i7x4YQLC70EWNHxMV462LfGV81/n6tbZKuGYEZVSqQOmB4SkuIggE57tVwI+JivNG26jK+K6rjNfaCu1wyoOwA68I5B4YF8JFBIEu2H9MBApvtI3y9XddZb7Wwd4OpzyYLgJe4e7Q9YHGX9MWhNoQ/qgYb081EKq8Md2Mr7/reK19g5odeEWg98Aoiz9qpMqqSeJWWvCo7NcqkLtz+4Ivz29Fb9/46ruu5JirRYaH1GtdWQg78Bpf3AP29UWlsi8iZdUk5R87qac++y+30oKAP257JsdFa2LfFs73SLD8mPBEZZzfit6+8fZ3XWnTt5QMBWHl17oy0RtL9MYKVJV1UanMXglrsg/q1rlrz1lus0nmrMAVjN1Arc5fXXbP/CzYJE3q20J/6N7EZ8/nL1bqEu2uso554X3pbs9fFcrojYWgVpmN9CqzV0JpNUlhOnc042Bp3B1q/HHbs7RZp5/+fLuuv7Se5d4fwdzRwVNlHXNhkUPpTWr7p1AWRANlBKTKbqSXHBet9Ca1ff6FWloDyYl9W3jc4JGGzpXLW41Ty/O6hVKD1UDr6FAZn69AO2aromYHAcnKDTJLq0mKj6lS7gaPdJl3daH2Xd5o/+WNxqnlfd2s/Fk4WyB1dKisz1cgHbOV0WZHtNkJVFYZ4dNd5RkSPhTbNpzPhS5M3r5weTp8v6evG5+F8j++IsHWH5+vQJ1ew13+6k1Kmx0EvVAb4bM8PURCsW1DWS7Uvsub7b/O/EL3pD2Fp68bnwX3eSPY+uPzFcwD/AVDLTNhBwEtmL8AfMmftzYCbTygC12YvHXh8sYXekVeNz4LF+atYBtKtw4rKlhG96aBMhCEvDESrCcWZOWoy8zlunXuWnWZuVwLsnJ8+nzuuFADT280APXWSNv+et1Chbcac/M6uS9YGtBTswPIs9oKf9dwVPatjUD9BXehBp7eaADqzdsavnzdyvOe9Pf71xe8WSMTarcOPRUstWCEHYQ8T25PBMo96sq8tRHI7YQudGGq6IWrPF/o7oQIX7xu5XlPBsr719u83bOJW4fuGdE1Va+s2lXm6N6BEKzpjSV6Y4UyT3pdhGpPqFA97hLu9IjyV4goz2tT3tcxEC5U5RXsPZuCxZnvd0m6tk2S7rqysdo2qFnqNr74TNAbC3CDJ7UVgVzD4UuhPh7IhWqH/HmbrzzvSXe2LQk43/xsD8o523xdIxOMAdDbzn6/S9Lir/P06Td5LpMbB8qtb8IOQpon95uD5R61LwRrOwZvXZzOdxH1Zwguz3vyQtue/Wu9RKC00fI3q94CLK/S3u+S6/skkH4YWqY31l//+lelpKSoatWq6tSpk9atW+fvIiEIeNLrItR7alTW1BreUhk9yHLtx/TLkRN+G/a/PO/J821b2q/1M/mql02wTHtS3l55wXJcniitl2OJkvdJIE2FYYmanQULFuiBBx7QnDlz1KlTJz333HPq06ePtm/froSEBH8XDwHufLUVZdUIBGsNR6ipjGr0s2ckL5nBvrJDcHnek2VtW9av9RK+uFAFU01JeWoqgum4PFESmie//40cZ60reZ8E0q1vSzRQ7tSpky677DK9+OKLkiSHw6EGDRro/vvv16RJky74eBooozRW/7IKBWuyD+rWuWvPWf72XVd4ZUbp0hr7hkl64dZ2at+oZtCF4NKOp4QvpqkItkbv7pY32I6rInLtx/Taqt36+6ofXHpjnfk+8WWD8ZBpoFxUVKQNGzZo8uTJzmVhYWHq1auXMjMz/VgyBLNAalgHz/m6fVVpv/QdkmpViwrK90lpv8QfuuZitbko3icXqkBq0+EOd2sqgu24KiI5LloP92upO7qmlBloAqELf9CHnYMHD6q4uFiJiYkuyxMTE/Xf//631MecOHFCJ06ccP6/oKDAp2VE8AmlLysr83U1uhUbq1fmLdpgPH/unJ9gPK6KCoRAcz6WaaBcHhkZGYqLi3P+NWjQwN9FQoAJpIZ1qJiBlzXUqklX6e27rtCqSVd59TaMVRurV1Yj9GA9fxc6P8F6XFYW9G12ioqKFBMTo/fee0/9+/d3Lh86dKjy8/P10UcfnfOY0mp2GjRoQJsduHBnEDlAYhC7irLq+bPqcQWSkGmzExkZqQ4dOmjZsmXOsONwOLRs2TKNGjWq1MdERUUpKiqqEkuJYESPK7gr0KvwA51Vz59VjysYBX3YkaQHHnhAQ4cOVceOHXX55Zfrueee09GjR3XHHXf4u2gIcnxZAUDws0TYGThwoA4cOKBHH31UeXl5uvTSS/X555+f02gZAACEnqBvs+MNjLMDAEDwcff6HZK9sQAAQOgg7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEuzxHQRFVUyiHRBQYGfSwIAANxVct2+0GQQhB1Jhw8fliQ1aNDAzyUBAADldfjwYcXFxZW5nrmxJDkcDu3du1c1atSQzWZz6zEFBQVq0KCB9uzZE9LzaXEeTuM8cA5KcB5O4zycxnnw7Tkwxujw4cOqV6+ewsLKbplDzY6ksLAwXXTRRR49NjY2NmTfwGfiPJzGeeAclOA8nMZ5OI3z4LtzcL4anRI0UAYAAJZG2AEAAJZG2PFQVFSUpk6dqqioKH8Xxa84D6dxHjgHJTgPp3EeTuM8BMY5oIEyAACwNGp2AACApRF2AACApRF2AACApRF2AACApRF2zjB79my1adPGOfBRenq6PvvsM+f648ePa+TIkapdu7aqV6+uAQMGaN++fS77yMnJUb9+/RQTE6OEhARNmDBBp06dquxD8aqZM2fKZrNp7NixzmWhcC6mTZsmm83m8teiRQvn+lA4B5L0888/67bbblPt2rUVHR2t1q1ba/369c71xhg9+uijSk5OVnR0tHr16qUdO3a47OPQoUMaPHiwYmNjFR8frxEjRujIkSOVfSgeS0lJOee9YLPZNHLkSEmh814oLi7WlClTlJqaqujoaDVp0kSPP/64y7xEofB+OHz4sMaOHatGjRopOjpanTt3VlZWlnO9Fc/BV199peuuu0716tWTzWbThx9+6LLeW8f89ddf68orr1TVqlXVoEEDPf300945AAOnRYsWmU8++cR8//33Zvv27ebhhx82VapUMVu3bjXGGHPPPfeYBg0amGXLlpn169ebK664wnTu3Nn5+FOnTplWrVqZXr16mU2bNplPP/3U1KlTx0yePNlfh1Rh69atMykpKaZNmzZmzJgxzuWhcC6mTp1qLrnkEpObm+v8O3DggHN9KJyDQ4cOmUaNGplhw4aZtWvXmh9++MF88cUXZufOnc5tZs6caeLi4syHH35otmzZYq6//nqTmppqjh075tzmmmuuMW3btjX/+c9/zL///W/TtGlTM2jQIH8ckkf279/v8j5YunSpkWRWrFhhjAmN94IxxsyYMcPUrl3bLF682Ozatcu8++67pnr16ub55593bhMK74ebb77ZpKWlmZUrV5odO3aYqVOnmtjYWPPTTz8ZY6x5Dj799FPzyCOPmIULFxpJ5oMPPnBZ741jttvtJjEx0QwePNhs3brVvP322yY6Otq8/PLLFS4/YecCatasaf7+97+b/Px8U6VKFfPuu+8613333XdGksnMzDTGnH4zhIWFmby8POc2s2fPNrGxsebEiROVXvaKOnz4sGnWrJlZunSp6d69uzPshMq5mDp1qmnbtm2p60LlHEycONF07dq1zPUOh8MkJSWZP/3pT85l+fn5Jioqyrz99tvGGGO+/fZbI8lkZWU5t/nss8+MzWYzP//8s+8K70NjxowxTZo0MQ6HI2TeC8YY069fPzN8+HCXZTfeeKMZPHiwMSY03g+FhYUmPDzcLF682GV5+/btzSOPPBIS5+DssOOtY37ppZdMzZo1XT4TEydONBdffHGFy8xtrDIUFxfrnXfe0dGjR5Wenq4NGzbo5MmT6tWrl3ObFi1aqGHDhsrMzJQkZWZmqnXr1kpMTHRu06dPHxUUFGjbtm2VfgwVNXLkSPXr18/lmCWF1LnYsWOH6tWrp8aNG2vw4MHKycmRFDrnYNGiRerYsaN+//vfKyEhQe3atdPcuXOd63ft2qW8vDyX8xAXF6dOnTq5nIf4+Hh17NjRuU2vXr0UFhamtWvXVt7BeElRUZHeeOMNDR8+XDabLWTeC5LUuXNnLVu2TN9//70kacuWLVq1apX69u0rKTTeD6dOnVJxcbGqVq3qsjw6OlqrVq0KiXNwNm8dc2Zmprp166bIyEjnNn369NH27dv166+/VqiMTAR6lm+++Ubp6ek6fvy4qlevrg8++EBpaWnavHmzIiMjFR8f77J9YmKi8vLyJEl5eXkuX2Yl60vWBZN33nlHGzdudLkPXSIvLy8kzkWnTp00b948XXzxxcrNzdX06dN15ZVXauvWrSFzDn744QfNnj1bDzzwgB5++GFlZWVp9OjRioyM1NChQ53HUdpxnnkeEhISXNZHRESoVq1aQXMezvThhx8qPz9fw4YNkxQ6nwdJmjRpkgoKCtSiRQuFh4eruLhYM2bM0ODBgyUpJN4PNWrUUHp6uh5//HG1bNlSiYmJevvtt5WZmammTZuGxDk4m7eOOS8vT6mpqefso2RdzZo1PS4jYecsF198sTZv3iy73a733ntPQ4cO1cqVK/1drEq1Z88ejRkzRkuXLj3n10soKfm1Kklt2rRRp06d1KhRI/3zn/9UdHS0H0tWeRwOhzp27Kgnn3xSktSuXTtt3bpVc+bM0dChQ/1cOv945ZVX1LdvX9WrV8/fRal0//znP/Xmm2/qrbfe0iWXXKLNmzdr7NixqlevXki9H/7xj39o+PDhql+/vsLDw9W+fXsNGjRIGzZs8HfRUAZuY50lMjJSTZs2VYcOHZSRkaG2bdvq+eefV1JSkoqKipSfn++y/b59+5SUlCRJSkpKOqcHRsn/S7YJBhs2bND+/fvVvn17RUREKCIiQitXrtSsWbMUERGhxMTEkDkXZ4qPj1fz5s21c+fOkHk/JCcnKy0tzWVZy5YtnbfzSo6jtOM88zzs37/fZf2pU6d06NChoDkPJX788Uf961//0p133ulcFirvBUmaMGGCJk2apFtuuUWtW7fWkCFDNG7cOGVkZEgKnfdDkyZNtHLlSh05ckR79uzRunXrdPLkSTVu3DhkzsGZvHXMvvycEHYuwOFw6MSJE+rQoYOqVKmiZcuWOddt375dOTk5Sk9PlySlp6frm2++cXlBly5dqtjY2HMuGIGsZ8+e+uabb7R582bnX8eOHTV48GDnv0PlXJzpyJEjys7OVnJycsi8H7p06aLt27e7LPv+++/VqFEjSVJqaqqSkpJczkNBQYHWrl3rch7y8/NdfvUuX75cDodDnTp1qoSj8J7XXntNCQkJ6tevn3NZqLwXJKmwsFBhYa6XjfDwcDkcDkmh936oVq2akpOT9euvv+qLL77Q7373u5A7B5L3Xvf09HR99dVXOnnypHObpUuX6uKLL67QLSxJdD0/06RJk8zKlSvNrl27zNdff20mTZpkbDabWbJkiTHmdPfShg0bmuXLl5v169eb9PR0k56e7nx8SffS3r17m82bN5vPP//c1K1bN+i6l5bmzN5YxoTGuXjwwQfNl19+aXbt2mVWr15tevXqZerUqWP2799vjAmNc7Bu3ToTERFhZsyYYXbs2GHefPNNExMTY9544w3nNjNnzjTx8fHmo48+Ml9//bX53e9+V2qX03bt2pm1a9eaVatWmWbNmgV0N9vSFBcXm4YNG5qJEyeesy4U3gvGGDN06FBTv359Z9fzhQsXmjp16piHHnrIuU0ovB8+//xz89lnn5kffvjBLFmyxLRt29Z06tTJFBUVGWOseQ4OHz5sNm3aZDZt2mQkmb/85S9m06ZN5scffzTGeOeY8/PzTWJiohkyZIjZunWreeedd0xMTAxdz71t+PDhplGjRiYyMtLUrVvX9OzZ0xl0jDHm2LFj5r777jM1a9Y0MTEx5oYbbjC5ubku+9i9e7fp27eviY6ONnXq1DEPPvigOXnyZGUfitedHXZC4VwMHDjQJCcnm8jISFO/fn0zcOBAl/FlQuEcGGPMxx9/bFq1amWioqJMixYtzN/+9jeX9Q6Hw0yZMsUkJiaaqKgo07NnT7N9+3aXbX755RczaNAgU716dRMbG2vuuOMOc/jw4co8jAr74osvjKRzjs2Y0HkvFBQUmDFjxpiGDRuaqlWrmsaNG5tHHnnEpatwKLwfFixYYBo3bmwiIyNNUlKSGTlypMnPz3eut+I5WLFihZF0zt/QoUONMd475i1btpiuXbuaqKgoU79+fTNz5kyvlN9mzBlDXwIAAFgMbXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAeKRHjx4aO3asv4vhc9OmTdOll17q72IAqADCDoCQVFRUVKnPZ4zRqVOnKvU5AZxG2AFQbsOGDdPKlSv1/PPPy2azyWazaffu3dq6dav69u2r6tWrKzExUUOGDNHBgwedj+vRo4fuv/9+jR07VjVr1lRiYqLmzp2ro0eP6o477lCNGjXUtGlTffbZZ87HfPnll7LZbPrkk0/Upk0bVa1aVVdccYW2bt3qUqZVq1bpyiuvVHR0tBo0aKDRo0fr6NGjzvUpKSl6/PHHdfvttys2NlZ33323JGnixIlq3ry5YmJi1LhxY02ZMsU56/K8efM0ffp0bdmyxXmc8+bN0+7du2Wz2bR582bn/vPz82Wz2fTll1+6lPuzzz5Thw4dFBUVpVWrVsnhcCgjI0OpqamKjo5W27Zt9d5773n7JQJwBsIOgHJ7/vnnlZ6errvuuku5ubnKzc1VjRo1dPXVV6tdu3Zav369Pv/8c+3bt08333yzy2Pnz5+vOnXqaN26dbr//vt177336ve//706d+6sjRs3qnfv3hoyZIgKCwtdHjdhwgQ988wzysrKUt26dXXdddc5Q0l2drauueYaDRgwQF9//bUWLFigVatWadSoUS77+POf/6y2bdtq06ZNmjJliiSpRo0amjdvnr799ls9//zzmjt3rp599llJ0sCBA/Xggw/qkksucR7nwIEDy3WuJk2apJkzZ+q7775TmzZtlJGRoddff11z5szRtm3bNG7cON12221auXJlufYLoBy8Mp0ogJDTvXt3M2bMGOf/H3/8cdO7d2+Xbfbs2eMyU3j37t1N165dnetPnTplqlWrZoYMGeJclpubaySZzMxMY8z/z7b8zjvvOLf55ZdfTHR0tFmwYIExxpgRI0aYu+++2+W5//3vf5uwsDBz7NgxY4wxjRo1Mv3797/gcf3pT38yHTp0cP5/6tSppm3bti7b7Nq1y0gymzZtci779ddfjSSzYsUKl3J/+OGHzm2OHz9uYmJizJo1a1z2N2LECDNo0KALlg2AZyL8GbQAWMeWLVu0YsUKVa9e/Zx12dnZat68uSSpTZs2zuXh4eGqXbu2Wrdu7VyWmJgoSdq/f7/LPtLT053/rlWrli6++GJ99913zuf++uuv9eabbzq3McbI4XBo165datmypSSpY8eO55RtwYIFmjVrlrKzs3XkyBGdOnVKsbGx5T7+spz5nDt37lRhYaF+85vfuGxTVFSkdu3aee05Abgi7ADwiiNHjui6667TU089dc665ORk57+rVKniss5ms7kss9lskiSHw1Gu5/7DH/6g0aNHn7OuYcOGzn9Xq1bNZV1mZqYGDx6s6dOnq0+fPoqLi9M777yjZ5555rzPFxZ2ugWAMca5rOSW2tnOfM4jR45Ikj755BPVr1/fZbuoqKjzPicAzxF2AHgkMjJSxcXFzv+3b99e77//vlJSUhQR4f2vlv/85z/O4PLrr7/q+++/d9bYtG/fXt9++62aNm1arn2uWbNGjRo10iOPPOJc9uOPP7psc/ZxSlLdunUlSbm5uc4amTMbK5clLS1NUVFRysnJUffu3ctVVgCeo4EyAI+kpKRo7dq12r17tw4ePKiRI0fq0KFDGjRokLKyspSdna0vvvhCd9xxxzlhwROPPfaYli1bpq1bt2rYsGGqU6eO+vfvL+l0j6o1a9Zo1KhR2rx5s3bs2KGPPvronAbKZ2vWrJlycnL0zjvvKDs7W7NmzdIHH3xwznHu2rVLmzdv1sGDB3XixAlFR0friiuucDY8Xrlypf74xz9e8Bhq1Kih8ePHa9y4cZo/f76ys7O1ceNGvfDCC5o/f77H5wbA+RF2AHhk/PjxCg8PV1pamurWrauioiKtXr1axcXF6t27t1q3bq2xY8cqPj7eedunImbOnKkxY8aoQ4cOysvL08cff6zIyEhJp9sBrVy5Ut9//72uvPJKtWvXTo8++qjq1at33n1ef/31GjdunEaNGqVLL71Ua9ascfbSKjFgwABdc801uuqqq1S3bl29/fbbkqRXX31Vp06dUocOHTR27Fg98cQTbh3H448/rilTpigjI0MtW7bUNddco08++USpqakenBUA7rCZM286A0CA+fLLL3XVVVfp119/VXx8vL+LAyAIUbMDAAAsjbADAAAsjdtYAADA0qjZAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlvZ/5oPfigwJYygAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJXElEQVR4nO3deXwU9eH/8fcmkJBAEo6cIJAAckO4NaAclYqUnxaxFfHgEGhVqCBqAa0CogZrVay1oFjFowpVEe+DchZBCkKQeKDEYKImQMRsgIQAyef3B99sWXKQbPacfT0fjzweMDO7+5nZ2Zn3fD6f+YzNGGMEAABgESG+LgAAAIA7EW4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4A+MT8+fNls9lqtazNZtP8+fM9Wp6hQ4dq6NChfvt+AGqPcAMEueXLl8tmszn+GjRooFatWmnixIn64YcffF08v5OcnOy0veLj43XxxRfrjTfecMv7FxcXa/78+dqwYYNb3g8IRoQbAJKk++67Ty+++KKWLl2qkSNH6qWXXtKQIUN0/Phxj3zen/70J5WUlHjkvT2tV69eevHFF/Xiiy/qjjvu0I8//qgxY8Zo6dKl9X7v4uJiLViwgHAD1EMDXxcAgH8YOXKk+vXrJ0maMmWKYmNj9dBDD+mtt97S1Vdf7fbPa9CggRo0CMxDUKtWrXT99dc7/j9+/Hh16NBBjz32mG666SYflgyARM0NgGpcfPHFkqSsrCyn6V999ZV+85vfqHnz5mrUqJH69eunt956y2mZkydPasGCBTr//PPVqFEjtWjRQhdddJHWrFnjWKaqPjelpaW67bbbFBcXp6ioKF1xxRX6/vvvK5Vt4sSJSk5OrjS9qvd87rnn9Itf/ELx8fEKDw9X165dtWTJkjpti3NJTExUly5dlJ2dXeNyBw8e1OTJk5WQkKBGjRopNTVVzz//vGP+/v37FRcXJ0lasGCBo+nL0/2NAKsJzMsmAB63f/9+SVKzZs0c0z7//HMNGjRIrVq10pw5c9S4cWP961//0ujRo/X666/ryiuvlHQ6ZKSnp2vKlCkaMGCAioqKtGPHDu3cuVO//OUvq/3MKVOm6KWXXtK1116rgQMHat26dRo1alS91mPJkiXq1q2brrjiCjVo0EBvv/22brnlFpWXl2vatGn1eu8KJ0+eVG5urlq0aFHtMiUlJRo6dKj27dun6dOnKyUlRa+++qomTpyowsJCzZgxQ3FxcVqyZIluvvlmXXnllRozZowkqWfPnm4pJxA0DICg9txzzxlJ5t///rc5dOiQyc3NNa+99pqJi4sz4eHhJjc317HsJZdcYnr06GGOHz/umFZeXm4GDhxozj//fMe01NRUM2rUqBo/d968eebMQ1BGRoaRZG655Ran5a699lojycybN88xbcKECaZt27bnfE9jjCkuLq603IgRI0y7du2cpg0ZMsQMGTKkxjIbY0zbtm3NpZdeag4dOmQOHTpkdu/eba655hojyfzhD3+o9v0WL15sJJmXXnrJMe3EiRMmLS3NNGnSxBQVFRljjDl06FCl9QVQNzRLAZAkDR8+XHFxcWrdurV+85vfqHHjxnrrrbd03nnnSZIOHz6sdevW6eqrr9aRI0dUUFCggoIC/fTTTxoxYoS++eYbx91VTZs21eeff65vvvmm1p//3nvvSZJuvfVWp+kzZ86s13pFREQ4/m2321VQUKAhQ4bo22+/ld1ud+k9P/roI8XFxSkuLk6pqal69dVXdcMNN+ihhx6q9jXvvfeeEhMTNW7cOMe0hg0b6tZbb9XRo0e1ceNGl8oCoDKapQBIkp588kl17NhRdrtdzz77rDZt2qTw8HDH/H379skYo3vuuUf33HNPle9x8OBBtWrVSvfdd59+/etfq2PHjurevbsuu+wy3XDDDTU2r3z33XcKCQlR+/btnaZ36tSpXuv18ccfa968edq6dauKi4ud5tntdsXExNT5PS+44ALdf//9stlsioyMVJcuXdS0adMaX/Pdd9/p/PPPV0iI8zVlly5dHPMBuAfhBoAkacCAAY67pUaPHq2LLrpI1157rfbu3asmTZqovLxcknTHHXdoxIgRVb5Hhw4dJEmDBw9WVlaW3nzzTX300Ud65pln9Nhjj2np0qWaMmVKvcta3eB/ZWVlTv/PysrSJZdcos6dO+vRRx9V69atFRYWpvfee0+PPfaYY53qKjY2VsOHD3fptQA8j3ADoJLQ0FClp6dr2LBh+tvf/qY5c+aoXbt2kk43pdTmxN68eXNNmjRJkyZN0tGjRzV48GDNnz+/2nDTtm1blZeXKysry6m2Zu/evZWWbdasmQoLCytNP7v24+2331ZpaaneeusttWnTxjF9/fr15yy/u7Vt21afffaZysvLnWpvvvrqK8d8qfrgBqD26HMDoEpDhw7VgAEDtHjxYh0/flzx8fEaOnSonnrqKeXl5VVa/tChQ45///TTT07zmjRpog4dOqi0tLTazxs5cqQk6a9//avT9MWLF1datn379rLb7frss88c0/Ly8iqNEhwaGipJMsY4ptntdj333HPVlsNTfvWrXyk/P18rV650TDt16pSeeOIJNWnSREOGDJEkRUZGSlKV4Q1A7VBzA6Bad955p377299q+fLluummm/Tkk0/qoosuUo8ePTR16lS1a9dOBw4c0NatW/X9999r9+7dkqSuXbtq6NCh6tu3r5o3b64dO3botdde0/Tp06v9rF69emncuHH6+9//LrvdroEDB2rt2rXat29fpWWvueYazZ49W1deeaVuvfVWFRcXa8mSJerYsaN27tzpWO7SSy9VWFiYLr/8cv3+97/X0aNHtWzZMsXHx1cZ0Dzpd7/7nZ566ilNnDhRn376qZKTk/Xaa6/p448/1uLFixUVFSXpdAforl27auXKlerYsaOaN2+u7t27q3v37l4tLxDQfH27FgDfqrgVfPv27ZXmlZWVmfbt25v27dubU6dOGWOMycrKMuPHjzeJiYmmYcOGplWrVub//b//Z1577TXH6+6//34zYMAA07RpUxMREWE6d+5sHnjgAXPixAnHMlXdtl1SUmJuvfVW06JFC9O4cWNz+eWXm9zc3Cpvjf7oo49M9+7dTVhYmOnUqZN56aWXqnzPt956y/Ts2dM0atTIJCcnm4ceesg8++yzRpLJzs52LFeXW8HPdZt7de934MABM2nSJBMbG2vCwsJMjx49zHPPPVfptVu2bDF9+/Y1YWFh3BYOuMBmzBn1tQAAAAGOPjcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSgm4Qv/Lycv3444+KiopimHMAAAKEMUZHjhxRy5YtKz2A9mxBF25+/PFHtW7d2tfFAAAALsjNzdV5551X4zJBF24qhjjPzc1VdHS0j0sDAABqo6ioSK1bt3acx2sSdOGmoikqOjqacAMAQICpTZcSOhQDAABLIdwAAABLIdwAAABLCbo+NwCA4FFWVqaTJ0/6uhiopbCwsHPe5l0bhBsAgOUYY5Sfn6/CwkJfFwV1EBISopSUFIWFhdXrfQg3AADLqQg28fHxioyMZNDWAFAxyG5eXp7atGlTr++McAMAsJSysjJHsGnRooWvi4M6iIuL048//qhTp06pYcOGLr8PHYoBAJZS0ccmMjLSxyVBXVU0R5WVldXrfQg3AABLoikq8LjrOyPcAAAASyHcAAAAr9iwYYNsNpvH72LzabhJT09X//79FRUVpfj4eI0ePVp79+6t8TXLly+XzWZz+mvUqJGXSlyzPHuJtmQVKM9e4uuiAACC0Pz589WrVy9fF8PnfHq31MaNGzVt2jT1799fp06d0l133aVLL71UX3zxhRo3blzt66Kjo51CkD+0q67cnqO5q/ao3EghNil9TA+N7d/G18UCAKCSkydP1utuJH/n05qbDz74QBMnTlS3bt2Umpqq5cuXKycnR59++mmNr7PZbEpMTHT8JSQkeKnEVcuzlziCjSSVG+muVZnU4AAA6qS8vFzp6elKSUlRRESEUlNT9dprr0n6X5PO2rVr1a9fP0VGRmrgwIGOi/3ly5drwYIF2r17t6NlY/ny5ZJOnzeXLFmiK664Qo0bN9YDDzxQYzkqPuvDDz9U7969FRERoV/84hc6ePCg3n//fXXp0kXR0dG69tprVVxc7HhdaWmpbr31VsXHx6tRo0a66KKLtH37ds9srBr4VZ8bu90uSWrevHmNyx09elRt27ZV69at9etf/1qff/55tcuWlpaqqKjI6c/dsguOOYJNhTJjtL+guOoXAAAChje7HKSnp+uFF17Q0qVL9fnnn+u2227T9ddfr40bNzqWufvuu/XII49ox44datCggW688UZJ0tixY3X77berW7duysvLU15ensaOHet43fz583XllVdqz549jtecy/z58/W3v/1NW7ZsUW5urq6++motXrxYL7/8st5991199NFHeuKJJxzL//GPf9Trr7+u559/Xjt37lSHDh00YsQIHT582E1bqHb8ZhC/8vJyzZw5U4MGDVL37t2rXa5Tp0569tln1bNnT9ntdv3lL3/RwIED9fnnn+u8886rtHx6eroWLFjgyaIrJbaxQmxyCjihNpuSYxljAQACmTe7HJSWlurBBx/Uv//9b6WlpUmS2rVrp82bN+upp57S7373O0nSAw88oCFDhkiS5syZo1GjRun48eOKiIhQkyZN1KBBAyUmJlZ6/2uvvVaTJk2qU5nuv/9+DRo0SJI0efJkzZ07V1lZWWrXrp0k6Te/+Y3Wr1+v2bNn69ixY1qyZImWL1+ukSNHSpKWLVumNWvW6B//+IfuvPNO1zaMC/ym5mbatGnKzMzUihUralwuLS1N48ePV69evTRkyBCtWrVKcXFxeuqpp6pcfu7cubLb7Y6/3Nxct5c9KSZC6WN6KPT/+v6E2mx6cEx3JcVEuP2zAADe4e0uB/v27VNxcbF++ctfqkmTJo6/F154QVlZWY7levbs6fh3UlKSJOngwYPnfP9+/frVuUxnflZCQoIiIyMdwaZiWsVnZ2Vl6eTJk44wJEkNGzbUgAED9OWXX9b5s+vDL2pupk+frnfeeUebNm2qsvalJg0bNlTv3r21b9++KueHh4crPDzcHcWs0dj+bTS4Y5z2FxQrOTaSYAMAAa6mLgeeOMYfPXpUkvTuu++qVatWTvPCw8MdAefMjsAVN9SUl5ef8/1rulGnOmd/1tmdkG02W60+29t8WnNjjNH06dP1xhtvaN26dUpJSanze5SVlWnPnj2O9OpLSTERSmvfgmADABZQ0eXgTJ7sctC1a1eFh4crJydHHTp0cPpr3bp1rd4jLCys3o8ucFX79u0VFhamjz/+2DHt5MmT2r59u7p27erVsvi05mbatGl6+eWX9eabbyoqKkr5+fmSpJiYGEVEnA4I48ePV6tWrZSeni5Juu+++3ThhReqQ4cOKiws1MMPP6zvvvtOU6ZM8dl6AACsp6LLwV2rMlVmjMe7HERFRemOO+7QbbfdpvLycl100UWy2+36+OOPFR0drbZt257zPZKTk5Wdna2MjAydd955ioqK8krrhXS6Zujmm2/WnXfeqebNm6tNmzb685//rOLiYk2ePNkrZajg03CzZMkSSdLQoUOdpj/33HOaOHGiJCknJ0chIf+rYPr55581depU5efnq1mzZurbt6+2bNni9VQIALA+b3c5WLhwoeLi4pSenq5vv/1WTZs2VZ8+fXTXXXfVqvnnqquu0qpVqzRs2DAVFhY6nU+9YdGiRSovL9cNN9ygI0eOqF+/fvrwww/VrFkzr5VBkmzGGHPuxayjqKhIMTExstvtio6O9nVxAABudvz4cWVnZyslJcVvRrBH7dT03dXl/O03d0sBAAC4A+EGAIAgc9NNNzndbn7m30033eTr4tWbX9wKDgAAvOe+++7THXfcUeU8K3TZINwAABBk4uPjFR8f7+tieAzNUgAAwFIINwAAS/LHkXNRM3fdwE2zFADAUsLCwhQSEqIff/xRcXFxCgsLczymAP7LGKNDhw5V+ZiHuiLcAAAsJSQkRCkpKcrLy9OPP/7o6+KgDmw2m8477zyFhobW630INwAAywkLC1ObNm106tQpnz1rCXXXsGHDegcbiXADALCoiuaN+jZxIPDQoRgAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFiKT8NNenq6+vfvr6ioKMXHx2v06NHau3fvOV/36quvqnPnzmrUqJF69Oih9957zwulBQAAgcCn4Wbjxo2aNm2aPvnkE61Zs0YnT57UpZdeqmPHjlX7mi1btmjcuHGaPHmydu3apdGjR2v06NHKzMz0YskBAIC/shljjK8LUeHQoUOKj4/Xxo0bNXjw4CqXGTt2rI4dO6Z33nnHMe3CCy9Ur169tHTp0nN+RlFRkWJiYmS32xUdHe22sgMAAM+py/nbr/rc2O12SVLz5s2rXWbr1q0aPny407QRI0Zo69atVS5fWlqqoqIipz8AAGBdfhNuysvLNXPmTA0aNEjdu3evdrn8/HwlJCQ4TUtISFB+fn6Vy6enpysmJsbx17p1a7eWGwAA+Be/CTfTpk1TZmamVqxY4db3nTt3rux2u+MvNzfXre8PAAD8SwNfF0CSpk+frnfeeUebNm3SeeedV+OyiYmJOnDggNO0AwcOKDExscrlw8PDFR4e7rayAgAA/+bTmhtjjKZPn6433nhD69atU0pKyjlfk5aWprVr1zpNW7NmjdLS0jxVTAAAEEB8WnMzbdo0vfzyy3rzzTcVFRXl6DcTExOjiIgISdL48ePVqlUrpaenS5JmzJihIUOG6JFHHtGoUaO0YsUK7dixQ08//bTP1gMAAPgPn9bcLFmyRHa7XUOHDlVSUpLjb+XKlY5lcnJylJeX5/j/wIED9fLLL+vpp59WamqqXnvtNa1evbrGTsgAACB4+NU4N97AODcAAASegB3nBgAAoL4INwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIIN0Eqz16iLVkFyrOX+LooAAC4VQNfFwDet3J7juau2qNyI4XYpPQxPTS2fxtfFwsAALeg5ibI5NlLHMFGksqNdNeqTGpwAACWQbgJMtkFxxzBpkKZMdpfUOybAgEA4GaEmyCTEttYITbnaaE2m5JjI31TIAAA3IxwE2SSYiKUPqaHQm2nE06ozaYHx3RXUkyEj0sGAIB70KE4CI3t30aDO8Zpf0GxkmMjCTYAAEsh3ASppJgIQg0AwJJolgIAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuLGYPHuJtmQV8JRvAEDQYoRiC1m5PUdzV+1RuZFCbFL6mB4a27+Nr4sFAIBXUXNjEXn2EkewkaRyI921KpMaHABA0CHcWER2wTFHsKlQZoz2FxT7pkAAAPgI4cYiUmIbK8TmPC3UZlNybKRvCgQAgI/4NNxs2rRJl19+uVq2bCmbzabVq1fXuPyGDRtks9kq/eXn53unwH4sKSZC6WN6KNR2OuGE2mx6cEx3nvwNAAg6Pu1QfOzYMaWmpurGG2/UmDFjav26vXv3Kjo62vH/+Ph4TxQv4Izt30aDO8Zpf0GxkmMjCTYAgKDk03AzcuRIjRw5ss6vi4+PV9OmTd1fIAtIiokg1AAAglpA9rnp1auXkpKS9Mtf/lIff/yxr4sTsBgTBwBgRQE1zk1SUpKWLl2qfv36qbS0VM8884yGDh2qbdu2qU+fPlW+prS0VKWlpY7/FxUVeau4fo0xcQAAVhVQ4aZTp07q1KmT4/8DBw5UVlaWHnvsMb344otVviY9PV0LFizwVhEDQnVj4gzuGEeTFgAg4AVks9SZBgwYoH379lU7f+7cubLb7Y6/3NxcL5bOPzEmDgDAygKq5qYqGRkZSkpKqnZ+eHi4wsPDvVgi/1cxJs6ZAYcxcQAAVuHTcHP06FGnWpfs7GxlZGSoefPmatOmjebOnasffvhBL7zwgiRp8eLFSklJUbdu3XT8+HE988wzWrdunT766CNfrUJAqhgT565VmSozhjFxAACWUutwU5eOuGeOQVOTHTt2aNiwYY7/z5o1S5I0YcIELV++XHl5ecrJyXHMP3HihG6//Xb98MMPioyMVM+ePfXvf//b6T1QO4yJAwCwKpsxxpx7MSkkJEQ2m63GZYwxstlsKisrc0vhPKGoqEgxMTGy2+21DmGekGcvUXbBMaXENiZYAABwDnU5f9e65mb9+vX1LhhO4zZsAAA8p9bhZsiQIZ4sR9DgNmwAADzL5Q7FhYWF+sc//qEvv/xSktStWzfdeOONiomJcVvhrKim27AJNwAA1J9L49zs2LFD7du312OPPabDhw/r8OHDevTRR9W+fXvt3LnT3WW0lIrbsM/EbdgAALhPrTsUn+niiy9Whw4dtGzZMjVocLry59SpU5oyZYq+/fZbbdq0ye0FdRd/6FC8cntOpduw6XMDAED16nL+dincREREaNeuXercubPT9C+++EL9+vVTcbH/jnTrD+FGOt33htuwAQConbqcv11qloqOjnYaf6ZCbm6uoqKiXHnLoJMUE6G09i0INgAAuJlL4Wbs2LGaPHmyVq5cqdzcXOXm5mrFihWaMmWKxo0b5+4yAgAA1JpLd0v95S9/kc1m0/jx43Xq1ClJUsOGDXXzzTdr0aJFbi0gAABAXbjU56ZCcXGxsrKyJEnt27dXZKT/3/HjL31uAABA7XlkhOKqREZGqkePHvV5CwAAALdyKdwcP35cTzzxhNavX6+DBw+qvLzcaT5j3QAAAF9xKdxMnjxZH330kX7zm99owIAB53ygJgAAgLe4FG7eeecdvffeexo0aJC7ywMAAFAvLt0K3qpVK8azAQAAfsmlcPPII49o9uzZ+u6779xdHgAAgHpxqVmqX79+On78uNq1a6fIyEg1bNjQaf7hw4fdUjgAAIC6cincjBs3Tj/88IMefPBBJSQk0KEYAAD4DZfCzZYtW7R161alpqa6uzwAAAD14lKfm86dO6ukpMTdZQEAAKg3l8LNokWLdPvtt2vDhg366aefVFRU5PQHAADgKy49Wyok5HQmOruvjTFGNptNZWVl7imdB/BsKQAAAo/Hny21fv16lwoGAADgaS6FmyFDhtRquVtuuUX33XefYmNjXfkYAACAOnOpz01tvfTSS/TBAQAAXuXRcONCdx4AAIB68Wi4AQAA8DbCDQAAsBTCDQAAsBTCDQAAsJQ6h5tTp07pvvvu0/fff3/OZa+//noGygMAAF7l0gjFUVFR2rNnj5KTkz1QJM9ihGIAAAJPXc7fLjVL/eIXv9DGjRtdKhwAAIAnuTRC8ciRIzVnzhzt2bNHffv2VePGjZ3mX3HFFW4pHAAAQF3V68GZVb4hD84EAABu5vEHZ5aXl7tUMAAAAE9zqc/NCy+8oNLS0krTT5w4oRdeeKHehQIAAHCVS81SoaGhysvLU3x8vNP0n376SfHx8TRLAQAAt/L43VLGGNlstkrTv//+e8XExLjylvCRPHuJtmQVKM9e4uuiAADgFnXqc9O7d2/ZbDbZbDZdcsklatDgfy8vKytTdna2LrvsMrcXEp6xcnuO5q7ao3Ijhdik9DE9NLZ/G18XCwCAeqlTuBk9erQkKSMjQyNGjFCTJk0c88LCwpScnKyrrrrKrQWEZ+TZSxzBRpLKjXTXqkwN7hinpJgI3xYOAIB6qFO4mTdvniQpOTlZY8eOVaNGjTxSKHhedsExR7CpUGaM9hcUE24ABLU8e4myC44pJbYxx8MA5dKt4BMmTJB0+u6ogwcPVro1vE0bmjb8XUpsY4XY5BRwQm02JcdG+q5QAOBjNNdbg0sdir/55htdfPHFioiIUNu2bZWSkqKUlBQlJycrJSXF3WWEByTFRCh9TA+F/l/H8FCbTQ+O6c5VCoCgVV1zPTdcBB6Xam4mTpyoBg0a6J133lFSUlKVd07B/43t30aDO8Zpf0GxkmMjCTYAghrN9dbhUrjJyMjQp59+qs6dO7u7PPCypJgIfrQAIJrrrcSlZqmuXbuqoKDA3WUBAMBnaK63DpdGKF63bp3+9Kc/6cEHH1SPHj3UsGFDp/n+PPIvIxSfG3cKAAhmefYSmuv9UF3O3/V+KviZ/W0qRi7m8QuBizsFAAD+yONPBV+/fr1LBYN/Y2A/AIAVuNTnZsiQIQoJCdGyZcs0Z84cdejQQUOGDFFOTo5CQ0PdXUZ4SU13CngKz7YCALibS+Hm9ddf14gRIxQREaFdu3aptLRUkmS32/Xggw+6tYDwnoo7Bc7kyTsFVm7P0aBF63Ttsm0atGidVm7P8cjnAACCi0vh5v7779fSpUu1bNkyp87EgwYN0s6dO91WOHiXN+8UYLAsAICnuNTnZu/evRo8eHCl6TExMSosLKxvmeBD3hrYj8GyAACe4lK4SUxM1L59+5ScnOw0ffPmzWrXrp07ygUf8sbAfgyWBQDwFJeapaZOnaoZM2Zo27Ztstls+vHHH/XPf/5Td9xxh26++WZ3lxEWxGBZAABPcSnczJkzR9dee60uueQSHT16VIMHD9aUKVP0+9//Xn/4wx9q/T6bNm3S5ZdfrpYtW8pms2n16tXnfM2GDRvUp08fhYeHq0OHDlq+fLkrqwA/MLZ/G22eM0yvTL1Qm+cMYzwdAIBbuBRubDab7r77bh0+fFiZmZn65JNPdOjQIS1cuLBO73Ps2DGlpqbqySefrNXy2dnZGjVqlIYNG6aMjAzNnDlTU6ZM0YcffujKasAPJMVEKK19C2psAABu49IIxZ5gs9n0xhtvaPTo0dUuM3v2bL377rvKzMx0TLvmmmtUWFioDz74oFafwwjFAAAEnrqcv12qufGVrVu3avjw4U7TRowYoa1bt/qoRAAAwN+4dLeUr+Tn5yshIcFpWkJCgoqKilRSUqKIiMpNG6WlpY5BBqXTyQ8AAFhXQNXcuCI9PV0xMTGOv9atW/u6SAAAwIMCKtwkJibqwIEDTtMOHDig6OjoKmttJGnu3Lmy2+2Ov9zcXG8UFQAA+EhANUulpaXpvffec5q2Zs0apaWlVfua8PBwhYeHe7poAADAT/i05ubo0aPKyMhQRkaGpNO3emdkZCgn5/QDFOfOnavx48c7lr/pppv07bff6o9//KO++uor/f3vf9e//vUv3Xbbbb4oPgAA8EM+DTc7duxQ79691bt3b0nSrFmz1Lt3b917772SpLy8PEfQkaSUlBS9++67WrNmjVJTU/XII4/omWee0YgRI3xSfgAA4H/8Zpwbb2Gcm+CUZy9RdsExpcQ2ZsBAAAhAdTl/B1SfG8AVK7fnaO6qPSo3UohNSh/Tg0c9AICFBdTdUkBd5dlLHMFGOv0U8rtWZSrPXuLbggEAPIZwA0vLLjjmCDYVyozR/oJi3xQIAOBxhBtYWkpsY4XYnKeF2mxKjo30TYEAAB5HuIGlJcVEKH1MD4XaTiecUJtND47pTqdiALAwOhTD8sb2b6PBHeO0v6BYybGRBBsAsDjCDYJCUkwEoQYAggTNUgAAwFIINwAAwFIINwAAwFIIN6iVPHuJtmQVMPgdAMDv0aEY58TjCwAAgYSaG9SIxxcAAAIN4QY14vEFAIBAQ7hBjXh8AQAg0BBuUCMeXwAACDR0KMY58fgCAEAgIdygVnh8AQAgUNAsBQAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwg2rxsEwAQCDiVnBUiYdlAgACFTU3qISHZQIAAhnhBpXwsEwAQCAj3KASHpYJAAhkhBtUwsMyAQCBjA7FqBIPywQABCrCDarFwzIBAIGIZik/xjgzAADUHTU3fopxZgAAcA01N36IcWYAAHAd4cYPMc4MAACuI9z4IcaZAQDAdYQbP8Q4MwAAuI4OxX6KcWYAAHAN4caPMc4MAAB1R7MUAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMIN4Kfy7CXaklXAA1MBoI4YxA/wQyu35zieDB9ik9LH9NDY/m18XSwACAjU3AB+Js9e4gg2klRupLtWZVKDAwC1RLgB/Ex2wTFHsKlQZoz2FxT7pkAAEGAIN36IvhbBLSW2sUJsztNCbTYlx0b6pkAAEGAIN35m5fYcDVq0Ttcu26ZBi9Zp5fYcXxcJXpYUE6H0MT0UajudcEJtNj04pjsPUQWAWrIZY8y5F7OOoqIixcTEyG63Kzo62tfFcZJnL9GgReucmiRCbTZtnjOME1sQyrOXaH9BsZJjI/n+AQS9upy/uVvKj9TU14KTW/BJionge4dfy7OXKLvgmFJiG7Ovwq8QbvxIRV+Ls2tu6GtRdxx0Ac9iuAL4M/rc+BGr9LXwdYdo+i0BnsVwBfB3fhFunnzySSUnJ6tRo0a64IIL9N///rfaZZcvXy6bzeb016hRIy+W1rPG9m+jzXOG6ZWpF2rznGEBdyXk62DBQdc1vg6kCCwMVwB/5/NmqZUrV2rWrFlaunSpLrjgAi1evFgjRozQ3r17FR8fX+VroqOjtXfvXsf/bTZblcsFqkDta1FdsBjcMc5r60O/pbqjeQF1RRM6/J3Pa24effRRTZ06VZMmTVLXrl21dOlSRUZG6tlnn632NTabTYmJiY6/hIQEL5YY1fGHqznGiKnZmTU0efYSvb37B2q6UGdWaUKHdfm05ubEiRP69NNPNXfuXMe0kJAQDR8+XFu3bq32dUePHlXbtm1VXl6uPn366MEHH1S3bt28UWTUwB+u5ioOunetylSZMRx0z3BmDU1F/qtqHAhqulAbY/u30eCOcQxXAL/k03BTUFCgsrKySjUvCQkJ+uqrr6p8TadOnfTss8+qZ8+estvt+stf/qKBAwfq888/13nnnVdp+dLSUpWWljr+X1RU5N6VgIO/BAsOupWd3WRY0+BW1HShtgK1CR3W5/M+N3WVlpamtLQ0x/8HDhyoLl266KmnntLChQsrLZ+enq4FCxZ4s4hBzV+CBQddZ1U1GVaFmi4AVuDTcBMbG6vQ0FAdOHDAafqBAweUmJhYq/do2LChevfurX379lU5f+7cuZo1a5bj/0VFRWrdurXrhcY5ESz8T1VNhmcKkfTEtb3Vp20zvjsAAc+nHYrDwsLUt29frV271jGtvLxca9eudaqdqUlZWZn27NmjpKSkKueHh4crOjra6Q8INmd3ALVJqrjJMNRmU/pVPTSqZ0uCDWqN4QPgz3zeLDVr1ixNmDBB/fr104ABA7R48WIdO3ZMkyZNkiSNHz9erVq1Unp6uiTpvvvu04UXXqgOHTqosLBQDz/8sL777jtNmTLFl6sB+L2zmwwl+bz5EIGJ4QPg73websaOHatDhw7p3nvvVX5+vnr16qUPPvjA0ck4JydHISH/q2D6+eefNXXqVOXn56tZs2bq27evtmzZoq5du/pqFYBa8/VjIc5uMiTUoK78YTwr4Fx4KjjgJVztwgq2ZBXo2mXbKk1/ZeqFSmvfwgclQrCoy/nb54P4AcHAE4+FoM8DfIGBMhEICDeAF7h79GZfP8MLwYvRiREIfN7nBggG7hy9mT4P8DV/Gc8KqA41N4AXuPNq1x+e4QUkxUQorX0Lgg38EjU3gJe462rXH57hBQD+jJobwIvccbVLnwcAqBk1N0AAGtu/jTonRmn7/p/VP7mZUls383WR4GO+HkMJ8CeEGyAAMWYOzsT+ADijWcrCGAfFmjwxZg4CF/sDJI73Z6PmxqK4krOumu6Wojki+Lhjf6BJK7BxvK+MmhsL4krO2hghFmeq7/7gqwEhqWlwD473VSPcWBDjoFgbd0vhTPXZH2o6MXoyfDDCtvtwvK8azVIWFGjjoFAlXneMEIszubo/VHdifO7jbD3zn2yPNHMwwrbrqjpWBtrx3lsINxZUcSV316pMlRnj11f2tBW7Likmwi+/U/iGK/tDVSfGEJu0bFO2Kia5M3zk2Uv0zmc/0mfMBdUdKwPpeO9NNmOMOfdi1lGXR6YHujx7ic+v7Guqlcmzl2jQonWVrjg2zxkW9D9MwFtWbs9xOjHeeFGylv0nu9Jyr0y9UGntW9Trc86ssTlTdb97anVPq82x0h+O955Wl/M3NTcW5usr+3PVytTlLg8OcoBnnN2kJUn/2Jzt1maOs5uizlRdTQO1uv9Tm2Olr4/3/oZwA4+oTbt6bduKOcghWHkr1J99YnR3M0dVJ2dJumdUF/2qZ1KVFzP0y/mf2hwruQB0RriBR9T2SuNcB1EOctbBwbdufBnq3d1hvbqTc1XBRrLOWE7u2ufPdaz01L4SyL9Zwg08ora1Muc6iFrlIBfsgqn2zR0nhPqEeneeUN31G6trp1cr3AHk6j5f3fdX3bHSUxeAgf6bJdzAI+pyMKvpIGqFg1ywC6baN3edEM41dkl14cWfT0h1qQ0K9DuAXN3nz/X9VXWsdHVf8UT5/QnhBh7jjqrtQD/IIXhq39x5Qqgu1H/2Q6Gue+aTKk9+gXBCqkttUCCP5eTKPu/q9+fKvuKJ8vsbRiiGRyXFRCitfYt6/SDG9m+jzXOG6ZWpF2rznGF+cyUarOo6cm2wPC7CnSPFVjXq8B8v66SH3v+q2mH2rThSbV2OH/70OIeq9nlJ+uz7wmpf4+r3V9t9Ze7re7Q792eXyx9ov1lqbhAQuM3RP7jS7BEstW/ubkI9u+biXFfTvm7C9WXnU39rjkuKidDskZ2V/t5XTtP//MFeXdGrZZXbpz7fX232lXJJo/++RYuC5DdLuAGCwLkGU6zNSak+zR6B3MRQW544IZwd6ms6+fnyhOTLcOGvzXE9WsVUmlZT0059v79z7SuSZILoN0u4ASyuphNPXU5K9W2HD4baN0+eEGpz8vPFCamu4cLdNTz+2j/ElZoYd31/FfvK3Nf3qPysecHymyXcABZW04nnYNFxzXl9T62fIeTrZo9A4ckTQm1Oft4+IdUlXHiihsdf98u61sScGfrq85iLCmP7t1HnxCiN/vsWGT/bNt5AuAEsrNqnPm/er2Wbv9VZszxabQ738Ler6dqGC081H/nzflnbmhhPNeultm6mRS5um/rUsPnD4H+EG/gNf/hBWE2VT32W9Mzmb52u5ip4q9oc1lHbcOHJ5iN/3i/PFUY93WfozG0TGRaiYyfKlGcvqdd4OzXxl87dhBv4BX/5QVhNVSeeyRcl6+kqnvocItXqqs7fag7ge7UJF55uPqppv/TnCydv9BlKionQpq8P1eoYW1XYmvv6HnVOjFJq62Y1fo4/de4m3MDn/OkHYUVVPfX5mbOe+hxik964ZeA5D15wH38+4briXKHXV81H/n7h5I0+Q3U5xtbnNnJ/6txNuIHP+dMPwqrOPvFUdZIh2HiPv59wPcXbzUeBcOHkjdBXl2NsVWFLqt1t5P7UuZtwA5/zpx9EsPDnPgpWFwgnXE/yZrOmOy+cPFnT5unfY12OsfW5jdyfOncTbuAydz592F9+EMGEvjO+UdsTrtWarXzBXRdO3qhp8+Tvsa7H2PrcRu4vF06EG7jE3T92f/lBAJ5WmxPuU5uytOj9r2SCrNnK3dxx4eSJmjZfBNe6HmPrcxu5P1w42Yyp6oZQ6yoqKlJMTIzsdruio6N9XZyAlGcv0aBF6yodnDfPGebzHRoIBCu351Q6aVSEl6c2Zin9fednEvH7qp88e4nLF05bsgp07bJtlaa/MvVClwbbC7T+VvXZdu5Wl/M3NTeoMzoAA/VT3VV0nr1Ei84KNhK/r/qqT02CO/sEBmJ/K3+ohXFFiK8LgMBT8WM/Ex2AYVV59hJtySpQnr3Ere+bFBOhtPYtnE4c2QXHKo0aLZ2+wuf35RsVTVuhttMHvfr0CazpwhDuRc0N6owOwAgW3m5CqO423NkjO/P78iF39QnkzlDvoc8NXObptljuFoGr3LHv+Kpv2Zn9cUJ0Otj8fkh7j32e1fnbcaSm/laoGX1u4BWebIsNtE538B/u2nd81beMOwfdxx+PI3y/3kGfG/id6jrdubvPA6zHnfuOL/uWVdUfB3Xjz8eRQP1+PdX/zBMIN/A7dLqDq9y577izIym8j+OIe63cnqNBi9bp2mXbNGjROq3cnuPrItWIZin4HW89SM6f2uHhHu7ed2hCCFx03nWfQLyFnZob+B1PXzEH2hUIas8T+06gNiEEO2re3CcQa8G4Wwp+yxN3YzG6cnDwp1FV4VvsC/XnL8dN7paCJXjibixGVw4OgTqqKtyPfaH+AnFsM8INggrt8MHB3/pU+Vt5UDW+p+qd3f9MOv3cLX/dVoQbBJVAvAKpwIG3dvxtbBN/Kw+qxvd0bhW1YIGwrehzg6Dk63b4ugaVQDiY+AN/6Rvgr+VB1fieas+X24o+N8A5+LIdvq5BJRBvw/QVf+tT5W/lsSJ31GjyPdVeoGwrwg1wBk83/bgSVALlYOIP/K1Plb+Vxx/V5zfnrhpNvqfaC5RtxTg3wP/x1Pg3Zw5Z7sp4Eb58DECg8cXYJjUNSc9YKzWrz2/OnY9X4HuqvUDZVtTcAPJc08/ZV5azL+tc56ueQO4E7QveHFW4NjUHjHJctfr+5txdo+mO7ylYOv0Hwj5NuAHkmaafqg7ef/5gr2aP7Kw/v7+3TkElEA4m/sRdfapqOlnV5eTMWCv/U7FNDx87Ua/fnCeaR+rzPQVbp39/36cJN4Bqd6Cs61VZdYGpZ6um2jxnWJ2Dir8fTLzN01fJ5zpZWakvVMW2bBwWqmMnyryyTW06/XfmJqxLOPGnGs1g6/QfCDVUhBtA5z5QunJVVlNgIqjUj6evkmtzsvJ1x0p3nWDO3JYVvLFNjU6Hm4pt6Eo48ZcaTSsF3XMJlBoqwg2CTnUnheoOlK5elfnTlaWVeOMq+Vwnq4p9yJUmRndw5QRT1X5/9ras4K1taiQ9cU1vtWgS7nI48YcLBV8HXW8JpBoqvwg3Tz75pB5++GHl5+crNTVVTzzxhAYMGFDt8q+++qruuece7d+/X+eff74eeugh/epXv/JiiRGoznVSqOpAWZ+rMn+5sqwPf6uC9sZVck0nq6o6ifc8r6nXvl9XTjDV7fdVbcsK3tqmfZOb+cV+VZ3a7P/BciETSDVUPr8VfOXKlZo1a5bmzZunnTt3KjU1VSNGjNDBgwerXH7Lli0aN26cJk+erF27dmn06NEaPXq0MjMzvVxyBBpXbx2t763YSTERSmvfwu9+/LXhqdvj68Mbt8ZXd7urpCo7iXszuNZ1OIGa9vuqtmUFb21Tf/5d1GX/H9u/jTbPGaZXpl6ozXOG+WVTTX0F0rAUPg83jz76qKZOnapJkyapa9euWrp0qSIjI/Xss89Wufzjjz+uyy67THfeeae6dOmihQsXqk+fPvrb3/7m5ZIj0LgyxowUmAdld3DnOCLu5K3vo6qTlav7kDvV9QRzrqvtM7flme/nrW3qr1zZ/wP5QqY2AulY6NNmqRMnTujTTz/V3LlzHdNCQkI0fPhwbd26tcrXbN26VbNmzXKaNmLECK1evbrK5UtLS1VaWur4f1FRUf0LjoBUn3ZxKzQv1ZU/V0F76/s4u5nSH/pW1LUJ5FxlPnNbRoaFqPhEuVe3qb/y5/3flwLlWOjTcFNQUKCysjIlJCQ4TU9ISNBXX31V5Wvy8/OrXD4/P7/K5dPT07VgwQL3FBgBrb7t4oFyUHYXfziR18QX34e/9K2oywmmNmUOtn27Nvx9//elQNhf/KJDsSfNnTvXqaanqKhIrVu39mGJ4EuBctXhD/zlRO5v/GUfqssJxl/KHEjY/wObT8NNbGysQkNDdeDAAafpBw4cUGJiYpWvSUxMrNPy4eHhCg8Pd0+BYQmBcNXhLzgpVi0Q96FALLOvsf8HLp92KA4LC1Pfvn21du1ax7Ty8nKtXbtWaWlpVb4mLS3NaXlJWrNmTbXLA6gfq3eSBGrC/h+YfN4sNWvWLE2YMEH9+vXTgAEDtHjxYh07dkyTJk2SJI0fP16tWrVSenq6JGnGjBkaMmSIHnnkEY0aNUorVqzQjh079PTTT/tyNQAAgJ/webgZO3asDh06pHvvvVf5+fnq1auXPvjgA0en4ZycHIWE/K+CaeDAgXr55Zf1pz/9SXfddZfOP/98rV69Wt27d/fVKgAAAD9iM8ZUMz6lNRUVFSkmJkZ2u13R0dG+Lg4AAKiFupy/fT6IHwAAgDsRbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKX4fIRib6sYs7CoqMjHJQEAALVVcd6uzdjDQRdujhw5Iklq3bq1j0sCAADq6siRI4qJialxmaB7/EJ5ebl+/PFHRUVFyWaz1fp1RUVFat26tXJzc4P6sQ1sB7ZBBbbDaWwHtkEFtsNpntoOxhgdOXJELVu2dHrmZFWCruYmJCRE5513nsuvj46ODuqdtgLbgW1Qge1wGtuBbVCB7XCaJ7bDuWpsKtChGAAAWArhBgAAWArhppbCw8M1b948hYeH+7ooPsV2YBtUYDucxnZgG1RgO5zmD9sh6DoUAwAAa6PmBgAAWArhBgAAWArhBgAAWArhBgAAWEpQh5slS5aoZ8+ejoGG0tLS9P777zvmHz9+XNOmTVOLFi3UpEkTXXXVVTpw4IDTe+Tk5GjUqFGKjIxUfHy87rzzTp06dcrbq+I2ixYtks1m08yZMx3TgmE7zJ8/Xzabzemvc+fOjvnBsA0q/PDDD7r++uvVokULRUREqEePHtqxY4djvjFG9957r5KSkhQREaHhw4frm2++cXqPw4cP67rrrlN0dLSaNm2qyZMn6+jRo95eFZclJydX2h9sNpumTZsmKTj2h7KyMt1zzz1KSUlRRESE2rdvr4ULFzo91ycY9gXp9HD/M2fOVNu2bRUREaGBAwdq+/btjvlW3A6bNm3S5ZdfrpYtW8pms2n16tVO8921zp999pkuvvhiNWrUSK1bt9af//xn96yACWJvvfWWeffdd83XX39t9u7da+666y7TsGFDk5mZaYwx5qabbjKtW7c2a9euNTt27DAXXnihGThwoOP1p06dMt27dzfDhw83u3btMu+9956JjY01c+fO9dUq1ct///tfk5ycbHr27GlmzJjhmB4M22HevHmmW7duJi8vz/F36NAhx/xg2AbGGHP48GHTtm1bM3HiRLNt2zbz7bffmg8//NDs27fPscyiRYtMTEyMWb16tdm9e7e54oorTEpKiikpKXEsc9lll5nU1FTzySefmP/85z+mQ4cOZty4cb5YJZccPHjQaV9Ys2aNkWTWr19vjAmO/eGBBx4wLVq0MO+8847Jzs42r776qmnSpIl5/PHHHcsEw75gjDFXX3216dq1q9m4caP55ptvzLx580x0dLT5/vvvjTHW3A7vvfeeufvuu82qVauMJPPGG284zXfHOtvtdpOQkGCuu+46k5mZaV555RUTERFhnnrqqXqXP6jDTVWaNWtmnnnmGVNYWGgaNmxoXn31Vce8L7/80kgyW7duNcac/vJDQkJMfn6+Y5klS5aY6OhoU1pa6vWy18eRI0fM+eefb9asWWOGDBniCDfBsh3mzZtnUlNTq5wXLNvAGGNmz55tLrroomrnl5eXm8TERPPwww87phUWFprw8HDzyiuvGGOM+eKLL4wks337dscy77//vrHZbOaHH37wXOE9aMaMGaZ9+/amvLw8aPaHUaNGmRtvvNFp2pgxY8x1111njAmefaG4uNiEhoaad955x2l6nz59zN133x0U2+HscOOudf773/9umjVr5vSbmD17tunUqVO9yxzUzVJnKisr04oVK3Ts2DGlpaXp008/1cmTJzV8+HDHMp07d1abNm20detWSdLWrVvVo0cPJSQkOJYZMWKEioqK9Pnnn3t9Hepj2rRpGjVqlNP6Sgqq7fDNN9+oZcuWateuna677jrl5ORICq5t8NZbb6lfv3767W9/q/j4ePXu3VvLli1zzM/OzlZ+fr7TtoiJidEFF1zgtC2aNm2qfv36OZYZPny4QkJCtG3bNu+tjJucOHFCL730km688UbZbLag2R8GDhyotWvX6uuvv5Yk7d69W5s3b9bIkSMlBc++cOrUKZWVlalRo0ZO0yMiIrR58+ag2Q5nctc6b926VYMHD1ZYWJhjmREjRmjv3r36+eef61XGoHtw5tn27NmjtLQ0HT9+XE2aNNEbb7yhrl27KiMjQ2FhYWratKnT8gkJCcrPz5ck5efnOx28KuZXzAsUK1as0M6dO53akCvk5+cHxXa44IILtHz5cnXq1El5eXlasGCBLr74YmVmZgbNNpCkb7/9VkuWLNGsWbN01113afv27br11lsVFhamCRMmONalqnU9c1vEx8c7zW/QoIGaN28eUNuiwurVq1VYWKiJEydKCp7fxJw5c1RUVKTOnTsrNDRUZWVleuCBB3TddddJUtDsC1FRUUpLS9PChQvVpUsXJSQk6JVXXtHWrVvVoUOHoNkOZ3LXOufn5yslJaXSe1TMa9asmctlDPpw06lTJ2VkZMhut+u1117ThAkTtHHjRl8Xy2tyc3M1Y8YMrVmzptKVSTCpuBqVpJ49e+qCCy5Q27Zt9a9//UsRERE+LJl3lZeXq1+/fnrwwQclSb1791ZmZqaWLl2qCRMm+Lh0vvGPf/xDI0eOVMuWLX1dFK/617/+pX/+8596+eWX1a1bN2VkZGjmzJlq2bJl0O0LL774om688Ua1atVKoaGh6tOnj8aNG6dPP/3U10VDNYK+WSosLEwdOnRQ3759lZ6ertTUVD3++ONKTEzUiRMnVFhY6LT8gQMHlJiYKElKTEysdIdExf8rlvF3n376qQ4ePKg+ffqoQYMGatCggTZu3Ki//vWvatCggRISEoJiO5ytadOm6tixo/bt2xc0+4IkJSUlqWvXrk7TunTp4miiq1iXqtb1zG1x8OBBp/mnTp3S4cOHA2pbSNJ3332nf//735oyZYpjWrDsD3feeafmzJmja665Rj169NANN9yg2267Tenp6ZKCa19o3769Nm7cqKNHjyo3N1f//e9/dfLkSbVr1y6otkMFd62zJ38nQR9uzlZeXq7S0lL17dtXDRs21Nq1ax3z9u7dq5ycHKWlpUmS0tLStGfPHqcvcM2aNYqOjq50gvBXl1xyifbs2aOMjAzHX79+/XTdddc5/h0M2+FsR48eVVZWlpKSkoJmX5CkQYMGae/evU7Tvv76a7Vt21aSlJKSosTERKdtUVRUpG3btjlti8LCQqer2nXr1qm8vFwXXHCBF9bCfZ577jnFx8dr1KhRjmnBsj8UFxcrJMT5FBEaGqry8nJJwbcvSFLjxo2VlJSkn3/+WR9++KF+/etfB+V2cNc6p6WladOmTTp58qRjmTVr1qhTp071apKSFNy3gs+ZM8ds3LjRZGdnm88++8zMmTPH2Gw289FHHxljTt/u2aZNG7Nu3TqzY8cOk5aWZtLS0hyvr7jd89JLLzUZGRnmgw8+MHFxcQF1u2dVzrxbypjg2A6333672bBhg8nOzjYff/yxGT58uImNjTUHDx40xgTHNjDm9HAADRo0MA888ID55ptvzD//+U8TGRlpXnrpJccyixYtMk2bNjVvvvmm+eyzz8yvf/3rKm8B7d27t9m2bZvZvHmzOf/88/36tteqlJWVmTZt2pjZs2dXmhcM+8OECRNMq1atHLeCr1q1ysTGxpo//vGPjmWCZV/44IMPzPvvv2++/fZb89FHH5nU1FRzwQUXmBMnThhjrLkdjhw5Ynbt2mV27dplJJlHH33U7Nq1y3z33XfGGPesc2FhoUlISDA33HCDyczMNCtWrDCRkZHcCl5fN954o2nbtq0JCwszcXFx5pJLLnEEG2OMKSkpMbfccotp1qyZiYyMNFdeeaXJy8tzeo/9+/ebkSNHmoiICBMbG2tuv/12c/LkSW+viludHW6CYTuMHTvWJCUlmbCwMNOqVSszduxYp7FdgmEbVHj77bdN9+7dTXh4uOncubN5+umnneaXl5ebe+65xyQkJJjw8HBzySWXmL179zot89NPP5lx48aZJk2amOjoaDNp0iRz5MgRb65GvX344YdGUqV1MyY49oeioiIzY8YM06ZNG9OoUSPTrl07c/fddzvdthss+8LKlStNu3btTFhYmElMTDTTpk0zhYWFjvlW3A7r1683kir9TZgwwRjjvnXevXu3ueiii0x4eLhp1aqVWbRokVvKbzPmjOEmAQAAAhx9bgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgDUytChQzVz5kxfF8Pj5s+fr169evm6GADqgXADICicOHHCq59njNGpU6e8+pkATiPcADiniRMnauPGjXr88cdls9lks9m0f/9+ZWZmauTIkWrSpIkSEhJ0ww03qKCgwPG6oUOH6g9/+INmzpypZs2aKSEhQcuWLdOxY8c0adIkRUVFqUOHDnr//fcdr9mwYYNsNpveffdd9ezZU40aNdKFF16ozMxMpzJt3rxZF198sSIiItS6dWvdeuutOnbsmGN+cnKyFi5cqPHjxys6Olq/+93vJEmzZ89Wx44dFRkZqXbt2umee+5xPJV4+fLlWrBggXbv3u1Yz+XLl2v//v2y2WzKyMhwvH9hYaFsNps2bNjgVO73339fffv2VXh4uDZv3qzy8nKlp6crJSVFERERSk1N1WuvveburwjAGQg3AM7p8ccfV1pamqZOnaq8vDzl5eUpKipKv/jFL9S7d2/t2LFDH3zwgQ4cOKCrr77a6bXPP/+8YmNj9d///ld/+MMfdPPNN+u3v/2tBg4cqJ07d+rSSy/VDTfcoOLiYqfX3XnnnXrkkUe0fft2xcXF6fLLL3eEkKysLF122WW66qqr9Nlnn2nlypXavHmzpk+f7vQef/nLX5Samqpdu3bpnnvukSRFRUVp+fLl+uKLL/T4449r2bJleuyxxyRJY8eO1e23365u3bo51nPs2LF12lZz5szRokWL9OWXX6pnz55KT0/XCy+8oKVLl+rzzz/Xbbfdpuuvv14bN26s0/sCqAO3PH4TgOWd/bT4hQsXmksvvdRpmdzcXKcnaQ8ZMsRcdNFFjvmnTp0yjRs3NjfccINjWl5enpFktm7daoz539OIV6xY4Vjmp59+MhEREWblypXGGGMmT55sfve73zl99n/+8x8TEhJiSkpKjDHGtG3b1owePfqc6/Xwww+bvn37Ov4/b948k5qa6rRMdna2kWR27drlmPbzzz8bSWb9+vVO5V69erVjmePHj5vIyEizZcsWp/ebPHmyGTdu3DnLBsA1DXwZrAAErt27d2v9+vVq0qRJpXlZWVnq2LGjJKlnz56O6aGhoWrRooV69OjhmJaQkCBJOnjwoNN7pKWlOf7dvHlzderUSV9++aXjsz/77DP985//dCxjjFF5ebmys7PVpUsXSVK/fv0qlW3lypX661//qqysLB09elSnTp1SdHR0nde/Omd+5r59+1RcXKxf/vKXTsucOHFCvXv3dttnAnBGuAHgkqNHj+ryyy/XQw89VGleUlKS498NGzZ0mmez2Zym2Ww2SVJ5eXmdPvv3v/+9br311krz2rRp4/h348aNneZt3bpV1113nRYsWKARI0YoJiZGK1as0COPPFLj54WEnG7BN8Y4plU0kZ3tzM88evSoJOndd99Vq1atnJYLDw+v8TMBuI5wA6BWwsLCVFZW5vh/nz599Prrrys5OVkNGrj/UPLJJ584gsrPP/+sr7/+2lEj06dPH33xxRfq0KFDnd5zy5Ytatu2re6++27HtO+++85pmbPXU5Li4uIkSXl5eY4alzM7F1ena9euCg8PV05OjoYMGVKnsgJwHR2KAdRKcnKytm3bpv3796ugoEDTpk3T4cOHNW7cOG3fvl1ZWVn68MMPNWnSpErhwBX33Xef1q5dq8zMTE2cOFGxsbEaPXq0pNN3PG3ZskXTp09XRkaGvvnmG7355puVOhSf7fzzz1dOTo5WrFihrKws/fWvf9Ubb7xRaT2zs7OVkZGhgoIClZaWKiIiQhdeeKGjo/DGjRv1pz/96ZzrEBUVpTvuuEO33Xabnn/+eWVlZWnnzp164okn9Pzzz7u8bQDUjHADoFbuuOMOhYaGqmvXroqLi9OJEyf08ccfq6ysTJdeeql69OihmTNnqmnTpo5mnPpYtGiRZsyYob59+yo/P19vv/22wsLCJJ3ux7Nx40Z9/fXXuvjii9W7d2/de++9atmyZY3vecUVV+i2227T9OnT1atXL23ZssVxF1WFq666SpdddpmGDRumuLg4vfLKK5KkZ599VqdOnVLfvn01c+ZM3X///bVaj4ULF+qee+5Renq6unTpossuu0zvvvuuUlJSXNgqAGrDZs5sRAYAH9uwYYOGDRumn3/+WU2bNvV1cQAEIGpuAACApRBuAACApdAsBQAALIWaGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCn/Hwm4xhZQNiCSAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(poly_surr, data_validation, filename=\"pysmo_poly_val_scatter2D.pdf\")\n", + "surrogate_parity(poly_surr, data_validation, filename=\"pysmo_poly_val_parity.pdf\")\n", + "surrogate_residual(poly_surr, data_validation, filename=\"pysmo_poly_val_residual.pdf\")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB+0lEQVR4nO3de3gU9d3//9cmkJBAEg45ckwIJ5EQkIMGlICggXqrEb2LclUOAp6gHqhWYqsCWoLWA61VsFilalEqglqlKuX4RZCCGAVUfhLBREmAaNlIEgIm8/uDO1sCOexudndmJ8/Hde11wezs7ntnJjOv/cxnPuMwDMMQAACATYSYXQAAAIAvEW4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AmGLu3LlyOBxuzetwODR37ly/1jNy5EiNHDnSsu8HwH2EG6CZW7ZsmRwOh+vRokULderUSVOmTNF3331ndnmWk5ycXGt5xcfH65JLLtHq1at98v7l5eWaO3euNm7c6JP3A5ojwg0ASdL8+fP18ssva8mSJRo3bpxeeeUVZWZm6sSJE375vN/+9reqqKjwy3v724ABA/Tyyy/r5Zdf1j333KNDhw5p/PjxWrJkSZPfu7y8XPPmzSPcAE3QwuwCAFjDuHHjNHjwYEnS9OnTFRsbq0cffVRvv/22fv7zn/v881q0aKEWLYJzF9SpUyf94he/cP1/0qRJ6tGjh5566indeuutJlYGQKLlBkA9LrnkEklSfn5+relffvmlrrvuOrVv316tWrXS4MGD9fbbb9ea59SpU5o3b5569uypVq1aqUOHDrr44ou1du1a1zx19bmprKzU3Xffrbi4OEVFRemqq67St99+e05tU6ZMUXJy8jnT63rPF198UZdeeqni4+MVHh6uvn37avHixR4ti8YkJibqvPPO04EDBxqc78iRI5o2bZoSEhLUqlUrpaen669//avr+YMHDyouLk6SNG/ePNepL3/3NwLsJjh/NgHwu4MHD0qS2rVr55q2d+9eDR8+XJ06ddKcOXPUunVr/f3vf1d2drbeeOMNXXPNNZJOh4zc3FxNnz5dQ4cOVWlpqXbu3Kldu3bpsssuq/czp0+frldeeUUTJ07UsGHDtH79el1xxRVN+h6LFy/W+eefr6uuukotWrTQP/7xD91+++2qrq7WzJkzm/TeNU6dOqXCwkJ16NCh3nkqKio0cuRI7d+/X7NmzVJKSopef/11TZkyRceOHdOdd96puLg4LV68WLfddpuuueYajR8/XpLUv39/n9QJNBsGgGbtxRdfNCQZ//rXv4yjR48ahYWFxsqVK424uDgjPDzcKCwsdM07evRoIy0tzThx4oRrWnV1tTFs2DCjZ8+ermnp6enGFVdc0eDnPvTQQ8aZu6C8vDxDknH77bfXmm/ixImGJOOhhx5yTZs8ebLRrVu3Rt/TMAyjvLz8nPmysrKM7t2715qWmZlpZGZmNlizYRhGt27djMsvv9w4evSocfToUePTTz81rr/+ekOS8ctf/rLe91u0aJEhyXjllVdc006ePGlkZGQYbdq0MUpLSw3DMIyjR4+e830BeIbTUgAkSWPGjFFcXJy6dOmi6667Tq1bt9bbb7+tzp07S5J++OEHrV+/Xj//+c/1448/qqSkRCUlJfr++++VlZWlr776ynV1Vdu2bbV371599dVXbn/+mjVrJEl33HFHrel33XVXk75XRESE699Op1MlJSXKzMzU119/LafT6dV7fvDBB4qLi1NcXJzS09P1+uuv68Ybb9Sjjz5a72vWrFmjxMRE3XDDDa5pLVu21B133KHjx49r06ZNXtUC4FyclgIgSXrmmWfUq1cvOZ1OvfDCC9q8ebPCw8Ndz+/fv1+GYeiBBx7QAw88UOd7HDlyRJ06ddL8+fN19dVXq1evXurXr5/Gjh2rG2+8scHTK998841CQkKUmppaa3rv3r2b9L0+/PBDPfTQQ9q2bZvKy8trPed0OhUTE+Pxe1544YV65JFH5HA4FBkZqfPOO09t27Zt8DXffPONevbsqZCQ2r8pzzvvPNfzAHyDcANAkjR06FDX1VLZ2dm6+OKLNXHiRO3bt09t2rRRdXW1JOmee+5RVlZWne/Ro0cPSdKIESOUn5+vt956Sx988IGef/55PfXUU1qyZImmT5/e5FrrG/yvqqqq1v/z8/M1evRo9enTR08++aS6dOmisLAwrVmzRk899ZTrO3kqNjZWY8aM8eq1APyPcAPgHKGhocrNzdWoUaP0pz/9SXPmzFH37t0lnT6V4s6BvX379po6daqmTp2q48ePa8SIEZo7d2694aZbt26qrq5Wfn5+rdaaffv2nTNvu3btdOzYsXOmn9368Y9//EOVlZV6++231bVrV9f0DRs2NFq/r3Xr1k2fffaZqqura7XefPnll67npfqDGwD30ecGQJ1GjhypoUOHatGiRTpx4oTi4+M1cuRIPffccyoqKjpn/qNHj7r+/f3339d6rk2bNurRo4cqKyvr/bxx48ZJkv74xz/Wmr5o0aJz5k1NTZXT6dRnn33mmlZUVHTOKMGhoaGSJMMwXNOcTqdefPHFeuvwl5/97GcqLi7WihUrXNN++uknPf3002rTpo0yMzMlSZGRkZJUZ3gD4B5abgDU695779X//u//atmyZbr11lv1zDPP6OKLL1ZaWppmzJih7t276/Dhw9q2bZu+/fZbffrpp5Kkvn37auTIkRo0aJDat2+vnTt3auXKlZo1a1a9nzVgwADdcMMNevbZZ+V0OjVs2DCtW7dO+/fvP2fe66+/Xvfdd5+uueYa3XHHHSovL9fixYvVq1cv7dq1yzXf5ZdfrrCwMF155ZW65ZZbdPz4cS1dulTx8fF1BjR/uvnmm/Xcc89pypQp+vjjj5WcnKyVK1fqww8/1KJFixQVFSXpdAfovn37asWKFerVq5fat2+vfv36qV+/fgGtFwhqZl+uBcBcNZeC79ix45znqqqqjNTUVCM1NdX46aefDMMwjPz8fGPSpElGYmKi0bJlS6NTp07G//zP/xgrV650ve6RRx4xhg4darRt29aIiIgw+vTpY/zud78zTp486Zqnrsu2KyoqjDvuuMPo0KGD0bp1a+PKK680CgsL67w0+oMPPjD69etnhIWFGb179zZeeeWVOt/z7bffNvr372+0atXKSE5ONh599FHjhRdeMCQZBw4ccM3nyaXgjV3mXt/7HT582Jg6daoRGxtrhIWFGWlpacaLL754zmu3bt1qDBo0yAgLC+OycMALDsM4o70WAAAgyNHnBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2EqzG8Svurpahw4dUlRUFMOcAwAQJAzD0I8//qiOHTuecwPaszW7cHPo0CF16dLF7DIAAIAXCgsL1blz5wbnaXbhpmaI88LCQkVHR5tcDQAAcEdpaam6dOniOo43pNmFm5pTUdHR0YQbAACCjDtdSuhQDAAAbIVwAwAAbIVwAwAAbKXZ9blxV1VVlU6dOmV2GXBTy5YtFRoaanYZAAALINycxTAMFRcX69ixY2aXAg+1bdtWiYmJjF8EAM0c4eYsNcEmPj5ekZGRHCiDgGEYKi8v15EjRyRJSUlJJlcEADAT4eYMVVVVrmDToUMHs8uBByIiIiRJR44cUXx8PKeoAKAZo0PxGWr62ERGRppcCbxRs97oKwUAzRvhpg6cigpOrDcAgES4AQAANkO4QdDYuHGjHA4HV7IBABpkarjJzc3VkCFDFBUVpfj4eGVnZ2vfvn0NvmbZsmVyOBy1Hq1atQpQxfY2d+5cDRgwwOwyAMASipwV2ppfoiJnhdmlwEOmXi21adMmzZw5U0OGDNFPP/2k+++/X5dffrk+//xztW7dut7XRUdH1wpB9LUIrFOnTqlly5ZmlwEAfrNiR4FyVu1WtSGFOKTc8WmaMKSr2WXBTaa23Lz33nuaMmWKzj//fKWnp2vZsmUqKCjQxx9/3ODrHA6HEhMTXY+EhIQAVWxt1dXVys3NVUpKiiIiIpSenq6VK1dK+u8pnXXr1mnw4MGKjIzUsGHDXCFx2bJlmjdvnj799FNXi9iyZcsknV7eixcv1lVXXaXWrVvrd7/7XYN11HzW+++/r4EDByoiIkKXXnqpjhw5on/+858677zzFB0drYkTJ6q8vNz1usrKSt1xxx2Kj49Xq1atdPHFF2vHjh3+WVgAUI8iZ4Ur2EhStSHdv2oPLThBxFJ9bpxOpySpffv2Dc53/PhxdevWTV26dNHVV1+tvXv31jtvZWWlSktLaz0CJdBNmrm5uXrppZe0ZMkS7d27V3fffbd+8YtfaNOmTa55fvOb3+iJJ57Qzp071aJFC910002SpAkTJuhXv/qVzj//fBUVFamoqEgTJkxwvW7u3Lm65pprtHv3btdrGjN37lz96U9/0tatW1VYWKif//znWrRokZYvX653331XH3zwgZ5++mnX/L/+9a/1xhtv6K9//at27dqlHj16KCsrSz/88IOPlhAANO5ASZkr2NSoMgwdLCmv+wWwHMsM4lddXa277rpLw4cPV79+/eqdr3fv3nrhhRfUv39/OZ1OPf744xo2bJj27t2rzp07nzN/bm6u5s2b58/S6xToJs3KykotWLBA//rXv5SRkSFJ6t69u7Zs2aLnnntON998syTpd7/7nTIzMyVJc+bM0RVXXKETJ04oIiJCbdq0UYsWLZSYmHjO+0+cOFFTp071qKZHHnlEw4cPlyRNmzZNOTk5ys/PV/fu3SVJ1113nTZs2KD77rtPZWVlWrx4sZYtW6Zx48ZJkpYuXaq1a9fqL3/5i+69917vFgwAeCgltrVCHKoVcEIdDiXHMgZasLBMy83MmTO1Z88evfbaaw3Ol5GRoUmTJmnAgAHKzMzUqlWrFBcXp+eee67O+XNycuR0Ol2PwsJCf5RfixlNmvv371d5ebkuu+wytWnTxvV46aWXlJ+f75qvf//+rn/X3Kag5rYFDRk8eLDHNZ35WQkJCYqMjHQFm5ppNZ+dn5+vU6dOucKQdPpmmEOHDtUXX3zh8WcDgLeSYiKUOz5Nof/XnzPU4dCC8f2UFBNhcmVwlyVabmbNmqV33nlHmzdvrrP1pSEtW7bUwIEDtX///jqfDw8PV3h4uC/KdFtDTZr++uM4fvy4JOndd99Vp06daj0XHh7uCjhndgSu6YhdXV3d6Ps31MG7Pmd/1tmdkB0Oh1ufDQCBNmFIV43oFaeDJeVKjo0k2AQZU1tuDMPQrFmztHr1aq1fv14pKSkev0dVVZV2795tqZsl1jRpnsnfTZp9+/ZVeHi4CgoK1KNHj1qPLl26uPUeYWFhqqqq8luNDUlNTVVYWJg+/PBD17RTp05px44d6tu3ryk1AWjekmIilJHagWAThExtuZk5c6aWL1+ut956S1FRUSouLpYkxcTEuG6EOGnSJHXq1Em5ubmSpPnz5+uiiy5Sjx49dOzYMf3+97/XN998o+nTp5v2Pc5W06R5/6o9qjKMgDRpRkVF6Z577tHdd9+t6upqXXzxxXI6nfrwww8VHR2tbt26NfoeycnJOnDggPLy8tS5c2dFRUUFrNWrdevWuu2223Tvvfeqffv26tq1qx577DGVl5dr2rRpAakBAGAPpoabxYsXS5JGjhxZa/qLL76oKVOmSJIKCgoUEvLfBqb//Oc/mjFjhoqLi9WuXTsNGjRIW7dutdyvezOaNB9++GHFxcUpNzdXX3/9tdq2basLLrhA999/v1unf6699lqtWrVKo0aN0rFjx2qth0BYuHChqqurdeONN+rHH3/U4MGD9f7776tdu3YBqwEAEPwchmEYjc9mH6WlpYqJiZHT6VR0dHSt506cOKEDBw4oJSWFUY+DEOsPAOyroeP32SxztRQAAIAvEG7gsVtvvbXW5eZnPm699VazywMANHOWuBQcwWX+/Pm655576nyusaZCAAD8jXADj8XHxys+Pt7sMgAAqBOnpQAAgK0QburAqLnBifUGAJA4LVVLWFiYQkJCdOjQIcXFxSksLMx1iwJYl2EYOnnypI4ePaqQkBCFhYWZXRIAwESEmzOEhIQoJSVFRUVFOnTokNnlwEORkZHq2rVrrUEfAQDND+HmLGFhYeratat++ukn0+6zBM+FhoaqRYsWtLQBAAg3dam5g/XZd7EGAADWR/s9AACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFVPDTW5uroYMGaKoqCjFx8crOztb+/bta/R1r7/+uvr06aNWrVopLS1Na9asCUC1AAAgGJgabjZt2qSZM2fqo48+0tq1a3Xq1CldfvnlKisrq/c1W7du1Q033KBp06bpk08+UXZ2trKzs7Vnz54AVg4AAKzKYRiGYXYRNY4ePar4+Hht2rRJI0aMqHOeCRMmqKysTO+8845r2kUXXaQBAwZoyZIljX5GaWmpYmJi5HQ6FR0d7bPaAQCA/3hy/LZUnxun0ylJat++fb3zbNu2TWPGjKk1LSsrS9u2batz/srKSpWWltZ6AAAA+7JMuKmurtZdd92l4cOHq1+/fvXOV1xcrISEhFrTEhISVFxcXOf8ubm5iomJcT26dOni07oBAIC1WCbczJw5U3v27NFrr73m0/fNycmR0+l0PQoLC336/gAAwFpamF2AJM2aNUvvvPOONm/erM6dOzc4b2Jiog4fPlxr2uHDh5WYmFjn/OHh4QoPD/dZrQAAwNpMbbkxDEOzZs3S6tWrtX79eqWkpDT6moyMDK1bt67WtLVr1yojI8NfZQIAgCBiasvNzJkztXz5cr311luKiopy9ZuJiYlRRESEJGnSpEnq1KmTcnNzJUl33nmnMjMz9cQTT+iKK67Qa6+9pp07d+rPf/6zad8DAABYh6ktN4sXL5bT6dTIkSOVlJTkeqxYscI1T0FBgYqKilz/HzZsmJYvX64///nPSk9P18qVK/Xmm2822AkZAAA0H5Ya5yYQGOcGAIDgE7Tj3AAAADQV4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4cYmipwV2ppfoiJnhdmlAABgqhZmF4CmW7GjQDmrdqvakEIcUu74NE0Y0tXssgAAMAUtN0GuyFnhCjaSVG1I96/aQwsOAKDZItwEuQMlZa5gU6PKMHSwpNycggAAMBnhJsilxLZWiKP2tFCHQ8mxkeYUBACAyQg3QS4pJkK549MU6jidcEIdDi0Y309JMREmVwYAgDnoUGwDE4Z01YhecTpYUq7k2EiCDQCgWSPc2ERSTAShBgAAcVoKAADYDOEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEG+D9FzgptzS/hjuoAEOQYoRiQtGJHgXJW7Va1IYU4pNzxaZowpKvZZQEAvEDLDZq9ImeFK9hIUrUh3b9qDy04ABCkCDdo9g6UlLmCTY0qw9DBknJzCgIANAnhBs1eSmxrhThqTwt1OJQcG2lOQQCAJjE13GzevFlXXnmlOnbsKIfDoTfffLPB+Tdu3CiHw3HOo7i4ODAFw5aSYiKUOz5NoY7TCSfU4dCC8f24yzoABClTOxSXlZUpPT1dN910k8aPH+/26/bt26fo6GjX/+Pj4/1RHpqRCUO6akSvOB0sKVdybCTBBgCCmKnhZty4cRo3bpzHr4uPj1fbtm19XxCataSYCEINANhAUPa5GTBggJKSknTZZZfpww8/NLucgGEcFgAAGhdU49wkJSVpyZIlGjx4sCorK/X8889r5MiR2r59uy644II6X1NZWanKykrX/0tLSwNVrk8xDgsAAO4JqnDTu3dv9e7d2/X/YcOGKT8/X0899ZRefvnlOl+Tm5urefPmBapEv6hvHJYRveI4jQIAwFmC8rTUmYYOHar9+/fX+3xOTo6cTqfrUVhYGMDqfINxWAAAcF9QtdzUJS8vT0lJSfU+Hx4ervDw8ABW5Hs147CcGXAYhwUAgLqZGm6OHz9eq9XlwIEDysvLU/v27dW1a1fl5OTou+++00svvSRJWrRokVJSUnT++efrxIkTev7557V+/Xp98MEHZn2FgKgZh+X+VXtUZRiMwwIAQAPcDjeedMQ9cwyahuzcuVOjRo1y/X/27NmSpMmTJ2vZsmUqKipSQUGB6/mTJ0/qV7/6lb777jtFRkaqf//++te//lXrPeyKcVgAAHCPwzAMo/HZpJCQEDkcjgbnMQxDDodDVVVVPinOH0pLSxUTEyOn0+l2CAP8pchZoQMlZUqJbU1gBYAGeHL8drvlZsOGDU0uDMB/cXk/APiH2+EmMzPTn3UAzQqX9wOA/3jdofjYsWP6y1/+oi+++EKSdP755+umm25STEyMz4oD7Kqhy/sJNwDQNF6Nc7Nz506lpqbqqaee0g8//KAffvhBTz75pFJTU7Vr1y5f1wjYTs3l/Wfi8n4A8A23OxSf6ZJLLlGPHj20dOlStWhxuvHnp59+0vTp0/X1119r8+bNPi/UV+hQDKtYsaPgnMv76XMDAHXz5PjtVbiJiIjQJ598oj59+tSa/vnnn2vw4MEqL7fuyLmEG1hJkbOCy/sBwA2eHL+9Oi0VHR1da/yZGoWFhYqKivLmLYFmKSkmQhmpHQg2AOBDXoWbCRMmaNq0aVqxYoUKCwtVWFio1157TdOnT9cNN9zg6xoBAADc5tXVUo8//rgcDocmTZqkn376SZLUsmVL3XbbbVq4cKFPCwQAAPCEV31uapSXlys/P1+SlJqaqshI61/pQZ8bAACCj19GKK5LZGSk0tLSmvIWAAAAPuVVuDlx4oSefvppbdiwQUeOHFF1dXWt5xnrBgAAmMWrcDNt2jR98MEHuu666zR06NBGb6gJAAAQKF6Fm3feeUdr1qzR8OHDfV0PAABAk3h1KXinTp0YzwYAAFiSV+HmiSee0H333advvvnG1/UAAAA0iVenpQYPHqwTJ06oe/fuioyMVMuWLWs9/8MPP/ikOAAAAE95FW5uuOEGfffdd1qwYIESEhLoUAwAACzDq3CzdetWbdu2Tenp6b6uBwAAoEm86nPTp08fVVRU+LoWAACAJvMq3CxcuFC/+tWvtHHjRn3//fcqLS2t9QAAADCLV/eWCgk5nYnO7mtjGIYcDoeqqqp8U50fcG8pAACCj9/vLbVhwwavCgMAAPA3r8JNZmamW/Pdfvvtmj9/vmJjY735GAAAAI951efGXa+88gp9cAAAQED5Ndx40Z0HAACgSfwabgAAAAKNcAMAAGyFcAMAAGyFcAMAAGzF43Dz008/af78+fr2228bnfcXv/gFA+UBAICA8mqE4qioKO3evVvJycl+KMm/GKEYAIDg48nx26vTUpdeeqk2bdrkVXEAAAD+5NUIxePGjdOcOXO0e/duDRo0SK1bt671/FVXXeWT4gAAADzVpBtn1vmG3DgTAAD4mN9vnFldXe1VYQAAAP7mVZ+bl156SZWVledMP3nypF566aUmFwUAAOAtr05LhYaGqqioSPHx8bWmf//994qPj+e0FAAA8Cm/Xy1lGIYcDsc507/99lvFxMR485YAAMAGipwV2ppfoiJnhWk1eNTnZuDAgXI4HHI4HBo9erRatPjvy6uqqnTgwAGNHTvW50UCAADrW7GjQDmrdqvakEIcUu74NE0Y0jXgdXgUbrKzsyVJeXl5ysrKUps2bVzPhYWFKTk5Wddee61PCwQAANZX5KxwBRtJqjak+1ft0YhecUqKiQhoLR6Fm4ceekiSlJycrAkTJqhVq1Z+KSpYFTkrdKCkTCmxrQO+IgEAMNOBkjJXsKlRZRg6WFJu7XBTY/LkyZJOXx115MiRcy4N79o18E1QZrNKUxwAAGZIiW2tEIdqBZxQh0PJsZEBr8WrDsVfffWVLrnkEkVERKhbt25KSUlRSkqKkpOTlZKS4usaLa++pjgzO1MBABBISTERyh2fptD/u+Ao1OHQgvH9TDmT4VXLzZQpU9SiRQu98847SkpKqvPKqebESk1xAACYZcKQrhrRK04HS8qVHBtp2jHQq3CTl5enjz/+WH369PF1PUHJSk1xAACYKSkmwvQf9l6dlurbt69KSkp8XUvQslJTHAAAzZ1XIxSvX79ev/3tb7VgwQKlpaWpZcuWtZ638si//hyhuMhZYXpT3Nm4ggsAYAeeHL+bfFfwM/vb1IxczO0XrIEruAAAduH3u4Jv2LDBq8IQOFYaTAkAgEDyqs9NZmamQkJCtHTpUs2ZM0c9evRQZmamCgoKFBoa6usag5aZ99do6AouAADszKtw88YbbygrK0sRERH65JNPVFlZKUlyOp1asGCBTwsMVit2FGj4wvWauHS7hi9crxU7CgL6+TVXcJ2JK7gAAM2BV+HmkUce0ZIlS7R06dJanYmHDx+uXbt2+ay4YGWFQf24ggsA0Fx51edm3759GjFixDnTY2JidOzYsabWFPSsMqifVQZTAgAgkLwKN4mJidq/f7+Sk5NrTd+yZYu6d+/ui7qCmpUG9bPCYEoAAASSV6elZsyYoTvvvFPbt2+Xw+HQoUOH9Le//U333HOPbrvtNl/XGHQ4JQQAgHm8Cjdz5szRxIkTNXr0aB0/flwjRozQ9OnTdcstt+iXv/yl2++zefNmXXnllerYsaMcDofefPPNRl+zceNGXXDBBQoPD1ePHj20bNkyb76C300Y0lVb5ozSqzMu0pY5oxhfBgCAAPEq3DgcDv3mN7/RDz/8oD179uijjz7S0aNH9fDDD3v0PmVlZUpPT9czzzzj1vwHDhzQFVdcoVGjRikvL0933XWXpk+frvfff9+br+F3STERykjtQIsNAAAB5NUIxf7gcDi0evVqZWdn1zvPfffdp3fffVd79uxxTbv++ut17Ngxvffee259TnMaoRgAALvw5PjtVcuNWbZt26YxY8bUmpaVlaVt27aZVBEAALAar66WMktxcbESEhJqTUtISFBpaakqKioUEXHu6Z/KykrXIIPS6eQHAADsK6habryRm5urmJgY16NLly5mlwQAAPwoqMJNYmKiDh8+XGva4cOHFR0dXWerjSTl5OTI6XS6HoWFhYEoFQAAmCSoTktlZGRozZo1taatXbtWGRkZ9b4mPDxc4eHh/i4NAABYhKktN8ePH1deXp7y8vIknb7UOy8vTwUFp28ymZOTo0mTJrnmv/XWW/X111/r17/+tb788ks9++yz+vvf/667777bjPIBAIAFmRpudu7cqYEDB2rgwIGSpNmzZ2vgwIF68MEHJUlFRUWuoCNJKSkpevfdd7V27Vqlp6friSee0PPPP6+srCxT6gcAANZjmXFuAoVxbpqmyFmhAyVlSoltzeCEAICA8eT4HVR9bmCuFTsKlLNqt6oNKcQh5Y5P47YSAADLCaqrpWCeImeFK9hIp+94fv+qPSpyVphbGAAAZyHcwC0HSspcwaZGlWHoYEm5OQUBAFAPwg3ckhLbWiGO2tNCHQ4lx0aaUxAAAPUg3MAtSTERyh2fplDH6YQT6nBowfh+dCoGAFgOHYrhtglDumpErzgdLClXcmwkwQYAYEmEG3gkKSaCUAMAsDROSwEAAFsh3AAAAFsh3AAAAFsh3MBjRc4Kbc0vYQA/AIAl0aEYHuEWDAAAq6PlBm7jFgwAgGBAuIHbuAUDACAYEG7gNm7BAAAIBoQbuI1bMAAAggEdiuERbsEAALA6wg08xi0YAABWxmkpAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABMwo2I/YNLwQEAMAE3IvYfWm4AAAgwbkTsX4QbAAACjBsR+xfhBgCAAONGxP5FuAEAIMC4EbF/0aEYAAATcCNi/yHcAABgEm5E7B+clgLQrDHOCGA/tNwAaLYYZwSwJ1puADRLjDMC2BfhBkCzxDgjgH0RbgA0S4wzAtgX4QZAs8Q4I4B90aEYQLPFOCOAPRFuADRrjDMC2A+npQAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbuB3Rc4Kbc0v4YaEAICAYBA/+NWKHQWuOy+HOKTc8WmaMKSr2WUBAGyMlhv4TZGzwhVsJKnakO5ftYcWHACAXxFu4DcHSspcwaZGlWHoYEm5OQUBAJoFwg38JiW2tUIctaeFOhxKjo00pyAgAOhjBpiPcAO/SYqJUO74NIU6TiecUIdDC8b34yaFsK0VOwo0fOF6TVy6XcMXrteKHQVmlwQ0Sw7DMIzGZ7OP0tJSxcTEyOl0Kjo62uxymoUiZ4UOlpQrOTaSYAPbKnJWaPjC9bVOxYY6HNoyZxTbPeADnhy/uVoKfpcUE8HOHbbXUB8ztn8EqyJnhQ6UlCkltnVQbceEGwDwgZo+Zme33NDHDMHK3aE8rBiA6HMDAD5AHzPfoVO2+dwdysOq/cwsEW6eeeYZJScnq1WrVrrwwgv173//u955ly1bJofDUevRqlWrAFYLAHWbMKSrtswZpVdnXKQtc0YxYKUXrHqwtKv6gqQ7Q3lYeSwz009LrVixQrNnz9aSJUt04YUXatGiRcrKytK+ffsUHx9f52uio6O1b98+1/8dDked8wFAoNHHzHv1HSxH9IpjmfpBQ6ed3DnNauV+Zqa33Dz55JOaMWOGpk6dqr59+2rJkiWKjIzUCy+8UO9rHA6HEhMTXY+EhIQAVgwA8AerDvxZX+tGMJ8+a6zVxZ3TrFYey8zUlpuTJ0/q448/Vk5OjmtaSEiIxowZo23bttX7uuPHj6tbt26qrq7WBRdcoAULFuj8888PRMkAAD+xYqfs+lo3gv2+ee60ukwY0lUjesXVO5RHTQC6f9UeVRmGpfqZmRpuSkpKVFVVdU7LS0JCgr788ss6X9O7d2+98MIL6t+/v5xOpx5//HENGzZMe/fuVefOnc+Zv7KyUpWVla7/l5aW+vZLAAB8wmoHy/paN/okRgX96TN3g2Rjp1kbC0BmMb3PjacyMjKUkZHh+v+wYcN03nnn6bnnntPDDz98zvy5ubmaN29eIEsEAHjJSgfL+lo3dhz8j2X7mrjLl0HSiv3MTA03sbGxCg0N1eHDh2tNP3z4sBITE916j5YtW2rgwIHav39/nc/n5ORo9uzZrv+XlpaqS5cu3hcNAPArqxws62vdGJLcznKnz7xhpSDpa6Z2KA4LC9OgQYO0bt0617Tq6mqtW7euVutMQ6qqqrR7924lJSXV+Xx4eLiio6NrPQAA1mDlTrn1dapN79LONmMaJcVEKCO1Q1DW3hDTT0vNnj1bkydP1uDBgzV06FAtWrRIZWVlmjp1qiRp0qRJ6tSpk3JzcyVJ8+fP10UXXaQePXro2LFj+v3vf69vvvlG06dPN/NrAAA8FAydcutr3bBzq4cdmB5uJkyYoKNHj+rBBx9UcXGxBgwYoPfee8/VybigoEAhIf9tYPrPf/6jGTNmqLi4WO3atdOgQYO0detW9e3b16yvgACz4lDfADwTTGPa1HeazCqnz3Au7gqOoBIMv/QANG5rfokmLt1+zvRXZ1ykjNQOJlQEq/Pk+G36IH6Au6w81DcAz1h5ADhPWbnfUHNFuEHQsOropQA8Z5cbjXIvLGsyvc8N4C4rjl4KwHvB3ik3mPoNNTe03CBo2OWXHoD/CuZLkWlNti5abhBUgv2XHgD7oDXZumi5QdAJ5l96AOyD1mTrouUGANAgu40t5cvvQ2uyNRFuAAD1stvYUv74PgzmZz2clgJga4xB4r1Ajy3l73XFWFnNBy03AGzLbq0OgdbQ1UC+bqkIxLry5/ex26m7YEfLDQBbasqvdFp7TgvUKMKBalHx1/dhID/rIdwAsCVvxyDhQPVfgboaKFDjxfjj+3Cqy5o4LQXAluoag0SSPvvuWL03ZmTE2XOdeTVQZFiIyk5WqchZ4dPlEcjxYnx9dVMgT91x6st9tNwAsKWkmAjdN7bPOdMfXfOlPi38T52vYcTZuiXFRKjghzJd8+xWv7RoBXq8GF+OlRWoU3e0KHqGcAPAttI6x5wzrVpS9rNb6zw42OFO1f7oLxSIUy8ThnTVljmj9OqMi7Rlzqig6fjtTTDzdB1x6stznJYCYFv1nZoy6jndVHOgun/VHlUZRtCNOOuvK44CderF3fFirHZ6xpNTXd6so0Ce+rILwg1gI1bb6ZutJqzkvLFb1Wc9V9/BIVhHnPVnfyEr3UPJqpf3uxPMvF1HVlr+wYLTUrAtO1zO68l3COQ5+WBathOGdNXqmcPk8OB0UzDev8yf/YU2/39HZZzx3g6HTGnRCvbTM96uI+5h5TlabkzAr2v/a8qvO6usH0++QyCv8rHqL+eGpHdpp4VBfLrJHf76dV+zbZ15THYY0ohecU16X28E++mZpqwjd1oUrbLvsgLCTYAF44Eh2DTlQG+V9ePpdwjUTt/duqy4kw3W003u8ld/obq2rWrJlEBRVzgIcUglx0/4/PJ0f2jqOmro1JdV9l1WQbgJIMbQCAxvD/RWWj+efgdf/Gp3J5C4U5eVd7J2v8GhPwKclfp7nB0OHI7TncN/+Wqe5ba1+vhjHVlp32UV9LkJIMbQCAxvL+e10vrx9Ds09Zy8u/11GqvLrD4RwdQH6Ez+qNvX/YWs1t+j5pLxZyYOlAy5TpdVG1LOG7vrHcPISny9jqy077IKWm4CyEq/gOzM26ZfK60fb76Dt78IPfnV11hd3rSaNfUUlpVbihoSTHVb7ZReUkyE2rUu01mbmmsMo4UWXpb+YKV9l1UQbgIo2MfQCCbe7Iyttn68/Q6e1ttYIDk7fDRUl6c72aYe4IO1Od6MupsaIq12Ss/TMYzszGr7Lisg3ASYL34BWbGzphV5szO24i9Uf9fQUCCpL3zUV5cnO1lfHOCD9eqZQNcdTK1E7vJmDCM7s9q+y2yEGxM05YBlx51UQ8wIclb7hepv9QUSSV6FD3d3sp4e4OvaFoK1OT6QdQdr65Y7Jgzpqj6JUcp+dmutcXiCYRvwh+a272oI4SaI2HknVZfmFuTMVFcg2Zpf4nXrgjs7WU8O8A21IAVjc3wg6/ZnK5EVWpGbwxhGZ7PCcrc6wk0QCdYmeG80tyBnpjN3lBmpHVzT/d264O4BvrFtIVib492tu6kHMn+tRyv9+AjWbcAbVlruVka4CSLB2gTvjeYU5MzU0I4yEK0L7hyU3NkWgrU5vrG6fXEg88d6tOJgjmcvSzu2bvCjz32EmyASrE3w3mhOQc4s7uwoA/GLuLEDfHPdFnx5IPP1evR0MEeHQ5ozro9uGZHapM91l11bN/jR5z7CTZBpLs2vzSnImcXdHaXZrSLNdVvw9YHMl+uxscB5djAzDCl3zZeSId2S6d+AY+fWjeYa9L1BuAlCZh9sAuXsICdJW/NLbNXMbKZg2lE2l1B/JiuvH28Gc5SkR//5pa4a0NGv68/OrRvNNeh7g3ADS6sJcnZtZjZTsO0ogyHU+7Kfh9XXT2ODOdbc9+lMgbjhpq9DodX67jTHoO8Nh2GcvfnZW2lpqWJiYuR0OhUdHW12OXBDkbNCwxeuP2dntWXOKP6wfaDIWcGO0gf8FcDrWj9WO+DW5bnN+adPRZ0hUH+3K3YUnBMKvVkXdvhRFQzbirs8OX7TcgPLs3MzsxUEQ4uI1fmzn8fZ6ydYDri3jEiVjNOnoqoV2Btu+mok+GDvuxMs24o/EG5geVbuewBIgQvgwXbAvSUzVVcN6GhKy2BTQ3uw/6gKtm3F10LMLgBoTE3fg1CHQ1JgfwHaTZGzQlvzS1TkrDC7FFupCeBn8kcAb+iAa1VJMRHKSO0QdH+vgVqn/hKM24ov0XKDoEAnuqZrzk3U/haozr+0YgaO1Tt0N6a5byt0KEaj7NQhzar8vYzplB0Ygeic7avOsr5k531EMHe4t+K20hR0KIbP8Gvf/wKxjIO9/0CwCETnbKu1Ytp9HxHMHe6ttq0EEn1uUK/6OqTRX8N3ArWMfdl/gH475rNKPxb2EdZnlW0l0Ag3qFdz75AWCIFaxr7qlL1iR4GGL1yviUu3a/jC9Vqxo8CndSK4sI+AVXFaCvVq7h3SAiGQy7ipTdTN/dJSnKup26+d++rAXLTcoF5cgu1/gV7GTWmi5lc6ztaU7ZdWQPgTV0uhUcF8tUCwCIZlzBVXqI+n2y/bErzB1VLwqWC+WiBYBMMyDvZxP+A/nm6/XL0HfyPcmIRzzQhGVr60lL+p4EF/PvcEepu2098Q4cYEdh8XAr5npZ2OFVuZ+JsKLrQCNi7Q27Td/obocxNgnGuGp+y20/E1X/1NWSlANhfB0NfMDIE+TgTLcYk+NxbGuebgZNaBj8uvG+eLvykCpDms2ApoBYE+TtjxuES4CbBgOdfMr9j/MvPAZ8edjq/5YqwVAqS1NPf9T6CPE8FyXPIE49wEWDCMHdPU8SfsNDy/2cPL+/K2Cf5m1npv6t8U4/dYC+PfmDP+ldWPS56i5cYEVr/ipCm/Yu3WvG92y0mwdLw0e7035W/Kjr9agxWtaP/lq+OEu61gVj4ueYNwYxKrnmtuysHcjjsmKwwvb/WdjlXWu7d/U8ESIH3Fyqd8zP4xYTVNPU54+qPDqsclbxBuUEt9B/PIsBBtzS9pcIfoyY7J7B2su5/flAOfL1szrLzTscMByeoB0ht1beNmt7A1hlY07529vq3yo8MshBvUUtfBPHtgR13z7NZGd4ju7pgCuYP1xQ7emwNfc9qx2OWAZOUA6am6tvERveIsv002t1Y0X6lrfXdpHxn0PzqagnCDc5x5MI8MC3EFG6nuHeKZAaKxHVMgD/q+3MEzvHzDpl+couf/3wFVKzCdEc1u+bOy+v7GFl2fHhTbpB1b0fypvvW96vYMW/zo8JYlrpZ65plnlJycrFatWunCCy/Uv//97wbnf/3119WnTx+1atVKaWlpWrNmTYAqbT5q7h5ddrKqwStJzr6yQZK2zBmlV2dcpC1zRp3TIuKvK1POvlKnvj/4nQd/CMiVMcF0lVNT1Kz/P/+/A5JDuvmS7nWud398ZnO+mqYh9f2NhTgcQbNNNuXu9f5i1atA61vf5SerbXcFlCdMDzcrVqzQ7Nmz9dBDD2nXrl1KT09XVlaWjhw5Uuf8W7du1Q033KBp06bpk08+UXZ2trKzs7Vnz54AV948NHSQri9ASKp3x+SPg35dBzuzd/B2vLTybHWt/79sORDwzwzkpfnBoL6/sQu6tbP9NukvVg7UDe1TJwzp2uCPTTszPdw8+eSTmjFjhqZOnaq+fftqyZIlioyM1AsvvFDn/H/4wx80duxY3XvvvTrvvPP08MMP64ILLtCf/vSnAFfePDR0kPamFcbXB/36Dnatw0JN38HbfcdixvgwjEnTuIb+xuy+TfqD1QN1Y/tUK7aCBYKpfW5Onjypjz/+WDk5Oa5pISEhGjNmjLZt21bna7Zt26bZs2fXmpaVlaU333yzzvkrKytVWVnp+n9paWnTC29m6jsH7m1HUl+eU2+sSbau/j+BPKdvp06qZzOjI7FdOi/7W0PbuJ23SX8Ihv5z9FM6l6nhpqSkRFVVVUpISKg1PSEhQV9++WWdrykuLq5z/uLi4jrnz83N1bx583xTcDNW1w6xKVc2+GoH29DBLiO1Azt4PzLjyhaupnEf27hvBEugZn3XZvurpXJycmq19JSWlqpLly4mVmQvZv9iaOxgxx+8f5mx/s3e5tC8EKiDk6nhJjY2VqGhoTp8+HCt6YcPH1ZiYmKdr0lMTPRo/vDwcIWHh/umYNTJ7ADBwc5cZqx/s7c5NC/sY4KPqR2Kw8LCNGjQIK1bt841rbq6WuvWrVNGRkadr8nIyKg1vyStXbu23vnRPDTXTnMAAoN9THAx/bTU7NmzNXnyZA0ePFhDhw7VokWLVFZWpqlTp0qSJk2apE6dOik3N1eSdOeddyozM1NPPPGErrjiCr322mvauXOn/vznP5v5NQAAgEWYHm4mTJigo0eP6sEHH1RxcbEGDBig9957z9VpuKCgQCEh/21gGjZsmJYvX67f/va3uv/++9WzZ0+9+eab6tevn1lfAQAAWIjDMAyj8dnso7S0VDExMXI6nYqOjja7HAAA4AZPjt+mD+IHAADgS4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK6aPUBxoNWMWlpaWmlwJAABwV81x252xh5tduPnxxx8lSV26dDG5EgAA4Kkff/xRMTExDc7T7G6/UF1drUOHDikqKkoOh8PscgKqtLRUXbp0UWFhIbeeaCKWpW+wHH2HZekbLEff8fWyNAxDP/74ozp27FjrnpN1aXYtNyEhIercubPZZZgqOjqaP1ofYVn6BsvRd1iWvsFy9B1fLsvGWmxq0KEYAADYCuEGAADYCuGmGQkPD9dDDz2k8PBws0sJeixL32A5+g7L0jdYjr5j5rJsdh2KAQCAvdFyAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwY0ObN2/WlVdeqY4dO8rhcOjNN9+s9bxhGHrwwQeVlJSkiIgIjRkzRl999ZU5xVpcY8tyypQpcjgctR5jx441p1gLy83N1ZAhQxQVFaX4+HhlZ2dr3759teY5ceKEZs6cqQ4dOqhNmza69tprdfjwYZMqtiZ3luPIkSPP2SZvvfVWkyq2rsWLF6t///6uAeYyMjL0z3/+0/U826N7GluOZm2PhBsbKisrU3p6up555pk6n3/sscf0xz/+UUuWLNH27dvVunVrZWVl6cSJEwGu1PoaW5aSNHbsWBUVFbker776agArDA6bNm3SzJkz9dFHH2nt2rU6deqULr/8cpWVlbnmufvuu/WPf/xDr7/+ujZt2qRDhw5p/PjxJlZtPe4sR0maMWNGrW3yscceM6li6+rcubMWLlyojz/+WDt37tSll16qq6++Wnv37pXE9uiuxpajZNL2aMDWJBmrV692/b+6utpITEw0fv/737umHTt2zAgPDzdeffVVEyoMHmcvS8MwjMmTJxtXX321KfUEsyNHjhiSjE2bNhmGcXobbNmypfH666+75vniiy8MSca2bdvMKtPyzl6OhmEYmZmZxp133mleUUGsXbt2xvPPP8/22EQ1y9EwzNseablpZg4cOKDi4mKNGTPGNS0mJkYXXnihtm3bZmJlwWvjxo2Kj49X7969ddttt+n77783uyTLczqdkqT27dtLkj7++GOdOnWq1nbZp08fde3ale2yAWcvxxp/+9vfFBsbq379+iknJ0fl5eVmlBc0qqqq9Nprr6msrEwZGRlsj146eznWMGN7bHY3zmzuiouLJUkJCQm1pickJLieg/vGjh2r8ePHKyUlRfn5+br//vs1btw4bdu2TaGhoWaXZ0nV1dW66667NHz4cPXr10/S6e0yLCxMbdu2rTUv22X96lqOkjRx4kR169ZNHTt21Geffab77rtP+/bt06pVq0ys1pp2796tjIwMnThxQm3atNHq1avVt29f5eXlsT16oL7lKJm3PRJugCa4/vrrXf9OS0tT//79lZqaqo0bN2r06NEmVmZdM2fO1J49e7RlyxazSwlq9S3Hm2++2fXvtLQ0JSUlafTo0crPz1dqamqgy7S03r17Ky8vT06nUytXrtTkyZO1adMms8sKOvUtx759+5q2PXJaqplJTEyUpHN6/R8+fNj1HLzXvXt3xcbGav/+/WaXYkmzZs3SO++8ow0bNqhz586u6YmJiTp58qSOHTtWa362y7rVtxzrcuGFF0oS22QdwsLC1KNHDw0aNEi5ublKT0/XH/7wB7ZHD9W3HOsSqO2RcNPMpKSkKDExUevWrXNNKy0t1fbt22udI4V3vv32W33//fdKSkoyuxRLMQxDs2bN0urVq7V+/XqlpKTUen7QoEFq2bJlre1y3759KigoYLs8Q2PLsS55eXmSxDbphurqalVWVrI9NlHNcqxLoLZHTkvZ0PHjx2ul4gMHDigvL0/t27dX165dddddd+mRRx5Rz549lZKSogceeEAdO3ZUdna2eUVbVEPLsn379po3b56uvfZaJSYmKj8/X7/+9a/Vo0cPZWVlmVi19cycOVPLly/XW2+9paioKFe/hZiYGEVERCgmJkbTpk3T7Nmz1b59e0VHR+uXv/ylMjIydNFFF5lcvXU0thzz8/O1fPly/exnP1OHDh302Wef6e6779aIESPUv39/k6u3lpycHI0bN05du3bVjz/+qOXLl2vjxo16//332R490NByNHV7DPj1WfC7DRs2GJLOeUyePNkwjNOXgz/wwANGQkKCER4ebowePdrYt2+fuUVbVEPLsry83Lj88suNuLg4o2XLlka3bt2MGTNmGMXFxWaXbTl1LUNJxosvvuiap6Kiwrj99tuNdu3aGZGRkcY111xjFBUVmVe0BTW2HAsKCowRI0YY7du3N8LDw40ePXoY9957r+F0Os0t3IJuuukmo1u3bkZYWJgRFxdnjB492vjggw9cz7M9uqeh5Wjm9ugwDMPwb3wCAAAIHPrcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcALCUkydPml3COaxYE4D6EW4A+NXIkSM1a9YszZo1SzExMYqNjdUDDzygmju/JCcn6+GHH9akSZMUHR2tm2++WZK0ZcsWXXLJJYqIiFCXLl10xx13qKyszPW+zz77rHr27KlWrVopISFB1113neu5lStXKi0tTREREerQoYPGjBnjeu3IkSN111131aoxOztbU6ZMcf3f25oAWAPhBoDf/fWvf1WLFi3073//W3/4wx/05JNP6vnnn3c9//jjjys9PV2ffPKJHnjgAeXn52vs2LG69tpr9dlnn2nFihXasmWLZs2aJUnauXOn7rjjDs2fP1/79u3Te++9pxEjRkiSioqKdMMNN+imm27SF198oY0bN2r8+PHy9DZ6ntYEwDq4cSYAvxo5cqSOHDmivXv3yuFwSJLmzJmjt99+W59//rmSk5M1cOBArV692vWa6dOnKzQ0VM8995xr2pYtW5SZmamysjKtWbNGU6dO1bfffquoqKhan7dr1y4NGjRIBw8eVLdu3eqsZ8CAAVq0aJFrWnZ2ttq2batly5ZJklc1tWrVqknLCYDv0HIDwO8uuugiV7CRpIyMDH311VeqqqqSJA0ePLjW/J9++qmWLVumNm3auB5ZWVmqrq7WgQMHdNlll6lbt27q3r27brzxRv3tb39TeXm5JCk9PV2jR49WWlqa/vd//1dLly7Vf/7zH49r9rQmANZBuAFgutatW9f6//Hjx3XLLbcoLy/P9fj000/11VdfKTU1VVFRUdq1a5deffVVJSUl6cEHH1R6erqOHTum0NBQrV27Vv/85z/Vt29fPf300+rdu7crgISEhJxziurUqVNNrgmAdRBuAPjd9u3ba/3/o48+Us+ePRUaGlrn/BdccIE+//xz9ejR45xHWFiYJKlFixYaM2aMHnvsMX322Wc6ePCg1q9fL0lyOBwaPny45s2bp08++URhYWGuU0xxcXEqKipyfVZVVZX27NnT6HdwpyYA1kC4AeB3BQUFmj17tvbt26dXX31VTz/9tO68885657/vvvu0detWzZo1S3l5efrqq6/01ltvuTrvvvPOO/rjH/+ovLw8ffPNN3rppZdUXV2t3r17a/v27VqwYIF27typgoICrVq1SkePHtV5550nSbr00kv17rvv6t1339WXX36p2267TceOHWv0OzRWEwDraGF2AQDsb9KkSaqoqNDQoUMVGhqqO++803V5dV369++vTZs26Te/+Y0uueQSGYah1NRUTZgwQZLUtm1brVq1SnPnztWJEyfUs2dPvfrqqzr//PP1xRdfaPPmzVq0aJFKS0vVrVs3PfHEExo3bpwk6aabbtKnn36qSZMmqUWLFrr77rs1atSoRr9DYzUBsA6ulgLgV3VdnQQA/sRpKQAAYCuEGwAAYCuclgIAALZCyw0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALCV/x/YBjhC2T2t0QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding](./surrogate_embedding_test.ipynb) file." ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLcUlEQVR4nO3deXwU5eHH8e8mISEBknDlAIGES4gccigGEFAoSFGLYkVEBEGtCnIoCGgRUDFoa1W0gqUqWC+qoiJeUEAskEI4FbQIEQxKwiFmAwQIZJ/fHzT7YyGBzWY3uzv7eb9eeb1gZnb2mdljvvvMc9iMMUYAAAAWFebvAgAAAPgSYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQdAQJg2bZpsNptb29psNk2bNs2n5enRo4d69OgRsPsD4D7CDgAX8+bNk81mc/5FRESofv36GjZsmH7++Wd/Fy/gpKSkuJyvhIQEXXnllfrggw+8sv/CwkJNmzZNX375pVf2B4Qiwg6AUj322GP6xz/+oTlz5qhv375644031L17dx0/ftwnz/fHP/5Rx44d88m+fe3SSy/VP/7xD/3jH//Q+PHjtXfvXt14442aM2dOhfddWFio6dOnE3aACojwdwEABKa+ffuqY8eOkqQ777xTderU0VNPPaVFixbp5ptv9vrzRUREKCIiOL+S6tevr9tuu835/9tvv11NmzbVs88+q3vuucePJQMgUbMDwE1XXnmlJCk7O9tl+X//+1/ddNNNqlWrlqpWraqOHTtq0aJFLtucPHlS06dPV7NmzVS1alXVrl1bXbt21dKlS53blNZm58SJExo3bpzq1q2rGjVq6Prrr9dPP/10TtmGDRumlJSUc5aXts/XXntNV199tRISEhQVFaW0tDTNnj27XOfiQpKSktSyZUvt2rXrvNvt379fI0aMUGJioqpWraq2bdtq/vz5zvW7d+9W3bp1JUnTp0933irzdXslwGqC82cUgEq3e/duSVLNmjWdy7Zt26YuXbqofv36mjRpkqpVq6Z//vOf6t+/v95//33dcMMNkk6HjoyMDN155526/PLLVVBQoPXr12vjxo36zW9+U+Zz3nnnnXrjjTd06623qnPnzlq+fLn69etXoeOYPXu2LrnkEl1//fWKiIjQxx9/rPvuu08Oh0MjR46s0L5LnDx5Unv27FHt2rXL3ObYsWPq0aOHdu7cqVGjRik1NVXvvvuuhg0bpvz8fI0ZM0Z169bV7Nmzde+99+qGG27QjTfeKElq06aNV8oJhAwDAGd47bXXjCTzr3/9yxw4cMDs2bPHvPfee6Zu3bomKirK7Nmzx7ltz549TevWrc3x48edyxwOh+ncubNp1qyZc1nbtm1Nv379zvu8U6dONWd+JW3evNlIMvfdd5/LdrfeequRZKZOnepcNnToUNOoUaML7tMYYwoLC8/Zrk+fPqZx48Yuy7p37266d+9+3jIbY0yjRo1M7969zYEDB8yBAwfMli1bzC233GIkmfvvv7/M/T333HNGknnjjTecy4qKikx6erqpXr26KSgoMMYYc+DAgXOOF0D5cBsLQKl69eqlunXrqkGDBrrppptUrVo1LVq0SBdddJEk6dChQ1q+fLluvvlmHT58WAcPHtTBgwf1yy+/qE+fPtqxY4ez91Z8fLy2bdumHTt2uP38n376qSRp9OjRLsvHjh1boeOKjo52/ttut+vgwYPq3r27fvjhB9ntdo/2uWTJEtWtW1d169ZV27Zt9e6772rIkCF66qmnynzMp59+qqSkJA0aNMi5rEqVKho9erSOHDmilStXelQWAOfiNhaAUv31r39V8+bNZbfb9eqrr+qrr75SVFSUc/3OnTtljNGUKVM0ZcqUUvexf/9+1a9fX4899ph+97vfqXnz5mrVqpWuueYaDRky5Ly3Y3788UeFhYWpSZMmLssvvvjiCh3X6tWrNXXqVGVmZqqwsNBlnd1uV1xcXLn32alTJz3xxBOy2WyKiYlRy5YtFR8ff97H/Pjjj2rWrJnCwlx/c7Zs2dK5HoB3EHYAlOryyy939sbq37+/unbtqltvvVXbt29X9erV5XA4JEnjx49Xnz59St1H06ZNJUndunVTdna2PvroIy1ZskR///vf9eyzz2rOnDm68847K1zWsgYjLC4udvl/dna2evbsqRYtWugvf/mLGjRooMjISH366ad69tlnncdUXnXq1FGvXr08eiwA3yPsALig8PBwZWRk6KqrrtKLL76oSZMmqXHjxpJO33px50Jfq1Yt3XHHHbrjjjt05MgRdevWTdOmTSsz7DRq1EgOh0PZ2dkutTnbt28/Z9uaNWsqPz//nOVn1458/PHHOnHihBYtWqSGDRs6l69YseKC5fe2Ro0a6euvv5bD4XCp3fnvf//rXC+VHeQAuI82OwDc0qNHD11++eV67rnndPz4cSUkJKhHjx56+eWXlZube872Bw4ccP77l19+cVlXvXp1NW3aVCdOnCjz+fr27StJmjVrlsvy55577pxtmzRpIrvdrq+//tq5LDc395xRjMPDwyVJxhjnMrvdrtdee63McvjKb3/7W+Xl5WnBggXOZadOndILL7yg6tWrq3v37pKkmJgYSSo1zAFwDzU7ANw2YcIE/f73v9e8efN0zz336K9//au6du2q1q1b66677lLjxo21b98+ZWZm6qefftKWLVskSWlpaerRo4c6dOigWrVqaf369Xrvvfc0atSoMp/r0ksv1aBBg/TSSy/Jbrerc+fOWrZsmXbu3HnOtrfccosmTpyoG264QaNHj1ZhYaFmz56t5s2ba+PGjc7tevfurcjISF133XX6wx/+oCNHjmju3LlKSEgoNbD50t13362XX35Zw4YN04YNG5SSkqL33ntPq1ev1nPPPacaNWpIOt2gOi0tTQsWLFDz5s1Vq1YttWrVSq1atarU8gJBzd/dwQAElpKu51lZWeesKy4uNk2aNDFNmjQxp06dMsYYk52dbW6//XaTlJRkqlSpYurXr2+uvfZa89577zkf98QTT5jLL7/cxMfHm+joaNOiRQszY8YMU1RU5NymtG7ix44dM6NHjza1a9c21apVM9ddd53Zs2dPqV2xlyxZYlq1amUiIyPNxRdfbN54441S97lo0SLTpk0bU7VqVZOSkmKeeuop8+qrrxpJZteuXc7tytP1/ELd6sva3759+8wdd9xh6tSpYyIjI03r1q3Na6+9ds5j16xZYzp06GAiIyPphg54wGbMGfW5AAAAFkObHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGkMKijJ4XBo7969qlGjBkOzAwAQJIwxOnz4sOrVq3fOpLpnIuxI2rt3rxo0aODvYgAAAA/s2bNHF110UZnrCTuSc1j2PXv2KDY21s+lAQAA7igoKFCDBg2c1/GyEHb0/7MKx8bGEnYAAAgyF2qCQgNlAABgaYQdAABgaYQdAABgabTZAQBYWnFxsU6ePOnvYsADVapUUXh4eIX3Q9gBAFiSMUZ5eXnKz8/3d1FQAfHx8UpKSqrQOHiEHQCAJZUEnYSEBMXExDBobJAxxqiwsFD79++XJCUnJ3u8L8IOAMByiouLnUGndu3a/i4OPBQdHS1J2r9/vxISEjy+pUUDZQCA5ZS00YmJifFzSVBRJa9hRdpdEXYAAJbFravg543XkLADAAAsjbADAECIsNls+vDDD/1dDBdffvmlbDabT3vNEXZ8KNd+TGuyDyrXfszfRQEAhJBp06bp0ksv9XcxAga9sXxkQVaOJi/8Rg4jhdmkjBtba+BlDf1dLAAAQg41Oz6Qaz/mDDqS5DDSwwu3UsMDAHCLw+FQRkaGUlNTFR0drbZt2+q9996T9P+3fZYtW6aOHTsqJiZGnTt31vbt2yVJ8+bN0/Tp07VlyxbZbDbZbDbNmzfPue+DBw/qhhtuUExMjJo1a6ZFixa5VaaS5/3iiy/Url07RUdH6+qrr9b+/fv12WefqWXLloqNjdWtt96qwsJC5+NOnDih0aNHKyEhQVWrVlXXrl2VlZXlvZPlBsKOD+w6eNQZdEoUG6PdBwtLfwAAIKBVdrOEjIwMvf7665ozZ462bdumcePG6bbbbtPKlSud2zzyyCN65plntH79ekVERGj48OGSpIEDB+rBBx/UJZdcotzcXOXm5mrgwIHOx02fPl0333yzvv76a/32t7/V4MGDdejQIbfLNm3aNL344otas2aN9uzZo5tvvlnPPfec3nrrLX3yySdasmSJXnjhBef2Dz30kN5//33Nnz9fGzduVNOmTdWnT59yPWdFEXZ8ILVONYWd1VMu3GZTSh3GewCAYLMgK0ddZi7XrXPXqsvM5VqQlePT5ztx4oSefPJJvfrqq+rTp48aN26sYcOG6bbbbtPLL7/s3G7GjBnq3r270tLSNGnSJK1Zs0bHjx9XdHS0qlevroiICCUlJSkpKck5OJ8kDRs2TIMGDVLTpk315JNP6siRI1q3bp3b5XviiSfUpUsXtWvXTiNGjNDKlSs1e/ZstWvXTldeeaVuuukmrVixQpJ09OhRzZ49W3/605/Ut29fpaWlae7cuYqOjtYrr7zivZN2AYQdH0iOi1bGja0V/r+xAcJtNj15Yyslx0Vf4JEAgEDij2YJO3fuVGFhoX7zm9+oevXqzr/XX39d2dnZzu3atGnj/HfJVAolUyucz5mPq1atmmJjY916XGmPT0xMVExMjBo3buyyrGR/2dnZOnnypLp06eJcX6VKFV1++eX67rvv3H7OiqKBso8MvKyhujWvq90HC5VSJ4agAwBB6HzNEnz1vX7kyBFJ0ieffKL69eu7rIuKinIGnipVqjiXlwy853A4Lrj/Mx9X8lh3Hlfa4202W4X3VxkIOz6UHBdNyAGAIFbSLOHMwOPrZglpaWmKiopSTk6Ounfvfs76M2t3yhIZGani4mJfFK9cmjRposjISK1evVqNGjWSdHrah6ysLI0dO7bSykHYAQCgDCXNEh5euFXFxlRKs4QaNWpo/PjxGjdunBwOh7p27Sq73a7Vq1crNjbWGRrOJyUlRbt27dLmzZt10UUXqUaNGoqKivJZmctSrVo13XvvvZowYYJq1aqlhg0b6umnn1ZhYaFGjBhRaeUg7AAAcB7+aJbw+OOPq27dusrIyNAPP/yg+Ph4tW/fXg8//LBbt4gGDBighQsX6qqrrlJ+fr5ee+01DRs2zOflLs3MmTPlcDg0ZMgQHT58WB07dtQXX3yhmjVrVloZbMYYc+HNrK2goEBxcXGy2+2KjY31d3EAABV0/Phx7dq1S6mpqapataq/i4MKON9r6e71m95YAADA0gg7AABA99xzj0tX9zP/7rnnHn8Xr0JoswMAAPTYY49p/Pjxpa4L9iYehB0AAKCEhAQlJCT4uxg+wW0sAABgaYQdAIBlBdpIvig/b7yG3MYCAFhOZGSkwsLCtHfvXtWtW1eRkZHOKRUQHIwxKioq0oEDBxQWFqbIyEiP90XYAQBYTlhYmFJTU5Wbm6u9e/f6uziogJiYGDVs2FBhYZ7fjCLsAAAsKTIyUg0bNtSpU6cCYp4olF94eLgiIiIqXCtH2AEAWFbJrNxnz8yN0EIDZQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGl+DTvFxcWaMmWKUlNTFR0drSZNmujxxx+XMca5jTFGjz76qJKTkxUdHa1evXppx44dLvs5dOiQBg8erNjYWMXHx2vEiBE6cuRIZR8OAAAIQH4NO0899ZRmz56tF198Ud99952eeuopPf3003rhhRec2zz99NOaNWuW5syZo7Vr16patWrq06ePjh8/7txm8ODB2rZtm5YuXarFixfrq6++0t133+2PQwIAAAHGZs6sRqlk1157rRITE/XKK684lw0YMEDR0dF64403ZIxRvXr19OCDD2r8+PGSJLvdrsTERM2bN0+33HKLvvvuO6WlpSkrK0sdO3aUJH3++ef67W9/q59++kn16tW7YDkKCgoUFxcnu92u2NhY3xwsAADwKnev336t2encubOWLVum77//XpK0ZcsWrVq1Sn379pUk7dq1S3l5eerVq5fzMXFxcerUqZMyMzMlSZmZmYqPj3cGHUnq1auXwsLCtHbt2lKf98SJEyooKHD5AwAA1hThzyefNGmSCgoK1KJFC4WHh6u4uFgzZszQ4MGDJUl5eXmSpMTERJfHJSYmOtfl5eUpISHBZX1ERIRq1arl3OZsGRkZmj59urcPBwAABCC/1uz885//1Jtvvqm33npLGzdu1Pz58/XnP/9Z8+fP9+nzTp48WXa73fm3Z88enz4fAADwH7/W7EyYMEGTJk3SLbfcIklq3bq1fvzxR2VkZGjo0KFKSkqSJO3bt0/JycnOx+3bt0+XXnqpJCkpKUn79+932e+pU6d06NAh5+PPFhUVpaioKB8cEQAACDR+rdkpLCxUWJhrEcLDw+VwOCRJqampSkpK0rJly5zrCwoKtHbtWqWnp0uS0tPTlZ+frw0bNji3Wb58uRwOhzp16lQJRwEAAAKZX2t2rrvuOs2YMUMNGzbUJZdcok2bNukvf/mLhg8fLkmy2WwaO3asnnjiCTVr1kypqamaMmWK6tWrp/79+0uSWrZsqWuuuUZ33XWX5syZo5MnT2rUqFG65ZZb3OqJBQAArM2vYeeFF17QlClTdN9992n//v2qV6+e/vCHP+jRRx91bvPQQw/p6NGjuvvuu5Wfn6+uXbvq888/V9WqVZ3bvPnmmxo1apR69uypsLAwDRgwQLNmzfLHIQEAgADj13F2AgXj7AAAEHyCYpwdAAAAXyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAAS/N72Pn555912223qXbt2oqOjlbr1q21fv1653pjjB599FElJycrOjpavXr10o4dO1z2cejQIQ0ePFixsbGKj4/XiBEjdOTIkco+FAAAEID8GnZ+/fVXdenSRVWqVNFnn32mb7/9Vs8884xq1qzp3Obpp5/WrFmzNGfOHK1du1bVqlVTnz59dPz4cec2gwcP1rZt27R06VItXrxYX331le6++25/HBIAAAgwNmOM8deTT5o0SatXr9a///3vUtcbY1SvXj09+OCDGj9+vCTJbrcrMTFR8+bN0y233KLvvvtOaWlpysrKUseOHSVJn3/+uX7729/qp59+Ur169S5YjoKCAsXFxclutys2NtZ7BwgAAHzG3eu3X2t2Fi1apI4dO+r3v/+9EhIS1K5dO82dO9e5fteuXcrLy1OvXr2cy+Li4tSpUydlZmZKkjIzMxUfH+8MOpLUq1cvhYWFae3ataU+74kTJ1RQUODyBwAArMmvYeeHH37Q7Nmz1axZM33xxRe69957NXr0aM2fP1+SlJeXJ0lKTEx0eVxiYqJzXV5enhISElzWR0REqFatWs5tzpaRkaG4uDjnX4MGDbx9aAAAIED4New4HA61b99eTz75pNq1a6e7775bd911l+bMmePT5508ebLsdrvzb8+ePT59PgAA4D9+DTvJyclKS0tzWdayZUvl5ORIkpKSkiRJ+/btc9lm3759znVJSUnav3+/y/pTp07p0KFDzm3OFhUVpdjYWJc/AABgTX4NO126dNH27dtdln3//fdq1KiRJCk1NVVJSUlatmyZc31BQYHWrl2r9PR0SVJ6erry8/O1YcMG5zbLly+Xw+FQp06dKuEoAABAIIvw55OPGzdOnTt31pNPPqmbb75Z69at09/+9jf97W9/kyTZbDaNHTtWTzzxhJo1a6bU1FRNmTJF9erVU//+/SWdrgm65pprnLe/Tp48qVGjRumWW25xqycWAACwNr92PZekxYsXa/LkydqxY4dSU1P1wAMP6K677nKuN8Zo6tSp+tvf/qb8/Hx17dpVL730kpo3b+7c5tChQxo1apQ+/vhjhYWFacCAAZo1a5aqV6/uVhnoeg4AQPBx9/rt97ATCAg7AAAEn6AYZwcAAMDXCDuQJOXaj2lN9kHl2o/5uygAAHiVXxsoIzAsyMrR5IXfyGGkMJuUcWNrDbysob+LBQCAV1CzE+Jy7cecQUeSHEZ6eOFWangAAJZB2Alxuw4edQadEsXGaPfBQv8UCAAALyPshLjUOtUUZnNdFm6zKaVOjH8KBACAlxF2QlxyXLQybmytcNvpxBNus+nJG1spOS7azyUDAMA7aKAMDbysobo1r6vdBwuVUieGoAMAsBS3w05BQYHbO2VgvuCTHBdNyAEAWJLbYSc+Pl42m+282xhjZLPZVFxcXOGCAQAAeIPbYWfFihW+LAd0uhv4roNHlVqnGrUsAAB4idthp3v37r4sR8hjYD8AAHzD4wbK+fn5euWVV/Tdd99Jki655BINHz5ccXFxXitcqChrYL9uzetSwwMAQAV51PV8/fr1atKkiZ599lkdOnRIhw4d0l/+8hc1adJEGzdu9HYZLY+B/QAA8B2PanbGjRun66+/XnPnzlVExOldnDp1SnfeeafGjh2rr776yquFtLqSgf3ODDwM7AcAgHd4XLMzceJEZ9CRpIiICD300ENav3691woXKhjYDwAA3/GoZic2NlY5OTlq0aKFy/I9e/aoRo0aXilYqGFgPwAAfMOjsDNw4ECNGDFCf/7zn9W5c2dJ0urVqzVhwgQNGjTIqwUMJQzsBwCA93kUdv785z/LZrPp9ttv16lTpyRJVapU0b333quZM2d6tYAAAAAVYTPGmAtvVrrCwkJlZ2dLkpo0aaKYmOBsUFtQUKC4uDjZ7XamugAAIEi4e/2u0ESgMTExat26dUV2AR9jVGYAQKjzKOwcP35cL7zwglasWKH9+/fL4XC4rGesncDAqMwAAHgYdkaMGKElS5bopptu0uWXX37BCUJR+RiVGQCA0zwKO4sXL9ann36qLl26eLs88JLzjcpM2AEAhBKPBhWsX78+4+kEuJJRmc/kzqjMufZjWpN9ULn2Yz4sHQAAlcejsPPMM89o4sSJ+vHHH71dHniJJ6MyL8jKUZeZy3Xr3LXqMnO5FmTlVFZxAQDwGY9uY3Xs2FHHjx9X48aNFRMToypVqrisP3TokFcKh4opz6jMtPEBAFiVR2Fn0KBB+vnnn/Xkk08qMTGRBsoBzN1RmWnjAwCwKo/Czpo1a5SZmam2bdt6uzzwE2ZeBwBYlUdtdlq0aKFjx2jAaiXMvA4AsCqPpotYsmSJpk+frhkzZqh169bntNkJtikXmC7i/+XajzHzOgAgKLh7/fYo7ISFna4QOrutjjFGNptNxcXF5d2lXxF2AAAIPj6dG2vFihUeFwwAAKAyeRR2unfv7tZ29913nx577DHVqVPHk6cBAACoMI8aKLvrjTfeUEFBgS+fAgAA4Lx8GnY8aA4EAADgVT4NOwAAAP5G2AEAAJZG2AEAAJZG2AEAAJbm07Bz2223MUgfAADwK4/G2ZGk/Px8rVu3Tvv375fD4XBZd/vtt0uSZs+eXbHSAQAAVJBHYefjjz/W4MGDdeTIEcXGxrpMG2Gz2ZxhBwAAwN88uo314IMPavjw4Tpy5Ijy8/P166+/Ov8OHTrk7TICAAB4zKOw8/PPP2v06NGKiYnxdnkAAAC8yqOw06dPH61fv97bZQEAAPA6t9vsLFq0yPnvfv36acKECfr222/VunVrValSxWXb66+/3nslBAAAqACbcXMCq7Aw9yqBbDabiouLK1SoylZQUKC4uDjZ7Xa6ygMAECTcvX67XbNzdvdyAACAYOBRm53XX39dJ06cOGd5UVGRXn/99QoXCgAAwFvcvo11pvDwcOXm5iohIcFl+S+//KKEhARuYwEAAJ9z9/rtUc2OMcZlIMESP/30k+Li4jzZJQAAgE+UawTldu3ayWazyWazqWfPnoqI+P+HFxcXa9euXbrmmmu8XkgAAABPlSvs9O/fX5K0efNm9enTR9WrV3eui4yMVEpKigYMGODVAqLy5dqPadfBo0qtU03JcdH+Lg4AABVSrrAzdepUSVJKSooGDhyoqlWr+qRQ8J8FWTmavPAbOYwUZpMybmytgZc19HexAADwmEcNlEsUFRWVOut5w4bBdXGkgfJpufZj6jJzuRxnvCPCbTatmnQVNTwAgIDj9XF2zrRjxw4NHz5ca9ascVle0nA52Hpj4bRdB4+6BB1JKjZGuw8WEnYAAEHLo7AzbNgwRUREaPHixUpOTi61ZxaCT2qdagqz6ZyanZQ6TPgKAAheHoWdzZs3a8OGDWrRooW3ywM/So6LVsaNrfXwwq0qNkbhNpuevLEVtToAgKDmUdhJS0vTwYMHvV0WBICBlzVUt+Z1tftgoVLqxBB0AABBz6NBBZ966ik99NBD+vLLL/XLL7+ooKDA5c9TM2fOlM1m09ixY53Ljh8/rpEjR6p27dqqXr26BgwYoH379rk8LicnR/369VNMTIwSEhI0YcIEnTp1yuNyhLrkuGilN6lN0AEAWIJHNTu9evWSJF199dUu7XUq0kA5KytLL7/8stq0aeOyfNy4cfrkk0/07rvvKi4uTqNGjdKNN96o1atXSzo9mGG/fv2UlJSkNWvWKDc3V7fffruqVKmiJ5980pPDAwDAibHHgp9HYWfFihVeLcSRI0c0ePBgzZ07V0888YRzud1u1yuvvKK33npLV199tSTptddeU8uWLfWf//xHV1xxhZYsWaJvv/1W//rXv5SYmKhLL71Ujz/+uCZOnKhp06YpMjLSq2UFAIQOxh6zBo9uY3Xv3l1hYWGaO3euJk2apKZNm6p79+7KyclReHh4ufc3cuRI9evXz1ljVGLDhg06efKky/IWLVqoYcOGyszMlCRlZmaqdevWSkxMdG7Tp08fFRQUaNu2baU+34kTJ7x26w0AYE259mPOoCOd7qn68MKtyrUf82/BUG4ehZ33339fffr0UXR0tDZt2qQTJ05IOl0TU95bR++88442btyojIyMc9bl5eUpMjJS8fHxLssTExOVl5fn3ObMoFOyvmRdaTIyMhQXF+f8a9CgQbnKHGpy7ce0JvsgH3AAIeV8Y48huHgUdp544gnNmTNHc+fOVZUqVZzLu3Tpoo0bN7q9nz179mjMmDF68803K3XqicmTJ8tutzv/9uzZU2nPHWwWZOWoy8zlunXuWnWZuVwLsnL8XSQAqBQlY4+dibHHgpNHYWf79u3q1q3bOcvj4uKUn5/v9n42bNig/fv3q3379oqIiFBERIRWrlypWbNmKSIiQomJiSoqKjpnn/v27VNSUpIkKSkp6ZzeWSX/L9nmbFFRUYqNjXX5w7mowgUQykrGHgv/X0ccxh4LXh41UE5KStLOnTuVkpLisnzVqlVq3Lix2/vp2bOnvvnmG5dld9xxh1q0aKGJEyeqQYMGqlKlipYtW+acTX379u3KyclRenq6JCk9PV0zZszQ/v37lZCQIElaunSpYmNjlZaW5snh4X+YPgJAqGPsMWvwKOzcddddGjNmjF599VXZbDbt3btXmZmZGj9+vKZMmeL2fmrUqKFWrVq5LKtWrZpq167tXD5ixAg98MADqlWrlmJjY3X//fcrPT1dV1xxhSSpd+/eSktL05AhQ/T0008rLy9Pf/zjHzVy5EhFRUV5cnj4H6aPAIDTNTyEnODmUdiZNGmSHA6HevbsqcLCQnXr1k1RUVEaP3687r//fq8W8Nlnn1VYWJgGDBigEydOqE+fPnrppZec68PDw7V48WLde++9Sk9PV7Vq1TR06FA99thjXi1HKGL6CACAFdiMMebCm5WuqKhIO3fu1JEjR5SWlqbq1at7s2yVxt0p4kNVrv0YVbgAgIDj7vXbo5qdEpGRkbSLCQFU4QIAgplHvbEAAACCBWEHAABYGmEHAABYGmEHAYWpKQAA3lahBsqANzG7MADAF6jZQUBgagoAgK8QdhAQmF0YAOArhB0EBGYXBgD4CmEHAYHZhQEAvkIDZQQMZhcGAPgCYQcBhakpAADexm0sAABgaYQdeITB/wAAwYLbWCg3Bv8DAAQTanZQLgz+BwAINoQdlAuD/wEAgg1hB+XC4H8AgGBD2EG5MPgfACDY0EAZ5cbgfwCAYELYgUcY/A8AECy4jQUAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsBNEmHwTAIDyo+t5kGDyTQAAPEPNThBg8k0AADxH2AkCgTT5JrfSAADBhttYQaBk8s0zA48/Jt/kVhoAIBhRsxMEAmHyTW6lAQCCFTU7QcLfk2+e71Yac2QBAAIZYSeI+HPyzUC5leZNufZj2nXwqFLrVCOwAYCFcRsLbgmEW2netCArR11mLtetc9eqy8zlWpCV4+8iAQB8xGaMMRfezNoKCgoUFxcnu92u2NhYfxcnoOXaj/ntVpq35NqPqcvM5efUUq2adFXQHhMAhCJ3r9/cxkK5+PNWmrfQ/ggAQgu3sRByStofnSnY2x8BAMpG2EHIsVr7IwDA+XEbCyHJ3135AQCVh7CDkGWF9kcAgAvjNhYAALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wk6QyLUf05rsg8q1H/N3UQAACCqMsxMEFmTlaPLCb+QwUphNyrixtQZe1tDfxQIAIChQsxPgcu3HnEFHkhxGenjhVmp4AABwE2EnwJ1vhm4AAHBhhJ0AxwzdAABUDGEnwDFDNwAAFUMD5SDADN0AAHiOsBMkmKEbAADPcBsLAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYml/DTkZGhi677DLVqFFDCQkJ6t+/v7Zv3+6yzfHjxzVy5EjVrl1b1atX14ABA7Rv3z6XbXJyctSvXz/FxMQoISFBEyZM0KlTpyrzUACfYzJYAPCMX8POypUrNXLkSP3nP//R0qVLdfLkSfXu3VtHjx51bjNu3Dh9/PHHevfdd7Vy5Urt3btXN954o3N9cXGx+vXrp6KiIq1Zs0bz58/XvHnz9Oijj/rjkACfWJCVoy4zl+vWuWvVZeZyLcjK8XeRACBo2Iwx5sKbVY4DBw4oISFBK1euVLdu3WS321W3bl299dZbuummmyRJ//3vf9WyZUtlZmbqiiuu0GeffaZrr71We/fuVWJioiRpzpw5mjhxog4cOKDIyMgLPm9BQYHi4uJkt9sVGxvr02MEyivXfkxdZi53mSMt3GbTqklXMfYSgJDm7vU7oNrs2O12SVKtWrUkSRs2bNDJkyfVq1cv5zYtWrRQw4YNlZmZKUnKzMxU69atnUFHkvr06aOCggJt27at1Oc5ceKECgoKXP6AQMVksABQMQETdhwOh8aOHasuXbqoVatWkqS8vDxFRkYqPj7eZdvExETl5eU5tzkz6JSsL1lXmoyMDMXFxTn/GjRo4OWjAbyHyWABoGICJuyMHDlSW7du1TvvvOPz55o8ebLsdrvzb8+ePT5/zlBGw9qKYTJYAKiYgJgba9SoUVq8eLG++uorXXTRRc7lSUlJKioqUn5+vkvtzr59+5SUlOTcZt26dS77K+mtVbLN2aKiohQVFeXlo0BpFmTlaPLCb+QwUphNyrixtQZe1tDfxQo6TAYLAJ7za82OMUajRo3SBx98oOXLlys1NdVlfYcOHVSlShUtW7bMuWz79u3KyclRenq6JCk9PV3ffPON9u/f79xm6dKlio2NVVpaWuUcCEqVaz/mDDqS5DDSwwu3+q2GJ9hrmJLjopXepDZBBwDKya81OyNHjtRbb72ljz76SDVq1HC2sYmLi1N0dLTi4uI0YsQIPfDAA6pVq5ZiY2N1//33Kz09XVdccYUkqXfv3kpLS9OQIUP09NNPKy8vT3/84x81cuRIam/87HwNayv7gk0NEwCELr/W7MyePVt2u109evRQcnKy82/BggXObZ599llde+21GjBggLp166akpCQtXLjQuT48PFyLFy9WeHi40tPTddttt+n222/XY4895o9DCniVWbsRKA1rA62GCQBQuQJqnB1/CZVxdvxRu7EgK0cPL9yqYmOcDWsru0ZlTfZB3Tp37TnL377rCqU3qV2pZQEAeI+71++AaKAM3yurdqNb87o+vaUUCA1rS2qYzh6Uj67bABAaAqbrOXzLnwPT+bthLV23ASC0UbMTIkK9diMQapiCTa79mHYdPKrUOtU4XwCCGmEnRJTUbpzdfiaULmLJcdEhdbwVQe81AFZCA2WFTgNl6fSvdWo3cD5MPAogWNBAGaWidgNnKu1WVSCNjwQA3kDYAUJUabequjWvq1+OnAjp9l2oGNp6IRARdoAQVNpQBJPe/0a2/4UcmySbTTKG3mtwH229EKgIO0AIKu1WldHpcFPy7zAjvXhrO7VvVJOggwvy11hegDsYZwcIQaVN5XE2h6Ra1aK4UMEtG3781W9jeQEXQtgBQtDZAy2G6fStqzPRTgfuWpCVo/vf2nTOct5DCBTcxgIsorwNQ88eaPGr7w+E9DhM8EzJ7auzxzAJs4n3EAIGYQewAE8bhp45FAGjTMMTpbX/kqRZt7TTtW3rVX6BgFJwGwvwo1z7Ma3JPqhc+7EK7aO0hqGe7NPf85gh+JTW/ivcZlOHlJr+KRBQCsIO4CcLsnLUZeZy3Tp3rbrMXK4FWTke7cefk7wCTLSLYMBtLMAPvNlNN9QneYX/cQsUgY6aHQQVb9z2CQTerI3hlzVKU9mfFW6BIpBRs4OgYaXRWb1dG1Pyy3rjj7/KYYw6ptTyUkkRjKz0WQG8gZodBAVvNsINBL6ojfnq+wO6/+1Nuv/tzRVqA4TgFmyfFavU1iKwUbODoGDFmbi92c6BofpRIpg+K9RAobJQs4OgUFb31mBvhOutdg70yEKJYPmsBFsNFIIbYQdBgUa45xcsFzj4XrB8VgjoqEzcxkLQoHtr2UoucEz3ACk4PiulNdIPkxQTyW9wbynvFDJWZjPGlDLQd2gpKChQXFyc7Ha7YmNj/V0cwGO59mMBfYELRcF6wTm73L44jgVZOc6AXoK2O97hi/ZQgfhedvf6TdgRYQeAbwTrBefsct/Qrr4+2PSzTxoSb9nzq/q/tEbmrGEYVk26KmAuqMEm135MXWYuP2doi4qc00BtTO7u9Zv6QgQkuqMi2PmiAa63phg5n9LK/f7Gn33SkDjXfkzrdh/S2T+5y2q7w/eCe7zdHsoKjclps4NKd6FfpoH6CwIoD293Aa+s4QXKmsX8TN7oyn7m5/xspTWu53vBfd4etDSYhjMoCzU7qFQX+mVqhV8QgOT9HnKV1XuptHKfraI9/c7+nJ+977Mb1/O9UD7e7pFnhd6ehB1UGne+sNz9Qqc6G4EuWC84pZV7QPv6Xu3KXlbt0ZR+LbVq0lXn1NjQTb38Bl7WUKsmXaW377qi1HNaHme/J8Ikjeia4p2CVhJuY6HSuFMV6k71K9XZCBbe7AJe1vACkrQm+6BXGyyXVu7xfS72Wk+/sj7nv22TXOq+PbktE4g9h3yhrOMsbXnJsmqR4TpaVFyuc1Pynnht1W79fdUP+tu/d+nvq3YFzfcvYQeVxp0vrAuNF8O0CAg2yXHRPgshX31/wNnrxtvB/+xye/M4yjsuVHm3D+QfRN4MYWUdZ2nLJZ1z69CTc/P3VT8E5fcvXc9F1/PKdOa4GiVfWKV90MoaL2ZN9kHdOnftOdu/fdcVSm9S26dlh/eFyq9vX/BF9+LKVt5xodzZPpDPizdDWFnHufC+dN3w0ppzBmvUWT80z3yMu+cmEL9/3b1+U7ODSuVutX5ZvyK93csA/hPIv76DgRV6yJS3tsid7QP1vHi7Vrqs48za/es5yx2SVEa1hrvnJtd+TL8cORG03780UEalq8jkl8Ey708wq4zG3/SuqTh3GyyHWmN+d86LP86JtxtZl3Wcl6XUPGd5mFRmDzt3wkpJL9r7394sY6T/ff0G1fcvNTsIOsEw708wKG06gNdW7dLcf++SUflqW8p7OypQf30HE3fasfiz9sxftygvdF78dU6qRYaXutyducBKO5dlHWfbBjXLbMh+9tQc7oSVs3+YGElhRnrx1nZq36hm0HxeCTsISt5sLBmKzjcdQAl3q9k9uXhwO7J05Q0I5wv+/mzM7+9blGWdF3+ek6NFxaUuLyxynPdx5zuXZR1nWctLlsVEhqmwyOHWj8XSfpg4JNWqFhVU38GEHSDElDUdQGkuVNvi6cWDWdrP5WlAKCv4+6v2LFB6TJZ2XvxZo+hp9/kLncuyXv/Slp+9rOR23vnCtVV+mBB2gBDjznQAJS70pVaRiwe3I/+fLwKCvy5SgXyL0p8Xbk8Cvi/Ppbvh2io/TAg7QIgp7Qu/NGHSBb/UKnrx4Hbkab64qPnrIhXINQH+vnCXN+D76lyWN1xb4YcJYQcIMaV94fdvV08fbtqrYmMUZpPu7NpYd3RNueCXmr8vHlbhq4uaPy5Sgf6eGHhZQ7VIqqGs3b/qspSaatugZqU+f3kCvq/OpSfhOth/mDCooBhU0JsYJC54nD1AW3kHeDvfvlB+7g64GSwC9T3hrcbTlfld5+1zGcgDL5aXu9dvwo4IO97i7x4YQLC70EWNHxMV462LfGV81/n6tbZKuGYEZVSqQOmB4SkuIggE57tVwI+JivNG26jK+K6rjNfaCu1wyoOwA68I5B4YF8JFBIEu2H9MBApvtI3y9XddZb7Wwd4OpzyYLgJe4e7Q9YHGX9MWhNoQ/qgYb081EKq8Md2Mr7/reK19g5odeEWg98Aoiz9qpMqqSeJWWvCo7NcqkLtz+4Ivz29Fb9/46ruu5JirRYaH1GtdWQg78Bpf3AP29UWlsi8iZdUk5R87qac++y+30oKAP257JsdFa2LfFs73SLD8mPBEZZzfit6+8fZ3XWnTt5QMBWHl17oy0RtL9MYKVJV1UanMXglrsg/q1rlrz1lus0nmrMAVjN1Arc5fXXbP/CzYJE3q20J/6N7EZ8/nL1bqEu2uso554X3pbs9fFcrojYWgVpmN9CqzV0JpNUlhOnc042Bp3B1q/HHbs7RZp5/+fLuuv7Se5d4fwdzRwVNlHXNhkUPpTWr7p1AWRANlBKTKbqSXHBet9Ca1ff6FWloDyYl9W3jc4JGGzpXLW41Ty/O6hVKD1UDr6FAZn69AO2aromYHAcnKDTJLq0mKj6lS7gaPdJl3daH2Xd5o/+WNxqnlfd2s/Fk4WyB1dKisz1cgHbOV0WZHtNkJVFYZ4dNd5RkSPhTbNpzPhS5M3r5weTp8v6evG5+F8j++IsHWH5+vQJ1ew13+6k1Kmx0EvVAb4bM8PURCsW1DWS7Uvsub7b/O/EL3pD2Fp68bnwX3eSPY+uPzFcwD/AVDLTNhBwEtmL8AfMmftzYCbTygC12YvHXh8sYXekVeNz4LF+atYBtKtw4rKlhG96aBMhCEvDESrCcWZOWoy8zlunXuWnWZuVwLsnJ8+nzuuFADT280APXWSNv+et1Chbcac/M6uS9YGtBTswPIs9oKf9dwVPatjUD9BXehBp7eaADqzdsavnzdyvOe9Pf71xe8WSMTarcOPRUstWCEHYQ8T25PBMo96sq8tRHI7YQudGGq6IWrPF/o7oQIX7xu5XlPBsr719u83bOJW4fuGdE1Va+s2lXm6N6BEKzpjSV6Y4UyT3pdhGpPqFA97hLu9IjyV4goz2tT3tcxEC5U5RXsPZuCxZnvd0m6tk2S7rqysdo2qFnqNr74TNAbC3CDJ7UVgVzD4UuhPh7IhWqH/HmbrzzvSXe2LQk43/xsD8o523xdIxOMAdDbzn6/S9Lir/P06Td5LpMbB8qtb8IOQpon95uD5R61LwRrOwZvXZzOdxH1Zwguz3vyQtue/Wu9RKC00fI3q94CLK/S3u+S6/skkH4YWqY31l//+lelpKSoatWq6tSpk9atW+fvIiEIeNLrItR7alTW1BreUhk9yHLtx/TLkRN+G/a/PO/J821b2q/1M/mql02wTHtS3l55wXJcniitl2OJkvdJIE2FYYmanQULFuiBBx7QnDlz1KlTJz333HPq06ePtm/froSEBH8XDwHufLUVZdUIBGsNR6ipjGr0s2ckL5nBvrJDcHnek2VtW9av9RK+uFAFU01JeWoqgum4PFESmie//40cZ60reZ8E0q1vSzRQ7tSpky677DK9+OKLkiSHw6EGDRro/vvv16RJky74eBooozRW/7IKBWuyD+rWuWvPWf72XVd4ZUbp0hr7hkl64dZ2at+oZtCF4NKOp4QvpqkItkbv7pY32I6rInLtx/Taqt36+6ofXHpjnfk+8WWD8ZBpoFxUVKQNGzZo8uTJzmVhYWHq1auXMjMz/VgyBLNAalgHz/m6fVVpv/QdkmpViwrK90lpv8QfuuZitbko3icXqkBq0+EOd2sqgu24KiI5LloP92upO7qmlBloAqELf9CHnYMHD6q4uFiJiYkuyxMTE/Xf//631MecOHFCJ06ccP6/oKDAp2VE8AmlLysr83U1uhUbq1fmLdpgPH/unJ9gPK6KCoRAcz6WaaBcHhkZGYqLi3P+NWjQwN9FQoAJpIZ1qJiBlzXUqklX6e27rtCqSVd59TaMVRurV1Yj9GA9fxc6P8F6XFYW9G12ioqKFBMTo/fee0/9+/d3Lh86dKjy8/P10UcfnfOY0mp2GjRoQJsduHBnEDlAYhC7irLq+bPqcQWSkGmzExkZqQ4dOmjZsmXOsONwOLRs2TKNGjWq1MdERUUpKiqqEkuJYESPK7gr0KvwA51Vz59VjysYBX3YkaQHHnhAQ4cOVceOHXX55Zfrueee09GjR3XHHXf4u2gIcnxZAUDws0TYGThwoA4cOKBHH31UeXl5uvTSS/X555+f02gZAACEnqBvs+MNjLMDAEDwcff6HZK9sQAAQOgg7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEuzxHQRFVUyiHRBQYGfSwIAANxVct2+0GQQhB1Jhw8fliQ1aNDAzyUBAADldfjwYcXFxZW5nrmxJDkcDu3du1c1atSQzWZz6zEFBQVq0KCB9uzZE9LzaXEeTuM8cA5KcB5O4zycxnnw7Tkwxujw4cOqV6+ewsLKbplDzY6ksLAwXXTRRR49NjY2NmTfwGfiPJzGeeAclOA8nMZ5OI3z4LtzcL4anRI0UAYAAJZG2AEAAJZG2PFQVFSUpk6dqqioKH8Xxa84D6dxHjgHJTgPp3EeTuM8BMY5oIEyAACwNGp2AACApRF2AACApRF2AACApRF2AACApRF2zjB79my1adPGOfBRenq6PvvsM+f648ePa+TIkapdu7aqV6+uAQMGaN++fS77yMnJUb9+/RQTE6OEhARNmDBBp06dquxD8aqZM2fKZrNp7NixzmWhcC6mTZsmm83m8teiRQvn+lA4B5L0888/67bbblPt2rUVHR2t1q1ba/369c71xhg9+uijSk5OVnR0tHr16qUdO3a47OPQoUMaPHiwYmNjFR8frxEjRujIkSOVfSgeS0lJOee9YLPZNHLkSEmh814oLi7WlClTlJqaqujoaDVp0kSPP/64y7xEofB+OHz4sMaOHatGjRopOjpanTt3VlZWlnO9Fc/BV199peuuu0716tWTzWbThx9+6LLeW8f89ddf68orr1TVqlXVoEEDPf300945AAOnRYsWmU8++cR8//33Zvv27ebhhx82VapUMVu3bjXGGHPPPfeYBg0amGXLlpn169ebK664wnTu3Nn5+FOnTplWrVqZXr16mU2bNplPP/3U1KlTx0yePNlfh1Rh69atMykpKaZNmzZmzJgxzuWhcC6mTp1qLrnkEpObm+v8O3DggHN9KJyDQ4cOmUaNGplhw4aZtWvXmh9++MF88cUXZufOnc5tZs6caeLi4syHH35otmzZYq6//nqTmppqjh075tzmmmuuMW3btjX/+c9/zL///W/TtGlTM2jQIH8ckkf279/v8j5YunSpkWRWrFhhjAmN94IxxsyYMcPUrl3bLF682Ozatcu8++67pnr16ub55593bhMK74ebb77ZpKWlmZUrV5odO3aYqVOnmtjYWPPTTz8ZY6x5Dj799FPzyCOPmIULFxpJ5oMPPnBZ741jttvtJjEx0QwePNhs3brVvP322yY6Otq8/PLLFS4/YecCatasaf7+97+b/Px8U6VKFfPuu+8613333XdGksnMzDTGnH4zhIWFmby8POc2s2fPNrGxsebEiROVXvaKOnz4sGnWrJlZunSp6d69uzPshMq5mDp1qmnbtm2p60LlHEycONF07dq1zPUOh8MkJSWZP/3pT85l+fn5Jioqyrz99tvGGGO+/fZbI8lkZWU5t/nss8+MzWYzP//8s+8K70NjxowxTZo0MQ6HI2TeC8YY069fPzN8+HCXZTfeeKMZPHiwMSY03g+FhYUmPDzcLF682GV5+/btzSOPPBIS5+DssOOtY37ppZdMzZo1XT4TEydONBdffHGFy8xtrDIUFxfrnXfe0dGjR5Wenq4NGzbo5MmT6tWrl3ObFi1aqGHDhsrMzJQkZWZmqnXr1kpMTHRu06dPHxUUFGjbtm2VfgwVNXLkSPXr18/lmCWF1LnYsWOH6tWrp8aNG2vw4MHKycmRFDrnYNGiRerYsaN+//vfKyEhQe3atdPcuXOd63ft2qW8vDyX8xAXF6dOnTq5nIf4+Hh17NjRuU2vXr0UFhamtWvXVt7BeElRUZHeeOMNDR8+XDabLWTeC5LUuXNnLVu2TN9//70kacuWLVq1apX69u0rKTTeD6dOnVJxcbGqVq3qsjw6OlqrVq0KiXNwNm8dc2Zmprp166bIyEjnNn369NH27dv166+/VqiMTAR6lm+++Ubp6ek6fvy4qlevrg8++EBpaWnavHmzIiMjFR8f77J9YmKi8vLyJEl5eXkuX2Yl60vWBZN33nlHGzdudLkPXSIvLy8kzkWnTp00b948XXzxxcrNzdX06dN15ZVXauvWrSFzDn744QfNnj1bDzzwgB5++GFlZWVp9OjRioyM1NChQ53HUdpxnnkeEhISXNZHRESoVq1aQXMezvThhx8qPz9fw4YNkxQ6nwdJmjRpkgoKCtSiRQuFh4eruLhYM2bM0ODBgyUpJN4PNWrUUHp6uh5//HG1bNlSiYmJevvtt5WZmammTZuGxDk4m7eOOS8vT6mpqefso2RdzZo1PS4jYecsF198sTZv3iy73a733ntPQ4cO1cqVK/1drEq1Z88ejRkzRkuXLj3n10soKfm1Kklt2rRRp06d1KhRI/3zn/9UdHS0H0tWeRwOhzp27Kgnn3xSktSuXTtt3bpVc+bM0dChQ/1cOv945ZVX1LdvX9WrV8/fRal0//znP/Xmm2/qrbfe0iWXXKLNmzdr7NixqlevXki9H/7xj39o+PDhql+/vsLDw9W+fXsNGjRIGzZs8HfRUAZuY50lMjJSTZs2VYcOHZSRkaG2bdvq+eefV1JSkoqKipSfn++y/b59+5SUlCRJSkpKOqcHRsn/S7YJBhs2bND+/fvVvn17RUREKCIiQitXrtSsWbMUERGhxMTEkDkXZ4qPj1fz5s21c+fOkHk/JCcnKy0tzWVZy5YtnbfzSo6jtOM88zzs37/fZf2pU6d06NChoDkPJX788Uf961//0p133ulcFirvBUmaMGGCJk2apFtuuUWtW7fWkCFDNG7cOGVkZEgKnfdDkyZNtHLlSh05ckR79uzRunXrdPLkSTVu3DhkzsGZvHXMvvycEHYuwOFw6MSJE+rQoYOqVKmiZcuWOddt375dOTk5Sk9PlySlp6frm2++cXlBly5dqtjY2HMuGIGsZ8+e+uabb7R582bnX8eOHTV48GDnv0PlXJzpyJEjys7OVnJycsi8H7p06aLt27e7LPv+++/VqFEjSVJqaqqSkpJczkNBQYHWrl3rch7y8/NdfvUuX75cDodDnTp1qoSj8J7XXntNCQkJ6tevn3NZqLwXJKmwsFBhYa6XjfDwcDkcDkmh936oVq2akpOT9euvv+qLL77Q7373u5A7B5L3Xvf09HR99dVXOnnypHObpUuX6uKLL67QLSxJdD0/06RJk8zKlSvNrl27zNdff20mTZpkbDabWbJkiTHmdPfShg0bmuXLl5v169eb9PR0k56e7nx8SffS3r17m82bN5vPP//c1K1bN+i6l5bmzN5YxoTGuXjwwQfNl19+aXbt2mVWr15tevXqZerUqWP2799vjAmNc7Bu3ToTERFhZsyYYXbs2GHefPNNExMTY9544w3nNjNnzjTx8fHmo48+Ml9//bX53e9+V2qX03bt2pm1a9eaVatWmWbNmgV0N9vSFBcXm4YNG5qJEyeesy4U3gvGGDN06FBTv359Z9fzhQsXmjp16piHHnrIuU0ovB8+//xz89lnn5kffvjBLFmyxLRt29Z06tTJFBUVGWOseQ4OHz5sNm3aZDZt2mQkmb/85S9m06ZN5scffzTGeOeY8/PzTWJiohkyZIjZunWreeedd0xMTAxdz71t+PDhplGjRiYyMtLUrVvX9OzZ0xl0jDHm2LFj5r777jM1a9Y0MTEx5oYbbjC5ubku+9i9e7fp27eviY6ONnXq1DEPPvigOXnyZGUfitedHXZC4VwMHDjQJCcnm8jISFO/fn0zcOBAl/FlQuEcGGPMxx9/bFq1amWioqJMixYtzN/+9jeX9Q6Hw0yZMsUkJiaaqKgo07NnT7N9+3aXbX755RczaNAgU716dRMbG2vuuOMOc/jw4co8jAr74osvjKRzjs2Y0HkvFBQUmDFjxpiGDRuaqlWrmsaNG5tHHnnEpatwKLwfFixYYBo3bmwiIyNNUlKSGTlypMnPz3eut+I5WLFihZF0zt/QoUONMd475i1btpiuXbuaqKgoU79+fTNz5kyvlN9mzBlDXwIAAFgMbXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAeKRHjx4aO3asv4vhc9OmTdOll17q72IAqADCDoCQVFRUVKnPZ4zRqVOnKvU5AZxG2AFQbsOGDdPKlSv1/PPPy2azyWazaffu3dq6dav69u2r6tWrKzExUUOGDNHBgwedj+vRo4fuv/9+jR07VjVr1lRiYqLmzp2ro0eP6o477lCNGjXUtGlTffbZZ87HfPnll7LZbPrkk0/Upk0bVa1aVVdccYW2bt3qUqZVq1bpyiuvVHR0tBo0aKDRo0fr6NGjzvUpKSl6/PHHdfvttys2NlZ33323JGnixIlq3ry5YmJi1LhxY02ZMsU56/K8efM0ffp0bdmyxXmc8+bN0+7du2Wz2bR582bn/vPz82Wz2fTll1+6lPuzzz5Thw4dFBUVpVWrVsnhcCgjI0OpqamKjo5W27Zt9d5773n7JQJwBsIOgHJ7/vnnlZ6errvuuku5ubnKzc1VjRo1dPXVV6tdu3Zav369Pv/8c+3bt08333yzy2Pnz5+vOnXqaN26dbr//vt177336ve//706d+6sjRs3qnfv3hoyZIgKCwtdHjdhwgQ988wzysrKUt26dXXdddc5Q0l2drauueYaDRgwQF9//bUWLFigVatWadSoUS77+POf/6y2bdtq06ZNmjJliiSpRo0amjdvnr799ls9//zzmjt3rp599llJ0sCBA/Xggw/qkksucR7nwIEDy3WuJk2apJkzZ+q7775TmzZtlJGRoddff11z5szRtm3bNG7cON12221auXJlufYLoBy8Mp0ogJDTvXt3M2bMGOf/H3/8cdO7d2+Xbfbs2eMyU3j37t1N165dnetPnTplqlWrZoYMGeJclpubaySZzMxMY8z/z7b8zjvvOLf55ZdfTHR0tFmwYIExxpgRI0aYu+++2+W5//3vf5uwsDBz7NgxY4wxjRo1Mv3797/gcf3pT38yHTp0cP5/6tSppm3bti7b7Nq1y0gymzZtci779ddfjSSzYsUKl3J/+OGHzm2OHz9uYmJizJo1a1z2N2LECDNo0KALlg2AZyL8GbQAWMeWLVu0YsUKVa9e/Zx12dnZat68uSSpTZs2zuXh4eGqXbu2Wrdu7VyWmJgoSdq/f7/LPtLT053/rlWrli6++GJ99913zuf++uuv9eabbzq3McbI4XBo165datmypSSpY8eO55RtwYIFmjVrlrKzs3XkyBGdOnVKsbGx5T7+spz5nDt37lRhYaF+85vfuGxTVFSkdu3aee05Abgi7ADwiiNHjui6667TU089dc665ORk57+rVKniss5ms7kss9lskiSHw1Gu5/7DH/6g0aNHn7OuYcOGzn9Xq1bNZV1mZqYGDx6s6dOnq0+fPoqLi9M777yjZ5555rzPFxZ2ugWAMca5rOSW2tnOfM4jR45Ikj755BPVr1/fZbuoqKjzPicAzxF2AHgkMjJSxcXFzv+3b99e77//vlJSUhQR4f2vlv/85z/O4PLrr7/q+++/d9bYtG/fXt9++62aNm1arn2uWbNGjRo10iOPPOJc9uOPP7psc/ZxSlLdunUlSbm5uc4amTMbK5clLS1NUVFRysnJUffu3ctVVgCeo4EyAI+kpKRo7dq12r17tw4ePKiRI0fq0KFDGjRokLKyspSdna0vvvhCd9xxxzlhwROPPfaYli1bpq1bt2rYsGGqU6eO+vfvL+l0j6o1a9Zo1KhR2rx5s3bs2KGPPvronAbKZ2vWrJlycnL0zjvvKDs7W7NmzdIHH3xwznHu2rVLmzdv1sGDB3XixAlFR0friiuucDY8Xrlypf74xz9e8Bhq1Kih8ePHa9y4cZo/f76ys7O1ceNGvfDCC5o/f77H5wbA+RF2AHhk/PjxCg8PV1pamurWrauioiKtXr1axcXF6t27t1q3bq2xY8cqPj7eedunImbOnKkxY8aoQ4cOysvL08cff6zIyEhJp9sBrVy5Ut9//72uvPJKtWvXTo8++qjq1at33n1ef/31GjdunEaNGqVLL71Ua9ascfbSKjFgwABdc801uuqqq1S3bl29/fbbkqRXX31Vp06dUocOHTR27Fg98cQTbh3H448/rilTpigjI0MtW7bUNddco08++USpqakenBUA7rCZM286A0CA+fLLL3XVVVfp119/VXx8vL+LAyAIUbMDAAAsjbADAAAsjdtYAADA0qjZAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlvZ/5oPfigwJYygAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJXElEQVR4nO3deXwU9eH/8fcmkJBAEo6cIJAAckO4NaAclYqUnxaxFfHgEGhVqCBqAa0CogZrVay1oFjFowpVEe+DchZBCkKQeKDEYKImQMRsgIQAyef3B99sWXKQbPacfT0fjzweMDO7+5nZ2Zn3fD6f+YzNGGMEAABgESG+LgAAAIA7EW4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4A+MT8+fNls9lqtazNZtP8+fM9Wp6hQ4dq6NChfvt+AGqPcAMEueXLl8tmszn+GjRooFatWmnixIn64YcffF08v5OcnOy0veLj43XxxRfrjTfecMv7FxcXa/78+dqwYYNb3g8IRoQbAJKk++67Ty+++KKWLl2qkSNH6qWXXtKQIUN0/Phxj3zen/70J5WUlHjkvT2tV69eevHFF/Xiiy/qjjvu0I8//qgxY8Zo6dKl9X7v4uJiLViwgHAD1EMDXxcAgH8YOXKk+vXrJ0maMmWKYmNj9dBDD+mtt97S1Vdf7fbPa9CggRo0CMxDUKtWrXT99dc7/j9+/Hh16NBBjz32mG666SYflgyARM0NgGpcfPHFkqSsrCyn6V999ZV+85vfqHnz5mrUqJH69eunt956y2mZkydPasGCBTr//PPVqFEjtWjRQhdddJHWrFnjWKaqPjelpaW67bbbFBcXp6ioKF1xxRX6/vvvK5Vt4sSJSk5OrjS9qvd87rnn9Itf/ELx8fEKDw9X165dtWTJkjpti3NJTExUly5dlJ2dXeNyBw8e1OTJk5WQkKBGjRopNTVVzz//vGP+/v37FRcXJ0lasGCBo+nL0/2NAKsJzMsmAB63f/9+SVKzZs0c0z7//HMNGjRIrVq10pw5c9S4cWP961//0ujRo/X666/ryiuvlHQ6ZKSnp2vKlCkaMGCAioqKtGPHDu3cuVO//OUvq/3MKVOm6KWXXtK1116rgQMHat26dRo1alS91mPJkiXq1q2brrjiCjVo0EBvv/22brnlFpWXl2vatGn1eu8KJ0+eVG5urlq0aFHtMiUlJRo6dKj27dun6dOnKyUlRa+++qomTpyowsJCzZgxQ3FxcVqyZIluvvlmXXnllRozZowkqWfPnm4pJxA0DICg9txzzxlJ5t///rc5dOiQyc3NNa+99pqJi4sz4eHhJjc317HsJZdcYnr06GGOHz/umFZeXm4GDhxozj//fMe01NRUM2rUqBo/d968eebMQ1BGRoaRZG655Ran5a699lojycybN88xbcKECaZt27bnfE9jjCkuLq603IgRI0y7du2cpg0ZMsQMGTKkxjIbY0zbtm3NpZdeag4dOmQOHTpkdu/eba655hojyfzhD3+o9v0WL15sJJmXXnrJMe3EiRMmLS3NNGnSxBQVFRljjDl06FCl9QVQNzRLAZAkDR8+XHFxcWrdurV+85vfqHHjxnrrrbd03nnnSZIOHz6sdevW6eqrr9aRI0dUUFCggoIC/fTTTxoxYoS++eYbx91VTZs21eeff65vvvmm1p//3nvvSZJuvfVWp+kzZ86s13pFREQ4/m2321VQUKAhQ4bo22+/ld1ud+k9P/roI8XFxSkuLk6pqal69dVXdcMNN+ihhx6q9jXvvfeeEhMTNW7cOMe0hg0b6tZbb9XRo0e1ceNGl8oCoDKapQBIkp588kl17NhRdrtdzz77rDZt2qTw8HDH/H379skYo3vuuUf33HNPle9x8OBBtWrVSvfdd59+/etfq2PHjurevbsuu+wy3XDDDTU2r3z33XcKCQlR+/btnaZ36tSpXuv18ccfa968edq6dauKi4ud5tntdsXExNT5PS+44ALdf//9stlsioyMVJcuXdS0adMaX/Pdd9/p/PPPV0iI8zVlly5dHPMBuAfhBoAkacCAAY67pUaPHq2LLrpI1157rfbu3asmTZqovLxcknTHHXdoxIgRVb5Hhw4dJEmDBw9WVlaW3nzzTX300Ud65pln9Nhjj2np0qWaMmVKvcta3eB/ZWVlTv/PysrSJZdcos6dO+vRRx9V69atFRYWpvfee0+PPfaYY53qKjY2VsOHD3fptQA8j3ADoJLQ0FClp6dr2LBh+tvf/qY5c+aoXbt2kk43pdTmxN68eXNNmjRJkyZN0tGjRzV48GDNnz+/2nDTtm1blZeXKysry6m2Zu/evZWWbdasmQoLCytNP7v24+2331ZpaaneeusttWnTxjF9/fr15yy/u7Vt21afffaZysvLnWpvvvrqK8d8qfrgBqD26HMDoEpDhw7VgAEDtHjxYh0/flzx8fEaOnSonnrqKeXl5VVa/tChQ45///TTT07zmjRpog4dOqi0tLTazxs5cqQk6a9//avT9MWLF1datn379rLb7frss88c0/Ly8iqNEhwaGipJMsY4ptntdj333HPVlsNTfvWrXyk/P18rV650TDt16pSeeOIJNWnSREOGDJEkRUZGSlKV4Q1A7VBzA6Bad955p377299q+fLluummm/Tkk0/qoosuUo8ePTR16lS1a9dOBw4c0NatW/X9999r9+7dkqSuXbtq6NCh6tu3r5o3b64dO3botdde0/Tp06v9rF69emncuHH6+9//LrvdroEDB2rt2rXat29fpWWvueYazZ49W1deeaVuvfVWFRcXa8mSJerYsaN27tzpWO7SSy9VWFiYLr/8cv3+97/X0aNHtWzZMsXHx1cZ0Dzpd7/7nZ566ilNnDhRn376qZKTk/Xaa6/p448/1uLFixUVFSXpdAforl27auXKlerYsaOaN2+u7t27q3v37l4tLxDQfH27FgDfqrgVfPv27ZXmlZWVmfbt25v27dubU6dOGWOMycrKMuPHjzeJiYmmYcOGplWrVub//b//Z1577TXH6+6//34zYMAA07RpUxMREWE6d+5sHnjgAXPixAnHMlXdtl1SUmJuvfVW06JFC9O4cWNz+eWXm9zc3Cpvjf7oo49M9+7dTVhYmOnUqZN56aWXqnzPt956y/Ts2dM0atTIJCcnm4ceesg8++yzRpLJzs52LFeXW8HPdZt7de934MABM2nSJBMbG2vCwsJMjx49zHPPPVfptVu2bDF9+/Y1YWFh3BYOuMBmzBn1tQAAAAGOPjcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSgm4Qv/Lycv3444+KiopimHMAAAKEMUZHjhxRy5YtKz2A9mxBF25+/PFHtW7d2tfFAAAALsjNzdV5551X4zJBF24qhjjPzc1VdHS0j0sDAABqo6ioSK1bt3acx2sSdOGmoikqOjqacAMAQICpTZcSOhQDAABLIdwAAABLIdwAAABLCbo+NwCA4FFWVqaTJ0/6uhiopbCwsHPe5l0bhBsAgOUYY5Sfn6/CwkJfFwV1EBISopSUFIWFhdXrfQg3AADLqQg28fHxioyMZNDWAFAxyG5eXp7atGlTr++McAMAsJSysjJHsGnRooWvi4M6iIuL048//qhTp06pYcOGLr8PHYoBAJZS0ccmMjLSxyVBXVU0R5WVldXrfQg3AABLoikq8LjrOyPcAAAASyHcAAAAr9iwYYNsNpvH72LzabhJT09X//79FRUVpfj4eI0ePVp79+6t8TXLly+XzWZz+mvUqJGXSlyzPHuJtmQVKM9e4uuiAACC0Pz589WrVy9fF8PnfHq31MaNGzVt2jT1799fp06d0l133aVLL71UX3zxhRo3blzt66Kjo51CkD+0q67cnqO5q/ao3EghNil9TA+N7d/G18UCAKCSkydP1utuJH/n05qbDz74QBMnTlS3bt2Umpqq5cuXKycnR59++mmNr7PZbEpMTHT8JSQkeKnEVcuzlziCjSSVG+muVZnU4AAA6qS8vFzp6elKSUlRRESEUlNT9dprr0n6X5PO2rVr1a9fP0VGRmrgwIGOi/3ly5drwYIF2r17t6NlY/ny5ZJOnzeXLFmiK664Qo0bN9YDDzxQYzkqPuvDDz9U7969FRERoV/84hc6ePCg3n//fXXp0kXR0dG69tprVVxc7HhdaWmpbr31VsXHx6tRo0a66KKLtH37ds9srBr4VZ8bu90uSWrevHmNyx09elRt27ZV69at9etf/1qff/55tcuWlpaqqKjI6c/dsguOOYJNhTJjtL+guOoXAAAChje7HKSnp+uFF17Q0qVL9fnnn+u2227T9ddfr40bNzqWufvuu/XII49ox44datCggW688UZJ0tixY3X77berW7duysvLU15ensaOHet43fz583XllVdqz549jtecy/z58/W3v/1NW7ZsUW5urq6++motXrxYL7/8st5991199NFHeuKJJxzL//GPf9Trr7+u559/Xjt37lSHDh00YsQIHT582E1bqHb8ZhC/8vJyzZw5U4MGDVL37t2rXa5Tp0569tln1bNnT9ntdv3lL3/RwIED9fnnn+u8886rtHx6eroWLFjgyaIrJbaxQmxyCjihNpuSYxljAQACmTe7HJSWlurBBx/Uv//9b6WlpUmS2rVrp82bN+upp57S7373O0nSAw88oCFDhkiS5syZo1GjRun48eOKiIhQkyZN1KBBAyUmJlZ6/2uvvVaTJk2qU5nuv/9+DRo0SJI0efJkzZ07V1lZWWrXrp0k6Te/+Y3Wr1+v2bNn69ixY1qyZImWL1+ukSNHSpKWLVumNWvW6B//+IfuvPNO1zaMC/ym5mbatGnKzMzUihUralwuLS1N48ePV69evTRkyBCtWrVKcXFxeuqpp6pcfu7cubLb7Y6/3Nxct5c9KSZC6WN6KPT/+v6E2mx6cEx3JcVEuP2zAADe4e0uB/v27VNxcbF++ctfqkmTJo6/F154QVlZWY7levbs6fh3UlKSJOngwYPnfP9+/frVuUxnflZCQoIiIyMdwaZiWsVnZ2Vl6eTJk44wJEkNGzbUgAED9OWXX9b5s+vDL2pupk+frnfeeUebNm2qsvalJg0bNlTv3r21b9++KueHh4crPDzcHcWs0dj+bTS4Y5z2FxQrOTaSYAMAAa6mLgeeOMYfPXpUkvTuu++qVatWTvPCw8MdAefMjsAVN9SUl5ef8/1rulGnOmd/1tmdkG02W60+29t8WnNjjNH06dP1xhtvaN26dUpJSanze5SVlWnPnj2O9OpLSTERSmvfgmADABZQ0eXgTJ7sctC1a1eFh4crJydHHTp0cPpr3bp1rd4jLCys3o8ucFX79u0VFhamjz/+2DHt5MmT2r59u7p27erVsvi05mbatGl6+eWX9eabbyoqKkr5+fmSpJiYGEVEnA4I48ePV6tWrZSeni5Juu+++3ThhReqQ4cOKiws1MMPP6zvvvtOU6ZM8dl6AACsp6LLwV2rMlVmjMe7HERFRemOO+7QbbfdpvLycl100UWy2+36+OOPFR0drbZt257zPZKTk5Wdna2MjAydd955ioqK8krrhXS6Zujmm2/WnXfeqebNm6tNmzb685//rOLiYk2ePNkrZajg03CzZMkSSdLQoUOdpj/33HOaOHGiJCknJ0chIf+rYPr55581depU5efnq1mzZurbt6+2bNni9VQIALA+b3c5WLhwoeLi4pSenq5vv/1WTZs2VZ8+fXTXXXfVqvnnqquu0qpVqzRs2DAVFhY6nU+9YdGiRSovL9cNN9ygI0eOqF+/fvrwww/VrFkzr5VBkmzGGHPuxayjqKhIMTExstvtio6O9nVxAABudvz4cWVnZyslJcVvRrBH7dT03dXl/O03d0sBAAC4A+EGAIAgc9NNNzndbn7m30033eTr4tWbX9wKDgAAvOe+++7THXfcUeU8K3TZINwAABBk4uPjFR8f7+tieAzNUgAAwFIINwAAS/LHkXNRM3fdwE2zFADAUsLCwhQSEqIff/xRcXFxCgsLczymAP7LGKNDhw5V+ZiHuiLcAAAsJSQkRCkpKcrLy9OPP/7o6+KgDmw2m8477zyFhobW630INwAAywkLC1ObNm106tQpnz1rCXXXsGHDegcbiXADALCoiuaN+jZxIPDQoRgAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFiKT8NNenq6+vfvr6ioKMXHx2v06NHau3fvOV/36quvqnPnzmrUqJF69Oih9957zwulBQAAgcCn4Wbjxo2aNm2aPvnkE61Zs0YnT57UpZdeqmPHjlX7mi1btmjcuHGaPHmydu3apdGjR2v06NHKzMz0YskBAIC/shljjK8LUeHQoUOKj4/Xxo0bNXjw4CqXGTt2rI4dO6Z33nnHMe3CCy9Ur169tHTp0nN+RlFRkWJiYmS32xUdHe22sgMAAM+py/nbr/rc2O12SVLz5s2rXWbr1q0aPny407QRI0Zo69atVS5fWlqqoqIipz8AAGBdfhNuysvLNXPmTA0aNEjdu3evdrn8/HwlJCQ4TUtISFB+fn6Vy6enpysmJsbx17p1a7eWGwAA+Be/CTfTpk1TZmamVqxY4db3nTt3rux2u+MvNzfXre8PAAD8SwNfF0CSpk+frnfeeUebNm3SeeedV+OyiYmJOnDggNO0AwcOKDExscrlw8PDFR4e7rayAgAA/+bTmhtjjKZPn6433nhD69atU0pKyjlfk5aWprVr1zpNW7NmjdLS0jxVTAAAEEB8WnMzbdo0vfzyy3rzzTcVFRXl6DcTExOjiIgISdL48ePVqlUrpaenS5JmzJihIUOG6JFHHtGoUaO0YsUK7dixQ08//bTP1gMAAPgPn9bcLFmyRHa7XUOHDlVSUpLjb+XKlY5lcnJylJeX5/j/wIED9fLLL+vpp59WamqqXnvtNa1evbrGTsgAACB4+NU4N97AODcAAASegB3nBgAAoL4INwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIIN0Eqz16iLVkFyrOX+LooAAC4VQNfFwDet3J7juau2qNyI4XYpPQxPTS2fxtfFwsAALeg5ibI5NlLHMFGksqNdNeqTGpwAACWQbgJMtkFxxzBpkKZMdpfUOybAgEA4GaEmyCTEttYITbnaaE2m5JjI31TIAAA3IxwE2SSYiKUPqaHQm2nE06ozaYHx3RXUkyEj0sGAIB70KE4CI3t30aDO8Zpf0GxkmMjCTYAAEsh3ASppJgIQg0AwJJolgIAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuLGYPHuJtmQV8JRvAEDQYoRiC1m5PUdzV+1RuZFCbFL6mB4a27+Nr4sFAIBXUXNjEXn2EkewkaRyI921KpMaHABA0CHcWER2wTFHsKlQZoz2FxT7pkAAAPgI4cYiUmIbK8TmPC3UZlNybKRvCgQAgI/4NNxs2rRJl19+uVq2bCmbzabVq1fXuPyGDRtks9kq/eXn53unwH4sKSZC6WN6KNR2OuGE2mx6cEx3nvwNAAg6Pu1QfOzYMaWmpurGG2/UmDFjav26vXv3Kjo62vH/+Ph4TxQv4Izt30aDO8Zpf0GxkmMjCTYAgKDk03AzcuRIjRw5ss6vi4+PV9OmTd1fIAtIiokg1AAAglpA9rnp1auXkpKS9Mtf/lIff/yxr4sTsBgTBwBgRQE1zk1SUpKWLl2qfv36qbS0VM8884yGDh2qbdu2qU+fPlW+prS0VKWlpY7/FxUVeau4fo0xcQAAVhVQ4aZTp07q1KmT4/8DBw5UVlaWHnvsMb344otVviY9PV0LFizwVhEDQnVj4gzuGEeTFgAg4AVks9SZBgwYoH379lU7f+7cubLb7Y6/3NxcL5bOPzEmDgDAygKq5qYqGRkZSkpKqnZ+eHi4wsPDvVgi/1cxJs6ZAYcxcQAAVuHTcHP06FGnWpfs7GxlZGSoefPmatOmjebOnasffvhBL7zwgiRp8eLFSklJUbdu3XT8+HE988wzWrdunT766CNfrUJAqhgT565VmSozhjFxAACWUutwU5eOuGeOQVOTHTt2aNiwYY7/z5o1S5I0YcIELV++XHl5ecrJyXHMP3HihG6//Xb98MMPioyMVM+ePfXvf//b6T1QO4yJAwCwKpsxxpx7MSkkJEQ2m63GZYwxstlsKisrc0vhPKGoqEgxMTGy2+21DmGekGcvUXbBMaXENiZYAABwDnU5f9e65mb9+vX1LhhO4zZsAAA8p9bhZsiQIZ4sR9DgNmwAADzL5Q7FhYWF+sc//qEvv/xSktStWzfdeOONiomJcVvhrKim27AJNwAA1J9L49zs2LFD7du312OPPabDhw/r8OHDevTRR9W+fXvt3LnT3WW0lIrbsM/EbdgAALhPrTsUn+niiy9Whw4dtGzZMjVocLry59SpU5oyZYq+/fZbbdq0ye0FdRd/6FC8cntOpduw6XMDAED16nL+dincREREaNeuXercubPT9C+++EL9+vVTcbH/jnTrD+FGOt33htuwAQConbqcv11qloqOjnYaf6ZCbm6uoqKiXHnLoJMUE6G09i0INgAAuJlL4Wbs2LGaPHmyVq5cqdzcXOXm5mrFihWaMmWKxo0b5+4yAgAA1JpLd0v95S9/kc1m0/jx43Xq1ClJUsOGDXXzzTdr0aJFbi0gAABAXbjU56ZCcXGxsrKyJEnt27dXZKT/3/HjL31uAABA7XlkhOKqREZGqkePHvV5CwAAALdyKdwcP35cTzzxhNavX6+DBw+qvLzcaT5j3QAAAF9xKdxMnjxZH330kX7zm99owIAB53ygJgAAgLe4FG7eeecdvffeexo0aJC7ywMAAFAvLt0K3qpVK8azAQAAfsmlcPPII49o9uzZ+u6779xdHgAAgHpxqVmqX79+On78uNq1a6fIyEg1bNjQaf7hw4fdUjgAAIC6cincjBs3Tj/88IMefPBBJSQk0KEYAAD4DZfCzZYtW7R161alpqa6uzwAAAD14lKfm86dO6ukpMTdZQEAAKg3l8LNokWLdPvtt2vDhg366aefVFRU5PQHAADgKy49Wyok5HQmOruvjTFGNptNZWVl7imdB/BsKQAAAo/Hny21fv16lwoGAADgaS6FmyFDhtRquVtuuUX33XefYmNjXfkYAACAOnOpz01tvfTSS/TBAQAAXuXRcONCdx4AAIB68Wi4AQAA8DbCDQAAsBTCDQAAsBTCDQAAsJQ6h5tTp07pvvvu0/fff3/OZa+//noGygMAAF7l0gjFUVFR2rNnj5KTkz1QJM9ihGIAAAJPXc7fLjVL/eIXv9DGjRtdKhwAAIAnuTRC8ciRIzVnzhzt2bNHffv2VePGjZ3mX3HFFW4pHAAAQF3V68GZVb4hD84EAABu5vEHZ5aXl7tUMAAAAE9zqc/NCy+8oNLS0krTT5w4oRdeeKHehQIAAHCVS81SoaGhysvLU3x8vNP0n376SfHx8TRLAQAAt/L43VLGGNlstkrTv//+e8XExLjylvCRPHuJtmQVKM9e4uuiAADgFnXqc9O7d2/ZbDbZbDZdcsklatDgfy8vKytTdna2LrvsMrcXEp6xcnuO5q7ao3Ijhdik9DE9NLZ/G18XCwCAeqlTuBk9erQkKSMjQyNGjFCTJk0c88LCwpScnKyrrrrKrQWEZ+TZSxzBRpLKjXTXqkwN7hinpJgI3xYOAIB6qFO4mTdvniQpOTlZY8eOVaNGjTxSKHhedsExR7CpUGaM9hcUE24ABLU8e4myC44pJbYxx8MA5dKt4BMmTJB0+u6ogwcPVro1vE0bmjb8XUpsY4XY5BRwQm02JcdG+q5QAOBjNNdbg0sdir/55htdfPHFioiIUNu2bZWSkqKUlBQlJycrJSXF3WWEByTFRCh9TA+F/l/H8FCbTQ+O6c5VCoCgVV1zPTdcBB6Xam4mTpyoBg0a6J133lFSUlKVd07B/43t30aDO8Zpf0GxkmMjCTYAghrN9dbhUrjJyMjQp59+qs6dO7u7PPCypJgIfrQAIJrrrcSlZqmuXbuqoKDA3WUBAMBnaK63DpdGKF63bp3+9Kc/6cEHH1SPHj3UsGFDp/n+PPIvIxSfG3cKAAhmefYSmuv9UF3O3/V+KviZ/W0qRi7m8QuBizsFAAD+yONPBV+/fr1LBYN/Y2A/AIAVuNTnZsiQIQoJCdGyZcs0Z84cdejQQUOGDFFOTo5CQ0PdXUZ4SU13CngKz7YCALibS+Hm9ddf14gRIxQREaFdu3aptLRUkmS32/Xggw+6tYDwnoo7Bc7kyTsFVm7P0aBF63Ttsm0atGidVm7P8cjnAACCi0vh5v7779fSpUu1bNkyp87EgwYN0s6dO91WOHiXN+8UYLAsAICnuNTnZu/evRo8eHCl6TExMSosLKxvmeBD3hrYj8GyAACe4lK4SUxM1L59+5ScnOw0ffPmzWrXrp07ygUf8sbAfgyWBQDwFJeapaZOnaoZM2Zo27Ztstls+vHHH/XPf/5Td9xxh26++WZ3lxEWxGBZAABPcSnczJkzR9dee60uueQSHT16VIMHD9aUKVP0+9//Xn/4wx9q/T6bNm3S5ZdfrpYtW8pms2n16tXnfM2GDRvUp08fhYeHq0OHDlq+fLkrqwA/MLZ/G22eM0yvTL1Qm+cMYzwdAIBbuBRubDab7r77bh0+fFiZmZn65JNPdOjQIS1cuLBO73Ps2DGlpqbqySefrNXy2dnZGjVqlIYNG6aMjAzNnDlTU6ZM0YcffujKasAPJMVEKK19C2psAABu49IIxZ5gs9n0xhtvaPTo0dUuM3v2bL377rvKzMx0TLvmmmtUWFioDz74oFafwwjFAAAEnrqcv12qufGVrVu3avjw4U7TRowYoa1bt/qoRAAAwN+4dLeUr+Tn5yshIcFpWkJCgoqKilRSUqKIiMpNG6WlpY5BBqXTyQ8AAFhXQNXcuCI9PV0xMTGOv9atW/u6SAAAwIMCKtwkJibqwIEDTtMOHDig6OjoKmttJGnu3Lmy2+2Ov9zcXG8UFQAA+EhANUulpaXpvffec5q2Zs0apaWlVfua8PBwhYeHe7poAADAT/i05ubo0aPKyMhQRkaGpNO3emdkZCgn5/QDFOfOnavx48c7lr/pppv07bff6o9//KO++uor/f3vf9e//vUv3Xbbbb4oPgAA8EM+DTc7duxQ79691bt3b0nSrFmz1Lt3b917772SpLy8PEfQkaSUlBS9++67WrNmjVJTU/XII4/omWee0YgRI3xSfgAA4H/8Zpwbb2Gcm+CUZy9RdsExpcQ2ZsBAAAhAdTl/B1SfG8AVK7fnaO6qPSo3UohNSh/Tg0c9AICFBdTdUkBd5dlLHMFGOv0U8rtWZSrPXuLbggEAPIZwA0vLLjjmCDYVyozR/oJi3xQIAOBxhBtYWkpsY4XYnKeF2mxKjo30TYEAAB5HuIGlJcVEKH1MD4XaTiecUJtND47pTqdiALAwOhTD8sb2b6PBHeO0v6BYybGRBBsAsDjCDYJCUkwEoQYAggTNUgAAwFIINwAAwFIINwAAwFIIN6iVPHuJtmQVMPgdAMDv0aEY58TjCwAAgYSaG9SIxxcAAAIN4QY14vEFAIBAQ7hBjXh8AQAg0BBuUCMeXwAACDR0KMY58fgCAEAgIdygVnh8AQAgUNAsBQAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwg2rxsEwAQCDiVnBUiYdlAgACFTU3qISHZQIAAhnhBpXwsEwAQCAj3KASHpYJAAhkhBtUwsMyAQCBjA7FqBIPywQABCrCDarFwzIBAIGIZik/xjgzAADUHTU3fopxZgAAcA01N36IcWYAAHAd4cYPMc4MAACuI9z4IcaZAQDAdYQbP8Q4MwAAuI4OxX6KcWYAAHAN4caPMc4MAAB1R7MUAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMIN4Kfy7CXaklXAA1MBoI4YxA/wQyu35zieDB9ik9LH9NDY/m18XSwACAjU3AB+Js9e4gg2klRupLtWZVKDAwC1RLgB/Ex2wTFHsKlQZoz2FxT7pkAAEGAIN36IvhbBLSW2sUJsztNCbTYlx0b6pkAAEGAIN35m5fYcDVq0Ttcu26ZBi9Zp5fYcXxcJXpYUE6H0MT0UajudcEJtNj04pjsPUQWAWrIZY8y5F7OOoqIixcTEyG63Kzo62tfFcZJnL9GgReucmiRCbTZtnjOME1sQyrOXaH9BsZJjI/n+AQS9upy/uVvKj9TU14KTW/BJionge4dfy7OXKLvgmFJiG7Ovwq8QbvxIRV+Ls2tu6GtRdxx0Ac9iuAL4M/rc+BGr9LXwdYdo+i0BnsVwBfB3fhFunnzySSUnJ6tRo0a64IIL9N///rfaZZcvXy6bzeb016hRIy+W1rPG9m+jzXOG6ZWpF2rznGEBdyXk62DBQdc1vg6kCCwMVwB/5/NmqZUrV2rWrFlaunSpLrjgAi1evFgjRozQ3r17FR8fX+VroqOjtXfvXsf/bTZblcsFqkDta1FdsBjcMc5r60O/pbqjeQF1RRM6/J3Pa24effRRTZ06VZMmTVLXrl21dOlSRUZG6tlnn632NTabTYmJiY6/hIQEL5YY1fGHqznGiKnZmTU0efYSvb37B2q6UGdWaUKHdfm05ubEiRP69NNPNXfuXMe0kJAQDR8+XFu3bq32dUePHlXbtm1VXl6uPn366MEHH1S3bt28UWTUwB+u5ioOunetylSZMRx0z3BmDU1F/qtqHAhqulAbY/u30eCOcQxXAL/k03BTUFCgsrKySjUvCQkJ+uqrr6p8TadOnfTss8+qZ8+estvt+stf/qKBAwfq888/13nnnVdp+dLSUpWWljr+X1RU5N6VgIO/BAsOupWd3WRY0+BW1HShtgK1CR3W5/M+N3WVlpamtLQ0x/8HDhyoLl266KmnntLChQsrLZ+enq4FCxZ4s4hBzV+CBQddZ1U1GVaFmi4AVuDTcBMbG6vQ0FAdOHDAafqBAweUmJhYq/do2LChevfurX379lU5f+7cuZo1a5bj/0VFRWrdurXrhcY5ESz8T1VNhmcKkfTEtb3Vp20zvjsAAc+nHYrDwsLUt29frV271jGtvLxca9eudaqdqUlZWZn27NmjpKSkKueHh4crOjra6Q8INmd3ALVJqrjJMNRmU/pVPTSqZ0uCDWqN4QPgz3zeLDVr1ixNmDBB/fr104ABA7R48WIdO3ZMkyZNkiSNHz9erVq1Unp6uiTpvvvu04UXXqgOHTqosLBQDz/8sL777jtNmTLFl6sB+L2zmwwl+bz5EIGJ4QPg73websaOHatDhw7p3nvvVX5+vnr16qUPPvjA0ck4JydHISH/q2D6+eefNXXqVOXn56tZs2bq27evtmzZoq5du/pqFYBa8/VjIc5uMiTUoK78YTwr4Fx4KjjgJVztwgq2ZBXo2mXbKk1/ZeqFSmvfwgclQrCoy/nb54P4AcHAE4+FoM8DfIGBMhEICDeAF7h79GZfP8MLwYvRiREIfN7nBggG7hy9mT4P8DV/Gc8KqA41N4AXuPNq1x+e4QUkxUQorX0Lgg38EjU3gJe462rXH57hBQD+jJobwIvccbVLnwcAqBk1N0AAGtu/jTonRmn7/p/VP7mZUls383WR4GO+HkMJ8CeEGyAAMWYOzsT+ADijWcrCGAfFmjwxZg4CF/sDJI73Z6PmxqK4krOumu6Wojki+Lhjf6BJK7BxvK+MmhsL4krO2hghFmeq7/7gqwEhqWlwD473VSPcWBDjoFgbd0vhTPXZH2o6MXoyfDDCtvtwvK8azVIWFGjjoFAlXneMEIszubo/VHdifO7jbD3zn2yPNHMwwrbrqjpWBtrx3lsINxZUcSV316pMlRnj11f2tBW7Likmwi+/U/iGK/tDVSfGEJu0bFO2Kia5M3zk2Uv0zmc/0mfMBdUdKwPpeO9NNmOMOfdi1lGXR6YHujx7ic+v7Guqlcmzl2jQonWVrjg2zxkW9D9MwFtWbs9xOjHeeFGylv0nu9Jyr0y9UGntW9Trc86ssTlTdb97anVPq82x0h+O955Wl/M3NTcW5usr+3PVytTlLg8OcoBnnN2kJUn/2Jzt1maOs5uizlRdTQO1uv9Tm2Olr4/3/oZwA4+oTbt6bduKOcghWHkr1J99YnR3M0dVJ2dJumdUF/2qZ1KVFzP0y/mf2hwruQB0RriBR9T2SuNcB1EOctbBwbdufBnq3d1hvbqTc1XBRrLOWE7u2ufPdaz01L4SyL9Zwg08ora1Muc6iFrlIBfsgqn2zR0nhPqEeneeUN31G6trp1cr3AHk6j5f3fdX3bHSUxeAgf6bJdzAI+pyMKvpIGqFg1ywC6baN3edEM41dkl14cWfT0h1qQ0K9DuAXN3nz/X9VXWsdHVf8UT5/QnhBh7jjqrtQD/IIXhq39x5Qqgu1H/2Q6Gue+aTKk9+gXBCqkttUCCP5eTKPu/q9+fKvuKJ8vsbRiiGRyXFRCitfYt6/SDG9m+jzXOG6ZWpF2rznGF+cyUarOo6cm2wPC7CnSPFVjXq8B8v66SH3v+q2mH2rThSbV2OH/70OIeq9nlJ+uz7wmpf4+r3V9t9Ze7re7Q792eXyx9ov1lqbhAQuM3RP7jS7BEstW/ubkI9u+biXFfTvm7C9WXnU39rjkuKidDskZ2V/t5XTtP//MFeXdGrZZXbpz7fX232lXJJo/++RYuC5DdLuAGCwLkGU6zNSak+zR6B3MRQW544IZwd6ms6+fnyhOTLcOGvzXE9WsVUmlZT0059v79z7SuSZILoN0u4ASyuphNPXU5K9W2HD4baN0+eEGpz8vPFCamu4cLdNTz+2j/ElZoYd31/FfvK3Nf3qPysecHymyXcABZW04nnYNFxzXl9T62fIeTrZo9A4ckTQm1Oft4+IdUlXHiihsdf98u61sScGfrq85iLCmP7t1HnxCiN/vsWGT/bNt5AuAEsrNqnPm/er2Wbv9VZszxabQ738Ler6dqGC081H/nzflnbmhhPNeultm6mRS5um/rUsPnD4H+EG/gNf/hBWE2VT32W9Mzmb52u5ip4q9oc1lHbcOHJ5iN/3i/PFUY93WfozG0TGRaiYyfKlGcvqdd4OzXxl87dhBv4BX/5QVhNVSeeyRcl6+kqnvocItXqqs7fag7ge7UJF55uPqppv/TnCydv9BlKionQpq8P1eoYW1XYmvv6HnVOjFJq62Y1fo4/de4m3MDn/OkHYUVVPfX5mbOe+hxik964ZeA5D15wH38+4briXKHXV81H/n7h5I0+Q3U5xtbnNnJ/6txNuIHP+dMPwqrOPvFUdZIh2HiPv59wPcXbzUeBcOHkjdBXl2NsVWFLqt1t5P7UuZtwA5/zpx9EsPDnPgpWFwgnXE/yZrOmOy+cPFnT5unfY12OsfW5jdyfOncTbuAydz592F9+EMGEvjO+UdsTrtWarXzBXRdO3qhp8+Tvsa7H2PrcRu4vF06EG7jE3T92f/lBAJ5WmxPuU5uytOj9r2SCrNnK3dxx4eSJmjZfBNe6HmPrcxu5P1w42Yyp6oZQ6yoqKlJMTIzsdruio6N9XZyAlGcv0aBF6yodnDfPGebzHRoIBCu351Q6aVSEl6c2Zin9fednEvH7qp88e4nLF05bsgp07bJtlaa/MvVClwbbC7T+VvXZdu5Wl/M3NTeoMzoAA/VT3VV0nr1Ei84KNhK/r/qqT02CO/sEBmJ/K3+ohXFFiK8LgMBT8WM/Ex2AYVV59hJtySpQnr3Ere+bFBOhtPYtnE4c2QXHKo0aLZ2+wuf35RsVTVuhttMHvfr0CazpwhDuRc0N6owOwAgW3m5CqO423NkjO/P78iF39QnkzlDvoc8NXObptljuFoGr3LHv+Kpv2Zn9cUJ0Otj8fkh7j32e1fnbcaSm/laoGX1u4BWebIsNtE538B/u2nd81beMOwfdxx+PI3y/3kGfG/id6jrdubvPA6zHnfuOL/uWVdUfB3Xjz8eRQP1+PdX/zBMIN/A7dLqDq9y577izIym8j+OIe63cnqNBi9bp2mXbNGjROq3cnuPrItWIZin4HW89SM6f2uHhHu7ed2hCCFx03nWfQLyFnZob+B1PXzEH2hUIas8T+06gNiEEO2re3CcQa8G4Wwp+yxN3YzG6cnDwp1FV4VvsC/XnL8dN7paCJXjibixGVw4OgTqqKtyPfaH+AnFsM8INggrt8MHB3/pU+Vt5UDW+p+qd3f9MOv3cLX/dVoQbBJVAvAKpwIG3dvxtbBN/Kw+qxvd0bhW1YIGwrehzg6Dk63b4ugaVQDiY+AN/6Rvgr+VB1fieas+X24o+N8A5+LIdvq5BJRBvw/QVf+tT5W/lsSJ31GjyPdVeoGwrwg1wBk83/bgSVALlYOIP/K1Plb+Vxx/V5zfnrhpNvqfaC5RtxTg3wP/x1Pg3Zw5Z7sp4Eb58DECg8cXYJjUNSc9YKzWrz2/OnY9X4HuqvUDZVtTcAPJc08/ZV5azL+tc56ueQO4E7QveHFW4NjUHjHJctfr+5txdo+mO7ylYOv0Hwj5NuAHkmaafqg7ef/5gr2aP7Kw/v7+3TkElEA4m/sRdfapqOlnV5eTMWCv/U7FNDx87Ua/fnCeaR+rzPQVbp39/36cJN4Bqd6Cs61VZdYGpZ6um2jxnWJ2Dir8fTLzN01fJ5zpZWakvVMW2bBwWqmMnyryyTW06/XfmJqxLOPGnGs1g6/QfCDVUhBtA5z5QunJVVlNgIqjUj6evkmtzsvJ1x0p3nWDO3JYVvLFNjU6Hm4pt6Eo48ZcaTSsF3XMJlBoqwg2CTnUnheoOlK5elfnTlaWVeOMq+Vwnq4p9yJUmRndw5QRT1X5/9ras4K1taiQ9cU1vtWgS7nI48YcLBV8HXW8JpBoqvwg3Tz75pB5++GHl5+crNTVVTzzxhAYMGFDt8q+++qruuece7d+/X+eff74eeugh/epXv/JiiRGoznVSqOpAWZ+rMn+5sqwPf6uC9sZVck0nq6o6ifc8r6nXvl9XTjDV7fdVbcsK3tqmfZOb+cV+VZ3a7P/BciETSDVUPr8VfOXKlZo1a5bmzZunnTt3KjU1VSNGjNDBgwerXH7Lli0aN26cJk+erF27dmn06NEaPXq0MjMzvVxyBBpXbx2t763YSTERSmvfwu9+/LXhqdvj68Mbt8ZXd7urpCo7iXszuNZ1OIGa9vuqtmUFb21Tf/5d1GX/H9u/jTbPGaZXpl6ozXOG+WVTTX0F0rAUPg83jz76qKZOnapJkyapa9euWrp0qSIjI/Xss89Wufzjjz+uyy67THfeeae6dOmihQsXqk+fPvrb3/7m5ZIj0LgyxowUmAdld3DnOCLu5K3vo6qTlav7kDvV9QRzrqvtM7flme/nrW3qr1zZ/wP5QqY2AulY6NNmqRMnTujTTz/V3LlzHdNCQkI0fPhwbd26tcrXbN26VbNmzXKaNmLECK1evbrK5UtLS1VaWur4f1FRUf0LjoBUn3ZxKzQv1ZU/V0F76/s4u5nSH/pW1LUJ5FxlPnNbRoaFqPhEuVe3qb/y5/3flwLlWOjTcFNQUKCysjIlJCQ4TU9ISNBXX31V5Wvy8/OrXD4/P7/K5dPT07VgwQL3FBgBrb7t4oFyUHYXfziR18QX34e/9K2oywmmNmUOtn27Nvx9//elQNhf/KJDsSfNnTvXqaanqKhIrVu39mGJ4EuBctXhD/zlRO5v/GUfqssJxl/KHEjY/wObT8NNbGysQkNDdeDAAafpBw4cUGJiYpWvSUxMrNPy4eHhCg8Pd0+BYQmBcNXhLzgpVi0Q96FALLOvsf8HLp92KA4LC1Pfvn21du1ax7Ty8nKtXbtWaWlpVb4mLS3NaXlJWrNmTbXLA6gfq3eSBGrC/h+YfN4sNWvWLE2YMEH9+vXTgAEDtHjxYh07dkyTJk2SJI0fP16tWrVSenq6JGnGjBkaMmSIHnnkEY0aNUorVqzQjh079PTTT/tyNQAAgJ/webgZO3asDh06pHvvvVf5+fnq1auXPvjgA0en4ZycHIWE/K+CaeDAgXr55Zf1pz/9SXfddZfOP/98rV69Wt27d/fVKgAAAD9iM8ZUMz6lNRUVFSkmJkZ2u13R0dG+Lg4AAKiFupy/fT6IHwAAgDsRbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKX4fIRib6sYs7CoqMjHJQEAALVVcd6uzdjDQRdujhw5Iklq3bq1j0sCAADq6siRI4qJialxmaB7/EJ5ebl+/PFHRUVFyWaz1fp1RUVFat26tXJzc4P6sQ1sB7ZBBbbDaWwHtkEFtsNpntoOxhgdOXJELVu2dHrmZFWCruYmJCRE5513nsuvj46ODuqdtgLbgW1Qge1wGtuBbVCB7XCaJ7bDuWpsKtChGAAAWArhBgAAWArhppbCw8M1b948hYeH+7ooPsV2YBtUYDucxnZgG1RgO5zmD9sh6DoUAwAAa6PmBgAAWArhBgAAWArhBgAAWArhBgAAWEpQh5slS5aoZ8+ejoGG0tLS9P777zvmHz9+XNOmTVOLFi3UpEkTXXXVVTpw4IDTe+Tk5GjUqFGKjIxUfHy87rzzTp06dcrbq+I2ixYtks1m08yZMx3TgmE7zJ8/Xzabzemvc+fOjvnBsA0q/PDDD7r++uvVokULRUREqEePHtqxY4djvjFG9957r5KSkhQREaHhw4frm2++cXqPw4cP67rrrlN0dLSaNm2qyZMn6+jRo95eFZclJydX2h9sNpumTZsmKTj2h7KyMt1zzz1KSUlRRESE2rdvr4ULFzo91ycY9gXp9HD/M2fOVNu2bRUREaGBAwdq+/btjvlW3A6bNm3S5ZdfrpYtW8pms2n16tVO8921zp999pkuvvhiNWrUSK1bt9af//xn96yACWJvvfWWeffdd83XX39t9u7da+666y7TsGFDk5mZaYwx5qabbjKtW7c2a9euNTt27DAXXnihGThwoOP1p06dMt27dzfDhw83u3btMu+9956JjY01c+fO9dUq1ct///tfk5ycbHr27GlmzJjhmB4M22HevHmmW7duJi8vz/F36NAhx/xg2AbGGHP48GHTtm1bM3HiRLNt2zbz7bffmg8//NDs27fPscyiRYtMTEyMWb16tdm9e7e54oorTEpKiikpKXEsc9lll5nU1FTzySefmP/85z+mQ4cOZty4cb5YJZccPHjQaV9Ys2aNkWTWr19vjAmO/eGBBx4wLVq0MO+8847Jzs42r776qmnSpIl5/PHHHcsEw75gjDFXX3216dq1q9m4caP55ptvzLx580x0dLT5/vvvjTHW3A7vvfeeufvuu82qVauMJPPGG284zXfHOtvtdpOQkGCuu+46k5mZaV555RUTERFhnnrqqXqXP6jDTVWaNWtmnnnmGVNYWGgaNmxoXn31Vce8L7/80kgyW7duNcac/vJDQkJMfn6+Y5klS5aY6OhoU1pa6vWy18eRI0fM+eefb9asWWOGDBniCDfBsh3mzZtnUlNTq5wXLNvAGGNmz55tLrroomrnl5eXm8TERPPwww87phUWFprw8HDzyiuvGGOM+eKLL4wks337dscy77//vrHZbOaHH37wXOE9aMaMGaZ9+/amvLw8aPaHUaNGmRtvvNFp2pgxY8x1111njAmefaG4uNiEhoaad955x2l6nz59zN133x0U2+HscOOudf773/9umjVr5vSbmD17tunUqVO9yxzUzVJnKisr04oVK3Ts2DGlpaXp008/1cmTJzV8+HDHMp07d1abNm20detWSdLWrVvVo0cPJSQkOJYZMWKEioqK9Pnnn3t9Hepj2rRpGjVqlNP6Sgqq7fDNN9+oZcuWateuna677jrl5ORICq5t8NZbb6lfv3767W9/q/j4ePXu3VvLli1zzM/OzlZ+fr7TtoiJidEFF1zgtC2aNm2qfv36OZYZPny4QkJCtG3bNu+tjJucOHFCL730km688UbZbLag2R8GDhyotWvX6uuvv5Yk7d69W5s3b9bIkSMlBc++cOrUKZWVlalRo0ZO0yMiIrR58+ag2Q5nctc6b926VYMHD1ZYWJhjmREjRmjv3r36+eef61XGoHtw5tn27NmjtLQ0HT9+XE2aNNEbb7yhrl27KiMjQ2FhYWratKnT8gkJCcrPz5ck5efnOx28KuZXzAsUK1as0M6dO53akCvk5+cHxXa44IILtHz5cnXq1El5eXlasGCBLr74YmVmZgbNNpCkb7/9VkuWLNGsWbN01113afv27br11lsVFhamCRMmONalqnU9c1vEx8c7zW/QoIGaN28eUNuiwurVq1VYWKiJEydKCp7fxJw5c1RUVKTOnTsrNDRUZWVleuCBB3TddddJUtDsC1FRUUpLS9PChQvVpUsXJSQk6JVXXtHWrVvVoUOHoNkOZ3LXOufn5yslJaXSe1TMa9asmctlDPpw06lTJ2VkZMhut+u1117ThAkTtHHjRl8Xy2tyc3M1Y8YMrVmzptKVSTCpuBqVpJ49e+qCCy5Q27Zt9a9//UsRERE+LJl3lZeXq1+/fnrwwQclSb1791ZmZqaWLl2qCRMm+Lh0vvGPf/xDI0eOVMuWLX1dFK/617/+pX/+8596+eWX1a1bN2VkZGjmzJlq2bJl0O0LL774om688Ua1atVKoaGh6tOnj8aNG6dPP/3U10VDNYK+WSosLEwdOnRQ3759lZ6ertTUVD3++ONKTEzUiRMnVFhY6LT8gQMHlJiYKElKTEysdIdExf8rlvF3n376qQ4ePKg+ffqoQYMGatCggTZu3Ki//vWvatCggRISEoJiO5ytadOm6tixo/bt2xc0+4IkJSUlqWvXrk7TunTp4miiq1iXqtb1zG1x8OBBp/mnTp3S4cOHA2pbSNJ3332nf//735oyZYpjWrDsD3feeafmzJmja665Rj169NANN9yg2267Tenp6ZKCa19o3769Nm7cqKNHjyo3N1f//e9/dfLkSbVr1y6otkMFd62zJ38nQR9uzlZeXq7S0lL17dtXDRs21Nq1ax3z9u7dq5ycHKWlpUmS0tLStGfPHqcvcM2aNYqOjq50gvBXl1xyifbs2aOMjAzHX79+/XTdddc5/h0M2+FsR48eVVZWlpKSkoJmX5CkQYMGae/evU7Tvv76a7Vt21aSlJKSosTERKdtUVRUpG3btjlti8LCQqer2nXr1qm8vFwXXHCBF9bCfZ577jnFx8dr1KhRjmnBsj8UFxcrJMT5FBEaGqry8nJJwbcvSFLjxo2VlJSkn3/+WR9++KF+/etfB+V2cNc6p6WladOmTTp58qRjmTVr1qhTp071apKSFNy3gs+ZM8ds3LjRZGdnm88++8zMmTPH2Gw289FHHxljTt/u2aZNG7Nu3TqzY8cOk5aWZtLS0hyvr7jd89JLLzUZGRnmgw8+MHFxcQF1u2dVzrxbypjg2A6333672bBhg8nOzjYff/yxGT58uImNjTUHDx40xgTHNjDm9HAADRo0MA888ID55ptvzD//+U8TGRlpXnrpJccyixYtMk2bNjVvvvmm+eyzz8yvf/3rKm8B7d27t9m2bZvZvHmzOf/88/36tteqlJWVmTZt2pjZs2dXmhcM+8OECRNMq1atHLeCr1q1ysTGxpo//vGPjmWCZV/44IMPzPvvv2++/fZb89FHH5nU1FRzwQUXmBMnThhjrLkdjhw5Ynbt2mV27dplJJlHH33U7Nq1y3z33XfGGPesc2FhoUlISDA33HCDyczMNCtWrDCRkZHcCl5fN954o2nbtq0JCwszcXFx5pJLLnEEG2OMKSkpMbfccotp1qyZiYyMNFdeeaXJy8tzeo/9+/ebkSNHmoiICBMbG2tuv/12c/LkSW+viludHW6CYTuMHTvWJCUlmbCwMNOqVSszduxYp7FdgmEbVHj77bdN9+7dTXh4uOncubN5+umnneaXl5ebe+65xyQkJJjw8HBzySWXmL179zot89NPP5lx48aZJk2amOjoaDNp0iRz5MgRb65GvX344YdGUqV1MyY49oeioiIzY8YM06ZNG9OoUSPTrl07c/fddzvdthss+8LKlStNu3btTFhYmElMTDTTpk0zhYWFjvlW3A7r1683kir9TZgwwRjjvnXevXu3ueiii0x4eLhp1aqVWbRokVvKbzPmjOEmAQAAAhx9bgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgDUytChQzVz5kxfF8Pj5s+fr169evm6GADqgXADICicOHHCq59njNGpU6e8+pkATiPcADiniRMnauPGjXr88cdls9lks9m0f/9+ZWZmauTIkWrSpIkSEhJ0ww03qKCgwPG6oUOH6g9/+INmzpypZs2aKSEhQcuWLdOxY8c0adIkRUVFqUOHDnr//fcdr9mwYYNsNpveffdd9ezZU40aNdKFF16ozMxMpzJt3rxZF198sSIiItS6dWvdeuutOnbsmGN+cnKyFi5cqPHjxys6Olq/+93vJEmzZ89Wx44dFRkZqXbt2umee+5xPJV4+fLlWrBggXbv3u1Yz+XLl2v//v2y2WzKyMhwvH9hYaFsNps2bNjgVO73339fffv2VXh4uDZv3qzy8nKlp6crJSVFERERSk1N1WuvveburwjAGQg3AM7p8ccfV1pamqZOnaq8vDzl5eUpKipKv/jFL9S7d2/t2LFDH3zwgQ4cOKCrr77a6bXPP/+8YmNj9d///ld/+MMfdPPNN+u3v/2tBg4cqJ07d+rSSy/VDTfcoOLiYqfX3XnnnXrkkUe0fft2xcXF6fLLL3eEkKysLF122WW66qqr9Nlnn2nlypXavHmzpk+f7vQef/nLX5Samqpdu3bpnnvukSRFRUVp+fLl+uKLL/T4449r2bJleuyxxyRJY8eO1e23365u3bo51nPs2LF12lZz5szRokWL9OWXX6pnz55KT0/XCy+8oKVLl+rzzz/Xbbfdpuuvv14bN26s0/sCqAO3PH4TgOWd/bT4hQsXmksvvdRpmdzcXKcnaQ8ZMsRcdNFFjvmnTp0yjRs3NjfccINjWl5enpFktm7daoz539OIV6xY4Vjmp59+MhEREWblypXGGGMmT55sfve73zl99n/+8x8TEhJiSkpKjDHGtG3b1owePfqc6/Xwww+bvn37Ov4/b948k5qa6rRMdna2kWR27drlmPbzzz8bSWb9+vVO5V69erVjmePHj5vIyEizZcsWp/ebPHmyGTdu3DnLBsA1DXwZrAAErt27d2v9+vVq0qRJpXlZWVnq2LGjJKlnz56O6aGhoWrRooV69OjhmJaQkCBJOnjwoNN7pKWlOf7dvHlzderUSV9++aXjsz/77DP985//dCxjjFF5ebmys7PVpUsXSVK/fv0qlW3lypX661//qqysLB09elSnTp1SdHR0nde/Omd+5r59+1RcXKxf/vKXTsucOHFCvXv3dttnAnBGuAHgkqNHj+ryyy/XQw89VGleUlKS498NGzZ0mmez2Zym2Ww2SVJ5eXmdPvv3v/+9br311krz2rRp4/h348aNneZt3bpV1113nRYsWKARI0YoJiZGK1as0COPPFLj54WEnG7BN8Y4plU0kZ3tzM88evSoJOndd99Vq1atnJYLDw+v8TMBuI5wA6BWwsLCVFZW5vh/nz599Prrrys5OVkNGrj/UPLJJ584gsrPP/+sr7/+2lEj06dPH33xxRfq0KFDnd5zy5Ytatu2re6++27HtO+++85pmbPXU5Li4uIkSXl5eY4alzM7F1ena9euCg8PV05OjoYMGVKnsgJwHR2KAdRKcnKytm3bpv3796ugoEDTpk3T4cOHNW7cOG3fvl1ZWVn68MMPNWnSpErhwBX33Xef1q5dq8zMTE2cOFGxsbEaPXq0pNN3PG3ZskXTp09XRkaGvvnmG7355puVOhSf7fzzz1dOTo5WrFihrKws/fWvf9Ubb7xRaT2zs7OVkZGhgoIClZaWKiIiQhdeeKGjo/DGjRv1pz/96ZzrEBUVpTvuuEO33Xabnn/+eWVlZWnnzp164okn9Pzzz7u8bQDUjHADoFbuuOMOhYaGqmvXroqLi9OJEyf08ccfq6ysTJdeeql69OihmTNnqmnTpo5mnPpYtGiRZsyYob59+yo/P19vv/22wsLCJJ3ux7Nx40Z9/fXXuvjii9W7d2/de++9atmyZY3vecUVV+i2227T9OnT1atXL23ZssVxF1WFq666SpdddpmGDRumuLg4vfLKK5KkZ599VqdOnVLfvn01c+ZM3X///bVaj4ULF+qee+5Renq6unTpossuu0zvvvuuUlJSXNgqAGrDZs5sRAYAH9uwYYOGDRumn3/+WU2bNvV1cQAEIGpuAACApRBuAACApdAsBQAALIWaGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCn/Hwm4xhZQNiCSAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" } - ], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(poly_surr, data_validation, filename=\"pysmo_poly_val_scatter2D.pdf\")\n", - "surrogate_parity(poly_surr, data_validation, filename=\"pysmo_poly_val_parity.pdf\")\n", - "surrogate_residual(poly_surr, data_validation, filename=\"pysmo_poly_val_residual.pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding](./surrogate_embedding_test.ipynb) file." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training_usr.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training_usr.ipynb index 73934a11..c49826a8 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training_usr.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/pysmo_training_usr.ipynb @@ -1,667 +1,692 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with PySMO Surrogate Object - Training Surrogate (Part 1)\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "## 1. Introduction\n", - "This notebook illustrates the use of the PySMO Polynomial surrogate trainer to produce an ML surrogate based on supercritical CO2 data from simulation using REFPROP package. PySMO also has other training methods like Radial Basis Function and Kriging surrogate models, but we focus on Polynomial surrogate model. \n", - "\n", - "There are several reasons to build surrogate models for complex processes, even when higher fidelity models already exist (e.g., reduce model size, improve convergence reliability, replace models with externally compiled code and make them fully-equation oriented).\n", - "\n", - "In this example, we intend to make a surrogate for the physical properties of S-CO2 to be embedded in the property package. This property package will be used to get the physical properties of S-CO2 in the flowsheet simulation. To learn more about property package, see the [IDAES-PSE](https://github.com/IDAES/idaes-pse) Github Page or IDAES [Read-the-docs](https://idaes-pse.readthedocs.io/en/latest/). \n", - "\n", - "\n", - "### 1.1 Need for ML Surrogates\n", - "\n", - "The properties predicted by the surrogate are enthalpy and entropy of the S-CO2 based on the \n", - "pressure and temperature of the system. The analytical equation of getting the enthalpy and entropy from pressure and temperature are in the differential form and would make the problem a DAE system. To counter this problem and keep the problem algebraic, we will use the ML surrogates and relate enthalpy and entropy with the pressure and temperature as an algebraic equation.\n", - "\n", - "### 1.2 Supercritical CO2 cycle process\n", - "\n", - "The following flowsheet will be used to optimize the design for the cooling of the fusion reactor using supercritical CO2 cycle. We shall focus on training the surrogate for this notebook and move to constructing the flowsheet and the properties package in the subsequent notebooks. The take away from this flowsheet is that, 3 variables can be measured in any given unit which are flow, pressure and temperature and other properties can be calculated using them. Thus, surrogate should have pressure and temperature as the inputs.\n", - "\n", - "In this example, we will train the model using polynomial regression for our data and then demonstrate that we can solve an optimization problem with that surrogate model. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "from pathlib import Path\n", - "\n", - "\n", - "def datafile_path(name):\n", - " return Path(\"..\") / name\n", - "\n", - "\n", - "Image(datafile_path(\"CO2_flowsheet.png\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Training and Validating Surrogate\n", - "\n", - "First, let's import the required Python and IDAES modules:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Import statements\n", - "import os\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "# Import IDAES libraries\n", - "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", - "from idaes.core.surrogate.pysmo_surrogate import PysmoPolyTrainer, PysmoSurrogate\n", - "from idaes.core.surrogate.plotting.sm_plotter import (\n", - " surrogate_scatter2D,\n", - " surrogate_parity,\n", - " surrogate_residual,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.1 Importing Training and Validation Datasets\n", - "\n", - "In this section, we read the dataset from the CSV file located in this directory. 500 data points were simulated for S-CO2 physical properties using REFPROP package. This example is trained on the entire dataset because neural network can overfit on smaller dataset. The data is separated using an 80/20 split into training and validation data using the IDAES split_training_validation() method.\n", - "\n", - "We rename the column headers because they contained \".\", which may cause errors while reading the column names in subsequent code, thus as a good practice we change them to the variable names to be used in the property package. Further, the input variables are **pressure**, **temperature** , while the output variables are **enth_mol**, **entr_mol**, hence we create two new dataframes for the input and output variables. " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Import training data\n", - "np.set_printoptions(precision=6, suppress=True)\n", - "\n", - "csv_data = pd.read_csv(datafile_path(\"500_Points_DataSet.csv\"))\n", - "csv_data.columns.values[0:6] = [\n", - " \"pressure\",\n", - " \"temperature\",\n", - " \"enth_mol\",\n", - " \"entr_mol\",\n", - " \"CO2_enthalpy\",\n", - " \"CO2_entropy\",\n", - "]\n", - "data = csv_data.sample(n=500)\n", - "\n", - "input_data = data.iloc[:, :2]\n", - "output_data = data.iloc[:, 2:4]\n", - "\n", - "# # Define labels, and split training and validation data\n", - "input_labels = list(input_data.columns)\n", - "output_labels = list(output_data.columns)\n", - "\n", - "n_data = data[input_labels[0]].size\n", - "data_training, data_validation = split_training_validation(data, 0.8, seed=n_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.2 Training Surrogates with PySMO\n", - "\n", - "IDAES builds a model class for each type of PySMO surrogate model. In this case, we will call and build the Polynomial Regression class. Regression settings can be directly passed as class arguments, as shown below. In this example, allowed basis terms span a 5th order polynomial, a variable product as well as a extra features are defined, and data is internally cross-validated using 10 iterations of 80/20 splits to ensure a robust surrogate fit. Note that PySMO uses cross-validation of training data to adjust model coefficients and ensure a more accurate fit, while we separate the validation dataset pre-training in order to visualize the surrogate fits.\n", - "\n", - "Finally, after training the model we save the results and model expressions to a folder which contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; previous file will be overwritten.\n", - "\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "No iterations will be run.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "\n", - "Best surrogate model is of order 5 with a cross-val S.S. Error of 20466.657669\n", - "\n", - "------------------------------------------------------------\n", - "The final coefficients of the regression terms are: \n", - "\n", - "k | -534397.59515\n", - "(x_ 1 )^ 1 | -2733.579691\n", - "(x_ 2 )^ 1 | 1036.106357\n", - "(x_ 1 )^ 2 | 32.409203\n", - "(x_ 2 )^ 2 | -2.852387\n", - "(x_ 1 )^ 3 | 0.893563\n", - "(x_ 2 )^ 3 | 0.004018\n", - "(x_ 1 )^ 4 | -0.045284\n", - "(x_ 2 )^ 4 | -3e-06\n", - "(x_ 1 )^ 5 | 0.000564\n", - "(x_ 2 )^ 5 | 0.0\n", - "x_ 1 .x_ 2 | 4.372684\n", - "\n", - "The coefficients of the extra terms in additional_regression_features are:\n", - "\n", - "Coeff. additional_regression_features[ 1 ]: -0.002723\n", - "Coeff. additional_regression_features[ 2 ]: 3.6e-05\n", - "Coeff. additional_regression_features[ 3 ]: -0.050607\n", - "Coeff. additional_regression_features[ 4 ]: 169668.814595\n", - "Coeff. additional_regression_features[ 5 ]: -44.726026\n", - "\n", - "Regression model performance on training data:\n", - "Order: 5 / MAE: 134.972465 / MSE: 54613.278159 / R^2: 0.999601\n", - "\n", - "Results saved in solution.pickle\n", - "2023-08-19 23:48:46 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output enth_mol trained successfully\n", - "\n", - "===========================Polynomial Regression===============================================\n", - "\n", - "Warning: solution.pickle already exists; previous file will be overwritten.\n", - "\n", - "No iterations will be run.\n", - "Default parameter estimation method is used.\n", - "Parameter estimation method: pyomo \n", - "\n", - "No iterations will be run.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: maxIterations\n", - " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", - " Exceeded.\n", - "\n", - "Best surrogate model is of order 5 with a cross-val S.S. Error of 0.156437\n", - "\n", - "------------------------------------------------------------\n", - "The final coefficients of the regression terms are: \n", - "\n", - "k | -519.862457\n", - "(x_ 1 )^ 1 | -8.820865\n", - "(x_ 2 )^ 1 | 3.676641\n", - "(x_ 1 )^ 2 | 0.18002\n", - "(x_ 2 )^ 2 | -0.010217\n", - "(x_ 1 )^ 3 | -0.000783\n", - "(x_ 2 )^ 3 | 1.4e-05\n", - "(x_ 1 )^ 4 | -6.9e-05\n", - "(x_ 2 )^ 4 | -0.0\n", - "(x_ 1 )^ 5 | 1e-06\n", - "(x_ 2 )^ 5 | 0.0\n", - "x_ 1 .x_ 2 | 0.010367\n", - "\n", - "The coefficients of the extra terms in additional_regression_features are:\n", - "\n", - "Coeff. additional_regression_features[ 1 ]: -7e-06\n", - "Coeff. additional_regression_features[ 2 ]: 0.0\n", - "Coeff. additional_regression_features[ 3 ]: -0.000112\n", - "Coeff. additional_regression_features[ 4 ]: 484.312223\n", - "Coeff. additional_regression_features[ 5 ]: -0.1166\n", - "\n", - "Regression model performance on training data:\n", - "Order: 5 / MAE: 0.398072 / MSE: 0.495330 / R^2: 0.998873\n", - "\n", - "Results saved in solution.pickle\n", - "2023-08-19 23:49:20 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output entr_mol trained successfully\n" - ] - } - ], - "source": [ - "# Create PySMO trainer object\n", - "trainer = PysmoPolyTrainer(\n", - " input_labels=input_labels,\n", - " output_labels=output_labels,\n", - " training_dataframe=data_training,\n", - ")\n", - "\n", - "var = output_labels\n", - "trainer.config.extra_features = [\n", - " \"pressure*temperature*temperature\",\n", - " \"pressure*pressure*temperature*temperature\",\n", - " \"pressure*pressure*temperature\",\n", - " \"pressure/temperature\",\n", - " \"temperature/pressure\",\n", - "]\n", - "# Set PySMO options\n", - "trainer.config.maximum_polynomial_order = 5\n", - "trainer.config.multinomials = True\n", - "trainer.config.training_split = 0.8\n", - "trainer.config.number_of_crossvalidations = 10\n", - "\n", - "# Train surrogate (calls PySMO through IDAES Python wrapper)\n", - "poly_train = trainer.train_surrogate()\n", - "\n", - "# create callable surrogate object\n", - "xmin, xmax = [7, 306], [40, 1000]\n", - "input_bounds = {input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))}\n", - "poly_surr = PysmoSurrogate(poly_train, input_labels, output_labels, input_bounds)\n", - "# save model to JSON\n", - "model = poly_surr.save_to_file(\"pysmo_poly_surrogate.json\", overwrite=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.3 Visualizing surrogates\n", - "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACX30lEQVR4nO2deXgUxdbG38kKATIhG0lkSQjIoogCEgIKKJGgKHIDEtzYQbgEZZFNBcUNQZFduCqLCygI0YugSFj0qsSoKOKCXMwXNpOwBDJBIklI+vsjt5uZycx0T08v1T3n9zw+kpme7urq6qq3zjl1ysJxHAeCIAiCIAhCUwL0LgBBEARBEIQ/QiKMIAiCIAhCB0iEEQRBEARB6ACJMIIgCIIgCB0gEUYQBEEQBKEDJMIIgiAIgiB0gEQYQRAEQRCEDpAIIwiCIAiC0AESYQRBEARBEDpAIowgCILwyPr162GxWHDs2DG9i0IQpoJEGEEQuvPdd98hKysL1113HRo0aIDmzZtjyJAh+O9//1vn2N69e8NiscBisSAgIADh4eFo06YNHn74YeTk5Hh13Y8//hi9evVCbGwswsLC0LJlSwwZMgQ7d+5U6tbq8OKLL+Kjjz6q8/n+/fvxzDPPoLS0VLVrO/PMM88IdWmxWBAWFob27dvjqaeeQllZmSLX2LhxI5YsWaLIuQjCbJAIIwhCdxYsWICtW7eiT58+WLp0KcaNG4f//Oc/6NSpE3755Zc6xzdt2hTvvPMO3n77bbz88ssYMGAA9u/fj759+yIzMxNVVVWi13zllVcwYMAAWCwWzJ49G4sXL8agQYNw9OhRvP/++2rcJgDPImzevHmaijCeVatW4Z133sGrr76Ktm3b4oUXXkC/fv2gxNbCJMIIwj1BeheAIAhi6tSp2LhxI0JCQoTPMjMz0aFDB7z00kt49913HY63Wq146KGHHD576aWX8Oijj+K1115DYmIiFixY4PZ6V65cwXPPPYc77rgDu3btqvP9mTNnfLwjdigvL0dYWJjHYwYPHozo6GgAwPjx4zFo0CBkZ2fjm2++QWpqqhbFJAi/hCxhBEHoTvfu3R0EGAC0bt0a1113HQ4fPizpHIGBgVi2bBnat2+PFStWwGazuT323LlzKCsrQ48ePVx+Hxsb6/D35cuX8cwzz+Daa69FvXr1EB8fj4yMDOTn5wvHvPLKK+jevTuioqJQv359dO7cGVu2bHE4j8ViwaVLl/DWW28JLsARI0bgmWeewfTp0wEASUlJwnf2MVjvvvsuOnfujPr16yMyMhJDhw7FyZMnHc7fu3dvXH/99Thw4AB69uyJsLAwPPHEE5Lqz57bb78dAFBQUODxuNdeew3XXXcdQkNDkZCQgIkTJzpY8nr37o0dO3bg+PHjwj0lJiZ6XR6CMCtkCSMIgkk4jsPp06dx3XXXSf5NYGAg7r//fsyZMwdfffUV+vfv7/K42NhY1K9fHx9//DEmTZqEyMhIt+esrq7G3XffjT179mDo0KF47LHHcPHiReTk5OCXX35BcnIyAGDp0qUYMGAAHnzwQVRWVuL999/Hfffdh+3btwvleOeddzBmzBh07doV48aNAwAkJyejQYMG+O9//4v33nsPixcvFqxSMTExAIAXXngBc+bMwZAhQzBmzBicPXsWy5cvR8+ePfHjjz8iIiJCKG9JSQnuvPNODB06FA899BCaNGkiuf54eHEZFRXl9phnnnkG8+bNQ1paGiZMmIAjR45g1apV+O677/D1118jODgYTz75JGw2G06dOoXFixcDABo2bOh1eQjCtHAEQRAM8s4773AAuDVr1jh83qtXL+66665z+7sPP/yQA8AtXbrU4/nnzp3LAeAaNGjA3XnnndwLL7zAHThwoM5xa9eu5QBwr776ap3vampqhH+Xl5c7fFdZWcldf/313O233+7weYMGDbjhw4fXOdfLL7/MAeAKCgocPj927BgXGBjIvfDCCw6f//zzz1xQUJDD57169eIAcKtXr3Z73/Y8/fTTHADuyJEj3NmzZ7mCggLuX//6FxcaGso1adKEu3TpEsdxHLdu3TqHsp05c4YLCQnh+vbty1VXVwvnW7FiBQeAW7t2rfBZ//79uRYtWkgqD0H4G+SOJAiCOX7//XdMnDgRqampGD58uFe/5S0tFy9e9HjcvHnzsHHjRtx000347LPP8OSTT6Jz587o1KmTgwt069atiI6OxqRJk+qcw2KxCP+uX7++8O8LFy7AZrPh1ltvxQ8//OBV+Z3Jzs5GTU0NhgwZgnPnzgn/xcXFoXXr1ti3b5/D8aGhoRg5cqRX12jTpg1iYmKQlJSERx55BK1atcKOHTvcxpLt3r0blZWVmDx5MgICrg4jY8eORXh4OHbs2OH9jRKEH0LuSIIgmKK4uBj9+/eH1WrFli1bEBgY6NXv//rrLwBAo0aNRI+9//77cf/996OsrAx5eXlYv349Nm7ciHvuuQe//PIL6tWrh/z8fLRp0wZBQZ67y+3bt+P555/HwYMHUVFRIXxuL9TkcPToUXAch9atW7v8Pjg42OHva665pk58nRhbt25FeHg4goOD0bRpU8HF6o7jx48DqBVv9oSEhKBly5bC9wRBeIZEGEEQzGCz2XDnnXeitLQUX375JRISErw+B5/SolWrVpJ/Ex4ejjvuuAN33HEHgoOD8dZbbyEvLw+9evWS9Psvv/wSAwYMQM+ePfHaa68hPj4ewcHBWLduHTZu3Oj1PdhTU1MDi8WCTz/91KUgdY6xsrfISaVnz55CHBpBENpBIowgCCa4fPky7rnnHvz3v//F7t270b59e6/PUV1djY0bNyIsLAy33HKLrHJ06dIFb731FoqKigDUBs7n5eWhqqqqjtWJZ+vWrahXrx4+++wzhIaGCp+vW7euzrHuLGPuPk9OTgbHcUhKSsK1117r7e2oQosWLQAAR44cQcuWLYXPKysrUVBQgLS0NOEzXy2BBGFmKCaMIAjdqa6uRmZmJnJzc/HBBx/Iyk1VXV2NRx99FIcPH8ajjz6K8PBwt8eWl5cjNzfX5XeffvopgKuutkGDBuHcuXNYsWJFnWO5/yUzDQwMhMViQXV1tfDdsWPHXCZlbdCggcuErA0aNACAOt9lZGQgMDAQ8+bNq5M8leM4lJSUuL5JFUlLS0NISAiWLVvmUKY1a9bAZrM5rEpt0KCBx3QhBOHPkCWMIAjdmTZtGrZt24Z77rkH58+fr5Oc1Tkxq81mE44pLy/HH3/8gezsbOTn52Po0KF47rnnPF6vvLwc3bt3R7du3dCvXz80a9YMpaWl+Oijj/Dll19i4MCBuOmmmwAAw4YNw9tvv42pU6fi22+/xa233opLly5h9+7d+Oc//4l7770X/fv3x6uvvop+/frhgQcewJkzZ7By5Uq0atUKhw4dcrh2586dsXv3brz66qtISEhAUlISUlJS0LlzZwDAk08+iaFDhyI4OBj33HMPkpOT8fzzz2P27Nk4duwYBg4ciEaNGqGgoAAffvghxo0bh8cff9yn+veWmJgYzJ49G/PmzUO/fv0wYMAAHDlyBK+99hpuvvlmh+fVuXNnbNq0CVOnTsXNN9+Mhg0b4p577tG0vATBLHouzSQIguC4q6kV3P3n6diGDRtyrVu35h566CFu165dkq5XVVXFvfHGG9zAgQO5Fi1acKGhoVxYWBh30003cS+//DJXUVHhcHx5eTn35JNPcklJSVxwcDAXFxfHDR48mMvPzxeOWbNmDde6dWsuNDSUa9u2Lbdu3TohBYQ9v//+O9ezZ0+ufv36HACHdBXPPfccd80113ABAQF10lVs3bqVu+WWW7gGDRpwDRo04Nq2bctNnDiRO3LkiEPdeErf4QxfvrNnz3o8zjlFBc+KFSu4tm3bcsHBwVyTJk24CRMmcBcuXHA45q+//uIeeOABLiIiggNA6SoIwg4LxymwORhBEARBEAThFRQTRhAEQRAEoQMkwgiCIAiCIHSARBhBEARBEIQOkAgjCIIgCILQARJhBEEQBEEQOkAijCAIgiAIQgcoWSvD1NTUoLCwEI0aNaKtPwiCIAjCIHAch4sXLyIhIQEBAe7tXSTCGKawsBDNmjXTuxgEQRAEQcjg5MmTaNq0qdvvSYQxTKNGjQDUPkRP++ARBEEQBMEOZWVlaNasmTCOu4NEGMPwLsjw8HASYQRBEARhMMRCiSgwnyAIgiAIQgdIhBEEQRAEQegAiTCCIAiCIAgdIBFGEARBEAShAyTCCIIgCIIgdIBEGEEQBEEQhA6QCCMIgiAIgtABEmEEQRAEQRA6QCKMIAiCIAhCB0iEEQRBEARB6IBhRNiAAQPQvHlz1KtXD/Hx8Xj44YdRWFjocAzHcXjllVdw7bXXIjQ0FNdccw1eeOEFh2M+//xzdOrUCaGhoWjVqhXWr19f51orV65EYmIi6tWrh5SUFHz77bcO31++fBkTJ05EVFQUGjZsiEGDBuH06dMOx5w4cQL9+/dHWFgYYmNjMX36dFy5ckWZyiAIgiAIwvAYRoTddttt2Lx5M44cOYKtW7ciPz8fgwcPdjjmsccew5tvvolXXnkFv//+O7Zt24auXbsK3xcUFKB///647bbbcPDgQUyePBljxozBZ599JhyzadMmTJ06FU8//TR++OEHdOzYEenp6Thz5oxwzJQpU/Dxxx/jgw8+wBdffIHCwkJkZGQI31dXV6N///6orKzE/v378dZbb2H9+vWYO3euijVE+MqpU8C+fbX/JwiCIAjV4QzKv//9b85isXCVlZUcx3Hcb7/9xgUFBXG///6729/MmDGDu+666xw+y8zM5NLT04W/u3btyk2cOFH4u7q6mktISODmz5/PcRzHlZaWcsHBwdwHH3wgHHP48GEOAJebm8txHMd98sknXEBAAFdcXCwcs2rVKi48PJyrqKiQfI82m40DwNlsNsm/Ibzj3LlzXGFhIffKKxe4gIAaDuC4gIAa7pVXLnCFhYXcuXPn9C4iQRAEYTCkjt9BOmtAWZw/fx4bNmxA9+7dERwcDAD4+OOP0bJlS2zfvh39+vUDx3FIS0vDwoULERkZCQDIzc1FWlqaw7nS09MxefJkAEBlZSUOHDiA2bNnC98HBAQgLS0Nubm5AIADBw6gqqrK4Txt27ZF8+bNkZubi27duiE3NxcdOnRAkyZNHK4zYcIE/Prrr7jppptUqRctKCkpQWVlJQCgsDAABQVBSEq6goSEGgBASEgIoqKi9CyiZEpKSrBixQrYbI2wZMlkcFztbvc1NRZMnx6OP/9cC6v1IrKysgxzT4T32LdpVxipTRMEYSwMJcJmzpyJFStWoLy8HN26dcP27duF7/7v//4Px48fxwcffIC3334b1dXVmDJlCgYPHoy9e/cCAIqLix2EEQA0adIEZWVl+Pvvv3HhwgVUV1e7POb3338XzhESEoKIiIg6xxQXF3u8Dv+dOyoqKlBRUSH8XVZWJqVaNIMXLQDwww834eOP7wbHBcBiqcE992xHp04/AoBhRAs/8J4/HwWOc/TMc1wAzp+PhNV60eMAzSIkKqRj36YBwGZrhPPnoxAZWQKr9aLwuVHaNEEQxkJXETZr1iwsWLDA4zGHDx9G27ZtAQDTp0/H6NGjcfz4ccybNw/Dhg3D9u3bYbFYUFNTg4qKCrz99tu49tprAQBr1qxB586dceTIEbRp00b1+/GV+fPnY968eXoXwy38wG6zNRIEGFArWD7++G4kJ/9hSNESGVkCi6XGQYhZLDWIjDyvY6nkQaLCO+zbqqeJhdHaNME2LE6UWCyTP6CrCJs2bRpGjBjh8ZiWLVsK/46OjkZ0dDSuvfZatGvXDs2aNcM333yD1NRUxMfHIygoSBBgANCuXTsAtSsV27Rpg7i4uDqrGE+fPo3w8HDUr18fgYGBCAwMdHlMXFwcACAuLg6VlZUoLS11sIY5H+O8opI/J3+MK2bPno2pU6cKf5eVlaFZs2Ye60cPxCxHRsNqvYh77tleZwA24r2QqJCH2MSCIJTCeaLkDi0nSiyWyV/QVYTFxMQgJiZG1m9rampjkHj3XY8ePXDlyhXk5+cjOTkZAPDf//4XANCiRQsAQGpqKj755BOH8+Tk5CA1NRVArdLv3Lkz9uzZg4EDBwrX2bNnD7KysgAAnTt3RnBwMPbs2YNBgwYBAI4cOYITJ04I50lNTcULL7yAM2fOIDY2VrhOeHg42rdv7/aeQkNDERoaKqs+tERLy5FWs7NOnX5EcvIfOH8+EpGR53UZeJW8VxIV3mG2iQXBLlInQFpOlJyv5c6CTpM35TFETFheXh6+++473HLLLWjcuDHy8/MxZ84cJCcnC8InLS0NnTp1wqhRo7BkyRLU1NRg4sSJuOOOOwTr2Pjx47FixQrMmDEDo0aNwt69e7F582bs2LFDuNbUqVMxfPhwdOnSBV27dsWSJUtw6dIljBw5EgBgtVoxevRoTJ06FZGRkQgPD8ekSZOQmpqKbt26AQD69u2L9u3b4+GHH8bChQtRXFyMp556ChMnTjSEyBJDK8uRVNfaQw89JAhvX7BaL+o24CrtRiRR4R1mckkbFX91h7l71/XCkwWdUB5DiLCwsDBkZ2fj6aefxqVLlxAfH49+/frhqaeeEkRNQEAAPv74Y0yaNAk9e/ZEgwYNcOedd2LRokXCeZKSkrBjxw5MmTIFS5cuRdOmTfHmm28iPT1dOCYzMxNnz57F3LlzUVxcjBtvvBE7d+50CLRfvHgxAgICMGjQIFRUVCA9PR2vvfaa8H1gYCC2b9+OCRMmIDU1FQ0aNMDw4cPx7LPPalBb2qCF5cidaw2owR137EaPHrUrVt99913Dm8mVdiOSqPAOM7mkjYi/usNYEzxkQdceQ4iwDh06CCscPZGQkICtW7d6PKZ379748UfPjTwrK0twP7qiXr16WLlyJVauXOn2mBYtWtRxfZoNrSxHzh0DEICcnDsAQBBiZjGTK9UJkqjwHhZc0v6KP7rDWBQ8ZEHXHkOIMMK/cdUxABbs3p2G66//RXbnEBISouhxSuBLJ1hSUoJz584Jf5Oo8B49XdJELaxZh9SCRcFDFnTtIRFGSEYv0RIZWQKgBs67bPnaYUVFRSErK4upOBS5naA7dw6JCveUlJSgtLRU0rFaCnF/hkXrkFqwKHjIgq49JMIIyeglWqzWi7jjjt3/c0FahM+V6LBYiy+R2wlKdefw+LuokBqDlJmZiZiYGObaiVlh0TqkFqwKHrKgawuJMMIr9BqM+Niv3bvTmOqw1MBTJ3ju3DlRoevJnZORkYGEhAS/FxVSRavVatW0rvx1hSAPi9YhpbGfAHl617WcKDlfy50FXevJmz+8DyTCCMPQo0curr/+F7+YobnrBLOzswG4XyUm5s6Jjo42fKelNKzEILG8QlDNwdA+lpFV65CSsBgGwWKZWH4flIREGMEsrmZdesQ4aTEbczfD9HaVmD+5c6Ti6vnxgz5LMUisrhBUczB0dW5/cIexKBpYKxOr74PSkAgjmCUqKgoPPfQQ3n33XdFj1TKTazUb42eihYWFgrVLjoXGH9w5rnAnlEtLS7F582a3v2NVtLJknSssLHT4TMnB0N1vWHGHEWzAyvugBiTCCKZJTk7W1Uyu5WwsKipK8ibp7vAHd44zUoUyUPf5sShaWbHOuapXtQdDd+8XxTL6L6y8D2pBIoxQDaXceKx0vFrOxqRaaPg69uf8YFKFsrvnx5poZcU651yvp07FqzoYenq/KJbRf2HlfVALEmGEKpgtqFLr2ZgUC42nOvZXd467gdzT82NNtLJonfvhh5uwbdvdUDpXH4+S75c/rKjzJ1h8H5SERBihCmYLqtR6NibFrSi1jjMyMhAdHW36wcfTQC72/FgSray5lPl6dRZggHKDoVLvl9kmfwR774PSkAgjVMcMQZV6zMa8sdCIuXLi4+NVKycreBrIxZ4fL1Tt0VO0smSdc71tGBQdDJV6v8w2+SNqYel9UBoSYYSqmCWoUqvZmNSkieXl5SgvLwdgnjr2FU8DudjzY0Gospow01W9AjUYPfpNNG1apMg11Hi/1Jz86e3y1Pv6WsDq+6A0JMIIVTFTUKUWszEpSRPLy8sd0naYqY59QWwgZ302zWLCTMB9vToLMDmDoVrZ49WcmOjt8tT7+q5QQxSy+j4oDYkwQlWMHlSpx2xMrFMpKnIc/Ixex0oiJrRYn02zOqB4qldf0keoNdCqOTGR6spUy+Wp9/WdUVMUsvo+KAmJMEJVjB5UqcVsTIlZZGpqLvbvTwVgvDr2FalCOTMzE1ar1eXv/aGz9xap9epr/i416l5sYmKf0sUeOW3BXdwZoI3b0NP1tYA1UWg0SIQRiuDc2Zgpb5XasR2+zCKd415SU79GSkqe4erYF/zFbaE1Rq5XsckfvyuFK7yx2HiKOzt58iQ+/fRT0XP44jZkcdGT3qLQaJAII3xGipBg3Q2kF76s5nIV95Kbm4qUlDyH4/yhjlkUAmbAyPUqd/In1WIjFncmRYB5cz1vr68HLIpC1iERRviM1E7EOQ0Aq7NovfC2AxOLe6GtXtjFH1a36YFUFyrgu8XG27gzpS1ErC3IYVEUGgESYYTiuOtsWEgDwCpyOjCxuBcjbPVSUlKCs2fPoqqqyuX3QUFBiI2NZf4+vIHF1W1mwdmFeu7cOZeuR08THvtQCk9i2JsFMV9/nYrdu9MUtRCxtiCHNVFoFEiEEYpC5mh5yOnAWF70IMXSA0DyxttmEiQUyKwuntqJzdYIJ082c9iCyXnC4yza3LU9qe/f11+nIifnDgAWl9eTC2vvP2ui0CiQCCMUwxdztL+7Z7zpwNTKraQUUi09Q4YMqfOZP2Y4p0BmbbCfIDrjacLj3Pakvn9A7bPNyUkDL8CkXE8MVt9/1kShUSARRiiGXHM0uWe868BYX7UmVTBduXLF4W81XDasQ5ZjbXCeIDpjsdQgOLgSBQWJomJYyvtns9mwadMmnD8fBaX33GTt/ddbFBp9Ak8ijFAMueZoOSsEjf7iucKb1VxGujcplh61XDYsQ4HM2uFu/0ugto+64YZDWLNmjGQxLPX9c73lE4e0tN0+PWOW3n89RaEZJvAkwgjFUMIcLcUyYIYXj8fs+6NJeZ5quGyMgN6BzGacyLjD3QRx0KAtiIgoFQQYoKwYdu4TgRrcccdu9OiRKxxj1HfbHlas7u4mfIWFhS7bOgttnEQY4TNKmaOlWgZ8ya3FGqy5FpRE6vNUw2VjBPQMZDbTREYK7iaI119/GAUFiYqLYal94kMPPWSK+mUBTxO+7Oxst+OE3m2cRBjhM0oJCTmWATPE1Ji1E5b6PNVy2YihtyVIz0Bmf1mhKUUMqSGGjTy50vu9kIPYhM/TOKF3GycRRiiCEi+lt50hxdSwjdTnKcVlozR6WoL0DmR2hVlXaHoSQ3wOMbXEMGtCRQpGtZB6mvABYHqcIBFGMIO3naHeMTWEZ8SeZ3BwsHCs2KIEpQWJni5tNa0kcqwYZrAmy7lvFsWw3hjVQuppwsf6OEEijGAKb1YIUnJANpE6uMXExCArK0v3jPl6iBC9V4rxmMGaLNd6Y2SXoVZoZSH11QUqNuFjeZwgEUZIRq1YAbkrBP0hOaDW8RlKXM/bwU3PQc5XEcJS/Iwc6x7rVgIp+GLV9GeBJYbUrZ0A39q5Ui5QdxM+1scJEmGEJNSMFfBlRuqN5cxoaB2foeT1jDK4+SJCWI6fkWrdM5s12QyuVRYQm5y42o9Tbjv3RURLncCzPE6QCCMkoXasgDcvr9lza/FoHZ9h1HgQX/BFhLBaX95Y91i3EniDGVyrrCAW6K5W/KS3IlrKwgsed+OE3pAII2Sh52oqo8Zy+Oq6UqLOPZXB2cVg1hVz9igpQlipLynWPTMGpZvBtcoK7iYnhYUJePvtYapYGuWKaHd9ptS2q3cbJxFGeA0LJn/WBJYYvrqulKhzqWVQ6npqoXQclhKuCpbqS4p1T4mJDEvxcID5XKt64mpykpa2W9jbFVDe0qi0iDbKZJ1EGOEVYrOVc+fOMdGwWcMX15VSbhapsRdquHWUGrCVisNS0qXNmhtMqnXPl3eUxXg4M7lW9cKThVRtS6NaSXNZh0QY4RViLyLvg2ctmR9reOO6UqPz82S5Ufp6Sg7YSsVhKTlLFquv0tJSxMfHSyq3UqgdiMzq1mEsB2AbAVfvhX1slZqWRn8V0STCCK+QOlsxU/C20njrulJ6hihmuVH6emoGsPsSh6XUJEGsvjZv3qzJpESvBSt6u2L1XqjDmlvWV9yVVQuR5I8imkQY4RWuXsTUVPW2lzEqzh0zH/Qux3WldOcnZrlRu7NVKoBdi8FfykIGKfWlxaREjxgYFlyxesb+sOiWVRM1RJLeIlpvSIQRknAVK5CXl4L9+1Oxf38P5OamMhW8rSeeOmZvXH1qrWCTYulSa8WcUsJJi8Hfm4UMfH2dPNkUgAXNmp1UpAzeovVAz8qKRL0EDqtuWSVRWyQZJYBeLUiEEZLgX5TCwkIhPiA3NxUAG8HILOGpM/HG1adW5yRmucnIyEB0dLRi1+NRUjhpMfhLHWB58vNbMbNCUitoReJV9HbLqoUWIsmsAksKJMIIyURFRQkvIiszYC2RG/vhPHh74+pTq3PyZOmKjo5WJZBcyTaj9eAvNsCy4JbTAzMEUysR02X25+/PIkltSIQRshAbBPl4GXcdmNGCWeVsjgy4H7z1SI6pd+yFksJJy8FfygDrj5MSHiMHUysV0+Xr8zdaf0goB4kwQhZig6D9dhHOHZgRg1nlxH6IDd4jR97h4PZTu6PVwq3gajDxJoBdDD0yvUsZYP3NLae3oFcKpWK6fHn+RuwPCeUgEUZ4hdRB0J6zZ886dB6s7rknFamxH2KDt1puP0+o2YlLGUx8FU56BPFKGWDN4JbzBjMGU/sS0+XL8zdjcD9Z9qRDIozwCvvO9+jRo9i3b5/QUbjrPKqqqjyeU6s997SO/TCjdUSJvSedLYCAd52y1p231AHWLHswSsVMg6gSMV1m2/5KLs6TMXf9AFn2aiERRngN/+LYD7pyOw+tOh09Yj/MZh1Rau9JPSyAvuJpgM3MzITVanX7W7PM+s1s3ZAb02Xm7a/kYt9GPPUDRrLsqQmJMMJn5HYeWnY6SrlApVi39Ihb0gKpdWiWwUTqABsTE2NY8SEVs8ctybVaa7n9ldEwSz+gNiTCCJ+R23no2enIdYFKsW6ZMV7GFe7q0CyDiavnaLPZHNzrQUFBqKysRFFREQB9nqsWFiozxi3Z44vVWqvtr4yGWfoBtSERRvhMcHAFAA6Axe5TDsHB6q0o8gVfXaBSYj+MLrDE8FSHZhpMnFf1btq0SfQ3WlqD9Ii/MUPckiv0TrVhtvAFM/UDakIijPCZqqpQOAowALCgqsqzu02PTkeuiVyp2A8zxNWI1aHZBhMeFq1BWsffmM3FxFqqDb2FoJKYtR9QGhJhhGyCgmqbj9iMhz+OR2rMlM1mc3ttuWJFrolcCRejWeJqpNShmQYTV7BmDdJKHJnNxcRC6ABrQlBJzN4PKAGJMEI2sbGxAMRnPPxxPGIdX2lpKTZv3izq+pEjVnwxkVNcTS1S61CJwYRFyyGL1iCtxJEZXUx6T3i8EYIsvg9iuOsHvMGI9y0VEmGEbJw7j7lzz+LYsSAkJl5BQsLNAG52+3Io8cLIESusmMhZs6R4g1YbgLNqOWTRGqSVOGLl/WERX4SClPbL6vvgjNRJltTjzJ53jEQY4RP2jT4+HujcWflrKJHMlaW0EWKWFOekp/ZlY6Vz9VSHCQkJqohsViyHLFqDtBRH5GKqixZCQer7cPbsWV2tRkq7eM2ed4xEGKEb7maOSiSBdYaF2A8eMUuK/b6bzug529OzDlmyHLJqDVJTHJk5bkkJtBYKnq5hH8ahl9VIjXOzGAagBCTCCF2QYlpX+qVjxVQtxZLCitXHGT3qkMXOl1VrkBLxN65gaRLDMlq0VanXMJvViMUwACUgEUboghTTullfOjFLCktWHxZgpR2waA1SOv7GE/4usKSgRVuVcg25IQ8Au2KaxTAAJSARRuiOO9Eh5aUz6qoZd5YUFq0+esNK56u0NUiJtksWKvWR8px4tGirUq4hNeTBSEHurIYB+AqJMEJXxESHp5fOZrMxl8HcE1IsKaxYfVhCrB1ouZBBqfMpGcjNQts2K1KfU2ZmJgBthIKUa0gRamq5K9WcGLMaBuALJMIIXRETHZ5eOo7jJF2DlfgHT1aLc+fOITs7W7TztBcc/mTh8NQOWF3I4Ak5gdxGtfoaGanPyX4/US2Egtg1xCew6ljctVglqlbco16QCCN0RUx0uMs5FRISInnJNkuIdTxinaez4GBVZCiB1BgsgN2FDGJIHQzNniuJdbwVLWoIBW/eB8CzUFPK4u48MZC6st2b91LLuEc9IBFG6Iq35nv72X5RUZHwuZmC2V11nr6IDL0tKHKvL8VyCBj72UsdDNVOgaB3G2EdsefkvDWbO3wRClLi//jdRnjcCTUlYtfcTwwaAYBiljazxz2SCCN0x1tXk/Ns3wzB7J5mub6IDL2zbPt6fbEyGf3ZezsYit1vaWkp4uPjvSoDWdnEEXtOERERmggFsd9LFXlKxK55mhikpuYqGttq5nZnGBE2YMAAHDx4EGfOnEHjxo2RlpaGBQsWICEhAQDwzDPPYN68eXV+FxYWhkuXLgl/f/DBB5gzZw6OHTuG1q1bY8GCBbjrrruE7zmOw9NPP4033ngDpaWl6NGjB1atWoXWrVsLx5w/fx6TJk3Cxx9/jICAAAwaNAhLly5Fw4YNhWMOHTqEiRMn4rvvvkNMTAwmTZqEGTNmqFE1hkSKaV2q9ccMwezOsz3e0uOryJBqGVHLbad21nujP3tvB0Ox+928ebPXYsnsGcmVQMpzYkEoiFmN7C3ISsWuueqj9u9PZWJFsxEwjAi77bbb8MQTTyA+Ph5//vknHn/8cQwePBj79+8HADz++OMYP368w2/69OmDm2++Wfh7//79uP/++zF//nzcfffd2LhxIwYOHIgffvgB119/PQBg4cKFWLZsGd566y0kJSVhzpw5SE9Px2+//YZ69eoBAB588EEUFRUhJycHVVVVGDlyJMaNG4eNGzcCAMrKytC3b1+kpaVh9erV+PnnnzFq1ChERERg3LhxWlQX87jqLOS6mFhJYeArrjpxpUWGnnFzargNzfDsvRkMpdyvXLFkdKui2hhlZZ43YlCJ2DVXfRQQgNTUr5Gbm2qqdBJqYBgRNmXKFOHfLVq0wKxZszBw4EBUVVUhODgYDRs2dLBE/fTTT/jtt9+wevVq4bOlS5eiX79+mD59OgDgueeeQ05ODlasWIHVq1eD4zgsWbIETz31FO69914AwNtvv40mTZrgo48+wtChQ3H48GHs3LkT3333Hbp06QIAWL58Oe666y688sorSEhIwIYNG1BZWYm1a9ciJCQE1113HQ4ePIhXX32VRBjE40/kBMFKtSYYLfZFSZGhZ+yUWgO8WXIHSR0Mne8XADgOyM9v5fOzNLpVUQuMvjJPjSB3d31USkoeUlLymBetemMYEWbP+fPnsWHDBnTv3h3BwcEuj3nzzTdx7bXX4tZbbxU+y83NxdSpUx2OS09Px0cffQQAKCgoQHFxMdLS0oTvrVYrUlJSkJubi6FDhyI3NxcRERGCAAOAtLQ0BAQEIC8vD//4xz+Qm5uLnj17OjTk9PR0LFiwABcuXEDjxo2VqAbDYC98nANHXSF1MPB2U26946PkoJTI0NvKoeYAbxQLhT2+DIbJyX/AMTuLMs/SDFZFpTHbyjw1gtzF+igjvI96YigRNnPmTKxYsQLl5eXo1q0btm/f7vK4y5cvY8OGDZg1a5bD58XFxWjSpInDZ02aNEFxcbHwPf+Zp2NiY2Mdvg8KCkJkZKTDMUlJSXXOwX/nToRVVFSgoqJC+LusrMzlcUZCqvCxR+pg4G2HonZ8klooITL0tnJ4M8BLsVayuIWQN/gyGJ4/HwVA+WdpFquikphxZZ4aZfW2j2L1vdQDXUXYrFmzsGDBAo/HHD58GG3btgUATJ8+HaNHj8bx48cxb948DBs2DNu3b4fFYnH4zYcffoiLFy9i+PDhqpVdDebPn+9ycYGRERM0roSQN4OB3A6F9bQGSosMva0cUp+pN9ZKow+O3pRNq61xjGhVVBuW2xBLOPdR7ia5Dz30ENWpHbqKsGnTpmHEiBEej2nZsqXw7+joaERHR+Paa69Fu3bt0KxZM3zzzTdITU11+M2bb76Ju+++u45FKy4uDqdPn3b47PTp04iLixO+5z+zX+Z9+vRp3HjjjcIxZ86ccTjHlStXcP78eYfzuLqO/TVcMXv2bAd3aVlZGZo1a+b2eCNi/2Lm57dyK4TUHAz0ds1JQekZOAtWDinP1BtrpbepGIyIvVWwb9++2LVrl+rP0uhxT4Q2eJoAeprkhoWFaVVEQ6CrCIuJiUFMTIys39bU1ACAg/sOqI3r2rdvH7Zt21bnN6mpqdizZw8mT54sfJaTkyOIuKSkJMTFxWHPnj2C6CorK0NeXh4mTJggnKO0tBQHDhxA586dAQB79+5FTU0NUlJShGOefPJJYdEAf502bdp4jAcLDQ1FaGiojNowBs4vZm1ci3shpJaLSW/XnFSUmC16GzenNL5Y9Fi3VqqN6/xdiYiMLFF0kmK2uCdCG9RKq+NvGCImLC8vD9999x1uueUWNG7cGPn5+ZgzZw6Sk5PrWMHWrl2L+Ph43HnnnXXO89hjj6FXr15YtGgR+vfvj/fffx/ff/89Xn/9dQCAxWLB5MmT8fzzz6N169ZCioqEhAQMHDgQANCuXTv069cPY8eOxerVq1FVVYWsrCwMHTpUyFn2wAMPYN68eRg9ejRmzpyJX375BUuXLsXixYvVrSiGcfViOmMvhDxtV+SrONHbNaclese0yL0+deTS8ncpMUnxtY0YbcUxoRxapNUxO4YQYWFhYcjOzsbTTz+NS5cuIT4+Hv369cNTTz3lYDmqqanB+vXrMWLECAQGBtY5T/fu3bFx40Y89dRTeOKJJ9C6dWt89NFHQo4wAJgxYwYuXbqEcePGobS0FLfccgt27twp5AgDgA0bNiArKwt9+vQRkrUuW7ZM+N5qtWLXrl2YOHEiOnfujOjoaMydO9cQ6SnU6lBd55JxxF4IRUdHq+ZuYsE1pyV6D4BKtRd/7cjFBKn9hEXu+ym3jRg52z6JR3Xwp0muEhhChHXo0AF79+4VPS4gIAAnT570eMx9992H++67z+33FosFzz77LJ599lm3x0RGRgqJWd1xww034Msvv/RcYMZQM4WDuxeTd0lqLYQoAJltqCO/ipggFZuwqCk2pGbbLywsdDhWb4FjZPHIOv42yfUVQ4gwQhvU3OLG3YupZYyS0dMa+BPUkV/FF0GqldjwZK0DgEWLfmBK4NBWTerC2iTXfiJSWBiAgoIgJCVdQUJCbWy5npMCEmGEqkgJDLdaLyIzMxNWq1X4jRovhN7xUYR3sNaR64UvglQrseHOWpeXl1Jn6xr+mmfOnNF9YKTYQ/VgZZWt/UTE0zug16SARBjhFiX2GWRN+JDAYhup1srS0lKXvzXr8/VVkKotNlxZ64AaQYC5uia/c4aeAyPFHioHq6ts+bFH7B3Qy+pJIoxwiZLpAcw6MBLK406022w2bNq0Sfjb3dZXZo7h8cWyoLTY4N07586dE8rmbK1LTc3F/v09PF5T74HRaLGHLC8mYG3C7QyrgptEGFEHMtETeiKlkzbKllO+oKRlQUmx4S7OLDn5D0yevESw1gFwsIS5uqbeA6ORYg+NsJiA5QkQq4KbRBhRB707RoLwhFQrLctWAykoaVlQUmxIjTMDIHpNFgZGo8Qe0mIC32BVcJMII+rAQsdIEK6QaqU1gtVACkqWTWmxIfYsbLZGaNz4AkaPfhNVVSEur8nKwMhKELkUjOyp0HtixKLgJhFGCPBuDbGOUaqbxPmFs9lsqKqqEv4OCgpCRESEw/VZHhAJ/ZFqpSWrgWvciQ0+tssZT++kp2fhal/YpKTjLs+jx8DIahC5FLTwVKghlliZGLEmuEmEEQLO7o+5c8/i2LEgJCZeQULCzQBulvzySU386oyWlgm9Z2WE93hrpTWy1UAJpIoIfs8/bwZFd88iOLjS6zrXemBkPYjcE2p7KtQSSzQxcg2JMMIB+5cqPh743x7lXiP2IukdWK3m7gCEenjrvvL3+EZPYoPfcBmQNyi6exZVVaEe6zwjIwPBwcEOq131gNX32t3k0NNKVCVduGqLJa0nRqxbPUmEEZpgL7pcuSrkpr+Qi5q7AxDq4o37iuIbxcWGL4Oiq2dhszXyWOfR0dHMD4x6IdUKpYULVy2xpPXEiHWrJ4kwwgE1XHT2symgBoDlf/+x4x5SIjEtoR5yt5xiJfCbZXwdFJ2fhZQ6Z31g1AsxK1St8LraT6nZjtUSS3pMjFhuRyTCCAE1XHTOsykgoM4x9i92aWmpx82I1UDJxLSEOvgyaLO4IoolvB0UpVinpNQ5ywOj3rizQnEcAHjup+QunOLh3Z5qiSWaGDlCIowQUMNF52o25Yz9i71582ZN47D8PXDbSPjSJlhbEcUS3g6K7gSxfYwZf15v65wWy9Tizgpl/2/7fiojI0Nw8yq1cEpNsUQTo6uQCCPcooSLzt2echYLhBc7LW23blnP/T1w26xQzJF3eDsouhrofa1zqfFQQ4YMcUht43xuM4g01/2mI/b9VHR0tFcehLrbgmkfe0YTo1pIhBEuUcpF52429fff9ZCTkwaOC8Du3WmoX/+yLi5ACtw2J/4ccyTXmuTroOhrnUtdlcfvG2rUBLxScNVv8q5IHqX6KbG+XimxRBMj15AII+qghIvO/kVynk0BwJIlk8F3KHq6ACk+wbwYfSCWgzc5ntQYFJWocyn9jxnyTLkSy/ZJc537TVerytXe9cAT3oolf54YeYJEGFEHJVx0rl64Y8eOYdeuXSgoSJR9fqViRjyJRPsy+NusjDA23uR4io+PZ3JQFOt/zBDH6VksXz3O3gqlhmtQrK75WDNn5LYLfxNYUiARRtRBKReduxdO7vmVXL1JszJCDCMHiUsVKiyW310c6aVLDQSxYvQ4Tm82QbdH6Tgqsb7Y21gzwntIhBF1UNtFJ/f8Sq/eZHEAItjA6DsqGFmoOPcPfG7BLVvuExbymCWOU0ws33HHHcjJyRE9j1yLPYVj6A+JMEJASxedEqZ1d/EucjYjJgiekpISFBYWOnym9zZbrvAUU2T0BSd8/3DyZFNs3ToYHHc1ufPu3WlIS9uN3bvTDC8cxMRyUlKS6hZ7qX2xkS3DLEMijBBQ20UnN+u5KzyZ8O1zFTnDquWCYANXsTp5eSnIzU1lKpmvWEyRGSwcVutFnD//t0uRkpBQiMmTlxg+z5QUsSy1v/JGJHnbF6u1qTdBIoxwQs0XSCmRJyXehUXLBcE+zrE627bdDfu0AKwEgUuJKTJaQkxXky9PIsUMeaaUEsveiiRv+2K1N/X2Z0iEEZqihMgTM+HTNkSEr/BCX2ybLd79V1paiitXrjgcFxwcDOv/lrqp5aoRm5AYSajYCwM++74ckWK0Fc1KiGU5IklOezTDylTWIBFGGA5Ps2PqJAgl8LTdlr27yJXrW0tXjdwAfFaFird7fzqnUGA1LsnZVegct6qUWFa7/zPygg9WIRFGGA5Ps2MWcpARxsfdtjHuLDG88CosjK8TMK6mq0YspshVnidX7Zj1tu9OpBghhYJ7V2EjxROiqi2SjL7gg0VIhBGGQcrqTRZykPkTag3eeosCV2kSunfPRUpKXp3BzN79A3AArq7kU9sKK+aukyJSWAy6NtMWN1JdhUpY9dQWSWZY8MEaJMIIw+ApmNSXGBJA+Rxk/oBawlXN84oJO3ukxOo4u394AcajhavG15giFoOuzZhMWcxVqIRVTwuRZLQFH6xDIowwFFI6XTVzkBFXcR4glVqRqsZ5pVp7MjMzHX7nzg122223Yd++fR5jxwDtXDVKxBSxFk9pJIElBa3iqbQQSUZa8ME6JMIIU6BVDjLCNWrVmVLnlWrt4ThO0vliYmIAuIsdq3VJqumqUcNdR0HX6qJlPJXSIslM7mHWIBFGmAItc5ARjojVmbsdDADPz8Sb80p1TYmdMyIiQlI74r935f5JS9uNhIRCVV01arjrxETCuXPnDOcCZAk1XYVqiyQzuodZgUQYYRq0yEFG1EWszjztYAC4j+3y9rxSYsSkPF8p7aioqEj4t14xMkoPeK4WI6Sm5grf8/VNi1Pko1Zb0UIk0TNXBxJhBGEHLcH2Hql15m1sl7vzBgdXoqAgUVaMmFLPV6r729NvWIQXCfxWTfv390BubiplRVcQteKpSCQZExJhBGEHLcGuxZuVhFLqTE5sl6vz3nDDIaxZM0Z2jJhYWaW63JwtD3plzFcLfq9MoK7LtrS0lPncXCxB8VTeoXd6Gq0hEUYQkJaDDKgdbJ1/Z6YOAZCeIsJ+JaGnOvMlzs7+vMHBlYIA8/Y87s7pXFZvXG723xtZlDgP/mIu282bN5NL0gsonko6/pivkUQYQcB1R2mz2bBp0yaH4zZv3lznt0bvEMS2VHGH80pCd24Wb+Ps3Ln65OyGwN+bu21ibLZGsl2bZoFv+4WFhcjOzna74rOwMAFJSccB+Ff9KIGR+wctUSvtDcuQCCMMg9pmaikrJ83WIUiZebq7b7GVhHwCXW/jsJwFsdzziN0bpSK5SlRUlMOKz7S03cjJuQNXk89asHt3Gq6//he/c81rhb+54cTw5f00Ul2SCCMMgdpmalcvrb31xKwDttjMU+y+pdS1nDg7V+f19jye7g0ApSLxQEJCEfTI/u+vsLh1lJ74EsJgNJcmiTDCEKi5rZDYS+svucOcBVda2m5hM2rAt/tWamm+3PM431tqai6lIvEArRLWFqnJhAsLC132cSxZdpTAl1RBRnNpkggjDImS2wqJvbRiHYJzvJERO0RXQjMnJw2AfKGi1C4Gvp7H1b3l5qYCqIH9/fm7yPB2xSuhPGITvuzsbL+wkik1CTCCB4NEmJ9gJB+5GGq+WK7OnZz8h8cOwVUyUqN1iK73QAzwqSNUalWYr+dxJ6K7d/9aSMWghsgw2jsXFRWFzMxMYTEKbdSsPWITPlY2WFcbJSYBRvFgkAjzA4zmI/eEmi+Wu3NPnrzEbYfAuqlbKu5mnvYuSTkdoVLtyZfzuLu3lJQ8pKTkqSIyjPrO8XnNrv5NGzVriScLkFFEhVL4Ogkwyu4nJML8ADXjqbRGzRfL07lddQhGMHVLxd3Ms1OnH3H99b+47AiNklxSbFYtd6N3TxgtLoWHEovqi6e2KpaiRe4erWJoadFVKoQBME5cI4kwP8TdgCBnQ2StUfPFEju3fYdgxlmpu5mn1XoRI0fegejoaOFYVtuHOzzNqjMyMlS9Nz3EutyBkxKL6o+7tirWP8ndo9UTWlt0lWx/RolrJBHmZ3gaEJxf4iFDhiAiIgIAOx2vmi+W2LkzMjIA1NaTUUzdYkideSYkJDDx/L2BhXvTQ6z7OnAa7TmbEVdtVWrfp6TVVQ+LrpLtzwhxjSTC/AhvBwTn7PCZmZl1YkYAbQSa1G2FfHWTeDq3vbXEG4scywHaZrZ8sHBveoh1o7pC/Rmp/ZaYqNB60RKL4RdKujS1gESYH+FuQDh5sinOn/9b6KTdddrOW/jYo3aAsZoDqjcvrX1WcSmzUiMEaBtRYElF73vTOy7FKAOnv+Opf+N3jOBx1z/psWiJxfALFiZf3kAizI9wvSdcDbZuHSx00jfccAiHDt3gttPWc1at1kvjzUtbVFQkfCbF1E1WCf9GSfe5txZVIw2c/oqUZ5qQkCDpXHotWmKxLbEisKRAIsyPcB4QapNVWsBxtduTcFwAfvqpI/jtSpw7bTPPqqW+tL6Yus1cf4R7lIhL8caiymO0gdNMSBFXACQ/UzX2aPUGPSy6LIdxKAmJMD/AXTzVpUsNsGXLfU5Hu94vDqC99gD5pm6ySjhi9g5W6bgUORZVvV2h/opUwZyZmenwt6dnGh8fL3o+PRctKY0RwjiUgkSYH+AsHPiZk83WyIV7koO9EOM7bZpVX0XOS+8v9aekBYDF1blSUTMuRapF1ShL9M2GVMFcVVUl/FspK7maqwG1XGnoT2EcJML8BFedvatO2lVMGN/oaVYtH3+wSkidvQ4ZMkTS+ZxX5xpt1qtGWb21qBphib6ZkSKupD5TdxMcm83m8LeSqwFZWGlo9jAOEmF+iFi6h9tv3+syYaces2qzuK38wSohdVZ69uxZh7+dZ7lmnvX6ihSLKgsDJyFdXEl5pt5McHjrsT1y+0m9Vxr6KlC1KKOvkAjzQ5xfLJvN5pB+wl2nrfWs2mxxAZ7qzwi7FXiLOzG1b98+4d/Os1yx1bn+jphF9dy5c4iOjsaQIUNw5coV4Zjg4GCHHH9maWMsIzUEQYqVXKp7LiIiQlL8mFFQUqCyOk6QCPNT7BtjfHy829lOaWmpg1tIy1m1GeICpFolnHcrYLXDkIqzuEpL242EhCKHZ+dqlutpdS4hblH1tHWNfbLlyspKlJSUGLqNsY7UEARvreRauuf0FjhyBKo7WB0nSIQRANzHr3gSaDxazKqNGhfgblEEjxGFpRiuxFVOzh0ALA7PztUs193qXBJhV5FrkXaVbNnoYp9lvBFXUp+p1qus9RY4csI43PWprCJZhJWVlUk+aXh4uKzCEGyidydt9PQO7urPqMJSDE/iyv7ZuU4e7Hp1rr8j1aIKeDcIqTV4GjlGR0k8iaugIMfhV8pOHXqvstZD4Hgz6TBinypZhEVERMBisXg8huM4WCwWVFdX+1wwguDRu+NxRokBxujC0hOuxdVV+GeXlHTcq9W5/ozUbW3cDUJaDp56u7D0Rqpgjo2N9XqnDj1XWWspcORsJWfUPlWyCLMPpiUILWEpvYOcVUquRBlrwlJJ6u7M4N66JXV1LiFukXY3CP39dz3s3p2mmXXADLGcvqDmikK9VllrLXDkbCVn1D5Vsgjr1auXmuUgCLewlN5B6gAjluOKJWGpFO5SnxQWJtQRAXxdZWRkIDg4WNLqXEqp4Bl3g1BOThoAfawDRnQPKYGaFj49cr/JETi+egy8rUOj9qmyA/NLS0uxZs0aHD58GABw3XXXYdSoUQ7LoAnjwHoMB4tJJ10NMLVlFJ/1syQslcJ+9sq7yKzWi0hKOo7rr//F5bOLjo5mZvGH0XE3CClpHZC6IwJgXPcQi+id+81bgaOHS9qofaosEfb9998jPT0d9evXR9euXQEAr776Kl544QXs2rULnTp1UrSQhLo4vzDurDtax3Do3fHw2A88fD4vVwPMtm13w2KB5Fk/i8LSV/j24e2zI4HliJxJkatBKC1tt2CF5JFrHfB2T0SjuodYRO+kqd4KHC1XVYolH3d1HEvIEmFTpkzBgAED8MYbbwgrPK5cuYIxY8Zg8uTJ+M9//qNoIQl1sX8RPLkPtI7h0LvjAdwPPK5XAAaA42r/5W7Wz4qwlIpcCykLz86oeGtFEBuE6te/rIh1QOr7z++JaFT3EKvo8a4oJXDUXBhi9L5GtiXMXoABtcttZ8yYgS5duihWOEJbWHQfuHpx7IVBZWWlEJjJo+QL5y4GLDi4wuMKQMD1rN9IHYavLgUW7sEX9HLRe2tFcNWm7JMsq2UdEBtYjeoeIq6iRH+lZFwg62EzcpAlwsLDw3HixAm0bdvW4fOTJ0+iUaNGihSM0B4juA/0dJ162mIHqEHtCkDxHFdG6ST0TtSoJyylWZBiRXAug9pxdlIHVjO63FlFLYHiS/tWcmLvjTvcVWw6qwJNlgjLzMzE6NGj8corr6B79+4AgK+//hrTp0/H/fffr2gBeQYMGICDBw/izJkzaNy4MdLS0rBgwQIkJCQIx3z22Wd4+umn8euvv6JevXro2bMnFi1ahMTEROGYzz//HFOnTsWvv/6KZs2a4amnnsKIESMcrrVy5Uq8/PLLKC4uRseOHbF8+XIh9g0ALl++jGnTpuH9999HRUUF0tPT8dprr6FJkybCMSdOnMCECROwb98+NGzYEMOHD8f8+fPrJOhjCSO4D/RynbrqTA4dugGjR7+JqqoQREaeR35+K1PP+o2WidoXWEmz4IsVQa9Nlb1JQqolZrSi8LA0abBHyYm91HfN1c4QPCzmppOlCF555RVYLBYMGzZM2CQ2ODgYEyZMwEsvvaRoAXluu+02PPHEE4iPj8eff/6Jxx9/HIMHD8b+/fsBAAUFBbj33nsxdepUbNiwATabDVOmTEFGRgZ++OEH4Zj+/ftj/Pjx2LBhA/bs2YMxY8YgPj4e6enpAGof4NSpU7F69WqkpKRgyZIlSE9Px5EjRxAbGwugNiZux44d+OCDD2C1WpGVlYWMjAx8/fXXAIDq6mr0798fcXFx2L9/P4qKijBs2DAEBwfjxRdfVKV+lMBI7gOtXafuOpOqqhAkJR0HYO5Zv1apBlgcKPVKs8BieAAgPrBGREQw53JXQqSw2DZ5WJk0OKPmxN7TpJCV+5eCLBEWEhKCpUuXYv78+cjPzwcAJCcnIywsTNHC2TNlyhTh3y1atMCsWbMwcOBAVFVVITg4GAcOHEB1dTWef/55BATUPvDHH38c9957r3DM6tWrkZSUhEWLFgEA2rVrh6+++gqLFy8WRNirr76KsWPHYuTIkQCA1atXY8eOHVi7di1mzZoFm82GNWvWYOPGjbj99tsBAOvWrUO7du3wzTffoFu3bti1axd+++037N69G02aNMGNN96I5557DjNnzsQzzzzDTNC1K4wiJLR2nXqzGS8Ls34l0UoMsDib11oIlZSUCCtwWQ0PkPIusGZt8NW1zmLbdAdLudnUmth7ukeW7l8KPvnGwsLC0KFDB6XKIpnz589jw4YN6N69O4KDgwEAnTt3RkBAANatW4cRI0bgr7/+wjvvvIO0tDThmNzcXKSlpTmcKz09HZMnTwZQ+wIeOHAAs2fPFr4PCAhAWloacnNzAQAHDhxAVVWVw3natm2L5s2bIzc3F926dUNubi46dOjg4J5MT0/HhAkT8Ouvv+Kmm25yeV8VFRWoqKgQ/vZmv04l8bQvHSto7ToV60wyMjIQHR3t8rdGdnMA2okBvWLQXFk49BBCzgM9q+EBRrKYu8Nb17pR4iNZsZ6qmTbC0z0CYOL+vUGWCLt8+TKWL1+Offv24cyZM6ipqXH4nnf/Kc3MmTOxYsUKlJeXo1u3bti+fbvwXVJSEnbt2oUhQ4bgkUceQXV1NVJTU/HJJ58IxxQXFzsIIwBo0qQJysrK8Pfff+PChQuorq52eczvv/8unCMkJETYksb+mOLiYo/X4b9zx/z58zFv3jyJtaEcUl8Ed8cpbab3dD5+cNRjIPDUmfBC3xWVlZUoKSnRRYgp8WzExAD/TLw5pxS0iEETs3BoKYRcPafU1Fzs358KQFux46rd2Gw24d9GzMfEo4SlhNX4SLmTBqX7cDVXgXu6R8DCpPXYE7JE2OjRo7Fr1y4MHjwYXbt2Fd3Y2x2zZs3CggULPB5z+PBhYRXm9OnTMXr0aBw/fhzz5s3DsGHDsH37dlgsFhQXF2Ps2LEYPnw47r//fly8eBFz587F4MGDkZOTI7uMWjJ79mxMnTpV+LusrAzNmjVT/bq+vDBKr1aUej5AG9ep1LxenoJBebR2VSjlQhETvPzm0d6cUwytXApilgu9rD7O95+a+jVSUvI0ETtS283YsXfWmYyybvVVwlLEsrtLzqRBLVerWu1A7B5ZtB57QpYI2759Oz755BP06NHDp4tPmzatzspEZ1q2bCn8Ozo6GtHR0bj22mvRrl07NGvWDN988w1SU1OxcuVKWK1WLFy4UDj+3XffRbNmzZCXl4du3bohLi4Op0+fdjj/6dOnER4ejvr16yMwMBCBgYEuj4mLiwMAxMXFobKyEqWlpQ4dkPMx3377bZ1z8N+5IzQ0FKGhoR7rQy3kvjBKr1aUej4etV2nUgSqfU4mgJ2gUF9dKFJcCmrcq54uFVf3o3WcpKv7z81NRUpKHoBa13dCQoJqg5zUZxcREYH4+HhVyqAWvrqXWXH3uUPOpMEorlYesXs0mqtclgi75pprFMkHFhMTg5iYGFm/5V2gfAxVeXm5EJDPExgY6HCss3sSAHJycpCamgqgdtDp3Lkz9uzZg4EDBwq/3bNnD7KysgDUxp4FBwdjz549GDRoEADgyJEjOHHihHCe1NRUvPDCCzhz5oywojInJwfh4eFo3769rPtlHaU7J1/Pp6SVwJvBjuVZsrcuFFcClN8TElDvXvUKSPd0P1ouuBC7/+joaE2tTay63uTgq3uZ1cUS9vg6aWD1eUuNMzPK4jIeWSJs0aJFmDlzJlavXo0WLVooXaY65OXl4bvvvsMtt9yCxo0bIz8/H3PmzEFycrIgfPr374/Fixfj2WefFdyRTzzxBFq0aCEEwo8fPx4rVqzAjBkzMGrUKOzduxebN2/Gjh07hGtNnToVw4cPR5cuXdC1a1csWbIEly5dElZLWq1WjB49GlOnTkVkZCTCw8MxadIkpKamolu3bgCAvn37on379nj44YexcOFCFBcX46mnnsLEiRN1s3SpjdKdk9j5WAyEZ3mWLFcwuatHNe9VqTgsNTebVtMaxVJAPsuTCjn46l72Nj6SR+0+Sant0Fh+3lFRURgyZIjgdfDkBTHSKnVZIqxLly64fPkyWrZsibCwsDpByefPK9tZhIWFITs7G08//TQuXbqE+Ph49OvXD0899ZQgam6//XZs3LgRCxcuxMKFCxEWFobU1FTs3LkT9evXB1AbvL9jxw5MmTIFS5cuRdOmTfHmm28K6SmA2kS0Z8+exdy5c1FcXIwbb7wRO3fudAi0X7x4MQICAjBo0CCHZK08gYGB2L59OyZMmIDU1FQ0aNAAw4cPx7PPPqtovbCE0gOH2Pmio6Mlu0K0yu/D6ixZDcGk5r0qEYel1GbTJ082xfnzf9exCqhpjWJl9SHLkwpvUWq1npz4SB41Y0KVCIQ3wvN2jkF0Z7VzNUlnNV5Rlgi7//778eeff+LFF19EkyZNVA9679ChA/bu3St63NChQzF06FCPx/Tu3Rs//uhZ2WdlZQnuR1fUq1cPK1euxMqVK90e06JFizquTzOj9MCh1Pm0zO/DkgXDHm8Fk5TVqWrcq5LL2qUmrxTbbHrLlsGwX5molVWABZcKq5MKOfgqUqS2TU+oHVPla/9ltOftyWrnzSRdb2SJsP379yM3NxcdO3ZUujyEgVF64FDifFpmktbCgiHHqueNYJIqWtW4V7WWtUtd4OF8PxwHANpZBZRyKUlBCaGtl+tNLr6UyVPbtI+TBNiNqRJDjYmVWl4II1jtpCJLhLVt2xZ///230mUhTIDSqxXlno9/+e0HCi3iHdS0YMi16nkjmLwRo2rcq9KDtzf7HNrfz6VLDbBly30O51LbKqBmbiV7lBLaerne9ELK/bAcUyWG0hMrNb0QRrPaeUKWCHvppZcwbdo0vPDCC+jQoUOdmLDw8HBFCkewj6+JXtU4zlWusZMnm6k2c9LKguGtVU8J957YrJ71AFhv9znkrRo2WyNdXMtaCBclhTYr6VhYwKjWGbWy26uZ+oLV0A85yBJh/fr1AwD06dPH4XOO42CxWFBdXe17yQhDoPTsXYnzucs15oxSMyetLBj2SJlx+1ouT9dgcXWqK+Tuc8hKcLwWeBPcrEWKEqNiVOuMVv2Xkm5aM72fskTYvn37lC4HYWCUHnCVOp/zzNQZJWdOWudtkjrjllsusWsYJfDV285azT3vWERucLNRrT5qYmTrjNr9l1KC3YzvpywR1qtXL0nH/fOf/8Szzz7rdsZMEGriambKY+SZkxYzbqPO6l3hTeyaHlZNvfBFSJmpffhKaWkpAHNZZ5REScFuxvdTlgiTyrvvvovHH3+cRBihC65mpkANBg/egmbNThm2c9Rixm3kWT3gW5yekTpwX/BFSLHcPrTKC8hfy37LMtasM1rWhTuUFuyeysvfb1FRkcvvWRRoqoowrnaNN0HogruZ6fXXH65zrJHM11rMuI0+qzfjjFlpfBFSrLYPLfMCAq6Dyl0J/szMTM3bmtZ14Q6tBDsr9+stqoowgtAbTzNTPvDYiIOx0ukh+BmkzWaTdA0jiFajPVOt8VVIsZBQ1hkt8wK6wt31rFarKtfzBCsbc2sl2Fm5X28hEUaYHneuKKMEl/OolQrD0wzS/hpDhgxBRESEIUUrcRVfgpu1TCjrK1qv3mR9tajWSWT1DqI3StJcEmGE6VA6JxkrqOVikzozjIiIMJRo1QoW4m68wZd2pJeb19s61nr1JuurRfUQiN60FaXfIdYFsT0kwgjTYeZ4IC3KbJQZJAtIjUPhrYiu0KMt+rqFj5Z4E+vDo/XqTZZXi4oJRPtdRZRui1LOpXQsF+uC2BlVRdhDDz1E2fMJXTCiwGIBI80gWUBqDJL9CjpXsBYszBJyYn20Xr3J8mpRMYHovP2U1m1R6vMtLCwEIN63syyIXSFbhJWWluLbb7/FmTNnUFNT4/DdsGHDAACrVq3yrXQEQWiG0WaQrOGLgGUtWJhlpFhq5QaDy3WLsbpaFPBeILLaFnmxKCYSWRbErpAlwj7++GM8+OCD+OuvvxAeHg6LxSJ8Z7FYBBFGEIRxEJtBlpaWMhcTxko8llQBq7Wrl5X6UQpvhK63qzfluMX0Dj6XgjuBCAAFBYnMhR2IvSNiIpFlQewKWSJs2rRpGDVqFF588UWEhYUpXSaC0BX7gauwMAAFBUFISrqChIRai6/RBi6piM0gN2/ezJTbjKW8QFJcIFq7elmqHyWQInR9Wb0pJ70Fy/GnngRifn4rLFky2WVbtNlsuk22fHlHpApifocD+9/p2f5libA///wTjz76KAkwwnTYD1yeOgSjDFze4GoGmZa2W5P8SnLQOyeUPWICVg9XL0v1owRShK5SosgbMcBqP+BcF/zm62JtcdOmTbr0b67KtW3b3YiNLUbTpq4z4Nvj6tnbbDZs2rTJ4ThX8Zl69ueyRFh6ejq+//57tGzZUunyEISu8C+wWEfF4sAl1/XkPIP8++96yMlJA8cFYPfuNNSvf1m2xUYrd5jeCwrEXCB6BwvrXT9KIDXWx9f2ZKbYSFd1IaUt6tG/ud7rNwBr1oyR3F7lPns9+3PJImzbtm3Cv/v374/p06fjt99+Q4cOHRAcHOxw7IABA5QrIUHogFhHZZ9Z3hVam7idXU/urB6uZnxRUVHIzMzEpk2bYLM1wu7daQB8H4C0coexMmh6coHoGSysVf2oLbi1ivXRWzCrjbs9dfUOXHddLmXbK4vpdySLsIEDB9b57Nlnn63zmcViQXV1tU+FIohTp4CjR4HWrYGmTbW/vtigaW/i9kbwqIX94OfJ6uFukOS3VVFyANLKHabnoCk1BknPYGEt6kdNwa118LvRVtd5C98Wt227G/xkC7AgP7+VLtZR/rm5LlctSrRXVq3BkkWYcxoKglAafia9cWN9zJhhRU2NBQEBHBYutOGBB/7W1LokddCUI3jUxFerh1oDkJodoJ6DplgMkn1Mil6r57SoHzUFt9bB70ZbXScV+zaWnPwHLBaA4/hPLLq5XPnnW5sHLBuxscVYs2aMou2VFWu5K2TFhL399tvIzMxEaGiow+eVlZV4//33KUUF4TX8TNpma/S/VTu1aU9qaiyYPj0cf/65FlbrRU2tS2JL3Fl8sX21eqgxAKldT3oPmp7aY3x8vO6r57SuHzUEt9ZB0yxuTu4rUVFRGDJkCDZv3sycy9X++TZtWuSxvcqZsLB2v/bIEmEjR45Ev379EBsb6/D5xYsXMXLkSBJhhNfwg5TYy6K1dcmdewlg88VWwuqh9ACkRT2xPGiysHpOq/phcWIiFSNtTi4XfussFl2uzhbPuXPP4tixICQmXkFCws0AbpY9YWHxfnlkiTCO4xwStPKcOnVKiC0hCDmw/LI4w2JZ5Vo91ByA1Konfxg0fUGP+hET3GruU+gr3ro9jZwI1xfrqJr3bf+7+Higc2dZp6mD3tZyT3glwm666SZYLBZYLBb06dMHQUFXf15dXY2CggL069dP8UIS/oPeL4s3A5LeZXWHHKuHmnE3atWTc5lLS0tx5coVh2OCg4NRWVmJoqIipgdFNdAjkaiY4NZ7n0IxpJbFqIlwfV3kYLT7NsKOBl6JMH6F5MGDB5Geno6GDRsK34WEhCAxMRGDBg1StICE/6Gna0nKwFVaWiok/PNUVvtZP49WQsCTG9UdapZLrWdqb5UQ2yQb0HZwYMFSovVA6O0WOSzm25OCnE3FWcBXYa7GfattWdM7JlMMr0TY008/DQBITExEZmYm6tWrp0qhCEKqiFBjiyFX7gb7c4eEOFpb3JV13boczVJXSJ3JaTnj09Idxlp2eKNZDJTEmy1yfIEFkcvDYv4pdyhZJ77etxbvCevvl6yYsOHDhwOo7dDOnDlTJ31F8+bNfS8ZQYig5hZDns+dh06dPP9e69QVLM749CoTC/mAjGopkYs7wa1WoD5LIpeF9qYHSty3v70nrpAlwo4ePYpRo0Zh//79Dp/zAfuUrJXQAjW3GJJ67oyMDERHRwOQvjebUrBkCXAHC/vPsbA6z0iWEjm426dQrZWxrAzerLY3tfHX+1YDWSJsxIgRCAoKwvbt2xEfH+9ypSRBeIMv7jQ1UyCInTs6Ohrx8fGalYdHqiVgyJAhwrJ0Z1gQaUrDYtoQby0GRhDXrnBVJq1WEOslcllsb1og976d27Zz3KzZJyuukCXCDh48iAMHDqBt27ZKl4fwU3xxXanZ0cs5N0sZysWC1c0Wk8Ra2hBvLQYsudmUQIsVxHq6A1lrb1oh577F2raSz9FIExlZIqx9+/YuV34RhC/IfSnU7OjlnJvFDOV6B6prBWtpQ7y1GLDiZlMSNVc76+0WY629aYWc+/bUZpV8jkabyMgSYQsWLMCMGTPw4osvokOHDggODnb4Pjw8XJHCEYRU1Ozo5ZybpQzl/hY4zFL2fF8tJe7E87lz55iazTuj1cpYvdyBRsg/pQZK3rd921byORptIiNLhKWlpQEAbr/9dod4MArMJ/RETm4sNc+tZnl4xDovvS0FWsFq9nxfLCWexDOf9JSV2bwzWq2M1csdyOJqZC1Q6r6d23Za2m7VniPrcWayRNi+ffuULgdBuOXUKeDoUaB1a6BpU71L4x49cnWJDUL+EjjM2qDoq8XAlXjetu1uxMYWo2nTIuE4VmbzrtAqKbFe7kCzCSyp+Hrfrtr27t1pSEvbjd270xTbtBswhhdAlgjr1asXvvzyS/zrX/9Cfn4+tmzZgmuuuQbvvPMOkpKSlC4j4YfwgZUbN9bHjBlW1NRYEBDAYeFCGx544G+EhISoKnrknFsPIeA8CAG1s0q+8/KnwGGWBkVf24Ir8QwEYM2aMUwOJFqjhjvQSMHcRsbdxDAhoRCTJy9BcnI6unWL9nnTbqN4AWSJsK1bt+Lhhx/Ggw8+iB9//BEVFRUAAJvNhhdffBGffPKJooUk1Ecta5Oc8/KBlTZbo/9l2q51edfUWDB9ejj+/HMtrNaLyMrKUlz02HfEQ4YMcbkXIb9Jvatz69FJd+r0I/7+u54wi9y9Ow31619Gp04/iloK9Nxayez4UoeuxDPA7kCiNUpPeIwWzG1kPE0Mazd534LERN/r2ZvN5O3Ruv+TJcKef/55rF69GsOGDcP7778vfN6jRw88//zzihWO0IY1a4Bx44CaGiAgAHj9dWD0aP3Oy3esYi9RZWVlnRxdvuDcEbuLJRDriNXYSskZ+xm+zdZIEGBA3YHak6XAeUNlqffoj2hpKeHF87ZtdwMwvztZDkq2T9a2vWIFNdq8FBeyEvXs7Wby9mjZ/8kSYUeOHEHPnj3rfG61WlFaWuprmQiNKCkpwbFjVzBuXCxqanhrE/DIIxxuvPEMEhODZDVEpc6rtSvN/sWXu+2Qmlsp2RMVFYUhQ4Zg8+bNkuK+3AWq02AjDa0sJc5uttjYYqxZM8Yv3MmsoHUcEatuUKXbvCsX8smTTQFY0KzZSV+K6hIpYo+F/k+WCIuLi8Mff/yBxMREh8+/+uortGzZUolyESpTUlKCF154C7/+eh1qatIdvquutmD58k+RlHTc60GFf3ELChJRUzPcp/PqFXTrSyyBmlspOcNnwhcTq662VgKMEbTKClpZSng3W2FhIbKzs9G0aZFf5qHSC63jiFh2gyqd6sF+4ggA+fmtVOl/pMYLstL/yRJhY8eOxWOPPYa1a9fCYrGgsLAQubm5ePzxxzFnzhyly0iowPr1gf+LtwoAwAG4mmrEfgD3dlDhjxcTBlLP6+ol4gfAwsIAKOiNFFBiRaHUcygxCxYTq662VjJK0CqLqN15R0VFObQJlvKemR2tVxMbKaeVEqke+Imjmv2Pp3hBrff3lYIsETZr1izU1NSgT58+KC8vR8+ePREaGorHH38ckyZNUrqMhILwrsIZM2KFgPdaAVYrxJSaaStpxbJ3pdkPgO+8w2HhwlJhtaRSM0Ul3KBSzqFUDBrg/UDtL6krlEas8y4tLVUkTlHpvGesurxYQ+/VxKzmtFJ64qF2/yPWllnq/2SJMIvFgieffBLTp0/HH3/8gb/++gvt27dHw4YNlS4foSCeXIWABenpO9G+/W+KNUKlZ/DOA6Cr1ZJKDCRKCEhvg0/lxqA5X1NqGfUebIyKWOe9efNmRdqhkqv/WHZ5sYaeecdYcY85o4bVSO/+R+/r2yNLhPGEhISgffv2SpWFUBkxV6GSAoxHyazxUlZLKoUSAlLqOeR2cr7kSfPXPe98RUrnrVQ7VEoQGcnlxQJ6uH9Zco85IzfVA+B+oqB3/6P39e3xSYQRxoSlBugKd+JC69mLEgJSyjnkmsZ9tZZQrJH31E2OC3BcbZAxC1YLKbDq8tITvbe9Ysk95owvqR4ARwsrS3tustL/kQjzU1hpgK5wFhd8MKXa4lGPbYcA38Slt9YSvQcbM5Cc/Ac4zv4T6VYLvWOzWHV56Y3e216x5B5zxtd+175O9a5nFvs/EmF+jBYbTMtFD+uNEh2E1Je3vLwc5eXlALS1TOrdCbKMJ4Fks9mEf58/HwU5CVT1js1iyeWltxh1hZ5tnkXvhFSrFY9UC6ue9cxi/0cijPCItzMCLaxJcsWjFpnspbzk5eXlePfddx0+09Iy6Y8CSwypAgmQb7XQOys7Ky4vvcUoS7DknnNGrC/TOuegUsKdtTZFIoyoA5/cU44oYXGmAWiXyR4Qf8mLiooc/rYfjJOSjvt0bUIe3ggfJawWergFWXF56S1GWYLV/pJHynW1sLCaWbiTCCPq4Cq5pzew+BJomcneG6QMxhSfpT1irhVfLJd6uQXVdHnJtVJQjBqb/aU3+GJhldpuzCzcSYT5EXoFnvuKkuVmxSUDiA/GGRkZSEhIMHwnbTSkCgO5Qb1at0G1XV5yrRQsxagR8pFrYfWm3dhjNuFOIsyPYN307Q4ly82KSwYQH4yjo6OZexZmR0wYZGZmwmq1uv29lHaodRtU+72Xa6VgaUJkFvRY8CDXwiq13RQWFjocYzbhTiLMzzDqoK5UuVlahcSSICRqERMGVqvV522J9GiD9u+Pq4G6srJSiFX0ZaD2xkpB7V9ZtI6bUtLC6qnd2OchM6NwJxFG+B2s5EhjSRAStWglDPRqg2oO1N5aKaj9K4vWcVNKWVjdtZvY2GJUVYU6lN+Mwp1EGMEUp04BR48CrVsDTZuqdx1WcqSxIgiJWtQUBiwkilRzoJZjpaD2rw5axU0pYVFz127efHMMAMfym1G4kwgjdId3j2zcWB8zZlhRU2NBQACHhQtteOCBv5mMU/MFFgZjwhEt8jWxFpOp9EAt1UrhbftnMbEryxgtbspVuwE48AmRnctvNuFOIozQFd49YrM1wpIlk8FxFgBATY0F06eH488/18JqvehzHANLK0NZG4yVQsvBUulrafVMWHmmagzUUq0U3tS1mfNDqYXR4qZctRux8ptp4koijNAVviMW6zh8jWNgTfiYbcDQcrBU61pmeyaeUGuglmqlkFrXZs4PpRZGjJuybzfBwZVYs2aM2/LzycSdMeLEFSARRjCCFh2HEV9QoyB1EFRisNTyWmZFyfdNK/e62fJDqYVR4qY8tRtP5fc1mThrkAgjmMAoHYdR0TquRupmvka7lllQ8n3TwspstDgnpZD73hohbsq53djvRSm1/GaIFyQRRnhEq9WKgDE6DiOidVyNlhYLso7IR8n3Te2BzmhxTkrg7XtrxAU/9u1GzoIN+/pxNxljPV6QRBhRBz1XK7KSOsJMaBlXo6TFwt0s99y5c4pfy18w4kANGDPOyVe8fW9Zi3v1Fm/Lb3+cp8kY62EJJMIIB8RWK37zTQ6aNTuJcePugtVqZfqlJuqituVIKYuFFCuAP1pHfMWoA7W/hytIfW89PTd+UsPvjOAMC89dzvWNPhkjEUY4ILZaccuW+2Cx1CA//2onwLq5V09YilnQorNSymIhZfbqj9YRJTDqu+qv4QpKvLdmTvVh9MlYgPghbDBgwAA0b94c9erVQ3x8PB5++GGHjT0BYPPmzbjxxhsRFhaGFi1a4OWXX65zns8//xydOnVCaGgoWrVqhfXr19c5ZuXKlUhMTES9evWQkpKCb7/91uH7y5cvY+LEiYiKikLDhg0xaNAgnD592uGYEydOoH///ggLC0NsbCymT5+OK1eu+F4RGsEPcK7gOwGbrREAzwNmSUkJioqK3P5XXl4uqTysuUekwHd8r7/+utv/VqxYgZKSEk3K46mzUgreYsG3HaUsFjZbIxQUJAptTs1rEezgyn2alHS8zjM2Yv8gFSXe2zNnzjj87ep9Ath33bnC1VhlpMmYYSxht912G5544gnEx8fjzz//xOOPP47Bgwdj//79AIBPP/0UDz74IJYvX46+ffvi8OHDGDt2LOrXr4+srCwAQEFBAfr374/x48djw4YN2LNnD8aMGYP4+Hikp6cDADZt2oSpU6di9erVSElJwZIlS5Ceno4jR44gNjYWADBlyhTs2LEDH3zwAaxWK7KyspCRkYGvv/4aAFBdXY3+/fsjLi4O+/fvR1FREYYNG4bg4GC8+OKLOtSe9zib/52RMtOQGjj50EMPISwszO15WDCTy4G1VApqWo7UzDjvyRWjVnZ7gg2M6j5VEl/f25KSEmzevFn4W4mQBJYs/EZ3VRtGhE2ZMkX4d4sWLTBr1iwMHDgQVVVVCA4OxjvvvIOBAwdi/PjxAICWLVti9uzZWLBgASZOnAiLxYLVq1cjKSkJixYtAgC0a9cOX331FRYvXiyIsFdffRVjx47FyJEjAQCrV6/Gjh07sHbtWsyaNQs2mw1r1qzBxo0bcfvttwMA1q1bh3bt2uGbb75Bt27dsGvXLvz222/YvXs3mjRpghtvvBHPPfccZs6ciWeeecYwgwM/wJ082RRbtgyGveFUSicgNXAyLCzMVHlf3KF3KgU1Oyu1BksxV4wREzeyNIAZASXrwoh17+t7a3+/ZnVtGtlVbRgRZs/58+exYcMGdO/eHcHBwQCAioqKOtaU+vXr49SpUzh+/DgSExORm5uLtLQ0h2PS09MxefJkALWN9cCBA5g9e7bwfUBAANLS0pCbmwsAOHDgAKqqqhzO07ZtWzRv3hy5ubno1q0bcnNz0aFDBzRp0sThOhMmTMCvv/6Km266yeV9VVRUoKKiQvi7rKxMRu0oS+3qqcOorJTfCRg9cFIJWEmloGZnpUaHKxbvoVXiRqUGbxYHMH/ByHWv1Hubl5fic/wUq7sYGHVlvaFE2MyZM7FixQqUl5ejW7du2L59u/Bdeno6pkyZghEjRuC2227DH3/8IVi8ioqKkJiYiOLiYgdhBABNmjRBWVkZ/v77b1y4cAHV1dUuj/n9998BAMXFxQgJCUFERESdY4qLi4VjXJ2D/84d8+fPx7x587yoEe3wpRMweuCkr+gtQo2algBgI/heycGbNRe1P6GkeNDCoqb0e2uzNcL+/al1PvflfdJzcsnSfsC+oKsImzVrFhYsWODxmMOHD6Nt27YAgOnTp2P06NE4fvw45s2bh2HDhmH79u2wWCwYO3Ys8vPzcffdd6Oqqgrh4eF47LHH8MwzzyAgwBjrD2bPno2pU6cKf5eVlaFZs2Y6lsgRd53AuXPnPHY6LAykeqK3CDVyXA0L8R5qCie9XdT+ii/iQSuLmtLv7fnzUXC1Fi81NVdW29N7cmnkfs0eXUXYtGnTMGLECI/HtGzZUvh3dHQ0oqOjce2116Jdu3Zo1qwZvvnmG6SmpsJisWDBggV48cUXUVxcjJiYGOzZs8fhHHFxcXVWMZ4+fRrh4eGoX78+AgMDERgY6PKYuLg44RyVlZUoLS11sIY5H+O8opI/J3+MK0JDQxEaGuqxPtRGyqzBeeDgt5pw1+mwMJDqCQsilPWOyBk1A/19RSnhpJcVwYhxUUriq3jQ0h2n5HNw1Q8BNUhJyZN1Pr0nl4Dx+jVX6CrCYmJiEBMTI+u3NTW1S1LtY6gAIDAwENdccw0A4L333kNqaqpwjdTUVHzyyScOx+fk5CA1tdZEGxISgs6dO2PPnj0YOHCgcJ09e/YIKyw7d+6M4OBg7NmzB4MGDQIAHDlyBCdOnBDOk5qaihdeeAFnzpwRVlTm5OQgPDwc7du3l3W/WmE/uygtLXVYVQPIz0xs5MBJX/F3ESoHVme5SgknvawIesRFsSb6lBQPSrUH5zqy2WyoqqoS/g4KCnKY9MupMyn9kDeTGhYml2bAEDFheXl5+O6773DLLbegcePGyM/Px5w5c5CcnCwIn3PnzmHLli3o3bs3Ll++jHXr1uGDDz7AF198IZxn/PjxWLFiBWbMmIFRo0Zh79692Lx5M3bs2CEcM3XqVAwfPhxdunRB165dsWTJEly6dElYLWm1WjF69GhMnToVkZGRCA8Px6RJk5Camopu3boBAPr27Yv27dvj4YcfxsKFC1FcXIynnnoKEydO1N3S5Qp3nWRERASGDBmC0tJS7Nq1y+eBw6iBk3Jh2ZpjBFib5Yq1f347JUB8kNTLiqB1UDWLwfBKiQelhLTUOnJGTp156ocyMzO9Oh9NLpXBECIsLCwM2dnZePrpp3Hp0iXEx8ejX79+eOqppxxEzVtvvYXHH38cHMchNTUVn3/+Obp27Sp8n5SUhB07dmDKlClYunQpmjZtijfffFNITwHUNsSzZ89i7ty5KC4uxo033oidO3c6BNovXrwYAQEBGDRoECoqKpCeno7XXntN+D4wMBDbt2/HhAkTkJqaigYNGmD48OF49tlnVa4p7/GmA/B24NA7cFLvGTir1hxCHmLtn3fL83gaJJUQAr62by3coSyupFNKPCglpMXqyNc6kxrgL8cr5c8eDqUwhAjr0KED9u7d6/GY6OhoIY2EJ3r37o0ff/Tc0WRlZQnuR1fUq1cPK1euxMqVK90e06JFizquTxaR2kkC3g8ceooQVmbgLOc40lukGg137T84uBIFBYleDZK+CgFf27ce7lBW0rQAyogHNdxxznV0ww2HcOjQDT7VmdL9sJFXW7OIIUQYoQ1inaScgUOvQdxsqQCUFpWsiFQj4ar933DDIaxZM0byIKmUi9pXC5PW7lC9V9KVlJTAZrM5fOareFDaHeeqjn76qSMAi/C33DpT8h1mxcJvlkkkiTACgPRO0qjmZ6OlAnDuYOzjjTyhtPg0ikhVE3fCKTi4UhBggLRBUo0BTI6FSeugaj1X0kmdcAwZMgSxsbFe1b2S/aGrOuIFGA8r+RX1FjdSt8QzwiSSRJgfYj/A84O7N52k0QLsWXKDSEFuoK4vGE2kaomzcDp37hyys7NRUJAoS1goOSjItTBpHVSt50o6qVbDiIgIl8/GeUJUWlrq8L1S7jjXKSQ42AsxWn1Yi9Qt8YwwiSQR5me4G+CV6CRZjAHQ2w0iBykdh5KiyWgiVQ9cDc5i74wr66XSLhJfLExaWrVZWUnnbVuXOiHKzMyE1WoV/lYqhYSrmDBW+y09MGL/7gyJMD/D3QAv1kkOGTKkzlZN9rDqf2choaCvOAsuJUWTGToxvRB7Z5xXS/Io6SLxdvKkZ1C13qEMctq6VCua1WpVZA9TV3V0++17DRf+oRVm6N9JhBECnjrJiIgITTZKVhqjJxR0Flxpabuxe3eaYqLJDJ2YnsgRFkq6SLy1MGkdVM3SSjpf27paFmOxOqLVh+4xev8OkAgjnDDbC8+KG0QOrmbuOTlpcN7/zRfRZIZOTGukCgut4uy8FYJaWqxZWUkH+NbW1bQYu6ojNTLmmxEj9+88JML8HHcDRUZGBqKjowEY84U3Q7Z616ulAhQVTWboxLTGnbDgA/YB9ePsWLIwiaFl3+EqbQEfm+dLW1fbYuxcR0b0OuiF3m5uXyER5sd4Giiio6MN3RGwNAOXi7uZu71L0nkgkbNLgVFFqjNa5g3ydB4t4uzM0L6VxnPagtrP5A7YZDFmG6Ot2LeHRJif4g8B2UYfgNzN3Dt1+hHXX/8Lrr9+IDp2bICEhJsB3OzVoGu2QZyl5LNaxdkZ5dlohdS0BXKshma2GBsx6aneW+IpCYkwP4UCstlFipXKar2Ie++1+tQ5stax+gJLyWfJaqIvYhNM+1ALHnuh4SqPIqCM24s1wWPUpKdmmkSSCPMz+AFebKAwwgzCF1jrDO0xUwejF3omnzWz1cQIiE0wPYVauBYlV/cF9SX2jkXBY+Skp2bp/0iE+Rn2A/w115Rh5kwrqqstCAzksGBBGR544H7TD/Asua7cYeb6Vxu9ks+aMc7OiPhiiZQqSuQsXGJZ8PhDeAqrkAjzQ/gOY9o0IDMT+OMPoFUrC5o2jQAQoWfRNIEl15URYNlq6IyegwlZMNlACUukWDvyZeESi4KHwlP0g0SYn9O0ae1/BOEKI1gN7dF7MGGhDgjf47fUbEd6t1FXUByjfjgnISIIghAwmtWQH0zsocHEP7FaLyIp6bhPSYztUaodsdhGeeshXy6KY9QOsoQRhAEwkktQTygo3n9RMm2Bmu2I1TZq9KSnRoVEGOH36LmSTgosuQRZrSt/DIonYe6I0jF5aooSVgWPWNJTanPKQyKM8Gv0WknnDay4BFmuK38LimdJmLOE0veqZiZ2FrK8e2M9ZDHFhhkgEUb4LSyuUmIVI9SVP3X8zmLT3YDISqyeUVAzEzuLWd69mbwUFRUJn7GWYsPIkAgj/A6+kxNbpWQm15WvsLiii6iFZQul0qjtDlPTomoWa60RJmRGgkQYIRujxgfwneGxY1fwzjscamoswneBgRwmTboTiYlBTJZdL2gJO5v404ColTtMzfeetT7FmzrloQmZspAII2Rh9JiUqKgoREUBr78OPPIIUF0NBAYC//qXBZ07N9G7eB7RMjietwaKregiq6E+iA2I9nsfsjopkgrLGeeNipw6pQmZspAII2TBSrC4r4weDaSn87sGsJ+4VmvXk7MLZe7cszh2LAiJiVeQkHAzgJsNP7gbGXcDYnBwJQoKErFuXY4hg6ZdWdl5QelP1j+t8KZOWU2xYVRIhBF+j1F2DdBr8LEftOPjgc6dVbsU4SWuBsQbbjiENWvGGNZK5NlFRu4wNfC2TllNsWFESIQRqmLvDgGM7xLRA1pIQHjCfkAMDq4UBBhgTCuRmIssOfkPcocpjBwXIwspNswAiTBCVbKzs+t8ZhSXCCvQQgLCGWfBzQ+IBQWJprESubP8Tp68hNxhCiPFxchiig0zQCKM0BwjuERYw8gLCQjlcY7VO3fuHLKzsxULmmZh5bMnyy+5w5RHrE7NkmKDNUiEEYSBMNpCAkI9XA12SgRNs5IZXUxQkjtMecTqlASW8pAIIwgvYMFCoNRCAhbuhVAeX61ErKSCkCso5bjD7N+FwsIAFBQEISnpChISaoRzmvFdIBej/pAII2Thjy+l0XOj2ePrvZCAYxslrEQspILwJCgzMjIQHR3tcLycdmf/LngSnUZ4r72Bf4czMzNx8iSHEydC0bx5BeLirgAAgoKCEBERQe+yypAII2ThKj6Aj0uRitEGcrPkRgN8uxcziVGzoIZFQ69UEKWlpQ5/uxOU0dHRiI+P9/l6fBsXE51GeK+l4q/Ck0VIhBGy8eXlpIHcePCi2TntiDvMNGixjhpB03pkRi8pKcHmzZuFvz3tDqG0Nd6f8o/5o/BkFRJhhCKcOgV8800IbLZGkjosM1mVnOFFCmuWPF+QKpq1wGgWVK1Q+p71yIwuNR4tMzMTAFBUVARAmTguf9yOx5+EJ6uQCCN8Zs0aYNw4oKYmChbLZNGtdEJCQgwprqRi75I1iiVPbD9KT89Ly70syYKqLXqlgpASj6a0O80ft+PxR+HJGiTCCJ84dYoXYLV/c1wAduy4B3PnpggzUnv42Sk/gzU7RhCbvuxHqfVelma2oLKKHqkgxCw0Fy5cAFAr1rZtuxuAMu40f8s/5o/CkzVIhBE+cfToVQHGU11twcWLTaBAzCzTaGkBUgtfVsCxsHrODM+ANVhIWyBmodm1axcAIC8vBbwA4/HVneZv+cf8TXiyBokwwidatwYCAhyFWGBgbSLRU6dqRVrr1uZLKqq1BUgt5MaE2GyN8Ouv1+kaT2KWZ8AaLGRGl2KhsdkaITc31cWvyZ3mLf4mPFmCRBjhE02butpKB/jss6tuyoCA2mNGj9a7tL7Bz/xZsAD5Cn8vYhYHV9YOe/EDcAAsLn/rDiUC683wDFiGhXg6MQuNqwkEAHTvnutVG2DB8kf4LyTCCJ9x3koHAFq0uGodq6mpFWnp6ca2iPEWgn37gMWLjb2iyN7acc01ZZg504rqagsCAzksWFCGBx6436UYchY/tQKsVog5WytcDVpSA+uHDBmC2NhYt2KAVnX5B54sNO4mECkpeV5dgwXLn9aQ8GQHEmGEIthvpbNvn6s4sVqRxh9j1E4gKioK3boBAQEcamq8swCxBj+oTJsGZGbyItqCpk0jAES4/I1r64MF6ek70b79bxg58g5ER9/sdtCSGijN54pyt7qNVnWZE2/edyWDys0ksKTgj8KTVUiEEYrjKU6Mx8idQNOmwMKFNkyfHi50/mlpu3H+fG1ZjWiJEduPUsx92b79b7BaLyIhIcGrZyY3NQat6jIn9v2CzWbDpk2bhO9ctRUKKpcPi32rVMwUb0wijFAcd3Fizi+LkTuBESOq8eefS3D+fCQKCxOwe3eaywBx1ix5cpHrvvSEY2xZDbp3z0VKSp7HgdS+Pj0NwGapd3/EVRvytAjDk8uS2oF54GNJN26sjxkzrKipsSAggMPChTY88MDfzE7axbBwHMfpXQjCNWVlZbBarbDZbAgPD9e7OF5z6tTVODGx2YoRZzYlJSU4duwKunaNdXBNBgZyyMs7g8TEIEN2ClLw5tnaU1RUhNdffx02WyMsWTK5jmvTeYAdN25cnf0BKWO+f+CprVgsNZg8eYlHwT5kyBC0a9dOi6ISKsPHkoq1BZaSNEsdv8kSRqiGmIuL52rGfWOtpIyKisKhQ+7zpDHSF6iC1GfrDncr26SscmSlkyW0wd0ijLy8FPTtu9vt72JjY9UuGqER/KRLbEGOEZM0kwgjdMU5477SKynVtppIiX8j6uIqtoyHVjkS9rhrK/v3pwru64yMDERHRwvfkTXUnJhxQQ6JMEJXXGfcd1xJKRct9hmUGv9GOMIH1ttvOcNj9E6VUBar9SJSU3Oxf38Pp2+uivXo6Og6bmvCfJhxQQ6JMEJX1LQkabXPoHOeNBJg7nEVWJ+Xl4Lc3FTTdKqE8qSk5GH//lTYC3YS6/6J2VbEkggjdMUsliRfY6T8BX6V5dmzZ7Fp0yZYrRfRt+9upKTk0SpHwi1W60UMGGAuCwghHzNts0QijNAdsiT5F1FRUYbOE0dog7MAN5sFhCAAEmEEI5AlyVgoseDB3wWWfR0WFgagoCAISUlXkJBQ65v3dxEaFRWFzMxMh4StZrKAEARAIowgCC9xXvDgLus9Szl7WMO+Dj0lIvX3OrRarXoXgWAAo25zJwUSYYTfILZFDnEVT5auc+fOCf/2JCCMmLNHK/i6cd4Q3TlPmr/XoZkHX3/G2+TcZg5fIBFG+AWexALhiFRLl5iAIMQRSz7p75h58PU3fN12yKzPmEQYYVr42bGYWDDTLFqJWC3733sSryQgfMeMySeVxqyDrz9Rd9uh2m3eamosmD49HH/+uZa5bYe0gkQYYVr4WfS+fcDixXXFQo8ew9G7t3k6eaVjtcTEq5iAsHdbkrXCNWZMPmkPLT4gAHNvO+QrJMIIUxMVFYVu3VwnhE1JiTLV/o5SLVhSOzqxDtOdgACAgoJErFuXQ4H6EjBr6gVafEA4Q5bfupAII0yPWRLCSkWpWC0pHaazgMjPb/U/dwMF6nuDGVMv0OIDwhmzW37lQCKM8Av8KSGsUrFaUjtMXkBQoD7hCoodJOxR2/JrNBc4iTDCb/CXhLBKmvy96TBpsJWOP6VekBo7yMqAqcTiFsIzall+jegCJxFGECZDaZO/uw4zIyMD0dHROHfuHLKzsynewwv8KfWCWHvMzs5mZsCkRMTGxogucBJhBOEGbxMKsoQvJn+p1peEhASHgYjiPbzDKIO4Eu4dT+2RpQFT6cUtzpCVTRuMZJUnEUYQdviaUJAl5Jr8fbHSmHWln7+ipHvHXXtkccBUI77Rn61sWrvfjWSVJxFGEP/D6AkFve3oPFn6fLk/M67081e0cO+wOGCqIQzVtrKxjNbudyNZ5Q0nwioqKpCSkoKffvoJP/74I2688Ubhu0OHDmHixIn47rvvEBMTg0mTJmHGjBkOv//ggw8wZ84cHDt2DK1bt8aCBQtw1113Cd9zHIenn34ab7zxBkpLS9GjRw+sWrUKrVu3Fo45f/48Jk2ahI8//hgBAQEYNGgQli5dioYNG3pVFoItjJ5QUEpHV15ejsrKSixaVKqYpc+fgsz9FTmiROrzZnHAVFMY+usqYq0nrkaxyhtOhM2YMQMJCQn46aefHD4vKytD3759kZaWhtWrV+Pnn3/GqFGjEBERgXHjxgEA9u/fj/vvvx/z58/H3XffjY0bN2LgwIH44YcfcP311wMAFi5ciGXLluGtt95CUlIS5syZg/T0dPz222+oV68eAODBBx9EUVERcnJyUFVVhZEjR2LcuHHYuHGj5LIQ7MLizFwqnjq6kpISvP7664pb+vwpyNxfkfNOiLULfkEHwN6AqaYwZNH9alaMYJU3lAj79NNPsWvXLmzduhWffvqpw3cbNmxAZWUl1q5di5CQEFx33XU4ePAgXn31VUH4LF26FP369cP06dMBAM899xxycnKwYsUKrF69GhzHYcmSJXjqqadw7733AgDefvttNGnSBB999BGGDh2Kw4cPY+fOnfjuu+/QpUsXAMDy5ctx11134ZVXXkFCQoKksihFTU0Ns5YZo1FVVYUGDRqgQYMajBixE/v29UZ1dQCKi4Nw552fMP8yi6GmpY8ElrmRK0q8aResDZhqCUMjT/II5TGMCDt9+jTGjh2Ljz76CGFhYXW+z83NRc+ePR1M4Onp6ViwYAEuXLiAxo0bIzc3F1OnTnX4XXp6Oj766CMAQEFBAYqLi5GWliZ8b7VakZKSgtzcXAwdOhS5ubmIiIgQBBgApKWlISAgAHl5efjHP/4hqSyuqKioQEVFhfB3WVmZxzqprKxEQUEBauz34yFkU11djR49egAAevQARo/+GTU1Abh8uRw//HAYly/rXECFoEGAkANr1iotUEMYsuh+NQtGDI0whAjjOA4jRozA+PHj0aVLFxw7dqzOMcXFxUhKSnL4rEmTJsJ3jRs3RnFxsfCZ/THFxcXCcfa/c3dMbGysw/dBQUGIjIx0OEasLK6YP38+5s2b57oSnOA4DkVFRQgMDESzZs0QEBAg/iPCI5WVlSgtLXX4jOM4XLhwAW3atKnjAjcKfAB+eHhtG6FBgJCLkqKExQFTqzL5o6DVAiOGRugqwmbNmoUFCxZ4PObw4cPYtWsXLl68iNmzZ2tUMn2YPXu2g6WurKwMzZo1c3nslStXUF5ejoSEBJeWQcJ7AgICEBRU95WwWq2IiYlBSEiI4Vy/a9YA48bVbl4eEBCLu+++CZ06/UiDgA4YbTsVtWFxwNSyTKy5X82C0d4hXUXYtGnTMGLECI/HtGzZEnv37kVubi5CQ0MdvuvSpQsefPBBvPXWW4iLi8Pp06cdvuf/jouLE/7v6hj77/nP4uPjHY7hV2HGxcXhzJkzDue4cuUKzp8/L3od+2u4IjQ0tM49uqO6uhoAW2ZVsxIQEICAgAAEBwf7JMK0TP5aUlKCY8euYNy4WNTUXA3At1+FRYOAdhhxOxVAfcsQS/fKo1aZWLT8EfqjqwiLiYlBTEyM6HHLli3D888/L/xdWFiI9PR0bNq0CSkpKQCA1NRUPPnkk6iqqkJwcDAAICcnB23atBHcf6mpqdizZw8mT54snCsnJwepqakAgKSkJMTFxWHPnj2C6CorK0NeXh4mTJggnKO0tBQHDhxA586dAQB79+5FTU2NV2VRCovFouj55FBZCVy+DNSrBxi5/3Dn0nWuYzmdpKNFCnj99dpNxdWAH/ALChJRUzPc4TtahaUPRtxOBWDTWmVUqC4JVxgiJqx58+YOf/P5uJKTk9H0fyaFBx54APPmzcPo0aMxc+ZM/PLLL1i6dCkWL14s/O6xxx5Dr169sGjRIvTv3x/vv/8+vv/+e7z++usAagfbyZMn4/nnn0fr1q2FFBUJCQkYOHAgAKBdu3bo168fxo4di9WrV6OqqgpZWVkYOnQoEhISJJfFLJw9Cxw/fvXvFi0ACbqaSYKCghAbG1tnocPly5dRVlaGIUOGoEGDBl53kqdOXRVgQO3/H3kESE9XxyLGd/IUgM8eRkxPQKJAOaguCWdME81ttVqxa9cuFBQUoHPnzpg2bRrmzp3rkBKie/fu2LhxI15//XV07NgRW7ZswUcffSTkCANq85BNmjQJ48aNw80334y//voLO3fuFHKEAbXpMNq2bYs+ffrgrrvuwi233CIIOallMQOVlY4CDKj929NkfsSIEbBYLLBYLAgODkaTJk1wxx13YO3atV6t8ly/fj0iIiLkFdwDQUFBCAkJqfNfYGAgYmNjZXWiR49eFWA81dXAH38oVGg38AH4FkvtxaUG4JM7RD14YWwPCWOC8F8MYQlzJjExERzH1fn8hhtuwJdffunxt/fddx/uu+8+t99bLBY8++yzePbZZ90eExkZKSRmdYeUshgddykbKio8uyX79euHdevWobq6GqdPn8bOnTvx2GOPYcuWLdi2bZvL4Hgj07p1rQvSXogFBgKtWql/bU8B+BkZGYiOjnY4Xkt3iJE3SJcLrUwlCMIec412hGTsV2q5QspgbGccdEBsbUFoaKiwQOGaa65Bp06d0K1bN/Tp0wfr16/HmDFj8Oqrr2LdunX4v//7P0RGRuKee+7BwoUL0bBhQ3z++ecYOXIkgKvxWk8//TSeeeYZvPPOO1i6dCmOHDmCBg0a4Pbbb8eSJUvqpBXRipKSEgQGVmLhwvqYOdOK6moLAgM5LFhgQ2Dg3ygpUV/0uAvAj46OdliAoiVaxsixBq1MJQiCh0SYH2K/UssTYiu1QkJqY8CcY8LkeLNuv/12dOzYEdnZ2RgzZgwCAgKwbNkyJCUl4f/+7//wz3/+EzNmzMBrr72G7t27Y8mSJZg7dy6OHDkC4GqcYFVVFZ577jm0adMGZ86cwdSpUzFixAh88skn3hfKR5zr+dFHGwkD719/XQTvwWZtRZyauF61CTzyCIcbbzyDxMQgv6gLWplKENqihOFBDUiE+SFSV2BJOS4mBrBaa12QoaG+rY5s27YtDh06BAAOK1gTExPx/PPPY/z48XjttdcQEhICq9UKi8VSJ+XHqFGjhH+3bNkSy5YtE2L77DdY1wLn+nM38LK2Ik4tPK3arK62YPnyT5GUdNyvRKk/weogqDT+cp9GQinDgxqQCCN8JiREmdQUHMcJ7sXdu3dj/vz5+P3331FWVoYrV67g8uXLKC8v95ic9sCBA3jmmWfw008/4cKFC0Kw/4kTJ9C+fXvfC0nIRuqqTTOKUn/PEcXyIKgk/nKfRkNJw4PSkAgjmOHw4cNISkrCsWPHcPfdd2PChAl44YUXEBkZia+++gqjR49GZWWlWxF26dIlpKenIz09HRs2bEBMTAxOnDiB9PR0Uw7s7mB9wPfH4HR/zxHlfN82WyOcPx+FyMgSh+du9PeU5cGeuIq79qcHJMIIJti7dy9+/vlnTJkyBQcOHEBNTQ0WLVokJFDdvHmzw/EhISHCrgE8v//+O0pKSvDSSy8J2z19//332twAQxhhwGctOF2LLYXMKrC8xdOOAQShNqy1PxJhhOZUVFSguLjYIUXF/Pnzcffdd2PYsGH45ZdfUFVVheXLl+Oee+7B119/jdWrVzucIzExEX/99Rf27NmDjh07IiwsDM2bN0dISAiWL1+O8ePH45dffsFzzz2n013qixEGfFaC0426pZAREdsxwGywZHEh2Gx/JMIIWVy5csVjclV3m2EDwM6dOxEfH4+goCA0btwYHTt2xLJlyzB8+HAEBASgY8eOePXVV7FgwQLMnj0bPXv2xPz58zFs2DDhHN27d8f48eORmZmJkpISIUXF+vXr8cQTT2DZsmXo1KkTXnnlFQwYMEDx+yfMg1G3FHIF60HhRtwxQC6sWVwINtsfiTDCa65cuVJnE3NXxMbG1hFi69evx/r160V/O2XKFEyZMsXhs4cfftjh71WrVmHVqlUOn91///24//77HT5zldiXIJxhsYP2BiMEhYstyrDZbLrlrlMSFi0uBJtbuZlm2yJCOr4GbkvdXsibbYjMiK/1fOoUsG9f7f8J9TH6lkKugt8LChJhszXyeJyWiG2ltWnTJpSUlOhWPqXwJOgJ/ZC7lZuakCXMDzFC4LYZ8KWezZhRnlZtagfLrjCxRRlGcPuKwaLFxZ+x71M8tT89+h4SYX4KCSxtkFPPp05dFWAAn1EeSE839h6LRhD/rK3alIPWrjApcWjOgxsrizKUhr9PMUFv1nxwrMJy30MijCAY4+hRx82+AaC6GvjjD+VEmF6bZxtB/LsTCOfOnZPcUesZIK9lbJs3cWhDhgxxSDVjxpWDzoP93LlncexYEBITryAh4WYAN+s+0fBXWK1zEmEEwRitW9e6IO2FWGAg0KqVMuc3o6tTC7KzswGIB7brHSCvpSvMm+SkERERwt8su0t9xf6ZxscDnTvLOw/rK10JZSARRhAMUVJSgsDASixcWB8zZ1pRXW1BYCCHBQtsCAz8GyUl8jte2jzbNe5cQ3KzuuudHZ712DZaOSiO3kKe0A4SYQTBCM4d76OPNhJik/766yJef732czkdL22e7R7ehVRYWChYu5Sy1Ohl8ZET26aE5UWKi9HoqUC0gLY/8h9IhBFew28lpNRxRC3OHaq72CQ5Ha8/b54thaioKMlJW6WitcVHavC7K8ufEpYXqYKTVg4SxFVIhBFeExQUhNjYWNkZ8wn9YN1VxQJKWWq0tvj4sgLMV8uLFMGp9cpBiqkijACNkoQsWBVYn3/+OW677TZcuHDBIRDYE4mJiZg8eTImT56satlYgbU0DKwNlkpZavSw+OglKqQITi1XDlJMFWEU2BxJCdMyYsQIvPXWW3jkkUfqbMo9ceJEvPbaaxg+fLikrY0I+bCSp4nFwVIpa6E/WR2lCk6lVg6KQTFVhFEgEUZoTrNmzfD+++9j8eLFqF+/PgDg8uXL2LhxI5o3b65z6Qgt0XsloTuUshayZnVUGkpOqg1mzKlG1EIijNCcTp06IT8/H9nZ2XjwwQcB1OZgat68OZKSkoTjKioqMH36dLz//vsoKytDly5dsHjxYtx8883CMZ988gkmT56MkydPolu3bhg+fHid63311VeYPXs2vv/+e0RHR+Mf//gH5s+fjwYNGqh/s4Rk9M4d5Utguxrn0ROpgz4lJ1Ufvd8LQl1IhBG6MGrUKKxbt04QYWvXrsXIkSPx+eefC8fMmDEDW7duxVtvvYUWLVpg4cKFSE9Pxx9//IHIyEicPHkSGRkZmDhxIsaNG4fvv/8e06ZNc7hOfn4++vXrh+effx5r167F2bNnkZWVhaysLKxbt07LWyY8wELuKKW2NmF5ixQpeDvoa+Vi9Cd4gS72XrAs5AlpkAgjdNnC5qGHHsLs2bNx/PhxAMDXX3+N999/XxBhly5dwqpVq7B+/XrceeedAIA33ngDOTk5WLNmDaZPn45Vq1YhOTkZixYtAgC0adMGP//8MxYsWCBcZ/78+XjwwQeFoPvWrVtj2bJl6NWrF1atWoV69eppc8MSUHODa9Y3z2Yld5RSwohVgSUGC2KYuCrk9+0DFi+u+1706DEcvXsbt50RVyER5ufotYVNTEwM+vfvj/Xr14PjOPTv3x/R0dHC9/n5+aiqqkKPHj2Ez4KDg9G1a1ccPnwYAHD48GGkpKQ4nDc1NdXh759++gmHDh3Chg0bhM84jkNNTQ0KCgrQrl07NW5PFmpaUFi3zlDuKH3hxbeYGCbLi3ZERUWhWzfXW5ilpESB9Jc5IBHmx5w6dVWAAfwWNkB6ujYWsVGjRiErKwsAsHLlSlWu8ddff+GRRx7Bo48+Wuc7FhcBqCmCWJ41+9NKQhbhRfqxY1fwzjucsK0VAAQGcpg06U5Db2tl1MD2pk1rJ8aPPAJUV9cKsH/9SzuPBaE+JML8mKNHHWdYQO2L/scf2rzk/fr1Q2VlJSwWC9LT0x2+S05ORkhICL7++mu0aNECAFBVVYXvvvtOcC22a9cO27Ztc/jdN9984/B3p06d8Ntvv6GVUrtfE6ph9pWErBMVVWtdqTvoW9C5cxO9i+cV9hY7TzFuRrDsjR5dOzH+4w+gVSsSYGaDRJgf07q1a1O3VnolMDBQcC0GBgY6fNegQQNMmDAB06dPR2RkJJo3b46FCxeivLwco//nLx0/fjwWLVqE6dOnY8yYMThw4ECd/GIzZ85Et27dkJWVhTFjxqBBgwb47bffkJOTIyk/FaEuZlhJaDbMMOjbW/aefTYWHFdr2eO4AOzYcQ/mzk0xlGWvaVNjPgdCHBJhfgwLpu7w8HC337300kuoqanBww8/jIsXL6JLly747LPP0LhxYwC17sStW7diypQpWL58Obp27YoXX3wRo0aNEs5xww034IsvvsCTTz6JW2+9FRzHITk5GZmZmarfGyEO67Fq/ooZBv2oqCgcOuTK2m/BxYtNKKaKYAILx3Gc3oUgXFNWVgar1QqbzVZHrFy+fBkFBQVISkryeYXfqVPGnvWqjZJ1TRCEdpw6BbRoUdfaf+wY9XWEungav+0JcPsN4Tc0bQr07k2dEkEQ5oK39vPRDhTYTrAGuSMJgiAI02KGGDfCvJAIIwiCIEyNGWLcCHNC7kiCIAiCIAgdIBFGEARBEAShAyTCDA4tblUfqmOCIAhCDUiEGRQ+uamn/EqEMvB17JxQliAIgiB8gQLzDUpQUBDCwsJw9uxZBAcHIyCA9LQa1NTU4OzZswgLC0NQEL0uBEEQhHLQqGJQLBYL4uPjUVBQgOPHj+tdHFMTEBCA5s2bw2KxiB9MEARBEBIhEWZgQkJC0Lp1a3JJqkxISAhZGgmCIAjFIRFmcAICAmgrHYIgCIIwIDS9JwiCIAiC0AESYQRBEARBEDpAIowgCIIgCEIHKCaMYfgkoWVlZTqXhCAIgiAIqfDjtliybxJhDHPx4kUAQLNmzXQuCUEQBEEQ3nLx4kVYrVa331s42pOFWWpqalBYWIhGjRr5ZY6qsrIyNGvWDCdPnkR4eLjexTEsVI/KQPXoO1SHykD1qAxq1iPHcbh48SISEhI8pjgiSxjDBAQEoGnTpnoXQ3fCw8Opo1EAqkdloHr0HapDZaB6VAa16tGTBYyHAvMJgiAIgiB0gEQYQRAEQRCEDpAII5glNDQUTz/9NEJDQ/UuiqGhelQGqkffoTpUBqpHZWChHikwnyAIgiAIQgfIEkYQBEEQBKEDJMIIgiAIgiB0gEQYQRAEQRCEDpAIIwiCIAiC0AESYYTu/Oc//8E999yDhIQEWCwWfPTRRw7fcxyHuXPnIj4+HvXr10daWhqOHj2qT2EZRawOR4wYAYvF4vBfv3799Cksw8yfPx8333wzGjVqhNjYWAwcOBBHjhxxOOby5cuYOHEioqKi0LBhQwwaNAinT5/WqcRsIqUee/fuXadNjh8/XqcSs8mqVatwww03CMlEU1NT8emnnwrfU1uUhlg96tkWSYQRunPp0iV07NgRK1eudPn9woULsWzZMqxevRp5eXlo0KAB0tPTcfnyZY1Lyi5idQgA/fr1Q1FRkfDfe++9p2EJjcEXX3yBiRMn4ptvvkFOTg6qqqrQt29fXLp0SThmypQp+Pjjj/HBBx/giy++QGFhITIyMnQsNXtIqUcAGDt2rEObXLhwoU4lZpOmTZvipZdewoEDB/D999/j9ttvx7333otff/0VALVFqYjVI6BjW+QIgiEAcB9++KHwd01NDRcXF8e9/PLLwmelpaVcaGgo99577+lQQvZxrkOO47jhw4dz9957ry7lMTJnzpzhAHBffPEFx3G1bS84OJj74IMPhGMOHz7MAeByc3P1KibzONcjx3Fcr169uMcee0y/QhmUxo0bc2+++Sa1RR/h65Hj9G2LZAkjmKagoADFxcVIS0sTPrNarUhJSUFubq6OJTMen3/+OWJjY9GmTRtMmDABJSUleheJeWw2GwAgMjISAHDgwAFUVVU5tMe2bduiefPm1B494FyPPBs2bEB0dDSuv/56zJ49G+Xl5XoUzxBUV1fj/fffx6VLl5CamkptUSbO9cijV1ukDbwJpikuLgYANGnSxOHzJk2aCN8R4vTr1w8ZGRlISkpCfn4+nnjiCdx5553Izc1FYGCg3sVjkpqaGkyePBk9evTA9ddfD6C2PYaEhCAiIsLhWGqP7nFVjwDwwAMPoEWLFkhISMChQ4cwc+ZMHDlyBNnZ2TqWlj1+/vlnpKam4vLly2jYsCE+/PBDtG/fHgcPHqS26AXu6hHQty2SCCMIP2Do0KHCvzt06IAbbrgBycnJ+Pzzz9GnTx8dS8YuEydOxC+//IKvvvpK76IYGnf1OG7cOOHfHTp0QHx8PPr06YP8/HwkJydrXUxmadOmDQ4ePAibzYYtW7Zg+PDh+OKLL/QuluFwV4/t27fXtS2SO5Jgmri4OACos+Ln9OnTwneE97Rs2RLR0dH4448/9C4Kk2RlZWH79u3Yt28fmjZtKnweFxeHyspKlJaWOhxP7dE17urRFSkpKQBAbdKJkJAQtGrVCp07d8b8+fPRsWNHLF26lNqil7irR1do2RZJhBFMk5SUhLi4OOzZs0f4rKysDHl5eQ7+fMI7Tp06hZKSEsTHx+tdFKbgOA5ZWVn48MMPsXfvXiQlJTl837lzZwQHBzu0xyNHjuDEiRPUHu0Qq0dXHDx4EACoTYpQU1ODiooKaos+wtejK7Rsi+SOJHTnr7/+cphxFBQU4ODBg4iMjETz5s0xefJkPP/882jdujWSkpIwZ84cJCQkYODAgfoVmjE81WFkZCTmzZuHQYMGIS4uDvn5+ZgxYwZatWqF9PR0HUvNHhMnTsTGjRvx73//G40aNRJia6xWK+rXrw+r1YrRo0dj6tSpiIyMRHh4OCZNmoTU1FR069ZN59Kzg1g95ufnY+PGjbjrrrsQFRWFQ4cOYcqUKejZsyduuOEGnUvPDrNnz8add96J5s2b4+LFi9i4cSM+//xzfPbZZ9QWvcBTPereFnVZk0kQduzbt48DUOe/4cOHcxxXm6Zizpw5XJMmTbjQ0FCuT58+3JEjR/QtNGN4qsPy8nKub9++XExMDBccHMy1aNGCGzt2LFdcXKx3sZnDVR0C4NatWycc8/fff3P//Oc/ucaNG3NhYWHcP/7xD66oqEi/QjOIWD2eOHGC69mzJxcZGcmFhoZyrVq14qZPn87ZbDZ9C84Yo0aN4lq0aMGFhIRwMTExXJ8+fbhdu3YJ31NblIanetS7LVo4juPUl3oEQRAEQRCEPRQTRhAEQRAEoQMkwgiCIAiCIHSARBhBEARBEIQOkAgjCIIgCILQARJhBEEQBEEQOkAijCAIgiAIQgdIhBEEQRAEQegAiTCCIAiCIAgdIBFGEARBEAShAyTCCIIgZFBZWal3EerAYpkIgnAPiTCCIAgAvXv3RlZWFrKysmC1WhEdHY05c+aA39ktMTERzz33HIYNG4bw8HCMGzcOAPDVV1/h1ltvRf369dGsWTM8+uijuHTpknDe1157Da1bt0a9evXQpEkTDB48WPhuy5Yt6NChA+rXr4+oqCikpaUJv+3duzcmT57sUMaBAwdixIgRwt9yy0QQBBuQCCMIgvgfb731FoKCgvDtt99i6dKlePXVV/Hmm28K37/yyivo2LEjfvzxR8yZMwf5+fno168fBg0ahEOHDmHTpk346quvkJWVBQD4/vvv8eijj+LZZ5/FkSNHsHPnTvTs2RMAUFRUhPvvvx+jRo3C4cOH8fnnnyMjIwPebufrbZkIgmAH2sCbIAgCtZanM2fO4Ndff4XFYgEAzJo1C9u2bcNvv/2GxMRE3HTTTfjwww+F34wZMwaBgYH417/+JXz21VdfoVevXrh06RI++eQTjBw5EqdOnUKjRo0crvfDDz+gc+fOOHbsGFq0aOGyPDfeeCOWLFkifDZw4EBERERg/fr1ACCrTPXq1fOpngiCUA6yhBEEQfyPbt26CQIMAFJTU3H06FFUV1cDALp06eJw/E8//YT169ejYcOGwn/p6emoqalBQUEB7rjjDrRo0QItW7bEww8/jA0bNqC8vBwA0LFjR/Tp0wcdOnTAfffdhzfeeAMXLlzwuszelokgCHYgEUYQBCGRBg0aOPz9119/4ZFHHsHBgweF/3766SccPXoUycnJaNSoEX744Qe89957iI+Px9y5c9GxY0eUlpYiMDAQOTk5+PTTT9G+fXssX74cbdq0EYRSQEBAHddkVVWVz2UiCIIdSIQRBEH8j7y8PIe/v/nmG7Ru3RqBgYEuj+/UqRN+++03tGrVqs5/ISEhAICgoCCkpaVh4cKFOHToEI4dO4a9e/cCACwWC3r06IF58+bhxx9/REhIiOBajImJQVFRkXCt6upq/PLLL6L3IKVMBEGwAYkwgiCI/3HixAlMnToVR44cwXvvvYfly5fjsccec3v8zJkzsX//fmRlZeHgwYM4evQo/v3vfwtB8Nu3b8eyZctw8OBBHD9+HG+//TZqamrQpk0b5OXl4cUXX8T333+PEydOIDs7G2fPnkW7du0AALfffjt27NiBHTt24Pfff8eECRNQWloqeg9iZSIIgh2C9C4AQRAEKwwbNgx///03unbtisDAQDz22GNC2gdX3HDDDfjiiy/w5JNP4tZbbwXHcUhOTkZmZiYAICIiAtnZ2XjmmWdw+fJltG7dGu+99x6uu+46HD58GP/5z3+wZMkSlJWVoUWLFli0aBHuvPNOAMCoUaPw008/YdiwYQgKCsKUKVNw2223id6DWJkIgmAHWh1JEAQB16sRCYIg1ITckQRBEARBEDpAIowgCIIgCEIHyB1JEARBEAShA2QJIwiCIAiC0AESYQRBEARBEDpAIowgCIIgCEIHSIQRBEEQBEHoAIkwgiAIgiAIHSARRhAEQRAEoQMkwgiCIAiCIHSARBhBEARBEIQOkAgjCIIgCILQgf8HFkwbEKpg6twAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, + "cells": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHaklEQVR4nO3deVxU9f4/8NcZHBAQBlkFQUFccUvwiuOaBaLX5fpDr+RV09Ksvlqhpdlts9Wyuml5266VtrpXLmWCWakQGWpG7oSKAS4gA25s8/n9MZ3DnFnYZOf1fDx4JHM+c+bMXK68/Hze5/2RhBACRERERFSvNA19AUREREQtEUMYERERUQNgCCMiIiJqAAxhRERERA2AIYyIiIioATCEERERETUAhjAiIiKiBsAQRkRERNQAGMKIiIiIGgBDGBERVWj16tWQJAmnT59u6EshalYYwoiowe3fvx/z5s1Dz5494erqig4dOmDy5Mk4ceKE1dhbb70VkiRBkiRoNBq4u7ujW7dumD59OhISEqr1ulu3bsXw4cPh6+sLFxcXdOrUCZMnT8aOHTtq661ZefHFF/Hll19aPZ6UlIQlS5YgPz+/zl7b0pIlS5TPUpIkuLi4ICwsDE888QQKCgpq5TU+++wzLF++vFbORdTcMIQRUYN7+eWXsWnTJtx+++1YsWIF5syZgx9//BHh4eFIS0uzGh8YGIiPP/4YH330EV555RWMHz8eSUlJGDlyJOLi4lBSUlLpa7766qsYP348JEnCY489htdffx0TJ07EyZMnsXbt2rp4mwAqDmHPPPNMvYYw2dtvv42PP/4Y//nPf9C9e3e88MILGDVqFGpja2GGMCL7WjX0BRARLViwAJ999hkcHR2Vx+Li4tC7d2+89NJL+OSTT1TjdTodpk2bpnrspZdewoMPPoi33noLwcHBePnll+2+XmlpKZ577jlER0dj586dVscvXLhwk++o8bh27RpcXFwqHDNp0iR4e3sDAO677z5MnDgRmzdvxk8//QS9Xl8fl0nUInEmjIga3KBBg1QBDAC6dOmCnj174ujRo1U6h4ODA9544w2EhYVh5cqVMBgMdsdeunQJBQUFGDx4sM3jvr6+qu9v3LiBJUuWoGvXrmjdujX8/f0RGxuL9PR0Zcyrr76KQYMGwcvLC87OzoiIiMDGjRtV55EkCVevXsWaNWuUJcCZM2diyZIlWLhwIQAgJCREOWZeg/XJJ58gIiICzs7O8PT0xB133IHMzEzV+W+99Vb06tULqampGDZsGFxcXPDvf/+7Sp+fudtuuw0AkJGRUeG4t956Cz179oSTkxMCAgIwd+5c1Uzerbfeiu3bt+PMmTPKewoODq729RA1V5wJI6JGSQiB8+fPo2fPnlV+joODA6ZMmYInn3wSe/fuxZgxY2yO8/X1hbOzM7Zu3YoHHngAnp6eds9ZVlaGsWPHYteuXbjjjjvw0EMPobCwEAkJCUhLS0NoaCgAYMWKFRg/fjymTp2K4uJirF27Fv/85z+xbds25To+/vhjzJ49GwMGDMCcOXMAAKGhoXB1dcWJEyfw+eef4/XXX1dmpXx8fAAAL7zwAp588klMnjwZs2fPxsWLF/Hmm29i2LBhOHjwIDw8PJTrzc3NxejRo3HHHXdg2rRp8PPzq/LnJ5PDpZeXl90xS5YswTPPPIOoqCjcf//9OH78ON5++23s378f+/btg1arxeOPPw6DwYBz587h9ddfBwC0adOm2tdD1GwJIqJG6OOPPxYAxPvvv696fPjw4aJnz552n/fFF18IAGLFihUVnv+pp54SAISrq6sYPXq0eOGFF0RqaqrVuA8++EAAEP/5z3+sjhmNRuXP165dUx0rLi4WvXr1ErfddpvqcVdXVzFjxgyrc73yyisCgMjIyFA9fvr0aeHg4CBeeOEF1eO//fabaNWqlerx4cOHCwDinXfesfu+zT399NMCgDh+/Li4ePGiyMjIEO+++65wcnISfn5+4urVq0IIIT788EPVtV24cEE4OjqKkSNHirKyMuV8K1euFADEBx98oDw2ZswY0bFjxypdD1FLw+VIImp0jh07hrlz50Kv12PGjBnVeq4801JYWFjhuGeeeQafffYZ+vXrh2+//RaPP/44IiIiEB4erloC3bRpE7y9vfHAAw9YnUOSJOXPzs7Oyp8vX74Mg8GAoUOH4sCBA9W6fkubN2+G0WjE5MmTcenSJeWrXbt26NKlC3bv3q0a7+TkhLvuuqtar9GtWzf4+PggJCQE9957Lzp37ozt27fbrSVLTExEcXEx4uPjodGU/xq555574O7uju3bt1f/jRK1QFyOJKJGJScnB2PGjIFOp8PGjRvh4OBQredfuXIFAODm5lbp2ClTpmDKlCkoKChASkoKVq9ejc8++wzjxo1DWloaWrdujfT0dHTr1g2tWlX81+W2bdvw/PPP49ChQygqKlIeNw9qNXHy5EkIIdClSxebx7Varer79u3bW9XXVWbTpk1wd3eHVqtFYGCgssRqz5kzZwCYwps5R0dHdOrUSTlORBVjCCOiRsNgMGD06NHIz8/Hnj17EBAQUO1zyC0tOnfuXOXnuLu7Izo6GtHR0dBqtVizZg1SUlIwfPjwKj1/z549GD9+PIYNG4a33noL/v7+0Gq1+PDDD/HZZ59V+z2YMxqNkCQJ33zzjc1AalljZT4jV1XDhg1T6tCIqP4whBFRo3Djxg2MGzcOJ06cQGJiIsLCwqp9jrKyMnz22WdwcXHBkCFDanQd/fv3x5o1a5CdnQ3AVDifkpKCkpISq1kn2aZNm9C6dWt8++23cHJyUh7/8MMPrcbamxmz93hoaCiEEAgJCUHXrl2r+3bqRMeOHQEAx48fR6dOnZTHi4uLkZGRgaioKOWxm50JJGrOWBNGRA2urKwMcXFxSE5OxoYNG2rUm6qsrAwPPvggjh49igcffBDu7u52x167dg3Jyck2j33zzTcAypfaJk6ciEuXLmHlypVWY8VfzUwdHBwgSRLKysqUY6dPn7bZlNXV1dVmQ1ZXV1cAsDoWGxsLBwcHPPPMM1bNU4UQyM3Ntf0m61BUVBQcHR3xxhtvqK7p/fffh8FgUN2V6urqWmG7EKKWjDNhRNTgHn74YWzZsgXjxo1DXl6eVXNWy8asBoNBGXPt2jWcOnUKmzdvRnp6Ou644w4899xzFb7etWvXMGjQIAwcOBCjRo1CUFAQ8vPz8eWXX2LPnj2YMGEC+vXrBwC488478dFHH2HBggX4+eefMXToUFy9ehWJiYn4v//7P/zjH//AmDFj8J///AejRo3Cv/71L1y4cAH//e9/0blzZxw+fFj12hEREUhMTMR//vMfBAQEICQkBJGRkYiIiAAAPP7447jjjjug1Woxbtw4hIaG4vnnn8djjz2G06dPY8KECXBzc0NGRga++OILzJkzB4888shNff7V5ePjg8ceewzPPPMMRo0ahfHjx+P48eN466238Le//U31v1dERATWrVuHBQsW4G9/+xvatGmDcePG1ev1EjVaDXlrJhGREOWtFex9VTS2TZs2okuXLmLatGli586dVXq9kpIS8b///U9MmDBBdOzYUTg5OQkXFxfRr18/8corr4iioiLV+GvXronHH39chISECK1WK9q1aycmTZok0tPTlTHvv/++6NKli3BychLdu3cXH374odICwtyxY8fEsGHDhLOzswCgalfx3HPPifbt2wuNRmPVrmLTpk1iyJAhwtXVVbi6uoru3buLuXPniuPHj6s+m4rad1iSr+/ixYsVjrNsUSFbuXKl6N69u9BqtcLPz0/cf//94vLly6oxV65cEf/617+Eh4eHAMB2FURmJCFqYXMwIiIiIqoW1oQRERERNQCGMCIiIqIGwBBGRERE1AAYwoiIiIgaAEMYERERUQNgCCMiIiJqAGzW2ogZjUZkZWXBzc2NW38QERE1EUIIFBYWIiAgABqN/fkuhrBGLCsrC0FBQQ19GURERFQDmZmZCAwMtHucIawRc3NzA2D6H7GiffCIiIio8SgoKEBQUJDye9wehrBGTF6CdHd3ZwgjIiJqYiorJWJhPhEREVEDYAgjIiIiagAMYUREREQNgDVhTZzRaERxcXFDX0az5ujoWOEtxkRERDXBENaEFRcXIyMjA0ajsaEvpVnTaDQICQmBo6NjQ18KERE1IwxhTZQQAtnZ2XBwcEBQUBBnauqI3DA3OzsbHTp0YNNcIiKqNQxhTVRpaSmuXbuGgIAAuLi4NPTlNGs+Pj7IyspCaWkptFptQ18OERE1E5w+aaLKysoAgEtk9UD+jOXPnIiIqDYwhDVxXB6re/yMiYioLjCEERERETWAJhPCxo8fjw4dOqB169bw9/fH9OnTkZWVpRojhMCrr76Krl27wsnJCe3bt8cLL7ygGvP9998jPDwcTk5O6Ny5M1avXm31Wv/9738RHByM1q1bIzIyEj///LPq+I0bNzB37lx4eXmhTZs2mDhxIs6fP68ac/bsWYwZMwYuLi7w9fXFwoULUVpaWjsfBhERETV5TSaEjRgxAuvXr8fx48exadMmpKenY9KkSaoxDz30EFatWoVXX30Vx44dw5YtWzBgwADleEZGBsaMGYMRI0bg0KFDiI+Px+zZs/Htt98qY9atW4cFCxbg6aefxoEDB9C3b1/ExMTgwoULypj58+dj69at2LBhA3744QdkZWUhNjZWOV5WVoYxY8aguLgYSUlJWLNmDVavXo2nnnqqDj+hpmHmzJmQJAmSJEGr1cLPzw/R0dH44IMPqtVqY/Xq1fDw8Ki7CyUiombt3Dlg927TfxuMaKK++uorIUmSKC4uFkIIceTIEdGqVStx7Ngxu89ZtGiR6Nmzp+qxuLg4ERMTo3w/YMAAMXfuXOX7srIyERAQIJYuXSqEECI/P19otVqxYcMGZczRo0cFAJGcnCyEEOLrr78WGo1G5OTkKGPefvtt4e7uLoqKiqr8Hg0GgwAgDAaD1bHr16+LI0eOiOvXr1f5fOYuXboksrKy7H5dunSpRuetzIwZM8SoUaNEdna2OHfunEhNTRUvvPCCaNOmjRg9erQoKSmp0nk+/PBDodPp6uQaLd3sZ01ERI2D/Lvv1VcvC43GKAAhNBqjePXVy7X6u6+i39/mmmSLiry8PHz66acYNGiQ0jJg69at6NSpE7Zt24ZRo0ZBCIGoqCgsW7YMnp6eAIDk5GRERUWpzhUTE4P4+HgApuanqampeOyxx5TjGo0GUVFRSE5OBgCkpqaipKREdZ7u3bujQ4cOSE5OxsCBA5GcnIzevXvDz89P9Tr3338/fv/9d/Tr169OPpeqys3NxcqVKysdN2/ePHh5edX66zs5OaFdu3YAgPbt2yM8PBwDBw7E7bffjtWrV2P27Nn4z3/+gw8//BB//PEHPD09MW7cOCxbtgxt2rTB999/j7vuugtAedH8008/jSVLluDjjz/GihUrcPz4cbi6uuK2227D8uXL4evrW+vvg4iIGr/c3FwUFxcjPz8f//vfN8jMDMLGjRMBmH5/GI0SFi50x59/fgCdrrDOfvfZ0mSWIwHg0UcfhaurK7y8vHD27Fl89dVXyrE//vgDZ86cwYYNG/DRRx9h9erVSE1NVS1Z5uTkqIIRAPj5+aGgoADXr1/HpUuXUFZWZnNMTk6Ocg5HR0erpTDLMbbOIR+zp6ioCAUFBaqvulDVbY7qczuk2267DX379sXmzZsBmMLvG2+8gd9//x1r1qzBd999h0WLFgEABg0ahOXLl8Pd3R3Z2dnIzs7GI488AgAoKSnBc889h19//RVffvklTp8+jZkzZ9bb+yAiosYjPT0dK1euxHvvvYfFi09i+fJ4bNz4T1jGHyE0yMszTdhcvHix3q6vQUPY4sWLlfoge1/Hjh1Txi9cuBAHDx7Ezp074eDggDvvvBNCCACmzuZFRUX46KOPMHToUNx66614//33sXv3bhw/fryh3mK1LF26FDqdTvkKCgpq6EuqV927d8fp06cBAPHx8RgxYgSCg4Nx22234fnnn8f69esBmPp26XQ6SJKEdu3aoV27dmjTpg0A4O6778bo0aPRqVMnDBw4EG+88Qa++eYbXLlypaHeFhERNYDc3Fx88sknAACDwQ1bt46FEPZijxGennkATP+Yry8Nuhz58MMPVzpL0alTJ+XP3t7e8Pb2RteuXdGjRw8EBQXhp59+gl6vh7+/P1q1aoWuXbsq43v06AHAdKdit27d0K5dO6u7GM+fPw93d3c4OzvDwcEBDg4ONsfIy2ft2rVTpjXNZ8Msx1jeUSmfUx5jy2OPPYYFCxYo3xcUFLSoICaEUJYXExMTsXTpUhw7dgwFBQUoLS3FjRs3cO3atQp3CEhNTcWSJUvw66+/4vLly0qx/9mzZxEWFlYv74OIiBqe+WpOSkpkBQEMaKh2kA06E+bj44Pu3btX+GWvI7z8y7WoqAgAMHjwYJSWliI9PV0Zc+LECQBAx44dAQB6vR67du1SnSchIQF6vR6AaYYlIiJCNcZoNGLXrl3KmIiICGi1WtWY48eP4+zZs8oYvV6P3377TXVHZUJCAtzd3SsMAk5OTnB3d1d9tSRHjx5FSEgITp8+jbFjx6JPnz7YtGkTUlNT8d///hdAxUukV69eRUxMDNzd3fHpp59i//79+OKLLyp9HhERNW25ubnIzs7GsWPH8Ntvv+G3337DyZMnAZhmwZKS9BU+33w5sj41icL8lJQU7N+/H0OGDEHbtm2Rnp6OJ598EqGhoUrwiYqKQnh4OO6++24sX74cRqMRc+fORXR0tDI7dt9992HlypVYtGgR7r77bnz33XdYv349tm/frrzWggULMGPGDPTv3x8DBgzA8uXLcfXqVaUQXKfTYdasWViwYAE8PT3h7u6OBx54AHq9HgMHDgQAjBw5EmFhYZg+fTqWLVuGnJwcPPHEE5g7dy6cnJzq+dNrGr777jv89ttvmD9/PlJTU2E0GvHaa68pG5PLS5EyR0dHq22Ejh07htzcXLz00kvKDOIvv/xSP2+AiIgaRHp6urLsCJhCV16eF7TaIpSUBOPqVRdUNuckSeXLkfWpSYQwFxcXbN68GU8//TSuXr0Kf39/jBo1Ck888YQSajQaDbZu3YoHHngAw4YNg6urK0aPHo3XXntNOU9ISAi2b9+O+fPnY8WKFQgMDMSqVasQExOjjImLi8PFixfx1FNPIScnB7fccgt27NihKrR//fXXodFoMHHiRBQVFSEmJgZvvfWWctzBwQHbtm3D/fffD71eD1dXV8yYMQPPPvtsPXxajV9RURFycnJQVlaG8+fPY8eOHVi6dCnGjh2LO++8E2lpaSgpKcGbb76JcePGYd++fXjnnXdU5wgODsaVK1ewa9cu9O3bFy4uLujQoQMcHR3x5ptv4r777kNaWhqee+65BnqXRERU18zrvgBg3z49EhKiYApdAoAESTICMMJ+EDNi3Lht0OkK6/x6LUlCrmynRqegoAA6nQ4Gg8FqafLGjRvIyMhASEgIWrduXa3zZmdn47333qt03Jw5c+Dv71+tc1dm5syZWLNmDQCgVatWaNu2Lfr27Yt//etfmDFjhjLz9frrr+OVV15Bfn4+hg0bhqlTp+LOO+/E5cuXlVq8+++/Hxs2bEBubq7SouLzzz/Hv//9b2RnZyM8PByPPfYYxo8fj4MHD+KWW26p0TXfzGdNRER1x/z3mSmARUNuPaEmRx3rY5MmrUevXkeV72NjY9G7d++buq6Kfn+bYwhrxOoqhDV0n7CmhiGMiKjxkPt+AcClS5ewefNmGAxuWL48vsLie9uMmD9/uWoWbPLkycqNfTVV1RDWJJYjqXZ5eXlh3rx5FRarOzo6MoAREVGjYm8SIS/PqwoBzLQ8af59dHSi1TJkfTb3ZghroRiwiIioqbGcPDAvwpckYyVBTFLGSJIRUVGJGDw4WTkaGxuLgICAev39yBBGREREjZL50qPBYFAaegPAgQP9zBqwGtGjx1EcO9ZD+d4061U+8yVJRsyatQolJY7w9MyzmgGr7wAGMIQRERFRI1RR/bJ1B3wNjh4Nw9ChP6JTpwx4euYhPb2zMkaSTHdABgZmAwBGjBiBtm3bAgC0Wi18fHwaZIWIIYyIiIgaDXn269KlS6rH5aVHT89cZGYG2Vh6lLB371D0758Kna4Q4eEHERp6Cnl5nlYzX126dKn1u/9rgiGMiIiIGgV7s1+WS4+221CUd76XA5dOV2iz/5e93XjqG0MYERERNQq2Cu8zM4OwZctYlDdbrWgPyPLO9/KSY6tWrVR7PTemu/8ZwoiIiKhByEuPBoMBJSUluHz5snJMPftVObnuS575aixLjhVhCCMiIqJ6V73C+8qY7nyUC++biuq2liVq1L7//ntIkoT8/PwqPyc4OBjLly+vs2siIiJrtpYeMzKCce6cP37/vWe1Atj48dusAlhjqfuqCGfCqF7Je0fee++9Vptyz507F2+99RZmzJiB1atXN8wFEhFRvVMvPcqd7S073FsS6N37V0RFfacqvm+Ipqs1xRBG9S4oKAhr167F66+/DmdnZwCm/Rk/++wzdOjQoYGvjoiIapt509X8/HyUlpbizz//BGBr6VEy+6+9IGZEdLS6472sqQQwgMuR1ADCw8MRFBSEzZs3K49t3rwZHTp0QL9+/ZTHioqK8OCDD8LX1xetW7fGkCFDsH//ftW5vv76a3Tt2hXOzs4YMWKEqpuybO/evRg6dCicnZ0RFBSEBx98EFevXq2z90dEROXk2q/33nsP7733HtavX4/NmzcjJSUFQGX7PspBTGZERMR+zJ+/3CqA/f3vf8e8efOaTAADGMIIwLlzwO7dpv/Wl7vvvhsffvih8v0HH3yAu+66SzVm0aJF2LRpE9asWYMDBw6gc+fOiImJQV6e6fbjzMxMxMbGYty4cTh06BBmz56NxYsXq86Rnp6OUaNGYeLEiTh8+DDWrVuHvXv3Yt68eXX/JomIyKr2y5KnZy4kyVjBCAnDhu3GpEnrMX/+cowb97Vq+XH06NGYN28e/va3vzWpAAYwhLV4778PdOwI3Hab6b/vv18/rztt2jTs3bsXZ86cwZkzZ7Bv3z5MmzZNOX716lW8/fbbeOWVVzB69GiEhYXhf//7H5ydnfH+Xxf59ttvIzQ0FK+99hq6deuGqVOnYubMmarXWbp0KaZOnYr4+Hh06dIFgwYNwhtvvIGPPvoIN27cqJ83S0TUwuTm5iI7OxvZ2dlIS0tTHZML8A0GN6UL/pAhe8yCmFCNlyQjIiIOolevo1aNV6dNm4YBAwY0ufAlY01YC3buHDBnDmD86+feaATuvReIiQECA+v2tX18fDBmzBisXr0aQgiMGTMG3t7eyvH09HSUlJRg8ODBymNarRYDBgzA0aNHAQBHjx5FZGSk6rx6vV71/a+//orDhw/j008/VR4TQsBoNCIjIwM9evSoi7dHRNTimPf8Wrdunc0x1gX4Aqb5ILn2y4guXU7i5MkuADRWvb/kBqwNud9jbWIIa8FOniwPYLKyMuDUqboPYYBpSVJeFvzvf/9bJ69x5coV3HvvvXjwwQetjvEmACKi2lFZz6+8PC9otUU2CvDNi/ABQINTp7pg9uxVKClxbLR7PtYWhrAWrEsXQKNRBzEHB6Bz5/p5/VGjRqG4uBiSJCEmJkZ1LDQ0FI6Ojti3bx86duwIACgpKcH+/fsRHx8PAOjRowe2bNmiet5PP/2k+j48PBxHjhxB5/p6U0RELZC9ui/rPR8rr4ISQoOSEkeEhJyxOtYUen9VB0NYCxYYCLz3nmkJsqzMFMDefbd+ZsEAwMHBQVladHBwUB1zdXXF/fffj4ULF8LT0xMdOnTAsmXLcO3aNcyaNQsAcN999+G1117DwoULMXv2bKSmplr1F3v00UcxcOBAzJs3D7Nnz4arqyuOHDmChIQEu/9qIyKiqsnNzcXFixdx7Ngx1ePyno/qmS/zZUf7zPd/jI2NVUpVGtOej7WFIayFmzXLVAN26pRpBqy+ApjM3d3d7rGXXnoJRqMR06dPR2FhIfr3749vv/0Wbdu2BWBaTty0aRPmz5+PN998EwMGDMCLL76Iu+++WzlHnz598MMPP+Dxxx/H0KFDIYRAaGgo4uLi6vy9ERE1Z+np6fjkk0+sHq94z0d7AcwUzixrwLy9vZvV8qMlSQghKh9GDaGgoAA6nQ4Gg8EqrNy4cQMZGRkICQlB69atG+gKWwZ+1kREJnLxfX5+PtavX291/Nw5f6xaNRvVab4gSUYMGbIHnTplWNWANbW+X7KKfn+b40wYERERVaqi4nsA2LdPj4SEaFS23FhO4O9/34Zu3U5a9f0KCgpqlsuPlhjCiIiIyC559uvSpUuqx+W7Hj09c/HLLxHYs2cYqhPAwsKOYMCAAwBMrSe6dOnSIoKXOYYwIiIissne7Jd1vy+g8gBW3gts6NA9uP3275Uj7du3b9a1X/YwhBEREZFNlq0nbN/1WPnslyQZERWViICALKu6r/HjxyM0NLQ2L7vJYAhr4nhfRd3jZ0xELY28BHn69GnlsYrverRHICLiFwwbtkcVvOLi4qDT6Vrc8qMlhrAmSu6rVVxcDGdn5wa+muZN/pegZS8zIqLmyNYSpMHgVoMAZkR0dCIGD05WHpk8eTJ8fX1bdPAyxxDWRLVq1QouLi64ePEitFotNBruxV4XjEYjLl68CBcXF7Rqxf+7EFHzlpubixMnTqgeMxjc8PvvPasRwAQmTdqAoKBzqtmvadOmtdhlR3v4W6WJkiQJ/v7+yMjIwJkz1ls7UO3RaDTo0KEDJKmqd/0QETU9tmbArAvwK/t70Ijx47ehVy/Tbih9+vRBjx49msVm23WBIawJc3R0RJcuXezu2UW1w9HRkTONRNRs5Obm4sKFCzh37pzq98fly5dV486d88eWLWNR3njVfgCTJCP0+mRERqaoZr8GDhzYIu96rCqGsCZOo9GwizsREVVJZQ1XZQcO9LMIYPYYMWnSRqulR1lz23C7tjGEERERtRBVWTkxGNyqHMDMlx7NxcbGIiAggEuQlWAIIyIiasbk5cfS0lKrJUe571dubluUlbVC164ncORIT1QWwCTJiFmzViEwMNvmcQawqmEIIyIiaqYqWn40LTmOg3mt148/Dq/0nJJkxLhx25QANmLECPj4+MDDwwMAWnzvr+pgCCMiImpG5EarBoNB1WxVZt713rrYvqK7H223nujZsydDVw0xhBERETUTlRXe79unR0JCFCqv91KTZ7/k+q/IyEj07duXs143iSGMiIiomaio8N4UwKJRtY22BUxBzYhBg6xbT3Ts2JGtJ2oBQxgREVETJi8/AkBGRobqmMHghrw8LxQXt6pyAOvb91fcdtt3yMvztNpsW+br61tLV9+yMYQRERE1UZUV3le12/0tt/wCd/dCdO16Uim4txW+uPdj7WIIIyIiaqLsLT9ab7hdcbf7ESN+hE5XiODgYLRp0wtt2rRB27ZtERQUpIxj/VftYwgjIiJqQqqy/JiWFlalDbflgnt51mvkyJGs9apHDGFERESNWG5uLi5evIiSkhIUFhYiISHB5jjr5ceK9ez5G0aOTLC57Ej1gyGMiIioEZI73a9fv97uGHnmS6stqvLyo4nRZgDjXo/1iyGMiIiokanKRtvVKbw3MY2xXIKMjo5GSEgIa74aAEMYERFRI5Kbm4usrCybx8r3evTA7t23o7zpqq0AJgczU6+vsLDfUVLiaNV2IiQkhHVgDYQhjIiIqJGofK/Hsahqt/uIiF/Qq9fvdnt9ybgE2XAYwoiIiBoJey0nzp3zr1YAA4wYNmyPzfAVFxcHnU4HgG0nGhpDGBERUSORn5+v+t5gcENKSiSSkgah8povmUB0dKKq7URwcDAAhq7GhiGMiIioEcjNzVXdCVnd5UcTgaFDf8TgwcnKI8HBwaz5aqQYwoiIiOqZecNV2aVLl5Q/GwxuVQxg5ZttS5IRUVGJqgAGsOarMWMIIyIiqgdy8MrPz6+w9xcA/PjjUFQWwIYN242IiIMAYHez7WnTpnH5sRFjCCMiIqpjFd31KDdc9fTMhU5XCIPBDampEZWc0YiIiINK6LK32XZoaOjNXjrVIYYwIiKiOmbvrkfzhqvycqIkmZYX7TNi/PhtlW435OvrW/MLpnrBEEZERFRH5CVI83ovwDT7dfx4V3z99d8hBy4hNEhIiIbpLkjLDvgCvXv/im7dTiAo6JwqgMXGxsLb21t1ft4F2TQwhBEREdUiOXgZDAasW7fO6njFdz1KZv8t73gfHW1dcC8LCAhg4GqiGMKIiIhqSWW1X5mZQdVoOyEhJmYHwsKOWC09yrNfnPFq2hjCiIiIaoll7ZdcdJ+V5Y/ExKi/NtuuGkky2gxgAGe/mguGMCIiohqy7Pd1+vRp5c/mRffWNV6VEYiKKu96P2LECLRt2xatWrWCr68vA1gzwRBGRERUA5UtPaqXHasTwKxrwLp06cKu980QQxgREVE15ebmIisry+7xlJRIVFz3JdCt2xGcONHjr5kyIyIiUhESkmF19yM1XwxhRERE1WBvBkwuvM/La/vXhtsVkTBw4H78/e/f2u12b45bDzVPDGFERESVyM3NxcWLF1FSUoI///xTdcxgcENKSiSSkvSo+mbbRiV4VRS+Ro8ejdDQUNaANVMMYURERBWoqPZLXXxfVQLR0YkVhq/JkyezAL8FqM5PTYMaP348OnTogNatW8Pf3x/Tp09XrccvWbIEkiRZfbm6uqrOs2HDBnTv3h2tW7dG79698fXXX6uOCyHw1FNPwd/fH87OzoiKisLJkydVY/Ly8jB16lS4u7vDw8MDs2bNwpUrV1RjDh8+jKFDh6J169YICgrCsmXLavkTISKi+mCr7URGRjDOnfPHli3jqh3Ahg79UVV0Hxsbizlz5ihf8+bNQ48ePRjAWoAmE8JGjBiB9evX4/jx49i0aRPS09MxadIk5fgjjzyC7Oxs1VdYWBj++c9/KmOSkpIwZcoUzJo1CwcPHsSECRMwYcIEpKWlKWOWLVuGN954A++88w5SUlLg6uqKmJgY3LhxQxkzdepU/P7770hISMC2bdvw448/Ys6cOcrxgoICjBw5Eh07dkRqaipeeeUVLFmyBO+9914df0pERFSXDhzoh+XL47FmzQysWnUPqn/XYwJuv/171aPe3t7w9/dXvhi+Wg5JCCEa+iJqYsuWLZgwYQKKioqg1Wqtjv/666+45ZZb8OOPP2Lo0KEAgLi4OFy9ehXbtm1Txg0cOBC33HIL3nnnHQghEBAQgIcffhiPPPIIAMBgMMDPzw+rV6/GHXfcgaNHjyIsLAz79+9H//79AQA7duzA3//+d5w7dw4BAQF4++238fjjjyMnJ0cpply8eDG+/PJLHDt2rMrvsaCgADqdDgaDAe7u7jX+rIiIqGJyv6/8/HyUlpaqjl2+fBm7d++GweCG5cvjqznzBQBGTJq00e5dj/PmzWPwamaq+vu7SdaE5eXl4dNPP8WgQYNsBjAAWLVqFbp27aoEMABITk7GggULVONiYmLw5ZdfAgAyMjKQk5ODqKgo5bhOp0NkZCSSk5Nxxx13IDk5GR4eHkoAA4CoqChoNBqkpKTg//2//4fk5GQMGzZMdTdLTEwMXn75ZVy+fBlt27atjY+BiIhuUm5uLi5cuID169dXOjYvz6sKAcyI7t2P4dix7gA0kCQjxo3bhl69jtocPW3aNAawFqxJhbBHH30UK1euxLVr1zBw4EDVjJa5Gzdu4NNPP8XixYtVj+fk5MDPz0/1mJ+fH3JycpTj8mMVjfH19VUdb9WqFTw9PVVjQkJCrM4hH7MXwoqKilBUVKR8X1BQYHMcERHdvIoK7oHyLYc8PXOh0xXC0zMXgBH2K3mE0mTV9NyKW09MmzYNoaGhN/0+qOlq0JqwxYsX2yymN/8yX75buHAhDh48iJ07d8LBwQF33nknbK2mfvHFFygsLMSMGTPq8+3ctKVLl0Kn0ylfQUFBDX1JRETNlmXBvcxgcMPOnVF4/XVT7dfy5fE4cKAfACAiIhWmLYgsqQvudbpChIScsbnxtlx8zwBGDToT9vDDD2PmzJkVjunUqZPyZ29vb3h7e6Nr167o0aMHgoKC8NNPP0Gv16ues2rVKowdO9ZqRqtdu3Y4f/686rHz58+jXbt2ynH5MfPtIc6fP49bbrlFGXPhwgXVOUpLS5GXl6c6j63XMX8NWx577DHVcmlBQQGDGBFRPbHX70sIDbZsGQtJgtLd3kQuyrfeZsgebrxN5ho0hPn4+MDHx6dGzzUaTf8nMF++A0x1Xbt378aWLVusnqPX67Fr1y7Ex8crjyUkJCghLiQkBO3atcOuXbuU0FVQUICUlBTcf//9yjny8/ORmpqKiIgIAMB3330Ho9GIyMhIZczjjz+OkpISpWYtISEB3bp1q7AezMnJCU5OTjX4NIiI6GZU3u9Lg/KFF1MQ+/vft8HF5brdgvvJkyfDw8ND+d7R0ZEBjFSaRE1YSkoK9u/fjyFDhqBt27ZIT0/Hk08+idDQUKtZsA8++AD+/v4YPXq01XkeeughDB8+HK+99hrGjBmDtWvX4pdfflFaR0iShPj4eDz//PPo0qULQkJC8OSTTyIgIAATJkwAAPTo0QOjRo3CPffcg3feeQclJSWYN28e7rjjDgQEBAAA/vWvf+GZZ57BrFmz8OijjyItLQ0rVqzA66+/XrcfFBERVZvB4FaDhqsa+PjkIiTkjNURdrmnqmoSIczFxQWbN2/G008/jatXr8Lf3x+jRo3CE088oZo5MhqNWL16NWbOnAkHBwer8wwaNAifffYZnnjiCfz73/9Gly5d8OWXX6JXr17KmEWLFuHq1auYM2cO8vPzMWTIEOzYsQOtW7dWxnz66aeYN28ebr/9dmg0GkycOBFvvPGGclyn02Hnzp2YO3cuIiIi4O3tjaeeekrVS4yIiOqO3HLCnmvXrillIlW761HAvCeYJJm2HQJMdV7e3t4AONtF1dNk+4S1BOwTRkRUfZXd9Wjp3Dl/rFo1G/bvVTPVfCUmRkGI8rYT4eEHAQBz5sxR1RETNes+YURERPZUNAMmMxjckJkZhIyMYKSmRqAqbSd69UqrtO0EUXUwhBERUYuyb58eCQlRqLxLk0B0dIKq7QTDF9UmhjAiImo2cnNzcenSJdVj5k1X09J6ISEhGpXv+WjE7NmrEBiYXelrmu+OQlQdDGFERNQs2KoFM289IUnGv9pMVB7Axo/fZhXAoqOjrXZDYSE+3QyGMCIiahYsa8HOnfPHli1jIS87Vq0FhbA7A9atWzcGLqpVDGFERNSkye0oMjIylMcOHOiHLVvGofJZL0BuPyHf9WgZwGJjY9npnuoEQxgRETVZlkuQ8l2PFQcwueeXERERqejX7yBKShzt3vXIAEZ1hSGMiIgardzcXFy8eBElJSVWx65cuQKDwaB8X/nWQzIJMTE7EBZ2pMK7HaOjo7kESXWKIYyIiBql9PR0fPLJJ1Uaa1n/VRFJMlYawADTfsIMYFSXGMKIiKjRyc3NtRnAzNtNyCFKngGrOICp676q0u+LrSeorjGEERFRo2Or6/2+fXqrrYNCQ0/V2hLk5MmT4eHhAYCtJ6h+MIQREVGDsrXZtmXD1V27bsWePcMgF9sLocHWrWPRq9dvVWo9YW8JUt58m6GLGgJDGBERNZiq1H3t26dXBTCZEBr89lufKryK/SVI3vlIDYkhjIiIGoS9ui9zBoPbX/s82mo3Iew8bgRgWrLU65MRGZmiCmBy53vOflFDYwgjIqIGYbkEKff4AoCgoEzodIXIy/OC7YJ7+wFs9uxVFfb9CgkJgb+//01fP9HNYggjIqIGZ93h3rR/4+XLOlQ241VOIDo6sdJNt3nXIzUWDGFERNSgDAa3v1pMmActzV99vyTYDmASJElACDmIGREdnYjBg5Ptvk5cXBx8fHy4BEmNBkMYERHVGVt3PsrkOyDz8rzs3OFY8V2PQmgwadJ6uLpes7n0OHLkSAQHBwNgywlqnBjCiIioTlju62iPp2cuJMlYpVYT5iTJiKCgc3b7fnXt2pXBixq16v3EExERVZG9GTBLOl0h+vQ5DFPtV0WEMqayzvfTpk1jAKNGjzNhRERUKyyXHi0brppvOQRA9efDh/vAdu2XzFTz1atXGvLyPK2WH+WmqwCXHqnpYAgjIqKbVtnSo7y/o2nJUZ7xkpReXhUvRQrMnr1KueuRTVepuWAIIyKim2ar55f5TJd6f8fyGS8hNEhKGgTrNhTqDbdttZ2Q93rkzBc1VQxhRERUq8xnvao202W5DCkwdOiP6NQpw27D1WnTpiE0NLRWr5uovjGEERHRTcvPzwdQ3vNLDl2mmS497DdctUVCp04ZCAk5Y3UkOjoa3bp148wXNQsMYUREVCUV9fw6c8YUmGz3/DI1UzWpPIhJkhGennk2jzGAUXPCEEZERJWqTs8v27NeckG++VZDtsZZt55g7Rc1VwxhRERUqar2/EpL61XBUdNWQ6NHb4WLy3UYDB5ITIxS1Y5FRqaoAlhcXBy6d+9+k1dP1DgxhBERUbXJdz9qtUXIygrAlStt0L79n0hIiEJFS45CaODjk6vUe9nr+yXT6XR19RaIGhxDGBERVYt1zy85dFVefG9Z76XTFdrteg+YGq8SNVcMYUREZFNubi4uXLiA0tJSXL58GYD13Y/q0CXBdr8vAUBT6VZD5uLi4uDj48MaMGrWGMKIiMiKvUJ823c/mpNQXnxf9a2GzLEAn1oKhjAiIrJiqwN+ZmYQrl1zhvoOR0sCU6Z8DkfHElXosjX75e3tDX9//9q9cKImhCGMiKiFk/t/5efno7S0FACU5UfAVAO2Zcs4qGu/bBHo2/dXdOt2qkqvy3ovaukYwoiIWhjzpqsGgwHr1q2zO1auAbOu/VLr0+cgBgzYb3OPR5nc7wvgkiMRwBBGRNSiVLXpqtyC4upVl0pqwEx3PN5++26rJcfo6GiEhIQAYOgisoUhjIioGbPcaujSpUuq43LY8vTMhU5XCIPBDSkpkX/t9yhvN2S/9URFdzxyiyGiijGEERE1U5XNepn3+5IkIzp0OIMzZ4KhDlwVz4IJAYSGlteAyXc8cuaLqHIMYUREzdSFCxfsHrPs9yWEBmfOhNTgVTTIy/NUZsJ4xyNR1TGEERE1M/IS5MWLF1WPnzvnj7NnO6JDhzMoKXGqtNbLNvXSpGUHfN7xSFR1DGFERE2UZb0XYP9uxy+++Ad+/bUv5K72YWFHIEnGagex3r1/RVpaH2UJ07weLC4ujkuQRNXAEEZE1ARV5y7H48e7mgUwAJBw5EgYhg79EXv3Dq1WEOvW7QSior6z2QGfm20TVQ9DGBFRE2Q5A2aLeqNtSxIkyYj4+OUWd0PaJ0lGBAWds7vpNpciiaqHIYyIqAmoSasJ+wHM5Mcfh8PDoxAjRyYiMjIFx493wddfj4E6jJlqwCyXHvv374/Q0FBl9ot3QxJVH0MYEVEjl56ejk8++cTucctWE+PGbUPbtpersMyowZYtY+Hrm4PAwGwMGHAArVoJ1bmiohIREJBltfTYoUMHdO/evZbeIVHLxBBGRNSIVRbAbLWa2Lp1LGbNWmWj8N7WxtsarFo1G+PHb0N4+EGEhx9EaOgpmzVf5lxcXG7ujRERQxgRUWOVm5trFcAMBjdkZgYBAIKCMpGX52U14yWEBiUljhg3bhu2bBmL8uAlwV4Q27JlLEJDTyn1XrbC14gRI9C2bVu4uLggNDS0Vt4jUUvGEEZE1EhZFt/v26dHQkI0yu9yNGLo0D1WM15y7y5PzzxIkqmr/V9HYKrxskXddNWWnj17su6LqBYxhBERNQHWAQwANNizZxjCwo7g6NEeVr27MjKCbdSFaWB7L8jypqvy1kPmWHhPVPsYwoiIGjmDwQ0JCVGwvYm2hKNHe+COOz5Hbq4XOnQ4Cze3K8jICIZWW2RzliwqKhGJiVFmjxsxfvw2bj1EVM8YwoiIGhm5HUVaWhoAIC/PCxX18BJCg88/n/LXGCNMYc1U/xUa+gfS0zsBKJ8lCw8/iF690pCZGQgASu8vIqpfDGFERI2IrU74np65lWwxJFAe0szHaJCe3hmSZIRevw+RkSlK2DIV3x+1eTY2XSWqHwxhREQNwNa+jwBw+vRpq8d0ukJERSX+tSSpnu2qyv6PQmiQnKxHZGSK6vHo6Gi4ubkp32u1Wvj4+LD2i6ieMIQREdWzqu77CJjqwUzbCg2CeU1YdHQCAgKyUFysNVuKtE+I8rsfY2NjERAQwLBF1MAYwoiI6pnlDJjllkMy0x2R8uyXOQ0SEqIQHW0qsLd/x2M5uW0FYCq8ZwAjangMYUREDUi9ybYR0dGJGDw42U5LCnMaizsc5R5gpiXKTp3S8ccfoVZtK4io8ahyCCsoKKjySd3d3Wt0MURELYn1JtsaJCRE48YNJ+zdOxQVzWwBtmrBJMTE7EBY2BFlE+/Kth8iooZT5RDm4eEBSaroLwRACAFJklBWVnbTF0ZE1BzYKsC/dOkSANjccgiQsGfPMFQWwGwfFwgKOmtxB6R1+OLdj0SNQ5VD2O7du+vyOoiImpXc3FxcuHAB69evtzvG0zMXtvdyLF9aVBMYMSIR339/O4Sw3bi1pMQUsPr3748OHTpAq9VCp9MpI9j5nqjxqHIIGz58eF1eBxFRs2Hv7kfLAnydrhDR0Yk2ar/sFdlLcHQss9uSwrz4vkOHDujdu/dNvxciqjs1LszPz8/H+++/j6NHTc3+evbsibvvvlv1Ly4ioubKXp8voHy5UVbeZkIPy871gwcnA4BZkb39uxwlyYigoLM2e4NZFt+3asX7rogaO0kIIar7pF9++QUxMTFwdnbGgAEDAAD79+/H9evXsXPnToSHh9f6hbZEBQUF0Ol0MBgMvNmBqBGxnOmy12ICsLz7sZwkGREfv1wZbzC44ciRMHz77Sibr2ke3CzvqBw0KFnVDR8A5s2bx2VHogZS1d/fNfqn0vz58zF+/Hj873//U/61VVpaitmzZyM+Ph4//vhjza6aiKgJMJ8BMw9E5kEJsHX3Yznz5qmAqYg+LOwIvv12JNQ1YgIREb9g2LA9ytjw8IMIDT1l887HyZMnw9fXlwGMqAmoUQj75ZdfVAEMME19L1q0CP3796+1iyMiamxyc3OV5UbLkCWEBlu3jkVo6CnodIV27n6UGXH1qisMBjclRKWnd4Z6KbK8b5gsOjoanp6eNks/WHRP1LTUKIS5u7vj7Nmz6N69u+rxzMxM1T5kRETNieUyZGZmkFXIEkKDlJRIjByZWMHG26YWExs3/lOZPQsNPYWtW8fCPIRJEtCrV5ryfVxcnNXfu0TUdFW82ZgdcXFxmDVrFtatW4fMzExkZmZi7dq1mD17NqZMmVLb1wgAGD9+PDp06IDWrVvD398f06dPR1ZWlmrMt99+i4EDB8LNzQ0+Pj6YOHGi1Wa433//PcLDw+Hk5ITOnTtj9erVVq/13//+F8HBwWjdujUiIyPx888/q47fuHEDc+fOhZeXF9q0aYOJEyfi/PnzqjFnz57FmDFj4OLiAl9fXyxcuBClpaW18lkQUcOwXIbctGmizXFJSXqkpYWhsLAN9PpkmIrtZeWbbwPls2f2Al1enqfyvY+PTy29EyJqDGoUwl599VXExsbizjvvRHBwMIKDgzFz5kxMmjQJL7/8cm1fIwBgxIgRWL9+PY4fP45NmzYhPT0dkyZNUo5nZGTgH//4B2677TYcOnQI3377LS5duoTY2FjVmDFjxmDEiBE4dOgQ4uPjMXv2bHz77bfKmHXr1mHBggV4+umnceDAAfTt2xcxMTG4cOGCMmb+/PnYunUrNmzYgB9++AFZWVmq1ykrK8OYMWNQXFyMpKQkrFmzBqtXr8ZTTz1VJ58NEdWvimq9TDTYuPGfWLXqHiQlDbY6Znn3o3xXpCQZVY+bt5yYPHkylxqJmhtxE65evSoOHz4sDh8+LK5evXozp6q2r776SkiSJIqLi4UQQmzYsEG0atVKlJWVKWO2bNmiGrNo0SLRs2dP1Xni4uJETEyM8v2AAQPE3Llzle/LyspEQECAWLp0qRBCiPz8fKHVasWGDRuUMUePHhUARHJyshBCiK+//lpoNBqRk5OjjHn77beFu7u7KCoqqvJ7NBgMAoAwGAxVfg4R1Z2srCyxZMkSMWPGagGIWvwyiujob8X48V8JSSoTgBCSVCbGj/9KLFmyRCxZskRkZWU19Nsnoiqq6u/vGs2EyVxcXNC7d2/07t0bLi4utRIKqyIvLw+ffvopBg0aBK1WCwCIiIiARqPBhx9+iLKyMhgMBnz88ceIiopSxiQnJyMqKkp1rpiYGCQnm4pei4uLkZqaqhqj0WgQFRWljElNTUVJSYlqTPfu3dGhQwdlTHJyMnr37g0/Pz/V6xQUFOD333+3+76KiopQUFCg+iKixiM/Px8AlFovtWp3+zEjITExCqGhpxAfvxwzZqxGfPxy5S5LgFsNETVHNSrMv3HjBt58803s3r0bFy5cgNGo/svowIEDtXJxlh599FGsXLkS165dw8CBA7Ft2zblWEhICHbu3InJkyfj3nvvRVlZGfR6Pb7++mtlTE5OjioYAYCfnx8KCgpw/fp1XL58GWVlZTbHHDt2TDmHo6MjPDw8rMbk5ORU+DryMXuWLl2KZ555poqfBhHdLLnhqsFgQElJCQDgypUrKCgoQGlpKRwcHFTjU1JSAJjaSYwbt03VmuJvf0tB69Y38OOPw2G70sN+E1agvP4rJOQM7rorGt7e3sox3vVI1DzVKITNmjULO3fuxKRJkzBgwIBKN/a2Z/HixZXWkB09elS5G2jhwoWYNWsWzpw5g2eeeQZ33nkntm3bBkmSkJOTg3vuuQczZszAlClTUFhYiKeeegqTJk1CQkJCja+xPj322GNYsGCB8n1BQQGCgoIa8IqImi97DVe12iKUlDjZbLxqLjz8IK5fb42EBFOn+59/HojyPR/l/SDNg5f0152SgK2QZl7/5e3tDX9//1p5n0TUeNUohG3btg1ff/01Bg+2LDitnocffhgzZ86scEynTp2UP3t7e8Pb2xtdu3ZFjx49EBQUhJ9++gl6vR7//e9/odPpsGzZMmX8J598gqCgIKSkpGDgwIFo166d1V2M58+fh7u7O5ydneHg4AAHBwebY9q1awcAaNeuHYqLi5Gfn6+aDbMcY3lHpXxOeYwtTk5OcHJyqvDzIKLaYa/hqhycJMmIqKhEBARkK4HMvDN+YWEbJCREoTxQmYctASGsN+YWQoNBg/YhOVmvKuq33HKIiFqGGoWw9u3b10o/MB8fnxrfci0vgRYVFQEArl27Bo1G/ReevJQgj7VcngSAhIQE6PV6AKYp/4iICOzatQsTJkxQnrtr1y7MmzcPgKn2TKvVYteuXZg40XR7+vHjx3H27FnlPHq9Hi+88AIuXLgAX19f5XXc3d0RFhZWo/dLRHXD+k7H8tYR8sbakmREjx5HcfRoD2WrIPM2E5Yq2mA7MjIFkZEpyMwMxLVrznBxuY6goHOqAMb6L6KWoUYh7LXXXsOjjz6Kd955Bx07dqzta7KSkpKC/fv3Y8iQIWjbti3S09Px5JNPIjQ0VAk+Y8aMweuvv45nn31WWY7897//jY4dO6Jfv34AgPvuuw8rV67EokWLcPfdd+O7777D+vXrsX37duW1FixYgBkzZqB///4YMGAAli9fjqtXr+Kuu+4CAOh0OsyaNQsLFiyAp6cn3N3d8cADD0Cv12PgwIEAgJEjRyIsLAzTp0/HsmXLkJOTgyeeeAJz587lTBdRI1NxV/vyQHbkSBjKQ1dl9zTZqv8SiIpKNNum6KjNZ06bNo31X0QtRI1CWP/+/XHjxg106tQJLi4uyt2Hsry8vFq5OJmLiws2b96Mp59+GlevXoW/vz9GjRqFJ554Qgk1t912Gz777DMsW7YMy5Ytg4uLC/R6PXbs2AFnZ2cApuL97du3Y/78+VixYgUCAwOxatUqxMTEKK8VFxeHixcv4qmnnkJOTg5uueUW7NixQ1Vo//rrr0Oj0WDixIkoKipCTEwM3nrrLeW4g4MDtm3bhvvvvx96vR6urq6YMWMGnn322Vr9XIioauQCfHPy1kP2u9pbqqyuVA5etgKY9fZDI0eORJs2bZTvtVotfHx8GMCIWhBJCFHt+6qjoqJw9uxZzJo1C35+flZF7zNmzKi1C2zJqroLOxHZZ1mAb4utmrDK7ma0JTj4D5w+3cnq8UmT1qNXr/KZr2nTpiE0NLRa5yaipqOqv79rNBOWlJSE5ORk9O3bt8YXSERUHyxnwMyL6+WlwfDwgwgNPYW8PE9otcU4cqQnkpL0sB/CbNWEGXHmTLDNsUFB5wAAsbGxCAgI4GwXEQGoYQjr3r07rl+/XtvXQkR00yyXHuVlR0A94yXfkSg3RNXpCpU7IJOT9ai47ksuzhcATOfS65NtbFEEDBqUrIQ9b29vBjAiUtQohL300kt4+OGH8cILL6B3795WNWFcOiOihmCv95enp+lubvO7IIXQYMuWsXB0LEJQUKYSlCou1DdnCmKTJq1XZrpstZ6IjExRvuddj0RkrkYhbNSoUQCA22+/XfW4EAKSJKGsrOzmr4yIqJrs9f6SZ6qsw5Vpo23zWbE//giGdT2YvfowDVxdrykBzrKLvnnvL27ATUSWahTCdu/eXdvXQURUayx7fwmh+avGy7qBqnx869axuHxZhz17hsEygA0d+iOuXXNBamp/1THzLveAurbM0zNP1ftL7hlIRCSrUQgbPnx4lcb93//9H5599lnVHmhERHXN9pKiBj17puH333vZfI4QGuzZMxTWM14S/PzOY9OmSbAMZ+Z9v2JjY+3+Xce9H4nIlqoUPtTYJ598goKCgrp8CSIiK3LvL3OmJckkq8fNj9v+K9F0J6R1qJMQEJClfBcQEAB/f3+bXwxgRGRLnYawGrQgIyK6aTpdIcaN26YELrk+KzAwW/W4qdYLyj6R1gFNIDo6EUFBmTZDnbwUyXovIqqJGi1HEhE1JFsd8AF1Owp79Vny46a9G10ACLi43EBQUCacnW+oCuujosq73FdUdO/h4VHn75mImh+GMCJqUqrSAV8m9/6ylJ7e2UaHfCMGDUrGrFmrUFLiaFVYX1HRPVtPEFFNMIQRUZNiawasOizvnDTflDspaTCSk/UYN24bQkLOAAAGDhwId3d3eHh42JzxYtE9EdUUQxgRNWm2tiGqSGXNWOV2FaGhp6DTFaJPnz7w9/evzUsmIgJQxyFs2rRp7J5PRHXGVkPWyMiUCsOYfOdkZUEsL8+zSqGOiKimahzC8vPz8fPPP+PChQswGtV3Dd15550AgLfffvvmro6IyA7bDVkHIylJj/HjTd3vbc2SyXdObtkyFvZuELdswkpEVBdqFMK2bt2KqVOn4sqVK3B3d4ckmXeQlpQQRkRUXeZ3PhoMBpSUlKiO5+TkAKhoWdG0nHj9emskJkapZsnCwn5HSYkTQkNPYf785UhJiTTb79FUoG955yMRUV2RRA2aeXXt2hV///vf8eKLL8LFxaUurosAFBQUQKfTwWAwcFmXmh3zsJWVpUFGRit4e1/GDz98WqXnGwxuWL48voJlRVv7PaqDVvlsmSe02mKbd0XOmzePhfdEVC1V/f1do5mwP//8Ew8++CADGBHViHmbCXVdV1uMG9cP4eEHAaiL7gGolhZ1ukIMGbLHxl6PMvuPWRbf3357N7i5uaFVq1Zwc3ODVquFTqfjnY9EVKdqFMJiYmLwyy+/oFOnTrV9PUTUApQvN1rXdcnhSN3Ly7R1kPksFgDs3Wtrr8eqMS++Dw8P5x2QRFTvqhzCtmzZovx5zJgxWLhwIY4cOYLevXtDq9Wqxo4fP772rpCImgXz5Ue5s72tui4hNMjMDLTo5aVRHTcdUz9eXSy+J6KGVuUQNmHCBKvHnn32WavHJElCWVnZTV0UETVt584BJ08CXboAgYHWXe5Ny4zB0GqLbLSLEDh8uE+lLSTsHIF6ZsxWXRgAqIvv2fGeiBpClUOYZRsKIiJz8kzXZ585Y9EiHYxGCRqNwLJlBowcmaWMs+zt1aPHURw5EobysCThxInusB+g8FdwA9QzYbbGS1aPS5IRs2atQmBgNqKjo9GtWzfWfRFRg6jRXP5HH32EoqIiq8eLi4vx0Ucf3fRFEVHTIs90vfLK51i40B1Goyn0GI0SFi50x4cfJgCwXQN29GgP2C+il2/eNpr9WaBPn8MYP34bJMn0j0PTf+3VhkmqcePGbUNgYDYAMIARUYOqUWH+XXfdhVGjRsHX11f1eGFhIe666y72CSNqYeRaL3s1XnIBvL3jppBl69+EEoYP340ffxwOIcpnyg4f7oPbbvsO8fHLlfYS778/2+YypTzzVVLiiKlTI9Gr198A/I13PhJRg6vRTJgQQtWgVXbu3DnodLqbvigiaprkLYHMmRfA2zseHZ0IUxCD1TEfn0sVBruQkDMIDMzGuHHbzM4tlOfLM18hIWfQq5cH/P394e/vzwBGRA2uWjNh/fr1gyRJkCQJt99+O1q1Kn96WVkZMjIyMGrUqFq/SCJqGuQtgcxrvswL4O0dDw8/iF690lQd7OVjQUGZVsX7tu5sDA8/iNDQUxU2XmUBPhE1JtUKYfIdkocOHUJMTAzatGmjHHN0dERwcDAmTpxYqxdIRI2TrZYTgDoMWYagio7rdIWIjExBQEAWAIGgoHPKsYqCXVxcHHQ6HfLz81FaWmp1nWy8SkSNVY22LVqzZg3i4uLQunXrurgm+gu3LaLGwjxwHTt2BWlpRcjI2AnAVAem1RahpMRJtVG2JVubaZszv2sSMGLQoGRERqZYvIb17NacOXPYaJWIGpU63bZoxowZAEzFuBcuXLBqX9GhQ4eanJaIGiF7WwwBPWGqvbLe/Fredkhm2ZbCcozlXZOABklJg5GUNEh5Dfl5ISFnVOfmEiMRNVU1CmEnT57E3XffjaSkJNXjcsE+m7USNR/2thiStxEq/7P1noy2nmdrjK27Ji1fw/J5sbGxCAgI4BIjETVZNQphM2fORKtWrbBt2zb4+/vbvFOSiJoX+0FJzfzORXvPE0KDH38cil69jsDTM1e5a7Ky85uf29vbmwGMiJq0GoWwQ4cOITU1Fd27d6/t6yGiRqqqQcnyzkV7z0tN7Y/U1L8py4zjxm3Dli1jUVHnHO73SETNSY36hIWFhanuhiKi5k9uL2HZi8v8z5Z3LsrP0+uTbZzReplx9uxVsO4XZv/cRERNWY1mwl5++WUsWrQIL774Inr37g2tVqs6zjv5iJqn8PCDuHxZhz17hsFyo+xJkzao2kqY3w0ZGZmCpCQ97P27TwgNMjMD4ep63cYYCTExOxAWdoQ9v4ioWalRCIuKigIA3Hbbbap6MBbmEzVvBoMb9u4dCut9GjVwdb2mhCRbd0OOH7/NrEDferPtTZsmISoq0WZjVjmAxcbGwtvbmz2/iKhZqFEI2717d21fBxHVg3PngJMngS5dgMBA9THzXmDmzEsP7BfnG6HVFiMjIxhabZHNuyHj45crez1mZQUgISEK5rNeQmiQmBiFqKhEJCZG2WzMyrshiag5qVEIGz58OPbs2YN3330X6enp2LhxI9q3b4+PP/4YISEhtX2NRHQT5HD12WfOWLRIB6NRgkYjsGyZAf/613VlWU/uBQbYb6xqu8heoEePo8oG2raK8OW7GkNCzkCnK4SnZx4SEqKtrlUIDQICshAfvxy9ek1A376uCAjghttE1DzVKIRt2rQJ06dPx9SpU3Hw4EEUFRUBAAwGA1588UV8/fXXtXqRRFQ581kuwPRnb+/L2Lx5JQwGNyxfHg8hTEuARqOEhQvd8eefH/y1XVCkcp6KGqva2vtxyJA92Lt3qGrmy3K50fKuxrw8L1gvaQKAUemIP3q0M/z9/WrzIyIialRqFMKef/55vPPOO7jzzjuxdu1a5fHBgwfj+eefr7WLI6Kqef99YM4cwGgE5DJNIQCNxgNjx/ZD27aXbc5Opab2Q0TEQaSkmLYHqkpjVcu9H/PyvLBnz3CLK5JgusvRekkRsD+jFh2dyLsfiajFqFGLiuPHj2PYsGFWj8ub6BJR/cjNzUVq6nnMmSMg7x4mhOkLMM14bd06FlptkVlriXI//jgCr78ejwMH+gEAMjOD7C4lmtPpCs2WFnNtnFtg6NA9mDRpPUaP3g5HxyIYDG6q55u3u5AkI6KjEzB4cHkrC979SETNXY1mwtq1a4dTp04hODhY9fjevXvRqVOn2rguIrJDXnaUlxozMoJhNM6wO14IDUpKHCtohqrBli1jcf16ayQmRtk4gxFXr7rCYHCzOUul0xUiKirxrxqv8m2M9uyR76KUlPOMH1++tGk5o2Z+7mnTprH+i4iavRqFsHvuuQcPPfQQPvjgA0iShKysLCQnJ+ORRx7Bk08+WdvXSER/MV92lJcaQ0NPVdjJXq7HCgk5A0fHImzc+E8bozRWdyuaGAFI2Ljxn3Y35waAgIBs2GpbYfn9li3qvR+9vb2tzsUCfCJqKWoUwhYvXgyj0Yjbb78d165dw7Bhw+Dk5IRHHnkEDzzwQG1fI1GLl5ubi9OnSzFnji+MxvLiern1g/Usl6kw3rweS14OtB3YjLBdnWB/A22ZweCGq1ddKjiHOfXej/7+/tX5GIiImpUahTBJkvD4449j4cKFOHXqFK5cuYKwsDC0adOmtq+PqMXLzc3FypW2lx3lei3TbFh5LZgcwGbNWoXAwGzVHY+msGR+96IR0dHlvbnKWYcqy8251ecVULNuyCrf/UhERDUMYTJHR0eEhYXV1rUQkQ1yA1VbdxTKS422mqjKtWCWdzyagpURf//7Nri4XFdtNWTeJNW8aarl6wHWd1JaBy4JlmFv/Hju/UhEJLupEEZE9cdWjy7z1g/VCWiABj4+uQgJOQPANKNVHrhMvb8CArIr7F5vv3t++evPmrUK+fkeAKAKe0RExBBG1KTYu6OwpgENsDWjpcGePcOwZ89wZUYsICDL6g5Ge72+zGvRAgOzERiYbfO9sAUFEbV0DGFETYxOV2hzRqmmAc32jFZ5MX5iYhTi45crxf3m2xlZntdeYIuLi4NOp1O+5x2QREQMYUSNWm5urrKBtr39HM1VJ6DJ55MbudpbWpSL8dPTO9vczsher6/JkyfDw8ODgYuIyA6GMKJGSr4rErC/n2NVgpnMPKBZnq9Tp3Skp4fCVLRvve+jVltc4XZGd90Vrer5xeBFRFQ5hjCiRkq+K9Lefo5yh3tbG21bMg9rAKzOl57eBYARgwbtg6vrVdV59fpk5Oe3tbudEXt+ERHVDEMYUSNnr/2EefsIe41UAetZL70+2c7SowbJyXrExy9Hr15pSEmJRFKSHklJg2HdW0xd3E9ERNVXow28iaj+2N4g27qGy3yj7REjRgCwPYuWlKS3uZm3fDwzMxCZmUFIStKj/K8I0zKl+Ybb5sX9RERUfZwJI2rk7N2FWFEjVZm9HmFCWM9syefYuHESbP/7TIOJE9fD1fWaVRE+200QEVUfQxhRE2DrLkRn5xt2207s3r0bgL1eXoDcNb9371/x2299AGj+GicfsyZJRqXhqvnm2yzCJyKqGYYwonpy7hxw8iTQpQsQGFj951u2n6ioPQRQXowfFZWIhIQoWIcrjRLAAFFp93vzkMdCfCKim8cQRlSHcnNzUVxcjM8+c8aiRToYjRI0GoFlywz417+u3/Qskr2+YJbF+EOH7sHevUNtdLe3t+/jX49KRkycuJFbDhER1QGGMKI6Ivf5MhjcsHx5PIQwBR2jUcLChe74888PoNMVYt68eUoQk0MbAJw7d65KrzN58mQAwPr16wHYLsbfu3eo1T6QFc18AeWzX716HbU6xhowIqKbxxBGVEfkMGWvxYTcY0seZ96ctaqmTZuG0NBQZGeX789o7/UCArIQH78ceXme0GqL8f77s+0EMSMmTbKe/ZLrwFgDRkRUOxjCiOqYreJ4W3cyymGsOlxcXKwey8ryh72eXubLl+Z3XFpuvG1r9isgIIDhi4ioFjGEEdWxyjbQlveGlP8rs+xyb297Isv9JRMTo6Cu8RKIikq0ep55Yb9WW4ySEkerAn/OfhER1R2GMKJqqsldjhXdybh582ar8eaF9aZu9RLMZ6rk7Yny8/OVWjDAXl8wCTpdvs3rslfYL+PsFxFR3WEII6qC2rjL0VbgsbUBt2VhvXlrCcvtiUpLS1Xn02qLYApt6iC2ceMkFBeXh7fY2Fi0atXK6vmmc2ih0+k4+0VEVMcYwogqkJubi4sXL2LdunU4d87/r2L2yu9yrArLNhLyDJft2axy5kX9ly9ftjqf3PdLvSSpDm/s80VE1PAYwojsML9b8cCBftiyRQ445cwDUVZWlqq43rLGy5ytNhJySLLf5d7EvKhf7oxvPXtm3ffL/FqJiKjhNZkNvMePH48OHTqgdevW8Pf3x/Tp05GVlaUas379etxyyy1wcXFBx44d8corr1id5/vvv0d4eDicnJzQuXNnrF692mrMf//7XwQHB6N169aIjIzEzz//rDp+48YNzJ07F15eXmjTpg0mTpyI8+fPq8acPXsWY8aMgYuLC3x9fbFw4UKbSz/UeF28eBFAecCx9X8X80C0efNmvPfee8qXrVovWWVtK8aN22a2ybaxwo2zDQY3/P57zyr1/bK8I5OIiBpOk5kJGzFiBP7973/D398ff/75Jx555BFMmjQJSUlJAIBvvvkGU6dOxZtvvomRI0fi6NGjuOeee+Ds7Ix58+YBADIyMjBmzBjcd999+PTTT7Fr1y7Mnj0b/v7+iImJAQCsW7cOCxYswDvvvIPIyEgsX74cMTExOH78OHx9fQEA8+fPx/bt27FhwwbodDrMmzcPsbGx2LdvHwCgrKwMY8aMQbt27ZCUlITs7Gzceeed0Gq1ePHFFxvg06Pqys3Nxbp16wDYK3a3HYgqEhsbC8AU1mzPdglkZQUgJOSMVSG/6Tqsi/rVBfzWbSnkvSCre61ERFT3JCFMf003NVu2bMGECRNQVFQErVaLf/3rXygpKcGGDRuUMW+++SaWLVuGs2fPQpIkPProo9i+fTvS0tKUMXfccQfy8/OxY8cOAEBkZCT+9re/KctQRqMRQUFBeOCBB7B48WIYDAb4+Pjgs88+w6RJkwAAx44dQ48ePZCcnIyBAwfim2++wdixY5GVlQU/Pz8AwDvvvINHH30UFy9erHK38YKCAuh0OhgMBri7u9fK50ZVk52djffeew8AsG+fHgkJ0VAv8Rkxe/YqBAZmWz3XVrE9AMyZMwcAKjyvJBkRH78cOl0hIiMjlT5g165dQ0pKiup1ymvULLciKr+L0t4dmXPmzGFNGBFRHanq7+8mMxNmLi8vD59++ikGDRoErVYLACgqKrJqXOns7Ixz587hzJkzCA4ORnJyMqKiolRjYmJiEB8fD8DULDM1NRWPPfaYclyj0SAqKgrJyckAgNTUVJSUlKjO0717d3To0EEJYcnJyejdu7cSwOTXuf/++/H777+jX79+Nt9XUVERioqKlO8LCgpq8OlQbbLXdys6OtFmALNXbA+YasSuXLmijA0IyIZl7Zb5kqRl6DJnCnC2NuWWEBOzA2FhR5TQxdkvIqLGqcnUhAHAo48+CldXV3h5eeHs2bP46quvlGMxMTHYvHkzdu3aBaPRiBMnTuC1114DAGVLl5ycHFUwAgA/Pz8UFBTg+vXruHTpEsrKymyOycnJUc7h6OgIDw+PCsfYOod8zJ6lS5dCp9MpX0FBQVX9aKiO2Ou7FRCQZTXWXrG9weAGwLQMuXPnTmW8vCSpOrNF3ZbB4IaMjGDlHID5DJrtJVLzAGYP934kImp4DToTtnjxYrz88ssVjjl69Ci6d+8OAFi4cCFmzZqFM2fO4JlnnsGdd96Jbdu2QZIk3HPPPUhPT8fYsWNRUlICd3d3PPTQQ1iyZAk0mqaRNR977DEsWLBA+b6goIBBrI6Yb5RtS35+PoCqbzkEVF5sb0mnK0RUVKIyo2VZt2VrVi009JSNmbny6zJ//ogRI9C2bVul75eM/b+IiBqHBg1hDz/8MGbOnFnhmE6dOil/9vb2hre3N7p27YoePXogKCgIP/30E/R6PSRJwssvv4wXX3wROTk58PHxwa5du1TnaNeundVdjOfPn4e7uzucnZ3h4OAABwcHm2PatWunnKO4uBj5+fmq2TDLMZZ3VMrnlMfY4uTkBCcnpwo/D7p5lhtl26vhAirfcshcVQOb/HpZWf5/BSrTeaOiEpWly3Pn/G3Oqk2cuMnuptuzZqlr1Lp06cK6LyKiRqxBQ5iPjw98fHxq9Fyj0bSMY15DBQAODg5o3749AODzzz+HXq9XXkOv1+Prr79WjU9ISIBerwdgmiGIiIjArl27MGHCBOV1du3apdxhGRERAa1Wi127dmHixIkAgOPHj+Ps2bPKefR6PV544QVcuHBBuaMyISEB7u7uCAsLq9H7pdpjPgNWUQ2XrKIthwAgOjoaCQkJVQps9u5mFEKDxMQo9OqVhvT0znZ7kgHC5l2VtmrUuORIRNS4NYnC/JSUFOzfvx9DhgxB27ZtkZ6ejieffBKhoaFK8Ll06RI2btyIW2+9FTdu3MCHH36IDRs24IcfflDOc99992HlypVYtGgR7r77bnz33XdYv349tm/froxZsGABZsyYgf79+2PAgAFYvnw5rl69irvuugsAoNPpMGvWLCxYsACenp5wd3fHAw88AL1ej4EDBwIARo4cibCwMEyfPh3Lli1DTk4OnnjiCcydO5czXfXM1rKj+WbX9hqm2poRszX7NXnyZPj6+iIhIQFAxYGtsoaqQmiQmRlYYU+yoKBzVkEvKioRgwcnK+NiY2O55yMRURPQJEKYi4sLNm/ejKeffhpXr16Fv78/Ro0ahSeeeEIVatasWYNHHnkEQgjo9Xp8//33GDBggHI8JCQE27dvx/z587FixQoEBgZi1apVSo8wAIiLi8PFixfx1FNPIScnB7fccgt27NihKrR//fXXodFoMHHiRBQVFSEmJgZvvfWWctzBwQHbtm3D/fffD71eD1dXV8yYMQPPPvtsHX9SZM5y2dFSdWu4bPH19YWXlxfmzZuHCxcuYP369XYDW2XbEUmSEbm5npX2JKtsZo4BjIioaWiyfcJaAvYJuznmvb4A69ovg8ENy5fHW9VwyX26AGDQoEFWs5darRZt2rSBVquFj4+PEnhq8nrljAgMPIdz54JgXXRvvyeZpWnTpiE0NLTScUREVHeadZ8wouqyV/tVWQ2XvCNDRWxt3K2u/TJi0KBkREamQK9PRlLSYBtnkewGsPHjt1kFsMmTJ1u1SeFdj0RETQtDGDV7FdV+yUt7mZmBACQEBWVW+/yWNWfWtV8aJCUNRnKyHlFRiQCMsNVk1ZZhw35Q3SjAei8iouaDIYyanMp6fFnOCFVW+5We3rnSOySBiltZmLNX+yXfAdm792H89ltfWHbhN1E/1rXrSdU5GMCIiJoPhjBqUiortpfJLUWAivt3VXaHpGVPL3vbEZn/1/bm3FDO/9tvt8A0GwbI+zzKG22bjUSPHkeUZcgRI0agZ8+eDGBERM0IQxg1KRXNgNkbV1H/royMYJuzZJmZgUhJaY/kZL3Nnl7mQW3z5s2q58uvZ6vXVzlTrdikSRsASNi48Z8WxyUMGLBf+a5t27YMYEREzQxDGLUI9to62Jsl27hxEtQByv5G2xW9XkpKJJKS9LAdxjRwdb0GT8+8SjvtW25OT0RETV/T2FSRqAYsO8brdIUICTmjCk7yrJW8kbbtpUFrkmSEVltstbm25etFRqZAsl1zrwQtW9dgfpfm6NGj2XaCiKgZ4kwYNWkVFcvLTVRtLWHm5+dj/fr1ANSzZFevutpYGpSZliQlyYg+fQ7j/fdn26wRi4yMREpKCoCKGrSqg1ZFDVi5iTsRUfPEEEZNVlX2fbRXR+Xv768KaJcuXcLmzZthMLjZLKqXtwcKCMiCVlusBDBAXSMGAGvXnoenpxt0ukK7y52Wm20D9rdGIiKi5okhjJqk6uz7aI95QDMYDACsi/jNG63K57VXzJ+SEqkU8lfWELYq3e9l3IibiKh5YgijJqk29n1UP7d8967K9ma03YLCaHYnpelatmwZC1/fnArPN3LkSHh4eFh1v5exCz4RUfPFEEZNijwrVFHvL8BU81WdAGM7BNmuqLc1W9az5xH8/nsvi5EavP/+bGVGzFY47Nq1K0MWEVELxRBGTYpcbH/x4kWkp9vf91Euure1r2NlqlJrZt6CIjlZ/1cAK+8lJrNcJo2NjYW3tzcAznIREbV0DGHU5Hh5eaG4uLjSZUMAuHDhQrW2OKqs1iwuLg4lJSVKg1bzJUh7M2fmy6Te3t7w9/ev4TsnIqLmhCGMmrTK7iiUZ8QqYr7FUWW1ZjqdrsKxtlg2XiUiIgLYrJVINVMm15qZsxeibI0tJ5Tnmi+TEhERyTgTRmSmon0mKxtr3sxV7ilmb5mUiIiIIYyaJLmvV/n39jvnVzbm0qVL0Gq1yvcV1Zrl5+ejtLTU5litthglJY4MXkREVCUMYdQklZSUKH+uyt2MFY2Ri+zNybVmkydPhiRJWLduHQBTjZkpzAUrYa46ne7ZeJWIiGQMYdSkVaVzflXH2Jols+wfVpXAZ2ny5Mnw8PBgSwoiIlJhCKMmqVUr049uVTrnVzamomB18uRJ5bUqC3MjRoxA27ZtAQBarRY6nY7Bi4iI7GIIozqTm5tbrR5d1SHPUFXWOb+yMbaClbzdUGBgNnbv3q0sP1696lJhmOvSpQt7gBERUZUxhFGdyM3NxcqVKysdV5OO9ubkOxS3bBkLU8cV67sZK7rj0dZm3ObbDQFQPQ8wwryzC3uAERFRTTGEUZ2oaAasJuMqI0mAEKb/mpPrsQwGA0JDlyt3PAJARkYwtNoiG5txl8+Imc5bPktmGmsKYuwBRkREN4MhjJq0yuq0PDw8lCVC+S5G8xowwIjQ0D+Qnt4J1r2LNRBC/YgQGkyatB6urtfYioKIiG4KQxjVKrkO7NKlS3X6OnKrh8qK7i1bQliGNkCD9PTOMDVaVS81AkbVTBhgWn4MCjrH8EVERDeNIYxqTVXrwGqDl5cX5s2bh9OnS/HxxwJGY/k6pIODwAMPjEZwcCurejP7+z1KkCRhtdQIoErd8wH2ACMiouphCKNaU1v1XVXl5eUFLy/gvfeAe+8FysoABwfg3XclBAe3QnFxMbKzswFAmZmzdaekzN5So73u+bGxsfD29gZwc3d6EhFRy8QQRk3erFlATAxw6hTQuTPg7KyekStvxOpm427KcvaWGu11xPf29mZLCiIiqjGGMGpQtmrH5GW96vQYCww0fQFAdnb58ywbsZo21s7G7NmrcORITyQn66u01GjvGoiIiGqKIYwalK19G6tq2rRpCA0NtXvc1p2TCQnRMNV/mQLZxImbAAirGbCRI0eiTZs2AEzd+S23L+LyIxER3SyGMLpp9XVHpKVPPvnEZrPX/Px8APaK8E0F/JaBzHIPyODgYC41EhFRnWIIo5tSn3dE2mK5ZJmbm4v169cDqLgI36Q8kFlu6M2lRiIiqmv2fjsRVUlV74g0GNyQkREMg8GtVl9fnvWSXbx4UflzWlovi2arFp1XzY/81VsMAOLi4rjUSEREdY4zYVTnLIvjLZf+KmMwuCEzMwgAEBSUqardWr9+vbIkmZubi3Xr1gEA9u3TK8uN5cRfX5q//lt+zHwPSJ1OV7M3SkREVA0MYVSnKttWqDIHDvSzaCchMH78VlWIKy4uRm5uLrKysgAA5875IyEhCuoABgDlfcCysgKQmBhV4zsjiYiIbhZDGNWpyrYVKu/hlWsVggwGNxv9vCSrEGcwGJQZMHnWzfZKe3kfsJCQM+jVK81mE1YiIqL6wBBGdcZgcMPVqy5WxfHy0l9ly5SmJUjbne1TUiIxcmQiAKCkpER5PfW+kKpnITo6URW27DVhJSIiqg8MYVQnzAOWaSNsoypsAahwmbJ8GdK2pCQ9IiNTVCHK/r6QRkRHJ2Lw4OTafItEREQ3hSGMap31jJQGQhgxadJ6ZTkwIyPY7jIlgAqWFGXlS5oyWy0pJMmIWbNWITAwu8rXz/YURERUHxjC6KbYCiy2Z6Q0cHW9poQme4HJ0zOvghktWI0FgMuXLwOAsi+k5RKnrQA2efJkqy748vthewoiIqoPDGF0U7y8vDBv3jxVv7CsLA0+/ljAaLTdAkIuxo+KSqzgDkUj1DNhRkgSrJY0Tb3HfoHcVSI09JTdrYhkkydPRo8ePWrxUyAiIqo+hjC6aZYzR/7+wHvvAffeC5SVAQ4OAmPGbFNqvaw31M5S7lA0GNyQkhIJdXsJI8aP34bQ0FPK3Yzp6Z2xfHm83TqzivqR+fr61uGnQUREVDWSEMJ+G3FqUAUFBdDpdDAYDHB3d2/oy6mSc+eAkyeBLl1M3586BXTuDDg75+L06VIMGOCrmiHTaAQeeuh1q4BmTpKMiI9froS0zMwgbNo00Wop0/STrLH5PACIjY1FQEAAlxuJiKhOVfX3N2fCqNa8/z4wZw5gNAIajWk2bNYs+agXDh82HTNnNEqqYnxbtWBywX56eucKx9h7nhzCGMCIiKgxYQijasvNzbXaMzIrS4M5c8pnuYxG03JkTAwQGGga06WLKZyZBzEHB1FpMb4kGaHVFlfQA8z+TJhch8b9IImIqLFhCKNqyc3NxcqVK60ez8gIhtE4Q/VYWZlpOVIOYYGBlrViwMsvG3DlimmmyvJuSRNTbVdJiVOFAcxeTZg8C8b9IImIqLFhCKNqsZwBk9lqOeHgYKoHMzdrlml2TK4Vc3C4jvfes91eQq9PVhqyGgxuNkKaEZMmbVTdBWlevM9u+ERE1JgxhFGtsAxRDg4C774rKbNg5gIDy2fHcnPL+4yFhx+0G6Ls9QDr1euo1XUwfBERUVPAEEa1xjxEPfDAaERE+FX6HFt9xsxdunQJmzdvtjo/Z7qIiKipYwijWiXPRAUEmKrvbRXxy/Lz8yFJEnQ6HbKyNMjIaIWQkFLluY6OjvD29rZ5fiIioqaOIYzqjGURv9wp39MzVxWkLBu4mjdZjYuLq5Vr4X6QRETU2DCE0U2xF6zy8/NRWlqqfG8vaFlu9i2EBlu3jkVo6CnodIUQQth9DXP29oIEuB8kERE1TgxhVGMVzWCtX79eGXfunL/doGWrP5h5k9X1692wYsV8GI0SNBqBp576E7Gxl6HVapW2EwxZRETUFDGEUbXIy3qVzWDJDhzohy1bxkK9GXd50LLV2kJusmowuGH58gAIITeAlfDMMwEwGNZDpyvEvHnzGL6IiKjJst39ksgO+W7GQYNm2J3BMhjckJERrMyA2foxk4OWTleIqKhEAEblcbnJakWzZID9nmVERERNAWfCqNq8vLwwcKD1FkSSZERWVgA++uhOZYnSVpd786B14EA/JCZGATCNj4pKVJY0K5olIyIiauo4E0Y1Im9B5OBg+l4OUImJUaolSkBYPNOIWbNW2S3KT0yMgsHgBqC8QaskWc+SERERNXWcCaMak7cgSknJxb59a+xswi2Z/VkgOjoRgYHZAGB3ufH338PQs+cR6HSFbNBKRETNFkMY3ZTAQMDBoRhpaRVtwi2TEBCQBcBU2H/1qouN8QI7d45CQsJI5W5LNmglIqLmiCGMao3l/o6mpcjymTC5nsu8tYWpIF8eVz7e3t2WREREzQVDGFXZuXPAyZNAly6wuTE3oN7fMSsrQKkRk+u5CgvbWLSsMIW1rl2P4cSJ7qpzmfcLIyIiam4YwqhC8t6Pn33mjEWLdErT1GXLDPjXv67b3A5IXj4MCTmDXr3SlHqu9PTOeP/92bC+H0TCiRNdq30nJLciIiKipowhjOyS9340NU2NVzVNXbjQHX/++QEAIDw8DgaDm80ZKzmQWd4JaU0DvX4fkpP1qpkz+ZyxsbGqzbzZJZ+IiJq6JteioqioCLfccgskScKhQ4dUxw4fPoyhQ4eidevWCAoKwrJly6yev2HDBnTv3h2tW7dG79698fXXX6uOCyHw1FNPwd/fH87OzoiKisLJkydVY/Ly8jB16lS4u7vDw8MDs2bNwpUrV6p9LY2d3AzV3l2MKSmRWL48HtOnt8eKFfMBzEJ0dLTNc9m+c7KcJBkRGZmC+PjlmDFjNeLjlyv9wgDA29sb/v7+yhcDGBERNXVNLoQtWrQIAQEBVo8XFBRg5MiR6NixI1JTU/HKK69gyZIleO+995QxSUlJmDJlCmbNmoWDBw9iwoQJmDBhAtLS0pQxy5YtwxtvvIF33nkHKSkpcHV1RUxMDG7cuKGMmTp1Kn7//XckJCRg27Zt+PHHHzFnzpxqXUtTIjdNNSdJRiQl6ZVgJW8ptHHjTwBMG2rPmTMHsbGxds9hTq9PVi1jsg6MiIiauyYVwr755hvs3LkTr776qtWxTz/9FMXFxfjggw/Qs2dP3HHHHXjwwQfxn//8RxmzYsUKjBo1CgsXLkSPHj3w3HPPITw8HCtXrgRgmgVbvnw5nnjiCfzjH/9Anz598NFHHyErKwtffvklAODo0aPYsWMHVq1ahcjISAwZMgRvvvkm1q5di6ysrCpfS1Niq2mqXp8Me/tBAoCHhwf8/f2VJUTLc6iZZsGIiIhakiYTws6fP4977rkHH3/8MVxcXKyOJycnY9iwYapi7ZiYGBw/fhyXL19WxkRFRameFxMTg+TkZABARkYGcnJyVGN0Oh0iIyOVMcnJyfDw8ED//v2VMVFRUdBoNEhJSanytdhSVFSEgoIC1VdjER5+ULVUGBmZYnN2rKJCevkcgwbtg/lekePHV94Fn0X4RETU3DSJwnwhBGbOnIn77rsP/fv3x+nTp63G5OTkICQkRPWYn5+fcqxt27bIyclRHjMfk5OTo4wzf569Mb6+vqrjrVq1gqenp2pMZddiy9KlS/HMM8/Y/hAaATko5eV5wdMzV9UTrKpbCul0hRg5MhGRkSl2u+BPnjwZHh4eyvcswiciouaoQUPY4sWL8fLLL1c45ujRo9i5cycKCwvx2GOP1dOVNYzHHnsMCxYsUL4vKChAUFBQA16RmnmTVTl0xccvR16eJ7TaYpSUOCl3SV66dKnC2St7XfDj4uLQvXt3G88gIiJqXho0hD388MOYOXNmhWM6deqE7777DsnJyXByclId69+/P6ZOnYo1a9agXbt2OH/+vOq4/H27du2U/9oaY35cfszf31815pZbblHGXLhwQXWO0tJS5OXlVfo65q9hi5OTk9V7bEhZWRpkZATD0zMXAKw22966dSzi45fj8mVPq3AGbAYATJs2rVqv6ePjU6vvgYiIqLFq0BDm4+NTpV+6b7zxBp5//nnl+6ysLMTExGDdunWIjIwEAOj1ejz++OMoKSmBVqsFACQkJKBbt27K8p9er8euXbsQHx+vnCshIQF6vR4AEBISgnbt2mHXrl1K6CooKEBKSgruv/9+5Rz5+flITU1FREQEAOC7776D0Wis1rU0tMq637//PjBnji+MxhlKIb6tNhWZmYE2w5m83ZCLiwvmzZuH4uJi5Ofno7S01Oq1tFotdDodlx2JiKhlEU1QRkaGACAOHjyoPJafny/8/PzE9OnTRVpamli7dq1wcXER7777rjJm3759olWrVuLVV18VR48eFU8//bTQarXit99+U8a89NJLwsPDQ3z11Vfi8OHD4h//+IcICQkR169fV8aMGjVK9OvXT6SkpIi9e/eKLl26iClTplTrWqrCYDAIAMJgMNTgU7Jv1SohNBohANN/V61SH8/MLD8uf0lSmQDKrB6bNGm96jH5a8aMD8WSJUtEVlZWrV47ERFRY1fV39/NJoQJIcSvv/4qhgwZIpycnET79u3FSy+9ZPXc9evXi65duwpHR0fRs2dPsX37dtVxo9EonnzySeHn5yecnJzE7bffLo4fP64ak5ubK6ZMmSLatGkj3N3dxV133SUKCwurfS2VqYsQZitgOTiYHpd99511qAKEGDRo719hzBTAxo//Ssyf/5rymHk4mz//NYYwIiJqkar6+1sSQoiGnIkj+woKCqDT6WAwGODu7l4r59y9G7jtNtuP33qr6c/nzgEdOwJGsw4UkmTExImb4OFxGSUljqq7Gm0V7Mvd7ufMmaOqryMiImruqvr7u0m0qKDa06ULoNGoA5aDA9C5s+nPubm5cHAoxrJlznj0UR3KyqS/NtYGNm78pxKyQkLOKM8PDz+I0NBTdltOEBERkTWGsBYmMBB47z3g3nuBsjJTAHv3XdPj8obdsgcfdENmZiA2bpwEua+vZeG9zF7LCSIiIrKtyXTMp9ozaxZw+rRpCfL0adP3QPmG3TKdrhCurtdR0fZElTEYDDd/wURERM0QZ8JaqMBA260pLMkbb5u3p6hseyJzLDkkIiKyjTNhVCFbm3ebmrECGRnBMBjcAAAGg5vqe5n59kNERERUjjNhVKnQ0FOYOHETAIGgoHNIT++M5cvjlbsh+/Q5jMOH+9i8O5KIiIhsYwijClm2n4iKSkRiYpSqQ/6vv/YFICnf2yrcJyIiIjWGsBYkNzfXqvjenGURvcHgZrUlkXkAKyepvpML9xnCiIiI7GMIayEs209URV6el839IgEjKionrE7hPhERUUvFwvwWwtYMmL1iepl8Z6Q5STIiIiLV7uvINWGcBSMiIqoYZ8JaKHtbDQ0cOBA//fQTACA9vTPMO0zI40JDTyE1NQLqDG/EpEkbERR0ThXAHB0d6+cNERERNTEMYS2QrVovuZi+tLRUNcY8aAkBpeB+/PhtViGuV6+jAIDJkyfDw8MDjo6O8PLyqvf3R0RE1BQwhLVA9mq98vI88csvv9gdA5QX3IeHH8T06b4oKPBFUFAR2rULgVbbFT4+PgxeREREVcAQ1gJ5eubCurheXUxflTGDB3eEv79/3V4sERFRM8UQ1mKp20pIElBY2AaZmUEAAA+PyzbHmGO9FxERUc0xhLVAeXlesNXba9Wqe8weN9ocIy9Hjhw5ksuOREREN4EtKloI81krW60nAAF16LL+0TDv/8U9IYmIiG4OQ1gL4eXlhZEjRwKwvSm35ayXJcv+X76+vnV6vURERM0dlyNbiNzcXJSUlCjfh4cfRGjoKeTleUKrLcb778+2cTdkuYkTN6JXr6OIjY1FQEAAlyKJiIhuEkNYC2BvyyKdrlCZ2Ro3bpuqd5g5STIiKOgcAMDb25sBjIiIqBYwhLUAllsWGQxuyMvzgqdnrhLC5JmxzMxAHD/eFWlpfVSNWOVxvCOSiIiodjCEtTC2tisyLUuaQllxcWslgAFGREUlIjz8IAAgLi6Os2BERES1hCGsBbG1XdGWLWMhSVBCmWmvSHlJUoPExCj06pUGna4QPj4+DXXpREREzQ5DWAtibysieZNuW/VgQmgwePAM3HorOAtGRERUixjCWhC5P1hFd0FacnAAIiO9wPxFRERUu9gnrAWx7A9m6oovVGNMx0zHHRyAd98FAgPr9TKJiIhaBM6EtTDm/cGysgKQkBBtdrS8UH/48FmIiNAxgBEREdURhrAWwLKthNxu4qOP7oR5p3yNRsJTT0UiOHgwvLx09XmJRERELQ5DWAvg5eWFefPmqfqF7dvniNdfV69GG40SCgv9WP9FRERUDxjCWgjLOxsHDgQ0GsBoto+3gwPQuXM9XxgREVELxcL8FiowEHjvPVPwAliET0REVN84E9aCzZoFxMQAp06ZZsAYwIiIiOoPQ1gLFxjI8EVERNQQuBxJRERE1AAYwoiIiIgaAEMYERERUQNgCCMiIiJqAAxhRERERA2AIYyIiIioATCEERERETUAhjAiIiKiBsAQRkRERNQAGMKIiIiIGgBDGBEREVED4N6RjZgQAgBQUFDQwFdCREREVSX/3pZ/j9vDENaIFRYWAgCCgoIa+EqIiIiougoLC6HT6ewel0RlMY0ajNFoRFZWFtzc3CBJUo3PU1BQgKCgIGRmZsLd3b0Wr7Dp4Gdgws+BnwHAzwDgZyDj51A3n4EQAoWFhQgICIBGY7/yizNhjZhGo0FgYGCtnc/d3b3F/p9Mxs/AhJ8DPwOAnwHAz0DGz6H2P4OKZsBkLMwnIiIiagAMYUREREQNgCGsBXBycsLTTz8NJyenhr6UBsPPwISfAz8DgJ8BwM9Axs+hYT8DFuYTERERNQDOhBERERE1AIYwIiIiogbAEEZERETUABjCiIiIiBoAQ1gT9fbbb6NPnz5Kczm9Xo9vvvlGOX7jxg3MnTsXXl5eaNOmDSZOnIjz58+rznH27FmMGTMGLi4u8PX1xcKFC1FaWlrfb6XWvPTSS5AkCfHx8cpjLeFzWLJkCSRJUn11795dOd4SPgMA+PPPPzFt2jR4eXnB2dkZvXv3xi+//KIcF0Lgqaeegr+/P5ydnREVFYWTJ0+qzpGXl4epU6fC3d0dHh4emDVrFq5cuVLfb6VGgoODrX4OJEnC3LlzAbSMn4OysjI8+eSTCAkJgbOzM0JDQ/Hcc8+p9u9r7j8HgGmrnPj4eHTs2BHOzs4YNGgQ9u/frxxvjp/Bjz/+iHHjxiEgIACSJOHLL79UHa+t93z48GEMHToUrVu3RlBQEJYtW3ZzFy6oSdqyZYvYvn27OHHihDh+/Lj497//LbRarUhLSxNCCHHfffeJoKAgsWvXLvHLL7+IgQMHikGDBinPLy0tFb169RJRUVHi4MGD4uuvvxbe3t7isccea6i3dFN+/vlnERwcLPr06SMeeugh5fGW8Dk8/fTTomfPniI7O1v5unjxonK8JXwGeXl5omPHjmLmzJkiJSVF/PHHH+Lbb78Vp06dUsa89NJLQqfTiS+//FL8+uuvYvz48SIkJERcv35dGTNq1CjRt29f8dNPP4k9e/aIzp07iylTpjTEW6q2CxcuqH4GEhISBACxe/duIUTL+Dl44YUXhJeXl9i2bZvIyMgQGzZsEG3atBErVqxQxjT3nwMhhJg8ebIICwsTP/zwgzh58qR4+umnhbu7uzh37pwQonl+Bl9//bV4/PHHxebNmwUA8cUXX6iO18Z7NhgMws/PT0ydOlWkpaWJzz//XDg7O4t33323xtfNENaMtG3bVqxatUrk5+cLrVYrNmzYoBw7evSoACCSk5OFEKYfWI1GI3JycpQxb7/9tnB3dxdFRUX1fu03o7CwUHTp0kUkJCSI4cOHKyGspXwOTz/9tOjbt6/NYy3lM3j00UfFkCFD7B43Go2iXbt24pVXXlEey8/PF05OTuLzzz8XQghx5MgRAUDs379fGfPNN98ISZLEn3/+WXcXX0ceeughERoaKoxGY4v5ORgzZoy4++67VY/FxsaKqVOnCiFaxs/BtWvXhIODg9i2bZvq8fDwcPH444+3iM/AMoTV1nt+6623RNu2bVX/f3j00UdFt27danytXI5sBsrKyrB27VpcvXoVer0eqampKCkpQVRUlDKme/fu6NChA5KTkwEAycnJ6N27N/z8/JQxMTExKCgowO+//17v7+FmzJ07F2PGjFG9XwAt6nM4efIkAgIC0KlTJ0ydOhVnz54F0HI+gy1btqB///745z//CV9fX/Tr1w//+9//lOMZGRnIyclRfQ46nQ6RkZGqz8HDwwP9+/dXxkRFRUGj0SAlJaX+3kwtKC4uxieffIK7774bkiS1mJ+DQYMGYdeuXThx4gQA4Ndff8XevXsxevRoAC3j56C0tBRlZWVo3bq16nFnZ2fs3bu3RXwGlmrrPScnJ2PYsGFwdHRUxsTExOD48eO4fPlyja6NG3g3Yb/99hv0ej1u3LiBNm3a4IsvvkBYWBgOHToER0dHeHh4qMb7+fkhJycHAJCTk6P6y1Y+Lh9rKtauXYsDBw6o6h1kOTk5LeJziIyMxOrVq9GtWzdkZ2fjmWeewdChQ5GWltZiPoM//vgDb7/9NhYsWIB///vf2L9/Px588EE4OjpixowZyvuw9T7NPwdfX1/V8VatWsHT07PJfA6yL7/8Evn5+Zg5cyaAlvP/hcWLF6OgoADdu3eHg4MDysrK8MILL2Dq1KkA0CJ+Dtzc3KDX6/Hcc8+hR48e8PPzw+eff47k5GR07ty5RXwGlmrrPefk5CAkJMTqHPKxtm3bVvvaGMKasG7duuHQoUMwGAzYuHEjZsyYgR9++KGhL6veZGZm4qGHHkJCQoLVv/paEvlf+QDQp08fREZGomPHjli/fj2cnZ0b8Mrqj9FoRP/+/fHiiy8CAPr164e0tDS88847mDFjRgNfXf17//33MXr0aAQEBDT0pdSr9evX49NPP8Vnn32Gnj174tChQ4iPj0dAQECL+jn4+OOPcffdd6N9+/ZwcHBAeHg4pkyZgtTU1Ia+NLLA5cgmzNHREZ07d0ZERASWLl2Kvn37YsWKFWjXrh2Ki4uRn5+vGn/+/Hm0a9cOANCuXTurO6Pk7+UxjV1qaiouXLiA8PBwtGrVCq1atcIPP/yAN954A61atYKfn1+L+BwseXh4oGvXrjh16lSL+Vnw9/dHWFiY6rEePXooy7Ly+7D1Ps0/hwsXLqiOl5aWIi8vr8l8DgBw5swZJCYmYvbs2cpjLeXnYOHChVi8eDHuuOMO9O7dG9OnT8f8+fOxdOlSAC3n5yA0NBQ//PADrly5gszMTPz8888oKSlBp06dWsxnYK623nNd/H+EIawZMRqNKCoqQkREBLRaLXbt2qUcO378OM6ePQu9Xg8A0Ov1+O2331Q/dAkJCXB3d7f6ZdZY3X777fjtt99w6NAh5at///6YOnWq8ueW8DlYunLlCtLT0+Hv799ifhYGDx6M48ePqx47ceIEOnbsCAAICQlBu3btVJ9DQUEBUlJSVJ9Dfn6+arbgu+++g9FoRGRkZD28i9rx4YcfwtfXF2PGjFEeayk/B9euXYNGo/615uDgAKPRCKBl/RwAgKurK/z9/XH58mV8++23+Mc//tHiPgOg9v531+v1+PHHH1FSUqKMSUhIQLdu3Wq0FAmALSqaqsWLF4sffvhBZGRkiMOHD4vFixcLSZLEzp07hRCm29E7dOggvvvuO/HLL78IvV4v9Hq98nz5dvSRI0eKQ4cOiR07dggfH58mdTu6LeZ3RwrRMj6Hhx9+WHz//fciIyND7Nu3T0RFRQlvb29x4cIFIUTL+Ax+/vln0apVK/HCCy+IkydPik8//VS4uLiITz75RBnz0ksvCQ8PD/HVV1+Jw4cPi3/84x82b1Hv16+fSElJEXv37hVdunRp1LflWyorKxMdOnQQjz76qNWxlvBzMGPGDNG+fXulRcXmzZuFt7e3WLRokTKmJfwc7NixQ3zzzTfijz/+EDt37hR9+/YVkZGRori4WAjRPD+DwsJCcfDgQXHw4EEBQPznP/8RBw8eFGfOnBFC1M57zs/PF35+fmL69OkiLS1NrF27Vri4uLBFRUt09913i44dOwpHR0fh4+Mjbr/9diWACSHE9evXxf/93/+Jtm3bChcXF/H//t//E9nZ2apznD59WowePVo4OzsLb29v8fDDD4uSkpL6fiu1yjKEtYTPIS4uTvj7+wtHR0fRvn17ERcXp+qP1RI+AyGE2Lp1q+jVq5dwcnIS3bt3F++9957quNFoFE8++aTw8/MTTk5O4vbbbxfHjx9XjcnNzRVTpkwRbdq0Ee7u7uKuu+4ShYWF9fk2bsq3334rAFi9LyFaxs9BQUGBeOihh0SHDh1E69atRadOncTjjz+uainQEn4O1q1bJzp16iQcHR1Fu3btxNy5c0V+fr5yvDl+Brt37xYArL5mzJghhKi99/zrr7+KIUOGCCcnJ9G+fXvx0ksv3dR1S0KYtRImIiIionrBmjAiIiKiBsAQRkRERNQAGMKIiIiIGgBDGBEREVEDYAgjIiIiagAMYUREREQNgCGMiIiIqAEwhBERERE1AIYwImpWbr31VsTHxzf0ZdS5JUuW4JZbbmnoyyCim8AQRkTUiBQXF9fr6wkhUFpaWq+vSUQmDGFE1GzMnDkTP/zwA1asWAFJkiBJEk6fPo20tDSMHj0abdq0gZ+fH6ZPn45Lly4pz7v11lvxwAMPID4+Hm3btoWfnx/+97//4erVq7jrrrvg5uaGzp0745tvvlGe8/3330OSJGzfvh19+vRB69atMXDgQKSlpamuae/evRg6dCicnZ0RFBSEBx98EFevXlWOBwcH47nnnsOdd94Jd3d3zJkzBwDw6KOPomvXrnBxcUGnTp3w5JNPoqSkBACwevVqPPPMM/j111+V97l69WqcPn0akiTh0KFDyvnz8/MhSRK+//571XV/8803iIiIgJOTE/bu3Quj0YilS5ciJCQEzs7O6Nu3LzZu3Fjb/xMRkRmGMCJqNlasWAG9Xo977rkH2dnZyM7OhpubG2677Tb069cPv/zyC3bs2IHz589j8uTJqueuWbMG3t7e+Pnnn/HAAw/g/vvvxz//+U8MGjQIBw4cwMiRIzF9+nRcu3ZN9byFCxfitddew/79++Hj44Nx48YpYSk9PR2jRo3CxIkTcfjwYaxbtw579+7FvHnzVOd49dVX0bdvXxw8eBBPPvkkAMDNzQ2rV6/GkSNHsGLFCvzvf//D66+/DgCIi4vDww8/jJ49eyrvMy4urlqf1eLFi/HSSy/h6NGj6NOnD5YuXYqPPvoI77zzDn7//XfMnz8f06ZNww8//FCt8xJRNdzU9t9ERI3M8OHDxUMPPaR8/9xzz4mRI0eqxmRmZgoA4vjx48pzhgwZohwvLS0Vrq6uYvr06cpj2dnZAoBITk4WQgixe/duAUCsXbtWGZObmyucnZ3FunXrhBBCzJo1S8yZM0f12nv27BEajUZcv35dCCFEx44dxYQJEyp9X6+88oqIiIhQvn/66adF3759VWMyMjIEAHHw4EHlscuXLwsAYvfu3arr/vLLL5UxN27cEC4uLiIpKUl1vlmzZokpU6ZUem1EVDOtGjIAEhHVtV9//RW7d+9GmzZtrI6lp6eja9euAIA+ffoojzs4OMDLywu9e/dWHvPz8wMAXLhwQXUOvV6v/NnT0xPdunXD0aNHldc+fPgwPv30U2WMEAJGoxEZGRno0aMHAKB///5W17Zu3Tq88cYbSE9Px5UrV1BaWgp3d/dqv397zF/z1KlTuHbtGqKjo1VjiouL0a9fv1p7TSJSYwgjombtypUrGDduHF5++WWrY/7+/sqftVqt6pgkSarHJEkCABiNxmq99r333osHH3zQ6liHDh2UP7u6uqqOJScnY+rUqXjmmWcQExMDnU6HtWvX4rXXXqvw9TQaU4WJEEJ5TF4atWT+mleuXAEAbN++He3bt1eNc3JyqvA1iajmGMKIqFlxdHREWVmZ8n14eDg2bdqE4OBgtGpV+3/l/fTTT0qgunz5Mk6cOKHMcIWHh+PIkSPo3Llztc6ZlJSEjh074vHHH1ceO3PmjGqM5fsEAB8fHwBAdna2MoNlXqRvT1hYGJycnHD27FkMHz68WtdKRDXHwnwialaCg4ORkpKC06dP49KlS5g7dy7y8vIwZcoU7N+/H+np6fj2229x1113WYWYmnj22Wexa9cupKWlYebMmfD29saECRMAmO5wTEpKwrx583Do0CGcPHkSX331lVVhvqUuXbrg7NmzWLt2LdLT0/HGG2/giy++sHqfGRkZOHToEC5duoSioiI4Oztj4MCBSsH9Dz/8gCeeeKLS9+Dm5oZHHnkE8+fPx5o1a5Ceno4DBw7gzTffxJo1a2r82RBRxRjCiKhZeeSRR+Dg4ICwsDD4+PiguLgY+/btQ1lZGUaOHInevXsjPj4eHh4eyvLdzXjppZfw0EMPISIiAjk5Odi6dSscHR0BmOrMfvjhB5w4cQJDhw5Fv3798NRTTyEgIKDCc44fPx7z58/HvHnzcMsttyApKUm5a1I2ceJEjBo1CiNGjICPjw8+//xzAMAHH3yA0tJSREREID4+Hs8//3yV3sdzzz2HJ598EkuXLkWPHj0watQobN++HSEhITX4VIioKiRhXjxARERV8v3332PEiBG4fPkyPDw8GvpyiKgJ4kwYERERUQNgCCMiIiJqAFyOJCIiImoAnAkjIiIiagAMYUREREQNgCGMiIiIqAEwhBERERE1AIYwIiIiogbAEEZERETUABjCiIiIiBoAQxgRERFRA2AIIyIiImoA/x8XV8X3Pvc5BQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACH+klEQVR4nO2deXxTVd7/P+nK1qbQUtraQkthdJBFqYiFERCKwE9weECpC8oOOqAiDigP48K4IKCI4LgwIjgqCgJuODoURUelMooi4iADPEXAlqWBBqRCS3N/f2RuSNK7r+fefN+vFy9tcpOcnJx7zud8t+PhOI4DQRAEQRBEDBBndwMIgiAIgiCsgoQPQRAEQRAxAwkfgiAIgiBiBhI+BEEQBEHEDCR8CIIgCIKIGUj4EARBEAQRM5DwIQiCIAgiZiDhQxAEQRBEzEDChyAIgiCImIGED0EQBIOsXLkSHo8H+/fvt7spBOEqSPgQRIzy1VdfYdq0abj44ovRvHlztG3bFqNGjcJ//vOfRtf269cPHo8HHo8HcXFxSE1NxYUXXohbbrkFZWVlqj73vffeQ9++fZGZmYlmzZqhffv2GDVqFD788EOjvlojHnvsMbz99tuNHt+yZQseeugh1NTUmPbZ0Tz00EOhvvR4PGjWrBk6deqEP/3pTzh58qQhn7Fq1SosXrzYkPciCLdBwocgYpT58+dj3bp1GDBgAJ5++mlMnjwZ//znP9G9e3fs3Lmz0fW5ubl45ZVX8Le//Q0LFy7Etddeiy1btuDqq69GaWkp6uvrZT/ziSeewLXXXguPx4PZs2fjqaeewsiRI7Fnzx688cYbZnxNANLCZ+7cuZYKH57nnnsOr7zyChYtWoSLLroIjz76KAYPHgwjjk8k4UMQ4iTY3QCCIOxhxowZWLVqFZKSkkKPlZaWokuXLnj88cfx6quvRlzv9XoxevToiMcef/xx3HnnnXj22WeRn5+P+fPni37euXPn8PDDD2PgwIHYuHFjo+ePHj2q8xuxQ21tLZo1ayZ5zXXXXYeMjAwAwG233YaRI0di/fr1+PLLL1FcXGxFMwkiJiGLD0HEKL169YoQPQDQsWNHXHzxxdi1a5ei94iPj8eSJUvQqVMnPPPMM/D7/aLXVldX4+TJk+jdu7fg85mZmRF/nzlzBg899BB+85vfoEmTJsjOzsaIESOwb9++0DVPPPEEevXqhfT0dDRt2hRFRUVYu3ZtxPt4PB6cPn0aL7/8csi9NHbsWDz00EOYOXMmAKCgoCD0XHhMzauvvoqioiI0bdoUrVq1wg033ICDBw9GvH+/fv3QuXNnbNu2DX369EGzZs3wv//7v4r6L5z+/fsDACoqKiSve/bZZ3HxxRcjOTkZOTk5mDp1aoTFql+/fnj//ffx008/hb5Tfn6+6vYQhFshiw9BECE4jsORI0dw8cUXK35NfHw8brzxRtx///34/PPPcc011whel5mZiaZNm+K9997DHXfcgVatWom+Z0NDA4YOHYqPPvoIN9xwA+666y6cOnUKZWVl2LlzJwoLCwEATz/9NK699lrcfPPNqKurwxtvvIHrr78eGzZsCLXjlVdewcSJE3H55Zdj8uTJAIDCwkI0b94c//nPf/D666/jqaeeCllfWrduDQB49NFHcf/992PUqFGYOHEijh07hqVLl6JPnz749ttvkZaWFmqvz+fDkCFDcMMNN2D06NFo06aN4v7j4QVdenq66DUPPfQQ5s6di5KSEtx+++3YvXs3nnvuOXz11Vf44osvkJiYiDlz5sDv9+PQoUN46qmnAAAtWrRQ3R6CcC0cQRDEf3nllVc4ANzy5csjHu/bty938cUXi77urbfe4gBwTz/9tOT7P/DAAxwArnnz5tyQIUO4Rx99lNu2bVuj61566SUOALdo0aJGzwUCgdD/19bWRjxXV1fHde7cmevfv3/E482bN+fGjBnT6L0WLlzIAeAqKioiHt+/fz8XHx/PPfrooxGPf//991xCQkLE43379uUAcM8//7zo9w7nwQcf5ABwu3fv5o4dO8ZVVFRwL7zwApecnMy1adOGO336NMdxHLdixYqIth09epRLSkrirr76aq6hoSH0fs888wwHgHvppZdCj11zzTVcu3btFLWHIGINcnURBAEA+PHHHzF16lQUFxdjzJgxql7LWxROnToled3cuXOxatUqXHrppfjHP/6BOXPmoKioCN27d49wr61btw4ZGRm44447Gr2Hx+MJ/X/Tpk1D/3/ixAn4/X5ceeWV+Oabb1S1P5r169cjEAhg1KhRqK6uDv3LyspCx44dsXnz5ojrk5OTMW7cOFWfceGFF6J169YoKCjAlClT0KFDB7z//vuisUGbNm1CXV0dpk+fjri481P3pEmTkJqaivfff1/9FyWIGIRcXQRB4PDhw7jmmmvg9Xqxdu1axMfHq3r9L7/8AgBISUmRvfbGG2/EjTfeiJMnT2Lr1q1YuXIlVq1ahWHDhmHnzp1o0qQJ9u3bhwsvvBAJCdJT1IYNG/DII49g+/btOHv2bOjxcHGkhT179oDjOHTs2FHw+cTExIi/L7jggkbxUnKsW7cOqampSExMRG5ubsh9J8ZPP/0EICiYwklKSkL79u1DzxMEIQ0JH4KIcfx+P4YMGYKamhp89tlnyMnJUf0efPp7hw4dFL8mNTUVAwcOxMCBA5GYmIiXX34ZW7duRd++fRW9/rPPPsO1116LPn364Nlnn0V2djYSExOxYsUKrFq1SvV3CCcQCMDj8eCDDz4QFIHRMTPhliel9OnTJxRXRBCEdZDwIYgY5syZMxg2bBj+85//YNOmTejUqZPq92hoaMCqVavQrFkz/O53v9PUjssuuwwvv/wyqqqqAASDj7du3Yr6+vpG1hWedevWoUmTJvjHP/6B5OTk0OMrVqxodK2YBUjs8cLCQnAch4KCAvzmN79R+3VMoV27dgCA3bt3o3379qHH6+rqUFFRgZKSktBjei1eBOFmKMaHIGKUhoYGlJaWory8HG+++aam2jENDQ248847sWvXLtx5551ITU0Vvba2thbl5eWCz33wwQcAzrtxRo4cierqajzzzDONruX+W+AvPj4eHo8HDQ0Noef2798vWKiwefPmgkUKmzdvDgCNnhsxYgTi4+Mxd+7cRgUFOY6Dz+cT/pImUlJSgqSkJCxZsiSiTcuXL4ff74/IpmvevLlkaQGCiGXI4kMQMco999yDd999F8OGDcPx48cbFSyMLlbo9/tD19TW1mLv3r1Yv3499u3bhxtuuAEPP/yw5OfV1taiV69euOKKKzB48GDk5eWhpqYGb7/9Nj777DMMHz4cl156KQDg1ltvxd/+9jfMmDED//rXv3DllVfi9OnT2LRpE/7whz/g97//Pa655hosWrQIgwcPxk033YSjR4/iL3/5Czp06IAdO3ZEfHZRURE2bdqERYsWIScnBwUFBejZsyeKiooAAHPmzMENN9yAxMREDBs2DIWFhXjkkUcwe/Zs7N+/H8OHD0dKSgoqKirw1ltvYfLkyfjjH/+oq//V0rp1a8yePRtz587F4MGDce2112L37t149tln0aNHj4jfq6ioCKtXr8aMGTPQo0cPtGjRAsOGDbO0vQTBLHamlBEEYR98GrbYP6lrW7RowXXs2JEbPXo0t3HjRkWfV19fz/31r3/lhg8fzrVr145LTk7mmjVrxl166aXcwoULubNnz0ZcX1tby82ZM4crKCjgEhMTuaysLO66667j9u3bF7pm+fLlXMeOHbnk5GTuoosu4lasWBFKFw/nxx9/5Pr06cM1bdqUAxCR2v7www9zF1xwARcXF9cotX3dunXc7373O6558+Zc8+bNuYsuuoibOnUqt3v37oi+kUr1j4Zv37FjxySvi05n53nmmWe4iy66iEtMTOTatGnD3X777dyJEycirvnll1+4m266iUtLS+MAUGo7QYTh4TgDDoYhCIIgCIJwABTjQxAEQRBEzEDChyAIgiCImIGED0EQBEEQMQMJH4IgCIIgYgYSPgRBEARBxAwkfAiCIAiCiBmogGEUgUAAlZWVSElJobLvBEEQBOEQOI7DqVOnkJOTg7g4cbsOCZ8oKisrkZeXZ3czCIIgCILQwMGDB5Gbmyv6PAmfKFJSUgAEO07q3CGCIAiCINjh5MmTyMvLC63jYpDwiYJ3b6WmppLwIQiCIAiHIRemQsHNBEEQBEHEDCR8CIIgCIKIGUj4EARBEAQRM1CMD0EQBEEYQENDA+rr6+1uhmtJTExEfHy87vch4UMQBEEQOuA4DocPH0ZNTY3dTXE9aWlpyMrK0lVnj4QPQRAEQeiAFz2ZmZlo1qwZFb81AY7jUFtbi6NHjwIAsrOzNb8XCR+CIAiC0EhDQ0NI9KSnp9vdHFfTtGlTAMDRo0eRmZmp2e1Fwc0EQRAEoRE+pqdZs2Y2tyQ24PtZTywVCR+CIAiC0Am5t6zBiH4m4UMQBEEQRMxAwocgCIIgiJiBhI8D8Pl8qKqqQlVVFbZtO4K1a33Ytu1I6DGfz2d3EwmCIAiHMXbsWHg8Hng8HiQmJqJNmzYYOHAgXnrpJQQCAcXvs3LlSqSlpZnXUIOhrC7G8fl8eOaZZwAA33xzKd57byg4Lg4eTwDDhm1A9+7fAgCmTZtGGQUEQRAOw+fzoa6uTvT5pKQkU+f2wYMHY8WKFWhoaMCRI0fw4Ycf4q677sLatWvx7rvvIiHBfTLBfd/IZfA3hN+fEhI9AMBxcXjvvaEoLNwLr/eU5I1DEARBsEf4xlYKMze2ycnJyMrKAgBccMEF6N69O6644goMGDAAK1euxMSJE7Fo0SKsWLEC//d//4dWrVph2LBhWLBgAVq0aIFPPvkE48aNA3A+8PjBBx/EQw89hFdeeQVPP/00du/ejebNm6N///5YvHgxMjMzTfkuSiFXl0M4fjw9JHp4OC4Ox4+3sqlFBEEQhB6Ublit3tj2798f3bp1w/r16wEAcXFxWLJkCX744Qe8/PLL+PjjjzFr1iwAQK9evbB48WKkpqaGwi/++Mc/AgimnD/88MP47rvv8Pbbb2P//v0YO3aspd9FCMcIn3nz5qFHjx5ISUlBZmYmhg8fjt27d0dcc+bMGUydOhXp6elo0aIFRo4ciSNHjtjUYmNp1coHjyfS5+rxBNCq1XGbWkQQBEG4lYsuugj79+8HAEyfPh1XXXUV8vPz0b9/fzzyyCNYs2YNgKArzuv1wuPxICsrC1lZWWjRogUAYPz48RgyZAjat2+PK664AkuWLMEHH3yAX375xa6vBcBBwufTTz/F1KlT8eWXX6KsrAz19fW4+uqrcfr06dA1d999N9577z28+eab+PTTT1FZWYkRI0bY2Grj8HpPYdiwDSHxw8f4eL2nbG4ZQRAE4TY4jgu5rjZt2oQBAwbgggsuQEpKCm655Rb4fD7U1tZKvse2bdswbNgwtG3bFikpKejbty8A4MCBA6a3XwrHxPh8+OGHEX+vXLkSmZmZ2LZtG/r06QO/34/ly5dj1apV6N+/PwBgxYoV+O1vf4svv/wSV1xxhR3NNpTu3b9FYeFeHD/eCq1aHSfRQxAEQZjCrl27UFBQgP3792Po0KG4/fbb8eijj6JVq1b4/PPPMWHCBNTV1YlWrD59+jQGDRqEQYMG4bXXXkPr1q1x4MABDBo0yPaYVMcIn2j8fj8AoFWrYIzLtm3bUF9fj5KSktA1F110Edq2bYvy8nJR4XP27FmcPXs29PfJkydNbLV+vN5TJHgIgiAI0/j444/x/fff4+6778a2bdsQCATw5JNPIi4u6CTi3Vw8SUlJaGhoiHjsxx9/hM/nw+OPP468vDwAwNdff23NF5DBkcInEAhg+vTp6N27Nzp37gwgeDpuUlJSo1oCbdq0weHDh0Xfa968eZg7d66ZzXUc4emVlZVxqKhIQEHBOeTkBN1sRqZXHjoE7NkDdOwI5OYa8pYEQRCEQs6ePYvDhw9HpLPPmzcPQ4cOxa233oqdO3eivr4eS5cuxbBhw/DFF1/g+eefj3iP/Px8/PLLL/joo4/QrVs3NGvWDG3btkVSUhKWLl2K2267DTt37sTDDz9s07eMxDExPuFMnToVO3fuxBtvvKH7vWbPng2/3x/6d/DgQQNaaBxJSUmGXicHn165bNky3HbbV+jRozWuvz4dl13WGmPGfI9ly5bhmWeewb59+3R/1vLlQLt2QP/+wf8uX27AFyAIgiAU8+GHHyI7Oxv5+fkYPHgwNm/ejCVLluCdd95BfHw8unXrhkWLFmH+/Pno3LkzXnvtNcybNy/iPXr16oXbbrsNpaWlaN26NRYsWIDWrVtj5cqVePPNN9GpUyc8/vjjeOKJJ2z6lpF4OI7j7G6EGqZNm4Z33nkH//znP1FQUBB6/OOPP8aAAQNw4sSJCKtPu3btMH36dNx9992K3v/kyZPwer3w+/1ITU01uvmasLLAVVVVFZYtWwa/PwWLF0+PSqHnMHBgGXr3LgegvbaEz+fD/v3ncPnlmQgEzh84Fx/PYevWo8jPT6BijARBOIIzZ86goqICBQUFaNKkiarXslDHx2lI9bfS9dsxri6O43DHHXfgrbfewieffBIhegCgqKgIiYmJ+OijjzBy5EgAwO7du3HgwAEUFxfb0WTDUDPgjRJJQnWDAA82bSpB5847NRdN5G/0iop8BAJjIp5raPBg6dIPUFDwE93oBEG4nvT0dEybNs3Wys2xiGOEz9SpU7Fq1Sq88847SElJCcXteL1eNG3aFF6vFxMmTMCMGTPQqlUrpKam4o477kBxcbErMrqUYOTuoVUrH4AAor2hfNFErQHW/A3O1yUKF1fhdYnsjvonCIKwAhI11uOYGJ/nnnsOfr8f/fr1Q3Z2dujf6tWrQ9c89dRTGDp0KEaOHIk+ffogKysrVHkyFjCyCqjXewoDB24CEOkJNapoItUlIgiCIOzAMRYfJaFITZo0wV/+8hf85S9/saBF9hPt1qquro543u9PwfHj6WjVyqdJUPCxPJs2lUQcjGqUOKG6RARBEITVOEb4EJHIubWkTnJXQ+/e5ejceadp4oTqEhEEQRBW4hhXFxGJlLtK7CR3vz9F02d5vadQUPATCRSCIAjC8ZDwcSF6TnI3qh4QQRAEQbAIubpcQng8j1zGlBTp6ekYPXo0Xn31Vdlr3SCSrKxSTRAEQdgPCR8XIBTPM2zYhkaPKXVVFRYWmlZbQqlYqq2tRVVVleGfH054nJRUTJSS9H8SUARBEM6AhA/jiBUk5DO4xOJ5pk9fjOnTFwsGJfPiw8qK0DxKCnbV1tZGWJzEstP0Fjnk2yDWh4WFexUVajRSQBEEQbiFTz75BFdddVWjExWkyM/Px/Tp0zF9+nTT2kXCh2GUFCSUiucpKPgJ48YNREZGRug5XszYWSpd7v3CLT1SQsKoIodSfajESmaUgCIIgrCSsWPH4uWXX8aUKVMaHTw6depUPPvssxgzZgxWrlxpTwNNgoKbGUbJQsnH84QTHs+TkZERUfCRFx1GFjs0C6Oz08SQ68Pq6mr4fD7B1/p8vpD1TU9QOUEQhB3k5eXhjTfewK+//hp67MyZM1i1ahXatm1rY8vMg4SPw5GrgKw0psbvT0FFRb6kqPD5fKiqqhL9JyYOtGKVkBDqw+Li8tDz69evxzPPPNPo+/FWM746uJyAIgiCYI3u3bsjLy8v4pSD9evXo23btrj00ktDj509exZ33nknMjMz0aRJE/zud7/DV199FfFef//73/Gb3/wGTZs2xVVXXYX9+/c3+rzPP/8cV155JZo2bYq8vDzceeedOH36tGnfTwhydTkIsVgXvgLyJZdch4svTkZOTg8APRTH6CgpdmiHa0xPdppa+D7curUntmwpxpYtvVFeXizpWhOyhhUXl6O8vNiUStcEQbibQ4eAPXuAjh2B3FzrPnf8+PFYsWIFbr75ZgDASy+9hHHjxuGTTz4JXTNr1iysW7cOL7/8Mtq1a4cFCxZg0KBB2Lt3L1q1aoWDBw9ixIgRmDp1KiZPnoyvv/4a99xzT8Tn7Nu3D4MHD8YjjzyCl156CceOHcO0adMwbdo0rFixwrLvS8LHIciJk+DZWonIzm6j6n3l4lJ47HCN8ZYYrdlpWigvLwZvCBXrCz4oPPyIkPDfBwigV68v0LPnVhI9BEEoYvlyYPJkIBAA4uKAZcuACROs+ezRo0dj9uzZ+OmnnwAAX3zxBd54442Q8Dl9+jSee+45rFy5EkOGDAEA/PWvf0VZWRmWL1+OmTNn4rnnnkNhYSGefPJJAMCFF16I77//HvPnzw99zrx583DzzTeHApc7duyIJUuWoG/fvnjuuefQpEkTS74vCR8HoFScaEFrYK/ec8CUYuV5Xkr6QsjyFf37AHEoLy9Gz55bTWsrQRDu4dCh86IHCP53yhRg0CBrLD+tW7fGNddcg5UrV4LjOFxzzTURSTH79u1DfX09evfuHXosMTERl19+OXbt2gUA2LVrF3r27BnxvsXFxRF/f/fdd9ixYwdee+210GMcxyEQCKCiogK//e1vzfh6jSDh4wDEFuSDB3Ph9e7S9d5a3ElGnQOmFDPO8/L5fPD7/RGPyfWF3+9HfX19o/fSmxUWi1DdI4I4z54950UPT0MDsHevdS6v8ePHY9q0aQBg2kHfv/zyC6ZMmYI777yz0XNWBlKT8HEAQgsyAKxdex3q6s6Ljj179qC6uhrNmjVDYWGhovdW604y0/rEozQgW2vlaLF4Jbm+WL16daPX+P0pOH26GYAAwnMFhMSjGypdGwHVPSKISDp2DLq3wsVPfDzQoYN1bRg8eDDq6urg8XgwaNCgiOcKCwuRlJSEL774Au3atQMA1NfX46uvvgq5rX7729/i3XffjXjdl19+GfF39+7d8e9//xsdrPxiApDwYRh+oYxekM8TKTo2b94cemb06NGS4id8EZZyJ0Uv1lZYN5QUOdRjEZB6XzWutci4Hg68+IkWTCNGjEBOTg4t4v+F6h4RRCS5ucGYnilTgpae+HjghResDXCOj48Pua3i4+MjnmvevDluv/12zJw5E61atULbtm2xYMEC1NbWYsJ/A5Fuu+02PPnkk5g5cyYmTpyIbdu2Nar/c++99+KKK67AtGnTMHHiRDRv3hz//ve/UVZWpih5xihI+DAMLwAqKysBrEdS0lmsXXt9xDVioqO2tlbRe6sVF1ZlWlkpEqLjlZS41g4dysa77w7FeSuPBx4Ph5Ej1yAv71DE6zMyMkj0CEAuQoI4z4QJwZievXuDlh4rRQ9Pamqq6HOPP/44AoEAbrnlFpw6dQqXXXYZ/vGPf6Bly5YAgq6qdevW4e6778bSpUtx+eWX47HHHsP48eND79G1a1d8+umnmDNnDq688kpwHIfCwkKUlpaa/t3CIeHDOOnp6SFxkpd3UJfoMOKICjsyrcxES7wS/5roMlgcF4fmzWsb9QW5uM4TXvDRynIFBOEEcnOtFTxyFZnffvvt0P83adIES5YswZIlS0SvHzp0KIYOHRrx2Lhx4yL+7tGjBzZu3Cj6HkK1f4yGhI8DEHN5eTwB/O53n+GHHy5G27Y/ITdX/FBPvXV4tLrGWEbO1TJixIhQZkNNTQ3WrFkjkMF1nvBFm3+tm4N0pYR0TU0NPB4PvF5v6DG/3x8RJ+U2EU0QhDMg4eMAwt1Se/bsQWFh8PDRf/2rBz77rA8ADwAO3bp9h//5n3cE30NvHR6z427sQM7Vwh/3IfeaIJGLttBr3YRSIS2F35+Cli1PYMKEF1Ffn2R6uQKCIAiAhI9j4AVFdXU1vN5TOHWqBXbt6oSg6AEAD777rht69PiXpOWHR0sdHieJGiVocbWIvWbChBcj+t1Jli8t6A08FnIxFhT8ZFDrCIIgxCHh41AOHGiH86KHx4ODB9vKCh+r6/CwihZXi9hr+D6P1QwuKSEd/ZwVJRHUYETsG0EQzoGEj0Np2/YnBFOow8UPh7y8A5KvY23RMRuhRS28cKFUvFL4dUpfE4uiR0pICz3XsuUJRdlcVljN7DiDjnAnHMfZ3YSYwIh+JuHjMJo1awYAyM2tQrdu3+G777ohPMaHtzzw10UTSynEShe1SZOGIC0tDcD5IGZAuGCh0Gt47LYMKLVc+Hw+HDt2TLAKNQAkJCQgMzNT0XeREtIABJ+bMOFFSRejlVYzO86gI9xFYmIigGAJkaZNm9rcGvfDl2rh+10LJHwcRmFhIUaPHo3a2lqMGAF8//1ebN/eHJdcchpdusQDGCFZuVkurqWiokL0s7Us7HrdCGpeH31t+CGiUqSlpakORNbyGjNRKvJGjx6NV199VdF7KrFySAlpwCP4XH19kqSL0c66R1adQccK5ObTT3x8PNLS0nD06FEAwU2nxxMdhkDoheM41NbW4ujRo0hLS2tUZFENJHwcSLio6dIFuOkm5a+Vi2spKyuTfL0ak79eN4Ka1wOQvVbLouaUhVCpRUKusKXa95QT0mLPFRT8ZNnhs0phLfbNbFFCbj7jyMrKAoCQ+CHMIy0tLdTfWiHhEyMorcPDI7bgqzH5N46tUfeeel8fjp5ChXoXQrkFrLa2VtQ1CWhb4JQKNr8/BQcP5gEIFshUK0DkhLTUc2IVsu3IiGMp9o13RUq5Wnn0iBIj769Yx+PxIDs7G5mZmaIuZEI/iYmJuiw9PCR8YoT09HSUlpaGJlN+Yjt+PD3ib8Ccna/e91T7+vBJHBCONZFa1IxaCI2odwOoW+CU9tU331wadewGh2uvfU/R76JUSEs9N2rUKGbipFiJfVM7XrSKkvAK2gB71i4zsMKtFx8fb8jCTJgLCZ8YIryKrthEZ8bOV+97qn199HcrLi5XvagZtRAatVtW+j5K+8rvT4kSPQDgUfy7yBW0FKrcHA5rsSOsHJ8h1p9GulyjxRVL1i6zILceEQ4JnxhEaqJTsuCr3TnpFRFqXi/03crLi8GfnM6jtVCh3oVQbgHTu8Ap7augpa9xBWo1v4vUAsFS4DeP0LjlrR6sHp/h96dg69aeKC8vNswaE90HrFi7zIRVtx4Fl9sDCR8GsHrwS010cgt+9HlLYvABx4B+EaHm9WLfrVevLxotHloKFepZCOTcCUa4G5T2VdAFGCkGxa41ErsmeiU7ftbOoGvsijTHGpOYeJYJa5dVsOLWIyuUfZDwsRmzBn/0AlNTU4Njx44BkF4c5RZ8pYF74Z+tV0Soeb3Yd+vZcyt69twqu6iZdRirnDvBKHeDXF+dOHEidN21126IWFjNtnLYOdEr3cmPGzcwdDAtjx27bn486LXKyREuAviCqFrGgVMsFyy59Vi1QsUCJHxsxowCanILjNTiqPbgSKWuGSWZZFIofb3cwj98+GVo2bIodH10ESyzDmOVcyfodTcoFWybN29udN3Bg7kAgLy8Q6ZaOVgqFig2blk5XFb8MFzjrDHRIiBYCLXxuXNyOMlywapbjxUrVKxAwseFyO0kxMSNkoMjExLODxm5mzV64VSbvqz19UoX/nDCJ2UzJmc5F5Red2C0YKuursb69etlXxcUgi3/+9dvAQhXbjZjR29XjSQnLDJC4wEw1ionLK6CBSbDkRPALAlaOVgJYg+HJStUrEDChzGMXgyiJ/muXXdgx46ujcSN3M3HHyPAT15Kbla91hO1rxe6NloA2GVOlrNEGRFTJCU8xL53x44dZS0cZuzo9YgPPSLMKYtM9HgAAujVqxw9e241zConJwK0Hh3CctFPFoPYWbVCuRkSPgxh9E5UaJI/f7aXumwu/hiBqqqgCVzpzarXeqLm9XLXSvWv2PEWemMT1BSOlHq+pqZG9DOECiAaWaPF6FgEPeJDrwize5FRUsySR64GktLz1MSQEwFajg4x8x4zyuqo1+1uNCxaodwOCR9GMGMnKmzKjjxDRmk2VzRqrmch8FGuf6XcQnpiE5RYraQqN/NZdPzBqWoxelwZIc71iA+9bhUzFhk1h8MqPU/N6Ere0a/nsTKAX889plfw6nW7mwlrVigW5muzIeHDCGbsRIXjBIKZGzxKs7miUXo9K4GPSvrXLDeYlZNE9HcwclwZJaLkxIeUdSvaaiD2m9XU1Ai68IxeZNSMb6XjqFmzZqYGWNsVwC9FZWVlqD1Cn620744ePYpjx44JZp9effXV4DgOLVu2bFQxXOxzwzFTELBihWJlvjYbEj42w0/yShYDtZOh0CQvFOPD32RKdn9qd4uspGzK9a8TAl4B6fgJoe9QWLjXMAuHUSJKTnwotW5J/WZr1qyJmJzNsnLosUDZGQtjRwA/IP6do61Bcgur2PsoHTtayoMYLQhYtEKxMl+bDQkfm/F4gtYXucWAv06O6DN4hCb5/v0/Fpz0R4wY0aiGCRC5k9GzW7RTXMil8EtZMsL7004zr1T/iX2H6dMXG2bh0OsmUntQrhRKrE/hY9QsK4dQu5SIGacIbTWI3WMAUFGRj8rKbGzaVKLoO0v9Tkb0ndqF24zMNavGpFbcOEZ5SPjYTPhZRlKLgdiZR+GI7UqidxJiOwulGRxabkQWsmnE+lfOkqF2N2oGcv0n9R2MsnDodRMpmeijK4OLCQkt1iezfzOlCwUL94KRSAnaffs6YPHi6f/9rufd7Fq/s9q+M8uqZtT76hmTZrre3DZGoyHhwyTKrDvRaDU/lpaWonXr1rbH2JiBEnOymCUjMbEOFRX5TJh55fpPzhpjVEVivZYaNZ8nJSTE4tcqK3Ma1Z6yAjULhZ57gaXA0/C2lJaWhuJqTpw4gc2bN4sUSDwPx8Xh4MFcHD/+q2IBoabvvviiWLGFSQ0sWELMjsWxO/vRbEj4MIQZ6ezRhQuFdiler9f0ydKulE0pKwNf40csFmr58onMmHnl+k9JarLSGDGh407CsSIWQU5IeL2nUFKyCWVlA3F+QfVg06YSdO680/LJWc1CofVeYCnwVElbpKpPA8HvvHbtdQCU32NK++6LL4ojxoZRFgtWLCFmF410e4o9CR9GMDvtWCiomZ9ktAROq8XOlE21tT0SE+tCogfQ9lsYvTNX0n9GZIYoXVxLS0sj3K9WHqTLf6+cnCqIlWewWvioWSi03gssVUhW8hlSWaXBxwH+LDKl95iSvvP7U1BWVgIzxgarlhCjXXqspdgbDQkfRjA77ViscKHXe6pRBoxZsJKyySPmBquoyNf1Wxi5M1cbEKzXGqM0q8Pr9ZoqlpUICZZ2pUoWCqMzy1iqkCzUFqE+KSnZhJycSpw+3Rxr114f8R5S95ia++D48XQIHe5qxNhgaczxmOV6Y22+NhISPoxg5A2lpnChUAaMkbCYsskjdr6V3t/CyJRQvQUQAe3WGBaz8ABExF3ZvStVI2aMzOJhIc5ESVvE+sTvT1F1j6kJjBezNJWUbNI9NlgYc+EY7Slgeb42EhI+NsMPILkbSs1AU1O40GxYT9kU+lwjJzcjFigtfRPuaqurqwsdNcIj1+d2xTIozRAK70ujavJoQe34NmKcsxJnoqQt0SUyampqsGbNGk3znVLraPR7AwEMHLgJvXuXN7pWKWbVgeLR6ho32vWmdDwDaDSnKGkvK5DwsZnogfbAA8ewf38C8vPPISenB4AehsSDhMf4AADHAfv2dbBklyh3ynf4wszKDWOEmdeuBcoIV5vchGrW2WZiVji5vozOWjN7HNmZXcVSnImSM/7CXaLZ2dmGz3c8/Ng5duwYRoyox7Rpu3HwYDLy8s4iKysbwAgkJCRoOuPMzA2cnvvVDNeb3HdQ2t5Ro0ZpqpBtBSR8GCB8EGRnA0VF2t5HalcCAN991zXsaut3iSxlpQhhtJnXrgXKCFeb3ITKixGh99X7+2nZ2arJWtNL9Dg2qx/4zwoXgQBbcSZa2mLEfCclPL1eL5KSktCli7FziFlzktIwg/BjPfixYIfrTWl7papo233kBQkfFxG9KwkvBldRkY/ogD+rd4msl0M3elfHwgKl1dUmN6FKva8Zvx8LfckT/v3M7AdhgRWMb2IlzkTrwqvHYsb6BkovSo/14NHqejPKaikVZM/aHM9DwsdlRO6mslFaWioa8Kd04TDDrM9ScGY4Rk6UdgdC6nW1SQWmWu3Cs7svhTC7H+QE1vTpi22LbdIT86JXuLC+gdKD2nlR7JghwBrxKNVeVud4gISP6+FrrejZmRm9u2IpONNs7EwJVeNq48Wt3++PeFzI3WeXC8+oOkVGiXir+kHqHLaCgp8iFj+r4if0WEeNFC4sL65qkZoXAQj2kVYXrxG/gVx7WZ7jSfi4HL3ZCGbsrlgKzjQDVlJClVr5lIrbgQMHoqyszFK3k5F9aXRsjlX9wFJ8UzhGCCw9wkXvBoql4z8A8d9569aeKC8vNk3caf0NpMYl4GF6jifh43Ksqh2iJsuHpXgNM2AlhV+plU+puE1JSVH1vkZgZF9qic0RWhytDix16/2iV7joPfOMtTghsd95y5ZiqK1wrRQ9v4HcuGR5zJLwiQGsqB0iFngHNJ48WIzXMBpWgirVuoeU7v6sdOEZ3ZdKJ3tpC1HwMSv6wa33i17Lrx5ByGKckNDvXFxcji1bekdcZ6TlRM9vIDcuWR6zJHxMhDVTqh6U3CBqJg83l0O3G63uIbW7P7H3ZR2lk71SC5EV/eDG+0WvJcsoQWh3nJBcGRLezcVjpOVEy2+gNHyC5TFLwsckWDSl6kHuBlEyebAS++J2tLqH5ARBYmKios9n/fdTO9lrdQfI9YPcxkhJoLmTMUK46F1cWUi0ELpf+cKdgHLLiZaNtpbfQGp+CS+hwr8/i3M8CR+TYOkkZSOQukGUTh6sxL7EAlr6UE4QeL1eV/x+aid7qaDTq6/eBKBxWrFcPygNtFaC3YuIHrQIF6UbqJqaGtnfgZVEi+g2qk1K0bPR1vIbiPVpdGVuIViYI0j42Ex4UDALA0IKsRtEzeTB8veLdeQEQXV1daOaIayPWTHUTPbCZ98BW7YUo2fPrZoyq5S60cTK/vM4sf/1Wn7Dj6YIty5Ei0e+crCUVZ3VwHG1m0S1MUtmWt+dMB5J+FiE0mqcrLm+lNwgrBVHJLQjJQhWrCgz7WgGO5CyFACR2VtCQaaAfsuAnLU0LS3NllR1M1GyqNfW1goersuTlJQUqlEGaK+grcT6Z9ccpfU9lYQdxLr1nYSPBagJngs/j4WFgSd1g/B+aJaKIxLqUSJu9aR/R3+WXb+l0t1r+BlD/IalU6cfItKKAWMsA6y4WqxGzg24bNmy0N9im8bS0tLQ82ZUKA++t1/SqsQzevRoNGvWTPQzrBr3avoiludUEj4mo/amZNECpOTztfiJWUwpjUXExK3Sk9F5rDy8UwtKdrnhC1202OvWbQd27OhqaHouq64WO1HqBqyvrwegTTwqdfVwHKeoLa+++mroOjvHfawKabWQ8DEZsYF48GAujh//VTaYMdwCFA4L1iAj/cR2p5TGOkYEgFp1eKce9ByrsmNHV0yY8CLq65MMS891a40eI1AquLWeEK/E1XP+wGdlbZEa92JzOf9ZRsznRgpplq23eiHhYzLCgZEBrFt3XcTNEbSWKD+RF7BmByE3+I0w8bKQUkqIY1X6N0uIib36+iQUFPwk+3o1qeos1zuxE6WCW6t4VDJ38jFGSuuYKSnyaqZFyCghzbr1Vi+uFD5/+ctfsHDhQhw+fBjdunXD0qVLcfnll1vaBt7KET0QgQCC55h4AARvjnffHQqPB6LWDrtcQFbF4JB5lm2MSv920u+pVuyFWzW1pKqrrdETLqwqK+NQUZGAgoJzyMkJhNrjxAUpHDW/gdniUUlblIx7KyyhRvSFE6y3enCd8Fm9ejVmzJiB559/Hj179sTixYsxaNAg7N69G5mZmZa1I9qUOm3abrz22lacPt0ca9deH3V1HHhXcvQuwU4XkFUxOBTnwD5607+d9nvKiT2pE9GVLhpKEHIThwsrNanwThNDagW3mQUelbRFbtybaQmtra1t1F4j0tPdYL0VwnXCZ9GiRZg0aRLGjRsHAHj++efx/vvv46WXXsJ9991naVuiJ5mCgp/g96cI1gQJh98lAGBm0JkpwJTUjwnHaRO4W1C6sLglbkVK7Cmp2yO3aGit0aMk7gQA5s//l+NdE1K/QUKCsuXLqAKPcuJfbtwbZQmNdqOqyTxT+9u7wXorhKuET11dHbZt24bZs2eHHouLi0NJSQnKy8sFX3P27FmcPXs29PfJkydNaZuc6yv4Lwi/S2Bl0Jml+pXGOQjFOTltAnciShcMoevcEreix4ogd/+qrdHDL3jV1dXw+1Pwww8Xi1aU5s93it6kHD161HEuMrHfIC0tzfJaNHLjQWrcG2EJFXejpsh6CKRiMcVwg/VWCFcJn+rqajQ0NKBNmzYRj7dp0wY//vij4GvmzZuHuXPnmt42MddXq1bHsW9fB9FdAguDzgwB5vP5InYpgPCkQinu9qG3yJmZrgez0CP2opFbNKItmeHvHd2njd1b0//7vhzCN01AIOJQy+hNCl+jSGqBNHNToSQ2Sc1vYLZI02ItEhv3RlhCpdyoJSWbsGlTiaEbVLdYb6NxlfDRwuzZszFjxozQ3ydPnkReXp4pnxV+kyYlJWHLlmB2iNgugZVBZ4bqVxI/RCnu9qNmYTFSNNiFkRVt5e5fvkaSkmwZMfdWUPQExY/HE0D37tuwbVuPiHaozT4ya1OhNDZp2rRpzFQVVlplOryOjxRGWUKFfsOyshKEF9jkH9frIXCL9TYcVwmfjIwMxMfH48iRIxGPHzlyBFlZWYKvSU5ORnJyshXNi0BJRWSAjUFntgATmgQLC/dKTs6xHPfDan0Nt5TBN7J9UvevlmwZIesr4MGgQR8iEOAXv6hnNWQfmYHSmjh1dXVMHdOhZDxIjfvw+RwwxhIqPA7iTPMQONF6K4WrhE9SUhKKiorw0UcfYfjw4QCAQCCAjz76CNOmTbO3cQKI3VBmHiCnFbMEmNgkOHLkOsnJOVbjflg/5kPrZ/Jizu/3hyryhpOQkIC0tDRHCKdoxFy4WuLmxKyveXkHsHz5RETv+LVkH5kNK7GLRiI1Js2whIr9hr/73Wf47LMrwYsgrRtUN1hvpXCV8AGAGTNmYMyYMbjssstw+eWXY/HixTh9+nQoy4slpHbupaWl4DhONOvDDv+2GQJMbBIEONWTcyzE/ZhZYsAuS5KYmHNS0bTwvuMPOZVC6+IvZn2tr08WzBQdOXItOnfepeg9rBIddgsvqzHDEir0G3btugOff35e9JSUbNIcGuAW660YrhM+paWlOHbsGB544AEcPnwYl1xyCT788MNGAc9244TKmFYMfvEd7CHRyVlJQbhYwMgYKDstSUJiTioziTWBK3wv5wseqllfX4/169frWvyFrK9CZTL4+0jpe1iF3cLLDsyYw8N/w8TEOixfPjHCgrhpUwk6d96puV+dKmqU4DrhA5wPjmMZlitjWrnzl5oEhSZntwQ8C/VxuJuHd+2EE25Zk3OViGUM8e8T/fuxcmDsN99cinffHYpwl42YG4iVWCel97LX6w1dp3fxj7a+ank/O+M2WIhdVAor40wI/jesqMiXtSA61S1lBq4UPk6CtcqYduz8pSbB8MmZtb7SitI+FqK0tBSAvKtE6ow3QPr3k1q8wwWVkglfyaLBw/++0XEqQOR3q66uRk1NTSg1WwqjLVRC34fvE7Xj0+jFX+r9RowYgcTExEYlJISwKnHACQGzrFnmxcSLnAVx1KhRrrbgqIWEj82wFuhn1c5fafxQuHtATV+xvEtT0ndi/c5bhJS6StT+fkoPWuSRmvCVCjwpMSf03YQOe+Rfb6aFSnoR1HYvK138le7Wxd4vIyND0Xv4/Sl48slvmHK52wlrlvno8AM+Y0zO4idVIdwKDh0C9uwBOnYEcnNtbQoAEj62w3Kgn5luJTXxQ/wJyUr7ivXMp2iixYmSflfi2tDy+6ldvKV+P6UiWkrMAcKZSeHfLVjHhkN4JosZ7k+5RbCwcK/s+NSaLSN2v0SnSksh9B7hr5caL5WVlairq9NV7ZnlTCGxjZJWa56ZiPU1a+5Dvk9XrWqKWbO8CAQ8iIvjsGCBHzfd9Kutm08SPjbDaqCfFTe62kGvtK+U7r5YCJLVU31VaqIzOl06MbEOFRWNA3a1fk8lYg4IoFevcvTsuVXyu4Uf+WLFgiTWt9OnL5Ydn3oSBoQeUysmxO45oe/07rtDkZR0Fnl5B7F+/Xrd1Z5ZzRRS4s6ywjJvhJWaFfch36d+fwoWL54Ojgven4GABzNnpuLnn1+C13vKts0nCR8GYE2pA2y54MInd6m+ElsEWM0C01J9NfpgRrGJzsh06a5dd4QyRrRYVNSIMCX3gpRLTOn31INU3yppv5ETvVFiQqwg3tq11ysS5Eo3ESxYWKNRYsk7fbqZqZZ5rbFESoUvfy6iVeez8X0qNw/Ztfkk4cMIrCh1HpZccHomd5azwLRUX5U7mJF3XRiVLi2UJitnUQk/TFPse4ZPfqdORb6P3L0g5hJT+z21Ite3Su9lo+LQjFi0pPqUT41mZSNkFmICneOA4GYkEOojoy3zWmOJ5OZGPglg9erVtpzPxtI6Eg4JH5tg2d8NsOeC03JTsuSXF0JsUgjfXYu5S+RQ+/uJBZsrSZMNRyi+Sm7yKysrAxDMPPF4PKKVm8+dOycayMkvTlaMU633Rngfs5Yt1NjNGAnvegy3RrKwgKlFKitPvJgqTxw4LoDrrluDvLxDmsaYGbFESsaHXeezsbaO8JDwsQm9JmorspZYdMGpgSV3nRBik0L37t+ic+eduvtdze8nli2idscmNCaFvmdxcXmj69LS0iTPaOKD3IW+GwBLx6lc6nhGRkbE9dH3I2vZQsD573TwYC7WrbtOtSBnHbmsPDlLYpA4NG9eq1n02BVLZOdcyOI6QsLHRvSca2TWblFpmnl0WX6zgxK1CD25RVttTRqjUBKzJNbvchZAPceMCH1/vTs2fmwWFu7F9OmLsXVrT2zZUowtW3qjvLxYl+sx+rtp6S89SKWOKz1kkzWrZPA77UJdnXmC3C6UiE0xSyKPmOhXMs6UfL5ZriG7XU6shXKQ8HEgZu4WhSxRfr8/ovCZ35+C+fP/ZZlZXmt6utyiraYmjZGIWfuUVG62KnNGb0A5IJyxVl5eDH4hUbvIKxUxpaWl8Hq9hotZM9zTcjvx6upqU0W5WFvVCnInISU2o7/3vn0dROcP3rKn9veRE7tmuIZYdTnZBQkfB2PWblHqJrbDLK+0HgxfayTcGiV2rpEdxzGEI9THSq0EWt5by3voEVBCY1NvgKzd6dBmfL6weyVYPgA4L87NEuXh3ym6JpAbRI4QcmIz/HtLiX5e9NTV1UW4YcMRGg9yn2+Wa4hFl5NdkPBxMEb6baVcSXYU8QpvT7hLSkp4RVtw+J2/0iJtRCR6FlrxQFF9AbJ2p0Mb/fmNg4qDhRiXL58YMTaPHj1qqqDTC4vnQEXPafw8otbtIyYAhSzhSkIOlHy+2GfqPU7EKjHLevIOCR8HY5TfVmnMkFUBcmKuLTHhlZl5GPX1yY3a6/V6I6worMVTuBmtGWt6YfmoEjG6d/8WmZmHJcsGrFmzxnRXrFpXYvjrWOtT8TktRdbtM3DgwFCmoRRcMAAIgDpLuFa3k5OOE7HbOisHCR8HY5TfVmnMkFUBcmKurdOnmwkKL6XF9VjP8tKK0sXeSlFgdsaaEE47qiSc+vpkwbG5dWtPXH31JgDmu2JZX6zUoGROE3P7FBQUKOoH/nktGyolWYFKLdVKDwGWwgzLC8vjhISPwzHSbyt3A9sRIBd5JlMAQVeAJ+wKTvGEY3dmgxkoXeyHDBmCDz74QPa6UaNGhYKqtSxyZmasyWHVAbtGEP1dxVKpt2wpbnRkh5mwvFhpQcmcJoSSfuDjevRUSVeSFajHUu0mMWskJHxcgFF+WyU3sJUBco3PZOKrp3JhQkj5hOPGzAali70S0QMAa9asifhbrXVEbKKtqanBuXPnAACJiYkRrhLA+MmX9Vguvp8qKytDRRmLi8uxZUvvqCudb5G0Ey2iRK0AV7qh0mp90WupjjVRowQSPg7ELPOl0hvYqgA5sSMdRo5cg+bNaxsdpyDW3nDcnNmgZrFXen6Z1pII0RiVsaYEu2K51LoS09PTI67v2XMrtmw5n+4PON8iaTdyc1p0sUktAlzphkqr9cWNlmq7IeHjQMwyX+q1iBjtJxa74cPLxStpr56ifk5B7nTt8O8rdhAjiwe5asGOWC4j4ou83lO49lp3WSTtRm5OU1NsUgqlGyot1hc3WqrthoSPQzHLfKm2FD+PGX5iJTe8VHtramqQnZ0dE35uudO1eeuPmEDyeMCsW0gtduyQtcYXRYttN1sk7cKqPjXTEk7jwlhI+BCNMKIUv1EZREpueLH2hqcAO1nUKEHudG3e1SMmkPjMXDek+Bu5Q9YyjtW4HNPT01FaWhpRD8athQPtRKxPo4/eiUZqnrI6Y4rGhXGQ8CEMv4H1niWm1DUVDssZPGrRstg2LoQXCe/qUXIQoxtS/I3YIatxX/FoiS9q3bq1ovY42RVrNUr7KjqYXwixecpsSzLrRQCdDAkfwrAbmF+wlVZaFvs8Je2pqakJTVqsZ/CoQU+siNzp2rwAiBRIAQTLA3gaXes0jI7l0uK+0hJfFAuuWKtR0qdKKy/zR+FEY/ZvQuPCPEj4EAD0xwwJWXkOHszTVX9CCW6rxqzUQsVfJ7zYC5+uLVaSQOogRidh5kKhVFxrjS+ixct41PSpmqNwwjG7GKZV48KJFc/1QMKHMASxSqnRGO1GcWs1Zh65tPPwxT58Byvl6iktLQUARdc6zYxuxuSsRlxTBo7zUPL7usmVHo3e0AQnQsKHMJTGRQcjMdqNwmKNC6N2T0qtDPx7ZWdnq7J4kBldGXLiOvrgSMrAcRZyv6+bXOlCKD2yyA0ij4eED2EowllDQczY/bK2wzbqvCitLjy1VZYJeeTEtZArRCy+qLa21ryGEpqQ+n3l7sNo0RuO0zYOesMGnOQuI+FDGIpw1lAA1123NqLwoJGwtMNWG6Mjhlorg55JxUkTlh0oEddKK2G/+uqrrnIZuAGp37eiIl/yPpSK/wG0u4fsuCf1hA04zV1GwocwFLFJpHPnXYZ+jpXVmPVMQkoXxGi0WBm0TCqsnWjOqgiTEtdi7gE3x4U4GaHsU7HfV6kr3cjf2q57Uk/YgNPcZSR8CMNRaoHRI0qsSvXUMwnpiQ3Q4sLTMqkYZaEyAtZEmBJxLeYe+PXXJti0qcS1cSEsokQ0AxAdY0K/r5L70OgYIK1VwPViRNiAU7JsSfgQpiBmgeGPvTBClFix+GkVBlongPDFVkxAarUiKcHM95bDbhEmtHCWlpaivr4eAJCQkIC0tDQAQHV1NdavXy/qHigrKwF/2Cirh6S6CaWimc9olOOqq67C5s2bAUhv5Mxe6K0OrNYbNuCULFsSPoQhKLXe5OTkOHryVSoM1E4A4YvWqFGjcO7cudBzJ06cwObNPwEwdyJkLXvFShGm1dok5h5w4iGpTkaplYQXsXLXRVfTFtvImbnQ22U90XM0BotZtkKQ8CEMIRaqjKoRBmomAKWLlpkTodWTrJB1QmnFbzPQ6l4Qcg+UlGwKubl49Ez+Siw5drlHWETp2JG6Li0tDdOmTcOxY8caiSWA34xsNnWht8p6YuTRGKxl2YpBwocIcegQsGcP0LEjkJur/vVOFjVyqBUGaiYApYuRmROhlSZqOaFnd5yAWtEl5B5o2vSMYYekqnXhsGa5sxKlY0fpdeFHWghh5kJvlfUkugiqkNBLSEhAXV0dfD6f7DzPUpatGCR8CADA8uXA5MlAIADExQHLlgETJtjdKnZQKgyUxOhEXxeN2G7dzInQqPfWYp2Ixuo4AZ/PF7I2KV0Q5QKfjZr8lYpifrGyWzTajdKxo+Q6pVY0sxZ6K60n6enp8Pl8skIPUOYu1eMuswISPjGOz+fD/v3nMHlyJgKB4EGVgQAwZQqHSy45ivz8BFdbcpSiVBjodflJ7dbNnAiNeG+tAabRC4qVcQLRbVa6cAr9zuEH5wLmlFiQi3tySnCpWSgdO2rHmJwVzaxyGlZaT/QkFzjtJHkSPjEMP+lXVOQjEBgT8VxDgwdLl36AgoKfLAmIDLcUVFbGoaIiAQUF55CTEwBgf3yQGmGgtZ1KdutGn6tlhIWKR611AhBfUKza6Ua3Wc2CGP07qz0yRC1KXFhOCS41C6X3qZr7We6+5DNVo9H6W0dX97arCria5AKnxXiS8Ilh+EEqN1maHRAZvuuWmtztyEgxUhjIIbdbF5tg+c/X0jdmTlhyE6fYgpKZeRgtW57AhAkvor4+yfKDU4uLy7FlSzEA9aLLrPGp1IXllOBSM5G6TxMSEhRdF+6SlbsvMzIykJ2dbVj7mzVrZuh1WlAisp1cPoGED2H7ZMnfPHKTux0ZKWYKg+gKsnIC1OgJlseMyUnJxCm2oLz44kSEi46CgmAq/4gRI0wthxDd5uLiL9Cz51bL7gOpTDc1LiwnBJcajdJK7pmZmYrv56qqKgD2W9Gsrq2lRGQ7vXwCCR8CABuTJavxCWbcuEITh90C1CiUWieEz3XjIFb4LyMjw1KLSnl5MXr23BpxnVnWJrmFRG7xDbdkAOYe4aIGq6wCZm5Q7Lwv7cjQ0xL4LQar5RNI+BAh7I7El5vc/X5/6HEW44DUIDYhmO1OswKlAlZoQbFL+CpxM5ppbZJbIOQWX77uDEuuB6utAmZ+Nzs2hnZl6GmxcNlZ8V0LJHxsRG/dHBYw8jvITe58qiVrcUBGED1x8N/ZyCM+rEKNdSJ8QUlMrMPy5RNtcSkocTNa2f9CC4mcKGZtfBhhFbAzjsTKg5CF0GIBN6K/1Fq4nFg3ioSPTbihbo4Z30FuZ8ViHJBepCYOs+J6zEStdYI/9wqAbS4FltyMUuNh3LiBjQLcWRQ9Qqi1CtgdR6LEfVZbW4u6urpQPFA0en4btZYXvf2lJpFDaVwmq5DwsZhDh4AtW4BJkwCOCz4WrJsDDBrkDMuP2bV/pFxurMUB6d1hyU0cNTU1jhE+aibO8D6xMnNOT5v1IjVWlBZQdKIQBrRZBViII5G6d30+H5YtWyb7HlqFmVoxrre/1MRJ8UKPtflYKSR8LCTcQhJNQwOwd6+1wkdL0Sm7a//YnWERjhE7UrmJY82aNY5x32kNMLWzBohVn610rMiNh/DzzIxuo1kYZRVgLY7ELGFmlBjX0l9qxxBL87EaSPhYxKFD4qIHAOLjOaSkHIXPZ12lZC2Tvhm1f9TspllySRhxMKSSicNJ7jutY9fORduKz1b6G8qNB94lKASrAtkIq4AT4kiMEmZGiHEj+0uqzAJL87EaSPhYxJ494qLH4wngmms2YMMGYwJ01QQca/0cIwe82CF5hw8n4MCBZLRtexbNm59AWVkZADZS76PROtEI9WNJySYmvhNhHmKLpJ77ilWBrNcq4IQ4EqOFmZ7538j+UmKplJqPza4urRUSPhbg8/mQmnoOcXHnY2KA4M0/cuRa5OUdUmwhkMPKoGkjBUj0IXnCE8n568XigIRcAWa7AbRMNNHm7F9/bYKyshJwXBw2bSpB06ZnmNvRsoSTq8bKLZJKAvxZcvnIoXeTxLr7T6vQMGsMGxl3o3QtEpuPX331VSYtkSR8TCZcMQ8d2njC69x5l2GfFe1O0xM0rdRqZGTtHyMyBVasKBNcFMy8+bRMNOnp6SgtLcXq1avh96dg06YSiBXuU4vZosBu0WF3to8etJz7FJ715gSXD49RsSqsu/+0pp2bNYbNjLvRIrpZtESS8DGZ8B/dTBeNz+fDl18CgUDkTdLQAGzd6kPTpsrNp3an2mvdsUgtCmbefFonGq/XC8DYHZrZooAF0aH0t6ysrBS91i6LkJ5zn5zg8gnHqMBx1t1/Wu5/MzPWzIq7kRPdTrJEkvCxGDOqI/OLkd+fAo9neqMb8IsvXsbOnadkFyMlaepWIDeRhO+K+d2wnYuC3onGyB2aEQHXdr6/FsTaIGUJAOyxCOn5rZ2YOqynf5VajAB7F10jhIYR7TezNIPc/OokSyRAwscV8IuM3A0oVyFVSZr6qFGjzPsi/0Xuewjtiu1eFPRY8+zaoemFhclOTxvsMMHr+a2dmjqsFSmLEQvuP6OEhlHtN7M0g9T8CsBRlkiAhI/r0LoAK01T93g8gq+PRm/BN7Xfw45FQW9Jezt3aHphwe2itA0smOCN+K1ZTh02K+5L7jV2jkMjhIbR7TfLgik1v9q96dQCCR8XosedJje5er1ey4rNqfkediwKeic+u3ZoRvQJC5OdkjawYJUC9P3Wdla2VoIdcV81NTUA7B+Her+PGe03Q4TKza9Os0SS8GEQu0/hFppc+V1zZWUciorYypThsaK+j9GTih07NCe8vxFtsMsaYMYYYe3k9XCsPlrC5/NhzZo1ANgYh3owuv1Gi1Ah0X3wYC4AD/LyDgJg2xIphmLhc/LkScVvmpqaqqkxsQxrp3CHW1vCd82vvMKZluWVlJSkyC0h5w4w64aLnlTE2jpq1CikpaUJvodVv6/ZkxELk51cG+ywBphl/bBjTtAq4Mx2LYa3iYVxqAej22+0CE1PT8eoUaNCQnPfvg6CFlQWLZFSKBY+aWlpsvEdHMfB4/GgoaFBd8PcgtIfPScnhwnBE030rjkQ8Bh2GCkPP8GuWtUUTz99NwIBD+LiODzwwM8YMeIEEhMTQ6nfUgdcSmHEzRc+WUi5UPhJQgyrsonMtoDZVUFbqevHDmsACwdrGoEaAReOHa5Fpy26APvuy3D4TZycBXXcuIGNalCxspGPRrHw2bx5s5ntcC2sm6nlENo1G3kYaXgq/uLF08FxfBq9B3Pn5sDvXwOvVzwV347+1RtUa+aipzfg2qj39/v9oeuNHttyvzmf8cOCNYCFwGotaBFwdrkWxfq4tLSUaUuZFfOWkeNPTw0q1lAsfPr27WtmO1yN2TefmVYPIw8jFYJ/vdxNJfU5/HEX/DWVlXGoqEhAQcE55OQEUFdXB5/PZ9jvwHJQrdkTavj719TUiFq3+KNHAHMsXFLvx8pumpXAaiNQsoBqdS3qiYmS6mPeSmwlLBT45DF6/Dk9nioczcHNNTU1WL58OXbtCh65cPHFF2P8+PG2DLZYx4jFTmwRsGrXrOemCp9spG52oyYbVoNqecyeUNW+v9VuHRasrHaPASNRuoBquYf1CAUW+5gVV6cZfcOCBdUoNAmfr7/+GoMGDULTpk1x+eWXAwAWLVqERx99FBs3bkT38NMkCUvQO4lHLxbhBcKsiOUwoiy93M1u1GQT3VYg8kR1u1Ns7YIlt47drmOrxoDZ56apWUC13MN6hIIT7jO77gkj+0apBZV3bwu93u77MRpNwufuu+/Gtddei7/+9a9ISAi+xblz5zBx4kRMnz4d//znPw1tJGENUoPTzGwpHr0Cy8qJkD9RfdOmxiequ8kkrBRW3Dp2H6DKY8UYsMKtouSessu1yPp9JnVPhJ8ob8aYNLJvpCyo4e7ucPd2NKwdGKzZ4hMuegAgISEBs2bNwmWXXWZY44jYQ4/AsnIi5E9UF9sJS+18wyc9HhZ3RUphxeXAUnyFFW4BK85NU3JPGelaVFPOQq6P7cyIkrsnos+RM2pMqukbNZsEvW1jLYtRk/BJTU3FgQMHcNFFF0U8fvDgQaSkpBjSMIJQi9LFRioQGlBWQVduJyy18xU7PJO1XZFSWHE5sBBfYZf1wyyLm9J7yohxq/Q7RAutBx44hv37E5Cffw45OT0A9LB9I6H2njBqTCrtGwDMbBLsQJPwKS0txYQJE/DEE0+gV69eAIAvvvgCM2fOxI033mhoAwFg//79ePjhh/Hxxx/j8OHDyMnJwejRozFnzpyICWTHjh2YOnUqvvrqK7Ru3Rp33HEHZs2aZXh7CG0cOgTs2QN07Ajk5przGXLuMj2B0OHFvJTshMVTve0/0dxIWHU52BFfwWJ5BS1uFasFnFqrYfh3yM4GiooMaYZhqL0n/H6/YangSvqmqqpK0XtVVlY2ek8pWIrzk0KT8HniiSfg8Xhw66234ty5cwCAxMRE3H777Xj88ccNbSAA/PjjjwgEAnjhhRfQoUMH7Ny5E5MmTcLp06fxxBNPAAhWlr766qtRUlKC559/Ht9//z3Gjx+PtLQ0TJ482fA2uR2jUuTDixPOmuUNFSdcsMCPm276FbW1tYa2B5B2l+kNhOaLecnthPlK3AAbJ0mbCYvZHnb2s9U7ZDnrgha3itUCjhWroVGI3RMAUFGR30gYrF69mknrCj92lLTNSXObJuGTlJSEp59+GvPmzcO+ffsAAIWFhWjWrJmhjeMZPHgwBg8eHPq7ffv22L17N5577rmQ8HnttddQV1eHl156CUlJSbj44ouxfft2LFq0iISPBoyY+KSKE86cmYqff34JXu8pjB49WnLsmGG2NmKildoJCxXzYiUWxihYqZcTjZZ+ZiUoWgtqrQtqjiuwClathmqRuif27evw33lQWBjYafGVs9TItc1pc5uuQ0qbNWuGLl26GNUWVfj9frRq1Sr0d3l5Ofr06RMx8AYNGoT58+fjxIkTaNmypeD7nD17FmfPng39reZMMrcg5oIyKqBNTmQ0a9ZMl5lXjXWKb5NRE62aYGy37WpZqJcjhNp+ZikoWgtqrQss4YRAZTWIlQVhWRgYYalx2tymSficOXMGS5cuxebNm3H06FEEAoGI57/55htDGifG3r17sXTp0pC1BwAOHz6MgoKCiOvatGkTek5M+MybNw9z5841r7GMs3w5MHkyEAgAcXEw5QBSs3dzahZg3ret1T2jxwXoll1tOCwKAb0WECfGYKm1LrCC2kBlJ1jmhD6fVWEgJMjefXcoMjMPIzdXWRwQIH/PRWey2v07aRI+EyZMwMaNG3Hdddfh8ssvlz28VIz77rsP8+fPl7xm165dEdljP//8MwYPHozrr78ekyZN0vS54cyePRszZswI/X3y5Enk5eXpfl89WBEE7PP5sH//OUyenIlAgHdBwfADSAFrYkCUtNXn84VuQL8/BS1bnsCECS+ivj5Jcd0gPVYOFmNh3IiefparvWL3hB2O2LlpZloXzBAeSgOVnWyZExIGAIfKyhwUFPxkW7uEBBkQh+XLJyoSy0otdkKZrHb+TpqEz4YNG/D3v/8dvXv31vXh99xzD8aOHSt5Tfv27UP/X1lZiauuugq9evXCsmXLIq7LysrCkSNHIh7j/87KyhJ9/+TkZCQnJ6tsufHIBQEbOeHyE0hFRT4CgTERzxl5AGk4dp3kzSOXzaVm8tHTJ3b3g5vRG3OktPYKKwurmFvFLOuC3cKDhXIFagkXBiUlm1BWNhAAbyjwYNOmEnTuvNO2eUBYkCkXy0IWu+++O42dO9+W/U52/k6ahM8FF1xgSL2e1q1bo3Xr1oqu/fnnn3HVVVehqKgIK1asQFxc5A9VXFyMOXPmoL6+HomJiQCAsrIyXHjhhaJuLlaQCwL+8ssy5OUdxJw5YwyZUJTGuRg9MK2o/iyG0mwuMzD7xHQ3o7bImp6YIzHBcPBgLrzeXaHHWFpYhb6LWS5VJwoPuwkvgZGTU4XzoieIXe6uaEvNu+8OBaBNLEdb7HJyqnDw4PnXsJjirkn4PPnkk7j33nvx/PPPo127dka3qRE///wz+vXrh3bt2uGJJ57AsWPHQs/x1pybbroJc+fOxYQJE3Dvvfdi586dePrpp/HUU0+Z3j69yAUBr117PTyeAC644CTuuce4z41F14vS3bCRIoTVIGDW0WJh0NOHYrvfdeuuQ10dmzEyQlh1X9u9oNn9+UrhS2DoPYjZyPmDn5OCdXrWIzPzMJYvn2i4WGY1xV2T8Lnssstw5swZtG/fHs2aNQtZWHiOHzc2WLOsrAx79+7F3r17kRsV9MJxHADA6/Vi48aNmDp1KoqKipCRkYEHHnjAUansYhMvEFycZ83yol+/I4bG38Sa60Vu8hkxYgRycnIMFyEkatRjddCx2O6XpQwcKawsL2D3gmb356tBb+aaWS7G8Gtzc6sMz6pjOZNNk/C58cYb8fPPP+Oxxx5DmzZtNAc3K2Xs2LGysUAA0LVrV3z22WemtsVMom+MaAIBc+JvzHJBGVUE0UjkJp+MjAwSKQxi1ULXvfu3SEo6i7Vrr494nIUMHDmssizavaDZ/flq0XvEhpkuRjOP/2A1kw3QKHy2bNmC8vJydOvWzej2xDz8Tu3gwVysXXsdwneeZsbfmAGrLp5Ys3I5HbmFrqamxtA6UHl5Bx1bdsCKe8nuBc3uz9cCa0dsiLnOcnICyMmpM2ReZrl8hybhc9FFF+HXX381ui3EfwlaYHahrs758TesWk/sDLQm1CG30K1Zs0aXBTQ83mH9+vUxGfumBrsXNLs/3270xjZZlZ3H8n2kSfg8/vjjuOeee/Doo4+iS5cujWJ8UlNTDWlcrEOWCYJQttDptYCmp6dHvAfde+LYtaC5rcqzFoxw+ZqdncfqUTbhaBI+/LlZAwYMiHic4zh4PB40NDTobxkBQJtlItyMWVkZh4qKBBQUnENOTrDCthkHg7IOi/FGhDKEYt84Dti3r4OhcT5UdkAaMxY0PeUKjIxHcQJaY5ui+zi6irLRsBriEI4m4bN582aj2xHTGDmRyhXq4xcKOw4GtRMn3IyxiNTCFz5BFxbuxX8TOP+L8QGtRo8RJxyvoAYz+kdPuQIWYmWsREtsk5I+NqMsAOvjWpPw6du3r6Lr/vCHP+DPf/4zMjIytHxMzBA+ofDVV7WitFCf3oNBnQjrN2OsoXThA4KTvtYCa2qtCkZgd5VjszCyrVQQUR1aYpvk+s7IbEknCX1dp7PL8eqrr+KPf/wjCR8FqB0QcucGOTHzgYgtlNbpAbQHtNolQNxw8KnVOKUgodUYGdsU3scADCsL4DShb6rw4SJt04QCpM4RCp8U5M4NivXMB8JZyO08tQbUsiBAnFRszy6s7iMnWSeMim2K7uPi4nLDNsdOs96ZKnwIcaRuvFGjRqGmpgYbN24EID0piL0Hy6mEBBGO0qBNvZlWdggQpxXbswOr+8hp1glAf2yTUB+XlxcDCECsVpybIeFjA2piG/RMCpSSSzgBNW5ZrZlWdgkQcjnLY3UfsW6dMMMaJdbHvXp9gfLyYsPLArDutiThYwNqYhv0TgpUqM8+rDCnO8lkL4acW7a0tBRer1f09Uq+o10ChFzO8lAfnccsa5RYH/fsuRU9e27F8eOtcPPNPdG5s/6yAE5w7ZLwsRm5QUKTgjOxwpzuRJO9EHJuWa/XqzsD0a77iCWXM6si2e4+Ysk6YZY1Sv4eO4XOnQfpvs/kLKtiNYSsHnuqhc+5c+fw2GOPYfz48Y1OSo9m9OjRVMVZAiXmd7WTAhXqY2OCtyKoloXAXaMw2y1r5+LKgsuZRZHMQoVf1q0TekWZUB8fPJgLwIO8vIMGtjSInGVVqlSLlWNPtfBJSEjAwoULceutt8pe+9xzz2lqVKyg1PyuZuKM9UJ90RO82MRh5U1mxeRqxWcYLSitrpRspQCx4rup+T1YFMl2z1WsB54bcU+np6dj1KhRWLNmDYBgtXMz5wklllUWxp4mV1f//v3x6aefIj8/3+DmuJfwSYo396kxv6uJ1XGrqFFC+M2jJRvOaKyYXK34DDMsBlYsfHYdQxH93fx+P+rr6yOuSUhIQF1dHaqqqlR/Tz2/B0tWDjvnKpYDz428p9PS0gx/z2iU1hpiZexpEj5DhgzBfffdh++//x5FRUVo3rx5xPPXXnutIY1zC2KTlBHmdze7rPTAym7OisnVis8wy2Jg9sJnp1WBf0+fz4fVq1fLXq9GNGr9PVi5L1iA5fhJuXta6rwtsfFs5jwhVWsoKakA69d/y9TY0yR8/vCHPwAAFi1a1Og5OqS0MVKTrpT5fdSoUSG1LoSbXVZ6YWU3Z8XkavUEzsquTSl23yNmu5nU/B6s3Bd24oRT3uXuabljjYREtNnzhFitoaqq4OHYLI09TcInEAgY3Y6YRsz8npmZafuk7VRY2c1ZEVRrZeAuS7s2J2K0aFT7e7ByX9iJE05513tPh4toVoQeS2NPk/D529/+htLSUiQnJ0c8XldXhzfeeENR4DPRmBEjRoTONbP7xnM6dqfIhmNFUK1RnyEWMMub1lnatTkNM0Sj2t+DpfvCTlg95V1pphuPkqwvVoQeS2NPk/AZN24cBg8ejMzMzIjHT506hXHjxpHw0UhGRobjT0xnIZWcx840YiuCao3+DCUBsyzt2pyGGaJRy+/BQno9IYxcTFp1dXXIzaXGesiK0GNl7GkSPhzHwePxNHr80KFDkhVWiSAsFcwyEhZrhdhVudqKoFqjP0NJLApLuzanYYZoVPp7qBXJLG1gYg0l/WqVy9mIcWBXZqUUqoTPpZdeCo/HA4/HgwEDBiAh4fzLGxoaUFFRgcGDBxveSDfhtMBQNbBwBg5LBRytWBjM+gypccrKrs1pmCUalfweakQyixsYlrFDJOqxHiptr1HjwO56TUKoEj7Dhw8HAGzfvh2DBg1CixYtQs8lJSUhPz8fI0eONLSBbiLWAkPtsGyxeJM5DaUVxe3etTkRo0Sjll202anysYhdIlGr9VBNe40cB6zNt6qEz4MPPggAyM/PR2lpKZo0aWJKo9wGP/nIqXQ3LRp2WrZYu8mchtw4DQ/CD4cEpTBmmPqtEvhutlAbgV0iUav1UGk7KisrI/522zjQFOMzZswYAMFOPHr0aKP09rZt2+pvmYvgJ6n9+8/hlVc4BALn46Pi4znccccQ5OcnuGbRiDXLltuQ2026IQjfSswSKWbPF3Qfq8MKcWD0+WZiQi28TpAbx4Em4bNnzx6MHz8eW7ZsiXicD3qmAoaNSU9PR3o6sGwZMGUK0NAAxMcDL7zgQVFRG7ubZyiU8uxsKIDZeJy4qaH7WDlWiQMjRbRSoebGcaBJ+IwdOxYJCQnYsGEDsrOzBTO8CGEmTAAGDQL27gU6dABkDrh3JG5KeY7V7BYKYCbcdB+bjZXiwIj5RkyoZWYeRn19coQFyI3jQJPw2b59O7Zt24aLLrrI6PbEBLm57hQ8PE61GESLHL/fb/gZSyzDWtqpkaIzVgWsHpx6H9uB08SBmFB78cWJACItQG4cB5qET6dOnSQPSSNiE6P9z1aiNNtBCDWBiywvwCxlxBmZLUPp2dqJRcuflnvUaeJASKgBHABhV53bxoEm4TN//nzMmjULjz32GLp06YLExMSI51NTUw1pHOEsWFo41aJEvOhNz3fCAszKb2NktgylZ6uDNcuflei5R50kDoSEmpyrzk3jQJPwKSkpAQD0798/Ir6HgpsJVhZOozEiY4OFAo9OxMhsGbel5ZqBkzcwelErkp0mEsWs8omJdVi+fKKoq85tJSw0CZ/Nmzcb3Q6CYIrwCQ+AKRkbbj26xEiMzJZxY1quWThxMTMaJSLZaSIxur3hZ39JuercVsJCk/Dp27cvPvvsM7zwwgvYt28f1q5diwsuuACvvPIKCgoKjG4jQVhK9IRXXFxueMYGWR6UIZctEx5rKLfAuDEtlzAHNSKZFVGjlPD2aonLZDlOUSmahM+6detwyy234Oabb8a3336Ls2fPAghmwTz22GP4+9//bmgjCcIqhCa8LVuKDc3YIMuDcuSyZcILrQHS8VF2Zt64YbHQihO/u1EimfXvrtZiFR0DJWa1Zj1RQJPweeSRR/D888/j1ltvxRtvvBF6vHfv3njkkUcMaxxBWI3QhAfEobj4C5SXFxuSsUGWB+WIZcsAQEVFvqoAZbsyb9yyWGjBCQH9Qhghkvft24dXX31V9jq7v7uazw6/v6Ss1qzHKWoSPrt370afPn0aPe71elFTU6O3TYRLYX33A4hPeD17bkXPnlsNSc93Ws0Pu4k2we/b1wGLF0/X5CbUm3mjZQy7ZbHQglMz6vSKZJ/P10j0OOW7K8HpVmtNwicrKwt79+5Ffn5+xOOff/452rdvb0S7CJfB+s6PFy9yE96kSUOQlpYW8Tq17XVazQ87EMuW0TLhGpV5o3cMW7lYsLjJ0BvXZvV30iOSo9v5xRfF2LSpxDUxfU63WmsSPpMmTcJdd92Fl156CR6PB5WVlSgvL8cf//hH3H///Ua3kXABrKdyR/u6H3jgGPbvT0B+/jnk5PQA0EP3xOrkAo9WI5Z9omXCNSrzRq/1wqrFgkXXml7RZ9XGyYz09C++KEZZ2UAAwdIvWgUvS2LW6VZrTcLnvvvuQyAQwIABA1BbW4s+ffogOTkZf/zjH3HHHXcY3UaCsITwSSM7GygqMv79nZT6ajdC/aB1wjW6T7VYL6xaLFh0rekVfVa5zIy+R/3+FJSVlYAXPTxqBS9rYtbpVmtNwsfj8WDOnDmYOXMm9u7di19++QWdOnVCixYtjG4fQbgKEjX6YGHC1Wq9sLrtLMVhGCn6zC4FYeQ9evx4OvhjIMJR+91ZFLNOqlQdjSbhw5OUlIROnToZ1RaCIAhZpCZcoTMEjbai6bFeWLlYsBSHYZToM1LMWeE6EjsTq6Rkk6bfgCUxC4i7AllHl/AhCIKwAqWxF9F1fXiMdAHotV5YtViwFodhhOgzsr6OkpihUaNGhZIZjEhkAAIYOHATevcuV/U+PHaLWaWxTazHKZLwcRgsBbjpgY5rINQgFnsRXnIfsCZlWK31wq7Fwm63oM/ng9/vb9QmPcHCRok5uZgh/u+//vUD3TE0coJPze9ut5h1S5wiCR8HwXpKuFLouAb3YKUQl3sfK8eVGuuFnYuFXXEYaiwqmZmZir+7GWIuetx07boDO3Z01RVDo9RCOXr0aFW/u91iFnBHnCIJHwfBekq4FPxEIOejZt1ESpyHJSFuReyDnlRnOxcLO+IwlGZhpaWlGW5BUYPQuPnuu27Qm3pupth1clAxK5DwISyBnwg2bwaeeqqxj7p37zHo188duwkjcIJLkyUhbkXsg1PM/KzFYRhhiTOjvg4gdkSNvtRzHjPHgVODilmBhA9hGenp6bjiCiAuDggEzj8eHw/07JkO0jxBWLKkqMHOuC2rYh9Y6m8xWBJoWi1xQsJ/1KhROHfuHAAgMTERXq834nkt30ks6ypc/LBQmI81Met0SPgQlpKbCyxbBkyZAjQ0BEXPCy8EH2cNu6wuLFlSlGJ33BYLsQ8swYpA02KJs7JYn9C4EYrxsXscsSRm3QAJH8JyJkwABg0C9u4FOnRgV/Q40epiB6zUFqHYB/bQYomzulif0Ljp3/9j5sZRrM8zRkLCx4VEF3FjcSeQm8um4OFxotXFLuysLWJW7AdhDHoscWYKarlxQzE0woRbwSsr41BRkYCCgnPIyQnGLrC41ghBwseFCBVxI8uEc2G95pGdtUXIBWA/Qouh11sTel6rJc5MQR09bvx+P1avXi37ulgW0OFWcClLnBPWGhI+DkLPTUeWCWdid+yMEuyOr2F9knUz4othSwwbdmlorGqxxJktqCMPJc4mAS3DeZEobYlzwlpDwsdBCO1uoyvXEu6BldgZMcIXLaldfSzvkt2O0sVwxIgRyMjIiHitnJCwWlDHsqhRg93HZhgBCR+HQTenPdjhbmJ9giE3E8EjN1YzMjKQnZ2t+n0pYJ097D42wwhI+BCEDFa7m3gLidwEw4IlhUQNAehfDMPjhKKTMyjQmC3sdm0bAQkfgpDADndTuCXlggtO4t57vWho8CA+nsP8+Sdx0003kiWFYAo9i6Fw3Z58WeuqUuHvhCroTsPpljgSPgQhAD+pypnwzbK68BPxPfcApaV8zSMPcnPTAKSZ8pkEoQeti6HSuj3hcUJKxYqVxRDV4Ia0cCdb4kj4EIQAvNVl//5zeOUVDoHA+RL28fEc7rhjCPLzEyyZnFiveRRLkPVAGj2LoZx1VUuckNXFEJXgprRwp0LCx+HQGS7mkZ4ePD+s8REbHhQVtbG7eYTFUDVvczEzmJ+lDEmnpoW7aa0h4eNgDh0C9uxJx4gRdyIj44zodeG7UNqxqscJR2wQ5hN934i5TVhbsMzEyMXQzGwhFjMkWWyTFG7K4iTh41CWLwcmTw6ech4X1xLLlgUXaCmcumNlQayRu4kIxwmFJa3AyMXQzGwhFlOwWWyTHCytC3og4eNADh06L3qA4H+nTAlaJaQWZyeeP+VUsUa4F5bcJixg5H1nVrYQiynYLLYpViDh40D27DkvengaGoKuGLdZJZwo1gh34zQXhdMwK1uIxRRsFtsUC8TJX8IWZ8+exSWXXAKPx4Pt27dHPLdjxw5ceeWVaNKkCfLy8rBgwQJ7GmkyHTsCcVG/XHx8MP6EIAhz4V0U4YS7KKqrq1FVVYWqqir4fD47mugorAya9XpPoaDgJ6YEBottcjuOs/jMmjULOTk5+O677yIeP3nyJK6++mqUlJTg+eefx/fff4/x48cjLS0NkydPtqm15pCbK5Rp5D5rjxthIV6J0IeciyL67Dynu2HNHrNmBs26KROJMA5HCZ8PPvgAGzduxLp16/DBBx9EPPfaa6+hrq4OL730EpKSknDxxRdj+/btWLRokeuED0CZRk6E4pXcg5CLwo1ZXlYVADRrvLOYiURizH4cI3yOHDmCSZMm4e2330azZs0aPV9eXo4+ffpEDJZBgwZh/vz5OHHiBFq2bCn4vmfPnsXZs2dDf588edL4xpuEUKZRMMU96A4jMcQWFK/kbKIXovBYFLdmebFYAFAtrG0i1IoxN1R5Zg1HCB+O4zB27FjcdtttuOyyy7B///5G1xw+fBgFBQURj7Vp0yb0nJjwmTdvHubOnWt4m+0gMsUdilLc3QJ/sKGbJwFyk9lL9IJVXV2N9evXx0SWVyx8RytRep9SlWdzsFX43HfffZg/f77kNbt27cLGjRtx6tQpzJ492/A2zJ49GzNmzAj9ffLkSeTl5Rn+OWajJMXdzSbW8LgKN04C5CZjA6G+dUuWl5BlweutAeCe7+g0nFrlmXVsFT733HMPxo4dK3lN+/bt8fHHH6O8vBzJyckRz1122WW4+eab8fLLLyMrKwtHjhyJeJ7/OysrS/T9k5OTG72vE1GS4s6iv1sOLSLMjZMAucnYxYmF6KIRtyy0xLBhl6KwcK/jvyNLqHVfkfA0FluFT+vWrdG6dWvZ65YsWYJHHnkk9HdlZSUGDRqE1atXo2fPngCA4uJizJkzB/X19UhMTAQAlJWV4cILLxR1c7kJPsU9XPwIpbizJGqUEC7WqqursWJFmWBwpVvhJ0jelUewhxsK0clZFqZPX+z478gKatxXPG4Q1yzhiBiftm3bRvzdokULAEBhYSFy/2vOuOmmmzB37lxMmDAB9957L3bu3Imnn34aTz31lOXttQM3p7jzYm3VqqZYvHi6awJIxTJkeJS6twj7MaIQHQsxXFKWBSq2Zwxa3FduENcs4QjhowSv14uNGzdi6tSpKCoqQkZGBh544AFXprKL4eYU90OHgFmzvOA4DwDnB1cqyQKSWgTlRBNhPlJZXlLXCWFV2rgccpYFs6oqxyJq3VckPI3DkcInPz8fHMc1erxr16747LPPbGgRO7j1MM1gDJMn4jGn+bj5BVBupye3UNqROs2CNYI1jIyZYyVtXKtlwYkJEXajxX1FwtMYHCl8iNgjGMPERYgfp/m4+YVy82bgqaca7/R69x6Dfv2k47DsSCumjDJxjP6+LKSNS1kWRowYgYyMjIjrY1H0GgG5r+yDhA/hCHJzgQUL/Jg5M9XRk0R6ejquuEI4EL1nz3TIrR92ZHdQRpl1sJK9I2ZZyMjIQHZ2tmXtcDty7is3lyCxExI+MYzTqjyPHduAn39eLOvjZn0S0BqI7ven4PTpZpLmcda/OyFNLGXvUEXiIFLuKyeWIHECJHxiFCdWeU5PT8ecOWNcMVmqDUQPj/sAAqHF0eMJ4MEHKzF58o2WfXcKrDYPu9wftbW1iq4zSlhTRWLlxPr3NwMSPjGIkirPrMJPAk4UbtEoDUSPjvsA4sBxAVx33Rrk5R3C5Mk3yrofjApOduuZVCxhdfaOz+fDq6++GvpbTNiOHj3asEU4lisSk/vKfkj4xCBKqjyzjJOFmxr4iU8o7gOIQ/PmtYqywIwKTmYh8DZWsDJ7R2lGmdDh0HphJabJSnj31f795xpZrHmcYrl2KiR8YhClVZ5ZxenCTSnhE+Qrr0RmtMXHc7jjjiHIz0+QnSCNCk6OxUXKKliwAigRtkbH5cRSTBNwvv9WrWqKWbNaIRDwIC6Ow4IFftx0068keCyChE8MYnaVZ7NrvjhduKkhPT2Y6dX49/KgqKiNoZ9VXV0t+dvE2iJlJSwEscoJW7/fj9WrVwMwLi4nllK6ecur35/y3wr0wY1MIODBzJmp+Pnnl+D1nqK4Jgsg4ROjmFXl2YqaL24+nkMMI38vsRgO/oT76N+GtzLILVIUk6APuxc7OWFbX18PIDh+3n13KABj4nJipSIx3y9yAtONcU2sQcInhjGjyrNVNV/cfDyHGEb8XlqOyoi2RjzwwDHs35+A/PxzyMnpAaAHmehdgJyw/eWXXwAAW7f2BC96ePS6PGOpIjFZTu2HhA/hWNx6PIdZCMVwvPvuUGRmHkZubpXka8NFTXY2UFRkalMJm5CyvmzcuBF+fwrKy4sFXkkLt1Jiyb3HKiR8CCJGEMsOW758IqWlEyGkrC/CYwjo1atc1cLNQjC3ncSKe49VSPgQRIwgZGIHKC091lEjLsTcND17blX1mSwEc9tNLLn3WIOED0G4nOjg5PDAVB5KS49dlIiQmpoarFmzxlA3jZtFDcE2JHwIwuXwC1tlZSWA9cjMPIzlyydScCURQo0IITcN4XRI+BBEDJCenh7a0efmVlFwJSGKUJFCr7cm4hopN41b43L0EutxTSxBwocwFLq52SW8z6V27fTbxC7ih4e2xLBhl8oGwI8aNYpcWCJQXBM7kPAhDIVubnah34aQQ+nhoWKkpaVZ0UzHQvcWG5DwIQwn/OY+dCh4tlbHjlRzhwVo4iWUoPVcNrIWEk6AhA9hGsuXnz9FPS4ueMzEhAl2t4ogCDnkqgsPHDgQBQUFEa8hayHhFBpXoiIIAzh06LzoAYL/nTIl+DihDZ/Ph6qqKtF/Pp/P7iYSLoFPW/d4zp8EzHHAvn3Bk4DLysqQlJSE7Ozs0D8SPYRTIIsPYQp79kSeng4EDxTdu5dcXlqw4vBXgginsHAvOC78EX2HkRLOxk1hC2TxIUyhY8egeyuc+PjggaKEeqIXGb8/BRUV+fD7UySvIwitHD+eDrFCl0RswFuZn3yyBu3acejfH2jXjsOTT9Y42spMFh/CFHJzgzE9U6YELT3x8cALLzh/p2Am4fVToqmurg79v5IT1glCL3SKeGzDW5n9/hQsXjwdHOcBAAQCHsycmYqff34JXu8pR1qZSfgQpjFhAjBoUNC91aEDiR4plLqytKYZE4QSwrOy6BTx2IbfhMll+DnRykzChzCV3Fz3Cx4pSw2gLNtFyJV1/Hg6WrXyRSw0WtOMiSBCVYkLCs4hJycYkBbrmUnp6ekoLS3F6tWrAdDxFIQ7LX8kfAhCB9GWGjHBosYcLOXKcuMkZBXiVYkj+9iJpnsj8Xq9UX/TKeKxjBstfyR8CEIH4ZYaqcVUqTlYzpXlxknIKpRWJXai6Z4gzMRtlj8SPgRhAEbF3ihxZUlNQuFB0LHuthGD3IXS0Hl7hBBusvyR8CEIAzBqMVXqyoqehHgX24oVZZpdbLECuQuloTPdCLdDwocgDMCoxVTOlTVixAhkZGSguroa69evB2CMiy2WIHehPCRqCDdDwocgDMDIxVTKlZWRkYHs7OzQ35Terg23xSwQhNG42eVJwodgCieXRdezmEZPHmL+9OjrKF5FO26KWSAIo3Gzy5OED2E7fG2VVauaYtYsLwIBD+LiOCxY4MdNN/3qqJtL62KqdZKheBWCIMzCKfOuWkj4ELbi9LLoRpqDtXw/ildRjptN9+FQkUaCkIaED2ErTi+LzoI5mOJVlMHCb2U2VKSREMPJYQRGQ8KHYAInu2xYWEAoXkUZLPxWZkJFGolw3BRGYCQkfAgmiBWXjVG7rlhx2xDaoKB3wulhBGZCwodgBre7bJYvByZPBgIBIC4OWLYseIK9FmLBbUNox8kWVMIYnB5GYCYkfAimcKPLxufzYf/+c5g8OROBAL/rAqZM4XDJJUeRn5+gSaCQqCHEiBULKiEPieDGkPAhCBPhzc0VFfkIBMZEPNfQ4MHSpR+goOCnmDQ3E+ai5Ew3yvpyPySCG0PChyBMhDcjy+26YtHcTIhjVEq6mAV1/fr1lPUVQ7g9jEAtJHwciltSE2MlSJd2XYRSrEhJZy3ri2oPmY8bwwi0QsLHgRgZJGs3sRSkS7suQgl6UtKVbhBYyvqi2kPuwgmbchI+DuPQofOiB+CDZIFBg9gdZHK4cTLjb/7U1MjFhXZdhFK0iBO5jUR1dTXWr1/PVMAr1R5yPk6rF0TCx2Hs2XNe9PA0NAB79zpX+LiNSItcJoYOvTS0ayUIpWgVJ0pjf1hzvZplhYpVN5pVYQROrBdEwsdhdOwYdG+Fi5/4eKBDB/vaxDJWm10bW+Q8EbtWglCK2eKENderGVaoWHajWRVG4MR6QSR8HEZubjCmZ8qUoKUnPh544QWy9ghhRyyUkEWOKuYSWjFbnLDkejVD6MW6G81KMceS+1QOEj4OZMKEYEzP3r1BSw+JnsbYFQslZJFTcvM7PWuNMA+WxInZmCX0WArmdissuk/FIOHjUHJzSfBIYUcslM/nQ3x8HRYsaIp77/WiocGD+HgODz10GL///UAkJibC6/U2ep1bYwwI9nBC+QgzhJ6TrBFOhjX3qRgkfAhXYnUsVHgsAQDceWdK6OZvaDiF9euDj7sxloAwFjPFSSyVjwjHSdYIp+MECyUJH8KVWB0LFb2QiN38bo0lcAJOqC8CmC9OWBM1VlmhnGKNIMyHhA/hWigWinBafREeFttkFlZaoZxgjSDMh4QP4WooFip2cWJ9kViF+t+5OCFuLBoSPoTrCC9YJgSru3zCWJxYX4QwFicuyk7DiXFjJHwIVxEdZCwG7fJjB8roiV2cuCg7Eaf1HwkfwlUo3b3H6i7fKQG+RkIZPbGN0xZlwnxI+BBEjGBHJWtWoIwegiB44uQvIQhCDtZjCcQqWR86ZEtzbMHrPYWCgp9I9BBEjEMWH4IwAJZjCXw+H778EggEIj+7oQHYutWHpk3JHUAQROxAwocgDIJF8RCe0u3xTG8U4PvFFy9j505K6SYIInYgVxdBuBjeAsUH+Ho8QV9XdICvG4O9WXc/EgRhD2TxcRBUn4bQQ6wF+LLsfiQIwj4cJXzef/99/PnPf8aOHTvQpEkT9O3bF2+//Xbo+QMHDuD222/H5s2b0aJFC4wZMwbz5s1DQoKjvqYgVJ9GGbTLlybWSvbH8r1AEIQwjlEE69atw6RJk/DYY4+hf//+OHfuHHbu3Bl6vqGhAddccw2ysrKwZcsWVFVV4dZbb0ViYiIee+wxG1tuDFSfRhm0yycIgiCkcITwOXfuHO666y4sXLgQE8IKj3Tq1Cn0/xs3bsS///1vbNq0CW3atMEll1yChx9+GPfeey8eeuihmN3hxyIkapxHLBZWtAJyjxNEYxwhfL755hv8/PPPiIuLw6WXXorDhw/jkksuwcKFC9G5c2cAQHl5Obp06YI2bdqEXjdo0CDcfvvt+OGHH3DppZcKvvfZs2dx9uzZ0N8nT54098sQBAHAuSenOwVyjxOEMI7I6vq///s/AMBDDz2EP/3pT9iwYQNatmyJfv364fjx4Hk7hw8fjhA9AEJ/Hz58WPS9582bB6/XG/qXl5dn0rcgCIKHX5QXLnwdM2emIhCIPDl94cLX8cwzz8Dn89ncUudC7nGCEMZW4XPffffB4/FI/vvxxx8R+G+52Tlz5mDkyJEoKirCihUr4PF48Oabb+pqw+zZs+H3+0P/Dh48aMRXIxzKoUPA5s3uqWjMarC3kpPTw68j9OP3p6CiIh9+f4rdTTEcn8+Hqqoq0X8koIlwbHV13XPPPRg7dqzkNe3bt0dVVRWAyJie5ORktG/fHgcOHAAAZGVl4V//+lfEa48cORJ6Tozk5GQkJydraT7hMtx4lhXrwd50cro1fPPNpY0Oae3e/Vu7m2UI5NJjF1ZjzGwVPq1bt0br1q1lrysqKkJycjJ2796N3/3udwCA+vp67N+/H+3atQMAFBcX49FHH8XRo0eRmZkJACgrK0NqamqEYCIIIcTOsho0yPnBtixP9nRyuvn4/Smh/gWCFrX33huKwsK9ruhncumxCcuC1BHBzampqbjtttvw4IMPIi8vD+3atcPChQsBANdffz0A4Oqrr0anTp1wyy23YMGCBTh8+DD+9Kc/YerUqa6w6LDqsnALe/acFz08DQ3A3r3OFz6s4/TCiqzuanmk3IlO62vCObAsSB0hfABg4cKFSEhIwC233IJff/0VPXv2xMcff4yWLVsCAOLj47FhwwbcfvvtKC4uRvPmzTFmzBj8+c9/trnlxsC6y8LpdOwYdG+Fi5/4eKBDB/vaFEs4tbAiy7tanlhzJ/r9KTh+PB2tWvkcOaYI83GM8ElMTMQTTzyBJ554QvSadu3a4e9//7uFrbIWEjXmkZsbjOmZMiVo6YmPB154gaw9hDQs72p5Ysmd6OZYJqfDkiB1jPAhCLOZMCEY07N3b9DSY7TooSJ97oelyT3c7S3lTnSLe9ztsUxOhjVBSsKHIMLIzTVHlLgxY0wPboxZY21y593jx44dQ319veA1bjjHkIdimdiERUHqnlFPEBoxOzjVzRljWnFbzBqLkzvP6tWrZa9xQ6p3rMUyOQUWBSkJHyKmsSI4lTLGhOH7U0x41tXVoaqqSrEAsjO7isXJHXBGDJJeeKugXCyTk6yHboJFQUrCh4hpzF4YfD4fUlPPIS4uM3QsAwDEx3NISTkKny/B8TttPRglPO3OrrJ6cmc9hd5Koq2HDzxwDPv3JyA//xxycnoA6BFT/cEKLAtSEj4EYRLhi/HQoZHxH9dcswEbNgTjP9zgZtBK9OItFhwsJzzttmxYmTmlRuRFw1LwtZGE3z/Z2UBRkY2NIQCwLUhJ+BCESYQvslJZNU52MxiJkcHBVi3wdmROaRV5rAVfE+6HVUFKwocgLMKpRfqswMjgYCsXeKcEabMcfE0QVkPChyAI2zEqONiOBd5uUaMEVoOvCcIO4uQvIQiCMBc+ODgcLcHBUgu8W/H7U1BRkQ+/P0X0GqP6lyDcAFl8CIKwHaOCg1lMnZVCb3aWnFuP5cwaFqFsudiAhA8R07ixgrASWJzgjTil3UnnUulNwVfi1mM5s4Y17C6JQFgHCR8ipnFKcKqRRE/wYhlQVkzw0YJSLABcTng68VwqvSn4SuN2WM2sYQ27SyIQ1kHCh4h5zFrcWbUmhU/cUq4SKyZ4o4RnLAlYfrzIufVYEnkEwRIkfAjCJFhfjFlJcTbq+7tB1CghfFxdcMFJ3HuvFw0NHsTHc5g//yRuuulG14g8gjADEj4EYSIsLz6U4uxc+HF1zz1AaWnw3LcOHTzIzU0DkGZbu1iMHSOIaEj4EESM4rQMKEKY3Fw2Drul4GDCKVAdH4KIUfgMKL6+C8sZULGAkno8LEPBwYRTIIsPQcQwRqSQE/qhc7QIwjrI4kMQMY7XewoFBT+R6LEYPutKLMict/xQdpY1RPezmAWOfg/nQxYfgogxWE2zjzX47KzNm4GnnmocZN679xj068d2gLybCM+WW7WqKf78Zy8CAQ/i4jgsWODHTTf9SsHZLoGED0HEGKyn2ccS6enpuOIKIC4OCIQdpRUfD/TsmQ76CawlPT0dhw4Bs2ad/z0CAQ/uvTcNpaVp9Hu4BBI+BBGDkKhhh9xcYNkyYMoUoKEhKHpeeIGNTK1YZM+eSBEKBH+XvXvpN3ELJHwIgiBsZsIEYNAgvh4PLbB20rGjsAWuQwf72kQYCwU3EwRBMEBuLtCvn3NFj1tix3gLXHx88G+ywLkPD8dxnN2NYImTJ0/C6/XC7/cjNTXV7uYQBEE4hvDKzZWVcaioSEBBwTnk5ATNJ06KHTt0iCxwTkPp+k2uLoIgCMIQeFGzfDkweXLQXRQXF7SgTJhgc+NUwkpFbMJ4yNVFEARBGMahQ+dFDxD875QpwccJggVI+BAEQRCGIZUVRRAsQMKHIAiCMAw+KyocyooiWIKED0EQBGEYlBVFsA4FNxMEQRCGQnWJCJYh4UMQBEEYDmVFEaxCri6CIAiCIGIGEj4EQRAEQcQMJHwIgiAIgogZSPgQBEEQBBEzkPAhCIIgCCJmIOFDEARBEETMQMKHIAiCIIiYgYQPQRAEQRAxAwkfgiAIgiBiBhI+BEEQBEHEDCR8CIIgCIKIGeisrig4jgMAnDx50uaWEARBEAShFH7d5tdxMUj4RHHq1CkAQF5ens0tIQiCIAhCLadOnYLX6xV93sPJSaMYIxAIoLKyEikpKfB4PHY3x3JOnjyJvLw8HDx4EKmpqXY3x7FQPxoD9aN+qA+NgfrRGMzsR47jcOrUKeTk5CAuTjyShyw+UcTFxSE3N9fuZthOamoq3dwGQP1oDNSP+qE+NAbqR2Mwqx+lLD08FNxMEARBEETMQMKHIAiCIIiYgYQPEUFycjIefPBBJCcn290UR0P9aAzUj/qhPjQG6kdjYKEfKbiZIAiCIIiYgSw+BEEQBEHEDCR8CIIgCIKIGUj4EARBEAQRM5DwIQiCIAgiZiDhE6P885//xLBhw5CTkwOPx4O333474nmO4/DAAw8gOzsbTZs2RUlJCfbs2WNPYxlFrg/Hjh0Lj8cT8W/w4MH2NJZh5s2bhx49eiAlJQWZmZkYPnw4du/eHXHNmTNnMHXqVKSnp6NFixYYOXIkjhw5YlOL2URJP/br16/RmLzttttsajGbPPfcc+jatWuowF5xcTE++OCD0PM0FpUh1492jkUSPjHK6dOn0a1bN/zlL38RfH7BggVYsmQJnn/+eWzduhXNmzfHoEGDcObMGYtbyi5yfQgAgwcPRlVVVejf66+/bmELncGnn36KqVOn4ssvv0RZWRnq6+tx9dVX4/Tp06Fr7r77brz33nt488038emnn6KyshIjRoywsdXsoaQfAWDSpEkRY3LBggU2tZhNcnNz8fjjj2Pbtm34+uuv0b9/f/z+97/HDz/8AIDGolLk+hGwcSxyRMwDgHvrrbdCfwcCAS4rK4tbuHBh6LGamhouOTmZe/31121oIftE9yHHcdyYMWO43//+97a0x8kcPXqUA8B9+umnHMcFx15iYiL35ptvhq7ZtWsXB4ArLy+3q5nME92PHMdxffv25e666y77GuVQWrZsyb344os0FnXC9yPH2TsWyeJDNKKiogKHDx9GSUlJ6DGv14uePXuivLzcxpY5j08++QSZmZm48MILcfvtt8Pn89ndJObx+/0AgFatWgEAtm3bhvr6+ojxeNFFF6Ft27Y0HiWI7kee1157DRkZGejcuTNmz56N2tpaO5rnCBoaGvDGG2/g9OnTKC4uprGokeh+5LFrLNIhpUQjDh8+DABo06ZNxONt2rQJPUfIM3jwYIwYMQIFBQXYt28f/vd//xdDhgxBeXk54uPj7W4ekwQCAUyfPh29e/dG586dAQTHY1JSEtLS0iKupfEojlA/AsBNN92Edu3aIScnBzt27MC9996L3bt3Y/369Ta2lj2+//57FBcX48yZM2jRogXeeustdOrUCdu3b6exqAKxfgTsHYskfAjCJG644YbQ/3fp0gVdu3ZFYWEhPvnkEwwYMMDGlrHL1KlTsXPnTnz++ed2N8XRiPXj5MmTQ//fpUsXZGdnY8CAAdi3bx8KCwutbiazXHjhhdi+fTv8fj/Wrl2LMWPG4NNPP7W7WY5DrB87depk61gkVxfRiKysLABolKlw5MiR0HOEetq3b4+MjAzs3bvX7qYwybRp07BhwwZs3rwZubm5ocezsrJQV1eHmpqaiOtpPAoj1o9C9OzZEwBoTEaRlJSEDh06oKioCPPmzUO3bt3w9NNP01hUiVg/CmHlWCThQzSioKAAWVlZ+Oijj0KPnTx5Elu3bo3wzxLqOHToEHw+H7Kzs+1uClNwHIdp06bhrbfewscff4yCgoKI54uKipCYmBgxHnfv3o0DBw7QeAxDrh+F2L59OwDQmJQhEAjg7NmzNBZ1wvejEFaORXJ1xSi//PJLhLKuqKjA9u3b0apVK7Rt2xbTp0/HI488go4dO6KgoAD3338/cnJyMHz4cPsazRhSfdiqVSvMnTsXI0eORFZWFvbt24dZs2ahQ4cOGDRokI2tZo+pU6di1apVeOedd5CSkhKKlfB6vWjatCm8Xi8mTJiAGTNmoFWrVkhNTcUdd9yB4uJiXHHFFTa3nh3k+nHfvn1YtWoV/t//+39IT0/Hjh07cPfdd6NPnz7o2rWrza1nh9mzZ2PIkCFo27YtTp06hVWrVuGTTz7BP/7xDxqLKpDqR9vHoi25ZITtbN68mQPQ6N+YMWM4jgumtN9///1cmzZtuOTkZG7AgAHc7t277W00Y0j1YW1tLXf11VdzrVu35hITE7l27dpxkyZN4g4fPmx3s5lDqA8BcCtWrAhd8+uvv3J/+MMfuJYtW3LNmjXj/ud//oerqqqyr9EMItePBw4c4Pr06cO1atWKS05O5jp06MDNnDmT8/v99jacMcaPH8+1a9eOS0pK4lq3bs0NGDCA27hxY+h5GovKkOpHu8eih+M4znx5RRAEQRAEYT8U40MQBEEQRMxAwocgCIIgiJiBhA9BEARBEDEDCR+CIAiCIGIGEj4EQRAEQcQMJHwIgiAIgogZSPgQBEEQBBEzkPAhCIIgCCJmIOFDEARBEETMQMKHIAjHUFdXZ3cTGsFimwiCEIeED0EQttGvXz9MmzYN06ZNg9frRUZGBu6//37wJ+nk5+fj4Ycfxq233orU1FRMnjwZAPD555/jyiuvRNOmTZGXl4c777wTp0+fDr3vs88+i44dO6JJkyZo06YNrrvuutBza9euRZcuXdC0aVOkp6ejpKQk9Np+/fph+vTpEW0cPnw4xo4dG/pba5sIgmADEj4EQdjKyy+/jISEBPzrX//C008/jUWLFuHFF18MPf/EE0+gW7du+Pbbb3H//fdj3759GDx4MEaOHIkdO3Zg9erV+PzzzzFt2jQAwNdff40777wTf/7zn7F79258+OGH6NOnDwCgqqoKN954I8aPH49du3bhk08+wYgRI6D2yEK1bSIIgh3okFKCIGyjX79+OHr0KH744Qd4PB4AwH333Yd3330X//73v5Gfn49LL70Ub731Vug1EydORHx8PF544YXQY59//jn69u2L06dP4+9//zvGjRuHQ4cOISUlJeLzvvnmGxQVFWH//v1o166dYHsuueQSLF68OPTY8OHDkZaWhpUrVwKApjY1adJEVz8RBGEcZPEhCMJWrrjiipDoAYDi4mLs2bMHDQ0NAIDLLrss4vrvvvsOK1euRIsWLUL/Bg0ahEAggIqKCgwcOBDt2rVD+/btccstt+C1115DbW0tAKBbt24YMGAAunTpguuvvx5//etfceLECdVtVtsmgiDYgYQPQRBM07x584i/f/nlF0yZMgXbt28P/fvuu++wZ88eFBYWIiUlBd988w1ef/11ZGdn44EHHkC3bt1QU1OD+Ph4lJWV4YMPPkCnTp2wdOlSXHjhhSFxEhcX18jtVV9fr7tNBEGwAwkfgiBsZevWrRF/f/nll+jYsSPi4+MFr+/evTv+/e9/o0OHDo3+JSUlAQASEhJQUlKCBQsWYMeOHdi/fz8+/vhjAIDH40Hv3r0xd+5cfPvtt0hKSgq5rVq3bo2qqqrQZzU0NGDnzp2y30FJmwiCYAMSPgRB2MqBAwcwY8YM7N69G6+//jqWLl2Ku+66S/T6e++9F1u2bMG0adOwfft27NmzB++8804okHjDhg1YsmQJtm/fjp9++gl/+9vfEAgEcOGFF2Lr1q147LHH8PXXX+PAgQNYv349jh07ht/+9rcAgP79++P999/H+++/jx9//BG33347ampqZL+DXJsIgmCHBLsbQBBEbHPrrbfi119/xeWXX474+HjcddddoRRxIbp27YpPP/0Uc+bMwZVXXgmO41BYWIjS0lIAQFpaGtavX4+HHnoIZ86cQceOHfH666/j4osvxq5du/DPf/4TixcvxsmTJ9GuXTs8+eSTGDJkCABg/Pjx+O6773DrrbciISEBd999N6666irZ7yDXJoIg2IGyugiCsA2hLCqCIAgzIVcXQRAEQRAxAwkfgiAIgiBiBnJ1EQRBEAQRM5DFhyAIgiCImIGED0EQBEEQMQMJH4IgCIIgYgYSPgRBEARBxAwkfAiCIAiCiBlI+BAEQRAEETOQ8CEIgiAIImYg4UMQBEEQRMxAwocgCIIgiJjh/wN9s77nJ4/qUAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOBElEQVR4nO3deVxU9f4/8NewCgiDggsICqJXU9MUi9DSLNx+pbevmrRYapTWlYr2ut4Wb4vtWXZvq2lli1y1rlmWUNY1JW5pZqaZclExcAFlRDFZ5vz+mM7hnDNnm2FY5/V8PHwkM2fOfM7JOm8/n/fn/bYJgiCAiIiIyA8EtPQAiIiIiJoLAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AYDHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIiIj8BgMfIqJWaNmyZbDZbNi3b19LD4WoXWHgQ+SnvvvuO2RnZ2PgwIGIiIhAz549MX36dPz6669ux1500UWw2Wyw2WwICAhAVFQU+vXrh2uvvRZ5eXkefe/HH3+M0aNHo2vXrggPD0fv3r0xffp0fPbZZ766NDePP/44PvroI7fXN2/ejIcffhiVlZVN9t1qDz/8sHQvbTYbwsPDMWDAAPztb3/DiRMnfPId7733HhYtWuSTcxG1Nwx8iPzUk08+iVWrVuGSSy7BCy+8gDlz5uA///kPhg0bhh07drgdn5CQgHfeeQdvv/02nn76aUyePBmbN2/GuHHjkJmZidraWtPvfOaZZzB58mTYbDbcf//9eP755zF16lTs2bMHH3zwQVNcJgDjwGfBggXNGviIXn75Zbzzzjt47rnn0L9/fzz22GOYMGECfNE+kYEPkb6glh4AEbWMO+64A++99x5CQkKk1zIzM3H22WfjiSeewPLlyxXH2+12zJgxQ/HaE088gVtvvRX//Oc/kZSUhCeffFL3++rq6vDII49g7NixWL9+vdv7R44caeQVtR7V1dUIDw83PGbatGmIjY0FANx0002YOnUqVq9ejW+//Rbp6enNMUwiv8QZHyI/NWLECEXQAwB9+/bFwIEDsWvXLkvnCAwMxIsvvogBAwbgpZdegsPh0D22vLwcJ06cwMiRIzXf79q1q+Ln33//HQ8//DD+9Kc/oUOHDoiLi8OUKVNQVFQkHfPMM89gxIgRiImJQVhYGFJTU7Fy5UrFeWw2G06dOoW33npLWl6aNWsWHn74Ydx9990AgOTkZOk9eU7N8uXLkZqairCwMHTu3BlXXnklSkpKFOe/6KKLMGjQIGzZsgWjRo1CeHg4/vrXv1q6f3IXX3wxAKC4uNjwuH/+858YOHAgQkNDER8fj3nz5ilmrC666CJ88skn2L9/v3RNSUlJHo+HqL3ijA8RSQRBwOHDhzFw4EDLnwkMDMRVV12FBx54AN988w0uvfRSzeO6du2KsLAwfPzxx7jlllvQuXNn3XPW19fjsssuwxdffIErr7wSt912G6qqqpCXl4cdO3YgJSUFAPDCCy9g8uTJuOaaa1BTU4MPPvgAV1xxBdauXSuN45133sENN9yA8847D3PmzAEApKSkICIiAr/++ivef/99PP/889LsS5cuXQAAjz32GB544AFMnz4dN9xwA44ePYrFixdj1KhR+OGHHxAdHS2Nt6KiAhMnTsSVV16JGTNmoFu3bpbvn0gM6GJiYnSPefjhh7FgwQJkZGTg5ptvxu7du/Hyyy/ju+++w6ZNmxAcHIz58+fD4XDg4MGDeP755wEAHTt29Hg8RO2WQET0h3feeUcAICxZskTx+ujRo4WBAwfqfu7DDz8UAAgvvPCC4fkffPBBAYAQEREhTJw4UXjssceELVu2uB335ptvCgCE5557zu09p9Mp/b66ulrxXk1NjTBo0CDh4osvVrweEREhzJw50+1cTz/9tABAKC4uVry+b98+ITAwUHjssccUr//0009CUFCQ4vXRo0cLAIRXXnlF97rlHnroIQGAsHv3buHo0aNCcXGx8OqrrwqhoaFCt27dhFOnTgmCIAhLly5VjO3IkSNCSEiIMG7cOKG+vl4630svvSQAEN58803ptUsvvVTo1auXpfEQ+RsudRERAOCXX37BvHnzkJ6ejpkzZ3r0WXFGoaqqyvC4BQsW4L333sPQoUPx+eefY/78+UhNTcWwYcMUy2urVq1CbGwsbrnlFrdz2Gw26fdhYWHS748fPw6Hw4ELL7wQW7du9Wj8aqtXr4bT6cT06dNRXl4u/erevTv69u2LDRs2KI4PDQ3F7NmzPfqOfv36oUuXLkhOTsbcuXPRp08ffPLJJ7q5Qfn5+aipqUFOTg4CAhr+133jjTciKioKn3zyiecXSuSHuNRFRDh06BAuvfRS2O12rFy5EoGBgR59/uTJkwCAyMhI02OvuuoqXHXVVThx4gQKCwuxbNkyvPfee5g0aRJ27NiBDh06oKioCP369UNQkPH/otauXYtHH30U27Ztw5kzZ6TX5cGRN/bs2QNBENC3b1/N94ODgxU/9+jRwy1fysyqVasQFRWF4OBgJCQkSMt3evbv3w/AFTDJhYSEoHfv3tL7RGSMgQ+Rn3M4HJg4cSIqKyuxceNGxMfHe3wOcft7nz59LH8mKioKY8eOxdixYxEcHIy33noLhYWFGD16tKXPb9y4EZMnT8aoUaPwz3/+E3FxcQgODsbSpUvx3nvveXwNck6nEzabDevWrdMMAtU5M/KZJ6tGjRol5RURUfNh4EPkx37//XdMmjQJv/76K/Lz8zFgwACPz1FfX4/33nsP4eHhuOCCC7wax/Dhw/HWW2+hrKwMgCv5uLCwELW1tW6zK6JVq1ahQ4cO+PzzzxEaGiq9vnTpUrdj9WaA9F5PSUmBIAhITk7Gn/70J08vp0n06tULALB792707t1ber2mpgbFxcXIyMiQXmvsjBdRe8YcHyI/VV9fj8zMTBQUFOBf//qXV7Vj6uvrceutt2LXrl249dZbERUVpXtsdXU1CgoKNN9bt24dgIZlnKlTp6K8vBwvvfSS27HCHwX+AgMDYbPZUF9fL723b98+zUKFERERmkUKIyIiAMDtvSlTpiAwMBALFixwKygoCAIqKiq0L7IJZWRkICQkBC+++KJiTEuWLIHD4VDspouIiDAsLUDkzzjjQ+Sn7rzzTqxZswaTJk3CsWPH3AoWqosVOhwO6Zjq6mrs3bsXq1evRlFREa688ko88sgjht9XXV2NESNG4Pzzz8eECROQmJiIyspKfPTRR9i4cSMuv/xyDB06FABw3XXX4e2338Ydd9yB//73v7jwwgtx6tQp5Ofn4y9/+Qv+/Oc/49JLL8Vzzz2HCRMm4Oqrr8aRI0fwj3/8A3369MH27dsV352amor8/Hw899xziI+PR3JyMtLS0pCamgoAmD9/Pq688koEBwdj0qRJSElJwaOPPor7778f+/btw+WXX47IyEgUFxfjww8/xJw5c3DXXXc16v57qkuXLrj//vuxYMECTJgwAZMnT8bu3bvxz3/+E+eee67i31dqaipWrFiBO+64A+eeey46duyISZMmNet4iVqtltxSRkQtR9yGrffL6NiOHTsKffv2FWbMmCGsX7/e0vfV1tYKr7/+unD55ZcLvXr1EkJDQ4Xw8HBh6NChwtNPPy2cOXNGcXx1dbUwf/58ITk5WQgODha6d+8uTJs2TSgqKpKOWbJkidC3b18hNDRU6N+/v7B06VJpu7jcL7/8IowaNUoICwsTACi2tj/yyCNCjx49hICAALet7atWrRIuuOACISIiQoiIiBD69+8vzJs3T9i9e7fi3hht9VcTx3f06FHD49Tb2UUvvfSS0L9/fyE4OFjo1q2bcPPNNwvHjx9XHHPy5Enh6quvFqKjowUA3NpOJGMTBB80hiEiIiJqA5jjQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNFjBUcTqdKC0tRWRkJMu+ExERtRGCIKCqqgrx8fEICNCf12Hgo1JaWorExMSWHgYRERF5oaSkBAkJCbrvM/BRiYyMBOC6cUZ9h4iIiKj1OHHiBBITE6XnuB4GPiri8lZUVBQDHyIiojbGLE2Fyc1ERETkNxj4EBERkd9g4ENERER+gzk+XnA6naipqWnpYbRrISEhhtsRiYiIvMHAx0M1NTUoLi6G0+ls6aG0awEBAUhOTkZISEhLD4WIiNoRBj4eEAQBZWVlCAwMRGJiImckmohYRLKsrAw9e/ZkIUkiIvIZBj4eqKurQ3V1NeLj4xEeHt7Sw2nXunTpgtLSUtTV1SE4OLilh0NERO0Epyw8UF9fDwBcfmkG4j0W7zkREZEvMPDxApdemh7vMRERNQUGPkREROQ3GPgQERGR32Dg4wdmzZoFm80Gm82G4OBgdOvWDWPHjsWbb77p0bb8ZcuWITo6uukGSkRE7UJFRQXKyspQVlaGLVsOY+XKCmzZclh6raKiosXGxl1dzaiiosKw8GFISAhiYmKa5LsnTJiApUuXor6+HocPH8Znn32G2267DStXrsSaNWsQFMQ/CkRE1HgVFRV46aWXAABbtw7Fxx9fBkEIgM3mxKRJazFs2A8AgOzs7CZ75hnh066ZyP8gGGmqPwihoaHo3r07AKBHjx4YNmwYzj//fFxyySVYtmwZbrjhBjz33HNYunQp/ve//6Fz586YNGkSnnrqKXTs2BFfffUVZs+eDaAh8fihhx7Cww8/jHfeeQcvvPACdu/ejYiICFx88cVYtGgRunbt6vPrICKi1k38C77DESkFPQAgCAH4+OPLkJKyF3Z7VYt1QOBSVzOx+i+4Of8gXHzxxRgyZAhWr14NwFUt+cUXX8TPP/+Mt956C19++SXuueceAMCIESOwaNEiREVFSVOVd911FwCgtrYWjzzyCH788Ud89NFH2LdvH2bNmtVs10FERK3PsWMxUtAjEoQAHDvWuYVG5NJmAp+FCxfi3HPPRWRkJLp27YrLL78cu3fvVhzz+++/Y968eYiJiUHHjh0xdepUHD58uIVG3Db0798f+/btAwDk5ORgzJgxSEpKwsUXX4xHH30Uubm5AFzLcHa7HTabDd27d0f37t3RsWNHAMD111+PiRMnonfv3jj//PPx4osvYt26dTh58mRLXRYREbWwzp0rYLMp80htNic6dz7WQiNyaTOBz9dff4158+bh22+/RV5eHmprazFu3DicOnVKOub222/Hxx9/jH/961/4+uuvUVpaiilTprTgqFs/QRCkpav8/Hxccskl6NGjByIjI3HttdeioqIC1dXVhufYsmULJk2ahJ49eyIyMhKjR48GABw4cKDJx09ERK2T3V6FSZPWSsGPmONjt1e16LjaTI7PZ599pvh52bJl6Nq1K7Zs2YJRo0bB4XBgyZIleO+993DxxRcDAJYuXYqzzjoL3377Lc4///yWGHart2vXLiQnJ2Pfvn247LLLcPPNN+Oxxx5D586d8c033yArKws1NTW6LTpOnTqF8ePHY/z48Xj33XfRpUsXHDhwAOPHj2cHeyIiPzds2A9ISdmLY8c6o3PnYy0e9ABtKPBRczgcAIDOnV1rhVu2bEFtbS0yMjKkY/r374+ePXuioKBAN/A5c+YMzpw5I/184sSJJhx16/Lll1/ip59+wu23344tW7bA6XTi2WeflZqvistcopCQELcWEr/88gsqKirwxBNPIDExEQDw/fffN88FEBFRq2e3V7WKgEfUJgMfp9OJnJwcjBw5EoMGDQIAHDp0CCEhIW51Zrp164ZDhw7pnmvhwoVYsGBBUw63VThz5gwOHTqk2M6+cOFCXHbZZbjuuuuwY8cO1NbWYvHixZg0aRI2bdqEV155RXGOpKQknDx5El988QWGDBmC8PBw9OzZEyEhIVi8eDFuuukm7NixA4888kgLXSURETUXeYmW0tIAFBcHITm5DiEh5bqfcTgicexYDDp3Zh0fj8ybNw87duzAN9980+hz3X///bjjjjukn0+cOCHNXLQnn332GeLi4hAUFIROnTphyJAhePHFFzFz5kwEBARgyJAheO655/Dkk0/i/vvvx6hRo7Bw4UJcd9110jlGjBiBm266CZmZmaioqJC2sy9btgx//etf8eKLL2LYsGF45plnMHny5Ba8WiIiakpFRUVYvnw5AGDTpnTk5WUAEGv1FGLYMPfPqGv69OpVjdtua95xA4BNEASh+b/We9nZ2fj3v/+N//znP0hOTpZe//LLL3HJJZfg+PHjilmfXr16IScnB7fffrul8584cQJ2ux0OhwNRUVGK937//XcUFxcjOTkZHTp08GjcLV3Hp61pzL0mIqKmI3+euYKesQAaGkvbbE7k5CyC3V6FKVOmICgoCAcPAhMm9IfT2XBcYKCAwsIjSEoK8slzz+j5LddmZnwEQcAtt9yCDz/8EF999ZUi6AGA1NRUBAcH44svvsDUqVMBALt378aBAweQnp7eEkNWiImJQXZ2dotVbiYiIgIa30VAXqAwPz8D8qAHaKjVY7dXISgoCLm5uSguToLTeZbiuPp6GxYvXofk5P3N+pf+NhP4zJs3D++99x7+/e9/IzIyUsrbsdvtCAsLg91uR1ZWFu644w507twZUVFRuOWWW5Cent5qdnQxqCEiopbky9UHrQKFLg21eurq6gA01PSRHy+v6dOcu4DbTB2fl19+GQ6HAxdddBHi4uKkXytWrJCOef7553HZZZdh6tSpGDVqFLp37y5VJSYiIvJ3vuwioFWgEBAwdmy+2y6u1lTTp83M+FhJRerQoQP+8Y9/4B//+EczjIiIiKhlNXbZSr7LytMgRAxm5AnLGRn5GDmyQPP41lLTp80EPkRERNSgsctWRp3TrfI0mGkNNX3azFIXERERNWjMspVe53SHI9LjcdjtVUhO3t/iAY1VDHyIiIj8THN1Tg8ODvbp+XyBgQ8REVE74HBEorg4ydKsTWM6p4eEhFgaw8SJE1FbW2s+8GbGHB8iIqI2ztN8Ha3EZPkuq/JyZdsJeZK0vC6dw+GQdlerx1BUtPaP/J8k0+Rpo2DK1xj4UKN99dVXGDNmjFvVbCNJSUnIyclBTk5Ok46NiKg1aMzuK73PisGJXr5OSspet2BDHmDoJSY7HJF49tmtbsGKPElaPVa9Mbg2ZLsHY5mZmbDb7abX3hQY+PiBWbNm4a233sLcuXPdGo/OmzcP//znPzFz5kwsW7asZQZIRNSONWb3lZXPGuXrqAMfrS4C5eXlUs07o5kjo8BNbwzy38uDMbvdjri4OMPraioMfPxEYmIiPvjgAzz//PMICwsD4OqH9d5776Fnz54tPDoiovarMbuvPCkkqFcVWU1vdsVs5mjPnj0oLy9HUFCQNLsvzjppjUFNLxhrbkxu9hPDhg1DYmKiopL16tWr0bNnTwwdOlR67cyZM7j11lvRtWtXdOjQARdccAG+++47xbk+/fRT/OlPf0JYWBjGjBmDffv2uX3fN998gwsvvBBhYWFITEzErbfeilOnTjXZ9RERtaSKigqUlZVp/lLny3hyPvVntRKYzaoiW82f0Zu12blzAByOSGzYsAGrV69Gbm4uXnvtNbz22mvSM0VrDIB3ydNNjTM+LeTgQWDPHqBvXyAhoXm+8/rrr8fSpUtxzTXXAADefPNNzJ49G1999ZV0zD333INVq1bhrbfeQq9evfDUU09h/Pjx2Lt3Lzp37oySkhJMmTIF8+bNw5w5c/D999/jzjvvVHxPUVERJkyYgEcffRRvvvkmjh49iuzsbGRnZ2Pp0qXNc7FERM3E6lKWyKxast75jJahHn00GQ8+eBT79gUhKakO8fHnAjjXo/wZ7VkbAZ9/PgHr14+Tvk9v/OqcoaKiPrrJ0y2JgU8LWLIEmDMHcDqBgADgtdeArKym/94ZM2bg/vvvx/79+wEAmzZtwgcffCAFPqdOncLLL7+MZcuWYeLEiQCA119/HXl5eViyZAnuvvtuvPzyy0hJScGzzz4LAOjXrx9++uknPPnkk9L3LFy4ENdcc42UuNy3b1+8+OKLGD16NF5++WV06NCh6S+WiKiZeNJg08ruK08KDorLULGxsYiL64bUVOvjFpOmxVkl9U4vQIDYeV38vtOnOyA/P0N3/PLKzK2lRYUaA59mdvBgQ9ADuP45dy4wfnzTz/x06dIFl156KZYtWwZBEHDppZciNjZWer+oqAi1tbUYOXKk9FpwcDDOO+887Nq1CwCwa9cupKWlKc6bnp6u+PnHH3/E9u3b8e6770qvCYIAp9OJ4uJinHXWWU1xeURErZonu6/Un/v554GWE5it0JtVEoOVnTsH4PPPJ7h9nxj0WB1/a2hRocbAp5nt2dMQ9Ijq64G9e5tnyev6669HdnY2ADRZM9eTJ09i7ty5uPXWW93eYyI1EbV3ektBnuy+EslniOQzMIB7zox627vD4VAUENRKStZit1dhwICdWL9+nGq87snLngZf4r3ZsaNSeo3b2du5vn1dy1vy4CcwEOjTp3m+f8KECaipqYHNZsP48eMV76WkpCAkJASbNm1Cr169AAC1tbX47rvvpGWrs846C2vWrFF87ttvv1X8PGzYMOzcuRN9muuiiIh8RAweKisrUVdX5/Z+cHAw7Ha77sPaaCnL091X6hkiV9DjCn7UOTPyQoLeUAdrep3X5TM+6vFPmTIFQUFByM3N1fwO+b15+23lvdFrpNoUGPg0s4QEV07P3LmumZ7AQODVV5svwTkwMFBatgoMDFS8FxERgZtvvhl33303OnfujJ49e+Kpp55CdXU1sv5IQrrpppvw7LPP4u6778YNN9yALVu2uNX/uffee3H++ecjOzsbN9xwAyIiIrBz507k5eV5lABIRNScPE1SVj+szZayzKolq3dfac0QATaMH/8ZBgzYqZhlEVyVAr2iF6xp5eiEhf2uO35XnlGcok6QWCPI7N54kifVWAx8WkBWliunZ+9e10xPcwU9oqioKN33nnjiCTidTlx77bWoqqrC8OHD8fnnn6NTp04AXEtVq1atwu23347FixfjvPPOw+OPP47rr79eOsfgwYPx9ddfY/78+bjwwgshCAJSUlKQmZnZ5NdGROQtTx++6uPNlrKmTJmCOXNiLe++0pshEoOeKVOmIDY2FiEhIW5jUc/g6C2/WQnWjHZuaS1xac3ceLPM11QY+LSQhITmC3jMKjJ/9NFH0u87dOiAF198ES+++KLu8Zdddhkuu+wyxWuzZ89W/Hzuuedi/fr1uufQqv1DRNSWOBwORfVhs6UscUYkLg6Wdl+ZzRCJ5wOAsrIy6XPqGZzBg7dj+/bBmstv3gQkegnL1dXVutfi6TJfU2IBQyIiIg1iscCDB+M0u56vWLECFRUV0hKVrwoJqvtp5eQswsyZy5CTs0ixdVzrfFozOD/+OMRtRke8FrMu7cOHD8eYMWMwZMgQ03EvX74cFRUVmu+Z3ZvmxBkfIiIiFa3dVFp1a2pqatzyWhpbSFCrn5aa3vn08oLk5DM6ZrNK33//veb36y2dGY25tdT1YeBDREQko72byhUwrFmjXbdGHoRYXcoy4u0OJ73qy0bb4D0NSKwUYdTTGur6cKmLiIhIRnvWRBSAwsI0nfdantaS0pAhP+ouMbkSrudg9uyxSE7eL9ser73Mp5cMrV4GbM044+OFxmwbJGt4j4mopZh1Gi8oSEdaWqHhzIW6mCAARW0gsR6QXGMK+anzgtQzOBdf/KXmjE58fLzbdxot83XqdNyjZGhv8pqaGgMfD4h1b2pqahAWFtbCo2nfxP9hqGsNERE1FXWSsnK5q4HZridP6wHJmRXyq6iowNGjR3H8+HFFVWYAOP/88yEIAqKiotC5c2cA0K3cDGgHWkbLfB9/fBmyst7waHdWY/KVmgoDHw8EBQUhPDwcR48eRXBwMAICuFLYFJxOJ44ePYrw8HAEBfGPKBGZ05phARraNqgf+iLxoSt+PjMzE7W1tUhL+w0pKYtQUpKAVaum6T7o9+zZg/LycsvtIMwYBQiNLbBohdEynyAE4MCBnooKzuqlM71rb+7gxgifKh6w2WyIi4tDcXGx1OGcmkZAQAB69uwJm81mfjAR+bXGzLAAwIwZM7B8+XK31+12wG7fhZoa/V1PGzZsMD2/1g4ovV1RRhpbYNEK42U+AevXT5DaV8THl7otna1evVr33M3ZlsIIAx8PhYSEoG/fvs1aXtsfhYSEcEaNiCyx+v9jvWBDXXhPfZw6ZwYAiouTLAUtWjugAOjuiqqsrFQURTS7npKSRFRXhyE8/DQSE0savWPKfZlP3BHWsDNM7NKek7NI8/u82erenBj4eCEgIAAdOnRo6WEQEZEGrQev1S3YeseJ27C13ncFRdbbQbj2bmi3iMjNzbU0M7J161CsWXMZlJuzBUye/LHlreVyesnRwcE1OHCgJ9avn6A4Xp7nNGbMGGnmy+g+y5fBWnLpi4EPERG1G3qBiVE/KpFZ3yqt99esuQw2GzxqB6GmTpY2mxlxOCI1gh4AsGlelxUxMTHIzMyUOrzL6+1ERp5EXt443TwnsZej2f1TL4O11NIXAx8iImqV9BKWxW3h4pZwcSZB78E7deoqS1uwzfpWaSf+BkCsvqF+0Ov1p5LP+IivedKz6tixGOiV4ZOPt7y83KOZFfX2enHmrLQ0DvIKI3rtJvTuX0lJAo4dO+02I3bkyBEGPkRE1HbpBSoiTx7C3iQs68+wCJa2YJs10jSr7yN+n147CNf7wJAhDU1DxdeKivpoLgnJORwOaRyAE1rBj3y84gyLNzMrWrV8Gq4RSEnZK/0cHBwsjcv9/jilXXHqGTGry3q+xsCHiIgazWqgkp2dDcC1nCMv6CcXHBzsVqPGCr3AJTHxoGE/KpFZ3yr3QMYJV0Cg3w4iJWUvlPVYA/4IepSvGS0JqdntVZg8ea3bcpfedZltkRff15s5U/f6AhqCu8zMTGmmSO/+CIKyFpB8Ka4lEp4Z+BARUaNZfYAdOXIEubm5Hp9fb6eQ+nW9wMWoH9Xx48el35v1rVK/X1TUxzCg0lqW8qYoopo4jpKSBGlXV3R0JWprQ+FwRFo6j16watyyQxncqZfH5Pfn1KkIrFx5heJ9QXC1/Bg3Lt/KZTYJBj5ERNRs1DM8YuASHHwGtbWhmlvE9XYK6b2uF7joNchU1+Ixa6Qpf98sUPI2z0cv0Js+fTpsNhuOHz+OY8eOSd3Tt24diiVLbvCocahesGq2pJeeXqAYk7rdhHh/HI5IzfNs3mze8qMpMfAhIiKfs1Kgz6gnlPjQ1ktY7tr1kOEOotmzxyI2Nlaq3FxVVYW8vDzT8U2ZMgWxsbFuY62urkZ4eLjs8w63dhB1dXWKZSrxO7QqHQPutXysbL2Pjo6W6vyUlZXh+++/N91NZZX8nui37HAiLa1Q+knM25K3pSgvL8fq1atht1chPb0AmzePVJ3Ds9ktX2PgQ0REPmWlZo5ZTyjxoa2/U6inpZ1a6qUYs/GJiboN42wIcKqrq6XWFOJ55QnbZWVlut8xbNgWJCcXIzHxoDQ+rZkisyBGnvhcWVkJwHw3Wnl5uVs+lTqPSuue5OQsQmFhGjZvTgfgHqBlZmZK166XoJyWVih9XuTpLjZfY+BDREQ+Y3X2wawnlPjQ1k9YPmC4A0svQdhsfGIdG0+odyZpfceWLediy5ZUTJ7cEGRpLamZBTFa12W2G80sWVrvnuTkLMK4cflISyvUXcorKytz260nX/oSE7HNEsubEwMfIiI/5Mut53JmD26RUR6JMnlWO2E5IaHM0k4t9ZKW1fFp0VseO3LkCGpqalBcXKx7D1zcCyKqz2cWxGgx241mxuye6OU8yYNEefCnLoZolgfV3Bj4EBH5GU+2nnsa/Fh9cOv1hLLZnEhPL1Acq/fgNHug6lVxthpYyAMTrd1b8no0ZvdAJAYUeufTC2IA4/5gRvdCHWCpf/Yk2LLah6tLly6Kn/WCJ3VidHNg4ENE5Gesbj0vLS3VPFZrNkh8gJnNPshzaNQ9oXbuHIjNm9OxefNIFBSkK4KL2bPHSnkpVVVVqKurQ1BQECIjI6Xzie+vXr3acPnGyuyIMvFaWa/HLHlYq3ChyGZzIji4Rne5DQA6dTqOrKw3UFsbIm2ZX7Qox3THlnw3lRgkqQOswYMbiifKz+XpPTHbOaZOeNbSUv26GPgQEZEmo9yQGTNmICUlRfpZ/aB78MGj2LcvCElJdYiPPxfAuZp/u5c/rAsKGpJg1cFFcHCwpfybzMxMAMbLN2YzRe6J19br7ogzIl27HsLUqatQXJyELVtSIU8Orq0N1RxbYWEaCgrSFYFF587HPNqxpQ5O1A1Rf/xxCOQB3Jo1rh1ynt4TKzvHWqoJqRkGPkREfs7K1nO15cuXuy2FyX8fFwekpmp/VgyQKisrcfToUWzYsME0z0RdyVlvzOJxZss3RrV6zAr4qc8l0tueP3ZsPuLjS6WAQqu+jc3mVOx+EgMLq33GHI5IlJQkugUnGiNX/RyAJUtuUCy1ybf0OxwOrFixolG5Ua0NAx8iIj9mtnwhPlABIDGxxDCvwyoxQIqLi0N0dDQ2bNjgUZ6JlSUXsyW3MWPGSF3FxWanlZWVyM3N1e05pe7CbtTZXT6rkp+fgZycRbqtL8S8JnW9GzGAMrsvyoDLjLLvlvg98tmb2NhYqVaQyJuk69aKgQ8RkZ8Rm12aLV9s3TpU1Q9KwOTJH5tWBPaGWaAitpXwZMnFaPlGXa05MzNTqnOjNxajpSCr2/P1xgZAWuYSWekz5h5wmbFBq8Gp2exNY3eOtSYMfIiI/EhFRYWUK2O0fAHArQkmYPOqIrBVVgIVsyWXoCDlY029pKW3RKbOH9Ibi951W9mer/5u9djUDT4zMvJN+4xZWZZTEuD6d6qc+bEye9PatqV7i4EPEZEfkS9PGS1faDXXBHyf16HX50mLwxGJU6fCoZ6xkD+0o6OjNdsnANYrSquDE6BhaUys3NxwvCsHxmh7/qRJaw23w4uGDfsBp093kNpb5OdnICzsdyn3RmzDIb8uvWW5//f/PsGnn14K5b9DebBjcxujle3mrWlburcY+BAR+Sm7vQoZGfnIy8uAVksCrSURX+d1GG171gtaXA9sp86YtXcTWVkiMwqM+vbt65b3Aigf+Ort+eJ2dADSdnSt7x47dizy8vLgcERKQY/eGB0OBwRBkGa29Jaghg37AUFBgmpLvjqQtWH8+M8wYMBOxf2TX1Nr3pbuLQY+RER+auvWocjPbwh6MjLyFe0UJk9eq1juaqq8DrOHplbisM0mYOrUXEXvKwCKXlbyB7jZEplZYORwODQDH3lgoG5cevz4cWzYsB/FxUmG3y3WIvKmXQXgvgR15ZUXoK5uLMaNs+Haa/+LtWt/QXBwjdS9XWSzOaWgR9zJpRXEtKWgxgoGPkREfkjrQZ+fn4FBg3a4VUYuKUkAALcgo7noBQQAZDMhriWqpUvzFGOcPn06APNdSWZBx4oVK5CZmQm73e4WHMh3qQHu7UDMvltM3G7Mzin5ElRiYqKig/vPP38OAIbJyVo7udorBj5ERH7ISl0WMZjQC3iaK69DL3F45cppqKlxtXPQW6Iy26ll1CMLEPC//yUDsKFz5wpFAvT06dMVuT4icUu8nNl3i4nbWsdlZOT/kW/lHuQFB59BbW2oYf0lvaU4dXJyW8rRaSwGPkRE7YxRA1JxKchsdsEo32XKlCmIj49vtiUQ/RYQAX+85vo94P329oZ8p7GQJwBv3DgKGzeONu3PpUcMUlJS9iInZ5Hpjij5GEtL46WcH3nPLr0Eaq0yA+0xR6exGPgQEbUjVhuQGs1CmOW7xMbG+uxBaSVIA1wBQUjIGaxceYXiGK2t3PKZq5MnTyreM9o1Fh9fBvfKxsb9uYyqXpsFj4CyLYh8JufUqQgp6Vz8/jVrLpOKKFoZm8ifghorGPgQEbUj6iDC6MGsNwPSXO0JrAZposTEEs1ZKvmMj4urESgArF+/HoC1pSmjWjyA+z0wCmysBI9yWu0u3AX8ca3mYyN9DHyIiNow9YyJfJbEbMZB/fA1qg3TFO0JrAZpY8aMwYYNG3RnqQD18o+y/xTgqu+jlbwbFxeH6dOnIzc3V7cWj9Y9MAtsPAke9dpduHOqZnwatNX2ES2BgQ8RURtlNGNiZcZBbxdPS7QnMArSxJ5agPYslcMRiYkTlQX7zJZ/5OQzQWY5NlZnxTwJHq02RTXL8eFsjzUMfIiIPGCUkwI0b6Ko0YxJY5ermrM9gVmQdvr0acXx8jwdowad3i7/iOdPTt6PQYN2aN6D0tI4GM0IeRI8mrW7mDp1pWJnnVaRRH/doeUNBj5ERBZZzUnJzs5u9oRS9YxJRka+x8tVLdWewCxIW7dunfS6PLgDoBv0ANaXf4yuR+seiBWWlUtSgtRbS2Q1eDRrdzFo0C7TMQGuRqtdunRhMrMJBj5ERBYZzfR4c5yv6BUjzMjI112q0dJSW5+tLgspZ3ecGDhwp2HQo3W9ejN2mZmZqK2txenTpxWBlhbtpSkb4uNL3Y61GjzqtbuQf1YrL0t+PgY81jDwISLSYZQ43JrozZjEx5daqh0j583Ds7HLf1aWhdwTgAPw88+DoLXcpF4ako9TPmOnl0w9Y8YMhIeHKz4r7xvmmm3Sb5QKQKrybHY/srOzcfToUanRqdG/o+asndSeMfAhItJgZVnLaKu4L8fRmGKETb1cZTWY0Fr+czgc0u/NloX0E4Ddu4yrl4YA96DVKJm6pqYGKSkputdcVNQHymUuZaA2ffp09O/fX/fzcjExMSwy2MwY+BARaTh69Kjh+0YPTl/xRTFCwH2JxBcPUTEgs7p9Xv1Qr6hQtoAwCyKNa+xodxmXn1NdKNAomTo3N1c3T0v8rHKWyZVwLNKqF2SGQU3zYeBDRKSifiirmT04fcUXxQgB3zeg1JrlKSlJ9OieyK/NKGAaO3Ys8vLypOBO3i1eJO8ybuWcJSWJmkuDhYVpGDcu3218clZ2y3FXVevGwIeISOXIkSNur/lyq7g3rMwwNdcuLL2gRc3KPTELIiMjI6VjxeCusDANBQXplvOB5OcsKurzR/DkbvPmdKSlFf5RG8ihGSyaJWJPnz6dszetHAMfIiKZiooKtwaUmzalS32TrGwVl+euaPF0qcksOGip3T7uCcdK8nuizrERf/Y0iLTbqzBuXD7S0go9ygcShACUlCT8sUylVyyw4XtXrFihudxltqzozTIXNa92Gfj84x//wNNPP41Dhw5hyJAhWLx4Mc4777yWHhYRtQHqJY4vvrgIGzeOgrwhpNlWcaNlMpEntX7MggNfL2VZZVRxWH1PVq9erblUFxx8xjCIDArSfkwZ7YDSzgcSUFycbFIhWUBpaTySk/cD0F/uas7ijuR77S7wWbFiBe644w688sorSEtLw6JFizB+/Hjs3r0bXbt2benhEVEbsmlTuiLoEcm3ig8adDmGDIlAfPy5AM5VNL0E9PNyPKn101y9szylHWA4MW2a+3ZyraU6wLz9QnR0tGLLtxV2exUyMvKRlzcWDf/ubNiyJVUzIJIfk5+fgUGDdrgFMy1V3JF8r90FPs899xxuvPFGzJ49GwDwyiuv4JNPPsGbb76J++67r4VHR0RthcMR+cfyllbDyIat4hMnhiEurpvmOYzyctRLP0ZLUi3RO8sKvXGpt5NrLdU15NnIG3M6kZX1BhISyhSfN9ry7XA4UFtbi5MnT0qd2F1jc8D9310A0tM3KfKDrC6zcct5+9GuAp+amhps2bIF999/v/RaQEAAMjIyUFBQoPmZM2fO4MyZM9LPJ06caPJxElHrd+xYDLRzQQSMHdvQmkDvb/hmeTny7dUio+Wv1rq8otc0VD7Lpb0kpnVvA1Bbqz9jor43elviS0vj/mgpoWSzOZGWVijlBwUH12DJkhssz6QxqGkf2lXgU15ejvr6enTrpvzbV7du3fDLL79ofmbhwoVYsGBBcwyPiNoQvTyRCy/8D0aOdP1FSmsHT2VlJQDjvBzxfbPlr9a4vFJRUeE2W6XXNFScATp9ugPUFZZd9Jt8ioyuTX93mdZ3KWfJxH+2xpk0alrtKvDxxv3334877rhD+vnEiRNITExswRERUWvg3jjSibFj86WgB4Bm3mBdXR0A/byc0tJ4vP32dZYKH7a25RWzKs0HD8ZpznIJAqC9ZOhedVledNFqiwb33WXu3zVt2krNis6tdSaNmk67CnxiY2MRGBiIw4cPK14/fPgwunfvrvmZ0NBQhIaGNsfwiKiNMXooZmZmKh7KYiXj48ePA3AFToMHb8ePPw6B+IA/66xd0k4wwFrhQ/E79FpX1NTUoKysrFkCIKOig65rHQz1EpbxLipADHq0cnvEa1NTX6vR7jLAFXAmJh7Ufd+sRxa1L+0q8AkJCUFqaiq++OILXH755QAAp9OJL774AtnZ2S07OCJqE6wuL3Xp0kX6vVZrCYcjEtu3D4Z8x9CuXWd5VfjQausKeY6QGCiJyb9qQUFBiI6O9ipg0spfagjwlFyzXoB+7RzX59W5PWIOlFHvL5HesqTWTJInuEOrfWpXgQ8A3HHHHZg5cyaGDx+O8847D4sWLcKpU6ekXV5E1HY1tgu4Fd4sL2kdq5fjY9bVW4vV1hVHjx5FTEyMbqCk9zmrncSNrk0v6HHftu7841jj3B7Aeu8vrd1lGRn5iI8vdZupE5fQ1Oewct3UPrS7wCczMxNHjx7Fgw8+iEOHDuGcc87BZ5995pbwTERtS2O6gHuqsZ93OCJx6lS4Zo6PUeFDK4yCAbHasFagpNXmQf458Tgr99RohqWBcvlKvmRYVNTHNKHY035oVnN1YmNjGdD4uXYX+ACu/0i5tEXUvlhtamn0t/jmmDFS7i5ySgGCfJyDBu3QfEDv2bMHJSUlCAsLk5aigIaaP3r1cOTBQGlpqdt41I09tYIIT+6p1gzL4MHbsX37YMXn5Tk78iVDoyBlzJgx2LBhg1f90Kzk6nD5itpl4ENE7Ze3ndG9yZNp7NiAAAiCE9Om5SoqGes9oDds2GB4fr16OPKu4vL6QOJ4tPJr5EGE2T0VAy9xqz6gHbxcfPGXhvV85PTuQadOnQBYq1ZtNYiZPn261/lM1P4w8CGiNsXbzuhW82TUx1mZJTIaGxCAiIhq0w7lWmNRv965cwXUOUIAUFDg6ioujiE4+Axqa0Nx6lS4pQaievd0584BGDBgp2axRcA9eDGr5yPftm8UFInnMqux09q2+1PbwMCHiNoUX/StMnsoi6zOEmVmZloam7iMIzLKvdEb44gRBdi8eaTi+wUhQHEe+Y4mrUAJEBRBhF7OzuefT8D69eMMaw1pMZtBMrr/8qakVvJ2GNSQp8wKLBARtSriTIDroe7eBdyM3kPZ4Yh0O9ZqI1Fxu7jZ2MRlHMAVfD3/fA42bx7pNha9QoAOR+QfMztO1Qic2Lw5XRa4NHSSbygSKCcgJWWvdD+OHYtBRka+NG55orLe/XE4IlFcnKR534xm5czuv82m3B1mt1chOXk/6+yQz3DGh4janMZU2/V2qQzQX56xOksRHBwsncco9+bAgZ6aYywsTPsj8FFvHbdpvCZ/T811verdVRdcsBEbN17oNi71/dm0Kd1tZ5rrml3LbHo72jp3PmZ6/wVBHaRpY5IyeYuBDxG1Sd5W2/V2qcxoeSY6OtpSron4vlGlYZvNiZ49D2h2Dt+8OR3x8aXQDny0lrS0CwjabE4EB9e4zbx884170OPScH82bUpHXt5YyGeE1qy5DDabOMMkzha572gT/30Z3X+r95JLXOQtBj5E1CZY/Ru+2XFWkmbVrOwks/IgFtsvaOfUNCyNJSSUIT3dPZfHFZQImoHDBRdsxDffXOiW46MuICi+VlsbaqnAorwbvcMRiby8DLgHXgFomKixyV7T3tFmJWmZqKkw8CGiZuVtLR1f7uDxdKmsMctjWrQaoI4YUYABA35GbW2olMuzeXM61DM1iYkHNWvoNAQ9Tlx44Ub07l2suDb19TockRrBlxOpqVuwZUsqgIYKyIMG7UBxcRJOnQqHZ6mh2jva2BiUWhIDHyJqNt5WX/Y0WNI6Xl6DBtBfKquurnZ7zRc7ycRxisSHf0lJAgAbHA47liy5QTELMnmy9syIPHAIDq6RPufiWrIaPnyL7lZz8Wd18AXYsGXLubDZnEhP34S0tEIUFfXBokU50hi0ZoT+uCNu12t0j9gYlFoKAx8iajbeVF/2NFiyugVdz/Lly90CL2+Wx7TExMRg+vTpyM3NBQBFcrHWTqqcnEXIyVmkOTMiBg7FxUlez0bJg69Vq6ZBEBq+v6AgHQMG/Oy2xOcKAMXgx4mxY/MRFva723Wo75F6Kz9RS2HgQ0TNzpPqy54ESxUVFW4tG4wK5ZkVMdSaodEKQjzZYSS2oXCv8qycMRGDF/lWbq3xms1GjRs3DklJSVKX9uPHjysCELu9CseOndYMnkpKtHeXTZuWi4iIas2ltODgGtTWhrjdI/lWfqKWxMCHiJqdWc5MeXm52/KVWbC0b98+rF+/XnFOo0DJShHDpqwMbLSzC3BfJtIbr9lsVMeOHeFwOKRGpIB2RWit4Ckx0X13mZhnZLUFhUjcym+G29SpqTHwIaJmp72rybXFGmjoNyVvNmwWLKmDnoMH4xTNOeWBEgDLM06N2WGklWsk9r0y6nAu341VXJyE4OAzhuPVmo0Sg5ulS/MU16QOoNLTC5CWVqgZPCUklPlkiQ8A7HY7t6lTq8DAh4ianXtirQAgAEuW3KCb66M3K3HqVAQcjkjNh7teIT7AZhhEFRcXSwGKSN4t3coD2izXSGumJiMjH/Hxpejc+ZgiqVirRo86j8dKnyytWbPNm0di8+Z0TJ68VjOfyGiJb+zYsQCAvLw8w3th9Z4RNQcGPkTUIoYN+wFdux5S7EgymnnRChQEAVi58grDh7ucfPnIKC/GyoPcrIu7laaoekGFVpd3efKzerzq79GbHdJfXmtIpk5O3u/2rt4yVnJyMuLi4tCvXz/O5FCbwcCHiFqMXhE9vR1J8l1IK1dOg9Yylv7DXblMY7SEY9Y5HLDexwswzieaNu18REa6+lSJicfa12DTrYQ8ZcoUAK4lQqMlQb3CifJjPFnGEvNxGNRQW8LAh4iajTpx1Zv6OOIuJL2lH71zZmW9gYSEMuk1vdkWdZDiWn4qMwyCRPKcHnGpzCwpW5w1AVyVnTds2GB4DVo7pmJjYy3dU/clRrgdA7gCqaCgINTV1SE4OBh2u93tWjmLQ20VAx8iajbiLqnS0lKsXr3aUn0crV0+njzc5Ym6auolHIcj0i0hWuxLpbfzS6SX0+NN1WdPrsHqZ9XLa4WFaVJlaPUxsbGxUjBG1N4w8CGiZhUTE6NYJjJKni0vL0dsbCxmzJiB8PBwlJeXWwqYzBJyO3XqJCUqi+cEgMLCNLi3ZFAWFdTKPwL0c3qCg894VfXZk7YO8gaoVj5rt1dh3Lh8pKUVsm0E+R0GPkTUJIzaTKh3TOklz4oBCeBKJpYv6Vh5uGuds1+/fppLNA5HJAoK0g2vSV1rSO+a1Mtlgwdvx/btgw23hFdUVFi+L1OmTJHuhbjkJDZANfusp8cQtTcMfIjI56y2mdBiVE1Zveyl9+AeO3YsIiMjFVvQAeO8FLOCgi4NMzXyoEw9fnVOz/btg3XzcwDzre9q8fHxbtfhy8J/LCJI7RkDHyJqNPXsjtHshzxPRr4byexYQFlJWV2NWE6+Hd1s27nIaMeTi4CxY/PdcoLUQZpeTk9tbYjmVvHKykrU1dUpXtML/qZMmaIZ9ADWq0wDxjvSmLRM7R0DHyJqFP3ZHdcWbaMdTfKlK6v9uzx9KFvddq7Vrdxma2jMmZGRj5EjC6Tj9YI0s51q4jKVGLiJDUvNziu/HnFZSx2kMGAhMsfAh4gaxaiJaHp6geUdTd7sfpLzZDlNzqgRqWtc7jlEZkGaUeK13o4phyMSJSWJhm02nn12q25XeiKyhoEPEfmEdjuEdMs7msxmSiorK3W3WFtpOKpHXCI6evQoamtrUVVV9cfSU2/pmKCgP6Fz586ora01LRKo1zvLiHz8aoIQgMLCNBQUpOt2pSci6xj4EJFPaCcHByA9fZPbQ1srEDCbKcnNzdWc3bC6RKanoqICR48e1c0XksvMzARgrfCiXuJ1ZWUlAP0Ch+6c0v3z5vqISImBDxH5hF4wkJZWaLlejNlMyc8//4xOnTohODgYtbW1ABq3RKa3m0pv2Uz8TrMgTZ3HI6fO6THeTebEiBEF2Lx5pFfXR0TuGPgQkU+YBQNaD2mHw4EuXbq4nQdwBQTqz23YsMHtHGazL+Xl5bo7lbSKDhotK8lZWc4SBMHt/OqASns3mashqc0GRESc8qoAIhFpY+BDRD7jaW7LihUrkJ2djczMTGlmxNN8HbOAS9wqb5YEvHXrUEViMeC+rBQUpPxfppXCi/Lzq3uAjRxZoLGbrKELuyAEID8/AxkZ+cjPzzBdLiQicwx8iMinPK0GXFNTIzXB1MvXCQk5g8TEEt3u6VYCrtLSUqkIohgAifk24ve6t6tQLitFR0djxowZWL58uSe3RPO6XD3AgJEjC6Tx//zzAKxfP8Ht++PjS5GTs4jtJYh8gIEPETWK1Sq/enkz5eXlCA4OBqCfr7Ny5RXSTAcAzRkhMeByOCJRXJzk9j3q9hdAQ76NUZ6NelkpPDxc87qCg8+gtjZUczu99vltyMvLwKBBO6SxDxy4E3l543SbrzLgIWo8Bj5E1Ch6FYPlzT+Nlq/kAYlR9WRx9seVNqO9w0lrOSk+vswtGCktLVWcW+971ctK6l5aym3oYl6O+/Kc/nUpk5StdKtXY3sJIs8w8CFqJw4eBPbsAfr2BRISmve7jXJnPNlu7p7voqT32rFjnQG4V4l2LSe5ByPqHJyioj5Q5iG7dlOlpRXqzhq5b0PX7+Jut1chIyNfGo9IK0nZaNlO3pwUYHsJIm8w8CFqB5YsAebMAZxOICAAeO01ICurpUflord8VVKSALt9l9vx4oO/pCQBK1dOgzzvxjVrArfXOnc+prucJH6fXrCll9+jDnrUn/n554G6y2Na283Fdhd5eRkAzGsaab2uV/WZiKxj4EPUhlVUVGDfvjrMmdMVTqfrIe90AnPnCjjnnCNISgpq8RkBvWWeVaumoaZGe8eW68G/CzU1a92Wrk6disDmzenQCh6MmoyKwdaxY6dNm4qql6DS0tJQWFgIQHt5S01vu/nIkQUYNGiH10nKXNYiajwGPkRtlFh8r7g4CU7nTMV79fU2LF68DsnJ+xXbuOVd1EtLA1BcHITk5DrExzsBNM3Sibh8ZbZVXIt82ae0NF6xpTs9fZNiVsZoW7iLE6tWTfO4qSgAKejRXt4SVP909Sgzuh9a1ztjxgy3xGk5LmsR+QYDH6I2SgxgzB7c4nHyKsVGyca+anqpbv4ZEnIGK1deoThGvSQk3/kFQPp9587H8Pbb1ynydwoK0jFgwM+629rlgRLgBGCDIGgvfVlNKNZbThs//jMkJh7Azp0DUVCQjs2bR6KgIF1xX9X5Oep7xaCGqHkw8CFq46w+uMUAyCzZWK/ppXy2SIv64S3u9iotLcXq1auRmFhiGKC5LyEJEJez9Lq8L1lyg+629uTk/dKy0qlTEYZBl9XCi8HBZ+AKopTXMGDATgAw7KnF/Byi1oGBD1E74EnFZG96W+n1tFJTzxbFxMRIwZJRgKa9hNQwO6PV5R0QTHeKyWv7eNtUVCQGZq6gR7l13W6vQnFxktc9w4io+TDwIWon9B7cYu2ZHTsqUVychODgMx73fjKa6TE7Tr3kpRWgGTfqBNRd3tWzLoBxkGG1qahaZWUlcnNzdQIzJ6688n3067cXgLWO7UTU8hj4EDVCc9XOacz3rF69WraMdBZsNicGD96O7dsHe937Sa8Ksxa9AodAQ5FDo8KFgLLLe0lJAqqrw7Fu3f/zKMgwmhVT9+ACXAFbdHQ0AP2dXx98cJViic3T4oNE1PwY+BB5qblq5zT2e7RyerZvH4ysrDdQWxvi8bZqT5uIAsYFDgHtGRmxXo88gFDmATmlYEkdZOgFZpdfPhydOnVCVVUV8vLypNfF1hVqmZmZAPS35KuX2IyCK25FJ2odGPgQWaCecTl4sCEYAcTaOcD48b6b+TGr0RMR4bB0Hr2cntraECQn73c7vri42O01dTNPK1WYzVRUVEjnBdxnZFxjbwgg3JebAiAITkyblovExIPS9xsFZhs2bPBojLW1tQD0t+SL90BcYtNbMuOuLaLWg4EPkQmtGZfevRuCHlF9PbB3r28CH6s1eqzwNPdEPhOi5k1itBa9ZGl1ntLEiWejY8d+WL9+ve5yU0REtWKmx5vATG+GSL4ENmzYD+ja9ZC0k0wkv5fcuUXU+jHwITKgPbMjYM2acgQExEozMQAQGCggMvIIKioaXy3Zao2e6dOnS3koamL+jNluKqu5OlbG4+n1mdm8eTOmT59u+bsLC9N0AzMAmtdqNEMUHR2t2JKfkFDGPB6iNo6BD5GBPXu0ZnZsyM39BJdd1lnxALz44nwsXuzqBD5//kyfLG1oBS0ZGfk4dsx17rq6OgDmSylauSd6D3yjYKipEniNvlO8RrPvdjgi/2hloWSzOVFaGi8VQFRfq9kMkfq+Mo+HqG1j4EOko6KiAlFRdQgI6KqY2RFnGZKT9+u2U+jR4wTuvNM34zBq21BUtBbDhrk6hmdmZqJLly66AZB8GUnvgX/6dAfF+bUSl40e/A6Hw+N8FnUAlpGRLzX0BICTJ09a+m5XMOi+K2zYsC2yCs7K4Mbq0p3RzjQR83iI2gYGPkQa5Dkol13mPjMi7w8FwK2dwr332pGZ2ZAI3dgt73rf8/HHl6Fr10NISCjDihUrAFhrOaH3wNcLEOz2KowdOxaAKwdIr2aQJ2MAtAOwvDzX94jBz/r1693uhdZ3a++8ciI5eR+2bDnX7VpLShKQmHjQ8tIdgxqi9sGoYhiR35L/zX7YsB+Qk7MIM2cuQ07OIrcZEK0gor7ehsLCCrzwwkn06gVcfDHQq5crUdpbesHKG2/cgK1bh7qN3WjZRQwSlLS3a4v5MXl5eYaJz3JWc3j0el/l5WXA4Yi0dA6RuBQmXpfN5sTkyWulVhlqK1dOQ1FRH7fPMGeHqH3jjA+RBUbtDPSSbj/7bNUfO4Bcr8m3oicleZ4ArV/kT3vnktbyjF7CM+BEauoWbNmSCuXfh5w4dSoCDkek5vV7mhztyTXpNS/V+x6HIxKdOh3XrE/k2oo+Ccpu7a77lpOzCDk5i5izQ+QnGPgQNZJe0m1tbajmTJC4Fd3TLujuwUoDvS3lVhKeCwvTUFCQ/sdykICGdhCujuYrV16hme/jTSFDrWvKyMj/Y3nLPY/K6vdoHSPf7p+Sshdify058b4lJ+/H7NljFTV4mLND1D4x8CHyAa2kW7PGmGaJsnrf07XrIbzxxg1Qdwi3sqVc67zyjuKuxpsCJk78GOvWXQpBaGgUKp9VcjgiFcX8jOrlaHV1dzgaii+KuTx5eRlQV2q2suvKyjF6ic+swUPkfxj4EPmIejmsMVu/5ctU4vKUKCGhDJMnN+68Yl0avbyhurpgw1mlwsI0WGkSarWr+8iRBRg0aIel5qXq77FyjPaSmoCMjHzm8xD5GQY+RI1klH9itP3ajLjMIm/r4KvzmhVI7NnzgO5slcMRiYIC93o5gPusk9UkZ8AVKN5440TYbDZpd5iVooWdO1dA3a1dfYxWTtPYscpt88znIfIPlgOfEydOWD5pVFSUV4Mhamus5J+IM0EORySKi5M8SgQuKipSNNBUB1mNna3Qm5UyqlBcXJyk2UV9xIgCaTzl5eWKf+qNX01dhdrKrFlRUR8oc3e0Z8CMgsUZM2Ywn4fIT1gOfKKjo2Gz2QyPEQQBNpsN9fX1jR4YUUuy8rd/T/pCaQVI5eXlhgm0FRUVWL58ueE5tJKJPZ250AsI9F7Xm4VJSyuUfpYvzXk6fqvjAxr+HSgTo8VkZpcZM2YgPDxc9/xMYibyL5YDH0+7GhO1ZUaVeh0OB1asWGG56q9+gLQIdnuV7u4u+XebJROLXcHFoKesrEz32kJCQtyCI73ZI73X09ML/mgPYS3HSO8eiMUXjRjNEpn9O5g+fTpSUlIMz09E/sVy4DN69OimHAdRq2M2C2C1YafZw/nIkSOm32WWTCzuSLKaTJydnW0Y2NXW1iIoKAjR0dGK5Gr1rE16+iakpRW6BXrqQMWo+OLkyQ0zPw6HA3a7XTrGbJbI7N+BXgNXIvJfXic3V1ZWYsmSJdi1axcAYODAgbj++usV/9Mias+s7trS21FUWhqP5OT9yM3NRWZmptt/O2J+TFMkE9fU1Ohu3dZ7XWvWpqAgXbHEpReoWC2+WFtba/h96qXEpmqaSkTtl1eBz/fff4/x48cjLCwM5513HgDgueeew2OPPYb169dj2LBhPh0kUWtllH8yZswYbNiwQadInw35+RkYNGgH7PYqrFixQndJR7utgzKZWI83lZXVdXfEAMxs5sosULFSfPH48eMICgqy9H0idksnIk94FfjcfvvtmDx5Ml5//XXpf1J1dXW44YYbkJOTg//85z8+HSRRa6aXB9OpUyfp9/HxZdCrGmy3Vxku6VhJJtZidM7KykrNmR2jpTKzZSWzQEWv+KJ85kqeS2j2fdOnTzdcymLSMhFp8apJ6ffff497771XCnoAICgoCPfccw++//57nw2OqL3Qagoqr4ujNVMiNunUar7pbTKxeM7c3FxUVFS4fc69wrJrC77Yq0tvHA5HJE6dCte9RlFk5EmoA0C9zaJm1921a1fExcXp/mLQQ0RavJrxiYqKwoEDB9C/f3/F6yUlJYiM9KyjMlF7dfz4ccVSkyd1cdRLOmYFC9VLOlaWiczygfRmjNTjkB8HOKVZGq0AzdU6Qn/mSyTPeXrwwaPYty8ISUl1iI8/F8C5nM0hIq95FfhkZmYiKysLzzzzDEaMGAEA2LRpE+6++25cddVVPh0gAOzbtw+PPPIIvvzySxw6dAjx8fGYMWMG5s+fr/gf/vbt2zFv3jx899136NKlC2655Rbcc889Ph8P+Y+DB4E9e4C+fYGEBM8+++yzlfj44xxFEKDVBTw4+AzMKg8D+ktqWsX3rOw4UxcXlL9mlq8zfvxAfPvtfrfjgAAIghPTpuUiMfGgpURvm82J4GBlEGa326WluLg4IDXVbahERF7xKvB55plnYLPZcN1116Gurg4AEBwcjJtvvhlPPPGETwcIAL/88gucTideffVV9OnTBzt27MCNN96IU6dO4ZlnngHgqiw9btw4ZGRk4JVXXsFPP/2E66+/HtHR0ZgzZ47Px0Ttl5jc+957YbjnHjucThsCAgQ89ZQDV199GtXV1abn0AsccnIWKbqGi7MlrqDH1T1cPVMi1ujRojfzoZVMLAiuKsdino9WkUGR2YzRt99+q3scEICICNc9Uleqdh+XAEEIwJIlN3jV3Z2IyFNeBT4hISF44YUXsHDhQhQVFQEAUlJSDKujNsaECRMwYcIE6efevXtj9+7dePnll6XA591330VNTQ3efPNNhISEYODAgdi2bRuee+45Bj5kmZjc63BEYtGiHKk7udNpw913R+G3396E3V6lWw1YrHljZanJfbbEFfRkZb2hKOpn1jVcvgtL3tcrJWUvBEF+pH5laTWrNYr0jistjcfbb18nLX+NGFEg1fvRSnI2qnpNRORLjWpSGh4ejrPPPttXY/GIw+FA586dpZ8LCgowatQoxdLX+PHj8eSTT+L48eOKHTZyZ86cwZkzZ6SfPelJRq2fp0tVYgBhFriEh4cbBiNWAge976ittb4F22gXliufxlplafWWd6v1cbSOy8jIR35+hmL5a/PmkSgoSJdmdWprQy2NjYjI17wKfH7//XcsXrwYGzZswJEjR+B0KndybN261SeD07N3714sXrxYmu0BgEOHDiE5OVlxXLdu3aT39AKfhQsXYsGCBU03WGoxS5YAc+YATicQEAC89hqQlWXts1ZnPPRYCRysfodRLRqtXVhiEGPl/EZb3q12gE9J2YupU1cBEJCYeFC37pB8Vqex95eIyFteBT5ZWVlYv349pk2bhvPOO8+0eame++67D08++aThMbt27VLsHvvtt98wYcIEXHHFFbjxxhu9+l65+++/H3fccYf084kTJ5CYmNjo85JveTJzU1FRgX376jBnTlc4neJSFTB3roBzzjmCpKQg0x1BRoGLwxGJTz89jXPOOYz4eFfQr5VrYxY4mAVHU6ZMQXx8vNt55Utb8gRlrSDG6PxWKyMbzcBofaerQagyWVskzuokJ+83HBsLDxJRU/Eq8Fm7di0+/fRTjBw5slFffuedd2LWrFmGx/Tu3Vv6fWlpKcaMGYMRI0bgtddeUxzXvXt3HD58WPGa+HP37t11zx8aGorQ0FAPR07NwSzJWCvYEJd+iouT4HTOVLxXX2/D4sXrkJy8X7cxqJzZ1m31DEl2drbbOcwCB6PgKDY2Vvf61IySqbV2kgHWKyOrk6srKyuRm5ur+51ZWW9AvWVdJJ/VefTRZG5VJ6Jm51Xg06NHD5/U6+nSpQu6dOli6djffvsNY8aMQWpqKpYuXYqAAOX/sNPT0zF//nzU1tYiODgYAJCXl4d+/frpLnNR6yU+4A8ejMOSJTfoJhmrAxhxJsRsKcVqTyt54GI2Q2L1nEbfISdPVAZcsyB6S1unToXrBjHJyfs1z291uUkvuVovcPr1177QDnyUszribBa3qhNRc/Iq8Hn22Wdx77334pVXXkGvXr18PSY3v/32Gy666CL06tULzzzzDI4ePSq9J87mXH311ViwYAGysrJw7733YseOHXjhhRfw/PPPN/n4yPdqamqwdetQrFkjbvVuIJ+V0As2mqJ5pZUZEqtLNOpdYQ6HAytWrFAck5ub6/a5zMxM6ffq2ScrtYDUiczKreVOpKcXuH2nuJymnonRazz6n/+Mhrg1Xz4Wcbea3hIeEVFz8CrwGT58OH7//Xf07t0b4eHh0gyL6Ngx3yYo5uXlYe/evdi7dy8SVAkewh/7de12O9avX4958+YhNTUVsbGxePDBB7mVvQ2qqKjAjh2Vsvo2SlaTYK0m51plZYYkJiYG2dnZhrM/VpZy9JqLit3LtWafXGNzBT9agZ5RJebCwjQUFKS77b4ClPV+srOzpeBOv/GoWMFZUHyXuEWfQQ8RtSSvAp+rrroKv/32Gx5//HF069bN6+Rmq2bNmmWaCwQAgwcPxsaNG5t0LNS05Dk6gnCW2/ueztyY5dioGc3YWJ1FauxD3SiPSKQ3+zRtWi4iIqrdAj2jZToAKChIN0xyFtXU1CAuLg7Z2dkoLS0FsBohIWewcuUVqqsIwNSprrFcc00aBg1i/g4RtQ5eBT6bN29GQUEBhgwZ4uvxkJ8zytEB3Iv7+ZrWjI1YlBDwzSySfFeW/DsAazutAP3ZJ602EYDxMh1gs5TkLBcTEyNdQ2JiieFYBg0ab1jziIioOXkV+PTv3x+nT5/29ViIJHqzK00Z9IisbHX3dtnMqOAgYH2nlZWt8LGxsVLQZrZMp/XeqVMRUld2I02RT0VE1FS8CnyeeOIJ3HnnnXjsscdw9tlnu+X4REVF+WRw5N98naPTGhgVHLTbqzwq7Ge2FV4+y2IWnKjfEwRg5cordJfaAOWyoNFYWJOHiFoTrwIfsW/WJZdconhdEATYbDbU19c3fmTklxwOh+z32gm+Rqw+ZD15GDfFOQH9XB6jACUoSPmfrN7sk9hI1WpwIr5XUpKAlSunwUoPLV8lchMRNSevAp8NGzb4ehxEqKiokLZ0W0nwBdyDjaZ4GHtyTq38HTmxNo9RLo9RgBIdHY0ZM2Zg+fLlhmNevny5VOMoOzsbR48exYoVK0yX6U6csMOTHloMaoiorfEq8Bk9erSl4/7yl7/g73//u6LqK5EeMWCwkuBrVAumKR7GVs5plr8jZ5bLoxegeDKrJN7PmJgYRe0rLfJAU6sGD3toEVF70aju7GaWL1+Ou+66i4EPAdDezSQnzoZYSfDVaufQ0szyd+T0dq1pJRSLicrirFJZmTLB22xJUD6TpvUZAKpaPDaIwQ97aBFRe9OkgY9YXJBIPRviaVCgnnVo7Q9gvaU6+XWrqyYDNs2EYjFRuaKiAmVlZaaNSdVLguqATP2Z9PQCjW7qNowf/xkGDNiJ2bPHIjaWNXiIqH1o0sCH/JNRnRrA/GFttgNp+vTprfoBrLdUd/p0B+TnZyiuKSdnEUpKErBq1TSpH5nW0p7WMprZkqB4z+X3XuszBQXp0Gp3MWDATtjtVbq9uoiI2iIGPuRTZnkuVgv0mSX4tmZ6S3Vi0CP+LHZPj4g4bbq0p7VEaLYkKG81YfaZESM2SdWbubxFRO0ZAx/yKbM8F6sF+oDGFQpUM8ovqqyshM1mg91u13zf0yUevfwdvev2pHaP2feYfa60NA5ayctpaYVISyvEoEGXY8iQCMTHs8UEEbVPDHyoyWgtaaWk7PXqId8Ynuy20iNuDbdCa6kuIyNfMeMDNFy3N5WPxYBSfl6zzzkckcjPz4A86AEEZGTkS5+ZODEMcXHdLF0nEVFb5HHgU1dXh8cffxzXX3+9W6d0tRkzZrCKs5/SW9LKyVnU6PYG4tKL2S4xcbbCk91Weu8ZfY8WraW6sLDfda/bkyrV6oDyggs2IizsNHr2PICEhDLda9CabQNsiI8vVdwzIqL2zOPAJygoCE8//TSuu+4602NffvllrwZFbZ/RkpbRQz4zM1N3yQlQFgq0skssOztb8XmjxGqj98QEYaOlH3XQoF6qk193cHANamtDFVvXjWr3GNU42rhxFMSt54MHb8f27YMVM00jRxYAMF8aa+1J40REvuDVUtfFF1+Mr7/+GklJST4eDrVWVmdXRGYPWb2HvN1ut7SDSD4Wo4BFfpxRYjUAw6RreaKwetlLfm+mT5+O48ePIy8vT3PcdnsVior66I5XrNkjUtfu0Zu1Ecf8449DFD/n5Y0FAIwcWWC6pNa1a1fDe05E1B54FfhMnDgR9913H3766SekpqYiIiJC8f7kyZN9MjhqHazmyMhnV7zt2O3pUovVXWKA8SwUYNN87+efB2DgwJ26y15W7o1RsUD1eOU1e2pqalBTU6Oo3aOdOC1nc/s5Ly8DgwbtgN1ehUcfTcaDDx7Fvn1BSEqqYxIzEfkdrwKfv/zlLwCA5557zu09Niltf6zmt6iPM1rSUs9sAN41tPRkl5jZLJR7QCFg/foJyMsbp9srzCx/yEqxQPV4jYIpdUCp3qHl/jMANJzfFVh1Q2qq5umJiNo9rwIfp9Pp63FQO2GW5yLS67PlKU+2dJvNQukFFEazSHLqIEe9k0sQArB5c7rpeM0CTXlAWVoar9jVddZZu7Bz5wCot6uz1xYRkYtXgc/bb7+NzMxMhIaGKl6vqanBBx98YCnxmdqnpuiObsTTJTWjWSjxvZ9/HoD16ycoPmfUoRzQXnJTb193CUB6un6xQL1zqxO3xYAyOXk/Bg3aobieTZvSkZeXAcC7XXNERO2ZV4HP7NmzMWHCBLdkyKqqKsyePZuBj58zCmrE3BV1o02RN0GR2VZwq7NQ4nsDB+5EXt44j2oN6S25abWCEIsFerN1XS8Rury8XErAHjmywC0YIiIiF68CH0EQYLOp8wiAgwcPGm5FpvbBrBu4Hk+SpD0NfoyCmZiYGEyfPh25ubnSa0bX4MkskthRXm/JzajAoNb5HA4HamtrpTFaSYQGrAd3rNNDRP7Oo8Bn6NChsNlssNlsuOSSSxAU1PDx+vp6FBcXY8KECQZnoLbOSjdwPd4mSWux+gAXj5P397JyDVYKClZUVEjBlF6wNGzYD7qzL2lpaQgPD0d1dTUKCwsBACtWrJDe9yRxu7mXGImI2iqPAp/LL78cALBt2zaMHz8eHTt2lN4LCQlBUlISpk6d6tMBUuvhydZxq+fzZuYI8P5B78k1mM2aqL87JWUvpk5dBUBAYuJB08KEYrCjJt6X4OAzHrX3YFBDRGTOo8DnoYceAgAkJSUhMzMTHTp0aJJBUesiPujNZiA8WUZpzMyRyJsHvdk1WK0crebJ9RgFfOrzqCsxM1GZiKhxvMrxmTlzJgDX33iPHDnitr29Z8+ejR8ZtRri7Mq+fXV45x0BTmdDfldgoIBbbpmIpKQgy4GIr2eOPGFeUdpa5Wg5s+sZN24c1q9fD0A/QHI4IlFSkog1ay6DmAwtCAHYvn0wsrLeQG1tiNtSGfN1iIg851Xgs2fPHlx//fXYvHmz4nUx6ZkFDNufmJgYxMQAr70GzJ0L1NcDgYHAq6/akJrqWTdvT3JXfM3bitJGzK5HXBLWC5BOn+6gs/XddUxtbQiSk/crdnExX4eIyDteBT6zZs1CUFAQ1q5di7i4OM0dXtQ+ZWUB48cDe/cCffoACQmen8Ns1kVszyDnywe9J53QrbBaRFEvQBJr7miRn0e+i4uIiLzjVeCzbds2bNmyBf379/f1eKgNSEjwLuARmc26yBuCynm6zV3ePPTgwYNuY/DVdm+rs0j6fbb0gx7m9BAR+ZZXgc+AAQM0/1ZOZEQeVHgz61JaWoqamhpLsz9WawbJzZgxw3JgVVFRofhvwMr1uPfZ0mazOTF16krFzjAiIvINrwKfJ598Evfccw8ef/xxnH322QgODla8HxUV5ZPBUfui3oIurzYsp7frSX6s2eyPUfNQAJrnDw8Pt3QdekGV3iySvN7VsGE/ICTkDFauvELz3OIsz6BBu9zeYzIzEVHjeRX4ZGRkAAAuvvhiRX4Pk5vJjNmMitVt4VaLIarP6WohYQNg83obvVlHdtGUKVMQHx/v9vnExBKNJS8npk1zn+URt9czmZmIyDe8Cnw2bNjg63EQ4eDBOM1dTyEhZ5CYWOJ1kUTl0lJDsOGLbfRGgVpsbKwUrGRnZ6O0tBSrV6/WzQkSZ3nE3VsMdoiIfM+rwGf06NHYuHEjXn31VRQVFWHlypXo0aMH3nnnHSQnJ/t6jOQHtm4dqqhhIxKEAKxceYXh7Iw8iVkk5t9o7aRSn9/bbfRm9XvkOUAhISGK2R+jnKD4+HgGPERETcSrwGfVqlW49tprcc011+CHH37AmTNnALgaLD7++OP49NNPfTpIat/EAEJvdxOgPztjlsSsv5PKxWwbvUjepsIoqBKEAJSUJODYsdNYujRPMdbs7Gz20yIiamFeBT6PPvooXnnlFVx33XX44IMPpNdHjhyJRx991GeDI/9gNisj0pqdMcu3cd9J5Z7jY7aNXo9e/Z6VK6cBcF/6qqmpYR0eIqIW5lXgs3v3bowaNcrtdbvdjsrKysaOiVoxrWUlOW9mLLRnZcQ2KNYadAL6+TbDhv2A06c7yAoFOjFixGakpRVqLnFZaZ4qHpORkS9VXXZdQ8OYm7MVBxERWeNV4NO9e3fs3bsXSUlJite/+eYb9O7d2xfjolbIam0cq4UGxeUjvWRfAJZbSxjl2wBAfr68OnIACgrSkZbm3h3dbFeZwxGJwsI0FBSkS8dkZOQjPr4Up05FuG1Tb65WHEREZI1Xgc+NN96I2267DW+++SZsNhtKS0tRUFCAu+66Cw888ICvx0ithNUt5FaPU9f1efDBo/j55zPYtm2lFCjoJQCra9oY5dtERJy21BvMLFlZKwFbEAKQn5+BnJxF6Nz5mKXWFURE1HK8Cnzuu+8+OJ1OXHLJJaiursaoUaMQGhqKu+66C7fccouvx0jtmHxmKC4OSE0FLr10psfLaXpJzKtWTUNGRr7GewJKS+ORnLxfeqWkJFE3QAKguetMfkxy8n6fN0AlIiLf8irwsdlsmD9/Pu6++27s3bsXJ0+exIABA6Qu1ESN4c2uJnG5TG9G5oILNmLjxlFwJTYDgA35+RkYNGiHajZHSZyxKSxMg5VGor5ugEpERL7lVeAjCgkJwYABA3w1FiJNRgnV6n5ZWu0gBCEAYWGn0RD0NLwuzuZobaeX5xoVFKRrfr/WrI5e6woiImp5jQp8iJqap81GtdpB2GxO9Ox5QDf/Rm87/dSpKzFo0C4UFydpvj9w4E8YNy7PcpDDXltERC2PgU870xTbzfVY2fbdWFb7Yo0ZMwYbNmzQ3SGWkFCmm39z6FA3uLbPK4OixMSDAPTr9WgFPWJvLTUWJiQiah0Y+LQjvt5ubsRqM1EzZoGavC6U0Xd26tRJOk4vz0br9Q8//DN+/HEIXMtgArQKG+oFU/KgZ/r06ejatSuDGyKiVo6BTzvi6+3mauJSjdm2b6tLOp4sY5l9Z1CQ8o+yPM9Gq5oz4GqK2hD0AGLwc+WV76Nfv72K8xklLU+fPh1nnXWWpesgIqKWxcCHLBPr7mzYADz/vPu275EjZ+Kii1w/l5WV6Z5HXPbxJADTq9Mj1uKJjo6WagKVl5dL7SeMZokOHOgFdcIzYMOxYzEA9kJNL2k5Ojra8nUQEVHLYuBDHomJicH55wMBAYDT2fB6YCCQlhYDwPpym5pRzpBeno28OGBMTAwqKioU5zOaJerZcz/E5a0GAhITDwAA0tLSUFjoXt1ZjUnLRERtBwMf8khFRQUCA2vw1FNhuPdeO+rrbQgMFPDkkw4EBp7G0aMOS+dRz/aY5QxZybNRL50ZFSS026uQkFCGIUN+VOT4DBnyIxISXLNVPXr0YDd1IqJ2hoEPWaYOLG69NVLKeTl5sgqvvebdec1mZkRmxQHlAYoYSKmpZ4n+7//+jXPP/S9KSnoiMfGAFPSIGNQQEbUvDHzaAXFnlLyYX1NQz3z4qlCfWf6Ole8MCQmRxqcOpBq4zxI5HJGorQ3FgAE73c6rTpgmIqK2j/9nb+M8LfDX3KzU+jHL39GqjeNwOFBbWwsAKC/vgA0bALu9EoB2IAUA06a5ChKKzJbXunbt6t1FExFRq8XAp43zZmt6cyXjWq31Y5a/Y7fbERcXJx1fUVGBFStWaHxHJ0yaNBQpKXs1AymxICFgvrw2ffp0LnMREbVDDHz8xJQpUxAbG9tsybhW8nbkAZhR/o46UNNb0hK/IydnkWkitJXt8URE1P4w8PETsbGxilkTXzBaxrKStyPWBfJ215TRd5glQlvZHk9ERO0PAx/yitkylllgIc7ieDL7pE7iNvsOo+RrK9vjiYio/WHgQx6zkh8THR2NHj1OqGr9nMDVV1/l1XKbOolbnG3KyMhHfn6GV8GL2awQERG1Pwx8yDJxlsZsGUts1nnnnUBmJrB3L9Cnjw0JCdEAor36bq0aPWKwM2zYFiQnFyM6uhK1taFwOCJht1dhzJgx6Nq1q2JHWGVlJXJzc6WffbUln4iI2gYGPmSZmJOzb18d3nlHgNPZ0OohMFDALbdMRFJSkGI2JyHB9Utk1o3dbDZIa7Zpy5ZzsWVLKlzVlxu6qwMbAPimGz0REbUPDHzaOKtb0321hT0mJgYxMcBrrwFz5wL19a4+Xa++akNqajfDz1qtOWQUqOjV6AEaXlMvvckDrea+X0RE1Low8Gmj5DMnmZmZUjE/UVBQEKqrO6O4OAj9+gUgJqaTT78/KwsYP15cxlLO6uhRz/To7QozmhHSSmjWolf5ubE7yYiIqG1j4NMGWZk52bp1KNaunQSn04aAAOC5505i+nT9XBZvHvbqZSxPWC1uqKbejaXHaGs6gxoiIv/FwKcNMqvW3JAH48rBcTqB228Px/79rxkm8jZXLozVpqR6xN1YhYVp2Lw5Ha5lLidsNnBrOhERGWLg0w550vRTzpv2F97wdnxydnsVxo3LR1paobQd3XVubk0nIiJ9xokSrdCZM2dwzjnnwGazYdu2bYr3tm/fjgsvvBAdOnRAYmIinnrqqZYZZAsT82DkWqoqcUVFBcrKylBWVuZWeNCT8eklG9vtVUhO3i9tSxd/T0REpKXNzfjcc889iI+Px48//qh4/cSJExg3bhwyMjLwyiuv4KeffsL111+P6OhozJkzp4VG2zLEPJhPPpkkFQ+89FLzpZ/KykrD9z3NA9LLRTKrmlxeXu72XWJS8pEjRxR1eIiIiDzRpgKfdevWYf369Vi1ahXWrVuneO/dd99FTU0N3nzzTYSEhGDgwIHYtm0bnnvuOb8LfABXHsyDD6ahqqobIiOPYO1a88RhKwGFJ3lARru45FWTg4NrFIUHV69erfldrq30DbuyHA6H1KXdCLemExGRqM0EPocPH8aNN96Ijz76COHh4W7vFxQUYNSoUYqH3Pjx4/Hkk0/i+PHj6NRJezv3mTNncObMGennEydO+H7wzUgeXMTHOxEXB5SVOc0/aJG3eUB6u7iKivro7u46evSo9H2lpQEoLg5CcnId4uNd19OlSxduTSciIo+0icBHEATMmjULN910E4YPH459+/a5HXPo0CEkJycrXuvWrZv0nl7gs3DhQixYsMDnY24J6uCic+dDyMpqyK3xBYfD4XGXd71dXF27HjLc3SXO5hhtfc/OzvZ513kiImq/WjS5+b777oPNZjP89csvv2Dx4sWoqqrC/fff7/Mx3H///XA4HNKvkpISn3+Hr2kt3WgFFw8+2B1PP/2+tHTkCytWrEBFRYVHn9HbxfXrr311d3eJ9IImhyMSQPPtRCMiovahRWd87rzzTsyaNcvwmN69e+PLL79EQUEBQkNDFe8NHz4c11xzDd566y10794dhw8fVrwv/ty9e3fd84eGhrqdt7XTqj68aVMInn++cVvErfI02NCrtrxx42gATsjjb3F3l7hkd+pUeKO3vhMREYlaNPDp0qULunTpYnrciy++iEcffVT6ubS0FOPHj8eKFSuQlpYGAEhPT8f8+fNRW1uL4OBgAEBeXh769eunu8zVlqnzVs4/HwgIcBUrFOltEZfnAc2ePRZBQUGorKzE+vXrm2Ss4i6uNWsug7qnlisgcgU/4jKWOu9HLzgiIiLyVJvI8enZs6fi544dOwIAUlJSkPBHz4Srr74aCxYsQFZWFu69917s2LEDL7zwAp5//vlmH29LSEhQNw7V3sKulQdUX/+62/n0+mgZUXdel+cWDRv2A0JCzmDlyisUnxGEAEyblouIiGopmFm0KEextKUVHHG2h4iIvNEmAh8r7HY71q9fj3nz5iE1NRWxsbF48MEH/Woru7xxqNYWdq18mYceisNtt0UqAgl5cAQ4MXZsPkaOLDD8bnXNnobAqeHciYklbkteNpsTiYkHpWOKi5M0l7bkwRGDHiIi8labDHySkpIgCILb64MHD8bGjRtbYESth9g4VGsLu1aSsdNpU+TLqIMjIAB5eWMBQAp+Kisr3XZSyWd69HZhmRUuBLTzgdTBERERkbfaZOBD3tEKKgICBEW+jFZwBNiQn5+BQYN2wG6vQm5urm4hQ7MGpPLChVqzN1aCIyIiIm8x8PEjWkHFgw+WAlDOuKiTiQH3nVR6O7usNCAV+2rpMQuO5FiVmYiIPMHApx04eBDYswfo29e1zAXoBwTqoCIz8/9B3fUhNXULtmwZDsAmvWZ1J5XeUtWpUxFSSwor9IKjKVOmIDY2FgCrMhMRkecY+LRxS5YAc+a4trEHBLh2dmVludf60Wr5EBISopub45r1AQAbbDYnMjLyDYMWscGp1qySIAArV17hVnXZG7GxsazUTEREXmPg04YdPNgQ9ACuf86d69rZlZDQUOtHLzgCgF9++QWAdlKzK/gRIAgByM/PQFjY75pBS0VFhaLBaUrKXkydugrV1R3w6aeXQlw2U+f7yGdvqqursXz5ctNr5tIWERE1BgOfNmzPHmXBQsBVw2fv3oYlL6PgKCysQuqHpZ3UrCw2KA9a5Ix2dGnlCv388wAMHLjTbfaGDUeJiKipMfBpw/r2da/WHBgI9OnT8LNRcNSvX0OQoddWQk6vVYTD4fjjn5GK6syucwmQ5woBAtavn4C8vHGw20sxZ06ZFNAwqCEioqbWok1KybqKigqUlZUpfgUGluGppyoRGOiqaRQYCLz6asNsD9AQHMkFBgIxMccVlZXF3BzXLA0gLnPJaSU4V1Q0zBoVFqbB/Y+UDQ35Qg1BkCAEYMGCeDz99Pt46aWXPG58SkRE5A3O+LQB6qrIarfeGoljxzrjzjv/jLPPVvYlc29lATz77EmsXv2i23nE3BxAQGLiQbeeWfJ6OmKujbg0dfBgHDZvTtcYnRM33PAGDhzoifXrJyjekc8gscs6ERE1BwY+bYBZUCBu/Y6N/V3zfXkriz59gMDAKrz2mvIYvWrLKSl7MWjQ5RgyJALx8ecCOFdamqqoqEB5ebn0Wa0JxBEjCpCQUIbIyJPIyxvnts2dzUaJiKg5MfDxE2IrCwAoK1O+d/BgnFtujjyReeLEMMTFdVN8RpyFcu0Gy9HMDbLZnEhLKwTAisxERNQ6MPDxc3qzNXqJzCJxFkp7NxgAuAc2nlRkJiIiagoMfPyYe+2eBo2t1JyV9QYSEsrcjjdrV0FERNSUuKvLj1mdrTEqGqjeDSYuYWkFPURERC2NMz5+zGy2ZsqUKYiPjzetr8MlLCIiaisY+PgxvYRjcbYmNjZW2r2l7vllt1e6nasxAQ9bURARUXNg4NMGWA0KvDnOaLYmJCREUUNIueW9EyZNGmracHTKlCkIDw9HeHi44XhYtZmIiJoDA582QN1pXYsnwYMn5yv7Y++7OhHaqHeXHLupExFRa8LAp42QBzUHD7p6cPXtq2xP4e35rNBKhDbb8g5wCYuIiFoXBj5tzJIlDd3WAwJc7Siysnz/PWJeT3l5ORyOSJw6Fa6ZCC1ueZ8yZQpiY2MV5+ASFhERtTYMfNqQgwcbgh7A9c+5c13tKOQzP/JkZC1mAYl7Xo9YmdkpBT/qystc0iIioraAgU8bsmdPQ9Ajqq939eASAx+zhqai7Oxs3eBHDJrcCxwGQBCcmDYtF4mJB6Wgx+GIxKZNITj/fO+X3oiIiJoDCxi2IX37upa35AIDXY1HReqZHocjEsXFSXA4IhWvW+mGrl3gMAAREdVS0LN161AsWpSDK66IQa9eAp59thJlZWWoqKiwfF1ERETNhTM+bUhCgiunZ+5c10xPYCDw6qvK2Z7y8nLpeL2O61bpFTgU83rUM0JOpw133x2F3357E3Z7leGsEhERUUvgjE8bk5UF7NsHbNjg+qeY2Cwuca1evRqA/vZz9cyPEb12FOJsj9FOL8DarBIREVFz4oxPG5SQ4PpVUVGBsjJXcCGf6QGAkpJEw+3n5eXlUhXm5OQ6xMe7ghv19nOjAodmM0JEREStDQOfNkqdxOxwROLYsSR07lyBoqI+WLPmMrfPyIOSv/2tGB9/PFBzGSwzM1PxOb12FHotL9iri4iIWisGPm2UfBlJncsjCIB6FVMelJhVYa6trbU8DjYoJSKitoSBTxunFcRomTp1JQYN2gXAvApzUJBnfywa26CUiIiouTDwaeO0t5wr2WxOJCYelH42y82Jjo427OVVXl4uJVETERG1JQx82jitIAYQANj++L173o2V3BxuQyciovaIgU8bpw5ilEEPYLMBKSl73T7XmNwcq41H2aCUiIhaGwY+rZyVTuxiELNz5wB8/vkExXtGHdS9zc2JiYkxXAoD2KCUiIhaJwY+rZDYZPS998Jwzz12OJ02BAQIeOopB66++rTmTIrdXoUBA3Zi/fpxurk7Y8eORV5enk/GyKCGiIjaIgY+rYxYn8fhiMSiRTkQBNeylbodxIwZM9w+a5a7I9+t5ar7E4POnSvcZn24REVERO0VA59WRlw+MttyHh4eLi03yXdZGeXurFu3DoBxD68ZM2YgJibG0hIbERFRW8NeXa2UuFtLTt0OIiYmBnFxcYiNjVUcZ7dXITl5v2b+jlkPr+rqajz7bCV69RJw8cVgx3UiImpXGPi0UkYNQh2OSGzaFIKDf5Tm8WRpyqyx6NKlebj77ig4ncoltqeffh8vvfQSgx8iImrTuNTVimktW4nLVM8/H4CAAOC114CsLPNdVpWVlcjNzTUtXmi2xMaO60RE1JYx8Gnl5FvO1ctUTicwd66Ac845gqSkIMTFxVk6n1ECNDuuExFRe8bApw3Rmo2pr7dh8eJ1SE7ej+zsbLdt5uLW+PLycmknV0rKXuTkLNJMgGbHdSIias8Y+LQhZrMx8mWoiooKHDlyBLm5uXA4IlFYmIbNm3MAuO/kUmPHdSIiaq8Y+DQjK1vEjRKVrc7GiLWAAOXWdZEgBGDNmsuQkrJXN6hhx3UiImqPGPg0kyVLgDlzXHk5DUnJ7sdptYOwWqdHJH5WnROkFIDCwjSMG5dvWMyQiIioPWHg0wwOHmwIegAxKRkYP1575kedp1NaGoDi4iQpMLE6G6OVEyRXUJCOiIhTyM/P0CxmSERE1N4w8GkGe/Y0BD2i+npg717zqsiumaKucDpnehyYaOUEyQlCgBT0iD9//LHxEhjbWRARUVvGwKcZ9O3rWt6SBz+BgUCfPu7HyvOAAHGmyFVM0EpgIqfOCQIEADbZEe5Bkbxmz5QpUxRVodlxnYiI2jpWbm4GCQmunJ7AQNfPgYHAq6+6z/YsWQL06oU/WkUAL7zgPlMkr7JsxbBhPyAr6w0ATiiDHgEXXrjRsC1GbGws4uLipF8MeoiIqK3jjE8zycpy5fTs3eua6VEHPVp5QM8/D9hsgCA0HGdUTFBvGaq2NhTuMa4NvXsXo1MnB2v2EBGR32Dg04wSEvRzevTygG666SRefz0C9fU2BAQIePDBUkyZMhbBwcGw2+3SsUbLUEb1f5KT97NmDxER+Q0GPq2EVh6QzeZEWNhruPVWSIEJUIU/drZrVmoG3Gd+zOr/sGYPERH5CwY+rYSYBzR3rmumRys4Udu3rw7bt7sXRBRrAZWWlnpU/4eIiKi9Y+DTioh5QIWFFdi06S3D4GTr1qH4+9+7/lEQUcBTTzlw9dWnpSWvmJgYt07qnNkhIiJ/x8CnlUlIAAIDa7Bjh36A0lCR2bVLy+m04e67o/Dbb2/Cbq/SXQLzFGv2EBFRe8PApxUQO6iLysvLDY/Xqsgsr78jnstq4DJ9+nRER0crXmPNHiIiao8Y+LQweUNRq8y6tIu0+n6pMcAhIiJ/wsCnhRkFJXrNQ612aQfc+34RERH5MwY+rdTWrUPdAht5jy7u0iIiIvIcW1a0Qg3Jy8rmoQ5HpOI4u70Kycn7GfQQERFZxMCnFdJLXu7V65IWGhEREVH7wMCnFRKTl+VsNif27/+ihUZERETUPjDwaYXE5GUx+PG0eSjr7xAREWljcnMTU9foUXM4HJqvGyUvT5kyBbGxsZqf4/Z0IiIifW0q8Pnkk0/w97//Hdu3b0eHDh0wevRofPTRR9L7Bw4cwM0334wNGzagY8eOmDlzJhYuXIigoJa5TG9q9MjptZiIjY1FXFxcY4ZGRETkl9pM4LNq1SrceOONePzxx3HxxRejrq4OO3bskN6vr6/HpZdeiu7du2Pz5s0oKyvDddddh+DgYDz++OMtMmajmR45sXJyeXm51FSUiIiIfK9NBD51dXW47bbb8PTTTyMrK0t6fcCAAdLv169fj507dyI/Px/dunXDOeecg0ceeQT33nsvHn744Vad9xIdHe02g6NXvBBQtrTg0hYREZF1bSLw2bp1K3777TcEBARg6NChOHToEM455xw8/fTTGDRoEACgoKAAZ599Nrp16yZ9bvz48bj55pvx888/Y+jQoZrnPnPmDM6cOSP9fOLEiaa9GANivo9Z8UL1rJCvmpISERG1d21iV9f//vc/AMDDDz+Mv/3tb1i7di06deqEiy66CMeOufpTHTp0SBH0AJB+PnTokO65Fy5cCLvdLv1KTExsoqswVlFRgRUrVlguXihndUmNiIjI37Vo4HPffffBZrMZ/vrll1/gdLq2dc+fPx9Tp05Famoqli5dCpvNhn/961+NGsP9998Ph8Mh/SopKfHFpelyOCJRXJzkFsiIwYtR53W9z1ZWVjbpmImIiNqLFl3quvPOOzFr1izDY3r37o2ysjIAypye0NBQ9O7dGwcOHAAAdO/eHf/9738Vnz18+LD0np7Q0FCEhoZ6M3yPmS1hAfqd10tL4/H229dpfjY3N1dKkGbODxERkb4WDXy6dOmCLl26mB6XmpqK0NBQ7N69GxdccAEAoLa2Fvv27UOvXr0AAOnp6Xjsscdw5MgRdO3aFQCQl5eHqKgoRcDUUvSWsFJS9iqO0+q8npGRj/z8DM3PionPubm50jmY80NERKStTSQ3R0VF4aabbsJDDz2ExMRE9OrVC08//TQA4IorrgAAjBs3DgMGDMC1116Lp556CocOHcLf/vY3zJs3r9lmdNTkO8mMlrBCQkJw5MgR6XV18UKjz2rV+WHODxERkbY2EfgAwNNPP42goCBce+21OH36NNLS0vDll1+iU6dOAIDAwECsXbsWN998M9LT0xEREYGZM2fi73//e4uNOSYmBtnZ2aipqUFpaQDeeUeA02mT3g8MFHDnnX8G4FTM2ADuxQu1lr86dz7W5NdARETUntgEQRBaehCtyYkTJ2C32+FwOBAVFeXTcy9ZAsydC9TXA4GBwKuvAllZQFlZGV577TXDz8rzg1ycGDs2H/HxZW61fubMmcPKzkRE5FesPr/bzIxPe5CVBQweDHzzDXDBBcC552ofp1W8MCVlL5QhagDy8sYCsOkmShMREZESA59mtGQJMGcO4HQCAQHAa6+5giE5vZ1fx47FwL36gGvZTCvZmYiIiNy1iQKGbV1FRQW2bDmMOXME/FGSCE4nMHeugC1bDuPgwYMA9Hd+ORyR0jZ3PWKyMxEREelj4NPExA7tixd/pkhsBoD6ehsWL16HTz/9FIDxzi9xm3tD8KNMzWKyMxERkTkudTUxcWu5XmFCebBidsxf/hKKlJRFOHasM0pL46XaPuKSmLjM1ZobshIREbUkBj5NTGw8qlWYcNKktQCA4uIkKZF50qS1WLPmMrgm45QBTXx8PObPHy4FU6WlR7FvXxCSkuoQH38ugHNZuZmIiMgAA58mVltbK/1eXZiwqKgPFi3KUVRoDgv7HTYbIAiATbkyhqCgIEVQExcHpKY215UQERG1fQx8mplYmFArkdm1PR3Q260VHR3dMoMmIiJqJ5jc3EK0EpldAY9ymoe7tYiIiHyHgU8LMdueLuJuLSIiIt9h4NNC7PYqZGTkQ70t3cX1GndrERER+RZzfJpQRUUFqqr0KymPHFkAAMjLy4AyBrUBcCIr6w0kJJRhypQpiI+P524tIiKiRmLg00TEwoUirf5bgCv4sdsdWLnyCtUZAlBb65rhiY2NZdBDRETkAwx8mohYawfQ778lSkwsMSxcyCUuIiIi32COTxMz6r8lUrejkOf2ZGZmcraHiIjIRzjj08TM+m+J1MUNxffsdnuzjpeIiKg9Y+DTxKz06BKJxQ2JiIioaXCpq4npLWMBrh5d8iUvIiIialqc8WkGZj261MnORERE1DQY+DQTox5dH398Gbp2PYTa2lC37e7c0UVEROQ7DHyaiF7Aopfs/MYbNwAIQECAgKeecuDqq08jJCSEO7qIiIh8yCYIglbPBL914sQJ2O12OBwOREVFNepcFRUVqKmpQXl5OVavXg3Atb1dXOZqIEDenDQwENi3D0hIaNTXExER+Q2rz28mNzehmJgYxMXFITY2VnpNK9lZ3ZG9vh7Yu7c5R0pEROQfuNTVAuTJzsHBNViy5AbFDFBgINCnTwsOkIiIqJ3ijE8z0Mr3sdurkJy8HwkJZYoZoMBA4NVXucxFRETUFJjjo+LLHB85Md8HAEpLA1BcHITk5DrEx7sCnvLyDqio6IQ+fRj0EBERecrq85tLXc1E3J21ZAkwZw7gdAIBAcBrrwFZWUBcXAsPkIiIyA9wqasZHTzYEPQArn/Onet6nYiIiJoeA59mtGdPQ9Aj4g4uIiKi5sPApxn17eta3pLjDi4iIqLmw8CnGSUkuHJ6AgNdP3MHFxERUfNicnMzy8oCxo93LW9xBxcREVHzYuDTAhISGPAQERG1BC51ERERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkN9upSEQQBAHDixIkWHgkRERFZJT63xee4HgY+KlVVVQCAxMTEFh4JEREReaqqqgp2u133fZtgFhr5GafTidLSUkRGRsJms3l9nhMnTiAxMRElJSWIiory4QjbDt4DF94H3gOA9wDgPRDxPjTNPRAEAVVVVYiPj0dAgH4mD2d8VAICApCQkOCz80VFRfntH2wR74EL7wPvAcB7APAeiHgffH8PjGZ6RExuJiIiIr/BwIeIiIj8BgOfJhIaGoqHHnoIoaGhLT2UFsN74ML7wHsA8B4AvAci3oeWvQdMbiYiIiK/wRkfIiIi8hsMfIiIiMhvMPAhIiIiv8HAh4iIiPwGAx8PvPzyyxg8eLBUcCk9PR3r1q2T3v/9998xb948xMTEoGPHjpg6dSoOHz6sOMeBAwdw6aWXIjw8HF27dsXdd9+Nurq65r4Un3niiSdgs9mQk5MjveYP9+Hhhx+GzWZT/Orfv7/0vj/cAwD47bffMGPGDMTExCAsLAxnn302vv/+e+l9QRDw4IMPIi4uDmFhYcjIyMCePXsU5zh27BiuueYaREVFITo6GllZWTh58mRzX4pXkpKS3P4c2Gw2zJs3D4B//Dmor6/HAw88gOTkZISFhSElJQWPPPKIol9Se/9zALjaJOTk5KBXr14ICwvDiBEj8N1330nvt8d78J///AeTJk1CfHw8bDYbPvroI8X7vrrm7du348ILL0SHDh2QmJiIp556qnEDF8iyNWvWCJ988onw66+/Crt37xb++te/CsHBwcKOHTsEQRCEm266SUhMTBS++OIL4fvvvxfOP/98YcSIEdLn6+rqhEGDBgkZGRnCDz/8IHz66adCbGyscP/997fUJTXKf//7XyEpKUkYPHiwcNttt0mv+8N9eOihh4SBAwcKZWVl0q+jR49K7/vDPTh27JjQq1cvYdasWUJhYaHwv//9T/j888+FvXv3Ssc88cQTgt1uFz766CPhxx9/FCZPniwkJycLp0+flo6ZMGGCMGTIEOHbb78VNm7cKPTp00e46qqrWuKSPHbkyBHFn4G8vDwBgLBhwwZBEPzjz8Fjjz0mxMTECGvXrhWKi4uFf/3rX0LHjh2FF154QTqmvf85EARBmD59ujBgwADh66+/Fvbs2SM89NBDQlRUlHDw4EFBENrnPfj000+F+fPnC6tXrxYACB9++KHifV9cs8PhELp16yZcc801wo4dO4T3339fCAsLE1599VWvx83Ap5E6deokvPHGG0JlZaUQHBws/Otf/5Le27VrlwBAKCgoEATB9YckICBAOHTokHTMyy+/LERFRQlnzpxp9rE3RlVVldC3b18hLy9PGD16tBT4+Mt9eOihh4QhQ4Zovucv9+Dee+8VLrjgAt33nU6n0L17d+Hpp5+WXqusrBRCQ0OF999/XxAEQdi5c6cAQPjuu++kY9atWyfYbDbht99+a7rBN5HbbrtNSElJEZxOp9/8Obj00kuF66+/XvHalClThGuuuUYQBP/4c1BdXS0EBgYKa9euVbw+bNgwYf78+X5xD9SBj6+u+Z///KfQqVMnxX8P9957r9CvXz+vx8qlLi/V19fjgw8+wKlTp5Ceno4tW7agtrYWGRkZ0jH9+/dHz549UVBQAAAoKCjA2WefjW7duknHjB8/HidOnMDPP//c7NfQGPPmzcOll16quF4AfnUf9uzZg/j4ePTu3RvXXHMNDhw4AMB/7sGaNWswfPhwXHHFFejatSuGDh2K119/XXq/uLgYhw4dUtwHu92OtLQ0xX2Ijo7G8OHDpWMyMjIQEBCAwsLC5rsYH6ipqcHy5ctx/fXXw2az+c2fgxEjRuCLL77Ar7/+CgD48ccf8c0332DixIkA/OPPQV1dHerr69GhQwfF62FhYfjmm2/84h6o+eqaCwoKMGrUKISEhEjHjB8/Hrt378bx48e9GhublHrop59+Qnp6On7//Xd07NgRH374IQYMGIBt27YhJCQE0dHRiuO7deuGQ4cOAQAOHTqk+B+c+L74XlvxwQcfYOvWrYr1a9GhQ4f84j6kpaVh2bJl6NevH8rKyrBgwQJceOGF2LFjh9/cg//97394+eWXcccdd+Cvf/0rvvvuO9x6660ICQnBzJkzpevQuk75fejatavi/aCgIHTu3LnN3AfRRx99hMrKSsyaNQuA//y3cN999+HEiRPo378/AgMDUV9fj8ceewzXXHMNAPjFn4PIyEikp6fjkUcewVlnnYVu3brh/fffR0FBAfr06eMX90DNV9d86NAhJCcnu51DfK9Tp04ej42Bj4f69euHbdu2weFwYOXKlZg5cya+/vrrlh5WsykpKcFtt92GvLw8t7/d+BPxb7MAMHjwYKSlpaFXr17Izc1FWFhYC46s+TidTgwfPhyPP/44AGDo0KHYsWMHXnnlFcycObOFR9f8lixZgokTJyI+Pr6lh9KscnNz8e677+K9997DwIEDsW3bNuTk5CA+Pt6v/hy88847uP7669GjRw8EBgZi2LBhuOqqq7Bly5aWHhqpcKnLQyEhIejTpw9SU1OxcOFCDBkyBC+88AK6d++OmpoaVFZWKo4/fPgwunfvDgDo3r27244O8WfxmNZuy5YtOHLkCIYNG4agoCAEBQXh66+/xosvvoigoCB069bNL+6DWnR0NP70pz9h7969fvNnIS4uDgMGDFC8dtZZZ0lLfuJ1aF2n/D4cOXJE8X5dXR2OHTvWZu4DAOzfvx/5+fm44YYbpNf85c/B3Xffjfvuuw9XXnklzj77bFx77bW4/fbbsXDhQgD+8+cgJSUFX3/9NU6ePImSkhL897//RW1tLXr37u0390DOV9fcFP+NMPBpJKfTiTNnziA1NRXBwcH44osvpPd2796NAwcOID09HQCQnp6On376SfEvOi8vD1FRUW4PkNbqkksuwU8//YRt27ZJv4YPH45rrrlG+r0/3Ae1kydPoqioCHFxcX7zZ2HkyJHYvXu34rVff/0VvXr1AgAkJyeje/fuivtw4sQJFBYWKu5DZWWl4m/FX375JZxOJ9LS0prhKnxj6dKl6Nq1Ky699FLpNX/5c1BdXY2AAOWjJDAwEE6nE4B//TkAgIiICMTFxeH48eP4/PPP8ec//9nv7gHgu3/v6enp+M9//oPa2lrpmLy8PPTr18+rZS4A3M7uifvuu0/4+uuvheLiYmH79u3CfffdJ9hsNmH9+vWCILi2rvbs2VP48ssvhe+//15IT08X0tPTpc+LW1fHjRsnbNu2Tfjss8+ELl26tKmtq1rku7oEwT/uw5133il89dVXQnFxsbBp0yYhIyNDiI2NFY4cOSIIgn/cg//+979CUFCQ8Nhjjwl79uwR3n33XSE8PFxYvny5dMwTTzwhREdHC//+97+F7du3C3/+8581t7MOHTpUKCwsFL755huhb9++rXoLr1p9fb3Qs2dP4d5773V7zx/+HMycOVPo0aOHtJ199erVQmxsrHDPPfdIx/jDn4PPPvtMWLdunfC///1PWL9+vTBkyBAhLS1NqKmpEQShfd6Dqqoq4YcffhB++OEHAYDw3HPPCT/88IOwf/9+QRB8c82VlZVCt27dhGuvvVbYsWOH8MEHHwjh4eHczt5crr/+eqFXr15CSEiI0KVLF+GSSy6Rgh5BEITTp08Lf/nLX4ROnToJ4eHhwv/93/8JZWVlinPs27dPmDhxohAWFibExsYKd955p1BbW9vcl+JT6sDHH+5DZmamEBcXJ4SEhAg9evQQMjMzFfVr/OEeCIIgfPzxx8KgQYOE0NBQoX///sJrr72meN/pdAoPPPCA0K1bNyE0NFS45JJLhN27dyuOqaioEK666iqhY8eOQlRUlDB79myhqqqqOS+jUT7//HMBgNt1CYJ//Dk4ceKEcNtttwk9e/YUOnToIPTu3VuYP3++YvuxP/w5WLFihdC7d28hJCRE6N69uzBv3jyhsrJSer893oMNGzYIANx+zZw5UxAE313zjz/+KFxwwQVCaGio0KNHD+GJJ55o1LhtgiArr0lERETUjjHHh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AYDHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIGu2iiy5CTk5OSw+jyT388MM455xzWnoYRNQIDHyIyO/V1NQ06/cJgoC6urpm/U4icmHgQ0SNMmvWLHz99dd44YUXYLPZYLPZsG/fPuzYsQMTJ05Ex44d0a1bN1x77bUoLy+XPnfRRRfhlltuQU5ODjp16oRu3brh9ddfx6lTpzB79mxERkaiT58+WLdunfSZr776CjabDZ988gkGDx6MDh064Pzzz8eOHTsUY/rmm29w4YUXIiwsDImJibj11ltx6tQp6f2kpCQ88sgjuO666xAVFYU5c+YAAO6991786U9/Qnh4OHr37o0HHnhA6gq9bNkyLFiwAD/++KN0ncuWLcO+fftgs9mwbds26fyVlZWw2Wz46quvFONet24dUlNTERoaim+++QZOpxMLFy5EcnIywsLCMGTIEKxcudLX/4qISIaBDxE1ygsvvID09HTceOONKCsrQ1lZGSIjI3HxxRdj6NCh+P777/HZZ5/h8OHDmD59uuKzb731FmJjY/Hf//4Xt9xyC26++WZcccUVGDFiBLZu3Ypx48bh2muvRXV1teJzd999N5599ll899136NKlCyZNmiQFKEVFRZgwYQKmTp2K7du3Y8WKFfjmm2+QnZ2tOMczzzyDIUOG4IcffsADDzwAAIiMjMSyZcuwc+dOvPDCC3j99dfx/PPPAwAyMzNx5513YuDAgdJ1ZmZmenSv7rvvPjzxxBPYtWsXBg8ejIULF+Ltt9/GK6+8gp9//hm33347ZsyYga+//tqj8xKRBxrV4pSISBCE0aNHC7fddpv08yOPPCKMGzdOcUxJSYmii/no0aOFCy64QHq/rq5OiIiIEK699lrptbKyMgGAUFBQIAhCQzfoDz74QDqmoqJCCAsLE1asWCEIgiBkZWUJc+bMUXz3xo0bhYCAAOH06dOCIAhCr169hMsvv9z0up5++mkhNTVV+vmhhx4ShgwZojimuLhYACD88MMP0mvHjx8XAAgbNmxQjPujjz6Sjvn999+F8PBwYfPmzYrzZWVlCVdddZXp2IjIO0EtGXQRUfv0448/YsOGDejYsaPbe0VFRfjTn/4EABg8eLD0emBgIGJiYnD22WdLr3Xr1g0AcOTIEcU50tPTpd937twZ/fr1w65du6Tv3r59O959913pGEEQ4HQ6UVxcjLPOOgsAMHz4cLexrVixAi+++CKKiopw8uRJ1NXVISoqyuPr1yP/zr1796K6uhpjx45VHFNTU4OhQ4f67DuJSImBDxH53MmTJzFp0iQ8+eSTbu/FxcVJvw8ODla8Z7PZFK/ZbDYAgNPp9Oi7586di1tvvdXtvZ49e0q/j4iIULxXUFCAa665BgsWLMD48eNht9vxwQcf4NlnnzX8voAAV8aAIAjSa+Kym5r8O0+ePAkA+OSTT9CjRw/FcaGhoYbfSUTeY+BDRI0WEhKC+vp66edhw4Zh1apVSEpKQlCQ7/838+2330pBzPHjx/Hrr79KMznDhg3Dzp070adPH4/OuXnzZvTq1Qvz58+XXtu/f7/iGPV1AkCXLl0AAGVlZdJMjTzRWc+AAQMQGhqKAwcOYPTo0R6NlYi8x+RmImq0pKQkFBYWYt++fSgvL8e8efNw7NgxXHXVVfjuu+9QVFSEzz//HLNnz3YLHLzx97//HV988QV27NiBWbNmITY2FpdffjkA186szZs3Izs7G9u2bcOePXvw73//2y25Wa1v3744cOAAPvjgAxQVFeHFF1/Ehx9+6HadxcXF2LZtG8rLy3HmzBmEhYXh/PPPl5KWv/76a/ztb38zvYbIyEjcdddduP322/HWW2+hqKgIW7duxeLFi/HWW295fW+IyBgDHyJqtLvuuguBgYEYMGAAunTpgpqaGmzatAn19fUYN24czj77bOTk5CA6OlpaGmqMJ554ArfddhtSU1Nx6NAhfPzxxwgJCQHgyhv6+uuv8euvv+LCCy/E0KFD8eCDDyI+Pt7wnJMnT8btt9+O7OxsnHPOOdi8ebO020s0depUTJgwAWPGjEGXLl3w/vvvAwDefPNN1NXVITU1FTk5OXj00UctXccjjzyCBx54AAsXLsRZZ52FCRMm4JNPPkFycrIXd4WIrLAJ8oVpIqJW7KuvvsKYMWNw/PhxREdHt/RwiKgN4owPERER+Q0GPkREROQ3uNRFREREfoMzPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNBj5ERETkN/4/oCIjCbnlO2gAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with PySMO Surrogate Object - Training Surrogate (Part 1)\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "## 1. Introduction\n", + "This notebook illustrates the use of the PySMO Polynomial surrogate trainer to produce an ML surrogate based on supercritical CO2 data from simulation using REFPROP package. PySMO also has other training methods like Radial Basis Function and Kriging surrogate models, but we focus on Polynomial surrogate model. \n", + "\n", + "There are several reasons to build surrogate models for complex processes, even when higher fidelity models already exist (e.g., reduce model size, improve convergence reliability, replace models with externally compiled code and make them fully-equation oriented).\n", + "\n", + "In this example, we intend to make a surrogate for the physical properties of S-CO2 to be embedded in the property package. This property package will be used to get the physical properties of S-CO2 in the flowsheet simulation. To learn more about property package, see the [IDAES-PSE](https://github.com/IDAES/idaes-pse) Github Page or IDAES [Read-the-docs](https://idaes-pse.readthedocs.io/en/latest/). \n", + "\n", + "\n", + "### 1.1 Need for ML Surrogates\n", + "\n", + "The properties predicted by the surrogate are enthalpy and entropy of the S-CO2 based on the \n", + "pressure and temperature of the system. The analytical equation of getting the enthalpy and entropy from pressure and temperature are in the differential form and would make the problem a DAE system. To counter this problem and keep the problem algebraic, we will use the ML surrogates and relate enthalpy and entropy with the pressure and temperature as an algebraic equation.\n", + "\n", + "### 1.2 Supercritical CO2 cycle process\n", + "\n", + "The following flowsheet will be used to optimize the design for the cooling of the fusion reactor using supercritical CO2 cycle. We shall focus on training the surrogate for this notebook and move to constructing the flowsheet and the properties package in the subsequent notebooks. The take away from this flowsheet is that, 3 variables can be measured in any given unit which are flow, pressure and temperature and other properties can be calculated using them. Thus, surrogate should have pressure and temperature as the inputs.\n", + "\n", + "In this example, we will train the model using polynomial regression for our data and then demonstrate that we can solve an optimization problem with that surrogate model. " ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrfUlEQVR4nO3dd1QU198G8GfpTcCCgAqKFTX+xBIVoiYaEjTWRBNbVCIaNZbYARt2EXs30SjG3gUrKtYoEiRgBWwoFkAiUkTp9/3Dl4kjqKDA7sLzOWePzp27s9/dEfZxZu4dhRBCgIiIiIhUmoayCyAiIiKi92NoIyIiIlIDDG1EREREaoChjYiIiEgNMLQRERERqQGGNiIiIiI1wNBGREREpAYY2oiIiIjUAEMbERERkRpgaCMi+kgKhQLTpk1TdhkSZ2dnVKtWTdllEFEhY2gjohLJ29sbCoVCeujp6aF27doYPnw4YmNji/S1L1y4gGnTpiEhIaFQt/vFF1/I3lO5cuXw6aefYv369cjOzi6U15gzZw72799fKNsiosKlpewCiIiK0owZM2BjY4PU1FT89ddfWL16NQ4fPoxr167BwMCgUF7j5cuX0NL679fphQsXMH36dDg7O8PU1LRQXiNHlSpVMHfuXABAXFwc/vzzT7i4uODmzZvw9PT86O3PmTMH3bt3R9euXT96W0RUuBjaiKhEa9++PZo2bQoAGDhwIMqXL49FixbBx8cHvXr1+uDtZmdnIz09HXp6etDT0yusct/LxMQEP/74o7Q8ePBg1KlTBytWrMDMmTOhra1dbLUQUfHi6VEiKlXatm0LAIiMjAQALFiwAA4ODihfvjz09fXRpEkT7N69O9fzFAoFhg8fji1btqB+/frQ1dXF0aNHpXU517RNmzYN48ePBwDY2NhIpzLv3buHzz//HA0bNsyzrjp16sDJyanA78fAwAAtWrRASkoK4uLi3tovJSUFY8eOhZWVFXR1dVGnTh0sWLAAQgjZe0xJScHGjRulup2dnQtcExEVDR5pI6JS5c6dOwCA8uXLAwCWLl2Kzp07o0+fPkhPT8f27dvx/fff4+DBg+jQoYPsuSdPnsTOnTsxfPhwVKhQIc+L/b/77jvcvHkT27Ztw+LFi1GhQgUAgJmZGfr27YtBgwbh2rVr+OSTT6TnBAUF4ebNm5g8efIHvae7d+9CU1PzradihRDo3LkzTp06BRcXF9jZ2cHPzw/jx4/Ho0ePsHjxYgDApk2bMHDgQDRr1gw///wzAKBGjRofVBMRFQFBRFQCbdiwQQAQJ06cEHFxceLBgwdi+/btonz58kJfX188fPhQCCHEixcvZM9LT08Xn3zyiWjbtq2sHYDQ0NAQ169fz/VaAISHh4e0PH/+fAFAREZGyvolJCQIPT094erqKmsfOXKkMDQ0FM+fP3/ne/r888+Fra2tiIuLE3FxcSIsLEyMHDlSABCdOnWS+vXv319UrVpVWt6/f78AIGbNmiXbXvfu3YVCoRC3b9+W2gwNDUX//v3fWQcRKQdPjxJRiebo6AgzMzNYWVmhZ8+eMDIywr59+1C5cmUAgL6+vtT32bNnSExMRKtWrfDPP//k2tbnn3+OevXqfXAtJiYm6NKlC7Zt2yadlszKysKOHTvQtWtXGBoavncb4eHhMDMzg5mZGerWrYvly5ejQ4cOWL9+/Vufc/jwYWhqamLkyJGy9rFjx0IIgSNHjnzweyKi4sPTo0RUoq1cuRK1a9eGlpYWzM3NUadOHWho/Pf/1YMHD2LWrFkIDQ1FWlqa1K5QKHJty8bG5qPr6devH3bs2IFz586hdevWOHHiBGJjY9G3b998Pb9atWpYu3atNI1JrVq1ULFixXc+5/79+6hUqRLKlCkja69bt660nohUH0MbEZVozZo1k0aPvuncuXPo3LkzWrdujVWrVsHS0hLa2trYsGEDtm7dmqv/60flPpSTkxPMzc2xefNmtG7dGps3b4aFhQUcHR3z9XxDQ8N89yWikoWnR4mo1NqzZw/09PTg5+eHAQMGoH379oUSiPI6SpdDU1MTvXv3xu7du/Hs2TPs378fvXr1gqam5ke/7ttUrVoVjx8/RnJysqw9PDxcWp/jXbUTkXIxtBFRqaWpqQmFQoGsrCyp7d69ex99R4Cca9PedkeEvn374tmzZxg8eDCeP38um3etKHzzzTfIysrCihUrZO2LFy+GQqFA+/btpTZDQ8NCv5MDERUOnh4lolKrQ4cOWLRoEdq1a4fevXvjyZMnWLlyJWrWrIkrV6588HabNGkCAJg0aRJ69uwJbW1tdOrUSQpzjRo1wieffIJdu3ahbt26aNy4caG8n7fp1KkT2rRpg0mTJuHevXto2LAhjh07Bh8fH4waNUo2rUeTJk1w4sQJLFq0CJUqVYKNjQ2aN29epPURUf7wSBsRlVpt27bFH3/8gZiYGIwaNQrbtm3DvHnz8O23337Udj/99FPMnDkTly9fhrOzM3r16pVr4tt+/foBQL4HIHwMDQ0N+Pr6YtSoUTh48CBGjRqFGzduYP78+Vi0aJGs76JFi9CkSRNMnjwZvXr1wurVq4u8PiLKH4UQr02HTURExWLp0qUYPXo07t27B2tra2WXQ0RqgKGNiKiYCSHQsGFDlC9fHqdOnVJ2OUSkJnhNGxFRMUlJSYGvry9OnTqFq1evwsfHR9klEZEa4ZE2IqJicu/ePdjY2MDU1BS//PILZs+ereySiEiNMLQRERERqQGOHiUiIiJSAwxtRERERGqAAxFUWHZ2Nh4/fowyZcrw1jJERERqQgiB5ORkVKpUCRoahXd8jKFNhT1+/BhWVlbKLoOIiIg+wIMHD1ClSpVC2x5DmworU6YMgFc73djYWMnVEBERUX4kJSXByspK+h4vLAxtKiznlKixsTFDGxERkZop7EubOBCBiIiISA0wtBERERGpAYY2IiIiIjXAa9rUXFZWFjIyMpRdBhUDbW1taGpqKrsMIiJSEoY2NSWEQExMDBISEpRdChUjU1NTWFhYcN4+IqJSiKFNTeUEtooVK8LAwIBf4iWcEAIvXrzAkydPAACWlpZKroiIiIobQ5saysrKkgJb+fLllV0OFRN9fX0AwJMnT1CxYkWeKiUiKmU4EEEN5VzDZmBgoORKqLjl7HNex0hEVPowtKkxnhItfbjPiYhKL4Y2IiIiIjWgNqGtc+fOsLa2hp6eHiwtLdG3b188fvxY1kcIgQULFqB27drQ1dVF5cqVMXv2bFmf06dPo3HjxtDV1UXNmjXh7e2d67VWrlyJatWqQU9PD82bN8fff/8tW5+amophw4ahfPnyMDIyQrdu3RAbGyvrExUVhQ4dOsDAwAAVK1bE+PHjkZmZWTgfBhEREZU6ahPa2rRpg507dyIiIgJ79uzBnTt30L17d1mfX3/9FevWrcOCBQsQHh4OX19fNGvWTFofGRmJDh06oE2bNggNDcWoUaMwcOBA+Pn5SX127NiBMWPGwMPDA//88w8aNmwIJycnadQeAIwePRoHDhzArl27cObMGTx+/BjfffedtD4rKwsdOnRAeno6Lly4gI0bN8Lb2xtTp04twk9IPTg7O0OhUEChUEBbWxvm5ub46quvsH79emRnZ+d7O97e3jA1NS26QomIiFSNUFM+Pj5CoVCI9PR0IYQQN27cEFpaWiI8PPytz5kwYYKoX7++rK1Hjx7CyclJWm7WrJkYNmyYtJyVlSUqVaok5s6dK4QQIiEhQWhra4tdu3ZJfcLCwgQAERAQIIQQ4vDhw0JDQ0PExMRIfVavXi2MjY1FWlpavt9jYmKiACASExNl7S9fvhQ3btwQL1++zPe2VEX//v1Fu3btRHR0tHj48KEIDg4Ws2fPFkZGRqJ9+/YiIyMjX9vZsGGDMDExKdpiVZA673siotLibd/fH0ttjrS9Lj4+Hlu2bIGDgwO0tbUBAAcOHED16tVx8OBB2NjYoFq1ahg4cCDi4+Ol5wUEBMDR0VG2LScnJwQEBAAA0tPTERwcLOujoaEBR0dHqU9wcDAyMjJkfWxtbWFtbS31CQgIQIMGDWBubi57naSkJFy/fv2t7ystLQ1JSUmyR0mkq6sLCwsLVK5cGY0bN8bEiRPh4+ODI0eOSKerFy1ahAYNGsDQ0BBWVlb45Zdf8Pz5cwCvTnH/9NNPSExMlI7aTZs2DQCwadMmNG3aFGXKlIGFhQV69+4tO0pKREQEAL6+gIPDqz/VhVqFNldXVxgaGqJ8+fKIioqCj4+PtO7u3bu4f/8+du3ahT///BPe3t4IDg6WnUKNiYmRBSkAMDc3R1JSEl6+fIl///0XWVlZefaJiYmRtqGjo5Pr1NybffLaRs66t5k7dy5MTEykh5WVVT4/mVfX86WnpyvlIYTId51v07ZtWzRs2BB79+4F8CosL1u2DNevX8fGjRtx8uRJTJgwAQDg4OCAJUuWwNjYGNHR0YiOjsa4ceMAvJoKY+bMmbh8+TL279+Pe/fuwdnZ+aPrIyKiksXTEwgIePWnulDq5Lpubm6YN2/eO/uEhYXB1tYWADB+/Hi4uLjg/v37mD59Ovr164eDBw9CoVAgOzsbaWlp+PPPP1G7dm0AwB9//IEmTZogIiICderUKfL387Hc3d0xZswYaTkpKSnfwS0jIwNz584tqtLeyd3dHTo6Oh+9HVtbW1y5cgUAMGrUKKm9WrVqmDVrFoYMGYJVq1ZBR0cHJiYmUCgUsLCwkG1jwIAB0t+rV6+OZcuW4dNPP8Xz589hZGT00TUSEZF68/UF5s9Pw1df+aJKFRv8+GNTZZeUb0oNbWPHjn3vUZDq1atLf69QoQIqVKiA2rVro27durCyssLFixdhb28PS0tLaGlpSYENAOrWrQvg1UjOOnXqwMLCItcoz9jYWBgbG0NfXx+amprQ1NTMs09OOLCwsEB6ejoSEhJkR9ve7PPmiNOcbb4ZMl6nq6sLXV3dd34eJZkQQpqH7MSJE5g7dy7Cw8ORlJSEzMxMpKam4sWLF++cVDg4OBjTpk3D5cuX8ezZM2lwQ1RUFOrVq1cs74OIiFTX0qURcHTcDgCoX/8GOnVqAkA95sBUamgzMzODmZnZBz0358s4LS0NAPDZZ58hMzMTd+7cQY0aNQAAN2/eBABUrVoVAGBvb4/Dhw/LtnP8+HHY29sDAHR0dNCkSRP4+/uja9eu0uv4+/tj+PDhAIAmTZpAW1sb/v7+6NatGwAgIiICUVFR0nbs7e0xe/Zs6XZDOa9jbGxcZMFBW1sb7u7uRbLt/Lx2YQgLC4ONjQ3u3buHjh07YujQoZg9ezbKlSuHv/76Cy4uLkhPT39raEtJSYGTkxOcnJywZcsWmJmZISoqCk5OTkhPTy+UGomISD35+AicPLkRrVvfl9patWqlVpOWq8W9RwMDAxEUFISWLVuibNmyuHPnDqZMmYIaNWpIQcnR0RGNGzfGgAEDsGTJEmRnZ2PYsGH46quvpKNvQ4YMwYoVKzBhwgQMGDAAJ0+exM6dO3Ho0CHptcaMGYP+/fujadOmaNasGZYsWYKUlBT89NNPAAATExO4uLhgzJgxKFeuHIyNjTFixAjY29ujRYsWAICvv/4a9erVQ9++feHl5YWYmBhMnjwZw4YNK7IjaQqFolBOUSrLyZMncfXqVYwePRrBwcHIzs7GwoULoaHx6rLLnTt3yvrr6OggKytL1hYeHo6nT5/C09NTOq186dKl4nkDRESkshITExEaugTlyv3XVqfOz2jb1lJ5RX0AtQhtBgYG2Lt3Lzw8PJCSkgJLS0u0a9cOkydPlkKQhoYGDhw4gBEjRqB169YwNDRE+/btsXDhQmk7NjY2OHToEEaPHo2lS5eiSpUqWLduHZycnKQ+PXr0QFxcHKZOnYqYmBjY2dnh6NGjsoEFixcvhoaGBrp164a0tDQ4OTlh1apV0npNTU0cPHgQQ4cOhb29PQwNDdG/f3/MmDGjGD4t1ZeWloaYmBhkZWUhNjYWR48exdy5c9GxY0f069cP165dQ0ZGBpYvX45OnTrh/PnzWLNmjWwb1apVw/Pnz+Hv74+GDRvCwMAA1tbW0NHRwfLlyzFkyBBcu3YNM2fOVNK7JCIiVRAYGIijR49Ky0LoYerU8dJBAXWiEIUx9I+KRFJSEkxMTJCYmAhjY2OpPTU1FZGRkbCxsYGenp4SKyw4Z2dnbNy4EQCgpaWFsmXLomHDhujduzf69+8v/RAtXrwY8+fPR0JCAlq3bo0+ffqgX79+ePbsmXQt4dChQ7Fr1y48ffoUHh4emDZtGrZt24aJEyciOjoajRs3hru7Ozp37oyQkBDY2dkp6V0XHnXe90RExWnSpGxkZc2Hvn6q1Hb0qBMUiha4cKFoX/tt398fi6FNhZXE0EYfh/ueiOj9tm+PRkTE77I2X99RSEkxgZcX0Llz0b5+UYU2tTg9SkRERJQfR44cQUTEfzM4pKRYY948Z3h4qM+Ag7dhaCMiIiK1l5aWBs83Zsrdtq0HypWzhRoNEH0nhjYiIiJSazdv3sS2bdtkbf/7nyv8/PTg5qakoooAQxsRERGpJSEEFi3ahOfPI6W2xo0bo1OnTgCAb79VVmVFg6GNiIiI1E5SUhIWL14saxs4cCAqV66spIqKnvpNUkJERESlWlBQkCywpadrY8eOySU6sAE80kZERERqIjs7G3PnLkRm5guprVKlr7BhgwPeGINQIjG0ERERkcqLiYnBb7/9Jmv7/fdf8eiRKQYNUlJRxYyhjYiIiFSan58fLl68KC0/fFgZf/zhAnf3EjKXRz4xtFGJ5OzsjISEBOzfvx8A8MUXX8DOzg5Lliz54G0WxjaIiCj/0tPTMXfuXFnbjh0/ICKiLvbvL/o7G6gahjYqVq/fe1RbWxvW1tbo168fJk6cCC2tovvnuHfvXmhra+er7+nTp9GmTRvZfU4Lug0iIvo4t2/fxpYtW2Rtnp6uAF7NvVbaAhvA0EZK0K5dO2zYsAFpaWk4fPgwhg0bBm1tbbi7u8v6paenQ0dHp1Bes1y5ciqxDSIier/Nmzfjzp070nJWlh0WL+6CMWOA2bOVWJiSccoPKna6urqwsLBA1apVMXToUDg6OsLX1xfOzs7o2rUrZs+ejUqVKqFOnToAgAcPHuCHH36AqakpypUrhy5duuDevXvS9rKysjBmzBiYmpqifPnymDBhAoQQstf84osvMGrUKGk5LS0Nrq6usLKygq6uLmrWrIk//vgD9+7dQ5s2bQAAZcuWhUKhgLOzc57bePbsGfr164eyZcvCwMAA7du3x61bt6T13t7eMDU1hZ+fH+rWrQsjIyO0a9cO0dHRUp/Tp0+jWbNmMDQ0hKmpKT777DPcv3+/kD5pIiL1kpycjOnTp8sC2+bNLpgxowuSk0t3YAMY2kgF6OvrIz09HQDg7++PiIgIHD9+HAcPHkRGRgacnJxQpkwZnDt3DufPn5fCT85zFi5cCG9vb6xfvx5//fUX4uPjsW/fvne+Zr9+/bBt2zYsW7YMYWFh+O2332BkZAQrKyvs2bMHABAREYHo6GgsXbo0z204Ozvj0qVL8PX1RUBAAIQQ+Oabb5CRkSH1efHiBRYsWIBNmzbh7NmziIqKwrhx4wAAmZmZ6Nq1Kz7//HNcuXIFAQEB+Pnnn6EoKTfJIyIqgODgYCxatEhazsrSwKxZk/HDD1WUWJVq4elRUhohBPz9/eHn54cRI0YgLi4OhoaGWLdunXRadPPmzcjOzsa6deukMLNhwwaYmpri9OnT+Prrr7FkyRK4u7vju+++AwCsWbMGfn5+b33dmzdvYufOnTh+/DgcHR0BANWrV5fW55wGrVixouyattfdunULvr6+OH/+PBwcHAAAW7ZsgZWVFfbv34/vv/8eAJCRkYE1a9agRo0aAIDhw4djxowZAF7N5p2YmIiOHTtK6+vWrVvwD5KISI1lZ2djyZIlSE5OltoqVXLEhg2fYc+e0nnt2tvwSBvB1xdwcHj1Z3E4ePAgjIyMoKenh/bt26NHjx6YNm0aAKBBgway69guX76M27dvo0yZMjAyMoKRkRHKlSuH1NRU3LlzB4mJiYiOjkbz5s2l52hpaaFp06Zvff3Q0FBoamri888//+D3EBYWBi0tLdnrli9fHnXq1EFYWJjUZmBgIAUyALC0tMSTJ08AvAqHzs7OcHJyQqdOnbB06VLZqVMiopIuNjYWM2fOlAW2kSNHYtCgz3DhAgPbmxjaCJ6eQEAAim026TZt2iA0NBS3bt3Cy5cvsXHjRhgaGgKA9GeO58+fo0mTJggNDZU9bt68id69e3/Q6+vr63/0e8ivN0ebKhQK2fV2GzZsQEBAABwcHLBjxw7Url1bNhcREVFJdfz4caxZs0ZafvzYEn5+U1G2bFklVqXaGNoIbm6Avf2rP4uDoaEhatasCWtr6/dO89G4cWPcunULFStWRM2aNWUPExMTmJiYwNLSEoGBgdJzMjMzERwc/NZtNmjQANnZ2Thz5kye63OO9GVlZb11G3Xr1kVmZqbsdZ8+fYqIiAjUq1fvne/pTY0aNYK7uzsuXLiATz75BFu3bi3Q84mI1El6ejqmT5+OCxcuSG27dnXHunU/w82N1/S+C0MboXNnqOxh6D59+qBChQro0qULzp07h8jISJw+fRojR47Ew4cPAQC//vorPD09sX//foSHh+OXX35BQkLCW7dZrVo19O/fHwMGDMD+/fulbe7cuRMAULVqVSgUChw8eBBxcXF4/vx5rm3UqlULXbp0waBBg/DXX3/h8uXL+PHHH1G5cmV06dIlX+8tMjIS7u7uCAgIwP3793Hs2DHcunWL17URUYl1586dXJPlzps3AWFh9Uvt3GsFwdBGKs3AwABnz56FtbU1vvvuO9StWxcuLi5ITU2FsbExAGDs2LHo27cv+vfvD3t7e5QpUwbffvvtO7e7evVqdO/eHb/88gtsbW0xaNAgpKSkAAAqV66M6dOnw83NDebm5hg+fHie29iwYQOaNGmCjh07wt7eHkIIHD58ON8T8BoYGCA8PBzdunVD7dq18fPPP2PYsGEYPHhwAT4hIiL1sG3bNmzevFlaDg1tiO3bPWBnp499+zidR34oxJsTWpHKSEpKgomJCRITE6WAAgCpqamIjIyEjY0N9PT0lFghFTfueyJSN8+fP8fChQtlbX/88RMePbLGvn0l8+ja276/Pxan/CAiIqIiERISAt/XpiYQApg1axKysrQwcWLJDGxFiaGNiIiICpUQAkuXLkViYqLU5u/fBnfvtoa+PjByJE+HfgiGNiIiIio0cXFxWLVqlaxt2bIRSE8vhy1beHTtYzC0ERERUaHw9/fHX3/9JS3HxJhjzZrB0NNTYMcOBraPxdCmxjiGpPThPiciVZSRkYE5c+bI2nbv/g63bzeArS0wbx4DW2FgaFNDOVNKvHjxolhn9yfle/HiBYDcd1ogIlKWLVsicfv2n7K2pUvHo2JFAx5dK2QMbWpIU1MTpqam0j0sDQwMpJupU8kkhMCLFy/w5MkTmJqaQlNTU9klERFhx44duH07XFq+evUT+Pl147VrRYShTU1ZWFgAgBTcqHQwNTWV9j0RkbKkpKRgwYIFsra7d53x+HFVBrYixNCmphQKBSwtLVGxYkVkZGQouxwqBtra2jzCRkRKFxoaCh8fH1nbrFmT8OmnWnjtdqJUBBja1Jympia/yImIqMgJIbBixQrEx8dLbVevfo5+/b7Ap58Cbm5KLK6UYGgjIiKid/r333+xcuVKWdvy5cNhZlYenTvzdGhxYWgjIiKitzp16hTOnj0rLcfFVYC//y+oXVvBo2vFjKGNiIiIcsnMzMTsN+41tXfvt7h163/Yvp1H15SBoY2IiIhk7t27h40bN8raFi0ah/r1DRnYlIihjYiIiCS7du3CjRs3pOXr1+th167voa0Njg5VMoY2IiIiwosXLzB//nxZW82a/bF2bTXo6QFjxiipMJIwtBEREZVyV65cwb59+2RtS5ZMxLNn2ujTR0lFUS4MbURERKWUEAKrVq3Cv//+K7WdOdMKZ8605chQFcTQRkREVAo9ffoUK1askLWtWDEMqakVsG8fBxuoIoY2IiKiUubMmTM4ffq0tPz0aTmsWDEcCoWCgU2FMbQRERGVEnnNvbZ/fxdERdnB0BAYOZKBTZUxtBEREZUC9+/fh7e3t6xt+fJxqF3bEBs2MKypA4Y2IiKiEm7Pnj24du2atJydbYtFi3pg5EjgjQNvpMIY2oiIiEqovOZe69u3L6pXr47p05VUFH0wDWUXQERERIXv2rVruQLb8eMTUb16dSVVRB+LR9qIiIhKECEEvLx+Q2pqrNR27txnCA93xKpVSiyMPhpDGxERUQkRHx+P5cuXy9pWrvwFcXFmsLfnYAN1x9BGRERUApw7dw4nT56UlhMSTLF06UhoaSlgawve4aAEYGgjIiJSY3nNvZaZ2Qlt2jRGYOCrsMYjbCUDQxsREZGaevDgAdavXy9rW7BgLAAjJCczrJU0DG1ERERqaP/+/bh8+bK0/PhxLRw61BtZWcDo0UosjIoMQxsREZEaefnyJby8vGRtu3b9iDlzauC335RUFBULhjYiIiI1cf36dezevVvWduKEO+bM0eGp0FKAoY2IiEjFCSEwf/5avHwZLbVFRtrD2/treHgosTAqVgxtREREKuzZs2dYtmyZrO3w4SGYNMlcSRWRsjC0ERERqai1a8/j8eMT0nJSUhksXjwKLVpo8HRoKcTQRkREpGKysrIwZ84cZGdnS20HD3aAjk5TtGjBiXJLK4Y2IiIiFfLw4UP88ccfsrb9+8cgJKSMkioiVcHQRkREpCKWL/dBfHyotHz7dg3s3/8jtmxRXk2kOhjaiIiIlGzv3lRcvTpP1lajRh/4+dXEli28swG9wtBGRESkRJMnh0Fbe6es7X//c8e33+rgxx+VVBSpJIY2IiIiJfDxETh9+g+Ymj6S2oKCmuPnn9vxyBrlSUPZBeRX586dYW1tDT09PVhaWqJv3754/PixtH7atGlQKBS5HoaGhrLt7Nq1C7a2ttDT00ODBg1w+PBh2XohBKZOnQpLS0vo6+vD0dERt27dkvWJj49Hnz59YGxsDFNTU7i4uOD58+eyPleuXEGrVq2gp6cHKyurXLccISKi0ishIQGhoTNkgW3PnsEMbPROahPa2rRpg507dyIiIgJ79uzBnTt30L17d2n9uHHjEB0dLXvUq1cP33//vdTnwoUL6NWrF1xcXBASEoKuXbuia9euuHbtmtTHy8sLy5Ytw5o1axAYGAhDQ0M4OTkhNTVV6tOnTx9cv34dx48fx8GDB3H27Fn8/PPP0vqkpCR8/fXXqFq1KoKDgzF//nxMmzYNv//+exF/SkREpOrWrr2ApUuXSsspKQaYMmUKrlyxYGCjd1IIIYSyi/gQvr6+6Nq1K9LS0qCtrZ1r/eXLl2FnZ4ezZ8+iVatWAIAePXogJSUFBw8elPq1aNECdnZ2WLNmDYQQqFSpEsaOHYtx48YBABITE2Fubg5vb2/07NkTYWFhqFevHoKCgtC0aVMAwNGjR/HNN9/g4cOHqFSpElavXo1JkyYhJiYGOjo6AAA3Nzfs378f4eHh+X6PSUlJMDExQWJiIoyNjT/4syIiIuXLysrC7NmeECJTajtxoj1at26G2bOVWBgVuqL6/labI22vi4+Px5YtW+Dg4JBnYAOAdevWoXbt2lJgA4CAgAA4OjrK+jk5OSEgIAAAEBkZiZiYGFkfExMTNG/eXOoTEBAAU1NTKbABgKOjIzQ0NBAYGCj1ad26tRTYcl4nIiICz549+8h3T0RE6ubRo0eYNWuWLLCtWjUa584xsFH+qVVoc3V1haGhIcqXL4+oqCj4+Pjk2S81NRVbtmyBi4uLrD0mJgbm5vJ7tZmbmyMmJkZan9P2rj4VK1aUrdfS0kK5cuVkffLaxuuvkZe0tDQkJSXJHkREpN4OHjyIdevWScuRkTbw9JyKgQN5BoUKRqmhzc3NLc/BA68/Xj+dOH78eISEhODYsWPQ1NREv379kNfZ3X379iE5ORn9+/cvzrfz0ebOnQsTExPpYWVlpeySiIjoA6WmpmL69OkIDg6W2v75pxe++64fXr5U8AgbFZhSp/wYO3YsnJ2d39mnevXq0t8rVKiAChUqoHbt2qhbty6srKxw8eJF2Nvby56zbt06dOzYMdfRLgsLC8TGxsraYmNjYWFhIa3PabO0tJT1sbOzk/o8efJEto3MzEzEx8fLtpPX67z+Gnlxd3fHmDFjpOWkpCQGNyIiNRQeHo4dO3bI2tzc3KCrq6ukiqgkUGpoMzMzg5mZ2Qc9N+cmumlpabL2yMhInDp1Cr6+vrmeY29vD39/f4waNUpqO378uBT6bGxsYGFhAX9/fymkJSUlITAwEEOHDpW2kZCQgODgYDRp0gQAcPLkSWRnZ6N58+ZSn0mTJiEjI0O65u748eOoU6cOypYt+9b3pKuryx9oIiI1JoTAwoXeSEmJktoCAz9FQsI38PBQYmFUIqjF5LqBgYEICgpCy5YtUbZsWdy5cwdTpkxBjRo1ch1lW79+PSwtLdG+fftc2/n111/x+eefY+HChejQoQO2b9+OS5cuSVNxKBQKjBo1CrNmzUKtWrVgY2ODKVOmoFKlSujatSsAoG7dumjXrh0GDRqENWvWICMjA8OHD0fPnj1RqVIlAEDv3r0xffp0uLi4wNXVFdeuXcPSpUuxePHiov2giIhIaRITE7FkyRJZ22+//YzkZEveO5QKhVqENgMDA+zduxceHh5ISUmBpaUl2rVrh8mTJ8uOTGVnZ8Pb2xvOzs7Q1NTMtR0HBwds3boVkydPxsSJE1GrVi3s378fn3zyidRnwoQJSElJwc8//4yEhAS0bNkSR48ehZ6entRny5YtGD58OL788ktoaGigW7duWLZsmbTexMQEx44dw7Bhw9CkSRNUqFABU6dOlc3lRkREJce6dRfx6JGftPzypR6WLBmPxo014ObGe4dS4VDbedpKA87TRkSk2rKzs+Hl5SW7VCcz0wlLlrTAyJHgYINSqqi+v9XiSBsREZGq2b49GhER8jvd1K8/Ct27m2DmTCUVRSUaQxsREVEB+PoCPj6HYW0dJLVZW1vD2dkZCoVCiZVRSadWk+sSEREpi68vYGOThpCQ6bLAZmPTAz/99BMDGxU5HmkjIiJ6D19fYMqUm3B23iZrd3V1lQ1UIypKDG1ERETvIISAv/+f+O67e1JbfHwTBAV1RKNGHBlKxYenR4mIiN4iKSkJM2bMQLly96S2QYMGISioIwICAE9P5dVGpQ+PtBEREb3B1xdYu/ZvNG16RGrT1taGq6srNDU14eb2KrC5uSmxSCp1GNqIiIhek52djcDAhWja9IXUFh7+NbZt++8OPJ0787QoFT+GNiIiov+3fXsMIiJ+g47Of22+vr/Cw8NUaTUR5WBoIyIiArBq1VHExQVKy8+eVcHixQPg4cGpPEg1MLQREVGpNmlSOnR05srazp37ASNH1gWnXiNVwtBGRESl1q1bt6Cjs1XW1qCBKzw8OPcaqR6GNiIiKnV8fYHDhzfD0vKO1PbPP40QF9cZHh5KLIzoHRjaiIioVNmzJxnXri2CpeV/bceOuSA+vgrmzVNeXUTvw9BGRESlxqVLl3Dt2iFpOStLE40bu8PDQ1OJVRHlD0MbERGVeD4+2bh4cTH09J5LbZUqOWLQoM+UWBVRwTC0ERFRibZjRyzCw9fg9fu616s3Et9/X1Z5RRF9AIY2IiIqkXx9gb17j8HGJkBqe/SoEtauHQh7ewW+/16JxRF9AIY2IiIqcdLT0xESMhc2Nv+1ZWR0x7lz9VGnDu8ZSuqJoY2IiEqUzZvv4M6dzbK2CRMmQF9fH7NmKakookLA0EZERCWCry9w7NhWmJndktoePWqIjh27Ql9fiYURFRKGNiIiUnvPnz9HSMhCmJn911ar1gB4eFgpryiiQsbQRkREau2ff/7BgQMHpOXsbAWmTp0ETU3OvUYlC0MbERGpJSEEJk9eCh2dRKnt7Nm2+PXXVmBeo5KIoY2IiNTOkydPsHr1aujo/Nd29uwI/PprOXTurLy6iIoSQxsREamVEydO4Pz589JyTIw5/v13MPz9FUqsiqjoMbQREZFayMjIwJw5c2RtBw50g5PTJ1i9WklFERUjhjYiIlJ5W7bcxe3bm2Rt48ePh4eHgZIqIip+DG1ERKSyfH2Bo0e3w9w8Qmq7caMB+vT5DgbMa1TKMLQREZFKSklJQUjIApib/9d24sRPGD/emoMNqFRiaCMiIpWzYUMIoqJ8ZW2TJk2Chwe/tqj04r9+IiJSGUIILF++HM+ePZPaTp/+AqNHfw4tfmNRKccfASIiUglxcXFYtWqVrO2334bjp5/K83QoERjaiIhIBaxZcxKxseekZTMzMwwdOhQeHpx7jSgHQxsRESlNXnOvffvtt/jf//6npIqIVJeGsgsgIqLS6d69e7kC29Kl4xnYiN6CR9qIiKjYLV26EwkJYdJyVlZ9LF7cHSNHKrEoIhXH0EZERMUmJSUFCxYskLX1798f1apVw4wZSiqKSE3w9CgRERWLy5cv5wpsO3ZMQrVq1ZRTEJGa4ZE2IiIqUkIIzJu3EmlpT6W206dbIzCwDbZvV2JhRGqmwEfaNDU18eTJk1ztT58+haamZqEURUREJcPTp08xY8YMWWBbsWIYYmJeBTbOv0aUfwU+0iaEyLM9LS0NOjo6H10QERGVDL/9dhoxMWek5adPy2HduuEYPVqB2bOVWBiRmsp3aFu2bBkAQKFQYN26dTAyMpLWZWVl4ezZs7C1tS38ComISK1kZmZi9hupbP/+LvjmGzu8eKGkoohKgHyHtsWLFwN4daRtzZo1slOhOjo6qFatGtasWVP4FRIRkdq4f/8+vL29ZW379o3DjBmGPBVK9JEU4m3nO9+iTZs22Lt3L8qWLVtUNdH/S0pKgomJCRITE2FsbKzscoiI3mnPnj24du2atBwba4tVq3oosSIi5Siq7+8CX9N26tSpQntxIiJSfy9evMD8+fNlbdu29YOXl42SKiIqmQoc2gYMGPDO9evXr//gYoiISL14e1/F/ft7ZW2zZk1EzZraPB1KVMgKHNqePXsmW87IyMC1a9eQkJCAtm3bFlphRESkunKub359CqizZ1vi8eMv8emngJubEosjKqEKHNr27duXqy07OxtDhw5FjRo1CqUoIiJSXfHx8Vi+fLmsbdeuX5CZaQYvL869RlRUCjwQ4W0iIiLwxRdfIDo6ujA2R+BABCJSPWfPnpVd2/zsmSn++GMkkpMVSqyKSLWozECEt7lz5w4yMzMLa3NERKRC8pp77dChTggLa4yRI5VUFFEpU+DQNmbMGNmyEALR0dE4dOgQ+vfvX2iFERGRanjw4EGuQWarVo3FwIFG+PtvJRVFVAoVOLSFhITIljU0NGBmZoaFCxe+d2QpERGpl3379uHKlSvSckREbdy71wuxsUosiqiU4jxtRESUy8uXL+Hl5SVr27TpR2hp1cAbzURUTD74mrYnT54gIiICAFCnTh1UrFix0IoiIiLluXbtGvbs2SNrW7JkIn75RZs3eidSogKHtqSkJAwbNgzbtm1DdnY2AEBTUxM9evTAypUrYWJiUuhFEhFR0RNC4Pfff0dMTIzUdv68A54//wpvTNFJREqgUdAnDBo0CIGBgTh06BASEhKQkJCAgwcP4tKlSxg8eHBR1EhEREXs2bNnmDFjhiywrVo1FOfOfcWJcolURIHnaTM0NISfnx9atmwpaz937hzatWuHlJSUQi2wNOM8bURUHP766y/4+/tLy0lJZbBkySjUqqXByXKJPoDKzNNWvnz5PE+BmpiYoGzZsoVSFBERFb2srCzMmjUbwH//dz9woCNCQprAzQ28fo1IxRT49OjkyZMxZswY2SH0mJgYjB8/HlOmTCnU4oiIqGg8fPgQs2bNwuuBbeHCMYiMbIJ9+xjYiFRRgU+PNmrUCLdv30ZaWhqsra0BAFFRUdDV1UWtWrVkff/555/Cq7QU4ulRIioKPj4+CA0NlZb//bcGvvrqR54GJSokKnN6tEuXLlAoeI85IiJ1k5qainnz5snagoP7wNe3ppIqIqKCKHBomzZtWhGUQURERenGjRvYtWuXrG3pUnd4e+soqSIiKqgCh7bq1asjKCgI5cuXl7UnJCSgcePGuHv3bqEVR0REH0cIgQUL1uHFi8dSW0BAC5w/74QtWzgylEidFDi03bt3D1lZWbna09LS8PDhw0IpioiIPl5CQgKWLl0qa6tTZzD8/CwY2IjUUL5Hj/r6+sLX1xcA4OfnJy37+vpi3759mDlzJmxsbIqs0M6dO8Pa2hp6enqwtLRE37598fjxY1kfPz8/tGjRAmXKlIGZmRm6deuGe/fuyfqcPn0ajRs3hq6uLmrWrAlvb+9cr7Vy5UpUq1YNenp6aN68Of7++2/Z+tTUVAwbNgzly5eHkZERunXrhtg37p4cFRWFDh06wMDAABUrVsT48eORmZlZKJ8FEdH7rF17QRbYnj83xI4dU9CzpwUuXGBgI1JH+R49qqHxKt8pFAq8+RRtbW1Uq1YNCxcuRMeOHQu/SgCLFy+Gvb09LC0t8ejRI4wbNw4AcOHCBQBAZGQk6tatizFjxsDFxQWJiYkYPXo0kpOTpVGskZGR+OSTTzBkyBAMHDgQ/v7+GDVqFA4dOgQnJycAwI4dO9CvXz+sWbMGzZs3x5IlS7Br1y5ERERI91cdOnQoDh06BG9vb5iYmGD48OHQ0NDA+fPnAbya+8jOzg4WFhaYP38+oqOj0a9fPwwaNAhz5szJ93vm6FEiKqisrCzMnu0JIf77T+Jff32Dhw8/xbx5DGtExaGovr8LPOWHjY0NgoKCUKFChUIr4kP4+vqia9euSEtLg7a2Nnbv3o1evXohLS1NCpgHDhxAly5dpD6urq44dOgQrl27Jm2nZ8+eSEhIwNGjRwEAzZs3x6effooVK1YAALKzs2FlZYURI0bAzc0NiYmJMDMzw9atW9G9e3cAQHh4OOrWrYuAgAC0aNECR44cQceOHfH48WOYm5sDANasWQNXV1fExcVBRyd/F/4ytBFRQTx69Ajr1q2TtS1cOBqffGKM////LREVg6L6/i7w5LqRkZFKD2zx8fHYsmULHBwcoK2tDQBo0qQJNDQ0sGHDBmRlZSExMRGbNm2Co6Oj1CcgIACOjo6ybTk5OSEgIAAAkJ6ejuDgYFkfDQ0NODo6Sn2Cg4ORkZEh62Nrawtra2upT0BAABo0aCAFtpzXSUpKwvXr19/6vtLS0pCUlCR7EBHlx4EDB2SB7c6d6pg2bSqEMOa9Q4lKiAIPRJgxY8Y710+dOvWDi3kfV1dXrFixAi9evECLFi1w8OBBaZ2NjQ2OHTuGH374AYMHD0ZWVhbs7e1x+PBhqU9MTIwsSAGAubk5kpKS8PLlSzx79gxZWVl59gkPD5e2oaOjA1NT01x9cu4S8bbXyVn3NnPnzsX06dPz+WkQEeU999qWLb1x+3Yt1KkD3juUqAQp8JG2ffv2yR47d+7EvHnzsHDhQuzfv79A23Jzc4NCoXjnIycsAcD48eMREhKCY8eOQVNTE/369ZOur4uJicGgQYPQv39/BAUF4cyZM9DR0UH37t1zXYOnqtzd3ZGYmCg9Hjx4oOySiEiFhYeH5wps3t5uePiwFtzdgfBwBjaikqTAR9pCQkJytSUlJcHZ2RnffvttgbY1duxYODs7v7NP9erVpb9XqFABFSpUQO3atVG3bl1YWVnh4sWLsLe3x8qVK2FiYgIvLy+p/+bNm2FlZYXAwEC0aNECFhYWuUZ5xsbGwtjYGPr6+tDU1ISmpmaefSwsLAAAFhYWSE9PR0JCguxo25t93hxxmrPNnD550dXVha6u7js/DyIiIQQ2bNgg+49dYGAzJCS0R2SkEgsjoiJV4NCWF2NjY0yfPh2dOnVC37598/08MzMzmJmZfdBrZmdnA3h1HRgAvHjxQhqAkENTU1PW983TpQBw/Phx2NvbAwB0dHTQpEkT+Pv7o2vXrtJz/f39MXz4cACvrp3T1taGv78/unXrBgCIiIhAVFSUtB17e3vMnj0bT548kUacHj9+HMbGxqhXr94HvV8iIgCYNCkROjpLZG1r1vyMJ08ssW+fcmoiouJRKKENgHRKrygEBgYiKCgILVu2RNmyZXHnzh1MmTIFNWrUkIJShw4dsHjxYsyYMQO9evVCcnIyJk6ciKpVq6JRo0YAgCFDhmDFihWYMGECBgwYgJMnT2Lnzp04dOiQ9FpjxoxB//790bRpUzRr1gxLlixBSkoKfvrpJwCAiYkJXFxcMGbMGJQrVw7GxsYYMWIE7O3t0aJFCwDA119/jXr16qFv377w8vJCTEwMJk+ejGHDhvFIGhF9sIsXL0JHx09aTk3Vw+bN45GQoAE3N54KJSrpChzali1bJlsWQiA6OhqbNm1C+/btC62w1xkYGGDv3r3w8PBASkoKLC0t0a5dO0yePFkKQW3btsXWrVvh5eUFLy8vGBgYwN7eHkePHoW+vj6AV4MVDh06hNGjR2Pp0qWoUqUK1q1bJ83RBgA9evRAXFwcpk6dipiYGNjZ2eHo0aOygQWLFy+GhoYGunXrhrS0NDg5OWHVqlXSek1NTRw8eBBDhw6Fvb09DA0N0b9///cO4iAiyktWVha8vLyQnp4utR0+3A4hIc3xWhMRlXAfNE/b6zQ0NGBmZoa2bdvC3d0dZcqUKdQCSzPO00ZEjx8/xtq1a2VtixePQmKiCSpXBnj3QCLVU1Tf3wU+0hbJq1yJiIrFoUOHcOnSJWn5yZOq+Prr/vjzTwU8PcH514hKmQ+6pi0hIQG3b98GANSsWTPXnGVERPTh9u1Lw5UrnrK2bdt6IiKiDkJCwHuHEpVSBZqn7d69e+jQoQMqVKiA5s2bo3nz5qhQoQI6duyY68bsRERUcBEREbkC2+7dbgDqwNaWR9eISrN8H2l78OABWrRoAW1tbcycORN169YFANy4cQOrV6+Gvb09goKCUKVKlSIrloiopBJCYOPGjbh//77UFhTUBGfOdMSWLTyyRkQFGIjg4uKC27dvw8/PD3p6erJ1L1++RLt27VCrVq1cNyumD8eBCESlw+7dSbh+fbGszc9vEIBKnMqDSA0pfSDC0aNHsWPHjlyBDQD09fUxc+ZM9OzZs9AKIyIqDf7++29cv35EWk5L04GX1wTs3avJsEZEMvkObf/++y+qVav21vXVq1dHfHx8YdRERFTiZWdnY8GCBXj58qXUduzY17hwwR6VK/PoGhHllu/QZmlpiRs3brz1mrVr1669876aRET0SnR0NH7//XdZ26+//opGjUw5lQcRvVW+Q1vXrl0xbtw4+Pv757pf6JMnT+Dq6irdr5OIiPJ25MgR/P3339KylZUVfvrpJygUCnTuzCNsRPR2+R6I8OzZMzRv3hwxMTH48ccfYWtrCyEEwsLCsHXrVlhYWODixYsoV65cUddcanAgAlHJkZ6ejrlz58rafvjhB2kkPhGVHEofiFC2bFkEBgZi4sSJ2L59OxISEgAApqam6N27N+bMmcPARkSUh1u3bmHr1q2yNldX1zwHdhERvU2B7z0KvJpPKC4uDgBgZmYGhUJR6IURj7QRlQSbNm3C3bt3peXg4EY4daozkpOVWBQRFSmlH2l7nUKhQMWKFQutCCKikiYpKQmLF8vnXlu7diAePaqMiROVVBQRqbUPCm1ERPR2QUFBOHz4sLSsUGghLc0NiYmamDgRmD1bicURkdpiaCMiKiTZ2dlYtGgRUlJSpLZjxxwhxGe4cIFhjYg+DkMbEVEhiI2NxZo1a2Rt27ePRNmyZTnvGhEVCoY2IqKP5Ofnh4sXL0rLjx5Vwtq1A2Frq8CFC0osjIhKlHyFtmXLluV7gyNHjvzgYoiI1MnevS9x9aqXrG3nzu9x40Y9aGgA8+YpqTAiKpHyFdreHAH1NgqFgqGNiEqFoKAgXL16WNa2ePEEaGrqQ08PGDOGdzcgosKVr9AWGRlZ1HUQEamN6dOny5ZfvtTDvHmuAAB7e/CUKBEViQ++pi09PR2RkZGoUaMGtLR4aRwRlWy+vsCyZU/RqtWKN9q7IyysPrp3Bx494s3eiajoFDhtvXjxAiNGjMDGjRsBADdv3kT16tUxYsQIVK5cGW78jUVEJYSvL+Dp+SqI+foeRKtWwbL1s2ZNhJ6eNl68UFKBRFSqaBT0Ce7u7rh8+TJOnz4tu2+eo6MjduzYUajFEREpk6cnEBiYjZCQ6bCy+i+w3bxZC8uWeUBPTxu8jJeIikuBj7Tt378fO3bsQIsWLWT3HK1fvz7u3LlTqMURESnTsGGRcHL6U9bm5zcIQCVs2MCBBkRUvAoc2uLi4vK872hKSgpvHE9EJcbvv/+O6OhoWZuf31S4uSkY1ohIKQp8erRp06Y4dOiQtJwT1NatWwd7e/vCq4yISAlSU1Mxffp0WWBr1aoVPDw8cOECAxsRKU+Bj7TNmTMH7du3x40bN5CZmYmlS5fixo0buHDhAs6cOVMUNRIRFYvg4GAcPHhQ1jZ69GgYGxsrqSIiov8U+Ehby5YtERoaiszMTDRo0ADHjh1DxYoVERAQgCZNmhRFjURERW769OmywKZQaMHDw4OBjYhUhkIIIZRdBOUtKSkJJiYmSExM5BcHURGYNAlYv/4ZhgyR36pv9+7vUKZMA06SS0QfpKi+v/N1ejQpKSnfG2S4ICJ1ce3aEQwZ8resbfbsicjK0sa+fUoqiojoLfIV2kxNTfM9MjQrK+ujCiIiKmrZ2dmYOXMmGjf+r+3p0+rYu7cvtLSA8eM5nQcRqZ58hbZTp05Jf7937x7c3Nzg7OwsjRYNCAjAxo0bMXfu3KKpkoiokNy/fx/e3t6ytrVrXZCYWAXJycqpiYgoPwp8TduXX36JgQMHolevXrL2rVu34vfff8fp06cLs75Sjde0ERWuP/74Aw8fPpS1rV07FYmJCowcCcyeraTCiKhEUeo1ba8LCAjAmjVrcrU3bdoUAwcOLJSiiIgKU1paGjw9PWVtN258hgcPHLFqFU+FEpF6KPCUH1ZWVli7dm2u9nXr1sHKyqpQiiIiKiwhISG5AtvKlaPQp48jLlxgYCMi9VHgI22LFy9Gt27dcOTIETRv3hwA8Pfff+PWrVvYs2dPoRdIRPShpk+fLlvOzlZgxoypsLVlWCMi9VPgI23ffPMNbt26hU6dOiE+Ph7x8fHo1KkTbt68iW+++aYoaiQiei9fX8DB4dWfCQkJuQLb3r1dsXPnVNjbA/PmKalIIqKPwMl1VRgHIhDln4MDEBAA9OzpB1vbi7J1u3e7o0wZHbi58QgbERU9lRmIALz6X+wff/yBsLAwAED9+vUxYMAAmJiYFFphRETv4usLTJgAKBSvjpy5ugqEhs6Q9TEyqoo9e5wxezbDGhGpvwIfabt06RKcnJygr6+PZs2aAQCCgoLw8uVLHDt2DI1fn62SPgqPtBG9Xc6RNQCwsYlC//4bZOtr1RqA3r05OIqIil9RfX8XOLS1atUKNWvWxNq1a6Gl9epAXWZmJgYOHIi7d+/i7NmzhVZcacfQRvR2OUfaPvvMG9bW92Xr/Pym4sKF/N3FhYiosKnM6dFLly7JAhsAaGlpYcKECWjatGmhFUZE9DpfX8DTE9J1ae3apSMkRH4XlgsXWuDECSfeN5SISqQChzZjY2NERUXB1tZW1v7gwQOUKVOm0AojInqdp+er06F9+gDLl1/G/fv7Zes3bPgVT5+acrABEZVYBQ5tPXr0gIuLCxYsWAAHBwcAwPnz5zF+/Phct7YiIiosbm6vAtuYMTNw/778qo5p0zxQpw5471AiKtEKHNoWLFgAhUKBfv36ITMzEwCgra2NoUOH5pp1nIiosHz+eSLGjVsia7O27ox58xrB1pZzrxFRyffB87S9ePECd+7cAQDUqFEDBgYGhVoYcSACUY4TJ07g/Pnzsrb//c8N336rq6SKiIjeTmUGIuQwMDBAgwYNCq0QIqI3CSEwY4Z87rUHD6rgxg0XeHgoqSgiIiXJd2gbMGBAvvqtX7/+g4shIsrx8OFD/PHHH7K2DRuc8fRpVWzZoqSiiIiUKN+hzdvbG1WrVkWjRo3AO18RUVHatGkT7t69K2uzs5uCSpU0sGwZR4cSUemU79A2dOhQbNu2DZGRkfjpp5/w448/oly5ckVZGxGVIr6+wPz56XB0lM+9FhjYDAkJ7eHhAXTpoqTiiIhUgEZ+O65cuRLR0dGYMGECDhw4ACsrK/zwww/w8/PjkTci+mje3ldzBbYDB0YiIaE93NyUVBQRkQr54NGj9+/fh7e3N/78809kZmbi+vXrMDIyKuz6SjWOHqXSYs6cOcjIyJC1+fl5cKJcIlJLKjd6VENDAwqFAkIIZGVlFVpBRFR6JCUlYfHixbK2Awc6IjKyCZ4+VVJRREQqKt+nRwEgLS0N27Ztw1dffYXatWvj6tWrWLFiBaKioniUjYgK5OTJk7kC2//+5wodnSbYsEFJRRERqbB8H2n75ZdfsH37dlhZWWHAgAHYtm0bKlSoUJS1EVEJlNfca48fW+Lq1Z/h4QF8+62SCiMiUnH5vqZNQ0MD1tbWaNSoERQKxVv77d27t9CKK+14TRuVNI8fP8batWtlbSdP9kNsrA28vHj9GhGVDEq/pq1fv37vDGtERG/y9QU8PV/d7P358624deuWbP3ChVOQlFSgqzSIiEqtAk2uS0RUEJ6eQFBQBkJC5sjaL11qgsOHO3IqDyKiAvjg0aNERO8zePB1ODntlrXVrTscfn7lsW8fT4cSERUEQxsRFYl58+YhNTVV1ubx/3d5/+EHZVRERKTeGNqIqFAlJydj0aJFsrYbN77Bjh2fKqkiIqKSgaGNiArNmTNncPr0aVmbv/8EjBunr5yCiIhKEIY2IvpgOaNDXV0FQkPlc6/FxlbEqVNDERampOKIiEoYhjYi+mCenkBkZDRCQ3+Xtdeo8SP8/Gpg3jwlFUZEVAKpzQRJnTt3hrW1NfT09GBpaYm+ffvi8ePHsj47d+6EnZ0dDAwMULVqVcyfPz/Xdk6fPo3GjRtDV1cXNWvWzHMqk5UrV6JatWrQ09ND8+bN8ffff8vWp6amYtiwYShfvjyMjIzQrVs3xMbGyvpERUWhQ4cOMDAwQMWKFTF+/HhkZmZ+/AdBpAJ8fQEHB+Crr3ZgyBB5YJs/fzJ+/LEGLlzg6FAiosKkNqGtTZs22LlzJyIiIrBnzx7cuXMH3bt3l9YfOXIEffr0wZAhQ3Dt2jWsWrUKixcvxooVK6Q+kZGR6NChA9q0aYPQ0FCMGjUKAwcOhJ+fn9Rnx44dGDNmDDw8PPDPP/+gYcOGcHJywpMnT6Q+o0ePxoEDB7Br1y6cOXMGjx8/xnfffSetz8rKQocOHZCeno4LFy5g48aN8Pb2xtSpU4v4UyIqHl5emXBymg4NjXCpLSvLDgsWeODXXzWVWBkRUcmV79tYqRpfX1907doVaWlp0NbWRu/evZGRkYFdu3ZJfZYvXw4vLy9ERUVBoVDA1dUVhw4dwrVr16Q+PXv2REJCAo4ePQoAaN68OT799FMp7GVnZ8PKygojRoyAm5sbEhMTYWZmhq1bt0qhMTw8HHXr1kVAQABatGiBI0eOoGPHjnj8+DHMzc0BAGvWrIGrqyvi4uKgo6OTr/fI21iRKgoLC8POnTtlbcOGDeO9iImI/l9RfX+rzZG218XHx2PLli1wcHCAtrY2ACAtLQ16enqyfvr6+nj48CHu378PAAgICICjo6Osj5OTEwICAgAA6enpCA4OlvXR0NCAo6Oj1Cc4OBgZGRmyPra2trC2tpb6BAQEoEGDBlJgy3mdpKQkXL9+/a3vKy0tDUlJSbIHkarw9QXc3BbkCmx+fh4MbERExUCtQpurqysMDQ1Rvnx5REVFwcfHR1rn5OSEvXv3wt/fH9nZ2bh58yYWLlwIAIiOjgYAxMTEyIIUAJibmyMpKQkvX77Ev//+i6ysrDz7xMTESNvQ0dGBqanpO/vktY2cdW8zd+5cmJiYSA8rK6v8fjRERer58+cICZkOff0Uqe3ChXbYts2Dt6IiIiomSg1tbm5uUCgU73yEh/93zcz48eMREhKCY8eOQVNTE/369UPO2d1BgwZh+PDh6NixI3R0dNCiRQv07NkTwKujZerA3d0diYmJ0uPBgwfKLokI586dk/4DlGPevPFITm6O8HAONiAiKi5KnfJj7NixcHZ2fmef6tWrS3+vUKECKlSogNq1a6Nu3bqwsrLCxYsXYW9vD4VCgXnz5mHOnDmIiYmBmZkZ/P39ZduwsLDINcozNjYWxsbG0NfXh6amJjQ1NfPsY2FhIW0jPT0dCQkJsqNtb/Z5c8RpzjZz+uRFV1cXurq67/w8iIqLEAIzZsjnXktJKY+WLYfDzg48wkZEVMyUGtrMzMxgZmb2Qc/Nzs4G8Oo6sNdpamqicuXKAIBt27bB3t5eeg17e3scPnxY1v/48eOwt7cHAOjo6KBJkybw9/dH165dpdfx9/fH8OHDAQBNmjSBtrY2/P390a1bNwBAREQEoqKipO3Y29tj9uzZePLkCSpWrCi9jrGxMerVq/dB75eoOMXGxmLNmjWytj17emPWrFro3JlH14iIlEEtJtcNDAxEUFAQWrZsibJly+LOnTuYMmUKatSoIQWlf//9F7t378YXX3yB1NRUbNiwQZqSI8eQIUOwYsUKTJgwAQMGDMDJkyexc+dOHDp0SOozZswY9O/fH02bNkWzZs2wZMkSpKSk4KeffgIAmJiYwMXFBWPGjEG5cuVgbGyMESNGwN7eHi1atAAAfP3116hXrx769u0LLy8vxMTEYPLkyRg2bBiPpJHKW7p0FxISbsjaFi2ajE2bNBnWiIiUSC1Cm4GBAfbu3QsPDw+kpKTA0tIS7dq1w+TJk2UhaOPGjRg3bhyEELC3t8fp06fRrFkzab2NjQ0OHTqE0aNHY+nSpahSpQrWrVsHJycnqU+PHj0QFxeHqVOnIiYmBnZ2djh69KhsYMHixYuhoaGBbt26IS0tDU5OTli1apW0XlNTEwcPHsTQoUNhb28PQ0ND9O/fP9epJiJVkpmZidmzZ8vaLl/+H44f/xZbtvDoGhGRsqntPG2lAedpo+IyeXIEtLW3y9p27x6KzMyKmDePgY2IqCCK6vtbLY60EVHRWbx4MbS15XMC2tlNhYeHQkkVERFRXhjaiEqplJQULFiwQNZ28eJXOHLEQUkVERHRuzC0EZVC58+fx4kTJ2Rt8+ePx9atBkqqiIiI3oehjagU8fERCA2VD4hJSDDBsmWj4ObGa9eIiFQZQxtRKfHkyROEhq6WtW3d2guPH9fGvn0MbEREqo6hjagU2Lt3L65evSprmzlzMrS1NbFjBwMbEZE6YGgjKsGysrIwa9YsWVt0dH0cPNgdWVlArVoMbERE6oKhjaiEunXrFrZu3SprO39+CI4fN0edOoC9Pe8fSkSkThjaiEqgZcuW4dmzZ7I2O7upaNRIgefPwUEHRERqiKGNqAR58eIF5s+fL2s7ceJLhIa2lG5FxbBGRKSeNJRdABEVjnXrLuYKbJ98Mg6hoS3x/Dng6amkwoiIqFDwSBuRmstr7jUjIyOMHTsWAKCt/Sqw8fo1IiL1xtBGpMb+/fdfhIaulLXZ2PRAv3620jJPiRIRlQwMbURqaupUH2hqhsraGjachK5d+WNNRFQS8bc7kZrJmXtNU/O/ttjYuli9+gfY2wNduyqtNCIiKkIMbURq5M6dO9i8ebOsLSNjMNq1s0BoKK9bIyIqyRjaiNTEqlWrEBcXJ2ubOnUqFAoFAF63RkRU0jG0Eam4ly9fwsvLS9bWpk0btG7dWkkVERGRMjC0Eamwv//+G0eOHJG1jRkzBmXKlFFSRUREpCwMbUQqavr06bJlTU19HD48AY0avVrOmXuNp0WJiEoHhjYiFbNz51OEha2QtX3//fcYOLAeAgL+u7NBzt8Z2oiISgeGNiIVcuDAAYSF/SNrmzhxIrS1teHmJr+zAe9yQERUuiiEEELZRVDekpKSYGJigsTERBgbGyu7HCpC2dnZmDlzpqwtIqI27t3rhQsXlFQUERF9kKL6/uaRNiIl8vUFFi6MRNu2f8ra69QZBD+/SjySRkREEg1lF0BUmp0581uuwDZ16lQYGFRSUkVERKSqeKSNSAlSU1Mxb948vH7U3MKiNQYPbgPg1fVqHGhARESvY2gjKmbr11/CgweHZG2jR4+WXffw5qADIiIihjaiYvTm3GuZmTr49FN3vHmdaufOPMJGRERyDG1ExSA+Ph7Lly+XtVWr1g39+3+ipIqIiEjdMLQRFbHDhw8jKChI1pYz9xoREVF+MbQRFREfn2yEhsrnXqtevTr69u2rpIqIiEidMbQRFSJfX8DVFahQ4R4cHTfK1g0cOBCVK1dWUmVERKTuGNqICpGnJ9Cy5TpUqfJI1j516lQoFAolVUVERCUBQxtRIfD1BebPT4OTk6esvWXLlvjyyy+VVBUREZUkvCMCUSHYtOkfODrKA9uoUaPeGdh8fQEHh1d/EhERvQ9vGK/CeMN41efrC4SEyOde09DQwJQpU977XAeHV3c9sLcHbwpPRFSCFNX3N4+0EX2gZ8+e5QpsVat+i61bp8DW9v1H0NzcXgU23vWAiIjyg0faVBiPtKkmX1/gzz9D0aCBj6zd3d0dX3yhg4CAV8s8gkZEVDrxSBuRChBC4K+/lssCm5FRNXh4eEBHRwdubkDlyoCeHtCmjRILJSKiEoehjSif/v33X8yYMQOGhvFS2/LlwzBtWn/pVGjnzoC1NZCaCpw69d9zOeiAiIg+FkMbUT6cOnUKK1eulJbLly8PO7upSEurgOfPX83PliOva9U8PV8NOvCUDzAlIiLKN87TRvQOmZmZmD17tqyta9euaNiwIQBgy5ZXQez1gNa586vH69zccvcjIiIqCA5EUGEciKAcvr6vAtawYfdw+7b8VlTjxo2DoaGhkiojIiJ1wIEIREUs57ozV1egcuXdssAWE1MXjRp5yAIbr1MjIqLixCNtKoxH2oqXgwNw+fILTJgwX9bu798P587Z5JrCg5PjEhFRXnikjaiI5Bwx+/LLK7kC26xZExEXZ5PnJLg5Aw7atOERNyIiKno80qbCeKSteDg4CDRuvApmZv9Kba1atcLz522lwQNvDiyQP59H3IiI6D9F9f3N0aNUqj19+hROTitkbb/88gvMzMwAvDus5eDIUCIiKg4MbVRqnTlzBqdPn5aWy5YtixEjRkChUBRoO3lN8UFERFTYGNqo1Mlr7rXOnTujUaNGSqqIiIjo/RjaqFSJiorChg0bZG1jx46FkZGRkioiIiLKH4Y2KjX27t2Lq1evSst16tRBz549lVgRERFR/jG0UYnm6wssXPgCbdvKp/Lo27cvqlevrqSqiIiICo6hjUq0FSuuoW3bPbK2iRMnQltbW0kVERERfRhOrkslSs5EuT4+AmvWrMFnn/0X2BwcHODh4SEFNt6GioiI1AlDG5Uonp5AeHg8QkNnIDY2Vmq3tR2Kr776KlffgIBXfxIREak6nh6lEsXZ+Ryio09Ky8bGxvj111+hoZH7/yecFJeIiNQJQxupPV9fwN09C99/Pwuvz4trZdUJAwY0fuvzOCkuERGpE4Y2UnteXg/www/rZW1jxoxBmTJllFQRERFR4WNoI7W2f/9+fPXVZWnZ2LgmRo/uo8SKiIiIigZDG6kdX19gwYKX+PJLL1l7jRo/4scfayipKiIioqLF0EZqw9f31cABI6Pr+PLL3bJ17u7u0NHRUVJlRERERY+hjVReTliLihLo0GEtKlWKltbZ29vj66+/VmJ1RERExYOhjVSary/Qowegp/cMo0Ytk60bMmQIzM3NlVQZERFR8VK7yXXT0tJgZ2cHhUKB0NBQ2borV66gVatW0NPTg5WVFby8vHI9f9euXbC1tYWenh4aNGiAw4cPy9YLITB16lRYWlpCX18fjo6OuHXrlqxPfHw8+vTpA2NjY5iamsLFxQXPnz8vcC30fp6eQJMm52WBTUvLCFOmTGFgIyKiUkXtQtuECRNQqVKlXO1JSUn4+uuvUbVqVQQHB2P+/PmYNm0afv/9d6nPhQsX0KtXL7i4uCAkJARdu3ZF165dce3aNamPl5cXli1bhjVr1iAwMBCGhoZwcnJCamqq1KdPnz64fv06jh8/joMHD+Ls2bP4+eefC1QLvV3O7aX2789Cu3az8NVXJ6R1HTp0wKRJY/OcLJeIiKhEE2rk8OHDwtbWVly/fl0AECEhIdK6VatWibJly4q0tDSpzdXVVdSpU0da/uGHH0SHDh1k22zevLkYPHiwEEKI7OxsYWFhIebPny+tT0hIELq6umLbtm1CCCFu3LghAIigoCCpz5EjR4RCoRCPHj3Kdy35kZiYKACIxMTEAj1P3dnbC1G58gMxbdo02SMpKUnZpREREb1XUX1/q83hitjYWAwaNAibNm2CgYFBrvUBAQFo3bq1bAShk5MTIiIi8OzZM6mPo6Oj7HlOTk4ICAgAAERGRiImJkbWx8TEBM2bN5f6BAQEwNTUFE2bNpX6ODo6QkNDA4GBgfmuJS9paWlISkqSPUqj3r19MWjQH9Jy9erV4eHhwclyiYioVFOL0CaEgLOzM4YMGSILS6+LiYnJdY1TznJMTMw7+7y+/vXnva1PxYoVZeu1tLRQrly5977O66+Rl7lz58LExER6WFlZvbVvSZSamorp06fj6dMQqa13797o27evEqsiIiJSDUoNbW5ublAoFO98hIeHY/ny5UhOToa7u7syyy1y7u7uSExMlB4PHjxQdknFJiwsDPPmzZO1ubu7o1atWkqqiIiISLUodcqPsWPHwtnZ+Z19qlevjpMnTyIgIAC6urqydU2bNkWfPn2wceNGWFhYIDY2VrY+Z9nCwkL6M68+r6/PabO0tJT1sbOzk/o8efJEto3MzEzEx8e/93Vef4286Orq5nqPJU3OnGtubq9u1i6EwPr16/Hw4UOpT7NmzdC+fXslVklERKR6lBrazMzMYGZm9t5+y5Ytw6xZs6Tlx48fw8nJCTt27EDz5s0BvJpkddKkScjIyIC2tjYA4Pjx46hTpw7Kli0r9fH398eoUaOkbR0/fhz29vYAABsbG1hYWMDf318KaUlJSQgMDMTQoUOlbSQkJCA4OBhNmjQBAJw8eRLZ2dkFqqW08vQEAgKAPn2ADRsScP36Utn6wYMHvzPYEhERlVqFOqyhmERGRuYaPZqQkCDMzc1F3759xbVr18T27duFgYGB+O2336Q+58+fF1paWmLBggUiLCxMeHh4CG1tbXH16lWpj6enpzA1NRU+Pj7iypUrokuXLsLGxka8fPlS6tOuXTvRqFEjERgYKP766y9Rq1Yt0atXrwLVkh+qNnrUx+fVyE4fnw/v6+MjhJGREPb2F2QjQ728vERWVlbRFE5ERFSMiur7u8SENiGEuHz5smjZsqXQ1dUVlStXFp6enrmeu3PnTlG7dm2ho6Mj6tevLw4dOiRbn52dLaZMmSLMzc2Frq6u+PLLL0VERISsz9OnT0WvXr2EkZGRMDY2Fj/99JNITk4ucC3vo2qhzd5eCODVnx/aNzMzU8yYMVsW2AIDA4umYCIiIiUoqu9vhRBCKPNIH71dUlISTExMkJiYCGNjY2WXk+t6tIL2ffz4MdauXSvrN3r0aJV4b0RERIWlqL6/GdpUmKqFto9x8OBBBAcHS8vVqlVDv379oFAolFgVERFR4Suq72+1mKeN1EfOLah8fV8tp6WlYfr06bLA1rNnT/Tv35+BjYiIqACUOnqUSp6c0aGenkCdOhHYvn27bL2bm1uJn9aEiIioKDC0UaFycwM8PQW++84b27dHSe1NmzZFhw4dlFgZERGRemNoo0L1+eeJCAlZgpSU/9oGDRqESpUqKa8oIiKiEoChjQpNYGAgjh49Ki3r6upi/Pjx0NTUVGJVREREJQNDG3207OxseHl5IS0tTWqrXNkJAwe2UGJVREREJQtDG30wX19g5cpoODj8LmtfvHgU6tUzwcCBSiqMiIioBGJoow/m43MYDg5B0nJcnBVWrvwJenoKuLkpsTAiIqISiKGNCiwtLQ2enp6wtv6vrUePHrh50xb//JO/OyYQERFRwTC0UYHcvHkT27Ztk7W5urpCT08PtrYMa0REREWFd0QgyZt3M3idEAJ//vmnLLA1btwYHh4e0NPTK8YqiYiISieGNpK8fjeD1yUlJWHGjBmIjIyU2gICBqJTp07FXCEREVHpxdBGEjc3wN4eskEEf//9NxYvXiwta2ho49ixyfjll8pKqJCIiKj04jVtBODVKVFPz/8GEWRnZ2PhwoV48eKF1Cc8/Cv06uWAKVOUWCgREVEpxdBGAOSnRps1i8Fvv/0mW3/mzK84dcoU9+9zsAEREZEyMLQRgJwbvQM//uiH3367KLUbGFTGuHEuOHBAgdRUcP41IiIiJWFoIwBAu3bpCAmZi7i4/9p27PgeDx7UQ506r46u8QgbERGR8nAgAuHWrVuYO3eurG3PHldERtbD8+e5R5MSERFR8eORtlJu8+bNuHPnjrRsZ2eHLl26wMNDPjiBiIiIlIuhrZRKTk7GokWLZG0uLi6oUqWKtMxTokRERKqDoa0U2rAhFFFRPtKyhoYGJk6cCE1NTSVWRURERO/Ca9pKoXv3Dkh///LLLzFlyhQpsL3rVlZERESkPAxtpZCV1ddITLREvXoj0bJlS1lQe9utrIiIiEi5FEIIoewiKG9JSUkwMTFBYmIijI2Ni+x1HBxeBbWcW1i9fmcEIiIiKpii+v7mkTaS3XO0c2fgwgUGNiIiIlXDgQjEUaJERERqgEfaSjEOOiAiIlIfDG2lGAcdEBERqQ+GtlLs9WvZiIiISLXxmrZSjNeyERERqQ8eaSMiIiJSAwxtRERERGqAoY2IiIhIDTC0EREREakBhjYiIiIiNcDQRkRERKQGGNqIiIiI1ABDGxEREZEaYGgjIiIiUgMMbURERERqgKGNiIiISA0wtBERERGpAYY2IiIiIjWgpewC6O2EEACApKQkJVdCRERE+ZXzvZ3zPV5YGNpUWHJyMgDAyspKyZUQERFRQSUnJ8PExKTQtqcQhR0DqdBkZ2fj8ePHKFOmDBQKhbLLKVZJSUmwsrLCgwcPYGxsrOxy6DXcN6qL+0Z1cd+otsLeP0IIJCcno1KlStDQKLwr0XikTYVpaGigSpUqyi5DqYyNjfkLTkVx36gu7hvVxX2j2gpz/xTmEbYcHIhAREREpAYY2oiIiIjUAEMbqSRdXV14eHhAV1dX2aXQG7hvVBf3jerivlFt6rJ/OBCBiIiISA3wSBsRERGRGmBoIyIiIlIDDG1EREREaoChjYiIiEgNMLRRoUtLS4OdnR0UCgVCQ0Nl665cuYJWrVpBT08PVlZW8PLyyvX8Xbt2wdbWFnp6emjQoAEOHz4sWy+EwNSpU2FpaQl9fX04Ojri1q1bsj7x8fHo06cPjI2NYWpqChcXFzx//rzAtZQUnTt3hrW1NfT09GBpaYm+ffvi8ePHsj47d+6EnZ0dDAwMULVqVcyfPz/Xdk6fPo3GjRtDV1cXNWvWhLe3d64+K1euRLVq1aCnp4fmzZvj77//lq1PTU3FsGHDUL58eRgZGaFbt26IjY2V9YmKikKHDh1gYGCAihUrYvz48cjMzPz4D0IF5Wff+Pn5oUWLFihTpgzMzMzQrVs33Lt3T9aH+6ZovG//TJs2DQqFItfD0NBQth3+Xit8+fnZEUJgwYIFqF27NnR1dVG5cmXMnj1b1ketfnYEUSEbOXKkaN++vQAgQkJCpPbExERhbm4u+vTpI65duya2bdsm9PX1xW+//Sb1OX/+vNDU1BReXl7ixo0bYvLkyUJbW1tcvXpV6uPp6SlMTEzE/v37xeXLl0Xnzp2FjY2NePnypdSnXbt2omHDhuLixYvi3LlzombNmqJXr14FqqUkWbRokQgICBD37t0T58+fF/b29sLe3l5af/jwYaGlpSVWr14t7ty5Iw4ePCgsLS3F8uXLpT53794VBgYGYsyYMeLGjRti+fLlQlNTUxw9elTqs337dqGjoyPWr18vrl+/LgYNGiRMTU1FbGys1GfIkCHCyspK+Pv7i0uXLokWLVoIBwcHaX1mZqb45JNPhKOjowgJCRGHDx8WFSpUEO7u7kX8KSnH+/bN3bt3ha6urnB3dxe3b98WwcHBonXr1qJRo0ayPtw3ReN9+yc5OVlER0fLHvXq1RP9+/eX+vD3WtF4374RQogRI0aIOnXqCB8fH3H37l1x6dIlcezYMWm9uv3sMLRRoTp8+LCwtbUV169fzxXaVq1aJcqWLSvS0tKkNldXV1GnTh1p+YcffhAdOnSQbbN58+Zi8ODBQgghsrOzhYWFhZg/f760PiEhQejq6opt27YJIYS4ceOGACCCgoKkPkeOHBEKhUI8evQo37WUZD4+PkKhUIj09HQhhBC9evUS3bt3l/VZtmyZqFKlisjOzhZCCDFhwgRRv359WZ8ePXoIJycnablZs2Zi2LBh0nJWVpaoVKmSmDt3rhDi1b7S1tYWu3btkvqEhYUJACIgIEAI8erfkIaGhoiJiZH6rF69WhgbG8v2V0n15r7ZtWuX0NLSEllZWVIfX19fWR/um+Lz5v55U2hoqAAgzp49K7Xx91rxeHPf3LhxQ2hpaYnw8PC3PkfdfnZ4epQKTWxsLAYNGoRNmzbBwMAg1/qAgAC0bt0aOjo6UpuTkxMiIiLw7NkzqY+jo6PseU5OTggICAAAREZGIiYmRtbHxMQEzZs3l/oEBATA1NQUTZs2lfo4OjpCQ0MDgYGB+a6lpIqPj8eWLVvg4OAAbW1tAK9Oaevp6cn66evr4+HDh7h//z6A9++b9PR0BAcHy/poaGjA0dFR6hMcHIyMjAxZH1tbW1hbW8v2X4MGDWBubi57naSkJFy/fr2wPgaVlNe+adKkCTQ0NLBhwwZkZWUhMTERmzZtgqOjo9SH+6Z45LV/3rRu3TrUrl0brVq1ktr4e63o5bVvDhw4gOrVq+PgwYOwsbFBtWrVMHDgQMTHx0vPU7efHYY2KhRCCDg7O2PIkCGyXyqvi4mJkf2DBSAtx8TEvLPP6+tff97b+lSsWFG2XktLC+XKlXvv67z+GiWNq6srDA0NUb58eURFRcHHx0da5+TkhL1798Lf3x/Z2dm4efMmFi5cCACIjo4G8PbPLCkpCS9fvsS///6LrKys9+4bHR0dmJqavrMP981/+8bGxgbHjh3DxIkToaurC1NTUzx8+BA7d+6U+nDfFK137Z/XpaamYsuWLXBxcZG18/da0XnXvrl79y7u37+PXbt24c8//4S3tzeCg4PRvXt3qY+6/ewwtNE7ubm55XmR7euP8PBwLF++HMnJyXB3d1d2yaVGfvdNjvHjxyMkJATHjh2DpqYm+vXrB/H/N0QZNGgQhg8fjo4dO0JHRwctWrRAz549Abz6XyUVTGHum5iYGAwaNAj9+/dHUFAQzpw5Ax0dHXTv3l3qQwVTmPvndfv27UNycjL69+9fnG+nRCnMfZOdnY20tDT8+eefaNWqFb744gv88ccfOHXqFCIiIpT1Fj+KlrILINU2duxYODs7v7NP9erVcfLkSQQEBOS6b1vTpk3Rp08fbNy4ERYWFrlG0+QsW1hYSH/m1ef19TltlpaWsj52dnZSnydPnsi2kZmZifj4+Pe+zuuvoeryu29yVKhQARUqVEDt2rVRt25dWFlZ4eLFi7C3t4dCocC8efMwZ84cxMTEwMzMDP7+/rJtvO0zMzY2hr6+PjQ1NaGpqfne/Zeeno6EhATZ/0rf7PPmyKzSvG9WrlwJExMT2SjAzZs3w8rKCoGBgWjRogX3TQEV5v553bp169CxY8dcR1T4ey3/CnPfWFpaQktLC7Vr15b6161bF8CrkZx16tRRv5+dfF/9RvQO9+/fF1evXpUefn5+AoDYvXu3ePDggRDiv4tkX7+A193dPddAhI4dO8q2bW9vn+uC3QULFkjrExMT87xg99KlS1IfPz+/PC/YfVctJdn9+/cFAHHq1Km39unbt69sJNaECRPEJ598IuvTq1evXBfsDh8+XFrOysoSlStXznXB7u7du6U+4eHheV6w+/rIrN9++00YGxuL1NTUD3vDauTNfTNmzBjRrFkzWZ/Hjx8LAOL8+fNCCO6b4vS2n527d+8KhUIhDhw4kOs5/L1WPN7cNznfQ7dv35b65AwUiYiIEEKo388OQxsVicjIyFyjRxMSEoS5ubno27evuHbtmti+fbswMDDINeWHlpaWWLBggQgLCxMeHh55Do03NTUVPj4+4sqVK6JLly55Do1v1KiRCAwMFH/99ZeoVauWbGh8fmopKS5evCiWL18uQkJCxL1794S/v79wcHAQNWrUkH5ZxMXFidWrV4uwsDAREhIiRo4cKfT09ERgYKC0nZyh8ePHjxdhYWFi5cqVeQ6N19XVFd7e3uLGjRvi559/FqamprIRU0OGDBHW1tbi5MmT4tKlS7mG6ecMjf/6669FaGioOHr0qDAzMyuR00rkZ9/4+/sLhUIhpk+fLm7evCmCg4OFk5OTqFq1qnjx4oUQgvumqORn/+SYPHmyqFSpksjMzMy1Hf5eK3z52TdZWVmicePGonXr1uKff/4Rly5dEs2bNxdfffWVtB11+9lhaKMikVdoE0KIy5cvi5YtWwpdXV1RuXJl4enpmeu5O3fuFLVr1xY6Ojqifv364tChQ7L12dnZYsqUKcLc3Fzo6uqKL7/8UvpfU46nT5+KXr16CSMjI2FsbCx++uknkZycXOBaSoIrV66INm3aiHLlygldXV1RrVo1MWTIEPHw4UOpT1xcnGjRooUwNDQUBgYG4ssvvxQXL17Mta1Tp04JOzs7oaOjI6pXry42bNiQq8/y5cuFtbW10NHREc2aNcu1nZcvX4pffvlFlC1bVhgYGIhvv/1WREdHy/rcu3dPtG/fXujr64sKFSqIsWPHioyMjML5QFRIfvaNEEJs27ZNNGrUSBgaGgozMzPRuXNnERYWJuvDfVP48rt/srKyRJUqVcTEiRPfui3+Xitc+d03jx49Et99950wMjIS5ubmwtnZWTx9+lTWR51+dhRC8EpWIiIiIlXHYWFEREREaoChjYiIiEgNMLQRERERqQGGNiIiIiI1wNBGREREpAYY2oiIiIjUAEMbERERkRpgaCMiKgIKhQL79+9Xdhkyp0+fhkKhQEJCgrJLIaIPwNBGRPQRpk2bJt3Um4ioKDG0EREREakBhjYiKtWys7Mxd+5c2NjYQF9fHw0bNsTu3bsB/Hc60d/fH02bNoWBgQEcHBwQEREBAPD29sb06dNx+fJlKBQKKBQKeHt7S9v+999/8e2338LAwAC1atWCr69vvmrKeV0/Pz80atQI+vr6aNu2LZ48eYIjR46gbt26MDY2Ru/evfHixQvpeWlpaRg5ciQqVqwIPT09tGzZEkFBQYX3YRGRUjG0EVGpNnfuXPz5559Ys2YNrl+/jtGjR+PHH3/EmTNnpD6TJk3CwoULcenSJWhpaWHAgAEAgB49emDs2LGoX78+oqOjER0djR49ekjPmz59On744QdcuXIF33zzDfr06YP4+Ph81zZt2jSsWLECFy5cwIMHD/DDDz9gyZIl2Lp1Kw4dOoRjx45h+fLlUv8JEyZgz5492LhxI/755x/UrFkTTk5OBXpNIlJhBbq9PBFRCZKamioMDAzEhQsXZO0uLi6iV69e4tSpUwKAOHHihLTu0KFDAoB4+fKlEEIIDw8P0bBhw1zbBiAmT54sLT9//lwAEEeOHHlvXXm97ty5cwUAcefOHalt8ODBwsnJSdq+tra22LJli7Q+PT1dVKpUSXh5ecm2++zZs/fWQESqR0uJeZGISKlu376NFy9e4KuvvpK1p6eno1GjRtLy//73P+nvlpaWAIAnT57A2tr6ndt//XmGhoYwNjbGkydP8l3f6883NzeHgYEBqlevLmv7+++/AQB37txBRkYGPvvsM2m9trY2mjVrhrCwsHy/JhGpLoY2Iiq1nj9/DgA4dOgQKleuLFunq6uLO3fuAHgVfnIoFAoAr66Fe5/Xn5fz3Pw8L6/nKxSKj94eEak3XtNGRKVWvXr1oKuri6ioKNSsWVP2sLKyytc2dHR0kJWVVcSVvl+NGjWgo6OD8+fPS20ZGRkICgpCvXr1lFgZERUWHmkjolKrTJkyGDduHEaPHo3s7Gy0bNkSiYmJOH/+PIyNjVG1atX3bqNatWqIjIxEaGgoqlSpgjJlykBXV7cYqpczNDTE0KFDMX78eJQrVw7W1tbw8vLCixcv4OLiUuz1EFHhY2gjolJt5syZMDMzw9y5c3H37l2YmpqicePGmDhxYr5OPXbr1g179+5FmzZtkJCQgA0bNsDZ2bnoC8+Dp6cnsrOz0bdvXyQnJ6Np06bw8/ND2bJllVIPERUuhRBCKLsIIiIiIno3XtNGREREpAYY2oiIitmQIUNgZGSU52PIkCHKLo+IVBRPjxIRFbMnT54gKSkpz3XGxsaoWLFiMVdEROqAoY2IiIhIDfD0KBEREZEaYGgjIiIiUgMMbURERERqgKGNiIiISA0wtBERERGpAYY2IiIiIjXA0EZERESkBhjaiIiIiNTA/wGshenDJO+9bAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABVYAAAKWCAYAAACidsIoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7N0HfFRV2sfxJxB6CAmgVCVIEQQlCIi8qETsdYPKrl0QK6DC6tqVYK8LNlBXBXVd+5K1YAcsqAhKUBAQkCAdAgkhNAnkzXPmHDIMKdMSbpLf9/OZvXfOvXNngjtz5v7nuefE/LF6XcGKpYulT58+AgAAAAAAAAAoWw27BAAAAAAAAAAEiWAVAFDl/Llkuqy8roG9BwAAAABA9BGsAgCqlF0bl8nGiZfZewAAAAAAlA+CVQBAlVGwO182vnSp1O98km0BAAAAAKB8EKwCAKqM7JcultjE1tIg+SzbAgAAAABA+SBYBQBUCTlv3yi7t2RLfJ+LbAsAAAAAAOWHYBUAUOltmfKk7Fw0TRKOv8a2AAAAAABQvghWAQCV2raMdMn99BGJT7lWYmLr2FYAAAAAAMoXwSoAoNL6c9ksyX55sDTqP1xiE1raVgAAAAAAyh/BKgCgUtqdu0ayJ1wq8f2ukTqtj7CtAAAAAABUDIJVAECltOHFC6Vex36Ft2NtCwAAAAAAFYdgFQBQ6WyccKnENmgqDZLPsi0AAAAAAFQsglUAQKWSm36H7M5eIfHHDLItAAAAAABUPIJVAEClseXLZ2X7L+9JwvHX2hYAAAAAAPYPglUAQKWwfe5Hkvv+3dLo+KESU6eBbQUAAAAAYP8gWAUAeN7Olb9I9sTLpNGJN0hs4za2FQAAAACA/YdgFQDgaQVbs2XjixdL3P8NkjoHd7etAAAAAADsXwSrAABP2/DiRVK3bS+p3ynFtgAAAAAAsP8RrAIAPCvn31dJjVp1JK7HObYFAAAAAABvIFgFAHhS7of3yM7V86XRcVfaFgAAAAAAvINgFQDgOVu+fVm2/fC6JBx/rW0BAAAAAMBbCFYBAJ6yY8EU2fT2SGl0/LVSo36CbQUAAAAAwFsIVgEAnpG/9jfJnnCpNDrpBql1YHvbCgAAAACA99SIsSsAAOxPu3fkycaXLpYGvQZK3aRethUAAAAAAG+iYhUA4AnZL10stVseJvUPO8m2AAAAAADgXQSrAID9btOb14ns3iUNe/3VtgAAAAAA4G0EqwCA/WrzJw/LzswfJSHlGtsCAAAAAID3EawCAPabLT+8LnlfPS/xKVeLxDDqNwAAAACg8iBYBQDsF38u/kZy/n2lJPQfKjUbHmBbAQAAAACoHAhWAQAVbteGTNk44TJpdNJIqd2is20FAAAAAKDyIFgFAFSogl07ZcOLF0v9I86Qeu362FYAAAAAACqXmOWr1xUsX7pY+vTh5BYAUP42/utvEhNbS+J7X2hbysea8QOl1VNb7L2qb8YH70vGJ5/I77Nny+ZNOaatYaMEOaTbEZJ82unS+8yzTBsAAAAAIDoIVgEAFWbTu/+QnSt+kcSTrrct5ae6BKuZc3+R1++6S3ZtWC/NatSQZvXrS/1atcy2rTt3ytqtW2Xt7t1Ss8kBcsG990pS18PNNgAAAABAZBgKAABQIfK+GCN/LpwqCcdfY1sQqffGjpGH/jpQmm/fKsc2aSIdExOlUZ06UqtGDXPTdW3Tbc22bTH7vj/mn/bRAAAAAIBIEKwCAMrdtoxJsvmzMRKfco3ExNa2rYjE5GfHy2cvvSBntk2SQ+rWta0la1evntn308LHfDjuGdsKAAAAAAgXwSoAoFz9mTlTsicOloT+wyU2oaVtRST08v/3nnxCTjnoIGlYO/igWvc95eCD5f2nnzLHAAAAAACEr4YU2DUAAKJsV84q2fjSJdLo+GFSu3VX24qSbM/MtGul+89tt0nvNgeHFKo6+pijDmotr916q20BAAAAAISDilUEbeScNeaWs3OXbUF5GvDtcol5e569B1ROG1+6WOp37i91O/SVOQt+l3ueeU3Ovf4+GXLHGHk5/XO7F5ys9HT5sXt3WTNxom3Zl87+v3tTdlCX/5ekXf36UpCbY44FAAAAAAgPwSqCNva3DeYGAMHYOOESiW14gDTodqY88cr/5IRBt8o94/4j//viOxOqarja49zr7N5w8jIyZOHgwSUGrD+9/540j/XN+h8JPcZP7xOsAgAAAEC4CFYBAFGX+7/bZXfOKonve5lkrlwr9457TXI2b5F+vQ6Xx2+5Su4eeqHZT6tYb3z4ebOOvZUUsGbO+1UOrFvH3gufHiNzHlXxAAAAABCumOWr1hUsz1wsffr0sU1A8dxl6dmpnSShVk2zjvKjQwGkr8yVgoFdbAtQOWz56lnJmzZOGp99t9SoXd9Uq2p4mtSqmcx69ylJaNjA7Ofay8MHF50lh6z5RDq8s1ZiExIkZ9o0E1TGJSdLQkqK5OfkyIqxY82+rUeMMPtoeLllzhxp8pe/mH10/7Uvvyw1GzWSpLQ0s++SkSPNY1vdcIM5ll66r/s06NZtzz7zBgww+3SZNMkcN7OwfdOXX0qzyy6T5oMGmdeix1E9Zs82yznHH2/GV62blGS2F0e3tRk1Su55/FE555C2UqtGZL+N7ty9W96dv0DOX7TEtgAAUDloH9s0NdXeAwBg/6FiFQAQNdvnTpbc99Mk4fihJlRVf6xea5bdOh2yJ1RVSa0OtGvRF/fa+7Luiz9NOKo2/O9/Jsxc+cQT5r4Gn8tGjzY3RwNSDVtdsKlBp953j1EapGoA6yaZ0uNrmwanSo+r9/UYbp8dy5aZ+xraKg1b9XHutSl9nO7vHlMc3UdvtXfvlhjbBgBAdeTfhwIAsD/FLF+9rmD5UipWUTYqVisWFauobHau+Fmyxp4ojU4cIXUOTratYsZU1Qmr1Iv3j5TLUk80wwKce9298uXMX+QvJ/SRd5+802yPlqUPPy+bZ34oHf4zc09lqYafWlmqVaMaULqKVVdpqvtosOmqWnVd2zQI1ce4ffSxul0rSHUfPbnTfVwlrIaoel+Po0sXmLo25U4I3X0Xmmpo6x/2Kn2cVsi6ytpbj+krfRvFSXztyIYD2LRjh0zPzZOHv5luWwAA8Da9CkT7Sb2Cw/XfAADsTwSrCBrBasUiWEVlsjtvg6x7PEXijjhN6h2aYluL6MRVGqIG0grWd5+6y4y9Gm1rxg+UVk9tsfcqBw1WdVxV5QJVDXU1xHXGX3Wl1F68SNo3irct4Vm8KVf+bN9ern3+BdsCAIC3EawCALyGoQAAABHb+NLFUq/d0cWGquqLiQ/JDZf+xd7z0TBV28sjVK3MNFDV6lQdf1VPGv1DVXXk2WfL6vyd9l749BhHnr33fxMAAAAAQPAIVgEAEcl59UqpUbuexB05wLYU7/FbrpL8eR/K4k9fkqzv3zKhqo67iiI6nIAGqu3GjNknUHV6n3mWxMQnyJJt22xL6Bbn5Zlj6LEAAAAAAOEhWAUAhG3T+2myc91CaXTcFbalbEmtmu01iRWKaJhaUqDq76KHHpIf/lgum//807YETx8zc+UqcwwAAAAAQPgIVgEAYdny7QTZPutNSUi51ragoiR1PVzOGn6dfPLHHyGFq7rvp4WPOWvYcHMMAAAAAED4akiBXQMAIEg7Fnwhm965SRr1Hyo16jWyrahIZwwdJicNulw+WJopS7Zuta0lW7xli9n3xMsGyxnDhttWAAAAAEC4akiMXQMAIAj5axdK9sTLJOGkEVLrgHa2FfvD2TfeJLe+9basrR8nX2/YIL9lZ8umHTtk5+7d5qbr2qbb1jVoaPY9+6Z/2EcDAAAAACLBUAAAgKDt3r5ZNr50kcT1/KvUadPDtmJ/0kv6b5uULifdfKvsPvwImZ6bJ1//MldmZPxs1nd3Odxs0324/B8AAAAAoodgFQAQtOyXLpbaLbtKvcNOtC3wCp3h/+qnnpGHv5ku57RpK6c2bmLWr35mHLP/AwAAAEA5IFgFAARl0+vDCv+3QBr2+quvAZ6UM22aueVlZEhWerptBQAAAABEG8EqAKBMmz9+SHYuny0JKVfbFnjVstGj7dre6wAAAACA6CJYBQCUauvM12XLNy9IfMo1hfeY8dDLXLWqQ9UqAAAAAJQfglUAQIn+XPy1ZL96lTTqP1RqxjW1rfCq4ipUqVoFAAAAgPJBsAoAKFZ+1u+yYcKlknDK36V28062FV4VWK3qULUKAAAAAOWDYBUAsI+C/D8le8IlEtftLKnbtrdthZeVVplK1SoAAAAARB/BKgBgH9kTLpZaTQ+R+l1PtS3wMq1K3Z6ZKXWTkszNcffzc3KKrWYFAAAAAISPYBUAsJdNb98osj1PGva+wLbA6+KSk6X30qV7bo5/W0JKim0FAAAAAERDzPLV6wqWL10sffr0sU2oTuLj4+1a2Ta/+J1Zxl13ksRszTPrKD/bhj8s+d2Pk4ZDyn5v5ubm2jUgMnmfj5GtP7wmjc+8U2Jia9vWymnN+IHS6qkt9l718mVMjFn2KygwSwAAqoLMtDQzvE2bUaMkqXAdAID9jWC1mtNgddasWfZe6Q6ds9MsZ3aNlfiavpN2lJ9hmbvk8027ZWG3WraleD179iRYRVRsm/1fyXlrhDQ+e5TENmphWysvglWCVQBA1UKwCgDwGoYCAADIn5k/SPbLl0tC/+FVIlQFAAAAAKC8EawCQDW3K2elbHzpUonvP0xqt+pqWwEAAAAAQGkIVgGgmsuecInU69xf6rXva1sAAAAAAEBZCFYBoBrLnnCx1Iw7QOK6nWlbAAAAAABAMAhWAaCa2jTpNtm1aY3E973MtgAAAAAAgGDFLF+1rmB55mLp06ePbUJ1Eh8fL7NmzbL3SnfonJ1mObNrrMTX9M04jfIzLHOXfL5ptyzsVsu2FK9nz56Sm5tr7wHB2fLlOMn76llpfObdUqNOfdtatawZP1BaPbXF3qtevozxfUb3KygwS5Rt5Jw1ZjnqsAMkoVZNs47yM+Db5ZK+MlcKBnaxLQBQtsy0NFk2erS0GTVKkgrXAfjoeT0qP87rKyeC1WqOYNW7CFZRXrb/8qFkvzJEGv9ltMQ2Psi2Vj0EqwSroYh5e55ZZqd2IlitAASrAMJBsAoUT8/r51+2y95DZdT55Zqc11dSDAUAANXIzhVzZOOEyyThpBuqdKgKAAAAAEB5I1gFgGpid16WbHzpYok/bojUbt3NtgIAAAAAgHAQrMKzVv4ZnUtYc3cVmJvXROvvA4KloWrddn2kXsd+tgUAAAAAAISLYBVRp+OCRsPLWdE5zso/RRZss3ci9N+N0Rm3Zv62gsJ/J4JVVBwdU7VG7foS1z3VtgAAAAAAgEgQrCKqtDJ0UnZ0AkMNaKNRaTp/224TZEbDK1nROY6+Ji9W0aJqyn0/TfLXL5ZGx11hWwAAAAAAQKQIVhFVWh0arcBw864Yc7xILdhe+Lp2Rv6a9O/SgDYaf5/+bfq6gPK2ZfpLsnXWm5KQco1tAQAAAAAA0UCwiqjSSsxoXHbvAswf8iIPMTWcjUZA644RjWP9sCU6fxtQmh3zP5dN794sCccPkxr1GtlWVEVbN22Sb955W54ZNlTuPOVk+bZtkrnpurZ98847Zh8AAAAAQPQQrCKqNHTUQDTSiZnc46NRHaphbzRCTD2Oitax9G+Lxt8HFGfn6vmy4aVLJOGkG6TWgYfYVlRF37/3P7nz1JNl4u23yezPPpU1S3+XJbE1zU3XtW3i7beafXRfAAAAAEB0EKwiqtzl7ZFWdbrHR3q5vAa00Qp79/xtEQ4r4HstvvVI/52A4uzevlmyX7pY4o++UOq06WFbUdVoBepLt9wsL9x0o+Ru2GBbS6b76L76GKpXAQAAACByBKuIKlfVGelkUXqpvFlGWB3qH1xGGmJGKwz1fzzDAaA8ZL94kdQ+6Aip1/kE24KqRoPRu888Xb6d9F/bItKyQwf52213yIgXXpSnf8owN13/2223m22OPkYfS7gKAAAAr9u2s0C+zMy39wDvIVhF1PhXYrpgNFwuoI30cnn/gDfSsDdaQwH4Pz6Svw0oTvZr10pMjEjDngNtC6qiNx64X3LWrrX3RE4cNFju+fAjOWnwYOl6XD+pGxdnbrp+0uDLfdsK93H0sXoMAAAAwMt+WLlL0n/9UzZu5dwZ3kSwiqjxn7QqkvDRP6BVkUyGtWB70euIJOx1Qwoo3+sL/1j+rynSoQ5QdW3PzLRrwcv96AHZtfJnaZRyjW1BZZOfk1Pmf3sdJ9W/UvUv198g599+h71Xsr8V7qP7OnoMxlwFAACAV2m16leZO836J4t9S8BrCFYRNf4VoZFUYgZeah9JpekKvwDUVZyGI/A1Bd4PRe4uu1KIoQBQkhlt28qSkSODDli3/vC6bJ0+QeJTrrYtkcvZvMWuRc+L73wig257XM68ZpTc/eQrsnlLBL+cVEEarJb2314v33/rwQfsPTFVqGcNv87eK5vuq9Wtjh6LIQEAAAAqv8Ubdslj31Styh0dAsBVqv6womi9KliZu1te/zmCYAGeQbCKqPGvxFThBqKBAWiklabO5l0xdi10gX9LJGGv/9+nATTDAaAkK8aODSpg/XPR15L92tXSqP9QqRnX1LaG78uZv0iPc6+Tpkf/VWK7nCHnXn+fZK4suuw8XJfc/KhcPepJ+fd7U+Tjr2fJA8+9KcmpQ2XB0hV2Dzgl/bf/6bPP9kxUZcZUDaJSNZBWt7oxV/VYP332qVkHAABA5XR4w+3yzIwdJqz7eFHVqOz0VavuPbZq+vyqE0Tq36Zh8e2fbZNf1vpVX6HSIVhF1PhXYqpwqzHd5fGtavuW4QaPGn66ytL4mjHmOOFewh8YGocb9voPKeD+vkiGOkD1UFrAmr9+iWx46RJJOHmk1G5+qG0N3/+++E5OGHSrzFnwu23xtfU8N/iqyOJoperrH04z6yf3PVLGp10nyZ3bybJV6+Smh/9l2rGvwP/2c6ZOsVtEjj0v/HF0jz3vr3ZNCo851a4BAACgMsovKCoi0sCuKlR2arWqhqv+NICsCn+bVhdrqKr0b9wYQeEW9j+CVUSNq8Q8sZHv/1bhBqIueLysaU2zDDd4dCFq53oxe0LMzzeF95rckALnNPb9beEOK+D+Nn1Nneu5Y/Ehuj/NGzBAvoyJ8dytOIEhW0H+Dql1YHtp+dAyiTvzHlNdGulNq1PVmSlHSdb3b8niT1+Sbp0OMcMC3PPMa2ZbOL6a9YtZaqg6+fl75cqBp8r4UcNNm1avFvdaIrlpGLz46a3m3zJnmi/Q1X83vb9wsO9SeP03dP/eegm+mnP88eZ+ZlqauZ+Vnm7u67+7o+vaptuU7qv39bFKj6X39eaCcH1Ova+vQelrcvs4P3bvvtfz+HP/7eM//FDidvq+hLVo184sw9Gi3SF2TWT14sV2DQAAAJXRoi32hLeQBnWVfTzS4qpVnapQtfrJoqK/rXH9GDmqlS/7QOVEsIqo8K/E7FTXtwx3YiYXWjas6Qscw6009Q8xj4rzhRfhh72+x13a1PeWCXdYAReitqods+ffKZKhDhA5F45VJnkZGSa8y37pYtsSfX897ThJaNhAklo1k7uHXmja5ixcapbh2JCz2SzPObmvWaojD2tv1xCM2IQEqVn4373Wbt/lAe2P7GGW4fB/bM66yId5AAAAwP6jFaundKhl71X+yk7/atV6tfb923TIg8pKq1UXbyy63PeU9rXM34jKK2b5qnUFyzMXS58+fWwTqpP4+HiZNWuWvVe6Q+f4fvWa2TXWXFrv7/NNu2VY5i4TYg5vVsOs6z66byg0wOw/3/frzZTOsXLJknwTkL7aLnZPOBosfQ36uvT1qKfX7jbVtM8khfZrkIahqb/5XtPCbrWk19x8E9Dq69OANBS3Ld8l/924Wy47oIYc1SBmz79Zesd9/53c69fnLE3Pnj0lNzfX3kOoXMVgvwJvffHwr2R0ElJSpN2YMRKXnGzub3juPKlRq47EH32RuR8prUrVcVWVVqpqqKq0UvWecf+Rv5zQR9598k7TFiqdqMqMqdq5nTxz11Dp2bWjnHHN3fL5t7OlxQGNZfm0V+2e0bNm/EBp9VT0J+AqT1rhGli1qoGq/rdvM2qU3Dr4Mtm+xfc3jfv5F6ldt55ZD9X2vDwZfqTv/0d1GzSQp2fPMevVWczb88wyO7WTJNSiaqC8Dfh2uaSvzJWCgV1sCwCUTa8SWTZ6tOkTk+zVJQB85/U/XZgvj03fvidQPap1rFxwRFEla2Whgeq907bvCVY1VD218HbvtG17/rb2jWvKsKPrmPXK5pnvd+wJVlvF15CbjvFVXHV+uSbn9ZUUFauIipKqQ0OtEPU/joaWbliBcC6Xd5Wveiy9qXDGffUfUkC5YQVm5IX+K5n7OzRUdf9O7m8GSqKhWo/Zs6Xb1Kl7QlXVeMhrsnPd77J17ke2JTJaoarhqdIhAZ545X8mVH3y1f+ZtuN6Hm6W4fjHkIHSpuWBkjF/ifS98Eapl3y2CVXVfSMuM0vsTQPVpqmp5r97l0mTzH/7hAN9YbdaNHOmXQvd4p9+tGuF/939jgkAAIDKSasee7UqKtiprLPoB1ar9kvy/U2pnYtCYg0mK2PVqlbb7lWt6leJi8qLYBVR4S5nb1jTN1FUuBMz+V8qrxra/4eGc7l8eYS9KpJA1P9YrupXX084Qx2g6ispUHViYutI4yH/lryM92X7km9ta2RevH+kqVTVyatufPh5U6mqlayXpZ4oN1z6F7tX6Bo2qCcfPn+vnHpsT3N/9+4CU6mqz6fHRpHiAlWnRfui4RNWLV5i10K3eknRY/2PCQAAgMpLQ0gds9OpbGOtahDsP7bqcYV/j7tM/vBmNU2Fp/P6z5WvQumrpUV/m1bd6t+Eyo9gFVHhqkO1ElO5YDTUSlM3+74LZsOtNHXP6wt5fSGmCzJDDURdqNvS/pjkwt5Qx5DV16QhqntNyv19of47oeorLVD1F3tAO2ky+FXJ+ewJ+XPNQtsaPq1a1WEAdFzVfr0ONxWsj99ylQlAI9WpbWv54NnRsmnWu7Lkswnm8n9C1b1pqFpcoOp0sxNkqa/fecuuhe7rd962a3rM/nYNAAAAlZkZj7R9URVkZata/SpzZ7HVqo5/hadWrGoFaGWxb7XqvsMBonIiWEVUBFZ1uuVK+6EYrFz7OeMCWv9K01C4oLeT3/CDbj30kLZoSAH/ZajHcVWpLjRW7u8jWEWgsgJVf7U7HCuJF46TTVOekV15WbY1MncPu0i+mPiQGVM1kkrV4jSoV9cMC4B9abBa2n/7I086WeKbNDHrqxYtkjceuN+sh+LNwsfoY5Ue68iTTjLrVZWOORbMzTnooIOK3c4turcPPvjA/HsXt62kGwAAKJuOrepftVpZZtHXAPiHlUXBo3+1qhNYtVpZ/jblX62qf0f7JlSrVhVMXlXN6YlKpJNXaSiokztpm5usyk1mFepkUf3n7zQhrf/EUG6yKJ3gyYWaZXlqzS4zWZVOEnV7S9/zP7Bql7y83jeZ1XXNg3tN+rz6/Mq9Jv+24ibyKok+t76GcxrXkAcP8j2/e53F/TsxeVXF8OrkVeHY/NH9sv3nD6TxWXfZluqtMk5eFYzv3/ufvHDTjfaeyF+uv0HOGn6dvVe6959+Sv735BP2nsgVjz0uR58d3eDca4Lt50qboBHRF2wf59DXAVBMXgUUT7/vzL+sKJTUSlX/S+XvSqm3V9jqRfp69XUrfa039a27T7CqtFL1sW+KLh+9vEcdz19Sr9WqL/24w94r/B7Uu84+wSqTV1VeVKwiYq6i078SM5yqTg1oXeWrC1WVO24ox3KX6XfyTbBnuCrYUC7hd6/H//J9XXcn3aEMK+CGFOhUt+hvC7f6FShOw9PukNjW3WTTtPG2BVWRBqH/N+Ace09MUKpVqGXR6lb/UFWPUdVDVQAAgOqoslWtarWq/2X9OglXcaGq0opV/yC1MlStfrKoaKxbqlWrHoJVRGzzLt8Hnn81qU5ipbS6M9iJmQJn33fCGQ7Ahb3+VUcuGA0t7N13SAEVzrACxQXQkUyqBRQn8aJnRYtvN89807agKjr/9jskoVnRbP6fTZwgd59xmnw24SWZ+9WXsj0vz9x0/bMJvm2fF+7j6GP1GAAAAKia/Mda1dDSy7Po6yRbbmxVDYQDx1YN5D/WqhlCwFa6epG+Nv9/ex3iAFULwSoi5ioxezUwC8NX4elbD7aq0+0XGKy2sr9UBVtp6gtzfev+x3KvJ5QQs6TX5O4He5ySXlO41a9AaRKH/Ed2rPhFts771LagqqnfqJHc88HkvSpXddzUNx98QMZeMUSGH5lsbrr+5oNFY6oqfYw+Vo8BAACAqmmfqtVfi6omvWTxhl17BaPHJdUqsVrV2bdq1Zt/m4bFX2UW/W1Uq1ZNBKuIWHHVoap3nO//XsFOzBQ4+74T6lAAC7b5lvo4/yEF/MNet09ZihtSQIU6rIALTX2vYe9/p3An1QJKUqNuQ2l8+Wuy+Yc3ZUfmTNuKqkaD0csffsSMk+omtHIuWbTE3PzpPrqvPoZQFQAAoOpL7WxPgAvpjPRerFr1Dx41CD6qVXDBo//fpgGmF6tWdTIuqlWrPoJVRKSkSkzlAlIXmJbFBbSBxwn1cnkX5AYGmKpzvdDC3pJC41CHFShpSAEVavUrEIxaLTpLk8tfkezPn5Sd6363raiKdJzU+z7+VAY98JB0P+lkad72ELtFzLq2DXrgQbMPY6oCAABUH1oh6T+Lvv+EVl6g1ar+Y6vq8AVlVas6JoRtXRRUeq1q1Vetytiq1QHBahWWl5Fh18qPC1UDq0OVCwxdqFiWkgJaDTVdsBlMpemC7b6AMvA4ak/1axBhb2mhsTtOsGGvq2wt7jWFM6kWEIw6nU+ShHMelk1Tn5Hd2zbZVlRFWoF6zHnnybBnxsl9nxQNAaHr2nbMeQOpUgUAAKiG/Mcj1epJ/yBzf/tkUVGVqQbA/kFpMPzHkfVa1eqXmflm/FelYbH/fwdULQSrVdjCwYNlzvHHS1Z6um2JPlexWVx1qKs0dZNblcZVkBZ3qbxylZ7BVJrm2n7CBZb+XFswE2qVNKSA8r1O33owYa8LaAOHFFAuNGYoAJSHBsdcIfV6DpScqeNtCwAAAIDqIrBq1Suz6GvAq8MTOOFcJu/VqtXixlb1/2+AqoX/slVczrRpMm/AgHILWEurDnWVpr7Kz9JDw9IulVfu+CsLP6DKUtKQAsqFvS7oLI0Lcd3wAYFc2BpM2FvSkALK/c3BVr8CoYo/6x6pdWB7yf3qX7YFAAAAQHVxwRG2KqiQVlF6oWr1q6VFwWP7xjVDrlZ1UjvvXbWqlaL7m74GfS3KVKv6Vdai6iFYrSbKK2B11aHFVWIqV9X5+abSA8OSLrl3iipNzaJEGuC6fRoWM3yJCzaDCXtdaOz+hkDutZY1rID/ayopgA6l+hUIR8KlL8muHVtl84/v2hYAAAAA1cG+s+gHUWlUjgKrVU/pEF6oqjS49A9lP1m0f6tWA6tVdTIuraxF1UWw6lEagn4ZEyOZaWnmvoahen96YqK5r2a0bWvaXFC6YuxYc1/D05JEO2B1lZitaxf/fyX/iadKU9Ls+86eELOMy+WLqkyLxmUN5I5VVqVpaUMKqGCHFfAPVYsb5kCFUv0a6P3Nm81/93Bu+v+h7ZmZ9kio6hoPeU22/z5Dti2YYlsA7C9V/QoFrsAAAMBb/Mf41KrV/TkeaWC1aqSTOgVWrX68H8PVwGrV45KoVq3qCFYRNv9KzJIu4W9o/x9W1sRMpV0qr1z1aVmVpqVVhjou7C0rxCxtSAEV7LAC7nlKClWVe45gJtWKJg1VCVarjxpxTaXJkNckd/rL8ufy8p/cDqiKyvoxLViTNkbnONrHhPOjXHE+3+Tr9yKl/0ZcgQEAgLfsW7W6f8LHaFarOoFVq1ox6iaOqkiB1ao6bizVqlUfwarHaBXpkpEjpdUNN0i/ggJJshWrTVNTzf2+2dnmvuq9dKlp022q9YgR5n63qVPN/eIkpKRIl0mTzD7uceHyDzHLqg4trdLUF5b61ksKMf0vly8tyHTBZHHDADjBhL3+oXFJx3J/c1lhb1lDCihX/RpOhc9ZDRua/+6h3vT/C6h+arXuJo0HTZCcz5+U/I3LbSuAYM3Ii0746PqGSGn/E63JD7/IjdZrKvvHSwAAEJx1OdvNLRpSOxedlGoIuD+qVv0v1degN9JqVSewavWHlRX/twVWq/YLY0IuVD4Eqx6Tl5FhLunXS/ajKZqBqhNMJab/UAAlhYalzb7vz00iVdrJmqsyLenyfRVM2Oueo7TQWLljlfaayhpSQLl/Jyp8UBHqHn6mxJ9xp2ya+ozs3rHVtgIoi37Wf5Fr70RIA9poVL9qiBnOj3LFiVZorP9OFX0FBgAAVdWW7Tvlqie/lRc/XRRxwLq/Z9HXatWVuUXfN7SiM1rMJFF+wx1UdNWqPldgtaq+JlR9BKseE5ecbILPuklJtiUy5RGoOsFUYmoo6YLJkipNXShZWqiq3PirpZ2suecoqfJVBRP2BnMcFcxwAGUNKeBPX080TrSBsjRIGS51upwmudPG2xYAZYlWdageR/uN0vqOYGmfWNZwO8HQvtj3miL/+/T7gev7AABAdLz//fKoBKz+M9RXZNWqPld5Vas6/hWi5vkWV1xw/FXmTqpVqymCVY/R8FOD0OaDBtmW8B06YUK5BKqOq2wprRJTufFXSzoZdQFtWcFjUXVo8SdrLqD1DRtQ8rGCCXuDGVJAuWEFSgp73YmqKus1ub8vGifaQDAanfOw1GjUXHK/mWhbAJRGP59L+1EuWO5z3vVbkdA+MVphr4pG1ar+XZt3ldznAQCA8EUasO6vqtUfVpZftaoTWLWqoXFFVK2aycAK/z6HatXqhWDVY/JzcsxkQrqMlFa/lid30hRsIFrSiWgwl8orVx1a0smaC1xLq6B1ygp73bHKek3ubyvpOO5Etax/I+X+vmicaAPBSrz8Ndm1eb3kzf6fbQFQEvcjWqTDtrjP+dKuwAhWtMPeaPy4515TNKpfAQDYXx586xdJvWfKfr+NfH6mfUV78w9YQxU4HqmODVqe9Dm0otMpj2pVRytF/SeMqoiqVX0OqlWrL4JVj9HxVWe0bWuWXqYnhXrSVFZ1qHLhZEmXKroQs6zw0VWalnSyFmzQq8oKe92JZVnH8h9WoDjBHkeVVf0KlJfEIf+WbQunybbfvrYtAIrj+qtIfwBzV2pEWmnq/zoiDUT3hMYRDivgvh+4dQAAKqsZC9bbNe9qUDc2rKpVDf/8q1b9L9EvD1rN6V856l9VGm2matVvuIPyrlrVY+vYsU4k1apfxsR49qYTraN4BKsIiws2g6kOdcFrcSeQehx3MljWZffKPd/nm/Y9ljsp7NXALErlxmst7gTSnQgGExq7sFcVdwLpXlPLIPoNF75G45JOIBQ1E1pJ48tfldyp4+TPlXNtK4BArr9aaSsSwuWu1IiUC3pV5CGt71iRHsf/h0+CVQBAVZB+d//9ehtzVS/7SopooNq70wFy36Xd5ba/Hm5bQxNYtfpxOYWrgdWqGui2ii/fKEorYiuqatW/WlWfs6pWq274H1c4loRg1WOS0tKkb3a2tB4xwrZ4UyiVmC4M1QqWwMpOd9Klx3EBZWlKqxB1J4XBHKd1bd//9Ys7gXTHCSY0VqUNK+COFcy/U1nVr0B5qp10lCRe9qLkTHla8jettq0AHP+QMNLqUNc36Od9JOGj/+uItO9wx9LjRHIs/9cUjUm1AABAkcBAtW3zhnZL6AKrVstrFn0dZsAdV5+zPMZWDVRRVauLN+zaa/Kv45JqhV2tqvoVFHjupnP3oHQEqx4Um5Bgbl7mKjE71S37Q8NX+elbDxyXLpSAVrnL5QNP1vQkMJRjuTC0uBNIN6SACzrL4p6vuBPRUF5TWdWvQHmrd+R50rD/DbJp6jgpyPdLRwDsCUNVJFWd+vnuHz5Gciz/vjCSEDOwz/F/faHyH84m0upXAADgE81A1V9g1eoPK6M71qqvWrXomEe1qlnu1aqOhsb+Vavp86N/fuP/t5lJwQr/PlQ/BKseo+NWzBswQNZM9PYs3aFWdbpL6gNP3twJWDDDACgXUAaerLmTQH09ZV2+r0oLe4tCY7MoUyv7i1TgSa37W33PVfZrUu41cTKK/SXupBulTvvjZNO0Z20LAOU/cWJxP8oFK3CM8HCPo6IX9hYdR0XrWJH8bQAAwOfAhHpRD1QdU9npN95ptKtWtVrVXSbvq1YNYoy8KPKvWtVxUFfm7v2dJxJareo/tqo+VyTVqqi8CFY9Ji8jw4Sr2zMzbYv3bC787AilElPtCUT9KlmUOwEra/Z9x/9yef8TNncSGGyAqUoKe91rctWjZSkp7HXHcdWxwWA4AHhBo7+OEakbJ7nf/du2wOu0z9Af5NzN8W/zcr9SGQT2X4E/ygUrsBo03EpT7Sf8jxXYL4Yi8DWFe5zA16QC+1gAABAarVaNdqDqz39MUA1BozUeaWC1qg4B4F9BWhECq1ajOUnXJ4uK/jatwtVxXVE9Eax6TEJKirQZNcosvcqdNAVbHapccBpYqeOOFWxA63+5vP/Jm5thOdjjqOLCXv+TwmCPVdKwAqEeR5VU/QpUtMaX/0d2ZmXK1p8n2xZ4mQ4fs2z0aFk4eLC5Oe7+kpEjPT/EjNcF/ugWbmDo+pxIr1Bwwa6vL/athxv2uj7H/bgXbh/k+j39N3LHiqT6FQAAlL/AqtVojUcaWK26vyZ1Su1svygVilbVqh5n8caialUNjalWrb4IVj1GA1WdwMrLwao7mQylOtSdYPmHoeFcKq+KmyzKzbAc7OX7yoW9xYWhoYTGvtfvW/c/qXUnpqG8pkhPtIFoiYmtLY2H/Fvyfv5Ati/51rbCqzQ0bXbZZfbevlrdcAPBagT8f3Q7sZGvbwisYA2WC2iHN/N9BQv8US5Y/n2x66/CDXvda9rzg2OYfZD/lRruWOH8bQAAoGJp6LlXZWeEVasazAZWq+6v4FErSf3/ttd/9gslwvTV0qK/rX3jmntNAobqh2DVYyrDUADhVIe6Ch/fyanv8e4EzIWJwSruZM0dy832H4w9lTl+Yag7mQwl6FXFndS61+T+9mD4DwXAySj2t9imh0iTy1+VnM+ekD/XLLCt8KrWI0ZI3aQke6+IBqq6DeHz/9HthHjf53TgFRjBcsfqHVdjT//g/6NjsPz74j2BaBhhr69f9q0PSIws7HXH0dfDFRgAAFQepmo1irPo6yRYXqhWdfyrVrVi1X9s1FAFVque0oFQtbojWPWYyjB51Qp7MhlKJaZyJ34ufHQTgbj2YLlKU3eypie3/ie9ofKdVPpeUzihsXL7u8f7n6iGcqySql+B/aV2+2Ml8aJnZdOUZ2RXXpZthReVVLVKtWrkin4ILLrEPZwwNPBKjeKuwAiW/5UaxV2BESz//lP7q0j6IP8rNdxxuAIDAIDKIbCyM9yqVS9Vqzr6t+k4qE4kY60GVqu2b8LYqtUdwarH6Mmv10+A3clWKJWYyp2MuhNLV1nTq4FZBM1Vh7qTtb0qZEKoNNXX70JPd4xwhhRQ7qTWhc7u30hPLEN5TcrtH84JMlAe6ve+SBr0vUI2TR1feI//X3pZYNUq1arR4QJD7TNc3+f/o1ywAq/UcH1QOJ/3/ldquOOEE4YGXqnhluEMK+B/pQZXYAAAULlEq2r1q8ydnqpWdVI7F/1t4VatUq2K4hCseoyeAPfNzjbjrHqVO0FyJ3LBamj/3+ZOUMO5VF65E1J3suZO/kINMFVg2Ot/ohqKwJPaSF5TqP+uQEVoeNptUvugZMkx4Sq8KrBqlWrV6HA/vrkf3dzndKjhY+CVGoFXYAQr8EqNhrZQQvvEUMPewCs19vRntj1Yvuf2resxtG93/Xs4gS8AAKh4gbPop8+3nXuQNIj9YWVR8OilSZ20stS/ajXUv035V6tqFSzVqlAEqwiLnjSFGhq6kzWtjgk8AQuFnqi5cFVP1tzJn2sLhQt7tXrW/0TVXZ4ZrMCT2nCHFFDuRBvwmkYXaqhaQzb/8IavAZ7kqlapVo2ewB8CA3+UC5a7UqNTXd/j3fFCvVzev//Uvti/X3TbghV4pUbgFRjBKu5KDdeXhvrvBAAA9h//qlWt0AxlFn0dPsBVq2pA65VqVeeCI4pCAxMCrygKSssSWK2qoTGgCFY9ZsXYsTKjbVuz9LJIqkP9Q1X/E7BQuMfoydqMPN8HfTiBpH/Y63+i6k52gxV4UhvukAIqnDAWqCiJQ16TP1fNk23zPrUt8BpXtUq1anT4/+jmPp8Dr8AIlgtoXX/hgkftF/UWrOKuijixke9FhRpiBl6p4f7GUKtMi3tN7lgr7QkWAADwvsCq1WDHI9UA1j+oPC6plmeqVR2tWNVKUyfYcWQ1LPb/d6BaFf4IVj0mPydHtmdmmqWXuZPCUGj46ALLV7LcyWV4H7TuZE2rf8KdBEv5h73FnRSGwv+k1p2o6qzPoXLVr4AX1ajbUBoP+Y/k/fiO7Fj6g22FF8z44H157rrhcssxfWXs22+am64/N+xasw3hKe6HwD19UAiVpv4/KrrH+/8oF0qQWdyVGv5XYAQrcEgBFe6wAsVdqeF+8HTPAQAAKgf/WfSDrVr1n7BKg9mjWnnzxNb/bwu2ajXw34BqVfgjWPWYpqmp0mXSJGk+aJBt8aZwL1d31Tn/3ej7UAonDFXu+T/ftNuc/PlOTkM/ln/YOynbhb1mETJ3UqvHcSeR4YSk/ifagBfFNjtUEi+bKDmfPyU71y+xrdhfMuf+Ig8OSJXPHnlIavwyR/rGx8mZ7duZm67XmDfXbNN9dF+Exv3o1rle0Vcm/x/lglVcQKvceiiVpu4yff++2PWn7oe9YPgHve51+PdBoQSixV2p4Y4Z6lAHAABg/9KKTP+q1dd/Lv1LweINu/YKKHU4Aa9Vqzr6d/lXrabPL71q1VSr+lW2Uq2KQASrHhOXnGzCVf9Znb0o3EA08HHhXCqv3EmtE0kQ6R7rTmrDDY2LTmp9x9H7LrQNVTiVrkBFqtP5RGl07sOyaco42b1tk21FRXtv7Bh56K8Dpfn2rXJskybSMTFRGtWpI7Vq1DA3Xdc23dZs2xaz7/tj/mkfjWAUVx3q/6NcsIFo0TAAe/cLru8ItdJU+feprl90V3EEw732fV+Trw8KJewNHFJAuX8zDaBDCaEBAMD+51/ZWdYs+p8s2rta1T+49CL/v02D09KqVnUyLq1sdU7pUDQGLaBIbzwmZ9o0M75qXkaGbfGmwJOwYLUK+NUq1Nn3ncDAMjCwDUVgSBvusfYNe8N/TS35rEYl0OCYK6Rej4GSM3WcbUFFmvzsePnspRfkzLZJckjdsn+lalevntn308LHfDjuGduKsrhKzMAf3VxoGGw1phuPNbCPcccNNnjUsLOo+rXoWC7s1eMEewl/SZM/uh89gw17/YcU8J/8UV+PO3aoY7YCAID9S8NR/1n0SxprVatV/Sd18nK1qmOGKmhddDl/SVWrGrp+lVm0TR/j/28CKP4f4TEarC4ZOVKy0tNti/dEEmIGPjbwZC4U/sdyMyyHwz/s9Z0Ehncsd1LrROtvA7ws/ux7pNaBHSX3q3/ZFlQEvaT/vSefkFMOOkga1g7+w0b3PeXgg+X9p59iWIAguUrMfQLREIcD2BM8BmTg7rjBBo/FVas6rt/5fFNwr6m4IQWUO3awwwr4Dyng3w+qcKpfAQCAN6R2Lqr4Kalq1b9atX3jmnsFll7m/7eVVLX6ZWb+nmpVDYsZWxXFIVj1GB0CICElxdNDARR3Mhcs/0oWPU4kVZ3+FaKRhJj+j43kOMr/8eEOKaACq18BL0u49EXZtWOr5M1617aU7MV3PpFBtz0uZ14zSu5+8hXZvIUyNn86eWEw/nPbbdK7zcEhhaqOPuaog1rLa7fealsqr/K+usO/EjNwzGz3o5yrRC2LCykDg8dQJ4vyDzEDhR72+vYLPJY7TrDDCpQ0pIAKtfoVAAB4h44l6l+hmT7ffhGxNGj1r1Y9rm3lCR41KC2tatVXrVoUtupkXFSrojj8v8JjdNKqblOnenryqkguU/dVhPrWIwlVlZssSkUS9vqHmJEcR0XrWIHVr4DXNR7yH9m+9AfZOn+KbdnXJTc/KlePelL+/d4U+fjrWfLAc29KcupQWbB0hd0DerXC9MREWTNxom3Zl87wv3tTdlCX/5ekXf36UpCbY45VmekVHnOOP77crvJwgaF+ngd+Jru+LJihAPwD2sC+wb9fdPuUxgWUxfXFrl8MJuwtaUgB5fqgYMPekoYUUO7vDeY4AADAey44oqiDD5xF/6ule1eren1s1UCBVasf+w13oNWq2qZ81aoRBCGo0ghWPSY/J8fcvCzS8NGdwBV3AhYK9zp8J6XhvyZ3AqkiGVJAuZPaSF+T0n8f97oAr6sR10QaD3lN8r57VXYs+8m2FtFK1dc/nGbWT+57pIxPu06SO7eTZavWyU0PM4yAP+0DFg4eXGLA+tP770nz2Mi/2Okxfnq/cgerSofQmTdgQLkErMFWh5ZVIVoUYBb1gf5ObOTrPIK5XL6koQmUaws27FUl9emujw7mNZU0pIBy/07BhMYAAMB7tErTPzB1M+QHVque0qHyXSYfWLXqKlQDq1V1CAAdlxUoDsGqx+jEVXoynZmWZlu8Y3izGuYEqaSTsGC5x0dyqbxyJ2v+wwuEyx0jWmFvpMdRr7SrKTO7MoYLKo9arY+QxMtelE1Tnpb8DX/YVp+vZvnG89RQdfLz98qVA0+V8aOGmzatXi0oKDu8qW5KClgz5/0qB9atY++FT4+ROW+evVf5lUfA6qpDA4cBUP4/ypUVGhZVvhb/tcv9KBfM5fLRDntL6tPdsYIJVt34sMUdy/0bBVv9CgAAvMd/Fn1XtepfrarBqw4bUBkVV7UaWK16VCvOy1EyglUE7brmNeXVdrHFVtuEwgWqJZ3MBcud1EZ6HOWOEemx3IloNF6TOxkFKpO6h58pDc+4SzZNGye7/9xqW0U25Gw2y3NO7muW6sjD2ts1kVpdz5TYLmdE7fZN4W3x01tN2Kb0kvEvY2JMUKl0LFO9rzd3lYAGcnrf/bCl4Zzen9G2rbmvdF3bXHCn++p9fazSY+l9vbnxUvU59b6+BqWvye3j/Ni9u7m/9uWXbUuRwIB186YcqV8r8opVPcbp07/d81oq48399/UXzYDVVYeW9EOg+1GurArR0i6VV67PKOs4LuTU/qG4vtj1i6qssLe00FgFO6yAviYX4pb0/cD9fcGEtKVJvWdKhdyuevJbWZcT5OC5AABUA1qt6V+1+vrPf+49tmolntRJg9N+fq9fK1WpVkUoCFY9pvWIEdJj9mxPj7EaKQ0fSzopDJWe1AbOsBwOPWku6RLNULiT2kiHFAAqs7iUYVK36xmSM+UZ26IhajuzfPaNyTJjzgLZtWu3nHHN3aYNwdOQtfbu3cInTHCCnQysJG7yppJ+LHPtK21FQ0ly7XlHSQGt+1GuLC7oLe2qiGDD3rJC42DD3rKGFFDu76sswwFoqLp0je/HIAAA4ONfteqvMlerOqd02Ltq1b9a1T90BYoTs3zVuoLlmYulT58+tgnVSXx8vMyaNcveqxha2XLpkl2S3jHyD6gHVu0yJ4VufLpw6Ynhrct3mYrcSF2yJF8ua1oj4tcUrJ49e0pubq69Fzyt5tLKLp0sLSElxbZWP1r1pvpxKXrUZb90sUj+Dok/ZrCZ/V8nqtIxVVWNGjGye7fv3/zF+0fKZaknmvVoWjN+oLR6aou9VznocDCustWJTUiQNqNGmR/cdP3WY/pK30ZxEl87suEANu3YIdNz8+Thb6bblsrHfY7508+zJn/5y55/r2D7uUPn+MYL0yFY9Acyra5M/S3frJc0LMvnm3bLsMxd5vP+maSSTyj6z99pQsUpnUu+6qPX3HzTP5a2z1NrdsnTa3fLZQfUkNtbFv982i++vH63Gb5HrzQpift7S3o+fS36mpT7NymOPpc+5zmNa8iDBxX/fO51+/876b+b/vst7BZc9XW4fV2oHnzrF5mxYL3c9tfDpXenA2wrAK/QK0WWjR5t+sUkDw6dhqpFr2JQ6Xf3N0sv0+878y8rqiAtL6///Odek1epYb3rVPpgVekQAJ/4TV6lNHA91S90LU+dX65ZId91QqVXzOnVc/rd+tAJE2wr/FGx6jF62aL+nzZa48N5kZ6cnRBf/AlaqFrVis5QAHopZDSOo/Q40ToWUJklXv5v2ZW3QbZk/E8aNqgnHz5/r5x6bE+zTUPVFgc0LrdQtSrQULDdmDHSe+lSczWD3ldtDjtM1m3bYdYjsX77Dkk6rLO9V/lpoKr/Xl0mTdrr3ytcwVSHukCytKpO/eHOVWqWdNm9cs/z+aaSj+Uuyy/tSg23rbRL+MsaUkDpNhemllZp6oYUaFnKOYfrE8uqfgUAAN7mPx6pqgrVqo5Wpvpf8k+1KoJFsOoxeRkZ5hcBXVZlWtkSDQMaR2dIAT15PDE+Sq8psUZUXhNQFWi4unX+NNm28Evp1La1fPDsaNk0611Z8tkEWT7tVULVYpQUqDpHnn22rM7f+9f0cOgxjjz7L/Ze5RXtQNUpaxgA5cJQre5044wGciGmHscFlcVxl8uXdBzlwt7SjtO6tq8vKy3EDCY0VsEMK+COVdq/UzB/GwAA8L7AWfQr89iqgfRv6+U3SZX+bdoGlIVg1WP0BFFPDOOSk21L1RSt4LG0k8tQBTvGXVmoVgWK1ExoKY2H/Ftyv3pO/lzxi2lrUK+utGl5oFnH3vQSm5ICVaf3mWdJTHyCLNlmp2IPw+K8PHMMPVZlppeCRjtQdVwlZmljZmsf5MJJNzN+IFftWVbfUNZkURpKBnMsF4aWFva60Lisfs89T2mBaDCvSf+dXH8d6QRWAABg/3JVq1WpWtVxVat6o1oVwSJY9RhXedM0NdW2AEDlVjuplyRe8oJkf/G05Oessq0ojoaDwQSEFz30kPzwx3LZ/Gcp12iXQB8zc+Uqc4zKTvvMaAeqTrBVne6HwpICw7Jm33dcMFlSdagLMPX1lPbjZDBhb1FobBYl0uF2VElhbzBDCjjuNTEcAAAAlZu7RN5/wqeqQv+2U9rXMpWrVKsiWASrHqMzGOswADrzMwBUFfWOPE8anjRCNk0dLwX5oYeB2FtS18PlrOHXySd//BFSuKr7flr4mLOGDTfHQPGCrQ5VewJRG1YGcgFtSbPvO/6XyxdXIeoCyWCu+Cgr7A1mSAFVVhgabPisGA4AAICqI/Ww2tIqSkPpeY0OdVBRE1ahaiBY9RgdX/XH7t3NzNAAUJU0PPFGqdOxnwlXEbkzhg6TEwcNlg+WZppL+8uyKHez2feESwfJGcOG21YUx4WqwVRiusBUJ6kqTjBjtSp9Lhd0uuf3t2C77/hlHUe5fdxj/IUSGpcV9rrjBDOUTlnVrwAAAEBlRLAKAKgwjQb+U2LqNZLc7/5tWxCJv9z4D7n1rbdlbYOG8tW6dfJbdrZs2rFDdu7ebW66rm1frVsv6xrGm33/8o+b7aNREleJ6cYrLY0LFYsLQ7ViVAPJYAJaVdpkUbm7fMuyLt9XLuxdUUzY615nWUMKKN/r9q0XN6yAC0mDeU0MBQAAAICqiGDVY5LS0qRfQYFZAkBVlDjkNcnPWiZbfv7QtiASekn/7en/k5Nvu0N2deos3+bmyX+X/G5uur6r02GF2243+3D5f3BcYBhMdairMvVVgu4dGoZyqbxyz1dcdag7lpv1vzR7KlaLCUNDGVJAlTasQLBDCqiyql8BAACAyohgFQBQoWJq1pLGV7wmW3/5SLb99o1tRaR0hv9rnn1eHvpmuoyb+6u56fo1zz5X6Wf/r2iuqjOYSkzlgszAqtVghwFwXKVp4OXyGtj6V5qWxU2UVVzYG8qQAmrP37Zz7+P4ju1bD+ZYGr66ADbw3wkAAACorAhWPUbHVtUxVnWsVQCoqmo2SZLGg1+RTV88IX+unm9bAW8IpRJTuWrMwKrOotn3gzuOe77Ay+X9A8xgKk31OC6ADQwxQxlSQBWNIWsWe7j7+jzBVr+WNtQBAAAAUBnFrFi1ruCPzMXSp08f24T9KTMtTZaNHi1tRo2qkOEA4uPj7Roqs9zcXLsWvDnHHy8506ZJt6lTJSElxbZWP1/G+AIBHYIDFW/rjNck9727pfHZd0vNhgfY1uhYM36gtHpqi72H6kr7uVmzZtl7JTt0zk6znNI5VvrPz9+zHkxo+NSaXfL02t1yYqMa8kySLRct1H/+ThNAaptuK4tWgfaa63vumV1j9wStL6/fLQ+s2rXP8Utz2/Jd8t+Nu+X2ljXlsgOKntu9plfbxQY16ZRWvOq/h74WfU2Oe016DD1WMHR/fZy+Hn0Nn2/aLQu7BTfrbs+ePcPq60L14Fu/yIwF6+W2vx4uvTtF9zMJQOQq+lwJ1VvqPVPMMv3u/mbpZfp9Z/5l9tdTVEqdX65ZId91QqVFfwsHD5bmgwbJoRMm2Fb4o2LVY5qmpkq7MWMqLOjSNy63yn8DKqv6vS+S+scMkU1Tx4sQbsMDXNVpKJWY7lJ4/0rMUC+VV/6Vpv7jo7rL94MZBsBpafNKVzWrQh1SQJU0rECoQwqokqpfAQAAgMqKYNVj4pKTpfWIEdW6ghBA9RJ/2u1Sq00PydFwFdjPioLVEAJDv4mZHBce+sLS4I/l9vUfVsDN7u+CyWC4wNMNa6D8g95gX1NJwwqEOqSAcs/JUAAAAACoKghWPSYvI8OUWusSAKqLhAueKeyRakrujNdtC7B/uImjQqnE1PBRb8oFoi7QdOOKBss9b2ClqQqpOtSGvW4CLRVOaKw61/N9XfQPe93f17p28F8lXUCrAbR/CA0AAABUVoXfhvli6yVZ6elm/ApdAkB1kjjkNdm5eoFsm/eJbQEqngv8QqkOVS40dNWY4QS0yj2vex0aZhZdvh/8sVzYq8dxwWw4QwooV5Xqwt5whhRQ/tWv/kMdAAAAAJUVFaseUzcpyQwHEJuQYFsAoHqoUSdOGg95TfJmvSvbl86wrUDFcoFfyIFowHAALngM5VJ55Z7XvY5wqlUdF2LOyPNVl4YzpIByz+2qVMMZUsBx+1OxCgAAgKqAYNVjdKa1HrNnm3FWq7oNGzbIc889J7169ZKYmBhza9++vQwdOlQmT55s9tFt5cU9p7sB2P9im3WUxEEvy6YvnpKd6xbbVqDiuMDPTdoUrIb2G5WrVHUhpBsiIFiBk0X5h5ihcmGvO0a4IW3gsALhDimgwvk7AAAAAK+KWbFqbcEfmUukT58+tgkof2+88YYJULOzs6Vnz54yevRoOf300802DVVHjRols2bNMvcLymmm8Dlz5khycrK9V37P41Vzjj9ecqZNk25Tp1brydK+tKF6P2ak95Qt01+SvE8elcZn3yU16odXwb9m/EBp9dQWew/VVXx8/J7+pDSHztlp13zhX3rHWHsvOJ9v2i3DMneZIPWLzjWl19x80z6lc2zIAWT/+TtNGPpqu1h5OWu3OfZlB9SQ21uGlvY+tWaXPL12t5zYqIYMb1ZDUn/zvaaF3WqZZSjcv4/+PXrM/24M7zW5fycn2Nei3xVyc3PtvfLz4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposKzxvaFN4rpBUuA6Up9R7pphl+t39zdLL9PsOKr+K+K4TKp0DSIer1CLAQydMsK3wR8Wqx+iXhemJibJi7FjbUvVoqHrBBReYUPWUU06RmTNn7glVla5//PHH5iSqPHXr1s2uAfCaBn0vl/pHnS85U8bZFqDihFOJ6T8UgBtnVS/FD+dYveN8X8+0MtRVvoZ6+b5y1aH6eiIZUkC5x+lrCndIAeX+nQAAQPRoIMet8t9QORGselB+To65VUW///67CVWdceOKD02aNGkib775pr0HoDpqeOYoqdWik2z68nnbAlSMUCd3Um6yKPVFrgsxw/ua1dIWcepkUdEYCkDDXnf5frjBqjuWbzKt8I8V6tAIAAAAgJcRrHqMllfrpdm6rIoee+wxuyamWvWQQw6x9/al2wKrVvXy/fPPP3/PuKinnnqqfPPNN3ZrER2/VYcaaNy4sdlPx27VStlg6ePvuOOOPY/X59Q2R5/XvQa96WvQ16bPo4/RABlA5BIueUF279whebPesS1A+QunElN1qudb6mXyKpyAVrnAUi+bVxpGhlP56h/2Tsr2HSvUsWMdN4asHseFveG8JhVuuAsAAAB4DcGqx9RNSjLjXeqyKho/frxdE+nfv+yxanSYAEfDyuOPP95UsmZkZEhWVpYsXrxYjj322H1CUw0+9bkefPBBM3aqBrRaKathazD08Q888IB5/JIlS8xzapsTOFTBvHnzpGHDhmZdhzh45x1CICBamlzxH9meOUu2zveNcwWUt3CDv8DHhRvQBl4uH25Aq1zY68LQcF+T+9siqaB1GA4AAAAAVQXBqsdkpafLkpEjzaRCVU1xlaWhuP322/dMdqXjo+pwAVdddZXZpoGpqyh97rnn9kxUct5555nl8OHDzVLD1rJexyOPPLLn8VdffbWpnNXqWm3zD3D1+Z1NmzaZ/Z588klJTEzc87wAIhdTP1EaD3lN8r57RXYs+8m2AuUj3OpQFRhahhs++leaqkhCzMDHhnuswDA0ktfkql8BAACAyo6vth6Tl5FhJq6qisFqJDQ0dWOu+geajgauM2bMMOsvvPCCWari9v3oo4/sWvHefvttu7av9PR0u7a3rl27mqVOvLVx48ZShzgAELparQ6XhEsnSM4XT0r+xmW2FYi+SKpDAwPZcC+7V/6vo1Pd8EPMVrWKHhtJaBwY9kbyt0USygIAgP3Lf0i8wJsWMRXX7m5axFReNDPQIiugohGsekxccrI0TU2tkkMBtGzZ0q6Fbv78+XatZHPnzjVLV21akh9//NGuFc//8a4D+OSTT8z9nBImFYuPj7drAMpLvSPOkEZnjZacKc9IwY4tthWIrkhCP/8wVI/jH0SGyr9CNJKw1//vieQ4yg0roMIdUkAxFAAAAJWXDrX34Ycf2ns+r7/+umk/5phjzFKH0/N37bXXmvabb77ZtkTfsGHDzJWkQEUjWPUYDVW7TJpUJSev0irOdu3a2XsiU6Z4f7xE/fD3v+nYqgD2nwb9rpV6h58l2VOesS1AdEVSHeqrCPWth1sZ6vhfLh9J2OsfhkZaKer/+EiOFVj9CgAAKpfAwqLWrVvbNZ/AKziTyrlwTCtV3RWuQEUjWPWY/Jwc2Z6ZaZZV0X333WfXxFSB+s+0Xxy3vXPnzmZZGnc5vv+kUsXp0aOHXSuef/jL7P6A98QPeFBiGx8kuV+/ZFuA6Im0qtMFqpEexwWXepxIQlr/sDeS0Fi5YQV8x4zwWIWvKdKgFwAAQOdBueaaa+w9oOIRrHqMjq86o21bs6yKzj//fDMRlHPXXXfZtX3pB+SLL75o1nWsVPc4/zDWlfrrhFG9e/c26wMHDjRL5fbNzc01S3XaaafZteKdfPLJdk32mt2fMVsA70gc/Krs2rpR8n4qftxjIFTDm9Uwl6hHq6ozkkvllbtcPtIAU0Ur7HWPj/Q4Kr1jrLkBAIDqScdj7dWrlxl6r3379ntNFO1o26mnnrpniD7df/LkyXarb+LpCy64wN4TueWWW8x++hhHi6U0h9D2xo0byx133GG3+Lhju5vS59V99fmAshCsosK99tprZowVpbP064fcnDlzzH2lH7Da9tVXX8mQIUNsq8jDDz9sAlQdA1X316DTlfuPGzduz0RV+hhXteqC0VdeecUs9Xl13Bfl/5zKhbA33XSTeR710EMPmdej9Fj+s/37B7z+wS2AitF4yH9k++JvZOtCJvtD5K5rXlNebRcbcZDpAtVIA1p3uXw0qjrdMSI9lgt7o/GaAABA9aXh6LHHHmsmoc7KyjLFTRqQ+oemGoBq26BBg8ywfH/7299MFnDGGWfsubJUx2zVnMDRdf8h/HQ/zQY0N8jIyDC5wQMPPLBXuKrP70/P//WKWX1t+nwuDwBKQrDqMUlpadK38A3cesQI21L1aACqH2hff/21CTr1wyo5OXnPL0hPP/20DB8+fK+wVHXr1k2mTp1qPlB1/6ZNm5oAVAfO1iDW0cfoB6ke+7bbbjPH1efQD1k9pqPH8HfRRReZpY4H455HP0z1A1+Pr6Gqez36C5ge09EP9/Kc4RDAvmrEN5fEwa/I5i//JX+u+MW2AvuXho/RuFRe6fioneraOxHQsFerTCN9TS7s7dXANgAAABTSc2b/qk+9lUQLlC6++GKzftVVV5lz7AsvvNDcv/76681SaQCq0tN9V6gdeeSRZqn8rywtzdChQ805vV79qnmCyw302C6c9c8cHN339ttvN6GsK8wCSkKw6kGxCQnmVtXpB5QGnYsXL94zOdTGjRtN2X1JH176Aafb3f4zZ86U008/3W4toh+Oemw9nu6nzxE4A6E7hrv5T0wV+Dy67v+Bq/v6P1Zv5TnDIYDi1W7TUxIve1Fypjwl+TmrbCuwf0XjUnmllaEaZEZKjxONoFdp2BuN1wQAAKoOLZoKPD8uyYwZM0zYWZwlS5bsubLUXeXqPwdKKDTA1XldSvLZZ5/Ztb25+V3uv/9+kzcAZSFY9Zis9HSZN2CArJk40bYAAEpTr/s50vDEGyV36jgpyN9hW4H9Q0PHAYnR+Xql1arRuOy+Yc3oXb6vx4nWsQAAQPUzd+5cu1Y0JqpWvDqbN282Sy2U0oBWh/rTylMdpi8U8+fPt2u+ibMDK2ndfC2BiqtgBUpDsOoxeRkZJlzdnplpWwAAZYk7caTU7pgim6aMty3A/jOgcXSCxxMb1YhKpamGvSfGR+crn4bG0ap+BQAA1ZsbE9X/5n/1qg635ypWb731VrMMhw4FEPg8XHGKaCFY9ZiElBRpM2qUWQIAgtdo4D8lpkGibP7u37YF2D+idal8NC+5dxNPRYpqVQAAEImDDz7YrolkllJQplWqWtGq86rce++9tnVfXbt2tWt7a9mypV0TMzQgUF4IVj1GA1WdwIpgFQBClzjkNdmZvUK2ZLxnWwAAAAB4xVFHHWXXxMxlomOhOnpfJ5XScVbHj/ddiab76+X5JYWw8fHxdm1vOim1q3bVsVv9Z/fX40+ePNneAyJDsOoxDAUAAOGLqRErjS9/Vbb+Wvxg9AAAAAAik5uba9d8VqxYYdd83Iz7jn8oqoGnzrivdBKru+66y4SrGnZqSKrb/Wm1qW5LSkqyLXuPj9qwYUO7JvLTTz+ZfZ977jlz/8knnzRLNXLkSPO69Lm+//77PZNg+we7KvA+UBaCVY9h8ioAiEzNxm2k8eBX7D0AAAAA0aITQJ1xxhn2ns8FF1xg2rUqVJeBM/lr9am265ipSmfc1/FVdT/d1rt3bzPZlAs7u3XrJtdee61Zb9++vVnqJFY6Vqr69NNPTYCqdN/XX3/dDBnw5ptvyltvvSVXX3212abH+/DDD6Vnz54ya9Yss/znP/+5Z7tq2rSpXfPR+/7VrUBZCFY9JjYhwdwAAOGr3a6vtHpqi70HAAAAIBoCJ4Hyv+nEU8W1u5v/hFG6rtWo2q7L888/327xGTdunNn28ccfm/BUhwPQdW2bOXOmaXP0sRs3bjTbNLT1p+Gq7q/bdJ/A7doeePOfQAsoC8Gqx7QeMUL6ZmebcVYBAAAAAAAAeBPBKgAAAAAAAACEKGbFqrUFf2QukT59+tgm7E8rxo6VlU88Ia1uuMFUrwLlZc7xx0vOtGnSbepUSUhJsa3Vz5cxMWbZr6DALAFULSXNFIvKJ3CijPLw4Fu/yIwF6+W2vx4uvTsdYFsBeEVmWposGz1a2owaxRV+KHep90wxy/S7+5slUB3p/D8LBw+W5oMGyaETJthW+KshQpjgJfk5ObI9M9MsAQBAZDSM41Y1bgAAAIDXMBSAxzRNTZUukyaZXwMAAAAAAAAAeBPBqsfEJSebcLVuUpJtAQAAAAAAAOA1BKseo2Ne6jireRkZtgUAAAAAAACA19RgiFVv0WB1yciRkpWeblsAAAAAAAAAeE0N33zY8AodAkBnaGcoAAAAAAAAAMC7GArAY3TSqm5TpzJ5FQAAldSGDRvkueeek169eklMTIy5tW/fXoYOHSqTJ082++i28nLqqafueV69ffPNN3YLAAAAgGgiWPWY/JwccwMAAJXPG2+8IR06dJBrrrnG3P/www+loKBAFi9eLGeeeaaMGjXKhJ2zZs0y28vDa6+9Ju3atbP3AAAAAJQXglWP0YmrpicmSmZamm0BAACVgYaqF1xwgWRnZ8spp5wiM2fOlNNPP91uFbP+8ccfS8+ePW1L+WjSpImpkAUAAABQvghWAQAAIvT777+bUNUZN26cXdubhp5vvvmmvQcAAACgMiNY9ZjWI0ZIj9mzGWMVAIBK5LHHHrNrYqpVDznkEHtvX7otsGp1zpw5cv755+8ZF1XHSS1ubFQdv1XHam3cuLHZTytTtVI2WPr4O+64Y8/j9Tm1zSlufFZ9bfo8+hgNkAEAAAD4EKx6TGxCgsQlJ0vdpCTbAgAAvG78+PF2TaR///52rWQ6TICjYeXxxx9vKlkzMjIkKyvLjMl67LHH7hOaavCpz/Xggw+asVs1oNVKWQ1bg6GPf+CBB8zjlyxZYp5T25zAoQrmzZsnDRs2NOs6xME777xj1gEAAAAQrHpOVnq6LBw82CwBAID3RTrr/u23325CSw00u3XrZoYLuOqqq8w2DUxdRelzzz23Z9Kr8847zyyHDx9ulhq2lvU6HnnkkT2Pv/rqq03lrFbXapt/gKvP72zatMns9+STT0piYuKe5wUAAABAsOo5eRkZsmbiRLMEAABVm4ambsxV/0DT0cB1xowZZv2FF14wS1Xcvh999JFdK97bb79t1/aVXsIPul27djVLnXhr48aNpQ5xAAAAAFQ3BKsek5CSYsZZ1eEAAACA97Vs2dKuhW7+/Pl2rWRz5841S1dtWpIff/zRrhXP//FuDNVPPvnE3M/JyTHLQPHx8XYNAAAAQCCCVY/RYLXdmDHSNDXVtgAAAC/TKs527drZeyJTpkyxa96l47P633RsVQAAAAChIVj1mO2ZmWYYgPwSKkcAAID33HfffXZNTBWo/0z7xXHbO3fubJalcZfj+08qVZwePXrYteL5h7/M7g8AAABEjmDVY3R81R+7d5cVY8faFgAA4HXnn3++mQjKueuuu+zavnSiqBdffNGs61ip7nH+YaxOGqV0wqjevXub9YEDB5qlcvvm5uaapTrttNPsWvFOPvlkuyZ7ze6vx9KJsQAAAACEhmAVAAAgCl577TW59tprzbrO0q9h65w5c8x9pbP2a9tXX30lQ4YMsa0iDz/8sAlQdQxU3V+DTjeh1bhx4/ZMVKWPcVWrLhh95ZVXzFKf95hjjjHr+vjFixebdeXC15tuusk8j3rooYfM61F6LP/Z/v0DXv/gFgAAAMDeCFY9JiktTfoVFJglAACoPDQA1SD066+/NkGnBqXJyclmkqjGjRvL008/LcOHD98rLFXdunWTqVOnyt/+9jezf9OmTU0A+uGHH5og1tHH6FioeuzbbrvNHFefQ4NZPaZz0UUXyZIlS+w9kTPOOMMsdSxY9zzZ2dly7LHHmuNrqOpez6mnnrrXJFf62EceecTeAwAAAOCPYBUAACCKtHJUg06tGnWTQ23cuNEMAeCqSgNpuKrb3f4zZ86U008/3W4t4sJbPZ7up89x8803260+Gr6647ibE/g8uu4f8hb32MDjAwAAAPAhWPUYHVtVx1jVsVYBAAAAAAAAeBPBqsfk5+RIXkaGbM/MtC0AAAAAAAAAvIZg1WOapqZKuzFjJCElxbYAAAAAAAAA8BqCVY+JS06W1iNGEKwCAAAAAAAAHkaw6jE6DICOr6pLAAAAAAAAAN5EsOoxWenpsnDwYLMEAAAAAAAA4E0Eqx5TNynJDAcQm5BgWwAAAAAAAAB4DcGqxzQfNEh6zJ5txlkFAAAAAAAA4E0EqwAAAAAAAAAQIoJVj8lMS5PpiYmyYuxY2wIAAAAAAADAawhWPSg/J8fcAAAAAAAAAHhTDZECuwov0DFWu02dapYAAAAAAAAAvImKVY+pm5QkCSkpZgkAAAAAAADAmwhWPSYrPV2WjBwpOdOm2RYAAAAAAAAAXkOw6jF5GRlm4iqCVQAAAAAAAMC7CFY9Ji45WZqmpjIUAAAAAAAAAOBhBKseo6Fql0mTmLwKAAAAAAAA8DCCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPUbHV53Rtq1ZAgAAAAAAAPAmglUAAAAAAAAACBHBqsckpaVJ3+xsaT1ihG0BAAAAAAAA4DUEqx4Um5BgbgAAAAAAAAC8qUaMXYE3ZKWny7wBA2TNxIm2BQAAAAAAAIDXULHqMXkZGSZc3Z6ZaVsAAAAAAAAAeA3BqsckpKRIm1GjzBIAAAAAAACANxGseowGqjqBFcEqAAAAAAAA4F0Eqx7DUAAAAAAAAACA9xGsegyTVwEAAAAAAADeR7DqMbEJCeYGAAAAAAAAwLsIVj2m9YgR0jc724yzCgAAAAAAAMCbCFYBAAAAAAAAIEQEqx6zYuxYmdG2rVkCAAAAAAAA8CaCVY/Jz8mR7ZmZZgkAAAAAAADAmwhWPaZpaqp0mTRJmg8aZFsAAAAAAAAAeA3BqsfEJSebcLVuUpJtAQAAAAAAAOA1BKsekzNtmhlfNS8jw7YAAAAAAAAA8BqCVY/RYHXJyJGSlZ5uWwAAAAAAAAB4DcGqx+gQAAkpKQwFAAAAAAAAAHgYwarH6KRV3aZOZfIqAAAAAAAAwMNqiBTYVXhBfk6OuQEAAAAAAADwLipWPUYnrpqemCiZaWm2BQAAAAAAAIDXEKwCAAAAAAAAQIgIVj2m9YgR0mP2bMZYBQAAAAAAADyMYNVjYhMSJC45WeomJdkWAAAAAAAAAF5TQyTGrsILstLTZeHgwWYJAAAAAAAAwJtqiBTYVXhBXkaGrJk40SwBAAAAAAAAeBNDAXhMQkqKGWdVhwMAAAAAAAAA4E0Eqx6jwWq7MWOkaWqqbQEAAAAAAADgNQSrHrM9M9MMA5Cfk2NbAAAAAAAAAHgNwarH6PiqP3bvLivGjrUtAAAAAAAAALyGYBUAAAAAAAAAQkSw6jFJaWnSr6DALAEAAAAAAAB4E8EqAAAAAAAAAISIYNVjdGxVHWNVx1oFAAAAAAAA4E0Eqx6Tn5MjeRkZsj0z07YAAAAAAAAA8BqCVY9pmpoq7caMkYSUFNsCAAAAAAAAwGsIVj0mLjlZWo8YQbAKAAAAAAAAeBjBqsfoMAA6vqouAQAAAAAAAHgTwarHZKWny8LBg80SAAAAAAAAgDcRrHpM3aQkMxxAbEKCbQEAAAAAAADgNQSrHtN80CDpMXu2GWcVAAAAAAAAgDcRrAIAAAAAAABAiAhWPSYzLU2mJybKirFjbQsAAAAAAAAAryFY9aD8nBxzAwAAAAAAAOBNBKseo2Osdps61SwBAAAAAAAAeBPBqsfUTUqShJQUswQAAAAAAADgTQSrHpOVni5LRo6UnGnTbAsAAAAAAAAAryFY9Zi8jAwzcRXBKgAAAAAAAOBdBKseE5ecLE1TUxkKAAAAAAAAAPAwglWP0VC1y6RJTF4FAAAAAAAAeBjBqsfk5+TI9sxMswQAAAAAAADgTQSrHqPjq85o29YsUfnExMTIdUOHytKlS20LAADVm/aNw6+5hr4R8DDepwCAqkD7saHDrzP9WkWpIQV2DUBULJ78oRzasaNcOXiwLFiwwLYCAFB90TcC3sf7FABQWWm/NfiKK6XjoYfK+79W7I+EVKx6TFJamvTNzpbWI0bYFlQ2ZzVvJvd3O1yyZnwvPbp3lwvOGSBz5syxWwEAqH7ObtnC9I3rv50uPbVvHEDfCHgN71MAQGWj/dSA8y+U5B495dtV2dL55kflgBMH2K0Vg2DVg2ITEswNlVeD2Fg5Kb6h3Ne1i+ycP19Sjukr55xxuvzwww92DwAAqhftG09OTJB7C/vGP3+dV9g3HiMDTjuNvhHwEN6nAIDKQPul0wecK337pci8Lbuk0z8ekQbHnCax9ePsHhWHYNVjstLTZd6AAbJm4kTbgsqsTs0a0r9RvNxzWGep/fvvcuYpJ8sZJ54gX3/9td0DAIDqRfvGExITCvvGTlLr9yVy5smFfeMJ9I2Al/A+BQB4kfZDJ5x+ppx8xlmyeHdd6XDjwxLX52SpUbuO3aPiEax6TF5GhglXt2dm2hZUBTVjYuS4RvGSdmhHabRypZw/IFVOOu5Y+fzzz+0eAABUL9o3piQmSFqnjhK/4g85PzVVTjymL30j4CG8TwEAXqD9zrEnniypfztfltdtLIeMfEDieveXmJo17R77D8GqxySkpEibUaPMElXTMY3i5Y727aT5unVyxYUXynFHHSWTJ0+2WwEAqH6OTUyUOzpo37hWhlx4gekbP/zwQ7sVgBfwPgUAVDTNSnof108uvPwKWZ3QStoMv0fievazW72BYNVjNFDVCawIVqu+PgmN5OZDkqRd7ia5fsjlcnRyskyaNMluBQCg+vm/xo3llkPaStvsDYV94xDp3a2bTPrvf+1WAF7A+xQAUN40G0k+6mgZct0I2dCio7S+5i6JP/IYu9VbCFY9hqEAqp9eCY3k720Olq7btsrt110n3Q87TN54/XW7FQCA6qd3kyZyY9LB0mXrFtM3JnfuLK+/9prdCsALeJ8CAKLt9dffkC7dj5Tht94hm9slS4sht0h8t6PtVm+qIVJgV+EFTF5VfR2ZmCDXtW4pvfJ3ygO33CJdOnSQiS+9ZLcCAFD99GzSWK47qJUctStfHrj1VunSvr289K9/2a0AvID3KQAgUi9NmCjtD+sqN9/3oGw7rI80u+xGaXR4L7vV26hY9ZjYhARzQ/WV3DhRrmnZXPrVjJEn77lH2h98sIx/+mm7FQCA6kf7xmtbtZB+sTXkqfvulQ6FfeMzTz5ptwLwAt6nAIBQPT1+vLRp31FGj31KpNcJcsBF10tClyPt1sqhRoxdgTe0HjFC+mZnm3FWUb11TUiQK5ofKKc3qC8T/vm4HNyihYx59FG7FQCA6kf7xitbNJfTCvvGl8eMMX3jPx952G4F4AW8TwEAZXlszFhpcdDB8vgLL0vtfmdJk78NlfhDj7BbK5caIkSrgJd1ahQvgw48QM5rnCDvPPecNG/aRB689x7ZuXOn3SM4+Tk5e92c4toAAPAy0zc28+8bm8oDo0eH3DeqpWs277k5v/u1rcvZblsBhCJa79OcadP23HYsW2badOnadI4KAED06Jw/7uZyAl36t4dDP//vffAhadq8hYx/4x1peNqFknjuldKw3WF2j8opZvWKVQVL/8iUPn362CbsTyvGjpWVTzwhrW64wVSvonKJiYmRZ3qX7zggmXlbZMaff8ova9fJdcOGyT9uv13i4uLs1tLNaNu21A/BdmPGVLv/331Z+N9M9StgvGkAKA8V1Td+v327zFufJcOGXis333Fn0H3jyOdn7hWqBvrbcUlyQcoh9h5QNXn5fbpk5EhzjlSSNqNGcbUfykXqPVPMMv3u/mYJVBeZhZ+py0aPtvf21TQ1VbpMmmTvlS0vL08efPQxefqpp+SATkdIbHJfqd+6rd1aPmbfcYUUVNA5PpNXeYz7FYDqQZQkKa6B/E3HsGpzkHzz7rvS4sAD5ZbCL5wbNmywe5RMv3iWpG5SkjQfNMjeAwCg8tC+8fymTeQa2zc2P+AAuXnEiKD6xuvP7mTX9nVgQl05++iD7T0AkQj3fVra91edm4JiFACILv1c1XygJFoIGAz9fL/x1tvkwOYt5K2p06XlRddJ/JkXl3uoWtGYvMpjXPJPwIWytKpfX85NbCR/79BeMj6aLC1btJCRw4bJ6tWr7R770v9flfQBqR+OTJwGAKjMtG88r3Gi3Nixg8ye7Osbb7jmGlm1apXdY19tmzc0t+Icf0RzaVA31t4DEA2hvk9LC0/5/goA0aefq80uu8ze25tmVgkpKfZe8TSTGDpipLRo2VLenzFbkq68RRqeer7Ua3GQ3aNqIVj1mLjkZPN/1NJ+HQD8NatXV/6S0Eju6NJZFk75Qlq1aiVDhwyRzBIu+S/uV3+qVQEAVYn2jQMaJ5i+8bepU0zfeE1hP1dS31hc1SrVqkD5CuV9Wtz3V6pVAaD8lFS1Wlq1qn5+D7lmqLRs2VK+mLdYOlw3WuJOGih1D2hh96iaajAQgLfoAOw6hhCDsCNUTevUkTMbxct9yUfI8m+nS8cOHeTyiy6ShQsX2j18iqta5dd+AEBVpH3jWYkJcn/3brLi++9M3zjo/PP36RuLq1qlWhWoGMG8T4sLUfn+CgDlp7iq1ZKqVfXz+qLBQ6RDx44yPXO1dL3lUWlwfKrUaXyA3aNqq+GbtgVeocGqDtCelZ5uW4DQJNSuLadpwNrtcMme/ZMc2a2bXHTuufLzzz/bPfb+1Z9qVQBAVad94+kJjUzfmJMxW45M7iYXnnPOXn2jf9Uq1apAxSvrfer//ZVqVQAof4FVq4HVqvr5fO4FF0m3I4+UWWs3SeebH5X6x50pteIT7R7VA0MBeIz+n1Z/ASiu5BoIRVxsrJwU31DuPbyL7Jj/qxz3f/8n5515psycOXOvqlV+7QcAVBfaN56c0Eju7VrYN/46T/oV9o3nnnGG6Rv9q1apVgX2n5Lep7MXLdoTpvL9FQDKn3/Vqn+1qn5vOvOc8+T/jusn87bskk43PSINjjlNYuvHme3VDcGqx2jg1W3qVCoIETV1a9aU/vEN5Z4unSX29yVyxkknyVmFtz8vvJBqVQBAtaR94wkJjWS09o1LFsvpJ54oZxbejj1oG9WqgEcU9z69efZskbg4qlUBoIK4qlX9Qeubb76Rk848S046/QxZvLuOdLjxIal/9ElSo05du3f1RLDqMfk5OeYGRFtsTIwcF99Q0jp1lPgVK+T8Z5+VV+vXly9//NHuAQBA9aJ9Yz8NbjofWtg3LpfhF6XKiulvyPfTv7R7ANjf/N+nddaslutr1pTTzz5bvvjiC7sHAKC8aNXqluuuk7Pve0D+MvBvsrxOYzlk5INS/6j+ElOTq3sUwarH6MRV0xMTJTMtzbYA0de3UUO5o0M7yS3YLUMuuED69e4tkydPtlsBAKh+jkloJHd2bC9NMj6Wy88/X4476ij6RsBj9H16daeO0mztGt6nAFDO9PP16ONS5PyxT8raxq2lzXX3SP0ex9mtcAhWgWrs6PiGcvMhSXJI7ia54YohcnT37jJp0iS7FQCA6qdPYoLc0q6ttM3JluuHXC5HJyfTNwIew/sUAMqPfp527320DBl+g2xs2UFaX3OXNEjua7ciEMGqx+j4FT1mz2bcS1SoXo3iZeTBB0mXbVvl9uuGS4+uXeXNN9+0WwEAqH56N06Uv7c5WA7bskVuGz5Muh92mLz++ut2KwAv4H0KANGjGUCX5CNl+C23S94hydLiilsl7oij7VaUhGDVY3T8irjk5D0ztgMVqUdCI7mudSvpsfNPue8fN0nXjh1l4sSJdisAANVPzyaJcv1BraVX/k65/+abpUuHDjLhxRftVgBewPsUAML38ssvS/vDusg/7nlAdnTtI80G3SQND+9lt6IsBKsek5WeLgsHDzZLYH9JTkyQa1u2kOMKPyGeSEuTDm3ayHPjx9utAABUP8mNE2VoqxbSr2aMPHnPPdL+4INl/NNP260AvID3KQAEb/yzz0mb9h1k1D+fkoKeJ0rTi66X+MOOtFsRLIJVj8nLyJA1EyeaJbC/dU1IkCubHyin1a8nLz76qLRp2VKe+Oc/7VYAAKof0ze2aCanN6gvE/75uBzcooWMfewxuxWAF/A+BYCS/fOJJ6XlwW3kkedfktrHnS2N/3atNOp0hN2KUBGsekxCSooZZ1WHAwC8olOjeBl0YFM5N7GRvDlunLQ4oKk8fP/9kp+fb/cAAKB68fWNB8h5jRPkrfHjC/vGA+TBe++lbwQ8hPcpAPjo5979Dz0sB7RoKc/85y2JO/V8STzvKmnY/jC7B8JFsOoxGqy2GzNGmqam2hbAO9o3bCgXN20slzRrJh9OnCjNmjaVtDvvlC1bttg9AACoXkzfeECTwr7xQPnolZelWZMmMur22+kbAQ/hfQqgutLPuTvTRkvTZs1l4vsfSePUwdLoL4MlLqmj3QORIlj1mO2ZmWYYgPycHNsCeE9SXAM5v0miXH1wa/nq7bek+QEHyG033SQbN260ewAAUL34+sbGcnWbg+Trd942feOtf/87fSPgIbxPAVQX+rl24623yQHNmstbU76RFhcOl4ZnXCINDjrE7oFoIVj1GB1f9cfu3WXF2LG2BfCu1vXry3mJCTKyQzv58YMPpEXz5jJy2DBZvXq13QMAgOrF9I2NE03f+NPkD03fOGLoUPpGwEN4nwKoqvRzbPjIv0vzFi3kgx8yJOnKW8xl//VaHGT3QLQRrAKIWPN69SQ1IV7u6NJZFk6ZIq1atZJrhwyRzMxMuwcAANWLr29sZPrG31zfePnl9I2Ah/A+BVBV6OfWkGuHms+xz+cukg7XjZYGJ54ndQ9oYfdAeSFY9ZiktDTpV1BglkBl07ROHTmzUUO5L/kIWfHdt9K+fXsZcvHFsnDhQrsHAADVi+kbE+Jt3/iddCjsGy+/8EL6RsBDeJ8CqKx+++03uWjwEGnfoaNMX7pKutz8iNQ/PlXqND7A7oHyRrAKIOoSateW0+IbygOFX043zv5JjuzWTS4eOFB++eUXuwcAANWL6RsbNZT7C/vG7IzZpm+86Nxz6RsBD+F9CqCy0M+l8y66WI5I7i4/rdskh93yqNQ/7iypFZ9o90BFIVj1GB1bVcdY1bFWgcouLjZWTmoYJ/ce3kW2/zpPju3TRwaedZbMmjXL7gEAQPVi+sb4hqZv3DH/Vznm6KPl3DPOoG8EPIT3KQCv0s+hs849T/occ6zMzd0pnf7xiNTre5rE1o+ze6CiEax6TH5OjuRlZMh2xvVBFVK3Zk3p3zBO7unSWWouXSKnnXCCnH3yyTJ9+nS7BwAA1YvpGzW46XqYxP7+u+kbzzzpRPpGwEN4nwLwCv3cOeWsv8iJp54ui3fXlQ43PSz1+5wsNerUtXtgfyFY9ZimqanSbswYSUhJsS1A1REbEyPHxcXJ6M6HSsOVK2Tg2WfLKf36yZQpU+weAABUL9o39mvU0PSN8StXynlnnSUnHXcsfSPgIbxPAewv+jmTcvKpcvZ5f5U/6iTIIX9/UOr1Ol5iasbaPbC/Eax6TFxysrQeMYJgFVVe34ZxcmeHdtJs/ToZfP75ktKnj3z00Ud2KwAA1c8x8Q3lro7tpfn69b6+8eij6RsBj+F9CqAi6OdKn34pcv5lg2VNo5bS5rp7pN6Rx9mt8BKCVY/RYQB0fFVdAtXB0YVfTm85JEmScrLlussvlz5HHinp6el2KwAA1U+fRvGmb2y7KUeGDx4sR3fvTt8IeAzvUwDlQT9HevT5P7l82PWS3aKDtL72bqnfva/dCi8iWPWYrMI30cLCjlmXQHVyVOGX07+3OUgO27pFbh02THp07Spvvvmm3QoAQPXTq7BvvDHpYOmybavcNnyYHNmlC30j4DG8TwFEg35udD2ypwy/5XbZ3PYIaXHFrVL/iKPtVngZwarH1E1KMsMBxCYk2BageumR0EiuP6iV9Nj5p9x38z+ka8eO8srLL9utAABUP9o3Xte6lfTK3yn3/cPXN748caLdCsALeJ8CCMcrr7wiHbscLv+4537Z0eVoOfCyGyWuay+7FZUBwarHNB80SHrMnm3GWQWqs+TEBLm2RXM5rvBTamxamnRMSpLnnn3WbgUAoPrppn1jy6K+sUObNvLcuHF2KwAv4H0KIBjPP/8vSerQUe5+/AnZ3bO/NL3oBmnYubvdisqEYBWAp3VNSJArmh0gp9arK8/fd5+0S0qyWwAAqJ60b7yy+YFyWv16cs2wYbYVgJfwPgVQmquvvkpqHXuWNP7bUIk/9AjbisqIYNVjMtPSZHpioqwYO9a2AFCdGsXLkNYt5fdly2wLAADVm/aNALyN9ymAkjRsf5hdQ2VGsOpB+Tk55gYAAAAAAADAmwhWPUbHWO02dapZAgAAAAAAAPAmglWPqZuUJAkpKWYJAAAAAAAAwJsIVj0mKz1dlowcKTnTptkWAAAAAAAAAF5DsOoxeRkZZuIqglUAAAAAAADAuwhWPSYuOVmapqYyFAAAAAAAAADgYQSrHqOhapdJk5i8CgAAAAAAAPAwglWPyc/Jke2ZmWYJAAAAAAAAwJsIVj1Gx1ed0batWQIAAAAAAADwJoJVAAAAAAAAAAgRwarHJKWlSd/sbGk9YoRtAQAAAAAAAOA1BKseFJuQYG4AAAAAAAAAvIlg1WOy0tNl3oABsmbiRNsCAAAAAAAAwGsIVj0mLyPDhKvbMzNtCwAAAAAAAACvIVj1mISUFGkzapRZAgAAAAAAAPAmglWP0UBVJ7AiWAUAAAAAAAC8q4ZIgV2FFzAUAAAAAAAAAOB9VKx6DJNXAQAAAAAAAN5HsOoxsQkJ5gYAAAAAAADAuwhWPab1iBHSNzvbjLMKAAAAAAAAwJtqiMTYVQAAAAAAAABAMKhY9ZgVY8fKjLZtzRIAAAAAAACAN9UQKbCr8IL8nBzZnplplgAAAAAAAAC8iYpVj2mamipdJk2S5oMG2RYAAAAAAAAAXkOw6jFxyckmXK2blGRbAAAAAAAAAHgNwarH5EybZsZXzcvIsC0AAAAAAAAAvIZg1WM0WF0ycqRkpafbFgAAAAAAAABeQ7DqMToEQEJKCkMBAAAARNkRf/2bnPvCS3LVtK9k6Pc/mNtFb78rJ6aNlhbJyXLUVVfL6Y8+ZvcWadi8xV77X/reB2YfAAAAQMWsXrGiYOkff0ifPn1sE4BwxcTEyDO9e9l7+5eeDPa+5hppeWQPiTvwQNO2fdMm2bR8uSz/YYb88Pxz5gTxlbPPNNv86Ulj2+P6yebVq2TyP26yrd4wbMZMKSgosPci92XhfzPVL4rHBAAU8ULfqH3i2U89LY0OOsjcz/z6K5n92r9ldUaGCVS7X3SxJB173J5t2vfpYy54402JrVvXtPub9dKLph/1gmj3i6ievPQdVumPIB1OPkWatG+/5z2o32HXzpsr89InyUFH9ZamHTrs+Z6q7+P/G379nv31O+/cd9/hfYqIpN4zxSzT7+5vlkA06edu9/tfsPeKl7dskSx6/mF7LzgdrrpF4tp0sPciN/uOK+yaT1mvWS0cd5/s2LhOkgZeKfGHHm5bK5a+7or63KVi1WPyc3LMDYjEsTfeZE4GO556mrmvJ4Djjj5KXjrlJBOqdjrzLFN54wJXpV9ItUrn8k8+k56XDzFfTAEAqOw0IB3w/L/2hKrf/PNxE8ZoqKp0qfd/efstc985+b775fdpU03/OemaqyRv3Tq7RaTruefZNQDRpO9XrSI/5u83SrOuXWXFzB/M+0/fh1Puv1dqN2ggA5593nxXddqfeJKcNfZJs78LYes2amT2ocIcQGVXs159aXfpDSbQ1Ft8hy52i5h11570t6vMvtF2+B1j7VpwNAzeujJTdm3bKuu/+9y2Vm0Eqx6jE1dNT0yUzLQ02wKERkPVwwf+1Xyx1F/2tSLV/9d6XZ901ZV7nSAqrdZJTGorsXXq2BYAACo/DUjdD4lr586Vn99606wH+vrxx8x2Z938X+XztFFmXcPXz+6+06wrDW0ARFe4P4L0GDRYvh/3TLE/gnQ46WS7BgCV00FnXxxU1WfiEUdJs+NOt/eiJ7Z+nF0LjlbL1m+VZELeA/qcaFurNoJVoArRqlMNVR39Zb84m9es3usEUekX1dcGnmsqAwAAqAq0X9QqNmfRp5/YteLpVR2OBq3+XLijAn+cBBC5cH8EmXzTjXv21fdpxr9fNesqf8cOuwYAlY+GlBqYBqvZcadGdRiAcB069E454s4n99swABWNYNVjWo8YIT1mz5bmgwbZFiB4OraUo9Wq/ieBgXQbJ4YAgKpMr8bwV1JQ4+hVHfpDY1myFi6wawCiIZIfQbRgwJ+reM3fvl1+nDjBrANAdaCX4evYou62ZOIY0+7fpjdHt/u36+O3rV4uvz5+m/x83/WyY+N6u2cR3a5jqOr+ul/uwl/slpKfP/B51n71sWS+8ZxZ1+fJ/nnf4q78rXmy6rNJZrvup/trmxcRrHpMbEKCxBV+saiblGRbgOD5fyHNzlxq10pW3MRVAABUFTrETbS4sRp1UpyvH3/crAOIjmj8CKJDCeiQWJ3POtvcn//+e7L488/MOgBUB1qtqmOtBippnNR2g0aay/ad7WtXSY06vrGqdYzUnLk/mnV/W5b/bipSD/rLJSZ4XfLKE3vCVX1+bQ8U+Dx/5mRJ67MvksTDe5nnyXzz+X1C3CUTx8raaR9Ky5PPlcNufFCyf5lp2ryIYNVjstLTZeHgwWYJhEJnTwUAAOVDx2rUCrivHn1knwo5AJGJxo8gZz/19J55BpSua9AKANVJrUaJdq1IaeOkxtZvYNdEdm3fJnUaHyCtz7zQjJGa0LWH3VKk6VH99izdZFkrPviPWaq6zVratb35P09it97mNdVr2ca2iGxdUVQYphWtOgGW0ufR16QTdWlbcdWt+xvBqsfkZWTImokTzRIAAADh0+rSaNAfL/Xy4oz/vEYFHOBR71033ExspT+AOBqu6jADAICy1WvWyix1bFQdI1UDzdI0aO37UUyrTSO9TP/PnI12TSRn7iy7tq9Nv862a95BsOoxCSkpZpxVHQ4ACMX63xbaNQAAoHRmf3/hXN2hlxcfPXSYCWz08mMA0ReNH0G0klwntnr9/L/tNY9Al9QBdg0AUJoatuI/HNvXR+9qHletqty4rLmL5pn7u7ZvNUsvIVj1GA1W240ZI01TU20LEBydjMr/S2k0x5UDAKAy0pDFv29MOvY4u1Y8DVEDnf7Y42asRj2W0/7Ek+T0R4vuA4hMNH4EcTRgzfj3q/YeAKAi1GqYYNeiq/v9L+x10/FavYZg1WO2Z2aaYQDyc3JsCxA8/xlU9ZLF4k4Q/ZW1HQCAym7Wiy/YNZHmhx9uQtHiaJ844Pl/2Xs+J6aNlibt25vLiYd+/8Oe28n33S+b16yxewGIVDR+BPHnP/lV5jff2DUAQHnQsVbLGjYgFP7HCpzUyosIVj1Gx1f9sXt3WTHWm7Odwdv0S+mm5cvtPTEnfiXRwfyPvfFGew8AgKpJA5Zv/vm4GXdRJ7Xpf+ddpg90wYyOv6j3B778yl5Vblox1/HU0+y9fa2eM8euAYiGcH4EOeqqq82PHWc/9Yy5H0i/FzMuMoDqLtLxT0viLs9vdtzpZhktDTt0sWs63uqPds33d2T98KW95x0Eq0AVowP3r50716w369pV/vbv/+z1xVRPFLXtwM6HydePP25bffSLasMWRbP4NT+iW5kVAQAAeJ2Gqzru4m8ffyRb1q83FaiXpP/PBDIn3XNfYV/XXN6+7NI9VW4atuq4qqUhrAGiK5wfQZp26GCWrXv1kovefnfPRFXnvvCSGWdVvxcDQFWhwWL+1i32nt4vWnfqHtBiz2z9bvu66Xt/Z/EPWv2Psdtv8r+S6Iz9ygWc9VslSZOex5h1tX3tKru297GLe54/c7LMUu3asc2uiRx4zCl7/oa1X02WvGWLzLqGrAlde5h1L4lZvWJFwdI//pA+ffrYJgDhiomJkWd697L39i8NUDucfIoZEqBuo0amTb+oblqxQua/97+9LpFS+mVU9y2O/tr/2sBz7b39a9iMmVJQUGDvRe7Lwv9mql8UjwkAKOKlvrEqina/iOrJS+9TDVJ7X3ONNOvSda/vphqUZi1cYAoDdBxVpfvqFVo6ZIeGsUq/t/7x/Xd7jYu8v/E+rZxS75lilul39zdLIJr0c1fHDA3Wkolj9lSIBmp5ynnS7LhT7T2R3IW/yIoP/mMuo9fgs9UZf5NFzz9st/rocxd3zMBjqZ/vu16SBl5p1t1xNfhs2vt4ObDvSRJbP85s0wA08Hn0eHm/z9/neeI7dCn1ubetXi5rv5ws2b/MNPcTD+8lrc++aM9zlUUnvKqoz12CVSCKOHksfwSrAFC50DeWLwIbRAPv0/LF+7RyIlhFeQo1WEVoKjJYZSgAj9GxVXWMVR1rFQAAAAAAAIA3Eax6TH5OjuRlZMj2zEzbAgAAAAAAAMBrCFY9pmlqqrQbM0YSUlJsCwAAAAAAAACvIVj1mLjkZGk9YgTBKgAAAAAAAOBhBKseo8MA6PiqugQAAAAAAADgTQSrHpOVni4LBw82SwAAAAAAAADeRLDqMXWTksxwALEJCbYFAAAAAAAAgNcQrHpM80GDpMfs2WacVQAAAAAAAADeRLAKAAAAAAAAACEiWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA0AAAAAAACANxGseoyOsdpt6lSzBAAAAAAAAOBNBKseUzcpSRJSUswSAAAAAAAAgDcRrHpMVnq6LBk5UnKmTbMtAAAAAAAAALyGYNVj8jIyzMRVBKsAAAAAAACAdxGsekxccrI0TU1lKAAAAAAAAADAwwhWPUZD1S6TJjF5FQAAAAAAAOBhBKsek5+TI9szM80SAAAAAAAAgDcRrHqMjq86o21bswQAAAAAAADgTQSrAAAAAAAAABAiglWPSUpLk77Z2dJ6xAjbAgAAAAAAAMBrCFY9KDYhwdwAAAAAAAAAeBPBqsdkpafLvAEDZM3EibYFAAAAAAAAgNcQrHpMXkaGCVe3Z2baFgAAAAAAAABeQ7DqMQkpKdJm1CizBAAAAAAAAOBNBKseo4GqTmBFsAoAAAAAAAB4F8GqxzAUAAAAAAAAAOB9BKsew+RVAAAAAAAAgPcRrHpMbEKCuQEAAAAAAADwLoJVj2k9YoT0zc4246wCKLJgU6688McKaXvwwbYFAIDqTftGAN7G+xRASTYv/tWuoTIjWAXgaXNzcuRfq9fIx9u2yxW33iq/L1tmtwAAUD1p3/j8qtXy0dZt8szYsbYVgJe49+nkLVt5nwLYx9Pjx8ufX78vWW+Mk00LfratqIwIVj1mRWGnO6NtW7MEqrOMjdkybsUq+TJ/t1x3193yW2amDL3+ersVAIDqx79vvKGwb1y0bJkMveEGuxWAF+j79JnlK/e8Txf/8QfvUwD7GHbNNbJs0W+S9vfrpcaPX8i6fz8hOfN+tFtRmRCsekx+To5sz8w0S6A6mrlhgzz5xwqZFVtL7nj4YZm3eLFcfsUVdisAANWP6xtn1oyV2x980PSNg6+80m4F4AX+79M7HnqI9ymAoFw+6DJZNG+uPHrX7VJ33veyZuJjkvPzD3YrKgOCVY9pmpoqXSZNkuaDBtkWoHr4fn2WPJ65TOY3aCgPjRsnP/36q1xw0UV2KwAA1c/3WRvksaW+vvHBp5+W2fPny4WXXGK3AvCC7wq/w/I+BRCpCy44X37N+EnGPfKgxC/9WVb+60HZlPGt3QovI1j1mLjkZBOu1k1Ksi1A1fbtho3y0OLfJbNJU3l6wkT5PiNDUgvfAwAAVFfTtW9cUtg3Nm4iz0z09Y0DzjnHbgXgBd9kbTDv0z8Kv8PyPgUQLXounDHjO5k47ilpumaJLB9/j+T++LXdCi8iWPWYnGnTzPiqeYUdM1CVfVV40njvwkWytnkLmfjWW/LVDz/IaaedZrcCAFD9fKl942+LZF2z5jLxTfpGwIvMd9jC9+l6/Q5b+D79kvcpgHKgnyszvpomb748QVrkrpLMJ++SzTOn2a3wkhpSYNfgCRqsLhk5UrLS020LUHXkFxTItI3ZcvevCyTv4DbyzgcfyGdffy39+/e3ewAAUL1o3zh1g69v3KJ94/uFfeM339A3Ah6i79MpGzaa9+nmgw7mfQqgwujnzNeffSrvv/u2tNm5SZb881bZPOMLKdiVb/fA/kbFqsfoEAAJKSkMBYAqZfuuXfL5xmy5a+6vsqt9B/l4yhT54IsvpG/fvnYPAACqF+0bP9OgxvSN7ekbAQ/a633azvc+/bDwxvsUQEXTz53PP3hPvvj4I+kYu1N+e+wWyfv2E9m9Y7vdA/sLwarH6KRV3aZOZfIqVAl5+fnyaXaO3PnzXKnX9XD55vvv5d3Jk6Vnz552DwAAqhftGz/emL2nb/y6sG/870cf0TcCHmLepxs2yp2/zJU6h3Ux79NJH3/M+xTAfqefQx+++7Z8/83X0rVhLZn/yD8k7+vJkr81z+6Bikaw6jH5OTnmBlRmOX/+KZMLTxrvyPhZEo/sIbN//lle++9/5fDDD7d7AABQvWjf+KHtG5sU9o0Zv/wi/5k0ib4R8BDzPt2w0bxPG+v79Odf5I3//Y/3KQDP0c+l/77+mvwyJ0N6Nk+QXx+6STZPe0925mbbPVBRCFY9Rieump6YKJlpabYFqDyyduyQ9/TL6Ow50vr//k8WLV4sE15/XQ499FC7BwAA1Yt/33jQ//X19Y1vvCEdO3a0ewDY38z7NMt+h+3j+w478c03eZ8C8Dz9nPrPhBdl8eJFcmy7VjLv0Vskb8ok2bFxvd0D5Y1gFUDE1mzbJv8tPGm8f958OfSEE2TVqlXy7MSXJYmxggEA1ZR/39hpT984kb4R8BDzPs3aYN6nHfv3N+/T5155hfcpgEpHP7deGj9OVq5YISd06SCLnholuZ++JdvXr7Z7oLwQrHpM6xEjpMfs2Yyxikphxdat8nbhl9Exi3+XI08/Q1avWSNPPPuctGjRwu4BAED14t839rB941j6RsBT9H361nrf+7T7aaeb9+mTzz/P+xRApaefY+OfGCNrVq+Ws3ofKZkvPCy5H/1Htq1ebvdAtBGsekxsQoLEJSdLXX4lhYdl5m2R/6zLkueWLZfjzhsoa9atk0eeeEIaN25s9wAAoHoprm98mL4R8BTzPl27Xp7N/EOOO/dc8z599KmneJ8CqHL0c23Mww/K+jVrZODxx8iq156STR+8KluW/273QLQQrHpMVnq6LBw82CwBr1m8ebO8um69vLpmrZxx6aWydsMGGf3QQ9KgQQO7BwAA1Yt/33g6fSPgSeZ9utb3Pj3tkktk3caNcs8jj/A+BVDl6efcg/eMlg3r1splZ54iGyZNkJz0CZKX+ZvdA5EiWPWYvIwMWTNxolkCXrFgU65MWLNO3t2YI3+9+hpZnZUlt6WlSWxsrN0DAIDqxb9vHGj7xtvpGwFPMe/T1WvlnQ3Zct6VV5r36R333MP7FEC1o597d99+m2StWSXXXnCebP74Ddn4zvOyefGvdg+Ei2DVYxJSUsw4qzocALC/zc3JkedXrZaPtm6TwSNHyrLVq2XkLbfYrQAAVD+ub5y8ZYtc/ve/m77x7/SNgKeY9+nK1fJh3hYZVPgd9o81a+TG22+3WwGgevvHyBGy+o9l8o8rB8ufX78vWW+Mk9yFP9utCBXBqsdosNpuzBhpmppqW4CKl7ExW55ZvlK+zN8tN9x1tyxatkyG3nCD3QoAQPWjfeO4Fatk2s5dcn1h37j4j+Vy7fXX260AvMD3Pl0pU//Ml+vuvFOWLF8uw0aMsFsBAP6GXXuNLFv0m4waOVxiZn4h6/79hOTM+8luRbAIVj1me2amGQYgPyfHtgAVZ9aGjfLkHytkZs1YueOhh2Te4sUy+Mor7VYAAKqfmRs27Okbby/sG39dskQup28EPEXfp08sW174Pq0ptz3woMz//XcZcvXVdisAoDRDBg+WRb/OlUfvuk3q/fq9rJn4mOT8/IPdirIQrHqMjq/6Y/fusmLsWNsClL/v12fJY0uXybz69eWBp56S2fPny4WXXGK3AgBQ/XyftUEez1wm8xvEyf2ub7z4YrsVgBfod9jH9TtsvQZy/xNPFL5PF8hFl15qtwIAQnHBBRfIvNk/yjMPPyDxS3+WVS88JJtmf2e3oiQEq0A1Nr3wpPHhJUtlaeMm8vSECTJjzs9yzrnn2q0AAFQ/0zdslIeW/C5LExvLUy9NkO8z5si59I2Ap3yzPsv3HbbwffrEiy/KDz//LOf99a92KwAgEgMGDJCMGd/JS08/IU3WLJLl4++V3J++sVsRKGb18hUFS5f/IX369LFNAMIVExMjz/TuZe9511eFJ43XLl5i1vM//1xOOOEEs14dfVn430z1KygwSwBAdFWWvvHrjRtl28XPm/Xr+hZU674R1U9leZ9+mbVBBv2+VOoXfm/LT0+XE/7yF7sFiL7Ue6aYZfrd/c0SqI50mMrpiYmyvVYtuaDJAdKkT39p2DPFbvWu2XdcIQUVdI5PxSpQTeQXfqhM3bBRRs1fIJsPOti2CieOAIBqy/SNG7Mlbf7Cwr6xjW2lbwS8RN+nU9ZvMN9h8w4+WOo3aGDa+/XrZ5YAgPIXV/jZ+97bb8rB27NlyT9vk83ffyEFu/Lt1uqNYNVjdGxVHWNVx1oFomH7rl3y2YaNcve8X2VX+w4y+fMv5MMpvl9fAQCojrRv/CI7x9c3tmsvH37+uXzwxRd2KwAvMN9hs/Q77PzC77Dt7XfYqRIbG2v3AABUpGOOOUa+mPyBfP7Rh9Kh5g5Z9PitkvftJ7J7x3a7R/VEsOoxWmadl5Eh2zMzbQsQnrz8fPl4w0a5a+6vUrdLV/nq2+/kvx99JL16ef8yLwAAyoP2jZ9m55i+sfZhXegbAQ8y32GzNsqdv8yTOocdVvg+/VYmffIJ71MA8Aj9PJ486V359qsvpWvDWrLgsZsl7+vJkr81z+5RvRCsekzT1FRpN2aMJKR4f8wKeFPOn3/Khxuy5c45v0jjI3vITxkZ8np6uhxxxBF2DwAAqhftGydv9PWNCd2P9PWNkybRNwIeou/TD9ZvMO/TxO7dZfacOfLGe+/xPgUAj9LP5/++/prM+ekn6dGskcx/5B+yedp7sjM32+5RPRCsekxccrK0HjGCYBUhy9qxQ97bkC13zJ4jB/3f/8lvixbJxDfflEMPPdTuAQBA9eLrGzeavrG16xvfeIO+EfAQ8z7N2rDX+/Tlt9/mfQoAlYR+Xr8+8SVZ9NtvckzbljL34X9I3pRJsmPjertH1Uaw6jE6DICOr6pLIBhrtm2T/xaeNN4/b74c2r+/rFq1Sp59+WVJSkqyewAAUL1o3zhpY7bcN/dXOfSEE3x940T6RsBLzHfY9VnmfdrxeN932OdffZX3KQBUUvr5PeG58ebz/IQu7WXRU6Nk82dvy/b1a+weVRPBqsdkpafLwsGDzRIozcqtW+Wtwi+jYxb/Lt1PPU1WrV4tTzz3nLRo0cLuAQBA9bJC+8asDfLP3xZL99NOl9Vr1sgTz9I3Al5i3qfrsuSfiwrfp6efYd6nT/7rX7xPAaCK0M/z8U+MldWrVsmZRyVL5gsPyeaP35Btq5fbPaoWglWPqZuUZIYDiE1IsC3A3jLztsjr67NkfOYfcuy558nqtWvl0aeekiZNmtg9AACoXnx94wZ51vaNa9avl0eeeIK+EfAQ8z5dt968T/uec46sKVznOywAVF36+T7m4Ydk3erVcl7K/8mq156STR+8KltXLLV7VA0Eqx7TfNAg6TF7thlnFfC3ePNmeXXtOnl59Ro59eJLZO2GDXLvI49IXFyc3QMAgOrF9I3r1ssra9YW9o0X+/rGhx+mbwQ8xLxP16yTVwq/w55y4UXmfXr/Y4/xPgWAakI/7x+8Z7RkrV0jl515iqx/9wXJSZ8geZmL7B6VG8Eq4HELNuXKhMITxnc2ZMt5V11tvozeMXq01KpVy+4BAED14usb1+3pG9dkZdE3Ah5j3qer18jbWRvl3CuvlDWF32HvvO8+3qcAUE3p5//dt98mG9aukWvOP0c2f/S6ZL/7L9m85Fe7R+VEsOoxmWlpMj0xUVaMHWtbUF3NzcmRf61aI5O3bJVBI0bKH2vWyI233Wa3IhKzP/9MXhhxg9zW7xj55uCDzE3XtU23AQC8yfSNq7Vv3CKDR9q+8dZb7VYAXmDepytXy+S8LXLZDSNk+dq1ctMdd9itAACI3Pz3v8vq5cvkxiGXyY5p70nWG+Mkd+HPdmvlQrDqQfmFX0b0huopY2O2jFuxUqbt3CXDCr+ELv7jDxnG0BBRsX75chlz2aXy/r33yO45s+XoBg2kd7fDzU3Xd83+Ud4bnSaPX3Sh2RcA4A3aN45fscr0jdfdeVdh37hcht5wg90KwAvMd9jlK2Tan/ky9LbbZHHhd6nhhSfOAACUZPjQa+WPJYtk1MjhIjO/kHX/fkJy5v1kt1YOBKseo2Osdps61SxRvczasFGeWLZcfqhZU2574EH5dckSueLqq+1WROq7Sf+VtDNOk7iNG6Rf40Q5NCFBEurUkVqF/9560/VOjRtLStMmErchS9JOP1Wmv/WmfTQAYH/QvvHJP1bIzJqxcttDD5m+8fIrr7RbAXiB731a+B22Rk259f4H5Nfff5crhw61WwEAKNuQwYNl8a9z5dG7bpO6876TtS8/Ljk//2C3ehvBqsfUTUqShJQUs0T18P36LHl86TKZV7+BPPDkk5Ixf4FcdOmldiuiYfq778h7jz4iKS2aS8fYmra1ZJ3q1ZWUli3k/ccfk+nvvG1bAQAV5fusDfLPzD9kXoPCvvHpp2X2/Ply4cUX260AvMB8h/09U+bVqy/3jRkjGQsWyMUUhwAAInDBBRfIrxk/ydMP3S/xv8+RVS88JLkZ39mt3kSw6jFZ6emyZORIyZk2zbagqppe+GX04SVLJbNxE3nqpZdkxpw5cu7AgXYroiUvO1vevO9e6dEoXg6sX9+2lk337ZHQSN68/z5zDABA+ft240Z5+Hdf3/ik9o0Zc+Scc86xWwF4wTfr1stDi3+XpQmJ8sQLL8iMn3+W8/52vt0KAEDkBgwYIBk/fC8vPf2ENF69SJaPv1c2//SN3eotBKsek5eRYSauIlitur7K2iD3/bZY1jZvIS++/rp8NXOmnH7GGXYrou31u++STi1byQF169qW4Gm42qFpU/nPHUwaBgDl6auNG+W+RYtlzYHN5cX/FPaNP/wgp59+ut0KwAu+XLfe9x22WXN5qfA77Nc//ihnnn223QoAQPTp98Efvv5SXp/wgjTPWSnLnh4lm2d5Ky8jWPWYuORkaZqaylAAVcyuggKZmrVB0hb8JrkHHSxv/u9/8vn06XLiiSfaPRCqhYMHy/bMTHuveAu+/14WFZ6cH1Y71raE7vC4BuYYeiwAQPRo3zgtO8fXN7Yu7BvTC/vGb76hbwQ8RN+nX6xbL6PmL5Tcg9uY77BffPednHjSSXYPAADKn34//PrzTyX9zdfl4O3Z8vuY22XLD1OkYNcuu8f+Q7DqMRqqdpk0icmrqogdu3bLZ1kb5K5582Vnu/bywaefyuSpU+XYY4+1eyBcWtU9o21bmTdgQIkB689ffC5JjRMkxt4Phz724Lg4mf3hB74GAEBEtG/8IjtH7v51gew8pJ2vb5wyhb4R8BDzHXZ9ltxd+B12d4eO8uFnn8lHhd+9eJ8CAPYn7Ye+mPyBfPrh+9IuZrssevwW2fLdZ7L7zx12j4pHsOox+Tk5JiTSJSqvLfn58vGGjXLX3HlS+7Au8uX06ZL+ySdy1FFH2T0QLToucUkB69yvvpQDdxfYe+FrUaeOzPt2ur0HAAiH9o2fZueYvrFW58Nk2jffyKSPPqJvBDzEfIddn7XnO+y0wu+wk/gOCwDwGO2XJk96V6Z/OU0Oa1BDFjx6s2z55iPJ35pn96g4MauXryhYuvwP6dOnj23C/pSZlibLRo+WNqNGSVLhOiqXmJgYOeWg1jJl9Rq55Pzz5R933CGdOnWyW73ly8LXqvT/a5XRyieeKPYHCK36bjdmjBlOY0SvHnJq8wOlXmwtuzU8W/N3yieF/03HzpptWwAAwfLvGy+7+GK58ZZbPNs3pt4zxSzT7+5vlkB1oe/Tk1u1lGlr18nFHv8OOz0x0XwH7JudLbEJCbYViD76BMBX/Kefu/p5q5+7XrVgwQJ5+LHH5d+vvCzNjzlZVkz9UAoKIi+yCgbBqscQrFZu+qV02NVXm5PGtm3b2lZvcl9KqyoNV9PGPS0XdzksoqEA1O7C22vzfpUXflvsawAABK0y9Y2cRKO60vfpNZdfLjffeWel+Q5LsIryRp8AVJ5g1Vm6dKk8+vg/ZfwzTxOsVmcu7OKLAspTXkaGuYy+siqpYjUhJcWEqjoRnFasnta8mdSNDX/yKrUtf6d8TMUqAFR5nEQD3kewiopCnwBUvmB1fyBYBVAp6biq/mOq+geqzt2nnCRHFC4PqF/P1xCm9Vu3SUZ+vtz3xVTbAgCoijiJBryPYBUVhT4BIFgNBpNXeYxWEOokPGsmTrQtAEqjgWqP2bOl29Spe4Wqqsuxx8m6mEgHAhBZvWO7dOnzf/YeAAAAAAAAwarnuMuzA2c3B7C30gJVp9uJJ0lmdrZEMrKKPvaPzVuk+5ln+RoAAAAAAAAK1fDFBvAKDYt04ipdAijZoRMmlBioOp2OPlo6HtVb5m7fYVtC90vuZmnfs6c5FgAAAAAAgEPFqsdooJqUlkawCkTJ+ffcK4vWrpV1W7faluDpY37bsEEueuhh2wIAAAAAAOBDsOoxDAUARFdcYqL89Y475afcvJDCVd33p+xNcv6dd5ljAAAAAAAA+KshEvnELogeJq8Coq/vuefJWTfeKFNXrZYF27fb1pLNz8uTqStXyek33CB9zxtoWwEAAAAAAIpQseoxsQkJ5gYguv7vvIEyevLHsqXJATJtfZYs2LhRcnbskJ27dpmbri8sbJu6Zq1sOeBAGf3RJ3LsRRfbRwMAAAAAAOyNYNVjWo8YIX2zs804qwCi64CDDpK///s1OTtttNTo1l2+25wnX/8yV2Zk/GzWYw4/Qv5y731y43/eMPsCAAAAAACUhGAVQLXT/cST5Monn5KHvp4u5yQdIqc2aWrWr3x6nNkGAAAAAABQFoJVj1kxdqzMaNvWLAGUr5xp08zNTRoHAAAAAAAQLIJVj8nPyZHtmZlmCaB8LRs92q7tvQ4AAAAAAFAWglWPaZqaKl0mTZLmgwbZFgDlwVWrOlStAgAAAACAUNQQKbCr8IK45GQTrtZNSrItAMpDcRWqVK0CAAAAAIBgUbHqMVpBp+OravUcgPIRWK3qULUKAAAAAACCRbDqMRr2LBk5knAHKEelVaZStQoAAAAAAIJBsOoxOgRAQkoKQwEA5USrUnWCOH2PFXfTieOKq2YFAAAAAADwR7DqMTppVbepU5m8CignOo5x76VL99zajRljbv5t+uMGAAAAAABAaQhWPUar5fQGoGLMGzDA3AAAAAAAAEJBsOoxOnHV9MREyUxLsy0AylNsQoK5AQAAAAAAhIJgFUC11jc729wAAAAAAABCQbDqMa1HjJAes2czxioAAAAAAADgYQSrHqOXJOvkOjo7OYDyN6NtW3MDAAAAAAAIBcGqx2Slp8vCwYPNEkD5256ZaW4AAAAAAAChIFj1mLyMDFkzcaJZAih/XSZNMjcAAAAAAIBQEKx6TEJKihlnVYcDAFD+mqammhsAAAAAAEAoCFY9RoPVdmPGEPQAFWTF2LHmBgAAAAAAEAqCVY/RsR51GID8nBzbAqA8LRk50twAAAAAAABCQbDqMTq+6o/du1NBB1QQrRLXGwAAAAAAQCgIVgFUa92mTjU3AAAAAACAUBCsekxSWpr0KygwSwDlT4fdYOgNAAAAAAAQKoJVANXa9MREcwMAAAAAAAgFwarH6NiqOsaqjrUKAAAAAAAAwJsIVj1GL0nOy8iQ7ZmZtgVAeeoxe7a5AQAAAAAAhIJg1WOapqZKuzFjmKUcqCBxycnmBgAAAAAAEAqCVY/RgKf1iBEEq0AFWTh4sLkBAAAAAACEgmDVY3QYAB1fVZcAyp++3xjTGAAAAAAAhIpg1WOy0tNN9ZwuAZQ/rRDXGwAAAAAAQCgIVj2mblKSGQ4gNiHBtgAoTzqmsd4AAAAAAABCQbDqMc0HDTIzlFNBB1QMHXaDoTcAAAAAAECoCFYBVGs/du9ubgAAAAAAAKEgWPWYzLQ0mZ6YKCvGjrUtAAAAAAAAALyGYNWD8nNyzA1A+etXUGBuAAAAAAAAoSBY9RgdY7Xb1KlmCQAAAAAo4ib5pRAFAOAFBKseUzcpSRJSUswSQPljjFX8P3vvASBZVab9P7dy7K4OkzMzwOAwzICkIQtIRkBRZEGFVTEtK6j/NbAK+n2gu58Kyuq6uizoigooQaJIlCxpCMPk2JM7d+V4/+c5996ZmpoKPT2pe+b9Dafr3nNPrjqHuk+99z2CIAiCIAiCIAiCMBREWB1mdN1/P5Zfey36nnnGjhEEYXeSmD9fB0EQBEEQBEEQBEEQhB1BhNVhBgUeblwlwqog7Bmm33yzDoIgCIIgCIIgCIIgCDuCCKvDjMjcuWi/8EJxBSAIe4iJ11yjgyAIgiAIgiAIgiAIwo4gwuowg6LqrPvuk82rBGEPsfGOO3QQBEEQBEEQBEEQBEHYEURYHWZwd8vMqlWyy6Ug7CEWX3mlDoIgCIIgCIIgCIIgCDuCCKvDDPpXfWXaNP0qCMLuh+43GARBEARBEARBEARBEHYEEVYFQdivef+bb+ogCIIgCIIgCIIgCIKwI4iwOsyYesMNOL63VzbTEQRBEARBEARBEARBEIRhjAirwxBPLKaDIAi7nxdaWnQQBEEQBEEQBEEQBEHYEURYHWZ03X8/Flx0kexSLgh7CG4UJ5vFCYIgCIIgCIIgCIKwo4iwOsxIzJ+vxdXMqlV2jCAIu5M5Tz+tgyAIgiAIgiAIgiAIwo4gwuowI3bKKZhy/fX6VRCE3Q/nmsw3QRAEYSRjGIaEfSQIwkii2md4XwoPXH+aDtWu7UtBEISdw9jQ0WGu7OjAvHnz7ChBEIT9h+XXXqtfp998s34VBEEQ9l8u/N5T+vX+75yqX0cKvDHeGBd/4SOdsdFemKZpnwm1eGXaNP103zErVyIwdaodK+wNZO0Z+ci6IzSCbvO4Jwn3AeJG68L2iMXqMENcAQjCnmXtLbfoIAiCIAiCIAiCIAiCsCOIsDrMkM2rBGHP0n7hhToIgiAIgiAIww9aS731gQ9sCc6mo7xncuL6nnlGxwmCIAjCnkaE1WEGzasZBEHYM8y67z4dBEEQBEEQhOGHc39E8ZTBEVb5pB/P+aRfZO5cHScIgiAIexoRVocZE6+5RvutmHrDDXaMIAi7E34ZF9cbgiAIgiAIw5d6vvAnfPnLYpgiCIIg7DVEWBUEYb+GGyAwCIIgCIIgCMMTblJVzXUT48decYV9JgiCIAh7HhFWhxncRIcij2ymIwiCIAiCIAiCYFHNalWsVQVBEIS9jQirwwz6DOJjyY7vIEEQdi90vcEgCIIgCIIgDF8qrVbFWlUQBEEYDoiwOszglwVupCNfEgRhz+BsiCAIgiAIgiAMb8qtVsVaVRAEQRgOiLA6zOCOlhRX+QusIAi7nwUXXaSDIAiCIAiCMLxxrFbFWlUQBEEYLoiwOszoe+YZ7V81MX++HSMIwu6k6/77dRAEQRAEQRCGP7RaFWtVQRAEYbggwuowg8Lq8muvFaFHEPYQU66/XgdBEARBEARhePL7Nzbjkl+/hyk3vIS2n3XgiOUH6eNLfr1AXxMEQRCEvYUIq8MMPtYSO+UUcQUgCHuIqTfcoIMgCIIg7Ku8+FzBPqpNozS//FnWPqpOf7+Jd98u2mfVefShvH1UnUZtGEwdjcq4686cfVSdXVHHruiHYPFaRxzH/Ph1fPfBZViydBMONNP4QKSAo9uD+njJ0k59jWmYVhheDGa+dawp2WfV2RPrRqM27OyawPJ3to5GY8n8jepo1E5BEIaGCKvDDPoKmvP00+IzSBD2EOIKQBAEQdjX+dXPM3XFCV5jmno89nCu7k07b9jrlUFx40ffT9tn1WEd9W78B1PHlz+ftM+q89hDO9cP8p1vpOyj6tx1Z7auCDKYOgTge4+twnE/eRO+VBozjQym+ExE3IDHMHXg8RRfSV/zqjRMe/0jK+3cwnCg0Xy767e5hnP6O1+vP9+Yf2fmG+s4/bgB+6w6V16aqNuPRm149ME8fnhT7fWPbfjIOfV/GGg0lrzOemoxmHVeEIShIcLqMKPQ16eDIAh7Btm8ShAEQdgXqHfDTUsm3nTXYsHbhbqCJvMvUKHeTfvdd2ZVHbWvs3yWU68elk9RshaDqYPjUGssKF5QXLjrt0Ovg31gqCeiLHiH/axdxkvP5+vWIQA3/XUN/t9THTg5UkBbqfZYO7SrNEz7o2fW6rzCnqPefOOcrCco8scUiqu14LUBVU6t+cY6WH+9+cY5XW/dceqv1Q/Od7ah1vrHNlh9rd0G9rPenG/UBsZz7ao/lvWFU647HAe2VRCEXYsIq8MMblz1QksLVsmjyYKwR+DGB7L5gSAIgjDSqSUW8mb87PO9dYUF3pCfdZ63pnjBvJdc7qt50+4ICyyjljBAYfeSy3w1hVO287gTPTXbOZg6KKDoOmqMBcWLq77kV/2ofp3ls+xG/fjaNwM1RRSnHxRXa8E+1uvrvkoyM7j+8pH+Gx5bhWNDeYR34G6VaeepPDf8ZZW4BdhJBvtekVpiH+fbZ7/or/k55xxrbjbqzjeKgbf8IlxzvrHss8711pxvzrrBNZBzsxoUPb/6zWDNdYNz/nv/FtLpqsE2HHqYu2YbKMw6/aw1Fk4baq2xFHWtdad6ftYxabJLt6PaWHIMmJfruPyoIwi7HhFWBUHYrzm+t1cHQRAEQRiOvLuqF0/N32Cf1aaWWEhhYt4J3ppCnnND/tkv1hYLedPP65OmuKretDvCwlnn1RY1KTpQnKglDNBqlvnZzqHU4YiirKPeWLAftYQc1sH6WUctgYMi9Ge/FKgporAfznhXE3IYx/H+2GX+uta5+yIU6y783lO47fGldkx1rvr9Ihzd4tohUdWBeY5sMlQZi+0YYSis3BjHZf/+Nzz4cocdU5tac4Hz7ZLL/TXXHoqFs2Zbc7qaOLtFFFXztVYd/DHFWTeq/TBEcfe4E9ScPpeC4vbXuQ5Q9LR+OKo+H50fnjpWV7eG121Q5ddqA/vONUGvXVXmfHkbalnFcg12xrJaG9g3rimso1oZztpG8bbaOAiCsHOIsDrMmHjNNXj/m2+Kj1VBEIR9gHVXh5F+8177TBAEYcehGPXTPy/UIkc9gXUwYmG1m3rnhryWxRWFDT4GSzHwEpWu2k17ubBQTZxwrDgpHtQUBh620rCd1UTNRnU4/axlAeeINOzHcSd6q/ajXIR2Hs0txxGhnX5UE1GcfrCcagIGhVeON9NUE5v2ByjW1RJYucN/IpnTj/YPldHIqzKyuixh6HDt4XvUSAyv9lnm/HPmW821xxYLawmnjihKqs03Z05z7eIPJtXmW7m4W60OR9yttW6Ur11f+1Zwu3XDaQPT1BIt2QZazNbqZ3kbWE5lGxyLV2csq4nQW9dPb1Vf1s76yXJYHtssCMKuQ4TVYQYfSY7MnYvA1Kl2jCAIu5NXpk3TQRB2F31/uBrJ535lnwmCIAyNRgJrNbGQYke5EFhNyHNuyAlfK8ULiht81Jbwpv3u320rkPAGnUIA87KeauKEY8VJqgkD2wmWFaLmYOqgcODUUWssHJGmlvig09SpwxGhCUWKSgvf8n5QRKk33k5fK+vYn6gmsP7h9Y2IlrYXvXeUJjOvytpknwk7Sz0xnHOhUjjl/HPmWzVBsVwsJJwLlfPFEV5JNYv68jnNcirnkiN6ltdRub6V11HtRx3nxxZSbf0rbwP7U9kG9pOUt6HSkr2yDZXrI+tw2lBrLJ11h6Fy7SpfPwndpYg7AEHYtRgbOjrMlR0dmDdvnh0l7E24O3n3Aw+g7YIL0H7hhXasIAi7i2cNQ7+ebMovt8Kuhxar7R/7Ifqe+ClCR1+K6Lnfsa8IgjAcoXBAPn3Ggfp1OLByc6KqkBoOeHQ7T507Dob6f9nitTEcPatfvzrwBn3WYR59M064Yz6trpybfN6QU2C8/fcRfc4bfoqHP/lFWJ8T7obNx+udPEepOu59NLrlnHkoPnzvByF9TuGiv88EfZk6nH78AP70SFTf9PMmf0fbOdg6nnihSR9Xq4P9oDjjiAuV/WIdFGedsWjUD+fcqZNU6wetfJ06q413eb8+9+M/6te9CT9Xu5N6vjvPP3YSbnihEwcjo3f83xkSRXVfZXjx4wtn2DEW9ep3SGQai06p3PaWh9UYTH17Mg1JDqJ/LKteeXyvuP5w7dkYb9luLnz4nLheR5z59Z1vpLQ46MwNzpWmZteW+VW59lAI/M7XU1vmCqmso3IOs45Zsz1aOCS//FkWA/0lvZYQlsl6nToq5yPXjdOPG8CrC5r1OWlUZ+W6UtmGyjWBIilF6FptIFxjy9swmLEsr6Ny7apcZ9jPa9Ta5NQ5NtoLU+6DhDpwc3XuA0QjQHGhVx0RVocZ3LRq9Xe/iynXX4+psoGVIOx2+GMGkR8yhN0BhdWxX7gHxWQv+p68Ff5px6D5kp/YVwVBGG44wupIYnQsgDu+fiY6Or3b3YBXCoG8wab1qCM0VN6Qk3IhgTfgFA7uVWU4UKwgzk175U1+pahZTTioFE4r20lhoGN1cUs7G9VRKRyQ8rGo1o9K8aFyLAbTD7bLcU9Aqo13uVjUqI7hIKzuTQ6d2oL/XjCAI0MleIydE3oKprHTZQjVofjOH3TOP3oSxrQEtbBaLihWmyuVgmKlQEnK155KUZSU11FtTjOuXDBsVAfnY7m4S8rXpmrrSvm6MZg2cB3isbMmkMG0wflBZjBjWbnuVK4rbGO5+EvKfyATYVVohAirjRFhdZjR98wz2mK1+eSTRegRBEEY4TjCqqZUQN+T/wEjMgqtn77TihMEYVjBDVueenujfTY82NyXwSuLOu2zrVDcOO/oiTht7vgt4kb5TX+1G/LKG+5KIZaUi4WVAiepFA4qb+pJuaBRTbwtL3cw7RxqHc5YVBNIWEe5dVq1OspFlmp1lAuntfqxI3UMB4FjsFaPQ2FzXxrX/vJV+2wrFFQ/fcYMTBsbRej/+xtOixbhxs4Lq5uLBi4/cowdYzEYi9yQr7G5bCSw9XNQj8HUtyfTkPAg2s618Pt3v2OfWbB8R1DlDzrEsVjl55+P0XMuVP744sDPPwXFanOFlP+AUm1tKl97qgmvxJlj9AvNuVUuepJycbaa8Fo+p6sJkuVzmmnLf6hyoGj5xItNerOrWv0cbBuqrTvEGctqaxtx1pUmtdawjspxKH+PRFgVGiHCamNEWBUEYb9m7S236FduHCcIu5pthFWb/r/9N0r5NNquugeGf9sv24IgCJVQVC0XOChuOIJqpbjBm/6PnBPXN9y1bsidG26KjtVu+iuFBW7Iws1hynGEA1pOlT8+71AualYTE9lORzht1E6KMOVWnw6DqcMZi2oCCXGstmqNRXkd1YQe4jy2O9TxLheZ93WBgz8SXPXTF+2zbQVVh0nXv4SDkd4lrgAWI4CO7x5nxwg7wrurevGvv3lTH1cTVB2ctYc4Yl+tueIIivy8V5srjjjLuVptrhBnrlNgrRQkiVMH51s14dURZ7muNaqjmiBJnDlNVwXV1keuBZOmuHe6n4MZywXvWP5XK+tw1hXWX0385Tg4/RNhVWiECKuN2XaGCnudzKpVSMyfrz+8giDsfpZfe60OgrCnaD7pM/A0jUbXzaeh2L3KjhUEQagPxY1LTpqKm686GpeecsB2AgehsEhBgb4EyzelKsfZ2IliJW/IK+ENOgVT3ngzVIoGhDtcc/MTZ4f7Srh5CoUDCggUBMoFT8JzZ4OVF58vVK3DaSfr4IYulQymDo4Fr5dv3FIOxQZnLBr1g+VVihuE5dYbb7b9rt9mG9Sx7YY4+zoUVG++6ij8308evo2oSg6fEEF3cdv3cih0F126LGHocM05ZuYo/T7Rn2q1Naccfv4p+NWaKx/7B79aW/J6zlebK1wHuDFTrbWJMB83t+Ocq1aHszN/+YZQ5bBter7WmI+EdVDwrLYuEa5NnNO11sfPfilgt6H6mlDez3ptoEDbcCzVWl0pqhJnXeEPX2xvJXocVpf0WAiCsPOIsDrM2HjHHXj98MO3WNEJgrB7iZ1yig6CsCeJHnUJ/FOPROctZyC3+nU7VhAEYXsGI6iWQysobTFVRWwkvOGmaEBxgwJpNRzxwtntupKt4kV14UCLAVNcWpSsLRx46woHTjt3pg6OBYWeavkJ66AA06gO7gReS+ihcEoLtlrjzXIpcNQSkJmH7dgfBA5+lmsJqg6XHjkG/Ub1sd4R+g2PKmusfSbsKKNjQf0+ffNjs2u+V5VwvnHdqDUf+fmnEMjPfLW5QjhfaG1Za23i2sM5fda51a+z3Ho/hBCnjprrwrk+/ag8X6vB+frD72dqro9OG2qtCWQwbeC60Wgsa+VnvWwnxd9aaZwflgRB2HlEWBUEYb9mztNP6yAIe5rwYecicsRF6L71HGTe+4sdKwiCsC207huMoOpwyeU+fcNe64acN9y80a4nPFAstATJ+uJFPeGAm6/QqrWmcKBu+tnOataohOXOOsy9U3VwLCg+1BJFWS6tthrVQZGlngjNOuqNN/vK11rj7Vjn7utQWG0k0l16xGhEI35sKFV/TwfDuqIbTaoMliUMDa43gxVUHfj55g8R1X5AcOA8qjVXCMVZ5q81V5x5VM0a1YFl1JrzxHl8v9ac55ymFWitdYX56B+1URsG0896beBY1moD4VjWEn8J19Za4i/R61Ksev2CIOwYIqwOM6becANONk39KgjC7oduN8T1hrC3CB58MppP/RJ6fvlxJF/+rR0rCIIwdHijzhv2euIGb7hnza59nTfzzN/opr6ecMCbduavJRwwvp54QShq7mwd7Ee1R2UdKJA0qoP56wk9LKPeeFM4rSUgExE4tuW2f5iJN+NAcghGvMzzVsLAf6syhD0PN1GqNVcIBcV6c555KXzWgz5J69XBH1Rq/RBCOGcb1UH/rfVgPxq1YWf7ybGstbaRRmPJa/XEX2ftEgRh55HNqwRB2K951rC+sPAHDUHY1VTbvKoa+U2L0ffETxH5wNWInP4VO1YQBGFwlG8gQ2hNWk/o4+Oh3DW7njDQqAw+us4dp+vd+A+mjHptYDvJztTBMurlH8xY0LK2ngAxmH40qoPIJjJb+b+Pr8b3VTguUkC4/rBtgaLqi0kPvnH6FHz7zCl2rLA7qVx7hJGHrDtCI2TzqsYM8n9Twp6CvlXpY5W+VgVBEIT9A++YgxE75zqkXvo1Bu7/lh0rCIIwNOoJjYRCYyORr1EZzF9PsCSDKaMeLH9n62iUfzBj0ciqazD9aJRG2JZ/PWMKvnzyBDwb9+hH+xuxNu/Saf/5pAkiqgqCIAh7FPk//DCDvwYk5s9HZpXsFC0Ie4L3v/mmDoKwt/G2jEfLudcht/Rv6Lvz83asIAiCIOyf3HT+dLx4zeEwo2G8lfNiVdaFRFHdL5mGDjxelTX0NTRHdNrvqzyCIAiCsCcRYXWY0X7hhZh+882yS7kg7CEic+fqIAjDAVcggpZzv4Vibwe6/+tiQB7NEgRBEPZjjpwUxWtfOxI3ffhgTJ3WisUI4Mm4WwceT53Wrq8xDdMKgiAIwp5GfKwKgrBfs/jKK/Xrwbffrl8FYVcyWB+r1Yi/+Bvk45vR+tm74Y6027GCIAjbI34O9w3E16Ew0pC1Z+Qj647QCPGx2hixWB1m0A0A/avyVRCE3Q/nm/g0FoYj0eM+CW/7NHTf8kEUNi2xYwVBEARBEARBEIThggirw4yu++/XFnR8FQRh9zPxmmt0EIThSPT9H0Hw4JPQ9ZMzkFv+oh0rCIKwY7z4XME+qk2jNL/8WdY+qg53vucO/fV49KG8fVSdRm0YTB2NyuAO//XYFXXsin4Iwr7AYOZCx5qSfVadPbFuNGrDzq4Jg+lno+uN1i62sVEZjdopCMLQEGF1mBGYOlX7e6SZtSAIux/6NGYQhOFKaNaZiB5zGTp/ejbS8+VHN0EQdpxf/TxTV5zgNaapx2MP5+retPOGvV4ZFBZ+9P20fVYd1lHvxn8wdXz580n7rDqPPbRz/SDf+UbKPqrOXXdm64ogg6lDEPYF+DmvN9/u+m1Ohdo/2nBOf+fr9ecb69jZdePDZ8fts+pceWlCp6sF1656a+xg+tmoDY3WLl5/9MHabaDwyrVJEIRdjwirw4yxV1yhdygXCzpB2DPQ7Ya43hCGO4EDj0fLOd9A72+vQuqF2+xYQRCErdS74eYNNW+6a7Hg7UJdYYL5F6hQ76b9bnXD/lgdYYHls5x69bD8ejf+g6mD41BrLCheUPyoJ3A0qoN9sASKOuP5DvtZu4yXns/XrUMQRhL15hvnZL35xrnwq5/Xvs78A6oczrlaWPNx59YN1lGrHyyf1+qVwbWr3ho72H42Gst6azDXHdZTC7ZP1h1B2D2IsCoIwn7N64cfroMgDHf8k+ag7fzvIP6Xf8PAo9+3YwVBECxqiRcUEs8+36tvymvx2MN5nHWet6ZYyLyXXO6rafXFm34GllFLGOBN/SWX+WoKIGzncSd6arZzMHVQQNF11BgLWo1d9SV/TYGD5bPsRv342jcDqp3VBQqnHxQ5asE+1uurIIwkaol9W9eN2vNtUHO6ztrTaH3bkTpq9YNz/ie/COvXalB4PfQw925tgzOWtaz+HeGZr6yrGs46zzETBGHXIsLqMGPVDTfoHdfW3nKLHSMIgiAIFp5RB6Dl3OuQefNP6P/jV+1YQRAEPg5bXbygBdO8E7w1hTzeiE+a7MJnv1hbLORjrrw+aYqrqjDAciksnHVebVGTQuP3/i1UU3yg1Szzs51DqYNiAvOxjnpjwX7UEjhYB+tnHbWEHIoTn/1SoKZwyn44411NwGAcx/tjl/nrWtkJwkihlthHsfCsc33159sJHjVXvFUFRUeQ/Oo3gzXXjfL1bajrhlPH3b+rvXbVKp9QcOV8rteGwfaz1rrDsfzYP/jrjiXHgT8sVbNKddZ5jkMtgVgQhKEjwuowpNDXp4MgCLufk01TB0EYjvTFk3j21Xfw6/ufwKp1m3ScOzoKLed+E7k1b6Dv11fqOEEQhMGIhdWEPEcUoPhQTSzkDT8fUeVN+SUqXTVhwBFQWE81UdOx4mxuNmqKDxQsnXZWExca1eH0k3VUGwtHvGA/agkc5SINrVsrccQJpx/VLHydfrCcagIGhVdHhGGbBWGkw89yrfnGa7XmG+c0r3G+VpvznB9cl+qtG+XrW7UyOAedOV1r3XDq6O/b/lF8xxLUWjfqz/m6a5e6xn5WE6HL21DtxytnLJmm1ljyxy9a7vJHn2rrjrPOn63aUM+aXhCEoSHC6jCDPlbnPP20fhUEQRD2bz593c047Ypv6NcZZ/yjFlmJyxtE61n/H8xUD7p/9iGY+eoWDoIg7D9Uu+HmDXu5EMjzShxRgFQTDigwnnWuVx9TGKi06uINP4UA5mU91URNx4qTUGD44U3bigvbCZYVouZg6qB44dRRayxoNUbqCRz16nDECUKRt9LCt7wfFDDqjbfT18o6BGGkwTldbb5RCCScS5WCoyMWOnOhmqBYPqdZR6XFaaN1g1BE5FysNaedH2wIrdmr9cNpAy1G6815tqEyv9PPegJxeRuq/XjVaCxZnvPjF+vgOess58XnrbWN8LXa2iQIwtARYXWYEZg6FbFTTtGvgiDsfip9rG684w4dHKvxxPz5+pyvhPFOGoeu++/fJk1m1Sp9zngHJ09luX3PPKPPiZPGgdd4XllueRqnbl4j9cqVPu35Pk38jxQ8s84dcnjgyZfw5U9egD/99F8Ri4bxm/uf0HU4NJ38ObiDzei65XQU+9bZsYIg7I9UEwspAjhCYLWb+nJRgFBAqBQOaMV5yeVby6i06uINunPDTqqJmpXibeWjquWCJeuoFEAGUwfTU0Ah1caC4gXzkWpj4Tyi74zFYPpRaflV3g/CNOUCRuV417JwE4SRBOdb5Q8u5aIoP++Vwmm5WEiqCYrlc5pzqdLitNG64VjKO1TO6XJxl9CHKde7chxLUML21pvz1daVyn5WitCVbWAfWGc55cJrtbFkec6PX4Rlla+xXHeYj4HwfdmX3ZCsuzqM9Jv32meCsGcQYXWYwRv85ddeu81NvCAIu4/E/PlbRDSy+MordWA82fTrX+vzdT/5iT5nWieNk4/XeO4IdMzLc85lh9Xf/a6Oc+Y20/Kc8aS8XEdQdOrmK2G8k8ahstxqdTt5pE97r087w7e/eBkuOG0ePnXR6VpopXuAcqLHXgrf+Fno+skZyK+zLFoFQdj/4E3zLHUDX37DXS4Ekkqrr0ohsPIxUeemn2KgQ6VVl/P4vEOlqFkpJvK1UgCpbCcFkPJ2NqqjUkCpHItK8YJUChzOI/oOjfpBWF65cFp1vMsEjGrCazUrO0EYSXBONKlQPqd57IiipFI4LRcLSaWgWG1OD2bdqJzT9daNStGTdXCec60grMuxBHVgfWybQ7klKKlcY6v1s1yErtaGjtWlumtX5ViW//hFuEZzrXHgMdvlwLLK1619kb4/XI3kc7+yzwRh9yPC6jAjoW70uXGVc1MvCMLu5eDbb0f7hRfaZ5Y7DgZPLKbPw3Pm6HO+EsY7aRzaLrhAn0fmztXntDjneXm5Yz71KR3nlMu0PG8++WR9TnjO4MBrPHfqdsotT+PU7Vi5O+XS8t3BySN92vN9WvtPIRQWPDykcNuNluDbN5DQr6vWbcaUCWO05WolkcMvQOjQs9B1yxnILpb/fwjC/kr5DXctIbDc6ouiQPlNPSm/6abVk/P4vEOlVRfTlt/0sz6eO8JApZhIyoXTau2k+LBNOxvUUSmgkPKxqBQviFXHVmvRSpGGdZQLOdX6UW75NRThtbIOQRiplM+3SlGU8HNeLpzyM185F8oFxWpzulw4rbVulAun1eZb+Q8ulT/YkPLNn1hXuSUoYXpHtGQbWGZ5G1ifs3ZREK3Wz3Kr/1ptaLR2OWuwI7yWi788dsonleIv28Dz8jT7Gq3n/SsST/wY8Ye/Z8cIwu7F2NDRYa7s6MC8efPsKGFvQusoWj05AoAgCIIwcuHjSGO/cI99tmPQMrX92I/p4zkzD8Bbi1bgO1/8B3znS5fpuGpkVryMvsdvRusnf4XgkR+3YwVB2NcxDAMb4y36Bvsj58TxxAtN2o/prMM821iNkS9/PomvfSuob+4pQtz++4h9xYKiCIWDn/wijCsvTeidqitv7I+a1Y8nXmzSN/20yKosg35aWf5VX/Lj9OMH8KdHotuID2zn0aqMxWtjDdtJ8cJpTzmDqcMZC/aDVlzl4gJhP+59NFpzLMrr+LAqi20oFzAIy3h1QfOQx5t1dKwu6jRjo70wZUNNYQRRvvZcoz7r/HzXmgvOfOOcpjD4vR+E7CsWzNfU7Nol68Zg5jTr4PpQTnk/uG58799C2815J98vf5ZFc8zQQmg55WtXtX4yHxlMG77zjZQWXuuNJUVo1lcO882a7VHBXXOdd/Lta+uO8927mOxF35O3wj/tGDRfYj3RJgwNPrH3QkuLNjw5vrfXjhXKEYvVYQYtp2bdd5+IqoIgCPs5tEx98o4faFF19bpN2h3AP39yq3VtNQIHHIvWD30Hffd8DYln/sOOFQRhf6HcGqrSWsvBsfqiWFlpKUV4A0/BlDf3DJWiKqHPQVp18ca80oqT0KKK1qC86a+0KiM8dyw1q1nNEqedrKP8MVaHwdTBseB11lNtLCgqOGPRqB8sr1JgIY7lV63xdh4Nrl/HVutcQRiJcH44c63WXHAsMatZaRLuaM9r9ea0Y3FaaYXpUL6+1ZpvtJytZlVLWAfLd9a/anOeYiXXSJbTqA3V+ulY/Q+mDayn3lhqVwPV1sdzrc31mJ/trYRl7uvrjjvcgrbzvoXCxoXoua22UYIg7ApEWB1m8NcA+udzfAIKgiAI+y8nHzUbr//pVnS9fPeWDawaQX+rred/G8ln/xPxhyzfsIIg7D/QMpPWXNWECUJhgRZMFCacTVkq4U03fX9WugFwoBUrRYNaAgrr5QYrFCWriRuE4gPbqdNWES+cdu5MHRwLWm5Vy08ckaVRHfSJWE0gIRQ1aKFWa7xZLgWMWgIy87AdFFIEYSRDsa/e2uMIp7XEQuahqMr5VmtO0+WAs25Uq4NziWtCvTlNlwO1RE/CfLQYrbX+cc5zXWFZtdYutoH+qistTYnTz1oCM2EbvvN1Wp26q/aTY8m1q9aPX8zP+llHuf9VB5a5X6w7Lg9iH7wGyKfRdevZMLOWey1B2NWIsDrMoH/VV6ZN06+CIAiCMBQ8rZPQeu51yCx4DL1/uNqOFQRhf4DWUHzctZYwwRtq3nTXEgWIIxxQ/KyGIwzUElAIBRDto7WKuEF4U892VrO2IiyX1mk7UwfHgiJOLfGC5VJkaVQHH92tJ0Kzjnrjzb7ytdZ4OxZugjCSodjXaO1ptG5wnukfdXZi3eCPIfXqsDZ3qr1u8DqtSWvVwXxcN6pZghKnDbXKJxSh6/WTP1416ifbUEv8Jbqda6z1rRr707rTfNJn4Gkaja6bT0Ox29p8VhB2JSKsCoIgCMI+iCsUQ8u530Rp8xL0/PeldqwgCPs6vOGmBVM1KyYH3qzXEgUIb8iZv54wQAGkloBCKIAwfy1xg/G05qpXB0XNna2D/ahmNeZAgaNRHcxfS5xgHSyj3nhTwKglkBAtvMaq90EQRgrOfNuZdYOCYqM5zbm4M+sGf3CpVwfL55yvNaeZj3O2miWoA9tQ6wcdQhF6MGtXo7Gs9eMXYf2Vm2+Vs7+tO9GjLoF/6pHovOUM5Fa/bscKwq5BNq8ahjhuAJxdqQVBEISRyc5sXrUr6X/uNpTSCbR97h4YwW03SRAEYeTjbCDjQKuwekIfHx8dqOE/0KFRGbSEalI3/7WEATKYMuq1ge0kO1MHy6iXfzBjQcsxiqe1GEw/GtVBZPMqYaRRufbUeszfYVfM6T21vtXLvyfWrkZjORjYjnptIPvq5lW1SC9+FvEX7kDLP/4GgfedaccK9ZDNqxojwqogCIIg7CaGi7BK4q/ehey699B21V3wtB9gxwqCsC9QKW4IIxMRVoWRhqw9I5/9TVgl2VWvoe/xm9H88VsRPvZyO1aohQirjan/s6mwx+m6/34suOgibLzjDjtGEARBEHYePgIVmn4sum45E7lVr9qxgiAIgiAIgrD/QJcArRd8B/EHv43EEz+2YwVh6IiwOsxIzJ+vxdXMKnGqLAiCIOxaQrPPRuT9H0bXrecg8+5jdqwgCIIgCIIg7D94xxyM2DnXIfXSrzFw/7fsWEEYGiKsDjNip5yCKddfr18FQRAEYVcTPPhkxE7/Z/TcdhlSL//GjhUEQRAEQRCE/Qdvy3i0nHsdckv/hr47P2/HCsKOI8LqMIOC6tQbbhBhVRAEQdht+Ke8H60f+jb6H7wBib/+yI4VBEEQBEEQhP0HVyCClnO/hWJvB7r/62JA/FwLQ0CE1WGGuAIQBEEQ9gTeMQeh9bzrkHzlf+URKEEQBEEQBGG/JXbql+B2e9B5y2koJrrsWEEYHCKsDjNk8ypBEARhT+FpHofWc69Ddtnz6PvtVXasIAiCIAw/Fr38Mu7+/k34zhmn4dqj3o/PHDRDv/Kc8bwuCIIwVKLHfRLe9mnovuWDKGxaYscKQmNEWB1meGIxHQRBEARhT+Dyh9F6zjdQ6l+Prl98GGapaF8RBEEQhL1PorcX//O1r+J//vmfsOnRR3CY4cIZY0fjslnvw5nqleeM/5+r/wn/fe01Or0wPHjxuYJ9VJ3+fhMda0r2WXUefShvH1VnMHW8+3b97zaN2tAo/67oZ6Prd92Zs4+qwzY2KqNROwUg+v6PIHjwSej6yRnILX/RjhWE+oiwOsyYeM01OF59GaCfVUEQBEHYUzR/4Itwe3z6V/pSotOOFQRhX2AwN9ON0vzyZ1n7qDoUDhqVsScEkkZ1NBInBlNHo3YOph+N0ggWz9/1B1x32geQXvAuzpkwHoe1tWJUKIiQx6tvZIPqleeMP2fieGTeW4BvnXoKnlP5hL3Pr36eqSv23fXbnAq11xbOle98PWWfVYd11JtPvMY0tWAdHz47bp9V58pLEzpdLR57OFd37RlMPxu14bGHcnXHktcffbB2G7iu3XVn/XVcsAjNOhPRYy5D50/PRnr+/XasINRGhFVBEARBEDRNfARq9HR03nwaChsX2bGCIIx0KCrUExQpCNQTHsjdv8vWvamneFHvpn2wAkm9dg5GIGlUB9vYqB8N6/hGqq7IMph+iMDRmJfuvw8P33IzThjVjkMDfhh2fC14fXYoiBNHj8Kjt9yi8wu7n1rziXNEf9brCIovPc+1p/Z15h9Q5dT7saORYHi3uvZYHdHTqaNWP1g+r9Urg4Imhc1aDLafjcaynnC64J2irqcWbF+9PgjbEjjweLSc8w30/vYqpF64zY4VhOqIsDrMWKu+BLwybZp+FQRBEIQ9TeSIixCaeSo6bzlD+17dUbgJoyAIe55awgNvyHmz/uJztW+oKTxQXK0lFmphYXWprkDCMnjjXwtHOKglOA62nYOpo9ZYMH6BCj+8KW3HbM9g6mA5tQQKpx/1RJZGdQhAZ0cH/vfb/4ojmqIYHQrZsYOD6Q9viuj8LEfYvdQS+/gZv+RyX01BkXOF4azzvDUFRc4Vq4zqP3Zw3Tr7fG/N+bQjddTqB+fyT34RrjmnuR4ceph7t7bBGcsffb/62uWseXxlXdV47OG8bkMjq/5K9ufvdf5Jc9B2/ncQ/8u/YeDR79uxgrA9IqwOMwp9fcisWqVfBUEQBGFvEJp1BqLzLkf3recg89bgHoHqe+YZvfkigyAIe55awgNvyM8616utmarBm3De7H/tmwH9uGo1KCh8799CDQUSChy1hFMKByyjlnDKdh53oqduOwdTx1e/Gaw5FuwHrzcSQBrVcfvvIzVFFme8OaYsq5LB1FGL/Ung+PXXvoq5kybtsKjqwHxzJkzAr7/6FTumOhxT2TR456gl9nGunHWur6agqOf8CR41771VBUVnrtSbs7TQnHeCV68dteqg6HnWeb6qPwyV10Gr/GpwTapVPuFa8LHL/HXbMNh+1lq7OJYf+wd/3bHkOFxymU+1Z/s6KLhOmuzS41Br7aqE3+ve+sAH9vvvdZ5RB6Dl3OuQefNP6P/jV+1YQdgWEVaHGe0XXohZ992HsVdcYccIgiAIwtD46f8+gFnnfQ6tx3wU533+eixauda+0pjggSeg5Zxvofe3n0fyuV/asdvjCKr88t11v/ihEoS9RS1BkjfkvKHnTX81IU/f9Ktrn/1SQPsJrIZj6VTrpp6CLIUD3vhXE04d4YA3/fXaSRGmVjsHW8dVX/LXrIPxFDQZqlltOQJIvTrY/7PVOFCoqDYW5eNdTeBw6vjsF9V474DAsT/9cPXmE39Fcv06HOz32TFDY2YwgOS6tbq8ShLz52P5tdfq/3et+8lP7FhhKFQTFJ35yGu1BEVnrnBdqSYocq5QFG1uNqrWQZz1i4JhtTI4xxzhtdoPQ+V19PdZ87scxxKUoiTLqLY2cX2s1wa9tqlr7Gc1Ebq8DZOmuGqOJdPUGkuu3VzX9DpeZV1xxF+uXbXWRwdHUGXg8f7GM39/Gz/8nz/hzgefRi5vCfru6Ci0nPtN5Na8gb5fX6njBKEcEVaHGZG5c7W4Gpg61Y4RBEEQhB2HoupXfvBLLF+zAbNmTMFjz72Gi7703S1fEgeDb9JhaD3/24j/9UeIP3KTHWshgqogDC94Y18pFpaLG7SGqnbD7QiavKnn4/7VhAWKCrxOcaDaY/S0Grvkcr++8a920+6IiaSaOFHezlqCY6M6HOGVVBuLcoGE/a01Fg37ocombGelwDHY8aY4wnZwrJm+FvvrOvv3e+/FeL/fPts5xvt9eFWV58AnAx1Bla7X+JSgPCm4c3BdqJwLjlhIqgmn5XOllqDIuUJRlLCOSovT8rWJ5VSzuNc/pqj6rfVr+x+GnPWPVJvT7IfThmo/uFS2odaawLFw0tRrwyWX+Xd4LFkeXaA47ai2rrz4/Na1i68ss5L9XVAlX/23X+L0K7+Jb/zof/Cpb/wQcy74whajBJc3iNaz/j+YqR50/+xDMPPbi+jC/ouxoaPDXNnRgXnz5tlRwt6Ei1hi/nzETjlFi6yCIAjCyGXd1WGM/cI99tmehZaqFFVXPnkHxo1q1b++84vizvDFc4/AjV/7kbbuqXeT74nF7KO9w96uf2cZqe0fyeM+0j8zx6r5+JtHouAGLvQF6EBxccHbBXztW0F9fvrxA/iTSsebb8Kbb+52fa+KIxQ8abVFq08HCqmzDvNocYLpTz9uAK8uaLavWjf1LOOJF5r0OTd2mjXbo61THXidbgB4488yrvl8Uj9O79ConYOp48PnxHXfWQdFg8qxKO8HYR1OeaRyLGr1g+ILhYnK9KSyH0fN6se9j0Z1m0ijOsZGe2Gapr4fqLbO0vDimJUr7bN9l2+efAKODYcR2wXial82i5eTSVz/69/qMeVj/5VCqjOuzjXnPoz3ZHwveJ2GL2TVDTfoVz5dyHhed9IwjvlXf/e7Os2U66/XawsF3Ozq1Wi74AJdNst1rGQPvv12/Uqxl3knfPnLum6+95t+/WuE58zBVLtOx2J5+s036/rYlv5nn8WYT31K181yWQ6Z8/TT+pV5KCazLewD+8i6WYdT9+uHH67r5lOTjGe5rJvpWRfzMw3hOLFPLJf9vkXlu3FtDB9R8698PvFz7lhIkvL5SThX+GPJ935guXqotvaUz1HOnaPVfFqs6nKonNNfVusK595g66icjzyvXJsq2125buyONlSuKzx31h1S2aZf/iyLgf7SlnWncl2h+EtLWadfbBN/9HHWx7PUunOH+lzy/ayGMz/42eJn2XnClp8L7g1Dju/t3fK54GeXnzd+bnnMOF5jGsI8zMsyWBbLZNmcG/zc8rP4QkuLTvv+N9/Un8nFV16pP7sTr7lGfyb5WXc+kyerNZPwnPHtJ/ow8xc7vnEdLVUpqrY0RXDnD7+Otxev1N+bzzrxSDz0C2tOO8Rf/j3y3SvR+tm74I5NsGP3XZz3pPx9FLZFhNVhBv9Hxv8ZO4uRIAiCMHLZm8IqH/+npepzd/5Qnz/+whs456pv6+Oh8vmTJ+Hrh03HpgdX6S/FgiAMD85TYVm8Zbubft6QO4ImqbzhrhQCeVNfKZBUipwUDmhV5dzkV97UUwTlzvzOTXw1oYCC4xMvNm0pk9dp4elYZVW2s1odFDQcYaBSeCWVY1HZj8HUMZh+lAunlePNMokjolQb73IhhwLHby+8cFj/cFXO7mrLHQEfPnLgDHjd1udhZ8gXi3j3tTdwVDqjxYFqOMKRI8xQuKGAQyGHgg6FHQo8hOICy6EARCFopIhNu6tP9E77A7X2NBIgKwVFzpVysbByflUKkqRStKyc05V1VIqerKNcnK1WR/naVG1d4bpBC9ZywZjz12lD5Ryv1s/yNbZWG5x1pdq6U20sy9edyrWL4zBpinvLWscyy38gu1itOz9Uc6DW97qRJqz+hzr+o44ZGheePg9//Mm/6uMTL/saFixbjZ5Xtv8un3jzAWSWPY/Wz/wB3gmz7dh9E+c9KX8fhW0RYXWYwQWDvxA6vzwKgiAII5e9KazSpyof///BV/8Rhx08DZd97d/QO6BuEG7/Pk45+jA71eAxC1n0P/kfcLVMRMsVv9ZflvlFuPKLOL+AOzdrewt+ARzJjNT2j+RxH+mfmVHqxnVjvGUbsbDaDTnjyoW8ypt+QrGC13mTzpt+PqbqpCeMK7d2qhRUSLngUSlYkh1tZ606HHGiUR2VFluEcXyk1ulHpThByvtRKZiQcoGjVj/K46rVUS7kNBI49hf+cPCBuHjmQfAYW8dpqFBYvXflKnzr05/VlprVxtYRjijwVFqW8r7M3dy8xeCl0mKV/y9kOoo/FIm4lvB+jlAEIrQEdNKwXLaBcRQpmIewHObldZbLNMzDNIzjNceikOeMZxoGHrNsUp6G8DrzMg3LJSyXOHmYhjANA9MzECePc87rDoxraWnRP+qUz4VqYmHlXCifvw7lgmKlKErK66g2p1lHuXBaPn8dyteSSpGUlIuQ1daV8vWvURt4XPlDFSnvZ602NDW76o6lsz5WjqtD+fhWWz/LRWrHUr7e9zrOj5GCYWx9v4fCCe+fhWd+8+/Y0NmDaaddgemTx2HBQ/9lX92W1MInkXj5d2j9zO/hP9iac/sinOsirNZHhFVBEARB2E3sTWGVPqHoU3Xp6vV2jPoi/ckL8KOvX2WfDZ5Cogt9T9yKwIEnovmjP7ZjLSq/iI+0L+CCsC/AG0kKq+WWnNVEAeLc1Dc1G1VvyMvFi2riBnFu2qsJC6Rc1KwmJpYLA/XaScGRfl8b1VFNOCgfi0b9qGaZRir7UW5VS9gPx/JrqONdLqIMRuDY2z9cleOIbbua6y+7FMc3N6N5JzevIo4rgO8/+7w+p3haKbDK/7eGjrP2lM/pWvPNmQtcNyrFQlI+F6qJoqzDES1r1eEIhlzDqq0b5etbufjoUN6PamsXcfJxzjfHDL0+lOO0oVY/mY8Mpg3VhFdSPpaVP/gQZ+2aNdtddRzKfyhy1h2Hkf69bqjfvbkHAX2q8nvzvLmH4NV3lqBQLOLH37gK//yJC+xU25NZ8TL6Hr8ZrZ/8FYJHftyO3bcQYbUxO/8zoLBL4Yd2d31JEQRBEPYfZk6biLce+E/8+gdf01artFQdkqjatRK9D92I4NyLthNVCa1t+IWbj3Txy7cgCHsPCgDOpkvcJZobMVVCC1VujkI/pM5mT+WUb47i7HZdCeMcyy1nY5dynI2bKFgyVAoTFEsoCPAahYdq7aRYwV31G9XBclheZR3bjkXtflBo4XicdW7tOih0MJSLqoT1Mq5ePyhcsPzyzbXK0bt4q/eqnHrrqmNVOBwC27Y7wgGHzcGm3PY7uA+FTek0pr5vln1mWZFybOlflHUJu4byOV1rvnFOcy5wrlSb05wLvMZyOH/LRVXC81n2fCvfjKkcZ9d8zlv6eK2E6xvnG9evavlZB8t35nzlukIoVnL9ZDmN2lCtn5dc7tP9HEwb9DpdZyz1xlfnbf8DBDfD4kZbzM/2VsIyf/Xz6nNsf/1e5/N6cN/Prtc+Vfn4Py1VG4mqJHDAsWj90HfQd8/XkHiGjgiE/RERVocZ/BWVvwY4j5kIgiAIwlDhl8TLzv8AvvaPHxnS4/+5jrfR8+D/QfSDX0XTOd+yY6vjfBF3NsMQBGHvwBtmWnM5u0RXwpt6CgK8Ia8mBPKmnmIhrapYVqW4QZxd9fWO2+dvLxwwD8UR7uJdTbAkFHh5nQJCtXZqwXEQddz9u607h1fC9tNyq5pIQ9gG1lFLhHbq+NXPMlVFUUJRg0J0rX5QyGEbawmvrINWucxfyf4qcBz9kY9gfXb7Hd6HwoZcXpV3sX22FT7KLwLrroViH9eemvPNFk5riYXlc7qaKEro35l1MG21OpwfhmqJu858qyV6EuajxWi9Oc91hWXVmvNsg1671HElTj9rCcxEr11fT2lRtFo/nR9kqv3gQ5if9ddbd9jOauuOw/74vY5GCdyoij5V+fh/I1HVwTd+FlrP/zaSz/4n4g9tu9GVsH8gwqogCIIgCNuRXvo8eh+5CS2X/yfCJw7e0tXx6yYIwt6BVpY//H6mpqDpCAu1rLGIIxzUu+mnOEJqlUGRhRZR1W7qCQXeRu2k+EDq1UGrrWrCK+FYUCCuJdKwXNbBuobaD4oTrKNeP+gGoJbwShyr1lrsbwLH4ad/EKFx47EoY1lOD5VFqTRC4yfo8mpBgZUb5gg7D8U+WoDXmm/OnOY84HE1OJe1dXcVUZRwvrGOalaaRM/lKa66dVg/qFQXXom26lfXa9XBfFxDq1mCEqcNtconXFfq9ZNrV6N+sg21xF+i21ln3XEsaxsh3+sGh6d1ElrPvQ6ZBY+h9w9X27HC/kL1WSbsNfh4Cn0nycZVgiAIwt4iteBxxF/6LdqufgSBORfZsYIgjAT0Tb26ka4lBBIKefVuyClesIxq1lYOFEBqCSiEIgtv7Gvd1A+2nY3qoLVWvTp4vZ7AwX7UEpAJ63CEmmqwDook9fpBK7tawivheNNXYyP2J4Hjih/9GG+tXYfNqZQds2Mw39vr1+OKH99sxwi7m8HOt3pzmoIi87OsajjrRr06ON/q1cEfderVwfK59lWzBCXMxznbaM43Wlca9XMwY0lxtBasf1esO8LgcYViaDn3myhtXoKe/77UjhX2B2TzKkEQBEHYTezNzauGSuKN+5BZ+QraPns3PGNn2rGCIAxnnA1kHGo9autAa9VargIcaFlWS1ggtISiJWYtYYDQ6queOFvPmoqwnaReHYNpZ6M6Go0FLccontZiV9RBKjeR2d956f778MD3b8L7Y80YHdp2A6B6UFR9va8fF3zzW5h3ofw4uDsZytpDdmZON7q+q9a3evn3xNrVaCwHA9tRrw1kX1t3hst37/7nbkMpnUDb5+6BEdx2g7KRhmxe1RgRVocZ3IWv+4EH0HbBBfqxH0EQBGHkMtKE1YEXf4PiwGa0XnUXXJFRdqwgCMOdSnFDGJmIsLo9f/vdnfjj//t3HDh6FGaHQqgnEXHk3k2msKSzExd/7f/DSZddbl0Qdhuy9ox8RFjdfcRfvQvZde+hTX2v9rQfYMeOPERYbUz9n02FPU5i/nxsvOMO/SoIgiAIe4r+p3+OYiGHtmv+KqKqIAiCMCw46R8uw01PPYPg+w7FI+vW4+3uHnSm0kgX8uC2Oyn1ynPGP7J2PYKHztbpRVQVBGFvEz3qEoSmH4uuW85EbtWrdqywLyLC6jCDvpPoZzUyd64dIwiCIAi7j1I2iZ5HfgBX83i0f/5eGK7aj6UJgiAIwp4m0tKCz9x8C/7xp/+BMWefg7fNEl5fuhx/e+VVPL5xsz5n/D/e+h/49I9v1ukFQRCGA6HZZyPy/g+j69ZzkHn3MTtW2NcQVwCCIAiCsJsY7q4ACv0b0PfkrQgeeg6aLrzJjhUEYaQhj+PuG4grgMHz1gc+oB9P5aa/wt5D1p6Rj7gC2DNkV7+OvsdvQeySmxE69pN27MhAXAE0RixWhxmZVau0GwB+eAVBEARhd5HftAQ9D92I8DGfEFFVEARBGDH0PfOMDrxn4v4UgiAIwx3/lPej9UPfRv+DNyDx1x/ZscK+ggirwwz6V3398MOx9pZb7BhBEARB2LXwV/OeP/8fNJ9/AyIf/KodKwiCIAjDn9Xf/a59tO2xIAjCcMY75iC0nncdkq/8Lwbu/5YdK+wLiLAqCIIgCPsR6cXPou+Jn6L103eOuEeRBEEQhP0bx1rVQaxWBUEYSXiax6H13OuQXfY8+n57lR0rjHREWB1mTL3hBpxsmvpVEARBEHYlqXceReL1P6H96kcQOPQsO1YQBEEQRgbVLFTFalUQhJGEyx9G6znfQKl/Pbp+8WGYpaJ9RRipiLAqCIIgCPsB8VfvQnrFK2i/5nH4ph5lxwqCIAjCyKDSWtVBrFYFQRiJNH/gi3B7fOi+5YMoJTrtWGEkIsLqMIO+Veljlb5WBUEQBGFX0P/cbSj2bcKoa56Ap/0AO1YQBEEQRg71LFPFalUQhJFI03GfhHf0dHTefBoKGxfZscJIQ4TVYUahr0//6ppZtcqOEQRBEIShYZYK6HviJ4Dbh7YvPwYj2GRfEQRBEISRg3N/FJg6VQcH55z3UNWsWQVBEIY7kSMuQmjmqei85Qzte1UYeRgbOjrMlR0dmDdvnh0l7E34pYFfCiJz5yJ2yil2rCAIgjASWXd1GGO/cI99NjT64km8tWgFVq3bhJOPmo2pE8bYV+pTSqmbzCdvhWfKkWj5+K12rCAI+yKGYdhHwkjHNE37SKjHs/ZnnntTCHsPWXv2DfaldWdXfPfeW6SXPo+Bp/4Drf/4GwTmXGjHNoYaEvWj3QV/uHqhpQWeWAzH9/basUI5IqwKgiAIwm5iV3y5+8g//1888ORL9hnw5B0/0AJrPQo9Heh78qcIHfExRM+/3o4VBEEQhH0D5+m+cutVQRCE4SCspjM5BAM++2zHyHW8jb4nbkHTh76H8IlX2bHVoUHeup/8RAurx6xcacfuekRYbYwIq8MMTgrnFwcGfoidLw7OrxC8TpxzXmc6ftCdLxe10vA609UrtzLNYMqtl6ZWuaQyzY6U66QZTLmVaQZTbr00tcollWl2pFwnzWDKrUwzmHLrpalVLqlMsyPlOmkGU25lmsGUWy9NrXJJZZodKddJM5hyK9MMptx6aWqVSyrT7Ei5TprBlFuZZjDl1ktTq1xSmWZHynXSDKbcyjSDKbdeGue8/7bjMfE/Uvp4Z/jyJy/ASUfOxqevuxkXnDYPt914rX1le3LrF6Dvrz9B9OxvIHLKP9mxgiAIgiAIgrBvszeF1Y1dvbj+1v/FHff9FYdMn4wrLzpDf4ffUQpdK9H7xE8RPvZTiJ7zLTt2K46g6mzax/sREVb3MhRWX3zxRVMYHqy8/nrzGcBcds01+rz36af1+fOxmD4nr82dq+M23H67Pu+4+WZ9zngHnjPE33xTn7M8ni+64gp9zngnTb63V8fNP+UUfc7ySOd99+nzl6dO1eeE7WAcrxGnve9eeKE+Z1k8Z0ivXKnjeI3n0ifpE5E+SZ94zrCv94n51v5TiM9W7XToevlus7DgYVN9OTNj0fCW88qQePDb5tqrI2bq1d/rdgiCIAjCvgj/3+78/10QBMGB372rfUfeE+HTF59pGoZhXn35h8xTj52rv8MvevRXVdM2CplXfm1uvPFIs+/ua+2eWfdIzn1TeSi/b9kdOPc65fdmwrbI5lXDjLFXXKF9q7qbm/U5fxWgBZRjBUUqz/kLBc8dyylSmcY/ZYo+Z3mkXrmVaeqVO5i6w3Pm6HPpk/SJSJ+kT5Vp9tU+OdfVl6MhB8cytW8goV9XrduMKRPGIBYN6/NyUgufxMCzv0L7lx5E8MiP27GCIAiCsO+x8Y47dBAE8vzzz4P+XmuFnb1eLfz7v/+7DtWulYcZM2bg4x//uK5D2Hfh4/+0VP2ny87Hzd/8HB6/7UYE/D7MPPuz8Mw6d4dD4JhPYex1r+EbP/sjOn98PhZcdBHe+sAHtliplsOn6WhRurvCK9Om2TUJtRBXAIIgCIKwm9jZx5G4cVX7sR/Tx3NmHqA3sfrOF/8B3/nSZTrOIfHmA8gsfR6tn/0DvBPq+18VBEHYE5x11ln4y1/+Yp9ty7/927/hX/7lX+wzCwoUX//61+2zwWGaphYuGnHmmWfi1FNPxac//Wm0tbXZscJIZvm11g+P02++Wb8KArnuuutw00032Wfqc7J8OQ444AD7DPjDH/6ASy+91D4Dfv/732vRk3At+cUvfoGLL75YrxOVaxLXG0KB9Fr1+fvoRz+6ZR076qij8Nprr+ljrjePPfaYPmZ9X/ziF9FrPz5dXp+we9ibrgDmXvQljG6N4U8//Vfc/ejf8Lnrf2pfGTqfP3kSvnvOLKz8z0VbXJrtLWgEePDtt9tnQjlisSoIgiAIwxRapnKzKoqqq9dt0v5V//mT2+4SGn/5d9qvavs1j4uoKgjCsIHCQldXl31m8YUvfEGLE5WiqsORRx6J+fPn6zSOiOFAMZZxLJPHDox7+OGH7TOL5557TsdTVLnkkku0wEuBhGJvd3e3nUoYyVBQFVFVqKTZfvrJoVxUJRMnTrSPLMrPuT597nOfa/jjywknnICbKz57tfJQRP35z39un0GLrLIG7bvQp+pTL8/HmOM/rkXVpkgIiTfuq/pUWqOQeeXX2HjjkfjBly7G6H95VPtQnXXffds8MefAOPo+3d1BRNXaiLAqCIIgCMOYk4+ajdf/dCu6Xr5b/wJe7gag/9n/QjE9gPZrnoA7NsGOFQRBGB5Uig1Tq9wQlnPXXXdhzpw59ll1WCaFWVqFOTQ1NdlH20JRhRZj06dP1+e0KLvtttv0sTCy4eYtDIKwqygXQBtBcbXWD0SVlIu3tFxduHChfSbsa3Cjqr/f/RN8+uIzceu/fhHr/3andgewo+jNqx66EcG5F6H5oz+2Y4H2Cy+sKbDSndnuDkJtRFgVBEEQhBFGKZ9Gz2P/D65QK9q+9GcY3oB9RRAEYWRCkaLSuqwezqO2g4E+Dh2eeuop+0gYydDXIIMgjDSi0ah9JOyLHDFrhhZVv3DpuUMSVXMdb6Pnwf+D6Ae/iqZzvmXHbks9gVXYO4iwKgiCIAgjiGK8E70PfR++yUcg9il5JEcQBGFHiInVjSAIe5C1a9faR5b/1UZW+cL+S3rp8+h95Ca0XP6fCJ94lR1bG0dglUf09z4irAqCIAjCCKHQuQK9D9+IwBEfQfPFP7JjBUEQhHosW7bMPgL+6Z/+yT4SRjInm6YOglCP8t35GU488UT7yu6HvlSdzasIfbjeeeed+lgQKkkteBzxl36LtqsfQWDORXbs4Iidcop9JOwthp2wyv89amf1KvBfSZ87F6wTJ15fs18ZrBPL2b2d1PlTESx4VFJ/Syjqv4IgCIIwXMl2vIXuB7+H6Jn/gqazv2nHCoIgCLV466239OYx3MSKfla5yRV9IwqCsH+gdYGywI3tdjfcLI8ibnt7Oy699FLtV5Wb8tGHa6ONsYT9E25wlVr0FEZd8zj8M+T/USOR4Wuxapa4EvIAMKwoLYOq+FKJMqiJggrd+SIW9aexNJFBf0ldM5w0TGELplxIVW7+dRZVnqlU+p8+t6sSBEEQhOFGZukL6H3kB2i5/JcIHf8ZO1YQBEGoBq3SKGzMnTtXb4h1ySWXaKvVc845x04hjHReP/xwHQRhuMHH/fljTktLix0DfOYz8t1NqM7Ai79BfvNyjLr2SXjGzrRjhZHGsBNWDVsMLRpsmgGXaemqpvpjqiNqnyV1KaEOFicLeGxVL+55Zz3ue289/rahD6tzJWTh1umLFFkNlZCZdAFWmYxgHSzNreLc8MBgoYIgCIIwzEgt+Avir9yJUf/8KIJzL7RjBUEQhFrQKu1b39q66QfF1UceecQ+E/YFEvPn6yAIwxFuxPfb3/7WPgNee+01XHfddfaZIFj0P/1zFAs5tF3zV7gio+xYYSQy7NREiqclw7AEUfucUqu2VjXUDabhwuqsicfXZ3D7u914byCHww8ah5lj2vDumj488N56vNQTx6YCpVOPyqfKozrLkhyBVXXbUP9cJXVVW7OaKKo0JbtOQRAEQRgOxF//E9KL/4b2Lz8O3/Tj7FhBEIR9D8cP4a7ixhtvxJFHHmmfAZdffjlWrFhhnwkjHW7WIhu2CMMZWsiX/8Bz0003yQ88gqaUTaLnkR/A1Twe7Z+/F4bLbV8RRirDTlilHalRMuApqSMzD9MsqLgSMjCxoVDCC105/G5BAvcsyWJhxg9/LIqZLT6cP6UZH507GS0BL15YvBaPLdmE9/py6C+6kDfduoySUUDRKKKgQlHVZRoUWS0R1zRUXTpWEARBEPY+cT4a1LVS/4rtGXOQHSsIgrDv4WzysquhparzOC79HNIlgLBvMPaKK3QQhOGM/MAjVFLo34Ceh2/UvlRjl//SjhVGOsNMWDVVgwrqtaT+8nF+ugQoordg4p3ePO5ZMoD/XRjHC3EXeoIR5D1RvLcujzc2JJFWuWaEPPjYIeNxwSHTUMyU8MiCDfjLij6sTOSQNFWphirfLMAoFVAyi6oOAwVax9J6Vf+j0CoIgiAIe5e+p36GYrGAUdc8CXek3Y4VBEHYN7nttttw9NFH22e7Dnkcd99l4x136CAI5fT399tHFpUi5tq1a+0ji8rzclatWmUfWfAHoFqUX6tMV+0HHm6sJ+x/5DctQc9DNyJ8zCfQdOFNdqywLzDMhFXrMX1CdwADph8LUy48vroPjy7ajPldeXR6QsiF/IC7BJfLhXTRh66UgWTRRMk04S+ZmN0awIePmIgjD2jDqr5u/HnRajy/fgDrMgZyhg9uww2PSucyi9palfW6Sh4YpphgC4IgCHuPUiaB3odvgrtlEto+90f1vyf5wU8QhJFLpcDwxhtv2EcWFD3+/d//HV//+tftmK1UCiKVgkk5AwMD9pFF+Xm1x3FZpzCyWXzllToIAnn++ef1hnWc3+VMnz5dxzvXuUt/OTx3rjtwfWDcf/7nf9oxFtzl/6yzzrLPLJy0/NHGgceMc9aZaj/wcGO98jqFfZ/s6tfR8+f/g+bzb0Dkg1+1Y4V9BWNDR4e5sqMD8+bNs6P2LJasuRXu9J9RkZ2ZAhZsTuG9DQPwevM4eFI7liXdeGpdEQkjBI9Le0ZFKJ/G+RO8+Mi0MJpdJRRNywKV//F1Y76I1zu6sHBjH4KhIGZPaMXBLSGMdpfgM0souSw/rC7TbolaBC0qWyYIgiAIO8a6q8MY+4V77LP65HvXY+CpWxGYfa78ii0IwoiHAsRf/vIX+6wxX/jCF/Dzn/9cH1OUqAU3pjrhhBPss/ppTf393uKoo47aRvzgzt2PPfaYfSaMNF4//HD9+v4339SvgiAIZEe+e+8p0oufxcDz/4PWK/8XgUO3FeeFfYNdL6za31/0JvzWEQzQXyq/9NhffIySTlCCS6dx8br6l1Ghs1jE0t4k3l3bh2yqgEPGNWPW+AhChqni8/jL2hzeS3qQd/tVMRkcEMziogOiOLYtCF9JlavQm/+z3pKqz+XS5a5J5vDK6o1Y2Z/G2JZmHK7KnR7xolldt2xki6qNqiWGW31BU8f0t6otWN2qJNVKVT/buKUPgiAIgtCAwX65y29ajL4nforIB65G5PSv2LGCIAiCIAiCIAyW4Saspt55FEkVWj/ze/imHmXHCvsau94VgH60niIlxUnTElQtpVNB4bMI/njMI74yeVGd9ZTyeHsgg4eXdOP5pZvREvLhQ3Mm4IRxfjSl4gjkizhiTATnT/PhpNYk5oT7cHwsgzNHGZjuyQO5jK7BNOgpVQUtkqqyVSVuFaaHfbjofZNx1sxJyKezeHzBejy6Jo6F2SIGVBuLWkC1G8W8pkfFUfJlrAosjME+FQRBEIRdQXbVa+h54HuInv9/RFQVBEEQBEEQhH2A+Kt3Ib3iFbRf87iIqvs4u9xiVVt30gJVC5C07mTgi4mSUYKp4rhFFY+p6xaKwJpMAa9u7MWKTQMYFQrjqKltmB5WBSTiupxIJAyvz4uCOu5PpZE1XMipvB51MVQqopRIwOfxIRRpgtvv1YIuoc9VQltTvd+/bpQLcVX1K+sG8GTHAAy/C8dNjOKIWBBjvS742VzTpdMbKr1Lt1P1ynSrnHZfSNmhIAiCIFSj0a/mfDQo/sIdaPnH3yDwvjPtWEEQBEEQ6vGs7QLiZPt+TxAEgQwXi9X+526DmUmi9aq7YQSb7FhhX2WXW6xaIqYbJRW0+KgCDVZN/T8/SpMGr6BolrAhk8Wz6+O4d8EmLO5KY+bkMTj7fWNxkCcNd38PwoEQYq3t8Hh8qgATmXwBpYKJVpcHowsFtKm4ADei8oVQNHwYSGVQKNLG1KqYOiotZtlJj4p1qXO2rFVFjIkFYQajeLvfh98vTuC3S3rxSm8OnUUDeZVdN9coqdSqTgrFFFi1MMt464UwxgmCIAiCMFiSbz+MxBv3oe3qR0RUFQRBEARBEIQRjlkqoO+JnwBuH9q+/JiIqvsJu1xYtSRNS2qkdWpJHXJDqaJ6NUzas5rYXCzh1e4cHlrYhTfWdGF0SwinHTIJs2IRIJFSeV1oam2DPxhQxbAsNtMFM5uF3zDg8XmRR1FbpPp9QXXNrT63LhjuEhKJBIqqMmajM3urPSq3+uNWR3QLkEQBCzozWDVQRDHYjE7vWPytx4tfL+zFfSv78HYii17TdgJgutXkcNP81WpLmahKnNOKaEEQBEGoCR8NoguAUXw0aMr77VhBEARBEAbDnKef1kEQBGG4UEr1offh78M1+iDtU1XYf9gNwio9k+bADaD0dk+mCXcpj5JZQm/Jhbf783hg6Wb8Zfl6BENufPjwyfjglBaMLRXgTWcRcBvwB4MwXT6VhxtcqQ+oy0CeYmmhAJ+7BI8q26XKo9Dp9qg6VCgVsgj7PSqugGQyri5RwqVTAhOlUglFlTefy6CQyyKVyiCRzqFouqCqg9ul0vhj2IBmvLQxgYcXd+Dpjl6sTJnImlqOVeXS1tVxMrAtIqoKgiAIg6X/b/+NwsBmtF/7JNxtU+1YQRAEQRAGS+yUU3QQBEHY1Tz76jv43s/uxK/vf8KOaUyhpwM9D9+IwPvOQsvHb7Vjhf0F99e+8pUb+gYGMGnSJDtq56HQSFEUhgumYSJl0o9qES9t6MeLa/rQVzQwc9IoHD2xBeO8Kl0ug2Ihh4DLQNTngc/n1u5ZuXUU5UyXKieTyaBUKiIQDMLlciNHtwBuN9xeH7zqNZfN65qDgSCSyRSyuaxOl83mkMmmVfosMuk88gUTBZVycyaHNakS0iU3PKYJV7GIFncBp04L4eCWIJati2NJZxpp1Y6g342AV9WlLWAtadWyhbVx1NayKEEQBEGIP3oTIkd9zDrRjwb9FEawGW2fvxcG3dwIgiAIgrDDLL/2WvT+5S9oPessfb7xjjvQ98wzcAUC8I0di8yqVTpu4OWX0XTssduk4XVPLKaPu+6/H7mNGxGaOVOnWXvLLToPz1mWk6ak7kUDU6fWLbey7tSiRYjMnavT1Cq3Wt2NypU+SZ+kT7X7VFx579bv3kPgI//8f/Gtm+/AW4tW4O5H/4bv/fx3mDPzAMw8oLZellu/AL2P/jsip1+L6Jn/YscK+xXcvOrFF180d5SSDvxbtM8siuqQoVQqmslSwVyaLZgPrOs3f/DaKvNf/77avHFJn3nj0pR53dtJ87tv95v/s6zffHZT3OxI58yMylgoFlReK5ilnCoxp0ovmn39fWb/wICuSV01e+Nxs3cgbuZyeTOXzZudnV3mmjVrzN6ebrNz82Zz2bLlZkfHOp0nlUmZ2XzWLBWLZjqTMzv7+81FPf3mrxYPmJ99rtv8xLNd5j8+t8H80bubzaWJrJlXdazIlMzfLVxv3vDce+bP3lprvtiZMjfnS6o17DF7bvVe/3GCIAiCIJSx9p9CZmHBw2b27781N33/GLPvD/9sXxEEQRAEYag8A+iQXrlSn7974YX6fNk11+jz3qef1ufPx2L6nLw2d66O23D77fq84+ab9TnjHXjOEH/zTX3O8ni+6Ior9DnjnTT53l4dN/+UU/Q5yyOd992nz1+eOlWfE7aDcbxGVl5/vT5nuwnL4jmD9En6RKRPQ+sTv3tDHe9MOPyQ6WbXy3ebr//pVnPqhDFmLBrW3+erhcSD3zbXXh0xU6/+XrdF2D8ZksUqXY1yQye9y7/6Z5RKepMoZ/f9ggH0F0t4pz+FZ1duxqquBMaOaUGwJYZFXXkVSujI+LEy7cbSngx6MlmMiXoxLuSFlyWo8ujbtGC4kVchkckhncvB7fbq/aMK+SwS8Tgy6RRMlbZQyMFwqbqLJlxuN1pamhEKR2CqvKbXj4zHj4TpQrZQQDqVRMDlxoRYBJNjAUwMG5gSKuLYcSEc2eJFq6rA7fEg4gHGhj0Y1RxGdzKHt9b2ojNThMvnRtALeFQfOQ5sq9V36A2vrI2zLDcF2q6VpzwkPBYEQRD2G2ixGjjgGPQ9+u8IHXUJmi680b4iCIIgCMJQoRsAb0uLtnKjtRyt1vzjxiE8Z84Wqzbut9F88slbXAbQSi58yCE6D63lmMcdDOo8Tppif7++znOWyzwsN3rMMbpc5uG+H04anpPgtGn6nOUyD8tlnvK6o4cfrstgGsL2s32M43WnXOmT9En6NPQ+mRsewY//zqeZh86Rsw/EFRd9EGPbW7RbgNXrNuFfPvNR++pWUgufRPyFX6Pt839C4LDz7Fhhf8SgxerKjg7MmzfPjhoEWjQs6Mf1TZN+TRlpoOgyMVAysTKRx1vre7CxdwCjAkHMmTgaaZXsoZVxLBjwo+iPwHS5UNJCZAmeTC+OjxVw6YwWTA+6UcwVUDDd6FPlrkwWsLanF1FXCQfHmtDiMeFR9eRyebhUGU1NTfB4VOGKdDql4tUED4dVnB+dmTxe25TC/L4ccqqm2U0eHDcmhLFBF8xSUftxhaHqU3nZhWwuh3gyg5LLq7tomEWEIgEkC0Us7VJt70wiqdp28JgYDh3TjHEBN0JqgaH/WCq+brgopepjXaJ2hyBqqiAIwv7KuqvDcIViaDrvBoRP/KwdKwiCIAiCIAjCrobfvcd+4R77bMfoiyfRfuzHMHXCGHzygtOwev1m7Wf1UxeejttuvNZOZZF48wFklj6P1s/+Ad4Js+1YYX9laBartlZomC6YcKHgMpBECR3pIv6+oR+vru5CNpvH0ZNH4fSDxmBUwINX1w7glR4g640ALpXPxZxE5Te8yOfzGO0pod1tIpdKI10q4O+b4rh3eQIv9QIbMiWMaw5gxqgmhP1+vSEVxU+fz6derQ2qXIaBdDqNoior4Pdgjcrz4NoUXugpYU3KQLGQx4xYAKODPuQp6pY88JhFuI08skWgP6Py593IFF3IlrgFlxvpTE5b0R6o6j1wbIvqr4GFG+JY1p1GTpXh87vh9RjwajGVPaKVarmYqo7LTwVBEIT9BlqstnziVwgdc7kdIwiCIAiCIAjC7mCb/Q12kIDfhwtOm4dNXb346f8+oOM+97Gz8Z0vXaavOcRf/h3ym5ei7Ut/hmf0DDtW2J8ZgsWqdgKAkukC/3EjqE35IhZ2JfDeul7kzSIOm9SGGWE/2j1AcyiInmIRdy8fwEMbPMh5w4DbhOky4CmoEkygYJqIlAZw/rgSzhrtR6yUw4DbjXs6Mnh0kxtZXwyBXBxnjcnhokkBxAygP57QYmwkEtFCJq1GXapNyWQauWwO0aYIFmeAe9bnsLAQUc124UBvHJcfFMYx7U263UaJj/QXkYeJ3pSBnrQBU5XlUnF0clAy3KpcEz7VyLagGzG/qkflW6vK/3tHN1ZuHkB7OIrZE1sxPeZDzO2Cl8arHCZ2zLFaFXFVEARBEARBEARBEARht7EzFquDof/Z/4JZMtF61d0wvJbrAkGwjEZ3CAM0FeWO/S51uCqZxUNLNuG1lZvRFvTi7EMm4sQxUYwppeEr5S0B0+XSPksDBh+6pwsAPn7vQlHVbhq0AS3Ab5QQdBvwqEINlxt+txttIS9ingIC+QG0efMYF/EhFgohFA5rQTUajerQ3NyMWHMMTbEmjBk3GrG2dphuP8aFAzgs6sZEVxpjjBQObfFicjSgO+2BCS+FT1V7RjUrUSih4Cqh5FYtduXgduVV/wpQTQLUNbongJpAPtXy6X4vLpwxDmcfOkWP4GOL1+KZNV3oLxRV21V6BX3P8p91xL+CIAiCIAiCIAiCIAjCSKKUT6Pnsf8HV6hVW6qKqCqUMwRhFdpC1MXH79Xx0u4BdKbyOPF9k3H++8ZinJlDumcA9Djq9/vhUemaVfpJYRdafFmYxQyNXnXevGEiR7G1mMVYfwnjte/TPFIlE/SaeniLBx8YBRwVjeOsScC8MSGE3G4qtXCrVwb6WWWwzl3wetV1Vw4D8W7EfCWcM7MNnzwoiEunenDmxAjG++k6gLXTmpQbT1EvNbTVKuPYL9N0oajaz1RsKa8WiwyqrbRAVRcCKhzWFMAls8fj0LERdPT0oTOR1jlUEdRgLViN/U8YOdC9BIMgCIIgCIIgCIIgCPsnxXgneh/6PnyTj0DsU7fbsYKwlSEJq7TypPRp2Z+aGB3yYnLAi5jLjaDHh0Qig2yhBMPrQ6mQR36gHxO9Jby/zY1xrgQC+SR8+Sy8xQwChRQmepI4epQLU0MGAoYBvyrDKBoIJxM4PmriUwe34INjQmhV9dFylIKX3iSqArNoIplIal+q0ZAPftW70R4XThoVwUltPoxGXiXiQ/4u0JVByaUSuAzdB4+pDimkMd7woWj4UaJdK3VU1a+MupZIZZBJZ7QLgmK+oPqWQ7Mqc0rIj5A3iLztfJZ/KclZwqzD9u0Vhj+irQqCIAiCIAiCIAjC/kehcwV6H74RgSM+guaLf2THCsK2DMHHKqEAaehd/f+6uhMr+ws4c/poTAu7kckV0N3VqWVEPpqfzWVhFExEmpvQa7jx7No+vLE5i96iV7sBoJXqYa0+HB5zY4zPQC6bh5kvIeDzIZNPw+Nxw+fz602k8kVTux8I+Lwo5IsomkWEwyH41fVCsYhUIqlfo81RLehmkmkEwhH4Az4kU2nkc/TJGoLH7dF+MaiDFs08EukMBjJAGj4U3G4VT72ZVrkluFR5HtXOoBcI07q2VEQun4fH5QZUWq/Pg7e6MninJ4Pjp8RwWCyoFdWSy4Sh/b5afltZl6uGuEqhmNawjoWkY4FbDq+VivRtu61c2xirTtUEy9JYtZvHW2Gd1ds1WLhxmLbmtTG0RbHq7bYVNaSynF2BY9VcD9aZU5+NbDarRfNcLodMJqviS/D7fQgGA3qTNJ/63NEKu/K9EQRBEARBEARBEARh77IrfaxmO95C319vRuyimxA6/jN2rCBszxCEVQpxlhhXUOGJNZuxoj+PM6aPwYyQB4lEUotTmUwaqVQKrW1tiDU3WyKbaaIrmUJXvoSU26MtOkeHfNqqNBcfQC5fRCQa1ZajnZ2d6jyHUe3tCIcjlvanqqU4ms0XkEqkkM2lEQoG4fUGkM5k4FHlxJqb4PGqsksm4qpM1tvU1KTFslQqjUDAj4DfjwKF12wW6WwO0CKpF/GCAVWKqoiuAOjMoAR3MY+w14WWSABhVT7hhlalUhFZisAuF17ZlMDC3gxOntqG2bGAymnCoOqs8psqC21iqwmYFBIp+vX29mLpshVIxJN6jCZMGI/pMw7QorIDhb7ly1dg0+bNtmipytRvhSqT/gzKUWUwxqX6rsdd/ceyQqEgmumLVo0HxUKKhlZ6FVQ6S9g1VZvYzlpipPOIvNUXlr9u3VqsWLFKjznF31hLDAceOF37waXbBd3WGvA6y6Pg29GxDqtWrkZRjQv98tIuWrdtCOgy3QamTZuGiRPHq3Mdq+PZdkP1sVgooKenB2vWWO1ft24d0hTgbXGVwirFVAr7waAfEyaOw4wZMzBlyhS0trboNlvl8X1k+fxjjYsgCIIgCIIgCIIgCHuOXSWsZpa+gL6n/gOtV/4awbkX2rGCUJ1dIqyuGsjjg9PHYnrAwObOLmSzOTQ1RbUlIIVDCmwej0cLrflsSluNur0hXVpJ/ytQCUMqzsfsCzpvOp3R6b1enxYFA4GALsNwW+JVvpBX6Sni5pDMpLW+2BSOwq/S06KQghjFMVohhkIhbXHY3z+gLVV9Xo8WfllWKByBz+9XZWQxkM7rx/kLWqx0aUtVVymPoNeF5nAAXgqwrJ1iZRkvbOzHW5sTOHFyK2bHgpTvGgqrliBnlbV48WL8/vd3Y8WqNTBU/KmnnoKPfvQjWgh16O3tw91334OXXn5ZW02yLBqvaj2voj120VvgZbfH0AJhOBxGW1sLZsyYjlmzZmHc+AlaaLbao9qt0lr927bMrVCctI6YjuN7//3344knnlTvtWVJPGbsaFxyyUcxZ85sK2EdLOHVqu+vf30S9/7pAf3eutV7rSuq7MwgKRYL+jNw8Ucv1uNJKGQTfibj8QTmvzUfL7/0Mlav6UAuk9cDpVvCDdTsY6sJliBLr8IU5inWnnDCcTj00EMRDKr3W/eBJVv9EARBEARBEARBEARhz7IrhNXUgr8g+eYDaP307+CbfpwdKwi10brcjmOJcA604KSVYW9/HxLJhBZS9U79sZgWpBKJhBZZaQloer0oen06vckn600DRdWMEtyIhqMI+Pzo7u5BJpNBS0uLCjFdRzwe10JrIZ+DoTK6Vb5sno/lmxjXPgYHTJyIpgjF2pIWTfv7++1HujMYGBjQFp+0WO0fiCNfKCLa1IyWWKt2OZDLZpFNpxH2uhE0ivDkk2jxuzA6GkR7JAhPMY+8uk7xzJLNKLJtK/rVMcosG6nq0KLTq8YlaFvTetyVj+szjQGvh4+iB+HzMfi1xSlFYYrGFKCdYFlZMqhjVS5FStNwI5PNoau7G4sWL8GDDz2K/77tDjzxxFPo7umx+qYrpeVqReXbYIuOdgNXrlyJJYuXwu3yqrYHtWuGvp5eLFZ1ZDM5nWawUDj3+dlH9svqg1cHnrNf7J8TpwKPy4L1uL4VPDqdJbITiqpsM0XV/r4B/OWxx3H33X/CkmXLdX99auz9QT+C6jMUaYpqcZ+WvZFIWIunFPb9voD63AILFy1Wef+I5557Xn++LItchnrjJgiCIAiCIAiCIAjCcCX++p+QXvw3tH/5cRFVhUHj/tpXvnJD38AAJk2aZEcNBkqFFEMNrOhPojOZx1i/F8F8SltEtrZymylbDPR6tVUjhVG3y4VgKAS32wNXiT5MaRVIRc+lSuM/QwtoyVRSi6iOpaljrZrNZLVYSvkqp4774wmEI2E0RSNa3HV7fNqak+lZL0mn09qtQDKZ0gIar0ebouq6R5dDwZfCr9/nhV/F5VR6n9uNSMiHoNcNr8cNs1jQlrEejxd8/JviLR+/t9puYG08g03JHCY3hTCGzlgVhhYn1TjxxfpjpbdxhEm+9vT04r2Fi7RFLWOnTp2CQw6ZuaUPJJ3OYtHCJVi/YT2rRDAYwvjx4zF69Gi0tMb0o+kUovna1taq3wMet6rjpuZmhNT7QjHW8jdqaMGRfmeXLV2GuKp37LhxWkx0cNpXSbmlLa2LX3zxJbzz7ntwqfeU0P0ALU75mP2ECRPQ1s7PAvNUL8/Qbgx4zcCqVau0SFssqfdStS+m+jN6zBjEYs1otgPdDFCwZ6Do7hxbgWI+QxOam5v0uBx88EEYp/pm1UUL2xyeePIJPPXUU+q9N9WYWJ+tUaPaVdqDcdjsQ3WgNe/MQw7GAdOnY9z4cepzG9S+dfn54+eXIv2GDRt0vZMmTdTlC4IgCIIgCIIgCIKwd4g/ehMiR33MPtsx4i/+Bvm+dWj70oPwtO6IPibs7wzNFQCfQYeBguHCE6s3Y2lPGqdOG43JnjxchluLq+VQWKUIxceox4wZrXLSryZlRhfVLhalSqW4ZupH9Sl00hKQ4hrFVQqlFMWo6ZuTmTQAAExdSURBVA3Ek+jq3azOS/AEoohGo4gF/XpTJ4P+UVUi+j+1/LxmtBBIMc2y5LTcAdBHKS0rKQJmVRqXx60tbFPJFLiJUcDerIjiKykVixgY6NfiIa0Y2X9rEymXFiqfX9+Lt7qSOGkyfazy8X3V0DJXAEyn/YXqPm6FbWO/li5dhnv++CesXt2h23/SSSfiwx++QFtKOvT19uPee+/H3197DfT9ecghh+AjF12ICRPGIV+obxlKK8tMOoPevj50qPf6vfcWahGT40O/qKbq31FHHYXzP3QuRo1qs3NVp1xYXbJkGf74x3uxavVqy6LTr96HUkmL2RyXM888E2effQY8arydvm6P9VlieObpZ/HAAw9q6+JAKIhzzz0XJ554nBa1We12uasVZzXPuqYyWe+jV9fPNi1Y8J52qbBx4yb9mfCrdh9++FyceNIJmDRxot4crRpZ9blYsmSpauMzWLJ0qa6H4v7sObPx0Y9+WH2ux9gpBUEQBEEQBEEQBEHY0wzVFUDfUz8DvEG0XaXyVtUtBKE2WvYbCvbD8BoKVxQO6R/US9+YFVDUokDKR6bTqSxKFEANN0wXc7EUyqpFFUrI5ij2lbQlIIXFZDKp/a3SjyXFUm6O1NzUinyoFe/EC5jfn8OmAlAy3SgWijrtwIDlNoCiGi0329raQD+tfMS8paVZC79+fwAJVfZAIq6tVukuIJlOo6DqtjaV2jqZXG7u/u/X9XOTLLoSoNCWzmSRUCGdK9jCX/UJuEumJQuxC+J4Uhz2B/nIu1uPU70QCQfR3t6CA2dMw6kfOAlXXPEJnH76qXqjL/2+qfflzTfn45VX/q6tUBtBgbSgxmDRwsXYsGGjKsPQAvdRRx2JyZMn6/GjZeeSJYuxft36LXkaovtopeMLN4yiJXFEvV/RSFg/lr9NUPHbhfJrkYj+DDiiKlm9eg26u3rgcXthqnbOnXMYLrjgPEyZZImqemMyHdQ4qz/sC/OzHbMPfR8+9KFzMXXKJPWZKWihvWNNBzo61uqyBUEQBEEQBEEQBEEYGZQyCfQ+fBPcLZPQ9rk/btEjBGFHGLKwSjHN+chRfMpkcjDVh5C+LcuhKEXLSAqrseZmLXymUxn7Iv9Q2mMzrJDPWsIeH89mHoqg6XRKW5omEgNg8Ua0CW+k3fjTeuA3S5J4aEUP1vQOYCA+gGzO2qyKYirzsn6Kqpwf2SwFWlWLFtlMLTqOHTcebe1tWiikGEghl4/mJxNJ1c6Utr5MqNciSkhns9i8ebN2a0ArWAqtdG/g83ng0n42dyeWAL01qL/sjMIS/7YNKpYpdDBN1fpS0bqm0kbCIZzxwdNxyiknqbEKaBGZfZ//5ltYsWIli6yJI5BSUFy0aLHKl2UNmDJ1Ck479QOYefBB+r3jGFNwXErrThu212lzNcov8Zj9ss+GFNhfWuQ6babgvmnTJv1es+ympghmzToE0UhEp2VgSloya8mf7h7svE5bpkyZgtmzZ+s+koT6nHRu7tLHgiAIgiAIgiAIgiAMf/K969H78I3wHXgSYpf9wo4VhB1nSGogZStLWqUIZT1m3t+fQCZbQK5YQl4FLUSZlqjK9B6vXz92HQz5kcqmkM6mVf4i5SsUVQLarBZo+Vkq2kKlyqTyBwN8HN5AZ2cXn8BHJBLFplQOL2/KYLkZxSpXDK90ZrG0s1+nD4eC2rqQJoe0PFR/QR01EAyqNvGxeNW+Qh6JgQF43R7dJvr09LgNxKJR7QOWj9on4wls3LgRGzZtQE93NzKpjHZlELA3jNKbczU3waPqGigZSJVcug/EGp/dixYo7YrYP1qdlgfrrWV71PtUfk0lZl6KqUcfdRRmzXqfGhc15qpfGzZuwOIlS/QYEUcI5b9yKFa+t3Ax1q5bp8o00KTG7X0zZ6KtrQUHHDAV48aO0e8FhWlulLVp82Y7J9tpjVEtrNqc+ramrSfI1oJ1lVen3UOoz6olRJv6feR7Sqw6rTpYFfNSLHfay1enDRMnTtA+ibVfV26upq4VCuWWvlvLEgRBEARBEARBEARh+JDftBh9j9yI0LxPoenCm+xYQRgaQxJWy9UqCnSFPB+LdsPj9iART2JgIKktWPlYeTaThtttwOP3omiWtDVp0B9EOplGLldQZXETLMu+ktamLNrv82tdihsgxeMDur72UaNB/60U60pFE0HDg3CpgGAhh9ZACBPGjtUWqAPxuLZspXjqSFv0h6p3x3e5VR059PX1I5vPaZExlU6jp6cP/b2WFSr3UuJj5KNGj8akyZMxfsJEtLa1IeALwqvaUVL54n10NZDR/VmWzOLVzhR68gYMNQa7X1Dj2NuCn974iWx9P6pDgXHbNBQJm5qbcOihs9DU0oyCGsu8Gm/6eaWIbaey69g279qOddoNQDqb0Y/MTz9gGg46aLq+xo2cDjxwhrbk5b9VK1di2fIV+hrZXiB1BGAbXV1ley1x2Eq3Y4HlOGXRZ69laUpXCh69odnmzk5dJT9blvjMtKYWVx0qx27K1Kn46EcvxhVXfgKfuuITeP/7j9AWultx6hcEQRAEQRAEQRAEYbiQXfUaeh74HqLn/x9ETv+KHSsIQ2cIwioFI5d+7J9iKDehoqDq9boRDnjQ3hxBwO9BKptBZ3cnUqkEPEYJrhJ9q5ZQVOkprtIvazyZRiZX0JsrZfMmMgUTpscHw+NFoVBCPJ7QO7FHomE0N0fhcruwYXMnPJl+HD/KjaPCBRzmSePYVgMToh69c3usqRkFVWBfPx/nH0A+V0QuW1R1JZEr5bC5tw8ru1NYXQxiUa6EDarOvNuLSNsoxNpaEY2G0ByLwuPzaBEuoNoTUe1tagoh2hRFU3OrtZlVTze6Eim8uSmBhT15FFz0M8sHyEmleLir2bnyy4XCiRMnYcK48do/Ld/b7u5u9Pb0WhfLKK9x0eLFWLN2jbbo5NjMnDkTo0eP1te4idUhh9B6tY3ypH78fvGiRer96LfrrRQcq/fFshq1T3YSR8yl79X2Ue2WT2BVdiKZwt///jreevsdLbA7LgLYzmp1sxxeD6s+T506GQcffCAOOnCG6nu7/oFBEARBEARBEARBEIThSXrxs+h/6mdoveoPCB97uR0rCDvHkCxWjZIKpvXgOzf44WP2wUgAmQI3dsogHPKjrTkKn5v+Vj3IZotI9A+gyMewtYBnIhiOoOjyoiueRncih854BvECkFXpk/kC+pIJmKqCaDSi8qjz3l79yHosFkXM78JR7V5ceWirCi04ssUDd44WsFn9SLbLo+p1G+jq7MS6teuRUHUUVJv7VHdXGhH83RyF+zt9+N2qHP64JoNXBoCkz6eF34IqgxsT0UkBH3nXfgrUK6U50+VCULUn1h7TIh39yQ7kTKRKPrgMrx6TcrY9G1444iofZ6d1rlv7RTWQVOPe39+vr+k0uhNbe7Ju3Xq899572vcs4ydPsQRG4giYU6dOxfQZ022B0sDy5SuwcuUqfW17wZJ5ykZKXXeETbpkIHyEfyiBm5I5QimhUD5t2lTEWmMo0v2B16fatRq/v/MPuPvuP+Lll/+ud/7fvLkTiURCu7Hg58kpg1apjmUq+2r5cKXvWn6mBUEQBEEQBEEQBEEYjiTffhiJN+5D29WPIPC+M+1YQdh53F/7yldu6BsY0D4jdwRKYQXDwIq+FOL5Eg4aE0MAJSRyJkxvAKlsHm4YaGlugS8Y1o/jU6ji4/bcIijPx/pLLqTyQLZoIgcXCipHrlhUabLwutzwe73IpFNaMKUlZDgcQYg+MU03MokMgvkUWnwuZNMZDPT1wWOa2oqSomgwFEBrSww+T1D7Zs16PZjfX8TjG4p4KxtCR8GLTaqtq5IlrOlPw+MxMSrshq+QV8duuGjVqP65VDBdKlDw4x9VmKlamkpmVR+L2JA3sSyRR3PAg7ltfoz20x2AndZQY8EX9c/Ced0KBbuenh68995CvUEX4QZJtPqkZaUDx27hwkVYt36DFnzHjBm9ZeMli+3LHgwUGzds3Ihly1ZoAZGWq5MmTdCP81tlWuKmI06+/sYbePXVV0E3D3xPTjh+HubOnaOvOWn8fp9+zyimZjJZpDNpRNV7N336dNUna9OnrfCTxHwGVq1ajcWLl+p2uNT7zx39E8mkdk/QsXat3gyrY439Wi2oNHRTwJ3/16tx8vv9aGqK6locotEmLZquVWkp3Hrc6rOkxpabcb3z7rt4990FWLhoIZYsXYrNmzajT32uEomULaRaYavAagnC7LbVd6v/giAIgiAIgiAIgiDsWeKP3oTIUR+zz7YSf/Uu5Na+jfYv/Rnece+zYwVh1zA0YVULhiUUaQHal0J/toRpbREYbi/e6MriVRU25kw0h7xoCdF3pWFtFBT0w6BVZLaAgXQB6ZJbW62WXG5VngrqGkVXa/f6Ik0WEfB5EQoFtS9PinS5TA65nGX1msskUSgWEI40wa/qptAXaYogqOqiP1VaYHJzKopn73X24y9r0liSjyIfCMPwuOBy+1D0BZEwXehPZtHmMzAp7EPA49HXWYdRMlBQ7aH1Y0G1O5NJIZOnC4MiSgV1XaXrzOagWo/D2kPbCKvaMQBFty2C2/bC294WVsm6dRv0Dv+01KUAPmP6dBx88EH6mqWVqn4aLmzcuAnPPPOstlqlsfMB06bhpJNORHNzk06jU7LLKpPfH9DiJkVbWjXzfZo4YTza29u1OMk0VlrmYyWWsMp2WNeBtWs78NZbb2HBggV49933VHh3i/i5fXhXp2OYr/IsXboMk/QmUxN1uwjLpVg7duw4bYna092lLVtZt8tNi12Xdj3R29uHDRs2YPmy5XjnnXe1he6CBQuxbNkydHf3aJcBbo9bvz/022pBK9uhvweCIAiCIAiCIAiCIAydasJq/9/+G8V0P9r/6SG4opYLQ0HYlQzJFQAVMe6BT0mJWhJFs/5cHm/3pvDI2jj+uCaN+1an8FZ/HimKdfks8pksCpk83IYbQX9AP65fNFwosQAGtkSdmy6Piveoc68Wu3KqXG4URb+mFLECoTDaYk0Y296MCWNHIxr0wY88/D4PsoWiFsaowlLiokhL68d8MYd4yY1+dxgljweqBrhVH0xVH8UwlzeAzQUflg8UkTbdemOjUjGPfC6rfW/GEwm9KVYql4HhcSMUjqCttQWeUhFjkMXclgBa3YYWEPnPERlHCvRdS1FRC4Oq6Rwzip4OjmC4ZOkSrFrFR/oNBIIBzJo1S4uXFlYaOyna29vwvvfNRCQSUWW7sXHDJu2blYLmVlHVSluOJUJbF5jPoz4nbjeDRwePx6fjtg++inRe9XFyRM+tUCBvbY3hggs+hI9+7GIcNudQjBrVrjc+c6s8zOv1+uDzBdSrX7chnkhiTUcH3nzzLTz40MO47X/uwG9+cydeevFlvRGabnW1zgiCIAiCIAiCIAiCsOcpFdD311sAbxDtVz8Kw+8YpQnCrmWHhVUtG5ZrSKoEw2UiVyhiXV8GG3IeZEMx9Jb8WN2TRWdfEslkEvF4CgPxNPr7E0imkqBvSlp0sigt0ppaBrXKd3lQKJooqkDLx2AgAJ/Pr60NoeqyNsFSKb0qLtSEdC6PfDGv49OZjCpAlasb6UYynUY+n0PB40XScCPncqNgqPLVMd2nuvjYuao7p5J3pjLoTeaRyeQxMDCg/Y0W1WRkG2LNMbQ2NyHkD6KYLSKTSsHn98Cv2hN1FRDxubUlaTWqxw4fKFprK2GOm2H5Et1WJ3Tp3fMXvPceEomkFkXHjxuHAw+cri2QKZbSipMbjlmvBZ1r2rRp2mKUZRfUe0D/pXwEn7B81rc9fNzecj/Q3NyM8ePHY5yqa9y4sXYYUyfw+jidZ8yYMfpzU85WS1l+rnx6N/9PfeoT+MdPX4kLL7xAW9/OmTMHkydPRmtrqxbQvbbAyuDx+uBxe7Xl9ML3FuHue/6I++//s7bk3Rb2a7i/64IgCIIgCIIgCIKw71FM9qL7oZvgGXsIWj99px0rCLsHY0NHh7myowPz5s2zoxpDq0wDRdCL6l87urGyK41jJrVjY6aAP3dksSlrYLQnh3Mmh/GBiVFEjJJ+pN4wXaAxaipfQFcqi0TRgGn44GI8ZVHDVMEFd7GEEAoIuUvwq0C/psUCNwoytbDKR/v5aDp1OVoUUojLZtLIqnJNjx/haBj+gF/7cy2kMmiO+PFaErh9WQ4r80EYXo+WvVRRKrA3BYQLSRzljeO8cSEc2BqF21eEV2/oRJ+glH6BQjaLZDKlex8KqfIzWQwUing9UcLqRBGnTIxhdsyvR8goUXG2hGJthVnFotER+vjY+j1//JP2JcpOUeD78Icv0FaUDvT1ee+99+Pvr76mxcvZsw/Fxz52McaNHaOuWrUMFkfQdKwsH3/8CTz40COq3LwWVc879xycfbblzJlJmeyll17B/fc9gHg8zkHHzJmH4Kgj3w+/36s3gtqK1Ra+L8VCAa+9/gYWLHhP1+nzeXH+eefgtNNO1ems/jMP/xh4+uln8MCfH9bvGy1iz/jg6Zh37NHIq3btCGyzSxUcDofVGG4rrjYiny8ioTfwGkB3V5cWlHt7etDT06sD+5/NZnTaQrGo+l7CB045Beeffw7CodB2YysIgiAIgiAIgiAIwu5n3dVhtH/sh+j7608QOu5TiJ71TfuKIOw+huRj1ZKMaDnqwvL+NAZyJRw2pgnTYwH4TROjPHkcM96PI0eH0Gr7KqV0SrGL1qOpVAq5Eu1L6ZmU1ylcUmQ1tOWql4/ql/LqmK4DTHi8HgQCIQR18MPr88Ljtnax11avqkFsEzfMWt6XwZt9OSweyKA3nkHE7UbU70JelbkxmUG3CqAwa7rgof9UlTGn6prkzuOEUW7MUW1uivi1eEu/ryXT0P5ds+m0tmDlZk/Rpmakcxlk8nkYoWasThbRl8nhgFgQYwLW5ky0mNVGszxm62oIbRTgdszH6notMFs+Vt+3Uz5WWTfLfXP+W1i5coUWBcOhIA4/fO6WzwObTVH3b88+hxXLV6mx92vXAYyz/Jm+jbfffndLeEuFd95+B2/Nfxvvquv0Scp6nLoo3E6ZPAmRSFTFWZapVtvpY3UVFi1agkK+oEXYI46Yq61iKVjuUAiHEFKv3CjLEm8tK1WOm2OZ6wigzivTELfqGy1dYzFay47DgTOmaxH7sMNmY+bMg9HW1qY/vwPxAZXHpa1zU6k0JkwYj9GjR6k4XcyW8gRBEARBEARBEARB2P3Qx2pm5d8RPftbiJz2ZTtWEHYvO+wKYCuUCw0ticKgeFVELJ/ESTHgEzPbccb4GMZ7DbiLBUtkVCmz+SwSiT54VPr2SBgRj1v7KaX1KzcxcpdK6ryAkMoX9ntUOgO0Vs1m04jH+5FIxvVmQ5SsKHBSAKNVYliVFWtpQdv4cVjrDuCRDQX8cVUWz27OocugR1UTY9wlHNfuwSGRHAKFpKonD6+ZR8DMYIzZj7nNRRzY5IYrn0E+m0MmV0IubyKbKyLeH0c6mdCbaEWbmlR7ssjkC8h7vEiVaO9qjQSHohy2c7jLaxR1N27YqN0umOp9ampq1o/Bl7N06QosW75SC6p8S0pFNTZ0v6DeC4qghZwKfFWhqI6LauwK+aIaRyuOG2IR+shdvXo1li9foc+3//hRgOUwWsInfb1W4oiitYKDc+wInCxr7dp1mD//bR244RX77viWrZa/PI4bo1E8PeWUk3DxxR/B1KnTtKhK8bu/vw+bNm3W6Yb/Oy4IgiAIgiAIgiAI+yaxj9+K8Imftc8EYfczJGGVUpNlgwp4SurIdCNbdCOdKyBomGh2A/5SgU/CqzQe9ceFTDaDRHxAWxFGmyIIqdfWoB/NATd8RgE+M4tAKYeo10BLyIu2aAjRcEhX5lL5g6GQtmLUj9/3x5EYiCOTTqOQz28R4FJFExsKHnR6m9EXGouOQhDdBROBYBgt4QiOGteCc6a24OjmIg7x9OMgbxzHRnL46AQ3jo+VEKAVaq6EZLaIZCKFns2dWL9uPQYScbj9HrCWgb4BHegRtuD2IENRzkW3BBRXa7BVrxsmUMC0WtvRsQ4bN22G22NZd1Kgbo4162tkQI3ze+++h96eXv14P62FW9tatXUmd/hn4OZPo/hqn7e1t22Jb29vRay5Sb/v3Ek/EU9oq1TuvG+JkGWjpg+3tq3auPFaveBQfkz4GXn99ddx++2343/+53/wm9/8r3ZRUE61/NbLtiLrlCmTtbUwxX3GcUOshPqM0EUDqaxbEARBEARBEARBEITdy4Rbkwge/mH7TBD2DEO0WKUFKu1MiQmXYSKVzaLg8sITCmvRsWTyUXqPfhw+m0whnUggEAgiEmkGH6E2TBNBL9DsB6LuIsLIIWimEXYVEeAu9apkbjDEDYy4U3sqmYRZKuld5puiUS1q8RFsPj6fTCT1Dv5eo4R2VWaLmUWkmEC7r4AWPwVgE9lsHvmBJGb4DJwzJYyPHhjBp2c147Pvi+H8qaPQptq9puDGQgSwwetH3udSdRTR3hbB6DGj4PUHkM3lVX39qsuq9y43svT7yk2wthhWbiuoWQK0Yi/rbI4oWC4OEoqbFBf5WL9b9YfC9bSpUzB61Gg7BbB8+XIsXbFMvY90/WBi5iGH4LJLL8UVn7wcn/zEP+CTn7wMnygLn/zU1sDzT33qk7j8sssw65CZVDf1WCxbvgwrVjhWq2Xopm1t49aW7jy0LI2qz42L7h3UBzcRT2Lzpk5teUvKhmULlkDqhK3jSGgt7fV4t7Z1VzZWEARBEARBEARBEARBGPbsuLBqgk/+642f9KkqIV/IoJjLwO8G6FKVYpOhXwtIJQeQTcURCYcQpj9Qww392LzLEquMUhF+PpIP9ari6FPVpPLFy6zL5UYkGkVzc1SLp3zsmpsG0YcmH1lvaorqcvrjcZSSSRwe8+OUVuCEUApnTwpgRpNXi2i0lPSqRuddHqzsziOVKWJiyMBYtwl6Ml2WAe5bV8R/vduP3767GcsSJTS3j0KsOYag14eQL6D9rtKac/TYUdqPp1eVpa1yVVuHu5GiIwBSLGRbc7kCXv3763hvwUItqnLjKu6kf+BBB2o/oySpxpPCa1dXtz6PxZrw/iPm4uCZMzB12hRMn36ACtPqhmkq3cyZB+HwIw633ivTQE9vHxYuWqw3ArM+glsHj83cavFpf8h2EfSbGggGrfJVWL1mNdatW6ev0V+vM0ZWvU7YFual9Wtff/+WTbXoTiASCcPjURNAEARBEARBEARBEARB2C+wFLQdgaqqfije2naKCmo8lUE6m4ZZzCGXzsAsFFHM5zEQjyOTyyHa3IRAKIAShStbqzJt4YrCKnfmd7tc8Pi8KBQLyOWyVhqDtqbqVV33eb1oiTXrXd65idRA3BK2PCq+qakJrS2tiASDmBgATmgBzh7nw/sCBZT6e8BNiygK0tp17UAazy7djHfW9mMgU1ClGxgoFbCwN4MlmTA2esZhadyDTWkTRbeP3l+11S2tY+lTNBC0Nm/iRlw+uOEtAm7dLas/e47yR9+3CpPVYDqKf4SPrdPK929/ew7PPPMsUhQ3VXZadM6dOwfTDzhApyPLl6/EkiXL9PixjAMPmoFpB0y1rzqwz/w8VA/cLIoccMA0HDBdlU1NU/1j2atWr9HXtowbr/E9d0639G+oWG1z2jBu3FiMHTtaf8ZobUp/ry+//Ire7Z9Y9ZW/h1vrLx/DpUuXYuHChdrHKj+bFIzp+oBsFWcFQRAEQRAEQRAEQRCEfZkdFlYpG/GxcAqsOnPJhVC4GbHWNsDjRzJXQG/fANZv2IxEKodAuAkGBUruyG7lZi4Nj7KmgSw8KLo9MPlotYs78VtpuKEVxS3tdoDimAFVVwSRlhbkVO098QRS6bQqm5tfGQj4/Ii6XWguJBHK9MOTy6uSvXCpuvP5AjL5HJo8JRw+JohD28KIebiDvypXtcHrMuB35+D2pOAPFLSbAm7MRWktk8nrEPAH4fP7YRZLMHM5lPJZuFS7nEHc2rNqVLm6RTgsu1a/ENUeCqrWbvSJhOp/KoV4PF430E9qT28v1qzpwN///ir+8Ie78dCDD1suADxu7WJh9uxZOOboo7QvVMId/BctXISuzi4tIjc3N+GQmTMRa6b/VTbSaSj7wBGoFSxL0FgspvIfgqao+jyo8jZv7sTSpcuQ135J7XGwi3SsR+l2obu7R28MtWnTJmzcWB42lx1vrAhW/IYNG7WITGGYjB8/ATNVG7gRFWMY/9JLL+P++/+MZcuWq/FMatcAhUIJRfUeU4QuqvZxrLPZnC7rjTfeUmP3CFavWq034zLNorbKnTRpoq6DaHFVBFZBEARBEARBEARBEIR9GmNDR4e5sqMD8+bNs6MaQ2+b3Om/aBj46+pOrIjnccb0sZgRdCGXz6N/YEBvKkUhEhRUTRNev1dbRXo8BrgZFQXUzkIR73WnkMmbmBIxMDHsA/JFGKUSmiIhbbFK0ZO6GMVcSlX9JWBNMoe+dAF+dT7KXUSrt4SA24NiAXpDK8MoobklBr8/oHenp1iWzmQQ7x+AmxanoQi31EJL0AufakeqCLy0eQAvbUqjp2hiesyDcye2YGrYi0yxiIGBFPxuN6JNIapxyCdVWemkKicEdziC59cOYFlvCqdMbsFhMdUH1VKjpPqohWGKs5bVqz7WBxSL9YuWFGkBec8992LN6rV6rE466UR8+MMXIBgKMJWmt68P9933AP7+99e0oEe3CmNGj1Jj7FPjY70fDpYcrMrmuKny6Bs1XyhoNwq0zqTIzDIYaIU58+ADcf5552DS5Ek6PYXP995biHvuvhfr168H3TYcccRcfOTDF2rLTN32waKHQJWpyqBAyn6+8+4CXQ+tWD/20Y+oV8sK9qmnn8EDf35QvWdsnwdR1cdQOGyVsbV7W1Hx1khWtojCLF1U5HHkUUfgtNNO1T5RyaZNnbj/gQfx1vy3tAsEPT7qPW5uacbUqVMxZcoUtLS06Mf6KShTfGV7urq6sHzFcqxevUZb+brVZ9lU+caOacOHLjwfc+YerltB21gX54ducLVGC4IgCIIgCIIgCIIgCPsCQxBWLYHTElaBx9dsxoqBHM44YCymeYropy9Tn0+LYhToSoUScvkcsrksigU+el9S193ocwfw5Losnl2X09aBx45y4UMzWtFsZrWQFYs2AW5VARUyCmWqrL6Sib9t6Mdf1yTQmTXQHvDgpLEhzPFn4Uv26jr9wbAWvUKhgCVtqewsgpabuWwOfn8QGdWWgWQ/ItEgmkJhZFMFxHMF5ClS+v1wFYsY41Nl+DzoTcS1+NYcDWsRMplIa5E2EvKpOsKqBjee29iLtzcncOKkdsxuoYBnVhFWLZFNR9kHtMylyLxkyVLcc/cftUUp0594MoXVixAKBvU5+09h9U9/uh+vvvoqfD4/6OeTflFL9Eera9C9VcH5a8G2O9CFAcVU57F2bgI2Z+4cnHLySRg1ul1brhoqnuP05wcewlNPPa3riURDuODCC3DiiSeo8igaqjJ1f7bWWR1LVCe0siVPPPEkHnr4YaTSGXg8Xpx37tk4++wzVSkGnnjqKVXvg9pilO2j4FnizmD22PGN3NobhYov05O3gfXms1mc+oGTcPHFH9E+eWldahhuPc4PPfQoFi1aZJWpCi2oz2ZR9ZViKut20V+qyxJWdTvUNdbuiNGUT8e0j8GZZ56OI48+Ah7byrak2sPx4ZZp9cdGEARBEARBEARBEARBGMlYatdOYGmHBjLZHBLJJAJ+P6KRqL5GMcpwG/AH/Fv8oDZFYvB4QljXn8Mb3TmsNaLY4I7gnVQJa9I5ld4S1NLqOJ8vIpPPIKsCha/VfUm8sCGFRbkIugOjsSgfwrPqvN/wYfLkCQgFA+jv7dOWqWZRNUy1i3JYItGPYjGL5tYoos1hjGqJIdYcRU6VuWFzJwYSAwiaRYxCAdNDPrQZQC6bRV8qBRRMNAeCcKuSEgP9up8h1ZcAhTrWodAPvG/R0KqLaVtlNubZ6veTaKGTflvVWHG8eO5g1UBswc9FYc/QFpV8pJ3iLkXDYCioLVytwOOg3qgpFA4h0hRBc3Ozfoyf1piTJ0/GccfNwz9c9g+46MMXaFHVEg4t6Pt0ydKlWnCk0Dpt2jQceOAM+yoj7deGQaHSsuSSGl9y0EEH6sfm3aqPxUIey5Yv1Y/vE4qrVv8oALu0QO9X76lf9ZPWx/pVB3/Fq3PshIAeG/rDpZW0A4VRtmPy5Em45JKP4PTTT0X7qFHaty/ropsHt8er+2wJ1xRUVT9UW91et7rOND71GYpi7uGzcMmlH8KRxxyuPwBF9dkxDO2RV/1znEgIgiAIgiAIgiAIgiAI+yrG+o4Oc9VQLFbVP0plf+3oxKLONE4Y34zDWv3wefmAvqGS0XqPaS2JiekpwlKLLBkG3u1N4q6Vcbyb8MNdMnFgNI+LDohgVqCEZM8AvN4QfEEfcmYKrgItKQN4oz+HP64HVqAZLo8L+byJiUYK/zjdg5PHRrSW193Zpf2Ocvd+iorZbFZbLoYjYXj9Pp2G1pOJVAb9ff3w+1Sbw0HE40k+O46IykODxHhyQFuUtre1w+/1oTcxgGIxj1ikCR51ToFO2yWqvry0sR9vdSZwwsQ2HNbC/m9vsUpxjnVTZuQBLS15xaX+dW7uwltvvat9nnK8Dph2AGYfNgs+n0dn4filVHvfeftdrF27VltN6qIULNt5Ryzs+nik2k/Bln0MBkOIRi2BtbWtBS0tTToNYT+dPGzmkiXL8S4f12dT1flBB8/ArFmHaGtOllku/A4WJx/dELz99jtYsXyljg+psT/88DkYP348lixdgQW2mwBuZrZ1szOnvm37ufW4OvSResD0qTh09vv05mdWeVY7GNi/9es3YfHixVizZg26uruRTCT15lZM6vzqQDcGHMOWlhjGT5iAgw6cgenTp8AXoHVyyRo/9V5bMj4leLfOu+OjJAiCIAiCIAiCIAiCIIwUdl5YXbMZS3uz+OD0cZgZ8ehHt3mNT34znanFJvW3aCKfK2i3APlCFvES8HbSjbd7SvAWi5jb6sX7xzehLehGOp6Cy+VFIOxXufNwqbyFogtv92Vw/8o03k57UfC64M6XcGjEhUsPDGBWs09bGOYyGT7Brd0OJPrj4KPfLW2tCIT8KPJRcNUml4rr74ujv6cXbe0t8DdFEI+n4TMMeD0mksk4NqzfAL8viDETxiOl2m0YHu0OwOdRHStRVDVAxwYUAF/c2I/5nUmcOKkVc2J+3d+awioVO3VI0ZnQn6y+7nLr8y2YLL0C1W6deadRg69VU4Zy7PdW12NtYmXB9JbLAQur7YNri5NWQTWZWbbpB6+rvtIy1MU6HTlzV6HK1W1nPWVtsRqi/rP6WSqqzyQ3Q0ul9MZdFGXZJgqwfr/6LIaC2hKbriasNnJMnPJYljWefLfpHsJxfSAIgiAIgiAIgiAIgiDsmwxdWDUtH6sUVpf35/DBA8bioDB3mGcaWlGWwMfduYlVNqcC/asabni5C30hj6ILKIabkIYbAdOEP5eGV+UJhyOID8RVOSYiTWHkCjlkUxkUVGX5YAjvxgt4fl0cXekCWtwGjp/cjHnjQ4ipvJlsEfFEBqGQX+/y39vVpeUufyQCXzAIn9cNj2Egm8lr8ZbuAYJNQf0YeLIvqTc4CkYC6E8MIJMuIpfMIJlJwB8KojXaAj9dAngM7U+T5remy0RKtf/Jjn4s60ngg1PaMTtGv6gldZmPg1tiniWs6kMrqGM9TOovUxXSCWR7NsLMpqDNZdV4aMmOeTTqjFaR6oj67Jay9CvT28fEOdZCri7Fto7lgfPHCU4m50gnUKgW2xXpWnU5qk0sqBzn1MlWjfI0LEed66K3KYuCJL2S8p+VxsEeiRo4hZHyfHrEVXVsszVu25XijI96I9hXuldwaf+zajy3lEOYk61Qn+hSSYWi/mzqcVcJ9RX1ufbH2lUYpeIo1LItVn8EQRAEQRAEQRAEQRCEfZMhCKvEkqkKMPDEms1Y3JXGB6ePxfua/dpilZsA5fM57ae0VCzA7fHBGwqh6HJhcyKLzqy67nYDPhfafG5M8HtgpBMwKKaGo0gmE8hmMtqvJcvz+vza16bH7UFa1btZ5e/PqNoLOYwJqDLCfmRNA13pPOKZHKIqX7BURFSVHfT7EE8kkc4XEPKH4FFtoFga8ge1xW28WNSP9hfTWRXnB3d0z+Vy8KnrA919gLuAllEtKGYLyKp4w3TD51b9CRooqvJf7crjviX9iKi+XDqzFbOi9OlpamHVGicGQ/1HCY6ndB/AWPVPtZE6as/aFVj14l+Q27RG+/is1C91RgqAPNCPnBMnEV8rM1Sia7OPnbR2u3RgmdZ1CpGMKk9FKDjqVNqK047UOCmqY/VlawYeGVrwZF0sV8Uw0i5mm7LV8dZ216I8QyXMy/aqtuv6nLEj1hH/6hrUH123CnoMVMSW94Gn+iLzO4k4HkxbRN7lw6T3n4QpKsBFlwN0XcFU/AwIgiAIgiAIgiAIgiAI+yJDFFYpSQJ5uPFURzfmb0jhmPExHN7qhVHMaWGSvkP9fp/eQMil0iULRSzrS+K1zgIWJYDufEE/Dj824MGx48OYHSmizWUi6AsiGY8jEeeu/VG0tLSCmwlpUUurYwb0s/6KVDaNXCYNVyiCd/pL+FtHDxL5PA5uCeH4CU2YFlJ1a+tCE6VCAQMDSfSqsoPNITQ3NWMgXUJvDqodblVkEV7Vr4BZQMBtiWdukxalBfgCftWPMErqeiFTRCaTV33PYVMJuL8jj2c3AYeO8uOKGUHMjvp0W3U7bYGOopzlFoCnWnGzj0vqUgmF5ACy3etgZhPq3LlYhl0MRVWNFgjL01nHlgipjvV/Zde3tKNS6FNpdJGW/ayFnVbHq3brLE59tYRCO48tPjp5iW6T05SyQwdaqloHzGRd3ZqcGXRhNuqKTmbH8bJ1VB19UWdQf3li/dVo1VQFZ7x1/UzBV5XO7osVy96rI36W2F59jXnVPKCvXcMLT+t4+FrGqWOPTmsVa5ctCIIgCIIgCIIgCIIg7HMMyRUAxSRKcQXDg6fX9eHR5UlMCntwSruJyTEvosEg/G6fFkQLpRLSqRTWZYp4YnMRf+sy0OcKwXR5Ve2qrEIO44wsTmotYl6rC2P8LnjchraMDKpyuLu7Fr22CGCWrEtdzK3KTqbiWJ0u4c9r83i2B8ireg/yZvGJgyI4dpS1cz+zcmOh/ngSqXQWbq8XedX2lOlF1qAQCrhUn+g11meWEFBpmyM+RAI+JAf6QHebkeYmuG2RkfIcW7OwP4PfLMvg1V5gbruBT80IYXbEr9tOQdJli6t0GUCqWTBqK0qnb/sEVl/Z212FUyIZriNF1xeWOGttaCYIgiAIgiAIgiAIgiDs22yv9DXEsK3yPDpzyWWg0yyhx+2CNxBEyBOCzx1QaVza52lfbwpplXZ1ycD8uIkeVxQFfxAFr4GSx0BRHa9HCK92F7A+byDa0oxYczO8Xi8KBe7Obqoqy4QqderWgYKkC0FvGLk8MFDIweVzw+XxIquuZQt5LcIZLkrAJhLxFMxCCaNGtcEfiSJTcqOoeuAyTB1oBWu63MiqMgteNwyPtZmU10+Zle4BMvqcW0oVqZ+pOsaG/Jja5EXYyMIwWR8vKLY01zrX7dgauQ2OCJdIJjEwEEdJW0Vui9brKuC4cId9btjFcWLedJqbLpV0nG6iHbhrPdOzHB5b+ayx1Qa9LNBOTb+4Oqg+8zWdSWNz52b09/epcy1p69Rb0249d+L4KDxfWQc3gcpmc+jrG0Amk7VSqqRWUOm3lGeVUA7z9vR0Y/26tXozsQ0bNqK3r09vgKZ9nW6p26LynDAunkjoUPX6Ni2wYDIrKf+UBwern7TM7urqVG3qATdn46ZfIqoKgiAIgiAIgiAIgiDsH+ywsEp5qUBhSf3jNj1GyYC3ZGJU0I0xzWGU8kUkk2mkcnn0JxPwBTwIhoPoTBTQk3Xp3f49RVbs1sFtulBy+zHgDiDn9sCtH1c3UCpaguF26MslmAzqn9vrwahIGAeGfZhmpDChNICZTT6MC/pglpjGg1QqjWw+g1DUB7fbhUy+hLzhRsnlVjXR/lSVZKg61XnR40ZG5ctk8yioPnBTIwqraVVGQeWjz9eCWdRWrM0eF44eF8AhbWoMTIqr24pv7IfltqCx2LZxw0asXbsW+XxeC4oU7bg7vTMGFEuz2eyWOKZh+vXr16s4Cnxd2jft5s2bsHr1KmQz9G9rtZeiLjde4nhk0hmsWbMGnZ1dWgSkn1f6s02ns7oOq60qmCqXei82bdyMBe++p8rv1X2mSJpOp7U4y3QsN8fNyVS81VZDddml0pq6no0bNyIeH1DHq9DT06P7R/+7jlBZUOWwPPaN7SuHdaxYsQrvvbdI9XUd1nasxaKFi7BmdYctQBtb2sPxsgRRU7eH48RrjIv3D6C/r0+XyTZSgGZ9bIs1RkV9zDgGiraWPuq8d4bqjxo7PU7qc6DGiWPDMXznnXexYf0mXe9WeFx+LgiCIAiCIAiCIAiCIOxruL/6la/c0DcwgEmTJtlRg8EEn26nMLcplca6eArRoA/jWgLwukro7+9HIZtBS7Mf4ZAfhWIJ724u4L2kF0WPT2uNJW0QasBNLc0w4SlmcEgUODDmh+Wl0rKudLtccHOjKxtLvyqhxDJUOgqfnlIB4WJe5Q3imMnNOGZsEG3FlPa/WiyUkM+mEQwF9a7/qilI5V3IqNeSar8lrCooMqoj/qVbAHc+i3wyiVQqoQW1lOpjMZ8HN7fSwqdqSE+ugM2FAjqTOTSpfLNaw2j1edQRhVpqwLpkdtNmy8F29PX1q7+8bmD9+o1atKOYSCvPcDiMzZs7sXLlKv2qBcGSieXLV+jzUCikxkjL3Fi3bj3WrOlAIBDUAiJFxnA4pMvvV+8zX5cvX66vRaMRLXYuW7YCGzdu0HGsi9bCfG+Tqv/Lli3T8WPHjlVjkVJ5V2oxl8ehUBi9vf1a/Ozs7FTvhUuV2aTb0d3dg4ULF+v6fD6/LiMep/DbqfL06TZRrFy5ciVWrVqjhWHmj0Qium7CfvKzNGHCRMyadYh6Ha/bxvHxeDw6/9Kly/U4JRJJPQ4crxUrVupx6OvrU3Xbrh5cbp2HYu+qVat1uyj4UhBlHevWrVNt26yFYNbBdjhQSOV1jvf69Rv0mHK8Oc4DakzHjh2DWCym278ttd9vQRAEQRAEQRAEQRAEYWQzRGEVWljlhkzBkA8BvxfruuNY3tmPJEraSrPJ70MsGKJMiZzpwqpkCYsTJWRcHphul964iiKllqKKRcSQw6yIC+O8JRiFvBa8KGhSVKXQZVkEbhWqLNHS0AJrIZ9GMZNGS9SPWDRoPe7u8yGZyyPV3Y1IwItIU4tqsFu1B8gWisgUaM1Kq0y7VL6qfIZZQkC1rSUUQEtTRIuHUfpX9XjgUiEYjaDg9mNNysTza3vw+qpNaFXxJ0wZhSlNAXh1eaoPqiL6VLU2f7LrsP9Wo6enV79StKWI19bWipaWGHp7e7WQRwGUwl17e5seFwqGtL6kH9q2tjZ0q35yszAKzRQmx40bp4VFCrCxWLMWOilsRiJhna+1tUXVVdCiZEtLC5qamrFp0yadl+eEYmR//4Cug/XxOts0YcIELULSypVWsr29PRg/fpxuB8VLRxil6BiJRFVdrVp4ZTkTJ07Q7aI1KgVWCpwTJ05S59Zj9RR2mY5Q0GQa9ot9IBQ0E4m4tizlmPGR/IkTJ2phltakFIPj8TjGjBmj+86mWBa2dEfQp9s0ZcpkXQ7b5PX6dDytmqdNm6byp7RIy36yL2Tdug3o6FinBdTRo0frcWDb/D4/XOrzOW7cWC3qOv223ufa77UgCIIgCIIgCIIgCIIw8qk0sRsUfGCcWz3RfLTN5cIpY6K4eNZETIlGsHBtHK91F7EwaWDVQAG9yTzSqSQmN5Uwo6kIbyGjN3ei61ODj3MXs4iU4pgRKWJKzA2/G/qx7kQioa0iKZRRSKQYqP1q8nFxipamAT7Iz0fR4+p1oy+Ip7qK+K93unHrO124fUkCL/X7EA+2IGt4kOSj/EXrsfVSLgs/8vCaBccEVouqtFT1qeBV9aiCtdWp2+OG2+WBLxxGxuPFykwJz3dn8JdlXehOFnHCgZNx8ZzJmN0SgJYDKc5qXc0S1lg6LVgHCwVkCpETJozD6NGjtNDoUW2gRWShkNeWrHzEnZt6UfRtbm7SlqeE6Rjf3NyMpqYmLYw6Wh/HibA85mlujuq4nBoLS7QuIRj06zTWuVVeMMjyoqALhUDAj/Hjx6K9vVULs9lsRr8nFHEpVlIQdfJSaGRdTU0RXS7bOm7cGC0MUyTle8r3mLAdHjW2Pl9AHW87VrzmtJ2wTsePLC1aCV/9fr8W4B1htqurW4u+FJopSFPIpdUsx3bMmNFaCG5vb9fXWO+YMWO1MMxxpihaKGytM6U+v6FQAJMmTcTYsaMRU+NXVO+Fz+fRY8Px3yqqCoIgCIIgCIIgCIIgCPsDQxJWXdrWk2KkCy7ThL9UwvQAcO6B7Tj3sCkIe114Zc1GPLhsA94ayFBlw6HtUXxwXACzfGk0F/oRLGQQUCFWSmB2NI+TR7swNWAiHPBrYXDUqFEIqnwUzWhxSCtEbkCUTGeQz+VRKOZVK0rI5opYEy/i6Y0FPLy2hJf7Q3g7HcYL3Sb+vCaNFxJu9HgjGEglsXHTBgwMJBHx+9AaDsDvtqxmKQbSUpXbWYV8bu3WIJNLoy+ZQMEE6BF0wHDjvXgejyxch/mrNmJyewgXzpmIE8ZGMUrl9aqEHAtVmJZRy2W2baXC2jiipOX6wPLraYmCfPS/pK0waTHJsaAlK0VDPvrubAplYcVZvkJLWywwafFKwZq+QSky0kKTQmQoFNHCIIMlhlqWl05b9GZUqhyKqpZVaZcWRGk1Ggh4bStZ9Ymw028VGHlOq+OsrpfCrDMqFE99Kh9F0FAwhOamGCLhqH78nkJuOSyXAjsf16dVLh+/Z3v4+aCYagnFzbrtfn9Ajxnjpk6drPM6rhPYforOtMDlRl+04KU1LPvndluWy1Z9/Mtzqz+EY8K+08KVFq8J9bnwB1S/1ftEYblc+BUEQRAEQRAEQRAEQRD2D3bYFQD1J0siU0c80c+8qwOKi0YRo3weTB1FkSyEDYkcVvZnkSy5EPJ70O4zMDGqXgNAqyuPaYESjhntxwljwpiEHEKlEuiPEy63LpN72/t8XsSiTTqeG0wVCwVksymkcznk8iV0ZXJ4fmMKL/d40euJweTj2S4DpteNpGppVyKPZlcJE4MmzGIOfr8XTYGALtft52ZaJvyq3JDHQDjgQpNqZ1il8Xq8SGby6CuUsCZTxItrOrF4Qx9GR8P4wIHjcOyYCNrctNvlY/90TGA9gs+hsMRFfaBfiB6vOlD8Y5soAFJYpdBJwZKP64dCQW2xS2Evk0lrIZEWlyyegilfmYaCIoVOCpBsA4XKvr5eLSDy0Xdaa9JalWIrhcq2tnb9KPyGDfRH2qPFSQq3FFwJy6UIyzQUMsnGjZuxadNmbRU6adIU/bi816vGTNVdDuundSnrp+UsXRBY7aNAm0dI5Wd7aJG8YcMG3a+W1hbthmCrOEuR2PLNSjGXfeXYTJkyRbWzXaVzqbhu7UKAedhGtp3jZPlX9erH9NlWCrYUVim00pqV/ae1LttA4dQRadk2j4e+YqO6b4TxdNHAdrJsXps8eYquk4Ixx7ncD7AgCIIgCIIgCIIgCIKw72Os7+gwV3V0YN68eXbUTmDyv6L2n1qEB91F4K31fXhnQ48WRWeOasJhY6NoDvjAh7gpRVGOo6Xn+o2b4XaZGDe6TT/izwf903nu1J5ByOcHfXxysyltUmgW9CZU8YEk3u4ewJ97PFiQi8H0BnTOkotyZ1E/3m9kMjg5lsMnD4piQtCL1EAPipkcAtEYPEFubMTyaINL61Va4jKvC7QBXZ3I4M113Vij6mgOh3HE5FE4pDUIvT1TiRtoqUYYFFVVoIGjowcOAVpXllt9OsdsHwVES6i0rFApAlJ05TGFQF5zxFDmowhLGEf3ATSodDZxYrG00mQaioF83J8WpU65Vho1FrYVqtMM1sHhz+XU2BeLWsClgM2y2UYrWOkcmJ+Wnmy/075ymJb1WhatlkBbjtVWq1ynHbQuJTxnVfl8Ufdxq+Ws5T7AKtOt+u1RcVbb6UZh9eoO3WemoYA6depU7TaB507bWafV363vA485/jznOFltZ7pt0wuCIAiCIAiCIAiCIAj7B7tWWCVmSQXamtK/p4GcCquyBby2thcdmwfQHvLj0IktmBoLotVtwqtSZktubB7IIl0ooLXJi2avoeI9yOYKiKfTCAb82kVAqVTQG2ZRyiwVTWSyebyt8v1uvYEFqRACtjCXM9zaPyof70c2i2ObsvjU9CAOjPq1IpdIJZHK5FSZAYRUoA1uyVBtVnkKpgud+QLe60ni3Y092mJ0zrhROGJMDG2egiqTga1WdVFUs+vRkpoxJM8KW6BAR/GOUAgtF+qcY+txfktIdQS9Wmx/3VRjqHrr2hqnkqg09sl2UFS0LtJylWNBK1BaoFJUzOUyqr1We1gXhU1ah9LSs7Luam1t1H5S2T7mcWDddDXAx/E5HrRItTbPshMoyutgVrpFoLUq20pfr7T0rdZWsjXftueVNLouCIIgCIIgCIIgCIIg7HvssCuARtAylRafNGSkhakBE60eYEZrBK2xCNb1p/HO+l5szhTg9vsQ8HqRyZtI5lwoFF3IF62NjPwuNzwqf7GYBy1PfV66CGBptHA1kEomtauAjDeIBf0FrFf5+fh/idqWysc0tIQ1SnlMDpRwWLMbrW4KgIYWB91uE6lMGqVCER5adqr6aGG7qDeJF1dsxPLOfkwc3YJTD5yIObEgmgzatJagWo2iSktB1apHvahDHttHQ4aWoIsWLcLatWv1I/G0jKRm5/g55WPxvEYrVT6O7sBrFPf4Wihwk69trS9ZLgPho+u8zjIY54isTMe8TjonP32WEj5uv3HjRgQCQd0upl26dClWrlypH9PnI/J8rJ/uBChwMh/LckRHUlm+1TYrHXHawFcGtlPFbmmLdU5h2KX97q5YsUKNRwd6enr1Tv2M52ZZzvvg5OeLVS436Apo61aOJceCfWE6XuerZfW6tX6rbVZ5TtustvOc42pZBzOf005BEARBEATh/2/vzH4bubI7/GNVcWlSOyVKYsvuRUonSJxBMvEYM0AeggxmnvOeP3Ke8pDHIC9OAjiBHRh2DzojtZqSWiu1keJWlfudIt20ppexp+NG2ueTuNStuufeW9LTh1PnOo7jOI7jvP+89YxV9GP+gwQtiEfkYyxUOBpFkdrh25fHHX22faLuYKRHd+f14eKMyuHaeDRSPEy1UI60VC2qGEsXF6FHGml2bkGjgrlVZb0bXV5fKrlT1U25pt88OdU/HQx1XlxQIUoUUfM0DBkNe1rILvXL9Vi/apS0EI7tsfRSpFKxoKGiEKenm0JRx4VEXxycqnVyoeb8jD6+t6rNmZLusJY0De8RNtCEMauhbAAvU8eIttCGVvtj1Br1P588eWLScHNz03baJysTaYm85HF5Nq5C4iHC8535e1ZPNN/Iinqk4b4kie1yTxvHZLkSk3qi7ITP9YhIJCF1SZeW6nYd4/NYPVK30VgJ/QZ2HRmhjI9o3NraskfnGQsJjER9+PChCUjmRwYpgpV5sZs+9WCp20obtVmJubS0YLvvkz16cXEe+hVUq82M+3QsW5c1MB79mc/l5YVdTz+yYvf29vT06VO7D2zq9exZy8ZDOHMNn9RkZZ4hjM2ff8Pl5bqN8fjx17ZG5s5mVmdnpzbm+vp6+EsUbJMqRCrrmZubtYxYNgzLr1mzDF7qzQ4G+XnmMCml4DiO4ziO4ziO4ziO47z/vPWM1fyx+Cx84YH9cdYothEvqZEqStWslvWwMW8Zfl/tn+p3Z9casMHRnZKWKAPQ74bLByqWirYrfzYKbXGiOIkIo+51xzJGKzM13YkiVRLprHOj9s3AJGyUFpSkqeaGV/rZ4ki/vDenD2fuaJgU9TzNdD0cajQY6mqQ6Eglffb8Qp9tH4X5SZ88XNff3l/Rh6VYRcbG0IZ55ht25TI1tpzcsK5winNvQ6ySucmO92yUhExkwyY+9/cPTCIi7xCLCEIkJps9scHVRJJ2wvqRp9VqTcfHpyZTyUolJvITOcq1SEUEKoIQWUi8bvcmjPPcsi+Rg2Sm0sbO+dfXVzYOm0SRoTkRiMwhz1LtmLhst89tHcxxe/t3yuu3JrZxFsKUmMwJKYpgpe3w8LkJTUQtbfRdXFywzbeOj4+/WStCuNXas8xUxOikDAI7/NPGXMmUXVxcsvtFbGQs4pVxWTPzQTQjXxG2CFfkK8KXa9iAiu9IVsZF1LJOxtre3gn9uiZs2fiKNbfbF3Zv2PgKCYsMvr2Bl+M4juM4juM4juM4jvP+8vZLAZhajCyzFLHKj+V4FjgTXmlqj8/PxAXdn6+ouTKn9s1Ijw/aOu8iu0qqlhMNB30lyFQV1e8NxGPbSZG6qz11en2VS5XwKoVYqRYqJdVrJZWzvkqDjuZ0o/XijX6+WtSv789rq0oc6Yujjv55+0S9pKS5uXl9ddbTv24f6LLf11/fW9ffba7q0UxJMynTzdjTKswYQRwIb9RhDQvIRbG95Vmsdjh+fV+QiUhQZCiZktQBJSJSEEm4ufnA5B/ylJ39OUc2K1IRqbdcXzahiHBEECJTySBFZG5tbY775rIUkfno0Z9YJuns7Lxt6nR+3rZ2ZCJxJnVIHzy4Z1mcUZRYtilysVJBrKbWj/GQvsCYkxqw9+/f08pK3eaCgCXDE/nJC6mJMCV7mKzcepg7sZrNZvg/3AjryePPzuabSrHmfN3zlnGLyKWdsgSIZGK3Ws9sfsTnHnI9cyGrl5qwzIM/GWvkXhAfiYsk7Xa6JmWpG0tc1o903dx8aPcaIY3QZU3MnfvOPcizYZlHZXxfqNfrOI7jOI7jOI7jOI7j/Bh4+xmrY8VYYMd8ZVZnFQFpOZ/hO5mmJl+zWEmWWobqg3pN9fkZHbav9d+tY7XTSElcsozRarmoESbNxGqsi86V0ijWbLVm2bEUHYjDdSuVRI/qVf3Z0h19tFTSzzeq+lmjrLViGDZl3Ei/Pe3o0/2OWn1p+7St/bNzba3O6VePmlZHdSHMmQxb5si0EcFUi83zUclZpY5mbGux3FVbW7gu9LFv4+PvCtmkT58+M0nJY+YIRcQjO+oj7hCVCD6yPxGjPL6P2EPEMuTa6qqJSbIt19ebGg2Zcz4Xsn7r9SWThZeX1yYU6YOMRUCSgYmEJLsUgUvWJXKVTMx+v2eZnkjGgwOyYrth7GU7j/zlUXtEJcJxZqZmfRCVnENaAnPON70qmxglFlmgEwHK5lHIX9bFHNhQijkhdrkX4ZZoZ2fHrr97txniFG3+rda+Dg8PtbbWCO3rti7kKfcGobq7+8zWzZj8+zBPxCuSF7ivcVxUlvK3LWi1sRr+54phHbN276jHSn/+DqyTtSFPJ+UFWAeClvns7++bhK7X6xbbcRzHcRzHcRzHcRzHef9562IVn5f7Rd5QVEjW8aEd5YIVNQkIrFL4XK0k2mrMqVYq6cnzth6f3Kg9GCquxOpEiU6HmXppatKwVi6rXIxVyEZikyrbsCrEu5NlWilFWg99lpKCKqENv8uD+1dhuKNw7eEg1fVNV/cXy/r1n67rF415rSBtEWxMKcrnaxsRTb04ttfYuoZ3wz7H13wXkKhATIQoNUQRh83mumWAsskSmZHlclE89r+zs2vlARCdZE8iCqn5iQjd+GBD152Orq4u1ev3TWSm6TAsJ9Pc7JzFGwwHJgTr9QWThTs72zo6OlSSUK/1Q2vjkXjEIWKULFVEJ4/EU2qA+SFBEauIUSDLFaF7cnJmj+AzP9aDtEU6IhuRnYuL82EdpRB/P8SnpMDA5s8tQ9IidMk6ZSzi8UJ8Nptrdg3jLy8vaW1t1e4bYxSLicnX3d2WiU1qxFKmYGOjGdov1G6fWfYrGa2t1q5lnXJPuF8rKw1dhGuurq+0OK5Te3B4ENraqtaqNlfGRfJOMoDpNykdwDnkLeUKkM/cD7J/WbPjOI7jOI7jOI7jOI7z4+Ctb171h4NYzGUm2Z8Yylw1SnujTJ/unenr1r4Ul3QTzavbT1UvDfWLu7P6ZHVW1QLykE6JhjG74qcqjfK6rrhPXmkUqZdl2r8Z6PPDc311eKFqMdHHG8v6qF7TfLgm/CpF1o2FnVmzH4BpsYqkQySS/YiM5BTnyehEbiI6Ly6uTELyuDm1QhGsk8fu6UfGJrVBqYOKAORu8h0ByYv4xCEesRGNfJKFmY+RmpxkzPn5WRuLeSBL2aAJ0ZskRRs3nyPz65v85TqOOYdk5DwxgXiUcaANEcqcySKdZMzymD7zQ5BSS5b19Xo3YjMrSgMcHuY1UtnMCxnLOoB4yGDuC8IYqTk7W7P5PnnyPzYPSiAgSRGn1EEFYrA2sm/zfrM2d0QsWbVz82GMEJcsYmKwNtY5WRtzBsYnJrGJSUat4ziO4ziO4ziO4ziO8+Ph3YnV3CuOP3n8nh33OaCOqdRTolZ3oE932/q35yPtDYsaDHv66Uqsf3y0oEfVWIOUR/PJfu2FnuEzLYVQIU4s9UOMs/5QX51d6b9aJ+r1R/qLjYZ+2lzQ3ShcPaJMAf1HoWcYuUAVVsTsDwMyb4IJ3QBtk3baJu3TcJ7m/DLO/36cvO1F3zwm8SbfX1w7GXN6vLyNa6Zjvug7YfrcNJN4Eyb9ptsQpNPHSE4yU5GvloW7cddqwpJFy+P9PGY/HXfy/fY4ZM4iPJGyZOoyDhJ0mum223ObPp4eDyZznm5zHMdxHMdxHMdxHMdxfpz84GJ17K2Mb/RUaCTDNP+aSz00J4/l9woFfXkx1L+0rvSfx10VleofHs7q7+/OqBQ62ab9Go5lV6JhOD7LUj25uNbnz451fN7VZmNRn9xr6INyrGKaKs2GGkXI1ERJFtlmWhk1A5Bm+cg/CNPibiL03kR+OW/5fbKjb+5d/vmH8G1pSMfp78TMj6dj3haN+fcX8/i+TOJOx77Nq+/PpD2fCxti5TAvzr06JjDmdOzpNU7PZ/qaSfvtOb1u/o7jOI7jOI7jOI7jOM77xbsTqwX7xX/lYEg5yNgqihfwbWiZpSdZrM+Puvps91Sj4UA/aS7oo8aMGsVYxdCXbNdO6PS0M9DnByfaOTxXo1bTJ/fXtDVfVpVYGXVHCxpZhddUkW1WhUiNTawyH6sB+46Ylnq/z/j+vJRJn1f1fRNviv26uK/rC2/q/8fwsrFvj/Xdxn7938BxHMdxHMdxHMdxHMdxct5JKQDk6rfcFW5sIlbzA3uNwvso/NCSKBbqk/qr/7F7rsd7Z5qpxPrJxqI2F6vqptIXR+f6eu9YlSjWxx+s6i8bM5oLoZCuhI+szEBoyNj4iq/U62QUxovzc47jOI7jOI7jOI7jOI7jOG/gHYhVNCnclpg8up1vTDQ5h/xEwlJ/FelJHusofPbCuaedof5950h7Z5eaq1XVH2W66Q/0581F/U1zQasJZQLSsTbNlGTkoo7raka5rOWxf/O5ogwAn7zdnpfjOI7jOI7jOI7jOI7jOM63eQelAHKxyuPW469TiaJZ+EGuRipQdJXz4aIMHxoOLYc1pT3SKC6Ifd5/277WlzsnqpSK+qv7y3pwp6hylpqkJQQ61WKFXxsoxMxswyqCxyEiJxiRIgGQvzuO4ziO4ziO4ziO4ziO47yKd1IK4PtjpvVFFqvYz18a2DfKBUhRlloWaiGaCNLwSbdX+NLXnHIcx3Ecx3Ecx3Ecx3Ecx3kp726npu8FWa55+mr+CD9Zppkq4VvJWnkL72PpOm755uNlvOaU4ziO4ziO4ziO4ziO4zjOS/l/JlbHznSMZaaGTwoI8M7j/FFo8V3dHcdxHMdxHMdxHMdxHMf5v0P6X8UIufTATV4kAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "from pathlib import Path\n", + "\n", + "\n", + "def datafile_path(name):\n", + " return Path(\"..\") / name\n", + "\n", + "\n", + "Image(datafile_path(\"CO2_flowsheet.png\"))" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXFklEQVR4nO3de1yO9/8H8Nfd+XxASZScFsacD7WZw/qJzdlsY0NzGjJDQ2FyLjnN+TCUOR9HGDmGqTGnCJlTNEpmKiqd7uv3R98uLhV3ubuv7u7X8/Hoket9XV33O/e2+7XP9bk+l0IQBAFEREREOkBP7gaIiIiINIXBh4iIiHQGgw8RERHpDAYfIiIi0hkMPkRERKQzGHyIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4i0kkKhwJQpU+RuQ+Tl5QUXFxe52yCit2DwISK1CQkJgUKhEL9MTEzw3nvvYcSIEXj06FGJvnZERASmTJmCpKQktZ63TZs2kt+pXLlyaNasGdauXQulUqmW15g1axZ2796tlnMR0ZsZyN0AEZU906ZNQ7Vq1fDixQv88ccfWL58OX7//XdER0fDzMxMLa+Rnp4OA4OX/wmLiIjA1KlT4eXlBRsbG7W8Rp4qVaogICAAAPD48WP8+uuvGDhwIP7++28EBga+8/lnzZqFzz//HN26dXvncxHRmzH4EJHadezYEU2bNgUADBo0COXLl8f8+fOxZ88e9O7du9jnVSqVyMzMhImJCUxMTNTV7ltZW1vjm2++Ebe/++47uLq6YsmSJZg+fToMDQ011gsRvRte6iKiEteuXTsAwN27dwEAc+fOhbu7O8qXLw9TU1M0adIEO3bsyPdzCoUCI0aMwMaNG/H+++/D2NgYBw8eFPflzfGZMmUKxo4dCwCoVq2aeFkqNjYWrVu3RoMGDQrsy9XVFZ6enkX+fczMzNCyZUukpqbi8ePHhR6XmpoKHx8fODk5wdjYGK6urpg7dy4EQZD8jqmpqVi3bp3Yt5eXV5F7IiLVcMSHiErc7du3AQDly5cHACxcuBBdunTB119/jczMTGzZsgW9evXCvn378Nlnn0l+9tixY9i2bRtGjBiBChUqFDiBuEePHvj777+xefNmLFiwABUqVAAA2NnZoW/fvhg8eDCio6NRr1498Wf++usv/P3335g0aVKxfqc7d+5AX1+/0MtqgiCgS5cuOH78OAYOHIiGDRsiLCwMY8eOxYMHD7BgwQIAwPr16zFo0CA0b94cQ4YMAQDUqFGjWD0RkQoEIiI1CQ4OFgAIR44cER4/fizExcUJW7ZsEcqXLy+YmpoK//zzjyAIgpCWlib5uczMTKFevXpCu3btJHUAgp6ennD16tV8rwVA8Pf3F7fnzJkjABDu3r0rOS4pKUkwMTERxo8fL6mPHDlSMDc3F54/f/7G36l169ZC7dq1hcePHwuPHz8Wrl+/LowcOVIAIHTu3Fk8rn///kLVqlXF7d27dwsAhBkzZkjO9/nnnwsKhUK4deuWWDM3Nxf69+//xj6ISD14qYuI1M7DwwN2dnZwcnLCV199BQsLC/z222+oXLkyAMDU1FQ89unTp0hOTkarVq1w4cKFfOdq3bo16tatW+xerK2t0bVrV2zevFm8xJSTk4OtW7eiW7duMDc3f+s5YmJiYGdnBzs7O9SpUweLFy/GZ599hrVr1xb6M7///jv09fUxcuRISd3HxweCIODAgQPF/p2IqPh4qYuI1G7p0qV47733YGBggIoVK8LV1RV6ei//P2vfvn2YMWMGLl26hIyMDLGuUCjynatatWrv3E+/fv2wdetWnDp1Ch9//DGOHDmCR48eoW/fvir9vIuLC3755RfxFv1atWrB3t7+jT9z7949ODo6wtLSUlKvU6eOuJ+INI/Bh4jUrnnz5uJdXa87deoUunTpgo8//hjLli1DpUqVYGhoiODgYGzatCnf8a+ODhWXp6cnKlasiA0bNuDjjz/Ghg0b4ODgAA8PD5V+3tzcXOVjiah046UuItKonTt3wsTEBGFhYRgwYAA6duyollBR0GhRHn19ffTp0wc7duzA06dPsXv3bvTu3Rv6+vrv/LqFqVq1Kh4+fIhnz55J6jExMeL+PG/qnYjUi8GHiDRKX18fCoUCOTk5Yi02NvadVy7Om6tT2MrNffv2xdOnT/Hdd9/h+fPnknV5SsKnn36KnJwcLFmyRFJfsGABFAoFOnbsKNbMzc3VvuI0ERWMl7qISKM+++wzzJ8/Hx06dECfPn2QmJiIpUuXombNmrh8+XKxz9ukSRMAwMSJE/HVV1/B0NAQnTt3FgNRo0aNUK9ePWzfvh116tRB48aN1fL7FKZz585o27YtJk6ciNjYWDRo0ACHDh3Cnj17MGrUKMkt602aNMGRI0cwf/58ODo6olq1amjRokWJ9kekqzjiQ0Qa1a5dO6xZswYJCQkYNWoUNm/ejNmzZ6N79+7vdN5mzZph+vTpiIqKgpeXF3r37p1vccF+/foBgMqTmt+Fnp4eQkNDMWrUKOzbtw+jRo3CtWvXMGfOHMyfP19y7Pz589GkSRNMmjQJvXv3xvLly0u8PyJdpRCEV5YQJSIqwxYuXIjRo0cjNjYWzs7OcrdDRDJg8CEinSAIAho0aIDy5cvj+PHjcrdDRDLhHB8iKtNSU1MRGhqK48eP48qVK9izZ4/cLRGRjDjiQ0RlWmxsLKpVqwYbGxsMHz4cM2fOlLslIpIRgw8RERHpDN7VRURERDqDwYeIiIh0Bic3v0apVOLhw4ewtLTkMvJERERaQhAEPHv2DI6OjpKHIr+Owec1Dx8+hJOTk9xtEBERUTHExcWhSpUqhe5n8HmNpaUlgNy/OCsrK5m7ISIiIlWkpKTAyclJ/BwvDIPPa/Iub1lZWTH4EBERaZm3TVPh5GYiIiLSGQw+REREpDMYfIiIiEhncI5PMeTk5CArK0vuNkgDDA0Noa+vL3cbRESkJgw+RSAIAhISEpCUlCR3K6RBNjY2cHBw4LpORERlAINPEeSFHnt7e5iZmfGDsIwTBAFpaWlITEwEAFSqVEnmjoiI6F0x+KgoJydHDD3ly5eXux3SEFNTUwBAYmIi7O3tedmLiEjLcXKzivLm9JiZmcncCWla3nvOeV1ERNqPwaeIeHlL9/A9JyIqOxh8iIiISGcw+BAREZHOYPDRAV5eXlAoFFAoFDA0NETFihXxf//3f1i7di2USqXK5wkJCYGNjU3JNUpERFTCGHx0RIcOHRAfH4/Y2FgcOHAAbdu2xQ8//IBOnTohOztb7vaIiIg0gsFHRxgbG8PBwQGVK1dG48aNMWHCBOzZswcHDhxASEgIAGD+/PmoX78+zM3N4eTkhOHDh+P58+cAgPDwcHz77bdITk4WR4+mTJkCAFi/fj2aNm0KS0tLODg4oE+fPuLaN0RERHlCQwF399zvcmHweQeCICAzM1OWL0EQ3rn/du3aoUGDBti1axcAQE9PD4sWLcLVq1exbt06HDt2DOPGjQMAuLu74+eff4aVlRXi4+MRHx+PH3/8EUDubd7Tp09HVFQUdu/ejdjYWHh5eb1zf0REVLYEBgKRkbnf5aI1CxgGBARg165diImJgampKdzd3TF79my4urqKx7x48QI+Pj7YsmULMjIy4OnpiWXLlqFixYol0lNWVhYCAgJK5Nxv4+fnByMjo3c+T+3atXH58mUAwKhRo8S6i4sLZsyYgaFDh2LZsmUwMjKCtbU1FAoFHBwcJOcYMGCA+Ofq1atj0aJFaNasGZ4/fw4LC4t37pGIiLRffHw8OnRYDVfXZujevYNsfWjNiM+JEyfg7e2NP//8E4cPH0ZWVhbat2+P1NRU8ZjRo0dj79692L59O06cOIGHDx+iR48eMnZd+gmCIK5Tc+TIEXzyySeoXLkyLC0t0bdvXzx58gRpaWlvPMf58+fRuXNnODs7w9LSEq1btwYA3L9/v8T7JyKi0m/v3r1YtWoVBEEJF5cz6Nz53a9aFJfWjPgcPHhQsh0SEgJ7e3ucP38eH3/8MZKTk7FmzRps2rQJ7dq1AwAEBwejTp06+PPPP9GyZUu192RoaAg/Pz+1n1fV11aH69evo1q1aoiNjUWnTp0wbNgwzJw5E+XKlcMff/yBgQMHIjMzs9AVq1NTU+Hp6QlPT09s3LgRdnZ2uH//Pjw9PZGZmamWHomISDulp6cjKChIUvvyyy9lXRhWa4LP65KTkwEA5cqVA5A76pCVlQUPDw/xmNq1a8PZ2RmRkZGFBp+MjAxkZGSI2ykpKSr3oFAo1HK5SS7Hjh3DlStXMHr0aJw/fx5KpRLz5s2Dnl7uQOC2bdskxxsZGSEnJ0dSi4mJwZMnTxAYGAgnJycAwLlz5zTzCxARUal19epV7NixQ1Lz9fWFsbGxTB3l0srgo1QqMWrUKHz44YeoV68egNwnpxsZGeVbZ6ZixYpISEgo9FwBAQGYOnVqSbZbKmRkZCAhIQE5OTl49OgRDh48iICAAHTq1An9+vVDdHQ0srKysHjxYnTu3BmnT5/GihUrJOdwcXHB8+fPcfToUTRo0ABmZmZwdnaGkZERFi9ejKFDhyI6OhrTp0+X6bckIiK5CYKAlStX4tGjR2KtefPm6Nixo4xdvaQ1c3xe5e3tjejoaGzZsuWdz+Xn54fk5GTxKy4uTg0dlj4HDx5EpUqV4OLigg4dOuD48eNYtGgR9uzZA319fTRo0ADz58/H7NmzUa9ePWzcuDHfxG13d3cMHToUX375Jezs7BAUFAQ7OzuEhIRg+/btqFu3LgIDAzF37lyZfksiIpLTkydPMG3aNEnoGTp0aKkJPQCgENRxX7QGjRgxAnv27MHJkydRrVo1sX7s2DF88sknePr0qWTUp2rVqhg1ahRGjx6t0vlTUlJgbW2N5ORkWFlZifUXL17g7t27qFatGkxMTNT2+1Dpx/eeiCi/0NDc29LbtgWOHwf69z+OhIST4n5ra2uMHDlSnD5R0gr7/H6d1lzqEgQB33//PX777TeEh4dLQg8ANGnSBIaGhjh69Ch69uwJALhx4wbu378PNzc3OVomIiIqs/LW5Dl/PgsTJszCq7NKunTpgkaNGsnX3BtoTfDx9vbGpk2bsGfPHlhaWorzdqytrWFqagpra2sMHDgQY8aMQbly5WBlZYXvv/8ebm5uJXJHFxERkS7z9QUmTLiNXr02SOo//vgjzM3NZerq7bQm+CxfvhwA0KZNG0k9ODhYXCV4wYIF0NPTQ8+ePSULGBIREZF6paRsQK9et8Xt999/H59//rmMHalGa4KPKlORTExMsHTpUixdulQDHREREemelJQULFiwQFL79ttv4ezsLFNHRaM1wYeIiIjkdebMGcmCwnp6evDz84OBgfbECe3plIiIiGSRk5ODoKAgyYr8N254YNOmD2XsqngYfIiIiKhQDx48wOrVqyW1Eyd+wKhRNvI09I4YfIiIiKhAe/bswaVLl8TtqlWron///rI+a+tdMfgQERGRRFpaGubMmSOpVa/eG337vidTR+qjlY+soNLJy8sL3bp1E7fbtGmDUaNGvdM51XEOIiJSTWgo0LPn5XyhZ9YsPyxfrv2hB+CIj07w8vLCunXrAACGhoZwdnZGv379MGHChBKdib9r1y4YGhqqdGx4eDjatm2b75EjRTkHEREVT+7jJwS4uS3FBx88Eevu7u5IT/8/NGmSu2BhWcDgoyM6dOiA4OBgZGRk4Pfff4e3tzcMDQ3h5+cnOS4zMxNGRkZqec1y5cqVinMQEdGbLV78GJ6e0gV/hw8fDjs7OwBAly5ydFUyeKlLRxgbG8PBwQFVq1bFsGHD4OHhgdDQUPHy1MyZM+Ho6AhXV1cAQFxcHL744gvY2NigXLly6Nq1K2JjY8Xz5eTkYMyYMbCxsUH58uUxbty4fItMvn6ZKiMjA+PHj4eTkxOMjY1Rs2ZNrFmzBrGxsWjbti0AwNbWFgqFQlyN+/VzPH36FP369YOtrS3MzMzQsWNH3Lx5U9wfEhICGxsbhIWFoU6dOrCwsECHDh0QHx8vHhMeHo7mzZvD3NwcNjY2+PDDD3Hv3j01/U0TEWmXw4cP46OPXoae1NRymDx5shh6yhoGHx1lamoqrsdw9OhR3LhxA4cPH8a+ffuQlZUFT09PWFpa4tSpUzh9+rQYIPJ+Zt68eQgJCcHatWvxxx9/4L///sNvv/32xtfs168fNm/ejEWLFuH69etYuXIlLCws4OTkhJ07dwLIfbBsfHw8Fi5cWOA5vLy8cO7cOYSGhiIyMhKCIODTTz9FVlaWeExaWhrmzp2L9evX4+TJk7h//z5+/PFHAEB2dja6deuG1q1b4/Lly4iMjMSQIUO0+g4FIqLiyMzMxNSpUxERESHWLl/ujo8++r5M/zeRl7p0jCAIOHr0KMLCwvD999/j8ePHMDc3x+rVq8VLXBs2bIBSqcTq1avFf/iDg4NhY2OD8PBwtG/fHj///DP8/PzQo0cPAMCKFSsQFhZW6Ov+/fff2LZtGw4fPgwPDw8AQPXq1cX9eZe07O3tJXN8XnXz5k2Ehobi9OnTcHd3BwBs3LgRTk5O2L17N3r16gUAyMrKwooVK1CjRg0AwIgRIzBt2jQAuUutJycno1OnTuL+OnXqFP0vkohIi928eRObNm2S1OrXHwt/fzOZOtIcjvjIJDQUcHfP/a4J+/btg4WFBUxMTNCxY0d8+eWXmDJlCgCgfv36knk9UVFRuHXrFiwtLWFhYQELCwuUK1cOL168wO3bt5GcnIz4+Hi0aNFC/BkDAwM0bdq00Ne/dOkS9PX10bp162L/DtevX4eBgYHkdcuXLw9XV1dcv35drJmZmYmhBgAqVaqExMREALkBy8vLC56enujcuTMWLlwouQxGRFSWCYKAdevWSULPlSsNMGWKPyZMKPuhB+CIj2wCA4HIyNzvmpg01rZtWyxfvhxGRkZwdHSU3M1lbm4uOfb58+do0qQJNm7cmO88xb3ma2pqWqyfK47X7wJTKBSS+UfBwcEYOXIkDh48iK1bt2LSpEk4fPgwWrZsqbEeiYg0LSkpKd80gg0bBiI9vQoAoAxf3ZLgiI9MfH0BNzfN3R5obm6OmjVrwtnZ+a23sDdu3Bg3b96Evb09atasKfmytraGtbU1KlWqhDNnzog/k52djfPnzxd6zvr160OpVOLEiRMF7s8bccrJySn0HHXq1EF2drbkdZ88eYIbN26gbt26b/ydXteoUSP4+fkhIiIC9erVyzfkS0RUlkREREhCjyAY4dChSZg3rwqWLcv9PJo9W8YGNYgjPjLp0qX03h749ddfY86cOejatSumTZuGKlWq4N69e9i1axfGjRuHKlWq4IcffkBgYCBq1aqF2rVrY/78+UhKSir0nC4uLujfvz8GDBiARYsWoUGDBrh37x4SExPxxRdfoGrVqlAoFNi3bx8+/fRTmJqawsLCQnKOWrVqoWvXrhg8eDBWrlwJS0tL+Pr6onLlyujatatKv9vdu3exatUqdOnSBY6Ojrhx4wZu3ryJfv36vctfGRFRqbR7dw4uXpwFPT2lWDtwoAOuXm2BjRtffg6V1s+jksARH8rHzMwMJ0+ehLOzM3r06IE6depg4MCBePHiBaysrAAAPj4+6Nu3L/r37w83NzdYWlqie/fubzzv8uXL8fnnn2P48OGoXbs2Bg8ejNTUVABA5cqVMXXqVPj6+qJixYoYMWJEgecIDg5GkyZN0KlTJ7i5uUEQBPz+++8qL3JoZmaGmJgY9OzZE++99x6GDBkCb29vfPfdd0X4GyIiKv3u37+PqKgZktDz/vujcfVqCzx/njvVQhcphNcXX9FxKSkpsLa2RnJysvghDwAvXrzA3bt3Ua1aNZiYmMjYIWka33si0jY7duzA1atXxe1bt2rg9u1vEBGRt0pz7lSLsjTSU9jn9+t4qYuIiKiMSE1Nxdy5cyW1rKxvcPt2DXFOaWmeaqEJDD5ERERlwKVLl7Bnzx5JbebMCWja1BCvrFGo8xh8iIiItJhSqcSiRYuQnJws1i5caIUDB9rB3r7sPFxUXRh8iIiItNSjR4+wYsUKSe3UKW8cPVoBAODsrNuXtQrC4FNEnAuue/ieE1FpdPDgQcm6ZgkJFREe/h1mz1bgwQNAEDjaUxAGHxXl3S6dlpam0VWISX5paWkA8q8ITUQkh4yMDAS+di/6gQM9ceZMPbi6cvLy2zD4qEhfXx82NjbiM5/MzMzK9NNrKXekJy0tDYmJibCxsYG+vr7cLRGRjouJicHWrVsltcDAcQBMNfo0AG3G4FMEDg4OACCGH9INNjY24ntPRCQHQRCwZs0aPHjwQKw1btwYf/7ZGQYGwMiRwMyZMjaoRbiA4WtUWQApJycHWVlZGu6M5GBoaMiRHiKS1dOnT7Fo0SJJbfDgwXB0dJSpo9KJCxiWIH19fX4YEhFRiTt16hSOHTsmbqemmmHfPh/4+/OJU8XF4ENERFTKZGdnY+Zr16727fsU5841g6urTE2VEQw+REREpUhsbCzWrVsnqc2dOwbPn1vCxAQICpKpsTKCwYeIiKiU2Lp1K2JiYsTtGzfew+bNvQEAlSsDy5bxVvV3xeBDREQks+fPn2PevHmSWkhIP2RlVYOFBe/aUicGHyIiIhmdO3cO+/fvl9RmzJiI7GwD7NnDER51Y/AhIiKSgVKpxPz585GamirWjh9vg9OnWyMnB/j8c4aeksDgQ0REpGHx8fFYtWqVpLZly/ewtS2HnTsZeEoSgw8REZEG7d+/H+fOnRO3HzxwxC+/DELt2gpERMjYmI5g8CEiItKAFy9eYPbs2ZLa1q1f4Pr1OgCA13ZRCWHwISIiKmHXrl3D9u3bJbWAgPHIyDCBqSkwejQvb2kKgw8REVEJEQQBq1atQkJCglg7c6YZjhz5FAYGwIQJvE1d0xh8iIiISsCTJ0+wZMkSSS0r6zskJTlgxw6O8MiFwYeIiEjNjh8/jpMnT4rbyclW+PnnH9CypR4nMMuMwYeIiEhNsrKyMGvWLEktNLQzLlxoDADw9ZWjK3oVgw8REZEa3LlzB+vXr5fU5szxQVqaBfT0gB49eHmrNGDwISIiekebNm3CzZs3xe2rV+ti+/ZeADiBubRh8CEiIiqmlJQULFiwQFJbu9YL9+9XBcDQUxox+BARERXD2bNnceDAAXFbqVRg5swJsLY24BPVSzEGHyIioiLIycnBrFlzoFRmiLXDhz1w+vSHMDEBgoM5l6c005O7ASIiIm3x4MEDzJgxQxJ6Vq36AZUqfQg3N2DrVoae0o4jPkRERCrYs2cPLl26JG7fu+eMyEgvPHigkK8pKjIGHyIiojdIT09HUFCQpLZp01eIi3PFli0yNUXFxuBDRERUiJ9+ugIDg12S2gcf+CIszBhz5vCyljZi8CEiInqNIAiYMGEZTEz+FWuRkW4YPrw9unQBuneXsTl6Jww+REREr/j333+xdOlSmJi8rC1bNgyJifZISeEoj7Zj8CEiIvqfI0eO4PTp0+L2f//ZYu3a77FxowKBgXzWVlnA4ENERDrvt98ycflywGu1boiKaoDatXNHeTjSUzYw+BARkU67efMmLl/eJKnNmTMWHTuawcyMozxlDYMPERHppD17BBw9+ivKl48VazdvfoA7d7pj0yaO8JRVDD5ERKRzkpOTcenSzyhf/mVt48YBmDvXiYGnjGPwISIinREaCmzeHInatQ+JtexsAxw75ou5c/UZenQAgw8REemE3btzcP58AGrXzhFrMTHt0bu3G6ZPl7Ex0igGHyIiKvM2bYrDzZtrYfDKp96oUaNgbW0tX1MkCwYfIiIqk0JDgcBAwMNjF/T1r4j1f/6pjqtXv0GjRgpe2tJBDD5ERFQm/fRTKnr0mCupHT/+NRISauLGjdxQxOCje/TkboCIiEjdfvrpUr7Q88EHfggPr4mgIMDNjevz6KoyGXyWLl0KFxcXmJiYoEWLFjh79qzcLRERkQYIgoCFCxfCwGCPWDt58iNs2eKP7t2NAOSO8kREcLRHV5W54LN161aMGTMG/v7+uHDhAho0aABPT08kJibK3RoREZWQiRMBZ+dHmDZtGpKSksT62rXeePjwE8yeLV9vVLooBEEQ5G5CnVq0aIFmzZphyZIlAAClUgknJyd8//338FVhXDMlJQXW1tZITk6GlZVVSbdLRETvKDQUWL48DC1b/inWnj+3w7x5w9CypQIRETI2Rxqj6ud3mRrxyczMxPnz5+Hh4SHW9PT04OHhgcjIyAJ/JiMjAykpKZIvIiIq/UJDgVatMnDx4lRJ6ImI6IlWrYajZUsF5/FQPmUq+Pz777/IyclBxYoVJfWKFSsiISGhwJ8JCAiAtbW1+OXk5KSJVomI6B2EhgITJ96Ah0egpL5kyTh4e9fjPB4qVJkKPsXh5+eH5ORk8SsuLk7uloiIqBATJwKWlgIOHFiLzz/fItbLl2+EsDB/rFljyrBDb1Sm1vGpUKEC9PX18ejRI0n90aNHcHBwKPBnjI2NYWxsrIn2iIjoHYSGAitWPMWPPy6S1N97bxB6966MESNkaoy0Spka8TEyMkKTJk1w9OhRsaZUKnH06FG4ubnJ2BkREb2LiROBuXP/wMiRL0NPZqYpfvrpJ/TuXVnGzkjblKkRHwAYM2YM+vfvj6ZNm6J58+b4+eefkZqaim+//Vbu1oiIqBiys7NhZDQTn3zysnbkyKcYO7YZ9MrU/76TJpS54PPll1/i8ePHmDx5MhISEtCwYUMcPHgw34RnIiIq/TZtuoebN0MktfDwMRg71pJzeahYytw6Pu+K6/gQEZUOCxduQ1LSdXG7Vq1a6NOnj4wdUWmm6ud3mRvxISIi7bZz53NER8+T1Pbv74uzZ6vL1BGVJbw6SkREsgsNBdzdgbVrL+QLPTNmTMCzZww9pB4c8SEiItkFBirh7r4AcXHPxdrx421gZ9cazZrxSeqkPgw+REQki9BQIDAQsLJKgKfnSsm+U6e+x5gx5TiBmdSOwYeIiGQxfjxQvfp+NG9+Tqw9fFgJ69cPRlqaQsbOqCxj8CEiIo2aOBFYuvQFRo+eLalv3doLt27VxdixMjVGOoHBh4iINCY0FNi9+xpGj94uqe/cOR6BgSa8tEUljsGHiIg0QhAEnDixCl98kSDWzp5tiqdPP8PlyzI2RjqFwYeIiErc9u3/4dq1xXh1XbmsrCF4+rQS79gijWLwISKiEvXTT+EwMDghbr94YYGZM0dDjw/aIhkw+BARUYnYvTsLUVGzYPDKJ82BA50wYUITPlyUZMPgQ0REanfnzh1ERa2X1DZs8MG8eRacwEyyYvAhIiK1WrBgE1JSborbd+7Uwbp1X8DfX8amiP6HwYeIiNRi585niI6eL6kFB3vBxKSqTB0R5cerrERE9E5CQ4G2bc/mCz1r1kyEqWlVBAXJ1BhRATjiQ0RExaZUKnHmzBy0afNCrB050g45Oa1w/76MjREVgsGHiIiK5eHDh/jll19gZPSy9ssvI+HsbMu1eajUYvAhIqIiCw0NxcWLF8XthAQnhId/i2XLFLxri0o1Bh8iIlJZeno6gl6btLN581coV84V16/L1BRRETD4EBGRSqKjo7Fz505JbdYsXxgZGXMCM2kNBh8iInojQRAQFLQcL148FmvnzrXEvn2e0NMDtm8HL2+R1uDt7EREVKh///0X06ZNk4SeYcOG4YMPPGFhAfj6MvSQdlEIgiDI3URpkpKSAmtrayQnJ8Pq1ccIExHpmMmTj0Jf/w9xOy3NFu7u36NrV4WMXREVTNXPb17qIiIiUWgoMGdOJjw8AqCv/7J+5UpX7NjRULa+iNSFwYeIiES//HILHh4bJbX163/E/PnmMnVEpF4MPkREBEEQsGDBBjRtekesxcbWR/fuPfhwUSpTGHyIiHRccnIyfv75Z0ltzZoBqFLFiROXqcxh8CEi0mF//vknwsLCxO3sbAOsW+cLc3N9PnaCyiQGHyIiHbR7dw4uXAiEvn62WGvfvj3c3NwwfbqMjRGVMK7jQ0SkY+Li4hAVNUMSelauHAU3NzcZuyLSDI74EBHpkF27duHKlSvi9p071bBhQ1/4+nJtHtINDD5ERDogLS0Nc+bMkdQ2bOiD9PRa+O03rr5MuoPBh4iojIuKisLu3bsltZkz/ZCVZQQ3N4Ye0i0MPkREZZQgCFi8eDGePn0q1k6d+hBHj3rAxASoUQO8c4t0Dic3ExGVAaGhgLt77ncASExMxLRp0yShZ/ny4Th2zAPlygFbtwLXr3O0h3QPR3yIiMqAwEAgMjL3u4nJIURGRor7/vuvAlatGo4xYxSYOVPGJolKgSKP+Ojr6yMxMTFf/cmTJ9B/9Yl2RESkMb6+wEcfZcLTc6ok9OzY0QOLFnmjUSOGHiKgGCM+giAUWM/IyICRkdE7N0REREUTGgqsWXMDHh5bJPWFC8fh6VNTmJpyLg9RHpWDz6JFiwAACoUCq1evhoWFhbgvJycHJ0+eRO3atdXfIRERFUoQBBw7FozGjePE2oULDfH3310REpJ76cvXl3N5iPKoHHwWLFgAIPdfshUrVkguaxkZGcHFxQUrVqxQf4dERFSgpKQkLFy4ELa2L2u//DII8fGVxbV5GHiIpFQOPnfv3gUAtG3bFrt27YLtq/+mERGRRp0+fRpHjhwRt7OyjBEQMBaAPkd4iN6gyHN8jh8/XhJ9EBGRCnbvzsalS7OgULycb3n9ekf06dMcLVrwshbR2xQ5+AwYMOCN+9euXVvsZoiIdF1o6Mt5OYB0js69e/cQFRUCxSuP1QoPH43Ro614WYtIRUUOPq8uhgUAWVlZiI6ORlJSEtq1a6e2xoiIdNGr6/EAL/+ckbEd165dE4+7ebMm9uz5Gs+eydQokZYqcvD57bff8tWUSiWGDRuGGjVqqKUpIiJd8uooj6+vdMRn/vxUtG07F69kHvz6a1/ExlbnLepExaAQCluYp4hu3LiBNm3aID4+Xh2nk01KSgqsra2RnJwMKysrudshIh3g7p47suPmBkREvKxfuHABe/fulRybmTkBx48bci4P0WtU/fxW2yMrbt++jezsbHWdjohIZ7w+yqNUKhEY+DOysl5exwoP/xjh4W3zhSMiKpoiB58xY8ZItgVBQHx8PPbv34/+/furrTEiorLs1ctbeROTQ0MBT88EuLuvlBy7b98InDtXniswE6lBkYPPxYsXJdt6enqws7PDvHnz3nrHFxER5Qacr78Gnj/PDT95l6x27/4d7u5/icfFxzvg11+HYMsWBVdgJlITtc3xKSs4x4eISlrenB4LC2DjRiA7+wWuXJktOWbbtl6IiakLX1/w4aJEKijxOT6JiYm4ceMGAMDV1RX29vbFPRURkU55dU6Pre0pHDt2TLI/MHA8DAxMxMdOEJH6FDn4pKSkwNvbG5s3b4ZSqQQA6Ovr48svv8TSpUthbW2t9iaJiMqSLl2Azp0FTJs2TVK/cKEJzp/vBBcXYPZshh6ikqBX1B8YPHgwzpw5g/379yMpKQlJSUnYt28fzp07h++++64keiQiKlMePHiQL/Rs3NgHoaGd4OwMXL/O0ENUUoo8x8fc3BxhYWH46KOPJPVTp06hQ4cOSE1NVWuDmsY5PkRUkn799Vfxoc95liyZhCdP9GFrCwQHM/QQFUeJzfEpX758gZezrK2t+cR2IiLkv1UdADIyMhCY9xyK/zl3rjGePOmMx49laJJIRxX5UtekSZMwZswYJCQkiLWEhASMHTsWP/30k1qbIyLSRq8/b+vixYv5Qk9m5vd48qQz1+Uh0rAiX+pq1KgRbt26hYyMDDg7OwMA7t+/D2NjY9SqVUty7IULF9TXqYbwUhcRvauJE4FFi4CRIwEjo6n59k+Z4s8VmInUrMQudXXt2hUKheKdmiMiKsuOHweMjZ/AyGiJpH7lSlfs3NkQFhZcgZlILkUOPlOmTCmBNoiIyo7evffgv/8uSWrLl/th4EAjuLlxBWYiORU5+FSvXh1//fUXypcvL6knJSWhcePGuHPnjtqaIyLSFqGhwOzZOWjffoakfvNmTWzc+DWA3JEgXt4ikleRg09sbCxycnLy1TMyMvDPP/+opSkiIm2zZs0NtG+/RVL79dchuHOnEhQKwNGRl7eISgOVg09oaKj457CwMMkt7Tk5OTh69CiqVaum3u6IiLTAzJnz0Ljxc0mtYcPJaNSIDxclKm1UvqtLTy/3zneFQoHXf8TQ0BAuLi6YN28eOnXqpP4uNYh3dRGRqp49e4b58+dLaidOeOD48Q951xaRhqn6+a3yOj5KpRJKpRLOzs5ITEwUt5VKJTIyMnDjxo0SCz2xsbEYOHAgqlWrBlNTU9SoUQP+/v7IzMyUHHf58mW0atUKJiYmcHJyQlBQUIn0Q0R07NixfKEnM3MsRo36UJzATESlT5Hn+Ly+1LomxMTEQKlUYuXKlahZsyaio6MxePBgpKamYu7cuQByk1779u3h4eGBFStW4MqVKxgwYABsbGwwZMgQjfdMRGVP7orMAjw9pc/Zevy4ApYu9YabGzBzJi9rEZVmRV7A8PUH671u8uTJ79SQqubMmYPly5eLd5EtX74cEydOREJCAoyMjAAAvr6+2L17N2JiYlQ+Ly91EdGrXn38xIoVcWjRYq1k//79ffHwYXVYWABBQQw9RHIpsQUMf/vtN8l2VlYW7t69CwMDA9SoUUNjwSc5ORnlypUTtyMjI/Hxxx+LoQcAPD09MXv2bDx9+rTQ54hlZGQgIyND3E5JSSm5polI6+Q9fuLYsbVo0SJOsm/atJ+gVOpxPg+RFily8Ll48WK+WkpKCry8vNC9e3e1NPU2t27dwuLFi8XLXEDu88Jev6usYsWK4r7Cgk9AQACmTs2/pDwREQCMHfsCly/PltTOn2+O06c7QqkETEw4n4dImxT5IaUFsbKywtSpU4v8kFJfX18oFIo3fr1+merBgwfo0KEDevXqhcGDB79z735+fkhOTha/4uLi3v5DRFQmhYYC7u653wHgr7/+yhd69u79AXv3doS9PeDmBmzdystbRNqkyCM+hckLDkXh4+MDLy+vNx5TvXp18c8PHz5E27Zt4e7ujlWrVkmOc3BwwKNHjyS1vG0HB4dCz29sbAxjY+Mi9U1EZdOrT1W/eFE6EpyTo4fp039CuXLgYyeItFiRg8+iRYsk24IgID4+HuvXr0fHjh2LdC47OzvY2dmpdOyDBw/Qtm1bNGnSBMHBweK6Qnnc3NwwceJEZGVlwdDQEABw+PBhuLq6FnqZi4gIeDmBuXJloGrVx/D0XCbZHxXVEwcP1gMApKdzPg+RNivyXV2vz6PR09ODnZ0d2rVrBz8/P1haWqq1QSA39LRp0wZVq1bFunXroK+vL+7LG81JTk6Gq6sr2rdvj/HjxyM6OhoDBgzAggULinQ7O+/qItI97u65Iz1ffrkTdepES/YdPjwB48YZ4swZYNEiYOTI3FvWiah0UfXzu8jBRw4hISH49ttvC9z3avuXL1+Gt7c3/vrrL1SoUAHff/89xo8fX6TXYvAh0g2v3qauVGYjKkqaZh49qoMOHb7g5SwiLVGiwScpKQm3bt0CANSsWRM2NjbFbrS0YfAh0g15ozzdul1Dw4bbJfuWLx+KR48q8jZ1Ii1SIuv4xMbGwtvbG2FhYeJIi0KhQIcOHbBkyRK4uLi8U9NERJri6wucPRsIQ8MMSX3KlMkAFLCw4G3qRGWRysEnLi4OLVu2hKGhIaZPn446deoAAK5du4bly5fDzc0Nf/31F6pUqVJizRIRqUNycjIuXvwZ/7sPAgBw/bon+vRpCVdXQKEAZs/mXVtEZZHKl7oGDhyIW7duISwsDCYmJpJ96enp6NChA2rVqoXVq1eXSKOawktdRGXb4cOHEfHa9aujR8fhxx9NGXSItJjaL3UdPHgQW7duzRd6AMDU1BTTp0/HV199VbxuiYhKmFKpxPTp0yU1U9NK2L17CNfkIdIhKq/c/O+//75xDk/16tXx33//qaMnIiK1io2NzRd6vLy8sHv3EHHBQiLSDSoHn0qVKuHatWuF7o+Ojn7jCslERJqU9/iJoKAVWLdunWRfWNhkVK1aFb6+L1dhJiLdoPKlrm7duuHHH3/E0aNH8622nJiYiPHjx6Nbt27q7o+IqFjmzUuHp2cQ0tNf1q5d+xCXL3tg9v8ev9WlCy9xEekalSc3P336FC1atEBCQgK++eYb1K5dG4Ig4Pr169i0aRMcHBzw559/oly5ciXdc4ni5GYi7RcZGYlDhw5JauHhoxEebsW1eYjKKLVPbra1tcWZM2cwYcIEbNmyBUlJSQAAGxsb9OnTB7NmzdL60ENE2k0QBEybNk1Se/HCBHp64zF6NJCRwctaRLquWCs3C4KAx48fA8h90KhCoVB7Y3LhiA+RdkpISMDKlSsltW3bvsC1a3VgYQE8eyZTY0SkESWycnMehUIBe3v7YjdHRKROW7duRUxMjKQ2d+5EdOhggPv3cx8sSkQEFDP4EBGVBllZWZg1a5akdvlyfRw40ANbtnDiMhHlx+BDRFrpypUr2LVrl6RWp85whIXZMfQQUaEYfIhI60ybNg2vT0+cO9cfz54BX3whU1NEpBUYfIhIazx9+hSLFi2S1I4f/wxnzjTFmDEyNUVEWkWl4PP6f2jeZCRnERJRCVi27AAePz4rqQUE+CIjwxhubsDMmTI1RkRaRaXgs2DBApVOplAoGHyISK0KerjovXvO2LDhW9jbA5aWXJuHiFSnUvC5e/duSfdBRJTP7du3sWHDBkltz54BSEtzwo4dnMBMREVX7Dk+mZmZuHv3LmrUqAEDA04VIiL1WrJkCZ48eSKpNWw4Gf7+ZWfBVCLSPJWfzp4nLS0NAwcOhJmZGd5//33cv38fAPD9998jMDBQ7Q0SkW5JTU3F1KlTJaEnIqI1GjXyR9euDD1E9G6KHHz8/PwQFRWF8PBwmJiYiHUPDw9s3bpVrc0RkW45deoU5s6dK6kdP+4Db+82vKxFRGpR5GtUu3fvxtatW9GyZUvJM7ref/993L59W63NEZFuKOjhoikploiMHMMnqRORWhV5xOfx48cFPqcrNTW1TD2slIg04+HDh/lCT/XqvREZOQZt2wLu7kBoqEzNEVGZU+Tg07RpU+zfv1/czgs7q1evhpubm/o6I6Iyb8OGDfjll18ktUOHJqFv3/cQEQEcPw5ERgKcPkhE6lLkS12zZs1Cx44dce3aNWRnZ2PhwoW4du0aIiIicOLEiZLokYjKmMzMTAQEBEhqt241wrlzXTB79suar29u6OE6PUSkLgrh9QfeqOD27dsIDAxEVFQUnj9/jsaNG2P8+PGoX79+SfSoUSkpKbC2tkZycjKsrKzkboeozLl48SJCX7t2tXr1CPzzT3m4uYFzeoioWFT9/C7WAjw1atTINzxNRPQ2U6dOzVcLDPTHmDG5l7U4skNEJU2l4JOSkqLyCTlKQkSve/LkCZYsWSKp7d7dFbduNcTWrVyBmYg0R6XgY2Njo/IdWzk5Oe/UEBGVLaGhobh48aKk9sEHfggLM8LGjQw9RKRZKgWf48ePi3+OjY2Fr68vvLy8xLu4IiMjsW7dunyTFYlId+Xk5GDGjBmS2q1bNXD79jfw9we6d5epMSLSaUWe3PzJJ59g0KBB6N27t6S+adMmrFq1CuHh4ersT+M4uZno3f3999/YvHmzpObqOhiLFjnC15ejPESkfqp+fhc5+JiZmSEqKgq1atWS1P/++280bNgQaWlpxeu4lGDwIXo38+fPx7NnzyS1hg0n8zlbRFSiVP38LvIChk5OTgXe0bV69Wo4OTkV9XREVEY8f/4cU6dOlYSeo0c/wZQp/pg9m6GHiEqHIt/OvmDBAvTs2RMHDhxAixYtAABnz57FzZs3sXPnTrU3SESlX3h4eL4FTIOCfkTDhuZwc+Nt6kRUehQ5+Hz66ae4efMmli1bhpiYGABA586dMXToUI74EOmYgh8uWh7z54/4334uSEhEpUuxFjCsUqUKZs2ape5eiEiL/PPPP1izZo2k9s033+Dq1Rr4/ffc0MORHiIqbYoVfJKSkrBmzRpcv34dAPD+++9jwIABsLa2VmtzRFQ6jRsXDHPz+5LaTz/9BD09PdSowbu2iKj0KvJdXefOnYOnpydMTU3RvHlzAMBff/2F9PR0HDp0CI0bNy6RRjWFd3URFe7FixeY/epTRAGcOdMMd+58iv9d+SYikkWJ3c7eqlUr1KxZE7/88gsMDHIHjLKzszFo0CDcuXMHJ0+efLfOZcbgQ1Swc+fOYf/+/ZLaqVMjkZZmy7V5iEh2JRZ8TE1NcfHiRdSuXVtSv3btGpo2bcp1fIjKmNBQ4OJF6cNFlUoFpk6dLFNHRET5ldg6PlZWVrh//36+elxcHCwtLYt6OiIqxR4/fpwv9Ozb1wNNmjD0EJF2KvLk5i+//BIDBw7E3Llz4e7uDgA4ffo0xo4dm+8xFkSkvXbt2oUrV65Iatu2TUBAgCEvaxGR1ipy8Jk7dy4UCgX69euH7OxsAIChoSGGDRuGwMBAtTdIRJqVnZ2NmTNnSmqPHrmiQ4ev4O8vU1NERGpS5Dk+edLS0nD79m0AQI0aNWBmZqbWxuTCOT6ky3799Tru3t0mqX333XdwcHCQqSMiItWo+vldrHV8gNyHldavX7+4P05EpcyMGbORk/NCUps8eTIUitznbIWGAoGB4B1cRKTVVA4+AwYMUOm4tWvXFrsZItK8HTtScPXqAkntwgVP7NnTUlILDAQiI3O/M/gQkbZSOfiEhISgatWqaNSoEYp5dYyISpnDhw/j6lXpw7R27RqH6dNN8x3r6/tyxIeISFupPMfH29sbmzdvRtWqVfHtt9/im2++Qbly5Uq6P43jHB/SBQU9XNTUtCLGjRsqU0dERO9G7ev4LF26FPHx8Rg3bhz27t0LJycnfPHFFwgLC+MIEJEWuXfvXr7QU7Nmf4YeItIJxb6r6969ewgJCcGvv/6K7OxsXL16FRYWFuruT+M44kNlWVDQKqSnx0tqU6f+hJYt9RARUcgPERFpgRK/q0tPTw8KhQKCICAnJ6e4pyEiDUhPT0dQUJCk5u7ujvT0/0PLlpy3Q0S6o0jBJyMjA7t27cLatWvxxx9/oFOnTliyZAk6dOgAPb0iP/2CiEpYaCiwadOfqFMnTFJ///1R+L//swbAO7SISLeoHHyGDx+OLVu2wMnJCQMGDMDmzZtRoUKFkuyNiN7Bnj0CLl2ahjp1XtaMjY1Rt64vAgMBIyOGHiLSPSrP8dHT04OzszMaNWokLmhWkF27dqmtOTlwjg+VBY8ePcKKFSsktV69eqFu3bpwd89dj8fNDZzXQ0Rlhtrn+PTr1++NgYeISodt27bh+vXrktrEiRNhYJD7rzvX4yEiXVakBQyJqPTKysrCrFmzJLV69eqhZ8+eAKSPnOBIDxHpqmLf1UVEpUd0dDR27twpqQ0fPhx2dnbiNh85QUTE4EOktUJDgXHjgC++mAF9femSEv7+/vmO5yUuIqJ3WMCwrOLkZtIWjRsnoWvXhZLap59+imbNmsnUERGRfEp8AUMiks/BgwfRtesZSW38+PEwMTGRqSMiIu3A4EOkRZRKJaZPny6pmZs74ccfB8jUERGRduFyy0Ra4s6dO/lCz4ABA9459ISGAu7uud+JiMo6jvgQaYGlS5fi33//ldQmT56slrW1eLcXEekSrRvxycjIQMOGDaFQKHDp0iXJvsuXL6NVq1YwMTGBk5NTvocyEmmbtLQ0TJ06VRJ6bt/+GI0a+attQVFf39xVnHm3FxHpAq0b8Rk3bhwcHR0RFRUlqaekpKB9+/bw8PDAihUrcOXKFQwYMAA2NjYYMmSITN0SFd/p06dx5MgRSW3MmDGwtLRU6+t06cKRHiLSHVoVfA4cOIBDhw5h586dOHDggGTfxo0bkZmZibVr18LIyAjvv/8+Ll26hPnz5zP4kFYRBAHTpk2T1CwsLODj4yNTR0REZYfWBJ9Hjx5h8ODB2L17N8zMzPLtj4yMxMcffwwjIyOx5unpidmzZ+Pp06ewtbUt8LwZGRnIyMgQt1NSUtTfPJEKch8pEQ9Pz1WS+ldffQVXV1eZuiIiKlu0Yo6PIAjw8vLC0KFD0bRp0wKPSUhIQMWKFSW1vO2EhIRCzx0QEABra2vxy8nJSX2NExXBoUMb84WeSZMmMfQQEamRrMHH19cXCoXijV8xMTFYvHgxnj17Bj8/P7X34Ofnh+TkZPErLi5O7a9BVJjQUKBVq0xMnToVdna3xHq5cg3h7+8PfX39dz4/b1UnInpJ1ktdPj4+8PLyeuMx1atXx7FjxxAZGQljY2PJvqZNm+Lrr7/GunXr4ODggEePHkn25207ODgUen5jY+N85yXSlF9/vQQPjz2S2ogRI1C+fHm1nJ+3qhMRSckafOzs7CRPjy7MokWLMGPGDHH74cOH8PT0xNatW9GiRQsAgJubGyZOnIisrCwYGhoCAA4fPgxXV9dC5/cQySF3Lg/g6TkV9etL9xX0cNF3wQeTEhFJaeVDSmNjY1GtWjVcvHgRDRs2BAAkJyfD1dUV7du3x/jx4xEdHY0BAwZgwYIFRbqriw8ppZIUGgp4e/+HQYMWS+qdO3dG48aNZeqKiEj7qfr5rRWTm1VhbW2NQ4cO4e7du2jSpAl8fHwwefJk3spOpUpo6N58ocfPz6/Q0MM5OkRE6qWVIz4liSM+VBJycnIkl2sBoFq1aujXrx+Al5e/fH2lc3Hc3XPn6Li5ARERmuyYiEi76NyID1FptX79zXyhZ9CgQbCx6SeO5rw6CflVfJwEEZF6ac0ChkTaaP/+/bhz55yklvdw0V69XoadwiYh83ESRETqxeBDVAJevHiB2bNnS2qVKrXDkCGtxO1Xww4DDhGRZjD4EKnZtWvXsH37dklt/PjxMDExkdQYdoiINI9zfIjUIPfuKwFBQSsloadZs2bw9/fHoUMmxb47i3d2ERGpD4MP0TvICyXTpj2Bp+c0pKe/fC5cRMR3yM7+FEDBk5dVDTSFTXwmIqKiY/AhegeBgYCxcTg6d14i1iwtLREW9hMOHXIQw0pBd2epGmh4ZxcRkfpwHZ/XcB0fepu828/HjctCVNQsyb68FZgLW5enoPO86RgiIlKNqp/fDD6vYfCht6ldG8jKuoN+/dZL6j4+PrCwsJCpKyIi3abq5zfv6iIqotatN8HR8aa4XbduXfTq1UvGjoiISFUMPkRvkXdJasyYFFy9ugCOji/3nTnjhUaNqsrXHBERFQmDD9FbBAYCOTlncfXqAbGmUCgQFjYBEREGSEriHB0iIm3B4EP0Bjk5OejYcQ6Uygyx9vffn+DLLz9Cw4YFP2aCiIhKLwYfokI8ePAAq1evltROnPgBx4/b4O7d3Kelc6SHiEi7MPgQFWDPnj24dOmSuO3s7AwvLy/s3avAixcc5SEi0lYMPkSvSE9PR1BQkKT21VdfwdXVFQCfr0VEpO0YfIj+58qVK9i1a5ek5uvrC2NjY5k6IiIidWPwIZ2We6u6gC5dliEj41+x7ubmhvbt28vYGRERlQQGH9Jpixf/C0/Ppch4edMWhg0bBnt7e/maIiKiEsOHlJLOOnLkCD76aKm4bWtri8mTJxcaelR9mjoREZVeHPEhnZOZmYmAgABJrVu3bmjQoMEbf+7Vp6lzgjMRkXZi8CGdkPfYiWHDbuLOnU2SfWPHjoWZmdlbz+HrywULiYi0HZ/O/ho+nb1scncX8N57v6JatVix9sEHH6B79+7yNUVERGqj6uc35/hQmfTqfJzk5GR4ek6ThJ4BAwYw9BAR6SBe6qIyKW8+zubNkbh48ZBYNzAwgK+vL/T19WXsjoiI5MLgQ2XSuHE5uHAhAPr6OWItJqY9Nm92k7ErIiKSG4MPlTmbNsXh5s21eHVQ58SJURg1ylq+poiIqFRg8KEyIzQU2L9/Fxwdr4i16tWr45tvvoFCoZCxMyIiKi0YfKhMSE1NxcWLc+Ho+LJWo8bX+OabmvI1RUREpQ6DD2m9S5cuYc+ePZKan58fjIyMZOqIiIhKKwYf0kp5Dxft3HkRMjOTxPqdOx+hZ89PwMxDREQFYfAhrbRkSSI8PZcjM/NlzdvbGxUqVJCvKSIiKvUYfEjrhIWF4cMP/xS37ezsMGzYME5gJiKit2LwIa2RkZGBwMBASa1nz56oV6+eTB0REZG24SMrqNR69bETN27cyBd6xo0bx9BDRERFwhEfKpVCQ4GvvwaePxdw7FgwLl6ME/c1atQIXbp0kbE7IiLSVgw+VCoFBgIGBk8xZcoiSX3QoEGoXLmyTF0REZG2Y/ChUiP3FnXA1xfw8voD8fFHxX0mJiYYO3Ys9PR4dZaIiIqPwYdKjcBA4OzZbFy8OFNS79ixI5o3by5TV0REVJbwf59JFq9OXM4zYsQ9/PSTNPSMGTOGoYeIiNSGIz4ki8BAIDIy93uXLsC2bdtw8+Z1cX+tWrXQp08fGTskIqKyiMGHZOHrmxt6fHyeY+rUeZJ9ffv2RfXq1WXqjIiIyjIGH9K4vEnMgwZdQHT0Xsm+CRMmwNDQUKbOiIiorGPwIY0KDQW++UaJIUMWIC7uuVhv06YNWrduLWNnRESkCzi5WYcVNMG4pF9v1KgE+PhMh6Xly9Dz/fffM/QQEZFGMPjosFcnGJeUV8PVnj370b//SnFfpUqVMHnyZJQrV67kGiAiInoFg48O8/UF3Nxyv7+rwkaPAgOBCxde4OLFqXB2PifWe/XqhSFDhvCJ6kREpFEKQRAEuZsoTVJSUmBtbY3k5GRYWVnJ3Y7WcHfPHT1ycwMiInJroaHAokXX0arVNsmx48ePh4mJiQxdEhFRWaXq5zdHfEglb5sP9ProkSAICA9fJQk9TZs2hb+/P0MPERHJhiM+r+GIT8EKGtEpzH///YfFixdLakOGDEGlSpVKsEMiItJlqn5+83Z2UknegoNvmw8UHh6OEydOiNsWFhYYPXo0Hy5KRESlAoMPqaRLl9yvwmRlZWHWrFmSWqdOndCkSZMS7oyIiEh1DD70zu7cuYP169dLaj4+PrCwsJCpIyIiooIx+FCR5T1ywtcXeP58E27evCnuq1OnDr744gsZuyMiIiocgw8VWWAgEB39DBcvzpfU+/fvDxcXF3maIiIiUgGDDxXZwIF/4Z9/fpfUJk6cCAMD/uNERESlGz+pSGVKpRJz585Fenq6WGvXrh1atWolY1dERESqY/AhlTx8+BC//PKLpDZy5EjY2trK1BEREVHRcXEVkihohebQ0FBJ6HFycsLkyZMZeoiISOtwxIckXn1i+//9XzqCgoIk+7/66iu4urrK1B0REdG7YfAhibwVmr/7LhpBQTtf2+cLY2NjmTojIiJ6dww+JNG5s4B//lmO2NjHYq1ly5bw9PSUsSsiIiL1YPAh0b///oulS5dKakOHDkXFihVl6oiIiEi9tGpy8/79+9GiRQuYmprC1tYW3bp1k+y/f/8+PvvsM5iZmcHe3h5jx45Fdna2PM1qmaNHj0pCj42NDX766SeGHiIiKlO0ZsRn586dGDx4MGbNmoV27dohOzsb0dHR4v6cnBx89tlncHBwQEREBOLj49GvXz8YGhrme3gmvVTQw0W7du2Khg0bytMQERFRCVIIgiDI3cTbZGdnw8XFBVOnTsXAgQMLPObAgQPo1KkTHj58KI5SrFixAuPHj8fjx49hZGSk0mulpKTA2toaycnJsLKyUtvvUBrdunULGzdulNR+/PFHmJuby9QRERFR8aj6+a0Vl7ouXLiABw8eQE9PD40aNUKlSpXQsWNHyYhPZGQk6tevL7k04+npiZSUFFy9erXQc2dkZCAlJUXyVdYJgoD169dLQk/9+vXh7+/P0ENERGWaVgSfO3fuAACmTJmCSZMmYd++fbC1tUWbNm3w33//AQASEhLyzUfJ205ISCj03AEBAbC2tha/nJycSui3kFfewoQ7diRj2rRp4t8pAAwYMAA9evSQsTsiIiLNkDX4+Pr6QqFQvPErJiYGSqUSQO6DMHv27IkmTZogODgYCoUC27dvf6ce/Pz8kJycLH7FxcWp41crdQIDAUH4E1ev/izWDAwMMGnSpDIb9oiIiF4n6+RmHx8feHl5vfGY6tWrIz4+HgBQt25dsW5sbIzq1avj/v37AAAHBwecPXtW8rOPHj0S9xXG2Ni4zC/Kl5OTgw4dAiEIL+9wa9++Pdzc3GTsioiISPNkDT52dnaws7N763FNmjSBsbExbty4gY8++ghA7t1IsbGxqFq1KgDAzc0NM2fORGJiIuzt7QEAhw8fhpWVlSQwabvQ0NzRG19foEuXtx8fFxeHtWvXSmonToyCv791CXVIRERUemnF7exWVlYYOnQo/P394eTkhKpVq2LOnDkAgF69egHIHcGoW7cu+vbti6CgICQkJGDSpEnw9vYuUyM6rz5L623B57fffsPly5fFbQuLati5sy98fRUl3CUREVHppBXBBwDmzJkDAwMD9O3bF+np6WjRogWOHTsmPiFcX18f+/btw7Bhw+Dm5gZzc3P0798f06ZNk7lz9cp7lpavb+HHpKWlicEwT58+fVCrVi34+JRwg0RERKWYVqzjo0navo5PVFQUdu/eLan5+fmpvI4RERGRNlL181trRnzozQRBwOLFi/H06VOxlpPzIY4c8UCjRqrNByIiIirrtGIdH12XtwZPaGjB+xMTEzFt2jRJ6FmyZDgWLPAQ5wMRERERR3y0wpsmNB86dAiRkZHitolJBdSuPRy1ainQti1w/Pib5wMRERHpEgYfLVDQhObMzEwEBARIjtuxowcsLetj/Higa1cNN0lERKQFGHy0QJcu0pGeGzduYMuWLZJj6tcfh7AwU47uEBERvQGDjxYRBAEhISHiatUA0LBhQ3T93/AOH7dFRET0Zgw+WiIpKQkLFy6U1AYNGoTKlSvL1BEREZH2YfDRAqdPn8aRI0fEbX19Yxw4MBaNGumDuYeIiEh1DD6lWHZ2NmbNmoVX15g8f74j/v23ucqPrSAiIqKXGHxKqXv37iEkJERSmzdvNBwdrRAU9PbHVhAREVF+DD6l0Pbt23Ht2jVxu2bNmrC0/Br16r18KjtHeoiIiIqOwacUSU1Nxdy5cyW1vn37Ijq6ujjCw8BDRERUfAw+pcSFCxewd+9eSW3ChAkwNDTEN98UvnIzERERqY7BR2ZKpRI///wznj17JtY+/vhjtG3bVtwuaOVmIiIiKjoGHxlt2ZKAGzdWSmojRoxA+fLlJTXO6SEiIlIPBh+ZHDhwADdunBW3HRwcMGTIECgUChm7IiIiKtsYfDQsIyMDgYGBkpqLSy/0719Xpo6IiIh0B4OPBl2/fh3btm2T1MaPHw8TExOZOiIiItItDD4asnfvXly4cEHcbtq0KT777DMZOyIiItI9enI3oCuuX78u/nnIkCFi6AkNBdzdc78TERFRyVIIrz4IipCSkgJra2skJyfDyspKbeeNjY3Fw4cP0bJlS+jpvcyb7u65a/S4uQEREWp7OSIiIp2i6uc3L3VpiIuLC1xcXPLV27YFrlzJ/U5EREQli5e6ZHb8OPD8ee53IiIiKlkMPjLz9c29zMVVmYmIiEoeL3XJjKsyExERaQ5HfIiIiEhnMPgQERGRzmDw0RCu10NERCQ/Bh8NCQzMXa/ntcd0ERERkQYx+GgI794iIiKSH+/q0hDevUVERCQ/jvgQERGRzmDwISIiIp3B4ENEREQ6g8GHiIiIdAaDDxEREekMBh8iIiLSGQw+REREpDMYfIiIiEhnMPgQERGRzmDwISIiIp3B4ENEREQ6g8GHiIiIdAaDDxEREekMPp39NYIgAABSUlJk7oSIiIhUlfe5nfc5XhgGn9c8e/YMAODk5CRzJ0RERFRUz549g7W1daH7FcLbopGOUSqVePjwISwtLaFQKORup0SlpKTAyckJcXFxsLKykrsdegXfm9KJ70vpxPel9NLkeyMIAp49ewZHR0fo6RU+k4cjPq/R09NDlSpV5G5Do6ysrPgfi1KK703pxPeldOL7Unpp6r1500hPHk5uJiIiIp3B4ENEREQ6g8FHhxkbG8Pf3x/GxsZyt0Kv4XtTOvF9KZ34vpRepfG94eRmIiIi0hkc8SEiIiKdweBDREREOoPBh4iIiHQGgw8RERHpDAYfHbZ//360aNECpqamsLW1Rbdu3ST779+/j88++wxmZmawt7fH2LFjkZ2dLU+zOiYjIwMNGzaEQqHApUuXJPsuX76MVq1awcTEBE5OTggKCpKnSR0SGxuLgQMHolq1ajA1NUWNGjXg7++PzMxMyXF8b+SxdOlSuLi4wMTEBC1atMDZs2flbkmnBAQEoFmzZrC0tIS9vT26deuGGzduSI558eIFvL29Ub58eVhYWKBnz5549OiRLP0y+OionTt3om/fvvj2228RFRWF06dPo0+fPuL+nJwcfPbZZ8jMzERERATWrVuHkJAQTJ48Wcaudce4cePg6OiYr56SkoL27dujatWqOH/+PObMmYMpU6Zg1apVMnSpO2JiYqBUKrFy5UpcvXoVCxYswIoVKzBhwgTxGL438ti6dSvGjBkDf39/XLhwAQ0aNICnpycSExPlbk1nnDhxAt7e3vjzzz9x+PBhZGVloX379khNTRWPGT16NPbu3Yvt27fjxIkTePjwIXr06CFPwwLpnKysLKFy5crC6tWrCz3m999/F/T09ISEhASxtnz5csHKykrIyMjQRJs66/fffxdq164tXL16VQAgXLx4Udy3bNkywdbWVvIejB8/XnB1dZWhU90WFBQkVKtWTdzmeyOP5s2bC97e3uJ2Tk6O4OjoKAQEBMjYlW5LTEwUAAgnTpwQBEEQkpKSBENDQ2H79u3iMdevXxcACJGRkRrvjyM+OujChQt48OAB9PT00KhRI1SqVAkdO3ZEdHS0eExkZCTq16+PihUrijVPT0+kpKTg6tWrcrStEx49eoTBgwdj/fr1MDMzy7c/MjISH3/8MYyMjMSap6cnbty4gadPn2qyVZ2XnJyMcuXKidt8bzQvMzMT58+fh4eHh1jT09ODh4cHIiMjZexMtyUnJwOA+O/H+fPnkZWVJXmfateuDWdnZ1neJwYfHXTnzh0AwJQpUzBp0iTs27cPtra2aNOmDf777z8AQEJCgiT0ABC3ExISNNuwjhAEAV5eXhg6dCiaNm1a4DF8X0qHW7duYfHixfjuu+/EGt8bzfv333+Rk5NT4N87/87loVQqMWrUKHz44YeoV68egNx//o2MjGBjYyM5Vq73icGnDPH19YVCoXjjV95cBQCYOHEievbsiSZNmiA4OBgKhQLbt2+X+bcoe1R9XxYvXoxnz57Bz89P7pZ1hqrvzasePHiADh06oFevXhg8eLBMnROVTt7e3oiOjsaWLVvkbqVQBnI3QOrj4+MDLy+vNx5TvXp1xMfHAwDq1q0r1o2NjVG9enXcv38fAODg4JDvzoi8GfgODg5q7LrsU/V9OXbsGCIjI/M906Zp06b4+uuvsW7dOjg4OOS7E4LvS/Gp+t7kefjwIdq2bQt3d/d8k5b53mhehQoVoK+vX+DfO//ONW/EiBHYt28fTp48iSpVqoh1BwcHZGZmIikpSTLqI9v7pPFZRSS75ORkwdjYWDK5OTMzU7C3txdWrlwpCMLLyc2PHj0Sj1m5cqVgZWUlvHjxQuM964J79+4JV65cEb/CwsIEAMKOHTuEuLg4QRBeTqDNzMwUf87Pz48TaDXgn3/+EWrVqiV89dVXQnZ2dr79fG/k0bx5c2HEiBHidk5OjlC5cmVObtYgpVIpeHt7C46OjsLff/+db3/e5OYdO3aItZiYGNkmNzP46KgffvhBqFy5shAWFibExMQIAwcOFOzt7YX//vtPEARByM7OFurVqye0b99euHTpknDw4EHBzs5O8PPzk7lz3XH37t18d3UlJSUJFStWFPr27StER0cLW7ZsEczMzMTASiXjn3/+EWrWrCl88sknwj///CPEx8eLX3n43shjy5YtgrGxsRASEiJcu3ZNGDJkiGBjYyO5I5VK1rBhwwRra2shPDxc8u9GWlqaeMzQoUMFZ2dn4dixY8K5c+cENzc3wc3NTZZ+GXx0VGZmpuDj4yPY29sLlpaWgoeHhxAdHS05JjY2VujYsaNgamoqVKhQQfDx8RGysrJk6lj3FBR8BEEQoqKihI8++kgwNjYWKleuLAQGBsrToA4JDg4WABT49Sq+N/JYvHix4OzsLBgZGQnNmzcX/vzzT7lb0imF/bsRHBwsHpOeni4MHz5csLW1FczMzITu3btL/sdBkxT/a5qIiIiozONdXURERKQzGHyIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4iIiHQGgw8RERHpDAYfIqISEh4eDoVCgaSkJLlbIaL/YfAhIq01ZcoUNGzYUO42iEiLMPgQUZmXlZUldwtEVEow+BCRbJRKJQICAlCtWjWYmpqiQYMG2LFjB4CXl4mOHj2Kpk2bwszMDO7u7rhx4wYAICQkBFOnTkVUVBQUCgUUCgVCQkIAAAqFAsuXL0eXLl1gbm6OmTNnvrGPvNcKCwtDo0aNYGpqinbt2iExMREHDhxAnTp1YGVlhT59+iAtLU38uYyMDIwcORL29vYwMTHBRx99hL/++qtk/rKISD1keUIYEZEgCDNmzBBq164tHDx4ULh9+7YQHBwsGBsbC+Hh4cLx48cFAEKLFi2E8PBw4erVq0KrVq0Ed3d3QRAEIS0tTfDx8RHef//9fE+DBiDY29sLa9euFW7fvi3cu3fvjX3kvVbLli2FP/74Q7hw4YJQs2ZNoXXr1kL79u2FCxcuCCdPnhTKly8vefDoyJEjBUdHR+H3338Xrl69KvTv31+wtbUVnjx5Ijnv06dPS+YvkIiKjMGHiGTx4sULwczMTIiIiJDUBw4cKPTu3VsMDUeOHBH37d+/XwAgpKenC4IgCP7+/kKDBg3ynRuAMGrUKJV7Kei1AgICBADC7du3xdp3330neHp6CoIgCM+fPxcMDQ2FjRs3ivszMzMFR0dHISgoSHJeBh+i0sNArpEmItJtt27dQlpaGv7v//5PUs/MzESjRo3E7Q8++ED8c6VKlQAAiYmJcHZ2fuP5mzZtWuSeXn2tihUrwszMDNWrV5fUzp49CwC4ffs2srKy8OGHH4r7DQ0N0bx5c1y/fr3Ir01EmsHgQ0SyeP78OQBg//79qFy5smSfsbExbt++DSA3TORRKBQAcucGvY25uXmRe3r9tV7dzqup8tpEVHpxcjMRyaJu3bowNjbG/fv3UbNmTcmXk5OTSucwMjJCTk5OCXdasBo1asDIyAinT58Wa1lZWfjrr79Qt25dWXoiorfjiA8RycLS0hI//vgjRo8eDaVSiY8++gjJyck4ffo0rKysULVq1beew8XFBXfv3sWlS5dQpUoVWFpawtjYWAPd544oDRs2DGPHjkW5cuXg7OyMoKAgpKWlYeDAgRrpgYiKjsGHiGQzffp02NnZISAgAHfu3IGNjQ0aN26MCRMmqHRJqWfPnti1axfatm2LpKQkBAcHw8vLq+Qb/5/AwEAolUr07dsXz549Q9OmTREWFgZbW1uN9UBERaMQBEGQuwkiIiIiTeAcHyIiItIZDD5EVOYNHToUFhYWBX4NHTpU7vaISIN4qYuIyrzExESkpKQUuM/Kygr29vYa7oiI5MLgQ0RERDqDl7qIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4iIiHQGgw8RERHpDAYfIiIi0hkMPkRERKQz/h8ZE1xgsXhGfQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Training and Validating Surrogate\n", + "\n", + "First, let's import the required Python and IDAES modules:" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABo50lEQVR4nO3deXwTdf4/8FdaSGmhB6U3lLYUuaQU5LICBYSlVFYXwRVB5QYPDoVVAXdVQJdy7CrKIriooKsgXxUVQVxQrgUqdzmlP6iForTcTexBC838/igZcswkk6PNpHk9H48oTSYzn0wmM+/5fN6fz0cjCIIAIiIiIh/m5+kCEBEREXkaAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIvIas2fPhkajUbSsRqPB7Nmza7Q8ffr0QZ8+fVS7PiJSjgERETls1apV0Gg04qNevXpo2rQpRo8ejd9++83TxVOdxMREs/0VFRWFXr164auvvnLL+svKyjB79mxs377dLesj8kUMiIjIaXPnzsV//vMfLF++HJmZmfjkk0/Qu3dv3Lhxo0a297e//Q3l5eU1su6a1rFjR/znP//Bf/7zH7zwwgu4cOEChgwZguXLl7u87rKyMsyZM4cBEZEL6nm6AETkvTIzM9GlSxcAwPjx4xEREYEFCxZg/fr1ePTRR92+vXr16qFePe88bTVt2hRPPPGE+PfIkSPRsmVLvPXWW3j66ac9WDIiAlhDRERu1KtXLwBAXl6e2fOnTp3CI488gvDwcDRo0ABdunTB+vXrzZa5efMm5syZg7vuugsNGjRAkyZN0LNnT2zZskVcRiqHqKKiAtOmTUNkZCSCg4Px0EMP4ddff7Uq2+jRo5GYmGj1vNQ6V65cifvvvx9RUVEICAhAu3btsGzZMof2hT0xMTFo27Yt8vPzbS536dIljBs3DtHR0WjQoAFSU1Px0Ucfia+fPXsWkZGRAIA5c+aIzXI1nT9FVNd4560WEanS2bNnAQCNGzcWnztx4gR69OiBpk2bYubMmWjYsCH+7//+D4MHD8aXX36Jhx9+GEB1YJKVlYXx48ejW7du0Ov1OHDgAA4dOoQ//OEPstscP348PvnkE4wYMQL33Xcftm7dikGDBrn0OZYtW4a7774bDz30EOrVq4dvv/0Wzz77LAwGAyZNmuTSuo1u3ryJ8+fPo0mTJrLLlJeXo0+fPjhz5gwmT56MpKQkfP755xg9ejSKi4vx3HPPITIyEsuWLcMzzzyDhx9+GEOGDAEAdOjQwS3lJPIZAhGRg1auXCkAEH744Qfh8uXLwvnz54UvvvhCiIyMFAICAoTz58+Ly/br109ISUkRbty4IT5nMBiE++67T7jrrrvE51JTU4VBgwbZ3O5rr70mmJ62cnJyBADCs88+a7bciBEjBADCa6+9Jj43atQoISEhwe46BUEQysrKrJbLyMgQWrRoYfZc7969hd69e9sssyAIQkJCgjBgwADh8uXLwuXLl4UjR44Ijz32mABAmDJliuz6Fi9eLAAQPvnkE/G5yspKIS0tTWjUqJGg1+sFQRCEy5cvW31eInIMm8yIyGn9+/dHZGQk4uPj8cgjj6Bhw4ZYv349mjVrBgC4du0atm7dikcffRS///47rly5gitXruDq1avIyMjA6dOnxV5pYWFhOHHiBE6fPq14+9999x0AYOrUqWbPP//88y59rsDAQPHfOp0OV65cQe/evfHLL79Ap9M5tc7NmzcjMjISkZGRSE1Nxeeff44nn3wSCxYskH3Pd999h5iYGAwfPlx8rn79+pg6dSpKSkqwY8cOp8pCRNbYZEZETlu6dClatWoFnU6HDz/8EDt37kRAQID4+pkzZyAIAl555RW88sorkuu4dOkSmjZtirlz5+JPf/oTWrVqhfbt22PgwIF48sknbTb9nDt3Dn5+fkhOTjZ7vnXr1i59rt27d+O1115DdnY2ysrKzF7T6XQIDQ11eJ3du3fHG2+8AY1Gg6CgILRt2xZhYWE233Pu3Dncdddd8PMzv3dt27at+DoRuQcDIiJyWrdu3cReZoMHD0bPnj0xYsQI5ObmolGjRjAYDACAF154ARkZGZLraNmyJQAgPT0deXl5+Oabb7B582a8//77eOutt7B8+XKMHz/e5bLKDehYVVVl9ndeXh769euHNm3a4M0330R8fDy0Wi2+++47vPXWW+JnclRERAT69+/v1HuJqOYxICIit/D390dWVhb69u2Lf/3rX5g5cyZatGgBoLqZR0kwEB4ejjFjxmDMmDEoKSlBeno6Zs+eLRsQJSQkwGAwIC8vz6xWKDc312rZxo0bo7i42Op5y1qWb7/9FhUVFVi/fj2aN28uPr9t2za75Xe3hIQEHD16FAaDwayW6NSpU+LrgHywR0TKMYeIiNymT58+6NatGxYvXowbN24gKioKffr0wXvvvYfCwkKr5S9fviz+++rVq2avNWrUCC1btkRFRYXs9jIzMwEA77zzjtnzixcvtlo2OTkZOp0OR48eFZ8rLCy0Gi3a398fACAIgvicTqfDypUrZctRUx544AEUFRVh7dq14nO3bt3CkiVL0KhRI/Tu3RsAEBQUBACSAR8RKcMaIiJyqxdffBF//vOfsWrVKjz99NNYunQpevbsiZSUFEyYMAEtWrTAxYsXkZ2djV9//RVHjhwBALRr1w59+vRB586dER4ejgMHDuCLL77A5MmTZbfVsWNHDB8+HO+++y50Oh3uu+8+/Pjjjzhz5ozVso899hhmzJiBhx9+GFOnTkVZWRmWLVuGVq1a4dChQ+JyAwYMgFarxYMPPoinnnoKJSUlWLFiBaKioiSDupo0ceJEvPfeexg9ejQOHjyIxMREfPHFF9i9ezcWL16M4OBgANVJ4O3atcPatWvRqlUrhIeHo3379mjfvn2tlpfIq3m6mxsReR9jt/v9+/dbvVZVVSUkJycLycnJwq1btwRBEIS8vDxh5MiRQkxMjFC/fn2hadOmwh//+Efhiy++EN/3xhtvCN26dRPCwsKEwMBAoU2bNsLf//53obKyUlxGqot8eXm5MHXqVKFJkyZCw4YNhQcffFA4f/68ZDf0zZs3C+3btxe0Wq3QunVr4ZNPPpFc5/r164UOHToIDRo0EBITE4UFCxYIH374oQBAyM/PF5dzpNu9vSEF5NZ38eJFYcyYMUJERISg1WqFlJQUYeXKlVbv3bNnj9C5c2dBq9WyCz6REzSCYFIvTEREROSDmENEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwOzKiQwWDAhQsXEBwczGHyiYiIvIQgCPj9998RFxdnNVGyKQZECl24cAHx8fGeLgYRERE54fz582jWrJns6wyIFDIOkX/+/HmEhIR4uDRERESkhF6vR3x8vHgdl8OASCFjM1lISAgDIiIiIi9jL92FSdVERETk8xgQERERkc9jQEREREQ+jzlERETk86qqqnDz5k1PF4OcUL9+ffj7+7u8HgZERETkswRBQFFREYqLiz1dFHJBWFgYYmJiXBonkAERERH5LGMwFBUVhaCgIA6862UEQUBZWRkuXboEAIiNjXV6XQyIiIjIJ1VVVYnBUJMmTTxdHHJSYGAgAODSpUuIiopyuvmMSdVEROSTjDlDQUFBHi4Jucr4HbqSB8aAiIiIfBqbybyfO75DBkRERETk8xgQEREREYDqmpavv/7a08Uws337dmg0mhrvCciAqA4p1JVjT94VFOrKPV0UIiJSsdmzZ6Njx46eLoaqsJdZHbF2fwFmrTsGgwD4aYCsISkY1rW5p4tFRETkFVhDVAcU6srFYAgADALw8rrjrCkiIqqjDAYDsrKykJSUhMDAQKSmpuKLL74AcKeJ6ccff0SXLl0QFBSE++67D7m5uQCAVatWYc6cOThy5Ag0Gg00Gg1WrVolrvvKlSt4+OGHERQUhLvuugvr169XVCbjdv/73/+iU6dOCAwMxP33349Lly5h06ZNaNu2LUJCQjBixAiUlZWJ76uoqMDUqVMRFRWFBg0aoGfPnti/f7/7dpZCDIjqgPwrpWIwZFQlCDh7pUz6DURE5Ha1mbaQlZWFjz/+GMuXL8eJEycwbdo0PPHEE9ixY4e4zF//+lf885//xIEDB1CvXj2MHTsWADBs2DD85S9/wd13343CwkIUFhZi2LBh4vvmzJmDRx99FEePHsUDDzyAxx9/HNeuXVNcttmzZ+Nf//oX9uzZg/Pnz+PRRx/F4sWLsXr1amzcuBGbN2/GkiVLxOVfeuklfPnll/joo49w6NAhtGzZEhkZGQ5t0x0YENUBSREN4WfR49Bfo0FiBMfWICKqDWv3F6DH/K0YsWIveszfirX7C2psWxUVFZg3bx4+/PBDZGRkoEWLFhg9ejSeeOIJvPfee+Jyf//739G7d2+0a9cOM2fOxJ49e3Djxg0EBgaiUaNGqFevHmJiYhATEyMObggAo0ePxvDhw9GyZUvMmzcPJSUl2Ldvn+LyvfHGG+jRowc6deqEcePGYceOHVi2bBk6deqEXr164ZFHHsG2bdsAAKWlpVi2bBkWLVqEzMxMtGvXDitWrEBgYCA++OAD9+00BRgQ1QGxoYHIGpIC/9vjMPhrNJg3pD1iQwPtvJOIiFxV22kLZ86cQVlZGf7whz+gUaNG4uPjjz9GXl6euFyHDh3EfxuntDBOcWGL6fsaNmyIkJAQRe+Ten90dDSCgoLQokULs+eM68vLy8PNmzfRo0cP8fX69eujW7du+PnnnxVv0x2YVF1HDOvaHOmtInH2ShkSI4IYDBER1RJbaQs1cS4uKSkBAGzcuBFNmzY1ey0gIEAMiurXry8+bxy40GAw2F2/6fuM71XyPqn3azQal9dXWxgQ1SGxoYEMhIiIapkxbcE0KKrJtIV27dohICAABQUF6N27t9XrprVEcrRaLaqqqmqieA5JTk6GVqvF7t27kZCQAKB6+o39+/fj+eefr9WyMCAiIiJygTFt4eV1x1ElCDWethAcHIwXXngB06ZNg8FgQM+ePaHT6bB7926EhISIgYUtiYmJyM/PR05ODpo1a4bg4GAEBATUSHltadiwIZ555hm8+OKLCA8PR/PmzbFw4UKUlZVh3LhxtVoWBkREREQuqu20hddffx2RkZHIysrCL7/8grCwMNxzzz14+eWXFTVHDR06FOvWrUPfvn1RXFyMlStXYvTo0TVaZjnz58+HwWDAk08+id9//x1dunTBf//7XzRu3LhWy6ERBEGwvxjp9XqEhoZCp9MhJCTE08UhIiIX3bhxA/n5+UhKSkKDBg08XRxyga3vUun1m73MiIiIyOcxICIiIiK7nn76abNu/qaPp59+2tPFc5lHA6KdO3fiwQcfRFxcnOQMu8YhxS0fixYtEpdJTEy0en3+/Plm6zl69Ch69eqFBg0aID4+HgsXLqyNj0dERFRnzJ07Fzk5OZKPuXPnerp4LvNoUnVpaSlSU1MxduxYDBkyxOr1wsJCs783bdqEcePGYejQoWbPz507FxMmTBD/Dg4OFv+t1+sxYMAA9O/fH8uXL8exY8cwduxYhIWFYeLEiW7+RERERHVTVFQUoqKiPF2MGuPRgCgzMxOZmZmyr8fExJj9/c0336Bv375mI14C1QGQ5bJGn376KSorK/Hhhx9Cq9Xi7rvvRk5ODt58800GRERERATAi3KILl68iI0bN0qOSzB//nw0adIEnTp1wqJFi3Dr1i3xtezsbKSnp0Or1YrPZWRkIDc3F9evX5fdXkVFBfR6vdmDiIjqHjWOmkyOccd36DXjEH300UcIDg62alqbOnUq7rnnHoSHh2PPnj2YNWsWCgsL8eabbwIAioqKkJSUZPae6Oho8TW5cQ6ysrIwZ86cGvgkRESkBlqtFn5+frhw4QIiIyOh1WrFKS7IOwiCgMrKSly+fBl+fn5mlR+O8pqA6MMPP8Tjjz9uNb7A9OnTxX936NABWq0WTz31FLKyslwadXPWrFlm69br9YiPj3d6fUREpC5+fn5ISkpCYWEhLly44OnikAuCgoLQvHlz+Pk53/DlFQHR//73P+Tm5mLt2rV2l+3evTtu3bqFs2fPonXr1oiJicHFixfNljH+LZd3BFRPkOeJYcyJiKj2aLVaNG/eHLdu3VLF3F7kOH9/f9SrV8/l2j2vCIg++OADdO7cGampqXaXzcnJgZ+fn5gJn5aWhr/+9a+4efOmOOPuli1b0Lp161ofFpyIiNTHOCO75azs5Fs8mlRdUlIijmEAQJxorqCgQFxGr9fj888/x/jx463en52djcWLF+PIkSP45Zdf8Omnn2LatGl44oknxGBnxIgR0Gq1GDduHE6cOIG1a9fi7bffNmsOIyIiIt/m0RqiAwcOoG/fvuLfxiBl1KhRWLVqFQDgs88+gyAIGD58uNX7AwIC8Nlnn2H27NmoqKhAUlISpk2bZhbshIaGYvPmzZg0aRI6d+6MiIgIvPrqq+xyT0RERCJO7qoQJ3clIiLyPpzclYiIiEghBkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHP82hAtHPnTjz44IOIi4uDRqPB119/bfb66NGjodFozB4DBw40W+batWt4/PHHERISgrCwMIwbNw4lJSVmyxw9ehS9evVCgwYNEB8fj4ULF9b0RyMiIiIv4tGAqLS0FKmpqVi6dKnsMgMHDkRhYaH4WLNmjdnrjz/+OE6cOIEtW7Zgw4YN2LlzJyZOnCi+rtfrMWDAACQkJODgwYNYtGgRZs+ejX//+9819rmIiIjIu9Tz5MYzMzORmZlpc5mAgADExMRIvvbzzz/j+++/x/79+9GlSxcAwJIlS/DAAw/gH//4B+Li4vDpp5+isrISH374IbRaLe6++27k5OTgzTffNAuciIiIyHepPodo+/btiIqKQuvWrfHMM8/g6tWr4mvZ2dkICwsTgyEA6N+/P/z8/LB3715xmfT0dGi1WnGZjIwM5Obm4vr167LbraiogF6vN3sQERFR3aTqgGjgwIH4+OOP8eOPP2LBggXYsWMHMjMzUVVVBQAoKipCVFSU2Xvq1auH8PBwFBUVictER0ebLWP827iMlKysLISGhoqP+Ph4d340IiIiUhGPNpnZ89hjj4n/TklJQYcOHZCcnIzt27ejX79+NbrtWbNmYfr06eLfer2eQREREVEdpeoaIkstWrRAREQEzpw5AwCIiYnBpUuXzJa5desWrl27JuYdxcTE4OLFi2bLGP+Wy00CqnOXQkJCzB5ERERUN3lVQPTrr7/i6tWriI2NBQCkpaWhuLgYBw8eFJfZunUrDAYDunfvLi6zc+dO3Lx5U1xmy5YtaN26NRo3bly7H4CIiIhUyaMBUUlJCXJycpCTkwMAyM/PR05ODgoKClBSUoIXX3wRP/30E86ePYsff/wRf/rTn9CyZUtkZGQAANq2bYuBAwdiwoQJ2LdvH3bv3o3JkyfjscceQ1xcHABgxIgR0Gq1GDduHE6cOIG1a9fi7bffNmsOIyIiIt+mEQRB8NTGt2/fjr59+1o9P2rUKCxbtgyDBw/G4cOHUVxcjLi4OAwYMACvv/66WZL0tWvXMHnyZHz77bfw8/PD0KFD8c4776BRo0biMkePHsWkSZOwf/9+REREYMqUKZgxY4ZDZdXr9QgNDYVOp2PzGRERkZdQev32aEDkTRgQEREReR+l12+vyiEiIiIiqgkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4DIBxTqyrEn7woKdeWeLgoREZEq1fN0Aahmrd1fgFnrjsEgAH4aIGtICoZ1be7pYhEREakKa4jqsEJduRgMAYBBAF5ed5w1RURERBYYENVh+VdKxWDIqEoQcPZKmWcKREREpFIMiOqwpIiG8NOYP+ev0SAxIsgzBSIiIlIpBkR1WGxoILKGpMBfUx0V+Ws0mDekPWJDA22+j0nYRETka5hUXccN69oc6a0icfZKGRIjguwGQ0zCJiIiX8QaIh8QGxqItOQmimqGmIRNRES+iAERiZiETUREvooBEYmYhE1ERL6KARGJnE3CJiIi8nZMqiYzjiZhExER1QUMiMhKbGggAyEiIvIpbDIjIiIin8eAiIiIiHweAyIiIiLyeR4NiHbu3IkHH3wQcXFx0Gg0+Prrr8XXbt68iRkzZiAlJQUNGzZEXFwcRo4ciQsXLpitIzExERqNxuwxf/58s2WOHj2KXr16oUGDBoiPj8fChQtr4+MRERGRl/BoQFRaWorU1FQsXbrU6rWysjIcOnQIr7zyCg4dOoR169YhNzcXDz30kNWyc+fORWFhofiYMmWK+Jper8eAAQOQkJCAgwcPYtGiRZg9ezb+/e9/1+hnIyIiIu/h0V5mmZmZyMzMlHwtNDQUW7ZsMXvuX//6F7p164aCggI0b35nfq3g4GDExMRIrufTTz9FZWUlPvzwQ2i1Wtx9993IycnBm2++iYkTJ7rvw6hIoa4c+VdKkRTRkL3FiIiIFPCqHCKdTgeNRoOwsDCz5+fPn48mTZqgU6dOWLRoEW7duiW+lp2djfT0dGi1WvG5jIwM5Obm4vr167LbqqiogF6vN3t4g7X7C9Bj/laMWLEXPeZvxdr9BZ4uEhERkep5TUB048YNzJgxA8OHD0dISIj4/NSpU/HZZ59h27ZteOqppzBv3jy89NJL4utFRUWIjo42W5fx76KiItntZWVlITQ0VHzEx8e7+RO5HydnJSIico5XDMx48+ZNPProoxAEAcuWLTN7bfr06eK/O3ToAK1Wi6eeegpZWVkICAhwepuzZs0yW7der1d9UGRrclY2nREREclTfUBkDIbOnTuHrVu3mtUOSenevTtu3bqFs2fPonXr1oiJicHFixfNljH+LZd3BAABAQEuBVSeYJyc1TQo4uSsRERE9qm6ycwYDJ0+fRo//PADmjRpYvc9OTk58PPzQ1RUFAAgLS0NO3fuxM2bN8VltmzZgtatW6Nx48Y1VnZP4OSsREREzvFoDVFJSQnOnDkj/p2fn4+cnByEh4cjNjYWjzzyCA4dOoQNGzagqqpKzPkJDw+HVqtFdnY29u7di759+yI4OBjZ2dmYNm0annjiCTHYGTFiBObMmYNx48ZhxowZOH78ON5++2289dZbHvnMNY2TsxIRETlOIwiCYH+xmrF9+3b07dvX6vlRo0Zh9uzZSEpKknzftm3b0KdPHxw6dAjPPvssTp06hYqKCiQlJeHJJ5/E9OnTzZq7jh49ikmTJmH//v2IiIjAlClTMGPGDIfKqtfrERoaCp1OZ7fZjoiIiNRB6fXbowGRN2FARERE5H2UXr9VnUNEREREVBsYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PPqKV1Qr9crXmlISIhThSEiIiLyBMUBUVhYGDQajc1lBEGARqNBVVWVywUjIiIiqi2KA6Jt27bVZDmIiIiIPEZxQNS7d++aLAcRERGRxygOiCwVFxfjgw8+wM8//wwAuPvuuzF27FiEhoa6rXBEREREtcGpXmYHDhxAcnIy3nrrLVy7dg3Xrl3Dm2++ieTkZBw6dMjdZSQiIiKqURpBEARH39SrVy+0bNkSK1asQL161ZVMt27dwvjx4/HLL79g586dbi+op+n1eoSGhkKn07EXHRERkZdQev12KiAKDAzE4cOH0aZNG7PnT548iS5duqCsrMzxEqscAyIiIiLvo/T67VSTWUhICAoKCqyeP3/+PIKDg51ZJREREZHHOBUQDRs2DOPGjcPatWtx/vx5nD9/Hp999hnGjx+P4cOHu7uMRERERDXKqYDoH//4B4YMGYKRI0ciMTERiYmJGD16NB555BEsWLBA8Xp27tyJBx98EHFxcdBoNPj666/NXhcEAa+++ipiY2MRGBiI/v374/Tp02bLXLt2DY8//jhCQkIQFhaGcePGoaSkxGyZo0ePolevXmjQoAHi4+OxcOFCZz42ERER1VFOBURarRZvv/02rl+/jpycHOTk5ODatWt46623EBAQoHg9paWlSE1NxdKlSyVfX7hwId555x0sX74ce/fuRcOGDZGRkYEbN26Iyzz++OM4ceIEtmzZgg0bNmDnzp2YOHGi+Lper8eAAQOQkJCAgwcPYtGiRZg9ezb+/e9/O/PRiYiIqC4SVAKA8NVXX4l/GwwGISYmRli0aJH4XHFxsRAQECCsWbNGEARBOHnypABA2L9/v7jMpk2bBI1GI/z222+CIAjCu+++KzRu3FioqKgQl5kxY4bQunVrh8qn0+kEAIJOp3Pm4xEREZEHKL1+O1VDdOPGDSxatAgPPPAAunTpgnvuucfs4Q75+fkoKipC//79xedCQ0PRvXt3ZGdnAwCys7MRFhaGLl26iMv0798ffn5+2Lt3r7hMeno6tFqtuExGRgZyc3Nx/fp12e1XVFRAr9ebPYiIiKhucmqk6nHjxmHz5s145JFH0K1bN7uTvjqjqKgIABAdHW32fHR0tPhaUVERoqKizF6vV68ewsPDzZZJSkqyWofxtcaNG0tuPysrC3PmzHH9gxAREZHqORUQbdiwAd999x169Ojh7vKoxqxZszB9+nTxb71ej/j4eA+WiIiIiGqKU01mTZs2rfHxhmJiYgAAFy9eNHv+4sWL4msxMTG4dOmS2eu3bt3CtWvXzJaRWofpNqQEBAQgJCTE7EFERER1k1MB0T//+U/MmDED586dc3d5RElJSYiJicGPP/4oPqfX67F3716kpaUBANLS0lBcXIyDBw+Ky2zduhUGgwHdu3cXl9m5cydu3rwpLrNlyxa0bt1atrmMiIiIfItTAVGXLl1w48YNtGjRAsHBwQgPDzd7KFVSUiJ22weqE6lzcnJQUFAAjUaD559/Hm+88QbWr1+PY8eOYeTIkYiLi8PgwYMBAG3btsXAgQMxYcIE7Nu3D7t378bkyZPx2GOPIS4uDgAwYsQIaLVajBs3DidOnMDatWvx9ttvmzWHERERkW9zKodo+PDh+O233zBv3jxER0c7nVR94MAB9O3bV/zbGKSMGjUKq1atwksvvYTS0lJMnDgRxcXF6NmzJ77//ns0aNBAfM+nn36KyZMno1+/fvDz88PQoUPxzjvviK+HhoZi8+bNmDRpEjp37oyIiAi8+uqrZmMVERERkW9zanLXoKAgZGdnIzU1tSbKpEqc3JWIiMj71Ojkrm3atEF5ebnThSMiIiJSE6cCovnz5+Mvf/kLtm/fjqtXr3IAQyIiIvJqTjWZ+flVx1GWuUOCIECj0aCqqso9pVMRNpkRERF5H6XXb6eSqrdt2+Z0wYiIiIjUxqmAqHfv3oqWe/bZZzF37lxEREQ4sxkiIiKiWuFUDpFSn3zyCXOKiIiISPVqNCByIj2JiIiIqNbVaEBERERE5A0YEBEREZHPY0BEREREPo8BEREREfm8Gg2InnjiCQ5iSKpTqCvHnrwrKNRx+hkiIqrm1DhEAFBcXIx9+/bh0qVLMBgMZq+NHDkSALBs2TLXSkfkZmv3F2DWumMwCICfBsgakoJhXZt7ulhERORhTk3d8e233+Lxxx9HSUkJQkJCzKbw0Gg0uHbtmlsLqQacusP7FerK0WP+VhhMjnh/jQa7ZvZFbGig5wpGREQ1pkZnu//LX/6CsWPHoqSkBMXFxbh+/br4qIvBENUN+VdKzYIhAKgSBJy9UuaZAhERkWo4FRD99ttvmDp1KoKCgtxdHqIakxTREH7m8xHDX6NBYgSPYyIiX+dUQJSRkYEDBw64uyxENSo2NBBZQ1Lgf7uJ11+jwbwh7dlcRkREypOq169fL/570KBBePHFF3Hy5EmkpKSgfv36Zss+9NBD7ishkRsN69oc6a0icfZKGRIjghgMERERAAeSqv38lFUmaTQaVFVVuVQoNWJStW8r1JUj/0opkiIaMogiIvIiSq/fimuILLvWE/kKdtUnIqr7nMoh+vjjj1FRUWH1fGVlJT7++GOXC0WkFoW6cjEYAgCDALy87jgHdSRyEgdGJbVyKiAaM2YMdDqd1fO///47xowZ43KhiNSCXfWJ3Gft/gL0mL8VI1bsRY/5W7F2f4Gni0QkciogEgTBbDBGo19//RWhoaEuF4pILdhVn8g9WNtKaufQ1B2dOnWCRqOBRqNBv379UK/enbdXVVUhPz8fAwcOdHshiTzF2FX/5XXHUSUI7KpP5CRbta38PZEaOBQQDR48GACQk5ODjIwMNGrUSHxNq9UiMTERQ4cOdWsBiTyNXfWJXGesbbWcOoe1raQWDgVEr732GgAgMTERw4YNQ4MGDWqkUERqExsayECIyAWsbSW1c2pyV6PKykrJ2e6bN697XZI5DhERkesKdeWsbaVa5fZxiEydPn0aY8eOxZ49e8yeNyZb18WBGYmIyHWsbSW1ciogGj16NOrVq4cNGzYgNjZWsscZERERkbdwKiDKycnBwYMH0aZNG3eXh4iIiKjWOTUOUbt27XDlyhV3l4WIiIjII5wKiBYsWICXXnoJ27dvx9WrV6HX680eRERERN7EqV5mpjPfm+YP1eWkavYyIyIi8j412sts27ZtTheMqCYU6sqRf6UUSREN2YOFiIgc5lSTWe/eveHn54cVK1Zg5syZaNmyJXr37o2CggL4+/u7u4xENnHCSCIicpVTAdGXX36JjIwMBAYG4vDhw6ioqAAA6HQ6zJs3z60FTExMFOdPM31MmjQJANCnTx+r155++mmzdRQUFGDQoEEICgpCVFQUXnzxRdy6dcut5STP4ISRRFSbCnXl2JN3heeYOsipJrM33ngDy5cvx8iRI/HZZ5+Jz/fo0QNvvPGG2woHAPv37zfLSTp+/Dj+8Ic/4M9//rP43IQJEzB37lzx76CgO3PjVFVVYdCgQYiJicGePXtQWFiIkSNHon79+m4P3qj2ccJIIqota/cXiDdgfhoga0gKhnWtezMz+Cqnaohyc3ORnp5u9XxoaCiKi4tdLZOZyMhIxMTEiI8NGzYgOTkZvXv3FpcJCgoyW8Y0aWrz5s04efIkPvnkE3Ts2BGZmZl4/fXXsXTpUlRWVrq1rFT7jBNGmuKEkUTkbqyNrvucCohiYmJw5swZq+d37dqFFi1auFwoOZWVlfjkk08wduxYs95tn376KSIiItC+fXvMmjULZWVl4mvZ2dlISUlBdHS0+FxGRgb0ej1OnDghu62KigoOJ+AFjBNG+t8+HjhhJBHVBFu10VQ3ONVkNmHCBDz33HP48MMPodFocOHCBWRnZ+OFF17AK6+84u4yir7++msUFxdj9OjR4nMjRoxAQkIC4uLicPToUcyYMQO5ublYt24dAKCoqMgsGAIg/l1UVCS7raysLMyZM8f9H4IAuLdX2LCuzZHeKpITRhJRjTHWRpsGRayNrlucCohmzpwJg8GAfv36oaysDOnp6QgICMALL7yAKVOmuLuMog8++ACZmZmIi4sTn5s4caL475SUFMTGxqJfv37Iy8tDcnKy09uaNWsWpk+fLv6t1+sRHx/v9ProjppohzedMJJd8InI3Yy10S+vO44qQWBtdB3kVECk0Wjw17/+FS+++CLOnDmDkpIStGvXDo0aNXJ3+UTnzp3DDz/8INb8yOnevTsA4MyZM0hOTkZMTAz27dtntszFixcBVDf9yQkICEBAQICLpSZLcu3w6a0i3XJiYdIjEdUU1kbXbU7lEBlptVq0a9cO3bp1q9FgCABWrlyJqKgoDBo0yOZyOTk5AIDY2FgAQFpaGo4dO4ZLly6Jy2zZsgUhISFo165djZWXpNVkOzyTHomopsWGBiItuQmDoTrIpYCothgMBqxcuRKjRo1CvXp3KrXy8vLw+uuv4+DBgzh79izWr1+PkSNHIj09HR06dAAADBgwAO3atcOTTz6JI0eO4L///S/+9re/YdKkSawB8oCa7BXGpEciInKWVwREP/zwAwoKCjB27Fiz57VaLX744QcMGDAAbdq0wV/+8hcMHToU3377rbiMv78/NmzYAH9/f6SlpeGJJ57AyJEjzcYtotpTk73C2AWfiIic5dTkrr6Ik7u6V6GuvEba4dfuL7BKemQOERGR76rRyV2JXGXaK8ydmPRIRETOYEBEdU5NBVtERFR3eUUOEREREVFNYkBEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBHVokJdOfbkXUGhrtzTRSEiIhOc7Z6olqzdX4BZ647BIAB+GiBrSAqGdW3u6WIRERFYQ0RUKwp15WIwBAAGAXh53XHWFBERqQQDIqJakH+lVAyGjKoEAWevlHmmQEREZIYBEVEtSIpoCD+N+XP+Gg0SI4I8UyAiIjLDgEglmGxbt8WGBiJrSAr8NdVRkb9Gg3lD2iM2NNDDJSMiIoBJ1apgmWw7I7MNUpqGIimiIS+Ydciwrs2R3ioSZ6+UITEiiN8tEZGKMCDyMKlk26zvTgFgT6S6KDY0kIEQEZEKscnMw6SSbY3YE4mIiKh2MCDyMKlkW1PsiURERFTzGBB5mGWyrSX2RCIiIqp5zCFSAdNk26O/FmPh97moEgT2RPIRhbpy5F8pZRI9EZEHMSBSCWOybVpyEzzUMY49kXwEp/MgIlIHNpmpkDEwYjBUt3E6DyIi9WBAROQhnM6DiEg9GBAReQin8yAiUg8GREQewuk8iIjUg0nVRB7E6TyIiNSBARGRh3E6DyIiz2OTGalKoa4ce/KusKcVERHVKtYQkWpwTB4iIvIU1dcQzZ49GxqNxuzRpk0b8fUbN25g0qRJaNKkCRo1aoShQ4fi4sWLZusoKCjAoEGDEBQUhKioKLz44ou4detWbX8UsoFj8hARkSd5RQ3R3XffjR9++EH8u169O8WeNm0aNm7ciM8//xyhoaGYPHkyhgwZgt27dwMAqqqqMGjQIMTExGDPnj0oLCzEyJEjUb9+fcybN6/WPwtJszUmD/NryJdxahei2uEVAVG9evUQExNj9bxOp8MHH3yA1atX4/777wcArFy5Em3btsVPP/2Ee++9F5s3b8bJkyfxww8/IDo6Gh07dsTrr7+OGTNmYPbs2dBqtbX9cUiCcUwe06CIY/LUHl501YnNyES1R/VNZgBw+vRpxMXFoUWLFnj88cdRUFAAADh48CBu3ryJ/v37i8u2adMGzZs3R3Z2NgAgOzsbKSkpiI6OFpfJyMiAXq/HiRMnZLdZUVEBvV5v9vBmak9W5pg8nrN2fwF6zN+KESv2osf8rVi7v8DTRSKwGZmotqm+hqh79+5YtWoVWrdujcLCQsyZMwe9evXC8ePHUVRUBK1Wi7CwMLP3REdHo6ioCABQVFRkFgwZXze+JicrKwtz5sxx74fxEG+5y+SYPLVP7qKb3iqS+9/D2IxMVLtUHxBlZmaK/+7QoQO6d++OhIQE/N///R8CA2vupDBr1ixMnz5d/Fuv1yM+Pr7GtldTvO2CxzF5ahcvuurFZmSi2uUVTWamwsLC0KpVK5w5cwYxMTGorKxEcXGx2TIXL14Uc45iYmKsep0Z/5bKSzIKCAhASEiI2cMbcQLRmqP2ZkglOJ+aerEZmah2eV1AVFJSgry8PMTGxqJz586oX78+fvzxR/H13NxcFBQUIC0tDQCQlpaGY8eO4dKlS+IyW7ZsQUhICNq1a1fr5a9tvODVjLqSd8OLrroN69ocu2b2xZoJ92LXzL6qbOomqis0giAI9hfznBdeeAEPPvggEhIScOHCBbz22mvIycnByZMnERkZiWeeeQbfffcdVq1ahZCQEEyZMgUAsGfPHgDV3e47duyIuLg4LFy4EEVFRXjyyScxfvx4h7rd6/V6hIaGQqfTeV1t0dr9BXh53XFUCYJ4weOJ1XmFunL0mL/Vqilj18y+XhtIFOrKmbtFRHWS0uu36nOIfv31VwwfPhxXr15FZGQkevbsiZ9++gmRkZEAgLfeegt+fn4YOnQoKioqkJGRgXfffVd8v7+/PzZs2IBnnnkGaWlpaNiwIUaNGoW5c+d66iPVOiYru1ddzLth7hYR+TrV1xCphTfXEJF71cUaIiKiukrp9dvrcoiIPI15N0REdY/qm8yI1IjNkEREdQsDIiInuTPvhlNnEBF5FgMiIg/zlpHEiYjqMuYQEXkQ56siIlIHBkREHsSRxImI1IEBEZEHSY0k7gfgamkFa4mIiGoRAyIiD7Lswq8BIACYvPqwV08JQkTkbRgQEXmYcb6qfw3vBI2mOiACmE9ERFSbGBARqUBsaCDCG2mZT0RE5CEMiMghhbpy7Mm7wlqLGiCVT+Sv0SAxIsgzBSIi8iEMiEixtfsL0GP+VoxYsZf5LTWAU4IQEXkOJ3dVyNcnd+WEprWnUFfOKUGIiNxE6fWbI1WTIrbGy+FF273cOSUIEREpwyYzUoT5LUREZKku5ZUyICJF5PJbANSZHwMRESlX1/JKmUOkkK/nEBmZ5rfs/H+XOSkpEZEP8qa8UqXXb9YQkUNiQwORltwEADgpKRGRj6qL8zAyIFIRb2qLrYs/BiIiUqYu5pUyIFIJb2uLrekfgzcFh0REvqYujpvGHCKFajKHSO1tsYW6cuRfKUVSREOz8qzdX4CX1x1HlSCIPwZ35BCt3V/A3CQiF8n9boncyRvGTeM4RF5EzWP82ApOhnVtjvRWkW79MRTqyiVzk9JbRXp8XxB5C95UUG2pS+OmsclMBdTaFisXnJg2YxmTrN31g2BuEpFrlPxuicgaAyIVUNoWW9t5NZ4ITtQaHKqR1PHA3CviTQWRc9hkphL2mp88UQVuDE4sc5tqMjgxBoeWuUl1pUrWXSyPh3E9kxARHIAFm06xmcTHeeJ3S1QXMKlaIU8OzOippOtCXTlW7srH+//LhwFwa+K0km2rPVHPU6SOBylqSsyn2lVTHR6IvBGTqusQTyRdW9ZATOzZAmN6Jirenqs9XCwT9dhj5g6p40GKWhLz1a4uHls10eGBqK5jQOQFarsKXCop84Nd+RjTM1HR+93dvMceM+akjgcpbCaxry4fW3Wp9w9RbWBStReo7QGwXEnKdHcPF/aYsWY8HiyTz00x98o+HltEtccbOnywhshL1GYVuCs1Uu5u3lPzGE2eZDweVu7Ox/s77+R4vTSwNTo0C2MziQI8tohqh7fUxDIg8iK1VQXuSk8vdzfvsceMvNjQQLz8QDuM6ZHEXBEn+PKxVRfzpkidvGmwXQZEXqqmT2jO1ki5u9s8u+Hbx1wR53j7seXsOcBb7tapdtT0tcSbamLZ7V4hT3a7t+QNJzR3d5tnN3yqKd54bDl7DlD7vIlUu2rjWqKGY07p9ZtJ1V7GWxJB3T2lh7vXR2TkbceWK+cAubv1Q+eumyW82kuA9YYEWbKttq4ltd0pyBVsMvMy3lT9SETu58o5QCpvSqMBJq8+DAHVtQQPd2qKrw7/Jltr4A011GRfbV5LvGVcLNXXEGVlZaFr164IDg5GVFQUBg8ejNzcXLNl+vTpA41GY/Z4+umnzZYpKCjAoEGDEBQUhKioKLz44ou4detWbX4Ut+BcX+QrWAshzZVzgOXdup8GgAAYr4sGAfjy0G+ytQbeUkPtzWrruK/ta4k31MSqPiDasWMHJk2ahJ9++glbtmzBzZs3MWDAAJSWlpotN2HCBBQWFoqPhQsXiq9VVVVh0KBBqKysxJ49e/DRRx9h1apVePXVV2v747jMm6ofiZy1dn8BeszfihEr9qLH/K1Yu7/A00VSDVfPAcO6NseumX2xZsK9ePuxjrCXRGo6Bhknjq1ZtXnc81pizeuSqi9fvoyoqCjs2LED6enpAKpriDp27IjFixdLvmfTpk344x//iAsXLiA6OhoAsHz5csyYMQOXL1+GVqu1u101JVUD3pkIKoddgMmUGpIwvYE7zgFK5sUz3feFunLcl7XVLIjSANgz635+Ny7y5JyVdeVaIqfOJlXrdDoAQHh4uNnzn376KSIiItC+fXvMmjULZWV37liys7ORkpIiBkMAkJGRAb1ejxMnTkhup6KiAnq93uyhJt5Q/agEawLIEmshlHHHOUCqlmDoPU0dqzWwMWI6Keep476uXEvcwauSqg0GA55//nn06NED7du3F58fMWIEEhISEBcXh6NHj2LGjBnIzc3FunXrAABFRUVmwRAA8e+ioiLJbWVlZWHOnDk19EkI8K4Bu4xYm1XzfHnARE+QSnh9IaO1ZK1B/pVSqyY2QQA7dbgBj3vP86qAaNKkSTh+/Dh27dpl9vzEiRPFf6ekpCA2Nhb9+vVDXl4ekpOTndrWrFmzMH36dPFvvV6P+Ph45wpew7z1Iq20l4NaPh9719QOTw+YqJbjrTZZDu4pN9inrYu2L+43d/L0cU9eFBBNnjwZGzZswM6dO9GsWTOby3bv3h0AcObMGSQnJyMmJgb79u0zW+bixYsAgJiYGMl1BAQEICAgwA0ldw+5k403X6SV3BGp5fN5Y22WN/NUN121HG9qJXfR3vn/LtfKAH91PeDylu7pdZXqAyJBEDBlyhR89dVX2L59O5KSkuy+JycnBwAQGxsLAEhLS8Pf//53XLp0CVFRUQCALVu2ICQkBO3atauxsruL3Em6UFeOmV8eM+syO/PLY2gTE4zU+MYeLbMS9u6I1BSEcPyn2lfbU5Ko6XhTM8uLNgCzZGCDAMxad8yt+82XAlVOxeM5qg+IJk2ahNWrV+Obb75BcHCwmPMTGhqKwMBA5OXlYfXq1XjggQfQpEkTHD16FNOmTUN6ejo6dOgAABgwYADatWuHJ598EgsXLkRRURH+9re/YdKkSaqqBZJi6yR98Nx16/Z8AH9augcLhtbcCcOdd2q27ojUFISwqaDuU9PxpnamF+09eVes9ptBAFbuzsfLD7h2w1moK8eBs9d8MlDleaX2qT4gWrZsGYDqrvWmVq5cidGjR0Or1eKHH37A4sWLUVpaivj4eAwdOhR/+9vfxGX9/f2xYcMGPPPMM0hLS0PDhg0xatQozJ07tzY/ilNsnaRtjZhQUyeMmrhTcyZfobZ5sqmAaoeajjdvIrXfAOD9nfkY0yPJ6XOQ6bnGkjOBqjcFGI6eZ73ps6mZ6gMie8MkxcfHY8eOHXbXk5CQgO+++85dxao1tk7SiRFBuD3QrJWauLOt7SYFtSUZKmkqcHV/8MTmOWo73rxFbGggxvVMwor/5Zs9b4Dzvc8szzWWHA1UvanJzdHzrDd9NktqO9+pPiDydcaTtOkBb3qSnj80xSyPyKgm7mzlaqsOnr2OP6bWzMGstiRDe00FrgSi3nxiqyvUdrypia2L19ieSXj/f/lm5yFXzkFS5xrT9ToSqHpbbpgjTbfe9tlMqfF853UDM/oqY0WZZYXZsK7NsWfW/ZiYniR+mX4aYFi3eBw4e82t8+FIzX0DAFM/O1zjQ8ybDhymljmu3DkXUE3NEaWWfeVNOFCdNXsDqMaGBmL+UPdNAyH12/IDsHREJ+ya2dehC6e3DfTpyHnF2z6bkVrnxGNApHLGA8d4zAuwPnBiQwPx8gPtsPt2YGQQgNV7CzBlTQ7uy3Lf6M/G2irLg6Y2D2Y1jWztzrmAauLEpqZ9Rd5L6cXLdI40R4MWS1K/rayhKRjUIc7h35e3TYjtyHnF2z6bkVoDOTaZqZyjPV/et2jHFwDM+tJ9XWCHdW2OhgH1MHn1YcVlchc1Vg+7q4nF3Qm9atxX5J0cOQe5s8u4u35bSob3UFMeC6D8s3tr3ptaOzAwIFI5Rw4cuXZ3V5IbpXROaOyRg1mt3aLdcRFw94lNrfuKvI8nL17uCrDkAgw15rEYKf3sxs926Nx1GAQBXRLD7b5HCWOg2FDrj9LKKrcGjGoN5BgQqZwjB45c91c/wK0nL08dzGq9q3AXdyb0qmlfqfEOnJRT68XLUZYBhppqUY3jLWk0GnROaOzw9t09/IfUkAfuDhjV2IFBI9jr104AqucyCw0NhU6nQ0hISK1vv1BXrujAWbu/ADPXHROTrzUAZj7QBk+lm8/p5o6LlNIySb3P2W2v3V9gdWJWyx2d2qhhX6n5Dpwc4+zvXa325F3BiBV7rZ5fM+FepCU3qdFtm54Dd/6/y2Y9hTWo7j2s9HdSqCs3G/4DqL752TWzr+z3ZOscLLU+peu1t25PUXr9Zg2Rl3C0+nTJj6exet95CAAWbDqFsMD64g/MXRcpZ6qzXd22Gu8qlKrtE4Wn95Wa7sDJdXVtSglP1aJangMtAw8Bjk194mjzuNQ5OL1VpHhusjXkgb1md2+/AWJAVEd9tv+8+G/TCxEAj12k3HWB9MYTs6dOFI7sK3cHbMxjUg9H8kHs1R6o7e7fWZ5oCpQ6B0oxCMrzPh0J7KS2P3PdMUCoDsT8NMCMgW1kB/y1FTDWhRsgBkQeVhMnGJvTfUDw2EXK1Qukq/vK2fe7Y7tqP1HURMCmpjwmX2F6rALVv7ljv+mwYNMpRfkgto6D2grqazPoqu1aVFu1L6b8NMrzPh0J7KS2b5o0YxCABd+fkgyGLAcFVrJub7sBYkDkQTV1grF3IfLURcqVC6Sr+8rZ97vjO1L7icIdAZvURayuJON6C9Nj1Tg0jdy1V+o7tnUcXNLfMMtNtKx1diUhWO4z1FZNam3WOEudAzUa86BEc/tzx4YGKg4OlQZ2ch1vTMm99s5jnfDH1DiHPpuSCbDVVOvIgMhDarLWwN6FyFMXKWcvkK7uK2ff767vSO01Ja4GbLYuYp7OY/JWjl4kLI9VJT1lLL9jueNg5e58rNiZb7VOqdccTQi29RnUWJPqKrlzYHqrSBw8ex0aDXBPQmMAwLyNJ7Hi9nQoSoJDJYGd5fb9bgdjpt+t1HP+Gg06JzZ26rPZ6gGntpwjBkQeUtO1BrYuRJ68SDmzbVf3lbPvd9d3pPaaElcCNiUXMW/M+aoNckGPMxcJpU0xpiy/Y6njwE8DyWDI6N87883+djQh2JTaa1LdRe4caJwPUqrLu+XvypVaFcvt7/x/l+8ESKjOIQoLqu/UjWt8eBDWPZuGskqD3QmwL+lvmPWuU0MAzIDIQ2qj1sD0zs/0b+O/HT3o3NVV39F1OJo0aLn+Y7/qrJZTsq/d+R2puabElYDNVy5i7iYX9DhbS6KkKcSU1HcsdRyM7ZloNYu9PY4kBJvyZE2qkvOSkmYfpYMYyp1/Lb9/U8bflTvGHDLd/rCuzVFcfhPzb+eZLfj+FLKGpGDXzL6Kz1dSx3NachPZCbBX7jqLFbt+kax19OS5gwGRh9RGrYEzd5ruvGt1R3kA5ftKrjvpgu9PWa3zpczWDlcvu/odqbmmxDRgC9L6obSyCoW6crvlVXtzoJqYXjTlgh65APPQuesY1EG+ZsDyWNXc7iYkoPr7eGlga3RoFoYgrZ949y713VoG7gDwwa58h2qfHEkINuXu35vSmy8l5yVbXdUdSVq3x1ZNn79GgyCtn9PN/7aCuQWbTlnlh+2a2VfReEy2gnjJWkcA7+/6xWqicuNn9OS5gwGRB9VkrYEzd5ruvmt1tTym7O0rufUvfixV8gTToWmYonKruWbH3WJDAx2++1R7c2BNcbSm0yzh2SKJFrhzZyxX0zN59WFsPXUJXx3+Tfa7kQpmnDluLQN30+/Xkq2EYGfY+r0prcU5cPYasvOuYs3tcdik9pWt4HTWl8fQMKCemCBur6u6FHfmGwLVQcS8Ie1RWlnlcI2svYBvpUTAq7SmplBXjg1HL8i+Py25idX5YVzPRPxbotbR+Bk9ee5gQORhNVVr4GhThq2AxR3NIu5Yh619Jbd+P43G5RoMNdfsuJOzQasvBY2A4zWdVgnPNu6MjQGmZbOJAODLQ7+Jf8t9N5bHqrvzEY/+VoyFm3JtJgS7o1OI5Tre25mH+bdrMaQGE4wNDawepd8kJ8XIcl+ZrktqvB0DqgNQ43biw4NsdlWXYzp7u9LgWSrpeXzPFhjTMxGxoYE4cv66VRDq6NhAs9YdQ5DWX5zzTKpJVEktn1Suk1SZpAL19y2CMD8N8NWz9yE13nbidk1jQFRHOdqUYStgcUeziFzV6dXSCkVNM86s31+jwT0JjZ3u2aaWrqC1Re4YOHj2upjwKcfXg8Y2McGyuSNyzSB+qL74Wh6Tw7o2R5DWH1PW5NgsS23mWxi/37TkJngoNU42IdgWZ7tev7cjD1mb7jR7GwRg5pfHoLn9e/fTADMy22D+d9Lj5wB39tX6nAtm67IV1xi/23XPpjmUn2Xkr9Hg6G/FePz9nxxKE0hvFYnFj6XC7/b5y7g/jAGIZTAkdT47cv469p29hsqbBqtyGwRgypoc+GmAcT2TJPfB+J4t7DbByQVDGonxiozHj/F7njGwDRZ+bx5YezoYAhgQqY67LsRKmjJMt2Ur6HFHs4hVjgOqT0amd2KudLe0VUalNRjG/WGaE6CGrqDuZOv4kquun7LmMEorb9WZfeAKuaBx8NI9EFBd4zChVxLG9EwS96/cb8u0N47ld9ElMVx2tGDTdXgi38KZ4NfZAR8LdeWYv8k6B1AAzHJeFmySD4aMdp+5jKXb8iRfkwt4qgQBv14vt9tV3ZIxb8s0t8idaQtAdUC97tk0q0DiL/+XY1abKMcgVOeHWR5nfgDG9Ey0+V5buU4aAeL4VID8eXVGZht0aBqmqlplBkQq4u4xGWwFAlLberhTU7Mf0uBOcWZ3ra42ixjXcfDsdUz97LBLOUmOfl57J3G56l81dAV1F3vHV2xoIGZktkHWd+YXIAHOd6X2NvZuSOSCRsHk///+Xz7e35Uv7l+5YN3WHfHO/3fZ7G8NgCH3NMXXhy94Xa6WrVq189fLbXa9zr9SqmhMJSW1N+9uz5NclwbAipGdUV5pMDsvGU1efRjzh5r3ujLtqi6XtF7TaQsGAGWVBrPnjpy/rigYEtchABPTk/DB/846dFzZ6tVowJ1ehrbOqws35dqdKLa2MSBSiZoalEwqEDhy/rrVSUjqoP368AW8kHGnN5Y7mkViQwMR3qjmumo7U0Zb1b/uKpunph0xfb+S4yulaajk+w0CxJ5OrlJrc6SSGxK5mk5LlvvXkRsK43dlud6+baIwMi0BZZUGh3oCOsvVruhGsrVq7+6RzMUx9qpr3LA66Vnqwmu5341ByXwbNUUGmZwhAcCEjw8ia0iKbP6WZa8rpd+nI6kGB89ddzltYd/ZazKfXpq/RoMxPZIwpkeSQze7Yq7bl8dgsHjNdHTqmj6vuhsDIpWorfFc1u4vqB6C3+J5uerig2evI7zRnROeOy5mauuqbW9QO1fLVlvTjtj6bpQeX0kRDWUv8pNXH0ZJxS2rZFZHKPkscmO6ODN6s+Xycutw5IbEtKZzymeHZdtOLPev0mBdcr4p3GlefrhTU5u9zdzB2a7oxuYd030sNQ4YIJ+YrNFUf1YB1esd2D4G3x8vqt4OqptawoLqm2173pD2GNa1OR7qGIeDZ6+juLwSr3x9wqopaEbmndwVU8bve9fMvnj7sY5W+VtSvxV732dsaKDNWnfLfTnzy2NWz9tKW3hpYGurMea63U6UVsJybjJHf8vG38HKXWfx/q5fYBDMc5qkxiCS+mxqwoBIJWojSBDvPBUmB2oAsQpZyYlY6QXLHTlJ7mSr+leubEo/q9ILrSMX6plfHkNllQH920ZbJVzKfTdKj6/Y0EDMH5oi2VtHgHUyq62AxpmgQ6qK3ZkgQGp/ADB7bsbANkhpFoqkiIYO35AYazpt/Zac/f3abI4QrHubzfryGNrEBLstKVXJ9yS3THHZTSz4/pTZPpYaB0yOZX6OQQC+O1YEoPp8NCOzDZ7qnYy1+wvEfS8IwJlLJWJtmTHBu76/n9lxLAAIC6qPXTP7YuPRQryx8WezbRu/7y6J4W45FxfqyvHVYfPmq68O/4aRaQlm35VcjaBlwGLZ2880H2dczySM7ZmE1PjGGHpPU6tmM9NxqfwAjE+vrhVyR438y4PaYkzPRKsaJmfOq56mEQSll0ffptfrERoaCp1Oh5CQkBrZxtr9BVZBgjvv/PbkXcGIFXsVL68kqdPYBuzsIJBq6aptue+NOQFSZXPks8rt8zUT7hWr322tz9Z3pkH1vFHprSLNhscHzL8bManxV514d2y8W36oY5xs8LJmbwHe2XrG5n4z3Y7UZzGeqI13jLb2RaGu3Opz2NsucKdLs/HfDbX+ePjdPWbrsXUsm164Lbc96/YFWIqt8tr7/doLqE2PRyU0GmC+wppDe9tWcszKLSOVoGvZpCLFT1M9eagAwWbvOmMyuuX3a9y26TxqUt+P6XFj6zfj6LlYap/a2kem5ZRb7l/DzSdTNa05tff5j5y/jgNnryMxIghB2voujUvlCkfOqzVJ6fWbNUQqItUube/k5UgzguRMy7f/b3natRcMAebjbEiNdWEv/8kdOUnuIDUHj62cCUdyvezVzNhbn627LAHVtQNvD+8oW7thOdDiwPYx2HS7+WH+plNizoWx10dK01DxWBrevTmWbD1j8zgwrUU5cv661YzoK/6Xj/f/ly8GblJzZQVp/QA4Nh9XlSBgyY9n8Nn+AjE3xLhP5PJE5BgEYOH3uXi2TzL+ZdELaeH3ubi3Rbhkl3rJZozM1nZ7ztjrVZV/pRTprSKxa2ZfsVnOXlwkCObjy8gFqEpq2pTUJsrNeyaV+Cv1fWgAq27zf0yNQ6Gu3GYX9ypBwP6z1rk2wJ1cH9OEbLnfhdSAgXK1MfYu3nLfp60EfHu/ccvJVM0G9pTYn5brTY1vLFljqPR86648P28bo4wBkcqYBgn2aiIcrZWxPIHL3b0Zaw+k7phNGU+Skj0gBGDl7ny8/EA75R++Flj+0OXm4JHjTNOK1IkXqL4zvFpSYXN9UnkIpgyA7OCTUsP8G5sfAPOTqkGA2LvMtInJlFTwbDwG5AbFMy4/a90xfPXsfVajHhsE4OF394gD7SkJxI1W7yuQ/CzOVHlXCQLCgrSSzxuTfzUAhneLx5R+dzl14QRsB8CmwatGA8zMbIOn0pNx5NdiRfOJGYQ748sY96fltpQO7mivSVsuGLScwsL4/HyTqSGMNRnFZXfmz5r/3SlAAJ7qnWxzZGx/jQZdExvb7CZv/O3YC+zsfXdKbtjs3dBIJWlbltPe/rYa2NNGedyRd+ru3s5Kb3zV0NmCAZFK2fuhuWNU4TOXfscr35ywWmbu4LvxxL2JZomLliyHWZc6Qb2/M19RO7WzPwRHJ1S0/KHPyGzj8DghSmp8LD+L1OzSxup6P410jxnT9VnmIZjyA2QHn5Qa5l8JY14KNObl0txuWrIcUA2AZA6E5ToHL92DmZlt8NpDbfHaNyetulrvmtkXMzPbmA2cZ5TZPgb/PV6kqPnFGbYutILJhWj1vvNYve88JpqMNaT0wpl/pRTXSislL44Hz163Gs0663aQMLZnEt7/n/mM83I1u8Cd/SlVc2hJ7gKqJNCTWiYs0HqW9GFdm+Oh1DgcOncdggCx5qPH/K1m+T1Zm04BGuCp9OQ7uTK/FksO4CcXaJj+dpQGdq5cfO3dIA3r2hwFV8uwdLt5zaNljZut/S07sKfEsepq3qkz1xV3BDLuDsKcxYBIpez90FzplWY8CVwpuSH5elhg9Z3ysK7N0SYmWBx0zshymPXY0ECM65lkdRdrAOyOcuzsD0Eu+dZWDyzLH7rl3Sxgvg+lfui2TrK28meMD6lyaHAnKLI8aUt1xTXSAMgamiKeeKWaWx2pcTFlgPUbDQLQoVmY1SzY9nqTGIkXPQnG/f5U72RAA6sB3J5KT8Z/ss9KBvCuMiavGi+09mpQAeuxhqSY5m6ZdgeXCoAhU+OxYNMpPNQxDvOHmg8MOCOzDQBYjRllVHU7M9neCMu2LqBKggXLZeQu7LGhgWZDNsgdMws2ncJDqXHietOSm+ChjtYjY4s9nHbn4/2d+ZIjftsqjxx7+VaWfyu5QVq2w3owSKnJpeX2t62BPdceOI81e89Lnjuc4eh1xd75W0n+Wk0NOeMMBkQqtfvMFcnnjfkW7uiVJjUargYwa7tOjW9sdjKWG1RO6i4WqO6lJjfKsbM/BLnxLWy9X65ZT652xtYPXS74sPwsxvyZmQ/cyc2R61KtATCx1505iwDrKQuM/DTAnIfuRv920VYnGSWzUyvhB1hdpE27AJvu34Zaf5e3Z3rsPpWebDY9BADM23hSckJIV/mhOriPCmmAPXlXxNyds1fKEKT1kx0rB7B9vNma50nAnUDF+HvqnNBYctJX4yB3w7o2N2tiWrDpFMb1TJL9XMYcFMvgfXCnOIcHd3S0BsD0+JB7r9zwDgYBVhdfuUAhNjQQLz/Qzu4YOkprgezlW0nlX6W3isS4nkn44PbcXJb7VK52R+nk0sbyS92EnSr6HZ/dnsBWA+Clga1drlWRu64Eaf2wJ++K2Hnh4LnruFZagdnrT8qev5Xmr9XWkDNKMCBSoUJdOd7dLj3EvHFkUiXVwfbEhlZ3sTYOruWHOzUOppTcZVmuy8jRIEXJD8FW8q3c++XmUnusWzw+23deTP4c1q0ZLulv2A3ULE+ycmUSYJ6bM2NgG9lEyw925YtD5r+3Uz4YGtczSQyGbAVuSkf5BYAR3eOxdt+vVk1h9o4v4/alKK2dMl23ZXBnK7BwlB+AZ/okY/mOX6wuLKZTb5j2AJopMXK3Kanjzd6AdEB1QNsyKlgcYFFuW6aD3C34/pRZM6PUtAuAeXdtqd/uCxmtFdeYuNKUYeu9saGBks2jzjT5KAnA7JG6obHMt7L823TGew2qR3y2TBFwx42rVKcPwLyXnIDqDgAPdZQe58h0Xbb2j9R1ZXCnOLFXm73ftPH3cEl/w6qDhVz+mprGpWNApEL5V6THN/EDFLc7K6V0HZYBgFyuTMOAepi8+rDZex0JUpT8EOyNbyH1fssfOlB9971633mzfIzVe89j9d7zVu+vEgT8+PNFtIhs5NA8YKYMQvVJyzJ3yXQbxl57UvM3Gdex4n/5+GBXvlVXcYNQnctjHJPG1iCLpvw1Gky5/y5Muf8us1qZ/CulNnve2brwSwVVlvwALBnRSZzA0l6OlytM81meSEsw+5z3ZZnnssz88k4PyafSkwFBvqnPT2M9K7iS3nLhDbUouFZqFTDMMn5mmAeKUk1MBsF82gW58WUsf7umzbfGu36p370rTRlK3ivVPGralORocONK8OZID0cj00NaAPDB/85iTA/zWjtXb1zlOn1IHQ/2biaV7h/Ta0KQ1s+si7+Sc8nR34ptTrRrWt7qlIo41YxLx4BIheQurjMy29gNSpzhaGKh1A/LOHpxfONAxUGO5cnC8oRoq7xSPVH8AIyzMSmh8Ye+5Mczsj2UbPnb19X5K3Ink8z2Mdho0otLSpUgoGloIOY8dLdVPoxprz173azFHCiJ5wcv3SPWckjdhWs01RMwSuVdyNU6GccJMj3e5C4irwxqiwc6xIrrNB1MbuEm8wTZQR2qx1lRmuPlDM3t48q0dsJYtm+P/CbZRd809+2p3smIC2sgOT6O1KzgSoLjBvX9MGWNdcCwa2ZfyZwZuZuHMT2SMCglFvvPXkfXROmu1lLk8t2AO+M6udKUofS9xoDTtCkwLLA+ADgU3Liah6LkO7PHlQR1KbY+k5KmLVu1lvb2j/E3ojQ/0Lh944S2SnejaUqFGrrnMyBSIalAwZhYauTK3ZArgZTcyMmmY4o83Ml8EkqpIeaNpHIjwgLrm43LcvDcdQiCYDa+SnqrSCx+LBV+Gg2aNQ7ExqNFeH/XL4qSXdfsL5B83pKt0YJNRwd2pFlHgzujf5vWTFkGJkpOzgZAMu9EwJ0xaR7qGGd2F27cTpuYYMmLqNIRiI1BsNRYNFEhAWblMUuQTbW+2BfqyrHh6AVFOV72DL2nKUamJZh1BBCE6okkjcm6pjQajfVKcHtkXxNSoxfLzQoeGyrdycDU+I8PWn1vVYKAjUcLMahDrFUumFxNg+U4U0pGj5fLd1vxvztNcHLNu0qbMpTW/ko1BRpH0zd9zl5w42oeitQ5t2tiY+zNvy65vOWI2nKfz3T9jp5r7Y2jNGOgeW2iadOWVPO5M/unodbf7m9QA+Bft2t6bfWIe7hTU3x16DebKRWeCoSMGBCplK2I2ZW7IVe7N8olBZu2FX99+ILY1GI5xLzUCVvqhBik9ccF3Q2zqldjfgdgPQWDcS4d0/3RJibYqju+ktoXoHq9sx9qh1e/OSn5ugHA4Hf3YKbMCMeS67y9r0yrn/00wJLHOomJ7Ma7O3sXVODOGC9SNSkGwXxMmt0z7zfr9u/oidO0l5RpbYbZRKe3LxKm25WaHNX0GLUVTBqDaXF0bQ2Q2T4WG48VWi07pFMcOjYPwx/axUjmTsmd/DsnNLbuWKCpHsrAstxKq/ULdeVIjQ+z/kAm5I7BNzb+jHnf/Sy57yzPCYB5HonleUDut26recj0OzY271rW6jkTYMi9V66zgyV7F29HAjC5m0HTnmsrdubLBkPP3d8Sd8UE47fr5WY3Ce5u5rH1mdbuL6jeNqqP16f7tMCy7Xmyx4Iz6QnG48deMDR/aIpY0wtY38wZOy6kxjdG3zZRilMqPIEBkYrJRczORvvu6N6opGq5ShDEvJPH3//J5vbkTohSzRMCzGujjMtKzXBdJQhiLYGS0WNNaUxqQEx7UViVR5ButpLyyqC2iA5tYHUyMAhAk0YBVnf6MzLbSPYANH5205yYe5PCrYZGMF2/6UzdUseA6ajiSkcgNh5vxovIoXPXxQk5Tbdrb/wSezlIxgk7D527DoMgoHl4EDYdLzR7jwbA1zkXsO7wBcxef9JuzYblRXH+0BSrwEGqzEqq9eVGFHakpsvWvjM9J8jlkVTvq2uSv/U2McG4WlKhqAayShDQoan1MAtKKdlfcsebI7UvgLIATOnNoFRvWSMNgCXbzlh9v3IBriu18XKfCTCfGUAQgGXb8qzOQ44M/ihVblu13hoAc/90p6ervTIba6E7J1iP9aWmSV59KiBaunQpFi1ahKKiIqSmpmLJkiXo1q2bp4vlMGeTkd3RvdHygJc60dsawdpye4623ZvWRpk+J7cscKdHiOnosZbNkQ+lVs+SbawdMJbP1qi5gHyzlSljM5JUfhUA7D5zGe9a3N0t3JSLmZnWgyBKXWAsh0awZG/8KoNwZ1RxqROa3AjExt5P1esUFNfKAPLNZADwXL+WeKxbc/F9lsGiaZOsZa2bvZoNuYui0vwFqZsU0wFCLScTFd3O27L8uBoAU+5vaTVnnJLfpeRUPBqYBaaW6zTtTWcvSJMbZsFIycXeXjOIrYu+o0m27qhVV5JcbVrDayTA9kTFcgGYvX0o9ZkkE+xhfR5yZPBHS7b2g7253YzbOXj2OqCpDoKMXE0yr2k+ExCtXbsW06dPx/Lly9G9e3csXrwYGRkZyM3NRVRUlKeL5xBnDyp3dW80PeCnSsyz9NLAO4nR9rYnlyAtR3P7P0qavUwJAnDo3HUM6iDdFRmA5ACSpsuWVd60yv0wBgymF1/TsV4sm5Ey7q6eS8yUaTBkVCUIkoMgAtLzEcnV1BjLaNzncgGo6aji9kYg9gPwdO8WWLmrOu/EWAtneYGVO7bs5Vy98+MZxIVVl0PqQmbaJHu1tEKyCl6qZsPeRdGZk7KSOaYAiFN/WD0PoFV0sFO/S6ng3rJmRWp7xv/7ARjePR6f7b0z7ITxt2XvnOLOkYXlfo/OJNkav0fLHnRKbwZt3aDZCyAtB3W1F4BZHjszZSYStjw25c7jluchqe9P6XEuV3P3zu3mfXvrsJXbppYEaik+ExC9+eabmDBhAsaMGQMAWL58OTZu3IgPP/wQM2fO9HDpHOfMQeXO6Dw2NBDhjWQGHWsW5tD2bF3MTRnbq89cKlE0t5Ml00DGkQug6bLzJT6PcWoCy7FepJqR/nvcuhea1MXU3t25XDkHdQhEScUt2X0ul/BrHADQdDnT7Q7r2hzF5XeS3y2nIjAI1XeofoJ07zUjJWP0mN5ty13IyioNYhOgXDBh+RncPQCcI3NMyb1uHEDRcr66wZ1sjydjZHoeuFJyQ3ameKmLvAHAgx2aWg23YO+cUhMjC0sd5+4IUm11AJAKOuVu0MQeVDbyBU3XZ+9Ykzp2TKcusUXuvCp1HnKW3Db+mBpn971Kjg9nv9ua5hMBUWVlJQ4ePIhZs2aJz/n5+aF///7Izs6WfE9FRQUqKirEv/V6fY2X01HOHFTujM6V1Dg5Ms6R1MX8pYGt0axxoDgHkvFkYqudX4oG5iNwO8vW1ASWbemNG1on98pVbZsmD7tajWxvn0uNKm6vRqJQV17dndZWICNU9zYJbxgg+10rHe/FePGwd4w5EuS7ewA4R8eukfueAVjNV/f14Qt4IcP+EBSAea2IVELrkhGd0KxxoNl4MsbySAWO9rapppGFLcldjC07ANg6TizH4TEdhyss6E5Nqeb2XYwA6xsAe8ea3LFjOnWJLUrPQ65w9lqh5uPDHp8IiK5cuYKqqipER0ebPR8dHY1Tp6QHXMvKysKcOXNqo3i1zl0/GqUXI0e258io2LamJBjcKU7s4ik3ArezXKl2lqvaNiYPu6sa2VYZpfafvQBMycXfX6Mxy7+S4mgSrZJjzJGg2535C3I5PKajF1s2QUl9z84MsufI5zP2AHLXZ1fTyMKWbF2MXc0VA6R7+kmtz96x5sjUJY6W0Z2c2Yaajw97NILgaDaG97lw4QKaNm2KPXv2IC0tTXz+pZdewo4dO7B3716r90jVEMXHx0On0yEkJKRWyu0tCnXlHmkPttyuvb89Ye3+AsmqbTWUzZEyFOrKzbp4WzIGnUon5lWSRGs5PIO79pc71yX1WZRcMC3LY7lv/TUa7JrZ1+mmPLltuuuzyx3XnubufemO8sjtb6m5Cj1ZVndS2/Gh1+sRGhpq9/rtEwFRZWUlgoKC8MUXX2Dw4MHi86NGjUJxcTG++eYbu+tQukOJLKkh+HEH05OckZ+merRm00lplZDaJ966n9xRbrVdQJRQ6/flTfvyvZ15VoOmqrWsjlLT8cGAyEL37t3RrVs3LFmyBABgMBjQvHlzTJ48WVFSNQMiojsnOcvcCnKdmi4g3s6b9qU3ldVbKb1++0QOEQBMnz4do0aNQpcuXdCtWzcsXrwYpaWlYq8zIrJPrb1D6gLuW/fxpn3pTWWt63wmIBo2bBguX76MV199FUVFRejYsSO+//57q0RrIiIi8j0+02TmKjaZEREReR+l12+/WiwTERERkSoxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjn+czUHa4yDuit1+s9XBIiIiJSynjdtjcxBwMihX7//XcAQHx8vIdLQkRERI76/fffERoaKvs65zJTyGAw4MKFCwgODoZGo/F0cWqdXq9HfHw8zp8/z7ncXMD96DruQ/fgfnQP7kf3qMn9KAgCfv/9d8TFxcHPTz5TiDVECvn5+aFZs2aeLobHhYSE8EfvBtyPruM+dA/uR/fgfnSPmtqPtmqGjJhUTURERD6PARERERH5PAZEpEhAQABee+01BAQEeLooXo370XXch+7B/ege3I/uoYb9yKRqIiIi8nmsISIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgItHOnTvx4IMPIi4uDhqNBl9//bXZ64Ig4NVXX0VsbCwCAwPRv39/nD592jOFVTF7+3H06NHQaDRmj4EDB3qmsCqWlZWFrl27Ijg4GFFRURg8eDByc3PNlrlx4wYmTZqEJk2aoFGjRhg6dCguXrzooRKrk5L92KdPH6tj8umnn/ZQidVp2bJl6NChgzhwYFpaGjZt2iS+zmPRPnv70NPHIQMiEpWWliI1NRVLly6VfH3hwoV45513sHz5cuzduxcNGzZERkYGbty4UcslVTd7+xEABg4ciMLCQvGxZs2aWiyhd9ixYwcmTZqEn376CVu2bMHNmzcxYMAAlJaWistMmzYN3377LT7//HPs2LEDFy5cwJAhQzxYavVRsh8BYMKECWbH5MKFCz1UYnVq1qwZ5s+fj4MHD+LAgQO4//778ac//QknTpwAwGNRCXv7EPDwcSgQSQAgfPXVV+LfBoNBiImJERYtWiQ+V1xcLAQEBAhr1qzxQAm9g+V+FARBGDVqlPCnP/3JI+XxZpcuXRIACDt27BAEofr4q1+/vvD555+Ly/z8888CACE7O9tTxVQ9y/0oCILQu3dv4bnnnvNcobxU48aNhffff5/HoguM+1AQPH8csoaIFMnPz0dRURH69+8vPhcaGoru3bsjOzvbgyXzTtu3b0dUVBRat26NZ555BlevXvV0kVRPp9MBAMLDwwEABw8exM2bN82OyTZt2qB58+Y8Jm2w3I9Gn376KSIiItC+fXvMmjULZWVlniieV6iqqsJnn32G0tJSpKWl8Vh0guU+NPLkccjJXUmRoqIiAEB0dLTZ89HR0eJrpMzAgQMxZMgQJCUlIS8vDy+//DIyMzORnZ0Nf39/TxdPlQwGA55//nn06NED7du3B1B9TGq1WoSFhZkty2NSntR+BIARI0YgISEBcXFxOHr0KGbMmIHc3FysW7fOg6VVn2PHjiEtLQ03btxAo0aN8NVXX6Fdu3bIycnhsaiQ3D4EPH8cMiAiqmWPPfaY+O+UlBR06NABycnJ2L59O/r16+fBkqnXpEmTcPz4cezatcvTRfFqcvtx4sSJ4r9TUlIQGxuLfv36IS8vD8nJybVdTNVq3bo1cnJyoNPp8MUXX2DUqFHYsWOHp4vlVeT2Ybt27Tx+HLLJjBSJiYkBAKteExcvXhRfI+e0aNECEREROHPmjKeLokqTJ0/Ghg0bsG3bNjRr1kx8PiYmBpWVlSguLjZbnsekNLn9KKV79+4AwGPSglarRcuWLdG5c2dkZWUhNTUVb7/9No9FB8jtQym1fRwyICJFkpKSEBMTgx9//FF8Tq/XY+/evWbtv+S4X3/9FVevXkVsbKyni6IqgiBg8uTJ+Oqrr7B161YkJSWZvd65c2fUr1/f7JjMzc1FQUEBj0kT9vajlJycHADgMWmHwWBARUUFj0UXGPehlNo+DtlkRqKSkhKzSDw/Px85OTkIDw9H8+bN8fzzz+ONN97AXXfdhaSkJLzyyiuIi4vD4MGDPVdoFbK1H8PDwzFnzhwMHToUMTExyMvLw0svvYSWLVsiIyPDg6VWn0mTJmH16tX45ptvEBwcLOZihIaGIjAwEKGhoRg3bhymT5+O8PBwhISEYMqUKUhLS8O9997r4dKrh739mJeXh9WrV+OBBx5AkyZNcPToUUybNg3p6eno0KGDh0uvHrNmzUJmZiaaN2+O33//HatXr8b27dvx3//+l8eiQrb2oSqOQ4/1byPV2bZtmwDA6jFq1ChBEKq73r/yyitCdHS0EBAQIPTr10/Izc31bKFVyNZ+LCsrEwYMGCBERkYK9evXFxISEoQJEyYIRUVFni626kjtQwDCypUrxWXKy8uFZ599VmjcuLEQFBQkPPzww0JhYaHnCq1C9vZjQUGBkJ6eLoSHhwsBAQFCy5YthRdffFHQ6XSeLbjKjB07VkhISBC0Wq0QGRkp9OvXT9i8ebP4Oo9F+2ztQzUchxpBEITaCb2IiIiI1Ik5REREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQEZHXq6ys9HQRrKixTEQkjwEREalOnz59MHnyZEyePBmhoaGIiIjAK6+8AuNMQ4mJiXj99dcxcuRIhISEYOLEiQCAXbt2oVevXggMDER8fDymTp2K0tJScb3vvvsu7rrrLjRo0ADR0dF45JFHxNe++OILpKSkIDAwEE2aNEH//v3F9/bp0wfPP/+8WRkHDx6M0aNHi387WyYiUgcGRESkSh999BHq1auHffv24e2338abb76J999/X3z9H//4B1JTU3H48GG88soryMvLw8CBAzF06FAcPXoUa9euxa5duzB58mQAwIEDBzB16lTMnTsXubm5+P7775Geng4AKCwsxPDhwzF27Fj8/PPP2L59O4YMGQJHp3p0tExEpB6c3JWIVKdPnz64dOkSTpw4AY1GAwCYOXMm1q9fj5MnTyIxMRGdOnXCV199Jb5n/Pjx8Pf3x3vvvSc+t2vXLvTu3RulpaX47rvvMGbMGPz6668IDg42296hQ4fQuXNnnD17FgkJCZLl6dixIxYvXiw+N3jwYISFhWHVqlUA4FSZGjRo4NJ+IiL3YQ0REanSvffeKwZDAJCWlobTp0+jqqoKANClSxez5Y8cOYJVq1ahUaNG4iMjIwMGgwH5+fn4wx/+gISEBLRo0QJPPvkkPv30U5SVlQEAUlNT0a9fP6SkpODPf/4zVqxYgevXrztcZkfLRETqwYCIiLxSw4YNzf4uKSnBU089hZycHPFx5MgRnD59GsnJyQgODsahQ4ewZs0axMbG4tVXX0VqaiqKi4vh7++PLVu2YNOmTWjXrh2WLFmC1q1bi0GLn5+fVfPZzZs3XS4TEakHAyIiUqW9e/ea/f3TTz/hrrvugr+/v+Ty99xzD06ePImWLVtaPbRaLQCgXr166N+/PxYuXIijR4/i7Nmz2Lp1KwBAo9GgR48emDNnDg4fPgytVis2f0VGRqKwsFDcVlVVFY4fP273MygpExGpAwMiIlKlgoICTJ8+Hbm5uVizZg2WLFmC5557Tnb5GTNmYM+ePZg8eTJycnJw+vRpfPPNN2IC84YNG/DOO+8gJycH586dw8cffwyDwYDWrVtj7969mDdvHg4cOICCggKsW7cOly9fRtu2bQEA999/PzZu3IiNGzfi1KlTeOaZZ1BcXGz3M9grExGpRz1PF4CISMrIkSNRXl6Obt26wd/fH88995zYlV1Khw4dsGPHDvz1r39Fr169IAgCkpOTMWzYMABAWFgY1q1bh9mzZ+PGjRu46667sGbNGtx99934+eefsXPnTixevBh6vR4JCQn45z//iczMTADA2LFjceTIEYwcORL16tXDtGnT0LdvX7ufwV6ZiEg92MuMiFRHqlcXEVFNYpMZERER+TwGREREROTz2GRGREREPo81REREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8/4/NXj9NDYxwzoAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Import statements\n", + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "# Import IDAES libraries\n", + "from idaes.core.surrogate.sampling.data_utils import split_training_validation\n", + "from idaes.core.surrogate.pysmo_surrogate import PysmoPolyTrainer, PysmoSurrogate\n", + "from idaes.core.surrogate.plotting.sm_plotter import (\n", + " surrogate_scatter2D,\n", + " surrogate_parity,\n", + " surrogate_residual,\n", + ")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaNUlEQVR4nO3deXwU5f0H8M8kkJCEZCGQQICEhHBEJATKoQgGEBQiVTlsEVq5PUE8flaCrRWsErCtRRHBokKtBakKigcelUsMIlc4VBBikABBCMIGkhAgO78/4iyzszOzs5vdndnk83690sru7Owzs3N853m+z/MIoiiKICIiIrKgMLMLQERERKSFgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoR1dqsWbMgCIKhZQVBwKxZswJangEDBmDAgAGWXR8RGcdAhagOWbZsGQRBcP41aNAArVu3xoQJE3Ds2DGzi2c5qampLvsrMTER119/PVavXu2X9VdUVGDWrFnYsGGDX9ZHVB8xUCGqg5566in8+9//xuLFi5GTk4M33ngD/fv3x4ULFwLyfX/6059QWVkZkHUHWrdu3fDvf/8b//73v/Hoo4/i+PHjGDlyJBYvXlzrdVdUVGD27NkMVIhqoYHZBSAi/8vJyUHPnj0BAFOmTEHz5s0xb948rFmzBr/97W/9/n0NGjRAgwaheTlp3bo1fv/73zv/PW7cOLRv3x7/+Mc/cO+995pYMiICWKNCVC9cf/31AIDCwkKX1/fv34/bb78d8fHxaNSoEXr27Ik1a9a4LHPp0iXMnj0bHTp0QKNGjdCsWTP069cPn332mXMZtRyVqqoqPPzww0hISEBsbCxuvfVWHD161K1sEyZMQGpqqtvrautcunQpbrjhBiQmJiIyMhKdO3fGokWLvNoXnrRs2RJXXXUVioqKdJc7efIkJk+ejBYtWqBRo0bIysrCv/71L+f7hw8fRkJCAgBg9uzZzualQOfnENU1ofkIREReOXz4MACgadOmzte++eYb9O3bF61bt0Zubi5iYmLw3//+F8OHD8c777yDESNGAKgJGPLy8jBlyhT07t0bZWVl2L59O3bu3Ikbb7xR8zunTJmCN954A2PHjsV1112HdevWYdiwYbXajkWLFuHqq6/GrbfeigYNGuD999/H/fffD4fDgalTp9Zq3ZJLly6huLgYzZo101ymsrISAwYMwKFDhzBt2jSkpaXhrbfewoQJE3D27Fk8+OCDSEhIwKJFi3DfffdhxIgRGDlyJACga9eufiknUb0hElGdsXTpUhGA+L///U88deqUWFxcLL799ttiQkKCGBkZKRYXFzuXHTRokJiZmSleuHDB+ZrD4RCvu+46sUOHDs7XsrKyxGHDhul+75NPPinKLycFBQUiAPH+++93WW7s2LEiAPHJJ590vjZ+/Hixbdu2HtcpiqJYUVHhttyQIUPEdu3aubzWv39/sX///rplFkVRbNu2rXjTTTeJp06dEk+dOiXu3r1bvOOOO0QA4gMPPKC5vvnz54sAxDfeeMP52sWLF8U+ffqIjRs3FsvKykRRFMVTp065bS8ReYdNP0R10ODBg5GQkIDk5GTcfvvtiImJwZo1a9CmTRsAwM8//4x169bht7/9Lc6dO4fS0lKUlpbi9OnTGDJkCA4ePOjsJdSkSRN88803OHjwoOHv/+ijjwAA06dPd3n9oYceqtV2RUVFOf/bbrejtLQU/fv3xw8//AC73e7TOj/99FMkJCQgISEBWVlZeOutt3DnnXdi3rx5mp/56KOP0LJlS4wZM8b5WsOGDTF9+nScP38eGzdu9KksROSOTT9EddDChQvRsWNH2O12vPbaa9i0aRMiIyOd7x86dAiiKOKJJ57AE088obqOkydPonXr1njqqadw2223oWPHjujSpQuGDh2KO++8U7cJ48cff0RYWBjS09NdXu/UqVOttuvLL7/Ek08+iS1btqCiosLlPbvdDpvN5vU6r7nmGjz99NMQBAHR0dG46qqr0KRJE93P/Pjjj+jQoQPCwlyf9a666irn+0TkHwxUiOqg3r17O3v9DB8+HP369cPYsWNx4MABNG7cGA6HAwDw6KOPYsiQIarraN++PQAgOzsbhYWFeO+99/Dpp5/ilVdewT/+8Q8sXrwYU6ZMqXVZtQaKq66udvl3YWEhBg0ahIyMDDz33HNITk5GREQEPvroI/zjH/9wbpO3mjdvjsGDB/v0WSIKPAYqRHVceHg48vLyMHDgQLz44ovIzc1Fu3btANQ0Vxi5ScfHx2PixImYOHEizp8/j+zsbMyaNUszUGnbti0cDgcKCwtdalEOHDjgtmzTpk1x9uxZt9eVtRLvv/8+qqqqsGbNGqSkpDhfX79+vcfy+1vbtm2xZ88eOBwOl1qV/fv3O98HtIMwIjKOOSpE9cCAAQPQu3dvzJ8/HxcuXEBiYiIGDBiAl19+GSUlJW7Lnzp1yvnfp0+fdnmvcePGaN++PaqqqjS/LycnBwDwwgsvuLw+f/58t2XT09Nht9uxZ88e52slJSVuo8OGh4cDAERRdL5mt9uxdOlSzXIEys0334wTJ05g5cqVztcuX76MBQsWoHHjxujfvz8AIDo6GgBUAzEiMoY1KkT1xB/+8Af85je/wbJly3Dvvfdi4cKF6NevHzIzM3HXXXehXbt2+Omnn7BlyxYcPXoUu3fvBgB07twZAwYMQI8ePRAfH4/t27fj7bffxrRp0zS/q1u3bhgzZgxeeukl2O12XHfddfj8889x6NAht2XvuOMOzJgxAyNGjMD06dNRUVGBRYsWoWPHjti5c6dzuZtuugkRERG45ZZbcM899+D8+fNYsmQJEhMTVYOtQLr77rvx8ssvY8KECdixYwdSU1Px9ttv48svv8T8+fMRGxsLoCb5t3Pnzli5ciU6duyI+Ph4dOnSBV26dAlqeYlCmtndjojIf6Tuydu2bXN7r7q6WkxPTxfT09PFy5cvi6IoioWFheK4cePEli1big0bNhRbt24t/vrXvxbffvtt5+eefvppsXfv3mKTJk3EqKgoMSMjQ3zmmWfEixcvOpdR60pcWVkpTp8+XWzWrJkYExMj3nLLLWJxcbFqd91PP/1U7NKlixgRESF26tRJfOONN1TXuWbNGrFr165io0aNxNTUVHHevHnia6+9JgIQi4qKnMt50z3ZU9drrfX99NNP4sSJE8XmzZuLERERYmZmprh06VK3z+bn54s9evQQIyIi2FWZyAeCKMrqUYmIiIgshDkqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILCukB3xzOBw4fvw4YmNjOVQ1ERFRiBBFEefOnUOrVq3cJvdUCulA5fjx40hOTja7GEREROSD4uJitGnTRneZkA5UpGGqi4uLERcXZ3JpiIiIyIiysjIkJyc77+N6QjpQkZp74uLiGKgQERGFGCNpG0ymJSIiIstioEJERESWxUCFiIiILCukc1SIiKj+qK6uxqVLl8wuBhkUERHhseuxEQxUiIjI0kRRxIkTJ3D27Fmzi0JeCAsLQ1paGiIiImq1HgYqRERkaVKQkpiYiOjoaA7wGQKkAVlLSkqQkpJSq9+MgQoREVlWdXW1M0hp1qyZ2cUhLyQkJOD48eO4fPkyGjZs6PN6mExLRESWJeWkREdHm1wS8pbU5FNdXV2r9TBQISIiy2NzT+jx12/GQIWIiIgsi4EKEREReW3Dhg0QBCHgvbEYqARBib0S+YWlKLFXml0UIiIKEbNmzUK3bt3MLobp2OsnwFZuO4KZq/bCIQJhApA3MhOje6WYXSwiIqojLl26VKteNVbHGpUAKrFXOoMUAHCIwOOr9rFmhYioHnA4HMjLy0NaWhqioqKQlZWFt99+G8CVZpPPP/8cPXv2RHR0NK677jocOHAAALBs2TLMnj0bu3fvhiAIEAQBy5YtA1CTpLpo0SLceuutiImJwTPPPKNbDum7PvnkE3Tv3h1RUVG44YYbcPLkSaxduxZXXXUV4uLiMHbsWFRUVDg/V1VVhenTpyMxMRGNGjVCv379sG3btsDsLB0MVAKoqLTcGaRIqkURh0sr1D9AREQBE+xm+Ly8PLz++utYvHgxvvnmGzz88MP4/e9/j40bNzqX+eMf/4i///3v2L59Oxo0aIBJkyYBAEaPHo3/+7//w9VXX42SkhKUlJRg9OjRzs/NmjULI0aMwN69e52f8WTWrFl48cUXkZ+fj+LiYvz2t7/F/PnzsXz5cnz44Yf49NNPsWDBAufyjz32GN555x3861//ws6dO9G+fXsMGTIEP//8s5/2kDGmN/0cO3YMM2bMwNq1a1FRUYH27dtj6dKl6Nmzp9lFq7W05jEIE+ASrIQLAlKbczwAIqJgCnYzfFVVFebMmYP//e9/6NOnDwCgXbt22Lx5M15++WXcfffdAIBnnnkG/fv3BwDk5uZi2LBhuHDhAqKiotC4cWM0aNAALVu2dFv/2LFjMXHiRK/K9PTTT6Nv374AgMmTJ2PmzJkoLCxEu3btAAC333471q9fjxkzZqC8vByLFi3CsmXLkJOTAwBYsmQJPvvsM7z66qv4wx/+4NuO8YGpNSpnzpxB37590bBhQ6xduxbffvst/v73v6Np06ZmFstvkmxRyBuZifBf+pKHCwLmjOyCJFuUySUjIqo/zGiGP3ToECoqKnDjjTeicePGzr/XX38dhYWFzuW6du3q/O+kpCQAwMmTJz2u35eHefl3tWjRAtHR0c4gRXpN+u7CwkJcunTJGdgAQMOGDdG7d2989913Xn93bZhaozJv3jwkJydj6dKlztfS0tJMLJH/je6VguyOCThcWoHU5tEMUoiIgkyvGT5Q1+Tz588DAD788EO0bt3a5b3IyEhnsCJPgpUGSHM4HB7XHxMT43WZlN+lTMAVBMHQdwebqTUqa9asQc+ePfGb3/wGiYmJ6N69O5YsWaK5fFVVFcrKylz+QkGSLQp90psxSCEiMoHUDC8X6Gb4zp07IzIyEkeOHEH79u1d/pKTkw2tIyIiotbDz/sqPT0dERER+PLLL52vXbp0Cdu2bUPnzp2DWhZTa1R++OEHLFq0CI888ggef/xxbNu2DdOnT0dERATGjx/vtnxeXh5mz55tQkmJiChUSc3wj6/ah2pRDEozfGxsLB599FE8/PDDcDgc6NevH+x2O7788kvExcWhbdu2HteRmpqKoqIiFBQUoE2bNoiNjUVkZGTAyiwXExOD++67D3/4wx8QHx+PlJQUPPvss6ioqMDkyZODUgaJqYGKw+FAz549MWfOHABA9+7dsW/fPixevFg1UJk5cyYeeeQR57/LysoMR6ZERFR/mdEM/5e//AUJCQnIy8vDDz/8gCZNmuBXv/oVHn/8cUNNLKNGjcKqVaswcOBAnD17FkuXLsWECRMCXm7J3Llz4XA4cOedd+LcuXPo2bMnPvnkk6DnkQqiKIqeFwuMtm3b4sYbb8Qrr7zifG3RokV4+umncezYMY+fLysrg81mg91uR1xcXCCLSkREJrhw4QKKioqQlpaGRo0amV0c8oLeb+fN/dvUHJW+ffs6B7eRfP/994aqxIiIiKjuMzVQefjhh/HVV19hzpw5OHToEJYvX45//vOfmDp1qpnFIiIiChn33nuvSxdo+d+9995rdvFqzdSmHwD44IMPMHPmTBw8eBBpaWl45JFHcNdddxn6LJt+iIjqNjb9eHby5EnNXrBxcXFITEwMcolq+Kvpx/SRaX/961/j17/+tdnFICIiCkmJiYmmBSPBwLl+iIiIyLIYqBARkeVZccRU0uevzBLTm36IiIi0REREICwsDMePH0dCQgIiIiKcQ82TdYmiiFOnTqkO1e8tBipERGRZYWFhSEtLQ0lJCY4fP252ccgLgiCgTZs2CA8Pr9V6GKgQEZGlRUREICUlBZcvXzZt7hvyXsOGDWsdpAAMVIiIKARITQi1bUag0MNkWiIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJZlaqAya9YsCILg8peRkWFmkYiIiMhCGphdgKuvvhr/+9//nP9u0MD0IhEREZFFmB4VNGjQAC1btjS7GERERGRBpueoHDx4EK1atUK7du3wu9/9DkeOHNFctqqqCmVlZS5/REREVHeZGqhcc801WLZsGT7++GMsWrQIRUVFuP7663Hu3DnV5fPy8mCz2Zx/ycnJQS4xERERBZMgiqJodiEkZ8+eRdu2bfHcc89h8uTJbu9XVVWhqqrK+e+ysjIkJyfDbrcjLi4umEUlIiIiH5WVlcFmsxm6f5ueoyLXpEkTdOzYEYcOHVJ9PzIyEpGRkUEuFREREZnF9BwVufPnz6OwsBBJSUlmF4WIiIgswNRA5dFHH8XGjRtx+PBh5OfnY8SIEQgPD8eYMWPMLBYRERFZhKlNP0ePHsWYMWNw+vRpJCQkoF+/fvjqq6+QkJBgZrGIiIjIIkwNVN58800zv56IiIgszlI5KkRERERyDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAxUQl9krkF5aixF5pdlGIiIgsqYHZBaivVm47gpmr9sIhAmECkDcyE6N7pZhdLCIiIkthjYoJSuyVziAFABwi8PiqfaxZISIiUmCgYoKi0nJnkCKpFkUcLq0wp0BEREQWxUDFBGnNYxAmuL4WLghIbR5tToGIiIgsioGKCZJsUcgbmYlwoSZaCRcEzBnZBUm2KN3PMfmWiIjqGybTmmR0rxRkd0zA4dIKpDaP9hikMPmWiIjqI0vVqMydOxeCIOChhx4yuyhBkWSLQp/0ZoZqUph8S0RE9ZFlApVt27bh5ZdfRteuXc0uiuUw+ZaIiOorSwQq58+fx+9+9zssWbIETZs2Nbs4lsPkWyIiqq8sEahMnToVw4YNw+DBg80uiiX5mnxLREQU6kxPpn3zzTexc+dObNu2zeOyVVVVqKqqcv67rKwskEWzFG+Tb4mIiOoCUwOV4uJiPPjgg/jss8/QqFEjj8vn5eVh9uzZQSiZNSXZohigEBFRvSKIoih6Xiww3n33XYwYMQLh4eHO16qrqyEIAsLCwlBVVeXynlqNSnJyMux2O+Li4oJadiIiIvJNWVkZbDabofu3qTUqgwYNwt69e11emzhxIjIyMjBjxgyXIAUAIiMjERkZGcwiEhERkYlMDVRiY2PRpUsXl9diYmLQrFkzt9eJiIio/rFEr5/6gMPfExERec/0Xj9KGzZsMLsIfsfh74mIiHzDGpUA4/D3REREvmOgEmAc/p6IiMh3DFQCjMPfExER+Y6BSoBx+HsiIiLfWS6Zti7i8PdERES+YaASJBz+noiIyHts+iEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZluFJCcvKygyvNC4uzqfCEBEREckZDlSaNGkCQRB0lxFFEYIgoLq6utYFIyIiIjIcqKxfvz6Q5SAiIiJyYzhQ6d+/fyDLQUREROTGcKCidPbsWbz66qv47rvvAABXX301Jk2aBJvN5rfCERERUf3mU6+f7du3Iz09Hf/4xz/w888/4+eff8Zzzz2H9PR07Ny5099lJCIionpKEEVR9PZD119/Pdq3b48lS5agQYOaSpnLly9jypQp+OGHH7Bp0ya/F1RNWVkZbDYb7HY7exoRERGFCG/u3z4FKlFRUdi1axcyMjJcXv/222/Rs2dPVFRUeLtKnzBQISIiCj3e3L99avqJi4vDkSNH3F4vLi5GbGysL6skIiIicuNToDJ69GhMnjwZK1euRHFxMYqLi/Hmm29iypQpGDNmjL/LSERERPWUT71+/va3v0EQBIwbNw6XL18GADRs2BD33Xcf5s6d69cCEhERUf3lU46KpKKiAoWFhQCA9PR0REdH+61gRjBHhYiIKPR4c//2eRwVAIiOjkZmZmZtVkFERESkyadA5cKFC1iwYAHWr1+PkydPwuFwuLzPsVSIiIjIH3wKVCZPnoxPP/0Ut99+O3r37u1xskIiIiIiX/gUqHzwwQf46KOP0LdvX3+Xh4iIiMjJp+7JrVu35ngpREREFHA+BSp///vfMWPGDPz444/+Lg8RERGRk09NPz179sSFCxfQrl07REdHo2HDhi7v//zzz34pHBEREdVvPgUqY8aMwbFjxzBnzhy0aNGCybREREQUED4FKvn5+diyZQuysrL8XR4iIiIiJ59yVDIyMlBZWenvshARERG58ClQmTt3Lv7v//4PGzZswOnTp1FWVubyR0REROQPPs31ExZWE98oc1NEUYQgCKiurvZP6TzgXD9EREShJ+Bz/axfv96nghERERF5w6dApX///oaWu//++/HUU0+hefPmvnwNERER1XM+5agY9cYbb+jmrCxatAhdu3ZFXFwc4uLi0KdPH6xduzaQRSIiIqIQEtBAxVP6S5s2bTB37lzs2LED27dvxw033IDbbrsN33zzTSCLRURERCHCp6Yff7nllltc/v3MM89g0aJF+Oqrr3D11VebVCoiIiKyClMDFbnq6mq89dZbKC8vR58+fcwuDhEREVmA6YHK3r170adPH1y4cAGNGzfG6tWr0blzZ9Vlq6qqUFVV5fw3x2whIiKq2wKao2JEp06dUFBQgK1bt+K+++7D+PHj8e2336oum5eXB5vN5vxLTk4OcmmJiIgomLwOVC5fvoynnnoKR48e9bjs73//e48DuURERKB9+/bo0aMH8vLykJWVheeff1512ZkzZ8Jutzv/iouLvS0+ERERhRCvA5UGDRrgr3/9Ky5fvuxx2UWLFnk9horD4XBp3pGLjIx0dmWW/oiIiKju8ilH5YYbbsDGjRuRmppaqy+fOXMmcnJykJKSgnPnzmH58uXYsGEDPvnkk1qtl4iIiOoGnwKVnJwc5ObmYu/evejRowdiYmJc3r/11lsNrefkyZMYN24cSkpKYLPZ0LVrV3zyySe48cYbfSkWERER1TG1mpRQdYWclJCIiIh0BHxSQofD4VPBiIiIiLzhU/fk119/XTXh9eLFi3j99ddrXSgiIiIiwMemn/DwcJSUlCAxMdHl9dOnTyMxMZFNP0RERKTJm/u3TzUqoihCEAS3148ePQqbzebLKomIiIjceJWj0r17dwiCAEEQMGjQIDRocOXj1dXVKCoqwtChQ/1eSCIiIqqfvApUhg8fDgAoKCjAkCFD0LhxY+d7ERERSE1NxahRo/xaQCIiIqq/vApUnnzySQBAamoqRo8ejUaNGgWkUERERESAj92Tx48fD6Cml8/JkyfduiunpKTUvmRERERU7/kUqBw8eBCTJk1Cfn6+y+tSkm2wev0QERFR3eZToDJhwgQ0aNAAH3zwAZKSklR7ABERERHVlk+BSkFBAXbs2IGMjAx/l4eIiIjIyadxVDp37ozS0lJ/l4XIayX2SuQXlqLEXml2UYiIKAB8qlGZN28eHnvsMcyZMweZmZlo2LChy/scJZaCYeW2I5i5ai8cIhAmAHkjMzG6FxO5iYjqklrPnizPTwl2Mi2H0K9bSuyVKCotR1rzGCTZojwu23fuOjhkR2+4IGBz7kCPnyUiInMFfPbk9evX+1QwIi3e1o4UlZa7BCkAUC2KOFxawUCFiKgO8SlHpX///ggLC8OSJUuQm5uL9u3bo3///jhy5AjCw8P9XUaq40rslc4gBQAcIvD4qn26eSdpzWMQpuhsFi4ISG0eHcCSEhFRsPkUqLzzzjsYMmQIoqKisGvXLlRVVQEA7HY75syZ49cCUt2nVzuiJckWhbyRmQj/pekxXBAwZ2QX1qYQEdUxPjX9PP3001i8eDHGjRuHN9980/l637598fTTT/utcFQ/SLUjynwTT7Ujo3ulILtjAg6XViC1eTSDFCKiOsinGpUDBw4gOzvb7XWbzYazZ8/WtkxUz9SmdiTJFoU+6c0YpBAR1VE+1ai0bNkShw4dQmpqqsvrmzdvRrt27fxRLqpnWDtCRERqfApU7rrrLjz44IN47bXXIAgCjh8/ji1btuDRRx/FE0884e8yUj2RZItigEJERC58ClRyc3PhcDgwaNAgVFRUIDs7G5GRkXj00UfxwAMP+LuMREREVE/5NOCb5OLFizh06BDOnz+Pzp07o3Hjxv4sm0cc8I2IiCj0BHzAN0lERAQ6d+5cm1UQERERafKp1w8RERFRMDBQISIiIstioEJERESWxUCFiIiILIuBCrkosVciv7BUd0JAIiKiYKlVrx+qW1ZuO+KcxThMAPJGZmJ0rxSzi0VERPUYa1QIQE1NihSkADUTBD6+al+talZYO0NERLXFGhUCABSVlrvMXgwA1aKIw6UVPg1rz9oZIiLyB9aoEAAgrXkMwgTX18IFAanNo71eVyBqZ4gosFgDSlbFQIUA1EwImDcyE+FCTbQSLgiYM7KLT7UperUzRGQ9K7cdQd+56zB2yVb0nbsOK7cdMbtIRE5s+iGn0b1SkN0xAYdLK5DaPNrnmYyl2hl5sBIuCIiOCEN+YSnSmsdwlmQii9CqAc3umMDzlCyBgQq5SLJF1friJNXOPL5qH6pFEeGCgOHdW2HES/nMWSGyGH/npxH5GwMVCgh57Ux0RJgzSAH4xEZkJVo1oL7kpxEFAnNUKGCSbFHok94M5RermbNCZFH+zE8jCgTWqFDA8YmNyNr8lZ9GFAisUaGA4xMbkfVJNaA8L8lqWKNCQcEnNiIi8gUDFQoaf/QoIiKi+oVNP0RERGRZDFSIiIjIskwNVPLy8tCrVy/ExsYiMTERw4cPx4EDB8wsEhEREVmIqYHKxo0bMXXqVHz11Vf47LPPcOnSJdx0000oLy83s1hERBRiOKli3SWIoih6Xiw4Tp06hcTERGzcuBHZ2dkely8rK4PNZoPdbkdcXFwQSkhERFazctsR53xFnKIjNHhz/7ZUjordbgcAxMfHm1wSIiIKBVqTKrJmpe6wTPdkh8OBhx56CH379kWXLl1Ul6mqqkJVVZXz32VlZcEqHhERWRAnVaz7LFOjMnXqVOzbtw9vvvmm5jJ5eXmw2WzOv+Tk5CCWkIiIrEaaokOOU3TULZYIVKZNm4YPPvgA69evR5s2bTSXmzlzJux2u/OvuLg4iKUkIiKr4RQddZ+pTT+iKOKBBx7A6tWrsWHDBqSlpekuHxkZicjIyCCVjoiIQgGn6KjbTA1Upk6diuXLl+O9995DbGwsTpw4AQCw2WyIiuKBRkRExnCKjrrL1O7JgiCovr506VJMmDDB4+fZPZmIiCj0eHP/Nr3ph4iIiEiLJZJpiYiIiNQwUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkQaSuyVyC8s5SysREQmsszsyURWsnLbEefU8WECkDcyE6N7pZhdLCKieoc1Kh7wqbp+kP/OJfZKZ5ACAA4ReHzVPh4DREQmYI2KDj5V1w/K33lKvzRnkCKpFkUcLq3gXCJEREHGGhUNak/VM1ftxe7iM+YWjPxK7Xd+5YsihCmmoQoXBKQ2jw5+AYmI6jkGKhqKSsvdnqodIjB8YT5WbjtiTqHI71R/ZwBT+rVD+C+TZoYLAuaM7MLaFCIiE7DpR0Na8xiECXC7iYmoyVfI7pjAG1cdoPY7hwsCJvZLxcR+qThcWoHU5tH8rYmITMIaFQ1Jtijkjcx0awIAruQrUOiTfme12pMkWxT6pDdjkEJEZCLWqOgY3SsFGS1jMXxhPuQVK8xXqFtG90pBdscE1p4QEVkQa1Q8yEpuirmj1J+4qe5g7QkRkTWxRsUAPnETERGZg4GKQVLOAhEREQUPm36IiIjIshioEBERkWUxUCEiIiLLYqBiMk56SEREpI3JtCbipIdERET6WKNiErXJ8B5ftc+yNSus+SEiIjOwRsUkapPhSUPzW60bNGt+iIjILKxRMYk0GZ6cFYfmD7WaHyIiqlsYqJhEbzI8K9Gr+SGqz9gcShQcbPoxUSgMzS/V/MiDFSvW/BAFE5tDiYKHNSoms/pkeKFS81MX8YndmtgcShRcrFEhj0Kh5qeu4RO7dYVSIjxRXcAaFTLE6jU/dQmf2K0tVBLhieoKBipU54R6kwkTmK2NzaFEwcWmH6pT6kKTCROYrY/NoUTBwxoVqjPqSpMJn9hDA5tDiYKDNSpUZ9SlJEc+sRMR1WCgQnVGIJtMSuyVKCotR1rzmKAFDUm2KAYoRFTvsemnjgj1BFJ/CFSTycptR9B37jqMXbIVfeeuw8ptR/xRXCIiMkAQRVH0vJg1lZWVwWazwW63Iy4uzuzimKYuJJD6U4m90m9NJiX2SvSdu86tlmZz7kDWdhAR+cib+zebfkKcVgJpRstYlF+sDmpThVX4s8mkLuW9EBGFIgYqBpiRn2CU1o10+Ev5EFnDUmvsKkxEZC7mqHhg9fwEtVEyAUAM8S66ViAFqDNyMthVmIjIJKxR0aHVrJLdMcEyNyopgfTxVftQLYoIA+BQLMOmCu8p835mDM1A1zZN2FWYiCjIGKjoCJX8BPmYG9ERYRjxUn7Amiqs3AzmL2oB6rMfH2ACLRGRCRio6Ail/AR5Aqm8hsWfTRX1pXdRqASoRET1AQMVHcpmlVDJTwjEqKah0AzmL6EUoBIR1XWmJtNu2rQJt9xyC1q1agVBEPDuu++aWRxVo3ulYHPuQKy461pszh1oiRoEI4O7+Xsekvo0oy/n2iEisg5Ta1TKy8uRlZWFSZMmYeTIkWYWRZeVhjI3q/mlvtUycK4dIgpldSmf0NRAJScnBzk5OWYWIaSY2fwSqs1gtWGlAJWIyKi6lk8YUjkqVVVVqKqqcv67rKzMxNJcEazI1ewkT9YyGFeXnmaIKHTUxXzCkApU8vLyMHv2bLOL4SKYkasVml9Yy+CZ2jGR3TGBgQsRBZzZD7SBEFIj086cORN2u935V1xcbGp5tCLXQI0Cq0zyDBOASf1SA/Jd5Bu1YyL3nb2WHt2YgoeznFOgqY1WHur5hCEVqERGRiIuLs7lz0xm9ISReiHdnZ0GUQSWfFHEm5+FqB0TIhC0YJasy+rTcVDdUBd7LYZU04/VmNkU88oXRZC+1mgbJPMmAk/tmFAK9WpY8l5dzBsg66pr+YSm1qicP38eBQUFKCgoAAAUFRWhoKAAR46ExpOGWZGrLzU5fJoLDrfmOQDKOSNDvRqWvFefxiEia/D3WFpmMrVGZfv27Rg4cKDz34888ggAYPz48Vi2bJlJpfKOcp6d8ovVKLFXBvTg8LYmx9enOdbA+Eb5NLPp+1P1qls3ubNCIjxRqDI1UBkwYABEUaeOPEQk2aKw6ftTQev94+2YJr5kgde1fvjBJu8dVdeqYcl79XEcIiJ/EcQQjhTKyspgs9lgt9tNTawtsVei79x1bk9LgZ5tt8Reaejm5235zNoeorrO6DlLVNd5c/8OqV4/VmVW+7PRNkhvc2m82R52tyQyri7lDVDdEArXcPb68YNQaH/2pvnB6PaweUgdc3uIKBSEyjWcNSp+ECr91v1ZAxPswe5CBXtXEVEoCKVrOGtU/KSuJUx62p66OExzbXGsDPI31s5RoITSNZyBih/VtXlw9LZn7zG722tWa+4KtlA68UNBfb9Jh0q1PPlfMI79UEhZkDBQIa+V2Csxb+1+t9cfG9qpXt5QJKF04ltdfb9Js3au/grWsR9KXeYZqARIXX4aVKs5AICubZoEvSxWEkonvpXxJs3aOSsKxjU92Md+qKQsMFAJgLr+NMiaA22hcuJbWX2+SUs3w5iIcJ5jFhKsa7oZx34opCyw14+fqUXEM1fttWQmta9CpZeTWer6WBmBHnch1Kep93X/yHuMjXgpHyO6t/b6HAuFMTFCTTB7x1jl2LfaccQaFT9Ti4gdIrD0yyI8fnNncwoVAKw5qJ+C8WQZyk1ovu4ftZvhu7uOY9X9fVBx0eG8UeUXlmo2PdT1mlyzBLOWwwrHvhWPIwYqfqbWLAIASzYVYVhmErKSm5pTsAAIhSpD8p9gtp+HYiBcm/2jdTOsuOhAn/RmHm8ezOsJnGA3dZt57Fv1OGLTj58l2aIwuV+a2+sigOEL8wM6AJjVquuobgn2VBGh1oRWm/2jV+VvpOnBrGk86gMzmrrNOvatehyxRiUAJvVLwytfFEHZMUaE5+jU18xyK1bXUd3CJGp9tdk/elX++YWlHpseYiLCVdcbHRFWp3sgBou8liM6IgzlF6tRYq80lDMUSvvequc4A5UASLJFYe6oTJenIIle26Y/27fNqK4LtZOSvGOF9nMrq+3+0aryN3LzKL9YrbrOD/ecwCubf4BDBAQByM3JwD3Z6b5v5C/8ea6HynUjyRaFTd+fMnyNDsWHR6ue44IoiiojYoQGb6aJNsPu4jMYvjDfpWYlXBCwOXeg2w9fYq9E37nr3C5Gassq5ReWYuySrW6vr7jrWvRJb1abTTAsFE/KUGG1C3mJvTKkckeCLRD7Z+W2I243D2WOivL6EQYAKvlyM3MycE9/34MVf57rVr5uyLuKl1+sRkxEOEa8lG/oGl2b67m35QrEdSEY57g392/WqNSS3k0kK7kp5o4yFp3WJrNc7YkrDDXVvsFQ2xodM2/EVgsClKx4IWcStb5A7B9PCZZqT8KT+6Xin18Uua1r3tr9uLVbK5/KqDr8wjt7ERPZAD3aNvVqnVapCVaWqai0HHuP2jHv4/0u11QBcGvO17pG+3o993Q9kl8PJIG4LljtHGegUgtGbiLKts3iM5V4f/cx9EyNdzkQ/Nm+DQAOACNeyg/Kja02QZaZN2IrBgFyVryQm8nqQWWgad08pP2S3TEBm3MHOoMZAFiyuQjKOnMH4HPXWtXhFwBMW77L63PIagP7qQUBcmova12jtXp/7jl6VrOW29ueXZL6cF1grx8feTMIUJItCkd+LsfwhfmYtnwXHlhRgOvy1rn0AKptZvnoXilYdX8fCLKeA8GattvXQYrMnGY8FKY4t2oGvhnkg6H1nbsuoL3nQolyv2z6/pSzt0iSLQq5ORlun6lNcqTauS7x9hyyyuBmgHYQoEYqs941OskWhRkq+/7Zjw+o7h9fe3ZJ6vp1gYGKBk9dfb25iUgHoXxxETVVpvL1j+6Vgs25A7HirmuxOXeg10/35Rer3Z6egnEA+xpk+fNG7G3X7FAIAqx0ITdTKASVnmgdn9Lru4vPeDx+leswsl/uyU7HzJwM54Xe1+RI6bsBuJzrSt6cQ1Ya4VovCJALFwSsvv86Q9fozNY2t9e09o/W9Wjnj1eOi7TmMdCIEQ0/GIbq8BVs+lFhpElg71G72+e0Dhatk0CtCrY2bYNmdi3zZZAif5XXlyYcq3bDk1M26YUBmNwv1at11IXmEqs1EXhLeXzOyMlAZmsb9h6zY95a1zwIreNX7RhPjo82tF/u6Z+OW7u18jk5Uu27N+cOxI7DZzD9zV21OoesMrCfVlONnBRIZSU3dZ5XADTL7M01Rm1ZQahpUhNx5bhREybAY4Bn9WZuT9jrR8FItrbaMgAw82b1rn9aywsA8mfe4NeT01PvAKsxUl61m608891oJr4v320FJfZKLN182NnN1OiFJtQvTpJA9qDwthzeBn1a574eI9ebcEHAvf3bYeGGQpfPhgH4UnZNqW2g6mnfB/IcCnaQrdyWx3I6oWvrJoiOCHNOYyBtszddlI3uH/myYQIgiq55MVqB1ItjuuPXWa00t0vvNwRg2oMMe/3UgpGnN60akq6tm6iuU3oyzl21161pZtP3p/x687DKE4pRnsrr9jQ6NAOl56vw6uYi59gQWs1dnrY9lPaVFKQAxpLn6lIibrDHdlC7Qfoa9BltUpAzcr2pFkW8pAhSgJpa2jUFx3FP/3S8vKkQc9fuh1iLQNXT9TBQ55C/gmxvuvIa2RZvzytv9o982fd3H8Pyr4td3neI7j2PwgUBPVL1p2XR+g2XflmEV74oCokHGQYqCkaq63xpNhjdKwUZLWNdxlUREZibR7C7lvn65CP/nFomvNpFIW/tfpdl1OoD5UOPeyqX1brhqfGl6SOQzSVmNCcFK6hUu0Fmd0zwOegz0qSgZOR6o7fOvLX78dUPp7H+wCnna74Gqkaudd6eQ56OH2+DAfn6gCs1BPLB2SSebsietmX74Z+9Pq/01qncF9JyKxRBClATpOTmZODZjw94FbDHRIS7PdCFCTXzz0kvSfs4o2VswMZmqQ0GKgpGnt58fcIrv1htuB9+qPD1ycfI57x5Gg1DzdOk9Ft4M4Kk1fkSGAcqB8fM5qRAB5VaN8jnx3TzOehTGzpAj9HrzWM5ndzyW+TkQYq3ZdYrv1r5jASuauOTKI+fEnslth/+GQdPnje8v+XHo5RoKsL1v+VqU7MofZdSGIDT5VXYXXzGq5u81rlUVFqu2hUaAJpEN3Tpgm50+AdRcR2Y1C8VSxRj7FSLIoa/lF+rGrhAYaCiwsjTm5nJo1bha/OC0c8ZfRoNFwSsur+Psx0ZgEubrD+aPfxdi+DN+nwJjAPRXBIKzUm+5pEUlZbj9Pkq1RskRPcajDABKD1/wdB8L/JrxZ6jZ12eiB8b2gld27jnQeitQ1qmSVRDzHxnLxyGtrKmzL5ca/SudUaal7TGJ3GINT0fszsmYNP3p5D7zl7NGzQAvL/nmMv3K49H+Wf11iPveWP0WNHrviyiJulVYuQmv7v4jEsqgPxc0rruSTXwm3MHGhpxXK3MYQBW3d8HiXGNnM3nLt9h0XObgYoGI09v3j7hJdmiMKJ7a7yz85jzteHdfRsh0gq8aV6Q30CMfs7I06iU8Z6VfKWd1sgkbt7wdy2CVi8QT+3nGS1jse3wGaQ1j0ZURAOPN0l/N5dYvfeNL7+T8jNaOQDy41CqRn9gRYHh75GuFX3Sm/ncA0d5vZF+3wWfH8Lyrz2PKzMjJ8Pr30mvefbljYUuTbFqNzdP45M4ALy47hCWbz2iG1wAwPKtxXjz62KXmgdv83+Amt90z7Gz+N0rXxk+Vnb8eEb1u9RGq/V0k1+57YhqUCZ1Rx7WtRXyRmaqBqHejG77c/lF9+AQQMVFh2qPQl++K1gYqBjgr6fpEnslVu865vLau7uO49EhnQwdeFZrNzRaQ6R2YzZas+TyNHrsLJ5de8B5Yk3JTsPEvmlu+8SfNVf+rkVQzbv5qOZir3fB9HXobG/axz2xco2g1u+k1+au9hlBAMJE12ZEedLozh/POLuMSp/xdgh5fzZhJdmiMGdkJto2j3Y2BYULAoZ3b4V3dx13niszVCYjLLFXYsePZ/BzeRXiYyKd5ddrpsnumOBMTp2ryBcDam5uOw6fQXxj7YcSpeVfew5SJEZqHiQCan5P5fH62FDXZjOjgYWS3ndr3eSdNSka2zdt+S6cr7p8Jafxl6YYefn1zjdlU5ha4C19Xn5trbh4CVP+tUNzWbMxUPHAn0/TvjyRan2/mU0REqPt18qbwbNrD2DGUONJYS5Po1men0b92ezh71oEvQu31gVTb+jsmav2IqNlrEuNkhFaSaN6x0AgmpOM8nR8av1OUvK6AOCu69Mwsd+VwFbtM6IIvDi2O+JjIt2OsSRbFJrGuOcP+DqEvD/dk53ucm4AwMCMREAEeqS6B1BqT/UCgJG/ao3Vu46pHmu5q/YC4i85IIJ684oAOMdWkR5K1God5LwdIEM6//qkN3Or6ZLKJx2b8ulLpKY1b2uClYN1Ale2TStPSOuBzVPzltS8k90xoWauOC/ON72mMKDmN1PLf5Ly+ZRBymM5nTyOFRMsDFR0+Ptp2tsnUq3vP1t5yXmC+KspQjqBBABzRxlfn6fmBa2LQtc2TbxKCpMYfRr1V7OHp99Mq8eBvOpb/pqnp0C1C6an4Gb4wnyvfjO14yr3nb3Op0+tY6rEXonoiHDMurUzmkZHOLtF5heWBrS2z8jDgl67vvT///yiCK9sLnJ+Xuu3/ZVOzYg0Oqjaz2F2u750bhidM0a5DSLg0iytJA8o9IIL+XE1b+1+3D8g3W28FzmplmPu2v0uZbq+Q3NsPliqGiRIE64qz3MAbue82m+hV9Mgp3XuvXBHzdglTaIaujVNSwEFcOXcAKC6z9X42v3bU+2VIALZHROc/5aSl9Vqau/t386v95jaYqCiw99P094+kWp9v5S8Blx5qo6OCHeb6NCIEnulS5Qvouam5c3FVi940LvRB6IXh1Z3v9qY3C/NmXgm/820ehxIJzYA1RuGXt6N2gXTU3Ajfwozsr2qNQnQT6RTPg0qn76NXsy8rbkz+rBgJJ9J7fPe1hBt+t69N42c2e36RvaXr7kdaqTchjAAPVOb4uvDZ1zed4jAJYcDM2++UvugVvMxulcKbu3WCjsOn8GWH05jxddH8MXBUoQJwPXtm2PzoVKXbZJPuKo8zz3te+VvKEB7ZFe1rr3ysUuyOybg+THdABFIjo9y1tps+v6UM6E/TACm9EszvM+VSc9Gr2OerhPykdD1JmB0iMBLGwrdui6bmVjLQEVHINrkvYmQVcdPgPuB6BA9J/Zp3SC2H/5Z9clqx+Ez+HVW7Q/KYDYX+KOZTr6f5F2cBQB3y3Ji9KpZpeBRPrKk/GSX5zt8eagUb35d7LzYqw2Rb+Qm7M0N0khvKvn6lMGstL3yp28juRpGfh/lcerNw4JWu77ethk9H6V8Dk9V92rXB61zLxC5Z0b2ly9ju6iNlCrvbRcdEYbhC/NVP/vKpiJ8OfMGt6YptZqPHqlwGZbfIQJfHjqNJeN6uORQ+HrzVKtNEgTXmgaJVtdetQcVZbO8MlhUdgXW40vSM+D5OiEfX0ovwVnt2DA7AGegokPvJmtk0CKt941GyGrf/9jQTs4ENyWtk1fvBiFoTC6m8bJPfG2G8eZCbvTJW2+dyv0kvzCLAF794jAm9k0D4PmpVO09+cmuHOcl+5enRql5YsbQDGS2sTmrjZPjo503hYqLlzD5Xztc1m10UjJp25UZ/yK0q8L1xnVw2WZo52ro/T7Sd8jnvpHnzah1DVZrekuyRalOzKmkNWCZNGmb8tjQe/qUEwC3dn2tc682QbXeMaz1cBUdEeaybWojZQsC0D25CXYeOet87Zq0prjz2lT0SG2KTd+fcrsWSrlR+YXuTTQS6UlemtVZTpkDoRVoFZVW+GUMKrX1O0T3Odf0uvZKc/1oJW9/rTIonNa+uTs7Da9+cVg36dkbWp0P5PcutV6REq0xesxOrGWg4oHaTdbTRcafCbjyp2+HKKJnajyaRLu3i0qUJ6+nG3iPtk1V29zFXz7rrwja22YYvX2odqH2NBuykcGmlPtJSb5vYyLCdcuv9QSq9kTjEIFNB0udyznEKyPwajUpyX8zvapradte21zkbL4KE2qas+Rjz6jdhORP4J4SIuWMNjcoh/FWW8fm3IFuN1VRvFJ9r5YQ7Da5m2wfatXoGX069mTuR/tdJpFT612S0TLW6x5KnsopUXu4Gd69lXM+LPlnpOvKz+UXER8TgTZNozDiJddaka1FZ7Dt8BmXz8hrRaTgR6+WxkhPQE95Q71Sm3pdu612ndAa5Vc5Jo5qQIOarr1a78sHTFMKAwCV8k/sW1NL688Rl6VrrVbnA62a+gVjuzvzs+S5N2bOai1hoGKA/Cbr6cYfiEGx1EZZ3Zw70K2rJOB+8nqqCk6yRWHuqEy3XItg92JQJqVq7UOtEWe1LnDy8RLklL+LkXZ7+b4tv1itu5yUTKd2sus90SjJF5OaV6DocaFVdQ2o9zSQqqJf+aIIc0dlok96M2R3TMD8O7IQJgho07SmZkK6cEvHiEuOigCM7N7a2QVWSa25QRnsCHAdxltrHdkdE1w+KOLKfpAfIzNX7cXq+69TrQXVq9HTO2e9yedQ7mMpaFFu07bD7mNyeOqh5Kmc8uXkAUV0RJjLpJ3KzwzreuVzWsel8jNaD2tqzQ5GewJ6yhvKSm7qVgsoNZN6MzeTcv1aY+J4avbXTN7WCNT0rgdA4HrVqD0gKveB9OAiTyK32jxoDFS85OnG748EXCM37c25AzGsayucr7rscsA9luM6JouRPBvpoFRO2x6sJCrlRWWySuKZND6DNxc45XgJSvLfRWuadUF0H1OjxF6J0+erVJ/MXriju0t3ULWT3ZccAYkDcKvaUKu6BrR7d0hE/NKLrOKSs6ZJrQZndK8Ul2NEEOC8qD06pBM+/+4n/Ondb1zWrTzGtJJQ9XaBtA61piet/SD1gFLrUaa2f3b8eAYHTpRpnrNpzWNUJ740Qu0jWrUD8uVFuPdQArxL7pduUFqDH364pwTDuiZ5vFaofY9WoLE5d6BzvytH2vVmwEetm6T0ujST+D+/KHLmfsiPV09zM+mNiWM00drtZg/3AdMA4NddW+KPwzrrXg/M4NyXXxZhyaaa/fiq4njz1CQaTAxUvLT3qN3tNU+Rtjf5A8rmCa2btvykPltxCXN/uSHPW7sfTaIauhxsRpJZk2xRiG/sv15ORvNL1C56r24uUm1qyP9Bf8RZ5QXO09Ow/HfR2k96zX4CrszeLC2vnG7dyBONVD2vNn6FEVrHl9oEakrOXmS//FtZK6B8klYmWG/6/hSeUAQpyqYotWRc5XepbZN8HWpV1aLKOqTgy9Mw457GtJD3TMvNyXAOyif/fqND1yu3ya12QCM4UO5/f835BABPf/gd5nz0nduNSWtEVHlekF6goZaHojYDuqft0Gsqls8krna8GpmbKcmmPiaON4nWejVXko/2nMAfh3U2tF1GqF1Xjb6m5pUv3CcmVPb2s8KcaQxUvFBir8S8j91HY5TXYhgNDOT05sJ4dXOR2/LKcTzmfbxf92AzWo2n1X4rjVlglDcHt1Zy26CMBHy+3/Up/M2txV5f4PRqLpS1T3r7qai0HCfLLrj19AkTawYI0xt7Q428hgICcOxMpVtioyi6duVUI00hoHVzMEIvYNALVLUCEGVT1I4fz+h+h/KmLwB4bGgn3WB7ePdWWKUx5oen4Hp38RnMUBlpVKI8Z2va+cvx5tfFzjwXvaR2NconayM3OeW2+HJtUX5GTu9asXTzYSz54ocrAaxYE5QaaRaRUx3w8eMDmJGToZro6Ymnh49qUUR+Yanb62rl8/TQCXgOLOTvT+6X5ta7R94luLbUrquAa57WjJwMlJ6rcslH07r+eqrZstLcXgxUvKB1knRt3cT53yX2SpceGp6q+DzOhaF4Xfm0auRg05qrQ0ntouYQXccs8MTbg1vriU8ZpAA1J/3d/drh1c1Fhi5wm74/pVtl3/qXqnHpqcNTW7daE4ADNa+pjeDo6alGbRp6iSALgADgwz0lePrD79yWe+q2q5EcH+2SCKh1TAmoGUTrC5VBtLToPbFr9QZSNkWJOj9CuCDgn+N+5dL1VETNzezWbq10b+yeakPUaA2HLnli2FW4WdYkoqxBk3dRV0tq10o6/kDxZA243uSM1GQo94PR5gPpM2rHkNYcWxP7pWLJFz84X5Nqqrwdf0ZzwMfWvg346KnZNEwAVmwtdntd+VBi5KHTW5P6pbnUUAD+6y2jNUijskZJWfOnvP7Kr0meAk4rze3FQMULnn5YtYjXU3Dg7eBLyqfVmIhwzVEWfam2c45FsTBft5bGm+2pFkWs2HoEY6650tYuH5DNyEBd0nZN7JeKif1SDY174WkkyAdW7HK2bY/o7j54mbKtW6t48vUY7X5qZLK2+JhI5/YN65qEOR9955ZD88S737h9t9Yx9eLY7hjWtRXe330MD6woUP1e4Zf/kTdn6dXAqd2YBUUtXM/UePXlUBN0R0U0MNT1VC/vQu7e/u1Uy7y7WH8clDDAJUhRGytH3kVdGTxJDyYLPj+I5V+73yz1xiYyUpOh3A/eSLJFqR5DeiOy1qZZROLvAR+V1wtlj65J/VJVxyyRP0xK2+fpodNbSbaapHNfhrPwRGuQRiOk3005LlRuToZuwGmlub28q9Ov56STJPyXQUaUB6JaTUKJvVJ3ndLF3ijpaRWoCYyUT5byDHNfygPU9GjRukh5orU9L6w7hD5563Bd3jqMXbIVfeeuw8ptNTO+ju6VUpMcnJmkuV55E0eSLUq1LVzOSAAoD8Te2XnMbV8ZyfFQrufxVfuwu1g96Ve+773JnwHcj70wRZOQ/DukC4xczQVHRIm9Ej1T493fB7BwbHfkz7wB+bk3YMVd12Jz7kCPEx7OHZXp9nuLv9TCSb+vtJzyYiON1aNWXr0Lotryci9tLHR+t2TltiMuwbeaKdenufzbU5d3AM5jMSu5qfOYvK59c9X1641NJN3IhnVt6fK6VJNh5Lz1RO/6pWTkNzFyHnrznUaN7pWCx4Z2cgl+785Ow+bcgZjUL83QseTtMedN2TbnDnQ5f1ZuO4K+c92vexIpWVXvN/Z0zOuRxtFRBt15a/fjbOUlt/JKAvHb+Yo1Kl7SepLwtZrMmaynMhOpGr3RBcOEKwMSaWX77/zxDJrG6Ef2RiJprSeENbuP65Zfr5Zm7b4S7c95UeuktQ3eqBZFHPzpnNfr0Ot+WjOFu+eePwKA3/Zq4/a6/NgrPX/BrVZEb7I2ZRdMtSepYV2vJAJLwbd8rhK131sqk7Lnj1pPC62aOmmsFKO5F86kT40aKVGlutvTiLKCYHwuIE83M7WxiQQBaNM0yuOAcmo1T/6sbjdaE+JLPkxtvtNIjYO0TExEuEtenrymy2i5/bl9SvKaIk9N4UZrvZ3HvErzoB7pAa/8YrXquTJv7X7cmtVKs+bfKt2UGaj4QB6cSP+uTTXZPf3TAQG6XWmBmqdevbE4HOKVAYm0uttK3fGMnBRaJ7HWyfXyxkLDARfguVu3nLKNXH7RUhskS7kNWr1E9LywrtCtZ8+QLi3w0d4Tmp/R634qn8JdbR8P6dICa/eegAhgxdfFePPrYrfJBqWLYIm9Uvd489QFU96VVO0C5GkeI2WZ2iU0dtsXUpNfhxaN0TM1XrOmTuoqq1YerRuYsnul3s3dUzIvoD3P0YyhvwzaBuNPlFINkvwcGdG9teqga55mvAW8f9L3dNM32uSidZPydaZ1ZfDr6Xoi5ylXTP57y8cE0kty9+f2yRntig1ojxel9r1Gp4iQjL0mGQ/c0AFJtijsLj6juowyn0yNL010/sZAxQdaJ1ZtInT5NO2bD53CwvWus42GCcDq+69zDlntaajsmIhwl8n0lCOlGjkptE5i5ck1c9VeZLSM9SpIkew5ehZ90pt5Nf+MWhKq2gVOuQ3y0Ve1kh6VRLj37Hl5Y6Hz5iXP6ZDGsZG6nyrLKOLKvkqMa+SSdK2WICqiZmAztd9ILdB5bKjr8O1JNv0umGrV9mozqso/Lz9uAOgm5gE1TX6SqQPTDXeVBYyNwvr4zZ0xLDPJ7eItv7nrJfOqkWq/Cop/Gc0XNTfHx3I66TaFyXkadE2aF0kURdVjXtpP3l5H/N2dVHmTqs361T7racwTQCVXSGV/eZOXpzdxqTJAVxt4z5tt1OuK7UstfFZyU8zVqU2Uu6Vra+d6tAaoVCZrW5UgensWB8DChQvx17/+FSdOnEBWVhYWLFiA3r17e/xcWVkZbDYb7HY74uLiglDSmoNcmhVTEi4I2Jw70PnE4I9qMvnNUD7DqNzKbUc8jsUhALg5syWuaRePP7/3rdv3/GnYVW4DP2kpsVfigz3H8cyH7gHJoKsS8Pl3+jPLqpHvO/n2aA1Bv+r+PppdOcMAvDC2u+akeNI2aDWdAMCI7q2wepd789WKu651qR6V/85rCo47xyKRXxw9Ja3Kl0+Oj8bYJVtVl1V+t9r2fHnoFBZuKKzp0gxgTO9kPDCoAwDoHq9yRue0AWpyAqSh7+VdJT0lRd/cpSU++eYn1WXCBOD5O7qhZ2q8V+WWyq42Bo5U6+YpP8UIve/Xk19Yqvnb6h3nWgOmaSVnero21VZt1q/12efHdMO05bvclpcf83r7D6g53ueOqgl6PJXP09Qcys8D3s0Mrvb9j+V0cuuKLdWm1WZ/Lv2yCK9sKlJtClKuR2vbZt7sOrdQICbK1OLN/dv0GpWVK1fikUceweLFi3HNNddg/vz5GDJkCA4cOIDExESzi+fGyJD0/viB7+mfjlu7uc/TIGdkLAYRwId7T+CjvSdUaxG0nmYlagPRqdEKUoZ3a4UbO7eoeQr6pelJTq8ngdr8M1ptrQB0J8WTSL/P7uIzblXIAoB3C9yDFLWqd3lVttY4NlLSqmoehWL5Vff3UV02DPpPPEm2KKwpOI4XZTVwIoDlXxdj+dfFmDcqEyO6t3aZ6Xh491Zux5M3c9qECa5D3yubk/60eh8+339S9bMf7zuB1VOvw7bDZ9y6yjrEK3k0UzwMdKikduxIF+YwARj5q9ZYvfOYai2Y0RwkX3NF9GoLpaaMMNF1BGSp5hRwv7mq9VDT6u3lz/yW2qxf67NQ+Q2U59veY3bddUs9IdWS370ZF0Sr+Vmr9tnoTN9aXbFrkycj1SZK8wRpTUAoX17ZFK6cANEqg7upMT1Qee6553DXXXdh4sSJAIDFixfjww8/xGuvvYbc3FyTS+cumF22jAQ90jKeumyKcL0gymmdiN48YWuRT1nuKa9Cvj2AevOT2jqUPDVrqU3f7sxhUQkU9C4enkbp1Ev6lC9fcdHhNvmeACBvVKbuMVBir8RcnSa33Hf2uvU2eXfXcTw6xHW8CKPd5AVBfWAraZtTm0drBikAnBO7qXWVdS4j1oyY6ZaQCs9Bm9YN6d1dx7F66nXOWgoAHgdbU/L1PFfeJJTEX5oW42Mi3R5K1LZFHnTKj/VAX5tqs36tz/ZIbap7sy6xV2KehyZlhwjnsPpK3owLYnQKAUC7Gcvbrti1TVaV1qs1AaHR77LS4G5qTO2efPHiRezYsQODBw92vhYWFobBgwdjy5YtbstXVVWhrKzM5S/YpIuOFbpsyRnpviaKNTNk/mnYVW7vKbtdejtrbLggYGZOhvOACgMwT3GT9WXfSSeh8ikkXHn39bA9etsVBmD2bVerNg0sGNtd96nCUzfH0b1SsPr+63S7oEvLj+6VgvzcG7BwbHe8OKamq7CnJxqtQdckItwvvGr7Rm071MosiMC17eJVvys6IsyZI6NFfuHW+x1VezYY7J6pdUOquOhwHkvScSXlE8m7fat9jdYIwEZJ3VZfHNNd9Xj5VdumqjlDRgJI+U00kNem2qxf77NqXXolRrY/DK7D6stfVxsXRE5tGg21m6JyNHC1mzoAn/aP8hrnKyPr0VrGSFd8M5lao1JaWorq6mq0aNHC5fUWLVpg/373KDovLw+zZ88OVvE0WaXLlpynpzbgygURgMeBnzxdIKTeMPKEv9G9UrxqrvJ13ymbvIp/rnSZTFFte/S2ywGgaXSE6tOQtL+0GKm+zUpu6jIQlLzpQbl8ks11RltPPCUhy38n+XapNWUpt0Nt8CwHgCKNi1fFRYdueZTbqtUzCVCfS0cUjQ1H7u2Tv16TYxiAKbLRaGsjyVYzV1L5xcuGq/uNJJmr9fYK1LWpNuvX+6xWjYORyUIn90vFP1UGeVvwywCH8u/wdK4qJz5US2jWu6lb8d5ghJUGd1NjetOPN2bOnIlHHnnE+e+ysjIkJyebUhZ/5aL4k/IG/uHeEmeylfJk83TCGrnhqJ2Q3jRX1YZ8HVnJTQ1f/H2tgtZj5OKkXAaAXy5megGqlGQIaE8v76mMUq8xiVb3a2VNifxGf9/AdPRrn6C6rVJgJp8FXOrBpMyJMnrh9KXt31OToz95s361bRnevRXe3XVcNx8hkNem2qzf289q/ZbK4/QVleNU7SHDyL5PskXh8WFXaY6A7emmbsV7gye1yZcJBlN7/Vy8eBHR0dF4++23MXz4cOfr48ePx9mzZ/Hee+/pft6MXj+hRq8XkqceSsqeFI/ldELX1k0s+6RgtMeVWg8ReeZ/qD0NAVfKHR0RhqO/THDYI/VK7ydft0trX+ntQ1+/T/kZT9/h7fpCmXJb6tK2GeHttcrbY8Vbwf6+YAnmceXN/dv07snXXHMNevfujQULFgAAHA4HUlJSMG3aNI/JtAxUAq+uXhDr6nYFgta+CsY+5O9ERgX7WOGxWTshFaisXLkS48ePx8svv4zevXtj/vz5+O9//4v9+/e75a4oMVAhIiIKPSE1jsro0aNx6tQp/PnPf8aJEyfQrVs3fPzxxx6DFCIiIqr7TK9RqQ3WqBAREYUeb+7fpo6jQkRERKSHgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCzL9CH0a0MaVLesrMzkkhAREZFR0n3byOD4IR2onDt3DgCQnJxsckmIiIjIW+fOnYPNZtNdJqTn+nE4HDh+/DhiY2MhCILZxQm6srIyJCcno7i4mHMd1QL3o39wP/oH96N/cD/6R6D2oyiKOHfuHFq1aoWwMP0slJCuUQkLC0ObNm3MLobp4uLieCL6Afejf3A/+gf3o39wP/pHIPajp5oUCZNpiYiIyLIYqBAREZFlMVAJYZGRkXjyyScRGRlpdlFCGvejf3A/+gf3o39wP/qHFfZjSCfTEhERUd3GGhUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZTFQCQGbNm3CLbfcglatWkEQBLz77rsu74uiiD//+c9ISkpCVFQUBg8ejIMHD5pTWAvztB8nTJgAQRBc/oYOHWpOYS0qLy8PvXr1QmxsLBITEzF8+HAcOHDAZZkLFy5g6tSpaNasGRo3boxRo0bhp59+MqnE1mRkPw4YMMDteLz33ntNKrE1LVq0CF27dnUORtanTx+sXbvW+T6PRWM87Uezj0UGKiGgvLwcWVlZWLhwoer7zz77LF544QUsXrwYW7duRUxMDIYMGYILFy4EuaTW5mk/AsDQoUNRUlLi/FuxYkUQS2h9GzduxNSpU/HVV1/hs88+w6VLl3DTTTehvLzcuczDDz+M999/H2+99RY2btyI48ePY+TIkSaW2nqM7EcAuOuuu1yOx2effdakEltTmzZtMHfuXOzYsQPbt2/HDTfcgNtuuw3ffPMNAB6LRnnaj4DJx6JIIQWAuHr1aue/HQ6H2LJlS/Gvf/2r87WzZ8+KkZGR4ooVK0woYWhQ7kdRFMXx48eLt912mynlCVUnT54UAYgbN24URbHm2GvYsKH41ltvOZf57rvvRADili1bzCqm5Sn3oyiKYv/+/cUHH3zQvEKFqKZNm4qvvPIKj8VakvajKJp/LLJGJcQVFRXhxIkTGDx4sPM1m82Ga665Blu2bDGxZKFpw4YNSExMRKdOnXDffffh9OnTZhfJ0ux2OwAgPj4eALBjxw5cunTJ5XjMyMhASkoKj0cdyv0o+c9//oPmzZujS5cumDlzJioqKswoXkiorq7Gm2++ifLycvTp04fHoo+U+1Fi5rEY0pMSEnDixAkAQIsWLVxeb9GihfM9Mmbo0KEYOXIk0tLSUFhYiMcffxw5OTnYsmULwsPDzS6e5TgcDjz00EPo27cvunTpAqDmeIyIiECTJk1cluXxqE1tPwLA2LFj0bZtW7Rq1Qp79uzBjBkzcODAAaxatcrE0lrP3r170adPH1y4cAGNGzfG6tWr0blzZxQUFPBY9ILWfgTMPxYZqBD94o477nD+d2ZmJrp27Yr09HRs2LABgwYNMrFk1jR16lTs27cPmzdvNrsoIU1rP959993O/87MzERSUhIGDRqEwsJCpKenB7uYltWpUycUFBTAbrfj7bffxvjx47Fx40azixVytPZj586dTT8W2fQT4lq2bAkAbpnsP/30k/M98k27du3QvHlzHDp0yOyiWM60adPwwQcfYP369WjTpo3z9ZYtW+LixYs4e/asy/I8HtVp7Uc111xzDQDweFSIiIhA+/bt0aNHD+Tl5SErKwvPP/88j0Uvae1HNcE+FhmohLi0tDS0bNkSn3/+ufO1srIybN261aV9kbx39OhRnD59GklJSWYXxTJEUcS0adOwevVqrFu3DmlpaS7v9+jRAw0bNnQ5Hg8cOIAjR47weJTxtB/VFBQUAACPRw8cDgeqqqp4LNaStB/VBPtYZNNPCDh//rxL5FpUVISCggLEx8cjJSUFDz30EJ5++ml06NABaWlpeOKJJ9CqVSsMHz7cvEJbkN5+jI+Px+zZszFq1Ci0bNkShYWFeOyxx9C+fXsMGTLExFJby9SpU7F8+XK89957iI2Ndbb122w2REVFwWazYfLkyXjkkUcQHx+PuLg4PPDAA+jTpw+uvfZak0tvHZ72Y2FhIZYvX46bb74ZzZo1w549e/Dwww8jOzsbXbt2Nbn01jFz5kzk5OQgJSUF586dw/Lly7FhwwZ88sknPBa9oLcfLXEsmtbfiAxbv369CMDtb/z48aIo1nRRfuKJJ8QWLVqIkZGR4qBBg8QDBw6YW2gL0tuPFRUV4k033SQmJCSIDRs2FNu2bSvedddd4okTJ8wutqWo7T8A4tKlS53LVFZWivfff7/YtGlTMTo6WhwxYoRYUlJiXqEtyNN+PHLkiJidnS3Gx8eLkZGRYvv27cU//OEPot1uN7fgFjNp0iSxbdu2YkREhJiQkCAOGjRI/PTTT53v81g0Rm8/WuFYFERRFIMTEhERERF5hzkqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIgoYC5evGh2EdxYsUxEpI2BChEZNmDAAEybNg3Tpk2DzWZD8+bN8cQTT0CaiSM1NRV/+ctfMG7cOMTFxeHuu+8GAGzevBnXX389oqKikJycjOnTp6O8vNy53pdeegkdOnRAo0aN0KJFC9x+++3O995++21kZmYiKioKzZo1w+DBg52fHTBgAB566CGXMg4fPhwTJkxw/tvXMhGRNTBQISKv/Otf/0KDBg3w9ddf4/nnn8dzzz2HV155xfn+3/72N2RlZWHXrl144oknUFhYiKFDh2LUqFHYs2cPVq5cic2bN2PatGkAgO3bt2P69Ol46qmncODAAXz88cfIzs4GAJSUlGDMmDGYNGkSvvvuO2zYsAEjR46Et1OUeVsmIrIOTkpIRIYNGDAAJ0+exDfffANBEAAAubm5WLNmDb799lukpqaie/fuWL16tfMzU6ZMQXh4OF5++WXna5s3b0b//v1RXl6Ojz76CBMnTsTRo0cRGxvr8n07d+5Ejx49cPjwYbRt21a1PN26dcP8+fOdrw0fPhxNmjTBsmXLAMCnMjVq1KhW+4mI/Ic1KkTklWuvvdYZpABAnz59cPDgQVRXVwMAevbs6bL87t27sWzZMjRu3Nj5N2TIEDgcDhQVFeHGG29E27Zt0a5dO9x55534z3/+g4qKCgBAVlYWBg0ahMzMTPzmN7/BkiVLcObMGa/L7G2ZiMg6GKgQkV/FxMS4/Pv8+fO45557UFBQ4PzbvXs3Dh48iPT0dMTGxmLnzp1YsWIFkpKS8Oc//xlZWVk4e/YswsPD8dlnn2Ht2rXo3LkzFixYgE6dOjmDibCwMLdmoEuXLtW6TERkHQxUiMgrW7dudfn3V199hQ4dOiA8PFx1+V/96lf49ttv0b59e7e/iIgIAECDBg0wePBgPPvss9izZw8OHz6MdevWAQAEQUDfvn0xe/Zs7Nq1CxEREc5mnISEBJSUlDi/q7q6Gvv27fO4DUbKRETWwECFiLxy5MgRPPLIIzhw4ABWrFiBBQsW4MEHH9RcfsaMGcjPz8e0adNQUFCAgwcP4r333nMmrn7wwQd44YUXUFBQgB9//BGvv/46HA4HOnXqhK1bt2LOnDnYvn07jhw5glWrVuHUqVO46qqrAAA33HADPvzwQ3z44YfYv38/7rvvPpw9e9bjNngqExFZRwOzC0BEoWXcuHGorKxE7969ER4ejgcffNDZ5VdN165dsXHjRvzxj3/E9ddfD1EUkZ6ejtGjRwMAmjRpglWrVmHWrFm4cOECOnTogBUrVuDqq6/Gd999h02bNmH+/PkoKytD27Zt8fe//x05OTkAgEmTJmH37t0YN24cGjRogIcffhgDBw70uA2eykRE1sFeP0RkmFovGyKiQGLTDxEREVkWAxUiIiKyLDb9EBERkWWxRoWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgs6/8B01+YvL+mRYAAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.1 Importing Training and Validation Datasets\n", + "\n", + "In this section, we read the dataset from the CSV file located in this directory. 500 data points were simulated for S-CO2 physical properties using REFPROP package. This example is trained on the entire dataset because neural network can overfit on smaller dataset. The data is separated using an 80/20 split into training and validation data using the IDAES split_training_validation() method.\n", + "\n", + "We rename the column headers because they contained \".\", which may cause errors while reading the column names in subsequent code, thus as a good practice we change them to the variable names to be used in the property package. Further, the input variables are **pressure**, **temperature** , while the output variables are **enth_mol**, **entr_mol**, hence we create two new dataframes for the input and output variables. " ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtOklEQVR4nO3deVxU5f4H8M8MOgjKorIbAmLuiKZppKKmVyRvZdrN1NyXFpfUMrWupbaA+ruldUu7Vlq3RW9lZpqluaaS4oKoFSlhWIJKCoggCDy/P2hOs5xZmWFmOJ/36zW+ZM6ZM885c+ac7zzP93kelRBCgIiIiEjB1K4uABEREZGrMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIo+xaNEiqFQqq9ZVqVRYtGiRU8vTr18/9OvXz223R0TWY0BERDZbt24dVCqV9GjQoAFatGiB8ePH4/fff3d18dxOdHS03vEKCQlBnz598Pnnnztk+6WlpVi0aBH27NnjkO0RKREDIiKy25IlS/Df//4Xq1evRnJyMj744AP07dsXN27ccMr7/fOf/0RZWZlTtu1sXbp0wX//+1/897//xVNPPYULFy5g2LBhWL16da23XVpaisWLFzMgIqqFBq4uABF5ruTkZHTv3h0AMHnyZAQFBWHp0qXYvHkzHnzwQYe/X4MGDdCggWdetlq0aIGHH35Y+nvs2LFo3bo1Xn31VTz66KMuLBkRAawhIiIH6tOnDwAgOztb7/mffvoJDzzwAJo1a4ZGjRqhe/fu2Lx5s946N2/exOLFi3HrrbeiUaNGaN68OXr37o0dO3ZI68jlEJWXl2P27NkIDg6Gn58f7r33Xvz2229GZRs/fjyio6ONnpfb5tq1a3HXXXchJCQE3t7e6NChA1atWmXTsbAkLCwM7du3R05Ojtn1Ll26hEmTJiE0NBSNGjVCfHw83nvvPWn5uXPnEBwcDABYvHix1Czn7PwpovrGM39qEZFbOnfuHACgadOm0nOnT59Gr1690KJFC8yfPx+NGzfG//73PwwdOhSfffYZ7r//fgA1gUlKSgomT56MHj16oLi4GEeOHMGxY8fwt7/9zeR7Tp48GR988AFGjRqFO++8E7t27cKQIUNqtR+rVq1Cx44dce+996JBgwb48ssv8fjjj6O6uhrTpk2r1ba1bt68ifPnz6N58+Ym1ykrK0O/fv1w9uxZTJ8+HTExMfjkk08wfvx4FBYW4oknnkBwcDBWrVqFxx57DPfffz+GDRsGAOjcubNDykmkGIKIyEZr164VAMS3334rLl++LM6fPy8+/fRTERwcLLy9vcX58+eldQcMGCDi4uLEjRs3pOeqq6vFnXfeKW699Vbpufj4eDFkyBCz7/v8888L3ctWRkaGACAef/xxvfVGjRolAIjnn39eem7cuHEiKirK4jaFEKK0tNRovaSkJNGqVSu95/r27Sv69u1rtsxCCBEVFSUGDRokLl++LC5fvixOnDghHnroIQFAzJgxw+T2VqxYIQCIDz74QHquoqJCJCQkiCZNmoji4mIhhBCXL1822l8isg2bzIjIbgMHDkRwcDAiIyPxwAMPoHHjxti8eTNuueUWAMCVK1ewa9cuPPjgg7h27RoKCgpQUFCAP/74A0lJSThz5ozUKy0wMBCnT5/GmTNnrH7/r776CgAwc+ZMvednzZpVq/3y8fGR/l9UVISCggL07dsXv/zyC4qKiuza5vbt2xEcHIzg4GDEx8fjk08+wZgxY7B06VKTr/nqq68QFhaGkSNHSs81bNgQM2fORElJCfbu3WtXWYjIGJvMiMhub7zxBtq0aYOioiK8++672LdvH7y9vaXlZ8+ehRACCxcuxMKFC2W3cenSJbRo0QJLlizBfffdhzZt2qBTp04YPHgwxowZY7bp59dff4VarUZsbKze823btq3Vfh04cADPP/880tLSUFpaqresqKgIAQEBNm+zZ8+eePHFF6FSqeDr64v27dsjMDDQ7Gt+/fVX3HrrrVCr9X+7tm/fXlpORI7BgIiI7NajRw+pl9nQoUPRu3dvjBo1CllZWWjSpAmqq6sBAE899RSSkpJkt9G6dWsAQGJiIrKzs/HFF19g+/btePvtt/Hqq69i9erVmDx5cq3LampAx6qqKr2/s7OzMWDAALRr1w6vvPIKIiMjodFo8NVXX+HVV1+V9slWQUFBGDhwoF2vJSLnY0BERA7h5eWFlJQU9O/fH//+978xf/58tGrVCkBNM481wUCzZs0wYcIETJgwASUlJUhMTMSiRYtMBkRRUVGorq5Gdna2Xq1QVlaW0bpNmzZFYWGh0fOGtSxffvklysvLsXnzZrRs2VJ6fvfu3RbL72hRUVHIzMxEdXW1Xi3RTz/9JC0HTAd7RGQ95hARkcP069cPPXr0wIoVK3Djxg2EhISgX79+eOutt5CXl2e0/uXLl6X///HHH3rLmjRpgtatW6O8vNzk+yUnJwMAXnvtNb3nV6xYYbRubGwsioqKkJmZKT2Xl5dnNFq0l5cXAEAIIT1XVFSEtWvXmiyHs9x9993Iz8/Hhg0bpOcqKyvx+uuvo0mTJujbty8AwNfXFwBkAz4isg5riIjIoebOnYt//OMfWLduHR599FG88cYb6N27N+Li4jBlyhS0atUKFy9eRFpaGn777TecOHECANChQwf069cP3bp1Q7NmzXDkyBF8+umnmD59usn36tKlC0aOHIk333wTRUVFuPPOO7Fz506cPXvWaN2HHnoI8+bNw/3334+ZM2eitLQUq1atQps2bXDs2DFpvUGDBkGj0eCee+7BI488gpKSEqxZswYhISGyQZ0zTZ06FW+99RbGjx+Po0ePIjo6Gp9++ikOHDiAFStWwM/PD0BNEniHDh2wYcMGtGnTBs2aNUOnTp3QqVOnOi0vkUdzdTc3IvI82m736enpRsuqqqpEbGysiI2NFZWVlUIIIbKzs8XYsWNFWFiYaNiwoWjRooX4+9//Lj799FPpdS+++KLo0aOHCAwMFD4+PqJdu3bipZdeEhUVFdI6cl3ky8rKxMyZM0Xz5s1F48aNxT333CPOnz8v2w19+/btolOnTkKj0Yi2bduKDz74QHabmzdvFp07dxaNGjUS0dHRYunSpeLdd98VAEROTo60ni3d7i0NKWBqexcvXhQTJkwQQUFBQqPRiLi4OLF27Vqj1x48eFB069ZNaDQadsEnsoNKCJ16YSIiIiIFYg4RERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixePAjFaqrq7GhQsX4Ofnx2HyiYiIPIQQAteuXUNERITRRMm6GBBZ6cKFC4iMjHR1MYiIiMgO58+fxy233GJyOQMiK2mHyD9//jz8/f1dXBoiIiKyRnFxMSIjI6X7uCkMiKykbSbz9/dnQERERORhLKW7MKmaiIiIFI8BERERESkeAyIiIiJSPOYQERGR4lVVVeHmzZuuLgbZoWHDhvDy8qr1dhgQERGRYgkhkJ+fj8LCQlcXhWohMDAQYWFhtRonkAEREREpljYYCgkJga+vLwfe9TBCCJSWluLSpUsAgPDwcLu3xYCIiIgUqaqqSgqGmjdv7urikJ18fHwAAJcuXUJISIjdzWdMqiYiIkXS5gz5+vq6uCRUW9rPsDZ5YAyIiIhI0dhM5vkc8RkyICIiIiLFY0BEREREAGpqWjZt2uTqYujZs2cPVCqV03sCMiBysbyiMhzMLkBeUZmri0JERAqxaNEidOnSxdXFcCvsZeZCG9JzsWDjSVQLQK0CUobFYcTtLV1dLCIiIsVhDZGL5BWVScEQAFQL4JmNp1hTREREFlVXVyMlJQUxMTHw8fFBfHw8Pv30UwB/NTHt3LkT3bt3h6+vL+68805kZWUBANatW4fFixfjxIkTUKlUUKlUWLdunbTtgoIC3H///fD19cWtt96KzZs3W1Um7ft+88036Nq1K3x8fHDXXXfh0qVL2LZtG9q3bw9/f3+MGjUKpaWl0uvKy8sxc+ZMhISEoFGjRujduzfS09Mdd7CsxIDIRXIKrkvBkFaVEDhXUCr/AiIicmt1mQKRkpKC999/H6tXr8bp06cxe/ZsPPzww9i7d6+0zrPPPot//etfOHLkCBo0aICJEycCAEaMGIEnn3wSHTt2RF5eHvLy8jBixAjpdYsXL8aDDz6IzMxM3H333Rg9ejSuXLliddkWLVqEf//73zh48CDOnz+PBx98ECtWrMBHH32ErVu3Yvv27Xj99del9Z9++ml89tlneO+993Ds2DG0bt0aSUlJNr2nIzAgcpGYoMZQG/QS9FKpEB3E8TCIiDzNhvRc9ErdhVFrDqFX6i5sSM912nuVl5fj5ZdfxrvvvoukpCS0atUK48ePx8MPP4y33npLWu+ll15C37590aFDB8yfPx8HDx7EjRs34OPjgyZNmqBBgwYICwtDWFiYNLghAIwfPx4jR45E69at8fLLL6OkpASHDx+2unwvvvgievXqha5du2LSpEnYu3cvVq1aha5du6JPnz544IEHsHv3bgDA9evXsWrVKixfvhzJycno0KED1qxZAx8fH7zzzjuOO2hWYEDkIuEBPkgZFgevP8dO8FKp8PKwTggP8LHwSiIicid1nQJx9uxZlJaW4m9/+xuaNGkiPd5//31kZ2dL63Xu3Fn6v3ZKC+0UF+bovq5x48bw9/e36nVyrw8NDYWvry9atWql95x2e9nZ2bh58yZ69eolLW/YsCF69OiBH3/80er3dAQmVbvQiNtbIrFNMM4VlCI6yJfBEBGRBzKXAuGM63pJSQkAYOvWrWjRooXeMm9vbykoatiwofS8duDC6upqi9vXfZ32tda8Tu71KpWq1turKwyIXCw8wIeBEBGRB9OmQOgGRc5MgejQoQO8vb2Rm5uLvn37Gi3XrSUyRaPRoKqqyhnFs0lsbCw0Gg0OHDiAqKgoADXTb6Snp2PWrFl1WhYGRERERLWgTYF4ZuMpVAnh9BQIPz8/PPXUU5g9ezaqq6vRu3dvFBUV4cCBA/D395cCC3Oio6ORk5ODjIwM3HLLLfDz84O3t7dTymtO48aN8dhjj2Hu3Llo1qwZWrZsiWXLlqG0tBSTJk2q07IwICIiIqqluk6BeOGFFxAcHIyUlBT88ssvCAwMxG233YZnnnnGquao4cOHY+PGjejfvz8KCwuxdu1ajB8/3qllNiU1NRXV1dUYM2YMrl27hu7du+Obb75B06ZN67QcKiGEsLwaFRcXIyAgAEVFRfD393d1cYiIqJZu3LiBnJwcxMTEoFGjRq4uDtWCuc/S2vs3e5kRERGR4jEgIiIiIoseffRRvW7+uo9HH33U1cWrNZcGRPv27cM999yDiIgI2Rl2tUOKGz6WL18urRMdHW20PDU1VW87mZmZ6NOnDxo1aoTIyEgsW7asLnaPiIio3liyZAkyMjJkH0uWLHF18WrNpUnV169fR3x8PCZOnIhhw4YZLc/Ly9P7e9u2bZg0aRKGDx+u9/ySJUswZcoU6W8/Pz/p/8XFxRg0aBAGDhyI1atX4+TJk5g4cSICAwMxdepUB+8RERFR/RQSEoKQkBBXF8NpXBoQJScnIzk52eTysLAwvb+/+OIL9O/fX2/ES6AmADJcV+vDDz9ERUUF3n33XWg0GnTs2BEZGRl45ZVXGBARERERAA/KIbp48SK2bt0qOy5Bamoqmjdvjq5du2L58uWorKyUlqWlpSExMREajUZ6LikpCVlZWbh69arJ9ysvL0dxcbHeg4iI6h93HDWZbOOIz9BjxiF677334OfnZ9S0NnPmTNx2221o1qwZDh48iAULFiAvLw+vvPIKACA/Px8xMTF6rwkNDZWWmRrnICUlBYsXL3bCnhARkTvQaDRQq9W4cOECgoODodFopCkuyDMIIVBRUYHLly9DrVbrVX7YymMConfffRejR482Gl9gzpw50v87d+4MjUaDRx55BCkpKbUadXPBggV62y4uLkZkZKTd2yMiIveiVqsRExODvLw8XLhwwdXFoVrw9fVFy5YtoVbb3/DlEQHRd999h6ysLGzYsMHiuj179kRlZSXOnTuHtm3bIiwsDBcvXtRbR/u3qbwjoGaCPFcMY05ERHVHo9GgZcuWqKysdIu5vch2Xl5eaNCgQa1r9zwiIHrnnXfQrVs3xMfHW1w3IyMDarVayoRPSEjAs88+i5s3b0oz7u7YsQNt27at82HBiYjI/WhnZDeclZ2UxaVJ1SUlJdIYBgCkieZyc3OldYqLi/HJJ59g8uTJRq9PS0vDihUrcOLECfzyyy/48MMPMXv2bDz88MNSsDNq1ChoNBpMmjQJp0+fxoYNG7By5Uq95jAiIiJSNpfWEB05cgT9+/eX/tYGKePGjcO6desAAOvXr4cQAiNHjjR6vbe3N9avX49FixahvLwcMTExmD17tl6wExAQgO3bt2PatGno1q0bgoKC8Nxzz7HLPREREUk4uauVOLkrERGR5+HkrkRERERWYkBEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBTPpQHRvn37cM899yAiIgIqlQqbNm3SWz5+/HioVCq9x+DBg/XWuXLlCkaPHg1/f38EBgZi0qRJKCkp0VsnMzMTffr0QaNGjRAZGYlly5Y5e9eIiIjIg7g0ILp+/Tri4+PxxhtvmFxn8ODByMvLkx4ff/yx3vLRo0fj9OnT2LFjB7Zs2YJ9+/Zh6tSp0vLi4mIMGjQIUVFROHr0KJYvX45FixbhP//5j9P2i4iIiDxLA1e+eXJyMpKTk82u4+3tjbCwMNllP/74I77++mukp6eje/fuAIDXX38dd999N/7v//4PERER+PDDD1FRUYF3330XGo0GHTt2REZGBl555RW9wImIiIiUy+1ziPbs2YOQkBC0bdsWjz32GP744w9pWVpaGgIDA6VgCAAGDhwItVqNQ4cOSeskJiZCo9FI6yQlJSErKwtXr141+b7l5eUoLi7WexAREVH95NYB0eDBg/H+++9j586dWLp0Kfbu3Yvk5GRUVVUBAPLz8xESEqL3mgYNGqBZs2bIz8+X1gkNDdVbR/u3dh05KSkpCAgIkB6RkZGO3DUiIiJyIy5tMrPkoYcekv4fFxeHzp07IzY2Fnv27MGAAQOc+t4LFizAnDlzpL+Li4sZFBEREdVTbl1DZKhVq1YICgrC2bNnAQBhYWG4dOmS3jqVlZW4cuWKlHcUFhaGixcv6q2j/dtUbhJQk7vk7++v9yAiIqL6yaMCot9++w1//PEHwsPDAQAJCQkoLCzE0aNHpXV27dqF6upq9OzZU1pn3759uHnzprTOjh070LZtWzRt2rRud4CIiIjckksDopKSEmRkZCAjIwMAkJOTg4yMDOTm5qKkpARz587F999/j3PnzmHnzp2477770Lp1ayQlJQEA2rdvj8GDB2PKlCk4fPgwDhw4gOnTp+Ohhx5CREQEAGDUqFHQaDSYNGkSTp8+jQ0bNmDlypV6zWFERESkbCohhHDVm+/Zswf9+/c3en7cuHFYtWoVhg4diuPHj6OwsBAREREYNGgQXnjhBb0k6StXrmD69On48ssvoVarMXz4cLz22mto0qSJtE5mZiamTZuG9PR0BAUFYcaMGZg3b55NZS0uLkZAQACKiorYfEZEROQhrL1/uzQg8iQMiIiIiDyPtfdvj8ohIiIiInIGBkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEClEXlEZDmYXIK+ozNVFISIicjsNXF0Acr4N6blYsPEkqgWgVgEpw+Iw4vaWri4WERGR22ANUT2XV1QmBUMAUC2AZzaeYk0RERGRDgZE9VxOwXUpGNKqEgLnCkpdUyAiIiI3xIConosJagy1Sv85L5UK0UG+rikQERGRG2JAVI/lFZUhp+A65iW3g5eqJiryUqnw8rBOCA/wcXHpiIiI3AeTquspw0TqeYPbofMtgYgO8mUwREREZIA1RPWQXCL1sq+zGAwRERGZwICoHmIiNRERkW0YENVDTKQmIiKyDQOieig8wAcpw+KYSE1ERGQlJlXXUyNub4nENsE4V1DK3CEiIiILGBDVY+EBPgyEiIiIrMAmMyIiIlI8BkRERESkeAyIiIiISPFcGhDt27cP99xzDyIiIqBSqbBp0yZp2c2bNzFv3jzExcWhcePGiIiIwNixY3HhwgW9bURHR0OlUuk9UlNT9dbJzMxEnz590KhRI0RGRmLZsmV1sXtERETkIVwaEF2/fh3x8fF44403jJaVlpbi2LFjWLhwIY4dO4aNGzciKysL9957r9G6S5YsQV5envSYMWOGtKy4uBiDBg1CVFQUjh49iuXLl2PRokX4z3/+49R9IyIiIs/h0l5mycnJSE5Oll0WEBCAHTt26D3373//Gz169EBubi5atmwpPe/n54ewsDDZ7Xz44YeoqKjAu+++C41Gg44dOyIjIwOvvPIKpk6d6rid8SDaSV9jghqzFxoRERE8LIeoqKgIKpUKgYGBes+npqaiefPm6Nq1K5YvX47KykppWVpaGhITE6HRaKTnkpKSkJWVhatXr5p8r/LychQXF+s96oMN6bnolboLo9YcQq/UXdiQnuvqIhEREbmcxwREN27cwLx58zBy5Ej4+/tLz8+cORPr16/H7t278cgjj+Dll1/G008/LS3Pz89HaGio3ra0f+fn55t8v5SUFAQEBEiPyMhIB+9R3ZOb9PWZjaeQV1Tm2oIRERG5mEcMzHjz5k08+OCDEEJg1apVesvmzJkj/b9z587QaDR45JFHkJKSAm9vb7vfc8GCBXrbLi4u9vigyNykr2w6IyIiJXP7gEgbDP3666/YtWuXXu2QnJ49e6KyshLnzp1D27ZtERYWhosXL+qto/3bVN4RAHh7e9cqoHJH2klfdYMiTvpKRETk5k1m2mDozJkz+Pbbb9G8eXOLr8nIyIBarUZISAgAICEhAfv27cPNmzeldXbs2IG2bduiadOmTiu7O+Kkr0RERPJcWkNUUlKCs2fPSn/n5OQgIyMDzZo1Q3h4OB544AEcO3YMW7ZsQVVVlZTz06xZM2g0GqSlpeHQoUPo378//Pz8kJaWhtmzZ+Phhx+Wgp1Ro0Zh8eLFmDRpEubNm4dTp05h5cqVePXVV12yz67GSV+JiIiMqYQQwvJqzrFnzx7079/f6Plx48Zh0aJFiImJkX3d7t270a9fPxw7dgyPP/44fvrpJ5SXlyMmJgZjxozBnDlz9Jq7MjMzMW3aNKSnpyMoKAgzZszAvHnzbCprcXExAgICUFRUZLHZjoiIiNyDtfdvlwZEnoQBERERkeex9v7t1jlERERERHWBAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSvgbUrFhcXW71Rf39/uwpDRERE5ApWB0SBgYFQqVRm1xFCQKVSoaqqqtYFIyIiIqorVgdEu3fvdmY5iIiIiFzG6oCob9++ziwHERERkctYHRAZKiwsxDvvvIMff/wRANCxY0dMnDgRAQEBDiscERERUV2wq5fZkSNHEBsbi1dffRVXrlzBlStX8MorryA2NhbHjh1zdBmJiIiInEolhBC2vqhPnz5o3bo11qxZgwYNaiqZKisrMXnyZPzyyy/Yt2+fwwvqasXFxQgICEBRURF70REREXkIa+/fdgVEPj4+OH78ONq1a6f3/A8//IDu3bujtLTU9hK7OQZEREREnsfa+7ddTWb+/v7Izc01ev78+fPw8/OzZ5NERERELmNXQDRixAhMmjQJGzZswPnz53H+/HmsX78ekydPxsiRIx1dRiIiIiKnsisg+r//+z8MGzYMY8eORXR0NKKjozF+/Hg88MADWLp0qdXb2bdvH+655x5ERERApVJh06ZNesuFEHjuuecQHh4OHx8fDBw4EGfOnNFb58qVKxg9ejT8/f0RGBiISZMmoaSkRG+dzMxM9OnTB40aNUJkZCSWLVtmz24TERFRPWVXQKTRaLBy5UpcvXoVGRkZyMjIwJUrV/Dqq6/C29vb6u1cv34d8fHxeOONN2SXL1u2DK+99hpWr16NQ4cOoXHjxkhKSsKNGzekdUaPHo3Tp09jx44d2LJlC/bt24epU6dKy4uLizFo0CBERUXh6NGjWL58ORYtWoT//Oc/9uw6ERER1UfCTQAQn3/+ufR3dXW1CAsLE8uXL5eeKywsFN7e3uLjjz8WQgjxww8/CAAiPT1dWmfbtm1CpVKJ33//XQghxJtvvimaNm0qysvLpXXmzZsn2rZta1P5ioqKBABRVFRkz+4RERGRC1h7/7arhujGjRtYvnw57r77bnTv3h233Xab3sMRcnJykJ+fj4EDB0rPBQQEoGfPnkhLSwMApKWlITAwEN27d5fWGThwINRqNQ4dOiStk5iYCI1GI62TlJSErKwsXL161eT7l5eXo7i4WO9BRERE9ZNdI1VPmjQJ27dvxwMPPIAePXpYnPTVHvn5+QCA0NBQvedDQ0OlZfn5+QgJCdFb3qBBAzRr1kxvnZiYGKNtaJc1bdpU9v1TUlKwePHi2u8IERERuT27AqItW7bgq6++Qq9evRxdHrexYMECzJkzR/q7uLgYkZGRLiwREREROYtdTWYtWrRw+nhDYWFhAICLFy/qPX/x4kVpWVhYGC5duqS3vLKyEleuXNFbR24buu8hx9vbG/7+/noPIiIiqp/sCoj+9a9/Yd68efj1118dXR5JTEwMwsLCsHPnTum54uJiHDp0CAkJCQCAhIQEFBYW4ujRo9I6u3btQnV1NXr27Cmts2/fPty8eVNaZ8eOHWjbtq3J5jIiIiJSFrsCou7du+PGjRto1aoV/Pz80KxZM72HtUpKSqRu+0BNInVGRgZyc3OhUqkwa9YsvPjii9i8eTNOnjyJsWPHIiIiAkOHDgUAtG/fHoMHD8aUKVNw+PBhHDhwANOnT8dDDz2EiIgIAMCoUaOg0WgwadIknD59Ghs2bMDKlSv1msOIiIhI2ezKIRo5ciR+//13vPzyywgNDbU7qfrIkSPo37+/9Lc2SBk3bhzWrVuHp59+GtevX8fUqVNRWFiI3r174+uvv0ajRo2k13z44YeYPn06BgwYALVajeHDh+O1116TlgcEBGD79u2YNm0aunXrhqCgIDz33HN6YxURERGRstk1uauvry/S0tIQHx/vjDK5JU7uSkRE5HmcOrlru3btUFZWZnfhiIiIiNyJXQFRamoqnnzySezZswd//PEHBzAkIiIij2ZXk5laXRNHGeYOCSGgUqlQVVXlmNK5ETaZEREReR5r7992JVXv3r3b7oIRERERuRu7AqK+fftatd7jjz+OJUuWICgoyJ63ISIiIqoTduUQWeuDDz5gThERERG5PacGRHakJxERERHVOacGRERERESegAERERERKR4DIiIiIlI8BkRERESkeE4NiB5++GEOYuggeUVlOJhdgLwiTplCRETkaHaNQwQAhYWFOHz4MC5duoTq6mq9ZWPHjgUArFq1qnalIwDAhvRcLNh4EtUCUKuAlGFxGHF7S1cXi4iIqN6wa+qOL7/8EqNHj0ZJSQn8/f31pvBQqVS4cuWKQwvpDlw1dUdeURl6pe5Ctc6n5KVSYf/8/ggP8KmzchAREXkip852/+STT2LixIkoKSlBYWEhrl69Kj3qYzDkSjkF1/WCIQCoEgLnCkpdUyAiIqJ6yK6A6Pfff8fMmTPh6+vr6PKQgZigxlDrz6ELL5UK0UE89kRERI5iV0CUlJSEI0eOOLosJCM8wAcpw+Lg9WezpJdKhZeHdWJzGRERkQNZnVS9efNm6f9DhgzB3Llz8cMPPyAuLg4NGzbUW/fee+91XAkJI25vicQ2wThXUIroIF8GQ0RERA5mdVK1Wm1dZZJKpUJVVVWtCuWOnJ1UnVdUhpyC64gJasyAh4iIyEGsvX9bXUNk2LWeHIfd6omIiFzLrhyi999/H+Xl5UbPV1RU4P333691oZQkr6hMCoYAoFoACzae5ACMREREdciugGjChAkoKioyev7atWuYMGFCrQulJHLd6qsFsPZAjmsKREREpEB2BURCCL3BGLV+++03BAQE1LpQSiLXrR4A3t6Xw1oiIiKiOmLT1B1du3aFSqWCSqXCgAED0KDBXy+vqqpCTk4OBg8e7PBC1mfhAT6Y1DsGa77TrxGqBnCuoJQJ1kRERHXApoBo6NChAICMjAwkJSWhSZMm0jKNRoPo6GgMHz7coQVUgom9Y/D2dznQbTnj4ItERER1x6aA6PnnnwcAREdHY8SIEWjUqJFTCqU04QE+SB0eh2c2nkKVEBx8kYiIqI7ZNbmrVkVFhexs9y1b1r8u43UxuWteURkHXyQiInIgh49DpOvMmTOYOHEiDh48qPe8Ntm6Pg7MWBfCA3wYCBEREbmAXQHR+PHj0aBBA2zZsgXh4eGyPc6IiIiIPIVdAVFGRgaOHj2Kdu3aObo8RERERHXOrnGIOnTogIKCAkeXhYiIiMgl7AqIli5diqeffhp79uzBH3/8geLiYr0HERERkSexq5eZ7sz3uvlD9Tmpui56mREREZFjObWX2e7du+0uGLmvvKIy5BRcR0xQY/Z2IyIiRbGryaxv375Qq9VYs2YN5s+fj9atW6Nv377Izc2Fl5eXo8tIdWBDei56pe7CqDWH0Ct1Fzak57q6SERERHXGroDos88+Q1JSEnx8fHD8+HGUl5cDAIqKivDyyy87tIDR0dHS/Gm6j2nTpgEA+vXrZ7Ts0Ucf1dtGbm4uhgwZAl9fX4SEhGDu3LmorKx0aDmdJa+oDAezC5w60WteURkWbDyJ6j8bT6sF8MzGU5xcloiIFMOuJrMXX3wRq1evxtixY7F+/Xrp+V69euHFF190WOEAID09XS8n6dSpU/jb3/6Gf/zjH9JzU6ZMwZIlS6S/fX3/mgOsqqoKQ4YMQVhYGA4ePIi8vDyMHTsWDRs2dHjw5mgb0nOlQEWtAlKGxWHE7Y4fBTyn4LoUDGlVCcHJZYmISDHsqiHKyspCYmKi0fMBAQEoLCysbZn0BAcHIywsTHps2bIFsbGx6Nu3r7SOr6+v3jq6SVPbt2/HDz/8gA8++ABdunRBcnIyXnjhBbzxxhuoqKhwaFkdqS5rbWKCGkNtMLYmJ5clIiIlsSsgCgsLw9mzZ42e379/P1q1alXrQplSUVGBDz74ABMnTtTr3fbhhx8iKCgInTp1woIFC1BaWiotS0tLQ1xcHEJDQ6XnkpKSUFxcjNOnT5t8r/LycpcOJ2Cu1sbRwgN8kDIsDl5/HlNOLktEREpjV5PZlClT8MQTT+Ddd9+FSqXChQsXkJaWhqeeegoLFy50dBklmzZtQmFhIcaPHy89N2rUKERFRSEiIgKZmZmYN28esrKysHHjRgBAfn6+XjAEQPo7Pz/f5HulpKRg8eLFjt8JK2lrbXSDIku1NrXpJTbi9pZIbBPMyWWJiEiR7AqI5s+fj+rqagwYMAClpaVITEyEt7c3nnrqKcyYMcPRZZS88847SE5ORkREhPTc1KlTpf/HxcUhPDwcAwYMQHZ2NmJjY+1+rwULFmDOnDnS38XFxYiMjLR7e7bS1to8s/EUqoSwWGtjb76RYRDFQIiIiJTIroBIpVLh2Wefxdy5c3H27FmUlJSgQ4cOaNKkiaPLJ/n111/x7bffSjU/pvTs2RMAcPbsWcTGxiIsLAyHDx/WW+fixYsAapr+TPH29oa3t3ctS1071tbamMo3SmwTbDbAqaukbSIiIndnVw6RlkajQYcOHdCjRw+nBkMAsHbtWoSEhGDIkCFm18vIyAAAhIeHAwASEhJw8uRJXLp0SVpnx44d8Pf3R4cOHZxWXkcJD/BBQmxzs4GNPflG7GpPRET0l1oFRHWluroaa9euxbhx49CgwV+VWtnZ2XjhhRdw9OhRnDt3Dps3b8bYsWORmJiIzp07AwAGDRqEDh06YMyYMThx4gS++eYb/POf/8S0adNcXgPkKPb0EqvLpG0iIiJ35xEB0bfffovc3FxMnDhR73mNRoNvv/0WgwYNQrt27fDkk09i+PDh+PLLL6V1vLy8sGXLFnh5eSEhIQEPP/wwxo4dqzdukaezp5cYu9oTERH9xa7JXZXIEyZ3zSsqs6mX2Ib0XKOkbeYQERFRfeLUyV3JPdnaS4xd7YmIiGowIFI4drUnIiLykBwiIiIiImdiQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIPlldUhoPZBcgrKnN1UYiIiDwaZ7v3UBvSc7Fg40lUC0CtAlKGxWHE7S1dXSwiIiKPxBoiD5RXVCYFQwBQLYBnNp5iTREREZGdGBB5oJyC61IwpFUlBM4VlLqmQERERB6OAZEHiglqDLVK/zkvlQrRQb6uKRAREZGHY0DkgcIDfJAyLA5eqpqoyEulwsvDOiE8wMfFJVMeJrYTEdUPTKr2UCNub4nENsE4V1CK6CBfBkMuYC6xPa+oDDkF1xET1JifDRGRB2BA5MHCA3x4s3URU4ntiW2Cse/ny+wBSETkYdhkRmQHU4ntx369yh6AREQeiAERkR1MJbZXC8EegEREHogBEZEdTCW2d49uxh6AREQeiDlEboJJuJ7HVGJ7yrA4PLPxFKqEYA9AIiIPwYDIDXAaDs8ll9jOHoBERJ6HTWYuxmk46qfwAB8kxDZnMERE5CEYELkYp+EgIiJyPQZELsZpOIiIiFyPAZGLcRoOIiIi12NStRtgEi4REZFrMSByE5yGg4iIyHXYZEYOxdnfiYjIE7GGiByG4ykREZGncvsaokWLFkGlUuk92rVrJy2/ceMGpk2bhubNm6NJkyYYPnw4Ll68qLeN3NxcDBkyBL6+vggJCcHcuXNRWVlZ17tSr3E8JSIi8mQeUUPUsWNHfPvtt9LfDRr8VezZs2dj69at+OSTTxAQEIDp06dj2LBhOHDgAACgqqoKQ4YMQVhYGA4ePIi8vDyMHTsWDRs2xMsvv1zn+2KJp07hYW48JU/aDyIiUiaPCIgaNGiAsLAwo+eLiorwzjvv4KOPPsJdd90FAFi7di3at2+P77//HnfccQe2b9+OH374Ad9++y1CQ0PRpUsXvPDCC5g3bx4WLVoEjUZT17tjkrVNTu4YNGnHU9INijieEhEReQq3bzIDgDNnziAiIgKtWrXC6NGjkZubCwA4evQobt68iYEDB0rrtmvXDi1btkRaWhoAIC0tDXFxcQgNDZXWSUpKQnFxMU6fPm3yPcvLy1FcXKz3cCZrm5w2pOeiV+oujFpzCL1Sd2FDeq5Ty2UtjqdkGhPNiYjcn9vXEPXs2RPr1q1D27ZtkZeXh8WLF6NPnz44deoU8vPzodFoEBgYqPea0NBQ5OfnAwDy8/P1giHtcu0yU1JSUrB48WLH7owZ1jQ5mQqaEtsEu0XgwfGUjDHRnIjIM7h9QJScnCz9v3PnzujZsyeioqLwv//9Dz4+zrvhLliwAHPmzJH+Li4uRmRkpNPez5omJ0/I0+F4Sn9x9wCWiIj+4hFNZroCAwPRpk0bnD17FmFhYaioqEBhYaHeOhcvXpRyjsLCwox6nWn/lstL0vL29oa/v7/ew5msaXLylHnP2ERUgxP3EhF5Do8LiEpKSpCdnY3w8HB069YNDRs2xM6dO6XlWVlZyM3NRUJCAgAgISEBJ0+exKVLl6R1duzYAX9/f3To0KHOy2/OiNtbYv/8/vh4yh3YP7+/UdOKJ+TpuGuOkyt4SgBLRESASgghLK/mOk899RTuueceREVF4cKFC3j++eeRkZGBH374AcHBwXjsscfw1VdfYd26dfD398eMGTMAAAcPHgRQ0+2+S5cuiIiIwLJly5Cfn48xY8Zg8uTJNnW7Ly4uRkBAAIqKipxeW2RJXlGZW+bp5BWVoVfqLqNmv/3z+7tVOevShvRcPLPxFKqEkAJY5hAREdUda+/fbp9D9Ntvv2HkyJH4448/EBwcjN69e+P7779HcHAwAODVV1+FWq3G8OHDUV5ejqSkJLz55pvS6728vLBlyxY89thjSEhIQOPGjTFu3DgsWbLEVbtUa+6ap+MJOU51jYnmRESewe1riNyFO9UQuSvWEBERkbux9v7tcTlE5L48IceJiIhIjts3mZFnYRMRERF5IgZE9Yi7TOnhrjlOREREpjAgqic4IjIREZH9mENUD1g7DxoRERHJY0BUD3BEZCIiotphQFQP1OWIyJyWg4iI6iMGRPVAXXV357QcRERUX3FgRit5wsCMzpzSg4MuEhGRJ6o3U3eQ9ZzZ3Z3TchARUX3GJjOyCmdudzzmYxERuQ8GRGQVTsvhWMzHIiJyL8whspIn5BDVBWfmKSkF87GIiOoOc4jIKTgtR+0xH4uIyP2wyYychjky8piPRUTkfhgQkVMwR8Z0QMh8LCIi98McIisxh8h6zJGxbrJd5mMRETmftfdv1hCRwyl9bjVrJ9sND/BBQmxzBkNERG6AARE5jLaJqLHGS9E5MkoPCImIPBF7mZFDGDYR3d+1BTYdv4AqIRSXI6NNmjZsMlRKQEhEZKu8ojLkFFxHTFBjl90rGBB5AHc4UcyRayLadPwCNj6egNKKasXlyGiTpp/ZeMotAkJ3P3+ISNmsybmsCwyI3Jy7nCjmmGoiKq2oRkJsc9cUysVG3N4SiW2CXZ407QnnDxEpl6mcy8Q2wXV+3WQOkRuzNjnX1TiujjxXJ017yvlDRMrlTjmXDIjcmDudKLoMx9exZ1wdRw3ayMEfTXPX84eISMudflCzycyNuVNyrjYP5eTvRVi67SejJhhbmogc1YzD5iDz3On8ISKS4045lxyY0UquGphxQ3qu0YlS1zd93cDDkK0DLjpq0MbabkcpicbucP4QEVnizIFqOblrPWGq5sXcDd2RN3vDPBRDtk5K6qiJTWuznfpUs2Tps3aX5G4iInPcYeJwBkQewPBEMXdDd/TNXi7w0GVrE4yjmnHs3Y479WioLWs/a3e40BARuTsmVXsYcz2HHN2rKK+oDFeuV0BlYrk9bb2OmtjU3u3Ul0Rj9iAjInIs1hB5GHM3dAHhkOYoQL/2QYWah0BN4PH04LbofEug3U0wjmrGsWc79SXR2FFNj0REVIMBkYexdEOv7c0+r6gMR85d0at9EH9u9/WHuqJbdFOH3HAd1Yxj63bcqUdDbdSXwI6IyF0wIPIwlm7o1t7s5ZJxzfUmqxaASlVTM6EthyvVJnG8PiQa15fAjojIXbDbvZVc1e3eFHNdFC11X5RLxk1sE2zUjV2X6s82M21tkSt7ZtWnXmK15cyuqkRE9YG1928GRFZyh4DIEd3p5cbvUauAaf1j8fqubNnXqFWA+DMY0vJSqbDx8QRcr6iq07F8HDWOERERKQPHIapnHFUrIpeMWy0gGwypAbw+qiuqhcCMjzP0llUJgaFvHKzzGiMmExMRkTO4fbf7lJQU3H777fDz80NISAiGDh2KrKwsvXX69esHlUql93j00Uf11snNzcWQIUPg6+uLkJAQzJ07F5WVlXW5K3aT62K94LOTdnWxlps3Ro6XSoWU4XEY0jkC3aObyb5GG5c4osu3tXOSudO8N0REVH+4fUC0d+9eTJs2Dd9//z127NiBmzdvYtCgQbh+/breelOmTEFeXp70WLZsmbSsqqoKQ4YMQUVFBQ4ePIj33nsP69atw3PPPVfXu2MX2VodAGv3n7N5W4bj98hZOKQ99s/vL9X4GL5GLjiqEgJbM/PsCoo2pOeiV+oujFpzCL1Sd2FDeq7V5WcyMREROYLH5RBdvnwZISEh2Lt3LxITEwHU1BB16dIFK1askH3Ntm3b8Pe//x0XLlxAaGgoAGD16tWYN28eLl++DI1GY/F9XZlDlFdUhjtTdsHwg1KrgAPz77IrGMgrKsOxX69i+kfHjXKDTOXjaBN4fTVq3P/mQdkEbFubz+zNCXJ1MrFS5kIjIvJ01t6/3b6GyFBRUREAoFmzZnrPf/jhhwgKCkKnTp2wYMEClJb+NfJwWloa4uLipGAIAJKSklBcXIzTp0/Lvk95eTmKi4v1Hq4SHuCDKX1ijJ6vFrB7hOXwAB8M6RyB1OHW17aEB/ggIbY54iObmqxlsrX5zN6Ro7VlcUUwYkuNFhEReQaPSqqurq7GrFmz0KtXL3Tq1El6ftSoUYiKikJERAQyMzMxb948ZGVlYePGjQCA/Px8vWAIgPR3fn6+7HulpKRg8eLFTtoT203oHYO39+c4fCA+e8fk0b5ua2YeXtz6o94yW5KcrRlg0J1qY+rTXGhERPQXj6ohmjZtGk6dOoX169frPT916lQkJSUhLi4Oo0ePxvvvv4/PP/8c2dny3citsWDBAhQVFUmP8+fP17b4teLM3BnD2hZrE5xrapnCzSY5W9qWpf1yt9oYZ8yFZu3xJqL6jdcC1/KYGqLp06djy5Yt2LdvH2655Raz6/bs2RMAcPbsWcTGxiIsLAyHDx/WW+fixYsAgLCwMNlteHt7w9vb2wEldxxnjrCsrYU5+VsRln79k9Xd+82NmGztUAGm9ssda2McPWUGB5kkpXGnGl93osRrgbudC24fEAkhMGPGDHz++efYs2cPYmKMc2kMZWRkAADCw8MBAAkJCXjppZdw6dIlhISEAAB27NgBf39/dOjQwWlldwZHzQGmy9SUHdYGIHIBjexQARtPol2YH+IjmxptQ26/3HHMIUdOmeGOAR+RMynxpq/LVACgxGuBO54Lbh8QTZs2DR999BG++OIL+Pn5STk/AQEB8PHxQXZ2Nj766CPcfffdaN68OTIzMzF79mwkJiaic+fOAIBBgwahQ4cOGDNmDJYtW4b8/Hz885//xLRp09yuFqiuGX4RDVkbgBgGNKYGgBz6xkGkDq858S39OpCrjVEBOHvpmkunqnBUTZ07BnxEzqLEm74ucwFAfb4WyF3n3fVccPuAaNWqVQBqutbrWrt2LcaPHw+NRoNvv/0WK1aswPXr1xEZGYnhw4fjn//8p7Sul5cXtmzZgsceewwJCQlo3Lgxxo0bhyVLltTlrjiVvVWPcl9EXfY2B8kFM0DNYI7PbDyFwtKbFpvmDGtjtK9f+MVpPPfFaaQOr5mDzRVVro6oqeOM9aQk9fmmb4mlAKC+XgtMBYHuei64fUBkaZikyMhI7N271+J2oqKi8NVXXzmqWG6lNlWPpgIXoHaJ29pgRq72qUoIpG77yWika7lfByNub4l2YX64742Des8LAPM/Oyn9312qXG3BGetJSay96btbXokjWAoA6uO1wFwQ6K4BoNsHRGRebase5b6ITye3RecWgbVultIGM9o5z7RUf04Wq8vcr4PrFVWy29fdhLtUudrKmYnyRLXlyODEmpu+O+aVOII1AUB9uxaYCwITYpu7ZQDIgMjD2VL1aOri5swvYnxkU6QOj8P8jSf/CoJETS6Q4QjZpn4dxAQ1NlpfjjtUudrDUYny9fGXNbmOM4ITc9cad80rkaP9rjXWeOF6RZXF75y1NUDO6DTjKid/LzJ6Tvc6744BIAMiD2dt1aOli5szv4iJbYL1ohmBmloitaiZk82aEbJTh8dh/mcnzQZF7lDl6ir19Zc1uYYzgxNT1xp3zSsxJNcr15rvnDsGAM6SV1SGpdt+Mnr+6cFt9fbb3QJAjxqYkYxZM2CjqYubdvAvZw8GllNw3SiQEQJ4fVRXfDzlDr2JZE0ZcXtLHFxwF14c2lF2uVoFt6hydQVLny+RrZwxAKkl2h93utztR46pXrnWfudcOeVQXTLVWafzLYF1XhZbsIaoHrD0y8PcxW3fz5edXrNgqhbrtqimNl0YwgN88PAd0WjopZaqntUAJifGYEKvmHp/kTGlLn9Z17ZZTvf1ANjE56ZckfTqCYnF5nrlumNtlqu4a9K0JQyI6glzVY+mTk5fjbpO2uxre6EzvAkrqerZGnV18bG1Wc7wc9N9vbYiwFN7CNZ3rgpO3P27balXrrvf8OuKJwS3clTCUr92AgAUFxcjICAARUVF8Pf3d3VxbLYhPdfo5Ixs5otRaw4ZrfvxlDuQENvc4WXIKyqz6kKneyOVq8Gqi7GHPC1BWe7zdWSAkVdUhl6pu4yCrv3z+8seH8Pgad7gdtK4U3K02wJgdbKqp31Gnsja76yS6H7XtJzxnasP3OX8sfb+zYDISp4eEAHGJ6etN7m6YKoWQUuFmoRsZzbxeWqCsiMuPqZGld2SeQEvbTVOkpQLnuXOKzVqEujNmdqnFd7e/4tVyaqe+hlR/aD9rvlq1CitqHb5Dd8T1eUPGgZEDlYfAiI5lmoW6vKkPXH+qtGYRZY4OoBzxyCxrsgFGQBMTu1i6rgczC6QrXk0N3SC+s8VrHkfJX9GnsrcdcTWLuzk+er6B42192/mECmcuTb7ujxpN6Tn1oxVZOPrHJ3I6Kquv65u/jE1Ga8Q8kGMuZwAUzlNj/VrhX/vzjZaX60CJveOwX++y5Etm+Hx94Tu2a7+PN2JYa3vlD4xmNA7xiivTEutAh7q0RIJrZqhe3QzxR+/+kI38HXX8aYYENVDtl6M5RKyLY1D4sgLvva95Ooq9ZrIUHNztnZAR3u4oneEOzT/mJqMV87CIe1xd+dws+NGySVUjri9JfwaNcTSbT+hGtDrIQgAb+/PsSpZ1dbPqK6DE3f4PJ0lr6gMR3+9CiGEVcGK4XVEAPjPdzl4e38O5iW3qzkXZM67jw7l4qNDuVAB0mTQ5Ln0gmIbZyqoSwyI6hlHXYzrsqu+ua6s4s9/pv5549z382Wbey7YckOs694R7jI6r7neM7q8VCqzwZCWqZrHR/rG4t4uEbI1koYT+WoN7RphNJibtZ9RXQcn7vJ5OoJcL0HdwVHNBSva1/5RUi57TlULyAZDhgSABZ+d9MjjRzWMgmI37qHHgKgeceTFuC676lu6GQsA73x3DhN6xdjcLdeeG2Jddv11RvOPqZwMc4FheIAPJvWOwRqZZivtZ2NrcKitedQO/Kl9X1NDRJia+27T8Qt4Kkl/hFtrPqMT56/q3cDrIjjxhOY8axj1EvyzNkd310wFK4avNZU7pm1Cs9RMXg143PGjv5j6wavtaOFOXfIZENUjjrwYm/oVfr2iyuEXfMP3kguODGeGtqZW6Mi5K3YHb3U1pLyjm+hM5WTc37UFPj/+u2xgqA2U/t45HG9/l2PUJLnx8QS7e9KYyx+Rc72iyugGWSUEjp67ir/HWz/vk6mcNGcHJ546IJ0uuR9WpmpzDIMVudeqVIBKJhdNDeCxfrF4c0+22aBIDXjU8XNHtjYbO7KZ2dR3ojbXFWdhQFSPOPpinNgmGCtHdgEE0C26qfRrvzbvYc0Es74aNe5/86Dd7yEXFGi52691RzbRmZtW4LNjv+v9rQ0MDZs/h93WApuOX9ArS3xkU7v2zVz+iKmausYaL9kcg5nrj+N6RaVVzV3mctI42rJltuSTGQYrr+86Y7SuEMAbo7riYPYf+OhwrvS5VANYtdc4yV6XCkDK8DjZ42fqWlLXOWPunkBvay25o5uZTX0n7L2uOBMDonrEkRdjU1+K2ryHLRPM2vsehs0khtzx17qjmujM5WIZqhICx369avRrftPxC0a/3Oy94Jsqj6maOu35IRfI2FK7Z66KnqMtW2ZtPplhsPLW3mx8dOi80XpqFfDb1TJ8rBMMaZl6jycGtMatIX6IbOaD6xVVyCsqs6oHrKNv5pbOfXdPoLe1c8yJ81dralYdnAPnKd8JBkT1jCNOPEtfInvew9b8Jnvew1LXfXf+te6IJjprb2RAzbGoFkK2abK0oloabLE2F3xz5TGsqTNVu2XuNba8r1oFfP74nUa/Si3NrWZvMFhXTa7OYPijx5AKwJL7OmJgh1C945QqM7s5ANwbH4FUg/wjc7xUKjzUoyX2/XxZqinWPfdMXUvahflZfY2x5nO1dO57QgK9uTSKzScu1Hwu4q9m9Y3HfndaM7MnfCcYENVDtT3xrMlFsvU97MlvsuU9zDWTqAG8PqqrzZPJOpMjqtkNt2HqRualUmFo1wijprDu0c1kAwdfjVrafm0u+Pt+viz7eWjLFB3ka7E3ktxrzB0DwPoqektzqwFw61//zqT9QfLxoVy8tuus3jIBoKmvRq+G4Y+ScpMBzxcZF8wGQ9ocI90EWwAmzz1T15KdP10yeY0B/gp2DQMBuc/VmnPf3RPo84rKkH25xOh5L5UK+89cxht7/mquNGxWN1zfV6PW6xhRXzEgIiPOSAx1drKpuWaSlOFxGNI5wiHvY461QY4jqtlNbUM37yuymY9e09dTSW2NatwMA6hqAdz/5kGkDItDZDNfuy/4UoAqs0x70zPMXzLscaQ7BpVc7Z6542iphlEuv0mrWtT0ntIdObu2tQ2uZKl8ppaHB/igTZif7DZVKut6k1nqRab9XA0/q4PZBSbPPblriUoFvLZTP3DTbj/z90KMfvt7m5pvrQl23DWBPq+oDO/uzzHqIAHUlO/p5LZI/Uq+Ns+QWlUz7IVcTV19xICIjDgjMdTZyaa2NJM4g7VBjiOq2U1to7D0pjSBqqUcLS25ru7a7W18PMHuC76pAFU7qCMAvek3tL2R1AY1BaaCGmuOo7kaRkv5VtWA0Z1cLhh09xwSufLpTo5saUyxblFNjQNVFXBLUx+9jg+Gn58awEM9IvHRYZmcItR04+98S6De56p7XE/+VmT0Ou25J9crVbZmWAU82rcVUr8y31wn97laE+y4YwK94VhRumrGjeqEwrKbVjVfqgCsGdsNU94/6tbNgo7EgKies/fXqzOS4JyZWGd0kUTNdBAh/o0c9h6m2BLkOKKa3dQ2dPM0bLlwmerqXlpRbfcFXzZABRAa0MjkPggBvDC0I2KD/YxulIZjGZk6Bsd+vYqmjS2f75byrXRrp7QMb4julENialJew/LN/+yk3uTIulOzaGvG2oX5ST8iwgN8kDo8zihokht+Qwjg36O6olljb+k4rU8/b/OPlLyiMiz92rgG47F+raR9072WFJTcwIyPM4zWf+j2lnhzr/ku/doyGQb51gY7zrqm2XPdNlcrC9R8znM/PWl1GaYkxsBH08Ds96y+zT/HgMiN1bYqvra/Xp2RBOfMxDrtxWnt/nN4e/8vJrt4WzPRpC3H3JYgxxHV7KZqw+TKsDUzD0MsjCxtrkwJsc3tvuBP6h2Dd/6cjkNbyzD9o+M1A/0Nbidb5oWbTiN1eJyU1A3IDxLoq/GSrbmY/tFxvTwgU+e79oZnKpF7Sp9WiA1pbPaG6C45JKa+57JBJ6DXg8hQNYChbx5EqoXmx7dkust7qVRGeXr2dLc2VXv3xu5sRDbzlcqlvZbIDQWiBrA+3bhXm5xqAWzOuIC4WwL0BjGNbOZr1Vg5jr6mWZPMLXeNOnLuilUdKqyhVkGaUkeueVL7PdNd39k9+uoCZ7u3Ul3Pdl/bYEZuRnC1Clj5UJd6PWGipZnQzR1Xe4+5rbOvb0jPlZ3nyxaG23g6ua3JwfMs7YvRlAwq6N0Q5Zi7eL21N1uqrVIBGNkzEusPnzc6PqbKrHvs5I6tHLlcFe12AJicTf3E+atGI2OrARxYcJf0/ubykO5M2WWU93Twz9c6k+5o5HJjdmn325pjJ8dcTY6pz2TB3e3wSGKs7Pq29kg1VW5T3yvD78Ok3tEmJws2RwWgz61B2H+2oM6aQQ17OhqeU9Zcv8yNvWaO9nuj+vM/AjC6JukeW8NaRV263xtbObvpmbPdezBHVMWbGlxtxscZbpnrUFvai8qV6xUmq3irhfHI1Qs2noSvxgstm/nWalRrW5qWHFHNLreNQJ+Gsl2lLSUEG1azq0TNoJymgh5zeSkHzhbgDZ0Z7QWA9YfO1+Tk6KgSAp1bBGLlQ12Mmjt0a1msHVtJbpUqIaTaQsMfBtrzPz6yKVKHm/7sdGshDmYX6AVVslTyTzuSYe84uebOcwWlSIhtbtSMLGBcqwaZG1y1AIa+cVB2rjJTn0nnFoGy5bW1BsVc7Z1cDZxcbQ5gerJgcwSAfWcKpL+11whHN4Nqv1snfyvSy/vr1TrI5OcJGPe8W/DZSQQ10dgVDBmOFg1A9ppkTfMkUFO7uHb/OTwzpL1N5XCnpmcGRG7IEVXx5nIk3Dkxzp5qU8MbhLmmFEPaINHcjcWactga5Fh7k7A0/5jchWtrZh5e3PqjxX3JKyrDlswLxoEzoBdIGI4BYzg/2PzPavISTF2Pq2E8w7W2SS46yFe2uUN7gW4s0zRmLRVgFAxpy2zLuFqmfn3fEdPUqFxCOHfeLXO947R0m2AN901ucuR2YX4Y+uZBo+YlgZobsG5OEWD62pL5e6FeU2dtmJrXzrB5WS4415bB3FhKtqgWwNoDOXjm7g612o6WqfOpWgDf6QRjWtrvg+yPXACT3jsq+z4vDu2I5744bbKmTa750lKz4Fv7zI8svua7XzChd7RN57+7ND0DNcea3Iz2gqPL1jwT7a8sL5X8T1bdXx3uYkN6Lnql7sKoNYfQK3UXNqTnWnyNqRuE9vipTfwCNmTpxqL7fgezC5BXVGa0fniADxJim9v9JTbctj3HIzzAB0M6hxudP2oAZy9fw5bMC8grKsNbe7NxZ8ouvLTVOHlVDf1AQhtA5BWV4eivV42DAJg/vmoA85PbSeeibi2M9jzVLa5AzRhGG9JzjW6ItugZ09Tkr2bD89/UZ2duwMjvc64aPefsbtcmh5dQ/fX+hrWTuvuW2CYYKx6KxxujumL//P5/1ZINizM6Z4C/aop0z73wAB/MG9zOaN1l27Jkvxf20tbeyZ03gOmaBW0ZRtzeEvvn98c/TdRY2HLze3tfjtG+mbsWmFrHmgFIDU1OrJn7T+6+YIqXSoUB7UP17gFqANP6xeLjKXdIn70t8orKsNTE4JtaAjU/pmzhiPudo7CGyA2ZaoIBYNPgWNpfh8d+vWpUQ+IO42Xosrfa1FTi6OsPdUXzJt5mq3jlmJrZXTu2hzZJ2NHNjqZmF5dr3rMmB2xy7xi8/V1OTe0Man5JLtx02mI5TOVfaAMIe1IO5yXX5JbcGx8hWwuT2CZYrwZJWzNhKlfBWnIBi64DZy9brNGwZToUAHh6cFun/qq1d6LMvKIyrN2fgzV/jk1jeP4mtgnG4vs6yp4jAsbfxbhbAozWM1ULWZtEWXO1d9YOIDukczhe/upHk8cs8/dCLP3qJ6NmXV3aSWy172vY1KVbg2puSAO5sb0sad7EW9qXlGFxWPDZSbNl1b12WVNzbe1nZO134e39ttUS2Zpy4EwMiNyUXFW3NtHQlptxzQXBByXllW5xwgHyX0B7q01N3SDMTUZrqglGBWDxfR3RzFeD26Ka4lLxDaz5LhuF128azcjtyGZHuWBQbuwU3ea9+cnt8Ehf4wRWw8Bq1O0t8fFhyzVLgP4YQXL5F5m/F+Le+Airm7C0gZ020dZUM6Etk4kabv/zx+/ET/nXzM5fZ8qbe7Ix+o6oWnXPN+SlVhnNu+Vour33rOm5JddEoz1/24X5YUtmnl5vQMBy87E1vSUdlShr6ryxVAbd64y53m4Jsc1xb3yEbL6Z7nYzfyvEqDXfy34vF3x2Eid+K8THh85LnQkA/SENTI3tpatdWBP8lK8/uvSybVm4I6YZcq+UorF3A6wZ1w2T3ztq8hq28fEEvfPB8PhZCtpMfUZyY0PJqbah2VhblsQ2wdg/v7/L5zpjLzMr1XUvM1229mIytx1Xn3CmLpK12UdLvbaMemQNbiv9upOjVgFdIgNxLLfQ4v58POUOm/MmDAPCg9kFGLXmkE3bAPR79eQVleHIuSt4Yn2GUQKxVcEF9HuIvLU3GykG1ePaz2Pfz5elX6lqAPff1kKaFkTLXNBmyFSPSGtqiLTHX6681nhjVFeLo5jrnj/WUKn+3HeDHle21JbIrWuYKzclMQYTesWY3Za1vfR0yZ0zct9Fc9872c8UwGujuqKbA6fQMVUGU4n/lq5/2mtk5m+FWPZ1ll4vTksDPFrj4yl3IPfKdZPNZi/c1xELv7Bck9u/XTB2/3TZ5HuYuiaZmq5Gy9Q115bzyFIPRXuCsdpiL7N6xFFJZ44eL8NWcjUhus1A9labWqoWlu2R5SvfI0tbLmuCIVubHU01uyW2CbYrcXjptp9wb3yE3oXFkLU3wnnJ7fSOm7kmEbnjOTYhSi/fRwBY9nUW7u0SYXcvPQB6M28b0p0PTW4gPy21Cnisb6ze3E1a0z86jpLyStm5rLQXbt399dWo8a/tP+v1RDIkBJDy1U+AgBQQ2lJbYhT49InBkM7hRrly73x3ThorxhRbm/yAmnNmamIM3vnunN2DEppKANaOQ+Wom59cGUw1v++f39/ijxftPggIvWbII+eu1DoYMhzba96nmXrn0fDbWmBgh1A8v1k+EVrX7p8u485WzXDwlyuy7yHHmoR8U/cVc+eRXG3YfW8cxAKDH0TmgjFn9eazFQMiF7PmV6Mz5sxxxSBY1gwFYG+1qalgT3c/dS+G2gvp0XNXMeNj+R5o5qhVsKnZUW5Ife2F+unktja++1+vP/brVbNJmtoaMd1RrHUvRobNWlqmBn/UTvxqeLxNjXZd21562hw4IYDfi8qwbFuW0U1abt4rXdr98/dtaDTukWF+jLlcMW2Z3p/UEyfOX8WRc1cRHeSLz4/9ji0n843ed+m2n3Bvl5raJ1tmYTe8af3nu79yf+SOLwCT32VTTX7mAnAvlQoTetXUPln6LtrSnKXl6F6uhmWw9gekpVo43V5rKhOdUyzRHmdtLVNOwXVcKr6B6xVVWPpAZ1wqvoEj566ie3RTqUbFcFoSU+f29zlXMK1/LFbtyZaaT58eXPMe2uOiy5rg2NR9xdT1YHr/1oiPDJDt6Zay7SdABTySGGtVMObo3nz2YEDkQtb+arSUdGZrcOOq+ZesuUha8yvOWpb2MzzAB82aXLfrl9+8we30mgcsTZ5pakh9wyk3bOGlUqFaCLPBkLYJ4d4uETh67ipUKuC2qJoLr7mbneE5B+hP/Gp4vtQmaDcVtGrLMaTzX+WTS8w2d9PXbbp6JDEWEQGNZMc9OnruKjJ/yzFKJjd1846PbIoQ/0Y4cu4KtsoEQ8BfibgCxp+Rdmws3X0DTN+0ZPNFVEDmb39NXGrqHDe8wU7u3Qo9WzWVzUMxDPTtDVjkzh9dttZwSz0chbDYqcDe/KbENsEmA1e5Od20zAWX2ucHdQw1Csa17zupTyu91xjWSJrqaVktgN6tg/HwHVE1zXy/F0rvIXcuyE6KC/MTKAN/fT/nDW4nNSNqO0G8tusszMWK2lpsqxOy9+VYbAZ2JgZELmJrrypTv6BtDW5cOQiWoy+S5li7n401XrKvbxvaBFkXS2SXAX81B1nTDm6putmWLD7dX5wvD+uEC0U3jNZRA3h9VFe9aRTCA3zw93jjcYzMMTfxq+FxtLeniK3nr1yNhKmbvlxPl+7RzWRvCjPWHzf5OVia1NUU7U34UvENo3GYAGDaR8eRcb4QE3vHSLVTZy9ds7r5VAgYzV83/7OTKK+sQrPG3lKujvZzTD93FbdHN8VP+dcw5X39YEiNmu7djrwZ6dbCzlx/3O4abqOR1AHZASN16fayVKuAib2jpWWmrg0rHoo3WbOUENsc8+9uV9MUqkNb86OtuTRl2ynjoNnctVf3PE8dHod5nxnPQaY72S0AKTA2tW1T31FzEygb1pbOS26HWwJ99Hotm7t+aROsTQVjhi/V/ohgQKQw9uQFyfUWsDW4cfUgWHU1FIC1k39er6iSff2iezuhtOKmyUHPtLUK5o6/9pfVwbNm8k1s2Cc1gM+n3ak3smyv1F1G681LbmcxUdhatjSF2To4pSODc2vfOzygZgydpdt+kpLCBcxf1L1UKvhq1NKQFwAsBkNq1HTB1+3qLmfNdzl4+7scDLutBTYe+93mmkLD9QWA5774AcBfgYNueeUSaa2ZcNWQtbXS2kD8eoV9vVzlalcFanp1yZ0nhgF2YusgfHemAGu+q7mxm+r6XhNIq8zWLNXUTl7H+sPnjaa4uDc+QvaaZok1117tuT1rfQYO5fyVMzS061/5edZe1019T+SOo1wT/7JtWVjxULzV+6gbtBkGY3KJ6q4eDoYBkYvY0mXUkcGNM/KRbKVtBjE1FIAj8ptkf5GojCf/TGwTbPJ4hAf4YOlw+XE/vFQqQKaZRnv8zSU620MFIGV4nN5Ny1TuTOdbAh3zprD9fLElcd/W89fSeaH73uamHVn69U/S+Ez924dg54+XTJZRrQKSOoVKIzmrANwdF2byc9XWTjX305icW86QAPDZsd+NnjfVBd5aAsbjOZlqeimtMDeyjT57mtztna7GVO2qYU2CtknNcBR1w2k4THV9105Ma6qW0zAheKpBbZr2mvZbYZlRLZI5uh0DLF3z0s/pJ1BvOn4BTyXVjHtly/fU0nfUUhO/qcBx4+MJ2JD+G9an58o2wVmabsjVw8EACguI3njjDSxfvhz5+fmIj4/H66+/jh49erikLOaaGKy94NgT3NjbtOEMcl8QR45dYtiMontj0M1ZMnc8tGXUHaNEu063qKYmE48dGQwBNcFcYptgveecFdwaXpyddb7YUn57e2kZDu1gmNhpKhjSdmtvqFbr9U4TgGzOkG4zJWD/pKq6HHH6WFMGW86Z2tTq2RIsa5nKD9Od3sWWiU2rhEBpRbXJc9qaXmsCpnv4xbUIkH3fxFuDcODsH3rNatr3tbfZXffHg9z1TreZ0BbmmvjNBY7xkTWJ4TMGtDYZ+BqeA46Y19GRFBMQbdiwAXPmzMHq1avRs2dPrFixAklJScjKykJISIhLymRLl1FT7cz23Kzc6SQ0/FXvyPwmS5MSai8o2ukM1H9+2eWO8zND2mNC72ijY5YyLE6va3i1ANbskx/cTUtujB1LuQjatnhH5O2YYyqYcMb5Ym35bTkvzK1rTWKnbv4RUDPzuCXacmubKV/e+oNDg+HakDvXrEmkNaWum9y154jud0xbWyp3vbTEsOu74bVXLrnfln021Rtr6QOdAUBKlC6tqIavRo3cK6V6Y4eZOret+fEg/Xg7kIM1+3L0mglt+VFpMgjVSbg3d02wNfC1J1B2FsUERK+88gqmTJmCCRMmAABWr16NrVu34t1338X8+fNdVi7Dk8HWC469Nyt3Ogm1nHGx1e6n3IjV2tFnzfXSkduWrsQ2wUY/5eW6YOual9xOtqpYm4tgSxKqI4MVS4GHM84Xa8pvy3lhbl1Lo05rR+rWbvNgdoHFWhrD1+QVlWGNQU81LTWAeXe3w/UblXht11kLW3aM+7u2QI+YZlYn0lriiiZ33bxDISCNQg9Y7kquWzNjGPzpntPmaiBtbY4yF+TLvZ8huXPblh8/b+vkrNnzo9KotgnyCffueA+pLUUERBUVFTh69CgWLFggPadWqzFw4ECkpaXJvqa8vBzl5eXS38XFxU4vJ2B/M1h9ODGdebE1ldRnOF+YrRePnALbu+13bhEo+wtVW05bk1Ad9fm7KuHeUvltOS/Mras9B+RuRF4qlV5gY2pbll5j6nz4e1w4nv17eyk4//fus+Z7HsovMuuJu1rjtd1n9RLEtXkmcuN72fOZuqrJXZujY8jcZ6SGfs2Mubm8LP0QsGWfLQX5lmq1avPjx1HfYXdqRahLigiICgoKUFVVhdDQUL3nQ0ND8dNP8glwKSkpWLx4cV0UT4875fjUNWfvu+GX3BEXD5vnutK52JkLBFxxQXKHhHs5tpwXltbVbVZ4e19Nt2xT2zPclm6Ss6nXyDaZAFIwpLtduVG45QJ1Q2rAKKHfS6XCrWF+RtvT7TburO+Rq5vc5YbyMFUzI8ea64Ct+2zuu20pR6c2P34c+R2uLz+0baGIgMgeCxYswJw5c6S/i4uLERkZWSfv7U4XnLrm7H03/JLX9uIh1TqY6In29OC2enMi2RLg1fUFyZ2DcVvOC0vrhgf44Jm7O1g1ErPhtgDbBrS0NO2FthkospmP3mz1uk2qqj+rjHQDMQBG7yGX5O+sgNadbpaGAxnqHkdrWBtEOGqfTQXNhmOH2cOdv8OeQBGTu1ZUVMDX1xeffvophg4dKj0/btw4FBYW4osvvrC4DVdO7krOY2liWGvlFZXJ9kTT9m7ypODW08rrjhxxDHW3ARgHYnLv4ajzWWnq+rg5+/34HdZn7f1bEQERAPTs2RM9evTA66+/DgCorq5Gy5YtMX36dKuSqhkQ1V+OvHjwQkSuxnPQPnV93Pg51R3Odm9gzpw5GDduHLp3744ePXpgxYoVuH79utTrjJTLkdX/7tSUQMrEc9A+rmii5ufkXhQTEI0YMQKXL1/Gc889h/z8fHTp0gVff/21UaI1ERERKY9imsxqi01mREREnsfa+7e6DstERERE5JYYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEUM3VHbWkH9C4uLnZxSYiIiMha2vu2pYk5GBBZ6dq1awCAyMhIF5eEiIiIbHXt2jUEBASYXM65zKxUXV2NCxcuwM/PDyqVyu7tFBcXIzIyEufPn1fsnGg8BjV4HHgMAB4DgMdAi8fBOcdACIFr164hIiICarXpTCHWEFlJrVbjlltucdj2/P39FXvCa/EY1OBx4DEAeAwAHgMtHgfHHwNzNUNaTKomIiIixWNARERERIrHgKiOeXt74/nnn4e3t7eri+IyPAY1eBx4DAAeA4DHQIvHwbXHgEnVREREpHisISIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiB1i1ahU6d+4sDSSVkJCAbdu2Sctv3LiBadOmoXnz5mjSpAmGDx+Oixcv6m0jNzcXQ4YMga+vL0JCQjB37lxUVlbW9a44TGpqKlQqFWbNmiU9V9+Pw6JFi6BSqfQe7dq1k5bX9/3X9fvvv+Phhx9G8+bN4ePjg7i4OBw5ckRaLoTAc889h/DwcPj4+GDgwIE4c+aM3jauXLmC0aNHw9/fH4GBgZg0aRJKSkrqelfsEh0dbXQuqFQqTJs2DYAyzoWqqiosXLgQMTEx8PHxQWxsLF544QW9+aTq+3kA1EwXMWvWLERFRcHHxwd33nkn0tPTpeX18Rjs27cP99xzDyIiIqBSqbBp0ya95Y7a58zMTPTp0weNGjVCZGQkli1bVruCC6q1zZs3i61bt4qff/5ZZGVliWeeeUY0bNhQnDp1SgghxKOPPioiIyPFzp07xZEjR8Qdd9wh7rzzTun1lZWVolOnTmLgwIHi+PHj4quvvhJBQUFiwYIFrtqlWjl8+LCIjo4WnTt3Fk888YT0fH0/Ds8//7zo2LGjyMvLkx6XL1+Wltf3/de6cuWKiIqKEuPHjxeHDh0Sv/zyi/jmm2/E2bNnpXVSU1NFQECA2LRpkzhx4oS49957RUxMjCgrK5PWGTx4sIiPjxfff/+9+O6770Tr1q3FyJEjXbFLNrt06ZLeebBjxw4BQOzevVsIoYxz4aWXXhLNmzcXW7ZsETk5OeKTTz4RTZo0EStXrpTWqe/ngRBCPPjgg6JDhw5i79694syZM+L5558X/v7+4rfffhNC1M9j8NVXX4lnn31WbNy4UQAQn3/+ud5yR+xzUVGRCA0NFaNHjxanTp0SH3/8sfDx8RFvvfWW3eVmQOQkTZs2FW+//bYoLCwUDRs2FJ988om07McffxQARFpamhCi5uRRq9UiPz9fWmfVqlXC399flJeX13nZa+PatWvi1ltvFTt27BB9+/aVAiIlHIfnn39exMfHyy5Twv5rzZs3T/Tu3dvk8urqahEWFiaWL18uPVdYWCi8vb3Fxx9/LIQQ4ocffhAARHp6urTOtm3bhEqlEr///rvzCu8kTzzxhIiNjRXV1dWKOReGDBkiJk6cqPfcsGHDxOjRo4UQyjgPSktLhZeXl9iyZYve87fddpt49tlnFXEMDAMiR+3zm2++KZo2bar3fZg3b55o27at3WVlk5mDVVVVYf369bh+/ToSEhJw9OhR3Lx5EwMHDpTWadeuHVq2bIm0tDQAQFpaGuLi4hAaGiqtk5SUhOLiYpw+fbrO96E2pk2bhiFDhujtLwDFHIczZ84gIiICrVq1wujRo5GbmwtAOfsPAJs3b0b37t3xj3/8AyEhIejatSvWrFkjLc/JyUF+fr7esQgICEDPnj31jkVgYCC6d+8urTNw4ECo1WocOnSo7nbGASoqKvDBBx9g4sSJUKlUijkX7rzzTuzcuRM///wzAODEiRPYv38/kpOTASjjPKisrERVVRUaNWqk97yPjw/279+viGNgyFH7nJaWhsTERGg0GmmdpKQkZGVl4erVq3aVjZO7OsjJkyeRkJCAGzduoEmTJvj888/RoUMHZGRkQKPRIDAwUG/90NBQ5OfnAwDy8/P1Lnza5dplnmL9+vU4duyYXvu4Vn5+fr0/Dj179sS6devQtm1b5OXlYfHixejTpw9OnTqliP3X+uWXX7Bq1SrMmTMHzzzzDNLT0zFz5kxoNBqMGzdO2he5fdU9FiEhIXrLGzRogGbNmnnUsQCATZs2obCwEOPHjwegjO8CAMyfPx/FxcVo164dvLy8UFVVhZdeegmjR48GAEWcB35+fkhISMALL7yA9u3bIzQ0FB9//DHS0tLQunVrRRwDQ47a5/z8fMTExBhtQ7usadOmNpeNAZGDtG3bFhkZGSgqKsKnn36KcePGYe/eva4uVp05f/48nnjiCezYscPo15BSaH/5AkDnzp3Rs2dPREVF4X//+x98fHxcWLK6VV1dje7du+Pll18GAHTt2hWnTp3C6tWrMW7cOBeXru698847SE5ORkREhKuLUqf+97//4cMPP8RHH32Ejh07IiMjA7NmzUJERISizoP//ve/mDhxIlq0aAEvLy/cdtttGDlyJI4ePerqopEBNpk5iEajQevWrdGtWzekpKQgPj4eK1euRFhYGCoqKlBYWKi3/sWLFxEWFgYACAsLM+phov1bu467O3r0KC5duoTbbrsNDRo0QIMGDbB371689tpraNCgAUJDQxVxHHQFBgaiTZs2OHv2rGLOAwAIDw9Hhw4d9J5r37691Hyo3Re5fdU9FpcuXdJbXllZiStXrnjUsfj111/x7bffYvLkydJzSjkX5s6di/nz5+Ohhx5CXFwcxowZg9mzZyMlJQWAcs6D2NhY7N27FyUlJTh//jwOHz6MmzdvolWrVoo5Broctc/O+I4wIHKS6upqlJeXo1u3bmjYsCF27twpLcvKykJubi4SEhIAAAkJCTh58qTeCbBjxw74+/sb3Vjc1YABA3Dy5ElkZGRIj+7du2P06NHS/5VwHHSVlJQgOzsb4eHhijkPAKBXr17IysrSe+7nn39GVFQUACAmJgZhYWF6x6K4uBiHDh3SOxaFhYV6v6J37dqF6upq9OzZsw72wjHWrl2LkJAQDBkyRHpOKedCaWkp1Gr9W4yXlxeqq6sBKOs8AIDGjRsjPDwcV69exTfffIP77rtPcccAcNznnpCQgH379uHmzZvSOjt27EDbtm3tai4DwG73jjB//nyxd+9ekZOTIzIzM8X8+fOFSqUS27dvF0LUdLFt2bKl2LVrlzhy5IhISEgQCQkJ0uu1XWwHDRokMjIyxNdffy2Cg4M9qoutHN1eZkLU/+Pw5JNPij179oicnBxx4MABMXDgQBEUFCQuXbokhKj/+691+PBh0aBBA/HSSy+JM2fOiA8//FD4+vqKDz74QFonNTVVBAYGii+++EJkZmaK++67T7bbbdeuXcWhQ4fE/v37xa233urWXY0NVVVViZYtW4p58+YZLVPCuTBu3DjRokULqdv9xo0bRVBQkHj66aeldZRwHnz99ddi27Zt4pdffhHbt28X8fHxomfPnqKiokIIUT+PwbVr18Tx48fF8ePHBQDxyiuviOPHj4tff/1VCOGYfS4sLBShoaFizJgx4tSpU2L9+vXC19eX3e5dbeLEiSIqKkpoNBoRHBwsBgwYIAVDQghRVlYmHn/8cdG0aVPh6+sr7r//fpGXl6e3jXPnzonk5GTh4+MjgoKCxJNPPilu3rxZ17viUIYBUX0/DiNGjBDh4eFCo9GIFi1aiBEjRuiNvVPf91/Xl19+KTp16iS8vb1Fu3btxH/+8x+95dXV1WLhwoUiNDRUeHt7iwEDBoisrCy9df744w8xcuRI0aRJE+Hv7y8mTJggrl27Vpe7USvffPONAGC0X0Io41woLi4WTzzxhGjZsqVo1KiRaNWqlXj22Wf1ukkr4TzYsGGDaNWqldBoNCIsLExMmzZNFBYWSsvr4zHYvXu3AGD0GDdunBDCcft84sQJ0bt3b+Ht7S1atGghUlNTa1VulRA6w4YSERERKRBziIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHgMiIjIafr164dZs2a5uhhOt2jRInTp0sXVxSCiWmBARERkQkVFRZ2+nxAClZWVdfqeRFSDAREROcX48eOxd+9erFy5EiqVCiqVCufOncOpU6eQnJyMJk2aIDQ0FGPGjEFBQYH0un79+mHGjBmYNWsWmjZtitDQUKxZswbXr1/HhAkT4Ofnh9atW2Pbtm3Sa/bs2QOVSoWtW7eic+fOaNSoEe644w6cOnVKr0z79+9Hnz594OPjg8jISMycORPXr1+XlkdHR+OFF17A2LFj4e/vj6lTpwIA5s2bhzZt2sDX1xetWrXCwoULpVm2161bh8WLF+PEiRPSfq5btw7nzp2DSqVCRkaGtP3CwkKoVCrs2bNHr9zbtm1Dt27d4O3tjf3796O6uhopKSmIiYmBj48P4uPj8emnnzr6IyIiHQyIiMgpVq5ciYSEBEyZMgV5eXnIy8uDn58f7rrrLnTt2hVHjhzB119/jYsXL+LBBx/Ue+17772HoKAgHD58GDNmzMBjjz2Gf/zjH7jzzjtx7NgxDBo0CGPGjEFpaane6+bOnYt//etfSE9PR3BwMO655x4pcMnOzsbgwYMxfPhwZGZmYsOGDdi/fz+mT5+ut43/+7//Q3x8PI4fP46FCxcCAPz8/LBu3Tr88MMPWLlyJdasWYNXX30VADBixAg8+eST6Nixo7SfI0aMsOlYzZ8/H6mpqfjxxx/RuXNnpKSk4P3338fq1atx+vRpzJ49Gw8//DD27t1r03aJyAa1mhqWiMiMvn37iieeeEL6+4UXXhCDBg3SW+f8+fN6s8L37dtX9O7dW1peWVkpGjduLMaMGSM9l5eXJwCItLQ0IcRfs2uvX79eWuePP/4QPj4+YsOGDUIIISZNmiSmTp2q997fffedUKvVoqysTAghRFRUlBg6dKjF/Vq+fLno1q2b9Pfzzz8v4uPj9dbJyckRAMTx48el565evSoAiN27d+uVe9OmTdI6N27cEL6+vuLgwYN625s0aZIYOXKkxbIRkX0auDIYIyJlOXHiBHbv3o0mTZoYLcvOzkabNm0AAJ07d5ae9/LyQvPmzREXFyc9FxoaCgC4dOmS3jYSEhKk/zdr1gxt27bFjz/+KL13ZmYmPvzwQ2kdIQSqq6uRk5OD9u3bAwC6d+9uVLYNGzbgtddeQ3Z2NkpKSlBZWQl/f3+b998U3fc8e/YsSktL8be//U1vnYqKCnTt2tVh70lE+hgQEVGdKSkpwT333IOlS5caLQsPD5f+37BhQ71lKpVK7zmVSgUAqK6utum9H3nkEcycOdNoWcuWLaX/N27cWG9ZWloaRo8ejcWLFyMpKQkBAQFYv349/vWvf5l9P7W6JiNBCCE9p22+M6T7niUlJQCArVu3okWLFnrreXt7m31PIrIfAyIichqNRoOqqirp79tuuw2fffYZoqOj0aCB4y8/33//vRTcXL16FT///LNU83Pbbbfhhx9+QOvWrW3a5sGDBxEVFYVnn31Weu7XX3/VW8dwPwEgODgYAJCXlyfV7OgmWJvSoUMHeHt7Izc3F3379rWprERkPyZVE5HTREdH49ChQzh37hwKCgowbdo0XLlyBSNHjkR6ejqys7PxzTffYMKECUYBhT2WLFmCnTt34tSpUxg/fjyCgoIwdOhQADU9xQ4ePIjp06cjIyMDZ86cwRdffGGUVG3o1ltvRW5uLtavX4/s7Gy89tpr+Pzzz432MycnBxkZGSgoKEB5eTl8fHxwxx13SMnSe/fuxT//+U+L++Dn54ennnoKs2fPxnvvvYfs7GwcO3YMr7/+Ot577z27jw0RmceAiIic5qmnnoKXlxc6dOiA4OBgVFRU4MCBA6iqqsKgQYMQFxeHWbNmITAwUGpiqo3U1FQ88cQT6NatG/Lz8/Hll19Co9EAqMlL2rt3L37++Wf06dMHXbt2xXPPPYeIiAiz27z33nsxe/ZsTJ8+HV26dMHBgwel3mdaw4cPx+DBg9G/f38EBwfj448/BgC8++67qKysRLdu3TBr1iy8+OKLVu3HCy+8gIULFyIlJQXt27fH4MGDsXXrVsTExNhxVIjIGiqh28BNROSB9uzZg/79++Pq1asIDAx0dXGIyAOxhoiIiIgUjwERERERKR6bzIiIiEjxWENEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREivf/P0yxqwCkR+gAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABd9ElEQVR4nO3deVwV5f4H8M8AgoCCGygoCGKKC5BpGu6WpVzL1O7NzMy1bmWZrWJdr9oieu+v/ZZ2rbRut7TFzFIrb7nkkuGCS6UpopJiSspBBUE5z+8PnPEsM2fjnDNz4PN+vewVc+bMeWbOnJnvPM/3eR5JCCFAREREZEBBeheAiIiISAsDFSIiIjIsBipERERkWAxUiIiIyLAYqBAREZFhMVAhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGRYDFSKqsVmzZkGSJJfWlSQJs2bN8ml5+vfvj/79+xt2e0TkOgYqRLXI4sWLIUmS8i8kJAQtW7bEuHHjcOzYMb2LZzhJSUlWxys2NhZ9+vTBZ5995pXtl5WVYdasWVi3bp1XtkdUFzFQIaqFnnnmGfznP//BggULkJWVhffffx/9+vXDhQsXfPJ5f/vb31BeXu6Tbfva1Vdfjf/85z/4z3/+g8cffxzHjx/HiBEjsGDBghpvu6ysDLNnz2agQlQDIXoXgIi8LysrC926dQMATJo0Cc2aNcO8efOwYsUK3H777V7/vJCQEISEBOblpGXLlrjrrruUv++++260bdsWL730Eu677z4dS0ZEAGtUiOqEPn36AADy8/Otlu/btw9//vOf0aRJE9SvXx/dunXDihUrrNa5ePEiZs+ejauuugr169dH06ZN0bt3b6xZs0ZZRy1HpaKiAo888ghiYmLQsGFDDB06FL/99ptd2caNG4ekpCS75WrbXLRoEa6//nrExsYiLCwMHTt2xPz58906Fs60aNECHTp0QEFBgcP1Tp48iYkTJ6J58+aoX78+MjIy8O677yqvHz58GDExMQCA2bNnK81Lvs7PIaptAvMRiIjccvjwYQBA48aNlWU//fQTevXqhZYtWyI7OxuRkZH46KOPMGzYMHz66acYPnw4gOqAIScnB5MmTUL37t1RWlqKbdu2YceOHbjxxhs1P3PSpEl4//33ceedd6Jnz5747rvvMGTIkBrtx/z589GpUycMHToUISEh+OKLL/DAAw/AbDZj8uTJNdq27OLFiygsLETTpk011ykvL0f//v1x8OBBPPjgg0hOTsbHH3+McePGoaSkBA8//DBiYmIwf/583H///Rg+fDhGjBgBAEhPT/dKOYnqDEFEtcaiRYsEAPG///1PnDp1ShQWFopPPvlExMTEiLCwMFFYWKise8MNN4i0tDRx4cIFZZnZbBY9e/YUV111lbIsIyNDDBkyxOHnzpw5U1heTvLy8gQA8cADD1itd+eddwoAYubMmcqysWPHitatWzvdphBClJWV2a03aNAg0aZNG6tl/fr1E/369XNYZiGEaN26tbjpppvEqVOnxKlTp8SuXbvEHXfcIQCIhx56SHN7L7/8sgAg3n//fWVZZWWlyMzMFA0aNBClpaVCCCFOnTplt79E5B42/RDVQgMHDkRMTAwSEhLw5z//GZGRkVixYgVatWoFADh9+jS+++473H777Th79iyKi4tRXFyMP/74A4MGDcKBAweUXkKNGjXCTz/9hAMHDrj8+atWrQIATJkyxWr51KlTa7Rf4eHhyv+bTCYUFxejX79+OHToEEwmk0fb/OabbxATE4OYmBhkZGTg448/xpgxYzBv3jzN96xatQotWrTAqFGjlGX16tXDlClTcO7cOaxfv96jshCRPTb9ENVCr7/+Otq1aweTyYR33nkHGzZsQFhYmPL6wYMHIYTAjBkzMGPGDNVtnDx5Ei1btsQzzzyDW2+9Fe3atUPnzp0xePBgjBkzxmETxpEjRxAUFISUlBSr5e3bt6/Rfm3atAkzZ87Eli1bUFZWZvWayWRCdHS029vs0aMHnnvuOUiShIiICHTo0AGNGjVy+J4jR47gqquuQlCQ9bNehw4dlNeJyDsYqBDVQt27d1d6/QwbNgy9e/fGnXfeif3796NBgwYwm80AgMcffxyDBg1S3Ubbtm0BAH379kV+fj4+//xzfPPNN3jrrbfw0ksvYcGCBZg0aVKNy6o1UFxVVZXV3/n5+bjhhhuQmpqKF198EQkJCQgNDcWqVavw0ksvKfvkrmbNmmHgwIEevZeIfI+BClEtFxwcjJycHAwYMAD/+te/kJ2djTZt2gCobq5w5SbdpEkTjB8/HuPHj8e5c+fQt29fzJo1SzNQad26NcxmM/Lz861qUfbv32+3buPGjVFSUmK33LZW4osvvkBFRQVWrFiBxMREZfnatWudlt/bWrdujd27d8NsNlvVquzbt095HdAOwojIdcxRIaoD+vfvj+7du+Pll1/GhQsXEBsbi/79++PNN99EUVGR3fqnTp1S/v+PP/6weq1BgwZo27YtKioqND8vKysLAPDqq69aLX/55Zft1k1JSYHJZMLu3buVZUVFRXajwwYHBwMAhBDKMpPJhEWLFmmWw1f+9Kc/4cSJE1i6dKmy7NKlS3jttdfQoEED9OvXDwAQEREBAKqBGBG5hjUqRHXEE088gb/85S9YvHgx7rvvPrz++uvo3bs30tLScM8996BNmzb4/fffsWXLFvz222/YtWsXAKBjx47o378/unbtiiZNmmDbtm345JNP8OCDD2p+1tVXX41Ro0bhjTfegMlkQs+ePfHtt9/i4MGDduvecccdmDZtGoYPH44pU6agrKwM8+fPR7t27bBjxw5lvZtuugmhoaG45ZZb8Ne//hXnzp3DwoULERsbqxps+dK9996LN998E+PGjcP27duRlJSETz75BJs2bcLLL7+Mhg0bAqhO/u3YsSOWLl2Kdu3aoUmTJujcuTM6d+7s1/ISBTS9ux0RkffI3ZNzc3PtXquqqhIpKSkiJSVFXLp0SQghRH5+vrj77rtFixYtRL169UTLli3FzTffLD755BPlfc8995zo3r27aNSokQgPDxepqani+eefF5WVlco6al2Jy8vLxZQpU0TTpk1FZGSkuOWWW0RhYaFqd91vvvlGdO7cWYSGhor27duL999/X3WbK1asEOnp6aJ+/foiKSlJzJs3T7zzzjsCgCgoKFDWc6d7srOu11rb+/3338X48eNFs2bNRGhoqEhLSxOLFi2ye+/mzZtF165dRWhoKLsqE3lAEsKiHpWIiIjIQJijQkRERIbFQIWIiIgMi4EKERERGRYDFSIiIjIsBipERERkWAxUiIiIyLACesA3s9mM48ePo2HDhhyqmoiIKEAIIXD27FnEx8fbTe5pK6ADlePHjyMhIUHvYhAREZEHCgsL0apVK4frBHSgIg9TXVhYiKioKJ1LQ0RERK4oLS1FQkKCch93JKADFbm5JyoqioEKERFRgHElbYPJtERERGRYDFSIiIjIsBioEBERkWEFdI4KERHVHVVVVbh48aLexSAXhYaGOu167AoGKkREZGhCCJw4cQIlJSV6F4XcEBQUhOTkZISGhtZoOwxUiIjI0OQgJTY2FhERERzgMwDIA7IWFRUhMTGxRt8ZAxUiIjKsqqoqJUhp2rSp3sUhN8TExOD48eO4dOkS6tWr5/F2mExLRESGJeekRERE6FwScpfc5FNVVVWj7TBQISIiw2NzT+Dx1nfGQIWIiIgMi4EKERERuW3dunWQJMnnvbEYqGgoMpVjc34xikzleheFiIjqoFmzZuHqq6/Wuxi6Y68fFUtzj2L6sj0wCyBIAnJGpGHktYl6F4uIiMjOxYsXa9SrxuhYo2KjyFSuBCkAYBbAU8v2smaFiIjcYjabkZOTg+TkZISHhyMjIwOffPIJgCvNJt9++y26deuGiIgI9OzZE/v37wcALF68GLNnz8auXbsgSRIkScLixYsBVCepzp8/H0OHDkVkZCSef/55h+WQP+vrr79Gly5dEB4ejuuvvx4nT57E6tWr0aFDB0RFReHOO+9EWVmZ8r6KigpMmTIFsbGxqF+/Pnr37o3c3FzfHCwHGKjYKCg+rwQpsiohcLi4TP0NREQUEPzdpJ+Tk4P33nsPCxYswE8//YRHHnkEd911F9avX6+s8/TTT+OFF17Atm3bEBISggkTJgAARo4cicceewydOnVCUVERioqKMHLkSOV9s2bNwvDhw7Fnzx7lPc7MmjUL//rXv7B582YUFhbi9ttvx8svv4wPPvgAK1euxDfffIPXXntNWf/JJ5/Ep59+infffRc7duxA27ZtMWjQIJw+fdpLR8g1ujf9HDt2DNOmTcPq1atRVlaGtm3bYtGiRejWrZsu5UluFokgCVbBSrAkIakZ+/ATEQUqfzfpV1RUYM6cOfjf//6HzMxMAECbNm2wceNGvPnmm7j33nsBAM8//zz69esHAMjOzsaQIUNw4cIFhIeHo0GDBggJCUGLFi3stn/nnXdi/PjxbpXpueeeQ69evQAAEydOxPTp05Gfn482bdoAAP785z9j7dq1mDZtGs6fP4/58+dj8eLFyMrKAgAsXLgQa9aswdtvv40nnnjCswPjAV1rVM6cOYNevXqhXr16WL16NX7++We88MILaNy4sW5liosOR86INARf7v8dLEmYM6Iz4qLDdSsTERF5To8m/YMHD6KsrAw33ngjGjRooPx77733kJ+fr6yXnp6u/H9cXBwA4OTJk06378nDvOVnNW/eHBEREUqQIi+TPzs/Px8XL15UAhsAqFevHrp3745ffvnF7c+uCV1rVObNm4eEhAQsWrRIWZacnKxjiaqNvDYRfdvF4HBxGZKaRTBIISIKYI6a9H11fT937hwAYOXKlWjZsqXVa2FhYUqwYpkEKw+QZjabnW4/MjLS7TLZfpZtAq4kSS59tr/pWqOyYsUKdOvWDX/5y18QGxuLLl26YOHChZrrV1RUoLS01Oqfr8RFhyMzpSmDFCKiACc36VvydZN+x44dERYWhqNHj6Jt27ZW/xISElzaRmhoaI2Hn/dUSkoKQkNDsWnTJmXZxYsXkZubi44dO/q1LLrWqBw6dAjz58/Ho48+iqeeegq5ubmYMmUKQkNDMXbsWLv1c3JyMHv2bB1KSkREgUpu0n9q2V5UCeGXJv2GDRvi8ccfxyOPPAKz2YzevXvDZDJh06ZNiIqKQuvWrZ1uIykpCQUFBcjLy0OrVq3QsGFDhIWF+azMliIjI3H//ffjiSeeQJMmTZCYmIh//OMfKCsrw8SJE/1SBpmugYrZbEa3bt0wZ84cAECXLl2wd+9eLFiwQDVQmT59Oh599FHl79LSUpcjUyIiqrv0aNJ/9tlnERMTg5ycHBw6dAiNGjXCNddcg6eeesqlJpbbbrsNy5Ytw4ABA1BSUoJFixZh3LhxPi+3bO7cuTCbzRgzZgzOnj2Lbt264euvv/Z7HqkkhBDOV/ON1q1b48Ybb8Rbb72lLJs/fz6ee+45HDt2zOn7S0tLER0dDZPJhKioKF8WlYiIdHDhwgUUFBQgOTkZ9evX17s45AZH3507929dc1R69eqlDG4j+/XXX12qEiMiIqLaT9dA5ZFHHsEPP/yAOXPm4ODBg/jggw/w73//G5MnT9azWERERAHjvvvus+oCbfnvvvvu07t4NaZr0w8AfPnll5g+fToOHDiA5ORkPProo7jnnntcei+bfoiIajc2/Th38uRJzV6wUVFRiI2N9XOJqnmr6Uf3kWlvvvlm3HzzzXoXg4iIKCDFxsbqFoz4A+f6ISIiIsNioEJERIZnxBFTyTFvZZbo3vRDRESkJTQ0FEFBQTh+/DhiYmIQGhqqDDVPxiWEwKlTp1SH6ncXAxUiIjKsoKAgJCcno6ioCMePH9e7OOQGSZLQqlUrBAcH12g7DFSIiMjQQkNDkZiYiEuXLuk29w25r169ejUOUgAGKkREFADkJoSaNiNQ4GEyLRERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsPSNVCZNWsWJEmy+peamqpnkYiIiMhAQvQuQKdOnfC///1P+TskRPciERERkUHoHhWEhISgRYsWeheDiIiIDEj3HJUDBw4gPj4ebdq0wejRo3H06FHNdSsqKlBaWmr1j4iIiGovXQOVHj16YPHixfjqq68wf/58FBQUoE+fPjh79qzq+jk5OYiOjlb+JSQk+LnERERE5E+SEELoXQhZSUkJWrdujRdffBETJ060e72iogIVFRXK36WlpUhISIDJZEJUVJQ/i0pEREQeKi0tRXR0tEv3b91zVCw1atQI7dq1w8GDB1VfDwsLQ1hYmJ9LRURERHrRPUfF0rlz55Cfn4+4uDi9i0JEREQGoGug8vjjj2P9+vU4fPgwNm/ejOHDhyM4OBijRo3Ss1hERERkELo2/fz2228YNWoU/vjjD8TExKB379744YcfEBMTo2exiIiIyCB0DVSWLFmi58cTERGRwRkqR4WIiIjIEgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUNFZkakcm/OLUWQq17soREREhhOidwHqsqW5RzF92R6YBRAkATkj0jDy2kS9i0VERGQYrFHRSZGpXAlSAMAsgKeW7WXNChERkQUGKjopKD6vBCmyKiFwuLhMnwIREREZEAMVnSQ3i0SQZL0sWJKQ1CxCnwIREREZEAMVP5OTZ4HqnJRgqTpaCZYkzBnRGXHR4XoWj4iIyFCYTOtHasmzG7MH4HBxGZKaRTBIISIismGoGpW5c+dCkiRMnTpV76J4nVbyLABkpjRlkEJERKTCMIFKbm4u3nzzTaSnp+tdFJ9g8iwREZH7DBGonDt3DqNHj8bChQvRuHFjvYvjE0yeJSIicp8hApXJkydjyJAhGDhwoN5F8Zm46HAmzxIREblJ92TaJUuWYMeOHcjNzXW6bkVFBSoqKpS/S0tLfVk0rxt5bSL6toth8iwREZGLdA1UCgsL8fDDD2PNmjWoX7++0/VzcnIwe/ZsP5TMd+KiwxmgEBERuUgSQgjnq/nG8uXLMXz4cAQHByvLqqqqIEkSgoKCUFFRYfWaWo1KQkICTCYToqKi/Fp2IiIi8kxpaSmio6Ndun/rWqNyww03YM+ePVbLxo8fj9TUVEybNs0qSAGAsLAwhIWF+bOIREREpCNdA5WGDRuic+fOVssiIyPRtGlTu+VERERU9xii1w9Vk4fX5wzKRERE1XTv9WNr3bp1ehdBF2rD64+8NlHvYhEREemKNSoGoDW8PmtWiIiormOgYgAcXp+IiEgdAxUD4PD6RERE6hioGACH1yciIlJnuGTauorD6xMREdljoGIgHF6fiIjIGpt+iIiIyLAYqBAREZFhMVAhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGRYDFSIiIjIsBipERERkWAxUiIiIyLAYqBAREZFhMVAhIiIiw2KgQkRERIbl8qSEpaWlLm80KirKo8IQERERWXI5UGnUqBEkSXK4jhACkiShqqqqxgUjIiIicjlQWbt2rS/LQURERGTH5UClX79+viwHERERkR2XAxVbJSUlePvtt/HLL78AADp16oQJEyYgOjraa4UjIiKius2jXj/btm1DSkoKXnrpJZw+fRqnT5/Giy++iJSUFOzYscPbZSQiIqI6ShJCCHff1KdPH7Rt2xYLFy5ESEh1pcylS5cwadIkHDp0CBs2bPB6QdWUlpYiOjoaJpOJPY2IiIgChDv3b48ClfDwcOzcuROpqalWy3/++Wd069YNZWVl7m7SIwxUiIiIAo8792+Pmn6ioqJw9OhRu+WFhYVo2LChJ5skIiIisuNRoDJy5EhMnDgRS5cuRWFhIQoLC7FkyRJMmjQJo0aN8nYZiYiIqI7yqNfP//3f/0GSJNx99924dOkSAKBevXq4//77MXfuXK8WkIiIiOouj3JUZGVlZcjPzwcApKSkICIiwmsFcwVzVIiIiAKPO/dvj8dRAYCIiAikpaXVZBNEREREmjwKVC5cuIDXXnsNa9euxcmTJ2E2m61e51gqRERE5A0eBSoTJ07EN998gz//+c/o3r2708kKiYiIiDzhUaDy5ZdfYtWqVejVq5e3y0NERESk8Kh7csuWLTleChEREfmcR4HKCy+8gGnTpuHIkSPeLg8RERGRwqOmn27duuHChQto06YNIiIiUK9ePavXT58+7ZXCERERUd3mUaAyatQoHDt2DHPmzEHz5s2ZTEtEREQ+4VGgsnnzZmzZsgUZGRneLg8RERGRwqMcldTUVJSXl3u7LERERERWPApU5s6di8ceewzr1q3DH3/8gdLSUqt/RERERN7g0Vw/QUHV8Y1tbooQApIkoaqqyjulc4Jz/RAREQUen8/1s3btWo8KRkREROQOjwKVfv36ubTeAw88gGeeeQbNmjXz5GOIiIiojvMoR8VV77//vsOclfnz5yM9PR1RUVGIiopCZmYmVq9e7csiERERUQDxaaDiLP2lVatWmDt3LrZv345t27bh+uuvx6233oqffvrJl8UiIiKiAOFR04+33HLLLVZ/P//885g/fz5++OEHdOrUSadSERERkVHoGqhYqqqqwscff4zz588jMzNT7+IQERGRAegeqOzZsweZmZm4cOECGjRogM8++wwdO3ZUXbeiogIVFRXK3xyzhYiIqHbzaY6KK9q3b4+8vDxs3boV999/P8aOHYuff/5Zdd2cnBxER0cr/xISEvxcWiIiIvIntwOVS5cu4ZlnnsFvv/3mdN277rrL6UAuoaGhaNu2Lbp27YqcnBxkZGTglVdeUV13+vTpMJlMyr/CwkJ3i09EREQBxO1AJSQkBP/85z9x6dIlp+vOnz/f7TFUzGazVfOOpbCwMKUrs/yPiIiIai+PclSuv/56rF+/HklJSTX68OnTpyMrKwuJiYk4e/YsPvjgA6xbtw5ff/11jbZLREREtYNHgUpWVhays7OxZ88edO3aFZGRkVavDx061KXtnDx5EnfffTeKiooQHR2N9PR0fP3117jxxhs9KRYRERHVMjWalFB1g5yUkIiIiBzw+aSEZrPZo4IRERERucOj7snvvfeeasJrZWUl3nvvvRoXioiIiAjwsOknODgYRUVFiI2NtVr+xx9/IDY2lk0/REREpMmd+7dHNSpCCEiSZLf8t99+Q3R0tCebJCIiIrLjVo5Kly5dIEkSJEnCDTfcgJCQK2+vqqpCQUEBBg8e7PVCEhERUd3kVqAybNgwAEBeXh4GDRqEBg0aKK+FhoYiKSkJt912m1cLSERERHWXW4HKzJkzAQBJSUkYOXIk6tev75NCEREREQEedk8eO3YsgOpePidPnrTrrpyYmFjzkhEREVGd51GgcuDAAUyYMAGbN2+2Wi4n2fqr1w8RERHVbh4FKuPGjUNISAi+/PJLxMXFqfYAIiIiIqopjwKVvLw8bN++Hampqd4uDxEREZHCo3FUOnbsiOLiYm+XxZCKTOXYnF+MIlO53kUhIiKqczyqUZk3bx6efPJJzJkzB2lpaahXr57V67VllNiluUcxfdkemAUQJAE5I9Iw8lomChMREflLjWdPtsxP8XcyrS+H0C8ylaPX3O9gtjg6wZKEjdkDEBcdbrVeQfF5JDeLtFpORERE6nw+e/LatWs9KlggKSg+bxWkAECVEDhcXKYEJKxxISIi8i2PclT69euHoKAgLFy4ENnZ2Wjbti369euHo0ePIjg42Ntl1EVys0gE2XRmCpYkJDWLAFBdkyIHKQBgFsBTy/Yyl4WIiMiLPApUPv30UwwaNAjh4eHYuXMnKioqAAAmkwlz5szxagH1EhcdjpwRaQi+3LQVLEmYM6KzUpviqMaFiIiIvMOjpp/nnnsOCxYswN13340lS5Yoy3v16oXnnnvOa4XT28hrE9G3XQwOF5chqVmEVQ6KXONim8Mi17gQERFRzXlUo7J//3707dvXbnl0dDRKSkpqWiZDiYsOR2ZKU7tEWWc1LkRERFRzHtWotGjRAgcPHkRSUpLV8o0bN6JNmzbeKFdAcFTjQkRERDXnUaByzz334OGHH8Y777wDSZJw/PhxbNmyBY8//jhmzJjh7TIaWlx0OAMUIiIiH/EoUMnOzobZbMYNN9yAsrIy9O3bF2FhYXj88cfx0EMPebuMREREVEd5NOCbrLKyEgcPHsS5c+fQsWNHNGjQwJtlc8qXA74RERGRb/h8wDdZaGgoOnbsWJNNEBEREWnyqNcPERERkT8wUCEiIiLDYqBCREREhsVAhYiIiAyLgYofFJnKsTm/mBMWEhERualGvX7IuaW5R5VZloMkIGdEGkZem6h3sYiIiAICa1R8qMhUrgQpQPUEhk8t2+t2zQprZIiIqK5ijYoPFRSft5pdGQCqhMDh4jKXh91njQwREdVlrFFxgac1GsnNIhEkWS8LliQkNYtw+XO9USNDREQUqBioOLE09yh6zf0Ody7cil5zv8PS3KMuvzcuOhw5I9IQLFVHK8GShDkjOrtcm+KoRoaIiKguYNOPA1o1Gn3bxbgcbIy8NhF928XgcHEZkppFuPS+IlM5CorPIzI0GEESrIIVd2pkiIiIAh0DFQe8kWMCVNeseJqTMrxLSyzfeRxVQrhdI0NERBToGKg4IOeY+KtGQ60GZ/nO41j2QCbKKs0u18gQERHVFsxRcaCmOSbu0qrBKas0IzOlKYMUIiKqc1ij4oQnOSae8ncNDhERkdGxRsUFcdHhfqnR8HcNDhERkdGxRsVg/FmDQ0REZHQMVAzInV5CREREtRmbfoiIiMiwGKgQERGRYekaqOTk5ODaa69Fw4YNERsbi2HDhmH//v16FomIiIgMRNdAZf369Zg8eTJ++OEHrFmzBhcvXsRNN92E8+fP61ksl3g6USERERG5ThJCCOer+cepU6cQGxuL9evXo2/fvk7XLy0tRXR0NEwmE6KiovxQwmq2w9znjEjDyGsT/fb5REREgcyd+7ehclRMJhMAoEmTJjqXRJvWRIWsWSEiIvI+w3RPNpvNmDp1Knr16oXOnTurrlNRUYGKigrl79LSUn8VT+GtiQqJiIjIOcPUqEyePBl79+7FkiVLNNfJyclBdHS08i8hIcGPJawmD3NvicPcExER+YYhApUHH3wQX375JdauXYtWrVpprjd9+nSYTCblX2FhoR9LWY3D3BMREfmPrk0/Qgg89NBD+Oyzz7Bu3TokJyc7XD8sLAxhYWF+Kp02DnNPRETkH7oGKpMnT8YHH3yAzz//HA0bNsSJEycAANHR0QgPN/bNn8PcExER+Z6u3ZMlSVJdvmjRIowbN87p+/XqnkxERESec+f+rXvTDxEREZEWQyTTEhEREalhoEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVJwoMpVjc34xZ0cmIiLSgWFmTzaipblHMX3ZHpgFECQBOSPSMPLaRL2LRUREVGewRkVDkalcCVIAwCyAp5btdalmhbUw+uN3QERUO7BGRUNB8XklSJFVCYHDxWUO5/hhLYz++B0QEdUerFHRkNwsEkE2UxEFSxKSmkVovqcmtTDkHc6+A9a0EBEFFgYqGuKiw5EzIg3BlydODJYkzBnR2WFtiqNaGPIPR9/B0tyj6DX3O9y5cCt6zf0OS3OP6lNIIiJyGZt+HBh5bSL6tovB4eIyJDWLcBikAFdqYSxvlM5qYci7tL6DiNAg1ZqWvu1inH6vRESkH9aoOBEXHY7MlKYu3cw8qYUh79L6Ds5XVrG2i4goALFGxcvcrYUh71P7DopM5aztIiIKQKxR8QF3amHIN2y/A9Z2EREFJtaoUJ3B2i4iosDDQIXqlLjocAYoREQBhE0/REREZFgMVIiIiMiwGKgQERGRYTFQoTqLw+kTERkfk2mpTuLEhUREgYE1KnUEaw+u4OSRRESBgzUqdQBrD6w5mriQXZeJiIyFNSq1HGsP7MkTF1ricPpERMbEQMVFgdp04qj2oK7icPpERIGDTT8uCOSmE7n2gJPxWeNw+kREgYE1Kk6403RixFoX1h5o4+SRRETGxxoVJ1xNvDRyrQtrD4iIKFCxRsUJVxIvAyFhlbUHREQUiBioOOFK00mgJKwasWmKiIjIETb9uMBZ00kgJKwauWmKiIhIC2tUXOSo6cToCauB0DRFRESkhjUqXmLkhFWOxEpERIGKgYoXxUWH63bjLzKVo6D4PJKbRQZk0xQREZEaNv3UAktzj6LX3O9w58Kt6DX3OyzNPWr1utGbpoyGScdERMYhCSGE89WMqbS0FNHR0TCZTIiKitK7OLooMpWj19zv7GpLNmYPsAtEikzlhmyaMhImHRMR+Z4792/WqAQ4d7pGcyyValo1Jkw6JiIyHuaoBDhX8k8c5a/UNY5qTJh0TERkPKxR8QNf5jw4yz9xlr9SlzirMXFlFGIiIvIv1qj4mD9yHrS6RmvdmPu2i6mTNQTOakzkoO+pZXtRJQSTjomIDICBig/5M1BQ6xrNpgxrrjSTGXk8HCIifzNC6gADFR/SO1Dg+CnWXK0x0XM8HCIiozBKL0gGKj6kd6DApgx7rDEhInLOSKkDuibTbtiwAbfccgvi4+MhSRKWL1+uZ3G8zggDrY28NhEbswfgw3uuw8bsAYYfE8Qfg62xmzYRkWPuDH3ha7rWqJw/fx4ZGRmYMGECRowYoWdRfMYIT/C2TRlGaHNUY5RqRiKiuk7vFgFLugYqWVlZyMrK0rMIfmGknAejBgNGqmYkIqrrjJQ6EFA5KhUVFaioqFD+Li0t1bE0xuBO7Yg/gwF3a230TjwmIiJrRmgRAAIsUMnJycHs2bP1LoZh2NaOTBucirRW0ZrBgb+CAU9qbYxUzUhERNWM0CIQUCPTTp8+HSaTSflXWFioW1n0nmFXrXYkZ/U+hyPQ+mPkVU/nyzFC4rG/6X0OEREFgoCqUQkLC0NYWJjexTBEnoda7YhMq0nHH22ONam1MUo1oz8Y4RwiIgoEARWoGIFRkj7VmkosaQUHvg4GatqEY4RqRm9wlKNjlHOIiCgQ6Nr0c+7cOeTl5SEvLw8AUFBQgLy8PBw9atyJ84zSt9y2qcSWo+DAl+OI1MUmHFvOJoI0yjlERBQIdK1R2bZtGwYMGKD8/eijjwIAxo4di8WLF+tUKseMlPRpWTuy+1gJ/rF6v+7dyIpM5UhoEoFlD2SirNLs9yYcvceIcaW2xEjnEBGR0ekaqPTv3x9CaLRdGJSR+pbL5ZFrSIZmxOua36GWd5GZ0lTXzzdC7pBtM5zRziEiIiOTRKBFChZKS0sRHR0Nk8mEqKgov352kam8TiR9uqrIVI5ec7+zqyXYmD3AL8dH78/3pBw8h4iornLn/h1Q3ZONRCvPw9ddTo3apVXvvAu9P1/mTo4O5xwiInKOvX68yNdND/5o2vA0x0PvvAu9P99SXepmTUTka6xR8RJPBzozyvYB571VHNG7t4/en69WHtaWEBHVHGtUvKDIVI4vdx/36fD0vh7+3htje+hdk+DNz9e79xAREVVjoFJDls0xtmybHmpy83PUtOGNm6q3AiG9B2zzxucbofcQERFVY6BSA7a1EJZsmx5qevPT6tK64ddTXrmpGinHQ08cNZaIyFgYqNSA1nw7M4Z0wJ/S45Qbm7dufrZNGwCsusLW5KaqFQgBwOb84jrTBOKvGaaJKHCwKVhfDFRqQKsWwjJIAbxz87P8ociDqG3OL/bqTdU2ENrw6yklEKorTSCsWSIiS2wK1h97/dSAbU+TIABPDm5vFyTINz9LWjc/tXFStHrjaG03IjTI47FW5N4qAHzey8iIjNZ7iMgojDqGky/5o7elERntu2aNSg2NvDYRJeUXMXf1PpgFMO+rfWgUUc8q4nZ1yHTbyH1i72TcnB7nsNnIdrvDusRj+Bubaxz91+UmEL17LxEZTV2tVaiL10EjftcMVGqoyFSOeav3QTjJE3F281OL3Bd+X4CF3xfYfablD8VyuxGhQUqQIm9j+qd7EBkWgq6tGwfUAG5607v3EpFR1IUEc60clLp2HTTqd82mnxpyZ+h2R4OAaSXmqrH9ocjbPV9ZZbcNM4AHP9gZcAO4EZExGGV6Cl9xNNBlbb4OqjXvGPW7Zo1KDXkr4lbbjiX5NUc/FEfbsI2MXclid7UJRN5WZGgwzldWIblZJAAwS56oFqjNtQqu1CDUxqZgreYdo37XDFRqyFn+iavd2uTtqI3LEixJWPZAJsoqzQ5/KLZlsSVHxrZjr0zsnYwJvZM1y+yo3GoD3sn5vQLGaePUC7s1UqBzNccuELmag1KbmoKdBWdG/K4lIVTuaAHCnWmifa3IVG4XcXuSlFRkKseiTQV4a0MBzLhSg2L7Pkc3wCJTObYfPoMpS3baRcbLHsi0ymORSQDm3pYGAC6XuchUbjWOi5ZgScLG7AG6n+z+ZsSkNED93CkylWP7kTMQQiCxSYRSM1bXvjPSpnaNC3Rq17Dafr3anF+MOxdutVv+4T3XKT0+/fFdu3P/Zo2Kl9hG3J4mJcVFh+OpP3XE+F7JSoLs+coqFJnKXQ6A4qLDcXNGOM5XXrKLjNXyWIDq2o/py/ZAiOr/d6XMrubVBHKWvKc1Iv5OSnO1nGrnDgBkf7oHtl+l5bnlznFgLVJgcva91aZaBZlRaxB8KblZJCTA6vdu2bxjxN8vAxUfqWm3trjocLsmmmlZqYiPru/yDVCtbbXIVO4wj8WWozI7y6uRGaGN0xM1qRHxZ7dGV8upFjxN/3QPhAS7IEV+/alle1FSfhHzLne/d3YcjFqLRI7Vlu9NLV/O2e+tNuagOLLh11NWf0uAEpwZ9Txgrx8fcWeQNzVqN5WcVfvw0Id5bmVl2/Y0kp8gbMumxVGZbTPiZRIAeVGgPqHUdKCnmn7/rpbxi13HXC6nWvBkBuCo8bdKCGWMIGfbr6uDYwW62vK9WfbeufX1zaq9eLQ46pFZm8jfteVPXpKAvu1iDH0esEbFR2papViT7srOyE8Qr313AB9sLbR6TZIAScAqP0atzPKTS992MdiYPUBpppITfgF4/QnFn1WS3qgR82aVsu2+O5q1W6ucajVgQUB1jYpWbzPY15hpbT8QBscyYrW2J7y1H0Wmcny5+7jq97bjyBk0jrxSO+FOLYW/aU0Qa5RxQIxC9WFFVF+rBYRhf78MVHyoJlWK7jSreNrL6Ob0eLtARQjgX3d2QZPIMM0yu1o96M2T299Vkt7opuetKmXbfZ+Wlao0xajRKqejiSezL+cn2W7nycHtMe+rfS4dB3ePmb+DBqNWa7tLbT/6totx+1g6CnYlqXr8JbVTTJKA7KxU/LVvSs12xIscPdgZ5WZrBM5+o0bsmgwwUPE5TxPQ4qLDnd6QJABPZrVXLrbuXoi1TtprbEaxtbyhAOpzAPnyiaWmiame3BC9VSNS0wREtX13FqQ4KqdW8NS3XQx2HDkDIYCEJuFWXeEbRdRTjkOQBEzonaS5r64eM38HDUYdcdNdavsx7dM9SnKkKz315BwOrSAFcNwcKC43Q0MAf+1njGDF0YOdUW62avwdrNv+RoMATLz8ezZyYjG7JxuU5YVcAjC4cwt8vfcEzDbryV3pAHjUzW5p7lG7E9PyIqc2/5DasP6WXdu8zZXudFrcvSHaXjj07pKpte+2WftBAF67s4tdkOktcrf5hRsKnN4QnR0zPbqE1uQcMhKt/bCkdSytrikOmvtcFQRg0/TrDXEjA6yvZTKt4R2MoKbXppooMpVj0cbDeGvjIbvP99c1j92TA5ztU5MA8M1Pv2P2rZ0w4/OfrNaVqzU9bV901Dyh9vT2lkqQEgTgj/MVVl2oXd1PV354njbDuPsUrXXh8MaP1dm4N1qvqeaVSMC0wan4x1f7rQLMIenxXiuT7XrbDp/GW98XuNR13Vkt0rbDp/3eFm7UETfdteeYyek6tseyyFSONT+fwMzPf1a+P288npoB1e9Mrzwg23nPnA2QqSdvXZtqQg5S1D7f3VQCX2OgYkBaSYmNI0J90r6odWNRK4fa9U2guj3b2VO2PKBYt6Qmdl2vHf3wPK2SdCe505dNA3Y5JoNTkdYqGsnNIp0eB3nfLXNIhAAaRdRTkpg9uRi7euHzJGnXlc+15eugwcjV2q6SJ0B1JghQjuXS3KOqY+R4g9p3pnceUKCM9aJ1bdpx5AzM4jQkSVImkvXFtcmVa6Pe36UlBio6U4tYtZ7+uiY1dnix9faF2NWEXsun7OnL9iAiNBjdkppYnfC2F0sJrg8sB3iWmOrOU7SveqyodjO/fLOxnGpAfk3tOPRtF2MVIQpUj3/y6p1d3J4VW6tMap+r1ZNC5m6irNb2ggC7c9UXT3KBPl6Gqz0Bp2WlKjc4bwcpSi4MruQ2yJydV0Z5OjcCtWuTJAGTP9h55W9Ujxa+q7DE69cmZ9dGo+V0MVDRkaOmBq2gw9HF1tsXYrvEq8vt2o4ufGYBPPRhnlVvBNt++4D9Nlz54bn7tOTOU7SvmgYc3VzUFlseB/nC/se5Crt15VmxPXnSWbSxwKULn6OyWw4SZUvrvNba3mt3drFqtnLlSc7Tm16gPHGrcfbgIAHI/lN1bxy527E3gxR5Co6Vu0/grY2H8O/vC/DWxgKH36/W/GI1fToPxKDHMpH56Oky3HFtApb8WAgz7GvDgerrw7RP7WsfcXn9mlybnF0bjTbUAAMVnTiLWB0FHY4utp5eiLV++Lbl2PDrKeXktq0RsCTvzyujrnbpKdBXVf+uBm++ahpwtVZKJh8H28RHLZ70gFJLhla78KkNtS2TB4lS277Wee2ol5mj99vW0rkzEm+g3cwckc9RR12Kh2bEO2yu0zJjSAdcEgL/WH0l72lYl3gs33nc6vcQG1VfM7dB6/stq7xo1XRp+R4AVjdvyyYPLYH4/Tv6Tu7snojUuAb4++c/u7y9Sb3bAKhOrvZ0/xxdG42W08VAxU9sfzSuRKz+evpzZe4gAFYDvFlmjGupulz9onWjlm+Cvs4XcPU4+qJpwDYAsiWP4msWV44DYN0F3FnioztPOgXF51UDj6zOcXbLbIfatmQWUEZDduW8Xrm7CEPS45wGg1oDUsm1dNMGp1qN66IVqBmpfd1TajfakdcmIiI0GA99mGe3vlkAO46ccRqkqM3z8qf0OMRFh2NoRrzV+f/4oPZWf2/OL9a8bmWmNLX7fod1icekd7er1qBqXUPkJg9Xp4Ew8vcv5+Y5aoL74MejcPAsYkcC0LRhqNJzrib7p3VtNFpOFwMVP9AaoMkIEasrP3y1ZFDbC4zak7dlXo1aFaaE6sHlrrFIGtP7CaimwaHWzSW1RUPkHj6DkrJKzF93yOrHbxscqd0MZGrNb+6cN1o1PCv3FGHVniLlBqE21LalYEnC7mMlGP3WD1fOi6xURIQGq54Lz638BXNW/YKcEWnYmD3gctJg9UzNlk+FjmqgzOLyGDI2y9V6uRipfV2LWld4+W/LphIJwD19kjEkPQ7nK6uQ2CRC9RhXHzf73n8AMOX6tmjfoiGuad3YqlbU9gZke/7b/u3sSdu2583wNzar18gBWPj9Ic3k/OnL9qh+X6484Pnq+3d2fXJn9Ghb7jTRPdA/xWosJV+d30bK6WKg4mNaP5qN2QMMEbE6++FrDjhmsx0B4N6+yXj7+8OqeTWRYSF40CJRDKjOs2gSGeZWdb6Rae2DWqCX3qqR1Y/f2c1AZhbax9lVE3sn422VPBWB6lmU5VFONYMlACOvbWV3scxZ5bhHinzuP5nV3m7QOsvj5agGygz7MUBsAzWjta+rsT0nhndpic92HlP+tgxGBYB/f1+Af19usguSgBHXtMSyHceUdaTLx69bUhPVQGJUj0SrwNnTG5ArT9pycKMVcDtqMpbJtUND0p131/fV928bOMq1Imo1PrbjXo3qnoAluYVuNb+psZzSRH4YSGsZjdfX5dd4/1xhlJwuBio+5uhHY4SI1dkPX2siO7WbxfheyRjfK1l1f7q2bqz5OVp5CaktGiIj4Ur+gpFpBaSpLRraLf/HV/sdDm7mKBfB0XF29sT35vp8zF29T7nY3pAag2/3WTfvCADbD59B1yT776v6ApyIJblH8cGP1lMvuEqe5NA2BjGL6p5MfdvFKDVQt76+2e798sVazqWQR8o9WXpB2XejtK9rfR9q58qnO44przu7uZkFsHzncSyf3BOFp8shSbAa6M+VB6Ca3IBcvW6p9my5/B9XxnF58IOdOFdxSbW7vqP988b3bxtIWm7LMqBXe5gTgMe/D0taNa5FpnJDnN/+xEDFTe42Tzj70egdsTr74WuV/8ms9laJd7bVx+58jtqTl1kAw17frNlWbQSW54JWQJp7+IxHT3eWE0d+uLVQNZdHq01ewuW5WPqlKGXcdLAYr6+98hQmAHy3Tz0HRZIsxm+xaVv/8MejNepJIkH7JmUGsGjjYTw1pAPOV1aprjOpdxv8tW8KhmbEKyPlLvy+wCpB+Oa0FhhzXWu8t+WI0pXW37WVjmoI3ZlwVEuVECirNOPmDPtB/vzxAOTKdUvtNz+xd5JSM+SMgH2TRpGpHAlNIrDsgUzNAd1qkl8h55RYNlWrfVdyQH9zhnpelpogCXj1ji5IaBKORZsKsDyvSHWdaVmpSG+pXeOqtX/AleRaALo3o3sTAxU3eNI8YbSkJDXOehgN79LS6olvWJd45WbhzsVQ63O0mjrULlRGodacoxbQXatSMxEEICI0yOlnbPj1FJb8WKjUgDw5uD36touxy/RXe6LLWb0Pu34rwVd7T2heROXtWr4sSUCrxtXBY2qLhlY1ZzW8t7q0jYXfH8L43kmaMz2Ptxi7w3KkXEtf7jnh1md6i9Y8OrY5BK70BJMufzFaqzh7gtb7AUhm+5sHgLdUmh21yEE9ALyzsbo7tLC4/mpNf+BJsOZubym5N54r36dcXjmwfPmOxugQn680gQYBuKNHAjLbNFV6txWZyjV79dju34q84+iZ853ymwZcm/spUHCuHxfVdH4SveeM8ZS/5mVxdJH425AOGHK5V4LtCLd6HEutY6JWyyTnqNjmXLgyeZztZ1j2ELJ8vyvzv6gJAjDtT1cmvrTNldDqmuwqT+eTmXJ9W4zqkaia9CkfL3f32dfz0ry5IV9p0tI6bpbzClmeE0ES0KttM2w6WGzV+6tvuxjVnjHemL9Gz8R1td+DFvl3NXfVPrtjKknA5mzPvlO1RGbb35szn0/uifOVVVeSnz/dY5e7J3v21k4Yk5mkWo7DxWXY/VuJ0ptNLWfJ0bXizQ35DvPDjDYnk4xz/XiBO92JAefVbEZ5wnFE7eLlr8REOS9h2Ov2vQTkHiPDu9gkEAKY1CcZE3on+/XYah2T9JaN7Ia1l6uq/333NZj03naHY0k4O+4CUH2/o/FOHJmWlWpVMyb30rCsmbHlyucEScBnD/QEANXvUza8Szw+23ncbvmr3x3Ev9YeVHoIWT6Ny0+Y7o5PozUvjTe8uT5fGW0YUD8+tjUglk17H2wtxPcHiiGhOlF6fK9kANXnwJD0FkhrFYUgSUKrxuFemb+mponrNQ1y5H1fubsIz638RXO9YEnCff3aKHlVtoRQT7h1Rm3/E5pEODyXeiQ3xo8FZ6zKYXlu39k9AZ9N7olXvz2Ib/edtHt/k8hQ1e3Kx0/uPQeo5yxp1SwXmcox18m0CpZNqoGKgYoKd7oT23bRDNRqNq2Llz8TEzMSGmPubeo9Pmx/vED1DUHOT5h+OSfDF2wvzFoTBUaEBlkFpM5mq7UdSyJIqu56GB1RD21cuBFbjl+RnZVqdbN0RMKVEUwB57005HLIT/Il5RftnnDl/ZPXyUhojM35xQ6bLsb1TMLyneqjp1r2jstMaap6fjrqHaS2z8XnLrg9caYzjm4U8nELktRzZFbsOo4Ptl5JuhQA3v7+MJpGhlmNFSNvy9Vri7MJMO0S1z/dg8iwEJemY/BW77y46HAMSY/D86t+Ua11kwegU6tJsWT7Xq2pG+RlAFSb5ZY9kOnw93ZzejxyD5+x+jzLVT/4sRAf/liI7D+l2gUqcrKzFldyXLQeDguKz7tUayk3qRr9YVkLAxUb7nQnfnJwe7/0Z/c1Z6OB+jPHxtWnLVs5q/cBEpSbr7eoXZhLyi6qJv8Of2Oz1VTpzgZtsx1LwiyAf1kkvF6T2Ai7Ck3VzQO4XKNis43dx0qQmdK0OkiToJyP8mBbcvWx7ecOVUnC1MoLWXh3V0SE1rN6kh+aEY8dR6ov3F2Tqi/CruYeyTduOTB1NOnhyt1FuDapseZvUq5xiQgNwgvf/IoNB4rtN3T5uFlO7eDJzVWrxlGr5snRd68V4Ci9omyWu3ptcRZIaPXic2U6Bq3rhKfXu7jo8OoA26bZIliS0C2pseYYLDIJV869XYVnsHDDISU/Sc4b++NcBRZezmUKkoBJvZNVa0PLKs2aPe0kAI0jQ50GEwLVv7/pWalWzTg5I9IcHh9Xagcte0g6e2jSKtu/vjuI54enOV7RoBio2HCnO7ErY5AEQua1s9FAbavgfb0vcdHhqPKgW8S81fswNCPe7fK5043U0QiTljcTraekIFzu3g3nTSg7jpbg7bFXgoQVecftak3mrd6H+Oj66JbURDXBuX/7GLtRTLWaQWwTv+V173lvu13iYvUTsf37bf+eNjhVGXcnCMCky00btmN67DhyBg9+sFO12U+rNkquTZK39d7EHthVeAbf/nISofWCcPD3c1ieZ9205OnDhG2vqnv6JGN872SHieCW/2/7mVpPwo7OC2dNrq4MdOZsjB5Hx0brOvH8yp/x9JCOHl0X/to3BRBXxmaSH4TOV1Y5Tk4FkHNbdQDw2Ed5drWtZgG734pZVCdga9UQZ6Y0rc4LutybTFh8jtrwCmrMAkhv1Qibsq93+Xqp1uFCbfoCtUEAx/dOdjitgqX/bj2KRuH18MTgVMcrGhADFRvudifWWjeQBjBz5eIlV8F7i6NROQFg3lf2T5t/SmuB1XtPaHdvFdY3YFcCRXe7kToLLuSbyZ5jJrvXggDMvrUTAGDmip9cqrI9XFyGiX2q5/VIaxVt97ptQClPainTGgBMq+lOyRV6Y7NqPoy7N/d5X+1Txt2Rc2JsyUHPb2fKVWsT1I6T1j7sO3EW/1p70KUmM9ug1NXmEgFYTcg3LSvVqvfGyO4J+NBmHA3bz9T6zT0wIAXz1+Wrll/rqVrm6rQcjprMHAVDWmX+cvcJrNpzwuq3485D2l/7pWDo1fF2uV2qtXtjrWv3dhWesQtSHDEDuLd3G7y9seBKzXhWexQUn8fJ0gs4X1mlOU6R5XFzFFDKtZzu/FbUeilZTl8AwCrZ1/Yc3JR9PRZtKsBbGwo0E3oB4PV1+YiKqOf1mmdfY6Biw53uxI76swfCEN4yVy9egHf65jsblXOiSvUsAIy5Lgkzbu6IHUfOYM3PJ+zGIbC8ebk6A29Nu5HaCpYkRIQGYZ5Ktb4ZwIzPf3KrN0y3pCtt2548DXvSPf58ZZVmDYar37ta09c/Vu/XrPFamntUM2lSJtdGWf7Ovth1DCXlF9E4IhQJjcNderK0nc5+0cYCq+YBV5pLgMs1bMv2KN2IJVQHY0OvjsdSm1FJbQMr2+8lyCKQS2wSYfdbVHuqti1rZGiw6v7adoWXb4rbD5/BlCU7XQ5i46LDMbF3suqklpbnn6szJdsGM87O2yez2iM8NMQqePjx8GnVsmqRu7iP7510pbeNg1GSLdl1Cd51XLW3jaPz3FEAp3YM5L+18scsc2z6t4/FkLQ4lFWaEREapJnI7mnNs54YqKhwpw++2rqOJu5y9LSvZ1ORoyr4YEnC7t+8kzTsyqicb28ssHtikccekZ++h6THW41DYHkDdnWuD2dPoPLF0tWxFVyttlYLUoIA9G0fg3X7rwzCdts1La1G5vX0adjdMSW8kUDtTm8xZ/MKyZ9vOcjXhl9PKeNGyFzt+XRfvzYoKD6P9384gjfW5lu9Ry251FGvKtvkynmr9+G6NvZ5XU8Orn5qB640kWl9L7bz5cj7DFg/Vdue11qD5JVV2j9jx0WH4+aMcJyvvORWEDuhd7Lm+DVVQmD74TMO892A6nNjz28muzwOR4GBZUBhuX73y9t0lUD1+ETyZ1n2tpFZHle5vJbBlHx8/to3BS0bhdtNDaJ1nteklt3RQ0qVEEpQYrnd7D/Z5//I+2ek6SRcwUBFg2106866zi70aicsAN2biuQg4FzFJbsnGU+Thl3p5m3LLKznswGqn6Qtk1UBaA465+rEZafPV9p9tlo3Uq3ZaiWpegTYoRnx2H74DCBVTxUAaM8Ybcm2hmDktYnYVXgG2w6fQbekxqrTBzgLKB09DbtzPrtTC6MWYGv1jDp46iyKz12wGgPH2Tlh2ZNI/jy1XCFXK77eWJdvN1eKJdvk0pLyiy5uufq9w97YjLkWeV27j6nfZAHHs9faLnf2AORJgOluEBsXHV6dAK0yZkiwJAEq573cPCld/tv2e7K9nqidT7bdd+X1MxIaY0D7GKzdbz3KsuWYQ5YErgRO8rbUVAlR3ZTyfYHDa7KjqUEs1XSiROWhSWOsFvnjLQPDoRnxKC27aHeuS0DADbfPQMVNrtR6OLrQa2XOW57oejcVuZs0rMXVbt625PlsQoODrHrByE+7ji5oAFSfgCVcqQLXGlxOAlSffNXyPADgmVs7YWCH5qpV3bbV+paTzMn7qDYMeEaCeoBiSSug9GZvLFdvYFpPiba/AfmmMWP5TwCsJ3bTelqUcGV2beDKGCpaPW1kcgCo1VPK1YDGLKA667czQlzJ64oIDbKa26gmv21X8uc86aHnThALXDk3LLvWy5/lKOnU0XGXrydqvyW1MU4s11//q3WQYjlgnlrvQcu8Lke1cP/eUGD1npo0rXpjPCq14652rC33b9rgVPt9lBBwDDEy7euvv45//vOfOHHiBDIyMvDaa6+he/fuTt/nz5FpAfer7tRGo3VnRE3LkSz15MnotI7eYzniqC25mjy+UX1M+TBP9SJyb582SImNtBvCPq1VtJKMa9ssAFyZR8O2TVpm+cRn+/3aDuql9h7b/QSudNl1NMpqTeg54rEr50WRqVyzR4/liJlLc48ie9ke5YZuGcjYTVeQlao5voY82JxlE5FlwOhOvlFN3ds3Wek9Ykv+bTtKKtfK5XF0HhWZyrHt8GkESZLVRIW+onb+uTPyrEwO3C0HHJSX//vuazDp3e2qgb7t+kEAPpvc06r2zdGIs5azE7tC65rs6Hcoj6b9kEoNqKcjfMufZztIoy05aHe2H+6eh94QUCPTLl26FI8++igWLFiAHj164OWXX8agQYOwf/9+xMbG6l08hSdVd2pPKq4maBppNkxPntScdfNWG4U2CMD9/dvYDXZl662Nh6xqKMziSldEORlX7e1mAc0gBbAONixzFY6dKVfthWT7Htv9tMz898ZEcWoXD3efhr3J1V4mjSPVa0Asu0lbNmnJY7No1UD+Y/V+ZGel2iXfSpeDS8saKeUpdFOB1ROyt6k9mTv6vI0HT+Ho6fMOk8pdSei0/O716Glo2Xwn/z3y2kTVQQG1OMrtqhJCNUjRWt8M65wcZ3lmQlTX2hWZLjgdt8mTplXbbu3yeVLTGlDLz3OUt6Y1073lfjjq3CA3b+vdS0j3QOXFF1/EPffcg/HjxwMAFixYgJUrV+Kdd95Bdna2zqW7wltDyTtLiAS0R7LUk7cTMs9XVtm3VaO6+5yzBzFHQYxWMq4r77VbF7BLlHOF1gWtJkGFEbu7u5oToTnwG6zbyuUmLUua0xW0aoTN06/H9sNnUFJeicYRoQ5rEN5yccZeT7lbUTP/8nluGWy7Omy62nlU0xwIT2k1785z0oMLACYPSEHvtjEOuyQDNkn1ErDsgUxkJDRWXV/t/HOUZxaEK6PGzln1i9W2LPNcPAks1Lq1B0nAa3d0UQJxb3CWt+ZopntnnRuEQHVCroDPRv52hfMpXH2osrIS27dvx8CBA5VlQUFBGDhwILZs2WK3fkVFBUpLS63++Yt8sbXkaa3HyGsTsTF7AF6/s4tdc2EQqquu9b4JqYmLDnd5fAA5IAu+PMWo7Q9E7XgGwbVuu3LbshazAO7pm+y3k1u6XCag5k9KarRuQkWmcq99hiecfce260kWX5qEKwN2OeLod1fdcyUed12XhCHp2t0ttZJ1n721Ez685zpM/1Oq3y+EZuE8uLEcFsAZZ3OR+YLWebn9yBmXHgh6t42xup7Ynk+237v8GXKNiavnH3Alz8zWtKxUJfCz3dbc26rHJ/nwnuuwMXuA29dkrQHymjYI83rwWB3kx2PubfbH4699U7Axe4DqfrjSuQGoronW83qja41KcXExqqqq0Lx5c6vlzZs3x7599lXtOTk5mD17tr+KZ8XTRDVH29NKiHSWTBkoHNXCqB3PJwe3t5/jBNXTny/ZWmg3hoajPBd50CZniWcAcNd1iXj/h6Me7aNl4p6vckX8NTGkJ1ytadNq2nHGG787rZqfgR2bK8H30Ix41ZmKZXJuTKPweq7PL+Qg/0EtwdqWOw9C/pyTS6Z1XsLBb81Z2Wy7ZqvlrKhN7ujs/LM9jyzHrXG2LU9/Y3p8J472QW0/XE1F8OWknq7QNZn2+PHjaNmyJTZv3ozMzExl+ZNPPon169dj61brpNOKigpUVFQof5eWliIhIcFvybSAb5IX9UyI1JvtvmslC6odI2WK9GMldlWbtgmGji58akl5WqrnC2mDIektvDKTrSs8SWaubWr6G3GWhGr5OZYjfKoN+6+VIKzWVCDfNDYdPIU3Lo84qxZsaw2b7s5TvKv76C2uJszXZN+8vU/+vtb6+zvxhG0ZB3VujlWX50yS+eJ6404yra6BSmVlJSIiIvDJJ59g2LBhyvKxY8eipKQEn3/+ucP3+7vXD/mHJxcTV9+jdeGwXW57YX0yqz3SWzbSLZgMhAue0blzXrmyrtp34ujp3lGwbZmnUdOEa6PciL21b4H+IBcI5bct45vr8+3mX/L29SZgAhUA6NGjB7p3747XXnsNAGA2m5GYmIgHH3zQaTItAxXyhNaFw9s3DW8zWnmI3wnAY1Bb+fp7DahAZenSpRg7dizefPNNdO/eHS+//DI++ugj7Nu3zy53xRYDFSIiosATUOOojBw5EqdOncLf//53nDhxAldffTW++uorp0EKERER1X6616jUBGtUiIiIAo87929dx1EhIiIicoSBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDEv3IfRrQh5Ut7S0VOeSEBERkavk+7Yrg+MHdKBy9uxZAEBCQoLOJSEiIiJ3nT17FtHR0Q7XCei5fsxmM44fP46GDRtCkqQabau0tBQJCQkoLCyss/MG8RjwGMh4HHgMAB4DgMdA5u3jIITA2bNnER8fj6Agx1koAV2jEhQUhFatWnl1m1FRUXX6ZAR4DAAeAxmPA48BwGMA8BjIvHkcnNWkyJhMS0RERIbFQIWIiIgMi4HKZWFhYZg5cybCwsL0LopueAx4DGQ8DjwGAI8BwGMg0/M4BHQyLREREdVurFEhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGVatDlTmz5+P9PR0ZYCazMxMrF69Wnn9woULmDx5Mpo2bYoGDRrgtttuw++//261jaNHj2LIkCGIiIhAbGwsnnjiCVy6dMnfu+I1c+fOhSRJmDp1qrKsth+HWbNmQZIkq3+pqanK67V9/2XHjh3DXXfdhaZNmyI8PBxpaWnYtm2b8roQAn//+98RFxeH8PBwDBw4EAcOHLDaxunTpzF69GhERUWhUaNGmDhxIs6dO+fvXfFYUlKS3bkgSRImT54MoG6cC1VVVZgxYwaSk5MRHh6OlJQUPPvss1ZzrtSFc+Hs2bOYOnUqWrdujfDwcPTs2RO5ubnK67XxGGzYsAG33HIL4uPjIUkSli9fbvW6t/Z59+7d6NOnD+rXr4+EhAT84x//qFnBRS22YsUKsXLlSvHrr7+K/fv3i6eeekrUq1dP7N27VwghxH333ScSEhLEt99+K7Zt2yauu+460bNnT+X9ly5dEp07dxYDBw4UO3fuFKtWrRLNmjUT06dP12uXauTHH38USUlJIj09XTz88MPK8tp+HGbOnCk6deokioqKlH+nTp1SXq/t+y+EEKdPnxatW7cW48aNE1u3bhWHDh0SX3/9tTh48KCyzty5c0V0dLRYvny52LVrlxg6dKhITk4W5eXlyjqDBw8WGRkZ4ocffhDff/+9aNu2rRg1apQeu+SRkydPWp0Ha9asEQDE2rVrhRB141x4/vnnRdOmTcWXX34pCgoKxMcffywaNGggXnnlFWWdunAu3H777aJjx45i/fr14sCBA2LmzJkiKipK/Pbbb0KI2nkMVq1aJZ5++mmxbNkyAUB89tlnVq97Y59NJpNo3ry5GD16tNi7d6/48MMPRXh4uHjzzTc9LnetDlTUNG7cWLz11luipKRE1KtXT3z88cfKa7/88osAILZs2SKEqP5Sg4KCxIkTJ5R15s+fL6KiokRFRYXfy14TZ8+eFVdddZVYs2aN6NevnxKo1IXjMHPmTJGRkaH6Wl3YfyGEmDZtmujdu7fm62azWbRo0UL885//VJaVlJSIsLAw8eGHHwohhPj5558FAJGbm6uss3r1aiFJkjh27JjvCu9DDz/8sEhJSRFms7nOnAtDhgwREyZMsFo2YsQIMXr0aCFE3TgXysrKRHBwsPjyyy+tll9zzTXi6aefrhPHwDZQ8dY+v/HGG6Jx48ZWv4dp06aJ9u3be1zWWt30Y6mqqgpLlizB+fPnkZmZie3bt+PixYsYOHCgsk5qaioSExOxZcsWAMCWLVuQlpaG5s2bK+sMGjQIpaWl+Omnn/y+DzUxefJkDBkyxGp/AdSZ43DgwAHEx8ejTZs2GD16NI4ePQqg7uz/ihUr0K1bN/zlL39BbGwsunTpgoULFyqvFxQU4MSJE1bHITo6Gj169LA6Do0aNUK3bt2UdQYOHIigoCBs3brVfzvjJZWVlXj//fcxYcIESJJUZ86Fnj174ttvv8Wvv/4KANi1axc2btyIrKwsAHXjXLh06RKqqqpQv359q+Xh4eHYuHFjnTgGtry1z1u2bEHfvn0RGhqqrDNo0CDs378fZ86c8ahsAT0poSv27NmDzMxMXLhwAQ0aNMBnn32Gjh07Ii8vD6GhoWjUqJHV+s2bN8eJEycAACdOnLC6IMmvy68FiiVLlmDHjh1W7a+yEydO1Prj0KNHDyxevBjt27dHUVERZs+ejT59+mDv3r11Yv8B4NChQ5g/fz4effRRPPXUU8jNzcWUKVMQGhqKsWPHKvuhtp+WxyE2Ntbq9ZCQEDRp0iRgjoOl5cuXo6SkBOPGjQNQN34LAJCdnY3S0lKkpqYiODgYVVVVeP755zF69GgAqBPnQsOGDZGZmYlnn30WHTp0QPPmzfHhhx9iy5YtaNu2bZ04Bra8tc8nTpxAcnKy3Tbk1xo3bux22Wp9oNK+fXvk5eXBZDLhk08+wdixY7F+/Xq9i+U3hYWFePjhh7FmzRq7p4e6Qn5SBID09HT06NEDrVu3xkcffYTw8HAdS+Y/ZrMZ3bp1w5w5cwAAXbp0wd69e7FgwQKMHTtW59Lp4+2330ZWVhbi4+P1LopfffTRR/jvf/+LDz74AJ06dUJeXh6mTp2K+Pj4OnUu/Oc//8GECRPQsmVLBAcH45prrsGoUaOwfft2vYtGNmp9009oaCjatm2Lrl27IicnBxkZGXjllVfQokULVFZWoqSkxGr933//HS1atAAAtGjRwi7jX/5bXsfotm/fjpMnT+Kaa65BSEgIQkJCsH79erz66qsICQlB8+bN68RxsNSoUSO0a9cOBw8erDPnQVxcHDp27Gi1rEOHDkoTmLwfavtpeRxOnjxp9fqlS5dw+vTpgDkOsiNHjuB///sfJk2apCyrK+fCE088gezsbNxxxx1IS0vDmDFj8MgjjyAnJwdA3TkXUlJSsH79epw7dw6FhYX48ccfcfHiRbRp06bOHANL3tpnX/xGan2gYstsNqOiogJdu3ZFvXr18O233yqv7d+/H0ePHkVmZiYAIDMzE3v27LH6YtasWYOoqCi7i75R3XDDDdizZw/y8vKUf926dcPo0aOV/68Lx8HSuXPnkJ+fj7i4uDpzHvTq1Qv79++3Wvbrr7+idevWAIDk5GS0aNHC6jiUlpZi69atVsehpKTE6onzu+++g9lsRo8ePfywF96zaNEixMbGYsiQIcqyunIulJWVISjI+tIfHBwMs9kMoO6dC5GRkYiLi8OZM2fw9ddf49Zbb61zxwDw3veemZmJDRs24OLFi8o6a9asQfv27T1q9gFQu7snZ2dni/Xr14uCggKxe/dukZ2dLSRJEt98840QororYmJiovjuu+/Etm3bRGZmpsjMzFTeL3dFvOmmm0ReXp746quvRExMTEB1RVRj2etHiNp/HB577DGxbt06UVBQIDZt2iQGDhwomjVrJk6ePCmEqP37L0R11/SQkBDx/PPPiwMHDoj//ve/IiIiQrz//vvKOnPnzhWNGjUSn3/+udi9e7e49dZbVbsmdunSRWzdulVs3LhRXHXVVYbujqmmqqpKJCYmimnTptm9VhfOhbFjx4qWLVsq3ZOXLVsmmjVrJp588kllnbpwLnz11Vdi9erV4tChQ+Kbb74RGRkZokePHqKyslIIUTuPwdmzZ8XOnTvFzp07BQDx4osvip07d4ojR44IIbyzzyUlJaJ58+ZizJgxYu/evWLJkiUiIiKC3ZO1TJgwQbRu3VqEhoaKmJgYccMNNyhBihBClJeXiwceeEA0btxYREREiOHDh4uioiKrbRw+fFhkZWWJ8PBw0axZM/HYY4+Jixcv+ntXvMo2UKntx2HkyJEiLi5OhIaGipYtW4qRI0dajR9S2/df9sUXX4jOnTuLsLAwkZqaKv79739bvW42m8WMGTNE8+bNRVhYmLjhhhvE/v37rdb5448/xKhRo0SDBg1EVFSUGD9+vDh79qw/d6PGvv76awHAbt+EqBvnQmlpqXj44YdFYmKiqF+/vmjTpo14+umnrbqT1oVzYenSpaJNmzYiNDRUtGjRQkyePFmUlJQor9fGY7B27VoBwO7f2LFjhRDe2+ddu3aJ3r17i7CwMNGyZUsxd+7cGpVbEsJiOEIiIiIiA6lzOSpEREQUOBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSI6qD+/ftj6tSpehfD52bNmoWrr75a72IQUQ0wUCGigFNZWenXzxNC4NKlS379TCKqxkCFqI4ZN24c1q9fj1deeQWSJEGSJBw+fBh79+5FVlYWGjRogObNm2PMmDEoLi5W3te/f3889NBDmDp1Kho3bozmzZtj4cKFOH/+PMaPH4+GDRuibdu2WL16tfKedevWQZIkrFy5Eunp6ahfvz6uu+467N2716pMGzduRJ8+fRAeHo6EhARMmTIF58+fV15PSkrCs88+i7vvvhtRUVG49957AQDTpk1Du3btEBERgTZt2mDGjBnKrK2LFy/G7NmzsWvXLmU/Fy9ejMOHD0OSJOTl5SnbLykpgSRJWLdunVW5V69eja5duyIsLAwbN26E2WxGTk4OkpOTER4ejoyMDHzyySfe/oqIyAIDFaI65pVXXkFmZibuueceFBUVoaioCA0bNsT111+PLl26YNu2bfjqq6/w+++/4/bbb7d677vvvotmzZrhxx9/xEMPPYT7778ff/nLX9CzZ0/s2LEDN910E8aMGYOysjKr9z3xxBN44YUXkJubi5iYGNxyyy1KQJGfn4/Bgwfjtttuw+7du7F06VJs3LgRDz74oNU2/u///g8ZGRnYuXMnZsyYAQBo2LAhFi9ejJ9//hmvvPIKFi5ciJdeegkAMHLkSDz22GPo1KmTsp8jR45061hlZ2dj7ty5+OWXX5Ceno6cnBy89957WLBgAX766Sc88sgjuOuuu7B+/Xq3tktEbqjRlIZEFJBsZ9B+9tlnxU033WS1TmFhodUsw/369RO9e/dWXr906ZKIjIwUY8aMUZYVFRUJAGLLli1CiCuztS5ZskRZ548//hDh4eFi6dKlQgghJk6cKO69916rz/7+++9FUFCQMr1869atxbBhw5zu1z//+U/RtWtX5e+ZM2eKjIwMq3UKCgoEALFz505l2ZkzZwQAsXbtWqtyL1++XFnnwoULIiIiQmzevNlqexMnTrSa5p6IvCtEzyCJiIxh165dWLt2LRo0aGD3Wn5+Ptq1awcASE9PV5YHBwejadOmSEtLU5Y1b94cAHDy5EmrbWRmZir/36RJE7Rv3x6//PKL8tm7d+/Gf//7X2UdIQTMZjMKCgrQoUMHAEC3bt3syrZ06VK8+uqryM/Px7lz53Dp0iVERUW5vf9aLD/z4MGDKCsrw4033mi1TmVlJbp06eK1zyQiawxUiAjnzp3DLbfcgnnz5tm9FhcXp/x/vXr1rF6TJMlqmSRJAACz2ezWZ//1r3/FlClT7F5LTExU/j8yMtLqtS1btmD06NGYPXs2Bg0ahOjoaCxZsgQvvPCCw88LCqpu8RZCKMvkZihblp957tw5AMDKlSvRsmVLq/XCwsIcfiYReY6BClEdFBoaiqqqKuXva665Bp9++imSkpIQEuL9y8IPP/ygBB1nzpzBr7/+qtSUXHPNNfj555/Rtm1bt7a5efNmtG7dGk8//bSy7MiRI1br2O4nAMTExAAAioqKlJoQy8RaLR07dkRYWBiOHj2Kfv36uVVWIvIck2mJ6qCkpCRs3boVhw8fRnFxMSZPnozTp09j1KhRyM3NRX5+Pr7++muMHz/e7kbviWeeeQbffvst9u7di3HjxqFZs2YYNmwYgOqeO5s3b8aDDz6IvLw8HDhwAJ9//rldMq2tq666CkePHsWSJUuQn5+PV199FZ999pndfhYUFCAvLw/FxcWoqKhAeHg4rrvuOiVJdv369fjb3/7mdB8aNmyIxx9/HI888gjeffdd5OfnY8eOHXjttdfw7rvvenxsiMgxBipEddDjjz+O4OBgdOzYETExMaisrMSmTZtQVVWFm266CWlpaZg6dSoaNWqkNJXUxNy5c/Hwww+ja9euOHHiBL744guEhoYCqM57Wb9+PX799Vf06dMHXbp0wd///nfEx8c73ObQoUPxyCOP4MEHH8TVV1+NzZs3K72BZLfddhsGDx6MAQMGICYmBh9++CEA4J133sGlS5fQtWtXTJ06Fc8995xL+/Hss89ixowZyMnJQYcOHTB48GCsXLkSycnJHhwVInKFJCwbaomIvGjdunUYMGAAzpw5g0aNGuldHCIKQKxRISIiIsNioEJERESGxaYfIiIiMizWqBAREZFhMVAhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGRYDFSIiIjIsBipERERkWAxUiIiIyLAYqBAREZFh/T8Zs6wqh35IbwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(poly_surr, data_training, filename=\"pysmo_poly_train_scatter2D.pdf\")\n", - "surrogate_parity(poly_surr, data_training, filename=\"pysmo_poly_train_parity.pdf\")\n", - "surrogate_residual(poly_surr, data_training, filename=\"pysmo_poly_train_residual.pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.4 Model Validation\n", - "\n", - "We check the fit on the validation set to see if the surrogate is fitting well. This step can be used to check for overfitting on the training set." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgxUlEQVR4nO3deVxU5eI/8M8wsgujLLLEKu5lLuSC5U6B1yV+4k3NXFIzvaKi5la5lWaaJi6prWIlLaZ1c01z65ZkilqZylUuagW4gAyoCcic3x98OTHAwDDMzDln5vN+vXgpc56ZeebMcOZznu2oBEEQQERERERW5SB1BYiIiIjsEUMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgREdUoOTkZKpUKly9flroqRDaFIYyIJHfixAkkJCTgwQcfhLu7O0JCQvDUU0/hv//9b5WyvXr1gkqlgkqlgoODAzw9PdGyZUuMHDkSBw4cqNPz7ty5Ez179kSTJk3g5uaGpk2b4qmnnsK+ffvM9dKqeO211/DVV19Vuf3YsWNYtGgR8vPzLfbclS1atEjclyqVCm5ubmjTpg1efvllFBQUmOU5UlJSkJSUZJbHIrI1DGFEJLnly5dj+/bt6Nu3L9asWYMJEybgu+++Q8eOHXH27Nkq5YOCgvDRRx/hww8/xBtvvIFBgwbh2LFjeOKJJzB06FCUlJTU+pwrV67EoEGDoFKpMG/ePKxevRrx8fG4ePEiPv30U0u8TAA1h7DFixdbNYSV27hxIz766CO8+eabaNWqFZYuXYrY2FiY49LCDGFEhjWQugJERDNmzEBKSgqcnJzE24YOHYq2bdvi9ddfx8cff6xXXqPR4JlnntG77fXXX8fUqVOxYcMGhIWFYfny5Qaf7/79+3j11Vfx+OOPY//+/VW2X79+vZ6vSD7u3r0LNze3GssMGTIEPj4+AICJEyciPj4eO3bswI8//oioqChrVJPILrEljIgk161bN70ABgDNmzfHgw8+iPPnzxv1GGq1GmvXrkWbNm2wfv16aLVag2Vv3ryJgoICPProo9Vub9Kkid7v9+7dw6JFi9CiRQu4uLggICAAgwcPRkZGhlhm5cqV6NatG7y9veHq6orIyEh88cUXeo+jUqlw584dbNmyRewCHDNmDBYtWoRZs2YBAMLDw8VtFcdgffzxx4iMjISrqyu8vLwwbNgw/P7773qP36tXLzz00ENIS0tDjx494ObmhhdffNGo/VdRnz59AACZmZk1ltuwYQMefPBBODs7IzAwEJMnT9ZryevVqxd2796NK1euiK8pLCyszvUhslVsCSMiWRIEAdeuXcODDz5o9H3UajWGDx+O+fPn4/vvv0f//v2rLdekSRO4urpi586dmDJlCry8vAw+ZmlpKQYMGICDBw9i2LBhmDZtGgoLC3HgwAGcPXsWERERAIA1a9Zg0KBBGDFiBIqLi/Hpp5/in//8J3bt2iXW46OPPsL48ePRuXNnTJgwAQAQEREBd3d3/Pe//8Unn3yC1atXi61Svr6+AIClS5di/vz5eOqppzB+/HjcuHED69atQ48ePXD69Gk0atRIrG9ubi769euHYcOG4ZlnnoGfn5/R+69cebj09vY2WGbRokVYvHgxoqOjMWnSJKSnp2Pjxo04ceIEfvjhBzg6OuKll16CVqvFH3/8gdWrVwMAGjZsWOf6ENksgYhIhj766CMBgPD+++/r3d6zZ0/hwQcfNHi/L7/8UgAgrFmzpsbHX7BggQBAcHd3F/r16ycsXbpUSEtLq1Lugw8+EAAIb775ZpVtOp1O/P/du3f1thUXFwsPPfSQ0KdPH73b3d3dhdGjR1d5rDfeeEMAIGRmZurdfvnyZUGtVgtLly7Vu/3XX38VGjRooHd7z549BQDCpk2bDL7uihYuXCgAENLT04UbN24ImZmZwttvvy04OzsLfn5+wp07dwRBEITNmzfr1e369euCk5OT8MQTTwilpaXi461fv14AIHzwwQfibf379xdCQ0ONqg+RvWF3JBHJzoULFzB58mRERUVh9OjRdbpveUtLYWFhjeUWL16MlJQUdOjQAd988w1eeuklREZGomPHjnpdoNu3b4ePjw+mTJlS5TFUKpX4f1dXV/H/t27dglarRffu3XHq1Kk61b+yHTt2QKfT4amnnsLNmzfFH39/fzRv3hyHDx/WK+/s7Ixnn322Ts/RsmVL+Pr6Ijw8HM8//zyaNWuG3bt3GxxL9u2336K4uBiJiYlwcPj7a+S5556Dp6cndu/eXfcXSmSH2B1JRLKSk5OD/v37Q6PR4IsvvoBara7T/W/fvg0A8PDwqLXs8OHDMXz4cBQUFOD48eNITk5GSkoKBg4ciLNnz8LFxQUZGRlo2bIlGjSo+XC5a9cuLFmyBGfOnEFRUZF4e8WgZoqLFy9CEAQ0b9682u2Ojo56vz/wwANVxtfVZvv27fD09ISjoyOCgoLELlZDrly5AqAsvFXk5OSEpk2bituJqGYMYUQkG1qtFv369UN+fj7+85//IDAwsM6PUb6kRbNmzYy+j6enJx5//HE8/vjjcHR0xJYtW3D8+HH07NnTqPv/5z//waBBg9CjRw9s2LABAQEBcHR0xObNm5GSklLn11CRTqeDSqXC3r17qw2klcdYVWyRM1aPHj3EcWhEZD0MYUQkC/fu3cPAgQPx3//+F99++y3atGlT58coLS1FSkoK3Nzc8Nhjj5lUj0ceeQRbtmxBdnY2gLKB88ePH0dJSUmVVqdy27dvh4uLC7755hs4OzuLt2/evLlKWUMtY4Zuj4iIgCAICA8PR4sWLer6ciwiNDQUAJCeno6mTZuKtxcXFyMzMxPR0dHibfVtCSSyZRwTRkSSKy0txdChQ5Gamopt27aZtDZVaWkppk6divPnz2Pq1Knw9PQ0WPbu3btITU2tdtvevXsB/N3VFh8fj5s3b2L9+vVVygr/t5ipWq2GSqVCaWmpuO3y5cvVLsrq7u5e7YKs7u7uAFBl2+DBg6FWq7F48eIqi6cKgoDc3NzqX6QFRUdHw8nJCWvXrtWr0/vvvw+tVqs3K9Xd3b3G5UKI7BlbwohIcjNnzsTXX3+NgQMHIi8vr8rirJUXZtVqtWKZu3fv4tKlS9ixYwcyMjIwbNgwvPrqqzU+3927d9GtWzd07doVsbGxCA4ORn5+Pr766iv85z//QVxcHDp06AAAGDVqFD788EPMmDEDP/30E7p37447d+7g22+/xb/+9S88+eST6N+/P958803Exsbi6aefxvXr1/HWW2+hWbNm+OWXX/SeOzIyEt9++y3efPNNBAYGIjw8HF26dEFkZCQA4KWXXsKwYcPg6OiIgQMHIiIiAkuWLMG8efNw+fJlxMXFwcPDA5mZmfjyyy8xYcIEvPDCC/Xa/3Xl6+uLefPmYfHixYiNjcWgQYOQnp6ODRs2oFOnTnrvV2RkJD777DPMmDEDnTp1QsOGDTFw4ECr1pdItqScmklEJAh/L61g6Kemsg0bNhSaN28uPPPMM8L+/fuNer6SkhLh3XffFeLi4oTQ0FDB2dlZcHNzEzp06CC88cYbQlFRkV75u3fvCi+99JIQHh4uODo6Cv7+/sKQIUOEjIwMscz7778vNG/eXHB2dhZatWolbN68WVwCoqILFy4IPXr0EFxdXQUAestVvPrqq8IDDzwgODg4VFmuYvv27cJjjz0muLu7C+7u7kKrVq2EyZMnC+np6Xr7pqblOyorr9+NGzdqLFd5iYpy69evF1q1aiU4OjoKfn5+wqRJk4Rbt27plbl9+7bw9NNPC40aNRIAcLkKogpUgmCGi4MRERERUZ1wTBgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgCGMiIiISAJcrFXGdDodsrKy4OHhwUt/EBERKYQgCCgsLERgYCAcHAy3dzGEyVhWVhaCg4OlrgYRERGZ4Pfff0dQUJDB7QxhMubh4QGg7E2s6Tp4REREJB8FBQUIDg4Wv8cNYQiTsfIuSE9PT4YwIiIihaltKBEH5hMRERFJgCGMiIiISAIMYUREREQS4JgwhdPpdCguLpa6GjbNycmpxinGREREpmAIU7Di4mJkZmZCp9NJXRWb5uDggPDwcDg5OUldFSIisiEMYQolCAKys7OhVqsRHBzMlhoLKV8wNzs7GyEhIVw0l4iIzIYhTKHu37+Pu3fvIjAwEG5ublJXx6b5+voiKysL9+/fh6Ojo9TVISIiG6GY5pNBgwYhJCQELi4uCAgIwMiRI5GVlaVXRhAErFy5Ei1atICzszMeeOABLF26VK/MkSNH0LFjRzg7O6NZs2ZITk6u8lxvvfUWwsLC4OLigi5duuCnn37S237v3j1MnjwZ3t7eaNiwIeLj43Ht2jW9MlevXkX//v3h5uaGJk2aYNasWbh//755dgaA0tJSAGAXmRWU7+PyfU5ERGQOiglhvXv3xueff4709HRs374dGRkZGDJkiF6ZadOm4b333sPKlStx4cIFfP311+jcubO4PTMzE/3790fv3r1x5swZJCYmYvz48fjmm2/EMp999hlmzJiBhQsX4tSpU2jXrh1iYmJw/fp1scz06dOxc+dObNu2DUePHkVWVhYGDx4sbi8tLUX//v1RXFyMY8eOYcuWLUhOTsaCBQvMvl/YPWZ53MdERGQRgkL9+9//FlQqlVBcXCwIgiCcO3dOaNCggXDhwgWD95k9e7bw4IMP6t02dOhQISYmRvy9c+fOwuTJk8XfS0tLhcDAQGHZsmWCIAhCfn6+4OjoKGzbtk0sc/78eQGAkJqaKgiCIOzZs0dwcHAQcnJyxDIbN24UPD09haKiIqNfo1arFQAIWq22yra//vpLOHfunPDXX38Z/XhkGu5rIuW5efOmkJWVZfDn5s2bUleRbFhN398VKXJMWF5eHrZu3Ypu3bqJY3R27tyJpk2bYteuXYiNjYUgCIiOjsaKFSvg5eUFAEhNTUV0dLTeY8XExCAxMRFA2WzDtLQ0zJs3T9zu4OCA6OhopKamAgDS0tJQUlKi9zitWrVCSEgIUlNT0bVrV6SmpqJt27bw8/PTe55Jkybht99+Q4cOHSyyX4iICMjNzcX69etrLZeQkABvb28r1IioeorpjgSAOXPmwN3dHd7e3rh69Sr+/e9/i9v+97//4cqVK9i2bRs+/PBDJCcnIy0tTa/LMicnRy8YAYCfnx8KCgrw119/4ebNmygtLa22TE5OjvgYTk5OaNSoUY1lqnuM8m2GFBUVoaCgQO/H1owZMwYqlQoqlQqOjo7w8/PD448/jg8++KBOS20kJydXeQ+IiABUWTtRq/VAZmYYtFqPGssRWZukIWzu3LniF7KhnwsXLojlZ82ahdOnT2P//v1Qq9UYNWoUBEEAULaUQFFRET788EN0794dvXr1wvvvv4/Dhw8jPT1dqpdYJ8uWLYNGoxF/goODLfZcubm5yM7ONviTm5trseeOjY1FdnY2Ll++jL1796J3796YNm0aBgwYYNbJC0REp051QFJSIrZsGY2kpEScOsWeCJIPSbsjZ86ciTFjxtRYpmnTpuL/fXx84OPjgxYtWqB169YIDg7Gjz/+iKioKAQEBKBBgwZo0aKFWL5169YAymYqtmzZEv7+/lVmMV67dg2enp5wdXWFWq2GWq2utoy/vz8AwN/fH8XFxcjPz9drialcpvKMyvLHLC9TnXnz5mHGjBni7wUFBRYJYlI31Ts7O4v74YEHHkDHjh3RtWtX9O3bF8nJyRg/fjzefPNNbN68Gf/73//g5eWFgQMHYsWKFWjYsCGOHDmCZ599FsDfg+YXLlyIRYsW4aOPPsKaNWuQnp4Od3d39OnTB0lJSWjSpInZXwcRyZtW64GdOwdAEMraGwTBATt3DkBExCVoNIUS145I4hDm6+sLX19fk+5b3nVVVFQEAHj00Udx//59ZGRkICIiAgDw3//+FwAQGhoKAIiKisKePXv0HufAgQOIiooCULYUQWRkJA4ePIi4uDjxeQ4ePIiEhAQAQGRkJBwdHXHw4EHEx8cDANLT03H16lXxcaKiorB06VJcv35d/PI/cOAAPD090aZNG4OvydnZGc7Ozibtj7owtgnemk31ffr0Qbt27bBjxw6MHz8eDg4OWLt2LcLDw/G///0P//rXvzB79mxs2LAB3bp1Q1JSEhYsWCC2cjZs2BAAUFJSgldffRUtW7bE9evXMWPGDIwZM6bK+05E0snNza3x+OLk5GSWE8C8PG8xgJUTBAfk5XkxhCmMtT4z1qaIgfnHjx/HiRMn8Nhjj6Fx48bIyMjA/PnzERERIQaf6OhodOzYEWPHjkVSUhJ0Oh0mT56Mxx9/XGwdmzhxItavX4/Zs2dj7NixOHToED7//HPs3r1bfK4ZM2Zg9OjReOSRR9C5c2ckJSXhzp07YsuLRqPBuHHjMGPGDHh5ecHT0xNTpkxBVFQUunbtCgB44okn0KZNG4wcORIrVqxATk4OXn75ZUyePNkqIUupWrVqhV9++QUAxMkSABAWFoYlS5Zg4sSJ2LBhA5ycnKDRaKBSqaq0LI4dO1b8f9OmTbF27Vp06tQJt2/fFoMa2TZbPVjbCmu2xHt55UKl0ukFMZVKBy+vvHo9LlmX1L03lqSIEObm5oYdO3Zg4cKFuHPnDgICAhAbG4uXX35ZDDUODg7YuXMnpkyZgh49esDd3R39+vXDqlWrxMcJDw/H7t27MX36dKxZswZBQUF47733EBMTI5YZOnQobty4gQULFiAnJwft27fHvn379Abar169Gg4ODoiPj0dRURFiYmKwYcMGcbtarcauXbswadIkREVFwd3dHaNHj8Yrr7xihb2lXIIgiN2L3377LZYtW4YLFy6goKAA9+/fx71793D37t0arxCQlpaGRYsW4eeff8atW7fEFtOrV6/W2ApJtqHywVqr9UBenje8vHL1Wj6UeLC2FdUNmq/uPTJHS7xGU4iBA3eJXZIqlQ4DB+5iK5jCWPMzY22KCGFt27bFoUOHai0XGBiI7du311imV69eOH36dI1lEhISxO7H6ri4uOCtt97CW2+9ZbBMaGgou8Dq6Pz58wgPD8fly5cxYMAATJo0CUuXLoWXlxe+//57jBs3DsXFxQZD2J07dxATE4OYmBhs3boVvr6+uHr1KmJiYmT3x8nWGsuouE9PnepQ5cu3Y8fTVcqRdGp6j8ylY8fTiIi4hLw8L3h55ckmgPEYYBprfGasSREhjGzfoUOH8Ouvv2L69OlIS0uDTqfDqlWrxAuTf/7553rlnZycqlxG6MKFC8jNzcXrr78uTmg4efKkdV5AHbC1xvI4IFv+LPkeVb6cm0ZTWO1jSnXZN1vuXrMkW/y7ZggjqysqKkJOTg5KS0tx7do17Nu3D8uWLcOAAQMwatQonD17FiUlJVi3bh0GDhyIH374AZs2bdJ7jLCwMNy+fRsHDx5Eu3bt4ObmhpCQEDg5OWHdunWYOHEizp49i1dffVWiV2kYW2ssjwOy5c+S75G3tzcSEhJk29Ikx8lR5mLJFj5b/LtmCCOr27dvn7ikSOPGjdGuXTusXbsWo0ePhoODA9q1a4c333wTy5cvx7x589CjRw8sW7YMo0aNEh+jW7dumDhxIoYOHYrc3FxxiYrk5GS8+OKLWLt2LTp27IiVK1di0KBBEr5aw2zxrE4uOCBb/iz9HimpBclQa7jSWLqFzxb/rhnC7JCxTfCWaKpPTk5GcnJyreWmT5+O6dOn6902cuRIvd83btyIjRs36t02fPhwDB8+XO+28gV95cYWz+rkggOy5Y/vURlbGuNk6RY+W/zMMITZIbk31dsLWzyrkxO5Dsimv9n7e2TrreGWaOGztc8MQ5idYsCSni2e1cmNoQHZJB25D5q3JltuDTdnC58tf2YYwogkZGtndVKTsqudjMOW+L/Zamu4uVv4bPkzwxBGJDG21hhW15lWtnywtiXc/2VstTXcEi18tvqZYQgjsjK21hjH1JlWtnqwJttR8W+7ptZwpR4DbLWFzxIYwoisjK01xrHlS5UoBVd1twxbPwbYagufJTCEEUlAqQdXqZhzkC+DhXG4qrtl2eI+s/UWPktgCCMiWTPnIF8GC+OxJZLqytZb+CyBIYyIZM2cg3wZLExjSwuKkmUxYNUNQxjZlCNHjqB37964desWGjVqZNR9wsLCkJiYiMTERIvWzd6Z2g1oqUG+DBbGsfUFRYmkxBBGVjVmzBhs2bIFzz//fJWLck+ePBkbNmzA6NGjjbq0ESlHfboBLTHIl8HCeLa8oGhdcTwhmRtDGFldcHAwPv30U6xevRqurq4AgHv37iElJQUhISES144sob7dgOZe1JbBwnhcbqAMxxOSJTjUXoTIvDp27Ijg4GDs2LFDvG3Hjh0ICQlBhw4dxNuKioowdepUNGnSBC4uLnjsscdw4sQJvcfas2cPWrRoAVdXV/Tu3RuXL1+u8nzff/89unfvDldXVwQHB2Pq1Km4c+eOxV4f1ezUqQ5ISkrEli2jkZSUiFOnOlRbrrpLlYSHX6kSkkyZaVUeLCqyx2BhjPKWyPL9Za/LDVR3IpGZGQat1qPGckQ1YUsY4Y8/gIsXgebNgaAg6zzn2LFjsXnzZowYMQIA8MEHH+DZZ5/FkSNHxDKzZ8/G9u3bsWXLFoSGhmLFihWIiYnBpUuX4OXlhd9//x2DBw/G5MmTMWHCBJw8eRIzZ87Ue56MjAzExsZiyZIl+OCDD3Djxg0kJCQgISEBmzdvts6LJVFdugEtOdOK6xjVDS+vpY/jCclcGMLs3PvvAxMmADod4OAAvPMOMG6c5Z/3mWeewbx583DlyhUAwA8//IBPP/1UDGF37tzBxo0bkZycjH79+gEA3n33XRw4cADvv/8+Zs2ahY0bNyIiIgKrVq0CALRs2RK//vorli9fLj7PsmXLMGLECHHQffPmzbF27Vr07NkTGzduhIuLi+VfLInq2g1oyW4dBoua2fJFk+uD4wnJnBjC7Ngff/wdwICyf59/HoiJsXyLmK+vL/r374/k5GQIgoD+/fvDx8dH3J6RkYGSkhI8+uij4m2Ojo7o3Lkzzp8/DwA4f/48unTpove4UVFRer///PPP+OWXX7B161bxNkEQoNPpkJmZidatW1vi5ZEBUo8vYrAwHtd8qh7HE1aPkxZMwxBmxy5e/DuAlSstBS5dsk635NixY5GQkAAAeOuttyzyHLdv38bzzz+PqVOnVtnGSQDWJ3U3IINF3XA/VCX1iYQccdKC6RjC7Fjz5mVdkBWDmFoNNGtmneePjY1FcXExVCoVYmJi9LZFRETAyckJP/zwA0JDQwEAJSUlOHHihNi12Lp1a3z99dd69/vxxx/1fu/YsSPOnTuHZtZ6URZmC2ebUncDyn3/kLxJfSIhR1wE2XQMYXYsKKhsDNjzz5e1gKnVwNtvW29wvlqtFrsW1Wq13jZ3d3dMmjQJs2bNgpeXF0JCQrBixQrcvXsX4/5v0NrEiROxatUqzJo1C+PHj0daWlqV9cXmzJmDrl27IiEhAePHj4e7uzvOnTuHAwcOGHXmVhtrhiIln22yG5BsidQnEnLGSQt1wxBm58aNKxsDdulSWQuYtQJYOU9PT4PbXn/9deh0OowcORKFhYV45JFH8M0336Bx48YAyroTt2/fjunTp2PdunXo3LkzXnvtNYwdO1Z8jIcffhhHjx7FSy+9hO7du0MQBERERGDo0KH1rru1Q5GSzzbZDUhKxxOJ2nHSQt0xhBGCgqwXvmpbCf+rr74S/+/i4oK1a9di7dq1BssPGDAAAwYM0Lvt2Wef1fu9U6dO2L9/v8HHqG5tMWMYG3YsEYqUeLbJgEVKxhOJ2nHSQt0xhBGZiaGWKUs8D882iazPngOWMThpoe4YwojMwJotUzzbJCI54qSFumMII6ona7dM8WyT5M4WZvGSaThpoW4YwojqydotUzzbJDlT8ixeMg0nLZiOIUzhBEGQugo2r7Z9LEXLlBzONq29PAdbVpRBybN4yTSctGA6hjCFKl9Xq7i4GK6urhLXxraVH1gqr2VWzlotU3I627RmawdbVpRLibN4yTT82zMNQ5hCNWjQAG5ubrhx4wYcHR3h4OBQ+52oznQ6HW7cuAE3Nzc0aKD/51Ix7NTUMmWuUCSns01rLs8h5VIgZDrO4iWqHUOYQqlUKgQEBCAzMxNXrlyRujo2zcHBASEhIVCpVHq3SxGK5Hq2aa3lOaz9XGQ6zuIlqh1DmII5OTmhefPmbAGwMCcnJ4MtjXINRdZkzS4ndm8pB2fxEtWOIUzhHBwc4OLiInU1yE5Zs8uJ3VvKwlm8RLVjCCMik1mzy4ndW8ojh1m8JF+c9cwQRkT1YM0uJ3ZvKYOcZvGSfHHWcxmGMCIzsNczOmt2ObF7SxnkNIuX5IvryZVhCCOqJ3s8o7Pm8hzWXgqE6s9WPudkHfY84YYhzE7Ya0uNNdjjOlbWbO1gywqR7bL3CTcMYXbAHltqpGQv61hZ87PCzyWRbbL3CTcMYXbAHltqpGLPzepEJA0l93TY+4QbhjAiM7H3ZnUisj6l93TY+4QbhjAiM7H3ZnUisj5bmGVoz+vJMYTZIXsZs2Rt9t6sTkTSUtJwCK4nV4YhzM4o6Y9Uaey9WZ2IpGPt4RD1HYfGWc9lGMLsCMcsWQbXsSIiqVlzOIS5xqHZesAyBkOYHeGYJcvgGR0RSc2awyFsYRyaXDCE2YHyFpja/kiV2FIjl6nZDFhEJCWphkNwiEv9MITZgYotNQ88UIA5czQoLVVBrRawfHkBnn56uCJbapQ+NZuIyJysPcuQQ1zqjyHMTpSHkJkzgaFDgUuXgGbNVAgKagSgkZRVMxmbxInI3kk5y5BDXOqPIcwOBQWV/dgSNokTUV3IZShDfUk5JpXL8tQfQxgpHpvEiaguKg9lMNSKrpShDFLVkcvy1B9DGCmevTeJ28oZPZG1VPx7qakVnUMZamfPq92bA0MYKZ49N4lzcgKR6diKbhqudm8+DGGkePbcJG7smTrP6ImqsvdWdFNxbUTzYQgjm8Am8TK8LiiR8azVim6LQwaUVl+5YggjxWKTuD7OECWqG2u0otvaJAAyL4YwUiw2if+NY1uITGPpVnROAqCaMISRotlDwDIGx7YQmc5QK7o58USJquNQexEikrvysS0V2csMUaK6MnaIgjmHMtR0okT2iy1hRDbAnmeIEtWVFEMZ7HkpHTKMIYwUxxZnGpmq4pl6TWNb7GVyApGxrH2M4IkSVYchjBSFi5Pq4+QEIuVQylI6PNG1HoYwUhQuTloVD4ZEymGNSQD1wSU1rEsxA/MHDRqEkJAQuLi4ICAgACNHjkRWVpa4fdGiRVCpVFV+3N3d9R5n27ZtaNWqFVxcXNC2bVvs2bNHb7sgCFiwYAECAgLg6uqK6OhoXLx4Ua9MXl4eRowYAU9PTzRq1Ajjxo3D7du39cr88ssv6N69O1xcXBAcHIwVK1aYeY/IU25uLrKzsw3+5ObmmvX5tFoPZGaGQav1MOvjEhGZgxSTAOqj8pIaSUmJ2LJlNJKSEnHqVIdqy5HpFNMS1rt3b7z44osICAjAn3/+iRdeeAFDhgzBsWPHAAAvvPACJk6cqHefvn37olOnTuLvx44dw/Dhw7Fs2TIMGDAAKSkpiIuLw6lTp/DQQw8BAFasWIG1a9diy5YtCA8Px/z58xETE4Nz587BxcUFADBixAhkZ2fjwIEDKCkpwbPPPosJEyYgJSUFAFBQUIAnnngC0dHR2LRpE3799VeMHTsWjRo1woQJE6yxuyRh7a5CLk5aP+xyILI8pQ4Z4JIa1qGYEDZ9+nTx/6GhoZg7dy7i4uJQUlICR0dHNGzYEA0bNhTL/Pzzzzh37hw2bdok3rZmzRrExsZi1qxZAIBXX30VBw4cwPr167Fp0yYIgoCkpCS8/PLLePLJJwEAH374Ifz8/PDVV19h2LBhOH/+PPbt24cTJ07gkUceAQCsW7cO//jHP7By5UoEBgZi69atKC4uxgcffAAnJyc8+OCDOHPmDN58802bDmHW7CrkAaJ+OLZO2RiglUWJ7wXXHrQOxYSwivLy8rB161Z069YNjo6O1ZZ577330KJFC3Tv3l28LTU1FTNmzNArFxMTg6+++goAkJmZiZycHERHR4vbNRoNunTpgtTUVAwbNgypqalo1KiRGMAAIDo6Gg4ODjh+/Dj+3//7f0hNTUWPHj30mpdjYmKwfPly3Lp1C40bNzbHbpA9S17HkAeI+qn8BW7ovWKXg/xwzA5ZA5fUsA5FhbA5c+Zg/fr1uHv3Lrp27Ypdu3ZVW+7evXvYunUr5s6dq3d7Tk4O/Pz89G7z8/NDTk6OuL38tprKNGnSRG97gwYN4OXlpVcmPDy8ymOUbzMUwoqKilBUVCT+XlBQUG05JbB0VyEPEObDbl15MLZ1i5fBIWvgkhrWIWkImzt3LpYvX15jmfPnz6NVq1YAgFmzZmHcuHG4cuUKFi9ejFGjRmHXrl1QqVR69/nyyy9RWFiI0aNHW6zulrBs2TIsXrxY6mrUmzW6CnmAMA9268pDXVq3Kpbhe0eWpJQlNZRM0hA2c+ZMjBkzpsYyTZs2Ff/v4+MDHx8ftGjRAq1bt0ZwcDB+/PFHREVF6d3nvffew4ABA6q0aPn7++PatWt6t127dg3+/v7i9vLbAgIC9Mq0b99eLHP9+nW9x7h//z7y8vL0Hqe656n4HNWZN2+eXndpQUEBgoODDZaXK0t2FXJxUvNit648mNK6xfeOrEHuS2oonaQhzNfXF76+vibdV6cru05exe47oGxc1+HDh/H1119XuU9UVBQOHjyIxMRE8bYDBw6IIS48PBz+/v44ePCgGLoKCgpw/PhxTJo0SXyM/Px8pKWlITIyEgBw6NAh6HQ6dOnSRSzz0ksviZMGyp+nZcuWNY4Hc3Z2hrOzswl7Q14s2VWo1JlGcsVuXXmpS+sW3zuyBKUtqaF0ihgTdvz4cZw4cQKPPfYYGjdujIyMDMyfPx8RERFVWsE++OADBAQEoF+/flUeZ9q0aejZsydWrVqF/v3749NPP8XJkyfxzjvvAABUKhUSExOxZMkSNG/eXFyiIjAwEHFxcQCA1q1bIzY2Fs899xw2bdqEkpISJCQkYNiwYQgMDAQAPP3001i8eDHGjRuHOXPm4OzZs1izZg1Wr15t2R0lE5buKmTAMh9268pLXVq3+N6RJfBE17oUEcLc3NywY8cOLFy4EHfu3EFAQABiY2Px8ssv67Uc6XQ6JCcnY8yYMVCr1VUep1u3bkhJScHLL7+MF198Ec2bN8dXX30lrhEGALNnz8adO3cwYcIE5Ofn47HHHsO+ffvENcIAYOvWrUhISEDfvn3h4OCA+Ph4rF27Vtyu0Wiwf/9+TJ48GZGRkfDx8cGCBQtsenkKgF2FSsVxHzWz5nIQdW3d4ntHlsCAZT0qQRAEqStB1SsoKIBGo4FWq4Wnp6fU1TEK1y9SBq4TZhxrLQeRnZ0ttsjXNCas/ESuvGxNJkyYoDe2lYisx9jvb0W0hJFy2PMXtpKwy8E4UiwHUVvrFsfsENkOhjAiO2XvAasurL0cRE0z0higiWwHQxgRUS0svRxEXVu3GLCsh0MsyJIYwoiIamHp5SDYuiVPvESUvFUMyFlZDsjMbIDw8PsIDCxbwkoJfzMMYUREtbDGchBy/7KwR7xElHxVDMg1vTdyD8gMYUSVsPuBqsPlIOwXLxElP+XH6NreG7kHZIYwogq4dAPVxBKXcGHolz9eIkq+lP7eMIQRVVD5y9DQGBBLn13xi1keLL0cBMccKQMvESVfSn9vGMKIDKhpnIElsTVOPiw9YJ5jjpSBl4iSL6W/NwxhRNWQcgyIXFrjqIw1gi7HHMkfxwTKl5LfG4YwsmmmduvJZZyBVK1xZF1y+bxRzSwxJpDMQ6nvDUMY2az6dOvJYZwBW0fshxw+b1SVrVwiimNM5YshjGxWfbr15DDOgK0j9kMOnzeqyhYW0bXVyR+2EpAZwsgumNKtJ/U4A7aO2BepP29UPSUFk+rY6uQPWwjIAEMY2YG6dOtVPmsyNM7AGmdXbB2xP0od10LyZ4vDG+QesIzBEEY2ry7denI7u2LriG2zlS4Vkj8Ob5AnhjCyeXXt1pP67EpOrXFkWXIL/WS7OLxBnhjCyOYprVuPX8z2he8jWYPSjoP2giGM7IIcu/U4bZyIrEmOx0F7xxBGNkvO3Xq8NBERSYGTP+SFIYxslpy79XhpIiLzYItyzeQy+YPvU/UYwsimKeGPmpcmIjKNrS5Eak5yOBlly79hDGFEErLFtXuIrMVWFyI1N6mDDVv+DWMII5IQ1+4hqj+ezCgHW/71MYQRSYhr9xDVn1xPZjgOSh/DclUMYUQS4to9RPUnx5MZjoOqSq5hWUoMYUQS49o9RPUjx5MZjoOqSo5hWWoMYUQSkPMaZkRKVNPJTH5+PgICAiSrG8dBlZFjWJYaQxiRBOQwbZzI1pR/mefleev9/vnnn0vW7WfJcVBKHHPGln99DGFEEpHbwZFIaSq3FMtxmQpLjYNS0pgztvwbxhBGRESK5O3tjaFDh+Kzzz6T7cw7S42DUtKYM0Mt//n5+bh//z4AwNHREcXFxcjOzha3y7Elz9wYwoiISLE0Gg0A+c68s8Y4KCWMOascpnJzc/H555+Lv9vr1Q4YwqgKJY4zICL7JueZd5YcByXXFsDa8GoHZRjCSI+SxhkQEZUzpcXJkiec1hoHJdcWQGMpNUSaC0MY6TH2rMPWz06IzImty9ZRlxYnS1/821ozoOXcAmgMpYfI+mIIoxoZOjARkXHYumxdhlqcKrNGd5g13k+lr72l9BBZXwxhZJASBnvWFVskyNqUNItNiYztzjNUzha6w5S89pbSQ2R9MYRRtWzhwFQZWyRIarZ4YiO1+nb7KbU7zJbW3lJyiKwvhjCqllIPTDVhiwRJyRZPbOSiPidNSu0Os7WrbhjbjWxrGMKoWko9MBmLLRJkbbZ4YmMLlNwdppSAVZ36diPbCoYwqpaSD0y1YYsEScHWT2yUzJ67w6Riay15pmIIIz0VzzpqOjAp+eyELRIkBVs+sbEF9todJiVbD1jGYAgjPfZwdsIWCbKkyjNwb968Kf6fLS7ywe4wkgOGMKpCyQHLGGyRkC+lLyFieAFQD/HzpeRZbLbEHk44Sf4YwsgusUVCfmxhCRFjFwAdPHgwfHx8xLL8spcG9zlJjSGM7IYtratji2xpCZHaJn/4+PggICBA4loSkdQYwshusPtBOZS+hAgnfxCRMRjCyK4wYMmfLSwhwskfplH6mECiumIIIyJZsYVWJE7+qDtbGBNIVFcMYUQkK7bSisTJH3VjS2MCiYzFEEZVsEuApGRLrUhcANQ0Sh8TSGQshjDSwy4BkgOltiJxAdD6s4UxgUTGYggjPewSIKnYwhIinIFbf7YwJpDIWAxhZBC7BMiabCXAyL1+cmcrYwKJjMEQRtVilwBJgQGGbGlMIFFtGMKoWuwSICKpKHVMIFFdMYRRtZTWJcAZnUTKZgtjAonqiiGMqqWkLgHO6CRSPlsZE0hUF0aHsIKCAqMf1NPT06TKkLwopUuAMzqJbAMDFtkbo0NYo0aNoFKpaiwjCAJUKhVKS0vrXTGShtK7BDijk4gq4lAFkjOjQ9jhw4ctWQ+SCSV3CXBGJxFVxKEKJHdGh7CePXtash4kI0o9GHFGJxFVxKEKJHcmD8zPz8/H+++/j/PnzwMAHnzwQYwdOxYajcZslSOqC6XN6CQi6+FQBZIjh9qLVHXy5ElERERg9erVyMvLQ15eHt58801ERETg1KlT5q4jkVHKZ3SqVDoAkPWMTiKyHkNDFbRaD4lrRvbOpJaw6dOnY9CgQXj33XfRoEHZQ9y/fx/jx49HYmIivvvuO7NWkshYSpnRSUTWw6EKJFcmt4TNmTNHDGAA0KBBA8yePRsnT540W+UqGjRoEEJCQuDi4oKAgACMHDkSWVlZemW++eYbdO3aFR4eHvD19UV8fDwuX76sV+bIkSPo2LEjnJ2d0axZMyQnJ1d5rrfeegthYWFwcXFBly5d8NNPP+ltv3fvHiZPngxvb280bNgQ8fHxuHbtml6Zq1evon///nBzc0OTJk0wa9Ys3L9/3yz7gvRVN6MzPPxKlYOrXGd0EpFllQ9VqIhDFUgOTGoJ8/T0xNWrV9GqVSu923///Xd4eFimebd379548cUXERAQgD///BMvvPAChgwZgmPHjgEAMjMz8eSTT2LGjBnYunUrtFotpk+fjsGDB4tdpJmZmejfvz8mTpyIrVu34uDBgxg/fjwCAgIQExMDAPjss88wY8YMbNq0CV26dEFSUhJiYmKQnp6OJk2aAChrCdy9eze2bdsGjUaDhIQEDB48GD/88AMAoLS0FP3794e/vz+OHTuG7OxsjBo1Co6Ojnjttdcssn/smZJndBKR5Slp8WmyLypBEIS63mnq1Kn48ssvsXLlSnTr1g0A8MMPP2DWrFmIj49HUlKSuetZxddff424uDgUFRXB0dERX3zxBYYPH46ioiI4OJQ18O3cuRNPPvmkWGbOnDnYvXs3zp49Kz7OsGHDkJ+fj3379gEAunTpgk6dOonTmnU6HYKDgzFlyhTMnTsXWq0Wvr6+SElJwZAhQwAAFy5cQOvWrZGamoquXbti7969GDBgALKysuDn5wcA2LRpE+bMmYMbN24Y3SJTUFAAjUYDrVbLBXCJiOooOzsb77zzjvh72ezIqkMVJkyYgICAACmqSDbK2O9vk7ojV65cicGDB2PUqFEICwtDWFgYxowZgyFDhmD58uUmV9pYeXl52Lp1K7p16wZHR0cAQGRkJBwcHLB582aUlpZCq9Xio48+QnR0tFgmNTUV0dHReo8VExOD1NRUAGXTlNPS0vTKODg4IDo6WiyTlpaGkpISvTKtWrVCSEiIWCY1NRVt27YVA1j58xQUFOC3334z+LqKiopQUFCg90NERKbhUAWSO5O6I52cnLBmzRosW7YMGRkZAICIiAi4ubmZtXKVzZkzB+vXr8fdu3fRtWtX7Nq1S9wWHh6O/fv346mnnsLzzz+P0tJSREVFYc+ePWKZnJwcvWAEAH5+figoKMBff/2FW7duobS0tNoyFy5cEB/DyckJjRo1qlImJyenxucp32bIsmXLsHjxYiP3BhER1YRDFUjuTGoJK+fm5oa2bduibdu2JgWwuXPnQqVS1fhTHn4AYNasWTh9+jT2798PtVqNUaNGobw3NScnB8899xxGjx6NEydO4OjRo3BycsKQIUNgQo+rJObNmwetViv+/P7771JXiYhI0by9vREQEGDwhwGMpGRSS9i9e/ewbt06HD58GNevX4dOpz/rxNi1wmbOnIkxY8bUWKZp06bi/318fODj44MWLVqgdevWCA4Oxo8//oioqCi89dZb0Gg0WLFihVj+448/RnBwMI4fP46uXbvC39+/yizGa9euwdPTE66urlCr1VCr1dWW8ff3BwD4+/ujuLgY+fn5eq1hlctUnlFZ/pjlZarj7OwMZ2fnGvcHERER2QaTQti4ceOwf/9+DBkyBJ07d671wt6G+Pr6wtfX16T7lge/oqIiAMDdu3fFAfnl1Gq1XtnK3ZMAcODAAURFRQEoa5aOjIzEwYMHERcXJ9734MGDSEhIAFA29szR0REHDx5EfHw8ACA9PR1Xr14VHycqKgpLly7F9evXxRmVBw4cgKenJ9q0aWPS6yUi4/CCzUSkFCbNjtRoNNizZw8effRRS9SpiuPHj+PEiRN47LHH0LhxY2RkZGD+/Pm4du0afvvtNzg7O+PQoUOIjo7GokWLMHz4cBQWFuLFF1/EhQsXcP78ebi6uiIzMxMPPfQQJk+ejLFjx+LQoUOYOnUqdu/erbdExejRo/H222+jc+fOSEpKwueff44LFy6I47omTZqEPXv2IDk5GZ6enpgyZQoAiMtllJaWon379ggMDMSKFSuQk5ODkSNHYvz48XVaooKzI4nqhhdsJiI5sOjsyAceeMBi64FVx83NDTt27EDfvn3RsmVLjBs3Dg8//DCOHj0qdt/16dMHKSkp+Oqrr9ChQwfExsbC2dkZ+/btg6urK4Cywfu7d+/GgQMH0K5dO6xatQrvvfeeGMAAYOjQoVi5ciUWLFiA9u3b48yZM9i3b5/eQPvVq1djwIABiI+PR48ePeDv748dO3aI29VqNXbt2gW1Wo2oqCg888wzGDVqFF555RUr7TEi+2TshZh5wWYikgOTWsL27t2LtWvXYtOmTQgNDbVEvQhsCSOqq+rXhfKGl1cu14UiIqsx9vvbpDFhjzzyCO7du4emTZvCzc1NXIerXF4eLwVBRNI6dapDlRXSO3Y8LXW1iIhEJoWw4cOH488//8Rrr70GPz8/kwfmExFZglbrIQYwoOxizTt3DkBExCVeqoaIZMOkEHbs2DGkpqaiXbt25q4PEVG95eV5iwGsnCA4IC/PiyGMiGTDpIH5rVq1wl9//WXuuhARmYWXVy5UKv31C1UqHby8OFSCiOTDpJaw119/HTNnzsTSpUvRtm3bKmPCOIicSB/XrrIujaYQAwfuqjImjK1gRCQnJoWw2NhYAEDfvn31bhcEASqVCqWlpfWvGZGN4NpV1lPxQswdO55GRMQl5OV5wcsrTy+A8YLNRCQHJoWww4cPm7seRDarcguYoWUTuHZV/cnxgs1sBSUiQ0wKYT179jSq3L/+9S+88sor8PHxMeVpiGwOl02wPDkFGraCElFNTBqYb6yPP/4YBQUFlnwKIsUwtGyCVmu9q0+QdXEFfyKqiUVDmAmL8RPZrJqWTSD7oNV6IDMzjMGbiACY2B1JRHVXvmxCxSDGZRPsB7uiiagyi7aEEdHfypdNKF+/issm2A92RRNRddgSRmRFNS2bQHWnlJmHXMGfiKrDEEZkYZXXpNJoCqv94uXaVXWjpJmH7IomoupYNIQ988wzXD2f7J4c166yBUqaecgV/ImoOiaHsPz8fPz000+4fv06dDr9a7SNGjUKALBx48b61Y7IRjBgWZ6hRXCtpbqu0fz8fPH/XMGfiCozKYTt3LkTI0aMwO3bt+Hp6QmVSiVuU6lUYggjIrIGqWceGts1OmHCP6DRaPRuYysokf0yKYTNnDkTY8eOxWuvvQY3Nzdz14mIyGiGZh5GRFyyWouYsV2eGo0GAQEBFq4NESmFSUtU/Pnnn5g6dSoDGBFJTo6L4HJRViIyhkktYTExMTh58iSaNm1q7voQEdWJ3GYeSt01SkTKYXQI+/rrr8X/9+/fH7NmzcK5c+fQtm1bODo66pUdNGiQ+WpIRFQDOc08lEPXKNkfpayXV1e2+roqMjqExcXFVbntlVdeqXKbSqVCaWlpvSpFRFSbijMK5TLzkIuymsYevmwtRUnr5dWFrb6uyowOYZWXoSAikpIc11+TW9eoEtjLl62lKGm9vLqw1ddVmUljwj788EMMHToUzs7OercXFxfj008/5RIVpBg8A1c2ub03cuoaVYrKf3+G1ntT+pettRjafzdv3qxSVknHN6nXAbQUk0LYs88+i9jYWDRp0kTv9sLCQjz77LMMYaQIlc/ADf2R8wy8Zgyy8uwaVSJOaqifmvbfjh07qr2PEo5vtvy5MCmECYKgt0BruT/++KPKQoREclUxONT0R84zcMPYlVRGjl2jSsNJDfVj6v6T+/HN1j8XdQphHTp0gEqlgkqlQt++fdGgwd93Ly0tRWZmJmJjY81eSSJLsvU/ckuyl3EbxmDAqh9Oaqif2vafUrvzbP1zUacQVj5D8syZM4iJiUHDhg3FbU5OTggLC0N8fLxZK0hkabb+R25NSj3Qk/Q4qaF+atp/Su7Os/XPRZ1C2MKFCwEAYWFhGDp0KFxcXCxSKSJrsvU/cmtR8oGepMdJDfVjaP8BUHRLv61/LkwaEzZ69GgAZV0M169fr7J8RUhISP1rRmQltv5Hbg3s0iVzqGlSA1WvtkkhmZlhimzpt5fJLiaFsIsXL2Ls2LE4duyY3u3lA/a5WCspDQ/+9cMuXTJV5S9Rjaaw2s+M0r9sjVXX2caGJoXcvHkTO3bsUGxLv71MdjEphI0ZMwYNGjTArl27EBAQUO1MSSKlMXTwryt7XLJBqQd6kp69fNkaw9TZxjXtGyW39NvDe25SCDtz5gzS0tLQqlUrc9eHyGqMPbOuyxm4va49puQDPUnPlv4W6sOcs42N7c67e/du3StKZmNSCGvTpk21q+8SKYklzsDtbe0xexm3QSSF+sw29vb2xjPPPIOPP/4YgOGW/o8//tjmTgqVxKQQtnz5csyePRuvvfYa2rZtC0dHR73tnp6eZqkckaVZ6sBjLwPV2ZVEZBnmmG3s5uZmVDlbOSlUIpNCWHR0NACgT58+euPBODCfqIw9DVRnwCIyL0udxHEdP/kxKYQdPnzY3PUgsikcqE5EprLESRzX8ZMnh9qLVNWzZ084ODjg3Xffxdy5c9GsWTP07NkTV69ehVqtNncdiRSnfKC6SlW2hh4HqlN95ObmIjs72+BPbm6u1FUkMyo/iauoPidxhlrWtFqPeteV6seklrDt27dj5MiRGDFiBE6fPo2ioiIAgFarxWuvvYY9e/aYtZJESsS1x+RFqUuH8CLp9sfcs43taXiE0pgUwpYsWYJNmzZh1KhR+PTTT8XbH330USxZssRslSNSOnOtPUb1o+QgUzk4GhrXw8HVymep2cYcHiFfJoWw9PR09OjRo8rtGo0G+fn59a0TkWJZYu0xqj9bCTIc12PbLDXbmOv4yZdJIczf3x+XLl1CWFiY3u3ff/89mjZtao56ESkSl2yQP6UGGXtZ9sTemfPYwHX85M+kEPbcc89h2rRp+OCDD6BSqZCVlYXU1FS88MILmD9/vrnrSKQoDFjypeQgw3E9VFc8KZQ/k0LY3LlzodPp0LdvX9y9exc9evSAs7MzXnjhBUyZMsXcdSQiMgslBxmO6yFTMGDJm0lLVKhUKrz00kvIy8vD2bNn8eOPP+LGjRt49dVXzV0/IiKzMffUf2visidEtseklrByTk5OaNOmjbnqQkRkUUofoMxlT4hsS71CGBGR0igtyFQeNG1o2RMOriZSHoYwIrJ5Sg4yHFxNZLtUgiAIUleCqldQUACNRgOtVgtPT0+pq0OkaEpdMZ+IlMfY72+2hJHNqPglm5XlgMzMBggPv4/AwLKBzPyStW9874lIbhjCyCZUvCxNTYtxyvGyNEREZJ9MWqKCSG7KW8AMLcap1XrolSMiIpIaQxjZlJoW4yQiIpIThjCyKUpejJOIiOwLQxjZFK4qTkRESsGB+WRzlLYYJxER2SeGMLJJhhbjJCIikguGMCKyaVyklYjkiiGMbIKxl5uR42VpyHIqrh9XE64fR0RSYAgjm8Dr61F1Kn8etFoP5OV5w8srV6+7muvHEVkOW6MNYwgj/PEHcPEi0Lw5EBQkdW1MZ69/xGScmq6kQGQsBoq6YWt0zRjC7FT5gSQlxRWzZ2ug06ng4CBgxQotnn76Lx5IyKYYupJCRMQlTuAgozFQ1B1bo2vGEGaHyg8kWq0HkpISIQgqAIBOp8KsWZ74888PoNEU8kBCNqOmKykwhJGxGCjqh63RVTGE2aHyA0RtX0w8kJCtKL+SQsXPO6+kQPXBQFE3bI2uHlfMt2O8xA/ZC15JgUyRm5uL7Oxs8efmzZsADAcKrdZDyurKGq/rWz3FhLBBgwYhJCQELi4uCAgIwMiRI5GVlaVX5vPPP0f79u3h5uaG0NBQvPHGG1Ue58iRI+jYsSOcnZ3RrFkzJCcnVynz1ltvISwsDC4uLujSpQt++uknve337t3D5MmT4e3tjYYNGyI+Ph7Xrl3TK3P16lX0798fbm5uaNKkCWbNmoX79+/Xf0eYEb+YyJ507HgaiYlJGD06GYmJSWy1oBqVD9t45513xJ8dO3YAYKAwBU/6q6eYENa7d298/vnnSE9Px/bt25GRkYEhQ4aI2/fu3YsRI0Zg4sSJOHv2LDZs2IDVq1frDaLMzMxE//790bt3b5w5cwaJiYkYP348vvnmG7HMZ599hhkzZmDhwoU4deoU2rVrh5iYGFy/fl0sM336dOzcuRPbtm3D0aNHkZWVhcGDB4vbS0tL0b9/fxQXF+PYsWPYsmULkpOTsWDBAgvvpbrjFxPZssrrwmk0hQgPv1LlRIPrx1Fl1Y3/yswMg1brwUBhAp70V08lCIIgdSVM8fXXXyMuLg5FRUVwdHTE008/jZKSEmzbtk0ss27dOqxYsQJXr16FSqXCnDlzsHv3bpw9e1YsM2zYMOTn52Pfvn0AgC5duqBTp05ieNPpdAgODsaUKVMwd+5caLVa+Pr6IiUlRQyBFy5cQOvWrZGamoquXbti7969GDBgALKysuDn5wcA2LRpE+bMmYMbN24YfcAvKCiARqOBVquFp6enWfYbAGRnZ+Odd96ptdyECRMQEBBgtuclkgKXFCBTVDxOVjf+C4DBMWE8dv6t8vdN2WSGqtf1tbV9Zuz3tyIH5ufl5WHr1q3o1q0bHB0dAQBFRUVwc3PTK+fq6oo//vgDV65cQVhYGFJTUxEdHa1XJiYmBomJiQDKznzS0tIwb948cbuDgwOio6ORmpoKAEhLS0NJSYne47Rq1QohISFiCEtNTUXbtm3FAFb+PJMmTcJvv/2GDh06VPu6ioqKUFRUJP5eUFBgwt4hoooYsKg+DI3/SkxMQmJiUrWBgv5WXWt0dfvKXlujFRXC5syZg/Xr1+Pu3bvo2rUrdu3aJW6LiYnB9OnTMWbMGPTu3RuXLl3CqlWrAJQl8bCwMOTk5OgFIwDw8/NDQUEB/vrrL9y6dQulpaXVlrlw4QIAICcnB05OTmjUqFGVMjk5OWKZ6h6jfJshy5Ytw+LFi+uwR4gsjy1JZM9qGv9VXdc2YL+Bojq8mknNJA1hc+fOxfLly2ssc/78ebRq1QoAMGvWLIwbNw5XrlzB4sWLMWrUKOzatQsqlQrPPfccMjIyMGDAAJSUlMDT0xPTpk3DokWL4OCgjKFv8+bNw4wZM8TfCwoKEBwcbPbn4XUWyVhcnJLsXW3LmwwePBg+Pj7iNnsOFIZwfxgmaQibOXMmxowZU2OZpk2biv/38fGBj48PWrRogdatWyM4OBg//vgjoqKioFKpsHz5crz22mvIycmBr68vDh48qPcY/v7+VWYxXrt2DZ6ennB1dYVarYZara62jL+/v/gYxcXFyM/P12sNq1ym8ozK8scsL1MdZ2dnODs717g/zIFnJmQsY9eK45pyZKvKB5RXHv9V3gLm4+NjU2OZyLokDWG+vr7w9fU16b46XdkMi4pjqABArVbjgQceAAB88skniIqKEp8jKioKe/bs0St/4MABREVFASgLHpGRkTh48CDi4uLE5zl48CASEhIAAJGRkXB0dMTBgwcRHx8PAEhPT8fVq1fFx4mKisLSpUtx/fp1NGnSRHweT09PtGnTxqTXa24MWGQKQyuEE9myjh1PIyLiEsd/kdkpYkzY8ePHceLECTz22GNo3LgxMjIyMH/+fERERIjB5+bNm/jiiy/Qq1cv3Lt3D5s3bxaXkCg3ceJErF+/HrNnz8bYsWNx6NAhfP7559i9e7dYZsaMGRg9ejQeeeQRdO7cGUlJSbhz5w6effZZAIBGo8G4ceMwY8YMeHl5wdPTE1OmTEFUVBS6du0KAHjiiSfQpk0bjBw5EitWrEBOTg5efvllTJ482SotXUSWwBXCyZ5wQDlZgyJCmJubG3bs2IGFCxfizp07CAgIQGxsLF5++WW9ULNlyxa88MILEAQBUVFROHLkCDp37ixuDw8Px+7duzF9+nSsWbMGQUFBeO+99xATEyOWGTp0KG7cuIEFCxYgJycH7du3x759+/QG2q9evRoODg6Ij49HUVERYmJisGHDBnG7Wq3Grl27MGnSJERFRcHd3R2jR4/GK6+8YuE9RWQZvOQI2RsO2yBrUOw6YfbAUuuEERmrfI2fzMwwbNkyusr20aOTER5+xebW+CEi2yDV7G6bXieMiKyLF8AmIqWpPLvb0JhWKWd3M4QRUa1qmyFGRCQ3FVvAahrTKuXsboYwIjKo4qDjmmaIcXAyEcmVnMe0MoQRkUEcnExESlfTVQ8YwohI1hiwiEjJ5DymlSGMbAqvc0hEUuIxSH7kPKaVIYwkY+6DFa9zSGRdDBz6lDAbz17J9aoHDGFkFnU9GFsiMPE6h0TWw5OeqpQwG8+eGbrqgZQYwqjeTDkYMzARKVvlv01DrT72+Dcs59l49sTYWdtSzu5mCKN6M/Ygm5WVJZa9efOmJasEgBebJrIWXldUn5xn49kTJczuZggjq9mxY4fVnotfCkTWIadWH7mMUZPzbDx7I/eucIYwkgVztlrJ6UuByNbJpdVHToPi5Twbj+SFIYwkZ+5WK7l8KRDZA7m0+shtULxcZ+ORvDjUXoSobrRaD2RmhkGr9TCqbHWtVsbc15DyL4WK2BVAZBnlrT7lf3NSt/pY4phiKo2mEOHhVxjAyCC2hJFZ1bVVy5ytVuUzXGrrCuB1DonMS06tPlK2hCthNh7JC0MYmY0pY7Fq68qoy8Gq8kyYBQtu4PLlBggLu4/AwE4AOkk+E4bIVlT+2zS0BpO1A4eU3aNKmI1H8sIQRvVWfpA15gy08mDZ8larXbsGQqdTQa0WsHx5AZ5+erhJB6uK5QMCgMjIer44IqqWXAOH1IPiGbCoLhjCqN7KD8aXL9/HRx8J0OlU4jYHB0E8AzXUVdmx42ksWNAFhYV+aNZMhaCgRgAaSfJaiMh4dQ0c1lpCQk7do0Q1YQgjs/D29oa3N/DOO8DzzwOlpYBaDaxadQf5+YW1dlWGhTUATyCJbJe1l5CQ4yVqiCpjCCOzGjcOiIkBLl0CmjUDgoIaIjc3AYcPA6tXV+2qfPTR0ejVi034RLbO0ktIcFA8KRFDGJldUFDZTzlvb2907Qo4OAC6CitHqNVAly7ebAEjsiOWWkxZrmPUiGrCEEZWERRUtavy7bf1wxoR2T5LLiHBgEVKwxBGVlO1q1LqGhHZD15XkUh+GMLIqip3VRKR5VUeFG8Ir6toHLkEWlI+hjAiIhtXOTAYmpnI6yrWTk4XCiflYwgjIrIjdb20mKUodQkJuV0onJSNF/AmIrITUl7c2taWkJDThcJJudgSRkRkJ6S8uLWtLSEh5b4k28EQRkRkJ6SemaiUgGUMqfcl2QZ2RxIR2YnymYkqVdmqyUqcmSgX3JdkDmwJIyKyI0qemSg33JdUXwxhREQ2rvJgd0MzE5UyKF5OlDrLk+SBIYyIyMbZ2qB4KdnaLE+SlkoQBEHqSlD1CgoKoNFooNVq4enpKXV1SEJcoZtIPvj3SLUx9vubLWFEMienS84QkW3N8iRpcXYkkcwZu/I2V+gmIlIWhjAiIiIiCTCEEREREUmAIYyIiIhIAhyYT6QwWq0H8vK84eWVy/WJiMhiKs4CzcpyQGZmA4SH30dgYNlVAjgLtP4YwogU5NSpDti5cwAEwUG8TErHjqelrhYR2ZiKs7JrOu5wVnb9sDuSSCG0Wg/xQAgAguCAnTsHQKv1kLhmRGRrylvAajvucFZ2/TCEEclc+crbeXne4oGwnCA4IC/PS68cEZG51HbcofphdySRzJVfcuby5fv46CMBOp1K3KZWC5gypR/CwhqwS4CIzM7LKxcqlU4viKlUOnh55UlYK9vBljAiBfD29kZkpB/eeUcFtbrsNrUaePttFSIj/RjAiMgiNJpCDBy4CypV2WD88jFhnBRkHmwJI1KQceOAmBjg0iWgWTMgKEjqGhGRrevY8TQiIi4hL88LXl55DGBmxBBGpDBBQQxftoTLAJASaDSFDF8WwBBGRCQRLgNAJJ0//gAuXgSaN5fuxJZjwoiIJMJlAEiujJ1trbRZ2bm5ucjOzsaqVfkIDRXQpw8QGipg1ap8ZGdnIzc316r1YUsYEZHEaloGgF1AJIXyWdk1nQAorau8vOVZq/VAUlIiBKFsprlOp8KsWZ74888PoNEUWrXlmSGMiEhiXAaA5EhJAcsY5YGytpMea7Y8szuSiEhiXAaAyHrKT3oqkuqkhy1hREQywGUAiKyj/KSn8kQYKf7mGMKIiGSCywAQWYdcTnoYwoiIiMjuyOGkh2PCiIgkYqvLABCRcdgSRkQkEVtcBoCIjMcQRkQkIQYsIuuQY8szQxgRERHZPDm2PDOEERERkV2QW8szB+YTERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgRERGRBBQXwoqKitC+fXuoVCqcOXNGb9svv/yC7t27w8XFBcHBwVixYkWV+2/btg2tWrWCi4sL2rZtiz179uhtFwQBCxYsQEBAAFxdXREdHY2LFy/qlcnLy8OIESPg6emJRo0aYdy4cbh9+3ad60JERET2S3EhbPbs2QgMDKxye0FBAZ544gmEhoYiLS0Nb7zxBhYtWoR33nlHLHPs2DEMHz4c48aNw+nTpxEXF4e4uDicPXtWLLNixQqsXbsWmzZtwvHjx+Hu7o6YmBjcu3dPLDNixAj89ttvOHDgAHbt2oXvvvsOEyZMqFNdiIjq6o8/gMOHy/4lIhsgKMiePXuEVq1aCb/99psAQDh9+rS4bcOGDULjxo2FoqIi8bY5c+YILVu2FH9/6qmnhP79++s9ZpcuXYTnn39eEARB0Ol0gr+/v/DGG2+I2/Pz8wVnZ2fhk08+EQRBEM6dOycAEE6cOCGW2bt3r6BSqYQ///zT6LoYQ6vVCgAErVZbp/sRke24efOmkJWVJaxceUtwcNAJgCA4OOiElStvCVlZWcLNmzelriIRVWLs97diWsKuXbuG5557Dh999BHc3NyqbE9NTUWPHj30LjcQExOD9PR03Lp1SywTHR2td7+YmBikpqYCADIzM5GTk6NXRqPRoEuXLmKZ1NRUNGrUCI888ohYJjo6Gg4ODjh+/LjRdalOUVERCgoK9H6IyH7l5uZi/fr1eOONTzBrlid0OhUAQKdTYdYsT7zxxidYv349cnNzJa4pEZlCESFMEASMGTMGEydO1As/FeXk5MDPz0/vtvLfc3JyaixTcXvF+xkq06RJE73tDRo0gJeXV63PU/E5qrNs2TJoNBrxJzg42GBZImtjV5j1lV9eJS/PG5XPmQXBAXl5XnrliEhZJA1hc+fOhUqlqvHnwoULWLduHQoLCzFv3jwpq2tx8+bNg1arFX9+//13qatEBAB4/30gNBTo06fs3/ffl7pG9sXLKxcqlU7vNpVKBy+vvDo9Tm5uLrKzs5GdnY20tGv44otcpKVdE29jixqRdUl67ciZM2dizJgxNZZp2rQpDh06hNTUVDg7O+tte+SRRzBixAhs2bIF/v7+uHbtmt728t/9/f3Ff6srU3F7+W0BAQF6Zdq3by+WuX79ut5j3L9/H3l5ebU+T8XnqI6zs3OV10gkpdzcXFy+fB8TJjSp0BUGPP+8gPbtryMsrIHsrsVmizSaQgwcuAs7dw6AIDhApdJh4MBd0GgKjX6M8q5NADh1qkOVx+rY8TQAICEhge8pkZVIGsJ8fX3h6+tba7m1a9diyZIl4u9ZWVmIiYnBZ599hi5dugAAoqKi8NJLL6GkpASOjo4AgAMHDqBly5Zo3LixWObgwYNITEwUH+vAgQOIiooCAISHh8Pf3x8HDx4UQ1dBQQGOHz+OSZMmiY+Rn5+PtLQ0REZGAgAOHToEnU5Xp7oQyV35l3ZmZhh0utF620pLVVi3bi/Cw6/wS9tKOnY8jYiIS8jL84KXV16dAhjwd5elVushBjCgrFtz584BiIi4BI2mkF2bRFakiDFhISEheOihh8SfFi1aAAAiIiIQFBQEAHj66afh5OSEcePG4bfffsNnn32GNWvWYMaMGeLjTJs2Dfv27cOqVatw4cIFLFq0CCdPnkRCQgIAQKVSITExEUuWLMHXX3+NX3/9FaNGjUJgYCDi4uIAAK1bt0ZsbCyee+45/PTTT/jhhx+QkJCAYcOGiUtnGFMXIrkr/zKurSuMX9rWo9EUIjz8Sp0DWEW1jS8jIutRRAgzhkajwf79+5GZmYnIyEjMnDkTCxYs0Fu/q1u3bkhJScE777yDdu3a4YsvvsBXX32Fhx56SCwze/ZsTJkyBRMmTECnTp1w+/Zt7Nu3Dy4uLmKZrVu3olWrVujbty/+8Y9/4LHHHtNbA8yYuhApRXlXWHkQM6UrjOTDXOPLiKj+JO2ONFVYWBgEQahy+8MPP4z//Oc/Nd73n//8J/75z38a3K5SqfDKK6/glVdeMVjGy8sLKSkpNT6PMXUhUor6doWRfJhjfBkRmYciQxgRWZ9GU8gvaiuruNagOcqVY6gmkgeGMCIimfL29kZCQkKN4+6cnJxMmhjBUE0kPYYwIiIZ48xTIttlMwPziYjIMEt1bRKR6dgSRkTV4pe2bbFk1yYRmUYlVDfNkGShoKAAGo0GWq0Wnp6eUleH7FBubi6/tImI6sjY72+2hBGRQQxYRESWwzFhRERERBJgCCMiIiKSAEMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEuCK+URERArDS4rZBoYwIiIiBcnNzcX69etrLZeQkMAgJnPsjiQiIlKQmlrATClH0mEIIyIiIpIAQxgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgCGMiIhIQZycnPR+12o9kJkZBq3Wo8ZyJD9crJWIiEhBvL29kZCQgOLiYqSkuOKVVzTQ6VRwcBCwYoUWTz/9F1fMVwiVIAiC1JWg6hUUFECj0UCr1cLT01Pq6hARkYz88QcQGgrodH/fplYDly8DQUGSVYtg/Pc3uyOJiIgU6OJF/QAGAKWlwKVL0tSH6o4hjIiISIGaNwccKn2Lq9VAs2bS1IfqjiGMiIhIgYKCgHfeKQteQNm/b7/Nrkgl4cB8IiIihRo3DoiJKeuCbNaMAUxpGMKIiIgULCiI4Uup2B1JREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgNeOlDFBEAAABQUFEteEiIiIjFX+vV3+PW4IQ5iMFRYWAgCCg4MlrgkRERHVVWFhITQajcHtKqG2mEaS0el0yMrKgoeHB1QqldTVsaqCggIEBwfj999/h6enp9TVUSzuR/PhvjQP7kfz4b40D0vsR0EQUFhYiMDAQDg4GB75xZYwGXNwcEBQUJDU1ZCUp6cnDy5mwP1oPtyX5sH9aD7cl+Zh7v1YUwtYOQ7MJyIiIpIAQxgRERGRBBjCSJacnZ2xcOFCODs7S10VReN+NB/uS/PgfjQf7kvzkHI/cmA+ERERkQTYEkZEREQkAYYwIiIiIgkwhBERERFJgCGMiIiISAIMYSSZ7777DgMHDkRgYCBUKhW++uorve2CIGDBggUICAiAq6sroqOjcfHiRWkqK3O17csxY8ZApVLp/cTGxkpTWRlbtmwZOnXqBA8PDzRp0gRxcXFIT0/XK3Pv3j1MnjwZ3t7eaNiwIeLj43Ht2jWJaixPxuzHXr16VflMTpw4UaIay9fGjRvx8MMPiwuJRkVFYe/eveJ2fh6NV9u+lOIzyRBGkrlz5w7atWuHt956q9rtK1aswNq1a7Fp0yYcP34c7u7uiImJwb1796xcU/mrbV8CQGxsLLKzs8WfTz75xIo1VIajR49i8uTJ+PHHH3HgwAGUlJTgiSeewJ07d8Qy06dPx86dO7Ft2zYcPXoUWVlZGDx4sIS1lh9j9iMAPPfcc3qfyRUrVkhUY/kKCgrC66+/jrS0NJw8eRJ9+vTBk08+id9++w0AP491Udu+BCT4TApEMgBA+PLLL8XfdTqd4O/vL7zxxhvibfn5+YKzs7PwySefSFBD5ai8LwVBEEaPHi08+eSTktRHya5fvy4AEI4ePSoIQtln0NHRUdi2bZtY5vz58wIAITU1Vapqyl7l/SgIgtCzZ09h2rRp0lVKwRo3biy89957/DyaQfm+FARpPpNsCSNZyszMRE5ODqKjo8XbNBoNunTpgtTUVAlrplxHjhxBkyZN0LJlS0yaNAm5ublSV0n2tFotAMDLywsAkJaWhpKSEr3PZatWrRASEsLPZQ0q78dyW7duhY+PDx566CHMmzcPd+/elaJ6ilFaWopPP/0Ud+7cQVRUFD+P9VB5X5az9meSF/AmWcrJyQEA+Pn56d3u5+cnbiPjxcbGYvDgwQgPD0dGRgZefPFF9OvXD6mpqVCr1VJXT5Z0Oh0SExPx6KOP4qGHHgJQ9rl0cnJCo0aN9Mryc2lYdfsRAJ5++mmEhoYiMDAQv/zyC+bMmYP09HTs2LFDwtrK06+//oqoqCjcu3cPDRs2xJdffok2bdrgzJkz/DzWkaF9CUjzmWQII7IDw4YNE//ftm1bPPzww4iIiMCRI0fQt29fCWsmX5MnT8bZs2fx/fffS10VRTO0HydMmCD+v23btggICEDfvn2RkZGBiIgIa1dT1lq2bIkzZ85Aq9Xiiy++wOjRo3H06FGpq6VIhvZlmzZtJPlMsjuSZMnf3x8AqszyuXbtmriNTNe0aVP4+Pjg0qVLUldFlhISErBr1y4cPnwYQUFB4u3+/v4oLi5Gfn6+Xnl+LqtnaD9Wp0uXLgDAz2Q1nJyc0KxZM0RGRmLZsmVo164d1qxZw8+jCQzty+pY4zPJEEayFB4eDn9/fxw8eFC8raCgAMePH9frvyfT/PHHH8jNzUVAQIDUVZEVQRCQkJCAL7/8EocOHUJ4eLje9sjISDg6Oup9LtPT03H16lV+LiuobT9W58yZMwDAz6QRdDodioqK+Hk0g/J9WR1rfCbZHUmSuX37tt4ZRmZmJs6cOQMvLy+EhIQgMTERS5YsQfPmzREeHo758+cjMDAQcXFx0lVapmral15eXli8eDHi4+Ph7++PjIwMzJ49G82aNUNMTIyEtZafyZMnIyUlBf/+97/h4eEhjqvRaDRwdXWFRqPBuHHjMGPGDHh5ecHT0xNTpkxBVFQUunbtKnHt5aO2/ZiRkYGUlBT84x//gLe3N3755RdMnz4dPXr0wMMPPyxx7eVl3rx56NevH0JCQlBYWIiUlBQcOXIE33zzDT+PdVTTvpTsM2nVuZhEFRw+fFgAUOVn9OjRgiCULVMxf/58wc/PT3B2dhb69u0rpKenS1tpmappX969e1d44oknBF9fX8HR0VEIDQ0VnnvuOSEnJ0fqastOdfsQgLB582axzF9//SX861//Eho3biy4ubkJ/+///T8hOztbukrLUG378erVq0KPHj0ELy8vwdnZWWjWrJkwa9YsQavVSltxGRo7dqwQGhoqODk5Cb6+vkLfvn2F/fv3i9v5eTReTftSqs+kShAEwXIRj4iIiIiqwzFhRERERBJgCCMiIiKSAEMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIyQXFxsdRVqEKOdSIiwxjCiIgA9OrVCwkJCUhISIBGo4GPjw/mz5+P8iu7hYWF4dVXX8WoUaPg6emJCRMmAAC+//57dO/eHa6urggODsbUqVNx584d8XE3bNiA5s2bw8XFBX5+fhgyZIi47YsvvkDbtm3h6uoKb29vREdHi/ft1asXEhMT9eoYFxeHMWPGiL+bWicikgeGMCKi/7NlyxY0aNAAP/30E9asWYM333wT7733nrh95cqVaNeuHU6fPo358+cjIyMDsbGxiI+Pxy+//ILPPvsM33//PRISEgAAJ0+exNSpU/HKK68gPT0d+/btQ48ePQAA2dnZGD58OMaOHYvz58/jyJEjGDx4MOp6Od+61omI5IMX8CYiQlnL0/Xr1/Hbb79BpVIBAObOnYuvv/4a586dQ1hYGDp06IAvv/xSvM/48eOhVqvx9ttvi7d9//336NmzJ+7cuYM9e/bg2WefxR9//AEPDw+95zt16hQiIyNx+fJlhIaGVluf9u3bIykpSbwtLi4OjRo1QnJyMgCYVCcXF5d67SciMh+2hBER/Z+uXbuKAQwAoqKicPHiRZSWlgIAHnnkEb3yP//8M5KTk9GwYUPxJyYmBjqdDpmZmXj88ccRGhqKpk2bYuTIkdi6dSvu3r0LAGjXrh369u2Ltm3b4p///Cfeffdd3Lp1q851rmudiEg+GMKIiIzk7u6u9/vt27fx/PPP48yZM+LPzz//jIsXLyIiIgIeHh44deoUPvnkEwQEBGDBggVo164d8vPzoVarceDAAezduxdt2rTBunXr0LJlSzEoOTg4VOmaLCkpqXediEg+GMKIiP7P8ePH9X7/8ccf0bx5c6jV6mrLd+zYEefOnUOzZs2q/Dg5OQEAGjRogOjoaKxYsQK//PILLl++jEOHDgEAVCoVHn30USxevBinT5+Gk5OT2LXo6+uL7Oxs8blKS0tx9uzZWl+DMXUiInlgCCMi+j9Xr17FjBkzkJ6ejk8++QTr1q3DtGnTDJafM2cOjh07hoSEBJw5cwYXL17Ev//9b3EQ/K5du7B27VqcOXMGV65cwYcffgidToeWLVvi+PHjeO2113Dy5ElcvXoVO3bswI0bN9C6dWsAQJ8+fbB7927s3r0bFy5cwKRJk5Cfn1/ra6itTkQkHw2krgARkVyMGjUKf/31Fzp37gy1Wo1p06aJyz5U5+GHH8bRo0fx0ksvoXv37hAEARERERg6dCgAoFGjRtixYwcWLVqEe/fuoXnz5vjkk0/w4IMP4vz58/juu++QlJSEgoIChIaGYtWqVejXrx8AYOzYsfj5558xatQoNGjQANOnT0fv3r1rfQ211YmI5IOzI4mIUP1sRCIiS2J3JBEREZEEGMKIiIiIJMDuSCIiIiIJsCWMiIiISAIMYUREREQSYAgjIiIikgBDGBEREZEEGMKIiIiIJMAQRkRERCQBhjAiIiIiCTCEEREREUmAIYyIiIhIAv8fokYhtfbx9AEAAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Import training data\n", + "np.set_printoptions(precision=6, suppress=True)\n", + "\n", + "csv_data = pd.read_csv(datafile_path(\"500_Points_DataSet.csv\"))\n", + "csv_data.columns.values[0:6] = [\n", + " \"pressure\",\n", + " \"temperature\",\n", + " \"enth_mol\",\n", + " \"entr_mol\",\n", + " \"CO2_enthalpy\",\n", + " \"CO2_entropy\",\n", + "]\n", + "data = csv_data.sample(n=500)\n", + "\n", + "input_data = data.iloc[:, :2]\n", + "output_data = data.iloc[:, 2:4]\n", + "\n", + "# # Define labels, and split training and validation data\n", + "input_labels = list(input_data.columns)\n", + "output_labels = list(output_data.columns)\n", + "\n", + "n_data = data[input_labels[0]].size\n", + "data_training, data_validation = split_training_validation(data, 0.8, seed=n_data)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrrElEQVR4nO3deVxV1fo/8M8GGRUOMsigIIhzmgoWYg6ZKHoVrz/xOmQOqZldUVFzypwy0yxzyNJswkpzSOs6Fw7ZIKE5ZJaSEk4BKiAHnAA56/cH37M9+0wMAocDn/frdV5x9l5nn7V33MvTWs96liSEECAiIiKiSmVj6Q4QERER1UQMwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiMisuLg4SJKES5cuWborRNUKgzAisrjjx48jJiYGjz32GGrXro2AgAAMGjQIf/31l0Hbp59+GpIkQZIk2NjYwNXVFc2aNcPw4cMRHx9fqu/dtWsXunbtinr16sHZ2RmNGjXCoEGDsH///vK6NQNvvPEGvvnmG4PjR48exYIFC5CdnV1h361vwYIF8rOUJAnOzs5o2bIlXn31VeTk5JTLd2zatAkrV64sl2sRVTcMwojI4t58801s374d3bt3x6pVqzBu3Dj88MMPCAkJwdmzZw3aN2jQAJ9//jk+++wzvPXWW+jXrx+OHj2Knj17YvDgwSgoKCj2O99++23069cPkiRh9uzZWLFiBaKjo3HhwgVs3ry5Im4TgPkgbOHChZUahGmtXbsWn3/+Od555x00b94cixcvRq9evVAeWwszCCMyrZalO0BENHXqVGzatAn29vbyscGDB6N169ZYunQpvvjiC0V7lUqF5557TnFs6dKlmDRpEt5//30EBgbizTffNPl9Dx48wKJFi9CjRw989913Budv3LjxiHdUddy9exfOzs5m2wwcOBCenp4AgPHjxyM6Oho7duzAL7/8gvDw8MroJlGNxJEwIrK4jh07KgIwAGjSpAkee+wxnDt3rkTXsLW1xerVq9GyZUusWbMGarXaZNuMjAzk5OTgqaeeMnq+Xr16ivf379/HggUL0LRpUzg6OsLX1xcDBgxAcnKy3Obtt99Gx44d4eHhAScnJ4SGhuKrr75SXEeSJNy5cwcbNmyQpwBHjRqFBQsWYPr06QCAoKAg+ZxuDtYXX3yB0NBQODk5wd3dHUOGDMHVq1cV13/66afRqlUrnDhxAl26dIGzszNeeeWVEj0/Xc888wwAICUlxWy7999/H4899hgcHBzg5+eHCRMmKEbynn76aezZsweXL1+W7ykwMLDU/SGqrjgSRkRVkhAC169fx2OPPVbiz9ja2mLo0KGYO3cufvrpJ/Tp08dou3r16sHJyQm7du3CxIkT4e7ubvKahYWF6Nu3Lw4ePIghQ4Zg8uTJyM3NRXx8PM6ePYvg4GAAwKpVq9CvXz8MGzYM+fn52Lx5M/7zn/9g9+7dcj8+//xzjB07Fk8++STGjRsHAAgODkbt2rXx119/4csvv8SKFSvkUSkvLy8AwOLFizF37lwMGjQIY8eOxc2bN/Huu++iS5cuOHXqFNzc3OT+ZmZmonfv3hgyZAiee+45eHt7l/j5aWmDSw8PD5NtFixYgIULFyIiIgIvvfQSkpKSsHbtWhw/fhw///wz7OzsMGfOHKjValy7dg0rVqwAANSpU6fU/SGqtgQRURX0+eefCwDi448/Vhzv2rWreOyxx0x+7uuvvxYAxKpVq8xef968eQKAqF27tujdu7dYvHixOHHihEG7Tz75RAAQ77zzjsE5jUYj/3z37l3Fufz8fNGqVSvxzDPPKI7Xrl1bjBw50uBab731lgAgUlJSFMcvXbokbG1txeLFixXHf//9d1GrVi3F8a5duwoAYt26dSbvW9f8+fMFAJGUlCRu3rwpUlJSxAcffCAcHByEt7e3uHPnjhBCiE8//VTRtxs3bgh7e3vRs2dPUVhYKF9vzZo1AoD45JNP5GN9+vQRDRs2LFF/iGoaTkcSUZVz/vx5TJgwAeHh4Rg5cmSpPqsdacnNzTXbbuHChdi0aRPatWuHb7/9FnPmzEFoaChCQkIUU6Dbt2+Hp6cnJk6caHANSZLkn52cnOSfb926BbVajc6dO+PkyZOl6r++HTt2QKPRYNCgQcjIyJBfPj4+aNKkCQ4fPqxo7+DggOeff75U39GsWTN4eXkhKCgIL774Iho3bow9e/aYzCU7cOAA8vPzERsbCxubh39GXnjhBbi6umLPnj2lv1GiGojTkURUpaSnp6NPnz5QqVT46quvYGtrW6rP3759GwDg4uJSbNuhQ4di6NChyMnJQWJiIuLi4rBp0yZERUXh7NmzcHR0RHJyMpo1a4Zatcz/3+Xu3bvx+uuv4/Tp08jLy5OP6wZqZXHhwgUIIdCkSROj5+3s7BTv69evb5BfV5zt27fD1dUVdnZ2aNCggTzFasrly5cBFAVvuuzt7dGoUSP5PBGZxyCMiKoMtVqN3r17Izs7Gz/++CP8/PxKfQ1tSYvGjRuX+DOurq7o0aMHevToATs7O2zYsAGJiYno2rVriT7/448/ol+/fujSpQvef/99+Pr6ws7ODp9++ik2bdpU6nvQpdFoIEkS9u3bZzQg1c+x0h2RK6kuXbrIeWhEVHkYhBFRlXD//n1ERUXhr7/+woEDB9CyZctSX6OwsBCbNm2Cs7MzOnXqVKZ+tG/fHhs2bEBaWhqAosT5xMREFBQUGIw6aW3fvh2Ojo749ttv4eDgIB//9NNPDdqaGhkzdTw4OBhCCAQFBaFp06alvZ0K0bBhQwBAUlISGjVqJB/Pz89HSkoKIiIi5GOPOhJIVJ0xJ4yILK6wsBCDBw9GQkICtm3bVqbaVIWFhZg0aRLOnTuHSZMmwdXV1WTbu3fvIiEhwei5ffv2AXg41RYdHY2MjAysWbPGoK34v2Kmtra2kCQJhYWF8rlLly4ZLcpau3ZtowVZa9euDQAG5wYMGABbW1ssXLjQoHiqEAKZmZnGb7ICRUREwN7eHqtXr1b06eOPP4ZarVasSq1du7bZciFENRlHwojI4qZNm4adO3ciKioKWVlZBsVZ9QuzqtVquc3du3dx8eJF7NixA8nJyRgyZAgWLVpk9vvu3r2Ljh07okOHDujVqxf8/f2RnZ2Nb775Bj/++CP69++Pdu3aAQBGjBiBzz77DFOnTsWxY8fQuXNn3LlzBwcOHMB///tf/Pvf/0afPn3wzjvvoFevXnj22Wdx48YNvPfee2jcuDHOnDmj+O7Q0FAcOHAA77zzDvz8/BAUFISwsDCEhoYCAObMmYMhQ4bAzs4OUVFRCA4Oxuuvv47Zs2fj0qVL6N+/P1xcXJCSkoKvv/4a48aNw8svv/xIz7+0vLy8MHv2bCxcuBC9evVCv379kJSUhPfffx9PPPGE4t9XaGgotmzZgqlTp+KJJ55AnTp1EBUVVan9JaqyLLk0k4hIiIelFUy9zLWtU6eOaNKkiXjuuefEd999V6LvKygoEB9++KHo37+/aNiwoXBwcBDOzs6iXbt24q233hJ5eXmK9nfv3hVz5swRQUFBws7OTvj4+IiBAweK5ORkuc3HH38smjRpIhwcHETz5s3Fp59+KpeA0HX+/HnRpUsX4eTkJAAoylUsWrRI1K9fX9jY2BiUq9i+fbvo1KmTqF27tqhdu7Zo3ry5mDBhgkhKSlI8G3PlO/Rp+3fz5k2z7fRLVGitWbNGNG/eXNjZ2Qlvb2/x0ksviVu3bina3L59Wzz77LPCzc1NAGC5CiIdkhDlsDkYEREREZUKc8KIiIiILIBBGBEREZEFMAgjIiIisgAGYUREREQWwCCMiIiIyAIYhBERERFZAIu1VmEajQapqalwcXHh1h9ERERWQgiB3Nxc+Pn5wcbG9HgXg7AqLDU1Ff7+/pbuBhEREZXB1atX0aBBA5PnGYRVYS4uLgCK/iWa2wePiIiIqo6cnBz4+/vLf8dNYRBWhWmnIF1dXRmEERERWZniUomYmE9ERERkAQzCiIiIiCyAQRgRERGRBTAnzMppNBrk5+dbuhvVmr29vdklxkRERGXBIMyK5efnIyUlBRqNxtJdqdZsbGwQFBQEe3t7S3eFiIiqEQZhVkoIgbS0NNja2sLf358jNRVEWzA3LS0NAQEBLJpLRETlhkGYlXrw4AHu3r0LPz8/ODs7W7o71ZqXlxdSU1Px4MED2NnZWbo7RERUTVjN8Em/fv0QEBAAR0dH+Pr6Yvjw4UhNTVW0EULg7bffRtOmTeHg4ID69etj8eLFijbff/89QkJC4ODggMaNGyMuLs7gu9577z0EBgbC0dERYWFhOHbsmOL8/fv3MWHCBHh4eKBOnTqIjo7G9evXFW2uXLmCPn36wNnZGfXq1cP06dPx4MGD8nkYAAoLCwGAU2SVQPuMtc+ciIioPFhNENatWzds3boVSUlJ2L59O5KTkzFw4EBFm8mTJ+Ojjz7C22+/jfPnz2Pnzp148skn5fMpKSno06cPunXrhtOnTyM2NhZjx47Ft99+K7fZsmULpk6divnz5+PkyZNo06YNIiMjcePGDbnNlClTsGvXLmzbtg1HjhxBamoqBgwYIJ8vLCxEnz59kJ+fj6NHj2LDhg2Ii4vDvHnzyv25cHqs4vEZExFRhRBW6n//+5+QJEnk5+cLIYT4888/Ra1atcT58+dNfmbGjBniscceUxwbPHiwiIyMlN8/+eSTYsKECfL7wsJC4efnJ5YsWSKEECI7O1vY2dmJbdu2yW3OnTsnAIiEhAQhhBB79+4VNjY2Ij09XW6zdu1a4erqKvLy8kp8j2q1WgAQarXa4Ny9e/fEn3/+Ke7du1fi61HZ8FkTEVUPGRkZIjU11eQrIyOjXL7H3N9vXVaZE5aVlYWNGzeiY8eOco7Orl270KhRI+zevRu9evWCEAIRERFYtmwZ3N3dAQAJCQmIiIhQXCsyMhKxsbEAilYbnjhxArNnz5bP29jYICIiAgkJCQCAEydOoKCgQHGd5s2bIyAgAAkJCejQoQMSEhLQunVreHt7K77npZdewh9//IF27dpVyHMhIiIi4zIzM7FmzZpi28XExMDDw6MSemRF05EAMHPmTNSuXRseHh64cuUK/ve//8nn/v77b1y+fBnbtm3DZ599hri4OJw4cUIxZZmenq4IjADA29sbOTk5uHfvHjIyMlBYWGi0TXp6unwNe3t7uLm5mW1j7Brac6bk5eUhJydH8apuRo0aBUmSIEkS7Ozs4O3tjR49euCTTz4pVamNuLg4g38HREREpujX1FSrXZCSEgi12sVsu4pk0SBs1qxZ8h9kU6/z58/L7adPn45Tp07hu+++g62tLUaMGAEhBICiUgJ5eXn47LPP0LlzZzz99NP4+OOPcfjwYSQlJVnqFktlyZIlUKlU8svf37/CviszMxNpaWkmX5mZmRX23b169UJaWhouXbqEffv2oVu3bpg8eTL69u1brosXiIiIjDl5sh1WrozFhg0jsXJlLE6etMwMlUWnI6dNm4ZRo0aZbdOoUSP5Z09PT3h6eqJp06Zo0aIF/P398csvvyA8PBy+vr6oVasWmjZtKrdv0aIFgKKVis2aNYOPj4/BKsbr16/D1dUVTk5OsLW1ha2trdE2Pj4+AAAfHx/k5+cjOztbMRKj30Z/RaX2mto2xsyePRtTp06V3+fk5FRIIGbpIVkHBwf5OdSvXx8hISHo0KEDunfvjri4OIwdOxbvvPMOPv30U/z9999wd3dHVFQUli1bhjp16uD777/H888/D+Bh0vz8+fOxYMECfP7551i1ahWSkpJQu3ZtPPPMM1i5ciXq1atX7vdBRETWR612wa5dfSFE0TiUEDbYtasvgoMvQqXKrdS+WHQkzMvLC82bNzf7MlWCQTt1lZeXBwB46qmn8ODBAyQnJ8tt/vrrLwBAw4YNAQDh4eE4ePCg4jrx8fEIDw8HUFSKIDQ0VNFGo9Hg4MGDcpvQ0FDY2dkp2iQlJeHKlStym/DwcPz++++KFZXx8fFwdXVFy5YtTT4PBwcHuLq6Kl4VoaRDrZU5JPvMM8+gTZs22LFjB4CiXLzVq1fjjz/+wIYNG3Do0CHMmDEDANCxY0esXLkSrq6u8sjdyy+/DAAoKCjAokWL8Ntvv+Gbb77BpUuXig30iYioesjMzMT58+fx+++/G7wuXLgAAMjK8pADMC0hbJCV5V7p/bWKxPzExEQcP34cnTp1Qt26dZGcnIy5c+ciODhYDnwiIiIQEhKC0aNHY+XKldBoNJgwYQJ69Oghj46NHz8ea9aswYwZMzB69GgcOnQIW7duxZ49e+Tvmjp1KkaOHIn27dvjySefxMqVK3Hnzh155EWlUmHMmDGYOnUq3N3d4erqiokTJyI8PBwdOnQAAPTs2RMtW7bE8OHDsWzZMqSnp+PVV1/FhAkT4ODgUMlPz3o0b94cZ86cAQB5sQQABAYG4vXXX8f48ePx/vvvw97eHiqVCpIkGYwsjh49Wv65UaNGWL16NZ544gncvn0bderUqZT7ICKiypWZmYmbN29iy5YtxbZ1d8+EJGkUgZgkaeDunlWRXTTKKoIwZ2dn7NixA/Pnz8edO3fg6+uLXr164dVXX5WDGhsbG+zatQsTJ05Ely5dULt2bfTu3RvLly+XrxMUFIQ9e/ZgypQpWLVqFRo0aICPPvoIkZGRcpvBgwfj5s2bmDdvHtLT09G2bVvs379fkWi/YsUK2NjYIDo6Gnl5eYiMjMT7778vn7e1tcXu3bvx0ksvITw8HLVr18bIkSPx2muvVcLTsl5CCHl68cCBA1iyZAnOnz+PnJwcPHjwAPfv38fdu3fN7hBw4sQJLFiwAL/99htu3bolj5heuXLF7CgkERFZJ/0UG7XaBVlZHrCzy0N2dl0AgL//VXmqUaXKRVTUbnlKUpI0iIraXelTkYCVBGGtW7fGoUOHim3n5+eH7du3m23z9NNP49SpU2bbxMTEICYmxuR5R0dHvPfee3jvvfdMtmnYsCH27t1rvsOkcO7cOQQFBeHSpUvo27cvXnrpJSxevBju7u746aefMGbMGOTn55sMwu7cuYPIyEhERkZi48aN8PLywpUrVxAZGVmpU6tERFSxMjMzkZ+fD7VarUj9OXmynU6+lwCgLbYt0K/fLoSEFP39Dwk5heDgi8jKcoe7e5ZFAjDASoIwqv4OHTqE33//HVOmTMGJEyeg0WiwfPlyeWPyrVu3Ktrb29sbbCN0/vx5ZGZmYunSpfKChl9//bVyboCIiCqF8ZGvQNjZ5SkS7h8GYEU/6yffq1S5RoOvytwOkEEYVbq8vDykp6ejsLAQ169fx/79+7FkyRL07dsXI0aMwNmzZ1FQUIB3330XUVFR+Pnnn7Fu3TrFNQIDA3H79m0cPHgQbdq0gbOzMwICAmBvb493330X48ePx9mzZ7Fo0SIL3SUREVUEUyNf+nle+rTJ9ypVLgYMGABPT0+DNvb29pVWqBWwsmKtVD3s378fvr6+CAwMRK9evXD48GGsXr0a//vf/2Bra4s2bdrgnXfewZtvvolWrVph48aNWLJkieIaHTt2xPjx4zF48GB4eXlh2bJl8PLyQlxcHLZt24aWLVti6dKlePvtty10l0REVN4yMzPlmRFjpSaKpiCN002+9/T0hK+vr8GrMgMwgCNhNVJJh1orYkg2Li4OcXFxxbabMmUKpkyZojg2fPhwxfu1a9di7dq1imNDhw7F0KFDFce0BX2JiMi66eb3Gis1UTQFKfT+CYsm35vDIKwG8vDwQExMjNlk9coekiUiIioNY6UmikiQJA2GDPkSBQVF+0v7+1+rcgEYwCCsxmKARURE1iw5uTFMTXQIYQN7+wI0a3bR6PnKTL43h0EYERERWRVtPpip1HZjxVd79OiBunXrol69elVmIIJBGBEREVmUtu6XKfopMsbzwYro538NGDAAfn5+VSbw0sUgjIiIiCxGv+6XKbpF1I3ng2kwcOBXBvlfVTUAAxiEERERkYVkZmYiNTVVcUy77ZC7e6YimNIdKTO19VCrVucAFE09BgUFVflFZgzCiIiIqFKZ2nBbv/hqVNRueashQJlQb27roWbNmlXp4EuLQRgRERFVGlPTj9eu+WLnzofJ9kLYGGw1VN1KLDEIIyIiokqjH0Cp1S5ITAzD0aMdodzvUbnVkJa1BFglwW2LqFr5/vvvIUkSsrOzS/yZwMBArFy5ssL6RERUk2VmZiItLU1+ZWRkyOdOnmyHFSticfToU9APwADjpSaqEwZhVKlGjRoFSZIwfvx4g3MTJkyAJEkYNWpU5XeMiIjKnXbqcf369fJrx44dAIqv9QVUza2GyhODMKp0/v7+2Lx5M+7duycfu3//PjZt2oSAgAAL9oyIiMqTsanHlJRAeQWkuVpfY8d+pEjKr44YhFGlCwkJgb+/v/xfQwCwY8cOBAQEoF27dvKxvLw8TJo0CfXq1YOjoyM6deqE48ePK661d+9eNG3aFE5OTujWrRsuXbpk8H0//fQTOnfuDCcnJ/j7+2PSpEm4c+dOhd0fEREZOnmyHVaujMWGDSOxYkUs/v47EJKkMWinXRXZoEGa4nhV2WqoPDEII1y7Bhw+XPTPyjJ69Gh8+umn8vtPPvkEzz//vKLNjBkzsH37dmzYsAEnT55E48aNERkZiaysovyAq1evYsCAAYiKisLp06cxduxYzJo1S3GN5ORk9OrVC9HR0Thz5gy2bNmCn376SVH0j4iIKpZ26vHhyJcNfvyxC1q0OKcTiGnQsePPiI1dqRgBGzBgAGJiYqpVQr4WV0fWcB9/DIwbB2g0gI0NsH49MGZMxX/vc889h9mzZ+Py5csAgJ9//hmbN2/G999/DwC4c+cO1q5di7i4OPTu3RsA8OGHHyI+Ph4ff/wxpk+fjrVr1yI4OBjLly8HUFQX5vfff8ebb74pf8+SJUswbNgwxMbGAgCaNGmC1atXo2vXrli7di0cHR0r/maJiGo441OPEs6da4ExYz5CQYG9Qa0vrapc8f5RMQirwa5dexiAAUX/fPFFIDISaNCgYr/by8sLffr0QVxcHIQQ6NOnDzw9PeXzycnJKCgowFNPPSUfs7Ozw5NPPolz54oqIp87dw5hYWGK64aHhyve//bbbzhz5gw2btwoHxNCQKPRICUlBS1atKiI2yMiqlFM7f2oXQnp7p4JQAP9CTghbFBQYI+goMsGnx00aFCV2my7IjAIq8EuXHgYgGkVFgIXL1Z8EAYUTUlqpwXfe++9CvmO27dv48UXX8SkSZMMznERABHRoyvJ3o8qVS569DiA+Pge0C1FoVuCYsCAAfJ/jFtTwdVHwSCsBmvSpGgKUjcQs7UFGjeunO/v1asX8vPzIUkSIiMjFeeCg4Nhb2+Pn3/+GQ0bNgQAFBQU4Pjx4/LUYosWLbBz507F53755RfF+5CQEPz5559oXFk3RURUjRkb8dKt+wWY3vvxqacSAAAHDkQotiXStvH09ISvr28F30HVwiCsBmvQoCgH7MUXi0bAbG2BDz6onFEwALC1tZWnFm1tbRXnateujZdeegnTp0+Hu7s7AgICsGzZMty9exdj/i9pbfz48Vi+fDmmT5+OsWPH4sSJE4iLi1NcZ+bMmejQoQNiYmIwduxY1K5dG3/++Sfi4+OL/S83IiJ6GHip1WqDvR71Fbf341NPJaBVq7NG93usiRiE1XBjxhTlgF28WDQCVlkBmJarq6vJc0uXLoVGo8Hw4cORm5uL9u3b49tvv0XdunUBFE0nbt++HVOmTMG7776LJ598Em+88QZGjx4tX+Pxxx/HkSNHMGfOHHTu3BlCCAQHB2Pw4MEVfm9ERNbO3FSj/oiX/gpIY3s/AkVTk8aCr+pYgqI4khBCWLoTZFxOTg5UKhXUarVBsHL//n2kpKQgKCiIK/wqGJ81EdVUaWlpWL9+vcFxYyNedevewoYNIw3ajhwZh6Cgy4qcL33VLQfM3N9vXRwJIyIiohJRq11w9aq/0RGvMWM+giRpFKUodBPva2LOV3EYhBEREVGxdEe/9GlLTURF7TYYIavpeV/mMAgjIiIime4KSO3KR8OK90raEa+goMsIDr7IxPsSYhBGREREAEwn4he32bbuiBcT70uOQZiV47qKisdnTETVUXJyMu7evas4duvWLcV77QpIO7s8g3wvQIOBA7+Cv/81RdBlLAG/uiXelxcGYVZKW1crPz8fTk5OFu5N9aYdltevZUZEZK2Sk5PxxRdfmG2jvwLy8cfP4MyZxxX5Xq1anTP4XHXe67G8MQizUrVq1YKzszNu3rwJOzs72NgYHyamR6PRaHDz5k04OzujVi3+z4WIqgf9ETB9xmp+nTnzuMnNtgcNGgQ3NzeOeJUS/6pYKUmS4Ovri5SUFFy+bLjxKZUfGxsbBAQEQJKk4hsTEVmha9d8ceVKQwQEXEaDBmlGc8B0N9uuifs8VgQGYVbM3t4eTZo0MbpzPZUfe3t7jjQSUbX19df/xm+/tUHRxtoCbdr8hmeeOcSaX5WAQZiVs7GxYRV3IiIqk2vXfHUCMACQ8NtvbfDEE8dY86sSMAgjIiKq5nRrfwEPV0FeudIQDwMwLQlXrwYgPDyRNb8qGIMwIiKiaszcJtwBAZcBCCgDMQF//ysAWPOrojEIIyIismL6o1z61Gq13vui2l/u7plo0CANbdr8ZpAT1qBBGgCgW7duaNKkieLzTMQvPwzCiIiIrJS5US5j9Gt/RUXtxv/7f//DE08cw9WrAfD3vyIHYABQv359JuBXIAZhREREVkJ/1Eu7t2NJGKv9tWtXXwQHX0SDBmkYPrw56tYNl9s7OzsjODi4/DpPBhiEERERWYGSjHrpTjXq53KZqv2VleUOlSoXTZo04ahXJWMQRkREZAWKqwlpbKoxJOSUfN7dPdNs7S+qfKxASUREZOVMTTWq1S5yG5UqF1FRuyFJGgBg7a8qgCNhREREVq64qUatkJBTrP1VhTAIIyIiskK6+V+pqb7Qr/dlaqqRtb+qDgZhREREVVxmZqZiJaRu/hegQVHwpSy4GhFxQA62Bg0aBDc3N5PXZ+0vy2AQRkREVIXpr4rUz/8ynt4twc8vVX5Xr149BllVEBPziYiIqjD9VZFXr/ob5H/p052KHDx4MAOwKoojYURERBZQ3HZDxqYItdOQhjSQJCjKU2inIlUqVXl2m8oRgzAiIqJKVtLthmJiYuSfDachtTTo1283Vz1aIQZhRERElUx/BMxUpXvddsbKUADAwIFfoVWrcwDAVY9WhkEYERGRBZmrdJ+dnS2vajRV8d7f/xoAYMCAAfD09FRcm6seqzYm5hMREVlIcZXut27dCrVaDaD4iveenp7w9fVVvBiAVW0cCSMiIqogppLvtTW/TFW6T0wMQ8+eBwAABQUF8jlWvK9eGIQRERFVgJIk3xubYgSAo0fDERaWCJUqF7VqKf9Us+J99cEgjIiIqAKYKz+hpVLlIjw8AUePPqV35uG+j25uboiJiSl1OQuq+hiEERERVQJTKyDDwhJx9Gg4dNO09fd9ZIBVPTEIIyIiqmD6KyAjIg7gqacSABSNhvXrt9tghSTzvao/BmFEREQVyNgKyPj4HgAgB2JMuK+ZWKKCiIioAhkvsiohPj5CLkUBFI2IBQVdZgBWgzAIIyIiqkDaFZCGipLvi8NVj9UXpyOJiIgqkEqVi4iIA/83BSnJx3WT741Vuwe46rG6YxBGRERkgqliq1rmgiTdESxt7ld8fAQAw+R7bbV7qlkYhBERERlRkmKrADB48GCoVCrFMW1wNnjwYGzZsgVAUSDWqtVZJt+TjEEYERGRESUptgoA69fvNVr/KyYmxiA4M1Xtnmomq0nM79evHwICAuDo6AhfX18MHz4cqamp8vkFCxZAkiSDV+3atRXX2bZtG5o3bw5HR0e0bt0ae/fuVZwXQmDevHnw9fWFk5MTIiIicOHCBUWbrKwsDBs2DK6urnBzc8OYMWNw+/ZtRZszZ86gc+fOcHR0hL+/P5YtW1bOT4SIiMpTZmYm0tLS5Jd2f0cttdoFKSmBihWNJ0+2w8qVsdiwYSRWrozFyZPt5HP5+fklTqpn8n3NZDUjYd26dcMrr7wCX19f/PPPP3j55ZcxcOBAHD16FADw8ssvY/z48YrPdO/eHU888YT8/ujRoxg6dCiWLFmCvn37YtOmTejfvz9OnjyJVq1aAQCWLVuG1atXY8OGDQgKCsLcuXMRGRmJP//8E46OjgCAYcOGIS0tDfHx8SgoKMDzzz+PcePGYdOmTQCAnJwc9OzZExEREVi3bh1+//13jB49Gm5ubhg3blxlPC4iIiqF4qYe9YutRkXtRnDwRYP6X7t29UVw8EV5tMvDw4NbDpFJkhBCWLoTZbFz5070798feXl5sLOzMzj/22+/oW3btvjhhx/QuXNnAEXz9nfu3MHu3bvldh06dEDbtm2xbt06CCHg5+eHadOm4eWXXwYAqNVqeHt7Iy4uDkOGDMG5c+fQsmVLHD9+HO3btwcA7N+/H//6179w7do1+Pn5Ye3atZgzZw7S09Pl/7qZNWsWvvnmG5w/f77E95iTkwOVSgW1Wg1XV9cyPysiIjIvLS0N69evN3pOrXbBypWxilpfkqRBdPR2fPXVfwzajxwZh6Cgyxg3bhyT7Wuokv79tprpSF1ZWVnYuHEjOnbsaDQAA4CPPvoITZs2lQMwAEhISEBERISiXWRkJBISilatpKSkID09XdFGpVIhLCxMbpOQkAA3Nzc5AAOAiIgI2NjYIDExUW7TpUsXxfByZGQkkpKScOvWrUe8eyIiqmhqtQvOnm2JY8dCceJEiEGx1aL3wqD+l/6ej0TmWM10JADMnDkTa9aswd27d9GhQwfFiJau+/fvY+PGjZg1a5bieHp6Ory9vRXHvL29kZ6eLp/XHjPXpl69eorztWrVgru7u6JNUFCQwTW05+rWrWu033l5ecjLy5Pf5+TkGG1HRETlS61Wyz+fPNkOO3dGQbemFyCgX+PL3/8aoqK45yOVnUVHwmbNmmU0mV73pTt9N336dJw6dQrfffcdbG1tMWLECBibTf3666+Rm5uLkSNHVubtPLIlS5ZApVLJL39/f0t3iYio2svMzJTLSKjVLti5sy+UARj+733R3xvdYCsk5BRiY1di5Mg4xMauREjIqUrtO1k3i46ETZs2DaNGjTLbplGjRvLPnp6e8PT0RNOmTdGiRQv4+/vjl19+QXh4uOIzH330Efr27WswouXj44Pr168rjl2/fh0+Pj7yee0x3Xn869evo23btnKbGzduKK7x4MEDZGVlKa5j7Ht0v8OY2bNnY+rUqfL7nJwcBmJERBVMN2k+MTEMpscnJERG7kfLln8qRrtYdoLKyqJBmJeXF7y8vMr0WY2maB5ed/oOKMrrOnz4MHbu3GnwmfDwcBw8eBCxsbHysfj4eDmICwoKgo+PDw4ePCgHXTk5OUhMTMRLL70kXyM7OxsnTpxAaGgoAODQoUPQaDQICwuT28yZMwcFBQVyzlp8fDyaNWtmcioSABwcHODg4FCGp0FERI9KrXZBQkK4yfOSpDEIwMxh2QkqjlXkhCUmJuL48ePo1KkT6tati+TkZMydOxfBwcEGo2CffPIJfH190bt3b4PrTJ48GV27dsXy5cvRp08fbN68Gb/++qu8IkaSJMTGxuL1119HkyZN5BIVfn5+6N+/PwCgRYsW6NWrF1544QWsW7cOBQUFiImJwZAhQ+Dn5wcAePbZZ7Fw4UKMGTMGM2fOxNmzZ7Fq1SqsWLGiYh8UERGVWVaWh0ECvpZ+vpexKvm6WHaCSsIqgjBnZ2fs2LED8+fPx507d+Dr64tevXrh1VdfVYwcaTQaxMXFYdSoUbC1tTW4TseOHbFp0ya8+uqreOWVV9CkSRN88803co0wAJgxYwbu3LmDcePGITs7G506dcL+/fvlGmEAsHHjRsTExKB79+6wsbFBdHQ0Vq9eLZ9XqVT47rvvMGHCBISGhsLT0xPz5s1jjTAiIgsobv9HbVK+u3smJEmjF4hp8K9/7UGzZhf0piBVLD9Bj8xq64TVBKwTRkT0aPSLsKrVLka3GNIyVpTVWLI9a4CROSX9+20VI2FERERloTsCVpIAKyTkFIKDLxa7yTbzvag8MAgjIqJqT612KXaLIS1Tqx0HDBgAT09P5ntRuWEQRkRE1YpuDph2E25jSfdC2CAry73Eqx39/PwYfFG5YhBGRETVhvEcsEDk59cySLrX3WJo0KBBcHNzM3ldjn5RRWAQRkRE1YapHLCH2w4V/VO/5ISbmxsT7anSMQgjIiKrUFypCd1kef0csIfbEEkANBgz5iM0aJBWYX0lKgkGYUREVOXpTzOa0qNHDwDmC68CNigo4OpGsjwGYUREVGVpR7+0CfZa2npfdnZ5KChwkOt+xcfHAzBVeLWIbi6YFktOkCUwCCMioirJ1OiXsVwv/bpfKlUuoqJ2m2ynzQUbMGAAVz2SxTAIIyKiKkk//0utdsHVq/5Gc72M1f3SLbxqZ5ePggJ7gwKsnp6eDMDIYhiEERGRRZlKuNedglSOfhlnrO6XqcKrRFUBgzAiIrKYkiTcG650NM5YrhdRVWb+N5qIiKgCGZtyTEkJhFrtIh8zv9JRAIBBrlfPnj1L9P1MyCdL4kgYERFVCaY22HZ3zwSggXLcQIOBA7+Cm1u20VyvwMBAxMTEFFtXjPlgZEkMwoiIyOLMbbBdRFK0lyTA3/+a2XwvBlhU1TEIIyIiizO3wXZRACYZPWcqCOM0I1kDBmFERGRxxoqr6ibamzvXo0cPBAUFyec4zUjWgon5RERkcdriqpKkAaBMtDd3DgCCgoLg6+srvxiAkbXgSBgREZW7kmy2rR8s6RZX1U+0N3eOyFoxCCMionJV0s22Y2JiDHK3zBVXZeFVqm4YhBERUbkyVvsrK8tD3mRb648//kDdunXRu3dvODk5oVatWnBzc5PPZ2dnY+vWrcV+H5PwyVoxCCMiogqjX/srIuIA/PzS4O6eicOHDxu0j4mJkacpfX19WeuLqjUGYUREVCGM1f6Kj++BonITGnTsmICwsETF6Jh+wMUAi6ozro4kIqIKYXy7IW29LxscPfoUVq6MxcmT7Sq7a0RVAoMwIiIqF5mZmUhLS0NGRgaAh7W/zNFWxtfdK5KopuB0JBERPTJjKyK19b0eTkkK6Fe+B4qvfk9UXTEIIyKiR2ZqRWRw8EXExq5EVpY7UlP9EB8fAf1JGN3q90Q1CYMwIiIqE92CrNopSMBwRWRU1G6EhJxCUNBltGp1FomJYUhICFec5ygY1UQMwoiIqNSSk5PxxRdfyO+LRr4CYWeXZ7AicteuvggOvigXW+3Z8wDCwhJZ/Z5qPAZhRERUKpmZmYoATHfkC9BAf7rRWM6Xqer3LLxKNQmDMCIiKpUbN27IP6vVLti5sy8eBl6GCfi6OV/dunVD3bp1FdfTVspn4VWqaRiEERFRiWVmZiq2Evrhh84wrHYkQZI0RnO+mjRpAl9f38rrMFEVxiCMiKiG0E2kN6YkI1G6n//553CcONHeSCsNxoz5CAUF9sz5IjKDQRgRUQ1grI6XMTExMQAMS05oaVdBqtUu/1duwrDuV8eOCWjQIM3o55nzRfQQgzAiohrA3AiYrqSkJMTHx8vvtfW+3N0zFSNaWVkeMLbpiiRpEBaWKL8fMGAAPD09AXCzbSJ9DMKIiGogU8GVbgBmqt4X8HBLIuXekAIREQcU1/P09GQOGJEJDMKIiKqp0hZT1Q3MABRb70u5JZEGPXocwFNPJSj6wOlHItMYhBERVUOmcsDUahejwdW9e444cCBCDszCwxP0RrkM632FhJxCcPBFk0VXn3vuOU4/EpnBIIyIqBoytZfjnTvORoMrbQCmfZ+QEA79wqvG9ng0VXR18ODBCA4OLp+bIaqmGIQREVVzhhXtlcVUAf3crqJArGPHn8u8x6OXl1d5dZ+o2mIQRkRUjelPPxaNbGkgSUIOriIiDihGwoCHqxxN7fGou+pRH1dBEpUMgzAiomosK8vDYJQLsEF09FbUrn1XDq6cnO4bJOtrgy5jo19c9Uj06BiEERFVI9oVkdrVkMZKSUiSBv7+1xTBVXFJ9vq46pHo0TEIIyKyYrplKNRqNbZs2SKf0ybj6043msvtMpdkr1Kp5PecbiQqHwzCiIislLmtiPRrgUVEHICfX6rBKJd+gKWPARdRxWEQRkRkpUyVobCzyzOoBXbgQARiY1cajHR5eXkxyCKyEAZhRETVgGEZCtOFVrUrGznKRWRZDMKIiKxQZmamnHxvvAyFshaYbqFVrmwkqhoYhBERWRn9XDDjZSgkeVVkaQutElHlYBBGRGRl9HPB7OzyjJahGDPmIxQU2Jeo5AQRVT4GYURElUi3pIQxpc3TUuaCFU1Bake+GjRIe/QOE1GFYRBGRFRJzJWU0BUTE1OiQMwwF0wCUDQCZi4AY6FVoqqBQRgRUSUxVVLC3T1TMV1obqRMl6ktiQoKlEHWoEGD4ObmBoB1v4iqEgZhREQWoF9MNSpqN0JCTpXqGqa2JNKughwwYAD8/PwYdBFVUfr/CUVERBVMfxpRCBvs2tUXarVLqa6jUuUiKmo3JEkDAAarID09PRmAEVVhHAkjIqpkxqYRdYuplkZpN94moqqDQRgRUTkztQJSW1y1uGnE4ugn1pvaeJsJ+ERVG4MwIqJyVJIVkNppRP2csJKOYnl4eCAmJqZcS10QUeUrcRCWk5NT4ou6urqWqTNERNaupCsgH3UakQEWkfUrcRDm5uYGSZLMthFCQJIkFBYWPnLHiIisXXErIE1NI969e7cyu0lEFlLiIOzw4cMV2Q8iomrF1ArI4OCLxY56ffHFFyUu2EpE1qvEQVjXrl0rsh9ERNVKSVdAPmrBViKyXmVOzM/OzsbHH3+Mc+fOAQAee+wxjB49GiqVqtw6R0RkrUqyArI8CrYSkfUqU7HWX3/9FcHBwVixYgWysrKQlZWFd955B8HBwTh58mR595GIyOoUV0i1vAq2EpH1KtNI2JQpU9CvXz98+OGHqFWr6BIPHjzA2LFjERsbix9++KFcO0lEZI3MrYAsz4KtRGSdyjwSNnPmTDkAA4BatWphxowZ+PXXX8utc7r69euHgIAAODo6wtfXF8OHD0dqaqqizbfffosOHTrAxcUFXl5eiI6OxqVLlxRtvv/+e4SEhMDBwQGNGzdGXFycwXe99957CAwMhKOjI8LCwnDs2DHF+fv372PChAnw8PBAnTp1EB0djevXryvaXLlyBX369IGzszPq1auH6dOn48GDB+XyLIio6jJWSDUo6LJBYKWdrtRVmoKtRGT9yjQS5urqiitXrqB58+aK41evXoWLS8UMpXfr1g2vvPIKfH198c8//+Dll1/GwIEDcfToUQBASkoK/v3vf2Pq1KnYuHEj1Go1pkyZggEDBshTpCkpKejTpw/Gjx+PjRs34uDBgxg7dix8fX0RGRkJANiyZQumTp2KdevWISwsDCtXrkRkZCSSkpJQr149AEUjgXv27MG2bdugUqkQExODAQMG4OeffwYAFBYWok+fPvDx8cHRo0eRlpaGESNGwM7ODm+88UaFPB8iqhqKK6SakZGBHTt2PHLBViKyfpIQQpT2Q5MmTcLXX3+Nt99+Gx07dgQA/Pzzz5g+fTqio6OxcuXK8u6ngZ07d6J///7Iy8uDnZ0dvvrqKwwdOhR5eXmwsSka4Nu1axf+/e9/y21mzpyJPXv24OzZs/J1hgwZguzsbOzfvx8AEBYWhieeeEKueK3RaODv74+JEydi1qxZUKvV8PLywqZNmzBw4EAAwPnz59GiRQskJCSgQ4cO2LdvH/r27YvU1FR4e3sDANatW4eZM2fi5s2bJd5KJCcnByqVCmq1mgVwiaqJtLQ0rF+/Xn5ftDrScLpy3Lhx8PX1tUQXiegRlfTvd5mmI99++20MGDAAI0aMQGBgIAIDAzFq1CgMHDgQb775Zpk7XVJZWVnYuHEjOnbsCDs7OwBAaGgobGxs8Omnn6KwsBBqtRqff/45IiIi5DYJCQmIiIhQXCsyMhIJCQkAipaEnzhxQtHGxsYGERERcpsTJ06goKBA0aZ58+YICAiQ2yQkJKB169ZyAKb9npycHPzxxx8m7ysvLw85OTmKFxFVLyWdruS+j0TVX5mmI+3t7bFq1SosWbIEycnJAIDg4GA4OzuXa+f0zZw5E2vWrMHdu3fRoUMH7N69Wz4XFBSE7777DoMGDcKLL76IwsJChIeHY+/evXKb9PR0RWAEAN7e3sjJycG9e/dw69YtFBYWGm1z/vx5+Rr29vZwc3MzaJOenm72e7TnTFmyZAkWLlxYwqdBRNaI+z4SkVaZRsK0nJ2d0bp1a7Ru3bpMAdisWbMgSZLZlzb4AYDp06fj1KlT+O6772Bra4sRI0ZAO5uanp6OF154ASNHjsTx48dx5MgR2NvbY+DAgSjDjKtFzJ49G2q1Wn5dvXrV0l0iogrg4eEBX19fky8GYEQ1Q5lGwu7fv493330Xhw8fxo0bN6DRKFf4lLRW2LRp0zBq1CizbRo1aiT/7OnpCU9PTzRt2hQtWrSAv78/fvnlF4SHh+O9996DSqXCsmXL5PZffPEF/P39kZiYiA4dOsDHx8dgFeP169fh6uoKJycn2NrawtbW1mgbHx8fAICPjw/y8/ORnZ2tGA3Tb6O/olJ7TW0bYxwcHODg4GD2eRAREVH1UKYgbMyYMfjuu+8wcOBAPPnkk8Vu7G2Kl5cXvLy8yvRZbeCXl5cHoGjDW21Cvpatra2irf70JADEx8cjPDwcQNEUQGhoKA4ePIj+/fvLnz148CBiYmIAFOWe2dnZ4eDBg4iOjgYAJCUl4cqVK/J1wsPDsXjxYty4cUNeURkfHw9XV1e0bNmyTPdLRBUnMzOT04NEVOnKtDpSpVJh7969eOqppyqiTwYSExNx/PhxdOrUCXXr1kVycjLmzp2L69ev448//oCDgwMOHTqEiIgILFiwAEOHDkVubi5eeeUVnD9/HufOnYOTkxNSUlLQqlUrTJgwAaNHj8ahQ4cwadIk7NmzR1GiYuTIkfjggw/w5JNPYuXKldi6dSvOnz8v53W99NJL2Lt3L+Li4uDq6oqJEycCgFwuo7CwEG3btoWfnx+WLVuG9PR0DB8+HGPHji1ViQqujiSqeJmZmfJqaHO4oTYRlVSFro6sX79+hdUDM8bZ2Rk7duxA9+7d0axZM4wZMwaPP/44jhw5Ik/fPfPMM9i0aRO++eYbtGvXDr169YKDgwP2798PJycnAEXJ+3v27EF8fDzatGmD5cuX46OPPpIDMAAYPHgw3n77bcybNw9t27bF6dOnsX//fkWi/YoVK9C3b19ER0ejS5cu8PHxwY4dO+Tztra22L17N2xtbREeHo7nnnsOI0aMwGuvvVZJT4yISqqkG2VzQ20iKm9lGgnbt28fVq9ejXXr1qFhw4YV0S8CR8KIKoPxul0ecHfPZN0uIiqTkv79LlNOWPv27XH//n00atQIzs7Och0urawsbrtBRNbn5Ml2BhXsQ0JOWbpbRFRNlSkIGzp0KP755x+88cYb8Pb2LnNiPhFRVaFWu8gBGFC0mfauXX0RHHyRWwkRUYUoUxB29OhRJCQkoE2bNuXdHyIii8jK8pADMC0hbJCV5c4gjIgqRJkS85s3b4579+6Vd1+IiCzG3T0TkqSseShJGri7M72CiCpGmUbCli5dimnTpmHx4sVo3bq1QU4Yk8iJqDKUZ30vlSoXUVG7DXLCOApGRBWlTEFYr169AADdu3dXHBdCQJIkFBYWPnrPiIjMKK/6XrobZYeEnEJw8EVkZbnD3T1LEYBxQ20iKm9lCsIOHz5c3v0gIioV/REwU6UlUlNTFW31R8e4oTYRWUqZgrCuXbuWqN1///tfvPbaa/D09CzL1xARlYi50hK6hZS19EfHGGARkSWUKTG/pL744gvk5ORU5FcQUQ1nqrSEWm16Vw9WvyeiqqBMI2ElVYZi/EREpWKutIT2vP4UJRFRVVChQRgRUUXTlpbQDcQkSYPUVD989tkIVr8noiqrQqcjiYgqmra0hLbGlyRpEBFxAAcORJRqipKIqLJxJIyIqixzdcAyMjLkn/VLS7D6PRFZAwZhRFQllbQOmJZKlasIsIxNUbL6PRFVJRUahD333HOsnk9EZVLSFYwDBgyQy+BkZGRgx44drH5PRFahzEFYdnY2jh07hhs3bkCjUe63NmLECADA2rVrH613RFQjZWZmKqYbAdPFWD09PeHr6wuA1e+JyLqUKQjbtWsXhg0bhtu3b8PV1RWSJMnnJEmSgzAiotIyNg1prhirLla/JyJrUqYgbNq0aRg9ejTeeOMNODs7l3efiKgGM7YdkbFirMHBF41OLzLAIiJrUaYSFf/88w8mTZrEAIyIKtzVq/5mi7ESEVmrMgVhkZGR+PXXX8u7L0RECidPtsP27dEGx7nSkYiqgxJPR+7cuVP+uU+fPpg+fTr+/PNPtG7dGnZ2doq2/fr1K78eElGNpD8N+ZBypaNarZYT84mIrEmJg7D+/fsbHHvttdcMjkmShMLCwkfqFBHVLLpFWbWrIo0VXAWAgQO/QqtW5+T3W7ZsQUxMDHPBiMjqlDgI0y9DQURUHkwVZTW1J6S//zWDtiWtKUZEVJWUKSfss88+Q15ensHx/Px8fPbZZ4/cKSKq2jIzM5GWlmbylZmZWeJrGVsNmZISCAAGe0J26vQjsrI8uAckEVULkhBClPZDtra2SEtLQ7169RTHMzMzUa9ePU5HlpOcnByoVCqo1WruPEBVhv7IlakiqoMGDYKbm5v83lR9rrS0NKxfvx6A8Xpg9+45Ij4+AkX/zSgASAa1wsaNG8e8MCKqMkr697tMdcKEEIoCrVrXrl2DSqUqyyWJyErojlyZK6K6detWg8+ay90yVg9s586+KPq/Gu2gvSSfM1crjIjIGpQqCGvXrh0kSYIkSejevTtq1Xr48cLCQqSkpKBXr17l3kkiqnpKW0QVMJ+7ZTwR3wamxuq1tcIYhBGRtSpVEKZdIXn69GlERkaiTp068jl7e3sEBgYiOtqwpg8RVT/GgibdIqrGpijNMZaIXzT9CGhHwHSxVhgRWbtSBWHz588HAAQGBmLw4MFwdHSskE4RUdVnavViaqofPvtsRLH7POpTqXIREXEA8fE98DDokgBoIEni/75HmRPGUTAismZlygkbOXIkgKKphRs3bhiUrwgICHj0nhFRlaZS5SIqarciJywi4gAOHIgo1RSlLj+/NBiOetkgOnorate+Czu7fBQU2MPdPUtxPXt7+3K8MyKiylGmIOzChQsYPXo0jh49qjiuTdjn6kiimiEk5BSCgy8iK8sd7u5ZZqcoVapcuRAr8HC1pG4AZa42mEqVi27duqFu3boAgFq1asHNzc3kqksioqquTEHYqFGjUKtWLezevRu+vr5GV0oSkXXRrVpvjKlgR6XKVYxKGQuitLlbO3bsUHxWu1py0KBB2Lp1q9HRNd1pxyZNmrAUBRFVG2UKwk6fPo0TJ06gefPm5d0fIrKAktb+iomJMTv1V1wQpU8b9OnWHNQfXeO0IxFVV2UKwlq2bKmYViAi61bS2l/5+fnw9fVFTEyM4jNqtRpbtmwBYDyIMhXUaXl4eBhcUx+nHYmouilTEPbmm29ixowZeOONN9C6dWvY2dkpzrO6O5F1KmntL/1gSDcwy8jIwI4dO+T25oI6XQywiKimKVMQFhERAQB45plnFPlgTMwnsm7FJdabYyyIUqtdsHNnX2gr3rPSPRHRQ2UKwg4fPlze/SCiKsDU6sSyFkVNTAzDwy2HirDSPRFREf09Qkqka9eusLGxwYcffohZs2ahcePG6Nq1K65cuQJbW9vy7iMRVRJtYr0kFdX+00+sz8jIQFpaGjIzM4u9llrtgoSEcCNnWOmeiAgo40jY9u3bMXz4cAwbNgynTp1CXl4egKLk3DfeeAN79+4t104SUcXQlqXQXWhjbnWibokJc5txA6b2ggQ6dkzgKBgREcoYhL3++utYt24dRowYgc2bN8vHn3rqKbz++uvl1jkiqjj6ZSl06db+MrWy0dxKRsD01GZYWKL8niUniKgmK1MQlpSUhC5duhgcV6lUyM7OftQ+EVEl0A+ijAVbJV3ZaExxNcMGDRrEFZFEVKOVKQjz8fHBxYsXERgYqDj+008/oVGjRuXRLyKqRMaCreDgiyUqV6FPd3TL3NSmboFWIqKaqExB2AsvvIDJkyfjk08+gSRJSE1NRUJCAl5++WXMnTu3vPtIRBXIVG2w6OjtZSpXwcKrREQlU6YgbNasWdBoNOjevTvu3r2LLl26wMHBAS+//DImTpxY3n0kogpkqjYYIMpcroIBFhFR8cpUokKSJMyZMwdZWVk4e/YsfvnlF9y8eROLFi0q7/4RUQXTJtDrkiQN/P2vmS1XQUREj6ZMI2Fa9vb2aNmyZXn1hYgswFwCvbmcLiIiejSPFIQRUfVgLtjSLVehi+UliIgeDYMwohpKP4gyFWwNGjQIbm5uBp9l3hcR0aNhEEZUQ3EVIxGRZTEII6oCtNsHAUBqqg1SUmohKOgB/PyKkuIrKhhigEVEZDkMwogsTHf7IHMV6ovbq5GIiKxLmUpUEFH50Y6AmSqaqla7KNoREVH1wCCMqIowVTQ1K8vdQj0iIqKKxCCMqIowVTS1JBXqiYjI+jAII6oitEVTWaGeiKhmYGI+URXCCvVERDUHgzCiKsZU0VQiIqpeGIQRWYmMjAwALKBKRFRdMAgjsrCS7sG4Y8cO+WfWDCMisn4MwogsTHf7oIyMDEWwpVa7ICvLA+7umYopSv2aYboV943h6BkRUdXDIIyoBK5dAy5cAJo0ARo0KP/rGwuQzFXP105NAoBarcaWLVuK/Q6OnhERVS0MwohM0I4ubdrkhBkzVNBoJNjYCCxbpsazz96r0NElU9Xzg4MvQqXKVYyWGftsSUbPiIjIshiEERmh3c9RrXbBypWxEEICAGg0EqZPd8U//3wClSq3wkaXzFXPV6lyTQZa5kbPiIioamEQRmSEdtSouGCookaXtNXzdb9bWz3fVKBV3OgZERFVLayYT2SGpbYSMlU9H4DJTb659yQRkXWxmiCsX79+CAgIgKOjI3x9fTF8+HCkpqYq2mzduhVt27aFs7MzGjZsiLfeesvgOt9//z1CQkLg4OCAxo0bIy4uzqDNe++9h8DAQDg6OiIsLAzHjh1TnL9//z4mTJgADw8P1KlTB9HR0bh+/bqizZUrV9CnTx84OzujXr16mD59Oh48ePDoD4IqVWVvJZSdnS3/HBJyCrGxKzFyZBxiY1ciJOSU2UCLe08SEVkXqwnCunXrhq1btyIpKQnbt29HcnIyBg4cKJ/ft28fhg0bhvHjx+Ps2bN4//33sWLFCqxZs0Zuk5KSgj59+qBbt244ffo0YmNjMXbsWHz77bdymy1btmDq1KmYP38+Tp48iTZt2iAyMhI3btyQ20yZMgW7du3Ctm3bcOTIEaSmpmLAgAHy+cLCQvTp0wf5+fk4evQoNmzYgLi4OMybN6+CnxJVBGPBUEWRJMnYUfknc4EW954kIrIukhBCWLoTZbFz5070798feXl5sLOzw7PPPouCggJs27ZNbvPuu+9i2bJluHLlCiRJwsyZM7Fnzx6cPXtWbjNkyBBkZ2dj//79AICwsDA88cQTcvCm0Wjg7++PiRMnYtasWVCr1fDy8sKmTZvkIPD8+fNo0aIFEhIS0KFDB+zbtw99+/ZFamoqvL29AQDr1q3DzJkzcfPmzRIX58zJyYFKpYJarYarq2u5PDcqmbS0NKxfv77YduPGjYOvr2+FfK+p3K/iku+LpiYN954s774SEZFxJf37bTUjYbqysrKwceNGdOzYEXZ2dgCAvLw8ODo6Kto5OTnh2rVruHz5MgAgISEBERERijaRkZFISEgAUJSMfeLECUUbGxsbREREyG1OnDiBgoICRZvmzZsjICBAbpOQkIDWrVvLAZj2e3JycvDHH3+YvK+8vDzk5OQoXlQzmUqyV6tdih2ZU6lyERR02WAErKTBPxERVQ6rWh05c+ZMrFmzBnfv3kWHDh2we/du+VxkZCSmTJmCUaNGoVu3brh48SKWL18OoGh0ITAwEOnp6YrACAC8vb2Rk5ODe/fu4datWygsLDTa5vz58wCA9PR02Nvbw83NzaBNenq63MbYNbTnTFmyZAkWLlxYiidClqZbNFXXo9YQK25VpqlNvgcNGmTwu1ke/SEiovJn0SBs1qxZePPNN822OXfuHJo3bw4AmD59OsaMGYPLly9j4cKFGDFiBHbv3g1JkvDCCy8gOTkZffv2RUFBAVxdXTF58mQsWLAANjbWMeA3e/ZsTJ06VX6fk5MDf39/C/ao5irLfo76HqWGmLkSFQAwYMAAeHp6Kj7DQIuIyLpYNAibNm0aRo0aZbZNo0aN5J89PT3h6emJpk2bokWLFvD398cvv/yC8PBwSJKEN998E2+88QbS09Ph5eWFgwcPKq7h4+NjsIrx+vXrcHV1hZOTE2xtbWFra2u0jY+Pj3yN/Px8ZGdnK0Yc9Nvor6jUXlPbxhgHBwc4ODiYfR5UOXT3c9Snv7+jKY9SQ0ybZK+f+6Ud/fL09GR+FxGRlbNoEObl5QUvL68yfVajKVoBlpeXpzhua2uL+vXrAwC+/PJLhIeHy98RHh6OvXv3KtrHx8cjPDwcQNFIQmhoKA4ePIj+/fvL33Pw4EHExMQAAEJDQ2FnZ4eDBw8iOjoaAJCUlIQrV67I1wkPD8fixYtx48YN1KtXT/4eV1dXtGzZskz3S5WvpKNKpqrXP6qQkFMIDr5oNMmeiIisn1XkhCUmJuL48ePo1KkT6tati+TkZMydOxfBwcFy4JORkYGvvvoKTz/9NO7fv49PP/1ULiGhNX78eKxZswYzZszA6NGjcejQIWzduhV79uyR20ydOhUjR45E+/bt8eSTT2LlypW4c+cOnn/+eQCASqXCmDFjMHXqVLi7u8PV1RUTJ05EeHg4OnToAADo2bMnWrZsieHDh2PZsmVIT0/Hq6++igkTJnCkq5op722C9KdBTeV+McmeiMj6WUUQ5uzsjB07dmD+/Pm4c+cOfH190atXL7z66quKoGbDhg14+eWXIYRAeHg4vv/+ezz55JPy+aCgIOzZswdTpkzBqlWr0KBBA3z00UeIjIyU2wwePBg3b97EvHnzkJ6ejrZt22L//v2KRPsVK1bAxsYG0dHRyMvLQ2RkJN5//335vK2tLXbv3o2XXnoJ4eHhqF27NkaOHInXXnutgp8UVaaK2CbI3DSoFnO/iIiqB6utE1YTsE5Y1aSt5ZWSEogNG0YanB85Mg5BQZfN1uXKzMxkoEVEVE2V9O+3VYyEEVVFxa1gNCUzM1Oxk4OpnLJHWV1JRERVH4MwojIqbgWjKbojYOZyyh5ldSUREVV9DMKISkk3Kd7cCsbikucrIqeMiIisB4MwolIqr+T54qriExFR9cYgjKgMyiNXq6w5ZUREVD0wCCOrZ+mVhmX9/rLmlBERUfXAIIysin7Ao1arsWXLlmI/Vx4rDY0FW/rfX9qVjqyKT0RUczEIoypLP+jJzs7G1q1by3StR11pqF9WwpiyrnQ0VRWfiIiqNwZhVCWVJOipTIYjYMoRr9KsdCzplkPcmoiIqHpjEEZVTmZmJlJTU8v02YraTFuXsRGvunVvlXilI7cmIiIigEEYVTGPMgJW3ptp6/YpIyMDgOnaXmPGfFSqlY4MsIiIyKb4JkSVpzS5W2q1C1JSAqFWu5gMjtRql0fqjzYo3LFjBwDg6lV/oyNeBQX2iIraDUnSAABXOhIRUbE4EkZWSX/UKzw8oUIKnxrbYkifdsQrKOgyVzoSEVGJMQgjq6Cb6wXAYNTr6NHwCi18qj/S9pByxIsrHYmIqKQYhFGVV5JRL8AG4eE/IyEh3Gjh00ddaWhsiyEAGDjwK7Rqda7Yz3OlIxER6WMQRlWasVyvhIRwABropjRKkgZhYYkIC0tEmzbRaNXKEX5+TwB4olxWGpraYsjf/5qi3aBBg+Dm5qY4xpWORERkDIMwqtJMJcJ37Phw1MvWVuDNN3Pw7LNDKyzgKW6LoQEDBsDPz4/BFhERlRiDMKqyTp5sh507jSfCL1jgDh8fNTIz66JxYwkNGrgBcCv1dxS376NarZZ/NrfFkKenJwMwIiIqFQZhVKVoc6e005D6VVQe1v96Ch4edR/pu/RrkpWk0CsT74mIqLwwCKMqRVtN/vBhYMUKw0T4devUiI5+qlxGnYyVnyhroVcm3hMRUWkxCKMqx8PDAx06ADY2gEbz8LitLfCvf9VFec/6Fbfvo7Fke11MvCciorJgEEZVUoMGwPr1wIsvAoWFRQHYBx8UHS9vxspP6BZ6dXNzg6+vb/l/MRER1WgMwqjKGjMGiIwELl4EGjcufQBWXNJ9dnY2ANPlJ8qr0CsREZExDMKoSmvQoGyjX6XZCLy48hNEREQVgUEYVUv6I2DGVj7qHjNXfoKIiKgiMAijas/YykcARldDMvgiIqLKwiCMqjVjKx937uwLSYLJ1ZD6WH6CiIgqAoMwqtaMb7xtAyGUR3RXQw4YMACenp4AWH6CiIgqDoMwqtaMrXwENIqRMEC5GtLT05MlKYiIqMIZliQnqka0Kx8lqajqqyRp0K/fboNjXA1JRESVjSNhVO2ZWvnI1ZBERGRJDMKoWtJPpje28TY34yYiIktiEEbVknYjcN16YWq1Glu2bCn2s1wNSURElUESQn+dGFUVOTk5UKlUUKvVcHV1tXR3Hllx2whVxkrEqtAHIiKq3kr695sjYVQpSrqNUExMTIUGQQywiIioquDqSKoU5kafytKOiIjI2jEIIyIiIrIABmFEREREFsAgjIiIiMgCmJhPFqFWuyArywPu7pllrtWlu9IxNdUGKSm1EBT0AH5+RZXwudKRiIiqMgZhVOlOnmyHXbv6QggbecugkJBTpbqG7mpLc9er6NWWREREZcXpSKpUarWLHDABRZto79rVF2q1S6muox0BK+56XG1JRERVFYMwqhTaKvRZWR5ywKQlhA2ystwV7UqquOsRERFVVZyOpEqh3Ubo0qUH+PxzAY1Gks/Z2gpMnNgbgYG1Sj116O6eCUnSKAIxSdLA3T2r3PpORERUETgSRpXGw8MDoaHeWL9egq1t0TFbW+CDDySEhnqXKXdLpcpFVNRuSFJRMr42J4wbcxMRUVXHkTCqdGPGAJGRwMWLQOPGQIMGj3a9kJBTCA6+iKwsd7i7ZzEAIyIiq8AgjCyiQQPAyamoxERa2qOXmFCpchl8ERGRVWEQRhZR2hIT164BFy4ATZo8+sgZERFRVcCcMLKIkpaYSE1NxfLl2WjYUOCZZ4CGDQWWL8+GWq0u0feUdrUlERFRZeFIGFmUuRITKlUuPv00HitXxkKIotWUGo2E6dNd8c8/n0ClAgYNGgQ3Nzej12bFfCIiqsoYhJFFFVdiorggzc3NDb6+vpXaZyIiovLA6UiyqOJKTGiDNF2sA0ZERNUBR8LI4syVmNAGafqJ+1wJSURE1o5BGFUJ5kpMsA4YERFVRwzCyCqwDhgREVU3zAkji2DpCCIiquk4EkYWod3QW1svTF9GRgZ27NhRyb0iIiKqPAzCyGLM1fAq6UgZR9SIiMhaMQijKqm4kTKAxViJiMi6MQijKosBFhERVWdMzCciIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC7C6ICwvLw9t27aFJEk4ffq04tyZM2fQuXNnODo6wt/fH8uWLTP4/LZt29C8eXM4OjqidevW2Lt3r+K8EALz5s2Dr68vnJycEBERgQsXLijaZGVlYdiwYXB1dYWbmxvGjBmD27dvl7ovREREVHNZXRA2Y8YM+Pn5GRzPyclBz5490bBhQ5w4cQJvvfUWFixYgPXr18ttjh49iqFDh2LMmDE4deoU+vfvj/79++Ps2bNym2XLlmH16tVYt24dEhMTUbt2bURGRuL+/ftym2HDhuGPP/5AfHw8du/ejR9++AHjxo0rVV+qk2vXgMOHi/5JREREJSSsyN69e0Xz5s3FH3/8IQCIU6dOyefef/99UbduXZGXlycfmzlzpmjWrJn8ftCgQaJPnz6Ka4aFhYkXX3xRCCGERqMRPj4+4q233pLPZ2dnCwcHB/Hll18KIYT4888/BQBx/Phxuc2+ffuEJEnin3/+KXFfSkKtVgsAQq1Wl+pzlSEjI0OkpqaKt9++JWxsNAIQwsZGI95++5ZITU0VGRkZlu4iERGRRZT077fVjIRdv34dL7zwAj7//HM4OzsbnE9ISECXLl0U29hERkYiKSkJt27dkttEREQoPhcZGYmEhAQAQEpKCtLT0xVtVCoVwsLC5DYJCQlwc3ND+/bt5TYRERGwsbFBYmJiiftiTF5eHnJychSvqigzMxNr1qzBW299ienTXaHRSAAAjUbC9OmueOutL7FmzRpkZmZauKdERERVl1UEYUIIjBo1CuPHj1cEP7rS09Ph7e2tOKZ9n56ebraN7nndz5lqU69ePcX5WrVqwd3dvdjv0f0OY5YsWQKVSiW//P39TbatTPrTjdqthLKyPKAfxwthg6wsd0U7IiIiMmTRIGzWrFmQJMns6/z583j33XeRm5uL2bNnW7K7FW727NlQq9Xy6+rVq5buEj7+GGjYEHjmmaJ/fvwxkJ2dDQBwd8+EJGkU7SVJA3f3LAv0lIiIyLpYdO/IadOmYdSoUWbbNGrUCIcOHUJCQgIcHBwU59q3b49hw4Zhw4YN8PHxwfXr1xXnte99fHzkfxpro3tee8zX11fRpm3btnKbGzduKK7x4MEDZGVlFfs9ut9hjIODg8E9WkpmZiYuXXqAcePq6Uw3AuPGCUyevA8qFZCc3BhCPPyMJGkQFbUbKlWuhXpNRERkPSwahHl5ecHLy6vYdqtXr8brr78uv09NTUVkZCS2bNmCsLAwAEB4eDjmzJmDgoIC2NnZAQDi4+PRrFkz1K1bV25z8OBBxMbGyteKj49HeHg4ACAoKAg+Pj44ePCgHHTl5OQgMTERL730knyN7OxsnDhxAqGhoQCAQ4cOQaPRlKovVZk25yslJRAazUjFOY1Gkqcbd+3qC93BVCGA4OCLldlVIiIiq2UVOWEBAQFo1aqV/GratCkAIDg4GA0aNAAAPPvss7C3t8eYMWPwxx9/YMuWLVi1ahWmTp0qX2fy5MnYv38/li9fjvPnz2PBggX49ddfERMTAwCQJAmxsbF4/fXXsXPnTvz+++8YMWIE/Pz80L9/fwBAixYt0KtXL7zwwgs4duwYfv75Z8TExGDIkCFy6YyS9KUq0+ZymZtuNJYPBjzMByMiIiLzrCIIKwmVSoXvvvsOKSkpCA0NxbRp0zBv3jxF/a6OHTti06ZNWL9+Pdq0aYOvvvoK33zzDVq1aiW3mTFjBiZOnIhx48bhiSeewO3bt7F//344OjrKbTZu3IjmzZuje/fu+Ne//oVOnTopaoCVpC/WQKXKRVTUbjkQ051uZD4YERHRo5GE0M3qoaokJycHKpUKarUarq6ulfa9aWlpiqBSrXZBVpY73N2zFPleJ0+2w65dfSGEjRyghYScks+PGzdOkVtHRERUE5T077dFc8LIOqhUuUaT7UNCTiE4+KLRAA2Aok4aERERKTEIo0diKkAbPHgwPDw8LNAjIiIi61BtcsKoalGpVJbuAhERUZXGIIwqBKciiYiIzON0JBkoaQA1ePBgoyNe9vb2nIokIiIqBoMwMuDh4YGYmBizez8y0CIiIno0DMLIKAZYREREFYs5YUREREQWwCCMiIiIyAIYhBERERFZAIMwIiIiIgtgEEZERERkAQzCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsCK+TVEZmYmtyEiIiKqQhiE1QCZmZlYs2ZNse1iYmIYiBEREVUSTkfWAOZGwMrSjoiIiB4dgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjIiIisgAGYUREREQWwCCsBrC3t1e8V6tdkJISCLXaxWw7IiIiqjgs1loDeHh4ICYmBvn5+di0yQmvvaaCRiPBxkZg2TI1nn32HivmExERVTJJCCEs3QkyLicnByqVCmq1Gq6uro98vWvXgIYNAY3m4TFbW+DSJaBBg0e+PBEREaHkf785HVmDXLigDMAAoLAQuHjRMv0hIiKqyRiE1SBNmgA2ev/GbW2Bxo0t0x8iIqKajEFYDdKgAbB+fVHgBRT984MPOBVJRERkCUzMr2HGjAEiI4umIBs3ZgBGRERkKQzCaqAGDRh8ERERWRqnI4mIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjIiIisgDuHVmFCSEAADk5ORbuCREREZWU9u+29u+4KQzCqrDc3FwAgL+/v4V7QkRERKWVm5sLlUpl8rwkigvTyGI0Gg1SU1Ph4uICSZJK9JmcnBz4+/vj6tWrcHV1reAeVl18DkX4HPgMtPgcivA58BloVeRzEEIgNzcXfn5+sLExnfnFkbAqzMbGBg0aNCjTZ11dXWv0/7i0+ByK8DnwGWjxORThc+Az0Kqo52BuBEyLiflEREREFsAgjIiIiMgCGIRVMw4ODpg/fz4cHBws3RWL4nMowufAZ6DF51CEz4HPQKsqPAcm5hMRERFZAEfCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsAgzAqsXbsWjz/+uFxQLjw8HPv27ZPP379/HxMmTICHhwfq1KmD6OhoXL9+XXGNK1euoE+fPnB2dka9evUwffp0PHjwoLJvpdwsXboUkiQhNjZWPlZTnsOCBQsgSZLi1bx5c/l8TXkO//zzD5577jl4eHjAyckJrVu3xq+//iqfF0Jg3rx58PX1hZOTEyIiInDhwgXFNbKysjBs2DC4urrCzc0NY8aMwe3btyv7VsosMDDQ4HdBkiRMmDABQM35XSgsLMTcuXMRFBQEJycnBAcHY9GiRYp9+2rC70Nubi5iY2PRsGFDODk5oWPHjjh+/Lh8vjo+gx9++AFRUVHw8/ODJEn45ptvFOfL657PnDmDzp07w9HREf7+/li2bFn53ICgKm/nzp1iz5494q+//hJJSUnilVdeEXZ2duLs2bNCCCHGjx8v/P39xcGDB8Wvv/4qOnToIDp27Ch//sGDB6JVq1YiIiJCnDp1Suzdu1d4enqK2bNnW+qWHsmxY8dEYGCgePzxx8XkyZPl4zXlOcyfP1889thjIi0tTX7dvHlTPl8TnkNWVpZo2LChGDVqlEhMTBR///23+Pbbb8XFixflNkuXLhUqlUp888034rfffhP9+vUTQUFB4t69e3KbXr16iTZt2ohffvlF/Pjjj6Jx48Zi6NChlrilMrlx44bi9yA+Pl4AEIcPHxZC1IzfBSGEWLx4sfDw8BC7d+8WKSkpYtu2baJOnTpi1apVcpua8PswaNAg0bJlS3HkyBFx4cIFMX/+fOHq6iquXbsmhKiez2Dv3r1izpw5YseOHQKA+PrrrxXny+Oe1Wq18Pb2FsOGDRNnz54VX375pXBychIffPDBI/efQZiVqlu3rvjoo49Edna2sLOzE9u2bZPPnTt3TgAQCQkJQoiiX1IbGxuRnp4ut1m7dq1wdXUVeXl5ld73R5GbmyuaNGki4uPjRdeuXeUgrCY9h/nz54s2bdoYPVdTnsPMmTNFp06dTJ7XaDTCx8dHvPXWW/Kx7Oxs4eDgIL788kshhBB//vmnACCOHz8ut9m3b5+QJEn8888/Fdf5CjR58mQRHBwsNBpNjfldEEKIPn36iNGjRyuODRgwQAwbNkwIUTN+H+7evStsbW3F7t27FcdDQkLEnDlzasQz0A/Cyuue33//fVG3bl3F/yZmzpwpmjVr9sh95nSklSksLMTmzZtx584dhIeH48SJEygoKEBERITcpnnz5ggICEBCQgIAICEhAa1bt4a3t7fcJjIyEjk5Ofjjjz8q/R4exYQJE9CnTx/F/QKocc/hwoUL8PPzQ6NGjTBs2DBcuXIFQM15Djt37kT79u3xn//8B/Xq1UO7du3w4YcfyudTUlKQnp6ueA4qlQphYWGK5+Dm5ob27dvLbSIiImBjY4PExMTKu5lykp+fjy+++AKjR4+GJEk15ncBADp27IiDBw/ir7/+AgD89ttv+Omnn9C7d28ANeP34cGDBygsLISjo6PiuJOTE3766aca8Qz0ldc9JyQkoEuXLrC3t5fbREZGIikpCbdu3XqkPnIDbyvx+++/Izw8HPfv30edOnXw9ddfo2XLljh9+jTs7e3h5uamaO/t7Y309HQAQHp6uuL/ZLXnteesxebNm3Hy5ElFjoNWenp6jXkOYWFhiIuLQ7NmzZCWloaFCxeic+fOOHv2bI15Dn///TfWrl2LqVOn4pVXXsHx48cxadIk2NvbY+TIkfJ9GLtP3edQr149xflatWrB3d3dap6Drm+++QbZ2dkYNWoUgJr1v4lZs2YhJycHzZs3h62tLQoLC7F48WIMGzYMAGrE74OLiwvCw8OxaNEitGjRAt7e3vjyyy+RkJCAxo0b14hnoK+87jk9PR1BQUEG19Ceq1u3bpn7yCDMSjRr1gynT5+GWq3GV199hZEjR+LIkSOW7laluXr1KiZPnoz4+HiD/9KrabT/dQ8Ajz/+OMLCwtCwYUNs3boVTk5OFuxZ5dFoNGjfvj3eeOMNAEC7du1w9uxZrFu3DiNHjrRw7yzj448/Ru/eveHn52fprlS6rVu3YuPGjdi0aRMee+wxnD59GrGxsfDz86tRvw+ff/45Ro8ejfr168PW1hYhISEYOnQoTpw4YemukQmcjrQS9vb2aNy4MUJDQ7FkyRK0adMGq1atgo+PD/Lz85Gdna1of/36dfj4+AAAfHx8DFZEad9r21R1J06cwI0bNxASEoJatWqhVq1aOHLkCFavXo1atWrB29u7RjwHY9zc3NC0aVNcvHixxvw++Pr6omXLlopjLVq0kKdltfdh7D51n8ONGzcU5x88eICsrCyreQ5aly9fxoEDBzB27Fj5WE35XQCA6dOnY9asWRgyZAhat26N4cOHY8qUKViyZAmAmvP7EBwcjCNHjuD27du4evUqjh07hoKCAjRq1KjGPANd5XXPFfm/EwZhVkqj0SAvLw+hoaGws7PDwYMH5XNJSUm4cuUKwsPDAQDh4eH4/fffFb9o8fHxcHV1NfhDVlV1794dv//+O06fPi2/2rdvj2HDhsk/14TnYMzt27eRnJwMX1/fGvP78NRTTyEpKUlx7K+//kLDhg0BAEFBQfDx8VE8h5ycHCQmJiqeQ3Z2tmKU4NChQ9BoNAgLC6uEuyg/n376KerVq4c+ffrIx2rK7wIA3L17FzY2yj9ntra20Gg0AGre70Pt2rXh6+uLW7du4dtvv8W///3vGvcMgPL79x4eHo4ffvgBBQUFcpv4+Hg0a9bskaYiAbBEhTWYNWuWOHLkiEhJSRFnzpwRs2bNEpIkie+++04IUbQMPSAgQBw6dEj8+uuvIjw8XISHh8uf1y5D79mzpzh9+rTYv3+/8PLysrpl6Pp0V0cKUXOew7Rp08T3338vUlJSxM8//ywiIiKEp6enuHHjhhCiZjyHY8eOiVq1aonFixeLCxcuiI0bNwpnZ2fxxRdfyG2WLl0q3NzcxP/+9z9x5swZ8e9//9vo0vR27dqJxMRE8dNPP4kmTZpU6eX4xhQWFoqAgAAxc+ZMg3M14XdBCCFGjhwp6tevL5eo2LFjh/D09BQzZsyQ29SE34f9+/eLffv2ib///lt89913ok2bNiIsLEzk5+cLIarnM8jNzRWnTp0Sp06dEgDEO++8I06dOiUuX74shCife87Ozhbe3t5i+PDh4uzZs2Lz5s3C2dmZJSpqitGjR4uGDRsKe3t74eXlJbp37y4HYEIIce/ePfHf//5X1K1bVzg7O4v/9//+n0hLS1Nc49KlS6J3797CyclJeHp6imnTpomCgoLKvpVypR+E1ZTnMHjwYOHr6yvs7e1F/fr1xeDBgxX1sWrKc9i1a5do1aqVcHBwEM2bNxfr169XnNdoNGLu3LnC29tbODg4iO7du4ukpCRFm8zMTDF06FBRp04d4erqKp5//nmRm5tbmbfxyL799lsBwODehKg5vws5OTli8uTJIiAgQDg6OopGjRqJOXPmKEoK1ITfhy1btohGjRoJe3t74ePjIyZMmCCys7Pl89XxGRw+fFgAMHiNHDlSCFF+9/zbb7+JTp06CQcHB1G/fn2xdOnScum/JIROSWEiIiIiqhTMCSMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjomrl6aefRmxsrKW7UeEWLFiAtm3bWrobRPQIGIQREVUh+fn5lfp9Qgg8ePCgUr+TiIowCCOiamPUqFE4cuQIVq1aBUmSIEkSLl26hLNnz6J3796oU6cOvL29MXz4cGRkZMife/rppzFx4kTExsaibt268Pb2xocffog7d+7g+eefh4uLCxo3box9+/bJn/n+++8hSRL27NmDxx9/HI6OjujQoQPOnj2r6NNPP/2Ezp07w8nJCf7+/pg0aRLu3Lkjnw8MDMSiRYswYsQIuLq6Yty4cQCAmTNnomnTpnB2dkajRo0wd+5cFBQUAADi4uKwcOFC/Pbbb/J9xsXF4dKlS5AkCadPn5avn52dDUmS8P333yv6vW/fPoSGhsLBwQE//fQTNBoNlixZgqCgIDg5OaFNmzb46quvyvtfERHpYBBGRNXGqlWrEB4ejhdeeAFpaWlIS0uDi4sLnnnmGbRr1w6//vor9u/fj+vXr2PQoEGKz27YsAGenp44duwYJk6ciJdeegn/+c9/0LFjR5w8eRI9e/bE8OHDcffuXcXnpk+fjuXLl+P48ePw8vJCVFSUHCwlJyejV69eiI6OxpkzZ7Blyxb89NNPiImJUVzj7bffRps2bXDq1CnMnTsXAODi4oK4uDj8+eefWLVqFT788EOsWLECADB48GBMmzYNjz32mHyfgwcPLtWzmjVrFpYuXYpz587h8ccfx5IlS/DZZ59h3bp1+OOPPzBlyhQ899xzOHLkSKmuS0SlUC7bgBMRVRFdu3YVkydPlt8vWrRI9OzZU9Hm6tWrAoBISkqSP9OpUyf5/IMHD0Tt2rXF8OHD5WNpaWkCgEhISBBCCHH48GEBQGzevFluk5mZKZycnMSWLVuEEEKMGTNGjBs3TvHdP/74o7CxsRH37t0TQgjRsGFD0b9//2Lv66233hKhoaHy+/nz54s2bdoo2qSkpAgA4tSpU/KxW7duCQDi8OHDin5/8803cpv79+8LZ2dncfToUcX1xowZI4YOHVps34iobGpZMgAkIqpov/32Gw4fPow6deoYnEtOTkbTpk0BAI8//rh83NbWFh4eHmjdurV8zNvbGwBw48YNxTXCw8Pln93d3dGsWTOcO3dO/u4zZ85g48aNchshBDQaDVJSUtCiRQsAQPv27Q36tmXLFqxevRrJycm4ffs2Hjx4AFdX11Lfvym633nx4kXcvXsXPXr0ULTJz89Hu3btyu07iUiJQRgRVWu3b99GVFQU3nzzTYNzvr6+8s92dnaKc5IkKY5JkgQA0Gg0pfruF198EZMmTTI4FxAQIP9cu3ZtxbmEhAQMGzYMCxcuRGRkJFQqFTZv3ozly5eb/T4bm6IMEyGEfEw7NapP9ztv374NANizZw/q16+vaOfg4GD2O4mo7BiEEVG1Ym9vj8LCQvl9SEgItm/fjsDAQNSqVf7/l/fLL7/IAdWtW7fw119/ySNcISEh+PPPP9G4ceNSXfPo0aNo2LAh5syZIx+7fPmyoo3+fQKAl5cXACAtLU0ewdJN0jelZcuWcHBwwJUrV9C1a9dS9ZWIyo6J+URUrQQGBiIxMRGXLl1CRkYGJkyYgKysLAwdOhTHjx9HcnIyvv32Wzz//PMGQUxZvPbaazh48CDOnj2LUaNGwdPTE/379wdQtMLx6NGjiImJwenTp3HhwgX873//M0jM19ekSRNcuXIFmzdvRnJyMlavXo2vv/7a4D5TUlJw+vRpZGRkIC8vD05OTujQoYOccH/kyBG8+uqrxd6Di4sLXn75ZUyZMgUbNmxAcnIyTp48iXfffRcbNmwo87MhIvMYhBFRtfLyyy/D1tYWLVu2hJeXF/Lz8/Hzzz+jsLAQPXv2ROvWrREbGws3Nzd5+u5RLF26FJMnT0ZoaCjS09Oxa9cu2NvbAyjKMzty5Aj++usvdO7cGe3atcO8efPg5+dn9pr9+vXDlClTEBMTg7Zt2+Lo0aPyqkmt6Oho9OrVC926dYOXlxe+/PJLAMAnn3yCBw8eIDQ0FLGxsXj99ddLdB+LFi3C3LlzsWTJErRo0QK9evXCnj17EBQUVIanQkQlIQnd5AEiIiqR77//Ht26dcOtW7fg5uZm6e4QkRXiSBgRERGRBTAIIyIiIrIATkcSERERWQBHwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILOD/A1M3HSEaHErLAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2 Training Surrogates with PySMO\n", + "\n", + "IDAES builds a model class for each type of PySMO surrogate model. In this case, we will call and build the Polynomial Regression class. Regression settings can be directly passed as class arguments, as shown below. In this example, allowed basis terms span a 5th order polynomial, a variable product as well as a extra features are defined, and data is internally cross-validated using 10 iterations of 80/20 splits to ensure a robust surrogate fit. Note that PySMO uses cross-validation of training data to adjust model coefficients and ensure a more accurate fit, while we separate the validation dataset pre-training in order to visualize the surrogate fits.\n", + "\n", + "Finally, after training the model we save the results and model expressions to a folder which contains a serialized JSON file. Serializing the model in this fashion enables importing a previously trained set of surrogate models into external flowsheets. This feature will be used later." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPs0lEQVR4nO3deVxU9f4/8NewigijLLIEAgJXr6ZeQTOy1NQCv2r508rylmuaBprZdcubaYtLqbllVtelvFreUuuqWVqZZZqVSupNSbyQG7gMOaAmIHN+f3BnYoAZZjtzttfz8eChzBxmPjMM57zO5/P+fI5OEAQBRERERBrgI3UDiIiIiLyFwYeIiIg0g8GHiIiINIPBh4iIiDSDwYeIiIg0g8GHiIiINIPBh4iIiDSDwYeIiIg0g8GHiIiINIPBh4hIhtauXQudTofCwkKpm0KkKgw+RBr1ww8/ICcnB23btkVwcDBatGiBhx56CL/88kudbXv06AGdTgedTgcfHx+EhoaiVatWeOyxx7Br1y6nnnfr1q3o3r07mjdvjsaNG6Nly5Z46KGH8Omnn3rqpdUxZ84cfPTRR3Vu37dvH2bNmoUrV66I9ty1zZo1y/Je6nQ6NG7cGG3atMHf//53lJaWeuQ5NmzYgMWLF3vksYjUhsGHSKPmz5+PTZs2oVevXliyZAnGjBmDr7/+GmlpaTh27Fid7ePi4rBu3Tq8++67ePXVV3Hfffdh3759uPfeezF48GBUVlY2+JwLFizAfffdB51Oh+nTp+O1117DoEGDcPLkSbz//vtivEwA9oPP7NmzvRp8zN544w2sW7cOixYtQuvWrfHyyy8jKysLnrh8IoMPkW1+UjeAiKQxadIkbNiwAQEBAZbbBg8ejHbt2mHevHn45z//abW9Xq/Ho48+anXbvHnzMGHCBKxYsQKJiYmYP3++zee7efMmXnzxRdxzzz3YuXNnnfsvXrzo5iuSj+vXr6Nx48Z2t3nggQcQEREBABg7diwGDRqEzZs347vvvkNGRoY3mkmkSezxIdKoO+64wyr0AEBqairatm2L48ePO/QYvr6+WLp0Kdq0aYPly5fDaDTa3Pby5csoLS1F165d672/efPmVt/fuHEDs2bNwp/+9Cc0atQIMTExGDhwIE6dOmXZZsGCBbjjjjsQHh6OoKAgpKen48MPP7R6HJ1Oh2vXruGdd96xDC8NHz4cs2bNwuTJkwEASUlJlvtq1tT885//RHp6OoKCghAWFoaHH34YZ86csXr8Hj164NZbb8XBgwfRrVs3NG7cGM8++6xD719NPXv2BAAUFBTY3W7FihVo27YtAgMDERsbi+zsbKseqx49emD79u349ddfLa8pMTHR6fYQqRV7fIjIQhAEXLhwAW3btnX4Z3x9ffHII4/gueeew969e9G3b996t2vevDmCgoKwdetWjB8/HmFhYTYfs6qqCv369cMXX3yBhx9+GE899RTKysqwa9cuHDt2DMnJyQCAJUuW4L777sNf//pXVFRU4P3338eDDz6Ibdu2Wdqxbt06PP7447jtttswZswYAEBycjKCg4Pxyy+/4L333sNrr71m6X2JjIwEALz88st47rnn8NBDD+Hxxx/HpUuXsGzZMnTr1g2HDx9G06ZNLe01GAzo06cPHn74YTz66KOIiopy+P0zMwe68PBwm9vMmjULs2fPRu/evTFu3Djk5eXhjTfewA8//IBvv/0W/v7+mDFjBoxGI86ePYvXXnsNANCkSROn20OkWgIR0f+sW7dOACCsWrXK6vbu3bsLbdu2tflzW7ZsEQAIS5Yssfv4M2fOFAAIwcHBQp8+fYSXX35ZOHjwYJ3tVq9eLQAQFi1aVOc+k8lk+f/169et7quoqBBuvfVWoWfPnla3BwcHC8OGDavzWK+++qoAQCgoKLC6vbCwUPD19RVefvllq9uPHj0q+Pn5Wd3evXt3AYCwcuVKm6+7pueff14AIOTl5QmXLl0SCgoKhDfffFMIDAwUoqKihGvXrgmCIAhr1qyxatvFixeFgIAA4d577xWqqqosj7d8+XIBgLB69WrLbX379hUSEhIcag+R1nCoi4gAACdOnEB2djYyMjIwbNgwp37W3KNQVlZmd7vZs2djw4YN6NixIz777DPMmDED6enpSEtLsxpe27RpEyIiIjB+/Pg6j6HT6Sz/DwoKsvz/t99+g9FoxF133YVDhw451f7aNm/eDJPJhIceegiXL1+2fEVHRyM1NRW7d++22j4wMBAjRoxw6jlatWqFyMhIJCUl4YknnkBKSgq2b99uszbo888/R0VFBSZOnAgfnz923aNHj0ZoaCi2b9/u/Asl0iAOdRERiouL0bdvX+j1enz44Yfw9fV16uevXr0KAAgJCWlw20ceeQSPPPIISktLceDAAaxduxYbNmxA//79cezYMTRq1AinTp1Cq1at4Odnfxe1bds2vPTSS8jNzUV5ebnl9prhyBUnT56EIAhITU2t935/f3+r72+55ZY69VIN2bRpE0JDQ+Hv74+4uDjL8J0tv/76K4DqwFRTQEAAWrZsabmfiOxj8CHSOKPRiD59+uDKlSv45ptvEBsb6/RjmKe/p6SkOPwzoaGhuOeee3DPPffA398f77zzDg4cOIDu3bs79PPffPMN7rvvPnTr1g0rVqxATEwM/P39sWbNGmzYsMHp11CTyWSCTqfDjh076g2BtWtmavY8Oapbt26WuiIi8h4GHyINu3HjBvr3749ffvkFn3/+Odq0aeP0Y1RVVWHDhg1o3Lgx7rzzTpfa0alTJ7zzzjsoKioCUF18fODAAVRWVtbpXTHbtGkTGjVqhM8++wyBgYGW29esWVNnW1s9QLZuT05OhiAISEpKwp/+9CdnX44oEhISAAB5eXlo2bKl5faKigoUFBSgd+/eltvc7fEiUjPW+BBpVFVVFQYPHoz9+/fjgw8+cGntmKqqKkyYMAHHjx/HhAkTEBoaanPb69evY//+/fXet2PHDgB/DOMMGjQIly9fxvLly+tsK/xvgT9fX1/odDpUVVVZ7issLKx3ocLg4OB6FykMDg4GgDr3DRw4EL6+vpg9e3adBQUFQYDBYKj/RYqod+/eCAgIwNKlS63atGrVKhiNRqvZdMHBwXaXFiDSMvb4EGnUM888g3//+9/o378/SkpK6ixYWHuxQqPRaNnm+vXryM/Px+bNm3Hq1Ck8/PDDePHFF+0+3/Xr13HHHXfg9ttvR1ZWFuLj43HlyhV89NFH+OabbzBgwAB07NgRADB06FC8++67mDRpEr7//nvcdddduHbtGj7//HM8+eSTuP/++9G3b18sWrQIWVlZGDJkCC5evIjXX38dKSkpOHLkiNVzp6en4/PPP8eiRYsQGxuLpKQkdOnSBenp6QCAGTNm4OGHH4a/vz/69++P5ORkvPTSS5g+fToKCwsxYMAAhISEoKCgAFu2bMGYMWPwt7/9za3331mRkZGYPn06Zs+ejaysLNx3333Iy8vDihUr0LlzZ6vfV3p6OjZu3IhJkyahc+fOaNKkCfr37+/V9hLJlpRTyohIOuZp2La+7G3bpEkTITU1VXj00UeFnTt3OvR8lZWVwttvvy0MGDBASEhIEAIDA4XGjRsLHTt2FF599VWhvLzcavvr168LM2bMEJKSkgR/f38hOjpaeOCBB4RTp05Ztlm1apWQmpoqBAYGCq1btxbWrFljmS5e04kTJ4Ru3boJQUFBAgCrqe0vvviicMsttwg+Pj51prZv2rRJuPPOO4Xg4GAhODhYaN26tZCdnS3k5eVZvTf2pvrXZm7fpUuX7G5Xezq72fLly4XWrVsL/v7+QlRUlDBu3Djht99+s9rm6tWrwpAhQ4SmTZsKADi1nagGnSB44MIwRERERArAGh8iIiLSDAYfIiIi0gwGHyIiItIMBh8iIiLSDAYfIiIi0gzFBJ+5c+eic+fOCAkJQfPmzTFgwADk5eVZbXPjxg1kZ2cjPDwcTZo0waBBg3DhwgWJWkxERERyo5jp7FlZWXj44YfRuXNn3Lx5E88++yyOHTuGn3/+2bL66rhx47B9+3asXbsWer0eOTk58PHxwbfffuvw85hMJpw/fx4hISFc9p2IiEghBEFAWVkZYmNj4eNjp19H0lWE3HDx4kUBgLBnzx5BEAThypUrgr+/v/DBBx9Ytjl+/LgAQNi/f7/Dj3vmzBm7i7rxi1/84he/+MUv+X6dOXPG7nFesZesMF+HJiwsDABw8OBBVFZWWl2or3Xr1mjRogX279+P22+/vd7HKS8vR3l5ueV74X8dYGfOnLF73SEiIiKSj9LSUsTHxyMkJMTudooMPiaTCRMnTkTXrl1x6623AgCKi4sREBCApk2bWm0bFRWF4uJim481d+5czJ49u87toaGhDD5EREQK01CZimKKm2vKzs7GsWPH8P7777v9WNOnT4fRaLR8nTlzxgMtJCIiIjlSXI9PTk4Otm3bhq+//hpxcXGW26Ojo1FRUYErV65Y9fpcuHAB0dHRNh8vMDAQgYGBYjaZiIiIZEIxPT6CICAnJwdbtmzBl19+iaSkJKv709PT4e/vjy+++MJyW15eHk6fPo2MjAxvN5eIiIhkSDE9PtnZ2diwYQM+/vhjhISEWOp29Ho9goKCoNfrMWrUKEyaNAlhYWEIDQ3F+PHjkZGRYbOwmYiIiLRFMev42CpWWrNmDYYPHw6gegHDZ555Bu+99x7Ky8uRmZmJFStW2B3qqq20tBR6vR5Go5HFzURERArh6PFbMcHHWxh8iIiIlMfR47dianyIiIiI3MXgQ0RERJrB4ENERESaweBDREREmqGY6exE7jIYDKioqLB5f0BAAMLDw73YIiIi8jYGH9IEg8GA5cuXW743GkNQUhKOsDAD9Poyy+05OTkMP0REKsbgQ5pQs6fn0KGO2Lq1HwTBBzqdCf37b0Na2uE62xERkfow+IiIQyvyYzSGWEIPAAiCD7Zu7Yfk5Hyrnh8iIlInBh+R1B5asYVDK95VUhJuCT1mguCDkpIwBh8iIg3grC6RODpkwqEV7woLM0CnM1ndptOZEBZWIlGLiIjImxh8SFP0+jL077/NEn7MNT7s7SEi0gYOdZHmpKUdRnJyPkpKwhAWVsLQQ0SkIQw+pEl6fRkDDxGRBnGoy0uMxhAUFCTCaAyRuimaFBAQ4NHtiIhImdjj4wX21o0h57myTEB4eDhycnK4vIBIuHQDESkFg4/IuG6MZ7mzTAAPvOLgqthEpCQMPiIxD5k0tG4Mh1acw2UC5IerYhORkjD4iMQ8tFJYeBPr1gkwmXSW+3x9BYwf3weJiX48A3aTrd4F8j72bhKREjD4iCg8PBzh4cBbbwFPPAFUVQG+vsCbb+qQnh4ldfMUz1u1U1qrX3H19XJVbCJSAgYfLxg1CsjMBPLzgZQUIC5O6hYpn7d6F7R26RF3Xq95Veya4YerYhOR3DD4eElcHAOPJ3mrd0HpNUXO9t6483rNq2LX7oVjbw8RyQmDDymSVL0LSqop8kRvlbOvl6tiE5HcMfiQIknRu6C09Zjc7a1y9fXaWhX78uXLNn9GbXVSRCRfDD6kKDWn/9vrXfD0MgFqmLHkTO+NM6/X0fd68+bNdu9XS52UXHmjSF9rEwFImRh8yGlS7txqrsBsNBpRWVlZZxs/Pz9UVFTAYDB4rB1Kn7HkbO+NM6+3oVWxL1++3GDoAeRbJ6UG3ijS50KWpBQMPuQUOcxyCg8Ph8FgwMaNG73WDiXPWHKlt8rZ1+vMe6ykOim1qB0qbf0O3AmfXMiSlILBh5wil1lO3tiR16TkGUuu9FaJ9XqVVielRmL/DtQwLEzqxuBDbpHD2buYO3KpaopscWWY0ZneGzFfLw+I0vPG70Dpw8Kkfgw+5DI5nL2LvSOX01XdXR1mdKb3RszXywOiY8SsofPG70DJw8KkDQw+KiBFsbFczt69sSOXSyGms8OMrvbeiPV6eUBsmNg1dN74HSh5WJi0gcFH4aQqNpbL2TsPprbJqbcK4AHREWLX0HnrdyDXhSw53Z4ABh/Fk6rYWC6BQ8sHU0fqq9zZiXvqICG3OiklEaOGzluhxNZCllKRw4xUkgcGH5URq9jYfBA0r74rp8Ah17NLMYldX+XJg4Tcep6UwpO/49qh0lYocSd8OvqzUgVcucxIJekx+KiIWAdDWwdBKc/evbEjlytv1Fd5+iDBUOMcT/+OvRE+lRZw5TAjlaTB4KMSYh4M7e3IagaOgQMHIiIiwis7N6XtZD1JivoqHiS8S4zfsTf+FpTy9yaHGalKoNaaKAYflfDmwdDWQTAiIgIxMTEefS57lPgH5wnerq/iQcL75FJDp0ZymZHqSWIEFDVfgoTBRyW8taPkQVA65mG7huqrPDm8p8aDhBLIqYZOap4+qMtlRqqniFW0reZLkDD4qIQ3dpQ8CEqr9vDezJmXUFjoh8TEm4iN7Qygs8e7ntV2kJA7zoCzJsZBXW29aWIXbatxv8/go3De3FHyIPgHqca+az5mTAyQnu7xp7CitoOE3Gm5dq0+YhzU1d6b5ul6PDXu9xl8FM6bO0oeBKtpaT0QtR8k5Ejpnxm50kJvmhilCGrc7zP4qABX3vUub18ZXgpaOEiojVpn4NTkTm+G2nvTxBqSUuN+n8GHGsSDoG1qLfZW+0FCbbTQC+mJvzWlvnZHiDkkpbZFYhl8qEE8CNZPjUV/NWnt96lkau+FVPvfmieIPSQlt0uQuIPBhxzCg2Bdaiz6I+VTYy8k/9Ya5ukhKblfgsQdDD5ELlJj0R8pm1p7Rvi3Vj+DwQCj0Wj53pOlCGru6WfwIXKRGov+SNnU1jMixaKdSmGrrqv2kNRDDz2E5s2buxRQlBhqHMHgQ+QGtRX9kbKprWdEikU7lcLReq2mTZtq8v2xh8GHyEnuXBleC1OOSTpq7IX09qKdpH4MPiQLSgoEro59a2HKMUmPvZDa5OkVm9WMwYckp8RA4Eo71D7lmKTjTi8kKZ8aZ/KJicGHPM7Z3hstBgLuqMiT1DwDh+xT60w+MTH4kEe523ujhUDAHRWJgaFGm9Q2k88bfBrehMhx9fXeFBQkwmgMsbudedv6AkHtn1U6ezsqIiJnmGfy1aTkmXzewB4fEo2zvTdaOXNR25RjIvI+rnHkOgYfmVDSrCZHuDKco5VAoMYpx0TkXa6ucaS2Y40rGHxkQImzmhriSu+N1IHAmzsETjkmUjY5BAhn1zhS47HGFQw+MuDobCUlzWpytfdGqkDgjR0CpxwTqYNSA4QWZ9DWh8GHROFM740cAoE3dgicckxaJ4deEk9QQ4DQwgxaWxh8ZEgtK3A62nsjt0Ag5g5BCTt1IjHU7iWxtZ+TWy9JQ5QYILS+pAaDj8wo8Y+oJld7b+Syo9P6DoFILDVPbOzt5+TcS1Kbt/cXnuox08oMWlsYfGREDQddufXeOEvrOwStceZAUnPb8+d9UFDgh6Skm4iNNdXZlmxTw37OzJv7C0/WFWllBq0tDD4yopaDrpx3/rYOdJcvXwbAHYJceKMWxJmhFwCWbe31VihtmEYKatnPAd7dX3iyrkjqGbRSY/CRER50xeXIGZPWdwhy4K1aEFeGXhrqrVDSMI1UvLWf80Z4lmp/4YmSCC0vqcHgIwNcgdM7HD1j0vIOQQ68XQvizNCLmnorpOKNsODNQmpv7y/cGSqUwwxaOWDwkQFXV+Ak1zV0xqTVHYKceKsWxJkww15ZzxA7LIgdnqUMEO6Eb6XXYHoKg49MOLsCJ7muoQPqwIEDERERUefntLBDkBNv9a44E2Y4FOo5tsKCJ4kVnqUMEO6Gb+7DGHxIgxo6oEZERCAmJkai1pGZt3pXnA0zHAp1jaO9H57sJREzPEsVIBi+3afK4PP666/j1VdfRXFxMTp06IBly5bhtttuk7pZJBMcrlAGb+7gnQ0z3uitUBspeknU+rfO8O0e1QWfjRs3YtKkSVi5ciW6dOmCxYsXIzMzE3l5eWjevLnUzbNJLUu5KwHPmJRDrB28wWCwLGFgxjAjPm/vw9T0t87CZM9RXfBZtGgRRo8ejREjRgAAVq5cie3bt2P16tWYNm2axK2rn1IveOcoOYY6njEph6cDiaMzfsycOZDwoCM/Svlbd2Q/ycJkz1BV8KmoqMDBgwcxffp0y20+Pj7o3bs39u/fX+/PlJeXo7y83PJ9aWmp6O2sTY1XZzeTU6jjGZMyiF0L4uiMn4EDByI2NtbyueRBR7nk3pvnzPR71h+6T1XB5/Lly6iqqkJUVJTV7VFRUThx4kS9PzN37lzMnj3bG81zmFouUgrI6yrGnMqpDN76PTU04yciIsLqOfi5UA4pCqndocbrmMmZqoKPK6ZPn45JkyZZvi8tLUV8fLxk7VH6RUrtkcNr48FLGbzxe+JihOql1JMcNV3HTM5UFXwiIiLg6+uLCxcuWN1+4cIFREdH1/szgYGBCAwM9EbzGqTmD72aXxspk1pn/FA1uYUaRzCMe4dPw5soR0BAANLT0/HFF19YbjOZTPjiiy+QkZEhYcscY+9Dr3Rqfm2kTOYZPzpd9dXVlTzjh9TBHMZrYhj3PFX1+ADApEmTMGzYMHTq1Am33XYbFi9ejGvXrllmecmZms9A1fzaSLmUMuNHa2rOcDp/3gcFBX5ISrqJ2NjqUCDHYSpPUNP0ezlTXfAZPHgwLl26hJkzZ6K4uBh/+ctf8Omnn9YpeJYjNX/o1fzaSNnkPuNHa2rOcLJXF6jU5T0awjAuPtUFH6D6DyInJ0fqZjis5swCex96ucxAcBX/oEkOlDbjR2vMPT0N1QWqeYYTw7i4VBl8lEapMxAcwbVzSG7U/PemJloq9GUY9y4GH5lQ606WBxmSI37e5E9LdYHcT3oXgw+Jjn+sROQsrdUFcj/pPQw+REQkS6wLJDEw+JDL5HjxUSJSFxb6yosalhpg8CGXyOnio0REJD61LDXA4EMukdPFR4nIu8Ts7VXLDCc19IzUppalBhh8yG1yuPgoEXlH7d5eWyc9rp71q2GGk1p6RmxR+lIDDD7kFl58lEhbagYSewd1d876lRgGalJLz4gtSl9qgMGH3KL05E/qxeJ7cfGkp2Fq3T8qfakBBh9yi9KTP6kzILD4XnxqPah7kpr3j0peaoDBh9yi9OSvdWoNCCy+F19DB/UrV64gJiZGqubJgtr3j0pdaoDBh9ym5OSvdY4e+JUcEFh8L476Duq9e39u+fv/17/+pbjALAbuH+WHwYdcwouPqpOtnhGlYh2KuNLSDuP33xth167eEAQffP55bwQF3fBIgbOr5DiNXKk9I7WpZakBBh9yiRqmnJI1JfeM1K5Tunz5MgDWoYjNaAzB55/3BiCPYKn2aeTO8nT9nlr2+ww+5DK5f7jJcUruGbFXp6Tm4lKp1Dybl1uwlMs0cjn0jIi13pIa9vsMPkQkuwOYMxoqZFZzcakUwsPDMXjwYGzcuFG2wVLqz7Mceka8sd6SUjH4EJFsD2DOsrWDZ3GpZ+n1+v/963yw9MbyCWJ+nh1tv1x6RpTcmysWBh8iUkXPSEM7eBbfi8OZYCn25S7MxPo8e6v9niR175ccMfgQaVjNA7+9A5gSAkJDO/iBAwciIiLCcp8SijCVwtFZS94cfhGjp0+Jw0dq6c31JAYfIg2TQy2CpzS0g4+IiND8gnqe4m7xrreGX8SaRq6k4SM19OZ6GoMPkcYpIdQ4gjt473E3MCt9+EVp7bfX+2Ve+sFMKSc67mDwISLVYCGz97hzcBRr+MVb08iVOHxUX++X0RiChQsPybpGSQwMPkSkaFxFXHnE6p3z1tCtEnoXG/q8K6VGSQwMPkSkaGqqU9ISsXrnvPV7lnvvYn1/F5cvX8bmzZsVVaMkBgYfIlI8hhrXeWNdHVuUfg0rubdfrTVW7mLwISLSKHuX+6jJUzUfcriUgzuU3n4zJdYoeRKDDxGRRjV0uQ9b27lK6cOSSm+/mRJqlMTE4ENERHaLXT1J7qGgIUpvv5nca5TE5NPwJkREpGa2il2NxhCJW0Zi0uvLkJT0q6ZCD8DgQ0SkefaKXUk91FKj5C4OdZFqSTlbhUhJtF7sqhVqqVFyF4MPqZISr6JMJBWtF7tqCfd3DD6kUkq8ijKRlLRc7ErawhofUjUWbRLZVt/lPuordlV7zQdpC3t8SNW0vkKpt7CeSpnEqvng54HkjMGHVI1Fm+Lz9uq/5Fme/p3w80Byx6EuUjVz0aZOZwIAFm2KwNE6KdZTaQM/DyR37PEh1WPRpnfZmkFH2sTPA8kNgw9pgtyvoqwW3rrsASkDPw8kRxzqIlXiCqXexxl0VBM/DyRX7PEhVeIKpd7HGXRUEz8PJFcMPqRaDDXexRl0VBM/DyRXHOoiIo/gDDqqiZ8Hkiv2+JDX1Vzc7Px5HxQU+CEp6SZiY6t3kByCUpaadVL2ZtCxnkob+HkgudMJgiBI3Qg5KS0thV6vh9FoRGhoqNTNUZ2ai5vZm/HBxc2UhSv1Uk38PJAUHD1+s8eHvMq8M7Q14yM5OR96fRkXN1MYHsSoJn4eSM4YfEgSnPFBYmKPAxHZwuBDkuCMD+WSe6jgtaKIyB4GH5KEecZH7Rof9vbImxJCBa8VRUT2MPiQZHgNLeVRYqjgtaKIqCYGH5IUr6GlbHIPFbxWFBHVxuBDRC6Re6hoaOYgEWkTV24mr+LFQ9VBCRegtDdzkIi0iz0+5FViXTxU7jON1EYuyxHU93u/fPkyAM4cJKL6MfiQ13k6gNSeaWSr7oTTlz1HDqGioRlmnDlIRPVh8CHFq3nGb6/uRE4zjdwldQ+XHEKFI79PXiuKiGpj8CHV0Eoxq5Rr6cj5ApS2evpGjLgHERERVtty6JNIuxh8SDXkUncitto9HbYO+GL0cIlVo+Uuez19ERERiImJ8Wp7iEi+GHxINeRQd+JtUkwpl1tPiVZ6+ojIMzidnVTDXHei05kAQPXFrEqYUu4NnLZORM5gjw+pipYug6GVob2GaLGnj4hcxx4fUh29vgxJSb+q/uBvPuDXpMUDvtZ6+ojIPezxIcXT6mrQcphSLiU5zzAjIvli8CHFk+tMI2/Q0tBebVr+vROR6xh8SBW0dHCr3YNh6wr3Wujp0NLvnYg8g8GHSGHY00GeIPXq30RSUUTwKSwsxIsvvogvv/wSxcXFiI2NxaOPPooZM2ZYndUeOXIE2dnZ+OGHHxAZGYnx48djypQpErZcW86eBU6eBFJTgbg4qVujbjwgkTukXP2bSGqKCD4nTpyAyWTCm2++iZSUFBw7dgyjR4/GtWvXsGDBAgBAaWkp7r33XvTu3RsrV67E0aNHMXLkSDRt2hRjxoyR+BWol/msccOGIEyZoofJpIOPj4BXXjFiyJDfedZIJEOOruqtpuvbEZkpIvhkZWUhKyvL8n3Lli2Rl5eHN954wxJ81q9fj4qKCqxevRoBAQFo27YtcnNzsWjRIgYfkZjPGo3GECxePBGCoAMAmEw6TJ4cinPnVkOvL+NZI5HM2brsCZEaORx8SktLHX7Q0NBQlxrjDKPRiLCwP1Zm3b9/P7p162Y19JWZmYn58+fjt99+Q7Nmzep9nPLycpSXl1u+d+Z1ukMNw0Lms8GGFtLjWSORfElx2RM1YI2UcjkcfJo2bQqdTmd3G0EQoNPpUFVV5XbD7MnPz8eyZcssvT0AUFxcjKSkJKvtoqKiLPfZCj5z587F7NmzxWtsPVatAsaMAUwmwMcHeOstYNQorzbBo7hyLpEy8TpnrmGNlLI5HHx2797t8SefNm0a5s+fb3eb48ePo3Xr1pbvz507h6ysLDz44IMYPXq0222YPn06Jk2aZPm+tLQU8fHxbj9ufQwGAwoLb2LMmOYwmczDQsATTwj4y18uIjHRT5F/JFpfSI9IqXjZE9ewRkrZHA4+3bt39/iTP/PMMxg+fLjdbVq2bGn5//nz53H33XfjjjvuwFtvvWW1XXR0NC5cuGB1m/n76Ohom48fGBiIwMBAJ1vuPPMZQkFBIkymYVb3VVXpsGzZDiQl/arYMwQtL6RHtnE4QN7YWyuuy5cv17lN7p95LfzNulzcfOXKFaxatQrHjx8HALRt2xYjR46EXq93+DEiIyMRGRnp0Lbnzp3D3XffjfT0dKxZswY+PtZnKRkZGZgxYwYqKyvh7+8PANi1axdatWplc5jLm8wfpIZ2NEo+Q7C1kB5pE4cD5I+9tZ5hqzh88+bN9W4v18+8Vv5mXQo+P/74IzIzMxEUFITbbrsNALBo0SK8/PLL2LlzJ9LS0jzayHPnzqFHjx5ISEjAggULcOnSJct95t6cIUOGYPbs2Rg1ahSmTp2KY8eOYcmSJXjttdc82hZ3cUdDWsHhAPnidc48x5XicLl+5rXyN+tS8Hn66adx33334e2334afX/VD3Lx5E48//jgmTpyIr7/+2qON3LVrF/Lz85Gfn4+4WlOgBEEAAOj1euzcuRPZ2dlIT09HREQEZs6cKcup7BwWIi3ilGn54OrfnsHicGVyucenZugBAD8/P0yZMgWdOnXyWOPMhg8f3mAtEAC0b98e33zzjcefXwxqGBbS6lXRyXlKnDKt9loHJbddLhoqDld62Fd6+21xKfiEhobi9OnTVrOtAODMmTMICQnxSMNI/njWSI5Q4lmxVmodyD32ajaVGPZrUnr77XEp+AwePBijRo3CggULcMcddwAAvv32W0yePBmPPPKIRxtI8sadPjVEiVOma4d5W2e+Sq91oGrO9u6Ze7Ft1WwCUFzYr0mJJyvOcCn4LFiwADqdDkOHDsXNmzcBAP7+/hg3bhzmzZvn0QYSkbIpfcq0ms98ybXevdq93TNnXkJhoR9CQy9i377DKChIVFzYr0mJJyvO8Gl4k7oCAgKwZMkS/Pbbb8jNzUVubi5KSkrw2muveWVNHCViPQxplfmsWKczAYCiZjLaOvM1GjmkrxauzmQKDw9HTEwMYmJikJ4ehUGDwnHrrU0B/BH2a6oZ9o1Go/sNF1FD7Vc6ty5S2rhxY7Rr185TbVE11sOQ1qhhyrTaz3zJsxoaAjN/ZjZu3CjL+jBH2y/nv1lHuBR8bty4gWXLlmH37t24ePEiTCbrZHjo0CGPNE5t5PYhJxKTGsK+0ofpyHnuzGQKDw/HQw89hH/9618NLlsix/owW0N4iYk3ERvbGUBn2f/NOsKl4DNq1Cjs3LkTDzzwAG677bYGL15KRNqk9B0kFxzVFk/UczVt2tTyfyUuW1LzbzYmBkhPl7AxInEp+Gzbtg2ffPIJunbt6un2EBHJChcc1QaxZjKpdS0cJXMp+Nxyyy1cr4eIVKt2DYOtM3el1zrQH8So5+KMQHlyKfgsXLgQU6dOxcqVK5GQkODpNhERSUoN9UnkHE/Xc6l9LRwlcyn4dOrUCTdu3EDLli3RuHFjy9XQzUpKWPhHRMrGUKMNYs1k4oxA+XIp+DzyyCM4d+4c5syZg6ioKBY3ExGRIok1k4kzAuXLpeCzb98+7N+/Hx06dPB0e4iIiLzKkzOZtLIWjpK5FHxat26N33//3dNtISIiUjStrIWjZC4Fn3nz5uGZZ57Byy+/jHbt2tWp8QkNDfVI44hImZy96CORmmhhLRwl0wmCIDj7Qz4+1WOWtWt7BEGATqdDVVWVZ1ongdLSUuj1ehiNRgY4Ihe4ctFHIiJ3OXr8dqnHZ/fu3S43jIjUrXZPj60F3OS4ZD8RqZ9Lwad79+4Obffkk0/ihRdeQEREhCtPQ0QKxwXciEhufBrexHX//Oc/UVpaKuZTEJFM2VrAzWjkqu9EJB1Rg48L5UNEpBL2FnAjIpKKqMGHiLTLvIBbTVzAjYikxuBDRKIwL+BmDj+1F3AjIpKCS8XNRESOSEs7jOTkfJSUhCEsrIShh4gkx+BDRB5Veyl+vb6s3sDDJfuJSApOB5+bN29izpw5GDlyJOLi4uxu++ijj3IRQCIXKHnl49pL9tdHzu0nInVzaeXmkJAQHD16FImJiSI0SVpcuZmkxpWPiYicJ+rKzT179sSePXtUGXzUTsk9CVrBlY+JiMTjUvDp06cPpk2bhqNHjyI9PR3BwcFW9993330eaRzZ52yIYU+C8nDlYyIiz3Ip+Dz55JMAgEWLFtW5T+kXKVUKV0KMoz0EzvYksBdJHLZWPk5OzufsKCIiF7kUfEwmU8MbkajECjHOYi+SeOytfMzgQ1rCkyvyJJeCz7vvvovBgwcjMDDQ6vaKigq8//77GDp0qEcaR+67fPlyvf/3FLkEMDUyr3xcM/xw5WPSGp5ckae5FHxGjBiBrKwsNG/e3Or2srIyjBgxgsFHRjZv3ix1E8hF5pWPa9f4sLeHtITF/uRpLgUfQRCg0+nq3H727Fno9Xq3G0VE1bjyMdEfWOzvOA4P2uZU8OnYsSN0Oh10Oh169eoFP78/fryqqgoFBQXIysryeCNJHLbOnOT2mFrDlY9Jy2ofsM1D9Cz2dxyHB+1zKvgMGDAAAJCbm4vMzEw0adLEcl9AQAASExMxaNAgjzaQHONs4BDjzIlnY57BlY9Jq+wdsFns7zgOD9rnVPB5/vnnAQCJiYkYPHgwGjVqJEqjyDnOBo6Gzpxc6Ung2ZhnMdSQFtk7YLPY3zU8Ia3LpRqfYcOGAaj+kF68eLHO9PYWLVq43zKyyxxOXAkcts6cunYdhh49XDvo8myMiDypvgM2i/2dwxPS+rkUfE6ePImRI0di3759Vrebi565gKH4zMMhu3cDr73mXOCo78zJ1xfo0iUczmYecwBr6GyM9ShE5ChbB+yJExdj4sTFLPZ3EE9I6+dS8Bk+fDj8/Pywbds2xMTE1DvDi8QXHh6O228HfHyAmp1uvr6C3e5f8zTp7dv7o6pKB19f4M03gbg419pgrke55ZZSTJ2q/99jCpg/vxRDhjzCehQicoq9A3ZS0q8s9ncQhwfr51Lwyc3NxcGDB9G6dWtPt4ecFBcHvPUW8MQTQFVVdc/NwoXXcOXKHzuG+grb0tIO46WX7oLB0AwpKa6FHjNzqHnmGWDwYCA/H0hJ0SEurimApq4/MBFpUkMH7IEDByIiIsJyH0+u6se1wOrnUvBp06aNKKsAk2tGjQIyM82BA4iLawKDoboXZsOGILzwgh4mkw4+PgJeecWIIUN+/9+OopnH2xIX516IIiJq6IAdERGBmJgYiVupDFwLrC6Xgs/8+fMxZcoUzJkzB+3atYO/v7/V/aGhoR5pHDmuduAIDw/H2bPAlCl/DIOZTDpMndoUgwc3dbqWh4jIm3jAdh3XArPPpeDTu3dvAEDPnj2t6ntY3CwvJ09a1/4A1cNh+fnslSEi+eEB2zO4Fph9LgWf3bt3e7odJILU1PoKn6uHw4iI5IYHbM/he2SbS8Gne/fu+Oabb/Dmm2/i1KlT+PDDD3HLLbdg3bp1SEpK8nQbyUX1FT67OnuLiMgbeMAmsfk0vEldmzZtQmZmJoKCgnD48GGUl5cDAIxGI+bMmePRBpJ7Ro0CCguB3bur/x01SuoWERERScel4PPSSy9h5cqVePvtt60Km7t27YpDhw55rHHkGXFxQI8e7OkhIiJyKfjk5eWhW7dudW7X6/W4cuWKu20iIiIiEoVLwSc6Ohr5+fl1bt+7dy9atmzpdqOIiIiIxOBS8Bk9ejSeeuopHDhwADqdDufPn8f69evxt7/9DePGjfN0G4mIiIg8wqVZXdOmTYPJZEKvXr1w/fp1dOvWDYGBgfjb3/6G8ePHe7qNRET0PwaDgdO9idygEwRBcPWHKyoqkJ+fj6tXr6JNmzZo0qSJJ9smidLSUuj1ehiNRq5ATUSyYjAYsHz5csv39V2HDwBycnIYfkhzHD1+u9TjYxYQEIA2bdq48xBEROSgmj09hw51rHMtq7S0w3W2I/K2mr2S58/7oKDAD0lJNxEbW72artS9km4FHyIi8j6jMcQSegBAEHywdWs/JCfna/KaVhz+k4+avZL2wrmUvZIMPkREClNSEm4JPWaC4IOSkjDNBR8O/8mLOYA2FM6l7JVk8CEiUpiwMAN0OpNV+NHpTAgLK5GwVdLg8J88yTmcuzSdnYiIpKPXl6F//23Q6aprJswHeakPKFKy1cNgNIZI3DJtMofzmuQSztnjQ0SkQGlph5GcnI+SkjCEhZVIFnrkUl8j5x4GLTKH89o9cHL4XTD4EBEplF5fJumBRE71NRz+kx+5hPPaGHyIiBQiICDAo9u5S071NXLuYdAyqcN5fRh8iIgUIjw8HDk5ObIYWqpJLtPr5drDQPLC4ENEpCBynJItp/oaOfYwaInceiXrw+BDRERukbK+RgkHWi2Ra69kTQw+REQq5o1ZV1LW1yjhQKs1cn+vGXyIiFTKm7OupKyvkfuBluSFwYeISKW8PeuK9TWkBFy5mYhI5cRa1Zj1NaREiuvxKS8vR5cuXfDTTz/h8OHD+Mtf/mK578iRI8jOzsYPP/yAyMhIjB8/HlOmTJGusUREMiDWrCvW15ASKS74TJkyBbGxsfjpp5+sbi8tLcW9996L3r17Y+XKlTh69ChGjhyJpk2bYsyYMRK1lohIemLOumKoIaVRVPDZsWMHdu7ciU2bNmHHjh1W961fvx4VFRVYvXo1AgIC0LZtW+Tm5mLRokUMPkQkCblcx4qrGhP9QTHB58KFCxg9ejQ++ugjNG7cuM79+/fvR7du3azGkjMzMzF//nz89ttvaNasmTebS0QaJ6frWAFc1ZjITBHBRxAEDB8+HGPHjkWnTp1QWFhYZ5vi4mIkJSVZ3RYVFWW5z1bwKS8vR3l5ueX70tJSzzWciDRLTtexMuOsKyKJZ3VNmzYNOp3O7teJEyewbNkylJWVYfr06R5vw9y5c6HX6y1f8fHxHn8OItIusWZUOYKzrojqkrTH55lnnsHw4cPtbtOyZUt8+eWX2L9/PwIDA63u69SpE/7617/inXfeQXR0NC5cuGB1v/n76Ohom48/ffp0TJo0yfJ9aWkpww8BkE99BimblNex4qwrorokDT6RkZGIjIxscLulS5fipZdesnx//vx5ZGZmYuPGjejSpQsAICMjAzNmzEBlZSX8/f0BALt27UKrVq3s1vcEBgbWCVREteszbPFWfQYpl5TXsQLUM+uq5onI+fM+KCjwQ1LSTcTGmgAwwJHjFFHj06JFC6vvmzRpAgBITk5GXFwcAGDIkCGYPXs2Ro0ahalTp+LYsWNYsmQJXnvtNa+3l5TP0boLb9ZnkDJxRpX7ap6I2KuX4okIOUIRwccRer0eO3fuRHZ2NtLT0xEREYGZM2dyKjsRSY4zqtxjPsGwVS+VnJwPvb6MJyLkEEUGn8TERAiCUOf29u3b45tvvpGgRURE9nFGlfukrJci9eC1uoiIRMAZVZ5nrpeqyZv1UqQOiuzxISKSO86o8jzWS5EnMPgQEYmEocbzWC9F7mLwIXKArcsNEJH3sV6K3MHgQ1SPmnUX9qbPsj6DiEhZGHyI6mGuzygsvIkXXmgOQdABqJ5Bsn17f8yc2QWJiX4cyiDyAhaKkycx+BDZEB4ejiNHAJP1JBJUVelQVhYFZh4i72ChOHkSgw+RHampgI+Pdfjx9QVSUqRrE5EWMdSQp3AdHyI74uKAt96qDjtA9b9vvll9OxERKQ97fIgaMGoUkJkJ5OdX9/Qw9BARKReDD5ED4uIYeIiI1IBDXURERKQZDD5ERESkGQw+REREpBkMPkRERKQZDD5ERESkGQw+REREpBkMPkRERKQZDD5EREQydPYssHt39b/kOQw+REREMmEwGFBUVISFC68gIUFAz55AQoKAhQuvoKioCAaDQeomKh5XbiYizTEYDLzSN8mOwWDA8uXLYTSGYPHiiRAEHQDAZNJh8uRQnDu3Gnp9GXJycvj5dAODDxFpivngYmY0hqCkJBxhYQbo9WWW23lwIW8zh/GSknAIgvWAjCD4oKQkDHp9md3QTg1j8CEiTal50Dh0qCO2bu0HQfCBTmdC//7bkJZ2uM52RN4UFmaATmeyCj86nQlhYSUStko9WONDRJpkNIZYQg9QfUa9dWs/GI0hEreMtE6vL0P//tug05kAwBLKa/ZIkuvY40NEmtTQcAKRlNLSDiM5OR8lJWEICyvhZ9KDGHyISJM4nEByp9eXMfCIgENdRKRJHE4g0ib2+BCRZnE4gUh7GHyISNM4nEByERAQ4NHtqH4MPkSkKTy4kFyFh4cjJyeHi2uKTCcIgiB1I+SktLQUer0eRqMRoaGhUjeHiETAlZuJ1MfR4zd7fIhIcxhqiKRx9ixw8iSQmgrExUnTBs7qIiIiItGtWgUkJOB/F16t/l4KDD5EREQkGoPBgIMHL2DMGAGm6tUjYDIBTzwh4ODBC16/4jyHuoiIiEgU5osCFxQkwmQaZnVfVZUOy5btQFLSr169KDB7fIiIiEgU5kkE5pXSa6q5Uro3LwrM4ENERESiktNK6RzqIiIiItHJZaV0Bh8iIiLyCjmslM6hLiIiItIMBh8iIiLSDAYfIiIi0gwGHyIiIhKFHC8KzOJmIiIiEoUcrzjP4ENERESikdtFgTnURURERJrB4ENERESaweBDREREmsHgQ0RERJrB4EMkY2fPArt3V/9LRETuY/AhkqlVq4CEBKBnz+p/V62SukXaxPBJpC4MPkQydPYsMGYMYDJVf28yAU88wYOvtxgMBhQVFWHhwitISBD+Fz4FLFx4BUVFRTAYDFI3kYhcxHV8iGTo5Mk/Qo9ZVRWQnw/ExUnTJq0wGAxYvnw5jMYQLF48EYKgAwCYTDpMnhyKc+dWQ68vQ05OjuzWJyGihrHHh0hmDAYDQkMvwMdHsLrd11dASMgF9jaIzLzCbElJOATBehcpCD4oKQmz2o6IlIU9PkQyYu5tAIB+/Tpi69Z+EAQf6HQm9O27Ddu2HQYA9jZ4QViYATqdySr86HQmhIWVSNgqInIXgw+RjNTsRUhLO4zk5HyUlIQhLKwEen1ZvduROPT6MvTvv80qfPbvv83q90BEysPgQyRjen0ZD7QSshc+HWUwGCxB9fx5HxQU+CEp6SZiY6uLuLx9gUYirWPwISKyw53wWXPo8tChjnV6j9LSOHRJ5G0sbiYiEom5p8doDLGEHqC6SHrr1n4wGkOstiMi8TH4EBGJrKEZYkTkPQw+REQ1BAQEeHQ74I8ZYjVxhhiRNFjjQ0RUQ3h4OHJycuwOPzlbkMwZYkTyweBDJCNi9DaQ88QoNPbEDDEich+DD5GMiNHbQPLB5QmIpMfgQyQzDDVEROJhcTMRkUg4dEkkP+zxISISCYcuieRHUT0+27dvR5cuXRAUFIRmzZphwIABVvefPn0affv2RePGjdG8eXNMnjwZN2/elKaxRESoDj8xMTE2vxh6iLxLMT0+mzZtwujRozFnzhz07NkTN2/exLFjxyz3V1VVoW/fvoiOjsa+fftQVFSEoUOHwt/fH3PmzJGw5URERCQXOkEQBKkb0ZCbN28iMTERs2fPxqhRo+rdZseOHejXrx/Onz+PqKgoAMDKlSsxdepUXLp0yeEx9NLSUuj1ehiNRoSGhnrsNRAREZF4HD1+K2Ko69ChQzh37hx8fHzQsWNHxMTEoE+fPlY9Pvv370e7du0soQcAMjMzUVpaiv/85z9SNJuIiIhkRhHB57///S8AYNasWfj73/+Obdu2oVmzZujRowdKSqqXfC8uLrYKPQAs3xcXF9t87PLycpSWllp9ERERkTpJGnymTZsGnU5n9+vEiRMwmaqvcTNjxgwMGjQI6enpWLNmDXQ6HT744AO32jB37lzo9XrLV3x8vCdeGhEREcmQpMXNzzzzDIYPH253m5YtW6KoqAgA0KZNG8vtgYGBaNmyJU6fPg0AiI6Oxvfff2/1sxcuXLDcZ8v06dMxadIky/elpaUNhh+TyWR3eiq5LyAgAD4+iuiQJCIiBZE0+ERGRiIyMrLB7dLT0xEYGIi8vDzceeedAIDKykoUFhYiISEBAJCRkYGXX34ZFy9eRPPmzQEAu3btQmhoqFVgqi0wMBCBgYEOt7miogIFBQWWXigSh4+PD5KSkriwGxEReZQiprOHhoZi7NixeP755xEfH4+EhAS8+uqrAIAHH3wQAHDvvfeiTZs2eOyxx/DKK6+guLgYf//735Gdne1UsLFHEAQUFRXB19cX8fHx7JEQiclkwvnz51FUVIQWLVpAp9NJ3SQiIlIJRQQfAHj11Vfh5+eHxx57DL///ju6dOmCL7/8Es2aNQMA+Pr6Ytu2bRg3bhwyMjIQHByMYcOG4YUXXvBYG27evInr168jNjYWjRs39tjjUl2RkZE4f/48bt68CX9/f6mbQ0REKqGIdXy8yd46ADdu3EBBQQESExMRFBQkUQu14ffff0dhYSGSkpLQqFEjqZtDREQyp6p1fOSGQy/i43tMRERiYPAhIiIizWDw0YDhw4db1kXy9/dHVFQU7rnnHqxevdqp2Wlr165F06ZNxWsoERGRyBh8NCIrKwtFRUUoLCzEjh07cPfdd+Opp55Cv379eAV7IiLSDAYfLzIYDCgqKrL5ZTAYRHvuwMBAREdH45ZbbkFaWhqeffZZfPzxx9ixYwfWrl0LAFi0aBHatWuH4OBgxMfH48knn8TVq1cBAF999RVGjBgBo9Fo6T2aNWsWAGDdunXo1KkTQkJCEB0djSFDhuDixYuivRYiIiJXKWY6u9IZDAYsX768we1ycnIQHh7uhRYBPXv2RIcOHbB582Y8/vjj8PHxwdKlS5GUlIT//ve/ePLJJzFlyhSsWLECd9xxBxYvXoyZM2ciLy8PANCkSRMA1YtJvvjii2jVqhUuXryISZMmYfjw4fjkk0+88jqIiIgcxeDjJY5e4sLbl8Jo3bo1jhw5AgCYOHGi5fbExES89NJLGDt2LFasWIGAgADo9XrodLo6lwAZOXKk5f8tW7bE0qVL0blzZ1y9etUSjoiIiOSAQ10aJwiCZer4559/jl69euGWW25BSEgIHnvsMRgMBly/ft3uYxw8eBD9+/dHixYtEBISgu7duwOA5TpqREREcsHgo3HHjx9HUlISCgsL0a9fP7Rv3x6bNm3CwYMH8frrrwOw3wt17do1ZGZmIjQ0FOvXr8cPP/yALVu2NPhzREREUuBQl4Z9+eWXOHr0KJ5++mkcPHgQJpMJCxcutFyD7F//+pfV9gEBAaiqqrK67cSJEzAYDJg3b57lqvY//vijd14AERGRk9jjoxHl5eUoLi7GuXPncOjQIcyZMwf3338/+vXrh6FDhyIlJQWVlZVYtmwZ/vvf/2LdunVYuXKl1WMkJibi6tWr+OKLL3D58mVcv34dLVq0QEBAgOXn/v3vf+PFF1+U6FUSERHZx+CjEZ9++iliYmKQmJiIrKws7N69G0uXLsXHH38MX19fdOjQAYsWLcL8+fNx6623Yv369Zg7d67VY9xxxx0YO3YsBg8ejMjISLzyyiuIjIzE2rVr8cEHH6BNmzaYN28eFixYINGrJCIiso8XKa3FkYuUunLhzKKiIrz11lsNbjdmzBjExMQ49dhq5M57TURE2sOLlMpMQECAR7cjIiIi57G42UvCw8ORk5Njd6ZTQECA1xYvJCIi0iIGHy9iqCEiIpIWh7qIiIhIM9jjQ0RE5ACDwcByBRVg8CEiImqAHC80Ta7hUBcREVED5HqhaXIegw8RERFpBoMPERERaQaDD7ntq6++gk6nw5UrVxz+mcTERCxevFi0NhEREdWHwUcDhg8fDp1Oh7Fjx9a5Lzs7GzqdDsOHD/d+w4iIiLyMwUcj4uPj8f777+P333+33Hbjxg1s2LABLVq0kLBlRERE3sPgoxFpaWmIj4/H5s2bLbdt3rwZLVq0QMeOHS23lZeXY8KECWjevDkaNWqEO++8Ez/88IPVY33yySf405/+hKCgINx9990oLCys83x79+7FXXfdhaCgIMTHx2PChAm4du2aaK+PiIjIEQw+GjJy5EisWbPG8v3q1asxYsQIq22mTJmCTZs24Z133sGhQ4eQkpKCzMxMlJSUAADOnDmDgQMHon///sjNzcXjjz+OadOmWT3GqVOnkJWVhUGDBuHIkSPYuHEj9u7di5ycHPFfJBGRCHihafXgAoYSOXsWOHkSSE0F4uK885yPPvoopk+fjl9//RUA8O233+L999/HV199BQC4du0a3njjDaxduxZ9+vQBALz99tvYtWsXVq1ahcmTJ+ONN95AcnIyFi5cCABo1aoVjh49ivnz51ueZ+7cufjrX/+KiRMnAgBSU1OxdOlSdO/eHW+88QYaNWrknRdMROQhvNC0ejD4SGDVKmDMGMBkAnx8gLfeAkaNEv95IyMj0bdvX6xduxaCIKBv376IiIiw3H/q1ClUVlaia9eultv8/f1x22234fjx4wCA48ePo0uXLlaPm5GRYfX9Tz/9hCNHjmD9+vWW2wRBgMlkQkFBAf785z+L8fKIiETFUKMODD5edvbsH6EHqP73iSeAzEzv9PyMHDnSMuT0+uuvi/IcV69exRNPPIEJEybUuY+F1ESkBlL02pNnsMbHy06e/CP0mFVVAfn53nn+rKwsVFRUoLKyEpmZmVb3JScnIyAgAN9++63ltsrKSvzwww9o06YNAODPf/4zvv/+e6uf++6776y+T0tLw88//4yUlJQ6Xxz/JiKlW7UKSEgAevas/nfVKqlbRM5g8PGy1NTq4a2afH2BlBTvPL+vry+OHz+On3/+Gb6+vlb3BQcHY9y4cZg8eTI+/fRT/Pzzzxg9ejSuX7+OUf8bixs7dixOnjyJyZMnIy8vDxs2bMDatWutHmfq1KnYt28fcnJykJubi5MnT+Ljjz9mcTMRKZ6tXvuzZ6VtFzmOwcfL4uKqa3rMmcPXF3jzTe92lYaGhiI0NLTe++bNm4dBgwbhscceQ1paGvLz8/HZZ5+hWbNmAKqHqjZt2oSPPvoIHTp0wMqVKzFnzhyrx2jfvj327NmDX375BXfddRc6duyImTNnIjY2VvTXRkQkJql77cl9OkEQBKkbISelpaXQ6/UwGo11wsGNGzdQUFCApKQkt2cmnT1b/YeSksLx4fp48r0mIvKUs2erh7dqhh9fX6CwkPtyqdk7ftfEHh+JxMUBPXrwD4WISEnk0GtP7uGsLiIiIieMGlU9E5e99srE4ENEROSkuDgGHqXiUBcRERFpBoMPERERaQaDjws4EU58fI+JiEgMDD5OMC/4Z+8ideQZ5ve49iKLRERE7mBxsxP8/PzQuHFjXLp0Cf7+/vCpvQQzeYTJZMKlS5fQuHFj+PnxI0pERJ7Do4oTdDodYmJiUFBQgF9//VXq5qiaj48PWrRoAZ1OJ3VTiIhIRRh8nBQQEIDU1FQOd4ksICCAPWpERORxDD4u8PHx4WUUiIiIFIin1ERERKQZDD5ERESkGQw+REREpBms8anFvHBeaWmpxC0hIiIiR5mP2w0tgMvgU0tZWRkAID4+XuKWEBERkbPKysqg1+tt3q8TeG0AKyaTCefPn0dISIjm1pApLS1FfHw8zpw5g9DQUKmbo1h8Hz2H76Vn8H30HL6XniHG+ygIAsrKyhAbG2t3ORT2+NTi4+ODuLg4qZshqdDQUP5BewDfR8/he+kZfB89h++lZ3j6fbTX02PG4mYiIiLSDAYfIiIi0gwGH7IIDAzE888/j8DAQKmbomh8Hz2H76Vn8H30HL6XniHl+8jiZiIiItIM9vgQERGRZjD4EBERkWYw+BAREZFmMPgQERGRZjD4aMzXX3+N/v37IzY2FjqdDh999JHV/YIgYObMmYiJiUFQUBB69+6NkydPStNYmWvovRw+fDh0Op3VV1ZWljSNlbG5c+eic+fOCAkJQfPmzTFgwADk5eVZbXPjxg1kZ2cjPDwcTZo0waBBg3DhwgWJWixPjryPPXr0qPOZHDt2rEQtlq833ngD7du3tyyul5GRgR07dlju5+fRcQ29l1J8Jhl8NObatWvo0KEDXn/99Xrvf+WVV7B06VKsXLkSBw4cQHBwMDIzM3Hjxg0vt1T+GnovASArKwtFRUWWr/fee8+LLVSGPXv2IDs7G9999x127dqFyspK3Hvvvbh27Zplm6effhpbt27FBx98gD179uD8+fMYOHCghK2WH0feRwAYPXq01WfylVdekajF8hUXF4d58+bh4MGD+PHHH9GzZ0/cf//9+M9//gOAn0dnNPReAhJ8JgXSLADCli1bLN+bTCYhOjpaePXVVy23XblyRQgMDBTee+89CVqoHLXfS0EQhGHDhgn333+/JO1RsosXLwoAhD179giCUP0Z9Pf3Fz744APLNsePHxcACPv375eqmbJX+30UBEHo3r278NRTT0nXKAVr1qyZ8I9//IOfRw8wv5eCIM1nkj0+ZFFQUIDi4mL07t3bcpter0eXLl2wf/9+CVumXF999RWaN2+OVq1aYdy4cTAYDFI3SfaMRiMAICwsDABw8OBBVFZWWn0uW7dujRYtWvBzaUft99Fs/fr1iIiIwK233orp06fj+vXrUjRPMaqqqvD+++/j2rVryMjI4OfRDbXfSzNvfyZ5kVKyKC4uBgBERUVZ3R4VFWW5jxyXlZWFgQMHIikpCadOncKzzz6LPn36YP/+/fD19ZW6ebJkMpkwceJEdO3aFbfeeiuA6s9lQEAAmjZtarUtP5e21fc+AsCQIUOQkJCA2NhYHDlyBFOnTkVeXh42b94sYWvl6ejRo8jIyMCNGzfQpEkTbNmyBW3atEFubi4/j06y9V4C0nwmGXyIRPLwww9b/t+uXTu0b98eycnJ+Oqrr9CrVy8JWyZf2dnZOHbsGPbu3St1UxTN1vs4ZswYy//btWuHmJgY9OrVC6dOnUJycrK3mylrrVq1Qm5uLoxGIz788EMMGzYMe/bskbpZimTrvWzTpo0kn0kOdZFFdHQ0ANSZnXDhwgXLfeS6li1bIiIiAvn5+VI3RZZycnKwbds27N69G3FxcZbbo6OjUVFRgStXrlhtz89l/Wy9j/Xp0qULAPAzWY+AgACkpKQgPT0dc+fORYcOHbBkyRJ+Hl1g672sjzc+kww+ZJGUlITo6Gh88cUXlttKS0tx4MABq/FYcs3Zs2dhMBgQExMjdVNkRRAE5OTkYMuWLfjyyy+RlJRkdX96ejr8/f2tPpd5eXk4ffo0P5c1NPQ+1ic3NxcA+Jl0gMlkQnl5OT+PHmB+L+vjjc8kh7o05urVq1ZJuqCgALm5uQgLC0OLFi0wceJEvPTSS0hNTUVSUhKee+45xMbGYsCAAdI1WqbsvZdhYWGYPXs2Bg0ahOjoaJw6dQpTpkxBSkoKMjMzJWy1/GRnZ2PDhg34+OOPERISYqmT0Ov1CAoKgl6vx6hRozBp0iSEhYUhNDQU48ePR0ZGBm6//XaJWy8fDb2Pp06dwoYNG/B///d/CA8Px5EjR/D000+jW7duaN++vcStl5fp06ejT58+aNGiBcrKyrBhwwZ89dVX+Oyzz/h5dJK991Kyz6RX55CR5Hbv3i0AqPM1bNgwQRCqp7Q/99xzQlRUlBAYGCj06tVLyMvLk7bRMmXvvbx+/bpw7733CpGRkYK/v7+QkJAgjB49WiguLpa62bJT33sIQFizZo1lm99//1148sknhWbNmgmNGzcW/t//+39CUVGRdI2WoYbex9OnTwvdunUTwsLChMDAQCElJUWYPHmyYDQapW24DI0cOVJISEgQAgIChMjISKFXr17Czp07Lffz8+g4e++lVJ9JnSAIgnixioiIiEg+WONDREREmsHgQ0RERJrB4ENERESaweBDREREmsHgQ0RERJrB4ENERESaweBDREREmsHgQ0RERJrB4ENERESaweBDRIpRUVEhdRPqkGObiMg2Bh8ikkyPHj2Qk5ODnJwc6PV6RERE4LnnnoP5SjqJiYl48cUXMXToUISGhmLMmDEAgL179+Kuu+5CUFAQ4uPjMWHCBFy7ds3yuCtWrEBqaioaNWqEqKgoPPDAA5b7PvzwQ7Rr1w5BQUEIDw9H7969LT/bo0cPTJw40aqNAwYMwPDhwy3fu9omIpIHBh8iktQ777wDPz8/fP/991iyZAkWLVqEf/zjH5b7FyxYgA4dOuDw4cN47rnncOrUKWRlZWHQoEE4cuQINm7ciL179yInJwcA8OOPP2LChAl44YUXkJeXh08//RTdunUDABQVFeGRRx7ByJEjcfz4cXz11VcYOHAgnL1kobNtIiL54EVKiUgyPXr0wMWLF/Gf//wHOp0OADBt2jT8+9//xs8//4zExER07NgRW7ZssfzM448/Dl9fX7z55puW2/bu3Yvu3bvj2rVr+OSTTzBixAicPXsWISEhVs936NAhpKeno7CwEAkJCfW25y9/+QsWL15suW3AgAFo2rQp1q5dCwAutalRo0ZuvU9E5Dns8SEiSd1+++2W0AMAGRkZOHnyJKqqqgAAnTp1str+p59+wtq1a9GkSRPLV2ZmJkwmEwoKCnDPPfcgISEBLVu2xGOPPYb169fj+vXrAIAOHTqgV69eaNeuHR588EG8/fbb+O2335xus7NtIiL5YPAhIlkLDg62+v7q1at44oknkJuba/n66aefcPLkSSQnJyMkJASHDh3Ce++9h5iYGMycORMdOnTAlStX4Ovri127dmHHjh1o06YNli1bhlatWlnCiY+PT51hr8rKSrfbRETyweBDRJI6cOCA1fffffcdUlNT4evrW+/2aWlp+Pnnn5GSklLnKyAgAADg5+eH3r1745VXXsGRI0dQWFiIL7/8EgCg0+nQtWtXzJ49G4cPH0ZAQIBl2CoyMhJFRUWW56qqqsKxY8cafA2OtImI5IHBh4gkdfr0aUyaNAl5eXl47733sGzZMjz11FM2t586dSr27duHnJwc5Obm4uTJk/j4448thcTbtm3D0qVLkZubi19//RXvvvsuTCYTWrVqhQMHDmDOnDn48ccfcfr0aWzevBmXLl3Cn//8ZwBAz549sX37dmzfvh0nTpzAuHHjcOXKlQZfQ0NtIiL58JO6AUSkbUOHDsXvv/+O2267Db6+vnjqqacsU8Tr0759e+zZswczZszAXXfdBUEQkJycjMGDBwMAmjZtis2bN2PWrFm4ceMGUlNT8d5776Ft27Y4fvw4vv76ayxevBilpaVISEjAwoUL0adPHwDAyJEj8dNPP2Ho0KHw8/PD008/jbvvvrvB19BQm4hIPjiri4gkU98sKiIiMXGoi4iIiDSDwYeIiIg0g0NdREREpBns8SEiIiLNYPAhIiIizWDwISIiIs1g8CEiIiLNYPAhIiIizWDwISIiIs1g8CEiIiLNYPAhIiIizWDwISIiIs34/2GiY/EoyBLqAAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "No iterations will be run.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "\n", + "Best surrogate model is of order 5 with a cross-val S.S. Error of 20466.657669\n", + "\n", + "------------------------------------------------------------\n", + "The final coefficients of the regression terms are: \n", + "\n", + "k | -534397.59515\n", + "(x_ 1 )^ 1 | -2733.579691\n", + "(x_ 2 )^ 1 | 1036.106357\n", + "(x_ 1 )^ 2 | 32.409203\n", + "(x_ 2 )^ 2 | -2.852387\n", + "(x_ 1 )^ 3 | 0.893563\n", + "(x_ 2 )^ 3 | 0.004018\n", + "(x_ 1 )^ 4 | -0.045284\n", + "(x_ 2 )^ 4 | -3e-06\n", + "(x_ 1 )^ 5 | 0.000564\n", + "(x_ 2 )^ 5 | 0.0\n", + "x_ 1 .x_ 2 | 4.372684\n", + "\n", + "The coefficients of the extra terms in additional_regression_features are:\n", + "\n", + "Coeff. additional_regression_features[ 1 ]: -0.002723\n", + "Coeff. additional_regression_features[ 2 ]: 3.6e-05\n", + "Coeff. additional_regression_features[ 3 ]: -0.050607\n", + "Coeff. additional_regression_features[ 4 ]: 169668.814595\n", + "Coeff. additional_regression_features[ 5 ]: -44.726026\n", + "\n", + "Regression model performance on training data:\n", + "Order: 5 / MAE: 134.972465 / MSE: 54613.278159 / R^2: 0.999601\n", + "\n", + "Results saved in solution.pickle\n", + "2023-08-19 23:48:46 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output enth_mol trained successfully\n", + "\n", + "===========================Polynomial Regression===============================================\n", + "\n", + "Warning: solution.pickle already exists; previous file will be overwritten.\n", + "\n", + "No iterations will be run.\n", + "Default parameter estimation method is used.\n", + "Parameter estimation method: pyomo \n", + "\n", + "No iterations will be run.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: maxIterations\n", + " - message from solver: Ipopt 3.13.2\\x3a Maximum Number of Iterations\n", + " Exceeded.\n", + "\n", + "Best surrogate model is of order 5 with a cross-val S.S. Error of 0.156437\n", + "\n", + "------------------------------------------------------------\n", + "The final coefficients of the regression terms are: \n", + "\n", + "k | -519.862457\n", + "(x_ 1 )^ 1 | -8.820865\n", + "(x_ 2 )^ 1 | 3.676641\n", + "(x_ 1 )^ 2 | 0.18002\n", + "(x_ 2 )^ 2 | -0.010217\n", + "(x_ 1 )^ 3 | -0.000783\n", + "(x_ 2 )^ 3 | 1.4e-05\n", + "(x_ 1 )^ 4 | -6.9e-05\n", + "(x_ 2 )^ 4 | -0.0\n", + "(x_ 1 )^ 5 | 1e-06\n", + "(x_ 2 )^ 5 | 0.0\n", + "x_ 1 .x_ 2 | 0.010367\n", + "\n", + "The coefficients of the extra terms in additional_regression_features are:\n", + "\n", + "Coeff. additional_regression_features[ 1 ]: -7e-06\n", + "Coeff. additional_regression_features[ 2 ]: 0.0\n", + "Coeff. additional_regression_features[ 3 ]: -0.000112\n", + "Coeff. additional_regression_features[ 4 ]: 484.312223\n", + "Coeff. additional_regression_features[ 5 ]: -0.1166\n", + "\n", + "Regression model performance on training data:\n", + "Order: 5 / MAE: 0.398072 / MSE: 0.495330 / R^2: 0.998873\n", + "\n", + "Results saved in solution.pickle\n", + "2023-08-19 23:49:20 [INFO] idaes.core.surrogate.pysmo_surrogate: Model for output entr_mol trained successfully\n" + ] + } + ], + "source": [ + "# Create PySMO trainer object\n", + "trainer = PysmoPolyTrainer(\n", + " input_labels=input_labels,\n", + " output_labels=output_labels,\n", + " training_dataframe=data_training,\n", + ")\n", + "\n", + "var = output_labels\n", + "trainer.config.extra_features = [\n", + " \"pressure*temperature*temperature\",\n", + " \"pressure*pressure*temperature*temperature\",\n", + " \"pressure*pressure*temperature\",\n", + " \"pressure/temperature\",\n", + " \"temperature/pressure\",\n", + "]\n", + "# Set PySMO options\n", + "trainer.config.maximum_polynomial_order = 5\n", + "trainer.config.multinomials = True\n", + "trainer.config.training_split = 0.8\n", + "trainer.config.number_of_crossvalidations = 10\n", + "\n", + "# Train surrogate (calls PySMO through IDAES Python wrapper)\n", + "poly_train = trainer.train_surrogate()\n", + "\n", + "# create callable surrogate object\n", + "xmin, xmax = [7, 306], [40, 1000]\n", + "input_bounds = {input_labels[i]: (xmin[i], xmax[i]) for i in range(len(input_labels))}\n", + "poly_surr = PysmoSurrogate(poly_train, input_labels, output_labels, input_bounds)\n", + "# save model to JSON\n", + "model = poly_surr.save_to_file(\"pysmo_poly_surrogate.json\", overwrite=True)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZC0lEQVR4nO3deVhU9eI/8PewDALCIIssooBomqYmWIaVlnlFH5fbV2+SqbnmkpikueXNJXOr3L1p9TM1y7SSuqlZLpllcs1cUm9GSpgbqIAMKMk2n98f3JkYmBlmObNx3q/nmUfmnDNnPucwNW8+q0IIIUBEREQkAx7OLgARERGRozD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQEbmgTZs2QaFQ4OLFi84uClG9wuBDJFPHjh1Damoq2rZtC39/fzRr1gyDBg3Cb7/9VuvYxx57DAqFAgqFAh4eHggMDESrVq0wbNgw7Nu3z6L33blzJ7p164bGjRvDz88PzZs3x6BBg/DVV19JdWm1LFq0CJ9//nmt7UeOHMG8efNQWFhot/euad68ebp7qVAo4OfnhzZt2uCf//wnioqKJHmPrVu3YuXKlZKci6i+YfAhkqmlS5dix44deOKJJ7Bq1SqMHTsW3333HRISEnD27Nlax0dHR2PLli14//338cYbb6B///44cuQIevbsiZSUFJSXl9f5nm+++Sb69+8PhUKBWbNmYcWKFRg4cCDOnz+Pbdu22eMyAZgOPvPnz3do8NFat24dtmzZguXLl6N169ZYuHAhevXqBSmWT2TwITLOy9kFICLnmDJlCrZu3QqlUqnblpKSgnbt2mHJkiX44IMP9I5XqVQYOnSo3rYlS5bghRdewFtvvYXY2FgsXbrU6PtVVFRgwYIF+Nvf/oa9e/fW2n/jxg0br8h1lJSUwM/Pz+Qx//jHPxAaGgoAGD9+PAYOHIj09HT85z//QVJSkiOKSSRLrPEhkqkuXbrohR4AaNmyJdq2bYtz586ZdQ5PT0+sXr0abdq0wdq1a6FWq40em5eXh6KiIjz88MMG9zdu3Fjv+d27dzFv3jzcc889aNCgASIjIzFgwABkZWXpjnnzzTfRpUsXhISEwNfXF4mJifj000/1zqNQKHDnzh1s3rxZ17w0YsQIzJs3D9OmTQMAxMXF6fZV71PzwQcfIDExEb6+vggODsbTTz+Ny5cv653/sccew3333Yfjx4+ja9eu8PPzw8svv2zW/auue/fuAIDs7GyTx7311lto27YtfHx8EBUVhYkTJ+rVWD322GPYvXs3/vjjD901xcbGWlweovqKNT5EpCOEwPXr19G2bVuzX+Pp6YnBgwfjlVdeweHDh9GnTx+DxzVu3Bi+vr7YuXMnJk2ahODgYKPnrKysRN++fXHgwAE8/fTTmDx5MoqLi7Fv3z6cPXsW8fHxAIBVq1ahf//+GDJkCMrKyrBt2zY89dRT2LVrl64cW7ZswZgxY/Dggw9i7NixAID4+Hj4+/vjt99+w0cffYQVK1boal/CwsIAAAsXLsQrr7yCQYMGYcyYMbh58ybWrFmDrl274uTJkwgKCtKVNz8/H71798bTTz+NoUOHIjw83Oz7p6UNdCEhIUaPmTdvHubPn48ePXpgwoQJyMzMxLp163Ds2DH88MMP8Pb2xuzZs6FWq3HlyhWsWLECANCwYUOLy0NUbwkiov/ZsmWLACA2bNigt71bt26ibdu2Rl/32WefCQBi1apVJs8/Z84cAUD4+/uL3r17i4ULF4rjx4/XOu69994TAMTy5ctr7dNoNLqfS0pK9PaVlZWJ++67T3Tv3l1vu7+/vxg+fHitc73xxhsCgMjOztbbfvHiReHp6SkWLlyot/3MmTPCy8tLb3u3bt0EALF+/Xqj113d3LlzBQCRmZkpbt68KbKzs8Xbb78tfHx8RHh4uLhz544QQoiNGzfqle3GjRtCqVSKnj17isrKSt351q5dKwCI9957T7etT58+IiYmxqzyEMkNm7qICADw66+/YuLEiUhKSsLw4cMteq22RqG4uNjkcfPnz8fWrVvRsWNHfP3115g9ezYSExORkJCg17y2Y8cOhIaGYtKkSbXOoVAodD/7+vrqfr516xbUajUeffRRnDhxwqLy15Seng6NRoNBgwYhLy9P94iIiEDLli1x8OBBveN9fHwwcuRIi96jVatWCAsLQ1xcHMaNG4cWLVpg9+7dRvsG7d+/H2VlZUhLS4OHx1//637uuecQGBiI3bt3W36hRDLEpi4iQm5uLvr06QOVSoVPP/0Unp6eFr3+9u3bAICAgIA6jx08eDAGDx6MoqIiHD16FJs2bcLWrVvRr18/nD17Fg0aNEBWVhZatWoFLy/T/4vatWsXXnvtNZw6dQqlpaW67dXDkTXOnz8PIQRatmxpcL+3t7fe8yZNmtTqL1WXHTt2IDAwEN7e3oiOjtY13xnzxx9/AKgKTNUplUo0b95ct5+ITGPwIZI5tVqN3r17o7CwEN9//z2ioqIsPod2+HuLFi3Mfk1gYCD+9re/4W9/+xu8vb2xefNmHD16FN26dTPr9d9//z369++Prl274q233kJkZCS8vb2xceNGbN261eJrqE6j0UChUGDPnj0GQ2DNPjPVa57M1bVrV12/IiJyHAYfIhm7e/cu+vXrh99++w379+9HmzZtLD5HZWUltm7dCj8/PzzyyCNWlaNTp07YvHkzcnJyAFR1Pj569CjKy8tr1a5o7dixAw0aNMDXX38NHx8f3faNGzfWOtZYDZCx7fHx8RBCIC4uDvfcc4+ll2MXMTExAIDMzEw0b95ct72srAzZ2dno0aOHbputNV5E9Rn7+BDJVGVlJVJSUpCRkYFPPvnEqrljKisr8cILL+DcuXN44YUXEBgYaPTYkpISZGRkGNy3Z88eAH814wwcOBB5eXlYu3ZtrWPF/yb48/T0hEKhQGVlpW7fxYsXDU5U6O/vb3CSQn9/fwCotW/AgAHw9PTE/Pnza00oKIRAfn6+4Yu0ox49ekCpVGL16tV6ZdqwYQPUarXeaDp/f3+TUwsQyRlrfIhkaurUqfjiiy/Qr18/FBQU1JqwsOZkhWq1WndMSUkJLly4gPT0dGRlZeHpp5/GggULTL5fSUkJunTpgoceegi9evVC06ZNUVhYiM8//xzff/89nnzySXTs2BEA8Oyzz+L999/HlClT8OOPP+LRRx/FnTt3sH//fjz//PP4+9//jj59+mD58uXo1asXnnnmGdy4cQP/+te/0KJFC5w+fVrvvRMTE7F//34sX74cUVFRiIuLQ+fOnZGYmAgAmD17Np5++ml4e3ujX79+iI+Px2uvvYZZs2bh4sWLePLJJxEQEIDs7Gx89tlnGDt2LF566SWb7r+lwsLCMGvWLMyfPx+9evVC//79kZmZibfeegsPPPCA3u8rMTER27dvx5QpU/DAAw+gYcOG6Nevn0PLS+SynDmkjIicRzsM29jD1LENGzYULVu2FEOHDhV79+416/3Ky8vFu+++K5588kkRExMjfHx8hJ+fn+jYsaN44403RGlpqd7xJSUlYvbs2SIuLk54e3uLiIgI8Y9//ENkZWXpjtmwYYNo2bKl8PHxEa1btxYbN27UDRev7tdffxVdu3YVvr6+AoDe0PYFCxaIJk2aCA8Pj1pD23fs2CEeeeQR4e/vL/z9/UXr1q3FxIkTRWZmpt69MTXUvyZt+W7evGnyuJrD2bXWrl0rWrduLby9vUV4eLiYMGGCuHXrlt4xt2/fFs8884wICgoSADi0nagahRASLAxDRERE5AbYx4eIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZMNtgs/ixYvxwAMPICAgAI0bN8aTTz6JzMxMvWPu3r2LiRMnIiQkBA0bNsTAgQNx/fp1J5WYiIiIXI3bDGfv1asXnn76aTzwwAOoqKjAyy+/jLNnz+KXX37Rzb46YcIE7N69G5s2bYJKpUJqaio8PDzwww8/mP0+Go0G165dQ0BAAKd9JyIichNCCBQXFyMqKgoeHibqdZw6i5ANbty4IQCIQ4cOCSGEKCwsFN7e3uKTTz7RHXPu3DkBQGRkZJh93suXL5uc1I0PPvjggw8++HDdx+XLl01+z7vtkhXadWiCg4MBAMePH0d5ebneQn2tW7dGs2bNkJGRgYceesjgeUpLS1FaWqp7Lv5XAXb58mWT6w4RERGR6ygqKkLTpk0REBBg8ji3DD4ajQZpaWl4+OGHcd999wEAcnNzoVQqERQUpHdseHg4cnNzjZ5r8eLFmD9/fq3tgYGBDD5ERERupq5uKm7Tubm6iRMn4uzZs9i2bZvN55o1axbUarXucfnyZQlKSERERK7I7Wp8UlNTsWvXLnz33XeIjo7WbY+IiEBZWRkKCwv1an2uX7+OiIgIo+fz8fGBj4+PPYtMRERELsJtanyEEEhNTcVnn32Gb775BnFxcXr7ExMT4e3tjQMHDui2ZWZm4tKlS0hKSnJ0cYmIiMgFuU2Nz8SJE7F161b8+9//RkBAgK7fjkqlgq+vL1QqFUaPHo0pU6YgODgYgYGBmDRpEpKSkox2bLaWRqNBWVmZpOckfUql0vRwRCIiIiu4zTw+xjorbdy4ESNGjABQNYHh1KlT8dFHH6G0tBTJycl46623TDZ11VRUVASVSgW1Wm2wc3NZWRmys7Oh0Wisug4yj4eHB+Li4qBUKp1dFCIicgN1fX9ruU3wcRRTN04IgUuXLqG8vLzuCZLIatpJJL29vdGsWTNOJElERHUyN/i4TVOXK6ioqEBJSQmioqLg5+fn7OLUa2FhYbh27RoqKirg7e3t7OIQEVE9wSoLC1RWVgIAm18cQHuPtfeciIhICgw+VmDTi/3xHhMRkT0w+BAREZFssI8PERER1Sk/P9/kVC5KpRIhISEOLJF1GHxkYMSIEdi8eTMAwMvLC8HBwWjfvj0GDx6MESNGmD06bdOmTUhLS0NhYaEdS0tERK4mPz8fa9eu1T1XqwNQUBCC4OB8qFTFuu2pqakuH34YfBzImWm5V69e2LhxIyorK3H9+nV89dVXmDx5Mj799FN88cUX8PLiR4GIiAyr/t114kRH7NzZF0J4QKHQoF+/XUhIOFnrOFfFbzsHqZmWjbFXWvbx8dFN5NikSRMkJCTgoYcewhNPPIFNmzZhzJgxWL58OTZu3Ijff/8dwcHB6NevH15//XU0bNgQ3377LUaOHAngr47Hc+fOxbx587BlyxasWrUKmZmZ8Pf3R/fu3bFy5Uo0btxY8usgInK0+tLEIwW1OkAXegBACA/s3NkX8fEX9Gp+XBmDj4OYm4IdmZa7d++ODh06ID09HWPGjIGHhwdWr16NuLg4/P7773j++ecxffp0vPXWW+jSpQtWrlyJOXPmIDMzEwDQsGFDAEB5eTkWLFiAVq1a4caNG5gyZQpGjBiBL7/80mHXQkRkD87+o9XVFBSE6EKPlhAeKCgIZvAh99C6dWucPn0aAJCWlqbbHhsbi9deew3jx4/HW2+9BaVSCZVKBYVCUWsJkFGjRul+bt68OVavXo0HHngAt2/f1oUjIiJ35Ip/tDpTcHA+FAqNXvhRKDQIDi5wYqksw+HsMieE0DVd7d+/H0888QSaNGmCgIAADBs2DPn5+SgpKTF5juPHj6Nfv35o1qwZAgIC0K1bNwDApUuX7F5+IiJyHJWqGP367YJCUbVepbaPj7vU9gCs8ZG9c+fOIS4uDhcvXkTfvn0xYcIELFy4EMHBwTh8+DBGjx6NsrIyo0t03LlzB8nJyUhOTsaHH36IsLAwXLp0CcnJybL5C4iISE4SEk4iPv4CCgqCERxc4FahB2DwkbVvvvkGZ86cwYsvvojjx49Do9Fg2bJluuHtH3/8sd7xSqWy1hISv/76K/Lz87FkyRI0bdoUAPDTTz855gKIiMgpVKpitws8WmzqkonS0lLk5ubi6tWrOHHiBBYtWoS///3v6Nu3L5599lm0aNEC5eXlWLNmDX7//Xds2bIF69ev1ztHbGwsbt++jQMHDiAvLw8lJSVo1qwZlEql7nVffPEFFixY4KSrJCKyL7U6ANnZsVCrA5xdFIcyd41Kd1jLkjU+MvHVV18hMjISXl5eaNSoETp06IDVq1dj+PDh8PDwQIcOHbB8+XIsXboUs2bNQteuXbF48WI8++yzunN06dIF48ePR0pKCvLz83XD2Tdt2oSXX34Zq1evRkJCAt58803079/fiVdLRCQ9U/PXSM3VhtCHhIQgNTVVr0yFhYWoqKjQPff29kZZWRlycnKcUkZzKYQQwtmFcCVFRUVQqVRQq9UIDAzU23f37l1kZ2cjLi4ODRo0sOi8HBJpGVvuNRGRVHJycvDOO+9ArQ7AypVptUYzpaWthEpVjLFjxyIyMlKS93SH7wtXnMnZ1Pd3dazxcRBDabkmV03HRERypW26qWv+GimbeNxhCL07z+TM4ONADDVERO5F+0frxYsV2LJFQKNR6PZ5egpMmtQbsbFedv3/u7HaFFfgjjM5M/gQERGZEBISgpAQ4J13gHHjgMpKwNMTePttBRITw+363qZqU/Ly8gBY31ogRT8id5zJmcGHiIjIDKNHA8nJwIULQIsWQHS0fd+vrtqU9PR03bGW9qWRqh+RO87kzOBDRERkpuho+wceLUtqU2rW3NRVm6NWq80qQ119dLQzOdeslXLV2h6AwYeIiMglGapNATS4c8cfanWA0XBhbm1Odbb0I3K3mZwZfIiIiFxQzdoUQANAgU8/fcrkPEKWjqSSYn4id5rJmcGHiIjIhVQfGq+tTbl8ORo7dvwDQlSNKrNk9JSp2hxrR2WZO3y/sLAQJSUlRtd71J7LkaOeGXyIiEg2pJoR2Z4zK1ef9y0vLw/p6ekoKPjTqtFTddXmWDsqS1vGmzdvYvv27UaPq7nmoytMdMjgQzb79ttv8fjjj+PWrVsICgoy6zWxsbFIS0tDWlqaXctGRKQl1UgmR8ysXPN11oyeMlWbA1SFHm/vUqtHZYWEhNQKf6Zql1xlokMuUioDI0aMgEKhwPjx42vtmzhxIhQKBUaMGOH4ghEROZBUMyIb+rI3tHCplF/m2v4+CoUGAMwaPWWsNufo0c5YuTINmzcPx4YNY9C+/WmLzmvMiRMddedduTINJ0501O0zFsKcsdgra3xkomnTpti2bRtWrFgBX19fAFXrYW3duhXNmjVzcumIiBxPihmRLe0YbGkTmaH+PoZGTxnqc2NsVFhGRpJeADl9uj1Gj/5/KC9XmnVeQ+rqK+RKEx0y+MhEQkICsrKykJ6ejiFDhgAA0tPT0axZM8TFxemOKy0txbRp07Bt2zYUFRWhU6dOWLFiBR544AHdMV9++SXS0tJw+fJlPPTQQxg+fHit9zt8+DBmzZqFn376CaGhofi///s/LF68GP7+/va/WCKiOkgxksnSjsHWNJHZss6joTl2kpIycOTIw3rHCeGB8nIl4uL+wOOPP47GjRtDpVJZ1E+prmDjShMdsqnLSa5cAQ4erPrXUUaNGoWNGzfqnr/33nsYOXKk3jHTp0/Hjh07sHnzZpw4cQItWrRAcnIyCgqqPpyXL1/GgAED0K9fP5w6dQpjxozBzJkz9c6RlZWFXr16YeDAgTh9+jS2b9+Ow4cPIzU11f4XSURuJT8/Hzk5OUYf+fn5kr+nVM0upr7sDbG2qS0kJASRkZFGHzXDSc1aorS0lRg+fBPS0laic+ejumYtreoB5ODBg9i+fbvFnbO1wcbYea1pqrMX1vg4wYYNwNixgEYDeHhUrf8yerT933fo0KGYNWsW/vjjDwDADz/8gG3btuHbb78FANy5cwfr1q3Dpk2b0Lt3bwDAu+++i3379mHDhg2YNm0a1q1bh/j4eCxbtgwA0KpVK5w5cwZLly7Vvc/ixYsxZMgQXcflli1bYvXq1ejWrRvWrVuHBg0a2P9iicjlOaKTsCFSNbu4Ui1GdYZqibSjwwCYNdOyqZBWvblOu16YOTM4u8pEhww+Dnblyl+hB6j6d9y4qvVf7D0NelhYGPr06YNNmzZBCIE+ffogNDRUtz8rKwvl5eV4+OG/qkG9vb3x4IMP4ty5cwCAc+fOoXPnznrnTUpK0nv+888/4/Tp0/jwww9124QQ0Gg0yM7Oxr333muPyyMiNyNVZ2NLSRVYbF2uwZ6rrtdVC6QNIN7eZSgv9zE5E3R1psKqOcHGFSY6ZPBxsPPn/wo9WpWVVYveOWL9l1GjRumanP71r3/Z5T1u376NcePG4YUXXqi1jx2picgYY0FAW6ugZeuEd1KuL2VJLUZhYaHuZ1N9jAoLCxEZGWlxWUzR1gJdu3YN6enpUKmKkZXVwuJ+Tuas3WXNfTS3E7UUGHwcrGXLquat6uHH07NqpV9H6NWrF8rKyqBQKJCcnKy3Lz4+HkqlEj/88ANiYmIAAOXl5Th27Jiu2eree+/FF198ofe6//znP3rPExIS8Msvv6CFoy6KiNyeqSBQfRVyLWuav2wZIWXsPIDxL/uax1VUVACou1O09jipVZ93x9oZm2syFlYHDBiga1HgzM0yFx1d1adn3Liqmh5PT+Dttx232q+np6eu2crT01Nvn7+/PyZMmIBp06YhODgYzZo1w+uvv46SkhKM/l8npPHjx2PZsmWYNm0axowZg+PHj2PTpk1655kxYwYeeughpKamYsyYMfD398cvv/yCffv2WbxwHhHVf9Z8CVvT/GXLCCkpz+MKQ7ulKIO5I+P8/PwcHm5MYfBxgtGjq/r0XLhQVdPjqNCjFRgYaHTfkiVLoNFoMGzYMBQXF6NTp074+uuv0ahRIwBVTVU7duzAiy++iDVr1uDBBx/EokWLMGrUKN052rdvj0OHDmH27Nl49NFHIYRAfHw8UlJS7H5tROR+6hodJWU/GKm+fG05T3BwPgABQKHb5uhO0Zb2c9J2aNY2O9Y1K/SyZSecuiyFKQw+ThId7bjAU7NGpqbPP/9c93ODBg2wevVqrF692ujxffv2Rd++ffW21RwW/8ADD2Dv3r1Gz3Hx4kWTZSIi+TD2JXztWhTef/9Zm+bacSXe3t7VnukHHyGMHWc9Q5MlWjIKq/p5atbWm5oVWjtBojOXpTCFwYeIiJzK0Jdwjx77sX9/D5v7oLgSlUoFoCo01J5G769mJu1xtjBnqgBz+zkZCizGwuqRI0nQXpur/s4YfIiIyClMdTa2pQ+KPVdOl4Ij5v8xt3Zl5Mi/6U1rAtR9f7QdmquHU1OzQjtjWQpTGHyIiMgp6ppoz5pw4KxJES0h5XB6W4WGhlo0dL5mh+YePfYjKuqa7vdSfR0wwDUmdKyJwYeIiJzGWPiwNhwYWjndUOdoZ/Q3MXc4ffX5fqq/1pagJsVkiYY6NO/f3wNpaSt153SVQGcKg48VRPVeaGQXvMdE8iTVXDuANAuRSsnYMHi1Wo3t27frnn/88ccGX29tLZVU98Gc5kdXWZbCFAYfC2jnvSkrK4Ovr6+TS1O/af/HUHOuISKq36Saa0eqCfqkZk5wkbKWSsr7YG7fJFdYlsIUBh8LeHl5wc/PDzdv3oS3tzc8PLi4vT1oNBrcvHkTfn5+8PLiR5RIbqToe+MKkwRaQ+paKinvg619kxy5LIUp/FaxgEKhQGRkJLKzs3UrnJN9eHh4oFmzZlAoFHUfTERUg6uunG6KpbUzpkavaefrkeI+mNv8OGjQIAQFBRk9hytMXggw+FhMqVSiZcuWLjMRU32lVCpZo0ZEVnOlkVPmsqR2xtzRa3XdB3NqYaRqfnQVDD5W8PDwQIMGDZxdDCIiMsEdOtpWZ0ntjLl/fA8YMABjx4ZizpybuHjRC7GxFYiKegDAAxaFFXcJNeZg8CEiIqeScsJBa1dOdwX2qKXSztMTGQkkJkpYWDfG4ENEREbZexZkqSccdPdmGWtrqaSYp0cuGHyIiMggR8yCbI8JB1011Bhjay2Vq81X5OoYfIiIZMicmhxHz4Is1y9wW2qpXHW+IlfG4ENEJDPm1uSkpKTofrZ3KJH7F7i1tVTuOl+RM3G8MBGRzBiqycnOjoVaHaC3vby8XLffUCipebwtTH2Bk3HakWDVufp8Rc7GGh8iIhkzpybHEbUK7jjhoDNp+/tIMU+P3DD4EBHZkb1HRdnC3OYlR4QSd5xwsC72/N3X7Bdk6zw9csLgQ0RkJ44YFWWLumpybt26BcBxocRdJhw0J9AAsPvvvvrrOE+P+Rh8iIjsxNzRTs5aAqeumpyDBw/qttsrlLjbhIPmhtlBgwbpPbf3iDgyH4MPEZFMmVOTU/MLW+pQ4owJB21pgjJ3iH9FRYXuZ7kO03dVDD5ERA7iirPrmqrJMfWFPWDAAISGhkoSShzZzFezxsbY78ScJihzAo3ch+m7IgYfIiIHcKW/+s1pXqrrC1u7BpS7qV5jY+p3UlZWZrBmKC8vD4D5gYbz7LgeBh8iIjtztb/6TTUv5eXlIT093SFf2NWDRWFhoa55KDfXC5cu+SA+XoNWrfwBSN/cVdfvpLCwEB9//LHR15t7fzhM3/Uw+BAR2Zmj/uq3pO9KXSHC1i/suspSUlKCDz74QPdc2+R07Vok9u/vYbAWRsrRb3X9Tqr30alePm2TmLn3pz4O03d3DD5ERHbmiL/6pR46b8sXtrn9aLSqNzkBAoACQO1aGEtGQBkLXtqmKkt+J8aaxMy9P+4yTF8uGHyIiOzEkbPr2mNBUWu/sM3tR6MtZ/UmJ23o0bKmZsyc4GVusDPVJGbq/nh7e+udx9WH6csJgw8RkZ04a3ZdWzpSSzmvjjl9mww1OVVnTc2YucHLnGBXV5OYsfsTFhbm8GH6ZB4GHyIiO3L07Lq2dqSWcl4dc/o2GWpy0jZ32dofxpx7YSy4aNXVJKYd1l8dA41rY/AhIqpHpOhILdWXtjn9aAw1OfXosR9RUdds7g9jy73QNlXV1STmrsP65axeBp9//etfeOONN5Cbm4sOHTpgzZo1ePDBB51dLCIiu3Ol4dPm9qOxV+dfa2prgKoam+o1XuycXL/Uu+Czfft2TJkyBevXr0fnzp2xcuVKJCcnIzMzE40bN3Z28YjICVx5hXSp2Wv4tLX30NzQUFeTkzVsqa3Jz883q3zsnOx+6l3wWb58OZ577jmMHDkSALB+/Xrs3r0b7733HmbOnOnk0hGRozl6hXRXCFlS11DYusyDVKGmpKQEOTk5RvcburfW3gtnrCFGjlGvgk9ZWRmOHz+OWbNm6bZ5eHigR48eyMjIMPia0tJSlJaW6p4XFRXZvZxE5DiOXCHd0SGrOnuucm7JMg+WvMfQoUPh5+cHQH/mZi1vb2+oVCoAxic8NBS+arI2eDHU1E/1Kvjk5eWhsrIS4eHhetvDw8Px66+/GnzN4sWLMX/+fEcUj4hcgD0XCrXHXDrmckQNhbkjxqwpS10dhKvX9NQVvswNXmymkqd6FXysMWvWLEyZMkX3vKioCE2bNnViiYjIXhy5UKgzFiW1dw2FJaOk7FUWc8IXm6nIlHoVfEJDQ+Hp6Ynr16/rbb9+/ToiIiIMvsbHxwc+Pj6OKB4ROZEjFwp1tUVJpeIKI8bMDV8MNWSM8eky3ZBSqURiYiIOHDig26bRaHDgwAEkJSU5sWRE5GymvjDd+b0cSTtKSqHQAIBTFtzUhq/quNo5WaJe1fgAwJQpUzB8+HB06tQJDz74IFauXIk7d+7oRnkRkTw5srbCFWpG7MXUKCntAqDXrnkgO9sLcXEViIqqCilSNS1xtXOyVb0LPikpKbh58ybmzJmD3Nxc3H///fjqq69qdXgmInlx5Bdmff9yNjZKKj093WTfJqlGs3FCQbJFvQs+QNV/XIaGNBKR/FQfuWPqC1PqET716cvZ3HtTV98mKUez2WPCQ5KHehl8iIi0HDnCx55z6ThTXfcwLy8P6enpkqwTZgyHqJNUGHyIqN5z1Aif+jyM2pwy27NvU32+t+RYDD5ERBKS8xevvfs2yfneknQYfIiISDL1qW8T1U8MPkRUL7jC4qBURdu3Sa0OQHZ2rG7Jjry8PP4eyOkYfIjI7TlzcVAyzNCwdiAdAH8P5FwMPkTk9py5OKirsqUGrPprzZmMsOZIKkcOayeyFIMPEdUrzlgc1NXUrAEzFgQN1bxUf625kxFqR1xdu3bN7sPaiWzF4ENE9UZ9XRzUUtVrVEyFF0M1L9ptltbahISE6LbV5yU7yP0x+BBRveEuNQ2O6ohtSxC05V7W9yU7yL0x+BBRveGomgZb+884qiO2LeHF1nvJYe3kqhh8iKjecERNg63BxdaO2OaELi1bwosU95LraZErYvAhonrF3jUN5o5IMuc4Sztim9tpedCgQQBsDy+staH6iMGHiNyeMxcHNRY+zHmdpf1v6uq0XBVSQvDf/6p1x9kaXiypteFCouQOGHyIyO05awFLUzU2eXl5Jt/blv43hkLTF1/0hUJR9fP772vQr98NXVmMhRepZ1LmQqLkDhh8iKhecPSXaV01Nunp6XrH1+zzY0v/G0OhCfCAEDBYluplrl47pS1j9bLZWmvDUEOujsGHiMgKxmpsLl+ORkHBn3V2Vral/42h0FRTzdojc+fzYa0N1XcMPkREVjAcPjTYseMfZndWNtX/pnpTGVAVNtTqqr47NUMToAGg+N+jSvXaI0v7EzHUUH3G4ENEZAVj4UOIqvBhLFyY0xFbrQ7AsmUnTHaYjo+/gIEDdwAQaNr0CrKyWhitPXKXiR2JHIHBh4jIAtWDS/Uamzt3/PHpp0/pHWsoXBhqSsrLy9P1tzFniLuxY4zVHnEJCaK/MPgQEVmgZnDRhha1OsDscGGsKcmcJqm6jjFUg8MlJIj+wuBDRGQhQ8FFinBhTpOUtc1WnIyQqAqDDxGRRGwNF+Y0Sdm6DAUDD8kdgw8RkQ2knDXanFqjrKwWuvl6ANQ6ZsCAAQgNDQUAqNVqbN++3eJrIKrPGHyIiGwg9bw3pmqNtP17gL9qe4SoGuGlFRoaisjISABAZGQk5+QhqoHBh4jITOasjC5FiDBWa2RsxmZT/XsYaoj0MfgQEZmh5sroxtRcmsIc5jY1mdO/h81WRKYx+BARmaFmTY+xVdlN1QgZU1dzmXbIfF19gFJSUljDQ1QHBh8iIguZM8mgpaToA6RSqWwqA5EcGF/hjoiIajE2gaBaHeCwMqhUxYiL+4ND04mswOBDRGQBUxMI2ou5/XbYv4eobmzqIiKLOGpkk6tyxrpXUg+ZJ5IzBh8iMlvNkU3GOvhaM7LJXThr3av6ej+JHI3Bh4jMVr3GwVQHX2tGNrkTrntF5L7Yx4eILOYKHXwdzdDSFIY6GLOfDZFrY40PEVnM2hXCq3N0XyFb34/9bIjqBwYfIrKYrR187TkLsj3fj6GGyP2xqYuILKbt4KtQaADUXiG8Lub2AZKqr5Cj34+IXBdrfIjIKlJ28DU2OsxeHP1+ROQ6GHyIyGrGVhG3hD2Wf3Cl9yMi18KmLiIym9QzCDt6dJgcR6MRkT7W+BCR2aQe2STF6DBLOPr9iMj1MPgQkUWkHNnk6OUfnLHcBBG5FjZ1EZHT2Do6zNXfj4hcD2t8iNxE9Qn4rl3zQHa2F+LiKhAVVfUl7k6T51XvA2RqdJhUsyA7+v2IyHUphBDC2YVwJUVFRVCpVFCr1QgMDHR2cYgA6E/AZ2pUkjstDupuMzcTkWsz9/ubNT5EbkD7hW1sVFJ8/AWoVMVuNQGfo0MGQw0RAQw+RG7FVUclsTaFiNwFgw+RG3HEqCRLQ4yj190iIrIFgw+RG9GOSqrZx0eq2h5rQgzXwSIid8LgQ+RmpFwjqyYpQgzXwSIiV8bgQ+SGpFgjyxyWhhiug0VEro7Bh4gMsjTE1DXijIjIFXDmZiI3IPXioHWxZjFPUyPOiIhcBWt8iJzI3BFUUi8OaqwseXl5AKwbNs91sIjIHTD4EDlJzRFUxvrTaEdQ2XMoeM2yWBNi7D3ijIhICgw+RE5SvfbGVH8aU7U8Uk0cWPMcloQYroNFRO6EwYfIyaztFGzPiQPV6gA0anQLo0f/P5SXK02GGEc0wxERSYXBh8jJrF2GombQMNZUZunEgYZqn+Li/gAADBgwAFFRUbVCDEMNEbkLBh8iJ5OiU7BU8+fUVfsUGhrKkENEbo3D2YmcTNufRqHQAIDFnYKtGXpuDIekE1F9xxofIhdgyzIUUq7YziHpRFTfscaHyEWoVMWIi/vD6rBSnbVhxdbaJyIiV8caHyInkWo2Zinmz+GQdCKSCwYfIieRchi4rSu2c0g6EckFgw+RE9kSJGrWvhhbsd3cWhqGGiKSAwYfIjdlay2NVLM+ExG5E7cIPhcvXsSCBQvwzTffIDc3F1FRURg6dChmz56t99fs6dOnMXHiRBw7dgxhYWGYNGkSpk+f7sSSk7u4cgU4fx5o2RKIjnZ2acxnbTCx56zPRESuzC2Cz6+//gqNRoO3334bLVq0wNmzZ/Hcc8/hzp07ePPNNwEARUVF6NmzJ3r06IH169fjzJkzGDVqFIKCgjB27FgnXwG5Im2Nx9atvpg+XQWNRgEPD4HXX1fjmWf+rNc1HubO5mzprM9ERK7OLYJPr1690KtXL93z5s2bIzMzE+vWrdMFnw8//BBlZWV47733oFQq0bZtW5w6dQrLly9n8KFatDUeanUAVq5MgxAKAIBGo8C0aYG4evU9qFTFsqnxMLbcBRFRfWN28CkqKjL7pIGBgVYVxhJqtRrBwX/NJpuRkYGuXbvqNX0lJydj6dKluHXrFho1amTwPKWlpSgtLdU9t+Q6yb7s2fykrcmoa/I/OdR4mFruIi8vT+/Y+lwLRkTyYHbwCQoKgkKhMHmMEAIKhQKVlZU2F8yUCxcuYM2aNbraHgDIzc1FXFyc3nHh4eG6fcaCz+LFizF//nz7FZassmEDMHYsoNEAHh7AO+8Ao0dL/z5yn6m4rrW50tPTa71GLrVgRFQ/mR18Dh48KPmbz5w5E0uXLjV5zLlz59C6dWvd86tXr6JXr1546qmn8Nxzz9lchlmzZmHKlCm650VFRWjatKnN5yXr5Ofn4+LFCowd2xgajbb5CRg3TuD++28gNtZL0i9dKSb/c2fWLHchh1owIqq/zA4+3bp1k/zNp06dihEjRpg8pnnz5rqfr127hscffxxdunTBO++8o3dcREQErl+/rrdN+zwiIsLo+X18fODj42NhycketP1usrNjodEM19tXWanAmjV7EBf3h+Q1DrZO/mcpVxpGbk2NV15eHpu8iMhtWd25ubCwEBs2bMC5c+cAAG3btsWoUaOgUqnMPkdYWBjCwsLMOvbq1at4/PHHkZiYiI0bN8LDQ/+v1KSkJMyePRvl5eXw9vYGAOzbtw+tWrUy2sxFrkUbBur6MrZHjYOxyf+k5mrDyE3VeBnr8Kxt/mKTFxG5I6uCz08//YTk5GT4+vriwQcfBAAsX74cCxcuxN69e5GQkCBpIa9evYrHHnsMMTExePPNN3Hz5k3dPm1tzjPPPIP58+dj9OjRmDFjBs6ePYtVq1ZhxYoVkpaF7K8+Nz+5yjDyutbmMtXh2VFlJCKyB6uCz4svvoj+/fvj3XffhZdX1SkqKiowZswYpKWl4bvvvpO0kPv27cOFCxdw4cIFRNcY3iOEAACoVCrs3bsXEydORGJiIkJDQzFnzhwOZXdTjm5+chZnDSMPCQnBoEGD8PHHHwPQr/Gqq8MzEZE7s7rGp3roAQAvLy9Mnz4dnTp1kqxwWiNGjKizLxAAtG/fHt9//73k70/OYc/mJ6lWRreFJcPItWWRsmkpKChI77k2hN2542eww/Ply9FQqc5J9v5ERM5gVfAJDAzEpUuX9EZbAcDly5cREBAgScGI7MnZq5FbM4wcsF+/muohDNAAEAD0p6/YseMfKCur3eRFROROrAo+KSkpGD16NN5880106dIFAPDDDz9g2rRpGDx4sKQFJLIXZ3bMrWsYubEmsLr61VgzYqxmCAOqh5+/ysgmLyKqD6wKPm+++SYUCgWeffZZVFRUAAC8vb0xYcIELFmyRNICEtVHpkaumdOx2BBrR4wZCmGAB7p2PYjvvntcb2tdc/wQEbm6mv+3M4tSqcSqVatw69YtnDp1CqdOnUJBQQFWrFjBOXHIaq7Q78ZRtCPXFAoNAOgCDgCDTWBqdd1NyNVHO5pSs0ZIG8KqUyg0uOee8wa3y2VWayKqn2xapNTPzw/t2rWTqiwkc87ud+MIdQ0jz86OtXgmZaCqtmf79u1WlcXY9AHR0TkmpxWoDwGUiOTHquBz9+5drFmzBgcPHsSNGzeg0ej/VXjixAlJCkfy486hxhzGwl1eXh7S09OtXjvMUFisa6h8zbLMmXMTFy96ITa2Av7+96C8PA6DBnnpbY+KegDAA24fQIlIvqwKPqNHj8bevXvxj3/8Aw8++GCdi5cS0V9MBQapJm80t59Q9bJERgKJidpn4XrH/bWdiMi9WRV8du3ahS+//BIPP/yw1OUhkj1bJ29UqwPwxRd9oe3Cx9FYRER/sSr4NGnShPP1EEmoZn8ZY5M3mtOv5ujRzqg5boGjsYiIqlgVfJYtW4YZM2Zg/fr1iImJkbpMRLIjVcdutToAGRlJBvZwNBYREWBl8OnUqRPu3r2L5s2bw8/PT7caulZBAf8HS2QpKToLG56TB+jSJYOjsYiIYGXwGTx4MK5evYpFixYhPDycnZuJXISxUWGdOx8FAAwaNIijsYhI1qwKPkeOHEFGRgY6dOggdXmIyAp1zcmjre1p3LixM4tJROR0VgWf1q1b488//5S6LERkJVNz8nDuHSKiv1gVfJYsWYKpU6di4cKFaNeuXa0+PoGBgZIUjshRrFnc09UYn5OHiIi0FEIIYemLPDyq+g/U7NsjhIBCoUBlZaU0pXOCoqIiqFQqqNVqBjiZsHZxTyIich3mfn9bVeNz8OBBqwtG5Gpq1vQYW+rBVI0QERG5B6uCT7du3cw67vnnn8err76K0NBQa96GyOHMXeqBiIjcU+0JPyT0wQcfoKioyJ5vQSQZtTpAF3qAv5Z6UKs5SzkRUX1h1+BjRfchIqcxNPmfdqkHIiKqH+wafIjciXbyv+oUCi71QERUnzD4EP2PdvI/bfipOfkfERG5P6s6NxPVVwkJJxEffwEFBcEIDi5g6CEiqmcYfEj2ai7aqVIVGww8XNyTiMj9WRx8KioqsGjRIowaNQrR0dEmjx06dCgnASTJ2Gt25ZrLPUh5biIici1WzdwcEBCAM2fOIDY21g5Fci7O3OyaOLsyERGZYteZm7t3745Dhw7Vy+BDtbnCOlacXZmIiKRgVfDp3bs3Zs6ciTNnziAxMRH+/v56+/v37y9J4cjxaoacwsJCfPzxx3W+zpE1LZxdmYiIrGVV8Hn++ecBAMuXL6+1z90XKZUzc5uTDLl27ZpeYLJXLZCx2ZXj4y9wBBYREdXJquCj0WjqPojcji3NROnp6bW22aMWyNTsyvYIPq7QzEdERNKxKvi8//77SElJgY+Pj972srIybNu2Dc8++6wkhSPHyc/PR15enqTntEd/G+3sytXDj71mV2aHaiKi+seqmZtHjhwJtVpda3txcTFGjhxpc6HIsbRf8IZqbVyNI2dXNtShOjs7ttaipexQTUTkPqyq8RFCQKFQ1Np+5coVqFQqmwtFjuVuX9zOmF3ZVIdqYzVlbAYjInI9FgWfjh07QqFQQKFQ4IknnoCX118vr6ysRHZ2Nnr16iV5Icl1GBpGbmxouZTsPbuyob482kBTV4dqUzVlbAYjInItFgWfJ598EgBw6tQpJCcno2HDhrp9SqUSsbGxGDhwoKQFJOepGWgM1XoAcMjQcnvOrlxXXx5zOlRzXiEiIvdgUfCZO3cuACA2NhYpKSlo0KCBXQpFzlcz5PTosR/79/fQq/X44ou+UCjgsKHl9qo5qWtyxLo6VHNeISIi92FVH5/hw4cDqPrCuHHjRq3h7c2aNbO9ZOQ0hpp2qoeev3ig5oIn9hxa7gjGQky/frtqbVepijmvEBGRm7Eq+Jw/fx6jRo3CkSNH9LZrOz1zAkP3ZqxpR6EQEKJ6p3aNXo0PoF8T4m6rmZsKMcY6VDt6XiEiIrKNVcFnxIgR8PLywq5duxAZGWlwhBe5L2NNO7NnF2PxYhUqKwFPT4GlS4sAADNmqFBZqdBte+aZwW45oqmuEGOoQ7Uj5xUiIiLbWRV8Tp06hePHj6N169ZSl4ecwFDNTFJSBjIykvSadtLSHsa4ccCFC0CLFgpERwcBAFJSam4LcmTxJVNXiBkwYABCQ0MBVI34Sk9P180rZKgZjIiIXI9VwadNmzaSz/JLzlN9xNTWrb549VUVNBoFFAqB8eNvY8yYO4iNfVhXgxMdrf/66Oja29xRXSEmNDQUkZGRtV7njHmFiIjIOlYFn6VLl2L69OlYtGgR2rVrB29vb739gYGBkhSOHCckJARXrgDTpwPavupCKPDuuw0xe3ZDuFmrldXMDTH2nleIiIjsw6rg06NHDwBA9+7d9fr3sHOzezt//q/Qo1VZWdWMVR9qdIyxJsTYc14hIiKyH6uCz8GDB6UuB7mAli0BDw/98OPpCbRo4bwyOYK1IYahhojI/VgVfLp164bvv/8eb7/9NrKysvDpp5+iSZMm2LJlC+Li4qQuIzlIdDTwzjvAuHH438gt4O2363dtjxZDDBGRPFi1OvuOHTuQnJwMX19fnDx5EqWlpQAAtVqNRYsWSVpAcqzRo4GLF4GDB6v+HT3a2SUiIiKSjlXB57XXXsP69evx7rvv6nVsfvjhh3HixAnJCkfOER0NPPaYPGp6iIhIXqwKPpmZmejatWut7SqVCoWFhbaWiYiIiMgurAo+ERERuHDhQq3thw8fRvPmzW0uFBEREZE9WBV8nnvuOUyePBlHjx6FQqHAtWvX8OGHH+Kll17ChAkTpC4jERERkSSsGtU1c+ZMaDQaPPHEEygpKUHXrl3h4+ODl156CZMmTZK6jCRj+fn5nCuHiIgkoxBCCGtfXFZWhgsXLuD27dto06YNGjZsKGXZnKKoqAgqlQpqtZozUDtZfn4+1q5dq3uuVgegoCAEwcH5ehMMpqamMvwQEcmcud/fVtX4aCmVSrRp08aWUxAZVb2m58SJjrXW0EpIOFnrOFOq1x5du+aB7GwvxMVVICqqasZG1h4REdV/NgUfIkdQqwN0oQcAhPDAzp19ER9/ASpVscEFc2uGmOq1R6ZCFGuPiIjqNwYfcnkFBSG60KMlhAcKCoKhUhVj48Z9dTaBaWt66gpR5tYeERGRe2LwIZcXHJwPhUKjF34UCg2CgwssbgKrK0QREVH9ZtVwdiJHUqmK0a/fLigUVX1xtAEHgMHaG7U6wOi5tCGqOm2IIiKi+o81PuSS8vPz9fruJCScRHz8BRQUBCM4uAAqVTGys2Mtrr3RhqiatUSs7SEikgcGH3I5poaxx8X9odtuqgnMFEMhioiI5IHBh1yOucPYbam9UamKGXiIiGSIwYdcVl0jsADW3hARkWUYfMhlmTsCy5zaG6VSadZ7mnscERG5JwYfclnW9uHRqh5iQkJCkJqaynW/iIhkjsGHHK6uhUfVajWAuvvwDBgwAKGhoQbPYSjEMNQQERGDDzmUuQuPapnqwxMaGorIyEiHlJuIiOoHBh9yKHNHbFXHEVhERCQVztxMTmFsxJapWZdrYkdkIiKylNvV+JSWlqJz5874+eefcfLkSdx///26fadPn8bEiRNx7NgxhIWFYdKkSZg+fbrzCktG1TVia9CgQQgKCjL6enZEJiIia7hd8Jk+fTqioqLw888/620vKipCz5490aNHD6xfvx5nzpzBqFGjEBQUhLFjxzqptGRMXSO2goKC2H+HiIgk51bBZ8+ePdi7dy927NiBPXv26O378MMPUVZWhvfeew9KpRJt27bFqVOnsHz5cgYfB6prxFZhYSEArplFRETO4TbB5/r163juuefw+eefw8/Pr9b+jIwMdO3aVa/fR3JyMpYuXYpbt26hUaNGjiyuLEk5YouIiMge3CL4CCEwYsQIjB8/Hp06dcLFixdrHZObm4u4uDi9beHh4bp9xoJPaWkpSktLdc+LioqkK7jMcMQWERG5OqeO6po5cyYUCoXJx6+//oo1a9aguLgYs2bNkrwMixcvhkql0j2aNm0q+XvIDUdsERGRq3Jqjc/UqVMxYsQIk8c0b94c33zzDTIyMuDj46O3r1OnThgyZAg2b96MiIgIXL9+XW+/9nlERITR88+aNQtTpkzRPS8qKqpX4aeuPjf2GB1V14itlJQUqFQqh5aJiIgIcHLwCQsLQ1hYWJ3HrV69Gq+99pru+bVr15CcnIzt27ejc+fOAICkpCTMnj0b5eXl8Pb2BgDs27cPrVq1Mtm/x8fHp1agqi9q9rkxJjU1VdKgYWrEllodgB9+UOL++z0QFaUBwKBDRESO4xZ9fJo1a6b3vGHDhgCA+Ph4REdHAwCeeeYZzJ8/H6NHj8aMGTNw9uxZrFq1CitWrHB4eV2FqZoea44zl7ERW1lZLYz2+5E6fBERERniFsHHHCqVCnv37sXEiRORmJiI0NBQzJkzh0PZnaTmiC0AWLkyrVa/n/j4C1CpiiUPX0RERIa4ZfCJjY2FEKLW9vbt2+P77793QonIkOojtrKzY032+yEiInIErtVFkjE1Ekvb76e66jM1ExEROYJb1viQawoJCUFqaqpes1VeXh7S09M5UzMREbkEBh+SlKkOypypmYiInI3BR0bqWkLCEThTMxERORODTz1Wvc+NqSUkOEsyERHJBYNPPabtc3PxYgVefbUxhFAAqBpNtXt3P8yZ0xmxsV52nT/H3FDF8EVERI7A4FPPhYSE4PRpQKM/oAqVlQoUF4fD3nMGGurwXBNnbiYiIkdh8JGBli0BDw/98OPpCbRo4Zj3Z6ghIiJXwXl8ZCA6GnjnnaqwA1T9+/bbVduJiIjkhDU+MjF6NJCcDFy4UFXTw9BDRERyxOAjI9HRDDxERCRvbOoiIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwIatduQIcPFj1LxERkTtg8CGL5OfnIycnB8uWFSImRqB7dyAmRmDZskLk5OQgPz/f2UUkIiIyijM3y0x+fr7VK6Xn5+dj7dq1UKsDsHJlGoRQAAA0GgWmTQvE1avvQaUqRmpqKhcmJSIil8TgIyPa4KKlVgegoCAEwcH5UKmKdduNBRdtYCooCIEQ+pWFQnigoCAYKlWxyWBFRETkTAw+MlI9kJw40RE7d/aFEB5QKDTo128XEhJO1jrOkODgfCgUGr3wo1BoEBxcYJ+CExERSYR9fGRIrQ7QhR6gqrZm586+UKsDzHq9SlWMfv12QaHQAIAuOFWvNSIiInJFrPGRobqaqsyRkHAS8fEXUFAQjODgAoYeIiJyCww+MiRVU5VKVczAQ0REboVNXTLEpioiIpIr1vjIFJuqiIhIjhh8ZMzSpiqlUinpcURERI7G4CMjtgaXkJAQpKamWj0BIhERkbMphBDC2YVwJUVFRVCpVFCr1QgMDHR2cSRny8zNRERErsrc72/W+MiMJaHmyhXg/HmgZUsgOtqOhSIiInIQjuoigzZsAGJi8L9FSKueExERuTsGH9KTn5+P48evY+xYAU3VaHdoNMC4cQLHj1/n6utEROTW2NRFOtpFTLOzY6HRDNfbV1mpwJo1exAX9wdXXyciIrfFGh/S0XZ61s7sXF31mZ25+joREbkrBh+qhTM7ExFRfcWmLjKIMzsTEVF9xOBDRnERUiIiqm/Y1EVERESyweBDREREssHgQ0RERLLB4EM6XH2diIjqO3ZuJh2uvk5ERPUdgw/pYaghIqL6jE1dREREJBsMPkRERCQbDD5EREQkGww+REREJBsMPi7qyhXg4MGqf4mIiEgaDD4uaMMGICYG6N696t8NG2ofw2BERERkOQYfF3PlCjB2LKDRVD3XaIBx46q25+fnIycnB8uWFSImRvwvGAksW1aInJwc5OfnO7fwRERELo7z+LiY8+f/Cj1alZXA8eNqnDq1Fmp1AFauTIMQCgCARqPAtGmBuHr1PahUxUhNTeVcPEREREawxseF5OfnIzDwOjw8hN52T08BP79rAICCghAIof9rE8IDBQXBAGBy1mUiIiK5Y42Pi8jPz8fatWsBAH37dsTOnX0hhAcUCg369NmFI0dOAgCCg/OhUGj0wo9CoUFwcIFTyk1EROROGHxcRPWamoSEk4iPv4CCgmAEBxdApSrW7VOpitGv3y69YNSv3y69Y4iIiMgwBh8XpVIVGw0z8fEXMHDgDgACTZteYeghIiIyE4OPmzlxomOt2p6EhJPOLhYREZFbYOdmN6JWB+hCD1DVqXnnzr5QqwOcXDIiIiL3wODjRuoa0UVERESmMfi4Ee2IrupqjuhSKpWOLhYREZHbYPBxI9oRXdrwU3NEV0pKCicvJCIiMoGdm12EuTU1poe6q+xVPCIionqBwcdFhISEIDU11eDMy3l5eUhPT9c9NzXUnYiIiIxj8HEhbKYiIiKyL/bxcQPmNoOxYzMREZFprPFxA6aawbSUSiVrjIiIiOrgVjU+u3fvRufOneHr64tGjRrhySef1Nt/6dIl9OnTB35+fmjcuDGmTZuGiooK5xRWYiEhIYiMjDT6YOghIiKqm9vU+OzYsQPPPfccFi1ahO7du6OiogJnz57V7a+srESfPn0QERGBI0eOICcnB88++yy8vb2xaNEiJ5aciIiIXIVCCCGcXYi6VFRUIDY2FvPnz8fo0aMNHrNnzx707dsX165dQ3h4OABg/fr1mDFjBm7evGl2/5eioiKoVCqo1WoEBgZKdg1ERERkP+Z+f7tFU9eJEydw9epVeHh4oGPHjoiMjETv3r31anwyMjLQrl07XegBgOTkZBQVFeG///2vM4pNRERELsYtgs/vv/8OAJg3bx7++c9/YteuXWjUqBEee+wxFBRULdeQm5urF3oA6J7n5uYaPXdpaSmKior0HkRERFQ/OTX4zJw5EwqFwuTj119/hUZTtUTD7NmzMXDgQCQmJmLjxo1QKBT45JNPbCrD4sWLoVKpdI+mTZtKcWlERETkgpzauXnq1KkYMWKEyWOaN2+OnJwcAECbNm102318fNC8eXNcunQJABAREYEff/xR77XXr1/X7TNm1qxZmDJliu55UVERww8REVE95dTgExYWhrCwsDqPS0xMhI+PDzIzM/HII48AAMrLy3Hx4kXExMQAAJKSkrBw4ULcuHEDjRs3BgDs27cPgYGBeoGpJh8fH/j4+EhwNUREROTq3GI4e2BgIMaPH4+5c+eiadOmiImJwRtvvAEAeOqppwAAPXv2RJs2bTBs2DC8/vrryM3NxT//+U9MnDiRwYaIiIgAuEnwAYA33ngDXl5eGDZsGP7880907twZ33zzDRo1agQA8PT0xK5duzBhwgQkJSXB398fw4cPx6uvvurkkhMREZGrcIt5fByJ8/gQERG5n3o1jw8RERGRFBh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDa8nF2A+iw/Px9lZWVG9yuVSoSEhDiwRERERPLG4GMn+fn5WLt2bZ3HpaamMvwQERE5CJu67MRUTY81xxEREZHtGHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHzsRKlUSnocERER2Y4TGNpJSEgIUlNTOXMzERGRC2HwsSOGGiIiItfCpi4HuXIFOHiw6l8iIiJyDgYfB9iwAYiJAbp3r/p3wwZnl4iIiEieGHzs7MoVYOxYQKOpeq7RAOPGseaHiIjIGRh87Oz8+b9Cj1ZlJXDhgnPKQ0REJGcMPnbWsiXgUeMue3oCLVo4pzxERERyxuBjZ9HRwDvvVIUdoOrft9+u2k5ERESOxeHsDjB6NJCcXNW81aIFQw8REZGzMPg4SHQ0Aw8REZGzsamLiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDa3XVIIQAABQVFTm5JERERGQu7fe29nvcGAafGoqLiwEATZs2dXJJiIiIyFLFxcVQqVRG9ytEXdFIZjQaDa5du4aAgAAoFAqzXlNUVISmTZvi8uXLCAwMtHMJXRfvQxXeB94DLd6HKrwPvAda9rwPQggUFxcjKioKHh7Ge/KwxqcGDw8PREdHW/XawMBAWX+gtXgfqvA+8B5o8T5U4X3gPdCy130wVdOjxc7NREREJBsMPkRERCQbDD4S8PHxwdy5c+Hj4+PsojgV70MV3gfeAy3ehyq8D7wHWq5wH9i5mYiIiGSDNT5EREQkGww+REREJBsMPkRERCQbDD5EREQkGww+Rqxbtw7t27fXTbKUlJSEPXv26PbfvXsXEydOREhICBo2bIiBAwfi+vXreue4dOkS+vTpAz8/PzRu3BjTpk1DRUWFoy9FMkuWLIFCoUBaWppum1zuw7x586BQKPQerVu31u2Xy324evUqhg4dipCQEPj6+qJdu3b46aefdPuFEJgzZw4iIyPh6+uLHj164Pz583rnKCgowJAhQxAYGIigoCCMHj0at2/fdvSlWC02NrbWZ0GhUGDixIkA5PNZqKysxCuvvIK4uDj4+voiPj4eCxYs0FsnSQ6fh+LiYqSlpSEmJga+vr7o0qULjh07pttfH+/Bd999h379+iEqKgoKhQKff/653n6prvn06dN49NFH0aBBAzRt2hSvv/66NBcgyKAvvvhC7N69W/z2228iMzNTvPzyy8Lb21ucPXtWCCHE+PHjRdOmTcWBAwfETz/9JB566CHRpUsX3esrKirEfffdJ3r06CFOnjwpvvzySxEaGipmzZrlrEuyyY8//ihiY2NF+/btxeTJk3Xb5XIf5s6dK9q2bStycnJ0j5s3b+r2y+E+FBQUiJiYGDFixAhx9OhR8fvvv4uvv/5aXLhwQXfMkiVLhEqlEp9//rn4+eefRf/+/UVcXJz4888/dcf06tVLdOjQQfznP/8R33//vWjRooUYPHiwMy7JKjdu3ND7HOzbt08AEAcPHhRCyOOzIIQQCxcuFCEhIWLXrl0iOztbfPLJJ6Jhw4Zi1apVumPk8HkYNGiQaNOmjTh06JA4f/68mDt3rggMDBRXrlwRQtTPe/Dll1+K2bNni/T0dAFAfPbZZ3r7pbhmtVotwsPDxZAhQ8TZs2fFRx99JHx9fcXbb79tc/kZfCzQqFEj8f/+3/8ThYWFwtvbW3zyySe6fefOnRMAREZGhhCi6oPh4eEhcnNzdcesW7dOBAYGitLSUoeX3RbFxcWiZcuWYt++faJbt2664COn+zB37lzRoUMHg/vkch9mzJghHnnkEaP7NRqNiIiIEG+88YZuW2FhofDx8REfffSREEKIX375RQAQx44d0x2zZ88eoVAoxNWrV+1XeDuaPHmyiI+PFxqNRjafBSGE6NOnjxg1apTetgEDBoghQ4YIIeTxeSgpKRGenp5i165detsTEhLE7NmzZXEPagYfqa75rbfeEo0aNdL7b2LGjBmiVatWNpeZTV1mqKysxLZt23Dnzh0kJSXh+PHjKC8vR48ePXTHtG7dGs2aNUNGRgYAICMjA+3atUN4eLjumOTkZBQVFeG///2vw6/BFhMnTkSfPn30rheA7O7D+fPnERUVhebNm2PIkCG4dOkSAPnchy+++AKdOnXCU089hcaNG6Njx4549913dfuzs7ORm5urdx9UKhU6d+6sdx+CgoLQqVMn3TE9evSAh4cHjh496riLkUhZWRk++OADjBo1CgqFQjafBQDo0qULDhw4gN9++w0A8PPPP+Pw4cPo3bs3AHl8HioqKlBZWYkGDRrobff19cXhw4dlcQ9qkuqaMzIy0LVrVyiVSt0xycnJyMzMxK1bt2wqIxcpNeHMmTNISkrC3bt30bBhQ3z22Wdo06YNTp06BaVSiaCgIL3jw8PDkZubCwDIzc3V+x+bdr92n7vYtm0bTpw4oddmrZWbmyub+9C5c2ds2rQJrVq1Qk5ODubPn49HH30UZ8+elc19+P3337Fu3TpMmTIFL7/8Mo4dO4YXXngBSqUSw4cP112Hoeusfh8aN26st9/LywvBwcFucx+q+/zzz1FYWIgRI0YAkNd/EzNnzkRRURFat24NT09PVFZWYuHChRgyZAgAyOLzEBAQgKSkJCxYsAD33nsvwsPD8dFHHyEjIwMtWrSQxT2oSaprzs3NRVxcXK1zaPc1atTI6jIy+JjQqlUrnDp1Cmq1Gp9++imGDx+OQ4cOObtYDnP58mVMnjwZ+/btq/UXjdxo/4oFgPbt26Nz586IiYnBxx9/DF9fXyeWzHE0Gg06deqERYsWAQA6duyIs2fPYv369Rg+fLiTS+ccGzZsQO/evREVFeXsojjcxx9/jA8//BBbt25F27ZtcerUKaSlpSEqKkpWn4ctW7Zg1KhRaNKkCTw9PZGQkIDBgwfj+PHjzi4aGcGmLhOUSiVatGiBxMRELF68GB06dMCqVasQERGBsrIyFBYW6h1//fp1REREAAAiIiJqjeTQPtce4+qOHz+OGzduICEhAV5eXvDy8sKhQ4ewevVqeHl5ITw8XBb3wZCgoCDcc889uHDhgmw+D5GRkWjTpo3etnvvvVfX5Ke9DkPXWf0+3LhxQ29/RUUFCgoK3OY+aP3xxx/Yv38/xowZo9sml88CAEybNg0zZ87E008/jXbt2mHYsGF48cUXsXjxYgDy+TzEx8fj0KFDuH37Ni5fvowff/wR5eXlaN68uWzuQXVSXbM9/zth8LGARqNBaWkpEhMT4e3tjQMHDuj2ZWZm4tKlS0hKSgIAJCUl4cyZM3q/3H379iEwMLDWl4ereuKJJ3DmzBmcOnVK9+jUqROGDBmi+1kO98GQ27dvIysrC5GRkbL5PDz88MPIzMzU2/bbb78hJiYGABAXF4eIiAi9+1BUVISjR4/q3YfCwkK9v4a/+eYbaDQadO7c2QFXIZ2NGzeicePG6NOnj26bXD4LAFBSUgIPD/2vEE9PT2g0GgDy+zz4+/sjMjISt27dwtdff42///3vsrsHgHS/96SkJHz33XcoLy/XHbNv3z60atXKpmYuABzObszMmTPFoUOHRHZ2tjh9+rSYOXOmUCgUYu/evUKIqiGrzZo1E99884346aefRFJSkkhKStK9XjtktWfPnuLUqVPiq6++EmFhYW43ZLWm6qO6hJDPfZg6dar49ttvRXZ2tvjhhx9Ejx49RGhoqLhx44YQQh734ccffxReXl5i4cKF4vz58+LDDz8Ufn5+4oMPPtAds2TJEhEUFCT+/e9/i9OnT4u///3vBoexduzYURw9elQcPnxYtGzZ0qWH7hpSWVkpmjVrJmbMmFFrnxw+C0IIMXz4cNGkSRPdcPb09HQRGhoqpk+frjtGDp+Hr776SuzZs0f8/vvvYu/evaJDhw6ic+fOoqysTAhRP+9BcXGxOHnypDh58qQAIJYvXy5Onjwp/vjjDyGENNdcWFgowsPDxbBhw8TZs2fFtm3bhJ+fH4ez29OoUaNETEyMUCqVIiwsTDzxxBO60COEEH/++ad4/vnnRaNGjYSfn5/4v//7P5GTk6N3josXL4revXsLX19fERoaKqZOnSrKy8sdfSmSqhl85HIfUlJSRGRkpFAqlaJJkyYiJSVFb/4audyHnTt3ivvuu0/4+PiI1q1bi3feeUdvv0ajEa+88ooIDw8XPj4+4oknnhCZmZl6x+Tn54vBgweLhg0bisDAQDFy5EhRXFzsyMuw2ddffy0A1Lo2IeTzWSgqKhKTJ08WzZo1Ew0aNBDNmzcXs2fP1ht+LIfPw/bt20Xz5s2FUqkUERERYuLEiaKwsFC3vz7eg4MHDwoAtR7Dhw8XQkh3zT///LN45JFHhI+Pj2jSpIlYsmSJJOVXCFFtmk0iIiKieox9fIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iMhmjz32GNLS0pxdDLubN28e7r//fmcXg4hswOBDRLJXVlbm0PcTQqCiosKh70lEVRh8iMgmI0aMwKFDh7Bq1SooFAooFApcvHgRZ8+eRe/evdGwYUOEh4dj2LBhyMvL073usccew6RJk5CWloZGjRohPDwc7777Lu7cuYORI0ciICAALVq0wJ49e3Sv+fbbb6FQKLB79260b98eDRo0wEMPPYSzZ8/qlenw4cN49NFH4evri6ZNm+KFF17AnTt3dPtjY2OxYMECPPvsswgMDMTYsWMBADNmzMA999wDPz8/NG/eHK+88opudehNmzZh/vz5+Pnnn3XXuWnTJly8eBEKhQKnTp3Snb+wsBAKhQLffvutXrn37NmDxMRE+Pj44PDhw9BoNFi8eDHi4uLg6+uLDh064NNPP5X6V0RE1TD4EJFNVq1ahaSkJDz33HPIyclBTk4OAgIC0L17d3Ts2BE//fQTvvrqK1y/fh2DBg3Se+3mzZsRGhqKH3/8EZMmTcKECRPw1FNPoUuXLjhx4gR69uyJYcOGoaSkRO9106ZNw7Jly3Ds2DGEhYWhX79+uoCSlZWFXr16YeDAgTh9+jS2b9+Ow4cPIzU1Ve8cb775Jjp06ICTJ0/ilVdeAQAEBARg06ZN+OWXX7Bq1Sq8++67WLFiBQAgJSUFU6dORdu2bXXXmZKSYtG9mjlzJpYsWYJz586hffv2WLx4Md5//32sX78e//3vf/Hiiy9i6NChOHTokEXnJSILSLLUKRHJWrdu3cTkyZN1zxcsWCB69uypd8zly5f1VjTv1q2beOSRR3T7KyoqhL+/vxg2bJhuW05OjgAgMjIyhBB/rQq9bds23TH5+fnC19dXbN++XQghxOjRo8XYsWP13vv7778XHh4e4s8//xRCCBETEyOefPLJOq/rjTfeEImJibrnc+fOFR06dNA7Jjs7WwAQJ0+e1G27deuWACAOHjyoV+7PP/9cd8zdu3eFn5+fOHLkiN75Ro8eLQYPHlxn2YjIOl7ODF1EVD/9/PPPOHjwIBo2bFhrX1ZWFu655x4AQPv27XXbPT09ERISgnbt2um2hYeHAwBu3Lihd46kpCTdz8HBwWjVqhXOnTune+/Tp0/jww8/1B0jhIBGo0F2djbuvfdeAECnTp1qlW379u1YvXo1srKycPv2bVRUVCAwMNDi6zem+nteuHABJSUl+Nvf/qZ3TFlZGTp27CjZexKRPgYfIpLc7du30a9fPyxdurTWvsjISN3P3t7eevsUCoXeNoVCAQDQaDQWvfe4cePwwgsv1NrXrFkz3c/+/v56+zIyMjBkyBDMnz8fycnJUKlU2LZtG5YtW2by/Tw8qnoMCCF027TNbjVVf8/bt28DAHbv3o0mTZroHefj42PyPYnIegw+RGQzpVKJyspK3fOEhATs2LEDsbGx8PKS/n8z//nPf3Qh5tatW/jtt990NTkJCQn45Zdf0KJFC4vOeeTIEcTExGD27Nm6bX/88YfeMTWvEwDCwsIAADk5ObqamuodnY1p06YNfHx8cOnSJXTr1s2ishKR9di5mYhsFhsbi6NHj+LixYvIy8vDxIkTUVBQgMGDB+PYsWPIysrC119/jZEjR9YKDtZ49dVXceDAAZw9exYjRoxAaGgonnzySQBVI7OOHDmC1NRUnDp1CufPn8e///3vWp2ba2rZsiUuXbqEbdu2ISsrC6tXr8Znn31W6zqzs7Nx6tQp5OXlobS0FL6+vnjooYd0nZYPHTqEf/7zn3VeQ0BAAF566SW8+OKL2Lx5M7KysnDixAmsWbMGmzdvtvreEJFpDD5EZLOXXnoJnp6eaNOmDcLCwlBWVoYffvgBlZWV6NmzJ9q1a4e0tDQEBQXpmoZssWTJEkyePBmJiYnIzc3Fzp07oVQqAVT1Gzp06BB+++03PProo+jYsSPmzJmDqKgok+fs378/XnzxRaSmpuL+++/HkSNHdKO9tAYOHIhevXrh8ccfR1hYGD766CMAwHvvvYeKigokJiYiLS0Nr732mlnXsWDBArzyyitYvHgx7r33XvTq1Qu7d+9GXFycFXeFiMyhENUbpomIXNi3336Lxx9/HLdu3UJQUJCzi0NEbog1PkRERCQbDD5EREQkG2zqIiIiItlgjQ8RERHJBoMPERERyQaDDxEREckGgw8RERHJBoMPERERyQaDDxEREckGgw8RERHJBoMPERERyQaDDxEREcnG/wdmed262Vc8gQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.3 Visualizing surrogates\n", + "Now that the surrogate models have been trained, the models can be visualized through scatter, parity and residual plots to confirm their validity in the chosen domain. The training data will be visualized first to confirm the surrogates are fit the data, and then the validation data will be visualized to confirm the surrogates accurately predict new output values." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAHHCAYAAAAGU9SoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdhUlEQVR4nO3deXxM1/8/8NdkX0iCrEiIPZYvESXjg1abCkVo+RRVpEIbtdQWEkVEW9LYd/1UK6r22mINjbWSKmnsEhohfEiiJQkh+/n94Zf7MWZCEpPM9no+HvNgzj1z5z1zK3n1nHvPlQkhBIiIiIhI6xlpugAiIiIiKhsGNyIiIiIdweBGREREpCMY3IiIiIh0BIMbERERkY5gcCMiIiLSEQxuRERERDqCwY2IiIhIRzC4EREREekIBjciotckk8kwa9YsTZch8ff3R/369TVdBhFVAgY3ItJLkZGRkMlk0sPCwgJNmjTBmDFjkJ6eXqnvHRsbi1mzZiEzM1Ot+33rrbcUPlPNmjXxxhtv4Mcff0RxcbFa3mPOnDnYtWuXWvZFROpnoukCiIgq0+zZs+Hu7o7c3Fz89ttvWLVqFfbv349Lly7ByspKLe/x9OlTmJj878dpbGwswsLC4O/vDzs7O7W8R4m6deti7ty5AID79+/jp59+QkBAAK5du4bw8PDX3v+cOXPQv39/9O3b97X3RUTqx+BGRHqtR48eaNeuHQBgxIgRqFWrFhYuXIjdu3dj0KBBFd5vcXEx8vPzYWFhAQsLC3WV+0q2trb4+OOPpeefffYZmjZtiuXLl+Orr76CqalpldVCRFWPU6VEZFDefvttAEBKSgoAYP78+ejYsSNq1aoFS0tLeHl54ZdfflF6nUwmw5gxY7Bhwwa0aNEC5ubmOHjwoLSt5By3WbNmISgoCADg7u4uTWvevHkTb775Jlq3bq2yrqZNm8LX17fcn8fKygre3t7IycnB/fv3S+2Xk5ODSZMmwdXVFebm5mjatCnmz58PIYTCZ8zJycG6deukuv39/ctdExFVHo64EZFBSU5OBgDUqlULALBkyRL4+flh8ODByM/Px+bNm/Hvf/8be/fuRc+ePRVee+TIEWzduhVjxoyBvb29ygsAPvjgA1y7dg2bNm3CokWLYG9vDwBwcHDAkCFDMHLkSFy6dAktW7aUXnPmzBlcu3YN06dPr9BnunHjBoyNjUudlhVCwM/PD0ePHkVAQADatGmD6OhoBAUF4b///S8WLVoEAFi/fj1GjBiB9u3b49NPPwUANGzYsEI1EVElEUREemjt2rUCgPj111/F/fv3xe3bt8XmzZtFrVq1hKWlpbhz544QQognT54ovC4/P1+0bNlSvP322wrtAISRkZG4fPmy0nsBEKGhodLzefPmCQAiJSVFoV9mZqawsLAQU6dOVWgfN26csLa2Fo8fP37pZ3rzzTdFs2bNxP3798X9+/fF1atXxbhx4wQA0bt3b6nfsGHDRL169aTnu3btEgDE119/rbC//v37C5lMJv766y+pzdraWgwbNuyldRCR5nCqlIj0mo+PDxwcHODq6oqBAweiWrVq2LlzJ+rUqQMAsLS0lPo+fPgQWVlZ6Ny5M/7880+lfb355pto3rx5hWuxtbVFnz59sGnTJmmKsqioCFu2bEHfvn1hbW39yn0kJibCwcEBDg4O8PDwwLJly9CzZ0/8+OOPpb5m//79MDY2xrhx4xTaJ02aBCEEDhw4UOHPRERVi1OlRKTXVqxYgSZNmsDExAROTk5o2rQpjIz+9/+se/fuxddff41z584hLy9PapfJZEr7cnd3f+16hg4dii1btuDkyZPo0qULfv31V6Snp2PIkCFlen39+vXx/fffS0ucNG7cGI6Oji99za1bt1C7dm1Ur15dod3Dw0PaTkS6gcGNiPRa+/btpatKX3Ty5En4+fmhS5cuWLlyJVxcXGBqaoq1a9di48aNSv2fH52rKF9fXzg5OeHnn39Gly5d8PPPP8PZ2Rk+Pj5ler21tXWZ+xKR/uFUKREZrO3bt8PCwgLR0dEYPnw4evTooZZQpGq0roSxsTE++ugj/PLLL3j48CF27dqFQYMGwdjY+LXftzT16tXD3bt38ejRI4X2xMREaXuJl9VORJrH4EZEBsvY2BgymQxFRUVS282bN1/7zgEl56qVdueEIUOG4OHDh/jss8/w+PFjhXXZKsN7772HoqIiLF++XKF90aJFkMlk6NGjh9RmbW2t9js+EJH6cKqUiAxWz549sXDhQnTv3h0fffQRMjIysGLFCjRq1AgXLlyo8H69vLwAAF9++SUGDhwIU1NT9O7dWwp0np6eaNmyJbZt2wYPDw+0bdtWLZ+nNL1790bXrl3x5Zdf4ubNm2jdujUOHTqE3bt3Y/z48QpLfnh5eeHXX3/FwoULUbt2bbi7u6NDhw6VWh8RlR1H3IjIYL399tv44YcfkJaWhvHjx2PTpk349ttv8f7777/Wft944w189dVXOH/+PPz9/TFo0CClxXGHDh0KAGW+KOF1GBkZISoqCuPHj8fevXsxfvx4XLlyBfPmzcPChQsV+i5cuBBeXl6YPn06Bg0ahFWrVlV6fURUdjIhnls2m4iIqsSSJUswYcIE3Lx5E25ubpouh4h0BIMbEVEVE0KgdevWqFWrFo4eParpcohIh/AcNyKiKpKTk4OoqCgcPXoUFy9exO7duzVdEhHpGI64ERFVkZs3b8Ld3R12dnb4/PPP8c0332i6JCLSMQxuRERERDqCV5USERER6QgGNyIiIiIdwYsTtFhxcTHu3r2L6tWr8zY0REREOkIIgUePHqF27dowMlLvGBmDmxa7e/cuXF1dNV0GERERVcDt27dRt25dte6TwU2LVa9eHcCzA29jY6PhaoiIiKgssrOz4erqKv0eVycGNy1WMj1qY2PD4EZERKRjKuM0J16cQERERKQjGNyIiIiIdASDGxEREZGO4DluOq6oqAgFBQWaLoOqgKmpKYyNjTVdBhERaRCDm44SQiAtLQ2ZmZmaLoWqkJ2dHZydnbmuHxGRgWJw01Eloc3R0RFWVlb8Ra7nhBB48uQJMjIyAAAuLi4aroiIiDSBwU0HFRUVSaGtVq1ami6HqoilpSUAICMjA46Ojpw2JSIyQDpzcYKfnx/c3NxgYWEBFxcXDBkyBHfv3lXoI4TA/Pnz0aRJE5ibm6NOnTr45ptvFPocO3YMbdu2hbm5ORo1aoTIyEil91qxYgXq168PCwsLdOjQAX/88YfC9tzcXIwePRq1atVCtWrV0K9fP6Snpyv0SU1NRc+ePWFlZQVHR0cEBQWhsLBQLd9FyTltVlZWatkf6Y6SY87zGomIDJPOBLeuXbti69atSEpKwvbt25GcnIz+/fsr9Pniiy+wZs0azJ8/H4mJiYiKikL79u2l7SkpKejZsye6du2Kc+fOYfz48RgxYgSio6OlPlu2bMHEiRMRGhqKP//8E61bt4avr680RQUAEyZMwJ49e7Bt2zYcP34cd+/exQcffCBtLyoqQs+ePZGfn4/Y2FisW7cOkZGRmDlzplq/E06PGh4ecyIiAyd01O7du4VMJhP5+flCCCGuXLkiTExMRGJiYqmvmTJlimjRooVC24ABA4Svr6/0vH379mL06NHS86KiIlG7dm0xd+5cIYQQmZmZwtTUVGzbtk3qc/XqVQFAxMXFCSGE2L9/vzAyMhJpaWlSn1WrVgkbGxuRl5dX5s+YlZUlAIisrCyF9qdPn4orV66Ip0+flnlfpB947ImItF9pv7/VQWdG3J734MEDbNiwAR07doSpqSkAYM+ePWjQoAH27t0Ld3d31K9fHyNGjMCDBw+k18XFxcHHx0dhX76+voiLiwMA5OfnIz4+XqGPkZERfHx8pD7x8fEoKChQ6NOsWTO4ublJfeLi4tCqVSs4OTkpvE92djYuX75c6ufKy8tDdna2woOIiIiohE4Ft6lTp8La2hq1atVCamoqdu/eLW27ceMGbt26hW3btuGnn35CZGQk4uPjFaZT09LSFMIUADg5OSE7OxtPnz7F33//jaKiIpV90tLSpH2YmZnBzs7upX1U7aNkW2nmzp0LW1tb6eHq6lrGb0Z3+Pv7QyaTQSaTwdTUFE5OTnj33Xfx448/ori4uMz7iYyMVDoGRERE+k6jwS04OFj6JV7aIzExUeofFBSEhIQEHDp0CMbGxhg6dCiEEACA4uJi5OXl4aeffkLnzp3x1ltv4YcffsDRo0eRlJSkqY9YLiEhIcjKypIet2/f1nRJlaJ79+64d+8ebt68iQMHDqBr16744osv0KtXL7VdwEFERPQyurqAvUaXA5k0aRL8/f1f2qdBgwbS3+3t7WFvb48mTZrAw8MDrq6u+P333yGXy+Hi4gITExM0adJE6u/h4QHg2RWeTZs2hbOzs9LVn+np6bCxsYGlpSWMjY1hbGysso+zszMAwNnZGfn5+cjMzFQY8Xmxz4tXopbss6SPKubm5jA3N3/p96EPzM3Npe+hTp06aNu2Lby9vfHOO+8gMjISI0aMwMKFC7F27VrcuHEDNWvWRO/evREREYFq1arh2LFj+OSTTwD872T90NBQzJo1C+vXr8eSJUuQlJQEa2trvP3221i8eDEcHR019nmJiEi77NixAxcvXsSjR47o0mUU/Pw0XVHZaXTEzcHBAc2aNXvpw8zMTOVrS6bV8vLyAAD/+te/UFhYiOTkZKnPtWvXAAD16tUDAMjlcsTExCjs5/Dhw5DL5QAAMzMzeHl5KfQpLi5GTEyM1MfLywumpqYKfZKSkpCamir1kcvluHjxosKVqIcPH4aNjQ2aN29egW/q1YQQyM/P18ijZNTzdbz99tto3bo1duzYAeDZuYVLly7F5cuXsW7dOhw5cgRTpkwBAHTs2BGLFy+GjY0N7t27h3v37mHy5MkAni2T8dVXX+H8+fPYtWsXbt68+cr/OSAiIsPw9OlThIWF4eLFiwCA6tUzEB7++r/DqpJOLMB7+vRpnDlzBp06dUKNGjWQnJyMGTNmoGHDhlJY8vHxQdu2bTF8+HAsXrwYxcXFGD16NN59911pFC4wMBDLly/HlClTMHz4cBw5cgRbt27Fvn37pPeaOHEihg0bhnbt2qF9+/ZYvHgxcnJypBEeW1tbBAQEYOLEiahZsyZsbGwwduxYyOVyeHt7AwC6deuG5s2bY8iQIYiIiEBaWhqmT5+O0aNHV9qIWkFBAebOnVsp+36VkJCQUgN2eTRr1gwXLlwAAIwfP15qr1+/Pr7++msEBgZi5cqVMDMzg62tLWQymdII5vDhw6W/N2jQAEuXLsUbb7yBx48fo1q1aq9dIxER6aZLly5h+/btCm2HD09DcLBuLbOkE8HNysoKO3bsQGhoKHJycuDi4oLu3btj+vTpUhAyMjLCnj17MHbsWHTp0gXW1tbo0aMHFixYIO3H3d0d+/btw4QJE7BkyRLUrVsXa9asga+vr9RnwIABuH//PmbOnIm0tDS0adMGBw8eVLjYYNGiRTAyMkK/fv2Ql5cHX19frFy5UtpubGyMvXv3YtSoUZDL5bC2tsawYcMwe/bsKvi2dJcQQpr6/PXXXzF37lwkJiYiOzsbhYWFyM3NxZMnT1668HB8fDxmzZqF8+fP4+HDh9LIbGpqaqWNdhIRkfYSQuA///mPwsWBHTt2xLvvvovQUA0WVkEyoY55LqoU2dnZsLW1RVZWFmxsbKT23NxcpKSkwN3dHRYWFgCe/YepqZMsTU1Ny7wwrL+/PzIzM7Fr1y6lbf/3f/8HNzc3LF++HM2aNcOoUaMwYMAA1KxZE7/99hsCAgLw8OFD2NnZITIyEuPHj0dmZqb0+pycHNSrVw++vr4IDAyEg4MDUlNT4evri4SEBLRp00Y9H1iDVB17IiJSLT09HatXr1ZoCwwMVFr5Qd1K+/2tDjox4kavJpPJ1DJdqSlHjhzBxYsXMWHCBMTHx6O4uBgLFiyAkdGz0zC3bt2q0N/MzAxFRUUKbYmJifjnn38QHh4uLaVy9uzZqvkARESkVcLCwhSeV69eHePHj5d+r+gqBjeqcnl5eUhLS0NRURHS09Nx8OBBzJ07F7169cLQoUNx6dIlFBQUYNmyZejduzdOnTql9H9M9evXx+PHjxETE4PWrVvDysoKbm5uMDMzw7JlyxAYGIhLly7hq6++0tCnJCIiTcjJycH8+fMV2o4f98GRI//SUEXqpduxk3TSwYMH4eLigvr166N79+44evQoli5dit27d8PY2BitW7fGwoUL8e2336Jly5bYsGGD0oUXHTt2RGBgIAYMGAAHBwdERETAwcEBkZGR2LZtG5o3b47w8HClf7xERKS/wsLClH7u79rVH3K5foQ2gOe4abXynONGhoHHnohItRenRoFna3xqAs9xIyIiIlLhypUr2LZtm1K7pkJbZWNwIyIiIp2kapTtp5+GwMmpgU4u9VEWPMeNiIiIdIoQQmVo8/QMhZNTAwQHa6CoKsIRNyIiItIZkZGRuHXrllJ7dHQoQkOhU/cdrQgGNyIiItIJqkbZWrachAULqun1KNvzGNyIiIhIqz169AgLFy5Uai+5AKFfv6quSHMY3IiIiEhrqRplq1+/PoYNG6aBajSPwY2IiIi0kqrQNnPmzDLfH1sfMbgRERGRVjlz5gz279+v1K6va7OVB5cDIb3k7++Pvn37Ss/feustjB8//rX2qY59EBHRy4WFhSmFtqtXu8PTk6EN4IgbVTF/f3+sW7cOAGBqago3NzcMHToU06ZNg4lJ5f3nuGPHDpiampap77Fjx9C1a1c8fPgQdnZ2FdoHERGVn6qp0ejoUMTGaqAYLcXgRlWue/fuWLt2LfLy8rB//36MHj0apqamCAkJUeiXn58PMzMztbxnzZo1tWIfRESkbOnSpXj48KFS+/z5odiwQQMFaTFOlVKVMzc3h7OzM+rVq4dRo0bBx8cHUVFR0vTmN998g9q1a6Np06YAgNu3b+PDDz+EnZ0datasiT59+uDmzZvS/oqKijBx4kTY2dmhVq1amDJlCoQQCu/54jRnXl4epk6dCldXV5ibm6NRo0b44YcfcPPmTXTt2hUAUKNGDchkMvj7+6vcx8OHDzF06FDUqFEDVlZW6NGjB65fvy5tj4yMhJ2dHaKjo+Hh4YFq1aqhe/fuuHfvntTn2LFjaN++PaytrWFnZ4d//etfKheWJCLSV2FhYUqhrVmzUYiOfhba9H1B3fJicCONs7S0RH5+PgAgJiYGSUlJOHz4MPbu3YuCggL4+vqievXqOHnyJE6dOiUFoJLXLFiwAJGRkfjxxx/x22+/4cGDB9i5c+dL33Po0KHYtGkTli5diqtXr+K7775DtWrV4Orqiu3btwMAkpKScO/ePSxZskTlPvz9/XH27FlERUUhLi4OQgi89957KCgokPo8efIE8+fPx/r163HixAmkpqZi8uTJAIDCwkL07dsXb775Ji5cuIC4uDh8+umnBn21FBEZjsePH6ucGg0NDcWAAY6IjWVoU4VTpaQxQgjExMQgOjoaY8eOxf3792FtbY01a9ZIU6Q///wziouLsWbNGinQrF27FnZ2djh27Bi6deuGxYsXIyQkBB988AEAYPXq1YiOji71fa9du4atW7fi8OHD8PHxAQA0aNBA2l4yJero6Khwjtvzrl+/jqioKJw6dQodO3YEAGzYsAGurq7YtWsX/v3vfwMACgoKsHr1ajRs2BAAMGbMGMyePRsAkJ2djaysLPTq1Uva7uHhUf4vkohIx6gKbACvGi0LjrgRoqKAjh2f/VkV9u7di2rVqsHCwgI9evTAgAEDMGvWLABAq1atFM5rO3/+PP766y9Ur14d1apVQ7Vq1VCzZk3k5uYiOTkZWVlZuHfvHjp06CC9xsTEBO3atSv1/c+dOwdjY2O8+eabFf4MV69ehYmJicL71qpVC02bNsXVq1elNisrKymUAYCLiwsyMjIAPAuI/v7+8PX1Re/evbFkyRKFaVQiIn2kKrQtXDidV42WEUfcCOHhQFzcsz+rYli6a9euWLVqFczMzFC7dm2Fq0mtra0V+j5+/BheXl7YoOLsVAcHhwq9v6WlZYVeVxEvXoUqk8kUzr9bu3Ytxo0bh4MHD2LLli2YPn06Dh8+DG9v7yqrkYioKpw7dw67d+9Wao+ODsX69ZwWLSuOuBGCgwG5HFV2g15ra2s0atQIbm5ur1wCpG3btrh+/TocHR3RqFEjhYetrS1sbW3h4uKC06dPS68pLCxEfHx8qfts1aoViouLcfz4cZXbS0b8ioqKSt2Hh4cHCgsLFd73n3/+QVJSEpo3b/7Sz/QiT09PhISEIDY2Fi1btsTGjRvL9XoiIm0XFhamFNpatmyJ0NBQnstWTgxuBD8/aO0/nMGDB8Pe3h59+vTByZMnkZKSgmPHjmHcuHG4c+cOAOCLL75AeHg4du3ahcTERHz++efIzMwsdZ8l97gbPnw4du3aJe1z69atAIB69epBJpNh7969uH//Ph4/fqy0j8aNG6NPnz4YOXIkfvvtN5w/fx4ff/wx6tSpgz59+pTps6WkpCAkJARxcXG4desWDh06hOvXr/M8NyLSK6VdgNDPkO4Mr0YMbqTVrKyscOLECbi5ueGDDz6Ah4cHAgICkJubCxsbGwDApEmTMGTIEAwbNgxyuRzVq1fH+++//9L9rlq1Cv3798fnn3+OZs2aYeTIkcjJyQEA1KlTB2FhYQgODoaTkxPGjBmjch9r166Fl5cXevXqBblcDiEE9u/fX+ZFeq2srJCYmIh+/fqhSZMm+PTTTzF69Gh89tln5fiGiIi0U0RERKmhjSpOJl5c8Iq0RnZ2NmxtbZGVlSWFFADIzc1FSkoK3N3dYWFhocEKqarx2BORLlAV2P74Yxj27atf9cVoQGm/v9WBFycQERGRWjx9+hQRERFK7dHRoVV2HrW+Y3AjIiKi1/aytdk4O6o+PMeNiIiIXouq0Pbrr8Fcm60ScMSNiIiIKuTixYvYsWOHUrunJ0fZKguDmw7jdSWGh8eciLSFqlE2KysrBAUFaaAaw8HgpoNKlpt48uRJld4FgDTvyZMnAJTvyEBEVJW4zIfmMLjpIGNjY9jZ2Un3vLSyspJuwE76SQiBJ0+eICMjA3Z2djA2NtZ0SURkgL799lvk5uYqtTO0VR0GNx3l7OwMAFJ4I8NgZ2cnHXsioqqkapTt8uVe2LrVSwPVGC4GNx0lk8ng4uICR0dHFBQUaLocqgKmpqYcaSOiKldQUIA5c+YotXNtNs1gcNNxxsbG/GVORESVgmuzaR+u40ZERERKVIW2+fMnIjqaiU2TOOJGREREksTERGzZskWpfdOmUNStC06PahiDGxEREQHg1KguYHAjIiIirs2mIxjciIiIDNjy5cvxzz//KLUztGknBjciIiIDpWqULTW1HX74oacGqqGy4FWlREREBqa4uFhlaIuODkWfPgxt2owjbkRERAaEFyDoNo64ERERGQhVoW3lykCuzaZDOOJGRESk527cuIH169crtXt6hqJhQ67NpksY3IiIiPTYy6ZGAcDPryqrodfFqVIiIiI9pSq0tWkzE9HRoYiK0kBB9No44kZERKRnVq9ejfT0dKV2T89QhIcDcXFAeDhH23QRgxsREZEeUTXK5uTkhMDAQOl5eDjPa9NVDG5ERER6QAiB2bNnK7W/eAcEPz+OtOkyBjciIiId96oLEEh/8OIEIiIiHaYqtJ05MxSengxt+ogjbkRERDooLS0N3333nVI7R9n0G4MbERGRjuHUqOHiVCkREZEOURXaDh2azqlRA8ERNyIiIh2wceNGXL9+XamdN4c3LAxuREREWo5To1SCwY2IiEiLqQptDGyGi8GNiIhIC3GUjVRhcCMiItIyqkLbpUu9sW1bWw1UQ9qEwY2IiEhLZGZmYsmSJUrt0dGhvLcoAWBwIyIi0govmxrl7CiVYHAjIiLSMFWhLTg4GObm5hqohrQZgxsREZGGHDhwAH/88YdSOy9AoNIwuBEREWkArxqlitCZW175+fnBzc0NFhYWcHFxwZAhQ3D37l1p+6xZsyCTyZQe1tbWCvvZtm0bmjVrBgsLC7Rq1Qr79+9X2C6EwMyZM+Hi4gJLS0v4+PgorVT94MEDDB48GDY2NrCzs0NAQAAeP36s0OfChQvo3LkzLCws4OrqioiICDV/I0REpKtKW5uNoY1eRWeCW9euXbF161YkJSVh+/btSE5ORv/+/aXtkydPxr179xQezZs3x7///W+pT2xsLAYNGoSAgAAkJCSgb9++6Nu3Ly5duiT1iYiIwNKlS7F69WqcPn0a1tbW8PX1RW5urtRn8ODBuHz5Mg4fPoy9e/fixIkT+PTTT6Xt2dnZ6NatG+rVq4f4+HjMmzcPs2bNwn/+859K/paIiEibhYWFcUFdei0yIYTQdBEVERUVhb59+yIvLw+mpqZK28+fP482bdrgxIkT6Ny5MwBgwIAByMnJwd69e6V+3t7eaNOmDVavXg0hBGrXro1JkyZh8uTJAICsrCw4OTkhMjISAwcOxNWrV9G8eXOcOXMG7dq1AwAcPHgQ7733Hu7cuYPatWtj1apV+PLLL5GWlgYzMzMAz04y3bVrFxITE8v8GbOzs2Fra4usrCzY2NhU+LsiIiLNUxXYunTpgq5du2qgGqpMlfn7W2dG3J734MEDbNiwAR07dlQZ2gBgzZo1aNKkiRTaACAuLg4+Pj4K/Xx9fREXFwcASElJQVpamkIfW1tbdOjQQeoTFxcHOzs7KbQBgI+PD4yMjHD69GmpT5cuXaTQVvI+SUlJePjwYamfKy8vD9nZ2QoPIiLSbU+ePFEZ2qKjQxnaqNx0KrhNnToV1tbWqFWrFlJTU7F7926V/XJzc7FhwwYEBAQotKelpcHJyUmhzcnJCWlpadL2kraX9XF0dFTYbmJigpo1ayr0UbWP599Dlblz58LW1lZ6uLq6ltqXiIi0X1hYGObNm6fUzgV1qaI0GtyCg4NVXlDw/OP5qcWgoCAkJCTg0KFDMDY2xtChQ6Fqpnfnzp149OgRhg0bVpUf57WFhIQgKytLety+fVvTJRERUQWpGmVr2XIiQkNDERsL+PlpoCjSeRpdDmTSpEnw9/d/aZ8GDRpIf7e3t4e9vT2aNGkCDw8PuLq64vfff4dcLld4zZo1a9CrVy+lUS9nZ2ekp6crtKWnp8PZ2VnaXtLm4uKi0KdNmzZSn4yMDIV9FBYW4sGDBwr7UfU+z7+HKubm5lxskYhIx504cQJHjx5Vap81KxRyOdCvnwaKIr2h0eDm4OAABweHCr22uLgYwLPzwp6XkpKCo0ePIioqSuk1crkcMTExGD9+vNR2+PBhKfi5u7vD2dkZMTExUlDLzs7G6dOnMWrUKGkfmZmZiI+Ph5eXFwDgyJEjKC4uRocOHaQ+X375JQoKCqRz8A4fPoymTZuiRo0aFfq8RESk/Upbmy0//1lo4/QovS6dWID39OnTOHPmDDp16oQaNWogOTkZM2bMQMOGDZVG23788Ue4uLigR48eSvv54osv8Oabb2LBggXo2bMnNm/ejLNnz0rLdMhkMowfPx5ff/01GjduDHd3d8yYMQO1a9dG3759AQAeHh7o3r07Ro4cidWrV6OgoABjxozBwIEDUbt2bQDARx99hLCwMAQEBGDq1Km4dOkSlixZgkWLFlXuF0VERBrDZT6oKuhEcLOyssKOHTsQGhqKnJwcuLi4oHv37pg+fbrC1GJxcTEiIyPh7+8PY2Njpf107NgRGzduxPTp0zFt2jQ0btwYu3btQsuWLaU+U6ZMQU5ODj799FNkZmaiU6dOOHjwICwsLKQ+GzZswJgxY/DOO+/AyMgI/fr1w9KlS6Xttra2OHToEEaPHg0vLy/Y29tj5syZCmu9ERGRfuAdEKgq6ew6boaA67gREWk3VaHtxcXfyfBU5u9vnRhxIyIi0iaFhYX45ptvlNo5ykaVjcGNiIioHDg1SprE4EZERFRGqkLb559/XuEVEojKi8GNiIjoFS5fvoxffvlFqZ2jbFTVGNyIiIheglOjpE0Y3IiIiFT48kvAzIxrs5F2YXAjIiJ6QVhYGMzMlNsZ2kjTGNyIiIieo2pq1NHRUbr1IZEmMbgREREBEEJg9uzZSu0cZSNtwuBGREQGjxcgkK5gcCMiIoOmKrSdOTMEe/c20EA1RC/H4EZERAbpxo0bWL9+vVJ7dHQogoM1UBBRGTC4ERGRwXnZ1ChnR0mbGWm6ACIioqqkKrRFR8+ApycTG2k/jrgREZFBmDNnIQoKHim1c5SNdAmDGxER6T1eNUr6gsGNiIj0mqrQ5ukZCj8/DRRD9JoY3IiISC9xlI30EYMbERHpHVWhrXfv3mjbtq0GqiFSHwY3IiLSG+np6Vi9erVSO0fZSF8wuBERkV7g1CgZAgY3IiLSeapC27Rp02BqaqqBaogqD4MbERHprJ9//hnJyclK7RxlI33F4EZERDqJU6NkiHjLKyIi0jmqb1sVyttWkd7jiBsREekM3hyeDB1H3IiISCeoCm3JyZ04ykYGhSNuRESk1bKzs7Fo0SKldp7LRoaIwY2IiLQWL0AgUsTgRkREWklVaJs8eTKsra01UA2RdmBwIyIirbJnzx78+eefSu2enqFgZiNDx+BGRERag1OjRC/H4EZERFpBVWjz9AyFn58GiiHSUgxuRESkURxlIyo7ruNGREQaoyq0ZWQ04dpsRKXgiBsREVW5vLw8hIeHK7VzapTo5RjciIioSnFqlKjiGNyIiKjKqAptHh6j8eGH9hqohkj3MLgREVGli42NxeHDh5XaZ80KhVwOfPihBooi0kEMbkREVKlKmxr19HwW2oKDq7ggIh3G4EZERJXmVWuz8UIEovJhcCMiIrXjBQhElaPc67gZGxsjIyNDqf2ff/6BsbGxWooiIiLdpSq05eVZcW02IjUo94ibEEJle15eHszMzF67ICIi0k1FRUX4+uuvldo5ykakPmUObkuXLgUAyGQyrFmzBtWqVZO2FRUV4cSJE2jWrJn6KyQiIq3HqVGiqlHm4LZo0SIAz0bcVq9erTAtamZmhvr162P16tXqr5CIiLSaqtA2ZMgQNGjQQAPVEOm3Mge3lJQUAEDXrl2xY8cO1KhRo9KKIiIi7Xfp0iVs375dqZ2jbESVp9znuB09erQy6iAiIh3CqVEizSh3cBs+fPhLt//4448VLoaIiLSfqtA2c+ZMyGQyDVRDZFjKHdwePnyo8LygoACXLl1CZmYm3n77bbUVRkRE2uVld0BgZiOqGuUObjt37lRqKy4uxqhRo9CwYUO1FEVERNqFU6NE2kEmSluYrZySkpLw1ltv4d69e+rYHQHIzs6Gra0tsrKyYGNjo+lyiMgACSEwe/ZspXYGNqLSVebvb7Xd8io5ORmFhYXq2h0REWkYR9mItE+5g9vEiRMVngshcO/ePezbtw/Dhg1TW2FERKQ5qkJbr1694OXlpYFqiKhEuYNbQkKCwnMjIyM4ODhgwYIFr7zilIiItNuNGzewfv16pXaOshFpB67jRkREADg1SqQLKnyOW0ZGBpKSkgAATZs2haOjo9qKIiKiqqUqtB0+/CWmTFHbqdBEpAbl/heZnZ2N0aNHY9OmTSguLgYAGBsbY8CAAVixYgVsbW3VXiQREVWOb775RuWFZaGhoeBAG5H2MSrvC0aOHInTp09j3759yMzMRGZmJvbu3YuzZ8/is88+q4waiYioEoSFhZUa2ohIO5V7HTdra2tER0ejU6dOCu0nT55E9+7dkZOTo9YCDRnXcSOiyqJqapSBjUg9tGodt1q1aqmcDrW1tUWNGjXUUhQREVUOXoBApNvKPVU6ffp0TJw4EWlpaVJbWloagoKCMGPGDLUWR0RE6qMqtDk4dGBoI9Ih5Z4q9fT0xF9//YW8vDy4ubkBAFJTU2Fubo7GjRsr9P3zzz/VV6kB4lQpEanD33//jRUrVii1M7ARVQ6tmirt06cPZDKZWosgIqLKwalRIv2itpvMk/pxxI2IXoeq0HbkSBCOH7fSQDVEhqMyf3+X+xy3Bg0a4J9//lFqz8zMRIMGDdRSlCp+fn5wc3ODhYUFXFxcMGTIENy9e1ehT3R0NLy9vVG9enU4ODigX79+uHnzpkKfY8eOoW3btjA3N0ejRo0QGRmp9F4rVqxA/fr1YWFhgQ4dOuCPP/5Q2J6bm4vRo0ejVq1aqFatGvr164f09HSFPqmpqejZsyesrKzg6OiIoKAglZfdExGp28aNG1WGtujoUEyaxNBGpMvKHdxu3ryJoqIipfa8vDzcuXNHLUWp0rVrV2zduhVJSUnYvn07kpOT0b9/f2l7SkoK+vTpg7fffhvnzp1DdHQ0/v77b3zwwQcKfXr27ImuXbvi3LlzGD9+PEaMGIHo6Gipz5YtWzBx4kSEhobizz//ROvWreHr64uMjAypz4QJE7Bnzx5s27YNx48fx927dxXep6ioCD179kR+fj5iY2Oxbt06REZGYubMmZX2/RARAc9G2a5fv67UHhoaithYwM9PA0URkdqUeao0KioKANC3b1+sW7dOYUmQoqIixMTE4PDhw9JtsCpbVFQU+vbti7y8PJiamuKXX37BoEGDkJeXByOjZ3l0z5496NOnj9Rn6tSp2LdvHy5duiTtZ+DAgcjMzMTBgwcBAB06dMAbb7yB5cuXAwCKi4vh6uqKsWPHIjg4GFlZWXBwcMDGjRul4JiYmAgPDw/ExcXB29sbBw4cQK9evXD37l04OTkBAFavXo2pU6fi/v37MDMzK9Nn5FQpEZUH12Yj0g5acXFC3759AQAymQzDhg1T2GZqaor69etjwYIFai2uNA8ePMCGDRvQsWNHmJqaAgC8vLxgZGSEtWvXwt/fH48fP8b69evh4+Mj9YmLi4OPj4/Cvnx9fTF+/HgAQH5+PuLj4xESEiJtNzIygo+PD+Li4gAA8fHxKCgoUNhPs2bN4ObmJgW3uLg4tGrVSgptJe8zatQoXL58GZ6enio/V15eHvLy8qTn2dnZr/EtEZGh4AUIRIajzFOlxcXFKC4uhpubGzIyMqTnxcXFyMvLQ1JSEnr16lWZtWLq1KmwtrZGrVq1kJqait27d0vb3N3dcejQIUybNg3m5uaws7PDnTt3sHXrVqlPWlqaQpgCACcnJ2RnZ+Pp06f4+++/UVRUpLJPybp1aWlpMDMzg52d3Uv7qNpHybbSzJ07F7a2ttLD1dW1jN8MERkqVaGtRYsWDG1Eeqrc57ilpKTA3t5eLW8eHBwMmUz20kdiYqLUPygoCAkJCTh06BCMjY0xdOhQlMz0pqWlYeTIkRg2bBjOnDmD48ePw8zMDP3794euXDgbEhKCrKws6XH79m1Nl0REWionJ6fUqdHnz/8lIv1S7nXcZs+e/dLt5TkBf9KkSfD3939pn+evVLW3t4e9vT2aNGkCDw8PuLq64vfff4dcLseKFStga2uLiIgIqf/PP/8MV1dXnD59Gt7e3nB2dla6+jM9PR02NjawtLSEsbExjI2NVfZxdnYGADg7OyM/Px+ZmZkKo24v9nnxStSSfZb0UcXc3Bzm5uYv/T6IiDg1SmS4yh3cdu7cqfC8oKAAKSkpMDExQcOGDcsV3BwcHODg4FDeEgA8m7oFIJ0T9uTJE+mihBLGxsYKfeVyOfbv36/Q5/Dhw5DL5QAAMzMzeHl5ISYmRjqnr7i4GDExMRgzZgyAZ+fSmZqaIiYmBv369QMAJCUlITU1VdqPXC7HN998g4yMDDg6OkrvY2Njg+bNm1fo8xIRAapD27hx43ivaCIDUe7glpCQoNSWnZ0Nf39/vP/++2op6kWnT5/GmTNn0KlTJ9SoUQPJycmYMWMGGjZsKIWlnj17YtGiRZg9ezYGDRqER48eYdq0aahXr550MUBgYCCWL1+OKVOmYPjw4Thy5Ai2bt2Kffv2Se81ceJEDBs2DO3atUP79u2xePFi5OTk4JNPPgEA2NraIiAgABMnTkTNmjVhY2ODsWPHQi6Xw9vbGwDQrVs3NG/eHEOGDEFERATS0tIwffp0jB49miNqRFQhhw4dki6Seh5H2YgMi9runHDx4kX07t1bacFbde37iy++wPnz55GTkwMXFxd0794d06dPR506daR+mzdvRkREBK5duwYrKyvI5XJ8++23aNasmdTn2LFjmDBhAq5cuYK6detixowZStO1y5cvx7x585CWloY2bdpg6dKl6NChg7Q9NzcXkyZNwqZNm5CXlwdfX1+sXLlSYRr01q1bGDVqFI4dOwZra2sMGzYM4eHhMDEpe1bmciBEBHBqlEjXVObvb7UFt99++w29e/fGw4cP1bE7AoMbEXFtNiJdpBXruJVYunSpwnMhBO7du4f169ejR48eaiuMiMiQcZSNiFQpd3BbtGiRwnMjIyM4ODhg2LBhCgvXEhFRxagKbRYWDpg69XMNVENE2qTcwS0lJaUy6iAiMngFBQWYM2eOUvusWaGQy4GpUzVQFBFplXIHNwDIzMzEX3/9BQBo1KiR0l0EiIiofEqbGvX0fBbagoOruCAi0krlCm43b97E6NGjER0dLd2NQCaToXv37li+fDnq169fGTUSEek1VaEtICAAdevWBQD4+VV1RUSkrcoc3G7fvg1vb2+Ympriq6++goeHBwDgypUrWLVqFeRyOc6cOSP9oCEiopeLj4/H3r17ldp5AQIRlabMy4EEBATgr7/+QnR0NCwsLBS2PX36FN27d0fjxo2xZs2aSinUEHE5ECL9xatGifSXViwHcvDgQWzZskUptAGApaUlvvrqKwwcOFCtxRER6SNVoW3mzJmQyWQaqIaIdEmZg9vff//90nPYGjRogAcPHqijJiIivcRRNiJ6XUav7vKMi4sLrly5Uur2S5cuKdzyiYiI/oehjYjUoczBrW/fvpg8eTLu37+vtC0jIwNTp05F37591VkbEZHOE0KoDG3R0aHw9GRoI6LyKfPFCQ8fPkSHDh2QlpaGjz/+GM2aNYMQAlevXsXGjRvh7OyM33//HTVr1qzsmg0GL04g0m0cZSMyTFpxcUKNGjVw+vRpTJs2DZs3b0ZmZiYAwM7ODh999BHmzJnD0EZE9P+pCm0JCQMwfHgzDVRDRPqizCNuzxNCSFOmDg4OvBKqknDEjUj3XL9+HRs3blRq5ygbkeHQihG358lkMjg6Oqq1ECIiXcepUSKqbBUKbkREpEhVaJsxYwaMjMp8DRgR0SsxuBERvYaIiAg8ffpUqZ2jbERUGRjciIgqiFOjRFTVGNyIiCqgtLXZYmM1UAwRGYwyBbelS5eWeYfjxo2rcDFERNqutFG26OhQBAdXcTFEZHDKtByIu7t72XYmk+HGjRuvXRQ9w+VAiLSLqtB29Wp3bN7cQQPVEJG20vhyICkpKWp9UyIiXZKRkYFVq1YptXOUjYiqWoXPccvPz0dKSgoaNmwIExOeKkdE+ullFyDwGgQiqmrlXmDoyZMnCAgIgJWVFVq0aIHU1FQAwNixYxEeHq72AomINEVVaAsJCeFVo0SkMeUObiEhITh//jyOHTsGCwsLqd3HxwdbtmxRa3FERJqwc+dOlaEtNDQUZmZmGqiIiOiZcs9x7tq1C1u2bIG3t7fCPUpbtGiB5ORktRZHRFSVoqKAhASuzUZE2qvcwe3+/fsq71Oak5PDm80TkU5TFdpmzQpFtWrg+WxEpBXKHdzatWuHffv2YezYsQAghbU1a9ZALpertzoioipQ2gUI338fCktLgMtTEpG2KHdwmzNnDnr06IErV66gsLAQS5YswZUrVxAbG4vjx49XRo1ERJVGVWhzcemKTz/twlE2ItI65b44oVOnTjh37hwKCwvRqlUrHDp0CI6OjoiLi4OXl1dl1EhEpHY5OTkqQ9usWaGIjOyigYqIiF6tQguwNWzYEN9//726ayEiqhKlTY1u3hwKuRxcVJeItFaZglt2dnaZd8hbMxGRNlMV2lq1CsL8+Vb49lvAz08DRRERlVGZgpudnV2ZrxgtKip6rYKIiCrDyZMnceTIEaX2kmU+PvigqisiIiq/MgW3o0ePSn+/efMmgoOD4e/vL11FGhcXh3Xr1mHu3LmVUyUR0Wt42W2riIh0iUwIIcrzgnfeeQcjRozAoEGDFNo3btyI//znPzh27Jg66zNo2dnZsLW1RVZWFqegiSqotDsgEBFVlsr8/V3u4GZlZYXz58+jcePGCu3Xrl1DmzZt8OTJE7UWaMgY3IgqjqNsRKQplfn7u9zLgbi6uqq8onTNmjVwdXVVS1FERK9DVWhLSmrP0EZEOq/cy4EsWrQI/fr1w4EDB9ChQwcAwB9//IHr169j+/btai+QiKis8vPzVZ5ru2lTKCIiNFAQEZGalXuqFADu3LmDlStXIjExEQDg4eGBwMBAjripGadKicqutKnRWbOerc0WG1vFBRGRwarM398VWoC3bt26mDNnjloLISKqKFWhbdy4cTh5sgYX1CUivVKh4JaZmYkffvgBV69eBQC0aNECw4cPh62trVqLIyJ6mQsXLmDnzp1K7SXnsvn5cUFdItIv5Z4qPXv2LHx9fWFpaYn27dsDAM6cOYOnT5/i0KFDaNu2baUUaog4VUpUOl41SkTaSquWA+ncuTMaNWqE77//HiYmzwbsCgsLMWLECNy4cQMnTpxQa4GGjMGNSDWuzUZE2kyrznE7e/asQmgDABMTE0yZMgXt2rVTa3FERM8rbZTN05OhjYgMQ7nXcbOxsUFqaqpS++3bt1G9enW1FEVE9CJVoe3Bg3rw9AzleWxEZDDKPeI2YMAABAQEYP78+ejYsSMA4NSpUwgKClK6DRYR0esqLi7GV199pdTOqVEiMkTlDm7z58+HTCbD0KFDUVhYCAAwNTXFqFGjEB4ervYCichw8QIEIiJFFVqAFwCePHmC5ORkAEDDhg1hZWWl1sKIFyeQYVMV2gICAlC3bl0NVENEVHZadXFCCSsrK7Rq1UqdtRARITk5GT///LNSO0fZiIjKEdyGDx9epn4//vhjhYshIsPGqVEiopcrc3CLjIxEvXr14OnpiQrOrhIRlUpVaJs5cyZkMpkGqiEi0k5lDm6jRo3Cpk2bkJKSgk8++QQff/wxatasWZm1EZGei4oCTp1aCiurh0rbOMpGRKSszOu4rVixAvfu3cOUKVOwZ88euLq64sMPP0R0dDRH4IioQhISwpRCm4WFBUMbEVEpKnxV6a1btxAZGYmffvoJhYWFuHz5MqpVq6bu+gwaryolfSWEwOzZs5XaGdiISB9o5VWlRkZGkMlkEEKgqKhInTURkR7jBQhERBVXrlte5eXlYdOmTXj33XfRpEkTXLx4EcuXL0dqaipH24jolVSFtgEDBjC0ERGVUZlH3D7//HNs3rwZrq6uGD58ODZt2gR7e/vKrI2I9ERaWhq+++47pXYGNiKi8inzOW5GRkZwc3ODp6fnSy/P37Fjh9qKM3Q8x430AadGicjQaMU5bkOHDuV6SkRULqpC2/Tp02FsbKyBaoiIdF+5FuAlIiqLjRs34vr160rtHGUjIno9Fb6qlIhIFU6NEhFVHgY3IlIbVaGNgY2ISH0Y3IiowqKigPBwwNdX9ShbdHQomNuIiNSHwY2IKqy00Fa3bg/88EN7BAdroCgiIj3G4EZEFZKVlQVf38VK7dHRoYiNBQICqr4mIiJ9V647J2iSn58f3NzcYGFhARcXFwwZMgR3795V6LN161a0adMGVlZWqFevHubNm6e0n2PHjqFt27YwNzdHo0aNVF4tu2LFCtSvXx8WFhbo0KED/vjjD4Xtubm5GD16NGrVqoVq1aqhX79+SE9PV+iTmpqKnj17wsrKCo6OjggKCkJhYeHrfxFEWiAsLAyLFy9Wao+ODuUoGxFRJdKZ4Na1a1ds3boVSUlJ2L59O5KTk9G/f39p+4EDBzB48GAEBgbi0qVLWLlyJRYtWoTly5dLfVJSUtCzZ0907doV586dw/jx4zFixAhER0dLfbZs2YKJEyciNDQUf/75J1q3bg1fX19kZGRIfSZMmIA9e/Zg27ZtOH78OO7evYsPPvhA2l5UVISePXsiPz8fsbGxWLduHSIjIzFz5sxK/paIKp+qCxD+7/+mIjT02Uibn58GiiIiMhBlvnOCtomKikLfvn2Rl5cHU1NTfPTRRygoKMC2bdukPsuWLUNERARSU1Mhk8kwdepU7Nu3D5cuXZL6DBw4EJmZmTh48CAAoEOHDnjjjTekwFdcXAxXV1eMHTsWwcHByMrKgoODAzZu3CgFx8TERHh4eCAuLg7e3t44cOAAevXqhbt378LJyQkAsHr1akydOhX379+HmZlZmT4j75xA2uTXX3/FqVOnlNp51SgRkaLK/P2tMyNuz3vw4AE2bNiAjh07wtTUFACQl5cHCwsLhX6Wlpa4c+cObt26BQCIi4uDj4+PQh9fX1/ExcUBAPLz8xEfH6/Qx8jICD4+PlKf+Ph4FBQUKPRp1qwZ3NzcpD5xcXFo1aqVFNpK3ic7OxuXL18u9XPl5eUhOztb4UGkDcLCwhjaiIi0gE4Ft6lTp8La2hq1atVCamoqdu/eLW3z9fXFjh07EBMTg+LiYly7dg0LFiwAANy7dw/AsxtdPx+mAMDJyQnZ2dl4+vQp/v77bxQVFansk5aWJu3DzMwMdnZ2L+2jah8l20ozd+5c2NraSg9XV9eyfjVElaa0tdkY2oiIqp5Gg1twcDBkMtlLH4mJiVL/oKAgJCQk4NChQzA2NsbQoUNRMtM7cuRIjBkzBr169YKZmRm8vb0xcOBAAM9GzXRBSEgIsrKypMft27c1XRIZsLCwMJWhzdOTgY2ISFM0uhzIpEmT4O/v/9I+DRo0kP5ub28Pe3t7NGnSBB4eHnB1dcXvv/8OuVwOmUyGb7/9FnPmzEFaWhocHBwQExOjsA9nZ2elqz/T09NhY2MDS0tLGBsbw9jYWGUfZ2dnaR/5+fnIzMxUGHV7sc+LV6KW7LOkjyrm5uYwNzd/6fdBVBVUBbauXbuiS5cuGqiGiIhKaDS4OTg4wMHBoUKvLS4uBvDsvLDnGRsbo06dOgCATZs2QS6XS+8hl8uxf/9+hf6HDx+GXC4HAJiZmcHLywsxMTHo27ev9D4xMTEYM2YMAMDLywumpqaIiYlBv379AABJSUlITU2V9iOXy/HNN98gIyMDjo6O0vvY2NigefPmFfq8RFUhNzcX3377rVI7p0WJiLSDTizAe/r0aZw5cwadOnVCjRo1kJycjBkzZqBhw4ZSWPr777/xyy+/4K233kJubi7Wrl0rLddRIjAwEMuXL8eUKVMwfPhwHDlyBFu3bsW+ffukPhMnTsSwYcPQrl07tG/fHosXL0ZOTg4++eQTAICtrS0CAgIwceJE1KxZEzY2Nhg7dizkcjm8vb0BAN26dUPz5s0xZMgQREREIC0tDdOnT8fo0aM5okZaizeHJyLSfjoR3KysrLBjxw6EhoYiJycHLi4u6N69O6ZPn64QhNatW4fJkydDCAG5XI5jx46hffv20nZ3d3fs27cPEyZMwJIlS1C3bl2sWbMGvr6+Up8BAwbg/v37mDlzJtLS0tCmTRscPHhQ4WKDRYsWwcjICP369UNeXh58fX2xcuVKabuxsTH27t2LUaNGQS6Xw9raGsOGDcPs2bMr+ZsiqhhVoe3YsYk4erS6BqohIqLS6Ow6boaA67hRZUtISEBUVJRSe8kdELiYLhFR+VXm72+dGHEjIvV72dQoZ0eJiLQTgxuRASptbTYiItJuDG5EBoQXIBAR6TYGNyIDoXoxXU/48UQ2IiKdweBGpOeKiorw9ddfK7VzlI2ISPcwuBHpMU6NEhHpFwY3Ij2lKrSNGTMGtWrV0kA1RESkDgxuRHrmxo0bWL9+vVI7R9mIiHQfgxuRHuHUKBGRfmNwI9ITqkLbzJkzIZPJNFANERFVBgY3Ih33888/Izk5Wamdo2xERPqHwY1Ih6kaZbOxaYJt2wbB05P3GiUi0jcMbkQ6SAiB2bNnK7Vv2hQKmQxITATCwxnciIj0DYMbkY4p7QKE6OhQJCUBTZsCcjkQHFzFhRERUaVjcCPSIapC22effQZnZ2d4ej4bZQsO5kgbEZG+MtJ0AUT0av/884/K0BYaGoo//nBGx47PnsfGMrQREekzjrgRablXrc0WHg7ExfGcNiIiQ8DgRqTFyrI2W3Dw/6ZIiYhIvzG4EWmhY8eO4fjx40rtJaNsUVGK57NxpI2IyDAwuBFpGVWjbC1atED//v2l55weJSIyTAxuRFqktAsQXsTpUSIiw8TgRqQFvv76axQVFSm1l3bbKk6PEhEZJgY3Ig1TNcrWuLE/PvqongaqISIibcbgRqQhOTk5mD9/vlI7bw5PRESlYXAj0oBXrc1GRESkCoMbURVTFdqmT58OY2NjDVRDRES6hMGNqIqsW3cFN29uU2rnKBsREZUVgxtRFVA1ytawYUN8/PHHGqiGiIh0FYMbUSVTFdo8PUO5nAcREZUbgxtRJdm2bRuuXLmi1M6pUSIiqigGN6JKoGqU7ZNPPoGbm5sGqiEiIn3B4EakRgUFBZgzZ45SO0fZiIhIHRjciNSEa7MREVFlY3AjUgNVoS0kJARmZmYaqIaIiPQVgxvRa0hNTcXatWuV2jnKRkRElYHBjaiCVI2yeXh44MMPP9RANUREZAgY3IgqQFVo4ygbERFVNgY3onI4duwYjh8/rtTO0EZERFWBwY2ojFSNsg0aNAhNmjTRQDVERGSIGNyIXqGoqAhff/21UjtH2YiIqKoxuBG9RHh4OPLy8pTaGdqIiEgTGNyIXhAVBYSHA76+ylOjU6dOhYWFhdQnOBi8WTwREVUZI00XQKRtli79W2VoCw0NhYWFBYBnoS0u7tmfREREVYUjbkTPCQsLQ+fOim3NmjXDgAEDFNqCg/834kZERFRVGNyI/r/yrM3m58cpUiIiqnoMbmTwzp8/j127dim18wIEIiLSNgxuZNBUjbJ9/PHHaNiwoQaqISIiejkGNzJIQgjMnj1bqZ2jbEREpM0Y3MigREUBhw5tgIPDX0rbGNqIiEjbMbiR3nt+zbWEhDA4OChunzx5MqytrTVTHBERUTkwuJHeCw8Hzp9/goSEeUrbOMpGRES6hMGN9J6v71fw9S1WaGvevDn+/e9/a6giIiKiimFwI72m6qrRmTNnQiaTaaAaIiKi18PgRnrp7t27+P7775XaOTVKRES6jMGN9I6qUbbhw4fD1dVVA9UQERGpD4Mb6Q2uzUZERPqOwY30wpkzZ7B//36FNgcHB3z++ecaqoiIiEj9GNxI56maGg0KCoKVlZUGqiEiIqo8DG6ks/Lz8zF37lyldk6NEhGRvmJwI520ceNGXL9+XaGtc+fOePvttzVUERERUeVjcCOdw7XZiIjIUDG4kc64f/8+Vq5cqdTOqVEiIjIUDG6kE1SNsg0ZMgQNGjTQQDVERESaweBGWk9VaOMoGxERGSIGN9JaFy5cwM6dOxXarK2tMXnyZA1VREREpFlGmi6gvPLy8tCmTRvIZDKcO3dOYduFCxfQuXNnWFhYwNXVFREREUqv37ZtG5o1awYLCwu0atVKadFWIQRmzpwJFxcXWFpawsfHR+nqxQcPHmDw4MGwsbGBnZ0dAgIC8Pjx43LXQqULCwtTCm0TJkxgaCMiIoOmc8FtypQpqF27tlJ7dnY2unXrhnr16iE+Ph7z5s3DrFmz8J///EfqExsbi0GDBiEgIAAJCQno27cv+vbti0uXLkl9IiIisHTpUqxevRqnT5+GtbU1fH19kZubK/UZPHgwLl++jMOHD2Pv3r04ceIEPv3003LVQqoVFhaWOjVqY2OjgYqIiIi0h0wIITRdRFkdOHAAEydOxPbt29GiRQskJCSgTZs2AIBVq1bhyy+/RFpaGszMzAAAwcHB2LVrFxITEwEAAwYMQE5ODvbu3Svt09vbG23atMHq1ashhEDt2rUxadIkaWQnKysLTk5OiIyMxMCBA3H16lU0b94cZ86cQbt27QAABw8exHvvvYc7d+6gdu3aZaqlLLKzs2Fra4usrCyDCC07d+7EhQsXFNreeOMNvPfeexqqiIiIqPwq8/e3zoy4paenY+TIkVi/fr3KWxnFxcWhS5cuUlACAF9fXyQlJeHhw4dSHx8fH4XX+fr6Ii4uDgCQkpKCtLQ0hT62trbo0KGD1CcuLg52dnZSaAMAHx8fGBkZ4fTp02WuRZW8vDxkZ2crPPRdVBTQseOzqdEXQ9uMGTMY2oiIiJ6jE8FNCAF/f38EBgYqBKbnpaWlwcnJSaGt5HlaWtpL+zy//fnXldbH0dFRYbuJiQlq1qz5yvd5/j1UmTt3LmxtbaWHq6trqX31xZIlD+Hrq3pq1MhIJ/7zJCIiqjIa/c0YHBwMmUz20kdiYiKWLVuGR48eISQkRJPlVrqQkBBkZWVJj9u3b2u6pEq1ZMkSdOmyVKHtww8/5FIfREREpdDociCTJk2Cv7//S/s0aNAAR44cQVxcHMzNzRW2tWvXDoMHD8a6devg7OyM9PR0he0lz52dnaU/VfV5fntJm4uLi0KfknPpnJ2dkZGRobCPwsJCPHjw4JXv8/x7qGJubq70GfVFVBQQHg4EBwN+flybjYiIqCI0GtwcHBzg4ODwyn5Lly7F119/LT2/e/cufH19sWXLFnTo0AEAIJfL8eWXX6KgoACmpqYAgMOHD6Np06aoUaOG1CcmJgbjx4+X9nX48GHI5XIAgLu7O5ydnRETEyMFtezsbJw+fRqjRo2S9pGZmYn4+Hh4eXkBAI4cOYLi4uJy1WJowsOBuDggKCgVCQlrFbbJZDLMnDlTQ5URERHpDp26qrTEzZs34e7urnBVaVZWFpo2bYpu3bph6tSpuHTpEoYPH45FixZJS3XExsbizTffRHh4OHr27InNmzdjzpw5+PPPP9GyZUsAwLfffovw8HCsW7cO7u7umDFjBi5cuIArV67AwsICANCjRw+kp6dj9erVKCgowCeffIJ27dph48aNZa6lLPTpqtKoKOC33+bD2jpHoX3ixImoXr26hqoiIiJSv8r8/a03d06wtbXFoUOHMHr0aHh5ecHe3h4zZ85UCEodO3bExo0bMX36dEybNg2NGzfGrl27pNAGPFsnLicnB59++ikyMzPRqVMnHDx4UAptALBhwwaMGTMG77zzDoyMjNCvXz8sXbq0XLUYEiEEEhJmw9pasZ1To0REROWjkyNuhkIfRtwePHiAZcuWKbR17doVXbp00VBFRERElYsjbqSTTpw4gaNHjyq0zZgxg8t8EBERVRCDG6ldYWEhvvnmG4W23r17o23bthqqiIiISD8wuJFa3b59Gz/++KNC26RJk1CtWjUNVURERKQ/GNxIbXbt2oXz589Lzxs3boyPPvpIgxURERHpFwY3em1Pnz5FRESEQtvHH3+Mhg0baqgiIiIi/cTgRq/lypUr2LZtm0JbSEgIzMzMNFQRERGR/mJwowoRQmDNmjW4e/eu1CaXy9GtWzcNVkVERKTfGNyo3DIzM7FkyRKFtsDAQDg5OWmoIiIiIsPA4EblEhsbi8OHD0vPra2tMXHiRK7NRkREVAUY3KhMioqKEB4ejsLCQqntvffewxtvvKHBqoiIiAwLgxu90n//+1+sWbNGoW3ChAk6exsuIiIiXcXgRi+1d+9exMfHS8/d3d0xZMgQyGQyDVZFRERkmBjcSKW8vDyEh4crtA0aNAhNmjTRUEVERETE4EZKkpKSsHnzZoW24OBgmJuba6giIiIiAhjc6DlCCKxbtw63bt2S2tq1a4eePXtqsCoiIiIqweBGAICsrCwsXrxYoW3kyJGoXbu2ZgoiIiIiJQxuhD/++AMHDhyQnpubmyMoKAjGxsYarIqIiIhexOBmwIqLizF//nw8ffpUauvWrRvkcrkGqyIiIqLSMLgZqLS0NHz33XcKbV988QXs7Ow0UxARERG9EoObATp58iSOHDkiPa9bty6GDx/OtdmIiIi0HIObATp58qT09w8//BAeHh4arIaIiIjKisHNAPXu3Rt//fUXevToAQsLC02XQ0RERGXE4GaAWrVqhVatWmm6DCIiIionI00XQERERERlw+BGREREpCMY3IiIiIh0BIMbERERkY5gcDNAUVFAx47P/iQiIiLdweBmgMLDgbi4Z38SERGR7mBwM0DBwYBc/uxPIiIi0h1cx80A+fk9exAREZFu4YgbERERkY5gcCMiIiLSEQxuRERERDqCwY2IiIhIRzC4EREREekIBjciIiIiHcHgRkRERKQjGNyIiIiIdASDGxEREZGOYHAjIiIi0hEMbkREREQ6gsGNiIiISEcwuBERERHpCBNNF0ClE0IAALKzszVcCREREZVVye/tkt/j6sTgpsUePXoEAHB1ddVwJURERFRejx49gq2trVr3KROVEQdJLYqLi3H37l1Ur14dMplM0+VUuuzsbLi6uuL27duwsbHRdDn0Ah4f7cbjo914fLSbuo+PEAKPHj1C7dq1YWSk3rPSOOKmxYyMjFC3bl1Nl1HlbGxs+INNi/H4aDceH+3G46Pd1Hl81D3SVoIXJxARERHpCAY3IiIiIh3B4EZaw9zcHKGhoTA3N9d0KaQCj4924/HRbjw+2k2Xjg8vTiAiIiLSERxxIyIiItIRDG5EREREOoLBjYiIiEhHMLgRERER6QgGN1KLvLw8tGnTBjKZDOfOnVPYduHCBXTu3BkWFhZwdXVFRESE0uu3bduGZs2awcLCAq1atcL+/fsVtgshMHPmTLi4uMDS0hI+Pj64fv26Qp8HDx5g8ODBsLGxgZ2dHQICAvD48eNy16JP/Pz84ObmBgsLC7i4uGDIkCG4e/euQp+tW7eiTZs2sLKyQr169TBv3jyl/Rw7dgxt27aFubk5GjVqhMjISKU+K1asQP369WFhYYEOHTrgjz/+UNiem5uL0aNHo1atWqhWrRr69euH9PR0hT6pqano2bMnrKys4OjoiKCgIBQWFr7+F6GlynJ8oqOj4e3tjerVq8PBwQH9+vXDzZs3Ffrw+FSeVx2jWbNmQSaTKT2sra0V9sOfcZWjLP+GhBCYP38+mjRpAnNzc9SpUwfffPONQh+d+jckiNRg3LhxokePHgKASEhIkNqzsrKEk5OTGDx4sLh06ZLYtGmTsLS0FN99953U59SpU8LY2FhERESIK1euiOnTpwtTU1Nx8eJFqU94eLiwtbUVu3btEufPnxd+fn7C3d1dPH36VOrTvXt30bp1a/H777+LkydPikaNGolBgwaVqxZ9s3DhQhEXFydu3rwpTp06JeRyuZDL5dL2/fv3CxMTE7Fq1SqRnJws9u7dK1xcXMSyZcukPjdu3BBWVlZi4sSJ4sqVK2LZsmXC2NhYHDx4UOqzefNmYWZmJn788Udx+fJlMXLkSGFnZyfS09OlPoGBgcLV1VXExMSIs2fPCm9vb9GxY0dpe2FhoWjZsqXw8fERCQkJYv/+/cLe3l6EhIRU8rekOa86Pjdu3BDm5uYiJCRE/PXXXyI+Pl506dJFeHp6KvTh8ak8rzpGjx49Evfu3VN4NG/eXAwbNkzqw59xledVx0cIIcaOHSuaNm0qdu/eLW7cuCHOnj0rDh06JG3XtX9DDG702vbv3y+aNWsmLl++rBTcVq5cKWrUqCHy8vKktqlTp4qmTZtKzz/88EPRs2dPhX126NBBfPbZZ0IIIYqLi4Wzs7OYN2+etD0zM1OYm5uLTZs2CSGEuHLligAgzpw5I/U5cOCAkMlk4r///W+Za9F3u3fvFjKZTOTn5wshhBg0aJDo37+/Qp+lS5eKunXriuLiYiGEEFOmTBEtWrRQ6DNgwADh6+srPW/fvr0YPXq09LyoqEjUrl1bzJ07Vwjx7HiZmpqKbdu2SX2uXr0qAIi4uDghxLP/joyMjERaWprUZ9WqVcLGxkbhmOmzF4/Ptm3bhImJiSgqKpL6REVFKfTh8alaLx6jF507d04AECdOnJDa+DOu6rx4fK5cuSJMTExEYmJiqa/RtX9DnCql15Keno6RI0di/fr1sLKyUtoeFxeHLl26wMzMTGrz9fVFUlISHj58KPXx8fFReJ2vry/i4uIAACkpKUhLS1PoY2triw4dOkh94uLiYGdnh3bt2kl9fHx8YGRkhNOnT5e5Fn324MEDbNiwAR07doSpqSmAZ1PcFhYWCv0sLS1x584d3Lp1C8Crj09+fj7i4+MV+hgZGcHHx0fqEx8fj4KCAoU+zZo1g5ubm8IxbNWqFZycnBTeJzs7G5cvX1bX16C1VB0fLy8vGBkZYe3atSgqKkJWVhbWr18PHx8fqQ+PT9VRdYxetGbNGjRp0gSdO3eW2vgzrmqoOj579uxBgwYNsHfvXri7u6N+/foYMWIEHjx4IL1O1/4NMbhRhQkh4O/vj8DAQIUfJs9LS0tT+I8UgPQ8LS3tpX2e3/7860rr4+joqLDdxMQENWvWfOX7PP8e+mjq1KmwtrZGrVq1kJqait27d0vbfH19sWPHDsTExKC4uBjXrl3DggULAAD37t0DUPr3lp2djadPn+Lvv/9GUVHRK4+PmZkZ7OzsXtqHx0fx+Li7u+PQoUOYNm0azM3NYWdnhzt37mDr1q1SHx6fyveyY/S83NxcbNiwAQEBAQrt/BlXuV52fG7cuIFbt25h27Zt+OmnnxAZGYn4+Hj0799f6qNr/4YY3EhJcHCwypNtn38kJiZi2bJlePToEUJCQjRdskEp6/EpERQUhISEBBw6dAjGxsYYOnQoxP+/YcrIkSMxZswY9OrVC2ZmZvD29sbAgQMBPPs/Sio/dR6ftLQ0jBw5EsOGDcOZM2dw/PhxmJmZoX///lIfKj91HqPn7dy5E48ePcKwYcOq8uPoHXUen+LiYuTl5eGnn35C586d8dZbb+GHH37A0aNHkZSUpKmP+FpMNF0AaZ9JkybB39//pX0aNGiAI0eOIC4uTunebu3atcPgwYOxbt06ODs7K11VU/Lc2dlZ+lNVn+e3l7S5uLgo9GnTpo3UJyMjQ2EfhYWFePDgwSvf5/n30AVlPT4l7O3tYW9vjyZNmsDDwwOurq74/fffIZfLIZPJ8O2332LOnDlIS0uDg4MDYmJiFPZR2vdmY2MDS0tLGBsbw9jY+JXHMD8/H5mZmQr/R/pinxev0jL047NixQrY2toqXBn4888/w9XVFadPn4a3tzePTwWo8xg9b82aNejVq5fSqAp/xpWPOo+Pi4sLTExM0KRJE6m/h4cHgGdXeDZt2lT3/g2V+Ww4ohfcunVLXLx4UXpER0cLAOKXX34Rt2/fFkL872TZ50/kDQkJUbo4oVevXgr7lsvlSifuzp8/X9qelZWl8sTds2fPSn2io6NVnrj7slr03a1btwQAcfTo0VL7DBkyROGqrClTpoiWLVsq9Bk0aJDSibtjxoyRnhcVFYk6deoonbj7yy+/SH0SExNVnrj7/FVa3333nbCxsRG5ubkV+8A65sXjM3HiRNG+fXuFPnfv3hUAxKlTp4QQPD5VrbR/Qzdu3BAymUzs2bNH6TX8GVd1Xjw+Jb+X/vrrL6lPyQUkSUlJQgjd+zfE4EZqk5KSonRVaWZmpnBychJDhgwRly5dEps3bxZWVlZKy4GYmJiI+fPni6tXr4rQ0FCVl8rb2dmJ3bt3iwsXLog+ffqovFTe09NTnD59Wvz222+icePGCpfKl6UWffL777+LZcuWiYSEBHHz5k0RExMjOnbsKBo2bCj9kLh//75YtWqVuHr1qkhISBDjxo0TFhYW4vTp09J+Si6VDwoKElevXhUrVqxQeam8ubm5iIyMFFeuXBGffvqpsLOzU7h6KjAwULi5uYkjR46Is2fPKl22X3KpfLdu3cS5c+fEwYMHhYODg94uN1GW4xMTEyNkMpkICwsT165dE/Hx8cLX11fUq1dPPHnyRAjB41OZynKMSkyfPl3Url1bFBYWKu2HP+MqR1mOT1FRkWjbtq3o0qWL+PPPP8XZs2dFhw4dxLvvvivtR9f+DTG4kdqoCm5CCHH+/HnRqVMnYW5uLurUqSPCw8OVXrt161bRpEkTYWZmJlq0aCH27dunsL24uFjMmDFDODk5CXNzc/HOO+9I/7dU4p9//hGDBg0S1apVEzY2NuKTTz4Rjx49Knct+uLChQuia9euombNmsLc3FzUr19fBAYGijt37kh97t+/L7y9vYW1tbWwsrIS77zzjvj999+V9nX06FHRpk0bYWZmJho0aCDWrl2r1GfZsmXCzc1NmJmZifbt2yvt5+nTp+Lzzz8XNWrUEFZWVuL9998X9+7dU+hz8+ZN0aNHD2FpaSns7e3FpEmTREFBgXq+EC1TluMjhBCbNm0Snp6ewtraWjg4OAg/Pz9x9epVhT48PpWjrMeoqKhI1K1bV0ybNq3UffFnnPqV9fj897//FR988IGoVq2acHJyEv7+/uKff/5R6KNL/4ZkQvAMVyIiIiJdwMvGiIiIiHQEgxsRERGRjmBwIyIiItIRDG5EREREOoLBjYiIiEhHMLgRERER6QgGNyIiIiIdweBGRFQJZDIZdu3apekyFBw7dgwymQyZmZmaLoWIKojBjYjoNcyaNUu6ETgRUWVjcCMiIiLSEQxuRGTQiouLMXfuXLi7u8PS0hKtW7fGL7/8AuB/U4sxMTFo164drKys0LFjRyQlJQEAIiMjERYWhvPnz0Mmk0EmkyEyMlLa999//433338fVlZWaNy4MaKiospUU8n7RkdHw9PTE5aWlnj77beRkZGBAwcOwMPDAzY2Nvjoo4/w5MkT6XV5eXkYN24cHB0dYWFhgU6dOuHMmTPq+7KISOMY3IjIoM2dOxc//fQTVq9ejcuXL2PChAn4+OOPcfz4canPl19+iQULFuDs2bMwMTHB8OHDAQADBgzApEmT0KJFC9y7dw/37t3DgAEDpNeFhYXhww8/xIULF/Dee+9h8ODBePDgQZlrmzVrFpYvX47Y2Fjcvn0bH374IRYvXoyNGzdi3759OHToEJYtWyb1nzJlCrZv345169bhzz//RKNGjeDr61uu9yQiLVeuW9ITEemR3NxcYWVlJWJjYxXaAwICxKBBg8TRo0cFAPHrr79K2/bt2ycAiKdPnwohhAgNDRWtW7dW2jcAMX36dOn548ePBQBx4MCBV9al6n3nzp0rAIjk5GSp7bPPPhO+vr7S/k1NTcWGDRuk7fn5+aJ27doiIiJCYb8PHz58ZQ1EpJ1MNJgZiYg06q+//sKTJ0/w7rvvKrTn5+fD09NTev5///d/0t9dXFwAABkZGXBzc3vp/p9/nbW1NWxsbJCRkVHm+p5/vZOTE6ysrNCgQQOFtj/++AMAkJycjIKCAvzrX/+StpuamqJ9+/a4evVqmd+TiLQbgxsRGazHjx8DAPbt24c6deoobDM3N0dycjKAZwGohEwmA/Ds3LhXef51Ja8ty+tUvV4mk732/ohI9/EcNyIyWM2bN4e5uTlSU1PRqFEjhYerq2uZ9mFmZoaioqJKrvTVGjZsCDMzM5w6dUpqKygowJkzZ9C8eXMNVkZE6sQRNyIyWNWrV8fkyZMxYcIEFBcXo1OnTsjKysKpU6dgY2ODevXqvXIf9evXR0pKCs6dO4e6deuievXqMDc3r4LqFVlbW2PUqFEICgpCzZo14ebmhoiICDx58gQBAQFVXg8RVQ4GNyIyaF999RUcHBwwd+5c3LhxA3Z2dmjbti2mTZtWpmnIfv36YceOHejatSsyMzOxdu1a+Pv7V37hKoSHh6O4uBhDhgzBo0eP0K5dO0RHR6NGjRoaqYeI1E8mhBCaLoKIiIiIXo3nuBERERHpCAY3IqIqFhgYiGrVqql8BAYGaro8ItJinColIqpiGRkZyM7OVrnNxsYGjo6OVVwREekKBjciIiIiHcGpUiIiIiIdweBGREREpCMY3IiIiIh0BIMbERERkY5gcCMiIiLSEQxuRERERDqCwY2IiIhIRzC4EREREemI/wfIwUKhYZuBRgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACX30lEQVR4nO2deXgUxdbG38kKATIhG0lkSQjIoogCEgIKKJGgKHIDEtzYQbgEZZFNBcUNQZFduCqLCygI0YugSFj0qsSoKOKCXMwXNpOwBDJBIklI+vsjt5uZycx0T08v1T3n9zw+kpme7urq6qq3zjl1ysJxHAeCIAiCIAhCUwL0LgBBEARBEIQ/QiKMIAiCIAhCB0iEEQRBEARB6ACJMIIgCIIgCB0gEUYQBEEQBKEDJMIIgiAIgiB0gEQYQRAEQRCEDpAIIwiCIAiC0AESYQRBEARBEDpAIowgCILwyPr162GxWHDs2DG9i0IQpoJEGEEQuvPdd98hKysL1113HRo0aIDmzZtjyJAh+O9//1vn2N69e8NiscBisSAgIADh4eFo06YNHn74YeTk5Hh13Y8//hi9evVCbGwswsLC0LJlSwwZMgQ7d+5U6tbq8OKLL+Kjjz6q8/n+/fvxzDPPoLS0VLVrO/PMM88IdWmxWBAWFob27dvjqaeeQllZmSLX2LhxI5YsWaLIuQjCbJAIIwhCdxYsWICtW7eiT58+WLp0KcaNG4f//Oc/6NSpE3755Zc6xzdt2hTvvPMO3n77bbz88ssYMGAA9u/fj759+yIzMxNVVVWi13zllVcwYMAAWCwWzJ49G4sXL8agQYNw9OhRvP/++2rcJgDPImzevHmaijCeVatW4Z133sGrr76Ktm3b4oUXXkC/fv2gxNbCJMIIwj1BeheAIAhi6tSp2LhxI0JCQoTPMjMz0aFDB7z00kt49913HY63Wq146KGHHD576aWX8Oijj+K1115DYmIiFixY4PZ6V65cwXPPPYc77rgDu3btqvP9mTNnfLwjdigvL0dYWJjHYwYPHozo6GgAwPjx4zFo0CBkZ2fjm2++QWpqqhbFJAi/hCxhBEHoTvfu3R0EGAC0bt0a1113HQ4fPizpHIGBgVi2bBnat2+PFStWwGazuT323LlzKCsrQ48ePVx+Hxsb6/D35cuX8cwzz+Daa69FvXr1EB8fj4yMDOTn5wvHvPLKK+jevTuioqJQv359dO7cGVu2bHE4j8ViwaVLl/DWW28JLsARI0bgmWeewfTp0wEASUlJwnf2MVjvvvsuOnfujPr16yMyMhJDhw7FyZMnHc7fu3dvXH/99Thw4AB69uyJsLAwPPHEE5Lqz57bb78dAFBQUODxuNdeew3XXXcdQkNDkZCQgIkTJzpY8nr37o0dO3bg+PHjwj0lJiZ6XR6CMCtkCSMIgkk4jsPp06dx3XXXSf5NYGAg7r//fsyZMwdfffUV+vfv7/K42NhY1K9fHx9//DEmTZqEyMhIt+esrq7G3XffjT179mDo0KF47LHHcPHiReTk5OCXX35BcnIyAGDp0qUYMGAAHnzwQVRWVuL999/Hfffdh+3btwvleOeddzBmzBh07doV48aNAwAkJyejQYMG+O9//4v33nsPixcvFqxSMTExAIAXXngBc+bMwZAhQzBmzBicPXsWy5cvR8+ePfHjjz8iIiJCKG9JSQnuvPNODB06FA899BCaNGkiuf54eHEZFRXl9phnnnkG8+bNQ1paGiZMmIAjR45g1apV+O677/D1118jODgYTz75JGw2G06dOoXFixcDABo2bOh1eQjCtHAEQRAM8s4773AAuDVr1jh83qtXL+66665z+7sPP/yQA8AtXbrU4/nnzp3LAeAaNGjA3XnnndwLL7zAHThwoM5xa9eu5QBwr776ap3vampqhH+Xl5c7fFdZWcldf/313O233+7weYMGDbjhw4fXOdfLL7/MAeAKCgocPj927BgXGBjIvfDCCw6f//zzz1xQUJDD57169eIAcKtXr3Z73/Y8/fTTHADuyJEj3NmzZ7mCggLuX//6FxcaGso1adKEu3TpEsdxHLdu3TqHsp05c4YLCQnh+vbty1VXVwvnW7FiBQeAW7t2rfBZ//79uRYtWkgqD0H4G+SOJAiCOX7//XdMnDgRqampGD58uFe/5S0tFy9e9HjcvHnzsHHjRtx000347LPP8OSTT6Jz587o1KmTgwt069atiI6OxqRJk+qcw2KxCP+uX7++8O8LFy7AZrPh1ltvxQ8//OBV+Z3Jzs5GTU0NhgwZgnPnzgn/xcXFoXXr1ti3b5/D8aGhoRg5cqRX12jTpg1iYmKQlJSERx55BK1atcKOHTvcxpLt3r0blZWVmDx5MgICrg4jY8eORXh4OHbs2OH9jRKEH0LuSIIgmKK4uBj9+/eH1WrFli1bEBgY6NXv//rrLwBAo0aNRI+9//77cf/996OsrAx5eXlYv349Nm7ciHvuuQe//PIL6tWrh/z8fLRp0wZBQZ67y+3bt+P555/HwYMHUVFRIXxuL9TkcPToUXAch9atW7v8Pjg42OHva665pk58nRhbt25FeHg4goOD0bRpU8HF6o7jx48DqBVv9oSEhKBly5bC9wRBeIZEGEEQzGCz2XDnnXeitLQUX375JRISErw+B5/SolWrVpJ/Ex4ejjvuuAN33HEHgoOD8dZbbyEvLw+9evWS9Psvv/wSAwYMQM+ePfHaa68hPj4ewcHBWLduHTZu3Oj1PdhTU1MDi8WCTz/91KUgdY6xsrfISaVnz55CHBpBENpBIowgCCa4fPky7rnnHvz3v//F7t270b59e6/PUV1djY0bNyIsLAy33HKLrHJ06dIFb731FoqKigDUBs7n5eWhqqqqjtWJZ+vWrahXrx4+++wzhIaGCp+vW7euzrHuLGPuPk9OTgbHcUhKSsK1117r7e2oQosWLQAAR44cQcuWLYXPKysrUVBQgLS0NOEzXy2BBGFmKCaMIAjdqa6uRmZmJnJzc/HBBx/Iyk1VXV2NRx99FIcPH8ajjz6K8PBwt8eWl5cjNzfX5XeffvopgKuutkGDBuHcuXNYsWJFnWO5/yUzDQwMhMViQXV1tfDdsWPHXCZlbdCggcuErA0aNACAOt9lZGQgMDAQ8+bNq5M8leM4lJSUuL5JFUlLS0NISAiWLVvmUKY1a9bAZrM5rEpt0KCBx3QhBOHPkCWMIAjdmTZtGrZt24Z77rkH58+fr5Oc1Tkxq81mE44pLy/HH3/8gezsbOTn52Po0KF47rnnPF6vvLwc3bt3R7du3dCvXz80a9YMpaWl+Oijj/Dll19i4MCBuOmmmwAAw4YNw9tvv42pU6fi22+/xa233opLly5h9+7d+Oc//4l7770X/fv3x6uvvop+/frhgQcewJkzZ7By5Uq0atUKhw4dcrh2586dsXv3brz66qtISEhAUlISUlJS0LlzZwDAk08+iaFDhyI4OBj33HMPkpOT8fzzz2P27Nk4duwYBg4ciEaNGqGgoAAffvghxo0bh8cff9yn+veWmJgYzJ49G/PmzUO/fv0wYMAAHDlyBK+99hpuvvlmh+fVuXNnbNq0CVOnTsXNN9+Mhg0b4p577tG0vATBLHouzSQIguC4q6kV3P3n6diGDRtyrVu35h566CFu165dkq5XVVXFvfHGG9zAgQO5Fi1acKGhoVxYWBh30003cS+//DJXUVHhcHx5eTn35JNPcklJSVxwcDAXFxfHDR48mMvPzxeOWbNmDde6dWsuNDSUa9u2Lbdu3TohBYQ9v//+O9ezZ0+ufv36HACHdBXPPfccd80113ABAQF10lVs3bqVu+WWW7gGDRpwDRo04Nq2bctNnDiRO3LkiEPdeErf4QxfvrNnz3o8zjlFBc+KFSu4tm3bcsHBwVyTJk24CRMmcBcuXHA45q+//uIeeOABLiIiggNA6SoIwg4LxymwORhBEARBEAThFRQTRhAEQRAEoQMkwgiCIAiCIHSARBhBEARBEIQOkAgjCIIgCILQARJhBEEQBEEQOkAijCAIgiAIQgcoWSvD1NTUoLCwEI0aNaKtPwiCIAjCIHAch4sXLyIhIQEBAe7tXSTCGKawsBDNmjXTuxgEQRAEQcjg5MmTaNq0qdvvSYQxTKNGjQDUPkRP++ARBEEQBMEOZWVlaNasmTCOu4NEGMPwLsjw8HASYQRBEARhMMRCiSgwnyAIgiAIQgdIhBEEQRAEQegAiTCCIAiCIAgdIBFGEARBEAShAyTCCIIgCIIgdIBEGEEQBEEQhA6QCCMIgiAIgtABEmEEQRAEQRA6QCKMIAiCIAhCB0iEEQRBEARB6IBhRNiAAQPQvHlz1KtXD/Hx8Xj44YdRWFjocAzHcXjllVdw7bXXIjQ0FNdccw1eeOEFh2M+//xzdOrUCaGhoWjVqhXWr19f51orV65EYmIi6tWrh5SUFHz77bcO31++fBkTJ05EVFQUGjZsiEGDBuH06dMOx5w4cQL9+/dHWFgYYmNjMX36dFy5ckWZyiAIgiAIwvAYRoTddttt2Lx5M44cOYKtW7ciPz8fgwcPdjjmsccew5tvvolXXnkFv//+O7Zt24auXbsK3xcUFKB///647bbbcPDgQUyePBljxozBZ599JhyzadMmTJ06FU8//TR++OEHdOzYEenp6Thz5oxwzJQpU/Dxxx/jgw8+wBdffIHCwkJkZGQI31dXV6N///6orKzE/v378dZbb2H9+vWYO3euijVE+MqpU8C+fbX/JwiCIAjV4QzKv//9b85isXCVlZUcx3Hcb7/9xgUFBXG///6729/MmDGDu+666xw+y8zM5NLT04W/u3btyk2cOFH4u7q6mktISODmz5/PcRzHlZaWcsHBwdwHH3wgHHP48GEOAJebm8txHMd98sknXEBAAFdcXCwcs2rVKi48PJyrqKiQfI82m40DwNlsNsm/Ibzj3LlzXGFhIffKKxe4gIAaDuC4gIAa7pVXLnCFhYXcuXPn9C4iQRAEYTCkjt9BOmtAWZw/fx4bNmxA9+7dERwcDAD4+OOP0bJlS2zfvh39+vUDx3FIS0vDwoULERkZCQDIzc1FWlqaw7nS09MxefJkAEBlZSUOHDiA2bNnC98HBAQgLS0Nubm5AIADBw6gqqrK4Txt27ZF8+bNkZubi27duiE3NxcdOnRAkyZNHK4zYcIE/Prrr7jppptUqRctKCkpQWVlJQCgsDAABQVBSEq6goSEGgBASEgIoqKi9CyiZEpKSrBixQrYbI2wZMlkcFztbvc1NRZMnx6OP/9cC6v1IrKysgxzT4T32LdpVxipTRMEYSwMJcJmzpyJFStWoLy8HN26dcP27duF7/7v//4Px48fxwcffIC3334b1dXVmDJlCgYPHoy9e/cCAIqLix2EEQA0adIEZWVl+Pvvv3HhwgVUV1e7POb3338XzhESEoKIiIg6xxQXF3u8Dv+dOyoqKlBRUSH8XVZWJqVaNIMXLQDwww834eOP7wbHBcBiqcE992xHp04/AoBhRAs/8J4/HwWOc/TMc1wAzp+PhNV60eMAzSIkKqRj36YBwGZrhPPnoxAZWQKr9aLwuVHaNEEQxkJXETZr1iwsWLDA4zGHDx9G27ZtAQDTp0/H6NGjcfz4ccybNw/Dhg3D9u3bYbFYUFNTg4qKCrz99tu49tprAQBr1qxB586dceTIEbRp00b1+/GV+fPnY968eXoXwy38wG6zNRIEGFArWD7++G4kJ/9hSNESGVkCi6XGQYhZLDWIjDyvY6nkQaLCO+zbqqeJhdHaNME2LE6UWCyTP6CrCJs2bRpGjBjh8ZiWLVsK/46OjkZ0dDSuvfZatGvXDs2aNcM333yD1NRUxMfHIygoSBBgANCuXTsAtSsV27Rpg7i4uDqrGE+fPo3w8HDUr18fgYGBCAwMdHlMXFwcACAuLg6VlZUoLS11sIY5H+O8opI/J3+MK2bPno2pU6cKf5eVlaFZs2Ye60cPxCxHRsNqvYh77tleZwA24r2QqJCH2MSCIJTCeaLkDi0nSiyWyV/QVYTFxMQgJiZG1m9rampjkHj3XY8ePXDlyhXk5+cjOTkZAPDf//4XANCiRQsAQGpqKj755BOH8+Tk5CA1NRVArdLv3Lkz9uzZg4EDBwrX2bNnD7KysgAAnTt3RnBwMPbs2YNBgwYBAI4cOYITJ04I50lNTcULL7yAM2fOIDY2VrhOeHg42rdv7/aeQkNDERoaKqs+tERLy5FWs7NOnX5EcvIfOH8+EpGR53UZeJW8VxIV3mG2iQXBLlInQFpOlJyv5c6CTpM35TFETFheXh6+++473HLLLWjcuDHy8/MxZ84cJCcnC8InLS0NnTp1wqhRo7BkyRLU1NRg4sSJuOOOOwTr2Pjx47FixQrMmDEDo0aNwt69e7F582bs2LFDuNbUqVMxfPhwdOnSBV27dsWSJUtw6dIljBw5EgBgtVoxevRoTJ06FZGRkQgPD8ekSZOQmpqKbt26AQD69u2L9u3b4+GHH8bChQtRXFyMp556ChMnTjSEyBJDK8uRVNfaQw89JAhvX7BaL+o24CrtRiRR4R1mckkbFX91h7l71/XCkwWdUB5DiLCwsDBkZ2fj6aefxqVLlxAfH49+/frhqaeeEkRNQEAAPv74Y0yaNAk9e/ZEgwYNcOedd2LRokXCeZKSkrBjxw5MmTIFS5cuRdOmTfHmm28iPT1dOCYzMxNnz57F3LlzUVxcjBtvvBE7d+50CLRfvHgxAgICMGjQIFRUVCA9PR2vvfaa8H1gYCC2b9+OCRMmIDU1FQ0aNMDw4cPx7LPPalBb2qCF5cidaw2owR137EaPHrUrVt99913Dm8mVdiOSqPAOM7mkjYi/usNYEzxkQdceQ4iwDh06CCscPZGQkICtW7d6PKZ379748UfPjTwrK0twP7qiXr16WLlyJVauXOn2mBYtWtRxfZoNrSxHzh0DEICcnDsAQBBiZjGTK9UJkqjwHhZc0v6KP7rDWBQ8ZEHXHkOIMMK/cdUxABbs3p2G66//RXbnEBISouhxSuBLJ1hSUoJz584Jf5Oo8B49XdJELaxZh9SCRcFDFnTtIRFGSEYv0RIZWQKgBs67bPnaYUVFRSErK4upOBS5naA7dw6JCveUlJSgtLRU0rFaCnF/hkXrkFqwKHjIgq49JMIIyeglWqzWi7jjjt3/c0FahM+V6LBYiy+R2wlKdefw+LuokBqDlJmZiZiYGObaiVlh0TqkFqwKHrKgawuJMMIr9BqM+Niv3bvTmOqw1MBTJ3ju3DlRoevJnZORkYGEhAS/FxVSRavVatW0rvx1hSAPi9YhpbGfAHl617WcKDlfy50FXevJmz+8DyTCCMPQo0curr/+F7+YobnrBLOzswG4XyUm5s6Jjo42fKelNKzEILG8QlDNwdA+lpFV65CSsBgGwWKZWH4flIREGMEsrmZdesQ4aTEbczfD9HaVmD+5c6Ti6vnxgz5LMUisrhBUczB0dW5/cIexKBpYKxOr74PSkAgjmCUqKgoPPfQQ3n33XdFj1TKTazUb42eihYWFgrVLjoXGH9w5rnAnlEtLS7F582a3v2NVtLJknSssLHT4TMnB0N1vWHGHEWzAyvugBiTCCKZJTk7W1Uyu5WwsKipK8ibp7vAHd44zUoUyUPf5sShaWbHOuapXtQdDd+8XxTL6L6y8D2pBIoxQDaXceKx0vFrOxqRaaPg69uf8YFKFsrvnx5poZcU651yvp07FqzoYenq/KJbRf2HlfVALEmGEKpgtqFLr2ZgUC42nOvZXd467gdzT82NNtLJonfvhh5uwbdvdUDpXH4+S75c/rKjzJ1h8H5SERBihCmYLqtR6NibFrSi1jjMyMhAdHW36wcfTQC72/FgSray5lPl6dRZggHKDoVLvl9kmfwR774PSkAgjVMcMQZV6zMa8sdCIuXLi4+NVKycreBrIxZ4fL1Tt0VO0smSdc71tGBQdDJV6v8w2+SNqYel9UBoSYYSqmCWoUqvZmNSkieXl5SgvLwdgnjr2FU8DudjzY0Gospow01W9AjUYPfpNNG1apMg11Hi/1Jz86e3y1Pv6WsDq+6A0JMIIVTFTUKUWszEpSRPLy8sd0naYqY59QWwgZ302zWLCTMB9vToLMDmDoVrZ49WcmOjt8tT7+q5QQxSy+j4oDYkwQlWMHlSpx2xMrFMpKnIc/Ixex0oiJrRYn02zOqB4qldf0keoNdCqOTGR6spUy+Wp9/WdUVMUsvo+KAmJMEJVjB5UqcVsTIlZZGpqLvbvTwVgvDr2FalCOTMzE1ar1eXv/aGz9xap9epr/i416l5sYmKf0sUeOW3BXdwZoI3b0NP1tYA1UWg0SIQRiuDc2Zgpb5XasR2+zCKd415SU79GSkqe4erYF/zFbaE1Rq5XsckfvyuFK7yx2HiKOzt58iQ+/fRT0XP44jZkcdGT3qLQaJAII3xGipBg3Q2kF76s5nIV95Kbm4qUlDyH4/yhjlkUAmbAyPUqd/In1WIjFncmRYB5cz1vr68HLIpC1iERRviM1E7EOQ0Aq7NovfC2AxOLe6GtXtjFH1a36YFUFyrgu8XG27gzpS1ErC3IYVEUGgESYYTiuOtsWEgDwCpyOjCxuBcjbPVSUlKCs2fPoqqqyuX3QUFBiI2NZf4+vIHF1W1mwdmFeu7cOZeuR08THvtQCk9i2JsFMV9/nYrdu9MUtRCxtiCHNVFoFEiEEYpC5mh5yOnAWF70IMXSA0DyxttmEiQUyKwuntqJzdYIJ082c9iCyXnC4yza3LU9qe/f11+nIifnDgAWl9eTC2vvP2ui0CiQCCMUwxdztL+7Z7zpwNTKraQUUi09Q4YMqfOZP2Y4p0BmbbCfIDrjacLj3Pakvn9A7bPNyUkDL8CkXE8MVt9/1kShUSARRiiGXHM0uWe868BYX7UmVTBduXLF4W81XDasQ5ZjbXCeIDpjsdQgOLgSBQWJomJYyvtns9mwadMmnD8fBaX33GTt/ddbFBp9Ak8ijFAMueZoOSsEjf7iucKb1VxGujcplh61XDYsQ4HM2uFu/0ugto+64YZDWLNmjGQxLPX9c73lE4e0tN0+PWOW3n89RaEZJvAkwgjFUMIcLcUyYIYXj8fs+6NJeZ5quGyMgN6BzGacyLjD3QRx0KAtiIgoFQQYoKwYdu4TgRrcccdu9OiRKxxj1HfbHlas7u4mfIWFhS7bOgttnEQY4TNKmaOlWgZ8ya3FGqy5FpRE6vNUw2VjBPQMZDbTREYK7iaI119/GAUFiYqLYal94kMPPWSK+mUBTxO+7Oxst+OE3m2cRBjhM0oJCTmWATPE1Ji1E5b6PNVy2YihtyVIz0Bmf1mhKUUMqSGGjTy50vu9kIPYhM/TOKF3GycRRiiCEi+lt50hxdSwjdTnKcVlozR6WoL0DmR2hVlXaHoSQ3wOMbXEMGtCRQpGtZB6mvABYHqcIBFGMIO3naHeMTWEZ8SeZ3BwsHCs2KIEpQWJni5tNa0kcqwYZrAmy7lvFsWw3hjVQuppwsf6OEEijGAKb1YIUnJANpE6uMXExCArK0v3jPl6iBC9V4rxmMGaLNd6Y2SXoVZoZSH11QUqNuFjeZwgEUZIRq1YAbkrBP0hOaDW8RlKXM/bwU3PQc5XEcJS/Iwc6x7rVgIp+GLV9GeBJYbUrZ0A39q5Ui5QdxM+1scJEmGEJNSMFfBlRuqN5cxoaB2foeT1jDK4+SJCWI6fkWrdM5s12QyuVRYQm5y42o9Tbjv3RURLncCzPE6QCCMkoXasgDcvr9lza/FoHZ9h1HgQX/BFhLBaX95Y91i3EniDGVyrrCAW6K5W/KS3IlrKwgsed+OE3pAII2Sh52oqo8Zy+Oq6UqLOPZXB2cVg1hVz9igpQlipLynWPTMGpZvBtcoK7iYnhYUJePvtYapYGuWKaHd9ptS2q3cbJxFGeA0LJn/WBJYYvrqulKhzqWVQ6npqoXQclhKuCpbqS4p1T4mJDEvxcID5XKt64mpykpa2W9jbFVDe0qi0iDbKZJ1EGOEVYrOVc+fOMdGwWcMX15VSbhapsRdquHWUGrCVisNS0qXNmhtMqnXPl3eUxXg4M7lW9cKThVRtS6NaSXNZh0QY4RViLyLvg2ctmR9reOO6UqPz82S5Ufp6Sg7YSsVhKTlLFquv0tJSxMfHSyq3UqgdiMzq1mEsB2AbAVfvhX1slZqWRn8V0STCCK+QOlsxU/C20njrulJ6hihmuVH6emoGsPsSh6XUJEGsvjZv3qzJpESvBSt6u2L1XqjDmlvWV9yVVQuR5I8imkQY4RWuXsTUVPW2lzEqzh0zH/Qux3WldOcnZrlRu7NVKoBdi8FfykIGKfWlxaREjxgYFlyxesb+sOiWVRM1RJLeIlpvSIQRknAVK5CXl4L9+1Oxf38P5OamMhW8rSeeOmZvXH1qrWCTYulSa8WcUsJJi8Hfm4UMfH2dPNkUgAXNmp1UpAzeovVAz8qKRL0EDqtuWSVRWyQZJYBeLUiEEZLgX5TCwkIhPiA3NxUAG8HILOGpM/HG1adW5yRmucnIyEB0dLRi1+NRUjhpMfhLHWB58vNbMbNCUitoReJV9HbLqoUWIsmsAksKJMIIyURFRQkvIiszYC2RG/vhPHh74+pTq3PyZOmKjo5WJZBcyTaj9eAvNsCy4JbTAzMEUysR02X25+/PIkltSIQRshAbBPl4GXcdmNGCWeVsjgy4H7z1SI6pd+yFksJJy8FfygDrj5MSHiMHUysV0+Xr8zdaf0goB4kwQhZig6D9dhHOHZgRg1nlxH6IDd4jR97h4PZTu6PVwq3gajDxJoBdDD0yvUsZYP3NLae3oFcKpWK6fHn+RuwPCeUgEUZ4hdRB0J6zZ886dB6s7rknFamxH2KDt1puP0+o2YlLGUx8FU56BPFKGWDN4JbzBjMGU/sS0+XL8zdjcD9Z9qRDIozwCvvO9+jRo9i3b5/QUbjrPKqqqjyeU6s997SO/TCjdUSJvSedLYCAd52y1p231AHWLHswSsVMg6gSMV1m2/5KLs6TMXf9AFn2aiERRngN/+LYD7pyOw+tOh09Yj/MZh1Rau9JPSyAvuJpgM3MzITVanX7W7PM+s1s3ZAb02Xm7a/kYt9GPPUDRrLsqQmJMMJn5HYeWnY6SrlApVi39Ihb0gKpdWiWwUTqABsTE2NY8SEVs8ctybVaa7n9ldEwSz+gNiTCCJ+R23no2enIdYFKsW6ZMV7GFe7q0CyDiavnaLPZHNzrQUFBqKysRFFREQB9nqsWFiozxi3Z44vVWqvtr4yGWfoBtSERRvhMcHAFAA6Axe5TDsHB6q0o8gVfXaBSYj+MLrDE8FSHZhpMnFf1btq0SfQ3WlqD9Ii/MUPckiv0TrVhtvAFM/UDakIijPCZqqpQOAowALCgqsqzu02PTkeuiVyp2A8zxNWI1aHZBhMeFq1BWsffmM3FxFqqDb2FoJKYtR9QGhJhhGyCgmqbj9iMhz+OR2rMlM1mc3ttuWJFrolcCRejWeJqpNShmQYTV7BmDdJKHJnNxcRC6ABrQlBJzN4PKAGJMEI2sbGxAMRnPPxxPGIdX2lpKTZv3izq+pEjVnwxkVNcTS1S61CJwYRFyyGL1iCtxJEZXUx6T3i8EYIsvg9iuOsHvMGI9y0VEmGEbJw7j7lzz+LYsSAkJl5BQsLNAG52+3Io8cLIESusmMhZs6R4g1YbgLNqOWTRGqSVOGLl/WERX4SClPbL6vvgjNRJltTjzJ53jEQY4RP2jT4+HujcWflrKJHMlaW0EWKWFOekp/ZlY6Vz9VSHCQkJqohsViyHLFqDtBRH5GKqixZCQer7cPbsWV2tRkq7eM2ed4xEGKEb7maOSiSBdYaF2A8eMUuK/b6bzug529OzDlmyHLJqDVJTHJk5bkkJtBYKnq5hH8ahl9VIjXOzGAagBCTCCF2QYlpX+qVjxVQtxZLCitXHGT3qkMXOl1VrkBLxN65gaRLDMlq0VanXMJvViMUwACUgEUboghTTullfOjFLCktWHxZgpR2waA1SOv7GE/4usKSgRVuVcg25IQ8Au2KaxTAAJSARRuiOO9Eh5aUz6qoZd5YUFq0+esNK56u0NUiJtksWKvWR8px4tGirUq4hNeTBSEHurIYB+AqJMEJXxESHp5fOZrMxl8HcE1IsKaxYfVhCrB1ouZBBqfMpGcjNQts2K1KfU2ZmJgBthIKUa0gRamq5K9WcGLMaBuALJMIIXRETHZ5eOo7jJF2DlfgHT1aLc+fOITs7W7TztBcc/mTh8NQOWF3I4Ak5gdxGtfoaGanPyX4/US2Egtg1xCew6ljctVglqlbco16QCCN0RUx0uMs5FRISInnJNkuIdTxinaez4GBVZCiB1BgsgN2FDGJIHQzNniuJdbwVLWoIBW/eB8CzUFPK4u48MZC6st2b91LLuEc9IBFG6Iq35nv72X5RUZHwuZmC2V11nr6IDL0tKHKvL8VyCBj72UsdDNVOgaB3G2EdsefkvDWbO3wRClLi//jdRnjcCTUlYtfcTwwaAYBiljazxz2SCCN0x1tXk/Ns3wzB7J5mub6IDL2zbPt6fbEyGf3ZezsYit1vaWkp4uPjvSoDWdnEEXtOERERmggFsd9LFXlKxK55mhikpuYqGttq5nZnGBE2YMAAHDx4EGfOnEHjxo2RlpaGBQsWICEhAQDwzDPPYN68eXV+FxYWhkuXLgl/f/DBB5gzZw6OHTuG1q1bY8GCBbjrrruE7zmOw9NPP4033ngDpaWl6NGjB1atWoXWrVsLx5w/fx6TJk3Cxx9/jICAAAwaNAhLly5Fw4YNhWMOHTqEiRMn4rvvvkNMTAwmTZqEGTNmqFE1hkSKaV2q9ccMwezOsz3e0uOryJBqGVHLbad21nujP3tvB0Ox+928ebPXYsnsGcmVQMpzYkEoiFmN7C3ISsWuueqj9u9PZWJFsxEwjAi77bbb8MQTTyA+Ph5//vknHn/8cQwePBj79+8HADz++OMYP368w2/69OmDm2++Wfh7//79uP/++zF//nzcfffd2LhxIwYOHIgffvgB119/PQBg4cKFWLZsGd566y0kJSVhzpw5SE9Px2+//YZ69eoBAB588EEUFRUhJycHVVVVGDlyJMaNG4eNGzcCAMrKytC3b1+kpaVh9erV+PnnnzFq1ChERERg3LhxWlQX87jqLOS6mFhJYeArrjpxpUWGnnFzargNzfDsvRkMpdyvXLFkdKui2hhlZZ43YlCJ2DVXfRQQgNTUr5Gbm2qqdBJqYBgRNmXKFOHfLVq0wKxZszBw4EBUVVUhODgYDRs2dLBE/fTTT/jtt9+wevVq4bOlS5eiX79+mD59OgDgueeeQ05ODlasWIHVq1eD4zgsWbIETz31FO69914AwNtvv40mTZrgo48+wtChQ3H48GHs3LkT3333Hbp06QIAWL58Oe666y688sorSEhIwIYNG1BZWYm1a9ciJCQE1113HQ4ePIhXX32VRBjE40/kBMFKtSYYLfZFSZGhZ+yUWgO8WXIHSR0Mne8XADgOyM9v5fOzNLpVUQuMvjJPjSB3d31USkoeUlLymBetemMYEWbP+fPnsWHDBnTv3h3BwcEuj3nzzTdx7bXX4tZbbxU+y83NxdSpUx2OS09Px0cffQQAKCgoQHFxMdLS0oTvrVYrUlJSkJubi6FDhyI3NxcRERGCAAOAtLQ0BAQEIC8vD//4xz+Qm5uLnj17OjTk9PR0LFiwABcuXEDjxo2VqAbDYC98nANHXSF1MPB2U26946PkoJTI0NvKoeYAbxQLhT2+DIbJyX/AMTuLMs/SDFZFpTHbyjw1gtzF+igjvI96YigRNnPmTKxYsQLl5eXo1q0btm/f7vK4y5cvY8OGDZg1a5bD58XFxWjSpInDZ02aNEFxcbHwPf+Zp2NiY2Mdvg8KCkJkZKTDMUlJSXXOwX/nToRVVFSgoqJC+LusrMzlcUZCqvCxR+pg4G2HonZ8klooITL0tnJ4M8BLsVayuIWQN/gyGJ4/HwVA+WdpFquikphxZZ4aZfW2j2L1vdQDXUXYrFmzsGDBAo/HHD58GG3btgUATJ8+HaNHj8bx48cxb948DBs2DNu3b4fFYnH4zYcffoiLFy9i+PDhqpVdDebPn+9ycYGRERM0roSQN4OB3A6F9bQGSosMva0cUp+pN9ZKow+O3pRNq61xjGhVVBuW2xBLOPdR7ia5Dz30ENWpHbqKsGnTpmHEiBEej2nZsqXw7+joaERHR+Paa69Fu3bt0KxZM3zzzTdITU11+M2bb76Ju+++u45FKy4uDqdPn3b47PTp04iLixO+5z+zX+Z9+vRp3HjjjcIxZ86ccTjHlStXcP78eYfzuLqO/TVcMXv2bAd3aVlZGZo1a+b2eCNi/2Lm57dyK4TUHAz0ds1JQekZOAtWDinP1BtrpbepGIyIvVWwb9++2LVrl+rP0uhxT4Q2eJoAeprkhoWFaVVEQ6CrCIuJiUFMTIys39bU1ACAg/sOqI3r2rdvH7Zt21bnN6mpqdizZw8mT54sfJaTkyOIuKSkJMTFxWHPnj2C6CorK0NeXh4mTJggnKO0tBQHDhxA586dAQB79+5FTU0NUlJShGOefPJJYdEAf502bdp4jAcLDQ1FaGiojNowBs4vZm1ci3shpJaLSW/XnFSUmC16GzenNL5Y9Fi3VqqN6/xdiYiMLFF0kmK2uCdCG9RKq+NvGCImLC8vD9999x1uueUWNG7cGPn5+ZgzZw6Sk5PrWMHWrl2L+Ph43HnnnXXO89hjj6FXr15YtGgR+vfvj/fffx/ff/89Xn/9dQCAxWLB5MmT8fzzz6N169ZCioqEhAQMHDgQANCuXTv069cPY8eOxerVq1FVVYWsrCwMHTpUyFn2wAMPYN68eRg9ejRmzpyJX375BUuXLsXixYvVrSiGcfViOmMvhDxtV+SrONHbNaclese0yL0+deTS8ncpMUnxtY0YbcUxoRxapNUxO4YQYWFhYcjOzsbTTz+NS5cuIT4+Hv369cNTTz3lYDmqqanB+vXrMWLECAQGBtY5T/fu3bFx40Y89dRTeOKJJ9C6dWt89NFHQo4wAJgxYwYuXbqEcePGobS0FLfccgt27twp5AgDgA0bNiArKwt9+vQRkrUuW7ZM+N5qtWLXrl2YOHEiOnfujOjoaMydO9cQ6SnU6lBd55JxxF4IRUdHq+ZuYsE1pyV6D4BKtRd/7cjFBKn9hEXu+ym3jRg52z6JR3Xwp0muEhhChHXo0AF79+4VPS4gIAAnT570eMx9992H++67z+33FosFzz77LJ599lm3x0RGRgqJWd1xww034Msvv/RcYMZQM4WDuxeTd0lqLYQoAJltqCO/ipggFZuwqCk2pGbbLywsdDhWb4FjZPHIOv42yfUVQ4gwQhvU3OLG3YupZYyS0dMa+BPUkV/FF0GqldjwZK0DgEWLfmBK4NBWTerC2iTXfiJSWBiAgoIgJCVdQUJCbWy5npMCEmGEqkgJDLdaLyIzMxNWq1X4jRovhN7xUYR3sNaR64UvglQrseHOWpeXl1Jn6xr+mmfOnNF9YKTYQ/VgZZWt/UTE0zug16SARBjhFiX2GWRN+JDAYhup1srS0lKXvzXr8/VVkKotNlxZ64AaQYC5uia/c4aeAyPFHioHq6ts+bFH7B3Qy+pJIoxwiZLpAcw6MBLK406022w2bNq0Sfjb3dZXZo7h8cWyoLTY4N07586dE8rmbK1LTc3F/v09PF5T74HRaLGHLC8mYG3C7QyrgptEGFEHMtETeiKlkzbKllO+oKRlQUmx4S7OLDn5D0yevESw1gFwsIS5uqbeA6ORYg+NsJiA5QkQq4KbRBhRB707RoLwhFQrLctWAykoaVlQUmxIjTMDIHpNFgZGo8Qe0mIC32BVcJMII+rAQsdIEK6QaqU1gtVACkqWTWmxIfYsbLZGaNz4AkaPfhNVVSEur8nKwMhKELkUjOyp0HtixKLgJhFGCPBuDbGOUaqbxPmFs9lsqKqqEv4OCgpCRESEw/VZHhAJ/ZFqpSWrgWvciQ0+tssZT++kp2fhal/YpKTjLs+jx8DIahC5FLTwVKghlliZGLEmuEmEEQLO7o+5c8/i2LEgJCZeQULCzQBulvzySU386oyWlgm9Z2WE93hrpTWy1UAJpIoIfs8/bwZFd88iOLjS6zrXemBkPYjcE2p7KtQSSzQxcg2JMMIB+5cqPh743x7lXiP2IukdWK3m7gCEenjrvvL3+EZPYoPfcBmQNyi6exZVVaEe6zwjIwPBwcEOq131gNX32t3k0NNKVCVduGqLJa0nRqxbPUmEEZpgL7pcuSrkpr+Qi5q7AxDq4o37iuIbxcWGL4Oiq2dhszXyWOfR0dHMD4x6IdUKpYULVy2xpPXEiHWrJ4kwwgE1XHT2symgBoDlf/+x4x5SIjEtoR5yt5xiJfCbZXwdFJ2fhZQ6Z31g1AsxK1St8LraT6nZjtUSS3pMjFhuRyTCCAE1XHTOsykgoM4x9i92aWmpx82I1UDJxLSEOvgyaLO4IoolvB0UpVinpNQ5ywOj3rizQnEcAHjup+QunOLh3Z5qiSWaGDlCIowQUMNF52o25Yz9i71582ZN47D8PXDbSPjSJlhbEcUS3g6K7gSxfYwZf15v65wWy9Tizgpl/2/7fiojI0Nw8yq1cEpNsUQTo6uQCCPcooSLzt2echYLhBc7LW23blnP/T1w26xQzJF3eDsouhrofa1zqfFQQ4YMcUht43xuM4g01/2mI/b9VHR0tFcehLrbgmkfe0YTo1pIhBEuUcpF52429fff9ZCTkwaOC8Du3WmoX/+yLi5ACtw2J/4ccyTXmuTroOhrnUtdlcfvG2rUBLxScNVv8q5IHqX6KbG+XimxRBMj15AII+qghIvO/kVynk0BwJIlk8F3KHq6ACk+wbwYfSCWgzc5ntQYFJWocyn9jxnyTLkSy/ZJc537TVerytXe9cAT3oolf54YeYJEGFEHJVx0rl64Y8eOYdeuXSgoSJR9fqViRjyJRPsy+NusjDA23uR4io+PZ3JQFOt/zBDH6VksXz3O3gqlhmtQrK75WDNn5LYLfxNYUiARRtRBKReduxdO7vmVXL1JszJCDCMHiUsVKiyW310c6aVLDQSxYvQ4Tm82QbdH6Tgqsb7Y21gzwntIhBF1UNtFJ/f8Sq/eZHEAItjA6DsqGFmoOPcPfG7BLVvuExbymCWOU0ws33HHHcjJyRE9j1yLPYVj6A+JMEJASxedEqZ1d/EucjYjJgiekpISFBYWOnym9zZbrvAUU2T0BSd8/3DyZFNs3ToYHHc1ufPu3WlIS9uN3bvTDC8cxMRyUlKS6hZ7qX2xkS3DLEMijBBQ20UnN+u5KzyZ8O1zFTnDquWCYANXsTp5eSnIzU1lKpmvWEyRGSwcVutFnD//t0uRkpBQiMmTlxg+z5QUsSy1v/JGJHnbF6u1qTdBIoxwQs0XSCmRJyXehUXLBcE+zrE627bdDfu0AKwEgUuJKTJaQkxXky9PIsUMeaaUEsveiiRv+2K1N/X2Z0iEEZqihMgTM+HTNkSEr/BCX2ybLd79V1paiitXrjgcFxwcDOv/lrqp5aoRm5AYSajYCwM++74ckWK0Fc1KiGU5IklOezTDylTWIBFGGA5Ps2PqJAgl8LTdlr27yJXrW0tXjdwAfFaFird7fzqnUGA1LsnZVegct6qUWFa7/zPygg9WIRFGGA5Ps2MWcpARxsfdtjHuLDG88CosjK8TMK6mq0YspshVnidX7Zj1tu9OpBghhYJ7V2EjxROiqi2SjL7gg0VIhBGGQcrqTRZykPkTag3eeosCV2kSunfPRUpKXp3BzN79A3AArq7kU9sKK+aukyJSWAy6NtMWN1JdhUpY9dQWSWZY8MEaJMIIw+ApmNSXGBJA+Rxk/oBawlXN84oJO3ukxOo4u394AcajhavG15giFoOuzZhMWcxVqIRVTwuRZLQFH6xDIowwFFI6XTVzkBFXcR4glVqRqsZ5pVp7MjMzHX7nzg122223Yd++fR5jxwDtXDVKxBSxFk9pJIElBa3iqbQQSUZa8ME6JMIIU6BVDjLCNWrVmVLnlWrt4ThO0vliYmIAuIsdq3VJqumqUcNdR0HX6qJlPJXSIslM7mHWIBFGmAItc5ARjojVmbsdDADPz8Sb80p1TYmdMyIiQlI74r935f5JS9uNhIRCVV01arjrxETCuXPnDOcCZAk1XYVqiyQzuodZgUQYYRq0yEFG1EWszjztYAC4j+3y9rxSYsSkPF8p7aioqEj4t14xMkoPeK4WI6Sm5grf8/VNi1Pko1Zb0UIk0TNXBxJhBGEHLcH2Hql15m1sl7vzBgdXoqAgUVaMmFLPV6r729NvWIQXCfxWTfv390BubiplRVcQteKpSCQZExJhBGEHLcGuxZuVhFLqTE5sl6vz3nDDIaxZM0Z2jJhYWaW63JwtD3plzFcLfq9MoK7LtrS0lPncXCxB8VTeoXd6Gq0hEUYQkJaDDKgdbJ1/Z6YOAZCeIsJ+JaGnOvMlzs7+vMHBlYIA8/Y87s7pXFZvXG723xtZlDgP/mIu282bN5NL0gsonko6/pivkUQYQcB1R2mz2bBp0yaH4zZv3lznt0bvEMS2VHGH80pCd24Wb+Ps3Ln65OyGwN+bu21ibLZGsl2bZoFv+4WFhcjOzna74rOwMAFJSccB+Ff9KIGR+wctUSvtDcuQCCMMg9pmaikrJ83WIUiZebq7b7GVhHwCXW/jsJwFsdzziN0bpSK5SlRUlMOKz7S03cjJuQNXk89asHt3Gq6//he/c81rhb+54cTw5f00Ul2SCCMMgdpmalcvrb31xKwDttjMU+y+pdS1nDg7V+f19jye7g0ApSLxQEJCEfTI/u+vsLh1lJ74EsJgNJcmiTDCEKi5rZDYS+svucOcBVda2m5hM2rAt/tWamm+3PM431tqai6lIvEArRLWFqnJhAsLC132cSxZdpTAl1RBRnNpkggjDImS2wqJvbRiHYJzvJERO0RXQjMnJw2AfKGi1C4Gvp7H1b3l5qYCqIH9/fm7yPB2xSuhPGITvuzsbL+wkik1CTCCB4NEmJ9gJB+5GGq+WK7OnZz8h8cOwVUyUqN1iK73QAzwqSNUalWYr+dxJ6K7d/9aSMWghsgw2jsXFRWFzMxMYTEKbdSsPWITPlY2WFcbJSYBRvFgkAjzA4zmI/eEmi+Wu3NPnrzEbYfAuqlbKu5mnvYuSTkdoVLtyZfzuLu3lJQ8pKTkqSIyjPrO8XnNrv5NGzVriScLkFFEhVL4Ogkwyu4nJML8ADXjqbRGzRfL07lddQhGMHVLxd3Ms1OnH3H99b+47AiNklxSbFYtd6N3TxgtLoWHEovqi6e2KpaiRe4erWJoadFVKoQBME5cI4kwP8TdgCBnQ2StUfPFEju3fYdgxlmpu5mn1XoRI0fegejoaOFYVtuHOzzNqjMyMlS9Nz3EutyBkxKL6o+7tirWP8ndo9UTWlt0lWx/RolrJBHmZ3gaEJxf4iFDhiAiIgIAOx2vmi+W2LkzMjIA1NaTUUzdYkideSYkJDDx/L2BhXvTQ6z7OnAa7TmbEVdtVWrfp6TVVQ+LrpLtzwhxjSTC/AhvBwTn7PCZmZl1YkYAbQSa1G2FfHWTeDq3vbXEG4scywHaZrZ8sHBveoh1o7pC/Rmp/ZaYqNB60RKL4RdKujS1gESYH+FuQDh5sinOn/9b6KTdddrOW/jYo3aAsZoDqjcvrX1WcSmzUiMEaBtRYElF73vTOy7FKAOnv+Opf+N3jOBx1z/psWiJxfALFiZf3kAizI9wvSdcDbZuHSx00jfccAiHDt3gttPWc1at1kvjzUtbVFQkfCbF1E1WCf9GSfe5txZVIw2c/oqUZ5qQkCDpXHotWmKxLbEisKRAIsyPcB4QapNVWsBxtduTcFwAfvqpI/jtSpw7bTPPqqW+tL6Yus1cf4R7lIhL8caiymO0gdNMSBFXACQ/UzX2aPUGPSy6LIdxKAmJMD/AXTzVpUsNsGXLfU5Hu94vDqC99gD5pm6ySjhi9g5W6bgUORZVvV2h/opUwZyZmenwt6dnGh8fL3o+PRctKY0RwjiUgkSYH+AsHPiZk83WyIV7koO9EOM7bZpVX0XOS+8v9aekBYDF1blSUTMuRapF1ShL9M2GVMFcVVUl/FspK7maqwG1XGnoT2EcJML8BFedvatO2lVMGN/oaVYtH3+wSkidvQ4ZMkTS+ZxX5xpt1qtGWb21qBphib6ZkSKupD5TdxMcm83m8LeSqwFZWGlo9jAOEmF+iFi6h9tv3+syYaces2qzuK38wSohdVZ69uxZh7+dZ7lmnvX6ihSLKgsDJyFdXEl5pt5McHjrsT1y+0m9Vxr6KlC1KKOvkAjzQ5xfLJvN5pB+wl2nrfWs2mxxAZ7qzwi7FXiLOzG1b98+4d/Os1yx1bn+jphF9dy5c4iOjsaQIUNw5coV4Zjg4GCHHH9maWMsIzUEQYqVXKp7LiIiQlL8mFFQUqCyOk6QCPNT7BtjfHy829lOaWmpg1tIy1m1GeICpFolnHcrYLXDkIqzuEpL242EhCKHZ+dqlutpdS4hblH1tHWNfbLlyspKlJSUGLqNsY7UEARvreRauuf0FjhyBKo7WB0nSIQRANzHr3gSaDxazKqNGhfgblEEjxGFpRiuxFVOzh0ALA7PztUs193qXBJhV5FrkXaVbNnoYp9lvBFXUp+p1qus9RY4csI43PWprCJZhJWVlUk+aXh4uKzCEGyidydt9PQO7urPqMJSDE/iyv7ZuU4e7Hp1rr8j1aIKeDcIqTV4GjlGR0k8iaugIMfhV8pOHXqvstZD4Hgz6TBinypZhEVERMBisXg8huM4WCwWVFdX+1wwguDRu+NxRokBxujC0hOuxdVV+GeXlHTcq9W5/ozUbW3cDUJaDp56u7D0Rqpgjo2N9XqnDj1XWWspcORsJWfUPlWyCLMPpiUILWEpvYOcVUquRBlrwlJJ6u7M4N66JXV1LiFukXY3CP39dz3s3p2mmXXADLGcvqDmikK9VllrLXDkbCVn1D5Vsgjr1auXmuUgCLewlN5B6gAjluOKJWGpFO5SnxQWJtQRAXxdZWRkIDg4WNLqXEqp4Bl3g1BOThoAfawDRnQPKYGaFj49cr/JETi+egy8rUOj9qmyA/NLS0uxZs0aHD58GABw3XXXYdSoUQ7LoAnjwHoMB4tJJ10NMLVlFJ/1syQslcJ+9sq7yKzWi0hKOo7rr//F5bOLjo5mZvGH0XE3CClpHZC6IwJgXPcQi+id+81bgaOHS9qofaosEfb9998jPT0d9evXR9euXQEAr776Kl544QXs2rULnTp1UrSQhLo4vzDurDtax3Do3fHw2A88fD4vVwPMtm13w2KB5Fk/i8LSV/j24e2zI4HliJxJkatBKC1tt2CF5JFrHfB2T0SjuodYRO+kqd4KHC1XVYolH3d1HEvIEmFTpkzBgAED8MYbbwgrPK5cuYIxY8Zg8uTJ+M9//qNoIQl1sX8RPLkPtI7h0LvjAdwPPK5XAAaA42r/5W7Wz4qwlIpcCykLz86oeGtFEBuE6te/rIh1QOr7z++JaFT3EKvo8a4oJXDUXBhi9L5GtiXMXoABtcttZ8yYgS5duihWOEJbWHQfuHpx7IVBZWWlEJjJo+QL5y4GLDi4wuMKQMD1rN9IHYavLgUW7sEX9HLRe2tFcNWm7JMsq2UdEBtYjeoeIq6iRH+lZFwg62EzcpAlwsLDw3HixAm0bdvW4fOTJ0+iUaNGihSM0B4juA/0dJ162mIHqEHtCkDxHFdG6ST0TtSoJyylWZBiRXAug9pxdlIHVjO63FlFLYHiS/tWcmLvjTvcVWw6qwJNlgjLzMzE6NGj8corr6B79+4AgK+//hrTp0/H/fffr2gBeQYMGICDBw/izJkzaNy4MdLS0rBgwQIkJCQIx3z22Wd4+umn8euvv6JevXro2bMnFi1ahMTEROGYzz//HFOnTsWvv/6KZs2a4amnnsKIESMcrrVy5Uq8/PLLKC4uRseOHbF8+XIh9g0ALl++jGnTpuH9999HRUUF0tPT8dprr6FJkybCMSdOnMCECROwb98+NGzYEMOHD8f8+fPrJOhjCSO4D/RynbrqTA4dugGjR7+JqqoQREaeR35+K1PP+o2WidoXWEmz4IsVQa9Nlb1JQqolZrSi8LA0abBHyYm91HfN1c4QPCzmppOlCF555RVYLBYMGzZM2CQ2ODgYEyZMwEsvvaRoAXluu+02PPHEE4iPj8eff/6Jxx9/HIMHD8b+/fsBAAUFBbj33nsxdepUbNiwATabDVOmTEFGRgZ++OEH4Zj+/ftj/Pjx2LBhA/bs2YMxY8YgPj4e6enpAGof4NSpU7F69WqkpKRgyZIlSE9Px5EjRxAbGwugNiZux44d+OCDD2C1WpGVlYWMjAx8/fXXAIDq6mr0798fcXFx2L9/P4qKijBs2DAEBwfjxRdfVKV+lMBI7gOtXafuOpOqqhAkJR0HYO5Zv1apBlgcKPVKs8BieAAgPrBGREQw53JXQqSw2DZ5WJk0OKPmxN7TpJCV+5eCLBEWEhKCpUuXYv78+cjPzwcAJCcnIywsTNHC2TNlyhTh3y1atMCsWbMwcOBAVFVVITg4GAcOHEB1dTWef/55BATUPvDHH38c9957r3DM6tWrkZSUhEWLFgEA2rVrh6+++gqLFy8WRNirr76KsWPHYuTIkQCA1atXY8eOHVi7di1mzZoFm82GNWvWYOPGjbj99tsBAOvWrUO7du3wzTffoFu3bti1axd+++037N69G02aNMGNN96I5557DjNnzsQzzzzDTNC1K4wiJLR2nXqzGS8Ls34l0UoMsDib11oIlZSUCCtwWQ0PkPIusGZt8NW1zmLbdAdLudnUmth7ukeW7l8KPvnGwsLC0KFDB6XKIpnz589jw4YN6N69O4KDgwEAnTt3RkBAANatW4cRI0bgr7/+wjvvvIO0tDThmNzcXKSlpTmcKz09HZMnTwZQ+wIeOHAAs2fPFr4PCAhAWloacnNzAQAHDhxAVVWVw3natm2L5s2bIzc3F926dUNubi46dOjg4J5MT0/HhAkT8Ouvv+Kmm25yeV8VFRWoqKgQ/vZmv04l8bQvHSto7ToV60wyMjIQHR3t8rdGdnMA2okBvWLQXFk49BBCzgM9q+EBRrKYu8Nb17pR4iNZsZ6qmTbC0z0CYOL+vUGWCLt8+TKWL1+Offv24cyZM6ipqXH4nnf/Kc3MmTOxYsUKlJeXo1u3bti+fbvwXVJSEnbt2oUhQ4bgkUceQXV1NVJTU/HJJ58IxxQXFzsIIwBo0qQJysrK8Pfff+PChQuorq52eczvv/8unCMkJETYksb+mOLiYo/X4b9zx/z58zFv3jyJtaEcUl8Ed8cpbab3dD5+cNRjIPDUmfBC3xWVlZUoKSnRRYgp8WzExAD/TLw5pxS0iEETs3BoKYRcPafU1Fzs358KQFux46rd2Gw24d9GzMfEo4SlhNX4SLmTBqX7cDVXgXu6R8DCpPXYE7JE2OjRo7Fr1y4MHjwYXbt2Fd3Y2x2zZs3CggULPB5z+PBhYRXm9OnTMXr0aBw/fhzz5s3DsGHDsH37dlgsFhQXF2Ps2LEYPnw47r//fly8eBFz587F4MGDkZOTI7uMWjJ79mxMnTpV+LusrAzNmjVT/bq+vDBKr1aUej5AG9ep1LxenoJBebR2VSjlQhETvPzm0d6cUwytXApilgu9rD7O95+a+jVSUvI0ETtS283YsXfWmYyybvVVwlLEsrtLzqRBLVerWu1A7B5ZtB57QpYI2759Oz755BP06NHDp4tPmzatzspEZ1q2bCn8Ozo6GtHR0bj22mvRrl07NGvWDN988w1SU1OxcuVKWK1WLFy4UDj+3XffRbNmzZCXl4du3bohLi4Op0+fdjj/6dOnER4ejvr16yMwMBCBgYEuj4mLiwMAxMXFobKyEqWlpQ4dkPMx3377bZ1z8N+5IzQ0FKGhoR7rQy3kvjBKr1aUej4etV2nUgSqfU4mgJ2gUF9dKFJcCmrcq54uFVf3o3WcpKv7z81NRUpKHoBa13dCQoJqg5zUZxcREYH4+HhVyqAWvrqXWXH3uUPOpMEorlYesXs0mqtclgi75pprFMkHFhMTg5iYGFm/5V2gfAxVeXm5EJDPExgY6HCss3sSAHJycpCamgqgdtDp3Lkz9uzZg4EDBwq/3bNnD7KysgDUxp4FBwdjz549GDRoEADgyJEjOHHihHCe1NRUvPDCCzhz5oywojInJwfh4eFo3769rPtlHaU7J1/Pp6SVwJvBjuVZsrcuFFcClN8TElDvXvUKSPd0P1ouuBC7/+joaE2tTay63uTgq3uZ1cUS9vg6aWD1eUuNMzPK4jIeWSJs0aJFmDlzJlavXo0WLVooXaY65OXl4bvvvsMtt9yCxo0bIz8/H3PmzEFycrIgfPr374/Fixfj2WefFdyRTzzxBFq0aCEEwo8fPx4rVqzAjBkzMGrUKOzduxebN2/Gjh07hGtNnToVw4cPR5cuXdC1a1csWbIEly5dElZLWq1WjB49GlOnTkVkZCTCw8MxadIkpKamolu3bgCAvn37on379nj44YexcOFCFBcX46mnnsLEiRN1s3SpjdKdk9j5WAyEZ3mWLFcwuatHNe9VqTgsNTebVtMaxVJAPsuTCjn46l72Nj6SR+0+Sant0Fh+3lFRURgyZIjgdfDkBTHSKnVZIqxLly64fPkyWrZsibCwsDpByefPK9tZhIWFITs7G08//TQuXbqE+Ph49OvXD0899ZQgam6//XZs3LgRCxcuxMKFCxEWFobU1FTs3LkT9evXB1AbvL9jxw5MmTIFS5cuRdOmTfHmm28K6SmA2kS0Z8+exdy5c1FcXIwbb7wRO3fudAi0X7x4MQICAjBo0CCHZK08gYGB2L59OyZMmIDU1FQ0aNAAw4cPx7PPPqtovbCE0gOH2Pmio6Mlu0K0yu/D6ixZDcGk5r0qEYel1GbTJ082xfnzf9exCqhpjWJl9SHLkwpvUWq1npz4SB41Y0KVCIQ3wvN2jkF0Z7VzNUlnNV5Rlgi7//778eeff+LFF19EkyZNVA9679ChA/bu3St63NChQzF06FCPx/Tu3Rs//uhZ2WdlZQnuR1fUq1cPK1euxMqVK90e06JFizquTzOj9MCh1Pm0zO/DkgXDHm8Fk5TVqWrcq5LL2qUmrxTbbHrLlsGwX5molVWABZcKq5MKOfgqUqS2TU+oHVPla/9ltOftyWrnzSRdb2SJsP379yM3NxcdO3ZUujyEgVF64FDifFpmktbCgiHHqueNYJIqWtW4V7WWtUtd4OF8PxwHANpZBZRyKUlBCaGtl+tNLr6UyVPbtI+TBNiNqRJDjYmVWl4II1jtpCJLhLVt2xZ///230mUhTIDSqxXlno9/+e0HCi3iHdS0YMi16nkjmLwRo2rcq9KDtzf7HNrfz6VLDbBly30O51LbKqBmbiV7lBLaerne9ELK/bAcUyWG0hMrNb0QRrPaeUKWCHvppZcwbdo0vPDCC+jQoUOdmLDw8HBFCkewj6+JXtU4zlWusZMnm6k2c9LKguGtVU8J957YrJ71AFhv9znkrRo2WyNdXMtaCBclhTYr6VhYwKjWGbWy26uZ+oLV0A85yBJh/fr1AwD06dPH4XOO42CxWFBdXe17yQhDoPTsXYnzucs15oxSMyetLBj2SJlx+1ouT9dgcXWqK+Tuc8hKcLwWeBPcrEWKEqNiVOuMVv2Xkm5aM72fskTYvn37lC4HYWCUHnCVOp/zzNQZJWdOWudtkjrjllsusWsYJfDV285azT3vWERucLNRrT5qYmTrjNr9l1KC3YzvpywR1qtXL0nH/fOf/8Szzz7rdsZMEGriambKY+SZkxYzbqPO6l3hTeyaHlZNvfBFSJmpffhKaWkpAHNZZ5REScFuxvdTlgiTyrvvvovHH3+cRBihC65mpkANBg/egmbNThm2c9Rixm3kWT3gW5yekTpwX/BFSLHcPrTKC8hfy37LMtasM1rWhTuUFuyeysvfb1FRkcvvWRRoqoowrnaNN0HogruZ6fXXH65zrJHM11rMuI0+qzfjjFlpfBFSrLYPLfMCAq6Dyl0J/szMTM3bmtZ14Q6tBDsr9+stqoowgtAbTzNTPvDYiIOx0ukh+BmkzWaTdA0jiFajPVOt8VVIsZBQ1hkt8wK6wt31rFarKtfzBCsbc2sl2Fm5X28hEUaYHneuKKMEl/OolQrD0wzS/hpDhgxBRESEIUUrcRVfgpu1TCjrK1qv3mR9tajWSWT1DqI3StJcEmGE6VA6JxkrqOVikzozjIiIMJRo1QoW4m68wZd2pJeb19s61nr1JuurRfUQiN60FaXfIdYFsT0kwgjTYeZ4IC3KbJQZJAtIjUPhrYiu0KMt+rqFj5Z4E+vDo/XqTZZXi4oJRPtdRZRui1LOpXQsF+uC2BlVRdhDDz1E2fMJXTCiwGIBI80gWUBqDJL9CjpXsBYszBJyYn20Xr3J8mpRMYHovP2U1m1R6vMtLCwEIN63syyIXSFbhJWWluLbb7/FmTNnUFNT4/DdsGHDAACrVq3yrXQEQWiG0WaQrOGLgGUtWJhlpFhq5QaDy3WLsbpaFPBeILLaFnmxKCYSWRbErpAlwj7++GM8+OCD+OuvvxAeHg6LxSJ8Z7FYBBFGEIRxEJtBlpaWMhcTxko8llQBq7Wrl5X6UQpvhK63qzfluMX0Dj6XgjuBCAAFBYnMhR2IvSNiIpFlQewKWSJs2rRpGDVqFF588UWEhYUpXSaC0BX7gauwMAAFBUFISrqChIRai6/RBi6piM0gN2/ezJTbjKW8QFJcIFq7elmqHyWQInR9Wb0pJ70Fy/GnngRifn4rLFky2WVbtNlsuk22fHlHpApifocD+9/p2f5libA///wTjz76KAkwwnTYD1yeOgSjDFze4GoGmZa2W5P8SnLQOyeUPWICVg9XL0v1owRShK5SosgbMcBqP+BcF/zm62JtcdOmTbr0b67KtW3b3YiNLUbTpq4z4Nvj6tnbbDZs2rTJ4ThX8Zl69ueyRFh6ejq+//57tGzZUunyEISu8C+wWEfF4sAl1/XkPIP8++96yMlJA8cFYPfuNNSvf1m2xUYrd5jeCwrEXCB6BwvrXT9KIDXWx9f2ZKbYSFd1IaUt6tG/ud7rNwBr1oyR3F7lPns9+3PJImzbtm3Cv/v374/p06fjt99+Q4cOHRAcHOxw7IABA5QrIUHogFhHZZ9Z3hVam7idXU/urB6uZnxRUVHIzMzEpk2bYLM1wu7daQB8H4C0coexMmh6coHoGSysVf2oLbi1ivXRWzCrjbs9dfUOXHddLmXbK4vpdySLsIEDB9b57Nlnn63zmcViQXV1tU+FIohTp4CjR4HWrYGmTbW/vtigaW/i9kbwqIX94OfJ6uFukOS3VVFyANLKHabnoCk1BknPYGEt6kdNwa118LvRVtd5C98Wt227G/xkC7AgP7+VLtZR/rm5LlctSrRXVq3BkkWYcxoKglAafia9cWN9zJhhRU2NBQEBHBYutOGBB/7W1LokddCUI3jUxFerh1oDkJodoJ6DplgMkn1Mil6r57SoHzUFt9bB70ZbXScV+zaWnPwHLBaA4/hPLLq5XPnnW5sHLBuxscVYs2aMou2VFWu5K2TFhL399tvIzMxEaGiow+eVlZV4//33KUUF4TX8TNpma/S/VTu1aU9qaiyYPj0cf/65FlbrRU2tS2JL3Fl8sX21eqgxAKldT3oPmp7aY3x8vO6r57SuHzUEt9ZB0yxuTu4rUVFRGDJkCDZv3sycy9X++TZtWuSxvcqZsLB2v/bIEmEjR45Ev379EBsb6/D5xYsXMXLkSBJhhNfwg5TYy6K1dcmdewlg88VWwuqh9ACkRT2xPGiysHpOq/phcWIiFSNtTi4XfussFl2uzhbPuXPP4tixICQmXkFCws0AbpY9YWHxfnlkiTCO4xwStPKcOnVKiC0hCDmw/LI4w2JZ5Vo91ByA1Konfxg0fUGP+hET3GruU+gr3ro9jZwI1xfrqJr3bf+7+Higc2dZp6mD3tZyT3glwm666SZYLBZYLBb06dMHQUFXf15dXY2CggL069dP8UIS/oPeL4s3A5LeZXWHHKuHmnE3atWTc5lLS0tx5coVh2OCg4NRWVmJoqIipgdFNdAjkaiY4NZ7n0IxpJbFqIlwfV3kYLT7NsKOBl6JMH6F5MGDB5Geno6GDRsK34WEhCAxMRGDBg1StICE/6Gna0nKwFVaWiok/PNUVvtZP49WQsCTG9UdapZLrWdqb5UQ2yQb0HZwYMFSovVA6O0WOSzm25OCnE3FWcBXYa7GfattWdM7JlMMr0TY008/DQBITExEZmYm6tWrp0qhCEKqiFBjiyFX7gb7c4eEOFpb3JV13boczVJXSJ3JaTnj09Idxlp2eKNZDJTEmy1yfIEFkcvDYv4pdyhZJ77etxbvCevvl6yYsOHDhwOo7dDOnDlTJ31F8+bNfS8ZQYig5hZDns+dh06dPP9e69QVLM749CoTC/mAjGopkYs7wa1WoD5LIpeF9qYHSty3v70nrpAlwo4ePYpRo0Zh//79Dp/zAfuUrJXQAjW3GJJ67oyMDERHRwOQvjebUrBkCXAHC/vPsbA6z0iWEjm426dQrZWxrAzerLY3tfHX+1YDWSJsxIgRCAoKwvbt2xEfH+9ypSRBeIMv7jQ1UyCInTs6Ohrx8fGalYdHqiVgyJAhwrJ0Z1gQaUrDYtoQby0GRhDXrnBVJq1WEOslcllsb1og976d27Zz3KzZJyuukCXCDh48iAMHDqBt27ZKl4fwU3xxXanZ0cs5N0sZysWC1c0Wk8Ra2hBvLQYsudmUQIsVxHq6A1lrb1oh577F2raSz9FIExlZIqx9+/YuV34RhC/IfSnU7OjlnJvFDOV6B6prBWtpQ7y1GLDiZlMSNVc76+0WY629aYWc+/bUZpV8jkabyMgSYQsWLMCMGTPw4osvokOHDggODnb4Pjw8XJHCEYRU1Ozo5ZybpQzl/hY4zFL2fF8tJe7E87lz55iazTuj1cpYvdyBRsg/pQZK3rd921byORptIiNLhKWlpQEAbr/9dod4MArMJ/RETm4sNc+tZnl4xDovvS0FWsFq9nxfLCWexDOf9JSV2bwzWq2M1csdyOJqZC1Q6r6d23Za2m7VniPrcWayRNi+ffuULgdBuOXUKeDoUaB1a6BpU71L4x49cnWJDUL+EjjM2qDoq8XAlXjetu1uxMYWo2nTIuE4VmbzrtAqKbFe7kCzCSyp+Hrfrtr27t1pSEvbjd270xTbtBswhhdAlgjr1asXvvzyS/zrX/9Cfn4+tmzZgmuuuQbvvPMOkpKSlC4j4YfwgZUbN9bHjBlW1NRYEBDAYeFCGx544G+EhISoKnrknFsPIeA8CAG1s0q+8/KnwGGWBkVf24Ir8QwEYM2aMUwOJFqjhjvQSMHcRsbdxDAhoRCTJy9BcnI6unWL9nnTbqN4AWSJsK1bt+Lhhx/Ggw8+iB9//BEVFRUAAJvNhhdffBGffPKJooUk1Ecta5Oc8/KBlTZbo/9l2q51edfUWDB9ejj+/HMtrNaLyMrKUlz02HfEQ4YMcbkXIb9Jvatz69FJd+r0I/7+u54wi9y9Ow31619Gp04/iloK9Nxayez4UoeuxDPA7kCiNUpPeIwWzG1kPE0Mazd534LERN/r2ZvN5O3Ruv+TJcKef/55rF69GsOGDcP7778vfN6jRw88//zzihWO0IY1a4Bx44CaGiAgAHj9dWD0aP3Oy3esYi9RZWVlnRxdvuDcEbuLJRDriNXYSskZ+xm+zdZIEGBA3YHak6XAeUNlqffoj2hpKeHF87ZtdwMwvztZDkq2T9a2vWIFNdq8FBeyEvXs7Wby9mjZ/8kSYUeOHEHPnj3rfG61WlFaWuprmQiNKCkpwbFjVzBuXCxqanhrE/DIIxxuvPEMEhODZDVEpc6rtSvN/sWXu+2Qmlsp2RMVFYUhQ4Zg8+bNkuK+3AWq02AjDa0sJc5uttjYYqxZM8Yv3MmsoHUcEatuUKXbvCsX8smTTQFY0KzZSV+K6hIpYo+F/k+WCIuLi8Mff/yBxMREh8+/+uortGzZUolyESpTUlKCF154C7/+eh1qatIdvquutmD58k+RlHTc60GFf3ELChJRUzPcp/PqFXTrSyyBmlspOcNnwhcTq662VgKMEbTKClpZSng3W2FhIbKzs9G0aZFf5qHSC63jiFh2gyqd6sF+4ggA+fmtVOl/pMYLstL/yRJhY8eOxWOPPYa1a9fCYrGgsLAQubm5ePzxxzFnzhyly0iowPr1gf+LtwoAwAG4mmrEfgD3dlDhjxcTBlLP6+ol4gfAwsIAKOiNFFBiRaHUcygxCxYTq662VjJK0CqLqN15R0VFObQJlvKemR2tVxMbKaeVEqke+Imjmv2Pp3hBrff3lYIsETZr1izU1NSgT58+KC8vR8+ePREaGorHH38ckyZNUrqMhILwrsIZM2KFgPdaAVYrxJSaaStpxbJ3pdkPgO+8w2HhwlJhtaRSM0Ul3KBSzqFUDBrg/UDtL6krlEas8y4tLVUkTlHpvGesurxYQ+/VxKzmtFJ64qF2/yPWllnq/2SJMIvFgieffBLTp0/HH3/8gb/++gvt27dHw4YNlS4foSCeXIWABenpO9G+/W+KNUKlZ/DOA6Cr1ZJKDCRKCEhvg0/lxqA5X1NqGfUebIyKWOe9efNmRdqhkqv/WHZ5sYaeecdYcY85o4bVSO/+R+/r2yNLhPGEhISgffv2SpWFUBkxV6GSAoxHyazxUlZLKoUSAlLqOeR2cr7kSfPXPe98RUrnrVQ7VEoQGcnlxQJ6uH9Zco85IzfVA+B+oqB3/6P39e3xSYQRxoSlBugKd+JC69mLEgJSyjnkmsZ9tZZQrJH31E2OC3BcbZAxC1YLKbDq8tITvbe9Ysk95owvqR4ARwsrS3tustL/kQjzU1hpgK5wFhd8MKXa4lGPbYcA38Slt9YSvQcbM5Cc/Ac4zv4T6VYLvWOzWHV56Y3e216x5B5zxtd+175O9a5nFvs/EmF+jBYbTMtFD+uNEh2E1Je3vLwc5eXlALS1TOrdCbKMJ4Fks9mEf58/HwU5CVT1js1iyeWltxh1hZ5tnkXvhFSrFY9UC6ue9cxi/0cijPCItzMCLaxJcsWjFpnspbzk5eXlePfddx0+09Iy6Y8CSwypAgmQb7XQOys7Ky4vvcUoS7DknnNGrC/TOuegUsKdtTZFIoyoA5/cU44oYXGmAWiXyR4Qf8mLiooc/rYfjJOSjvt0bUIe3ggfJawWergFWXF56S1GWYLV/pJHynW1sLCaWbiTCCPq4Cq5pzew+BJomcneG6QMxhSfpT1irhVfLJd6uQXVdHnJtVJQjBqb/aU3+GJhldpuzCzcSYT5EXoFnvuKkuVmxSUDiA/GGRkZSEhIMHwnbTSkCgO5Qb1at0G1XV5yrRQsxagR8pFrYfWm3dhjNuFOIsyPYN307Q4ly82KSwYQH4yjo6OZexZmR0wYZGZmwmq1uv29lHaodRtU+72Xa6VgaUJkFvRY8CDXwiq13RQWFjocYzbhTiLMzzDqoK5UuVlahcSSICRqERMGVqvV522J9GiD9u+Pq4G6srJSiFX0ZaD2xkpB7V9ZtI6bUtLC6qnd2OchM6NwJxFG+B2s5EhjSRAStWglDPRqg2oO1N5aKaj9K4vWcVNKWVjdtZvY2GJUVYU6lN+Mwp1EGMEUp04BR48CrVsDTZuqdx1WcqSxIgiJWtQUBiwkilRzoJZjpaD2rw5axU0pYVFz127efHMMAMfym1G4kwgjdId3j2zcWB8zZlhRU2NBQACHhQtteOCBv5mMU/MFFgZjwhEt8jWxFpOp9EAt1UrhbftnMbEryxgtbspVuwE48AmRnctvNuFOIozQFd49YrM1wpIlk8FxFgBATY0F06eH488/18JqvehzHANLK0NZG4yVQsvBUulrafVMWHmmagzUUq0U3tS1mfNDqYXR4qZctRux8ptp4koijNAVviMW6zh8jWNgTfiYbcDQcrBU61pmeyaeUGuglmqlkFrXZs4PpRZGjJuybzfBwZVYs2aM2/LzycSdMeLEFSARRjCCFh2HEV9QoyB1EFRisNTyWmZFyfdNK/e62fJDqYVR4qY8tRtP5fc1mThrkAgjmMAoHYdR0TquRupmvka7lllQ8n3TwspstDgnpZD73hohbsq53djvRSm1/GaIFyQRRnhEq9WKgDE6DiOidVyNlhYLso7IR8n3Te2BzmhxTkrg7XtrxAU/9u1GzoIN+/pxNxljPV6QRBhRBz1XK7KSOsJMaBlXo6TFwt0s99y5c4pfy18w4kANGDPOyVe8fW9Zi3v1Fm/Lb3+cp8kY62EJJMIIB8RWK37zTQ6aNTuJcePugtVqZfqlJuqituVIKYuFFCuAP1pHfMWoA7W/hytIfW89PTd+UsPvjOAMC89dzvWNPhkjEUY4ILZaccuW+2Cx1CA//2onwLq5V09YilnQorNSymIhZfbqj9YRJTDqu+qv4QpKvLdmTvVh9MlYgPghbDBgwAA0b94c9erVQ3x8PB5++GGHjT0BYPPmzbjxxhsRFhaGFi1a4OWXX65zns8//xydOnVCaGgoWrVqhfXr19c5ZuXKlUhMTES9evWQkpKCb7/91uH7y5cvY+LEiYiKikLDhg0xaNAgnD592uGYEydOoH///ggLC0NsbCymT5+OK1eu+F4RGsEPcK7gOwGbrREAzwNmSUkJioqK3P5XXl4uqTysuUekwHd8r7/+utv/VqxYgZKSEk3K46mzUgreYsG3HaUsFjZbIxQUJAptTs1rEezgyn2alHS8zjM2Yv8gFSXe2zNnzjj87ep9Ath33bnC1VhlpMmYYSxht912G5544gnEx8fjzz//xOOPP47Bgwdj//79AIBPP/0UDz74IJYvX46+ffvi8OHDGDt2LOrXr4+srCwAQEFBAfr374/x48djw4YN2LNnD8aMGYP4+Hikp6cDADZt2oSpU6di9erVSElJwZIlS5Ceno4jR44gNjYWADBlyhTs2LEDH3zwAaxWK7KyspCRkYGvv/4aAFBdXY3+/fsjLi4O+/fvR1FREYYNG4bg4GC8+OKLOtSe9zib/52RMtOQGjj50EMPISwszO15WDCTy4G1VApqWo7UzDjvyRWjVnZ7gg2M6j5VEl/f25KSEmzevFn4W4mQBJYs/EZ3VRtGhE2ZMkX4d4sWLTBr1iwMHDgQVVVVCA4OxjvvvIOBAwdi/PjxAICWLVti9uzZWLBgASZOnAiLxYLVq1cjKSkJixYtAgC0a9cOX331FRYvXiyIsFdffRVjx47FyJEjAQCrV6/Gjh07sHbtWsyaNQs2mw1r1qzBxo0bcfvttwMA1q1bh3bt2uGbb75Bt27dsGvXLvz222/YvXs3mjRpghtvvBHPPfccZs6ciWeeecYwgwM/wJ082RRbtgyGveFUSicgNXAyLCzMVHlf3KF3KgU1Oyu1BksxV4wREzeyNIAZASXrwoh17+t7a3+/ZnVtGtlVbRgRZs/58+exYcMGdO/eHcHBwQCAioqKOtaU+vXr49SpUzh+/DgSExORm5uLtLQ0h2PS09MxefJkALWN9cCBA5g9e7bwfUBAANLS0pCbmwsAOHDgAKqqqhzO07ZtWzRv3hy5ubno1q0bcnNz0aFDBzRp0sThOhMmTMCvv/6Km266yeV9VVRUoKKiQvi7rKxMRu0oS+3qqcOorJTfCRg9cFIJWEmloGZnpUaHKxbvoVXiRqUGbxYHMH/ByHWv1Hubl5fic/wUq7sYGHVlvaFE2MyZM7FixQqUl5ejW7du2L59u/Bdeno6pkyZghEjRuC2227DH3/8IVi8ioqKkJiYiOLiYgdhBABNmjRBWVkZ/v77b1y4cAHV1dUuj/n9998BAMXFxQgJCUFERESdY4qLi4VjXJ2D/84d8+fPx7x587yoEe3wpRMweuCkr+gtQo2algBgI/heycGbNRe1P6GkeNDCoqb0e2uzNcL+/al1PvflfdJzcsnSfsC+oKsImzVrFhYsWODxmMOHD6Nt27YAgOnTp2P06NE4fvw45s2bh2HDhmH79u2wWCwYO3Ys8vPzcffdd6Oqqgrh4eF47LHH8MwzzyAgwBjrD2bPno2pU6cKf5eVlaFZs2Y6lsgRd53AuXPnPHY6LAykeqK3CDVyXA0L8R5qCie9XdT+ii/iQSuLmtLv7fnzUXC1Fi81NVdW29N7cmnkfs0eXUXYtGnTMGLECI/HtGzZUvh3dHQ0oqOjce2116Jdu3Zo1qwZvvnmG6SmpsJisWDBggV48cUXUVxcjJiYGOzZs8fhHHFxcXVWMZ4+fRrh4eGoX78+AgMDERgY6PKYuLg44RyVlZUoLS11sIY5H+O8opI/J3+MK0JDQxEaGuqxPtRGyqzBeeDgt5pw1+mwMJDqCQsilPWOyBk1A/19RSnhpJcVwYhxUUriq3jQ0h2n5HNw1Q8BNUhJyZN1Pr0nl4Dx+jVX6CrCYmJiEBMTI+u3NTW1S1LtY6gAIDAwENdccw0A4L333kNqaqpwjdTUVHzyyScOx+fk5CA1tdZEGxISgs6dO2PPnj0YOHCgcJ09e/YIKyw7d+6M4OBg7NmzB4MGDQIAHDlyBCdOnBDOk5qaihdeeAFnzpwRVlTm5OQgPDwc7du3l3W/WmE/uygtLXVYVQPIz0xs5MBJX/F3ESoHVme5SgknvawIesRFsSb6lBQPSrUH5zqy2WyoqqoS/g4KCnKY9MupMyn9kDeTGhYml2bAEDFheXl5+O6773DLLbegcePGyM/Px5w5c5CcnCwIn3PnzmHLli3o3bs3Ll++jHXr1uGDDz7AF198IZxn/PjxWLFiBWbMmIFRo0Zh79692Lx5M3bs2CEcM3XqVAwfPhxdunRB165dsWTJEly6dElYLWm1WjF69GhMnToVkZGRCA8Px6RJk5Camopu3boBAPr27Yv27dvj4YcfxsKFC1FcXIynnnoKEydO1N3S5Qp3nWRERASGDBmC0tJS7Nq1y+eBw6iBk3Jh2ZpjBFib5Yq1f347JUB8kNTLiqB1UDWLwfBKiQelhLTUOnJGTp156ocyMzO9Oh9NLpXBECIsLCwM2dnZePrpp3Hp0iXEx8ejX79+eOqppxxEzVtvvYXHH38cHMchNTUVn3/+Obp27Sp8n5SUhB07dmDKlClYunQpmjZtijfffFNITwHUNsSzZ89i7ty5KC4uxo033oidO3c6BNovXrwYAQEBGDRoECoqKpCeno7XXntN+D4wMBDbt2/HhAkTkJqaigYNGmD48OF49tlnVa4p7/GmA/B24NA7cFLvGTir1hxCHmLtn3fL83gaJJUQAr62by3coSyupFNKPCglpMXqyNc6kxrgL8cr5c8eDqUwhAjr0KED9u7d6/GY6OhoIY2EJ3r37o0ff/Tc0WRlZQnuR1fUq1cPK1euxMqVK90e06JFizquTxaR2kkC3g8ceooQVmbgLOc40lukGg137T84uBIFBYleDZK+CgFf27ce7lBW0rQAyogHNdxxznV0ww2HcOjQDT7VmdL9sJFXW7OIIUQYoQ1inaScgUOvQdxsqQCUFpWsiFQj4ar933DDIaxZM0byIKmUi9pXC5PW7lC9V9KVlJTAZrM5fOareFDaHeeqjn76qSMAi/C33DpT8h1mxcJvlkkkiTACgPRO0qjmZ6OlAnDuYOzjjTyhtPg0ikhVE3fCKTi4UhBggLRBUo0BTI6FSeugaj1X0kmdcAwZMgSxsbFe1b2S/aGrOuIFGA8r+RX1FjdSt8QzwiSSRJgfYj/A84O7N52k0QLsWXKDSEFuoK4vGE2kaomzcDp37hyys7NRUJAoS1goOSjItTBpHVSt50o6qVbDiIgIl8/GeUJUWlrq8L1S7jjXKSQ42AsxWn1Yi9Qt8YwwiSQR5me4G+CV6CRZjAHQ2w0iBykdh5KiyWgiVQ9cDc5i74wr66XSLhJfLExaWrVZWUnnbVuXOiHKzMyE1WoV/lYqhYSrmDBW+y09MGL/7gyJMD/D3QAv1kkOGTKkzlZN9rDqf2choaCvOAsuJUWTGToxvRB7Z5xXS/Io6SLxdvKkZ1C13qEMctq6VCua1WpVZA9TV3V0++17DRf+oRVm6N9JhBECnjrJiIgITTZKVhqjJxR0Flxpabuxe3eaYqLJDJ2YnsgRFkq6SLy1MGkdVM3SSjpf27paFmOxOqLVh+4xev8OkAgjnDDbC8+KG0QOrmbuOTlpcN7/zRfRZIZOTGukCgut4uy8FYJaWqxZWUkH+NbW1bQYu6ojNTLmmxEj9+88JML8HHcDRUZGBqKjowEY84U3Q7Z616ulAhQVTWboxLTGnbDgA/YB9ePsWLIwiaFl3+EqbQEfm+dLW1fbYuxcR0b0OuiF3m5uXyER5sd4Giiio6MN3RGwNAOXi7uZu71L0nkgkbNLgVFFqjNa5g3ydB4t4uzM0L6VxnPagtrP5A7YZDFmG6Ot2LeHRJif4g8B2UYfgNzN3Dt1+hHXX/8Lrr9+IDp2bICEhJsB3OzVoGu2QZyl5LNaxdkZ5dlohdS0BXKshma2GBsx6aneW+IpCYkwP4UCstlFipXKar2Ie++1+tQ5stax+gJLyWfJaqIvYhNM+1ALHnuh4SqPIqCM24s1wWPUpKdmmkSSCPMz+AFebKAwwgzCF1jrDO0xUwejF3omnzWz1cQIiE0wPYVauBYlV/cF9SX2jkXBY+Skp2bp/0iE+Rn2A/w115Rh5kwrqqstCAzksGBBGR544H7TD/Asua7cYeb6Vxu9ks+aMc7OiPhiiZQqSuQsXGJZ8PhDeAqrkAjzQ/gOY9o0IDMT+OMPoFUrC5o2jQAQoWfRNIEl15URYNlq6IyegwlZMNlACUukWDvyZeESi4KHwlP0g0SYn9O0ae1/BOEKI1gN7dF7MGGhDgjf47fUbEd6t1FXUByjfjgnISIIghAwmtWQH0zsocHEP7FaLyIp6bhPSYztUaodsdhGeeshXy6KY9QOsoQRhAEwkktQTygo3n9RMm2Bmu2I1TZq9KSnRoVEGOH36LmSTgosuQRZrSt/DIonYe6I0jF5aooSVgWPWNJTanPKQyKM8Gv0WknnDay4BFmuK38LimdJmLOE0veqZiZ2FrK8e2M9ZDHFhhkgEUb4LSyuUmIVI9SVP3X8zmLT3YDISqyeUVAzEzuLWd69mbwUFRUJn7GWYsPIkAgj/A6+kxNbpWQm15WvsLiii6iFZQul0qjtDlPTomoWa60RJmRGgkQYIRujxgfwneGxY1fwzjscamoswneBgRwmTboTiYlBTJZdL2gJO5v404ColTtMzfeetT7FmzrloQmZspAII2Rh9JiUqKgoREUBr78OPPIIUF0NBAYC//qXBZ07N9G7eB7RMjietwaKregiq6E+iA2I9nsfsjopkgrLGeeNipw6pQmZspAII2TBSrC4r4weDaSn87sGsJ+4VmvXk7MLZe7cszh2LAiJiVeQkHAzgJsNP7gbGXcDYnBwJQoKErFuXY4hg6ZdWdl5QelP1j+t8KZOWU2xYVRIhBF+j1F2DdBr8LEftOPjgc6dVbsU4SWuBsQbbjiENWvGGNZK5NlFRu4wNfC2TllNsWFESIQRqmLvDgGM7xLRA1pIQHjCfkAMDq4UBBhgTCuRmIssOfkPcocpjBwXIwspNswAiTBCVbKzs+t8ZhSXCCvQQgLCGWfBzQ+IBQWJprESubP8Tp68hNxhCiPFxchiig0zQCKM0BwjuERYw8gLCQjlcY7VO3fuHLKzsxULmmZh5bMnyy+5w5RHrE7NkmKDNUiEEYSBMNpCAkI9XA12SgRNs5IZXUxQkjtMecTqlASW8pAIIwgvYMFCoNRCAhbuhVAeX61ErKSCkCso5bjD7N+FwsIAFBQEISnpChISaoRzmvFdIBej/pAII2Thjy+l0XOj2ePrvZCAYxslrEQspILwJCgzMjIQHR3tcLycdmf/LngSnUZ4r72Bf4czMzNx8iSHEydC0bx5BeLirgAAgoKCEBERQe+yypAII2ThKj6Aj0uRitEGcrPkRgN8uxcziVGzoIZFQ69UEKWlpQ5/uxOU0dHRiI+P9/l6fBsXE51GeK+l4q/Ck0VIhBGy8eXlpIHcePCi2TntiDvMNGixjhpB03pkRi8pKcHmzZuFvz3tDqG0Nd6f8o/5o/BkFRJhhCKcOgV8800IbLZGkjosM1mVnOFFCmuWPF+QKpq1wGgWVK1Q+p71yIwuNR4tMzMTAFBUVARAmTguf9yOx5+EJ6uQCCN8Zs0aYNw4oKYmChbLZNGtdEJCQgwprqRi75I1iiVPbD9KT89Ly70syYKqLXqlgpASj6a0O80ft+PxR+HJGiTCCJ84dYoXYLV/c1wAduy4B3PnpggzUnv42Sk/gzU7RhCbvuxHqfVelma2oLKKHqkgxCw0Fy5cAFAr1rZtuxuAMu40f8s/5o/CkzVIhBE+cfToVQHGU11twcWLTaBAzCzTaGkBUgtfVsCxsHrODM+ANVhIWyBmodm1axcAIC8vBbwA4/HVneZv+cf8TXiyBokwwidatwYCAhyFWGBgbSLRU6dqRVrr1uZLKqq1BUgt5MaE2GyN8Ouv1+kaT2KWZ8AaLGRGl2KhsdkaITc31cWvyZ3mLf4mPFmCRBjhE02butpKB/jss6tuyoCA2mNGj9a7tL7Bz/xZsAD5Cn8vYhYHV9YOe/EDcAAsLn/rDiUC683wDFiGhXg6MQuNqwkEAHTvnutVG2DB8kf4LyTCCJ9x3koHAFq0uGodq6mpFWnp6ca2iPEWgn37gMWLjb2iyN7acc01ZZg504rqagsCAzksWFCGBx6436UYchY/tQKsVog5WytcDVpSA+uHDBmC2NhYt2KAVnX5B54sNO4mECkpeV5dgwXLn9aQ8GQHEmGEIthvpbNvn6s4sVqRxh9j1E4gKioK3boBAQEcamq8swCxBj+oTJsGZGbyItqCpk0jAES4/I1r64MF6ek70b79bxg58g5ER9/sdtCSGijN54pyt7qNVnWZE2/edyWDys0ksKTgj8KTVUiEEYrjKU6Mx8idQNOmwMKFNkyfHi50/mlpu3H+fG1ZjWiJEduPUsx92b79b7BaLyIhIcGrZyY3NQat6jIn9v2CzWbDpk2bhO9ctRUKKpcPi32rVMwUb0wijFAcd3Fizi+LkTuBESOq8eefS3D+fCQKCxOwe3eaywBx1ix5cpHrvvSEY2xZDbp3z0VKSp7HgdS+Pj0NwGapd3/EVRvytAjDk8uS2oF54GNJN26sjxkzrKipsSAggMPChTY88MDfzE7axbBwHMfpXQjCNWVlZbBarbDZbAgPD9e7OF5z6tTVODGx2YoRZzYlJSU4duwKunaNdXBNBgZyyMs7g8TEIEN2ClLw5tnaU1RUhNdffx02WyMsWTK5jmvTeYAdN25cnf0BKWO+f+CprVgsNZg8eYlHwT5kyBC0a9dOi6ISKsPHkoq1BZaSNEsdv8kSRqiGmIuL52rGfWOtpIyKisKhQ+7zpDHSF6iC1GfrDncr26SscmSlkyW0wd0ijLy8FPTtu9vt72JjY9UuGqER/KRLbEGOEZM0kwgjdMU5477SKynVtppIiX8j6uIqtoyHVjkS9rhrK/v3pwru64yMDERHRwvfkTXUnJhxQQ6JMEJXXGfcd1xJKRct9hmUGv9GOMIH1ttvOcNj9E6VUBar9SJSU3Oxf38Pp2+uivXo6Og6bmvCfJhxQQ6JMEJX1LQkabXPoHOeNBJg7nEVWJ+Xl4Lc3FTTdKqE8qSk5GH//lTYC3YS6/6J2VbEkggjdMUsliRfY6T8BX6V5dmzZ7Fp0yZYrRfRt+9upKTk0SpHwi1W60UMGGAuCwghHzNts0QijNAdsiT5F1FRUYbOE0dog7MAN5sFhCAAEmEEI5AlyVgoseDB3wWWfR0WFgagoCAISUlXkJBQ65v3dxEaFRWFzMxMh4StZrKAEARAIowgCC9xXvDgLus9Szl7WMO+Dj0lIvX3OrRarXoXgWAAo25zJwUSYYTfILZFDnEVT5auc+fOCf/2JCCMmLNHK/i6cd4Q3TlPmr/XoZkHX3/G2+TcZg5fIBFG+AWexALhiFRLl5iAIMQRSz7p75h58PU3fN12yKzPmEQYYVr42bGYWDDTLFqJWC3733sSryQgfMeMySeVxqyDrz9Rd9uh2m3eamosmD49HH/+uZa5bYe0gkQYYVr4WfS+fcDixXXFQo8ew9G7t3k6eaVjtcTEq5iAsHdbkrXCNWZMPmkPLT4gAHNvO+QrJMIIUxMVFYVu3VwnhE1JiTLV/o5SLVhSOzqxDtOdgACAgoJErFuXQ4H6EjBr6gVafEA4Q5bfupAII0yPWRLCSkWpWC0pHaazgMjPb/U/dwMF6nuDGVMv0OIDwhmzW37lQCKM8Av8KSGsUrFaUjtMXkBQoD7hCoodJOxR2/JrNBc4iTDCb/CXhLBKmvy96TBpsJWOP6VekBo7yMqAqcTiFsIzall+jegCJxFGECZDaZO/uw4zIyMD0dHROHfuHLKzsynewwv8KfWCWHvMzs5mZsCkRMTGxogucBJhBOEGbxMKsoQvJn+p1peEhASHgYjiPbzDKIO4Eu4dT+2RpQFT6cUtzpCVTRuMZJUnEUYQdviaUJAl5Jr8fbHSmHWln7+ipHvHXXtkccBUI77Rn61sWrvfjWSVJxFGEP/D6AkFve3oPFn6fLk/M67081e0cO+wOGCqIQzVtrKxjNbudyNZ5Q0nwioqKpCSkoKffvoJP/74I2688Ubhu0OHDmHixIn47rvvEBMTg0mTJmHGjBkOv//ggw8wZ84cHDt2DK1bt8aCBQtw1113Cd9zHIenn34ab7zxBkpLS9GjRw+sWrUKrVu3Fo45f/48Jk2ahI8//hgBAQEYNGgQli5dioYNG3pVFoItjJ5QUEpHV15ejsrKSixaVKqYpc+fgsz9FTmiROrzZnHAVFMY+usqYq0nrkaxyhtOhM2YMQMJCQn46aefHD4vKytD3759kZaWhtWrV+Pnn3/GqFGjEBERgXHjxgEA9u/fj/vvvx/z58/H3XffjY0bN2LgwIH44YcfcP311wMAFi5ciGXLluGtt95CUlIS5syZg/T0dPz222+oV68eAODBBx9EUVERcnJyUFVVhZEjR2LcuHHYuHGj5LIQ7MLizFwqnjq6kpISvP7664pb+vwpyNxfkfNOiLULfkEHwN6AqaYwZNH9alaMYJU3lAj79NNPsWvXLmzduhWffvqpw3cbNmxAZWUl1q5di5CQEFx33XU4ePAgXn31VUH4LF26FP369cP06dMBAM899xxycnKwYsUKrF69GhzHYcmSJXjqqadw7733AgDefvttNGnSBB999BGGDh2Kw4cPY+fOnfjuu+/QpUsXAMDy5ctx11134ZVXXkFCQoKksihFTU0Ns5YZo1FVVYUGDRqgQYMajBixE/v29UZ1dQCKi4Nw552fMP8yi6GmpY8ElrmRK0q8aResDZhqCUMjT/II5TGMCDt9+jTGjh2Ljz76CGFhYXW+z83NRc+ePR1M4Onp6ViwYAEuXLiAxo0bIzc3F1OnTnX4XXp6Oj766CMAQEFBAYqLi5GWliZ8b7VakZKSgtzcXAwdOhS5ubmIiIgQBBgApKWlISAgAHl5efjHP/4hqSyuqKioQEVFhfB3WVmZxzqprKxEQUEBauz34yFkU11djR49egAAevQARo/+GTU1Abh8uRw//HAYly/rXECFoEGAkANr1iotUEMYsuh+NQtGDI0whAjjOA4jRozA+PHj0aVLFxw7dqzOMcXFxUhKSnL4rEmTJsJ3jRs3RnFxsfCZ/THFxcXCcfa/c3dMbGysw/dBQUGIjIx0OEasLK6YP38+5s2b57oSnOA4DkVFRQgMDESzZs0QEBAg/iPCI5WVlSgtLXX4jOM4XLhwAW3atKnjAjcKfAB+eHhtG6FBgJCLkqKExQFTqzL5o6DVAiOGRugqwmbNmoUFCxZ4PObw4cPYtWsXLl68iNmzZ2tUMn2YPXu2g6WurKwMzZo1c3nslStXUF5ejoSEBJeWQcJ7AgICEBRU95WwWq2IiYlBSEiI4Vy/a9YA48bVbl4eEBCLu+++CZ06/UiDgA4YbTsVtWFxwNSyTKy5X82C0d4hXUXYtGnTMGLECI/HtGzZEnv37kVubi5CQ0MdvuvSpQsefPBBvPXWW4iLi8Pp06cdvuf/jouLE/7v6hj77/nP4uPjHY7hV2HGxcXhzJkzDue4cuUKzp8/L3od+2u4IjQ0tM49uqO6uhoAW2ZVsxIQEICAgAAEBwf7JMK0TP5aUlKCY8euYNy4WNTUXA3At1+FRYOAdhhxOxVAfcsQS/fKo1aZWLT8EfqjqwiLiYlBTEyM6HHLli3D888/L/xdWFiI9PR0bNq0CSkpKQCA1NRUPPnkk6iqqkJwcDAAICcnB23atBHcf6mpqdizZw8mT54snCsnJwepqakAgKSkJMTFxWHPnj2C6CorK0NeXh4mTJggnKO0tBQHDhxA586dAQB79+5FTU2NV2VRCovFouj55FBZCVy+DNSrBxi5/3Dn0nWuYzmdpKNFCnj99dpNxdWAH/ALChJRUzPc4TtahaUPRtxOBWDTWmVUqC4JVxgiJqx58+YOf/P5uJKTk9H0fyaFBx54APPmzcPo0aMxc+ZM/PLLL1i6dCkWL14s/O6xxx5Dr169sGjRIvTv3x/vv/8+vv/+e7z++usAagfbyZMn4/nnn0fr1q2FFBUJCQkYOHAgAKBdu3bo168fxo4di9WrV6OqqgpZWVkYOnQoEhISJJfFLJw9Cxw/fvXvFi0ACbqaSYKCghAbG1tnocPly5dRVlaGIUOGoEGDBl53kqdOXRVgQO3/H3kESE9XxyLGd/IUgM8eRkxPQKJAOaguCWdME81ttVqxa9cuFBQUoHPnzpg2bRrmzp3rkBKie/fu2LhxI15//XV07NgRW7ZswUcffSTkCANq85BNmjQJ48aNw80334y//voLO3fuFHKEAbXpMNq2bYs+ffrgrrvuwi233CIIOallMQOVlY4CDKj929NkfsSIEbBYLLBYLAgODkaTJk1wxx13YO3atV6t8ly/fj0iIiLkFdwDQUFBCAkJqfNfYGAgYmNjZXWiR49eFWA81dXAH38oVGg38AH4FkvtxaUG4JM7RD14YWwPCWOC8F8MYQlzJjExERzH1fn8hhtuwJdffunxt/fddx/uu+8+t99bLBY8++yzePbZZ90eExkZKSRmdYeUshgddykbKio8uyX79euHdevWobq6GqdPn8bOnTvx2GOPYcuWLdi2bZvL4Hgj07p1rQvSXogFBgKtWql/bU8B+BkZGYiOjnY4Xkt3iJE3SJcLrUwlCMIec412hGTsV2q5QspgbGccdEBsbUFoaKiwQOGaa65Bp06d0K1bN/Tp0wfr16/HmDFj8Oqrr2LdunX4v//7P0RGRuKee+7BwoUL0bBhQ3z++ecYOXIkgKvxWk8//TSeeeYZvPPOO1i6dCmOHDmCBg0a4Pbbb8eSJUvqpBXRipKSEgQGVmLhwvqYOdOK6moLAgM5LFhgQ2Dg3ygpUV/0uAvAj46OdliAoiVaxsixBq1MJQiCh0SYH2K/UssTYiu1QkJqY8CcY8LkeLNuv/12dOzYEdnZ2RgzZgwCAgKwbNkyJCUl4f/+7//wz3/+EzNmzMBrr72G7t27Y8mSJZg7dy6OHDkC4GqcYFVVFZ577jm0adMGZ86cwdSpUzFixAh88skn3hfKR5zr+dFHGwkD719/XQTvwWZtRZyauF61CTzyCIcbbzyDxMQgv6gLWplKENqihOFBDUiE+SFSV2BJOS4mBrBaa12QoaG+rY5s27YtDh06BAAOK1gTExPx/PPPY/z48XjttdcQEhICq9UKi8VSJ+XHqFGjhH+3bNkSy5YtE2L77DdY1wLn+nM38LK2Ik4tPK3arK62YPnyT5GUdNyvRKk/weogqDT+cp9GQinDgxqQCCN8JiREmdQUHMcJ7sXdu3dj/vz5+P3331FWVoYrV67g8uXLKC8v95ic9sCBA3jmmWfw008/4cKFC0Kw/4kTJ9C+fXvfC0nIRuqqTTOKUn/PEcXyIKgk/nKfRkNJw4PSkAgjmOHw4cNISkrCsWPHcPfdd2PChAl44YUXEBkZia+++gqjR49GZWWlWxF26dIlpKenIz09HRs2bEBMTAxOnDiB9PR0Uw7s7mB9wPfH4HR/zxHlfN82WyOcPx+FyMgSh+du9PeU5cGeuIq79qcHJMIIJti7dy9+/vlnTJkyBQcOHEBNTQ0WLVokJFDdvHmzw/EhISHCrgE8v//+O0pKSvDSSy8J2z19//332twAQxhhwGctOF2LLYXMKrC8xdOOAQShNqy1PxJhhOZUVFSguLjYIUXF/Pnzcffdd2PYsGH45ZdfUFVVheXLl+Oee+7B119/jdWrVzucIzExEX/99Rf27NmDjh07IiwsDM2bN0dISAiWL1+O8ePH45dffsFzzz2n013qixEGfFaC0426pZAREdsxwGywZHEh2Gx/JMIIWVy5csVjclV3m2EDwM6dOxEfH4+goCA0btwYHTt2xLJlyzB8+HAEBASgY8eOePXVV7FgwQLMnj0bPXv2xPz58zFs2DDhHN27d8f48eORmZmJkpISIUXF+vXr8cQTT2DZsmXo1KkTXnnlFQwYMEDx+yfMg1G3FHIF60HhRtwxQC6sWVwINtsfiTDCa65cuVJnE3NXxMbG1hFi69evx/r160V/O2XKFEyZMsXhs4cfftjh71WrVmHVqlUOn91///24//77HT5zldiXIJxhsYP2BiMEhYstyrDZbLrlrlMSFi0uBJtbuZlm2yJCOr4GbkvdXsibbYjMiK/1fOoUsG9f7f8J9TH6lkKugt8LChJhszXyeJyWiG2ltWnTJpSUlOhWPqXwJOgJ/ZC7lZuakCXMDzFC4LYZ8KWezZhRnlZtagfLrjCxRRlGcPuKwaLFxZ+x71M8tT89+h4SYX4KCSxtkFPPp05dFWAAn1EeSE839h6LRhD/rK3alIPWrjApcWjOgxsrizKUhr9PMUFv1nxwrMJy30MijCAY4+hRx82+AaC6GvjjD+VEmF6bZxtB/LsTCOfOnZPcUesZIK9lbJs3cWhDhgxxSDVjxpWDzoP93LlncexYEBITryAh4WYAN+s+0fBXWK1zEmEEwRitW9e6IO2FWGAg0KqVMuc3o6tTC7KzswGIB7brHSCvpSvMm+SkERERwt8su0t9xf6ZxscDnTvLOw/rK10JZSARRhAMUVJSgsDASixcWB8zZ1pRXW1BYCCHBQtsCAz8GyUl8jte2jzbNe5cQ3KzuuudHZ712DZaOSiO3kKe0A4SYQTBCM4d76OPNhJik/766yJef732czkdL22e7R7ehVRYWChYu5Sy1Ohl8ZET26aE5UWKi9HoqUC0gLY/8h9IhBFew28lpNRxRC3OHaq72CQ5Ha8/b54thaioKMlJW6WitcVHavC7K8ufEpYXqYKTVg4SxFVIhBFeExQUhNjYWNkZ8wn9YN1VxQJKWWq0tvj4sgLMV8uLFMGp9cpBiqkijACNkoQsWBVYn3/+OW677TZcuHDBIRDYE4mJiZg8eTImT56satlYgbU0DKwNlkpZavSw+OglKqQITi1XDlJMFWEU2BxJCdMyYsQIvPXWW3jkkUfqbMo9ceJEvPbaaxg+fLikrY0I+bCSp4nFwVIpa6E/WR2lCk6lVg6KQTFVhFEgEUZoTrNmzfD+++9j8eLFqF+/PgDg8uXL2LhxI5o3b65z6Qgt0XsloTuUshayZnVUGkpOqg1mzKlG1EIijNCcTp06IT8/H9nZ2XjwwQcB1OZgat68OZKSkoTjKioqMH36dLz//vsoKytDly5dsHjxYtx8883CMZ988gkmT56MkydPolu3bhg+fHid63311VeYPXs2vv/+e0RHR+Mf//gH5s+fjwYNGqh/s4Rk9M4d5Utguxrn0ROpgz4lJ1Ufvd8LQl1IhBG6MGrUKKxbt04QYWvXrsXIkSPx+eefC8fMmDEDW7duxVtvvYUWLVpg4cKFSE9Pxx9//IHIyEicPHkSGRkZmDhxIsaNG4fvv/8e06ZNc7hOfn4++vXrh+effx5r167F2bNnkZWVhaysLKxbt07LWyY8wELuKKW2NmF5ixQpeDvoa+Vi9Cd4gS72XrAs5AlpkAgjdNnC5qGHHsLs2bNx/PhxAMDXX3+N999/XxBhly5dwqpVq7B+/XrceeedAIA33ngDOTk5WLNmDaZPn45Vq1YhOTkZixYtAgC0adMGP//8MxYsWCBcZ/78+XjwwQeFoPvWrVtj2bJl6NWrF1atWoV69eppc8MSUHODa9Y3z2Yld5RSwohVgSUGC2KYuCrk9+0DFi+u+1706DEcvXsbt50RVyER5ufotYVNTEwM+vfvj/Xr14PjOPTv3x/R0dHC9/n5+aiqqkKPHj2Ez4KDg9G1a1ccPnwYAHD48GGkpKQ4nDc1NdXh759++gmHDh3Chg0bhM84jkNNTQ0KCgrQrl07NW5PFmpaUFi3zlDuKH3hxbeYGCbLi3ZERUWhWzfXW5ilpESB9Jc5IBHmx5w6dVWAAfwWNkB6ujYWsVGjRiErKwsAsHLlSlWu8ddff+GRRx7Bo48+Wuc7FhcBqCmCWJ41+9NKQhbhRfqxY1fwzjucsK0VAAQGcpg06U5Db2tl1MD2pk1rJ8aPPAJUV9cKsH/9SzuPBaE+JML8mKNHHWdYQO2L/scf2rzk/fr1Q2VlJSwWC9LT0x2+S05ORkhICL7++mu0aNECAFBVVYXvvvtOcC22a9cO27Ztc/jdN9984/B3p06d8Ntvv6GVUrtfE6ph9pWErBMVVWtdqTvoW9C5cxO9i+cV9hY7TzFuRrDsjR5dOzH+4w+gVSsSYGaDRJgf07q1a1O3VnolMDBQcC0GBgY6fNegQQNMmDAB06dPR2RkJJo3b46FCxeivLwco//nLx0/fjwWLVqE6dOnY8yYMThw4ECd/GIzZ85Et27dkJWVhTFjxqBBgwb47bffkJOTIyk/FaEuZlhJaDbMMOjbW/aefTYWHFdr2eO4AOzYcQ/mzk0xlGWvaVNjPgdCHBJhfgwLpu7w8HC337300kuoqanBww8/jIsXL6JLly747LPP0LhxYwC17sStW7diypQpWL58Obp27YoXX3wRo0aNEs5xww034IsvvsCTTz6JW2+9FRzHITk5GZmZmarfGyEO67Fq/ooZBv2oqCgcOuTK2m/BxYtNKKaKYAILx3Gc3oUgXFNWVgar1QqbzVZHrFy+fBkFBQVISkryeYXfqVPGnvWqjZJ1TRCEdpw6BbRoUdfaf+wY9XWEungav+0JcPsN4Tc0bQr07k2dEkEQ5oK39vPRDhTYTrAGuSMJgiAI02KGGDfCvJAIIwiCIEyNGWLcCHNC7kiCIAiCIAgdIBFGEARBEAShAyTCDA4tblUfqmOCIAhCDUiEGRQ+uamn/EqEMvB17JxQliAIgiB8gQLzDUpQUBDCwsJw9uxZBAcHIyCA9LQa1NTU4OzZswgLC0NQEL0uBEEQhHLQqGJQLBYL4uPjUVBQgOPHj+tdHFMTEBCA5s2bw2KxiB9MEARBEBIhEWZgQkJC0Lp1a3JJqkxISAhZGgmCIAjFIRFmcAICAmgrHYIgCIIwIDS9JwiCIAiC0AESYQRBEARBEDpAIowgCIIgCEIHKCaMYfgkoWVlZTqXhCAIgiAIqfDjtliybxJhDHPx4kUAQLNmzXQuCUEQBEEQ3nLx4kVYrVa331s42pOFWWpqalBYWIhGjRr5ZY6qsrIyNGvWDCdPnkR4eLjexTEsVI/KQPXoO1SHykD1qAxq1iPHcbh48SISEhI8pjgiSxjDBAQEoGnTpnoXQ3fCw8Opo1EAqkdloHr0HapDZaB6VAa16tGTBYyHAvMJgiAIgiB0gEQYQRAEQRCEDpAII5glNDQUTz/9NEJDQ/UuiqGhelQGqkffoTpUBqpHZWChHikwnyAIgiAIQgfIEkYQBEEQBKEDJMIIgiAIgiB0gEQYQRAEQRCEDpAIIwiCIAiC0AESYYTu/Oc//8E999yDhIQEWCwWfPTRRw7fcxyHuXPnIj4+HvXr10daWhqOHj2qT2EZRawOR4wYAYvF4vBfv3799Cksw8yfPx8333wzGjVqhNjYWAwcOBBHjhxxOOby5cuYOHEioqKi0LBhQwwaNAinT5/WqcRsIqUee/fuXadNjh8/XqcSs8mqVatwww03CMlEU1NT8emnnwrfU1uUhlg96tkWSYQRunPp0iV07NgRK1eudPn9woULsWzZMqxevRp5eXlo0KAB0tPTcfnyZY1Lyi5idQgA/fr1Q1FRkfDfe++9p2EJjcEXX3yBiRMn4ptvvkFOTg6qqqrQt29fXLp0SThmypQp+Pjjj/HBBx/giy++QGFhITIyMnQsNXtIqUcAGDt2rEObXLhwoU4lZpOmTZvipZdewoEDB/D999/j9ttvx7333otff/0VALVFqYjVI6BjW+QIgiEAcB9++KHwd01NDRcXF8e9/PLLwmelpaVcaGgo99577+lQQvZxrkOO47jhw4dz9957ry7lMTJnzpzhAHBffPEFx3G1bS84OJj74IMPhGMOHz7MAeByc3P1KibzONcjx3Fcr169uMcee0y/QhmUxo0bc2+++Sa1RR/h65Hj9G2LZAkjmKagoADFxcVIS0sTPrNarUhJSUFubq6OJTMen3/+OWJjY9GmTRtMmDABJSUleheJeWw2GwAgMjISAHDgwAFUVVU5tMe2bduiefPm1B494FyPPBs2bEB0dDSuv/56zJ49G+Xl5XoUzxBUV1fj/fffx6VLl5CamkptUSbO9cijV1ukDbwJpikuLgYANGnSxOHzJk2aCN8R4vTr1w8ZGRlISkpCfn4+nnjiCdx5553Izc1FYGCg3sVjkpqaGkyePBk9evTA9ddfD6C2PYaEhCAiIsLhWGqP7nFVjwDwwAMPoEWLFkhISMChQ4cwc+ZMHDlyBNnZ2TqWlj1+/vlnpKam4vLly2jYsCE+/PBDtG/fHgcPHqS26AXu6hHQty2SCCMIP2Do0KHCvzt06IAbbrgBycnJ+Pzzz9GnTx8dS8YuEydOxC+//IKvvvpK76IYGnf1OG7cOOHfHTp0QHx8PPr06YP8/HwkJydrXUxmadOmDQ4ePAibzYYtW7Zg+PDh+OKLL/QuluFwV4/t27fXtS2SO5Jgmri4OACos+Ln9OnTwneE97Rs2RLR0dH4448/9C4Kk2RlZWH79u3Yt28fmjZtKnweFxeHyspKlJaWOhxP7dE17urRFSkpKQBAbdKJkJAQtGrVCp07d8b8+fPRsWNHLF26lNqil7irR1do2RZJhBFMk5SUhLi4OOzZs0f4rKysDHl5eQ7+fMI7Tp06hZKSEsTHx+tdFKbgOA5ZWVn48MMPsXfvXiQlJTl837lzZwQHBzu0xyNHjuDEiRPUHu0Qq0dXHDx4EACoTYpQU1ODiooKaos+wtejK7Rsi+SOJHTnr7/+cphxFBQU4ODBg4iMjETz5s0xefJkPP/882jdujWSkpIwZ84cJCQkYODAgfoVmjE81WFkZCTmzZuHQYMGIS4uDvn5+ZgxYwZatWqF9PR0HUvNHhMnTsTGjRvx73//G40aNRJia6xWK+rXrw+r1YrRo0dj6tSpiIyMRHh4OCZNmoTU1FR069ZN59Kzg1g95ufnY+PGjbjrrrsQFRWFQ4cOYcqUKejZsyduuOEGnUvPDrNnz8add96J5s2b4+LFi9i4cSM+//xzfPbZZ9QWvcBTPereFnVZk0kQduzbt48DUOe/4cOHcxxXm6Zizpw5XJMmTbjQ0FCuT58+3JEjR/QtNGN4qsPy8nKub9++XExMDBccHMy1aNGCGzt2LFdcXKx3sZnDVR0C4NatWycc8/fff3P//Oc/ucaNG3NhYWHcP/7xD66oqEi/QjOIWD2eOHGC69mzJxcZGcmFhoZyrVq14qZPn87ZbDZ9C84Yo0aN4lq0aMGFhIRwMTExXJ8+fbhdu3YJ31NblIanetS7LVo4juPUl3oEQRAEQRCEPRQTRhAEQRAEoQMkwgiCIAiCIHSARBhBEARBEIQOkAgjCIIgCILQARJhBEEQBEEQOkAijCAIgiAIQgdIhBEEQRAEQegAiTCCIAiCIAgdIBFGEARBEAShAyTCCIIgZFBZWal3EerAYpkIgnAPiTCCIAgAvXv3RlZWFrKysmC1WhEdHY05c+aA39ktMTERzz33HIYNG4bw8HCMGzcOAPDVV1/h1ltvRf369dGsWTM8+uijuHTpknDe1157Da1bt0a9evXQpEkTDB48WPhuy5Yt6NChA+rXr4+oqCikpaUJv+3duzcmT57sUMaBAwdixIgRwt9yy0QQBBuQCCMIgvgfb731FoKCgvDtt99i6dKlePXVV/Hmm28K37/yyivo2LEjfvzxR8yZMwf5+fno168fBg0ahEOHDmHTpk346quvkJWVBQD4/vvv8eijj+LZZ5/FkSNHsHPnTvTs2RMAUFRUhPvvvx+jRo3C4cOH8fnnnyMjIwPebufrbZkIgmAH2sCbIAgCtZanM2fO4Ndff4XFYgEAzJo1C9u2bcNvv/2GxMRE3HTTTfjwww+F34wZMwaBgYH417/+JXz21VdfoVevXrh06RI++eQTjBw5EqdOnUKjRo0crvfDDz+gc+fOOHbsGFq0aOGyPDfeeCOWLFkifDZw4EBERERg/fr1ACCrTPXq1fOpngiCUA6yhBEEQfyPbt26CQIMAFJTU3H06FFUV1cDALp06eJw/E8//YT169ejYcOGwn/p6emoqalBQUEB7rjjDrRo0QItW7bEww8/jA0bNqC8vBwA0LFjR/Tp0wcdOnTAfffdhzfeeAMXLlzwuszelokgCHYgEUYQBCGRBg0aOPz9119/4ZFHHsHBgweF/3766SccPXoUycnJaNSoEX744Qe89957iI+Px9y5c9GxY0eUlpYiMDAQOTk5+PTTT9G+fXssX74cbdq0EYRSQEBAHddkVVWVz2UiCIIdSIQRBEH8j7y8PIe/v/nmG7Ru3RqBgYEuj+/UqRN+++03tGrVqs5/ISEhAICgoCCkpaVh4cKFOHToEI4dO4a9e/cCACwWC3r06IF58+bhxx9/REhIiOBajImJQVFRkXCt6upq/PLLL6L3IKVMBEGwAYkwgiCI/3HixAlMnToVR44cwXvvvYfly5fjsccec3v8zJkzsX//fmRlZeHgwYM4evQo/v3vfwtB8Nu3b8eyZctw8OBBHD9+HG+//TZqamrQpk0b5OXl4cUXX8T333+PEydOIDs7G2fPnkW7du0AALfffjt27NiBHTt24Pfff8eECRNQWloqeg9iZSIIgh2C9C4AQRAEKwwbNgx///03unbtisDAQDz22GNC2gdX3HDDDfjiiy/w5JNP4tZbbwXHcUhOTkZmZiYAICIiAtnZ2XjmmWdw+fJltG7dGu+99x6uu+46HD58GP/5z3+wZMkSlJWVoUWLFli0aBHuvPNOAMCoUaPw008/YdiwYQgKCsKUKVNw2223id6DWJkIgmAHWh1JEAQB16sRCYIg1ITckQRBEARBEDpAIowgCIIgCEIHyB1JEARBEAShA2QJIwiCIAiC0AESYQRBEARBEDpAIowgCIIgCEIHSIQRBEEQBEHoAIkwgiAIgiAIHSARRhAEQRAEoQMkwgiCIAiCIHSARBhBEARBEIQOkAgjCIIgCILQgf8HFkwbEKpg6twAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHaklEQVR4nO3deVxU9f4/8NcZHBAQBlkFQUFccUvwiuOaBaLX5fpDr+RV09Ksvlqhpdlts9Wyuml5266VtrpXLmWCWakQGWpG7oSKAS4gA25s8/n9MZ3DnFnYZOf1fDx4JHM+c+bMXK68/Hze5/2RhBACRERERFSvNA19AUREREQtEUMYERERUQNgCCMiIiJqAAxhRERERA2AIYyIiIioATCEERERETUAhjAiIiKiBsAQRkRERNQAGMKIiIiIGgBDGBERVWj16tWQJAmnT59u6EshalYYwoiowe3fvx/z5s1Dz5494erqig4dOmDy5Mk4ceKE1dhbb70VkiRBkiRoNBq4u7ujW7dumD59OhISEqr1ulu3bsXw4cPh6+sLFxcXdOrUCZMnT8aOHTtq661ZefHFF/Hll19aPZ6UlIQlS5YgPz+/zl7b0pIlS5TPUpIkuLi4ICwsDE888QQKCgpq5TU+++wzLF++vFbORdTcMIQRUYN7+eWXsWnTJtx+++1YsWIF5syZgx9//BHh4eFIS0uzGh8YGIiPP/4YH330EV555RWMHz8eSUlJGDlyJOLi4lBSUlLpa7766qsYP348JEnCY489htdffx0TJ07EyZMnsXbt2rp4mwAqDmHPPPNMvYYw2dtvv42PP/4Y//nPf9C9e3e88MILGDVqFGpja2GGMCL7WjX0BRARLViwAJ999hkcHR2Vx+Li4tC7d2+89NJL+OSTT1TjdTodpk2bpnrspZdewoMPPoi33noLwcHBePnll+2+XmlpKZ577jlER0dj586dVscvXLhwk++o8bh27RpcXFwqHDNp0iR4e3sDAO677z5MnDgRmzdvxk8//QS9Xl8fl0nUInEmjIga3KBBg1QBDAC6dOmCnj174ujRo1U6h4ODA9544w2EhYVh5cqVMBgMdsdeunQJBQUFGDx4sM3jvr6+qu9v3LiBJUuWoGvXrmjdujX8/f0RGxuL9PR0Zcyrr76KQYMGwcvLC87OzoiIiMDGjRtV55EkCVevXsWaNWuUJcCZM2diyZIlWLhwIQAgJCREOWZeg/XJJ58gIiICzs7O8PT0xB133IHMzEzV+W+99Vb06tULqampGDZsGFxcXPDvf/+7Sp+fudtuuw0AkJGRUeG4t956Cz179oSTkxMCAgIwd+5c1Uzerbfeiu3bt+PMmTPKewoODq729RA1V5wJI6JGSQiB8+fPo2fPnlV+joODA6ZMmYInn3wSe/fuxZgxY2yO8/X1hbOzM7Zu3YoHHngAnp6eds9ZVlaGsWPHYteuXbjjjjvw0EMPobCwEAkJCUhLS0NoaCgAYMWKFRg/fjymTp2K4uJirF27Fv/85z+xbds25To+/vhjzJ49GwMGDMCcOXMAAKGhoXB1dcWJEyfw+eef4/XXX1dmpXx8fAAAL7zwAp588klMnjwZs2fPxsWLF/Hmm29i2LBhOHjwIDw8PJTrzc3NxejRo3HHHXdg2rRp8PPzq/LnJ5PDpZeXl90xS5YswTPPPIOoqCjcf//9OH78ON5++23s378f+/btg1arxeOPPw6DwYBz587h9ddfBwC0adOm2tdD1GwJIqJG6OOPPxYAxPvvv696fPjw4aJnz552n/fFF18IAGLFihUVnv+pp54SAISrq6sYPXq0eOGFF0RqaqrVuA8++EAAEP/5z3+sjhmNRuXP165dUx0rLi4WvXr1ErfddpvqcVdXVzFjxgyrc73yyisCgMjIyFA9fvr0aeHg4CBeeOEF1eO//fabaNWqlerx4cOHCwDinXfesfu+zT399NMCgDh+/Li4ePGiyMjIEO+++65wcnISfn5+4urVq0IIIT788EPVtV24cEE4OjqKkSNHirKyMuV8K1euFADEBx98oDw2ZswY0bFjxypdD1FLw+VIImp0jh07hrlz50Kv12PGjBnVeq4801JYWFjhuGeeeQafffYZ+vXrh2+//RaPP/44IiIiEB4erloC3bRpE7y9vfHAAw9YnUOSJOXPzs7Oyp8vX74Mg8GAoUOH4sCBA9W6fkubN2+G0WjE5MmTcenSJeWrXbt26NKlC3bv3q0a7+TkhLvuuqtar9GtWzf4+PggJCQE9957Lzp37ozt27fbrSVLTExEcXEx4uPjodGU/xq555574O7uju3bt1f/jRK1QFyOJKJGJScnB2PGjIFOp8PGjRvh4OBQredfuXIFAODm5lbp2ClTpmDKlCkoKChASkoKVq9ejc8++wzjxo1DWloaWrdujfT0dHTr1g2tWlX81+W2bdvw/PPP49ChQygqKlIeNw9qNXHy5EkIIdClSxebx7Varer79u3bW9XXVWbTpk1wd3eHVqtFYGCgssRqz5kzZwCYwps5R0dHdOrUSTlORBVjCCOiRsNgMGD06NHIz8/Hnj17EBAQUO1zyC0tOnfuXOXnuLu7Izo6GtHR0dBqtVizZg1SUlIwfPjwKj1/z549GD9+PIYNG4a33noL/v7+0Gq1+PDDD/HZZ59V+z2YMxqNkCQJ33zzjc1AalljZT4jV1XDhg1T6tCIqP4whBFRo3Djxg2MGzcOJ06cQGJiIsLCwqp9jrKyMnz22WdwcXHBkCFDanQd/fv3x5o1a5CdnQ3AVDifkpKCkpISq1kn2aZNm9C6dWt8++23cHJyUh7/8MMPrcbamxmz93hoaCiEEAgJCUHXrl2r+3bqRMeOHQEAx48fR6dOnZTHi4uLkZGRgaioKOWxm50JJGrOWBNGRA2urKwMcXFxSE5OxoYNG2rUm6qsrAwPPvggjh49igcffBDu7u52x167dg3Jyck2j33zzTcAypfaJk6ciEuXLmHlypVWY8VfzUwdHBwgSRLKysqUY6dPn7bZlNXV1dVmQ1ZXV1cAsDoWGxsLBwcHPPPMM1bNU4UQyM3Ntf0m61BUVBQcHR3xxhtvqK7p/fffh8FgUN2V6urqWmG7EKKWjDNhRNTgHn74YWzZsgXjxo1DXl6eVXNWy8asBoNBGXPt2jWcOnUKmzdvRnp6Ou644w4899xzFb7etWvXMGjQIAwcOBCjRo1CUFAQ8vPz8eWXX2LPnj2YMGEC+vXrBwC488478dFHH2HBggX4+eefMXToUFy9ehWJiYn4v//7P/zjH//AmDFj8J///AejRo3Cv/71L1y4cAH//e9/0blzZxw+fFj12hEREUhMTMR//vMfBAQEICQkBJGRkYiIiAAAPP7447jjjjug1Woxbtw4hIaG4vnnn8djjz2G06dPY8KECXBzc0NGRga++OILzJkzB4888shNff7V5ePjg8ceewzPPPMMRo0ahfHjx+P48eN466238Le//U31v1dERATWrVuHBQsW4G9/+xvatGmDcePG1ev1EjVaDXlrJhGREOWtFex9VTS2TZs2okuXLmLatGli586dVXq9kpIS8b///U9MmDBBdOzYUTg5OQkXFxfRr18/8corr4iioiLV+GvXronHH39chISECK1WK9q1aycmTZok0tPTlTHvv/++6NKli3BychLdu3cXH374odICwtyxY8fEsGHDhLOzswCgalfx3HPPifbt2wuNRmPVrmLTpk1iyJAhwtXVVbi6uoru3buLuXPniuPHj6s+m4rad1iSr+/ixYsVjrNsUSFbuXKl6N69u9BqtcLPz0/cf//94vLly6oxV65cEf/617+Eh4eHAMB2FURmJCFqYXMwIiIiIqoW1oQRERERNQCGMCIiIqIGwBBGRERE1AAYwoiIiIgaAEMYERERUQNgCCMiIiJqAGzW2ogZjUZkZWXBzc2NW38QERE1EUIIFBYWIiAgABqN/fkuhrBGLCsrC0FBQQ19GURERFQDmZmZCAwMtHucIawRc3NzA2D6H7GiffCIiIio8SgoKEBQUJDye9wehrBGTF6CdHd3ZwgjIiJqYiorJWJhPhEREVEDYAgjIiIiagAMYUREREQNgDVhTZzRaERxcXFDX0az5ujoWOEtxkRERDXBENaEFRcXIyMjA0ajsaEvpVnTaDQICQmBo6NjQ18KERE1IwxhTZQQAtnZ2XBwcEBQUBBnauqI3DA3OzsbHTp0YNNcIiKqNQxhTVRpaSmuXbuGgIAAuLi4NPTlNGs+Pj7IyspCaWkptFptQ18OERE1E5w+aaLKysoAgEtk9UD+jOXPnIiIqDYwhDVxXB6re/yMiYioLjCEERERETWAJhPCxo8fjw4dOqB169bw9/fH9OnTkZWVpRojhMCrr76Krl27wsnJCe3bt8cLL7ygGvP9998jPDwcTk5O6Ny5M1avXm31Wv/9738RHByM1q1bIzIyEj///LPq+I0bNzB37lx4eXmhTZs2mDhxIs6fP68ac/bsWYwZMwYuLi7w9fXFwoULUVpaWjsfBhERETV5TSaEjRgxAuvXr8fx48exadMmpKenY9KkSaoxDz30EFatWoVXX30Vx44dw5YtWzBgwADleEZGBsaMGYMRI0bg0KFDiI+Px+zZs/Htt98qY9atW4cFCxbg6aefxoEDB9C3b1/ExMTgwoULypj58+dj69at2LBhA3744QdkZWUhNjZWOV5WVoYxY8aguLgYSUlJWLNmDVavXo2nnnqqDj+hpmHmzJmQJAmSJEGr1cLPzw/R0dH44IMPqtVqY/Xq1fDw8Ki7CyUiombt3Dlg927TfxuMaKK++uorIUmSKC4uFkIIceTIEdGqVStx7Ngxu89ZtGiR6Nmzp+qxuLg4ERMTo3w/YMAAMXfuXOX7srIyERAQIJYuXSqEECI/P19otVqxYcMGZczRo0cFAJGcnCyEEOLrr78WGo1G5OTkKGPefvtt4e7uLoqKiqr8Hg0GgwAgDAaD1bHr16+LI0eOiOvXr1f5fOYuXboksrKy7H5dunSpRuetzIwZM8SoUaNEdna2OHfunEhNTRUvvPCCaNOmjRg9erQoKSmp0nk+/PBDodPp6uQaLd3sZ01ERI2D/Lvv1VcvC43GKAAhNBqjePXVy7X6u6+i39/mmmSLiry8PHz66acYNGiQ0jJg69at6NSpE7Zt24ZRo0ZBCIGoqCgsW7YMnp6eAIDk5GRERUWpzhUTE4P4+HgApuanqampeOyxx5TjGo0GUVFRSE5OBgCkpqaipKREdZ7u3bujQ4cOSE5OxsCBA5GcnIzevXvDz89P9Tr3338/fv/9d/Tr169OPpeqys3NxcqVKysdN2/ePHh5edX66zs5OaFdu3YAgPbt2yM8PBwDBw7E7bffjtWrV2P27Nn4z3/+gw8//BB//PEHPD09MW7cOCxbtgxt2rTB999/j7vuugtAedH8008/jSVLluDjjz/GihUrcPz4cbi6uuK2227D8uXL4evrW+vvg4iIGr/c3FwUFxcjPz8f//vfN8jMDMLGjRMBmH5/GI0SFi50x59/fgCdrrDOfvfZ0mSWIwHg0UcfhaurK7y8vHD27Fl89dVXyrE//vgDZ86cwYYNG/DRRx9h9erVSE1NVS1Z5uTkqIIRAPj5+aGgoADXr1/HpUuXUFZWZnNMTk6Ocg5HR0erpTDLMbbOIR+zp6ioCAUFBaqvulDVbY7qczuk2267DX379sXmzZsBmMLvG2+8gd9//x1r1qzBd999h0WLFgEABg0ahOXLl8Pd3R3Z2dnIzs7GI488AgAoKSnBc889h19//RVffvklTp8+jZkzZ9bb+yAiosYjPT0dK1euxHvvvYfFi09i+fJ4bNz4T1jGHyE0yMszTdhcvHix3q6vQUPY4sWLlfoge1/Hjh1Txi9cuBAHDx7Ezp074eDggDvvvBNCCACmzuZFRUX46KOPMHToUNx66614//33sXv3bhw/fryh3mK1LF26FDqdTvkKCgpq6EuqV927d8fp06cBAPHx8RgxYgSCg4Nx22234fnnn8f69esBmPp26XQ6SJKEdu3aoV27dmjTpg0A4O6778bo0aPRqVMnDBw4EG+88Qa++eYbXLlypaHeFhERNYDc3Fx88sknAACDwQ1bt46FEPZijxGennkATP+Yry8Nuhz58MMPVzpL0alTJ+XP3t7e8Pb2RteuXdGjRw8EBQXhp59+gl6vh7+/P1q1aoWuXbsq43v06AHAdKdit27d0K5dO6u7GM+fPw93d3c4OzvDwcEBDg4ONsfIy2ft2rVTpjXNZ8Msx1jeUSmfUx5jy2OPPYYFCxYo3xcUFLSoICaEUJYXExMTsXTpUhw7dgwFBQUoLS3FjRs3cO3atQp3CEhNTcWSJUvw66+/4vLly0qx/9mzZxEWFlYv74OIiBqe+WpOSkpkBQEMaKh2kA06E+bj44Pu3btX+GWvI7z8y7WoqAgAMHjwYJSWliI9PV0Zc+LECQBAx44dAQB6vR67du1SnSchIQF6vR6AaYYlIiJCNcZoNGLXrl3KmIiICGi1WtWY48eP4+zZs8oYvV6P3377TXVHZUJCAtzd3SsMAk5OTnB3d1d9tSRHjx5FSEgITp8+jbFjx6JPnz7YtGkTUlNT8d///hdAxUukV69eRUxMDNzd3fHpp59i//79+OKLLyp9HhERNW25ubnIzs7GsWPH8Ntvv+G3337DyZMnAZhmwZKS9BU+33w5sj41icL8lJQU7N+/H0OGDEHbtm2Rnp6OJ598EqGhoUrwiYqKQnh4OO6++24sX74cRqMRc+fORXR0tDI7dt9992HlypVYtGgR7r77bnz33XdYv349tm/frrzWggULMGPGDPTv3x8DBgzA8uXLcfXqVaUQXKfTYdasWViwYAE8PT3h7u6OBx54AHq9HgMHDgQAjBw5EmFhYZg+fTqWLVuGnJwcPPHEE5g7dy6cnJzq+dNrGr777jv89ttvmD9/PlJTU2E0GvHaa68pG5PLS5EyR0dHq22Ejh07htzcXLz00kvKDOIvv/xSP2+AiIgaRHp6urLsCJhCV16eF7TaIpSUBOPqVRdUNuckSeXLkfWpSYQwFxcXbN68GU8//TSuXr0Kf39/jBo1Ck888YQSajQaDbZu3YoHHngAw4YNg6urK0aPHo3XXntNOU9ISAi2b9+O+fPnY8WKFQgMDMSqVasQExOjjImLi8PFixfx1FNPIScnB7fccgt27NihKrR//fXXodFoMHHiRBQVFSEmJgZvvfWWctzBwQHbtm3D/fffD71eD1dXV8yYMQPPPvtsPXxajV9RURFycnJQVlaG8+fPY8eOHVi6dCnGjh2LO++8E2lpaSgpKcGbb76JcePGYd++fXjnnXdU5wgODsaVK1ewa9cu9O3bFy4uLujQoQMcHR3x5ptv4r777kNaWhqee+65BnqXRERU18zrvgBg3z49EhKiYApdAoAESTICMMJ+EDNi3Lht0OkK6/x6LUlCrmynRqegoAA6nQ4Gg8FqafLGjRvIyMhASEgIWrduXa3zZmdn47333qt03Jw5c+Dv71+tc1dm5syZWLNmDQCgVatWaNu2Lfr27Yt//etfmDFjhjLz9frrr+OVV15Bfn4+hg0bhqlTp+LOO+/E5cuXlVq8+++/Hxs2bEBubq7SouLzzz/Hv//9b2RnZyM8PByPPfYYxo8fj4MHD+KWW26p0TXfzGdNRER1x/z3mSmARUNuPaEmRx3rY5MmrUevXkeV72NjY9G7d++buq6Kfn+bYwhrxOoqhDV0n7CmhiGMiKjxkPt+AcClS5ewefNmGAxuWL48vsLie9uMmD9/uWoWbPLkycqNfTVV1RDWJJYjqXZ5eXlh3rx5FRarOzo6MoAREVGjYm8SIS/PqwoBzLQ8af59dHSi1TJkfTb3ZghroRiwiIioqbGcPDAvwpckYyVBTFLGSJIRUVGJGDw4WTkaGxuLgICAev39yBBGREREjZL50qPBYFAaegPAgQP9zBqwGtGjx1EcO9ZD+d4061U+8yVJRsyatQolJY7w9MyzmgGr7wAGMIQRERFRI1RR/bJ1B3wNjh4Nw9ChP6JTpwx4euYhPb2zMkaSTHdABgZmAwBGjBiBtm3bAgC0Wi18fHwaZIWIIYyIiIgaDXn269KlS6rH5aVHT89cZGYG2Vh6lLB371D0758Kna4Q4eEHERp6Cnl5nlYzX126dKn1u/9rgiGMiIiIGgV7s1+WS4+221CUd76XA5dOV2iz/5e93XjqG0MYERERNQq2Cu8zM4OwZctYlDdbrWgPyPLO9/KSY6tWrVR7PTemu/8ZwoiIiKhByEuPBoMBJSUluHz5snJMPftVObnuS575aixLjhVhCCMiIqJ6V73C+8qY7nyUC++biuq2liVq1L7//ntIkoT8/PwqPyc4OBjLly+vs2siIiJrtpYeMzKCce6cP37/vWe1Atj48dusAlhjqfuqCGfCqF7Je0fee++9Vptyz507F2+99RZmzJiB1atXN8wFEhFRvVMvPcqd7S073FsS6N37V0RFfacqvm+Ipqs1xRBG9S4oKAhr167F66+/DmdnZwCm/Rk/++wzdOjQoYGvjoiIapt509X8/HyUlpbizz//BGBr6VEy+6+9IGZEdLS6472sqQQwgMuR1ADCw8MRFBSEzZs3K49t3rwZHTp0QL9+/ZTHioqK8OCDD8LX1xetW7fGkCFDsH//ftW5vv76a3Tt2hXOzs4YMWKEqpuybO/evRg6dCicnZ0RFBSEBx98EFevXq2z90dEROXk2q/33nsP7733HtavX4/NmzcjJSUFQGX7PspBTGZERMR+zJ+/3CqA/f3vf8e8efOaTAADGMIIwLlzwO7dpv/Wl7vvvhsffvih8v0HH3yAu+66SzVm0aJF2LRpE9asWYMDBw6gc+fOiImJQV6e6fbjzMxMxMbGYty4cTh06BBmz56NxYsXq86Rnp6OUaNGYeLEiTh8+DDWrVuHvXv3Yt68eXX/JomIyKr2y5KnZy4kyVjBCAnDhu3GpEnrMX/+cowb97Vq+XH06NGYN28e/va3vzWpAAYwhLV4778PdOwI3Hab6b/vv18/rztt2jTs3bsXZ86cwZkzZ7Bv3z5MmzZNOX716lW8/fbbeOWVVzB69GiEhYXhf//7H5ydnfH+Xxf59ttvIzQ0FK+99hq6deuGqVOnYubMmarXWbp0KaZOnYr4+Hh06dIFgwYNwhtvvIGPPvoIN27cqJ83S0TUwuTm5iI7OxvZ2dlIS0tTHZML8A0GN6UL/pAhe8yCmFCNlyQjIiIOolevo1aNV6dNm4YBAwY0ufAlY01YC3buHDBnDmD86+feaATuvReIiQECA+v2tX18fDBmzBisXr0aQgiMGTMG3t7eyvH09HSUlJRg8ODBymNarRYDBgzA0aNHAQBHjx5FZGSk6rx6vV71/a+//orDhw/j008/VR4TQsBoNCIjIwM9evSoi7dHRNTimPf8Wrdunc0x1gX4Aqb5ILn2y4guXU7i5MkuADRWvb/kBqwNud9jbWIIa8FOniwPYLKyMuDUqboPYYBpSVJeFvzvf/9bJ69x5coV3HvvvXjwwQetjvEmACKi2lFZz6+8PC9otUU2CvDNi/ABQINTp7pg9uxVKClxbLR7PtYWhrAWrEsXQKNRBzEHB6Bz5/p5/VGjRqG4uBiSJCEmJkZ1LDQ0FI6Ojti3bx86duwIACgpKcH+/fsRHx8PAOjRowe2bNmiet5PP/2k+j48PBxHjhxB5/p6U0RELZC9ui/rPR8rr4ISQoOSEkeEhJyxOtYUen9VB0NYCxYYCLz3nmkJsqzMFMDefbd+ZsEAwMHBQVladHBwUB1zdXXF/fffj4ULF8LT0xMdOnTAsmXLcO3aNcyaNQsAcN999+G1117DwoULMXv2bKSmplr1F3v00UcxcOBAzJs3D7Nnz4arqyuOHDmChIQEu/9qIyKiqsnNzcXFixdx7Ngx1ePyno/qmS/zZUf7zPd/jI2NVUpVGtOej7WFIayFmzXLVAN26pRpBqy+ApjM3d3d7rGXXnoJRqMR06dPR2FhIfr3749vv/0Wbdu2BWBaTty0aRPmz5+PN998EwMGDMCLL76Iu+++WzlHnz598MMPP+Dxxx/H0KFDIYRAaGgo4uLi6vy9ERE1Z+np6fjkk0+sHq94z0d7AcwUzixrwLy9vZvV8qMlSQghKh9GDaGgoAA6nQ4Gg8EqrNy4cQMZGRkICQlB69atG+gKWwZ+1kREJnLxfX5+PtavX291/Nw5f6xaNRvVab4gSUYMGbIHnTplWNWANbW+X7KKfn+b40wYERERVaqi4nsA2LdPj4SEaFS23FhO4O9/34Zu3U5a9f0KCgpqlsuPlhjCiIiIyC559uvSpUuqx+W7Hj09c/HLLxHYs2cYqhPAwsKOYMCAAwBMrSe6dOnSIoKXOYYwIiIissne7Jd1vy+g8gBW3gts6NA9uP3275Uj7du3b9a1X/YwhBEREZFNlq0nbN/1WPnslyQZERWViICALKu6r/HjxyM0NLQ2L7vJYAhr4nhfRd3jZ0xELY28BHn69GnlsYrverRHICLiFwwbtkcVvOLi4qDT6Vrc8qMlhrAmSu6rVVxcDGdn5wa+muZN/pegZS8zIqLmyNYSpMHgVoMAZkR0dCIGD05WHpk8eTJ8fX1bdPAyxxDWRLVq1QouLi64ePEitFotNBruxV4XjEYjLl68CBcXF7Rqxf+7EFHzlpubixMnTqgeMxjc8PvvPasRwAQmTdqAoKBzqtmvadOmtdhlR3v4W6WJkiQJ/v7+yMjIwJkz1ls7UO3RaDTo0KEDJKmqd/0QETU9tmbArAvwK/t70Ijx47ehVy/Tbih9+vRBjx49msVm23WBIawJc3R0RJcuXezu2UW1w9HRkTONRNRs5Obm4sKFCzh37pzq98fly5dV486d88eWLWNR3njVfgCTJCP0+mRERqaoZr8GDhzYIu96rCqGsCZOo9GwizsREVVJZQ1XZQcO9LMIYPYYMWnSRqulR1lz23C7tjGEERERtRBVWTkxGNyqHMDMlx7NxcbGIiAggEuQlWAIIyIiasbk5cfS0lKrJUe571dubluUlbVC164ncORIT1QWwCTJiFmzViEwMNvmcQawqmEIIyIiaqYqWn40LTmOg3mt148/Dq/0nJJkxLhx25QANmLECPj4+MDDwwMAWnzvr+pgCCMiImpG5EarBoNB1WxVZt713rrYvqK7H223nujZsydDVw0xhBERETUTlRXe79unR0JCFCqv91KTZ7/k+q/IyEj07duXs143iSGMiIiomaio8N4UwKJRtY22BUxBzYhBg6xbT3Ts2JGtJ2oBQxgREVETJi8/AkBGRobqmMHghrw8LxQXt6pyAOvb91fcdtt3yMvztNpsW+br61tLV9+yMYQRERE1UZUV3le12/0tt/wCd/dCdO16Uim4txW+uPdj7WIIIyIiaqLsLT9ab7hdcbf7ESN+hE5XiODgYLRp0wtt2rRB27ZtERQUpIxj/VftYwgjIiJqQqqy/JiWFlalDbflgnt51mvkyJGs9apHDGFERESNWG5uLi5evIiSkhIUFhYiISHB5jjr5ceK9ez5G0aOTLC57Ej1gyGMiIioEZI73a9fv97uGHnmS6stqvLyo4nRZgDjXo/1iyGMiIiokanKRtvVKbw3MY2xXIKMjo5GSEgIa74aAEMYERFRI5Kbm4usrCybx8r3evTA7t23o7zpqq0AJgczU6+vsLDfUVLiaNV2IiQkhHVgDYQhjIiIqJGofK/Hsahqt/uIiF/Qq9fvdnt9ybgE2XAYwoiIiBoJey0nzp3zr1YAA4wYNmyPzfAVFxcHnU4HgG0nGhpDGBERUSORn5+v+t5gcENKSiSSkgah8povmUB0dKKq7URwcDAAhq7GhiGMiIioEcjNzVXdCVnd5UcTgaFDf8TgwcnKI8HBwaz5aqQYwoiIiOqZecNV2aVLl5Q/GwxuVQxg5ZttS5IRUVGJqgAGsOarMWMIIyIiqgdy8MrPz6+w9xcA/PjjUFQWwIYN242IiIMAYHez7WnTpnH5sRFjCCMiIqpjFd31KDdc9fTMhU5XCIPBDampEZWc0YiIiINK6LK32XZoaOjNXjrVIYYwIiKiOmbvrkfzhqvycqIkmZYX7TNi/PhtlW435OvrW/MLpnrBEEZERFRH5CVI83ovwDT7dfx4V3z99d8hBy4hNEhIiIbpLkjLDvgCvXv/im7dTiAo6JwqgMXGxsLb21t1ft4F2TQwhBEREdUiOXgZDAasW7fO6njFdz1KZv8t73gfHW1dcC8LCAhg4GqiGMKIiIhqSWW1X5mZQdVoOyEhJmYHwsKOWC09yrNfnPFq2hjCiIiIaoll7ZdcdJ+V5Y/ExKi/NtuuGkky2gxgAGe/mguGMCIiohqy7Pd1+vRp5c/mRffWNV6VEYiKKu96P2LECLRt2xatWrWCr68vA1gzwRBGRERUA5UtPaqXHasTwKxrwLp06cKu980QQxgREVE15ebmIisry+7xlJRIVFz3JdCt2xGcONHjr5kyIyIiUhESkmF19yM1XwxhRERE1WBvBkwuvM/La/vXhtsVkTBw4H78/e/f2u12b45bDzVPDGFERESVyM3NxcWLF1FSUoI///xTdcxgcENKSiSSkvSo+mbbRiV4VRS+Ro8ejdDQUNaANVMMYURERBWoqPZLXXxfVQLR0YkVhq/JkyezAL8FqM5PTYMaP348OnTogNatW8Pf3x/Tp09XrccvWbIEkiRZfbm6uqrOs2HDBnTv3h2tW7dG79698fXXX6uOCyHw1FNPwd/fH87OzoiKisLJkydVY/Ly8jB16lS4u7vDw8MDs2bNwpUrV1RjDh8+jKFDh6J169YICgrCsmXLavkTISKi+mCr7URGRjDOnfPHli3jqh3Ahg79UVV0Hxsbizlz5ihf8+bNQ48ePRjAWoAmE8JGjBiB9evX4/jx49i0aRPS09MxadIk5fgjjzyC7Oxs1VdYWBj++c9/KmOSkpIwZcoUzJo1CwcPHsSECRMwYcIEpKWlKWOWLVuGN954A++88w5SUlLg6uqKmJgY3LhxQxkzdepU/P7770hISMC2bdvw448/Ys6cOcrxgoICjBw5Eh07dkRqaipeeeUVLFmyBO+9914df0pERFSXDhzoh+XL47FmzQysWnUPqn/XYwJuv/171aPe3t7w9/dXvhi+Wg5JCCEa+iJqYsuWLZgwYQKKioqg1Wqtjv/666+45ZZb8OOPP2Lo0KEAgLi4OFy9ehXbtm1Txg0cOBC33HIL3nnnHQghEBAQgIcffhiPPPIIAMBgMMDPzw+rV6/GHXfcgaNHjyIsLAz79+9H//79AQA7duzA3//+d5w7dw4BAQF4++238fjjjyMnJ0cpply8eDG+/PJLHDt2rMrvsaCgADqdDgaDAe7u7jX+rIiIqGJyv6/8/HyUlpaqjl2+fBm7d++GweCG5cvjqznzBQBGTJq00e5dj/PmzWPwamaq+vu7SdaE5eXl4dNPP8WgQYNsBjAAWLVqFbp27aoEMABITk7GggULVONiYmLw5ZdfAgAyMjKQk5ODqKgo5bhOp0NkZCSSk5Nxxx13IDk5GR4eHkoAA4CoqChoNBqkpKTg//2//4fk5GQMGzZMdTdLTEwMXn75ZVy+fBlt27atjY+BiIhuUm5uLi5cuID169dXOjYvz6sKAcyI7t2P4dix7gA0kCQjxo3bhl69jtocPW3aNAawFqxJhbBHH30UK1euxLVr1zBw4EDVjJa5Gzdu4NNPP8XixYtVj+fk5MDPz0/1mJ+fH3JycpTj8mMVjfH19VUdb9WqFTw9PVVjQkJCrM4hH7MXwoqKilBUVKR8X1BQYHMcERHdvIoK7oHyLYc8PXOh0xXC0zMXgBH2K3mE0mTV9NyKW09MmzYNoaGhN/0+qOlq0JqwxYsX2yymN/8yX75buHAhDh48iJ07d8LBwQF33nknbK2mfvHFFygsLMSMGTPq8+3ctKVLl0Kn0ylfQUFBDX1JRETNlmXBvcxgcMPOnVF4/XVT7dfy5fE4cKAfACAiIhWmLYgsqQvudbpChIScsbnxtlx8zwBGDToT9vDDD2PmzJkVjunUqZPyZ29vb3h7e6Nr167o0aMHgoKC8NNPP0Gv16ues2rVKowdO9ZqRqtdu3Y4f/686rHz58+jXbt2ynH5MfPtIc6fP49bbrlFGXPhwgXVOUpLS5GXl6c6j63XMX8NWx577DHVcmlBQQGDGBFRPbHX70sIDbZsGQtJgtLd3kQuyrfeZsgebrxN5ho0hPn4+MDHx6dGzzUaTf8nMF++A0x1Xbt378aWLVusnqPX67Fr1y7Ex8crjyUkJCghLiQkBO3atcOuXbuU0FVQUICUlBTcf//9yjny8/ORmpqKiIgIAMB3330Ho9GIyMhIZczjjz+OkpISpWYtISEB3bp1q7AezMnJCU5OTjX4NIiI6GZU3u9Lg/KFF1MQ+/vft8HF5brdgvvJkyfDw8ND+d7R0ZEBjFSaRE1YSkoK9u/fjyFDhqBt27ZIT0/Hk08+idDQUKtZsA8++AD+/v4YPXq01XkeeughDB8+HK+99hrGjBmDtWvX4pdfflFaR0iShPj4eDz//PPo0qULQkJC8OSTTyIgIAATJkwAAPTo0QOjRo3CPffcg3feeQclJSWYN28e7rjjDgQEBAAA/vWvf+GZZ57BrFmz8OijjyItLQ0rVqzA66+/XrcfFBERVZvB4FaDhqsa+PjkIiTkjNURdrmnqmoSIczFxQWbN2/G008/jatXr8Lf3x+jRo3CE088oZo5MhqNWL16NWbOnAkHBwer8wwaNAifffYZnnjiCfz73/9Gly5d8OWXX6JXr17KmEWLFuHq1auYM2cO8vPzMWTIEOzYsQOtW7dWxnz66aeYN28ebr/9dmg0GkycOBFvvPGGclyn02Hnzp2YO3cuIiIi4O3tjaeeekrVS4yIiOqO3HLCnmvXrillIlW761HAvCeYJJm2HQJMdV7e3t4AONtF1dNk+4S1BOwTRkRUfZXd9Wjp3Dl/rFo1G/bvVTPVfCUmRkGI8rYT4eEHAQBz5sxR1RETNes+YURERPZUNAMmMxjckJkZhIyMYKSmRqAqbSd69UqrtO0EUXUwhBERUYuyb58eCQlRqLxLk0B0dIKq7QTDF9UmhjAiImo2cnNzcenSJdVj5k1X09J6ISEhGpXv+WjE7NmrEBiYXelrmu+OQlQdDGFERNQs2KoFM289IUnGv9pMVB7Axo/fZhXAoqOjrXZDYSE+3QyGMCIiahYsa8HOnfPHli1jIS87Vq0FhbA7A9atWzcGLqpVDGFERNSkye0oMjIylMcOHOiHLVvGofJZL0BuPyHf9WgZwGJjY9npnuoEQxgRETVZlkuQ8l2PFQcwueeXERERqejX7yBKShzt3vXIAEZ1hSGMiIgardzcXFy8eBElJSVWx65cuQKDwaB8X/nWQzIJMTE7EBZ2pMK7HaOjo7kESXWKIYyIiBql9PR0fPLJJ1Uaa1n/VRFJMlYawADTfsIMYFSXGMKIiKjRyc3NtRnAzNtNyCFKngGrOICp676q0u+LrSeorjGEERFRo2Or6/2+fXqrrYNCQ0/V2hLk5MmT4eHhAYCtJ6h+MIQREVGDsrXZtmXD1V27bsWePcMgF9sLocHWrWPRq9dvVWo9YW8JUt58m6GLGgJDGBERNZiq1H3t26dXBTCZEBr89lufKryK/SVI3vlIDYkhjIiIGoS9ui9zBoPbX/s82mo3Iew8bgRgWrLU65MRGZmiCmBy53vOflFDYwgjIqIGYbkEKff4AoCgoEzodIXIy/OC7YJ7+wFs9uxVFfb9CgkJgb+//01fP9HNYggjIqIGZ93h3rR/4+XLOlQ241VOIDo6sdJNt3nXIzUWDGFERNSgDAa3v1pMmActzV99vyTYDmASJElACDmIGREdnYjBg5Ptvk5cXBx8fHy4BEmNBkMYERHVGVt3PsrkOyDz8rzs3OFY8V2PQmgwadJ6uLpes7n0OHLkSAQHBwNgywlqnBjCiIioTlju62iPp2cuJMlYpVYT5iTJiKCgc3b7fnXt2pXBixq16v3EExERVZG9GTBLOl0h+vQ5DFPtV0WEMqayzvfTpk1jAKNGjzNhRERUKyyXHi0brppvOQRA9efDh/vAdu2XzFTz1atXGvLyPK2WH+WmqwCXHqnpYAgjIqKbVtnSo7y/o2nJUZ7xkpReXhUvRQrMnr1KueuRTVepuWAIIyKim2ar55f5TJd6f8fyGS8hNEhKGgTrNhTqDbdttZ2Q93rkzBc1VQxhRERUq8xnvao202W5DCkwdOiP6NQpw27D1WnTpiE0NLRWr5uovjGEERHRTcvPzwdQ3vNLDl2mmS497DdctUVCp04ZCAk5Y3UkOjoa3bp148wXNQsMYUREVCUV9fw6c8YUmGz3/DI1UzWpPIhJkhGennk2jzGAUXPCEEZERJWqTs8v27NeckG++VZDtsZZt55g7Rc1VwxhRERUqar2/EpL61XBUdNWQ6NHb4WLy3UYDB5ITIxS1Y5FRqaoAlhcXBy6d+9+k1dP1DgxhBERUbXJdz9qtUXIygrAlStt0L79n0hIiEJFS45CaODjk6vUe9nr+yXT6XR19RaIGhxDGBERVYt1zy85dFVefG9Z76XTFdrteg+YGq8SNVcMYUREZFNubi4uXLiA0tJSXL58GYD13Y/q0CXBdr8vAUBT6VZD5uLi4uDj48MaMGrWGMKIiMiKvUJ823c/mpNQXnxf9a2GzLEAn1oKhjAiIrJiqwN+ZmYQrl1zhvoOR0sCU6Z8DkfHElXosjX75e3tDX9//9q9cKImhCGMiKiFk/t/5efno7S0FACU5UfAVAO2Zcs4qGu/bBHo2/dXdOt2qkqvy3ovaukYwoiIWhjzpqsGgwHr1q2zO1auAbOu/VLr0+cgBgzYb3OPR5nc7wvgkiMRwBBGRNSiVLXpqtyC4upVl0pqwEx3PN5++26rJcfo6GiEhIQAYOgisoUhjIioGbPcaujSpUuq43LY8vTMhU5XCIPBDSkpkX/t9yhvN2S/9URFdzxyiyGiijGEERE1U5XNepn3+5IkIzp0OIMzZ4KhDlwVz4IJAYSGlteAyXc8cuaLqHIMYUREzdSFCxfsHrPs9yWEBmfOhNTgVTTIy/NUZsJ4xyNR1TGEERE1M/IS5MWLF1WPnzvnj7NnO6JDhzMoKXGqtNbLNvXSpGUHfN7xSFR1DGFERE2UZb0XYP9uxy+++Ad+/bUv5K72YWFHIEnGagex3r1/RVpaH2UJ07weLC4ujkuQRNXAEEZE1ARV5y7H48e7mgUwAJBw5EgYhg79EXv3Dq1WEOvW7QSior6z2QGfm20TVQ9DGBFRE2Q5A2aLeqNtSxIkyYj4+OUWd0PaJ0lGBAWds7vpNpciiaqHIYyIqAmoSasJ+wHM5Mcfh8PDoxAjRyYiMjIFx493wddfj4E6jJlqwCyXHvv374/Q0FBl9ot3QxJVH0MYEVEjl56ejk8++cTucctWE+PGbUPbtpersMyowZYtY+Hrm4PAwGwMGHAArVoJ1bmiohIREJBltfTYoUMHdO/evZbeIVHLxBBGRNSIVRbAbLWa2Lp1LGbNWmWj8N7WxtsarFo1G+PHb0N4+EGEhx9EaOgpmzVf5lxcXG7ujRERQxgRUWOVm5trFcAMBjdkZgYBAIKCMpGX52U14yWEBiUljhg3bhu2bBmL8uAlwV4Q27JlLEJDTyn1XrbC14gRI9C2bVu4uLggNDS0Vt4jUUvGEEZE1EhZFt/v26dHQkI0yu9yNGLo0D1WM15y7y5PzzxIkqmr/V9HYKrxskXddNWWnj17su6LqBYxhBERNQHWAQwANNizZxjCwo7g6NEeVr27MjKCbdSFaWB7L8jypqvy1kPmWHhPVPsYwoiIGjmDwQ0JCVGwvYm2hKNHe+COOz5Hbq4XOnQ4Cze3K8jICIZWW2RzliwqKhGJiVFmjxsxfvw2bj1EVM8YwoiIGhm5HUVaWhoAIC/PCxX18BJCg88/n/LXGCNMYc1U/xUa+gfS0zsBKJ8lCw8/iF690pCZGQgASu8vIqpfDGFERI2IrU74np65lWwxJFAe0szHaJCe3hmSZIRevw+RkSlK2DIV3x+1eTY2XSWqHwxhREQNwNa+jwBw+vRpq8d0ukJERSX+tSSpnu2qyv6PQmiQnKxHZGSK6vHo6Gi4ubkp32u1Wvj4+LD2i6ieMIQREdWzqu77CJjqwUzbCg2CeU1YdHQCAgKyUFysNVuKtE+I8rsfY2NjERAQwLBF1MAYwoiI6pnlDJjllkMy0x2R8uyXOQ0SEqIQHW0qsLd/x2M5uW0FYCq8ZwAjangMYUREDUi9ybYR0dGJGDw42U5LCnMaizsc5R5gpiXKTp3S8ccfoVZtK4io8ahyCCsoKKjySd3d3Wt0MURELYn1JtsaJCRE48YNJ+zdOxQVzWwBtmrBJMTE7EBY2BFlE+/Kth8iooZT5RDm4eEBSaroLwRACAFJklBWVnbTF0ZE1BzYKsC/dOkSANjccgiQsGfPMFQWwGwfFwgKOmtxB6R1+OLdj0SNQ5VD2O7du+vyOoiImpXc3FxcuHAB69evtzvG0zMXtvdyLF9aVBMYMSIR339/O4Sw3bi1pMQUsPr3748OHTpAq9VCp9MpI9j5nqjxqHIIGz58eF1eBxFRs2Hv7kfLAnydrhDR0Yk2ar/sFdlLcHQss9uSwrz4vkOHDujdu/dNvxciqjs1LszPz8/H+++/j6NHTc3+evbsibvvvlv1Ly4ioubKXp8voHy5UVbeZkIPy871gwcnA4BZkb39uxwlyYigoLM2e4NZFt+3asX7rogaO0kIIar7pF9++QUxMTFwdnbGgAEDAAD79+/H9evXsXPnToSHh9f6hbZEBQUF0Ol0MBgMvNmBqBGxnOmy12ICsLz7sZwkGREfv1wZbzC44ciRMHz77Sibr2ke3CzvqBw0KFnVDR8A5s2bx2VHogZS1d/fNfqn0vz58zF+/Hj873//U/61VVpaitmzZyM+Ph4//vhjza6aiKgJMJ8BMw9E5kEJsHX3Yznz5qmAqYg+LOwIvv12JNQ1YgIREb9g2LA9ytjw8IMIDT1l887HyZMnw9fXlwGMqAmoUQj75ZdfVAEMME19L1q0CP3796+1iyMiamxyc3OV5UbLkCWEBlu3jkVo6CnodIV27n6UGXH1qisMBjclRKWnd4Z6KbK8b5gsOjoanp6eNks/WHRP1LTUKIS5u7vj7Nmz6N69u+rxzMxM1T5kRETNieUyZGZmkFXIEkKDlJRIjByZWMHG26YWExs3/lOZPQsNPYWtW8fCPIRJEtCrV5ryfVxcnNXfu0TUdFW82ZgdcXFxmDVrFtatW4fMzExkZmZi7dq1mD17NqZMmVLb1wgAGD9+PDp06IDWrVvD398f06dPR1ZWlmrMt99+i4EDB8LNzQ0+Pj6YOHGi1Wa433//PcLDw+Hk5ITOnTtj9erVVq/13//+F8HBwWjdujUiIyPx888/q47fuHEDc+fOhZeXF9q0aYOJEyfi/PnzqjFnz57FmDFj4OLiAl9fXyxcuBClpaW18lkQUcOwXIbctGmizXFJSXqkpYWhsLAN9PpkmIrtZeWbbwPls2f2Al1enqfyvY+PTy29EyJqDGoUwl599VXExsbizjvvRHBwMIKDgzFz5kxMmjQJL7/8cm1fIwBgxIgRWL9+PY4fP45NmzYhPT0dkyZNUo5nZGTgH//4B2677TYcOnQI3377LS5duoTY2FjVmDFjxmDEiBE4dOgQ4uPjMXv2bHz77bfKmHXr1mHBggV4+umnceDAAfTt2xcxMTG4cOGCMmb+/PnYunUrNmzYgB9++AFZWVmq1ykrK8OYMWNQXFyMpKQkrFmzBqtXr8ZTTz1VJ58NEdWvimq9TDTYuPGfWLXqHiQlDbY6Znn3o3xXpCQZVY+bt5yYPHkylxqJmhtxE65evSoOHz4sDh8+LK5evXozp6q2r776SkiSJIqLi4UQQmzYsEG0atVKlJWVKWO2bNmiGrNo0SLRs2dP1Xni4uJETEyM8v2AAQPE3Llzle/LyspEQECAWLp0qRBCiPz8fKHVasWGDRuUMUePHhUARHJyshBCiK+//lpoNBqRk5OjjHn77beFu7u7KCoqqvJ7NBgMAoAwGAxVfg4R1Z2srCyxZMkSMWPGagGIWvwyiujob8X48V8JSSoTgBCSVCbGj/9KLFmyRCxZskRkZWU19Nsnoiqq6u/vGs2EyVxcXNC7d2/07t0bLi4utRIKqyIvLw+ffvopBg0aBK1WCwCIiIiARqPBhx9+iLKyMhgMBnz88ceIiopSxiQnJyMqKkp1rpiYGCQnm4pei4uLkZqaqhqj0WgQFRWljElNTUVJSYlqTPfu3dGhQwdlTHJyMnr37g0/Pz/V6xQUFOD333+3+76KiopQUFCg+iKixiM/Px8AlFovtWp3+zEjITExCqGhpxAfvxwzZqxGfPxy5S5LgFsNETVHNSrMv3HjBt58803s3r0bFy5cgNGo/svowIEDtXJxlh599FGsXLkS165dw8CBA7Ft2zblWEhICHbu3InJkyfj3nvvRVlZGfR6Pb7++mtlTE5OjioYAYCfnx8KCgpw/fp1XL58GWVlZTbHHDt2TDmHo6MjPDw8rMbk5ORU+DryMXuWLl2KZ555poqfBhHdLLnhqsFgQElJCQDgypUrKCgoQGlpKRwcHFTjU1JSAJjaSYwbt03VmuJvf0tB69Y38OOPw2G70sN+E1agvP4rJOQM7rorGt7e3sox3vVI1DzVKITNmjULO3fuxKRJkzBgwIBKN/a2Z/HixZXWkB09elS5G2jhwoWYNWsWzpw5g2eeeQZ33nkntm3bBkmSkJOTg3vuuQczZszAlClTUFhYiKeeegqTJk1CQkJCja+xPj322GNYsGCB8n1BQQGCgoIa8IqImi97DVe12iKUlDjZbLxqLjz8IK5fb42EBFOn+59/HojyPR/l/SDNg5f0152SgK2QZl7/5e3tDX9//1p5n0TUeNUohG3btg1ff/01Bg+2LDitnocffhgzZ86scEynTp2UP3t7e8Pb2xtdu3ZFjx49EBQUhJ9++gl6vR7//e9/odPpsGzZMmX8J598gqCgIKSkpGDgwIFo166d1V2M58+fh7u7O5ydneHg4AAHBwebY9q1awcAaNeuHYqLi5Gfn6+aDbMcY3lHpXxOeYwtTk5OcHJyqvDzIKLaYa/hqhycJMmIqKhEBARkK4HMvDN+YWEbJCREoTxQmYctASGsN+YWQoNBg/YhOVmvKuq33HKIiFqGGoWw9u3b10o/MB8fnxrfci0vgRYVFQEArl27Bo1G/ReevJQgj7VcngSAhIQE6PV6AKYp/4iICOzatQsTJkxQnrtr1y7MmzcPgKn2TKvVYteuXZg40XR7+vHjx3H27FnlPHq9Hi+88AIuXLgAX19f5XXc3d0RFhZWo/dLRHXD+k7H8tYR8sbakmREjx5HcfRoD2WrIPM2E5Yq2mA7MjIFkZEpyMwMxLVrznBxuY6goHOqAMb6L6KWoUYh7LXXXsOjjz6Kd955Bx07dqzta7KSkpKC/fv3Y8iQIWjbti3S09Px5JNPIjQ0VAk+Y8aMweuvv45nn31WWY7897//jY4dO6Jfv34AgPvuuw8rV67EokWLcPfdd+O7777D+vXrsX37duW1FixYgBkzZqB///4YMGAAli9fjqtXr+Kuu+4CAOh0OsyaNQsLFiyAp6cn3N3d8cADD0Cv12PgwIEAgJEjRyIsLAzTp0/HsmXLkJOTgyeeeAJz587lTBdRI1NxV/vyQHbkSBjKQ1dl9zTZqv8SiIpKNNum6KjNZ06bNo31X0QtRI1CWP/+/XHjxg106tQJLi4uyt2Hsry8vFq5OJmLiws2b96Mp59+GlevXoW/vz9GjRqFJ554Qgk1t912Gz777DMsW7YMy5Ytg4uLC/R6PXbs2AFnZ2cApuL97du3Y/78+VixYgUCAwOxatUqxMTEKK8VFxeHixcv4qmnnkJOTg5uueUW7NixQ1Vo//rrr0Oj0WDixIkoKipCTEwM3nrrLeW4g4MDtm3bhvvvvx96vR6urq6YMWMGnn322Vr9XIioauQCfHPy1kP2u9pbqqyuVA5etgKY9fZDI0eORJs2bZTvtVotfHx8GMCIWhBJCFHt+6qjoqJw9uxZzJo1C35+flZF7zNmzKi1C2zJqroLOxHZZ1mAb4utmrDK7ma0JTj4D5w+3cnq8UmT1qNXr/KZr2nTpiE0NLRa5yaipqOqv79rNBOWlJSE5ORk9O3bt8YXSERUHyxnwMyL6+WlwfDwgwgNPYW8PE9otcU4cqQnkpL0sB/CbNWEGXHmTLDNsUFB5wAAsbGxCAgI4GwXEQGoYQjr3r07rl+/XtvXQkR00yyXHuVlR0A94yXfkSg3RNXpCpU7IJOT9ai47ksuzhcATOfS65NtbFEEDBqUrIQ9b29vBjAiUtQohL300kt4+OGH8cILL6B3795WNWFcOiOihmCv95enp+lubvO7IIXQYMuWsXB0LEJQUKYSlCou1DdnCmKTJq1XZrpstZ6IjExRvuddj0RkrkYhbNSoUQCA22+/XfW4EAKSJKGsrOzmr4yIqJrs9f6SZ6qsw5Vpo23zWbE//giGdT2YvfowDVxdrykBzrKLvnnvL27ATUSWahTCdu/eXdvXQURUayx7fwmh+avGy7qBqnx869axuHxZhz17hsEygA0d+iOuXXNBamp/1THzLveAurbM0zNP1ftL7hlIRCSrUQgbPnx4lcb93//9H5599lnVHmhERHXN9pKiBj17puH333vZfI4QGuzZMxTWM14S/PzOY9OmSbAMZ+Z9v2JjY+3+Xce9H4nIlqoUPtTYJ598goKCgrp8CSIiK3LvL3OmJckkq8fNj9v+K9F0J6R1qJMQEJClfBcQEAB/f3+bXwxgRGRLnYawGrQgIyK6aTpdIcaN26YELrk+KzAwW/W4qdYLyj6R1gFNIDo6EUFBmTZDnbwUyXovIqqJGi1HEhE1JFsd8AF1Owp79Vny46a9G10ACLi43EBQUCacnW+oCuujosq73FdUdO/h4VHn75mImh+GMCJqUqrSAV8m9/6ylJ7e2UaHfCMGDUrGrFmrUFLiaFVYX1HRPVtPEFFNMIQRUZNiawasOizvnDTflDspaTCSk/UYN24bQkLOAAAGDhwId3d3eHh42JzxYtE9EdUUQxgRNWm2tiGqSGXNWOV2FaGhp6DTFaJPnz7w9/evzUsmIgJQxyFs2rRp7J5PRHXGVkPWyMiUCsOYfOdkZUEsL8+zSqGOiKimahzC8vPz8fPPP+PChQswGtV3Dd15550AgLfffvvmro6IyA7bDVkHIylJj/HjTd3vbc2SyXdObtkyFvZuELdswkpEVBdqFMK2bt2KqVOn4sqVK3B3d4ckmXeQlpQQRkRUXeZ3PhoMBpSUlKiO5+TkAKhoWdG0nHj9emskJkapZsnCwn5HSYkTQkNPYf785UhJiTTb79FUoG955yMRUV2RRA2aeXXt2hV///vf8eKLL8LFxaUurosAFBQUQKfTwWAwcFmXmh3zsJWVpUFGRit4e1/GDz98WqXnGwxuWL48voJlRVv7PaqDVvlsmSe02mKbd0XOmzePhfdEVC1V/f1do5mwP//8Ew8++CADGBHViHmbCXVdV1uMG9cP4eEHAaiL7gGolhZ1ukIMGbLHxl6PMvuPWRbf3357N7i5uaFVq1Zwc3ODVquFTqfjnY9EVKdqFMJiYmLwyy+/oFOnTrV9PUTUApQvN1rXdcnhSN3Ly7R1kPksFgDs3Wtrr8eqMS++Dw8P5x2QRFTvqhzCtmzZovx5zJgxWLhwIY4cOYLevXtDq9Wqxo4fP772rpCImgXz5Ue5s72tui4hNMjMDLTo5aVRHTcdUz9eXSy+J6KGVuUQNmHCBKvHnn32WavHJElCWVnZTV0UETVt584BJ08CXboAgYHWXe5Ny4zB0GqLbLSLEDh8uE+lLSTsHIF6ZsxWXRgAqIvv2fGeiBpClUOYZRsKIiJz8kzXZ585Y9EiHYxGCRqNwLJlBowcmaWMs+zt1aPHURw5EobysCThxInusB+g8FdwA9QzYbbGS1aPS5IRs2atQmBgNqKjo9GtWzfWfRFRg6jRXP5HH32EoqIiq8eLi4vx0Ucf3fRFEVHTIs90vfLK51i40B1Goyn0GI0SFi50x4cfJgCwXQN29GgP2C+il2/eNpr9WaBPn8MYP34bJMn0j0PTf+3VhkmqcePGbUNgYDYAMIARUYOqUWH+XXfdhVGjRsHX11f1eGFhIe666y72CSNqYeRaL3s1XnIBvL3jppBl69+EEoYP340ffxwOIcpnyg4f7oPbbvsO8fHLlfYS778/2+YypTzzVVLiiKlTI9Gr198A/I13PhJRg6vRTJgQQtWgVXbu3DnodLqbvigiaprkLYHMmRfA2zseHZ0IUxCD1TEfn0sVBruQkDMIDMzGuHHbzM4tlOfLM18hIWfQq5cH/P394e/vzwBGRA2uWjNh/fr1gyRJkCQJt99+O1q1Kn96WVkZMjIyMGrUqFq/SCJqGuQtgcxrvswL4O0dDw8/iF690lQd7OVjQUGZVsX7tu5sDA8/iNDQUxU2XmUBPhE1JtUKYfIdkocOHUJMTAzatGmjHHN0dERwcDAmTpxYqxdIRI2TrZYTgDoMWYagio7rdIWIjExBQEAWAIGgoHPKsYqCXVxcHHQ6HfLz81FaWmp1nWy8SkSNVY22LVqzZg3i4uLQunXrurgm+gu3LaLGwjxwHTt2BWlpRcjI2AnAVAem1RahpMRJtVG2JVubaZszv2sSMGLQoGRERqZYvIb17NacOXPYaJWIGpU63bZoxowZAEzFuBcuXLBqX9GhQ4eanJaIGiF7WwwBPWGqvbLe/Fredkhm2ZbCcozlXZOABklJg5GUNEh5Dfl5ISFnVOfmEiMRNVU1CmEnT57E3XffjaSkJNXjcsE+m7USNR/2thiStxEq/7P1noy2nmdrjK27Ji1fw/J5sbGxCAgI4BIjETVZNQphM2fORKtWrbBt2zb4+/vbvFOSiJoX+0FJzfzORXvPE0KDH38cil69jsDTM1e5a7Ky85uf29vbmwGMiJq0GoWwQ4cOITU1Fd27d6/t6yGiRqqqQcnyzkV7z0tN7Y/U1L8py4zjxm3Dli1jUVHnHO73SETNSY36hIWFhanuhiKi5k9uL2HZi8v8z5Z3LsrP0+uTbZzReplx9uxVsO4XZv/cRERNWY1mwl5++WUsWrQIL774Inr37g2tVqs6zjv5iJqn8PCDuHxZhz17hsFyo+xJkzao2kqY3w0ZGZmCpCQ97P27TwgNMjMD4ep63cYYCTExOxAWdoQ9v4ioWalRCIuKigIA3Hbbbap6MBbmEzVvBoMb9u4dCut9GjVwdb2mhCRbd0OOH7/NrEDferPtTZsmISoq0WZjVjmAxcbGwtvbmz2/iKhZqFEI2717d21fBxHVg3PngJMngS5dgMBA9THzXmDmzEsP7BfnG6HVFiMjIxhabZHNuyHj45crez1mZQUgISEK5rNeQmiQmBiFqKhEJCZG2WzMyrshiag5qVEIGz58OPbs2YN3330X6enp2LhxI9q3b4+PP/4YISEhtX2NRHQT5HD12WfOWLRIB6NRgkYjsGyZAf/613VlWU/uBQbYb6xqu8heoEePo8oG2raK8OW7GkNCzkCnK4SnZx4SEqKtrlUIDQICshAfvxy9ek1A376uCAjghttE1DzVKIRt2rQJ06dPx9SpU3Hw4EEUFRUBAAwGA1588UV8/fXXtXqRRFQ581kuwPRnb+/L2Lx5JQwGNyxfHg8hTEuARqOEhQvd8eefH/y1XVCkcp6KGqva2vtxyJA92Lt3qGrmy3K50fKuxrw8L1gvaQKAUemIP3q0M/z9/WrzIyIialRqFMKef/55vPPOO7jzzjuxdu1a5fHBgwfj+eefr7WLI6Kqef99YM4cwGgE5DJNIQCNxgNjx/ZD27aXbc5Opab2Q0TEQaSkmLYHqkpjVcu9H/PyvLBnz3CLK5JgusvRekkRsD+jFh2dyLsfiajFqFGLiuPHj2PYsGFWj8ub6BJR/cjNzUVq6nnMmSMg7x4mhOkLMM14bd06FlptkVlriXI//jgCr78ejwMH+gEAMjOD7C4lmtPpCs2WFnNtnFtg6NA9mDRpPUaP3g5HxyIYDG6q55u3u5AkI6KjEzB4cHkrC979SETNXY1mwtq1a4dTp04hODhY9fjevXvRqVOn2rguIrJDXnaUlxozMoJhNM6wO14IDUpKHCtohqrBli1jcf16ayQmRtk4gxFXr7rCYHCzOUul0xUiKirxrxqv8m2M9uyR76KUlPOMH1++tGk5o2Z+7mnTprH+i4iavRqFsHvuuQcPPfQQPvjgA0iShKysLCQnJ+ORRx7Bk08+WdvXSER/MV92lJcaQ0NPVdjJXq7HCgk5A0fHImzc+E8bozRWdyuaGAFI2Ljxn3Y35waAgIBs2GpbYfn9li3qvR+9vb2tzsUCfCJqKWoUwhYvXgyj0Yjbb78d165dw7Bhw+Dk5IRHHnkEDzzwQG1fI1GLl5ubi9OnSzFnji+MxvLiern1g/Usl6kw3rweS14OtB3YjLBdnWB/A22ZweCGq1ddKjiHOfXej/7+/tX5GIiImpUahTBJkvD4449j4cKFOHXqFK5cuYKwsDC0adOmtq+PqMXLzc3FypW2lx3lei3TbFh5LZgcwGbNWoXAwGzVHY+msGR+96IR0dHlvbnKWYcqy8251ecVULNuyCrf/UhERDUMYTJHR0eEhYXV1rUQkQ1yA1VbdxTKS422mqjKtWCWdzyagpURf//7Nri4XFdtNWTeJNW8aarl6wHWd1JaBy4JlmFv/Hju/UhEJLupEEZE9cdWjy7z1g/VCWiABj4+uQgJOQPANKNVHrhMvb8CArIr7F5vv3t++evPmrUK+fkeAKAKe0RExBBG1KTYu6OwpgENsDWjpcGePcOwZ89wZUYsICDL6g5Ge72+zGvRAgOzERiYbfO9sAUFEbV0DGFETYxOV2hzRqmmAc32jFZ5MX5iYhTi45crxf3m2xlZntdeYIuLi4NOp1O+5x2QREQMYUSNWm5urrKBtr39HM1VJ6DJ55MbudpbWpSL8dPTO9vczsher6/JkyfDw8ODgYuIyA6GMKJGSr4rErC/n2NVgpnMPKBZnq9Tp3Skp4fCVLRvve+jVltc4XZGd90Vrer5xeBFRFQ5hjCiRkq+K9Lefo5yh3tbG21bMg9rAKzOl57eBYARgwbtg6vrVdV59fpk5Oe3tbudEXt+ERHVDEMYUSNnr/2EefsIe41UAetZL70+2c7SowbJyXrExy9Hr15pSEmJRFKSHklJg2HdW0xd3E9ERNVXow28iaj+2N4g27qGy3yj7REjRgCwPYuWlKS3uZm3fDwzMxCZmUFIStKj/K8I0zKl+Ybb5sX9RERUfZwJI2rk7N2FWFEjVZm9HmFCWM9syefYuHESbP/7TIOJE9fD1fWaVRE+200QEVUfQxhRE2DrLkRn5xt2207s3r0bgL1eXoDcNb9371/x2299AGj+GicfsyZJRqXhqvnm2yzCJyKqGYYwonpy7hxw8iTQpQsQGFj951u2n6ioPQRQXowfFZWIhIQoWIcrjRLAAFFp93vzkMdCfCKim8cQRlSHcnNzUVxcjM8+c8aiRToYjRI0GoFlywz417+u3/Qskr2+YJbF+EOH7sHevUNtdLe3t+/jX49KRkycuJFbDhER1QGGMKI6Ivf5MhjcsHx5PIQwBR2jUcLChe74888PoNMVYt68eUoQk0MbAJw7d65KrzN58mQAwPr16wHYLsbfu3eo1T6QFc18AeWzX716HbU6xhowIqKbxxBGVEfkMGWvxYTcY0seZ96ctaqmTZuG0NBQZGeX789o7/UCArIQH78ceXme0GqL8f77s+0EMSMmTbKe/ZLrwFgDRkRUOxjCiOqYreJ4W3cyymGsOlxcXKwey8ryh72eXubLl+Z3XFpuvG1r9isgIIDhi4ioFjGEEdWxyjbQlveGlP8rs+xyb297Isv9JRMTo6Cu8RKIikq0ep55Yb9WW4ySEkerAn/OfhER1R2GMKJqqsldjhXdybh582ar8eaF9aZu9RLMZ6rk7Yny8/OVWjDAXl8wCTpdvs3rslfYL+PsFxFR3WEII6qC2rjL0VbgsbUBt2VhvXlrCcvtiUpLS1Xn02qLYApt6iC2ceMkFBeXh7fY2Fi0atXK6vmmc2ih0+k4+0VEVMcYwogqkJubi4sXL2LdunU4d87/r2L2yu9yrArLNhLyDJft2axy5kX9ly9ftjqf3PdLvSSpDm/s80VE1PAYwojsML9b8cCBftiyRQ445cwDUVZWlqq43rLGy5ytNhJySLLf5d7EvKhf7oxvPXtm3ffL/FqJiKjhNZkNvMePH48OHTqgdevW8Pf3x/Tp05GVlaUas379etxyyy1wcXFBx44d8corr1id5/vvv0d4eDicnJzQuXNnrF692mrMf//7XwQHB6N169aIjIzEzz//rDp+48YNzJ07F15eXmjTpg0mTpyI8+fPq8acPXsWY8aMgYuLC3x9fbFw4UKbSz/UeF28eBFAecCx9X8X80C0efNmvPfee8qXrVovWWVtK8aN22a2ybaxwo2zDQY3/P57zyr1/bK8I5OIiBpOk5kJGzFiBP7973/D398ff/75Jx555BFMmjQJSUlJAIBvvvkGU6dOxZtvvomRI0fi6NGjuOeee+Ds7Ix58+YBADIyMjBmzBjcd999+PTTT7Fr1y7Mnj0b/v7+iImJAQCsW7cOCxYswDvvvIPIyEgsX74cMTExOH78OHx9fQEA8+fPx/bt27FhwwbodDrMmzcPsbGx2LdvHwCgrKwMY8aMQbt27ZCUlITs7Gzceeed0Gq1ePHFFxvg06Pqys3Nxbp16wDYK3a3HYgqEhsbC8AU1mzPdglkZQUgJOSMVSG/6Tqsi/rVBfzWbSnkvSCre61ERFT3JCFMf003NVu2bMGECRNQVFQErVaLf/3rXygpKcGGDRuUMW+++SaWLVuGs2fPQpIkPProo9i+fTvS0tKUMXfccQfy8/OxY8cOAEBkZCT+9re/KctQRqMRQUFBeOCBB7B48WIYDAb4+Pjgs88+w6RJkwAAx44dQ48ePZCcnIyBAwfim2++wdixY5GVlQU/Pz8AwDvvvINHH30UFy9erHK38YKCAuh0OhgMBri7u9fK50ZVk52djffeew8AsG+fHgkJ0VAv8Rkxe/YqBAZmWz3XVrE9AMyZMwcAKjyvJBkRH78cOl0hIiMjlT5g165dQ0pKiup1ymvULLciKr+L0t4dmXPmzGFNGBFRHanq7+8mMxNmLi8vD59++ikGDRoErVYLACgqKrJqXOns7Ixz587hzJkzCA4ORnJyMqKiolRjYmJiEB8fD8DULDM1NRWPPfaYclyj0SAqKgrJyckAgNTUVJSUlKjO0717d3To0EEJYcnJyejdu7cSwOTXuf/++/H777+jX79+Nt9XUVERioqKlO8LCgpq8OlQbbLXdys6OtFmALNXbA+YasSuXLmijA0IyIZl7Zb5kqRl6DJnCnC2NuWWEBOzA2FhR5TQxdkvIqLGqcnUhAHAo48+CldXV3h5eeHs2bP46quvlGMxMTHYvHkzdu3aBaPRiBMnTuC1114DAGVLl5ycHFUwAgA/Pz8UFBTg+vXruHTpEsrKymyOycnJUc7h6OgIDw+PCsfYOod8zJ6lS5dCp9MpX0FBQVX9aKiO2Ou7FRCQZTXWXrG9weAGwLQMuXPnTmW8vCSpOrNF3ZbB4IaMjGDlHID5DJrtJVLzAGYP934kImp4DToTtnjxYrz88ssVjjl69Ci6d+8OAFi4cCFmzZqFM2fO4JlnnsGdd96Jbdu2QZIk3HPPPUhPT8fYsWNRUlICd3d3PPTQQ1iyZAk0mqaRNR977DEsWLBA+b6goIBBrI6Yb5RtS35+PoCqbzkEVF5sb0mnK0RUVKIyo2VZt2VrVi009JSNmbny6zJ//ogRI9C2bVul75eM/b+IiBqHBg1hDz/8MGbOnFnhmE6dOil/9vb2hre3N7p27YoePXogKCgIP/30E/R6PSRJwssvv4wXX3wROTk58PHxwa5du1TnaNeundVdjOfPn4e7uzucnZ3h4OAABwcHm2PatWunnKO4uBj5+fmq2TDLMZZ3VMrnlMfY4uTkBCcnpwo/D7p5lhtl26vhAirfcshcVQOb/HpZWf5/BSrTeaOiEpWly3Pn/G3Oqk2cuMnuptuzZqlr1Lp06cK6LyKiRqxBQ5iPjw98fHxq9Fyj0bSMY15DBQAODg5o3749AODzzz+HXq9XXkOv1+Prr79WjU9ISIBerwdgmiGIiIjArl27MGHCBOV1du3apdxhGRERAa1Wi127dmHixIkAgOPHj+Ps2bPKefR6PV544QVcuHBBuaMyISEB7u7uCAsLq9H7pdpjPgNWUQ2XrKIthwAgOjoaCQkJVQps9u5mFEKDxMQo9OqVhvT0znZ7kgHC5l2VtmrUuORIRNS4NYnC/JSUFOzfvx9DhgxB27ZtkZ6ejieffBKhoaFK8Ll06RI2btyIW2+9FTdu3MCHH36IDRs24IcfflDOc99992HlypVYtGgR7r77bnz33XdYv349tm/froxZsGABZsyYgf79+2PAgAFYvnw5rl69irvuugsAoNPpMGvWLCxYsACenp5wd3fHAw88AL1ej4EDBwIARo4cibCwMEyfPh3Lli1DTk4OnnjiCcydO5czXfXM1rKj+WbX9hqm2poRszX7NXnyZPj6+iIhIQFAxYGtsoaqQmiQmRlYYU+yoKBzVkEvKioRgwcnK+NiY2O55yMRURPQJEKYi4sLNm/ejKeffhpXr16Fv78/Ro0ahSeeeEIVatasWYNHHnkEQgjo9Xp8//33GDBggHI8JCQE27dvx/z587FixQoEBgZi1apVSo8wAIiLi8PFixfx1FNPIScnB7fccgt27NihKrR//fXXodFoMHHiRBQVFSEmJgZvvfWWctzBwQHbtm3D/fffD71eD1dXV8yYMQPPPvtsHX9SZM5y2dFSdWu4bPH19YWXlxfmzZuHCxcuYP369XYDW2XbEUmSEbm5npX2JKtsZo4BjIioaWiyfcJaAvYJuznmvb4A69ovg8ENy5fHW9VwyX26AGDQoEFWs5darRZt2rSBVquFj4+PEnhq8nrljAgMPIdz54JgXXRvvyeZpWnTpiE0NLTScUREVHeadZ8wouqyV/tVWQ2XvCNDRWxt3K2u/TJi0KBkREamQK9PRlLSYBtnkewGsPHjt1kFsMmTJ1u1SeFdj0RETQtDGDV7FdV+yUt7mZmBACQEBWVW+/yWNWfWtV8aJCUNRnKyHlFRiQCMsNVk1ZZhw35Q3SjAei8iouaDIYyanMp6fFnOCFVW+5We3rnSOySBiltZmLNX+yXfAdm792H89ltfWHbhN1E/1rXrSdU5GMCIiJoPhjBqUiortpfJLUWAivt3VXaHpGVPL3vbEZn/1/bm3FDO/9tvt8A0GwbI+zzKG22bjUSPHkeUZcgRI0agZ8+eDGBERM0IQxg1KRXNgNkbV1H/royMYJuzZJmZgUhJaY/kZL3Nnl7mQW3z5s2q58uvZ6vXVzlTrdikSRsASNi48Z8WxyUMGLBf+a5t27YMYEREzQxDGLUI9to62Jsl27hxEtQByv5G2xW9XkpKJJKS9LAdxjRwdb0GT8+8SjvtW25OT0RETV/T2FSRqAYsO8brdIUICTmjCk7yrJW8kbbtpUFrkmSEVltstbm25etFRqZAsl1zrwQtW9dgfpfm6NGj2XaCiKgZ4kwYNWkVFcvLTVRtLWHm5+dj/fr1ANSzZFevutpYGpSZliQlyYg+fQ7j/fdn26wRi4yMREpKCoCKGrSqg1ZFDVi5iTsRUfPEEEZNVlX2fbRXR+Xv768KaJcuXcLmzZthMLjZLKqXtwcKCMiCVlusBDBAXSMGAGvXnoenpxt0ukK7y52Wm20D9rdGIiKi5okhjJqk6uz7aI95QDMYDACsi/jNG63K57VXzJ+SEqkU8lfWELYq3e9l3IibiKh5YgijJqk29n1UP7d8967K9ma03YLCaHYnpelatmwZC1/fnArPN3LkSHh4eFh1v5exCz4RUfPFEEZNijwrVFHvL8BU81WdAGM7BNmuqLc1W9az5xH8/nsvi5EavP/+bGVGzFY47Nq1K0MWEVELxRBGTYpcbH/x4kWkp9vf91Euure1r2NlqlJrZt6CIjlZ/1cAK+8lJrNcJo2NjYW3tzcAznIREbV0DGHU5Hh5eaG4uLjSZUMAuHDhQrW2OKqs1iwuLg4lJSVKg1bzJUh7M2fmy6Te3t7w9/ev4TsnIqLmhCGMmrTK7iiUZ8QqYr7FUWW1ZjqdrsKxtlg2XiUiIgLYrJVINVMm15qZsxeibI0tJ5Tnmi+TEhERyTgTRmSmon0mKxtr3sxV7ilmb5mUiIiIIYyaJLmvV/n39jvnVzbm0qVL0Gq1yvcV1Zrl5+ejtLTU5litthglJY4MXkREVCUMYdQklZSUKH+uyt2MFY2Ri+zNybVmkydPhiRJWLduHQBTjZkpzAUrYa46ne7ZeJWIiGQMYdSkVaVzflXH2Jols+wfVpXAZ2ny5Mnw8PBgSwoiIlJhCKMmqVUr049uVTrnVzamomB18uRJ5bUqC3MjRoxA27ZtAQBarRY6nY7Bi4iI7GIIozqTm5tbrR5d1SHPUFXWOb+yMbaClbzdUGBgNnbv3q0sP1696lJhmOvSpQt7gBERUZUxhFGdyM3NxcqVKysdV5OO9ubkOxS3bBkLU8cV67sZK7rj0dZm3ObbDQFQPQ8wwryzC3uAERFRTTGEUZ2oaAasJuMqI0mAEKb/mpPrsQwGA0JDlyt3PAJARkYwtNoiG5txl8+Imc5bPktmGmsKYuwBRkREN4MhjJq0yuq0PDw8lCVC+S5G8xowwIjQ0D+Qnt4J1r2LNRBC/YgQGkyatB6urtfYioKIiG4KQxjVKrkO7NKlS3X6OnKrh8qK7i1bQliGNkCD9PTOMDVaVS81AkbVTBhgWn4MCjrH8EVERDeNIYxqTVXrwGqDl5cX5s2bh9OnS/HxxwJGY/k6pIODwAMPjEZwcCurejP7+z1KkCRhtdQIoErd8wH2ACMiouphCKNaU1v1XVXl5eUFLy/gvfeAe+8FysoABwfg3XclBAe3QnFxMbKzswFAmZmzdaekzN5So73u+bGxsfD29gZwc3d6EhFRy8QQRk3erFlATAxw6hTQuTPg7KyekStvxOpm427KcvaWGu11xPf29mZLCiIiqjGGMGpQtmrH5GW96vQYCww0fQFAdnb58ywbsZo21s7G7NmrcORITyQn66u01GjvGoiIiGqKIYwalK19G6tq2rRpCA0NtXvc1p2TCQnRMNV/mQLZxImbAAirGbCRI0eiTZs2AEzd+S23L+LyIxER3SyGMLpp9XVHpKVPPvnEZrPX/Px8APaK8E0F/JaBzHIPyODgYC41EhFRnWIIo5tSn3dE2mK5ZJmbm4v169cDqLgI36Q8kFlu6M2lRiIiqmv2fjsRVUlV74g0GNyQkREMg8GtVl9fnvWSXbx4UflzWlovi2arFp1XzY/81VsMAOLi4rjUSEREdY4zYVTnLIvjLZf+KmMwuCEzMwgAEBSUqardWr9+vbIkmZubi3Xr1gEA9u3TK8uN5cRfX5q//lt+zHwPSJ1OV7M3SkREVA0MYVSnKttWqDIHDvSzaCchMH78VlWIKy4uRm5uLrKysgAA5875IyEhCuoABgDlfcCysgKQmBhV4zsjiYiIbhZDGNWpyrYVKu/hlWsVggwGNxv9vCSrEGcwGJQZMHnWzfZKe3kfsJCQM+jVK81mE1YiIqL6wBBGdcZgcMPVqy5WxfHy0l9ly5SmJUjbne1TUiIxcmQiAKCkpER5PfW+kKpnITo6URW27DVhJSIiqg8MYVQnzAOWaSNsoypsAahwmbJ8GdK2pCQ9IiNTVCHK/r6QRkRHJ2Lw4OTafItEREQ3hSGMap31jJQGQhgxadJ6ZTkwIyPY7jIlgAqWFGXlS5oyWy0pJMmIWbNWITAwu8rXz/YURERUHxjC6KbYCiy2Z6Q0cHW9poQme4HJ0zOvghktWI0FgMuXLwOAsi+k5RKnrQA2efJkqy748vthewoiIqoPDGF0U7y8vDBv3jxVv7CsLA0+/ljAaLTdAkIuxo+KSqzgDkUj1DNhRkgSrJY0Tb3HfoHcVSI09JTdrYhkkydPRo8ePWrxUyAiIqo+hjC6aZYzR/7+wHvvAffeC5SVAQ4OAmPGbFNqvaw31M5S7lA0GNyQkhIJdXsJI8aP34bQ0FPK3Yzp6Z2xfHm83TqzivqR+fr61uGnQUREVDWSEMJ+G3FqUAUFBdDpdDAYDHB3d2/oy6mSc+eAkyeBLl1M3586BXTuDDg75+L06VIMGOCrmiHTaAQeeuh1q4BmTpKMiI9froS0zMwgbNo00Wop0/STrLH5PACIjY1FQEAAlxuJiKhOVfX3N2fCqNa8/z4wZw5gNAIajWk2bNYs+agXDh82HTNnNEqqYnxbtWBywX56eucKx9h7nhzCGMCIiKgxYQijasvNzbXaMzIrS4M5c8pnuYxG03JkTAwQGGga06WLKZyZBzEHB1FpMb4kGaHVFlfQA8z+TJhch8b9IImIqLFhCKNqyc3NxcqVK60ez8gIhtE4Q/VYWZlpOVIOYYGBlrViwMsvG3DlimmmyvJuSRNTbVdJiVOFAcxeTZg8C8b9IImIqLFhCKNqsZwBk9lqOeHgYKoHMzdrlml2TK4Vc3C4jvfes91eQq9PVhqyGgxuNkKaEZMmbVTdBWlevM9u+ERE1JgxhFGtsAxRDg4C774rKbNg5gIDy2fHcnPL+4yFhx+0G6Ls9QDr1euo1XUwfBERUVPAEEa1xjxEPfDAaERE+FX6HFt9xsxdunQJmzdvtjo/Z7qIiKipYwijWiXPRAUEmKrvbRXxy/Lz8yFJEnQ6HbKyNMjIaIWQkFLluY6OjvD29rZ5fiIioqaOIYzqjGURv9wp39MzVxWkLBu4mjdZjYuLq5Vr4X6QRETU2DCE0U2xF6zy8/NRWlqqfG8vaFlu9i2EBlu3jkVo6CnodIUQQth9DXP29oIEuB8kERE1TgxhVGMVzWCtX79eGXfunL/doGWrP5h5k9X1692wYsV8GI0SNBqBp576E7Gxl6HVapW2EwxZRETUFDGEUbXIy3qVzWDJDhzohy1bxkK9GXd50LLV2kJusmowuGH58gAIITeAlfDMMwEwGNZDpyvEvHnzGL6IiKjJst39ksgO+W7GQYNm2J3BMhjckJERrMyA2foxk4OWTleIqKhEAEblcbnJakWzZID9nmVERERNAWfCqNq8vLwwcKD1FkSSZERWVgA++uhOZYnSVpd786B14EA/JCZGATCNj4pKVJY0K5olIyIiauo4E0Y1Im9B5OBg+l4OUImJUaolSkBYPNOIWbNW2S3KT0yMgsHgBqC8QaskWc+SERERNXWcCaMak7cgSknJxb59a+xswi2Z/VkgOjoRgYHZAGB3ufH338PQs+cR6HSFbNBKRETNFkMY3ZTAQMDBoRhpaRVtwi2TEBCQBcBU2H/1qouN8QI7d45CQsJI5W5LNmglIqLmiCGMao3l/o6mpcjymTC5nsu8tYWpIF8eVz7e3t2WREREzQVDGFXZuXPAyZNAly6wuTE3oN7fMSsrQKkRk+u5CgvbWLSsMIW1rl2P4cSJ7qpzmfcLIyIiam4YwqhC8t6Pn33mjEWLdErT1GXLDPjXv67b3A5IXj4MCTmDXr3SlHqu9PTOeP/92bC+H0TCiRNdq30nJLciIiKipowhjOyS9340NU2NVzVNXbjQHX/++QEAIDw8DgaDm80ZKzmQWd4JaU0DvX4fkpP1qpkz+ZyxsbGqzbzZJZ+IiJq6JteioqioCLfccgskScKhQ4dUxw4fPoyhQ4eidevWCAoKwrJly6yev2HDBnTv3h2tW7dG79698fXXX6uOCyHw1FNPwd/fH87OzoiKisLJkydVY/Ly8jB16lS4u7vDw8MDs2bNwpUrV6p9LY2d3AzV3l2MKSmRWL48HtOnt8eKFfMBzEJ0dLTNc9m+c7KcJBkRGZmC+PjlmDFjNeLjlyv9wgDA29sb/v7+yhcDGBERNXVNLoQtWrQIAQEBVo8XFBRg5MiR6NixI1JTU/HKK69gyZIleO+995QxSUlJmDJlCmbNmoWDBw9iwoQJmDBhAtLS0pQxy5YtwxtvvIF33nkHKSkpcHV1RUxMDG7cuKGMmTp1Kn7//XckJCRg27Zt+PHHHzFnzpxqXUtTIjdNNSdJRiQl6ZVgJW8ptHHjTwBMG2rPmTMHsbGxds9hTq9PVi1jsg6MiIiauyYVwr755hvs3LkTr776qtWxTz/9FMXFxfjggw/Qs2dP3HHHHXjwwQfxn//8RxmzYsUKjBo1CgsXLkSPHj3w3HPPITw8HCtXrgRgmgVbvnw5nnjiCfzjH/9Anz598NFHHyErKwtffvklAODo0aPYsWMHVq1ahcjISAwZMgRvvvkm1q5di6ysrCpfS1Niq2mqXp8Me/tBAoCHhwf8/f2VJUTLc6iZZsGIiIhakiYTws6fP4977rkHH3/8MVxcXKyOJycnY9iwYapi7ZiYGBw/fhyXL19WxkRFRameFxMTg+TkZABARkYGcnJyVGN0Oh0iIyOVMcnJyfDw8ED//v2VMVFRUdBoNEhJSanytdhSVFSEgoIC1VdjER5+ULVUGBmZYnN2rKJCevkcgwbtg/lekePHV94Fn0X4RETU3DSJwnwhBGbOnIn77rsP/fv3x+nTp63G5OTkICQkRPWYn5+fcqxt27bIyclRHjMfk5OTo4wzf569Mb6+vqrjrVq1gqenp2pMZddiy9KlS/HMM8/Y/hAaATko5eV5wdMzV9UTrKpbCul0hRg5MhGRkSl2u+BPnjwZHh4eyvcswiciouaoQUPY4sWL8fLLL1c45ujRo9i5cycKCwvx2GOP1dOVNYzHHnsMCxYsUL4vKChAUFBQA16RmnmTVTl0xccvR16eJ7TaYpSUOCl3SV66dKnC2St7XfDj4uLQvXt3G88gIiJqXho0hD388MOYOXNmhWM6deqE7777DsnJyXByclId69+/P6ZOnYo1a9agXbt2OH/+vOq4/H27du2U/9oaY35cfszf31815pZbblHGXLhwQXWO0tJS5OXlVfo65q9hi5OTk9V7bEhZWRpkZATD0zMXAKw22966dSzi45fj8mVPq3AGbAYATJs2rVqv6ePjU6vvgYiIqLFq0BDm4+NTpV+6b7zxBp5//nnl+6ysLMTExGDdunWIjIwEAOj1ejz++OMoKSmBVqsFACQkJKBbt27K8p9er8euXbsQHx+vnCshIQF6vR4AEBISgnbt2mHXrl1K6CooKEBKSgruv/9+5Rz5+flITU1FREQEAOC7776D0Wis1rU0tMq637//PjBnji+MxhlKIb6tNhWZmYE2w5m83ZCLiwvmzZuH4uJi5Ofno7S01Oq1tFotdDodlx2JiKhlEU1QRkaGACAOHjyoPJafny/8/PzE9OnTRVpamli7dq1wcXER7777rjJm3759olWrVuLVV18VR48eFU8//bTQarXit99+U8a89NJLwsPDQ3z11Vfi8OHD4h//+IcICQkR169fV8aMGjVK9OvXT6SkpIi9e/eKLl26iClTplTrWqrCYDAIAMJgMNTgU7Jv1SohNBohANN/V61SH8/MLD8uf0lSmQDKrB6bNGm96jH5a8aMD8WSJUtEVlZWrV47ERFRY1fV39/NJoQJIcSvv/4qhgwZIpycnET79u3FSy+9ZPXc9evXi65duwpHR0fRs2dPsX37dtVxo9EonnzySeHn5yecnJzE7bffLo4fP64ak5ubK6ZMmSLatGkj3N3dxV133SUKCwurfS2VqYsQZitgOTiYHpd99511qAKEGDRo719hzBTAxo//Ssyf/5rymHk4mz//NYYwIiJqkar6+1sSQoiGnIkj+woKCqDT6WAwGODu7l4r59y9G7jtNtuP33qr6c/nzgEdOwJGsw4UkmTExImb4OFxGSUljqq7Gm0V7Mvd7ufMmaOqryMiImruqvr7u0m0qKDa06ULoNGoA5aDA9C5s+nPubm5cHAoxrJlznj0UR3KyqS/NtYGNm78pxKyQkLOKM8PDz+I0NBTdltOEBERkTWGsBYmMBB47z3g3nuBsjJTAHv3XdPj8obdsgcfdENmZiA2bpwEua+vZeG9zF7LCSIiIrKtyXTMp9ozaxZw+rRpCfL0adP3QPmG3TKdrhCurtdR0fZElTEYDDd/wURERM0QZ8JaqMBA260pLMkbb5u3p6hseyJzLDkkIiKyjTNhVCFbm3ebmrECGRnBMBjcAAAGg5vqe5n59kNERERUjjNhVKnQ0FOYOHETAIGgoHNIT++M5cvjlbsh+/Q5jMOH+9i8O5KIiIhsYwijClm2n4iKSkRiYpSqQ/6vv/YFICnf2yrcJyIiIjWGsBYkNzfXqvjenGURvcHgZrUlkXkAKyepvpML9xnCiIiI7GMIayEs209URV6el839IgEjKionrE7hPhERUUvFwvwWwtYMmL1iepl8Z6Q5STIiIiLV7uvINWGcBSMiIqoYZ8JaKHtbDQ0cOBA//fQTACA9vTPMO0zI40JDTyE1NQLqDG/EpEkbERR0ThXAHB0d6+cNERERNTEMYS2QrVovuZi+tLRUNcY8aAkBpeB+/PhtViGuV6+jAIDJkyfDw8MDjo6O8PLyqvf3R0RE1BQwhLVA9mq98vI88csvv9gdA5QX3IeHH8T06b4oKPBFUFAR2rULgVbbFT4+PgxeREREVcAQ1gJ5eubCurheXUxflTGDB3eEv79/3V4sERFRM8UQ1mKp20pIElBY2AaZmUEAAA+PyzbHmGO9FxERUc0xhLVAeXlesNXba9Wqe8weN9ocIy9Hjhw5ksuOREREN4EtKloI81krW60nAAF16LL+0TDv/8U9IYmIiG4OQ1gL4eXlhZEjRwKwvSm35ayXJcv+X76+vnV6vURERM0dlyNbiNzcXJSUlCjfh4cfRGjoKeTleUKrLcb778+2cTdkuYkTN6JXr6OIjY1FQEAAlyKJiIhuEkNYC2BvyyKdrlCZ2Ro3bpuqd5g5STIiKOgcAMDb25sBjIiIqBYwhLUAllsWGQxuyMvzgqdnrhLC5JmxzMxAHD/eFWlpfVSNWOVxvCOSiIiodjCEtTC2tisyLUuaQllxcWslgAFGREUlIjz8IAAgLi6Os2BERES1hCGsBbG1XdGWLWMhSVBCmWmvSHlJUoPExCj06pUGna4QPj4+DXXpREREzQ5DWAtibysieZNuW/VgQmgwePAM3HorOAtGRERUixjCWhC5P1hFd0FacnAAIiO9wPxFRERUu9gnrAWx7A9m6oovVGNMx0zHHRyAd98FAgPr9TKJiIhaBM6EtTDm/cGysgKQkBBtdrS8UH/48FmIiNAxgBEREdURhrAWwLKthNxu4qOP7oR5p3yNRsJTT0UiOHgwvLx09XmJRERELQ5DWAvg5eWFefPmqfqF7dvniNdfV69GG40SCgv9WP9FRERUDxjCWgjLOxsHDgQ0GsBoto+3gwPQuXM9XxgREVELxcL8FiowEHjvPVPwAliET0REVN84E9aCzZoFxMQAp06ZZsAYwIiIiOoPQ1gLFxjI8EVERNQQuBxJRERE1AAYwoiIiIgaAEMYERERUQNgCCMiIiJqAAxhRERERA2AIYyIiIioATCEERERETUAhjAiIiKiBsAQRkRERNQAGMKIiIiIGgBDGBEREVED4N6RjZgQAgBQUFDQwFdCREREVSX/3pZ/j9vDENaIFRYWAgCCgoIa+EqIiIiougoLC6HT6ewel0RlMY0ajNFoRFZWFtzc3CBJUo3PU1BQgKCgIGRmZsLd3b0Wr7Dp4Gdgws+BnwHAzwDgZyDj51A3n4EQAoWFhQgICIBGY7/yizNhjZhGo0FgYGCtnc/d3b3F/p9Mxs/AhJ8DPwOAnwHAz0DGz6H2P4OKZsBkLMwnIiIiagAMYUREREQNgCGsBXBycsLTTz8NJyenhr6UBsPPwISfAz8DgJ8BwM9Axs+hYT8DFuYTERERNQDOhBERERE1AIYwIiIiogbAEEZERETUABjCiIiIiBoAQ1gT9fbbb6NPnz5Kczm9Xo9vvvlGOX7jxg3MnTsXXl5eaNOmDSZOnIjz58+rznH27FmMGTMGLi4u8PX1xcKFC1FaWlrfb6XWvPTSS5AkCfHx8cpjLeFzWLJkCSRJUn11795dOd4SPgMA+PPPPzFt2jR4eXnB2dkZvXv3xi+//KIcF0Lgqaeegr+/P5ydnREVFYWTJ0+qzpGXl4epU6fC3d0dHh4emDVrFq5cuVLfb6VGgoODrX4OJEnC3LlzAbSMn4OysjI8+eSTCAkJgbOzM0JDQ/Hcc8+p9u9r7j8HgGmrnPj4eHTs2BHOzs4YNGgQ9u/frxxvjp/Bjz/+iHHjxiEgIACSJOHLL79UHa+t93z48GEMHToUrVu3RlBQEJYtW3ZzFy6oSdqyZYvYvn27OHHihDh+/Lj497//LbRarUhLSxNCCHHfffeJoKAgsWvXLvHLL7+IgQMHikGDBinPLy0tFb169RJRUVHi4MGD4uuvvxbe3t7isccea6i3dFN+/vlnERwcLPr06SMeeugh5fGW8Dk8/fTTomfPniI7O1v5unjxonK8JXwGeXl5omPHjmLmzJkiJSVF/PHHH+Lbb78Vp06dUsa89NJLQqfTiS+//FL8+uuvYvz48SIkJERcv35dGTNq1CjRt29f8dNPP4k9e/aIzp07iylTpjTEW6q2CxcuqH4GEhISBACxe/duIUTL+Dl44YUXhJeXl9i2bZvIyMgQGzZsEG3atBErVqxQxjT3nwMhhJg8ebIICwsTP/zwgzh58qR4+umnhbu7uzh37pwQonl+Bl9//bV4/PHHxebNmwUA8cUXX6iO18Z7NhgMws/PT0ydOlWkpaWJzz//XDg7O4t33323xtfNENaMtG3bVqxatUrk5+cLrVYrNmzYoBw7evSoACCSk5OFEKYfWI1GI3JycpQxb7/9tnB3dxdFRUX1fu03o7CwUHTp0kUkJCSI4cOHKyGspXwOTz/9tOjbt6/NYy3lM3j00UfFkCFD7B43Go2iXbt24pVXXlEey8/PF05OTuLzzz8XQghx5MgRAUDs379fGfPNN98ISZLEn3/+WXcXX0ceeughERoaKoxGY4v5ORgzZoy4++67VY/FxsaKqVOnCiFaxs/BtWvXhIODg9i2bZvq8fDwcPH444+3iM/AMoTV1nt+6623RNu2bVX/f3j00UdFt27danytXI5sBsrKyrB27VpcvXoVer0eqampKCkpQVRUlDKme/fu6NChA5KTkwEAycnJ6N27N/z8/JQxMTExKCgowO+//17v7+FmzJ07F2PGjFG9XwAt6nM4efIkAgIC0KlTJ0ydOhVnz54F0HI+gy1btqB///745z//CV9fX/Tr1w//+9//lOMZGRnIyclRfQ46nQ6RkZGqz8HDwwP9+/dXxkRFRUGj0SAlJaX+3kwtKC4uxieffIK7774bkiS1mJ+DQYMGYdeuXThx4gQA4Ndff8XevXsxevRoAC3j56C0tBRlZWVo3bq16nFnZ2fs3bu3RXwGlmrrPScnJ2PYsGFwdHRUxsTExOD48eO4fPlyja6NG3g3Yb/99hv0ej1u3LiBNm3a4IsvvkBYWBgOHToER0dHeHh4qMb7+fkhJycHAJCTk6P6y1Y+Lh9rKtauXYsDBw6o6h1kOTk5LeJziIyMxOrVq9GtWzdkZ2fjmWeewdChQ5GWltZiPoM//vgDb7/9NhYsWIB///vf2L9/Px588EE4OjpixowZyvuw9T7NPwdfX1/V8VatWsHT07PJfA6yL7/8Evn5+Zg5cyaAlvP/hcWLF6OgoADdu3eHg4MDysrK8MILL2Dq1KkA0CJ+Dtzc3KDX6/Hcc8+hR48e8PPzw+eff47k5GR07ty5RXwGlmrrPefk5CAkJMTqHPKxtm3bVvvaGMKasG7duuHQoUMwGAzYuHEjZsyYgR9++KGhL6veZGZm4qGHHkJCQoLVv/paEvlf+QDQp08fREZGomPHjli/fj2cnZ0b8Mrqj9FoRP/+/fHiiy8CAPr164e0tDS88847mDFjRgNfXf17//33MXr0aAQEBDT0pdSr9evX49NPP8Vnn32Gnj174tChQ4iPj0dAQECL+jn4+OOPcffdd6N9+/ZwcHBAeHg4pkyZgtTU1Ia+NLLA5cgmzNHREZ07d0ZERASWLl2Kvn37YsWKFWjXrh2Ki4uRn5+vGn/+/Hm0a9cOANCuXTurO6Pk7+UxjV1qaiouXLiA8PBwtGrVCq1atcIPP/yAN954A61atYKfn1+L+BwseXh4oGvXrjh16lSL+Vnw9/dHWFiY6rEePXooy7Ly+7D1Ps0/hwsXLqiOl5aWIi8vr8l8DgBw5swZJCYmYvbs2cpjLeXnYOHChVi8eDHuuOMO9O7dG9OnT8f8+fOxdOlSAC3n5yA0NBQ//PADrly5gszMTPz8888oKSlBp06dWsxnYK623nNd/H+EIawZMRqNKCoqQkREBLRaLXbt2qUcO378OM6ePQu9Xg8A0Ov1+O2331Q/dAkJCXB3d7f6ZdZY3X777fjtt99w6NAh5at///6YOnWq8ueW8DlYunLlCtLT0+Hv799ifhYGDx6M48ePqx47ceIEOnbsCAAICQlBu3btVJ9DQUEBUlJSVJ9Dfn6+arbgu+++g9FoRGRkZD28i9rx4YcfwtfXF2PGjFEeayk/B9euXYNGo/615uDgAKPRCKBl/RwAgKurK/z9/XH58mV8++23+Mc//tHiPgOg9v531+v1+PHHH1FSUqKMSUhIQLdu3Wq0FAmALSqaqsWLF4sffvhBZGRkiMOHD4vFixcLSZLEzp07hRCm29E7dOggvvvuO/HLL78IvV4v9Hq98nz5dvSRI0eKQ4cOiR07dggfH58mdTu6LeZ3RwrRMj6Hhx9+WHz//fciIyND7Nu3T0RFRQlvb29x4cIFIUTL+Ax+/vln0apVK/HCCy+IkydPik8//VS4uLiITz75RBnz0ksvCQ8PD/HVV1+Jw4cPi3/84x82b1Hv16+fSElJEXv37hVdunRp1LflWyorKxMdOnQQjz76qNWxlvBzMGPGDNG+fXulRcXmzZuFt7e3WLRokTKmJfwc7NixQ3zzzTfijz/+EDt37hR9+/YVkZGRori4WAjRPD+DwsJCcfDgQXHw4EEBQPznP/8RBw8eFGfOnBFC1M57zs/PF35+fmL69OkiLS1NrF27Vri4uLBFRUt09913i44dOwpHR0fh4+Mjbr/9diWACSHE9evXxf/93/+Jtm3bChcXF/H//t//E9nZ2apznD59WowePVo4OzsLb29v8fDDD4uSkpL6fiu1yjKEtYTPIS4uTvj7+wtHR0fRvn17ERcXp+qP1RI+AyGE2Lp1q+jVq5dwcnIS3bt3F++9957quNFoFE8++aTw8/MTTk5O4vbbbxfHjx9XjcnNzRVTpkwRbdq0Ee7u7uKuu+4ShYWF9fk2bsq3334rAFi9LyFaxs9BQUGBeOihh0SHDh1E69atRadOncTjjz+uainQEn4O1q1bJzp16iQcHR1Fu3btxNy5c0V+fr5yvDl+Brt37xYArL5mzJghhKi99/zrr7+KIUOGCCcnJ9G+fXvx0ksv3dR1S0KYtRImIiIionrBmjAiIiKiBsAQRkRERNQAGMKIiIiIGgBDGBEREVEDYAgjIiIiagAMYUREREQNgCGMiIiIqAEwhBERERE1AIYwImpWbr31VsTHxzf0ZdS5JUuW4JZbbmnoyyCim8AQRkTUiBQXF9fr6wkhUFpaWq+vSUQmDGFE1GzMnDkTP/zwA1asWAFJkiBJEk6fPo20tDSMHj0abdq0gZ+fH6ZPn45Lly4pz7v11lvxwAMPID4+Hm3btoWfnx/+97//4erVq7jrrrvg5uaGzp0745tvvlGe8/3330OSJGzfvh19+vRB69atMXDgQKSlpamuae/evRg6dCicnZ0RFBSEBx98EFevXlWOBwcH47nnnsOdd94Jd3d3zJkzBwDw6KOPomvXrnBxcUGnTp3w5JNPoqSkBACwevVqPPPMM/j111+V97l69WqcPn0akiTh0KFDyvnz8/MhSRK+//571XV/8803iIiIgJOTE/bu3Quj0YilS5ciJCQEzs7O6Nu3LzZu3Fjb/xMRkRmGMCJqNlasWAG9Xo977rkH2dnZyM7OhpubG2677Tb069cPv/zyC3bs2IHz589j8uTJqueuWbMG3t7e+Pnnn/HAAw/g/vvvxz//+U8MGjQIBw4cwMiRIzF9+nRcu3ZN9byFCxfitddew/79++Hj44Nx48YpYSk9PR2jRo3CxIkTcfjwYaxbtw579+7FvHnzVOd49dVX0bdvXxw8eBBPPvkkAMDNzQ2rV6/GkSNHsGLFCvzvf//D66+/DgCIi4vDww8/jJ49eyrvMy4urlqf1eLFi/HSSy/h6NGj6NOnD5YuXYqPPvoI77zzDn7//XfMnz8f06ZNww8//FCt8xJRNdzU9t9ERI3M8OHDxUMPPaR8/9xzz4mRI0eqxmRmZgoA4vjx48pzhgwZohwvLS0Vrq6uYvr06cpj2dnZAoBITk4WQgixe/duAUCsXbtWGZObmyucnZ3FunXrhBBCzJo1S8yZM0f12nv27BEajUZcv35dCCFEx44dxYQJEyp9X6+88oqIiIhQvn/66adF3759VWMyMjIEAHHw4EHlscuXLwsAYvfu3arr/vLLL5UxN27cEC4uLiIpKUl1vlmzZokpU6ZUem1EVDOtGjIAEhHVtV9//RW7d+9GmzZtrI6lp6eja9euAIA+ffoojzs4OMDLywu9e/dWHvPz8wMAXLhwQXUOvV6v/NnT0xPdunXD0aNHldc+fPgwPv30U2WMEAJGoxEZGRno0aMHAKB///5W17Zu3Tq88cYbSE9Px5UrV1BaWgp3d/dqv397zF/z1KlTuHbtGqKjo1VjiouL0a9fv1p7TSJSYwgjombtypUrGDduHF5++WWrY/7+/sqftVqt6pgkSarHJEkCABiNxmq99r333osHH3zQ6liHDh2UP7u6uqqOJScnY+rUqXjmmWcQExMDnU6HtWvX4rXXXqvw9TQaU4WJEEJ5TF4atWT+mleuXAEAbN++He3bt1eNc3JyqvA1iajmGMKIqFlxdHREWVmZ8n14eDg2bdqE4OBgtGpV+3/l/fTTT0qgunz5Mk6cOKHMcIWHh+PIkSPo3Llztc6ZlJSEjh074vHHH1ceO3PmjGqM5fsEAB8fHwBAdna2MoNlXqRvT1hYGJycnHD27FkMHz68WtdKRDXHwnwialaCg4ORkpKC06dP49KlS5g7dy7y8vIwZcoU7N+/H+np6fj2229x1113WYWYmnj22Wexa9cupKWlYebMmfD29saECRMAmO5wTEpKwrx583Do0CGcPHkSX331lVVhvqUuXbrg7NmzWLt2LdLT0/HGG2/giy++sHqfGRkZOHToEC5duoSioiI4Oztj4MCBSsH9Dz/8gCeeeKLS9+Dm5oZHHnkE8+fPx5o1a5Ceno4DBw7gzTffxJo1a2r82RBRxRjCiKhZeeSRR+Dg4ICwsDD4+PiguLgY+/btQ1lZGUaOHInevXsjPj4eHh4eyvLdzXjppZfw0EMPISIiAjk5Odi6dSscHR0BmOrMfvjhB5w4cQJDhw5Fv3798NRTTyEgIKDCc44fPx7z58/HvHnzcMsttyApKUm5a1I2ceJEjBo1CiNGjICPjw8+//xzAMAHH3yA0tJSREREID4+Hs8//3yV3sdzzz2HJ598EkuXLkWPHj0watQobN++HSEhITX4VIioKiRhXjxARERV8v3332PEiBG4fPkyPDw8GvpyiKgJ4kwYERERUQNgCCMiIiJqAFyOJCIiImoAnAkjIiIiagAMYUREREQNgCGMiIiIqAEwhBERERE1AIYwIiIiogbAEEZERETUABjCiIiIiBoAQxgRERFRA2AIIyIiImoA/x8XV8X3Pvc5BQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACH+klEQVR4nO2deXxTVd7/P+nK1qbQUtraQkthdJBFqYiFERCKwE9weECpC8oOOqAiDigP48K4IKCI4LgwIjgqCgJuODoURUelMooi4iADPEXAlqWBBqRCS3N/f2RuSNK7r+fefN+vFy9tcpOcnJx7zud8t+PhOI4DQRAEQRBEDBBndwMIgiAIgiCsgoQPQRAEQRAxAwkfgiAIgiBiBhI+BEEQBEHEDCR8CIIgCIKIGUj4EARBEAQRM5DwIQiCIAgiZiDhQxAEQRBEzEDChyAIgiCImIGED0EQBIOsXLkSHo8H+/fvt7spBOEqSPgQRIzy1VdfYdq0abj44ovRvHlztG3bFqNGjcJ//vOfRtf269cPHo8HHo8HcXFxSE1NxYUXXohbbrkFZWVlqj73vffeQ9++fZGZmYlmzZqhffv2GDVqFD788EOjvlojHnvsMbz99tuNHt+yZQseeugh1NTUmPbZ0Tz00EOhvvR4PGjWrBk6deqEP/3pTzh58qQhn7Fq1SosXrzYkPciCLdBwocgYpT58+dj3bp1GDBgAJ5++mlMnjwZ//znP9G9e3fs3Lmz0fW5ubl45ZVX8Le//Q0LFy7Etddeiy1btuDqq69GaWkp6uvrZT/ziSeewLXXXguPx4PZs2fjqaeewsiRI7Fnzx688cYbZnxNANLCZ+7cuZYKH57nnnsOr7zyChYtWoSLLroIjz76KAYPHgwjjk8k4UMQ4iTY3QCCIOxhxowZWLVqFZKSkkKPlZaWokuXLnj88cfx6quvRlzv9XoxevToiMcef/xx3HnnnXj22WeRn5+P+fPni37euXPn8PDDD2PgwIHYuHFjo+ePHj2q8xuxQ21tLZo1ayZ5zXXXXYeMjAwAwG233YaRI0di/fr1+PLLL1FcXGxFMwkiJiGLD0HEKL169YoQPQDQsWNHXHzxxdi1a5ei94iPj8eSJUvQqVMnPPPMM/D7/aLXVldX4+TJk+jdu7fg85mZmRF/nzlzBg899BB+85vfoEmTJsjOzsaIESOwb9++0DVPPPEEevXqhfT0dDRt2hRFRUVYu3ZtxPt4PB6cPn0aL7/8csi9NHbsWDz00EOYOXMmAKCgoCD0XHhMzauvvoqioiI0bdoUrVq1wg033ICDBw9GvH+/fv3QuXNnbNu2DX369EGzZs3wv//7v4r6L5z+/fsDACoqKiSve/bZZ3HxxRcjOTkZOTk5mDp1aoTFql+/fnj//ffx008/hb5Tfn6+6vYQhFshiw9BECE4jsORI0dw8cUXK35NfHw8brzxRtx///34/PPPcc011whel5mZiaZNm+K9997DHXfcgVatWom+Z0NDA4YOHYqPPvoIN9xwA+666y6cOnUKZWVl2LlzJwoLCwEATz/9NK699lrcfPPNqKurwxtvvIHrr78eGzZsCLXjlVdewcSJE3H55Zdj8uTJAIDCwkI0b94c//nPf/D666/jqaeeCllfWrduDQB49NFHcf/992PUqFGYOHEijh07hqVLl6JPnz749ttvkZaWFmqvz+fDkCFDcMMNN2D06NFo06aN4v7j4QVdenq66DUPPfQQ5s6di5KSEtx+++3YvXs3nnvuOXz11Vf44osvkJiYiDlz5sDv9+PQoUN46qmnAAAtWrRQ3R6CcC0cQRDEf3nllVc4ANzy5csjHu/bty938cUXi77urbfe4gBwTz/9tOT7P/DAAxwArnnz5tyQIUO4Rx99lNu2bVuj61566SUOALdo0aJGzwUCgdD/19bWRjxXV1fHde7cmevfv3/E482bN+fGjBnT6L0WLlzIAeAqKioiHt+/fz8XHx/PPfrooxGPf//991xCQkLE43379uUAcM8//7zo9w7nwQcf5ABwu3fv5o4dO8ZVVFRwL7zwApecnMy1adOGO336NMdxHLdixYqIth09epRLSkrirr76aq6hoSH0fs888wwHgHvppZdCj11zzTVcu3btFLWHIGINcnURBAEA+PHHHzF16lQUFxdjzJgxql7LWxROnToled3cuXOxatUqXHrppfjHP/6BOXPmoKioCN27d49wr61btw4ZGRm44447Gr2Hx+MJ/X/Tpk1D/3/ixAn4/X5ceeWV+Oabb1S1P5r169cjEAhg1KhRqK6uDv3LyspCx44dsXnz5ojrk5OTMW7cOFWfceGFF6J169YoKCjAlClT0KFDB7z//vuisUGbNm1CXV0dpk+fjri481P3pEmTkJqaivfff1/9FyWIGIRcXQRB4PDhw7jmmmvg9Xqxdu1axMfHq3r9L7/8AgBISUmRvfbGG2/EjTfeiJMnT2Lr1q1YuXIlVq1ahWHDhmHnzp1o0qQJ9u3bhwsvvBAJCdJT1IYNG/DII49g+/btOHv2bOjxcHGkhT179oDjOHTs2FHw+cTExIi/L7jggkbxUnKsW7cOqampSExMRG5ubsh9J8ZPP/0EICiYwklKSkL79u1DzxMEIQ0JH4KIcfx+P4YMGYKamhp89tlnyMnJUf0efPp7hw4dFL8mNTUVAwcOxMCBA5GYmIiXX34ZW7duRd++fRW9/rPPPsO1116LPn364Nlnn0V2djYSExOxYsUKrFq1SvV3CCcQCMDj8eCDDz4QFIHRMTPhliel9OnTJxRXRBCEdZDwIYgY5syZMxg2bBj+85//YNOmTejUqZPq92hoaMCqVavQrFkz/O53v9PUjssuuwwvv/wyqqqqAASDj7du3Yr6+vpG1hWedevWoUmTJvjHP/6B5OTk0OMrVqxodK2YBUjs8cLCQnAch4KCAvzmN79R+3VMoV27dgCA3bt3o3379qHH6+rqUFFRgZKSktBjei1eBOFmKMaHIGKUhoYGlJaWory8HG+++aam2jENDQ248847sWvXLtx5551ITU0Vvba2thbl5eWCz33wwQcAzrtxRo4cierqajzzzDONruX+W+AvPj4eHo8HDQ0Noef2798vWKiwefPmgkUKmzdvDgCNnhsxYgTi4+Mxd+7cRgUFOY6Dz+cT/pImUlJSgqSkJCxZsiSiTcuXL4ff74/IpmvevLlkaQGCiGXI4kMQMco999yDd999F8OGDcPx48cbFSyMLlbo9/tD19TW1mLv3r1Yv3499u3bhxtuuAEPP/yw5OfV1taiV69euOKKKzB48GDk5eWhpqYGb7/9Nj777DMMHz4cl156KQDg1ltvxd/+9jfMmDED//rXv3DllVfi9OnT2LRpE/7whz/g97//Pa655hosWrQIgwcPxk033YSjR4/iL3/5Czp06IAdO3ZEfHZRURE2bdqERYsWIScnBwUFBejZsyeKiooAAHPmzMENN9yAxMREDBs2DIWFhXjkkUcwe/Zs7N+/H8OHD0dKSgoqKirw1ltvYfLkyfjjH/+oq//V0rp1a8yePRtz587F4MGDce2112L37t149tln0aNHj4jfq6ioCKtXr8aMGTPQo0cPtGjRAsOGDbO0vQTBLHamlBEEYR98GrbYP6lrW7RowXXs2JEbPXo0t3HjRkWfV19fz/31r3/lhg8fzrVr145LTk7mmjVrxl166aXcwoULubNnz0ZcX1tby82ZM4crKCjgEhMTuaysLO66667j9u3bF7pm+fLlXMeOHbnk5GTuoosu4lasWBFKFw/nxx9/5Pr06cM1bdqUAxCR2v7www9zF1xwARcXF9cotX3dunXc7373O6558+Zc8+bNuYsuuoibOnUqt3v37oi+kUr1j4Zv37FjxySvi05n53nmmWe4iy66iEtMTOTatGnD3X777dyJEycirvnll1+4m266iUtLS+MAUGo7QYTh4TgDDoYhCIIgCIJwABTjQxAEQRBEzEDChyAIgiCImIGED0EQBEEQMQMJH4IgCIIgYgYSPgRBEARBxAwkfAiCIAiCiBmogGEUgUAAlZWVSElJobLvBEEQBOEQOI7DqVOnkJOTg7g4cbsOCZ8oKisrkZeXZ3czCIIgCILQwMGDB5Gbmyv6PAmfKFJSUgAEO07q3CGCIAiCINjh5MmTyMvLC63jYpDwiYJ3b6WmppLwIQiCIAiHIRemQsHNBEEQBEHEDCR8CIIgCIKIGUj4EARBEAQRM1CMD0EQBEEYQENDA+rr6+1uhmtJTExEfHy87vch4UMQBEEQOuA4DocPH0ZNTY3dTXE9aWlpyMrK0lVnj4QPQRAEQeiAFz2ZmZlo1qwZFb81AY7jUFtbi6NHjwIAsrOzNb8XCR+CIAiC0EhDQ0NI9KSnp9vdHFfTtGlTAMDRo0eRmZmp2e1Fwc0EQRAEoRE+pqdZs2Y2tyQ24PtZTywVCR+CIAiC0Am5t6zBiH4m4UMQBEEQRMxAwocgCIIgiJiBhI8D8Pl8qKqqQlVVFbZtO4K1a33Ytu1I6DGfz2d3EwmCIAiHMXbsWHg8Hng8HiQmJqJNmzYYOHAgXnrpJQQCAcXvs3LlSqSlpZnXUIOhrC7G8fl8eOaZZwAA33xzKd57byg4Lg4eTwDDhm1A9+7fAgCmTZtGGQUEQRAOw+fzoa6uTvT5pKQkU+f2wYMHY8WKFWhoaMCRI0fw4Ycf4q677sLatWvx7rvvIiHBfTLBfd/IZfA3hN+fEhI9AMBxcXjvvaEoLNwLr/eU5I1DEARBsEf4xlYKMze2ycnJyMrKAgBccMEF6N69O6644goMGDAAK1euxMSJE7Fo0SKsWLEC//d//4dWrVph2LBhWLBgAVq0aIFPPvkE48aNA3A+8PjBBx/EQw89hFdeeQVPP/00du/ejebNm6N///5YvHgxMjMzTfkuSiFXl0M4fjw9JHp4OC4Ox4+3sqlFBEEQhB6Ublit3tj2798f3bp1w/r16wEAcXFxWLJkCX744Qe8/PLL+PjjjzFr1iwAQK9evbB48WKkpqaGwi/++Mc/AgimnD/88MP47rvv8Pbbb2P//v0YO3aspd9FCMcIn3nz5qFHjx5ISUlBZmYmhg8fjt27d0dcc+bMGUydOhXp6elo0aIFRo4ciSNHjtjUYmNp1coHjyfS5+rxBNCq1XGbWkQQBEG4lYsuugj79+8HAEyfPh1XXXUV8vPz0b9/fzzyyCNYs2YNgKArzuv1wuPxICsrC1lZWWjRogUAYPz48RgyZAjat2+PK664AkuWLMEHH3yAX375xa6vBcBBwufTTz/F1KlT8eWXX6KsrAz19fW4+uqrcfr06dA1d999N9577z28+eab+PTTT1FZWYkRI0bY2Grj8HpPYdiwDSHxw8f4eL2nbG4ZQRAE4TY4jgu5rjZt2oQBAwbgggsuQEpKCm655Rb4fD7U1tZKvse2bdswbNgwtG3bFikpKejbty8A4MCBA6a3XwrHxPh8+OGHEX+vXLkSmZmZ2LZtG/r06QO/34/ly5dj1apV6N+/PwBgxYoV+O1vf4svv/wSV1xxhR3NNpTu3b9FYeFeHD/eCq1aHSfRQxAEQZjCrl27UFBQgP3792Po0KG4/fbb8eijj6JVq1b4/PPPMWHCBNTV1YlWrD59+jQGDRqEQYMG4bXXXkPr1q1x4MABDBo0yPaYVMcIn2j8fj8AoFWrYIzLtm3bUF9fj5KSktA1F110Edq2bYvy8nJR4XP27FmcPXs29PfJkydNbLV+vN5TJHgIgiAI0/j444/x/fff4+6778a2bdsQCATw5JNPIi4u6CTi3Vw8SUlJaGhoiHjsxx9/hM/nw+OPP468vDwAwNdff23NF5DBkcInEAhg+vTp6N27Nzp37gwgeDpuUlJSo1oCbdq0weHDh0Xfa968eZg7d66ZzXUc4emVlZVxqKhIQEHBOeTkBN1sRqZXHjoE7NkDdOwI5OYa8pYEQRCEQs6ePYvDhw9HpLPPmzcPQ4cOxa233oqdO3eivr4eS5cuxbBhw/DFF1/g+eefj3iP/Px8/PLLL/joo4/QrVs3NGvWDG3btkVSUhKWLl2K2267DTt37sTDDz9s07eMxDExPuFMnToVO3fuxBtvvKH7vWbPng2/3x/6d/DgQQNaaBxJSUmGXicHn165bNky3HbbV+jRozWuvz4dl13WGmPGfI9ly5bhmWeewb59+3R/1vLlQLt2QP/+wf8uX27AFyAIgiAU8+GHHyI7Oxv5+fkYPHgwNm/ejCVLluCdd95BfHw8unXrhkWLFmH+/Pno3LkzXnvtNcybNy/iPXr16oXbbrsNpaWlaN26NRYsWIDWrVtj5cqVePPNN9GpUyc8/vjjeOKJJ2z6lpF4OI7j7G6EGqZNm4Z33nkH//znP1FQUBB6/OOPP8aAAQNw4sSJCKtPu3btMH36dNx9992K3v/kyZPwer3w+/1ITU01uvmasLLAVVVVFZYtWwa/PwWLF0+PSqHnMHBgGXr3LgegvbaEz+fD/v3ncPnlmQgEzh84Fx/PYevWo8jPT6BijARBOIIzZ86goqICBQUFaNKkiarXslDHx2lI9bfS9dsxri6O43DHHXfgrbfewieffBIhegCgqKgIiYmJ+OijjzBy5EgAwO7du3HgwAEUFxfb0WTDUDPgjRJJQnWDAA82bSpB5847NRdN5G/0iop8BAJjIp5raPBg6dIPUFDwE93oBEG4nvT0dEybNs3Wys2xiGOEz9SpU7Fq1Sq88847SElJCcXteL1eNG3aFF6vFxMmTMCMGTPQqlUrpKam4o477kBxcbErMrqUYOTuoVUrH4AAor2hfNFErQHW/A3O1yUKF1fhdYnsjvonCIKwAhI11uOYGJ/nnnsOfr8f/fr1Q3Z2dujf6tWrQ9c89dRTGDp0KEaOHIk+ffogKysrVHkyFjCyCqjXewoDB24CEOkJNapoItUlIgiCIOzAMRYfJaFITZo0wV/+8hf85S9/saBF9hPt1qquro543u9PwfHj6WjVyqdJUPCxPJs2lUQcjGqUOKG6RARBEITVOEb4EJHIubWkTnJXQ+/e5ejceadp4oTqEhEEQRBW4hhXFxGJlLtK7CR3vz9F02d5vadQUPATCRSCIAjC8ZDwcSF6TnI3qh4QQRAEQbAIubpcQng8j1zGlBTp6ekYPXo0Xn31Vdlr3SCSrKxSTRAEQdgPCR8XIBTPM2zYhkaPKXVVFRYWmlZbQqlYqq2tRVVVleGfH054nJRUTJSS9H8SUARBEM6AhA/jiBUk5DO4xOJ5pk9fjOnTFwsGJfPiw8qK0DxKCnbV1tZGWJzEstP0Fjnk2yDWh4WFexUVajRSQBEEQbiFTz75BFdddVWjExWkyM/Px/Tp0zF9+nTT2kXCh2GUFCSUiucpKPgJ48YNREZGRug5XszYWSpd7v3CLT1SQsKoIodSfajESmaUgCIIgrCSsWPH4uWXX8aUKVMaHTw6depUPPvssxgzZgxWrlxpTwNNgoKbGUbJQsnH84QTHs+TkZERUfCRFx1GFjs0C6Oz08SQ68Pq6mr4fD7B1/p8vpD1TU9QOUEQhB3k5eXhjTfewK+//hp67MyZM1i1ahXatm1rY8vMg4SPw5GrgKw0psbvT0FFRb6kqPD5fKiqqhL9JyYOtGKVkBDqw+Li8tDz69evxzPPPNPo+/FWM746uJyAIgiCYI3u3bsjLy8v4pSD9evXo23btrj00ktDj509exZ33nknMjMz0aRJE/zud7/DV199FfFef//73/Gb3/wGTZs2xVVXXYX9+/c3+rzPP/8cV155JZo2bYq8vDzceeedOH36tGnfTwhydTkIsVgXvgLyJZdch4svTkZOTg8APRTH6CgpdmiHa0xPdppa+D7curUntmwpxpYtvVFeXizpWhOyhhUXl6O8vNiUStcEQbibQ4eAPXuAjh2B3FzrPnf8+PFYsWIFbr75ZgDASy+9hHHjxuGTTz4JXTNr1iysW7cOL7/8Mtq1a4cFCxZg0KBB2Lt3L1q1aoWDBw9ixIgRmDp1KiZPnoyvv/4a99xzT8Tn7Nu3D4MHD8YjjzyCl156CceOHcO0adMwbdo0rFixwrLvS8LHIciJk+DZWonIzm6j6n3l4lJ47HCN8ZYYrdlpWigvLwZvCBXrCz4oPPyIkPDfBwigV68v0LPnVhI9BEEoYvlyYPJkIBAA4uKAZcuACROs+ezRo0dj9uzZ+OmnnwAAX3zxBd54442Q8Dl9+jSee+45rFy5EkOGDAEA/PWvf0VZWRmWL1+OmTNn4rnnnkNhYSGefPJJAMCFF16I77//HvPnzw99zrx583DzzTeHApc7duyIJUuWoG/fvnjuuefQpEkTS74vCR8HoFScaEFrYK/ec8CUYuV5Xkr6QsjyFf37AHEoLy9Gz55bTWsrQRDu4dCh86IHCP53yhRg0CBrLD+tW7fGNddcg5UrV4LjOFxzzTURSTH79u1DfX09evfuHXosMTERl19+OXbt2gUA2LVrF3r27BnxvsXFxRF/f/fdd9ixYwdee+210GMcxyEQCKCiogK//e1vzfh6jSDh4wDEFuSDB3Ph9e7S9d5a3ElGnQOmFDPO8/L5fPD7/RGPyfWF3+9HfX19o/fSmxUWi1DdI4I4z54950UPT0MDsHevdS6v8ePHY9q0aQBg2kHfv/zyC6ZMmYI777yz0XNWBlKT8HEAQgsyAKxdex3q6s6Ljj179qC6uhrNmjVDYWGhovdW604y0/rEozQgW2vlaLF4Jbm+WL16daPX+P0pOH26GYAAwnMFhMSjGypdGwHVPSKISDp2DLq3wsVPfDzQoYN1bRg8eDDq6urg8XgwaNCgiOcKCwuRlJSEL774Au3atQMA1NfX46uvvgq5rX7729/i3XffjXjdl19+GfF39+7d8e9//xsdrPxiApDwYRh+oYxekM8TKTo2b94cemb06NGS4id8EZZyJ0Uv1lZYN5QUOdRjEZB6XzWutci4Hg68+IkWTCNGjEBOTg4t4v+F6h4RRCS5ucGYnilTgpae+HjghResDXCOj48Pua3i4+MjnmvevDluv/12zJw5E61atULbtm2xYMEC1NbWYsJ/A5Fuu+02PPnkk5g5cyYmTpyIbdu2Nar/c++99+KKK67AtGnTMHHiRDRv3hz//ve/UVZWpih5xihI+DAMLwAqKysBrEdS0lmsXXt9xDVioqO2tlbRe6sVF1ZlWlkpEqLjlZS41g4dysa77w7FeSuPBx4Ph5Ej1yAv71DE6zMyMkj0CEAuQoI4z4QJwZievXuDlh4rRQ9Pamqq6HOPP/44AoEAbrnlFpw6dQqXXXYZ/vGPf6Bly5YAgq6qdevW4e6778bSpUtx+eWX47HHHsP48eND79G1a1d8+umnmDNnDq688kpwHIfCwkKUlpaa/t3CIeHDOOnp6SFxkpd3UJfoMOKICjsyrcxES7wS/5roMlgcF4fmzWsb9QW5uM4TXvDRynIFBOEEcnOtFTxyFZnffvvt0P83adIES5YswZIlS0SvHzp0KIYOHRrx2Lhx4yL+7tGjBzZu3Cj6HkK1f4yGhI8DEHN5eTwB/O53n+GHHy5G27Y/ITdX/FBPvXV4tLrGWEbO1TJixIhQZkNNTQ3WrFkjkMF1nvBFm3+tm4N0pYR0TU0NPB4PvF5v6DG/3x8RJ+U2EU0QhDMg4eMAwt1Se/bsQWFh8PDRf/2rBz77rA8ADwAO3bp9h//5n3cE30NvHR6z427sQM7Vwh/3IfeaIJGLttBr3YRSIS2F35+Cli1PYMKEF1Ffn2R6uQKCIAiAhI9j4AVFdXU1vN5TOHWqBXbt6oSg6AEAD777rht69PiXpOWHR0sdHieJGiVocbWIvWbChBcj+t1Jli8t6A08FnIxFhT8ZFDrCIIgxCHh41AOHGiH86KHx4ODB9vKCh+r6/CwihZXi9hr+D6P1QwuKSEd/ZwVJRHUYETsG0EQzoGEj0Np2/YnBFOow8UPh7y8A5KvY23RMRuhRS28cKFUvFL4dUpfE4uiR0pICz3XsuUJRdlcVljN7DiDjnAnHMfZ3YSYwIh+JuHjMJo1awYAyM2tQrdu3+G777ohPMaHtzzw10UTSynEShe1SZOGIC0tDcD5IGZAuGCh0Gt47LYMKLVc+Hw+HDt2TLAKNQAkJCQgMzNT0XeREtIABJ+bMOFFSRejlVYzO86gI9xFYmIigGAJkaZNm9rcGvfDl2rh+10LJHwcRmFhIUaPHo3a2lqMGAF8//1ebN/eHJdcchpdusQDGCFZuVkurqWiokL0s7Us7HrdCGpeH31t+CGiUqSlpakORNbyGjNRKvJGjx6NV199VdF7KrFySAlpwCP4XH19kqSL0c66R1adQccK5ObTT3x8PNLS0nD06FEAwU2nxxMdhkDoheM41NbW4ujRo0hLS2tUZFENJHwcSLio6dIFuOkm5a+Vi2spKyuTfL0ak79eN4Ka1wOQvVbLouaUhVCpRUKusKXa95QT0mLPFRT8ZNnhs0phLfbNbFFCbj7jyMrKAoCQ+CHMIy0tLdTfWiHhEyMorcPDI7bgqzH5N46tUfeeel8fjp5ChXoXQrkFrLa2VtQ1CWhb4JQKNr8/BQcP5gEIFshUK0DkhLTUc2IVsu3IiGMp9o13RUq5Wnn0iBIj769Yx+PxIDs7G5mZmaIuZEI/iYmJuiw9PCR8YoT09HSUlpaGJlN+Yjt+PD3ib8Ccna/e91T7+vBJHBCONZFa1IxaCI2odwOoW+CU9tU331wadewGh2uvfU/R76JUSEs9N2rUKGbipFiJfVM7XrSKkvAK2gB71i4zsMKtFx8fb8jCTJgLCZ8YIryKrthEZ8bOV+97qn199HcrLi5XvagZtRAatVtW+j5K+8rvT4kSPQDgUfy7yBW0FKrcHA5rsSOsHJ8h1p9GulyjxRVL1i6zILceEQ4JnxhEaqJTsuCr3TnpFRFqXi/03crLi8GfnM6jtVCh3oVQbgHTu8Ap7augpa9xBWo1v4vUAsFS4DeP0LjlrR6sHp/h96dg69aeKC8vNswaE90HrFi7zIRVtx4Fl9sDCR8GsHrwS010cgt+9HlLYvABx4B+EaHm9WLfrVevLxotHloKFepZCOTcCUa4G5T2VdAFGCkGxa41ErsmeiU7ftbOoGvsijTHGpOYeJYJa5dVsOLWIyuUfZDwsRmzBn/0AlNTU4Njx44BkF4c5RZ8pYF74Z+tV0Soeb3Yd+vZcyt69twqu6iZdRirnDvBKHeDXF+dOHEidN21126IWFjNtnLYOdEr3cmPGzcwdDAtjx27bn486LXKyREuAviCqFrGgVMsFyy59Vi1QsUCJHxsxowCanILjNTiqPbgSKWuGSWZZFIofb3cwj98+GVo2bIodH10ESyzDmOVcyfodTcoFWybN29udN3Bg7kAgLy8Q6ZaOVgqFig2blk5XFb8MFzjrDHRIiBYCLXxuXNyOMlywapbjxUrVKxAwseFyO0kxMSNkoMjExLODxm5mzV64VSbvqz19UoX/nDCJ2UzJmc5F5Red2C0YKuursb69etlXxcUgi3/+9dvAQhXbjZjR29XjSQnLDJC4wEw1ionLK6CBSbDkRPALAlaOVgJYg+HJStUrEDChzGMXgyiJ/muXXdgx46ujcSN3M3HHyPAT15Kbla91hO1rxe6NloA2GVOlrNEGRFTJCU8xL53x44dZS0cZuzo9YgPPSLMKYtM9HgAAujVqxw9e241zConJwK0Hh3CctFPFoPYWbVCuRkSPgxh9E5UaJI/f7aXumwu/hiBqqqgCVzpzarXeqLm9XLXSvWv2PEWemMT1BSOlHq+pqZG9DOECiAaWaPF6FgEPeJDrwize5FRUsySR64GktLz1MSQEwFajg4x8x4zyuqo1+1uNCxaodwOCR9GMGMnKmzKjjxDRmk2VzRqrmch8FGuf6XcQnpiE5RYraQqN/NZdPzBqWoxelwZIc71iA+9bhUzFhk1h8MqPU/N6Ere0a/nsTKAX889plfw6nW7mwlrVigW5muzIeHDCGbsRIXjBIKZGzxKs7miUXo9K4GPSvrXLDeYlZNE9HcwclwZJaLkxIeUdSvaaiD2m9XU1Ai68IxeZNSMb6XjqFmzZqYGWNsVwC9FZWVlqD1Cn620744ePYpjx44JZp9effXV4DgOLVu2bFQxXOxzwzFTELBihWJlvjYbEj42w0/yShYDtZOh0CQvFOPD32RKdn9qd4uspGzK9a8TAl4B6fgJoe9QWLjXMAuHUSJKTnwotW5J/WZr1qyJmJzNsnLosUDZGQtjRwA/IP6do61Bcgur2PsoHTtayoMYLQhYtEKxMl+bDQkfm/F4gtYXucWAv06O6DN4hCb5/v0/Fpz0R4wY0aiGCRC5k9GzW7RTXMil8EtZMsL7004zr1T/iX2H6dMXG2bh0OsmUntQrhRKrE/hY9QsK4dQu5SIGacIbTWI3WMAUFGRj8rKbGzaVKLoO0v9Tkb0ndqF24zMNavGpFbcOEZ5SPjYTPhZRlKLgdiZR+GI7UqidxJiOwulGRxabkQWsmnE+lfOkqF2N2oGcv0n9R2MsnDodRMpmeijK4OLCQkt1iezfzOlCwUL94KRSAnaffs6YPHi6f/9rufd7Fq/s9q+M8uqZtT76hmTZrre3DZGoyHhwyTKrDvRaDU/lpaWonXr1rbH2JiBEnOymCUjMbEOFRX5TJh55fpPzhpjVEVivZYaNZ8nJSTE4tcqK3Ma1Z6yAjULhZ57gaXA0/C2lJaWhuJqTpw4gc2bN4sUSDwPx8Xh4MFcHD/+q2IBoabvvviiWLGFSQ0sWELMjsWxO/vRbEj4MIQZ6ezRhQuFdiler9f0ydKulE0pKwNf40csFmr58onMmHnl+k9JarLSGDGh407CsSIWQU5IeL2nUFKyCWVlA3F+QfVg06YSdO680/LJWc1CofVeYCnwVElbpKpPA8HvvHbtdQCU32NK++6LL4ojxoZRFgtWLCFmF410e4o9CR9GMDvtWCiomZ9ktAROq8XOlE21tT0SE+tCogfQ9lsYvTNX0n9GZIYoXVxLS0sj3K9WHqTLf6+cnCqIlWewWvioWSi03gssVUhW8hlSWaXBxwH+LDKl95iSvvP7U1BWVgIzxgarlhCjXXqspdgbDQkfRjA77ViscKHXe6pRBoxZsJKyySPmBquoyNf1Wxi5M1cbEKzXGqM0q8Pr9ZoqlpUICZZ2pUoWCqMzy1iqkCzUFqE+KSnZhJycSpw+3Rxr114f8R5S95ia++D48XQIHe5qxNhgaczxmOV6Y22+NhISPoxg5A2lpnChUAaMkbCYsskjdr6V3t/CyJRQvQUQAe3WGBaz8ABExF3ZvStVI2aMzOJhIc5ESVvE+sTvT1F1j6kJjBezNJWUbNI9NlgYc+EY7Slgeb42EhI+NsMPILkbSs1AU1O40GxYT9kU+lwjJzcjFigtfRPuaqurqwsdNcIj1+d2xTIozRAK70ujavJoQe34NmKcsxJnoqQt0SUyampqsGbNGk3znVLraPR7AwEMHLgJvXuXN7pWKWbVgeLR6ho32vWmdDwDaDSnKGkvK5DwsZnogfbAA8ewf38C8vPPISenB4AehsSDhMf4AADHAfv2dbBklyh3ynf4wszKDWOEmdeuBcoIV5vchGrW2WZiVji5vozOWjN7HNmZXcVSnImSM/7CXaLZ2dmGz3c8/Ng5duwYRoyox7Rpu3HwYDLy8s4iKysbwAgkJCRoOuPMzA2cnvvVDNeb3HdQ2t5Ro0ZpqpBtBSR8GCB8EGRnA0VF2t5HalcCAN991zXsaut3iSxlpQhhtJnXrgXKCFeb3ITKixGh99X7+2nZ2arJWtNL9Dg2qx/4zwoXgQBbcSZa2mLEfCclPL1eL5KSktCli7FziFlzktIwg/BjPfixYIfrTWl7papo233kBQkfFxG9KwkvBldRkY/ogD+rd4msl0M3elfHwgKl1dUmN6FKva8Zvx8LfckT/v3M7AdhgRWMb2IlzkTrwqvHYsb6BkovSo/14NHqejPKaikVZM/aHM9DwsdlRO6mslFaWioa8Kd04TDDrM9ScGY4Rk6UdgdC6nW1SQWmWu3Cs7svhTC7H+QE1vTpi22LbdIT86JXuLC+gdKD2nlR7JghwBrxKNVeVud4gISP6+FrrejZmRm9u2IpONNs7EwJVeNq48Wt3++PeFzI3WeXC8+oOkVGiXir+kHqHLaCgp8iFj+r4if0WEeNFC4sL65qkZoXAQj2kVYXrxG/gVx7WZ7jSfi4HL3ZCGbsrlgKzjQDVlJClVr5lIrbgQMHoqyszFK3k5F9aXRsjlX9wFJ8UzhGCCw9wkXvBoql4z8A8d9569aeKC8vNk3caf0NpMYl4GF6jifh43Ksqh2iJsuHpXgNM2AlhV+plU+puE1JSVH1vkZgZF9qic0RWhytDix16/2iV7joPfOMtTghsd95y5ZiqK1wrRQ9v4HcuGR5zJLwiQGsqB0iFngHNJ48WIzXMBpWgirVuoeU7v6sdOEZ3ZdKJ3tpC1HwMSv6wa33i17Lrx5ByGKckNDvXFxcji1bekdcZ6TlRM9vIDcuWR6zJHxMhDVTqh6U3CBqJg83l0O3G63uIbW7P7H3ZR2lk71SC5EV/eDG+0WvJcsoQWh3nJBcGRLezcVjpOVEy2+gNHyC5TFLwsckWDSl6kHuBlEyebAS++J2tLqH5ARBYmKios9n/fdTO9lrdQfI9YPcxkhJoLmTMUK46F1cWUi0ELpf+cKdgHLLiZaNtpbfQGp+CS+hwr8/i3M8CR+TYOkkZSOQukGUTh6sxL7EAlr6UE4QeL1eV/x+aid7qaDTq6/eBKBxWrFcPygNtFaC3YuIHrQIF6UbqJqaGtnfgZVEi+g2qk1K0bPR1vIbiPVpdGVuIViYI0j42Ex4UDALA0IKsRtEzeTB8veLdeQEQXV1daOaIayPWTHUTPbCZ98BW7YUo2fPrZoyq5S60cTK/vM4sf/1Wn7Dj6YIty5Ei0e+crCUVZ3VwHG1m0S1MUtmWt+dMB5J+FiE0mqcrLm+lNwgrBVHJLQjJQhWrCgz7WgGO5CyFACR2VtCQaaAfsuAnLU0LS3NllR1M1GyqNfW1goersuTlJQUqlEGaK+grcT6Z9ccpfU9lYQdxLr1nYSPBagJngs/j4WFgSd1g/B+aJaKIxLqUSJu9aR/R3+WXb+l0t1r+BlD/IalU6cfItKKAWMsA6y4WqxGzg24bNmy0N9im8bS0tLQ82ZUKA++t1/SqsQzevRoNGvWTPQzrBr3avoiludUEj4mo/amZNECpOTztfiJWUwpjUXExK3Sk9F5rDy8UwtKdrnhC1202OvWbQd27OhqaHouq64WO1HqBqyvrwegTTwqdfVwHKeoLa+++mroOjvHfawKabWQ8DEZsYF48GAujh//VTaYMdwCFA4L1iAj/cR2p5TGOkYEgFp1eKce9ByrsmNHV0yY8CLq65MMS891a40eI1AquLWeEK/E1XP+wGdlbZEa92JzOf9ZRsznRgpplq23eiHhYzLCgZEBrFt3XcTNEbSWKD+RF7BmByE3+I0w8bKQUkqIY1X6N0uIib36+iQUFPwk+3o1qeos1zuxE6WCW6t4VDJ38jFGSuuYKSnyaqZFyCghzbr1Vi+uFD5/+ctfsHDhQhw+fBjdunXD0qVLcfnll1vaBt7KET0QgQCC55h4AARvjnffHQqPB6LWDrtcQFbF4JB5lm2MSv920u+pVuyFWzW1pKqrrdETLqwqK+NQUZGAgoJzyMkJhNrjxAUpHDW/gdniUUlblIx7KyyhRvSFE6y3enCd8Fm9ejVmzJiB559/Hj179sTixYsxaNAg7N69G5mZmZa1I9qUOm3abrz22lacPt0ca9deH3V1HHhXcvQuwU4XkFUxOBTnwD5607+d9nvKiT2pE9GVLhpKEHIThwsrNanwThNDagW3mQUelbRFbtybaQmtra1t1F4j0tPdYL0VwnXCZ9GiRZg0aRLGjRsHAHj++efx/vvv46WXXsJ9991naVuiJ5mCgp/g96cI1gQJh98lAGBm0JkpwJTUjwnHaRO4W1C6sLglbkVK7Cmp2yO3aGit0aMk7gQA5s//l+NdE1K/QUKCsuXLqAKPcuJfbtwbZQmNdqOqyTxT+9u7wXorhKuET11dHbZt24bZs2eHHouLi0NJSQnKy8sFX3P27FmcPXs29PfJkydNaZuc6yv4Lwi/S2Bl0Jml+pXGOQjFOTltAnciShcMoevcEreix4ogd/+qrdHDL3jV1dXw+1Pwww8Xi1aU5s93it6kHD161HEuMrHfIC0tzfJaNHLjQWrcG2EJFXejpsh6CKRiMcVwg/VWCFcJn+rqajQ0NKBNmzYRj7dp0wY//vij4GvmzZuHuXPnmt42MddXq1bHsW9fB9FdAguDzgwB5vP5InYpgPCkQinu9qG3yJmZrgez0CP2opFbNKItmeHvHd2njd1b0//7vhzCN01AIOJQy+hNCl+jSGqBNHNToSQ2Sc1vYLZI02ItEhv3RlhCpdyoJSWbsGlTiaEbVLdYb6NxlfDRwuzZszFjxozQ3ydPnkReXp4pnxV+kyYlJWHLlmB2iNgugZVBZ4bqVxI/RCnu9qNmYTFSNNiFkRVt5e5fvkaSkmwZMfdWUPQExY/HE0D37tuwbVuPiHaozT4ya1OhNDZp2rRpzFQVVlplOryOjxRGWUKFfsOyshKEF9jkH9frIXCL9TYcVwmfjIwMxMfH48iRIxGPHzlyBFlZWYKvSU5ORnJyshXNi0BJRWSAjUFntgATmgQLC/dKTs6xHPfDan0Nt5TBN7J9UvevlmwZIesr4MGgQR8iEOAXv6hnNWQfmYHSmjh1dXVMHdOhZDxIjfvw+RwwxhIqPA7iTPMQONF6K4WrhE9SUhKKiorw0UcfYfjw4QCAQCCAjz76CNOmTbO3cQKI3VBmHiCnFbMEmNgkOHLkOsnJOVbjflg/5kPrZ/Jizu/3hyryhpOQkIC0tDRHCKdoxFy4WuLmxKyveXkHsHz5RETv+LVkH5kNK7GLRiI1Js2whIr9hr/73Wf47LMrwYsgrRtUN1hvpXCV8AGAGTNmYMyYMbjssstw+eWXY/HixTh9+nQoy4slpHbupaWl4DhONOvDDv+2GQJMbBIEONWTcyzE/ZhZYsAuS5KYmHNS0bTwvuMPOZVC6+IvZn2tr08WzBQdOXItOnfepeg9rBIddgsvqzHDEir0G3btugOff35e9JSUbNIcGuAW660YrhM+paWlOHbsGB544AEcPnwYl1xyCT788MNGAc9244TKmFYMfvEd7CHRyVlJQbhYwMgYKDstSUJiTioziTWBK3wv5wseqllfX4/169frWvyFrK9CZTL4+0jpe1iF3cLLDsyYw8N/w8TEOixfPjHCgrhpUwk6d96puV+dKmqU4DrhA5wPjmMZlitjWrnzl5oEhSZntwQ8C/VxuJuHd+2EE25Zk3OViGUM8e8T/fuxcmDsN99cinffHYpwl42YG4iVWCel97LX6w1dp3fxj7a+ank/O+M2WIhdVAor40wI/jesqMiXtSA61S1lBq4UPk6CtcqYduz8pSbB8MmZtb7SitI+FqK0tBSAvKtE6ow3QPr3k1q8wwWVkglfyaLBw/++0XEqQOR3q66uRk1NTSg1WwqjLVRC34fvE7Xj0+jFX+r9RowYgcTExEYlJISwKnHACQGzrFnmxcSLnAVx1KhRrrbgqIWEj82wFuhn1c5fafxQuHtATV+xvEtT0ndi/c5bhJS6StT+fkoPWuSRmvCVCjwpMSf03YQOe+Rfb6aFSnoR1HYvK138le7Wxd4vIyND0Xv4/Sl48slvmHK52wlrlvno8AM+Y0zO4idVIdwKDh0C9uwBOnYEcnNtbQoAEj62w3Kgn5luJTXxQ/wJyUr7ivXMp2iixYmSflfi2tDy+6ldvKV+P6UiWkrMAcKZSeHfLVjHhkN4JosZ7k+5RbCwcK/s+NSaLSN2v0SnSksh9B7hr5caL5WVlairq9NV7ZnlTCGxjZJWa56ZiPU1a+5Dvk9XrWqKWbO8CAQ8iIvjsGCBHzfd9Kutm08SPjbDaqCfFTe62kGvtK+U7r5YCJLVU31VaqIzOl06MbEOFRWNA3a1fk8lYg4IoFevcvTsuVXyu4Uf+WLFgiTWt9OnL5Ydn3oSBoQeUysmxO45oe/07rtDkZR0Fnl5B7F+/Xrd1Z5ZzRRS4s6ywjJvhJWaFfch36d+fwoWL54Ojgven4GABzNnpuLnn1+C13vKts0nCR8GYE2pA2y54MInd6m+ElsEWM0C01J9NfpgRrGJzsh06a5dd4QyRrRYVNSIMCX3gpRLTOn31INU3yppv5ETvVFiQqwg3tq11ysS5Eo3ESxYWKNRYsk7fbqZqZZ5rbFESoUvfy6iVeez8X0qNw/Ztfkk4cMIrCh1HpZccHomd5azwLRUX5U7mJF3XRiVLi2UJitnUQk/TFPse4ZPfqdORb6P3L0g5hJT+z21Ite3Su9lo+LQjFi0pPqUT41mZSNkFmICneOA4GYkEOojoy3zWmOJ5OZGPglg9erVtpzPxtI6Eg4JH5tg2d8NsOeC03JTsuSXF0JsUgjfXYu5S+RQ+/uJBZsrSZMNRyi+Sm7yKysrAxDMPPF4PKKVm8+dOycayMkvTlaMU633Rngfs5Yt1NjNGAnvegy3RrKwgKlFKitPvJgqTxw4LoDrrluDvLxDmsaYGbFESsaHXeezsbaO8JDwsQm9JmorspZYdMGpgSV3nRBik0L37t+ic+eduvtdze8nli2idscmNCaFvmdxcXmj69LS0iTPaOKD3IW+GwBLx6lc6nhGRkbE9dH3I2vZQsD573TwYC7WrbtOtSBnHbmsPDlLYpA4NG9eq1n02BVLZOdcyOI6QsLHRvSca2TWblFpmnl0WX6zgxK1CD25RVttTRqjUBKzJNbvchZAPceMCH1/vTs2fmwWFu7F9OmLsXVrT2zZUowtW3qjvLxYl+sx+rtp6S89SKWOKz1kkzWrZPA77UJdnXmC3C6UiE0xSyKPmOhXMs6UfL5ZriG7XU6shXKQ8HEgZu4WhSxRfr8/ovCZ35+C+fP/ZZlZXmt6utyiraYmjZGIWfuUVG62KnNGb0A5IJyxVl5eDH4hUbvIKxUxpaWl8Hq9hotZM9zTcjvx6upqU0W5WFvVCnInISU2o7/3vn0dROcP3rKn9veRE7tmuIZYdTnZBQkfB2PWblHqJrbDLK+0HgxfayTcGiV2rpEdxzGEI9THSq0EWt5by3voEVBCY1NvgKzd6dBmfL6weyVYPgA4L87NEuXh3ym6JpAbRI4QcmIz/HtLiX5e9NTV1UW4YcMRGg9yn2+Wa4hFl5NdkPBxMEb6baVcSXYU8QpvT7hLSkp4RVtw+J2/0iJtRCR6FlrxQFF9AbJ2p0Mb/fmNg4qDhRiXL58YMTaPHj1qqqDTC4vnQEXPafw8otbtIyYAhSzhSkIOlHy+2GfqPU7EKjHLevIOCR8HY5TfVmnMkFUBcmKuLTHhlZl5GPX1yY3a6/V6I6worMVTuBmtGWt6YfmoEjG6d/8WmZmHJcsGrFmzxnRXrFpXYvjrWOtT8TktRdbtM3DgwFCmoRRcMAAIgDpLuFa3k5OOE7HbOisHCR8HY5TfVmnMkFUBcmKurdOnmwkKL6XF9VjP8tKK0sXeSlFgdsaaEE47qiSc+vpkwbG5dWtPXH31JgDmu2JZX6zUoGROE3P7FBQUKOoH/nktGyolWYFKLdVKDwGWwgzLC8vjhISPwzHSbyt3A9sRIBd5JlMAQVeAJ+wKTvGEY3dmgxkoXeyHDBmCDz74QPa6UaNGhYKqtSxyZmasyWHVAbtGEP1dxVKpt2wpbnRkh5mwvFhpQcmcJoSSfuDjevRUSVeSFajHUu0mMWskJHxcgFF+WyU3sJUBco3PZOKrp3JhQkj5hOPGzAali70S0QMAa9asifhbrXVEbKKtqanBuXPnAACJiYkRrhLA+MmX9Vguvp8qKytDRRmLi8uxZUvvqCudb5G0Ey2iRK0AV7qh0mp90WupjjVRowQSPg7ELPOl0hvYqgA5sSMdRo5cg+bNaxsdpyDW3nDcnNmgZrFXen6Z1pII0RiVsaYEu2K51LoS09PTI67v2XMrtmw5n+4PON8iaTdyc1p0sUktAlzphkqr9cWNlmq7IeHjQMwyX+q1iBjtJxa74cPLxStpr56ifk5B7nTt8O8rdhAjiwe5asGOWC4j4ou83lO49lp3WSTtRm5OU1NsUgqlGyot1hc3WqrthoSPQzHLfKm2FD+PGX5iJTe8VHtramqQnZ0dE35uudO1eeuPmEDyeMCsW0gtduyQtcYXRYttN1sk7cKqPjXTEk7jwlhI+BCNMKIUv1EZREpueLH2hqcAO1nUKEHudG3e1SMmkPjMXDek+Bu5Q9YyjtW4HNPT01FaWhpRD8athQPtRKxPo4/eiUZqnrI6Y4rGhXGQ8CEMv4H1niWm1DUVDssZPGrRstg2LoQXCe/qUXIQoxtS/I3YIatxX/FoiS9q3bq1ovY42RVrNUr7KjqYXwixecpsSzLrRQCdDAkfwrAbmF+wlVZaFvs8Je2pqakJTVqsZ/CoQU+siNzp2rwAiBRIAQTLA3gaXes0jI7l0uK+0hJfFAuuWKtR0qdKKy/zR+FEY/ZvQuPCPEj4EAD0xwwJWXkOHszTVX9CCW6rxqzUQsVfJ7zYC5+uLVaSQOogRidh5kKhVFxrjS+ixct41PSpmqNwwjG7GKZV48KJFc/1QMKHMASxSqnRGO1GcWs1Zh65tPPwxT58Byvl6iktLQUARdc6zYxuxuSsRlxTBo7zUPL7usmVHo3e0AQnQsKHMJTGRQcjMdqNwmKNC6N2T0qtDPx7ZWdnq7J4kBldGXLiOvrgSMrAcRZyv6+bXOlCKD2yyA0ij4eED2EowllDQczY/bK2wzbqvCitLjy1VZYJeeTEtZArRCy+qLa21ryGEpqQ+n3l7sNo0RuO0zYOesMGnOQuI+FDGIpw1lAA1123NqLwoJGwtMNWG6Mjhlorg55JxUkTlh0oEddKK2G/+uqrrnIZuAGp37eiIl/yPpSK/wG0u4fsuCf1hA04zV1GwocwFLFJpHPnXYZ+jpXVmPVMQkoXxGi0WBm0TCqsnWjOqgiTEtdi7gE3x4U4GaHsU7HfV6kr3cjf2q57Uk/YgNPcZSR8CMNRaoHRI0qsSvXUMwnpiQ3Q4sLTMqkYZaEyAtZEmBJxLeYe+PXXJti0qcS1cSEsokQ0AxAdY0K/r5L70OgYIK1VwPViRNiAU7JsSfgQpiBmgeGPvTBClFix+GkVBlongPDFVkxAarUiKcHM95bDbhEmtHCWlpaivr4eAJCQkIC0tDQAQHV1NdavXy/qHigrKwF/2Cirh6S6CaWimc9olOOqq67C5s2bAUhv5Mxe6K0OrNYbNuCULFsSPoQhKLXe5OTkOHryVSoM1E4A4YvWqFGjcO7cudBzJ06cwObNPwEwdyJkLXvFShGm1dok5h5w4iGpTkaplYQXsXLXRVfTFtvImbnQ22U90XM0BotZtkKQ8CEMIRaqjKoRBmomAKWLlpkTodWTrJB1QmnFbzPQ6l4Qcg+UlGwKubl49Ez+Siw5drlHWETp2JG6Li0tDdOmTcOxY8caiSWA34xsNnWht8p6YuTRGKxl2YpBwocIcegQsGcP0LEjkJur/vVOFjVyqBUGaiYApYuRmROhlSZqOaFnd5yAWtEl5B5o2vSMYYekqnXhsGa5sxKlY0fpdeFHWghh5kJvlfUkugiqkNBLSEhAXV0dfD6f7DzPUpatGCR8CADA8uXA5MlAIADExQHLlgETJtjdKnZQKgyUxOhEXxeN2G7dzInQqPfWYp2Ixuo4AZ/PF7I2KV0Q5QKfjZr8lYpifrGyWzTajdKxo+Q6pVY0sxZ6K60n6enp8Pl8skIPUOYu1eMuswISPjGOz+fD/v3nMHlyJgKB4EGVgQAwZQqHSy45ivz8BFdbcpSiVBjodflJ7dbNnAiNeG+tAabRC4qVcQLRbVa6cAr9zuEH5wLmlFiQi3tySnCpWSgdO2rHmJwVzaxyGlZaT/QkFzjtJHkSPjEMP+lXVOQjEBgT8VxDgwdLl36AgoKfLAmIDLcUVFbGoaIiAQUF55CTEwBgf3yQGmGgtZ1KdutGn6tlhIWKR611AhBfUKza6Ua3Wc2CGP07qz0yRC1KXFhOCS41C6X3qZr7We6+5DNVo9H6W0dX97arCria5AKnxXiS8Ilh+EEqN1maHRAZvuuWmtztyEgxUhjIIbdbF5tg+c/X0jdmTlhyE6fYgpKZeRgtW57AhAkvor4+yfKDU4uLy7FlSzEA9aLLrPGp1IXllOBSM5G6TxMSEhRdF+6SlbsvMzIykJ2dbVj7mzVrZuh1WlAisp1cPoGED2H7ZMnfPHKTux0ZKWYKg+gKsnIC1OgJlseMyUnJxCm2oLz44kSEi46CgmAq/4gRI0wthxDd5uLiL9Cz51bL7gOpTDc1LiwnBJcajdJK7pmZmYrv56qqKgD2W9Gsrq2lRGQ7vXwCCR8CABuTJavxCWbcuEITh90C1CiUWieEz3XjIFb4LyMjw1KLSnl5MXr23BpxnVnWJrmFRG7xDbdkAOYe4aIGq6wCZm5Q7Lwv7cjQ0xL4LQar5RNI+BAh7I7El5vc/X5/6HEW44DUIDYhmO1OswKlAlZoQbFL+CpxM5ppbZJbIOQWX77uDEuuB6utAmZ+Nzs2hnZl6GmxcNlZ8V0LJHxsRG/dHBYw8jvITe58qiVrcUBGED1x8N/ZyCM+rEKNdSJ8QUlMrMPy5RNtcSkocTNa2f9CC4mcKGZtfBhhFbAzjsTKg5CF0GIBN6K/1Fq4nFg3ioSPTbihbo4Z30FuZ8ViHJBepCYOs+J6zEStdYI/9wqAbS4FltyMUuNh3LiBjQLcWRQ9Qqi1CtgdR6LEfVZbW4u6urpQPFA0en4btZYXvf2lJpFDaVwmq5DwsZhDh4AtW4BJkwCOCz4WrJsDDBrkDMuP2bV/pFxurMUB6d1hyU0cNTU1jhE+aibO8D6xMnNOT5v1IjVWlBZQdKIQBrRZBViII5G6d30+H5YtWyb7HlqFmVoxrre/1MRJ8UKPtflYKSR8LCTcQhJNQwOwd6+1wkdL0Sm7a//YnWERjhE7UrmJY82aNY5x32kNMLWzBohVn610rMiNh/DzzIxuo1kYZRVgLY7ELGFmlBjX0l9qxxBL87EaSPhYxKFD4qIHAOLjOaSkHIXPZ12lZC2Tvhm1f9TspllySRhxMKSSicNJ7jutY9fORduKz1b6G8qNB94lKASrAtkIq4AT4kiMEmZGiHEj+0uqzAJL87EaSPhYxJ494qLH4wngmms2YMMGYwJ01QQca/0cIwe82CF5hw8n4MCBZLRtexbNm59AWVkZADZS76PROtEI9WNJySYmvhNhHmKLpJ77ilWBrNcq4IQ4EqOFmZ7538j+UmKplJqPza4urRUSPhbg8/mQmnoOcXHnY2KA4M0/cuRa5OUdUmwhkMPKoGkjBUj0IXnCE8n568XigIRcAWa7AbRMNNHm7F9/bYKyshJwXBw2bSpB06ZnmNvRsoSTq8bKLZJKAvxZcvnIoXeTxLr7T6vQMGsMGxl3o3QtEpuPX331VSYtkSR8TCZcMQ8d2njC69x5l2GfFe1O0xM0rdRqZGTtHyMyBVasKBNcFMy8+bRMNOnp6SgtLcXq1avh96dg06YSiBXuU4vZosBu0WF3to8etJz7FJ715gSXD49RsSqsu/+0pp2bNYbNjLvRIrpZtESS8DGZ8B/dTBeNz+fDl18CgUDkTdLQAGzd6kPTpsrNp3an2mvdsUgtCmbefFonGq/XC8DYHZrZooAF0aH0t6ysrBS91i6LkJ5zn5zg8gnHqMBx1t1/Wu5/MzPWzIq7kRPdTrJEkvCxGDOqI/OLkd+fAo9neqMb8IsvXsbOnadkFyMlaepWIDeRhO+K+d2wnYuC3onGyB2aEQHXdr6/FsTaIGUJAOyxCOn5rZ2YOqynf5VajAB7F10jhIYR7TezNIPc/OokSyRAwscV8IuM3A0oVyFVSZr6qFGjzPsi/0Xuewjtiu1eFPRY8+zaoemFhclOTxvsMMHr+a2dmjqsFSmLEQvuP6OEhlHtN7M0g9T8CsBRlkiAhI/r0LoAK01T93g8gq+PRm/BN7Xfw45FQW9Jezt3aHphwe2itA0smOCN+K1ZTh02K+5L7jV2jkMjhIbR7TfLgik1v9q96dQCCR8XosedJje5er1ey4rNqfkediwKeic+u3ZoRvQJC5OdkjawYJUC9P3Wdla2VoIdcV81NTUA7B+Her+PGe03Q4TKza9Os0SS8GEQu0/hFppc+V1zZWUciorYypThsaK+j9GTih07NCe8vxFtsMsaYMYYYe3k9XCsPlrC5/NhzZo1ANgYh3owuv1Gi1Ah0X3wYC4AD/LyDgJg2xIphmLhc/LkScVvmpqaqqkxsQxrp3CHW1vCd82vvMKZluWVlJSkyC0h5w4w64aLnlTE2jpq1CikpaUJvodVv6/ZkxELk51cG+ywBphl/bBjTtAq4Mx2LYa3iYVxqAej22+0CE1PT8eoUaNCQnPfvg6CFlQWLZFSKBY+aWlpsvEdHMfB4/GgoaFBd8PcgtIfPScnhwnBE030rjkQ8Bh2GCkPP8GuWtUUTz99NwIBD+LiODzwwM8YMeIEEhMTQ6nfUgdcSmHEzRc+WUi5UPhJQgyrsonMtoDZVUFbqevHDmsACwdrGoEaAReOHa5Fpy26APvuy3D4TZycBXXcuIGNalCxspGPRrHw2bx5s5ntcC2sm6nlENo1G3kYaXgq/uLF08FxfBq9B3Pn5sDvXwOvVzwV347+1RtUa+aipzfg2qj39/v9oeuNHttyvzmf8cOCNYCFwGotaBFwdrkWxfq4tLSUaUuZFfOWkeNPTw0q1lAsfPr27WtmO1yN2TefmVYPIw8jFYJ/vdxNJfU5/HEX/DWVlXGoqEhAQcE55OQEUFdXB5/PZ9jvwHJQrdkTavj719TUiFq3+KNHAHMsXFLvx8pumpXAaiNQsoBqdS3qiYmS6mPeSmwlLBT45DF6/Dk9nioczcHNNTU1WL58OXbtCh65cPHFF2P8+PG2DLZYx4jFTmwRsGrXrOemCp9spG52oyYbVoNqecyeUNW+v9VuHRasrHaPASNRuoBquYf1CAUW+5gVV6cZfcOCBdUoNAmfr7/+GoMGDULTpk1x+eWXAwAWLVqERx99FBs3bkT38NMkCUvQO4lHLxbhBcKsiOUwoiy93M1u1GQT3VYg8kR1u1Ns7YIlt47drmOrxoDZ56apWUC13MN6hIIT7jO77gkj+0apBZV3bwu93u77MRpNwufuu+/Gtddei7/+9a9ISAi+xblz5zBx4kRMnz4d//znPw1tJGENUoPTzGwpHr0Cy8qJkD9RfdOmxiequ8kkrBRW3Dp2H6DKY8UYsMKtouSessu1yPp9JnVPhJ8ob8aYNLJvpCyo4e7ucPd2NKwdGKzZ4hMuegAgISEBs2bNwmWXXWZY44jYQ4/AsnIi5E9UF9sJS+18wyc9HhZ3RUphxeXAUnyFFW4BK85NU3JPGelaVFPOQq6P7cyIkrsnos+RM2pMqukbNZsEvW1jLYtRk/BJTU3FgQMHcNFFF0U8fvDgQaSkpBjSMIJQi9LFRioQGlBWQVduJyy18xU7PJO1XZFSWHE5sBBfYZf1wyyLm9J7yohxq/Q7RAutBx44hv37E5Cffw45OT0A9LB9I6H2njBqTCrtGwDMbBLsQJPwKS0txYQJE/DEE0+gV69eAIAvvvgCM2fOxI033mhoAwFg//79ePjhh/Hxxx/j8OHDyMnJwejRozFnzpyICWTHjh2YOnUqvvrqK7Ru3Rp33HEHZs2aZXh7CG0cOgTs2QN07Ajk5przGXLuMj2B0OHFvJTshMVTve0/0dxIWHU52BFfwWJ5BS1uFasFnFqrYfh3yM4GiooMaYZhqL0n/H6/YangSvqmqqpK0XtVVlY2ek8pWIrzk0KT8HniiSfg8Xhw66234ty5cwCAxMRE3H777Xj88ccNbSAA/PjjjwgEAnjhhRfQoUMH7Ny5E5MmTcLp06fxxBNPAAhWlr766qtRUlKC559/Ht9//z3Gjx+PtLQ0TJ482fA2uR2jUuTDixPOmuUNFSdcsMCPm276FbW1tYa2B5B2l+kNhOaLecnthPlK3AAbJ0mbCYvZHnb2s9U7ZDnrgha3itUCjhWroVGI3RMAUFGR30gYrF69mknrCj92lLTNSXObJuGTlJSEp59+GvPmzcO+ffsAAIWFhWjWrJmhjeMZPHgwBg8eHPq7ffv22L17N5577rmQ8HnttddQV1eHl156CUlJSbj44ouxfft2LFq0iISPBoyY+KSKE86cmYqff34JXu8pjB49WnLsmGG2NmKildoJCxXzYiUWxihYqZcTjZZ+ZiUoWgtqrQtqjiuwClathmqRuif27evw33lQWBjYafGVs9TItc1pc5uuQ0qbNWuGLl26GNUWVfj9frRq1Sr0d3l5Ofr06RMx8AYNGoT58+fjxIkTaNmypeD7nD17FmfPng39reZMMrcg5oIyKqBNTmQ0a9ZMl5lXjXWKb5NRE62aYGy37WpZqJcjhNp+ZikoWgtqrQss4YRAZTWIlQVhWRgYYalx2tymSficOXMGS5cuxebNm3H06FEEAoGI57/55htDGifG3r17sXTp0pC1BwAOHz6MgoKCiOvatGkTek5M+MybNw9z5841r7GMs3w5MHkyEAgAcXEw5QBSs3dzahZg3ret1T2jxwXoll1tOCwKAb0WECfGYKm1LrCC2kBlJ1jmhD6fVWEgJMjefXcoMjMPIzdXWRwQIH/PRWey2v07aRI+EyZMwMaNG3Hdddfh8ssvlz28VIz77rsP8+fPl7xm165dEdljP//8MwYPHozrr78ekyZN0vS54cyePRszZswI/X3y5Enk5eXpfl89WBEE7PP5sH//OUyenIlAgHdBwfADSAFrYkCUtNXn84VuQL8/BS1bnsCECS+ivj5Jcd0gPVYOFmNh3IiefparvWL3hB2O2LlpZloXzBAeSgOVnWyZExIGAIfKyhwUFPxkW7uEBBkQh+XLJyoSy0otdkKZrHb+TpqEz4YNG/D3v/8dvXv31vXh99xzD8aOHSt5Tfv27UP/X1lZiauuugq9evXCsmXLIq7LysrCkSNHIh7j/87KyhJ9/+TkZCQnJ6tsufHIBQEbOeHyE0hFRT4CgTERzxl5AGk4dp3kzSOXzaVm8tHTJ3b3g5vRG3OktPYKKwurmFvFLOuC3cKDhXIFagkXBiUlm1BWNhAAbyjwYNOmEnTuvNO2eUBYkCkXy0IWu+++O42dO9+W/U52/k6ahM8FF1xgSL2e1q1bo3Xr1oqu/fnnn3HVVVehqKgIK1asQFxc5A9VXFyMOXPmoL6+HomJiQCAsrIyXHjhhaJuLlaQCwL+8ssy5OUdxJw5YwyZUJTGuRg9MK2o/iyG0mwuMzD7xHQ3o7bImp6YIzHBcPBgLrzeXaHHWFpYhb6LWS5VJwoPuwkvgZGTU4XzoieIXe6uaEvNu+8OBaBNLEdb7HJyqnDw4PnXsJjirkn4PPnkk7j33nvx/PPPo127dka3qRE///wz+vXrh3bt2uGJJ57AsWPHQs/x1pybbroJc+fOxYQJE3Dvvfdi586dePrpp/HUU0+Z3j69yAUBr117PTyeAC644CTuuce4z41F14vS3bCRIoTVIGDW0WJh0NOHYrvfdeuuQ10dmzEyQlh1X9u9oNn9+UrhS2DoPYjZyPmDn5OCdXrWIzPzMJYvn2i4WGY1xV2T8Lnssstw5swZtG/fHs2aNQtZWHiOHzc2WLOsrAx79+7F3r17kRsV9MJxHADA6/Vi48aNmDp1KoqKipCRkYEHHnjAUansYhMvEFycZ83yol+/I4bG38Sa60Vu8hkxYgRycnIMFyEkatRjddCx2O6XpQwcKawsL2D3gmb356tBb+aaWS7G8Gtzc6sMz6pjOZNNk/C58cYb8fPPP+Oxxx5DmzZtNAc3K2Xs2LGysUAA0LVrV3z22WemtsVMom+MaAIBc+JvzHJBGVUE0UjkJp+MjAwSKQxi1ULXvfu3SEo6i7Vrr494nIUMHDmssizavaDZ/flq0XvEhpkuRjOP/2A1kw3QKHy2bNmC8vJydOvWzej2xDz8Tu3gwVysXXsdwneeZsbfmAGrLp5Ys3I5HbmFrqamxtA6UHl5Bx1bdsCKe8nuBc3uz9cCa0dsiLnOcnICyMmpM2ReZrl8hybhc9FFF+HXX381ui3EfwlaYHahrs758TesWk/sDLQm1CG30K1Zs0aXBTQ83mH9+vUxGfumBrsXNLs/3270xjZZlZ3H8n2kSfg8/vjjuOeee/Doo4+iS5cujWJ8UlNTDWlcrEOWCYJQttDptYCmp6dHvAfde+LYtaC5rcqzFoxw+ZqdncfqUTbhaBI+/LlZAwYMiHic4zh4PB40NDTobxkBQJtlItyMWVkZh4qKBBQUnENOTrDCthkHg7IOi/FGhDKEYt84Dti3r4OhcT5UdkAaMxY0PeUKjIxHcQJaY5ui+zi6irLRsBriEI4m4bN582aj2xHTGDmRyhXq4xcKOw4GtRMn3IyxiNTCFz5BFxbuxX8TOP+L8QGtRo8RJxyvoAYz+kdPuQIWYmWsREtsk5I+NqMsAOvjWpPw6du3r6Lr/vCHP+DPf/4zMjIytHxMzBA+ofDVV7WitFCf3oNBnQjrN2OsoXThA4KTvtYCa2qtCkZgd5VjszCyrVQQUR1aYpvk+s7IbEknCX1dp7PL8eqrr+KPf/wjCR8FqB0QcucGOTHzgYgtlNbpAbQHtNolQNxw8KnVOKUgodUYGdsU3scADCsL4DShb6rw4SJt04QCpM4RCp8U5M4NivXMB8JZyO08tQbUsiBAnFRszy6s7iMnWSeMim2K7uPi4nLDNsdOs96ZKnwIcaRuvFGjRqGmpgYbN24EID0piL0Hy6mEBBGO0qBNvZlWdggQpxXbswOr+8hp1glAf2yTUB+XlxcDCECsVpybIeFjA2piG/RMCpSSSzgBNW5ZrZlWdgkQcjnLY3UfsW6dMMMaJdbHvXp9gfLyYsPLArDutiThYwNqYhv0TgpUqM8+rDCnO8lkL4acW7a0tBRer1f09Uq+o10ChFzO8lAfnccsa5RYH/fsuRU9e27F8eOtcPPNPdG5s/6yAE5w7ZLwsRm5QUKTgjOxwpzuRJO9EHJuWa/XqzsD0a77iCWXM6si2e4+Ysk6YZY1Sv4eO4XOnQfpvs/kLKtiNYSsHnuqhc+5c+fw2GOPYfz48Y1OSo9m9OjRVMVZAiXmd7WTAhXqY2OCtyKoloXAXaMw2y1r5+LKgsuZRZHMQoVf1q0TekWZUB8fPJgLwIO8vIMGtjSInGVVqlSLlWNPtfBJSEjAwoULceutt8pe+9xzz2lqVKyg1PyuZuKM9UJ90RO82MRh5U1mxeRqxWcYLSitrpRspQCx4rup+T1YFMl2z1WsB54bcU+np6dj1KhRWLNmDYBgtXMz5wklllUWxp4mV1f//v3x6aefIj8/3+DmuJfwSYo396kxv6uJ1XGrqFFC+M2jJRvOaKyYXK34DDMsBlYsfHYdQxH93fx+P+rr6yOuSUhIQF1dHaqqqlR/Tz2/B0tWDjvnKpYDz428p9PS0gx/z2iU1hpiZexpEj5DhgzBfffdh++//x5FRUVo3rx5xPPXXnutIY1zC2KTlBHmdze7rPTAym7OisnVis8wy2Jg9sJnp1WBf0+fz4fVq1fLXq9GNGr9PVi5L1iA5fhJuXta6rwtsfFs5jwhVWsoKakA69d/y9TY0yR8/vCHPwAAFi1a1Og5OqS0MVKTrpT5fdSoUSG1LoSbXVZ6YWU3Z8XkavUEzsquTSl23yNmu5nU/B6s3Bd24oRT3uXuabljjYREtNnzhFitoaqq4OHYLI09TcInEAgY3Y6YRsz8npmZafuk7VRY2c1ZEVRrZeAuS7s2J2K0aFT7e7ByX9iJE05513tPh4toVoQeS2NPk/D529/+htLSUiQnJ0c8XldXhzfeeENR4DPRmBEjRoTONbP7xnM6dqfIhmNFUK1RnyEWMMub1lnatTkNM0Sj2t+DpfvCTlg95V1pphuPkqwvVoQeS2NPk/AZN24cBg8ejMzMzIjHT506hXHjxpHw0UhGRobjT0xnIZWcx840YiuCao3+DCUBsyzt2pyGGaJRy+/BQno9IYxcTFp1dXXIzaXGesiK0GNl7GkSPhzHwePxNHr80KFDkhVWiSAsFcwyEhZrhdhVudqKoFqjP0NJLApLuzanYYZoVPp7qBXJLG1gYg0l/WqVy9mIcWBXZqUUqoTPpZdeCo/HA4/HgwEDBiAh4fzLGxoaUFFRgcGDBxveSDfhtMBQNbBwBg5LBRytWBjM+gypccrKrs1pmCUalfweakQyixsYlrFDJOqxHiptr1HjwO56TUKoEj7Dhw8HAGzfvh2DBg1CixYtQs8lJSUhPz8fI0eONLSBbiLWAkPtsGyxeJM5DaUVxe3etTkRo0Sjll202anysYhdIlGr9VBNe40cB6zNt6qEz4MPPggAyM/PR2lpKZo0aWJKo9wGP/nIqXQ3LRp2WrZYu8mchtw4DQ/CD4cEpTBmmPqtEvhutlAbgV0iUav1UGk7KisrI/522zjQFOMzZswYAMFOPHr0aKP09rZt2+pvmYvgJ6n9+8/hlVc4BALn46Pi4znccccQ5OcnuGbRiDXLltuQ2026IQjfSswSKWbPF3Qfq8MKcWD0+WZiQi28TpAbx4Em4bNnzx6MHz8eW7ZsiXicD3qmAoaNSU9PR3o6sGwZMGUK0NAAxMcDL7zgQVFRG7ubZyiU8uxsKIDZeJy4qaH7WDlWiQMjRbRSoebGcaBJ+IwdOxYJCQnYsGEDsrOzBTO8CGEmTAAGDQL27gU6dABkDrh3JG5KeY7V7BYKYCbcdB+bjZXiwIj5RkyoZWYeRn19coQFyI3jQJPw2b59O7Zt24aLLrrI6PbEBLm57hQ8PE61GESLHL/fb/gZSyzDWtqpkaIzVgWsHpx6H9uB08SBmFB78cWJACItQG4cB5qET6dOnSQPSSNiE6P9z1aiNNtBCDWBiywvwCxlxBmZLUPp2dqJRcuflnvUaeJASKgBHABhV53bxoEm4TN//nzMmjULjz32GLp06YLExMSI51NTUw1pHOEsWFo41aJEvOhNz3fCAszKb2NktgylZ6uDNcuflei5R50kDoSEmpyrzk3jQJPwKSkpAQD0798/Ir6HgpsJVhZOozEiY4OFAo9OxMhsGbel5ZqBkzcwelErkp0mEsWs8omJdVi+fKKoq85tJSw0CZ/Nmzcb3Q6CYIrwCQ+AKRkbbj26xEiMzJZxY1quWThxMTMaJSLZaSIxur3hZ39JuercVsJCk/Dp27cvPvvsM7zwwgvYt28f1q5diwsuuACvvPIKCgoKjG4jQVhK9IRXXFxueMYGWR6UIZctEx5rKLfAuDEtlzAHNSKZFVGjlPD2aonLZDlOUSmahM+6detwyy234Oabb8a3336Ls2fPAghmwTz22GP4+9//bmgjCcIqhCa8LVuKDc3YIMuDcuSyZcILrQHS8VF2Zt64YbHQihO/u1EimfXvrtZiFR0DJWa1Zj1RQJPweeSRR/D888/j1ltvxRtvvBF6vHfv3njkkUcMaxxBWI3QhAfEobj4C5SXFxuSsUGWB+WIZcsAQEVFvqoAZbsyb9yyWGjBCQH9Qhghkvft24dXX31V9jq7v7uazw6/v6Ss1qzHKWoSPrt370afPn0aPe71elFTU6O3TYRLYX33A4hPeD17bkXPnlsNSc93Ws0Pu4k2we/b1wGLF0/X5CbUm3mjZQy7ZbHQglMz6vSKZJ/P10j0OOW7K8HpVmtNwicrKwt79+5Ffn5+xOOff/452rdvb0S7CJfB+s6PFy9yE96kSUOQlpYW8Tq17XVazQ87EMuW0TLhGpV5o3cMW7lYsLjJ0BvXZvV30iOSo9v5xRfF2LSpxDUxfU63WmsSPpMmTcJdd92Fl156CR6PB5WVlSgvL8cf//hH3H///Ua3kXABrKdyR/u6H3jgGPbvT0B+/jnk5PQA0EP3xOrkAo9WI5Z9omXCNSrzRq/1wqrFgkXXml7RZ9XGyYz09C++KEZZ2UAAwdIvWgUvS2LW6VZrTcLnvvvuQyAQwIABA1BbW4s+ffogOTkZf/zjH3HHHXcY3UaCsITwSSM7GygqMv79nZT6ajdC/aB1wjW6T7VYL6xaLFh0rekVfVa5zIy+R/3+FJSVlYAXPTxqBS9rYtbpVmtNwsfj8WDOnDmYOXMm9u7di19++QWdOnVCixYtjG4fQbgKEjX6YGHC1Wq9sLrtLMVhGCn6zC4FYeQ9evx4OvhjIMJR+91ZFLNOqlQdjSbhw5OUlIROnToZ1RaCIAhZpCZcoTMEjbai6bFeWLlYsBSHYZToM1LMWeE6EjsTq6Rkk6bfgCUxC4i7AllHl/AhCIKwAqWxF9F1fXiMdAHotV5YtViwFodhhOgzsr6OkpihUaNGhZIZjEhkAAIYOHATevcuV/U+PHaLWaWxTazHKZLwcRgsBbjpgY5rINQgFnsRXnIfsCZlWK31wq7Fwm63oM/ng9/vb9QmPcHCRok5uZgh/u+//vUD3TE0coJPze9ut5h1S5wiCR8HwXpKuFLouAb3YKUQl3sfK8eVGuuFnYuFXXEYaiwqmZmZir+7GWIuetx07boDO3Z01RVDo9RCOXr0aFW/u91iFnBHnCIJHwfBekq4FPxEIOejZt1ESpyHJSFuReyDnlRnOxcLO+IwlGZhpaWlGW5BUYPQuPnuu27Qm3pupth1clAxK5DwISyBnwg2bwaeeqqxj7p37zHo188duwkjcIJLkyUhbkXsg1PM/KzFYRhhiTOjvg4gdkSNvtRzHjPHgVODilmBhA9hGenp6bjiCiAuDggEzj8eHw/07JkO0jxBWLKkqMHOuC2rYh9Y6m8xWBJoWi1xQsJ/1KhROHfuHAAgMTERXq834nkt30ks6ypc/LBQmI81Met0SPgQlpKbCyxbBkyZAjQ0BEXPCy8EH2cNu6wuLFlSlGJ33BYLsQ8swYpA02KJs7JYn9C4EYrxsXscsSRm3QAJH8JyJkwABg0C9u4FOnRgV/Q40epiB6zUFqHYB/bQYomzulif0Ljp3/9j5sZRrM8zRkLCx4VEF3FjcSeQm8um4OFxotXFLuysLWJW7AdhDHoscWYKarlxQzE0woRbwSsr41BRkYCCgnPIyQnGLrC41ghBwseFCBVxI8uEc2G95pGdtUXIBWA/Qouh11sTel6rJc5MQR09bvx+P1avXi37ulgW0OFWcClLnBPWGhI+DkLPTUeWCWdid+yMEuyOr2F9knUz4othSwwbdmlorGqxxJktqCMPJc4mAS3DeZEobYlzwlpDwsdBCO1uoyvXEu6BldgZMcIXLaldfSzvkt2O0sVwxIgRyMjIiHitnJCwWlDHsqhRg93HZhgBCR+HQTenPdjhbmJ9giE3E8EjN1YzMjKQnZ2t+n0pYJ097D42wwhI+BCEDFa7m3gLidwEw4IlhUQNAehfDMPjhKKTMyjQmC3sdm0bAQkfgpDADndTuCXlggtO4t57vWho8CA+nsP8+Sdx0003kiWFYAo9i6Fw3Z58WeuqUuHvhCroTsPpljgSPgQhAD+pypnwzbK68BPxPfcApaV8zSMPcnPTAKSZ8pkEoQeti6HSuj3hcUJKxYqVxRDV4Ia0cCdb4kj4EIQAvNVl//5zeOUVDoHA+RL28fEc7rhjCPLzEyyZnFiveRRLkPVAGj2LoZx1VUuckNXFEJXgprRwp0LCx+HQGS7mkZ4ePD+s8REbHhQVtbG7eYTFUDVvczEzmJ+lDEmnpoW7aa0h4eNgDh0C9uxJx4gRdyIj44zodeG7UNqxqscJR2wQ5hN934i5TVhbsMzEyMXQzGwhFjMkWWyTFG7K4iTh41CWLwcmTw6ech4X1xLLlgUXaCmcumNlQayRu4kIxwmFJa3AyMXQzGwhFlOwWWyTHCytC3og4eNADh06L3qA4H+nTAlaJaQWZyeeP+VUsUa4F5bcJixg5H1nVrYQiynYLLYpViDh40D27DkvengaGoKuGLdZJZwo1gh34zQXhdMwK1uIxRRsFtsUC8TJX8IWZ8+exSWXXAKPx4Pt27dHPLdjxw5ceeWVaNKkCfLy8rBgwQJ7GmkyHTsCcVG/XHx8MP6EIAhz4V0U4YS7KKqrq1FVVYWqqir4fD47mugorAya9XpPoaDgJ6YEBottcjuOs/jMmjULOTk5+O677yIeP3nyJK6++mqUlJTg+eefx/fff4/x48cjLS0NkydPtqm15pCbK5Rp5D5rjxthIV6J0IeciyL67Dynu2HNHrNmBs26KROJMA5HCZ8PPvgAGzduxLp16/DBBx9EPPfaa6+hrq4OL730EpKSknDxxRdj+/btWLRokeuED0CZRk6E4pXcg5CLwo1ZXlYVADRrvLOYiURizH4cI3yOHDmCSZMm4e2330azZs0aPV9eXo4+ffpEDJZBgwZh/vz5OHHiBFq2bCn4vmfPnsXZs2dDf588edL4xpuEUKZRMMU96A4jMcQWFK/kbKIXovBYFLdmebFYAFAtrG0i1IoxN1R5Zg1HCB+O4zB27FjcdtttuOyyy7B///5G1xw+fBgFBQURj7Vp0yb0nJjwmTdvHubOnWt4m+0gMsUdilLc3QJ/sKGbJwFyk9lL9IJVXV2N9evXx0SWVyx8RytRep9SlWdzsFX43HfffZg/f77kNbt27cLGjRtx6tQpzJ492/A2zJ49GzNmzAj9ffLkSeTl5Rn+OWajJMXdzSbW8LgKN04C5CZjA6G+dUuWl5BlweutAeCe7+g0nFrlmXVsFT733HMPxo4dK3lN+/bt8fHHH6O8vBzJyckRz1122WW4+eab8fLLLyMrKwtHjhyJeJ7/OysrS/T9k5OTG72vE1GS4s6iv1sOLSLMjZMAucnYxYmF6KIRtyy0xLBhl6KwcK/jvyNLqHVfkfA0FluFT+vWrdG6dWvZ65YsWYJHHnkk9HdlZSUGDRqE1atXo2fPngCA4uJizJkzB/X19UhMTAQAlJWV4cILLxR1c7kJPsU9XPwIpbizJGqUEC7WqqursWJFmWBwpVvhJ0jelUewhxsK0clZFqZPX+z478gKatxXPG4Q1yzhiBiftm3bRvzdokULAEBhYSFy/2vOuOmmmzB37lxMmDAB9957L3bu3Imnn34aTz31lOXttQM3p7jzYm3VqqZYvHi6awJIxTJkeJS6twj7MaIQHQsxXFKWBSq2Zwxa3FduENcs4QjhowSv14uNGzdi6tSpKCoqQkZGBh544AFXprKL4eYU90OHgFmzvOA4DwDnB1cqyQKSWgTlRBNhPlJZXlLXCWFV2rgccpYFs6oqxyJq3VckPI3DkcInPz8fHMc1erxr16747LPPbGgRO7j1MM1gDJMn4jGn+bj5BVBupye3UNqROs2CNYI1jIyZYyVtXKtlwYkJEXajxX1FwtMYHCl8iNgjGMPERYgfp/m4+YVy82bgqaca7/R69x6Dfv2k47DsSCumjDJxjP6+LKSNS1kWRowYgYyMjIjrY1H0GgG5r+yDhA/hCHJzgQUL/Jg5M9XRk0R6ejquuEI4EL1nz3TIrR92ZHdQRpl1sJK9I2ZZyMjIQHZ2tmXtcDty7is3lyCxExI+MYzTqjyPHduAn39eLOvjZn0S0BqI7ven4PTpZpLmcda/OyFNLGXvUEXiIFLuKyeWIHECJHxiFCdWeU5PT8ecOWNcMVmqDUQPj/sAAqHF0eMJ4MEHKzF58o2WfXcKrDYPu9wftbW1iq4zSlhTRWLlxPr3NwMSPjGIkirPrMJPAk4UbtEoDUSPjvsA4sBxAVx33Rrk5R3C5Mk3yrofjApOduuZVCxhdfaOz+fDq6++GvpbTNiOHj3asEU4lisSk/vKfkj4xCBKqjyzjJOFmxr4iU8o7gOIQ/PmtYqywIwKTmYh8DZWsDJ7R2lGmdDh0HphJabJSnj31f795xpZrHmcYrl2KiR8YhClVZ5ZxenCTSnhE+Qrr0RmtMXHc7jjjiHIz0+QnSCNCk6OxUXKKliwAigRtkbH5cRSTBNwvv9WrWqKWbNaIRDwIC6Ow4IFftx0068keCyChE8MYnaVZ7NrvjhduKkhPT2Y6dX49/KgqKiNoZ9VXV0t+dvE2iJlJSwEscoJW7/fj9WrVwMwLi4nllK6ecur35/y3wr0wY1MIODBzJmp+Pnnl+D1nqK4Jgsg4ROjmFXl2YqaL24+nkMMI38vsRgO/oT76N+GtzLILVIUk6APuxc7OWFbX18PIDh+3n13KABj4nJipSIx3y9yAtONcU2sQcInhjGjyrNVNV/cfDyHGEb8XlqOyoi2RjzwwDHs35+A/PxzyMnpAaAHmehdgJyw/eWXXwAAW7f2BC96ePS6PGOpIjFZTu2HhA/hWNx6PIdZCMVwvPvuUGRmHkZubpXka8NFTXY2UFRkalMJm5CyvmzcuBF+fwrKy4sFXkkLt1Jiyb3HKiR8CCJGEMsOW758IqWlEyGkrC/CYwjo1atc1cLNQjC3ncSKe49VSPgQRIwgZGIHKC091lEjLsTcND17blX1mSwEc9tNLLn3WIOED0G4nOjg5PDAVB5KS49dlIiQmpoarFmzxlA3jZtFDcE2JHwIwuXwC1tlZSWA9cjMPIzlyydScCURQo0IITcN4XRI+BBEDJCenh7a0efmVlFwJSGKUJFCr7cm4hopN41b43L0EutxTSxBwocwFLq52SW8z6V27fTbxC7ih4e2xLBhl8oGwI8aNYpcWCJQXBM7kPAhDIVubnah34aQQ+nhoWKkpaVZ0UzHQvcWG5DwIQwn/OY+dCh4tlbHjlRzhwVo4iWUoPVcNrIWEk6AhA9hGsuXnz9FPS4ueMzEhAl2t4ogCDnkqgsPHDgQBQUFEa8hayHhFBpXoiIIAzh06LzoAYL/nTIl+DihDZ/Ph6qqKtF/Pp/P7iYSLoFPW/d4zp8EzHHAvn3Bk4DLysqQlJSE7Ozs0D8SPYRTIIsPYQp79kSeng4EDxTdu5dcXlqw4vBXgginsHAvOC78EX2HkRLOxk1hC2TxIUyhY8egeyuc+PjggaKEeqIXGb8/BRUV+fD7UySvIwitHD+eDrFCl0RswFuZn3yyBu3acejfH2jXjsOTT9Y42spMFh/CFHJzgzE9U6YELT3x8cALLzh/p2Am4fVToqmurg79v5IT1glCL3SKeGzDW5n9/hQsXjwdHOcBAAQCHsycmYqff34JXu8pR1qZSfgQpjFhAjBoUNC91aEDiR4plLqytKYZE4QSwrOy6BTx2IbfhMll+DnRykzChzCV3Fz3Cx4pSw2gLNtFyJV1/Hg6WrXyRSw0WtOMiSBCVYkLCs4hJycYkBbrmUnp6ekoLS3F6tWrAdDxFIQ7LX8kfAhCB9GWGjHBosYcLOXKcuMkZBXiVYkj+9iJpnsj8Xq9UX/TKeKxjBstfyR8CEIH4ZYaqcVUqTlYzpXlxknIKpRWJXai6Z4gzMRtlj8SPgRhAEbF3ihxZUlNQuFB0LHuthGD3IXS0Hl7hBBusvyR8CEIAzBqMVXqyoqehHgX24oVZZpdbLECuQuloTPdCLdDwocgDMCoxVTOlTVixAhkZGSguroa69evB2CMiy2WIHehPCRqCDdDwocgDMDIxVTKlZWRkYHs7OzQ35Terg23xSwQhNG42eVJwodgCieXRdezmEZPHmL+9OjrKF5FO26KWSAIo3Gzy5OED2E7fG2VVauaYtYsLwIBD+LiOCxY4MdNN/3qqJtL62KqdZKheBWCIMzCKfOuWkj4ELbi9LLoRpqDtXw/ildRjptN9+FQkUaCkIaED2ErTi+LzoI5mOJVlMHCb2U2VKSREMPJYQRGQ8KHYAInu2xYWEAoXkUZLPxWZkJFGolw3BRGYCQkfAgmiBWXjVG7rlhx2xDaoKB3wulhBGZCwodgBre7bJYvByZPBgIBIC4OWLYseIK9FmLBbUNox8kWVMIYnB5GYCYkfAimcKPLxufzYf/+c5g8OROBAL/rAqZM4XDJJUeRn5+gSaCQqCHEiBULKiEPieDGkPAhCBPhzc0VFfkIBMZEPNfQ4MHSpR+goOCnmDQ3E+ai5Ew3yvpyPySCG0PChyBMhDcjy+26YtHcTIhjVEq6mAV1/fr1lPUVQ7g9jEAtJHwciltSE2MlSJd2XYRSrEhJZy3ri2oPmY8bwwi0QsLHgRgZJGs3sRSkS7suQgl6UtKVbhBYyvqi2kPuwgmbchI+DuPQofOiB+CDZIFBg9gdZHK4cTLjb/7U1MjFhXZdhFK0iBO5jUR1dTXWr1/PVMAr1R5yPk6rF0TCx2Hs2XNe9PA0NAB79zpX+LiNSItcJoYOvTS0ayUIpWgVJ0pjf1hzvZplhYpVN5pVYQROrBdEwsdhdOwYdG+Fi5/4eKBDB/vaxDJWm10bW+Q8EbtWglCK2eKENderGVaoWHajWRVG4MR6QSR8HEZubjCmZ8qUoKUnPh544QWy9ghhRyyUkEWOKuYSWjFbnLDkejVD6MW6G81KMceS+1QOEj4OZMKEYEzP3r1BSw+JnsbYFQslZJFTcvM7PWuNMA+WxInZmCX0WArmdissuk/FIOHjUHJzSfBIYUcslM/nQ3x8HRYsaIp77/WiocGD+HgODz10GL///UAkJibC6/U2ep1bYwwI9nBC+QgzhJ6TrBFOhjX3qRgkfAhXYnUsVHgsAQDceWdK6OZvaDiF9euDj7sxloAwFjPFSSyVjwjHSdYIp+MECyUJH8KVWB0LFb2QiN38bo0lcAJOqC8CmC9OWBM1VlmhnGKNIMyHhA/hWigWinBafREeFttkFlZaoZxgjSDMh4QP4WooFip2cWJ9kViF+t+5OCFuLBoSPoTrCC9YJgSru3zCWJxYX4QwFicuyk7DiXFjJHwIVxEdZCwG7fJjB8roiV2cuCg7Eaf1HwkfwlUo3b3H6i7fKQG+RkIZPbGN0xZlwnxI+BBEjGBHJWtWoIwegiB44uQvIQhCDtZjCcQqWR86ZEtzbMHrPYWCgp9I9BBEjEMWH4IwAJZjCXw+H778EggEIj+7oQHYutWHpk3JHUAQROxAwocgDIJF8RCe0u3xTG8U4PvFFy9j505K6SYIInYgVxdBuBjeAsUH+Ho8QV9XdICvG4O9WXc/EgRhD2TxcRBUn4bQQ6wF+LLsfiQIwj4cJXzef/99/PnPf8aOHTvQpEkT9O3bF2+//Xbo+QMHDuD222/H5s2b0aJFC4wZMwbz5s1DQoKjvqYgVJ9GGbTLlybWSvbH8r1AEIQwjlEE69atw6RJk/DYY4+hf//+OHfuHHbu3Bl6vqGhAddccw2ysrKwZcsWVFVV4dZbb0ViYiIee+wxG1tuDFSfRhm0yycIgiCkcITwOXfuHO666y4sXLgQE8IKj3Tq1Cn0/xs3bsS///1vbNq0CW3atMEll1yChx9+GPfeey8eeuihmN3hxyIkapxHLBZWtAJyjxNEYxwhfL755hv8/PPPiIuLw6WXXorDhw/jkksuwcKFC9G5c2cAQHl5Obp06YI2bdqEXjdo0CDcfvvt+OGHH3DppZcKvvfZs2dx9uzZ0N8nT54098sQBAHAuSenOwVyjxOEMI7I6vq///s/AMBDDz2EP/3pT9iwYQNatmyJfv364fjx4Hk7hw8fjhA9AEJ/Hz58WPS9582bB6/XG/qXl5dn0rcgCIKHX5QXLnwdM2emIhCIPDl94cLX8cwzz8Dn89ncUudC7nGCEMZW4XPffffB4/FI/vvxxx8R+G+52Tlz5mDkyJEoKirCihUr4PF48Oabb+pqw+zZs+H3+0P/Dh48aMRXIxzKoUPA5s3uqWjMarC3kpPTw68j9OP3p6CiIh9+f4rdTTEcn8+Hqqoq0X8koIlwbHV13XPPPRg7dqzkNe3bt0dVVRWAyJie5ORktG/fHgcOHAAAZGVl4V//+lfEa48cORJ6Tozk5GQkJydraT7hMtx4lhXrwd50cro1fPPNpY0Oae3e/Vu7m2UI5NJjF1ZjzGwVPq1bt0br1q1lrysqKkJycjJ2796N3/3udwCA+vp67N+/H+3atQMAFBcX49FHH8XRo0eRmZkJACgrK0NqamqEYCIIIcTOsho0yPnBtixP9nRyuvn4/Smh/gWCFrX33huKwsK9ruhncumxCcuC1BHBzampqbjtttvw4IMPIi8vD+3atcPChQsBANdffz0A4Oqrr0anTp1wyy23YMGCBTh8+DD+9Kc/YerUqa6w6LDqsnALe/acFz08DQ3A3r3OFz6s4/TCiqzuanmk3IlO62vCObAsSB0hfABg4cKFSEhIwC233IJff/0VPXv2xMcff4yWLVsCAOLj47FhwwbcfvvtKC4uRvPmzTFmzBj8+c9/trnlxsC6y8LpdOwYdG+Fi5/4eKBDB/vaFEs4tbAiy7tanlhzJ/r9KTh+PB2tWvkcOaYI83GM8ElMTMQTTzyBJ554QvSadu3a4e9//7uFrbIWEjXmkZsbjOmZMiVo6YmPB154gaw9hDQs72p5Ysmd6OZYJqfDkiB1jPAhCLOZMCEY07N3b9DSY7TooSJ97oelyT3c7S3lTnSLe9ztsUxOhjVBSsKHIMLIzTVHlLgxY0wPboxZY21y593jx44dQ319veA1bjjHkIdimdiERUHqnlFPEBoxOzjVzRljWnFbzBqLkzvP6tWrZa9xQ6p3rMUyOQUWBSkJHyKmsSI4lTLGhOH7U0x41tXVoaqqSrEAsjO7isXJHXBGDJJeeKugXCyTk6yHboJFQUrCh4hpzF4YfD4fUlPPIS4uM3QsAwDEx3NISTkKny/B8TttPRglPO3OrrJ6cmc9hd5Koq2HDzxwDPv3JyA//xxycnoA6BFT/cEKLAtSEj4EYRLhi/HQoZHxH9dcswEbNgTjP9zgZtBK9OItFhwsJzzttmxYmTmlRuRFw1LwtZGE3z/Z2UBRkY2NIQCwLUhJ+BCESYQvslJZNU52MxiJkcHBVi3wdmROaRV5rAVfE+6HVUFKwocgLMKpRfqswMjgYCsXeKcEabMcfE0QVkPChyAI2zEqONiOBd5uUaMEVoOvCcIO4uQvIQiCMBc+ODgcLcHBUgu8W/H7U1BRkQ+/P0X0GqP6lyDcAFl8CIKwHaOCg1lMnZVCb3aWnFuP5cwaFqFsudiAhA8R07ixgrASWJzgjTil3UnnUulNwVfi1mM5s4Y17C6JQFgHCR8ipnFKcKqRRE/wYhlQVkzw0YJSLABcTng68VwqvSn4SuN2WM2sYQ27SyIQ1kHCh4h5zFrcWbUmhU/cUq4SKyZ4o4RnLAlYfrzIufVYEnkEwRIkfAjCJFhfjFlJcTbq+7tB1CghfFxdcMFJ3HuvFw0NHsTHc5g//yRuuulG14g8gjADEj4EYSIsLz6U4uxc+HF1zz1AaWnw3LcOHTzIzU0DkGZbu1iMHSOIaEj4EESM4rQMKEKY3Fw2Drul4GDCKVAdH4KIUfgMKL6+C8sZULGAkno8LEPBwYRTIIsPQcQwRqSQE/qhc7QIwjrI4kMQMY7XewoFBT+R6LEYPutKLMict/xQdpY1RPezmAWOfg/nQxYfgogxWE2zjzX47KzNm4GnnmocZN679xj068d2gLybCM+WW7WqKf78Zy8CAQ/i4jgsWODHTTf9SsHZLoGED0HEGKyn2ccS6enpuOIKIC4OCIQdpRUfD/TsmQ76CawlPT0dhw4Bs2ad/z0CAQ/uvTcNpaVp9Hu4BBI+BBGDkKhhh9xcYNkyYMoUoKEhKHpeeIGNTK1YZM+eSBEKBH+XvXvpN3ELJHwIgiBsZsIEYNAgvh4PLbB20rGjsAWuQwf72kQYCwU3EwRBMEBuLtCvn3NFj1tix3gLXHx88G+ywLkPD8dxnN2NYImTJ0/C6/XC7/cjNTXV7uYQBEE4hvDKzZWVcaioSEBBwTnk5ATNJ06KHTt0iCxwTkPp+k2uLoIgCMIQeFGzfDkweXLQXRQXF7SgTJhgc+NUwkpFbMJ4yNVFEARBGMahQ+dFDxD875QpwccJggVI+BAEQRCGIZUVRRAsQMKHIAiCMAw+KyocyooiWIKED0EQBGEYlBVFsA4FNxMEQRCGQnWJCJYh4UMQBEEYDmVFEaxCri6CIAiCIGIGEj4EQRAEQcQMJHwIgiAIgogZSPgQBEEQBBEzkPAhCIIgCCJmIOFDEARBEETMQMKHIAiCIIiYgYQPQRAEQRAxAwkfgiAIgiBiBhI+BEEQBEHEDCR8CIIgCIKIGeisrig4jgMAnDx50uaWEARBEAShFH7d5tdxMUj4RHHq1CkAQF5ens0tIQiCIAhCLadOnYLX6xV93sPJSaMYIxAIoLKyEikpKfB4PHY3x3JOnjyJvLw8HDx4EKmpqXY3x7FQPxoD9aN+qA+NgfrRGMzsR47jcOrUKeTk5CAuTjyShyw+UcTFxSE3N9fuZthOamoq3dwGQP1oDNSP+qE+NAbqR2Mwqx+lLD08FNxMEARBEETMQMKHIAiCIIiYgYQPEUFycjIefPBBJCcn290UR0P9aAzUj/qhPjQG6kdjYKEfKbiZIAiCIIiYgSw+BEEQBEHEDCR8CIIgCIKIGUj4EARBEAQRM5DwIQiCIAgiZiDhE6P885//xLBhw5CTkwOPx4O333474nmO4/DAAw8gOzsbTZs2RUlJCfbs2WNPYxlFrg/Hjh0Lj8cT8W/w4MH2NJZh5s2bhx49eiAlJQWZmZkYPnw4du/eHXHNmTNnMHXqVKSnp6NFixYYOXIkjhw5YlOL2URJP/br16/RmLzttttsajGbPPfcc+jatWuowF5xcTE++OCD0PM0FpUh1492jkUSPjHK6dOn0a1bN/zlL38RfH7BggVYsmQJnn/+eWzduhXNmzfHoEGDcObMGYtbyi5yfQgAgwcPRlVVVejf66+/bmELncGnn36KqVOn4ssvv0RZWRnq6+tx9dVX4/Tp06Fr7r77brz33nt488038emnn6KyshIjRoywsdXsoaQfAWDSpEkRY3LBggU2tZhNcnNz8fjjj2Pbtm34+uuv0b9/f/z+97/HDz/8AIDGolLk+hGwcSxyRMwDgHvrrbdCfwcCAS4rK4tbuHBh6LGamhouOTmZe/31121oIftE9yHHcdyYMWO43//+97a0x8kcPXqUA8B9+umnHMcFx15iYiL35ptvhq7ZtWsXB4ArLy+3q5nME92PHMdxffv25e666y77GuVQWrZsyb344os0FnXC9yPH2TsWyeJDNKKiogKHDx9GSUlJ6DGv14uePXuivLzcxpY5j08++QSZmZm48MILcfvtt8Pn89ndJObx+/0AgFatWgEAtm3bhvr6+ojxeNFFF6Ft27Y0HiWI7kee1157DRkZGejcuTNmz56N2tpaO5rnCBoaGvDGG2/g9OnTKC4uprGokeh+5LFrLNIhpUQjDh8+DABo06ZNxONt2rQJPUfIM3jwYIwYMQIFBQXYt28f/vd//xdDhgxBeXk54uPj7W4ekwQCAUyfPh29e/dG586dAQTHY1JSEtLS0iKupfEojlA/AsBNN92Edu3aIScnBzt27MC9996L3bt3Y/369Ta2lj2+//57FBcX48yZM2jRogXeeustdOrUCdu3b6exqAKxfgTsHYskfAjCJG644YbQ/3fp0gVdu3ZFYWEhPvnkEwwYMMDGlrHL1KlTsXPnTnz++ed2N8XRiPXj5MmTQ//fpUsXZGdnY8CAAdi3bx8KCwutbiazXHjhhdi+fTv8fj/Wrl2LMWPG4NNPP7W7WY5DrB87depk61gkVxfRiKysLABolKlw5MiR0HOEetq3b4+MjAzs3bvX7qYwybRp07BhwwZs3rwZubm5ocezsrJQV1eHmpqaiOtpPAoj1o9C9OzZEwBoTEaRlJSEDh06oKioCPPmzUO3bt3w9NNP01hUiVg/CmHlWCThQzSioKAAWVlZ+Oijj0KPnTx5Elu3bo3wzxLqOHToEHw+H7Kzs+1uClNwHIdp06bhrbfewscff4yCgoKI54uKipCYmBgxHnfv3o0DBw7QeAxDrh+F2L59OwDQmJQhEAjg7NmzNBZ1wvejEFaORXJ1xSi//PJLhLKuqKjA9u3b0apVK7Rt2xbTp0/HI488go4dO6KgoAD3338/cnJyMHz4cPsazRhSfdiqVSvMnTsXI0eORFZWFvbt24dZs2ahQ4cOGDRokI2tZo+pU6di1apVeOedd5CSkhKKlfB6vWjatCm8Xi8mTJiAGTNmoFWrVkhNTcUdd9yB4uJiXHHFFTa3nh3k+nHfvn1YtWoV/t//+39IT0/Hjh07cPfdd6NPnz7o2rWrza1nh9mzZ2PIkCFo27YtTp06hVWrVuGTTz7BP/7xDxqLKpDqR9vHoi25ZITtbN68mQPQ6N+YMWM4jgumtN9///1cmzZtuOTkZG7AgAHc7t277W00Y0j1YW1tLXf11VdzrVu35hITE7l27dpxkyZN4g4fPmx3s5lDqA8BcCtWrAhd8+uvv3J/+MMfuJYtW3LNmjXj/ud//oerqqqyr9EMItePBw4c4Pr06cO1atWKS05O5jp06MDNnDmT8/v99jacMcaPH8+1a9eOS0pK4lq3bs0NGDCA27hxY+h5GovKkOpHu8eih+M4znx5RRAEQRAEYT8U40MQBEEQRMxAwocgCIIgiJiBhA9BEARBEDEDCR+CIAiCIGIGEj4EQRAEQcQMJHwIgiAIgogZSPgQBEEQBBEzkPAhCIIgCCJmIOFDEARBEETMQMKHIAjHUFdXZ3cTGsFimwiCEIeED0EQttGvXz9MmzYN06ZNg9frRUZGBu6//37wJ+nk5+fj4Ycfxq233orU1FRMnjwZAPD555/jyiuvRNOmTZGXl4c777wTp0+fDr3vs88+i44dO6JJkyZo06YNrrvuutBza9euRZcuXdC0aVOkp6ejpKQk9Np+/fph+vTpEW0cPnw4xo4dG/pba5sIgmADEj4EQdjKyy+/jISEBPzrX//C008/jUWLFuHFF18MPf/EE0+gW7du+Pbbb3H//fdj3759GDx4MEaOHIkdO3Zg9erV+PzzzzFt2jQAwNdff40777wTf/7zn7F79258+OGH6NOnDwCgqqoKN954I8aPH49du3bhk08+wYgRI6D2yEK1bSIIgh3okFKCIGyjX79+OHr0KH744Qd4PB4AwH333Yd3330X//73v5Gfn49LL70Ub731Vug1EydORHx8PF544YXQY59//jn69u2L06dP4+9//zvGjRuHQ4cOISUlJeLzvvnmGxQVFWH//v1o166dYHsuueQSLF68OPTY8OHDkZaWhpUrVwKApjY1adJEVz8RBGEcZPEhCMJWrrjiipDoAYDi4mLs2bMHDQ0NAIDLLrss4vrvvvsOK1euRIsWLUL/Bg0ahEAggIqKCgwcOBDt2rVD+/btccstt+C1115DbW0tAKBbt24YMGAAunTpguuvvx5//etfceLECdVtVtsmgiDYgYQPQRBM07x584i/f/nlF0yZMgXbt28P/fvuu++wZ88eFBYWIiUlBd988w1ef/11ZGdn44EHHkC3bt1QU1OD+Ph4lJWV4YMPPkCnTp2wdOlSXHjhhSFxEhcX18jtVV9fr7tNBEGwAwkfgiBsZevWrRF/f/nll+jYsSPi4+MFr+/evTv+/e9/o0OHDo3+JSUlAQASEhJQUlKCBQsWYMeOHdi/fz8+/vhjAIDH40Hv3r0xd+5cfPvtt0hKSgq5rVq3bo2qqqrQZzU0NGDnzp2y30FJmwiCYAMSPgRB2MqBAwcwY8YM7N69G6+//jqWLl2Ku+66S/T6e++9F1u2bMG0adOwfft27NmzB++8804okHjDhg1YsmQJtm/fjp9++gl/+9vfEAgEcOGFF2Lr1q147LHH8PXXX+PAgQNYv349jh07ht/+9rcAgP79++P999/H+++/jx9//BG33347ampqZL+DXJsIgmCHBLsbQBBEbHPrrbfi119/xeWXX474+HjcddddoRRxIbp27YpPP/0Uc+bMwZVXXgmO41BYWIjS0lIAQFpaGtavX4+HHnoIZ86cQceOHfH666/j4osvxq5du/DPf/4TixcvxsmTJ9GuXTs8+eSTGDJkCABg/Pjx+O6773DrrbciISEBd999N6666irZ7yDXJoIg2IGyugiCsA2hLCqCIAgzIVcXQRAEQRAxAwkfgiAIgiBiBnJ1EQRBEAQRM5DFhyAIgiCImIGED0EQBEEQMQMJH4IgCIIgYgYSPgRBEARBxAwkfAiCIAiCiBlI+BAEQRAEETOQ8CEIgiAIImYg4UMQBEEQRMxAwocgCIIgiJjh/wN9s77nJ4/qUAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOBElEQVR4nO3deVxU9f4/8NewCgiDggsICqJXU9MUi9DSLNx+pbevmrRYapTWlYr2ut4Wb4vtWXZvq2lli1y1rlmWUNY1JW5pZqaZclExcAFlRDFZ5vz+mM7hnDNnm2FY5/V8PHwkM2fOfM7JOm8/n/fn/bYJgiCAiIiIyA8EtPQAiIiIiJoLAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AYDHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIiIj8BgMfIqJWaNmyZbDZbNi3b19LD4WoXWHgQ+SnvvvuO2RnZ2PgwIGIiIhAz549MX36dPz6669ux1500UWw2Wyw2WwICAhAVFQU+vXrh2uvvRZ5eXkefe/HH3+M0aNHo2vXrggPD0fv3r0xffp0fPbZZ766NDePP/44PvroI7fXN2/ejIcffhiVlZVN9t1qDz/8sHQvbTYbwsPDMWDAAPztb3/DiRMnfPId7733HhYtWuSTcxG1Nwx8iPzUk08+iVWrVuGSSy7BCy+8gDlz5uA///kPhg0bhh07drgdn5CQgHfeeQdvv/02nn76aUyePBmbN2/GuHHjkJmZidraWtPvfOaZZzB58mTYbDbcf//9eP755zF16lTs2bMHH3zwQVNcJgDjwGfBggXNGviIXn75Zbzzzjt47rnn0L9/fzz22GOYMGECfNE+kYEPkb6glh4AEbWMO+64A++99x5CQkKk1zIzM3H22WfjiSeewPLlyxXH2+12zJgxQ/HaE088gVtvvRX//Oc/kZSUhCeffFL3++rq6vDII49g7NixWL9+vdv7R44caeQVtR7V1dUIDw83PGbatGmIjY0FANx0002YOnUqVq9ejW+//Rbp6enNMUwiv8QZHyI/NWLECEXQAwB9+/bFwIEDsWvXLkvnCAwMxIsvvogBAwbgpZdegsPh0D22vLwcJ06cwMiRIzXf79q1q+Ln33//HQ8//DD+9Kc/oUOHDoiLi8OUKVNQVFQkHfPMM89gxIgRiImJQVhYGFJTU7Fy5UrFeWw2G06dOoW33npLWl6aNWsWHn74Ydx9990AgOTkZOk9eU7N8uXLkZqairCwMHTu3BlXXnklSkpKFOe/6KKLMGjQIGzZsgWjRo1CeHg4/vrXv1q6f3IXX3wxAKC4uNjwuH/+858YOHAgQkNDER8fj3nz5ilmrC666CJ88skn2L9/v3RNSUlJHo+HqL3ijA8RSQRBwOHDhzFw4EDLnwkMDMRVV12FBx54AN988w0uvfRSzeO6du2KsLAwfPzxx7jlllvQuXNn3XPW19fjsssuwxdffIErr7wSt912G6qqqpCXl4cdO3YgJSUFAPDCCy9g8uTJuOaaa1BTU4MPPvgAV1xxBdauXSuN45133sENN9yA8847D3PmzAEApKSkICIiAr/++ivef/99PP/889LsS5cuXQAAjz32GB544AFMnz4dN9xwA44ePYrFixdj1KhR+OGHHxAdHS2Nt6KiAhMnTsSVV16JGTNmoFu3bpbvn0gM6GJiYnSPefjhh7FgwQJkZGTg5ptvxu7du/Hyyy/ju+++w6ZNmxAcHIz58+fD4XDg4MGDeP755wEAHTt29Hg8RO2WQET0h3feeUcAICxZskTx+ujRo4WBAwfqfu7DDz8UAAgvvPCC4fkffPBBAYAQEREhTJw4UXjssceELVu2uB335ptvCgCE5557zu09p9Mp/b66ulrxXk1NjTBo0CDh4osvVrweEREhzJw50+1cTz/9tABAKC4uVry+b98+ITAwUHjssccUr//0009CUFCQ4vXRo0cLAIRXXnlF97rlHnroIQGAsHv3buHo0aNCcXGx8OqrrwqhoaFCt27dhFOnTgmCIAhLly5VjO3IkSNCSEiIMG7cOKG+vl4630svvSQAEN58803ptUsvvVTo1auXpfEQ+RsudRERAOCXX37BvHnzkJ6ejpkzZ3r0WXFGoaqqyvC4BQsW4L333sPQoUPx+eefY/78+UhNTcWwYcMUy2urVq1CbGwsbrnlFrdz2Gw26fdhYWHS748fPw6Hw4ELL7wQW7du9Wj8aqtXr4bT6cT06dNRXl4u/erevTv69u2LDRs2KI4PDQ3F7NmzPfqOfv36oUuXLkhOTsbcuXPRp08ffPLJJ7q5Qfn5+aipqUFOTg4CAhr+133jjTciKioKn3zyiecXSuSHuNRFRDh06BAuvfRS2O12rFy5EoGBgR59/uTJkwCAyMhI02OvuuoqXHXVVThx4gQKCwuxbNkyvPfee5g0aRJ27NiBDh06oKioCP369UNQkPH/otauXYtHH30U27Ztw5kzZ6TX5cGRN/bs2QNBENC3b1/N94ODgxU/9+jRwy1fysyqVasQFRWF4OBgJCQkSMt3evbv3w/AFTDJhYSEoHfv3tL7RGSMgQ+Rn3M4HJg4cSIqKyuxceNGxMfHe3wOcft7nz59LH8mKioKY8eOxdixYxEcHIy33noLhYWFGD16tKXPb9y4EZMnT8aoUaPwz3/+E3FxcQgODsbSpUvx3nvveXwNck6nEzabDevWrdMMAtU5M/KZJ6tGjRol5RURUfNh4EPkx37//XdMmjQJv/76K/Lz8zFgwACPz1FfX4/33nsP4eHhuOCCC7wax/Dhw/HWW2+hrKwMgCv5uLCwELW1tW6zK6JVq1ahQ4cO+PzzzxEaGiq9vnTpUrdj9WaA9F5PSUmBIAhITk7Gn/70J08vp0n06tULALB792707t1ber2mpgbFxcXIyMiQXmvsjBdRe8YcHyI/VV9fj8zMTBQUFOBf//qXV7Vj6uvrceutt2LXrl249dZbERUVpXtsdXU1CgoKNN9bt24dgIZlnKlTp6K8vBwvvfSS27HCHwX+AgMDYbPZUF9fL723b98+zUKFERERmkUKIyIiAMDtvSlTpiAwMBALFixwKygoCAIqKiq0L7IJZWRkICQkBC+++KJiTEuWLIHD4VDspouIiDAsLUDkzzjjQ+Sn7rzzTqxZswaTJk3CsWPH3AoWqosVOhwO6Zjq6mrs3bsXq1evRlFREa688ko88sgjht9XXV2NESNG4Pzzz8eECROQmJiIyspKfPTRR9i4cSMuv/xyDB06FABw3XXX4e2338Ydd9yB//73v7jwwgtx6tQp5Ofn4y9/+Qv+/Oc/49JLL8Vzzz2HCRMm4Oqrr8aRI0fwj3/8A3369MH27dsV352amor8/Hw899xziI+PR3JyMtLS0pCamgoAmD9/Pq688koEBwdj0qRJSElJwaOPPor7778f+/btw+WXX47IyEgUFxfjww8/xJw5c3DXXXc16v57qkuXLrj//vuxYMECTJgwAZMnT8bu3bvxz3/+E+eee67i31dqaipWrFiBO+64A+eeey46duyISZMmNet4iVqtltxSRkQtR9yGrffL6NiOHTsKffv2FWbMmCGsX7/e0vfV1tYKr7/+unD55ZcLvXr1EkJDQ4Xw8HBh6NChwtNPPy2cOXNGcXx1dbUwf/58ITk5WQgODha6d+8uTJs2TSgqKpKOWbJkidC3b18hNDRU6N+/v7B06VJpu7jcL7/8IowaNUoICwsTACi2tj/yyCNCjx49hICAALet7atWrRIuuOACISIiQoiIiBD69+8vzJs3T9i9e7fi3hht9VcTx3f06FHD49Tb2UUvvfSS0L9/fyE4OFjo1q2bcPPNNwvHjx9XHHPy5Enh6quvFqKjowUA3NpOJGMTBB80hiEiIiJqA5jjQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNFjBUcTqdKC0tRWRkJMu+ExERtRGCIKCqqgrx8fEICNCf12Hgo1JaWorExMSWHgYRERF5oaSkBAkJCbrvM/BRiYyMBOC6cUZ9h4iIiKj1OHHiBBITE6XnuB4GPiri8lZUVBQDHyIiojbGLE2Fyc1ERETkNxj4EBERkd9g4ENERER+gzk+XnA6naipqWnpYbRrISEhhtsRiYiIvMHAx0M1NTUoLi6G0+ls6aG0awEBAUhOTkZISEhLD4WIiNoRBj4eEAQBZWVlCAwMRGJiImckmohYRLKsrAw9e/ZkIUkiIvIZBj4eqKurQ3V1NeLj4xEeHt7Sw2nXunTpgtLSUtTV1SE4OLilh0NERO0Epyw8UF9fDwBcfmkG4j0W7zkREZEvMPDxApdemh7vMRERNQUGPkREROQ3GPgQERGR32Dg4wdmzZoFm80Gm82G4OBgdOvWDWPHjsWbb77p0bb8ZcuWITo6uukGSkRE7UJFRQXKyspQVlaGLVsOY+XKCmzZclh6raKiosXGxl1dzaiiosKw8GFISAhiYmKa5LsnTJiApUuXor6+HocPH8Znn32G2267DStXrsSaNWsQFMQ/CkRE1HgVFRV46aWXAABbtw7Fxx9fBkEIgM3mxKRJazFs2A8AgOzs7CZ75hnh066ZyP8gGGmqPwihoaHo3r07AKBHjx4YNmwYzj//fFxyySVYtmwZbrjhBjz33HNYunQp/ve//6Fz586YNGkSnnrqKXTs2BFfffUVZs+eDaAh8fihhx7Cww8/jHfeeQcvvPACdu/ejYiICFx88cVYtGgRunbt6vPrICKi1k38C77DESkFPQAgCAH4+OPLkJKyF3Z7VYt1QOBSVzOx+i+4Of8gXHzxxRgyZAhWr14NwFUt+cUXX8TPP/+Mt956C19++SXuueceAMCIESOwaNEiREVFSVOVd911FwCgtrYWjzzyCH788Ud89NFH2LdvH2bNmtVs10FERK3PsWMxUtAjEoQAHDvWuYVG5NJmAp+FCxfi3HPPRWRkJLp27YrLL78cu3fvVhzz+++/Y968eYiJiUHHjh0xdepUHD58uIVG3Db0798f+/btAwDk5ORgzJgxSEpKwsUXX4xHH30Uubm5AFzLcHa7HTabDd27d0f37t3RsWNHAMD111+PiRMnonfv3jj//PPx4osvYt26dTh58mRLXRYREbWwzp0rYLMp80htNic6dz7WQiNyaTOBz9dff4158+bh22+/RV5eHmprazFu3DicOnVKOub222/Hxx9/jH/961/4+uuvUVpaiilTprTgqFs/QRCkpav8/Hxccskl6NGjByIjI3HttdeioqIC1dXVhufYsmULJk2ahJ49eyIyMhKjR48GABw4cKDJx09ERK2T3V6FSZPWSsGPmONjt1e16LjaTI7PZ599pvh52bJl6Nq1K7Zs2YJRo0bB4XBgyZIleO+993DxxRcDAJYuXYqzzjoL3377Lc4///yWGHart2vXLiQnJ2Pfvn247LLLcPPNN+Oxxx5D586d8c033yArKws1NTW6LTpOnTqF8ePHY/z48Xj33XfRpUsXHDhwAOPHj2cHeyIiPzds2A9ISdmLY8c6o3PnYy0e9ABtKPBRczgcAIDOnV1rhVu2bEFtbS0yMjKkY/r374+ePXuioKBAN/A5c+YMzpw5I/184sSJJhx16/Lll1/ip59+wu23344tW7bA6XTi2WeflZqvistcopCQELcWEr/88gsqKirwxBNPIDExEQDw/fffN88FEBFRq2e3V7WKgEfUJgMfp9OJnJwcjBw5EoMGDQIAHDp0CCEhIW51Zrp164ZDhw7pnmvhwoVYsGBBUw63VThz5gwOHTqk2M6+cOFCXHbZZbjuuuuwY8cO1NbWYvHixZg0aRI2bdqEV155RXGOpKQknDx5El988QWGDBmC8PBw9OzZEyEhIVi8eDFuuukm7NixA4888kgLXSURETUXeYmW0tIAFBcHITm5DiEh5bqfcTgicexYDDp3Zh0fj8ybNw87duzAN9980+hz3X///bjjjjukn0+cOCHNXLQnn332GeLi4hAUFIROnTphyJAhePHFFzFz5kwEBARgyJAheO655/Dkk0/i/vvvx6hRo7Bw4UJcd9110jlGjBiBm266CZmZmaioqJC2sy9btgx//etf8eKLL2LYsGF45plnMHny5Ba8WiIiakpFRUVYvnw5AGDTpnTk5WUAEGv1FGLYMPfPqGv69OpVjdtua95xA4BNEASh+b/We9nZ2fj3v/+N//znP0hOTpZe//LLL3HJJZfg+PHjilmfXr16IScnB7fffrul8584cQJ2ux0OhwNRUVGK937//XcUFxcjOTkZHTp08GjcLV3Hp61pzL0mIqKmI3+euYKesQAaGkvbbE7k5CyC3V6FKVOmICgoCAcPAhMm9IfT2XBcYKCAwsIjSEoK8slzz+j5LddmZnwEQcAtt9yCDz/8EF999ZUi6AGA1NRUBAcH44svvsDUqVMBALt378aBAweQnp7eEkNWiImJQXZ2dotVbiYiIgIa30VAXqAwPz8D8qAHaKjVY7dXISgoCLm5uSguToLTeZbiuPp6GxYvXofk5P3N+pf+NhP4zJs3D++99x7+/e9/IzIyUsrbsdvtCAsLg91uR1ZWFu644w507twZUVFRuOWWW5Cent5qdnQxqCEiopbky9UHrQKFLg21eurq6gA01PSRHy+v6dOcu4DbTB2fl19+GQ6HAxdddBHi4uKkXytWrJCOef7553HZZZdh6tSpGDVqFLp37y5VJSYiIvJ3vuwioFWgEBAwdmy+2y6u1lTTp83M+FhJRerQoQP+8Y9/4B//+EczjIiIiKhlNXbZSr7LytMgRAxm5AnLGRn5GDmyQPP41lLTp80EPkRERNSgsctWRp3TrfI0mGkNNX3azFIXERERNWjMspVe53SHI9LjcdjtVUhO3t/iAY1VDHyIiIj8THN1Tg8ODvbp+XyBgQ8REVE74HBEorg4ydKsTWM6p4eEhFgaw8SJE1FbW2s+8GbGHB8iIqI2ztN8Ha3EZPkuq/JyZdsJeZK0vC6dw+GQdlerx1BUtPaP/J8k0+Rpo2DK1xj4UKN99dVXGDNmjFvVbCNJSUnIyclBTk5Ok46NiKg1aMzuK73PisGJXr5OSspet2BDHmDoJSY7HJF49tmtbsGKPElaPVa9Mbg2ZLsHY5mZmbDb7abX3hQY+PiBWbNm4a233sLcuXPdGo/OmzcP//znPzFz5kwsW7asZQZIRNSONWb3lZXPGuXrqAMfrS4C5eXlUs07o5kjo8BNbwzy38uDMbvdjri4OMPraioMfPxEYmIiPvjgAzz//PMICwsD4OqH9d5776Fnz54tPDoiovarMbuvPCkkqFcVWU1vdsVs5mjPnj0oLy9HUFCQNLsvzjppjUFNLxhrbkxu9hPDhg1DYmKiopL16tWr0bNnTwwdOlR67cyZM7j11lvRtWtXdOjQARdccAG+++47xbk+/fRT/OlPf0JYWBjGjBmDffv2uX3fN998gwsvvBBhYWFITEzErbfeilOnTjXZ9RERtaSKigqUlZVp/lLny3hyPvVntRKYzaoiW82f0Zu12blzAByOSGzYsAGrV69Gbm4uXnvtNbz22mvSM0VrDIB3ydNNjTM+LeTgQWDPHqBvXyAhoXm+8/rrr8fSpUtxzTXXAADefPNNzJ49G1999ZV0zD333INVq1bhrbfeQq9evfDUU09h/Pjx2Lt3Lzp37oySkhJMmTIF8+bNw5w5c/D999/jzjvvVHxPUVERJkyYgEcffRRvvvkmjh49iuzsbGRnZ2Pp0qXNc7FERM3E6lKWyKxast75jJahHn00GQ8+eBT79gUhKakO8fHnAjjXo/wZ7VkbAZ9/PgHr14+Tvk9v/OqcoaKiPrrJ0y2JgU8LWLIEmDMHcDqBgADgtdeArKym/94ZM2bg/vvvx/79+wEAmzZtwgcffCAFPqdOncLLL7+MZcuWYeLEiQCA119/HXl5eViyZAnuvvtuvPzyy0hJScGzzz4LAOjXrx9++uknPPnkk9L3LFy4ENdcc42UuNy3b1+8+OKLGD16NF5++WV06NCh6S+WiKiZeNJg08ruK08KDorLULGxsYiL64bUVOvjFpOmxVkl9U4vQIDYeV38vtOnOyA/P0N3/PLKzK2lRYUaA59mdvBgQ9ADuP45dy4wfnzTz/x06dIFl156KZYtWwZBEHDppZciNjZWer+oqAi1tbUYOXKk9FpwcDDOO+887Nq1CwCwa9cupKWlKc6bnp6u+PnHH3/E9u3b8e6770qvCYIAp9OJ4uJinHXWWU1xeURErZonu6/Un/v554GWE5it0JtVEoOVnTsH4PPPJ7h9nxj0WB1/a2hRocbAp5nt2dMQ9Ijq64G9e5tnyev6669HdnY2ADRZM9eTJ09i7ty5uPXWW93eYyI1EbV3ektBnuy+EslniOQzMIB7zox627vD4VAUENRKStZit1dhwICdWL9+nGq87snLngZf4r3ZsaNSeo3b2du5vn1dy1vy4CcwEOjTp3m+f8KECaipqYHNZsP48eMV76WkpCAkJASbNm1Cr169AAC1tbX47rvvpGWrs846C2vWrFF87ttvv1X8PGzYMOzcuRN9muuiiIh8RAweKisrUVdX5/Z+cHAw7Ha77sPaaCnL091X6hkiV9DjCn7UOTPyQoLeUAdrep3X5TM+6vFPmTIFQUFByM3N1fwO+b15+23lvdFrpNoUGPg0s4QEV07P3LmumZ7AQODVV5svwTkwMFBatgoMDFS8FxERgZtvvhl33303OnfujJ49e+Kpp55CdXU1sv5IQrrpppvw7LPP4u6778YNN9yALVu2uNX/uffee3H++ecjOzsbN9xwAyIiIrBz507k5eV5lABIRNScPE1SVj+szZayzKolq3dfac0QATaMH/8ZBgzYqZhlEVyVAr2iF6xp5eiEhf2uO35XnlGcok6QWCPI7N54kifVWAx8WkBWliunZ+9e10xPcwU9oqioKN33nnjiCTidTlx77bWoqqrC8OHD8fnnn6NTp04AXEtVq1atwu23347FixfjvPPOw+OPP47rr79eOsfgwYPx9ddfY/78+bjwwgshCAJSUlKQmZnZ5NdGROQtTx++6uPNlrKmTJmCOXNiLe++0pshEoOeKVOmIDY2FiEhIW5jUc/g6C2/WQnWjHZuaS1xac3ceLPM11QY+LSQhITmC3jMKjJ/9NFH0u87dOiAF198ES+++KLu8Zdddhkuu+wyxWuzZ89W/Hzuuedi/fr1uufQqv1DRNSWOBwORfVhs6UscUYkLg6Wdl+ZzRCJ5wOAsrIy6XPqGZzBg7dj+/bBmstv3gQkegnL1dXVutfi6TJfU2IBQyIiIg1iscCDB+M0u56vWLECFRUV0hKVrwoJqvtp5eQswsyZy5CTs0ixdVzrfFozOD/+OMRtRke8FrMu7cOHD8eYMWMwZMgQ03EvX74cFRUVmu+Z3ZvmxBkfIiIiFa3dVFp1a2pqatzyWhpbSFCrn5aa3vn08oLk5DM6ZrNK33//veb36y2dGY25tdT1YeBDREQko72byhUwrFmjXbdGHoRYXcoy4u0OJ73qy0bb4D0NSKwUYdTTGur6cKmLiIhIRnvWRBSAwsI0nfdantaS0pAhP+ouMbkSrudg9uyxSE7eL9ser73Mp5cMrV4GbM044+OFxmwbJGt4j4mopZh1Gi8oSEdaWqHhzIW6mCAARW0gsR6QXGMK+anzgtQzOBdf/KXmjE58fLzbdxot83XqdNyjZGhv8pqaGgMfD4h1b2pqahAWFtbCo2nfxP9hqGsNERE1FXWSsnK5q4HZridP6wHJmRXyq6iowNGjR3H8+HFFVWYAOP/88yEIAqKiotC5c2cA0K3cDGgHWkbLfB9/fBmyst7waHdWY/KVmgoDHw8EBQUhPDwcR48eRXBwMAICuFLYFJxOJ44ePYrw8HAEBfGPKBGZ05phARraNqgf+iLxoSt+PjMzE7W1tUhL+w0pKYtQUpKAVaum6T7o9+zZg/LycsvtIMwYBQiNLbBohdEynyAE4MCBnooKzuqlM71rb+7gxgifKh6w2WyIi4tDcXGx1OGcmkZAQAB69uwJm81mfjAR+bXGzLAAwIwZM7B8+XK31+12wG7fhZoa/V1PGzZsMD2/1g4ovV1RRhpbYNEK42U+AevXT5DaV8THl7otna1evVr33M3ZlsIIAx8PhYSEoG/fvs1aXtsfhYSEcEaNiCyx+v9jvWBDXXhPfZw6ZwYAiouTLAUtWjugAOjuiqqsrFQURTS7npKSRFRXhyE8/DQSE0savWPKfZlP3BHWsDNM7NKek7NI8/u82erenBj4eCEgIAAdOnRo6WEQEZEGrQev1S3YeseJ27C13ncFRdbbQbj2bmi3iMjNzbU0M7J161CsWXMZlJuzBUye/LHlreVyesnRwcE1OHCgJ9avn6A4Xp7nNGbMGGnmy+g+y5fBWnLpi4EPERG1G3qBiVE/KpFZ3yqt99esuQw2GzxqB6GmTpY2mxlxOCI1gh4AsGlelxUxMTHIzMyUOrzL6+1ERp5EXt443TwnsZej2f1TL4O11NIXAx8iImqV9BKWxW3h4pZwcSZB78E7deoqS1uwzfpWaSf+BkCsvqF+0Ov1p5LP+IivedKz6tixGOiV4ZOPt7y83KOZFfX2enHmrLQ0DvIKI3rtJvTuX0lJAo4dO+02I3bkyBEGPkRE1HbpBSoiTx7C3iQs68+wCJa2YJs10jSr7yN+n147CNf7wJAhDU1DxdeKivpoLgnJORwOaRyAE1rBj3y84gyLNzMrWrV8Gq4RSEnZK/0cHBwsjcv9/jilXXHqGTGry3q+xsCHiIgazWqgkp2dDcC1nCMv6CcXHBzsVqPGCr3AJTHxoGE/KpFZ3yr3QMYJV0Cg3w4iJWUvlPVYA/4IepSvGS0JqdntVZg8ea3bcpfedZltkRff15s5U/f6AhqCu8zMTGmmSO/+CIKyFpB8Ka4lEp4Z+BARUaNZfYAdOXIEubm5Hp9fb6eQ+nW9wMWoH9Xx48el35v1rVK/X1TUxzCg0lqW8qYoopo4jpKSBGlXV3R0JWprQ+FwRFo6j16watyyQxncqZfH5Pfn1KkIrFx5heJ9QXC1/Bg3Lt/KZTYJBj5ERNRs1DM8YuASHHwGtbWhmlvE9XYK6b2uF7joNchU1+Ixa6Qpf98sUPI2z0cv0Js+fTpsNhuOHz+OY8eOSd3Tt24diiVLbvCocahesGq2pJeeXqAYk7rdhHh/HI5IzfNs3mze8qMpMfAhIiKfs1Kgz6gnlPjQ1ktY7tr1kOEOotmzxyI2Nlaq3FxVVYW8vDzT8U2ZMgWxsbFuY62urkZ4eLjs8w63dhB1dXWKZSrxO7QqHQPutXysbL2Pjo6W6vyUlZXh+++/N91NZZX8nui37HAiLa1Q+knM25K3pSgvL8fq1atht1chPb0AmzePVJ3Ds9ktX2PgQ0REPmWlZo5ZTyjxoa2/U6inpZ1a6qUYs/GJiboN42wIcKqrq6XWFOJ55QnbZWVlut8xbNgWJCcXIzHxoDQ+rZkisyBGnvhcWVkJwHw3Wnl5uVs+lTqPSuue5OQsQmFhGjZvTgfgHqBlZmZK166XoJyWVih9XuTpLjZfY+BDREQ+Y3X2wawnlPjQ1k9YPmC4A0svQdhsfGIdG0+odyZpfceWLediy5ZUTJ7cEGRpLamZBTFa12W2G80sWVrvnuTkLMK4cflISyvUXcorKytz260nX/oSE7HNEsubEwMfIiI/5Mut53JmD26RUR6JMnlWO2E5IaHM0k4t9ZKW1fFp0VseO3LkCGpqalBcXKx7D1zcCyKqz2cWxGgx241mxuye6OU8yYNEefCnLoZolgfV3Bj4EBH5GU+2nnsa/Fh9cOv1hLLZnEhPL1Acq/fgNHug6lVxthpYyAMTrd1b8no0ZvdAJAYUeufTC2IA4/5gRvdCHWCpf/Yk2LLah6tLly6Kn/WCJ3VidHNg4ENE5Gesbj0vLS3VPFZrNkh8gJnNPshzaNQ9oXbuHIjNm9OxefNIFBSkK4KL2bPHSnkpVVVVqKurQ1BQECIjI6Xzie+vXr3acPnGyuyIMvFaWa/HLHlYq3ChyGZzIji4Rne5DQA6dTqOrKw3UFsbIm2ZX7Qox3THlnw3lRgkqQOswYMbiifKz+XpPTHbOaZOeNbSUv26GPgQEZEmo9yQGTNmICUlRfpZ/aB78MGj2LcvCElJdYiPPxfAuZp/u5c/rAsKGpJg1cFFcHCwpfybzMxMAMbLN2YzRe6J19br7ogzIl27HsLUqatQXJyELVtSIU8Orq0N1RxbYWEaCgrSFYFF587HPNqxpQ5O1A1Rf/xxCOQB3Jo1rh1ynt4TKzvHWqoJqRkGPkREfs7K1nO15cuXuy2FyX8fFwekpmp/VgyQKisrcfToUWzYsME0z0RdyVlvzOJxZss3RrV6zAr4qc8l0tueP3ZsPuLjS6WAQqu+jc3mVOx+EgMLq33GHI5IlJQkugUnGiNX/RyAJUtuUCy1ybf0OxwOrFixolG5Ua0NAx8iIj9mtnwhPlABIDGxxDCvwyoxQIqLi0N0dDQ2bNjgUZ6JlSUXsyW3MWPGSF3FxWanlZWVyM3N1e05pe7CbtTZXT6rkp+fgZycRbqtL8S8JnW9GzGAMrsvyoDLjLLvlvg98tmb2NhYqVaQyJuk69aKgQ8RkZ8Rm12aLV9s3TpU1Q9KwOTJH5tWBPaGWaAitpXwZMnFaPlGXa05MzNTqnOjNxajpSCr2/P1xgZAWuYSWekz5h5wmbFBq8Gp2exNY3eOtSYMfIiI/EhFRYWUK2O0fAHArQkmYPOqIrBVVgIVsyWXoCDlY029pKW3RKbOH9Ibi951W9mer/5u9djUDT4zMvJN+4xZWZZTEuD6d6qc+bEye9PatqV7i4EPEZEfkS9PGS1faDXXBHyf16HX50mLwxGJU6fCoZ6xkD+0o6OjNdsnANYrSquDE6BhaUys3NxwvCsHxmh7/qRJaw23w4uGDfsBp093kNpb5OdnICzsdyn3RmzDIb8uvWW5//f/PsGnn14K5b9DebBjcxujle3mrWlburcY+BAR+Sm7vQoZGfnIy8uAVksCrSURX+d1GG171gtaXA9sp86YtXcTWVkiMwqM+vbt65b3Aigf+Ort+eJ2dADSdnSt7x47dizy8vLgcERKQY/eGB0OBwRBkGa29Jaghg37AUFBgmpLvjqQtWH8+M8wYMBOxf2TX1Nr3pbuLQY+RER+auvWocjPbwh6MjLyFe0UJk9eq1juaqq8DrOHplbisM0mYOrUXEXvKwCKXlbyB7jZEplZYORwODQDH3lgoG5cevz4cWzYsB/FxUmG3y3WIvKmXQXgvgR15ZUXoK5uLMaNs+Haa/+LtWt/QXBwjdS9XWSzOaWgR9zJpRXEtKWgxgoGPkREfkjrQZ+fn4FBg3a4VUYuKUkAALcgo7noBQQAZDMhriWqpUvzFGOcPn06APNdSWZBx4oVK5CZmQm73e4WHMh3qQHu7UDMvltM3G7Mzin5ElRiYqKig/vPP38OAIbJyVo7udorBj5ERH7ISl0WMZjQC3iaK69DL3F45cppqKlxtXPQW6Iy26ll1CMLEPC//yUDsKFz5wpFAvT06dMVuT4icUu8nNl3i4nbWsdlZOT/kW/lHuQFB59BbW2oYf0lvaU4dXJyW8rRaSwGPkRE7YxRA1JxKchsdsEo32XKlCmIj49vtiUQ/RYQAX+85vo94P329oZ8p7GQJwBv3DgKGzeONu3PpUcMUlJS9iInZ5Hpjij5GEtL46WcH3nPLr0Eaq0yA+0xR6exGPgQEbUjVhuQGs1CmOW7xMbG+uxBaSVIA1wBQUjIGaxceYXiGK2t3PKZq5MnTyreM9o1Fh9fBvfKxsb9uYyqXpsFj4CyLYh8JufUqQgp6Vz8/jVrLpOKKFoZm8ifghorGPgQEbUj6iDC6MGsNwPSXO0JrAZposTEEs1ZKvmMj4urESgArF+/HoC1pSmjWjyA+z0wCmysBI9yWu0u3AX8ca3mYyN9DHyIiNow9YyJfJbEbMZB/fA1qg3TFO0JrAZpY8aMwYYNG3RnqQD18o+y/xTgqu+jlbwbFxeH6dOnIzc3V7cWj9Y9MAtsPAke9dpduHOqZnwatNX2ES2BgQ8RURtlNGNiZcZBbxdPS7QnMArSxJ5agPYslcMRiYkTlQX7zJZ/5OQzQWY5NlZnxTwJHq02RTXL8eFsjzUMfIiIPGCUkwI0b6Ko0YxJY5ermrM9gVmQdvr0acXx8jwdowad3i7/iOdPTt6PQYN2aN6D0tI4GM0IeRI8mrW7mDp1pWJnnVaRRH/doeUNBj5ERBZZzUnJzs5u9oRS9YxJRka+x8tVLdWewCxIW7dunfS6PLgDoBv0ANaXf4yuR+seiBWWlUtSgtRbS2Q1eDRrdzFo0C7TMQGuRqtdunRhMrMJBj5ERBYZzfR4c5yv6BUjzMjI112q0dJSW5+tLgspZ3ecGDhwp2HQo3W9ejN2mZmZqK2txenTpxWBlhbtpSkb4uNL3Y61GjzqtbuQf1YrL0t+PgY81jDwISLSYZQ43JrozZjEx5daqh0j583Ds7HLf1aWhdwTgAPw88+DoLXcpF4ako9TPmOnl0w9Y8YMhIeHKz4r7xvmmm3Sb5QKQKrybHY/srOzcfToUanRqdG/o+asndSeMfAhItJgZVnLaKu4L8fRmGKETb1cZTWY0Fr+czgc0u/NloX0E4Ddu4yrl4YA96DVKJm6pqYGKSkputdcVNQHymUuZaA2ffp09O/fX/fzcjExMSwy2MwY+BARaTh69Kjh+0YPTl/xRTFCwH2JxBcPUTEgs7p9Xv1Qr6hQtoAwCyKNa+xodxmXn1NdKNAomTo3N1c3T0v8rHKWyZVwLNKqF2SGQU3zYeBDRKSifiirmT04fcUXxQgB3zeg1JrlKSlJ9OieyK/NKGAaO3Ys8vLypOBO3i1eJO8ybuWcJSWJmkuDhYVpGDcu3218clZ2y3FXVevGwIeISOXIkSNur/lyq7g3rMwwNdcuLL2gRc3KPTELIiMjI6VjxeCusDANBQXplvOB5OcsKurzR/DkbvPmdKSlFf5RG8ihGSyaJWJPnz6dszetHAMfIiKZiooKtwaUmzalS32TrGwVl+euaPF0qcksOGip3T7uCcdK8nuizrERf/Y0iLTbqzBuXD7S0go9ygcShACUlCT8sUylVyyw4XtXrFihudxltqzozTIXNa92Gfj84x//wNNPP41Dhw5hyJAhWLx4Mc4777yWHhYRtQHqJY4vvrgIGzeOgrwhpNlWcaNlMpEntX7MggNfL2VZZVRxWH1PVq9erblUFxx8xjCIDArSfkwZ7YDSzgcSUFycbFIhWUBpaTySk/cD0F/uas7ijuR77S7wWbFiBe644w688sorSEtLw6JFizB+/Hjs3r0bXbt2benhEVEbsmlTuiLoEcm3ig8adDmGDIlAfPy5AM5VNL0E9PNyPKn101y9szylHWA4MW2a+3ZyraU6wLz9QnR0tGLLtxV2exUyMvKRlzcWDf/ubNiyJVUzIJIfk5+fgUGDdrgFMy1V3JF8r90FPs899xxuvPFGzJ49GwDwyiuv4JNPPsGbb76J++67r4VHR0RthcMR+cfyllbDyIat4hMnhiEurpvmOYzyctRLP0ZLUi3RO8sKvXGpt5NrLdU15NnIG3M6kZX1BhISyhSfN9ry7XA4UFtbi5MnT0qd2F1jc8D9310A0tM3KfKDrC6zcct5+9GuAp+amhps2bIF999/v/RaQEAAMjIyUFBQoPmZM2fO4MyZM9LPJ06caPJxElHrd+xYDLRzQQSMHdvQmkDvb/hmeTny7dUio+Wv1rq8otc0VD7Lpb0kpnVvA1Bbqz9jor43elviS0vj/mgpoWSzOZGWVijlBwUH12DJkhssz6QxqGkf2lXgU15ejvr6enTrpvzbV7du3fDLL79ofmbhwoVYsGBBcwyPiNoQvTyRCy/8D0aOdP1FSmsHT2VlJQDjvBzxfbPlr9a4vFJRUeE2W6XXNFScATp9ugPUFZZd9Jt8ioyuTX93mdZ3KWfJxH+2xpk0alrtKvDxxv3334877rhD+vnEiRNITExswRERUWvg3jjSibFj86WgB4Bm3mBdXR0A/byc0tJ4vP32dZYKH7a25RWzKs0HD8ZpznIJAqC9ZOhedVledNFqiwb33WXu3zVt2krNis6tdSaNmk67CnxiY2MRGBiIw4cPK14/fPgwunfvrvmZ0NBQhIaGNsfwiKiNMXooZmZmKh7KYiXj48ePA3AFToMHb8ePPw6B+IA/66xd0k4wwFrhQ/E79FpX1NTUoKysrFkCIKOig65rHQz1EpbxLipADHq0cnvEa1NTX6vR7jLAFXAmJh7Ufd+sRxa1L+0q8AkJCUFqaiq++OILXH755QAAp9OJL774AtnZ2S07OCJqE6wuL3Xp0kX6vVZrCYcjEtu3D4Z8x9CuXWd5VfjQausKeY6QGCiJyb9qQUFBiI6O9ipg0spfagjwlFyzXoB+7RzX59W5PWIOlFHvL5HesqTWTJInuEOrfWpXgQ8A3HHHHZg5cyaGDx+O8847D4sWLcKpU6ekXV5E1HY1tgu4Fd4sL2kdq5fjY9bVW4vV1hVHjx5FTEyMbqCk9zmrncSNrk0v6HHftu7841jj3B7Aeu8vrd1lGRn5iI8vdZupE5fQ1Oewct3UPrS7wCczMxNHjx7Fgw8+iEOHDuGcc87BZ5995pbwTERtS2O6gHuqsZ93OCJx6lS4Zo6PUeFDK4yCAbHasFagpNXmQf458Tgr99RohqWBcvlKvmRYVNTHNKHY035oVnN1YmNjGdD4uXYX+ACu/0i5tEXUvlhtamn0t/jmmDFS7i5ySgGCfJyDBu3QfEDv2bMHJSUlCAsLk5aigIaaP3r1cOTBQGlpqdt41I09tYIIT+6p1gzL4MHbsX37YMXn5Tk78iVDoyBlzJgx2LBhg1f90Kzk6nD5itpl4ENE7Ze3ndG9yZNp7NiAAAiCE9Om5SoqGes9oDds2GB4fr16OPKu4vL6QOJ4tPJr5EGE2T0VAy9xqz6gHbxcfPGXhvV85PTuQadOnQBYq1ZtNYiZPn261/lM1P4w8CGiNsXbzuhW82TUx1mZJTIaGxCAiIhq0w7lWmNRv965cwXUOUIAUFDg6ioujiE4+Axqa0Nx6lS4pQaievd0584BGDBgp2axRcA9eDGr5yPftm8UFInnMqux09q2+1PbwMCHiNoUX/StMnsoi6zOEmVmZloam7iMIzLKvdEb44gRBdi8eaTi+wUhQHEe+Y4mrUAJEBRBhF7OzuefT8D69eMMaw1pMZtBMrr/8qakVvJ2GNSQp8wKLBARtSriTIDroe7eBdyM3kPZ4Yh0O9ZqI1Fxu7jZ2MRlHMAVfD3/fA42bx7pNha9QoAOR+QfMztO1Qic2Lw5XRa4NHSSbygSKCcgJWWvdD+OHYtBRka+NG55orLe/XE4IlFcnKR534xm5czuv82m3B1mt1chOXk/6+yQz3DGh4janMZU2/V2qQzQX56xOksRHBwsncco9+bAgZ6aYywsTPsj8FFvHbdpvCZ/T811verdVRdcsBEbN17oNi71/dm0Kd1tZ5rrml3LbHo72jp3PmZ6/wVBHaRpY5IyeYuBDxG1Sd5W2/V2qcxoeSY6OtpSron4vlGlYZvNiZ49D2h2Dt+8OR3x8aXQDny0lrS0CwjabE4EB9e4zbx884170OPScH82bUpHXt5YyGeE1qy5DDabOMMkzha572gT/30Z3X+r95JLXOQtBj5E1CZY/Ru+2XFWkmbVrOwks/IgFtsvaOfUNCyNJSSUIT3dPZfHFZQImoHDBRdsxDffXOiW46MuICi+VlsbaqnAorwbvcMRiby8DLgHXgFomKixyV7T3tFmJWmZqKkw8CGiZuVtLR1f7uDxdKmsMctjWrQaoI4YUYABA35GbW2olMuzeXM61DM1iYkHNWvoNAQ9Tlx44Ub07l2suDb19TockRrBlxOpqVuwZUsqgIYKyIMG7UBxcRJOnQqHZ6mh2jva2BiUWhIDHyJqNt5WX/Y0WNI6Xl6DBtBfKquurnZ7zRc7ycRxisSHf0lJAgAbHA47liy5QTELMnmy9syIPHAIDq6RPufiWrIaPnyL7lZz8Wd18AXYsGXLubDZnEhP34S0tEIUFfXBokU50hi0ZoT+uCNu12t0j9gYlFoKAx8iajbeVF/2NFiyugVdz/Lly90CL2+Wx7TExMRg+vTpyM3NBQBFcrHWTqqcnEXIyVmkOTMiBg7FxUlez0bJg69Vq6ZBEBq+v6AgHQMG/Oy2xOcKAMXgx4mxY/MRFva723Wo75F6Kz9RS2HgQ0TNzpPqy54ESxUVFW4tG4wK5ZkVMdSaodEKQjzZYSS2oXCv8qycMRGDF/lWbq3xms1GjRs3DklJSVKX9uPHjysCELu9CseOndYMnkpKtHeXTZuWi4iIas2ltODgGtTWhrjdI/lWfqKWxMCHiJqdWc5MeXm52/KVWbC0b98+rF+/XnFOo0DJShHDpqwMbLSzC3BfJtIbr9lsVMeOHeFwOKRGpIB2RWit4Ckx0X13mZhnZLUFhUjcym+G29SpqTHwIaJmp72rybXFGmjoNyVvNmwWLKmDnoMH4xTNOeWBEgDLM06N2WGklWsk9r0y6nAu341VXJyE4OAzhuPVmo0Sg5ulS/MU16QOoNLTC5CWVqgZPCUklPlkiQ8A7HY7t6lTq8DAh4ianXtirQAgAEuW3KCb66M3K3HqVAQcjkjNh7teIT7AZhhEFRcXSwGKSN4t3coD2izXSGumJiMjH/Hxpejc+ZgiqVirRo86j8dKnyytWbPNm0di8+Z0TJ68VjOfyGiJb+zYsQCAvLw8w3th9Z4RNQcGPkTUIoYN+wFdux5S7EgymnnRChQEAVi58grDh7ucfPnIKC/GyoPcrIu7laaoekGFVpd3efKzerzq79GbHdJfXmtIpk5O3u/2rt4yVnJyMuLi4tCvXz/O5FCbwcCHiFqMXhE9vR1J8l1IK1dOg9Yylv7DXblMY7SEY9Y5HLDexwswzieaNu18REa6+lSJicfa12DTrYQ8ZcoUAK4lQqMlQb3CifJjPFnGEvNxGNRQW8LAh4iajTpx1Zv6OOIuJL2lH71zZmW9gYSEMuk1vdkWdZDiWn4qMwyCRPKcHnGpzCwpW5w1AVyVnTds2GB4DVo7pmJjYy3dU/clRrgdA7gCqaCgINTV1SE4OBh2u93tWjmLQ20VAx8iajbiLqnS0lKsXr3aUn0crV0+njzc5Ym6auolHIcj0i0hWuxLpbfzS6SX0+NN1WdPrsHqZ9XLa4WFaVJlaPUxsbGxUjBG1N4w8CGiZhUTE6NYJjJKni0vL0dsbCxmzJiB8PBwlJeXWwqYzBJyO3XqJCUqi+cEgMLCNLi3ZFAWFdTKPwL0c3qCg894VfXZk7YO8gaoVj5rt1dh3Lh8pKUVsm0E+R0GPkTUJIzaTKh3TOklz4oBCeBKJpYv6Vh5uGuds1+/fppLNA5HJAoK0g2vSV1rSO+a1Mtlgwdvx/btgw23hFdUVFi+L1OmTJHuhbjkJDZANfusp8cQtTcMfIjI56y2mdBiVE1Zveyl9+AeO3YsIiMjFVvQAeO8FLOCgi4NMzXyoEw9fnVOz/btg3XzcwDzre9q8fHxbtfhy8J/LCJI7RkDHyJqNPXsjtHshzxPRr4byexYQFlJWV2NWE6+Hd1s27nIaMeTi4CxY/PdcoLUQZpeTk9tbYjmVvHKykrU1dUpXtML/qZMmaIZ9ADWq0wDxjvSmLRM7R0DHyJqFP3ZHdcWbaMdTfKlK6v9uzx9KFvddq7Vrdxma2jMmZGRj5EjC6Tj9YI0s51q4jKVGLiJDUvNziu/HnFZSx2kMGAhMsfAh4gaxaiJaHp6geUdTd7sfpLzZDlNzqgRqWtc7jlEZkGaUeK13o4phyMSJSWJhm02nn12q25XeiKyhoEPEfmEdjuEdMs7msxmSiorK3W3WFtpOKpHXCI6evQoamtrUVVV9cfSU2/pmKCgP6Fz586ora01LRKo1zvLiHz8aoIQgMLCNBQUpOt2pSci6xj4EJFPaCcHByA9fZPbQ1srEDCbKcnNzdWc3bC6RKanoqICR48e1c0XksvMzARgrfCiXuJ1ZWUlAP0Ch+6c0v3z5vqISImBDxH5hF4wkJZWaLlejNlMyc8//4xOnTohODgYtbW1ABq3RKa3m0pv2Uz8TrMgTZ3HI6fO6THeTebEiBEF2Lx5pFfXR0TuGPgQkU+YBQNaD2mHw4EuXbq4nQdwBQTqz23YsMHtHGazL+Xl5bo7lbSKDhotK8lZWc4SBMHt/OqASns3mashqc0GRESc8qoAIhFpY+BDRD7jaW7LihUrkJ2djczMTGlmxNN8HbOAS9wqb5YEvHXrUEViMeC+rBQUpPxfppXCi/Lzq3uAjRxZoLGbrKELuyAEID8/AxkZ+cjPzzBdLiQicwx8iMinPK0GXFNTIzXB1MvXCQk5g8TEEt3u6VYCrtLSUqkIohgAifk24ve6t6tQLitFR0djxowZWL58uSe3RPO6XD3AgJEjC6Tx//zzAKxfP8Ht++PjS5GTs4jtJYh8gIEPETWK1Sq/enkz5eXlCA4OBqCfr7Ny5RXSTAcAzRkhMeByOCJRXJzk9j3q9hdAQ76NUZ6NelkpPDxc87qCg8+gtjZUczu99vltyMvLwKBBO6SxDxy4E3l543SbrzLgIWo8Bj5E1Ch6FYPlzT+Nlq/kAYlR9WRx9seVNqO9w0lrOSk+vswtGCktLVWcW+971ctK6l5aym3oYl6O+/Kc/nUpk5StdKtXY3sJIs8w8CFqJw4eBPbsAfr2BRISmve7jXJnPNlu7p7voqT32rFjnQG4V4l2LSe5ByPqHJyioj5Q5iG7dlOlpRXqzhq5b0PX7+Jut1chIyNfGo9IK0nZaNlO3pwUYHsJIm8w8CFqB5YsAebMAZxOICAAeO01ICurpUflord8VVKSALt9l9vx4oO/pCQBK1dOgzzvxjVrArfXOnc+prucJH6fXrCll9+jDnrUn/n554G6y2Na283Fdhd5eRkAzGsaab2uV/WZiKxj4EPUhlVUVGDfvjrMmdMVTqfrIe90AnPnCjjnnCNISgpq8RkBvWWeVaumoaZGe8eW68G/CzU1a92Wrk6disDmzenQCh6MmoyKwdaxY6dNm4qql6DS0tJQWFgIQHt5S01vu/nIkQUYNGiH10nKXNYiajwGPkRtlFh8r7g4CU7nTMV79fU2LF68DsnJ+xXbuOVd1EtLA1BcHITk5DrExzsBNM3Sibh8ZbZVXIt82ae0NF6xpTs9fZNiVsZoW7iLE6tWTfO4qSgAKejRXt4SVP909Sgzuh9a1ztjxgy3xGk5LmsR+QYDH6I2SgxgzB7c4nHyKsVGyca+anqpbv4ZEnIGK1deoThGvSQk3/kFQPp9587H8Pbb1ynydwoK0jFgwM+629rlgRLgBGCDIGgvfVlNKNZbThs//jMkJh7Azp0DUVCQjs2bR6KgIF1xX9X5Oep7xaCGqHkw8CFq46w+uMUAyCzZWK/ppXy2SIv64S3u9iotLcXq1auRmFhiGKC5LyEJEJez9Lq8L1lyg+629uTk/dKy0qlTEYZBl9XCi8HBZ+AKopTXMGDATgAw7KnF/Byi1oGBD1E74EnFZG96W+n1tFJTzxbFxMRIwZJRgKa9hNQwO6PV5R0QTHeKyWv7eNtUVCQGZq6gR7l13W6vQnFxktc9w4io+TDwIWon9B7cYu2ZHTsqUVychODgMx73fjKa6TE7Tr3kpRWgGTfqBNRd3tWzLoBxkGG1qahaZWUlcnNzdQIzJ6688n3067cXgLWO7UTU8hj4EDVCc9XOacz3rF69WraMdBZsNicGD96O7dsHe937Sa8Ksxa9AodAQ5FDo8KFgLLLe0lJAqqrw7Fu3f/zKMgwmhVT9+ACXAFbdHQ0AP2dXx98cJViic3T4oNE1PwY+BB5qblq5zT2e7RyerZvH4ysrDdQWxvi8bZqT5uIAsYFDgHtGRmxXo88gFDmATmlYEkdZOgFZpdfPhydOnVCVVUV8vLypNfF1hVqmZmZAPS35KuX2IyCK25FJ2odGPgQWaCecTl4sCEYAcTaOcD48b6b+TGr0RMR4bB0Hr2cntraECQn73c7vri42O01dTNPK1WYzVRUVEjnBdxnZFxjbwgg3JebAiAITkyblovExIPS9xsFZhs2bPBojLW1tQD0t+SL90BcYtNbMuOuLaLWg4EPkQmtGZfevRuCHlF9PbB3r28CH6s1eqzwNPdEPhOi5k1itBa9ZGl1ntLEiWejY8d+WL9+ve5yU0REtWKmx5vATG+GSL4ENmzYD+ja9ZC0k0wkv5fcuUXU+jHwITKgPbMjYM2acgQExEozMQAQGCggMvIIKioaXy3Zao2e6dOnS3koamL+jNluKqu5OlbG4+n1mdm8eTOmT59u+bsLC9N0AzMAmtdqNEMUHR2t2JKfkFDGPB6iNo6BD5GBPXu0ZnZsyM39BJdd1lnxALz44nwsXuzqBD5//kyfLG1oBS0ZGfk4dsx17rq6OgDmSylauSd6D3yjYKipEniNvlO8RrPvdjgi/2hloWSzOVFaGi8VQFRfq9kMkfq+Mo+HqG1j4EOko6KiAlFRdQgI6KqY2RFnGZKT9+u2U+jR4wTuvNM34zBq21BUtBbDhrk6hmdmZqJLly66AZB8GUnvgX/6dAfF+bUSl40e/A6Hw+N8FnUAlpGRLzX0BICTJ09a+m5XMOi+K2zYsC2yCs7K4Mbq0p3RzjQR83iI2gYGPkQa5Dkol13mPjMi7w8FwK2dwr332pGZ2ZAI3dgt73rf8/HHl6Fr10NISCjDihUrAFhrOaH3wNcLEOz2KowdOxaAKwdIr2aQJ2MAtAOwvDzX94jBz/r1693uhdZ3a++8ciI5eR+2bDnX7VpLShKQmHjQ8tIdgxqi9sGoYhiR35L/zX7YsB+Qk7MIM2cuQ07OIrcZEK0gor7ehsLCCrzwwkn06gVcfDHQq5crUdpbesHKG2/cgK1bh7qN3WjZRQwSlLS3a4v5MXl5eYaJz3JWc3j0el/l5WXA4Yi0dA6RuBQmXpfN5sTkyWulVhlqK1dOQ1FRH7fPMGeHqH3jjA+RBUbtDPSSbj/7bNUfO4Bcr8m3oicleZ4ArV/kT3vnktbyjF7CM+BEauoWbNmSCuXfh5w4dSoCDkek5vV7mhztyTXpNS/V+x6HIxKdOh3XrE/k2oo+Ccpu7a77lpOzCDk5i5izQ+QnGPgQNZJe0m1tbajmTJC4Fd3TLujuwUoDvS3lVhKeCwvTUFCQ/sdykICGdhCujuYrV16hme/jTSFDrWvKyMj/Y3nLPY/K6vdoHSPf7p+Sshdify058b4lJ+/H7NljFTV4mLND1D4x8CHyAa2kW7PGmGaJsnrf07XrIbzxxg1Qdwi3sqVc67zyjuKuxpsCJk78GOvWXQpBaGgUKp9VcjgiFcX8jOrlaHV1dzgaii+KuTx5eRlQV2q2suvKyjF6ic+swUPkfxj4EPmIejmsMVu/5ctU4vKUKCGhDJMnN+68Yl0avbyhurpgw1mlwsI0WGkSarWr+8iRBRg0aIel5qXq77FyjPaSmoCMjHzm8xD5GQY+RI1klH9itP3ajLjMIm/r4KvzmhVI7NnzgO5slcMRiYIC93o5gPusk9UkZ8AVKN5440TYbDZpd5iVooWdO1dA3a1dfYxWTtPYscpt88znIfIPlgOfEydOWD5pVFSUV4Mhamus5J+IM0EORySKi5M8SgQuKipSNNBUB1mNna3Qm5UyqlBcXJyk2UV9xIgCaTzl5eWKf+qNX01dhdrKrFlRUR8oc3e0Z8CMgsUZM2Ywn4fIT1gOfKKjo2Gz2QyPEQQBNpsN9fX1jR4YUUuy8rd/T/pCaQVI5eXlhgm0FRUVWL58ueE5tJKJPZ250AsI9F7Xm4VJSyuUfpYvzXk6fqvjAxr+HSgTo8VkZpcZM2YgPDxc9/xMYibyL5YDH0+7GhO1ZUaVeh0OB1asWGG56q9+gLQIdnuV7u4u+XebJROLXcHFoKesrEz32kJCQtyCI73ZI73X09ML/mgPYS3HSO8eiMUXjRjNEpn9O5g+fTpSUlIMz09E/sVy4DN69OimHAdRq2M2C2C1YafZw/nIkSOm32WWTCzuSLKaTJydnW0Y2NXW1iIoKAjR0dGK5Gr1rE16+iakpRW6BXrqQMWo+OLkyQ0zPw6HA3a7XTrGbJbI7N+BXgNXIvJfXic3V1ZWYsmSJdi1axcAYODAgbj++usV/9Mias+s7trS21FUWhqP5OT9yM3NRWZmptt/O2J+TFMkE9fU1Ohu3dZ7XWvWpqAgXbHEpReoWC2+WFtba/h96qXEpmqaSkTtl1eBz/fff4/x48cjLCwM5513HgDgueeew2OPPYb169dj2LBhPh0kUWtllH8yZswYbNiwQadInw35+RkYNGgH7PYqrFixQndJR7utgzKZWI83lZXVdXfEAMxs5sosULFSfPH48eMICgqy9H0idksnIk94FfjcfvvtmDx5Ml5//XXpf1J1dXW44YYbkJOTg//85z8+HSRRa6aXB9OpUyfp9/HxZdCrGmy3Vxku6VhJJtZidM7KykrNmR2jpTKzZSWzQEWv+KJ85kqeS2j2fdOnTzdcymLSMhFp8apJ6ffff497771XCnoAICgoCPfccw++//57nw2OqL3Qagoqr4ujNVMiNunUar7pbTKxeM7c3FxUVFS4fc69wrJrC77Yq0tvHA5HJE6dCte9RlFk5EmoA0C9zaJm1921a1fExcXp/mLQQ0RavJrxiYqKwoEDB9C/f3/F6yUlJYiM9KyjMlF7dfz4ccVSkyd1cdRLOmYFC9VLOlaWiczygfRmjNTjkB8HOKVZGq0AzdU6Qn/mSyTPeXrwwaPYty8ISUl1iI8/F8C5nM0hIq95FfhkZmYiKysLzzzzDEaMGAEA2LRpE+6++25cddVVPh0gAOzbtw+PPPIIvvzySxw6dAjx8fGYMWMG5s+fr/gf/vbt2zFv3jx899136NKlC2655Rbcc889Ph8P+Y+DB4E9e4C+fYGEBM8+++yzlfj44xxFEKDVBTw4+AzMKg8D+ktqWsX3rOw4UxcXlL9mlq8zfvxAfPvtfrfjgAAIghPTpuUiMfGgpURvm82J4GBlEGa326WluLg4IDXVbahERF7xKvB55plnYLPZcN1116Gurg4AEBwcjJtvvhlPPPGETwcIAL/88gucTideffVV9OnTBzt27MCNN96IU6dO4ZlnngHgqiw9btw4ZGRk4JVXXsFPP/2E66+/HtHR0ZgzZ47Px0Ttl5jc+957YbjnHjucThsCAgQ89ZQDV199GtXV1abn0AsccnIWKbqGi7MlrqDH1T1cPVMi1ujRojfzoZVMLAiuKsdino9WkUGR2YzRt99+q3scEICICNc9Uleqdh+XAEEIwJIlN3jV3Z2IyFNeBT4hISF44YUXsHDhQhQVFQEAUlJSDKujNsaECRMwYcIE6efevXtj9+7dePnll6XA591330VNTQ3efPNNhISEYODAgdi2bRuee+45Bj5kmZjc63BEYtGiHKk7udNpw913R+G3396E3V6lWw1YrHljZanJfbbEFfRkZb2hKOpn1jVcvgtL3tcrJWUvBEF+pH5laTWrNYr0jistjcfbb18nLX+NGFEg1fvRSnI2qnpNRORLjWpSGh4ejrPPPttXY/GIw+FA586dpZ8LCgowatQoxdLX+PHj8eSTT+L48eOKHTZyZ86cwZkzZ6SfPelJRq2fp0tVYgBhFriEh4cbBiNWAge976ittb4F22gXliufxlplafWWd6v1cbSOy8jIR35+hmL5a/PmkSgoSJdmdWprQy2NjYjI17wKfH7//XcsXrwYGzZswJEjR+B0KndybN261SeD07N3714sXrxYmu0BgEOHDiE5OVlxXLdu3aT39AKfhQsXYsGCBU03WGoxS5YAc+YATicQEAC89hqQlWXts1ZnPPRYCRysfodRLRqtXVhiEGPl/EZb3q12gE9J2YupU1cBEJCYeFC37pB8Vqex95eIyFteBT5ZWVlYv349pk2bhvPOO8+0eame++67D08++aThMbt27VLsHvvtt98wYcIEXHHFFbjxxhu9+l65+++/H3fccYf084kTJ5CYmNjo85JveTJzU1FRgX376jBnTlc4neJSFTB3roBzzjmCpKQg0x1BRoGLwxGJTz89jXPOOYz4eFfQr5VrYxY4mAVHU6ZMQXx8vNt55Utb8gRlrSDG6PxWKyMbzcBofaerQagyWVskzuokJ+83HBsLDxJRU/Eq8Fm7di0+/fRTjBw5slFffuedd2LWrFmGx/Tu3Vv6fWlpKcaMGYMRI0bgtddeUxzXvXt3HD58WPGa+HP37t11zx8aGorQ0FAPR07NwSzJWCvYEJd+iouT4HTOVLxXX2/D4sXrkJy8X7cxqJzZ1m31DEl2drbbOcwCB6PgKDY2Vvf61IySqbV2kgHWKyOrk6srKyuRm5ur+51ZWW9AvWVdJJ/VefTRZG5VJ6Jm51Xg06NHD5/U6+nSpQu6dOli6djffvsNY8aMQWpqKpYuXYqAAOX/sNPT0zF//nzU1tYiODgYAJCXl4d+/frpLnNR6yU+4A8ejMOSJTfoJhmrAxhxJsRsKcVqTyt54GI2Q2L1nEbfISdPVAZcsyB6S1unToXrBjHJyfs1z291uUkvuVovcPr1177QDnyUszribBa3qhNRc/Iq8Hn22Wdx77334pVXXkGvXr18PSY3v/32Gy666CL06tULzzzzDI4ePSq9J87mXH311ViwYAGysrJw7733YseOHXjhhRfw/PPPN/n4yPdqamqwdetQrFkjbvVuIJ+V0As2mqJ5pZUZEqtLNOpdYQ6HAytWrFAck5ub6/a5zMxM6ffq2ScrtYDUiczKreVOpKcXuH2nuJymnonRazz6n/+Mhrg1Xz4Wcbea3hIeEVFz8CrwGT58OH7//Xf07t0b4eHh0gyL6Ngx3yYo5uXlYe/evdi7dy8SVAkewh/7de12O9avX4958+YhNTUVsbGxePDBB7mVvQ2qqKjAjh2Vsvo2SlaTYK0m51plZYYkJiYG2dnZhrM/VpZy9JqLit3LtWafXGNzBT9agZ5RJebCwjQUFKS77b4ClPV+srOzpeBOv/GoWMFZUHyXuEWfQQ8RtSSvAp+rrroKv/32Gx5//HF069bN6+Rmq2bNmmWaCwQAgwcPxsaNG5t0LNS05Dk6gnCW2/ueztyY5dioGc3YWJ1FauxD3SiPSKQ3+zRtWi4iIqrdAj2jZToAKChIN0xyFtXU1CAuLg7Z2dkoLS0FsBohIWewcuUVqqsIwNSprrFcc00aBg1i/g4RtQ5eBT6bN29GQUEBhgwZ4uvxkJ8zytEB3Iv7+ZrWjI1YlBDwzSySfFeW/DsAazutAP3ZJ602EYDxMh1gs5TkLBcTEyNdQ2JiieFYBg0ab1jziIioOXkV+PTv3x+nT5/29ViIJHqzK00Z9IisbHX3dtnMqOAgYH2nlZWt8LGxsVLQZrZMp/XeqVMRUld2I02RT0VE1FS8CnyeeOIJ3HnnnXjsscdw9tlnu+X4REVF+WRw5N98naPTGhgVHLTbqzwq7Ge2FV4+y2IWnKjfEwRg5cordJfaAOWyoNFYWJOHiFoTrwIfsW/WJZdconhdEATYbDbU19c3fmTklxwOh+z32gm+Rqw+ZD15GDfFOQH9XB6jACUoSPmfrN7sk9hI1WpwIr5XUpKAlSunwUoPLV8lchMRNSevAp8NGzb4ehxEqKiokLZ0W0nwBdyDjaZ4GHtyTq38HTmxNo9RLo9RgBIdHY0ZM2Zg+fLlhmNevny5VOMoOzsbR48exYoVK0yX6U6csMOTHloMaoiorfEq8Bk9erSl4/7yl7/g73//u6LqK5EeMWCwkuBrVAumKR7GVs5plr8jZ5bLoxegeDKrJN7PmJgYRe0rLfJAU6sGD3toEVF70aju7GaWL1+Ou+66i4EPAdDezSQnzoZYSfDVaufQ0szyd+T0dq1pJRSLicrirFJZmTLB22xJUD6TpvUZAKpaPDaIwQ97aBFRe9OkgY9YXJBIPRviaVCgnnVo7Q9gvaU6+XWrqyYDNs2EYjFRuaKiAmVlZaaNSdVLguqATP2Z9PQCjW7qNowf/xkGDNiJ2bPHIjaWNXiIqH1o0sCH/JNRnRrA/GFttgNp+vTprfoBrLdUd/p0B+TnZyiuKSdnEUpKErBq1TSpH5nW0p7WMprZkqB4z+X3XuszBQXp0Gp3MWDATtjtVbq9uoiI2iIGPuRTZnkuVgv0mSX4tmZ6S3Vi0CP+LHZPj4g4bbq0p7VEaLYkKG81YfaZESM2SdWbubxFRO0ZAx/yKbM8F6sF+oDGFQpUM8ovqqyshM1mg91u13zf0yUevfwdvev2pHaP2feYfa60NA5ayctpaYVISyvEoEGXY8iQCMTHs8UEEbVPDHyoyWgtaaWk7PXqId8Ynuy20iNuDbdCa6kuIyNfMeMDNFy3N5WPxYBSfl6zzzkckcjPz4A86AEEZGTkS5+ZODEMcXHdLF0nEVFb5HHgU1dXh8cffxzXX3+9W6d0tRkzZrCKs5/SW9LKyVnU6PYG4tKL2S4xcbbCk91Weu8ZfY8WraW6sLDfda/bkyrV6oDyggs2IizsNHr2PICEhDLda9CabQNsiI8vVdwzIqL2zOPAJygoCE8//TSuu+4602NffvllrwZFbZ/RkpbRQz4zM1N3yQlQFgq0skssOztb8XmjxGqj98QEYaOlH3XQoF6qk193cHANamtDFVvXjWr3GNU42rhxFMSt54MHb8f27YMVM00jRxYAMF8aa+1J40REvuDVUtfFF1+Mr7/+GklJST4eDrVWVmdXRGYPWb2HvN1ut7SDSD4Wo4BFfpxRYjUAw6RreaKwetlLfm+mT5+O48ePIy8vT3PcdnsVior66I5XrNkjUtfu0Zu1Ecf8449DFD/n5Y0FAIwcWWC6pNa1a1fDe05E1B54FfhMnDgR9913H3766SekpqYiIiJC8f7kyZN9MjhqHazmyMhnV7zt2O3pUovVXWKA8SwUYNN87+efB2DgwJ26y15W7o1RsUD1eOU1e2pqalBTU6Oo3aOdOC1nc/s5Ly8DgwbtgN1ehUcfTcaDDx7Fvn1BSEqqYxIzEfkdrwKfv/zlLwCA5557zu09Niltf6zmt6iPM1rSUs9sAN41tPRkl5jZLJR7QCFg/foJyMsbp9srzCx/yEqxQPV4jYIpdUCp3qHl/jMANJzfFVh1Q2qq5umJiNo9rwIfp9Pp63FQO2GW5yLS67PlKU+2dJvNQukFFEazSHLqIEe9k0sQArB5c7rpeM0CTXlAWVoar9jVddZZu7Bz5wCot6uz1xYRkYtXgc/bb7+NzMxMhIaGKl6vqanBBx98YCnxmdqnpuiObsTTJTWjWSjxvZ9/HoD16ycoPmfUoRzQXnJTb193CUB6un6xQL1zqxO3xYAyOXk/Bg3aobieTZvSkZeXAcC7XXNERO2ZV4HP7NmzMWHCBLdkyKqqKsyePZuBj58zCmrE3BV1o02RN0GR2VZwq7NQ4nsDB+5EXt44j2oN6S25abWCEIsFerN1XS8Rury8XErAHjmywC0YIiIiF68CH0EQYLOp8wiAgwcPGm5FpvbBrBu4Hk+SpD0NfoyCmZiYGEyfPh25ubnSa0bX4MkskthRXm/JzajAoNb5HA4HamtrpTFaSYQGrAd3rNNDRP7Oo8Bn6NChsNlssNlsuOSSSxAU1PDx+vp6FBcXY8KECQZnoLbOSjdwPd4mSWux+gAXj5P397JyDVYKClZUVEjBlF6wNGzYD7qzL2lpaQgPD0d1dTUKCwsBACtWrJDe9yRxu7mXGImI2iqPAp/LL78cALBt2zaMHz8eHTt2lN4LCQlBUlISpk6d6tMBUuvhydZxq+fzZuYI8P5B78k1mM2aqL87JWUvpk5dBUBAYuJB08KEYrCjJt6X4OAzHrX3YFBDRGTOo8DnoYceAgAkJSUhMzMTHTp0aJJBUesiPujNZiA8WUZpzMyRyJsHvdk1WK0crebJ9RgFfOrzqCsxM1GZiKhxvMrxmTlzJgDX33iPHDnitr29Z8+ejR8ZtRri7Mq+fXV45x0BTmdDfldgoIBbbpmIpKQgy4GIr2eOPGFeUdpa5Wg5s+sZN24c1q9fD0A/QHI4IlFSkog1ay6DmAwtCAHYvn0wsrLeQG1tiNtSGfN1iIg851Xgs2fPHlx//fXYvHmz4nUx6ZkFDNufmJgYxMQAr70GzJ0L1NcDgYHAq6/akJrqWTdvT3JXfM3bitJGzK5HXBLWC5BOn+6gs/XddUxtbQiSk/crdnExX4eIyDteBT6zZs1CUFAQ1q5di7i4OM0dXtQ+ZWUB48cDe/cCffoACQmen8Ns1kVszyDnywe9J53QrbBaRFEvQBJr7miRn0e+i4uIiLzjVeCzbds2bNmyBf379/f1eKgNSEjwLuARmc26yBuCynm6zV3ePPTgwYNuY/DVdm+rs0j6fbb0gx7m9BAR+ZZXgc+AAQM0/1ZOZEQeVHgz61JaWoqamhpLsz9WawbJzZgxw3JgVVFRofhvwMr1uPfZ0mazOTF16krFzjAiIvINrwKfJ598Evfccw8ef/xxnH322QgODla8HxUV5ZPBUfui3oIurzYsp7frSX6s2eyPUfNQAJrnDw8Pt3QdekGV3iySvN7VsGE/ICTkDFauvELz3OIsz6BBu9zeYzIzEVHjeRX4ZGRkAAAuvvhiRX4Pk5vJjNmMitVt4VaLIarP6WohYQNg83obvVlHdtGUKVMQHx/v9vnExBKNJS8npk1zn+URt9czmZmIyDe8Cnw2bNjg63EQ4eDBOM1dTyEhZ5CYWOJ1kUTl0lJDsOGLbfRGgVpsbKwUrGRnZ6O0tBSrV6/WzQkSZ3nE3VsMdoiIfM+rwGf06NHYuHEjXn31VRQVFWHlypXo0aMH3nnnHSQnJ/t6jOQHtm4dqqhhIxKEAKxceYXh7Iw8iVkk5t9o7aRSn9/bbfRm9XvkOUAhISGK2R+jnKD4+HgGPERETcSrwGfVqlW49tprcc011+CHH37AmTNnALgaLD7++OP49NNPfTpIat/EAEJvdxOgPztjlsSsv5PKxWwbvUjepsIoqBKEAJSUJODYsdNYujRPMdbs7Gz20yIiamFeBT6PPvooXnnlFVx33XX44IMPpNdHjhyJRx991GeDI/9gNisj0pqdMcu3cd9J5Z7jY7aNXo9e/Z6VK6cBcF/6qqmpYR0eIqIW5lXgs3v3bowaNcrtdbvdjsrKysaOiVoxrWUlOW9mLLRnZcQ2KNYadAL6+TbDhv2A06c7yAoFOjFixGakpRVqLnFZaZ4qHpORkS9VXXZdQ8OYm7MVBxERWeNV4NO9e3fs3bsXSUlJite/+eYb9O7d2xfjolbIam0cq4UGxeUjvWRfAJZbSxjl2wBAfr68OnIACgrSkZbm3h3dbFeZwxGJwsI0FBSkS8dkZOQjPr4Up05FuG1Tb65WHEREZI1Xgc+NN96I2267DW+++SZsNhtKS0tRUFCAu+66Cw888ICvx0ithNUt5FaPU9f1efDBo/j55zPYtm2lFCjoJQCra9oY5dtERJy21BvMLFlZKwFbEAKQn5+BnJxF6Nz5mKXWFURE1HK8Cnzuu+8+OJ1OXHLJJaiursaoUaMQGhqKu+66C7fccouvx0jtmHxmKC4OSE0FLr10psfLaXpJzKtWTUNGRr7GewJKS+ORnLxfeqWkJFE3QAKguetMfkxy8n6fN0AlIiLf8irwsdlsmD9/Pu6++27s3bsXJ0+exIABA6Qu1ESN4c2uJnG5TG9G5oILNmLjxlFwJTYDgA35+RkYNGiHajZHSZyxKSxMg5VGor5ugEpERL7lVeAjCgkJwYABA3w1FiJNRgnV6n5ZWu0gBCEAYWGn0RD0NLwuzuZobaeX5xoVFKRrfr/WrI5e6woiImp5jQp8iJqap81GtdpB2GxO9Ox5QDf/Rm87/dSpKzFo0C4UFydpvj9w4E8YNy7PcpDDXltERC2PgU870xTbzfVY2fbdWFb7Yo0ZMwYbNmzQ3SGWkFCmm39z6FA3uLbPK4OixMSDAPTr9WgFPWJvLTUWJiQiah0Y+LQjvt5ubsRqM1EzZoGavC6U0Xd26tRJOk4vz0br9Q8//DN+/HEIXMtgArQKG+oFU/KgZ/r06ejatSuDGyKiVo6BTzvi6+3mauJSjdm2b6tLOp4sY5l9Z1CQ8o+yPM9Gq5oz4GqK2hD0AGLwc+WV76Nfv72K8xklLU+fPh1nnXWWpesgIqKWxcCHLBPr7mzYADz/vPu275EjZ+Kii1w/l5WV6Z5HXPbxJADTq9Mj1uKJjo6WagKVl5dL7SeMZokOHOgFdcIzYMOxYzEA9kJNL2k5Ojra8nUQEVHLYuBDHomJicH55wMBAYDT2fB6YCCQlhYDwPpym5pRzpBeno28OGBMTAwqKioU5zOaJerZcz/E5a0GAhITDwAA0tLSUFjoXt1ZjUnLRERtBwMf8khFRQUCA2vw1FNhuPdeO+rrbQgMFPDkkw4EBp7G0aMOS+dRz/aY5QxZybNRL50ZFSS026uQkFCGIUN+VOT4DBnyIxISXLNVPXr0YDd1IqJ2hoEPWaYOLG69NVLKeTl5sgqvvebdec1mZkRmxQHlAYoYSKmpZ4n+7//+jXPP/S9KSnoiMfGAFPSIGNQQEbUvDHzaAXFnlLyYX1NQz3z4qlCfWf6Ole8MCQmRxqcOpBq4zxI5HJGorQ3FgAE73c6rTpgmIqK2j/9nb+M8LfDX3KzU+jHL39GqjeNwOFBbWwsAKC/vgA0bALu9EoB2IAUA06a5ChKKzJbXunbt6t1FExFRq8XAp43zZmt6cyXjWq31Y5a/Y7fbERcXJx1fUVGBFStWaHxHJ0yaNBQpKXs1AymxICFgvrw2ffp0LnMREbVDDHz8xJQpUxAbG9tsybhW8nbkAZhR/o46UNNb0hK/IydnkWkitJXt8URE1P4w8PETsbGxilkTXzBaxrKStyPWBfJ215TRd5glQlvZHk9ERO0PAx/yitkylllgIc7ieDL7pE7iNvsOo+RrK9vjiYio/WHgQx6zkh8THR2NHj1OqGr9nMDVV1/l1XKbOolbnG3KyMhHfn6GV8GL2awQERG1Pwx8yDJxlsZsGUts1nnnnUBmJrB3L9Cnjw0JCdEAor36bq0aPWKwM2zYFiQnFyM6uhK1taFwOCJht1dhzJgx6Nq1q2JHWGVlJXJzc6WffbUln4iI2gYGPmSZmJOzb18d3nlHgNPZ0OohMFDALbdMRFJSkGI2JyHB9Utk1o3dbDZIa7Zpy5ZzsWVLKlzVlxu6qwMbAPimGz0REbUPDHzaOKtb0321hT0mJgYxMcBrrwFz5wL19a4+Xa++akNqajfDz1qtOWQUqOjV6AEaXlMvvckDrea+X0RE1Low8Gmj5DMnmZmZUjE/UVBQEKqrO6O4OAj9+gUgJqaTT78/KwsYP15cxlLO6uhRz/To7QozmhHSSmjWolf5ubE7yYiIqG1j4NMGWZk52bp1KNaunQSn04aAAOC5505i+nT9XBZvHvbqZSxPWC1uqKbejaXHaGs6gxoiIv/FwKcNMqvW3JAH48rBcTqB228Px/79rxkm8jZXLozVpqR6xN1YhYVp2Lw5Ha5lLidsNnBrOhERGWLg0w550vRTzpv2F97wdnxydnsVxo3LR1paobQd3XVubk0nIiJ9xokSrdCZM2dwzjnnwGazYdu2bYr3tm/fjgsvvBAdOnRAYmIinnrqqZYZZAsT82DkWqoqcUVFBcrKylBWVuZWeNCT8eklG9vtVUhO3i9tSxd/T0REpKXNzfjcc889iI+Px48//qh4/cSJExg3bhwyMjLwyiuv4KeffsL111+P6OhozJkzp4VG2zLEPJhPPpkkFQ+89FLzpZ/KykrD9z3NA9LLRTKrmlxeXu72XWJS8pEjRxR1eIiIiDzRpgKfdevWYf369Vi1ahXWrVuneO/dd99FTU0N3nzzTYSEhGDgwIHYtm0bnnvuOb8LfABXHsyDD6ahqqobIiOPYO1a88RhKwGFJ3lARru45FWTg4NrFIUHV69erfldrq30DbuyHA6H1KXdCLemExGRqM0EPocPH8aNN96Ijz76COHh4W7vFxQUYNSoUYqH3Pjx4/Hkk0/i+PHj6NRJezv3mTNncObMGennEydO+H7wzUgeXMTHOxEXB5SVOc0/aJG3eUB6u7iKivro7u46evSo9H2lpQEoLg5CcnId4uNd19OlSxduTSciIo+0icBHEATMmjULN910E4YPH459+/a5HXPo0CEkJycrXuvWrZv0nl7gs3DhQixYsMDnY24J6uCic+dDyMpqyK3xBYfD4XGXd71dXF27HjLc3SXO5hhtfc/OzvZ513kiImq/WjS5+b777oPNZjP89csvv2Dx4sWoqqrC/fff7/Mx3H///XA4HNKvkpISn3+Hr2kt3WgFFw8+2B1PP/2+tHTkCytWrEBFRYVHn9HbxfXrr311d3eJ9IImhyMSQPPtRCMiovahRWd87rzzTsyaNcvwmN69e+PLL79EQUEBQkNDFe8NHz4c11xzDd566y10794dhw8fVrwv/ty9e3fd84eGhrqdt7XTqj68aVMInn++cVvErfI02NCrtrxx42gATsjjb3F3l7hkd+pUeKO3vhMREYlaNPDp0qULunTpYnrciy++iEcffVT6ubS0FOPHj8eKFSuQlpYGAEhPT8f8+fNRW1uL4OBgAEBeXh769eunu8zVlqnzVs4/HwgIcBUrFOltEZfnAc2ePRZBQUGorKzE+vXrm2Ss4i6uNWsug7qnlisgcgU/4jKWOu9HLzgiIiLyVJvI8enZs6fi544dOwIAUlJSkPBHz4Srr74aCxYsQFZWFu69917s2LEDL7zwAp5//vlmH29LSEhQNw7V3sKulQdUX/+62/n0+mgZUXdel+cWDRv2A0JCzmDlyisUnxGEAEyblouIiGopmFm0KEextKUVHHG2h4iIvNEmAh8r7HY71q9fj3nz5iE1NRWxsbF48MEH/Woru7xxqNYWdq18mYceisNtt0UqAgl5cAQ4MXZsPkaOLDD8bnXNnobAqeHciYklbkteNpsTiYkHpWOKi5M0l7bkwRGDHiIi8labDHySkpIgCILb64MHD8bGjRtbYESth9g4VGsLu1aSsdNpU+TLqIMjIAB5eWMBQAp+Kisr3XZSyWd69HZhmRUuBLTzgdTBERERkbfaZOBD3tEKKgICBEW+jFZwBNiQn5+BQYN2wG6vQm5urm4hQ7MGpPLChVqzN1aCIyIiIm8x8PEjWkHFgw+WAlDOuKiTiQH3nVR6O7usNCAV+2rpMQuO5FiVmYiIPMHApx04eBDYswfo29e1zAXoBwTqoCIz8/9B3fUhNXULtmwZDsAmvWZ1J5XeUtWpUxFSSwor9IKjKVOmIDY2FgCrMhMRkecY+LRxS5YAc+a4trEHBLh2dmVludf60Wr5EBISopub45r1AQAbbDYnMjLyDYMWscGp1qySIAArV17hVnXZG7GxsazUTEREXmPg04YdPNgQ9ACuf86d69rZlZDQUOtHLzgCgF9++QWAdlKzK/gRIAgByM/PQFjY75pBS0VFhaLBaUrKXkydugrV1R3w6aeXQlw2U+f7yGdvqqursXz5ctNr5tIWERE1BgOfNmzPHmXBQsBVw2fv3oYlL6PgKCysQuqHpZ3UrCw2KA9a5Ix2dGnlCv388wAMHLjTbfaGDUeJiKipMfBpw/r2da/WHBgI9OnT8LNRcNSvX0OQoddWQk6vVYTD4fjjn5GK6syucwmQ5woBAtavn4C8vHGw20sxZ06ZFNAwqCEioqbWok1KybqKigqUlZUpfgUGluGppyoRGOiqaRQYCLz6asNsD9AQHMkFBgIxMccVlZXF3BzXLA0gLnPJaSU4V1Q0zBoVFqbB/Y+UDQ35Qg1BkCAEYMGCeDz99Pt46aWXPG58SkRE5A3O+LQB6qrIarfeGoljxzrjzjv/jLPPVvYlc29lATz77EmsXv2i23nE3BxAQGLiQbeeWfJ6OmKujbg0dfBgHDZvTtcYnRM33PAGDhzoifXrJyjekc8gscs6ERE1BwY+bYBZUCBu/Y6N/V3zfXkriz59gMDAKrz2mvIYvWrLKSl7MWjQ5RgyJALx8ecCOFdamqqoqEB5ebn0Wa0JxBEjCpCQUIbIyJPIyxvnts2dzUaJiKg5MfDxE2IrCwAoK1O+d/BgnFtujjyReeLEMMTFdVN8RpyFcu0Gy9HMDbLZnEhLKwTAisxERNQ6MPDxc3qzNXqJzCJxFkp7NxgAuAc2nlRkJiIiagoMfPyYe+2eBo2t1JyV9QYSEsrcjjdrV0FERNSUuKvLj1mdrTEqGqjeDSYuYWkFPURERC2NMz5+zGy2ZsqUKYiPjzetr8MlLCIiaisY+PgxvYRjcbYmNjZW2r2l7vllt1e6nasxAQ9bURARUXNg4NMGWA0KvDnOaLYmJCREUUNIueW9EyZNGmracHTKlCkIDw9HeHi44XhYtZmIiJoDA582QN1pXYsnwYMn5yv7Y++7OhHaqHeXHLupExFRa8LAp42QBzUHD7p6cPXtq2xP4e35rNBKhDbb8g5wCYuIiFoXBj5tzJIlDd3WAwJc7Siysnz/PWJeT3l5ORyOSJw6Fa6ZCC1ueZ8yZQpiY2MV5+ASFhERtTYMfNqQgwcbgh7A9c+5c13tKOQzP/JkZC1mAYl7Xo9YmdkpBT/qystc0iIioraAgU8bsmdPQ9Ajqq939eASAx+zhqai7Oxs3eBHDJrcCxwGQBCcmDYtF4mJB6Wgx+GIxKZNITj/fO+X3oiIiJoDCxi2IX37upa35AIDXY1HReqZHocjEsXFSXA4IhWvW+mGrl3gMAAREdVS0LN161AsWpSDK66IQa9eAp59thJlZWWoqKiwfF1ERETNhTM+bUhCgiunZ+5c10xPYCDw6qvK2Z7y8nLpeL2O61bpFTgU83rUM0JOpw133x2F3357E3Z7leGsEhERUUvgjE8bk5UF7NsHbNjg+qeY2Cwuca1evRqA/vZz9cyPEb12FOJsj9FOL8DarBIREVFz4oxPG5SQ4PpVUVGBsjJXcCGf6QGAkpJEw+3n5eXlUhXm5OQ6xMe7ghv19nOjAodmM0JEREStDQOfNkqdxOxwROLYsSR07lyBoqI+WLPmMrfPyIOSv/2tGB9/PFBzGSwzM1PxOb12FHotL9iri4iIWisGPm2UfBlJncsjCIB6FVMelJhVYa6trbU8DjYoJSKitoSBTxunFcRomTp1JQYN2gXAvApzUJBnfywa26CUiIiouTDwaeO0t5wr2WxOJCYelH42y82Jjo427OVVXl4uJVETERG1JQx82jitIAYQANj++L173o2V3BxuQyciovaIgU8bpw5ilEEPYLMBKSl73T7XmNwcq41H2aCUiIhaGwY+rZyVTuxiELNz5wB8/vkExXtGHdS9zc2JiYkxXAoD2KCUiIhaJwY+rZDYZPS998Jwzz12OJ02BAQIeOopB66++rTmTIrdXoUBA3Zi/fpxurk7Y8eORV5enk/GyKCGiIjaIgY+rYxYn8fhiMSiRTkQBNeylbodxIwZM9w+a5a7I9+t5ar7E4POnSvcZn24REVERO0VA59WRlw+MttyHh4eLi03yXdZGeXurFu3DoBxD68ZM2YgJibG0hIbERFRW8NeXa2UuFtLTt0OIiYmBnFxcYiNjVUcZ7dXITl5v2b+jlkPr+rqajz7bCV69RJw8cVgx3UiImpXGPi0UkYNQh2OSGzaFIKDf5Tm8WRpyqyx6NKlebj77ig4ncoltqeffh8vvfQSgx8iImrTuNTVimktW4nLVM8/H4CAAOC114CsLPNdVpWVlcjNzTUtXmi2xMaO60RE1JYx8Gnl5FvO1ctUTicwd66Ac845gqSkIMTFxVk6n1ECNDuuExFRe8bApw3Rmo2pr7dh8eJ1SE7ej+zsbLdt5uLW+PLycmknV0rKXuTkLNJMgGbHdSIias8Y+LQhZrMx8mWoiooKHDlyBLm5uXA4IlFYmIbNm3MAuO/kUmPHdSIiaq8Y+DQjK1vEjRKVrc7GiLWAAOXWdZEgBGDNmsuQkrJXN6hhx3UiImqPGPg0kyVLgDlzXHk5DUnJ7sdptYOwWqdHJH5WnROkFIDCwjSMG5dvWMyQiIioPWHg0wwOHmwIegAxKRkYP1575kedp1NaGoDi4iQpMLE6G6OVEyRXUJCOiIhTyM/P0CxmSERE1N4w8GkGe/Y0BD2i+npg717zqsiumaKucDpnehyYaOUEyQlCgBT0iD9//LHxEhjbWRARUVvGwKcZ9O3rWt6SBz+BgUCfPu7HyvOAAHGmyFVM0EpgIqfOCQIEADbZEe5Bkbxmz5QpUxRVodlxnYiI2jpWbm4GCQmunJ7AQNfPgYHAq6+6z/YsWQL06oU/WkUAL7zgPlMkr7JsxbBhPyAr6w0ATiiDHgEXXrjRsC1GbGws4uLipF8MeoiIqK3jjE8zycpy5fTs3eua6VEHPVp5QM8/D9hsgCA0HGdUTFBvGaq2NhTuMa4NvXsXo1MnB2v2EBGR32Dg04wSEvRzevTygG666SRefz0C9fU2BAQIePDBUkyZMhbBwcGw2+3SsUbLUEb1f5KT97NmDxER+Q0GPq2EVh6QzeZEWNhruPVWSIEJUIU/drZrVmoG3Gd+zOr/sGYPERH5CwY+rYSYBzR3rmumRys4Udu3rw7bt7sXRBRrAZWWlnpU/4eIiKi9Y+DTioh5QIWFFdi06S3D4GTr1qH4+9+7/lEQUcBTTzlw9dWnpSWvmJgYt07qnNkhIiJ/x8CnlUlIAAIDa7Bjh36A0lCR2bVLy+m04e67o/Dbb2/Cbq/SXQLzFGv2EBFRe8PApxUQO6iLysvLDY/Xqsgsr78jnstq4DJ9+nRER0crXmPNHiIiao8Y+LQweUNRq8y6tIu0+n6pMcAhIiJ/wsCnhRkFJXrNQ612aQfc+34RERH5MwY+rdTWrUPdAht5jy7u0iIiIvIcW1a0Qg3Jy8rmoQ5HpOI4u70Kycn7GfQQERFZxMCnFdJLXu7V65IWGhEREVH7wMCnFRKTl+VsNif27/+ihUZERETUPjDwaYXE5GUx+PG0eSjr7xAREWljcnMTU9foUXM4HJqvGyUvT5kyBbGxsZqf4/Z0IiIifW0q8Pnkk0/w97//Hdu3b0eHDh0wevRofPTRR9L7Bw4cwM0334wNGzagY8eOmDlzJhYuXIigoJa5TG9q9MjptZiIjY1FXFxcY4ZGRETkl9pM4LNq1SrceOONePzxx3HxxRejrq4OO3bskN6vr6/HpZdeiu7du2Pz5s0oKyvDddddh+DgYDz++OMtMmajmR45sXJyeXm51FSUiIiIfK9NBD51dXW47bbb8PTTTyMrK0t6fcCAAdLv169fj507dyI/Px/dunXDOeecg0ceeQT33nsvHn744Vad9xIdHe02g6NXvBBQtrTg0hYREZF1bSLw2bp1K3777TcEBARg6NChOHToEM455xw8/fTTGDRoEACgoKAAZ599Nrp16yZ9bvz48bj55pvx888/Y+jQoZrnPnPmDM6cOSP9fOLEiaa9GANivo9Z8UL1rJCvmpISERG1d21iV9f//vc/AMDDDz+Mv/3tb1i7di06deqEiy66CMeOufpTHTp0SBH0AJB+PnTokO65Fy5cCLvdLv1KTExsoqswVlFRgRUrVlguXihndUmNiIjI37Vo4HPffffBZrMZ/vrll1/gdLq2dc+fPx9Tp05Famoqli5dCpvNhn/961+NGsP9998Ph8Mh/SopKfHFpelyOCJRXJzkFsiIwYtR53W9z1ZWVjbpmImIiNqLFl3quvPOOzFr1izDY3r37o2ysjIAypye0NBQ9O7dGwcOHAAAdO/eHf/9738Vnz18+LD0np7Q0FCEhoZ6M3yPmS1hAfqd10tL4/H229dpfjY3N1dKkGbODxERkb4WDXy6dOmCLl26mB6XmpqK0NBQ7N69GxdccAEAoLa2Fvv27UOvXr0AAOnp6Xjsscdw5MgRdO3aFQCQl5eHqKgoRcDUUvSWsFJS9iqO0+q8npGRj/z8DM3PionPubm50jmY80NERKStTSQ3R0VF4aabbsJDDz2ExMRE9OrVC08//TQA4IorrgAAjBs3DgMGDMC1116Lp556CocOHcLf/vY3zJs3r9lmdNTkO8mMlrBCQkJw5MgR6XV18UKjz2rV+WHODxERkbY2EfgAwNNPP42goCBce+21OH36NNLS0vDll1+iU6dOAIDAwECsXbsWN998M9LT0xEREYGZM2fi73//e4uNOSYmBtnZ2aipqUFpaQDeeUeA02mT3g8MFHDnnX8G4FTM2ADuxQu1lr86dz7W5NdARETUntgEQRBaehCtyYkTJ2C32+FwOBAVFeXTcy9ZAsydC9TXA4GBwKuvAllZQFlZGV577TXDz8rzg1ycGDs2H/HxZW61fubMmcPKzkRE5FesPr/bzIxPe5CVBQweDHzzDXDBBcC552ofp1W8MCVlL5QhagDy8sYCsOkmShMREZESA59mtGQJMGcO4HQCAQHAa6+5giE5vZ1fx47FwL36gGvZTCvZmYiIiNy1iQKGbV1FRQW2bDmMOXME/FGSCE4nMHeugC1bDuPgwYMA9Hd+ORyR0jZ3PWKyMxEREelj4NPExA7tixd/pkhsBoD6ehsWL16HTz/9FIDxzi9xm3tD8KNMzWKyMxERkTkudTUxcWu5XmFCebBidsxf/hKKlJRFOHasM0pL46XaPuKSmLjM1ZobshIREbUkBj5NTGw8qlWYcNKktQCA4uIkKZF50qS1WLPmMrgm45QBTXx8PObPHy4FU6WlR7FvXxCSkuoQH38ugHNZuZmIiMgAA58mVltbK/1eXZiwqKgPFi3KUVRoDgv7HTYbIAiATbkyhqCgIEVQExcHpKY215UQERG1fQx8mplYmFArkdm1PR3Q260VHR3dMoMmIiJqJ5jc3EK0EpldAY9ymoe7tYiIiHyHgU8LMdueLuJuLSIiIt9h4NNC7PYqZGTkQ70t3cX1GndrERER+RZzfJpQRUUFqqr0KymPHFkAAMjLy4AyBrUBcCIr6w0kJJRhypQpiI+P524tIiKiRmLg00TEwoUirf5bgCv4sdsdWLnyCtUZAlBb65rhiY2NZdBDRETkAwx8mohYawfQ778lSkwsMSxcyCUuIiIi32COTxMz6r8lUrejkOf2ZGZmcraHiIjIRzjj08TM+m+J1MUNxffsdnuzjpeIiKg9Y+DTxKz06BKJxQ2JiIioaXCpq4npLWMBrh5d8iUvIiIialqc8WkGZj261MnORERE1DQY+DQTox5dH398Gbp2PYTa2lC37e7c0UVEROQ7DHyaiF7Aopfs/MYbNwAIQECAgKeecuDqq08jJCSEO7qIiIh8yCYIglbPBL914sQJ2O12OBwOREVFNepcFRUVqKmpQXl5OVavXg3Atb1dXOZqIEDenDQwENi3D0hIaNTXExER+Q2rz28mNzehmJgYxMXFITY2VnpNK9lZ3ZG9vh7Yu7c5R0pEROQfuNTVAuTJzsHBNViy5AbFDFBgINCnTwsOkIiIqJ3ijE8z0Mr3sdurkJy8HwkJZYoZoMBA4NVXucxFRETUFJjjo+LLHB85Md8HAEpLA1BcHITk5DrEx7sCnvLyDqio6IQ+fRj0EBERecrq85tLXc1E3J21ZAkwZw7gdAIBAcBrrwFZWUBcXAsPkIiIyA9wqasZHTzYEPQArn/Onet6nYiIiJoeA59mtGdPQ9Aj4g4uIiKi5sPApxn17eta3pLjDi4iIqLmw8CnGSUkuHJ6AgNdP3MHFxERUfNicnMzy8oCxo93LW9xBxcREVHzYuDTAhISGPAQERG1BC51ERERkd9g4ENERER+g4EPERER+Q0GPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkN9upSEQQBAHDixIkWHgkRERFZJT63xee4HgY+KlVVVQCAxMTEFh4JEREReaqqqgp2u133fZtgFhr5GafTidLSUkRGRsJms3l9nhMnTiAxMRElJSWIiory4QjbDt4DF94H3gOA9wDgPRDxPjTNPRAEAVVVVYiPj0dAgH4mD2d8VAICApCQkOCz80VFRfntH2wR74EL7wPvAcB7APAeiHgffH8PjGZ6RExuJiIiIr/BwIeIiIj8BgOfJhIaGoqHHnoIoaGhLT2UFsN74ML7wHsA8B4AvAci3oeWvQdMbiYiIiK/wRkfIiIi8hsMfIiIiMhvMPAhIiIiv8HAh4iIiPwGAx8PvPzyyxg8eLBUcCk9PR3r1q2T3v/9998xb948xMTEoGPHjpg6dSoOHz6sOMeBAwdw6aWXIjw8HF27dsXdd9+Nurq65r4Un3niiSdgs9mQk5MjveYP9+Hhhx+GzWZT/Orfv7/0vj/cAwD47bffMGPGDMTExCAsLAxnn302vv/+e+l9QRDw4IMPIi4uDmFhYcjIyMCePXsU5zh27BiuueYaREVFITo6GllZWTh58mRzX4pXkpKS3P4c2Gw2zJs3D4B//Dmor6/HAw88gOTkZISFhSElJQWPPPKIol9Se/9zALjaJOTk5KBXr14ICwvDiBEj8N1330nvt8d78J///AeTJk1CfHw8bDYbPvroI8X7vrrm7du348ILL0SHDh2QmJiIp556qnEDF8iyNWvWCJ988onw66+/Crt37xb++te/CsHBwcKOHTsEQRCEm266SUhMTBS++OIL4fvvvxfOP/98YcSIEdLn6+rqhEGDBgkZGRnCDz/8IHz66adCbGyscP/997fUJTXKf//7XyEpKUkYPHiwcNttt0mv+8N9eOihh4SBAwcKZWVl0q+jR49K7/vDPTh27JjQq1cvYdasWUJhYaHwv//9T/j888+FvXv3Ssc88cQTgt1uFz766CPhxx9/FCZPniwkJycLp0+flo6ZMGGCMGTIEOHbb78VNm7cKPTp00e46qqrWuKSPHbkyBHFn4G8vDwBgLBhwwZBEPzjz8Fjjz0mxMTECGvXrhWKi4uFf/3rX0LHjh2FF154QTqmvf85EARBmD59ujBgwADh66+/Fvbs2SM89NBDQlRUlHDw4EFBENrnPfj000+F+fPnC6tXrxYACB9++KHifV9cs8PhELp16yZcc801wo4dO4T3339fCAsLE1599VWvx83Ap5E6deokvPHGG0JlZaUQHBws/Otf/5Le27VrlwBAKCgoEATB9YckICBAOHTokHTMyy+/LERFRQlnzpxp9rE3RlVVldC3b18hLy9PGD16tBT4+Mt9eOihh4QhQ4Zovucv9+Dee+8VLrjgAt33nU6n0L17d+Hpp5+WXqusrBRCQ0OF999/XxAEQdi5c6cAQPjuu++kY9atWyfYbDbht99+a7rBN5HbbrtNSElJEZxOp9/8Obj00kuF66+/XvHalClThGuuuUYQBP/4c1BdXS0EBgYKa9euVbw+bNgwYf78+X5xD9SBj6+u+Z///KfQqVMnxX8P9957r9CvXz+vx8qlLi/V19fjgw8+wKlTp5Ceno4tW7agtrYWGRkZ0jH9+/dHz549UVBQAAAoKCjA2WefjW7duknHjB8/HidOnMDPP//c7NfQGPPmzcOll16quF4AfnUf9uzZg/j4ePTu3RvXXHMNDhw4AMB/7sGaNWswfPhwXHHFFejatSuGDh2K119/XXq/uLgYhw4dUtwHu92OtLQ0xX2Ijo7G8OHDpWMyMjIQEBCAwsLC5rsYH6ipqcHy5ctx/fXXw2az+c2fgxEjRuCLL77Ar7/+CgD48ccf8c0332DixIkA/OPPQV1dHerr69GhQwfF62FhYfjmm2/84h6o+eqaCwoKMGrUKISEhEjHjB8/Hrt378bx48e9GhublHrop59+Qnp6On7//Xd07NgRH374IQYMGIBt27YhJCQE0dHRiuO7deuGQ4cOAQAOHTqk+B+c+L74XlvxwQcfYOvWrYr1a9GhQ4f84j6kpaVh2bJl6NevH8rKyrBgwQJceOGF2LFjh9/cg//97394+eWXcccdd+Cvf/0rvvvuO9x6660ICQnBzJkzpevQuk75fejatavi/aCgIHTu3LnN3AfRRx99hMrKSsyaNQuA//y3cN999+HEiRPo378/AgMDUV9fj8ceewzXXHMNAPjFn4PIyEikp6fjkUcewVlnnYVu3brh/fffR0FBAfr06eMX90DNV9d86NAhJCcnu51DfK9Tp04ej42Bj4f69euHbdu2weFwYOXKlZg5cya+/vrrlh5WsykpKcFtt92GvLw8t7/d+BPxb7MAMHjwYKSlpaFXr17Izc1FWFhYC46s+TidTgwfPhyPP/44AGDo0KHYsWMHXnnlFcycObOFR9f8lixZgokTJyI+Pr6lh9KscnNz8e677+K9997DwIEDsW3bNuTk5CA+Pt6v/hy88847uP7669GjRw8EBgZi2LBhuOqqq7Bly5aWHhqpcKnLQyEhIejTpw9SU1OxcOFCDBkyBC+88AK6d++OmpoaVFZWKo4/fPgwunfvDgDo3r27244O8WfxmNZuy5YtOHLkCIYNG4agoCAEBQXh66+/xosvvoigoCB069bNL+6DWnR0NP70pz9h7969fvNnIS4uDgMGDFC8dtZZZ0lLfuJ1aF2n/D4cOXJE8X5dXR2OHTvWZu4DAOzfvx/5+fm44YYbpNf85c/B3Xffjfvuuw9XXnklzj77bFx77bW4/fbbsXDhQgD+8+cgJSUFX3/9NU6ePImSkhL897//RW1tLXr37u0390DOV9fcFP+NMPBpJKfTiTNnziA1NRXBwcH44osvpPd2796NAwcOID09HQCQnp6On376SfEvOi8vD1FRUW4PkNbqkksuwU8//YRt27ZJv4YPH45rrrlG+r0/3Ae1kydPoqioCHFxcX7zZ2HkyJHYvXu34rVff/0VvXr1AgAkJyeje/fuivtw4sQJFBYWKu5DZWWl4m/FX375JZxOJ9LS0prhKnxj6dKl6Nq1Ky699FLpNX/5c1BdXY2AAOWjJDAwEE6nE4B//TkAgIiICMTFxeH48eP4/PPP8ec//9nv7gHgu3/v6enp+M9//oPa2lrpmLy8PPTr18+rZS4A3M7uifvuu0/4+uuvheLiYmH79u3CfffdJ9hsNmH9+vWCILi2rvbs2VP48ssvhe+//15IT08X0tPTpc+LW1fHjRsnbNu2Tfjss8+ELl26tKmtq1rku7oEwT/uw5133il89dVXQnFxsbBp0yYhIyNDiI2NFY4cOSIIgn/cg//+979CUFCQ8Nhjjwl79uwR3n33XSE8PFxYvny5dMwTTzwhREdHC//+97+F7du3C3/+8581t7MOHTpUKCwsFL755huhb9++rXoLr1p9fb3Qs2dP4d5773V7zx/+HMycOVPo0aOHtJ199erVQmxsrHDPPfdIx/jDn4PPPvtMWLdunfC///1PWL9+vTBkyBAhLS1NqKmpEQShfd6Dqqoq4YcffhB++OEHAYDw3HPPCT/88IOwf/9+QRB8c82VlZVCt27dhGuvvVbYsWOH8MEHHwjh4eHczt5crr/+eqFXr15CSEiI0KVLF+GSSy6Rgh5BEITTp08Lf/nLX4ROnToJ4eHhwv/93/8JZWVlinPs27dPmDhxohAWFibExsYKd955p1BbW9vcl+JT6sDHH+5DZmamEBcXJ4SEhAg9evQQMjMzFfVr/OEeCIIgfPzxx8KgQYOE0NBQoX///sJrr72meN/pdAoPPPCA0K1bNyE0NFS45JJLhN27dyuOqaioEK666iqhY8eOQlRUlDB79myhqqqqOS+jUT7//HMBgNt1CYJ//Dk4ceKEcNtttwk9e/YUOnToIPTu3VuYP3++YvuxP/w5WLFihdC7d28hJCRE6N69uzBv3jyhsrJSer893oMNGzYIANx+zZw5UxAE313zjz/+KFxwwQVCaGio0KNHD+GJJ55o1LhtgiArr0lERETUjjHHh4iIiPwGAx8iIiLyGwx8iIiIyG8w8CEiIiK/wcCHiIiI/AYDHyIiIvIbDHyIiIjIbzDwISIiIr/BwIeIGu2iiy5CTk5OSw+jyT388MM455xzWnoYRNQIDHyIyO/V1NQ06/cJgoC6urpm/U4icmHgQ0SNMmvWLHz99dd44YUXYLPZYLPZsG/fPuzYsQMTJ05Ex44d0a1bN1x77bUoLy+XPnfRRRfhlltuQU5ODjp16oRu3brh9ddfx6lTpzB79mxERkaiT58+WLdunfSZr776CjabDZ988gkGDx6MDh064Pzzz8eOHTsUY/rmm29w4YUXIiwsDImJibj11ltx6tQp6f2kpCQ88sgjuO666xAVFYU5c+YAAO6991786U9/Qnh4OHr37o0HHnhA6gq9bNkyLFiwAD/++KN0ncuWLcO+fftgs9mwbds26fyVlZWw2Wz46quvFONet24dUlNTERoaim+++QZOpxMLFy5EcnIywsLCMGTIEKxcudLX/4qISIaBDxE1ygsvvID09HTceOONKCsrQ1lZGSIjI3HxxRdj6NCh+P777/HZZ5/h8OHDmD59uuKzb731FmJjY/Hf//4Xt9xyC26++WZcccUVGDFiBLZu3Ypx48bh2muvRXV1teJzd999N5599ll899136NKlCyZNmiQFKEVFRZgwYQKmTp2K7du3Y8WKFfjmm2+QnZ2tOMczzzyDIUOG4IcffsADDzwAAIiMjMSyZcuwc+dOvPDCC3j99dfx/PPPAwAyMzNx5513YuDAgdJ1ZmZmenSv7rvvPjzxxBPYtWsXBg8ejIULF+Ltt9/GK6+8gp9//hm33347ZsyYga+//tqj8xKRBxrV4pSISBCE0aNHC7fddpv08yOPPCKMGzdOcUxJSYmii/no0aOFCy64QHq/rq5OiIiIEK699lrptbKyMgGAUFBQIAhCQzfoDz74QDqmoqJCCAsLE1asWCEIgiBkZWUJc+bMUXz3xo0bhYCAAOH06dOCIAhCr169hMsvv9z0up5++mkhNTVV+vmhhx4ShgwZojimuLhYACD88MMP0mvHjx8XAAgbNmxQjPujjz6Sjvn999+F8PBwYfPmzYrzZWVlCVdddZXp2IjIO0EtGXQRUfv0448/YsOGDejYsaPbe0VFRfjTn/4EABg8eLD0emBgIGJiYnD22WdLr3Xr1g0AcOTIEcU50tPTpd937twZ/fr1w65du6Tv3r59O959913pGEEQ4HQ6UVxcjLPOOgsAMHz4cLexrVixAi+++CKKiopw8uRJ1NXVISoqyuPr1yP/zr1796K6uhpjx45VHFNTU4OhQ4f67DuJSImBDxH53MmTJzFp0iQ8+eSTbu/FxcVJvw8ODla8Z7PZFK/ZbDYAgNPp9Oi7586di1tvvdXtvZ49e0q/j4iIULxXUFCAa665BgsWLMD48eNht9vxwQcf4NlnnzX8voAAV8aAIAjSa+Kym5r8O0+ePAkA+OSTT9CjRw/FcaGhoYbfSUTeY+BDRI0WEhKC+vp66edhw4Zh1apVSEpKQlCQ7/838+2330pBzPHjx/Hrr79KMznDhg3Dzp070adPH4/OuXnzZvTq1Qvz58+XXtu/f7/iGPV1AkCXLl0AAGVlZdJMjTzRWc+AAQMQGhqKAwcOYPTo0R6NlYi8x+RmImq0pKQkFBYWYt++fSgvL8e8efNw7NgxXHXVVfjuu+9QVFSEzz//HLNnz3YLHLzx97//HV988QV27NiBWbNmITY2FpdffjkA186szZs3Izs7G9u2bcOePXvw73//2y25Wa1v3744cOAAPvjgAxQVFeHFF1/Ehx9+6HadxcXF2LZtG8rLy3HmzBmEhYXh/PPPl5KWv/76a/ztb38zvYbIyEjcdddduP322/HWW2+hqKgIW7duxeLFi/HWW295fW+IyBgDHyJqtLvuuguBgYEYMGAAunTpgpqaGmzatAn19fUYN24czj77bOTk5CA6OlpaGmqMJ554ArfddhtSU1Nx6NAhfPzxxwgJCQHgyhv6+uuv8euvv+LCCy/E0KFD8eCDDyI+Pt7wnJMnT8btt9+O7OxsnHPOOdi8ebO020s0depUTJgwAWPGjEGXLl3w/vvvAwDefPNN1NXVITU1FTk5OXj00UctXccjjzyCBx54AAsXLsRZZ52FCRMm4JNPPkFycrIXd4WIrLAJ8oVpIqJW7KuvvsKYMWNw/PhxREdHt/RwiKgN4owPERER+Q0GPkREROQ3uNRFREREfoMzPkREROQ3GPgQERGR32DgQ0RERH6DgQ8RERH5DQY+RERE5DcY+BAREZHfYOBDREREfoOBDxEREfkNBj5ERETkN/4/oCIjCbnlO2gAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAHHCAYAAADtZG+rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrfUlEQVR4nO3dd1QU198G8GfpTcCCgAqKFTX+xBIVoiYaEjTWRBNbVCIaNZbYARt2EXs30SjG3gUrKtYoEiRgBWwoFkAiUkTp9/3Dl4kjqKDA7sLzOWePzp27s9/dEfZxZu4dhRBCgIiIiIhUmoayCyAiIiKi92NoIyIiIlIDDG1EREREaoChjYiIiEgNMLQRERERqQGGNiIiIiI1wNBGREREpAYY2oiIiIjUAEMbERERkRpgaCMi+kgKhQLTpk1TdhkSZ2dnVKtWTdllEFEhY2gjohLJ29sbCoVCeujp6aF27doYPnw4YmNji/S1L1y4gGnTpiEhIaFQt/vFF1/I3lO5cuXw6aefYv369cjOzi6U15gzZw72799fKNsiosKlpewCiIiK0owZM2BjY4PU1FT89ddfWL16NQ4fPoxr167BwMCgUF7j5cuX0NL679fphQsXMH36dDg7O8PU1LRQXiNHlSpVMHfuXABAXFwc/vzzT7i4uODmzZvw9PT86O3PmTMH3bt3R9euXT96W0RUuBjaiKhEa9++PZo2bQoAGDhwIMqXL49FixbBx8cHvXr1+uDtZmdnIz09HXp6etDT0yusct/LxMQEP/74o7Q8ePBg1KlTBytWrMDMmTOhra1dbLUQUfHi6VEiKlXatm0LAIiMjAQALFiwAA4ODihfvjz09fXRpEkT7N69O9fzFAoFhg8fji1btqB+/frQ1dXF0aNHpXU517RNmzYN48ePBwDY2NhIpzLv3buHzz//HA0bNsyzrjp16sDJyanA78fAwAAtWrRASkoK4uLi3tovJSUFY8eOhZWVFXR1dVGnTh0sWLAAQgjZe0xJScHGjRulup2dnQtcExEVDR5pI6JS5c6dOwCA8uXLAwCWLl2Kzp07o0+fPkhPT8f27dvx/fff4+DBg+jQoYPsuSdPnsTOnTsxfPhwVKhQIc+L/b/77jvcvHkT27Ztw+LFi1GhQgUAgJmZGfr27YtBgwbh2rVr+OSTT6TnBAUF4ebNm5g8efIHvae7d+9CU1PzradihRDo3LkzTp06BRcXF9jZ2cHPzw/jx4/Ho0ePsHjxYgDApk2bMHDgQDRr1gw///wzAKBGjRofVBMRFQFBRFQCbdiwQQAQJ06cEHFxceLBgwdi+/btonz58kJfX188fPhQCCHEixcvZM9LT08Xn3zyiWjbtq2sHYDQ0NAQ169fz/VaAISHh4e0PH/+fAFAREZGyvolJCQIPT094erqKmsfOXKkMDQ0FM+fP3/ne/r888+Fra2tiIuLE3FxcSIsLEyMHDlSABCdOnWS+vXv319UrVpVWt6/f78AIGbNmiXbXvfu3YVCoRC3b9+W2gwNDUX//v3fWQcRKQdPjxJRiebo6AgzMzNYWVmhZ8+eMDIywr59+1C5cmUAgL6+vtT32bNnSExMRKtWrfDPP//k2tbnn3+OevXqfXAtJiYm6NKlC7Zt2yadlszKysKOHTvQtWtXGBoavncb4eHhMDMzg5mZGerWrYvly5ejQ4cOWL9+/Vufc/jwYWhqamLkyJGy9rFjx0IIgSNHjnzweyKi4sPTo0RUoq1cuRK1a9eGlpYWzM3NUadOHWho/Pf/1YMHD2LWrFkIDQ1FWlqa1K5QKHJty8bG5qPr6devH3bs2IFz586hdevWOHHiBGJjY9G3b998Pb9atWpYu3atNI1JrVq1ULFixXc+5/79+6hUqRLKlCkja69bt660nohUH0MbEZVozZo1k0aPvuncuXPo3LkzWrdujVWrVsHS0hLa2trYsGEDtm7dmqv/60flPpSTkxPMzc2xefNmtG7dGps3b4aFhQUcHR3z9XxDQ8N89yWikoWnR4mo1NqzZw/09PTg5+eHAQMGoH379oUSiPI6SpdDU1MTvXv3xu7du/Hs2TPs378fvXr1gqam5ke/7ttUrVoVjx8/RnJysqw9PDxcWp/jXbUTkXIxtBFRqaWpqQmFQoGsrCyp7d69ex99R4Cca9PedkeEvn374tmzZxg8eDCeP38um3etKHzzzTfIysrCihUrZO2LFy+GQqFA+/btpTZDQ8NCv5MDERUOnh4lolKrQ4cOWLRoEdq1a4fevXvjyZMnWLlyJWrWrIkrV6588HabNGkCAJg0aRJ69uwJbW1tdOrUSQpzjRo1wieffIJdu3ahbt26aNy4caG8n7fp1KkT2rRpg0mTJuHevXto2LAhjh07Bh8fH4waNUo2rUeTJk1w4sQJLFq0CJUqVYKNjQ2aN29epPURUf7wSBsRlVpt27bFH3/8gZiYGIwaNQrbtm3DvHnz8O23337Udj/99FPMnDkTly9fhrOzM3r16pVr4tt+/foBQL4HIHwMDQ0N+Pr6YtSoUTh48CBGjRqFGzduYP78+Vi0aJGs76JFi9CkSRNMnjwZvXr1wurVq4u8PiLKH4UQr02HTURExWLp0qUYPXo07t27B2tra2WXQ0RqgKGNiKiYCSHQsGFDlC9fHqdOnVJ2OUSkJnhNGxFRMUlJSYGvry9OnTqFq1evwsfHR9klEZEa4ZE2IqJicu/ePdjY2MDU1BS//PILZs+ereySiEiNMLQRERERqQGOHiUiIiJSAwxtRERERGqAAxFUWHZ2Nh4/fowyZcrw1jJERERqQgiB5ORkVKpUCRoahXd8jKFNhT1+/BhWVlbKLoOIiIg+wIMHD1ClSpVC2x5DmworU6YMgFc73djYWMnVEBERUX4kJSXByspK+h4vLAxtKiznlKixsTFDGxERkZop7EubOBCBiIiISA0wtBERERGpAYY2IiIiIjXAa9rUXFZWFjIyMpRdBhUDbW1taGpqKrsMIiJSEoY2NSWEQExMDBISEpRdChUjU1NTWFhYcN4+IqJSiKFNTeUEtooVK8LAwIBf4iWcEAIvXrzAkydPAACWlpZKroiIiIobQ5saysrKkgJb+fLllV0OFRN9fX0AwJMnT1CxYkWeKiUiKmU4EEEN5VzDZmBgoORKqLjl7HNex0hEVPowtKkxnhItfbjPiYhKL4Y2IiIiIjWgNqGtc+fOsLa2hp6eHiwtLdG3b188fvxY1kcIgQULFqB27drQ1dVF5cqVMXv2bFmf06dPo3HjxtDV1UXNmjXh7e2d67VWrlyJatWqQU9PD82bN8fff/8tW5+amophw4ahfPnyMDIyQrdu3RAbGyvrExUVhQ4dOsDAwAAVK1bE+PHjkZmZWTgfBhEREZU6ahPa2rRpg507dyIiIgJ79uzBnTt30L17d1mfX3/9FevWrcOCBQsQHh4OX19fNGvWTFofGRmJDh06oE2bNggNDcWoUaMwcOBA+Pn5SX127NiBMWPGwMPDA//88w8aNmwIJycnadQeAIwePRoHDhzArl27cObMGTx+/BjfffedtD4rKwsdOnRAeno6Lly4gI0bN8Lb2xtTp04twk9IPTg7O0OhUEChUEBbWxvm5ub46quvsH79emRnZ+d7O97e3jA1NS26QomIiFSNUFM+Pj5CoVCI9PR0IYQQN27cEFpaWiI8PPytz5kwYYKoX7++rK1Hjx7CyclJWm7WrJkYNmyYtJyVlSUqVaok5s6dK4QQIiEhQWhra4tdu3ZJfcLCwgQAERAQIIQQ4vDhw0JDQ0PExMRIfVavXi2MjY1FWlpavt9jYmKiACASExNl7S9fvhQ3btwQL1++zPe2VEX//v1Fu3btRHR0tHj48KEIDg4Ws2fPFkZGRqJ9+/YiIyMjX9vZsGGDMDExKdpiVZA673siotLibd/fH0ttjrS9Lj4+Hlu2bIGDgwO0tbUBAAcOHED16tVx8OBB2NjYoFq1ahg4cCDi4+Ol5wUEBMDR0VG2LScnJwQEBAAA0tPTERwcLOujoaEBR0dHqU9wcDAyMjJkfWxtbWFtbS31CQgIQIMGDWBubi57naSkJFy/fv2t7ystLQ1JSUmyR0mkq6sLCwsLVK5cGY0bN8bEiRPh4+ODI0eOSKerFy1ahAYNGsDQ0BBWVlb45Zdf8Pz5cwCvTnH/9NNPSExMlI7aTZs2DQCwadMmNG3aFGXKlIGFhQV69+4tO0pKREQEAL6+gIPDqz/VhVqFNldXVxgaGqJ8+fKIioqCj4+PtO7u3bu4f/8+du3ahT///BPe3t4IDg6WnUKNiYmRBSkAMDc3R1JSEl6+fIl///0XWVlZefaJiYmRtqGjo5Pr1NybffLaRs66t5k7dy5MTEykh5WVVT4/mVfX86WnpyvlIYTId51v07ZtWzRs2BB79+4F8CosL1u2DNevX8fGjRtx8uRJTJgwAQDg4OCAJUuWwNjYGNHR0YiOjsa4ceMAvJoKY+bMmbh8+TL279+Pe/fuwdnZ+aPrIyKiksXTEwgIePWnulDq5Lpubm6YN2/eO/uEhYXB1tYWADB+/Hi4uLjg/v37mD59Ovr164eDBw9CoVAgOzsbaWlp+PPPP1G7dm0AwB9//IEmTZogIiICderUKfL387Hc3d0xZswYaTkpKSnfwS0jIwNz584tqtLeyd3dHTo6Oh+9HVtbW1y5cgUAMGrUKKm9WrVqmDVrFoYMGYJVq1ZBR0cHJiYmUCgUsLCwkG1jwIAB0t+rV6+OZcuW4dNPP8Xz589hZGT00TUSEZF68/UF5s9Pw1df+aJKFRv8+GNTZZeUb0oNbWPHjn3vUZDq1atLf69QoQIqVKiA2rVro27durCyssLFixdhb28PS0tLaGlpSYENAOrWrQvg1UjOOnXqwMLCItcoz9jYWBgbG0NfXx+amprQ1NTMs09OOLCwsEB6ejoSEhJkR9ve7PPmiNOcbb4ZMl6nq6sLXV3dd34eJZkQQpqH7MSJE5g7dy7Cw8ORlJSEzMxMpKam4sWLF++cVDg4OBjTpk3D5cuX8ezZM2lwQ1RUFOrVq1cs74OIiFTX0qURcHTcDgCoX/8GOnVqAkA95sBUamgzMzODmZnZBz0358s4LS0NAPDZZ58hMzMTd+7cQY0aNQAAN2/eBABUrVoVAGBvb4/Dhw/LtnP8+HHY29sDAHR0dNCkSRP4+/uja9eu0uv4+/tj+PDhAIAmTZpAW1sb/v7+6NatGwAgIiICUVFR0nbs7e0xe/Zs6XZDOa9jbGxcZMFBW1sb7u7uRbLt/Lx2YQgLC4ONjQ3u3buHjh07YujQoZg9ezbKlSuHv/76Cy4uLkhPT39raEtJSYGTkxOcnJywZcsWmJmZISoqCk5OTkhPTy+UGomISD35+AicPLkRrVvfl9patWqlVpOWq8W9RwMDAxEUFISWLVuibNmyuHPnDqZMmYIaNWpIQcnR0RGNGzfGgAEDsGTJEmRnZ2PYsGH46quvpKNvQ4YMwYoVKzBhwgQMGDAAJ0+exM6dO3Ho0CHptcaMGYP+/fujadOmaNasGZYsWYKUlBT89NNPAAATExO4uLhgzJgxKFeuHIyNjTFixAjY29ujRYsWAICvv/4a9erVQ9++feHl5YWYmBhMnjwZw4YNK7IjaQqFolBOUSrLyZMncfXqVYwePRrBwcHIzs7GwoULoaHx6rLLnTt3yvrr6OggKytL1hYeHo6nT5/C09NTOq186dKl4nkDRESkshITExEaugTlyv3XVqfOz2jb1lJ5RX0AtQhtBgYG2Lt3Lzw8PJCSkgJLS0u0a9cOkydPlkKQhoYGDhw4gBEjRqB169YwNDRE+/btsXDhQmk7NjY2OHToEEaPHo2lS5eiSpUqWLduHZycnKQ+PXr0QFxcHKZOnYqYmBjY2dnh6NGjsoEFixcvhoaGBrp164a0tDQ4OTlh1apV0npNTU0cPHgQQ4cOhb29PQwNDdG/f3/MmDGjGD4t1ZeWloaYmBhkZWUhNjYWR48exdy5c9GxY0f069cP165dQ0ZGBpYvX45OnTrh/PnzWLNmjWwb1apVw/Pnz+Hv74+GDRvCwMAA1tbW0NHRwfLlyzFkyBBcu3YNM2fOVNK7JCIiVRAYGIijR49Ky0LoYerU8dJBAXWiEIUx9I+KRFJSEkxMTJCYmAhjY2OpPTU1FZGRkbCxsYGenp4SKyw4Z2dnbNy4EQCgpaWFsmXLomHDhujduzf69+8v/RAtXrwY8+fPR0JCAlq3bo0+ffqgX79+ePbsmXQt4dChQ7Fr1y48ffoUHh4emDZtGrZt24aJEyciOjoajRs3hru7Ozp37oyQkBDY2dkp6V0XHnXe90RExWnSpGxkZc2Hvn6q1Hb0qBMUiha4cKFoX/tt398fi6FNhZXE0EYfh/ueiOj9tm+PRkTE77I2X99RSEkxgZcX0Llz0b5+UYU2tTg9SkRERJQfR44cQUTEfzM4pKRYY948Z3h4qM+Ag7dhaCMiIiK1l5aWBs83Zsrdtq0HypWzhRoNEH0nhjYiIiJSazdv3sS2bdtkbf/7nyv8/PTg5qakoooAQxsRERGpJSEEFi3ahOfPI6W2xo0bo1OnTgCAb79VVmVFg6GNiIiI1E5SUhIWL14saxs4cCAqV66spIqKnvpNUkJERESlWlBQkCywpadrY8eOySU6sAE80kZERERqIjs7G3PnLkRm5guprVKlr7BhgwPeGINQIjG0ERERkcqLiYnBb7/9Jmv7/fdf8eiRKQYNUlJRxYyhjYiIiFSan58fLl68KC0/fFgZf/zhAnf3EjKXRz4xtFGJ5OzsjISEBOzfvx8A8MUXX8DOzg5Lliz54G0WxjaIiCj/0tPTMXfuXFnbjh0/ICKiLvbvL/o7G6gahjYqVq/fe1RbWxvW1tbo168fJk6cCC2tovvnuHfvXmhra+er7+nTp9GmTRvZfU4Lug0iIvo4t2/fxpYtW2Rtnp6uAF7NvVbaAhvA0EZK0K5dO2zYsAFpaWk4fPgwhg0bBm1tbbi7u8v6paenQ0dHp1Bes1y5ciqxDSIier/Nmzfjzp070nJWlh0WL+6CMWOA2bOVWJiSccoPKna6urqwsLBA1apVMXToUDg6OsLX1xfOzs7o2rUrZs+ejUqVKqFOnToAgAcPHuCHH36AqakpypUrhy5duuDevXvS9rKysjBmzBiYmpqifPnymDBhAoQQstf84osvMGrUKGk5LS0Nrq6usLKygq6uLmrWrIk//vgD9+7dQ5s2bQAAZcuWhUKhgLOzc57bePbsGfr164eyZcvCwMAA7du3x61bt6T13t7eMDU1hZ+fH+rWrQsjIyO0a9cO0dHRUp/Tp0+jWbNmMDQ0hKmpKT777DPcv3+/kD5pIiL1kpycjOnTp8sC2+bNLpgxowuSk0t3YAMY2kgF6OvrIz09HQDg7++PiIgIHD9+HAcPHkRGRgacnJxQpkwZnDt3DufPn5fCT85zFi5cCG9vb6xfvx5//fUX4uPjsW/fvne+Zr9+/bBt2zYsW7YMYWFh+O2332BkZAQrKyvs2bMHABAREYHo6GgsXbo0z204Ozvj0qVL8PX1RUBAAIQQ+Oabb5CRkSH1efHiBRYsWIBNmzbh7NmziIqKwrhx4wAAmZmZ6Nq1Kz7//HNcuXIFAQEB+Pnnn6EoKTfJIyIqgODgYCxatEhazsrSwKxZk/HDD1WUWJVq4elRUhohBPz9/eHn54cRI0YgLi4OhoaGWLdunXRadPPmzcjOzsa6deukMLNhwwaYmpri9OnT+Prrr7FkyRK4u7vju+++AwCsWbMGfn5+b33dmzdvYufOnTh+/DgcHR0BANWrV5fW55wGrVixouyattfdunULvr6+OH/+PBwcHAAAW7ZsgZWVFfbv34/vv/8eAJCRkYE1a9agRo0aAIDhw4djxowZAF7N5p2YmIiOHTtK6+vWrVvwD5KISI1lZ2djyZIlSE5OltoqVXLEhg2fYc+e0nnt2tvwSBvB1xdwcHj1Z3E4ePAgjIyMoKenh/bt26NHjx6YNm0aAKBBgway69guX76M27dvo0yZMjAyMoKRkRHKlSuH1NRU3LlzB4mJiYiOjkbz5s2l52hpaaFp06Zvff3Q0FBoamri888//+D3EBYWBi0tLdnrli9fHnXq1EFYWJjUZmBgIAUyALC0tMSTJ08AvAqHzs7OcHJyQqdOnbB06VLZqVMiopIuNjYWM2fOlAW2kSNHYtCgz3DhAgPbmxjaCJ6eQEAAim026TZt2iA0NBS3bt3Cy5cvsXHjRhgaGgKA9GeO58+fo0mTJggNDZU9bt68id69e3/Q6+vr63/0e8ivN0ebKhQK2fV2GzZsQEBAABwcHLBjxw7Url1bNhcREVFJdfz4caxZs0ZafvzYEn5+U1G2bFklVqXaGNoIbm6Avf2rP4uDoaEhatasCWtr6/dO89G4cWPcunULFStWRM2aNWUPExMTmJiYwNLSEoGBgdJzMjMzERwc/NZtNmjQANnZ2Thz5kye63OO9GVlZb11G3Xr1kVmZqbsdZ8+fYqIiAjUq1fvne/pTY0aNYK7uzsuXLiATz75BFu3bi3Q84mI1El6ejqmT5+OCxcuSG27dnXHunU/w82N1/S+C0MboXNnqOxh6D59+qBChQro0qULzp07h8jISJw+fRojR47Ew4cPAQC//vorPD09sX//foSHh+OXX35BQkLCW7dZrVo19O/fHwMGDMD+/fulbe7cuRMAULVqVSgUChw8eBBxcXF4/vx5rm3UqlULXbp0waBBg/DXX3/h8uXL+PHHH1G5cmV06dIlX+8tMjIS7u7uCAgIwP3793Hs2DHcunWL17URUYl1586dXJPlzps3AWFh9Uvt3GsFwdBGKs3AwABnz56FtbU1vvvuO9StWxcuLi5ITU2FsbExAGDs2LHo27cv+vfvD3t7e5QpUwbffvvtO7e7evVqdO/eHb/88gtsbW0xaNAgpKSkAAAqV66M6dOnw83NDebm5hg+fHie29iwYQOaNGmCjh07wt7eHkIIHD58ON8T8BoYGCA8PBzdunVD7dq18fPPP2PYsGEYPHhwAT4hIiL1sG3bNmzevFlaDg1tiO3bPWBnp499+zidR34oxJsTWpHKSEpKgomJCRITE6WAAgCpqamIjIyEjY0N9PT0lFghFTfueyJSN8+fP8fChQtlbX/88RMePbLGvn0l8+ja276/Pxan/CAiIqIiERISAt/XpiYQApg1axKysrQwcWLJDGxFiaGNiIiICpUQAkuXLkViYqLU5u/fBnfvtoa+PjByJE+HfgiGNiIiIio0cXFxWLVqlaxt2bIRSE8vhy1beHTtYzC0ERERUaHw9/fHX3/9JS3HxJhjzZrB0NNTYMcOBraPxdCmxjiGpPThPiciVZSRkYE5c+bI2nbv/g63bzeArS0wbx4DW2FgaFNDOVNKvHjxolhn9yfle/HiBYDcd1ogIlKWLVsicfv2n7K2pUvHo2JFAx5dK2QMbWpIU1MTpqam0j0sDQwMpJupU8kkhMCLFy/w5MkTmJqaQlNTU9klERFhx44duH07XFq+evUT+Pl147VrRYShTU1ZWFgAgBTcqHQwNTWV9j0RkbKkpKRgwYIFsra7d53x+HFVBrYixNCmphQKBSwtLVGxYkVkZGQouxwqBtra2jzCRkRKFxoaCh8fH1nbrFmT8OmnWnjtdqJUBBja1Jympia/yImIqMgJIbBixQrEx8dLbVevfo5+/b7Ap58Cbm5KLK6UYGgjIiKid/r333+xcuVKWdvy5cNhZlYenTvzdGhxYWgjIiKitzp16hTOnj0rLcfFVYC//y+oXVvBo2vFjKGNiIiIcsnMzMTsN+41tXfvt7h163/Yvp1H15SBoY2IiIhk7t27h40bN8raFi0ah/r1DRnYlIihjYiIiCS7du3CjRs3pOXr1+th167voa0Njg5VMoY2IiIiwosXLzB//nxZW82a/bF2bTXo6QFjxiipMJIwtBEREZVyV65cwb59+2RtS5ZMxLNn2ujTR0lFUS4MbURERKWUEAKrVq3Cv//+K7WdOdMKZ8605chQFcTQRkREVAo9ffoUK1askLWtWDEMqakVsG8fBxuoIoY2IiKiUubMmTM4ffq0tPz0aTmsWDEcCoWCgU2FMbQRERGVEnnNvbZ/fxdERdnB0BAYOZKBTZUxtBEREZUC9+/fh7e3t6xt+fJxqF3bEBs2MKypA4Y2IiKiEm7Pnj24du2atJydbYtFi3pg5EjgjQNvpMIY2oiIiEqovOZe69u3L6pXr47p05VUFH0wDWUXQERERIXv2rVruQLb8eMTUb16dSVVRB+LR9qIiIhKECEEvLx+Q2pqrNR27txnCA93xKpVSiyMPhpDGxERUQkRHx+P5cuXy9pWrvwFcXFmsLfnYAN1x9BGRERUApw7dw4nT56UlhMSTLF06UhoaSlgawve4aAEYGgjIiJSY3nNvZaZ2Qlt2jRGYOCrsMYjbCUDQxsREZGaevDgAdavXy9rW7BgLAAjJCczrJU0DG1ERERqaP/+/bh8+bK0/PhxLRw61BtZWcDo0UosjIoMQxsREZEaefnyJby8vGRtu3b9iDlzauC335RUFBULhjYiIiI1cf36dezevVvWduKEO+bM0eGp0FKAoY2IiEjFCSEwf/5avHwZLbVFRtrD2/treHgosTAqVgxtREREKuzZs2dYtmyZrO3w4SGYNMlcSRWRsjC0ERERqai1a8/j8eMT0nJSUhksXjwKLVpo8HRoKcTQRkREpGKysrIwZ84cZGdnS20HD3aAjk5TtGjBiXJLK4Y2IiIiFfLw4UP88ccfsrb9+8cgJKSMkioiVcHQRkREpCKWL/dBfHyotHz7dg3s3/8jtmxRXk2kOhjaiIiIlGzv3lRcvTpP1lajRh/4+dXEli28swG9wtBGRESkRJMnh0Fbe6es7X//c8e33+rgxx+VVBSpJIY2IiIiJfDxETh9+g+Ymj6S2oKCmuPnn9vxyBrlSUPZBeRX586dYW1tDT09PVhaWqJv3754/PixtH7atGlQKBS5HoaGhrLt7Nq1C7a2ttDT00ODBg1w+PBh2XohBKZOnQpLS0vo6+vD0dERt27dkvWJj49Hnz59YGxsDFNTU7i4uOD58+eyPleuXEGrVq2gp6cHKyurXLccISKi0ishIQGhoTNkgW3PnsEMbPROahPa2rRpg507dyIiIgJ79uzBnTt30L17d2n9uHHjEB0dLXvUq1cP33//vdTnwoUL6NWrF1xcXBASEoKuXbuia9euuHbtmtTHy8sLy5Ytw5o1axAYGAhDQ0M4OTkhNTVV6tOnTx9cv34dx48fx8GDB3H27Fn8/PPP0vqkpCR8/fXXqFq1KoKDgzF//nxMmzYNv//+exF/SkREpOrWrr2ApUuXSsspKQaYMmUKrlyxYGCjd1IIIYSyi/gQvr6+6Nq1K9LS0qCtrZ1r/eXLl2FnZ4ezZ8+iVatWAIAePXogJSUFBw8elPq1aNECdnZ2WLNmDYQQqFSpEsaOHYtx48YBABITE2Fubg5vb2/07NkTYWFhqFevHoKCgtC0aVMAwNGjR/HNN9/g4cOHqFSpElavXo1JkyYhJiYGOjo6AAA3Nzfs378f4eHh+X6PSUlJMDExQWJiIoyNjT/4syIiIuXLysrC7NmeECJTajtxoj1at26G2bOVWBgVuqL6/labI22vi4+Px5YtW+Dg4JBnYAOAdevWoXbt2lJgA4CAgAA4OjrK+jk5OSEgIAAAEBkZiZiYGFkfExMTNG/eXOoTEBAAU1NTKbABgKOjIzQ0NBAYGCj1ad26tRTYcl4nIiICz549+8h3T0RE6ubRo0eYNWuWLLCtWjUa584xsFH+qVVoc3V1haGhIcqXL4+oqCj4+Pjk2S81NRVbtmyBi4uLrD0mJgbm5vJ7tZmbmyMmJkZan9P2rj4VK1aUrdfS0kK5cuVkffLaxuuvkZe0tDQkJSXJHkREpN4OHjyIdevWScuRkTbw9JyKgQN5BoUKRqmhzc3NLc/BA68/Xj+dOH78eISEhODYsWPQ1NREv379kNfZ3X379iE5ORn9+/cvzrfz0ebOnQsTExPpYWVlpeySiIjoA6WmpmL69OkIDg6W2v75pxe++64fXr5U8AgbFZhSp/wYO3YsnJ2d39mnevXq0t8rVKiAChUqoHbt2qhbty6srKxw8eJF2Nvby56zbt06dOzYMdfRLgsLC8TGxsraYmNjYWFhIa3PabO0tJT1sbOzk/o8efJEto3MzEzEx8fLtpPX67z+Gnlxd3fHmDFjpOWkpCQGNyIiNRQeHo4dO3bI2tzc3KCrq6ukiqgkUGpoMzMzg5mZ2Qc9N+cmumlpabL2yMhInDp1Cr6+vrmeY29vD39/f4waNUpqO378uBT6bGxsYGFhAX9/fymkJSUlITAwEEOHDpW2kZCQgODgYDRp0gQAcPLkSWRnZ6N58+ZSn0mTJiEjI0O65u748eOoU6cOypYt+9b3pKuryx9oIiI1JoTAwoXeSEmJktoCAz9FQsI38PBQYmFUIqjF5LqBgYEICgpCy5YtUbZsWdy5cwdTpkxBjRo1ch1lW79+PSwtLdG+fftc2/n111/x+eefY+HChejQoQO2b9+OS5cuSVNxKBQKjBo1CrNmzUKtWrVgY2ODKVOmoFKlSujatSsAoG7dumjXrh0GDRqENWvWICMjA8OHD0fPnj1RqVIlAEDv3r0xffp0uLi4wNXVFdeuXcPSpUuxePHiov2giIhIaRITE7FkyRJZ22+//YzkZEveO5QKhVqENgMDA+zduxceHh5ISUmBpaUl2rVrh8mTJ8uOTGVnZ8Pb2xvOzs7Q1NTMtR0HBwds3boVkydPxsSJE1GrVi3s378fn3zyidRnwoQJSElJwc8//4yEhAS0bNkSR48ehZ6entRny5YtGD58OL788ktoaGigW7duWLZsmbTexMQEx44dw7Bhw9CkSRNUqFABU6dOlc3lRkREJce6dRfx6JGftPzypR6WLBmPxo014ObGe4dS4VDbedpKA87TRkSk2rKzs+Hl5SW7VCcz0wlLlrTAyJHgYINSqqi+v9XiSBsREZGq2b49GhER8jvd1K8/Ct27m2DmTCUVRSUaQxsREVEB+PoCPj6HYW0dJLVZW1vD2dkZCoVCiZVRSadWk+sSEREpi68vYGOThpCQ6bLAZmPTAz/99BMDGxU5HmkjIiJ6D19fYMqUm3B23iZrd3V1lQ1UIypKDG1ERETvIISAv/+f+O67e1JbfHwTBAV1RKNGHBlKxYenR4mIiN4iKSkJM2bMQLly96S2QYMGISioIwICAE9P5dVGpQ+PtBEREb3B1xdYu/ZvNG16RGrT1taGq6srNDU14eb2KrC5uSmxSCp1GNqIiIhek52djcDAhWja9IXUFh7+NbZt++8OPJ0787QoFT+GNiIiov+3fXsMIiJ+g47Of22+vr/Cw8NUaTUR5WBoIyIiArBq1VHExQVKy8+eVcHixQPg4cGpPEg1MLQREVGpNmlSOnR05srazp37ASNH1gWnXiNVwtBGRESl1q1bt6Cjs1XW1qCBKzw8OPcaqR6GNiIiKnV8fYHDhzfD0vKO1PbPP40QF9cZHh5KLIzoHRjaiIioVNmzJxnXri2CpeV/bceOuSA+vgrmzVNeXUTvw9BGRESlxqVLl3Dt2iFpOStLE40bu8PDQ1OJVRHlD0MbERGVeD4+2bh4cTH09J5LbZUqOWLQoM+UWBVRwTC0ERFRibZjRyzCw9fg9fu616s3Et9/X1Z5RRF9AIY2IiIqkXx9gb17j8HGJkBqe/SoEtauHQh7ewW+/16JxRF9AIY2IiIqcdLT0xESMhc2Nv+1ZWR0x7lz9VGnDu8ZSuqJoY2IiEqUzZvv4M6dzbK2CRMmQF9fH7NmKakookLA0EZERCWCry9w7NhWmJndktoePWqIjh27Ql9fiYURFRKGNiIiUnvPnz9HSMhCmJn911ar1gB4eFgpryiiQsbQRkREau2ff/7BgQMHpOXsbAWmTp0ETU3OvUYlC0MbERGpJSEEJk9eCh2dRKnt7Nm2+PXXVmBeo5KIoY2IiNTOkydPsHr1aujo/Nd29uwI/PprOXTurLy6iIoSQxsREamVEydO4Pz589JyTIw5/v13MPz9FUqsiqjoMbQREZFayMjIwJw5c2RtBw50g5PTJ1i9WklFERUjhjYiIlJ5W7bcxe3bm2Rt48ePh4eHgZIqIip+DG1ERKSyfH2Bo0e3w9w8Qmq7caMB+vT5DgbMa1TKMLQREZFKSklJQUjIApib/9d24sRPGD/emoMNqFRiaCMiIpWzYUMIoqJ8ZW2TJk2Chwe/tqj04r9+IiJSGUIILF++HM+ePZPaTp/+AqNHfw4tfmNRKccfASIiUglxcXFYtWqVrO2334bjp5/K83QoERjaiIhIBaxZcxKxseekZTMzMwwdOhQeHpx7jSgHQxsRESlNXnOvffvtt/jf//6npIqIVJeGsgsgIqLS6d69e7kC29Kl4xnYiN6CR9qIiKjYLV26EwkJYdJyVlZ9LF7cHSNHKrEoIhXH0EZERMUmJSUFCxYskLX1798f1apVw4wZSiqKSE3w9CgRERWLy5cv5wpsO3ZMQrVq1ZRTEJGa4ZE2IiIqUkIIzJu3EmlpT6W206dbIzCwDbZvV2JhRGqmwEfaNDU18eTJk1ztT58+haamZqEURUREJcPTp08xY8YMWWBbsWIYYmJeBTbOv0aUfwU+0iaEyLM9LS0NOjo6H10QERGVDL/9dhoxMWek5adPy2HduuEYPVqB2bOVWBiRmsp3aFu2bBkAQKFQYN26dTAyMpLWZWVl4ezZs7C1tS38ComISK1kZmZi9hupbP/+LvjmGzu8eKGkoohKgHyHtsWLFwN4daRtzZo1slOhOjo6qFatGtasWVP4FRIRkdq4f/8+vL29ZW379o3DjBmGPBVK9JEU4m3nO9+iTZs22Lt3L8qWLVtUNdH/S0pKgomJCRITE2FsbKzscoiI3mnPnj24du2atBwba4tVq3oosSIi5Siq7+8CX9N26tSpQntxIiJSfy9evMD8+fNlbdu29YOXl42SKiIqmQoc2gYMGPDO9evXr//gYoiISL14e1/F/ft7ZW2zZk1EzZraPB1KVMgKHNqePXsmW87IyMC1a9eQkJCAtm3bFlphRESkunKub359CqizZ1vi8eMv8emngJubEosjKqEKHNr27duXqy07OxtDhw5FjRo1CqUoIiJSXfHx8Vi+fLmsbdeuX5CZaQYvL869RlRUCjwQ4W0iIiLwxRdfIDo6ujA2R+BABCJSPWfPnpVd2/zsmSn++GMkkpMVSqyKSLWozECEt7lz5w4yMzMLa3NERKRC8pp77dChTggLa4yRI5VUFFEpU+DQNmbMGNmyEALR0dE4dOgQ+vfvX2iFERGRanjw4EGuQWarVo3FwIFG+PtvJRVFVAoVOLSFhITIljU0NGBmZoaFCxe+d2QpERGpl3379uHKlSvSckREbdy71wuxsUosiqiU4jxtRESUy8uXL+Hl5SVr27TpR2hp1cAbzURUTD74mrYnT54gIiICAFCnTh1UrFix0IoiIiLluXbtGvbs2SNrW7JkIn75RZs3eidSogKHtqSkJAwbNgzbtm1DdnY2AEBTUxM9evTAypUrYWJiUuhFEhFR0RNC4Pfff0dMTIzUdv68A54//wpvTNFJREqgUdAnDBo0CIGBgTh06BASEhKQkJCAgwcP4tKlSxg8eHBR1EhEREXs2bNnmDFjhiywrVo1FOfOfcWJcolURIHnaTM0NISfnx9atmwpaz937hzatWuHlJSUQi2wNOM8bURUHP766y/4+/tLy0lJZbBkySjUqqXByXKJPoDKzNNWvnz5PE+BmpiYoGzZsoVSFBERFb2srCzMmjUbwH//dz9woCNCQprAzQ28fo1IxRT49OjkyZMxZswY2SH0mJgYjB8/HlOmTCnU4oiIqGg8fPgQs2bNwuuBbeHCMYiMbIJ9+xjYiFRRgU+PNmrUCLdv30ZaWhqsra0BAFFRUdDV1UWtWrVkff/555/Cq7QU4ulRIioKPj4+CA0NlZb//bcGvvrqR54GJSokKnN6tEuXLlAoeI85IiJ1k5qainnz5snagoP7wNe3ppIqIqKCKHBomzZtWhGUQURERenGjRvYtWuXrG3pUnd4e+soqSIiKqgCh7bq1asjKCgI5cuXl7UnJCSgcePGuHv3bqEVR0REH0cIgQUL1uHFi8dSW0BAC5w/74QtWzgylEidFDi03bt3D1lZWbna09LS8PDhw0IpioiIPl5CQgKWLl0qa6tTZzD8/CwY2IjUUL5Hj/r6+sLX1xcA4OfnJy37+vpi3759mDlzJmxsbIqs0M6dO8Pa2hp6enqwtLRE37598fjxY1kfPz8/tGjRAmXKlIGZmRm6deuGe/fuyfqcPn0ajRs3hq6uLmrWrAlvb+9cr7Vy5UpUq1YNenp6aN68Of7++2/Z+tTUVAwbNgzly5eHkZERunXrhtg37p4cFRWFDh06wMDAABUrVsT48eORmZlZKJ8FEdH7rF17QRbYnj83xI4dU9CzpwUuXGBgI1JH+R49qqHxKt8pFAq8+RRtbW1Uq1YNCxcuRMeOHQu/SgCLFy+Gvb09LC0t8ejRI4wbNw4AcOHCBQBAZGQk6tatizFjxsDFxQWJiYkYPXo0kpOTpVGskZGR+OSTTzBkyBAMHDgQ/v7+GDVqFA4dOgQnJycAwI4dO9CvXz+sWbMGzZs3x5IlS7Br1y5ERERI91cdOnQoDh06BG9vb5iYmGD48OHQ0NDA+fPnAbya+8jOzg4WFhaYP38+oqOj0a9fPwwaNAhz5szJ93vm6FEiKqisrCzMnu0JIf77T+Jff32Dhw8/xbx5DGtExaGovr8LPOWHjY0NgoKCUKFChUIr4kP4+vqia9euSEtLg7a2Nnbv3o1evXohLS1NCpgHDhxAly5dpD6urq44dOgQrl27Jm2nZ8+eSEhIwNGjRwEAzZs3x6effooVK1YAALKzs2FlZYURI0bAzc0NiYmJMDMzw9atW9G9e3cAQHh4OOrWrYuAgAC0aNECR44cQceOHfH48WOYm5sDANasWQNXV1fExcVBRyd/F/4ytBFRQTx69Ajr1q2TtS1cOBqffGKM////LREVg6L6/i7w5LqRkZFKD2zx8fHYsmULHBwcoK2tDQBo0qQJNDQ0sGHDBmRlZSExMRGbNm2Co6Oj1CcgIACOjo6ybTk5OSEgIAAAkJ6ejuDgYFkfDQ0NODo6Sn2Cg4ORkZEh62Nrawtra2upT0BAABo0aCAFtpzXSUpKwvXr19/6vtLS0pCUlCR7EBHlx4EDB2SB7c6d6pg2bSqEMOa9Q4lKiAIPRJgxY8Y710+dOvWDi3kfV1dXrFixAi9evECLFi1w8OBBaZ2NjQ2OHTuGH374AYMHD0ZWVhbs7e1x+PBhqU9MTIwsSAGAubk5kpKS8PLlSzx79gxZWVl59gkPD5e2oaOjA1NT01x9cu4S8bbXyVn3NnPnzsX06dPz+WkQEeU999qWLb1x+3Yt1KkD3juUqAQp8JG2ffv2yR47d+7EvHnzsHDhQuzfv79A23Jzc4NCoXjnIycsAcD48eMREhKCY8eOQVNTE/369ZOur4uJicGgQYPQv39/BAUF4cyZM9DR0UH37t1zXYOnqtzd3ZGYmCg9Hjx4oOySiEiFhYeH5wps3t5uePiwFtzdgfBwBjaikqTAR9pCQkJytSUlJcHZ2RnffvttgbY1duxYODs7v7NP9erVpb9XqFABFSpUQO3atVG3bl1YWVnh4sWLsLe3x8qVK2FiYgIvLy+p/+bNm2FlZYXAwEC0aNECFhYWuUZ5xsbGwtjYGPr6+tDU1ISmpmaefSwsLAAAFhYWSE9PR0JCguxo25t93hxxmrPNnD550dXVha6u7js/DyIiIQQ2bNgg+49dYGAzJCS0R2SkEgsjoiJV4NCWF2NjY0yfPh2dOnVC37598/08MzMzmJmZfdBrZmdnA3h1HRgAvHjxQhqAkENTU1PW983TpQBw/Phx2NvbAwB0dHTQpEkT+Pv7o2vXrtJz/f39MXz4cACvrp3T1taGv78/unXrBgCIiIhAVFSUtB17e3vMnj0bT548kUacHj9+HMbGxqhXr94HvV8iIgCYNCkROjpLZG1r1vyMJ08ssW+fcmoiouJRKKENgHRKrygEBgYiKCgILVu2RNmyZXHnzh1MmTIFNWrUkIJShw4dsHjxYsyYMQO9evVCcnIyJk6ciKpVq6JRo0YAgCFDhmDFihWYMGECBgwYgJMnT2Lnzp04dOiQ9FpjxoxB//790bRpUzRr1gxLlixBSkoKfvrpJwCAiYkJXFxcMGbMGJQrVw7GxsYYMWIE7O3t0aJFCwDA119/jXr16qFv377w8vJCTEwMJk+ejGHDhvFIGhF9sIsXL0JHx09aTk3Vw+bN45GQoAE3N54KJSrpChzali1bJlsWQiA6OhqbNm1C+/btC62w1xkYGGDv3r3w8PBASkoKLC0t0a5dO0yePFkKQW3btsXWrVvh5eUFLy8vGBgYwN7eHkePHoW+vj6AV4MVDh06hNGjR2Pp0qWoUqUK1q1bJ83RBgA9evRAXFwcpk6dipiYGNjZ2eHo0aOygQWLFy+GhoYGunXrhrS0NDg5OWHVqlXSek1NTRw8eBBDhw6Fvb09DA0N0b9///cO4iAiyktWVha8vLyQnp4utR0+3A4hIc3xWhMRlXAfNE/b6zQ0NGBmZoa2bdvC3d0dZcqUKdQCSzPO00ZEjx8/xtq1a2VtixePQmKiCSpXBnj3QCLVU1Tf3wU+0hbJq1yJiIrFoUOHcOnSJWn5yZOq+Prr/vjzTwU8PcH514hKmQ+6pi0hIQG3b98GANSsWTPXnGVERPTh9u1Lw5UrnrK2bdt6IiKiDkJCwHuHEpVSBZqn7d69e+jQoQMqVKiA5s2bo3nz5qhQoQI6duyY68bsRERUcBEREbkC2+7dbgDqwNaWR9eISrN8H2l78OABWrRoAW1tbcycORN169YFANy4cQOrV6+Gvb09goKCUKVKlSIrloiopBJCYOPGjbh//77UFhTUBGfOdMSWLTyyRkQFGIjg4uKC27dvw8/PD3p6erJ1L1++RLt27VCrVq1cNyumD8eBCESlw+7dSbh+fbGszc9vEIBKnMqDSA0pfSDC0aNHsWPHjlyBDQD09fUxc+ZM9OzZs9AKIyIqDf7++29cv35EWk5L04GX1wTs3avJsEZEMvkObf/++y+qVav21vXVq1dHfHx8YdRERFTiZWdnY8GCBXj58qXUduzY17hwwR6VK/PoGhHllu/QZmlpiRs3brz1mrVr1669876aRET0SnR0NH7//XdZ26+//opGjUw5lQcRvVW+Q1vXrl0xbtw4+Pv757pf6JMnT+Dq6irdr5OIiPJ25MgR/P3339KylZUVfvrpJygUCnTuzCNsRPR2+R6I8OzZMzRv3hwxMTH48ccfYWtrCyEEwsLCsHXrVlhYWODixYsoV65cUddcanAgAlHJkZ6ejrlz58rafvjhB2kkPhGVHEofiFC2bFkEBgZi4sSJ2L59OxISEgAApqam6N27N+bMmcPARkSUh1u3bmHr1q2yNldX1zwHdhERvU2B7z0KvJpPKC4uDgBgZmYGhUJR6IURj7QRlQSbNm3C3bt3peXg4EY4daozkpOVWBQRFSmlH2l7nUKhQMWKFQutCCKikiYpKQmLF8vnXlu7diAePaqMiROVVBQRqbUPCm1ERPR2QUFBOHz4sLSsUGghLc0NiYmamDgRmD1bicURkdpiaCMiKiTZ2dlYtGgRUlJSpLZjxxwhxGe4cIFhjYg+DkMbEVEhiI2NxZo1a2Rt27ePRNmyZTnvGhEVCoY2IqKP5Ofnh4sXL0rLjx5Vwtq1A2Frq8CFC0osjIhKlHyFtmXLluV7gyNHjvzgYoiI1MnevS9x9aqXrG3nzu9x40Y9aGgA8+YpqTAiKpHyFdreHAH1NgqFgqGNiEqFoKAgXL16WNa2ePEEaGrqQ08PGDOGdzcgosKVr9AWGRlZ1HUQEamN6dOny5ZfvtTDvHmuAAB7e/CUKBEViQ++pi09PR2RkZGoUaMGtLR4aRwRlWy+vsCyZU/RqtWKN9q7IyysPrp3Bx494s3eiajoFDhtvXjxAiNGjMDGjRsBADdv3kT16tUxYsQIVK5cGW78jUVEJYSvL+Dp+SqI+foeRKtWwbL1s2ZNhJ6eNl68UFKBRFSqaBT0Ce7u7rh8+TJOnz4tu2+eo6MjduzYUajFEREpk6cnEBiYjZCQ6bCy+i+w3bxZC8uWeUBPTxu8jJeIikuBj7Tt378fO3bsQIsWLWT3HK1fvz7u3LlTqMURESnTsGGRcHL6U9bm5zcIQCVs2MCBBkRUvAoc2uLi4vK872hKSgpvHE9EJcbvv/+O6OhoWZuf31S4uSkY1ohIKQp8erRp06Y4dOiQtJwT1NatWwd7e/vCq4yISAlSU1Mxffp0WWBr1aoVPDw8cOECAxsRKU+Bj7TNmTMH7du3x40bN5CZmYmlS5fixo0buHDhAs6cOVMUNRIRFYvg4GAcPHhQ1jZ69GgYGxsrqSIiov8U+Ehby5YtERoaiszMTDRo0ADHjh1DxYoVERAQgCZNmhRFjURERW769OmywKZQaMHDw4OBjYhUhkIIIZRdBOUtKSkJJiYmSExM5BcHURGYNAlYv/4ZhgyR36pv9+7vUKZMA06SS0QfpKi+v/N1ejQpKSnfG2S4ICJ1ce3aEQwZ8resbfbsicjK0sa+fUoqiojoLfIV2kxNTfM9MjQrK+ujCiIiKmrZ2dmYOXMmGjf+r+3p0+rYu7cvtLSA8eM5nQcRqZ58hbZTp05Jf7937x7c3Nzg7OwsjRYNCAjAxo0bMXfu3KKpkoiokNy/fx/e3t6ytrVrXZCYWAXJycqpiYgoPwp8TduXX36JgQMHolevXrL2rVu34vfff8fp06cLs75Sjde0ERWuP/74Aw8fPpS1rV07FYmJCowcCcyeraTCiKhEUeo1ba8LCAjAmjVrcrU3bdoUAwcOLJSiiIgKU1paGjw9PWVtN258hgcPHLFqFU+FEpF6KPCUH1ZWVli7dm2u9nXr1sHKyqpQiiIiKiwhISG5AtvKlaPQp48jLlxgYCMi9VHgI22LFy9Gt27dcOTIETRv3hwA8Pfff+PWrVvYs2dPoRdIRPShpk+fLlvOzlZgxoypsLVlWCMi9VPgI23ffPMNbt26hU6dOiE+Ph7x8fHo1KkTbt68iW+++aYoaiQiei9fX8DB4dWfCQkJuQLb3r1dsXPnVNjbA/PmKalIIqKPwMl1VRgHIhDln4MDEBAA9OzpB1vbi7J1u3e7o0wZHbi58QgbERU9lRmIALz6X+wff/yBsLAwAED9+vUxYMAAmJiYFFphRETv4usLTJgAKBSvjpy5ugqEhs6Q9TEyqoo9e5wxezbDGhGpvwIfabt06RKcnJygr6+PZs2aAQCCgoLw8uVLHDt2DI1fn62SPgqPtBG9Xc6RNQCwsYlC//4bZOtr1RqA3r05OIqIil9RfX8XOLS1atUKNWvWxNq1a6Gl9epAXWZmJgYOHIi7d+/i7NmzhVZcacfQRvR2OUfaPvvMG9bW92Xr/Pym4sKF/N3FhYiosKnM6dFLly7JAhsAaGlpYcKECWjatGmhFUZE9DpfX8DTE9J1ae3apSMkRH4XlgsXWuDECSfeN5SISqQChzZjY2NERUXB1tZW1v7gwQOUKVOm0AojInqdp+er06F9+gDLl1/G/fv7Zes3bPgVT5+acrABEZVYBQ5tPXr0gIuLCxYsWAAHBwcAwPnz5zF+/Phct7YiIiosbm6vAtuYMTNw/778qo5p0zxQpw5471AiKtEKHNoWLFgAhUKBfv36ITMzEwCgra2NoUOH5pp1nIiosHz+eSLGjVsia7O27ox58xrB1pZzrxFRyffB87S9ePECd+7cAQDUqFEDBgYGhVoYcSACUY4TJ07g/Pnzsrb//c8N336rq6SKiIjeTmUGIuQwMDBAgwYNCq0QIqI3CSEwY4Z87rUHD6rgxg0XeHgoqSgiIiXJd2gbMGBAvvqtX7/+g4shIsrx8OFD/PHHH7K2DRuc8fRpVWzZoqSiiIiUKN+hzdvbG1WrVkWjRo3AO18RUVHatGkT7t69K2uzs5uCSpU0sGwZR4cSUemU79A2dOhQbNu2DZGRkfjpp5/w448/oly5ckVZGxGVIr6+wPz56XB0lM+9FhjYDAkJ7eHhAXTpoqTiiIhUgEZ+O65cuRLR0dGYMGECDhw4ACsrK/zwww/w8/PjkTci+mje3ldzBbYDB0YiIaE93NyUVBQRkQr54NGj9+/fh7e3N/78809kZmbi+vXrMDIyKuz6SjWOHqXSYs6cOcjIyJC1+fl5cKJcIlJLKjd6VENDAwqFAkIIZGVlFVpBRFR6JCUlYfHixbK2Awc6IjKyCZ4+VVJRREQqKt+nRwEgLS0N27Ztw1dffYXatWvj6tWrWLFiBaKioniUjYgK5OTJk7kC2//+5wodnSbYsEFJRRERqbB8H2n75ZdfsH37dlhZWWHAgAHYtm0bKlSoUJS1EVEJlNfca48fW+Lq1Z/h4QF8+62SCiMiUnH5vqZNQ0MD1tbWaNSoERQKxVv77d27t9CKK+14TRuVNI8fP8batWtlbSdP9kNsrA28vHj9GhGVDEq/pq1fv37vDGtERG/y9QU8PV/d7P358624deuWbP3ChVOQlFSgqzSIiEqtAk2uS0RUEJ6eQFBQBkJC5sjaL11qgsOHO3IqDyKiAvjg0aNERO8zePB1ODntlrXVrTscfn7lsW8fT4cSERUEQxsRFYl58+YhNTVV1ubx/3d5/+EHZVRERKTeGNqIqFAlJydj0aJFsrYbN77Bjh2fKqkiIqKSgaGNiArNmTNncPr0aVmbv/8EjBunr5yCiIhKEIY2IvpgOaNDXV0FQkPlc6/FxlbEqVNDERampOKIiEoYhjYi+mCenkBkZDRCQ3+Xtdeo8SP8/Gpg3jwlFUZEVAKpzQRJnTt3hrW1NfT09GBpaYm+ffvi8ePHsj47d+6EnZ0dDAwMULVqVcyfPz/Xdk6fPo3GjRtDV1cXNWvWzHMqk5UrV6JatWrQ09ND8+bN8ffff8vWp6amYtiwYShfvjyMjIzQrVs3xMbGyvpERUWhQ4cOMDAwQMWKFTF+/HhkZmZ+/AdBpAJ8fQEHB+Crr3ZgyBB5YJs/fzJ+/LEGLlzg6FAiosKkNqGtTZs22LlzJyIiIrBnzx7cuXMH3bt3l9YfOXIEffr0wZAhQ3Dt2jWsWrUKixcvxooVK6Q+kZGR6NChA9q0aYPQ0FCMGjUKAwcOhJ+fn9Rnx44dGDNmDDw8PPDPP/+gYcOGcHJywpMnT6Q+o0ePxoEDB7Br1y6cOXMGjx8/xnfffSetz8rKQocOHZCeno4LFy5g48aN8Pb2xtSpU4v4UyIqHl5emXBymg4NjXCpLSvLDgsWeODXXzWVWBkRUcmV79tYqRpfX1907doVaWlp0NbWRu/evZGRkYFdu3ZJfZYvXw4vLy9ERUVBoVDA1dUVhw4dwrVr16Q+PXv2REJCAo4ePQoAaN68OT799FMp7GVnZ8PKygojRoyAm5sbEhMTYWZmhq1bt0qhMTw8HHXr1kVAQABatGiBI0eOoGPHjnj8+DHMzc0BAGvWrIGrqyvi4uKgo6OTr/fI21iRKgoLC8POnTtlbcOGDeO9iImI/l9RfX+rzZG218XHx2PLli1wcHCAtrY2ACAtLQ16enqyfvr6+nj48CHu378PAAgICICjo6Osj5OTEwICAgAA6enpCA4OlvXR0NCAo6Oj1Cc4OBgZGRmyPra2trC2tpb6BAQEoEGDBlJgy3mdpKQkXL9+/a3vKy0tDUlJSbIHkarw9QXc3BbkCmx+fh4MbERExUCtQpurqysMDQ1Rvnx5REVFwcfHR1rn5OSEvXv3wt/fH9nZ2bh58yYWLlwIAIiOjgYAxMTEyIIUAJibmyMpKQkvX77Ev//+i6ysrDz7xMTESNvQ0dGBqanpO/vktY2cdW8zd+5cmJiYSA8rK6v8fjRERer58+cICZkOff0Uqe3ChXbYts2Dt6IiIiomSg1tbm5uUCgU73yEh/93zcz48eMREhKCY8eOQVNTE/369UPO2d1BgwZh+PDh6NixI3R0dNCiRQv07NkTwKujZerA3d0diYmJ0uPBgwfKLokI586dk/4DlGPevPFITm6O8HAONiAiKi5KnfJj7NixcHZ2fmef6tWrS3+vUKECKlSogNq1a6Nu3bqwsrLCxYsXYW9vD4VCgXnz5mHOnDmIiYmBmZkZ/P39ZduwsLDINcozNjYWxsbG0NfXh6amJjQ1NfPsY2FhIW0jPT0dCQkJsqNtb/Z5c8RpzjZz+uRFV1cXurq67/w8iIqLEAIzZsjnXktJKY+WLYfDzg48wkZEVMyUGtrMzMxgZmb2Qc/Nzs4G8Oo6sNdpamqicuXKAIBt27bB3t5eeg17e3scPnxY1v/48eOwt7cHAOjo6KBJkybw9/dH165dpdfx9/fH8OHDAQBNmjSBtrY2/P390a1bNwBAREQEoqKipO3Y29tj9uzZePLkCSpWrCi9jrGxMerVq/dB75eoOMXGxmLNmjWytj17emPWrFro3JlH14iIlEEtJtcNDAxEUFAQWrZsibJly+LOnTuYMmUKatSoIQWlf//9F7t378YXX3yB1NRUbNiwQZqSI8eQIUOwYsUKTJgwAQMGDMDJkyexc+dOHDp0SOozZswY9O/fH02bNkWzZs2wZMkSpKSk4KeffgIAmJiYwMXFBWPGjEG5cuVgbGyMESNGwN7eHi1atAAAfP3116hXrx769u0LLy8vxMTEYPLkyRg2bBiPpJHKW7p0FxISbsjaFi2ajE2bNBnWiIiUSC1Cm4GBAfbu3QsPDw+kpKTA0tIS7dq1w+TJk2UhaOPGjRg3bhyEELC3t8fp06fRrFkzab2NjQ0OHTqE0aNHY+nSpahSpQrWrVsHJycnqU+PHj0QFxeHqVOnIiYmBnZ2djh69KhsYMHixYuhoaGBbt26IS0tDU5OTli1apW0XlNTEwcPHsTQoUNhb28PQ0ND9O/fP9epJiJVkpmZidmzZ8vaLl/+H44f/xZbtvDoGhGRsqntPG2lAedpo+IyeXIEtLW3y9p27x6KzMyKmDePgY2IqCCK6vtbLY60EVHRWbx4MbS15XMC2tlNhYeHQkkVERFRXhjaiEqplJQULFiwQNZ28eJXOHLEQUkVERHRuzC0EZVC58+fx4kTJ2Rt8+ePx9atBkqqiIiI3oehjagU8fERCA2VD4hJSDDBsmWj4ObGa9eIiFQZQxtRKfHkyROEhq6WtW3d2guPH9fGvn0MbEREqo6hjagU2Lt3L65evSprmzlzMrS1NbFjBwMbEZE6YGgjKsGysrIwa9YsWVt0dH0cPNgdWVlArVoMbERE6oKhjaiEunXrFrZu3SprO39+CI4fN0edOoC9Pe8fSkSkThjaiEqgZcuW4dmzZ7I2O7upaNRIgefPwUEHRERqiKGNqAR58eIF5s+fL2s7ceJLhIa2lG5FxbBGRKSeNJRdABEVjnXrLuYKbJ98Mg6hoS3x/Dng6amkwoiIqFDwSBuRmstr7jUjIyOMHTsWAKCt/Sqw8fo1IiL1xtBGpMb+/fdfhIaulLXZ2PRAv3620jJPiRIRlQwMbURqaupUH2hqhsraGjachK5d+WNNRFQS8bc7kZrJmXtNU/O/ttjYuli9+gfY2wNduyqtNCIiKkIMbURq5M6dO9i8ebOsLSNjMNq1s0BoKK9bIyIqyRjaiNTEqlWrEBcXJ2ubOnUqFAoFAF63RkRU0jG0Eam4ly9fwsvLS9bWpk0btG7dWkkVERGRMjC0Eamwv//+G0eOHJG1jRkzBmXKlFFSRUREpCwMbUQqavr06bJlTU19HD48AY0avVrOmXuNp0WJiEoHhjYiFbNz51OEha2QtX3//fcYOLAeAgL+u7NBzt8Z2oiISgeGNiIVcuDAAYSF/SNrmzhxIrS1teHmJr+zAe9yQERUuiiEEELZRVDekpKSYGJigsTERBgbGyu7HCpC2dnZmDlzpqwtIqI27t3rhQsXlFQUERF9kKL6/uaRNiIl8vUFFi6MRNu2f8ra69QZBD+/SjySRkREEg1lF0BUmp0581uuwDZ16lQYGFRSUkVERKSqeKSNSAlSU1Mxb948vH7U3MKiNQYPbgPg1fVqHGhARESvY2gjKmbr11/CgweHZG2jR4+WXffw5qADIiIihjaiYvTm3GuZmTr49FN3vHmdaufOPMJGRERyDG1ExSA+Ph7Lly+XtVWr1g39+3+ipIqIiEjdMLQRFbHDhw8jKChI1pYz9xoREVF+MbQRFREfn2yEhsrnXqtevTr69u2rpIqIiEidMbQRFSJfX8DVFahQ4R4cHTfK1g0cOBCVK1dWUmVERKTuGNqICpGnJ9Cy5TpUqfJI1j516lQoFAolVUVERCUBQxtRIfD1BebPT4OTk6esvWXLlvjyyy+VVBUREZUkvCMCUSHYtOkfODrKA9uoUaPeGdh8fQEHh1d/EhERvQ9vGK/CeMN41efrC4SEyOde09DQwJQpU977XAeHV3c9sLcHbwpPRFSCFNX3N4+0EX2gZ8+e5QpsVat+i61bp8DW9v1H0NzcXgU23vWAiIjyg0faVBiPtKkmX1/gzz9D0aCBj6zd3d0dX3yhg4CAV8s8gkZEVDrxSBuRChBC4K+/lssCm5FRNXh4eEBHRwdubkDlyoCeHtCmjRILJSKiEoehjSif/v33X8yYMQOGhvFS2/LlwzBtWn/pVGjnzoC1NZCaCpw69d9zOeiAiIg+FkMbUT6cOnUKK1eulJbLly8PO7upSEurgOfPX83PliOva9U8PV8NOvCUDzAlIiLKN87TRvQOmZmZmD17tqyta9euaNiwIQBgy5ZXQez1gNa586vH69zccvcjIiIqCA5EUGEciKAcvr6vAtawYfdw+7b8VlTjxo2DoaGhkiojIiJ1wIEIREUs57ozV1egcuXdssAWE1MXjRp5yAIbr1MjIqLixCNtKoxH2oqXgwNw+fILTJgwX9bu798P587Z5JrCg5PjEhFRXnikjaiI5Bwx+/LLK7kC26xZExEXZ5PnJLg5Aw7atOERNyIiKno80qbCeKSteDg4CDRuvApmZv9Kba1atcLz522lwQNvDiyQP59H3IiI6D9F9f3N0aNUqj19+hROTitkbb/88gvMzMwAvDus5eDIUCIiKg4MbVRqnTlzBqdPn5aWy5YtixEjRkChUBRoO3lN8UFERFTYGNqo1Mlr7rXOnTujUaNGSqqIiIjo/RjaqFSJiorChg0bZG1jx46FkZGRkioiIiLKH4Y2KjX27t2Lq1evSst16tRBz549lVgRERFR/jG0UYnm6wssXPgCbdvKp/Lo27cvqlevrqSqiIiICo6hjUq0FSuuoW3bPbK2iRMnQltbW0kVERERfRhOrkslSs5EuT4+AmvWrMFnn/0X2BwcHODh4SEFNt6GioiI1AlDG5Uonp5AeHg8QkNnIDY2Vmq3tR2Kr776KlffgIBXfxIREak6nh6lEsXZ+Ryio09Ky8bGxvj111+hoZH7/yecFJeIiNQJQxupPV9fwN09C99/Pwuvz4trZdUJAwY0fuvzOCkuERGpE4Y2UnteXg/www/rZW1jxoxBmTJllFQRERFR4WNoI7W2f/9+fPXVZWnZ2LgmRo/uo8SKiIiIigZDG6kdX19gwYKX+PJLL1l7jRo/4scfayipKiIioqLF0EZqw9f31cABI6Pr+PLL3bJ17u7u0NHRUVJlRERERY+hjVReTliLihLo0GEtKlWKltbZ29vj66+/VmJ1RERExYOhjVSary/Qowegp/cMo0Ytk60bMmQIzM3NlVQZERFR8VK7yXXT0tJgZ2cHhUKB0NBQ2borV66gVatW0NPTg5WVFby8vHI9f9euXbC1tYWenh4aNGiAw4cPy9YLITB16lRYWlpCX18fjo6OuHXrlqxPfHw8+vTpA2NjY5iamsLFxQXPnz8vcC30fp6eQJMm52WBTUvLCFOmTGFgIyKiUkXtQtuECRNQqVKlXO1JSUn4+uuvUbVqVQQHB2P+/PmYNm0afv/9d6nPhQsX0KtXL7i4uCAkJARdu3ZF165dce3aNamPl5cXli1bhjVr1iAwMBCGhoZwcnJCamqq1KdPnz64fv06jh8/joMHD+Ls2bP4+eefC1QLvV3O7aX2789Cu3az8NVXJ6R1HTp0wKRJY/OcLJeIiKhEE2rk8OHDwtbWVly/fl0AECEhIdK6VatWibJly4q0tDSpzdXVVdSpU0da/uGHH0SHDh1k22zevLkYPHiwEEKI7OxsYWFhIebPny+tT0hIELq6umLbtm1CCCFu3LghAIigoCCpz5EjR4RCoRCPHj3Kdy35kZiYKACIxMTEAj1P3dnbC1G58gMxbdo02SMpKUnZpREREb1XUX1/q83hitjYWAwaNAibNm2CgYFBrvUBAQFo3bq1bAShk5MTIiIi8OzZM6mPo6Oj7HlOTk4ICAgAAERGRiImJkbWx8TEBM2bN5f6BAQEwNTUFE2bNpX6ODo6QkNDA4GBgfmuJS9paWlISkqSPUqj3r19MWjQH9Jy9erV4eHhwclyiYioVFOL0CaEgLOzM4YMGSILS6+LiYnJdY1TznJMTMw7+7y+/vXnva1PxYoVZeu1tLRQrly5977O66+Rl7lz58LExER6WFlZvbVvSZSamorp06fj6dMQqa13797o27evEqsiIiJSDUoNbW5ublAoFO98hIeHY/ny5UhOToa7u7syyy1y7u7uSExMlB4PHjxQdknFJiwsDPPmzZO1ubu7o1atWkqqiIiISLUodcqPsWPHwtnZ+Z19qlevjpMnTyIgIAC6urqydU2bNkWfPn2wceNGWFhYIDY2VrY+Z9nCwkL6M68+r6/PabO0tJT1sbOzk/o8efJEto3MzEzEx8e/93Vef4286Orq5nqPJU3OnGtubq9u1i6EwPr16/Hw4UOpT7NmzdC+fXslVklERKR6lBrazMzMYGZm9t5+y5Ytw6xZs6Tlx48fw8nJCTt27EDz5s0BvJpkddKkScjIyIC2tjYA4Pjx46hTpw7Kli0r9fH398eoUaOkbR0/fhz29vYAABsbG1hYWMDf318KaUlJSQgMDMTQoUOlbSQkJCA4OBhNmjQBAJw8eRLZ2dkFqqW08vQEAgKAPn2ADRsScP36Utn6wYMHvzPYEhERlVqFOqyhmERGRuYaPZqQkCDMzc1F3759xbVr18T27duFgYGB+O2336Q+58+fF1paWmLBggUiLCxMeHh4CG1tbXH16lWpj6enpzA1NRU+Pj7iypUrokuXLsLGxka8fPlS6tOuXTvRqFEjERgYKP766y9Rq1Yt0atXrwLVkh+qNnrUx+fVyE4fnw/v6+MjhJGREPb2F2QjQ728vERWVlbRFE5ERFSMiur7u8SENiGEuHz5smjZsqXQ1dUVlStXFp6enrmeu3PnTlG7dm2ho6Mj6tevLw4dOiRbn52dLaZMmSLMzc2Frq6u+PLLL0VERISsz9OnT0WvXr2EkZGRMDY2Fj/99JNITk4ucC3vo2qhzd5eCODVnx/aNzMzU8yYMVsW2AIDA4umYCIiIiUoqu9vhRBCKPNIH71dUlISTExMkJiYCGNjY2WXk+t6tIL2ffz4MdauXSvrN3r0aJV4b0RERIWlqL6/GdpUmKqFto9x8OBBBAcHS8vVqlVDv379oFAolFgVERFR4Suq72+1mKeN1EfOLah8fV8tp6WlYfr06bLA1rNnT/Tv35+BjYiIqACUOnqUSp6c0aGenkCdOhHYvn27bL2bm1uJn9aEiIioKDC0UaFycwM8PQW++84b27dHSe1NmzZFhw4dlFgZERGRemNoo0L1+eeJCAlZgpSU/9oGDRqESpUqKa8oIiKiEoChjQpNYGAgjh49Ki3r6upi/Pjx0NTUVGJVREREJQNDG3207OxseHl5IS0tTWqrXNkJAwe2UGJVREREJQtDG30wX19g5cpoODj8LmtfvHgU6tUzwcCBSiqMiIioBGJoow/m43MYDg5B0nJcnBVWrvwJenoKuLkpsTAiIqISiKGNCiwtLQ2enp6wtv6vrUePHrh50xb//JO/OyYQERFRwTC0UYHcvHkT27Ztk7W5urpCT08PtrYMa0REREWFd0QgyZt3M3idEAJ//vmnLLA1btwYHh4e0NPTK8YqiYiISieGNpK8fjeD1yUlJWHGjBmIjIyU2gICBqJTp07FXCEREVHpxdBGEjc3wN4eskEEf//9NxYvXiwta2ho49ixyfjll8pKqJCIiKj04jVtBODVKVFPz/8GEWRnZ2PhwoV48eKF1Cc8/Cv06uWAKVOUWCgREVEpxdBGAOSnRps1i8Fvv/0mW3/mzK84dcoU9+9zsAEREZEyMLQRgJwbvQM//uiH3367KLUbGFTGuHEuOHBAgdRUcP41IiIiJWFoIwBAu3bpCAmZi7i4/9p27PgeDx7UQ506r46u8QgbERGR8nAgAuHWrVuYO3eurG3PHldERtbD8+e5R5MSERFR8eORtlJu8+bNuHPnjrRsZ2eHLl26wMNDPjiBiIiIlIuhrZRKTk7GokWLZG0uLi6oUqWKtMxTokRERKqDoa0U2rAhFFFRPtKyhoYGJk6cCE1NTSVWRURERO/Ca9pKoXv3Dkh///LLLzFlyhQpsL3rVlZERESkPAxtpZCV1ddITLREvXoj0bJlS1lQe9utrIiIiEi5FEIIoewiKG9JSUkwMTFBYmIijI2Ni+x1HBxeBbWcW1i9fmcEIiIiKpii+v7mkTaS3XO0c2fgwgUGNiIiIlXDgQjEUaJERERqgEfaSjEOOiAiIlIfDG2lGAcdEBERqQ+GtlLs9WvZiIiISLXxmrZSjNeyERERqQ8eaSMiIiJSAwxtRERERGqAoY2IiIhIDTC0EREREakBhjYiIiIiNcDQRkRERKQGGNqIiIiI1ABDGxEREZEaYGgjIiIiUgMMbURERERqgKGNiIiISA0wtBERERGpAYY2IiIiIjWgpewC6O2EEACApKQkJVdCRERE+ZXzvZ3zPV5YGNpUWHJyMgDAyspKyZUQERFRQSUnJ8PExKTQtqcQhR0DqdBkZ2fj8ePHKFOmDBQKhbLLKVZJSUmwsrLCgwcPYGxsrOxy6DXcN6qL+0Z1cd+otsLeP0IIJCcno1KlStDQKLwr0XikTYVpaGigSpUqyi5DqYyNjfkLTkVx36gu7hvVxX2j2gpz/xTmEbYcHIhAREREpAYY2oiIiIjUAEMbqSRdXV14eHhAV1dX2aXQG7hvVBf3jerivlFt6rJ/OBCBiIiISA3wSBsRERGRGmBoIyIiIlIDDG1EREREaoChjYiIiEgNMLRRoUtLS4OdnR0UCgVCQ0Nl665cuYJWrVpBT08PVlZW8PLyyvX8Xbt2wdbWFnp6emjQoAEOHz4sWy+EwNSpU2FpaQl9fX04Ojri1q1bsj7x8fHo06cPjI2NYWpqChcXFzx//rzAtZQUnTt3hrW1NfT09GBpaYm+ffvi8ePHsj47d+6EnZ0dDAwMULVqVcyfPz/Xdk6fPo3GjRtDV1cXNWvWhLe3d64+K1euRLVq1aCnp4fmzZvj77//lq1PTU3FsGHDUL58eRgZGaFbt26IjY2V9YmKikKHDh1gYGCAihUrYvz48cjMzPz4D0IF5Wff+Pn5oUWLFihTpgzMzMzQrVs33Lt3T9aH+6ZovG//TJs2DQqFItfD0NBQth3+Xit8+fnZEUJgwYIFqF27NnR1dVG5cmXMnj1b1ketfnYEUSEbOXKkaN++vQAgQkJCpPbExERhbm4u+vTpI65duya2bdsm9PX1xW+//Sb1OX/+vNDU1BReXl7ixo0bYvLkyUJbW1tcvXpV6uPp6SlMTEzE/v37xeXLl0Xnzp2FjY2NePnypdSnXbt2omHDhuLixYvi3LlzombNmqJXr14FqqUkWbRokQgICBD37t0T58+fF/b29sLe3l5af/jwYaGlpSVWr14t7ty5Iw4ePCgsLS3F8uXLpT53794VBgYGYsyYMeLGjRti+fLlQlNTUxw9elTqs337dqGjoyPWr18vrl+/LgYNGiRMTU1FbGys1GfIkCHCyspK+Pv7i0uXLokWLVoIBwcHaX1mZqb45JNPhKOjowgJCRGHDx8WFSpUEO7u7kX8KSnH+/bN3bt3ha6urnB3dxe3b98WwcHBonXr1qJRo0ayPtw3ReN9+yc5OVlER0fLHvXq1RP9+/eX+vD3WtF4374RQogRI0aIOnXqCB8fH3H37l1x6dIlcezYMWm9uv3sMLRRoTp8+LCwtbUV169fzxXaVq1aJcqWLSvS0tKkNldXV1GnTh1p+YcffhAdOnSQbbN58+Zi8ODBQgghsrOzhYWFhZg/f760PiEhQejq6opt27YJIYS4ceOGACCCgoKkPkeOHBEKhUI8evQo37WUZD4+PkKhUIj09HQhhBC9evUS3bt3l/VZtmyZqFKlisjOzhZCCDFhwgRRv359WZ8ePXoIJycnablZs2Zi2LBh0nJWVpaoVKmSmDt3rhDi1b7S1tYWu3btkvqEhYUJACIgIEAI8erfkIaGhoiJiZH6rF69WhgbG8v2V0n15r7ZtWuX0NLSEllZWVIfX19fWR/um+Lz5v55U2hoqAAgzp49K7Xx91rxeHPf3LhxQ2hpaYnw8PC3PkfdfnZ4epQKTWxsLAYNGoRNmzbBwMAg1/qAgAC0bt0aOjo6UpuTkxMiIiLw7NkzqY+jo6PseU5OTggICAAAREZGIiYmRtbHxMQEzZs3l/oEBATA1NQUTZs2lfo4OjpCQ0MDgYGB+a6lpIqPj8eWLVvg4OAAbW1tAK9Oaevp6cn66evr4+HDh7h//z6A9++b9PR0BAcHy/poaGjA0dFR6hMcHIyMjAxZH1tbW1hbW8v2X4MGDWBubi57naSkJFy/fr2wPgaVlNe+adKkCTQ0NLBhwwZkZWUhMTERmzZtgqOjo9SH+6Z45LV/3rRu3TrUrl0brVq1ktr4e63o5bVvDhw4gOrVq+PgwYOwsbFBtWrVMHDgQMTHx0vPU7efHYY2KhRCCDg7O2PIkCGyXyqvi4mJkf2DBSAtx8TEvLPP6+tff97b+lSsWFG2XktLC+XKlXvv67z+GiWNq6srDA0NUb58eURFRcHHx0da5+TkhL1798Lf3x/Z2dm4efMmFi5cCACIjo4G8PbPLCkpCS9fvsS///6LrKys9+4bHR0dmJqavrMP981/+8bGxgbHjh3DxIkToaurC1NTUzx8+BA7d+6U+nDfFK137Z/XpaamYsuWLXBxcZG18/da0XnXvrl79y7u37+PXbt24c8//4S3tzeCg4PRvXt3qY+6/ewwtNE7ubm55XmR7euP8PBwLF++HMnJyXB3d1d2yaVGfvdNjvHjxyMkJATHjh2DpqYm+vXrB/H/N0QZNGgQhg8fjo4dO0JHRwctWrRAz549Abz6XyUVTGHum5iYGAwaNAj9+/dHUFAQzpw5Ax0dHXTv3l3qQwVTmPvndfv27UNycjL69+9fnG+nRCnMfZOdnY20tDT8+eefaNWqFb744gv88ccfOHXqFCIiIpT1Fj+KlrILINU2duxYODs7v7NP9erVcfLkSQQEBOS6b1vTpk3Rp08fbNy4ERYWFrlG0+QsW1hYSH/m1ef19TltlpaWsj52dnZSnydPnsi2kZmZifj4+Pe+zuuvoeryu29yVKhQARUqVEDt2rVRt25dWFlZ4eLFi7C3t4dCocC8efMwZ84cxMTEwMzMDP7+/rJtvO0zMzY2hr6+PjQ1NaGpqfne/Zeeno6EhATZ/0rf7PPmyKzSvG9WrlwJExMT2SjAzZs3w8rKCoGBgWjRogX3TQEV5v553bp169CxY8dcR1T4ey3/CnPfWFpaQktLC7Vr15b6161bF8CrkZx16tRRv5+dfF/9RvQO9+/fF1evXpUefn5+AoDYvXu3ePDggRDiv4tkX7+A193dPddAhI4dO8q2bW9vn+uC3QULFkjrExMT87xg99KlS1IfPz+/PC/YfVctJdn9+/cFAHHq1Km39unbt69sJNaECRPEJ598IuvTq1evXBfsDh8+XFrOysoSlStXznXB7u7du6U+4eHheV6w+/rIrN9++00YGxuL1NTUD3vDauTNfTNmzBjRrFkzWZ/Hjx8LAOL8+fNCCO6b4vS2n527d+8KhUIhDhw4kOs5/L1WPN7cNznfQ7dv35b65AwUiYiIEEKo388OQxsVicjIyFyjRxMSEoS5ubno27evuHbtmti+fbswMDDINeWHlpaWWLBggQgLCxMeHh55Do03NTUVPj4+4sqVK6JLly55Do1v1KiRCAwMFH/99ZeoVauWbGh8fmopKS5evCiWL18uQkJCxL1794S/v79wcHAQNWrUkH5ZxMXFidWrV4uwsDAREhIiRo4cKfT09ERgYKC0nZyh8ePHjxdhYWFi5cqVeQ6N19XVFd7e3uLGjRvi559/FqamprIRU0OGDBHW1tbi5MmT4tKlS7mG6ecMjf/6669FaGioOHr0qDAzMyuR00rkZ9/4+/sLhUIhpk+fLm7evCmCg4OFk5OTqFq1qnjx4oUQgvumqORn/+SYPHmyqFSpksjMzMy1Hf5eK3z52TdZWVmicePGonXr1uKff/4Rly5dEs2bNxdfffWVtB11+9lhaKMikVdoE0KIy5cvi5YtWwpdXV1RuXJl4enpmeu5O3fuFLVr1xY6Ojqifv364tChQ7L12dnZYsqUKcLc3Fzo6uqKL7/8UvpfU46nT5+KXr16CSMjI2FsbCx++uknkZycXOBaSoIrV66INm3aiHLlygldXV1RrVo1MWTIEPHw4UOpT1xcnGjRooUwNDQUBgYG4ssvvxQXL17Mta1Tp04JOzs7oaOjI6pXry42bNiQq8/y5cuFtbW10NHREc2aNcu1nZcvX4pffvlFlC1bVhgYGIhvv/1WREdHy/rcu3dPtG/fXujr64sKFSqIsWPHioyMjML5QFRIfvaNEEJs27ZNNGrUSBgaGgozMzPRuXNnERYWJuvDfVP48rt/srKyRJUqVcTEiRPfui3+Xitc+d03jx49Et99950wMjIS5ubmwtnZWTx9+lTWR51+dhRC8EpWIiIiIlXHYWFEREREaoChjYiIiEgNMLQRERERqQGGNiIiIiI1wNBGREREpAYY2oiIiIjUAEMbERERkRpgaCMiKgIKhQL79+9Xdhkyp0+fhkKhQEJCgrJLIaIPwNBGRPQRpk2bJt3Um4ioKDG0EREREakBhjYiKtWys7Mxd+5c2NjYQF9fHw0bNsTu3bsB/Hc60d/fH02bNoWBgQEcHBwQEREBAPD29sb06dNx+fJlKBQKKBQKeHt7S9v+999/8e2338LAwAC1atWCr69vvmrKeV0/Pz80atQI+vr6aNu2LZ48eYIjR46gbt26MDY2Ru/evfHixQvpeWlpaRg5ciQqVqwIPT09tGzZEkFBQYX3YRGRUjG0EVGpNnfuXPz5559Ys2YNrl+/jtGjR+PHH3/EmTNnpD6TJk3CwoULcenSJWhpaWHAgAEAgB49emDs2LGoX78+oqOjER0djR49ekjPmz59On744QdcuXIF33zzDfr06YP4+Ph81zZt2jSsWLECFy5cwIMHD/DDDz9gyZIl2Lp1Kw4dOoRjx45h+fLlUv8JEyZgz5492LhxI/755x/UrFkTTk5OBXpNIlJhBbq9PBFRCZKamioMDAzEhQsXZO0uLi6iV69e4tSpUwKAOHHihLTu0KFDAoB4+fKlEEIIDw8P0bBhw1zbBiAmT54sLT9//lwAEEeOHHlvXXm97ty5cwUAcefOHalt8ODBwsnJSdq+tra22LJli7Q+PT1dVKpUSXh5ecm2++zZs/fWQESqR0uJeZGISKlu376NFy9e4KuvvpK1p6eno1GjRtLy//73P+nvlpaWAIAnT57A2tr6ndt//XmGhoYwNjbGkydP8l3f6883NzeHgYEBqlevLmv7+++/AQB37txBRkYGPvvsM2m9trY2mjVrhrCwsHy/JhGpLoY2Iiq1nj9/DgA4dOgQKleuLFunq6uLO3fuAHgVfnIoFAoAr66Fe5/Xn5fz3Pw8L6/nKxSKj94eEak3XtNGRKVWvXr1oKuri6ioKNSsWVP2sLKyytc2dHR0kJWVVcSVvl+NGjWgo6OD8+fPS20ZGRkICgpCvXr1lFgZERUWHmkjolKrTJkyGDduHEaPHo3s7Gy0bNkSiYmJOH/+PIyNjVG1atX3bqNatWqIjIxEaGgoqlSpgjJlykBXV7cYqpczNDTE0KFDMX78eJQrVw7W1tbw8vLCixcv4OLiUuz1EFHhY2gjolJt5syZMDMzw9y5c3H37l2YmpqicePGmDhxYr5OPXbr1g179+5FmzZtkJCQgA0bNsDZ2bnoC8+Dp6cnsrOz0bdvXyQnJ6Np06bw8/ND2bJllVIPERUuhRBCKLsIIiIiIno3XtNGREREpAYY2oiIitmQIUNgZGSU52PIkCHKLo+IVBRPjxIRFbMnT54gKSkpz3XGxsaoWLFiMVdEROqAoY2IiIhIDfD0KBEREZEaYGgjIiIiUgMMbURERERqgKGNiIiISA0wtBERERGpAYY2IiIiIjXA0EZERESkBhjaiIiIiNTA/wGshenDJO+9bAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXFklEQVR4nO3de1yO9/8H8Nfd+XxASZScFsacD7WZw/qJzdlsY0NzGjJDQ2FyLjnN+TCUOR9HGDmGqTGnCJlTNEpmKiqd7uv3R98uLhV3ubuv7u7X8/Hoket9XV33O/e2+7XP9bk+l0IQBAFEREREOkBP7gaIiIiINIXBh4iIiHQGgw8RERHpDAYfIiIi0hkMPkRERKQzGHyIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4i0kkKhwJQpU+RuQ+Tl5QUXFxe52yCit2DwISK1CQkJgUKhEL9MTEzw3nvvYcSIEXj06FGJvnZERASmTJmCpKQktZ63TZs2kt+pXLlyaNasGdauXQulUqmW15g1axZ2796tlnMR0ZsZyN0AEZU906ZNQ7Vq1fDixQv88ccfWL58OX7//XdER0fDzMxMLa+Rnp4OA4OX/wmLiIjA1KlT4eXlBRsbG7W8Rp4qVaogICAAAPD48WP8+uuvGDhwIP7++28EBga+8/lnzZqFzz//HN26dXvncxHRmzH4EJHadezYEU2bNgUADBo0COXLl8f8+fOxZ88e9O7du9jnVSqVyMzMhImJCUxMTNTV7ltZW1vjm2++Ebe/++47uLq6YsmSJZg+fToMDQ011gsRvRte6iKiEteuXTsAwN27dwEAc+fOhbu7O8qXLw9TU1M0adIEO3bsyPdzCoUCI0aMwMaNG/H+++/D2NgYBw8eFPflzfGZMmUKxo4dCwCoVq2aeFkqNjYWrVu3RoMGDQrsy9XVFZ6enkX+fczMzNCyZUukpqbi8ePHhR6XmpoKHx8fODk5wdjYGK6urpg7dy4EQZD8jqmpqVi3bp3Yt5eXV5F7IiLVcMSHiErc7du3AQDly5cHACxcuBBdunTB119/jczMTGzZsgW9evXCvn378Nlnn0l+9tixY9i2bRtGjBiBChUqFDiBuEePHvj777+xefNmLFiwABUqVAAA2NnZoW/fvhg8eDCio6NRr1498Wf++usv/P3335g0aVKxfqc7d+5AX1+/0MtqgiCgS5cuOH78OAYOHIiGDRsiLCwMY8eOxYMHD7BgwQIAwPr16zFo0CA0b94cQ4YMAQDUqFGjWD0RkQoEIiI1CQ4OFgAIR44cER4/fizExcUJW7ZsEcqXLy+YmpoK//zzjyAIgpCWlib5uczMTKFevXpCu3btJHUAgp6ennD16tV8rwVA8Pf3F7fnzJkjABDu3r0rOS4pKUkwMTERxo8fL6mPHDlSMDc3F54/f/7G36l169ZC7dq1hcePHwuPHz8Wrl+/LowcOVIAIHTu3Fk8rn///kLVqlXF7d27dwsAhBkzZkjO9/nnnwsKhUK4deuWWDM3Nxf69+//xj6ISD14qYuI1M7DwwN2dnZwcnLCV199BQsLC/z222+oXLkyAMDU1FQ89unTp0hOTkarVq1w4cKFfOdq3bo16tatW+xerK2t0bVrV2zevFm8xJSTk4OtW7eiW7duMDc3f+s5YmJiYGdnBzs7O9SpUweLFy/GZ599hrVr1xb6M7///jv09fUxcuRISd3HxweCIODAgQPF/p2IqPh4qYuI1G7p0qV47733YGBggIoVK8LV1RV6ei//P2vfvn2YMWMGLl26hIyMDLGuUCjynatatWrv3E+/fv2wdetWnDp1Ch9//DGOHDmCR48eoW/fvir9vIuLC3755RfxFv1atWrB3t7+jT9z7949ODo6wtLSUlKvU6eOuJ+INI/Bh4jUrnnz5uJdXa87deoUunTpgo8//hjLli1DpUqVYGhoiODgYGzatCnf8a+ODhWXp6cnKlasiA0bNuDjjz/Ghg0b4ODgAA8PD5V+3tzcXOVjiah046UuItKonTt3wsTEBGFhYRgwYAA6duyollBR0GhRHn19ffTp0wc7duzA06dPsXv3bvTu3Rv6+vrv/LqFqVq1Kh4+fIhnz55J6jExMeL+PG/qnYjUi8GHiDRKX18fCoUCOTk5Yi02NvadVy7Om6tT2MrNffv2xdOnT/Hdd9/h+fPnknV5SsKnn36KnJwcLFmyRFJfsGABFAoFOnbsKNbMzc3VvuI0ERWMl7qISKM+++wzzJ8/Hx06dECfPn2QmJiIpUuXombNmrh8+XKxz9ukSRMAwMSJE/HVV1/B0NAQnTt3FgNRo0aNUK9ePWzfvh116tRB48aN1fL7FKZz585o27YtJk6ciNjYWDRo0ACHDh3Cnj17MGrUKMkt602aNMGRI0cwf/58ODo6olq1amjRokWJ9kekqzjiQ0Qa1a5dO6xZswYJCQkYNWoUNm/ejNmzZ6N79+7vdN5mzZph+vTpiIqKgpeXF3r37p1vccF+/foBgMqTmt+Fnp4eQkNDMWrUKOzbtw+jRo3CtWvXMGfOHMyfP19y7Pz589GkSRNMmjQJvXv3xvLly0u8PyJdpRCEV5YQJSIqwxYuXIjRo0cjNjYWzs7OcrdDRDJg8CEinSAIAho0aIDy5cvj+PHjcrdDRDLhHB8iKtNSU1MRGhqK48eP48qVK9izZ4/cLRGRjDjiQ0RlWmxsLKpVqwYbGxsMHz4cM2fOlLslIpIRgw8RERHpDN7VRURERDqDwYeIiIh0Bic3v0apVOLhw4ewtLTkMvJERERaQhAEPHv2DI6OjpKHIr+Owec1Dx8+hJOTk9xtEBERUTHExcWhSpUqhe5n8HmNpaUlgNy/OCsrK5m7ISIiIlWkpKTAyclJ/BwvDIPPa/Iub1lZWTH4EBERaZm3TVPh5GYiIiLSGQw+REREpDMYfIiIiEhncI5PMeTk5CArK0vuNkgDDA0Noa+vL3cbRESkJgw+RSAIAhISEpCUlCR3K6RBNjY2cHBw4LpORERlAINPEeSFHnt7e5iZmfGDsIwTBAFpaWlITEwEAFSqVEnmjoiI6F0x+KgoJydHDD3ly5eXux3SEFNTUwBAYmIi7O3tedmLiEjLcXKzivLm9JiZmcncCWla3nvOeV1ERNqPwaeIeHlL9/A9JyIqOxh8iIiISGcw+BAREZHOYPDRAV5eXlAoFFAoFDA0NETFihXxf//3f1i7di2USqXK5wkJCYGNjU3JNUpERFTCGHx0RIcOHRAfH4/Y2FgcOHAAbdu2xQ8//IBOnTohOztb7vaIiIg0gsFHRxgbG8PBwQGVK1dG48aNMWHCBOzZswcHDhxASEgIAGD+/PmoX78+zM3N4eTkhOHDh+P58+cAgPDwcHz77bdITk4WR4+mTJkCAFi/fj2aNm0KS0tLODg4oE+fPuLaN0RERHlCQwF399zvcmHweQeCICAzM1OWL0EQ3rn/du3aoUGDBti1axcAQE9PD4sWLcLVq1exbt06HDt2DOPGjQMAuLu74+eff4aVlRXi4+MRHx+PH3/8EUDubd7Tp09HVFQUdu/ejdjYWHh5eb1zf0REVLYEBgKRkbnf5aI1CxgGBARg165diImJgampKdzd3TF79my4urqKx7x48QI+Pj7YsmULMjIy4OnpiWXLlqFixYol0lNWVhYCAgJK5Nxv4+fnByMjo3c+T+3atXH58mUAwKhRo8S6i4sLZsyYgaFDh2LZsmUwMjKCtbU1FAoFHBwcJOcYMGCA+Ofq1atj0aJFaNasGZ4/fw4LC4t37pGIiLRffHw8OnRYDVfXZujevYNsfWjNiM+JEyfg7e2NP//8E4cPH0ZWVhbat2+P1NRU8ZjRo0dj79692L59O06cOIGHDx+iR48eMnZd+gmCIK5Tc+TIEXzyySeoXLkyLC0t0bdvXzx58gRpaWlvPMf58+fRuXNnODs7w9LSEq1btwYA3L9/v8T7JyKi0m/v3r1YtWoVBEEJF5cz6Nz53a9aFJfWjPgcPHhQsh0SEgJ7e3ucP38eH3/8MZKTk7FmzRps2rQJ7dq1AwAEBwejTp06+PPPP9GyZUu192RoaAg/Pz+1n1fV11aH69evo1q1aoiNjUWnTp0wbNgwzJw5E+XKlcMff/yBgQMHIjMzs9AVq1NTU+Hp6QlPT09s3LgRdnZ2uH//Pjw9PZGZmamWHomISDulp6cjKChIUvvyyy9lXRhWa4LP65KTkwEA5cqVA5A76pCVlQUPDw/xmNq1a8PZ2RmRkZGFBp+MjAxkZGSI2ykpKSr3oFAo1HK5SS7Hjh3DlStXMHr0aJw/fx5KpRLz5s2Dnl7uQOC2bdskxxsZGSEnJ0dSi4mJwZMnTxAYGAgnJycAwLlz5zTzCxARUal19epV7NixQ1Lz9fWFsbGxTB3l0srgo1QqMWrUKHz44YeoV68egNwnpxsZGeVbZ6ZixYpISEgo9FwBAQGYOnVqSbZbKmRkZCAhIQE5OTl49OgRDh48iICAAHTq1An9+vVDdHQ0srKysHjxYnTu3BmnT5/GihUrJOdwcXHB8+fPcfToUTRo0ABmZmZwdnaGkZERFi9ejKFDhyI6OhrTp0+X6bckIiK5CYKAlStX4tGjR2KtefPm6Nixo4xdvaQ1c3xe5e3tjejoaGzZsuWdz+Xn54fk5GTxKy4uTg0dlj4HDx5EpUqV4OLigg4dOuD48eNYtGgR9uzZA319fTRo0ADz58/H7NmzUa9ePWzcuDHfxG13d3cMHToUX375Jezs7BAUFAQ7OzuEhIRg+/btqFu3LgIDAzF37lyZfksiIpLTkydPMG3aNEnoGTp0aKkJPQCgENRxX7QGjRgxAnv27MHJkydRrVo1sX7s2DF88sknePr0qWTUp2rVqhg1ahRGjx6t0vlTUlJgbW2N5ORkWFlZifUXL17g7t27qFatGkxMTNT2+1Dpx/eeiCi/0NDc29LbtgWOHwf69z+OhIST4n5ra2uMHDlSnD5R0gr7/H6d1lzqEgQB33//PX777TeEh4dLQg8ANGnSBIaGhjh69Ch69uwJALhx4wbu378PNzc3OVomIiIqs/LW5Dl/PgsTJszCq7NKunTpgkaNGsnX3BtoTfDx9vbGpk2bsGfPHlhaWorzdqytrWFqagpra2sMHDgQY8aMQbly5WBlZYXvv/8ebm5uJXJHFxERkS7z9QUmTLiNXr02SOo//vgjzM3NZerq7bQm+CxfvhwA0KZNG0k9ODhYXCV4wYIF0NPTQ8+ePSULGBIREZF6paRsQK9et8Xt999/H59//rmMHalGa4KPKlORTExMsHTpUixdulQDHREREemelJQULFiwQFL79ttv4ezsLFNHRaM1wYeIiIjkdebMGcmCwnp6evDz84OBgfbECe3plIiIiGSRk5ODoKAgyYr8N254YNOmD2XsqngYfIiIiKhQDx48wOrVqyW1Eyd+wKhRNvI09I4YfIiIiKhAe/bswaVLl8TtqlWron///rI+a+tdMfgQERGRRFpaGubMmSOpVa/eG337vidTR+qjlY+soNLJy8sL3bp1E7fbtGmDUaNGvdM51XEOIiJSTWgo0LPn5XyhZ9YsPyxfrv2hB+CIj07w8vLCunXrAACGhoZwdnZGv379MGHChBKdib9r1y4YGhqqdGx4eDjatm2b75EjRTkHEREVT+7jJwS4uS3FBx88Eevu7u5IT/8/NGmSu2BhWcDgoyM6dOiA4OBgZGRk4Pfff4e3tzcMDQ3h5+cnOS4zMxNGRkZqec1y5cqVinMQEdGbLV78GJ6e0gV/hw8fDjs7OwBAly5ydFUyeKlLRxgbG8PBwQFVq1bFsGHD4OHhgdDQUPHy1MyZM+Ho6AhXV1cAQFxcHL744gvY2NigXLly6Nq1K2JjY8Xz5eTkYMyYMbCxsUH58uUxbty4fItMvn6ZKiMjA+PHj4eTkxOMjY1Rs2ZNrFmzBrGxsWjbti0AwNbWFgqFQlyN+/VzPH36FP369YOtrS3MzMzQsWNH3Lx5U9wfEhICGxsbhIWFoU6dOrCwsECHDh0QHx8vHhMeHo7mzZvD3NwcNjY2+PDDD3Hv3j01/U0TEWmXw4cP46OPXoae1NRymDx5shh6yhoGHx1lamoqrsdw9OhR3LhxA4cPH8a+ffuQlZUFT09PWFpa4tSpUzh9+rQYIPJ+Zt68eQgJCcHatWvxxx9/4L///sNvv/32xtfs168fNm/ejEWLFuH69etYuXIlLCws4OTkhJ07dwLIfbBsfHw8Fi5cWOA5vLy8cO7cOYSGhiIyMhKCIODTTz9FVlaWeExaWhrmzp2L9evX4+TJk7h//z5+/PFHAEB2dja6deuG1q1b4/Lly4iMjMSQIUO0+g4FIqLiyMzMxNSpUxERESHWLl/ujo8++r5M/zeRl7p0jCAIOHr0KMLCwvD999/j8ePHMDc3x+rVq8VLXBs2bIBSqcTq1avFf/iDg4NhY2OD8PBwtG/fHj///DP8/PzQo0cPAMCKFSsQFhZW6Ov+/fff2LZtGw4fPgwPDw8AQPXq1cX9eZe07O3tJXN8XnXz5k2Ehobi9OnTcHd3BwBs3LgRTk5O2L17N3r16gUAyMrKwooVK1CjRg0AwIgRIzBt2jQAuUutJycno1OnTuL+OnXqFP0vkohIi928eRObNm2S1OrXHwt/fzOZOtIcjvjIJDQUcHfP/a4J+/btg4WFBUxMTNCxY0d8+eWXmDJlCgCgfv36knk9UVFRuHXrFiwtLWFhYQELCwuUK1cOL168wO3bt5GcnIz4+Hi0aNFC/BkDAwM0bdq00Ne/dOkS9PX10bp162L/DtevX4eBgYHkdcuXLw9XV1dcv35drJmZmYmhBgAqVaqExMREALkBy8vLC56enujcuTMWLlwouQxGRFSWCYKAdevWSULPlSsNMGWKPyZMKPuhB+CIj2wCA4HIyNzvmpg01rZtWyxfvhxGRkZwdHSU3M1lbm4uOfb58+do0qQJNm7cmO88xb3ma2pqWqyfK47X7wJTKBSS+UfBwcEYOXIkDh48iK1bt2LSpEk4fPgwWrZsqbEeiYg0LSkpKd80gg0bBiI9vQoAoAxf3ZLgiI9MfH0BNzfN3R5obm6OmjVrwtnZ+a23sDdu3Bg3b96Evb09atasKfmytraGtbU1KlWqhDNnzog/k52djfPnzxd6zvr160OpVOLEiRMF7s8bccrJySn0HHXq1EF2drbkdZ88eYIbN26gbt26b/ydXteoUSP4+fkhIiIC9erVyzfkS0RUlkREREhCjyAY4dChSZg3rwqWLcv9PJo9W8YGNYgjPjLp0qX03h749ddfY86cOejatSumTZuGKlWq4N69e9i1axfGjRuHKlWq4IcffkBgYCBq1aqF2rVrY/78+UhKSir0nC4uLujfvz8GDBiARYsWoUGDBrh37x4SExPxxRdfoGrVqlAoFNi3bx8+/fRTmJqawsLCQnKOWrVqoWvXrhg8eDBWrlwJS0tL+Pr6onLlyujatatKv9vdu3exatUqdOnSBY6Ojrhx4wZu3ryJfv36vctfGRFRqbR7dw4uXpwFPT2lWDtwoAOuXm2BjRtffg6V1s+jksARH8rHzMwMJ0+ehLOzM3r06IE6depg4MCBePHiBaysrAAAPj4+6Nu3L/r37w83NzdYWlqie/fubzzv8uXL8fnnn2P48OGoXbs2Bg8ejNTUVABA5cqVMXXqVPj6+qJixYoYMWJEgecIDg5GkyZN0KlTJ7i5uUEQBPz+++8qL3JoZmaGmJgY9OzZE++99x6GDBkCb29vfPfdd0X4GyIiKv3u37+PqKgZktDz/vujcfVqCzx/njvVQhcphNcXX9FxKSkpsLa2RnJysvghDwAvXrzA3bt3Ua1aNZiYmMjYIWka33si0jY7duzA1atXxe1bt2rg9u1vEBGRt0pz7lSLsjTSU9jn9+t4qYuIiKiMSE1Nxdy5cyW1rKxvcPt2DXFOaWmeaqEJDD5ERERlwKVLl7Bnzx5JbebMCWja1BCvrFGo8xh8iIiItJhSqcSiRYuQnJws1i5caIUDB9rB3r7sPFxUXRh8iIiItNSjR4+wYsUKSe3UKW8cPVoBAODsrNuXtQrC4FNEnAuue/ieE1FpdPDgQcm6ZgkJFREe/h1mz1bgwQNAEDjaUxAGHxXl3S6dlpam0VWISX5paWkA8q8ITUQkh4yMDAS+di/6gQM9ceZMPbi6cvLy2zD4qEhfXx82NjbiM5/MzMzK9NNrKXekJy0tDYmJibCxsYG+vr7cLRGRjouJicHWrVsltcDAcQBMNfo0AG3G4FMEDg4OACCGH9INNjY24ntPRCQHQRCwZs0aPHjwQKw1btwYf/7ZGQYGwMiRwMyZMjaoRbiA4WtUWQApJycHWVlZGu6M5GBoaMiRHiKS1dOnT7Fo0SJJbfDgwXB0dJSpo9KJCxiWIH19fX4YEhFRiTt16hSOHTsmbqemmmHfPh/4+/OJU8XF4ENERFTKZGdnY+Zr16727fsU5841g6urTE2VEQw+REREpUhsbCzWrVsnqc2dOwbPn1vCxAQICpKpsTKCwYeIiKiU2Lp1K2JiYsTtGzfew+bNvQEAlSsDy5bxVvV3xeBDREQks+fPn2PevHmSWkhIP2RlVYOFBe/aUicGHyIiIhmdO3cO+/fvl9RmzJiI7GwD7NnDER51Y/AhIiKSgVKpxPz585GamirWjh9vg9OnWyMnB/j8c4aeksDgQ0REpGHx8fFYtWqVpLZly/ewtS2HnTsZeEoSgw8REZEG7d+/H+fOnRO3HzxwxC+/DELt2gpERMjYmI5g8CEiItKAFy9eYPbs2ZLa1q1f4Pr1OgCA13ZRCWHwISIiKmHXrl3D9u3bJbWAgPHIyDCBqSkwejQvb2kKgw8REVEJEQQBq1atQkJCglg7c6YZjhz5FAYGwIQJvE1d0xh8iIiISsCTJ0+wZMkSSS0r6zskJTlgxw6O8MiFwYeIiEjNjh8/jpMnT4rbyclW+PnnH9CypR4nMMuMwYeIiEhNsrKyMGvWLEktNLQzLlxoDADw9ZWjK3oVgw8REZEa3LlzB+vXr5fU5szxQVqaBfT0gB49eHmrNGDwISIiekebNm3CzZs3xe2rV+ti+/ZeADiBubRh8CEiIiqmlJQULFiwQFJbu9YL9+9XBcDQUxox+BARERXD2bNnceDAAXFbqVRg5swJsLY24BPVSzEGHyIioiLIycnBrFlzoFRmiLXDhz1w+vSHMDEBgoM5l6c005O7ASIiIm3x4MEDzJgxQxJ6Vq36AZUqfQg3N2DrVoae0o4jPkRERCrYs2cPLl26JG7fu+eMyEgvPHigkK8pKjIGHyIiojdIT09HUFCQpLZp01eIi3PFli0yNUXFxuBDRERUiJ9+ugIDg12S2gcf+CIszBhz5vCyljZi8CEiInqNIAiYMGEZTEz+FWuRkW4YPrw9unQBuneXsTl6Jww+REREr/j333+xdOlSmJi8rC1bNgyJifZISeEoj7Zj8CEiIvqfI0eO4PTp0+L2f//ZYu3a77FxowKBgXzWVlnA4ENERDrvt98ycflywGu1boiKaoDatXNHeTjSUzYw+BARkU67efMmLl/eJKnNmTMWHTuawcyMozxlDYMPERHppD17BBw9+ivKl48VazdvfoA7d7pj0yaO8JRVDD5ERKRzkpOTcenSzyhf/mVt48YBmDvXiYGnjGPwISIinREaCmzeHInatQ+JtexsAxw75ou5c/UZenQAgw8REemE3btzcP58AGrXzhFrMTHt0bu3G6ZPl7Ex0igGHyIiKvM2bYrDzZtrYfDKp96oUaNgbW0tX1MkCwYfIiIqk0JDgcBAwMNjF/T1r4j1f/6pjqtXv0GjRgpe2tJBDD5ERFQm/fRTKnr0mCupHT/+NRISauLGjdxQxOCje/TkboCIiEjdfvrpUr7Q88EHfggPr4mgIMDNjevz6KoyGXyWLl0KFxcXmJiYoEWLFjh79qzcLRERkQYIgoCFCxfCwGCPWDt58iNs2eKP7t2NAOSO8kREcLRHV5W54LN161aMGTMG/v7+uHDhAho0aABPT08kJibK3RoREZWQiRMBZ+dHmDZtGpKSksT62rXeePjwE8yeLV9vVLooBEEQ5G5CnVq0aIFmzZphyZIlAAClUgknJyd8//338FVhXDMlJQXW1tZITk6GlZVVSbdLRETvKDQUWL48DC1b/inWnj+3w7x5w9CypQIRETI2Rxqj6ud3mRrxyczMxPnz5+Hh4SHW9PT04OHhgcjIyAJ/JiMjAykpKZIvIiIq/UJDgVatMnDx4lRJ6ImI6IlWrYajZUsF5/FQPmUq+Pz777/IyclBxYoVJfWKFSsiISGhwJ8JCAiAtbW1+OXk5KSJVomI6B2EhgITJ96Ah0egpL5kyTh4e9fjPB4qVJkKPsXh5+eH5ORk8SsuLk7uloiIqBATJwKWlgIOHFiLzz/fItbLl2+EsDB/rFljyrBDb1Sm1vGpUKEC9PX18ejRI0n90aNHcHBwKPBnjI2NYWxsrIn2iIjoHYSGAitWPMWPPy6S1N97bxB6966MESNkaoy0Spka8TEyMkKTJk1w9OhRsaZUKnH06FG4ubnJ2BkREb2LiROBuXP/wMiRL0NPZqYpfvrpJ/TuXVnGzkjblKkRHwAYM2YM+vfvj6ZNm6J58+b4+eefkZqaim+//Vbu1oiIqBiys7NhZDQTn3zysnbkyKcYO7YZ9MrU/76TJpS54PPll1/i8ePHmDx5MhISEtCwYUMcPHgw34RnIiIq/TZtuoebN0MktfDwMRg71pJzeahYytw6Pu+K6/gQEZUOCxduQ1LSdXG7Vq1a6NOnj4wdUWmm6ud3mRvxISIi7bZz53NER8+T1Pbv74uzZ6vL1BGVJbw6SkREsgsNBdzdgbVrL+QLPTNmTMCzZww9pB4c8SEiItkFBirh7r4AcXHPxdrx421gZ9cazZrxSeqkPgw+REQki9BQIDAQsLJKgKfnSsm+U6e+x5gx5TiBmdSOwYeIiGQxfjxQvfp+NG9+Tqw9fFgJ69cPRlqaQsbOqCxj8CEiIo2aOBFYuvQFRo+eLalv3doLt27VxdixMjVGOoHBh4iINCY0FNi9+xpGj94uqe/cOR6BgSa8tEUljsGHiIg0QhAEnDixCl98kSDWzp5tiqdPP8PlyzI2RjqFwYeIiErc9u3/4dq1xXh1XbmsrCF4+rQS79gijWLwISKiEvXTT+EwMDghbr94YYGZM0dDjw/aIhkw+BARUYnYvTsLUVGzYPDKJ82BA50wYUITPlyUZMPgQ0REanfnzh1ERa2X1DZs8MG8eRacwEyyYvAhIiK1WrBgE1JSborbd+7Uwbp1X8DfX8amiP6HwYeIiNRi585niI6eL6kFB3vBxKSqTB0R5cerrERE9E5CQ4G2bc/mCz1r1kyEqWlVBAXJ1BhRATjiQ0RExaZUKnHmzBy0afNCrB050g45Oa1w/76MjREVgsGHiIiK5eHDh/jll19gZPSy9ssvI+HsbMu1eajUYvAhIqIiCw0NxcWLF8XthAQnhId/i2XLFLxri0o1Bh8iIlJZeno6gl6btLN581coV84V16/L1BRRETD4EBGRSqKjo7Fz505JbdYsXxgZGXMCM2kNBh8iInojQRAQFLQcL148FmvnzrXEvn2e0NMDtm8HL2+R1uDt7EREVKh///0X06ZNk4SeYcOG4YMPPGFhAfj6MvSQdlEIgiDI3URpkpKSAmtrayQnJ8Pq1ccIExHpmMmTj0Jf/w9xOy3NFu7u36NrV4WMXREVTNXPb17qIiIiUWgoMGdOJjw8AqCv/7J+5UpX7NjRULa+iNSFwYeIiES//HILHh4bJbX163/E/PnmMnVEpF4MPkREBEEQsGDBBjRtekesxcbWR/fuPfhwUSpTGHyIiHRccnIyfv75Z0ltzZoBqFLFiROXqcxh8CEi0mF//vknwsLCxO3sbAOsW+cLc3N9PnaCyiQGHyIiHbR7dw4uXAiEvn62WGvfvj3c3NwwfbqMjRGVMK7jQ0SkY+Li4hAVNUMSelauHAU3NzcZuyLSDI74EBHpkF27duHKlSvi9p071bBhQ1/4+nJtHtINDD5ERDogLS0Nc+bMkdQ2bOiD9PRa+O03rr5MuoPBh4iojIuKisLu3bsltZkz/ZCVZQQ3N4Ye0i0MPkREZZQgCFi8eDGePn0q1k6d+hBHj3rAxASoUQO8c4t0Dic3ExGVAaGhgLt77ncASExMxLRp0yShZ/ny4Th2zAPlygFbtwLXr3O0h3QPR3yIiMqAwEAgMjL3u4nJIURGRor7/vuvAlatGo4xYxSYOVPGJolKgSKP+Ojr6yMxMTFf/cmTJ9B/9Yl2RESkMb6+wEcfZcLTc6ok9OzY0QOLFnmjUSOGHiKgGCM+giAUWM/IyICRkdE7N0REREUTGgqsWXMDHh5bJPWFC8fh6VNTmJpyLg9RHpWDz6JFiwAACoUCq1evhoWFhbgvJycHJ0+eRO3atdXfIRERFUoQBBw7FozGjePE2oULDfH3310REpJ76cvXl3N5iPKoHHwWLFgAIPdfshUrVkguaxkZGcHFxQUrVqxQf4dERFSgpKQkLFy4ELa2L2u//DII8fGVxbV5GHiIpFQOPnfv3gUAtG3bFrt27YLtq/+mERGRRp0+fRpHjhwRt7OyjBEQMBaAPkd4iN6gyHN8jh8/XhJ9EBGRCnbvzsalS7OgULycb3n9ekf06dMcLVrwshbR2xQ5+AwYMOCN+9euXVvsZoiIdF1o6Mt5OYB0js69e/cQFRUCxSuP1QoPH43Ro614WYtIRUUOPq8uhgUAWVlZiI6ORlJSEtq1a6e2xoiIdNGr6/EAL/+ckbEd165dE4+7ebMm9uz5Gs+eydQokZYqcvD57bff8tWUSiWGDRuGGjVqqKUpIiJd8uooj6+vdMRn/vxUtG07F69kHvz6a1/ExlbnLepExaAQCluYp4hu3LiBNm3aID4+Xh2nk01KSgqsra2RnJwMKysrudshIh3g7p47suPmBkREvKxfuHABe/fulRybmTkBx48bci4P0WtU/fxW2yMrbt++jezsbHWdjohIZ7w+yqNUKhEY+DOysl5exwoP/xjh4W3zhSMiKpoiB58xY8ZItgVBQHx8PPbv34/+/furrTEiorLs1ctbeROTQ0MBT88EuLuvlBy7b98InDtXniswE6lBkYPPxYsXJdt6enqws7PDvHnz3nrHFxER5Qacr78Gnj/PDT95l6x27/4d7u5/icfFxzvg11+HYMsWBVdgJlITtc3xKSs4x4eISlrenB4LC2DjRiA7+wWuXJktOWbbtl6IiakLX1/w4aJEKijxOT6JiYm4ceMGAMDV1RX29vbFPRURkU55dU6Pre0pHDt2TLI/MHA8DAxMxMdOEJH6FDn4pKSkwNvbG5s3b4ZSqQQA6Ovr48svv8TSpUthbW2t9iaJiMqSLl2Azp0FTJs2TVK/cKEJzp/vBBcXYPZshh6ikqBX1B8YPHgwzpw5g/379yMpKQlJSUnYt28fzp07h++++64keiQiKlMePHiQL/Rs3NgHoaGd4OwMXL/O0ENUUoo8x8fc3BxhYWH46KOPJPVTp06hQ4cOSE1NVWuDmsY5PkRUkn799Vfxoc95liyZhCdP9GFrCwQHM/QQFUeJzfEpX758gZezrK2t+cR2IiLkv1UdADIyMhCY9xyK/zl3rjGePOmMx49laJJIRxX5UtekSZMwZswYJCQkiLWEhASMHTsWP/30k1qbIyLSRq8/b+vixYv5Qk9m5vd48qQz1+Uh0rAiX+pq1KgRbt26hYyMDDg7OwMA7t+/D2NjY9SqVUty7IULF9TXqYbwUhcRvauJE4FFi4CRIwEjo6n59k+Z4s8VmInUrMQudXXt2hUKheKdmiMiKsuOHweMjZ/AyGiJpH7lSlfs3NkQFhZcgZlILkUOPlOmTCmBNoiIyo7evffgv/8uSWrLl/th4EAjuLlxBWYiORU5+FSvXh1//fUXypcvL6knJSWhcePGuHPnjtqaIyLSFqGhwOzZOWjffoakfvNmTWzc+DWA3JEgXt4ikleRg09sbCxycnLy1TMyMvDPP/+opSkiIm2zZs0NtG+/RVL79dchuHOnEhQKwNGRl7eISgOVg09oaKj457CwMMkt7Tk5OTh69CiqVaum3u6IiLTAzJnz0Ljxc0mtYcPJaNSIDxclKm1UvqtLTy/3zneFQoHXf8TQ0BAuLi6YN28eOnXqpP4uNYh3dRGRqp49e4b58+dLaidOeOD48Q951xaRhqn6+a3yOj5KpRJKpRLOzs5ITEwUt5VKJTIyMnDjxo0SCz2xsbEYOHAgqlWrBlNTU9SoUQP+/v7IzMyUHHf58mW0atUKJiYmcHJyQlBQUIn0Q0R07NixfKEnM3MsRo36UJzATESlT5Hn+Ly+1LomxMTEQKlUYuXKlahZsyaio6MxePBgpKamYu7cuQByk1779u3h4eGBFStW4MqVKxgwYABsbGwwZMgQjfdMRGVP7orMAjw9pc/Zevy4ApYu9YabGzBzJi9rEZVmRV7A8PUH671u8uTJ79SQqubMmYPly5eLd5EtX74cEydOREJCAoyMjAAAvr6+2L17N2JiYlQ+Ly91EdGrXn38xIoVcWjRYq1k//79ffHwYXVYWABBQQw9RHIpsQUMf/vtN8l2VlYW7t69CwMDA9SoUUNjwSc5ORnlypUTtyMjI/Hxxx+LoQcAPD09MXv2bDx9+rTQ54hlZGQgIyND3E5JSSm5polI6+Q9fuLYsbVo0SJOsm/atJ+gVOpxPg+RFily8Ll48WK+WkpKCry8vNC9e3e1NPU2t27dwuLFi8XLXEDu88Jev6usYsWK4r7Cgk9AQACmTs2/pDwREQCMHfsCly/PltTOn2+O06c7QqkETEw4n4dImxT5IaUFsbKywtSpU4v8kFJfX18oFIo3fr1+merBgwfo0KEDevXqhcGDB79z735+fkhOTha/4uLi3v5DRFQmhYYC7u653wHgr7/+yhd69u79AXv3doS9PeDmBmzdystbRNqkyCM+hckLDkXh4+MDLy+vNx5TvXp18c8PHz5E27Zt4e7ujlWrVkmOc3BwwKNHjyS1vG0HB4dCz29sbAxjY+Mi9U1EZdOrT1W/eFE6EpyTo4fp039CuXLgYyeItFiRg8+iRYsk24IgID4+HuvXr0fHjh2LdC47OzvY2dmpdOyDBw/Qtm1bNGnSBMHBweK6Qnnc3NwwceJEZGVlwdDQEABw+PBhuLq6FnqZi4gIeDmBuXJloGrVx/D0XCbZHxXVEwcP1gMApKdzPg+RNivyXV2vz6PR09ODnZ0d2rVrBz8/P1haWqq1QSA39LRp0wZVq1bFunXroK+vL+7LG81JTk6Gq6sr2rdvj/HjxyM6OhoDBgzAggULinQ7O+/qItI97u65Iz1ffrkTdepES/YdPjwB48YZ4swZYNEiYOTI3FvWiah0UfXzu8jBRw4hISH49ttvC9z3avuXL1+Gt7c3/vrrL1SoUAHff/89xo8fX6TXYvAh0g2v3qauVGYjKkqaZh49qoMOHb7g5SwiLVGiwScpKQm3bt0CANSsWRM2NjbFbrS0YfAh0g15ozzdul1Dw4bbJfuWLx+KR48q8jZ1Ii1SIuv4xMbGwtvbG2FhYeJIi0KhQIcOHbBkyRK4uLi8U9NERJri6wucPRsIQ8MMSX3KlMkAFLCw4G3qRGWRysEnLi4OLVu2hKGhIaZPn446deoAAK5du4bly5fDzc0Nf/31F6pUqVJizRIRqUNycjIuXvwZ/7sPAgBw/bon+vRpCVdXQKEAZs/mXVtEZZHKl7oGDhyIW7duISwsDCYmJpJ96enp6NChA2rVqoXVq1eXSKOawktdRGXb4cOHEfHa9aujR8fhxx9NGXSItJjaL3UdPHgQW7duzRd6AMDU1BTTp0/HV199VbxuiYhKmFKpxPTp0yU1U9NK2L17CNfkIdIhKq/c/O+//75xDk/16tXx33//qaMnIiK1io2NzRd6vLy8sHv3EHHBQiLSDSoHn0qVKuHatWuF7o+Ojn7jCslERJqU9/iJoKAVWLdunWRfWNhkVK1aFb6+L1dhJiLdoPKlrm7duuHHH3/E0aNH8622nJiYiPHjx6Nbt27q7o+IqFjmzUuHp2cQ0tNf1q5d+xCXL3tg9v8ev9WlCy9xEekalSc3P336FC1atEBCQgK++eYb1K5dG4Ig4Pr169i0aRMcHBzw559/oly5ciXdc4ni5GYi7RcZGYlDhw5JauHhoxEebsW1eYjKKLVPbra1tcWZM2cwYcIEbNmyBUlJSQAAGxsb9OnTB7NmzdL60ENE2k0QBEybNk1Se/HCBHp64zF6NJCRwctaRLquWCs3C4KAx48fA8h90KhCoVB7Y3LhiA+RdkpISMDKlSsltW3bvsC1a3VgYQE8eyZTY0SkESWycnMehUIBe3v7YjdHRKROW7duRUxMjKQ2d+5EdOhggPv3cx8sSkQEFDP4EBGVBllZWZg1a5akdvlyfRw40ANbtnDiMhHlx+BDRFrpypUr2LVrl6RWp85whIXZMfQQUaEYfIhI60ybNg2vT0+cO9cfz54BX3whU1NEpBUYfIhIazx9+hSLFi2S1I4f/wxnzjTFmDEyNUVEWkWl4PP6f2jeZCRnERJRCVi27AAePz4rqQUE+CIjwxhubsDMmTI1RkRaRaXgs2DBApVOplAoGHyISK0KerjovXvO2LDhW9jbA5aWXJuHiFSnUvC5e/duSfdBRJTP7du3sWHDBkltz54BSEtzwo4dnMBMREVX7Dk+mZmZuHv3LmrUqAEDA04VIiL1WrJkCZ48eSKpNWw4Gf7+ZWfBVCLSPJWfzp4nLS0NAwcOhJmZGd5//33cv38fAPD9998jMDBQ7Q0SkW5JTU3F1KlTJaEnIqI1GjXyR9euDD1E9G6KHHz8/PwQFRWF8PBwmJiYiHUPDw9s3bpVrc0RkW45deoU5s6dK6kdP+4Db+82vKxFRGpR5GtUu3fvxtatW9GyZUvJM7ref/993L59W63NEZFuKOjhoikploiMHMMnqRORWhV5xOfx48cFPqcrNTW1TD2slIg04+HDh/lCT/XqvREZOQZt2wLu7kBoqEzNEVGZU+Tg07RpU+zfv1/czgs7q1evhpubm/o6I6Iyb8OGDfjll18ktUOHJqFv3/cQEQEcPw5ERgKcPkhE6lLkS12zZs1Cx44dce3aNWRnZ2PhwoW4du0aIiIicOLEiZLokYjKmMzMTAQEBEhqt241wrlzXTB79suar29u6OE6PUSkLgrh9QfeqOD27dsIDAxEVFQUnj9/jsaNG2P8+PGoX79+SfSoUSkpKbC2tkZycjKsrKzkboeozLl48SJCX7t2tXr1CPzzT3m4uYFzeoioWFT9/C7WAjw1atTINzxNRPQ2U6dOzVcLDPTHmDG5l7U4skNEJU2l4JOSkqLyCTlKQkSve/LkCZYsWSKp7d7dFbduNcTWrVyBmYg0R6XgY2Njo/IdWzk5Oe/UEBGVLaGhobh48aKk9sEHfggLM8LGjQw9RKRZKgWf48ePi3+OjY2Fr68vvLy8xLu4IiMjsW7dunyTFYlId+Xk5GDGjBmS2q1bNXD79jfw9we6d5epMSLSaUWe3PzJJ59g0KBB6N27t6S+adMmrFq1CuHh4ersT+M4uZno3f3999/YvHmzpObqOhiLFjnC15ejPESkfqp+fhc5+JiZmSEqKgq1atWS1P/++280bNgQaWlpxeu4lGDwIXo38+fPx7NnzyS1hg0n8zlbRFSiVP38LvIChk5OTgXe0bV69Wo4OTkV9XREVEY8f/4cU6dOlYSeo0c/wZQp/pg9m6GHiEqHIt/OvmDBAvTs2RMHDhxAixYtAABnz57FzZs3sXPnTrU3SESlX3h4eL4FTIOCfkTDhuZwc+Nt6kRUehQ5+Hz66ae4efMmli1bhpiYGABA586dMXToUI74EOmYgh8uWh7z54/4334uSEhEpUuxFjCsUqUKZs2ape5eiEiL/PPPP1izZo2k9s033+Dq1Rr4/ffc0MORHiIqbYoVfJKSkrBmzRpcv34dAPD+++9jwIABsLa2VmtzRFQ6jRsXDHPz+5LaTz/9BD09PdSowbu2iKj0KvJdXefOnYOnpydMTU3RvHlzAMBff/2F9PR0HDp0CI0bNy6RRjWFd3URFe7FixeY/epTRAGcOdMMd+58iv9d+SYikkWJ3c7eqlUr1KxZE7/88gsMDHIHjLKzszFo0CDcuXMHJ0+efLfOZcbgQ1Swc+fOYf/+/ZLaqVMjkZZmy7V5iEh2JRZ8TE1NcfHiRdSuXVtSv3btGpo2bcp1fIjKmNBQ4OJF6cNFlUoFpk6dLFNHRET5ldg6PlZWVrh//36+elxcHCwtLYt6OiIqxR4/fpwv9Ozb1wNNmjD0EJF2KvLk5i+//BIDBw7E3Llz4e7uDgA4ffo0xo4dm+8xFkSkvXbt2oUrV65Iatu2TUBAgCEvaxGR1ipy8Jk7dy4UCgX69euH7OxsAIChoSGGDRuGwMBAtTdIRJqVnZ2NmTNnSmqPHrmiQ4ev4O8vU1NERGpS5Dk+edLS0nD79m0AQI0aNWBmZqbWxuTCOT6ky3799Tru3t0mqX333XdwcHCQqSMiItWo+vldrHV8gNyHldavX7+4P05EpcyMGbORk/NCUps8eTIUitznbIWGAoGB4B1cRKTVVA4+AwYMUOm4tWvXFrsZItK8HTtScPXqAkntwgVP7NnTUlILDAQiI3O/M/gQkbZSOfiEhISgatWqaNSoEYp5dYyISpnDhw/j6lXpw7R27RqH6dNN8x3r6/tyxIeISFupPMfH29sbmzdvRtWqVfHtt9/im2++Qbly5Uq6P43jHB/SBQU9XNTUtCLGjRsqU0dERO9G7ev4LF26FPHx8Rg3bhz27t0LJycnfPHFFwgLC+MIEJEWuXfvXr7QU7Nmf4YeItIJxb6r6969ewgJCcGvv/6K7OxsXL16FRYWFuruT+M44kNlWVDQKqSnx0tqU6f+hJYt9RARUcgPERFpgRK/q0tPTw8KhQKCICAnJ6e4pyEiDUhPT0dQUJCk5u7ujvT0/0PLlpy3Q0S6o0jBJyMjA7t27cLatWvxxx9/oFOnTliyZAk6dOgAPb0iP/2CiEpYaCiwadOfqFMnTFJ///1R+L//swbAO7SISLeoHHyGDx+OLVu2wMnJCQMGDMDmzZtRoUKFkuyNiN7Bnj0CLl2ahjp1XtaMjY1Rt64vAgMBIyOGHiLSPSrP8dHT04OzszMaNWokLmhWkF27dqmtOTlwjg+VBY8ePcKKFSsktV69eqFu3bpwd89dj8fNDZzXQ0Rlhtrn+PTr1++NgYeISodt27bh+vXrktrEiRNhYJD7rzvX4yEiXVakBQyJqPTKysrCrFmzJLV69eqhZ8+eAKSPnOBIDxHpqmLf1UVEpUd0dDR27twpqQ0fPhx2dnbiNh85QUTE4EOktUJDgXHjgC++mAF9femSEv7+/vmO5yUuIqJ3WMCwrOLkZtIWjRsnoWvXhZLap59+imbNmsnUERGRfEp8AUMiks/BgwfRtesZSW38+PEwMTGRqSMiIu3A4EOkRZRKJaZPny6pmZs74ccfB8jUERGRduFyy0Ra4s6dO/lCz4ABA9459ISGAu7uud+JiMo6jvgQaYGlS5fi33//ldQmT56slrW1eLcXEekSrRvxycjIQMOGDaFQKHDp0iXJvsuXL6NVq1YwMTGBk5NTvocyEmmbtLQ0TJ06VRJ6bt/+GI0a+attQVFf39xVnHm3FxHpAq0b8Rk3bhwcHR0RFRUlqaekpKB9+/bw8PDAihUrcOXKFQwYMAA2NjYYMmSITN0SFd/p06dx5MgRSW3MmDGwtLRU6+t06cKRHiLSHVoVfA4cOIBDhw5h586dOHDggGTfxo0bkZmZibVr18LIyAjvv/8+Ll26hPnz5zP4kFYRBAHTpk2T1CwsLODj4yNTR0REZYfWBJ9Hjx5h8ODB2L17N8zMzPLtj4yMxMcffwwjIyOx5unpidmzZ+Pp06ewtbUt8LwZGRnIyMgQt1NSUtTfPJEKch8pEQ9Pz1WS+ldffQVXV1eZuiIiKlu0Yo6PIAjw8vLC0KFD0bRp0wKPSUhIQMWKFSW1vO2EhIRCzx0QEABra2vxy8nJSX2NExXBoUMb84WeSZMmMfQQEamRrMHH19cXCoXijV8xMTFYvHgxnj17Bj8/P7X34Ofnh+TkZPErLi5O7a9BVJjQUKBVq0xMnToVdna3xHq5cg3h7+8PfX39dz4/b1UnInpJ1ktdPj4+8PLyeuMx1atXx7FjxxAZGQljY2PJvqZNm+Lrr7/GunXr4ODggEePHkn25207ODgUen5jY+N85yXSlF9/vQQPjz2S2ogRI1C+fHm1nJ+3qhMRSckafOzs7CRPjy7MokWLMGPGDHH74cOH8PT0xNatW9GiRQsAgJubGyZOnIisrCwYGhoCAA4fPgxXV9dC5/cQySF3Lg/g6TkV9etL9xX0cNF3wQeTEhFJaeVDSmNjY1GtWjVcvHgRDRs2BAAkJyfD1dUV7du3x/jx4xEdHY0BAwZgwYIFRbqriw8ppZIUGgp4e/+HQYMWS+qdO3dG48aNZeqKiEj7qfr5rRWTm1VhbW2NQ4cO4e7du2jSpAl8fHwwefJk3spOpUpo6N58ocfPz6/Q0MM5OkRE6qWVIz4liSM+VBJycnIkl2sBoFq1aujXrx+Al5e/fH2lc3Hc3XPn6Li5ARERmuyYiEi76NyID1FptX79zXyhZ9CgQbCx6SeO5rw6CflVfJwEEZF6ac0ChkTaaP/+/bhz55yklvdw0V69XoadwiYh83ESRETqxeBDVAJevHiB2bNnS2qVKrXDkCGtxO1Xww4DDhGRZjD4EKnZtWvXsH37dklt/PjxMDExkdQYdoiINI9zfIjUIPfuKwFBQSsloadZs2bw9/fHoUMmxb47i3d2ERGpD4MP0TvICyXTpj2Bp+c0pKe/fC5cRMR3yM7+FEDBk5dVDTSFTXwmIqKiY/AhegeBgYCxcTg6d14i1iwtLREW9hMOHXIQw0pBd2epGmh4ZxcRkfpwHZ/XcB0fepu828/HjctCVNQsyb68FZgLW5enoPO86RgiIlKNqp/fDD6vYfCht6ldG8jKuoN+/dZL6j4+PrCwsJCpKyIi3abq5zfv6iIqotatN8HR8aa4XbduXfTq1UvGjoiISFUMPkRvkXdJasyYFFy9ugCOji/3nTnjhUaNqsrXHBERFQmDD9FbBAYCOTlncfXqAbGmUCgQFjYBEREGSEriHB0iIm3B4EP0Bjk5OejYcQ6Uygyx9vffn+DLLz9Cw4YFP2aCiIhKLwYfokI8ePAAq1evltROnPgBx4/b4O7d3Kelc6SHiEi7MPgQFWDPnj24dOmSuO3s7AwvLy/s3avAixcc5SEi0lYMPkSvSE9PR1BQkKT21VdfwdXVFQCfr0VEpO0YfIj+58qVK9i1a5ek5uvrC2NjY5k6IiIidWPwIZ2We6u6gC5dliEj41+x7ubmhvbt28vYGRERlQQGH9Jpixf/C0/Ppch4edMWhg0bBnt7e/maIiKiEsOHlJLOOnLkCD76aKm4bWtri8mTJxcaelR9mjoREZVeHPEhnZOZmYmAgABJrVu3bmjQoMEbf+7Vp6lzgjMRkXZi8CGdkPfYiWHDbuLOnU2SfWPHjoWZmdlbz+HrywULiYi0HZ/O/ho+nb1scncX8N57v6JatVix9sEHH6B79+7yNUVERGqj6uc35/hQmfTqfJzk5GR4ek6ThJ4BAwYw9BAR6SBe6qIyKW8+zubNkbh48ZBYNzAwgK+vL/T19WXsjoiI5MLgQ2XSuHE5uHAhAPr6OWItJqY9Nm92k7ErIiKSG4MPlTmbNsXh5s21eHVQ58SJURg1ylq+poiIqFRg8KEyIzQU2L9/Fxwdr4i16tWr45tvvoFCoZCxMyIiKi0YfKhMSE1NxcWLc+Ho+LJWo8bX+OabmvI1RUREpQ6DD2m9S5cuYc+ePZKan58fjIyMZOqIiIhKKwYf0kp5Dxft3HkRMjOTxPqdOx+hZ89PwMxDREQFYfAhrbRkSSI8PZcjM/NlzdvbGxUqVJCvKSIiKvUYfEjrhIWF4cMP/xS37ezsMGzYME5gJiKit2LwIa2RkZGBwMBASa1nz56oV6+eTB0REZG24SMrqNR69bETN27cyBd6xo0bx9BDRERFwhEfKpVCQ4GvvwaePxdw7FgwLl6ME/c1atQIXbp0kbE7IiLSVgw+VCoFBgIGBk8xZcoiSX3QoEGoXLmyTF0REZG2Y/ChUiP3FnXA1xfw8voD8fFHxX0mJiYYO3Ys9PR4dZaIiIqPwYdKjcBA4OzZbFy8OFNS79ixI5o3by5TV0REVJbwf59JFq9OXM4zYsQ9/PSTNPSMGTOGoYeIiNSGIz4ki8BAIDIy93uXLsC2bdtw8+Z1cX+tWrXQp08fGTskIqKyiMGHZOHrmxt6fHyeY+rUeZJ9ffv2RfXq1WXqjIiIyjIGH9K4vEnMgwZdQHT0Xsm+CRMmwNDQUKbOiIiorGPwIY0KDQW++UaJIUMWIC7uuVhv06YNWrduLWNnRESkCzi5WYcVNMG4pF9v1KgE+PhMh6Xly9Dz/fffM/QQEZFGMPjosFcnGJeUV8PVnj370b//SnFfpUqVMHnyZJQrV67kGiAiInoFg48O8/UF3Nxyv7+rwkaPAgOBCxde4OLFqXB2PifWe/XqhSFDhvCJ6kREpFEKQRAEuZsoTVJSUmBtbY3k5GRYWVnJ3Y7WcHfPHT1ycwMiInJroaHAokXX0arVNsmx48ePh4mJiQxdEhFRWaXq5zdHfEglb5sP9ProkSAICA9fJQk9TZs2hb+/P0MPERHJhiM+r+GIT8EKGtEpzH///YfFixdLakOGDEGlSpVKsEMiItJlqn5+83Z2UknegoNvmw8UHh6OEydOiNsWFhYYPXo0Hy5KRESlAoMPqaRLl9yvwmRlZWHWrFmSWqdOndCkSZMS7oyIiEh1DD70zu7cuYP169dLaj4+PrCwsJCpIyIiooIx+FCR5T1ywtcXeP58E27evCnuq1OnDr744gsZuyMiIiocgw8VWWAgEB39DBcvzpfU+/fvDxcXF3maIiIiUgGDDxXZwIF/4Z9/fpfUJk6cCAMD/uNERESlGz+pSGVKpRJz585Fenq6WGvXrh1atWolY1dERESqY/AhlTx8+BC//PKLpDZy5EjY2trK1BEREVHRcXEVkihohebQ0FBJ6HFycsLkyZMZeoiISOtwxIckXn1i+//9XzqCgoIk+7/66iu4urrK1B0REdG7YfAhibwVmr/7LhpBQTtf2+cLY2NjmTojIiJ6dww+JNG5s4B//lmO2NjHYq1ly5bw9PSUsSsiIiL1YPAh0b///oulS5dKakOHDkXFihVl6oiIiEi9tGpy8/79+9GiRQuYmprC1tYW3bp1k+y/f/8+PvvsM5iZmcHe3h5jx45Fdna2PM1qmaNHj0pCj42NDX766SeGHiIiKlO0ZsRn586dGDx4MGbNmoV27dohOzsb0dHR4v6cnBx89tlncHBwQEREBOLj49GvXz8YGhrme3gmvVTQw0W7du2Khg0bytMQERFRCVIIgiDI3cTbZGdnw8XFBVOnTsXAgQMLPObAgQPo1KkTHj58KI5SrFixAuPHj8fjx49hZGSk0mulpKTA2toaycnJsLKyUtvvUBrdunULGzdulNR+/PFHmJuby9QRERFR8aj6+a0Vl7ouXLiABw8eQE9PD40aNUKlSpXQsWNHyYhPZGQk6tevL7k04+npiZSUFFy9erXQc2dkZCAlJUXyVdYJgoD169dLQk/9+vXh7+/P0ENERGWaVgSfO3fuAACmTJmCSZMmYd++fbC1tUWbNm3w33//AQASEhLyzUfJ205ISCj03AEBAbC2tha/nJycSui3kFfewoQ7diRj2rRp4t8pAAwYMAA9evSQsTsiIiLNkDX4+Pr6QqFQvPErJiYGSqUSQO6DMHv27IkmTZogODgYCoUC27dvf6ce/Pz8kJycLH7FxcWp41crdQIDAUH4E1ev/izWDAwMMGnSpDIb9oiIiF4n6+RmHx8feHl5vfGY6tWrIz4+HgBQt25dsW5sbIzq1avj/v37AAAHBwecPXtW8rOPHj0S9xXG2Ni4zC/Kl5OTgw4dAiEIL+9wa9++Pdzc3GTsioiISPNkDT52dnaws7N763FNmjSBsbExbty4gY8++ghA7t1IsbGxqFq1KgDAzc0NM2fORGJiIuzt7QEAhw8fhpWVlSQwabvQ0NzRG19foEuXtx8fFxeHtWvXSmonToyCv791CXVIRERUemnF7exWVlYYOnQo/P394eTkhKpVq2LOnDkAgF69egHIHcGoW7cu+vbti6CgICQkJGDSpEnw9vYuUyM6rz5L623B57fffsPly5fFbQuLati5sy98fRUl3CUREVHppBXBBwDmzJkDAwMD9O3bF+np6WjRogWOHTsmPiFcX18f+/btw7Bhw+Dm5gZzc3P0798f06ZNk7lz9cp7lpavb+HHpKWlicEwT58+fVCrVi34+JRwg0RERKWYVqzjo0navo5PVFQUdu/eLan5+fmpvI4RERGRNlL181trRnzozQRBwOLFi/H06VOxlpPzIY4c8UCjRqrNByIiIirrtGIdH12XtwZPaGjB+xMTEzFt2jRJ6FmyZDgWLPAQ5wMRERERR3y0wpsmNB86dAiRkZHitolJBdSuPRy1ainQti1w/Pib5wMRERHpEgYfLVDQhObMzEwEBARIjtuxowcsLetj/Higa1cNN0lERKQFGHy0QJcu0pGeGzduYMuWLZJj6tcfh7AwU47uEBERvQGDjxYRBAEhISHiatUA0LBhQ3T93/AOH7dFRET0Zgw+WiIpKQkLFy6U1AYNGoTKlSvL1BEREZH2YfDRAqdPn8aRI0fEbX19Yxw4MBaNGumDuYeIiEh1DD6lWHZ2NmbNmoVX15g8f74j/v23ucqPrSAiIqKXGHxKqXv37iEkJERSmzdvNBwdrRAU9PbHVhAREVF+DD6l0Pbt23Ht2jVxu2bNmrC0/Br16r18KjtHeoiIiIqOwacUSU1Nxdy5cyW1vn37Ijq6ujjCw8BDRERUfAw+pcSFCxewd+9eSW3ChAkwNDTEN98UvnIzERERqY7BR2ZKpRI///wznj17JtY+/vhjtG3bVtwuaOVmIiIiKjoGHxlt2ZKAGzdWSmojRoxA+fLlJTXO6SEiIlIPBh+ZHDhwADdunBW3HRwcMGTIECgUChm7IiIiKtsYfDQsIyMDgYGBkpqLSy/0719Xpo6IiIh0B4OPBl2/fh3btm2T1MaPHw8TExOZOiIiItItDD4asnfvXly4cEHcbtq0KT777DMZOyIiItI9enI3oCuuX78u/nnIkCFi6AkNBdzdc78TERFRyVIIrz4IipCSkgJra2skJyfDyspKbeeNjY3Fw4cP0bJlS+jpvcyb7u65a/S4uQEREWp7OSIiIp2i6uc3L3VpiIuLC1xcXPLV27YFrlzJ/U5EREQli5e6ZHb8OPD8ee53IiIiKlkMPjLz9c29zMVVmYmIiEoeL3XJjKsyExERaQ5HfIiIiEhnMPgQERGRzmDw0RCu10NERCQ/Bh8NCQzMXa/ntcd0ERERkQYx+GgI794iIiKSH+/q0hDevUVERCQ/jvgQERGRzmDwISIiIp3B4ENEREQ6g8GHiIiIdAaDDxEREekMBh8iIiLSGQw+REREpDMYfIiIiEhnMPgQERGRzmDwISIiIp3B4ENEREQ6g8GHiIiIdAaDDxEREekMPp39NYIgAABSUlJk7oSIiIhUlfe5nfc5XhgGn9c8e/YMAODk5CRzJ0RERFRUz549g7W1daH7FcLbopGOUSqVePjwISwtLaFQKORup0SlpKTAyckJcXFxsLKykrsdegXfm9KJ70vpxPel9NLkeyMIAp49ewZHR0fo6RU+k4cjPq/R09NDlSpV5G5Do6ysrPgfi1KK703pxPeldOL7Unpp6r1500hPHk5uJiIiIp3B4ENEREQ6g8FHhxkbG8Pf3x/GxsZyt0Kv4XtTOvF9KZ34vpRepfG94eRmIiIi0hkc8SEiIiKdweBDREREOoPBh4iIiHQGgw8RERHpDAYfHbZ//360aNECpqamsLW1Rbdu3ST779+/j88++wxmZmawt7fH2LFjkZ2dLU+zOiYjIwMNGzaEQqHApUuXJPsuX76MVq1awcTEBE5OTggKCpKnSR0SGxuLgQMHolq1ajA1NUWNGjXg7++PzMxMyXF8b+SxdOlSuLi4wMTEBC1atMDZs2flbkmnBAQEoFmzZrC0tIS9vT26deuGGzduSI558eIFvL29Ub58eVhYWKBnz5549OiRLP0y+OionTt3om/fvvj2228RFRWF06dPo0+fPuL+nJwcfPbZZ8jMzERERATWrVuHkJAQTJ48Wcaudce4cePg6OiYr56SkoL27dujatWqOH/+PObMmYMpU6Zg1apVMnSpO2JiYqBUKrFy5UpcvXoVCxYswIoVKzBhwgTxGL438ti6dSvGjBkDf39/XLhwAQ0aNICnpycSExPlbk1nnDhxAt7e3vjzzz9x+PBhZGVloX379khNTRWPGT16NPbu3Yvt27fjxIkTePjwIXr06CFPwwLpnKysLKFy5crC6tWrCz3m999/F/T09ISEhASxtnz5csHKykrIyMjQRJs66/fffxdq164tXL16VQAgXLx4Udy3bNkywdbWVvIejB8/XnB1dZWhU90WFBQkVKtWTdzmeyOP5s2bC97e3uJ2Tk6O4OjoKAQEBMjYlW5LTEwUAAgnTpwQBEEQkpKSBENDQ2H79u3iMdevXxcACJGRkRrvjyM+OujChQt48OAB9PT00KhRI1SqVAkdO3ZEdHS0eExkZCTq16+PihUrijVPT0+kpKTg6tWrcrStEx49eoTBgwdj/fr1MDMzy7c/MjISH3/8MYyMjMSap6cnbty4gadPn2qyVZ2XnJyMcuXKidt8bzQvMzMT58+fh4eHh1jT09ODh4cHIiMjZexMtyUnJwOA+O/H+fPnkZWVJXmfateuDWdnZ1neJwYfHXTnzh0AwJQpUzBp0iTs27cPtra2aNOmDf777z8AQEJCgiT0ABC3ExISNNuwjhAEAV5eXhg6dCiaNm1a4DF8X0qHW7duYfHixfjuu+/EGt8bzfv333+Rk5NT4N87/87loVQqMWrUKHz44YeoV68egNx//o2MjGBjYyM5Vq73icGnDPH19YVCoXjjV95cBQCYOHEievbsiSZNmiA4OBgKhQLbt2+X+bcoe1R9XxYvXoxnz57Bz89P7pZ1hqrvzasePHiADh06oFevXhg8eLBMnROVTt7e3oiOjsaWLVvkbqVQBnI3QOrj4+MDLy+vNx5TvXp1xMfHAwDq1q0r1o2NjVG9enXcv38fAODg4JDvzoi8GfgODg5q7LrsU/V9OXbsGCIjI/M906Zp06b4+uuvsW7dOjg4OOS7E4LvS/Gp+t7kefjwIdq2bQt3d/d8k5b53mhehQoVoK+vX+DfO//ONW/EiBHYt28fTp48iSpVqoh1BwcHZGZmIikpSTLqI9v7pPFZRSS75ORkwdjYWDK5OTMzU7C3txdWrlwpCMLLyc2PHj0Sj1m5cqVgZWUlvHjxQuM964J79+4JV65cEb/CwsIEAMKOHTuEuLg4QRBeTqDNzMwUf87Pz48TaDXgn3/+EWrVqiV89dVXQnZ2dr79fG/k0bx5c2HEiBHidk5OjlC5cmVObtYgpVIpeHt7C46OjsLff/+db3/e5OYdO3aItZiYGNkmNzP46KgffvhBqFy5shAWFibExMQIAwcOFOzt7YX//vtPEARByM7OFurVqye0b99euHTpknDw4EHBzs5O8PPzk7lz3XH37t18d3UlJSUJFStWFPr27StER0cLW7ZsEczMzMTASiXjn3/+EWrWrCl88sknwj///CPEx8eLX3n43shjy5YtgrGxsRASEiJcu3ZNGDJkiGBjYyO5I5VK1rBhwwRra2shPDxc8u9GWlqaeMzQoUMFZ2dn4dixY8K5c+cENzc3wc3NTZZ+GXx0VGZmpuDj4yPY29sLlpaWgoeHhxAdHS05JjY2VujYsaNgamoqVKhQQfDx8RGysrJk6lj3FBR8BEEQoqKihI8++kgwNjYWKleuLAQGBsrToA4JDg4WABT49Sq+N/JYvHix4OzsLBgZGQnNmzcX/vzzT7lb0imF/bsRHBwsHpOeni4MHz5csLW1FczMzITu3btL/sdBkxT/a5qIiIiozONdXURERKQzGHyIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4iIiHQGgw8RERHpDAYfIqISEh4eDoVCgaSkJLlbIaL/YfAhIq01ZcoUNGzYUO42iEiLMPgQUZmXlZUldwtEVEow+BCRbJRKJQICAlCtWjWYmpqiQYMG2LFjB4CXl4mOHj2Kpk2bwszMDO7u7rhx4wYAICQkBFOnTkVUVBQUCgUUCgVCQkIAAAqFAsuXL0eXLl1gbm6OmTNnvrGPvNcKCwtDo0aNYGpqinbt2iExMREHDhxAnTp1YGVlhT59+iAtLU38uYyMDIwcORL29vYwMTHBRx99hL/++qtk/rKISD1keUIYEZEgCDNmzBBq164tHDx4ULh9+7YQHBwsGBsbC+Hh4cLx48cFAEKLFi2E8PBw4erVq0KrVq0Ed3d3QRAEIS0tTfDx8RHef//9fE+DBiDY29sLa9euFW7fvi3cu3fvjX3kvVbLli2FP/74Q7hw4YJQs2ZNoXXr1kL79u2FCxcuCCdPnhTKly8vefDoyJEjBUdHR+H3338Xrl69KvTv31+wtbUVnjx5Ijnv06dPS+YvkIiKjMGHiGTx4sULwczMTIiIiJDUBw4cKPTu3VsMDUeOHBH37d+/XwAgpKenC4IgCP7+/kKDBg3ynRuAMGrUKJV7Kei1AgICBADC7du3xdp3330neHp6CoIgCM+fPxcMDQ2FjRs3ivszMzMFR0dHISgoSHJeBh+i0sNArpEmItJtt27dQlpaGv7v//5PUs/MzESjRo3E7Q8++ED8c6VKlQAAiYmJcHZ2fuP5mzZtWuSeXn2tihUrwszMDNWrV5fUzp49CwC4ffs2srKy8OGHH4r7DQ0N0bx5c1y/fr3Ir01EmsHgQ0SyeP78OQBg//79qFy5smSfsbExbt++DSA3TORRKBQAcucGvY25uXmRe3r9tV7dzqup8tpEVHpxcjMRyaJu3bowNjbG/fv3UbNmTcmXk5OTSucwMjJCTk5OCXdasBo1asDIyAinT58Wa1lZWfjrr79Qt25dWXoiorfjiA8RycLS0hI//vgjRo8eDaVSiY8++gjJyck4ffo0rKysULVq1beew8XFBXfv3sWlS5dQpUoVWFpawtjYWAPd544oDRs2DGPHjkW5cuXg7OyMoKAgpKWlYeDAgRrpgYiKjsGHiGQzffp02NnZISAgAHfu3IGNjQ0aN26MCRMmqHRJqWfPnti1axfatm2LpKQkBAcHw8vLq+Qb/5/AwEAolUr07dsXz549Q9OmTREWFgZbW1uN9UBERaMQBEGQuwkiIiIiTeAcHyIiItIZDD5EVOYNHToUFhYWBX4NHTpU7vaISIN4qYuIyrzExESkpKQUuM/Kygr29vYa7oiI5MLgQ0RERDqDl7qIiIhIZzD4EBERkc5g8CEiIiKdweBDREREOoPBh4iIiHQGgw8RERHpDAYfIiIi0hkMPkRERKQz/h8ZE1xgsXhGfQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABo50lEQVR4nO3deXwTdf4/8FdaSGmhB6U3lLYUuaQU5LICBYSlVFYXwRVB5QYPDoVVAXdVQJdy7CrKIriooKsgXxUVQVxQrgUqdzmlP6iForTcTexBC838/igZcswkk6PNpHk9H48oTSYzn0wmM+/5fN6fz0cjCIIAIiIiIh/m5+kCEBEREXkaAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIvIas2fPhkajUbSsRqPB7Nmza7Q8ffr0QZ8+fVS7PiJSjgERETls1apV0Gg04qNevXpo2rQpRo8ejd9++83TxVOdxMREs/0VFRWFXr164auvvnLL+svKyjB79mxs377dLesj8kUMiIjIaXPnzsV//vMfLF++HJmZmfjkk0/Qu3dv3Lhxo0a297e//Q3l5eU1su6a1rFjR/znP//Bf/7zH7zwwgu4cOEChgwZguXLl7u87rKyMsyZM4cBEZEL6nm6AETkvTIzM9GlSxcAwPjx4xEREYEFCxZg/fr1ePTRR92+vXr16qFePe88bTVt2hRPPPGE+PfIkSPRsmVLvPXWW3j66ac9WDIiAlhDRERu1KtXLwBAXl6e2fOnTp3CI488gvDwcDRo0ABdunTB+vXrzZa5efMm5syZg7vuugsNGjRAkyZN0LNnT2zZskVcRiqHqKKiAtOmTUNkZCSCg4Px0EMP4ddff7Uq2+jRo5GYmGj1vNQ6V65cifvvvx9RUVEICAhAu3btsGzZMof2hT0xMTFo27Yt8vPzbS536dIljBs3DtHR0WjQoAFSU1Px0Ucfia+fPXsWkZGRAIA5c+aIzXI1nT9FVNd4560WEanS2bNnAQCNGzcWnztx4gR69OiBpk2bYubMmWjYsCH+7//+D4MHD8aXX36Jhx9+GEB1YJKVlYXx48ejW7du0Ov1OHDgAA4dOoQ//OEPstscP348PvnkE4wYMQL33Xcftm7dikGDBrn0OZYtW4a7774bDz30EOrVq4dvv/0Wzz77LAwGAyZNmuTSuo1u3ryJ8+fPo0mTJrLLlJeXo0+fPjhz5gwmT56MpKQkfP755xg9ejSKi4vx3HPPITIyEsuWLcMzzzyDhx9+GEOGDAEAdOjQwS3lJPIZAhGRg1auXCkAEH744Qfh8uXLwvnz54UvvvhCiIyMFAICAoTz58+Ly/br109ISUkRbty4IT5nMBiE++67T7jrrrvE51JTU4VBgwbZ3O5rr70mmJ62cnJyBADCs88+a7bciBEjBADCa6+9Jj43atQoISEhwe46BUEQysrKrJbLyMgQWrRoYfZc7969hd69e9sssyAIQkJCgjBgwADh8uXLwuXLl4UjR44Ijz32mABAmDJliuz6Fi9eLAAQPvnkE/G5yspKIS0tTWjUqJGg1+sFQRCEy5cvW31eInIMm8yIyGn9+/dHZGQk4uPj8cgjj6Bhw4ZYv349mjVrBgC4du0atm7dikcffRS///47rly5gitXruDq1avIyMjA6dOnxV5pYWFhOHHiBE6fPq14+9999x0AYOrUqWbPP//88y59rsDAQPHfOp0OV65cQe/evfHLL79Ap9M5tc7NmzcjMjISkZGRSE1Nxeeff44nn3wSCxYskH3Pd999h5iYGAwfPlx8rn79+pg6dSpKSkqwY8cOp8pCRNbYZEZETlu6dClatWoFnU6HDz/8EDt37kRAQID4+pkzZyAIAl555RW88sorkuu4dOkSmjZtirlz5+JPf/oTWrVqhfbt22PgwIF48sknbTb9nDt3Dn5+fkhOTjZ7vnXr1i59rt27d+O1115DdnY2ysrKzF7T6XQIDQ11eJ3du3fHG2+8AY1Gg6CgILRt2xZhYWE233Pu3Dncdddd8PMzv3dt27at+DoRuQcDIiJyWrdu3cReZoMHD0bPnj0xYsQI5ObmolGjRjAYDACAF154ARkZGZLraNmyJQAgPT0deXl5+Oabb7B582a8//77eOutt7B8+XKMHz/e5bLKDehYVVVl9ndeXh769euHNm3a4M0330R8fDy0Wi2+++47vPXWW+JnclRERAT69+/v1HuJqOYxICIit/D390dWVhb69u2Lf/3rX5g5cyZatGgBoLqZR0kwEB4ejjFjxmDMmDEoKSlBeno6Zs+eLRsQJSQkwGAwIC8vz6xWKDc312rZxo0bo7i42Op5y1qWb7/9FhUVFVi/fj2aN28uPr9t2za75Xe3hIQEHD16FAaDwayW6NSpU+LrgHywR0TKMYeIiNymT58+6NatGxYvXowbN24gKioKffr0wXvvvYfCwkKr5S9fviz+++rVq2avNWrUCC1btkRFRYXs9jIzMwEA77zzjtnzixcvtlo2OTkZOp0OR48eFZ8rLCy0Gi3a398fACAIgvicTqfDypUrZctRUx544AEUFRVh7dq14nO3bt3CkiVL0KhRI/Tu3RsAEBQUBACSAR8RKcMaIiJyqxdffBF//vOfsWrVKjz99NNYunQpevbsiZSUFEyYMAEtWrTAxYsXkZ2djV9//RVHjhwBALRr1w59+vRB586dER4ejgMHDuCLL77A5MmTZbfVsWNHDB8+HO+++y50Oh3uu+8+/Pjjjzhz5ozVso899hhmzJiBhx9+GFOnTkVZWRmWLVuGVq1a4dChQ+JyAwYMgFarxYMPPoinnnoKJSUlWLFiBaKioiSDupo0ceJEvPfeexg9ejQOHjyIxMREfPHFF9i9ezcWL16M4OBgANVJ4O3atcPatWvRqlUrhIeHo3379mjfvn2tlpfIq3m6mxsReR9jt/v9+/dbvVZVVSUkJycLycnJwq1btwRBEIS8vDxh5MiRQkxMjFC/fn2hadOmwh//+Efhiy++EN/3xhtvCN26dRPCwsKEwMBAoU2bNsLf//53obKyUlxGqot8eXm5MHXqVKFJkyZCw4YNhQcffFA4f/68ZDf0zZs3C+3btxe0Wq3QunVr4ZNPPpFc5/r164UOHToIDRo0EBITE4UFCxYIH374oQBAyM/PF5dzpNu9vSEF5NZ38eJFYcyYMUJERISg1WqFlJQUYeXKlVbv3bNnj9C5c2dBq9WyCz6REzSCYFIvTEREROSDmENEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwOzKiQwWDAhQsXEBwczGHyiYiIvIQgCPj9998RFxdnNVGyKQZECl24cAHx8fGeLgYRERE54fz582jWrJns6wyIFDIOkX/+/HmEhIR4uDRERESkhF6vR3x8vHgdl8OASCFjM1lISAgDIiIiIi9jL92FSdVERETk8xgQERERkc9jQEREREQ+jzlERETk86qqqnDz5k1PF4OcUL9+ffj7+7u8HgZERETkswRBQFFREYqLiz1dFHJBWFgYYmJiXBonkAERERH5LGMwFBUVhaCgIA6862UEQUBZWRkuXboEAIiNjXV6XQyIiIjIJ1VVVYnBUJMmTTxdHHJSYGAgAODSpUuIiopyuvmMSdVEROSTjDlDQUFBHi4Jucr4HbqSB8aAiIiIfBqbybyfO75DBkRERETk8xgQEREREYDqmpavv/7a08Uws337dmg0mhrvCciAqA4p1JVjT94VFOrKPV0UIiJSsdmzZ6Njx46eLoaqsJdZHbF2fwFmrTsGgwD4aYCsISkY1rW5p4tFRETkFVhDVAcU6srFYAgADALw8rrjrCkiIqqjDAYDsrKykJSUhMDAQKSmpuKLL74AcKeJ6ccff0SXLl0QFBSE++67D7m5uQCAVatWYc6cOThy5Ag0Gg00Gg1WrVolrvvKlSt4+OGHERQUhLvuugvr169XVCbjdv/73/+iU6dOCAwMxP33349Lly5h06ZNaNu2LUJCQjBixAiUlZWJ76uoqMDUqVMRFRWFBg0aoGfPnti/f7/7dpZCDIjqgPwrpWIwZFQlCDh7pUz6DURE5Ha1mbaQlZWFjz/+GMuXL8eJEycwbdo0PPHEE9ixY4e4zF//+lf885//xIEDB1CvXj2MHTsWADBs2DD85S9/wd13343CwkIUFhZi2LBh4vvmzJmDRx99FEePHsUDDzyAxx9/HNeuXVNcttmzZ+Nf//oX9uzZg/Pnz+PRRx/F4sWLsXr1amzcuBGbN2/GkiVLxOVfeuklfPnll/joo49w6NAhtGzZEhkZGQ5t0x0YENUBSREN4WfR49Bfo0FiBMfWICKqDWv3F6DH/K0YsWIveszfirX7C2psWxUVFZg3bx4+/PBDZGRkoEWLFhg9ejSeeOIJvPfee+Jyf//739G7d2+0a9cOM2fOxJ49e3Djxg0EBgaiUaNGqFevHmJiYhATEyMObggAo0ePxvDhw9GyZUvMmzcPJSUl2Ldvn+LyvfHGG+jRowc6deqEcePGYceOHVi2bBk6deqEXr164ZFHHsG2bdsAAKWlpVi2bBkWLVqEzMxMtGvXDitWrEBgYCA++OAD9+00BRgQ1QGxoYHIGpIC/9vjMPhrNJg3pD1iQwPtvJOIiFxV22kLZ86cQVlZGf7whz+gUaNG4uPjjz9GXl6euFyHDh3EfxuntDBOcWGL6fsaNmyIkJAQRe+Ten90dDSCgoLQokULs+eM68vLy8PNmzfRo0cP8fX69eujW7du+PnnnxVv0x2YVF1HDOvaHOmtInH2ShkSI4IYDBER1RJbaQs1cS4uKSkBAGzcuBFNmzY1ey0gIEAMiurXry8+bxy40GAw2F2/6fuM71XyPqn3azQal9dXWxgQ1SGxoYEMhIiIapkxbcE0KKrJtIV27dohICAABQUF6N27t9XrprVEcrRaLaqqqmqieA5JTk6GVqvF7t27kZCQAKB6+o39+/fj+eefr9WyMCAiIiJygTFt4eV1x1ElCDWethAcHIwXXngB06ZNg8FgQM+ePaHT6bB7926EhISIgYUtiYmJyM/PR05ODpo1a4bg4GAEBATUSHltadiwIZ555hm8+OKLCA8PR/PmzbFw4UKUlZVh3LhxtVoWBkREREQuqu20hddffx2RkZHIysrCL7/8grCwMNxzzz14+eWXFTVHDR06FOvWrUPfvn1RXFyMlStXYvTo0TVaZjnz58+HwWDAk08+id9//x1dunTBf//7XzRu3LhWy6ERBEGwvxjp9XqEhoZCp9MhJCTE08UhIiIX3bhxA/n5+UhKSkKDBg08XRxyga3vUun1m73MiIiIyOcxICIiIiK7nn76abNu/qaPp59+2tPFc5lHA6KdO3fiwQcfRFxcnOQMu8YhxS0fixYtEpdJTEy0en3+/Plm6zl69Ch69eqFBg0aID4+HgsXLqyNj0dERFRnzJ07Fzk5OZKPuXPnerp4LvNoUnVpaSlSU1MxduxYDBkyxOr1wsJCs783bdqEcePGYejQoWbPz507FxMmTBD/Dg4OFv+t1+sxYMAA9O/fH8uXL8exY8cwduxYhIWFYeLEiW7+RERERHVTVFQUoqKiPF2MGuPRgCgzMxOZmZmyr8fExJj9/c0336Bv375mI14C1QGQ5bJGn376KSorK/Hhhx9Cq9Xi7rvvRk5ODt58800GRERERATAi3KILl68iI0bN0qOSzB//nw0adIEnTp1wqJFi3Dr1i3xtezsbKSnp0Or1YrPZWRkIDc3F9evX5fdXkVFBfR6vdmDiIjqHjWOmkyOccd36DXjEH300UcIDg62alqbOnUq7rnnHoSHh2PPnj2YNWsWCgsL8eabbwIAioqKkJSUZPae6Oho8TW5cQ6ysrIwZ86cGvgkRESkBlqtFn5+frhw4QIiIyOh1WrFKS7IOwiCgMrKSly+fBl+fn5mlR+O8pqA6MMPP8Tjjz9uNb7A9OnTxX936NABWq0WTz31FLKyslwadXPWrFlm69br9YiPj3d6fUREpC5+fn5ISkpCYWEhLly44OnikAuCgoLQvHlz+Pk53/DlFQHR//73P+Tm5mLt2rV2l+3evTtu3bqFs2fPonXr1oiJicHFixfNljH+LZd3BFRPkOeJYcyJiKj2aLVaNG/eHLdu3VLF3F7kOH9/f9SrV8/l2j2vCIg++OADdO7cGampqXaXzcnJgZ+fn5gJn5aWhr/+9a+4efOmOOPuli1b0Lp161ofFpyIiNTHOCO75azs5Fs8mlRdUlIijmEAQJxorqCgQFxGr9fj888/x/jx463en52djcWLF+PIkSP45Zdf8Omnn2LatGl44oknxGBnxIgR0Gq1GDduHE6cOIG1a9fi7bffNmsOIyIiIt/m0RqiAwcOoG/fvuLfxiBl1KhRWLVqFQDgs88+gyAIGD58uNX7AwIC8Nlnn2H27NmoqKhAUlISpk2bZhbshIaGYvPmzZg0aRI6d+6MiIgIvPrqq+xyT0RERCJO7qoQJ3clIiLyPpzclYiIiEghBkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHP82hAtHPnTjz44IOIi4uDRqPB119/bfb66NGjodFozB4DBw40W+batWt4/PHHERISgrCwMIwbNw4lJSVmyxw9ehS9evVCgwYNEB8fj4ULF9b0RyMiIiIv4tGAqLS0FKmpqVi6dKnsMgMHDkRhYaH4WLNmjdnrjz/+OE6cOIEtW7Zgw4YN2LlzJyZOnCi+rtfrMWDAACQkJODgwYNYtGgRZs+ejX//+9819rmIiIjIu9Tz5MYzMzORmZlpc5mAgADExMRIvvbzzz/j+++/x/79+9GlSxcAwJIlS/DAAw/gH//4B+Li4vDpp5+isrISH374IbRaLe6++27k5OTgzTffNAuciIiIyHepPodo+/btiIqKQuvWrfHMM8/g6tWr4mvZ2dkICwsTgyEA6N+/P/z8/LB3715xmfT0dGi1WnGZjIwM5Obm4vr167LbraiogF6vN3sQERFR3aTqgGjgwIH4+OOP8eOPP2LBggXYsWMHMjMzUVVVBQAoKipCVFSU2Xvq1auH8PBwFBUVictER0ebLWP827iMlKysLISGhoqP+Ph4d340IiIiUhGPNpnZ89hjj4n/TklJQYcOHZCcnIzt27ejX79+NbrtWbNmYfr06eLfer2eQREREVEdpeoaIkstWrRAREQEzpw5AwCIiYnBpUuXzJa5desWrl27JuYdxcTE4OLFi2bLGP+Wy00CqnOXQkJCzB5ERERUN3lVQPTrr7/i6tWriI2NBQCkpaWhuLgYBw8eFJfZunUrDAYDunfvLi6zc+dO3Lx5U1xmy5YtaN26NRo3bly7H4CIiIhUyaMBUUlJCXJycpCTkwMAyM/PR05ODgoKClBSUoIXX3wRP/30E86ePYsff/wRf/rTn9CyZUtkZGQAANq2bYuBAwdiwoQJ2LdvH3bv3o3JkyfjscceQ1xcHABgxIgR0Gq1GDduHE6cOIG1a9fi7bffNmsOIyIiIt+mEQRB8NTGt2/fjr59+1o9P2rUKCxbtgyDBw/G4cOHUVxcjLi4OAwYMACvv/66WZL0tWvXMHnyZHz77bfw8/PD0KFD8c4776BRo0biMkePHsWkSZOwf/9+REREYMqUKZgxY4ZDZdXr9QgNDYVOp2PzGRERkZdQev32aEDkTRgQEREReR+l12+vyiEiIiIiqgkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjnMSAiIiIin8eAiIiIiHweAyIiIiLyeQyIiIiIyOcxICIiIiKfx4DIBxTqyrEn7woKdeWeLgoREZEq1fN0Aahmrd1fgFnrjsEgAH4aIGtICoZ1be7pYhEREakKa4jqsEJduRgMAYBBAF5ed5w1RURERBYYENVh+VdKxWDIqEoQcPZKmWcKREREpFIMiOqwpIiG8NOYP+ev0SAxIsgzBSIiIlIpBkR1WGxoILKGpMBfUx0V+Ws0mDekPWJDA22+j0nYRETka5hUXccN69oc6a0icfZKGRIjguwGQ0zCJiIiX8QaIh8QGxqItOQmimqGmIRNRES+iAERiZiETUREvooBEYmYhE1ERL6KARGJnE3CJiIi8nZMqiYzjiZhExER1QUMiMhKbGggAyEiIvIpbDIjIiIin8eAiIiIiHweAyIiIiLyeR4NiHbu3IkHH3wQcXFx0Gg0+Prrr8XXbt68iRkzZiAlJQUNGzZEXFwcRo4ciQsXLpitIzExERqNxuwxf/58s2WOHj2KXr16oUGDBoiPj8fChQtr4+MRERGRl/BoQFRaWorU1FQsXbrU6rWysjIcOnQIr7zyCg4dOoR169YhNzcXDz30kNWyc+fORWFhofiYMmWK+Jper8eAAQOQkJCAgwcPYtGiRZg9ezb+/e9/1+hnIyIiIu/h0V5mmZmZyMzMlHwtNDQUW7ZsMXvuX//6F7p164aCggI0b35nfq3g4GDExMRIrufTTz9FZWUlPvzwQ2i1Wtx9993IycnBm2++iYkTJ7rvw6hIoa4c+VdKkRTRkL3FiIiIFPCqHCKdTgeNRoOwsDCz5+fPn48mTZqgU6dOWLRoEW7duiW+lp2djfT0dGi1WvG5jIwM5Obm4vr167LbqqiogF6vN3t4g7X7C9Bj/laMWLEXPeZvxdr9BZ4uEhERkep5TUB048YNzJgxA8OHD0dISIj4/NSpU/HZZ59h27ZteOqppzBv3jy89NJL4utFRUWIjo42W5fx76KiItntZWVlITQ0VHzEx8e7+RO5HydnJSIico5XDMx48+ZNPProoxAEAcuWLTN7bfr06eK/O3ToAK1Wi6eeegpZWVkICAhwepuzZs0yW7der1d9UGRrclY2nREREclTfUBkDIbOnTuHrVu3mtUOSenevTtu3bqFs2fPonXr1oiJicHFixfNljH+LZd3BAABAQEuBVSeYJyc1TQo4uSsRERE9qm6ycwYDJ0+fRo//PADmjRpYvc9OTk58PPzQ1RUFAAgLS0NO3fuxM2bN8VltmzZgtatW6Nx48Y1VnZP4OSsREREzvFoDVFJSQnOnDkj/p2fn4+cnByEh4cjNjYWjzzyCA4dOoQNGzagqqpKzPkJDw+HVqtFdnY29u7di759+yI4OBjZ2dmYNm0annjiCTHYGTFiBObMmYNx48ZhxowZOH78ON5++2289dZbHvnMNY2TsxIRETlOIwiCYH+xmrF9+3b07dvX6vlRo0Zh9uzZSEpKknzftm3b0KdPHxw6dAjPPvssTp06hYqKCiQlJeHJJ5/E9OnTzZq7jh49ikmTJmH//v2IiIjAlClTMGPGDIfKqtfrERoaCp1OZ7fZjoiIiNRB6fXbowGRN2FARERE5H2UXr9VnUNEREREVBsYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PPqKV1Qr9crXmlISIhThSEiIiLyBMUBUVhYGDQajc1lBEGARqNBVVWVywUjIiIiqi2KA6Jt27bVZDmIiIiIPEZxQNS7d++aLAcRERGRxygOiCwVFxfjgw8+wM8//wwAuPvuuzF27FiEhoa6rXBEREREtcGpXmYHDhxAcnIy3nrrLVy7dg3Xrl3Dm2++ieTkZBw6dMjdZSQiIiKqURpBEARH39SrVy+0bNkSK1asQL161ZVMt27dwvjx4/HLL79g586dbi+op+n1eoSGhkKn07EXHRERkZdQev12KiAKDAzE4cOH0aZNG7PnT548iS5duqCsrMzxEqscAyIiIiLvo/T67VSTWUhICAoKCqyeP3/+PIKDg51ZJREREZHHOBUQDRs2DOPGjcPatWtx/vx5nD9/Hp999hnGjx+P4cOHu7uMRERERDXKqYDoH//4B4YMGYKRI0ciMTERiYmJGD16NB555BEsWLBA8Xp27tyJBx98EHFxcdBoNPj666/NXhcEAa+++ipiY2MRGBiI/v374/Tp02bLXLt2DY8//jhCQkIQFhaGcePGoaSkxGyZo0ePolevXmjQoAHi4+OxcOFCZz42ERER1VFOBURarRZvv/02rl+/jpycHOTk5ODatWt46623EBAQoHg9paWlSE1NxdKlSyVfX7hwId555x0sX74ce/fuRcOGDZGRkYEbN26Iyzz++OM4ceIEtmzZgg0bNmDnzp2YOHGi+Lper8eAAQOQkJCAgwcPYtGiRZg9ezb+/e9/O/PRiYiIqC4SVAKA8NVXX4l/GwwGISYmRli0aJH4XHFxsRAQECCsWbNGEARBOHnypABA2L9/v7jMpk2bBI1GI/z222+CIAjCu+++KzRu3FioqKgQl5kxY4bQunVrh8qn0+kEAIJOp3Pm4xEREZEHKL1+O1VDdOPGDSxatAgPPPAAunTpgnvuucfs4Q75+fkoKipC//79xedCQ0PRvXt3ZGdnAwCys7MRFhaGLl26iMv0798ffn5+2Lt3r7hMeno6tFqtuExGRgZyc3Nx/fp12e1XVFRAr9ebPYiIiKhucmqk6nHjxmHz5s145JFH0K1bN7uTvjqjqKgIABAdHW32fHR0tPhaUVERoqKizF6vV68ewsPDzZZJSkqyWofxtcaNG0tuPysrC3PmzHH9gxAREZHqORUQbdiwAd999x169Ojh7vKoxqxZszB9+nTxb71ej/j4eA+WiIiIiGqKU01mTZs2rfHxhmJiYgAAFy9eNHv+4sWL4msxMTG4dOmS2eu3bt3CtWvXzJaRWofpNqQEBAQgJCTE7EFERER1k1MB0T//+U/MmDED586dc3d5RElJSYiJicGPP/4oPqfX67F3716kpaUBANLS0lBcXIyDBw+Ky2zduhUGgwHdu3cXl9m5cydu3rwpLrNlyxa0bt1atrmMiIiIfItTAVGXLl1w48YNtGjRAsHBwQgPDzd7KFVSUiJ22weqE6lzcnJQUFAAjUaD559/Hm+88QbWr1+PY8eOYeTIkYiLi8PgwYMBAG3btsXAgQMxYcIE7Nu3D7t378bkyZPx2GOPIS4uDgAwYsQIaLVajBs3DidOnMDatWvx9ttvmzWHERERkW9zKodo+PDh+O233zBv3jxER0c7nVR94MAB9O3bV/zbGKSMGjUKq1atwksvvYTS0lJMnDgRxcXF6NmzJ77//ns0aNBAfM+nn36KyZMno1+/fvDz88PQoUPxzjvviK+HhoZi8+bNmDRpEjp37oyIiAi8+uqrZmMVERERkW9zanLXoKAgZGdnIzU1tSbKpEqc3JWIiMj71Ojkrm3atEF5ebnThSMiIiJSE6cCovnz5+Mvf/kLtm/fjqtXr3IAQyIiIvJqTjWZ+flVx1GWuUOCIECj0aCqqso9pVMRNpkRERF5H6XXb6eSqrdt2+Z0wYiIiIjUxqmAqHfv3oqWe/bZZzF37lxEREQ4sxkiIiKiWuFUDpFSn3zyCXOKiIiISPVqNCByIj2JiIiIqNbVaEBERERE5A0YEBEREZHPY0BEREREPo8BEREREfm8Gg2InnjiCQ5iSKpTqCvHnrwrKNRx+hkiIqrm1DhEAFBcXIx9+/bh0qVLMBgMZq+NHDkSALBs2TLXSkfkZmv3F2DWumMwCICfBsgakoJhXZt7ulhERORhTk3d8e233+Lxxx9HSUkJQkJCzKbw0Gg0uHbtmlsLqQacusP7FerK0WP+VhhMjnh/jQa7ZvZFbGig5wpGREQ1pkZnu//LX/6CsWPHoqSkBMXFxbh+/br4qIvBENUN+VdKzYIhAKgSBJy9UuaZAhERkWo4FRD99ttvmDp1KoKCgtxdHqIakxTREH7m8xHDX6NBYgSPYyIiX+dUQJSRkYEDBw64uyxENSo2NBBZQ1Lgf7uJ11+jwbwh7dlcRkREypOq169fL/570KBBePHFF3Hy5EmkpKSgfv36Zss+9NBD7ishkRsN69oc6a0icfZKGRIjghgMERERAAeSqv38lFUmaTQaVFVVuVQoNWJStW8r1JUj/0opkiIaMogiIvIiSq/fimuILLvWE/kKdtUnIqr7nMoh+vjjj1FRUWH1fGVlJT7++GOXC0WkFoW6cjEYAgCDALy87jgHdSRyEgdGJbVyKiAaM2YMdDqd1fO///47xowZ43KhiNSCXfWJ3Gft/gL0mL8VI1bsRY/5W7F2f4Gni0QkciogEgTBbDBGo19//RWhoaEuF4pILdhVn8g9WNtKaufQ1B2dOnWCRqOBRqNBv379UK/enbdXVVUhPz8fAwcOdHshiTzF2FX/5XXHUSUI7KpP5CRbta38PZEaOBQQDR48GACQk5ODjIwMNGrUSHxNq9UiMTERQ4cOdWsBiTyNXfWJXGesbbWcOoe1raQWDgVEr732GgAgMTERw4YNQ4MGDWqkUERqExsayECIyAWsbSW1c2pyV6PKykrJ2e6bN697XZI5DhERkesKdeWsbaVa5fZxiEydPn0aY8eOxZ49e8yeNyZb18WBGYmIyHWsbSW1ciogGj16NOrVq4cNGzYgNjZWsscZERERkbdwKiDKycnBwYMH0aZNG3eXh4iIiKjWOTUOUbt27XDlyhV3l4WIiIjII5wKiBYsWICXXnoJ27dvx9WrV6HX680eRERERN7EqV5mpjPfm+YP1eWkavYyIyIi8j412sts27ZtTheMqCYU6sqRf6UUSREN2YOFiIgc5lSTWe/eveHn54cVK1Zg5syZaNmyJXr37o2CggL4+/u7u4xENnHCSCIicpVTAdGXX36JjIwMBAYG4vDhw6ioqAAA6HQ6zJs3z60FTExMFOdPM31MmjQJANCnTx+r155++mmzdRQUFGDQoEEICgpCVFQUXnzxRdy6dcut5STP4ISRRFSbCnXl2JN3heeYOsipJrM33ngDy5cvx8iRI/HZZ5+Jz/fo0QNvvPGG2woHAPv37zfLSTp+/Dj+8Ic/4M9//rP43IQJEzB37lzx76CgO3PjVFVVYdCgQYiJicGePXtQWFiIkSNHon79+m4P3qj2ccJIIqota/cXiDdgfhoga0gKhnWtezMz+Cqnaohyc3ORnp5u9XxoaCiKi4tdLZOZyMhIxMTEiI8NGzYgOTkZvXv3FpcJCgoyW8Y0aWrz5s04efIkPvnkE3Ts2BGZmZl4/fXXsXTpUlRWVrq1rFT7jBNGmuKEkUTkbqyNrvucCohiYmJw5swZq+d37dqFFi1auFwoOZWVlfjkk08wduxYs95tn376KSIiItC+fXvMmjULZWVl4mvZ2dlISUlBdHS0+FxGRgb0ej1OnDghu62KigoOJ+AFjBNG+t8+HjhhJBHVBFu10VQ3ONVkNmHCBDz33HP48MMPodFocOHCBWRnZ+OFF17AK6+84u4yir7++msUFxdj9OjR4nMjRoxAQkIC4uLicPToUcyYMQO5ublYt24dAKCoqMgsGAIg/l1UVCS7raysLMyZM8f9H4IAuLdX2LCuzZHeKpITRhJRjTHWRpsGRayNrlucCohmzpwJg8GAfv36oaysDOnp6QgICMALL7yAKVOmuLuMog8++ACZmZmIi4sTn5s4caL475SUFMTGxqJfv37Iy8tDcnKy09uaNWsWpk+fLv6t1+sRHx/v9ProjppohzedMJJd8InI3Yy10S+vO44qQWBtdB3kVECk0Wjw17/+FS+++CLOnDmDkpIStGvXDo0aNXJ3+UTnzp3DDz/8INb8yOnevTsA4MyZM0hOTkZMTAz27dtntszFixcBVDf9yQkICEBAQICLpSZLcu3w6a0i3XJiYdIjEdUU1kbXbU7lEBlptVq0a9cO3bp1q9FgCABWrlyJqKgoDBo0yOZyOTk5AIDY2FgAQFpaGo4dO4ZLly6Jy2zZsgUhISFo165djZWXpNVkOzyTHomopsWGBiItuQmDoTrIpYCothgMBqxcuRKjRo1CvXp3KrXy8vLw+uuv4+DBgzh79izWr1+PkSNHIj09HR06dAAADBgwAO3atcOTTz6JI0eO4L///S/+9re/YdKkSawB8oCa7BXGpEciInKWVwREP/zwAwoKCjB27Fiz57VaLX744QcMGDAAbdq0wV/+8hcMHToU3377rbiMv78/NmzYAH9/f6SlpeGJJ57AyJEjzcYtotpTk73C2AWfiIic5dTkrr6Ik7u6V6GuvEba4dfuL7BKemQOERGR76rRyV2JXGXaK8ydmPRIRETOYEBEdU5NBVtERFR3eUUOEREREVFNYkBEREREPo8BEREREfk8BkRERETk8xgQERERkc9jQEREREQ+jwERERER+TwGREREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBHVokJdOfbkXUGhrtzTRSEiIhOc7Z6olqzdX4BZ647BIAB+GiBrSAqGdW3u6WIRERFYQ0RUKwp15WIwBAAGAXh53XHWFBERqQQDIqJakH+lVAyGjKoEAWevlHmmQEREZIYBEVEtSIpoCD+N+XP+Gg0SI4I8UyAiIjLDgEglmGxbt8WGBiJrSAr8NdVRkb9Gg3lD2iM2NNDDJSMiIoBJ1apgmWw7I7MNUpqGIimiIS+Ydciwrs2R3ioSZ6+UITEiiN8tEZGKMCDyMKlk26zvTgFgT6S6KDY0kIEQEZEKscnMw6SSbY3YE4mIiKh2MCDyMKlkW1PsiURERFTzGBB5mGWyrSX2RCIiIqp5zCFSAdNk26O/FmPh97moEgT2RPIRhbpy5F8pZRI9EZEHMSBSCWOybVpyEzzUMY49kXwEp/MgIlIHNpmpkDEwYjBUt3E6DyIi9WBAROQhnM6DiEg9GBAReQin8yAiUg8GREQewuk8iIjUg0nVRB7E6TyIiNSBARGRh3E6DyIiz2OTGalKoa4ce/KusKcVERHVKtYQkWpwTB4iIvIU1dcQzZ49GxqNxuzRpk0b8fUbN25g0qRJaNKkCRo1aoShQ4fi4sWLZusoKCjAoEGDEBQUhKioKLz44ou4detWbX8UsoFj8hARkSd5RQ3R3XffjR9++EH8u169O8WeNm0aNm7ciM8//xyhoaGYPHkyhgwZgt27dwMAqqqqMGjQIMTExGDPnj0oLCzEyJEjUb9+fcybN6/WPwtJszUmD/NryJdxahei2uEVAVG9evUQExNj9bxOp8MHH3yA1atX4/777wcArFy5Em3btsVPP/2Ee++9F5s3b8bJkyfxww8/IDo6Gh07dsTrr7+OGTNmYPbs2dBqtbX9cUiCcUwe06CIY/LUHl501YnNyES1R/VNZgBw+vRpxMXFoUWLFnj88cdRUFAAADh48CBu3ryJ/v37i8u2adMGzZs3R3Z2NgAgOzsbKSkpiI6OFpfJyMiAXq/HiRMnZLdZUVEBvV5v9vBmak9W5pg8nrN2fwF6zN+KESv2osf8rVi7v8DTRSKwGZmotqm+hqh79+5YtWoVWrdujcLCQsyZMwe9evXC8ePHUVRUBK1Wi7CwMLP3REdHo6ioCABQVFRkFgwZXze+JicrKwtz5sxx74fxEG+5y+SYPLVP7qKb3iqS+9/D2IxMVLtUHxBlZmaK/+7QoQO6d++OhIQE/N///R8CA2vupDBr1ixMnz5d/Fuv1yM+Pr7GtldTvO2CxzF5ahcvuurFZmSi2uUVTWamwsLC0KpVK5w5cwYxMTGorKxEcXGx2TIXL14Uc45iYmKsep0Z/5bKSzIKCAhASEiI2cMbcQLRmqP2ZkglOJ+aerEZmah2eV1AVFJSgry8PMTGxqJz586oX78+fvzxR/H13NxcFBQUIC0tDQCQlpaGY8eO4dKlS+IyW7ZsQUhICNq1a1fr5a9tvODVjLqSd8OLrroN69ocu2b2xZoJ92LXzL6qbOomqis0giAI9hfznBdeeAEPPvggEhIScOHCBbz22mvIycnByZMnERkZiWeeeQbfffcdVq1ahZCQEEyZMgUAsGfPHgDV3e47duyIuLg4LFy4EEVFRXjyyScxfvx4h7rd6/V6hIaGQqfTeV1t0dr9BXh53XFUCYJ4weOJ1XmFunL0mL/Vqilj18y+XhtIFOrKmbtFRHWS0uu36nOIfv31VwwfPhxXr15FZGQkevbsiZ9++gmRkZEAgLfeegt+fn4YOnQoKioqkJGRgXfffVd8v7+/PzZs2IBnnnkGaWlpaNiwIUaNGoW5c+d66iPVOiYru1ddzLth7hYR+TrV1xCphTfXEJF71cUaIiKiukrp9dvrcoiIPI15N0REdY/qm8yI1IjNkEREdQsDIiInuTPvhlNnEBF5FgMiIg/zlpHEiYjqMuYQEXkQ56siIlIHBkREHsSRxImI1IEBEZEHSY0k7gfgamkFa4mIiGoRAyIiD7Lswq8BIACYvPqwV08JQkTkbRgQEXmYcb6qfw3vBI2mOiACmE9ERFSbGBARqUBsaCDCG2mZT0RE5CEMiMghhbpy7Mm7wlqLGiCVT+Sv0SAxIsgzBSIi8iEMiEixtfsL0GP+VoxYsZf5LTWAU4IQEXkOJ3dVyNcnd+WEprWnUFfOKUGIiNxE6fWbI1WTIrbGy+FF273cOSUIEREpwyYzUoT5LUREZKku5ZUyICJF5PJbANSZHwMRESlX1/JKmUOkkK/nEBmZ5rfs/H+XOSkpEZEP8qa8UqXXb9YQkUNiQwORltwEADgpKRGRj6qL8zAyIFIRb2qLrYs/BiIiUqYu5pUyIFIJb2uLrekfgzcFh0REvqYujpvGHCKFajKHSO1tsYW6cuRfKUVSREOz8qzdX4CX1x1HlSCIPwZ35BCt3V/A3CQiF8n9boncyRvGTeM4RF5EzWP82ApOhnVtjvRWkW79MRTqyiVzk9JbRXp8XxB5C95UUG2pS+OmsclMBdTaFisXnJg2YxmTrN31g2BuEpFrlPxuicgaAyIVUNoWW9t5NZ4ITtQaHKqR1PHA3CviTQWRc9hkphL2mp88UQVuDE4sc5tqMjgxBoeWuUl1pUrWXSyPh3E9kxARHIAFm06xmcTHeeJ3S1QXMKlaIU8OzOippOtCXTlW7srH+//LhwFwa+K0km2rPVHPU6SOBylqSsyn2lVTHR6IvBGTqusQTyRdW9ZATOzZAmN6Jirenqs9XCwT9dhj5g6p40GKWhLz1a4uHls10eGBqK5jQOQFarsKXCop84Nd+RjTM1HR+93dvMceM+akjgcpbCaxry4fW3Wp9w9RbWBStReo7QGwXEnKdHcPF/aYsWY8HiyTz00x98o+HltEtccbOnywhshL1GYVuCs1Uu5u3lPzGE2eZDweVu7Ox/s77+R4vTSwNTo0C2MziQI8tohqh7fUxDIg8iK1VQXuSk8vdzfvsceMvNjQQLz8QDuM6ZHEXBEn+PKxVRfzpkidvGmwXQZEXqqmT2jO1ki5u9s8u+Hbx1wR53j7seXsOcBb7tapdtT0tcSbamLZ7V4hT3a7t+QNJzR3d5tnN3yqKd54bDl7DlD7vIlUu2rjWqKGY07p9ZtJ1V7GWxJB3T2lh7vXR2TkbceWK+cAubv1Q+eumyW82kuA9YYEWbKttq4ltd0pyBVsMvMy3lT9SETu58o5QCpvSqMBJq8+DAHVtQQPd2qKrw7/Jltr4A011GRfbV5LvGVcLNXXEGVlZaFr164IDg5GVFQUBg8ejNzcXLNl+vTpA41GY/Z4+umnzZYpKCjAoEGDEBQUhKioKLz44ou4detWbX4Ut+BcX+QrWAshzZVzgOXdup8GgAAYr4sGAfjy0G+ytQbeUkPtzWrruK/ta4k31MSqPiDasWMHJk2ahJ9++glbtmzBzZs3MWDAAJSWlpotN2HCBBQWFoqPhQsXiq9VVVVh0KBBqKysxJ49e/DRRx9h1apVePXVV2v747jMm6ofiZy1dn8BeszfihEr9qLH/K1Yu7/A00VSDVfPAcO6NseumX2xZsK9ePuxjrCXRGo6Bhknjq1ZtXnc81pizeuSqi9fvoyoqCjs2LED6enpAKpriDp27IjFixdLvmfTpk344x//iAsXLiA6OhoAsHz5csyYMQOXL1+GVqu1u101JVUD3pkIKoddgMmUGpIwvYE7zgFK5sUz3feFunLcl7XVLIjSANgz635+Ny7y5JyVdeVaIqfOJlXrdDoAQHh4uNnzn376KSIiItC+fXvMmjULZWV37liys7ORkpIiBkMAkJGRAb1ejxMnTkhup6KiAnq93uyhJt5Q/agEawLIEmshlHHHOUCqlmDoPU0dqzWwMWI6Keep476uXEvcwauSqg0GA55//nn06NED7du3F58fMWIEEhISEBcXh6NHj2LGjBnIzc3FunXrAABFRUVmwRAA8e+ioiLJbWVlZWHOnDk19EkI8K4Bu4xYm1XzfHnARE+QSnh9IaO1ZK1B/pVSqyY2QQA7dbgBj3vP86qAaNKkSTh+/Dh27dpl9vzEiRPFf6ekpCA2Nhb9+vVDXl4ekpOTndrWrFmzMH36dPFvvV6P+Ph45wpew7z1Iq20l4NaPh9719QOTw+YqJbjrTZZDu4pN9inrYu2L+43d/L0cU9eFBBNnjwZGzZswM6dO9GsWTOby3bv3h0AcObMGSQnJyMmJgb79u0zW+bixYsAgJiYGMl1BAQEICAgwA0ldw+5k403X6SV3BGp5fN5Y22WN/NUN121HG9qJXfR3vn/LtfKAH91PeDylu7pdZXqAyJBEDBlyhR89dVX2L59O5KSkuy+JycnBwAQGxsLAEhLS8Pf//53XLp0CVFRUQCALVu2ICQkBO3atauxsruL3Em6UFeOmV8eM+syO/PLY2gTE4zU+MYeLbMS9u6I1BSEcPyn2lfbU5Ko6XhTM8uLNgCzZGCDAMxad8yt+82XAlVOxeM5qg+IJk2ahNWrV+Obb75BcHCwmPMTGhqKwMBA5OXlYfXq1XjggQfQpEkTHD16FNOmTUN6ejo6dOgAABgwYADatWuHJ598EgsXLkRRURH+9re/YdKkSaqqBZJi6yR98Nx16/Z8AH9augcLhtbcCcOdd2q27ojUFISwqaDuU9PxpnamF+09eVes9ptBAFbuzsfLD7h2w1moK8eBs9d8MlDleaX2qT4gWrZsGYDqrvWmVq5cidGjR0Or1eKHH37A4sWLUVpaivj4eAwdOhR/+9vfxGX9/f2xYcMGPPPMM0hLS0PDhg0xatQozJ07tzY/ilNsnaRtjZhQUyeMmrhTcyZfobZ5sqmAaoeajjdvIrXfAOD9nfkY0yPJ6XOQ6bnGkjOBqjcFGI6eZ73ps6mZ6gMie8MkxcfHY8eOHXbXk5CQgO+++85dxao1tk7SiRFBuD3QrJWauLOt7SYFtSUZKmkqcHV/8MTmOWo73rxFbGggxvVMwor/5Zs9b4Dzvc8szzWWHA1UvanJzdHzrDd9NktqO9+pPiDydcaTtOkBb3qSnj80xSyPyKgm7mzlaqsOnr2OP6bWzMGstiRDe00FrgSi3nxiqyvUdrypia2L19ieSXj/f/lm5yFXzkFS5xrT9ToSqHpbbpgjTbfe9tlMqfF853UDM/oqY0WZZYXZsK7NsWfW/ZiYniR+mX4aYFi3eBw4e82t8+FIzX0DAFM/O1zjQ8ybDhymljmu3DkXUE3NEaWWfeVNOFCdNXsDqMaGBmL+UPdNAyH12/IDsHREJ+ya2dehC6e3DfTpyHnF2z6bkVrnxGNApHLGA8d4zAuwPnBiQwPx8gPtsPt2YGQQgNV7CzBlTQ7uy3Lf6M/G2irLg6Y2D2Y1jWztzrmAauLEpqZ9Rd5L6cXLdI40R4MWS1K/rayhKRjUIc7h35e3TYjtyHnF2z6bkVoDOTaZqZyjPV/et2jHFwDM+tJ9XWCHdW2OhgH1MHn1YcVlchc1Vg+7q4nF3Qm9atxX5J0cOQe5s8u4u35bSob3UFMeC6D8s3tr3ptaOzAwIFI5Rw4cuXZ3V5IbpXROaOyRg1mt3aLdcRFw94lNrfuKvI8nL17uCrDkAgw15rEYKf3sxs926Nx1GAQBXRLD7b5HCWOg2FDrj9LKKrcGjGoN5BgQqZwjB45c91c/wK0nL08dzGq9q3AXdyb0qmlfqfEOnJRT68XLUZYBhppqUY3jLWk0GnROaOzw9t09/IfUkAfuDhjV2IFBI9jr104AqucyCw0NhU6nQ0hISK1vv1BXrujAWbu/ADPXHROTrzUAZj7QBk+lm8/p5o6LlNIySb3P2W2v3V9gdWJWyx2d2qhhX6n5Dpwc4+zvXa325F3BiBV7rZ5fM+FepCU3qdFtm54Dd/6/y2Y9hTWo7j2s9HdSqCs3G/4DqL752TWzr+z3ZOscLLU+peu1t25PUXr9Zg2Rl3C0+nTJj6exet95CAAWbDqFsMD64g/MXRcpZ6qzXd22Gu8qlKrtE4Wn95Wa7sDJdXVtSglP1aJangMtAw8Bjk194mjzuNQ5OL1VpHhusjXkgb1md2+/AWJAVEd9tv+8+G/TCxEAj12k3HWB9MYTs6dOFI7sK3cHbMxjUg9H8kHs1R6o7e7fWZ5oCpQ6B0oxCMrzPh0J7KS2P3PdMUCoDsT8NMCMgW1kB/y1FTDWhRsgBkQeVhMnGJvTfUDw2EXK1Qukq/vK2fe7Y7tqP1HURMCmpjwmX2F6rALVv7ljv+mwYNMpRfkgto6D2grqazPoqu1aVFu1L6b8NMrzPh0J7KS2b5o0YxCABd+fkgyGLAcFVrJub7sBYkDkQTV1grF3IfLURcqVC6Sr+8rZ97vjO1L7icIdAZvURayuJON6C9Nj1Tg0jdy1V+o7tnUcXNLfMMtNtKx1diUhWO4z1FZNam3WOEudAzUa86BEc/tzx4YGKg4OlQZ2ch1vTMm99s5jnfDH1DiHPpuSCbDVVOvIgMhDarLWwN6FyFMXKWcvkK7uK2ff767vSO01Ja4GbLYuYp7OY/JWjl4kLI9VJT1lLL9jueNg5e58rNiZb7VOqdccTQi29RnUWJPqKrlzYHqrSBw8ex0aDXBPQmMAwLyNJ7Hi9nQoSoJDJYGd5fb9bgdjpt+t1HP+Gg06JzZ26rPZ6gGntpwjBkQeUtO1BrYuRJ68SDmzbVf3lbPvd9d3pPaaElcCNiUXMW/M+aoNckGPMxcJpU0xpiy/Y6njwE8DyWDI6N87883+djQh2JTaa1LdRe4caJwPUqrLu+XvypVaFcvt7/x/l+8ESKjOIQoLqu/UjWt8eBDWPZuGskqD3QmwL+lvmPWuU0MAzIDIQ2qj1sD0zs/0b+O/HT3o3NVV39F1OJo0aLn+Y7/qrJZTsq/d+R2puabElYDNVy5i7iYX9DhbS6KkKcSU1HcsdRyM7ZloNYu9PY4kBJvyZE2qkvOSkmYfpYMYyp1/Lb9/U8bflTvGHDLd/rCuzVFcfhPzb+eZLfj+FLKGpGDXzL6Kz1dSx3NachPZCbBX7jqLFbt+kax19OS5gwGRh9RGrYEzd5ruvGt1R3kA5ftKrjvpgu9PWa3zpczWDlcvu/odqbmmxDRgC9L6obSyCoW6crvlVXtzoJqYXjTlgh65APPQuesY1EG+ZsDyWNXc7iYkoPr7eGlga3RoFoYgrZ949y713VoG7gDwwa58h2qfHEkINuXu35vSmy8l5yVbXdUdSVq3x1ZNn79GgyCtn9PN/7aCuQWbTlnlh+2a2VfReEy2gnjJWkcA7+/6xWqicuNn9OS5gwGRB9VkrYEzd5ruvmt1tTym7O0rufUvfixV8gTToWmYonKruWbH3WJDAx2++1R7c2BNcbSm0yzh2SKJFrhzZyxX0zN59WFsPXUJXx3+Tfa7kQpmnDluLQN30+/Xkq2EYGfY+r0prcU5cPYasvOuYs3tcdik9pWt4HTWl8fQMKCemCBur6u6FHfmGwLVQcS8Ie1RWlnlcI2svYBvpUTAq7SmplBXjg1HL8i+Py25idX5YVzPRPxbotbR+Bk9ee5gQORhNVVr4GhThq2AxR3NIu5Yh619Jbd+P43G5RoMNdfsuJOzQasvBY2A4zWdVgnPNu6MjQGmZbOJAODLQ7+Jf8t9N5bHqrvzEY/+VoyFm3JtJgS7o1OI5Tre25mH+bdrMaQGE4wNDawepd8kJ8XIcl+ZrktqvB0DqgNQ43biw4NsdlWXYzp7u9LgWSrpeXzPFhjTMxGxoYE4cv66VRDq6NhAs9YdQ5DWX5zzTKpJVEktn1Suk1SZpAL19y2CMD8N8NWz9yE13nbidk1jQFRHOdqUYStgcUeziFzV6dXSCkVNM86s31+jwT0JjZ3u2aaWrqC1Re4YOHj2upjwKcfXg8Y2McGyuSNyzSB+qL74Wh6Tw7o2R5DWH1PW5NgsS23mWxi/37TkJngoNU42IdgWZ7tev7cjD1mb7jR7GwRg5pfHoLn9e/fTADMy22D+d9Lj5wB39tX6nAtm67IV1xi/23XPpjmUn2Xkr9Hg6G/FePz9nxxKE0hvFYnFj6XC7/b5y7g/jAGIZTAkdT47cv469p29hsqbBqtyGwRgypoc+GmAcT2TJPfB+J4t7DbByQVDGonxiozHj/F7njGwDRZ+bx5YezoYAhgQqY67LsRKmjJMt2Ur6HFHs4hVjgOqT0amd2KudLe0VUalNRjG/WGaE6CGrqDuZOv4kquun7LmMEorb9WZfeAKuaBx8NI9EFBd4zChVxLG9EwS96/cb8u0N47ld9ElMVx2tGDTdXgi38KZ4NfZAR8LdeWYv8k6B1AAzHJeFmySD4aMdp+5jKXb8iRfkwt4qgQBv14vt9tV3ZIxb8s0t8idaQtAdUC97tk0q0DiL/+XY1abKMcgVOeHWR5nfgDG9Ey0+V5buU4aAeL4VID8eXVGZht0aBqmqlplBkQq4u4xGWwFAlLberhTU7Mf0uBOcWZ3ra42ixjXcfDsdUz97LBLOUmOfl57J3G56l81dAV1F3vHV2xoIGZktkHWd+YXIAHOd6X2NvZuSOSCRsHk///+Xz7e35Uv7l+5YN3WHfHO/3fZ7G8NgCH3NMXXhy94Xa6WrVq189fLbXa9zr9SqmhMJSW1N+9uz5NclwbAipGdUV5pMDsvGU1efRjzh5r3ujLtqi6XtF7TaQsGAGWVBrPnjpy/rigYEtchABPTk/DB/846dFzZ6tVowJ1ehrbOqws35dqdKLa2MSBSiZoalEwqEDhy/rrVSUjqoP368AW8kHGnN5Y7mkViQwMR3qjmumo7U0Zb1b/uKpunph0xfb+S4yulaajk+w0CxJ5OrlJrc6SSGxK5mk5LlvvXkRsK43dlud6+baIwMi0BZZUGh3oCOsvVruhGsrVq7+6RzMUx9qpr3LA66Vnqwmu5341ByXwbNUUGmZwhAcCEjw8ia0iKbP6WZa8rpd+nI6kGB89ddzltYd/ZazKfXpq/RoMxPZIwpkeSQze7Yq7bl8dgsHjNdHTqmj6vuhsDIpWorfFc1u4vqB6C3+J5uerig2evI7zRnROeOy5mauuqbW9QO1fLVlvTjtj6bpQeX0kRDWUv8pNXH0ZJxS2rZFZHKPkscmO6ODN6s+Xycutw5IbEtKZzymeHZdtOLPev0mBdcr4p3GlefrhTU5u9zdzB2a7oxuYd030sNQ4YIJ+YrNFUf1YB1esd2D4G3x8vqt4OqptawoLqm2173pD2GNa1OR7qGIeDZ6+juLwSr3x9wqopaEbmndwVU8bve9fMvnj7sY5W+VtSvxV732dsaKDNWnfLfTnzy2NWz9tKW3hpYGurMea63U6UVsJybjJHf8vG38HKXWfx/q5fYBDMc5qkxiCS+mxqwoBIJWojSBDvPBUmB2oAsQpZyYlY6QXLHTlJ7mSr+leubEo/q9ILrSMX6plfHkNllQH920ZbJVzKfTdKj6/Y0EDMH5oi2VtHgHUyq62AxpmgQ6qK3ZkgQGp/ADB7bsbANkhpFoqkiIYO35AYazpt/Zac/f3abI4QrHubzfryGNrEBLstKVXJ9yS3THHZTSz4/pTZPpYaB0yOZX6OQQC+O1YEoPp8NCOzDZ7qnYy1+wvEfS8IwJlLJWJtmTHBu76/n9lxLAAIC6qPXTP7YuPRQryx8WezbRu/7y6J4W45FxfqyvHVYfPmq68O/4aRaQlm35VcjaBlwGLZ2880H2dczySM7ZmE1PjGGHpPU6tmM9NxqfwAjE+vrhVyR438y4PaYkzPRKsaJmfOq56mEQSll0ffptfrERoaCp1Oh5CQkBrZxtr9BVZBgjvv/PbkXcGIFXsVL68kqdPYBuzsIJBq6aptue+NOQFSZXPks8rt8zUT7hWr322tz9Z3pkH1vFHprSLNhscHzL8bManxV514d2y8W36oY5xs8LJmbwHe2XrG5n4z3Y7UZzGeqI13jLb2RaGu3Opz2NsucKdLs/HfDbX+ePjdPWbrsXUsm164Lbc96/YFWIqt8tr7/doLqE2PRyU0GmC+wppDe9tWcszKLSOVoGvZpCLFT1M9eagAwWbvOmMyuuX3a9y26TxqUt+P6XFj6zfj6LlYap/a2kem5ZRb7l/DzSdTNa05tff5j5y/jgNnryMxIghB2voujUvlCkfOqzVJ6fWbNUQqItUube/k5UgzguRMy7f/b3natRcMAebjbEiNdWEv/8kdOUnuIDUHj62cCUdyvezVzNhbn627LAHVtQNvD+8oW7thOdDiwPYx2HS7+WH+plNizoWx10dK01DxWBrevTmWbD1j8zgwrUU5cv661YzoK/6Xj/f/ly8GblJzZQVp/QA4Nh9XlSBgyY9n8Nn+AjE3xLhP5PJE5BgEYOH3uXi2TzL+ZdELaeH3ubi3Rbhkl3rJZozM1nZ7ztjrVZV/pRTprSKxa2ZfsVnOXlwkCObjy8gFqEpq2pTUJsrNeyaV+Cv1fWgAq27zf0yNQ6Gu3GYX9ypBwP6z1rk2wJ1cH9OEbLnfhdSAgXK1MfYu3nLfp60EfHu/ccvJVM0G9pTYn5brTY1vLFljqPR86648P28bo4wBkcqYBgn2aiIcrZWxPIHL3b0Zaw+k7phNGU+Skj0gBGDl7ny8/EA75R++Flj+0OXm4JHjTNOK1IkXqL4zvFpSYXN9UnkIpgyA7OCTUsP8G5sfAPOTqkGA2LvMtInJlFTwbDwG5AbFMy4/a90xfPXsfVajHhsE4OF394gD7SkJxI1W7yuQ/CzOVHlXCQLCgrSSzxuTfzUAhneLx5R+dzl14QRsB8CmwatGA8zMbIOn0pNx5NdiRfOJGYQ748sY96fltpQO7mivSVsuGLScwsL4/HyTqSGMNRnFZXfmz5r/3SlAAJ7qnWxzZGx/jQZdExvb7CZv/O3YC+zsfXdKbtjs3dBIJWlbltPe/rYa2NNGedyRd+ru3s5Kb3zV0NmCAZFK2fuhuWNU4TOXfscr35ywWmbu4LvxxL2JZomLliyHWZc6Qb2/M19RO7WzPwRHJ1S0/KHPyGzj8DghSmp8LD+L1OzSxup6P410jxnT9VnmIZjyA2QHn5Qa5l8JY14KNObl0txuWrIcUA2AZA6E5ToHL92DmZlt8NpDbfHaNyetulrvmtkXMzPbmA2cZ5TZPgb/PV6kqPnFGbYutILJhWj1vvNYve88JpqMNaT0wpl/pRTXSislL44Hz163Gs0663aQMLZnEt7/n/mM83I1u8Cd/SlVc2hJ7gKqJNCTWiYs0HqW9GFdm+Oh1DgcOncdggCx5qPH/K1m+T1Zm04BGuCp9OQ7uTK/FksO4CcXaJj+dpQGdq5cfO3dIA3r2hwFV8uwdLt5zaNljZut/S07sKfEsepq3qkz1xV3BDLuDsKcxYBIpez90FzplWY8CVwpuSH5elhg9Z3ysK7N0SYmWBx0zshymPXY0ECM65lkdRdrAOyOcuzsD0Eu+dZWDyzLH7rl3Sxgvg+lfui2TrK28meMD6lyaHAnKLI8aUt1xTXSAMgamiKeeKWaWx2pcTFlgPUbDQLQoVmY1SzY9nqTGIkXPQnG/f5U72RAA6sB3J5KT8Z/ss9KBvCuMiavGi+09mpQAeuxhqSY5m6ZdgeXCoAhU+OxYNMpPNQxDvOHmg8MOCOzDQBYjRllVHU7M9neCMu2LqBKggXLZeQu7LGhgWZDNsgdMws2ncJDqXHietOSm+ChjtYjY4s9nHbn4/2d+ZIjftsqjxx7+VaWfyu5QVq2w3owSKnJpeX2t62BPdceOI81e89Lnjuc4eh1xd75W0n+Wk0NOeMMBkQqtfvMFcnnjfkW7uiVJjUargYwa7tOjW9sdjKWG1RO6i4WqO6lJjfKsbM/BLnxLWy9X65ZT652xtYPXS74sPwsxvyZmQ/cyc2R61KtATCx1505iwDrKQuM/DTAnIfuRv920VYnGSWzUyvhB1hdpE27AJvu34Zaf5e3Z3rsPpWebDY9BADM23hSckJIV/mhOriPCmmAPXlXxNyds1fKEKT1kx0rB7B9vNma50nAnUDF+HvqnNBYctJX4yB3w7o2N2tiWrDpFMb1TJL9XMYcFMvgfXCnOIcHd3S0BsD0+JB7r9zwDgYBVhdfuUAhNjQQLz/Qzu4YOkprgezlW0nlX6W3isS4nkn44PbcXJb7VK52R+nk0sbyS92EnSr6HZ/dnsBWA+Clga1drlWRu64Eaf2wJ++K2Hnh4LnruFZagdnrT8qev5Xmr9XWkDNKMCBSoUJdOd7dLj3EvHFkUiXVwfbEhlZ3sTYOruWHOzUOppTcZVmuy8jRIEXJD8FW8q3c++XmUnusWzw+23deTP4c1q0ZLulv2A3ULE+ycmUSYJ6bM2NgG9lEyw925YtD5r+3Uz4YGtczSQyGbAVuSkf5BYAR3eOxdt+vVk1h9o4v4/alKK2dMl23ZXBnK7BwlB+AZ/okY/mOX6wuLKZTb5j2AJopMXK3Kanjzd6AdEB1QNsyKlgcYFFuW6aD3C34/pRZM6PUtAuAeXdtqd/uCxmtFdeYuNKUYeu9saGBks2jzjT5KAnA7JG6obHMt7L823TGew2qR3y2TBFwx42rVKcPwLyXnIDqDgAPdZQe58h0Xbb2j9R1ZXCnOLFXm73ftPH3cEl/w6qDhVz+mprGpWNApEL5V6THN/EDFLc7K6V0HZYBgFyuTMOAepi8+rDZex0JUpT8EOyNbyH1fssfOlB9971633mzfIzVe89j9d7zVu+vEgT8+PNFtIhs5NA8YKYMQvVJyzJ3yXQbxl57UvM3Gdex4n/5+GBXvlVXcYNQnctjHJPG1iCLpvw1Gky5/y5Muf8us1qZ/CulNnve2brwSwVVlvwALBnRSZzA0l6OlytM81meSEsw+5z3ZZnnssz88k4PyafSkwFBvqnPT2M9K7iS3nLhDbUouFZqFTDMMn5mmAeKUk1MBsF82gW58WUsf7umzbfGu36p370rTRlK3ivVPGralORocONK8OZID0cj00NaAPDB/85iTA/zWjtXb1zlOn1IHQ/2biaV7h/Ta0KQ1s+si7+Sc8nR34ptTrRrWt7qlIo41YxLx4BIheQurjMy29gNSpzhaGKh1A/LOHpxfONAxUGO5cnC8oRoq7xSPVH8AIyzMSmh8Ye+5Mczsj2UbPnb19X5K3Ink8z2Mdho0otLSpUgoGloIOY8dLdVPoxprz173azFHCiJ5wcv3SPWckjdhWs01RMwSuVdyNU6GccJMj3e5C4irwxqiwc6xIrrNB1MbuEm8wTZQR2qx1lRmuPlDM3t48q0dsJYtm+P/CbZRd809+2p3smIC2sgOT6O1KzgSoLjBvX9MGWNdcCwa2ZfyZwZuZuHMT2SMCglFvvPXkfXROmu1lLk8t2AO+M6udKUofS9xoDTtCkwLLA+ADgU3Liah6LkO7PHlQR1KbY+k5KmLVu1lvb2j/E3ojQ/0Lh944S2SnejaUqFGrrnMyBSIalAwZhYauTK3ZArgZTcyMmmY4o83Ml8EkqpIeaNpHIjwgLrm43LcvDcdQiCYDa+SnqrSCx+LBV+Gg2aNQ7ExqNFeH/XL4qSXdfsL5B83pKt0YJNRwd2pFlHgzujf5vWTFkGJkpOzgZAMu9EwJ0xaR7qGGd2F27cTpuYYMmLqNIRiI1BsNRYNFEhAWblMUuQTbW+2BfqyrHh6AVFOV72DL2nKUamJZh1BBCE6okkjcm6pjQajfVKcHtkXxNSoxfLzQoeGyrdycDU+I8PWn1vVYKAjUcLMahDrFUumFxNg+U4U0pGj5fLd1vxvztNcHLNu0qbMpTW/ko1BRpH0zd9zl5w42oeitQ5t2tiY+zNvy65vOWI2nKfz3T9jp5r7Y2jNGOgeW2iadOWVPO5M/unodbf7m9QA+Bft2t6bfWIe7hTU3x16DebKRWeCoSMGBCplK2I2ZW7IVe7N8olBZu2FX99+ILY1GI5xLzUCVvqhBik9ccF3Q2zqldjfgdgPQWDcS4d0/3RJibYqju+ktoXoHq9sx9qh1e/OSn5ugHA4Hf3YKbMCMeS67y9r0yrn/00wJLHOomJ7Ma7O3sXVODOGC9SNSkGwXxMmt0z7zfr9u/oidO0l5RpbYbZRKe3LxKm25WaHNX0GLUVTBqDaXF0bQ2Q2T4WG48VWi07pFMcOjYPwx/axUjmTsmd/DsnNLbuWKCpHsrAstxKq/ULdeVIjQ+z/kAm5I7BNzb+jHnf/Sy57yzPCYB5HonleUDut26recj0OzY271rW6jkTYMi9V66zgyV7F29HAjC5m0HTnmsrdubLBkPP3d8Sd8UE47fr5WY3Ce5u5rH1mdbuL6jeNqqP16f7tMCy7Xmyx4Iz6QnG48deMDR/aIpY0wtY38wZOy6kxjdG3zZRilMqPIEBkYrJRczORvvu6N6opGq5ShDEvJPH3//J5vbkTohSzRMCzGujjMtKzXBdJQhiLYGS0WNNaUxqQEx7UViVR5ButpLyyqC2iA5tYHUyMAhAk0YBVnf6MzLbSPYANH5205yYe5PCrYZGMF2/6UzdUseA6ajiSkcgNh5vxovIoXPXxQk5Tbdrb/wSezlIxgk7D527DoMgoHl4EDYdLzR7jwbA1zkXsO7wBcxef9JuzYblRXH+0BSrwEGqzEqq9eVGFHakpsvWvjM9J8jlkVTvq2uSv/U2McG4WlKhqAayShDQoan1MAtKKdlfcsebI7UvgLIATOnNoFRvWSMNgCXbzlh9v3IBriu18XKfCTCfGUAQgGXb8qzOQ44M/ihVblu13hoAc/90p6ervTIba6E7J1iP9aWmSV59KiBaunQpFi1ahKKiIqSmpmLJkiXo1q2bp4vlMGeTkd3RvdHygJc60dsawdpye4623ZvWRpk+J7cscKdHiOnosZbNkQ+lVs+SbawdMJbP1qi5gHyzlSljM5JUfhUA7D5zGe9a3N0t3JSLmZnWgyBKXWAsh0awZG/8KoNwZ1RxqROa3AjExt5P1esUFNfKAPLNZADwXL+WeKxbc/F9lsGiaZOsZa2bvZoNuYui0vwFqZsU0wFCLScTFd3O27L8uBoAU+5vaTVnnJLfpeRUPBqYBaaW6zTtTWcvSJMbZsFIycXeXjOIrYu+o0m27qhVV5JcbVrDayTA9kTFcgGYvX0o9ZkkE+xhfR5yZPBHS7b2g7253YzbOXj2OqCpDoKMXE0yr2k+ExCtXbsW06dPx/Lly9G9e3csXrwYGRkZyM3NRVRUlKeL5xBnDyp3dW80PeCnSsyz9NLAO4nR9rYnlyAtR3P7P0qavUwJAnDo3HUM6iDdFRmA5ACSpsuWVd60yv0wBgymF1/TsV4sm5Ey7q6eS8yUaTBkVCUIkoMgAtLzEcnV1BjLaNzncgGo6aji9kYg9gPwdO8WWLmrOu/EWAtneYGVO7bs5Vy98+MZxIVVl0PqQmbaJHu1tEKyCl6qZsPeRdGZk7KSOaYAiFN/WD0PoFV0sFO/S6ng3rJmRWp7xv/7ARjePR6f7b0z7ITxt2XvnOLOkYXlfo/OJNkav0fLHnRKbwZt3aDZCyAtB3W1F4BZHjszZSYStjw25c7jluchqe9P6XEuV3P3zu3mfXvrsJXbppYEaik+ExC9+eabmDBhAsaMGQMAWL58OTZu3IgPP/wQM2fO9HDpHOfMQeXO6Dw2NBDhjWQGHWsW5tD2bF3MTRnbq89cKlE0t5Ml00DGkQug6bLzJT6PcWoCy7FepJqR/nvcuhea1MXU3t25XDkHdQhEScUt2X0ul/BrHADQdDnT7Q7r2hzF5XeS3y2nIjAI1XeofoJ07zUjJWP0mN5ty13IyioNYhOgXDBh+RncPQCcI3NMyb1uHEDRcr66wZ1sjydjZHoeuFJyQ3ameKmLvAHAgx2aWg23YO+cUhMjC0sd5+4IUm11AJAKOuVu0MQeVDbyBU3XZ+9Ykzp2TKcusUXuvCp1HnKW3Db+mBpn971Kjg9nv9ua5hMBUWVlJQ4ePIhZs2aJz/n5+aF///7Izs6WfE9FRQUqKirEv/V6fY2X01HOHFTujM6V1Dg5Ms6R1MX8pYGt0axxoDgHkvFkYqudX4oG5iNwO8vW1ASWbemNG1on98pVbZsmD7tajWxvn0uNKm6vRqJQV17dndZWICNU9zYJbxgg+10rHe/FePGwd4w5EuS7ewA4R8eukfueAVjNV/f14Qt4IcP+EBSAea2IVELrkhGd0KxxoNl4MsbySAWO9rapppGFLcldjC07ANg6TizH4TEdhyss6E5Nqeb2XYwA6xsAe8ea3LFjOnWJLUrPQ65w9lqh5uPDHp8IiK5cuYKqqipER0ebPR8dHY1Tp6QHXMvKysKcOXNqo3i1zl0/GqUXI0e258io2LamJBjcKU7s4ik3ArezXKl2lqvaNiYPu6sa2VYZpfafvQBMycXfX6Mxy7+S4mgSrZJjzJGg2535C3I5PKajF1s2QUl9z84MsufI5zP2AHLXZ1fTyMKWbF2MXc0VA6R7+kmtz96x5sjUJY6W0Z2c2Yaajw97NILgaDaG97lw4QKaNm2KPXv2IC0tTXz+pZdewo4dO7B3716r90jVEMXHx0On0yEkJKRWyu0tCnXlHmkPttyuvb89Ye3+AsmqbTWUzZEyFOrKzbp4WzIGnUon5lWSRGs5PIO79pc71yX1WZRcMC3LY7lv/TUa7JrZ1+mmPLltuuuzyx3XnubufemO8sjtb6m5Cj1ZVndS2/Gh1+sRGhpq9/rtEwFRZWUlgoKC8MUXX2Dw4MHi86NGjUJxcTG++eYbu+tQukOJLKkh+HEH05OckZ+merRm00lplZDaJ966n9xRbrVdQJRQ6/flTfvyvZ15VoOmqrWsjlLT8cGAyEL37t3RrVs3LFmyBABgMBjQvHlzTJ48WVFSNQMiojsnOcvcCnKdmi4g3s6b9qU3ldVbKb1++0QOEQBMnz4do0aNQpcuXdCtWzcsXrwYpaWlYq8zIrJPrb1D6gLuW/fxpn3pTWWt63wmIBo2bBguX76MV199FUVFRejYsSO+//57q0RrIiIi8j0+02TmKjaZEREReR+l12+/WiwTERERkSoxICIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgIiIiIp/HgIiIiIh8HgMiIiIi8nkMiIiIiMjn+czUHa4yDuit1+s9XBIiIiJSynjdtjcxBwMihX7//XcAQHx8vIdLQkRERI76/fffERoaKvs65zJTyGAw4MKFCwgODoZGo/F0cWqdXq9HfHw8zp8/z7ncXMD96DruQ/fgfnQP7kf3qMn9KAgCfv/9d8TFxcHPTz5TiDVECvn5+aFZs2aeLobHhYSE8EfvBtyPruM+dA/uR/fgfnSPmtqPtmqGjJhUTURERD6PARERERH5PAZEpEhAQABee+01BAQEeLooXo370XXch+7B/ege3I/uoYb9yKRqIiIi8nmsISIiIiKfx4CIiIiIfB4DIiIiIvJ5DIiIiIjI5zEgItHOnTvx4IMPIi4uDhqNBl9//bXZ64Ig4NVXX0VsbCwCAwPRv39/nD592jOFVTF7+3H06NHQaDRmj4EDB3qmsCqWlZWFrl27Ijg4GFFRURg8eDByc3PNlrlx4wYmTZqEJk2aoFGjRhg6dCguXrzooRKrk5L92KdPH6tj8umnn/ZQidVp2bJl6NChgzhwYFpaGjZt2iS+zmPRPnv70NPHIQMiEpWWliI1NRVLly6VfH3hwoV45513sHz5cuzduxcNGzZERkYGbty4UcslVTd7+xEABg4ciMLCQvGxZs2aWiyhd9ixYwcmTZqEn376CVu2bMHNmzcxYMAAlJaWistMmzYN3377LT7//HPs2LEDFy5cwJAhQzxYavVRsh8BYMKECWbH5MKFCz1UYnVq1qwZ5s+fj4MHD+LAgQO4//778ac//QknTpwAwGNRCXv7EPDwcSgQSQAgfPXVV+LfBoNBiImJERYtWiQ+V1xcLAQEBAhr1qzxQAm9g+V+FARBGDVqlPCnP/3JI+XxZpcuXRIACDt27BAEofr4q1+/vvD555+Ly/z8888CACE7O9tTxVQ9y/0oCILQu3dv4bnnnvNcobxU48aNhffff5/HoguM+1AQPH8csoaIFMnPz0dRURH69+8vPhcaGoru3bsjOzvbgyXzTtu3b0dUVBRat26NZ555BlevXvV0kVRPp9MBAMLDwwEABw8exM2bN82OyTZt2qB58+Y8Jm2w3I9Gn376KSIiItC+fXvMmjULZWVlniieV6iqqsJnn32G0tJSpKWl8Vh0guU+NPLkccjJXUmRoqIiAEB0dLTZ89HR0eJrpMzAgQMxZMgQJCUlIS8vDy+//DIyMzORnZ0Nf39/TxdPlQwGA55//nn06NED7du3B1B9TGq1WoSFhZkty2NSntR+BIARI0YgISEBcXFxOHr0KGbMmIHc3FysW7fOg6VVn2PHjiEtLQ03btxAo0aN8NVXX6Fdu3bIycnhsaiQ3D4EPH8cMiAiqmWPPfaY+O+UlBR06NABycnJ2L59O/r16+fBkqnXpEmTcPz4cezatcvTRfFqcvtx4sSJ4r9TUlIQGxuLfv36IS8vD8nJybVdTNVq3bo1cnJyoNPp8MUXX2DUqFHYsWOHp4vlVeT2Ybt27Tx+HLLJjBSJiYkBAKteExcvXhRfI+e0aNECEREROHPmjKeLokqTJ0/Ghg0bsG3bNjRr1kx8PiYmBpWVlSguLjZbnsekNLn9KKV79+4AwGPSglarRcuWLdG5c2dkZWUhNTUVb7/9No9FB8jtQym1fRwyICJFkpKSEBMTgx9//FF8Tq/XY+/evWbtv+S4X3/9FVevXkVsbKyni6IqgiBg8uTJ+Oqrr7B161YkJSWZvd65c2fUr1/f7JjMzc1FQUEBj0kT9vajlJycHADgMWmHwWBARUUFj0UXGPehlNo+DtlkRqKSkhKzSDw/Px85OTkIDw9H8+bN8fzzz+ONN97AXXfdhaSkJLzyyiuIi4vD4MGDPVdoFbK1H8PDwzFnzhwMHToUMTExyMvLw0svvYSWLVsiIyPDg6VWn0mTJmH16tX45ptvEBwcLOZihIaGIjAwEKGhoRg3bhymT5+O8PBwhISEYMqUKUhLS8O9997r4dKrh739mJeXh9WrV+OBBx5AkyZNcPToUUybNg3p6eno0KGDh0uvHrNmzUJmZiaaN2+O33//HatXr8b27dvx3//+l8eiQrb2oSqOQ4/1byPV2bZtmwDA6jFq1ChBEKq73r/yyitCdHS0EBAQIPTr10/Izc31bKFVyNZ+LCsrEwYMGCBERkYK9evXFxISEoQJEyYIRUVFni626kjtQwDCypUrxWXKy8uFZ599VmjcuLEQFBQkPPzww0JhYaHnCq1C9vZjQUGBkJ6eLoSHhwsBAQFCy5YthRdffFHQ6XSeLbjKjB07VkhISBC0Wq0QGRkp9OvXT9i8ebP4Oo9F+2ztQzUchxpBEITaCb2IiIiI1Ik5REREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8xgQEZHXq6ys9HQRrKixTEQkjwEREalOnz59MHnyZEyePBmhoaGIiIjAK6+8AuNMQ4mJiXj99dcxcuRIhISEYOLEiQCAXbt2oVevXggMDER8fDymTp2K0tJScb3vvvsu7rrrLjRo0ADR0dF45JFHxNe++OILpKSkIDAwEE2aNEH//v3F9/bp0wfPP/+8WRkHDx6M0aNHi387WyYiUgcGRESkSh999BHq1auHffv24e2338abb76J999/X3z9H//4B1JTU3H48GG88soryMvLw8CBAzF06FAcPXoUa9euxa5duzB58mQAwIEDBzB16lTMnTsXubm5+P7775Geng4AKCwsxPDhwzF27Fj8/PPP2L59O4YMGQJHp3p0tExEpB6c3JWIVKdPnz64dOkSTpw4AY1GAwCYOXMm1q9fj5MnTyIxMRGdOnXCV199Jb5n/Pjx8Pf3x3vvvSc+t2vXLvTu3RulpaX47rvvMGbMGPz6668IDg42296hQ4fQuXNnnD17FgkJCZLl6dixIxYvXiw+N3jwYISFhWHVqlUA4FSZGjRo4NJ+IiL3YQ0REanSvffeKwZDAJCWlobTp0+jqqoKANClSxez5Y8cOYJVq1ahUaNG4iMjIwMGgwH5+fn4wx/+gISEBLRo0QJPPvkkPv30U5SVlQEAUlNT0a9fP6SkpODPf/4zVqxYgevXrztcZkfLRETqwYCIiLxSw4YNzf4uKSnBU089hZycHPFx5MgRnD59GsnJyQgODsahQ4ewZs0axMbG4tVXX0VqaiqKi4vh7++PLVu2YNOmTWjXrh2WLFmC1q1bi0GLn5+fVfPZzZs3XS4TEakHAyIiUqW9e/ea/f3TTz/hrrvugr+/v+Ty99xzD06ePImWLVtaPbRaLQCgXr166N+/PxYuXIijR4/i7Nmz2Lp1KwBAo9GgR48emDNnDg4fPgytVis2f0VGRqKwsFDcVlVVFY4fP273MygpExGpAwMiIlKlgoICTJ8+Hbm5uVizZg2WLFmC5557Tnb5GTNmYM+ePZg8eTJycnJw+vRpfPPNN2IC84YNG/DOO+8gJycH586dw8cffwyDwYDWrVtj7969mDdvHg4cOICCggKsW7cOly9fRtu2bQEA999/PzZu3IiNGzfi1KlTeOaZZ1BcXGz3M9grExGpRz1PF4CISMrIkSNRXl6Obt26wd/fH88995zYlV1Khw4dsGPHDvz1r39Fr169IAgCkpOTMWzYMABAWFgY1q1bh9mzZ+PGjRu46667sGbNGtx99934+eefsXPnTixevBh6vR4JCQn45z//iczMTADA2LFjceTIEYwcORL16tXDtGnT0LdvX7ufwV6ZiEg92MuMiFRHqlcXEVFNYpMZERER+TwGREREROTz2GRGREREPo81REREROTzGBARERGRz2NARERERD6PARERERH5PAZERERE5PMYEBEREZHPY0BEREREPo8BEREREfk8BkRERETk8/4/NXj9NDYxwzoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaNUlEQVR4nO3deXwU5f0H8M8kkJCEZCGQQICEhHBEJATKoQgGEBQiVTlsEVq5PUE8flaCrRWsErCtRRHBokKtBakKigcelUsMIlc4VBBikABBCMIGkhAgO78/4iyzszOzs5vdndnk83690sru7Owzs3N853m+z/MIoiiKICIiIrKgMLMLQERERKSFgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoR1dqsWbMgCIKhZQVBwKxZswJangEDBmDAgAGWXR8RGcdAhagOWbZsGQRBcP41aNAArVu3xoQJE3Ds2DGzi2c5qampLvsrMTER119/PVavXu2X9VdUVGDWrFnYsGGDX9ZHVB8xUCGqg5566in8+9//xuLFi5GTk4M33ngD/fv3x4ULFwLyfX/6059QWVkZkHUHWrdu3fDvf/8b//73v/Hoo4/i+PHjGDlyJBYvXlzrdVdUVGD27NkMVIhqoYHZBSAi/8vJyUHPnj0BAFOmTEHz5s0xb948rFmzBr/97W/9/n0NGjRAgwaheTlp3bo1fv/73zv/PW7cOLRv3x7/+Mc/cO+995pYMiICWKNCVC9cf/31AIDCwkKX1/fv34/bb78d8fHxaNSoEXr27Ik1a9a4LHPp0iXMnj0bHTp0QKNGjdCsWTP069cPn332mXMZtRyVqqoqPPzww0hISEBsbCxuvfVWHD161K1sEyZMQGpqqtvrautcunQpbrjhBiQmJiIyMhKdO3fGokWLvNoXnrRs2RJXXXUVioqKdJc7efIkJk+ejBYtWqBRo0bIysrCv/71L+f7hw8fRkJCAgBg9uzZzualQOfnENU1ofkIREReOXz4MACgadOmzte++eYb9O3bF61bt0Zubi5iYmLw3//+F8OHD8c777yDESNGAKgJGPLy8jBlyhT07t0bZWVl2L59O3bu3Ikbb7xR8zunTJmCN954A2PHjsV1112HdevWYdiwYbXajkWLFuHqq6/GrbfeigYNGuD999/H/fffD4fDgalTp9Zq3ZJLly6huLgYzZo101ymsrISAwYMwKFDhzBt2jSkpaXhrbfewoQJE3D27Fk8+OCDSEhIwKJFi3DfffdhxIgRGDlyJACga9eufiknUb0hElGdsXTpUhGA+L///U88deqUWFxcLL799ttiQkKCGBkZKRYXFzuXHTRokJiZmSleuHDB+ZrD4RCvu+46sUOHDs7XsrKyxGHDhul+75NPPinKLycFBQUiAPH+++93WW7s2LEiAPHJJ590vjZ+/Hixbdu2HtcpiqJYUVHhttyQIUPEdu3aubzWv39/sX///rplFkVRbNu2rXjTTTeJp06dEk+dOiXu3r1bvOOOO0QA4gMPPKC5vvnz54sAxDfeeMP52sWLF8U+ffqIjRs3FsvKykRRFMVTp065bS8ReYdNP0R10ODBg5GQkIDk5GTcfvvtiImJwZo1a9CmTRsAwM8//4x169bht7/9Lc6dO4fS0lKUlpbi9OnTGDJkCA4ePOjsJdSkSRN88803OHjwoOHv/+ijjwAA06dPd3n9oYceqtV2RUVFOf/bbrejtLQU/fv3xw8//AC73e7TOj/99FMkJCQgISEBWVlZeOutt3DnnXdi3rx5mp/56KOP0LJlS4wZM8b5WsOGDTF9+nScP38eGzdu9KksROSOTT9EddDChQvRsWNH2O12vPbaa9i0aRMiIyOd7x86dAiiKOKJJ57AE088obqOkydPonXr1njqqadw2223oWPHjujSpQuGDh2KO++8U7cJ48cff0RYWBjS09NdXu/UqVOttuvLL7/Ek08+iS1btqCiosLlPbvdDpvN5vU6r7nmGjz99NMQBAHR0dG46qqr0KRJE93P/Pjjj+jQoQPCwlyf9a666irn+0TkHwxUiOqg3r17O3v9DB8+HP369cPYsWNx4MABNG7cGA6HAwDw6KOPYsiQIarraN++PQAgOzsbhYWFeO+99/Dpp5/ilVdewT/+8Q8sXrwYU6ZMqXVZtQaKq66udvl3YWEhBg0ahIyMDDz33HNITk5GREQEPvroI/zjH/9wbpO3mjdvjsGDB/v0WSIKPAYqRHVceHg48vLyMHDgQLz44ovIzc1Fu3btANQ0Vxi5ScfHx2PixImYOHEizp8/j+zsbMyaNUszUGnbti0cDgcKCwtdalEOHDjgtmzTpk1x9uxZt9eVtRLvv/8+qqqqsGbNGqSkpDhfX79+vcfy+1vbtm2xZ88eOBwOl1qV/fv3O98HtIMwIjKOOSpE9cCAAQPQu3dvzJ8/HxcuXEBiYiIGDBiAl19+GSUlJW7Lnzp1yvnfp0+fdnmvcePGaN++PaqqqjS/LycnBwDwwgsvuLw+f/58t2XT09Nht9uxZ88e52slJSVuo8OGh4cDAERRdL5mt9uxdOlSzXIEys0334wTJ05g5cqVztcuX76MBQsWoHHjxujfvz8AIDo6GgBUAzEiMoY1KkT1xB/+8Af85je/wbJly3Dvvfdi4cKF6NevHzIzM3HXXXehXbt2+Omnn7BlyxYcPXoUu3fvBgB07twZAwYMQI8ePRAfH4/t27fj7bffxrRp0zS/q1u3bhgzZgxeeukl2O12XHfddfj8889x6NAht2XvuOMOzJgxAyNGjMD06dNRUVGBRYsWoWPHjti5c6dzuZtuugkRERG45ZZbcM899+D8+fNYsmQJEhMTVYOtQLr77rvx8ssvY8KECdixYwdSU1Px9ttv48svv8T8+fMRGxsLoCb5t3Pnzli5ciU6duyI+Ph4dOnSBV26dAlqeYlCmtndjojIf6Tuydu2bXN7r7q6WkxPTxfT09PFy5cvi6IoioWFheK4cePEli1big0bNhRbt24t/vrXvxbffvtt5+eefvppsXfv3mKTJk3EqKgoMSMjQ3zmmWfEixcvOpdR60pcWVkpTp8+XWzWrJkYExMj3nLLLWJxcbFqd91PP/1U7NKlixgRESF26tRJfOONN1TXuWbNGrFr165io0aNxNTUVHHevHnia6+9JgIQi4qKnMt50z3ZU9drrfX99NNP4sSJE8XmzZuLERERYmZmprh06VK3z+bn54s9evQQIyIi2FWZyAeCKMrqUYmIiIgshDkqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILCukB3xzOBw4fvw4YmNjOVQ1ERFRiBBFEefOnUOrVq3cJvdUCulA5fjx40hOTja7GEREROSD4uJitGnTRneZkA5UpGGqi4uLERcXZ3JpiIiIyIiysjIkJyc77+N6QjpQkZp74uLiGKgQERGFGCNpG0ymJSIiIstioEJERESWxUCFiIiILCukc1SIiKj+qK6uxqVLl8wuBhkUERHhseuxEQxUiIjI0kRRxIkTJ3D27Fmzi0JeCAsLQ1paGiIiImq1HgYqRERkaVKQkpiYiOjoaA7wGQKkAVlLSkqQkpJSq9+MgQoREVlWdXW1M0hp1qyZ2cUhLyQkJOD48eO4fPkyGjZs6PN6mExLRESWJeWkREdHm1wS8pbU5FNdXV2r9TBQISIiy2NzT+jx12/GQIWIiIgsi4EKEREReW3Dhg0QBCHgvbEYqARBib0S+YWlKLFXml0UIiIKEbNmzUK3bt3MLobp2OsnwFZuO4KZq/bCIQJhApA3MhOje6WYXSwiIqojLl26VKteNVbHGpUAKrFXOoMUAHCIwOOr9rFmhYioHnA4HMjLy0NaWhqioqKQlZWFt99+G8CVZpPPP/8cPXv2RHR0NK677jocOHAAALBs2TLMnj0bu3fvhiAIEAQBy5YtA1CTpLpo0SLceuutiImJwTPPPKNbDum7PvnkE3Tv3h1RUVG44YYbcPLkSaxduxZXXXUV4uLiMHbsWFRUVDg/V1VVhenTpyMxMRGNGjVCv379sG3btsDsLB0MVAKoqLTcGaRIqkURh0sr1D9AREQBE+xm+Ly8PLz++utYvHgxvvnmGzz88MP4/e9/j40bNzqX+eMf/4i///3v2L59Oxo0aIBJkyYBAEaPHo3/+7//w9VXX42SkhKUlJRg9OjRzs/NmjULI0aMwN69e52f8WTWrFl48cUXkZ+fj+LiYvz2t7/F/PnzsXz5cnz44Yf49NNPsWDBAufyjz32GN555x3861//ws6dO9G+fXsMGTIEP//8s5/2kDGmN/0cO3YMM2bMwNq1a1FRUYH27dtj6dKl6Nmzp9lFq7W05jEIE+ASrIQLAlKbczwAIqJgCnYzfFVVFebMmYP//e9/6NOnDwCgXbt22Lx5M15++WXcfffdAIBnnnkG/fv3BwDk5uZi2LBhuHDhAqKiotC4cWM0aNAALVu2dFv/2LFjMXHiRK/K9PTTT6Nv374AgMmTJ2PmzJkoLCxEu3btAAC333471q9fjxkzZqC8vByLFi3CsmXLkJOTAwBYsmQJPvvsM7z66qv4wx/+4NuO8YGpNSpnzpxB37590bBhQ6xduxbffvst/v73v6Np06ZmFstvkmxRyBuZifBf+pKHCwLmjOyCJFuUySUjIqo/zGiGP3ToECoqKnDjjTeicePGzr/XX38dhYWFzuW6du3q/O+kpCQAwMmTJz2u35eHefl3tWjRAtHR0c4gRXpN+u7CwkJcunTJGdgAQMOGDdG7d2989913Xn93bZhaozJv3jwkJydj6dKlztfS0tJMLJH/je6VguyOCThcWoHU5tEMUoiIgkyvGT5Q1+Tz588DAD788EO0bt3a5b3IyEhnsCJPgpUGSHM4HB7XHxMT43WZlN+lTMAVBMHQdwebqTUqa9asQc+ePfGb3/wGiYmJ6N69O5YsWaK5fFVVFcrKylz+QkGSLQp90psxSCEiMoHUDC8X6Gb4zp07IzIyEkeOHEH79u1d/pKTkw2tIyIiotbDz/sqPT0dERER+PLLL52vXbp0Cdu2bUPnzp2DWhZTa1R++OEHLFq0CI888ggef/xxbNu2DdOnT0dERATGjx/vtnxeXh5mz55tQkmJiChUSc3wj6/ah2pRDEozfGxsLB599FE8/PDDcDgc6NevH+x2O7788kvExcWhbdu2HteRmpqKoqIiFBQUoE2bNoiNjUVkZGTAyiwXExOD++67D3/4wx8QHx+PlJQUPPvss6ioqMDkyZODUgaJqYGKw+FAz549MWfOHABA9+7dsW/fPixevFg1UJk5cyYeeeQR57/LysoMR6ZERFR/mdEM/5e//AUJCQnIy8vDDz/8gCZNmuBXv/oVHn/8cUNNLKNGjcKqVaswcOBAnD17FkuXLsWECRMCXm7J3Llz4XA4cOedd+LcuXPo2bMnPvnkk6DnkQqiKIqeFwuMtm3b4sYbb8Qrr7zifG3RokV4+umncezYMY+fLysrg81mg91uR1xcXCCLSkREJrhw4QKKioqQlpaGRo0amV0c8oLeb+fN/dvUHJW+ffs6B7eRfP/994aqxIiIiKjuMzVQefjhh/HVV19hzpw5OHToEJYvX45//vOfmDp1qpnFIiIiChn33nuvSxdo+d+9995rdvFqzdSmHwD44IMPMHPmTBw8eBBpaWl45JFHcNdddxn6LJt+iIjqNjb9eHby5EnNXrBxcXFITEwMcolq+Kvpx/SRaX/961/j17/+tdnFICIiCkmJiYmmBSPBwLl+iIiIyLIYqBARkeVZccRU0uevzBLTm36IiIi0REREICwsDMePH0dCQgIiIiKcQ82TdYmiiFOnTqkO1e8tBipERGRZYWFhSEtLQ0lJCY4fP252ccgLgiCgTZs2CA8Pr9V6GKgQEZGlRUREICUlBZcvXzZt7hvyXsOGDWsdpAAMVIiIKARITQi1bUag0MNkWiIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJZlaqAya9YsCILg8peRkWFmkYiIiMhCGphdgKuvvhr/+9//nP9u0MD0IhEREZFFmB4VNGjQAC1btjS7GERERGRBpueoHDx4EK1atUK7du3wu9/9DkeOHNFctqqqCmVlZS5/REREVHeZGqhcc801WLZsGT7++GMsWrQIRUVFuP7663Hu3DnV5fPy8mCz2Zx/ycnJQS4xERERBZMgiqJodiEkZ8+eRdu2bfHcc89h8uTJbu9XVVWhqqrK+e+ysjIkJyfDbrcjLi4umEUlIiIiH5WVlcFmsxm6f5ueoyLXpEkTdOzYEYcOHVJ9PzIyEpGRkUEuFREREZnF9BwVufPnz6OwsBBJSUlmF4WIiIgswNRA5dFHH8XGjRtx+PBh5OfnY8SIEQgPD8eYMWPMLBYRERFZhKlNP0ePHsWYMWNw+vRpJCQkoF+/fvjqq6+QkJBgZrGIiIjIIkwNVN58800zv56IiIgszlI5KkRERERyDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAxUQl9krkF5aixF5pdlGIiIgsqYHZBaivVm47gpmr9sIhAmECkDcyE6N7pZhdLCIiIkthjYoJSuyVziAFABwi8PiqfaxZISIiUmCgYoKi0nJnkCKpFkUcLq0wp0BEREQWxUDFBGnNYxAmuL4WLghIbR5tToGIiIgsioGKCZJsUcgbmYlwoSZaCRcEzBnZBUm2KN3PMfmWiIjqGybTmmR0rxRkd0zA4dIKpDaP9hikMPmWiIjqI0vVqMydOxeCIOChhx4yuyhBkWSLQp/0ZoZqUph8S0RE9ZFlApVt27bh5ZdfRteuXc0uiuUw+ZaIiOorSwQq58+fx+9+9zssWbIETZs2Nbs4lsPkWyIiqq8sEahMnToVw4YNw+DBg80uiiX5mnxLREQU6kxPpn3zzTexc+dObNu2zeOyVVVVqKqqcv67rKwskEWzFG+Tb4mIiOoCUwOV4uJiPPjgg/jss8/QqFEjj8vn5eVh9uzZQSiZNSXZohigEBFRvSKIoih6Xiww3n33XYwYMQLh4eHO16qrqyEIAsLCwlBVVeXynlqNSnJyMux2O+Li4oJadiIiIvJNWVkZbDabofu3qTUqgwYNwt69e11emzhxIjIyMjBjxgyXIAUAIiMjERkZGcwiEhERkYlMDVRiY2PRpUsXl9diYmLQrFkzt9eJiIio/rFEr5/6gMPfExERec/0Xj9KGzZsMLsIfsfh74mIiHzDGpUA4/D3REREvmOgEmAc/p6IiMh3DFQCjMPfExER+Y6BSoBx+HsiIiLfWS6Zti7i8PdERES+YaASJBz+noiIyHts+iEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZluFJCcvKygyvNC4uzqfCEBEREckZDlSaNGkCQRB0lxFFEYIgoLq6utYFIyIiIjIcqKxfvz6Q5SAiIiJyYzhQ6d+/fyDLQUREROTGcKCidPbsWbz66qv47rvvAABXX301Jk2aBJvN5rfCERERUf3mU6+f7du3Iz09Hf/4xz/w888/4+eff8Zzzz2H9PR07Ny5099lJCIionpKEEVR9PZD119/Pdq3b48lS5agQYOaSpnLly9jypQp+OGHH7Bp0ya/F1RNWVkZbDYb7HY7exoRERGFCG/u3z4FKlFRUdi1axcyMjJcXv/222/Rs2dPVFRUeLtKnzBQISIiCj3e3L99avqJi4vDkSNH3F4vLi5GbGysL6skIiIicuNToDJ69GhMnjwZK1euRHFxMYqLi/Hmm29iypQpGDNmjL/LSERERPWUT71+/va3v0EQBIwbNw6XL18GADRs2BD33Xcf5s6d69cCEhERUf3lU46KpKKiAoWFhQCA9PR0REdH+61gRjBHhYiIKPR4c//2eRwVAIiOjkZmZmZtVkFERESkyadA5cKFC1iwYAHWr1+PkydPwuFwuLzPsVSIiIjIH3wKVCZPnoxPP/0Ut99+O3r37u1xskIiIiIiX/gUqHzwwQf46KOP0LdvX3+Xh4iIiMjJp+7JrVu35ngpREREFHA+BSp///vfMWPGDPz444/+Lg8RERGRk09NPz179sSFCxfQrl07REdHo2HDhi7v//zzz34pHBEREdVvPgUqY8aMwbFjxzBnzhy0aNGCybREREQUED4FKvn5+diyZQuysrL8XR4iIiIiJ59yVDIyMlBZWenvshARERG58ClQmTt3Lv7v//4PGzZswOnTp1FWVubyR0REROQPPs31ExZWE98oc1NEUYQgCKiurvZP6TzgXD9EREShJ+Bz/axfv96nghERERF5w6dApX///oaWu//++/HUU0+hefPmvnwNERER1XM+5agY9cYbb+jmrCxatAhdu3ZFXFwc4uLi0KdPH6xduzaQRSIiIqIQEtBAxVP6S5s2bTB37lzs2LED27dvxw033IDbbrsN33zzTSCLRURERCHCp6Yff7nllltc/v3MM89g0aJF+Oqrr3D11VebVCoiIiKyClMDFbnq6mq89dZbKC8vR58+fcwuDhEREVmA6YHK3r170adPH1y4cAGNGzfG6tWr0blzZ9Vlq6qqUFVV5fw3x2whIiKq2wKao2JEp06dUFBQgK1bt+K+++7D+PHj8e2336oum5eXB5vN5vxLTk4OcmmJiIgomLwOVC5fvoynnnoKR48e9bjs73//e48DuURERKB9+/bo0aMH8vLykJWVheeff1512ZkzZ8Jutzv/iouLvS0+ERERhRCvA5UGDRrgr3/9Ky5fvuxx2UWLFnk9horD4XBp3pGLjIx0dmWW/oiIiKju8ilH5YYbbsDGjRuRmppaqy+fOXMmcnJykJKSgnPnzmH58uXYsGEDPvnkk1qtl4iIiOoGnwKVnJwc5ObmYu/evejRowdiYmJc3r/11lsNrefkyZMYN24cSkpKYLPZ0LVrV3zyySe48cYbfSkWERER1TG1mpRQdYWclJCIiIh0BHxSQofD4VPBiIiIiLzhU/fk119/XTXh9eLFi3j99ddrXSgiIiIiwMemn/DwcJSUlCAxMdHl9dOnTyMxMZFNP0RERKTJm/u3TzUqoihCEAS3148ePQqbzebLKomIiIjceJWj0r17dwiCAEEQMGjQIDRocOXj1dXVKCoqwtChQ/1eSCIiIqqfvApUhg8fDgAoKCjAkCFD0LhxY+d7ERERSE1NxahRo/xaQCIiIqq/vApUnnzySQBAamoqRo8ejUaNGgWkUERERESAj92Tx48fD6Cml8/JkyfduiunpKTUvmRERERU7/kUqBw8eBCTJk1Cfn6+y+tSkm2wev0QERFR3eZToDJhwgQ0aNAAH3zwAZKSklR7ABERERHVlk+BSkFBAXbs2IGMjAx/l4eIiIjIyadxVDp37ozS0lJ/l4XIayX2SuQXlqLEXml2UYiIKAB8qlGZN28eHnvsMcyZMweZmZlo2LChy/scJZaCYeW2I5i5ai8cIhAmAHkjMzG6FxO5iYjqklrPnizPTwl2Mi2H0K9bSuyVKCotR1rzGCTZojwu23fuOjhkR2+4IGBz7kCPnyUiInMFfPbk9evX+1QwIi3e1o4UlZa7BCkAUC2KOFxawUCFiKgO8SlHpX///ggLC8OSJUuQm5uL9u3bo3///jhy5AjCw8P9XUaq40rslc4gBQAcIvD4qn26eSdpzWMQpuhsFi4ISG0eHcCSEhFRsPkUqLzzzjsYMmQIoqKisGvXLlRVVQEA7HY75syZ49cCUt2nVzuiJckWhbyRmQj/pekxXBAwZ2QX1qYQEdUxPjX9PP3001i8eDHGjRuHN9980/l637598fTTT/utcFQ/SLUjynwTT7Ujo3ulILtjAg6XViC1eTSDFCKiOsinGpUDBw4gOzvb7XWbzYazZ8/WtkxUz9SmdiTJFoU+6c0YpBAR1VE+1ai0bNkShw4dQmpqqsvrmzdvRrt27fxRLqpnWDtCRERqfApU7rrrLjz44IN47bXXIAgCjh8/ji1btuDRRx/FE0884e8yUj2RZItigEJERC58ClRyc3PhcDgwaNAgVFRUIDs7G5GRkXj00UfxwAMP+LuMREREVE/5NOCb5OLFizh06BDOnz+Pzp07o3Hjxv4sm0cc8I2IiCj0BHzAN0lERAQ6d+5cm1UQERERafKp1w8RERFRMDBQISIiIstioEJERESWxUCFiIiILIuBCrkosVciv7BUd0JAIiKiYKlVrx+qW1ZuO+KcxThMAPJGZmJ0rxSzi0VERPUYa1QIQE1NihSkADUTBD6+al+talZYO0NERLXFGhUCABSVlrvMXgwA1aKIw6UVPg1rz9oZIiLyB9aoEAAgrXkMwgTX18IFAanNo71eVyBqZ4gosFgDSlbFQIUA1EwImDcyE+FCTbQSLgiYM7KLT7UperUzRGQ9K7cdQd+56zB2yVb0nbsOK7cdMbtIRE5s+iGn0b1SkN0xAYdLK5DaPNrnmYyl2hl5sBIuCIiOCEN+YSnSmsdwlmQii9CqAc3umMDzlCyBgQq5SLJF1friJNXOPL5qH6pFEeGCgOHdW2HES/nMWSGyGH/npxH5GwMVCgh57Ux0RJgzSAH4xEZkJVo1oL7kpxEFAnNUKGCSbFHok94M5RermbNCZFH+zE8jCgTWqFDA8YmNyNr8lZ9GFAisUaGA4xMbkfVJNaA8L8lqWKNCQcEnNiIi8gUDFQoaf/QoIiKi+oVNP0RERGRZDFSIiIjIskwNVPLy8tCrVy/ExsYiMTERw4cPx4EDB8wsEhEREVmIqYHKxo0bMXXqVHz11Vf47LPPcOnSJdx0000oLy83s1hERBRiOKli3SWIoih6Xiw4Tp06hcTERGzcuBHZ2dkely8rK4PNZoPdbkdcXFwQSkhERFazctsR53xFnKIjNHhz/7ZUjordbgcAxMfHm1wSIiIKBVqTKrJmpe6wTPdkh8OBhx56CH379kWXLl1Ul6mqqkJVVZXz32VlZcEqHhERWRAnVaz7LFOjMnXqVOzbtw9vvvmm5jJ5eXmw2WzOv+Tk5CCWkIiIrEaaokOOU3TULZYIVKZNm4YPPvgA69evR5s2bTSXmzlzJux2u/OvuLg4iKUkIiKr4RQddZ+pTT+iKOKBBx7A6tWrsWHDBqSlpekuHxkZicjIyCCVjoiIQgGn6KjbTA1Upk6diuXLl+O9995DbGwsTpw4AQCw2WyIiuKBRkRExnCKjrrL1O7JgiCovr506VJMmDDB4+fZPZmIiCj0eHP/Nr3ph4iIiEiLJZJpiYiIiNQwUCEiIiLLYqBCRERElsVAhYiIiCyLgQoRERFZFgMVIiIisiwGKkQaSuyVyC8s5SysREQmsszsyURWsnLbEefU8WECkDcyE6N7pZhdLCKieoc1Kh7wqbp+kP/OJfZKZ5ACAA4ReHzVPh4DREQmYI2KDj5V1w/K33lKvzRnkCKpFkUcLq3gXCJEREHGGhUNak/VM1ftxe7iM+YWjPxK7Xd+5YsihCmmoQoXBKQ2jw5+AYmI6jkGKhqKSsvdnqodIjB8YT5WbjtiTqHI71R/ZwBT+rVD+C+TZoYLAuaM7MLaFCIiE7DpR0Na8xiECXC7iYmoyVfI7pjAG1cdoPY7hwsCJvZLxcR+qThcWoHU5tH8rYmITMIaFQ1Jtijkjcx0awIAruQrUOiTfme12pMkWxT6pDdjkEJEZCLWqOgY3SsFGS1jMXxhPuQVK8xXqFtG90pBdscE1p4QEVkQa1Q8yEpuirmj1J+4qe5g7QkRkTWxRsUAPnETERGZg4GKQVLOAhEREQUPm36IiIjIshioEBERkWUxUCEiIiLLYqBiMk56SEREpI3JtCbipIdERET6WKNiErXJ8B5ftc+yNSus+SEiIjOwRsUkapPhSUPzW60bNGt+iIjILKxRMYk0GZ6cFYfmD7WaHyIiqlsYqJhEbzI8K9Gr+SGqz9gcShQcbPoxUSgMzS/V/MiDFSvW/BAFE5tDiYKHNSoms/pkeKFS81MX8YndmtgcShRcrFEhj0Kh5qeu4RO7dYVSIjxRXcAaFTLE6jU/dQmf2K0tVBLhieoKBipU54R6kwkTmK2NzaFEwcWmH6pT6kKTCROYrY/NoUTBwxoVqjPqSpMJn9hDA5tDiYKDNSpUZ9SlJEc+sRMR1WCgQnVGIJtMSuyVKCotR1rzmKAFDUm2KAYoRFTvsemnjgj1BFJ/CFSTycptR9B37jqMXbIVfeeuw8ptR/xRXCIiMkAQRVH0vJg1lZWVwWazwW63Iy4uzuzimKYuJJD6U4m90m9NJiX2SvSdu86tlmZz7kDWdhAR+cib+zebfkKcVgJpRstYlF+sDmpThVX4s8mkLuW9EBGFIgYqBpiRn2CU1o10+Ev5EFnDUmvsKkxEZC7mqHhg9fwEtVEyAUAM8S66ViAFqDNyMthVmIjIJKxR0aHVrJLdMcEyNyopgfTxVftQLYoIA+BQLMOmCu8p835mDM1A1zZN2FWYiCjIGKjoCJX8BPmYG9ERYRjxUn7Amiqs3AzmL2oB6rMfH2ACLRGRCRio6Ail/AR5Aqm8hsWfTRX1pXdRqASoRET1AQMVHcpmlVDJTwjEqKah0AzmL6EUoBIR1XWmJtNu2rQJt9xyC1q1agVBEPDuu++aWRxVo3ulYHPuQKy461pszh1oiRoEI4O7+Xsekvo0oy/n2iEisg5Ta1TKy8uRlZWFSZMmYeTIkWYWRZeVhjI3q/mlvtUycK4dIgpldSmf0NRAJScnBzk5OWYWIaSY2fwSqs1gtWGlAJWIyKi6lk8YUjkqVVVVqKqqcv67rKzMxNJcEazI1ewkT9YyGFeXnmaIKHTUxXzCkApU8vLyMHv2bLOL4SKYkasVml9Yy+CZ2jGR3TGBgQsRBZzZD7SBEFIj086cORN2u935V1xcbGp5tCLXQI0Cq0zyDBOASf1SA/Jd5Bu1YyL3nb2WHt2YgoeznFOgqY1WHur5hCEVqERGRiIuLs7lz0xm9ISReiHdnZ0GUQSWfFHEm5+FqB0TIhC0YJasy+rTcVDdUBd7LYZU04/VmNkU88oXRZC+1mgbJPMmAk/tmFAK9WpY8l5dzBsg66pr+YSm1qicP38eBQUFKCgoAAAUFRWhoKAAR46ExpOGWZGrLzU5fJoLDrfmOQDKOSNDvRqWvFefxiEia/D3WFpmMrVGZfv27Rg4cKDz34888ggAYPz48Vi2bJlJpfKOcp6d8ovVKLFXBvTg8LYmx9enOdbA+Eb5NLPp+1P1qls3ubNCIjxRqDI1UBkwYABEUaeOPEQk2aKw6ftTQev94+2YJr5kgde1fvjBJu8dVdeqYcl79XEcIiJ/EcQQjhTKyspgs9lgt9tNTawtsVei79x1bk9LgZ5tt8Reaejm5235zNoeorrO6DlLVNd5c/8OqV4/VmVW+7PRNkhvc2m82R52tyQyri7lDVDdEArXcPb68YNQaH/2pvnB6PaweUgdc3uIKBSEyjWcNSp+ECr91v1ZAxPswe5CBXtXEVEoCKVrOGtU/KSuJUx62p66OExzbXGsDPI31s5RoITSNZyBih/VtXlw9LZn7zG722tWa+4KtlA68UNBfb9Jh0q1PPlfMI79UEhZkDBQIa+V2Csxb+1+t9cfG9qpXt5QJKF04ltdfb9Js3au/grWsR9KXeYZqARIXX4aVKs5AICubZoEvSxWEkonvpXxJs3aOSsKxjU92Md+qKQsMFAJgLr+NMiaA22hcuJbWX2+SUs3w5iIcJ5jFhKsa7oZx34opCyw14+fqUXEM1fttWQmta9CpZeTWer6WBmBHnch1Kep93X/yHuMjXgpHyO6t/b6HAuFMTFCTTB7x1jl2LfaccQaFT9Ti4gdIrD0yyI8fnNncwoVAKw5qJ+C8WQZyk1ovu4ftZvhu7uOY9X9fVBx0eG8UeUXlmo2PdT1mlyzBLOWwwrHvhWPIwYqfqbWLAIASzYVYVhmErKSm5pTsAAIhSpD8p9gtp+HYiBcm/2jdTOsuOhAn/RmHm8ezOsJnGA3dZt57Fv1OGLTj58l2aIwuV+a2+sigOEL8wM6AJjVquuobgn2VBGh1oRWm/2jV+VvpOnBrGk86gMzmrrNOvatehyxRiUAJvVLwytfFEHZMUaE5+jU18xyK1bXUd3CJGp9tdk/elX++YWlHpseYiLCVdcbHRFWp3sgBou8liM6IgzlF6tRYq80lDMUSvvequc4A5UASLJFYe6oTJenIIle26Y/27fNqK4LtZOSvGOF9nMrq+3+0aryN3LzKL9YrbrOD/ecwCubf4BDBAQByM3JwD3Z6b5v5C/8ea6HynUjyRaFTd+fMnyNDsWHR6ue44IoiiojYoQGb6aJNsPu4jMYvjDfpWYlXBCwOXeg2w9fYq9E37nr3C5Gassq5ReWYuySrW6vr7jrWvRJb1abTTAsFE/KUGG1C3mJvTKkckeCLRD7Z+W2I243D2WOivL6EQYAKvlyM3MycE9/34MVf57rVr5uyLuKl1+sRkxEOEa8lG/oGl2b67m35QrEdSEY57g392/WqNSS3k0kK7kp5o4yFp3WJrNc7YkrDDXVvsFQ2xodM2/EVgsClKx4IWcStb5A7B9PCZZqT8KT+6Xin18Uua1r3tr9uLVbK5/KqDr8wjt7ERPZAD3aNvVqnVapCVaWqai0HHuP2jHv4/0u11QBcGvO17pG+3o993Q9kl8PJIG4LljtHGegUgtGbiLKts3iM5V4f/cx9EyNdzkQ/Nm+DQAOACNeyg/Kja02QZaZN2IrBgFyVryQm8nqQWWgad08pP2S3TEBm3MHOoMZAFiyuQjKOnMH4HPXWtXhFwBMW77L63PIagP7qQUBcmova12jtXp/7jl6VrOW29ueXZL6cF1grx8feTMIUJItCkd+LsfwhfmYtnwXHlhRgOvy1rn0AKptZvnoXilYdX8fCLKeA8GattvXQYrMnGY8FKY4t2oGvhnkg6H1nbsuoL3nQolyv2z6/pSzt0iSLQq5ORlun6lNcqTauS7x9hyyyuBmgHYQoEYqs941OskWhRkq+/7Zjw+o7h9fe3ZJ6vp1gYGKBk9dfb25iUgHoXxxETVVpvL1j+6Vgs25A7HirmuxOXeg10/35Rer3Z6egnEA+xpk+fNG7G3X7FAIAqx0ITdTKASVnmgdn9Lru4vPeDx+leswsl/uyU7HzJwM54Xe1+RI6bsBuJzrSt6cQ1Ya4VovCJALFwSsvv86Q9fozNY2t9e09o/W9Wjnj1eOi7TmMdCIEQ0/GIbq8BVs+lFhpElg71G72+e0Dhatk0CtCrY2bYNmdi3zZZAif5XXlyYcq3bDk1M26YUBmNwv1at11IXmEqs1EXhLeXzOyMlAZmsb9h6zY95a1zwIreNX7RhPjo82tF/u6Z+OW7u18jk5Uu27N+cOxI7DZzD9zV21OoesMrCfVlONnBRIZSU3dZ5XADTL7M01Rm1ZQahpUhNx5bhREybAY4Bn9WZuT9jrR8FItrbaMgAw82b1rn9aywsA8mfe4NeT01PvAKsxUl61m608891oJr4v320FJfZKLN182NnN1OiFJtQvTpJA9qDwthzeBn1a574eI9ebcEHAvf3bYeGGQpfPhgH4UnZNqW2g6mnfB/IcCnaQrdyWx3I6oWvrJoiOCHNOYyBtszddlI3uH/myYQIgiq55MVqB1ItjuuPXWa00t0vvNwRg2oMMe/3UgpGnN60akq6tm6iuU3oyzl21161pZtP3p/x687DKE4pRnsrr9jQ6NAOl56vw6uYi59gQWs1dnrY9lPaVFKQAxpLn6lIibrDHdlC7Qfoa9BltUpAzcr2pFkW8pAhSgJpa2jUFx3FP/3S8vKkQc9fuh1iLQNXT9TBQ55C/gmxvuvIa2RZvzytv9o982fd3H8Pyr4td3neI7j2PwgUBPVL1p2XR+g2XflmEV74oCokHGQYqCkaq63xpNhjdKwUZLWNdxlUREZibR7C7lvn65CP/nFomvNpFIW/tfpdl1OoD5UOPeyqX1brhqfGl6SOQzSVmNCcFK6hUu0Fmd0zwOegz0qSgZOR6o7fOvLX78dUPp7H+wCnna74Gqkaudd6eQ56OH2+DAfn6gCs1BPLB2SSebsietmX74Z+9Pq/01qncF9JyKxRBClATpOTmZODZjw94FbDHRIS7PdCFCTXzz0kvSfs4o2VswMZmqQ0GKgpGnt58fcIrv1htuB9+qPD1ycfI57x5Gg1DzdOk9Ft4M4Kk1fkSGAcqB8fM5qRAB5VaN8jnx3TzOehTGzpAj9HrzWM5ndzyW+TkQYq3ZdYrv1r5jASuauOTKI+fEnslth/+GQdPnje8v+XHo5RoKsL1v+VqU7MofZdSGIDT5VXYXXzGq5u81rlUVFqu2hUaAJpEN3Tpgm50+AdRcR2Y1C8VSxRj7FSLIoa/lF+rGrhAYaCiwsjTm5nJo1bha/OC0c8ZfRoNFwSsur+Psx0ZgEubrD+aPfxdi+DN+nwJjAPRXBIKzUm+5pEUlZbj9Pkq1RskRPcajDABKD1/wdB8L/JrxZ6jZ12eiB8b2gld27jnQeitQ1qmSVRDzHxnLxyGtrKmzL5ca/SudUaal7TGJ3GINT0fszsmYNP3p5D7zl7NGzQAvL/nmMv3K49H+Wf11iPveWP0WNHrviyiJulVYuQmv7v4jEsqgPxc0rruSTXwm3MHGhpxXK3MYQBW3d8HiXGNnM3nLt9h0XObgYoGI09v3j7hJdmiMKJ7a7yz85jzteHdfRsh0gq8aV6Q30CMfs7I06iU8Z6VfKWd1sgkbt7wdy2CVi8QT+3nGS1jse3wGaQ1j0ZURAOPN0l/N5dYvfeNL7+T8jNaOQDy41CqRn9gRYHh75GuFX3Sm/ncA0d5vZF+3wWfH8Lyrz2PKzMjJ8Pr30mvefbljYUuTbFqNzdP45M4ALy47hCWbz2iG1wAwPKtxXjz62KXmgdv83+Amt90z7Gz+N0rXxk+Vnb8eEb1u9RGq/V0k1+57YhqUCZ1Rx7WtRXyRmaqBqHejG77c/lF9+AQQMVFh2qPQl++K1gYqBjgr6fpEnslVu865vLau7uO49EhnQwdeFZrNzRaQ6R2YzZas+TyNHrsLJ5de8B5Yk3JTsPEvmlu+8SfNVf+rkVQzbv5qOZir3fB9HXobG/axz2xco2g1u+k1+au9hlBAMJE12ZEedLozh/POLuMSp/xdgh5fzZhJdmiMGdkJto2j3Y2BYULAoZ3b4V3dx13niszVCYjLLFXYsePZ/BzeRXiYyKd5ddrpsnumOBMTp2ryBcDam5uOw6fQXxj7YcSpeVfew5SJEZqHiQCan5P5fH62FDXZjOjgYWS3ndr3eSdNSka2zdt+S6cr7p8Jafxl6YYefn1zjdlU5ha4C19Xn5trbh4CVP+tUNzWbMxUPHAn0/TvjyRan2/mU0REqPt18qbwbNrD2DGUONJYS5Po1men0b92ezh71oEvQu31gVTb+jsmav2IqNlrEuNkhFaSaN6x0AgmpOM8nR8av1OUvK6AOCu69Mwsd+VwFbtM6IIvDi2O+JjIt2OsSRbFJrGuOcP+DqEvD/dk53ucm4AwMCMREAEeqS6B1BqT/UCgJG/ao3Vu46pHmu5q/YC4i85IIJ684oAOMdWkR5K1God5LwdIEM6//qkN3Or6ZLKJx2b8ulLpKY1b2uClYN1Ale2TStPSOuBzVPzltS8k90xoWauOC/ON72mMKDmN1PLf5Ly+ZRBymM5nTyOFRMsDFR0+Ptp2tsnUq3vP1t5yXmC+KspQjqBBABzRxlfn6fmBa2LQtc2TbxKCpMYfRr1V7OHp99Mq8eBvOpb/pqnp0C1C6an4Gb4wnyvfjO14yr3nb3Op0+tY6rEXonoiHDMurUzmkZHOLtF5heWBrS2z8jDgl67vvT///yiCK9sLnJ+Xuu3/ZVOzYg0Oqjaz2F2u750bhidM0a5DSLg0iytJA8o9IIL+XE1b+1+3D8g3W28FzmplmPu2v0uZbq+Q3NsPliqGiRIE64qz3MAbue82m+hV9Mgp3XuvXBHzdglTaIaujVNSwEFcOXcAKC6z9X42v3bU+2VIALZHROc/5aSl9Vqau/t386v95jaYqCiw99P094+kWp9v5S8Blx5qo6OCHeb6NCIEnulS5Qvouam5c3FVi940LvRB6IXh1Z3v9qY3C/NmXgm/820ehxIJzYA1RuGXt6N2gXTU3Ajfwozsr2qNQnQT6RTPg0qn76NXsy8rbkz+rBgJJ9J7fPe1hBt+t69N42c2e36RvaXr7kdaqTchjAAPVOb4uvDZ1zed4jAJYcDM2++UvugVvMxulcKbu3WCjsOn8GWH05jxddH8MXBUoQJwPXtm2PzoVKXbZJPuKo8zz3te+VvKEB7ZFe1rr3ysUuyOybg+THdABFIjo9y1tps+v6UM6E/TACm9EszvM+VSc9Gr2OerhPykdD1JmB0iMBLGwrdui6bmVjLQEVHINrkvYmQVcdPgPuB6BA9J/Zp3SC2H/5Z9clqx+Ez+HVW7Q/KYDYX+KOZTr6f5F2cBQB3y3Ji9KpZpeBRPrKk/GSX5zt8eagUb35d7LzYqw2Rb+Qm7M0N0khvKvn6lMGstL3yp28juRpGfh/lcerNw4JWu77ethk9H6V8Dk9V92rXB61zLxC5Z0b2ly9ju6iNlCrvbRcdEYbhC/NVP/vKpiJ8OfMGt6YptZqPHqlwGZbfIQJfHjqNJeN6uORQ+HrzVKtNEgTXmgaJVtdetQcVZbO8MlhUdgXW40vSM+D5OiEfX0ovwVnt2DA7AGegokPvJmtk0CKt941GyGrf/9jQTs4ENyWtk1fvBiFoTC6m8bJPfG2G8eZCbvTJW2+dyv0kvzCLAF794jAm9k0D4PmpVO09+cmuHOcl+5enRql5YsbQDGS2sTmrjZPjo503hYqLlzD5Xztc1m10UjJp25UZ/yK0q8L1xnVw2WZo52ro/T7Sd8jnvpHnzah1DVZrekuyRalOzKmkNWCZNGmb8tjQe/qUEwC3dn2tc682QbXeMaz1cBUdEeaybWojZQsC0D25CXYeOet87Zq0prjz2lT0SG2KTd+fcrsWSrlR+YXuTTQS6UlemtVZTpkDoRVoFZVW+GUMKrX1O0T3Odf0uvZKc/1oJW9/rTIonNa+uTs7Da9+cVg36dkbWp0P5PcutV6REq0xesxOrGWg4oHaTdbTRcafCbjyp2+HKKJnajyaRLu3i0qUJ6+nG3iPtk1V29zFXz7rrwja22YYvX2odqH2NBuykcGmlPtJSb5vYyLCdcuv9QSq9kTjEIFNB0udyznEKyPwajUpyX8zvapradte21zkbL4KE2qas+Rjz6jdhORP4J4SIuWMNjcoh/FWW8fm3IFuN1VRvFJ9r5YQ7Da5m2wfatXoGX069mTuR/tdJpFT612S0TLW6x5KnsopUXu4Gd69lXM+LPlnpOvKz+UXER8TgTZNozDiJddaka1FZ7Dt8BmXz8hrRaTgR6+WxkhPQE95Q71Sm3pdu612ndAa5Vc5Jo5qQIOarr1a78sHTFMKAwCV8k/sW1NL688Rl6VrrVbnA62a+gVjuzvzs+S5N2bOai1hoGKA/Cbr6cYfiEGx1EZZ3Zw70K2rJOB+8nqqCk6yRWHuqEy3XItg92JQJqVq7UOtEWe1LnDy8RLklL+LkXZ7+b4tv1itu5yUTKd2sus90SjJF5OaV6DocaFVdQ2o9zSQqqJf+aIIc0dlok96M2R3TMD8O7IQJgho07SmZkK6cEvHiEuOigCM7N7a2QVWSa25QRnsCHAdxltrHdkdE1w+KOLKfpAfIzNX7cXq+69TrQXVq9HTO2e9yedQ7mMpaFFu07bD7mNyeOqh5Kmc8uXkAUV0RJjLpJ3KzwzreuVzWsel8jNaD2tqzQ5GewJ6yhvKSm7qVgsoNZN6MzeTcv1aY+J4avbXTN7WCNT0rgdA4HrVqD0gKveB9OAiTyK32jxoDFS85OnG748EXCM37c25AzGsayucr7rscsA9luM6JouRPBvpoFRO2x6sJCrlRWWySuKZND6DNxc45XgJSvLfRWuadUF0H1OjxF6J0+erVJ/MXriju0t3ULWT3ZccAYkDcKvaUKu6BrR7d0hE/NKLrOKSs6ZJrQZndK8Ul2NEEOC8qD06pBM+/+4n/Ondb1zWrTzGtJJQ9XaBtA61piet/SD1gFLrUaa2f3b8eAYHTpRpnrNpzWNUJ740Qu0jWrUD8uVFuPdQArxL7pduUFqDH364pwTDuiZ5vFaofY9WoLE5d6BzvytH2vVmwEetm6T0ujST+D+/KHLmfsiPV09zM+mNiWM00drtZg/3AdMA4NddW+KPwzrrXg/M4NyXXxZhyaaa/fiq4njz1CQaTAxUvLT3qN3tNU+Rtjf5A8rmCa2btvykPltxCXN/uSHPW7sfTaIauhxsRpJZk2xRiG/sv15ORvNL1C56r24uUm1qyP9Bf8RZ5QXO09Ow/HfR2k96zX4CrszeLC2vnG7dyBONVD2vNn6FEVrHl9oEakrOXmS//FtZK6B8klYmWG/6/hSeUAQpyqYotWRc5XepbZN8HWpV1aLKOqTgy9Mw457GtJD3TMvNyXAOyif/fqND1yu3ya12QCM4UO5/f835BABPf/gd5nz0nduNSWtEVHlekF6goZaHojYDuqft0Gsqls8krna8GpmbKcmmPiaON4nWejVXko/2nMAfh3U2tF1GqF1Xjb6m5pUv3CcmVPb2s8KcaQxUvFBir8S8j91HY5TXYhgNDOT05sJ4dXOR2/LKcTzmfbxf92AzWo2n1X4rjVlglDcHt1Zy26CMBHy+3/Up/M2txV5f4PRqLpS1T3r7qai0HCfLLrj19AkTawYI0xt7Q428hgICcOxMpVtioyi6duVUI00hoHVzMEIvYNALVLUCEGVT1I4fz+h+h/KmLwB4bGgn3WB7ePdWWKUx5oen4Hp38RnMUBlpVKI8Z2va+cvx5tfFzjwXvaR2NconayM3OeW2+HJtUX5GTu9asXTzYSz54ocrAaxYE5QaaRaRUx3w8eMDmJGToZro6Ymnh49qUUR+Yanb62rl8/TQCXgOLOTvT+6X5ta7R94luLbUrquAa57WjJwMlJ6rcslH07r+eqrZstLcXgxUvKB1knRt3cT53yX2SpceGp6q+DzOhaF4Xfm0auRg05qrQ0ntouYQXccs8MTbg1vriU8ZpAA1J/3d/drh1c1Fhi5wm74/pVtl3/qXqnHpqcNTW7daE4ADNa+pjeDo6alGbRp6iSALgADgwz0lePrD79yWe+q2q5EcH+2SCKh1TAmoGUTrC5VBtLToPbFr9QZSNkWJOj9CuCDgn+N+5dL1VETNzezWbq10b+yeakPUaA2HLnli2FW4WdYkoqxBk3dRV0tq10o6/kDxZA243uSM1GQo94PR5gPpM2rHkNYcWxP7pWLJFz84X5Nqqrwdf0ZzwMfWvg346KnZNEwAVmwtdntd+VBi5KHTW5P6pbnUUAD+6y2jNUijskZJWfOnvP7Kr0meAk4rze3FQMULnn5YtYjXU3Dg7eBLyqfVmIhwzVEWfam2c45FsTBft5bGm+2pFkWs2HoEY6650tYuH5DNyEBd0nZN7JeKif1SDY174WkkyAdW7HK2bY/o7j54mbKtW6t48vUY7X5qZLK2+JhI5/YN65qEOR9955ZD88S737h9t9Yx9eLY7hjWtRXe330MD6woUP1e4Zf/kTdn6dXAqd2YBUUtXM/UePXlUBN0R0U0MNT1VC/vQu7e/u1Uy7y7WH8clDDAJUhRGytH3kVdGTxJDyYLPj+I5V+73yz1xiYyUpOh3A/eSLJFqR5DeiOy1qZZROLvAR+V1wtlj65J/VJVxyyRP0xK2+fpodNbSbaapHNfhrPwRGuQRiOk3005LlRuToZuwGmlub28q9Ov56STJPyXQUaUB6JaTUKJvVJ3ndLF3ijpaRWoCYyUT5byDHNfygPU9GjRukh5orU9L6w7hD5563Bd3jqMXbIVfeeuw8ptNTO+ju6VUpMcnJmkuV55E0eSLUq1LVzOSAAoD8Te2XnMbV8ZyfFQrufxVfuwu1g96Ve+773JnwHcj70wRZOQ/DukC4xczQVHRIm9Ej1T493fB7BwbHfkz7wB+bk3YMVd12Jz7kCPEx7OHZXp9nuLv9TCSb+vtJzyYiON1aNWXr0Lotryci9tLHR+t2TltiMuwbeaKdenufzbU5d3AM5jMSu5qfOYvK59c9X1641NJN3IhnVt6fK6VJNh5Lz1RO/6pWTkNzFyHnrznUaN7pWCx4Z2cgl+785Ow+bcgZjUL83QseTtMedN2TbnDnQ5f1ZuO4K+c92vexIpWVXvN/Z0zOuRxtFRBt15a/fjbOUlt/JKAvHb+Yo1Kl7SepLwtZrMmaynMhOpGr3RBcOEKwMSaWX77/zxDJrG6Ef2RiJprSeENbuP65Zfr5Zm7b4S7c95UeuktQ3eqBZFHPzpnNfr0Ot+WjOFu+eePwKA3/Zq4/a6/NgrPX/BrVZEb7I2ZRdMtSepYV2vJAJLwbd8rhK131sqk7Lnj1pPC62aOmmsFKO5F86kT40aKVGlutvTiLKCYHwuIE83M7WxiQQBaNM0yuOAcmo1T/6sbjdaE+JLPkxtvtNIjYO0TExEuEtenrymy2i5/bl9SvKaIk9N4UZrvZ3HvErzoB7pAa/8YrXquTJv7X7cmtVKs+bfKt2UGaj4QB6cSP+uTTXZPf3TAQG6XWmBmqdevbE4HOKVAYm0uttK3fGMnBRaJ7HWyfXyxkLDARfguVu3nLKNXH7RUhskS7kNWr1E9LywrtCtZ8+QLi3w0d4Tmp/R634qn8JdbR8P6dICa/eegAhgxdfFePPrYrfJBqWLYIm9Uvd489QFU96VVO0C5GkeI2WZ2iU0dtsXUpNfhxaN0TM1XrOmTuoqq1YerRuYsnul3s3dUzIvoD3P0YyhvwzaBuNPlFINkvwcGdG9teqga55mvAW8f9L3dNM32uSidZPydaZ1ZfDr6Xoi5ylXTP57y8cE0kty9+f2yRntig1ojxel9r1Gp4iQjL0mGQ/c0AFJtijsLj6juowyn0yNL010/sZAxQdaJ1ZtInT5NO2bD53CwvWus42GCcDq+69zDlntaajsmIhwl8n0lCOlGjkptE5i5ck1c9VeZLSM9SpIkew5ehZ90pt5Nf+MWhKq2gVOuQ3y0Ve1kh6VRLj37Hl5Y6Hz5iXP6ZDGsZG6nyrLKOLKvkqMa+SSdK2WICqiZmAztd9ILdB5bKjr8O1JNv0umGrV9mozqso/Lz9uAOgm5gE1TX6SqQPTDXeVBYyNwvr4zZ0xLDPJ7eItv7nrJfOqkWq/Cop/Gc0XNTfHx3I66TaFyXkadE2aF0kURdVjXtpP3l5H/N2dVHmTqs361T7racwTQCVXSGV/eZOXpzdxqTJAVxt4z5tt1OuK7UstfFZyU8zVqU2Uu6Vra+d6tAaoVCZrW5UgensWB8DChQvx17/+FSdOnEBWVhYWLFiA3r17e/xcWVkZbDYb7HY74uLiglDSmoNcmhVTEi4I2Jw70PnE4I9qMvnNUD7DqNzKbUc8jsUhALg5syWuaRePP7/3rdv3/GnYVW4DP2kpsVfigz3H8cyH7gHJoKsS8Pl3+jPLqpHvO/n2aA1Bv+r+PppdOcMAvDC2u+akeNI2aDWdAMCI7q2wepd789WKu651qR6V/85rCo47xyKRXxw9Ja3Kl0+Oj8bYJVtVl1V+t9r2fHnoFBZuKKzp0gxgTO9kPDCoAwDoHq9yRue0AWpyAqSh7+VdJT0lRd/cpSU++eYn1WXCBOD5O7qhZ2q8V+WWyq42Bo5U6+YpP8UIve/Xk19Yqvnb6h3nWgOmaSVnero21VZt1q/12efHdMO05bvclpcf83r7D6g53ueOqgl6PJXP09Qcys8D3s0Mrvb9j+V0cuuKLdWm1WZ/Lv2yCK9sKlJtClKuR2vbZt7sOrdQICbK1OLN/dv0GpWVK1fikUceweLFi3HNNddg/vz5GDJkCA4cOIDExESzi+fGyJD0/viB7+mfjlu7uc/TIGdkLAYRwId7T+CjvSdUaxG0nmYlagPRqdEKUoZ3a4UbO7eoeQr6pelJTq8ngdr8M1ptrQB0J8WTSL/P7uIzblXIAoB3C9yDFLWqd3lVttY4NlLSqmoehWL5Vff3UV02DPpPPEm2KKwpOI4XZTVwIoDlXxdj+dfFmDcqEyO6t3aZ6Xh491Zux5M3c9qECa5D3yubk/60eh8+339S9bMf7zuB1VOvw7bDZ9y6yjrEK3k0UzwMdKikduxIF+YwARj5q9ZYvfOYai2Y0RwkX3NF9GoLpaaMMNF1BGSp5hRwv7mq9VDT6u3lz/yW2qxf67NQ+Q2U59veY3bddUs9IdWS370ZF0Sr+Vmr9tnoTN9aXbFrkycj1SZK8wRpTUAoX17ZFK6cANEqg7upMT1Qee6553DXXXdh4sSJAIDFixfjww8/xGuvvYbc3FyTS+cumF22jAQ90jKeumyKcL0gymmdiN48YWuRT1nuKa9Cvj2AevOT2jqUPDVrqU3f7sxhUQkU9C4enkbp1Ev6lC9fcdHhNvmeACBvVKbuMVBir8RcnSa33Hf2uvU2eXfXcTw6xHW8CKPd5AVBfWAraZtTm0drBikAnBO7qXWVdS4j1oyY6ZaQCs9Bm9YN6d1dx7F66nXOWgoAHgdbU/L1PFfeJJTEX5oW42Mi3R5K1LZFHnTKj/VAX5tqs36tz/ZIbap7sy6xV2KehyZlhwjnsPpK3owLYnQKAUC7Gcvbrti1TVaV1qs1AaHR77LS4G5qTO2efPHiRezYsQODBw92vhYWFobBgwdjy5YtbstXVVWhrKzM5S/YpIuOFbpsyRnpviaKNTNk/mnYVW7vKbtdejtrbLggYGZOhvOACgMwT3GT9WXfSSeh8ikkXHn39bA9etsVBmD2bVerNg0sGNtd96nCUzfH0b1SsPr+63S7oEvLj+6VgvzcG7BwbHe8OKamq7CnJxqtQdckItwvvGr7Rm071MosiMC17eJVvys6IsyZI6NFfuHW+x1VezYY7J6pdUOquOhwHkvScSXlE8m7fat9jdYIwEZJ3VZfHNNd9Xj5VdumqjlDRgJI+U00kNem2qxf77NqXXolRrY/DK7D6stfVxsXRE5tGg21m6JyNHC1mzoAn/aP8hrnKyPr0VrGSFd8M5lao1JaWorq6mq0aNHC5fUWLVpg/373KDovLw+zZ88OVvE0WaXLlpynpzbgygURgMeBnzxdIKTeMPKEv9G9UrxqrvJ13ymbvIp/rnSZTFFte/S2ywGgaXSE6tOQtL+0GKm+zUpu6jIQlLzpQbl8ks11RltPPCUhy38n+XapNWUpt0Nt8CwHgCKNi1fFRYdueZTbqtUzCVCfS0cUjQ1H7u2Tv16TYxiAKbLRaGsjyVYzV1L5xcuGq/uNJJmr9fYK1LWpNuvX+6xWjYORyUIn90vFP1UGeVvwywCH8u/wdK4qJz5US2jWu6lb8d5ghJUGd1NjetOPN2bOnIlHHnnE+e+ysjIkJyebUhZ/5aL4k/IG/uHeEmeylfJk83TCGrnhqJ2Q3jRX1YZ8HVnJTQ1f/H2tgtZj5OKkXAaAXy5megGqlGQIaE8v76mMUq8xiVb3a2VNifxGf9/AdPRrn6C6rVJgJp8FXOrBpMyJMnrh9KXt31OToz95s361bRnevRXe3XVcNx8hkNem2qzf289q/ZbK4/QVleNU7SHDyL5PskXh8WFXaY6A7emmbsV7gye1yZcJBlN7/Vy8eBHR0dF4++23MXz4cOfr48ePx9mzZ/Hee+/pft6MXj+hRq8XkqceSsqeFI/ldELX1k0s+6RgtMeVWg8ReeZ/qD0NAVfKHR0RhqO/THDYI/VK7ydft0trX+ntQ1+/T/kZT9/h7fpCmXJb6tK2GeHttcrbY8Vbwf6+YAnmceXN/dv07snXXHMNevfujQULFgAAHA4HUlJSMG3aNI/JtAxUAq+uXhDr6nYFgta+CsY+5O9ERgX7WOGxWTshFaisXLkS48ePx8svv4zevXtj/vz5+O9//4v9+/e75a4oMVAhIiIKPSE1jsro0aNx6tQp/PnPf8aJEyfQrVs3fPzxxx6DFCIiIqr7TK9RqQ3WqBAREYUeb+7fpo6jQkRERKSHgQoRERFZFgMVIiIisiwGKkRERGRZDFSIiIjIshioEBERkWUxUCEiIiLLYqBCRERElsVAhYiIiCzL9CH0a0MaVLesrMzkkhAREZFR0n3byOD4IR2onDt3DgCQnJxsckmIiIjIW+fOnYPNZtNdJqTn+nE4HDh+/DhiY2MhCILZxQm6srIyJCcno7i4mHMd1QL3o39wP/oH96N/cD/6R6D2oyiKOHfuHFq1aoWwMP0slJCuUQkLC0ObNm3MLobp4uLieCL6Afejf3A/+gf3o39wP/pHIPajp5oUCZNpiYiIyLIYqBAREZFlMVAJYZGRkXjyyScRGRlpdlFCGvejf3A/+gf3o39wP/qHFfZjSCfTEhERUd3GGhUiIiKyLAYqREREZFkMVIiIiMiyGKgQERGRZTFQCQGbNm3CLbfcglatWkEQBLz77rsu74uiiD//+c9ISkpCVFQUBg8ejIMHD5pTWAvztB8nTJgAQRBc/oYOHWpOYS0qLy8PvXr1QmxsLBITEzF8+HAcOHDAZZkLFy5g6tSpaNasGRo3boxRo0bhp59+MqnE1mRkPw4YMMDteLz33ntNKrE1LVq0CF27dnUORtanTx+sXbvW+T6PRWM87Uezj0UGKiGgvLwcWVlZWLhwoer7zz77LF544QUsXrwYW7duRUxMDIYMGYILFy4EuaTW5mk/AsDQoUNRUlLi/FuxYkUQS2h9GzduxNSpU/HVV1/hs88+w6VLl3DTTTehvLzcuczDDz+M999/H2+99RY2btyI48ePY+TIkSaW2nqM7EcAuOuuu1yOx2effdakEltTmzZtMHfuXOzYsQPbt2/HDTfcgNtuuw3ffPMNAB6LRnnaj4DJx6JIIQWAuHr1aue/HQ6H2LJlS/Gvf/2r87WzZ8+KkZGR4ooVK0woYWhQ7kdRFMXx48eLt912mynlCVUnT54UAYgbN24URbHm2GvYsKH41ltvOZf57rvvRADili1bzCqm5Sn3oyiKYv/+/cUHH3zQvEKFqKZNm4qvvPIKj8VakvajKJp/LLJGJcQVFRXhxIkTGDx4sPM1m82Ga665Blu2bDGxZKFpw4YNSExMRKdOnXDffffh9OnTZhfJ0ux2OwAgPj4eALBjxw5cunTJ5XjMyMhASkoKj0cdyv0o+c9//oPmzZujS5cumDlzJioqKswoXkiorq7Gm2++ifLycvTp04fHoo+U+1Fi5rEY0pMSEnDixAkAQIsWLVxeb9GihfM9Mmbo0KEYOXIk0tLSUFhYiMcffxw5OTnYsmULwsPDzS6e5TgcDjz00EPo27cvunTpAqDmeIyIiECTJk1cluXxqE1tPwLA2LFj0bZtW7Rq1Qp79uzBjBkzcODAAaxatcrE0lrP3r170adPH1y4cAGNGzfG6tWr0blzZxQUFPBY9ILWfgTMPxYZqBD94o477nD+d2ZmJrp27Yr09HRs2LABgwYNMrFk1jR16lTs27cPmzdvNrsoIU1rP959993O/87MzERSUhIGDRqEwsJCpKenB7uYltWpUycUFBTAbrfj7bffxvjx47Fx40azixVytPZj586dTT8W2fQT4lq2bAkAbpnsP/30k/M98k27du3QvHlzHDp0yOyiWM60adPwwQcfYP369WjTpo3z9ZYtW+LixYs4e/asy/I8HtVp7Uc111xzDQDweFSIiIhA+/bt0aNHD+Tl5SErKwvPP/88j0Uvae1HNcE+FhmohLi0tDS0bNkSn3/+ufO1srIybN261aV9kbx39OhRnD59GklJSWYXxTJEUcS0adOwevVqrFu3DmlpaS7v9+jRAw0bNnQ5Hg8cOIAjR47weJTxtB/VFBQUAACPRw8cDgeqqqp4LNaStB/VBPtYZNNPCDh//rxL5FpUVISCggLEx8cjJSUFDz30EJ5++ml06NABaWlpeOKJJ9CqVSsMHz7cvEJbkN5+jI+Px+zZszFq1Ci0bNkShYWFeOyxx9C+fXsMGTLExFJby9SpU7F8+XK89957iI2Ndbb122w2REVFwWazYfLkyXjkkUcQHx+PuLg4PPDAA+jTpw+uvfZak0tvHZ72Y2FhIZYvX46bb74ZzZo1w549e/Dwww8jOzsbXbt2Nbn01jFz5kzk5OQgJSUF586dw/Lly7FhwwZ88sknPBa9oLcfLXEsmtbfiAxbv369CMDtb/z48aIo1nRRfuKJJ8QWLVqIkZGR4qBBg8QDBw6YW2gL0tuPFRUV4k033SQmJCSIDRs2FNu2bSvedddd4okTJ8wutqWo7T8A4tKlS53LVFZWivfff7/YtGlTMTo6WhwxYoRYUlJiXqEtyNN+PHLkiJidnS3Gx8eLkZGRYvv27cU//OEPot1uN7fgFjNp0iSxbdu2YkREhJiQkCAOGjRI/PTTT53v81g0Rm8/WuFYFERRFIMTEhERERF5hzkqREREZFkMVIiIiMiyGKgQERGRZTFQISIiIstioEJERESWxUCFiIiILIuBChEREVkWAxUiIiKyLAYqREREZFkMVIgoYC5evGh2EdxYsUxEpI2BChEZNmDAAEybNg3Tpk2DzWZD8+bN8cQTT0CaiSM1NRV/+ctfMG7cOMTFxeHuu+8GAGzevBnXX389oqKikJycjOnTp6O8vNy53pdeegkdOnRAo0aN0KJFC9x+++3O995++21kZmYiKioKzZo1w+DBg52fHTBgAB566CGXMg4fPhwTJkxw/tvXMhGRNTBQISKv/Otf/0KDBg3w9ddf4/nnn8dzzz2HV155xfn+3/72N2RlZWHXrl144oknUFhYiKFDh2LUqFHYs2cPVq5cic2bN2PatGkAgO3bt2P69Ol46qmncODAAXz88cfIzs4GAJSUlGDMmDGYNGkSvvvuO2zYsAEjR46Et1OUeVsmIrIOTkpIRIYNGDAAJ0+exDfffANBEAAAubm5WLNmDb799lukpqaie/fuWL16tfMzU6ZMQXh4OF5++WXna5s3b0b//v1RXl6Ojz76CBMnTsTRo0cRGxvr8n07d+5Ejx49cPjwYbRt21a1PN26dcP8+fOdrw0fPhxNmjTBsmXLAMCnMjVq1KhW+4mI/Ic1KkTklWuvvdYZpABAnz59cPDgQVRXVwMAevbs6bL87t27sWzZMjRu3Nj5N2TIEDgcDhQVFeHGG29E27Zt0a5dO9x55534z3/+g4qKCgBAVlYWBg0ahMzMTPzmN7/BkiVLcObMGa/L7G2ZiMg6GKgQkV/FxMS4/Pv8+fO45557UFBQ4PzbvXs3Dh48iPT0dMTGxmLnzp1YsWIFkpKS8Oc//xlZWVk4e/YswsPD8dlnn2Ht2rXo3LkzFixYgE6dOjmDibCwMLdmoEuXLtW6TERkHQxUiMgrW7dudfn3V199hQ4dOiA8PFx1+V/96lf49ttv0b59e7e/iIgIAECDBg0wePBgPPvss9izZw8OHz6MdevWAQAEQUDfvn0xe/Zs7Nq1CxEREc5mnISEBJSUlDi/q7q6Gvv27fO4DUbKRETWwECFiLxy5MgRPPLIIzhw4ABWrFiBBQsW4MEHH9RcfsaMGcjPz8e0adNQUFCAgwcP4r333nMmrn7wwQd44YUXUFBQgB9//BGvv/46HA4HOnXqhK1bt2LOnDnYvn07jhw5glWrVuHUqVO46qqrAAA33HADPvzwQ3z44YfYv38/7rvvPpw9e9bjNngqExFZRwOzC0BEoWXcuHGorKxE7969ER4ejgcffNDZ5VdN165dsXHjRvzxj3/E9ddfD1EUkZ6ejtGjRwMAmjRpglWrVmHWrFm4cOECOnTogBUrVuDqq6/Gd999h02bNmH+/PkoKytD27Zt8fe//x05OTkAgEmTJmH37t0YN24cGjRogIcffhgDBw70uA2eykRE1sFeP0RkmFovGyKiQGLTDxEREVkWAxUiIiKyLDb9EBERkWWxRoWIiIgsi4EKERERWRYDFSIiIrIsBipERERkWQxUiIiIyLIYqBAREZFlMVAhIiIiy2KgQkRERJbFQIWIiIgs6/8B01+YvL+mRYAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtOklEQVR4nO3deVxU5f4H8M8MOgjKorIbAmLuiKZppKKmVyRvZdrN1NyXFpfUMrWupbaA+ruldUu7Vlq3RW9lZpqluaaS4oKoFSlhWIJKCoggCDy/P2hOs5xZmWFmOJ/36zW+ZM6ZM885c+ac7zzP93kelRBCgIiIiEjB1K4uABEREZGrMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIo+xaNEiqFQqq9ZVqVRYtGiRU8vTr18/9OvXz223R0TWY0BERDZbt24dVCqV9GjQoAFatGiB8ePH4/fff3d18dxOdHS03vEKCQlBnz598Pnnnztk+6WlpVi0aBH27NnjkO0RKREDIiKy25IlS/Df//4Xq1evRnJyMj744AP07dsXN27ccMr7/fOf/0RZWZlTtu1sXbp0wX//+1/897//xVNPPYULFy5g2LBhWL16da23XVpaisWLFzMgIqqFBq4uABF5ruTkZHTv3h0AMHnyZAQFBWHp0qXYvHkzHnzwQYe/X4MGDdCggWdetlq0aIGHH35Y+nvs2LFo3bo1Xn31VTz66KMuLBkRAawhIiIH6tOnDwAgOztb7/mffvoJDzzwAJo1a4ZGjRqhe/fu2Lx5s946N2/exOLFi3HrrbeiUaNGaN68OXr37o0dO3ZI68jlEJWXl2P27NkIDg6Gn58f7r33Xvz2229GZRs/fjyio6ONnpfb5tq1a3HXXXchJCQE3t7e6NChA1atWmXTsbAkLCwM7du3R05Ojtn1Ll26hEmTJiE0NBSNGjVCfHw83nvvPWn5uXPnEBwcDABYvHix1Czn7PwpovrGM39qEZFbOnfuHACgadOm0nOnT59Gr1690KJFC8yfPx+NGzfG//73PwwdOhSfffYZ7r//fgA1gUlKSgomT56MHj16oLi4GEeOHMGxY8fwt7/9zeR7Tp48GR988AFGjRqFO++8E7t27cKQIUNqtR+rVq1Cx44dce+996JBgwb48ssv8fjjj6O6uhrTpk2r1ba1bt68ifPnz6N58+Ym1ykrK0O/fv1w9uxZTJ8+HTExMfjkk08wfvx4FBYW4oknnkBwcDBWrVqFxx57DPfffz+GDRsGAOjcubNDykmkGIKIyEZr164VAMS3334rLl++LM6fPy8+/fRTERwcLLy9vcX58+eldQcMGCDi4uLEjRs3pOeqq6vFnXfeKW699Vbpufj4eDFkyBCz7/v8888L3ctWRkaGACAef/xxvfVGjRolAIjnn39eem7cuHEiKirK4jaFEKK0tNRovaSkJNGqVSu95/r27Sv69u1rtsxCCBEVFSUGDRokLl++LC5fvixOnDghHnroIQFAzJgxw+T2VqxYIQCIDz74QHquoqJCJCQkiCZNmoji4mIhhBCXL1822l8isg2bzIjIbgMHDkRwcDAiIyPxwAMPoHHjxti8eTNuueUWAMCVK1ewa9cuPPjgg7h27RoKCgpQUFCAP/74A0lJSThz5ozUKy0wMBCnT5/GmTNnrH7/r776CgAwc+ZMvednzZpVq/3y8fGR/l9UVISCggL07dsXv/zyC4qKiuza5vbt2xEcHIzg4GDEx8fjk08+wZgxY7B06VKTr/nqq68QFhaGkSNHSs81bNgQM2fORElJCfbu3WtXWYjIGJvMiMhub7zxBtq0aYOioiK8++672LdvH7y9vaXlZ8+ehRACCxcuxMKFC2W3cenSJbRo0QJLlizBfffdhzZt2qBTp04YPHgwxowZY7bp59dff4VarUZsbKze823btq3Vfh04cADPP/880tLSUFpaqresqKgIAQEBNm+zZ8+eePHFF6FSqeDr64v27dsjMDDQ7Gt+/fVX3HrrrVCr9X+7tm/fXlpORI7BgIiI7NajRw+pl9nQoUPRu3dvjBo1CllZWWjSpAmqq6sBAE899RSSkpJkt9G6dWsAQGJiIrKzs/HFF19g+/btePvtt/Hqq69i9erVmDx5cq3LampAx6qqKr2/s7OzMWDAALRr1w6vvPIKIiMjodFo8NVXX+HVV1+V9slWQUFBGDhwoF2vJSLnY0BERA7h5eWFlJQU9O/fH//+978xf/58tGrVCkBNM481wUCzZs0wYcIETJgwASUlJUhMTMSiRYtMBkRRUVGorq5Gdna2Xq1QVlaW0bpNmzZFYWGh0fOGtSxffvklysvLsXnzZrRs2VJ6fvfu3RbL72hRUVHIzMxEdXW1Xi3RTz/9JC0HTAd7RGQ95hARkcP069cPPXr0wIoVK3Djxg2EhISgX79+eOutt5CXl2e0/uXLl6X///HHH3rLmjRpgtatW6O8vNzk+yUnJwMAXnvtNb3nV6xYYbRubGwsioqKkJmZKT2Xl5dnNFq0l5cXAEAIIT1XVFSEtWvXmiyHs9x9993Iz8/Hhg0bpOcqKyvx+uuvo0mTJujbty8AwNfXFwBkAz4isg5riIjIoebOnYt//OMfWLduHR599FG88cYb6N27N+Li4jBlyhS0atUKFy9eRFpaGn777TecOHECANChQwf069cP3bp1Q7NmzXDkyBF8+umnmD59usn36tKlC0aOHIk333wTRUVFuPPOO7Fz506cPXvWaN2HHnoI8+bNw/3334+ZM2eitLQUq1atQps2bXDs2DFpvUGDBkGj0eCee+7BI488gpKSEqxZswYhISGyQZ0zTZ06FW+99RbGjx+Po0ePIjo6Gp9++ikOHDiAFStWwM/PD0BNEniHDh2wYcMGtGnTBs2aNUOnTp3QqVOnOi0vkUdzdTc3IvI82m736enpRsuqqqpEbGysiI2NFZWVlUIIIbKzs8XYsWNFWFiYaNiwoWjRooX4+9//Lj799FPpdS+++KLo0aOHCAwMFD4+PqJdu3bipZdeEhUVFdI6cl3ky8rKxMyZM0Xz5s1F48aNxT333CPOnz8v2w19+/btolOnTkKj0Yi2bduKDz74QHabmzdvFp07dxaNGjUS0dHRYunSpeLdd98VAEROTo60ni3d7i0NKWBqexcvXhQTJkwQQUFBQqPRiLi4OLF27Vqj1x48eFB069ZNaDQadsEnsoNKCJ16YSIiIiIFYg4RERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixePAjFaqrq7GhQsX4Ofnx2HyiYiIPIQQAteuXUNERITRRMm6GBBZ6cKFC4iMjHR1MYiIiMgO58+fxy233GJyOQMiK2mHyD9//jz8/f1dXBoiIiKyRnFxMSIjI6X7uCkMiKykbSbz9/dnQERERORhLKW7MKmaiIiIFI8BERERESkeAyIiIiJSPOYQERGR4lVVVeHmzZuuLgbZoWHDhvDy8qr1dhgQERGRYgkhkJ+fj8LCQlcXhWohMDAQYWFhtRonkAEREREpljYYCgkJga+vLwfe9TBCCJSWluLSpUsAgPDwcLu3xYCIiIgUqaqqSgqGmjdv7urikJ18fHwAAJcuXUJISIjdzWdMqiYiIkXS5gz5+vq6uCRUW9rPsDZ5YAyIiIhI0dhM5vkc8RkyICIiIiLFY0BEREREAGpqWjZt2uTqYujZs2cPVCqV03sCMiBysbyiMhzMLkBeUZmri0JERAqxaNEidOnSxdXFcCvsZeZCG9JzsWDjSVQLQK0CUobFYcTtLV1dLCIiIsVhDZGL5BWVScEQAFQL4JmNp1hTREREFlVXVyMlJQUxMTHw8fFBfHw8Pv30UwB/NTHt3LkT3bt3h6+vL+68805kZWUBANatW4fFixfjxIkTUKlUUKlUWLdunbTtgoIC3H///fD19cWtt96KzZs3W1Um7ft+88036Nq1K3x8fHDXXXfh0qVL2LZtG9q3bw9/f3+MGjUKpaWl0uvKy8sxc+ZMhISEoFGjRujduzfS09Mdd7CsxIDIRXIKrkvBkFaVEDhXUCr/AiIicmt1mQKRkpKC999/H6tXr8bp06cxe/ZsPPzww9i7d6+0zrPPPot//etfOHLkCBo0aICJEycCAEaMGIEnn3wSHTt2RF5eHvLy8jBixAjpdYsXL8aDDz6IzMxM3H333Rg9ejSuXLliddkWLVqEf//73zh48CDOnz+PBx98ECtWrMBHH32ErVu3Yvv27Xj99del9Z9++ml89tlneO+993Ds2DG0bt0aSUlJNr2nIzAgcpGYoMZQG/QS9FKpEB3E8TCIiDzNhvRc9ErdhVFrDqFX6i5sSM912nuVl5fj5ZdfxrvvvoukpCS0atUK48ePx8MPP4y33npLWu+ll15C37590aFDB8yfPx8HDx7EjRs34OPjgyZNmqBBgwYICwtDWFiYNLghAIwfPx4jR45E69at8fLLL6OkpASHDx+2unwvvvgievXqha5du2LSpEnYu3cvVq1aha5du6JPnz544IEHsHv3bgDA9evXsWrVKixfvhzJycno0KED1qxZAx8fH7zzzjuOO2hWYEDkIuEBPkgZFgevP8dO8FKp8PKwTggP8LHwSiIicid1nQJx9uxZlJaW4m9/+xuaNGkiPd5//31kZ2dL63Xu3Fn6v3ZKC+0UF+bovq5x48bw9/e36nVyrw8NDYWvry9atWql95x2e9nZ2bh58yZ69eolLW/YsCF69OiBH3/80er3dAQmVbvQiNtbIrFNMM4VlCI6yJfBEBGRBzKXAuGM63pJSQkAYOvWrWjRooXeMm9vbykoatiwofS8duDC6upqi9vXfZ32tda8Tu71KpWq1turKwyIXCw8wIeBEBGRB9OmQOgGRc5MgejQoQO8vb2Rm5uLvn37Gi3XrSUyRaPRoKqqyhnFs0lsbCw0Gg0OHDiAqKgoADXTb6Snp2PWrFl1WhYGRERERLWgTYF4ZuMpVAnh9BQIPz8/PPXUU5g9ezaqq6vRu3dvFBUV4cCBA/D395cCC3Oio6ORk5ODjIwM3HLLLfDz84O3t7dTymtO48aN8dhjj2Hu3Llo1qwZWrZsiWXLlqG0tBSTJk2q07IwICIiIqqluk6BeOGFFxAcHIyUlBT88ssvCAwMxG233YZnnnnGquao4cOHY+PGjejfvz8KCwuxdu1ajB8/3qllNiU1NRXV1dUYM2YMrl27hu7du+Obb75B06ZN67QcKiGEsLwaFRcXIyAgAEVFRfD393d1cYiIqJZu3LiBnJwcxMTEoFGjRq4uDtWCuc/S2vs3e5kRERGR4jEgIiIiIoseffRRvW7+uo9HH33U1cWrNZcGRPv27cM999yDiIgI2Rl2tUOKGz6WL18urRMdHW20PDU1VW87mZmZ6NOnDxo1aoTIyEgsW7asLnaPiIio3liyZAkyMjJkH0uWLHF18WrNpUnV169fR3x8PCZOnIhhw4YZLc/Ly9P7e9u2bZg0aRKGDx+u9/ySJUswZcoU6W8/Pz/p/8XFxRg0aBAGDhyI1atX4+TJk5g4cSICAwMxdepUB+8RERFR/RQSEoKQkBBXF8NpXBoQJScnIzk52eTysLAwvb+/+OIL9O/fX2/ES6AmADJcV+vDDz9ERUUF3n33XWg0GnTs2BEZGRl45ZVXGBARERERAA/KIbp48SK2bt0qOy5Bamoqmjdvjq5du2L58uWorKyUlqWlpSExMREajUZ6LikpCVlZWbh69arJ9ysvL0dxcbHeg4iI6h93HDWZbOOIz9BjxiF677334OfnZ9S0NnPmTNx2221o1qwZDh48iAULFiAvLw+vvPIKACA/Px8xMTF6rwkNDZWWmRrnICUlBYsXL3bCnhARkTvQaDRQq9W4cOECgoODodFopCkuyDMIIVBRUYHLly9DrVbrVX7YymMConfffRejR482Gl9gzpw50v87d+4MjUaDRx55BCkpKbUadXPBggV62y4uLkZkZKTd2yMiIveiVqsRExODvLw8XLhwwdXFoVrw9fVFy5YtoVbb3/DlEQHRd999h6ysLGzYsMHiuj179kRlZSXOnTuHtm3bIiwsDBcvXtRbR/u3qbwjoGaCPFcMY05ERHVHo9GgZcuWqKysdIu5vch2Xl5eaNCgQa1r9zwiIHrnnXfQrVs3xMfHW1w3IyMDarVayoRPSEjAs88+i5s3b0oz7u7YsQNt27at82HBiYjI/WhnZDeclZ2UxaVJ1SUlJdIYBgCkieZyc3OldYqLi/HJJ59g8uTJRq9PS0vDihUrcOLECfzyyy/48MMPMXv2bDz88MNSsDNq1ChoNBpMmjQJp0+fxoYNG7By5Uq95jAiIiJSNpfWEB05cgT9+/eX/tYGKePGjcO6desAAOvXr4cQAiNHjjR6vbe3N9avX49FixahvLwcMTExmD17tl6wExAQgO3bt2PatGno1q0bgoKC8Nxzz7HLPREREUk4uauVOLkrERGR5+HkrkRERERWYkBEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBTPpQHRvn37cM899yAiIgIqlQqbNm3SWz5+/HioVCq9x+DBg/XWuXLlCkaPHg1/f38EBgZi0qRJKCkp0VsnMzMTffr0QaNGjRAZGYlly5Y5e9eIiIjIg7g0ILp+/Tri4+PxxhtvmFxn8ODByMvLkx4ff/yx3vLRo0fj9OnT2LFjB7Zs2YJ9+/Zh6tSp0vLi4mIMGjQIUVFROHr0KJYvX45FixbhP//5j9P2i4iIiDxLA1e+eXJyMpKTk82u4+3tjbCwMNllP/74I77++mukp6eje/fuAIDXX38dd999N/7v//4PERER+PDDD1FRUYF3330XGo0GHTt2REZGBl555RW9wImIiIiUy+1ziPbs2YOQkBC0bdsWjz32GP744w9pWVpaGgIDA6VgCAAGDhwItVqNQ4cOSeskJiZCo9FI6yQlJSErKwtXr141+b7l5eUoLi7WexAREVH95NYB0eDBg/H+++9j586dWLp0Kfbu3Yvk5GRUVVUBAPLz8xESEqL3mgYNGqBZs2bIz8+X1gkNDdVbR/u3dh05KSkpCAgIkB6RkZGO3DUiIiJyIy5tMrPkoYcekv4fFxeHzp07IzY2Fnv27MGAAQOc+t4LFizAnDlzpL+Li4sZFBEREdVTbl1DZKhVq1YICgrC2bNnAQBhYWG4dOmS3jqVlZW4cuWKlHcUFhaGixcv6q2j/dtUbhJQk7vk7++v9yAiIqL6yaMCot9++w1//PEHwsPDAQAJCQkoLCzE0aNHpXV27dqF6upq9OzZU1pn3759uHnzprTOjh070LZtWzRt2rRud4CIiIjckksDopKSEmRkZCAjIwMAkJOTg4yMDOTm5qKkpARz587F999/j3PnzmHnzp2477770Lp1ayQlJQEA2rdvj8GDB2PKlCk4fPgwDhw4gOnTp+Ohhx5CREQEAGDUqFHQaDSYNGkSTp8+jQ0bNmDlypV6zWFERESkbCohhHDVm+/Zswf9+/c3en7cuHFYtWoVhg4diuPHj6OwsBAREREYNGgQXnjhBb0k6StXrmD69On48ssvoVarMXz4cLz22mto0qSJtE5mZiamTZuG9PR0BAUFYcaMGZg3b55NZS0uLkZAQACKiorYfEZEROQhrL1/uzQg8iQMiIiIiDyPtfdvj8ohIiIiInIGBkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEYEClEXlEZDmYXIK+ozNVFISIicjsNXF0Acr4N6blYsPEkqgWgVgEpw+Iw4vaWri4WERGR22ANUT2XV1QmBUMAUC2AZzaeYk0RERGRDgZE9VxOwXUpGNKqEgLnCkpdUyAiIiI3xIConosJagy1Sv85L5UK0UG+rikQERGRG2JAVI/lFZUhp+A65iW3g5eqJiryUqnw8rBOCA/wcXHpiIiI3AeTquspw0TqeYPbofMtgYgO8mUwREREZIA1RPWQXCL1sq+zGAwRERGZwICoHmIiNRERkW0YENVDTKQmIiKyDQOieig8wAcpw+KYSE1ERGQlJlXXUyNub4nENsE4V1DK3CEiIiILGBDVY+EBPgyEiIiIrMAmMyIiIlI8BkRERESkeAyIiIiISPFcGhDt27cP99xzDyIiIqBSqbBp0yZp2c2bNzFv3jzExcWhcePGiIiIwNixY3HhwgW9bURHR0OlUuk9UlNT9dbJzMxEnz590KhRI0RGRmLZsmV1sXtERETkIVwaEF2/fh3x8fF44403jJaVlpbi2LFjWLhwIY4dO4aNGzciKysL9957r9G6S5YsQV5envSYMWOGtKy4uBiDBg1CVFQUjh49iuXLl2PRokX4z3/+49R9IyIiIs/h0l5mycnJSE5Oll0WEBCAHTt26D3373//Gz169EBubi5atmwpPe/n54ewsDDZ7Xz44YeoqKjAu+++C41Gg44dOyIjIwOvvPIKpk6d6rid8SDaSV9jghqzFxoRERE8LIeoqKgIKpUKgYGBes+npqaiefPm6Nq1K5YvX47KykppWVpaGhITE6HRaKTnkpKSkJWVhatXr5p8r/LychQXF+s96oMN6bnolboLo9YcQq/UXdiQnuvqIhEREbmcxwREN27cwLx58zBy5Ej4+/tLz8+cORPr16/H7t278cgjj+Dll1/G008/LS3Pz89HaGio3ra0f+fn55t8v5SUFAQEBEiPyMhIB+9R3ZOb9PWZjaeQV1Tm2oIRERG5mEcMzHjz5k08+OCDEEJg1apVesvmzJkj/b9z587QaDR45JFHkJKSAm9vb7vfc8GCBXrbLi4u9vigyNykr2w6IyIiJXP7gEgbDP3666/YtWuXXu2QnJ49e6KyshLnzp1D27ZtERYWhosXL+qto/3bVN4RAHh7e9cqoHJH2klfdYMiTvpKRETk5k1m2mDozJkz+Pbbb9G8eXOLr8nIyIBarUZISAgAICEhAfv27cPNmzeldXbs2IG2bduiadOmTiu7O+Kkr0RERPJcWkNUUlKCs2fPSn/n5OQgIyMDzZo1Q3h4OB544AEcO3YMW7ZsQVVVlZTz06xZM2g0GqSlpeHQoUPo378//Pz8kJaWhtmzZ+Phhx+Wgp1Ro0Zh8eLFmDRpEubNm4dTp05h5cqVePXVV12yz67GSV+JiIiMqYQQwvJqzrFnzx7079/f6Plx48Zh0aJFiImJkX3d7t270a9fPxw7dgyPP/44fvrpJ5SXlyMmJgZjxozBnDlz9Jq7MjMzMW3aNKSnpyMoKAgzZszAvHnzbCprcXExAgICUFRUZLHZjoiIiNyDtfdvlwZEnoQBERERkeex9v7t1jlERERERHWBAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREiseAiIiIiBSvgbUrFhcXW71Rf39/uwpDRERE5ApWB0SBgYFQqVRm1xFCQKVSoaqqqtYFIyIiIqorVgdEu3fvdmY5iIiIiFzG6oCob9++ziwHERERkctYHRAZKiwsxDvvvIMff/wRANCxY0dMnDgRAQEBDiscERERUV2wq5fZkSNHEBsbi1dffRVXrlzBlStX8MorryA2NhbHjh1zdBmJiIiInEolhBC2vqhPnz5o3bo11qxZgwYNaiqZKisrMXnyZPzyyy/Yt2+fwwvqasXFxQgICEBRURF70REREXkIa+/fdgVEPj4+OH78ONq1a6f3/A8//IDu3bujtLTU9hK7OQZEREREnsfa+7ddTWb+/v7Izc01ev78+fPw8/OzZ5NERERELmNXQDRixAhMmjQJGzZswPnz53H+/HmsX78ekydPxsiRIx1dRiIiIiKnsisg+r//+z8MGzYMY8eORXR0NKKjozF+/Hg88MADWLp0qdXb2bdvH+655x5ERERApVJh06ZNesuFEHjuuecQHh4OHx8fDBw4EGfOnNFb58qVKxg9ejT8/f0RGBiISZMmoaSkRG+dzMxM9OnTB40aNUJkZCSWLVtmz24TERFRPWVXQKTRaLBy5UpcvXoVGRkZyMjIwJUrV/Dqq6/C29vb6u1cv34d8fHxeOONN2SXL1u2DK+99hpWr16NQ4cOoXHjxkhKSsKNGzekdUaPHo3Tp09jx44d2LJlC/bt24epU6dKy4uLizFo0CBERUXh6NGjWL58ORYtWoT//Oc/9uw6ERER1UfCTQAQn3/+ufR3dXW1CAsLE8uXL5eeKywsFN7e3uLjjz8WQgjxww8/CAAiPT1dWmfbtm1CpVKJ33//XQghxJtvvimaNm0qysvLpXXmzZsn2rZta1P5ioqKBABRVFRkz+4RERGRC1h7/7arhujGjRtYvnw57r77bnTv3h233Xab3sMRcnJykJ+fj4EDB0rPBQQEoGfPnkhLSwMApKWlITAwEN27d5fWGThwINRqNQ4dOiStk5iYCI1GI62TlJSErKwsXL161eT7l5eXo7i4WO9BRERE9ZNdI1VPmjQJ27dvxwMPPIAePXpYnPTVHvn5+QCA0NBQvedDQ0OlZfn5+QgJCdFb3qBBAzRr1kxvnZiYGKNtaJc1bdpU9v1TUlKwePHi2u8IERERuT27AqItW7bgq6++Qq9evRxdHrexYMECzJkzR/q7uLgYkZGRLiwREREROYtdTWYtWrRw+nhDYWFhAICLFy/qPX/x4kVpWVhYGC5duqS3vLKyEleuXNFbR24buu8hx9vbG/7+/noPIiIiqp/sCoj+9a9/Yd68efj1118dXR5JTEwMwsLCsHPnTum54uJiHDp0CAkJCQCAhIQEFBYW4ujRo9I6u3btQnV1NXr27Cmts2/fPty8eVNaZ8eOHWjbtq3J5jIiIiJSFrsCou7du+PGjRto1aoV/Pz80KxZM72HtUpKSqRu+0BNInVGRgZyc3OhUqkwa9YsvPjii9i8eTNOnjyJsWPHIiIiAkOHDgUAtG/fHoMHD8aUKVNw+PBhHDhwANOnT8dDDz2EiIgIAMCoUaOg0WgwadIknD59Ghs2bMDKlSv1msOIiIhI2ezKIRo5ciR+//13vPzyywgNDbU7qfrIkSPo37+/9Lc2SBk3bhzWrVuHp59+GtevX8fUqVNRWFiI3r174+uvv0ajRo2k13z44YeYPn06BgwYALVajeHDh+O1116TlgcEBGD79u2YNm0aunXrhqCgIDz33HN6YxURERGRstk1uauvry/S0tIQHx/vjDK5JU7uSkRE5HmcOrlru3btUFZWZnfhiIiIiNyJXQFRamoqnnzySezZswd//PEHBzAkIiIij2ZXk5laXRNHGeYOCSGgUqlQVVXlmNK5ETaZEREReR5r7992JVXv3r3b7oIRERERuRu7AqK+fftatd7jjz+OJUuWICgoyJ63ISIiIqoTduUQWeuDDz5gThERERG5PacGRHakJxERERHVOacGRERERESegAERERERKR4DIiIiIlI8BkRERESkeE4NiB5++GEOYuggeUVlOJhdgLwiTplCRETkaHaNQwQAhYWFOHz4MC5duoTq6mq9ZWPHjgUArFq1qnalIwDAhvRcLNh4EtUCUKuAlGFxGHF7S1cXi4iIqN6wa+qOL7/8EqNHj0ZJSQn8/f31pvBQqVS4cuWKQwvpDlw1dUdeURl6pe5Ctc6n5KVSYf/8/ggP8KmzchAREXkip852/+STT2LixIkoKSlBYWEhrl69Kj3qYzDkSjkF1/WCIQCoEgLnCkpdUyAiIqJ6yK6A6Pfff8fMmTPh6+vr6PKQgZigxlDrz6ELL5UK0UE89kRERI5iV0CUlJSEI0eOOLosJCM8wAcpw+Lg9WezpJdKhZeHdWJzGRERkQNZnVS9efNm6f9DhgzB3Llz8cMPPyAuLg4NGzbUW/fee+91XAkJI25vicQ2wThXUIroIF8GQ0RERA5mdVK1Wm1dZZJKpUJVVVWtCuWOnJ1UnVdUhpyC64gJasyAh4iIyEGsvX9bXUNk2LWeHIfd6omIiFzLrhyi999/H+Xl5UbPV1RU4P333691oZQkr6hMCoYAoFoACzae5ACMREREdciugGjChAkoKioyev7atWuYMGFCrQulJHLd6qsFsPZAjmsKREREpEB2BURCCL3BGLV+++03BAQE1LpQSiLXrR4A3t6Xw1oiIiKiOmLT1B1du3aFSqWCSqXCgAED0KDBXy+vqqpCTk4OBg8e7PBC1mfhAT6Y1DsGa77TrxGqBnCuoJQJ1kRERHXApoBo6NChAICMjAwkJSWhSZMm0jKNRoPo6GgMHz7coQVUgom9Y/D2dznQbTnj4ItERER1x6aA6PnnnwcAREdHY8SIEWjUqJFTCqU04QE+SB0eh2c2nkKVEBx8kYiIqI7ZNbmrVkVFhexs9y1b1r8u43UxuWteURkHXyQiInIgh49DpOvMmTOYOHEiDh48qPe8Ntm6Pg7MWBfCA3wYCBEREbmAXQHR+PHj0aBBA2zZsgXh4eGyPc6IiIiIPIVdAVFGRgaOHj2Kdu3aObo8RERERHXOrnGIOnTogIKCAkeXhYiIiMgl7AqIli5diqeffhp79uzBH3/8geLiYr0HERERkSexq5eZ7sz3uvlD9Tmpui56mREREZFjObWX2e7du+0uGLmvvKIy5BRcR0xQY/Z2IyIiRbGryaxv375Qq9VYs2YN5s+fj9atW6Nv377Izc2Fl5eXo8tIdWBDei56pe7CqDWH0Ct1Fzak57q6SERERHXGroDos88+Q1JSEnx8fHD8+HGUl5cDAIqKivDyyy87tIDR0dHS/Gm6j2nTpgEA+vXrZ7Ts0Ucf1dtGbm4uhgwZAl9fX4SEhGDu3LmorKx0aDmdJa+oDAezC5w60WteURkWbDyJ6j8bT6sF8MzGU5xcloiIFMOuJrMXX3wRq1evxtixY7F+/Xrp+V69euHFF190WOEAID09XS8n6dSpU/jb3/6Gf/zjH9JzU6ZMwZIlS6S/fX3/mgOsqqoKQ4YMQVhYGA4ePIi8vDyMHTsWDRs2dHjw5mgb0nOlQEWtAlKGxWHE7Y4fBTyn4LoUDGlVCcHJZYmISDHsqiHKyspCYmKi0fMBAQEoLCysbZn0BAcHIywsTHps2bIFsbGx6Nu3r7SOr6+v3jq6SVPbt2/HDz/8gA8++ABdunRBcnIyXnjhBbzxxhuoqKhwaFkdqS5rbWKCGkNtMLYmJ5clIiIlsSsgCgsLw9mzZ42e379/P1q1alXrQplSUVGBDz74ABMnTtTr3fbhhx8iKCgInTp1woIFC1BaWiotS0tLQ1xcHEJDQ6XnkpKSUFxcjNOnT5t8r/LycpcOJ2Cu1sbRwgN8kDIsDl5/HlNOLktEREpjV5PZlClT8MQTT+Ddd9+FSqXChQsXkJaWhqeeegoLFy50dBklmzZtQmFhIcaPHy89N2rUKERFRSEiIgKZmZmYN28esrKysHHjRgBAfn6+XjAEQPo7Pz/f5HulpKRg8eLFjt8JK2lrbXSDIku1NrXpJTbi9pZIbBPMyWWJiEiR7AqI5s+fj+rqagwYMAClpaVITEyEt7c3nnrqKcyYMcPRZZS88847SE5ORkREhPTc1KlTpf/HxcUhPDwcAwYMQHZ2NmJjY+1+rwULFmDOnDnS38XFxYiMjLR7e7bS1to8s/EUqoSwWGtjb76RYRDFQIiIiJTIroBIpVLh2Wefxdy5c3H27FmUlJSgQ4cOaNKkiaPLJ/n111/x7bffSjU/pvTs2RMAcPbsWcTGxiIsLAyHDx/WW+fixYsAapr+TPH29oa3t3ctS1071tbamMo3SmwTbDbAqaukbSIiIndnVw6RlkajQYcOHdCjRw+nBkMAsHbtWoSEhGDIkCFm18vIyAAAhIeHAwASEhJw8uRJXLp0SVpnx44d8Pf3R4cOHZxWXkcJD/BBQmxzs4GNPflG7GpPRET0l1oFRHWluroaa9euxbhx49CgwV+VWtnZ2XjhhRdw9OhRnDt3Dps3b8bYsWORmJiIzp07AwAGDRqEDh06YMyYMThx4gS++eYb/POf/8S0adNcXgPkKPb0EqvLpG0iIiJ35xEB0bfffovc3FxMnDhR73mNRoNvv/0WgwYNQrt27fDkk09i+PDh+PLLL6V1vLy8sGXLFnh5eSEhIQEPP/wwxo4dqzdukaezp5cYu9oTERH9xa7JXZXIEyZ3zSsqs6mX2Ib0XKOkbeYQERFRfeLUyV3JPdnaS4xd7YmIiGowIFI4drUnIiLykBwiIiIiImdiQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHgMiIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIPlldUhoPZBcgrKnN1UYiIiDwaZ7v3UBvSc7Fg40lUC0CtAlKGxWHE7S1dXSwiIiKPxBoiD5RXVCYFQwBQLYBnNp5iTREREZGdGBB5oJyC61IwpFUlBM4VlLqmQERERB6OAZEHiglqDLVK/zkvlQrRQb6uKRAREZGHY0DkgcIDfJAyLA5eqpqoyEulwsvDOiE8wMfFJVMeJrYTEdUPTKr2UCNub4nENsE4V1CK6CBfBkMuYC6xPa+oDDkF1xET1JifDRGRB2BA5MHCA3x4s3URU4ntiW2Cse/ny+wBSETkYdhkRmQHU4ntx369yh6AREQeiAERkR1MJbZXC8EegEREHogBEZEdTCW2d49uxh6AREQeiDlEboJJuJ7HVGJ7yrA4PLPxFKqEYA9AIiIPwYDIDXAaDs8ll9jOHoBERJ6HTWYuxmk46qfwAB8kxDZnMERE5CEYELkYp+EgIiJyPQZELsZpOIiIiFyPAZGLcRoOIiIi12NStRtgEi4REZFrMSByE5yGg4iIyHXYZEYOxdnfiYjIE7GGiByG4ykREZGncvsaokWLFkGlUuk92rVrJy2/ceMGpk2bhubNm6NJkyYYPnw4Ll68qLeN3NxcDBkyBL6+vggJCcHcuXNRWVlZ17tSr3E8JSIi8mQeUUPUsWNHfPvtt9LfDRr8VezZs2dj69at+OSTTxAQEIDp06dj2LBhOHDgAACgqqoKQ4YMQVhYGA4ePIi8vDyMHTsWDRs2xMsvv1zn+2KJp07hYW48JU/aDyIiUiaPCIgaNGiAsLAwo+eLiorwzjvv4KOPPsJdd90FAFi7di3at2+P77//HnfccQe2b9+OH374Ad9++y1CQ0PRpUsXvPDCC5g3bx4WLVoEjUZT17tjkrVNTu4YNGnHU9INijieEhEReQq3bzIDgDNnziAiIgKtWrXC6NGjkZubCwA4evQobt68iYEDB0rrtmvXDi1btkRaWhoAIC0tDXFxcQgNDZXWSUpKQnFxMU6fPm3yPcvLy1FcXKz3cCZrm5w2pOeiV+oujFpzCL1Sd2FDeq5Ty2UtjqdkGhPNiYjcn9vXEPXs2RPr1q1D27ZtkZeXh8WLF6NPnz44deoU8vPzodFoEBgYqPea0NBQ5OfnAwDy8/P1giHtcu0yU1JSUrB48WLH7owZ1jQ5mQqaEtsEu0XgwfGUjDHRnIjIM7h9QJScnCz9v3PnzujZsyeioqLwv//9Dz4+zrvhLliwAHPmzJH+Li4uRmRkpNPez5omJ0/I0+F4Sn9x9wCWiIj+4hFNZroCAwPRpk0bnD17FmFhYaioqEBhYaHeOhcvXpRyjsLCwox6nWn/lstL0vL29oa/v7/ew5msaXLylHnP2ERUgxP3EhF5Do8LiEpKSpCdnY3w8HB069YNDRs2xM6dO6XlWVlZyM3NRUJCAgAgISEBJ0+exKVLl6R1duzYAX9/f3To0KHOy2/OiNtbYv/8/vh4yh3YP7+/UdOKJ+TpuGuOkyt4SgBLRESASgghLK/mOk899RTuueceREVF4cKFC3j++eeRkZGBH374AcHBwXjsscfw1VdfYd26dfD398eMGTMAAAcPHgRQ0+2+S5cuiIiIwLJly5Cfn48xY8Zg8uTJNnW7Ly4uRkBAAIqKipxeW2RJXlGZW+bp5BWVoVfqLqNmv/3z+7tVOevShvRcPLPxFKqEkAJY5hAREdUda+/fbp9D9Ntvv2HkyJH4448/EBwcjN69e+P7779HcHAwAODVV1+FWq3G8OHDUV5ejqSkJLz55pvS6728vLBlyxY89thjSEhIQOPGjTFu3DgsWbLEVbtUa+6ap+MJOU51jYnmRESewe1riNyFO9UQuSvWEBERkbux9v7tcTlE5L48IceJiIhIjts3mZFnYRMRERF5IgZE9Yi7TOnhrjlOREREpjAgqic4IjIREZH9mENUD1g7DxoRERHJY0BUD3BEZCIiotphQFQP1OWIyJyWg4iI6iMGRPVAXXV357QcRERUX3FgRit5wsCMzpzSg4MuEhGRJ6o3U3eQ9ZzZ3Z3TchARUX3GJjOyCmdudzzmYxERuQ8GRGQVTsvhWMzHIiJyL8whspIn5BDVBWfmKSkF87GIiOoOc4jIKTgtR+0xH4uIyP2wyYychjky8piPRUTkfhgQkVMwR8Z0QMh8LCIi98McIisxh8h6zJGxbrJd5mMRETmftfdv1hCRwyl9bjVrJ9sND/BBQmxzBkNERG6AARE5jLaJqLHGS9E5MkoPCImIPBF7mZFDGDYR3d+1BTYdv4AqIRSXI6NNmjZsMlRKQEhEZKu8ojLkFFxHTFBjl90rGBB5AHc4UcyRayLadPwCNj6egNKKasXlyGiTpp/ZeMotAkJ3P3+ISNmsybmsCwyI3Jy7nCjmmGoiKq2oRkJsc9cUysVG3N4SiW2CXZ407QnnDxEpl6mcy8Q2wXV+3WQOkRuzNjnX1TiujjxXJ017yvlDRMrlTjmXDIjcmDudKLoMx9exZ1wdRw3ayMEfTXPX84eISMudflCzycyNuVNyrjYP5eTvRVi67SejJhhbmogc1YzD5iDz3On8ISKS4045lxyY0UquGphxQ3qu0YlS1zd93cDDkK0DLjpq0MbabkcpicbucP4QEVnizIFqOblrPWGq5sXcDd2RN3vDPBRDtk5K6qiJTWuznfpUs2Tps3aX5G4iInPcYeJwBkQewPBEMXdDd/TNXi7w0GVrE4yjmnHs3Y479WioLWs/a3e40BARuTsmVXsYcz2HHN2rKK+oDFeuV0BlYrk9bb2OmtjU3u3Ul0Rj9iAjInIs1hB5GHM3dAHhkOYoQL/2QYWah0BN4PH04LbofEug3U0wjmrGsWc79SXR2FFNj0REVIMBkYexdEOv7c0+r6gMR85d0at9EH9u9/WHuqJbdFOH3HAd1Yxj63bcqUdDbdSXwI6IyF0wIPIwlm7o1t7s5ZJxzfUmqxaASlVTM6EthyvVJnG8PiQa15fAjojIXbDbvZVc1e3eFHNdFC11X5RLxk1sE2zUjV2X6s82M21tkSt7ZtWnXmK15cyuqkRE9YG1928GRFZyh4DIEd3p5cbvUauAaf1j8fqubNnXqFWA+DMY0vJSqbDx8QRcr6iq07F8HDWOERERKQPHIapnHFUrIpeMWy0gGwypAbw+qiuqhcCMjzP0llUJgaFvHKzzGiMmExMRkTO4fbf7lJQU3H777fDz80NISAiGDh2KrKwsvXX69esHlUql93j00Uf11snNzcWQIUPg6+uLkJAQzJ07F5WVlXW5K3aT62K94LOTdnWxlps3Ro6XSoWU4XEY0jkC3aObyb5GG5c4osu3tXOSudO8N0REVH+4fUC0d+9eTJs2Dd9//z127NiBmzdvYtCgQbh+/breelOmTEFeXp70WLZsmbSsqqoKQ4YMQUVFBQ4ePIj33nsP69atw3PPPVfXu2MX2VodAGv3n7N5W4bj98hZOKQ99s/vL9X4GL5GLjiqEgJbM/PsCoo2pOeiV+oujFpzCL1Sd2FDeq7V5WcyMREROYLH5RBdvnwZISEh2Lt3LxITEwHU1BB16dIFK1askH3Ntm3b8Pe//x0XLlxAaGgoAGD16tWYN28eLl++DI1GY/F9XZlDlFdUhjtTdsHwg1KrgAPz77IrGMgrKsOxX69i+kfHjXKDTOXjaBN4fTVq3P/mQdkEbFubz+zNCXJ1MrFS5kIjIvJ01t6/3b6GyFBRUREAoFmzZnrPf/jhhwgKCkKnTp2wYMEClJb+NfJwWloa4uLipGAIAJKSklBcXIzTp0/Lvk95eTmKi4v1Hq4SHuCDKX1ijJ6vFrB7hOXwAB8M6RyB1OHW17aEB/ggIbY54iObmqxlsrX5zN6Ro7VlcUUwYkuNFhEReQaPSqqurq7GrFmz0KtXL3Tq1El6ftSoUYiKikJERAQyMzMxb948ZGVlYePGjQCA/Px8vWAIgPR3fn6+7HulpKRg8eLFTtoT203oHYO39+c4fCA+e8fk0b5ua2YeXtz6o94yW5KcrRlg0J1qY+rTXGhERPQXj6ohmjZtGk6dOoX169frPT916lQkJSUhLi4Oo0ePxvvvv4/PP/8c2dny3citsWDBAhQVFUmP8+fP17b4teLM3BnD2hZrE5xrapnCzSY5W9qWpf1yt9oYZ8yFZu3xJqL6jdcC1/KYGqLp06djy5Yt2LdvH2655Raz6/bs2RMAcPbsWcTGxiIsLAyHDx/WW+fixYsAgLCwMNlteHt7w9vb2wEldxxnjrCsrYU5+VsRln79k9Xd+82NmGztUAGm9ssda2McPWUGB5kkpXGnGl93osRrgbudC24fEAkhMGPGDHz++efYs2cPYmKMc2kMZWRkAADCw8MBAAkJCXjppZdw6dIlhISEAAB27NgBf39/dOjQwWlldwZHzQGmy9SUHdYGIHIBjexQARtPol2YH+IjmxptQ26/3HHMIUdOmeGOAR+RMynxpq/LVACgxGuBO54Lbh8QTZs2DR999BG++OIL+Pn5STk/AQEB8PHxQXZ2Nj766CPcfffdaN68OTIzMzF79mwkJiaic+fOAIBBgwahQ4cOGDNmDJYtW4b8/Hz885//xLRp09yuFqiuGX4RDVkbgBgGNKYGgBz6xkGkDq858S39OpCrjVEBOHvpmkunqnBUTZ07BnxEzqLEm74ucwFAfb4WyF3n3fVccPuAaNWqVQBqutbrWrt2LcaPHw+NRoNvv/0WK1aswPXr1xEZGYnhw4fjn//8p7Sul5cXtmzZgsceewwJCQlo3Lgxxo0bhyVLltTlrjiVvVWPcl9EXfY2B8kFM0DNYI7PbDyFwtKbFpvmDGtjtK9f+MVpPPfFaaQOr5mDzRVVro6oqeOM9aQk9fmmb4mlAKC+XgtMBYHuei64fUBkaZikyMhI7N271+J2oqKi8NVXXzmqWG6lNlWPpgIXoHaJ29pgRq72qUoIpG77yWika7lfByNub4l2YX64742Des8LAPM/Oyn9312qXG3BGetJSay96btbXokjWAoA6uO1wFwQ6K4BoNsHRGRebase5b6ITye3RecWgbVultIGM9o5z7RUf04Wq8vcr4PrFVWy29fdhLtUudrKmYnyRLXlyODEmpu+O+aVOII1AUB9uxaYCwITYpu7ZQDIgMjD2VL1aOri5swvYnxkU6QOj8P8jSf/CoJETS6Q4QjZpn4dxAQ1NlpfjjtUudrDUYny9fGXNbmOM4ITc9cad80rkaP9rjXWeOF6RZXF75y1NUDO6DTjKid/LzJ6Tvc6744BIAMiD2dt1aOli5szv4iJbYL1ohmBmloitaiZk82aEbJTh8dh/mcnzQZF7lDl6ir19Zc1uYYzgxNT1xp3zSsxJNcr15rvnDsGAM6SV1SGpdt+Mnr+6cFt9fbb3QJAjxqYkYxZM2CjqYubdvAvZw8GllNw3SiQEQJ4fVRXfDzlDr2JZE0ZcXtLHFxwF14c2lF2uVoFt6hydQVLny+RrZwxAKkl2h93utztR46pXrnWfudcOeVQXTLVWafzLYF1XhZbsIaoHrD0y8PcxW3fz5edXrNgqhbrtqimNl0YwgN88PAd0WjopZaqntUAJifGYEKvmHp/kTGlLn9Z17ZZTvf1ANjE56ZckfTqCYnF5nrlumNtlqu4a9K0JQyI6glzVY+mTk5fjbpO2uxre6EzvAkrqerZGnV18bG1Wc7wc9N9vbYiwFN7CNZ3rgpO3P27balXrrvf8OuKJwS3clTCUr92AgAUFxcjICAARUVF8Pf3d3VxbLYhPdfo5Ixs5otRaw4ZrfvxlDuQENvc4WXIKyqz6kKneyOVq8Gqi7GHPC1BWe7zdWSAkVdUhl6pu4yCrv3z+8seH8Pgad7gdtK4U3K02wJgdbKqp31Gnsja76yS6H7XtJzxnasP3OX8sfb+zYDISp4eEAHGJ6etN7m6YKoWQUuFmoRsZzbxeWqCsiMuPqZGld2SeQEvbTVOkpQLnuXOKzVqEujNmdqnFd7e/4tVyaqe+hlR/aD9rvlq1CitqHb5Dd8T1eUPGgZEDlYfAiI5lmoW6vKkPXH+qtGYRZY4OoBzxyCxrsgFGQBMTu1i6rgczC6QrXk0N3SC+s8VrHkfJX9GnsrcdcTWLuzk+er6B42192/mECmcuTb7ujxpN6Tn1oxVZOPrHJ3I6Kquv65u/jE1Ga8Q8kGMuZwAUzlNj/VrhX/vzjZaX60CJveOwX++y5Etm+Hx94Tu2a7+PN2JYa3vlD4xmNA7xiivTEutAh7q0RIJrZqhe3QzxR+/+kI38HXX8aYYENVDtl6M5RKyLY1D4sgLvva95Ooq9ZrIUHNztnZAR3u4oneEOzT/mJqMV87CIe1xd+dws+NGySVUjri9JfwaNcTSbT+hGtDrIQgAb+/PsSpZ1dbPqK6DE3f4PJ0lr6gMR3+9CiGEVcGK4XVEAPjPdzl4e38O5iW3qzkXZM67jw7l4qNDuVAB0mTQ5Ln0gmIbZyqoSwyI6hlHXYzrsqu+ua6s4s9/pv5549z382Wbey7YckOs694R7jI6r7neM7q8VCqzwZCWqZrHR/rG4t4uEbI1koYT+WoN7RphNJibtZ9RXQcn7vJ5OoJcL0HdwVHNBSva1/5RUi57TlULyAZDhgSABZ+d9MjjRzWMgmI37qHHgKgeceTFuC676lu6GQsA73x3DhN6xdjcLdeeG2Jddv11RvOPqZwMc4FheIAPJvWOwRqZZivtZ2NrcKitedQO/Kl9X1NDRJia+27T8Qt4Kkl/hFtrPqMT56/q3cDrIjjxhOY8axj1EvyzNkd310wFK4avNZU7pm1Cs9RMXg143PGjv5j6wavtaOFOXfIZENUjjrwYm/oVfr2iyuEXfMP3kguODGeGtqZW6Mi5K3YHb3U1pLyjm+hM5WTc37UFPj/+u2xgqA2U/t45HG9/l2PUJLnx8QS7e9KYyx+Rc72iyugGWSUEjp67ir/HWz/vk6mcNGcHJ546IJ0uuR9WpmpzDIMVudeqVIBKJhdNDeCxfrF4c0+22aBIDXjU8XNHtjYbO7KZ2dR3ojbXFWdhQFSPOPpinNgmGCtHdgEE0C26qfRrvzbvYc0Es74aNe5/86Dd7yEXFGi52691RzbRmZtW4LNjv+v9rQ0MDZs/h93WApuOX9ArS3xkU7v2zVz+iKmausYaL9kcg5nrj+N6RaVVzV3mctI42rJltuSTGQYrr+86Y7SuEMAbo7riYPYf+OhwrvS5VANYtdc4yV6XCkDK8DjZ42fqWlLXOWPunkBvay25o5uZTX0n7L2uOBMDonrEkRdjU1+K2ryHLRPM2vsehs0khtzx17qjmujM5WIZqhICx369avRrftPxC0a/3Oy94Jsqj6maOu35IRfI2FK7Z66KnqMtW2ZtPplhsPLW3mx8dOi80XpqFfDb1TJ8rBMMaZl6jycGtMatIX6IbOaD6xVVyCsqs6oHrKNv5pbOfXdPoLe1c8yJ81dralYdnAPnKd8JBkT1jCNOPEtfInvew9b8Jnvew1LXfXf+te6IJjprb2RAzbGoFkK2abK0oloabLE2F3xz5TGsqTNVu2XuNba8r1oFfP74nUa/Si3NrWZvMFhXTa7OYPijx5AKwJL7OmJgh1C945QqM7s5ANwbH4FUg/wjc7xUKjzUoyX2/XxZqinWPfdMXUvahflZfY2x5nO1dO57QgK9uTSKzScu1Hwu4q9m9Y3HfndaM7MnfCcYENVDtT3xrMlFsvU97MlvsuU9zDWTqAG8PqqrzZPJOpMjqtkNt2HqRualUmFo1wijprDu0c1kAwdfjVrafm0u+Pt+viz7eWjLFB3ka7E3ktxrzB0DwPoqektzqwFw61//zqT9QfLxoVy8tuus3jIBoKmvRq+G4Y+ScpMBzxcZF8wGQ9ocI90EWwAmzz1T15KdP10yeY0B/gp2DQMBuc/VmnPf3RPo84rKkH25xOh5L5UK+89cxht7/mquNGxWN1zfV6PW6xhRXzEgIiPOSAx1drKpuWaSlOFxGNI5wiHvY461QY4jqtlNbUM37yuymY9e09dTSW2NatwMA6hqAdz/5kGkDItDZDNfuy/4UoAqs0x70zPMXzLscaQ7BpVc7Z6542iphlEuv0mrWtT0ntIdObu2tQ2uZKl8ppaHB/igTZif7DZVKut6k1nqRab9XA0/q4PZBSbPPblriUoFvLZTP3DTbj/z90KMfvt7m5pvrQl23DWBPq+oDO/uzzHqIAHUlO/p5LZI/Uq+Ns+QWlUz7IVcTV19xICIjDgjMdTZyaa2NJM4g7VBjiOq2U1to7D0pjSBqqUcLS25ru7a7W18PMHuC76pAFU7qCMAvek3tL2R1AY1BaaCGmuOo7kaRkv5VtWA0Z1cLhh09xwSufLpTo5saUyxblFNjQNVFXBLUx+9jg+Gn58awEM9IvHRYZmcItR04+98S6De56p7XE/+VmT0Ou25J9crVbZmWAU82rcVUr8y31wn97laE+y4YwK94VhRumrGjeqEwrKbVjVfqgCsGdsNU94/6tbNgo7EgKies/fXqzOS4JyZWGd0kUTNdBAh/o0c9h6m2BLkOKKa3dQ2dPM0bLlwmerqXlpRbfcFXzZABRAa0MjkPggBvDC0I2KD/YxulIZjGZk6Bsd+vYqmjS2f75byrXRrp7QMb4julENialJew/LN/+yk3uTIulOzaGvG2oX5ST8iwgN8kDo8zihokht+Qwjg36O6olljb+k4rU8/b/OPlLyiMiz92rgG47F+raR9072WFJTcwIyPM4zWf+j2lnhzr/ku/doyGQb51gY7zrqm2XPdNlcrC9R8znM/PWl1GaYkxsBH08Ds96y+zT/HgMiN1bYqvra/Xp2RBOfMxDrtxWnt/nN4e/8vJrt4WzPRpC3H3JYgxxHV7KZqw+TKsDUzD0MsjCxtrkwJsc3tvuBP6h2Dd/6cjkNbyzD9o+M1A/0Nbidb5oWbTiN1eJyU1A3IDxLoq/GSrbmY/tFxvTwgU+e79oZnKpF7Sp9WiA1pbPaG6C45JKa+57JBJ6DXg8hQNYChbx5EqoXmx7dkust7qVRGeXr2dLc2VXv3xu5sRDbzlcqlvZbIDQWiBrA+3bhXm5xqAWzOuIC4WwL0BjGNbOZr1Vg5jr6mWZPMLXeNOnLuilUdKqyhVkGaUkeueVL7PdNd39k9+uoCZ7u3Ul3Pdl/bYEZuRnC1Clj5UJd6PWGipZnQzR1Xe4+5rbOvb0jPlZ3nyxaG23g6ua3JwfMs7YvRlAwq6N0Q5Zi7eL21N1uqrVIBGNkzEusPnzc6PqbKrHvs5I6tHLlcFe12AJicTf3E+atGI2OrARxYcJf0/ubykO5M2WWU93Twz9c6k+5o5HJjdmn325pjJ8dcTY6pz2TB3e3wSGKs7Pq29kg1VW5T3yvD78Ok3tEmJws2RwWgz61B2H+2oM6aQQ17OhqeU9Zcv8yNvWaO9nuj+vM/AjC6JukeW8NaRV263xtbObvpmbPdezBHVMWbGlxtxscZbpnrUFvai8qV6xUmq3irhfHI1Qs2noSvxgstm/nWalRrW5qWHFHNLreNQJ+Gsl2lLSUEG1azq0TNoJymgh5zeSkHzhbgDZ0Z7QWA9YfO1+Tk6KgSAp1bBGLlQ12Mmjt0a1msHVtJbpUqIaTaQsMfBtrzPz6yKVKHm/7sdGshDmYX6AVVslTyTzuSYe84uebOcwWlSIhtbtSMLGBcqwaZG1y1AIa+cVB2rjJTn0nnFoGy5bW1BsVc7Z1cDZxcbQ5gerJgcwSAfWcKpL+11whHN4Nqv1snfyvSy/vr1TrI5OcJGPe8W/DZSQQ10dgVDBmOFg1A9ppkTfMkUFO7uHb/OTwzpL1N5XCnpmcGRG7IEVXx5nIk3Dkxzp5qU8MbhLmmFEPaINHcjcWactga5Fh7k7A0/5jchWtrZh5e3PqjxX3JKyrDlswLxoEzoBdIGI4BYzg/2PzPavISTF2Pq2E8w7W2SS46yFe2uUN7gW4s0zRmLRVgFAxpy2zLuFqmfn3fEdPUqFxCOHfeLXO947R0m2AN901ucuR2YX4Y+uZBo+YlgZobsG5OEWD62pL5e6FeU2dtmJrXzrB5WS4415bB3FhKtqgWwNoDOXjm7g612o6WqfOpWgDf6QRjWtrvg+yPXACT3jsq+z4vDu2I5744bbKmTa750lKz4Fv7zI8svua7XzChd7RN57+7ND0DNcea3Iz2gqPL1jwT7a8sL5X8T1bdXx3uYkN6Lnql7sKoNYfQK3UXNqTnWnyNqRuE9vipTfwCNmTpxqL7fgezC5BXVGa0fniADxJim9v9JTbctj3HIzzAB0M6hxudP2oAZy9fw5bMC8grKsNbe7NxZ8ouvLTVOHlVDf1AQhtA5BWV4eivV42DAJg/vmoA85PbSeeibi2M9jzVLa5AzRhGG9JzjW6ItugZ09Tkr2bD89/UZ2duwMjvc64aPefsbtcmh5dQ/fX+hrWTuvuW2CYYKx6KxxujumL//P5/1ZINizM6Z4C/aop0z73wAB/MG9zOaN1l27Jkvxf20tbeyZ03gOmaBW0ZRtzeEvvn98c/TdRY2HLze3tfjtG+mbsWmFrHmgFIDU1OrJn7T+6+YIqXSoUB7UP17gFqANP6xeLjKXdIn70t8orKsNTE4JtaAjU/pmzhiPudo7CGyA2ZaoIBYNPgWNpfh8d+vWpUQ+IO42Xosrfa1FTi6OsPdUXzJt5mq3jlmJrZXTu2hzZJ2NHNjqZmF5dr3rMmB2xy7xi8/V1OTe0Man5JLtx02mI5TOVfaAMIe1IO5yXX5JbcGx8hWwuT2CZYrwZJWzNhKlfBWnIBi64DZy9brNGwZToUAHh6cFun/qq1d6LMvKIyrN2fgzV/jk1jeP4mtgnG4vs6yp4jAsbfxbhbAozWM1ULWZtEWXO1d9YOIDukczhe/upHk8cs8/dCLP3qJ6NmXV3aSWy172vY1KVbg2puSAO5sb0sad7EW9qXlGFxWPDZSbNl1b12WVNzbe1nZO134e39ttUS2Zpy4EwMiNyUXFW3NtHQlptxzQXBByXllW5xwgHyX0B7q01N3SDMTUZrqglGBWDxfR3RzFeD26Ka4lLxDaz5LhuF128azcjtyGZHuWBQbuwU3ea9+cnt8Ehf4wRWw8Bq1O0t8fFhyzVLgP4YQXL5F5m/F+Le+Airm7C0gZ020dZUM6Etk4kabv/zx+/ET/nXzM5fZ8qbe7Ix+o6oWnXPN+SlVhnNu+Vour33rOm5JddEoz1/24X5YUtmnl5vQMBy87E1vSUdlShr6ryxVAbd64y53m4Jsc1xb3yEbL6Z7nYzfyvEqDXfy34vF3x2Eid+K8THh85LnQkA/SENTI3tpatdWBP8lK8/uvSybVm4I6YZcq+UorF3A6wZ1w2T3ztq8hq28fEEvfPB8PhZCtpMfUZyY0PJqbah2VhblsQ2wdg/v7/L5zpjLzMr1XUvM1229mIytx1Xn3CmLpK12UdLvbaMemQNbiv9upOjVgFdIgNxLLfQ4v58POUOm/MmDAPCg9kFGLXmkE3bAPR79eQVleHIuSt4Yn2GUQKxVcEF9HuIvLU3GykG1ePaz2Pfz5elX6lqAPff1kKaFkTLXNBmyFSPSGtqiLTHX6681nhjVFeLo5jrnj/WUKn+3HeDHle21JbIrWuYKzclMQYTesWY3Za1vfR0yZ0zct9Fc9872c8UwGujuqKbA6fQMVUGU4n/lq5/2mtk5m+FWPZ1ll4vTksDPFrj4yl3IPfKdZPNZi/c1xELv7Bck9u/XTB2/3TZ5HuYuiaZmq5Gy9Q115bzyFIPRXuCsdpiL7N6xFFJZ44eL8NWcjUhus1A9labWqoWlu2R5SvfI0tbLmuCIVubHU01uyW2CbYrcXjptp9wb3yE3oXFkLU3wnnJ7fSOm7kmEbnjOTYhSi/fRwBY9nUW7u0SYXcvPQB6M28b0p0PTW4gPy21Cnisb6ze3E1a0z86jpLyStm5rLQXbt399dWo8a/tP+v1RDIkBJDy1U+AgBQQ2lJbYhT49InBkM7hRrly73x3ThorxhRbm/yAmnNmamIM3vnunN2DEppKANaOQ+Wom59cGUw1v++f39/ijxftPggIvWbII+eu1DoYMhzba96nmXrn0fDbWmBgh1A8v1k+EVrX7p8u485WzXDwlyuy7yHHmoR8U/cVc+eRXG3YfW8cxAKDH0TmgjFn9eazFQMiF7PmV6Mz5sxxxSBY1gwFYG+1qalgT3c/dS+G2gvp0XNXMeNj+R5o5qhVsKnZUW5Ife2F+unktja++1+vP/brVbNJmtoaMd1RrHUvRobNWlqmBn/UTvxqeLxNjXZd21562hw4IYDfi8qwbFuW0U1abt4rXdr98/dtaDTukWF+jLlcMW2Z3p/UEyfOX8WRc1cRHeSLz4/9ji0n843ed+m2n3Bvl5raJ1tmYTe8af3nu79yf+SOLwCT32VTTX7mAnAvlQoTetXUPln6LtrSnKXl6F6uhmWw9gekpVo43V5rKhOdUyzRHmdtLVNOwXVcKr6B6xVVWPpAZ1wqvoEj566ie3RTqUbFcFoSU+f29zlXMK1/LFbtyZaaT58eXPMe2uOiy5rg2NR9xdT1YHr/1oiPDJDt6Zay7SdABTySGGtVMObo3nz2YEDkQtb+arSUdGZrcOOq+ZesuUha8yvOWpb2MzzAB82aXLfrl9+8we30mgcsTZ5pakh9wyk3bOGlUqFaCLPBkLYJ4d4uETh67ipUKuC2qJoLr7mbneE5B+hP/Gp4vtQmaDcVtGrLMaTzX+WTS8w2d9PXbbp6JDEWEQGNZMc9OnruKjJ/yzFKJjd1846PbIoQ/0Y4cu4KtsoEQ8BfibgCxp+Rdmws3X0DTN+0ZPNFVEDmb39NXGrqHDe8wU7u3Qo9WzWVzUMxDPTtDVjkzh9dttZwSz0chbDYqcDe/KbENsEmA1e5Od20zAWX2ucHdQw1Csa17zupTyu91xjWSJrqaVktgN6tg/HwHVE1zXy/F0rvIXcuyE6KC/MTKAN/fT/nDW4nNSNqO0G8tusszMWK2lpsqxOy9+VYbAZ2JgZELmJrrypTv6BtDW5cOQiWoy+S5li7n401XrKvbxvaBFkXS2SXAX81B1nTDm6putmWLD7dX5wvD+uEC0U3jNZRA3h9VFe9aRTCA3zw93jjcYzMMTfxq+FxtLeniK3nr1yNhKmbvlxPl+7RzWRvCjPWHzf5OVia1NUU7U34UvENo3GYAGDaR8eRcb4QE3vHSLVTZy9ds7r5VAgYzV83/7OTKK+sQrPG3lKujvZzTD93FbdHN8VP+dcw5X39YEiNmu7djrwZ6dbCzlx/3O4abqOR1AHZASN16fayVKuAib2jpWWmrg0rHoo3WbOUENsc8+9uV9MUqkNb86OtuTRl2ynjoNnctVf3PE8dHod5nxnPQaY72S0AKTA2tW1T31FzEygb1pbOS26HWwJ99Hotm7t+aROsTQVjhi/V/ohgQKQw9uQFyfUWsDW4cfUgWHU1FIC1k39er6iSff2iezuhtOKmyUHPtLUK5o6/9pfVwbNm8k1s2Cc1gM+n3ak3smyv1F1G681LbmcxUdhatjSF2To4pSODc2vfOzygZgydpdt+kpLCBcxf1L1UKvhq1NKQFwAsBkNq1HTB1+3qLmfNdzl4+7scDLutBTYe+93mmkLD9QWA5774AcBfgYNueeUSaa2ZcNWQtbXS2kD8eoV9vVzlalcFanp1yZ0nhgF2YusgfHemAGu+q7mxm+r6XhNIq8zWLNXUTl7H+sPnjaa4uDc+QvaaZok1117tuT1rfQYO5fyVMzS061/5edZe1019T+SOo1wT/7JtWVjxULzV+6gbtBkGY3KJ6q4eDoYBkYvY0mXUkcGNM/KRbKVtBjE1FIAj8ptkf5GojCf/TGwTbPJ4hAf4YOlw+XE/vFQqQKaZRnv8zSU620MFIGV4nN5Ny1TuTOdbAh3zprD9fLElcd/W89fSeaH73uamHVn69U/S+Ez924dg54+XTJZRrQKSOoVKIzmrANwdF2byc9XWTjX305icW86QAPDZsd+NnjfVBd5aAsbjOZlqeimtMDeyjT57mtztna7GVO2qYU2CtknNcBR1w2k4THV9105Ma6qW0zAheKpBbZr2mvZbYZlRLZI5uh0DLF3z0s/pJ1BvOn4BTyXVjHtly/fU0nfUUhO/qcBx4+MJ2JD+G9an58o2wVmabsjVw8EACguI3njjDSxfvhz5+fmIj4/H66+/jh49erikLOaaGKy94NgT3NjbtOEMcl8QR45dYtiMontj0M1ZMnc8tGXUHaNEu063qKYmE48dGQwBNcFcYptgveecFdwaXpyddb7YUn57e2kZDu1gmNhpKhjSdmtvqFbr9U4TgGzOkG4zJWD/pKq6HHH6WFMGW86Z2tTq2RIsa5nKD9Od3sWWiU2rhEBpRbXJc9qaXmsCpnv4xbUIkH3fxFuDcODsH3rNatr3tbfZXffHg9z1TreZ0BbmmvjNBY7xkTWJ4TMGtDYZ+BqeA46Y19GRFBMQbdiwAXPmzMHq1avRs2dPrFixAklJScjKykJISIhLymRLl1FT7cz23Kzc6SQ0/FXvyPwmS5MSai8o2ukM1H9+2eWO8zND2mNC72ijY5YyLE6va3i1ANbskx/cTUtujB1LuQjatnhH5O2YYyqYcMb5Ym35bTkvzK1rTWKnbv4RUDPzuCXacmubKV/e+oNDg+HakDvXrEmkNaWum9y154jud0xbWyp3vbTEsOu74bVXLrnfln021Rtr6QOdAUBKlC6tqIavRo3cK6V6Y4eZOret+fEg/Xg7kIM1+3L0mglt+VFpMgjVSbg3d02wNfC1J1B2FsUERK+88gqmTJmCCRMmAABWr16NrVu34t1338X8+fNdVi7Dk8HWC469Nyt3Ogm1nHGx1e6n3IjV2tFnzfXSkduWrsQ2wUY/5eW6YOual9xOtqpYm4tgSxKqI4MVS4GHM84Xa8pvy3lhbl1Lo05rR+rWbvNgdoHFWhrD1+QVlWGNQU81LTWAeXe3w/UblXht11kLW3aM+7u2QI+YZlYn0lriiiZ33bxDISCNQg9Y7kquWzNjGPzpntPmaiBtbY4yF+TLvZ8huXPblh8/b+vkrNnzo9KotgnyCffueA+pLUUERBUVFTh69CgWLFggPadWqzFw4ECkpaXJvqa8vBzl5eXS38XFxU4vJ2B/M1h9ODGdebE1ldRnOF+YrRePnALbu+13bhEo+wtVW05bk1Ad9fm7KuHeUvltOS/Mras9B+RuRF4qlV5gY2pbll5j6nz4e1w4nv17eyk4//fus+Z7HsovMuuJu1rjtd1n9RLEtXkmcuN72fOZuqrJXZujY8jcZ6SGfs2Mubm8LP0QsGWfLQX5lmq1avPjx1HfYXdqRahLigiICgoKUFVVhdDQUL3nQ0ND8dNP8glwKSkpWLx4cV0UT4875fjUNWfvu+GX3BEXD5vnutK52JkLBFxxQXKHhHs5tpwXltbVbVZ4e19Nt2xT2zPclm6Ss6nXyDaZAFIwpLtduVG45QJ1Q2rAKKHfS6XCrWF+RtvT7TburO+Rq5vc5YbyMFUzI8ea64Ct+2zuu20pR6c2P34c+R2uLz+0baGIgMgeCxYswJw5c6S/i4uLERkZWSfv7U4XnLrm7H03/JLX9uIh1TqY6In29OC2enMi2RLg1fUFyZ2DcVvOC0vrhgf44Jm7O1g1ErPhtgDbBrS0NO2FthkospmP3mz1uk2qqj+rjHQDMQBG7yGX5O+sgNadbpaGAxnqHkdrWBtEOGqfTQXNhmOH2cOdv8OeQBGTu1ZUVMDX1xeffvophg4dKj0/btw4FBYW4osvvrC4DVdO7krOY2liWGvlFZXJ9kTT9m7ypODW08rrjhxxDHW3ARgHYnLv4ajzWWnq+rg5+/34HdZn7f1bEQERAPTs2RM9evTA66+/DgCorq5Gy5YtMX36dKuSqhkQ1V+OvHjwQkSuxnPQPnV93Pg51R3Odm9gzpw5GDduHLp3744ePXpgxYoVuH79utTrjJTLkdX/7tSUQMrEc9A+rmii5ufkXhQTEI0YMQKXL1/Gc889h/z8fHTp0gVff/21UaI1ERERKY9imsxqi01mREREnsfa+7e6DstERERE5JYYEBEREZHiMSAiIiIixWNARERERIrHgIiIiIgUjwERERERKR4DIiIiIlI8BkRERESkeAyIiIiISPEUM3VHbWkH9C4uLnZxSYiIiMha2vu2pYk5GBBZ6dq1awCAyMhIF5eEiIiIbHXt2jUEBASYXM65zKxUXV2NCxcuwM/PDyqVyu7tFBcXIzIyEufPn1fsnGg8BjV4HHgMAB4DgMdAi8fBOcdACIFr164hIiICarXpTCHWEFlJrVbjlltucdj2/P39FXvCa/EY1OBx4DEAeAwAHgMtHgfHHwNzNUNaTKomIiIixWNARERERIrHgKiOeXt74/nnn4e3t7eri+IyPAY1eBx4DAAeA4DHQIvHwbXHgEnVREREpHisISIiIiLFY0BEREREiseAiIiIiBSPAREREREpHgMiB1i1ahU6d+4sDSSVkJCAbdu2Sctv3LiBadOmoXnz5mjSpAmGDx+Oixcv6m0jNzcXQ4YMga+vL0JCQjB37lxUVlbW9a44TGpqKlQqFWbNmiU9V9+Pw6JFi6BSqfQe7dq1k5bX9/3X9fvvv+Phhx9G8+bN4ePjg7i4OBw5ckRaLoTAc889h/DwcPj4+GDgwIE4c+aM3jauXLmC0aNHw9/fH4GBgZg0aRJKSkrqelfsEh0dbXQuqFQqTJs2DYAyzoWqqiosXLgQMTEx8PHxQWxsLF544QW9+aTq+3kA1EwXMWvWLERFRcHHxwd33nkn0tPTpeX18Rjs27cP99xzDyIiIqBSqbBp0ya95Y7a58zMTPTp0weNGjVCZGQkli1bVruCC6q1zZs3i61bt4qff/5ZZGVliWeeeUY0bNhQnDp1SgghxKOPPioiIyPFzp07xZEjR8Qdd9wh7rzzTun1lZWVolOnTmLgwIHi+PHj4quvvhJBQUFiwYIFrtqlWjl8+LCIjo4WnTt3Fk888YT0fH0/Ds8//7zo2LGjyMvLkx6XL1+Wltf3/de6cuWKiIqKEuPHjxeHDh0Sv/zyi/jmm2/E2bNnpXVSU1NFQECA2LRpkzhx4oS49957RUxMjCgrK5PWGTx4sIiPjxfff/+9+O6770Tr1q3FyJEjXbFLNrt06ZLeebBjxw4BQOzevVsIoYxz4aWXXhLNmzcXW7ZsETk5OeKTTz4RTZo0EStXrpTWqe/ngRBCPPjgg6JDhw5i79694syZM+L5558X/v7+4rfffhNC1M9j8NVXX4lnn31WbNy4UQAQn3/+ud5yR+xzUVGRCA0NFaNHjxanTp0SH3/8sfDx8RFvvfWW3eVmQOQkTZs2FW+//bYoLCwUDRs2FJ988om07McffxQARFpamhCi5uRRq9UiPz9fWmfVqlXC399flJeX13nZa+PatWvi1ltvFTt27BB9+/aVAiIlHIfnn39exMfHyy5Twv5rzZs3T/Tu3dvk8urqahEWFiaWL18uPVdYWCi8vb3Fxx9/LIQQ4ocffhAARHp6urTOtm3bhEqlEr///rvzCu8kTzzxhIiNjRXV1dWKOReGDBkiJk6cqPfcsGHDxOjRo4UQyjgPSktLhZeXl9iyZYve87fddpt49tlnFXEMDAMiR+3zm2++KZo2bar3fZg3b55o27at3WVlk5mDVVVVYf369bh+/ToSEhJw9OhR3Lx5EwMHDpTWadeuHVq2bIm0tDQAQFpaGuLi4hAaGiqtk5SUhOLiYpw+fbrO96E2pk2bhiFDhujtLwDFHIczZ84gIiICrVq1wujRo5GbmwtAOfsPAJs3b0b37t3xj3/8AyEhIejatSvWrFkjLc/JyUF+fr7esQgICEDPnj31jkVgYCC6d+8urTNw4ECo1WocOnSo7nbGASoqKvDBBx9g4sSJUKlUijkX7rzzTuzcuRM///wzAODEiRPYv38/kpOTASjjPKisrERVVRUaNWqk97yPjw/279+viGNgyFH7nJaWhsTERGg0GmmdpKQkZGVl4erVq3aVjZO7OsjJkyeRkJCAGzduoEmTJvj888/RoUMHZGRkQKPRIDAwUG/90NBQ5OfnAwDy8/P1Lnza5dplnmL9+vU4duyYXvu4Vn5+fr0/Dj179sS6devQtm1b5OXlYfHixejTpw9OnTqliP3X+uWXX7Bq1SrMmTMHzzzzDNLT0zFz5kxoNBqMGzdO2he5fdU9FiEhIXrLGzRogGbNmnnUsQCATZs2obCwEOPHjwegjO8CAMyfPx/FxcVo164dvLy8UFVVhZdeegmjR48GAEWcB35+fkhISMALL7yA9u3bIzQ0FB9//DHS0tLQunVrRRwDQ47a5/z8fMTExBhtQ7usadOmNpeNAZGDtG3bFhkZGSgqKsKnn36KcePGYe/eva4uVp05f/48nnjiCezYscPo15BSaH/5AkDnzp3Rs2dPREVF4X//+x98fHxcWLK6VV1dje7du+Pll18GAHTt2hWnTp3C6tWrMW7cOBeXru698847SE5ORkREhKuLUqf+97//4cMPP8RHH32Ejh07IiMjA7NmzUJERISizoP//ve/mDhxIlq0aAEvLy/cdtttGDlyJI4ePerqopEBNpk5iEajQevWrdGtWzekpKQgPj4eK1euRFhYGCoqKlBYWKi3/sWLFxEWFgYACAsLM+phov1bu467O3r0KC5duoTbbrsNDRo0QIMGDbB371689tpraNCgAUJDQxVxHHQFBgaiTZs2OHv2rGLOAwAIDw9Hhw4d9J5r37691Hyo3Re5fdU9FpcuXdJbXllZiStXrnjUsfj111/x7bffYvLkydJzSjkX5s6di/nz5+Ohhx5CXFwcxowZg9mzZyMlJQWAcs6D2NhY7N27FyUlJTh//jwOHz6MmzdvolWrVoo5Broctc/O+I4wIHKS6upqlJeXo1u3bmjYsCF27twpLcvKykJubi4SEhIAAAkJCTh58qTeCbBjxw74+/sb3Vjc1YABA3Dy5ElkZGRIj+7du2P06NHS/5VwHHSVlJQgOzsb4eHhijkPAKBXr17IysrSe+7nn39GVFQUACAmJgZhYWF6x6K4uBiHDh3SOxaFhYV6v6J37dqF6upq9OzZsw72wjHWrl2LkJAQDBkyRHpOKedCaWkp1Gr9W4yXlxeqq6sBKOs8AIDGjRsjPDwcV69exTfffIP77rtPcccAcNznnpCQgH379uHmzZvSOjt27EDbtm3tai4DwG73jjB//nyxd+9ekZOTIzIzM8X8+fOFSqUS27dvF0LUdLFt2bKl2LVrlzhy5IhISEgQCQkJ0uu1XWwHDRokMjIyxNdffy2Cg4M9qoutHN1eZkLU/+Pw5JNPij179oicnBxx4MABMXDgQBEUFCQuXbokhKj/+691+PBh0aBBA/HSSy+JM2fOiA8//FD4+vqKDz74QFonNTVVBAYGii+++EJkZmaK++67T7bbbdeuXcWhQ4fE/v37xa233urWXY0NVVVViZYtW4p58+YZLVPCuTBu3DjRokULqdv9xo0bRVBQkHj66aeldZRwHnz99ddi27Zt4pdffhHbt28X8fHxomfPnqKiokIIUT+PwbVr18Tx48fF8ePHBQDxyiuviOPHj4tff/1VCOGYfS4sLBShoaFizJgx4tSpU2L9+vXC19eX3e5dbeLEiSIqKkpoNBoRHBwsBgwYIAVDQghRVlYmHn/8cdG0aVPh6+sr7r//fpGXl6e3jXPnzonk5GTh4+MjgoKCxJNPPilu3rxZ17viUIYBUX0/DiNGjBDh4eFCo9GIFi1aiBEjRuiNvVPf91/Xl19+KTp16iS8vb1Fu3btxH/+8x+95dXV1WLhwoUiNDRUeHt7iwEDBoisrCy9df744w8xcuRI0aRJE+Hv7y8mTJggrl27Vpe7USvffPONAGC0X0Io41woLi4WTzzxhGjZsqVo1KiRaNWqlXj22Wf1ukkr4TzYsGGDaNWqldBoNCIsLExMmzZNFBYWSsvr4zHYvXu3AGD0GDdunBDCcft84sQJ0bt3b+Ht7S1atGghUlNTa1VulRA6w4YSERERKRBziIiIiEjxGBARERGR4jEgIiIiIsVjQERERESKx4CIiIiIFI8BERERESkeAyIiIiJSPAZEREREpHgMiIjIafr164dZs2a5uhhOt2jRInTp0sXVxSCiWmBARERkQkVFRZ2+nxAClZWVdfqeRFSDAREROcX48eOxd+9erFy5EiqVCiqVCufOncOpU6eQnJyMJk2aIDQ0FGPGjEFBQYH0un79+mHGjBmYNWsWmjZtitDQUKxZswbXr1/HhAkT4Ofnh9atW2Pbtm3Sa/bs2QOVSoWtW7eic+fOaNSoEe644w6cOnVKr0z79+9Hnz594OPjg8jISMycORPXr1+XlkdHR+OFF17A2LFj4e/vj6lTpwIA5s2bhzZt2sDX1xetWrXCwoULpVm2161bh8WLF+PEiRPSfq5btw7nzp2DSqVCRkaGtP3CwkKoVCrs2bNHr9zbtm1Dt27d4O3tjf3796O6uhopKSmIiYmBj48P4uPj8emnnzr6IyIiHQyIiMgpVq5ciYSEBEyZMgV5eXnIy8uDn58f7rrrLnTt2hVHjhzB119/jYsXL+LBBx/Ue+17772HoKAgHD58GDNmzMBjjz2Gf/zjH7jzzjtx7NgxDBo0CGPGjEFpaane6+bOnYt//etfSE9PR3BwMO655x4pcMnOzsbgwYMxfPhwZGZmYsOGDdi/fz+mT5+ut43/+7//Q3x8PI4fP46FCxcCAPz8/LBu3Tr88MMPWLlyJdasWYNXX30VADBixAg8+eST6Nixo7SfI0aMsOlYzZ8/H6mpqfjxxx/RuXNnpKSk4P3338fq1atx+vRpzJ49Gw8//DD27t1r03aJyAa1mhqWiMiMvn37iieeeEL6+4UXXhCDBg3SW+f8+fN6s8L37dtX9O7dW1peWVkpGjduLMaMGSM9l5eXJwCItLQ0IcRfs2uvX79eWuePP/4QPj4+YsOGDUIIISZNmiSmTp2q997fffedUKvVoqysTAghRFRUlBg6dKjF/Vq+fLno1q2b9Pfzzz8v4uPj9dbJyckRAMTx48el565evSoAiN27d+uVe9OmTdI6N27cEL6+vuLgwYN625s0aZIYOXKkxbIRkX0auDIYIyJlOXHiBHbv3o0mTZoYLcvOzkabNm0AAJ07d5ae9/LyQvPmzREXFyc9FxoaCgC4dOmS3jYSEhKk/zdr1gxt27bFjz/+KL13ZmYmPvzwQ2kdIQSqq6uRk5OD9u3bAwC6d+9uVLYNGzbgtddeQ3Z2NkpKSlBZWQl/f3+b998U3fc8e/YsSktL8be//U1vnYqKCnTt2tVh70lE+hgQEVGdKSkpwT333IOlS5caLQsPD5f+37BhQ71lKpVK7zmVSgUAqK6utum9H3nkEcycOdNoWcuWLaX/N27cWG9ZWloaRo8ejcWLFyMpKQkBAQFYv349/vWvf5l9P7W6JiNBCCE9p22+M6T7niUlJQCArVu3okWLFnrreXt7m31PIrIfAyIichqNRoOqqirp79tuuw2fffYZoqOj0aCB4y8/33//vRTcXL16FT///LNU83Pbbbfhhx9+QOvWrW3a5sGDBxEVFYVnn31Weu7XX3/VW8dwPwEgODgYAJCXlyfV7OgmWJvSoUMHeHt7Izc3F3379rWprERkPyZVE5HTREdH49ChQzh37hwKCgowbdo0XLlyBSNHjkR6ejqys7PxzTffYMKECUYBhT2WLFmCnTt34tSpUxg/fjyCgoIwdOhQADU9xQ4ePIjp06cjIyMDZ86cwRdffGGUVG3o1ltvRW5uLtavX4/s7Gy89tpr+Pzzz432MycnBxkZGSgoKEB5eTl8fHxwxx13SMnSe/fuxT//+U+L++Dn54ennnoKs2fPxnvvvYfs7GwcO3YMr7/+Ot577z27jw0RmceAiIic5qmnnoKXlxc6dOiA4OBgVFRU4MCBA6iqqsKgQYMQFxeHWbNmITAwUGpiqo3U1FQ88cQT6NatG/Lz8/Hll19Co9EAqMlL2rt3L37++Wf06dMHXbt2xXPPPYeIiAiz27z33nsxe/ZsTJ8+HV26dMHBgwel3mdaw4cPx+DBg9G/f38EBwfj448/BgC8++67qKysRLdu3TBr1iy8+OKLVu3HCy+8gIULFyIlJQXt27fH4MGDsXXrVsTExNhxVIjIGiqh28BNROSB9uzZg/79++Pq1asIDAx0dXGIyAOxhoiIiIgUjwERERERKR6bzIiIiEjxWENEREREiseAiIiIiBSPAREREREpHgMiIiIiUjwGRERERKR4DIiIiIhI8RgQERERkeIxICIiIiLFY0BEREREivf/P0yxqwCkR+gAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABd9ElEQVR4nO3deVwV5f4H8M8AgoCCGygoCGKKC5BpGu6WpVzL1O7NzMy1bmWZrWJdr9oieu+v/ZZ2rbRut7TFzFIrb7nkkuGCS6UpopJiSspBBUE5z+8PnPEsM2fjnDNz4PN+vewVc+bMeWbOnJnvPM/3eR5JCCFAREREZEBBeheAiIiISAsDFSIiIjIsBipERERkWAxUiIiIyLAYqBAREZFhMVAhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGRYDFSKqsVmzZkGSJJfWlSQJs2bN8ml5+vfvj/79+xt2e0TkOgYqRLXI4sWLIUmS8i8kJAQtW7bEuHHjcOzYMb2LZzhJSUlWxys2NhZ9+vTBZ5995pXtl5WVYdasWVi3bp1XtkdUFzFQIaqFnnnmGfznP//BggULkJWVhffffx/9+vXDhQsXfPJ5f/vb31BeXu6Tbfva1Vdfjf/85z/4z3/+g8cffxzHjx/HiBEjsGDBghpvu6ysDLNnz2agQlQDIXoXgIi8LysrC926dQMATJo0Cc2aNcO8efOwYsUK3H777V7/vJCQEISEBOblpGXLlrjrrruUv++++260bdsWL730Eu677z4dS0ZEAGtUiOqEPn36AADy8/Otlu/btw9//vOf0aRJE9SvXx/dunXDihUrrNa5ePEiZs+ejauuugr169dH06ZN0bt3b6xZs0ZZRy1HpaKiAo888ghiYmLQsGFDDB06FL/99ptd2caNG4ekpCS75WrbXLRoEa6//nrExsYiLCwMHTt2xPz58906Fs60aNECHTp0QEFBgcP1Tp48iYkTJ6J58+aoX78+MjIy8O677yqvHz58GDExMQCA2bNnK81Lvs7PIaptAvMRiIjccvjwYQBA48aNlWU//fQTevXqhZYtWyI7OxuRkZH46KOPMGzYMHz66acYPnw4gOqAIScnB5MmTUL37t1RWlqKbdu2YceOHbjxxhs1P3PSpEl4//33ceedd6Jnz5747rvvMGTIkBrtx/z589GpUycMHToUISEh+OKLL/DAAw/AbDZj8uTJNdq27OLFiygsLETTpk011ykvL0f//v1x8OBBPPjgg0hOTsbHH3+McePGoaSkBA8//DBiYmIwf/583H///Rg+fDhGjBgBAEhPT/dKOYnqDEFEtcaiRYsEAPG///1PnDp1ShQWFopPPvlExMTEiLCwMFFYWKise8MNN4i0tDRx4cIFZZnZbBY9e/YUV111lbIsIyNDDBkyxOHnzpw5U1heTvLy8gQA8cADD1itd+eddwoAYubMmcqysWPHitatWzvdphBClJWV2a03aNAg0aZNG6tl/fr1E/369XNYZiGEaN26tbjpppvEqVOnxKlTp8SuXbvEHXfcIQCIhx56SHN7L7/8sgAg3n//fWVZZWWlyMzMFA0aNBClpaVCCCFOnTplt79E5B42/RDVQgMHDkRMTAwSEhLw5z//GZGRkVixYgVatWoFADh9+jS+++473H777Th79iyKi4tRXFyMP/74A4MGDcKBAweUXkKNGjXCTz/9hAMHDrj8+atWrQIATJkyxWr51KlTa7Rf4eHhyv+bTCYUFxejX79+OHToEEwmk0fb/OabbxATE4OYmBhkZGTg448/xpgxYzBv3jzN96xatQotWrTAqFGjlGX16tXDlClTcO7cOaxfv96jshCRPTb9ENVCr7/+Otq1aweTyYR33nkHGzZsQFhYmPL6wYMHIYTAjBkzMGPGDNVtnDx5Ei1btsQzzzyDW2+9Fe3atUPnzp0xePBgjBkzxmETxpEjRxAUFISUlBSr5e3bt6/Rfm3atAkzZ87Eli1bUFZWZvWayWRCdHS029vs0aMHnnvuOUiShIiICHTo0AGNGjVy+J4jR47gqquuQlCQ9bNehw4dlNeJyDsYqBDVQt27d1d6/QwbNgy9e/fGnXfeif3796NBgwYwm80AgMcffxyDBg1S3Ubbtm0BAH379kV+fj4+//xzfPPNN3jrrbfw0ksvYcGCBZg0aVKNy6o1UFxVVZXV3/n5+bjhhhuQmpqKF198EQkJCQgNDcWqVavw0ksvKfvkrmbNmmHgwIEevZeIfI+BClEtFxwcjJycHAwYMAD/+te/kJ2djTZt2gCobq5w5SbdpEkTjB8/HuPHj8e5c+fQt29fzJo1SzNQad26NcxmM/Lz861qUfbv32+3buPGjVFSUmK33LZW4osvvkBFRQVWrFiBxMREZfnatWudlt/bWrdujd27d8NsNlvVquzbt095HdAOwojIdcxRIaoD+vfvj+7du+Pll1/GhQsXEBsbi/79++PNN99EUVGR3fqnTp1S/v+PP/6weq1BgwZo27YtKioqND8vKysLAPDqq69aLX/55Zft1k1JSYHJZMLu3buVZUVFRXajwwYHBwMAhBDKMpPJhEWLFmmWw1f+9Kc/4cSJE1i6dKmy7NKlS3jttdfQoEED9OvXDwAQEREBAKqBGBG5hjUqRHXEE088gb/85S9YvHgx7rvvPrz++uvo3bs30tLScM8996BNmzb4/fffsWXLFvz222/YtWsXAKBjx47o378/unbtiiZNmmDbtm345JNP8OCDD2p+1tVXX41Ro0bhjTfegMlkQs+ePfHtt9/i4MGDduvecccdmDZtGoYPH44pU6agrKwM8+fPR7t27bBjxw5lvZtuugmhoaG45ZZb8Ne//hXnzp3DwoULERsbqxps+dK9996LN998E+PGjcP27duRlJSETz75BJs2bcLLL7+Mhg0bAqhO/u3YsSOWLl2Kdu3aoUmTJujcuTM6d+7s1/ISBTS9ux0RkffI3ZNzc3PtXquqqhIpKSkiJSVFXLp0SQghRH5+vrj77rtFixYtRL169UTLli3FzTffLD755BPlfc8995zo3r27aNSokQgPDxepqani+eefF5WVlco6al2Jy8vLxZQpU0TTpk1FZGSkuOWWW0RhYaFqd91vvvlGdO7cWYSGhor27duL999/X3WbK1asEOnp6aJ+/foiKSlJzJs3T7zzzjsCgCgoKFDWc6d7srOu11rb+/3338X48eNFs2bNRGhoqEhLSxOLFi2ye+/mzZtF165dRWhoKLsqE3lAEsKiHpWIiIjIQJijQkRERIbFQIWIiIgMi4EKERERGRYDFSIiIjIsBipERERkWAxUiIiIyLACesA3s9mM48ePo2HDhhyqmoiIKEAIIXD27FnEx8fbTe5pK6ADlePHjyMhIUHvYhAREZEHCgsL0apVK4frBHSgIg9TXVhYiKioKJ1LQ0RERK4oLS1FQkKCch93JKADFbm5JyoqioEKERFRgHElbYPJtERERGRYDFSIiIjIsBioEBERkWEFdI4KERHVHVVVVbh48aLexSAXhYaGOu167AoGKkREZGhCCJw4cQIlJSV6F4XcEBQUhOTkZISGhtZoOwxUiIjI0OQgJTY2FhERERzgMwDIA7IWFRUhMTGxRt8ZAxUiIjKsqqoqJUhp2rSp3sUhN8TExOD48eO4dOkS6tWr5/F2mExLRESGJeekRERE6FwScpfc5FNVVVWj7TBQISIiw2NzT+Dx1nfGQIWIiIgMi4EKERERuW3dunWQJMnnvbEYqGgoMpVjc34xikzleheFiIjqoFmzZuHqq6/Wuxi6Y68fFUtzj2L6sj0wCyBIAnJGpGHktYl6F4uIiMjOxYsXa9SrxuhYo2KjyFSuBCkAYBbAU8v2smaFiIjcYjabkZOTg+TkZISHhyMjIwOffPIJgCvNJt9++y26deuGiIgI9OzZE/v37wcALF68GLNnz8auXbsgSRIkScLixYsBVCepzp8/H0OHDkVkZCSef/55h+WQP+vrr79Gly5dEB4ejuuvvx4nT57E6tWr0aFDB0RFReHOO+9EWVmZ8r6KigpMmTIFsbGxqF+/Pnr37o3c3FzfHCwHGKjYKCg+rwQpsiohcLi4TP0NREQUEPzdpJ+Tk4P33nsPCxYswE8//YRHHnkEd911F9avX6+s8/TTT+OFF17Atm3bEBISggkTJgAARo4cicceewydOnVCUVERioqKMHLkSOV9s2bNwvDhw7Fnzx7lPc7MmjUL//rXv7B582YUFhbi9ttvx8svv4wPPvgAK1euxDfffIPXXntNWf/JJ5/Ep59+infffRc7duxA27ZtMWjQIJw+fdpLR8g1ujf9HDt2DNOmTcPq1atRVlaGtm3bYtGiRejWrZsu5UluFokgCVbBSrAkIakZ+/ATEQUqfzfpV1RUYM6cOfjf//6HzMxMAECbNm2wceNGvPnmm7j33nsBAM8//zz69esHAMjOzsaQIUNw4cIFhIeHo0GDBggJCUGLFi3stn/nnXdi/PjxbpXpueeeQ69evQAAEydOxPTp05Gfn482bdoAAP785z9j7dq1mDZtGs6fP4/58+dj8eLFyMrKAgAsXLgQa9aswdtvv40nnnjCswPjAV1rVM6cOYNevXqhXr16WL16NX7++We88MILaNy4sW5liosOR86INARf7v8dLEmYM6Iz4qLDdSsTERF5To8m/YMHD6KsrAw33ngjGjRooPx77733kJ+fr6yXnp6u/H9cXBwA4OTJk06378nDvOVnNW/eHBEREUqQIi+TPzs/Px8XL15UAhsAqFevHrp3745ffvnF7c+uCV1rVObNm4eEhAQsWrRIWZacnKxjiaqNvDYRfdvF4HBxGZKaRTBIISIKYI6a9H11fT937hwAYOXKlWjZsqXVa2FhYUqwYpkEKw+QZjabnW4/MjLS7TLZfpZtAq4kSS59tr/pWqOyYsUKdOvWDX/5y18QGxuLLl26YOHChZrrV1RUoLS01Oqfr8RFhyMzpSmDFCKiACc36VvydZN+x44dERYWhqNHj6Jt27ZW/xISElzaRmhoaI2Hn/dUSkoKQkNDsWnTJmXZxYsXkZubi44dO/q1LLrWqBw6dAjz58/Ho48+iqeeegq5ubmYMmUKQkNDMXbsWLv1c3JyMHv2bB1KSkREgUpu0n9q2V5UCeGXJv2GDRvi8ccfxyOPPAKz2YzevXvDZDJh06ZNiIqKQuvWrZ1uIykpCQUFBcjLy0OrVq3QsGFDhIWF+azMliIjI3H//ffjiSeeQJMmTZCYmIh//OMfKCsrw8SJE/1SBpmugYrZbEa3bt0wZ84cAECXLl2wd+9eLFiwQDVQmT59Oh599FHl79LSUpcjUyIiqrv0aNJ/9tlnERMTg5ycHBw6dAiNGjXCNddcg6eeesqlJpbbbrsNy5Ytw4ABA1BSUoJFixZh3LhxPi+3bO7cuTCbzRgzZgzOnj2Lbt264euvv/Z7HqkkhBDOV/ON1q1b48Ybb8Rbb72lLJs/fz6ee+45HDt2zOn7S0tLER0dDZPJhKioKF8WlYiIdHDhwgUUFBQgOTkZ9evX17s45AZH3507929dc1R69eqlDG4j+/XXX12qEiMiIqLaT9dA5ZFHHsEPP/yAOXPm4ODBg/jggw/w73//G5MnT9azWERERAHjvvvus+oCbfnvvvvu07t4NaZr0w8AfPnll5g+fToOHDiA5ORkPProo7jnnntcei+bfoiIajc2/Th38uRJzV6wUVFRiI2N9XOJqnmr6Uf3kWlvvvlm3HzzzXoXg4iIKCDFxsbqFoz4A+f6ISIiIsNioEJERIZnxBFTyTFvZZbo3vRDRESkJTQ0FEFBQTh+/DhiYmIQGhqqDDVPxiWEwKlTp1SH6ncXAxUiIjKsoKAgJCcno6ioCMePH9e7OOQGSZLQqlUrBAcH12g7DFSIiMjQQkNDkZiYiEuXLuk29w25r169ejUOUgAGKkREFADkJoSaNiNQ4GEyLRERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsPSNVCZNWsWJEmy+peamqpnkYiIiMhAQvQuQKdOnfC///1P+TskRPciERERkUHoHhWEhISgRYsWeheDiIiIDEj3HJUDBw4gPj4ebdq0wejRo3H06FHNdSsqKlBaWmr1j4iIiGovXQOVHj16YPHixfjqq68wf/58FBQUoE+fPjh79qzq+jk5OYiOjlb+JSQk+LnERERE5E+SEELoXQhZSUkJWrdujRdffBETJ060e72iogIVFRXK36WlpUhISIDJZEJUVJQ/i0pEREQeKi0tRXR0tEv3b91zVCw1atQI7dq1w8GDB1VfDwsLQ1hYmJ9LRURERHrRPUfF0rlz55Cfn4+4uDi9i0JEREQGoGug8vjjj2P9+vU4fPgwNm/ejOHDhyM4OBijRo3Ss1hERERkELo2/fz2228YNWoU/vjjD8TExKB379744YcfEBMTo2exiIiIyCB0DVSWLFmi58cTERGRwRkqR4WIiIjIEgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSIiIjIsBioEBERkWExUNFZkakcm/OLUWQq17soREREhhOidwHqsqW5RzF92R6YBRAkATkj0jDy2kS9i0VERGQYrFHRSZGpXAlSAMAsgKeW7WXNChERkQUGKjopKD6vBCmyKiFwuLhMnwIREREZEAMVnSQ3i0SQZL0sWJKQ1CxCnwIREREZEAMVP5OTZ4HqnJRgqTpaCZYkzBnRGXHR4XoWj4iIyFCYTOtHasmzG7MH4HBxGZKaRTBIISIismGoGpW5c+dCkiRMnTpV76J4nVbyLABkpjRlkEJERKTCMIFKbm4u3nzzTaSnp+tdFJ9g8iwREZH7DBGonDt3DqNHj8bChQvRuHFjvYvjE0yeJSIicp8hApXJkydjyJAhGDhwoN5F8Zm46HAmzxIREblJ92TaJUuWYMeOHcjNzXW6bkVFBSoqKpS/S0tLfVk0rxt5bSL6toth8iwREZGLdA1UCgsL8fDDD2PNmjWoX7++0/VzcnIwe/ZsP5TMd+KiwxmgEBERuUgSQgjnq/nG8uXLMXz4cAQHByvLqqqqIEkSgoKCUFFRYfWaWo1KQkICTCYToqKi/Fp2IiIi8kxpaSmio6Ndun/rWqNyww03YM+ePVbLxo8fj9TUVEybNs0qSAGAsLAwhIWF+bOIREREpCNdA5WGDRuic+fOVssiIyPRtGlTu+VERERU9xii1w9Vk4fX5wzKRERE1XTv9WNr3bp1ehdBF2rD64+8NlHvYhEREemKNSoGoDW8PmtWiIiormOgYgAcXp+IiEgdAxUD4PD6RERE6hioGACH1yciIlJnuGTauorD6xMREdljoGIgHF6fiIjIGpt+iIiIyLAYqBAREZFhMVAhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGRYDFSIiIjIsBipERERkWAxUiIiIyLAYqBAREZFhMVAhIiIiw2KgQkRERIbl8qSEpaWlLm80KirKo8IQERERWXI5UGnUqBEkSXK4jhACkiShqqqqxgUjIiIicjlQWbt2rS/LQURERGTH5UClX79+viwHERERkR2XAxVbJSUlePvtt/HLL78AADp16oQJEyYgOjraa4UjIiKius2jXj/btm1DSkoKXnrpJZw+fRqnT5/Giy++iJSUFOzYscPbZSQiIqI6ShJCCHff1KdPH7Rt2xYLFy5ESEh1pcylS5cwadIkHDp0CBs2bPB6QdWUlpYiOjoaJpOJPY2IiIgChDv3b48ClfDwcOzcuROpqalWy3/++Wd069YNZWVl7m7SIwxUiIiIAo8792+Pmn6ioqJw9OhRu+WFhYVo2LChJ5skIiIisuNRoDJy5EhMnDgRS5cuRWFhIQoLC7FkyRJMmjQJo0aN8nYZiYiIqI7yqNfP//3f/0GSJNx99924dOkSAKBevXq4//77MXfuXK8WkIiIiOouj3JUZGVlZcjPzwcApKSkICIiwmsFcwVzVIiIiAKPO/dvj8dRAYCIiAikpaXVZBNEREREmjwKVC5cuIDXXnsNa9euxcmTJ2E2m61e51gqRERE5A0eBSoTJ07EN998gz//+c/o3r2708kKiYiIiDzhUaDy5ZdfYtWqVejVq5e3y0NERESk8Kh7csuWLTleChEREfmcR4HKCy+8gGnTpuHIkSPeLg8RERGRwqOmn27duuHChQto06YNIiIiUK9ePavXT58+7ZXCERERUd3mUaAyatQoHDt2DHPmzEHz5s2ZTEtEREQ+4VGgsnnzZmzZsgUZGRneLg8RERGRwqMcldTUVJSXl3u7LERERERWPApU5s6di8ceewzr1q3DH3/8gdLSUqt/RERERN7g0Vw/QUHV8Y1tbooQApIkoaqqyjulc4Jz/RAREQUen8/1s3btWo8KRkREROQOjwKVfv36ubTeAw88gGeeeQbNmjXz5GOIiIiojvMoR8VV77//vsOclfnz5yM9PR1RUVGIiopCZmYmVq9e7csiERERUQDxaaDiLP2lVatWmDt3LrZv345t27bh+uuvx6233oqffvrJl8UiIiKiAOFR04+33HLLLVZ/P//885g/fz5++OEHdOrUSadSERERkVHoGqhYqqqqwscff4zz588jMzNT7+IQERGRAegeqOzZsweZmZm4cOECGjRogM8++wwdO3ZUXbeiogIVFRXK3xyzhYiIqHbzaY6KK9q3b4+8vDxs3boV999/P8aOHYuff/5Zdd2cnBxER0cr/xISEvxcWiIiIvIntwOVS5cu4ZlnnsFvv/3mdN277rrL6UAuoaGhaNu2Lbp27YqcnBxkZGTglVdeUV13+vTpMJlMyr/CwkJ3i09EREQBxO1AJSQkBP/85z9x6dIlp+vOnz/f7TFUzGazVfOOpbCwMKUrs/yPiIiIai+PclSuv/56rF+/HklJSTX68OnTpyMrKwuJiYk4e/YsPvjgA6xbtw5ff/11jbZLREREtYNHgUpWVhays7OxZ88edO3aFZGRkVavDx061KXtnDx5EnfffTeKiooQHR2N9PR0fP3117jxxhs9KRYRERHVMjWalFB1g5yUkIiIiBzw+aSEZrPZo4IRERERucOj7snvvfeeasJrZWUl3nvvvRoXioiIiAjwsOknODgYRUVFiI2NtVr+xx9/IDY2lk0/REREpMmd+7dHNSpCCEiSZLf8t99+Q3R0tCebJCIiIrLjVo5Kly5dIEkSJEnCDTfcgJCQK2+vqqpCQUEBBg8e7PVCEhERUd3kVqAybNgwAEBeXh4GDRqEBg0aKK+FhoYiKSkJt912m1cLSERERHWXW4HKzJkzAQBJSUkYOXIk6tev75NCEREREQEedk8eO3YsgOpePidPnrTrrpyYmFjzkhEREVGd51GgcuDAAUyYMAGbN2+2Wi4n2fqr1w8RERHVbh4FKuPGjUNISAi+/PJLxMXFqfYAIiIiIqopjwKVvLw8bN++Hampqd4uDxEREZHCo3FUOnbsiOLiYm+XxZCKTOXYnF+MIlO53kUhIiKqczyqUZk3bx6efPJJzJkzB2lpaahXr57V67VllNiluUcxfdkemAUQJAE5I9Iw8lomChMREflLjWdPtsxP8XcyrS+H0C8ylaPX3O9gtjg6wZKEjdkDEBcdbrVeQfF5JDeLtFpORERE6nw+e/LatWs9KlggKSg+bxWkAECVEDhcXKYEJKxxISIi8i2PclT69euHoKAgLFy4ENnZ2Wjbti369euHo0ePIjg42Ntl1EVys0gE2XRmCpYkJDWLAFBdkyIHKQBgFsBTy/Yyl4WIiMiLPApUPv30UwwaNAjh4eHYuXMnKioqAAAmkwlz5szxagH1EhcdjpwRaQi+3LQVLEmYM6KzUpviqMaFiIiIvMOjpp/nnnsOCxYswN13340lS5Yoy3v16oXnnnvOa4XT28hrE9G3XQwOF5chqVmEVQ6KXONim8Mi17gQERFRzXlUo7J//3707dvXbnl0dDRKSkpqWiZDiYsOR2ZKU7tEWWc1LkRERFRzHtWotGjRAgcPHkRSUpLV8o0bN6JNmzbeKFdAcFTjQkRERDXnUaByzz334OGHH8Y777wDSZJw/PhxbNmyBY8//jhmzJjh7TIaWlx0OAMUIiIiH/EoUMnOzobZbMYNN9yAsrIy9O3bF2FhYXj88cfx0EMPebuMREREVEd5NOCbrLKyEgcPHsS5c+fQsWNHNGjQwJtlc8qXA74RERGRb/h8wDdZaGgoOnbsWJNNEBEREWnyqNcPERERkT8wUCEiIiLDYqBCREREhsVAhYiIiAyLgYofFJnKsTm/mBMWEhERualGvX7IuaW5R5VZloMkIGdEGkZem6h3sYiIiAICa1R8qMhUrgQpQPUEhk8t2+t2zQprZIiIqK5ijYoPFRSft5pdGQCqhMDh4jKXh91njQwREdVlrFFxgac1GsnNIhEkWS8LliQkNYtw+XO9USNDREQUqBioOLE09yh6zf0Ody7cil5zv8PS3KMuvzcuOhw5I9IQLFVHK8GShDkjOrtcm+KoRoaIiKguYNOPA1o1Gn3bxbgcbIy8NhF928XgcHEZkppFuPS+IlM5CorPIzI0GEESrIIVd2pkiIiIAh0DFQe8kWMCVNeseJqTMrxLSyzfeRxVQrhdI0NERBToGKg4IOeY+KtGQ60GZ/nO41j2QCbKKs0u18gQERHVFsxRcaCmOSbu0qrBKas0IzOlKYMUIiKqc1ij4oQnOSae8ncNDhERkdGxRsUFcdHhfqnR8HcNDhERkdGxRsVg/FmDQ0REZHQMVAzInV5CREREtRmbfoiIiMiwGKgQERGRYekaqOTk5ODaa69Fw4YNERsbi2HDhmH//v16FomIiIgMRNdAZf369Zg8eTJ++OEHrFmzBhcvXsRNN92E8+fP61ksl3g6USERERG5ThJCCOer+cepU6cQGxuL9evXo2/fvk7XLy0tRXR0NEwmE6KiovxQwmq2w9znjEjDyGsT/fb5REREgcyd+7ehclRMJhMAoEmTJjqXRJvWRIWsWSEiIvI+w3RPNpvNmDp1Knr16oXOnTurrlNRUYGKigrl79LSUn8VT+GtiQqJiIjIOcPUqEyePBl79+7FkiVLNNfJyclBdHS08i8hIcGPJawmD3NvicPcExER+YYhApUHH3wQX375JdauXYtWrVpprjd9+nSYTCblX2FhoR9LWY3D3BMREfmPrk0/Qgg89NBD+Oyzz7Bu3TokJyc7XD8sLAxhYWF+Kp02DnNPRETkH7oGKpMnT8YHH3yAzz//HA0bNsSJEycAANHR0QgPN/bNn8PcExER+Z6u3ZMlSVJdvmjRIowbN87p+/XqnkxERESec+f+rXvTDxEREZEWQyTTEhEREalhoEJERESGxUCFiIiIDIuBChERERkWAxUiIiIyLAYqREREZFgMVJwoMpVjc34xZ0cmIiLSgWFmTzaipblHMX3ZHpgFECQBOSPSMPLaRL2LRUREVGewRkVDkalcCVIAwCyAp5btdalmhbUw+uN3QERUO7BGRUNB8XklSJFVCYHDxWUO5/hhLYz++B0QEdUerFHRkNwsEkE2UxEFSxKSmkVovqcmtTDkHc6+A9a0EBEFFgYqGuKiw5EzIg3BlydODJYkzBnR2WFtiqNaGPIPR9/B0tyj6DX3O9y5cCt6zf0OS3OP6lNIIiJyGZt+HBh5bSL6tovB4eIyJDWLcBikAFdqYSxvlM5qYci7tL6DiNAg1ZqWvu1inH6vRESkH9aoOBEXHY7MlKYu3cw8qYUh79L6Ds5XVrG2i4goALFGxcvcrYUh71P7DopM5aztIiIKQKxR8QF3amHIN2y/A9Z2EREFJtaoUJ3B2i4iosDDQIXqlLjocAYoREQBhE0/REREZFgMVIiIiMiwGKgQERGRYTFQoTqLw+kTERkfk2mpTuLEhUREgYE1KnUEaw+u4OSRRESBgzUqdQBrD6w5mriQXZeJiIyFNSq1HGsP7MkTF1ricPpERMbEQMVFgdp04qj2oK7icPpERIGDTT8uCOSmE7n2gJPxWeNw+kREgYE1Kk6403RixFoX1h5o4+SRRETGxxoVJ1xNvDRyrQtrD4iIKFCxRsUJVxIvAyFhlbUHREQUiBioOOFK00mgJKwasWmKiIjIETb9uMBZ00kgJKwauWmKiIhIC2tUXOSo6cToCauB0DRFRESkhjUqXmLkhFWOxEpERIGKgYoXxUWH63bjLzKVo6D4PJKbRQZk0xQREZEaNv3UAktzj6LX3O9w58Kt6DX3OyzNPWr1utGbpoyGScdERMYhCSGE89WMqbS0FNHR0TCZTIiKitK7OLooMpWj19zv7GpLNmYPsAtEikzlhmyaMhImHRMR+Z4792/WqAQ4d7pGcyyValo1Jkw6JiIyHuaoBDhX8k8c5a/UNY5qTJh0TERkPKxR8QNf5jw4yz9xlr9SlzirMXFlFGIiIvIv1qj4mD9yHrS6RmvdmPu2i6mTNQTOakzkoO+pZXtRJQSTjomIDICBig/5M1BQ6xrNpgxrrjSTGXk8HCIifzNC6gADFR/SO1Dg+CnWXK0x0XM8HCIiozBKL0gGKj6kd6DApgx7rDEhInLOSKkDuibTbtiwAbfccgvi4+MhSRKWL1+uZ3G8zggDrY28NhEbswfgw3uuw8bsAYYfE8Qfg62xmzYRkWPuDH3ha7rWqJw/fx4ZGRmYMGECRowYoWdRfMYIT/C2TRlGaHNUY5RqRiKiuk7vFgFLugYqWVlZyMrK0rMIfmGknAejBgNGqmYkIqrrjJQ6EFA5KhUVFaioqFD+Li0t1bE0xuBO7Yg/gwF3a230TjwmIiJrRmgRAAIsUMnJycHs2bP1LoZh2NaOTBucirRW0ZrBgb+CAU9qbYxUzUhERNWM0CIQUCPTTp8+HSaTSflXWFioW1n0nmFXrXYkZ/U+hyPQ+mPkVU/nyzFC4rG/6X0OEREFgoCqUQkLC0NYWJjexTBEnoda7YhMq0nHH22ONam1MUo1oz8Y4RwiIgoEARWoGIFRkj7VmkosaQUHvg4GatqEY4RqRm9wlKNjlHOIiCgQ6Nr0c+7cOeTl5SEvLw8AUFBQgLy8PBw9atyJ84zSt9y2qcSWo+DAl+OI1MUmHFvOJoI0yjlERBQIdK1R2bZtGwYMGKD8/eijjwIAxo4di8WLF+tUKseMlPRpWTuy+1gJ/rF6v+7dyIpM5UhoEoFlD2SirNLs9yYcvceIcaW2xEjnEBGR0ekaqPTv3x9CaLRdGJSR+pbL5ZFrSIZmxOua36GWd5GZ0lTXzzdC7pBtM5zRziEiIiOTRKBFChZKS0sRHR0Nk8mEqKgov352kam8TiR9uqrIVI5ec7+zqyXYmD3AL8dH78/3pBw8h4iornLn/h1Q3ZONRCvPw9ddTo3apVXvvAu9P1/mTo4O5xwiInKOvX68yNdND/5o2vA0x0PvvAu9P99SXepmTUTka6xR8RJPBzozyvYB571VHNG7t4/en69WHtaWEBHVHGtUvKDIVI4vdx/36fD0vh7+3htje+hdk+DNz9e79xAREVVjoFJDls0xtmybHmpy83PUtOGNm6q3AiG9B2zzxucbofcQERFVY6BSA7a1EJZsmx5qevPT6tK64ddTXrmpGinHQ08cNZaIyFgYqNSA1nw7M4Z0wJ/S45Qbm7dufrZNGwCsusLW5KaqFQgBwOb84jrTBOKvGaaJKHCwKVhfDFRqQKsWwjJIAbxz87P8ociDqG3OL/bqTdU2ENrw6yklEKorTSCsWSIiS2wK1h97/dSAbU+TIABPDm5vFyTINz9LWjc/tXFStHrjaG03IjTI47FW5N4qAHzey8iIjNZ7iMgojDqGky/5o7elERntu2aNSg2NvDYRJeUXMXf1PpgFMO+rfWgUUc8q4nZ1yHTbyH1i72TcnB7nsNnIdrvDusRj+Bubaxz91+UmEL17LxEZTV2tVaiL10EjftcMVGqoyFSOeav3QTjJE3F281OL3Bd+X4CF3xfYfablD8VyuxGhQUqQIm9j+qd7EBkWgq6tGwfUAG5607v3EpFR1IUEc60clLp2HTTqd82mnxpyZ+h2R4OAaSXmqrH9ocjbPV9ZZbcNM4AHP9gZcAO4EZExGGV6Cl9xNNBlbb4OqjXvGPW7Zo1KDXkr4lbbjiX5NUc/FEfbsI2MXclid7UJRN5WZGgwzldWIblZJAAwS56oFqjNtQqu1CDUxqZgreYdo37XDFRqyFn+iavd2uTtqI3LEixJWPZAJsoqzQ5/KLZlsSVHxrZjr0zsnYwJvZM1y+yo3GoD3sn5vQLGaePUC7s1UqBzNccuELmag1KbmoKdBWdG/K4lIVTuaAHCnWmifa3IVG4XcXuSlFRkKseiTQV4a0MBzLhSg2L7Pkc3wCJTObYfPoMpS3baRcbLHsi0ymORSQDm3pYGAC6XuchUbjWOi5ZgScLG7AG6n+z+ZsSkNED93CkylWP7kTMQQiCxSYRSM1bXvjPSpnaNC3Rq17Dafr3anF+MOxdutVv+4T3XKT0+/fFdu3P/Zo2Kl9hG3J4mJcVFh+OpP3XE+F7JSoLs+coqFJnKXQ6A4qLDcXNGOM5XXrKLjNXyWIDq2o/py/ZAiOr/d6XMrubVBHKWvKc1Iv5OSnO1nGrnDgBkf7oHtl+l5bnlznFgLVJgcva91aZaBZlRaxB8KblZJCTA6vdu2bxjxN8vAxUfqWm3trjocLsmmmlZqYiPru/yDVCtbbXIVO4wj8WWozI7y6uRGaGN0xM1qRHxZ7dGV8upFjxN/3QPhAS7IEV+/alle1FSfhHzLne/d3YcjFqLRI7Vlu9NLV/O2e+tNuagOLLh11NWf0uAEpwZ9Txgrx8fcWeQNzVqN5WcVfvw0Id5bmVl2/Y0kp8gbMumxVGZbTPiZRIAeVGgPqHUdKCnmn7/rpbxi13HXC6nWvBkBuCo8bdKCGWMIGfbr6uDYwW62vK9WfbeufX1zaq9eLQ46pFZm8jfteVPXpKAvu1iDH0esEbFR2papViT7srOyE8Qr313AB9sLbR6TZIAScAqP0atzPKTS992MdiYPUBpppITfgF4/QnFn1WS3qgR82aVsu2+O5q1W6ucajVgQUB1jYpWbzPY15hpbT8QBscyYrW2J7y1H0Wmcny5+7jq97bjyBk0jrxSO+FOLYW/aU0Qa5RxQIxC9WFFVF+rBYRhf78MVHyoJlWK7jSreNrL6Ob0eLtARQjgX3d2QZPIMM0yu1o96M2T299Vkt7opuetKmXbfZ+Wlao0xajRKqejiSezL+cn2W7nycHtMe+rfS4dB3ePmb+DBqNWa7tLbT/6totx+1g6CnYlqXr8JbVTTJKA7KxU/LVvSs12xIscPdgZ5WZrBM5+o0bsmgwwUPE5TxPQ4qLDnd6QJABPZrVXLrbuXoi1TtprbEaxtbyhAOpzAPnyiaWmiame3BC9VSNS0wREtX13FqQ4KqdW8NS3XQx2HDkDIYCEJuFWXeEbRdRTjkOQBEzonaS5r64eM38HDUYdcdNdavsx7dM9SnKkKz315BwOrSAFcNwcKC43Q0MAf+1njGDF0YOdUW62avwdrNv+RoMATLz8ezZyYjG7JxuU5YVcAjC4cwt8vfcEzDbryV3pAHjUzW5p7lG7E9PyIqc2/5DasP6WXdu8zZXudFrcvSHaXjj07pKpte+2WftBAF67s4tdkOktcrf5hRsKnN4QnR0zPbqE1uQcMhKt/bCkdSytrikOmvtcFQRg0/TrDXEjA6yvZTKt4R2MoKbXppooMpVj0cbDeGvjIbvP99c1j92TA5ztU5MA8M1Pv2P2rZ0w4/OfrNaVqzU9bV901Dyh9vT2lkqQEgTgj/MVVl2oXd1PV354njbDuPsUrXXh8MaP1dm4N1qvqeaVSMC0wan4x1f7rQLMIenxXiuT7XrbDp/GW98XuNR13Vkt0rbDp/3eFm7UETfdteeYyek6tseyyFSONT+fwMzPf1a+P288npoB1e9Mrzwg23nPnA2QqSdvXZtqQg5S1D7f3VQCX2OgYkBaSYmNI0J90r6odWNRK4fa9U2guj3b2VO2PKBYt6Qmdl2vHf3wPK2SdCe505dNA3Y5JoNTkdYqGsnNIp0eB3nfLXNIhAAaRdRTkpg9uRi7euHzJGnXlc+15eugwcjV2q6SJ0B1JghQjuXS3KOqY+R4g9p3pnceUKCM9aJ1bdpx5AzM4jQkSVImkvXFtcmVa6Pe36UlBio6U4tYtZ7+uiY1dnix9faF2NWEXsun7OnL9iAiNBjdkppYnfC2F0sJrg8sB3iWmOrOU7SveqyodjO/fLOxnGpAfk3tOPRtF2MVIQpUj3/y6p1d3J4VW6tMap+r1ZNC5m6irNb2ggC7c9UXT3KBPl6Gqz0Bp2WlKjc4bwcpSi4MruQ2yJydV0Z5OjcCtWuTJAGTP9h55W9Ujxa+q7DE69cmZ9dGo+V0MVDRkaOmBq2gw9HF1tsXYrvEq8vt2o4ufGYBPPRhnlVvBNt++4D9Nlz54bn7tOTOU7SvmgYc3VzUFlseB/nC/se5Crt15VmxPXnSWbSxwKULn6OyWw4SZUvrvNba3mt3drFqtnLlSc7Tm16gPHGrcfbgIAHI/lN1bxy527E3gxR5Co6Vu0/grY2H8O/vC/DWxgKH36/W/GI1fToPxKDHMpH56Oky3HFtApb8WAgz7GvDgerrw7RP7WsfcXn9mlybnF0bjTbUAAMVnTiLWB0FHY4utp5eiLV++Lbl2PDrKeXktq0RsCTvzyujrnbpKdBXVf+uBm++ahpwtVZKJh8H28RHLZ70gFJLhla78KkNtS2TB4lS277Wee2ol5mj99vW0rkzEm+g3cwckc9RR12Kh2bEO2yu0zJjSAdcEgL/WH0l72lYl3gs33nc6vcQG1VfM7dB6/stq7xo1XRp+R4AVjdvyyYPLYH4/Tv6Tu7snojUuAb4++c/u7y9Sb3bAKhOrvZ0/xxdG42W08VAxU9sfzSuRKz+evpzZe4gAFYDvFlmjGupulz9onWjlm+Cvs4XcPU4+qJpwDYAsiWP4msWV44DYN0F3FnioztPOgXF51UDj6zOcXbLbIfatmQWUEZDduW8Xrm7CEPS45wGg1oDUsm1dNMGp1qN66IVqBmpfd1TajfakdcmIiI0GA99mGe3vlkAO46ccRqkqM3z8qf0OMRFh2NoRrzV+f/4oPZWf2/OL9a8bmWmNLX7fod1icekd7er1qBqXUPkJg9Xp4Ew8vcv5+Y5aoL74MejcPAsYkcC0LRhqNJzrib7p3VtNFpOFwMVP9AaoMkIEasrP3y1ZFDbC4zak7dlXo1aFaaE6sHlrrFIGtP7CaimwaHWzSW1RUPkHj6DkrJKzF93yOrHbxscqd0MZGrNb+6cN1o1PCv3FGHVniLlBqE21LalYEnC7mMlGP3WD1fOi6xURIQGq54Lz638BXNW/YKcEWnYmD3gctJg9UzNlk+FjmqgzOLyGDI2y9V6uRipfV2LWld4+W/LphIJwD19kjEkPQ7nK6uQ2CRC9RhXHzf73n8AMOX6tmjfoiGuad3YqlbU9gZke/7b/u3sSdu2583wNzar18gBWPj9Ic3k/OnL9qh+X6484Pnq+3d2fXJn9Ghb7jTRPdA/xWosJV+d30bK6WKg4mNaP5qN2QMMEbE6++FrDjhmsx0B4N6+yXj7+8OqeTWRYSF40CJRDKjOs2gSGeZWdb6Rae2DWqCX3qqR1Y/f2c1AZhbax9lVE3sn422VPBWB6lmU5VFONYMlACOvbWV3scxZ5bhHinzuP5nV3m7QOsvj5agGygz7MUBsAzWjta+rsT0nhndpic92HlP+tgxGBYB/f1+Af19usguSgBHXtMSyHceUdaTLx69bUhPVQGJUj0SrwNnTG5ArT9pycKMVcDtqMpbJtUND0p131/fV928bOMq1Imo1PrbjXo3qnoAluYVuNb+psZzSRH4YSGsZjdfX5dd4/1xhlJwuBio+5uhHY4SI1dkPX2siO7WbxfheyRjfK1l1f7q2bqz5OVp5CaktGiIj4Ur+gpFpBaSpLRraLf/HV/sdDm7mKBfB0XF29sT35vp8zF29T7nY3pAag2/3WTfvCADbD59B1yT776v6ApyIJblH8cGP1lMvuEqe5NA2BjGL6p5MfdvFKDVQt76+2e798sVazqWQR8o9WXpB2XejtK9rfR9q58qnO44przu7uZkFsHzncSyf3BOFp8shSbAa6M+VB6Ca3IBcvW6p9my5/B9XxnF58IOdOFdxSbW7vqP988b3bxtIWm7LMqBXe5gTgMe/D0taNa5FpnJDnN/+xEDFTe42Tzj70egdsTr74WuV/8ms9laJd7bVx+58jtqTl1kAw17frNlWbQSW54JWQJp7+IxHT3eWE0d+uLVQNZdHq01ewuW5WPqlKGXcdLAYr6+98hQmAHy3Tz0HRZIsxm+xaVv/8MejNepJIkH7JmUGsGjjYTw1pAPOV1aprjOpdxv8tW8KhmbEKyPlLvy+wCpB+Oa0FhhzXWu8t+WI0pXW37WVjmoI3ZlwVEuVECirNOPmDPtB/vzxAOTKdUvtNz+xd5JSM+SMgH2TRpGpHAlNIrDsgUzNAd1qkl8h55RYNlWrfVdyQH9zhnpelpogCXj1ji5IaBKORZsKsDyvSHWdaVmpSG+pXeOqtX/AleRaALo3o3sTAxU3eNI8YbSkJDXOehgN79LS6olvWJd45WbhzsVQ63O0mjrULlRGodacoxbQXatSMxEEICI0yOlnbPj1FJb8WKjUgDw5uD36touxy/RXe6LLWb0Pu34rwVd7T2heROXtWr4sSUCrxtXBY2qLhlY1ZzW8t7q0jYXfH8L43kmaMz2Ptxi7w3KkXEtf7jnh1md6i9Y8OrY5BK70BJMufzFaqzh7gtb7AUhm+5sHgLdUmh21yEE9ALyzsbo7tLC4/mpNf+BJsOZubym5N54r36dcXjmwfPmOxugQn680gQYBuKNHAjLbNFV6txWZyjV79dju34q84+iZ853ymwZcm/spUHCuHxfVdH4SveeM8ZS/5mVxdJH425AOGHK5V4LtCLd6HEutY6JWyyTnqNjmXLgyeZztZ1j2ELJ8vyvzv6gJAjDtT1cmvrTNldDqmuwqT+eTmXJ9W4zqkaia9CkfL3f32dfz0ry5IV9p0tI6bpbzClmeE0ES0KttM2w6WGzV+6tvuxjVnjHemL9Gz8R1td+DFvl3NXfVPrtjKknA5mzPvlO1RGbb35szn0/uifOVVVeSnz/dY5e7J3v21k4Yk5mkWo7DxWXY/VuJ0ptNLWfJ0bXizQ35DvPDjDYnk4xz/XiBO92JAefVbEZ5wnFE7eLlr8REOS9h2Ov2vQTkHiPDu9gkEAKY1CcZE3on+/XYah2T9JaN7Ia1l6uq/333NZj03naHY0k4O+4CUH2/o/FOHJmWlWpVMyb30rCsmbHlyucEScBnD/QEANXvUza8Szw+23ncbvmr3x3Ev9YeVHoIWT6Ny0+Y7o5PozUvjTe8uT5fGW0YUD8+tjUglk17H2wtxPcHiiGhOlF6fK9kANXnwJD0FkhrFYUgSUKrxuFemb+mponrNQ1y5H1fubsIz638RXO9YEnCff3aKHlVtoRQT7h1Rm3/E5pEODyXeiQ3xo8FZ6zKYXlu39k9AZ9N7olXvz2Ib/edtHt/k8hQ1e3Kx0/uPQeo5yxp1SwXmcox18m0CpZNqoGKgYoKd7oT23bRDNRqNq2Llz8TEzMSGmPubeo9Pmx/vED1DUHOT5h+OSfDF2wvzFoTBUaEBlkFpM5mq7UdSyJIqu56GB1RD21cuBFbjl+RnZVqdbN0RMKVEUwB57005HLIT/Il5RftnnDl/ZPXyUhojM35xQ6bLsb1TMLyneqjp1r2jstMaap6fjrqHaS2z8XnLrg9caYzjm4U8nELktRzZFbsOo4Ptl5JuhQA3v7+MJpGhlmNFSNvy9Vri7MJMO0S1z/dg8iwEJemY/BW77y46HAMSY/D86t+Ua11kwegU6tJsWT7Xq2pG+RlAFSb5ZY9kOnw93ZzejxyD5+x+jzLVT/4sRAf/liI7D+l2gUqcrKzFldyXLQeDguKz7tUayk3qRr9YVkLAxUb7nQnfnJwe7/0Z/c1Z6OB+jPHxtWnLVs5q/cBEpSbr7eoXZhLyi6qJv8Of2Oz1VTpzgZtsx1LwiyAf1kkvF6T2Ai7Ck3VzQO4XKNis43dx0qQmdK0OkiToJyP8mBbcvWx7ecOVUnC1MoLWXh3V0SE1rN6kh+aEY8dR6ov3F2Tqi/CruYeyTduOTB1NOnhyt1FuDapseZvUq5xiQgNwgvf/IoNB4rtN3T5uFlO7eDJzVWrxlGr5snRd68V4Ci9omyWu3ptcRZIaPXic2U6Bq3rhKfXu7jo8OoA26bZIliS0C2pseYYLDIJV869XYVnsHDDISU/Sc4b++NcBRZezmUKkoBJvZNVa0PLKs2aPe0kAI0jQ50GEwLVv7/pWalWzTg5I9IcHh9Xagcte0g6e2jSKtu/vjuI54enOV7RoBio2HCnO7ErY5AEQua1s9FAbavgfb0vcdHhqPKgW8S81fswNCPe7fK5043U0QiTljcTraekIFzu3g3nTSg7jpbg7bFXgoQVecftak3mrd6H+Oj66JbURDXBuX/7GLtRTLWaQWwTv+V173lvu13iYvUTsf37bf+eNjhVGXcnCMCky00btmN67DhyBg9+sFO12U+rNkquTZK39d7EHthVeAbf/nISofWCcPD3c1ieZ9205OnDhG2vqnv6JGN872SHieCW/2/7mVpPwo7OC2dNrq4MdOZsjB5Hx0brOvH8yp/x9JCOHl0X/to3BRBXxmaSH4TOV1Y5Tk4FkHNbdQDw2Ed5drWtZgG734pZVCdga9UQZ6Y0rc4LutybTFh8jtrwCmrMAkhv1Qibsq93+Xqp1uFCbfoCtUEAx/dOdjitgqX/bj2KRuH18MTgVMcrGhADFRvudifWWjeQBjBz5eIlV8F7i6NROQFg3lf2T5t/SmuB1XtPaHdvFdY3YFcCRXe7kToLLuSbyZ5jJrvXggDMvrUTAGDmip9cqrI9XFyGiX2q5/VIaxVt97ptQClPainTGgBMq+lOyRV6Y7NqPoy7N/d5X+1Txt2Rc2JsyUHPb2fKVWsT1I6T1j7sO3EW/1p70KUmM9ug1NXmEgFYTcg3LSvVqvfGyO4J+NBmHA3bz9T6zT0wIAXz1+Wrll/rqVrm6rQcjprMHAVDWmX+cvcJrNpzwuq3485D2l/7pWDo1fF2uV2qtXtjrWv3dhWesQtSHDEDuLd3G7y9seBKzXhWexQUn8fJ0gs4X1mlOU6R5XFzFFDKtZzu/FbUeilZTl8AwCrZ1/Yc3JR9PRZtKsBbGwo0E3oB4PV1+YiKqOf1mmdfY6Biw53uxI76swfCEN4yVy9egHf65jsblXOiSvUsAIy5Lgkzbu6IHUfOYM3PJ+zGIbC8ebk6A29Nu5HaCpYkRIQGYZ5Ktb4ZwIzPf3KrN0y3pCtt2548DXvSPf58ZZVmDYar37ta09c/Vu/XrPFamntUM2lSJtdGWf7Ovth1DCXlF9E4IhQJjcNderK0nc5+0cYCq+YBV5pLgMs1bMv2KN2IJVQHY0OvjsdSm1FJbQMr2+8lyCKQS2wSYfdbVHuqti1rZGiw6v7adoWXb4rbD5/BlCU7XQ5i46LDMbF3suqklpbnn6szJdsGM87O2yez2iM8NMQqePjx8GnVsmqRu7iP7510pbeNg1GSLdl1Cd51XLW3jaPz3FEAp3YM5L+18scsc2z6t4/FkLQ4lFWaEREapJnI7mnNs54YqKhwpw++2rqOJu5y9LSvZ1ORoyr4YEnC7t+8kzTsyqicb28ssHtikccekZ++h6THW41DYHkDdnWuD2dPoPLF0tWxFVyttlYLUoIA9G0fg3X7rwzCdts1La1G5vX0adjdMSW8kUDtTm8xZ/MKyZ9vOcjXhl9PKeNGyFzt+XRfvzYoKD6P9384gjfW5lu9Ry251FGvKtvkynmr9+G6NvZ5XU8Orn5qB640kWl9L7bz5cj7DFg/Vdue11qD5JVV2j9jx0WH4+aMcJyvvORWEDuhd7Lm+DVVQmD74TMO892A6nNjz28muzwOR4GBZUBhuX73y9t0lUD1+ETyZ1n2tpFZHle5vJbBlHx8/to3BS0bhdtNDaJ1nteklt3RQ0qVEEpQYrnd7D/Z5//I+2ek6SRcwUBFg2106866zi70aicsAN2biuQg4FzFJbsnGU+Thl3p5m3LLKznswGqn6Qtk1UBaA465+rEZafPV9p9tlo3Uq3ZaiWpegTYoRnx2H74DCBVTxUAaM8Ybcm2hmDktYnYVXgG2w6fQbekxqrTBzgLKB09DbtzPrtTC6MWYGv1jDp46iyKz12wGgPH2Tlh2ZNI/jy1XCFXK77eWJdvN1eKJdvk0pLyiy5uufq9w97YjLkWeV27j6nfZAHHs9faLnf2AORJgOluEBsXHV6dAK0yZkiwJAEq573cPCld/tv2e7K9nqidT7bdd+X1MxIaY0D7GKzdbz3KsuWYQ5YErgRO8rbUVAlR3ZTyfYHDa7KjqUEs1XSiROWhSWOsFvnjLQPDoRnxKC27aHeuS0DADbfPQMVNrtR6OLrQa2XOW57oejcVuZs0rMXVbt625PlsQoODrHrByE+7ji5oAFSfgCVcqQLXGlxOAlSffNXyPADgmVs7YWCH5qpV3bbV+paTzMn7qDYMeEaCeoBiSSug9GZvLFdvYFpPiba/AfmmMWP5TwCsJ3bTelqUcGV2beDKGCpaPW1kcgCo1VPK1YDGLKA667czQlzJ64oIDbKa26gmv21X8uc86aHnThALXDk3LLvWy5/lKOnU0XGXrydqvyW1MU4s11//q3WQYjlgnlrvQcu8Lke1cP/eUGD1npo0rXpjPCq14652rC33b9rgVPt9lBBwDDEy7euvv45//vOfOHHiBDIyMvDaa6+he/fuTt/nz5FpAfer7tRGo3VnRE3LkSz15MnotI7eYzniqC25mjy+UX1M+TBP9SJyb582SImNtBvCPq1VtJKMa9ssAFyZR8O2TVpm+cRn+/3aDuql9h7b/QSudNl1NMpqTeg54rEr50WRqVyzR4/liJlLc48ie9ke5YZuGcjYTVeQlao5voY82JxlE5FlwOhOvlFN3ds3Wek9Ykv+bTtKKtfK5XF0HhWZyrHt8GkESZLVRIW+onb+uTPyrEwO3C0HHJSX//vuazDp3e2qgb7t+kEAPpvc06r2zdGIs5azE7tC65rs6Hcoj6b9kEoNqKcjfMufZztIoy05aHe2H+6eh94QUCPTLl26FI8++igWLFiAHj164OWXX8agQYOwf/9+xMbG6l08hSdVd2pPKq4maBppNkxPntScdfNWG4U2CMD9/dvYDXZl662Nh6xqKMziSldEORlX7e1mAc0gBbAONixzFY6dKVfthWT7Htv9tMz898ZEcWoXD3efhr3J1V4mjSPVa0Asu0lbNmnJY7No1UD+Y/V+ZGel2iXfSpeDS8saKeUpdFOB1ROyt6k9mTv6vI0HT+Ho6fMOk8pdSei0/O716Glo2Xwn/z3y2kTVQQG1OMrtqhJCNUjRWt8M65wcZ3lmQlTX2hWZLjgdt8mTplXbbu3yeVLTGlDLz3OUt6Y1073lfjjq3CA3b+vdS0j3QOXFF1/EPffcg/HjxwMAFixYgJUrV+Kdd95Bdna2zqW7wltDyTtLiAS0R7LUk7cTMs9XVtm3VaO6+5yzBzFHQYxWMq4r77VbF7BLlHOF1gWtJkGFEbu7u5oToTnwG6zbyuUmLUua0xW0aoTN06/H9sNnUFJeicYRoQ5rEN5yccZeT7lbUTP/8nluGWy7Omy62nlU0xwIT2k1785z0oMLACYPSEHvtjEOuyQDNkn1ErDsgUxkJDRWXV/t/HOUZxaEK6PGzln1i9W2LPNcPAks1Lq1B0nAa3d0UQJxb3CWt+ZopntnnRuEQHVCroDPRv52hfMpXH2osrIS27dvx8CBA5VlQUFBGDhwILZs2WK3fkVFBUpLS63++Yt8sbXkaa3HyGsTsTF7AF6/s4tdc2EQqquu9b4JqYmLDnd5fAA5IAu+PMWo7Q9E7XgGwbVuu3LbshazAO7pm+y3k1u6XCag5k9KarRuQkWmcq99hiecfce260kWX5qEKwN2OeLod1fdcyUed12XhCHp2t0ttZJ1n721Ez685zpM/1Oq3y+EZuE8uLEcFsAZZ3OR+YLWebn9yBmXHgh6t42xup7Ynk+237v8GXKNiavnH3Alz8zWtKxUJfCz3dbc26rHJ/nwnuuwMXuA29dkrQHymjYI83rwWB3kx2PubfbH4699U7Axe4DqfrjSuQGoronW83qja41KcXExqqqq0Lx5c6vlzZs3x7599lXtOTk5mD17tr+KZ8XTRDVH29NKiHSWTBkoHNXCqB3PJwe3t5/jBNXTny/ZWmg3hoajPBd50CZniWcAcNd1iXj/h6Me7aNl4p6vckX8NTGkJ1ytadNq2nHGG787rZqfgR2bK8H30Ix41ZmKZXJuTKPweq7PL+Qg/0EtwdqWOw9C/pyTS6Z1XsLBb81Z2Wy7ZqvlrKhN7ujs/LM9jyzHrXG2LU9/Y3p8J472QW0/XE1F8OWknq7QNZn2+PHjaNmyJTZv3ozMzExl+ZNPPon169dj61brpNOKigpUVFQof5eWliIhIcFvybSAb5IX9UyI1JvtvmslC6odI2WK9GMldlWbtgmGji58akl5WqrnC2mDIektvDKTrSs8SWaubWr6G3GWhGr5OZYjfKoN+6+VIKzWVCDfNDYdPIU3Lo84qxZsaw2b7s5TvKv76C2uJszXZN+8vU/+vtb6+zvxhG0ZB3VujlWX50yS+eJ6404yra6BSmVlJSIiIvDJJ59g2LBhyvKxY8eipKQEn3/+ucP3+7vXD/mHJxcTV9+jdeGwXW57YX0yqz3SWzbSLZgMhAue0blzXrmyrtp34ujp3lGwbZmnUdOEa6PciL21b4H+IBcI5bct45vr8+3mX/L29SZgAhUA6NGjB7p3747XXnsNAGA2m5GYmIgHH3zQaTItAxXyhNaFw9s3DW8zWnmI3wnAY1Bb+fp7DahAZenSpRg7dizefPNNdO/eHS+//DI++ugj7Nu3zy53xRYDFSIiosATUOOojBw5EqdOncLf//53nDhxAldffTW++uorp0EKERER1X6616jUBGtUiIiIAo87929dx1EhIiIicoSBChERERkWAxUiIiIyLAYqREREZFgMVIiIiMiwGKgQERGRYTFQISIiIsNioEJERESGxUCFiIiIDEv3IfRrQh5Ut7S0VOeSEBERkavk+7Yrg+MHdKBy9uxZAEBCQoLOJSEiIiJ3nT17FtHR0Q7XCei5fsxmM44fP46GDRtCkqQabau0tBQJCQkoLCyss/MG8RjwGMh4HHgMAB4DgMdA5u3jIITA2bNnER8fj6Agx1koAV2jEhQUhFatWnl1m1FRUXX6ZAR4DAAeAxmPA48BwGMA8BjIvHkcnNWkyJhMS0RERIbFQIWIiIgMi4HKZWFhYZg5cybCwsL0LopueAx4DGQ8DjwGAI8BwGMg0/M4BHQyLREREdVurFEhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGVatDlTmz5+P9PR0ZYCazMxMrF69Wnn9woULmDx5Mpo2bYoGDRrgtttuw++//261jaNHj2LIkCGIiIhAbGwsnnjiCVy6dMnfu+I1c+fOhSRJmDp1qrKsth+HWbNmQZIkq3+pqanK67V9/2XHjh3DXXfdhaZNmyI8PBxpaWnYtm2b8roQAn//+98RFxeH8PBwDBw4EAcOHLDaxunTpzF69GhERUWhUaNGmDhxIs6dO+fvXfFYUlKS3bkgSRImT54MoG6cC1VVVZgxYwaSk5MRHh6OlJQUPPvss1ZzrtSFc+Hs2bOYOnUqWrdujfDwcPTs2RO5ubnK67XxGGzYsAG33HIL4uPjIUkSli9fbvW6t/Z59+7d6NOnD+rXr4+EhAT84x//qFnBRS22YsUKsXLlSvHrr7+K/fv3i6eeekrUq1dP7N27VwghxH333ScSEhLEt99+K7Zt2yauu+460bNnT+X9ly5dEp07dxYDBw4UO3fuFKtWrRLNmjUT06dP12uXauTHH38USUlJIj09XTz88MPK8tp+HGbOnCk6deokioqKlH+nTp1SXq/t+y+EEKdPnxatW7cW48aNE1u3bhWHDh0SX3/9tTh48KCyzty5c0V0dLRYvny52LVrlxg6dKhITk4W5eXlyjqDBw8WGRkZ4ocffhDff/+9aNu2rRg1apQeu+SRkydPWp0Ha9asEQDE2rVrhRB141x4/vnnRdOmTcWXX34pCgoKxMcffywaNGggXnnlFWWdunAu3H777aJjx45i/fr14sCBA2LmzJkiKipK/Pbbb0KI2nkMVq1aJZ5++mmxbNkyAUB89tlnVq97Y59NJpNo3ry5GD16tNi7d6/48MMPRXh4uHjzzTc9LnetDlTUNG7cWLz11luipKRE1KtXT3z88cfKa7/88osAILZs2SKEqP5Sg4KCxIkTJ5R15s+fL6KiokRFRYXfy14TZ8+eFVdddZVYs2aN6NevnxKo1IXjMHPmTJGRkaH6Wl3YfyGEmDZtmujdu7fm62azWbRo0UL885//VJaVlJSIsLAw8eGHHwohhPj5558FAJGbm6uss3r1aiFJkjh27JjvCu9DDz/8sEhJSRFms7nOnAtDhgwREyZMsFo2YsQIMXr0aCFE3TgXysrKRHBwsPjyyy+tll9zzTXi6aefrhPHwDZQ8dY+v/HGG6Jx48ZWv4dp06aJ9u3be1zWWt30Y6mqqgpLlizB+fPnkZmZie3bt+PixYsYOHCgsk5qaioSExOxZcsWAMCWLVuQlpaG5s2bK+sMGjQIpaWl+Omnn/y+DzUxefJkDBkyxGp/AdSZ43DgwAHEx8ejTZs2GD16NI4ePQqg7uz/ihUr0K1bN/zlL39BbGwsunTpgoULFyqvFxQU4MSJE1bHITo6Gj169LA6Do0aNUK3bt2UdQYOHIigoCBs3brVfzvjJZWVlXj//fcxYcIESJJUZ86Fnj174ttvv8Wvv/4KANi1axc2btyIrKwsAHXjXLh06RKqqqpQv359q+Xh4eHYuHFjnTgGtry1z1u2bEHfvn0RGhqqrDNo0CDs378fZ86c8ahsAT0poSv27NmDzMxMXLhwAQ0aNMBnn32Gjh07Ii8vD6GhoWjUqJHV+s2bN8eJEycAACdOnLC6IMmvy68FiiVLlmDHjh1W7a+yEydO1Prj0KNHDyxevBjt27dHUVERZs+ejT59+mDv3r11Yv8B4NChQ5g/fz4effRRPPXUU8jNzcWUKVMQGhqKsWPHKvuhtp+WxyE2Ntbq9ZCQEDRp0iRgjoOl5cuXo6SkBOPGjQNQN34LAJCdnY3S0lKkpqYiODgYVVVVeP755zF69GgAqBPnQsOGDZGZmYlnn30WHTp0QPPmzfHhhx9iy5YtaNu2bZ04Bra8tc8nTpxAcnKy3Tbk1xo3bux22Wp9oNK+fXvk5eXBZDLhk08+wdixY7F+/Xq9i+U3hYWFePjhh7FmzRq7p4e6Qn5SBID09HT06NEDrVu3xkcffYTw8HAdS+Y/ZrMZ3bp1w5w5cwAAXbp0wd69e7FgwQKMHTtW59Lp4+2330ZWVhbi4+P1LopfffTRR/jvf/+LDz74AJ06dUJeXh6mTp2K+Pj4OnUu/Oc//8GECRPQsmVLBAcH45prrsGoUaOwfft2vYtGNmp9009oaCjatm2Lrl27IicnBxkZGXjllVfQokULVFZWoqSkxGr933//HS1atAAAtGjRwi7jX/5bXsfotm/fjpMnT+Kaa65BSEgIQkJCsH79erz66qsICQlB8+bN68RxsNSoUSO0a9cOBw8erDPnQVxcHDp27Gi1rEOHDkoTmLwfavtpeRxOnjxp9fqlS5dw+vTpgDkOsiNHjuB///sfJk2apCyrK+fCE088gezsbNxxxx1IS0vDmDFj8MgjjyAnJwdA3TkXUlJSsH79epw7dw6FhYX48ccfcfHiRbRp06bOHANL3tpnX/xGan2gYstsNqOiogJdu3ZFvXr18O233yqv7d+/H0ePHkVmZiYAIDMzE3v27LH6YtasWYOoqCi7i75R3XDDDdizZw/y8vKUf926dcPo0aOV/68Lx8HSuXPnkJ+fj7i4uDpzHvTq1Qv79++3Wvbrr7+idevWAIDk5GS0aNHC6jiUlpZi69atVsehpKTE6onzu+++g9lsRo8ePfywF96zaNEixMbGYsiQIcqyunIulJWVISjI+tIfHBwMs9kMoO6dC5GRkYiLi8OZM2fw9ddf49Zbb61zxwDw3veemZmJDRs24OLFi8o6a9asQfv27T1q9gFQu7snZ2dni/Xr14uCggKxe/dukZ2dLSRJEt98840QororYmJiovjuu+/Etm3bRGZmpsjMzFTeL3dFvOmmm0ReXp746quvRExMTEB1RVRj2etHiNp/HB577DGxbt06UVBQIDZt2iQGDhwomjVrJk6ePCmEqP37L0R11/SQkBDx/PPPiwMHDoj//ve/IiIiQrz//vvKOnPnzhWNGjUSn3/+udi9e7e49dZbVbsmdunSRWzdulVs3LhRXHXVVYbujqmmqqpKJCYmimnTptm9VhfOhbFjx4qWLVsq3ZOXLVsmmjVrJp588kllnbpwLnz11Vdi9erV4tChQ+Kbb74RGRkZokePHqKyslIIUTuPwdmzZ8XOnTvFzp07BQDx4osvip07d4ojR44IIbyzzyUlJaJ58+ZizJgxYu/evWLJkiUiIiKC3ZO1TJgwQbRu3VqEhoaKmJgYccMNNyhBihBClJeXiwceeEA0btxYREREiOHDh4uioiKrbRw+fFhkZWWJ8PBw0axZM/HYY4+Jixcv+ntXvMo2UKntx2HkyJEiLi5OhIaGipYtW4qRI0dajR9S2/df9sUXX4jOnTuLsLAwkZqaKv79739bvW42m8WMGTNE8+bNRVhYmLjhhhvE/v37rdb5448/xKhRo0SDBg1EVFSUGD9+vDh79qw/d6PGvv76awHAbt+EqBvnQmlpqXj44YdFYmKiqF+/vmjTpo14+umnrbqT1oVzYenSpaJNmzYiNDRUtGjRQkyePFmUlJQor9fGY7B27VoBwO7f2LFjhRDe2+ddu3aJ3r17i7CwMNGyZUsxd+7cGpVbEsJiOEIiIiIiA6lzOSpEREQUOBioEBERkWExUCEiIiLDYqBCREREhsVAhYiIiAyLgQoREREZFgMVIiIiMiwGKkRERGRYDFSI6qD+/ftj6tSpehfD52bNmoWrr75a72IQUQ0wUCGigFNZWenXzxNC4NKlS379TCKqxkCFqI4ZN24c1q9fj1deeQWSJEGSJBw+fBh79+5FVlYWGjRogObNm2PMmDEoLi5W3te/f3889NBDmDp1Kho3bozmzZtj4cKFOH/+PMaPH4+GDRuibdu2WL16tfKedevWQZIkrFy5Eunp6ahfvz6uu+467N2716pMGzduRJ8+fRAeHo6EhARMmTIF58+fV15PSkrCs88+i7vvvhtRUVG49957AQDTpk1Du3btEBERgTZt2mDGjBnKrK2LFy/G7NmzsWvXLmU/Fy9ejMOHD0OSJOTl5SnbLykpgSRJWLdunVW5V69eja5duyIsLAwbN26E2WxGTk4OkpOTER4ejoyMDHzyySfe/oqIyAIDFaI65pVXXkFmZibuueceFBUVoaioCA0bNsT111+PLl26YNu2bfjqq6/w+++/4/bbb7d677vvvotmzZrhxx9/xEMPPYT7778ff/nLX9CzZ0/s2LEDN910E8aMGYOysjKr9z3xxBN44YUXkJubi5iYGNxyyy1KQJGfn4/Bgwfjtttuw+7du7F06VJs3LgRDz74oNU2/u///g8ZGRnYuXMnZsyYAQBo2LAhFi9ejJ9//hmvvPIKFi5ciJdeegkAMHLkSDz22GPo1KmTsp8jR45061hlZ2dj7ty5+OWXX5Ceno6cnBy89957WLBgAX766Sc88sgjuOuuu7B+/Xq3tktEbqjRlIZEFJBsZ9B+9tlnxU033WS1TmFhodUsw/369RO9e/dWXr906ZKIjIwUY8aMUZYVFRUJAGLLli1CiCuztS5ZskRZ548//hDh4eFi6dKlQgghJk6cKO69916rz/7+++9FUFCQMr1869atxbBhw5zu1z//+U/RtWtX5e+ZM2eKjIwMq3UKCgoEALFz505l2ZkzZwQAsXbtWqtyL1++XFnnwoULIiIiQmzevNlqexMnTrSa5p6IvCtEzyCJiIxh165dWLt2LRo0aGD3Wn5+Ptq1awcASE9PV5YHBwejadOmSEtLU5Y1b94cAHDy5EmrbWRmZir/36RJE7Rv3x6//PKL8tm7d+/Gf//7X2UdIQTMZjMKCgrQoUMHAEC3bt3syrZ06VK8+uqryM/Px7lz53Dp0iVERUW5vf9aLD/z4MGDKCsrw4033mi1TmVlJbp06eK1zyQiawxUiAjnzp3DLbfcgnnz5tm9FhcXp/x/vXr1rF6TJMlqmSRJAACz2ezWZ//1r3/FlClT7F5LTExU/j8yMtLqtS1btmD06NGYPXs2Bg0ahOjoaCxZsgQvvPCCw88LCqpu8RZCKMvkZihblp957tw5AMDKlSvRsmVLq/XCwsIcfiYReY6BClEdFBoaiqqqKuXva665Bp9++imSkpIQEuL9y8IPP/ygBB1nzpzBr7/+qtSUXHPNNfj555/Rtm1bt7a5efNmtG7dGk8//bSy7MiRI1br2O4nAMTExAAAioqKlJoQy8RaLR07dkRYWBiOHj2Kfv36uVVWIvIck2mJ6qCkpCRs3boVhw8fRnFxMSZPnozTp09j1KhRyM3NRX5+Pr7++muMHz/e7kbviWeeeQbffvst9u7di3HjxqFZs2YYNmwYgOqeO5s3b8aDDz6IvLw8HDhwAJ9//rldMq2tq666CkePHsWSJUuQn5+PV199FZ999pndfhYUFCAvLw/FxcWoqKhAeHg4rrvuOiVJdv369fjb3/7mdB8aNmyIxx9/HI888gjeffdd5OfnY8eOHXjttdfw7rvvenxsiMgxBipEddDjjz+O4OBgdOzYETExMaisrMSmTZtQVVWFm266CWlpaZg6dSoaNWqkNJXUxNy5c/Hwww+ja9euOHHiBL744guEhoYCqM57Wb9+PX799Vf06dMHXbp0wd///nfEx8c73ObQoUPxyCOP4MEHH8TVV1+NzZs3K72BZLfddhsGDx6MAQMGICYmBh9++CEA4J133sGlS5fQtWtXTJ06Fc8995xL+/Hss89ixowZyMnJQYcOHTB48GCsXLkSycnJHhwVInKFJCwbaomIvGjdunUYMGAAzpw5g0aNGuldHCIKQKxRISIiIsNioEJERESGxaYfIiIiMizWqBAREZFhMVAhIiIiw2KgQkRERIbFQIWIiIgMi4EKERERGRYDFSIiIjIsBipERERkWAxUiIiIyLAYqBAREZFh/T8Zs6wqh35IbwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(poly_surr, data_training, filename=\"pysmo_poly_train_scatter2D.pdf\")\n", + "surrogate_parity(poly_surr, data_training, filename=\"pysmo_poly_train_parity.pdf\")\n", + "surrogate_residual(poly_surr, data_training, filename=\"pysmo_poly_train_residual.pdf\")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHHCAYAAABa2ZeMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJvElEQVR4nO3dd3hUVf7H8c8kpEIKJSGUhKoU8QcIgokFYZHAqsCKuogCEURREBEsRJQQEIiIKFjAFSmrKFiRBSUiRVTiqkiREhQkUgOoJBGQ1Pv7gzDrOBNMwmTulPfreebJ3nPv3PkOdzEfzjn3XIthGIYAAAAgP7MLAAAAcBcEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAeyWKxaOLEiWaXYZWUlKTGjRubXQaAC0QwAuA0CxculMVisb6Cg4N18cUXa+TIkTp69GiVfvbGjRs1ceJE5eTkOPW81157rc13qlWrli6//HLNnz9fJSUlTvmMqVOnatmyZU45F4ALU83sAgB4n0mTJqlJkyY6c+aMPv/8c82ZM0cffvihtm/frtDQUKd8xu+//65q1f73n7CNGzcqNTVVSUlJioyMdMpnnNOwYUNNmzZNknT8+HH9+9//1tChQ/X9998rLS3tgs8/depU3Xzzzerbt+8FnwvAhSEYAXC6Xr16qWPHjpKku+66S7Vr19bMmTP1wQcf6Lbbbqv0eUtKSlRQUKDg4GAFBwc7q9y/FBERoTvuuMO6fc8996hFixZ64YUXNHnyZAUEBLisFgBVi6E0AFWuW7dukqR9+/ZJkmbMmKGEhATVrl1bISEh6tChg9555x2791ksFo0cOVKLFy/WJZdcoqCgIK1atcq679wco4kTJ+rhhx+WJDVp0sQ67JWVlaUuXbqobdu2Dutq0aKFEhMTK/x9QkNDdcUVV+jUqVM6fvx4mcedOnVKY8eOVWxsrIKCgtSiRQvNmDFDhmHYfMdTp05p0aJF1rqTkpIqXBMA56DHCECV27t3rySpdu3akqRZs2apd+/euv3221VQUKAlS5bolltu0YoVK3T99dfbvHft2rV66623NHLkSNWpU8fhBOebbrpJ33//vd588009++yzqlOnjiQpKipKAwcO1LBhw7R9+3a1adPG+p6vv/5a33//vR5//PFKfacff/xR/v7+ZQ7bGYah3r17a926dRo6dKjatWun9PR0Pfzwwzp06JCeffZZSdJrr72mu+66S506ddLdd98tSWrWrFmlagLgBAYAOMmCBQsMScYnn3xiHD9+3Dhw4ICxZMkSo3bt2kZISIhx8OBBwzAM4/Tp0zbvKygoMNq0aWN069bNpl2S4efnZ+zYscPusyQZKSkp1u2nn37akGTs27fP5ricnBwjODjYePTRR23aR40aZVSvXt04efLkeb9Tly5djJYtWxrHjx83jh8/buzatcsYNWqUIcm48cYbrccNHjzYaNSokXV72bJlhiTjySeftDnfzTffbFgsFmPPnj3WturVqxuDBw8+bx0AXIOhNABO1717d0VFRSk2Nlb9+/dXjRo19P7776tBgwaSpJCQEOuxJ06cUG5urq6++mp9++23dufq0qWLWrduXelaIiIi1KdPH7355pvWIazi4mItXbpUffv2VfXq1f/yHJmZmYqKilJUVJRatWql559/Xtdff73mz59f5ns+/PBD+fv7a9SoUTbtY8eOlWEY+uijjyr9nQBUHYbSADjdiy++qIsvvljVqlVT3bp11aJFC/n5/e/fYStWrNCTTz6pLVu2KD8/39pusVjsztWkSZMLrmfQoEFaunSpPvvsM11zzTX65JNPdPToUQ0cOLBc72/cuLFeeeUV6xIEF110kaKjo8/7np9++kn169dXWFiYTXurVq2s+wG4H4IRAKfr1KmT9a60P/vss8/Uu3dvXXPNNXrppZdUr149BQQEaMGCBXrjjTfsjv9j71JlJSYmqm7dunr99dd1zTXX6PXXX1dMTIy6d+9ervdXr1693McC8GwMpQFwqXfffVfBwcFKT0/XkCFD1KtXL6eEDke9Tef4+/trwIABeuedd3TixAktW7ZMt912m/z9/S/4c8vSqFEjHT58WL/99ptNe2ZmpnX/OeerHYBrEYwAuJS/v78sFouKi4utbVlZWRe88vO5uUJlrXw9cOBAnThxQvfcc49Onjxpsy5RVfj73/+u4uJivfDCCzbtzz77rCwWi3r16mVtq169utNX7AZQOQylAXCp66+/XjNnzlTPnj01YMAAHTt2TC+++KKaN2+ubdu2Vfq8HTp0kCSNHz9e/fv3V0BAgG688UZrYGrfvr3atGmjt99+W61atdJll13mlO9TlhtvvFFdu3bV+PHjlZWVpbZt2+rjjz/WBx98oNGjR9vckt+hQwd98sknmjlzpurXr68mTZqoc+fOVVofAMfoMQLgUt26ddOrr76q7OxsjR49Wm+++aaeeuop/eMf/7ig815++eWaPHmytm7dqqSkJN122212iy8OGjRIkso96fpC+Pn5afny5Ro9erRWrFih0aNHa+fOnXr66ac1c+ZMm2NnzpypDh066PHHH9dtt92mOXPmVHl9AByzGMYflmAFAC82a9YsPfjgg8rKylJcXJzZ5QBwQwQjAD7BMAy1bdtWtWvX1rp168wuB4CbYo4RAK926tQpLV++XOvWrdN3332nDz74wOySALgxeowAeLWsrCw1adJEkZGRuu+++zRlyhSzSwLgxghGAAAApbgrDQAAoJTHBKNp06bp8ssvV1hYmKKjo9W3b1/t3r3b5pgzZ85oxIgRql27tmrUqKF+/frp6NGjJlUMAAA8jccMpfXs2VP9+/fX5ZdfrqKiIj322GPavn27du7caV3A7d5779XKlSu1cOFCRUREaOTIkfLz89MXX3xR7s8pKSnR4cOHFRYWxjL9AAB4CMMw9Ntvv6l+/fo2D62uzIk80rFjxwxJxqeffmoYhmHk5OQYAQEBxttvv209ZteuXYYkIyMjo9znPXDggCGJFy9evHjx4uWBrwMHDlxQvvDY2/Vzc3MlSbVq1ZIkbdq0SYWFhTYPo2zZsqXi4uKUkZGhK664wuF58vPzlZ+fb902SjvQDhw4oPDw8KoqHwAAOFFeXp5iY2MVFhZ2QefxyGBUUlKi0aNH68orr1SbNm0kSdnZ2QoMDFRkZKTNsXXr1lV2dnaZ55o2bZpSU1Pt2sPDwwlGAAB4mAudBuMxk6//aMSIEdq+fbuWLFlywedKTk5Wbm6u9XXgwAEnVAgAADyRx/UYjRw5UitWrNCGDRvUsGFDa3tMTIwKCgqUk5Nj02t09OhRxcTElHm+oKAgBQUFVWXJAADAQ3hMj5FhGBo5cqTef/99rV27Vk2aNLHZ36FDBwUEBGjNmjXWtt27d2v//v2Kj493dbkAAMADeUyP0YgRI/TGG2/ogw8+UFhYmHXeUEREhEJCQhQREaGhQ4dqzJgxqlWrlsLDw3X//fcrPj6+zInXlVVcXKzCwkKnnhPuKSAgQP7+/maXAQBwEY9Zx6isyVQLFixQUlKSpLMLPI4dO1Zvvvmm8vPzlZiYqJdeeum8Q2l/lpeXp4iICOXm5tpNvjYMQ9nZ2crJyans14AHioyMVExMDOtaAYAbO9/v74rwmGDkKuf7gz1y5IhycnIUHR2t0NBQflF6OcMwdPr0aR07dkyRkZGqV6+e2SUBAMrgrGDkMUNpZisuLraGotq1a5tdDlwkJCREknTs2DFFR0czrAYAXs5jJl+b7dycotDQUJMrgaudu+bMKwMA70cwqiCGz3wP1xwAfAfBCAAAoBTBCAAAoBTByAckJSXJYrHIYrEoICBAdevW1XXXXaf58+erpKSk3OdZuHCh3bPoAADwJgQjH9GzZ08dOXJEWVlZ+uijj9S1a1c98MADuuGGG1RUVGR2eQAAuAWCkY8ICgpSTEyMGjRooMsuu0yPPfaYPvjgA3300UdauHChJGnmzJm69NJLVb16dcXGxuq+++7TyZMnJUnr16/XnXfeqdzcXGvv08SJEyVJr732mjp27KiwsDDFxMRowIABOnbsmEnfFADgrj74wFBCQomWLze7krIRjC6AYRgqKCgw5eWMdTm7deumtm3b6r333pMk+fn5afbs2dqxY4cWLVqktWvX6pFHHpEkJSQk6LnnnlN4eLiOHDmiI0eO6KGHHpJ09jb2yZMna+vWrVq2bJmysrKsq5EDACBJ69at05Ytk9Sq1UKlpZldTdlY4PECFBYWatq0aaZ8dnJysgIDAy/4PC1bttS2bdskSaNHj7a2N27cWE8++aSGDx+ul156SYGBgYqIiJDFYrF7xMqQIUOs/7tp06aaPXu2Lr/8cp08eVI1atS44BoBAJ6rsLBQU6dOtW7HxR1Q796GJPdcCoVg5OMMw7Cu0/PJJ59o2rRpyszMVF5enoqKinTmzBmdPn36vAtbbtq0SRMnTtTWrVt14sQJ64Tu/fv3q3Xr1i75HgAA95OZmamlS5fatD300EOqXt09Q5FEMLogAQEBSk5ONu2znWHXrl1q0qSJsrKydMMNN+jee+/VlClTVKtWLX3++ecaOnSoCgoKygxGp06dUmJiohITE7V48WJFRUVp//79SkxMVEFBgVNqBAB4ntTUVJvtNm3aqF+/fiZVU34EowtgsVicMpxllrVr1+q7777Tgw8+qE2bNqmkpETPPPOM/PzOTj176623bI4PDAxUcXGxTVtmZqZ++eUXpaWlKTY2VpL0zTffuOYLAADczsGDB/Xqq6/atA0ZMsT6O8LdEYx8RH5+vrKzs1VcXKyjR49q1apVmjZtmm644QYNGjRI27dvV2FhoZ5//nndeOON+uKLLzR37lybczRu3FgnT57UmjVr1LZtW4WGhiouLk6BgYF6/vnnNXz4cG3fvl2TJ0826VsCAMw0a9Ys5eTk2LQ5a06sq3BXmo9YtWqV6tWrp8aNG6tnz55at26dZs+erQ8++ED+/v5q27atZs6cqaeeekpt2rTR4sWL7SaWJyQkaPjw4frnP/+pqKgoTZ8+XVFRUVq4cKHefvtttW7dWmlpaZoxY4ZJ3xIAYIbCwkKlpqbahKKwsDClpKR4VCiSJIvhjPu+vUheXp4iIiKUm5ur8PBwa/uZM2e0b98+NWnSRMHBwSZWCFfj2gNA2b788kulp6fbtN15552Ki4vT8uVSWpo0bpzUu3fV1lHW7++KYigNAABUyp8nWEvShAkTrHc7p6VJGRlnf1Z1MHIWghEAAKiQJUsOa/fuV2zaOnXqpF69etm0jRv3vx4jT0EwAgAA5eaol+js2kTV7dp79/acnqJzCEYAAOAvFRUVacqUKXbtKSkpJlRTdQhGAADgvJYsWaLdu3fbtH35ZSfl5vaSl+UighEAACibo6Gzdu0eV3q6v0fNHSovghEAALCTlZWlRYsW2bWfGzrr08fVFbkGwQgAANhw1EtUWDhQTz7Z1IRqXIuVrwEAgCTJMAyHoWjixBTNmuX9oUiixwhOlJSUpJycHC1btkySdO2116pdu3Z67rnnKn1OZ5wDAPDXZsyYoVOnTtm1FxSkqEYNadQoE4oyAcHIByQlJVnHiQMCAhQXF6dBgwbpscceU7VqVfd/gffee08BAQHlOnb9+vXq2rWrTpw4ocjIyEqdAwBQOY56iZ5++iH93/9V18aNkoO79L0WwchH9OzZUwsWLFB+fr4+/PBDjRgxQgEBAUpOTrY5rqCgwGkP/KtVq5ZbnAMA4Nju3bu1ZMkSu/aCghT93/951orVzsIcIx8RFBSkmJgYNWrUSPfee6+6d++u5cuXKykpSX379tWUKVNUv359tWjRQpJ04MAB3XrrrYqMjFStWrXUp08fZWVlWc9XXFysMWPGKDIyUrVr19YjjzyiPz+P+Nprr9Xo0aOt2/n5+Xr00UcVGxuroKAgNW/eXK+++qqysrLUtWtXSVLNmjVlsViUlJTk8BwnTpzQoEGDVLNmTYWGhqpXr1764YcfrPsXLlyoyMhIpaenq1WrVqpRo4Z69uypI0eOWI9Zv369OnXqpOrVqysyMlJXXnmlfvrpJyf9SQOAZ0hNTbULRfv3t9LEiSlat07auNHzVq12BoKRjwoJCVFBQYEkac2aNdq9e7dWr16tFStWqLCwUImJiQoLC9Nnn32mL774whowzr3nmWee0cKFCzV//nx9/vnn+vXXX/X++++f9zMHDRqkN998U7Nnz9auXbv08ssvq0aNGoqNjdW7774r6ey/Xo4cOaJZs2Y5PEdSUpK++eYbLV++XBkZGTIMQ3//+99VWFhoPeb06dOaMWOGXnvtNW3YsEH79+/XQw89JOnsyq19+/ZVly5dtG3bNmVkZOjuu++2PvAQAHyBo6Gzp55KUZ8+tyo+3jd7is5hKM3HGIahNWvWKD09Xffff7+OHz+u6tWra968edYhtNdff10lJSWaN2+eNTAsWLBAkZGRWr9+vXr06KHnnntOycnJuummmyRJc+fOVXp6epmf+/333+utt97S6tWr1b17d0lS06b/u8Ph3JBZdHS0zRyjP/rhhx+0fPlyffHFF0pISJAkLV68WLGxsVq2bJluueUWSVJhYaHmzp2rZs2aSZJGjhypSZMmSZLy8vKUm5urG264wbq/VatWFf+DBAAP5CgQSdKMGSl68EHPfLaZs9FjZJLly6WEhLM/XWHFihWqUaOGgoOD1atXL/3zn//UxIkTJUmXXnqpzbyirVu3as+ePQoLC1ONGjVUo0YN1apVS2fOnNHevXuVm5urI0eOqHPnztb3VKtWTR07dizz87ds2SJ/f3916dKl0t9h165dqlatms3n1q5dWy1atNCuXbusbaGhodbQI0n16tXTsWPHJJ0NYElJSUpMTNSNN96oWbNm2QyzAYC3chSKbrnlFqWkpOi333xrgvX50GNkkrQ0KSPj7E9XpPOuXbtqzpw5CgwMVP369W3uRvvzE5FPnjypDh06aPHixXbniYqKqtTnh4SEVOp9lfHnu9gsFovN/KcFCxZo1KhRWrVqlZYuXarHH39cq1ev1hVXXOGyGgHAVY4ePaq5c+fatXvbw1+dhR4jk4wbJ5eO41avXl3NmzdXXFzcX96if9lll+mHH35QdHS0mjdvbvOKiIhQRESE6tWrp//+97/W9xQVFWnTpk1lnvPSSy9VSUmJPv30U4f7z/VYFRcXl3mOVq1aqaioyOZzf/nlF+3evVutW7c+73f6s/bt2ys5OVkbN25UmzZt9MYbb1To/QDgCVJTUx2GovR0QlFZCEYm6d3bfWf833777apTp4769Omjzz77TPv27dP69es1atQoHTx4UJL0wAMPKC0tTcuWLVNmZqbuu+8+5eTklHnOxo0ba/DgwRoyZIiWLVtmPedbb70lSWrUqJEsFotWrFih48eP6+TJk3bnuOiii9SnTx8NGzZMn3/+ubZu3ao77rhDDRo0UJ9yPrRn3759Sk5OVkZGhn766Sd9/PHH+uGHH5hnBMDrOBo6mzfvCaWnp/j05Oq/QjCCndDQUG3YsEFxcXG66aab1KpVKw0dOlRnzpxReHi4JGns2LEaOHCgBg8erPj4eIWFhekf//jHec87Z84c3XzzzbrvvvvUsmVLDRs2zLrKaoMGDZSamqpx48apbt26GjlypMNzLFiwQB06dNANN9yg+Ph4GYahDz/8sNyLQIaGhiozM1P9+vXTxRdfrLvvvlsjRozQPffcU4E/IQBwX9OnTy/zsR7Vq/u57T/K3YXF+PPiMz4uLy9PERERys3NtYYASTpz5oz27dunJk2aKDg42MQK4WpcewCewlEgysxsoS1b+qtmzbPTN7w1FJX1+7uimHwNAICHO3PmjJ566im79okTzz7nbPFi7w1EzkYwAgDAg5W1NlFBQYr1Jh9CUfkRjAAA8FCOQtEll4zWzTdHmFCNdyAYAQDgYT744ANt2bLFrp21iS4cd6VVEHPVfQ/XHIA7SU1NdRiKWJvIOegxKqdzt4OfPn3apas4w3ynT5+WZL+iNgC4kmEY1uc+/lFBQYrWrfPtB786E8GonPz9/RUZGWl95lZoaChPZPdyhmHo9OnTOnbsmCIjI+Xv7292SQB8VFkTrCdOPDvBeuNGFxfkxQhGFRATEyNJ1nAE3xAZGWm99gDgao5C0ebN/9Qll7R06aOlfAXBqAIsFovq1aun6OhoFRYWml0OXCAgIICeIgCm2LZtm95//3279vT0FHqIqhDBqBL8/f35ZQkAqDJlDZ3xnLOqRzACAMCNOApFEyZMkMViEXfjVz2CEQAAbqCsXiLWJnItghEAACZzFIratWunPn36mFCNbyMYAQBgkp9//lkvvviiXXt6egrDZiYhGAEAYAImWLsnghEAAC7mKBQ9+uijCg4OpqfIZAQjAABcZMqUKSoqKrJrb98+RcHBJhQEOwQjAABcoKyhs/btU9S7t4uLQZkIRgAAVKGioiJNmTLFrp0VrN0TwQgAgCrCBGvPQzACAKAKOApFQ4cOVcOGDZlg7cYIRgAAONHq1au10cEYGStYewaCEQAATsJjPTwfwQgAACdwFIomTkzRBx+YUAwqjWAEAMAFKKuXaNKkFN18s7gV38MQjAAAqITx46XAQPtQVL/+dRo2LIEJ1h6KYAQAQAUtXrxPgYH/tmtnLpHnIxgBAFBOy5dLmzczwdqb+ZldAAAAnsJRKEpPf0Lt2xOKvAU9RgAA/IXz3YZPR5F38coeoxdffFGNGzdWcHCwOnfurK+++srskgAAHspRKPr110b0Enkpr+sxWrp0qcaMGaO5c+eqc+fOeu6555SYmKjdu3crOjra7PIAAB7i1KlTmjFjhl07c4m8m8UwDMPsIpypc+fOuvzyy/XCCy9IkkpKShQbG6v7779f48rxxL68vDxFREQoNzdX4eHhVV0uAMANsYK153HW72+v6jEqKCjQpk2blJycbG3z8/NT9+7dlZGR4fA9+fn5ys/Pt27n5eVVeZ0AAPflKBSNGTNGYWFhJlQDV/OqYPTzzz+ruLhYdevWtWmvW7euMjMzHb5n2rRpZf7LAADgO5599k3l5X1v104vkW/xysnXFZGcnKzc3Fzr68CBA2aXBABwsdTUVEIRJHlZj1GdOnXk7++vo0eP2rQfPXpUMTExDt8TFBSkoKAgV5QHAHAzhmFo0qRJdu0EIt/lVT1GgYGB6tChg9asWWNtKykp0Zo1axQfH29iZQAAd5OamuowFM2YQSjyZV7VYySdnSA3ePBgdezYUZ06ddJzzz2nU6dO6c477zS7NACAm3A0t7So6CY999ylGjXKhILgNrwuGP3zn//U8ePHNWHCBGVnZ6tdu3ZatWqV3YRsAIDv2bBhg9atW2fXfm7obPJkV1cEd+N16xhdKNYxAgDvw8NfvR/rGAEAUE6OQhGBCI4QjAAAXosVrFFRBCMAgFdyFIpatGih/v37m1ANPAXBCADgVQ4dOqR58+bZtdNLhPIgGAEAvAZDZ7hQBCMAgFdwFIqSk5MVGBhoQjXwVAQjAIDH4jZ8OJtXPRIEAOBbCEVwNnqMAAAeZfly6emn89W9e5rdPgIRLhTBCADgUTZvTlX37vbthCI4A0NpAACP4WiCdUbGXWrfnlAE56DHCADg9pYsWaLdu3fbtdNLBGcjGAEA3BprE8GVCEYAALflKBQRiFCVCEYAALdDLxHMQjACALiNshZs3LChmx544GoTKoKvIRgBANzCt99+q82b/2PXnp6eonHjpN69TSgKPodgBAAw3fmGzhg9gysRjAAApnIUiiZMmCCLxWJCNfB1BCMAgCmYYA13xMrXAACXcxSKiooCWMEapqPHCADgMidOnNDs2bPt2uklgrsgGAEAXKKsoTN6ieBOCEYAgCrnKBQ9+OCDCg8PN6EaoGwEIwBAlUlNnSTJsGtn6AzuimAEAKgS3HUGT0QwAgA4VUlJiSZPnmzXTiCCJyAYAQCchl4ieDqCEQDAKRyFoltvvVWtWrUyoRqgcghGAIALsmLFCm3atMmunV4ieCKCEQCg0hg6g7chGAEAKsVRKCIQwdMRjAAAFUIvEbwZwQgAUG6OQlGLFi3Uv39/E6oBnI9gBAD4S3v37tXrr79u104vEbwNwQgAcF4MncGXEIwAAGVyFIratn1MffsGmFANUPUIRgAAO/QSwVf5mV0AAMC9EIrgy+gxAgBIkn7//XdNnz7drp1ABF9CMAIA0EsElGIoDQB8nKNQNHfuPUpPJxTB99BjBAA+6pVXXtHhw4ft2pcsSVFEhDRunAlFASYjGAGADzrf0BmjZ/BlBCMA8CGGYWjSpEl27cwlAs4iGAGAj2CCNfDXCEYA4MWWL5fS0qTERPtQdN111ykhIcGEqgD3RTACAC/2xhtfKTHxI7t2eokAxwhGAOClUlNT1aqVfTuhCCgbwQgAvJCj+UQTJkyQxWIxoRrAcxCMAMCLMMEauDAEIwDwEo5CUZ06dTRixAgTqgE8U4WDkb+/v44cOaLo6Gib9l9++UXR0dEqLi52WnEAgL/2888/68UXX7Rrb98+Rb17m1AQ4MEqHIwMw3DYnp+fr8DAwAsuCABQfmUNnU2cmKL4eBGMgAoqdzCaPXu2JMlisWjevHmqUaOGdV9xcbE2bNigli1bOr9CAIBDjkLR9OkPKzY2VPHxPOsMqIxyB6Nnn31W0tkeo7lz58rf39+6LzAwUI0bN9bcuXOdXyEAwEZZvUTt26eobduzgYieIqByyh2M9u3bJ0nq2rWr3nvvPdWsWbPKigIAOPZXd50RiIALU+E5RuvWrauKOgAA57FsWbG2bn3Srp3b8AHnqnAwGjJkyHn3z58/v9LFAADssTYR4DoVDkYnTpyw2S4sLNT27duVk5Ojbt26Oa0wAIDjUNSs2UDdcUdTE6oBvF+Fg9H7779v11ZSUqJ7771XzZo1c0pRAODrVq5cqW+++cau/dxt+HfcYUJRgA/wc8pJ/Pw0ZswY651rAIDKS01NdRiK2rdP4TZ8oIo57ZEge/fuVVFRkbNOBwA+ydHQWXp6ivUWfO46A6pWhYPRmDFjbLYNw9CRI0e0cuVKDR482GmFAYAvOd8Ea+ZYA65T4WC0efNmm20/Pz9FRUXpmWee+cs71gAA9hyFok6dOqlXr14mVAP4NtYxAgCT7NmzR4sXL7Zr5zZ8wDyVnmN07Ngx7d69W5LUokULRUdHO60oAPB2rE0EuKcK35WWl5engQMHqn79+urSpYu6dOmiBg0a6I477lBubm5V1KisrCwNHTpUTZo0UUhIiJo1a6aUlBQVFBTYHLdt2zZdffXVCg4OVmxsrKZPn14l9QDAhXAUih5//HFCEeAGKtxjNGzYMG3evFkrV65UfHy8JCkjI0MPPPCA7rnnHi1ZssTpRWZmZqqkpEQvv/yymjdvru3bt2vYsGE6deqUZsyYIelsYOvRo4e6d++uuXPn6rvvvtOQIUMUGRmpu+++2+k1AUBF0UsEuD+LYRhGRd5QvXp1paen66qrrrJp/+yzz9SzZ0+dOnXKqQWW5emnn9acOXP0448/SpLmzJmj8ePHKzs7W4GBgZKkcePGadmyZcrMzCz3efPy8hQREaHc3FyFh4dXSe0AfMPy5VJa2tl1hzZvJhQBVclZv78r3GNUu3ZtRURE2LVHRESoZs2alS6konJzc1WrVi3rdkZGhq655hprKJKkxMREPfXUUzpx4kSZteXn5ys/P9+6nZeXV3VFA/ApaWnStm2ntHnzDLt9BCLAPVV4jtHjjz+uMWPGKDs729qWnZ2thx9+WE888YRTiyvLnj179Pzzz+uee+6xqaFu3bo2x53b/mOtfzZt2jRFRERYX7GxsVVTNACfk5iYqocftg9F6emEIsBdVTgYzZkzR19++aXi4uLUvHlzNW/eXHFxcdq4caNefvllXXbZZdbXXxk3bpwsFst5X38eBjt06JB69uypW265RcOGDato+XaSk5OVm5trfR04cOCCzwnA9yxfLiUknP0pOZ5P1KrVSOsq1gDcU4WH0vr06SOLxeKUDx87dqySkpLOe0zTpv97gvThw4fVtWtXJSQk6F//+pfNcTExMTp69KhN27ntmJiYMs8fFBSkoKCgClYOALbS0qSMDGnDhjnavPmY3f5zQ2e33urqygBURIWD0cSJE5324VFRUYqKiirXsYcOHVLXrl3VoUMHLViwQH5+tp1d8fHxGj9+vAoLCxUQECBJWr16tVq0aOHSuU8AfBMTrAHvUOGhtKZNm+qXX36xa8/JybHp3XGmQ4cO6dprr1VcXJxmzJih48ePKzs722bu0IABAxQYGKihQ4dqx44dWrp0qWbNmmX3bDcAcDbDMByGorPPOSMUAZ6kwj1GWVlZKi4utmvPz8/XwYMHnVLUn61evVp79uzRnj171LBhQ5t951YbiIiI0Mcff6wRI0aoQ4cOqlOnjiZMmMAaRgCqVFlrE7VvTyACPFG51zFaXjqjsG/fvlq0aJHNLfvFxcVas2aNVq9ebX1MiKdiHSMA5eUoFG3b1lfvvddW8fHSxo0mFAX4KJevY9S3b19JksVi0eDBg232BQQEqHHjxnrmmWcqXQgAeIpvvvlGK1eutGtPSUnR8uXSkSPizjPAQ5U7GJWUlEiSmjRpoq+//lp16tSpsqIAwF2VNXS2ffvZobPevc++AHimCs8x2rdvX1XUAQBuz1EomjEjRSdPSjVqmFAQAKercDCaNGnSefdPmDCh0sUAgDs638NfCwqk2bOlUaNcXBSAKlHhh8i2b9/eZruwsFD79u1TtWrV1KxZM3377bdOLdDVmHwN4I8chaIjRy7R3Lk3m1ANgLKY9hDZzZs3OywmKSlJ//jHPypdCAC4k6NHj2ru3Ll27TzSA/BuFe4xKst3332nG2+8UVlZWc44nWnoMQJwvqEzAO7JWb+/K7zydVnOPYQVADyZo1A0bdo4pacTigBfUOGhtNmzZ9tsG4ahI0eO6LXXXlOvXr2cVhgAuNKkSZPkqAO9ffsUXXYZ6xIBvqLCQ2lNmjSx2fbz81NUVJS6deum5ORkhYWFObVAV2MoDfA9DJ0Bns+0ydesYwTAWxQWFmrq1Kl27RMnpig+XiIXAb6nwsFIknJycrRnzx5JUvPmzRUZGenMmgCgyp3v4a/x8QydAb6qQsEoKytLI0aMUHp6unUs3mKxqGfPnnrhhRfUuHHjqqgRAJzKUSi666671KBBA0k80gPwZeUORgcOHNAVV1yhgIAATZ48Wa1atZIk7dy5U3PmzFF8fLy+/vprNWzYsMqKBYALsXLlSn3zzTd27cwlAnBOuSdfDx06VHv27FF6erqCg4Nt9v3+++/q2bOnLrroIs2bN69KCnUVJl8D3okJ1oB3c/nk61WrVmnp0qV2oUiSQkJCNHnyZPXv37/ShQBAVXEUighEABwpdzD6+eefzzuHqGnTpvr111+dURMAOAW9RAAqqtzBqF69etq5c2eZc4i2b9+umJgYpxUGABfCUSjq3r27rrzyShOqAeApyh2M+vbtq4ceekhr1qxRVFSUzb5jx47p0UcfVd++fZ1dHwBUyJ49e7R48WK7dnqJAJRHuSdfnzhxQp07d1Z2drbuuOMOtWzZUoZhaNeuXXrjjTcUExOjL7/8UrVq1arqmqsUk68Bz8XQGeC7XD75umbNmvrvf/+rxx57TEuWLFFOTo4kKTIyUgMGDNDUqVM9PhQB8FyOQlG7dk+oTx+nPSsbgA+o8LPSpLMPjj1+/LgkKSoqShaLxemFmYUeI8Cz0EsEQDLxWWnS2dWuo6OjK/2hAOAMjkJRw4YNNXToUBOqAeANKhWMAMBMJ0+e1DPPPGPXTi8RgAtFMALgURg6A1CVCEYAPIajUDRmzBiFhYWZUA0Ab0QwAuD25s+frwMHDti100sEwNnKFYxmz55d7hOOGjWq0sUAwJ8xdAbAlcp1u36TJk3KdzKLRT/++OMFF2UmbtcH3INhGJo0aZJdO4EIgCMuvV1/3759lf4AAKiosnqJ0tNTRC4CUJUqvSRsQUGBdu/eraKiImfWA8DHOQpFTZsOUHp6isaNM6EgAD6lwpOvT58+rfvvv1+LFi2SJH3//fdq2rSp7r//fjVo0EDj+C8XgErYtGmTVqxYYdd+buhs4EBXVwTAF1W4xyg5OVlbt27V+vXrFRwcbG3v3r27li5d6tTiAPiG1NTU84YiAHCVCvcYLVu2TEuXLtUVV1xh84y0Sy65RHv37nVqcQC8n6OhMwIRALNUOBgdP37c4XPSTp065VUPkwVQtc53G/7y5VJamjRunNS7t4sLA+DTKjyU1rFjR61cudK6fS4MzZs3T/Hx8c6rDIDXchSKduy4SkuW/C8UZWSc/QkArlThHqOpU6eqV69e2rlzp4qKijRr1izt3LlTGzdu1KeffloVNQLwEj///LNefPFFu/aUlBQlJEiZmdIjj0gWi9SihbgLDYDLVbjH6KqrrtKWLVtUVFSkSy+9VB9//LGio6OVkZGhDh06VEWNALxAampqmaFIOhuC4uPPhqLMTKlWLYbRALheuVa+9iWsfA04n6Ohs9Wrx+uRR6rZhR/mFwGoDGf9/i5XMMrLyyv3CT09TBCMAOcp6+Gv7dunEHoAOJVLHwkSGRlZ7jvOiouLK10MAO/hqJeoWbNmuuOOO0yoBgDKp1zBaN26ddb/nZWVpXHjxikpKcl6F1pGRoYWLVqkadOmVU2VADxGYWGhpk6datfuaG0ihs0AuJsKzzH629/+prvuuku33XabTfsbb7yhf/3rX1q/fr0z63M5htKAyjvf2kSOJCScvS0/Pl7auLEqKwPg7Zz1+7vCd6VlZGSoY8eOdu0dO3bUV199VelCAHg2R6HogQceOO8q1ufuROO2fADuosLBKDY2Vq+88opd+7x58xQbG+uUogB4js8//7zMx3pERkae9729e5/tKWIYDYC7qPACj88++6z69eunjz76SJ07d5YkffXVV/rhhx/07rvvOr1AAO6rokNnAODuKrWO0cGDB/XSSy8pMzNTktSqVSsNHz7cK3qMmGMElA8PfwXgTly6jpEvIRgB50cvEQB35NJ1jP4sJydHr776qnbt2iVJuuSSSzRkyBBFRERUuhAA7s9RKOrfv79atGhhQjUA4HwV7jH65ptvlJiYqJCQEHXq1EmS9PXXX+v333/Xxx9/rMsuu6xKCnUVeowAez/99JMWLlxo104vEQB3YdpQ2tVXX63mzZvrlVdeUbVqZzucioqKdNddd+nHH3/Uhg0bKl2MOyAYAbYYOgPgCUwLRiEhIdq8ebNatmxp075z50517NhRp0+frnQx7oBgBPyPo1A0YcKEcj8iCABcxbQ5RuHh4dq/f79dMDpw4IDCwsIqXQgA9zF58mSVlJTYtdNLBMDbVTgY/fOf/9TQoUM1Y8YMJSQkSJK++OILPfzww3aPCQHgOc49tywx0b6XKD4+Xj169DChKgBwrQoHoxkzZshisWjQoEEqKiqSJAUEBOjee+9VWlqa0wsE4BozZ55UYuIzdu30EgHwJZVex+j06dPau3evJKlZs2YKDQ11amFmYY4RfM3y5dLmzUywBuDZTF3HSJJCQ0N16aWXVvqDAbgHR6Ho0UcfVXBwsAnVAIC5yh2MhgwZUq7j5s+fX+liALjO6tWrtXHjRrt2eokA+LJyB6OFCxeqUaNGat++vXiKCODZHN2GHxMTo3vuuceEagDAfZQ7GN1777168803tW/fPt1555264447VKtWraqsDYATnb3rrESJiZPt9tFLBABn+ZX3wBdffFFHjhzRI488ov/85z+KjY3VrbfeqvT0dHqQAA+weXMqoQgA/kKl70o79+ykf//73yoqKtKOHTtUo0YNZ9fnctyVBm/kaOjsvvvuU1RUlAnVAIDzmX5Xmp+fnywWiwzDUHFxcaULAFB1MjMztXTpUrt2eokAwLFyD6VJUn5+vt58801dd911uvjii/Xdd9/phRde0P79+72itwjwJqmpqYQiAKigcvcY3XfffVqyZIliY2M1ZMgQvfnmm6pTp05V1gagkhwNnRGIAOCvlXuOkZ+fn+Li4tS+ffvzPln7vffec1pxZmCOETyZo0AkEYoAeD+XzzEaNGjQeQMRAPOU9ViPm2++WZdccokJFQGAZ6rQAo/uID8/X507d9bWrVu1efNmtWvXzrpv27ZtGjFihL7++mtFRUXp/vvv1yOPPGJesYALnDhxQps3z7Zrp5cIACqu0nelmeWRRx5R/fr1tXXrVpv2vLw89ejRQ927d9fcuXP13XffaciQIYqMjNTdd99tUrVA1WLoDACcy6OC0UcffaSPP/5Y7777rj766CObfYsXL1ZBQYHmz5+vwMBAXXLJJdqyZYtmzpxJMIJXchSKnnjiCfn5VehmUwDAH3hMMDp69KiGDRumZcuWKTQ01G5/RkaGrrnmGgUGBlrbEhMT9dRTT+nEiROqWbOmw/Pm5+crPz/fup2Xl+f84gEnev/997Vt2za7dnqJAODCecQ/LQ3DUFJSkoYPH66OHTs6PCY7O1t169a1aTu3nZ2dXea5p02bpoiICOsrNjbWeYUDTpaammoXiq666ipCEQA4ianBaNy4cbJYLOd9ZWZm6vnnn9dvv/2m5ORkp9eQnJys3Nxc6+vAgQNO/wzgQhUWFpa5NtHf/vY3EyoCAO9k6lDa2LFjlZSUdN5jmjZtqrVr1yojI0NBQUE2+zp27Kjbb79dixYtUkxMjI4ePWqz/9x2TExMmecPCgqyOy/gTphgDQCuY2owioqKKtdDLGfPnq0nn3zSun348GElJiZq6dKl6ty5syQpPj5e48ePV2FhoQICAiRJq1evVosWLcqcXwS4O0ehqE2bh9SvX3UTqgEA7+cRk6/j4uJsts89l61Zs2Zq2LChJGnAgAFKTU3V0KFD9eijj2r79u2aNWuWnn32WZfXC1yo7777zuEq8vQSAUDV8ohgVB4RERH6+OOPNWLECHXo0EF16tTRhAkTuFUfHmP5ciktTUpMtO8lat68uW6//XYTqgIA31LuZ6X5Cp6VBrMkJBhKTJxk104vEQD8NZc/Kw1A1Zk3b54SEw/ZtROKAMC1CEaAyRxNsL7vvvvKdWMCAMC5CEaASX755Re98MILdu30EgGAeQhGgAkc9RI1aNBAd911lwnVAADOIRgBLuYoFE2YMEEWi8WEagAAf+QRz0oDvEF6enqZj/X4YyhavlxKSDj7EwDgWvQYAS7gKBDdcccdatasmV17WpqUkXH2Z+/erqgOAHAOwQioQmfOnNFTTz1l136+Cdbjxp0NRePGVWVlAABHCEZAFansw19796anCADMQjACqoCjUDR+/HhVq8ZfOQBwZ/xXGnCirVu3atmyZXbtrE0EAJ6BYAQ4iaNeosTERF1xxRUmVAMAqAyCEXCBSkpKNHnyZLt2eokAwPMQjIALkJaWpvz8fLt2QhEAeCaCEVBJjobOxo4dqxo1aphQDQDAGQhGQAUdPHhQr776ql07vUQA4PkIRkAFOOolatOmjfr162dCNQAAZyMYAeVU1nPOAADeg2AE/IWlS5cqMzPTrp1QBADeh2AEnIejXqK7775b9erVM6EaAEBV8zO7AMBdLF8uJSSc/ZmXl1fm0BmhCAC8Fz1GQKm0NCkjQ9q8OVWbN9vuCwsL05gxY8wpDADgMgQjQGd7iX79VZo40b6XaMKECbJYLCZUBQBwNYIRIOn117/RbbettGtngjUA+BaCEXxeamqqLrnEtu3mm2/WJX9uBAB4PYIRfFZxcbGefPJJu3Z6iQDAdxGM4JPmzZunQ4cO2bTVrl1bI0eONKkiAIA7IBjB5zi6Df+xxx5TQECACdUAANwJwQg+49ChQ5o3b55dO0NnAIBzCEbwCY56ifr06aN27dq5vhgAgNsiGMGrGYahSZMm2bXTSwQAcIRgBK+1YsUKbdq0ya6dUAQAKAvBCF7J0dDZ2LFjVaNGDROqAQB4Ch4iC4/2xwe/SlJubm6ZD38lFAEA/go9RvBo5x78mpZ29uGvf3bllVeqe/fuJlQGAPBEBCN4tHHjzoaixETHvUQAAFQEwQgeLSbmKyUmfmTXTigCAFQGwQgey9FcouHDh6tu3bomVAMA8AYEI3icwsJCTZ061a6dXiIAwIUiGMGj/Pvf/9a+ffts2i6//HL9/e9/N6kiAIA3IRjBYzgaOnviiSfk58eqEwAA5yAYwe0dOHBA8+fPt2tn6AwA4GwEI7g1R71Ed955p+Li4kyoBgDg7QhGcEslJSWaPHmyXTu9RACAqkQwgttZtWqV/vvf/9q0NWrUSElJSeYUBADwGQQjuBVHQ2fJyckKDAw0oRoAgK8hGMEtnDhxQrNnz7ZrZ+gMAOBKBCOYzlEv0U033aRLL73UhGoAAL6MYARTOQpF9BIBAMxCMIIpvv76a3344Yc2bYGBgUpOTjapIgAACEYwgaNeojFjxigsLMyEagAA+B+epQCnW75cSkg4+/OPfv/99zKHzghFAAB3QI8RnC4tTcrIOPvz3HafPi/qzJmfbY7r2rWrrrnmGhMqBADAMYIRnG7cuLNh6NzPxMRUnTlje8yECRNksVjMKRAAgDIQjOB0vXuffR08eFCJia/a7eeuMwCAuyIYoUo4mks0fPhw1a1b14RqAAAoH4IRnIqHvwIAPBnBCE6zc+dOvf322zZtTLAGAHgSghEuyPLl/5tg/WdPPPGE/PxYEQIA4DkIRrggM2eeVGLiMzZtF110kQYMGGBSRQAAVB7BCJX2/fffq2vXN23a7r//ftWqVcukigAAuDAEI1SYYRhauHCh9u/fb9POBGsAgKcjGKFCcnJyNGvWLJu2u+66Sw0aNDCpIgAAnIdghHL7/PPPtWbNGut2cHCwHnroIfn7+5tYFQAAzkMwwl8qKirSlClTbNp69eqlTp06mVQRAABVg2CE8/rpp5+0cOFCm7YxY8YoLCzMnIIAAKhCBCOU6a233tKuXbus2xdffLFuu+02EysCAKBqedTqeytXrlTnzp0VEhKimjVrqm/fvjb79+/fr+uvv16hoaGKjo7Www8/rKKiInOK9WAnT55UamqqTSgaNGgQoQgA4PU8psfo3Xff1bBhwzR16lR169ZNRUVF2r59u3V/cXGxrr/+esXExGjjxo06cuSIBg0apICAAE2dOtXEyj3Lpk2btGLFCpu2xx57TAEBASZVBACA61gMwzDMLuKvFBUVqXHjxkpNTdXQoUMdHvPRRx/phhtu0OHDh61PcJ87d64effRRHT9+XIGBgeX6rLy8PEVERCg3N1fh4eFO+w7urqSkRDNnztSpU6esbddee626dOliYlUAAJSPs35/e8RQ2rfffqtDhw7Jz89P7du3V7169dSrVy+bHqOMjAxdeuml1lAkSYmJicrLy9OOHTvMKNtjHDlyRJMnT7YJRffffz+hCADgczxiKO3HH3+UJE2cOFEzZ85U48aN9cwzz+jaa6/V999/r1q1aik7O9smFEmybmdnZ5d57vz8fOXn51u38/LyquAbuK+VK1fqm2++sW7Xr19fd911lywWi4lVAQBgDlN7jMaNGyeLxXLeV2ZmpkpKSiRJ48ePV79+/dShQwctWLBAFotFb7/99gXVMG3aNEVERFhfsbGxzvhqbu/MmTNKTU21CUW33nqrhg0bRigCAPgsU3uMxo4dq6SkpPMe07RpUx05ckSS1Lp1a2t7UFCQmjZtan1eV0xMjL766iub9x49etS6ryzJyckaM2aMdTsvL8/rw9HOnTvtAuW4ceMUFBRkUkUAALgHU4NRVFSUoqKi/vK4Dh06KCgoSLt379ZVV10lSSosLFRWVpYaNWokSYqPj9eUKVN07NgxRUdHS5JWr16t8PBwm0D1Z0FBQT4TCAzD0Msvv2wNjJLUqVMn9erVy8SqAABwHx4xxyg8PFzDhw9XSkqKYmNj1ahRIz399NOSpFtuuUWS1KNHD7Vu3VoDBw7U9OnTlZ2drccff1wjRozwmeBzPr/88oteeOEFm7bhw4fbzcsCAMCXeUQwkqSnn35a1apV08CBA/X777+rc+fOWrt2rWrWrClJ8vf314oVK3TvvfcqPj5e1atX1+DBgzVp0iSTKzffunXrtGHDBut2RESERo0aJT8/j7gpEQAAl/GIdYxcyZvWMSosLLRb3LJ3795q3769SRUBAFA1nPX722N6jFAxe/fu1euvv27T9tBDD6l69eomVQQAgPsjGHmh119/XXv37rVut2nTRv369TOxIgAAPAPByIvk5eXp2WeftWkbMmSI1y8/AACAsxCMvMSXX36p9PR067a/v7+Sk5Pl7+9vYlUAAHgWgpGHKy4u1lNPPaXCwkJr23XXXaeEhAQTqwIAwDMRjDzYwYMH9eqrr9q0jR49WhERESZVBACAZyMYeaj3339f27Zts243adJEAwcO5DlnAABcAIKRhzl9+rR11e9zbr/9djVv3tykigAA8B4EIw+ydetWLVu2zKYtOTlZgYGB5hQEAICXIRh5AMMwNHv2bOXk5FjbrrrqKv3tb38zrygAALwQwcjNHTt2THPmzLFpGzFihOrUqWNSRQAAeC+CkRtLT0/Xl19+ad2Ojo7W8OHDmWANAEAVIRi5ofz8fKWlpdm09evXT23atDGpIgAAfAPByM3s3r1bS5YssWl75JFHFBISYlJFAAD4DoKRmzAMQ/Pnz9fBgwetbZdddpluvPFGE6sCAMC3EIzcwIkTJzR79mybtmHDhql+/fomVQQAgG8iGJnss88+09q1a63boaGhGjt2rPz8/EysCgAA30QwMklRUZGmTJli03b99derY8eOJlUEAAAIRibIysrSokWLbNrGjBmjsLAwkyoCAAASwcjllixZot27d1u3W7Roof79+5tYEQAAOIdg5CK//fabZs6cadM2ePBgNW7c2JyCAACAHYKRi/w5FI0fP17VqvHHDwCAO+E3s4u0atVKu3btUrdu3XT11VebXQ4AAHCAYOQit956q9klAACAv8BiOQAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRi6yfLmUkHD2JwAAcE8EIxdJS5MyMs7+BAAA7olg5CLjxknx8Wd/AgAA98QjQVykd++zLwAA4L7oMQIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChVzewC3I1hGJKkvLw8kysBAADlde739rnf45VFMPqT3377TZIUGxtrciUAAKCifvvtN0VERFT6/RbjQqOVlykpKdHhw4cVFhYmi8VidjkukZeXp9jYWB04cEDh4eFml4Ny4Jp5Fq6X5+GaeZZz12vnzp1q0aKF/PwqP1OIHqM/8fPzU8OGDc0uwxTh4eH8B8DDcM08C9fL83DNPEuDBg0uKBRJTL4GAACwIhgBAACUIhhBQUFBSklJUVBQkNmloJy4Zp6F6+V5uGaexZnXi8nXAAAApegxAgAAKEUwAgAAKEUwAgAAKEUwAgAAKEUwglauXKnOnTsrJCRENWvWVN++fW3279+/X9dff71CQ0MVHR2thx9+WEVFReYUC6v8/Hy1a9dOFotFW7Zssdm3bds2XX311QoODlZsbKymT59uTpE+LisrS0OHDlWTJk0UEhKiZs2aKSUlRQUFBTbHcb3cy4svvqjGjRsrODhYnTt31ldffWV2SZA0bdo0XX755QoLC1N0dLT69u2r3bt32xxz5swZjRgxQrVr11aNGjXUr18/HT16tEKfQzDyce+++64GDhyoO++8U1u3btUXX3yhAQMGWPcXFxfr+uuvV0FBgTZu3KhFixZp4cKFmjBhgolVQ5IeeeQR1a9f3649Ly9PPXr0UKNGjbRp0yY9/fTTmjhxov71r3+ZUKVvy8zMVElJiV5++WXt2LFDzz77rObOnavHHnvMegzXy70sXbpUY8aMUUpKir799lu1bdtWiYmJOnbsmNml+bxPP/1UI0aM0JdffqnVq1ersLBQPXr00KlTp6zHPPjgg/rPf/6jt99+W59++qkOHz6sm266qWIfZMBnFRYWGg0aNDDmzZtX5jEffvih4efnZ2RnZ1vb5syZY4SHhxv5+fmuKBMOfPjhh0bLli2NHTt2GJKMzZs3W/e99NJLRs2aNW2uz6OPPmq0aNHChErxZ9OnTzeaNGli3eZ6uZdOnToZI0aMsG4XFxcb9evXN6ZNm2ZiVXDk2LFjhiTj008/NQzDMHJycoyAgADj7bffth6za9cuQ5KRkZFR7vPSY+TDvv32Wx06dEh+fn5q37696tWrp169emn79u3WYzIyMnTppZeqbt261rbExETl5eVpx44dZpTt844ePaphw4bptddeU2hoqN3+jIwMXXPNNQoMDLS2JSYmavfu3Tpx4oQrS4UDubm5qlWrlnWb6+U+CgoKtGnTJnXv3t3a5ufnp+7duysjI8PEyuBIbm6uJFn/Pm3atEmFhYU2169ly5aKi4ur0PUjGPmwH3/8UZI0ceJEPf7441qxYoVq1qypa6+9Vr/++qskKTs72yYUSbJuZ2dnu7ZgyDAMJSUlafjw4erYsaPDY7hm7mvPnj16/vnndc8991jbuF7u4+eff1ZxcbHD68G1cC8lJSUaPXq0rrzySrVp00bS2b8vgYGBioyMtDm2otePYOSFxo0bJ4vFct7XubkPkjR+/Hj169dPHTp00IIFC2SxWPT222+b/C18S3mv2fPPP6/ffvtNycnJZpfs08p7vf7o0KFD6tmzp2655RYNGzbMpMoB7zBixAht375dS5Yscfq5qzn9jDDd2LFjlZSUdN5jmjZtqiNHjkiSWrdubW0PCgpS06ZNtX//fklSTEyM3R0Z52b4x8TEOLFq31bea7Z27VplZGTYPQ+oY8eOuv3227Vo0SLFxMTY3YXBNXOu8l6vcw4fPqyuXbsqISHBblI118t91KlTR/7+/g6vB9fCfYwcOVIrVqzQhg0b1LBhQ2t7TEyMCgoKlJOTY9NrVOHr5+zJUPAcubm5RlBQkM3k64KCAiM6Otp4+eWXDcP43+Tro0ePWo95+eWXjfDwcOPMmTMur9nX/fTTT8Z3331nfaWnpxuSjHfeecc4cOCAYRj/m8xbUFBgfV9ycjKTeU1y8OBB46KLLjL69+9vFBUV2e3nermXTp06GSNHjrRuFxcXGw0aNGDytRsoKSkxRowYYdSvX9/4/vvv7fafm3z9zjvvWNsyMzMrPPmaYOTjHnjgAaNBgwZGenq6kZmZaQwdOtSIjo42fv31V8MwDKOoqMho06aN0aNHD2PLli3GqlWrjKioKCM5OdnkymEYhrFv3z67u9JycnKMunXrGgMHDjS2b99uLFmyxAgNDbWGXbjOwYMHjebNmxt/+9vfjIMHDxpHjhyxvs7hermXJUuWGEFBQcbChQuNnTt3GnfffbcRGRlpc2cuzHHvvfcaERERxvr1623+Lp0+fdp6zPDhw424uDhj7dq1xjfffGPEx8cb8fHxFfocgpGPKygoMMaOHWtER0cbYWFhRvfu3Y3t27fbHJOVlWX06tXLCAkJMerUqWOMHTvWKCwsNKli/JGjYGQYhrF161bjqquuMoKCgowGDRoYaWlp5hTo4xYsWGBIcvj6I66Xe3n++eeNuLg4IzAw0OjUqZPx5Zdfml0SDKPMv0sLFiywHvP7778b9913n1GzZk0jNDTU+Mc//mHzD5HysJR+GAAAgM/jrjQAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAqCLr16+XxWJRTk6O2aUAKCeCEQCPNXHiRLVr187sMgB4EYIRAK9XWFhodgkAPATBCIBpSkpKNG3aNDVp0kQhISFq27at3nnnHUn/G4Zas2aNOnbsqNDQUCUkJGj37t2SpIULFyo1NVVbt26VxWKRxWLRwoULJUkWi0Vz5sxR7969Vb16dU2ZMuW8dZz7rPT0dLVv314hISHq1q2bjh07po8++kitWrVSeHi4BgwYoNOnT1vfl5+fr1GjRik6OlrBwcG66qqr9PXXX1fNHxYA13DqE94AoAKefPJJo2XLlsaqVauMvXv3GgsWLDCCgoKM9evXG+vWrTMkGZ07dzbWr19v7Nixw7j66quNhIQEwzAM4/Tp08bYsWONSy65xO4p25KM6OhoY/78+cbevXuNn3766bx1nPusK664wvj888+Nb7/91mjevLnRpUsXo0ePHsa3335rbNiwwahdu7bNA15HjRpl1K9f3/jwww+NHTt2GIMHDzZq1qxp/PLLLzbnPXHiRNX8AQJwOoIRAFOcOXPGCA0NNTZu3GjTPnToUOO2226zhopPPvnEum/lypWGJOP33383DMMwUlJSjLZt29qdW5IxevToctfi6LOmTZtmSDL27t1rbbvnnnuMxMREwzAM4+TJk0ZAQICxePFi6/6CggKjfv36xvTp023OSzACPEc1s3qqAPi2PXv26PTp07ruuuts2gsKCtS+fXvr9v/93/9Z/3e9evUkSceOHVNcXNx5z9+xY8cK1/THz6pbt65CQ0PVtGlTm7avvvpKkrR3714VFhbqyiuvtO4PCAhQp06dtGvXrgp/NgD3QDACYIqTJ09KklauXKkGDRrY7AsKCtLevXslnQ0b51gsFkln5yb9lerVq1e4pj9/1h+3z7WV57MBeC4mXwMwRevWrRUUFKT9+/erefPmNq/Y2NhynSMwMFDFxcVVXKljzZo1U2BgoL744gtrW2Fhob7++mu1bt3alJoAXDh6jACYIiwsTA899JAefPBBlZSU6KqrrlJubq6++OILhYeHq1GjRn95jsaNG2vfvn3asmWLGjZsqLCwMAUFBbmg+rM9Uvfee68efvhh1apVS3FxcZo+fbpOnz6toUOHuqQGAM5HMAJgmsmTJysqKkrTpk3Tjz/+qMjISF122WV67LHHyjVk1a9fP7333nvq2rWrcnJytGDBAiUlJVV94aXS0tJUUlKigQMH6rffflPHjh2Vnp6umjVruqwGAM5lMQzDMLsIAAAAd8AcIwAAgFIEIwBeb/jw4apRo4bD1/Dhw80uD4AbYSgNgNc7duyY8vLyHO4LDw9XdHS0iysC4K4IRgAAAKUYSgMAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAACj1/1j+WUwWRiX3AAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.4 Model Validation\n", + "\n", + "We check the fit on the validation set to see if the surrogate is fitting well. This step can be used to check for overfitting on the training set." ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEsklEQVR4nO3deXgU9eHH8c/mJAESrlwoR7iESEAUgRgEFGpA1CJYQVBAEKsSESwK+CsKigSpB8UDLCpoFUtFrIgXFBAKROQQD0SKNBiUhEPMRki4kvn9YbMlkGOz2d2Znbxfz7PPAzOzu9/9Znb3s99rHIZhGAIAALCpILMLAAAA4EuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQCWMG3aNDkcDreOdTgcmjZtmk/L06tXL/Xq1cuyjwfAfYQdAKUsWrRIDofDdQsJCdEFF1ygkSNH6scffzS7eJbTvHnzUvUVGxurK6+8Uu+8845XHr+goEDTpk3TJ5984pXHA2oiwg6AMj366KP661//qvnz56tfv356/fXX1bNnT504ccInz/fHP/5RhYWFPnlsX7vkkkv017/+VX/96181ceJEHThwQAMHDtT8+fOr/dgFBQWaPn06YQeohhCzCwDAmvr166fOnTtLku644w41atRITzzxhJYvX66bb77Z688XEhKikJDA/Ei64IILdOutt7r+P3z4cLVq1UrPPPOM7rrrLhNLBkCiZQeAm6688kpJ0t69e0tt//bbb3XTTTepQYMGqlWrljp37qzly5eXOub06dOaPn26WrdurVq1aqlhw4bq3r27Vq1a5TqmrDE7J0+e1IQJExQTE6O6devqhhtu0A8//HBe2UaOHKnmzZuft72sx1y4cKGuvvpqxcbGKjw8XElJSZo3b16V6qIy8fHxateunbKysio87tChQxo9erTi4uJUq1YtdezYUa+++qpr/759+xQTEyNJmj59uqurzNfjlQC7CcyfUQD8bt++fZKk+vXru7bt3LlTqampuuCCCzR58mTVrl1bf//73zVgwAC9/fbbuvHGGyX9GjoyMjJ0xx13qEuXLsrPz9fWrVu1fft2/eY3vyn3Oe+44w69/vrrGjp0qK644gqtWbNG/fv3r9brmDdvni6++GLdcMMNCgkJ0Xvvvad77rlHxcXFGjt2bLUeu8Tp06e1f/9+NWzYsNxjCgsL1atXL3333XdKT09XYmKi3nrrLY0cOVJ5eXm67777FBMTo3nz5unuu+/WjTfeqIEDB0qSOnTo4JVyAjWGAQBnWbhwoSHJ+Oc//2kcPnzY2L9/v7F06VIjJibGCA8PN/bv3+86tnfv3kZycrJx4sQJ17bi4mLjiiuuMFq3bu3a1rFjR6N///4VPu8jjzxinP2RtGPHDkOScc8995Q6bujQoYYk45FHHnFtGzFihNGsWbNKH9MwDKOgoOC849LS0owWLVqU2tazZ0+jZ8+eFZbZMAyjWbNmxjXXXGMcPnzYOHz4sPHFF18YQ4YMMSQZ9957b7mPN2fOHEOS8frrr7u2nTp1ykhJSTHq1Klj5OfnG4ZhGIcPHz7v9QKoGrqxAJSpT58+iomJUZMmTXTTTTepdu3aWr58uS688EJJ0tGjR7VmzRrdfPPN+uWXX3TkyBEdOXJEP/30k9LS0rRnzx7X7K169epp586d2rNnj9vP/8EHH0iSxo0bV2r7+PHjq/W6IiIiXP92Op06cuSIevbsqf/85z9yOp0ePebKlSsVExOjmJgYdezYUW+99ZZuu+02PfHEE+Xe54MPPlB8fLxuueUW17bQ0FCNGzdOx44d07p16zwqC4Dz0Y0FoEzPP/+82rRpI6fTqVdeeUXr169XeHi4a/93330nwzA0depUTZ06tczHOHTokC644AI9+uij+u1vf6s2bdqoffv26tu3r2677bYKu2O+//57BQUFqWXLlqW2X3TRRdV6XRs3btQjjzyizMxMFRQUlNrndDoVHR1d5cfs2rWrZsyYIYfDocjISLVr10716tWr8D7ff/+9WrduraCg0r8527Vr59oPwDsIOwDK1KVLF9dsrAEDBqh79+4aOnSodu/erTp16qi4uFiSNHHiRKWlpZX5GK1atZIk9ejRQ3v37tW7776rlStX6qWXXtIzzzyj+fPn64477qh2WctbjLCoqKjU//fu3avevXurbdu2evrpp9WkSROFhYXpgw8+0DPPPON6TVXVqFEj9enTx6P7AvA9wg6ASgUHBysjI0NXXXWVnnvuOU2ePFktWrSQ9GvXiztf9A0aNNDtt9+u22+/XceOHVOPHj00bdq0csNOs2bNVFxcrL1795Zqzdm9e/d5x9avX195eXnnbT+3deS9997TyZMntXz5cjVt2tS1fe3atZWW39uaNWumL7/8UsXFxaVad7799lvXfqn8IAfAfYzZAeCWXr16qUuXLpozZ45OnDih2NhY9erVSy+++KJycnLOO/7w4cOuf//000+l9tWpU0etWrXSyZMny32+fv36SZLmzp1bavucOXPOO7Zly5ZyOp368ssvXdtycnLOW8U4ODhYkmQYhmub0+nUwoULyy2Hr1x77bXKzc3VkiVLXNvOnDmjZ599VnXq1FHPnj0lSZGRkZJUZpgD4B5adgC47YEHHtDvfvc7LVq0SHfddZeef/55de/eXcnJyRozZoxatGihgwcPKjMzUz/88IO++OILSVJSUpJ69eqlyy67TA0aNNDWrVu1dOlSpaenl/tcl1xyiW655Ra98MILcjqduuKKK7R69Wp999135x07ZMgQTZo0STfeeKPGjRungoICzZs3T23atNH27dtdx11zzTUKCwvT9ddfr9///vc6duyYFixYoNjY2DIDmy/deeedevHFFzVy5Eht27ZNzZs319KlS7Vx40bNmTNHdevWlfTrgOqkpCQtWbJEbdq0UYMGDdS+fXu1b9/er+UFAprZ08EAWEvJ1PMtW7act6+oqMho2bKl0bJlS+PMmTOGYRjG3r17jeHDhxvx8fFGaGioccEFFxjXXXedsXTpUtf9ZsyYYXTp0sWoV6+eERERYbRt29Z4/PHHjVOnTrmOKWuaeGFhoTFu3DijYcOGRu3atY3rr7/e2L9/f5lTsVeuXGm0b9/eCAsLMy666CLj9ddfL/Mxly9fbnTo0MGoVauW0bx5c+OJJ54wXnnlFUOSkZWV5TquKlPPK5tWX97jHTx40Lj99tuNRo0aGWFhYUZycrKxcOHC8+67adMm47LLLjPCwsKYhg54wGEYZ7XnAgAA2AxjdgAAgK0RdgAAgK0RdgAAgK0RdgAAgK0RdgAAgK0RdgAAgK2xqKCk4uJiHThwQHXr1mVpdgAAAoRhGPrll1/UuHHj8y6qezbCjqQDBw6oSZMmZhcDAAB4YP/+/brwwgvL3U/YkVzLsu/fv19RUVEmlwYAALgjPz9fTZo0cX2Pl4ewo/9dVTgqKoqwAwBAgKlsCAoDlAEAgK0RdgAAgK0RdgAAgK0xZqcKioqKdPr0abOLgSoKDQ1VcHCw2cUAAJiEsOMGwzCUm5urvLw8s4sCD9WrV0/x8fGsowQANRBhxw0lQSc2NlaRkZF8YQYQwzBUUFCgQ4cOSZISEhJMLhEAwN8IO5UoKipyBZ2GDRuaXRx4ICIiQpJ06NAhxcbG0qUFADUMA5QrUTJGJzIy0uSSoDpK/n6MuQKAmoew4ya6rgIbfz8AqLkIOwAAwNYIO6gyh8Ohf/zjH2YXo5RPPvlEDoeDGXMAgPMQdlCuadOm6ZJLLjG7GABgCTnOQm3ae0Q5zkKzi4IqYjYWAACVWLIlW1OWfaViQwpySBkDkzX48qZmFwtuomXHxoqLi5WRkaHExERFRESoY8eOWrp0qaT/dfusXr1anTt3VmRkpK644grt3r1bkrRo0SJNnz5dX3zxhRwOhxwOhxYtWuR67CNHjujGG29UZGSkWrdureXLl7tVppLn/fjjj9WpUydFRETo6quv1qFDh/Thhx+qXbt2ioqK0tChQ1VQUOC638mTJzVu3DjFxsaqVq1a6t69u7Zs2eK9ygKAcuQ4C11BR5KKDemhZV/TwhNACDt+5O8m0IyMDL322muaP3++du7cqQkTJujWW2/VunXrXMf83//9n5566ilt3bpVISEhGjVqlCRp8ODB+sMf/qCLL75YOTk5ysnJ0eDBg133mz59um6++WZ9+eWXuvbaazVs2DAdPXrU7bJNmzZNzz33nDZt2qT9+/fr5ptv1pw5c7R48WK9//77WrlypZ599lnX8Q8++KDefvttvfrqq9q+fbtatWqltLS0Kj0nAHgi68hxV9ApUWQY2nekoOw7wHIIO36yZEu2Umet0dAFm5U6a42WbMn26fOdPHlSM2fO1CuvvKK0tDS1aNFCI0eO1K233qoXX3zRddzjjz+unj17KikpSZMnT9amTZt04sQJRUREqE6dOgoJCVF8fLzi4+Ndi/NJ0siRI3XLLbeoVatWmjlzpo4dO6bPPvvM7fLNmDFDqamp6tSpk0aPHq1169Zp3rx56tSpk6688krddNNNWrt2rSTp+PHjmjdvnv70pz+pX79+SkpK0oIFCxQREaGXX37Ze5UGAGVIbFRbQeesXhHscKh5I9ZfCxSEHT8wown0u+++U0FBgX7zm9+oTp06rttrr72mvXv3uo7r0KGD698ll1IoubRCRc6+X+3atRUVFeXW/cq6f1xcnCIjI9WiRYtS20oeb+/evTp9+rRSU1Nd+0NDQ9WlSxft2rXL7ecEAE8kREcoY2Cygv+7Xleww6GZA9srITqiknvCKhig7AcVNYH66s1y7NgxSdL777+vCy64oNS+8PBwV+AJDQ11bS9ZeK+4uLjSxz/7fiX3ded+Zd3f4XBU+/EAwJcGX95UPdrEaN+RAjVvFEnQCTCEHT8oaQI9O/D4ugk0KSlJ4eHhys7OVs+ePc/bf3brTnnCwsJUVFTki+JVScuWLRUWFqaNGzeqWbNmkn697MOWLVs0fvx4cwsHoMZIiI4g5AQowo4flDSBPrTsaxUZhl+aQOvWrauJEydqwoQJKi4uVvfu3eV0OrVx40ZFRUW5QkNFmjdvrqysLO3YsUMXXnih6tatq/DwcJ+VuTy1a9fW3XffrQceeEANGjRQ06ZNNXv2bBUUFGj06NF+Lw8AILAQdvzEjCbQxx57TDExMcrIyNB//vMf1atXT5deeqkeeught7qIBg0apGXLlumqq65SXl6eFi5cqJEjR/q83GWZNWuWiouLddttt+mXX35R586d9fHHH6t+/fqmlAcAEDgchmEYlR9mb/n5+YqOjpbT6VRUVFSpfSdOnFBWVpYSExNVq1Ytk0qI6uLvCAD2U9H399mYjQUAAGyNsAOvuuuuu0pNdT/7dtddd5ldPABADcSYHXjVo48+qokTJ5a5r6ImRgAAfIWwA6+KjY1VbGys2cUAAMCFbiwAAGBrhB03sZpvYOPvBwA1F91YlQgLC1NQUJAOHDigmJgYhYWFuS6rAOszDEOnTp3S4cOHFRQUpLCwMLOLBADwM8JOJYKCgpSYmKicnBwdOHDA7OLAQ5GRkWratKmCgmjMBICahrDjhrCwMDVt2lRnzpyxxLWiUDXBwcEKCQmhRQ4AaijCjptKrsx97tW5AQCAtdGmDwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbM3UsFNUVKSpU6cqMTFRERERatmypR577DEZhuE6xjAMPfzww0pISFBERIT69OmjPXv2lHqco0ePatiwYYqKilK9evU0evRoHTt2zN8vBwAAWJCpYeeJJ57QvHnz9Nxzz2nXrl164oknNHv2bD377LOuY2bPnq25c+dq/vz52rx5s2rXrq20tDSdOHHCdcywYcO0c+dOrVq1SitWrND69et15513mvGSAACAxTiMs5tR/Oy6665TXFycXn75Zde2QYMGKSIiQq+//roMw1Djxo31hz/8QRMnTpQkOZ1OxcXFadGiRRoyZIh27dqlpKQkbdmyRZ07d5YkffTRR7r22mv1ww8/qHHjxpWWIz8/X9HR0XI6nYqKivLNiwUAAF7l7ve3qS07V1xxhVavXq1///vfkqQvvvhCGzZsUL9+/SRJWVlZys3NVZ8+fVz3iY6OVteuXZWZmSlJyszMVL169VxBR5L69OmjoKAgbd68ucznPXnypPLz80vdAACAPYWY+eSTJ09Wfn6+2rZtq+DgYBUVFenxxx/XsGHDJEm5ubmSpLi4uFL3i4uLc+3Lzc1VbGxsqf0hISFq0KCB65hzZWRkaPr06d5+OQAAwIJMbdn5+9//rjfeeEOLFy/W9u3b9eqrr+rJJ5/Uq6++6tPnnTJlipxOp+u2f/9+nz4fAAAwj6ktOw888IAmT56sIUOGSJKSk5P1/fffKyMjQyNGjFB8fLwk6eDBg0pISHDd7+DBg7rkkkskSfHx8Tp06FCpxz1z5oyOHj3quv+5wsPDFR4e7oNXBAAArMbUlp2CggIFBZUuQnBwsIqLiyVJiYmJio+P1+rVq1378/PztXnzZqWkpEiSUlJSlJeXp23btrmOWbNmjYqLi9W1a1c/vAoAAGBlprbsXH/99Xr88cfVtGlTXXzxxfr888/19NNPa9SoUZIkh8Oh8ePHa8aMGWrdurUSExM1depUNW7cWAMGDJAktWvXTn379tWYMWM0f/58nT59Wunp6RoyZIhbM7EAAIC9mRp2nn32WU2dOlX33HOPDh06pMaNG+v3v/+9Hn74YdcxDz74oI4fP64777xTeXl56t69uz766CPVqlXLdcwbb7yh9PR09e7dW0FBQRo0aJDmzp1rxksCAAAWY+o6O1bBOjsAAASegFhnBwAAwNcIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNZMDzs//vijbr31VjVs2FARERFKTk7W1q1bXfsNw9DDDz+shIQERUREqE+fPtqzZ0+pxzh69KiGDRumqKgo1atXT6NHj9axY8f8/VIAAIAFmRp2fv75Z6Wmpio0NFQffvihvvnmGz311FOqX7++65jZs2dr7ty5mj9/vjZv3qzatWsrLS1NJ06ccB0zbNgw7dy5U6tWrdKKFSu0fv163XnnnWa8JAAAYDEOwzAMs5588uTJ2rhxo/71r3+Vud8wDDVu3Fh/+MMfNHHiREmS0+lUXFycFi1apCFDhmjXrl1KSkrSli1b1LlzZ0nSRx99pGuvvVY//PCDGjduXGk58vPzFR0dLafTqaioKO+9QAAA4DPufn+b2rKzfPlyde7cWb/73e8UGxurTp06acGCBa79WVlZys3NVZ8+fVzboqOj1bVrV2VmZkqSMjMzVa9ePVfQkaQ+ffooKChImzdvLvN5T548qfz8/FI3AABgT6aGnf/85z+aN2+eWrdurY8//lh33323xo0bp1dffVWSlJubK0mKi4srdb+4uDjXvtzcXMXGxpbaHxISogYNGriOOVdGRoaio6NdtyZNmnj7pQEAAIswNewUFxfr0ksv1cyZM9WpUyfdeeedGjNmjObPn+/T550yZYqcTqfrtn//fp8+HwAAMI+pYSchIUFJSUmltrVr107Z2dmSpPj4eEnSwYMHSx1z8OBB1774+HgdOnSo1P4zZ87o6NGjrmPOFR4erqioqFI3AABgT6aGndTUVO3evbvUtn//+99q1qyZJCkxMVHx8fFavXq1a39+fr42b96slJQUSVJKSory8vK0bds21zFr1qxRcXGxunbt6odXAQAArCzEzCefMGGCrrjiCs2cOVM333yzPvvsM/3lL3/RX/7yF0mSw+HQ+PHjNWPGDLVu3VqJiYmaOnWqGjdurAEDBkj6tSWob9++ru6v06dPKz09XUOGDHFrJhYAALA3U6eeS9KKFSs0ZcoU7dmzR4mJibr//vs1ZswY137DMPTII4/oL3/5i/Ly8tS9e3e98MILatOmjeuYo0ePKj09Xe+9956CgoI0aNAgzZ07V3Xq1HGrDEw9BwAg8Lj7/W162LECwg4AAIEnINbZAQAA8DXCjk3lOAu1ae8R5TgLzS4KAACmMnWAMnxjyZZsTVn2lYoNKcghZQxM1uDLm5pdLAAATEHLjs3kOAtdQUeSig3poWVf08IDAKixCDs2k3XkuCvolCgyDO07UmBOgQAAMBlhx2YSG9VWkKP0tmCHQ80bRZpTIAAATEbYsZmE6AhlDExWsOPXxBPscGjmwPZKiI4wuWQAAJiDAco2NPjypurRJkb7jhSoeaNIgg4AoEZzO+zk5+e7/aAszGe+hOgIQg4AAKpC2KlXr54cDkeFxxiGIYfDoaKiomoXDAAAwBvcDjtr1671ZTkA/FeOs1BZR44rsVFtWucAwAvcDjs9e/b0ZTkAiAUhAcAXPB6gnJeXp5dfflm7du2SJF188cUaNWqUoqOjvVY4oCYpb0HIHm1iaOEBgGrwaOr51q1b1bJlSz3zzDM6evSojh49qqefflotW7bU9u3bvV1GoEZgQUgA8A2PWnYmTJigG264QQsWLFBIyK8PcebMGd1xxx0aP3681q9f79VCAjVByYKQZwceFoQEgOrzuGVn0qRJrqAjSSEhIXrwwQe1detWrxUOqElYEBIAfMOjlp2oqChlZ2erbdu2pbbv379fdevW9UrBgJqIBSEBwPs8CjuDBw/W6NGj9eSTT+qKK66QJG3cuFEPPPCAbrnlFq8WEKhpWBASALzLo7Dz5JNPyuFwaPjw4Tpz5owkKTQ0VHfffbdmzZrl1QICAABUh8MwDKPyw8pWUFCgvXv3SpJatmypyMjAHEiZn5+v6OhoOZ1OLnUBAECAcPf7u1oXAo2MjFRycnJ1HgKwLFYyBgB78CjsnDhxQs8++6zWrl2rQ4cOqbi4uNR+1tpBoGMlYwCwD4/CzujRo7Vy5UrddNNN6tKlS6UXCAUCCSsZA4C9eBR2VqxYoQ8++ECpqaneLg9guopWMibsAEDg8WhRwQsuuID1dCwgx1moTXuPKMdZaHZRbKVkJeOzsZIxAAQuj8LOU089pUmTJun777/3dnngpiVbspU6a42GLtis1FlrtGRLttlFsg1WMgYAe/GoG6tz5846ceKEWrRoocjISIWGhpbaf/ToUa8UDmVjTInvsZIxANiHR2Hnlltu0Y8//qiZM2cqLi6OAcp+xpgS/2AlYwCwB4/CzqZNm5SZmamOHTt6uzxwA1fHBgDAfR6N2Wnbtq0KCxkUaxbGlAAA4D6PLhexcuVKTZ8+XY8//riSk5PPG7MTaJdcCNTLReQ4CxlTAgCosdz9/vYo7AQF/dogdO5YHcMw5HA4VFRUVNWHNFWghh0AAGoyn14ba+3atR4XDAAAwJ88Cjs9e/Z067h77rlHjz76qBo1auTJ0wAAAFSbRwOU3fX6668rPz/fl08BAABQIZ+GHQ+GAwEAAHiVT8MOAACA2Qg7AADA1gg7AADA1gg7AADA1nwadm699VYW6QMAAKbyaJ0dScrLy9Nnn32mQ4cOqbi4uNS+4cOHS5LmzZtXvdIBAABUk0dh57333tOwYcN07NgxRUVFlbpshMPhcIUdAAAAs3nUjfWHP/xBo0aN0rFjx5SXl6eff/7ZdTt69Ki3ywgAAOAxj8LOjz/+qHHjxikyMtLb5QEAAPAqj8JOWlqatm7d6u2yAAAAeJ3bY3aWL1/u+nf//v31wAMP6JtvvlFycrJCQ0NLHXvDDTd4r4QAAADV4DDcvIBVUJB7jUAOh0NFRUXVKpS/5efnKzo6Wk6nk6nyAAAECHe/v91u2Tl3ejkAAEAg8GjMzmuvvaaTJ0+et/3UqVN67bXXql0oAAAAb3G7G+tswcHBysnJUWxsbKntP/30k2JjY+nGAgAAPufu97dHLTuGYZRaSLDEDz/8oOjoaE8eEgAAwCeqtIJyp06d5HA45HA41Lt3b4WE/O/uRUVFysrKUt++fb1eSAAAAE9VKewMGDBAkrRjxw6lpaWpTp06rn1hYWFq3ry5Bg0a5NUCAgCAwJXjLFTWkeNKbFRbCdERppShSmHnkUcekSQ1b95cgwcPVq1atXxSKAAAEPiWbMnWlGVfqdiQghxSxsBkDb68qd/L4dEA5RKnTp0q86rnTZv6/4VUBwOUAQDwrhxnoVJnrVHxWSkj2OHQhslXea2Fx+vr7Jxtz549GjVqlDZt2lRqe8nA5UCbjQUAALwr68jxUkFHkooMQ/uOFPi9O8ujsDNy5EiFhIRoxYoVSkhIKHNmFgAAqLkSG9VWkEPntew0b+T/i4h7FHZ27Nihbdu2qW3btt4uDwAAsIGE6AhlDEzWQ8u+VpFhKNjh0MyB7U0ZpOxR2ElKStKRI0e8XRYAAGAjgy9vqh5tYrTvSIGaN4o0bTaWR4sKPvHEE3rwwQf1ySef6KefflJ+fn6pm6dmzZolh8Oh8ePHu7adOHFCY8eOVcOGDVWnTh0NGjRIBw8eLHW/7Oxs9e/fX5GRkYqNjdUDDzygM2fOeFwOAADgHQnREUpp2dC0oCN52LLTp08fSdLVV19darxOdQYob9myRS+++KI6dOhQavuECRP0/vvv66233lJ0dLTS09M1cOBAbdy4UdKvixn2799f8fHx2rRpk3JycjR8+HCFhoZq5syZnrw8r7HC2gIAANR0HoWdtWvXerUQx44d07Bhw7RgwQLNmDHDtd3pdOrll1/W4sWLdfXVV0uSFi5cqHbt2unTTz9Vt27dtHLlSn3zzTf65z//qbi4OF1yySV67LHHNGnSJE2bNk1hYWFeLau7rLK2AAAANZ1H3Vg9e/ZUUFCQFixYoMmTJ6tVq1bq2bOnsrOzFRwcXOXHGzt2rPr37+9qMSqxbds2nT59utT2tm3bqmnTpsrMzJQkZWZmKjk5WXFxca5j0tLSlJ+fr507d5b5fCdPnvRa11tZcpyFrqAj/ToS/aFlXyvHWejV5wEAAJXzKOy8/fbbSktLU0REhD7//HOdPHlS0q8tMVXtOvrb3/6m7du3KyMj47x9ubm5CgsLU7169Uptj4uLU25uruuYs4NOyf6SfWXJyMhQdHS069akSZMqlbkyFa0tYAU5zkJt2nuE8AUAqBE8CjszZszQ/PnztWDBAoWGhrq2p6amavv27W4/zv79+3XffffpjTfe8OulJ6ZMmSKn0+m67d+/36uPX7K2wNnMWlvgXEu2ZCt11hoNXbBZqbPWaMmWbLOLBACAT3kUdnbv3q0ePXqctz06Olp5eXluP862bdt06NAhXXrppQoJCVFISIjWrVunuXPnKiQkRHFxcTp16tR5j3nw4EHFx8dLkuLj48+bnVXy/5JjzhUeHq6oqKhSN28qWVsg+L+Dt81cW+BsdK8BAGoijwYox8fH67vvvlPz5s1Lbd+wYYNatGjh9uP07t1bX331Valtt99+u9q2batJkyapSZMmCg0N1erVq11XU9+9e7eys7OVkpIiSUpJSdHjjz+uQ4cOKTY2VpK0atUqRUVFKSkpyZOX5xVWWVvgbFZauhsAAH/xKOyMGTNG9913n1555RU5HA4dOHBAmZmZmjhxoqZOner249StW1ft27cvta127dpq2LCha/vo0aN1//33q0GDBoqKitK9996rlJQUdevWTZJ0zTXXKCkpSbfddptmz56t3Nxc/fGPf9TYsWMVHh7uycvzmoToCEuFCCst3Q0AgL94FHYmT56s4uJi9e7dWwUFBerRo4fCw8M1ceJE3XvvvV4t4DPPPKOgoCANGjRIJ0+eVFpaml544QXX/uDgYK1YsUJ33323UlJSVLt2bY0YMUKPPvqoV8thB1ZauhsAAH9xGIZhVH5Y2U6dOqXvvvtOx44dU1JSkurUqePNsvmNu5eIt4scZ6GlutcAAPCEu9/fHrXslAgLCzN1XAw8Y7XuNQAAfMmj2VgAAACBgrADAABsjbADAABsjbDjR1ymAQAA/6vWAGW4j6ugAwBgDlp2/IDLNAAAYB7Cjh9Y/SroAADYGWHHD6x8FXQAAOyOsOMHVr0KOgAANQEDlP3EildBBwCgJiDs+BGXaQAAwP/oxgIAALZG2EG1sVgiAMDK6MZCtbBYIgDA6mjZgcdYLBEAEAgIO/AYiyUCAAIBYQceY7FEAEAgIOzAYyyWCAAIBAxQRrWwWCIAwOoIO6g2FksEAFgZ3VgAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAcA4ubgvYC1PPAeAsXNwWsB9adgDgv7i4LWBPhB0A+C8ubguz0YXqG3RjAcB/lVzc9uzAw8Vt4S90ofoOLTsA8F9c3BZmoQvVt2jZAYCzcHFbmKGiLlTOweoj7KBacpyFyjpyXImNavOGhG1wcVv4G12ovkU3Fjy2ZEu2Umet0dAFm5U6a42WbMk2u0gAEJDoQvUth2EYRuWH2Vt+fr6io6PldDoVFRVldnECQo6zUKmz1pz3K2TD5Kt4cwKAh3KchXShVoG73990Y8Ej9C8DgPfRheobdGPBIyX9y2ejfxkAYEWEHXiE/mUAQKCgGwseY4ouACAQEHZQLfQvAwCsjm4sAABga4QdAABga4QdAABga4QdAABga4QdAABga4QdAABga4QdAPChHGehNu09ohxnodlFAWos1tkBAB9ZsiVbU5Z9pWJDCnJIGQOTNfjypmYXC6hxaNkBAB/IcRa6go4kFRvSQ8u+poUHMAFhBwB8IOvIcVfQKVFkGNp3pMCcAgE1GGEHAHwgsVFtBTlKbwt2ONS8UaQ5BQJqMMIOAPhAQnSEMgYmK9jxa+IJdjg0c2B7riUHmIABygDgI4Mvb6oebWK070iBmjeKJOgAJiHsAIAPJURHEHIAk9GNBQAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbM3UsJORkaHLL79cdevWVWxsrAYMGKDdu3eXOubEiRMaO3asGjZsqDp16mjQoEE6ePBgqWOys7PVv39/RUZGKjY2Vg888IDOnDnjz5eCKuDCiAAAfzI17Kxbt05jx47Vp59+qlWrVun06dO65pprdPz4cdcxEyZM0Hvvvae33npL69at04EDBzRw4EDX/qKiIvXv31+nTp3Spk2b9Oqrr2rRokV6+OGHzXhJqMSSLdlKnbVGQxdsVuqsNVqyJdvsIgEAbM5hGIZR+WH+cfjwYcXGxmrdunXq0aOHnE6nYmJitHjxYt10002SpG+//Vbt2rVTZmamunXrpg8//FDXXXedDhw4oLi4OEnS/PnzNWnSJB0+fFhhYWGVPm9+fr6io6PldDoVFRXl09dYk+U4C5U6a02p6wUFOxzaMPkq1iEBAFSZu9/flhqz43Q6JUkNGjSQJG3btk2nT59Wnz59XMe0bdtWTZs2VWZmpiQpMzNTycnJrqAjSWlpacrPz9fOnTvLfJ6TJ08qPz+/1A2+x4URAQBmsEzYKS4u1vjx45Wamqr27dtLknJzcxUWFqZ69eqVOjYuLk65ubmuY84OOiX7S/aVJSMjQ9HR0a5bkyZNvPxqUBYujAgAMINlws7YsWP19ddf629/+5vPn2vKlClyOp2u2/79+33+nODCiAA8x8QGVIclro2Vnp6uFStWaP369brwwgtd2+Pj43Xq1Cnl5eWVat05ePCg4uPjXcd89tlnpR6vZLZWyTHnCg8PV3h4uJdfBdzBhREBVNWSLdmasuwrFRtSkEPKGJiswZc3NbtYCCCmtuwYhqH09HS98847WrNmjRITE0vtv+yyyxQaGqrVq1e7tu3evVvZ2dlKSUmRJKWkpOirr77SoUOHXMesWrVKUVFRSkpK8s8LQZUkREcopWVDgg6ASuU4C11BR5KKDemhZV/TwmNhVmyFM7VlZ+zYsVq8eLHeffdd1a1b1zXGJjo6WhEREYqOjtbo0aN1//33q0GDBoqKitK9996rlJQUdevWTZJ0zTXXKCkpSbfddptmz56t3Nxc/fGPf9TYsWNpvQGAAFfRxAZ+MFmPVVvhTG3ZmTdvnpxOp3r16qWEhATXbcmSJa5jnnnmGV133XUaNGiQevToofj4eC1btsy1Pzg4WCtWrFBwcLBSUlJ06623avjw4Xr00UfNeEkAAoAVf3mibExsCBxWboWz1Do7ZmGdHaDmsOovT5RvyZZsPbTsaxUZhmtiA38z69m094iGLth83vY3x3RTSsuGPnlOd7+/LTFAGQD8obxfnj3axNAlYmFMbAgMJa1w5y4ca4VWOMtMPQcAX2Nhy8DFxAbrs/LyIrTsAKgxrPzLE7CCHGehso4cV2Kj2h6FFKu2whF2ANQYJb88zx3/YZUPZMBM3hrPlhAdYbn3FAOUxQBloKbJcRZa7pcnYKZAvVAzA5QBoBxW/OUJe6huN5BZ7L6eEWEHAIAqKivUBPKyBu6OZwvUMEfYAQCgCsoKNT3axAT0sgbujGcL5DBH2AEAwE3lrdU0Z0jHgO8GqmgmVaCvUUXYAQBYipW7Ssob2xLkcNhiWYPyxrMF+pgeFhUEAFjGki3ZSp21RkMXbFbqrDVasiXb7CKVUt61ui5tVt+yC+p5Q6Bfo4ywAwCwBCtfSLJERasED768qTZMvkrP3dJJf77lEvVoE2Nyab3Hyqsju4NuLACAJQRKV0lFY1vW//twwA7irYxVV0d2B2EHtmDlPn4A7gmky3mUNbYl0AfxuiNQ16iiGwsBz+p9/ADcE+hdJVxo1rpo2UFAqwm/pICaJJC7SgKpZaqmoWUHAc3Ov6RynIXatPeIpQZnApLvz82E6AiltGwYUEFHCvyWKTujZQcBza6/pAJ5pVLYmx3PTW+O+Qvklik7o2XHBmpyC4Adf0kFwvRb1Ex2PDd9MeYvUFum7IyWnQBnx19ZVWW3X1KBMv0WNY/dzk3G/NUctOwEMDv+yvKUnX5JBfpKpbAvu52bdh7zh9IIOwGMN6o92bFrDvZgt3PTbuEN5aMbK4DZdXAu7Nc1ZwcsXPkrf5+bvqz3kvD20LKvVWQYAR/eUD6HYRhG5YfZW35+vqKjo+V0OhUVFWVKGTx9Qy/Zkn3eG7WmjdlxF19WKFHVc4GxcebwV73nOAu9Ht74vPEPd7+/CTsyP+xU9w3tizeq3fBlhRJVPRdynIVKnbXmvBbUDZOvqtHvN19/mQdyvfN54z/ufn8zZsdk3hhkbKfBub7AQG6UKOtcmPL2V/pi/8/l3oexcec7e7r2FRlrNPP9b7z+fgrUevf086YmLyHiD4QdkwXqGzqQUMcoUda5UCxpwAubyl1fJdAHsXr7S/TcL3ND0l/+leX169IFar178nnD9f18j7BjskB9QwcS6hglyjoXJMmo4Nd3IM9A8sWXaFlf5pL3W0wDtd6r+nlDy7N/EHZMFqhv6EBCHaNEyblQ1gdfRb++B1/eVBsmX6U3x3TThslXBcT4C199iZYXGCXvt5hWpd7dacHyR1dRVT9vaHn2D6aeWwDTjH2vptaxVWaEWKUc0q/nQtv4uhrwwiYZ5wx+rai1LyE6wi9l91Zd+Wq145Iv8ylvf6Xic/b5osXUnXo/d0Dw6O6Juq5Dgo6fKnLVoz8HDVfl86Y6S4hY6X1ldczGkvmzsQB3VeXDzSozQqxSjrLKZbVlG7xZV76ezZTjLNTCDfv00ob/qNiQaXVY1us8W5BDmtS3rZ746FvLzuzy5Fy06vvK35h6XgWEHQSCqny4+XvabnkhzOrTh620bIMv6sofgc7sOty094iGLthc4TFB0nmtUJL05phuSmnZ0Cflqqqq1KPV31f+5O73N91YQACo6gULvdGF4W4rUkUhzOoXjvRX15Q7fFFX/ui+NbsOy+oGOlexJIdDVeq29Leq1GN558q2fT/ruo7WOJ+thgHKQACo6iDG6s5Aq2gWz9mDPCsbBMtMOPf5qq6stA6XLwYIuwadlzNoWvq1Hif3a2ubSQrlDRIf97fPy32v1nS07ABuMHsgYFUHMVbnmj8VtSKt//fhUq04d3RPrLA1wtNyuFvfFXWfBdrATX9fp8nfdeTLMSYlLVgLN2bppfVZpbqszu6+u6FjY8t0W1ZHeYPEK3qv1tQxPSUYsyPG7KBiVhkI6Mn4C0/GU5Q3BuL5oZ1075uflwo3QZJURgg7d+xAVcrhbn2Xd5xV/l6e8scYGH/XUVljTIIc0sbJV3v9NZbUX2RYkApOFQd8sKnIii8PKH3x5+dtf+6WThr3t89rxJgexuwAXlDVsTK+5Mn4C0/GU9QOC5ZDv66MWyLY4VCxYZS5+vCd3Vvo5Q1ZFbZGuFsOd+u7vOPaxte1zN/LU74eA2PGOV3mytWGtHBjlh66Nsmrz2X2GCJ/uqxZ/TJbfM/9ASJZa6ycGQg7QAWsNsDW1x/kJb/4zw06Mwe2V+fmDcr8YL29e3Pd3r25V1oj3K3v8o7bsu9nS/29rMiMc7q8QcQvrc/S7amJ/G08VF7XZ3khqCaPlSPsABWozoJfgebcX/zSr10Ny+5JUccm9SWpwjEl3vjCcre+yzvu8uZ8yFfGjHM6ITpCo7snasG/skptL5YIotVUXouvP8d/BQJmY6HKatII/5p0qYnyuhoKTv1vCKSvL5vgbn2Xd1zHJvVrzN/LU2ad06O6J+rcCUQEUe8oa8ZdIF7ixJcYoCwGKFeFlQZ/+nM2idkLp/mDlRYqc7e+yzvOKn8vK88KM6OOrLhqNQIbKyhXAWHHPVb5MsxxFuqVDVl6eUOWJUKXnfBl5D1W+mFgJVYJotVh5RBb0zAbC15nhcG6S7Zka/LbpQfQBuKMG6vy1oq7Nf3LwEqz+Kwm0GdLEWIDE2EHbjN7sG7JF0hZTZHMuPGe6n4Z8WVgjR8G8D5CbOBigDLcZvZg3bK+QEow0NEayvoymLLsK32x/2dzC+ZnXCbDnqp62RZYB2EHbimZgdWjTYxpI/zLux5MkEPMuKkGb86uK29G14DnN5W6Zk8gqE69mPHDoCbNkjQLITZw0Y2FSlmlW+LcBbSCJN3RI5FFyarB23/b8haPMxRYzf3eqBdfXXG8rPFQVnmP2p2/r1/mKzVxTB2zscRsrIpYZQbWuWUK9NkcVuCrv+3ZX7znenNMN6W0bOjxY/uDFc/5EmWFmh5tYixbXrsK5M8guwVjd7+/6cZChazYR13WAlqoOl/9bQdf3lTv3HNFwC4gZ8VzXip/cOy278u/RAZ8I1A/g8o7h2pC1ydhBxWij9qavDE+w5d/245N6mvWIHNXMva0jqx6zpcXwvTfX+hns0J54X3Vfd9bNcj7A2N2UKGK+qhrYr+vFXirGdrX4w98NWbFHdWpI6uOyyhv6YfLmte3XHn5bPA+b7zvzV4+xEyM2RFjdtxxbh+13fp9q8qsD3NfjCcJ5PEHZfFWHVmxXipa4bqy8vrrnK3pnw2+4M33vd1WSWcFZXjV2QvN1fSFtcz8MPfFYnWBvqLtubxVR1asl4payyoqb2XnrLeCUE3/bPAVb77vzWxxNRNhB1UWKKvD+uKXrNkf5jW5Gdpddq+jqoawys5Zb4b3QPlsCDTePqetGOR9jQHKqDKrDuA825It2UqdtUZDF2xW6qw1XlvQzuwBfmavYh0IqKPSKjpnvT07JxA+GwIR53T10bKDKqtsAKfZgxMr+iUrqVpls0KrQU1thq4K6uh/Kjpnvd0S443B3WZ/fliVJ+c0dfk/hB14pLw3XnmLnvnzDVfeB/jCDfv00ob/VKu53iozdazWDG3FD1Wr1ZFZKjtnvRnec5yFatIgUsvuSVHBqeIqB00GN1esKuc0dVkas7HEbCxvKWvGgMMh6delQCp8w3nzy7KscgRJUhkf6p7OYrLiTB2z8KEaGMo7Z701O6e654GVV64ONN6ckWi1HzHnYjYW/K6sFpWzo3R5g3m9/WVZ1i/Z0d2b6y//yip13LnN9VV5Y9Nq8CuzB2zDfeWds97o8vPGeRBog5utHAS8UZd2+xFD2LEIK79x3FXeRSDPVlbA8MWX5bkf4JL00oascpvr7fbG9pdA+4JC2aob3r1xHlhhPJy7rP55Ud26tOOPGNvMxnr++efVvHlz1apVS127dtVnn31mdpHc5quZQ/527oyBIIcqvT6SL2c3nX39mopmM/jzejHeuMyDlVhl9o3d6jXQeOM8CJQZR4FwfanKPu8qe6+YPevUF2zRsrNkyRLdf//9mj9/vrp27ao5c+YoLS1Nu3fvVmxsrNnFq5DdEvS5LSrr/324wsG8/vw1V15zvb9aJ6z+a9ATVhiwbcd6DTTeOg/Ke49aqeU7UFozy6pLd98rgdTK5i5bDFDu2rWrLr/8cj333HOSpOLiYjVp0kT33nuvJk+eXOn9zRygvGnvEQ1dsPm87W+O6aaUlg39WhZfqWwwr9nLl/tjYKTdB1+aNWDb7vUaaHxxHlgtzAbqOVfVcpv9ueyuGjNA+dSpU9q2bZumTJni2hYUFKQ+ffooMzPTxJK5x44J+lyVjQcwe00Uf7ROBMqvQU+ZNWDb7vUaaLx9Hlix5dsKrZmeqOp7xezPZW8L+LBz5MgRFRUVKS4urtT2uLg4ffvtt2Xe5+TJkzp58qTr//n5+T4tY0UC9Y3jbWbPbvL1G7smhFozUK/2ZtUwG4hBwJP3itmfy95kmwHKVZGRkaHo6GjXrUmTJqaWZ/DlTbVh8lV6c0w3bZh8lSWbCmuCswc0++KxA2HwZaChXu3NKgPgy+LLzwtfqOnvlYAfs3Pq1ClFRkZq6dKlGjBggGv7iBEjlJeXp3ffffe8+5TVstOkSRMWFYTPsRihb1Cv9hUoY0cChd3eKzVmzE5YWJguu+wyrV692hV2iouLtXr1aqWnp5d5n/DwcIWHh/uxlMCv7NQsbCXUq30FYpeRldXU90rAhx1Juv/++zVixAh17txZXbp00Zw5c3T8+HHdfvvtZhcNAFBNNfULGt5ji7AzePBgHT58WA8//LByc3N1ySWX6KOPPjpv0DIAAKh5An7MjjdwIVAAAAKPu9/fNXI2FgAAqDkIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNZscbmI6ipZRDo/P9/kkgAAAHeVfG9XdjEIwo6kX375RZLUpEkTk0sCAACq6pdfflF0dHS5+7k2lqTi4mIdOHBAdevWlcPhMLs4fpWfn68mTZpo//79XBesGqhH76EuvYN69B7q0jt8UY+GYeiXX35R48aNFRRU/sgcWnYkBQUF6cILLzS7GKaKioriTewF1KP3UJfeQT16D3XpHd6ux4padEowQBkAANgaYQcAANgaYaeGCw8P1yOPPKLw8HCzixLQqEfvoS69g3r0HurSO8ysRwYoAwAAW6NlBwAA2BphBwAA2BphBwAA2BphBwAA2BphpwZYv369rr/+ejVu3FgOh0P/+Mc/Su03DEMPP/ywEhISFBERoT59+mjPnj3mFNbiKqvLkSNHyuFwlLr17dvXnMJaWEZGhi6//HLVrVtXsbGxGjBggHbv3l3qmBMnTmjs2LFq2LCh6tSpo0GDBungwYMmldi63KnLXr16nXde3nXXXSaV2JrmzZunDh06uBa8S0lJ0Ycffujaz/novsrq0ozzkbBTAxw/flwdO3bU888/X+b+2bNna+7cuZo/f742b96s2rVrKy0tTSdOnPBzSa2vsrqUpL59+yonJ8d1e/PNN/1YwsCwbt06jR07Vp9++qlWrVql06dP65prrtHx48ddx0yYMEHvvfee3nrrLa1bt04HDhzQwIEDTSy1NblTl5I0ZsyYUufl7NmzTSqxNV144YWaNWuWtm3bpq1bt+rqq6/Wb3/7W+3cuVMS52NVVFaXkgnno4EaRZLxzjvvuP5fXFxsxMfHG3/6059c2/Ly8ozw8HDjzTffNKGEgePcujQMwxgxYoTx29/+1pTyBLJDhw4Zkox169YZhvHrORgaGmq89dZbrmN27dplSDIyMzPNKmZAOLcuDcMwevbsadx3333mFSpA1a9f33jppZc4H72gpC4Nw5zzkZadGi4rK0u5ubnq06ePa1t0dLS6du2qzMxME0sWuD755BPFxsbqoosu0t13362ffvrJ7CJZntPplCQ1aNBAkrRt2zadPn261HnZtm1bNW3alPOyEufWZYk33nhDjRo1Uvv27TVlyhQVFBSYUbyAUFRUpL/97W86fvy4UlJSOB+r4dy6LOHv85ELgdZwubm5kqS4uLhS2+Pi4lz74L6+fftq4MCBSkxM1N69e/XQQw+pX79+yszMVHBwsNnFs6Ti4mKNHz9eqampat++vaRfz8uwsDDVq1ev1LGclxUrqy4laejQoWrWrJkaN26sL7/8UpMmTdLu3bu1bNkyE0trPV999ZVSUlJ04sQJ1alTR++8846SkpK0Y8cOzscqKq8uJXPOR8IO4EVDhgxx/Ts5OVkdOnRQy5Yt9cknn6h3794mlsy6xo4dq6+//lobNmwwuygBr7y6vPPOO13/Tk5OVkJCgnr37q29e/eqZcuW/i6mZV100UXasWOHnE6nli5dqhEjRmjdunVmFysglVeXSUlJppyPdGPVcPHx8ZJ03qyCgwcPuvbBcy1atFCjRo303XffmV0US0pPT9eKFSu0du1aXXjhha7t8fHxOnXqlPLy8kodz3lZvvLqsixdu3aVJM7Lc4SFhalVq1a67LLLlJGRoY4dO+rPf/4z56MHyqvLsvjjfCTs1HCJiYmKj4/X6tWrXdvy8/O1efPmUv2r8MwPP/ygn376SQkJCWYXxVIMw1B6erreeecdrVmzRomJiaX2X3bZZQoNDS11Xu7evVvZ2dmcl+eorC7LsmPHDknivKxEcXGxTp48yfnoBSV1WRZ/nI90Y9UAx44dK5WYs7KytGPHDjVo0EBNmzbV+PHjNWPGDLVu3VqJiYmaOnWqGjdurAEDBphXaIuqqC4bNGig6dOna9CgQYqPj9fevXv14IMPqlWrVkpLSzOx1NYzduxYLV68WO+++67q1q3rGvcQHR2tiIgIRUdHa/To0br//vvVoEEDRUVF6d5771VKSoq6detmcumtpbK63Lt3rxYvXqxrr71WDRs21JdffqkJEyaoR48e6tChg8mlt44pU6aoX79+atq0qX755RctXrxYn3zyiT7++GPOxyqqqC5NOx/9OvcLpli7dq0h6bzbiBEjDMP4dfr51KlTjbi4OCM8PNzo3bu3sXv3bnMLbVEV1WVBQYFxzTXXGDExMUZoaKjRrFkzY8yYMUZubq7ZxbacsupQkrFw4ULXMYWFhcY999xj1K9f34iMjDRuvPFGIycnx7xCW1RldZmdnW306NHDaNCggREeHm60atXKeOCBBwyn02luwS1m1KhRRrNmzYywsDAjJibG6N27t7Fy5UrXfs5H91VUl2adjw7DMAzfRSkAAABzMWYHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHgKWdOnXK7CKcx4plAlA+wg4Av+rVq5fS09OVnp6u6OhoNWrUSFOnTlXJlWuaN2+uxx57TMOHD1dUVJTuvPNOSdKGDRt05ZVXKiIiQk2aNNG4ceN0/Phx1+O+8MILat26tWrVqqW4uDjddNNNrn1Lly5VcnKyIiIi1LBhQ/Xp08d13169emn8+PGlyjhgwACNHDnS9X9PywTAGgg7APzu1VdfVUhIiD777DP9+c9/1tNPP62XXnrJtf/JJ59Ux44d9fnnn2vq1Knau3ev+vbtq0GDBunLL7/UkiVLtGHDBqWnp0uStm7dqnHjxunRRx/V7t279dFHH6lHjx6SpJycHN1yyy0aNWqUdu3apU8++UQDBw5UVS8LWNUyAbAOLgQKwK969eqlQ4cOaefOnXI4HJKkyZMna/ny5frmm2/UvHlzderUSe+8847rPnfccYeCg4P14osvurZt2LBBPXv21PHjx/XBBx/o9ttv1w8//KC6deuWer7t27frsssu0759+9SsWbMyy3PJJZdozpw5rm0DBgxQvXr1tGjRIknyqEy1atWqVj0B8B5adgD4Xbdu3VxBR5JSUlK0Z88eFRUVSZI6d+5c6vgvvvhCixYtUp06dVy3tLQ0FRcXKysrS7/5zW/UrFkztWjRQrfddpveeOMNFRQUSJI6duyo3r17Kzk5Wb/73e+0YMEC/fzzz1Uuc1XLBMA6CDsALKd27dql/n/s2DH9/ve/144dO1y3L774Qnv27FHLli1Vt25dbd++XW+++aYSEhL08MMPq2PHjsrLy1NwcLBWrVqlDz/8UElJSXr22Wd10UUXuQJJUFDQeV1ap0+frnaZAFgHYQeA323evLnU/z/99FO1bt1awcHBZR5/6aWX6ptvvlGrVq3Ou4WFhUmSQkJC1KdPH82ePVtffvml9u3bpzVr1kiSHA6HUlNTNX36dH3++ecKCwtzdUnFxMQoJyfH9VxFRUX6+uuvK30N7pQJgDUQdgD4XXZ2tu6//37t3r1bb775pp599lndd9995R4/adIkbdq0Senp6dqxY4f27Nmjd9991zUYeMWKFZo7d6527Nih77//Xq+99pqKi4t10UUXafPmzZo5c6a2bt2q7OxsLVu2TIcPH1a7du0kSVdffbXef/99vf/++/r222919913Ky8vr9LXUFmZAFhHiNkFAFDzDB8+XIWFherSpYuCg4N13333uaZzl6VDhw5at26d/u///k9XXnmlDMNQy5YtNXjwYElSvXr1tGzZMk2bNk0nTpxQ69at9eabb+riiy/Wrl27tH79es2ZM0f5+flq1qyZnnrqKfXr10+SNGrUKH3xxRcaPny4QkJCNGHCBF111VWVvobKygTAOpiNBcCvypr9BAC+RDcWAACwNcIOAACwNbqxAACArdGyAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbO3/AW8G965BJW03AAAAAElFTkSuQmCC", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgxUlEQVR4nO3deVxU5eI/8M8wsgujLLLEKu5lLuSC5U6B1yV+4k3NXFIzvaKi5la5lWaaJi6prWIlLaZ1c01z65ZkilqZylUuagW4gAyoCcic3x98OTHAwDDMzDln5vN+vXgpc56ZeebMcOZznu2oBEEQQERERERW5SB1BYiIiIjsEUMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgREdUoOTkZKpUKly9flroqRDaFIYyIJHfixAkkJCTgwQcfhLu7O0JCQvDUU0/hv//9b5WyvXr1gkqlgkqlgoODAzw9PdGyZUuMHDkSBw4cqNPz7ty5Ez179kSTJk3g5uaGpk2b4qmnnsK+ffvM9dKqeO211/DVV19Vuf3YsWNYtGgR8vPzLfbclS1atEjclyqVCm5ubmjTpg1efvllFBQUmOU5UlJSkJSUZJbHIrI1DGFEJLnly5dj+/bt6Nu3L9asWYMJEybgu+++Q8eOHXH27Nkq5YOCgvDRRx/hww8/xBtvvIFBgwbh2LFjeOKJJzB06FCUlJTU+pwrV67EoEGDoFKpMG/ePKxevRrx8fG4ePEiPv30U0u8TAA1h7DFixdbNYSV27hxIz766CO8+eabaNWqFZYuXYrY2FiY49LCDGFEhjWQugJERDNmzEBKSgqcnJzE24YOHYq2bdvi9ddfx8cff6xXXqPR4JlnntG77fXXX8fUqVOxYcMGhIWFYfny5Qaf7/79+3j11Vfx+OOPY//+/VW2X79+vZ6vSD7u3r0LNze3GssMGTIEPj4+AICJEyciPj4eO3bswI8//oioqChrVJPILrEljIgk161bN70ABgDNmzfHgw8+iPPnzxv1GGq1GmvXrkWbNm2wfv16aLVag2Vv3ryJgoICPProo9Vub9Kkid7v9+7dw6JFi9CiRQu4uLggICAAgwcPRkZGhlhm5cqV6NatG7y9veHq6orIyEh88cUXeo+jUqlw584dbNmyRewCHDNmDBYtWoRZs2YBAMLDw8VtFcdgffzxx4iMjISrqyu8vLwwbNgw/P7773qP36tXLzz00ENIS0tDjx494ObmhhdffNGo/VdRnz59AACZmZk1ltuwYQMefPBBODs7IzAwEJMnT9ZryevVqxd2796NK1euiK8pLCyszvUhslVsCSMiWRIEAdeuXcODDz5o9H3UajWGDx+O+fPn4/vvv0f//v2rLdekSRO4urpi586dmDJlCry8vAw+ZmlpKQYMGICDBw9i2LBhmDZtGgoLC3HgwAGcPXsWERERAIA1a9Zg0KBBGDFiBIqLi/Hpp5/in//8J3bt2iXW46OPPsL48ePRuXNnTJgwAQAQEREBd3d3/Pe//8Unn3yC1atXi61Svr6+AIClS5di/vz5eOqppzB+/HjcuHED69atQ48ePXD69Gk0atRIrG9ubi769euHYcOG4ZlnnoGfn5/R+69cebj09vY2WGbRokVYvHgxoqOjMWnSJKSnp2Pjxo04ceIEfvjhBzg6OuKll16CVqvFH3/8gdWrVwMAGjZsWOf6ENksgYhIhj766CMBgPD+++/r3d6zZ0/hwQcfNHi/L7/8UgAgrFmzpsbHX7BggQBAcHd3F/r16ycsXbpUSEtLq1Lugw8+EAAIb775ZpVtOp1O/P/du3f1thUXFwsPPfSQ0KdPH73b3d3dhdGjR1d5rDfeeEMAIGRmZurdfvnyZUGtVgtLly7Vu/3XX38VGjRooHd7z549BQDCpk2bDL7uihYuXCgAENLT04UbN24ImZmZwttvvy04OzsLfn5+wp07dwRBEITNmzfr1e369euCk5OT8MQTTwilpaXi461fv14AIHzwwQfibf379xdCQ0ONqg+RvWF3JBHJzoULFzB58mRERUVh9OjRdbpveUtLYWFhjeUWL16MlJQUdOjQAd988w1eeuklREZGomPHjnpdoNu3b4ePjw+mTJlS5TFUKpX4f1dXV/H/t27dglarRffu3XHq1Kk61b+yHTt2QKfT4amnnsLNmzfFH39/fzRv3hyHDx/WK+/s7Ixnn322Ts/RsmVL+Pr6Ijw8HM8//zyaNWuG3bt3GxxL9u2336K4uBiJiYlwcPj7a+S5556Dp6cndu/eXfcXSmSH2B1JRLKSk5OD/v37Q6PR4IsvvoBara7T/W/fvg0A8PDwqLXs8OHDMXz4cBQUFOD48eNITk5GSkoKBg4ciLNnz8LFxQUZGRlo2bIlGjSo+XC5a9cuLFmyBGfOnEFRUZF4e8WgZoqLFy9CEAQ0b9682u2Ojo56vz/wwANVxtfVZvv27fD09ISjoyOCgoLELlZDrly5AqAsvFXk5OSEpk2bituJqGYMYUQkG1qtFv369UN+fj7+85//IDAwsM6PUb6kRbNmzYy+j6enJx5//HE8/vjjcHR0xJYtW3D8+HH07NnTqPv/5z//waBBg9CjRw9s2LABAQEBcHR0xObNm5GSklLn11CRTqeDSqXC3r17qw2klcdYVWyRM1aPHj3EcWhEZD0MYUQkC/fu3cPAgQPx3//+F99++y3atGlT58coLS1FSkoK3Nzc8Nhjj5lUj0ceeQRbtmxBdnY2gLKB88ePH0dJSUmVVqdy27dvh4uLC7755hs4OzuLt2/evLlKWUMtY4Zuj4iIgCAICA8PR4sWLer6ciwiNDQUAJCeno6mTZuKtxcXFyMzMxPR0dHibfVtCSSyZRwTRkSSKy0txdChQ5Gamopt27aZtDZVaWkppk6divPnz2Pq1Knw9PQ0WPbu3btITU2tdtvevXsB/N3VFh8fj5s3b2L9+vVVygr/t5ipWq2GSqVCaWmpuO3y5cvVLsrq7u5e7YKs7u7uAFBl2+DBg6FWq7F48eIqi6cKgoDc3NzqX6QFRUdHw8nJCWvXrtWr0/vvvw+tVqs3K9Xd3b3G5UKI7BlbwohIcjNnzsTXX3+NgQMHIi8vr8rirJUXZtVqtWKZu3fv4tKlS9ixYwcyMjIwbNgwvPrqqzU+3927d9GtWzd07doVsbGxCA4ORn5+Pr766iv85z//QVxcHDp06AAAGDVqFD788EPMmDEDP/30E7p37447d+7g22+/xb/+9S88+eST6N+/P958803Exsbi6aefxvXr1/HWW2+hWbNm+OWXX/SeOzIyEt9++y3efPNNBAYGIjw8HF26dEFkZCQA4KWXXsKwYcPg6OiIgQMHIiIiAkuWLMG8efNw+fJlxMXFwcPDA5mZmfjyyy8xYcIEvPDCC/Xa/3Xl6+uLefPmYfHixYiNjcWgQYOQnp6ODRs2oFOnTnrvV2RkJD777DPMmDEDnTp1QsOGDTFw4ECr1pdItqScmklEJAh/L61g6Kemsg0bNhSaN28uPPPMM8L+/fuNer6SkhLh3XffFeLi4oTQ0FDB2dlZcHNzEzp06CC88cYbQlFRkV75u3fvCi+99JIQHh4uODo6Cv7+/sKQIUOEjIwMscz7778vNG/eXHB2dhZatWolbN68WVwCoqILFy4IPXr0EFxdXQUAestVvPrqq8IDDzwgODg4VFmuYvv27cJjjz0muLu7C+7u7kKrVq2EyZMnC+np6Xr7pqblOyorr9+NGzdqLFd5iYpy69evF1q1aiU4OjoKfn5+wqRJk4Rbt27plbl9+7bw9NNPC40aNRIAcLkKogpUgmCGi4MRERERUZ1wTBgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgCGMiIiISAJcrFXGdDodsrKy4OHhwUt/EBERKYQgCCgsLERgYCAcHAy3dzGEyVhWVhaCg4OlrgYRERGZ4Pfff0dQUJDB7QxhMubh4QGg7E2s6Tp4REREJB8FBQUIDg4Wv8cNYQiTsfIuSE9PT4YwIiIihaltKBEH5hMRERFJgCGMiIiISAIMYUREREQS4JgwhdPpdCguLpa6GjbNycmpxinGREREpmAIU7Di4mJkZmZCp9NJXRWb5uDggPDwcDg5OUldFSIisiEMYQolCAKys7OhVqsRHBzMlhoLKV8wNzs7GyEhIVw0l4iIzIYhTKHu37+Pu3fvIjAwEG5ublJXx6b5+voiKysL9+/fh6Ojo9TVISIiG6GY5pNBgwYhJCQELi4uCAgIwMiRI5GVlaVXRhAErFy5Ei1atICzszMeeOABLF26VK/MkSNH0LFjRzg7O6NZs2ZITk6u8lxvvfUWwsLC4OLigi5duuCnn37S237v3j1MnjwZ3t7eaNiwIeLj43Ht2jW9MlevXkX//v3h5uaGJk2aYNasWbh//755dgaA0tJSAGAXmRWU7+PyfU5ERGQOiglhvXv3xueff4709HRs374dGRkZGDJkiF6ZadOm4b333sPKlStx4cIFfP311+jcubO4PTMzE/3790fv3r1x5swZJCYmYvz48fjmm2/EMp999hlmzJiBhQsX4tSpU2jXrh1iYmJw/fp1scz06dOxc+dObNu2DUePHkVWVhYGDx4sbi8tLUX//v1RXFyMY8eOYcuWLUhOTsaCBQvMvl/YPWZ53MdERGQRgkL9+9//FlQqlVBcXCwIgiCcO3dOaNCggXDhwgWD95k9e7bw4IMP6t02dOhQISYmRvy9c+fOwuTJk8XfS0tLhcDAQGHZsmWCIAhCfn6+4OjoKGzbtk0sc/78eQGAkJqaKgiCIOzZs0dwcHAQcnJyxDIbN24UPD09haKiIqNfo1arFQAIWq22yra//vpLOHfunPDXX38Z/XhkGu5rIuW5efOmkJWVZfDn5s2bUleRbFhN398VKXJMWF5eHrZu3Ypu3bqJY3R27tyJpk2bYteuXYiNjYUgCIiOjsaKFSvg5eUFAEhNTUV0dLTeY8XExCAxMRFA2WzDtLQ0zJs3T9zu4OCA6OhopKamAgDS0tJQUlKi9zitWrVCSEgIUlNT0bVrV6SmpqJt27bw8/PTe55Jkybht99+Q4cOHSyyX4iICMjNzcX69etrLZeQkABvb28r1IioeorpjgSAOXPmwN3dHd7e3rh69Sr+/e9/i9v+97//4cqVK9i2bRs+/PBDJCcnIy0tTa/LMicnRy8YAYCfnx8KCgrw119/4ebNmygtLa22TE5OjvgYTk5OaNSoUY1lqnuM8m2GFBUVoaCgQO/H1owZMwYqlQoqlQqOjo7w8/PD448/jg8++KBOS20kJydXeQ+IiABUWTtRq/VAZmYYtFqPGssRWZukIWzu3LniF7KhnwsXLojlZ82ahdOnT2P//v1Qq9UYNWoUBEEAULaUQFFRET788EN0794dvXr1wvvvv4/Dhw8jPT1dqpdYJ8uWLYNGoxF/goODLfZcubm5yM7ONviTm5trseeOjY1FdnY2Ll++jL1796J3796YNm0aBgwYYNbJC0REp051QFJSIrZsGY2kpEScOsWeCJIPSbsjZ86ciTFjxtRYpmnTpuL/fXx84OPjgxYtWqB169YIDg7Gjz/+iKioKAQEBKBBgwZo0aKFWL5169YAymYqtmzZEv7+/lVmMV67dg2enp5wdXWFWq2GWq2utoy/vz8AwN/fH8XFxcjPz9drialcpvKMyvLHLC9TnXnz5mHGjBni7wUFBRYJYlI31Ts7O4v74YEHHkDHjh3RtWtX9O3bF8nJyRg/fjzefPNNbN68Gf/73//g5eWFgQMHYsWKFWjYsCGOHDmCZ599FsDfg+YXLlyIRYsW4aOPPsKaNWuQnp4Od3d39OnTB0lJSWjSpInZXwcRyZtW64GdOwdAEMraGwTBATt3DkBExCVoNIUS145I4hDm6+sLX19fk+5b3nVVVFQEAHj00Udx//59ZGRkICIiAgDw3//+FwAQGhoKAIiKisKePXv0HufAgQOIiooCULYUQWRkJA4ePIi4uDjxeQ4ePIiEhAQAQGRkJBwdHXHw4EHEx8cDANLT03H16lXxcaKiorB06VJcv35d/PI/cOAAPD090aZNG4OvydnZGc7Ozibtj7owtgnemk31ffr0Qbt27bBjxw6MHz8eDg4OWLt2LcLDw/G///0P//rXvzB79mxs2LAB3bp1Q1JSEhYsWCC2cjZs2BAAUFJSgldffRUtW7bE9evXMWPGDIwZM6bK+05E0snNza3x+OLk5GSWE8C8PG8xgJUTBAfk5XkxhCmMtT4z1qaIgfnHjx/HiRMn8Nhjj6Fx48bIyMjA/PnzERERIQaf6OhodOzYEWPHjkVSUhJ0Oh0mT56Mxx9/XGwdmzhxItavX4/Zs2dj7NixOHToED7//HPs3r1bfK4ZM2Zg9OjReOSRR9C5c2ckJSXhzp07YsuLRqPBuHHjMGPGDHh5ecHT0xNTpkxBVFQUunbtCgB44okn0KZNG4wcORIrVqxATk4OXn75ZUyePNkqIUupWrVqhV9++QUAxMkSABAWFoYlS5Zg4sSJ2LBhA5ycnKDRaKBSqaq0LI4dO1b8f9OmTbF27Vp06tQJt2/fFoMa2TZbPVjbCmu2xHt55UKl0ukFMZVKBy+vvHo9LlmX1L03lqSIEObm5oYdO3Zg4cKFuHPnDgICAhAbG4uXX35ZDDUODg7YuXMnpkyZgh49esDd3R39+vXDqlWrxMcJDw/H7t27MX36dKxZswZBQUF47733EBMTI5YZOnQobty4gQULFiAnJwft27fHvn379Abar169Gg4ODoiPj0dRURFiYmKwYcMGcbtarcauXbswadIkREVFwd3dHaNHj8Yrr7xihb2lXIIgiN2L3377LZYtW4YLFy6goKAA9+/fx71793D37t0arxCQlpaGRYsW4eeff8atW7fEFtOrV6/W2ApJtqHywVqr9UBenje8vHL1Wj6UeLC2FdUNmq/uPTJHS7xGU4iBA3eJXZIqlQ4DB+5iK5jCWPMzY22KCGFt27bFoUOHai0XGBiI7du311imV69eOH36dI1lEhISxO7H6ri4uOCtt97CW2+9ZbBMaGgou8Dq6Pz58wgPD8fly5cxYMAATJo0CUuXLoWXlxe+//57jBs3DsXFxQZD2J07dxATE4OYmBhs3boVvr6+uHr1KmJiYmT3x8nWGsuouE9PnepQ5cu3Y8fTVcqRdGp6j8ylY8fTiIi4hLw8L3h55ckmgPEYYBprfGasSREhjGzfoUOH8Ouvv2L69OlIS0uDTqfDqlWrxAuTf/7553rlnZycqlxG6MKFC8jNzcXrr78uTmg4efKkdV5AHbC1xvI4IFv+LPkeVb6cm0ZTWO1jSnXZN1vuXrMkW/y7ZggjqysqKkJOTg5KS0tx7do17Nu3D8uWLcOAAQMwatQonD17FiUlJVi3bh0GDhyIH374AZs2bdJ7jLCwMNy+fRsHDx5Eu3bt4ObmhpCQEDg5OWHdunWYOHEizp49i1dffVWiV2kYW2ssjwOy5c+S75G3tzcSEhJk29Ikx8lR5mLJFj5b/LtmCCOr27dvn7ikSOPGjdGuXTusXbsWo0ePhoODA9q1a4c333wTy5cvx7x589CjRw8sW7YMo0aNEh+jW7dumDhxIoYOHYrc3FxxiYrk5GS8+OKLWLt2LTp27IiVK1di0KBBEr5aw2zxrE4uOCBb/iz9HimpBclQa7jSWLqFzxb/rhnC7JCxTfCWaKpPTk5GcnJyreWmT5+O6dOn6902cuRIvd83btyIjRs36t02fPhwDB8+XO+28gV95cYWz+rkggOy5Y/vURlbGuNk6RY+W/zMMITZIbk31dsLWzyrkxO5Dsimv9n7e2TrreGWaOGztc8MQ5idYsCSni2e1cmNoQHZJB25D5q3JltuDTdnC58tf2YYwogkZGtndVKTsqudjMOW+L/Zamu4uVv4bPkzwxBGJDG21hhW15lWtnywtiXc/2VstTXcEi18tvqZYQgjsjK21hjH1JlWtnqwJttR8W+7ptZwpR4DbLWFzxIYwoisjK01xrHlS5UoBVd1twxbPwbYagufJTCEEUlAqQdXqZhzkC+DhXG4qrtl2eI+s/UWPktgCCMiWTPnIF8GC+OxJZLqytZb+CyBIYyIZM2cg3wZLExjSwuKkmUxYNUNQxjZlCNHjqB37964desWGjVqZNR9wsLCkJiYiMTERIvWzd6Z2g1oqUG+DBbGsfUFRYmkxBBGVjVmzBhs2bIFzz//fJWLck+ePBkbNmzA6NGjjbq0ESlHfboBLTHIl8HCeLa8oGhdcTwhmRtDGFldcHAwPv30U6xevRqurq4AgHv37iElJQUhISES144sob7dgOZe1JbBwnhcbqAMxxOSJTjUXoTIvDp27Ijg4GDs2LFDvG3Hjh0ICQlBhw4dxNuKioowdepUNGnSBC4uLnjsscdw4sQJvcfas2cPWrRoAVdXV/Tu3RuXL1+u8nzff/89unfvDldXVwQHB2Pq1Km4c+eOxV4f1ezUqQ5ISkrEli2jkZSUiFOnOlRbrrpLlYSHX6kSkkyZaVUeLCqyx2BhjPKWyPL9Za/LDVR3IpGZGQat1qPGckQ1YUsY4Y8/gIsXgebNgaAg6zzn2LFjsXnzZowYMQIA8MEHH+DZZ5/FkSNHxDKzZ8/G9u3bsWXLFoSGhmLFihWIiYnBpUuX4OXlhd9//x2DBw/G5MmTMWHCBJw8eRIzZ87Ue56MjAzExsZiyZIl+OCDD3Djxg0kJCQgISEBmzdvts6LJVFdugEtOdOK6xjVDS+vpY/jCclcGMLs3PvvAxMmADod4OAAvPMOMG6c5Z/3mWeewbx583DlyhUAwA8//IBPP/1UDGF37tzBxo0bkZycjH79+gEA3n33XRw4cADvv/8+Zs2ahY0bNyIiIgKrVq0CALRs2RK//vorli9fLj7PsmXLMGLECHHQffPmzbF27Vr07NkTGzduhIuLi+VfLInq2g1oyW4dBoua2fJFk+uD4wnJnBjC7Ngff/wdwICyf59/HoiJsXyLmK+vL/r374/k5GQIgoD+/fvDx8dH3J6RkYGSkhI8+uij4m2Ojo7o3Lkzzp8/DwA4f/48unTpove4UVFRer///PPP+OWXX7B161bxNkEQoNPpkJmZidatW1vi5ZEBUo8vYrAwHtd8qh7HE1aPkxZMwxBmxy5e/DuAlSstBS5dsk635NixY5GQkAAAeOuttyzyHLdv38bzzz+PqVOnVtnGSQDWJ3U3IINF3XA/VCX1iYQccdKC6RjC7Fjz5mVdkBWDmFoNNGtmneePjY1FcXExVCoVYmJi9LZFRETAyckJP/zwA0JDQwEAJSUlOHHihNi12Lp1a3z99dd69/vxxx/1fu/YsSPOnTuHZtZ6URZmC2ebUncDyn3/kLxJfSIhR1wE2XQMYXYsKKhsDNjzz5e1gKnVwNtvW29wvlqtFrsW1Wq13jZ3d3dMmjQJs2bNgpeXF0JCQrBixQrcvXsX4/5v0NrEiROxatUqzJo1C+PHj0daWlqV9cXmzJmDrl27IiEhAePHj4e7uzvOnTuHAwcOGHXmVhtrhiIln22yG5BsidQnEnLGSQt1wxBm58aNKxsDdulSWQuYtQJYOU9PT4PbXn/9deh0OowcORKFhYV45JFH8M0336Bx48YAyroTt2/fjunTp2PdunXo3LkzXnvtNYwdO1Z8jIcffhhHjx7FSy+9hO7du0MQBERERGDo0KH1rru1Q5GSzzbZDUhKxxOJ2nHSQt0xhBGCgqwXvmpbCf+rr74S/+/i4oK1a9di7dq1BssPGDAAAwYM0Lvt2Wef1fu9U6dO2L9/v8HHqG5tMWMYG3YsEYqUeLbJgEVKxhOJ2nHSQt0xhBGZiaGWKUs8D882iazPngOWMThpoe4YwojMwJotUzzbJCI54qSFumMII6ona7dM8WyT5M4WZvGSaThpoW4YwojqydotUzzbJDlT8ixeMg0nLZiOIUzhBEGQugo2r7Z9LEXLlBzONq29PAdbVpRBybN4yTSctGA6hjCFKl9Xq7i4GK6urhLXxraVH1gqr2VWzlotU3I627RmawdbVpRLibN4yTT82zMNQ5hCNWjQAG5ubrhx4wYcHR3h4OBQ+52oznQ6HW7cuAE3Nzc0aKD/51Ix7NTUMmWuUCSns01rLs8h5VIgZDrO4iWqHUOYQqlUKgQEBCAzMxNXrlyRujo2zcHBASEhIVCpVHq3SxGK5Hq2aa3lOaz9XGQ6zuIlqh1DmII5OTmhefPmbAGwMCcnJ4MtjXINRdZkzS4ndm8pB2fxEtWOIUzhHBwc4OLiInU1yE5Zs8uJ3VvKwlm8RLVjCCMik1mzy4ndW8ojh1m8JF+c9cwQRkT1YM0uJ3ZvKYOcZvGSfHHWcxmGMCIzsNczOmt2ObF7SxnkNIuX5IvryZVhCCOqJ3s8o7Pm8hzWXgqE6s9WPudkHfY84YYhzE7Ya0uNNdjjOlbWbO1gywqR7bL3CTcMYXbAHltqpGQv61hZ87PCzyWRbbL3CTcMYXbAHltqpGLPzepEJA0l93TY+4QbhjAiM7H3ZnUisj6l93TY+4QbhjAiM7H3ZnUisj5bmGVoz+vJMYTZIXsZs2Rt9t6sTkTSUtJwCK4nV4YhzM4o6Y9Uaey9WZ2IpGPt4RD1HYfGWc9lGMLsCMcsWQbXsSIiqVlzOIS5xqHZesAyBkOYHeGYJcvgGR0RSc2awyFsYRyaXDCE2YHyFpja/kiV2FIjl6nZDFhEJCWphkNwiEv9MITZgYotNQ88UIA5czQoLVVBrRawfHkBnn56uCJbapQ+NZuIyJysPcuQQ1zqjyHMTpSHkJkzgaFDgUuXgGbNVAgKagSgkZRVMxmbxInI3kk5y5BDXOqPIcwOBQWV/dgSNokTUV3IZShDfUk5JpXL8tQfQxgpHpvEiaguKg9lMNSKrpShDFLVkcvy1B9DGCmevTeJ28oZPZG1VPx7qakVnUMZamfPq92bA0MYKZ49N4lzcgKR6diKbhqudm8+DGGkePbcJG7smTrP6ImqsvdWdFNxbUTzYQgjm8Am8TK8LiiR8azVim6LQwaUVl+5YggjxWKTuD7OECWqG2u0otvaJAAyL4YwUiw2if+NY1uITGPpVnROAqCaMISRotlDwDIGx7YQmc5QK7o58USJquNQexEikrvysS0V2csMUaK6MnaIgjmHMtR0okT2iy1hRDbAnmeIEtWVFEMZ7HkpHTKMIYwUxxZnGpmq4pl6TWNb7GVyApGxrH2M4IkSVYchjBSFi5Pq4+QEIuVQylI6PNG1HoYwUhQuTloVD4ZEymGNSQD1wSU1rEsxA/MHDRqEkJAQuLi4ICAgACNHjkRWVpa4fdGiRVCpVFV+3N3d9R5n27ZtaNWqFVxcXNC2bVvs2bNHb7sgCFiwYAECAgLg6uqK6OhoXLx4Ua9MXl4eRowYAU9PTzRq1Ajjxo3D7du39cr88ssv6N69O1xcXBAcHIwVK1aYeY/IU25uLrKzsw3+5ObmmvX5tFoPZGaGQav1MOvjEhGZgxSTAOqj8pIaSUmJ2LJlNJKSEnHqVIdqy5HpFNMS1rt3b7z44osICAjAn3/+iRdeeAFDhgzBsWPHAAAvvPACJk6cqHefvn37olOnTuLvx44dw/Dhw7Fs2TIMGDAAKSkpiIuLw6lTp/DQQw8BAFasWIG1a9diy5YtCA8Px/z58xETE4Nz587BxcUFADBixAhkZ2fjwIEDKCkpwbPPPosJEyYgJSUFAFBQUIAnnngC0dHR2LRpE3799VeMHTsWjRo1woQJE6yxuyRh7a5CLk5aP+xyILI8pQ4Z4JIa1qGYEDZ9+nTx/6GhoZg7dy7i4uJQUlICR0dHNGzYEA0bNhTL/Pzzzzh37hw2bdok3rZmzRrExsZi1qxZAIBXX30VBw4cwPr167Fp0yYIgoCkpCS8/PLLePLJJwEAH374Ifz8/PDVV19h2LBhOH/+PPbt24cTJ07gkUceAQCsW7cO//jHP7By5UoEBgZi69atKC4uxgcffAAnJyc8+OCDOHPmDN58802bDmHW7CrkAaJ+OLZO2RiglUWJ7wXXHrQOxYSwivLy8rB161Z069YNjo6O1ZZ577330KJFC3Tv3l28LTU1FTNmzNArFxMTg6+++goAkJmZiZycHERHR4vbNRoNunTpgtTUVAwbNgypqalo1KiRGMAAIDo6Gg4ODjh+/Dj+3//7f0hNTUWPHj30mpdjYmKwfPly3Lp1C40bNzbHbpA9S17HkAeI+qn8BW7ovWKXg/xwzA5ZA5fUsA5FhbA5c+Zg/fr1uHv3Lrp27Ypdu3ZVW+7evXvYunUr5s6dq3d7Tk4O/Pz89G7z8/NDTk6OuL38tprKNGnSRG97gwYN4OXlpVcmPDy8ymOUbzMUwoqKilBUVCT+XlBQUG05JbB0VyEPEObDbl15MLZ1i5fBIWvgkhrWIWkImzt3LpYvX15jmfPnz6NVq1YAgFmzZmHcuHG4cuUKFi9ejFGjRmHXrl1QqVR69/nyyy9RWFiI0aNHW6zulrBs2TIsXrxY6mrUmzW6CnmAMA9268pDXVq3Kpbhe0eWpJQlNZRM0hA2c+ZMjBkzpsYyTZs2Ff/v4+MDHx8ftGjRAq1bt0ZwcDB+/PFHREVF6d3nvffew4ABA6q0aPn7++PatWt6t127dg3+/v7i9vLbAgIC9Mq0b99eLHP9+nW9x7h//z7y8vL0Hqe656n4HNWZN2+eXndpQUEBgoODDZaXK0t2FXJxUvNit648mNK6xfeOrEHuS2oonaQhzNfXF76+vibdV6cru05exe47oGxc1+HDh/H1119XuU9UVBQOHjyIxMRE8bYDBw6IIS48PBz+/v44ePCgGLoKCgpw/PhxTJo0SXyM/Px8pKWlITIyEgBw6NAh6HQ6dOnSRSzz0ksviZMGyp+nZcuWNY4Hc3Z2hrOzswl7Q14s2VWo1JlGcsVuXXmpS+sW3zuyBKUtqaF0ihgTdvz4cZw4cQKPPfYYGjdujIyMDMyfPx8RERFVWsE++OADBAQEoF+/flUeZ9q0aejZsydWrVqF/v3749NPP8XJkyfxzjvvAABUKhUSExOxZMkSNG/eXFyiIjAwEHFxcQCA1q1bIzY2Fs899xw2bdqEkpISJCQkYNiwYQgMDAQAPP3001i8eDHGjRuHOXPm4OzZs1izZg1Wr15t2R0lE5buKmTAMh9268pLXVq3+N6RJfBE17oUEcLc3NywY8cOLFy4EHfu3EFAQABiY2Px8ssv67Uc6XQ6JCcnY8yYMVCr1VUep1u3bkhJScHLL7+MF198Ec2bN8dXX30lrhEGALNnz8adO3cwYcIE5Ofn47HHHsO+ffvENcIAYOvWrUhISEDfvn3h4OCA+Ph4rF27Vtyu0Wiwf/9+TJ48GZGRkfDx8cGCBQtsenkKgF2FSsVxHzWz5nIQdW3d4ntHlsCAZT0qQRAEqStB1SsoKIBGo4FWq4Wnp6fU1TEK1y9SBq4TZhxrLQeRnZ0ttsjXNCas/ESuvGxNJkyYoDe2lYisx9jvb0W0hJFy2PMXtpKwy8E4UiwHUVvrFsfsENkOhjAiO2XvAasurL0cRE0z0higiWwHQxgRUS0svRxEXVu3GLCsh0MsyJIYwoiIamHp5SDYuiVPvESUvFUMyFlZDsjMbIDw8PsIDCxbwkoJfzMMYUREtbDGchBy/7KwR7xElHxVDMg1vTdyD8gMYUSVsPuBqsPlIOwXLxElP+XH6NreG7kHZIYwogq4dAPVxBKXcGHolz9eIkq+lP7eMIQRVVD5y9DQGBBLn13xi1keLL0cBMccKQMvESVfSn9vGMKIDKhpnIElsTVOPiw9YJ5jjpSBl4iSL6W/NwxhRNWQcgyIXFrjqIw1gi7HHMkfxwTKl5LfG4YwsmmmduvJZZyBVK1xZF1y+bxRzSwxJpDMQ6nvDUMY2az6dOvJYZwBW0fshxw+b1SVrVwiimNM5YshjGxWfbr15DDOgK0j9kMOnzeqyhYW0bXVyR+2EpAZwsgumNKtJ/U4A7aO2BepP29UPSUFk+rY6uQPWwjIAEMY2YG6dOtVPmsyNM7AGmdXbB2xP0od10LyZ4vDG+QesIzBEEY2ry7denI7u2LriG2zlS4Vkj8Ob5AnhjCyeXXt1pP67EpOrXFkWXIL/WS7OLxBnhjCyOYprVuPX8z2he8jWYPSjoP2giGM7IIcu/U4bZyIrEmOx0F7xxBGNkvO3Xq8NBERSYGTP+SFIYxslpy79XhpIiLzYItyzeQy+YPvU/UYwsimKeGPmpcmIjKNrS5Eak5yOBlly79hDGFEErLFtXuIrMVWFyI1N6mDDVv+DWMII5IQ1+4hqj+ezCgHW/71MYQRSYhr9xDVn1xPZjgOSh/DclUMYUQS4to9RPUnx5MZjoOqSq5hWUoMYUQS49o9RPUjx5MZjoOqSo5hWWoMYUQSkPMaZkRKVNPJTH5+PgICAiSrG8dBlZFjWJYaQxiRBOQwbZzI1pR/mefleev9/vnnn0vW7WfJcVBKHHPGln99DGFEEpHbwZFIaSq3FMtxmQpLjYNS0pgztvwbxhBGRESK5O3tjaFDh+Kzzz6T7cw7S42DUtKYM0Mt//n5+bh//z4AwNHREcXFxcjOzha3y7Elz9wYwoiISLE0Gg0A+c68s8Y4KCWMOascpnJzc/H555+Lv9vr1Q4YwqgKJY4zICL7JueZd5YcByXXFsDa8GoHZRjCSI+SxhkQEZUzpcXJkiec1hoHJdcWQGMpNUSaC0MY6TH2rMPWz06IzImty9ZRlxYnS1/821ozoOXcAmgMpYfI+mIIoxoZOjARkXHYumxdhlqcKrNGd5g13k+lr72l9BBZXwxhZJASBnvWFVskyNqUNItNiYztzjNUzha6w5S89pbSQ2R9MYRRtWzhwFQZWyRIarZ4YiO1+nb7KbU7zJbW3lJyiKwvhjCqllIPTDVhiwRJyRZPbOSiPidNSu0Os7WrbhjbjWxrGMKoWko9MBmLLRJkbbZ4YmMLlNwdppSAVZ36diPbCoYwqpaSD0y1YYsEScHWT2yUzJ67w6Riay15pmIIIz0VzzpqOjAp+eyELRIkBVs+sbEF9todJiVbD1jGYAgjPfZwdsIWCbKkyjNwb968Kf6fLS7ywe4wkgOGMKpCyQHLGGyRkC+lLyFieAFQD/HzpeRZbLbEHk44Sf4YwsgusUVCfmxhCRFjFwAdPHgwfHx8xLL8spcG9zlJjSGM7IYtratji2xpCZHaJn/4+PggICBA4loSkdQYwshusPtBOZS+hAgnfxCRMRjCyK4wYMmfLSwhwskfplH6mECiumIIIyJZsYVWJE7+qDtbGBNIVFcMYUQkK7bSisTJH3VjS2MCiYzFEEZVsEuApGRLrUhcANQ0Sh8TSGQshjDSwy4BkgOltiJxAdD6s4UxgUTGYggjPewSIKnYwhIinIFbf7YwJpDIWAxhZBC7BMiabCXAyL1+cmcrYwKJjMEQRtVilwBJgQGGbGlMIFFtGMKoWuwSICKpKHVMIFFdMYRRtZTWJcAZnUTKZgtjAonqiiGMqqWkLgHO6CRSPlsZE0hUF0aHsIKCAqMf1NPT06TKkLwopUuAMzqJbAMDFtkbo0NYo0aNoFKpaiwjCAJUKhVKS0vrXTGShtK7BDijk4gq4lAFkjOjQ9jhw4ctWQ+SCSV3CXBGJxFVxKEKJHdGh7CePXtash4kI0o9GHFGJxFVxKEKJHcmD8zPz8/H+++/j/PnzwMAHnzwQYwdOxYajcZslSOqC6XN6CQi6+FQBZIjh9qLVHXy5ElERERg9erVyMvLQ15eHt58801ERETg1KlT5q4jkVHKZ3SqVDoAkPWMTiKyHkNDFbRaD4lrRvbOpJaw6dOnY9CgQXj33XfRoEHZQ9y/fx/jx49HYmIivvvuO7NWkshYSpnRSUTWw6EKJFcmt4TNmTNHDGAA0KBBA8yePRsnT540W+UqGjRoEEJCQuDi4oKAgACMHDkSWVlZemW++eYbdO3aFR4eHvD19UV8fDwuX76sV+bIkSPo2LEjnJ2d0axZMyQnJ1d5rrfeegthYWFwcXFBly5d8NNPP+ltv3fvHiZPngxvb280bNgQ8fHxuHbtml6Zq1evon///nBzc0OTJk0wa9Ys3L9/3yz7gvRVN6MzPPxKlYOrXGd0EpFllQ9VqIhDFUgOTGoJ8/T0xNWrV9GqVSu923///Xd4eFimebd379548cUXERAQgD///BMvvPAChgwZgmPHjgEAMjMz8eSTT2LGjBnYunUrtFotpk+fjsGDB4tdpJmZmejfvz8mTpyIrVu34uDBgxg/fjwCAgIQExMDAPjss88wY8YMbNq0CV26dEFSUhJiYmKQnp6OJk2aAChrCdy9eze2bdsGjUaDhIQEDB48GD/88AMAoLS0FP3794e/vz+OHTuG7OxsjBo1Co6Ojnjttdcssn/smZJndBKR5Slp8WmyLypBEIS63mnq1Kn48ssvsXLlSnTr1g0A8MMPP2DWrFmIj49HUlKSuetZxddff424uDgUFRXB0dERX3zxBYYPH46ioiI4OJQ18O3cuRNPPvmkWGbOnDnYvXs3zp49Kz7OsGHDkJ+fj3379gEAunTpgk6dOonTmnU6HYKDgzFlyhTMnTsXWq0Wvr6+SElJwZAhQwAAFy5cQOvWrZGamoquXbti7969GDBgALKysuDn5wcA2LRpE+bMmYMbN24Y3SJTUFAAjUYDrVbLBXCJiOooOzsb77zzjvh72ezIqkMVJkyYgICAACmqSDbK2O9vk7ojV65cicGDB2PUqFEICwtDWFgYxowZgyFDhmD58uUmV9pYeXl52Lp1K7p16wZHR0cAQGRkJBwcHLB582aUlpZCq9Xio48+QnR0tFgmNTUV0dHReo8VExOD1NRUAGXTlNPS0vTKODg4IDo6WiyTlpaGkpISvTKtWrVCSEiIWCY1NRVt27YVA1j58xQUFOC3334z+LqKiopQUFCg90NERKbhUAWSO5O6I52cnLBmzRosW7YMGRkZAICIiAi4ubmZtXKVzZkzB+vXr8fdu3fRtWtX7Nq1S9wWHh6O/fv346mnnsLzzz+P0tJSREVFYc+ePWKZnJwcvWAEAH5+figoKMBff/2FW7duobS0tNoyFy5cEB/DyckJjRo1qlImJyenxucp32bIsmXLsHjxYiP3BhER1YRDFUjuTGoJK+fm5oa2bduibdu2JgWwuXPnQqVS1fhTHn4AYNasWTh9+jT2798PtVqNUaNGobw3NScnB8899xxGjx6NEydO4OjRo3BycsKQIUNgQo+rJObNmwetViv+/P7771JXiYhI0by9vREQEGDwhwGMpGRSS9i9e/ewbt06HD58GNevX4dOpz/rxNi1wmbOnIkxY8bUWKZp06bi/318fODj44MWLVqgdevWCA4Oxo8//oioqCi89dZb0Gg0WLFihVj+448/RnBwMI4fP46uXbvC39+/yizGa9euwdPTE66urlCr1VCr1dWW8ff3BwD4+/ujuLgY+fn5eq1hlctUnlFZ/pjlZarj7OwMZ2fnGvcHERER2QaTQti4ceOwf/9+DBkyBJ07d671wt6G+Pr6wtfX16T7lge/oqIiAMDdu3fFAfnl1Gq1XtnK3ZMAcODAAURFRQEoa5aOjIzEwYMHERcXJ9734MGDSEhIAFA29szR0REHDx5EfHw8ACA9PR1Xr14VHycqKgpLly7F9evXxRmVBw4cgKenJ9q0aWPS6yUi4/CCzUSkFCbNjtRoNNizZw8effRRS9SpiuPHj+PEiRN47LHH0LhxY2RkZGD+/Pm4du0afvvtNzg7O+PQoUOIjo7GokWLMHz4cBQWFuLFF1/EhQsXcP78ebi6uiIzMxMPPfQQJk+ejLFjx+LQoUOYOnUqdu/erbdExejRo/H222+jc+fOSEpKwueff44LFy6I47omTZqEPXv2IDk5GZ6enpgyZQoAiMtllJaWon379ggMDMSKFSuQk5ODkSNHYvz48XVaooKzI4nqhhdsJiI5sOjsyAceeMBi64FVx83NDTt27EDfvn3RsmVLjBs3Dg8//DCOHj0qdt/16dMHKSkp+Oqrr9ChQwfExsbC2dkZ+/btg6urK4Cywfu7d+/GgQMH0K5dO6xatQrvvfeeGMAAYOjQoVi5ciUWLFiA9u3b48yZM9i3b5/eQPvVq1djwIABiI+PR48ePeDv748dO3aI29VqNXbt2gW1Wo2oqCg888wzGDVqFF555RUr7TEi+2TshZh5wWYikgOTWsL27t2LtWvXYtOmTQgNDbVEvQhsCSOqq+rXhfKGl1cu14UiIqsx9vvbpDFhjzzyCO7du4emTZvCzc1NXIerXF4eLwVBRNI6dapDlRXSO3Y8LXW1iIhEJoWw4cOH488//8Rrr70GPz8/kwfmExFZglbrIQYwoOxizTt3DkBExCVeqoaIZMOkEHbs2DGkpqaiXbt25q4PEVG95eV5iwGsnCA4IC/PiyGMiGTDpIH5rVq1wl9//WXuuhARmYWXVy5UKv31C1UqHby8OFSCiOTDpJaw119/HTNnzsTSpUvRtm3bKmPCOIicSB/XrrIujaYQAwfuqjImjK1gRCQnJoWw2NhYAEDfvn31bhcEASqVCqWlpfWvGZGN4NpV1lPxQswdO55GRMQl5OV5wcsrTy+A8YLNRCQHJoWww4cPm7seRDarcguYoWUTuHZV/cnxgs1sBSUiQ0wKYT179jSq3L/+9S+88sor8PHxMeVpiGwOl02wPDkFGraCElFNTBqYb6yPP/4YBQUFlnwKIsUwtGyCVmu9q0+QdXEFfyKqiUVDmAmL8RPZrJqWTSD7oNV6IDMzjMGbiACY2B1JRHVXvmxCxSDGZRPsB7uiiagyi7aEEdHfypdNKF+/issm2A92RRNRddgSRmRFNS2bQHWnlJmHXMGfiKrDEEZkYZXXpNJoCqv94uXaVXWjpJmH7IomoupYNIQ988wzXD2f7J4c166yBUqaecgV/ImoOiaHsPz8fPz000+4fv06dDr9a7SNGjUKALBx48b61Y7IRjBgWZ6hRXCtpbqu0fz8fPH/XMGfiCozKYTt3LkTI0aMwO3bt+Hp6QmVSiVuU6lUYggjIrIGqWceGts1OmHCP6DRaPRuYysokf0yKYTNnDkTY8eOxWuvvQY3Nzdz14mIyGiGZh5GRFyyWouYsV2eGo0GAQEBFq4NESmFSUtU/Pnnn5g6dSoDGBFJTo6L4HJRViIyhkktYTExMTh58iSaNm1q7voQEdWJ3GYeSt01SkTKYXQI+/rrr8X/9+/fH7NmzcK5c+fQtm1bODo66pUdNGiQ+WpIRFQDOc08lEPXKNkfpayXV1e2+roqMjqExcXFVbntlVdeqXKbSqVCaWlpvSpFRFSbijMK5TLzkIuymsYevmwtRUnr5dWFrb6uyowOYZWXoSAikpIc11+TW9eoEtjLl62lKGm9vLqw1ddVmUljwj788EMMHToUzs7OercXFxfj008/5RIVpBg8A1c2ub03cuoaVYrKf3+G1ntT+pettRjafzdv3qxSVknHN6nXAbQUk0LYs88+i9jYWDRp0kTv9sLCQjz77LMMYaQIlc/ADf2R8wy8Zgyy8uwaVSJOaqifmvbfjh07qr2PEo5vtvy5MCmECYKgt0BruT/++KPKQoREclUxONT0R84zcMPYlVRGjl2jSsNJDfVj6v6T+/HN1j8XdQphHTp0gEqlgkqlQt++fdGgwd93Ly0tRWZmJmJjY81eSSJLsvU/ckuyl3EbxmDAqh9Oaqif2vafUrvzbP1zUacQVj5D8syZM4iJiUHDhg3FbU5OTggLC0N8fLxZK0hkabb+R25NSj3Qk/Q4qaF+atp/Su7Os/XPRZ1C2MKFCwEAYWFhGDp0KFxcXCxSKSJrsvU/cmtR8oGepMdJDfVjaP8BUHRLv61/LkwaEzZ69GgAZV0M169fr7J8RUhISP1rRmQltv5Hbg3s0iVzqGlSA1WvtkkhmZlhimzpt5fJLiaFsIsXL2Ls2LE4duyY3u3lA/a5WCspDQ/+9cMuXTJV5S9Rjaaw2s+M0r9sjVXX2caGJoXcvHkTO3bsUGxLv71MdjEphI0ZMwYNGjTArl27EBAQUO1MSSKlMXTwryt7XLJBqQd6kp69fNkaw9TZxjXtGyW39NvDe25SCDtz5gzS0tLQqlUrc9eHyGqMPbOuyxm4va49puQDPUnPlv4W6sOcs42N7c67e/du3StKZmNSCGvTpk21q+8SKYklzsDtbe0xexm3QSSF+sw29vb2xjPPPIOPP/4YgOGW/o8//tjmTgqVxKQQtnz5csyePRuvvfYa2rZtC0dHR73tnp6eZqkckaVZ6sBjLwPV2ZVEZBnmmG3s5uZmVDlbOSlUIpNCWHR0NACgT58+euPBODCfqIw9DVRnwCIyL0udxHEdP/kxKYQdPnzY3PUgsikcqE5EprLESRzX8ZMnh9qLVNWzZ084ODjg3Xffxdy5c9GsWTP07NkTV69ehVqtNncdiRSnfKC6SlW2hh4HqlN95ObmIjs72+BPbm6u1FUkMyo/iauoPidxhlrWtFqPeteV6seklrDt27dj5MiRGDFiBE6fPo2ioiIAgFarxWuvvYY9e/aYtZJESsS1x+RFqUuH8CLp9sfcs43taXiE0pgUwpYsWYJNmzZh1KhR+PTTT8XbH330USxZssRslSNSOnOtPUb1o+QgUzk4GhrXw8HVymep2cYcHiFfJoWw9PR09OjRo8rtGo0G+fn59a0TkWJZYu0xqj9bCTIc12PbLDXbmOv4yZdJIczf3x+XLl1CWFiY3u3ff/89mjZtao56ESkSl2yQP6UGGXtZ9sTemfPYwHX85M+kEPbcc89h2rRp+OCDD6BSqZCVlYXU1FS88MILmD9/vrnrSKQoDFjypeQgw3E9VFc8KZQ/k0LY3LlzodPp0LdvX9y9exc9evSAs7MzXnjhBUyZMsXcdSQiMgslBxmO6yFTMGDJm0lLVKhUKrz00kvIy8vD2bNn8eOPP+LGjRt49dVXzV0/IiKzMffUf2visidEtseklrByTk5OaNOmjbnqQkRkUUofoMxlT4hsS71CGBGR0igtyFQeNG1o2RMOriZSHoYwIrJ5Sg4yHFxNZLtUgiAIUleCqldQUACNRgOtVgtPT0+pq0OkaEpdMZ+IlMfY72+2hJHNqPglm5XlgMzMBggPv4/AwLKBzPyStW9874lIbhjCyCZUvCxNTYtxyvGyNEREZJ9MWqKCSG7KW8AMLcap1XrolSMiIpIaQxjZlJoW4yQiIpIThjCyKUpejJOIiOwLQxjZFK4qTkRESsGB+WRzlLYYJxER2SeGMLJJhhbjJCIikguGMCKyaVyklYjkiiGMbIKxl5uR42VpyHIqrh9XE64fR0RSYAgjm8Dr61F1Kn8etFoP5OV5w8srV6+7muvHEVkOW6MNYwgj/PEHcPEi0Lw5EBQkdW1MZ69/xGScmq6kQGQsBoq6YWt0zRjC7FT5gSQlxRWzZ2ug06ng4CBgxQotnn76Lx5IyKYYupJCRMQlTuAgozFQ1B1bo2vGEGaHyg8kWq0HkpISIQgqAIBOp8KsWZ74888PoNEU8kBCNqOmKykwhJGxGCjqh63RVTGE2aHyA0RtX0w8kJCtKL+SQsXPO6+kQPXBQFE3bI2uHlfMt2O8xA/ZC15JgUyRm5uL7Oxs8efmzZsADAcKrdZDyurKGq/rWz3FhLBBgwYhJCQELi4uCAgIwMiRI5GVlaVX5vPPP0f79u3h5uaG0NBQvPHGG1Ue58iRI+jYsSOcnZ3RrFkzJCcnVynz1ltvISwsDC4uLujSpQt++uknve337t3D5MmT4e3tjYYNGyI+Ph7Xrl3TK3P16lX0798fbm5uaNKkCWbNmoX79+/Xf0eYEb+YyJ507HgaiYlJGD06GYmJSWy1oBqVD9t45513xJ8dO3YAYKAwBU/6q6eYENa7d298/vnnSE9Px/bt25GRkYEhQ4aI2/fu3YsRI0Zg4sSJOHv2LDZs2IDVq1frDaLMzMxE//790bt3b5w5cwaJiYkYP348vvnmG7HMZ599hhkzZmDhwoU4deoU2rVrh5iYGFy/fl0sM336dOzcuRPbtm3D0aNHkZWVhcGDB4vbS0tL0b9/fxQXF+PYsWPYsmULkpOTsWDBAgvvpbrjFxPZssrrwmk0hQgPv1LlRIPrx1Fl1Y3/yswMg1brwUBhAp70V08lCIIgdSVM8fXXXyMuLg5FRUVwdHTE008/jZKSEmzbtk0ss27dOqxYsQJXr16FSqXCnDlzsHv3bpw9e1YsM2zYMOTn52Pfvn0AgC5duqBTp05ieNPpdAgODsaUKVMwd+5caLVa+Pr6IiUlRQyBFy5cQOvWrZGamoquXbti7969GDBgALKysuDn5wcA2LRpE+bMmYMbN24YfcAvKCiARqOBVquFp6enWfYbAGRnZ+Odd96ptdyECRMQEBBgtuclkgKXFCBTVDxOVjf+C4DBMWE8dv6t8vdN2WSGqtf1tbV9Zuz3tyIH5ufl5WHr1q3o1q0bHB0dAQBFRUVwc3PTK+fq6oo//vgDV65cQVhYGFJTUxEdHa1XJiYmBomJiQDKznzS0tIwb948cbuDgwOio6ORmpoKAEhLS0NJSYne47Rq1QohISFiCEtNTUXbtm3FAFb+PJMmTcJvv/2GDh06VPu6ioqKUFRUJP5eUFBgwt4hoooYsKg+DI3/SkxMQmJiUrWBgv5WXWt0dfvKXlujFRXC5syZg/Xr1+Pu3bvo2rUrdu3aJW6LiYnB9OnTMWbMGPTu3RuXLl3CqlWrAJQl8bCwMOTk5OgFIwDw8/NDQUEB/vrrL9y6dQulpaXVlrlw4QIAICcnB05OTmjUqFGVMjk5OWKZ6h6jfJshy5Ytw+LFi+uwR4gsjy1JZM9qGv9VXdc2YL+Bojq8mknNJA1hc+fOxfLly2ssc/78ebRq1QoAMGvWLIwbNw5XrlzB4sWLMWrUKOzatQsqlQrPPfccMjIyMGDAAJSUlMDT0xPTpk3DokWL4OCgjKFv8+bNw4wZM8TfCwoKEBwcbPbn4XUWyVhcnJLsXW3LmwwePBg+Pj7iNnsOFIZwfxgmaQibOXMmxowZU2OZpk2biv/38fGBj48PWrRogdatWyM4OBg//vgjoqKioFKpsHz5crz22mvIycmBr68vDh48qPcY/v7+VWYxXrt2DZ6ennB1dYVarYZara62jL+/v/gYxcXFyM/P12sNq1ym8ozK8scsL1MdZ2dnODs717g/zIFnJmQsY9eK45pyZKvKB5RXHv9V3gLm4+NjU2OZyLokDWG+vr7w9fU16b46XdkMi4pjqABArVbjgQceAAB88skniIqKEp8jKioKe/bs0St/4MABREVFASgLHpGRkTh48CDi4uLE5zl48CASEhIAAJGRkXB0dMTBgwcRHx8PAEhPT8fVq1fFx4mKisLSpUtx/fp1NGnSRHweT09PtGnTxqTXa24MWGQKQyuEE9myjh1PIyLiEsd/kdkpYkzY8ePHceLECTz22GNo3LgxMjIyMH/+fERERIjB5+bNm/jiiy/Qq1cv3Lt3D5s3bxaXkCg3ceJErF+/HrNnz8bYsWNx6NAhfP7559i9e7dYZsaMGRg9ejQeeeQRdO7cGUlJSbhz5w6effZZAIBGo8G4ceMwY8YMeHl5wdPTE1OmTEFUVBS6du0KAHjiiSfQpk0bjBw5EitWrEBOTg5efvllTJ482SotXUSWwBXCyZ5wQDlZgyJCmJubG3bs2IGFCxfizp07CAgIQGxsLF5++WW9ULNlyxa88MILEAQBUVFROHLkCDp37ixuDw8Px+7duzF9+nSsWbMGQUFBeO+99xATEyOWGTp0KG7cuIEFCxYgJycH7du3x759+/QG2q9evRoODg6Ij49HUVERYmJisGHDBnG7Wq3Grl27MGnSJERFRcHd3R2jR4/GK6+8YuE9RWQZvOQI2RsO2yBrUOw6YfbAUuuEERmrfI2fzMwwbNkyusr20aOTER5+xebW+CEi2yDV7G6bXieMiKyLF8AmIqWpPLvb0JhWKWd3M4QRUa1qmyFGRCQ3FVvAahrTKuXsboYwIjKo4qDjmmaIcXAyEcmVnMe0MoQRkUEcnExESlfTVQ8YwohI1hiwiEjJ5DymlSGMbAqvc0hEUuIxSH7kPKaVIYwkY+6DFa9zSGRdDBz6lDAbz17J9aoHDGFkFnU9GFsiMPE6h0TWw5OeqpQwG8+eGbrqgZQYwqjeTDkYMzARKVvlv01DrT72+Dcs59l49sTYWdtSzu5mCKN6M/Ygm5WVJZa9efOmJasEgBebJrIWXldUn5xn49kTJczuZggjq9mxY4fVnotfCkTWIadWH7mMUZPzbDx7I/eucIYwkgVztlrJ6UuByNbJpdVHToPi5Twbj+SFIYwkZ+5WK7l8KRDZA7m0+shtULxcZ+ORvDjUXoSobrRaD2RmhkGr9TCqbHWtVsbc15DyL4WK2BVAZBnlrT7lf3NSt/pY4phiKo2mEOHhVxjAyCC2hJFZ1bVVy5ytVuUzXGrrCuB1DonMS06tPlK2hCthNh7JC0MYmY0pY7Fq68qoy8Gq8kyYBQtu4PLlBggLu4/AwE4AOkk+E4bIVlT+2zS0BpO1A4eU3aNKmI1H8sIQRvVWfpA15gy08mDZ8larXbsGQqdTQa0WsHx5AZ5+erhJB6uK5QMCgMjIer44IqqWXAOH1IPiGbCoLhjCqN7KD8aXL9/HRx8J0OlU4jYHB0E8AzXUVdmx42ksWNAFhYV+aNZMhaCgRgAaSfJaiMh4dQ0c1lpCQk7do0Q1YQgjs/D29oa3N/DOO8DzzwOlpYBaDaxadQf5+YW1dlWGhTUATyCJbJe1l5CQ4yVqiCpjCCOzGjcOiIkBLl0CmjUDgoIaIjc3AYcPA6tXV+2qfPTR0ejVi034RLbO0ktIcFA8KRFDGJldUFDZTzlvb2907Qo4OAC6CitHqNVAly7ebAEjsiOWWkxZrmPUiGrCEEZWERRUtavy7bf1wxoR2T5LLiHBgEVKwxBGVlO1q1LqGhHZD15XkUh+GMLIqip3VRKR5VUeFG8Ir6toHLkEWlI+hjAiIhtXOTAYmpnI6yrWTk4XCiflYwgjIrIjdb20mKUodQkJuV0onJSNF/AmIrITUl7c2taWkJDThcJJudgSRkRkJ6S8uLWtLSEh5b4k28EQRkRkJ6SemaiUgGUMqfcl2QZ2RxIR2YnymYkqVdmqyUqcmSgX3JdkDmwJIyKyI0qemSg33JdUXwxhREQ2rvJgd0MzE5UyKF5OlDrLk+SBIYyIyMbZ2qB4KdnaLE+SlkoQBEHqSlD1CgoKoNFooNVq4enpKXV1SEJcoZtIPvj3SLUx9vubLWFEMienS84QkW3N8iRpcXYkkcwZu/I2V+gmIlIWhjAiIiIiCTCEEREREUmAIYyIiIhIAhyYT6QwWq0H8vK84eWVy/WJiMhiKs4CzcpyQGZmA4SH30dgYNlVAjgLtP4YwogU5NSpDti5cwAEwUG8TErHjqelrhYR2ZiKs7JrOu5wVnb9sDuSSCG0Wg/xQAgAguCAnTsHQKv1kLhmRGRrylvAajvucFZ2/TCEEclc+crbeXne4oGwnCA4IC/PS68cEZG51HbcofphdySRzJVfcuby5fv46CMBOp1K3KZWC5gypR/CwhqwS4CIzM7LKxcqlU4viKlUOnh55UlYK9vBljAiBfD29kZkpB/eeUcFtbrsNrUaePttFSIj/RjAiMgiNJpCDBy4CypV2WD88jFhnBRkHmwJI1KQceOAmBjg0iWgWTMgKEjqGhGRrevY8TQiIi4hL88LXl55DGBmxBBGpDBBQQxftoTLAJASaDSFDF8WwBBGRCQRLgNAJJ0//gAuXgSaN5fuxJZjwoiIJMJlAEiujJ1trbRZ2bm5ucjOzsaqVfkIDRXQpw8QGipg1ap8ZGdnIzc316r1YUsYEZHEaloGgF1AJIXyWdk1nQAorau8vOVZq/VAUlIiBKFsprlOp8KsWZ74888PoNEUWrXlmSGMiEhiXAaA5EhJAcsY5YGytpMea7Y8szuSiEhiXAaAyHrKT3oqkuqkhy1hREQywGUAiKyj/KSn8kQYKf7mGMKIiGSCywAQWYdcTnoYwoiIiMjuyOGkh2PCiIgkYqvLABCRcdgSRkQkEVtcBoCIjMcQRkQkIQYsIuuQY8szQxgRERHZPDm2PDOEERERkV2QW8szB+YTERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgRERGRBBQXwoqKitC+fXuoVCqcOXNGb9svv/yC7t27w8XFBcHBwVixYkWV+2/btg2tWrWCi4sL2rZtiz179uhtFwQBCxYsQEBAAFxdXREdHY2LFy/qlcnLy8OIESPg6emJRo0aYdy4cbh9+3ad60JERET2S3EhbPbs2QgMDKxye0FBAZ544gmEhoYiLS0Nb7zxBhYtWoR33nlHLHPs2DEMHz4c48aNw+nTpxEXF4e4uDicPXtWLLNixQqsXbsWmzZtwvHjx+Hu7o6YmBjcu3dPLDNixAj89ttvOHDgAHbt2oXvvvsOEyZMqFNdiIjq6o8/gMOHy/4lIhsgKMiePXuEVq1aCb/99psAQDh9+rS4bcOGDULjxo2FoqIi8bY5c+YILVu2FH9/6qmnhP79++s9ZpcuXYTnn39eEARB0Ol0gr+/v/DGG2+I2/Pz8wVnZ2fhk08+EQRBEM6dOycAEE6cOCGW2bt3r6BSqYQ///zT6LoYQ6vVCgAErVZbp/sRke24efOmkJWVJaxceUtwcNAJgCA4OOiElStvCVlZWcLNmzelriIRVWLs97diWsKuXbuG5557Dh999BHc3NyqbE9NTUWPHj30LjcQExOD9PR03Lp1SywTHR2td7+YmBikpqYCADIzM5GTk6NXRqPRoEuXLmKZ1NRUNGrUCI888ohYJjo6Gg4ODjh+/LjRdalOUVERCgoK9H6IyH7l5uZi/fr1eOONTzBrlid0OhUAQKdTYdYsT7zxxidYv349cnNzJa4pEZlCESFMEASMGTMGEydO1As/FeXk5MDPz0/vtvLfc3JyaixTcXvF+xkq06RJE73tDRo0gJeXV63PU/E5qrNs2TJoNBrxJzg42GBZImtjV5j1lV9eJS/PG5XPmQXBAXl5XnrliEhZJA1hc+fOhUqlqvHnwoULWLduHQoLCzFv3jwpq2tx8+bNg1arFX9+//13qatEBAB4/30gNBTo06fs3/ffl7pG9sXLKxcqlU7vNpVKBy+vvDo9Tm5uLrKzs5GdnY20tGv44otcpKVdE29jixqRdUl67ciZM2dizJgxNZZp2rQpDh06hNTUVDg7O+tte+SRRzBixAhs2bIF/v7+uHbtmt728t/9/f3Ff6srU3F7+W0BAQF6Zdq3by+WuX79ut5j3L9/H3l5ebU+T8XnqI6zs3OV10gkpdzcXFy+fB8TJjSp0BUGPP+8gPbtryMsrIHsrsVmizSaQgwcuAs7dw6AIDhApdJh4MBd0GgKjX6M8q5NADh1qkOVx+rY8TQAICEhge8pkZVIGsJ8fX3h6+tba7m1a9diyZIl4u9ZWVmIiYnBZ599hi5dugAAoqKi8NJLL6GkpASOjo4AgAMHDqBly5Zo3LixWObgwYNITEwUH+vAgQOIiooCAISHh8Pf3x8HDx4UQ1dBQQGOHz+OSZMmiY+Rn5+PtLQ0REZGAgAOHToEnU5Xp7oQyV35l3ZmZhh0utF620pLVVi3bi/Cw6/wS9tKOnY8jYiIS8jL84KXV16dAhjwd5elVushBjCgrFtz584BiIi4BI2mkF2bRFakiDFhISEheOihh8SfFi1aAAAiIiIQFBQEAHj66afh5OSEcePG4bfffsNnn32GNWvWYMaMGeLjTJs2Dfv27cOqVatw4cIFLFq0CCdPnkRCQgIAQKVSITExEUuWLMHXX3+NX3/9FaNGjUJgYCDi4uIAAK1bt0ZsbCyee+45/PTTT/jhhx+QkJCAYcOGiUtnGFMXIrkr/zKurSuMX9rWo9EUIjz8Sp0DWEW1jS8jIutRRAgzhkajwf79+5GZmYnIyEjMnDkTCxYs0Fu/q1u3bkhJScE777yDdu3a4YsvvsBXX32Fhx56SCwze/ZsTJkyBRMmTECnTp1w+/Zt7Nu3Dy4uLmKZrVu3olWrVujbty/+8Y9/4LHHHtNbA8yYuhApRXlXWHkQM6UrjOTDXOPLiKj+JO2ONFVYWBgEQahy+8MPP4z//Oc/Nd73n//8J/75z38a3K5SqfDKK6/glVdeMVjGy8sLKSkpNT6PMXUhUor6doWRfJhjfBkRmYciQxgRWZ9GU8gvaiuruNagOcqVY6gmkgeGMCIimfL29kZCQkKN4+6cnJxMmhjBUE0kPYYwIiIZ48xTIttlMwPziYjIMEt1bRKR6dgSRkTV4pe2bbFk1yYRmUYlVDfNkGShoKAAGo0GWq0Wnp6eUleH7FBubi6/tImI6sjY72+2hBGRQQxYRESWwzFhRERERBJgCCMiIiKSAEMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEuCK+URERArDS4rZBoYwIiIiBcnNzcX69etrLZeQkMAgJnPsjiQiIlKQmlrATClH0mEIIyIiIpIAQxgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgCGMiIhIQZycnPR+12o9kJkZBq3Wo8ZyJD9crJWIiEhBvL29kZCQgOLiYqSkuOKVVzTQ6VRwcBCwYoUWTz/9F1fMVwiVIAiC1JWg6hUUFECj0UCr1cLT01Pq6hARkYz88QcQGgrodH/fplYDly8DQUGSVYtg/Pc3uyOJiIgU6OJF/QAGAKWlwKVL0tSH6o4hjIiISIGaNwccKn2Lq9VAs2bS1IfqjiGMiIhIgYKCgHfeKQteQNm/b7/Nrkgl4cB8IiIihRo3DoiJKeuCbNaMAUxpGMKIiIgULCiI4Uup2B1JREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIiIpIAQxgRERGRBBjCiIiIiCTAEEZEREQkAYYwIiIiIgkwhBERERFJgNeOlDFBEAAABQUFEteEiIiIjFX+vV3+PW4IQ5iMFRYWAgCCg4MlrgkRERHVVWFhITQajcHtKqG2mEaS0el0yMrKgoeHB1QqldTVsaqCggIEBwfj999/h6enp9TVUSzuR/PhvjQP7kfz4b40D0vsR0EQUFhYiMDAQDg4GB75xZYwGXNwcEBQUJDU1ZCUp6cnDy5mwP1oPtyX5sH9aD7cl+Zh7v1YUwtYOQ7MJyIiIpIAQxgRERGRBBjCSJacnZ2xcOFCODs7S10VReN+NB/uS/PgfjQf7kvzkHI/cmA+ERERkQTYEkZEREQkAYYwIiIiIgkwhBERERFJgCGMiIiISAIMYSSZ7777DgMHDkRgYCBUKhW++uorve2CIGDBggUICAiAq6sroqOjcfHiRWkqK3O17csxY8ZApVLp/cTGxkpTWRlbtmwZOnXqBA8PDzRp0gRxcXFIT0/XK3Pv3j1MnjwZ3t7eaNiwIeLj43Ht2jWJaixPxuzHXr16VflMTpw4UaIay9fGjRvx8MMPiwuJRkVFYe/eveJ2fh6NV9u+lOIzyRBGkrlz5w7atWuHt956q9rtK1aswNq1a7Fp0yYcP34c7u7uiImJwb1796xcU/mrbV8CQGxsLLKzs8WfTz75xIo1VIajR49i8uTJ+PHHH3HgwAGUlJTgiSeewJ07d8Qy06dPx86dO7Ft2zYcPXoUWVlZGDx4sIS1lh9j9iMAPPfcc3qfyRUrVkhUY/kKCgrC66+/jrS0NJw8eRJ9+vTBk08+id9++w0AP491Udu+BCT4TApEMgBA+PLLL8XfdTqd4O/vL7zxxhvibfn5+YKzs7PwySefSFBD5ai8LwVBEEaPHi08+eSTktRHya5fvy4AEI4ePSoIQtln0NHRUdi2bZtY5vz58wIAITU1Vapqyl7l/SgIgtCzZ09h2rRp0lVKwRo3biy89957/DyaQfm+FARpPpNsCSNZyszMRE5ODqKjo8XbNBoNunTpgtTUVAlrplxHjhxBkyZN0LJlS0yaNAm5ublSV0n2tFotAMDLywsAkJaWhpKSEr3PZatWrRASEsLPZQ0q78dyW7duhY+PDx566CHMmzcPd+/elaJ6ilFaWopPP/0Ud+7cQVRUFD+P9VB5X5az9meSF/AmWcrJyQEA+Pn56d3u5+cnbiPjxcbGYvDgwQgPD0dGRgZefPFF9OvXD6mpqVCr1VJXT5Z0Oh0SExPx6KOP4qGHHgJQ9rl0cnJCo0aN9Mryc2lYdfsRAJ5++mmEhoYiMDAQv/zyC+bMmYP09HTs2LFDwtrK06+//oqoqCjcu3cPDRs2xJdffok2bdrgzJkz/DzWkaF9CUjzmWQII7IDw4YNE//ftm1bPPzww4iIiMCRI0fQt29fCWsmX5MnT8bZs2fx/fffS10VRTO0HydMmCD+v23btggICEDfvn2RkZGBiIgIa1dT1lq2bIkzZ85Aq9Xiiy++wOjRo3H06FGpq6VIhvZlmzZtJPlMsjuSZMnf3x8AqszyuXbtmriNTNe0aVP4+Pjg0qVLUldFlhISErBr1y4cPnwYQUFB4u3+/v4oLi5Gfn6+Xnl+LqtnaD9Wp0uXLgDAz2Q1nJyc0KxZM0RGRmLZsmVo164d1qxZw8+jCQzty+pY4zPJEEayFB4eDn9/fxw8eFC8raCgAMePH9frvyfT/PHHH8jNzUVAQIDUVZEVQRCQkJCAL7/8EocOHUJ4eLje9sjISDg6Oup9LtPT03H16lV+LiuobT9W58yZMwDAz6QRdDodioqK+Hk0g/J9WR1rfCbZHUmSuX37tt4ZRmZmJs6cOQMvLy+EhIQgMTERS5YsQfPmzREeHo758+cjMDAQcXFx0lVapmral15eXli8eDHi4+Ph7++PjIwMzJ49G82aNUNMTIyEtZafyZMnIyUlBf/+97/h4eEhjqvRaDRwdXWFRqPBuHHjMGPGDHh5ecHT0xNTpkxBVFQUunbtKnHt5aO2/ZiRkYGUlBT84x//gLe3N3755RdMnz4dPXr0wMMPPyxx7eVl3rx56NevH0JCQlBYWIiUlBQcOXIE33zzDT+PdVTTvpTsM2nVuZhEFRw+fFgAUOVn9OjRgiCULVMxf/58wc/PT3B2dhb69u0rpKenS1tpmappX969e1d44oknBF9fX8HR0VEIDQ0VnnvuOSEnJ0fqastOdfsQgLB582axzF9//SX861//Eho3biy4ubkJ/+///T8hOztbukrLUG378erVq0KPHj0ELy8vwdnZWWjWrJkwa9YsQavVSltxGRo7dqwQGhoqODk5Cb6+vkLfvn2F/fv3i9v5eTReTftSqs+kShAEwXIRj4iIiIiqwzFhRERERBJgCCMiIiKSAEMYERERkQQYwoiIiIgkwBBGREREJAGGMCIiIiIJMIQRERERSYAhjIiIiEgCDGFEREREEmAIIyIyQXFxsdRVqEKOdSIiwxjCiIgA9OrVCwkJCUhISIBGo4GPjw/mz5+P8iu7hYWF4dVXX8WoUaPg6emJCRMmAAC+//57dO/eHa6urggODsbUqVNx584d8XE3bNiA5s2bw8XFBX5+fhgyZIi47YsvvkDbtm3h6uoKb29vREdHi/ft1asXEhMT9eoYFxeHMWPGiL+bWicikgeGMCKi/7NlyxY0aNAAP/30E9asWYM333wT7733nrh95cqVaNeuHU6fPo358+cjIyMDsbGxiI+Pxy+//ILPPvsM33//PRISEgAAJ0+exNSpU/HKK68gPT0d+/btQ48ePQAA2dnZGD58OMaOHYvz58/jyJEjGDx4MOp6Od+61omI5IMX8CYiQlnL0/Xr1/Hbb79BpVIBAObOnYuvv/4a586dQ1hYGDp06IAvv/xSvM/48eOhVqvx9ttvi7d9//336NmzJ+7cuYM9e/bg2WefxR9//AEPDw+95zt16hQiIyNx+fJlhIaGVluf9u3bIykpSbwtLi4OjRo1QnJyMgCYVCcXF5d67SciMh+2hBER/Z+uXbuKAQwAoqKicPHiRZSWlgIAHnnkEb3yP//8M5KTk9GwYUPxJyYmBjqdDpmZmXj88ccRGhqKpk2bYuTIkdi6dSvu3r0LAGjXrh369u2Ltm3b4p///Cfeffdd3Lp1q851rmudiEg+GMKIiIzk7u6u9/vt27fx/PPP48yZM+LPzz//jIsXLyIiIgIeHh44deoUPvnkEwQEBGDBggVo164d8vPzoVarceDAAezduxdt2rTBunXr0LJlSzEoOTg4VOmaLCkpqXediEg+GMKIiP7P8ePH9X7/8ccf0bx5c6jV6mrLd+zYEefOnUOzZs2q/Dg5OQEAGjRogOjoaKxYsQK//PILLl++jEOHDgEAVCoVHn30USxevBinT5+Gk5OT2LXo6+uL7Oxs8blKS0tx9uzZWl+DMXUiInlgCCMi+j9Xr17FjBkzkJ6ejk8++QTr1q3DtGnTDJafM2cOjh07hoSEBJw5cwYXL17Ev//9b3EQ/K5du7B27VqcOXMGV65cwYcffgidToeWLVvi+PHjeO2113Dy5ElcvXoVO3bswI0bN9C6dWsAQJ8+fbB7927s3r0bFy5cwKRJk5Cfn1/ra6itTkQkHw2krgARkVyMGjUKf/31Fzp37gy1Wo1p06aJyz5U5+GHH8bRo0fx0ksvoXv37hAEARERERg6dCgAoFGjRtixYwcWLVqEe/fuoXnz5vjkk0/w4IMP4vz58/juu++QlJSEgoIChIaGYtWqVejXrx8AYOzYsfj5558xatQoNGjQANOnT0fv3r1rfQ211YmI5IOzI4mIUP1sRCIiS2J3JBEREZEEGMKIiIiIJMDuSCIiIiIJsCWMiIiISAIMYUREREQSYAgjIiIikgBDGBEREZEEGMKIiIiIJMAQRkRERCQBhjAiIiIiCTCEEREREUmAIYyIiIhIAv8fokYhtfbx9AEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHHCAYAAAD3WI8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrrElEQVR4nO3deVxV1fo/8M8GGRUOMsigIIhzmgoWYg6ZKHoVrz/xOmQOqZldUVFzypwy0yxzyNJswkpzSOs6Fw7ZIKE5ZJaSEk4BKiAHnAA56/cH37M9+0wMAocDn/frdV5x9l5nn7V33MvTWs96liSEECAiIiKiSmVj6Q4QERER1UQMwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiMisuLg4SJKES5cuWborRNUKgzAisrjjx48jJiYGjz32GGrXro2AgAAMGjQIf/31l0Hbp59+GpIkQZIk2NjYwNXVFc2aNcPw4cMRHx9fqu/dtWsXunbtinr16sHZ2RmNGjXCoEGDsH///vK6NQNvvPEGvvnmG4PjR48exYIFC5CdnV1h361vwYIF8rOUJAnOzs5o2bIlXn31VeTk5JTLd2zatAkrV64sl2sRVTcMwojI4t58801s374d3bt3x6pVqzBu3Dj88MMPCAkJwdmzZw3aN2jQAJ9//jk+++wzvPXWW+jXrx+OHj2Knj17YvDgwSgoKCj2O99++23069cPkiRh9uzZWLFiBaKjo3HhwgVs3ry5Im4TgPkgbOHChZUahGmtXbsWn3/+Od555x00b94cixcvRq9evVAeWwszCCMyrZalO0BENHXqVGzatAn29vbyscGDB6N169ZYunQpvvjiC0V7lUqF5557TnFs6dKlmDRpEt5//30EBgbizTffNPl9Dx48wKJFi9CjRw989913Budv3LjxiHdUddy9exfOzs5m2wwcOBCenp4AgPHjxyM6Oho7duzAL7/8gvDw8MroJlGNxJEwIrK4jh07KgIwAGjSpAkee+wxnDt3rkTXsLW1xerVq9GyZUusWbMGarXaZNuMjAzk5OTgqaeeMnq+Xr16ivf379/HggUL0LRpUzg6OsLX1xcDBgxAcnKy3Obtt99Gx44d4eHhAScnJ4SGhuKrr75SXEeSJNy5cwcbNmyQpwBHjRqFBQsWYPr06QCAoKAg+ZxuDtYXX3yB0NBQODk5wd3dHUOGDMHVq1cV13/66afRqlUrnDhxAl26dIGzszNeeeWVEj0/Xc888wwAICUlxWy7999/H4899hgcHBzg5+eHCRMmKEbynn76aezZsweXL1+W7ykwMLDU/SGqrjgSRkRVkhAC169fx2OPPVbiz9ja2mLo0KGYO3cufvrpJ/Tp08dou3r16sHJyQm7du3CxIkT4e7ubvKahYWF6Nu3Lw4ePIghQ4Zg8uTJyM3NRXx8PM6ePYvg4GAAwKpVq9CvXz8MGzYM+fn52Lx5M/7zn/9g9+7dcj8+//xzjB07Fk8++STGjRsHAAgODkbt2rXx119/4csvv8SKFSvkUSkvLy8AwOLFizF37lwMGjQIY8eOxc2bN/Huu++iS5cuOHXqFNzc3OT+ZmZmonfv3hgyZAiee+45eHt7l/j5aWmDSw8PD5NtFixYgIULFyIiIgIvvfQSkpKSsHbtWhw/fhw///wz7OzsMGfOHKjValy7dg0rVqwAANSpU6fU/SGqtgQRURX0+eefCwDi448/Vhzv2rWreOyxx0x+7uuvvxYAxKpVq8xef968eQKAqF27tujdu7dYvHixOHHihEG7Tz75RAAQ77zzjsE5jUYj/3z37l3Fufz8fNGqVSvxzDPPKI7Xrl1bjBw50uBab731lgAgUlJSFMcvXbokbG1txeLFixXHf//9d1GrVi3F8a5duwoAYt26dSbvW9f8+fMFAJGUlCRu3rwpUlJSxAcffCAcHByEt7e3uHPnjhBCiE8//VTRtxs3bgh7e3vRs2dPUVhYKF9vzZo1AoD45JNP5GN9+vQRDRs2LFF/iGoaTkcSUZVz/vx5TJgwAeHh4Rg5cmSpPqsdacnNzTXbbuHChdi0aRPatWuHb7/9FnPmzEFoaChCQkIUU6Dbt2+Hp6cnJk6caHANSZLkn52cnOSfb926BbVajc6dO+PkyZOl6r++HTt2QKPRYNCgQcjIyJBfPj4+aNKkCQ4fPqxo7+DggOeff75U39GsWTN4eXkhKCgIL774Iho3bow9e/aYzCU7cOAA8vPzERsbCxubh39GXnjhBbi6umLPnj2lv1GiGojTkURUpaSnp6NPnz5QqVT46quvYGtrW6rP3759GwDg4uJSbNuhQ4di6NChyMnJQWJiIuLi4rBp0yZERUXh7NmzcHR0RHJyMpo1a4Zatcz/3+Xu3bvx+uuv4/Tp08jLy5OP6wZqZXHhwgUIIdCkSROj5+3s7BTv69evb5BfV5zt27fD1dUVdnZ2aNCggTzFasrly5cBFAVvuuzt7dGoUSP5PBGZxyCMiKoMtVqN3r17Izs7Gz/++CP8/PxKfQ1tSYvGjRuX+DOurq7o0aMHevToATs7O2zYsAGJiYno2rVriT7/448/ol+/fujSpQvef/99+Pr6ws7ODp9++ik2bdpU6nvQpdFoIEkS9u3bZzQg1c+x0h2RK6kuXbrIeWhEVHkYhBFRlXD//n1ERUXhr7/+woEDB9CyZctSX6OwsBCbNm2Cs7MzOnXqVKZ+tG/fHhs2bEBaWhqAosT5xMREFBQUGIw6aW3fvh2Ojo749ttv4eDgIB//9NNPDdqaGhkzdTw4OBhCCAQFBaFp06alvZ0K0bBhQwBAUlISGjVqJB/Pz89HSkoKIiIi5GOPOhJIVJ0xJ4yILK6wsBCDBw9GQkICtm3bVqbaVIWFhZg0aRLOnTuHSZMmwdXV1WTbu3fvIiEhwei5ffv2AXg41RYdHY2MjAysWbPGoK34v2Kmtra2kCQJhYWF8rlLly4ZLcpau3ZtowVZa9euDQAG5wYMGABbW1ssXLjQoHiqEAKZmZnGb7ICRUREwN7eHqtXr1b06eOPP4ZarVasSq1du7bZciFENRlHwojI4qZNm4adO3ciKioKWVlZBsVZ9QuzqtVquc3du3dx8eJF7NixA8nJyRgyZAgWLVpk9vvu3r2Ljh07okOHDujVqxf8/f2RnZ2Nb775Bj/++CP69++Pdu3aAQBGjBiBzz77DFOnTsWxY8fQuXNn3LlzBwcOHMB///tf/Pvf/0afPn3wzjvvoFevXnj22Wdx48YNvPfee2jcuDHOnDmj+O7Q0FAcOHAA77zzDvz8/BAUFISwsDCEhoYCAObMmYMhQ4bAzs4OUVFRCA4Oxuuvv47Zs2fj0qVL6N+/P1xcXJCSkoKvv/4a48aNw8svv/xIz7+0vLy8MHv2bCxcuBC9evVCv379kJSUhPfffx9PPPGE4t9XaGgotmzZgqlTp+KJJ55AnTp1EBUVVan9JaqyLLk0k4hIiIelFUy9zLWtU6eOaNKkiXjuuefEd999V6LvKygoEB9++KHo37+/aNiwoXBwcBDOzs6iXbt24q233hJ5eXmK9nfv3hVz5swRQUFBws7OTvj4+IiBAweK5ORkuc3HH38smjRpIhwcHETz5s3Fp59+KpeA0HX+/HnRpUsX4eTkJAAoylUsWrRI1K9fX9jY2BiUq9i+fbvo1KmTqF27tqhdu7Zo3ry5mDBhgkhKSlI8G3PlO/Rp+3fz5k2z7fRLVGitWbNGNG/eXNjZ2Qlvb2/x0ksviVu3bina3L59Wzz77LPCzc1NAGC5CiIdkhDlsDkYEREREZUKc8KIiIiILIBBGBEREZEFMAgjIiIisgAGYUREREQWwCCMiIiIyAIYhBERERFZAIu1VmEajQapqalwcXHh1h9ERERWQgiB3Nxc+Pn5wcbG9HgXg7AqLDU1Ff7+/pbuBhEREZXB1atX0aBBA5PnGYRVYS4uLgCK/iWa2wePiIiIqo6cnBz4+/vLf8dNYRBWhWmnIF1dXRmEERERWZniUomYmE9ERERkAQzCiIiIiCyAQRgRERGRBTAnzMppNBrk5+dbuhvVmr29vdklxkRERGXBIMyK5efnIyUlBRqNxtJdqdZsbGwQFBQEe3t7S3eFiIiqEQZhVkoIgbS0NNja2sLf358jNRVEWzA3LS0NAQEBLJpLRETlhkGYlXrw4AHu3r0LPz8/ODs7W7o71ZqXlxdSU1Px4MED2NnZWbo7RERUTVjN8Em/fv0QEBAAR0dH+Pr6Yvjw4UhNTVW0EULg7bffRtOmTeHg4ID69etj8eLFijbff/89QkJC4ODggMaNGyMuLs7gu9577z0EBgbC0dERYWFhOHbsmOL8/fv3MWHCBHh4eKBOnTqIjo7G9evXFW2uXLmCPn36wNnZGfXq1cP06dPx4MGD8nkYAAoLCwGAU2SVQPuMtc+ciIioPFhNENatWzds3boVSUlJ2L59O5KTkzFw4EBFm8mTJ+Ojjz7C22+/jfPnz2Pnzp148skn5fMpKSno06cPunXrhtOnTyM2NhZjx47Ft99+K7fZsmULpk6divnz5+PkyZNo06YNIiMjcePGDbnNlClTsGvXLmzbtg1HjhxBamoqBgwYIJ8vLCxEnz59kJ+fj6NHj2LDhg2Ii4vDvHnzyv25cHqs4vEZExFRhRBW6n//+5+QJEnk5+cLIYT4888/Ra1atcT58+dNfmbGjBniscceUxwbPHiwiIyMlN8/+eSTYsKECfL7wsJC4efnJ5YsWSKEECI7O1vY2dmJbdu2yW3OnTsnAIiEhAQhhBB79+4VNjY2Ij09XW6zdu1a4erqKvLy8kp8j2q1WgAQarXa4Ny9e/fEn3/+Ke7du1fi61HZ8FkTEVUPGRkZIjU11eQrIyOjXL7H3N9vXVaZE5aVlYWNGzeiY8eOco7Orl270KhRI+zevRu9evWCEAIRERFYtmwZ3N3dAQAJCQmIiIhQXCsyMhKxsbEAilYbnjhxArNnz5bP29jYICIiAgkJCQCAEydOoKCgQHGd5s2bIyAgAAkJCejQoQMSEhLQunVreHt7K77npZdewh9//IF27dpVyHMhIiIi4zIzM7FmzZpi28XExMDDw6MSemRF05EAMHPmTNSuXRseHh64cuUK/ve//8nn/v77b1y+fBnbtm3DZ599hri4OJw4cUIxZZmenq4IjADA29sbOTk5uHfvHjIyMlBYWGi0TXp6unwNe3t7uLm5mW1j7Brac6bk5eUhJydH8apuRo0aBUmSIEkS7Ozs4O3tjR49euCTTz4pVamNuLg4g38HREREpujX1FSrXZCSEgi12sVsu4pk0SBs1qxZ8h9kU6/z58/L7adPn45Tp07hu+++g62tLUaMGAEhBICiUgJ5eXn47LPP0LlzZzz99NP4+OOPcfjwYSQlJVnqFktlyZIlUKlU8svf37/CviszMxNpaWkmX5mZmRX23b169UJaWhouXbqEffv2oVu3bpg8eTL69u1brosXiIiIjDl5sh1WrozFhg0jsXJlLE6etMwMlUWnI6dNm4ZRo0aZbdOoUSP5Z09PT3h6eqJp06Zo0aIF/P398csvvyA8PBy+vr6oVasWmjZtKrdv0aIFgKKVis2aNYOPj4/BKsbr16/D1dUVTk5OsLW1ha2trdE2Pj4+AAAfHx/k5+cjOztbMRKj30Z/RaX2mto2xsyePRtTp06V3+fk5FRIIGbpIVkHBwf5OdSvXx8hISHo0KEDunfvjri4OIwdOxbvvPMOPv30U/z9999wd3dHVFQUli1bhjp16uD777/H888/D+Bh0vz8+fOxYMECfP7551i1ahWSkpJQu3ZtPPPMM1i5ciXq1atX7vdBRETWR612wa5dfSFE0TiUEDbYtasvgoMvQqXKrdS+WHQkzMvLC82bNzf7MlWCQTt1lZeXBwB46qmn8ODBAyQnJ8tt/vrrLwBAw4YNAQDh4eE4ePCg4jrx8fEIDw8HUFSKIDQ0VNFGo9Hg4MGDcpvQ0FDY2dkp2iQlJeHKlStym/DwcPz++++KFZXx8fFwdXVFy5YtTT4PBwcHuLq6Kl4VoaRDrZU5JPvMM8+gTZs22LFjB4CiXLzVq1fjjz/+wIYNG3Do0CHMmDEDANCxY0esXLkSrq6u8sjdyy+/DAAoKCjAokWL8Ntvv+Gbb77BpUuXig30iYioesjMzMT58+fx+++/G7wuXLgAAMjK8pADMC0hbJCV5V7p/bWKxPzExEQcP34cnTp1Qt26dZGcnIy5c+ciODhYDnwiIiIQEhKC0aNHY+XKldBoNJgwYQJ69Oghj46NHz8ea9aswYwZMzB69GgcOnQIW7duxZ49e+Tvmjp1KkaOHIn27dvjySefxMqVK3Hnzh155EWlUmHMmDGYOnUq3N3d4erqiokTJyI8PBwdOnQAAPTs2RMtW7bE8OHDsWzZMqSnp+PVV1/FhAkT4ODgUMlPz3o0b94cZ86cAQB5sQQABAYG4vXXX8f48ePx/vvvw97eHiqVCpIkGYwsjh49Wv65UaNGWL16NZ544gncvn0bderUqZT7ICKiypWZmYmbN29iy5YtxbZ1d8+EJGkUgZgkaeDunlWRXTTKKoIwZ2dn7NixA/Pnz8edO3fg6+uLXr164dVXX5WDGhsbG+zatQsTJ05Ely5dULt2bfTu3RvLly+XrxMUFIQ9e/ZgypQpWLVqFRo0aICPPvoIkZGRcpvBgwfj5s2bmDdvHtLT09G2bVvs379fkWi/YsUK2NjYIDo6Gnl5eYiMjMT7778vn7e1tcXu3bvx0ksvITw8HLVr18bIkSPx2muvVcLTsl5CCHl68cCBA1iyZAnOnz+PnJwcPHjwAPfv38fdu3fN7hBw4sQJLFiwAL/99htu3bolj5heuXLF7CgkERFZJ/0UG7XaBVlZHrCzy0N2dl0AgL//VXmqUaXKRVTUbnlKUpI0iIraXelTkYCVBGGtW7fGoUOHim3n5+eH7du3m23z9NNP49SpU2bbxMTEICYmxuR5R0dHvPfee3jvvfdMtmnYsCH27t1rvsOkcO7cOQQFBeHSpUvo27cvXnrpJSxevBju7u746aefMGbMGOTn55sMwu7cuYPIyEhERkZi48aN8PLywpUrVxAZGVmpU6tERFSxMjMzkZ+fD7VarUj9OXmynU6+lwCgLbYt0K/fLoSEFP39Dwk5heDgi8jKcoe7e5ZFAjDASoIwqv4OHTqE33//HVOmTMGJEyeg0WiwfPlyeWPyrVu3Ktrb29sbbCN0/vx5ZGZmYunSpfKChl9//bVyboCIiCqF8ZGvQNjZ5SkS7h8GYEU/6yffq1S5RoOvytwOkEEYVbq8vDykp6ejsLAQ169fx/79+7FkyRL07dsXI0aMwNmzZ1FQUIB3330XUVFR+Pnnn7Fu3TrFNQIDA3H79m0cPHgQbdq0gbOzMwICAmBvb493330X48ePx9mzZ7Fo0SIL3SUREVUEUyNf+nle+rTJ9ypVLgYMGABPT0+DNvb29pVWqBWwsmKtVD3s378fvr6+CAwMRK9evXD48GGsXr0a//vf/2Bra4s2bdrgnXfewZtvvolWrVph48aNWLJkieIaHTt2xPjx4zF48GB4eXlh2bJl8PLyQlxcHLZt24aWLVti6dKlePvtty10l0REVN4yMzPlmRFjpSaKpiCN002+9/T0hK+vr8GrMgMwgCNhNVJJh1orYkg2Li4OcXFxxbabMmUKpkyZojg2fPhwxfu1a9di7dq1imNDhw7F0KFDFce0BX2JiMi66eb3Gis1UTQFKfT+CYsm35vDIKwG8vDwQExMjNlk9coekiUiIioNY6UmikiQJA2GDPkSBQVF+0v7+1+rcgEYwCCsxmKARURE1iw5uTFMTXQIYQN7+wI0a3bR6PnKTL43h0EYERERWRVtPpip1HZjxVd79OiBunXrol69elVmIIJBGBEREVmUtu6XKfopMsbzwYro538NGDAAfn5+VSbw0sUgjIiIiCxGv+6XKbpF1I3ng2kwcOBXBvlfVTUAAxiEERERkYVkZmYiNTVVcUy77ZC7e6YimNIdKTO19VCrVucAFE09BgUFVflFZgzCiIiIqFKZ2nBbv/hqVNRueashQJlQb27roWbNmlXp4EuLQRgRERFVGlPTj9eu+WLnzofJ9kLYGGw1VN1KLDEIIyIiokqjH0Cp1S5ITAzD0aMdodzvUbnVkJa1BFglwW2LqFr5/vvvIUkSsrOzS/yZwMBArFy5ssL6RERUk2VmZiItLU1+ZWRkyOdOnmyHFSticfToU9APwADjpSaqEwZhVKlGjRoFSZIwfvx4g3MTJkyAJEkYNWpU5XeMiIjKnXbqcf369fJrx44dAIqv9QVUza2GyhODMKp0/v7+2Lx5M+7duycfu3//PjZt2oSAgAAL9oyIiMqTsanHlJRAeQWkuVpfY8d+pEjKr44YhFGlCwkJgb+/v/xfQwCwY8cOBAQEoF27dvKxvLw8TJo0CfXq1YOjoyM6deqE48ePK661d+9eNG3aFE5OTujWrRsuXbpk8H0//fQTOnfuDCcnJ/j7+2PSpEm4c+dOhd0fEREZOnmyHVaujMWGDSOxYkUs/v47EJKkMWinXRXZoEGa4nhV2WqoPDEII1y7Bhw+XPTPyjJ69Gh8+umn8vtPPvkEzz//vKLNjBkzsH37dmzYsAEnT55E48aNERkZiaysovyAq1evYsCAAYiKisLp06cxduxYzJo1S3GN5ORk9OrVC9HR0Thz5gy2bNmCn376SVH0j4iIKpZ26vHhyJcNfvyxC1q0OKcTiGnQsePPiI1dqRgBGzBgAGJiYqpVQr4WV0fWcB9/DIwbB2g0gI0NsH49MGZMxX/vc889h9mzZ+Py5csAgJ9//hmbN2/G999/DwC4c+cO1q5di7i4OPTu3RsA8OGHHyI+Ph4ff/wxpk+fjrVr1yI4OBjLly8HUFQX5vfff8ebb74pf8+SJUswbNgwxMbGAgCaNGmC1atXo2vXrli7di0cHR0r/maJiGo441OPEs6da4ExYz5CQYG9Qa0vrapc8f5RMQirwa5dexiAAUX/fPFFIDISaNCgYr/by8sLffr0QVxcHIQQ6NOnDzw9PeXzycnJKCgowFNPPSUfs7Ozw5NPPolz54oqIp87dw5hYWGK64aHhyve//bbbzhz5gw2btwoHxNCQKPRICUlBS1atKiI2yMiqlFM7f2oXQnp7p4JQAP9CTghbFBQYI+goMsGnx00aFCV2my7IjAIq8EuXHgYgGkVFgIXL1Z8EAYUTUlqpwXfe++9CvmO27dv48UXX8SkSZMMznERABHRoyvJ3o8qVS569DiA+Pge0C1FoVuCYsCAAfJ/jFtTwdVHwSCsBmvSpGgKUjcQs7UFGjeunO/v1asX8vPzIUkSIiMjFeeCg4Nhb2+Pn3/+GQ0bNgQAFBQU4Pjx4/LUYosWLbBz507F53755RfF+5CQEPz5559oXFk3RURUjRkb8dKt+wWY3vvxqacSAAAHDkQotiXStvH09ISvr28F30HVwiCsBmvQoCgH7MUXi0bAbG2BDz6onFEwALC1tZWnFm1tbRXnateujZdeegnTp0+Hu7s7AgICsGzZMty9exdj/i9pbfz48Vi+fDmmT5+OsWPH4sSJE4iLi1NcZ+bMmejQoQNiYmIwduxY1K5dG3/++Sfi4+OL/S83IiJ6GHip1WqDvR71Fbf341NPJaBVq7NG93usiRiE1XBjxhTlgF28WDQCVlkBmJarq6vJc0uXLoVGo8Hw4cORm5uL9u3b49tvv0XdunUBFE0nbt++HVOmTMG7776LJ598Em+88QZGjx4tX+Pxxx/HkSNHMGfOHHTu3BlCCAQHB2Pw4MEVfm9ERNbO3FSj/oiX/gpIY3s/AkVTk8aCr+pYgqI4khBCWLoTZFxOTg5UKhXUarVBsHL//n2kpKQgKCiIK/wqGJ81EdVUaWlpWL9+vcFxYyNedevewoYNIw3ajhwZh6Cgy4qcL33VLQfM3N9vXRwJIyIiohJRq11w9aq/0RGvMWM+giRpFKUodBPva2LOV3EYhBEREVGxdEe/9GlLTURF7TYYIavpeV/mMAgjIiIime4KSO3KR8OK90raEa+goMsIDr7IxPsSYhBGREREAEwn4he32bbuiBcT70uOQZiV47qKisdnTETVUXJyMu7evas4duvWLcV77QpIO7s8g3wvQIOBA7+Cv/81RdBlLAG/uiXelxcGYVZKW1crPz8fTk5OFu5N9aYdltevZUZEZK2Sk5PxxRdfmG2jvwLy8cfP4MyZxxX5Xq1anTP4XHXe67G8MQizUrVq1YKzszNu3rwJOzs72NgYHyamR6PRaHDz5k04OzujVi3+z4WIqgf9ETB9xmp+nTnzuMnNtgcNGgQ3NzeOeJUS/6pYKUmS4Ovri5SUFFy+bLjxKZUfGxsbBAQEQJKk4hsTEVmha9d8ceVKQwQEXEaDBmlGc8B0N9uuifs8VgQGYVbM3t4eTZo0MbpzPZUfe3t7jjQSUbX19df/xm+/tUHRxtoCbdr8hmeeOcSaX5WAQZiVs7GxYRV3IiIqk2vXfHUCMACQ8NtvbfDEE8dY86sSMAgjIiKq5nRrfwEPV0FeudIQDwMwLQlXrwYgPDyRNb8qGIMwIiKiaszcJtwBAZcBCCgDMQF//ysAWPOrojEIIyIismL6o1z61Gq13vui2l/u7plo0CANbdr8ZpAT1qBBGgCgW7duaNKkieLzTMQvPwzCiIiIrJS5US5j9Gt/RUXtxv/7f//DE08cw9WrAfD3vyIHYABQv359JuBXIAZhREREVkJ/1Eu7t2NJGKv9tWtXXwQHX0SDBmkYPrw56tYNl9s7OzsjODi4/DpPBhiEERERWYGSjHrpTjXq53KZqv2VleUOlSoXTZo04ahXJWMQRkREZAWKqwlpbKoxJOSUfN7dPdNs7S+qfKxASUREZOVMTTWq1S5yG5UqF1FRuyFJGgBg7a8qgCNhREREVq64qUatkJBTrP1VhTAIIyIiskK6+V+pqb7Qr/dlaqqRtb+qDgZhREREVVxmZqZiJaRu/hegQVHwpSy4GhFxQA62Bg0aBDc3N5PXZ+0vy2AQRkREVIXpr4rUz/8ynt4twc8vVX5Xr149BllVEBPziYiIqjD9VZFXr/ob5H/p052KHDx4MAOwKoojYURERBZQ3HZDxqYItdOQhjSQJCjKU2inIlUqVXl2m8oRgzAiIqJKVtLthmJiYuSfDachtTTo1283Vz1aIQZhRERElUx/BMxUpXvddsbKUADAwIFfoVWrcwDAVY9WhkEYERGRBZmrdJ+dnS2vajRV8d7f/xoAYMCAAfD09FRcm6seqzYm5hMREVlIcZXut27dCrVaDaD4iveenp7w9fVVvBiAVW0cCSMiIqogppLvtTW/TFW6T0wMQ8+eBwAABQUF8jlWvK9eGIQRERFVgJIk3xubYgSAo0fDERaWCJUqF7VqKf9Us+J99cEgjIiIqAKYKz+hpVLlIjw8AUePPqV35uG+j25uboiJiSl1OQuq+hiEERERVQJTKyDDwhJx9Gg4dNO09fd9ZIBVPTEIIyIiqmD6KyAjIg7gqacSABSNhvXrt9tghSTzvao/BmFEREQVyNgKyPj4HgAgB2JMuK+ZWKKCiIioAhkvsiohPj5CLkUBFI2IBQVdZgBWgzAIIyIiqkDaFZCGipLvi8NVj9UXpyOJiIgqkEqVi4iIA/83BSnJx3WT741Vuwe46rG6YxBGRERkgqliq1rmgiTdESxt7ld8fAQAw+R7bbV7qlkYhBERERlRkmKrADB48GCoVCrFMW1wNnjwYGzZsgVAUSDWqtVZJt+TjEEYERGRESUptgoA69fvNVr/KyYmxiA4M1Xtnmomq0nM79evHwICAuDo6AhfX18MHz4cqamp8vkFCxZAkiSDV+3atRXX2bZtG5o3bw5HR0e0bt0ae/fuVZwXQmDevHnw9fWFk5MTIiIicOHCBUWbrKwsDBs2DK6urnBzc8OYMWNw+/ZtRZszZ86gc+fOcHR0hL+/P5YtW1bOT4SIiMpTZmYm0tLS5Jd2f0cttdoFKSmBihWNJ0+2w8qVsdiwYSRWrozFyZPt5HP5+fklTqpn8n3NZDUjYd26dcMrr7wCX19f/PPPP3j55ZcxcOBAHD16FADw8ssvY/z48YrPdO/eHU888YT8/ujRoxg6dCiWLFmCvn37YtOmTejfvz9OnjyJVq1aAQCWLVuG1atXY8OGDQgKCsLcuXMRGRmJP//8E46OjgCAYcOGIS0tDfHx8SgoKMDzzz+PcePGYdOmTQCAnJwc9OzZExEREVi3bh1+//13jB49Gm5ubhg3blxlPC4iIiqF4qYe9YutRkXtRnDwRYP6X7t29UVw8EV5tMvDw4NbDpFJkhBCWLoTZbFz5070798feXl5sLOzMzj/22+/oW3btvjhhx/QuXNnAEXz9nfu3MHu3bvldh06dEDbtm2xbt06CCHg5+eHadOm4eWXXwYAqNVqeHt7Iy4uDkOGDMG5c+fQsmVLHD9+HO3btwcA7N+/H//6179w7do1+Pn5Ye3atZgzZw7S09Pl/7qZNWsWvvnmG5w/f77E95iTkwOVSgW1Wg1XV9cyPysiIjIvLS0N69evN3pOrXbBypWxilpfkqRBdPR2fPXVfwzajxwZh6Cgyxg3bhyT7Wuokv79tprpSF1ZWVnYuHEjOnbsaDQAA4CPPvoITZs2lQMwAEhISEBERISiXWRkJBISilatpKSkID09XdFGpVIhLCxMbpOQkAA3Nzc5AAOAiIgI2NjYIDExUW7TpUsXxfByZGQkkpKScOvWrUe8eyIiqmhqtQvOnm2JY8dCceJEiEGx1aL3wqD+l/6ej0TmWM10JADMnDkTa9aswd27d9GhQwfFiJau+/fvY+PGjZg1a5bieHp6Ory9vRXHvL29kZ6eLp/XHjPXpl69eorztWrVgru7u6JNUFCQwTW05+rWrWu033l5ecjLy5Pf5+TkGG1HRETlS61Wyz+fPNkOO3dGQbemFyCgX+PL3/8aoqK45yOVnUVHwmbNmmU0mV73pTt9N336dJw6dQrfffcdbG1tMWLECBibTf3666+Rm5uLkSNHVubtPLIlS5ZApVLJL39/f0t3iYio2svMzJTLSKjVLti5sy+UARj+733R3xvdYCsk5BRiY1di5Mg4xMauREjIqUrtO1k3i46ETZs2DaNGjTLbplGjRvLPnp6e8PT0RNOmTdGiRQv4+/vjl19+QXh4uOIzH330Efr27WswouXj44Pr168rjl2/fh0+Pj7yee0x3Xn869evo23btnKbGzduKK7x4MEDZGVlKa5j7Ht0v8OY2bNnY+rUqfL7nJwcBmJERBVMN2k+MTEMpscnJERG7kfLln8qRrtYdoLKyqJBmJeXF7y8vMr0WY2maB5ed/oOKMrrOnz4MHbu3GnwmfDwcBw8eBCxsbHysfj4eDmICwoKgo+PDw4ePCgHXTk5OUhMTMRLL70kXyM7OxsnTpxAaGgoAODQoUPQaDQICwuT28yZMwcFBQVyzlp8fDyaNWtmcioSABwcHODg4FCGp0FERI9KrXZBQkK4yfOSpDEIwMxh2QkqjlXkhCUmJuL48ePo1KkT6tati+TkZMydOxfBwcEGo2CffPIJfH190bt3b4PrTJ48GV27dsXy5cvRp08fbN68Gb/++qu8IkaSJMTGxuL1119HkyZN5BIVfn5+6N+/PwCgRYsW6NWrF1544QWsW7cOBQUFiImJwZAhQ+Dn5wcAePbZZ7Fw4UKMGTMGM2fOxNmzZ7Fq1SqsWLGiYh8UERGVWVaWh0ECvpZ+vpexKvm6WHaCSsIqgjBnZ2fs2LED8+fPx507d+Dr64tevXrh1VdfVYwcaTQaxMXFYdSoUbC1tTW4TseOHbFp0ya8+uqreOWVV9CkSRN88803co0wAJgxYwbu3LmDcePGITs7G506dcL+/fvlGmEAsHHjRsTExKB79+6wsbFBdHQ0Vq9eLZ9XqVT47rvvMGHCBISGhsLT0xPz5s1jjTAiIgsobv9HbVK+u3smJEmjF4hp8K9/7UGzZhf0piBVLD9Bj8xq64TVBKwTRkT0aPSLsKrVLka3GNIyVpTVWLI9a4CROSX9+20VI2FERERloTsCVpIAKyTkFIKDLxa7yTbzvag8MAgjIqJqT612KXaLIS1Tqx0HDBgAT09P5ntRuWEQRkRE1YpuDph2E25jSfdC2CAry73Eqx39/PwYfFG5YhBGRETVhvEcsEDk59cySLrX3WJo0KBBcHNzM3ldjn5RRWAQRkRE1YapHLCH2w4V/VO/5ISbmxsT7anSMQgjIiKrUFypCd1kef0csIfbEEkANBgz5iM0aJBWYX0lKgkGYUREVOXpTzOa0qNHDwDmC68CNigo4OpGsjwGYUREVGVpR7+0CfZa2npfdnZ5KChwkOt+xcfHAzBVeLWIbi6YFktOkCUwCCMioirJ1OiXsVwv/bpfKlUuoqJ2m2ynzQUbMGAAVz2SxTAIIyKiKkk//0utdsHVq/5Gc72M1f3SLbxqZ5ePggJ7gwKsnp6eDMDIYhiEERGRRZlKuNedglSOfhlnrO6XqcKrRFUBgzAiIrKYkiTcG650NM5YrhdRVWb+N5qIiKgCGZtyTEkJhFrtIh8zv9JRAIBBrlfPnj1L9P1MyCdL4kgYERFVCaY22HZ3zwSggXLcQIOBA7+Cm1u20VyvwMBAxMTEFFtXjPlgZEkMwoiIyOLMbbBdRFK0lyTA3/+a2XwvBlhU1TEIIyIiizO3wXZRACYZPWcqCOM0I1kDBmFERGRxxoqr6ibamzvXo0cPBAUFyec4zUjWgon5RERkcdriqpKkAaBMtDd3DgCCgoLg6+srvxiAkbXgSBgREZW7kmy2rR8s6RZX1U+0N3eOyFoxCCMionJV0s22Y2JiDHK3zBVXZeFVqm4YhBERUbkyVvsrK8tD3mRb648//kDdunXRu3dvODk5oVatWnBzc5PPZ2dnY+vWrcV+H5PwyVoxCCMiogqjX/srIuIA/PzS4O6eicOHDxu0j4mJkacpfX19WeuLqjUGYUREVCGM1f6Kj++BonITGnTsmICwsETF6Jh+wMUAi6ozro4kIqIKYXy7IW29LxscPfoUVq6MxcmT7Sq7a0RVAoMwIiIqF5mZmUhLS0NGRgaAh7W/zNFWxtfdK5KopuB0JBERPTJjKyK19b0eTkkK6Fe+B4qvfk9UXTEIIyKiR2ZqRWRw8EXExq5EVpY7UlP9EB8fAf1JGN3q90Q1CYMwIiIqE92CrNopSMBwRWRU1G6EhJxCUNBltGp1FomJYUhICFec5ygY1UQMwoiIqNSSk5PxxRdfyO+LRr4CYWeXZ7AicteuvggOvigXW+3Z8wDCwhJZ/Z5qPAZhRERUKpmZmYoATHfkC9BAf7rRWM6Xqer3LLxKNQmDMCIiKpUbN27IP6vVLti5sy8eBl6GCfi6OV/dunVD3bp1FdfTVspn4VWqaRiEERFRiWVmZiq2Evrhh84wrHYkQZI0RnO+mjRpAl9f38rrMFEVxiCMiKiG0E2kN6YkI1G6n//553CcONHeSCsNxoz5CAUF9sz5IjKDQRgRUQ1grI6XMTExMQAMS05oaVdBqtUu/1duwrDuV8eOCWjQIM3o55nzRfQQgzAiohrA3AiYrqSkJMTHx8vvtfW+3N0zFSNaWVkeMLbpiiRpEBaWKL8fMGAAPD09AXCzbSJ9DMKIiGogU8GVbgBmqt4X8HBLIuXekAIREQcU1/P09GQOGJEJDMKIiKqp0hZT1Q3MABRb70u5JZEGPXocwFNPJSj6wOlHItMYhBERVUOmcsDUahejwdW9e444cCBCDszCwxP0RrkM632FhJxCcPBFk0VXn3vuOU4/EpnBIIyIqBoytZfjnTvORoMrbQCmfZ+QEA79wqvG9ng0VXR18ODBCA4OLp+bIaqmGIQREVVzhhXtlcVUAf3crqJArGPHn8u8x6OXl1d5dZ+o2mIQRkRUjelPPxaNbGkgSUIOriIiDihGwoCHqxxN7fGou+pRH1dBEpUMgzAiomosK8vDYJQLsEF09FbUrn1XDq6cnO4bJOtrgy5jo19c9Uj06BiEERFVI9oVkdrVkMZKSUiSBv7+1xTBVXFJ9vq46pHo0TEIIyKyYrplKNRqNbZs2SKf0ybj6043msvtMpdkr1Kp5PecbiQqHwzCiIislLmtiPRrgUVEHICfX6rBKJd+gKWPARdRxWEQRkRkpUyVobCzyzOoBXbgQARiY1cajHR5eXkxyCKyEAZhRETVgGEZCtOFVrUrGznKRWRZDMKIiKxQZmamnHxvvAyFshaYbqFVrmwkqhoYhBERWRn9XDDjZSgkeVVkaQutElHlYBBGRGRl9HPB7OzyjJahGDPmIxQU2Jeo5AQRVT4GYURElUi3pIQxpc3TUuaCFU1Bake+GjRIe/QOE1GFYRBGRFRJzJWU0BUTE1OiQMwwF0wCUDQCZi4AY6FVoqqBQRgRUSUxVVLC3T1TMV1obqRMl6ktiQoKlEHWoEGD4ObmBoB1v4iqEgZhREQWoF9MNSpqN0JCTpXqGqa2JNKughwwYAD8/PwYdBFVUfr/CUVERBVMfxpRCBvs2tUXarVLqa6jUuUiKmo3JEkDAAarID09PRmAEVVhHAkjIqpkxqYRdYuplkZpN94moqqDQRgRUTkztQJSW1y1uGnE4ugn1pvaeJsJ+ERVG4MwIqJyVJIVkNppRP2csJKOYnl4eCAmJqZcS10QUeUrcRCWk5NT4ou6urqWqTNERNaupCsgH3UakQEWkfUrcRDm5uYGSZLMthFCQJIkFBYWPnLHiIisXXErIE1NI969e7cyu0lEFlLiIOzw4cMV2Q8iomrF1ArI4OCLxY56ffHFFyUu2EpE1qvEQVjXrl0rsh9ERNVKSVdAPmrBViKyXmVOzM/OzsbHH3+Mc+fOAQAee+wxjB49GiqVqtw6R0RkrUqyArI8CrYSkfUqU7HWX3/9FcHBwVixYgWysrKQlZWFd955B8HBwTh58mR595GIyOoUV0i1vAq2EpH1KtNI2JQpU9CvXz98+OGHqFWr6BIPHjzA2LFjERsbix9++KFcO0lEZI3MrYAsz4KtRGSdyjwSNnPmTDkAA4BatWphxowZ+PXXX8utc7r69euHgIAAODo6wtfXF8OHD0dqaqqizbfffosOHTrAxcUFXl5eiI6OxqVLlxRtvv/+e4SEhMDBwQGNGzdGXFycwXe99957CAwMhKOjI8LCwnDs2DHF+fv372PChAnw8PBAnTp1EB0djevXryvaXLlyBX369IGzszPq1auH6dOn48GDB+XyLIio6jJWSDUo6LJBYKWdrtRVmoKtRGT9yjQS5urqiitXrqB58+aK41evXoWLS8UMpXfr1g2vvPIKfH198c8//+Dll1/GwIEDcfToUQBASkoK/v3vf2Pq1KnYuHEj1Go1pkyZggEDBshTpCkpKejTpw/Gjx+PjRs34uDBgxg7dix8fX0RGRkJANiyZQumTp2KdevWISwsDCtXrkRkZCSSkpJQr149AEUjgXv27MG2bdugUqkQExODAQMG4OeffwYAFBYWok+fPvDx8cHRo0eRlpaGESNGwM7ODm+88UaFPB8iqhqKK6SakZGBHTt2PHLBViKyfpIQQpT2Q5MmTcLXX3+Nt99+Gx07dgQA/Pzzz5g+fTqio6OxcuXK8u6ngZ07d6J///7Iy8uDnZ0dvvrqKwwdOhR5eXmwsSka4Nu1axf+/e9/y21mzpyJPXv24OzZs/J1hgwZguzsbOzfvx8AEBYWhieeeEKueK3RaODv74+JEydi1qxZUKvV8PLywqZNmzBw4EAAwPnz59GiRQskJCSgQ4cO2LdvH/r27YvU1FR4e3sDANatW4eZM2fi5s2bJd5KJCcnByqVCmq1mgVwiaqJtLQ0rF+/Xn5ftDrScLpy3Lhx8PX1tUQXiegRlfTvd5mmI99++20MGDAAI0aMQGBgIAIDAzFq1CgMHDgQb775Zpk7XVJZWVnYuHEjOnbsCDs7OwBAaGgobGxs8Omnn6KwsBBqtRqff/45IiIi5DYJCQmIiIhQXCsyMhIJCQkAipaEnzhxQtHGxsYGERERcpsTJ06goKBA0aZ58+YICAiQ2yQkJKB169ZyAKb9npycHPzxxx8m7ysvLw85OTmKFxFVLyWdruS+j0TVX5mmI+3t7bFq1SosWbIEycnJAIDg4GA4OzuXa+f0zZw5E2vWrMHdu3fRoUMH7N69Wz4XFBSE7777DoMGDcKLL76IwsJChIeHY+/evXKb9PR0RWAEAN7e3sjJycG9e/dw69YtFBYWGm1z/vx5+Rr29vZwc3MzaJOenm72e7TnTFmyZAkWLlxYwqdBRNaI+z4SkVaZRsK0nJ2d0bp1a7Ru3bpMAdisWbMgSZLZlzb4AYDp06fj1KlT+O6772Bra4sRI0ZAO5uanp6OF154ASNHjsTx48dx5MgR2NvbY+DAgSjDjKtFzJ49G2q1Wn5dvXrV0l0iogrg4eEBX19fky8GYEQ1Q5lGwu7fv493330Xhw8fxo0bN6DRKFf4lLRW2LRp0zBq1CizbRo1aiT/7OnpCU9PTzRt2hQtWrSAv78/fvnlF4SHh+O9996DSqXCsmXL5PZffPEF/P39kZiYiA4dOsDHx8dgFeP169fh6uoKJycn2NrawtbW1mgbHx8fAICPjw/y8/ORnZ2tGA3Tb6O/olJ7TW0bYxwcHODg4GD2eRAREVH1UKYgbMyYMfjuu+8wcOBAPPnkk8Vu7G2Kl5cXvLy8yvRZbeCXl5cHoGjDW21Cvpatra2irf70JADEx8cjPDwcQNEUQGhoKA4ePIj+/fvLnz148CBiYmIAFOWe2dnZ4eDBg4iOjgYAJCUl4cqVK/J1wsPDsXjxYty4cUNeURkfHw9XV1e0bNmyTPdLRBUnMzOT04NEVOnKtDpSpVJh7969eOqppyqiTwYSExNx/PhxdOrUCXXr1kVycjLmzp2L69ev448//oCDgwMOHTqEiIgILFiwAEOHDkVubi5eeeUVnD9/HufOnYOTkxNSUlLQqlUrTJgwAaNHj8ahQ4cwadIk7NmzR1GiYuTIkfjggw/w5JNPYuXKldi6dSvOnz8v53W99NJL2Lt3L+Li4uDq6oqJEycCgFwuo7CwEG3btoWfnx+WLVuG9PR0DB8+HGPHji1ViQqujiSqeJmZmfJqaHO4oTYRlVSFro6sX79+hdUDM8bZ2Rk7duxA9+7d0axZM4wZMwaPP/44jhw5Ik/fPfPMM9i0aRO++eYbtGvXDr169YKDgwP2798PJycnAEXJ+3v27EF8fDzatGmD5cuX46OPPpIDMAAYPHgw3n77bcybNw9t27bF6dOnsX//fkWi/YoVK9C3b19ER0ejS5cu8PHxwY4dO+Tztra22L17N2xtbREeHo7nnnsOI0aMwGuvvVZJT4yISqqkG2VzQ20iKm9lGgnbt28fVq9ejXXr1qFhw4YV0S8CR8KIKoPxul0ecHfPZN0uIiqTkv79LlNOWPv27XH//n00atQIzs7Och0urawsbrtBRNbn5Ml2BhXsQ0JOWbpbRFRNlSkIGzp0KP755x+88cYb8Pb2LnNiPhFRVaFWu8gBGFC0mfauXX0RHHyRWwkRUYUoUxB29OhRJCQkoE2bNuXdHyIii8jK8pADMC0hbJCV5c4gjIgqRJkS85s3b4579+6Vd1+IiCzG3T0TkqSseShJGri7M72CiCpGmUbCli5dimnTpmHx4sVo3bq1QU4Yk8iJqDKUZ30vlSoXUVG7DXLCOApGRBWlTEFYr169AADdu3dXHBdCQJIkFBYWPnrPiIjMKK/6XrobZYeEnEJw8EVkZbnD3T1LEYBxQ20iKm9lCsIOHz5c3v0gIioV/REwU6UlUlNTFW31R8e4oTYRWUqZgrCuXbuWqN1///tfvPbaa/D09CzL1xARlYi50hK6hZS19EfHGGARkSWUKTG/pL744gvk5ORU5FcQUQ1nqrSEWm16Vw9WvyeiqqBMI2ElVYZi/EREpWKutIT2vP4UJRFRVVChQRgRUUXTlpbQDcQkSYPUVD989tkIVr8noiqrQqcjiYgqmra0hLbGlyRpEBFxAAcORJRqipKIqLJxJIyIqixzdcAyMjLkn/VLS7D6PRFZAwZhRFQllbQOmJZKlasIsIxNUbL6PRFVJRUahD333HOsnk9EZVLSFYwDBgyQy+BkZGRgx44drH5PRFahzEFYdnY2jh07hhs3bkCjUe63NmLECADA2rVrH613RFQjZWZmKqYbAdPFWD09PeHr6wuA1e+JyLqUKQjbtWsXhg0bhtu3b8PV1RWSJMnnJEmSgzAiotIyNg1prhirLla/JyJrUqYgbNq0aRg9ejTeeOMNODs7l3efiKgGM7YdkbFirMHBF41OLzLAIiJrUaYSFf/88w8mTZrEAIyIKtzVq/5mi7ESEVmrMgVhkZGR+PXXX8u7L0RECidPtsP27dEGx7nSkYiqgxJPR+7cuVP+uU+fPpg+fTr+/PNPtG7dGnZ2doq2/fr1K78eElGNpD8N+ZBypaNarZYT84mIrEmJg7D+/fsbHHvttdcMjkmShMLCwkfqFBHVLLpFWbWrIo0VXAWAgQO/QqtW5+T3W7ZsQUxMDHPBiMjqlDgI0y9DQURUHkwVZTW1J6S//zWDtiWtKUZEVJWUKSfss88+Q15ensHx/Px8fPbZZ4/cKSKq2jIzM5GWlmbylZmZWeJrGVsNmZISCAAGe0J26vQjsrI8uAckEVULkhBClPZDtra2SEtLQ7169RTHMzMzUa9ePU5HlpOcnByoVCqo1WruPEBVhv7IlakiqoMGDYKbm5v83lR9rrS0NKxfvx6A8Xpg9+45Ij4+AkX/zSgASAa1wsaNG8e8MCKqMkr697tMdcKEEIoCrVrXrl2DSqUqyyWJyErojlyZK6K6detWg8+ay90yVg9s586+KPq/Gu2gvSSfM1crjIjIGpQqCGvXrh0kSYIkSejevTtq1Xr48cLCQqSkpKBXr17l3kkiqnpKW0QVMJ+7ZTwR3wamxuq1tcIYhBGRtSpVEKZdIXn69GlERkaiTp068jl7e3sEBgYiOtqwpg8RVT/GgibdIqrGpijNMZaIXzT9CGhHwHSxVhgRWbtSBWHz588HAAQGBmLw4MFwdHSskE4RUdVnavViaqofPvtsRLH7POpTqXIREXEA8fE98DDokgBoIEni/75HmRPGUTAismZlygkbOXIkgKKphRs3bhiUrwgICHj0nhFRlaZS5SIqarciJywi4gAOHIgo1RSlLj+/NBiOetkgOnorate+Czu7fBQU2MPdPUtxPXt7+3K8MyKiylGmIOzChQsYPXo0jh49qjiuTdjn6kiimiEk5BSCgy8iK8sd7u5ZZqcoVapcuRAr8HC1pG4AZa42mEqVi27duqFu3boAgFq1asHNzc3kqksioqquTEHYqFGjUKtWLezevRu+vr5GV0oSkXXRrVpvjKlgR6XKVYxKGQuitLlbO3bsUHxWu1py0KBB2Lp1q9HRNd1pxyZNmrAUBRFVG2UKwk6fPo0TJ06gefPm5d0fIrKAktb+iomJMTv1V1wQpU8b9OnWHNQfXeO0IxFVV2UKwlq2bKmYViAi61bS2l/5+fnw9fVFTEyM4jNqtRpbtmwBYDyIMhXUaXl4eBhcUx+nHYmouilTEPbmm29ixowZeOONN9C6dWvY2dkpzrO6O5F1KmntL/1gSDcwy8jIwI4dO+T25oI6XQywiKimKVMQFhERAQB45plnFPlgTMwnsm7FJdabYyyIUqtdsHNnX2gr3rPSPRHRQ2UKwg4fPlze/SCiKsDU6sSyFkVNTAzDwy2HirDSPRFREf09Qkqka9eusLGxwYcffohZs2ahcePG6Nq1K65cuQJbW9vy7iMRVRJtYr0kFdX+00+sz8jIQFpaGjIzM4u9llrtgoSEcCNnWOmeiAgo40jY9u3bMXz4cAwbNgynTp1CXl4egKLk3DfeeAN79+4t104SUcXQlqXQXWhjbnWibokJc5txA6b2ggQ6dkzgKBgREcoYhL3++utYt24dRowYgc2bN8vHn3rqKbz++uvl1jkiqjj6ZSl06db+MrWy0dxKRsD01GZYWKL8niUniKgmK1MQlpSUhC5duhgcV6lUyM7OftQ+EVEl0A+ijAVbJV3ZaExxNcMGDRrEFZFEVKOVKQjz8fHBxYsXERgYqDj+008/oVGjRuXRLyKqRMaCreDgiyUqV6FPd3TL3NSmboFWIqKaqExB2AsvvIDJkyfjk08+gSRJSE1NRUJCAl5++WXMnTu3vPtIRBXIVG2w6OjtZSpXwcKrREQlU6YgbNasWdBoNOjevTvu3r2LLl26wMHBAS+//DImTpxY3n0kogpkqjYYIMpcroIBFhFR8cpUokKSJMyZMwdZWVk4e/YsfvnlF9y8eROLFi0q7/4RUQXTJtDrkiQN/P2vmS1XQUREj6ZMI2Fa9vb2aNmyZXn1hYgswFwCvbmcLiIiejSPFIQRUfVgLtjSLVehi+UliIgeDYMwohpKP4gyFWwNGjQIbm5uBp9l3hcR0aNhEEZUQ3EVIxGRZTEII6oCtNsHAUBqqg1SUmohKOgB/PyKkuIrKhhigEVEZDkMwogsTHf7IHMV6ovbq5GIiKxLmUpUEFH50Y6AmSqaqla7KNoREVH1wCCMqIowVTQ1K8vdQj0iIqKKxCCMqIowVTS1JBXqiYjI+jAII6oitEVTWaGeiKhmYGI+URXCCvVERDUHgzCiKsZU0VQiIqpeGIQRWYmMjAwALKBKRFRdMAgjsrCS7sG4Y8cO+WfWDCMisn4MwogsTHf7oIyMDEWwpVa7ICvLA+7umYopSv2aYboV943h6BkRUdXDIIyoBK5dAy5cAJo0ARo0KP/rGwuQzFXP105NAoBarcaWLVuK/Q6OnhERVS0MwohM0I4ubdrkhBkzVNBoJNjYCCxbpsazz96r0NElU9Xzg4MvQqXKVYyWGftsSUbPiIjIshiEERmh3c9RrXbBypWxEEICAGg0EqZPd8U//3wClSq3wkaXzFXPV6lyTQZa5kbPiIioamEQRmSEdtSouGCookaXtNXzdb9bWz3fVKBV3OgZERFVLayYT2SGpbYSMlU9H4DJTb659yQRkXWxmiCsX79+CAgIgKOjI3x9fTF8+HCkpqYq2mzduhVt27aFs7MzGjZsiLfeesvgOt9//z1CQkLg4OCAxo0bIy4uzqDNe++9h8DAQDg6OiIsLAzHjh1TnL9//z4mTJgADw8P1KlTB9HR0bh+/bqizZUrV9CnTx84OzujXr16mD59Oh48ePDoD4IqVWVvJZSdnS3/HBJyCrGxKzFyZBxiY1ciJOSU2UCLe08SEVkXqwnCunXrhq1btyIpKQnbt29HcnIyBg4cKJ/ft28fhg0bhvHjx+Ps2bN4//33sWLFCqxZs0Zuk5KSgj59+qBbt244ffo0YmNjMXbsWHz77bdymy1btmDq1KmYP38+Tp48iTZt2iAyMhI3btyQ20yZMgW7du3Ctm3bcOTIEaSmpmLAgAHy+cLCQvTp0wf5+fk4evQoNmzYgLi4OMybN6+CnxJVBGPBUEWRJMnYUfknc4EW954kIrIukhBCWLoTZbFz5070798feXl5sLOzw7PPPouCggJs27ZNbvPuu+9i2bJluHLlCiRJwsyZM7Fnzx6cPXtWbjNkyBBkZ2dj//79AICwsDA88cQTcvCm0Wjg7++PiRMnYtasWVCr1fDy8sKmTZvkIPD8+fNo0aIFEhIS0KFDB+zbtw99+/ZFamoqvL29AQDr1q3DzJkzcfPmzRIX58zJyYFKpYJarYarq2u5PDcqmbS0NKxfv77YduPGjYOvr2+FfK+p3K/iku+LpiYN954s774SEZFxJf37bTUjYbqysrKwceNGdOzYEXZ2dgCAvLw8ODo6Kto5OTnh2rVruHz5MgAgISEBERERijaRkZFISEgAUJSMfeLECUUbGxsbREREyG1OnDiBgoICRZvmzZsjICBAbpOQkIDWrVvLAZj2e3JycvDHH3+YvK+8vDzk5OQoXlQzmUqyV6tdih2ZU6lyERR02WAErKTBPxERVQ6rWh05c+ZMrFmzBnfv3kWHDh2we/du+VxkZCSmTJmCUaNGoVu3brh48SKWL18OoGh0ITAwEOnp6YrACAC8vb2Rk5ODe/fu4datWygsLDTa5vz58wCA9PR02Nvbw83NzaBNenq63MbYNbTnTFmyZAkWLlxYiidClqZbNFXXo9YQK25VpqlNvgcNGmTwu1ke/SEiovJn0SBs1qxZePPNN822OXfuHJo3bw4AmD59OsaMGYPLly9j4cKFGDFiBHbv3g1JkvDCCy8gOTkZffv2RUFBAVxdXTF58mQsWLAANjbWMeA3e/ZsTJ06VX6fk5MDf39/C/ao5irLfo76HqWGmLkSFQAwYMAAeHp6Kj7DQIuIyLpYNAibNm0aRo0aZbZNo0aN5J89PT3h6emJpk2bokWLFvD398cvv/yC8PBwSJKEN998E2+88QbS09Ph5eWFgwcPKq7h4+NjsIrx+vXrcHV1hZOTE2xtbWFra2u0jY+Pj3yN/Px8ZGdnK0Yc9Nvor6jUXlPbxhgHBwc4ODiYfR5UOXT3c9Snv7+jKY9SQ0ybZK+f+6Ud/fL09GR+FxGRlbNoEObl5QUvL68yfVajKVoBlpeXpzhua2uL+vXrAwC+/PJLhIeHy98RHh6OvXv3KtrHx8cjPDwcQNFIQmhoKA4ePIj+/fvL33Pw4EHExMQAAEJDQ2FnZ4eDBw8iOjoaAJCUlIQrV67I1wkPD8fixYtx48YN1KtXT/4eV1dXtGzZskz3S5WvpKNKpqrXP6qQkFMIDr5oNMmeiIisn1XkhCUmJuL48ePo1KkT6tati+TkZMydOxfBwcFy4JORkYGvvvoKTz/9NO7fv49PP/1ULiGhNX78eKxZswYzZszA6NGjcejQIWzduhV79uyR20ydOhUjR45E+/bt8eSTT2LlypW4c+cOnn/+eQCASqXCmDFjMHXqVLi7u8PV1RUTJ05EeHg4OnToAADo2bMnWrZsieHDh2PZsmVIT0/Hq6++igkTJnCkq5op722C9KdBTeV+McmeiMj6WUUQ5uzsjB07dmD+/Pm4c+cOfH190atXL7z66quKoGbDhg14+eWXIYRAeHg4vv/+ezz55JPy+aCgIOzZswdTpkzBqlWr0KBBA3z00UeIjIyU2wwePBg3b97EvHnzkJ6ejrZt22L//v2KRPsVK1bAxsYG0dHRyMvLQ2RkJN5//335vK2tLXbv3o2XXnoJ4eHhqF27NkaOHInXXnutgp8UVaaK2CbI3DSoFnO/iIiqB6utE1YTsE5Y1aSt5ZWSEogNG0YanB85Mg5BQZfN1uXKzMxkoEVEVE2V9O+3VYyEEVVFxa1gNCUzM1Oxk4OpnLJHWV1JRERVH4MwojIqbgWjKbojYOZyyh5ldSUREVV9DMKISkk3Kd7cCsbikucrIqeMiIisB4MwolIqr+T54qriExFR9cYgjKgMyiNXq6w5ZUREVD0wCCOrZ+mVhmX9/rLmlBERUfXAIIysin7Ao1arsWXLlmI/Vx4rDY0FW/rfX9qVjqyKT0RUczEIoypLP+jJzs7G1q1by3StR11pqF9WwpiyrnQ0VRWfiIiqNwZhVCWVJOipTIYjYMoRr9KsdCzplkPcmoiIqHpjEEZVTmZmJlJTU8v02YraTFuXsRGvunVvlXilI7cmIiIigEEYVTGPMgJW3ptp6/YpIyMDgOnaXmPGfFSqlY4MsIiIyKb4JkSVpzS5W2q1C1JSAqFWu5gMjtRql0fqjzYo3LFjBwDg6lV/oyNeBQX2iIraDUnSAABXOhIRUbE4EkZWSX/UKzw8oUIKnxrbYkifdsQrKOgyVzoSEVGJMQgjq6Cb6wXAYNTr6NHwCi18qj/S9pByxIsrHYmIqKQYhFGVV5JRL8AG4eE/IyEh3Gjh00ddaWhsiyEAGDjwK7Rqda7Yz3OlIxER6WMQRlWasVyvhIRwABropjRKkgZhYYkIC0tEmzbRaNXKEX5+TwB4olxWGpraYsjf/5qi3aBBg+Dm5qY4xpWORERkDIMwqtJMJcJ37Phw1MvWVuDNN3Pw7LNDKyzgKW6LoQEDBsDPz4/BFhERlRiDMKqyTp5sh507jSfCL1jgDh8fNTIz66JxYwkNGrgBcCv1dxS376NarZZ/NrfFkKenJwMwIiIqFQZhVKVoc6e005D6VVQe1v96Ch4edR/pu/RrkpWk0CsT74mIqLwwCKMqRVtN/vBhYMUKw0T4devUiI5+qlxGnYyVnyhroVcm3hMRUWkxCKMqx8PDAx06ADY2gEbz8LitLfCvf9VFec/6Fbfvo7Fke11MvCciorJgEEZVUoMGwPr1wIsvAoWFRQHYBx8UHS9vxspP6BZ6dXNzg6+vb/l/MRER1WgMwqjKGjMGiIwELl4EGjcufQBWXNJ9dnY2ANPlJ8qr0CsREZExDMKoSmvQoGyjX6XZCLy48hNEREQVgUEYVUv6I2DGVj7qHjNXfoKIiKgiMAijas/YykcARldDMvgiIqLKwiCMqjVjKx937uwLSYLJ1ZD6WH6CiIgqAoMwqtaMb7xtAyGUR3RXQw4YMACenp4AWH6CiIgqDoMwqtaMrXwENIqRMEC5GtLT05MlKYiIqMIZliQnqka0Kx8lqajqqyRp0K/fboNjXA1JRESVjSNhVO2ZWvnI1ZBERGRJDMKoWtJPpje28TY34yYiIktiEEbVknYjcN16YWq1Glu2bCn2s1wNSURElUESQn+dGFUVOTk5UKlUUKvVcHV1tXR3Hllx2whVxkrEqtAHIiKq3kr695sjYVQpSrqNUExMTIUGQQywiIioquDqSKoU5kafytKOiIjI2jEIIyIiIrIABmFEREREFsAgjIiIiMgCmJhPFqFWuyArywPu7pllrtWlu9IxNdUGKSm1EBT0AH5+RZXwudKRiIiqMgZhVOlOnmyHXbv6QggbecugkJBTpbqG7mpLc9er6NWWREREZcXpSKpUarWLHDABRZto79rVF2q1S6muox0BK+56XG1JRERVFYMwqhTaKvRZWR5ywKQlhA2ystwV7UqquOsRERFVVZyOpEqh3Ubo0qUH+PxzAY1Gks/Z2gpMnNgbgYG1Sj116O6eCUnSKAIxSdLA3T2r3PpORERUETgSRpXGw8MDoaHeWL9egq1t0TFbW+CDDySEhnqXKXdLpcpFVNRuSFJRMr42J4wbcxMRUVXHkTCqdGPGAJGRwMWLQOPGQIMGj3a9kJBTCA6+iKwsd7i7ZzEAIyIiq8AgjCyiQQPAyamoxERa2qOXmFCpchl8ERGRVWEQRhZR2hIT164BFy4ATZo8+sgZERFRVcCcMLKIkpaYSE1NxfLl2WjYUOCZZ4CGDQWWL8+GWq0u0feUdrUlERFRZeFIGFmUuRITKlUuPv00HitXxkKIotWUGo2E6dNd8c8/n0ClAgYNGgQ3Nzej12bFfCIiqsoYhJFFFVdiorggzc3NDb6+vpXaZyIiovLA6UiyqOJKTGiDNF2sA0ZERNUBR8LI4syVmNAGafqJ+1wJSURE1o5BGFUJ5kpMsA4YERFVRwzCyCqwDhgREVU3zAkji2DpCCIiquk4EkYWod3QW1svTF9GRgZ27NhRyb0iIiKqPAzCyGLM1fAq6UgZR9SIiMhaMQijKqm4kTKAxViJiMi6MQijKosBFhERVWdMzCciIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC7C6ICwvLw9t27aFJEk4ffq04tyZM2fQuXNnODo6wt/fH8uWLTP4/LZt29C8eXM4OjqidevW2Lt3r+K8EALz5s2Dr68vnJycEBERgQsXLijaZGVlYdiwYXB1dYWbmxvGjBmD27dvl7ovREREVHNZXRA2Y8YM+Pn5GRzPyclBz5490bBhQ5w4cQJvvfUWFixYgPXr18ttjh49iqFDh2LMmDE4deoU+vfvj/79++Ps2bNym2XLlmH16tVYt24dEhMTUbt2bURGRuL+/ftym2HDhuGPP/5AfHw8du/ejR9++AHjxo0rVV+qk2vXgMOHi/5JREREJSSsyN69e0Xz5s3FH3/8IQCIU6dOyefef/99UbduXZGXlycfmzlzpmjWrJn8ftCgQaJPnz6Ka4aFhYkXX3xRCCGERqMRPj4+4q233pLPZ2dnCwcHB/Hll18KIYT4888/BQBx/Phxuc2+ffuEJEnin3/+KXFfSkKtVgsAQq1Wl+pzlSEjI0OkpqaKt9++JWxsNAIQwsZGI95++5ZITU0VGRkZlu4iERGRRZT077fVjIRdv34dL7zwAj7//HM4OzsbnE9ISECXLl0U29hERkYiKSkJt27dkttEREQoPhcZGYmEhAQAQEpKCtLT0xVtVCoVwsLC5DYJCQlwc3ND+/bt5TYRERGwsbFBYmJiiftiTF5eHnJychSvqigzMxNr1qzBW299ienTXaHRSAAAjUbC9OmueOutL7FmzRpkZmZauKdERERVl1UEYUIIjBo1CuPHj1cEP7rS09Ph7e2tOKZ9n56ebraN7nndz5lqU69ePcX5WrVqwd3dvdjv0f0OY5YsWQKVSiW//P39TbatTPrTjdqthLKyPKAfxwthg6wsd0U7IiIiMmTRIGzWrFmQJMns6/z583j33XeRm5uL2bNnW7K7FW727NlQq9Xy6+rVq5buEj7+GGjYEHjmmaJ/fvwxkJ2dDQBwd8+EJGkU7SVJA3f3LAv0lIiIyLpYdO/IadOmYdSoUWbbNGrUCIcOHUJCQgIcHBwU59q3b49hw4Zhw4YN8PHxwfXr1xXnte99fHzkfxpro3tee8zX11fRpm3btnKbGzduKK7x4MEDZGVlFfs9ut9hjIODg8E9WkpmZiYuXXqAcePq6Uw3AuPGCUyevA8qFZCc3BhCPPyMJGkQFbUbKlWuhXpNRERkPSwahHl5ecHLy6vYdqtXr8brr78uv09NTUVkZCS2bNmCsLAwAEB4eDjmzJmDgoIC2NnZAQDi4+PRrFkz1K1bV25z8OBBxMbGyteKj49HeHg4ACAoKAg+Pj44ePCgHHTl5OQgMTERL730knyN7OxsnDhxAqGhoQCAQ4cOQaPRlKovVZk25yslJRAazUjFOY1Gkqcbd+3qC93BVCGA4OCLldlVIiIiq2UVOWEBAQFo1aqV/GratCkAIDg4GA0aNAAAPPvss7C3t8eYMWPwxx9/YMuWLVi1ahWmTp0qX2fy5MnYv38/li9fjvPnz2PBggX49ddfERMTAwCQJAmxsbF4/fXXsXPnTvz+++8YMWIE/Pz80L9/fwBAixYt0KtXL7zwwgs4duwYfv75Z8TExGDIkCFy6YyS9KUq0+ZymZtuNJYPBjzMByMiIiLzrCIIKwmVSoXvvvsOKSkpCA0NxbRp0zBv3jxF/a6OHTti06ZNWL9+Pdq0aYOvvvoK33zzDVq1aiW3mTFjBiZOnIhx48bhiSeewO3bt7F//344OjrKbTZu3IjmzZuje/fu+Ne//oVOnTopaoCVpC/WQKXKRVTUbjkQ051uZD4YERHRo5GE0M3qoaokJycHKpUKarUarq6ulfa9aWlpiqBSrXZBVpY73N2zFPleJ0+2w65dfSGEjRyghYScks+PGzdOkVtHRERUE5T077dFc8LIOqhUuUaT7UNCTiE4+KLRAA2Aok4aERERKTEIo0diKkAbPHgwPDw8LNAjIiIi61BtcsKoalGpVJbuAhERUZXGIIwqBKciiYiIzON0JBkoaQA1ePBgoyNe9vb2nIokIiIqBoMwMuDh4YGYmBizez8y0CIiIno0DMLIKAZYREREFYs5YUREREQWwCCMiIiIyAIYhBERERFZAIMwIiIiIgtgEEZERERkAQzCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsCK+TVEZmYmtyEiIiKqQhiE1QCZmZlYs2ZNse1iYmIYiBEREVUSTkfWAOZGwMrSjoiIiB4dgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjIiIisgAGYUREREQWwCCsBrC3t1e8V6tdkJISCLXaxWw7IiIiqjgs1loDeHh4ICYmBvn5+di0yQmvvaaCRiPBxkZg2TI1nn32HivmExERVTJJCCEs3QkyLicnByqVCmq1Gq6uro98vWvXgIYNAY3m4TFbW+DSJaBBg0e+PBEREaHkf785HVmDXLigDMAAoLAQuHjRMv0hIiKqyRiE1SBNmgA2ev/GbW2Bxo0t0x8iIqKajEFYDdKgAbB+fVHgBRT984MPOBVJRERkCUzMr2HGjAEiI4umIBs3ZgBGRERkKQzCaqAGDRh8ERERWRqnI4mIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjIiIisgDuHVmFCSEAADk5ORbuCREREZWU9u+29u+4KQzCqrDc3FwAgL+/v4V7QkRERKWVm5sLlUpl8rwkigvTyGI0Gg1SU1Ph4uICSZJK9JmcnBz4+/vj6tWrcHV1reAeVl18DkX4HPgMtPgcivA58BloVeRzEEIgNzcXfn5+sLExnfnFkbAqzMbGBg0aNCjTZ11dXWv0/7i0+ByK8DnwGWjxORThc+Az0Kqo52BuBEyLiflEREREFsAgjIiIiMgCGIRVMw4ODpg/fz4cHBws3RWL4nMowufAZ6DF51CEz4HPQKsqPAcm5hMRERFZAEfCiIiIiCyAQRgRERGRBTAIIyIiIrIABmFEREREFsAgzAqsXbsWjz/+uFxQLjw8HPv27ZPP379/HxMmTICHhwfq1KmD6OhoXL9+XXGNK1euoE+fPnB2dka9evUwffp0PHjwoLJvpdwsXboUkiQhNjZWPlZTnsOCBQsgSZLi1bx5c/l8TXkO//zzD5577jl4eHjAyckJrVu3xq+//iqfF0Jg3rx58PX1hZOTEyIiInDhwgXFNbKysjBs2DC4urrCzc0NY8aMwe3btyv7VsosMDDQ4HdBkiRMmDABQM35XSgsLMTcuXMRFBQEJycnBAcHY9GiRYp9+2rC70Nubi5iY2PRsGFDODk5oWPHjjh+/Lh8vjo+gx9++AFRUVHw8/ODJEn45ptvFOfL657PnDmDzp07w9HREf7+/li2bFn53ICgKm/nzp1iz5494q+//hJJSUnilVdeEXZ2duLs2bNCCCHGjx8v/P39xcGDB8Wvv/4qOnToIDp27Ch//sGDB6JVq1YiIiJCnDp1Suzdu1d4enqK2bNnW+qWHsmxY8dEYGCgePzxx8XkyZPl4zXlOcyfP1889thjIi0tTX7dvHlTPl8TnkNWVpZo2LChGDVqlEhMTBR///23+Pbbb8XFixflNkuXLhUqlUp888034rfffhP9+vUTQUFB4t69e3KbXr16iTZt2ohffvlF/Pjjj6Jx48Zi6NChlrilMrlx44bi9yA+Pl4AEIcPHxZC1IzfBSGEWLx4sfDw8BC7d+8WKSkpYtu2baJOnTpi1apVcpua8PswaNAg0bJlS3HkyBFx4cIFMX/+fOHq6iquXbsmhKiez2Dv3r1izpw5YseOHQKA+PrrrxXny+Oe1Wq18Pb2FsOGDRNnz54VX375pXBychIffPDBI/efQZiVqlu3rvjoo49Edna2sLOzE9u2bZPPnTt3TgAQCQkJQoiiX1IbGxuRnp4ut1m7dq1wdXUVeXl5ld73R5GbmyuaNGki4uPjRdeuXeUgrCY9h/nz54s2bdoYPVdTnsPMmTNFp06dTJ7XaDTCx8dHvPXWW/Kx7Oxs4eDgIL788kshhBB//vmnACCOHz8ut9m3b5+QJEn8888/Fdf5CjR58mQRHBwsNBpNjfldEEKIPn36iNGjRyuODRgwQAwbNkwIUTN+H+7evStsbW3F7t27FcdDQkLEnDlzasQz0A/Cyuue33//fVG3bl3F/yZmzpwpmjVr9sh95nSklSksLMTmzZtx584dhIeH48SJEygoKEBERITcpnnz5ggICEBCQgIAICEhAa1bt4a3t7fcJjIyEjk5Ofjjjz8q/R4exYQJE9CnTx/F/QKocc/hwoUL8PPzQ6NGjTBs2DBcuXIFQM15Djt37kT79u3xn//8B/Xq1UO7du3w4YcfyudTUlKQnp6ueA4qlQphYWGK5+Dm5ob27dvLbSIiImBjY4PExMTKu5lykp+fjy+++AKjR4+GJEk15ncBADp27IiDBw/ir7/+AgD89ttv+Omnn9C7d28ANeP34cGDBygsLISjo6PiuJOTE3766aca8Qz0ldc9JyQkoEuXLrC3t5fbREZGIikpCbdu3XqkPnIDbyvx+++/Izw8HPfv30edOnXw9ddfo2XLljh9+jTs7e3h5uamaO/t7Y309HQAQHp6uuL/ZLXnteesxebNm3Hy5ElFjoNWenp6jXkOYWFhiIuLQ7NmzZCWloaFCxeic+fOOHv2bI15Dn///TfWrl2LqVOn4pVXXsHx48cxadIk2NvbY+TIkfJ9GLtP3edQr149xflatWrB3d3dap6Drm+++QbZ2dkYNWoUgJr1v4lZs2YhJycHzZs3h62tLQoLC7F48WIMGzYMAGrE74OLiwvCw8OxaNEitGjRAt7e3vjyyy+RkJCAxo0b14hnoK+87jk9PR1BQUEG19Ceq1u3bpn7yCDMSjRr1gynT5+GWq3GV199hZEjR+LIkSOW7laluXr1KiZPnoz4+HiD/9KrabT/dQ8Ajz/+OMLCwtCwYUNs3boVTk5OFuxZ5dFoNGjfvj3eeOMNAEC7du1w9uxZrFu3DiNHjrRw7yzj448/Ru/eveHn52fprlS6rVu3YuPGjdi0aRMee+wxnD59GrGxsfDz86tRvw+ff/45Ro8ejfr168PW1hYhISEYOnQoTpw4YemukQmcjrQS9vb2aNy4MUJDQ7FkyRK0adMGq1atgo+PD/Lz85Gdna1of/36dfj4+AAAfHx8DFZEad9r21R1J06cwI0bNxASEoJatWqhVq1aOHLkCFavXo1atWrB29u7RjwHY9zc3NC0aVNcvHixxvw++Pr6omXLlopjLVq0kKdltfdh7D51n8ONGzcU5x88eICsrCyreQ5aly9fxoEDBzB27Fj5WE35XQCA6dOnY9asWRgyZAhat26N4cOHY8qUKViyZAmAmvP7EBwcjCNHjuD27du4evUqjh07hoKCAjRq1KjGPANd5XXPFfm/EwZhVkqj0SAvLw+hoaGws7PDwYMH5XNJSUm4cuUKwsPDAQDh4eH4/fffFb9o8fHxcHV1NfhDVlV1794dv//+O06fPi2/2rdvj2HDhsk/14TnYMzt27eRnJwMX1/fGvP78NRTTyEpKUlx7K+//kLDhg0BAEFBQfDx8VE8h5ycHCQmJiqeQ3Z2tmKU4NChQ9BoNAgLC6uEuyg/n376KerVq4c+ffrIx2rK7wIA3L17FzY2yj9ntra20Gg0AGre70Pt2rXh6+uLW7du4dtvv8W///3vGvcMgPL79x4eHo4ffvgBBQUFcpv4+Hg0a9bskaYiAbBEhTWYNWuWOHLkiEhJSRFnzpwRs2bNEpIkie+++04IUbQMPSAgQBw6dEj8+uuvIjw8XISHh8uf1y5D79mzpzh9+rTYv3+/8PLysrpl6Pp0V0cKUXOew7Rp08T3338vUlJSxM8//ywiIiKEp6enuHHjhhCiZjyHY8eOiVq1aonFixeLCxcuiI0bNwpnZ2fxxRdfyG2WLl0q3NzcxP/+9z9x5swZ8e9//9vo0vR27dqJxMRE8dNPP4kmTZpU6eX4xhQWFoqAgAAxc+ZMg3M14XdBCCFGjhwp6tevL5eo2LFjh/D09BQzZsyQ29SE34f9+/eLffv2ib///lt89913ok2bNiIsLEzk5+cLIarnM8jNzRWnTp0Sp06dEgDEO++8I06dOiUuX74shCife87Ozhbe3t5i+PDh4uzZs2Lz5s3C2dmZJSpqitGjR4uGDRsKe3t74eXlJbp37y4HYEIIce/ePfHf//5X1K1bVzg7O4v/9//+n0hLS1Nc49KlS6J3797CyclJeHp6imnTpomCgoLKvpVypR+E1ZTnMHjwYOHr6yvs7e1F/fr1xeDBgxX1sWrKc9i1a5do1aqVcHBwEM2bNxfr169XnNdoNGLu3LnC29tbODg4iO7du4ukpCRFm8zMTDF06FBRp04d4erqKp5//nmRm5tbmbfxyL799lsBwODehKg5vws5OTli8uTJIiAgQDg6OopGjRqJOXPmKEoK1ITfhy1btohGjRoJe3t74ePjIyZMmCCys7Pl89XxGRw+fFgAMHiNHDlSCFF+9/zbb7+JTp06CQcHB1G/fn2xdOnScum/JIROSWEiIiIiqhTMCSMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILIBBGBEREZEFMAgjomrl6aefRmxsrKW7UeEWLFiAtm3bWrobRPQIGIQREVUh+fn5lfp9Qgg8ePCgUr+TiIowCCOiamPUqFE4cuQIVq1aBUmSIEkSLl26hLNnz6J3796oU6cOvL29MXz4cGRkZMife/rppzFx4kTExsaibt268Pb2xocffog7d+7g+eefh4uLCxo3box9+/bJn/n+++8hSRL27NmDxx9/HI6OjujQoQPOnj2r6NNPP/2Ezp07w8nJCf7+/pg0aRLu3Lkjnw8MDMSiRYswYsQIuLq6Yty4cQCAmTNnomnTpnB2dkajRo0wd+5cFBQUAADi4uKwcOFC/Pbbb/J9xsXF4dKlS5AkCadPn5avn52dDUmS8P333yv6vW/fPoSGhsLBwQE//fQTNBoNlixZgqCgIDg5OaFNmzb46quvyvtfERHpYBBGRNXGqlWrEB4ejhdeeAFpaWlIS0uDi4sLnnnmGbRr1w6//vor9u/fj+vXr2PQoEGKz27YsAGenp44duwYJk6ciJdeegn/+c9/0LFjR5w8eRI9e/bE8OHDcffuXcXnpk+fjuXLl+P48ePw8vJCVFSUHCwlJyejV69eiI6OxpkzZ7Blyxb89NNPiImJUVzj7bffRps2bXDq1CnMnTsXAODi4oK4uDj8+eefWLVqFT788EOsWLECADB48GBMmzYNjz32mHyfgwcPLtWzmjVrFpYuXYpz587h8ccfx5IlS/DZZ59h3bp1+OOPPzBlyhQ899xzOHLkSKmuS0SlUC7bgBMRVRFdu3YVkydPlt8vWrRI9OzZU9Hm6tWrAoBISkqSP9OpUyf5/IMHD0Tt2rXF8OHD5WNpaWkCgEhISBBCCHH48GEBQGzevFluk5mZKZycnMSWLVuEEEKMGTNGjBs3TvHdP/74o7CxsRH37t0TQgjRsGFD0b9//2Lv66233hKhoaHy+/nz54s2bdoo2qSkpAgA4tSpU/KxW7duCQDi8OHDin5/8803cpv79+8LZ2dncfToUcX1xowZI4YOHVps34iobGpZMgAkIqpov/32Gw4fPow6deoYnEtOTkbTpk0BAI8//rh83NbWFh4eHmjdurV8zNvbGwBw48YNxTXCw8Pln93d3dGsWTOcO3dO/u4zZ85g48aNchshBDQaDVJSUtCiRQsAQPv27Q36tmXLFqxevRrJycm4ffs2Hjx4AFdX11Lfvym633nx4kXcvXsXPXr0ULTJz89Hu3btyu07iUiJQRgRVWu3b99GVFQU3nzzTYNzvr6+8s92dnaKc5IkKY5JkgQA0Gg0pfruF198EZMmTTI4FxAQIP9cu3ZtxbmEhAQMGzYMCxcuRGRkJFQqFTZv3ozly5eb/T4bm6IMEyGEfEw7NapP9ztv374NANizZw/q16+vaOfg4GD2O4mo7BiEEVG1Ym9vj8LCQvl9SEgItm/fjsDAQNSqVf7/l/fLL7/IAdWtW7fw119/ySNcISEh+PPPP9G4ceNSXfPo0aNo2LAh5syZIx+7fPmyoo3+fQKAl5cXACAtLU0ewdJN0jelZcuWcHBwwJUrV9C1a9dS9ZWIyo6J+URUrQQGBiIxMRGXLl1CRkYGJkyYgKysLAwdOhTHjx9HcnIyvv32Wzz//PMGQUxZvPbaazh48CDOnj2LUaNGwdPTE/379wdQtMLx6NGjiImJwenTp3HhwgX873//M0jM19ekSRNcuXIFmzdvRnJyMlavXo2vv/7a4D5TUlJw+vRpZGRkIC8vD05OTujQoYOccH/kyBG8+uqrxd6Di4sLXn75ZUyZMgUbNmxAcnIyTp48iXfffRcbNmwo87MhIvMYhBFRtfLyyy/D1tYWLVu2hJeXF/Lz8/Hzzz+jsLAQPXv2ROvWrREbGws3Nzd5+u5RLF26FJMnT0ZoaCjS09Oxa9cu2NvbAyjKMzty5Aj++usvdO7cGe3atcO8efPg5+dn9pr9+vXDlClTEBMTg7Zt2+Lo0aPyqkmt6Oho9OrVC926dYOXlxe+/PJLAMAnn3yCBw8eIDQ0FLGxsXj99ddLdB+LFi3C3LlzsWTJErRo0QK9evXCnj17EBQUVIanQkQlIQnd5AEiIiqR77//Ht26dcOtW7fg5uZm6e4QkRXiSBgRERGRBTAIIyIiIrIATkcSERERWQBHwoiIiIgsgEEYERERkQUwCCMiIiKyAAZhRERERBbAIIyIiIjIAhiEEREREVkAgzAiIiIiC2AQRkRERGQBDMKIiIiILOD/A1M3HSEaHErLAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPs0lEQVR4nO3deVxU9f4/8NewigijLLIEAgJXr6ZeQTOy1NQCv2r508rylmuaBprZdcubaYtLqbllVtelvFreUuuqWVqZZZqVSupNSbyQG7gMOaAmIHN+f3BnYoAZZjtzttfz8eChzBxmPjMM57zO5/P+fI5OEAQBRERERBrgI3UDiIiIiLyFwYeIiIg0g8GHiIiINIPBh4iIiDSDwYeIiIg0g8GHiIiINIPBh4iIiDSDwYeIiIg0g8GHiIiINIPBh4hIhtauXQudTofCwkKpm0KkKgw+RBr1ww8/ICcnB23btkVwcDBatGiBhx56CL/88kudbXv06AGdTgedTgcfHx+EhoaiVatWeOyxx7Br1y6nnnfr1q3o3r07mjdvjsaNG6Nly5Z46KGH8Omnn3rqpdUxZ84cfPTRR3Vu37dvH2bNmoUrV66I9ty1zZo1y/Je6nQ6NG7cGG3atMHf//53lJaWeuQ5NmzYgMWLF3vksYjUhsGHSKPmz5+PTZs2oVevXliyZAnGjBmDr7/+GmlpaTh27Fid7ePi4rBu3Tq8++67ePXVV3Hfffdh3759uPfeezF48GBUVlY2+JwLFizAfffdB51Oh+nTp+O1117DoEGDcPLkSbz//vtivEwA9oPP7NmzvRp8zN544w2sW7cOixYtQuvWrfHyyy8jKysLnrh8IoMPkW1+UjeAiKQxadIkbNiwAQEBAZbbBg8ejHbt2mHevHn45z//abW9Xq/Ho48+anXbvHnzMGHCBKxYsQKJiYmYP3++zee7efMmXnzxRdxzzz3YuXNnnfsvXrzo5iuSj+vXr6Nx48Z2t3nggQcQEREBABg7diwGDRqEzZs347vvvkNGRoY3mkmkSezxIdKoO+64wyr0AEBqairatm2L48ePO/QYvr6+WLp0Kdq0aYPly5fDaDTa3Pby5csoLS1F165d672/efPmVt/fuHEDs2bNwp/+9Cc0atQIMTExGDhwIE6dOmXZZsGCBbjjjjsQHh6OoKAgpKen48MPP7R6HJ1Oh2vXruGdd96xDC8NHz4cs2bNwuTJkwEASUlJlvtq1tT885//RHp6OoKCghAWFoaHH34YZ86csXr8Hj164NZbb8XBgwfRrVs3NG7cGM8++6xD719NPXv2BAAUFBTY3W7FihVo27YtAgMDERsbi+zsbKseqx49emD79u349ddfLa8pMTHR6fYQqRV7fIjIQhAEXLhwAW3btnX4Z3x9ffHII4/gueeew969e9G3b996t2vevDmCgoKwdetWjB8/HmFhYTYfs6qqCv369cMXX3yBhx9+GE899RTKysqwa9cuHDt2DMnJyQCAJUuW4L777sNf//pXVFRU4P3338eDDz6Ibdu2Wdqxbt06PP7447jtttswZswYAEBycjKCg4Pxyy+/4L333sNrr71m6X2JjIwEALz88st47rnn8NBDD+Hxxx/HpUuXsGzZMnTr1g2HDx9G06ZNLe01GAzo06cPHn74YTz66KOIiopy+P0zMwe68PBwm9vMmjULs2fPRu/evTFu3Djk5eXhjTfewA8//IBvv/0W/v7+mDFjBoxGI86ePYvXXnsNANCkSROn20OkWgIR0f+sW7dOACCsWrXK6vbu3bsLbdu2tflzW7ZsEQAIS5Yssfv4M2fOFAAIwcHBQp8+fYSXX35ZOHjwYJ3tVq9eLQAQFi1aVOc+k8lk+f/169et7quoqBBuvfVWoWfPnla3BwcHC8OGDavzWK+++qoAQCgoKLC6vbCwUPD19RVefvllq9uPHj0q+Pn5Wd3evXt3AYCwcuVKm6+7pueff14AIOTl5QmXLl0SCgoKhDfffFMIDAwUoqKihGvXrgmCIAhr1qyxatvFixeFgIAA4d577xWqqqosj7d8+XIBgLB69WrLbX379hUSEhIcag+R1nCoi4gAACdOnEB2djYyMjIwbNgwp37W3KNQVlZmd7vZs2djw4YN6NixIz777DPMmDED6enpSEtLsxpe27RpEyIiIjB+/Pg6j6HT6Sz/DwoKsvz/t99+g9FoxF133YVDhw451f7aNm/eDJPJhIceegiXL1+2fEVHRyM1NRW7d++22j4wMBAjRoxw6jlatWqFyMhIJCUl4YknnkBKSgq2b99uszbo888/R0VFBSZOnAgfnz923aNHj0ZoaCi2b9/u/Asl0iAOdRERiouL0bdvX+j1enz44Yfw9fV16uevXr0KAAgJCWlw20ceeQSPPPIISktLceDAAaxduxYbNmxA//79cezYMTRq1AinTp1Cq1at4Odnfxe1bds2vPTSS8jNzUV5ebnl9prhyBUnT56EIAhITU2t935/f3+r72+55ZY69VIN2bRpE0JDQ+Hv74+4uDjL8J0tv/76K4DqwFRTQEAAWrZsabmfiOxj8CHSOKPRiD59+uDKlSv45ptvEBsb6/RjmKe/p6SkOPwzoaGhuOeee3DPPffA398f77zzDg4cOIDu3bs79PPffPMN7rvvPnTr1g0rVqxATEwM/P39sWbNGmzYsMHp11CTyWSCTqfDjh076g2BtWtmavY8Oapbt26WuiIi8h4GHyINu3HjBvr3749ffvkFn3/+Odq0aeP0Y1RVVWHDhg1o3Lgx7rzzTpfa0alTJ7zzzjsoKioCUF18fODAAVRWVtbpXTHbtGkTGjVqhM8++wyBgYGW29esWVNnW1s9QLZuT05OhiAISEpKwp/+9CdnX44oEhISAAB5eXlo2bKl5faKigoUFBSgd+/eltvc7fEiUjPW+BBpVFVVFQYPHoz9+/fjgw8+cGntmKqqKkyYMAHHjx/HhAkTEBoaanPb69evY//+/fXet2PHDgB/DOMMGjQIly9fxvLly+tsK/xvgT9fX1/odDpUVVVZ7issLKx3ocLg4OB6FykMDg4GgDr3DRw4EL6+vpg9e3adBQUFQYDBYKj/RYqod+/eCAgIwNKlS63atGrVKhiNRqvZdMHBwXaXFiDSMvb4EGnUM888g3//+9/o378/SkpK6ixYWHuxQqPRaNnm+vXryM/Px+bNm3Hq1Ck8/PDDePHFF+0+3/Xr13HHHXfg9ttvR1ZWFuLj43HlyhV89NFH+OabbzBgwAB07NgRADB06FC8++67mDRpEr7//nvcdddduHbtGj7//HM8+eSTuP/++9G3b18sWrQIWVlZGDJkCC5evIjXX38dKSkpOHLkiNVzp6en4/PPP8eiRYsQGxuLpKQkdOnSBenp6QCAGTNm4OGHH4a/vz/69++P5ORkvPTSS5g+fToKCwsxYMAAhISEoKCgAFu2bMGYMWPwt7/9za3331mRkZGYPn06Zs+ejaysLNx3333Iy8vDihUr0LlzZ6vfV3p6OjZu3IhJkyahc+fOaNKkCfr37+/V9hLJlpRTyohIOuZp2La+7G3bpEkTITU1VXj00UeFnTt3OvR8lZWVwttvvy0MGDBASEhIEAIDA4XGjRsLHTt2FF599VWhvLzcavvr168LM2bMEJKSkgR/f38hOjpaeOCBB4RTp05Ztlm1apWQmpoqBAYGCq1btxbWrFljmS5e04kTJ4Ru3boJQUFBAgCrqe0vvviicMsttwg+Pj51prZv2rRJuPPOO4Xg4GAhODhYaN26tZCdnS3k5eVZvTf2pvrXZm7fpUuX7G5Xezq72fLly4XWrVsL/v7+QlRUlDBu3Djht99+s9rm6tWrwpAhQ4SmTZsKADi1nagGnSB44MIwRERERArAGh8iIiLSDAYfIiIi0gwGHyIiItIMBh8iIiLSDAYfIiIi0gzFBJ+5c+eic+fOCAkJQfPmzTFgwADk5eVZbXPjxg1kZ2cjPDwcTZo0waBBg3DhwgWJWkxERERyo5jp7FlZWXj44YfRuXNn3Lx5E88++yyOHTuGn3/+2bL66rhx47B9+3asXbsWer0eOTk58PHxwbfffuvw85hMJpw/fx4hISFc9p2IiEghBEFAWVkZYmNj4eNjp19H0lWE3HDx4kUBgLBnzx5BEAThypUrgr+/v/DBBx9Ytjl+/LgAQNi/f7/Dj3vmzBm7i7rxi1/84he/+MUv+X6dOXPG7nFesZesMF+HJiwsDABw8OBBVFZWWl2or3Xr1mjRogX279+P22+/vd7HKS8vR3l5ueV74X8dYGfOnLF73SEiIiKSj9LSUsTHxyMkJMTudooMPiaTCRMnTkTXrl1x6623AgCKi4sREBCApk2bWm0bFRWF4uJim481d+5czJ49u87toaGhDD5EREQK01CZimKKm2vKzs7GsWPH8P7777v9WNOnT4fRaLR8nTlzxgMtJCIiIjlSXI9PTk4Otm3bhq+//hpxcXGW26Ojo1FRUYErV65Y9fpcuHAB0dHRNh8vMDAQgYGBYjaZiIiIZEIxPT6CICAnJwdbtmzBl19+iaSkJKv709PT4e/vjy+++MJyW15eHk6fPo2MjAxvN5eIiIhkSDE9PtnZ2diwYQM+/vhjhISEWOp29Ho9goKCoNfrMWrUKEyaNAlhYWEIDQ3F+PHjkZGRYbOwmYiIiLRFMev42CpWWrNmDYYPHw6gegHDZ555Bu+99x7Ky8uRmZmJFStW2B3qqq20tBR6vR5Go5HFzURERArh6PFbMcHHWxh8iIiIlMfR47dianyIiIiI3MXgQ0RERJrB4ENERESaweBDREREmqGY6exE7jIYDKioqLB5f0BAAMLDw73YIiIi8jYGH9IEg8GA5cuXW743GkNQUhKOsDAD9Poyy+05OTkMP0REKsbgQ5pQs6fn0KGO2Lq1HwTBBzqdCf37b0Na2uE62xERkfow+IiIQyvyYzSGWEIPAAiCD7Zu7Yfk5Hyrnh8iIlInBh+R1B5asYVDK95VUhJuCT1mguCDkpIwBh8iIg3grC6RODpkwqEV7woLM0CnM1ndptOZEBZWIlGLiIjImxh8SFP0+jL077/NEn7MNT7s7SEi0gYOdZHmpKUdRnJyPkpKwhAWVsLQQ0SkIQw+pEl6fRkDDxGRBnGoy0uMxhAUFCTCaAyRuimaFBAQ4NHtiIhImdjj4wX21o0h57myTEB4eDhycnK4vIBIuHQDESkFg4/IuG6MZ7mzTAAPvOLgqthEpCQMPiIxD5k0tG4Mh1acw2UC5IerYhORkjD4iMQ8tFJYeBPr1gkwmXSW+3x9BYwf3weJiX48A3aTrd4F8j72bhKREjD4iCg8PBzh4cBbbwFPPAFUVQG+vsCbb+qQnh4ldfMUz1u1U1qrX3H19XJVbCJSAgYfLxg1CsjMBPLzgZQUIC5O6hYpn7d6F7R26RF3Xq95Veya4YerYhOR3DD4eElcHAOPJ3mrd0HpNUXO9t6483rNq2LX7oVjbw8RyQmDDymSVL0LSqop8kRvlbOvl6tiE5HcMfiQIknRu6C09Zjc7a1y9fXaWhX78uXLNn9GbXVSRCRfDD6kKDWn/9vrXfD0MgFqmLHkTO+NM6/X0fd68+bNdu9XS52UXHmjSF9rEwFImRh8yGlS7txqrsBsNBpRWVlZZxs/Pz9UVFTAYDB4rB1Kn7HkbO+NM6+3oVWxL1++3GDoAeRbJ6UG3ijS50KWpBQMPuQUOcxyCg8Ph8FgwMaNG73WDiXPWHKlt8rZ1+vMe6ykOim1qB0qbf0O3AmfXMiSlILBh5wil1lO3tiR16TkGUuu9FaJ9XqVVielRmL/DtQwLEzqxuBDbpHD2buYO3KpaopscWWY0ZneGzFfLw+I0vPG70Dpw8Kkfgw+5DI5nL2LvSOX01XdXR1mdKb3RszXywOiY8SsofPG70DJw8KkDQw+KiBFsbFczt69sSOXSyGms8OMrvbeiPV6eUBsmNg1dN74HSh5WJi0gcFH4aQqNpbL2TsPprbJqbcK4AHREWLX0HnrdyDXhSw53Z4ABh/Fk6rYWC6BQ8sHU0fqq9zZiXvqICG3OiklEaOGzluhxNZCllKRw4xUkgcGH5URq9jYfBA0r74rp8Ah17NLMYldX+XJg4Tcep6UwpO/49qh0lYocSd8OvqzUgVcucxIJekx+KiIWAdDWwdBKc/evbEjlytv1Fd5+iDBUOMcT/+OvRE+lRZw5TAjlaTB4KMSYh4M7e3IagaOgQMHIiIiwis7N6XtZD1JivoqHiS8S4zfsTf+FpTy9yaHGalKoNaaKAYflfDmwdDWQTAiIgIxMTEefS57lPgH5wnerq/iQcL75FJDp0ZymZHqSWIEFDVfgoTBRyW8taPkQVA65mG7huqrPDm8p8aDhBLIqYZOap4+qMtlRqqniFW0reZLkDD4qIQ3dpQ8CEqr9vDezJmXUFjoh8TEm4iN7Qygs8e7ntV2kJA7zoCzJsZBXW29aWIXbatxv8/go3De3FHyIPgHqca+az5mTAyQnu7xp7CitoOE3Gm5dq0+YhzU1d6b5ul6PDXu9xl8FM6bO0oeBKtpaT0QtR8k5Ejpnxm50kJvmhilCGrc7zP4qABX3vUub18ZXgpaOEiojVpn4NTkTm+G2nvTxBqSUuN+n8GHGsSDoG1qLfZW+0FCbbTQC+mJvzWlvnZHiDkkpbZFYhl8qEE8CNZPjUV/NWnt96lkau+FVPvfmieIPSQlt0uQuIPBhxzCg2Bdaiz6I+VTYy8k/9Ya5ukhKblfgsQdDD5ELlJj0R8pm1p7Rvi3Vj+DwQCj0Wj53pOlCGru6WfwIXKRGov+SNnU1jMixaKdSmGrrqv2kNRDDz2E5s2buxRQlBhqHMHgQ+QGtRX9kbKprWdEikU7lcLReq2mTZtq8v2xh8GHyEnuXBleC1OOSTpq7IX09qKdpH4MPiQLSgoEro59a2HKMUmPvZDa5OkVm9WMwYckp8RA4Eo71D7lmKTjTi8kKZ8aZ/KJicGHPM7Z3hstBgLuqMiT1DwDh+xT60w+MTH4kEe523ujhUDAHRWJgaFGm9Q2k88bfBrehMhx9fXeFBQkwmgMsbudedv6AkHtn1U6ezsqIiJnmGfy1aTkmXzewB4fEo2zvTdaOXNR25RjIvI+rnHkOgYfmVDSrCZHuDKco5VAoMYpx0TkXa6ucaS2Y40rGHxkQImzmhriSu+N1IHAmzsETjkmUjY5BAhn1zhS47HGFQw+MuDobCUlzWpytfdGqkDgjR0CpxwTqYNSA4QWZ9DWh8GHROFM740cAoE3dgicckxaJ4deEk9QQ4DQwgxaWxh8ZEgtK3A62nsjt0Ag5g5BCTt1IjHU7iWxtZ+TWy9JQ5QYILS+pAaDj8wo8Y+oJld7b+Syo9P6DoFILDVPbOzt5+TcS1Kbt/cXnuox08oMWlsYfGREDQddufXeOEvrOwStceZAUnPb8+d9UFDgh6Skm4iNNdXZlmxTw37OzJv7C0/WFWllBq0tDD4yopaDrpx3/rYOdJcvXwbAHYJceKMWxJmhFwCWbe31VihtmEYKatnPAd7dX3iyrkjqGbRSY/CRER50xeXIGZPWdwhy4K1aEFeGXhrqrVDSMI1UvLWf80Z4lmp/4YmSCC0vqcHgIwNcgdM7HD1j0vIOQQ68XQvizNCLmnorpOKNsODNQmpv7y/cGSqUwwxaOWDwkQFXV+Ak1zV0xqTVHYKceKsWxJkww15ZzxA7LIgdnqUMEO6Eb6XXYHoKg49MOLsCJ7muoQPqwIEDERERUefntLBDkBNv9a44E2Y4FOo5tsKCJ4kVnqUMEO6Gb+7DGHxIgxo6oEZERCAmJkai1pGZt3pXnA0zHAp1jaO9H57sJREzPEsVIBi+3afK4PP666/j1VdfRXFxMTp06IBly5bhtttuk7pZJBMcrlAGb+7gnQ0z3uitUBspeknU+rfO8O0e1QWfjRs3YtKkSVi5ciW6dOmCxYsXIzMzE3l5eWjevLnUzbNJLUu5KwHPmJRDrB28wWCwLGFgxjAjPm/vw9T0t87CZM9RXfBZtGgRRo8ejREjRgAAVq5cie3bt2P16tWYNm2axK2rn1IveOcoOYY6njEph6cDiaMzfsycOZDwoCM/Svlbd2Q/ycJkz1BV8KmoqMDBgwcxffp0y20+Pj7o3bs39u/fX+/PlJeXo7y83PJ9aWmp6O2sTY1XZzeTU6jjGZMyiF0L4uiMn4EDByI2NtbyueRBR7nk3pvnzPR71h+6T1XB5/Lly6iqqkJUVJTV7VFRUThx4kS9PzN37lzMnj3bG81zmFouUgrI6yrGnMqpDN76PTU04yciIsLqOfi5UA4pCqndocbrmMmZqoKPK6ZPn45JkyZZvi8tLUV8fLxk7VH6RUrtkcNr48FLGbzxe+JihOql1JMcNV3HTM5UFXwiIiLg6+uLCxcuWN1+4cIFREdH1/szgYGBCAwM9EbzGqTmD72aXxspk1pn/FA1uYUaRzCMe4dPw5soR0BAANLT0/HFF19YbjOZTPjiiy+QkZEhYcscY+9Dr3Rqfm2kTOYZPzpd9dXVlTzjh9TBHMZrYhj3PFX1+ADApEmTMGzYMHTq1Am33XYbFi9ejGvXrllmecmZms9A1fzaSLmUMuNHa2rOcDp/3gcFBX5ISrqJ2NjqUCDHYSpPUNP0ezlTXfAZPHgwLl26hJkzZ6K4uBh/+ctf8Omnn9YpeJYjNX/o1fzaSNnkPuNHa2rOcLJXF6jU5T0awjAuPtUFH6D6DyInJ0fqZjis5swCex96ucxAcBX/oEkOlDbjR2vMPT0N1QWqeYYTw7i4VBl8lEapMxAcwbVzSG7U/PemJloq9GUY9y4GH5lQ606WBxmSI37e5E9LdYHcT3oXgw+Jjn+sROQsrdUFcj/pPQw+REQkS6wLJDEw+JDL5HjxUSJSFxb6yosalhpg8CGXyOnio0REJD61LDXA4EMukdPFR4nIu8Ts7VXLDCc19IzUppalBhh8yG1yuPgoEXlH7d5eWyc9rp71q2GGk1p6RmxR+lIDDD7kFl58lEhbagYSewd1d876lRgGalJLz4gtSl9qgMGH3KL05E/qxeJ7cfGkp2Fq3T8qfakBBh9yi9KTP6kzILD4XnxqPah7kpr3j0peaoDBh9yi9OSvdWoNCCy+F19DB/UrV64gJiZGqubJgtr3j0pdaoDBh9ym5OSvdY4e+JUcEFh8L476Duq9e39u+fv/17/+pbjALAbuH+WHwYdcwouPqpOtnhGlYh2KuNLSDuP33xth167eEAQffP55bwQF3fBIgbOr5DiNXKk9I7WpZakBBh9yiRqmnJI1JfeM1K5Tunz5MgDWoYjNaAzB55/3BiCPYKn2aeTO8nT9nlr2+ww+5DK5f7jJcUruGbFXp6Tm4lKp1Dybl1uwlMs0cjn0jIi13pIa9vsMPkQkuwOYMxoqZFZzcakUwsPDMXjwYGzcuFG2wVLqz7Mceka8sd6SUjH4EJFsD2DOsrWDZ3GpZ+n1+v/963yw9MbyCWJ+nh1tv1x6RpTcmysWBh8iUkXPSEM7eBbfi8OZYCn25S7MxPo8e6v9niR175ccMfgQaVjNA7+9A5gSAkJDO/iBAwciIiLCcp8SijCVwtFZS94cfhGjp0+Jw0dq6c31JAYfIg2TQy2CpzS0g4+IiND8gnqe4m7xrreGX8SaRq6k4SM19OZ6GoMPkcYpIdQ4gjt473E3MCt9+EVp7bfX+2Ve+sFMKSc67mDwISLVYCGz97hzcBRr+MVb08iVOHxUX++X0RiChQsPybpGSQwMPkSkaFxFXHnE6p3z1tCtEnoXG/q8K6VGSQwMPkSkaGqqU9ISsXrnvPV7lnvvYn1/F5cvX8bmzZsVVaMkBgYfIlI8hhrXeWNdHVuUfg0rubdfrTVW7mLwISLSKHuX+6jJUzUfcriUgzuU3n4zJdYoeRKDDxGRRjV0uQ9b27lK6cOSSm+/mRJqlMTE4ENERHaLXT1J7qGgIUpvv5nca5TE5NPwJkREpGa2il2NxhCJW0Zi0uvLkJT0q6ZCD8DgQ0SkefaKXUk91FKj5C4OdZFqSTlbhUhJtF7sqhVqqVFyF4MPqZISr6JMJBWtF7tqCfd3DD6kUkq8ijKRlLRc7ErawhofUjUWbRLZVt/lPuordlV7zQdpC3t8SNW0vkKpt7CeSpnEqvng54HkjMGHVI1Fm+Lz9uq/5Fme/p3w80Byx6EuUjVz0aZOZwIAFm2KwNE6KdZTaQM/DyR37PEh1WPRpnfZmkFH2sTPA8kNgw9pgtyvoqwW3rrsASkDPw8kRxzqIlXiCqXexxl0VBM/DyRX7PEhVeIKpd7HGXRUEz8PJFcMPqRaDDXexRl0VBM/DyRXHOoiIo/gDDqqiZ8Hkiv2+JDX1Vzc7Px5HxQU+CEp6SZiY6t3kByCUpaadVL2ZtCxnkob+HkgudMJgiBI3Qg5KS0thV6vh9FoRGhoqNTNUZ2ai5vZm/HBxc2UhSv1Uk38PJAUHD1+s8eHvMq8M7Q14yM5OR96fRkXN1MYHsSoJn4eSM4YfEgSnPFBYmKPAxHZwuBDkuCMD+WSe6jgtaKIyB4GH5KEecZH7Rof9vbImxJCBa8VRUT2MPiQZHgNLeVRYqjgtaKIqCYGH5IUr6GlbHIPFbxWFBHVxuBDRC6Re6hoaOYgEWkTV24mr+LFQ9VBCRegtDdzkIi0iz0+5FViXTxU7jON1EYuyxHU93u/fPkyAM4cJKL6MfiQ13k6gNSeaWSr7oTTlz1HDqGioRlmnDlIRPVh8CHFq3nGb6/uRE4zjdwldQ+XHEKFI79PXiuKiGpj8CHV0Eoxq5Rr6cj5ApS2evpGjLgHERERVtty6JNIuxh8SDXkUncitto9HbYO+GL0cIlVo+Uuez19ERERiImJ8Wp7iEi+GHxINeRQd+JtUkwpl1tPiVZ6+ojIMzidnVTDXHei05kAQPXFrEqYUu4NnLZORM5gjw+pipYug6GVob2GaLGnj4hcxx4fUh29vgxJSb+q/uBvPuDXpMUDvtZ6+ojIPezxIcXT6mrQcphSLiU5zzAjIvli8CHFk+tMI2/Q0tBebVr+vROR6xh8SBW0dHCr3YNh6wr3Wujp0NLvnYg8g8GHSGHY00GeIPXq30RSUUTwKSwsxIsvvogvv/wSxcXFiI2NxaOPPooZM2ZYndUeOXIE2dnZ+OGHHxAZGYnx48djypQpErZcW86eBU6eBFJTgbg4qVujbjwgkTukXP2bSGqKCD4nTpyAyWTCm2++iZSUFBw7dgyjR4/GtWvXsGDBAgBAaWkp7r33XvTu3RsrV67E0aNHMXLkSDRt2hRjxoyR+BWol/msccOGIEyZoofJpIOPj4BXXjFiyJDfedZIJEOOruqtpuvbEZkpIvhkZWUhKyvL8n3Lli2Rl5eHN954wxJ81q9fj4qKCqxevRoBAQFo27YtcnNzsWjRIgYfkZjPGo3GECxePBGCoAMAmEw6TJ4cinPnVkOvL+NZI5HM2brsCZEaORx8SktLHX7Q0NBQlxrjDKPRiLCwP1Zm3b9/P7p162Y19JWZmYn58+fjt99+Q7Nmzep9nPLycpSXl1u+d+Z1ukMNw0Lms8GGFtLjWSORfElx2RM1YI2UcjkcfJo2bQqdTmd3G0EQoNPpUFVV5XbD7MnPz8eyZcssvT0AUFxcjKSkJKvtoqKiLPfZCj5z587F7NmzxWtsPVatAsaMAUwmwMcHeOstYNQorzbBo7hyLpEy8TpnrmGNlLI5HHx2797t8SefNm0a5s+fb3eb48ePo3Xr1pbvz507h6ysLDz44IMYPXq0222YPn06Jk2aZPm+tLQU8fHxbj9ufQwGAwoLb2LMmOYwmczDQsATTwj4y18uIjHRT5F/JFpfSI9IqXjZE9ewRkrZHA4+3bt39/iTP/PMMxg+fLjdbVq2bGn5//nz53H33XfjjjvuwFtvvWW1XXR0NC5cuGB1m/n76Ohom48fGBiIwMBAJ1vuPPMZQkFBIkymYVb3VVXpsGzZDiQl/arYMwQtL6RHtnE4QN7YWyuuy5cv17lN7p95LfzNulzcfOXKFaxatQrHjx8HALRt2xYjR46EXq93+DEiIyMRGRnp0Lbnzp3D3XffjfT0dKxZswY+PtZnKRkZGZgxYwYqKyvh7+8PANi1axdatWplc5jLm8wfpIZ2NEo+Q7C1kB5pE4cD5I+9tZ5hqzh88+bN9W4v18+8Vv5mXQo+P/74IzIzMxEUFITbbrsNALBo0SK8/PLL2LlzJ9LS0jzayHPnzqFHjx5ISEjAggULcOnSJct95t6cIUOGYPbs2Rg1ahSmTp2KY8eOYcmSJXjttdc82hZ3cUdDWsHhAPnidc48x5XicLl+5rXyN+tS8Hn66adx33334e2334afX/VD3Lx5E48//jgmTpyIr7/+2qON3LVrF/Lz85Gfn4+4WlOgBEEAAOj1euzcuRPZ2dlIT09HREQEZs6cKcup7BwWIi3ilGn54OrfnsHicGVyucenZugBAD8/P0yZMgWdOnXyWOPMhg8f3mAtEAC0b98e33zzjcefXwxqGBbS6lXRyXlKnDKt9loHJbddLhoqDld62Fd6+21xKfiEhobi9OnTVrOtAODMmTMICQnxSMNI/njWSI5Q4lmxVmodyD32ajaVGPZrUnr77XEp+AwePBijRo3CggULcMcddwAAvv32W0yePBmPPPKIRxtI8sadPjVEiVOma4d5W2e+Sq91oGrO9u6Ze7Ft1WwCUFzYr0mJJyvOcCn4LFiwADqdDkOHDsXNmzcBAP7+/hg3bhzmzZvn0QYSkbIpfcq0ms98ybXevdq93TNnXkJhoR9CQy9i377DKChIVFzYr0mJJyvO8Gl4k7oCAgKwZMkS/Pbbb8jNzUVubi5KSkrw2muveWVNHCViPQxplfmsWKczAYCiZjLaOvM1GjmkrxauzmQKDw9HTEwMYmJikJ4ehUGDwnHrrU0B/BH2a6oZ9o1Go/sNF1FD7Vc6ty5S2rhxY7Rr185TbVE11sOQ1qhhyrTaz3zJsxoaAjN/ZjZu3CjL+jBH2y/nv1lHuBR8bty4gWXLlmH37t24ePEiTCbrZHjo0CGPNE5t5PYhJxKTGsK+0ofpyHnuzGQKDw/HQw89hH/9618NLlsix/owW0N4iYk3ERvbGUBn2f/NOsKl4DNq1Cjs3LkTDzzwAG677bYGL15KRNqk9B0kFxzVFk/UczVt2tTyfyUuW1LzbzYmBkhPl7AxInEp+Gzbtg2ffPIJunbt6un2EBHJChcc1QaxZjKpdS0cJXMp+Nxyyy1cr4eIVKt2DYOtM3el1zrQH8So5+KMQHlyKfgsXLgQU6dOxcqVK5GQkODpNhERSUoN9UnkHE/Xc6l9LRwlcyn4dOrUCTdu3EDLli3RuHFjy9XQzUpKWPhHRMrGUKMNYs1k4oxA+XIp+DzyyCM4d+4c5syZg6ioKBY3ExGRIok1k4kzAuXLpeCzb98+7N+/Hx06dPB0e4iIiLzKkzOZtLIWjpK5FHxat26N33//3dNtISIiUjStrIWjZC4Fn3nz5uGZZ57Byy+/jHbt2tWp8QkNDfVI44hImZy96CORmmhhLRwl0wmCIDj7Qz4+1WOWtWt7BEGATqdDVVWVZ1ongdLSUuj1ehiNRgY4Ihe4ctFHIiJ3OXr8dqnHZ/fu3S43jIjUrXZPj60F3OS4ZD8RqZ9Lwad79+4Obffkk0/ihRdeQEREhCtPQ0QKxwXciEhufBrexHX//Oc/UVpaKuZTEJFM2VrAzWjkqu9EJB1Rg48L5UNEpBL2FnAjIpKKqMGHiLTLvIBbTVzAjYikxuBDRKIwL+BmDj+1F3AjIpKCS8XNRESOSEs7jOTkfJSUhCEsrIShh4gkx+BDRB5Veyl+vb6s3sDDJfuJSApOB5+bN29izpw5GDlyJOLi4uxu++ijj3IRQCIXKHnl49pL9tdHzu0nInVzaeXmkJAQHD16FImJiSI0SVpcuZmkxpWPiYicJ+rKzT179sSePXtUGXzUTsk9CVrBlY+JiMTjUvDp06cPpk2bhqNHjyI9PR3BwcFW9993330eaRzZ52yIYU+C8nDlYyIiz3Ip+Dz55JMAgEWLFtW5T+kXKVUKV0KMoz0EzvYksBdJHLZWPk5OzufsKCIiF7kUfEwmU8MbkajECjHOYi+SeOytfMzgQ1rCkyvyJJeCz7vvvovBgwcjMDDQ6vaKigq8//77GDp0qEcaR+67fPlyvf/3FLkEMDUyr3xcM/xw5WPSGp5ckae5FHxGjBiBrKwsNG/e3Or2srIyjBgxgsFHRjZv3ix1E8hF5pWPa9f4sLeHtITF/uRpLgUfQRCg0+nq3H727Fno9Xq3G0VE1bjyMdEfWOzvOA4P2uZU8OnYsSN0Oh10Oh169eoFP78/fryqqgoFBQXIysryeCNJHLbOnOT2mFrDlY9Jy2ofsM1D9Cz2dxyHB+1zKvgMGDAAAJCbm4vMzEw0adLEcl9AQAASExMxaNAgjzaQHONs4BDjzIlnY57BlY9Jq+wdsFns7zgOD9rnVPB5/vnnAQCJiYkYPHgwGjVqJEqjyDnOBo6Gzpxc6Ung2ZhnMdSQFtk7YLPY3zU8Ia3LpRqfYcOGAaj+kF68eLHO9PYWLVq43zKyyxxOXAkcts6cunYdhh49XDvo8myMiDypvgM2i/2dwxPS+rkUfE6ePImRI0di3759Vrebi565gKH4zMMhu3cDr73mXOCo78zJ1xfo0iUczmYecwBr6GyM9ShE5ChbB+yJExdj4sTFLPZ3EE9I6+dS8Bk+fDj8/Pywbds2xMTE1DvDi8QXHh6O228HfHyAmp1uvr6C3e5f8zTp7dv7o6pKB19f4M03gbg419pgrke55ZZSTJ2q/99jCpg/vxRDhjzCehQicoq9A3ZS0q8s9ncQhwfr51Lwyc3NxcGDB9G6dWtPt4ecFBcHvPUW8MQTQFVVdc/NwoXXcOXKHzuG+grb0tIO46WX7oLB0AwpKa6FHjNzqHnmGWDwYCA/H0hJ0SEurimApq4/MBFpUkMH7IEDByIiIsJyH0+u6se1wOrnUvBp06aNKKsAk2tGjQIyM82BA4iLawKDoboXZsOGILzwgh4mkw4+PgJeecWIIUN+/9+OopnH2xIX516IIiJq6IAdERGBmJgYiVupDFwLrC6Xgs/8+fMxZcoUzJkzB+3atYO/v7/V/aGhoR5pHDmuduAIDw/H2bPAlCl/DIOZTDpMndoUgwc3dbqWh4jIm3jAdh3XArPPpeDTu3dvAEDPnj2t6ntY3CwvJ09a1/4A1cNh+fnslSEi+eEB2zO4Fph9LgWf3bt3e7odJILU1PoKn6uHw4iI5IYHbM/he2SbS8Gne/fu+Oabb/Dmm2/i1KlT+PDDD3HLLbdg3bp1SEpK8nQbyUX1FT67OnuLiMgbeMAmsfk0vEldmzZtQmZmJoKCgnD48GGUl5cDAIxGI+bMmePRBpJ7Ro0CCguB3bur/x01SuoWERERScel4PPSSy9h5cqVePvtt60Km7t27YpDhw55rHHkGXFxQI8e7OkhIiJyKfjk5eWhW7dudW7X6/W4cuWKu20iIiIiEoVLwSc6Ohr5+fl1bt+7dy9atmzpdqOIiIiIxOBS8Bk9ejSeeuopHDhwADqdDufPn8f69evxt7/9DePGjfN0G4mIiIg8wqVZXdOmTYPJZEKvXr1w/fp1dOvWDYGBgfjb3/6G8ePHe7qNRET0PwaDgdO9idygEwRBcPWHKyoqkJ+fj6tXr6JNmzZo0qSJJ9smidLSUuj1ehiNRq5ATUSyYjAYsHz5csv39V2HDwBycnIYfkhzHD1+u9TjYxYQEIA2bdq48xBEROSgmj09hw51rHMtq7S0w3W2I/K2mr2S58/7oKDAD0lJNxEbW72artS9km4FHyIi8j6jMcQSegBAEHywdWs/JCfna/KaVhz+k4+avZL2wrmUvZIMPkREClNSEm4JPWaC4IOSkjDNBR8O/8mLOYA2FM6l7JVk8CEiUpiwMAN0OpNV+NHpTAgLK5GwVdLg8J88yTmcuzSdnYiIpKPXl6F//23Q6aprJswHeakPKFKy1cNgNIZI3DJtMofzmuQSztnjQ0SkQGlph5GcnI+SkjCEhZVIFnrkUl8j5x4GLTKH89o9cHL4XTD4EBEplF5fJumBRE71NRz+kx+5hPPaGHyIiBQiICDAo9u5S071NXLuYdAyqcN5fRh8iIgUIjw8HDk5ObIYWqpJLtPr5drDQPLC4ENEpCBynJItp/oaOfYwaInceiXrw+BDRERukbK+RgkHWi2Ra69kTQw+REQq5o1ZV1LW1yjhQKs1cn+vGXyIiFTKm7OupKyvkfuBluSFwYeISKW8PeuK9TWkBFy5mYhI5cRa1Zj1NaREiuvxKS8vR5cuXfDTTz/h8OHD+Mtf/mK578iRI8jOzsYPP/yAyMhIjB8/HlOmTJGusUREMiDWrCvW15ASKS74TJkyBbGxsfjpp5+sbi8tLcW9996L3r17Y+XKlTh69ChGjhyJpk2bYsyYMRK1lohIemLOumKoIaVRVPDZsWMHdu7ciU2bNmHHjh1W961fvx4VFRVYvXo1AgIC0LZtW+Tm5mLRokUMPkQkCblcx4qrGhP9QTHB58KFCxg9ejQ++ugjNG7cuM79+/fvR7du3azGkjMzMzF//nz89ttvaNasmTebS0QaJ6frWAFc1ZjITBHBRxAEDB8+HGPHjkWnTp1QWFhYZ5vi4mIkJSVZ3RYVFWW5z1bwKS8vR3l5ueX70tJSzzWciDRLTtexMuOsKyKJZ3VNmzYNOp3O7teJEyewbNkylJWVYfr06R5vw9y5c6HX6y1f8fHxHn8OItIusWZUOYKzrojqkrTH55lnnsHw4cPtbtOyZUt8+eWX2L9/PwIDA63u69SpE/7617/inXfeQXR0NC5cuGB1v/n76Ohom48/ffp0TJo0yfJ9aWkpww8BkE99BimblNex4qwrorokDT6RkZGIjIxscLulS5fipZdesnx//vx5ZGZmYuPGjejSpQsAICMjAzNmzEBlZSX8/f0BALt27UKrVq3s1vcEBgbWCVREteszbPFWfQYpl5TXsQLUM+uq5onI+fM+KCjwQ1LSTcTGmgAwwJHjFFHj06JFC6vvmzRpAgBITk5GXFwcAGDIkCGYPXs2Ro0ahalTp+LYsWNYsmQJXnvtNa+3l5TP0boLb9ZnkDJxRpX7ap6I2KuX4okIOUIRwccRer0eO3fuRHZ2NtLT0xEREYGZM2dyKjsRSY4zqtxjPsGwVS+VnJwPvb6MJyLkEEUGn8TERAiCUOf29u3b45tvvpGgRURE9nFGlfukrJci9eC1uoiIRMAZVZ5nrpeqyZv1UqQOiuzxISKSO86o8jzWS5EnMPgQEYmEocbzWC9F7mLwIXKArcsNEJH3sV6K3MHgQ1SPmnUX9qbPsj6DiEhZGHyI6mGuzygsvIkXXmgOQdABqJ5Bsn17f8yc2QWJiX4cyiDyAhaKkycx+BDZEB4ejiNHAJP1JBJUVelQVhYFZh4i72ChOHkSgw+RHampgI+Pdfjx9QVSUqRrE5EWMdSQp3AdHyI74uKAt96qDjtA9b9vvll9OxERKQ97fIgaMGoUkJkJ5OdX9/Qw9BARKReDD5ED4uIYeIiI1IBDXURERKQZDD5ERESkGQw+REREpBkMPkRERKQZDD5ERESkGQw+REREpBkMPkRERKQZDD5EREQydPYssHt39b/kOQw+REREMmEwGFBUVISFC68gIUFAz55AQoKAhQuvoKioCAaDQeomKh5XbiYizTEYDLzSN8mOwWDA8uXLYTSGYPHiiRAEHQDAZNJh8uRQnDu3Gnp9GXJycvj5dAODDxFpivngYmY0hqCkJBxhYQbo9WWW23lwIW8zh/GSknAIgvWAjCD4oKQkDHp9md3QTg1j8CEiTal50Dh0qCO2bu0HQfCBTmdC//7bkJZ2uM52RN4UFmaATmeyCj86nQlhYSUStko9WONDRJpkNIZYQg9QfUa9dWs/GI0hEreMtE6vL0P//tug05kAwBLKa/ZIkuvY40NEmtTQcAKRlNLSDiM5OR8lJWEICyvhZ9KDGHyISJM4nEByp9eXMfCIgENdRKRJHE4g0ib2+BCRZnE4gUh7GHyISNM4nEByERAQ4NHtqH4MPkSkKTy4kFyFh4cjJyeHi2uKTCcIgiB1I+SktLQUer0eRqMRoaGhUjeHiETAlZuJ1MfR4zd7fIhIcxhqiKRx9ixw8iSQmgrExUnTBs7qIiIiItGtWgUkJOB/F16t/l4KDD5EREQkGoPBgIMHL2DMGAGm6tUjYDIBTzwh4ODBC16/4jyHuoiIiEgU5osCFxQkwmQaZnVfVZUOy5btQFLSr169KDB7fIiIiEgU5kkE5pXSa6q5Uro3LwrM4ENERESiktNK6RzqIiIiItHJZaV0Bh8iIiLyCjmslM6hLiIiItIMBh8iIiLSDAYfIiIi0gwGHyIiIhKFHC8KzOJmIiIiEoUcrzjP4ENERESikdtFgTnURURERJrB4ENERESaweBDREREmsHgQ0RERJrB4EMkY2fPArt3V/9LRETuY/AhkqlVq4CEBKBnz+p/V62SukXaxPBJpC4MPkQydPYsMGYMYDJVf28yAU88wYOvtxgMBhQVFWHhwitISBD+Fz4FLFx4BUVFRTAYDFI3kYhcxHV8iGTo5Mk/Qo9ZVRWQnw/ExUnTJq0wGAxYvnw5jMYQLF48EYKgAwCYTDpMnhyKc+dWQ68vQ05OjuzWJyGihrHHh0hmDAYDQkMvwMdHsLrd11dASMgF9jaIzLzCbElJOATBehcpCD4oKQmz2o6IlIU9PkQyYu5tAIB+/Tpi69Z+EAQf6HQm9O27Ddu2HQYA9jZ4QViYATqdySr86HQmhIWVSNgqInIXgw+RjNTsRUhLO4zk5HyUlIQhLKwEen1ZvduROPT6MvTvv80qfPbvv83q90BEysPgQyRjen0ZD7QSshc+HWUwGCxB9fx5HxQU+CEp6SZiY6uLuLx9gUYirWPwISKyw53wWXPo8tChjnV6j9LSOHRJ5G0sbiYiEom5p8doDLGEHqC6SHrr1n4wGkOstiMi8TH4EBGJrKEZYkTkPQw+REQ1BAQEeHQ74I8ZYjVxhhiRNFjjQ0RUQ3h4OHJycuwOPzlbkMwZYkTyweBDJCNi9DaQ88QoNPbEDDEich+DD5GMiNHbQPLB5QmIpMfgQyQzDDVEROJhcTMRkUg4dEkkP+zxISISCYcuieRHUT0+27dvR5cuXRAUFIRmzZphwIABVvefPn0affv2RePGjdG8eXNMnjwZN2/elKaxRESoDj8xMTE2vxh6iLxLMT0+mzZtwujRozFnzhz07NkTN2/exLFjxyz3V1VVoW/fvoiOjsa+fftQVFSEoUOHwt/fH3PmzJGw5URERCQXOkEQBKkb0ZCbN28iMTERs2fPxqhRo+rdZseOHejXrx/Onz+PqKgoAMDKlSsxdepUXLp0yeEx9NLSUuj1ehiNRoSGhnrsNRAREZF4HD1+K2Ko69ChQzh37hx8fHzQsWNHxMTEoE+fPlY9Pvv370e7du0soQcAMjMzUVpaiv/85z9SNJuIiIhkRhHB57///S8AYNasWfj73/+Obdu2oVmzZujRowdKSqqXfC8uLrYKPQAs3xcXF9t87PLycpSWllp9ERERkTpJGnymTZsGnU5n9+vEiRMwmaqvcTNjxgwMGjQI6enpWLNmDXQ6HT744AO32jB37lzo9XrLV3x8vCdeGhEREcmQpMXNzzzzDIYPH253m5YtW6KoqAgA0KZNG8vtgYGBaNmyJU6fPg0AiI6Oxvfff2/1sxcuXLDcZ8v06dMxadIky/elpaUNhh+TyWR3eiq5LyAgAD4+iuiQJCIiBZE0+ERGRiIyMrLB7dLT0xEYGIi8vDzceeedAIDKykoUFhYiISEBAJCRkYGXX34ZFy9eRPPmzQEAu3btQmhoqFVgqi0wMBCBgYEOt7miogIFBQWWXigSh4+PD5KSkriwGxEReZQiprOHhoZi7NixeP755xEfH4+EhAS8+uqrAIAHH3wQAHDvvfeiTZs2eOyxx/DKK6+guLgYf//735Gdne1UsLFHEAQUFRXB19cX8fHx7JEQiclkwvnz51FUVIQWLVpAp9NJ3SQiIlIJRQQfAHj11Vfh5+eHxx57DL///ju6dOmCL7/8Es2aNQMA+Pr6Ytu2bRg3bhwyMjIQHByMYcOG4YUXXvBYG27evInr168jNjYWjRs39tjjUl2RkZE4f/48bt68CX9/f6mbQ0REKqGIdXy8yd46ADdu3EBBQQESExMRFBQkUQu14ffff0dhYSGSkpLQqFEjqZtDREQyp6p1fOSGQy/i43tMRERiYPAhIiIizWDw0YDhw4db1kXy9/dHVFQU7rnnHqxevdqp2Wlr165F06ZNxWsoERGRyBh8NCIrKwtFRUUoLCzEjh07cPfdd+Opp55Cv379eAV7IiLSDAYfLzIYDCgqKrL5ZTAYRHvuwMBAREdH45ZbbkFaWhqeffZZfPzxx9ixYwfWrl0LAFi0aBHatWuH4OBgxMfH48knn8TVq1cBAF999RVGjBgBo9Fo6T2aNWsWAGDdunXo1KkTQkJCEB0djSFDhuDixYuivRYiIiJXKWY6u9IZDAYsX768we1ycnIQHh7uhRYBPXv2RIcOHbB582Y8/vjj8PHxwdKlS5GUlIT//ve/ePLJJzFlyhSsWLECd9xxBxYvXoyZM2ciLy8PANCkSRMA1YtJvvjii2jVqhUuXryISZMmYfjw4fjkk0+88jqIiIgcxeDjJY5e4sLbl8Jo3bo1jhw5AgCYOHGi5fbExES89NJLGDt2LFasWIGAgADo9XrodLo6lwAZOXKk5f8tW7bE0qVL0blzZ1y9etUSjoiIiOSAQ10aJwiCZer4559/jl69euGWW25BSEgIHnvsMRgMBly/ft3uYxw8eBD9+/dHixYtEBISgu7duwOA5TpqREREcsHgo3HHjx9HUlISCgsL0a9fP7Rv3x6bNm3CwYMH8frrrwOw3wt17do1ZGZmIjQ0FOvXr8cPP/yALVu2NPhzREREUuBQl4Z9+eWXOHr0KJ5++mkcPHgQJpMJCxcutFyD7F//+pfV9gEBAaiqqrK67cSJEzAYDJg3b57lqvY//vijd14AERGRk9jjoxHl5eUoLi7GuXPncOjQIcyZMwf3338/+vXrh6FDhyIlJQWVlZVYtmwZ/vvf/2LdunVYuXKl1WMkJibi6tWr+OKLL3D58mVcv34dLVq0QEBAgOXn/v3vf+PFF1+U6FUSERHZx+CjEZ9++iliYmKQmJiIrKws7N69G0uXLsXHH38MX19fdOjQAYsWLcL8+fNx6623Yv369Zg7d67VY9xxxx0YO3YsBg8ejMjISLzyyiuIjIzE2rVr8cEHH6BNmzaYN28eFixYINGrJCIiso8XKa3FkYuUunLhzKKiIrz11lsNbjdmzBjExMQ49dhq5M57TURE2sOLlMpMQECAR7cjIiIi57G42UvCw8ORk5Njd6ZTQECA1xYvJCIi0iIGHy9iqCEiIpIWh7qIiIhIM9jjQ0RE5ACDwcByBRVg8CEiImqAHC80Ta7hUBcREVED5HqhaXIegw8RERFpBoMPERERaQaDD7ntq6++gk6nw5UrVxz+mcTERCxevFi0NhEREdWHwUcDhg8fDp1Oh7Fjx9a5Lzs7GzqdDsOHD/d+w4iIiLyMwUcj4uPj8f777+P333+33Hbjxg1s2LABLVq0kLBlRERE3sPgoxFpaWmIj4/H5s2bLbdt3rwZLVq0QMeOHS23lZeXY8KECWjevDkaNWqEO++8Ez/88IPVY33yySf405/+hKCgINx9990oLCys83x79+7FXXfdhaCgIMTHx2PChAm4du2aaK+PiIjIEQw+GjJy5EisWbPG8v3q1asxYsQIq22mTJmCTZs24Z133sGhQ4eQkpKCzMxMlJSUAADOnDmDgQMHon///sjNzcXjjz+OadOmWT3GqVOnkJWVhUGDBuHIkSPYuHEj9u7di5ycHPFfJBGRCHihafXgAoYSOXsWOHkSSE0F4uK885yPPvoopk+fjl9//RUA8O233+L999/HV199BQC4du0a3njjDaxduxZ9+vQBALz99tvYtWsXVq1ahcmTJ+ONN95AcnIyFi5cCABo1aoVjh49ivnz51ueZ+7cufjrX/+KiRMnAgBSU1OxdOlSdO/eHW+88QYaNWrknRdMROQhvNC0ejD4SGDVKmDMGMBkAnx8gLfeAkaNEv95IyMj0bdvX6xduxaCIKBv376IiIiw3H/q1ClUVlaia9eultv8/f1x22234fjx4wCA48ePo0uXLlaPm5GRYfX9Tz/9hCNHjmD9+vWW2wRBgMlkQkFBAf785z+L8fKIiETFUKMODD5edvbsH6EHqP73iSeAzEzv9PyMHDnSMuT0+uuvi/IcV69exRNPPIEJEybUuY+F1ESkBlL02pNnsMbHy06e/CP0mFVVAfn53nn+rKwsVFRUoLKyEpmZmVb3JScnIyAgAN9++63ltsrKSvzwww9o06YNAODPf/4zvv/+e6uf++6776y+T0tLw88//4yUlJQ6Xxz/JiKlW7UKSEgAevas/nfVKqlbRM5g8PGy1NTq4a2afH2BlBTvPL+vry+OHz+On3/+Gb6+vlb3BQcHY9y4cZg8eTI+/fRT/Pzzzxg9ejSuX7+OUf8bixs7dixOnjyJyZMnIy8vDxs2bMDatWutHmfq1KnYt28fcnJykJubi5MnT+Ljjz9mcTMRKZ6tXvuzZ6VtFzmOwcfL4uKqa3rMmcPXF3jzTe92lYaGhiI0NLTe++bNm4dBgwbhscceQ1paGvLz8/HZZ5+hWbNmAKqHqjZt2oSPPvoIHTp0wMqVKzFnzhyrx2jfvj327NmDX375BXfddRc6duyImTNnIjY2VvTXRkQkJql77cl9OkEQBKkbISelpaXQ6/UwGo11wsGNGzdQUFCApKQkt2cmnT1b/YeSksLx4fp48r0mIvKUs2erh7dqhh9fX6CwkPtyqdk7ftfEHh+JxMUBPXrwD4WISEnk0GtP7uGsLiIiIieMGlU9E5e99srE4ENEROSkuDgGHqXiUBcRERFpBoMPERERaQaDjws4EU58fI+JiEgMDD5OMC/4Z+8ideQZ5ve49iKLRERE7mBxsxP8/PzQuHFjXLp0Cf7+/vCpvQQzeYTJZMKlS5fQuHFj+PnxI0pERJ7Do4oTdDodYmJiUFBQgF9//VXq5qiaj48PWrRoAZ1OJ3VTiIhIRRh8nBQQEIDU1FQOd4ksICCAPWpERORxDD4u8PHx4WUUiIiIFIin1ERERKQZDD5ERESkGQw+REREpBms8anFvHBeaWmpxC0hIiIiR5mP2w0tgMvgU0tZWRkAID4+XuKWEBERkbPKysqg1+tt3q8TeG0AKyaTCefPn0dISIjm1pApLS1FfHw8zpw5g9DQUKmbo1h8Hz2H76Vn8H30HL6XniHG+ygIAsrKyhAbG2t3ORT2+NTi4+ODuLg4qZshqdDQUP5BewDfR8/he+kZfB89h++lZ3j6fbTX02PG4mYiIiLSDAYfIiIi0gwGH7IIDAzE888/j8DAQKmbomh8Hz2H76Vn8H30HL6XniHl+8jiZiIiItIM9vgQERGRZjD4EBERkWYw+BAREZFmMPgQERGRZjD4aMzXX3+N/v37IzY2FjqdDh999JHV/YIgYObMmYiJiUFQUBB69+6NkydPStNYmWvovRw+fDh0Op3VV1ZWljSNlbG5c+eic+fOCAkJQfPmzTFgwADk5eVZbXPjxg1kZ2cjPDwcTZo0waBBg3DhwgWJWixPjryPPXr0qPOZHDt2rEQtlq833ngD7du3tyyul5GRgR07dlju5+fRcQ29l1J8Jhl8NObatWvo0KEDXn/99Xrvf+WVV7B06VKsXLkSBw4cQHBwMDIzM3Hjxg0vt1T+GnovASArKwtFRUWWr/fee8+LLVSGPXv2IDs7G9999x127dqFyspK3Hvvvbh27Zplm6effhpbt27FBx98gD179uD8+fMYOHCghK2WH0feRwAYPXq01WfylVdekajF8hUXF4d58+bh4MGD+PHHH9GzZ0/cf//9+M9//gOAn0dnNPReAhJ8JgXSLADCli1bLN+bTCYhOjpaePXVVy23XblyRQgMDBTee+89CVqoHLXfS0EQhGHDhgn333+/JO1RsosXLwoAhD179giCUP0Z9Pf3Fz744APLNsePHxcACPv375eqmbJX+30UBEHo3r278NRTT0nXKAVr1qyZ8I9//IOfRw8wv5eCIM1nkj0+ZFFQUIDi4mL07t3bcpter0eXLl2wf/9+CVumXF999RWaN2+OVq1aYdy4cTAYDFI3SfaMRiMAICwsDABw8OBBVFZWWn0uW7dujRYtWvBzaUft99Fs/fr1iIiIwK233orp06fj+vXrUjRPMaqqqvD+++/j2rVryMjI4OfRDbXfSzNvfyZ5kVKyKC4uBgBERUVZ3R4VFWW5jxyXlZWFgQMHIikpCadOncKzzz6LPn36YP/+/fD19ZW6ebJkMpkwceJEdO3aFbfeeiuA6s9lQEAAmjZtarUtP5e21fc+AsCQIUOQkJCA2NhYHDlyBFOnTkVeXh42b94sYWvl6ejRo8jIyMCNGzfQpEkTbNmyBW3atEFubi4/j06y9V4C0nwmGXyIRPLwww9b/t+uXTu0b98eycnJ+Oqrr9CrVy8JWyZf2dnZOHbsGPbu3St1UxTN1vs4ZswYy//btWuHmJgY9OrVC6dOnUJycrK3mylrrVq1Qm5uLoxGIz788EMMGzYMe/bskbpZimTrvWzTpo0kn0kOdZFFdHQ0ANSZnXDhwgXLfeS6li1bIiIiAvn5+VI3RZZycnKwbds27N69G3FxcZbbo6OjUVFRgStXrlhtz89l/Wy9j/Xp0qULAPAzWY+AgACkpKQgPT0dc+fORYcOHbBkyRJ+Hl1g672sjzc+kww+ZJGUlITo6Gh88cUXlttKS0tx4MABq/FYcs3Zs2dhMBgQExMjdVNkRRAE5OTkYMuWLfjyyy+RlJRkdX96ejr8/f2tPpd5eXk4ffo0P5c1NPQ+1ic3NxcA+Jl0gMlkQnl5OT+PHmB+L+vjjc8kh7o05urVq1ZJuqCgALm5uQgLC0OLFi0wceJEvPTSS0hNTUVSUhKee+45xMbGYsCAAdI1WqbsvZdhYWGYPXs2Bg0ahOjoaJw6dQpTpkxBSkoKMjMzJWy1/GRnZ2PDhg34+OOPERISYqmT0Ov1CAoKgl6vx6hRozBp0iSEhYUhNDQU48ePR0ZGBm6//XaJWy8fDb2Pp06dwoYNG/B///d/CA8Px5EjR/D000+jW7duaN++vcStl5fp06ejT58+aNGiBcrKyrBhwwZ89dVX+Oyzz/h5dJK991Kyz6RX55CR5Hbv3i0AqPM1bNgwQRCqp7Q/99xzQlRUlBAYGCj06tVLyMvLk7bRMmXvvbx+/bpw7733CpGRkYK/v7+QkJAgjB49WiguLpa62bJT33sIQFizZo1lm99//1148sknhWbNmgmNGzcW/t//+39CUVGRdI2WoYbex9OnTwvdunUTwsLChMDAQCElJUWYPHmyYDQapW24DI0cOVJISEgQAgIChMjISKFXr17Czp07Lffz8+g4e++lVJ9JnSAIgnixioiIiEg+WONDREREmsHgQ0RERJrB4ENERESaweBDREREmsHgQ0RERJrB4ENERESaweBDREREmsHgQ0RERJrB4ENERESaweBDRIpRUVEhdRPqkGObiMg2Bh8ikkyPHj2Qk5ODnJwc6PV6RERE4LnnnoP5SjqJiYl48cUXMXToUISGhmLMmDEAgL179+Kuu+5CUFAQ4uPjMWHCBFy7ds3yuCtWrEBqaioaNWqEqKgoPPDAA5b7PvzwQ7Rr1w5BQUEIDw9H7969LT/bo0cPTJw40aqNAwYMwPDhwy3fu9omIpIHBh8iktQ777wDPz8/fP/991iyZAkWLVqEf/zjH5b7FyxYgA4dOuDw4cN47rnncOrUKWRlZWHQoEE4cuQINm7ciL179yInJwcA8OOPP2LChAl44YUXkJeXh08//RTdunUDABQVFeGRRx7ByJEjcfz4cXz11VcYOHAgnL1kobNtIiL54EVKiUgyPXr0wMWLF/Gf//wHOp0OADBt2jT8+9//xs8//4zExER07NgRW7ZssfzM448/Dl9fX7z55puW2/bu3Yvu3bvj2rVr+OSTTzBixAicPXsWISEhVs936NAhpKeno7CwEAkJCfW25y9/+QsWL15suW3AgAFo2rQp1q5dCwAutalRo0ZuvU9E5Dns8SEiSd1+++2W0AMAGRkZOHnyJKqqqgAAnTp1str+p59+wtq1a9GkSRPLV2ZmJkwmEwoKCnDPPfcgISEBLVu2xGOPPYb169fj+vXrAIAOHTqgV69eaNeuHR588EG8/fbb+O2335xus7NtIiL5YPAhIlkLDg62+v7q1at44oknkJuba/n66aefcPLkSSQnJyMkJASHDh3Ce++9h5iYGMycORMdOnTAlStX4Ovri127dmHHjh1o06YNli1bhlatWlnCiY+PT51hr8rKSrfbRETyweBDRJI6cOCA1fffffcdUlNT4evrW+/2aWlp+Pnnn5GSklLnKyAgAADg5+eH3r1745VXXsGRI0dQWFiIL7/8EgCg0+nQtWtXzJ49G4cPH0ZAQIBl2CoyMhJFRUWW56qqqsKxY8cafA2OtImI5IHBh4gkdfr0aUyaNAl5eXl47733sGzZMjz11FM2t586dSr27duHnJwc5Obm4uTJk/j4448thcTbtm3D0qVLkZubi19//RXvvvsuTCYTWrVqhQMHDmDOnDn48ccfcfr0aWzevBmXLl3Cn//8ZwBAz549sX37dmzfvh0nTpzAuHHjcOXKlQZfQ0NtIiL58JO6AUSkbUOHDsXvv/+O2267Db6+vnjqqacsU8Tr0759e+zZswczZszAXXfdBUEQkJycjMGDBwMAmjZtis2bN2PWrFm4ceMGUlNT8d5776Ft27Y4fvw4vv76ayxevBilpaVISEjAwoUL0adPHwDAyJEj8dNPP2Ho0KHw8/PD008/jbvvvrvB19BQm4hIPjiri4gkU98sKiIiMXGoi4iIiDSDwYeIiIg0g0NdREREpBns8SEiIiLNYPAhIiIizWDwISIiIs1g8CEiIiLNYPAhIiIizWDwISIiIs1g8CEiIiLNYPAhIiIizWDwISIiIs34/2GiY/EoyBLqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZC0lEQVR4nO3deVhU9eI/8PewDALCIIssooBomqYmWIaVlnlFH5fbV2+SqbnmkpikueXNJXOr3L1p9TM1y7SSuqlZLpllcs1cUm9GSpgbqIAMKMk2n98f3JkYmBlmObNx3q/nmUfmnDNnPucwNW8+q0IIIUBEREQkAx7OLgARERGRozD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQERGRbDD4EBERkWww+BAREZFsMPgQEbmgTZs2QaFQ4OLFi84uClG9wuBDJFPHjh1Damoq2rZtC39/fzRr1gyDBg3Cb7/9VuvYxx57DAqFAgqFAh4eHggMDESrVq0wbNgw7Nu3z6L33blzJ7p164bGjRvDz88PzZs3x6BBg/DVV19JdWm1LFq0CJ9//nmt7UeOHMG8efNQWFhot/euad68ebp7qVAo4OfnhzZt2uCf//wnioqKJHmPrVu3YuXKlZKci6i+YfAhkqmlS5dix44deOKJJ7Bq1SqMHTsW3333HRISEnD27Nlax0dHR2PLli14//338cYbb6B///44cuQIevbsiZSUFJSXl9f5nm+++Sb69+8PhUKBWbNmYcWKFRg4cCDOnz+Pbdu22eMyAZgOPvPnz3do8NFat24dtmzZguXLl6N169ZYuHAhevXqBSmWT2TwITLOy9kFICLnmDJlCrZu3QqlUqnblpKSgnbt2mHJkiX44IMP9I5XqVQYOnSo3rYlS5bghRdewFtvvYXY2FgsXbrU6PtVVFRgwYIF+Nvf/oa9e/fW2n/jxg0br8h1lJSUwM/Pz+Qx//jHPxAaGgoAGD9+PAYOHIj09HT85z//QVJSkiOKSSRLrPEhkqkuXbrohR4AaNmyJdq2bYtz586ZdQ5PT0+sXr0abdq0wdq1a6FWq40em5eXh6KiIjz88MMG9zdu3Fjv+d27dzFv3jzcc889aNCgASIjIzFgwABkZWXpjnnzzTfRpUsXhISEwNfXF4mJifj000/1zqNQKHDnzh1s3rxZ17w0YsQIzJs3D9OmTQMAxMXF6fZV71PzwQcfIDExEb6+vggODsbTTz+Ny5cv653/sccew3333Yfjx4+ja9eu8PPzw8svv2zW/auue/fuAIDs7GyTx7311lto27YtfHx8EBUVhYkTJ+rVWD322GPYvXs3/vjjD901xcbGWlweovqKNT5EpCOEwPXr19G2bVuzX+Pp6YnBgwfjlVdeweHDh9GnTx+DxzVu3Bi+vr7YuXMnJk2ahODgYKPnrKysRN++fXHgwAE8/fTTmDx5MoqLi7Fv3z6cPXsW8fHxAIBVq1ahf//+GDJkCMrKyrBt2zY89dRT2LVrl64cW7ZswZgxY/Dggw9i7NixAID4+Hj4+/vjt99+w0cffYQVK1boal/CwsIAAAsXLsQrr7yCQYMGYcyYMbh58ybWrFmDrl274uTJkwgKCtKVNz8/H71798bTTz+NoUOHIjw83Oz7p6UNdCEhIUaPmTdvHubPn48ePXpgwoQJyMzMxLp163Ds2DH88MMP8Pb2xuzZs6FWq3HlyhWsWLECANCwYUOLy0NUbwkiov/ZsmWLACA2bNigt71bt26ibdu2Rl/32WefCQBi1apVJs8/Z84cAUD4+/uL3r17i4ULF4rjx4/XOu69994TAMTy5ctr7dNoNLqfS0pK9PaVlZWJ++67T3Tv3l1vu7+/vxg+fHitc73xxhsCgMjOztbbfvHiReHp6SkWLlyot/3MmTPCy8tLb3u3bt0EALF+/Xqj113d3LlzBQCRmZkpbt68KbKzs8Xbb78tfHx8RHh4uLhz544QQoiNGzfqle3GjRtCqVSKnj17isrKSt351q5dKwCI9957T7etT58+IiYmxqzyEMkNm7qICADw66+/YuLEiUhKSsLw4cMteq22RqG4uNjkcfPnz8fWrVvRsWNHfP3115g9ezYSExORkJCg17y2Y8cOhIaGYtKkSbXOoVAodD/7+vrqfr516xbUajUeffRRnDhxwqLy15Seng6NRoNBgwYhLy9P94iIiEDLli1x8OBBveN9fHwwcuRIi96jVatWCAsLQ1xcHMaNG4cWLVpg9+7dRvsG7d+/H2VlZUhLS4OHx1//637uuecQGBiI3bt3W36hRDLEpi4iQm5uLvr06QOVSoVPP/0Unp6eFr3+9u3bAICAgIA6jx08eDAGDx6MoqIiHD16FJs2bcLWrVvRr18/nD17Fg0aNEBWVhZatWoFLy/T/4vatWsXXnvtNZw6dQqlpaW67dXDkTXOnz8PIQRatmxpcL+3t7fe8yZNmtTqL1WXHTt2IDAwEN7e3oiOjtY13xnzxx9/AKgKTNUplUo0b95ct5+ITGPwIZI5tVqN3r17o7CwEN9//z2ioqIsPod2+HuLFi3Mfk1gYCD+9re/4W9/+xu8vb2xefNmHD16FN26dTPr9d9//z369++Prl274q233kJkZCS8vb2xceNGbN261eJrqE6j0UChUGDPnj0GQ2DNPjPVa57M1bVrV12/IiJyHAYfIhm7e/cu+vXrh99++w379+9HmzZtLD5HZWUltm7dCj8/PzzyyCNWlaNTp07YvHkzcnJyAFR1Pj569CjKy8tr1a5o7dixAw0aNMDXX38NHx8f3faNGzfWOtZYDZCx7fHx8RBCIC4uDvfcc4+ll2MXMTExAIDMzEw0b95ct72srAzZ2dno0aOHbputNV5E9Rn7+BDJVGVlJVJSUpCRkYFPPvnEqrljKisr8cILL+DcuXN44YUXEBgYaPTYkpISZGRkGNy3Z88eAH814wwcOBB5eXlYu3ZtrWPF/yb48/T0hEKhQGVlpW7fxYsXDU5U6O/vb3CSQn9/fwCotW/AgAHw9PTE/Pnza00oKIRAfn6+4Yu0ox49ekCpVGL16tV6ZdqwYQPUarXeaDp/f3+TUwsQyRlrfIhkaurUqfjiiy/Qr18/FBQU1JqwsOZkhWq1WndMSUkJLly4gPT0dGRlZeHpp5/GggULTL5fSUkJunTpgoceegi9evVC06ZNUVhYiM8//xzff/89nnzySXTs2BEA8Oyzz+L999/HlClT8OOPP+LRRx/FnTt3sH//fjz//PP4+9//jj59+mD58uXo1asXnnnmGdy4cQP/+te/0KJFC5w+fVrvvRMTE7F//34sX74cUVFRiIuLQ+fOnZGYmAgAmD17Np5++ml4e3ujX79+iI+Px2uvvYZZs2bh4sWLePLJJxEQEIDs7Gx89tlnGDt2LF566SWb7r+lwsLCMGvWLMyfPx+9evVC//79kZmZibfeegsPPPCA3u8rMTER27dvx5QpU/DAAw+gYcOG6Nevn0PLS+SynDmkjIicRzsM29jD1LENGzYULVu2FEOHDhV79+416/3Ky8vFu+++K5588kkRExMjfHx8hJ+fn+jYsaN44403RGlpqd7xJSUlYvbs2SIuLk54e3uLiIgI8Y9//ENkZWXpjtmwYYNo2bKl8PHxEa1btxYbN27UDRev7tdffxVdu3YVvr6+AoDe0PYFCxaIJk2aCA8Pj1pD23fs2CEeeeQR4e/vL/z9/UXr1q3FxIkTRWZmpt69MTXUvyZt+W7evGnyuJrD2bXWrl0rWrduLby9vUV4eLiYMGGCuHXrlt4xt2/fFs8884wICgoSADi0nagahRASLAxDRERE5AbYx4eIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZMNtgs/ixYvxwAMPICAgAI0bN8aTTz6JzMxMvWPu3r2LiRMnIiQkBA0bNsTAgQNx/fp1J5WYiIiIXI3bDGfv1asXnn76aTzwwAOoqKjAyy+/jLNnz+KXX37Rzb46YcIE7N69G5s2bYJKpUJqaio8PDzwww8/mP0+Go0G165dQ0BAAKd9JyIichNCCBQXFyMqKgoeHibqdZw6i5ANbty4IQCIQ4cOCSGEKCwsFN7e3uKTTz7RHXPu3DkBQGRkZJh93suXL5uc1I0PPvjggw8++HDdx+XLl01+z7vtkhXadWiCg4MBAMePH0d5ebneQn2tW7dGs2bNkJGRgYceesjgeUpLS1FaWqp7Lv5XAXb58mWT6w4RERGR6ygqKkLTpk0REBBg8ji3DD4ajQZpaWl4+OGHcd999wEAcnNzoVQqERQUpHdseHg4cnNzjZ5r8eLFmD9/fq3tgYGBDD5ERERupq5uKm7Tubm6iRMn4uzZs9i2bZvN55o1axbUarXucfnyZQlKSERERK7I7Wp8UlNTsWvXLnz33XeIjo7WbY+IiEBZWRkKCwv1an2uX7+OiIgIo+fz8fGBj4+PPYtMRERELsJtanyEEEhNTcVnn32Gb775BnFxcXr7ExMT4e3tjQMHDui2ZWZm4tKlS0hKSnJ0cYmIiMgFuU2Nz8SJE7F161b8+9//RkBAgK7fjkqlgq+vL1QqFUaPHo0pU6YgODgYgYGBmDRpEpKSkox2bLaWRqNBWVmZpOckfUql0vRwRCIiIiu4zTw+xjorbdy4ESNGjABQNYHh1KlT8dFHH6G0tBTJycl46623TDZ11VRUVASVSgW1Wm2wc3NZWRmys7Oh0Wisug4yj4eHB+Li4qBUKp1dFCIicgN1fX9ruU3wcRRTN04IgUuXLqG8vLzuCZLIatpJJL29vdGsWTNOJElERHUyN/i4TVOXK6ioqEBJSQmioqLg5+fn7OLUa2FhYbh27RoqKirg7e3t7OIQEVE9wSoLC1RWVgIAm18cQHuPtfeciIhICgw+VmDTi/3xHhMRkT0w+BAREZFssI8PERER1Sk/P9/kVC5KpRIhISEOLJF1GHxkYMSIEdi8eTMAwMvLC8HBwWjfvj0GDx6MESNGmD06bdOmTUhLS0NhYaEdS0tERK4mPz8fa9eu1T1XqwNQUBCC4OB8qFTFuu2pqakuH34YfBzImWm5V69e2LhxIyorK3H9+nV89dVXmDx5Mj799FN88cUX8PLiR4GIiAyr/t114kRH7NzZF0J4QKHQoF+/XUhIOFnrOFfFbzsHqZmWjbFXWvbx8dFN5NikSRMkJCTgoYcewhNPPIFNmzZhzJgxWL58OTZu3Ijff/8dwcHB6NevH15//XU0bNgQ3377LUaOHAngr47Hc+fOxbx587BlyxasWrUKmZmZ8Pf3R/fu3bFy5Uo0btxY8usgInK0+tLEIwW1OkAXegBACA/s3NkX8fEX9Gp+XBmDj4OYm4IdmZa7d++ODh06ID09HWPGjIGHhwdWr16NuLg4/P7773j++ecxffp0vPXWW+jSpQtWrlyJOXPmIDMzEwDQsGFDAEB5eTkWLFiAVq1a4caNG5gyZQpGjBiBL7/80mHXQkRkD87+o9XVFBSE6EKPlhAeKCgIZvAh99C6dWucPn0aAJCWlqbbHhsbi9deew3jx4/HW2+9BaVSCZVKBYVCUWsJkFGjRul+bt68OVavXo0HHngAt2/f1oUjIiJ35Ip/tDpTcHA+FAqNXvhRKDQIDi5wYqksw+HsMieE0DVd7d+/H0888QSaNGmCgIAADBs2DPn5+SgpKTF5juPHj6Nfv35o1qwZAgIC0K1bNwDApUuX7F5+IiJyHJWqGP367YJCUbVepbaPj7vU9gCs8ZG9c+fOIS4uDhcvXkTfvn0xYcIELFy4EMHBwTh8+DBGjx6NsrIyo0t03LlzB8nJyUhOTsaHH36IsLAwXLp0CcnJybL5C4iISE4SEk4iPv4CCgqCERxc4FahB2DwkbVvvvkGZ86cwYsvvojjx49Do9Fg2bJluuHtH3/8sd7xSqWy1hISv/76K/Lz87FkyRI0bdoUAPDTTz855gKIiMgpVKpitws8WmzqkonS0lLk5ubi6tWrOHHiBBYtWoS///3v6Nu3L5599lm0aNEC5eXlWLNmDX7//Xds2bIF69ev1ztHbGwsbt++jQMHDiAvLw8lJSVo1qwZlEql7nVffPEFFixY4KSrJCKyL7U6ANnZsVCrA5xdFIcyd41Kd1jLkjU+MvHVV18hMjISXl5eaNSoETp06IDVq1dj+PDh8PDwQIcOHbB8+XIsXboUs2bNQteuXbF48WI8++yzunN06dIF48ePR0pKCvLz83XD2Tdt2oSXX34Zq1evRkJCAt58803079/fiVdLRCQ9U/PXSM3VhtCHhIQgNTVVr0yFhYWoqKjQPff29kZZWRlycnKcUkZzKYQQwtmFcCVFRUVQqVRQq9UIDAzU23f37l1kZ2cjLi4ODRo0sOi8HBJpGVvuNRGRVHJycvDOO+9ArQ7AypVptUYzpaWthEpVjLFjxyIyMlKS93SH7wtXnMnZ1Pd3dazxcRBDabkmV03HRERypW26qWv+GimbeNxhCL07z+TM4ONADDVERO5F+0frxYsV2LJFQKNR6PZ5egpMmtQbsbFedv3/u7HaFFfgjjM5M/gQERGZEBISgpAQ4J13gHHjgMpKwNMTePttBRITw+363qZqU/Ly8gBY31ogRT8id5zJmcGHiIjIDKNHA8nJwIULQIsWQHS0fd+vrtqU9PR03bGW9qWRqh+RO87kzOBDRERkpuho+wceLUtqU2rW3NRVm6NWq80qQ119dLQzOdeslXLV2h6AwYeIiMglGapNATS4c8cfanWA0XBhbm1Odbb0I3K3mZwZfIiIiFxQzdoUQANAgU8/fcrkPEKWjqSSYn4id5rJmcGHiIjIhVQfGq+tTbl8ORo7dvwDQlSNKrNk9JSp2hxrR2WZO3y/sLAQJSUlRtd71J7LkaOeGXyIiEg2pJoR2Z4zK1ef9y0vLw/p6ekoKPjTqtFTddXmWDsqS1vGmzdvYvv27UaPq7nmoytMdMjgQzb79ttv8fjjj+PWrVsICgoy6zWxsbFIS0tDWlqaXctGRKQl1UgmR8ysXPN11oyeMlWbA1SFHm/vUqtHZYWEhNQKf6Zql1xlokMuUioDI0aMgEKhwPjx42vtmzhxIhQKBUaMGOH4ghEROZBUMyIb+rI3tHCplF/m2v4+CoUGAMwaPWWsNufo0c5YuTINmzcPx4YNY9C+/WmLzmvMiRMddedduTINJ0501O0zFsKcsdgra3xkomnTpti2bRtWrFgBX19fAFXrYW3duhXNmjVzcumIiBxPihmRLe0YbGkTmaH+PoZGTxnqc2NsVFhGRpJeADl9uj1Gj/5/KC9XmnVeQ+rqK+RKEx0y+MhEQkICsrKykJ6ejiFDhgAA0tPT0axZM8TFxemOKy0txbRp07Bt2zYUFRWhU6dOWLFiBR544AHdMV9++SXS0tJw+fJlPPTQQxg+fHit9zt8+DBmzZqFn376CaGhofi///s/LF68GP7+/va/WCKiOkgxksnSjsHWNJHZss6joTl2kpIycOTIw3rHCeGB8nIl4uL+wOOPP47GjRtDpVJZ1E+prmDjShMdsqnLSa5cAQ4erPrXUUaNGoWNGzfqnr/33nsYOXKk3jHTp0/Hjh07sHnzZpw4cQItWrRAcnIyCgqqPpyXL1/GgAED0K9fP5w6dQpjxozBzJkz9c6RlZWFXr16YeDAgTh9+jS2b9+Ow4cPIzU11f4XSURuJT8/Hzk5OUYf+fn5kr+nVM0upr7sDbG2qS0kJASRkZFGHzXDSc1aorS0lRg+fBPS0laic+ejumYtreoB5ODBg9i+fbvFnbO1wcbYea1pqrMX1vg4wYYNwNixgEYDeHhUrf8yerT933fo0KGYNWsW/vjjDwDADz/8gG3btuHbb78FANy5cwfr1q3Dpk2b0Lt3bwDAu+++i3379mHDhg2YNm0a1q1bh/j4eCxbtgwA0KpVK5w5cwZLly7Vvc/ixYsxZMgQXcflli1bYvXq1ejWrRvWrVuHBg0a2P9iicjlOaKTsCFSNbu4Ui1GdYZqibSjwwCYNdOyqZBWvblOu16YOTM4u8pEhww+Dnblyl+hB6j6d9y4qvVf7D0NelhYGPr06YNNmzZBCIE+ffogNDRUtz8rKwvl5eV4+OG/qkG9vb3x4IMP4ty5cwCAc+fOoXPnznrnTUpK0nv+888/4/Tp0/jwww9124QQ0Gg0yM7Oxr333muPyyMiNyNVZ2NLSRVYbF2uwZ6rrtdVC6QNIN7eZSgv9zE5E3R1psKqOcHGFSY6ZPBxsPPn/wo9WpWVVYveOWL9l1GjRumanP71r3/Z5T1u376NcePG4YUXXqi1jx2picgYY0FAW6ugZeuEd1KuL2VJLUZhYaHuZ1N9jAoLCxEZGWlxWUzR1gJdu3YN6enpUKmKkZXVwuJ+Tuas3WXNfTS3E7UUGHwcrGXLquat6uHH07NqpV9H6NWrF8rKyqBQKJCcnKy3Lz4+HkqlEj/88ANiYmIAAOXl5Th27Jiu2eree+/FF198ofe6//znP3rPExIS8Msvv6CFoy6KiNyeqSBQfRVyLWuav2wZIWXsPIDxL/uax1VUVACou1O09jipVZ93x9oZm2syFlYHDBiga1HgzM0yFx1d1adn3Liqmh5PT+Dttx232q+np6eu2crT01Nvn7+/PyZMmIBp06YhODgYzZo1w+uvv46SkhKM/l8npPHjx2PZsmWYNm0axowZg+PHj2PTpk1655kxYwYeeughpKamYsyYMfD398cvv/yCffv2WbxwHhHVf9Z8CVvT/GXLCCkpz+MKQ7ulKIO5I+P8/PwcHm5MYfBxgtGjq/r0XLhQVdPjqNCjFRgYaHTfkiVLoNFoMGzYMBQXF6NTp074+uuv0ahRIwBVTVU7duzAiy++iDVr1uDBBx/EokWLMGrUKN052rdvj0OHDmH27Nl49NFHIYRAfHw8UlJS7H5tROR+6hodJWU/GKm+fG05T3BwPgABQKHb5uhO0Zb2c9J2aNY2O9Y1K/SyZSecuiyFKQw+ThId7bjAU7NGpqbPP/9c93ODBg2wevVqrF692ujxffv2Rd++ffW21RwW/8ADD2Dv3r1Gz3Hx4kWTZSIi+TD2JXztWhTef/9Zm+bacSXe3t7VnukHHyGMHWc9Q5MlWjIKq/p5atbWm5oVWjtBojOXpTCFwYeIiJzK0Jdwjx77sX9/D5v7oLgSlUoFoCo01J5G769mJu1xtjBnqgBz+zkZCizGwuqRI0nQXpur/s4YfIiIyClMdTa2pQ+KPVdOl4Ij5v8xt3Zl5Mi/6U1rAtR9f7QdmquHU1OzQjtjWQpTGHyIiMgp6ppoz5pw4KxJES0h5XB6W4WGhlo0dL5mh+YePfYjKuqa7vdSfR0wwDUmdKyJwYeIiJzGWPiwNhwYWjndUOdoZ/Q3MXc4ffX5fqq/1pagJsVkiYY6NO/f3wNpaSt153SVQGcKg48VRPVeaGQXvMdE8iTVXDuANAuRSsnYMHi1Wo3t27frnn/88ccGX29tLZVU98Gc5kdXWZbCFAYfC2jnvSkrK4Ovr6+TS1O/af/HUHOuISKq36Saa0eqCfqkZk5wkbKWSsr7YG7fJFdYlsIUBh8LeHl5wc/PDzdv3oS3tzc8PLi4vT1oNBrcvHkTfn5+8PLiR5RIbqToe+MKkwRaQ+paKinvg619kxy5LIUp/FaxgEKhQGRkJLKzs3UrnJN9eHh4oFmzZlAoFHUfTERUg6uunG6KpbUzpkavaefrkeI+mNv8OGjQIAQFBRk9hytMXggw+FhMqVSiZcuWLjMRU32lVCpZo0ZEVnOlkVPmsqR2xtzRa3XdB3NqYaRqfnQVDD5W8PDwQIMGDZxdDCIiMsEdOtpWZ0ntjLl/fA8YMABjx4ZizpybuHjRC7GxFYiKegDAAxaFFXcJNeZg8CEiIqeScsJBa1dOdwX2qKXSztMTGQkkJkpYWDfG4ENEREbZexZkqSccdPdmGWtrqaSYp0cuGHyIiMggR8yCbI8JB1011Bhjay2Vq81X5OoYfIiIZMicmhxHz4Is1y9wW2qpXHW+IlfG4ENEJDPm1uSkpKTofrZ3KJH7F7i1tVTuOl+RM3G8MBGRzBiqycnOjoVaHaC3vby8XLffUCipebwtTH2Bk3HakWDVufp8Rc7GGh8iIhkzpybHEbUK7jjhoDNp+/tIMU+P3DD4EBHZkb1HRdnC3OYlR4QSd5xwsC72/N3X7Bdk6zw9csLgQ0RkJ44YFWWLumpybt26BcBxocRdJhw0J9AAsPvvvvrrOE+P+Rh8iIjsxNzRTs5aAqeumpyDBw/qttsrlLjbhIPmhtlBgwbpPbf3iDgyH4MPEZFMmVOTU/MLW+pQ4owJB21pgjJ3iH9FRYXuZ7kO03dVDD5ERA7iirPrmqrJMfWFPWDAAISGhkoSShzZzFezxsbY78ScJihzAo3ch+m7IgYfIiIHcKW/+s1pXqrrC1u7BpS7qV5jY+p3UlZWZrBmKC8vD4D5gYbz7LgeBh8iIjtztb/6TTUv5eXlIT093SFf2NWDRWFhoa55KDfXC5cu+SA+XoNWrfwBSN/cVdfvpLCwEB9//LHR15t7fzhM3/Uw+BAR2Zmj/uq3pO9KXSHC1i/suspSUlKCDz74QPdc2+R07Vok9u/vYbAWRsrRb3X9Tqr30alePm2TmLn3pz4O03d3DD5ERHbmiL/6pR46b8sXtrn9aLSqNzkBAoACQO1aGEtGQBkLXtqmKkt+J8aaxMy9P+4yTF8uGHyIiOzEkbPr2mNBUWu/sM3tR6MtZ/UmJ23o0bKmZsyc4GVusDPVJGbq/nh7e+udx9WH6csJgw8RkZ04a3ZdWzpSSzmvjjl9mww1OVVnTc2YucHLnGBXV5OYsfsTFhbm8GH6ZB4GHyIiO3L07Lq2dqSWcl4dc/o2GWpy0jZ32dofxpx7YSy4aNXVJKYd1l8dA41rY/AhIqpHpOhILdWXtjn9aAw1OfXosR9RUdds7g9jy73QNlXV1STmrsP65axeBp9//etfeOONN5Cbm4sOHTpgzZo1ePDBB51dLCIiu3Ol4dPm9qOxV+dfa2prgKoam+o1XuycXL/Uu+Czfft2TJkyBevXr0fnzp2xcuVKJCcnIzMzE40bN3Z28YjICVx5hXSp2Wv4tLX30NzQUFeTkzVsqa3Jz883q3zsnOx+6l3wWb58OZ577jmMHDkSALB+/Xrs3r0b7733HmbOnOnk0hGRozl6hXRXCFlS11DYusyDVKGmpKQEOTk5RvcburfW3gtnrCFGjlGvgk9ZWRmOHz+OWbNm6bZ5eHigR48eyMjIMPia0tJSlJaW6p4XFRXZvZxE5DiOXCHd0SGrOnuucm7JMg+WvMfQoUPh5+cHQH/mZi1vb2+oVCoAxic8NBS+arI2eDHU1E/1Kvjk5eWhsrIS4eHhetvDw8Px66+/GnzN4sWLMX/+fEcUj4hcgD0XCrXHXDrmckQNhbkjxqwpS10dhKvX9NQVvswNXmymkqd6FXysMWvWLEyZMkX3vKioCE2bNnViiYjIXhy5UKgzFiW1dw2FJaOk7FUWc8IXm6nIlHoVfEJDQ+Hp6Ynr16/rbb9+/ToiIiIMvsbHxwc+Pj6OKB4ROZEjFwp1tUVJpeIKI8bMDV8MNWSM8eky3ZBSqURiYiIOHDig26bRaHDgwAEkJSU5sWRE5GymvjDd+b0cSTtKSqHQAIBTFtzUhq/quNo5WaJe1fgAwJQpUzB8+HB06tQJDz74IFauXIk7d+7oRnkRkTw5srbCFWpG7MXUKCntAqDXrnkgO9sLcXEViIqqCilSNS1xtXOyVb0LPikpKbh58ybmzJmD3Nxc3H///fjqq69qdXgmInlx5Bdmff9yNjZKKj093WTfJqlGs3FCQbJFvQs+QNV/XIaGNBKR/FQfuWPqC1PqET716cvZ3HtTV98mKUez2WPCQ5KHehl8iIi0HDnCx55z6ThTXfcwLy8P6enpkqwTZgyHqJNUGHyIqN5z1Aif+jyM2pwy27NvU32+t+RYDD5ERBKS8xevvfs2yfneknQYfIiISDL1qW8T1U8MPkRUL7jC4qBURdu3Sa0OQHZ2rG7Jjry8PP4eyOkYfIjI7TlzcVAyzNCwdiAdAH8P5FwMPkTk9py5OKirsqUGrPprzZmMsOZIKkcOayeyFIMPEdUrzlgc1NXUrAEzFgQN1bxUf625kxFqR1xdu3bN7sPaiWzF4ENE9UZ9XRzUUtVrVEyFF0M1L9ptltbahISE6LbV5yU7yP0x+BBRveEuNQ2O6ohtSxC05V7W9yU7yL0x+BBRveGomgZb+884qiO2LeHF1nvJYe3kqhh8iKjecERNg63BxdaO2OaELi1bwosU95LraZErYvAhonrF3jUN5o5IMuc4Sztim9tpedCgQQBsDy+staH6iMGHiNyeMxcHNRY+zHmdpf1v6uq0XBVSQvDf/6p1x9kaXiypteFCouQOGHyIyO05awFLUzU2eXl5Jt/blv43hkLTF1/0hUJR9fP772vQr98NXVmMhRepZ1LmQqLkDhh8iKhecPSXaV01Nunp6XrH1+zzY0v/G0OhCfCAEDBYluplrl47pS1j9bLZWmvDUEOujsGHiMgKxmpsLl+ORkHBn3V2Vral/42h0FRTzdojc+fzYa0N1XcMPkREVjAcPjTYseMfZndWNtX/pnpTGVAVNtTqqr47NUMToAGg+N+jSvXaI0v7EzHUUH3G4ENEZAVj4UOIqvBhLFyY0xFbrQ7AsmUnTHaYjo+/gIEDdwAQaNr0CrKyWhitPXKXiR2JHIHBh4jIAtWDS/Uamzt3/PHpp0/pHWsoXBhqSsrLy9P1tzFniLuxY4zVHnEJCaK/MPgQEVmgZnDRhha1OsDscGGsKcmcJqm6jjFUg8MlJIj+wuBDRGQhQ8FFinBhTpOUtc1WnIyQqAqDDxGRRGwNF+Y0Sdm6DAUDD8kdgw8RkQ2knDXanFqjrKwWuvl6ANQ6ZsCAAQgNDQUAqNVqbN++3eJrIKrPGHyIiGwg9bw3pmqNtP17gL9qe4SoGuGlFRoaisjISABAZGQk5+QhqoHBh4jITOasjC5FiDBWa2RsxmZT/XsYaoj0MfgQEZmh5sroxtRcmsIc5jY1mdO/h81WRKYx+BARmaFmTY+xVdlN1QgZU1dzmXbIfF19gFJSUljDQ1QHBh8iIguZM8mgpaToA6RSqWwqA5EcGF/hjoiIajE2gaBaHeCwMqhUxYiL+4ND04mswOBDRGQBUxMI2ou5/XbYv4eobmzqIiKLOGpkk6tyxrpXUg+ZJ5IzBh8iMlvNkU3GOvhaM7LJXThr3av6ej+JHI3Bh4jMVr3GwVQHX2tGNrkTrntF5L7Yx4eILOYKHXwdzdDSFIY6GLOfDZFrY40PEVnM2hXCq3N0XyFb34/9bIjqBwYfIrKYrR187TkLsj3fj6GGyP2xqYuILKbt4KtQaADUXiG8Lub2AZKqr5Cj34+IXBdrfIjIKlJ28DU2OsxeHP1+ROQ6GHyIyGrGVhG3hD2Wf3Cl9yMi18KmLiIym9QzCDt6dJgcR6MRkT7W+BCR2aQe2STF6DBLOPr9iMj1MPgQkUWkHNnk6OUfnLHcBBG5FjZ1EZHT2Do6zNXfj4hcD2t8iNxE9Qn4rl3zQHa2F+LiKhAVVfUl7k6T51XvA2RqdJhUsyA7+v2IyHUphBDC2YVwJUVFRVCpVFCr1QgMDHR2cYgA6E/AZ2pUkjstDupuMzcTkWsz9/ubNT5EbkD7hW1sVFJ8/AWoVMVuNQGfo0MGQw0RAQw+RG7FVUclsTaFiNwFgw+RG3HEqCRLQ4yj190iIrIFgw+RG9GOSqrZx0eq2h5rQgzXwSIid8LgQ+RmpFwjqyYpQgzXwSIiV8bgQ+SGpFgjyxyWhhiug0VEro7Bh4gMsjTE1DXijIjIFXDmZiI3IPXioHWxZjFPUyPOiIhcBWt8iJzI3BFUUi8OaqwseXl5AKwbNs91sIjIHTD4EDlJzRFUxvrTaEdQ2XMoeM2yWBNi7D3ijIhICgw+RE5SvfbGVH8aU7U8Uk0cWPMcloQYroNFRO6EwYfIyaztFGzPiQPV6gA0anQLo0f/P5SXK02GGEc0wxERSYXBh8jJrF2GombQMNZUZunEgYZqn+Li/gAADBgwAFFRUbVCDEMNEbkLBh8iJ5OiU7BU8+fUVfsUGhrKkENEbo3D2YmcTNufRqHQAIDFnYKtGXpuDIekE1F9xxofIhdgyzIUUq7YziHpRFTfscaHyEWoVMWIi/vD6rBSnbVhxdbaJyIiV8caHyInkWo2Zinmz+GQdCKSCwYfIieRchi4rSu2c0g6EckFgw+RE9kSJGrWvhhbsd3cWhqGGiKSAwYfIjdlay2NVLM+ExG5E7cIPhcvXsSCBQvwzTffIDc3F1FRURg6dChmz56t99fs6dOnMXHiRBw7dgxhYWGYNGkSpk+f7sSSk7u4cgU4fx5o2RKIjnZ2acxnbTCx56zPRESuzC2Cz6+//gqNRoO3334bLVq0wNmzZ/Hcc8/hzp07ePPNNwEARUVF6NmzJ3r06IH169fjzJkzGDVqFIKCgjB27FgnXwG5Im2Nx9atvpg+XQWNRgEPD4HXX1fjmWf+rNc1HubO5mzprM9ERK7OLYJPr1690KtXL93z5s2bIzMzE+vWrdMFnw8//BBlZWV47733oFQq0bZtW5w6dQrLly9n8KFatDUeanUAVq5MgxAKAIBGo8C0aYG4evU9qFTFsqnxMLbcBRFRfWN28CkqKjL7pIGBgVYVxhJqtRrBwX/NJpuRkYGuXbvqNX0lJydj6dKluHXrFho1amTwPKWlpSgtLdU9t+Q6yb7s2fykrcmoa/I/OdR4mFruIi8vT+/Y+lwLRkTyYHbwCQoKgkKhMHmMEAIKhQKVlZU2F8yUCxcuYM2aNbraHgDIzc1FXFyc3nHh4eG6fcaCz+LFizF//nz7FZassmEDMHYsoNEAHh7AO+8Ao0dL/z5yn6m4rrW50tPTa71GLrVgRFQ/mR18Dh48KPmbz5w5E0uXLjV5zLlz59C6dWvd86tXr6JXr1546qmn8Nxzz9lchlmzZmHKlCm650VFRWjatKnN5yXr5Ofn4+LFCowd2xgajbb5CRg3TuD++28gNtZL0i9dKSb/c2fWLHchh1owIqq/zA4+3bp1k/zNp06dihEjRpg8pnnz5rqfr127hscffxxdunTBO++8o3dcREQErl+/rrdN+zwiIsLo+X18fODj42NhycketP1usrNjodEM19tXWanAmjV7EBf3h+Q1DrZO/mcpVxpGbk2NV15eHpu8iMhtWd25ubCwEBs2bMC5c+cAAG3btsWoUaOgUqnMPkdYWBjCwsLMOvbq1at4/PHHkZiYiI0bN8LDQ/+v1KSkJMyePRvl5eXw9vYGAOzbtw+tWrUy2sxFrkUbBur6MrZHjYOxyf+k5mrDyE3VeBnr8Kxt/mKTFxG5I6uCz08//YTk5GT4+vriwQcfBAAsX74cCxcuxN69e5GQkCBpIa9evYrHHnsMMTExePPNN3Hz5k3dPm1tzjPPPIP58+dj9OjRmDFjBs6ePYtVq1ZhxYoVkpaF7K8+Nz+5yjDyutbmMtXh2VFlJCKyB6uCz4svvoj+/fvj3XffhZdX1SkqKiowZswYpKWl4bvvvpO0kPv27cOFCxdw4cIFRNcY3iOEAACoVCrs3bsXEydORGJiIkJDQzFnzhwOZXdTjm5+chZnDSMPCQnBoEGD8PHHHwPQr/Gqq8MzEZE7s7rGp3roAQAvLy9Mnz4dnTp1kqxwWiNGjKizLxAAtG/fHt9//73k70/OYc/mJ6lWRreFJcPItWWRsmkpKChI77k2hN2542eww/Ply9FQqc5J9v5ERM5gVfAJDAzEpUuX9EZbAcDly5cREBAgScGI7MnZq5FbM4wcsF+/muohDNAAEAD0p6/YseMfKCur3eRFROROrAo+KSkpGD16NN5880106dIFAPDDDz9g2rRpGDx4sKQFJLIXZ3bMrWsYubEmsLr61VgzYqxmCAOqh5+/ysgmLyKqD6wKPm+++SYUCgWeffZZVFRUAAC8vb0xYcIELFmyRNICEtVHpkaumdOx2BBrR4wZCmGAB7p2PYjvvntcb2tdc/wQEbm6mv+3M4tSqcSqVatw69YtnDp1CqdOnUJBQQFWrFjBOXHIaq7Q78ZRtCPXFAoNAOgCDgCDTWBqdd1NyNVHO5pSs0ZIG8KqUyg0uOee8wa3y2VWayKqn2xapNTPzw/t2rWTqiwkc87ud+MIdQ0jz86OtXgmZaCqtmf79u1WlcXY9AHR0TkmpxWoDwGUiOTHquBz9+5drFmzBgcPHsSNGzeg0ej/VXjixAlJCkfy486hxhzGwl1eXh7S09OtXjvMUFisa6h8zbLMmXMTFy96ITa2Av7+96C8PA6DBnnpbY+KegDAA24fQIlIvqwKPqNHj8bevXvxj3/8Aw8++GCdi5cS0V9MBQapJm80t59Q9bJERgKJidpn4XrH/bWdiMi9WRV8du3ahS+//BIPP/yw1OUhkj1bJ29UqwPwxRd9oe3Cx9FYRER/sSr4NGnShPP1EEmoZn8ZY5M3mtOv5ujRzqg5boGjsYiIqlgVfJYtW4YZM2Zg/fr1iImJkbpMRLIjVcdutToAGRlJBvZwNBYREWBl8OnUqRPu3r2L5s2bw8/PT7caulZBAf8HS2QpKToLG56TB+jSJYOjsYiIYGXwGTx4MK5evYpFixYhPDycnZuJXISxUWGdOx8FAAwaNIijsYhI1qwKPkeOHEFGRgY6dOggdXmIyAp1zcmjre1p3LixM4tJROR0VgWf1q1b488//5S6LERkJVNz8nDuHSKiv1gVfJYsWYKpU6di4cKFaNeuXa0+PoGBgZIUjshRrFnc09UYn5OHiIi0FEIIYemLPDyq+g/U7NsjhIBCoUBlZaU0pXOCoqIiqFQqqNVqBjiZsHZxTyIich3mfn9bVeNz8OBBqwtG5Gpq1vQYW+rBVI0QERG5B6uCT7du3cw67vnnn8err76K0NBQa96GyOHMXeqBiIjcU+0JPyT0wQcfoKioyJ5vQSQZtTpAF3qAv5Z6UKs5SzkRUX1h1+BjRfchIqcxNPmfdqkHIiKqH+wafIjciXbyv+oUCi71QERUnzD4EP2PdvI/bfipOfkfERG5P6s6NxPVVwkJJxEffwEFBcEIDi5g6CEiqmcYfEj2ai7aqVIVGww8XNyTiMj9WRx8KioqsGjRIowaNQrR0dEmjx06dCgnASTJ2Gt25ZrLPUh5biIici1WzdwcEBCAM2fOIDY21g5Fci7O3OyaOLsyERGZYteZm7t3745Dhw7Vy+BDtbnCOlacXZmIiKRgVfDp3bs3Zs6ciTNnziAxMRH+/v56+/v37y9J4cjxaoacwsJCfPzxx3W+zpE1LZxdmYiIrGVV8Hn++ecBAMuXL6+1z90XKZUzc5uTDLl27ZpeYLJXLZCx2ZXj4y9wBBYREdXJquCj0WjqPojcji3NROnp6bW22aMWyNTsyvYIPq7QzEdERNKxKvi8//77SElJgY+Pj972srIybNu2Dc8++6wkhSPHyc/PR15enqTntEd/G+3sytXDj71mV2aHaiKi+seqmZtHjhwJtVpda3txcTFGjhxpc6HIsbRf8IZqbVyNI2dXNtShOjs7ttaipexQTUTkPqyq8RFCQKFQ1Np+5coVqFQqmwtFjuVuX9zOmF3ZVIdqYzVlbAYjInI9FgWfjh07QqFQQKFQ4IknnoCX118vr6ysRHZ2Nnr16iV5Icl1GBpGbmxouZTsPbuyob482kBTV4dqUzVlbAYjInItFgWfJ598EgBw6tQpJCcno2HDhrp9SqUSsbGxGDhwoKQFJOepGWgM1XoAcMjQcnvOrlxXXx5zOlRzXiEiIvdgUfCZO3cuACA2NhYpKSlo0KCBXQpFzlcz5PTosR/79/fQq/X44ou+UCjgsKHl9qo5qWtyxLo6VHNeISIi92FVH5/hw4cDqPrCuHHjRq3h7c2aNbO9ZOQ0hpp2qoeev3ig5oIn9hxa7gjGQky/frtqbVepijmvEBGRm7Eq+Jw/fx6jRo3CkSNH9LZrOz1zAkP3ZqxpR6EQEKJ6p3aNXo0PoF8T4m6rmZsKMcY6VDt6XiEiIrKNVcFnxIgR8PLywq5duxAZGWlwhBe5L2NNO7NnF2PxYhUqKwFPT4GlS4sAADNmqFBZqdBte+aZwW45oqmuEGOoQ7Uj5xUiIiLbWRV8Tp06hePHj6N169ZSl4ecwFDNTFJSBjIykvSadtLSHsa4ccCFC0CLFgpERwcBAFJSam4LcmTxJVNXiBkwYABCQ0MBVI34Sk9P180rZKgZjIiIXI9VwadNmzaSz/JLzlN9xNTWrb549VUVNBoFFAqB8eNvY8yYO4iNfVhXgxMdrf/66Oja29xRXSEmNDQUkZGRtV7njHmFiIjIOlYFn6VLl2L69OlYtGgR2rVrB29vb739gYGBkhSOHCckJARXrgDTpwPavupCKPDuuw0xe3ZDuFmrldXMDTH2nleIiIjsw6rg06NHDwBA9+7d9fr3sHOzezt//q/Qo1VZWdWMVR9qdIyxJsTYc14hIiKyH6uCz8GDB6UuB7mAli0BDw/98OPpCbRo4bwyOYK1IYahhojI/VgVfLp164bvv/8eb7/9NrKysvDpp5+iSZMm2LJlC+Li4qQuIzlIdDTwzjvAuHH438gt4O2363dtjxZDDBGRPFi1OvuOHTuQnJwMX19fnDx5EqWlpQAAtVqNRYsWSVpAcqzRo4GLF4GDB6v+HT3a2SUiIiKSjlXB57XXXsP69evx7rvv6nVsfvjhh3HixAnJCkfOER0NPPaYPGp6iIhIXqwKPpmZmejatWut7SqVCoWFhbaWiYiIiMgurAo+ERERuHDhQq3thw8fRvPmzW0uFBEREZE9WBV8nnvuOUyePBlHjx6FQqHAtWvX8OGHH+Kll17ChAkTpC4jERERkSSsGtU1c+ZMaDQaPPHEEygpKUHXrl3h4+ODl156CZMmTZK6jCRj+fn5nCuHiIgkoxBCCGtfXFZWhgsXLuD27dto06YNGjZsKGXZnKKoqAgqlQpqtZozUDtZfn4+1q5dq3uuVgegoCAEwcH5ehMMpqamMvwQEcmcud/fVtX4aCmVSrRp08aWUxAZVb2m58SJjrXW0EpIOFnrOFOq1x5du+aB7GwvxMVVICqqasZG1h4REdV/NgUfIkdQqwN0oQcAhPDAzp19ER9/ASpVscEFc2uGmOq1R6ZCFGuPiIjqNwYfcnkFBSG60KMlhAcKCoKhUhVj48Z9dTaBaWt66gpR5tYeERGRe2LwIZcXHJwPhUKjF34UCg2CgwssbgKrK0QREVH9ZtVwdiJHUqmK0a/fLigUVX1xtAEHgMHaG7U6wOi5tCGqOm2IIiKi+o81PuSS8vPz9fruJCScRHz8BRQUBCM4uAAqVTGys2Mtrr3RhqiatUSs7SEikgcGH3I5poaxx8X9odtuqgnMFEMhioiI5IHBh1yOucPYbam9UamKGXiIiGSIwYdcVl0jsADW3hARkWUYfMhlmTsCy5zaG6VSadZ7mnscERG5JwYfclnW9uHRqh5iQkJCkJqaynW/iIhkjsGHHK6uhUfVajWAuvvwDBgwAKGhoQbPYSjEMNQQERGDDzmUuQuPapnqwxMaGorIyEiHlJuIiOoHBh9yKHNHbFXHEVhERCQVztxMTmFsxJapWZdrYkdkIiKylNvV+JSWlqJz5874+eefcfLkSdx///26fadPn8bEiRNx7NgxhIWFYdKkSZg+fbrzCktG1TVia9CgQQgKCjL6enZEJiIia7hd8Jk+fTqioqLw888/620vKipCz5490aNHD6xfvx5nzpzBqFGjEBQUhLFjxzqptGRMXSO2goKC2H+HiIgk51bBZ8+ePdi7dy927NiBPXv26O378MMPUVZWhvfeew9KpRJt27bFqVOnsHz5cgYfB6prxFZhYSEArplFRETO4TbB5/r163juuefw+eefw8/Pr9b+jIwMdO3aVa/fR3JyMpYuXYpbt26hUaNGjiyuLEk5YouIiMge3CL4CCEwYsQIjB8/Hp06dcLFixdrHZObm4u4uDi9beHh4bp9xoJPaWkpSktLdc+LioqkK7jMcMQWERG5OqeO6po5cyYUCoXJx6+//oo1a9aguLgYs2bNkrwMixcvhkql0j2aNm0q+XvIDUdsERGRq3Jqjc/UqVMxYsQIk8c0b94c33zzDTIyMuDj46O3r1OnThgyZAg2b96MiIgIXL9+XW+/9nlERITR88+aNQtTpkzRPS8qKqpX4aeuPjf2GB1V14itlJQUqFQqh5aJiIgIcHLwCQsLQ1hYWJ3HrV69Gq+99pru+bVr15CcnIzt27ejc+fOAICkpCTMnj0b5eXl8Pb2BgDs27cPrVq1Mtm/x8fHp1agqi9q9rkxJjU1VdKgYWrEllodgB9+UOL++z0QFaUBwKBDRESO4xZ9fJo1a6b3vGHDhgCA+Ph4REdHAwCeeeYZzJ8/H6NHj8aMGTNw9uxZrFq1CitWrHB4eV2FqZoea44zl7ERW1lZLYz2+5E6fBERERniFsHHHCqVCnv37sXEiRORmJiI0NBQzJkzh0PZnaTmiC0AWLkyrVa/n/j4C1CpiiUPX0RERIa4ZfCJjY2FEKLW9vbt2+P77793QonIkOojtrKzY032+yEiInIErtVFkjE1Ekvb76e66jM1ExEROYJb1viQawoJCUFqaqpes1VeXh7S09M5UzMREbkEBh+SlKkOypypmYiInI3BR0bqWkLCEThTMxERORODTz1Wvc+NqSUkOEsyERHJBYNPPabtc3PxYgVefbUxhFAAqBpNtXt3P8yZ0xmxsV52nT/H3FDF8EVERI7A4FPPhYSE4PRpQKM/oAqVlQoUF4fD3nMGGurwXBNnbiYiIkdh8JGBli0BDw/98OPpCbRo4Zj3Z6ghIiJXwXl8ZCA6GnjnnaqwA1T9+/bbVduJiIjkhDU+MjF6NJCcDFy4UFXTw9BDRERyxOAjI9HRDDxERCRvbOoiIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwISIiItlg8CEiIiLZYPAhIiIi2WDwIatduQIcPFj1LxERkTtg8CGL5OfnIycnB8uWFSImRqB7dyAmRmDZskLk5OQgPz/f2UUkIiIyijM3y0x+fr7VK6Xn5+dj7dq1UKsDsHJlGoRQAAA0GgWmTQvE1avvQaUqRmpqKhcmJSIil8TgIyPa4KKlVgegoCAEwcH5UKmKdduNBRdtYCooCIEQ+pWFQnigoCAYKlWxyWBFRETkTAw+MlI9kJw40RE7d/aFEB5QKDTo128XEhJO1jrOkODgfCgUGr3wo1BoEBxcYJ+CExERSYR9fGRIrQ7QhR6gqrZm586+UKsDzHq9SlWMfv12QaHQAIAuOFWvNSIiInJFrPGRobqaqsyRkHAS8fEXUFAQjODgAoYeIiJyCww+MiRVU5VKVczAQ0REboVNXTLEpioiIpIr1vjIFJuqiIhIjhh8ZMzSpiqlUinpcURERI7G4CMjtgaXkJAQpKamWj0BIhERkbMphBDC2YVwJUVFRVCpVFCr1QgMDHR2cSRny8zNRERErsrc72/W+MiMJaHmyhXg/HmgZUsgOtqOhSIiInIQjuoigzZsAGJi8L9FSKueExERuTsGH9KTn5+P48evY+xYAU3VaHdoNMC4cQLHj1/n6utEROTW2NRFOtpFTLOzY6HRDNfbV1mpwJo1exAX9wdXXyciIrfFGh/S0XZ61s7sXF31mZ25+joREbkrBh+qhTM7ExFRfcWmLjKIMzsTEVF9xOBDRnERUiIiqm/Y1EVERESyweBDREREssHgQ0RERLLB4EM6XH2diIjqO3ZuJh2uvk5ERPUdgw/pYaghIqL6jE1dREREJBsMPkRERCQbDD5EREQkGww+REREJBsMPi7qyhXg4MGqf4mIiEgaDD4uaMMGICYG6N696t8NG2ofw2BERERkOQYfF3PlCjB2LKDRVD3XaIBx46q25+fnIycnB8uWFSImRvwvGAksW1aInJwc5OfnO7fwRERELo7z+LiY8+f/Cj1alZXA8eNqnDq1Fmp1AFauTIMQCgCARqPAtGmBuHr1PahUxUhNTeVcPEREREawxseF5OfnIzDwOjw8hN52T08BP79rAICCghAIof9rE8IDBQXBAGBy1mUiIiK5Y42Pi8jPz8fatWsBAH37dsTOnX0hhAcUCg369NmFI0dOAgCCg/OhUGj0wo9CoUFwcIFTyk1EROROGHxcRPWamoSEk4iPv4CCgmAEBxdApSrW7VOpitGv3y69YNSv3y69Y4iIiMgwBh8XpVIVGw0z8fEXMHDgDgACTZteYeghIiIyE4OPmzlxomOt2p6EhJPOLhYREZFbYOdmN6JWB+hCD1DVqXnnzr5QqwOcXDIiIiL3wODjRuoa0UVERESmMfi4Ee2IrupqjuhSKpWOLhYREZHbYPBxI9oRXdrwU3NEV0pKCicvJCIiMoGdm12EuTU1poe6q+xVPCIionqBwcdFhISEIDU11eDMy3l5eUhPT9c9NzXUnYiIiIxj8HEhbKYiIiKyL/bxcQPmNoOxYzMREZFprPFxA6aawbSUSiVrjIiIiOrgVjU+u3fvRufOneHr64tGjRrhySef1Nt/6dIl9OnTB35+fmjcuDGmTZuGiooK5xRWYiEhIYiMjDT6YOghIiKqm9vU+OzYsQPPPfccFi1ahO7du6OiogJnz57V7a+srESfPn0QERGBI0eOICcnB88++yy8vb2xaNEiJ5aciIiIXIVCCCGcXYi6VFRUIDY2FvPnz8fo0aMNHrNnzx707dsX165dQ3h4OABg/fr1mDFjBm7evGl2/5eioiKoVCqo1WoEBgZKdg1ERERkP+Z+f7tFU9eJEydw9epVeHh4oGPHjoiMjETv3r31anwyMjLQrl07XegBgOTkZBQVFeG///2vM4pNRERELsYtgs/vv/8OAJg3bx7++c9/YteuXWjUqBEee+wxFBRULdeQm5urF3oA6J7n5uYaPXdpaSmKior0HkRERFQ/OTX4zJw5EwqFwuTj119/hUZTtUTD7NmzMXDgQCQmJmLjxo1QKBT45JNPbCrD4sWLoVKpdI+mTZtKcWlERETkgpzauXnq1KkYMWKEyWOaN2+OnJwcAECbNm102318fNC8eXNcunQJABAREYEff/xR77XXr1/X7TNm1qxZmDJliu55UVERww8REVE95dTgExYWhrCwsDqPS0xMhI+PDzIzM/HII48AAMrLy3Hx4kXExMQAAJKSkrBw4ULcuHEDjRs3BgDs27cPgYGBeoGpJh8fH/j4+EhwNUREROTq3GI4e2BgIMaPH4+5c+eiadOmiImJwRtvvAEAeOqppwAAPXv2RJs2bTBs2DC8/vrryM3NxT//+U9MnDiRwYaIiIgAuEnwAYA33ngDXl5eGDZsGP7880907twZ33zzDRo1agQA8PT0xK5duzBhwgQkJSXB398fw4cPx6uvvurkkhMREZGrcIt5fByJ8/gQERG5n3o1jw8RERGRFBh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDa8nF2A+iw/Px9lZWVG9yuVSoSEhDiwRERERPLG4GMn+fn5WLt2bZ3HpaamMvwQERE5CJu67MRUTY81xxEREZHtGHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHzsRKlUSnocERER2Y4TGNpJSEgIUlNTOXMzERGRC2HwsSOGGiIiItfCpi4HuXIFOHiw6l8iIiJyDgYfB9iwAYiJAbp3r/p3wwZnl4iIiEieGHzs7MoVYOxYQKOpeq7RAOPGseaHiIjIGRh87Oz8+b9Cj1ZlJXDhgnPKQ0REJGcMPnbWsiXgUeMue3oCLVo4pzxERERyxuBjZ9HRwDvvVIUdoOrft9+u2k5ERESOxeHsDjB6NJCcXNW81aIFQw8REZGzMPg4SHQ0Aw8REZGzsamLiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDwYeIiIhkg8GHiIiIZIPBh4iIiGSDa3XVIIQAABQVFTm5JERERGQu7fe29nvcGAafGoqLiwEATZs2dXJJiIiIyFLFxcVQqVRG9ytEXdFIZjQaDa5du4aAgAAoFAqzXlNUVISmTZvi8uXLCAwMtHMJXRfvQxXeB94DLd6HKrwPvAda9rwPQggUFxcjKioKHh7Ge/KwxqcGDw8PREdHW/XawMBAWX+gtXgfqvA+8B5o8T5U4X3gPdCy130wVdOjxc7NREREJBsMPkRERCQbDD4S8PHxwdy5c+Hj4+PsojgV70MV3gfeAy3ehyq8D7wHWq5wH9i5mYiIiGSDNT5EREQkGww+REREJBsMPkRERCQbDD5EREQkGww+Rqxbtw7t27fXTbKUlJSEPXv26PbfvXsXEydOREhICBo2bIiBAwfi+vXreue4dOkS+vTpAz8/PzRu3BjTpk1DRUWFoy9FMkuWLIFCoUBaWppum1zuw7x586BQKPQerVu31u2Xy324evUqhg4dipCQEPj6+qJdu3b46aefdPuFEJgzZw4iIyPh6+uLHj164Pz583rnKCgowJAhQxAYGIigoCCMHj0at2/fdvSlWC02NrbWZ0GhUGDixIkA5PNZqKysxCuvvIK4uDj4+voiPj4eCxYs0FsnSQ6fh+LiYqSlpSEmJga+vr7o0qULjh07pttfH+/Bd999h379+iEqKgoKhQKff/653n6prvn06dN49NFH0aBBAzRt2hSvv/66NBcgyKAvvvhC7N69W/z2228iMzNTvPzyy8Lb21ucPXtWCCHE+PHjRdOmTcWBAwfETz/9JB566CHRpUsX3esrKirEfffdJ3r06CFOnjwpvvzySxEaGipmzZrlrEuyyY8//ihiY2NF+/btxeTJk3Xb5XIf5s6dK9q2bStycnJ0j5s3b+r2y+E+FBQUiJiYGDFixAhx9OhR8fvvv4uvv/5aXLhwQXfMkiVLhEqlEp9//rn4+eefRf/+/UVcXJz4888/dcf06tVLdOjQQfznP/8R33//vWjRooUYPHiwMy7JKjdu3ND7HOzbt08AEAcPHhRCyOOzIIQQCxcuFCEhIWLXrl0iOztbfPLJJ6Jhw4Zi1apVumPk8HkYNGiQaNOmjTh06JA4f/68mDt3rggMDBRXrlwRQtTPe/Dll1+K2bNni/T0dAFAfPbZZ3r7pbhmtVotwsPDxZAhQ8TZs2fFRx99JHx9fcXbb79tc/kZfCzQqFEj8f/+3/8ThYWFwtvbW3zyySe6fefOnRMAREZGhhCi6oPh4eEhcnNzdcesW7dOBAYGitLSUoeX3RbFxcWiZcuWYt++faJbt2664COn+zB37lzRoUMHg/vkch9mzJghHnnkEaP7NRqNiIiIEG+88YZuW2FhofDx8REfffSREEKIX375RQAQx44d0x2zZ88eoVAoxNWrV+1XeDuaPHmyiI+PFxqNRjafBSGE6NOnjxg1apTetgEDBoghQ4YIIeTxeSgpKRGenp5i165detsTEhLE7NmzZXEPagYfqa75rbfeEo0aNdL7b2LGjBmiVatWNpeZTV1mqKysxLZt23Dnzh0kJSXh+PHjKC8vR48ePXTHtG7dGs2aNUNGRgYAICMjA+3atUN4eLjumOTkZBQVFeG///2vw6/BFhMnTkSfPn30rheA7O7D+fPnERUVhebNm2PIkCG4dOkSAPnchy+++AKdOnXCU089hcaNG6Njx4549913dfuzs7ORm5urdx9UKhU6d+6sdx+CgoLQqVMn3TE9evSAh4cHjh496riLkUhZWRk++OADjBo1CgqFQjafBQDo0qULDhw4gN9++w0A8PPPP+Pw4cPo3bs3AHl8HioqKlBZWYkGDRrobff19cXhw4dlcQ9qkuqaMzIy0LVrVyiVSt0xycnJyMzMxK1bt2wqIxcpNeHMmTNISkrC3bt30bBhQ3z22Wdo06YNTp06BaVSiaCgIL3jw8PDkZubCwDIzc3V+x+bdr92n7vYtm0bTpw4oddmrZWbmyub+9C5c2ds2rQJrVq1Qk5ODubPn49HH30UZ8+elc19+P3337Fu3TpMmTIFL7/8Mo4dO4YXXngBSqUSw4cP112Hoeusfh8aN26st9/LywvBwcFucx+q+/zzz1FYWIgRI0YAkNd/EzNnzkRRURFat24NT09PVFZWYuHChRgyZAgAyOLzEBAQgKSkJCxYsAD33nsvwsPD8dFHHyEjIwMtWrSQxT2oSaprzs3NRVxcXK1zaPc1atTI6jIy+JjQqlUrnDp1Cmq1Gp9++imGDx+OQ4cOObtYDnP58mVMnjwZ+/btq/UXjdxo/4oFgPbt26Nz586IiYnBxx9/DF9fXyeWzHE0Gg06deqERYsWAQA6duyIs2fPYv369Rg+fLiTS+ccGzZsQO/evREVFeXsojjcxx9/jA8//BBbt25F27ZtcerUKaSlpSEqKkpWn4ctW7Zg1KhRaNKkCTw9PZGQkIDBgwfj+PHjzi4aGcGmLhOUSiVatGiBxMRELF68GB06dMCqVasQERGBsrIyFBYW6h1//fp1REREAAAiIiJqjeTQPtce4+qOHz+OGzduICEhAV5eXvDy8sKhQ4ewevVqeHl5ITw8XBb3wZCgoCDcc889uHDhgmw+D5GRkWjTpo3etnvvvVfX5Ke9DkPXWf0+3LhxQ29/RUUFCgoK3OY+aP3xxx/Yv38/xowZo9sml88CAEybNg0zZ87E008/jXbt2mHYsGF48cUXsXjxYgDy+TzEx8fj0KFDuH37Ni5fvowff/wR5eXlaN68uWzuQXVSXbM9/zth8LGARqNBaWkpEhMT4e3tjQMHDuj2ZWZm4tKlS0hKSgIAJCUl4cyZM3q/3H379iEwMLDWl4ereuKJJ3DmzBmcOnVK9+jUqROGDBmi+1kO98GQ27dvIysrC5GRkbL5PDz88MPIzMzU2/bbb78hJiYGABAXF4eIiAi9+1BUVISjR4/q3YfCwkK9v4a/+eYbaDQadO7c2QFXIZ2NGzeicePG6NOnj26bXD4LAFBSUgIPD/2vEE9PT2g0GgDy+zz4+/sjMjISt27dwtdff42///3vsrsHgHS/96SkJHz33XcoLy/XHbNv3z60atXKpmYuABzObszMmTPFoUOHRHZ2tjh9+rSYOXOmUCgUYu/evUKIqiGrzZo1E99884346aefRFJSkkhKStK9XjtktWfPnuLUqVPiq6++EmFhYW43ZLWm6qO6hJDPfZg6dar49ttvRXZ2tvjhhx9Ejx49RGhoqLhx44YQQh734ccffxReXl5i4cKF4vz58+LDDz8Ufn5+4oMPPtAds2TJEhEUFCT+/e9/i9OnT4u///3vBoexduzYURw9elQcPnxYtGzZ0qWH7hpSWVkpmjVrJmbMmFFrnxw+C0IIMXz4cNGkSRPdcPb09HQRGhoqpk+frjtGDp+Hr776SuzZs0f8/vvvYu/evaJDhw6ic+fOoqysTAhRP+9BcXGxOHnypDh58qQAIJYvXy5Onjwp/vjjDyGENNdcWFgowsPDxbBhw8TZs2fFtm3bhJ+fH4ez29OoUaNETEyMUCqVIiwsTDzxxBO60COEEH/++ad4/vnnRaNGjYSfn5/4v//7P5GTk6N3josXL4revXsLX19fERoaKqZOnSrKy8sdfSmSqhl85HIfUlJSRGRkpFAqlaJJkyYiJSVFb/4audyHnTt3ivvuu0/4+PiI1q1bi3feeUdvv0ajEa+88ooIDw8XPj4+4oknnhCZmZl6x+Tn54vBgweLhg0bisDAQDFy5EhRXFzsyMuw2ddffy0A1Lo2IeTzWSgqKhKTJ08WzZo1Ew0aNBDNmzcXs2fP1ht+LIfPw/bt20Xz5s2FUqkUERERYuLEiaKwsFC3vz7eg4MHDwoAtR7Dhw8XQkh3zT///LN45JFHhI+Pj2jSpIlYsmSJJOVXCFFtmk0iIiKieox9fIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iIiISDYYfIiIiEg2GHyIiIhINhh8iMhmjz32GNLS0pxdDLubN28e7r//fmcXg4hswOBDRLJXVlbm0PcTQqCiosKh70lEVRh8iMgmI0aMwKFDh7Bq1SooFAooFApcvHgRZ8+eRe/evdGwYUOEh4dj2LBhyMvL073usccew6RJk5CWloZGjRohPDwc7777Lu7cuYORI0ciICAALVq0wJ49e3Sv+fbbb6FQKLB79260b98eDRo0wEMPPYSzZ8/qlenw4cN49NFH4evri6ZNm+KFF17AnTt3dPtjY2OxYMECPPvsswgMDMTYsWMBADNmzMA999wDPz8/NG/eHK+88opudehNmzZh/vz5+Pnnn3XXuWnTJly8eBEKhQKnTp3Snb+wsBAKhQLffvutXrn37NmDxMRE+Pj44PDhw9BoNFi8eDHi4uLg6+uLDh064NNPP5X6V0RE1TD4EJFNVq1ahaSkJDz33HPIyclBTk4OAgIC0L17d3Ts2BE//fQTvvrqK1y/fh2DBg3Se+3mzZsRGhqKH3/8EZMmTcKECRPw1FNPoUuXLjhx4gR69uyJYcOGoaSkRO9106ZNw7Jly3Ds2DGEhYWhX79+uoCSlZWFXr16YeDAgTh9+jS2b9+Ow4cPIzU1Ve8cb775Jjp06ICTJ0/ilVdeAQAEBARg06ZN+OWXX7Bq1Sq8++67WLFiBQAgJSUFU6dORdu2bXXXmZKSYtG9mjlzJpYsWYJz586hffv2WLx4Md5//32sX78e//3vf/Hiiy9i6NChOHTokEXnJSILSLLUKRHJWrdu3cTkyZN1zxcsWCB69uypd8zly5f1VjTv1q2beOSRR3T7KyoqhL+/vxg2bJhuW05OjgAgMjIyhBB/rQq9bds23TH5+fnC19dXbN++XQghxOjRo8XYsWP13vv7778XHh4e4s8//xRCCBETEyOefPLJOq/rjTfeEImJibrnc+fOFR06dNA7Jjs7WwAQJ0+e1G27deuWACAOHjyoV+7PP/9cd8zdu3eFn5+fOHLkiN75Ro8eLQYPHlxn2YjIOl7ODF1EVD/9/PPPOHjwIBo2bFhrX1ZWFu655x4AQPv27XXbPT09ERISgnbt2um2hYeHAwBu3Lihd46kpCTdz8HBwWjVqhXOnTune+/Tp0/jww8/1B0jhIBGo0F2djbuvfdeAECnTp1qlW379u1YvXo1srKycPv2bVRUVCAwMNDi6zem+nteuHABJSUl+Nvf/qZ3TFlZGTp27CjZexKRPgYfIpLc7du30a9fPyxdurTWvsjISN3P3t7eevsUCoXeNoVCAQDQaDQWvfe4cePwwgsv1NrXrFkz3c/+/v56+zIyMjBkyBDMnz8fycnJUKlU2LZtG5YtW2by/Tw8qnoMCCF027TNbjVVf8/bt28DAHbv3o0mTZroHefj42PyPYnIegw+RGQzpVKJyspK3fOEhATs2LEDsbGx8PKS/n8z//nPf3Qh5tatW/jtt990NTkJCQn45Zdf0KJFC4vOeeTIEcTExGD27Nm6bX/88YfeMTWvEwDCwsIAADk5ObqamuodnY1p06YNfHx8cOnSJXTr1s2ishKR9di5mYhsFhsbi6NHj+LixYvIy8vDxIkTUVBQgMGDB+PYsWPIysrC119/jZEjR9YKDtZ49dVXceDAAZw9exYjRoxAaGgonnzySQBVI7OOHDmC1NRUnDp1CufPn8e///3vWp2ba2rZsiUuXbqEbdu2ISsrC6tXr8Znn31W6zqzs7Nx6tQp5OXlobS0FL6+vnjooYd0nZYPHTqEf/7zn3VeQ0BAAF566SW8+OKL2Lx5M7KysnDixAmsWbMGmzdvtvreEJFpDD5EZLOXXnoJnp6eaNOmDcLCwlBWVoYffvgBlZWV6NmzJ9q1a4e0tDQEBQXpmoZssWTJEkyePBmJiYnIzc3Fzp07oVQqAVT1Gzp06BB+++03PProo+jYsSPmzJmDqKgok+fs378/XnzxRaSmpuL+++/HkSNHdKO9tAYOHIhevXrh8ccfR1hYGD766CMAwHvvvYeKigokJiYiLS0Nr732mlnXsWDBArzyyitYvHgx7r33XvTq1Qu7d+9GXFycFXeFiMyhENUbpomIXNi3336Lxx9/HLdu3UJQUJCzi0NEbog1PkRERCQbDD5EREQkG2zqIiIiItlgjQ8RERHJBoMPERERyQaDDxEREckGgw8RERHJBoMPERERyQaDDxEREckGgw8RERHJBoMPERERyQaDDxEREcnG/wdmed262Vc8gQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAHHCAYAAAAGU9SoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdhUlEQVR4nO3deXxM1/8/8NdkX0iCrEiIPZYvESXjg1abCkVo+RRVpEIbtdQWEkVEW9LYd/1UK6r22mINjbWSKmnsEhohfEiiJQkh+/n94Zf7MWZCEpPM9no+HvNgzj1z5z1zK3n1nHvPlQkhBIiIiIhI6xlpugAiIiIiKhsGNyIiIiIdweBGREREpCMY3IiIiIh0BIMbERERkY5gcCMiIiLSEQxuRERERDqCwY2IiIhIRzC4EREREekIBjciotckk8kwa9YsTZch8ff3R/369TVdBhFVAgY3ItJLkZGRkMlk0sPCwgJNmjTBmDFjkJ6eXqnvHRsbi1mzZiEzM1Ot+33rrbcUPlPNmjXxxhtv4Mcff0RxcbFa3mPOnDnYtWuXWvZFROpnoukCiIgq0+zZs+Hu7o7c3Fz89ttvWLVqFfbv349Lly7ByspKLe/x9OlTmJj878dpbGwswsLC4O/vDzs7O7W8R4m6deti7ty5AID79+/jp59+QkBAAK5du4bw8PDX3v+cOXPQv39/9O3b97X3RUTqx+BGRHqtR48eaNeuHQBgxIgRqFWrFhYuXIjdu3dj0KBBFd5vcXEx8vPzYWFhAQsLC3WV+0q2trb4+OOPpeefffYZmjZtiuXLl+Orr76CqalpldVCRFWPU6VEZFDefvttAEBKSgoAYP78+ejYsSNq1aoFS0tLeHl54ZdfflF6nUwmw5gxY7Bhwwa0aNEC5ubmOHjwoLSt5By3WbNmISgoCADg7u4uTWvevHkTb775Jlq3bq2yrqZNm8LX17fcn8fKygre3t7IycnB/fv3S+2Xk5ODSZMmwdXVFebm5mjatCnmz58PIYTCZ8zJycG6deukuv39/ctdExFVHo64EZFBSU5OBgDUqlULALBkyRL4+flh8ODByM/Px+bNm/Hvf/8be/fuRc+ePRVee+TIEWzduhVjxoyBvb29ygsAPvjgA1y7dg2bNm3CokWLYG9vDwBwcHDAkCFDMHLkSFy6dAktW7aUXnPmzBlcu3YN06dPr9BnunHjBoyNjUudlhVCwM/PD0ePHkVAQADatGmD6OhoBAUF4b///S8WLVoEAFi/fj1GjBiB9u3b49NPPwUANGzYsEI1EVElEUREemjt2rUCgPj111/F/fv3xe3bt8XmzZtFrVq1hKWlpbhz544QQognT54ovC4/P1+0bNlSvP322wrtAISRkZG4fPmy0nsBEKGhodLzefPmCQAiJSVFoV9mZqawsLAQU6dOVWgfN26csLa2Fo8fP37pZ3rzzTdFs2bNxP3798X9+/fF1atXxbhx4wQA0bt3b6nfsGHDRL169aTnu3btEgDE119/rbC//v37C5lMJv766y+pzdraWgwbNuyldRCR5nCqlIj0mo+PDxwcHODq6oqBAweiWrVq2LlzJ+rUqQMAsLS0lPo+fPgQWVlZ6Ny5M/7880+lfb355pto3rx5hWuxtbVFnz59sGnTJmmKsqioCFu2bEHfvn1hbW39yn0kJibCwcEBDg4O8PDwwLJly9CzZ0/8+OOPpb5m//79MDY2xrhx4xTaJ02aBCEEDhw4UOHPRERVi1OlRKTXVqxYgSZNmsDExAROTk5o2rQpjIz+9/+se/fuxddff41z584hLy9PapfJZEr7cnd3f+16hg4dii1btuDkyZPo0qULfv31V6Snp2PIkCFlen39+vXx/fffS0ucNG7cGI6Oji99za1bt1C7dm1Ur15dod3Dw0PaTkS6gcGNiPRa+/btpatKX3Ty5En4+fmhS5cuWLlyJVxcXGBqaoq1a9di48aNSv2fH52rKF9fXzg5OeHnn39Gly5d8PPPP8PZ2Rk+Pj5ler21tXWZ+xKR/uFUKREZrO3bt8PCwgLR0dEYPnw4evTooZZQpGq0roSxsTE++ugj/PLLL3j48CF27dqFQYMGwdjY+LXftzT16tXD3bt38ejRI4X2xMREaXuJl9VORJrH4EZEBsvY2BgymQxFRUVS282bN1/7zgEl56qVdueEIUOG4OHDh/jss8/w+PFjhXXZKsN7772HoqIiLF++XKF90aJFkMlk6NGjh9RmbW2t9js+EJH6cKqUiAxWz549sXDhQnTv3h0fffQRMjIysGLFCjRq1AgXLlyo8H69vLwAAF9++SUGDhwIU1NT9O7dWwp0np6eaNmyJbZt2wYPDw+0bdtWLZ+nNL1790bXrl3x5Zdf4ubNm2jdujUOHTqE3bt3Y/z48QpLfnh5eeHXX3/FwoULUbt2bbi7u6NDhw6VWh8RlR1H3IjIYL399tv44YcfkJaWhvHjx2PTpk349ttv8f7777/Wft944w189dVXOH/+PPz9/TFo0CClxXGHDh0KAGW+KOF1GBkZISoqCuPHj8fevXsxfvx4XLlyBfPmzcPChQsV+i5cuBBeXl6YPn06Bg0ahFWrVlV6fURUdjIhnls2m4iIqsSSJUswYcIE3Lx5E25ubpouh4h0BIMbEVEVE0KgdevWqFWrFo4eParpcohIh/AcNyKiKpKTk4OoqCgcPXoUFy9exO7duzVdEhHpGI64ERFVkZs3b8Ld3R12dnb4/PPP8c0332i6JCLSMQxuRERERDqCV5USERER6QgGNyIiIiIdwYsTtFhxcTHu3r2L6tWr8zY0REREOkIIgUePHqF27dowMlLvGBmDmxa7e/cuXF1dNV0GERERVcDt27dRt25dte6TwU2LVa9eHcCzA29jY6PhaoiIiKgssrOz4erqKv0eVycGNy1WMj1qY2PD4EZERKRjKuM0J16cQERERKQjGNyIiIiIdASDGxEREZGO4DluOq6oqAgFBQWaLoOqgKmpKYyNjTVdBhERaRCDm44SQiAtLQ2ZmZmaLoWqkJ2dHZydnbmuHxGRgWJw01Eloc3R0RFWVlb8Ra7nhBB48uQJMjIyAAAuLi4aroiIiDSBwU0HFRUVSaGtVq1ami6HqoilpSUAICMjA46Ojpw2JSIyQDpzcYKfnx/c3NxgYWEBFxcXDBkyBHfv3lXoI4TA/Pnz0aRJE5ibm6NOnTr45ptvFPocO3YMbdu2hbm5ORo1aoTIyEil91qxYgXq168PCwsLdOjQAX/88YfC9tzcXIwePRq1atVCtWrV0K9fP6Snpyv0SU1NRc+ePWFlZQVHR0cEBQWhsLBQLd9FyTltVlZWatkf6Y6SY87zGomIDJPOBLeuXbti69atSEpKwvbt25GcnIz+/fsr9Pniiy+wZs0azJ8/H4mJiYiKikL79u2l7SkpKejZsye6du2Kc+fOYfz48RgxYgSio6OlPlu2bMHEiRMRGhqKP//8E61bt4avr680RQUAEyZMwJ49e7Bt2zYcP34cd+/exQcffCBtLyoqQs+ePZGfn4/Y2FisW7cOkZGRmDlzplq/E06PGh4ecyIiAyd01O7du4VMJhP5+flCCCGuXLkiTExMRGJiYqmvmTJlimjRooVC24ABA4Svr6/0vH379mL06NHS86KiIlG7dm0xd+5cIYQQmZmZwtTUVGzbtk3qc/XqVQFAxMXFCSGE2L9/vzAyMhJpaWlSn1WrVgkbGxuRl5dX5s+YlZUlAIisrCyF9qdPn4orV66Ip0+flnlfpB947ImItF9pv7/VQWdG3J734MEDbNiwAR07doSpqSkAYM+ePWjQoAH27t0Ld3d31K9fHyNGjMCDBw+k18XFxcHHx0dhX76+voiLiwMA5OfnIz4+XqGPkZERfHx8pD7x8fEoKChQ6NOsWTO4ublJfeLi4tCqVSs4OTkpvE92djYuX75c6ufKy8tDdna2woOIiIiohE4Ft6lTp8La2hq1atVCamoqdu/eLW27ceMGbt26hW3btuGnn35CZGQk4uPjFaZT09LSFMIUADg5OSE7OxtPnz7F33//jaKiIpV90tLSpH2YmZnBzs7upX1U7aNkW2nmzp0LW1tb6eHq6lrGb0Z3+Pv7QyaTQSaTwdTUFE5OTnj33Xfx448/ori4uMz7iYyMVDoGRERE+k6jwS04OFj6JV7aIzExUeofFBSEhIQEHDp0CMbGxhg6dCiEEACA4uJi5OXl4aeffkLnzp3x1ltv4YcffsDRo0eRlJSkqY9YLiEhIcjKypIet2/f1nRJlaJ79+64d+8ebt68iQMHDqBr16744osv0KtXL7VdwEFERPQyurqAvUaXA5k0aRL8/f1f2qdBgwbS3+3t7WFvb48mTZrAw8MDrq6u+P333yGXy+Hi4gITExM0adJE6u/h4QHg2RWeTZs2hbOzs9LVn+np6bCxsYGlpSWMjY1hbGysso+zszMAwNnZGfn5+cjMzFQY8Xmxz4tXopbss6SPKubm5jA3N3/p96EPzM3Npe+hTp06aNu2Lby9vfHOO+8gMjISI0aMwMKFC7F27VrcuHEDNWvWRO/evREREYFq1arh2LFj+OSTTwD872T90NBQzJo1C+vXr8eSJUuQlJQEa2trvP3221i8eDEcHR019nmJiEi77NixAxcvXsSjR47o0mUU/Pw0XVHZaXTEzcHBAc2aNXvpw8zMTOVrS6bV8vLyAAD/+te/UFhYiOTkZKnPtWvXAAD16tUDAMjlcsTExCjs5/Dhw5DL5QAAMzMzeHl5KfQpLi5GTEyM1MfLywumpqYKfZKSkpCamir1kcvluHjxosKVqIcPH4aNjQ2aN29egW/q1YQQyM/P18ijZNTzdbz99tto3bo1duzYAeDZuYVLly7F5cuXsW7dOhw5cgRTpkwBAHTs2BGLFy+GjY0N7t27h3v37mHy5MkAni2T8dVXX+H8+fPYtWsXbt68+cr/OSAiIsPw9OlThIWF4eLFiwCA6tUzEB7++r/DqpJOLMB7+vRpnDlzBp06dUKNGjWQnJyMGTNmoGHDhlJY8vHxQdu2bTF8+HAsXrwYxcXFGD16NN59911pFC4wMBDLly/HlClTMHz4cBw5cgRbt27Fvn37pPeaOHEihg0bhnbt2qF9+/ZYvHgxcnJypBEeW1tbBAQEYOLEiahZsyZsbGwwduxYyOVyeHt7AwC6deuG5s2bY8iQIYiIiEBaWhqmT5+O0aNHV9qIWkFBAebOnVsp+36VkJCQUgN2eTRr1gwXLlwAAIwfP15qr1+/Pr7++msEBgZi5cqVMDMzg62tLWQymdII5vDhw6W/N2jQAEuXLsUbb7yBx48fo1q1aq9dIxER6aZLly5h+/btCm2HD09DcLBuLbOkE8HNysoKO3bsQGhoKHJycuDi4oLu3btj+vTpUhAyMjLCnj17MHbsWHTp0gXW1tbo0aMHFixYIO3H3d0d+/btw4QJE7BkyRLUrVsXa9asga+vr9RnwIABuH//PmbOnIm0tDS0adMGBw8eVLjYYNGiRTAyMkK/fv2Ql5cHX19frFy5UtpubGyMvXv3YtSoUZDL5bC2tsawYcMwe/bsKvi2dJcQQpr6/PXXXzF37lwkJiYiOzsbhYWFyM3NxZMnT1668HB8fDxmzZqF8+fP4+HDh9LIbGpqaqWNdhIRkfYSQuA///mPwsWBHTt2xLvvvovQUA0WVkEyoY55LqoU2dnZsLW1RVZWFmxsbKT23NxcpKSkwN3dHRYWFgCe/YepqZMsTU1Ny7wwrL+/PzIzM7Fr1y6lbf/3f/8HNzc3LF++HM2aNcOoUaMwYMAA1KxZE7/99hsCAgLw8OFD2NnZITIyEuPHj0dmZqb0+pycHNSrVw++vr4IDAyEg4MDUlNT4evri4SEBLRp00Y9H1iDVB17IiJSLT09HatXr1ZoCwwMVFr5Qd1K+/2tDjox4kavJpPJ1DJdqSlHjhzBxYsXMWHCBMTHx6O4uBgLFiyAkdGz0zC3bt2q0N/MzAxFRUUKbYmJifjnn38QHh4uLaVy9uzZqvkARESkVcLCwhSeV69eHePHj5d+r+gqBjeqcnl5eUhLS0NRURHS09Nx8OBBzJ07F7169cLQoUNx6dIlFBQUYNmyZejduzdOnTql9H9M9evXx+PHjxETE4PWrVvDysoKbm5uMDMzw7JlyxAYGIhLly7hq6++0tCnJCIiTcjJycH8+fMV2o4f98GRI//SUEXqpduxk3TSwYMH4eLigvr166N79+44evQoli5dit27d8PY2BitW7fGwoUL8e2336Jly5bYsGGD0oUXHTt2RGBgIAYMGAAHBwdERETAwcEBkZGR2LZtG5o3b47w8HClf7xERKS/wsLClH7u79rVH3K5foQ2gOe4abXynONGhoHHnohItRenRoFna3xqAs9xIyIiIlLhypUr2LZtm1K7pkJbZWNwIyIiIp2kapTtp5+GwMmpgU4u9VEWPMeNiIiIdIoQQmVo8/QMhZNTAwQHa6CoKsIRNyIiItIZkZGRuHXrllJ7dHQoQkOhU/cdrQgGNyIiItIJqkbZWrachAULqun1KNvzGNyIiIhIqz169AgLFy5Uai+5AKFfv6quSHMY3IiIiEhrqRplq1+/PoYNG6aBajSPwY2IiIi0kqrQNnPmzDLfH1sfMbgRERGRVjlz5gz279+v1K6va7OVB5cDIb3k7++Pvn37Ss/feustjB8//rX2qY59EBHRy4WFhSmFtqtXu8PTk6EN4IgbVTF/f3+sW7cOAGBqago3NzcMHToU06ZNg4lJ5f3nuGPHDpiampap77Fjx9C1a1c8fPgQdnZ2FdoHERGVn6qp0ejoUMTGaqAYLcXgRlWue/fuWLt2LfLy8rB//36MHj0apqamCAkJUeiXn58PMzMztbxnzZo1tWIfRESkbOnSpXj48KFS+/z5odiwQQMFaTFOlVKVMzc3h7OzM+rVq4dRo0bBx8cHUVFR0vTmN998g9q1a6Np06YAgNu3b+PDDz+EnZ0datasiT59+uDmzZvS/oqKijBx4kTY2dmhVq1amDJlCoQQCu/54jRnXl4epk6dCldXV5ibm6NRo0b44YcfcPPmTXTt2hUAUKNGDchkMvj7+6vcx8OHDzF06FDUqFEDVlZW6NGjB65fvy5tj4yMhJ2dHaKjo+Hh4YFq1aqhe/fuuHfvntTn2LFjaN++PaytrWFnZ4d//etfKheWJCLSV2FhYUqhrVmzUYiOfhba9H1B3fJicCONs7S0RH5+PgAgJiYGSUlJOHz4MPbu3YuCggL4+vqievXqOHnyJE6dOiUFoJLXLFiwAJGRkfjxxx/x22+/4cGDB9i5c+dL33Po0KHYtGkTli5diqtXr+K7775DtWrV4Orqiu3btwMAkpKScO/ePSxZskTlPvz9/XH27FlERUUhLi4OQgi89957KCgokPo8efIE8+fPx/r163HixAmkpqZi8uTJAIDCwkL07dsXb775Ji5cuIC4uDh8+umnBn21FBEZjsePH6ucGg0NDcWAAY6IjWVoU4VTpaQxQgjExMQgOjoaY8eOxf3792FtbY01a9ZIU6Q///wziouLsWbNGinQrF27FnZ2djh27Bi6deuGxYsXIyQkBB988AEAYPXq1YiOji71fa9du4atW7fi8OHD8PHxAQA0aNBA2l4yJero6Khwjtvzrl+/jqioKJw6dQodO3YEAGzYsAGurq7YtWsX/v3vfwMACgoKsHr1ajRs2BAAMGbMGMyePRsAkJ2djaysLPTq1Uva7uHhUf4vkohIx6gKbACvGi0LjrgRoqKAjh2f/VkV9u7di2rVqsHCwgI9evTAgAEDMGvWLABAq1atFM5rO3/+PP766y9Ur14d1apVQ7Vq1VCzZk3k5uYiOTkZWVlZuHfvHjp06CC9xsTEBO3atSv1/c+dOwdjY2O8+eabFf4MV69ehYmJicL71qpVC02bNsXVq1elNisrKymUAYCLiwsyMjIAPAuI/v7+8PX1Re/evbFkyRKFaVQiIn2kKrQtXDidV42WEUfcCOHhQFzcsz+rYli6a9euWLVqFczMzFC7dm2Fq0mtra0V+j5+/BheXl7YoOLsVAcHhwq9v6WlZYVeVxEvXoUqk8kUzr9bu3Ytxo0bh4MHD2LLli2YPn06Dh8+DG9v7yqrkYioKpw7dw67d+9Wao+ODsX69ZwWLSuOuBGCgwG5HFV2g15ra2s0atQIbm5ur1wCpG3btrh+/TocHR3RqFEjhYetrS1sbW3h4uKC06dPS68pLCxEfHx8qfts1aoViouLcfz4cZXbS0b8ioqKSt2Hh4cHCgsLFd73n3/+QVJSEpo3b/7Sz/QiT09PhISEIDY2Fi1btsTGjRvL9XoiIm0XFhamFNpatmyJ0NBQnstWTgxuBD8/aO0/nMGDB8Pe3h59+vTByZMnkZKSgmPHjmHcuHG4c+cOAOCLL75AeHg4du3ahcTERHz++efIzMwsdZ8l97gbPnw4du3aJe1z69atAIB69epBJpNh7969uH//Ph4/fqy0j8aNG6NPnz4YOXIkfvvtN5w/fx4ff/wx6tSpgz59+pTps6WkpCAkJARxcXG4desWDh06hOvXr/M8NyLSK6VdgNDPkO4Mr0YMbqTVrKyscOLECbi5ueGDDz6Ah4cHAgICkJubCxsbGwDApEmTMGTIEAwbNgxyuRzVq1fH+++//9L9rlq1Cv3798fnn3+OZs2aYeTIkcjJyQEA1KlTB2FhYQgODoaTkxPGjBmjch9r166Fl5cXevXqBblcDiEE9u/fX+ZFeq2srJCYmIh+/fqhSZMm+PTTTzF69Gh89tln5fiGiIi0U0RERKmhjSpOJl5c8Iq0RnZ2NmxtbZGVlSWFFADIzc1FSkoK3N3dYWFhocEKqarx2BORLlAV2P74Yxj27atf9cVoQGm/v9WBFycQERGRWjx9+hQRERFK7dHRoVV2HrW+Y3AjIiKi1/aytdk4O6o+PMeNiIiIXouq0Pbrr8Fcm60ScMSNiIiIKuTixYvYsWOHUrunJ0fZKguDmw7jdSWGh8eciLSFqlE2KysrBAUFaaAaw8HgpoNKlpt48uRJld4FgDTvyZMnAJTvyEBEVJW4zIfmMLjpIGNjY9jZ2Un3vLSyspJuwE76SQiBJ0+eICMjA3Z2djA2NtZ0SURkgL799lvk5uYqtTO0VR0GNx3l7OwMAFJ4I8NgZ2cnHXsioqqkapTt8uVe2LrVSwPVGC4GNx0lk8ng4uICR0dHFBQUaLocqgKmpqYcaSOiKldQUIA5c+YotXNtNs1gcNNxxsbG/GVORESVgmuzaR+u40ZERERKVIW2+fMnIjqaiU2TOOJGREREksTERGzZskWpfdOmUNStC06PahiDGxEREQHg1KguYHAjIiIirs2mIxjciIiIDNjy5cvxzz//KLUztGknBjciIiIDpWqULTW1HX74oacGqqGy4FWlREREBqa4uFhlaIuODkWfPgxt2owjbkRERAaEFyDoNo64ERERGQhVoW3lykCuzaZDOOJGRESk527cuIH169crtXt6hqJhQ67NpksY3IiIiPTYy6ZGAcDPryqrodfFqVIiIiI9pSq0tWkzE9HRoYiK0kBB9No44kZERKRnVq9ejfT0dKV2T89QhIcDcXFAeDhH23QRgxsREZEeUTXK5uTkhMDAQOl5eDjPa9NVDG5ERER6QAiB2bNnK7W/eAcEPz+OtOkyBjciIiId96oLEEh/8OIEIiIiHaYqtJ05MxSengxt+ogjbkRERDooLS0N3333nVI7R9n0G4MbERGRjuHUqOHiVCkREZEOURXaDh2azqlRA8ERNyIiIh2wceNGXL9+XamdN4c3LAxuREREWo5To1SCwY2IiEiLqQptDGyGi8GNiIhIC3GUjVRhcCMiItIyqkLbpUu9sW1bWw1UQ9qEwY2IiEhLZGZmYsmSJUrt0dGhvLcoAWBwIyIi0govmxrl7CiVYHAjIiLSMFWhLTg4GObm5hqohrQZgxsREZGGHDhwAH/88YdSOy9AoNIwuBEREWkArxqlitCZW175+fnBzc0NFhYWcHFxwZAhQ3D37l1p+6xZsyCTyZQe1tbWCvvZtm0bmjVrBgsLC7Rq1Qr79+9X2C6EwMyZM+Hi4gJLS0v4+PgorVT94MEDDB48GDY2NrCzs0NAQAAeP36s0OfChQvo3LkzLCws4OrqioiICDV/I0REpKtKW5uNoY1eRWeCW9euXbF161YkJSVh+/btSE5ORv/+/aXtkydPxr179xQezZs3x7///W+pT2xsLAYNGoSAgAAkJCSgb9++6Nu3Ly5duiT1iYiIwNKlS7F69WqcPn0a1tbW8PX1RW5urtRn8ODBuHz5Mg4fPoy9e/fixIkT+PTTT6Xt2dnZ6NatG+rVq4f4+HjMmzcPs2bNwn/+859K/paIiEibhYWFcUFdei0yIYTQdBEVERUVhb59+yIvLw+mpqZK28+fP482bdrgxIkT6Ny5MwBgwIAByMnJwd69e6V+3t7eaNOmDVavXg0hBGrXro1JkyZh8uTJAICsrCw4OTkhMjISAwcOxNWrV9G8eXOcOXMG7dq1AwAcPHgQ7733Hu7cuYPatWtj1apV+PLLL5GWlgYzMzMAz04y3bVrFxITE8v8GbOzs2Fra4usrCzY2NhU+LsiIiLNUxXYunTpgq5du2qgGqpMlfn7W2dG3J734MEDbNiwAR07dlQZ2gBgzZo1aNKkiRTaACAuLg4+Pj4K/Xx9fREXFwcASElJQVpamkIfW1tbdOjQQeoTFxcHOzs7KbQBgI+PD4yMjHD69GmpT5cuXaTQVvI+SUlJePjwYamfKy8vD9nZ2QoPIiLSbU+ePFEZ2qKjQxnaqNx0KrhNnToV1tbWqFWrFlJTU7F7926V/XJzc7FhwwYEBAQotKelpcHJyUmhzcnJCWlpadL2kraX9XF0dFTYbmJigpo1ayr0UbWP599Dlblz58LW1lZ6uLq6ltqXiIi0X1hYGObNm6fUzgV1qaI0GtyCg4NVXlDw/OP5qcWgoCAkJCTg0KFDMDY2xtChQ6Fqpnfnzp149OgRhg0bVpUf57WFhIQgKytLety+fVvTJRERUQWpGmVr2XIiQkNDERsL+PlpoCjSeRpdDmTSpEnw9/d/aZ8GDRpIf7e3t4e9vT2aNGkCDw8PuLq64vfff4dcLld4zZo1a9CrVy+lUS9nZ2ekp6crtKWnp8PZ2VnaXtLm4uKi0KdNmzZSn4yMDIV9FBYW4sGDBwr7UfU+z7+HKubm5lxskYhIx504cQJHjx5Vap81KxRyOdCvnwaKIr2h0eDm4OAABweHCr22uLgYwLPzwp6XkpKCo0ePIioqSuk1crkcMTExGD9+vNR2+PBhKfi5u7vD2dkZMTExUlDLzs7G6dOnMWrUKGkfmZmZiI+Ph5eXFwDgyJEjKC4uRocOHaQ+X375JQoKCqRz8A4fPoymTZuiRo0aFfq8RESk/Upbmy0//1lo4/QovS6dWID39OnTOHPmDDp16oQaNWogOTkZM2bMQMOGDZVG23788Ue4uLigR48eSvv54osv8Oabb2LBggXo2bMnNm/ejLNnz0rLdMhkMowfPx5ff/01GjduDHd3d8yYMQO1a9dG3759AQAeHh7o3r07Ro4cidWrV6OgoABjxozBwIEDUbt2bQDARx99hLCwMAQEBGDq1Km4dOkSlixZgkWLFlXuF0VERBrDZT6oKuhEcLOyssKOHTsQGhqKnJwcuLi4oHv37pg+fbrC1GJxcTEiIyPh7+8PY2Njpf107NgRGzduxPTp0zFt2jQ0btwYu3btQsuWLaU+U6ZMQU5ODj799FNkZmaiU6dOOHjwICwsLKQ+GzZswJgxY/DOO+/AyMgI/fr1w9KlS6Xttra2OHToEEaPHg0vLy/Y29tj5syZCmu9ERGRfuAdEKgq6ew6boaA67gREWk3VaHtxcXfyfBU5u9vnRhxIyIi0iaFhYX45ptvlNo5ykaVjcGNiIioHDg1SprE4EZERFRGqkLb559/XuEVEojKi8GNiIjoFS5fvoxffvlFqZ2jbFTVGNyIiIheglOjpE0Y3IiIiFT48kvAzIxrs5F2YXAjIiJ6QVhYGMzMlNsZ2kjTGNyIiIieo2pq1NHRUbr1IZEmMbgREREBEEJg9uzZSu0cZSNtwuBGREQGjxcgkK5gcCMiIoOmKrSdOTMEe/c20EA1RC/H4EZERAbpxo0bWL9+vVJ7dHQogoM1UBBRGTC4ERGRwXnZ1ChnR0mbGWm6ACIioqqkKrRFR8+ApycTG2k/jrgREZFBmDNnIQoKHim1c5SNdAmDGxER6T1eNUr6gsGNiIj0mqrQ5ukZCj8/DRRD9JoY3IiISC9xlI30EYMbERHpHVWhrXfv3mjbtq0GqiFSHwY3IiLSG+np6Vi9erVSO0fZSF8wuBERkV7g1CgZAgY3IiLSeapC27Rp02BqaqqBaogqD4MbERHprJ9//hnJyclK7RxlI33F4EZERDqJU6NkiHjLKyIi0jmqb1sVyttWkd7jiBsREekM3hyeDB1H3IiISCeoCm3JyZ04ykYGhSNuRESk1bKzs7Fo0SKldp7LRoaIwY2IiLQWL0AgUsTgRkREWklVaJs8eTKsra01UA2RdmBwIyIirbJnzx78+eefSu2enqFgZiNDx+BGRERag1OjRC/H4EZERFpBVWjz9AyFn58GiiHSUgxuRESkURxlIyo7ruNGREQaoyq0ZWQ04dpsRKXgiBsREVW5vLw8hIeHK7VzapTo5RjciIioSnFqlKjiGNyIiKjKqAptHh6j8eGH9hqohkj3MLgREVGli42NxeHDh5XaZ80KhVwOfPihBooi0kEMbkREVKlKmxr19HwW2oKDq7ggIh3G4EZERJXmVWuz8UIEovJhcCMiIrXjBQhElaPc67gZGxsjIyNDqf2ff/6BsbGxWooiIiLdpSq05eVZcW02IjUo94ibEEJle15eHszMzF67ICIi0k1FRUX4+uuvldo5ykakPmUObkuXLgUAyGQyrFmzBtWqVZO2FRUV4cSJE2jWrJn6KyQiIq3HqVGiqlHm4LZo0SIAz0bcVq9erTAtamZmhvr162P16tXqr5CIiLSaqtA2ZMgQNGjQQAPVEOm3Mge3lJQUAEDXrl2xY8cO1KhRo9KKIiIi7Xfp0iVs375dqZ2jbESVp9znuB09erQy6iAiIh3CqVEizSh3cBs+fPhLt//4448VLoaIiLSfqtA2c+ZMyGQyDVRDZFjKHdwePnyo8LygoACXLl1CZmYm3n77bbUVRkRE2uVld0BgZiOqGuUObjt37lRqKy4uxqhRo9CwYUO1FEVERNqFU6NE2kEmSluYrZySkpLw1ltv4d69e+rYHQHIzs6Gra0tsrKyYGNjo+lyiMgACSEwe/ZspXYGNqLSVebvb7Xd8io5ORmFhYXq2h0REWkYR9mItE+5g9vEiRMVngshcO/ePezbtw/Dhg1TW2FERKQ5qkJbr1694OXlpYFqiKhEuYNbQkKCwnMjIyM4ODhgwYIFr7zilIiItNuNGzewfv16pXaOshFpB67jRkREADg1SqQLKnyOW0ZGBpKSkgAATZs2haOjo9qKIiKiqqUqtB0+/CWmTFHbqdBEpAbl/heZnZ2N0aNHY9OmTSguLgYAGBsbY8CAAVixYgVsbW3VXiQREVWOb775RuWFZaGhoeBAG5H2MSrvC0aOHInTp09j3759yMzMRGZmJvbu3YuzZ8/is88+q4waiYioEoSFhZUa2ohIO5V7HTdra2tER0ejU6dOCu0nT55E9+7dkZOTo9YCDRnXcSOiyqJqapSBjUg9tGodt1q1aqmcDrW1tUWNGjXUUhQREVUOXoBApNvKPVU6ffp0TJw4EWlpaVJbWloagoKCMGPGDLUWR0RE6qMqtDk4dGBoI9Ih5Z4q9fT0xF9//YW8vDy4ubkBAFJTU2Fubo7GjRsr9P3zzz/VV6kB4lQpEanD33//jRUrVii1M7ARVQ6tmirt06cPZDKZWosgIqLKwalRIv2itpvMk/pxxI2IXoeq0HbkSBCOH7fSQDVEhqMyf3+X+xy3Bg0a4J9//lFqz8zMRIMGDdRSlCp+fn5wc3ODhYUFXFxcMGTIENy9e1ehT3R0NLy9vVG9enU4ODigX79+uHnzpkKfY8eOoW3btjA3N0ejRo0QGRmp9F4rVqxA/fr1YWFhgQ4dOuCPP/5Q2J6bm4vRo0ejVq1aqFatGvr164f09HSFPqmpqejZsyesrKzg6OiIoKAglZfdExGp28aNG1WGtujoUEyaxNBGpMvKHdxu3ryJoqIipfa8vDzcuXNHLUWp0rVrV2zduhVJSUnYvn07kpOT0b9/f2l7SkoK+vTpg7fffhvnzp1DdHQ0/v77b3zwwQcKfXr27ImuXbvi3LlzGD9+PEaMGIHo6Gipz5YtWzBx4kSEhobizz//ROvWreHr64uMjAypz4QJE7Bnzx5s27YNx48fx927dxXep6ioCD179kR+fj5iY2Oxbt06REZGYubMmZX2/RARAc9G2a5fv67UHhoaithYwM9PA0URkdqUeao0KioKANC3b1+sW7dOYUmQoqIixMTE4PDhw9JtsCpbVFQU+vbti7y8PJiamuKXX37BoEGDkJeXByOjZ3l0z5496NOnj9Rn6tSp2LdvHy5duiTtZ+DAgcjMzMTBgwcBAB06dMAbb7yB5cuXAwCKi4vh6uqKsWPHIjg4GFlZWXBwcMDGjRul4JiYmAgPDw/ExcXB29sbBw4cQK9evXD37l04OTkBAFavXo2pU6fi/v37MDMzK9Nn5FQpEZUH12Yj0g5acXFC3759AQAymQzDhg1T2GZqaor69etjwYIFai2uNA8ePMCGDRvQsWNHmJqaAgC8vLxgZGSEtWvXwt/fH48fP8b69evh4+Mj9YmLi4OPj4/Cvnx9fTF+/HgAQH5+PuLj4xESEiJtNzIygo+PD+Li4gAA8fHxKCgoUNhPs2bN4ObmJgW3uLg4tGrVSgptJe8zatQoXL58GZ6enio/V15eHvLy8qTn2dnZr/EtEZGh4AUIRIajzFOlxcXFKC4uhpubGzIyMqTnxcXFyMvLQ1JSEnr16lWZtWLq1KmwtrZGrVq1kJqait27d0vb3N3dcejQIUybNg3m5uaws7PDnTt3sHXrVqlPWlqaQpgCACcnJ2RnZ+Pp06f4+++/UVRUpLJPybp1aWlpMDMzg52d3Uv7qNpHybbSzJ07F7a2ttLD1dW1jN8MERkqVaGtRYsWDG1Eeqrc57ilpKTA3t5eLW8eHBwMmUz20kdiYqLUPygoCAkJCTh06BCMjY0xdOhQlMz0pqWlYeTIkRg2bBjOnDmD48ePw8zMDP3794euXDgbEhKCrKws6XH79m1Nl0REWionJ6fUqdHnz/8lIv1S7nXcZs+e/dLt5TkBf9KkSfD3939pn+evVLW3t4e9vT2aNGkCDw8PuLq64vfff4dcLseKFStga2uLiIgIqf/PP/8MV1dXnD59Gt7e3nB2dla6+jM9PR02NjawtLSEsbExjI2NVfZxdnYGADg7OyM/Px+ZmZkKo24v9nnxStSSfZb0UcXc3Bzm5uYv/T6IiDg1SmS4yh3cdu7cqfC8oKAAKSkpMDExQcOGDcsV3BwcHODg4FDeEgA8m7oFIJ0T9uTJE+mihBLGxsYKfeVyOfbv36/Q5/Dhw5DL5QAAMzMzeHl5ISYmRjqnr7i4GDExMRgzZgyAZ+fSmZqaIiYmBv369QMAJCUlITU1VdqPXC7HN998g4yMDDg6OkrvY2Njg+bNm1fo8xIRAapD27hx43ivaCIDUe7glpCQoNSWnZ0Nf39/vP/++2op6kWnT5/GmTNn0KlTJ9SoUQPJycmYMWMGGjZsKIWlnj17YtGiRZg9ezYGDRqER48eYdq0aahXr550MUBgYCCWL1+OKVOmYPjw4Thy5Ai2bt2Kffv2Se81ceJEDBs2DO3atUP79u2xePFi5OTk4JNPPgEA2NraIiAgABMnTkTNmjVhY2ODsWPHQi6Xw9vbGwDQrVs3NG/eHEOGDEFERATS0tIwffp0jB49miNqRFQhhw4dki6Seh5H2YgMi9runHDx4kX07t1bacFbde37iy++wPnz55GTkwMXFxd0794d06dPR506daR+mzdvRkREBK5duwYrKyvI5XJ8++23aNasmdTn2LFjmDBhAq5cuYK6detixowZStO1y5cvx7x585CWloY2bdpg6dKl6NChg7Q9NzcXkyZNwqZNm5CXlwdfX1+sXLlSYRr01q1bGDVqFI4dOwZra2sMGzYM4eHhMDEpe1bmciBEBHBqlEjXVObvb7UFt99++w29e/fGw4cP1bE7AoMbEXFtNiJdpBXruJVYunSpwnMhBO7du4f169ejR48eaiuMiMiQcZSNiFQpd3BbtGiRwnMjIyM4ODhg2LBhCgvXEhFRxagKbRYWDpg69XMNVENE2qTcwS0lJaUy6iAiMngFBQWYM2eOUvusWaGQy4GpUzVQFBFplXIHNwDIzMzEX3/9BQBo1KiR0l0EiIiofEqbGvX0fBbagoOruCAi0krlCm43b97E6NGjER0dLd2NQCaToXv37li+fDnq169fGTUSEek1VaEtICAAdevWBQD4+VV1RUSkrcoc3G7fvg1vb2+Ympriq6++goeHBwDgypUrWLVqFeRyOc6cOSP9oCEiopeLj4/H3r17ldp5AQIRlabMy4EEBATgr7/+QnR0NCwsLBS2PX36FN27d0fjxo2xZs2aSinUEHE5ECL9xatGifSXViwHcvDgQWzZskUptAGApaUlvvrqKwwcOFCtxRER6SNVoW3mzJmQyWQaqIaIdEmZg9vff//90nPYGjRogAcPHqijJiIivcRRNiJ6XUav7vKMi4sLrly5Uur2S5cuKdzyiYiI/oehjYjUoczBrW/fvpg8eTLu37+vtC0jIwNTp05F37591VkbEZHOE0KoDG3R0aHw9GRoI6LyKfPFCQ8fPkSHDh2QlpaGjz/+GM2aNYMQAlevXsXGjRvh7OyM33//HTVr1qzsmg0GL04g0m0cZSMyTFpxcUKNGjVw+vRpTJs2DZs3b0ZmZiYAwM7ODh999BHmzJnD0EZE9P+pCm0JCQMwfHgzDVRDRPqizCNuzxNCSFOmDg4OvBKqknDEjUj3XL9+HRs3blRq5ygbkeHQihG358lkMjg6Oqq1ECIiXcepUSKqbBUKbkREpEhVaJsxYwaMjMp8DRgR0SsxuBERvYaIiAg8ffpUqZ2jbERUGRjciIgqiFOjRFTVGNyIiCqgtLXZYmM1UAwRGYwyBbelS5eWeYfjxo2rcDFERNqutFG26OhQBAdXcTFEZHDKtByIu7t72XYmk+HGjRuvXRQ9w+VAiLSLqtB29Wp3bN7cQQPVEJG20vhyICkpKWp9UyIiXZKRkYFVq1YptXOUjYiqWoXPccvPz0dKSgoaNmwIExOeKkdE+ullFyDwGgQiqmrlXmDoyZMnCAgIgJWVFVq0aIHU1FQAwNixYxEeHq72AomINEVVaAsJCeFVo0SkMeUObiEhITh//jyOHTsGCwsLqd3HxwdbtmxRa3FERJqwc+dOlaEtNDQUZmZmGqiIiOiZcs9x7tq1C1u2bIG3t7fCPUpbtGiB5ORktRZHRFSVoqKAhASuzUZE2qvcwe3+/fsq71Oak5PDm80TkU5TFdpmzQpFtWrg+WxEpBXKHdzatWuHffv2YezYsQAghbU1a9ZALpertzoioipQ2gUI338fCktLgMtTEpG2KHdwmzNnDnr06IErV66gsLAQS5YswZUrVxAbG4vjx49XRo1ERJVGVWhzcemKTz/twlE2ItI65b44oVOnTjh37hwKCwvRqlUrHDp0CI6OjoiLi4OXl1dl1EhEpHY5OTkqQ9usWaGIjOyigYqIiF6tQguwNWzYEN9//726ayEiqhKlTY1u3hwKuRxcVJeItFaZglt2dnaZd8hbMxGRNlMV2lq1CsL8+Vb49lvAz08DRRERlVGZgpudnV2ZrxgtKip6rYKIiCrDyZMnceTIEaX2kmU+PvigqisiIiq/MgW3o0ePSn+/efMmgoOD4e/vL11FGhcXh3Xr1mHu3LmVUyUR0Wt42W2riIh0iUwIIcrzgnfeeQcjRozAoEGDFNo3btyI//znPzh27Jg66zNo2dnZsLW1RVZWFqegiSqotDsgEBFVlsr8/V3u4GZlZYXz58+jcePGCu3Xrl1DmzZt8OTJE7UWaMgY3IgqjqNsRKQplfn7u9zLgbi6uqq8onTNmjVwdXVVS1FERK9DVWhLSmrP0EZEOq/cy4EsWrQI/fr1w4EDB9ChQwcAwB9//IHr169j+/btai+QiKis8vPzVZ5ru2lTKCIiNFAQEZGalXuqFADu3LmDlStXIjExEQDg4eGBwMBAjripGadKicqutKnRWbOerc0WG1vFBRGRwarM398VWoC3bt26mDNnjloLISKqKFWhbdy4cTh5sgYX1CUivVKh4JaZmYkffvgBV69eBQC0aNECw4cPh62trVqLIyJ6mQsXLmDnzp1K7SXnsvn5cUFdItIv5Z4qPXv2LHx9fWFpaYn27dsDAM6cOYOnT5/i0KFDaNu2baUUaog4VUpUOl41SkTaSquWA+ncuTMaNWqE77//HiYmzwbsCgsLMWLECNy4cQMnTpxQa4GGjMGNSDWuzUZE2kyrznE7e/asQmgDABMTE0yZMgXt2rVTa3FERM8rbZTN05OhjYgMQ7nXcbOxsUFqaqpS++3bt1G9enW1FEVE9CJVoe3Bg3rw9AzleWxEZDDKPeI2YMAABAQEYP78+ejYsSMA4NSpUwgKClK6DRYR0esqLi7GV199pdTOqVEiMkTlDm7z58+HTCbD0KFDUVhYCAAwNTXFqFGjEB4ervYCichw8QIEIiJFFVqAFwCePHmC5ORkAEDDhg1hZWWl1sKIFyeQYVMV2gICAlC3bl0NVENEVHZadXFCCSsrK7Rq1UqdtRARITk5GT///LNSO0fZiIjKEdyGDx9epn4//vhjhYshIsPGqVEiopcrc3CLjIxEvXr14OnpiQrOrhIRlUpVaJs5cyZkMpkGqiEi0k5lDm6jRo3Cpk2bkJKSgk8++QQff/wxatasWZm1EZGei4oCTp1aCiurh0rbOMpGRKSszOu4rVixAvfu3cOUKVOwZ88euLq64sMPP0R0dDRH4IioQhISwpRCm4WFBUMbEVEpKnxV6a1btxAZGYmffvoJhYWFuHz5MqpVq6bu+gwaryolfSWEwOzZs5XaGdiISB9o5VWlRkZGkMlkEEKgqKhInTURkR7jBQhERBVXrlte5eXlYdOmTXj33XfRpEkTXLx4EcuXL0dqaipH24jolVSFtgEDBjC0ERGVUZlH3D7//HNs3rwZrq6uGD58ODZt2gR7e/vKrI2I9ERaWhq+++47pXYGNiKi8inzOW5GRkZwc3ODp6fnSy/P37Fjh9qKM3Q8x430AadGicjQaMU5bkOHDuV6SkRULqpC2/Tp02FsbKyBaoiIdF+5FuAlIiqLjRs34vr160rtHGUjIno9Fb6qlIhIFU6NEhFVHgY3IlIbVaGNgY2ISH0Y3IiowqKigPBwwNdX9ShbdHQomNuIiNSHwY2IKqy00Fa3bg/88EN7BAdroCgiIj3G4EZEFZKVlQVf38VK7dHRoYiNBQICqr4mIiJ9V647J2iSn58f3NzcYGFhARcXFwwZMgR3795V6LN161a0adMGVlZWqFevHubNm6e0n2PHjqFt27YwNzdHo0aNVF4tu2LFCtSvXx8WFhbo0KED/vjjD4Xtubm5GD16NGrVqoVq1aqhX79+SE9PV+iTmpqKnj17wsrKCo6OjggKCkJhYeHrfxFEWiAsLAyLFy9Wao+ODuUoGxFRJdKZ4Na1a1ds3boVSUlJ2L59O5KTk9G/f39p+4EDBzB48GAEBgbi0qVLWLlyJRYtWoTly5dLfVJSUtCzZ0907doV586dw/jx4zFixAhER0dLfbZs2YKJEyciNDQUf/75J1q3bg1fX19kZGRIfSZMmIA9e/Zg27ZtOH78OO7evYsPPvhA2l5UVISePXsiPz8fsbGxWLduHSIjIzFz5sxK/paIKp+qCxD+7/+mIjT02Uibn58GiiIiMhBlvnOCtomKikLfvn2Rl5cHU1NTfPTRRygoKMC2bdukPsuWLUNERARSU1Mhk8kwdepU7Nu3D5cuXZL6DBw4EJmZmTh48CAAoEOHDnjjjTekwFdcXAxXV1eMHTsWwcHByMrKgoODAzZu3CgFx8TERHh4eCAuLg7e3t44cOAAevXqhbt378LJyQkAsHr1akydOhX379+HmZlZmT4j75xA2uTXX3/FqVOnlNp51SgRkaLK/P2tMyNuz3vw4AE2bNiAjh07wtTUFACQl5cHCwsLhX6Wlpa4c+cObt26BQCIi4uDj4+PQh9fX1/ExcUBAPLz8xEfH6/Qx8jICD4+PlKf+Ph4FBQUKPRp1qwZ3NzcpD5xcXFo1aqVFNpK3ic7OxuXL18u9XPl5eUhOztb4UGkDcLCwhjaiIi0gE4Ft6lTp8La2hq1atVCamoqdu/eLW3z9fXFjh07EBMTg+LiYly7dg0LFiwAANy7dw/AsxtdPx+mAMDJyQnZ2dl4+vQp/v77bxQVFansk5aWJu3DzMwMdnZ2L+2jah8l20ozd+5c2NraSg9XV9eyfjVElaa0tdkY2oiIqp5Gg1twcDBkMtlLH4mJiVL/oKAgJCQk4NChQzA2NsbQoUNRMtM7cuRIjBkzBr169YKZmRm8vb0xcOBAAM9GzXRBSEgIsrKypMft27c1XRIZsLCwMJWhzdOTgY2ISFM0uhzIpEmT4O/v/9I+DRo0kP5ub28Pe3t7NGnSBB4eHnB1dcXvv/8OuVwOmUyGb7/9FnPmzEFaWhocHBwQExOjsA9nZ2elqz/T09NhY2MDS0tLGBsbw9jYWGUfZ2dnaR/5+fnIzMxUGHV7sc+LV6KW7LOkjyrm5uYwNzd/6fdBVBVUBbauXbuiS5cuGqiGiIhKaDS4OTg4wMHBoUKvLS4uBvDsvLDnGRsbo06dOgCATZs2QS6XS+8hl8uxf/9+hf6HDx+GXC4HAJiZmcHLywsxMTHo27ev9D4xMTEYM2YMAMDLywumpqaIiYlBv379AABJSUlITU2V9iOXy/HNN98gIyMDjo6O0vvY2NigefPmFfq8RFUhNzcX3377rVI7p0WJiLSDTizAe/r0aZw5cwadOnVCjRo1kJycjBkzZqBhw4ZSWPr777/xyy+/4K233kJubi7Wrl0rLddRIjAwEMuXL8eUKVMwfPhwHDlyBFu3bsW+ffukPhMnTsSwYcPQrl07tG/fHosXL0ZOTg4++eQTAICtrS0CAgIwceJE1KxZEzY2Nhg7dizkcjm8vb0BAN26dUPz5s0xZMgQREREIC0tDdOnT8fo0aM5okZaizeHJyLSfjoR3KysrLBjxw6EhoYiJycHLi4u6N69O6ZPn64QhNatW4fJkydDCAG5XI5jx46hffv20nZ3d3fs27cPEyZMwJIlS1C3bl2sWbMGvr6+Up8BAwbg/v37mDlzJtLS0tCmTRscPHhQ4WKDRYsWwcjICP369UNeXh58fX2xcuVKabuxsTH27t2LUaNGQS6Xw9raGsOGDcPs2bMr+ZsiqhhVoe3YsYk4erS6BqohIqLS6Ow6boaA67hRZUtISEBUVJRSe8kdELiYLhFR+VXm72+dGHEjIvV72dQoZ0eJiLQTgxuRASptbTYiItJuDG5EBoQXIBAR6TYGNyIDoXoxXU/48UQ2IiKdweBGpOeKiorw9ddfK7VzlI2ISPcwuBHpMU6NEhHpFwY3Ij2lKrSNGTMGtWrV0kA1RESkDgxuRHrmxo0bWL9+vVI7R9mIiHQfgxuRHuHUKBGRfmNwI9ITqkLbzJkzIZPJNFANERFVBgY3Ih33888/Izk5Wamdo2xERPqHwY1Ih6kaZbOxaYJt2wbB05P3GiUi0jcMbkQ6SAiB2bNnK7Vv2hQKmQxITATCwxnciIj0DYMbkY4p7QKE6OhQJCUBTZsCcjkQHFzFhRERUaVjcCPSIapC22effQZnZ2d4ej4bZQsO5kgbEZG+MtJ0AUT0av/884/K0BYaGoo//nBGx47PnsfGMrQREekzjrgRablXrc0WHg7ExfGcNiIiQ8DgRqTFyrI2W3Dw/6ZIiYhIvzG4EWmhY8eO4fjx40rtJaNsUVGK57NxpI2IyDAwuBFpGVWjbC1atED//v2l55weJSIyTAxuRFqktAsQXsTpUSIiw8TgRqQFvv76axQVFSm1l3bbKk6PEhEZJgY3Ig1TNcrWuLE/PvqongaqISIibcbgRqQhOTk5mD9/vlI7bw5PRESlYXAj0oBXrc1GRESkCoMbURVTFdqmT58OY2NjDVRDRES6hMGNqIqsW3cFN29uU2rnKBsREZUVgxtRFVA1ytawYUN8/PHHGqiGiIh0FYMbUSVTFdo8PUO5nAcREZUbgxtRJdm2bRuuXLmi1M6pUSIiqigGN6JKoGqU7ZNPPoGbm5sGqiEiIn3B4EakRgUFBZgzZ45SO0fZiIhIHRjciNSEa7MREVFlY3AjUgNVoS0kJARmZmYaqIaIiPQVgxvRa0hNTcXatWuV2jnKRkRElYHBjaiCVI2yeXh44MMPP9RANUREZAgY3IgqQFVo4ygbERFVNgY3onI4duwYjh8/rtTO0EZERFWBwY2ojFSNsg0aNAhNmjTRQDVERGSIGNyIXqGoqAhff/21UjtH2YiIqKoxuBG9RHh4OPLy8pTaGdqIiEgTGNyIXhAVBYSHA76+ylOjU6dOhYWFhdQnOBi8WTwREVUZI00XQKRtli79W2VoCw0NhYWFBYBnoS0u7tmfREREVYUjbkTPCQsLQ+fOim3NmjXDgAEDFNqCg/834kZERFRVGNyI/r/yrM3m58cpUiIiqnoMbmTwzp8/j127dim18wIEIiLSNgxuZNBUjbJ9/PHHaNiwoQaqISIiejkGNzJIQgjMnj1bqZ2jbEREpM0Y3MigREUBhw5tgIPDX0rbGNqIiEjbMbiR3nt+zbWEhDA4OChunzx5MqytrTVTHBERUTkwuJHeCw8Hzp9/goSEeUrbOMpGRES6hMGN9J6v71fw9S1WaGvevDn+/e9/a6giIiKiimFwI72m6qrRmTNnQiaTaaAaIiKi18PgRnrp7t27+P7775XaOTVKRES6jMGN9I6qUbbhw4fD1dVVA9UQERGpD4Mb6Q2uzUZERPqOwY30wpkzZ7B//36FNgcHB3z++ecaqoiIiEj9GNxI56maGg0KCoKVlZUGqiEiIqo8DG6ks/Lz8zF37lyldk6NEhGRvmJwI520ceNGXL9+XaGtc+fOePvttzVUERERUeVjcCOdw7XZiIjIUDG4kc64f/8+Vq5cqdTOqVEiIjIUDG6kE1SNsg0ZMgQNGjTQQDVERESaweBGWk9VaOMoGxERGSIGN9JaFy5cwM6dOxXarK2tMXnyZA1VREREpFlGmi6gvPLy8tCmTRvIZDKcO3dOYduFCxfQuXNnWFhYwNXVFREREUqv37ZtG5o1awYLCwu0atVKadFWIQRmzpwJFxcXWFpawsfHR+nqxQcPHmDw4MGwsbGBnZ0dAgIC8Pjx43LXQqULCwtTCm0TJkxgaCMiIoOmc8FtypQpqF27tlJ7dnY2unXrhnr16iE+Ph7z5s3DrFmz8J///EfqExsbi0GDBiEgIAAJCQno27cv+vbti0uXLkl9IiIisHTpUqxevRqnT5+GtbU1fH19kZubK/UZPHgwLl++jMOHD2Pv3r04ceIEPv3003LVQqoVFhaWOjVqY2OjgYqIiIi0h0wIITRdRFkdOHAAEydOxPbt29GiRQskJCSgTZs2AIBVq1bhyy+/RFpaGszMzAAAwcHB2LVrFxITEwEAAwYMQE5ODvbu3Svt09vbG23atMHq1ashhEDt2rUxadIkaWQnKysLTk5OiIyMxMCBA3H16lU0b94cZ86cQbt27QAABw8exHvvvYc7d+6gdu3aZaqlLLKzs2Fra4usrCyDCC07d+7EhQsXFNreeOMNvPfeexqqiIiIqPwq8/e3zoy4paenY+TIkVi/fr3KWxnFxcWhS5cuUlACAF9fXyQlJeHhw4dSHx8fH4XX+fr6Ii4uDgCQkpKCtLQ0hT62trbo0KGD1CcuLg52dnZSaAMAHx8fGBkZ4fTp02WuRZW8vDxkZ2crPPRdVBTQseOzqdEXQ9uMGTMY2oiIiJ6jE8FNCAF/f38EBgYqBKbnpaWlwcnJSaGt5HlaWtpL+zy//fnXldbH0dFRYbuJiQlq1qz5yvd5/j1UmTt3LmxtbaWHq6trqX31xZIlD+Hrq3pq1MhIJ/7zJCIiqjIa/c0YHBwMmUz20kdiYiKWLVuGR48eISQkRJPlVrqQkBBkZWVJj9u3b2u6pEq1ZMkSdOmyVKHtww8/5FIfREREpdDociCTJk2Cv7//S/s0aNAAR44cQVxcHMzNzRW2tWvXDoMHD8a6devg7OyM9PR0he0lz52dnaU/VfV5fntJm4uLi0KfknPpnJ2dkZGRobCPwsJCPHjw4JXv8/x7qGJubq70GfVFVBQQHg4EBwN+flybjYiIqCI0GtwcHBzg4ODwyn5Lly7F119/LT2/e/cufH19sWXLFnTo0AEAIJfL8eWXX6KgoACmpqYAgMOHD6Np06aoUaOG1CcmJgbjx4+X9nX48GHI5XIAgLu7O5ydnRETEyMFtezsbJw+fRqjRo2S9pGZmYn4+Hh4eXkBAI4cOYLi4uJy1WJowsOBuDggKCgVCQlrFbbJZDLMnDlTQ5URERHpDp26qrTEzZs34e7urnBVaVZWFpo2bYpu3bph6tSpuHTpEoYPH45FixZJS3XExsbizTffRHh4OHr27InNmzdjzpw5+PPPP9GyZUsAwLfffovw8HCsW7cO7u7umDFjBi5cuIArV67AwsICANCjRw+kp6dj9erVKCgowCeffIJ27dph48aNZa6lLPTpqtKoKOC33+bD2jpHoX3ixImoXr26hqoiIiJSv8r8/a03d06wtbXFoUOHMHr0aHh5ecHe3h4zZ85UCEodO3bExo0bMX36dEybNg2NGzfGrl27pNAGPFsnLicnB59++ikyMzPRqVMnHDx4UAptALBhwwaMGTMG77zzDoyMjNCvXz8sXbq0XLUYEiEEEhJmw9pasZ1To0REROWjkyNuhkIfRtwePHiAZcuWKbR17doVXbp00VBFRERElYsjbqSTTpw4gaNHjyq0zZgxg8t8EBERVRCDG6ldYWEhvvnmG4W23r17o23bthqqiIiISD8wuJFa3b59Gz/++KNC26RJk1CtWjUNVURERKQ/GNxIbXbt2oXz589Lzxs3boyPPvpIgxURERHpFwY3em1Pnz5FRESEQtvHH3+Mhg0baqgiIiIi/cTgRq/lypUr2LZtm0JbSEgIzMzMNFQRERGR/mJwowoRQmDNmjW4e/eu1CaXy9GtWzcNVkVERKTfGNyo3DIzM7FkyRKFtsDAQDg5OWmoIiIiIsPA4EblEhsbi8OHD0vPra2tMXHiRK7NRkREVAUY3KhMioqKEB4ejsLCQqntvffewxtvvKHBqoiIiAwLgxu90n//+1+sWbNGoW3ChAk6exsuIiIiXcXgRi+1d+9exMfHS8/d3d0xZMgQyGQyDVZFRERkmBjcSKW8vDyEh4crtA0aNAhNmjTRUEVERETE4EZKkpKSsHnzZoW24OBgmJuba6giIiIiAhjc6DlCCKxbtw63bt2S2tq1a4eePXtqsCoiIiIqweBGAICsrCwsXrxYoW3kyJGoXbu2ZgoiIiIiJQxuhD/++AMHDhyQnpubmyMoKAjGxsYarIqIiIhexOBmwIqLizF//nw8ffpUauvWrRvkcrkGqyIiIqLSMLgZqLS0NHz33XcKbV988QXs7Ow0UxARERG9EoObATp58iSOHDkiPa9bty6GDx/OtdmIiIi0HIObATp58qT09w8//BAeHh4arIaIiIjKisHNAPXu3Rt//fUXevToAQsLC02XQ0RERGXE4GaAWrVqhVatWmm6DCIiIionI00XQERERERlw+BGREREpCMY3IiIiIh0BIMbERERkY5gcDNAUVFAx47P/iQiIiLdweBmgMLDgbi4Z38SERGR7mBwM0DBwYBc/uxPIiIi0h1cx80A+fk9exAREZFu4YgbERERkY5gcCMiIiLSEQxuRERERDqCwY2IiIhIRzC4EREREekIBjciIiIiHcHgRkRERKQjGNyIiIiIdASDGxEREZGOYHAjIiIi0hEMbkREREQ6gsGNiIiISEcwuBERERHpCBNNF0ClE0IAALKzszVcCREREZVVye/tkt/j6sTgpsUePXoEAHB1ddVwJURERFRejx49gq2trVr3KROVEQdJLYqLi3H37l1Ur14dMplM0+VUuuzsbLi6uuL27duwsbHRdDn0Ah4f7cbjo914fLSbuo+PEAKPHj1C7dq1YWSk3rPSOOKmxYyMjFC3bl1Nl1HlbGxs+INNi/H4aDceH+3G46Pd1Hl81D3SVoIXJxARERHpCAY3IiIiIh3B4EZaw9zcHKGhoTA3N9d0KaQCj4924/HRbjw+2k2Xjg8vTiAiIiLSERxxIyIiItIRDG5EREREOoLBjYiIiEhHMLgRERER6QgGN1KLvLw8tGnTBjKZDOfOnVPYduHCBXTu3BkWFhZwdXVFRESE0uu3bduGZs2awcLCAq1atcL+/fsVtgshMHPmTLi4uMDS0hI+Pj64fv26Qp8HDx5g8ODBsLGxgZ2dHQICAvD48eNy16JP/Pz84ObmBgsLC7i4uGDIkCG4e/euQp+tW7eiTZs2sLKyQr169TBv3jyl/Rw7dgxt27aFubk5GjVqhMjISKU+K1asQP369WFhYYEOHTrgjz/+UNiem5uL0aNHo1atWqhWrRr69euH9PR0hT6pqano2bMnrKys4OjoiKCgIBQWFr7+F6GlynJ8oqOj4e3tjerVq8PBwQH9+vXDzZs3Ffrw+FSeVx2jWbNmQSaTKT2sra0V9sOfcZWjLP+GhBCYP38+mjRpAnNzc9SpUwfffPONQh+d+jckiNRg3LhxokePHgKASEhIkNqzsrKEk5OTGDx4sLh06ZLYtGmTsLS0FN99953U59SpU8LY2FhERESIK1euiOnTpwtTU1Nx8eJFqU94eLiwtbUVu3btEufPnxd+fn7C3d1dPH36VOrTvXt30bp1a/H777+LkydPikaNGolBgwaVqxZ9s3DhQhEXFydu3rwpTp06JeRyuZDL5dL2/fv3CxMTE7Fq1SqRnJws9u7dK1xcXMSyZcukPjdu3BBWVlZi4sSJ4sqVK2LZsmXC2NhYHDx4UOqzefNmYWZmJn788Udx+fJlMXLkSGFnZyfS09OlPoGBgcLV1VXExMSIs2fPCm9vb9GxY0dpe2FhoWjZsqXw8fERCQkJYv/+/cLe3l6EhIRU8rekOa86Pjdu3BDm5uYiJCRE/PXXXyI+Pl506dJFeHp6KvTh8ak8rzpGjx49Evfu3VN4NG/eXAwbNkzqw59xledVx0cIIcaOHSuaNm0qdu/eLW7cuCHOnj0rDh06JG3XtX9DDG702vbv3y+aNWsmLl++rBTcVq5cKWrUqCHy8vKktqlTp4qmTZtKzz/88EPRs2dPhX126NBBfPbZZ0IIIYqLi4Wzs7OYN2+etD0zM1OYm5uLTZs2CSGEuHLligAgzpw5I/U5cOCAkMlk4r///W+Za9F3u3fvFjKZTOTn5wshhBg0aJDo37+/Qp+lS5eKunXriuLiYiGEEFOmTBEtWrRQ6DNgwADh6+srPW/fvr0YPXq09LyoqEjUrl1bzJ07Vwjx7HiZmpqKbdu2SX2uXr0qAIi4uDghxLP/joyMjERaWprUZ9WqVcLGxkbhmOmzF4/Ptm3bhImJiSgqKpL6REVFKfTh8alaLx6jF507d04AECdOnJDa+DOu6rx4fK5cuSJMTExEYmJiqa/RtX9DnCql15Keno6RI0di/fr1sLKyUtoeFxeHLl26wMzMTGrz9fVFUlISHj58KPXx8fFReJ2vry/i4uIAACkpKUhLS1PoY2triw4dOkh94uLiYGdnh3bt2kl9fHx8YGRkhNOnT5e5Fn324MEDbNiwAR07doSpqSmAZ1PcFhYWCv0sLS1x584d3Lp1C8Crj09+fj7i4+MV+hgZGcHHx0fqEx8fj4KCAoU+zZo1g5ubm8IxbNWqFZycnBTeJzs7G5cvX1bX16C1VB0fLy8vGBkZYe3atSgqKkJWVhbWr18PHx8fqQ+PT9VRdYxetGbNGjRp0gSdO3eW2vgzrmqoOj579uxBgwYNsHfvXri7u6N+/foYMWIEHjx4IL1O1/4NMbhRhQkh4O/vj8DAQIUfJs9LS0tT+I8UgPQ8LS3tpX2e3/7860rr4+joqLDdxMQENWvWfOX7PP8e+mjq1KmwtrZGrVq1kJqait27d0vbfH19sWPHDsTExKC4uBjXrl3DggULAAD37t0DUPr3lp2djadPn+Lvv/9GUVHRK4+PmZkZ7OzsXtqHx0fx+Li7u+PQoUOYNm0azM3NYWdnhzt37mDr1q1SHx6fyveyY/S83NxcbNiwAQEBAQrt/BlXuV52fG7cuIFbt25h27Zt+OmnnxAZGYn4+Hj0799f6qNr/4YY3EhJcHCwypNtn38kJiZi2bJlePToEUJCQjRdskEp6/EpERQUhISEBBw6dAjGxsYYOnQoxP+/YcrIkSMxZswY9OrVC2ZmZvD29sbAgQMBPPs/Sio/dR6ftLQ0jBw5EsOGDcOZM2dw/PhxmJmZoX///lIfKj91HqPn7dy5E48ePcKwYcOq8uPoHXUen+LiYuTl5eGnn35C586d8dZbb+GHH37A0aNHkZSUpKmP+FpMNF0AaZ9JkybB39//pX0aNGiAI0eOIC4uTunebu3atcPgwYOxbt06ODs7K11VU/Lc2dlZ+lNVn+e3l7S5uLgo9GnTpo3UJyMjQ2EfhYWFePDgwSvf5/n30AVlPT4l7O3tYW9vjyZNmsDDwwOurq74/fffIZfLIZPJ8O2332LOnDlIS0uDg4MDYmJiFPZR2vdmY2MDS0tLGBsbw9jY+JXHMD8/H5mZmQr/R/pinxev0jL047NixQrY2toqXBn4888/w9XVFadPn4a3tzePTwWo8xg9b82aNejVq5fSqAp/xpWPOo+Pi4sLTExM0KRJE6m/h4cHgGdXeDZt2lT3/g2V+Ww4ohfcunVLXLx4UXpER0cLAOKXX34Rt2/fFkL872TZ50/kDQkJUbo4oVevXgr7lsvlSifuzp8/X9qelZWl8sTds2fPSn2io6NVnrj7slr03a1btwQAcfTo0VL7DBkyROGqrClTpoiWLVsq9Bk0aJDSibtjxoyRnhcVFYk6deoonbj7yy+/SH0SExNVnrj7/FVa3333nbCxsRG5ubkV+8A65sXjM3HiRNG+fXuFPnfv3hUAxKlTp4QQPD5VrbR/Qzdu3BAymUzs2bNH6TX8GVd1Xjw+Jb+X/vrrL6lPyQUkSUlJQgjd+zfE4EZqk5KSonRVaWZmpnBychJDhgwRly5dEps3bxZWVlZKy4GYmJiI+fPni6tXr4rQ0FCVl8rb2dmJ3bt3iwsXLog+ffqovFTe09NTnD59Wvz222+icePGCpfKl6UWffL777+LZcuWiYSEBHHz5k0RExMjOnbsKBo2bCj9kLh//75YtWqVuHr1qkhISBDjxo0TFhYW4vTp09J+Si6VDwoKElevXhUrVqxQeam8ubm5iIyMFFeuXBGffvqpsLOzU7h6KjAwULi5uYkjR46Is2fPKl22X3KpfLdu3cS5c+fEwYMHhYODg94uN1GW4xMTEyNkMpkICwsT165dE/Hx8cLX11fUq1dPPHnyRAjB41OZynKMSkyfPl3Url1bFBYWKu2HP+MqR1mOT1FRkWjbtq3o0qWL+PPPP8XZs2dFhw4dxLvvvivtR9f+DTG4kdqoCm5CCHH+/HnRqVMnYW5uLurUqSPCw8OVXrt161bRpEkTYWZmJlq0aCH27dunsL24uFjMmDFDODk5CXNzc/HOO+9I/7dU4p9//hGDBg0S1apVEzY2NuKTTz4Rjx49Knct+uLChQuia9euombNmsLc3FzUr19fBAYGijt37kh97t+/L7y9vYW1tbWwsrIS77zzjvj999+V9nX06FHRpk0bYWZmJho0aCDWrl2r1GfZsmXCzc1NmJmZifbt2yvt5+nTp+Lzzz8XNWrUEFZWVuL9998X9+7dU+hz8+ZN0aNHD2FpaSns7e3FpEmTREFBgXq+EC1TluMjhBCbNm0Snp6ewtraWjg4OAg/Pz9x9epVhT48PpWjrMeoqKhI1K1bV0ybNq3UffFnnPqV9fj897//FR988IGoVq2acHJyEv7+/uKff/5R6KNL/4ZkQvAMVyIiIiJdwMvGiIiIiHQEgxsRERGRjmBwIyIiItIRDG5EREREOoLBjYiIiEhHMLgRERER6QgGNyIiIiIdweBGRFQJZDIZdu3apekyFBw7dgwymQyZmZmaLoWIKojBjYjoNcyaNUu6ETgRUWVjcCMiIiLSEQxuRGTQiouLMXfuXLi7u8PS0hKtW7fGL7/8AuB/U4sxMTFo164drKys0LFjRyQlJQEAIiMjERYWhvPnz0Mmk0EmkyEyMlLa999//433338fVlZWaNy4MaKiospUU8n7RkdHw9PTE5aWlnj77beRkZGBAwcOwMPDAzY2Nvjoo4/w5MkT6XV5eXkYN24cHB0dYWFhgU6dOuHMmTPq+7KISOMY3IjIoM2dOxc//fQTVq9ejcuXL2PChAn4+OOPcfz4canPl19+iQULFuDs2bMwMTHB8OHDAQADBgzApEmT0KJFC9y7dw/37t3DgAEDpNeFhYXhww8/xIULF/Dee+9h8ODBePDgQZlrmzVrFpYvX47Y2Fjcvn0bH374IRYvXoyNGzdi3759OHToEJYtWyb1nzJlCrZv345169bhzz//RKNGjeDr61uu9yQiLVeuW9ITEemR3NxcYWVlJWJjYxXaAwICxKBBg8TRo0cFAPHrr79K2/bt2ycAiKdPnwohhAgNDRWtW7dW2jcAMX36dOn548ePBQBx4MCBV9al6n3nzp0rAIjk5GSp7bPPPhO+vr7S/k1NTcWGDRuk7fn5+aJ27doiIiJCYb8PHz58ZQ1EpJ1MNJgZiYg06q+//sKTJ0/w7rvvKrTn5+fD09NTev5///d/0t9dXFwAABkZGXBzc3vp/p9/nbW1NWxsbJCRkVHm+p5/vZOTE6ysrNCgQQOFtj/++AMAkJycjIKCAvzrX/+StpuamqJ9+/a4evVqmd+TiLQbgxsRGazHjx8DAPbt24c6deoobDM3N0dycjKAZwGohEwmA/Ds3LhXef51Ja8ty+tUvV4mk732/ohI9/EcNyIyWM2bN4e5uTlSU1PRqFEjhYerq2uZ9mFmZoaioqJKrvTVGjZsCDMzM5w6dUpqKygowJkzZ9C8eXMNVkZE6sQRNyIyWNWrV8fkyZMxYcIEFBcXo1OnTsjKysKpU6dgY2ODevXqvXIf9evXR0pKCs6dO4e6deuievXqMDc3r4LqFVlbW2PUqFEICgpCzZo14ebmhoiICDx58gQBAQFVXg8RVQ4GNyIyaF999RUcHBwwd+5c3LhxA3Z2dmjbti2mTZtWpmnIfv36YceOHejatSsyMzOxdu1a+Pv7V37hKoSHh6O4uBhDhgzBo0eP0K5dO0RHR6NGjRoaqYeI1E8mhBCaLoKIiIiIXo3nuBERERHpCAY3IqIqFhgYiGrVqql8BAYGaro8ItJinColIqpiGRkZyM7OVrnNxsYGjo6OVVwREekKBjciIiIiHcGpUiIiIiIdweBGREREpCMY3IiIiIh0BIMbERERkY5gcCMiIiLSEQxuRERERDqCwY2IiIhIRzC4EREREemI/wfIwUKhYZuBRgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHHCAYAAABa2ZeMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJvElEQVR4nO3dd3hUVf7H8c8kpEIKJSGUhKoU8QcIgokFYZHAqsCKuogCEURREBEsRJQQEIiIKFjAFSmrKFiRBSUiRVTiqkiREhQkUgOoJBGQ1Pv7gzDrOBNMwmTulPfreebJ3nPv3PkOdzEfzjn3XIthGIYAAAAgP7MLAAAAcBcEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAAgFIEIwAeyWKxaOLEiWaXYZWUlKTGjRubXQaAC0QwAuA0CxculMVisb6Cg4N18cUXa+TIkTp69GiVfvbGjRs1ceJE5eTkOPW81157rc13qlWrli6//HLNnz9fJSUlTvmMqVOnatmyZU45F4ALU83sAgB4n0mTJqlJkyY6c+aMPv/8c82ZM0cffvihtm/frtDQUKd8xu+//65q1f73n7CNGzcqNTVVSUlJioyMdMpnnNOwYUNNmzZNknT8+HH9+9//1tChQ/X9998rLS3tgs8/depU3Xzzzerbt+8FnwvAhSEYAXC6Xr16qWPHjpKku+66S7Vr19bMmTP1wQcf6Lbbbqv0eUtKSlRQUKDg4GAFBwc7q9y/FBERoTvuuMO6fc8996hFixZ64YUXNHnyZAUEBLisFgBVi6E0AFWuW7dukqR9+/ZJkmbMmKGEhATVrl1bISEh6tChg9555x2791ksFo0cOVKLFy/WJZdcoqCgIK1atcq679wco4kTJ+rhhx+WJDVp0sQ67JWVlaUuXbqobdu2Dutq0aKFEhMTK/x9QkNDdcUVV+jUqVM6fvx4mcedOnVKY8eOVWxsrIKCgtSiRQvNmDFDhmHYfMdTp05p0aJF1rqTkpIqXBMA56DHCECV27t3rySpdu3akqRZs2apd+/euv3221VQUKAlS5bolltu0YoVK3T99dfbvHft2rV66623NHLkSNWpU8fhBOebbrpJ33//vd588009++yzqlOnjiQpKipKAwcO1LBhw7R9+3a1adPG+p6vv/5a33//vR5//PFKfacff/xR/v7+ZQ7bGYah3r17a926dRo6dKjatWun9PR0Pfzwwzp06JCeffZZSdJrr72mu+66S506ddLdd98tSWrWrFmlagLgBAYAOMmCBQsMScYnn3xiHD9+3Dhw4ICxZMkSo3bt2kZISIhx8OBBwzAM4/Tp0zbvKygoMNq0aWN069bNpl2S4efnZ+zYscPusyQZKSkp1u2nn37akGTs27fP5ricnBwjODjYePTRR23aR40aZVSvXt04efLkeb9Tly5djJYtWxrHjx83jh8/buzatcsYNWqUIcm48cYbrccNHjzYaNSokXV72bJlhiTjySeftDnfzTffbFgsFmPPnj3WturVqxuDBw8+bx0AXIOhNABO1717d0VFRSk2Nlb9+/dXjRo19P7776tBgwaSpJCQEOuxJ06cUG5urq6++mp9++23dufq0qWLWrduXelaIiIi1KdPH7355pvWIazi4mItXbpUffv2VfXq1f/yHJmZmYqKilJUVJRatWql559/Xtdff73mz59f5ns+/PBD+fv7a9SoUTbtY8eOlWEY+uijjyr9nQBUHYbSADjdiy++qIsvvljVqlVT3bp11aJFC/n5/e/fYStWrNCTTz6pLVu2KD8/39pusVjsztWkSZMLrmfQoEFaunSpPvvsM11zzTX65JNPdPToUQ0cOLBc72/cuLFeeeUV6xIEF110kaKjo8/7np9++kn169dXWFiYTXurVq2s+wG4H4IRAKfr1KmT9a60P/vss8/Uu3dvXXPNNXrppZdUr149BQQEaMGCBXrjjTfsjv9j71JlJSYmqm7dunr99dd1zTXX6PXXX1dMTIy6d+9ervdXr1693McC8GwMpQFwqXfffVfBwcFKT0/XkCFD1KtXL6eEDke9Tef4+/trwIABeuedd3TixAktW7ZMt912m/z9/S/4c8vSqFEjHT58WL/99ptNe2ZmpnX/OeerHYBrEYwAuJS/v78sFouKi4utbVlZWRe88vO5uUJlrXw9cOBAnThxQvfcc49Onjxpsy5RVfj73/+u4uJivfDCCzbtzz77rCwWi3r16mVtq169utNX7AZQOQylAXCp66+/XjNnzlTPnj01YMAAHTt2TC+++KKaN2+ubdu2Vfq8HTp0kCSNHz9e/fv3V0BAgG688UZrYGrfvr3atGmjt99+W61atdJll13mlO9TlhtvvFFdu3bV+PHjlZWVpbZt2+rjjz/WBx98oNGjR9vckt+hQwd98sknmjlzpurXr68mTZqoc+fOVVofAMfoMQLgUt26ddOrr76q7OxsjR49Wm+++aaeeuop/eMf/7ig815++eWaPHmytm7dqqSkJN122212iy8OGjRIkso96fpC+Pn5afny5Ro9erRWrFih0aNHa+fOnXr66ac1c+ZMm2NnzpypDh066PHHH9dtt92mOXPmVHl9AByzGMYflmAFAC82a9YsPfjgg8rKylJcXJzZ5QBwQwQjAD7BMAy1bdtWtWvX1rp168wuB4CbYo4RAK926tQpLV++XOvWrdN3332nDz74wOySALgxeowAeLWsrCw1adJEkZGRuu+++zRlyhSzSwLgxghGAAAApbgrDQAAoJTHBKNp06bp8ssvV1hYmKKjo9W3b1/t3r3b5pgzZ85oxIgRql27tmrUqKF+/frp6NGjJlUMAAA8jccMpfXs2VP9+/fX5ZdfrqKiIj322GPavn27du7caV3A7d5779XKlSu1cOFCRUREaOTIkfLz89MXX3xR7s8pKSnR4cOHFRYWxjL9AAB4CMMw9Ntvv6l+/fo2D62uzIk80rFjxwxJxqeffmoYhmHk5OQYAQEBxttvv209ZteuXYYkIyMjo9znPXDggCGJFy9evHjx4uWBrwMHDlxQvvDY2/Vzc3MlSbVq1ZIkbdq0SYWFhTYPo2zZsqXi4uKUkZGhK664wuF58vPzlZ+fb902SjvQDhw4oPDw8KoqHwAAOFFeXp5iY2MVFhZ2QefxyGBUUlKi0aNH68orr1SbNm0kSdnZ2QoMDFRkZKTNsXXr1lV2dnaZ55o2bZpSU1Pt2sPDwwlGAAB4mAudBuMxk6//aMSIEdq+fbuWLFlywedKTk5Wbm6u9XXgwAEnVAgAADyRx/UYjRw5UitWrNCGDRvUsGFDa3tMTIwKCgqUk5Nj02t09OhRxcTElHm+oKAgBQUFVWXJAADAQ3hMj5FhGBo5cqTef/99rV27Vk2aNLHZ36FDBwUEBGjNmjXWtt27d2v//v2Kj493dbkAAMADeUyP0YgRI/TGG2/ogw8+UFhYmHXeUEREhEJCQhQREaGhQ4dqzJgxqlWrlsLDw3X//fcrPj6+zInXlVVcXKzCwkKnnhPuKSAgQP7+/maXAQBwEY9Zx6isyVQLFixQUlKSpLMLPI4dO1Zvvvmm8vPzlZiYqJdeeum8Q2l/lpeXp4iICOXm5tpNvjYMQ9nZ2crJyans14AHioyMVExMDOtaAYAbO9/v74rwmGDkKuf7gz1y5IhycnIUHR2t0NBQflF6OcMwdPr0aR07dkyRkZGqV6+e2SUBAMrgrGDkMUNpZisuLraGotq1a5tdDlwkJCREknTs2DFFR0czrAYAXs5jJl+b7dycotDQUJMrgaudu+bMKwMA70cwqiCGz3wP1xwAfAfBCAAAoBTBCAAAoBTByAckJSXJYrHIYrEoICBAdevW1XXXXaf58+erpKSk3OdZuHCh3bPoAADwJgQjH9GzZ08dOXJEWVlZ+uijj9S1a1c98MADuuGGG1RUVGR2eQAAuAWCkY8ICgpSTEyMGjRooMsuu0yPPfaYPvjgA3300UdauHChJGnmzJm69NJLVb16dcXGxuq+++7TyZMnJUnr16/XnXfeqdzcXGvv08SJEyVJr732mjp27KiwsDDFxMRowIABOnbsmEnfFADgrj74wFBCQomWLze7krIRjC6AYRgqKCgw5eWMdTm7deumtm3b6r333pMk+fn5afbs2dqxY4cWLVqktWvX6pFHHpEkJSQk6LnnnlN4eLiOHDmiI0eO6KGHHpJ09jb2yZMna+vWrVq2bJmysrKsq5EDACBJ69at05Ytk9Sq1UKlpZldTdlY4PECFBYWatq0aaZ8dnJysgIDAy/4PC1bttS2bdskSaNHj7a2N27cWE8++aSGDx+ul156SYGBgYqIiJDFYrF7xMqQIUOs/7tp06aaPXu2Lr/8cp08eVI1atS44BoBAJ6rsLBQU6dOtW7HxR1Q796GJPdcCoVg5OMMw7Cu0/PJJ59o2rRpyszMVF5enoqKinTmzBmdPn36vAtbbtq0SRMnTtTWrVt14sQJ64Tu/fv3q3Xr1i75HgAA95OZmamlS5fatD300EOqXt09Q5FEMLogAQEBSk5ONu2znWHXrl1q0qSJsrKydMMNN+jee+/VlClTVKtWLX3++ecaOnSoCgoKygxGp06dUmJiohITE7V48WJFRUVp//79SkxMVEFBgVNqBAB4ntTUVJvtNm3aqF+/fiZVU34EowtgsVicMpxllrVr1+q7777Tgw8+qE2bNqmkpETPPPOM/PzOTj176623bI4PDAxUcXGxTVtmZqZ++eUXpaWlKTY2VpL0zTffuOYLAADczsGDB/Xqq6/atA0ZMsT6O8LdEYx8RH5+vrKzs1VcXKyjR49q1apVmjZtmm644QYNGjRI27dvV2FhoZ5//nndeOON+uKLLzR37lybczRu3FgnT57UmjVr1LZtW4WGhiouLk6BgYF6/vnnNXz4cG3fvl2TJ0826VsCAMw0a9Ys5eTk2LQ5a06sq3BXmo9YtWqV6tWrp8aNG6tnz55at26dZs+erQ8++ED+/v5q27atZs6cqaeeekpt2rTR4sWL7SaWJyQkaPjw4frnP/+pqKgoTZ8+XVFRUVq4cKHefvtttW7dWmlpaZoxY4ZJ3xIAYIbCwkKlpqbahKKwsDClpKR4VCiSJIvhjPu+vUheXp4iIiKUm5ur8PBwa/uZM2e0b98+NWnSRMHBwSZWCFfj2gNA2b788kulp6fbtN15552Ki4vT8uVSWpo0bpzUu3fV1lHW7++KYigNAABUyp8nWEvShAkTrHc7p6VJGRlnf1Z1MHIWghEAAKiQJUsOa/fuV2zaOnXqpF69etm0jRv3vx4jT0EwAgAA5eaol+js2kTV7dp79/acnqJzCEYAAOAvFRUVacqUKXbtKSkpJlRTdQhGAADgvJYsWaLdu3fbtH35ZSfl5vaSl+UighEAACibo6Gzdu0eV3q6v0fNHSovghEAALCTlZWlRYsW2bWfGzrr08fVFbkGwQgAANhw1EtUWDhQTz7Z1IRqXIuVrwEAgCTJMAyHoWjixBTNmuX9oUiixwhOlJSUpJycHC1btkySdO2116pdu3Z67rnnKn1OZ5wDAPDXZsyYoVOnTtm1FxSkqEYNadQoE4oyAcHIByQlJVnHiQMCAhQXF6dBgwbpscceU7VqVfd/gffee08BAQHlOnb9+vXq2rWrTpw4ocjIyEqdAwBQOY56iZ5++iH93/9V18aNkoO79L0WwchH9OzZUwsWLFB+fr4+/PBDjRgxQgEBAUpOTrY5rqCgwGkP/KtVq5ZbnAMA4Nju3bu1ZMkSu/aCghT93/951orVzsIcIx8RFBSkmJgYNWrUSPfee6+6d++u5cuXKykpSX379tWUKVNUv359tWjRQpJ04MAB3XrrrYqMjFStWrXUp08fZWVlWc9XXFysMWPGKDIyUrVr19YjjzyiPz+P+Nprr9Xo0aOt2/n5+Xr00UcVGxuroKAgNW/eXK+++qqysrLUtWtXSVLNmjVlsViUlJTk8BwnTpzQoEGDVLNmTYWGhqpXr1764YcfrPsXLlyoyMhIpaenq1WrVqpRo4Z69uypI0eOWI9Zv369OnXqpOrVqysyMlJXXnmlfvrpJyf9SQOAZ0hNTbULRfv3t9LEiSlat07auNHzVq12BoKRjwoJCVFBQYEkac2aNdq9e7dWr16tFStWqLCwUImJiQoLC9Nnn32mL774whowzr3nmWee0cKFCzV//nx9/vnn+vXXX/X++++f9zMHDRqkN998U7Nnz9auXbv08ssvq0aNGoqNjdW7774r6ey/Xo4cOaJZs2Y5PEdSUpK++eYbLV++XBkZGTIMQ3//+99VWFhoPeb06dOaMWOGXnvtNW3YsEH79+/XQw89JOnsyq19+/ZVly5dtG3bNmVkZOjuu++2PvAQAHyBo6Gzp55KUZ8+tyo+3jd7is5hKM3HGIahNWvWKD09Xffff7+OHz+u6tWra968edYhtNdff10lJSWaN2+eNTAsWLBAkZGRWr9+vXr06KHnnntOycnJuummmyRJc+fOVXp6epmf+/333+utt97S6tWr1b17d0lS06b/u8Ph3JBZdHS0zRyjP/rhhx+0fPlyffHFF0pISJAkLV68WLGxsVq2bJluueUWSVJhYaHmzp2rZs2aSZJGjhypSZMmSZLy8vKUm5urG264wbq/VatWFf+DBAAP5CgQSdKMGSl68EHPfLaZs9FjZJLly6WEhLM/XWHFihWqUaOGgoOD1atXL/3zn//UxIkTJUmXXnqpzbyirVu3as+ePQoLC1ONGjVUo0YN1apVS2fOnNHevXuVm5urI0eOqHPnztb3VKtWTR07dizz87ds2SJ/f3916dKl0t9h165dqlatms3n1q5dWy1atNCuXbusbaGhodbQI0n16tXTsWPHJJ0NYElJSUpMTNSNN96oWbNm2QyzAYC3chSKbrnlFqWkpOi333xrgvX50GNkkrQ0KSPj7E9XpPOuXbtqzpw5CgwMVP369W3uRvvzE5FPnjypDh06aPHixXbniYqKqtTnh4SEVOp9lfHnu9gsFovN/KcFCxZo1KhRWrVqlZYuXarHH39cq1ev1hVXXOGyGgHAVY4ePaq5c+fatXvbw1+dhR4jk4wbJ5eO41avXl3NmzdXXFzcX96if9lll+mHH35QdHS0mjdvbvOKiIhQRESE6tWrp//+97/W9xQVFWnTpk1lnvPSSy9VSUmJPv30U4f7z/VYFRcXl3mOVq1aqaioyOZzf/nlF+3evVutW7c+73f6s/bt2ys5OVkbN25UmzZt9MYbb1To/QDgCVJTUx2GovR0QlFZCEYm6d3bfWf833777apTp4769Omjzz77TPv27dP69es1atQoHTx4UJL0wAMPKC0tTcuWLVNmZqbuu+8+5eTklHnOxo0ba/DgwRoyZIiWLVtmPedbb70lSWrUqJEsFotWrFih48eP6+TJk3bnuOiii9SnTx8NGzZMn3/+ubZu3ao77rhDDRo0UJ9yPrRn3759Sk5OVkZGhn766Sd9/PHH+uGHH5hnBMDrOBo6mzfvCaWnp/j05Oq/QjCCndDQUG3YsEFxcXG66aab1KpVKw0dOlRnzpxReHi4JGns2LEaOHCgBg8erPj4eIWFhekf//jHec87Z84c3XzzzbrvvvvUsmVLDRs2zLrKaoMGDZSamqpx48apbt26GjlypMNzLFiwQB06dNANN9yg+Ph4GYahDz/8sNyLQIaGhiozM1P9+vXTxRdfrLvvvlsjRozQPffcU4E/IQBwX9OnTy/zsR7Vq/u57T/K3YXF+PPiMz4uLy9PERERys3NtYYASTpz5oz27dunJk2aKDg42MQK4WpcewCewlEgysxsoS1b+qtmzbPTN7w1FJX1+7uimHwNAICHO3PmjJ566im79okTzz7nbPFi7w1EzkYwAgDAg5W1NlFBQYr1Jh9CUfkRjAAA8FCOQtEll4zWzTdHmFCNdyAYAQDgYT744ANt2bLFrp21iS4cd6VVEHPVfQ/XHIA7SU1NdRiKWJvIOegxKqdzt4OfPn3apas4w3ynT5+WZL+iNgC4kmEY1uc+/lFBQYrWrfPtB786E8GonPz9/RUZGWl95lZoaChPZPdyhmHo9OnTOnbsmCIjI+Xv7292SQB8VFkTrCdOPDvBeuNGFxfkxQhGFRATEyNJ1nAE3xAZGWm99gDgao5C0ebN/9Qll7R06aOlfAXBqAIsFovq1aun6OhoFRYWml0OXCAgIICeIgCm2LZtm95//3279vT0FHqIqhDBqBL8/f35ZQkAqDJlDZ3xnLOqRzACAMCNOApFEyZMkMViEXfjVz2CEQAAbqCsXiLWJnItghEAACZzFIratWunPn36mFCNbyMYAQBgkp9//lkvvviiXXt6egrDZiYhGAEAYAImWLsnghEAAC7mKBQ9+uijCg4OpqfIZAQjAABcZMqUKSoqKrJrb98+RcHBJhQEOwQjAABcoKyhs/btU9S7t4uLQZkIRgAAVKGioiJNmTLFrp0VrN0TwQgAgCrCBGvPQzACAKAKOApFQ4cOVcOGDZlg7cYIRgAAONHq1au10cEYGStYewaCEQAATsJjPTwfwQgAACdwFIomTkzRBx+YUAwqjWAEAMAFKKuXaNKkFN18s7gV38MQjAAAqITx46XAQPtQVL/+dRo2LIEJ1h6KYAQAQAUtXrxPgYH/tmtnLpHnIxgBAFBOy5dLmzczwdqb+ZldAAAAnsJRKEpPf0Lt2xOKvAU9RgAA/IXz3YZPR5F38coeoxdffFGNGzdWcHCwOnfurK+++srskgAAHspRKPr110b0Enkpr+sxWrp0qcaMGaO5c+eqc+fOeu6555SYmKjdu3crOjra7PIAAB7i1KlTmjFjhl07c4m8m8UwDMPsIpypc+fOuvzyy/XCCy9IkkpKShQbG6v7779f48rxxL68vDxFREQoNzdX4eHhVV0uAMANsYK153HW72+v6jEqKCjQpk2blJycbG3z8/NT9+7dlZGR4fA9+fn5ys/Pt27n5eVVeZ0AAPflKBSNGTNGYWFhJlQDV/OqYPTzzz+ruLhYdevWtWmvW7euMjMzHb5n2rRpZf7LAADgO5599k3l5X1v104vkW/xysnXFZGcnKzc3Fzr68CBA2aXBABwsdTUVEIRJHlZj1GdOnXk7++vo0eP2rQfPXpUMTExDt8TFBSkoKAgV5QHAHAzhmFo0qRJdu0EIt/lVT1GgYGB6tChg9asWWNtKykp0Zo1axQfH29iZQAAd5OamuowFM2YQSjyZV7VYySdnSA3ePBgdezYUZ06ddJzzz2nU6dO6c477zS7NACAm3A0t7So6CY999ylGjXKhILgNrwuGP3zn//U8ePHNWHCBGVnZ6tdu3ZatWqV3YRsAIDv2bBhg9atW2fXfm7obPJkV1cEd+N16xhdKNYxAgDvw8NfvR/rGAEAUE6OQhGBCI4QjAAAXosVrFFRBCMAgFdyFIpatGih/v37m1ANPAXBCADgVQ4dOqR58+bZtdNLhPIgGAEAvAZDZ7hQBCMAgFdwFIqSk5MVGBhoQjXwVAQjAIDH4jZ8OJtXPRIEAOBbCEVwNnqMAAAeZfly6emn89W9e5rdPgIRLhTBCADgUTZvTlX37vbthCI4A0NpAACP4WiCdUbGXWrfnlAE56DHCADg9pYsWaLdu3fbtdNLBGcjGAEA3BprE8GVCEYAALflKBQRiFCVCEYAALdDLxHMQjACALiNshZs3LChmx544GoTKoKvIRgBANzCt99+q82b/2PXnp6eonHjpN69TSgKPodgBAAw3fmGzhg9gysRjAAApnIUiiZMmCCLxWJCNfB1BCMAgCmYYA13xMrXAACXcxSKiooCWMEapqPHCADgMidOnNDs2bPt2uklgrsgGAEAXKKsoTN6ieBOCEYAgCrnKBQ9+OCDCg8PN6EaoGwEIwBAlUlNnSTJsGtn6AzuimAEAKgS3HUGT0QwAgA4VUlJiSZPnmzXTiCCJyAYAQCchl4ieDqCEQDAKRyFoltvvVWtWrUyoRqgcghGAIALsmLFCm3atMmunV4ieCKCEQCg0hg6g7chGAEAKsVRKCIQwdMRjAAAFUIvEbwZwQgAUG6OQlGLFi3Uv39/E6oBnI9gBAD4S3v37tXrr79u104vEbwNwQgAcF4MncGXEIwAAGVyFIratn1MffsGmFANUPUIRgAAO/QSwVf5mV0AAMC9EIrgy+gxAgBIkn7//XdNnz7drp1ABF9CMAIA0EsElGIoDQB8nKNQNHfuPUpPJxTB99BjBAA+6pVXXtHhw4ft2pcsSVFEhDRunAlFASYjGAGADzrf0BmjZ/BlBCMA8CGGYWjSpEl27cwlAs4iGAGAj2CCNfDXCEYA4MWWL5fS0qTERPtQdN111ykhIcGEqgD3RTACAC/2xhtfKTHxI7t2eokAxwhGAOClUlNT1aqVfTuhCCgbwQgAvJCj+UQTJkyQxWIxoRrAcxCMAMCLMMEauDAEIwDwEo5CUZ06dTRixAgTqgE8U4WDkb+/v44cOaLo6Gib9l9++UXR0dEqLi52WnEAgL/2888/68UXX7Rrb98+Rb17m1AQ4MEqHIwMw3DYnp+fr8DAwAsuCABQfmUNnU2cmKL4eBGMgAoqdzCaPXu2JMlisWjevHmqUaOGdV9xcbE2bNigli1bOr9CAIBDjkLR9OkPKzY2VPHxPOsMqIxyB6Nnn31W0tkeo7lz58rf39+6LzAwUI0bN9bcuXOdXyEAwEZZvUTt26eobduzgYieIqByyh2M9u3bJ0nq2rWr3nvvPdWsWbPKigIAOPZXd50RiIALU+E5RuvWrauKOgAA57FsWbG2bn3Srp3b8AHnqnAwGjJkyHn3z58/v9LFAADssTYR4DoVDkYnTpyw2S4sLNT27duVk5Ojbt26Oa0wAIDjUNSs2UDdcUdTE6oBvF+Fg9H7779v11ZSUqJ7771XzZo1c0pRAODrVq5cqW+++cau/dxt+HfcYUJRgA/wc8pJ/Pw0ZswY651rAIDKS01NdRiK2rdP4TZ8oIo57ZEge/fuVVFRkbNOBwA+ydHQWXp6ivUWfO46A6pWhYPRmDFjbLYNw9CRI0e0cuVKDR482GmFAYAvOd8Ea+ZYA65T4WC0efNmm20/Pz9FRUXpmWee+cs71gAA9hyFok6dOqlXr14mVAP4NtYxAgCT7NmzR4sXL7Zr5zZ8wDyVnmN07Ngx7d69W5LUokULRUdHO60oAPB2rE0EuKcK35WWl5engQMHqn79+urSpYu6dOmiBg0a6I477lBubm5V1KisrCwNHTpUTZo0UUhIiJo1a6aUlBQVFBTYHLdt2zZdffXVCg4OVmxsrKZPn14l9QDAhXAUih5//HFCEeAGKtxjNGzYMG3evFkrV65UfHy8JCkjI0MPPPCA7rnnHi1ZssTpRWZmZqqkpEQvv/yymjdvru3bt2vYsGE6deqUZsyYIelsYOvRo4e6d++uuXPn6rvvvtOQIUMUGRmpu+++2+k1AUBF0UsEuD+LYRhGRd5QvXp1paen66qrrrJp/+yzz9SzZ0+dOnXKqQWW5emnn9acOXP0448/SpLmzJmj8ePHKzs7W4GBgZKkcePGadmyZcrMzCz3efPy8hQREaHc3FyFh4dXSe0AfMPy5VJa2tl1hzZvJhQBVclZv78r3GNUu3ZtRURE2LVHRESoZs2alS6konJzc1WrVi3rdkZGhq655hprKJKkxMREPfXUUzpx4kSZteXn5ys/P9+6nZeXV3VFA/ApaWnStm2ntHnzDLt9BCLAPVV4jtHjjz+uMWPGKDs729qWnZ2thx9+WE888YRTiyvLnj179Pzzz+uee+6xqaFu3bo2x53b/mOtfzZt2jRFRERYX7GxsVVTNACfk5iYqocftg9F6emEIsBdVTgYzZkzR19++aXi4uLUvHlzNW/eXHFxcdq4caNefvllXXbZZdbXXxk3bpwsFst5X38eBjt06JB69uypW265RcOGDato+XaSk5OVm5trfR04cOCCzwnA9yxfLiUknP0pOZ5P1KrVSOsq1gDcU4WH0vr06SOLxeKUDx87dqySkpLOe0zTpv97gvThw4fVtWtXJSQk6F//+pfNcTExMTp69KhN27ntmJiYMs8fFBSkoKCgClYOALbS0qSMDGnDhjnavPmY3f5zQ2e33urqygBURIWD0cSJE5324VFRUYqKiirXsYcOHVLXrl3VoUMHLViwQH5+tp1d8fHxGj9+vAoLCxUQECBJWr16tVq0aOHSuU8AfBMTrAHvUOGhtKZNm+qXX36xa8/JybHp3XGmQ4cO6dprr1VcXJxmzJih48ePKzs722bu0IABAxQYGKihQ4dqx44dWrp0qWbNmmX3bDcAcDbDMByGorPPOSMUAZ6kwj1GWVlZKi4utmvPz8/XwYMHnVLUn61evVp79uzRnj171LBhQ5t951YbiIiI0Mcff6wRI0aoQ4cOqlOnjiZMmMAaRgCqVFlrE7VvTyACPFG51zFaXjqjsG/fvlq0aJHNLfvFxcVas2aNVq9ebX1MiKdiHSMA5eUoFG3b1lfvvddW8fHSxo0mFAX4KJevY9S3b19JksVi0eDBg232BQQEqHHjxnrmmWcqXQgAeIpvvvlGK1eutGtPSUnR8uXSkSPizjPAQ5U7GJWUlEiSmjRpoq+//lp16tSpsqIAwF2VNXS2ffvZobPevc++AHimCs8x2rdvX1XUAQBuz1EomjEjRSdPSjVqmFAQAKercDCaNGnSefdPmDCh0sUAgDs638NfCwqk2bOlUaNcXBSAKlHhh8i2b9/eZruwsFD79u1TtWrV1KxZM3377bdOLdDVmHwN4I8chaIjRy7R3Lk3m1ANgLKY9hDZzZs3OywmKSlJ//jHPypdCAC4k6NHj2ru3Ll27TzSA/BuFe4xKst3332nG2+8UVlZWc44nWnoMQJwvqEzAO7JWb+/K7zydVnOPYQVADyZo1A0bdo4pacTigBfUOGhtNmzZ9tsG4ahI0eO6LXXXlOvXr2cVhgAuNKkSZPkqAO9ffsUXXYZ6xIBvqLCQ2lNmjSx2fbz81NUVJS6deum5ORkhYWFObVAV2MoDfA9DJ0Bns+0ydesYwTAWxQWFmrq1Kl27RMnpig+XiIXAb6nwsFIknJycrRnzx5JUvPmzRUZGenMmgCgyp3v4a/x8QydAb6qQsEoKytLI0aMUHp6unUs3mKxqGfPnnrhhRfUuHHjqqgRAJzKUSi666671KBBA0k80gPwZeUORgcOHNAVV1yhgIAATZ48Wa1atZIk7dy5U3PmzFF8fLy+/vprNWzYsMqKBYALsXLlSn3zzTd27cwlAnBOuSdfDx06VHv27FF6erqCg4Nt9v3+++/q2bOnLrroIs2bN69KCnUVJl8D3okJ1oB3c/nk61WrVmnp0qV2oUiSQkJCNHnyZPXv37/ShQBAVXEUighEABwpdzD6+eefzzuHqGnTpvr111+dURMAOAW9RAAqqtzBqF69etq5c2eZc4i2b9+umJgYpxUGABfCUSjq3r27rrzyShOqAeApyh2M+vbtq4ceekhr1qxRVFSUzb5jx47p0UcfVd++fZ1dHwBUyJ49e7R48WK7dnqJAJRHuSdfnzhxQp07d1Z2drbuuOMOtWzZUoZhaNeuXXrjjTcUExOjL7/8UrVq1arqmqsUk68Bz8XQGeC7XD75umbNmvrvf/+rxx57TEuWLFFOTo4kKTIyUgMGDNDUqVM9PhQB8FyOQlG7dk+oTx+nPSsbgA+o8LPSpLMPjj1+/LgkKSoqShaLxemFmYUeI8Cz0EsEQDLxWWnS2dWuo6OjK/2hAOAMjkJRw4YNNXToUBOqAeANKhWMAMBMJ0+e1DPPPGPXTi8RgAtFMALgURg6A1CVCEYAPIajUDRmzBiFhYWZUA0Ab0QwAuD25s+frwMHDti100sEwNnKFYxmz55d7hOOGjWq0sUAwJ8xdAbAlcp1u36TJk3KdzKLRT/++OMFF2UmbtcH3INhGJo0aZJdO4EIgCMuvV1/3759lf4AAKiosnqJ0tNTRC4CUJUqvSRsQUGBdu/eraKiImfWA8DHOQpFTZsOUHp6isaNM6EgAD6lwpOvT58+rfvvv1+LFi2SJH3//fdq2rSp7r//fjVo0EDj+C8XgErYtGmTVqxYYdd+buhs4EBXVwTAF1W4xyg5OVlbt27V+vXrFRwcbG3v3r27li5d6tTiAPiG1NTU84YiAHCVCvcYLVu2TEuXLtUVV1xh84y0Sy65RHv37nVqcQC8n6OhMwIRALNUOBgdP37c4XPSTp065VUPkwVQtc53G/7y5VJamjRunNS7t4sLA+DTKjyU1rFjR61cudK6fS4MzZs3T/Hx8c6rDIDXchSKduy4SkuW/C8UZWSc/QkArlThHqOpU6eqV69e2rlzp4qKijRr1izt3LlTGzdu1KeffloVNQLwEj///LNefPFFu/aUlBQlJEiZmdIjj0gWi9SihbgLDYDLVbjH6KqrrtKWLVtUVFSkSy+9VB9//LGio6OVkZGhDh06VEWNALxAampqmaFIOhuC4uPPhqLMTKlWLYbRALheuVa+9iWsfA04n6Ohs9Wrx+uRR6rZhR/mFwGoDGf9/i5XMMrLyyv3CT09TBCMAOcp6+Gv7dunEHoAOJVLHwkSGRlZ7jvOiouLK10MAO/hqJeoWbNmuuOOO0yoBgDKp1zBaN26ddb/nZWVpXHjxikpKcl6F1pGRoYWLVqkadOmVU2VADxGYWGhpk6datfuaG0ihs0AuJsKzzH629/+prvuuku33XabTfsbb7yhf/3rX1q/fr0z63M5htKAyjvf2kSOJCScvS0/Pl7auLEqKwPg7Zz1+7vCd6VlZGSoY8eOdu0dO3bUV199VelCAHg2R6HogQceOO8q1ufuROO2fADuosLBKDY2Vq+88opd+7x58xQbG+uUogB4js8//7zMx3pERkae9729e5/tKWIYDYC7qPACj88++6z69eunjz76SJ07d5YkffXVV/rhhx/07rvvOr1AAO6rokNnAODuKrWO0cGDB/XSSy8pMzNTktSqVSsNHz7cK3qMmGMElA8PfwXgTly6jpEvIRgB50cvEQB35NJ1jP4sJydHr776qnbt2iVJuuSSSzRkyBBFRERUuhAA7s9RKOrfv79atGhhQjUA4HwV7jH65ptvlJiYqJCQEHXq1EmS9PXXX+v333/Xxx9/rMsuu6xKCnUVeowAez/99JMWLlxo104vEQB3YdpQ2tVXX63mzZvrlVdeUbVqZzucioqKdNddd+nHH3/Uhg0bKl2MOyAYAbYYOgPgCUwLRiEhIdq8ebNatmxp075z50517NhRp0+frnQx7oBgBPyPo1A0YcKEcj8iCABcxbQ5RuHh4dq/f79dMDpw4IDCwsIqXQgA9zF58mSVlJTYtdNLBMDbVTgY/fOf/9TQoUM1Y8YMJSQkSJK++OILPfzww3aPCQHgOc49tywx0b6XKD4+Xj169DChKgBwrQoHoxkzZshisWjQoEEqKiqSJAUEBOjee+9VWlqa0wsE4BozZ55UYuIzdu30EgHwJZVex+j06dPau3evJKlZs2YKDQ11amFmYY4RfM3y5dLmzUywBuDZTF3HSJJCQ0N16aWXVvqDAbgHR6Ho0UcfVXBwsAnVAIC5yh2MhgwZUq7j5s+fX+liALjO6tWrtXHjRrt2eokA+LJyB6OFCxeqUaNGat++vXiKCODZHN2GHxMTo3vuuceEagDAfZQ7GN1777168803tW/fPt1555264447VKtWraqsDYATnb3rrESJiZPt9tFLBABn+ZX3wBdffFFHjhzRI488ov/85z+KjY3VrbfeqvT0dHqQAA+weXMqoQgA/kKl70o79+ykf//73yoqKtKOHTtUo0YNZ9fnctyVBm/kaOjsvvvuU1RUlAnVAIDzmX5Xmp+fnywWiwzDUHFxcaULAFB1MjMztXTpUrt2eokAwLFyD6VJUn5+vt58801dd911uvjii/Xdd9/phRde0P79+72itwjwJqmpqYQiAKigcvcY3XfffVqyZIliY2M1ZMgQvfnmm6pTp05V1gagkhwNnRGIAOCvlXuOkZ+fn+Li4tS+ffvzPln7vffec1pxZmCOETyZo0AkEYoAeD+XzzEaNGjQeQMRAPOU9ViPm2++WZdccokJFQGAZ6rQAo/uID8/X507d9bWrVu1efNmtWvXzrpv27ZtGjFihL7++mtFRUXp/vvv1yOPPGJesYALnDhxQps3z7Zrp5cIACqu0nelmeWRRx5R/fr1tXXrVpv2vLw89ejRQ927d9fcuXP13XffaciQIYqMjNTdd99tUrVA1WLoDACcy6OC0UcffaSPP/5Y7777rj766CObfYsXL1ZBQYHmz5+vwMBAXXLJJdqyZYtmzpxJMIJXchSKnnjiCfn5VehmUwDAH3hMMDp69KiGDRumZcuWKTQ01G5/RkaGrrnmGgUGBlrbEhMT9dRTT+nEiROqWbOmw/Pm5+crPz/fup2Xl+f84gEnev/997Vt2za7dnqJAODCecQ/LQ3DUFJSkoYPH66OHTs6PCY7O1t169a1aTu3nZ2dXea5p02bpoiICOsrNjbWeYUDTpaammoXiq666ipCEQA4ianBaNy4cbJYLOd9ZWZm6vnnn9dvv/2m5ORkp9eQnJys3Nxc6+vAgQNO/wzgQhUWFpa5NtHf/vY3EyoCAO9k6lDa2LFjlZSUdN5jmjZtqrVr1yojI0NBQUE2+zp27Kjbb79dixYtUkxMjI4ePWqz/9x2TExMmecPCgqyOy/gTphgDQCuY2owioqKKtdDLGfPnq0nn3zSun348GElJiZq6dKl6ty5syQpPj5e48ePV2FhoQICAiRJq1evVosWLcqcXwS4O0ehqE2bh9SvX3UTqgEA7+cRk6/j4uJsts89l61Zs2Zq2LChJGnAgAFKTU3V0KFD9eijj2r79u2aNWuWnn32WZfXC1yo7777zuEq8vQSAUDV8ohgVB4RERH6+OOPNWLECHXo0EF16tTRhAkTuFUfHmP5ciktTUpMtO8lat68uW6//XYTqgIA31LuZ6X5Cp6VBrMkJBhKTJxk104vEQD8NZc/Kw1A1Zk3b54SEw/ZtROKAMC1CEaAyRxNsL7vvvvKdWMCAMC5CEaASX755Re98MILdu30EgGAeQhGgAkc9RI1aNBAd911lwnVAADOIRgBLuYoFE2YMEEWi8WEagAAf+QRz0oDvEF6enqZj/X4YyhavlxKSDj7EwDgWvQYAS7gKBDdcccdatasmV17WpqUkXH2Z+/erqgOAHAOwQioQmfOnNFTTz1l136+Cdbjxp0NRePGVWVlAABHCEZAFansw19796anCADMQjACqoCjUDR+/HhVq8ZfOQBwZ/xXGnCirVu3atmyZXbtrE0EAJ6BYAQ4iaNeosTERF1xxRUmVAMAqAyCEXCBSkpKNHnyZLt2eokAwPMQjIALkJaWpvz8fLt2QhEAeCaCEVBJjobOxo4dqxo1aphQDQDAGQhGQAUdPHhQr776ql07vUQA4PkIRkAFOOolatOmjfr162dCNQAAZyMYAeVU1nPOAADeg2AE/IWlS5cqMzPTrp1QBADeh2AEnIejXqK7775b9erVM6EaAEBV8zO7AMBdLF8uJSSc/ZmXl1fm0BmhCAC8Fz1GQKm0NCkjQ9q8OVWbN9vuCwsL05gxY8wpDADgMgQjQGd7iX79VZo40b6XaMKECbJYLCZUBQBwNYIRIOn117/RbbettGtngjUA+BaCEXxeamqqLrnEtu3mm2/WJX9uBAB4PYIRfFZxcbGefPJJu3Z6iQDAdxGM4JPmzZunQ4cO2bTVrl1bI0eONKkiAIA7IBjB5zi6Df+xxx5TQECACdUAANwJwQg+49ChQ5o3b55dO0NnAIBzCEbwCY56ifr06aN27dq5vhgAgNsiGMGrGYahSZMm2bXTSwQAcIRgBK+1YsUKbdq0ya6dUAQAKAvBCF7J0dDZ2LFjVaNGDROqAQB4Ch4iC4/2xwe/SlJubm6ZD38lFAEA/go9RvBo5x78mpZ29uGvf3bllVeqe/fuJlQGAPBEBCN4tHHjzoaixETHvUQAAFQEwQgeLSbmKyUmfmTXTigCAFQGwQgey9FcouHDh6tu3bomVAMA8AYEI3icwsJCTZ061a6dXiIAwIUiGMGj/Pvf/9a+ffts2i6//HL9/e9/N6kiAIA3IRjBYzgaOnviiSfk58eqEwAA5yAYwe0dOHBA8+fPt2tn6AwA4GwEI7g1R71Ed955p+Li4kyoBgDg7QhGcEslJSWaPHmyXTu9RACAqkQwgttZtWqV/vvf/9q0NWrUSElJSeYUBADwGQQjuBVHQ2fJyckKDAw0oRoAgK8hGMEtnDhxQrNnz7ZrZ+gMAOBKBCOYzlEv0U033aRLL73UhGoAAL6MYARTOQpF9BIBAMxCMIIpvv76a3344Yc2bYGBgUpOTjapIgAACEYwgaNeojFjxigsLMyEagAA+B+epQCnW75cSkg4+/OPfv/99zKHzghFAAB3QI8RnC4tTcrIOPvz3HafPi/qzJmfbY7r2rWrrrnmGhMqBADAMYIRnG7cuLNh6NzPxMRUnTlje8yECRNksVjMKRAAgDIQjOB0vXuffR08eFCJia/a7eeuMwCAuyIYoUo4mks0fPhw1a1b14RqAAAoH4IRnIqHvwIAPBnBCE6zc+dOvf322zZtTLAGAHgSghEuyPLl/5tg/WdPPPGE/PxYEQIA4DkIRrggM2eeVGLiMzZtF110kQYMGGBSRQAAVB7BCJX2/fffq2vXN23a7r//ftWqVcukigAAuDAEI1SYYRhauHCh9u/fb9POBGsAgKcjGKFCcnJyNGvWLJu2u+66Sw0aNDCpIgAAnIdghHL7/PPPtWbNGut2cHCwHnroIfn7+5tYFQAAzkMwwl8qKirSlClTbNp69eqlTp06mVQRAABVg2CE8/rpp5+0cOFCm7YxY8YoLCzMnIIAAKhCBCOU6a233tKuXbus2xdffLFuu+02EysCAKBqedTqeytXrlTnzp0VEhKimjVrqm/fvjb79+/fr+uvv16hoaGKjo7Www8/rKKiInOK9WAnT55UamqqTSgaNGgQoQgA4PU8psfo3Xff1bBhwzR16lR169ZNRUVF2r59u3V/cXGxrr/+esXExGjjxo06cuSIBg0apICAAE2dOtXEyj3Lpk2btGLFCpu2xx57TAEBASZVBACA61gMwzDMLuKvFBUVqXHjxkpNTdXQoUMdHvPRRx/phhtu0OHDh61PcJ87d64effRRHT9+XIGBgeX6rLy8PEVERCg3N1fh4eFO+w7urqSkRDNnztSpU6esbddee626dOliYlUAAJSPs35/e8RQ2rfffqtDhw7Jz89P7du3V7169dSrVy+bHqOMjAxdeuml1lAkSYmJicrLy9OOHTvMKNtjHDlyRJMnT7YJRffffz+hCADgczxiKO3HH3+UJE2cOFEzZ85U48aN9cwzz+jaa6/V999/r1q1aik7O9smFEmybmdnZ5d57vz8fOXn51u38/LyquAbuK+VK1fqm2++sW7Xr19fd911lywWi4lVAQBgDlN7jMaNGyeLxXLeV2ZmpkpKSiRJ48ePV79+/dShQwctWLBAFotFb7/99gXVMG3aNEVERFhfsbGxzvhqbu/MmTNKTU21CUW33nqrhg0bRigCAPgsU3uMxo4dq6SkpPMe07RpUx05ckSS1Lp1a2t7UFCQmjZtan1eV0xMjL766iub9x49etS6ryzJyckaM2aMdTsvL8/rw9HOnTvtAuW4ceMUFBRkUkUAALgHU4NRVFSUoqKi/vK4Dh06KCgoSLt379ZVV10lSSosLFRWVpYaNWokSYqPj9eUKVN07NgxRUdHS5JWr16t8PBwm0D1Z0FBQT4TCAzD0Msvv2wNjJLUqVMn9erVy8SqAABwHx4xxyg8PFzDhw9XSkqKYmNj1ahRIz399NOSpFtuuUWS1KNHD7Vu3VoDBw7U9OnTlZ2drccff1wjRozwmeBzPr/88oteeOEFm7bhw4fbzcsCAMCXeUQwkqSnn35a1apV08CBA/X777+rc+fOWrt2rWrWrClJ8vf314oVK3TvvfcqPj5e1atX1+DBgzVp0iSTKzffunXrtGHDBut2RESERo0aJT8/j7gpEQAAl/GIdYxcyZvWMSosLLRb3LJ3795q3769SRUBAFA1nPX722N6jFAxe/fu1euvv27T9tBDD6l69eomVQQAgPsjGHmh119/XXv37rVut2nTRv369TOxIgAAPAPByIvk5eXp2WeftWkbMmSI1y8/AACAsxCMvMSXX36p9PR067a/v7+Sk5Pl7+9vYlUAAHgWgpGHKy4u1lNPPaXCwkJr23XXXaeEhAQTqwIAwDMRjDzYwYMH9eqrr9q0jR49WhERESZVBACAZyMYeaj3339f27Zts243adJEAwcO5DlnAABcAIKRhzl9+rR11e9zbr/9djVv3tykigAA8B4EIw+ydetWLVu2zKYtOTlZgYGB5hQEAICXIRh5AMMwNHv2bOXk5FjbrrrqKv3tb38zrygAALwQwcjNHTt2THPmzLFpGzFihOrUqWNSRQAAeC+CkRtLT0/Xl19+ad2Ojo7W8OHDmWANAEAVIRi5ofz8fKWlpdm09evXT23atDGpIgAAfAPByM3s3r1bS5YssWl75JFHFBISYlJFAAD4DoKRmzAMQ/Pnz9fBgwetbZdddpluvPFGE6sCAMC3EIzcwIkTJzR79mybtmHDhql+/fomVQQAgG8iGJnss88+09q1a63boaGhGjt2rPz8/EysCgAA30QwMklRUZGmTJli03b99derY8eOJlUEAAAIRibIysrSokWLbNrGjBmjsLAwkyoCAAASwcjllixZot27d1u3W7Roof79+5tYEQAAOIdg5CK//fabZs6cadM2ePBgNW7c2JyCAACAHYKRi/w5FI0fP17VqvHHDwCAO+E3s4u0atVKu3btUrdu3XT11VebXQ4AAHCAYOQit956q9klAACAv8BiOQAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRgAAAKUIRi6yfLmUkHD2JwAAcE8EIxdJS5MyMs7+BAAA7olg5CLjxknx8Wd/AgAA98QjQVykd++zLwAA4L7oMQIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChVzewC3I1hGJKkvLw8kysBAADlde739rnf45VFMPqT3377TZIUGxtrciUAAKCifvvtN0VERFT6/RbjQqOVlykpKdHhw4cVFhYmi8VidjkukZeXp9jYWB04cEDh4eFml4Ny4Jp5Fq6X5+GaeZZz12vnzp1q0aKF/PwqP1OIHqM/8fPzU8OGDc0uwxTh4eH8B8DDcM08C9fL83DNPEuDBg0uKBRJTL4GAACwIhgBAACUIhhBQUFBSklJUVBQkNmloJy4Zp6F6+V5uGaexZnXi8nXAAAApegxAgAAKEUwAgAAKEUwAgAAKEUwAgAAKEUwglauXKnOnTsrJCRENWvWVN++fW3279+/X9dff71CQ0MVHR2thx9+WEVFReYUC6v8/Hy1a9dOFotFW7Zssdm3bds2XX311QoODlZsbKymT59uTpE+LisrS0OHDlWTJk0UEhKiZs2aKSUlRQUFBTbHcb3cy4svvqjGjRsrODhYnTt31ldffWV2SZA0bdo0XX755QoLC1N0dLT69u2r3bt32xxz5swZjRgxQrVr11aNGjXUr18/HT16tEKfQzDyce+++64GDhyoO++8U1u3btUXX3yhAQMGWPcXFxfr+uuvV0FBgTZu3KhFixZp4cKFmjBhgolVQ5IeeeQR1a9f3649Ly9PPXr0UKNGjbRp0yY9/fTTmjhxov71r3+ZUKVvy8zMVElJiV5++WXt2LFDzz77rObOnavHHnvMegzXy70sXbpUY8aMUUpKir799lu1bdtWiYmJOnbsmNml+bxPP/1UI0aM0JdffqnVq1ersLBQPXr00KlTp6zHPPjgg/rPf/6jt99+W59++qkOHz6sm266qWIfZMBnFRYWGg0aNDDmzZtX5jEffvih4efnZ2RnZ1vb5syZY4SHhxv5+fmuKBMOfPjhh0bLli2NHTt2GJKMzZs3W/e99NJLRs2aNW2uz6OPPmq0aNHChErxZ9OnTzeaNGli3eZ6uZdOnToZI0aMsG4XFxcb9evXN6ZNm2ZiVXDk2LFjhiTj008/NQzDMHJycoyAgADj7bffth6za9cuQ5KRkZFR7vPSY+TDvv32Wx06dEh+fn5q37696tWrp169emn79u3WYzIyMnTppZeqbt261rbExETl5eVpx44dZpTt844ePaphw4bptddeU2hoqN3+jIwMXXPNNQoMDLS2JSYmavfu3Tpx4oQrS4UDubm5qlWrlnWb6+U+CgoKtGnTJnXv3t3a5ufnp+7duysjI8PEyuBIbm6uJFn/Pm3atEmFhYU2169ly5aKi4ur0PUjGPmwH3/8UZI0ceJEPf7441qxYoVq1qypa6+9Vr/++qskKTs72yYUSbJuZ2dnu7ZgyDAMJSUlafjw4erYsaPDY7hm7mvPnj16/vnndc8991jbuF7u4+eff1ZxcbHD68G1cC8lJSUaPXq0rrzySrVp00bS2b8vgYGBioyMtDm2otePYOSFxo0bJ4vFct7XubkPkjR+/Hj169dPHTp00IIFC2SxWPT222+b/C18S3mv2fPPP6/ffvtNycnJZpfs08p7vf7o0KFD6tmzp2655RYNGzbMpMoB7zBixAht375dS5Yscfq5qzn9jDDd2LFjlZSUdN5jmjZtqiNHjkiSWrdubW0PCgpS06ZNtX//fklSTEyM3R0Z52b4x8TEOLFq31bea7Z27VplZGTYPQ+oY8eOuv3227Vo0SLFxMTY3YXBNXOu8l6vcw4fPqyuXbsqISHBblI118t91KlTR/7+/g6vB9fCfYwcOVIrVqzQhg0b1LBhQ2t7TEyMCgoKlJOTY9NrVOHr5+zJUPAcubm5RlBQkM3k64KCAiM6Otp4+eWXDcP43+Tro0ePWo95+eWXjfDwcOPMmTMur9nX/fTTT8Z3331nfaWnpxuSjHfeecc4cOCAYRj/m8xbUFBgfV9ycjKTeU1y8OBB46KLLjL69+9vFBUV2e3nermXTp06GSNHjrRuFxcXGw0aNGDytRsoKSkxRowYYdSvX9/4/vvv7fafm3z9zjvvWNsyMzMrPPmaYOTjHnjgAaNBgwZGenq6kZmZaQwdOtSIjo42fv31V8MwDKOoqMho06aN0aNHD2PLli3GqlWrjKioKCM5OdnkymEYhrFv3z67u9JycnKMunXrGgMHDjS2b99uLFmyxAgNDbWGXbjOwYMHjebNmxt/+9vfjIMHDxpHjhyxvs7hermXJUuWGEFBQcbChQuNnTt3GnfffbcRGRlpc2cuzHHvvfcaERERxvr1623+Lp0+fdp6zPDhw424uDhj7dq1xjfffGPEx8cb8fHxFfocgpGPKygoMMaOHWtER0cbYWFhRvfu3Y3t27fbHJOVlWX06tXLCAkJMerUqWOMHTvWKCwsNKli/JGjYGQYhrF161bjqquuMoKCgowGDRoYaWlp5hTo4xYsWGBIcvj6I66Xe3n++eeNuLg4IzAw0OjUqZPx5Zdfml0SDKPMv0sLFiywHvP7778b9913n1GzZk0jNDTU+Mc//mHzD5HysJR+GAAAgM/jrjQAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAAIBSBCMAqCLr16+XxWJRTk6O2aUAKCeCEQCPNXHiRLVr187sMgB4EYIRAK9XWFhodgkAPATBCIBpSkpKNG3aNDVp0kQhISFq27at3nnnHUn/G4Zas2aNOnbsqNDQUCUkJGj37t2SpIULFyo1NVVbt26VxWKRxWLRwoULJUkWi0Vz5sxR7969Vb16dU2ZMuW8dZz7rPT0dLVv314hISHq1q2bjh07po8++kitWrVSeHi4BgwYoNOnT1vfl5+fr1GjRik6OlrBwcG66qqr9PXXX1fNHxYA13DqE94AoAKefPJJo2XLlsaqVauMvXv3GgsWLDCCgoKM9evXG+vWrTMkGZ07dzbWr19v7Nixw7j66quNhIQEwzAM4/Tp08bYsWONSy65xO4p25KM6OhoY/78+cbevXuNn3766bx1nPusK664wvj888+Nb7/91mjevLnRpUsXo0ePHsa3335rbNiwwahdu7bNA15HjRpl1K9f3/jwww+NHTt2GIMHDzZq1qxp/PLLLzbnPXHiRNX8AQJwOoIRAFOcOXPGCA0NNTZu3GjTPnToUOO2226zhopPPvnEum/lypWGJOP33383DMMwUlJSjLZt29qdW5IxevToctfi6LOmTZtmSDL27t1rbbvnnnuMxMREwzAM4+TJk0ZAQICxePFi6/6CggKjfv36xvTp023OSzACPEc1s3qqAPi2PXv26PTp07ruuuts2gsKCtS+fXvr9v/93/9Z/3e9evUkSceOHVNcXNx5z9+xY8cK1/THz6pbt65CQ0PVtGlTm7avvvpKkrR3714VFhbqyiuvtO4PCAhQp06dtGvXrgp/NgD3QDACYIqTJ09KklauXKkGDRrY7AsKCtLevXslnQ0b51gsFkln5yb9lerVq1e4pj9/1h+3z7WV57MBeC4mXwMwRevWrRUUFKT9+/erefPmNq/Y2NhynSMwMFDFxcVVXKljzZo1U2BgoL744gtrW2Fhob7++mu1bt3alJoAXDh6jACYIiwsTA899JAefPBBlZSU6KqrrlJubq6++OILhYeHq1GjRn95jsaNG2vfvn3asmWLGjZsqLCwMAUFBbmg+rM9Uvfee68efvhh1apVS3FxcZo+fbpOnz6toUOHuqQGAM5HMAJgmsmTJysqKkrTpk3Tjz/+qMjISF122WV67LHHyjVk1a9fP7333nvq2rWrcnJytGDBAiUlJVV94aXS0tJUUlKigQMH6rffflPHjh2Vnp6umjVruqwGAM5lMQzDMLsIAAAAd8AcIwAAgFIEIwBeb/jw4apRo4bD1/Dhw80uD4AbYSgNgNc7duyY8vLyHO4LDw9XdHS0iysC4K4IRgAAAKUYSgMAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAAChFMAIAACj1/1j+WUwWRiX3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEsklEQVR4nO3deXgU9eHH8c/mJAESrlwoR7iESEAUgRgEFGpA1CJYQVBAEKsSESwK+CsKigSpB8UDLCpoFUtFrIgXFBAKROQQD0SKNBiUhEPMRki4kvn9YbMlkGOz2d2Znbxfz7PPAzOzu9/9Znb3s99rHIZhGAIAALCpILMLAAAA4EuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQCWMG3aNDkcDreOdTgcmjZtmk/L06tXL/Xq1cuyjwfAfYQdAKUsWrRIDofDdQsJCdEFF1ygkSNH6scffzS7eJbTvHnzUvUVGxurK6+8Uu+8845XHr+goEDTpk3TJ5984pXHA2oiwg6AMj366KP661//qvnz56tfv356/fXX1bNnT504ccInz/fHP/5RhYWFPnlsX7vkkkv017/+VX/96181ceJEHThwQAMHDtT8+fOr/dgFBQWaPn06YQeohhCzCwDAmvr166fOnTtLku644w41atRITzzxhJYvX66bb77Z688XEhKikJDA/Ei64IILdOutt7r+P3z4cLVq1UrPPPOM7rrrLhNLBkCiZQeAm6688kpJ0t69e0tt//bbb3XTTTepQYMGqlWrljp37qzly5eXOub06dOaPn26WrdurVq1aqlhw4bq3r27Vq1a5TqmrDE7J0+e1IQJExQTE6O6devqhhtu0A8//HBe2UaOHKnmzZuft72sx1y4cKGuvvpqxcbGKjw8XElJSZo3b16V6qIy8fHxateunbKysio87tChQxo9erTi4uJUq1YtdezYUa+++qpr/759+xQTEyNJmj59uqurzNfjlQC7CcyfUQD8bt++fZKk+vXru7bt3LlTqampuuCCCzR58mTVrl1bf//73zVgwAC9/fbbuvHGGyX9GjoyMjJ0xx13qEuXLsrPz9fWrVu1fft2/eY3vyn3Oe+44w69/vrrGjp0qK644gqtWbNG/fv3r9brmDdvni6++GLdcMMNCgkJ0Xvvvad77rlHxcXFGjt2bLUeu8Tp06e1f/9+NWzYsNxjCgsL1atXL3333XdKT09XYmKi3nrrLY0cOVJ5eXm67777FBMTo3nz5unuu+/WjTfeqIEDB0qSOnTo4JVyAjWGAQBnWbhwoSHJ+Oc//2kcPnzY2L9/v7F06VIjJibGCA8PN/bv3+86tnfv3kZycrJx4sQJ17bi4mLjiiuuMFq3bu3a1rFjR6N///4VPu8jjzxinP2RtGPHDkOScc8995Q6bujQoYYk45FHHnFtGzFihNGsWbNKH9MwDKOgoOC849LS0owWLVqU2tazZ0+jZ8+eFZbZMAyjWbNmxjXXXGMcPnzYOHz4sPHFF18YQ4YMMSQZ9957b7mPN2fOHEOS8frrr7u2nTp1ykhJSTHq1Klj5OfnG4ZhGIcPHz7v9QKoGrqxAJSpT58+iomJUZMmTXTTTTepdu3aWr58uS688EJJ0tGjR7VmzRrdfPPN+uWXX3TkyBEdOXJEP/30k9LS0rRnzx7X7K169epp586d2rNnj9vP/8EHH0iSxo0bV2r7+PHjq/W6IiIiXP92Op06cuSIevbsqf/85z9yOp0ePebKlSsVExOjmJgYdezYUW+99ZZuu+02PfHEE+Xe54MPPlB8fLxuueUW17bQ0FCNGzdOx44d07p16zwqC4Dz0Y0FoEzPP/+82rRpI6fTqVdeeUXr169XeHi4a/93330nwzA0depUTZ06tczHOHTokC644AI9+uij+u1vf6s2bdqoffv26tu3r2677bYKu2O+//57BQUFqWXLlqW2X3TRRdV6XRs3btQjjzyizMxMFRQUlNrndDoVHR1d5cfs2rWrZsyYIYfDocjISLVr10716tWr8D7ff/+9WrduraCg0r8527Vr59oPwDsIOwDK1KVLF9dsrAEDBqh79+4aOnSodu/erTp16qi4uFiSNHHiRKWlpZX5GK1atZIk9ejRQ3v37tW7776rlStX6qWXXtIzzzyj+fPn64477qh2WctbjLCoqKjU//fu3avevXurbdu2evrpp9WkSROFhYXpgw8+0DPPPON6TVXVqFEj9enTx6P7AvA9wg6ASgUHBysjI0NXXXWVnnvuOU2ePFktWrSQ9GvXiztf9A0aNNDtt9+u22+/XceOHVOPHj00bdq0csNOs2bNVFxcrL1795Zqzdm9e/d5x9avX195eXnnbT+3deS9997TyZMntXz5cjVt2tS1fe3atZWW39uaNWumL7/8UsXFxaVad7799lvXfqn8IAfAfYzZAeCWXr16qUuXLpozZ45OnDih2NhY9erVSy+++KJycnLOO/7w4cOuf//000+l9tWpU0etWrXSyZMny32+fv36SZLmzp1bavucOXPOO7Zly5ZyOp368ssvXdtycnLOW8U4ODhYkmQYhmub0+nUwoULyy2Hr1x77bXKzc3VkiVLXNvOnDmjZ599VnXq1FHPnj0lSZGRkZJUZpgD4B5adgC47YEHHtDvfvc7LVq0SHfddZeef/55de/eXcnJyRozZoxatGihgwcPKjMzUz/88IO++OILSVJSUpJ69eqlyy67TA0aNNDWrVu1dOlSpaenl/tcl1xyiW655Ra98MILcjqduuKKK7R69Wp999135x07ZMgQTZo0STfeeKPGjRungoICzZs3T23atNH27dtdx11zzTUKCwvT9ddfr9///vc6duyYFixYoNjY2DIDmy/deeedevHFFzVy5Eht27ZNzZs319KlS7Vx40bNmTNHdevWlfTrgOqkpCQtWbJEbdq0UYMGDdS+fXu1b9/er+UFAprZ08EAWEvJ1PMtW7act6+oqMho2bKl0bJlS+PMmTOGYRjG3r17jeHDhxvx8fFGaGioccEFFxjXXXedsXTpUtf9ZsyYYXTp0sWoV6+eERERYbRt29Z4/PHHjVOnTrmOKWuaeGFhoTFu3DijYcOGRu3atY3rr7/e2L9/f5lTsVeuXGm0b9/eCAsLMy666CLj9ddfL/Mxly9fbnTo0MGoVauW0bx5c+OJJ54wXnnlFUOSkZWV5TquKlPPK5tWX97jHTx40Lj99tuNRo0aGWFhYUZycrKxcOHC8+67adMm47LLLjPCwsKYhg54wGEYZ7XnAgAA2AxjdgAAgK0RdgAAgK0RdgAAgK0RdgAAgK0RdgAAgK0RdgAAgK2xqKCk4uJiHThwQHXr1mVpdgAAAoRhGPrll1/UuHHj8y6qezbCjqQDBw6oSZMmZhcDAAB4YP/+/brwwgvL3U/YkVzLsu/fv19RUVEmlwYAALgjPz9fTZo0cX2Pl4ewo/9dVTgqKoqwAwBAgKlsCAoDlAEAgK0RdgAAgK0RdgAAgK0xZqcKioqKdPr0abOLgSoKDQ1VcHCw2cUAAJiEsOMGwzCUm5urvLw8s4sCD9WrV0/x8fGsowQANRBhxw0lQSc2NlaRkZF8YQYQwzBUUFCgQ4cOSZISEhJMLhEAwN8IO5UoKipyBZ2GDRuaXRx4ICIiQpJ06NAhxcbG0qUFADUMA5QrUTJGJzIy0uSSoDpK/n6MuQKAmoew4ya6rgIbfz8AqLkIOwAAwNYIO6gyh8Ohf/zjH2YXo5RPPvlEDoeDGXMAgPMQdlCuadOm6ZJLLjG7GABgCTnOQm3ae0Q5zkKzi4IqYjYWAACVWLIlW1OWfaViQwpySBkDkzX48qZmFwtuomXHxoqLi5WRkaHExERFRESoY8eOWrp0qaT/dfusXr1anTt3VmRkpK644grt3r1bkrRo0SJNnz5dX3zxhRwOhxwOhxYtWuR67CNHjujGG29UZGSkWrdureXLl7tVppLn/fjjj9WpUydFRETo6quv1qFDh/Thhx+qXbt2ioqK0tChQ1VQUOC638mTJzVu3DjFxsaqVq1a6t69u7Zs2eK9ygKAcuQ4C11BR5KKDemhZV/TwhNACDt+5O8m0IyMDL322muaP3++du7cqQkTJujWW2/VunXrXMf83//9n5566ilt3bpVISEhGjVqlCRp8ODB+sMf/qCLL75YOTk5ysnJ0eDBg133mz59um6++WZ9+eWXuvbaazVs2DAdPXrU7bJNmzZNzz33nDZt2qT9+/fr5ptv1pw5c7R48WK9//77WrlypZ599lnX8Q8++KDefvttvfrqq9q+fbtatWqltLS0Kj0nAHgi68hxV9ApUWQY2nekoOw7wHIIO36yZEu2Umet0dAFm5U6a42WbMn26fOdPHlSM2fO1CuvvKK0tDS1aNFCI0eO1K233qoXX3zRddzjjz+unj17KikpSZMnT9amTZt04sQJRUREqE6dOgoJCVF8fLzi4+Ndi/NJ0siRI3XLLbeoVatWmjlzpo4dO6bPPvvM7fLNmDFDqamp6tSpk0aPHq1169Zp3rx56tSpk6688krddNNNWrt2rSTp+PHjmjdvnv70pz+pX79+SkpK0oIFCxQREaGXX37Ze5UGAGVIbFRbQeesXhHscKh5I9ZfCxSEHT8wown0u+++U0FBgX7zm9+oTp06rttrr72mvXv3uo7r0KGD698ll1IoubRCRc6+X+3atRUVFeXW/cq6f1xcnCIjI9WiRYtS20oeb+/evTp9+rRSU1Nd+0NDQ9WlSxft2rXL7ecEAE8kREcoY2Cygv+7Xleww6GZA9srITqiknvCKhig7AcVNYH66s1y7NgxSdL777+vCy64oNS+8PBwV+AJDQ11bS9ZeK+4uLjSxz/7fiX3ded+Zd3f4XBU+/EAwJcGX95UPdrEaN+RAjVvFEnQCTCEHT8oaQI9O/D4ugk0KSlJ4eHhys7OVs+ePc/bf3brTnnCwsJUVFTki+JVScuWLRUWFqaNGzeqWbNmkn697MOWLVs0fvx4cwsHoMZIiI4g5AQowo4flDSBPrTsaxUZhl+aQOvWrauJEydqwoQJKi4uVvfu3eV0OrVx40ZFRUW5QkNFmjdvrqysLO3YsUMXXnih6tatq/DwcJ+VuTy1a9fW3XffrQceeEANGjRQ06ZNNXv2bBUUFGj06NF+Lw8AILAQdvzEjCbQxx57TDExMcrIyNB//vMf1atXT5deeqkeeught7qIBg0apGXLlumqq65SXl6eFi5cqJEjR/q83GWZNWuWiouLddttt+mXX35R586d9fHHH6t+/fqmlAcAEDgchmEYlR9mb/n5+YqOjpbT6VRUVFSpfSdOnFBWVpYSExNVq1Ytk0qI6uLvCAD2U9H399mYjQUAAGyNsAOvuuuuu0pNdT/7dtddd5ldPABADcSYHXjVo48+qokTJ5a5r6ImRgAAfIWwA6+KjY1VbGys2cUAAMCFbiwAAGBrhB03sZpvYOPvBwA1F91YlQgLC1NQUJAOHDigmJgYhYWFuS6rAOszDEOnTp3S4cOHFRQUpLCwMLOLBADwM8JOJYKCgpSYmKicnBwdOHDA7OLAQ5GRkWratKmCgmjMBICahrDjhrCwMDVt2lRnzpyxxLWiUDXBwcEKCQmhRQ4AaijCjptKrsx97tW5AQCAtdGmDwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbM3UsFNUVKSpU6cqMTFRERERatmypR577DEZhuE6xjAMPfzww0pISFBERIT69OmjPXv2lHqco0ePatiwYYqKilK9evU0evRoHTt2zN8vBwAAWJCpYeeJJ57QvHnz9Nxzz2nXrl164oknNHv2bD377LOuY2bPnq25c+dq/vz52rx5s2rXrq20tDSdOHHCdcywYcO0c+dOrVq1SitWrND69et15513mvGSAACAxTiMs5tR/Oy6665TXFycXn75Zde2QYMGKSIiQq+//roMw1Djxo31hz/8QRMnTpQkOZ1OxcXFadGiRRoyZIh27dqlpKQkbdmyRZ07d5YkffTRR7r22mv1ww8/qHHjxpWWIz8/X9HR0XI6nYqKivLNiwUAAF7l7ve3qS07V1xxhVavXq1///vfkqQvvvhCGzZsUL9+/SRJWVlZys3NVZ8+fVz3iY6OVteuXZWZmSlJyszMVL169VxBR5L69OmjoKAgbd68ucznPXnypPLz80vdAACAPYWY+eSTJ09Wfn6+2rZtq+DgYBUVFenxxx/XsGHDJEm5ubmSpLi4uFL3i4uLc+3Lzc1VbGxsqf0hISFq0KCB65hzZWRkaPr06d5+OQAAwIJMbdn5+9//rjfeeEOLFy/W9u3b9eqrr+rJJ5/Uq6++6tPnnTJlipxOp+u2f/9+nz4fAAAwj6ktOw888IAmT56sIUOGSJKSk5P1/fffKyMjQyNGjFB8fLwk6eDBg0pISHDd7+DBg7rkkkskSfHx8Tp06FCpxz1z5oyOHj3quv+5wsPDFR4e7oNXBAAArMbUlp2CggIFBZUuQnBwsIqLiyVJiYmJio+P1+rVq1378/PztXnzZqWkpEiSUlJSlJeXp23btrmOWbNmjYqLi9W1a1c/vAoAAGBlprbsXH/99Xr88cfVtGlTXXzxxfr888/19NNPa9SoUZIkh8Oh8ePHa8aMGWrdurUSExM1depUNW7cWAMGDJAktWvXTn379tWYMWM0f/58nT59Wunp6RoyZIhbM7EAAIC9mRp2nn32WU2dOlX33HOPDh06pMaNG+v3v/+9Hn74YdcxDz74oI4fP64777xTeXl56t69uz766CPVqlXLdcwbb7yh9PR09e7dW0FBQRo0aJDmzp1rxksCAAAWY+o6O1bBOjsAAASegFhnBwAAwNcIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNZMDzs//vijbr31VjVs2FARERFKTk7W1q1bXfsNw9DDDz+shIQERUREqE+fPtqzZ0+pxzh69KiGDRumqKgo1atXT6NHj9axY8f8/VIAAIAFmRp2fv75Z6Wmpio0NFQffvihvvnmGz311FOqX7++65jZs2dr7ty5mj9/vjZv3qzatWsrLS1NJ06ccB0zbNgw7dy5U6tWrdKKFSu0fv163XnnnWa8JAAAYDEOwzAMs5588uTJ2rhxo/71r3+Vud8wDDVu3Fh/+MMfNHHiREmS0+lUXFycFi1apCFDhmjXrl1KSkrSli1b1LlzZ0nSRx99pGuvvVY//PCDGjduXGk58vPzFR0dLafTqaioKO+9QAAA4DPufn+b2rKzfPlyde7cWb/73e8UGxurTp06acGCBa79WVlZys3NVZ8+fVzboqOj1bVrV2VmZkqSMjMzVa9ePVfQkaQ+ffooKChImzdvLvN5T548qfz8/FI3AABgT6aGnf/85z+aN2+eWrdurY8//lh33323xo0bp1dffVWSlJubK0mKi4srdb+4uDjXvtzcXMXGxpbaHxISogYNGriOOVdGRoaio6NdtyZNmnj7pQEAAIswNewUFxfr0ksv1cyZM9WpUyfdeeedGjNmjObPn+/T550yZYqcTqfrtn//fp8+HwAAMI+pYSchIUFJSUmltrVr107Z2dmSpPj4eEnSwYMHSx1z8OBB1774+HgdOnSo1P4zZ87o6NGjrmPOFR4erqioqFI3AABgT6aGndTUVO3evbvUtn//+99q1qyZJCkxMVHx8fFavXq1a39+fr42b96slJQUSVJKSory8vK0bds21zFr1qxRcXGxunbt6odXAQAArCzEzCefMGGCrrjiCs2cOVM333yzPvvsM/3lL3/RX/7yF0mSw+HQ+PHjNWPGDLVu3VqJiYmaOnWqGjdurAEDBkj6tSWob9++ru6v06dPKz09XUOGDHFrJhYAALA3U6eeS9KKFSs0ZcoU7dmzR4mJibr//vs1ZswY137DMPTII4/oL3/5i/Ly8tS9e3e98MILatOmjeuYo0ePKj09Xe+9956CgoI0aNAgzZ07V3Xq1HGrDEw9BwAg8Lj7/W162LECwg4AAIEnINbZAQAA8DXCjk3lOAu1ae8R5TgLzS4KAACmMnWAMnxjyZZsTVn2lYoNKcghZQxM1uDLm5pdLAAATEHLjs3kOAtdQUeSig3poWVf08IDAKixCDs2k3XkuCvolCgyDO07UmBOgQAAMBlhx2YSG9VWkKP0tmCHQ80bRZpTIAAATEbYsZmE6AhlDExWsOPXxBPscGjmwPZKiI4wuWQAAJiDAco2NPjypurRJkb7jhSoeaNIgg4AoEZzO+zk5+e7/aAszGe+hOgIQg4AAKpC2KlXr54cDkeFxxiGIYfDoaKiomoXDAAAwBvcDjtr1671ZTkA/FeOs1BZR44rsVFtWucAwAvcDjs9e/b0ZTkAiAUhAcAXPB6gnJeXp5dfflm7du2SJF188cUaNWqUoqOjvVY4oCYpb0HIHm1iaOEBgGrwaOr51q1b1bJlSz3zzDM6evSojh49qqefflotW7bU9u3bvV1GoEZgQUgA8A2PWnYmTJigG264QQsWLFBIyK8PcebMGd1xxx0aP3681q9f79VCAjVByYKQZwceFoQEgOrzuGVn0qRJrqAjSSEhIXrwwQe1detWrxUOqElYEBIAfMOjlp2oqChlZ2erbdu2pbbv379fdevW9UrBgJqIBSEBwPs8CjuDBw/W6NGj9eSTT+qKK66QJG3cuFEPPPCAbrnlFq8WEKhpWBASALzLo7Dz5JNPyuFwaPjw4Tpz5owkKTQ0VHfffbdmzZrl1QICAABUh8MwDKPyw8pWUFCgvXv3SpJatmypyMjAHEiZn5+v6OhoOZ1OLnUBAECAcPf7u1oXAo2MjFRycnJ1HgKwLFYyBgB78CjsnDhxQs8++6zWrl2rQ4cOqbi4uNR+1tpBoGMlYwCwD4/CzujRo7Vy5UrddNNN6tKlS6UXCAUCCSsZA4C9eBR2VqxYoQ8++ECpqaneLg9guopWMibsAEDg8WhRwQsuuID1dCwgx1moTXuPKMdZaHZRbKVkJeOzsZIxAAQuj8LOU089pUmTJun777/3dnngpiVbspU6a42GLtis1FlrtGRLttlFsg1WMgYAe/GoG6tz5846ceKEWrRoocjISIWGhpbaf/ToUa8UDmVjTInvsZIxANiHR2Hnlltu0Y8//qiZM2cqLi6OAcp+xpgS/2AlYwCwB4/CzqZNm5SZmamOHTt6uzxwA1fHBgDAfR6N2Wnbtq0KCxkUaxbGlAAA4D6PLhexcuVKTZ8+XY8//riSk5PPG7MTaJdcCNTLReQ4CxlTAgCosdz9/vYo7AQF/dogdO5YHcMw5HA4VFRUVNWHNFWghh0AAGoyn14ba+3atR4XDAAAwJ88Cjs9e/Z067h77rlHjz76qBo1auTJ0wAAAFSbRwOU3fX6668rPz/fl08BAABQIZ+GHQ+GAwEAAHiVT8MOAACA2Qg7AADA1gg7AADA1gg7AADA1nwadm699VYW6QMAAKbyaJ0dScrLy9Nnn32mQ4cOqbi4uNS+4cOHS5LmzZtXvdIBAABUk0dh57333tOwYcN07NgxRUVFlbpshMPhcIUdAAAAs3nUjfWHP/xBo0aN0rFjx5SXl6eff/7ZdTt69Ki3ywgAAOAxj8LOjz/+qHHjxikyMtLb5QEAAPAqj8JOWlqatm7d6u2yAAAAeJ3bY3aWL1/u+nf//v31wAMP6JtvvlFycrJCQ0NLHXvDDTd4r4QAAADV4DDcvIBVUJB7jUAOh0NFRUXVKpS/5efnKzo6Wk6nk6nyAAAECHe/v91u2Tl3ejkAAEAg8GjMzmuvvaaTJ0+et/3UqVN67bXXql0oAAAAb3G7G+tswcHBysnJUWxsbKntP/30k2JjY+nGAgAAPufu97dHLTuGYZRaSLDEDz/8oOjoaE8eEgAAwCeqtIJyp06d5HA45HA41Lt3b4WE/O/uRUVFysrKUt++fb1eSAAAAE9VKewMGDBAkrRjxw6lpaWpTp06rn1hYWFq3ry5Bg0a5NUCAgCAwJXjLFTWkeNKbFRbCdERppShSmHnkUcekSQ1b95cgwcPVq1atXxSKAAAEPiWbMnWlGVfqdiQghxSxsBkDb68qd/L4dEA5RKnTp0q86rnTZv6/4VUBwOUAQDwrhxnoVJnrVHxWSkj2OHQhslXea2Fx+vr7Jxtz549GjVqlDZt2lRqe8nA5UCbjQUAALwr68jxUkFHkooMQ/uOFPi9O8ujsDNy5EiFhIRoxYoVSkhIKHNmFgAAqLkSG9VWkEPntew0b+T/i4h7FHZ27Nihbdu2qW3btt4uDwAAsIGE6AhlDEzWQ8u+VpFhKNjh0MyB7U0ZpOxR2ElKStKRI0e8XRYAAGAjgy9vqh5tYrTvSIGaN4o0bTaWR4sKPvHEE3rwwQf1ySef6KefflJ+fn6pm6dmzZolh8Oh8ePHu7adOHFCY8eOVcOGDVWnTh0NGjRIBw8eLHW/7Oxs9e/fX5GRkYqNjdUDDzygM2fOeFwOAADgHQnREUpp2dC0oCN52LLTp08fSdLVV19darxOdQYob9myRS+++KI6dOhQavuECRP0/vvv66233lJ0dLTS09M1cOBAbdy4UdKvixn2799f8fHx2rRpk3JycjR8+HCFhoZq5syZnrw8r7HC2gIAANR0HoWdtWvXerUQx44d07Bhw7RgwQLNmDHDtd3pdOrll1/W4sWLdfXVV0uSFi5cqHbt2unTTz9Vt27dtHLlSn3zzTf65z//qbi4OF1yySV67LHHNGnSJE2bNk1hYWFeLau7rLK2AAAANZ1H3Vg9e/ZUUFCQFixYoMmTJ6tVq1bq2bOnsrOzFRwcXOXHGzt2rPr37+9qMSqxbds2nT59utT2tm3bqmnTpsrMzJQkZWZmKjk5WXFxca5j0tLSlJ+fr507d5b5fCdPnvRa11tZcpyFrqAj/ToS/aFlXyvHWejV5wEAAJXzKOy8/fbbSktLU0REhD7//HOdPHlS0q8tMVXtOvrb3/6m7du3KyMj47x9ubm5CgsLU7169Uptj4uLU25uruuYs4NOyf6SfWXJyMhQdHS069akSZMqlbkyFa0tYAU5zkJt2nuE8AUAqBE8CjszZszQ/PnztWDBAoWGhrq2p6amavv27W4/zv79+3XffffpjTfe8OulJ6ZMmSKn0+m67d+/36uPX7K2wNnMWlvgXEu2ZCt11hoNXbBZqbPWaMmWbLOLBACAT3kUdnbv3q0ePXqctz06Olp5eXluP862bdt06NAhXXrppQoJCVFISIjWrVunuXPnKiQkRHFxcTp16tR5j3nw4EHFx8dLkuLj48+bnVXy/5JjzhUeHq6oqKhSN28qWVsg+L+Dt81cW+BsdK8BAGoijwYox8fH67vvvlPz5s1Lbd+wYYNatGjh9uP07t1bX331Valtt99+u9q2batJkyapSZMmCg0N1erVq11XU9+9e7eys7OVkpIiSUpJSdHjjz+uQ4cOKTY2VpK0atUqRUVFKSkpyZOX5xVWWVvgbFZauhsAAH/xKOyMGTNG9913n1555RU5HA4dOHBAmZmZmjhxoqZOner249StW1ft27cvta127dpq2LCha/vo0aN1//33q0GDBoqKitK9996rlJQUdevWTZJ0zTXXKCkpSbfddptmz56t3Nxc/fGPf9TYsWMVHh7uycvzmoToCEuFCCst3Q0AgL94FHYmT56s4uJi9e7dWwUFBerRo4fCw8M1ceJE3XvvvV4t4DPPPKOgoCANGjRIJ0+eVFpaml544QXX/uDgYK1YsUJ33323UlJSVLt2bY0YMUKPPvqoV8thB1ZauhsAAH9xGIZhVH5Y2U6dOqXvvvtOx44dU1JSkurUqePNsvmNu5eIt4scZ6GlutcAAPCEu9/fHrXslAgLCzN1XAw8Y7XuNQAAfMmj2VgAAACBgrADAABsjbADAABsjbDjR1ymAQAA/6vWAGW4j6ugAwBgDlp2/IDLNAAAYB7Cjh9Y/SroAADYGWHHD6x8FXQAAOyOsOMHVr0KOgAANQEDlP3EildBBwCgJiDs+BGXaQAAwP/oxgIAALZG2EG1sVgiAMDK6MZCtbBYIgDA6mjZgcdYLBEAEAgIO/AYiyUCAAIBYQceY7FEAEAgIOzAYyyWCAAIBAxQRrWwWCIAwOoIO6g2FksEAFgZ3VgAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAcA4ubgvYC1PPAeAsXNwWsB9adgDgv7i4LWBPhB0A+C8ubguz0YXqG3RjAcB/lVzc9uzAw8Vt4S90ofoOLTsA8F9c3BZmoQvVt2jZAYCzcHFbmKGiLlTOweoj7KBacpyFyjpyXImNavOGhG1wcVv4G12ovkU3Fjy2ZEu2Umet0dAFm5U6a42WbMk2u0gAEJDoQvUth2EYRuWH2Vt+fr6io6PldDoVFRVldnECQo6zUKmz1pz3K2TD5Kt4cwKAh3KchXShVoG73990Y8Ej9C8DgPfRheobdGPBIyX9y2ejfxkAYEWEHXiE/mUAQKCgGwseY4ouACAQEHZQLfQvAwCsjm4sAABga4QdAABga4QdAABga4QdAABga4QdAABga4QdAABga4QdAPChHGehNu09ohxnodlFAWos1tkBAB9ZsiVbU5Z9pWJDCnJIGQOTNfjypmYXC6hxaNkBAB/IcRa6go4kFRvSQ8u+poUHMAFhBwB8IOvIcVfQKVFkGNp3pMCcAgE1GGEHAHwgsVFtBTlKbwt2ONS8UaQ5BQJqMMIOAPhAQnSEMgYmK9jxa+IJdjg0c2B7riUHmIABygDgI4Mvb6oebWK070iBmjeKJOgAJiHsAIAPJURHEHIAk9GNBQAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbM3UsJORkaHLL79cdevWVWxsrAYMGKDdu3eXOubEiRMaO3asGjZsqDp16mjQoEE6ePBgqWOys7PVv39/RUZGKjY2Vg888IDOnDnjz5eCKuDCiAAAfzI17Kxbt05jx47Vp59+qlWrVun06dO65pprdPz4cdcxEyZM0Hvvvae33npL69at04EDBzRw4EDX/qKiIvXv31+nTp3Spk2b9Oqrr2rRokV6+OGHzXhJqMSSLdlKnbVGQxdsVuqsNVqyJdvsIgEAbM5hGIZR+WH+cfjwYcXGxmrdunXq0aOHnE6nYmJitHjxYt10002SpG+//Vbt2rVTZmamunXrpg8//FDXXXedDhw4oLi4OEnS/PnzNWnSJB0+fFhhYWGVPm9+fr6io6PldDoVFRXl09dYk+U4C5U6a02p6wUFOxzaMPkq1iEBAFSZu9/flhqz43Q6JUkNGjSQJG3btk2nT59Wnz59XMe0bdtWTZs2VWZmpiQpMzNTycnJrqAjSWlpacrPz9fOnTvLfJ6TJ08qPz+/1A2+x4URAQBmsEzYKS4u1vjx45Wamqr27dtLknJzcxUWFqZ69eqVOjYuLk65ubmuY84OOiX7S/aVJSMjQ9HR0a5bkyZNvPxqUBYujAgAMINlws7YsWP19ddf629/+5vPn2vKlClyOp2u2/79+33+nODCiAA8x8QGVIclro2Vnp6uFStWaP369brwwgtd2+Pj43Xq1Cnl5eWVat05ePCg4uPjXcd89tlnpR6vZLZWyTHnCg8PV3h4uJdfBdzBhREBVNWSLdmasuwrFRtSkEPKGJiswZc3NbtYCCCmtuwYhqH09HS98847WrNmjRITE0vtv+yyyxQaGqrVq1e7tu3evVvZ2dlKSUmRJKWkpOirr77SoUOHXMesWrVKUVFRSkpK8s8LQZUkREcopWVDgg6ASuU4C11BR5KKDemhZV/TwmNhVmyFM7VlZ+zYsVq8eLHeffdd1a1b1zXGJjo6WhEREYqOjtbo0aN1//33q0GDBoqKitK9996rlJQUdevWTZJ0zTXXKCkpSbfddptmz56t3Nxc/fGPf9TYsWNpvQGAAFfRxAZ+MFmPVVvhTG3ZmTdvnpxOp3r16qWEhATXbcmSJa5jnnnmGV133XUaNGiQevToofj4eC1btsy1Pzg4WCtWrFBwcLBSUlJ06623avjw4Xr00UfNeEkAAoAVf3mibExsCBxWboWz1Do7ZmGdHaDmsOovT5RvyZZsPbTsaxUZhmtiA38z69m094iGLth83vY3x3RTSsuGPnlOd7+/LTFAGQD8obxfnj3axNAlYmFMbAgMJa1w5y4ca4VWOMtMPQcAX2Nhy8DFxAbrs/LyIrTsAKgxrPzLE7CCHGehso4cV2Kj2h6FFKu2whF2ANQYJb88zx3/YZUPZMBM3hrPlhAdYbn3FAOUxQBloKbJcRZa7pcnYKZAvVAzA5QBoBxW/OUJe6huN5BZ7L6eEWEHAIAqKivUBPKyBu6OZwvUMEfYAQCgCsoKNT3axAT0sgbujGcL5DBH2AEAwE3lrdU0Z0jHgO8GqmgmVaCvUUXYAQBYipW7Ssob2xLkcNhiWYPyxrMF+pgeFhUEAFjGki3ZSp21RkMXbFbqrDVasiXb7CKVUt61ui5tVt+yC+p5Q6Bfo4ywAwCwBCtfSLJERasED768qTZMvkrP3dJJf77lEvVoE2Nyab3Hyqsju4NuLACAJQRKV0lFY1vW//twwA7irYxVV0d2B2EHtmDlPn4A7gmky3mUNbYl0AfxuiNQ16iiGwsBz+p9/ADcE+hdJVxo1rpo2UFAqwm/pICaJJC7SgKpZaqmoWUHAc3Ov6RynIXatPeIpQZnApLvz82E6AiltGwYUEFHCvyWKTujZQcBza6/pAJ5pVLYmx3PTW+O+Qvklik7o2XHBmpyC4Adf0kFwvRb1Ex2PDd9MeYvUFum7IyWnQBnx19ZVWW3X1KBMv0WNY/dzk3G/NUctOwEMDv+yvKUnX5JBfpKpbAvu52bdh7zh9IIOwGMN6o92bFrDvZgt3PTbuEN5aMbK4DZdXAu7Nc1ZwcsXPkrf5+bvqz3kvD20LKvVWQYAR/eUD6HYRhG5YfZW35+vqKjo+V0OhUVFWVKGTx9Qy/Zkn3eG7WmjdlxF19WKFHVc4GxcebwV73nOAu9Ht74vPEPd7+/CTsyP+xU9w3tizeq3fBlhRJVPRdynIVKnbXmvBbUDZOvqtHvN19/mQdyvfN54z/ufn8zZsdk3hhkbKfBub7AQG6UKOtcmPL2V/pi/8/l3oexcec7e7r2FRlrNPP9b7z+fgrUevf086YmLyHiD4QdkwXqGzqQUMcoUda5UCxpwAubyl1fJdAHsXr7S/TcL3ND0l/+leX169IFar178nnD9f18j7BjskB9QwcS6hglyjoXJMmo4Nd3IM9A8sWXaFlf5pL3W0wDtd6r+nlDy7N/EHZMFqhv6EBCHaNEyblQ1gdfRb++B1/eVBsmX6U3x3TThslXBcT4C199iZYXGCXvt5hWpd7dacHyR1dRVT9vaHn2D6aeWwDTjH2vptaxVWaEWKUc0q/nQtv4uhrwwiYZ5wx+rai1LyE6wi9l91Zd+Wq145Iv8ylvf6Xic/b5osXUnXo/d0Dw6O6Juq5Dgo6fKnLVoz8HDVfl86Y6S4hY6X1ldczGkvmzsQB3VeXDzSozQqxSjrLKZbVlG7xZV76ezZTjLNTCDfv00ob/qNiQaXVY1us8W5BDmtS3rZ746FvLzuzy5Fy06vvK35h6XgWEHQSCqny4+XvabnkhzOrTh620bIMv6sofgc7sOty094iGLthc4TFB0nmtUJL05phuSmnZ0Cflqqqq1KPV31f+5O73N91YQACo6gULvdGF4W4rUkUhzOoXjvRX15Q7fFFX/ui+NbsOy+oGOlexJIdDVeq29Leq1GN558q2fT/ruo7WOJ+thgHKQACo6iDG6s5Aq2gWz9mDPCsbBMtMOPf5qq6stA6XLwYIuwadlzNoWvq1Hif3a2ubSQrlDRIf97fPy32v1nS07ABuMHsgYFUHMVbnmj8VtSKt//fhUq04d3RPrLA1wtNyuFvfFXWfBdrATX9fp8nfdeTLMSYlLVgLN2bppfVZpbqszu6+u6FjY8t0W1ZHeYPEK3qv1tQxPSUYsyPG7KBiVhkI6Mn4C0/GU5Q3BuL5oZ1075uflwo3QZJURgg7d+xAVcrhbn2Xd5xV/l6e8scYGH/XUVljTIIc0sbJV3v9NZbUX2RYkApOFQd8sKnIii8PKH3x5+dtf+6WThr3t89rxJgexuwAXlDVsTK+5Mn4C0/GU9QOC5ZDv66MWyLY4VCxYZS5+vCd3Vvo5Q1ZFbZGuFsOd+u7vOPaxte1zN/LU74eA2PGOV3mytWGtHBjlh66Nsmrz2X2GCJ/uqxZ/TJbfM/9ASJZa6ycGQg7QAWsNsDW1x/kJb/4zw06Mwe2V+fmDcr8YL29e3Pd3r25V1oj3K3v8o7bsu9nS/29rMiMc7q8QcQvrc/S7amJ/G08VF7XZ3khqCaPlSPsABWozoJfgebcX/zSr10Ny+5JUccm9SWpwjEl3vjCcre+yzvu8uZ8yFfGjHM6ITpCo7snasG/skptL5YIotVUXouvP8d/BQJmY6HKatII/5p0qYnyuhoKTv1vCKSvL5vgbn2Xd1zHJvVrzN/LU2ad06O6J+rcCUQEUe8oa8ZdIF7ixJcYoCwGKFeFlQZ/+nM2idkLp/mDlRYqc7e+yzvOKn8vK88KM6OOrLhqNQIbKyhXAWHHPVb5MsxxFuqVDVl6eUOWJUKXnfBl5D1W+mFgJVYJotVh5RBb0zAbC15nhcG6S7Zka/LbpQfQBuKMG6vy1oq7Nf3LwEqz+Kwm0GdLEWIDE2EHbjN7sG7JF0hZTZHMuPGe6n4Z8WVgjR8G8D5CbOBigDLcZvZg3bK+QEow0NEayvoymLLsK32x/2dzC+ZnXCbDnqp62RZYB2EHbimZgdWjTYxpI/zLux5MkEPMuKkGb86uK29G14DnN5W6Zk8gqE69mPHDoCbNkjQLITZw0Y2FSlmlW+LcBbSCJN3RI5FFyarB23/b8haPMxRYzf3eqBdfXXG8rPFQVnmP2p2/r1/mKzVxTB2zscRsrIpYZQbWuWUK9NkcVuCrv+3ZX7znenNMN6W0bOjxY/uDFc/5EmWFmh5tYixbXrsK5M8guwVjd7+/6cZChazYR13WAlqoOl/9bQdf3lTv3HNFwC4gZ8VzXip/cOy278u/RAZ8I1A/g8o7h2pC1ydhBxWij9qavDE+w5d/245N6mvWIHNXMva0jqx6zpcXwvTfX+hns0J54X3Vfd9bNcj7A2N2UKGK+qhrYr+vFXirGdrX4w98NWbFHdWpI6uOyyhv6YfLmte3XHn5bPA+b7zvzV4+xEyM2RFjdtxxbh+13fp9q8qsD3NfjCcJ5PEHZfFWHVmxXipa4bqy8vrrnK3pnw2+4M33vd1WSWcFZXjV2QvN1fSFtcz8MPfFYnWBvqLtubxVR1asl4payyoqb2XnrLeCUE3/bPAVb77vzWxxNRNhB1UWKKvD+uKXrNkf5jW5Gdpddq+jqoawys5Zb4b3QPlsCDTePqetGOR9jQHKqDKrDuA825It2UqdtUZDF2xW6qw1XlvQzuwBfmavYh0IqKPSKjpnvT07JxA+GwIR53T10bKDKqtsAKfZgxMr+iUrqVpls0KrQU1thq4K6uh/Kjpnvd0S443B3WZ/fliVJ+c0dfk/hB14pLw3XnmLnvnzDVfeB/jCDfv00ob/VKu53iozdazWDG3FD1Wr1ZFZKjtnvRnec5yFatIgUsvuSVHBqeIqB00GN1esKuc0dVkas7HEbCxvKWvGgMMh6delQCp8w3nzy7KscgRJUhkf6p7OYrLiTB2z8KEaGMo7Z701O6e654GVV64ONN6ckWi1HzHnYjYW/K6sFpWzo3R5g3m9/WVZ1i/Z0d2b6y//yip13LnN9VV5Y9Nq8CuzB2zDfeWds97o8vPGeRBog5utHAS8UZd2+xFD2LEIK79x3FXeRSDPVlbA8MWX5bkf4JL00oascpvr7fbG9pdA+4JC2aob3r1xHlhhPJy7rP55Ud26tOOPGNvMxnr++efVvHlz1apVS127dtVnn31mdpHc5quZQ/527oyBIIcqvT6SL2c3nX39mopmM/jzejHeuMyDlVhl9o3d6jXQeOM8CJQZR4FwfanKPu8qe6+YPevUF2zRsrNkyRLdf//9mj9/vrp27ao5c+YoLS1Nu3fvVmxsrNnFq5DdEvS5LSrr/324wsG8/vw1V15zvb9aJ6z+a9ATVhiwbcd6DTTeOg/Ke49aqeU7UFozy6pLd98rgdTK5i5bDFDu2rWrLr/8cj333HOSpOLiYjVp0kT33nuvJk+eXOn9zRygvGnvEQ1dsPm87W+O6aaUlg39WhZfqWwwr9nLl/tjYKTdB1+aNWDb7vUaaHxxHlgtzAbqOVfVcpv9ueyuGjNA+dSpU9q2bZumTJni2hYUFKQ+ffooMzPTxJK5x44J+lyVjQcwe00Uf7ROBMqvQU+ZNWDb7vUaaLx9Hlix5dsKrZmeqOp7xezPZW8L+LBz5MgRFRUVKS4urtT2uLg4ffvtt2Xe5+TJkzp58qTr//n5+T4tY0UC9Y3jbWbPbvL1G7smhFozUK/2ZtUwG4hBwJP3itmfy95kmwHKVZGRkaHo6GjXrUmTJqaWZ/DlTbVh8lV6c0w3bZh8lSWbCmuCswc0++KxA2HwZaChXu3NKgPgy+LLzwtfqOnvlYAfs3Pq1ClFRkZq6dKlGjBggGv7iBEjlJeXp3ffffe8+5TVstOkSRMWFYTPsRihb1Cv9hUoY0cChd3eKzVmzE5YWJguu+wyrV692hV2iouLtXr1aqWnp5d5n/DwcIWHh/uxlMCv7NQsbCXUq30FYpeRldXU90rAhx1Juv/++zVixAh17txZXbp00Zw5c3T8+HHdfvvtZhcNAFBNNfULGt5ji7AzePBgHT58WA8//LByc3N1ySWX6KOPPjpv0DIAAKh5An7MjjdwIVAAAAKPu9/fNXI2FgAAqDkIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNZscbmI6ipZRDo/P9/kkgAAAHeVfG9XdjEIwo6kX375RZLUpEkTk0sCAACq6pdfflF0dHS5+7k2lqTi4mIdOHBAdevWlcPhMLs4fpWfn68mTZpo//79XBesGqhH76EuvYN69B7q0jt8UY+GYeiXX35R48aNFRRU/sgcWnYkBQUF6cILLzS7GKaKioriTewF1KP3UJfeQT16D3XpHd6ux4padEowQBkAANgaYQcAANgaYaeGCw8P1yOPPKLw8HCzixLQqEfvoS69g3r0HurSO8ysRwYoAwAAW6NlBwAA2BphBwAA2BphBwAA2BphBwAA2BphpwZYv369rr/+ejVu3FgOh0P/+Mc/Su03DEMPP/ywEhISFBERoT59+mjPnj3mFNbiKqvLkSNHyuFwlLr17dvXnMJaWEZGhi6//HLVrVtXsbGxGjBggHbv3l3qmBMnTmjs2LFq2LCh6tSpo0GDBungwYMmldi63KnLXr16nXde3nXXXSaV2JrmzZunDh06uBa8S0lJ0Ycffujaz/novsrq0ozzkbBTAxw/flwdO3bU888/X+b+2bNna+7cuZo/f742b96s2rVrKy0tTSdOnPBzSa2vsrqUpL59+yonJ8d1e/PNN/1YwsCwbt06jR07Vp9++qlWrVql06dP65prrtHx48ddx0yYMEHvvfee3nrrLa1bt04HDhzQwIEDTSy1NblTl5I0ZsyYUufl7NmzTSqxNV144YWaNWuWtm3bpq1bt+rqq6/Wb3/7W+3cuVMS52NVVFaXkgnno4EaRZLxzjvvuP5fXFxsxMfHG3/6059c2/Ly8ozw8HDjzTffNKGEgePcujQMwxgxYoTx29/+1pTyBLJDhw4Zkox169YZhvHrORgaGmq89dZbrmN27dplSDIyMzPNKmZAOLcuDcMwevbsadx3333mFSpA1a9f33jppZc4H72gpC4Nw5zzkZadGi4rK0u5ubnq06ePa1t0dLS6du2qzMxME0sWuD755BPFxsbqoosu0t13362ffvrJ7CJZntPplCQ1aNBAkrRt2zadPn261HnZtm1bNW3alPOyEufWZYk33nhDjRo1Uvv27TVlyhQVFBSYUbyAUFRUpL/97W86fvy4UlJSOB+r4dy6LOHv85ELgdZwubm5kqS4uLhS2+Pi4lz74L6+fftq4MCBSkxM1N69e/XQQw+pX79+yszMVHBwsNnFs6Ti4mKNHz9eqampat++vaRfz8uwsDDVq1ev1LGclxUrqy4laejQoWrWrJkaN26sL7/8UpMmTdLu3bu1bNkyE0trPV999ZVSUlJ04sQJ1alTR++8846SkpK0Y8cOzscqKq8uJXPOR8IO4EVDhgxx/Ts5OVkdOnRQy5Yt9cknn6h3794mlsy6xo4dq6+//lobNmwwuygBr7y6vPPOO13/Tk5OVkJCgnr37q29e/eqZcuW/i6mZV100UXasWOHnE6nli5dqhEjRmjdunVmFysglVeXSUlJppyPdGPVcPHx8ZJ03qyCgwcPuvbBcy1atFCjRo303XffmV0US0pPT9eKFSu0du1aXXjhha7t8fHxOnXqlPLy8kodz3lZvvLqsixdu3aVJM7Lc4SFhalVq1a67LLLlJGRoY4dO+rPf/4z56MHyqvLsvjjfCTs1HCJiYmKj4/X6tWrXdvy8/O1efPmUv2r8MwPP/ygn376SQkJCWYXxVIMw1B6erreeecdrVmzRomJiaX2X3bZZQoNDS11Xu7evVvZ2dmcl+eorC7LsmPHDknivKxEcXGxTp48yfnoBSV1WRZ/nI90Y9UAx44dK5WYs7KytGPHDjVo0EBNmzbV+PHjNWPGDLVu3VqJiYmaOnWqGjdurAEDBphXaIuqqC4bNGig6dOna9CgQYqPj9fevXv14IMPqlWrVkpLSzOx1NYzduxYLV68WO+++67q1q3rGvcQHR2tiIgIRUdHa/To0br//vvVoEEDRUVF6d5771VKSoq6detmcumtpbK63Lt3rxYvXqxrr71WDRs21JdffqkJEyaoR48e6tChg8mlt44pU6aoX79+atq0qX755RctXrxYn3zyiT7++GPOxyqqqC5NOx/9OvcLpli7dq0h6bzbiBEjDMP4dfr51KlTjbi4OCM8PNzo3bu3sXv3bnMLbVEV1WVBQYFxzTXXGDExMUZoaKjRrFkzY8yYMUZubq7ZxbacsupQkrFw4ULXMYWFhcY999xj1K9f34iMjDRuvPFGIycnx7xCW1RldZmdnW306NHDaNCggREeHm60atXKeOCBBwyn02luwS1m1KhRRrNmzYywsDAjJibG6N27t7Fy5UrXfs5H91VUl2adjw7DMAzfRSkAAABzMWYHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHgKWdOnXK7CKcx4plAlA+wg4Av+rVq5fS09OVnp6u6OhoNWrUSFOnTlXJlWuaN2+uxx57TMOHD1dUVJTuvPNOSdKGDRt05ZVXKiIiQk2aNNG4ceN0/Phx1+O+8MILat26tWrVqqW4uDjddNNNrn1Lly5VcnKyIiIi1LBhQ/Xp08d13169emn8+PGlyjhgwACNHDnS9X9PywTAGgg7APzu1VdfVUhIiD777DP9+c9/1tNPP62XXnrJtf/JJ59Ux44d9fnnn2vq1Knau3ev+vbtq0GDBunLL7/UkiVLtGHDBqWnp0uStm7dqnHjxunRRx/V7t279dFHH6lHjx6SpJycHN1yyy0aNWqUdu3apU8++UQDBw5UVS8LWNUyAbAOLgQKwK969eqlQ4cOaefOnXI4HJKkyZMna/ny5frmm2/UvHlzderUSe+8847rPnfccYeCg4P14osvurZt2LBBPXv21PHjx/XBBx/o9ttv1w8//KC6deuWer7t27frsssu0759+9SsWbMyy3PJJZdozpw5rm0DBgxQvXr1tGjRIknyqEy1atWqVj0B8B5adgD4Xbdu3VxBR5JSUlK0Z88eFRUVSZI6d+5c6vgvvvhCixYtUp06dVy3tLQ0FRcXKysrS7/5zW/UrFkztWjRQrfddpveeOMNFRQUSJI6duyo3r17Kzk5Wb/73e+0YMEC/fzzz1Uuc1XLBMA6CDsALKd27dql/n/s2DH9/ve/144dO1y3L774Qnv27FHLli1Vt25dbd++XW+++aYSEhL08MMPq2PHjsrLy1NwcLBWrVqlDz/8UElJSXr22Wd10UUXuQJJUFDQeV1ap0+frnaZAFgHYQeA323evLnU/z/99FO1bt1awcHBZR5/6aWX6ptvvlGrVq3Ou4WFhUmSQkJC1KdPH82ePVtffvml9u3bpzVr1kiSHA6HUlNTNX36dH3++ecKCwtzdUnFxMQoJyfH9VxFRUX6+uuvK30N7pQJgDUQdgD4XXZ2tu6//37t3r1bb775pp599lndd9995R4/adIkbdq0Senp6dqxY4f27Nmjd9991zUYeMWKFZo7d6527Nih77//Xq+99pqKi4t10UUXafPmzZo5c6a2bt2q7OxsLVu2TIcPH1a7du0kSVdffbXef/99vf/++/r222919913Ky8vr9LXUFmZAFhHiNkFAFDzDB8+XIWFherSpYuCg4N13333uaZzl6VDhw5at26d/u///k9XXnmlDMNQy5YtNXjwYElSvXr1tGzZMk2bNk0nTpxQ69at9eabb+riiy/Wrl27tH79es2ZM0f5+flq1qyZnnrqKfXr10+SNGrUKH3xxRcaPny4QkJCNGHCBF111VWVvobKygTAOpiNBcCvypr9BAC+RDcWAACwNcIOAACwNbqxAACArdGyAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbO3/AW8G965BJW03AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB+0lEQVR4nO3de3gU9d3//9cmkJBAEg45ckwIJ5EQkIMGlICggXqrEb2LclUOAp6gHqhWYqsCWoLWA61VsFilalEqglqlKuX4RZCCGAVUfhLBREmAaNlIEgIm8/uDO1sCOexudndmJ8/Hde11wezs7ntnJjOv/cxnPuMwDMMQAACATYSYXQAAAIAvEW4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AmGLu3LlyOBxuzetwODR37ly/1jNy5EiNHDnSsu8HwH2EG6CZW7ZsmRwOh+vRokULderUSVOmTNF3331ndnmWk5ycXGt5xcfH65JLLtHq1at98v7l5eWaO3euNm7c6JP3A5ojwg0ASdL8+fP18ssva8mSJRo3bpxeeeUVZWZm6sSJE375vN/+9reqqKjwy3v724ABA/Tyyy/r5Zdf1j333KNDhw5p/PjxWrJkSZPfu7y8XPPmzSPcAE3QwuwCAFjDuHHjNHjwYEnS9OnTFRsbq0cffVRvv/22fv7zn/v881q0aKEWLYJzF9SpUyf94he/cP1/0qRJ6tGjh5566indeuutJlYGQKLlBkA9LrnkEklSfn5+relffvmlrrvuOrVv316tWrXS4MGD9fbbb9ea59SpU5o3b5569uypVq1aqUOHDrr44ou1du1a1zx19bmprKzU3Xffrbi4OEVFRemqq67St99+e05tU6ZMUXJy8jnT63rPF198UZdeeqni4+MVHh6uvn37avHixR4ti8YkJibqvPPO04EDBxqc78iRI5o2bZoSEhLUqlUrpaen669//avr+YMHDyouLk6SNG/ePNepL3/3NwLsJjh/NgHwu4MHD0qS2rVr55q2d+9eDR8+XJ06ddKcOXPUunVr/f3vf1d2drbeeOMNXXPNNZJOh4zc3FxNnz5dQ4cOVWlpqXbu3Kldu3bpsssuq/czp0+frldeeUUTJ07UsGHDtH79el1xxRVN+h6LFy/W+eefr6uuukotWrTQP/7xD91+++2qrq7WzJkzm/TeNU6dOqXCwkJ16NCh3nkqKio0cuRI7d+/X7NmzVJKSopef/11TZkyRceOHdOdd96puLg4LV68WLfddpuuueYajR8/XpLUv39/n9QJNBsGgGbtxRdfNCQZ//rXv4yjR48ahYWFxsqVK424uDgjPDzcKCwsdM07evRoIy0tzThx4oRrWnV1tTFs2DCjZ8+ermnp6enGFVdc0eDnPvTQQ8aZu6C8vDxDknH77bfXmm/ixImGJOOhhx5yTZs8ebLRrVu3Rt/TMAyjvLz8nPmysrKM7t2715qWmZlpZGZmNlizYRhGt27djMsvv9w4evSocfToUePTTz81rr/+ekOS8ctf/rLe91u0aJEhyXjllVdc006ePGlkZGQYbdq0MUpLSw3DMIyjR4+e830BeIbTUgAkSWPGjFFcXJy6dOmi6667Tq1bt9bbb7+tzp07S5J++OEHrV+/Xj//+c/1448/qqSkRCUlJfr++++VlZWlr776ynV1Vdu2bbV371599dVXbn/+mjVrJEl33HFHrel33XVXk75XRESE699Op1MlJSXKzMzU119/LafT6dV7fvDBB4qLi1NcXJzS09P1+uuv68Ybb9Sjjz5a72vWrFmjxMRE3XDDDa5pLVu21B133KHjx49r06ZNXtUC4FyclgIgSXrmmWfUq1cvOZ1OvfDCC9q8ebPCw8Ndz+/fv1+GYeiBBx7QAw88UOd7HDlyRJ06ddL8+fN19dVXq1evXurXr5/Gjh2rG2+8scHTK998841CQkKUmppaa3rv3r2b9L0+/PBDPfTQQ9q2bZvKy8trPed0OhUTE+Pxe1544YV65JFH5HA4FBkZqfPOO09t27Zt8DXffPONevbsqZCQ2r8pzzvvPNfzAHyDcANAkjR06FDX1VLZ2dm6+OKLNXHiRO3bt09t2rRRdXW1JOmee+5RVlZWne/Ro0cPSdKIESOUn5+vt956Sx988IGef/55PfXUU1qyZImmT5/e5FrrG/yvqqqq1v/z8/M1evRo9enTR08++aS6dOmisLAwrVmzRk899ZTrO3kqNjZWY8aM8eq1APyPcAPgHKGhocrNzdWoUaP0pz/9SXPmzFH37t0lnT6V4s6BvX379po6daqmTp2q48ePa8SIEZo7d2694aZbt26qrq5Wfn5+rdaaffv2nTNvu3btdOzYsXOmn9368Y9//EOVlZV6++231bVrV9f0DRs2NFq/r3Xr1k2fffaZqqura7XefPnll67npfqDGwD30ecGQJ1GjhypoUOHatGiRTpx4oTi4+M1cuRIPffccyoqKjpn/qNHj7r+/f3339d6rk2bNurRo4cqKyvr/bxx48ZJkv74xz/Wmr5o0aJz5k1NTZXT6dRnn33mmlZUVHTOKMGhoaGSJMMwXNOcTqdefPHFeuvwl5/97GcqLi7WihUrXNN++uknPf3002rTpo0yMzMlSZGRkZJUZ3gD4B5abgDU695779X//u//atmyZbr11lv1zDPP6OKLL1ZaWppmzJih7t276/Dhw9q2bZu+/fZbffrpp5Kkvn37auTIkRo0aJDat2+vnTt3auXKlZo1a1a9nzVgwADdcMMNevbZZ+V0OjVs2DCtW7dO+/fvP2fe66+/Xvfdd5+uueYa3XHHHSovL9fixYvVq1cv7dq1yzXf5ZdfrrCwMF155ZW65ZZbdPz4cS1dulTx8fF1BjR/uvnmm/Xcc89pypQp+vjjj5WcnKyVK1fqww8/1KJFixQVFSXpdAfovn37asWKFerVq5fat2+vfv36qV+/fgGtFwhqZl+uBcBcNZeC79ix45znqqqqjNTUVCM1NdX46aefDMMwjPz8fGPSpElGYmKi0bJlS6NTp07G//zP/xgrV650ve6RRx4xhg4darRt29aIiIgw+vTpY/zud78zTp486Zqnrsu2KyoqjDvuuMPo0KGD0bp1a+PKK680CgsL67w0+oMPPjD69etnhIWFGb179zZeeeWVOt/z7bffNvr372+0atXKSE5ONh599FHjhRdeMCQZBw4ccM3nyaXgjV3mXt/7HT582Jg6daoRGxtrhIWFGWlpacaLL754zmu3bt1qDBo0yAgLC+OycMALDsM4o70WAAAgyNHnBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2EqzG8Svurpahw4dUlRUFMOcAwAQJAzD0I8//qiOHTuecwPaszW7cHPo0CF16dLF7DIAAIAXCgsL1blz5wbnaXbhpmaI88LCQkVHR5tcDQAAcEdpaam6dOniOo43pNmFm5pTUdHR0YQbAACCjDtdSuhQDAAAbIVwAwAAbIVwAwAAbKXZ9blxV1VVlU6dOmV2GXBTy5YtFRoaanYZAAALINycxTAMFRcX69ixY2aXAg+1bdtWiYmJjF8EAM0c4eYsNcEmPj5ekZGRHCiDgGEYKi8v15EjRyRJSUlJJlcEADAT4eYMVVVVrmDToUMHs8uBByIiIiRJR44cUXx8PKeoAKAZo0PxGWr62ERGRppcCbxRs97oKwUAzRvhpg6cigpOrDcAgES4AQAANkO4QdDYuHGjHA4HV7IBABpkarjJzc3VkCFDFBUVpfj4eGVnZ2vfvn0NvmbZsmVyOBy1Hq1atQpQxfY2d+5cDRgwwOwyAMASipwV2ppfoiJnhdmlwEOmXi21adMmzZw5U0OGDNFPP/2k+++/X5dffrk+//xztW7dut7XRUdH1wpB9LUIrFOnTqlly5ZmlwEAfrNiR4FyVu1WtSGFOKTc8WmaMKSr2WXBTaa23Lz33nuaMmWKzj//fKWnp2vZsmUqKCjQxx9/3ODrHA6HEhMTXY+EhIQAVWxt1dXVys3NVUpKiiIiIpSenq6VK1dK+u8pnXXr1mnw4MGKjIzUsGHDXCFx2bJlmjdvnj799FNXi9iyZcsknV7eixcv1lVXXaXWrVvrd7/7XYN11HzW+++/r4EDByoiIkKXXnqpjhw5on/+858677zzFB0drYkTJ6q8vNz1usrKSt1xxx2Kj49Xq1atdPHFF2vHjh3+WVgAUI8iZ4Ur2EhStSHdv2oPLThBxFJ9bpxOpySpffv2Dc53/PhxdevWTV26dNHVV1+tvXv31jtvZWWlSktLaz0CJdBNmrm5uXrppZe0ZMkS7d27V3fffbd+8YtfaNOmTa55fvOb3+iJJ57Qzp071aJFC910002SpAkTJuhXv/qVzj//fBUVFamoqEgTJkxwvW7u3Lm65pprtHv3btdrGjN37lz96U9/0tatW1VYWKif//znWrRokZYvX653331XH3zwgZ5++mnX/L/+9a/1xhtv6K9//at27dqlHj16KCsrSz/88IOPlhAANO5ASZkr2NSoMgwdLCmv+wWwHMsM4lddXa277rpLw4cPV79+/eqdr3fv3nrhhRfUv39/OZ1OPf744xo2bJj27t2rzp07nzN/bm6u5s2b58/S6xToJs3KykotWLBA//rXv5SRkSFJ6t69u7Zs2aLnnntON998syTpd7/7nTIzMyVJc+bM0RVXXKETJ04oIiJCbdq0UYsWLZSYmHjO+0+cOFFTp071qKZHHnlEw4cPlyRNmzZNOTk5ys/PV/fu3SVJ1113nTZs2KD77rtPZWVlWrx4sZYtW6Zx48ZJkpYuXaq1a9fqL3/5i+69917vFgwAeCgltrVCHKoVcEIdDiXHMgZasLBMy83MmTO1Z88evfbaaw3Ol5GRoUmTJmnAgAHKzMzUqlWrFBcXp+eee67O+XNycuR0Ol2PwsJCf5RfixlNmvv371d5ebkuu+wytWnTxvV46aWXlJ+f75qvf//+rn/X3Kag5rYFDRk8eLDHNZ35WQkJCYqMjHQFm5ppNZ+dn5+vU6dOucKQdPpmmEOHDtUXX3zh8WcDgLeSYiKUOz5Nof/XnzPU4dCC8f2UFBNhcmVwlyVabmbNmqV33nlHmzdvrrP1pSEtW7bUwIEDtX///jqfDw8PV3h4uC/KdFtDTZr++uM4fvy4JOndd99Vp06daj0XHh7uCjhndgSu6YhdXV3d6Ps31MG7Pmd/1tmdkB0Oh1ufDQCBNmFIV43oFaeDJeVKjo0k2AQZU1tuDMPQrFmztHr1aq1fv14pKSkev0dVVZV2795tqZsl1jRpnsnfTZp9+/ZVeHi4CgoK1KNHj1qPLl26uPUeYWFhqqqq8luNDUlNTVVYWJg+/PBD17RTp05px44d6tu3ryk1AWjekmIilJHagWAThExtuZk5c6aWL1+ut956S1FRUSouLpYkxcTEuG6EOGnSJHXq1Em5ubmSpPnz5+uiiy5Sjx49dOzYMf3+97/XN998o+nTp5v2Pc5W06R5/6o9qjKMgDRpRkVF6Z577tHdd9+t6upqXXzxxXI6nfrwww8VHR2tbt26NfoeycnJOnDggPLy8tS5c2dFRUUFrNWrdevWuu2223Tvvfeqffv26tq1qx577DGVl5dr2rRpAakBAGAPpoabxYsXS5JGjhxZa/qLL76oKVOmSJIKCgoUEvLfBqb//Oc/mjFjhoqLi9WuXTsNGjRIW7dutdyvezOaNB9++GHFxcUpNzdXX3/9tdq2basLLrhA999/v1unf6699lqtWrVKo0aN0rFjx2qth0BYuHChqqurdeONN+rHH3/U4MGD9f7776tdu3YBqwEAEPwchmEYjc9mH6WlpYqJiZHT6VR0dHSt506cOKEDBw4oJSWFUY+DEOsPAOyroeP32SxztRQAAIAvEG7gsVtvvbXW5eZnPm699VazywMANHOWuBQcwWX+/Pm655576nyusaZCAAD8jXADj8XHxys+Pt7sMgAAqBOnpQAAgK0QburAqLnBifUGAJA4LVVLWFiYQkJCdOjQIcXFxSksLMx1iwJYl2EYOnnypI4ePaqQkBCFhYWZXRIAwESEmzOEhIQoJSVFRUVFOnTokNnlwEORkZHq2rVrrUEfAQDND+HmLGFhYeratat++ukn0+6zBM+FhoaqRYsWtLQBAAg3dam5g/XZd7EGAADWR/s9AACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFVPDTW5uroYMGaKoqCjFx8crOztb+/bta/R1r7/+uvr06aNWrVopLS1Na9asCUC1AAAgGJgabjZt2qSZM2fqo48+0tq1a3Xq1CldfvnlKisrq/c1W7du1Q033KBp06bpk08+UXZ2trKzs7Vnz54AVg4AAKzKYRiGYXYRNY4ePar4+Hht2rRJI0aMqHOeCRMmqKysTO+8845r2kUXXaQBAwZoyZIljX5GaWmpYmJi5HQ6FR0d7bPaAQCA/3hy/LZUnxun0ylJat++fb3zbNu2TWPGjKk1LSsrS9u2batz/srKSpWWltZ6AAAA+7JMuKmurtZdd92l4cOHq1+/fvXOV1xcrISEhFrTEhISVFxcXOf8ubm5iomJcT26dOni07oBAIC1WCbczJw5U3v27NFrr73m0/fNycmR0+l0PQoLC336/gAAwFpamF2AJM2aNUvvvPOONm/erM6dOzc4b2Jiog4fPlxr2uHDh5WYmFjn/OHh4QoPD/dZrQAAwNpMbbkxDEOzZs3S6tWrtX79eqWkpDT6moyMDK1bt67WtLVr1yojI8NfZQIAgCBiasvNzJkztXz5cr311luKiopy9ZuJiYlRRESEJGnSpEnq1KmTcnNzJUl33nmnMjMz9cQTT+iKK67Qa6+9pp07d+rPf/6zad8DAABYh6ktN4sXL5bT6dTIkSOVlJTkeqxYscI1T0FBgYqKilz/HzZsmJYvX64///nPSk9P18qVK/Xmm2822AkZAAA0H5Ya5yYQGOcGAIDgE7Tj3AAAADQV4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4cYmipwV2ppfoiJnhdmlAABgqhZmF4CmW7GjQDmrdqvakEIcUu74NE0Y0tXssgAAMAUtN0GuyFnhCjaSVG1I96/aQwsOAKDZItwEuQMlZa5gU6PKMHSwpNycggAAMBnhJsilxLZWiKP2tFCHQ8mxkeYUBACAyQg3QS4pJkK549MU6jidcEIdDi0Y309JMREmVwYAgDnoUGwDE4Z01YhecTpYUq7k2EiCDQCgWSPc2ERSTAShBgAAcVoKAADYDOEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEG+D9FzgptzS/hjuoAEOQYoRiQtGJHgXJW7Va1IYU4pNzxaZowpKvZZQEAvEDLDZq9ImeFK9hIUrUh3b9qDy04ABCkCDdo9g6UlLmCTY0qw9DBknJzCgIANAnhBs1eSmxrhThqTwt1OJQcG2lOQQCAJjE13GzevFlXXnmlOnbsKIfDoTfffLPB+Tdu3CiHw3HOo7i4ODAFw5aSYiKUOz5NoY7TCSfU4dCC8f24yzoABClTOxSXlZUpPT1dN910k8aPH+/26/bt26fo6GjX/+Pj4/1RHpqRCUO6akSvOB0sKVdybCTBBgCCmKnhZty4cRo3bpzHr4uPj1fbtm19XxCataSYCEINANhAUPa5GTBggJKSknTZZZfpww8/NLucgGEcFgAAGhdU49wkJSVpyZIlGjx4sCorK/X8889r5MiR2r59uy644II6X1NZWanKykrX/0tLSwNVrk8xDgsAAO4JqnDTu3dv9e7d2/X/YcOGKT8/X0899ZRefvnlOl+Tm5urefPmBapEv6hvHJYRveI4jQIAwFmC8rTUmYYOHar9+/fX+3xOTo6cTqfrUVhYGMDqfINxWAAAcF9QtdzUJS8vT0lJSfU+Hx4ervDw8ABW5Hs147CcGXAYhwUAgLqZGm6OHz9eq9XlwIEDysvLU/v27dW1a1fl5OTou+++00svvSRJWrRokVJSUnT++efrxIkTev7557V+/Xp98MEHZn2FgKgZh+X+VXtUZRiMwwIAQAPcDjeedMQ9cwyahuzcuVOjRo1y/X/27NmSpMmTJ2vZsmUqKipSQUGB6/mTJ0/qV7/6lb777jtFRkaqf//++te//lXrPeyKcVgAAHCPwzAMo/HZpJCQEDkcjgbnMQxDDodDVVVVPinOH0pLSxUTEyOn0+l2CAP8pchZoQMlZUqJbU1gBYAGeHL8drvlZsOGDU0uDMB/cXk/APiH2+EmMzPTn3UAzQqX9wOA/3jdofjYsWP6y1/+oi+++EKSdP755+umm25STEyMz4oD7Kqhy/sJNwDQNF6Nc7Nz506lpqbqqaee0g8//KAffvhBTz75pFJTU7Vr1y5f1wjYTs3l/Wfi8n4A8A23OxSf6ZJLLlGPHj20dOlStWhxuvHnp59+0vTp0/X1119r8+bNPi/UV+hQDKtYsaPgnMv76XMDAHXz5PjtVbiJiIjQJ598oj59+tSa/vnnn2vw4MEqL7fuyLmEG1hJkbOCy/sBwA2eHL+9Oi0VHR1da/yZGoWFhYqKivLmLYFmKSkmQhmpHQg2AOBDXoWbCRMmaNq0aVqxYoUKCwtVWFio1157TdOnT9cNN9zg6xoBAADc5tXVUo8//rgcDocmTZqkn376SZLUsmVL3XbbbVq4cKFPCwQAAPCEV31uapSXlys/P1+SlJqaqshI61/pQZ8bAACCj19GKK5LZGSk0tLSmvIWAAAAPuVVuDlx4oSefvppbdiwQUeOHFF1dXWt5xnrBgAAmMWrcDNt2jR98MEHuu666zR06NBGb6gJAAAQKF6Fm3feeUdr1qzR8OHDfV0PAABAk3h1KXinTp0YzwYAAFiSV+HmiSee0H333advvvnG1/UAAAA0iVenpQYPHqwTJ06oe/fuioyMVMuWLWs9/8MPP/ikOAAAAE95FW5uuOEGfffdd1qwYIESEhLoUAwAACzDq3CzdetWbdu2Tenp6b6uBwAAoEm86nPTp08fVVRU+LoWAACAJvMq3CxcuFC/+tWvtHHjRn3//fcqLS2t9QAAADCLV/eWCgk5nYnO7mtjGIYcDoeqqqp8U50fcG8pAACCj9/vLbVhwwavCgMAAPA3r8JNZmamW/Pdfvvtmj9/vmJjY735GAAAAI951efGXa+88gp9cAAAQED5Ndx40Z0HAACgSfwabgAAAAKNcAMAAGyFcAMAAGyFcAMAAGzF43Dz008/af78+fr2228bnfcXv/gFA+UBAICA8mqE4qioKO3evVvJycl+KMm/GKEYAIDg48nx26vTUpdeeqk2bdrkVXEAAAD+5NUIxePGjdOcOXO0e/duDRo0SK1bt671/FVXXeWT4gAAADzVpBtn1vmG3DgTAAD4mN9vnFldXe1VYQAAAP7mVZ+bl156SZWVledMP3nypF566aUmFwUAAOAtr05LhYaGqqioSPHx8bWmf//994qPj+e0FAAA8Cm/Xy1lGIYcDsc507/99lvFxMR485YAAMAGipwV2ppfoiJnhWk1eNTnZuDAgXI4HHI4HBo9erRatPjvy6uqqnTgwAGNHTvW50UCAADrW7GjQDmrdqvakEIcUu74NE0Y0jXgdXgUbrKzsyVJeXl5ysrKUps2bVzPhYWFKTk5Wddee61PCwQAANZX5KxwBRtJqjak+1ft0YhecUqKiQhoLR6Fm4ceekiSlJycrAkTJqhVq1Z+KSpYFTkrdKCkTCmxrQO+IgEAMNOBkjJXsKlRZRg6WFJu7XBTY/LkyZJOXx115MiRcy4N79o18E1QZrNKUxwAAGZIiW2tEIdqBZxQh0PJsZEBr8WrDsVfffWVLrnkEkVERKhbt25KSUlRSkqKkpOTlZKS4usaLa++pjgzO1MBABBISTERyh2fptD/u+Ao1OHQgvH9TDmT4VXLzZQpU9SiRQu98847SkpKqvPKqebESk1xAACYZcKQrhrRK04HS8qVHBtp2jHQq3CTl5enjz/+WH369PF1PUHJSk1xAACYKSkmwvQf9l6dlurbt69KSkp8XUvQslJTHAAAzZ1XIxSvX79ev/3tb7VgwQKlpaWpZcuWtZ638si//hyhuMhZYXpT3Nm4ggsAYAeeHL+bfFfwM/vb1IxczO0XrIEruAAAduH3u4Jv2LDBq8IQOFYaTAkAgEDyqs9NZmamQkJCtHTpUs2ZM0c9evRQZmamCgoKFBoa6usag5aZ99do6AouAADszKtw88YbbygrK0sRERH65JNPVFlZKUlyOp1asGCBTwsMVit2FGj4wvWauHS7hi9crxU7CgL6+TVXcJ2JK7gAAM2BV+HmkUce0ZIlS7R06dJanYmHDx+uXbt2+ay4YGWFQf24ggsA0Fx51edm3759GjFixDnTY2JidOzYsabWFPSsMqifVQZTAgAgkLwKN4mJidq/f7+Sk5NrTd+yZYu6d+/ui7qCmpUG9bPCYEoAAASSV6elZsyYoTvvvFPbt2+Xw+HQoUOH9Le//U333HOPbrvtNl/XGHQ4JQQAgHm8Cjdz5szRxIkTNXr0aB0/flwjRozQ9OnTdcstt+iXv/yl2++zefNmXXnllerYsaMcDofefPPNRl+zceNGXXDBBQoPD1ePHj20bNkyb76C300Y0lVb5ozSqzMu0pY5oxhfBgCAAPEq3DgcDv3mN7/RDz/8oD179uijjz7S0aNH9fDDD3v0PmVlZUpPT9czzzzj1vwHDhzQFVdcoVGjRikvL0933XWXpk+frvfff9+br+F3STERykjtQIsNAAAB5NUIxf7gcDi0evVqZWdn1zvPfffdp3fffVd79uxxTbv++ut17Ngxvffee259TnMaoRgAALvw5PjtVcuNWbZt26YxY8bUmpaVlaVt27aZVBEAALAar66WMktxcbESEhJqTUtISFBpaakqKioUEXHu6Z/KykrXIIPS6eQHAADsK6habryRm5urmJgY16NLly5mlwQAAPwoqMJNYmKiDh8+XGva4cOHFR0dXWerjSTl5OTI6XS6HoWFhYEoFQAAmCSoTktlZGRozZo1taatXbtWGRkZ9b4mPDxc4eHh/i4NAABYhKktN8ePH1deXp7y8vIknb7UOy8vTwUFp28ymZOTo0mTJrnmv/XWW/X111/r17/+tb788ks9++yz+vvf/667777bjPIBAIAFmRpudu7cqYEDB2rgwIGSpNmzZ2vgwIF68MEHJUlFRUWuoCNJKSkpevfdd7V27Vqlp6friSee0PPPP6+srCxT6gcAANZjmXFuAoVxbpqmyFmhAyVlSoltzeCEAICA8eT4HVR9bmCuFTsKlLNqt6oNKcQh5Y5P47YSAADLCaqrpWCeImeFK9hIp+94fv+qPSpyVphbGAAAZyHcwC0HSspcwaZGlWHoYEm5OQUBAFAPwg3ckhLbWiGO2tNCHQ4lx0aaUxAAAPUg3MAtSTERyh2fplDH6YQT6nBowfh+dCoGAFgOHYrhtglDumpErzgdLClXcmwkwQYAYEmEG3gkKSaCUAMAsDROSwEAAFsh3AAAAFsh3AAAAFsh3MBjRc4Kbc0vYQA/AIAl0aEYHuEWDAAAq6PlBm7jFgwAgGBAuIHbuAUDACAYEG7gNm7BAAAIBoQbuI1bMAAAggEdiuERbsEAALA6wg08xi0YAABWxmkpAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABMwo2I/YNLwQEAMAE3IvYfWm4AAAgwbkTsX4QbAAACjBsR+xfhBgCAAONGxP5FuAEAIMC4EbF/0aEYAAATcCNi/yHcAABgEm5E7B+clgLQrDHOCGA/tNwAaLYYZwSwJ1puADRLjDMC2BfhBkCzxDgjgH0RbgA0S4wzAtgX4QZAs8Q4I4B90aEYQLPFOCOAPRFuADRrjDMC2A+npQAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbuB3Rc4Kbc0v4YaEAICAYBA/+NWKHQWuOy+HOKTc8WmaMKSr2WUBAGyMlhv4TZGzwhVsJKnakO5ftYcWHACAXxFu4DcHSspcwaZGlWHoYEm5OQUBAJoFwg38JiW2tUIctaeFOhxKjo00pyAgAOhjBpiPcAO/SYqJUO74NIU6TiecUIdDC8b34yaFsK0VOwo0fOF6TVy6XcMXrteKHQVmlwQ0Sw7DMIzGZ7OP0tJSxcTEyOl0Kjo62uxymoUiZ4UOlpQrOTaSYAPbKnJWaPjC9bVOxYY6HNoyZxTbPeADnhy/uVoKfpcUE8HOHbbXUB8ztn8EqyJnhQ6UlCkltnVQbceEGwDwgZo+Zme33NDHDMHK3aE8rBiA6HMDAD5AHzPfoVO2+dwdysOq/cwsEW6eeeYZJScnq1WrVrrwwgv173//u955ly1bJofDUevRqlWrAFYLAHWbMKSrtswZpVdnXKQtc0YxYKUXrHqwtKv6gqQ7Q3lYeSwz009LrVixQrNnz9aSJUt04YUXatGiRcrKytK+ffsUHx9f52uio6O1b98+1/8dDked8wFAoNHHzHv1HSxH9IpjmfpBQ6ed3DnNauV+Zqa33Dz55JOaMWOGpk6dqr59+2rJkiWKjIzUCy+8UO9rHA6HEhMTXY+EhIQAVgwA8AerDvxZX+tGMJ8+a6zVxZ3TrFYey8zUlpuTJ0/q448/Vk5OjmtaSEiIxowZo23bttX7uuPHj6tbt26qrq7WBRdcoAULFuj8888PRMkAAD+xYqfs+lo3gv2+ee60ukwY0lUjesXVO5RHTQC6f9UeVRmGpfqZmRpuSkpKVFVVdU7LS0JCgr788ss6X9O7d2+98MIL6t+/v5xOpx5//HENGzZMe/fuVefOnc+Zv7KyUpWVla7/l5aW+vZLAAB8wmoHy/paN/okRgX96TN3g2Rjp1kbC0BmMb3PjacyMjKUkZHh+v+wYcN03nnn6bnnntPDDz98zvy5ubmaN29eIEsEAHjJSgfL+lo3dhz8j2X7mrjLl0HSiv3MTA03sbGxCg0N1eHDh2tNP3z4sBITE916j5YtW2rgwIHav39/nc/n5ORo9uzZrv+XlpaqS5cu3hcNAPArqxws62vdGJLcznKnz7xhpSDpa6Z2KA4LC9OgQYO0bt0617Tq6mqtW7euVutMQ6qqqrR7924lJSXV+Xx4eLiio6NrPQAA1mDlTrn1dapN79LONmMaJcVEKCO1Q1DW3hDTT0vNnj1bkydP1uDBgzV06FAtWrRIZWVlmjp1qiRp0qRJ6tSpk3JzcyVJ8+fP10UXXaQePXro2LFj+v3vf69vvvlG06dPN/NrAAA8FAydcutr3bBzq4cdmB5uJkyYoKNHj+rBBx9UcXGxBgwYoPfee8/VybigoEAhIf9tYPrPf/6jGTNmqLi4WO3atdOgQYO0detW9e3b16yvgACz4lDfADwTTGPa1HeazCqnz3Au7gqOoBIMv/QANG5rfokmLt1+zvRXZ1ykjNQOJlQEq/Pk+G36IH6Au6w81DcAz1h5ADhPWbnfUHNFuEHQsOropQA8Z5cbjXIvLGsyvc8N4C4rjl4KwHvB3ik3mPoNNTe03CBo2OWXHoD/CuZLkWlNti5abhBUgv2XHgD7oDXZumi5QdAJ5l96AOyD1mTrouUGANAgu40t5cvvQ2uyNRFuAAD1stvYUv74PgzmZz2clgJga4xB4r1Ajy3l73XFWFnNBy03AGzLbq0OgdbQ1UC+bqkIxLry5/ex26m7YEfLDQBbasqvdFp7TgvUKMKBalHx1/dhID/rIdwAsCVvxyDhQPVfgboaKFDjxfjj+3Cqy5o4LQXAluoag0SSPvvuWL03ZmTE2XOdeTVQZFiIyk5WqchZ4dPlEcjxYnx9dVMgT91x6st9tNwAsKWkmAjdN7bPOdMfXfOlPi38T52vYcTZuiXFRKjghzJd8+xWv7RoBXq8GF+OlRWoU3e0KHqGcAPAttI6x5wzrVpS9rNb6zw42OFO1f7oLxSIUy8ThnTVljmj9OqMi7Rlzqig6fjtTTDzdB1x6stznJYCYFv1nZoy6jndVHOgun/VHlUZRtCNOOuvK44CderF3fFirHZ6xpNTXd6so0Ce+rILwg1gI1bb6ZutJqzkvLFb1Wc9V9/BIVhHnPVnfyEr3UPJqpf3uxPMvF1HVlr+wYLTUrAtO1zO68l3COQ5+WBathOGdNXqmcPk8OB0UzDev8yf/YU2/39HZZzx3g6HTGnRCvbTM96uI+5h5TlabkzAr2v/a8qvO6usH0++QyCv8rHqL+eGpHdpp4VBfLrJHf76dV+zbZ15THYY0ohecU16X28E++mZpqwjd1oUrbLvsgLCTYAF44Eh2DTlQG+V9ePpdwjUTt/duqy4kw3W003u8ld/obq2rWrJlEBRVzgIcUglx0/4/PJ0f2jqOmro1JdV9l1WQbgJIMbQCAxvD/RWWj+efgdf/Gp3J5C4U5eVd7J2v8GhPwKclfp7nB0OHI7TncN/+Wqe5ba1+vhjHVlp32UV9LkJIMbQCAxvL+e10vrx9Ds09Zy8u/11GqvLrD4RwdQH6Ez+qNvX/YWs1t+j5pLxZyYOlAy5TpdVG1LOG7vrHcPISny9jqy077IKWm4CyEq/gOzM26ZfK60fb76Dt78IPfnV11hd3rSaNfUUlpVbihoSTHVb7ZReUkyE2rUu01mbmmsMo4UWXpb+YKV9l1UQbgIo2MfQCCbe7Iyttn68/Q6e1ttYIDk7fDRUl6c72aYe4IO1Od6MupsaIq12Ss/TMYzszGr7Lisg3ASYL34BWbGzphV5szO24i9Uf9fQUCCpL3zUV5cnO1lfHOCD9eqZQNcdTK1E7vJmDCM7s9q+y2yEGxM05YBlx51UQ8wIclb7hepv9QUSSV6FD3d3sp4e4OvaFoK1OT6QdQdr65Y7Jgzpqj6JUcp+dmutcXiCYRvwh+a272oI4SaI2HknVZfmFuTMVFcg2Zpf4nXrgjs7WU8O8A21IAVjc3wg6/ZnK5EVWpGbwxhGZ7PCcrc6wk0QCdYmeG80tyBnpjN3lBmpHVzT/d264O4BvrFtIVib492tu6kHMn+tRyv9+AjWbcAbVlruVka4CSLB2gTvjeYU5MzU0I4yEK0L7hyU3NkWgrU5vrG6fXEg88d6tOJgjmcvSzu2bvCjz32EmyASrE3w3mhOQc4s7uwoA/GLuLEDfHPdFnx5IPP1evR0MEeHQ5ozro9uGZHapM91l11bN/jR5z7CTZBpLs2vzSnImcXdHaXZrSLNdVvw9YHMl+uxscB5djAzDCl3zZeSId2S6d+AY+fWjeYa9L1BuAlCZh9sAuXsICdJW/NLbNXMbKZg2lE2l1B/JiuvH28Gc5SkR//5pa4a0NGv68/OrRvNNeh7g3ADS6sJcnZtZjZTsO0ogyHU+7Kfh9XXT2ODOdbc9+lMgbjhpq9DodX67jTHoO8Nh2GcvfnZW2lpqWJiYuR0OhUdHW12OXBDkbNCwxeuP2dntWXOKP6wfaDIWcGO0gf8FcDrWj9WO+DW5bnN+adPRZ0hUH+3K3YUnBMKvVkXdvhRFQzbirs8OX7TcgPLs3MzsxUEQ4uI1fmzn8fZ6ydYDri3jEiVjNOnoqoV2Btu+mok+GDvuxMs24o/EG5geVbuewBIgQvgwXbAvSUzVVcN6GhKy2BTQ3uw/6gKtm3F10LMLgBoTE3fg1CHQ1JgfwHaTZGzQlvzS1TkrDC7FFupCeBn8kcAb+iAa1VJMRHKSO0QdH+vgVqn/hKM24ov0XKDoEAnuqZrzk3U/haozr+0YgaO1Tt0N6a5byt0KEaj7NQhzar8vYzplB0Ygeic7avOsr5k531EMHe4t+K20hR0KIbP8Gvf/wKxjIO9/0CwCETnbKu1Ytp9HxHMHe6ttq0EEn1uUK/6OqTRX8N3ArWMfdl/gH475rNKPxb2EdZnlW0l0Ag3qFdz75AWCIFaxr7qlL1iR4GGL1yviUu3a/jC9Vqxo8CndSK4sI+AVXFaCvVq7h3SAiGQy7ipTdTN/dJSnKup26+d++rAXLTcoF5cgu1/gV7GTWmi5lc6ztaU7ZdWQPgTV0uhUcF8tUCwCIZlzBVXqI+n2y/bErzB1VLwqWC+WiBYBMMyDvZxP+A/nm6/XL0HfyPcmIRzzQhGVr60lL+p4EF/PvcEepu2098Q4cYEdh8XAr5npZ2OFVuZ+JsKLrQCNi7Q27Td/obocxNgnGuGp+y20/E1X/1NWSlANhfB0NfMDIE+TgTLcYk+NxbGuebgZNaBj8uvG+eLvykCpDms2ApoBYE+TtjxuES4CbBgOdfMr9j/MvPAZ8edjq/5YqwVAqS1NPf9T6CPE8FyXPIE49wEWDCMHdPU8SfsNDy/2cPL+/K2Cf5m1npv6t8U4/dYC+PfmDP+ldWPS56i5cYEVr/ipCm/Yu3WvG92y0mwdLw0e7035W/Kjr9agxWtaP/lq+OEu61gVj4ueYNwYxKrnmtuysHcjjsmKwwvb/WdjlXWu7d/U8ESIH3Fyqd8zP4xYTVNPU54+qPDqsclbxBuUEt9B/PIsBBtzS9pcIfoyY7J7B2su5/flAOfL1szrLzTscMByeoB0ht1beNmt7A1hlY07529vq3yo8MshBvUUtfBPHtgR13z7NZGd4ju7pgCuYP1xQ7emwNfc9qx2OWAZOUA6am6tvERveIsv002t1Y0X6lrfXdpHxn0PzqagnCDc5x5MI8MC3EFG6nuHeKZAaKxHVMgD/q+3MEzvHzDpl+couf/3wFVKzCdEc1u+bOy+v7GFl2fHhTbpB1b0fypvvW96vYMW/zo8JYlrpZ65plnlJycrFatWunCCy/Uv//97wbnf/3119WnTx+1atVKaWlpWrNmTYAqbT5q7h5ddrKqwStJzr6yQZK2zBmlV2dcpC1zRp3TIuKvK1POvlKnvj/4nQd/CMiVMcF0lVNT1Kz/P/+/A5JDuvmS7nWud398ZnO+mqYh9f2NhTgcQbNNNuXu9f5i1atA61vf5SerbXcFlCdMDzcrVqzQ7Nmz9dBDD2nXrl1KT09XVlaWjhw5Uuf8W7du1Q033KBp06bpk08+UXZ2trKzs7Vnz54AV948NHSQri9ASKp3x+SPg35dBzuzd/B2vLTybHWt/79sORDwzwzkpfnBoL6/sQu6tbP9NukvVg7UDe1TJwzp2uCPTTszPdw8+eSTmjFjhqZOnaq+fftqyZIlioyM1AsvvFDn/H/4wx80duxY3XvvvTrvvPP08MMP64ILLtCf/vSnAFfePDR0kPamFcbXB/36Dnatw0JN38HbfcdixvgwjEnTuIb+xuy+TfqD1QN1Y/tUK7aCBYKpfW5Onjypjz/+WDk5Oa5pISEhGjNmjLZt21bna7Zt26bZs2fXmpaVlaU333yzzvkrKytVWVnp+n9paWnTC29m6jsH7m1HUl+eU2+sSbau/j+BPKdvp06qZzOjI7FdOi/7W0PbuJ23SX8Ihv5z9FM6l6nhpqSkRFVVVUpISKg1PSEhQV9++WWdrykuLq5z/uLi4jrnz83N1bx583xTcDNW1w6xKVc2+GoH29DBLiO1Azt4PzLjyhaupnEf27hvBEugZn3XZvurpXJycmq19JSWlqpLly4mVmQvZv9iaOxgxx+8f5mx/s3e5tC8EKiDk6nhJjY2VqGhoTp8+HCt6YcPH1ZiYmKdr0lMTPRo/vDwcIWHh/umYNTJ7ADBwc5cZqx/s7c5NC/sY4KPqR2Kw8LCNGjQIK1bt841rbq6WuvWrVNGRkadr8nIyKg1vyStXbu23vnRPDTXTnMAAoN9THAx/bTU7NmzNXnyZA0ePFhDhw7VokWLVFZWpqlTp0qSJk2apE6dOik3N1eSdOeddyozM1NPPPGErrjiCr322mvauXOn/vznP5v5NQAAgEWYHm4mTJigo0eP6sEHH1RxcbEGDBig9957z9VpuKCgQCEh/21gGjZsmJYvX67f/va3uv/++9WzZ0+9+eab6tevn1lfAQAAWIjDMAyj8dnso7S0VDExMXI6nYqOjja7HAAA4AZPjt+mD+IHAADgS4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK6aPUBxoNWMWlpaWmlwJAABwV81x252xh5tduPnxxx8lSV26dDG5EgAA4Kkff/xRMTExDc7T7G6/UF1drUOHDikqKkoOh8PscgKqtLRUXbp0UWFhIbeeaCKWpW+wHH2HZekbLEff8fWyNAxDP/74ozp27FjrnpN1aXYtNyEhIercubPZZZgqOjqaP1ofYVn6BsvRd1iWvsFy9B1fLsvGWmxq0KEYAADYCuEGAADYCuGmGQkPD9dDDz2k8PBws0sJeixL32A5+g7L0jdYjr5j5rJsdh2KAQCAvdFyAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwY0ObN2/WlVdeqY4dO8rhcOjNN9+s9bxhGHrwwQeVlJSkiIgIjRkzRl999ZU5xVpcY8tyypQpcjgctR5jx441p1gLy83N1ZAhQxQVFaX4+HhlZ2dr3759teY5ceKEZs6cqQ4dOqhNmza69tprdfjwYZMqtiZ3luPIkSPP2SZvvfVWkyq2rsWLF6t///6uAeYyMjL0z3/+0/U826N7GluOZm2PhBsbKisrU3p6up555pk6n3/sscf0xz/+UUuWLNH27dvVunVrZWVl6cSJEwGu1PoaW5aSNHbsWBUVFbker776agArDA6bNm3SzJkz9dFHH2nt2rU6deqULr/8cpWVlbnmufvuu/WPf/xDr7/+ujZt2qRDhw5p/PjxJlZtPe4sR0maMWNGrW3yscceM6li6+rcubMWLlyojz/+WDt37tSll16qq6++Wnv37pXE9uiuxpajZNL2aMDWJBmrV692/b+6utpITEw0fv/737umHTt2zAgPDzdeffVVEyoMHmcvS8MwjMmTJxtXX321KfUEsyNHjhiSjE2bNhmGcXobbNmypfH666+75vniiy8MSca2bdvMKtPyzl6OhmEYmZmZxp133mleUUGsXbt2xvPPP8/22EQ1y9EwzNseablpZg4cOKDi4mKNGTPGNS0mJkYXXnihtm3bZmJlwWvjxo2Kj49X7969ddttt+n77783uyTLczqdkqT27dtLkj7++GOdOnWq1nbZp08fde3ale2yAWcvxxp/+9vfFBsbq379+iknJ0fl5eVmlBc0qqqq9Nprr6msrEwZGRlsj146eznWMGN7bHY3zmzuiouLJUkJCQm1pickJLieg/vGjh2r8ePHKyUlRfn5+br//vs1btw4bdu2TaGhoWaXZ0nV1dW66667NHz4cPXr10/S6e0yLCxMbdu2rTUv22X96lqOkjRx4kR169ZNHTt21Geffab77rtP+/bt06pVq0ys1pp2796tjIwMnThxQm3atNHq1avVt29f5eXlsT16oL7lKJm3PRJugCa4/vrrXf9OS0tT//79lZqaqo0bN2r06NEmVmZdM2fO1J49e7RlyxazSwlq9S3Hm2++2fXvtLQ0JSUlafTo0crPz1dqamqgy7S03r17Ky8vT06nUytXrtTkyZO1adMms8sKOvUtx759+5q2PXJaqplJTEyUpHN6/R8+fNj1HLzXvXt3xcbGav/+/WaXYkmzZs3SO++8ow0bNqhz586u6YmJiTp58qSOHTtWa362y7rVtxzrcuGFF0oS22QdwsLC1KNHDw0aNEi5ublKT0/XH/7wB7ZHD9W3HOsSqO2RcNPMpKSkKDExUevWrXNNKy0t1fbt22udI4V3vv32W33//fdKSkoyuxRLMQxDs2bN0urVq7V+/XqlpKTUen7QoEFq2bJlre1y3759KigoYLs8Q2PLsS55eXmSxDbphurqalVWVrI9NlHNcqxLoLZHTkvZ0PHjx2ul4gMHDigvL0/t27dX165dddddd+mRRx5Rz549lZKSogceeEAdO3ZUdna2eUVbVEPLsn379po3b56uvfZaJSYmKj8/X7/+9a/Vo0cPZWVlmVi19cycOVPLly/XW2+9paioKFe/hZiYGEVERCgmJkbTpk3T7Nmz1b59e0VHR+uXv/ylMjIydNFFF5lcvXU0thzz8/O1fPly/exnP1OHDh302Wef6e6779aIESPUv39/k6u3lpycHI0bN05du3bVjz/+qOXLl2vjxo16//332R490NByNHV7DPj1WfC7DRs2GJLOeUyePNkwjNOXgz/wwANGQkKCER4ebowePdrYt2+fuUVbVEPLsry83Lj88suNuLg4o2XLlka3bt2MGTNmGMXFxWaXbTl1LUNJxosvvuiap6Kiwrj99tuNdu3aGZGRkcY111xjFBUVmVe0BTW2HAsKCowRI0YY7du3N8LDw40ePXoY9957r+F0Os0t3IJuuukmo1u3bkZYWJgRFxdnjB492vjggw9cz7M9uqeh5Wjm9ugwDMPwb3wCAAAIHPrcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcALCUkydPml3COaxYE4D6EW4A+NXIkSM1a9YszZo1SzExMYqNjdUDDzygmju/JCcn6+GHH9akSZMUHR2tm2++WZK0ZcsWXXLJJYqIiFCXLl10xx13qKyszPW+zz77rHr27KlWrVopISFB1113neu5lStXKi0tTREREerQoYPGjBnjeu3IkSN111131aoxOztbU6ZMcf3f25oAWAPhBoDf/fWvf1WLFi3073//W3/4wx/05JNP6vnnn3c9//jjjys9PV2ffPKJHnjgAeXn52vs2LG69tpr9dlnn2nFihXasmWLZs2aJUnauXOn7rjjDs2fP1/79u3Te++9pxEjRkiSioqKdMMNN+imm27SF198oY0bN2r8+PHy9DZ6ntYEwDq4cSYAvxo5cqSOHDmivXv3yuFwSJLmzJmjt99+W59//rmSk5M1cOBArV692vWa6dOnKzQ0VM8995xr2pYtW5SZmamysjKtWbNGU6dO1bfffquoqKhan7dr1y4NGjRIBw8eVLdu3eqsZ8CAAVq0aJFrWnZ2ttq2batly5ZJklc1tWrVqknLCYDv0HIDwO8uuugiV7CRpIyMDH311VeqqqqSJA0ePLjW/J9++qmWLVumNm3auB5ZWVmqrq7WgQMHdNlll6lbt27q3r27brzxRv3tb39TeXm5JCk9PV2jR49WWlqa/vd//1dLly7Vf/7zH49r9rQmANZBuAFgutatW9f6//Hjx3XLLbcoLy/P9fj000/11VdfKTU1VVFRUdq1a5deffVVJSUl6cEHH1R6erqOHTum0NBQrV27Vv/85z/Vt29fPf300+rdu7crgISEhJxziurUqVNNrgmAdRBuAPjd9u3ba/3/o48+Us+ePRUaGlrn/BdccIE+//xz9ejR45xHWFiYJKlFixYaM2aMHnvsMX322Wc6ePCg1q9fL0lyOBwaPny45s2bp08++URhYWGuU0xxcXEqKipyfVZVVZX27NnT6HdwpyYA1kC4AeB3BQUFmj17tvbt26dXX31VTz/9tO68885657/vvvu0detWzZo1S3l5efrqq6/01ltvuTrvvvPOO/rjH/+ovLw8ffPNN3rppZdUXV2t3r17a/v27VqwYIF27typgoICrVq1SkePHtV5550nSbr00kv17rvv6t1339WXX36p2267TceOHWv0OzRWEwDraGF2AQDsb9KkSaqoqNDQoUMVGhqqO++803V5dV369++vTZs26Te/+Y0uueQSGYah1NRUTZgwQZLUtm1brVq1SnPnztWJEyfUs2dPvfrqqzr//PP1xRdfaPPmzVq0aJFKS0vVrVs3PfHEExo3bpwk6aabbtKnn36qSZMmqUWLFrr77rs1atSoRr9DYzUBsA6ulgLgV3VdnQQA/sRpKQAAYCuEGwAAYCuclgIAALZCyw0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALCV/x/YBjhC2T2t0QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLcUlEQVR4nO3deXwU5eHH8e8mISEBknDlAIGES4gccigGEFAoSFGLYkVEBEGtCnIoCGgRUDFoa1W0gqUqWC+qoiJeUEAskEI4FbQIEQxKwiFmAwQIZJ/fHzT7YyGBzWY3uzv7eb9eeb1gZnb2mdljvvvMc9iMMUYAAAAWFebvAgAAAPgSYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQdAQJg2bZpsNptb29psNk2bNs2n5enRo4d69OgRsPsD4D7CDgAX8+bNk81mc/5FRESofv36GjZsmH7++Wd/Fy/gpKSkuJyvhIQEXXnllfrggw+8sv/CwkJNmzZNX375pVf2B4Qiwg6AUj322GP6xz/+oTlz5qhv375644031L17dx0/ftwnz/fHP/5Rx44d88m+fe3SSy/VP/7xD/3jH//Q+PHjtXfvXt14442aM2dOhfddWFio6dOnE3aACojwdwEABKa+ffuqY8eOkqQ777xTderU0VNPPaVFixbp5ptv9vrzRUREKCIiOL+S6tevr9tuu835/9tvv11NmzbVs88+q3vuucePJQMgUbMDwE1XXnmlJCk7O9tl+X//+1/ddNNNqlWrlqpWraqOHTtq0aJFLtucPHlS06dPV7NmzVS1alXVrl1bXbt21dKlS53blNZm58SJExo3bpzq1q2rGjVq6Prrr9dPP/10TtmGDRumlJSUc5aXts/XXntNV199tRISEhQVFaW0tDTNnj27XOfiQpKSktSyZUvt2rXrvNvt379fI0aMUGJioqpWraq2bdtq/vz5zvW7d+9W3bp1JUnTp0933irzdXslwGqC82cUgEq3e/duSVLNmjWdy7Zt26YuXbqofv36mjRpkqpVq6Z//vOf6t+/v95//33dcMMNkk6HjoyMDN155526/PLLVVBQoPXr12vjxo36zW9+U+Zz3nnnnXrjjTd06623qnPnzlq+fLn69etXoeOYPXu2LrnkEl1//fWKiIjQxx9/rPvuu08Oh0MjR46s0L5LnDx5Unv27FHt2rXL3ObYsWPq0aOHdu7cqVGjRik1NVXvvvuuhg0bpvz8fI0ZM0Z169bV7Nmzde+99+qGG27QjTfeKElq06aNV8oJhAwDAGd47bXXjCTzr3/9yxw4cMDs2bPHvPfee6Zu3bomKirK7Nmzx7ltz549TevWrc3x48edyxwOh+ncubNp1qyZc1nbtm1Nv379zvu8U6dONWd+JW3evNlIMvfdd5/LdrfeequRZKZOnepcNnToUNOoUaML7tMYYwoLC8/Zrk+fPqZx48Yuy7p37266d+9+3jIbY0yjRo1M7969zYEDB8yBAwfMli1bzC233GIkmfvvv7/M/T333HNGknnjjTecy4qKikx6erqpXr26KSgoMMYYc+DAgXOOF0D5cBsLQKl69eqlunXrqkGDBrrppptUrVo1LVq0SBdddJEk6dChQ1q+fLluvvlmHT58WAcPHtTBgwf1yy+/qE+fPtqxY4ez91Z8fLy2bdumHTt2uP38n376qSRp9OjRLsvHjh1boeOKjo52/ttut+vgwYPq3r27fvjhB9ntdo/2uWTJEtWtW1d169ZV27Zt9e6772rIkCF66qmnynzMp59+qqSkJA0aNMi5rEqVKho9erSOHDmilStXelQWAOfiNhaAUv31r39V8+bNZbfb9eqrr+qrr75SVFSUc/3OnTtljNGUKVM0ZcqUUvexf/9+1a9fX4899ph+97vfqXnz5mrVqpWuueYaDRky5Ly3Y3788UeFhYWpSZMmLssvvvjiCh3X6tWrNXXqVGVmZqqwsNBlnd1uV1xcXLn32alTJz3xxBOy2WyKiYlRy5YtFR8ff97H/Pjjj2rWrJnCwlx/c7Zs2dK5HoB3EHYAlOryyy939sbq37+/unbtqltvvVXbt29X9erV5XA4JEnjx49Xnz59St1H06ZNJUndunVTdna2PvroIy1ZskR///vf9eyzz2rOnDm68847K1zWsgYjLC4udvl/dna2evbsqRYtWugvf/mLGjRooMjISH366ad69tlnncdUXnXq1FGvXr08eiwA3yPsALig8PBwZWRk6KqrrtKLL76oSZMmqXHjxpJO33px50Jfq1Yt3XHHHbrjjjt05MgRdevWTdOmTSsz7DRq1EgOh0PZ2dkutTnbt28/Z9uaNWsqPz//nOVn1458/PHHOnHihBYtWqSGDRs6l69YseKC5fe2Ro0a6euvv5bD4XCp3fnvf//rXC+VHeQAuI82OwDc0qNHD11++eV67rnndPz4cSUkJKhHjx56+eWXlZube872Bw4ccP77l19+cVlXvXp1NW3aVCdOnCjz+fr27StJmjVrlsvy55577pxtmzRpIrvdrq+//tq5LDc395xRjMPDwyVJxhjnMrvdrtdee63McvjKb3/7W+Xl5WnBggXOZadOndILL7yg6tWrq3v37pKkmJgYSSo1zAFwDzU7ANw2YcIE/f73v9e8efN0zz336K9//au6du2q1q1b66677lLjxo21b98+ZWZm6qefftKWLVskSWlpaerRo4c6dOigWrVqaf369Xrvvfc0atSoMp/r0ksv1aBBg/TSSy/Jbrerc+fOWrZsmXbu3HnOtrfccosmTpyoG264QaNHj1ZhYaFmz56t5s2ba+PGjc7tevfurcjISF133XX6wx/+oCNHjmju3LlKSEgoNbD50t13362XX35Zw4YN04YNG5SSkqL33ntPq1ev1nPPPacaNWpIOt2gOi0tTQsWLFDz5s1Vq1YttWrVSq1atarU8gJBzd/dwQAElpKu51lZWeesKy4uNk2aNDFNmjQxp06dMsYYk52dbW6//XaTlJRkqlSpYurXr2+uvfZa89577zkf98QTT5jLL7/cxMfHm+joaNOiRQszY8YMU1RU5NymtG7ix44dM6NHjza1a9c21apVM9ddd53Zs2dPqV2xlyxZYlq1amUiIyPNxRdfbN54441S97lo0SLTpk0bU7VqVZOSkmKeeuop8+qrrxpJZteuXc7tytP1/ELd6sva3759+8wdd9xh6tSpYyIjI03r1q3Na6+9ds5j16xZYzp06GAiIyPphg54wGbMGfW5AAAAFkObHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGkMKijJ4XBo7969qlGjBkOzAwAQJIwxOnz4sOrVq3fOpLpnIuxI2rt3rxo0aODvYgAAAA/s2bNHF110UZnrCTuSc1j2PXv2KDY21s+lAQAA7igoKFCDBg2c1/GyEHb0/7MKx8bGEnYAAAgyF2qCQgNlAABgaYQdAABgaYQdAABgabTZAQBYWnFxsU6ePOnvYsADVapUUXh4eIX3Q9gBAFiSMUZ5eXnKz8/3d1FQAfHx8UpKSqrQOHiEHQCAJZUEnYSEBMXExDBobJAxxqiwsFD79++XJCUnJ3u8L8IOAMByiouLnUGndu3a/i4OPBQdHS1J2r9/vxISEjy+pUUDZQCA5ZS00YmJifFzSVBRJa9hRdpdEXYAAJbFravg543XkLADAAAsjbADAECIsNls+vDDD/1dDBdffvmlbDabT3vNEXZ8KNd+TGuyDyrXfszfRQEAhJBp06bp0ksv9XcxAga9sXxkQVaOJi/8Rg4jhdmkjBtba+BlDf1dLAAAQg41Oz6Qaz/mDDqS5DDSwwu3UsMDAHCLw+FQRkaGUlNTFR0drbZt2+q9996T9P+3fZYtW6aOHTsqJiZGnTt31vbt2yVJ8+bN0/Tp07VlyxbZbDbZbDbNmzfPue+DBw/qhhtuUExMjJo1a6ZFixa5VaaS5/3iiy/Url07RUdH6+qrr9b+/fv12WefqWXLloqNjdWtt96qwsJC5+NOnDih0aNHKyEhQVWrVlXXrl2VlZXlvZPlBsKOD+w6eNQZdEoUG6PdBwtLfwAAIKBVdrOEjIwMvf7665ozZ462bdumcePG6bbbbtPKlSud2zzyyCN65plntH79ekVERGj48OGSpIEDB+rBBx/UJZdcotzcXOXm5mrgwIHOx02fPl0333yzvv76a/32t7/V4MGDdejQIbfLNm3aNL344otas2aN9uzZo5tvvlnPPfec3nrrLX3yySdasmSJXnjhBef2Dz30kN5//33Nnz9fGzduVNOmTdWnT59yPWdFEXZ8ILVONYWd1VMu3GZTSh3GewCAYLMgK0ddZi7XrXPXqsvM5VqQlePT5ztx4oSefPJJvfrqq+rTp48aN26sYcOG6bbbbtPLL7/s3G7GjBnq3r270tLSNGnSJK1Zs0bHjx9XdHS0qlevroiICCUlJSkpKck5OJ8kDRs2TIMGDVLTpk315JNP6siRI1q3bp3b5XviiSfUpUsXtWvXTiNGjNDKlSs1e/ZstWvXTldeeaVuuukmrVixQpJ09OhRzZ49W3/605/Ut29fpaWlae7cuYqOjtYrr7zivZN2AYQdH0iOi1bGja0V/r+xAcJtNj15Yyslx0Vf4JEAgEDij2YJO3fuVGFhoX7zm9+oevXqzr/XX39d2dnZzu3atGnj/HfJVAolUyucz5mPq1atmmJjY916XGmPT0xMVExMjBo3buyyrGR/2dnZOnnypLp06eJcX6VKFV1++eX67rvv3H7OiqKBso8MvKyhujWvq90HC5VSJ4agAwBB6HzNEnz1vX7kyBFJ0ieffKL69eu7rIuKinIGnipVqjiXlwy853A4Lrj/Mx9X8lh3Hlfa4202W4X3VxkIOz6UHBdNyAGAIFbSLOHMwOPrZglpaWmKiopSTk6Ounfvfs76M2t3yhIZGani4mJfFK9cmjRposjISK1evVqNGjWSdHrah6ysLI0dO7bSykHYAQCgDCXNEh5euFXFxlRKs4QaNWpo/PjxGjdunBwOh7p27Sq73a7Vq1crNjbWGRrOJyUlRbt27dLmzZt10UUXqUaNGoqKivJZmctSrVo13XvvvZowYYJq1aqlhg0b6umnn1ZhYaFGjBhRaeUg7AAAcB7+aJbw+OOPq27dusrIyNAPP/yg+Ph4tW/fXg8//LBbt4gGDBighQsX6qqrrlJ+fr5ee+01DRs2zOflLs3MmTPlcDg0ZMgQHT58WB07dtQXX3yhmjVrVloZbMYYc+HNrK2goEBxcXGy2+2KjY31d3EAABV0/Phx7dq1S6mpqapataq/i4MKON9r6e71m95YAADA0gg7AABA99xzj0tX9zP/7rnnHn8Xr0JoswMAAPTYY49p/Pjxpa4L9iYehB0AAKCEhAQlJCT4uxg+wW0sAABgaYQdAIBlBdpIvig/b7yG3MYCAFhOZGSkwsLCtHfvXtWtW1eRkZHOKRUQHIwxKioq0oEDBxQWFqbIyEiP90XYAQBYTlhYmFJTU5Wbm6u9e/f6uziogJiYGDVs2FBhYZ7fjCLsAAAsKTIyUg0bNtSpU6cCYp4olF94eLgiIiIqXCtH2AEAWFbJrNxnz8yN0EIDZQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGl+DTvFxcWaMmWKUlNTFR0drSZNmujxxx+XMca5jTFGjz76qJKTkxUdHa1evXppx44dLvs5dOiQBg8erNjYWMXHx2vEiBE6cuRIZR8OAAAIQH4NO0899ZRmz56tF198Ud99952eeuopPf3003rhhRec2zz99NOaNWuW5syZo7Vr16patWrq06ePjh8/7txm8ODB2rZtm5YuXarFixfrq6++0t133+2PQwIAAAHGZs6sRqlk1157rRITE/XKK684lw0YMEDR0dF64403ZIxRvXr19OCDD2r8+PGSJLvdrsTERM2bN0+33HKLvvvuO6WlpSkrK0sdO3aUJH3++ef67W9/q59++kn16tW7YDkKCgoUFxcnu92u2NhY3xwsAADwKnev336t2encubOWLVum77//XpK0ZcsWrVq1Sn379pUk7dq1S3l5eerVq5fzMXFxcerUqZMyMzMlSZmZmYqPj3cGHUnq1auXwsLCtHbt2lKf98SJEyooKHD5AwAA1hThzyefNGmSCgoK1KJFC4WHh6u4uFgzZszQ4MGDJUl5eXmSpMTERJfHJSYmOtfl5eUpISHBZX1ERIRq1arl3OZsGRkZmj59urcPBwAABCC/1uz885//1Jtvvqm33npLGzdu1Pz58/XnP/9Z8+fP9+nzTp48WXa73fm3Z88enz4fAADwH7/W7EyYMEGTJk3SLbfcIklq3bq1fvzxR2VkZGjo0KFKSkqSJO3bt0/JycnOx+3bt0+XXnqpJCkpKUn79+932e+pU6d06NAh5+PPFhUVpaioKB8cEQAACDR+rdkpLCxUWJhrEcLDw+VwOCRJqampSkpK0rJly5zrCwoKtHbtWqWnp0uS0tPTlZ+frw0bNji3Wb58uRwOhzp16lQJRwEAAAKZX2t2rrvuOs2YMUMNGzbUJZdcok2bNukvf/mLhg8fLkmy2WwaO3asnnjiCTVr1kypqamaMmWK6tWrp/79+0uSWrZsqWuuuUZ33XWX5syZo5MnT2rUqFG65ZZb3OqJBQAArM2vYeeFF17QlClTdN9992n//v2qV6+e/vCHP+jRRx91bvPQQw/p6NGjuvvuu5Wfn6+uXbvq888/V9WqVZ3bvPnmmxo1apR69uypsLAwDRgwQLNmzfLHIQEAgADj13F2AgXj7AAAEHyCYpwdAAAAXyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAAS/N72Pn555912223qXbt2oqOjlbr1q21fv1653pjjB599FElJycrOjpavXr10o4dO1z2cejQIQ0ePFixsbGKj4/XiBEjdOTIkco+FAAAEID8GnZ+/fVXdenSRVWqVNFnn32mb7/9Vs8884xq1qzp3Obpp5/WrFmzNGfOHK1du1bVqlVTnz59dPz4cec2gwcP1rZt27R06VItXrxYX331le6++25/HBIAAAgwNmOM8deTT5o0SatXr9a///3vUtcbY1SvXj09+OCDGj9+vCTJbrcrMTFR8+bN0y233KLvvvtOaWlpysrKUseOHSVJn3/+uX7729/qp59+Ur169S5YjoKCAsXFxclutys2NtZ7BwgAAHzG3eu3X2t2Fi1apI4dO+r3v/+9EhIS1K5dO82dO9e5fteuXcrLy1OvXr2cy+Li4tSpUydlZmZKkjIzMxUfH+8MOpLUq1cvhYWFae3ataU+74kTJ1RQUODyBwAArMmvYeeHH37Q7Nmz1axZM33xxRe69957NXr0aM2fP1+SlJeXJ0lKTEx0eVxiYqJzXV5enhISElzWR0REqFatWs5tzpaRkaG4uDjnX4MGDbx9aAAAIED4New4HA61b99eTz75pNq1a6e7775bd911l+bMmePT5508ebLsdrvzb8+ePT59PgAA4D9+DTvJyclKS0tzWdayZUvl5ORIkpKSkiRJ+/btc9lm3759znVJSUnav3+/y/pTp07p0KFDzm3OFhUVpdjYWJc/AABgTX4NO126dNH27dtdln3//fdq1KiRJCk1NVVJSUlatmyZc31BQYHWrl2r9PR0SVJ6erry8/O1YcMG5zbLly+Xw+FQp06dKuEoAABAIIvw55OPGzdOnTt31pNPPqmbb75Z69at09/+9jf97W9/kyTZbDaNHTtWTzzxhJo1a6bU1FRNmTJF9erVU//+/SWdrgm65pprnLe/Tp48qVGjRumWW25xqycWAACwNr92PZekxYsXa/LkydqxY4dSU1P1wAMP6K677nKuN8Zo6tSp+tvf/qb8/Hx17dpVL730kpo3b+7c5tChQxo1apQ+/vhjhYWFacCAAZo1a5aqV6/uVhnoeg4AQPBx9/rt97ATCAg7AAAEn6AYZwcAAMDXCDuQJOXaj2lN9kHl2o/5uygAAHiVXxsoIzAsyMrR5IXfyGGkMJuUcWNrDbysob+LBQCAV1CzE+Jy7cecQUeSHEZ6eOFWangAAJZB2Alxuw4edQadEsXGaPfBQv8UCAAALyPshLjUOtUUZnNdFm6zKaVOjH8KBACAlxF2QlxyXLQybmytcNvpxBNus+nJG1spOS7azyUDAMA7aKAMDbysobo1r6vdBwuVUieGoAMAsBS3w05BQYHbO2VgvuCTHBdNyAEAWJLbYSc+Pl42m+282xhjZLPZVFxcXOGCAQAAeIPbYWfFihW+LAd0uhv4roNHlVqnGrUsAAB4idthp3v37r4sR8hjYD8AAHzD4wbK+fn5euWVV/Tdd99Jki655BINHz5ccXFxXitcqChrYL9uzetSwwMAQAV51PV8/fr1atKkiZ599lkdOnRIhw4d0l/+8hc1adJEGzdu9HYZLY+B/QAA8B2PanbGjRun66+/XnPnzlVExOldnDp1SnfeeafGjh2rr776yquFtLqSgf3ODDwM7AcAgHd4XLMzceJEZ9CRpIiICD300ENav3691woXKhjYDwAA3/GoZic2NlY5OTlq0aKFy/I9e/aoRo0aXilYqGFgPwAAfMOjsDNw4ECNGDFCf/7zn9W5c2dJ0urVqzVhwgQNGjTIqwUMJQzsBwCA93kUdv785z/LZrPp9ttv16lTpyRJVapU0b333quZM2d6tYAAAAAVYTPGmAtvVrrCwkJlZ2dLkpo0aaKYmOBsUFtQUKC4uDjZ7XamugAAIEi4e/2u0ESgMTExat26dUV2AR9jVGYAQKjzKOwcP35cL7zwglasWKH9+/fL4XC4rGesncDAqMwAAHgYdkaMGKElS5bopptu0uWXX37BCUJR+RiVGQCA0zwKO4sXL9ann36qLl26eLs88JLzjcpM2AEAhBKPBhWsX78+4+kEuJJRmc/kzqjMufZjWpN9ULn2Yz4sHQAAlcejsPPMM89o4sSJ+vHHH71dHniJJ6MyL8jKUZeZy3Xr3LXqMnO5FmTlVFZxAQDwGY9uY3Xs2FHHjx9X48aNFRMToypVqrisP3TokFcKh4opz6jMtPEBAFiVR2Fn0KBB+vnnn/Xkk08qMTGRBsoBzN1RmWnjAwCwKo/Czpo1a5SZmam2bdt6uzzwE2ZeBwBYlUdtdlq0aKFjx2jAaiXMvA4AsCqPpotYsmSJpk+frhkzZqh169bntNkJtikXmC7i/+XajzHzOgAgKLh7/fYo7ISFna4QOrutjjFGNptNxcXF5d2lXxF2AAAIPj6dG2vFihUeFwwAAKAyeRR2unfv7tZ29913nx577DHVqVPHk6cBAACoMI8aKLvrjTfeUEFBgS+fAgAA4Lx8GnY8aA4EAADgVT4NOwAAAP5G2AEAAJZG2AEAAJZG2AEAAJbm07Bz2223MUgfAADwK4/G2ZGk/Px8rVu3Tvv375fD4XBZd/vtt0uSZs+eXbHSAQAAVJBHYefjjz/W4MGDdeTIEcXGxrpMG2Gz2ZxhBwAAwN88uo314IMPavjw4Tpy5Ijy8/P166+/Ov8OHTrk7TICAAB4zKOw8/PPP2v06NGKiYnxdnkAAAC8yqOw06dPH61fv97bZQEAAPA6t9vsLFq0yPnvfv36acKECfr222/VunVrValSxWXb66+/3nslBAAAqACbcXMCq7Aw9yqBbDabiouLK1SoylZQUKC4uDjZ7Xa6ygMAECTcvX67XbNzdvdyAACAYOBRm53XX39dJ06cOGd5UVGRXn/99QoXCgAAwFvcvo11pvDwcOXm5iohIcFl+S+//KKEhARuYwEAAJ9z9/rtUc2OMcZlIMESP/30k+Li4jzZJQAAgE+UawTldu3ayWazyWazqWfPnoqI+P+HFxcXa9euXbrmmmu8XkgAAABPlSvs9O/fX5K0efNm9enTR9WrV3eui4yMVEpKigYMGODVAqLy5dqPadfBo0qtU03JcdH+Lg4AABVSrrAzdepUSVJKSooGDhyoqlWr+qRQ8J8FWTmavPAbOYwUZpMybmytgZc19HexAADwmEcNlEsUFRWVOut5w4bBdXGkgfJpufZj6jJzuRxnvCPCbTatmnQVNTwAgIDj9XF2zrRjxw4NHz5ca9ascVle0nA52Hpj4bRdB4+6BB1JKjZGuw8WEnYAAEHLo7AzbNgwRUREaPHixUpOTi61ZxaCT2qdagqz6ZyanZQ6TPgKAAheHoWdzZs3a8OGDWrRooW3ywM/So6LVsaNrfXwwq0qNkbhNpuevLEVtToAgKDmUdhJS0vTwYMHvV0WBICBlzVUt+Z1tftgoVLqxBB0AABBz6NBBZ966ik99NBD+vLLL/XLL7+ooKDA5c9TM2fOlM1m09ixY53Ljh8/rpEjR6p27dqqXr26BgwYoH379rk8LicnR/369VNMTIwSEhI0YcIEnTp1yuNyhLrkuGilN6lN0AEAWIJHNTu9evWSJF199dUu7XUq0kA5KytLL7/8stq0aeOyfNy4cfrkk0/07rvvKi4uTqNGjdKNN96o1atXSzo9mGG/fv2UlJSkNWvWKDc3V7fffruqVKmiJ5980pPDAwDAibHHgp9HYWfFihVeLcSRI0c0ePBgzZ07V0888YRzud1u1yuvvKK33npLV199tSTptddeU8uWLfWf//xHV1xxhZYsWaJvv/1W//rXv5SYmKhLL71Ujz/+uCZOnKhp06YpMjLSq2UFAIQOxh6zBo9uY3Xv3l1hYWGaO3euJk2apKZNm6p79+7KyclReHh4ufc3cuRI9evXz1ljVGLDhg06efKky/IWLVqoYcOGyszMlCRlZmaqdevWSkxMdG7Tp08fFRQUaNu2baU+34kTJ7x26w0AYE259mPOoCOd7qn68MKtyrUf82/BUG4ehZ33339fffr0UXR0tDZt2qQTJ05IOl0TU95bR++88442btyojIyMc9bl5eUpMjJS8fHxLssTExOVl5fn3ObMoFOyvmRdaTIyMhQXF+f8a9CgQbnKHGpy7ce0JvsgH3AAIeV8Y48huHgUdp544gnNmTNHc+fOVZUqVZzLu3Tpoo0bN7q9nz179mjMmDF68803K3XqicmTJ8tutzv/9uzZU2nPHWwWZOWoy8zlunXuWnWZuVwLsnL8XSQAqBQlY4+dibHHgpNHYWf79u3q1q3bOcvj4uKUn5/v9n42bNig/fv3q3379oqIiFBERIRWrlypWbNmKSIiQomJiSoqKjpnn/v27VNSUpIkKSkp6ZzeWSX/L9nmbFFRUYqNjXX5w7mowgUQykrGHgv/X0ccxh4LXh41UE5KStLOnTuVkpLisnzVqlVq3Lix2/vp2bOnvvnmG5dld9xxh1q0aKGJEyeqQYMGqlKlipYtW+acTX379u3KyclRenq6JCk9PV0zZszQ/v37lZCQIElaunSpYmNjlZaW5snh4X+YPgJAqGPsMWvwKOzcddddGjNmjF599VXZbDbt3btXmZmZGj9+vKZMmeL2fmrUqKFWrVq5LKtWrZpq167tXD5ixAg98MADqlWrlmJjY3X//fcrPT1dV1xxhSSpd+/eSktL05AhQ/T0008rLy9Pf/zjHzVy5EhFRUV5cnj4H6aPAIDTNTyEnODmUdiZNGmSHA6HevbsqcLCQnXr1k1RUVEaP3687r//fq8W8Nlnn1VYWJgGDBigEydOqE+fPnrppZec68PDw7V48WLde++9Sk9PV7Vq1TR06FA99thjXi1HKGL6CACAFdiMMebCm5WuqKhIO3fu1JEjR5SWlqbq1at7s2yVxt0p4kNVrv0YVbgAgIDj7vXbo5qdEpGRkbSLCQFU4QIAgplHvbEAAACCBWEHAABYGmEHAABYGmEHAYWpKQAA3lahBsqANzG7MADAF6jZQUBgagoAgK8QdhAQmF0YAOArhB0EBGYXBgD4CmEHAYHZhQEAvkIDZQQMZhcGAPgCYQcBhakpAADexm0sAABgaYQdeITB/wAAwYLbWCg3Bv8DAAQTanZQLgz+BwAINoQdlAuD/wEAgg1hB+XC4H8AgGBD2EG5MPgfACDY0EAZ5cbgfwCAYELYgUcY/A8AECy4jQUAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsBNEmHwTAIDyo+t5kGDyTQAAPEPNThBg8k0AADxH2AkCgTT5JrfSAADBhttYQaBk8s0zA48/Jt/kVhoAIBhRsxMEAmHyTW6lAQCCFTU7QcLfk2+e71Yac2QBAAIZYSeI+HPyzUC5leZNufZj2nXwqFLrVCOwAYCFcRsLbgmEW2netCArR11mLtetc9eqy8zlWpCV4+8iAQB8xGaMMRfezNoKCgoUFxcnu92u2NhYfxcnoOXaj/ntVpq35NqPqcvM5efUUq2adFXQHhMAhCJ3r9/cxkK5+PNWmrfQ/ggAQgu3sRByStofnSnY2x8BAMpG2EHIsVr7IwDA+XEbCyHJ3135AQCVh7CDkGWF9kcAgAvjNhYAALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wk6QyLUf05rsg8q1H/N3UQAACCqMsxMEFmTlaPLCb+QwUphNyrixtQZe1tDfxQIAIChQsxPgcu3HnEFHkhxGenjhVmp4AABwE2EnwJ1vhm4AAHBhhJ0AxwzdAABUDGEnwDFDNwAAFUMD5SDADN0AAHiOsBMkmKEbAADPcBsLAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYml/DTkZGhi677DLVqFFDCQkJ6t+/v7Zv3+6yzfHjxzVy5EjVrl1b1atX14ABA7Rv3z6XbXJyctSvXz/FxMQoISFBEyZM0KlTpyrzUACfYzJYAPCMX8POypUrNXLkSP3nP//R0qVLdfLkSfXu3VtHjx51bjNu3Dh9/PHHevfdd7Vy5Urt3btXN954o3N9cXGx+vXrp6KiIq1Zs0bz58/XvHnz9Oijj/rjkACfWJCVoy4zl+vWuWvVZeZyLcjK8XeRACBo2Iwx5sKbVY4DBw4oISFBK1euVLdu3WS321W3bl299dZbuummmyRJ//3vf9WyZUtlZmbqiiuu0GeffaZrr71We/fuVWJioiRpzpw5mjhxog4cOKDIyMgLPm9BQYHi4uJkt9sVGxvr02MEyivXfkxdZi53mSMt3GbTqklXMfYSgJDm7vU7oNrs2O12SVKtWrUkSRs2bNDJkyfVq1cv5zYtWrRQw4YNlZmZKUnKzMxU69atnUFHkvr06aOCggJt27at1Oc5ceKECgoKXP6AQMVksABQMQETdhwOh8aOHasuXbqoVatWkqS8vDxFRkYqPj7eZdvExETl5eU5tzkz6JSsL1lXmoyMDMXFxTn/GjRo4OWjAbyHyWABoGICJuyMHDlSW7du1TvvvOPz55o8ebLsdrvzb8+ePT5/zlBGw9qKYTJYAKiYgJgba9SoUVq8eLG++uorXXTRRc7lSUlJKioqUn5+vkvtzr59+5SUlOTcZt26dS77K+mtVbLN2aKiohQVFeXlo0BpFmTlaPLCb+QwUphNyrixtQZe1tDfxQo6TAYLAJ7za82OMUajRo3SBx98oOXLlys1NdVlfYcOHVSlShUtW7bMuWz79u3KyclRenq6JCk9PV3ffPON9u/f79xm6dKlio2NVVpaWuUcCEqVaz/mDDqS5DDSwwu3+q2GJ9hrmJLjopXepDZBBwDKya81OyNHjtRbb72ljz76SDVq1HC2sYmLi1N0dLTi4uI0YsQIPfDAA6pVq5ZiY2N1//33Kz09XVdccYUkqXfv3kpLS9OQIUP09NNPKy8vT3/84x81cuRIam/87HwNayv7gk0NEwCELr/W7MyePVt2u109evRQcnKy82/BggXObZ599llde+21GjBggLp166akpCQtXLjQuT48PFyLFy9WeHi40tPTddttt+n222/XY4895o9DCniVWbsRKA1rA62GCQBQuQJqnB1/CZVxdvxRu7EgK0cPL9yqYmOcDWsru0ZlTfZB3Tp37TnL377rCqU3qV2pZQEAeI+71++AaKAM3yurdqNb87o+vaUUCA1rS2qYzh6Uj67bABAaAqbrOXzLnwPT+bthLV23ASC0UbMTIkK9diMQapiCTa79mHYdPKrUOtU4XwCCGmEnRJTUbpzdfiaULmLJcdEhdbwVQe81AFZCA2WFTgNl6fSvdWo3cD5MPAogWNBAGaWidgNnKu1WVSCNjwQA3kDYAUJUabequjWvq1+OnAjp9l2oGNp6IRARdoAQVNpQBJPe/0a2/4UcmySbTTKG3mtwH229EKgIO0AIKu1WldHpcFPy7zAjvXhrO7VvVJOggwvy11hegDsYZwcIQaVN5XE2h6Ra1aK4UMEtG3781W9jeQEXQtgBQtDZAy2G6fStqzPRTgfuWpCVo/vf2nTOct5DCBTcxgIsorwNQ88eaPGr7w+E9DhM8EzJ7auzxzAJs4n3EAIGYQewAE8bhp45FAGjTMMTpbX/kqRZt7TTtW3rVX6BgFJwGwvwo1z7Ma3JPqhc+7EK7aO0hqGe7NPf85gh+JTW/ivcZlOHlJr+KRBQCsIO4CcLsnLUZeZy3Tp3rbrMXK4FWTke7cefk7wCTLSLYMBtLMAPvNlNN9QneYX/cQsUgY6aHQQVb9z2CQTerI3hlzVKU9mfFW6BIpBRs4OgYaXRWb1dG1Pyy3rjj7/KYYw6ptTyUkkRjKz0WQG8gZodBAVvNsINBL6ojfnq+wO6/+1Nuv/tzRVqA4TgFmyfFavU1iKwUbODoGDFmbi92c6BofpRIpg+K9RAobJQs4OgUFb31mBvhOutdg70yEKJYPmsBFsNFIIbYQdBgUa45xcsFzj4XrB8VgjoqEzcxkLQoHtr2UoucEz3ACk4PiulNdIPkxQTyW9wbynvFDJWZjPGlDLQd2gpKChQXFyc7Ha7YmNj/V0cwGO59mMBfYELRcF6wTm73L44jgVZOc6AXoK2O97hi/ZQgfhedvf6TdgRYQeAbwTrBefsct/Qrr4+2PSzTxoSb9nzq/q/tEbmrGEYVk26KmAuqMEm135MXWYuP2doi4qc00BtTO7u9Zv6QgQkuqMi2PmiAa63phg5n9LK/f7Gn33SkDjXfkzrdh/S2T+5y2q7w/eCe7zdHsoKjclps4NKd6FfpoH6CwIoD293Aa+s4QXKmsX8TN7oyn7m5/xspTWu53vBfd4etDSYhjMoCzU7qFQX+mVqhV8QgOT9HnKV1XuptHKfraI9/c7+nJ+977Mb1/O9UD7e7pFnhd6ehB1UGne+sNz9Qqc6G4EuWC84pZV7QPv6Xu3KXlbt0ZR+LbVq0lXn1NjQTb38Bl7WUKsmXaW377qi1HNaHme/J8Ikjeia4p2CVhJuY6HSuFMV6k71K9XZCBbe7AJe1vACkrQm+6BXGyyXVu7xfS72Wk+/sj7nv22TXOq+PbktE4g9h3yhrOMsbXnJsmqR4TpaVFyuc1Pynnht1W79fdUP+tu/d+nvq3YFzfcvYQeVxp0vrAuNF8O0CAg2yXHRPgshX31/wNnrxtvB/+xye/M4yjsuVHm3D+QfRN4MYWUdZ2nLJZ1z69CTc/P3VT8E5fcvXc9F1/PKdOa4GiVfWKV90MoaL2ZN9kHdOnftOdu/fdcVSm9S26dlh/eFyq9vX/BF9+LKVt5xodzZPpDPizdDWFnHufC+dN3w0ppzBmvUWT80z3yMu+cmEL9/3b1+U7ODSuVutX5ZvyK93csA/hPIv76DgRV6yJS3tsid7QP1vHi7Vrqs48za/es5yx2SVEa1hrvnJtd+TL8cORG03780UEalq8jkl8Ey708wq4zG3/SuqTh3GyyHWmN+d86LP86JtxtZl3Wcl6XUPGd5mFRmDzt3wkpJL9r7394sY6T/ff0G1fcvNTsIOsEw708wKG06gNdW7dLcf++SUflqW8p7OypQf30HE3fasfiz9sxftygvdF78dU6qRYaXutyducBKO5dlHWfbBjXLbMh+9tQc7oSVs3+YGElhRnrx1nZq36hm0HxeCTsISt5sLBmKzjcdQAl3q9k9uXhwO7J05Q0I5wv+/mzM7+9blGWdF3+ek6NFxaUuLyxynPdx5zuXZR1nWctLlsVEhqmwyOHWj8XSfpg4JNWqFhVU38GEHSDElDUdQGkuVNvi6cWDWdrP5WlAKCv4+6v2LFB6TJZ2XvxZo+hp9/kLncuyXv/Slp+9rOR23vnCtVV+mBB2gBDjznQAJS70pVaRiwe3I/+fLwKCvy5SgXyL0p8Xbk8Cvi/Ppbvh2io/TAg7QIgp7Qu/NGHSBb/UKnrx4Hbkab64qPnrIhXINQH+vnCXN+D76lyWN1xb4YcJYQcIMaV94fdvV08fbtqrYmMUZpPu7NpYd3RNueCXmr8vHlbhq4uaPy5Sgf6eGHhZQ7VIqqGs3b/qspSaatugZqU+f3kCvq/OpSfhOth/mDCooBhU0JsYJC54nD1AW3kHeDvfvlB+7g64GSwC9T3hrcbTlfld5+1zGcgDL5aXu9dvwo4IO97i7x4YQLC70EWNHxMV462LfGV81/n6tbZKuGYEZVSqQOmB4SkuIggE57tVwI+JivNG26jK+K6rjNfaCu1wyoOwA68I5B4YF8JFBIEu2H9MBApvtI3y9XddZb7Wwd4OpzyYLgJe4e7Q9YHGX9MWhNoQ/qgYb081EKq8Md2Mr7/reK19g5odeEWg98Aoiz9qpMqqSeJWWvCo7NcqkLtz+4Ivz29Fb9/46ruu5JirRYaH1GtdWQg78Bpf3AP29UWlsi8iZdUk5R87qac++y+30oKAP257JsdFa2LfFs73SLD8mPBEZZzfit6+8fZ3XWnTt5QMBWHl17oy0RtL9MYKVJV1UanMXglrsg/q1rlrz1lus0nmrMAVjN1Arc5fXXbP/CzYJE3q20J/6N7EZ8/nL1bqEu2uso554X3pbs9fFcrojYWgVpmN9CqzV0JpNUlhOnc042Bp3B1q/HHbs7RZp5/+fLuuv7Se5d4fwdzRwVNlHXNhkUPpTWr7p1AWRANlBKTKbqSXHBet9Ca1ff6FWloDyYl9W3jc4JGGzpXLW41Ty/O6hVKD1UDr6FAZn69AO2aromYHAcnKDTJLq0mKj6lS7gaPdJl3daH2Xd5o/+WNxqnlfd2s/Fk4WyB1dKisz1cgHbOV0WZHtNkJVFYZ4dNd5RkSPhTbNpzPhS5M3r5weTp8v6evG5+F8j++IsHWH5+vQJ1ew13+6k1Kmx0EvVAb4bM8PURCsW1DWS7Uvsub7b/O/EL3pD2Fp68bnwX3eSPY+uPzFcwD/AVDLTNhBwEtmL8AfMmftzYCbTygC12YvHXh8sYXekVeNz4LF+atYBtKtw4rKlhG96aBMhCEvDESrCcWZOWoy8zlunXuWnWZuVwLsnJ8+nzuuFADT280APXWSNv+et1Chbcac/M6uS9YGtBTswPIs9oKf9dwVPatjUD9BXehBp7eaADqzdsavnzdyvOe9Pf71xe8WSMTarcOPRUstWCEHYQ8T25PBMo96sq8tRHI7YQudGGq6IWrPF/o7oQIX7xu5XlPBsr719u83bOJW4fuGdE1Va+s2lXm6N6BEKzpjSV6Y4UyT3pdhGpPqFA97hLu9IjyV4goz2tT3tcxEC5U5RXsPZuCxZnvd0m6tk2S7rqysdo2qFnqNr74TNAbC3CDJ7UVgVzD4UuhPh7IhWqH/HmbrzzvSXe2LQk43/xsD8o523xdIxOMAdDbzn6/S9Lir/P06Td5LpMbB8qtb8IOQpon95uD5R61LwRrOwZvXZzOdxH1Zwguz3vyQtue/Wu9RKC00fI3q94CLK/S3u+S6/skkH4YWqY31l//+lelpKSoatWq6tSpk9atW+fvIiEIeNLrItR7alTW1BreUhk9yHLtx/TLkRN+G/a/PO/J821b2q/1M/mql02wTHtS3l55wXJcniitl2OJkvdJIE2FYYmanQULFuiBBx7QnDlz1KlTJz333HPq06ePtm/froSEBH8XDwHufLUVZdUIBGsNR6ipjGr0s2ckL5nBvrJDcHnek2VtW9av9RK+uFAFU01JeWoqgum4PFESmie//40cZ60reZ8E0q1vSzRQ7tSpky677DK9+OKLkiSHw6EGDRro/vvv16RJky74eBooozRW/7IKBWuyD+rWuWvPWf72XVd4ZUbp0hr7hkl64dZ2at+oZtCF4NKOp4QvpqkItkbv7pY32I6rInLtx/Taqt36+6ofXHpjnfk+8WWD8ZBpoFxUVKQNGzZo8uTJzmVhYWHq1auXMjMz/VgyBLNAalgHz/m6fVVpv/QdkmpViwrK90lpv8QfuuZitbko3icXqkBq0+EOd2sqgu24KiI5LloP92upO7qmlBloAqELf9CHnYMHD6q4uFiJiYkuyxMTE/Xf//631MecOHFCJ06ccP6/oKDAp2VE8AmlLysr83U1uhUbq1fmLdpgPH/unJ9gPK6KCoRAcz6WaaBcHhkZGYqLi3P+NWjQwN9FQoAJpIZ1qJiBlzXUqklX6e27rtCqSVd59TaMVRurV1Yj9GA9fxc6P8F6XFYW9G12ioqKFBMTo/fee0/9+/d3Lh86dKjy8/P10UcfnfOY0mp2GjRoQJsduHBnEDlAYhC7irLq+bPqcQWSkGmzExkZqQ4dOmjZsmXOsONwOLRs2TKNGjWq1MdERUUpKiqqEkuJYESPK7gr0KvwA51Vz59VjysYBX3YkaQHHnhAQ4cOVceOHXX55Zfrueee09GjR3XHHXf4u2gIcnxZAUDws0TYGThwoA4cOKBHH31UeXl5uvTSS/X555+f02gZAACEnqBvs+MNjLMDAEDwcff6HZK9sQAAQOgg7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEuzxHQRFVUyiHRBQYGfSwIAANxVct2+0GQQhB1Jhw8fliQ1aNDAzyUBAADldfjwYcXFxZW5nrmxJDkcDu3du1c1atSQzWZz6zEFBQVq0KCB9uzZE9LzaXEeTuM8cA5KcB5O4zycxnnw7Tkwxujw4cOqV6+ewsLKbplDzY6ksLAwXXTRRR49NjY2NmTfwGfiPJzGeeAclOA8nMZ5OI3z4LtzcL4anRI0UAYAAJZG2AEAAJZG2PFQVFSUpk6dqqioKH8Xxa84D6dxHjgHJTgPp3EeTuM8BMY5oIEyAACwNGp2AACApRF2AACApRF2AACApRF2AACApRF2zjB79my1adPGOfBRenq6PvvsM+f648ePa+TIkapdu7aqV6+uAQMGaN++fS77yMnJUb9+/RQTE6OEhARNmDBBp06dquxD8aqZM2fKZrNp7NixzmWhcC6mTZsmm83m8teiRQvn+lA4B5L0888/67bbblPt2rUVHR2t1q1ba/369c71xhg9+uijSk5OVnR0tHr16qUdO3a47OPQoUMaPHiwYmNjFR8frxEjRujIkSOVfSgeS0lJOee9YLPZNHLkSEmh814oLi7WlClTlJqaqujoaDVp0kSPP/64y7xEofB+OHz4sMaOHatGjRopOjpanTt3VlZWlnO9Fc/BV199peuuu0716tWTzWbThx9+6LLeW8f89ddf68orr1TVqlXVoEEDPf300945AAOnRYsWmU8++cR8//33Zvv27ebhhx82VapUMVu3bjXGGHPPPfeYBg0amGXLlpn169ebK664wnTu3Nn5+FOnTplWrVqZXr16mU2bNplPP/3U1KlTx0yePNlfh1Rh69atMykpKaZNmzZmzJgxzuWhcC6mTp1qLrnkEpObm+v8O3DggHN9KJyDQ4cOmUaNGplhw4aZtWvXmh9++MF88cUXZufOnc5tZs6caeLi4syHH35otmzZYq6//nqTmppqjh075tzmmmuuMW3btjX/+c9/zL///W/TtGlTM2jQIH8ckkf279/v8j5YunSpkWRWrFhhjAmN94IxxsyYMcPUrl3bLF682Ozatcu8++67pnr16ub55593bhMK74ebb77ZpKWlmZUrV5odO3aYqVOnmtjYWPPTTz8ZY6x5Dj799FPzyCOPmIULFxpJ5oMPPnBZ741jttvtJjEx0QwePNhs3brVvP322yY6Otq8/PLLFS4/YecCatasaf7+97+b/Px8U6VKFfPuu+8613333XdGksnMzDTGnH4zhIWFmby8POc2s2fPNrGxsebEiROVXvaKOnz4sGnWrJlZunSp6d69uzPshMq5mDp1qmnbtm2p60LlHEycONF07dq1zPUOh8MkJSWZP/3pT85l+fn5Jioqyrz99tvGGGO+/fZbI8lkZWU5t/nss8+MzWYzP//8s+8K70NjxowxTZo0MQ6HI2TeC8YY069fPzN8+HCXZTfeeKMZPHiwMSY03g+FhYUmPDzcLF682GV5+/btzSOPPBIS5+DssOOtY37ppZdMzZo1XT4TEydONBdffHGFy8xtrDIUFxfrnXfe0dGjR5Wenq4NGzbo5MmT6tWrl3ObFi1aqGHDhsrMzJQkZWZmqnXr1kpMTHRu06dPHxUUFGjbtm2VfgwVNXLkSPXr18/lmCWF1LnYsWOH6tWrp8aNG2vw4MHKycmRFDrnYNGiRerYsaN+//vfKyEhQe3atdPcuXOd63ft2qW8vDyX8xAXF6dOnTq5nIf4+Hh17NjRuU2vXr0UFhamtWvXVt7BeElRUZHeeOMNDR8+XDabLWTeC5LUuXNnLVu2TN9//70kacuWLVq1apX69u0rKTTeD6dOnVJxcbGqVq3qsjw6OlqrVq0KiXNwNm8dc2Zmprp166bIyEjnNn369NH27dv166+/VqiMTAR6lm+++Ubp6ek6fvy4qlevrg8++EBpaWnavHmzIiMjFR8f77J9YmKi8vLyJEl5eXkuX2Yl60vWBZN33nlHGzdudLkPXSIvLy8kzkWnTp00b948XXzxxcrNzdX06dN15ZVXauvWrSFzDn744QfNnj1bDzzwgB5++GFlZWVp9OjRioyM1NChQ53HUdpxnnkeEhISXNZHRESoVq1aQXMezvThhx8qPz9fw4YNkxQ6nwdJmjRpkgoKCtSiRQuFh4eruLhYM2bM0ODBgyUpJN4PNWrUUHp6uh5//HG1bNlSiYmJevvtt5WZmammTZuGxDk4m7eOOS8vT6mpqefso2RdzZo1PS4jYecsF198sTZv3iy73a733ntPQ4cO1cqVK/1drEq1Z88ejRkzRkuXLj3n10soKfm1Kklt2rRRp06d1KhRI/3zn/9UdHS0H0tWeRwOhzp27Kgnn3xSktSuXTtt3bpVc+bM0dChQ/1cOv945ZVX1LdvX9WrV8/fRal0//znP/Xmm2/qrbfe0iWXXKLNmzdr7NixqlevXki9H/7xj39o+PDhql+/vsLDw9W+fXsNGjRIGzZs8HfRUAZuY50lMjJSTZs2VYcOHZSRkaG2bdvq+eefV1JSkoqKipSfn++y/b59+5SUlCRJSkpKOqcHRsn/S7YJBhs2bND+/fvVvn17RUREKCIiQitXrtSsWbMUERGhxMTEkDkXZ4qPj1fz5s21c+fOkHk/JCcnKy0tzWVZy5YtnbfzSo6jtOM88zzs37/fZf2pU6d06NChoDkPJX788Uf961//0p133ulcFirvBUmaMGGCJk2apFtuuUWtW7fWkCFDNG7cOGVkZEgKnfdDkyZNtHLlSh05ckR79uzRunXrdPLkSTVu3DhkzsGZvHXMvvycEHYuwOFw6MSJE+rQoYOqVKmiZcuWOddt375dOTk5Sk9PlySlp6frm2++cXlBly5dqtjY2HMuGIGsZ8+e+uabb7R582bnX8eOHTV48GDnv0PlXJzpyJEjys7OVnJycsi8H7p06aLt27e7LPv+++/VqFEjSVJqaqqSkpJczkNBQYHWrl3rch7y8/NdfvUuX75cDodDnTp1qoSj8J7XXntNCQkJ6tevn3NZqLwXJKmwsFBhYa6XjfDwcDkcDkmh936oVq2akpOT9euvv+qLL77Q7373u5A7B5L3Xvf09HR99dVXOnnypHObpUuX6uKLL67QLSxJdD0/06RJk8zKlSvNrl27zNdff20mTZpkbDabWbJkiTHmdPfShg0bmuXLl5v169eb9PR0k56e7nx8SffS3r17m82bN5vPP//c1K1bN+i6l5bmzN5YxoTGuXjwwQfNl19+aXbt2mVWr15tevXqZerUqWP2799vjAmNc7Bu3ToTERFhZsyYYXbs2GHefPNNExMTY9544w3nNjNnzjTx8fHmo48+Ml9//bX53e9+V2qX03bt2pm1a9eaVatWmWbNmgV0N9vSFBcXm4YNG5qJEyeesy4U3gvGGDN06FBTv359Z9fzhQsXmjp16piHHnrIuU0ovB8+//xz89lnn5kffvjBLFmyxLRt29Z06tTJFBUVGWOseQ4OHz5sNm3aZDZt2mQkmb/85S9m06ZN5scffzTGeOeY8/PzTWJiohkyZIjZunWreeedd0xMTAxdz71t+PDhplGjRiYyMtLUrVvX9OzZ0xl0jDHm2LFj5r777jM1a9Y0MTEx5oYbbjC5ubku+9i9e7fp27eviY6ONnXq1DEPPvigOXnyZGUfitedHXZC4VwMHDjQJCcnm8jISFO/fn0zcOBAl/FlQuEcGGPMxx9/bFq1amWioqJMixYtzN/+9jeX9Q6Hw0yZMsUkJiaaqKgo07NnT7N9+3aXbX755RczaNAgU716dRMbG2vuuOMOc/jw4co8jAr74osvjKRzjs2Y0HkvFBQUmDFjxpiGDRuaqlWrmsaNG5tHHnnEpatwKLwfFixYYBo3bmwiIyNNUlKSGTlypMnPz3eut+I5WLFihZF0zt/QoUONMd475i1btpiuXbuaqKgoU79+fTNz5kyvlN9mzBlDXwIAAFgMbXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAeKRHjx4aO3asv4vhc9OmTdOll17q72IAqADCDoCQVFRUVKnPZ4zRqVOnKvU5AZxG2AFQbsOGDdPKlSv1/PPPy2azyWazaffu3dq6dav69u2r6tWrKzExUUOGDNHBgwedj+vRo4fuv/9+jR07VjVr1lRiYqLmzp2ro0eP6o477lCNGjXUtGlTffbZZ87HfPnll7LZbPrkk0/Upk0bVa1aVVdccYW2bt3qUqZVq1bpyiuvVHR0tBo0aKDRo0fr6NGjzvUpKSl6/PHHdfvttys2NlZ33323JGnixIlq3ry5YmJi1LhxY02ZMsU56/K8efM0ffp0bdmyxXmc8+bN0+7du2Wz2bR582bn/vPz82Wz2fTll1+6lPuzzz5Thw4dFBUVpVWrVsnhcCgjI0OpqamKjo5W27Zt9d5773n7JQJwBsIOgHJ7/vnnlZ6errvuuku5ubnKzc1VjRo1dPXVV6tdu3Zav369Pv/8c+3bt08333yzy2Pnz5+vOnXqaN26dbr//vt177336ve//706d+6sjRs3qnfv3hoyZIgKCwtdHjdhwgQ988wzysrKUt26dXXdddc5Q0l2drauueYaDRgwQF9//bUWLFigVatWadSoUS77+POf/6y2bdtq06ZNmjJliiSpRo0amjdvnr799ls9//zzmjt3rp599llJ0sCBA/Xggw/qkksucR7nwIEDy3WuJk2apJkzZ+q7775TmzZtlJGRoddff11z5szRtm3bNG7cON12221auXJlufYLoBy8Mp0ogJDTvXt3M2bMGOf/H3/8cdO7d2+Xbfbs2eMyU3j37t1N165dnetPnTplqlWrZoYMGeJclpubaySZzMxMY8z/z7b8zjvvOLf55ZdfTHR0tFmwYIExxpgRI0aYu+++2+W5//3vf5uwsDBz7NgxY4wxjRo1Mv3797/gcf3pT38yHTp0cP5/6tSppm3bti7b7Nq1y0gymzZtci779ddfjSSzYsUKl3J/+OGHzm2OHz9uYmJizJo1a1z2N2LECDNo0KALlg2AZyL8GbQAWMeWLVu0YsUKVa9e/Zx12dnZat68uSSpTZs2zuXh4eGqXbu2Wrdu7VyWmJgoSdq/f7/LPtLT053/rlWrli6++GJ99913zuf++uuv9eabbzq3McbI4XBo165datmypSSpY8eO55RtwYIFmjVrlrKzs3XkyBGdOnVKsbGx5T7+spz5nDt37lRhYaF+85vfuGxTVFSkdu3aee05Abgi7ADwiiNHjui6667TU089dc665ORk57+rVKniss5ms7kss9lskiSHw1Gu5/7DH/6g0aNHn7OuYcOGzn9Xq1bNZV1mZqYGDx6s6dOnq0+fPoqLi9M777yjZ5555rzPFxZ2ugWAMca5rOSW2tnOfM4jR45Ikj755BPVr1/fZbuoqKjzPicAzxF2AHgkMjJSxcXFzv+3b99e77//vlJSUhQR4f2vlv/85z/O4PLrr7/q+++/d9bYtG/fXt9++62aNm1arn2uWbNGjRo10iOPPOJc9uOPP7psc/ZxSlLdunUlSbm5uc4amTMbK5clLS1NUVFRysnJUffu3ctVVgCeo4EyAI+kpKRo7dq12r17tw4ePKiRI0fq0KFDGjRokLKyspSdna0vvvhCd9xxxzlhwROPPfaYli1bpq1bt2rYsGGqU6eO+vfvL+l0j6o1a9Zo1KhR2rx5s3bs2KGPPvronAbKZ2vWrJlycnL0zjvvKDs7W7NmzdIHH3xwznHu2rVLmzdv1sGDB3XixAlFR0friiuucDY8Xrlypf74xz9e8Bhq1Kih8ePHa9y4cZo/f76ys7O1ceNGvfDCC5o/f77H5wbA+RF2AHhk/PjxCg8PV1pamurWrauioiKtXr1axcXF6t27t1q3bq2xY8cqPj7eedunImbOnKkxY8aoQ4cOysvL08cff6zIyEhJp9sBrVy5Ut9//72uvPJKtWvXTo8++qjq1at33n1ef/31GjdunEaNGqVLL71Ua9ascfbSKjFgwABdc801uuqqq1S3bl29/fbbkqRXX31Vp06dUocOHTR27Fg98cQTbh3H448/rilTpigjI0MtW7bUNddco08++USpqakenBUA7rCZM286A0CA+fLLL3XVVVfp119/VXx8vL+LAyAIUbMDAAAsjbADAAAsjdtYAADA0qjZAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlvZ/5oPfigwJYygAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJXElEQVR4nO3deXwU9eH/8fcmkJBAEo6cIJAAckO4NaAclYqUnxaxFfHgEGhVqCBqAa0CogZrVay1oFjFowpVEe+DchZBCkKQeKDEYKImQMRsgIQAyef3B99sWXKQbPacfT0fjzweMDO7+5nZ2Zn3fD6f+YzNGGMEAABgESG+LgAAAIA7EW4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4A+MT8+fNls9lqtazNZtP8+fM9Wp6hQ4dq6NChfvt+AGqPcAMEueXLl8tmszn+GjRooFatWmnixIn64YcffF08v5OcnOy0veLj43XxxRfrjTfecMv7FxcXa/78+dqwYYNb3g8IRoQbAJKk++67Ty+++KKWLl2qkSNH6qWXXtKQIUN0/Phxj3zen/70J5WUlHjkvT2tV69eevHFF/Xiiy/qjjvu0I8//qgxY8Zo6dKl9X7v4uJiLViwgHAD1EMDXxcAgH8YOXKk+vXrJ0maMmWKYmNj9dBDD+mtt97S1Vdf7fbPa9CggRo0CMxDUKtWrXT99dc7/j9+/Hh16NBBjz32mG666SYflgyARM0NgGpcfPHFkqSsrCyn6V999ZV+85vfqHnz5mrUqJH69eunt956y2mZkydPasGCBTr//PPVqFEjtWjRQhdddJHWrFnjWKaqPjelpaW67bbbFBcXp6ioKF1xxRX6/vvvK5Vt4sSJSk5OrjS9qvd87rnn9Itf/ELx8fEKDw9X165dtWTJkjpti3NJTExUly5dlJ2dXeNyBw8e1OTJk5WQkKBGjRopNTVVzz//vGP+/v37FRcXJ0lasGCBo+nL0/2NAKsJzMsmAB63f/9+SVKzZs0c0z7//HMNGjRIrVq10pw5c9S4cWP961//0ujRo/X666/ryiuvlHQ6ZKSnp2vKlCkaMGCAioqKtGPHDu3cuVO//OUvq/3MKVOm6KWXXtK1116rgQMHat26dRo1alS91mPJkiXq1q2brrjiCjVo0EBvv/22brnlFpWXl2vatGn1eu8KJ0+eVG5urlq0aFHtMiUlJRo6dKj27dun6dOnKyUlRa+++qomTpyowsJCzZgxQ3FxcVqyZIluvvlmXXnllRozZowkqWfPnm4pJxA0DICg9txzzxlJ5t///rc5dOiQyc3NNa+99pqJi4sz4eHhJjc317HsJZdcYnr06GGOHz/umFZeXm4GDhxozj//fMe01NRUM2rUqBo/d968eebMQ1BGRoaRZG655Ran5a699lojycybN88xbcKECaZt27bnfE9jjCkuLq603IgRI0y7du2cpg0ZMsQMGTKkxjIbY0zbtm3NpZdeag4dOmQOHTpkdu/eba655hojyfzhD3+o9v0WL15sJJmXXnrJMe3EiRMmLS3NNGnSxBQVFRljjDl06FCl9QVQNzRLAZAkDR8+XHFxcWrdurV+85vfqHHjxnrrrbd03nnnSZIOHz6sdevW6eqrr9aRI0dUUFCggoIC/fTTTxoxYoS++eYbx91VTZs21eeff65vvvmm1p//3nvvSZJuvfVWp+kzZ86s13pFREQ4/m2321VQUKAhQ4bo22+/ld1ud+k9P/roI8XFxSkuLk6pqal69dVXdcMNN+ihhx6q9jXvvfeeEhMTNW7cOMe0hg0b6tZbb9XRo0e1ceNGl8oCoDKapQBIkp588kl17NhRdrtdzz77rDZt2qTw8HDH/H379skYo3vuuUf33HNPle9x8OBBtWrVSvfdd59+/etfq2PHjurevbsuu+wy3XDDDTU2r3z33XcKCQlR+/btnaZ36tSpXuv18ccfa968edq6dauKi4ud5tntdsXExNT5PS+44ALdf//9stlsioyMVJcuXdS0adMaX/Pdd9/p/PPPV0iI8zVlly5dHPMBuAfhBoAkacCAAY67pUaPHq2LLrpI1157rfbu3asmTZqovLxcknTHHXdoxIgRVb5Hhw4dJEmDBw9WVlaW3nzzTX300Ud65pln9Nhjj2np0qWaMmVKvcta3eB/ZWVlTv/PysrSJZdcos6dO+vRRx9V69atFRYWpvfee0+PPfaYY53qKjY2VsOHD3fptQA8j3ADoJLQ0FClp6dr2LBh+tvf/qY5c+aoXbt2kk43pdTmxN68eXNNmjRJkyZN0tGjRzV48GDNnz+/2nDTtm1blZeXKysry6m2Zu/evZWWbdasmQoLCytNP7v24+2331ZpaaneeusttWnTxjF9/fr15yy/u7Vt21afffaZysvLnWpvvvrqK8d8qfrgBqD26HMDoEpDhw7VgAEDtHjxYh0/flzx8fEaOnSonnrqKeXl5VVa/tChQ45///TTT07zmjRpog4dOqi0tLTazxs5cqQk6a9//avT9MWLF1datn379rLb7frss88c0/Ly8iqNEhwaGipJMsY4ptntdj333HPVlsNTfvWrXyk/P18rV650TDt16pSeeOIJNWnSREOGDJEkRUZGSlKV4Q1A7VBzA6Bad955p377299q+fLluummm/Tkk0/qoosuUo8ePTR16lS1a9dOBw4c0NatW/X9999r9+7dkqSuXbtq6NCh6tu3r5o3b64dO3botdde0/Tp06v9rF69emncuHH6+9//LrvdroEDB2rt2rXat29fpWWvueYazZ49W1deeaVuvfVWFRcXa8mSJerYsaN27tzpWO7SSy9VWFiYLr/8cv3+97/X0aNHtWzZMsXHx1cZ0Dzpd7/7nZ566ilNnDhRn376qZKTk/Xaa6/p448/1uLFixUVFSXpdAforl27auXKlerYsaOaN2+u7t27q3v37l4tLxDQfH27FgDfqrgVfPv27ZXmlZWVmfbt25v27dubU6dOGWOMycrKMuPHjzeJiYmmYcOGplWrVub//b//Z1577TXH6+6//34zYMAA07RpUxMREWE6d+5sHnjgAXPixAnHMlXdtl1SUmJuvfVW06JFC9O4cWNz+eWXm9zc3Cpvjf7oo49M9+7dTVhYmOnUqZN56aWXqnzPt956y/Ts2dM0atTIJCcnm4ceesg8++yzRpLJzs52LFeXW8HPdZt7de934MABM2nSJBMbG2vCwsJMjx49zHPPPVfptVu2bDF9+/Y1YWFh3BYOuMBmzBn1tQAAAAGOPjcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSgm4Qv/Lycv3444+KiopimHMAAAKEMUZHjhxRy5YtKz2A9mxBF25+/PFHtW7d2tfFAAAALsjNzdV5551X4zJBF24qhjjPzc1VdHS0j0sDAABqo6ioSK1bt3acx2sSdOGmoikqOjqacAMAQICpTZcSOhQDAABLIdwAAABLIdwAAABLCbo+NwCA4FFWVqaTJ0/6uhiopbCwsHPe5l0bhBsAgOUYY5Sfn6/CwkJfFwV1EBISopSUFIWFhdXrfQg3AADLqQg28fHxioyMZNDWAFAxyG5eXp7atGlTr++McAMAsJSysjJHsGnRooWvi4M6iIuL048//qhTp06pYcOGLr8PHYoBAJZS0ccmMjLSxyVBXVU0R5WVldXrfQg3AABLoikq8LjrOyPcAAAASyHcAAAAr9iwYYNsNpvH72LzabhJT09X//79FRUVpfj4eI0ePVp79+6t8TXLly+XzWZz+mvUqJGXSlyzPHuJtmQVKM9e4uuiAACC0Pz589WrVy9fF8PnfHq31MaNGzVt2jT1799fp06d0l133aVLL71UX3zxhRo3blzt66Kjo51CkD+0q67cnqO5q/ao3EghNil9TA+N7d/G18UCAKCSkydP1utuJH/n05qbDz74QBMnTlS3bt2Umpqq5cuXKycnR59++mmNr7PZbEpMTHT8JSQkeKnEVcuzlziCjSSVG+muVZnU4AAA6qS8vFzp6elKSUlRRESEUlNT9dprr0n6X5PO2rVr1a9fP0VGRmrgwIGOi/3ly5drwYIF2r17t6NlY/ny5ZJOnzeXLFmiK664Qo0bN9YDDzxQYzkqPuvDDz9U7969FRERoV/84hc6ePCg3n//fXXp0kXR0dG69tprVVxc7HhdaWmpbr31VsXHx6tRo0a66KKLtH37ds9srBr4VZ8bu90uSWrevHmNyx09elRt27ZV69at9etf/1qff/55tcuWlpaqqKjI6c/dsguOOYJNhTJjtL+guOoXAAAChje7HKSnp+uFF17Q0qVL9fnnn+u2227T9ddfr40bNzqWufvuu/XII49ox44datCggW688UZJ0tixY3X77berW7duysvLU15ensaOHet43fz583XllVdqz549jtecy/z58/W3v/1NW7ZsUW5urq6++motXrxYL7/8st5991199NFHeuKJJxzL//GPf9Trr7+u559/Xjt37lSHDh00YsQIHT582E1bqHb8ZhC/8vJyzZw5U4MGDVL37t2rXa5Tp0569tln1bNnT9ntdv3lL3/RwIED9fnnn+u8886rtHx6eroWLFjgyaIrJbaxQmxyCjihNpuSYxljAQACmTe7HJSWlurBBx/Uv//9b6WlpUmS2rVrp82bN+upp57S7373O0nSAw88oCFDhkiS5syZo1GjRun48eOKiIhQkyZN1KBBAyUmJlZ6/2uvvVaTJk2qU5nuv/9+DRo0SJI0efJkzZ07V1lZWWrXrp0k6Te/+Y3Wr1+v2bNn69ixY1qyZImWL1+ukSNHSpKWLVumNWvW6B//+IfuvPNO1zaMC/ym5mbatGnKzMzUihUralwuLS1N48ePV69evTRkyBCtWrVKcXFxeuqpp6pcfu7cubLb7Y6/3Nxct5c9KSZC6WN6KPT/+v6E2mx6cEx3JcVEuP2zAADe4e0uB/v27VNxcbF++ctfqkmTJo6/F154QVlZWY7levbs6fh3UlKSJOngwYPnfP9+/frVuUxnflZCQoIiIyMdwaZiWsVnZ2Vl6eTJk44wJEkNGzbUgAED9OWXX9b5s+vDL2pupk+frnfeeUebNm2qsvalJg0bNlTv3r21b9++KueHh4crPDzcHcWs0dj+bTS4Y5z2FxQrOTaSYAMAAa6mLgeeOMYfPXpUkvTuu++qVatWTvPCw8MdAefMjsAVN9SUl5ef8/1rulGnOmd/1tmdkG02W60+29t8WnNjjNH06dP1xhtvaN26dUpJSanze5SVlWnPnj2O9OpLSTERSmvfgmADABZQ0eXgTJ7sctC1a1eFh4crJydHHTp0cPpr3bp1rd4jLCys3o8ucFX79u0VFhamjz/+2DHt5MmT2r59u7p27erVsvi05mbatGl6+eWX9eabbyoqKkr5+fmSpJiYGEVEnA4I48ePV6tWrZSeni5Juu+++3ThhReqQ4cOKiws1MMPP6zvvvtOU6ZM8dl6AACsp6LLwV2rMlVmjMe7HERFRemOO+7QbbfdpvLycl100UWy2+36+OOPFR0drbZt257zPZKTk5Wdna2MjAydd955ioqK8krrhXS6Zujmm2/WnXfeqebNm6tNmzb685//rOLiYk2ePNkrZajg03CzZMkSSdLQoUOdpj/33HOaOHGiJCknJ0chIf+rYPr55581depU5efnq1mzZurbt6+2bNni9VQIALA+b3c5WLhwoeLi4pSenq5vv/1WTZs2VZ8+fXTXXXfVqvnnqquu0qpVqzRs2DAVFhY6nU+9YdGiRSovL9cNN9ygI0eOqF+/fvrwww/VrFkzr5VBkmzGGHPuxayjqKhIMTExstvtio6O9nVxAABudvz4cWVnZyslJcVvRrBH7dT03dXl/O03d0sBAAC4A+EGAIAgc9NNNzndbn7m30033eTr4tWbX9wKDgAAvOe+++7THXfcUeU8K3TZINwAABBk4uPjFR8f7+tieAzNUgAAwFIINwAAS/LHkXNRM3fdwE2zFADAUsLCwhQSEqIff/xRcXFxCgsLczymAP7LGKNDhw5V+ZiHuiLcAAAsJSQkRCkpKcrLy9OPP/7o6+KgDmw2m8477zyFhobW630INwAAywkLC1ObNm106tQpnz1rCXXXsGHDegcbiXADALCoiuaN+jZxIPDQoRgAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFiKT8NNenq6+vfvr6ioKMXHx2v06NHau3fvOV/36quvqnPnzmrUqJF69Oih9957zwulBQAAgcCn4Wbjxo2aNm2aPvnkE61Zs0YnT57UpZdeqmPHjlX7mi1btmjcuHGaPHmydu3apdGjR2v06NHKzMz0YskBAIC/shljjK8LUeHQoUOKj4/Xxo0bNXjw4CqXGTt2rI4dO6Z33nnHMe3CCy9Ur169tHTp0nN+RlFRkWJiYmS32xUdHe22sgMAAM+py/nbr/rc2O12SVLz5s2rXWbr1q0aPny407QRI0Zo69atVS5fWlqqoqIipz8AAGBdfhNuysvLNXPmTA0aNEjdu3evdrn8/HwlJCQ4TUtISFB+fn6Vy6enpysmJsbx17p1a7eWGwAA+Be/CTfTpk1TZmamVqxY4db3nTt3rux2u+MvNzfXre8PAAD8SwNfF0CSpk+frnfeeUebNm3SeeedV+OyiYmJOnDggNO0AwcOKDExscrlw8PDFR4e7rayAgAA/+bTmhtjjKZPn6433nhD69atU0pKyjlfk5aWprVr1zpNW7NmjdLS0jxVTAAAEEB8WnMzbdo0vfzyy3rzzTcVFRXl6DcTExOjiIgISdL48ePVqlUrpaenS5JmzJihIUOG6JFHHtGoUaO0YsUK7dixQ08//bTP1gMAAPgPn9bcLFmyRHa7XUOHDlVSUpLjb+XKlY5lcnJylJeX5/j/wIED9fLLL+vpp59WamqqXnvtNa1evbrGTsgAACB4+NU4N97AODcAAASegB3nBgAAoL4INwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIIN0Eqz16iLVkFyrOX+LooAAC4VQNfFwDet3J7juau2qNyI4XYpPQxPTS2fxtfFwsAALeg5ibI5NlLHMFGksqNdNeqTGpwAACWQbgJMtkFxxzBpkKZMdpfUOybAgEA4GaEmyCTEttYITbnaaE2m5JjI31TIAAA3IxwE2SSYiKUPqaHQm2nE06ozaYHx3RXUkyEj0sGAIB70KE4CI3t30aDO8Zpf0GxkmMjCTYAAEsh3ASppJgIQg0AwJJolgIAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuLGYPHuJtmQV8JRvAEDQYoRiC1m5PUdzV+1RuZFCbFL6mB4a27+Nr4sFAIBXUXNjEXn2EkewkaRyI921KpMaHABA0CHcWER2wTFHsKlQZoz2FxT7pkAAAPgI4cYiUmIbK8TmPC3UZlNybKRvCgQAgI/4NNxs2rRJl19+uVq2bCmbzabVq1fXuPyGDRtks9kq/eXn53unwH4sKSZC6WN6KNR2OuGE2mx6cEx3nvwNAAg6Pu1QfOzYMaWmpurGG2/UmDFjav26vXv3Kjo62vH/+Ph4TxQv4Izt30aDO8Zpf0GxkmMjCTYAgKDk03AzcuRIjRw5ss6vi4+PV9OmTd1fIAtIiokg1AAAglpA9rnp1auXkpKS9Mtf/lIff/yxr4sTsBgTBwBgRQE1zk1SUpKWLl2qfv36qbS0VM8884yGDh2qbdu2qU+fPlW+prS0VKWlpY7/FxUVeau4fo0xcQAAVhVQ4aZTp07q1KmT4/8DBw5UVlaWHnvsMb344otVviY9PV0LFizwVhEDQnVj4gzuGEeTFgAg4AVks9SZBgwYoH379lU7f+7cubLb7Y6/3NxcL5bOPzEmDgDAygKq5qYqGRkZSkpKqnZ+eHi4wsPDvVgi/1cxJs6ZAYcxcQAAVuHTcHP06FGnWpfs7GxlZGSoefPmatOmjebOnasffvhBL7zwgiRp8eLFSklJUbdu3XT8+HE988wzWrdunT766CNfrUJAqhgT565VmSozhjFxAACWUutwU5eOuGeOQVOTHTt2aNiwYY7/z5o1S5I0YcIELV++XHl5ecrJyXHMP3HihG6//Xb98MMPioyMVM+ePfXvf//b6T1QO4yJAwCwKpsxxpx7MSkkJEQ2m63GZYwxstlsKisrc0vhPKGoqEgxMTGy2+21DmGekGcvUXbBMaXENiZYAABwDnU5f9e65mb9+vX1LhhO4zZsAAA8p9bhZsiQIZ4sR9DgNmwAADzL5Q7FhYWF+sc//qEvv/xSktStWzfdeOONiomJcVvhrKim27AJNwAA1J9L49zs2LFD7du312OPPabDhw/r8OHDevTRR9W+fXvt3LnT3WW0lIrbsM/EbdgAALhPrTsUn+niiy9Whw4dtGzZMjVocLry59SpU5oyZYq+/fZbbdq0ye0FdRd/6FC8cntOpduw6XMDAED16nL+dincREREaNeuXercubPT9C+++EL9+vVTcbH/jnTrD+FGOt33htuwAQConbqcv11qloqOjnYaf6ZCbm6uoqKiXHnLoJMUE6G09i0INgAAuJlL4Wbs2LGaPHmyVq5cqdzcXOXm5mrFihWaMmWKxo0b5+4yAgAA1JpLd0v95S9/kc1m0/jx43Xq1ClJUsOGDXXzzTdr0aJFbi0gAABAXbjU56ZCcXGxsrKyJEnt27dXZKT/3/HjL31uAABA7XlkhOKqREZGqkePHvV5CwAAALdyKdwcP35cTzzxhNavX6+DBw+qvLzcaT5j3QAAAF9xKdxMnjxZH330kX7zm99owIAB53ygJgAAgLe4FG7eeecdvffeexo0aJC7ywMAAFAvLt0K3qpVK8azAQAAfsmlcPPII49o9uzZ+u6779xdHgAAgHpxqVmqX79+On78uNq1a6fIyEg1bNjQaf7hw4fdUjgAAIC6cincjBs3Tj/88IMefPBBJSQk0KEYAAD4DZfCzZYtW7R161alpqa6uzwAAAD14lKfm86dO6ukpMTdZQEAAKg3l8LNokWLdPvtt2vDhg366aefVFRU5PQHAADgKy49Wyok5HQmOruvjTFGNptNZWVl7imdB/BsKQAAAo/Hny21fv16lwoGAADgaS6FmyFDhtRquVtuuUX33XefYmNjXfkYAACAOnOpz01tvfTSS/TBAQAAXuXRcONCdx4AAIB68Wi4AQAA8DbCDQAAsBTCDQAAsBTCDQAAsJQ6h5tTp07pvvvu0/fff3/OZa+//noGygMAAF7l0gjFUVFR2rNnj5KTkz1QJM9ihGIAAAJPXc7fLjVL/eIXv9DGjRtdKhwAAIAnuTRC8ciRIzVnzhzt2bNHffv2VePGjZ3mX3HFFW4pHAAAQF3V68GZVb4hD84EAABu5vEHZ5aXl7tUMAAAAE9zqc/NCy+8oNLS0krTT5w4oRdeeKHehQIAAHCVS81SoaGhysvLU3x8vNP0n376SfHx8TRLAQAAt/L43VLGGNlstkrTv//+e8XExLjylvCRPHuJtmQVKM9e4uuiAADgFnXqc9O7d2/ZbDbZbDZdcsklatDgfy8vKytTdna2LrvsMrcXEp6xcnuO5q7ao3Ijhdik9DE9NLZ/G18XCwCAeqlTuBk9erQkKSMjQyNGjFCTJk0c88LCwpScnKyrrrrKrQWEZ+TZSxzBRpLKjXTXqkwN7hinpJgI3xYOAIB6qFO4mTdvniQpOTlZY8eOVaNGjTxSKHhedsExR7CpUGaM9hcUE24ABLU8e4myC44pJbYxx8MA5dKt4BMmTJB0+u6ogwcPVro1vE0bmjb8XUpsY4XY5BRwQm02JcdG+q5QAOBjNNdbg0sdir/55htdfPHFioiIUNu2bZWSkqKUlBQlJycrJSXF3WWEByTFRCh9TA+F/l/H8FCbTQ+O6c5VCoCgVV1zPTdcBB6Xam4mTpyoBg0a6J133lFSUlKVd07B/43t30aDO8Zpf0GxkmMjCTYAghrN9dbhUrjJyMjQp59+qs6dO7u7PPCypJgIfrQAIJrrrcSlZqmuXbuqoKDA3WUBAMBnaK63DpdGKF63bp3+9Kc/6cEHH1SPHj3UsGFDp/n+PPIvIxSfG3cKAAhmefYSmuv9UF3O3/V+KviZ/W0qRi7m8QuBizsFAAD+yONPBV+/fr1LBYN/Y2A/AIAVuNTnZsiQIQoJCdGyZcs0Z84cdejQQUOGDFFOTo5CQ0PdXUZ4SU13CngKz7YCALibS+Hm9ddf14gRIxQREaFdu3aptLRUkmS32/Xggw+6tYDwnoo7Bc7kyTsFVm7P0aBF63Ttsm0atGidVm7P8cjnAACCi0vh5v7779fSpUu1bNkyp87EgwYN0s6dO91WOHiXN+8UYLAsAICnuNTnZu/evRo8eHCl6TExMSosLKxvmeBD3hrYj8GyAACe4lK4SUxM1L59+5ScnOw0ffPmzWrXrp07ygUf8sbAfgyWBQDwFJeapaZOnaoZM2Zo27Ztstls+vHHH/XPf/5Td9xxh26++WZ3lxEWxGBZAABPcSnczJkzR9dee60uueQSHT16VIMHD9aUKVP0+9//Xn/4wx9q/T6bNm3S5ZdfrpYtW8pms2n16tXnfM2GDRvUp08fhYeHq0OHDlq+fLkrqwA/MLZ/G22eM0yvTL1Qm+cMYzwdAIBbuBRubDab7r77bh0+fFiZmZn65JNPdOjQIS1cuLBO73Ps2DGlpqbqySefrNXy2dnZGjVqlIYNG6aMjAzNnDlTU6ZM0YcffujKasAPJMVEKK19C2psAABu49IIxZ5gs9n0xhtvaPTo0dUuM3v2bL377rvKzMx0TLvmmmtUWFioDz74oFafwwjFAAAEnrqcv12qufGVrVu3avjw4U7TRowYoa1bt/qoRAAAwN+4dLeUr+Tn5yshIcFpWkJCgoqKilRSUqKIiMpNG6WlpY5BBqXTyQ8AAFhXQNXcuCI9PV0xMTGOv9atW/u6SAAAwIMCKtwkJibqwIEDTtMOHDig6OjoKmttJGnu3Lmy2+2Ov9zcXG8UFQAA+EhANUulpaXpvffec5q2Zs0apaWlVfua8PBwhYeHe7poAADAT/i05ubo0aPKyMhQRkaGpNO3emdkZCgn5/QDFOfOnavx48c7lr/pppv07bff6o9//KO++uor/f3vf9e//vUv3Xbbbb4oPgAA8EM+DTc7duxQ79691bt3b0nSrFmz1Lt3b917772SpLy8PEfQkaSUlBS9++67WrNmjVJTU/XII4/omWee0YgRI3xSfgAA4H/8Zpwbb2Gcm+CUZy9RdsExpcQ2ZsBAAAhAdTl/B1SfG8AVK7fnaO6qPSo3UohNSh/Tg0c9AICFBdTdUkBd5dlLHMFGOv0U8rtWZSrPXuLbggEAPIZwA0vLLjjmCDYVyozR/oJi3xQIAOBxhBtYWkpsY4XYnKeF2mxKjo30TYEAAB5HuIGlJcVEKH1MD4XaTiecUJtND47pTqdiALAwOhTD8sb2b6PBHeO0v6BYybGRBBsAsDjCDYJCUkwEoQYAggTNUgAAwFIINwAAwFIINwAAwFIIN6iVPHuJtmQVMPgdAMDv0aEY58TjCwAAgYSaG9SIxxcAAAIN4QY14vEFAIBAQ7hBjXh8AQAg0BBuUCMeXwAACDR0KMY58fgCAEAgIdygVnh8AQAgUNAsBQAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwg2rxsEwAQCDiVnBUiYdlAgACFTU3qISHZQIAAhnhBpXwsEwAQCAj3KASHpYJAAhkhBtUwsMyAQCBjA7FqBIPywQABCrCDarFwzIBAIGIZik/xjgzAADUHTU3fopxZgAAcA01N36IcWYAAHAd4cYPMc4MAACuI9z4IcaZAQDAdYQbP8Q4MwAAuI4OxX6KcWYAAHAN4caPMc4MAAB1R7MUAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMIN4Kfy7CXaklXAA1MBoI4YxA/wQyu35zieDB9ik9LH9NDY/m18XSwACAjU3AB+Js9e4gg2klRupLtWZVKDAwC1RLgB/Ex2wTFHsKlQZoz2FxT7pkAAEGAIN36IvhbBLSW2sUJsztNCbTYlx0b6pkAAEGAIN35m5fYcDVq0Ttcu26ZBi9Zp5fYcXxcJXpYUE6H0MT0UajudcEJtNj04pjsPUQWAWrIZY8y5F7OOoqIixcTEyG63Kzo62tfFcZJnL9GgReucmiRCbTZtnjOME1sQyrOXaH9BsZJjI/n+AQS9upy/uVvKj9TU14KTW/BJionge4dfy7OXKLvgmFJiG7Ovwq8QbvxIRV+Ls2tu6GtRdxx0Ac9iuAL4M/rc+BGr9LXwdYdo+i0BnsVwBfB3fhFunnzySSUnJ6tRo0a64IIL9N///rfaZZcvXy6bzeb016hRIy+W1rPG9m+jzXOG6ZWpF2rznGEBdyXk62DBQdc1vg6kCCwMVwB/5/NmqZUrV2rWrFlaunSpLrjgAi1evFgjRozQ3r17FR8fX+VroqOjtXfvXsf/bTZblcsFqkDta1FdsBjcMc5r60O/pbqjeQF1RRM6/J3Pa24effRRTZ06VZMmTVLXrl21dOlSRUZG6tlnn632NTabTYmJiY6/hIQEL5YY1fGHqznGiKnZmTU0efYSvb37B2q6UGdWaUKHdfm05ubEiRP69NNPNXfuXMe0kJAQDR8+XFu3bq32dUePHlXbtm1VXl6uPn366MEHH1S3bt28UWTUwB+u5ioOunetylSZMRx0z3BmDU1F/qtqHAhqulAbY/u30eCOcQxXAL/k03BTUFCgsrKySjUvCQkJ+uqrr6p8TadOnfTss8+qZ8+estvt+stf/qKBAwfq888/13nnnVdp+dLSUpWWljr+X1RU5N6VgIO/BAsOupWd3WRY0+BW1HShtgK1CR3W5/M+N3WVlpamtLQ0x/8HDhyoLl266KmnntLChQsrLZ+enq4FCxZ4s4hBzV+CBQddZ1U1GVaFmi4AVuDTcBMbG6vQ0FAdOHDAafqBAweUmJhYq/do2LChevfurX379lU5f+7cuZo1a5bj/0VFRWrdurXrhcY5ESz8T1VNhmcKkfTEtb3Vp20zvjsAAc+nHYrDwsLUt29frV271jGtvLxca9eudaqdqUlZWZn27NmjpKSkKueHh4crOjra6Q8INmd3ALVJqrjJMNRmU/pVPTSqZ0uCDWqN4QPgz3zeLDVr1ixNmDBB/fr104ABA7R48WIdO3ZMkyZNkiSNHz9erVq1Unp6uiTpvvvu04UXXqgOHTqosLBQDz/8sL777jtNmTLFl6sB+L2zmwwl+bz5EIGJ4QPg73websaOHatDhw7p3nvvVX5+vnr16qUPPvjA0ck4JydHISH/q2D6+eefNXXqVOXn56tZs2bq27evtmzZoq5du/pqFYBa8/VjIc5uMiTUoK78YTwr4Fx4KjjgJVztwgq2ZBXo2mXbKk1/ZeqFSmvfwgclQrCoy/nb54P4AcHAE4+FoM8DfIGBMhEICDeAF7h79GZfP8MLwYvRiREIfN7nBggG7hy9mT4P8DV/Gc8KqA41N4AXuPNq1x+e4QUkxUQorX0Lgg38EjU3gJe462rXH57hBQD+jJobwIvccbVLnwcAqBk1N0AAGtu/jTonRmn7/p/VP7mZUls383WR4GO+HkMJ8CeEGyAAMWYOzsT+ADijWcrCGAfFmjwxZg4CF/sDJI73Z6PmxqK4krOumu6Wojki+Lhjf6BJK7BxvK+MmhsL4krO2hghFmeq7/7gqwEhqWlwD473VSPcWBDjoFgbd0vhTPXZH2o6MXoyfDDCtvtwvK8azVIWFGjjoFAlXneMEIszubo/VHdifO7jbD3zn2yPNHMwwrbrqjpWBtrx3lsINxZUcSV316pMlRnj11f2tBW7Likmwi+/U/iGK/tDVSfGEJu0bFO2Kia5M3zk2Uv0zmc/0mfMBdUdKwPpeO9NNmOMOfdi1lGXR6YHujx7ic+v7Guqlcmzl2jQonWVrjg2zxkW9D9MwFtWbs9xOjHeeFGylv0nu9Jyr0y9UGntW9Trc86ssTlTdb97anVPq82x0h+O955Wl/M3NTcW5usr+3PVytTlLg8OcoBnnN2kJUn/2Jzt1maOs5uizlRdTQO1uv9Tm2Olr4/3/oZwA4+oTbt6bduKOcghWHkr1J99YnR3M0dVJ2dJumdUF/2qZ1KVFzP0y/mf2hwruQB0RriBR9T2SuNcB1EOctbBwbdufBnq3d1hvbqTc1XBRrLOWE7u2ufPdaz01L4SyL9Zwg08ora1Muc6iFrlIBfsgqn2zR0nhPqEeneeUN31G6trp1cr3AHk6j5f3fdX3bHSUxeAgf6bJdzAI+pyMKvpIGqFg1ywC6baN3edEM41dkl14cWfT0h1qQ0K9DuAXN3nz/X9VXWsdHVf8UT5/QnhBh7jjqrtQD/IIXhq39x5Qqgu1H/2Q6Gue+aTKk9+gXBCqkttUCCP5eTKPu/q9+fKvuKJ8vsbRiiGRyXFRCitfYt6/SDG9m+jzXOG6ZWpF2rznGF+cyUarOo6cm2wPC7CnSPFVjXq8B8v66SH3v+q2mH2rThSbV2OH/70OIeq9nlJ+uz7wmpf4+r3V9t9Ze7re7Q792eXyx9ov1lqbhAQuM3RP7jS7BEstW/ubkI9u+biXFfTvm7C9WXnU39rjkuKidDskZ2V/t5XTtP//MFeXdGrZZXbpz7fX232lXJJo/++RYuC5DdLuAGCwLkGU6zNSak+zR6B3MRQW544IZwd6ms6+fnyhOTLcOGvzXE9WsVUmlZT0059v79z7SuSZILoN0u4ASyuphNPXU5K9W2HD4baN0+eEGpz8vPFCamu4cLdNTz+2j/ElZoYd31/FfvK3Nf3qPysecHymyXcABZW04nnYNFxzXl9T62fIeTrZo9A4ckTQm1Oft4+IdUlXHiihsdf98u61sScGfrq85iLCmP7t1HnxCiN/vsWGT/bNt5AuAEsrNqnPm/er2Wbv9VZszxabQ738Ler6dqGC081H/nzflnbmhhPNeultm6mRS5um/rUsPnD4H+EG/gNf/hBWE2VT32W9Mzmb52u5ip4q9oc1lHbcOHJ5iN/3i/PFUY93WfozG0TGRaiYyfKlGcvqdd4OzXxl87dhBv4BX/5QVhNVSeeyRcl6+kqnvocItXqqs7fag7ge7UJF55uPqppv/TnCydv9BlKionQpq8P1eoYW1XYmvv6HnVOjFJq62Y1fo4/de4m3MDn/OkHYUVVPfX5mbOe+hxik964ZeA5D15wH38+4briXKHXV81H/n7h5I0+Q3U5xtbnNnJ/6txNuIHP+dMPwqrOPvFUdZIh2HiPv59wPcXbzUeBcOHkjdBXl2NsVWFLqt1t5P7UuZtwA5/zpx9EsPDnPgpWFwgnXE/yZrOmOy+cPFnT5unfY12OsfW5jdyfOncTbuAydz592F9+EMGEvjO+UdsTrtWarXzBXRdO3qhp8+Tvsa7H2PrcRu4vF06EG7jE3T92f/lBAJ5WmxPuU5uytOj9r2SCrNnK3dxx4eSJmjZfBNe6HmPrcxu5P1w42Yyp6oZQ6yoqKlJMTIzsdruio6N9XZyAlGcv0aBF6yodnDfPGebzHRoIBCu351Q6aVSEl6c2Zin9fednEvH7qp88e4nLF05bsgp07bJtlaa/MvVClwbbC7T+VvXZdu5Wl/M3NTeoMzoAA/VT3VV0nr1Ei84KNhK/r/qqT02CO/sEBmJ/K3+ohXFFiK8LgMBT8WM/Ex2AYVV59hJtySpQnr3Ere+bFBOhtPYtnE4c2QXHKo0aLZ2+wuf35RsVTVuhttMHvfr0CazpwhDuRc0N6owOwAgW3m5CqO423NkjO/P78iF39QnkzlDvoc8NXObptljuFoGr3LHv+Kpv2Zn9cUJ0Otj8fkh7j32e1fnbcaSm/laoGX1u4BWebIsNtE538B/u2nd81beMOwfdxx+PI3y/3kGfG/id6jrdubvPA6zHnfuOL/uWVdUfB3Xjz8eRQP1+PdX/zBMIN/A7dLqDq9y577izIym8j+OIe63cnqNBi9bp2mXbNGjROq3cnuPrItWIZin4HW89SM6f2uHhHu7ed2hCCFx03nWfQLyFnZob+B1PXzEH2hUIas8T+06gNiEEO2re3CcQa8G4Wwp+yxN3YzG6cnDwp1FV4VvsC/XnL8dN7paCJXjibixGVw4OgTqqKtyPfaH+AnFsM8INggrt8MHB3/pU+Vt5UDW+p+qd3f9MOv3cLX/dVoQbBJVAvAKpwIG3dvxtbBN/Kw+qxvd0bhW1YIGwrehzg6Dk63b4ugaVQDiY+AN/6Rvgr+VB1fieas+X24o+N8A5+LIdvq5BJRBvw/QVf+tT5W/lsSJ31GjyPdVeoGwrwg1wBk83/bgSVALlYOIP/K1Plb+Vxx/V5zfnrhpNvqfaC5RtxTg3wP/x1Pg3Zw5Z7sp4Eb58DECg8cXYJjUNSc9YKzWrz2/OnY9X4HuqvUDZVtTcAPJc08/ZV5azL+tc56ueQO4E7QveHFW4NjUHjHJctfr+5txdo+mO7ylYOv0Hwj5NuAHkmaafqg7ef/5gr2aP7Kw/v7+3TkElEA4m/sRdfapqOlnV5eTMWCv/U7FNDx87Ua/fnCeaR+rzPQVbp39/36cJN4Bqd6Cs61VZdYGpZ6um2jxnWJ2Dir8fTLzN01fJ5zpZWakvVMW2bBwWqmMnyryyTW06/XfmJqxLOPGnGs1g6/QfCDVUhBtA5z5QunJVVlNgIqjUj6evkmtzsvJ1x0p3nWDO3JYVvLFNjU6Hm4pt6Eo48ZcaTSsF3XMJlBoqwg2CTnUnheoOlK5elfnTlaWVeOMq+Vwnq4p9yJUmRndw5QRT1X5/9ras4K1taiQ9cU1vtWgS7nI48YcLBV8HXW8JpBoqvwg3Tz75pB5++GHl5+crNTVVTzzxhAYMGFDt8q+++qruuece7d+/X+eff74eeugh/epXv/JiiRGoznVSqOpAWZ+rMn+5sqwPf6uC9sZVck0nq6o6ifc8r6nXvl9XTjDV7fdVbcsK3tqmfZOb+cV+VZ3a7P/BciETSDVUPr8VfOXKlZo1a5bmzZunnTt3KjU1VSNGjNDBgwerXH7Lli0aN26cJk+erF27dmn06NEaPXq0MjMzvVxyBBpXbx2t763YSTERSmvfwu9+/LXhqdvj68Mbt8ZXd7urpCo7iXszuNZ1OIGa9vuqtmUFb21Tf/5d1GX/H9u/jTbPGaZXpl6ozXOG+WVTTX0F0rAUPg83jz76qKZOnapJkyapa9euWrp0qSIjI/Xss89Wufzjjz+uyy67THfeeae6dOmihQsXqk+fPvrb3/7m5ZIj0LgyxowUmAdld3DnOCLu5K3vo6qTlav7kDvV9QRzrqvtM7flme/nrW3qr1zZ/wP5QqY2AulY6NNmqRMnTujTTz/V3LlzHdNCQkI0fPhwbd26tcrXbN26VbNmzXKaNmLECK1evbrK5UtLS1VaWur4f1FRUf0LjoBUn3ZxKzQv1ZU/V0F76/s4u5nSH/pW1LUJ5FxlPnNbRoaFqPhEuVe3qb/y5/3flwLlWOjTcFNQUKCysjIlJCQ4TU9ISNBXX31V5Wvy8/OrXD4/P7/K5dPT07VgwQL3FBgBrb7t4oFyUHYXfziR18QX34e/9K2oywmmNmUOtn27Nvx9//elQNhf/KJDsSfNnTvXqaanqKhIrVu39mGJ4EuBctXhD/zlRO5v/GUfqssJxl/KHEjY/wObT8NNbGysQkNDdeDAAafpBw4cUGJiYpWvSUxMrNPy4eHhCg8Pd0+BYQmBcNXhLzgpVi0Q96FALLOvsf8HLp92KA4LC1Pfvn21du1ax7Ty8nKtXbtWaWlpVb4mLS3NaXlJWrNmTbXLA6gfq3eSBGrC/h+YfN4sNWvWLE2YMEH9+vXTgAEDtHjxYh07dkyTJk2SJI0fP16tWrVSenq6JGnGjBkaMmSIHnnkEY0aNUorVqzQjh079PTTT/tyNQAAgJ/webgZO3asDh06pHvvvVf5+fnq1auXPvjgA0en4ZycHIWE/K+CaeDAgXr55Zf1pz/9SXfddZfOP/98rV69Wt27d/fVKgAAAD9iM8ZUMz6lNRUVFSkmJkZ2u13R0dG+Lg4AAKiFupy/fT6IHwAAgDsRbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKX4fIRib6sYs7CoqMjHJQEAALVVcd6uzdjDQRdujhw5Iklq3bq1j0sCAADq6siRI4qJialxmaB7/EJ5ebl+/PFHRUVFyWaz1fp1RUVFat26tXJzc4P6sQ1sB7ZBBbbDaWwHtkEFtsNpntoOxhgdOXJELVu2dHrmZFWCruYmJCRE5513nsuvj46ODuqdtgLbgW1Qge1wGtuBbVCB7XCaJ7bDuWpsKtChGAAAWArhBgAAWArhppbCw8M1b948hYeH+7ooPsV2YBtUYDucxnZgG1RgO5zmD9sh6DoUAwAAa6PmBgAAWArhBgAAWArhBgAAWArhBgAAWEpQh5slS5aoZ8+ejoGG0tLS9P777zvmHz9+XNOmTVOLFi3UpEkTXXXVVTpw4IDTe+Tk5GjUqFGKjIxUfHy87rzzTp06dcrbq+I2ixYtks1m08yZMx3TgmE7zJ8/Xzabzemvc+fOjvnBsA0q/PDDD7r++uvVokULRUREqEePHtqxY4djvjFG9957r5KSkhQREaHhw4frm2++cXqPw4cP67rrrlN0dLSaNm2qyZMn6+jRo95eFZclJydX2h9sNpumTZsmKTj2h7KyMt1zzz1KSUlRRESE2rdvr4ULFzo91ycY9gXp9HD/M2fOVNu2bRUREaGBAwdq+/btjvlW3A6bNm3S5ZdfrpYtW8pms2n16tVO8921zp999pkuvvhiNWrUSK1bt9af//xn96yACWJvvfWWeffdd83XX39t9u7da+666y7TsGFDk5mZaYwx5qabbjKtW7c2a9euNTt27DAXXnihGThwoOP1p06dMt27dzfDhw83u3btMu+9956JjY01c+fO9dUq1ct///tfk5ycbHr27GlmzJjhmB4M22HevHmmW7duJi8vz/F36NAhx/xg2AbGGHP48GHTtm1bM3HiRLNt2zbz7bffmg8//NDs27fPscyiRYtMTEyMWb16tdm9e7e54oorTEpKiikpKXEsc9lll5nU1FTzySefmP/85z+mQ4cOZty4cb5YJZccPHjQaV9Ys2aNkWTWr19vjAmO/eGBBx4wLVq0MO+8847Jzs42r776qmnSpIl5/PHHHcsEw75gjDFXX3216dq1q9m4caP55ptvzLx580x0dLT5/vvvjTHW3A7vvfeeufvuu82qVauMJPPGG284zXfHOtvtdpOQkGCuu+46k5mZaV555RUTERFhnnrqqXqXP6jDTVWaNWtmnnnmGVNYWGgaNmxoXn31Vce8L7/80kgyW7duNcac/vJDQkJMfn6+Y5klS5aY6OhoU1pa6vWy18eRI0fM+eefb9asWWOGDBniCDfBsh3mzZtnUlNTq5wXLNvAGGNmz55tLrroomrnl5eXm8TERPPwww87phUWFprw8HDzyiuvGGOM+eKLL4wks337dscy77//vrHZbOaHH37wXOE9aMaMGaZ9+/amvLw8aPaHUaNGmRtvvNFp2pgxY8x1111njAmefaG4uNiEhoaad955x2l6nz59zN133x0U2+HscOOudf773/9umjVr5vSbmD17tunUqVO9yxzUzVJnKisr04oVK3Ts2DGlpaXp008/1cmTJzV8+HDHMp07d1abNm20detWSdLWrVvVo0cPJSQkOJYZMWKEioqK9Pnnn3t9Hepj2rRpGjVqlNP6Sgqq7fDNN9+oZcuWateuna677jrl5ORICq5t8NZbb6lfv3767W9/q/j4ePXu3VvLli1zzM/OzlZ+fr7TtoiJidEFF1zgtC2aNm2qfv36OZYZPny4QkJCtG3bNu+tjJucOHFCL730km688UbZbLag2R8GDhyotWvX6uuvv5Yk7d69W5s3b9bIkSMlBc++cOrUKZWVlalRo0ZO0yMiIrR58+ag2Q5nctc6b926VYMHD1ZYWJhjmREjRmjv3r36+eef61XGoHtw5tn27NmjtLQ0HT9+XE2aNNEbb7yhrl27KiMjQ2FhYWratKnT8gkJCcrPz5ck5efnOx28KuZXzAsUK1as0M6dO53akCvk5+cHxXa44IILtHz5cnXq1El5eXlasGCBLr74YmVmZgbNNpCkb7/9VkuWLNGsWbN01113afv27br11lsVFhamCRMmONalqnU9c1vEx8c7zW/QoIGaN28eUNuiwurVq1VYWKiJEydKCp7fxJw5c1RUVKTOnTsrNDRUZWVleuCBB3TddddJUtDsC1FRUUpLS9PChQvVpUsXJSQk6JVXXtHWrVvVoUOHoNkOZ3LXOufn5yslJaXSe1TMa9asmctlDPpw06lTJ2VkZMhut+u1117ThAkTtHHjRl8Xy2tyc3M1Y8YMrVmzptKVSTCpuBqVpJ49e+qCCy5Q27Zt9a9//UsRERE+LJl3lZeXq1+/fnrwwQclSb1791ZmZqaWLl2qCRMm+Lh0vvGPf/xDI0eOVMuWLX1dFK/617/+pX/+8596+eWX1a1bN2VkZGjmzJlq2bJl0O0LL774om688Ua1atVKoaGh6tOnj8aNG6dPP/3U10VDNYK+WSosLEwdOnRQ3759lZ6ertTUVD3++ONKTEzUiRMnVFhY6LT8gQMHlJiYKElKTEysdIdExf8rlvF3n376qQ4ePKg+ffqoQYMGatCggTZu3Ki//vWvatCggRISEoJiO5ytadOm6tixo/bt2xc0+4IkJSUlqWvXrk7TunTp4miiq1iXqtb1zG1x8OBBp/mnTp3S4cOHA2pbSNJ3332nf//735oyZYpjWrDsD3feeafmzJmja665Rj169NANN9yg2267Tenp6ZKCa19o3769Nm7cqKNHjyo3N1f//e9/dfLkSbVr1y6otkMFd62zJ38nQR9uzlZeXq7S0lL17dtXDRs21Nq1ax3z9u7dq5ycHKWlpUmS0tLStGfPHqcvcM2aNYqOjq50gvBXl1xyifbs2aOMjAzHX79+/XTdddc5/h0M2+FsR48eVVZWlpKSkoJmX5CkQYMGae/evU7Tvv76a7Vt21aSlJKSosTERKdtUVRUpG3btjlti8LCQqer2nXr1qm8vFwXXHCBF9bCfZ577jnFx8dr1KhRjmnBsj8UFxcrJMT5FBEaGqry8nJJwbcvSFLjxo2VlJSkn3/+WR9++KF+/etfB+V2cNc6p6WladOmTTp58qRjmTVr1qhTp071apKSFNy3gs+ZM8ds3LjRZGdnm88++8zMmTPH2Gw289FHHxljTt/u2aZNG7Nu3TqzY8cOk5aWZtLS0hyvr7jd89JLLzUZGRnmgw8+MHFxcQF1u2dVzrxbypjg2A6333672bBhg8nOzjYff/yxGT58uImNjTUHDx40xgTHNjDm9HAADRo0MA888ID55ptvzD//+U8TGRlpXnrpJccyixYtMk2bNjVvvvmm+eyzz8yvf/3rKm8B7d27t9m2bZvZvHmzOf/88/36tteqlJWVmTZt2pjZs2dXmhcM+8OECRNMq1atHLeCr1q1ysTGxpo//vGPjmWCZV/44IMPzPvvv2++/fZb89FHH5nU1FRzwQUXmBMnThhjrLkdjhw5Ynbt2mV27dplJJlHH33U7Nq1y3z33XfGGPesc2FhoUlISDA33HCDyczMNCtWrDCRkZHcCl5fN954o2nbtq0JCwszcXFx5pJLLnEEG2OMKSkpMbfccotp1qyZiYyMNFdeeaXJy8tzeo/9+/ebkSNHmoiICBMbG2tuv/12c/LkSW+viludHW6CYTuMHTvWJCUlmbCwMNOqVSszduxYp7FdgmEbVHj77bdN9+7dTXh4uOncubN5+umnneaXl5ebe+65xyQkJJjw8HBzySWXmL179zot89NPP5lx48aZJk2amOjoaDNp0iRz5MgRb65GvX344YdGUqV1MyY49oeioiIzY8YM06ZNG9OoUSPTrl07c/fddzvdthss+8LKlStNu3btTFhYmElMTDTTpk0zhYWFjvlW3A7r1683kir9TZgwwRjjvnXevXu3ueiii0x4eLhp1aqVWbRokVvKbzPmjOEmAQAAAhx9bgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgDUytChQzVz5kxfF8Pj5s+fr169evm6GADqgXADICicOHHCq59njNGpU6e8+pkATiPcADiniRMnauPGjXr88cdls9lks9m0f/9+ZWZmauTIkWrSpIkSEhJ0ww03qKCgwPG6oUOH6g9/+INmzpypZs2aKSEhQcuWLdOxY8c0adIkRUVFqUOHDnr//fcdr9mwYYNsNpveffdd9ezZU40aNdKFF16ozMxMpzJt3rxZF198sSIiItS6dWvdeuutOnbsmGN+cnKyFi5cqPHjxys6Olq/+93vJEmzZ89Wx44dFRkZqXbt2umee+5xPJV4+fLlWrBggXbv3u1Yz+XLl2v//v2y2WzKyMhwvH9hYaFsNps2bNjgVO73339fffv2VXh4uDZv3qzy8nKlp6crJSVFERERSk1N1WuvveburwjAGQg3AM7p8ccfV1pamqZOnaq8vDzl5eUpKipKv/jFL9S7d2/t2LFDH3zwgQ4cOKCrr77a6bXPP/+8YmNj9d///ld/+MMfdPPNN+u3v/2tBg4cqJ07d+rSSy/VDTfcoOLiYqfX3XnnnXrkkUe0fft2xcXF6fLLL3eEkKysLF122WW66qqr9Nlnn2nlypXavHmzpk+f7vQef/nLX5Samqpdu3bpnnvukSRFRUVp+fLl+uKLL/T4449r2bJleuyxxyRJY8eO1e23365u3bo51nPs2LF12lZz5szRokWL9OWXX6pnz55KT0/XCy+8oKVLl+rzzz/Xbbfdpuuvv14bN26s0/sCqAO3PH4TgOWd/bT4hQsXmksvvdRpmdzcXKcnaQ8ZMsRcdNFFjvmnTp0yjRs3NjfccINjWl5enpFktm7daoz539OIV6xY4Vjmp59+MhEREWblypXGGGMmT55sfve73zl99n/+8x8TEhJiSkpKjDHGtG3b1owePfqc6/Xwww+bvn37Ov4/b948k5qa6rRMdna2kWR27drlmPbzzz8bSWb9+vVO5V69erVjmePHj5vIyEizZcsWp/ebPHmyGTdu3DnLBsA1DXwZrAAErt27d2v9+vVq0qRJpXlZWVnq2LGjJKlnz56O6aGhoWrRooV69OjhmJaQkCBJOnjwoNN7pKWlOf7dvHlzderUSV9++aXjsz/77DP985//dCxjjFF5ebmys7PVpUsXSVK/fv0qlW3lypX661//qqysLB09elSnTp1SdHR0nde/Omd+5r59+1RcXKxf/vKXTsucOHFCvXv3dttnAnBGuAHgkqNHj+ryyy/XQw89VGleUlKS498NGzZ0mmez2Zym2Ww2SVJ5eXmdPvv3v/+9br311krz2rRp4/h348aNneZt3bpV1113nRYsWKARI0YoJiZGK1as0COPPFLj54WEnG7BN8Y4plU0kZ3tzM88evSoJOndd99Vq1atnJYLDw+v8TMBuI5wA6BWwsLCVFZW5vh/nz599Prrrys5OVkNGrj/UPLJJ584gsrPP/+sr7/+2lEj06dPH33xxRfq0KFDnd5zy5Ytatu2re6++27HtO+++85pmbPXU5Li4uIkSXl5eY4alzM7F1ena9euCg8PV05OjoYMGVKnsgJwHR2KAdRKcnKytm3bpv3796ugoEDTpk3T4cOHNW7cOG3fvl1ZWVn68MMPNWnSpErhwBX33Xef1q5dq8zMTE2cOFGxsbEaPXq0pNN3PG3ZskXTp09XRkaGvvnmG7355puVOhSf7fzzz1dOTo5WrFihrKws/fWvf9Ubb7xRaT2zs7OVkZGhgoIClZaWKiIiQhdeeKGjo/DGjRv1pz/96ZzrEBUVpTvuuEO33Xabnn/+eWVlZWnnzp164okn9Pzzz7u8bQDUjHADoFbuuOMOhYaGqmvXroqLi9OJEyf08ccfq6ysTJdeeql69OihmTNnqmnTpo5mnPpYtGiRZsyYob59+yo/P19vv/22wsLCJJ3ux7Nx40Z9/fXXuvjii9W7d2/de++9atmyZY3vecUVV+i2227T9OnT1atXL23ZssVxF1WFq666SpdddpmGDRumuLg4vfLKK5KkZ599VqdOnVLfvn01c+ZM3X///bVaj4ULF+qee+5Renq6unTpossuu0zvvvuuUlJSXNgqAGrDZs5sRAYAH9uwYYOGDRumn3/+WU2bNvV1cQAEIGpuAACApRBuAACApdAsBQAALIWaGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCn/Hwm4xhZQNiCSAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# visualize with IDAES surrogate plotting tools\n", + "surrogate_scatter2D(poly_surr, data_validation, filename=\"pysmo_poly_val_scatter2D.pdf\")\n", + "surrogate_parity(poly_surr, data_validation, filename=\"pysmo_poly_val_parity.pdf\")\n", + "surrogate_residual(poly_surr, data_validation, filename=\"pysmo_poly_val_residual.pdf\")" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB+0lEQVR4nO3de3gU9d3//9cmkJBAEg45ckwIJ5EQkIMGlICggXqrEb2LclUOAp6gHqhWYqsCWoLWA61VsFilalEqglqlKuX4RZCCGAVUfhLBREmAaNlIEgIm8/uDO1sCOexudndmJ8/Hde11wezs7ntnJjOv/cxnPuMwDMMQAACATYSYXQAAAIAvEW4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AmGLu3LlyOBxuzetwODR37ly/1jNy5EiNHDnSsu8HwH2EG6CZW7ZsmRwOh+vRokULderUSVOmTNF3331ndnmWk5ycXGt5xcfH65JLLtHq1at98v7l5eWaO3euNm7c6JP3A5ojwg0ASdL8+fP18ssva8mSJRo3bpxeeeUVZWZm6sSJE375vN/+9reqqKjwy3v724ABA/Tyyy/r5Zdf1j333KNDhw5p/PjxWrJkSZPfu7y8XPPmzSPcAE3QwuwCAFjDuHHjNHjwYEnS9OnTFRsbq0cffVRvv/22fv7zn/v881q0aKEWLYJzF9SpUyf94he/cP1/0qRJ6tGjh5566indeuutJlYGQKLlBkA9LrnkEklSfn5+relffvmlrrvuOrVv316tWrXS4MGD9fbbb9ea59SpU5o3b5569uypVq1aqUOHDrr44ou1du1a1zx19bmprKzU3Xffrbi4OEVFRemqq67St99+e05tU6ZMUXJy8jnT63rPF198UZdeeqni4+MVHh6uvn37avHixR4ti8YkJibqvPPO04EDBxqc78iRI5o2bZoSEhLUqlUrpaen669//avr+YMHDyouLk6SNG/ePNepL3/3NwLsJjh/NgHwu4MHD0qS2rVr55q2d+9eDR8+XJ06ddKcOXPUunVr/f3vf1d2drbeeOMNXXPNNZJOh4zc3FxNnz5dQ4cOVWlpqXbu3Kldu3bpsssuq/czp0+frldeeUUTJ07UsGHDtH79el1xxRVN+h6LFy/W+eefr6uuukotWrTQP/7xD91+++2qrq7WzJkzm/TeNU6dOqXCwkJ16NCh3nkqKio0cuRI7d+/X7NmzVJKSopef/11TZkyRceOHdOdd96puLg4LV68WLfddpuuueYajR8/XpLUv39/n9QJNBsGgGbtxRdfNCQZ//rXv4yjR48ahYWFxsqVK424uDgjPDzcKCwsdM07evRoIy0tzThx4oRrWnV1tTFs2DCjZ8+ermnp6enGFVdc0eDnPvTQQ8aZu6C8vDxDknH77bfXmm/ixImGJOOhhx5yTZs8ebLRrVu3Rt/TMAyjvLz8nPmysrKM7t2715qWmZlpZGZmNlizYRhGt27djMsvv9w4evSocfToUePTTz81rr/+ekOS8ctf/rLe91u0aJEhyXjllVdc006ePGlkZGQYbdq0MUpLSw3DMIyjR4+e830BeIbTUgAkSWPGjFFcXJy6dOmi6667Tq1bt9bbb7+tzp07S5J++OEHrV+/Xj//+c/1448/qqSkRCUlJfr++++VlZWlr776ynV1Vdu2bbV371599dVXbn/+mjVrJEl33HFHrel33XVXk75XRESE699Op1MlJSXKzMzU119/LafT6dV7fvDBB4qLi1NcXJzS09P1+uuv68Ybb9Sjjz5a72vWrFmjxMRE3XDDDa5pLVu21B133KHjx49r06ZNXtUC4FyclgIgSXrmmWfUq1cvOZ1OvfDCC9q8ebPCw8Ndz+/fv1+GYeiBBx7QAw88UOd7HDlyRJ06ddL8+fN19dVXq1evXurXr5/Gjh2rG2+8scHTK998841CQkKUmppaa3rv3r2b9L0+/PBDPfTQQ9q2bZvKy8trPed0OhUTE+Pxe1544YV65JFH5HA4FBkZqfPOO09t27Zt8DXffPONevbsqZCQ2r8pzzvvPNfzAHyDcANAkjR06FDX1VLZ2dm6+OKLNXHiRO3bt09t2rRRdXW1JOmee+5RVlZWne/Ro0cPSdKIESOUn5+vt956Sx988IGef/55PfXUU1qyZImmT5/e5FrrG/yvqqqq1v/z8/M1evRo9enTR08++aS6dOmisLAwrVmzRk899ZTrO3kqNjZWY8aM8eq1APyPcAPgHKGhocrNzdWoUaP0pz/9SXPmzFH37t0lnT6V4s6BvX379po6daqmTp2q48ePa8SIEZo7d2694aZbt26qrq5Wfn5+rdaaffv2nTNvu3btdOzYsXOmn9368Y9//EOVlZV6++231bVrV9f0DRs2NFq/r3Xr1k2fffaZqqura7XefPnll67npfqDGwD30ecGQJ1GjhypoUOHatGiRTpx4oTi4+M1cuRIPffccyoqKjpn/qNHj7r+/f3339d6rk2bNurRo4cqKyvr/bxx48ZJkv74xz/Wmr5o0aJz5k1NTZXT6dRnn33mmlZUVHTOKMGhoaGSJMMwXNOcTqdefPHFeuvwl5/97GcqLi7WihUrXNN++uknPf3002rTpo0yMzMlSZGRkZJUZ3gD4B5abgDU695779X//u//atmyZbr11lv1zDPP6OKLL1ZaWppmzJih7t276/Dhw9q2bZu+/fZbffrpp5Kkvn37auTIkRo0aJDat2+vnTt3auXKlZo1a1a9nzVgwADdcMMNevbZZ+V0OjVs2DCtW7dO+/fvP2fe66+/Xvfdd5+uueYa3XHHHSovL9fixYvVq1cv7dq1yzXf5ZdfrrCwMF155ZW65ZZbdPz4cS1dulTx8fF1BjR/uvnmm/Xcc89pypQp+vjjj5WcnKyVK1fqww8/1KJFixQVFSXpdAfovn37asWKFerVq5fat2+vfv36qV+/fgGtFwhqZl+uBcBcNZeC79ix45znqqqqjNTUVCM1NdX46aefDMMwjPz8fGPSpElGYmKi0bJlS6NTp07G//zP/xgrV650ve6RRx4xhg4darRt29aIiIgw+vTpY/zud78zTp486Zqnrsu2KyoqjDvuuMPo0KGD0bp1a+PKK680CgsL67w0+oMPPjD69etnhIWFGb179zZeeeWVOt/z7bffNvr372+0atXKSE5ONh599FHjhRdeMCQZBw4ccM3nyaXgjV3mXt/7HT582Jg6daoRGxtrhIWFGWlpacaLL754zmu3bt1qDBo0yAgLC+OycMALDsM4o70WAAAgyNHnBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2EqzG8Svurpahw4dUlRUFMOcAwAQJAzD0I8//qiOHTuecwPaszW7cHPo0CF16dLF7DIAAIAXCgsL1blz5wbnaXbhpmaI88LCQkVHR5tcDQAAcEdpaam6dOniOo43pNmFm5pTUdHR0YQbAACCjDtdSuhQDAAAbIVwAwAAbIVwAwAAbKXZ9blxV1VVlU6dOmV2GXBTy5YtFRoaanYZAAALINycxTAMFRcX69ixY2aXAg+1bdtWiYmJjF8EAM0c4eYsNcEmPj5ekZGRHCiDgGEYKi8v15EjRyRJSUlJJlcEADAT4eYMVVVVrmDToUMHs8uBByIiIiRJR44cUXx8PKeoAKAZo0PxGWr62ERGRppcCbxRs97oKwUAzRvhpg6cigpOrDcAgES4AQAANkO4QdDYuHGjHA4HV7IBABpkarjJzc3VkCFDFBUVpfj4eGVnZ2vfvn0NvmbZsmVyOBy1Hq1atQpQxfY2d+5cDRgwwOwyAMASipwV2ppfoiJnhdmlwEOmXi21adMmzZw5U0OGDNFPP/2k+++/X5dffrk+//xztW7dut7XRUdH1wpB9LUIrFOnTqlly5ZmlwEAfrNiR4FyVu1WtSGFOKTc8WmaMKSr2WXBTaa23Lz33nuaMmWKzj//fKWnp2vZsmUqKCjQxx9/3ODrHA6HEhMTXY+EhIQAVWxt1dXVys3NVUpKiiIiIpSenq6VK1dK+u8pnXXr1mnw4MGKjIzUsGHDXCFx2bJlmjdvnj799FNXi9iyZcsknV7eixcv1lVXXaXWrVvrd7/7XYN11HzW+++/r4EDByoiIkKXXnqpjhw5on/+858677zzFB0drYkTJ6q8vNz1usrKSt1xxx2Kj49Xq1atdPHFF2vHjh3+WVgAUI8iZ4Ur2EhStSHdv2oPLThBxFJ9bpxOpySpffv2Dc53/PhxdevWTV26dNHVV1+tvXv31jtvZWWlSktLaz0CJdBNmrm5uXrppZe0ZMkS7d27V3fffbd+8YtfaNOmTa55fvOb3+iJJ57Qzp071aJFC910002SpAkTJuhXv/qVzj//fBUVFamoqEgTJkxwvW7u3Lm65pprtHv3btdrGjN37lz96U9/0tatW1VYWKif//znWrRokZYvX653331XH3zwgZ5++mnX/L/+9a/1xhtv6K9//at27dqlHj16KCsrSz/88IOPlhAANO5ASZkr2NSoMgwdLCmv+wWwHMsM4lddXa277rpLw4cPV79+/eqdr3fv3nrhhRfUv39/OZ1OPf744xo2bJj27t2rzp07nzN/bm6u5s2b58/S6xToJs3KykotWLBA//rXv5SRkSFJ6t69u7Zs2aLnnntON998syTpd7/7nTIzMyVJc+bM0RVXXKETJ04oIiJCbdq0UYsWLZSYmHjO+0+cOFFTp071qKZHHnlEw4cPlyRNmzZNOTk5ys/PV/fu3SVJ1113nTZs2KD77rtPZWVlWrx4sZYtW6Zx48ZJkpYuXaq1a9fqL3/5i+69917vFgwAeCgltrVCHKoVcEIdDiXHMgZasLBMy83MmTO1Z88evfbaaw3Ol5GRoUmTJmnAgAHKzMzUqlWrFBcXp+eee67O+XNycuR0Ol2PwsJCf5RfixlNmvv371d5ebkuu+wytWnTxvV46aWXlJ+f75qvf//+rn/X3Kag5rYFDRk8eLDHNZ35WQkJCYqMjHQFm5ppNZ+dn5+vU6dOucKQdPpmmEOHDtUXX3zh8WcDgLeSYiKUOz5Nof/XnzPU4dCC8f2UFBNhcmVwlyVabmbNmqV33nlHmzdvrrP1pSEtW7bUwIEDtX///jqfDw8PV3h4uC/KdFtDTZr++uM4fvy4JOndd99Vp06daj0XHh7uCjhndgSu6YhdXV3d6Ps31MG7Pmd/1tmdkB0Oh1ufDQCBNmFIV43oFaeDJeVKjo0k2AQZU1tuDMPQrFmztHr1aq1fv14pKSkev0dVVZV2795tqZsl1jRpnsnfTZp9+/ZVeHi4CgoK1KNHj1qPLl26uPUeYWFhqqqq8luNDUlNTVVYWJg+/PBD17RTp05px44d6tu3ryk1AWjekmIilJHagWAThExtuZk5c6aWL1+ut956S1FRUSouLpYkxcTEuG6EOGnSJHXq1Em5ubmSpPnz5+uiiy5Sjx49dOzYMf3+97/XN998o+nTp5v2Pc5W06R5/6o9qjKMgDRpRkVF6Z577tHdd9+t6upqXXzxxXI6nfrwww8VHR2tbt26NfoeycnJOnDggPLy8tS5c2dFRUUFrNWrdevWuu2223Tvvfeqffv26tq1qx577DGVl5dr2rRpAakBAGAPpoabxYsXS5JGjhxZa/qLL76oKVOmSJIKCgoUEvLfBqb//Oc/mjFjhoqLi9WuXTsNGjRIW7dutdyvezOaNB9++GHFxcUpNzdXX3/9tdq2basLLrhA999/v1unf6699lqtWrVKo0aN0rFjx2qth0BYuHChqqurdeONN+rHH3/U4MGD9f7776tdu3YBqwEAEPwchmEYjc9mH6WlpYqJiZHT6VR0dHSt506cOKEDBw4oJSWFUY+DEOsPAOyroeP32SxztRQAAIAvEG7gsVtvvbXW5eZnPm699VazywMANHOWuBQcwWX+/Pm655576nyusaZCAAD8jXADj8XHxys+Pt7sMgAAqBOnpQAAgK0QburAqLnBifUGAJA4LVVLWFiYQkJCdOjQIcXFxSksLMx1iwJYl2EYOnnypI4ePaqQkBCFhYWZXRIAwESEmzOEhIQoJSVFRUVFOnTokNnlwEORkZHq2rVrrUEfAQDND+HmLGFhYeratat++ukn0+6zBM+FhoaqRYsWtLQBAAg3dam5g/XZd7EGAADWR/s9AACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFVPDTW5uroYMGaKoqCjFx8crOztb+/bta/R1r7/+uvr06aNWrVopLS1Na9asCUC1AAAgGJgabjZt2qSZM2fqo48+0tq1a3Xq1CldfvnlKisrq/c1W7du1Q033KBp06bpk08+UXZ2trKzs7Vnz54AVg4AAKzKYRiGYXYRNY4ePar4+Hht2rRJI0aMqHOeCRMmqKysTO+8845r2kUXXaQBAwZoyZIljX5GaWmpYmJi5HQ6FR0d7bPaAQCA/3hy/LZUnxun0ylJat++fb3zbNu2TWPGjKk1LSsrS9u2batz/srKSpWWltZ6AAAA+7JMuKmurtZdd92l4cOHq1+/fvXOV1xcrISEhFrTEhISVFxcXOf8ubm5iomJcT26dOni07oBAIC1WCbczJw5U3v27NFrr73m0/fNycmR0+l0PQoLC336/gAAwFpamF2AJM2aNUvvvPOONm/erM6dOzc4b2Jiog4fPlxr2uHDh5WYmFjn/OHh4QoPD/dZrQAAwNpMbbkxDEOzZs3S6tWrtX79eqWkpDT6moyMDK1bt67WtLVr1yojI8NfZQIAgCBiasvNzJkztXz5cr311luKiopy9ZuJiYlRRESEJGnSpEnq1KmTcnNzJUl33nmnMjMz9cQTT+iKK67Qa6+9pp07d+rPf/6zad8DAABYh6ktN4sXL5bT6dTIkSOVlJTkeqxYscI1T0FBgYqKilz/HzZsmJYvX64///nPSk9P18qVK/Xmm2822AkZAAA0H5Ya5yYQGOcGAIDgE7Tj3AAAADQV4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4cYmipwV2ppfoiJnhdmlAABgqhZmF4CmW7GjQDmrdqvakEIcUu74NE0Y0tXssgAAMAUtN0GuyFnhCjaSVG1I96/aQwsOAKDZItwEuQMlZa5gU6PKMHSwpNycggAAMBnhJsilxLZWiKP2tFCHQ8mxkeYUBACAyQg3QS4pJkK549MU6jidcEIdDi0Y309JMREmVwYAgDnoUGwDE4Z01YhecTpYUq7k2EiCDQCgWSPc2ERSTAShBgAAcVoKAADYDOEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEG+D9FzgptzS/hjuoAEOQYoRiQtGJHgXJW7Va1IYU4pNzxaZowpKvZZQEAvEDLDZq9ImeFK9hIUrUh3b9qDy04ABCkCDdo9g6UlLmCTY0qw9DBknJzCgIANAnhBs1eSmxrhThqTwt1OJQcG2lOQQCAJjE13GzevFlXXnmlOnbsKIfDoTfffLPB+Tdu3CiHw3HOo7i4ODAFw5aSYiKUOz5NoY7TCSfU4dCC8f24yzoABClTOxSXlZUpPT1dN910k8aPH+/26/bt26fo6GjX/+Pj4/1RHpqRCUO6akSvOB0sKVdybCTBBgCCmKnhZty4cRo3bpzHr4uPj1fbtm19XxCataSYCEINANhAUPa5GTBggJKSknTZZZfpww8/NLucgGEcFgAAGhdU49wkJSVpyZIlGjx4sCorK/X8889r5MiR2r59uy644II6X1NZWanKykrX/0tLSwNVrk8xDgsAAO4JqnDTu3dv9e7d2/X/YcOGKT8/X0899ZRefvnlOl+Tm5urefPmBapEv6hvHJYRveI4jQIAwFmC8rTUmYYOHar9+/fX+3xOTo6cTqfrUVhYGMDqfINxWAAAcF9QtdzUJS8vT0lJSfU+Hx4ervDw8ABW5Hs147CcGXAYhwUAgLqZGm6OHz9eq9XlwIEDysvLU/v27dW1a1fl5OTou+++00svvSRJWrRokVJSUnT++efrxIkTev7557V+/Xp98MEHZn2FgKgZh+X+VXtUZRiMwwIAQAPcDjeedMQ9cwyahuzcuVOjRo1y/X/27NmSpMmTJ2vZsmUqKipSQUGB6/mTJ0/qV7/6lb777jtFRkaqf//++te//lXrPeyKcVgAAHCPwzAMo/HZpJCQEDkcjgbnMQxDDodDVVVVPinOH0pLSxUTEyOn0+l2CAP8pchZoQMlZUqJbU1gBYAGeHL8drvlZsOGDU0uDMB/cXk/APiH2+EmMzPTn3UAzQqX9wOA/3jdofjYsWP6y1/+oi+++EKSdP755+umm25STEyMz4oD7Kqhy/sJNwDQNF6Nc7Nz506lpqbqqaee0g8//KAffvhBTz75pFJTU7Vr1y5f1wjYTs3l/Wfi8n4A8A23OxSf6ZJLLlGPHj20dOlStWhxuvHnp59+0vTp0/X1119r8+bNPi/UV+hQDKtYsaPgnMv76XMDAHXz5PjtVbiJiIjQJ598oj59+tSa/vnnn2vw4MEqL7fuyLmEG1hJkbOCy/sBwA2eHL+9Oi0VHR1da/yZGoWFhYqKivLmLYFmKSkmQhmpHQg2AOBDXoWbCRMmaNq0aVqxYoUKCwtVWFio1157TdOnT9cNN9zg6xoBAADc5tXVUo8//rgcDocmTZqkn376SZLUsmVL3XbbbVq4cKFPCwQAAPCEV31uapSXlys/P1+SlJqaqshI61/pQZ8bAACCj19GKK5LZGSk0tLSmvIWAAAAPuVVuDlx4oSefvppbdiwQUeOHFF1dXWt5xnrBgAAmMWrcDNt2jR98MEHuu666zR06NBGb6gJAAAQKF6Fm3feeUdr1qzR8OHDfV0PAABAk3h1KXinTp0YzwYAAFiSV+HmiSee0H333advvvnG1/UAAAA0iVenpQYPHqwTJ06oe/fuioyMVMuWLWs9/8MPP/ikOAAAAE95FW5uuOEGfffdd1qwYIESEhLoUAwAACzDq3CzdetWbdu2Tenp6b6uBwAAoEm86nPTp08fVVRU+LoWAACAJvMq3CxcuFC/+tWvtHHjRn3//fcqLS2t9QAAADCLV/eWCgk5nYnO7mtjGIYcDoeqqqp8U50fcG8pAACCj9/vLbVhwwavCgMAAPA3r8JNZmamW/Pdfvvtmj9/vmJjY735GAAAAI951efGXa+88gp9cAAAQED5Ndx40Z0HAACgSfwabgAAAAKNcAMAAGyFcAMAAGyFcAMAAGzF43Dz008/af78+fr2228bnfcXv/gFA+UBAICA8mqE4qioKO3evVvJycl+KMm/GKEYAIDg48nx26vTUpdeeqk2bdrkVXEAAAD+5NUIxePGjdOcOXO0e/duDRo0SK1bt671/FVXXeWT4gAAADzVpBtn1vmG3DgTAAD4mN9vnFldXe1VYQAAAP7mVZ+bl156SZWVledMP3nypF566aUmFwUAAOAtr05LhYaGqqioSPHx8bWmf//994qPj+e0FAAA8Cm/Xy1lGIYcDsc507/99lvFxMR485YAAMAGipwV2ppfoiJnhWk1eNTnZuDAgXI4HHI4HBo9erRatPjvy6uqqnTgwAGNHTvW50UCAADrW7GjQDmrdqvakEIcUu74NE0Y0jXgdXgUbrKzsyVJeXl5ysrKUps2bVzPhYWFKTk5Wddee61PCwQAANZX5KxwBRtJqjak+1ft0YhecUqKiQhoLR6Fm4ceekiSlJycrAkTJqhVq1Z+KSpYFTkrdKCkTCmxrQO+IgEAMNOBkjJXsKlRZRg6WFJu7XBTY/LkyZJOXx115MiRcy4N79o18E1QZrNKUxwAAGZIiW2tEIdqBZxQh0PJsZEBr8WrDsVfffWVLrnkEkVERKhbt25KSUlRSkqKkpOTlZKS4usaLa++pjgzO1MBABBISTERyh2fptD/u+Ao1OHQgvH9TDmT4VXLzZQpU9SiRQu98847SkpKqvPKqebESk1xAACYZcKQrhrRK04HS8qVHBtp2jHQq3CTl5enjz/+WH369PF1PUHJSk1xAACYKSkmwvQf9l6dlurbt69KSkp8XUvQslJTHAAAzZ1XIxSvX79ev/3tb7VgwQKlpaWpZcuWtZ638si//hyhuMhZYXpT3Nm4ggsAYAeeHL+bfFfwM/vb1IxczO0XrIEruAAAduH3u4Jv2LDBq8IQOFYaTAkAgEDyqs9NZmamQkJCtHTpUs2ZM0c9evRQZmamCgoKFBoa6usag5aZ99do6AouAADszKtw88YbbygrK0sRERH65JNPVFlZKUlyOp1asGCBTwsMVit2FGj4wvWauHS7hi9crxU7CgL6+TVXcJ2JK7gAAM2BV+HmkUce0ZIlS7R06dJanYmHDx+uXbt2+ay4YGWFQf24ggsA0Fx51edm3759GjFixDnTY2JidOzYsabWFPSsMqifVQZTAgAgkLwKN4mJidq/f7+Sk5NrTd+yZYu6d+/ui7qCmpUG9bPCYEoAAASSV6elZsyYoTvvvFPbt2+Xw+HQoUOH9Le//U333HOPbrvtNl/XGHQ4JQQAgHm8Cjdz5szRxIkTNXr0aB0/flwjRozQ9OnTdcstt+iXv/yl2++zefNmXXnllerYsaMcDofefPPNRl+zceNGXXDBBQoPD1ePHj20bNkyb76C300Y0lVb5ozSqzMu0pY5oxhfBgCAAPEq3DgcDv3mN7/RDz/8oD179uijjz7S0aNH9fDDD3v0PmVlZUpPT9czzzzj1vwHDhzQFVdcoVGjRikvL0933XWXpk+frvfff9+br+F3STERykjtQIsNAAAB5NUIxf7gcDi0evVqZWdn1zvPfffdp3fffVd79uxxTbv++ut17Ngxvffee259TnMaoRgAALvw5PjtVcuNWbZt26YxY8bUmpaVlaVt27aZVBEAALAar66WMktxcbESEhJqTUtISFBpaakqKioUEXHu6Z/KykrXIIPS6eQHAADsK6habryRm5urmJgY16NLly5mlwQAAPwoqMJNYmKiDh8+XGva4cOHFR0dXWerjSTl5OTI6XS6HoWFhYEoFQAAmCSoTktlZGRozZo1taatXbtWGRkZ9b4mPDxc4eHh/i4NAABYhKktN8ePH1deXp7y8vIknb7UOy8vTwUFp28ymZOTo0mTJrnmv/XWW/X111/r17/+tb788ks9++yz+vvf/667777bjPIBAIAFmRpudu7cqYEDB2rgwIGSpNmzZ2vgwIF68MEHJUlFRUWuoCNJKSkpevfdd7V27Vqlp6friSee0PPPP6+srCxT6gcAANZjmXFuAoVxbpqmyFmhAyVlSoltzeCEAICA8eT4HVR9bmCuFTsKlLNqt6oNKcQh5Y5P47YSAADLCaqrpWCeImeFK9hIp+94fv+qPSpyVphbGAAAZyHcwC0HSspcwaZGlWHoYEm5OQUBAFAPwg3ckhLbWiGO2tNCHQ4lx0aaUxAAAPUg3MAtSTERyh2fplDH6YQT6nBowfh+dCoGAFgOHYrhtglDumpErzgdLClXcmwkwQYAYEmEG3gkKSaCUAMAsDROSwEAAFsh3AAAAFsh3AAAAFsh3MBjRc4Kbc0vYQA/AIAl0aEYHuEWDAAAq6PlBm7jFgwAgGBAuIHbuAUDACAYEG7gNm7BAAAIBoQbuI1bMAAAggEdiuERbsEAALA6wg08xi0YAABWxmkpAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABMwo2I/YNLwQEAMAE3IvYfWm4AAAgwbkTsX4QbAAACjBsR+xfhBgCAAONGxP5FuAEAIMC4EbF/0aEYAAATcCNi/yHcAABgEm5E7B+clgLQrDHOCGA/tNwAaLYYZwSwJ1puADRLjDMC2BfhBkCzxDgjgH0RbgA0S4wzAtgX4QZAs8Q4I4B90aEYQLPFOCOAPRFuADRrjDMC2A+npQAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbuB3Rc4Kbc0v4YaEAICAYBA/+NWKHQWuOy+HOKTc8WmaMKSr2WUBAGyMlhv4TZGzwhVsJKnakO5ftYcWHACAXxFu4DcHSspcwaZGlWHoYEm5OQUBAJoFwg38JiW2tUIctaeFOhxKjo00pyAgAOhjBpiPcAO/SYqJUO74NIU6TiecUIdDC8b34yaFsK0VOwo0fOF6TVy6XcMXrteKHQVmlwQ0Sw7DMIzGZ7OP0tJSxcTEyOl0Kjo62uxymoUiZ4UOlpQrOTaSYAPbKnJWaPjC9bVOxYY6HNoyZxTbPeADnhy/uVoKfpcUE8HOHbbXUB8ztn8EqyJnhQ6UlCkltnVQbceEGwDwgZo+Zme33NDHDMHK3aE8rBiA6HMDAD5AHzPfoVO2+dwdysOq/cwsEW6eeeYZJScnq1WrVrrwwgv173//u955ly1bJofDUevRqlWrAFYLAHWbMKSrtswZpVdnXKQtc0YxYKUXrHqwtKv6gqQ7Q3lYeSwz009LrVixQrNnz9aSJUt04YUXatGiRcrKytK+ffsUHx9f52uio6O1b98+1/8dDked8wFAoNHHzHv1HSxH9IpjmfpBQ6ed3DnNauV+Zqa33Dz55JOaMWOGpk6dqr59+2rJkiWKjIzUCy+8UO9rHA6HEhMTXY+EhIQAVgwA8AerDvxZX+tGMJ8+a6zVxZ3TrFYey8zUlpuTJ0/q448/Vk5OjmtaSEiIxowZo23bttX7uuPHj6tbt26qrq7WBRdcoAULFuj8888PRMkAAD+xYqfs+lo3gv2+ee60ukwY0lUjesXVO5RHTQC6f9UeVRmGpfqZmRpuSkpKVFVVdU7LS0JCgr788ss6X9O7d2+98MIL6t+/v5xOpx5//HENGzZMe/fuVefOnc+Zv7KyUpWVla7/l5aW+vZLAAB8wmoHy/paN/okRgX96TN3g2Rjp1kbC0BmMb3PjacyMjKUkZHh+v+wYcN03nnn6bnnntPDDz98zvy5ubmaN29eIEsEAHjJSgfL+lo3dhz8j2X7mrjLl0HSiv3MTA03sbGxCg0N1eHDh2tNP3z4sBITE916j5YtW2rgwIHav39/nc/n5ORo9uzZrv+XlpaqS5cu3hcNAPArqxws62vdGJLcznKnz7xhpSDpa6Z2KA4LC9OgQYO0bt0617Tq6mqtW7euVutMQ6qqqrR7924lJSXV+Xx4eLiio6NrPQAA1mDlTrn1dapN79LONmMaJcVEKCO1Q1DW3hDTT0vNnj1bkydP1uDBgzV06FAtWrRIZWVlmjp1qiRp0qRJ6tSpk3JzcyVJ8+fP10UXXaQePXro2LFj+v3vf69vvvlG06dPN/NrAAA8FAydcutr3bBzq4cdmB5uJkyYoKNHj+rBBx9UcXGxBgwYoPfee8/VybigoEAhIf9tYPrPf/6jGTNmqLi4WO3atdOgQYO0detW9e3b16yvgACz4lDfADwTTGPa1HeazCqnz3Au7gqOoBIMv/QANG5rfokmLt1+zvRXZ1ykjNQOJlQEq/Pk+G36IH6Au6w81DcAz1h5ADhPWbnfUHNFuEHQsOropQA8Z5cbjXIvLGsyvc8N4C4rjl4KwHvB3ik3mPoNNTe03CBo2OWXHoD/CuZLkWlNti5abhBUgv2XHgD7oDXZumi5QdAJ5l96AOyD1mTrouUGANAgu40t5cvvQ2uyNRFuAAD1stvYUv74PgzmZz2clgJga4xB4r1Ajy3l73XFWFnNBy03AGzLbq0OgdbQ1UC+bqkIxLry5/ex26m7YEfLDQBbasqvdFp7TgvUKMKBalHx1/dhID/rIdwAsCVvxyDhQPVfgboaKFDjxfjj+3Cqy5o4LQXAluoag0SSPvvuWL03ZmTE2XOdeTVQZFiIyk5WqchZ4dPlEcjxYnx9dVMgT91x6st9tNwAsKWkmAjdN7bPOdMfXfOlPi38T52vYcTZuiXFRKjghzJd8+xWv7RoBXq8GF+OlRWoU3e0KHqGcAPAttI6x5wzrVpS9rNb6zw42OFO1f7oLxSIUy8ThnTVljmj9OqMi7Rlzqig6fjtTTDzdB1x6stznJYCYFv1nZoy6jndVHOgun/VHlUZRtCNOOuvK44CderF3fFirHZ6xpNTXd6so0Ce+rILwg1gI1bb6ZutJqzkvLFb1Wc9V9/BIVhHnPVnfyEr3UPJqpf3uxPMvF1HVlr+wYLTUrAtO1zO68l3COQ5+WBathOGdNXqmcPk8OB0UzDev8yf/YU2/39HZZzx3g6HTGnRCvbTM96uI+5h5TlabkzAr2v/a8qvO6usH0++QyCv8rHqL+eGpHdpp4VBfLrJHf76dV+zbZ15THYY0ohecU16X28E++mZpqwjd1oUrbLvsgLCTYAF44Eh2DTlQG+V9ePpdwjUTt/duqy4kw3W003u8ld/obq2rWrJlEBRVzgIcUglx0/4/PJ0f2jqOmro1JdV9l1WQbgJIMbQCAxvD/RWWj+efgdf/Gp3J5C4U5eVd7J2v8GhPwKclfp7nB0OHI7TncN/+Wqe5ba1+vhjHVlp32UV9LkJIMbQCAxvL+e10vrx9Ds09Zy8u/11GqvLrD4RwdQH6Ez+qNvX/YWs1t+j5pLxZyYOlAy5TpdVG1LOG7vrHcPISny9jqy077IKWm4CyEq/gOzM26ZfK60fb76Dt78IPfnV11hd3rSaNfUUlpVbihoSTHVb7ZReUkyE2rUu01mbmmsMo4UWXpb+YKV9l1UQbgIo2MfQCCbe7Iyttn68/Q6e1ttYIDk7fDRUl6c72aYe4IO1Od6MupsaIq12Ss/TMYzszGr7Lisg3ASYL34BWbGzphV5szO24i9Uf9fQUCCpL3zUV5cnO1lfHOCD9eqZQNcdTK1E7vJmDCM7s9q+y2yEGxM05YBlx51UQ8wIclb7hepv9QUSSV6FD3d3sp4e4OvaFoK1OT6QdQdr65Y7Jgzpqj6JUcp+dmutcXiCYRvwh+a272oI4SaI2HknVZfmFuTMVFcg2Zpf4nXrgjs7WU8O8A21IAVjc3wg6/ZnK5EVWpGbwxhGZ7PCcrc6wk0QCdYmeG80tyBnpjN3lBmpHVzT/d264O4BvrFtIVib492tu6kHMn+tRyv9+AjWbcAbVlruVka4CSLB2gTvjeYU5MzU0I4yEK0L7hyU3NkWgrU5vrG6fXEg88d6tOJgjmcvSzu2bvCjz32EmyASrE3w3mhOQc4s7uwoA/GLuLEDfHPdFnx5IPP1evR0MEeHQ5ozro9uGZHapM91l11bN/jR5z7CTZBpLs2vzSnImcXdHaXZrSLNdVvw9YHMl+uxscB5djAzDCl3zZeSId2S6d+AY+fWjeYa9L1BuAlCZh9sAuXsICdJW/NLbNXMbKZg2lE2l1B/JiuvH28Gc5SkR//5pa4a0NGv68/OrRvNNeh7g3ADS6sJcnZtZjZTsO0ogyHU+7Kfh9XXT2ODOdbc9+lMgbjhpq9DodX67jTHoO8Nh2GcvfnZW2lpqWJiYuR0OhUdHW12OXBDkbNCwxeuP2dntWXOKP6wfaDIWcGO0gf8FcDrWj9WO+DW5bnN+adPRZ0hUH+3K3YUnBMKvVkXdvhRFQzbirs8OX7TcgPLs3MzsxUEQ4uI1fmzn8fZ6ydYDri3jEiVjNOnoqoV2Btu+mok+GDvuxMs24o/EG5geVbuewBIgQvgwXbAvSUzVVcN6GhKy2BTQ3uw/6gKtm3F10LMLgBoTE3fg1CHQ1JgfwHaTZGzQlvzS1TkrDC7FFupCeBn8kcAb+iAa1VJMRHKSO0QdH+vgVqn/hKM24ov0XKDoEAnuqZrzk3U/haozr+0YgaO1Tt0N6a5byt0KEaj7NQhzar8vYzplB0Ygeic7avOsr5k531EMHe4t+K20hR0KIbP8Gvf/wKxjIO9/0CwCETnbKu1Ytp9HxHMHe6ttq0EEn1uUK/6OqTRX8N3ArWMfdl/gH475rNKPxb2EdZnlW0l0Ag3qFdz75AWCIFaxr7qlL1iR4GGL1yviUu3a/jC9Vqxo8CndSK4sI+AVXFaCvVq7h3SAiGQy7ipTdTN/dJSnKup26+d++rAXLTcoF5cgu1/gV7GTWmi5lc6ztaU7ZdWQPgTV0uhUcF8tUCwCIZlzBVXqI+n2y/bErzB1VLwqWC+WiBYBMMyDvZxP+A/nm6/XL0HfyPcmIRzzQhGVr60lL+p4EF/PvcEepu2098Q4cYEdh8XAr5npZ2OFVuZ+JsKLrQCNi7Q27Td/obocxNgnGuGp+y20/E1X/1NWSlANhfB0NfMDIE+TgTLcYk+NxbGuebgZNaBj8uvG+eLvykCpDms2ApoBYE+TtjxuES4CbBgOdfMr9j/MvPAZ8edjq/5YqwVAqS1NPf9T6CPE8FyXPIE49wEWDCMHdPU8SfsNDy/2cPL+/K2Cf5m1npv6t8U4/dYC+PfmDP+ldWPS56i5cYEVr/ipCm/Yu3WvG92y0mwdLw0e7035W/Kjr9agxWtaP/lq+OEu61gVj4ueYNwYxKrnmtuysHcjjsmKwwvb/WdjlXWu7d/U8ESIH3Fyqd8zP4xYTVNPU54+qPDqsclbxBuUEt9B/PIsBBtzS9pcIfoyY7J7B2su5/flAOfL1szrLzTscMByeoB0ht1beNmt7A1hlY07529vq3yo8MshBvUUtfBPHtgR13z7NZGd4ju7pgCuYP1xQ7emwNfc9qx2OWAZOUA6am6tvERveIsv002t1Y0X6lrfXdpHxn0PzqagnCDc5x5MI8MC3EFG6nuHeKZAaKxHVMgD/q+3MEzvHzDpl+couf/3wFVKzCdEc1u+bOy+v7GFl2fHhTbpB1b0fypvvW96vYMW/zo8JYlrpZ65plnlJycrFatWunCCy/Uv//97wbnf/3119WnTx+1atVKaWlpWrNmTYAqbT5q7h5ddrKqwStJzr6yQZK2zBmlV2dcpC1zRp3TIuKvK1POvlKnvj/4nQd/CMiVMcF0lVNT1Kz/P/+/A5JDuvmS7nWud398ZnO+mqYh9f2NhTgcQbNNNuXu9f5i1atA61vf5SerbXcFlCdMDzcrVqzQ7Nmz9dBDD2nXrl1KT09XVlaWjhw5Uuf8W7du1Q033KBp06bpk08+UXZ2trKzs7Vnz54AV948NHSQri9ASKp3x+SPg35dBzuzd/B2vLTybHWt/79sORDwzwzkpfnBoL6/sQu6tbP9NukvVg7UDe1TJwzp2uCPTTszPdw8+eSTmjFjhqZOnaq+fftqyZIlioyM1AsvvFDn/H/4wx80duxY3XvvvTrvvPP08MMP64ILLtCf/vSnAFfePDR0kPamFcbXB/36Dnatw0JN38HbfcdixvgwjEnTuIb+xuy+TfqD1QN1Y/tUK7aCBYKpfW5Onjypjz/+WDk5Oa5pISEhGjNmjLZt21bna7Zt26bZs2fXmpaVlaU333yzzvkrKytVWVnp+n9paWnTC29m6jsH7m1HUl+eU2+sSbau/j+BPKdvp06qZzOjI7FdOi/7W0PbuJ23SX8Ihv5z9FM6l6nhpqSkRFVVVUpISKg1PSEhQV9++WWdrykuLq5z/uLi4jrnz83N1bx583xTcDNW1w6xKVc2+GoH29DBLiO1Azt4PzLjyhaupnEf27hvBEugZn3XZvurpXJycmq19JSWlqpLly4mVmQvZv9iaOxgxx+8f5mx/s3e5tC8EKiDk6nhJjY2VqGhoTp8+HCt6YcPH1ZiYmKdr0lMTPRo/vDwcIWHh/umYNTJ7ADBwc5cZqx/s7c5NC/sY4KPqR2Kw8LCNGjQIK1bt841rbq6WuvWrVNGRkadr8nIyKg1vyStXbu23vnRPDTXTnMAAoN9THAx/bTU7NmzNXnyZA0ePFhDhw7VokWLVFZWpqlTp0qSJk2apE6dOik3N1eSdOeddyozM1NPPPGErrjiCr322mvauXOn/vznP5v5NQAAgEWYHm4mTJigo0eP6sEHH1RxcbEGDBig9957z9VpuKCgQCEh/21gGjZsmJYvX67f/va3uv/++9WzZ0+9+eab6tevn1lfAQAAWIjDMAyj8dnso7S0VDExMXI6nYqOjja7HAAA4AZPjt+mD+IHAADgS4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK6aPUBxoNWMWlpaWmlwJAABwV81x252xh5tduPnxxx8lSV26dDG5EgAA4Kkff/xRMTExDc7T7G6/UF1drUOHDikqKkoOh8PscgKqtLRUXbp0UWFhIbeeaCKWpW+wHH2HZekbLEff8fWyNAxDP/74ozp27FjrnpN1aXYtNyEhIercubPZZZgqOjqaP1ofYVn6BsvRd1iWvsFy9B1fLsvGWmxq0KEYAADYCuEGAADYCuGmGQkPD9dDDz2k8PBws0sJeixL32A5+g7L0jdYjr5j5rJsdh2KAQCAvdFyAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwY0ObN2/WlVdeqY4dO8rhcOjNN9+s9bxhGHrwwQeVlJSkiIgIjRkzRl999ZU5xVpcY8tyypQpcjgctR5jx441p1gLy83N1ZAhQxQVFaX4+HhlZ2dr3759teY5ceKEZs6cqQ4dOqhNmza69tprdfjwYZMqtiZ3luPIkSPP2SZvvfVWkyq2rsWLF6t///6uAeYyMjL0z3/+0/U826N7GluOZm2PhBsbKisrU3p6up555pk6n3/sscf0xz/+UUuWLNH27dvVunVrZWVl6cSJEwGu1PoaW5aSNHbsWBUVFbker776agArDA6bNm3SzJkz9dFHH2nt2rU6deqULr/8cpWVlbnmufvuu/WPf/xDr7/+ujZt2qRDhw5p/PjxJlZtPe4sR0maMWNGrW3yscceM6li6+rcubMWLlyojz/+WDt37tSll16qq6++Wnv37pXE9uiuxpajZNL2aMDWJBmrV692/b+6utpITEw0fv/737umHTt2zAgPDzdeffVVEyoMHmcvS8MwjMmTJxtXX321KfUEsyNHjhiSjE2bNhmGcXobbNmypfH666+75vniiy8MSca2bdvMKtPyzl6OhmEYmZmZxp133mleUUGsXbt2xvPPP8/22EQ1y9EwzNseablpZg4cOKDi4mKNGTPGNS0mJkYXXnihtm3bZmJlwWvjxo2Kj49X7969ddttt+n77783uyTLczqdkqT27dtLkj7++GOdOnWq1nbZp08fde3ale2yAWcvxxp/+9vfFBsbq379+iknJ0fl5eVmlBc0qqqq9Nprr6msrEwZGRlsj146eznWMGN7bHY3zmzuiouLJUkJCQm1pickJLieg/vGjh2r8ePHKyUlRfn5+br//vs1btw4bdu2TaGhoWaXZ0nV1dW66667NHz4cPXr10/S6e0yLCxMbdu2rTUv22X96lqOkjRx4kR169ZNHTt21Geffab77rtP+/bt06pVq0ys1pp2796tjIwMnThxQm3atNHq1avVt29f5eXlsT16oL7lKJm3PRJugCa4/vrrXf9OS0tT//79lZqaqo0bN2r06NEmVmZdM2fO1J49e7RlyxazSwlq9S3Hm2++2fXvtLQ0JSUlafTo0crPz1dqamqgy7S03r17Ky8vT06nUytXrtTkyZO1adMms8sKOvUtx759+5q2PXJaqplJTEyUpHN6/R8+fNj1HLzXvXt3xcbGav/+/WaXYkmzZs3SO++8ow0bNqhz586u6YmJiTp58qSOHTtWa362y7rVtxzrcuGFF0oS22QdwsLC1KNHDw0aNEi5ublKT0/XH/7wB7ZHD9W3HOsSqO2RcNPMpKSkKDExUevWrXNNKy0t1fbt22udI4V3vv32W33//fdKSkoyuxRLMQxDs2bN0urVq7V+/XqlpKTUen7QoEFq2bJlre1y3759KigoYLs8Q2PLsS55eXmSxDbphurqalVWVrI9NlHNcqxLoLZHTkvZ0PHjx2ul4gMHDigvL0/t27dX165dddddd+mRRx5Rz549lZKSogceeEAdO3ZUdna2eUVbVEPLsn379po3b56uvfZaJSYmKj8/X7/+9a/Vo0cPZWVlmVi19cycOVPLly/XW2+9paioKFe/hZiYGEVERCgmJkbTpk3T7Nmz1b59e0VHR+uXv/ylMjIydNFFF5lcvXU0thzz8/O1fPly/exnP1OHDh302Wef6e6779aIESPUv39/k6u3lpycHI0bN05du3bVjz/+qOXLl2vjxo16//332R490NByNHV7DPj1WfC7DRs2GJLOeUyePNkwjNOXgz/wwANGQkKCER4ebowePdrYt2+fuUVbVEPLsry83Lj88suNuLg4o2XLlka3bt2MGTNmGMXFxWaXbTl1LUNJxosvvuiap6Kiwrj99tuNdu3aGZGRkcY111xjFBUVmVe0BTW2HAsKCowRI0YY7du3N8LDw40ePXoY9957r+F0Os0t3IJuuukmo1u3bkZYWJgRFxdnjB492vjggw9cz7M9uqeh5Wjm9ugwDMPwb3wCAAAIHPrcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcALCUkydPml3COaxYE4D6EW4A+NXIkSM1a9YszZo1SzExMYqNjdUDDzygmju/JCcn6+GHH9akSZMUHR2tm2++WZK0ZcsWXXLJJYqIiFCXLl10xx13qKyszPW+zz77rHr27KlWrVopISFB1113neu5lStXKi0tTREREerQoYPGjBnjeu3IkSN111131aoxOztbU6ZMcf3f25oAWAPhBoDf/fWvf1WLFi3073//W3/4wx/05JNP6vnnn3c9//jjjys9PV2ffPKJHnjgAeXn52vs2LG69tpr9dlnn2nFihXasmWLZs2aJUnauXOn7rjjDs2fP1/79u3Te++9pxEjRkiSioqKdMMNN+imm27SF198oY0bN2r8+PHy9DZ6ntYEwDq4cSYAvxo5cqSOHDmivXv3yuFwSJLmzJmjt99+W59//rmSk5M1cOBArV692vWa6dOnKzQ0VM8995xr2pYtW5SZmamysjKtWbNGU6dO1bfffquoqKhan7dr1y4NGjRIBw8eVLdu3eqsZ8CAAVq0aJFrWnZ2ttq2batly5ZJklc1tWrVqknLCYDv0HIDwO8uuugiV7CRpIyMDH311VeqqqqSJA0ePLjW/J9++qmWLVumNm3auB5ZWVmqrq7WgQMHdNlll6lbt27q3r27brzxRv3tb39TeXm5JCk9PV2jR49WWlqa/vd//1dLly7Vf/7zH49r9rQmANZBuAFgutatW9f6//Hjx3XLLbcoLy/P9fj000/11VdfKTU1VVFRUdq1a5deffVVJSUl6cEHH1R6erqOHTum0NBQrV27Vv/85z/Vt29fPf300+rdu7crgISEhJxziurUqVNNrgmAdRBuAPjd9u3ba/3/o48+Us+ePRUaGlrn/BdccIE+//xz9ejR45xHWFiYJKlFixYaM2aMHnvsMX322Wc6ePCg1q9fL0lyOBwaPny45s2bp08++URhYWGuU0xxcXEqKipyfVZVVZX27NnT6HdwpyYA1kC4AeB3BQUFmj17tvbt26dXX31VTz/9tO68885657/vvvu0detWzZo1S3l5efrqq6/01ltvuTrvvvPOO/rjH/+ovLw8ffPNN3rppZdUXV2t3r17a/v27VqwYIF27typgoICrVq1SkePHtV5550nSbr00kv17rvv6t1339WXX36p2267TceOHWv0OzRWEwDraGF2AQDsb9KkSaqoqNDQoUMVGhqqO++803V5dV369++vTZs26Te/+Y0uueQSGYah1NRUTZgwQZLUtm1brVq1SnPnztWJEyfUs2dPvfrqqzr//PP1xRdfaPPmzVq0aJFKS0vVrVs3PfHEExo3bpwk6aabbtKnn36qSZMmqUWLFrr77rs1atSoRr9DYzUBsA6ulgLgV3VdnQQA/sRpKQAAYCuEGwAAYCuclgIAALZCyw0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALCV/x/YBjhC2T2t0QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding](./surrogate_embedding_usr.ipynb) file." ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLcUlEQVR4nO3deXwU5eHH8e8mISEBknDlAIGES4gccigGEFAoSFGLYkVEBEGtCnIoCGgRUDFoa1W0gqUqWC+qoiJeUEAskEI4FbQIEQxKwiFmAwQIZJ/fHzT7YyGBzWY3uzv7eb9eeb1gZnb2mdljvvvMc9iMMUYAAAAWFebvAgAAAPgSYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQdAQJg2bZpsNptb29psNk2bNs2n5enRo4d69OgRsPsD4D7CDgAX8+bNk81mc/5FRESofv36GjZsmH7++Wd/Fy/gpKSkuJyvhIQEXXnllfrggw+8sv/CwkJNmzZNX375pVf2B4Qiwg6AUj322GP6xz/+oTlz5qhv375644031L17dx0/ftwnz/fHP/5Rx44d88m+fe3SSy/VP/7xD/3jH//Q+PHjtXfvXt14442aM2dOhfddWFio6dOnE3aACojwdwEABKa+ffuqY8eOkqQ777xTderU0VNPPaVFixbp5ptv9vrzRUREKCIiOL+S6tevr9tuu835/9tvv11NmzbVs88+q3vuucePJQMgUbMDwE1XXnmlJCk7O9tl+X//+1/ddNNNqlWrlqpWraqOHTtq0aJFLtucPHlS06dPV7NmzVS1alXVrl1bXbt21dKlS53blNZm58SJExo3bpzq1q2rGjVq6Prrr9dPP/10TtmGDRumlJSUc5aXts/XXntNV199tRISEhQVFaW0tDTNnj27XOfiQpKSktSyZUvt2rXrvNvt379fI0aMUGJioqpWraq2bdtq/vz5zvW7d+9W3bp1JUnTp0933irzdXslwGqC82cUgEq3e/duSVLNmjWdy7Zt26YuXbqofv36mjRpkqpVq6Z//vOf6t+/v95//33dcMMNkk6HjoyMDN155526/PLLVVBQoPXr12vjxo36zW9+U+Zz3nnnnXrjjTd06623qnPnzlq+fLn69etXoeOYPXu2LrnkEl1//fWKiIjQxx9/rPvuu08Oh0MjR46s0L5LnDx5Unv27FHt2rXL3ObYsWPq0aOHdu7cqVGjRik1NVXvvvuuhg0bpvz8fI0ZM0Z169bV7Nmzde+99+qGG27QjTfeKElq06aNV8oJhAwDAGd47bXXjCTzr3/9yxw4cMDs2bPHvPfee6Zu3bomKirK7Nmzx7ltz549TevWrc3x48edyxwOh+ncubNp1qyZc1nbtm1Nv379zvu8U6dONWd+JW3evNlIMvfdd5/LdrfeequRZKZOnepcNnToUNOoUaML7tMYYwoLC8/Zrk+fPqZx48Yuy7p37266d+9+3jIbY0yjRo1M7969zYEDB8yBAwfMli1bzC233GIkmfvvv7/M/T333HNGknnjjTecy4qKikx6erqpXr26KSgoMMYYc+DAgXOOF0D5cBsLQKl69eqlunXrqkGDBrrppptUrVo1LVq0SBdddJEk6dChQ1q+fLluvvlmHT58WAcPHtTBgwf1yy+/qE+fPtqxY4ez91Z8fLy2bdumHTt2uP38n376qSRp9OjRLsvHjh1boeOKjo52/ttut+vgwYPq3r27fvjhB9ntdo/2uWTJEtWtW1d169ZV27Zt9e6772rIkCF66qmnynzMp59+qqSkJA0aNMi5rEqVKho9erSOHDmilStXelQWAOfiNhaAUv31r39V8+bNZbfb9eqrr+qrr75SVFSUc/3OnTtljNGUKVM0ZcqUUvexf/9+1a9fX4899ph+97vfqXnz5mrVqpWuueYaDRky5Ly3Y3788UeFhYWpSZMmLssvvvjiCh3X6tWrNXXqVGVmZqqwsNBlnd1uV1xcXLn32alTJz3xxBOy2WyKiYlRy5YtFR8ff97H/Pjjj2rWrJnCwlx/c7Zs2dK5HoB3EHYAlOryyy939sbq37+/unbtqltvvVXbt29X9erV5XA4JEnjx49Xnz59St1H06ZNJUndunVTdna2PvroIy1ZskR///vf9eyzz2rOnDm68847K1zWsgYjLC4udvl/dna2evbsqRYtWugvf/mLGjRooMjISH366ad69tlnncdUXnXq1FGvXr08eiwA3yPsALig8PBwZWRk6KqrrtKLL76oSZMmqXHjxpJO33px50Jfq1Yt3XHHHbrjjjt05MgRdevWTdOmTSsz7DRq1EgOh0PZ2dkutTnbt28/Z9uaNWsqPz//nOVn1458/PHHOnHihBYtWqSGDRs6l69YseKC5fe2Ro0a6euvv5bD4XCp3fnvf//rXC+VHeQAuI82OwDc0qNHD11++eV67rnndPz4cSUkJKhHjx56+eWXlZube872Bw4ccP77l19+cVlXvXp1NW3aVCdOnCjz+fr27StJmjVrlsvy55577pxtmzRpIrvdrq+//tq5LDc395xRjMPDwyVJxhjnMrvdrtdee63McvjKb3/7W+Xl5WnBggXOZadOndILL7yg6tWrq3v37pKkmJgYSSo1zAFwDzU7ANw2YcIE/f73v9e8efN0zz336K9//au6du2q1q1b66677lLjxo21b98+ZWZm6qefftKWLVskSWlpaerRo4c6dOigWrVqaf369Xrvvfc0atSoMp/r0ksv1aBBg/TSSy/Jbrerc+fOWrZsmXbu3HnOtrfccosmTpyoG264QaNHj1ZhYaFmz56t5s2ba+PGjc7tevfurcjISF133XX6wx/+oCNHjmju3LlKSEgoNbD50t13362XX35Zw4YN04YNG5SSkqL33ntPq1ev1nPPPacaNWpIOt2gOi0tTQsWLFDz5s1Vq1YttWrVSq1atarU8gJBzd/dwQAElpKu51lZWeesKy4uNk2aNDFNmjQxp06dMsYYk52dbW6//XaTlJRkqlSpYurXr2+uvfZa89577zkf98QTT5jLL7/cxMfHm+joaNOiRQszY8YMU1RU5NymtG7ix44dM6NHjza1a9c21apVM9ddd53Zs2dPqV2xlyxZYlq1amUiIyPNxRdfbN54441S97lo0SLTpk0bU7VqVZOSkmKeeuop8+qrrxpJZteuXc7tytP1/ELd6sva3759+8wdd9xh6tSpYyIjI03r1q3Na6+9ds5j16xZYzp06GAiIyPphg54wGbMGfW5AAAAFkObHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGkMKijJ4XBo7969qlGjBkOzAwAQJIwxOnz4sOrVq3fOpLpnIuxI2rt3rxo0aODvYgAAAA/s2bNHF110UZnrCTuSc1j2PXv2KDY21s+lAQAA7igoKFCDBg2c1/GyEHb0/7MKx8bGEnYAAAgyF2qCQgNlAABgaYQdAABgaYQdAABgabTZAQBYWnFxsU6ePOnvYsADVapUUXh4eIX3Q9gBAFiSMUZ5eXnKz8/3d1FQAfHx8UpKSqrQOHiEHQCAJZUEnYSEBMXExDBobJAxxqiwsFD79++XJCUnJ3u8L8IOAMByiouLnUGndu3a/i4OPBQdHS1J2r9/vxISEjy+pUUDZQCA5ZS00YmJifFzSVBRJa9hRdpdEXYAAJbFravg543XkLADAAAsjbADAECIsNls+vDDD/1dDBdffvmlbDabT3vNEXZ8KNd+TGuyDyrXfszfRQEAhJBp06bp0ksv9XcxAga9sXxkQVaOJi/8Rg4jhdmkjBtba+BlDf1dLAAAQg41Oz6Qaz/mDDqS5DDSwwu3UsMDAHCLw+FQRkaGUlNTFR0drbZt2+q9996T9P+3fZYtW6aOHTsqJiZGnTt31vbt2yVJ8+bN0/Tp07VlyxbZbDbZbDbNmzfPue+DBw/qhhtuUExMjJo1a6ZFixa5VaaS5/3iiy/Url07RUdH6+qrr9b+/fv12WefqWXLloqNjdWtt96qwsJC5+NOnDih0aNHKyEhQVWrVlXXrl2VlZXlvZPlBsKOD+w6eNQZdEoUG6PdBwtLfwAAIKBVdrOEjIwMvf7665ozZ462bdumcePG6bbbbtPKlSud2zzyyCN65plntH79ekVERGj48OGSpIEDB+rBBx/UJZdcotzcXOXm5mrgwIHOx02fPl0333yzvv76a/32t7/V4MGDdejQIbfLNm3aNL344otas2aN9uzZo5tvvlnPPfec3nrrLX3yySdasmSJXnjhBef2Dz30kN5//33Nnz9fGzduVNOmTdWnT59yPWdFEXZ8ILVONYWd1VMu3GZTSh3GewCAYLMgK0ddZi7XrXPXqsvM5VqQlePT5ztx4oSefPJJvfrqq+rTp48aN26sYcOG6bbbbtPLL7/s3G7GjBnq3r270tLSNGnSJK1Zs0bHjx9XdHS0qlevroiICCUlJSkpKck5OJ8kDRs2TIMGDVLTpk315JNP6siRI1q3bp3b5XviiSfUpUsXtWvXTiNGjNDKlSs1e/ZstWvXTldeeaVuuukmrVixQpJ09OhRzZ49W3/605/Ut29fpaWlae7cuYqOjtYrr7zivZN2AYQdH0iOi1bGja0V/r+xAcJtNj15Yyslx0Vf4JEAgEDij2YJO3fuVGFhoX7zm9+oevXqzr/XX39d2dnZzu3atGnj/HfJVAolUyucz5mPq1atmmJjY916XGmPT0xMVExMjBo3buyyrGR/2dnZOnnypLp06eJcX6VKFV1++eX67rvv3H7OiqKBso8MvKyhujWvq90HC5VSJ4agAwBB6HzNEnz1vX7kyBFJ0ieffKL69eu7rIuKinIGnipVqjiXlwy853A4Lrj/Mx9X8lh3Hlfa4202W4X3VxkIOz6UHBdNyAGAIFbSLOHMwOPrZglpaWmKiopSTk6Ounfvfs76M2t3yhIZGani4mJfFK9cmjRposjISK1evVqNGjWSdHrah6ysLI0dO7bSykHYAQCgDCXNEh5euFXFxlRKs4QaNWpo/PjxGjdunBwOh7p27Sq73a7Vq1crNjbWGRrOJyUlRbt27dLmzZt10UUXqUaNGoqKivJZmctSrVo13XvvvZowYYJq1aqlhg0b6umnn1ZhYaFGjBhRaeUg7AAAcB7+aJbw+OOPq27dusrIyNAPP/yg+Ph4tW/fXg8//LBbt4gGDBighQsX6qqrrlJ+fr5ee+01DRs2zOflLs3MmTPlcDg0ZMgQHT58WB07dtQXX3yhmjVrVloZbMYYc+HNrK2goEBxcXGy2+2KjY31d3EAABV0/Phx7dq1S6mpqapataq/i4MKON9r6e71m95YAADA0gg7AABA99xzj0tX9zP/7rnnHn8Xr0JoswMAAPTYY49p/Pjxpa4L9iYehB0AAKCEhAQlJCT4uxg+wW0sAABgaYQdAIBlBdpIvig/b7yG3MYCAFhOZGSkwsLCtHfvXtWtW1eRkZHOKRUQHIwxKioq0oEDBxQWFqbIyEiP90XYAQBYTlhYmFJTU5Wbm6u9e/f6uziogJiYGDVs2FBhYZ7fjCLsAAAsKTIyUg0bNtSpU6cCYp4olF94eLgiIiIqXCtH2AEAWFbJrNxnz8yN0EIDZQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGl+DTvFxcWaMmWKUlNTFR0drSZNmujxxx+XMca5jTFGjz76qJKTkxUdHa1evXppx44dLvs5dOiQBg8erNjYWMXHx2vEiBE6cuRIZR8OAAAIQH4NO0899ZRmz56tF198Ud99952eeuopPf3003rhhRec2zz99NOaNWuW5syZo7Vr16patWrq06ePjh8/7txm8ODB2rZtm5YuXarFixfrq6++0t133+2PQwIAAAHGZs6sRqlk1157rRITE/XKK684lw0YMEDR0dF64403ZIxRvXr19OCDD2r8+PGSJLvdrsTERM2bN0+33HKLvvvuO6WlpSkrK0sdO3aUJH3++ef67W9/q59++kn16tW7YDkKCgoUFxcnu92u2NhY3xwsAADwKnev336t2encubOWLVum77//XpK0ZcsWrVq1Sn379pUk7dq1S3l5eerVq5fzMXFxcerUqZMyMzMlSZmZmYqPj3cGHUnq1auXwsLCtHbt2lKf98SJEyooKHD5AwAA1hThzyefNGmSCgoK1KJFC4WHh6u4uFgzZszQ4MGDJUl5eXmSpMTERJfHJSYmOtfl5eUpISHBZX1ERIRq1arl3OZsGRkZmj59urcPBwAABCC/1uz885//1Jtvvqm33npLGzdu1Pz58/XnP/9Z8+fP9+nzTp48WXa73fm3Z88enz4fAADwH7/W7EyYMEGTJk3SLbfcIklq3bq1fvzxR2VkZGjo0KFKSkqSJO3bt0/JycnOx+3bt0+XXnqpJCkpKUn79+932e+pU6d06NAh5+PPFhUVpaioKB8cEQAACDR+rdkpLCxUWJhrEcLDw+VwOCRJqampSkpK0rJly5zrCwoKtHbtWqWnp0uS0tPTlZ+frw0bNji3Wb58uRwOhzp16lQJRwEAAAKZX2t2rrvuOs2YMUMNGzbUJZdcok2bNukvf/mLhg8fLkmy2WwaO3asnnjiCTVr1kypqamaMmWK6tWrp/79+0uSWrZsqWuuuUZ33XWX5syZo5MnT2rUqFG65ZZb3OqJBQAArM2vYeeFF17QlClTdN9992n//v2qV6+e/vCHP+jRRx91bvPQQw/p6NGjuvvuu5Wfn6+uXbvq888/V9WqVZ3bvPnmmxo1apR69uypsLAwDRgwQLNmzfLHIQEAgADj13F2AgXj7AAAEHyCYpwdAAAAXyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAAS/N72Pn555912223qXbt2oqOjlbr1q21fv1653pjjB599FElJycrOjpavXr10o4dO1z2cejQIQ0ePFixsbGKj4/XiBEjdOTIkco+FAAAEID8GnZ+/fVXdenSRVWqVNFnn32mb7/9Vs8884xq1qzp3Obpp5/WrFmzNGfOHK1du1bVqlVTnz59dPz4cec2gwcP1rZt27R06VItXrxYX331le6++25/HBIAAAgwNmOM8deTT5o0SatXr9a///3vUtcbY1SvXj09+OCDGj9+vCTJbrcrMTFR8+bN0y233KLvvvtOaWlpysrKUseOHSVJn3/+uX7729/qp59+Ur169S5YjoKCAsXFxclutys2NtZ7BwgAAHzG3eu3X2t2Fi1apI4dO+r3v/+9EhIS1K5dO82dO9e5fteuXcrLy1OvXr2cy+Li4tSpUydlZmZKkjIzMxUfH+8MOpLUq1cvhYWFae3ataU+74kTJ1RQUODyBwAArMmvYeeHH37Q7Nmz1axZM33xxRe69957NXr0aM2fP1+SlJeXJ0lKTEx0eVxiYqJzXV5enhISElzWR0REqFatWs5tzpaRkaG4uDjnX4MGDbx9aAAAIED4New4HA61b99eTz75pNq1a6e7775bd911l+bMmePT5508ebLsdrvzb8+ePT59PgAA4D9+DTvJyclKS0tzWdayZUvl5ORIkpKSkiRJ+/btc9lm3759znVJSUnav3+/y/pTp07p0KFDzm3OFhUVpdjYWJc/AABgTX4NO126dNH27dtdln3//fdq1KiRJCk1NVVJSUlatmyZc31BQYHWrl2r9PR0SVJ6erry8/O1YcMG5zbLly+Xw+FQp06dKuEoAABAIIvw55OPGzdOnTt31pNPPqmbb75Z69at09/+9jf97W9/kyTZbDaNHTtWTzzxhJo1a6bU1FRNmTJF9erVU//+/SWdrgm65pprnLe/Tp48qVGjRumWW25xqycWAACwNr92PZekxYsXa/LkydqxY4dSU1P1wAMP6K677nKuN8Zo6tSp+tvf/qb8/Hx17dpVL730kpo3b+7c5tChQxo1apQ+/vhjhYWFacCAAZo1a5aqV6/uVhnoeg4AQPBx9/rt97ATCAg7AAAEn6AYZwcAAMDXCDuQJOXaj2lN9kHl2o/5uygAAHiVXxsoIzAsyMrR5IXfyGGkMJuUcWNrDbysob+LBQCAV1CzE+Jy7cecQUeSHEZ6eOFWangAAJZB2Alxuw4edQadEsXGaPfBQv8UCAAALyPshLjUOtUUZnNdFm6zKaVOjH8KBACAlxF2QlxyXLQybmytcNvpxBNus+nJG1spOS7azyUDAMA7aKAMDbysobo1r6vdBwuVUieGoAMAsBS3w05BQYHbO2VgvuCTHBdNyAEAWJLbYSc+Pl42m+282xhjZLPZVFxcXOGCAQAAeIPbYWfFihW+LAd0uhv4roNHlVqnGrUsAAB4idthp3v37r4sR8hjYD8AAHzD4wbK+fn5euWVV/Tdd99Jki655BINHz5ccXFxXitcqChrYL9uzetSwwMAQAV51PV8/fr1atKkiZ599lkdOnRIhw4d0l/+8hc1adJEGzdu9HYZLY+B/QAA8B2PanbGjRun66+/XnPnzlVExOldnDp1SnfeeafGjh2rr776yquFtLqSgf3ODDwM7AcAgHd4XLMzceJEZ9CRpIiICD300ENav3691woXKhjYDwAA3/GoZic2NlY5OTlq0aKFy/I9e/aoRo0aXilYqGFgPwAAfMOjsDNw4ECNGDFCf/7zn9W5c2dJ0urVqzVhwgQNGjTIqwUMJQzsBwCA93kUdv785z/LZrPp9ttv16lTpyRJVapU0b333quZM2d6tYAAAAAVYTPGmAtvVrrCwkJlZ2dLkpo0aaKYmOBsUFtQUKC4uDjZ7XamugAAIEi4e/2u0ESgMTExat26dUV2AR9jVGYAQKjzKOwcP35cL7zwglasWKH9+/fL4XC4rGesncDAqMwAAHgYdkaMGKElS5bopptu0uWXX37BCUJR+RiVGQCA0zwKO4sXL9ann36qLl26eLs88JLzjcpM2AEAhBKPBhWsX78+4+kEuJJRmc/kzqjMufZjWpN9ULn2Yz4sHQAAlcejsPPMM89o4sSJ+vHHH71dHniJJ6MyL8jKUZeZy3Xr3LXqMnO5FmTlVFZxAQDwGY9uY3Xs2FHHjx9X48aNFRMToypVqrisP3TokFcKh4opz6jMtPEBAFiVR2Fn0KBB+vnnn/Xkk08qMTGRBsoBzN1RmWnjAwCwKo/Czpo1a5SZmam2bdt6uzzwE2ZeBwBYlUdtdlq0aKFjx2jAaiXMvA4AsCqPpotYsmSJpk+frhkzZqh169bntNkJtikXmC7i/+XajzHzOgAgKLh7/fYo7ISFna4QOrutjjFGNptNxcXF5d2lXxF2AAAIPj6dG2vFihUeFwwAAKAyeRR2unfv7tZ29913nx577DHVqVPHk6cBAACoMI8aKLvrjTfeUEFBgS+fAgAA4Lx8GnY8aA4EAADgVT4NOwAAAP5G2AEAAJZG2AEAAJZG2AEAAJbm07Bz2223MUgfAADwK4/G2ZGk/Px8rVu3Tvv375fD4XBZd/vtt0uSZs+eXbHSAQAAVJBHYefjjz/W4MGDdeTIEcXGxrpMG2Gz2ZxhBwAAwN88uo314IMPavjw4Tpy5Ijy8/P166+/Ov8OHTrk7TICAAB4zKOw8/PPP2v06NGKiYnxdnkAAAC8yqOw06dPH61fv97bZQEAAPA6t9vsLFq0yPnvfv36acKECfr222/VunVrValSxWXb66+/3nslBAAAqACbcXMCq7Aw9yqBbDabiouLK1SoylZQUKC4uDjZ7Xa6ygMAECTcvX67XbNzdvdyAACAYOBRm53XX39dJ06cOGd5UVGRXn/99QoXCgAAwFvcvo11pvDwcOXm5iohIcFl+S+//KKEhARuYwEAAJ9z9/rtUc2OMcZlIMESP/30k+Li4jzZJQAAgE+UawTldu3ayWazyWazqWfPnoqI+P+HFxcXa9euXbrmmmu8XkgAAABPlSvs9O/fX5K0efNm9enTR9WrV3eui4yMVEpKigYMGODVAqLy5dqPadfBo0qtU03JcdH+Lg4AABVSrrAzdepUSVJKSooGDhyoqlWr+qRQ8J8FWTmavPAbOYwUZpMybmytgZc19HexAADwmEcNlEsUFRWVOut5w4bBdXGkgfJpufZj6jJzuRxnvCPCbTatmnQVNTwAgIDj9XF2zrRjxw4NHz5ca9ascVle0nA52Hpj4bRdB4+6BB1JKjZGuw8WEnYAAEHLo7AzbNgwRUREaPHixUpOTi61ZxaCT2qdagqz6ZyanZQ6TPgKAAheHoWdzZs3a8OGDWrRooW3ywM/So6LVsaNrfXwwq0qNkbhNpuevLEVtToAgKDmUdhJS0vTwYMHvV0WBICBlzVUt+Z1tftgoVLqxBB0AABBz6NBBZ966ik99NBD+vLLL/XLL7+ooKDA5c9TM2fOlM1m09ixY53Ljh8/rpEjR6p27dqqXr26BgwYoH379rk8LicnR/369VNMTIwSEhI0YcIEnTp1yuNyhLrkuGilN6lN0AEAWIJHNTu9evWSJF199dUu7XUq0kA5KytLL7/8stq0aeOyfNy4cfrkk0/07rvvKi4uTqNGjdKNN96o1atXSzo9mGG/fv2UlJSkNWvWKDc3V7fffruqVKmiJ5980pPDAwDAibHHgp9HYWfFihVeLcSRI0c0ePBgzZ07V0888YRzud1u1yuvvKK33npLV199tSTptddeU8uWLfWf//xHV1xxhZYsWaJvv/1W//rXv5SYmKhLL71Ujz/+uCZOnKhp06YpMjLSq2UFAIQOxh6zBo9uY3Xv3l1hYWGaO3euJk2apKZNm6p79+7KyclReHh4ufc3cuRI9evXz1ljVGLDhg06efKky/IWLVqoYcOGyszMlCRlZmaqdevWSkxMdG7Tp08fFRQUaNu2baU+34kTJ7x26w0AYE259mPOoCOd7qn68MKtyrUf82/BUG4ehZ33339fffr0UXR0tDZt2qQTJ05IOl0TU95bR++88442btyojIyMc9bl5eUpMjJS8fHxLssTExOVl5fn3ObMoFOyvmRdaTIyMhQXF+f8a9CgQbnKHGpy7ce0JvsgH3AAIeV8Y48huHgUdp544gnNmTNHc+fOVZUqVZzLu3Tpoo0bN7q9nz179mjMmDF68803K3XqicmTJ8tutzv/9uzZU2nPHWwWZOWoy8zlunXuWnWZuVwLsnL8XSQAqBQlY4+dibHHgpNHYWf79u3q1q3bOcvj4uKUn5/v9n42bNig/fv3q3379oqIiFBERIRWrlypWbNmKSIiQomJiSoqKjpnn/v27VNSUpIkKSkp6ZzeWSX/L9nmbFFRUYqNjXX5w7mowgUQykrGHgv/X0ccxh4LXh41UE5KStLOnTuVkpLisnzVqlVq3Lix2/vp2bOnvvnmG5dld9xxh1q0aKGJEyeqQYMGqlKlipYtW+acTX379u3KyclRenq6JCk9PV0zZszQ/v37lZCQIElaunSpYmNjlZaW5snh4X+YPgJAqGPsMWvwKOzcddddGjNmjF599VXZbDbt3btXmZmZGj9+vKZMmeL2fmrUqKFWrVq5LKtWrZpq167tXD5ixAg98MADqlWrlmJjY3X//fcrPT1dV1xxhSSpd+/eSktL05AhQ/T0008rLy9Pf/zjHzVy5EhFRUV5cnj4H6aPAIDTNTyEnODmUdiZNGmSHA6HevbsqcLCQnXr1k1RUVEaP3687r//fq8W8Nlnn1VYWJgGDBigEydOqE+fPnrppZec68PDw7V48WLde++9Sk9PV7Vq1TR06FA99thjXi1HKGL6CACAFdiMMebCm5WuqKhIO3fu1JEjR5SWlqbq1at7s2yVxt0p4kNVrv0YVbgAgIDj7vXbo5qdEpGRkbSLCQFU4QIAgplHvbEAAACCBWEHAABYGmEHAABYGmEHAYWpKQAA3lahBsqANzG7MADAF6jZQUBgagoAgK8QdhAQmF0YAOArhB0EBGYXBgD4CmEHAYHZhQEAvkIDZQQMZhcGAPgCYQcBhakpAADexm0sAABgaYQdeITB/wAAwYLbWCg3Bv8DAAQTanZQLgz+BwAINoQdlAuD/wEAgg1hB+XC4H8AgGBD2EG5MPgfACDY0EAZ5cbgfwCAYELYgUcY/A8AECy4jQUAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsBNEmHwTAIDyo+t5kGDyTQAAPEPNThBg8k0AADxH2AkCgTT5JrfSAADBhttYQaBk8s0zA48/Jt/kVhoAIBhRsxMEAmHyTW6lAQCCFTU7QcLfk2+e71Yac2QBAAIZYSeI+HPyzUC5leZNufZj2nXwqFLrVCOwAYCFcRsLbgmEW2netCArR11mLtetc9eqy8zlWpCV4+8iAQB8xGaMMRfezNoKCgoUFxcnu92u2NhYfxcnoOXaj/ntVpq35NqPqcvM5efUUq2adFXQHhMAhCJ3r9/cxkK5+PNWmrfQ/ggAQgu3sRByStofnSnY2x8BAMpG2EHIsVr7IwDA+XEbCyHJ3135AQCVh7CDkGWF9kcAgAvjNhYAALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wk6QyLUf05rsg8q1H/N3UQAACCqMsxMEFmTlaPLCb+QwUphNyrixtQZe1tDfxQIAIChQsxPgcu3HnEFHkhxGenjhVmp4AABwE2EnwJ1vhm4AAHBhhJ0AxwzdAABUDGEnwDFDNwAAFUMD5SDADN0AAHiOsBMkmKEbAADPcBsLAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYml/DTkZGhi677DLVqFFDCQkJ6t+/v7Zv3+6yzfHjxzVy5EjVrl1b1atX14ABA7Rv3z6XbXJyctSvXz/FxMQoISFBEyZM0KlTpyrzUACfYzJYAPCMX8POypUrNXLkSP3nP//R0qVLdfLkSfXu3VtHjx51bjNu3Dh9/PHHevfdd7Vy5Urt3btXN954o3N9cXGx+vXrp6KiIq1Zs0bz58/XvHnz9Oijj/rjkACfWJCVoy4zl+vWuWvVZeZyLcjK8XeRACBo2Iwx5sKbVY4DBw4oISFBK1euVLdu3WS321W3bl299dZbuummmyRJ//3vf9WyZUtlZmbqiiuu0GeffaZrr71We/fuVWJioiRpzpw5mjhxog4cOKDIyMgLPm9BQYHi4uJkt9sVGxvr02MEyivXfkxdZi53mSMt3GbTqklXMfYSgJDm7vU7oNrs2O12SVKtWrUkSRs2bNDJkyfVq1cv5zYtWrRQw4YNlZmZKUnKzMxU69atnUFHkvr06aOCggJt27at1Oc5ceKECgoKXP6AQMVksABQMQETdhwOh8aOHasuXbqoVatWkqS8vDxFRkYqPj7eZdvExETl5eU5tzkz6JSsL1lXmoyMDMXFxTn/GjRo4OWjAbyHyWABoGICJuyMHDlSW7du1TvvvOPz55o8ebLsdrvzb8+ePT5/zlBGw9qKYTJYAKiYgJgba9SoUVq8eLG++uorXXTRRc7lSUlJKioqUn5+vkvtzr59+5SUlOTcZt26dS77K+mtVbLN2aKiohQVFeXlo0BpFmTlaPLCb+QwUphNyrixtQZe1tDfxQo6TAYLAJ7za82OMUajRo3SBx98oOXLlys1NdVlfYcOHVSlShUtW7bMuWz79u3KyclRenq6JCk9PV3ffPON9u/f79xm6dKlio2NVVpaWuUcCEqVaz/mDDqS5DDSwwu3+q2GJ9hrmJLjopXepDZBBwDKya81OyNHjtRbb72ljz76SDVq1HC2sYmLi1N0dLTi4uI0YsQIPfDAA6pVq5ZiY2N1//33Kz09XVdccYUkqXfv3kpLS9OQIUP09NNPKy8vT3/84x81cuRIam/87HwNayv7gk0NEwCELr/W7MyePVt2u109evRQcnKy82/BggXObZ599llde+21GjBggLp166akpCQtXLjQuT48PFyLFy9WeHi40tPTddttt+n222/XY4895o9DCniVWbsRKA1rA62GCQBQuQJqnB1/CZVxdvxRu7EgK0cPL9yqYmOcDWsru0ZlTfZB3Tp37TnL377rCqU3qV2pZQEAeI+71++AaKAM3yurdqNb87o+vaUUCA1rS2qYzh6Uj67bABAaAqbrOXzLnwPT+bthLV23ASC0UbMTIkK9diMQapiCTa79mHYdPKrUOtU4XwCCGmEnRJTUbpzdfiaULmLJcdEhdbwVQe81AFZCA2WFTgNl6fSvdWo3cD5MPAogWNBAGaWidgNnKu1WVSCNjwQA3kDYAUJUabequjWvq1+OnAjp9l2oGNp6IRARdoAQVNpQBJPe/0a2/4UcmySbTTKG3mtwH229EKgIO0AIKu1WldHpcFPy7zAjvXhrO7VvVJOggwvy11hegDsYZwcIQaVN5XE2h6Ra1aK4UMEtG3781W9jeQEXQtgBQtDZAy2G6fStqzPRTgfuWpCVo/vf2nTOct5DCBTcxgIsorwNQ88eaPGr7w+E9DhM8EzJ7auzxzAJs4n3EAIGYQewAE8bhp45FAGjTMMTpbX/kqRZt7TTtW3rVX6BgFJwGwvwo1z7Ma3JPqhc+7EK7aO0hqGe7NPf85gh+JTW/ivcZlOHlJr+KRBQCsIO4CcLsnLUZeZy3Tp3rbrMXK4FWTke7cefk7wCTLSLYMBtLMAPvNlNN9QneYX/cQsUgY6aHQQVb9z2CQTerI3hlzVKU9mfFW6BIpBRs4OgYaXRWb1dG1Pyy3rjj7/KYYw6ptTyUkkRjKz0WQG8gZodBAVvNsINBL6ojfnq+wO6/+1Nuv/tzRVqA4TgFmyfFavU1iKwUbODoGDFmbi92c6BofpRIpg+K9RAobJQs4OgUFb31mBvhOutdg70yEKJYPmsBFsNFIIbYQdBgUa45xcsFzj4XrB8VgjoqEzcxkLQoHtr2UoucEz3ACk4PiulNdIPkxQTyW9wbynvFDJWZjPGlDLQd2gpKChQXFyc7Ha7YmNj/V0cwGO59mMBfYELRcF6wTm73L44jgVZOc6AXoK2O97hi/ZQgfhedvf6TdgRYQeAbwTrBefsct/Qrr4+2PSzTxoSb9nzq/q/tEbmrGEYVk26KmAuqMEm135MXWYuP2doi4qc00BtTO7u9Zv6QgQkuqMi2PmiAa63phg5n9LK/f7Gn33SkDjXfkzrdh/S2T+5y2q7w/eCe7zdHsoKjclps4NKd6FfpoH6CwIoD293Aa+s4QXKmsX8TN7oyn7m5/xspTWu53vBfd4etDSYhjMoCzU7qFQX+mVqhV8QgOT9HnKV1XuptHKfraI9/c7+nJ+977Mb1/O9UD7e7pFnhd6ehB1UGne+sNz9Qqc6G4EuWC84pZV7QPv6Xu3KXlbt0ZR+LbVq0lXn1NjQTb38Bl7WUKsmXaW377qi1HNaHme/J8Ikjeia4p2CVhJuY6HSuFMV6k71K9XZCBbe7AJe1vACkrQm+6BXGyyXVu7xfS72Wk+/sj7nv22TXOq+PbktE4g9h3yhrOMsbXnJsmqR4TpaVFyuc1Pynnht1W79fdUP+tu/d+nvq3YFzfcvYQeVxp0vrAuNF8O0CAg2yXHRPgshX31/wNnrxtvB/+xye/M4yjsuVHm3D+QfRN4MYWUdZ2nLJZ1z69CTc/P3VT8E5fcvXc9F1/PKdOa4GiVfWKV90MoaL2ZN9kHdOnftOdu/fdcVSm9S26dlh/eFyq9vX/BF9+LKVt5xodzZPpDPizdDWFnHufC+dN3w0ppzBmvUWT80z3yMu+cmEL9/3b1+U7ODSuVutX5ZvyK93csA/hPIv76DgRV6yJS3tsid7QP1vHi7Vrqs48za/es5yx2SVEa1hrvnJtd+TL8cORG03780UEalq8jkl8Ey708wq4zG3/SuqTh3GyyHWmN+d86LP86JtxtZl3Wcl6XUPGd5mFRmDzt3wkpJL9r7394sY6T/ff0G1fcvNTsIOsEw708wKG06gNdW7dLcf++SUflqW8p7OypQf30HE3fasfiz9sxftygvdF78dU6qRYaXutyducBKO5dlHWfbBjXLbMh+9tQc7oSVs3+YGElhRnrx1nZq36hm0HxeCTsISt5sLBmKzjcdQAl3q9k9uXhwO7J05Q0I5wv+/mzM7+9blGWdF3+ek6NFxaUuLyxynPdx5zuXZR1nWctLlsVEhqmwyOHWj8XSfpg4JNWqFhVU38GEHSDElDUdQGkuVNvi6cWDWdrP5WlAKCv4+6v2LFB6TJZ2XvxZo+hp9/kLncuyXv/Slp+9rOR23vnCtVV+mBB2gBDjznQAJS70pVaRiwe3I/+fLwKCvy5SgXyL0p8Xbk8Cvi/Ppbvh2io/TAg7QIgp7Qu/NGHSBb/UKnrx4Hbkab64qPnrIhXINQH+vnCXN+D76lyWN1xb4YcJYQcIMaV94fdvV08fbtqrYmMUZpPu7NpYd3RNueCXmr8vHlbhq4uaPy5Sgf6eGHhZQ7VIqqGs3b/qspSaatugZqU+f3kCvq/OpSfhOth/mDCooBhU0JsYJC54nD1AW3kHeDvfvlB+7g64GSwC9T3hrcbTlfld5+1zGcgDL5aXu9dvwo4IO97i7x4YQLC70EWNHxMV462LfGV81/n6tbZKuGYEZVSqQOmB4SkuIggE57tVwI+JivNG26jK+K6rjNfaCu1wyoOwA68I5B4YF8JFBIEu2H9MBApvtI3y9XddZb7Wwd4OpzyYLgJe4e7Q9YHGX9MWhNoQ/qgYb081EKq8Md2Mr7/reK19g5odeEWg98Aoiz9qpMqqSeJWWvCo7NcqkLtz+4Ivz29Fb9/46ruu5JirRYaH1GtdWQg78Bpf3AP29UWlsi8iZdUk5R87qac++y+30oKAP257JsdFa2LfFs73SLD8mPBEZZzfit6+8fZ3XWnTt5QMBWHl17oy0RtL9MYKVJV1UanMXglrsg/q1rlrz1lus0nmrMAVjN1Arc5fXXbP/CzYJE3q20J/6N7EZ8/nL1bqEu2uso554X3pbs9fFcrojYWgVpmN9CqzV0JpNUlhOnc042Bp3B1q/HHbs7RZp5/+fLuuv7Se5d4fwdzRwVNlHXNhkUPpTWr7p1AWRANlBKTKbqSXHBet9Ca1ff6FWloDyYl9W3jc4JGGzpXLW41Ty/O6hVKD1UDr6FAZn69AO2aromYHAcnKDTJLq0mKj6lS7gaPdJl3daH2Xd5o/+WNxqnlfd2s/Fk4WyB1dKisz1cgHbOV0WZHtNkJVFYZ4dNd5RkSPhTbNpzPhS5M3r5weTp8v6evG5+F8j++IsHWH5+vQJ1ew13+6k1Kmx0EvVAb4bM8PURCsW1DWS7Uvsub7b/O/EL3pD2Fp68bnwX3eSPY+uPzFcwD/AVDLTNhBwEtmL8AfMmftzYCbTygC12YvHXh8sYXekVeNz4LF+atYBtKtw4rKlhG96aBMhCEvDESrCcWZOWoy8zlunXuWnWZuVwLsnJ8+nzuuFADT280APXWSNv+et1Chbcac/M6uS9YGtBTswPIs9oKf9dwVPatjUD9BXehBp7eaADqzdsavnzdyvOe9Pf71xe8WSMTarcOPRUstWCEHYQ8T25PBMo96sq8tRHI7YQudGGq6IWrPF/o7oQIX7xu5XlPBsr719u83bOJW4fuGdE1Va+s2lXm6N6BEKzpjSV6Y4UyT3pdhGpPqFA97hLu9IjyV4goz2tT3tcxEC5U5RXsPZuCxZnvd0m6tk2S7rqysdo2qFnqNr74TNAbC3CDJ7UVgVzD4UuhPh7IhWqH/HmbrzzvSXe2LQk43/xsD8o523xdIxOMAdDbzn6/S9Lir/P06Td5LpMbB8qtb8IOQpon95uD5R61LwRrOwZvXZzOdxH1Zwguz3vyQtue/Wu9RKC00fI3q94CLK/S3u+S6/skkH4YWqY31l//+lelpKSoatWq6tSpk9atW+fvIiEIeNLrItR7alTW1BreUhk9yHLtx/TLkRN+G/a/PO/J821b2q/1M/mql02wTHtS3l55wXJcniitl2OJkvdJIE2FYYmanQULFuiBBx7QnDlz1KlTJz333HPq06ePtm/froSEBH8XDwHufLUVZdUIBGsNR6ipjGr0s2ckL5nBvrJDcHnek2VtW9av9RK+uFAFU01JeWoqgum4PFESmie//40cZ60reZ8E0q1vSzRQ7tSpky677DK9+OKLkiSHw6EGDRro/vvv16RJky74eBooozRW/7IKBWuyD+rWuWvPWf72XVd4ZUbp0hr7hkl64dZ2at+oZtCF4NKOp4QvpqkItkbv7pY32I6rInLtx/Taqt36+6ofXHpjnfk+8WWD8ZBpoFxUVKQNGzZo8uTJzmVhYWHq1auXMjMz/VgyBLNAalgHz/m6fVVpv/QdkmpViwrK90lpv8QfuuZitbko3icXqkBq0+EOd2sqgu24KiI5LloP92upO7qmlBloAqELf9CHnYMHD6q4uFiJiYkuyxMTE/Xf//631MecOHFCJ06ccP6/oKDAp2VE8AmlLysr83U1uhUbq1fmLdpgPH/unJ9gPK6KCoRAcz6WaaBcHhkZGYqLi3P+NWjQwN9FQoAJpIZ1qJiBlzXUqklX6e27rtCqSVd59TaMVRurV1Yj9GA9fxc6P8F6XFYW9G12ioqKFBMTo/fee0/9+/d3Lh86dKjy8/P10UcfnfOY0mp2GjRoQJsduHBnEDlAYhC7irLq+bPqcQWSkGmzExkZqQ4dOmjZsmXOsONwOLRs2TKNGjWq1MdERUUpKiqqEkuJYESPK7gr0KvwA51Vz59VjysYBX3YkaQHHnhAQ4cOVceOHXX55Zfrueee09GjR3XHHXf4u2gIcnxZAUDws0TYGThwoA4cOKBHH31UeXl5uvTSS/X555+f02gZAACEnqBvs+MNjLMDAEDwcff6HZK9sQAAQOgg7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEuzxHQRFVUyiHRBQYGfSwIAANxVct2+0GQQhB1Jhw8fliQ1aNDAzyUBAADldfjwYcXFxZW5nrmxJDkcDu3du1c1atSQzWZz6zEFBQVq0KCB9uzZE9LzaXEeTuM8cA5KcB5O4zycxnnw7Tkwxujw4cOqV6+ewsLKbplDzY6ksLAwXXTRRR49NjY2NmTfwGfiPJzGeeAclOA8nMZ5OI3z4LtzcL4anRI0UAYAAJZG2AEAAJZG2PFQVFSUpk6dqqioKH8Xxa84D6dxHjgHJTgPp3EeTuM8BMY5oIEyAACwNGp2AACApRF2AACApRF2AACApRF2AACApRF2zjB79my1adPGOfBRenq6PvvsM+f648ePa+TIkapdu7aqV6+uAQMGaN++fS77yMnJUb9+/RQTE6OEhARNmDBBp06dquxD8aqZM2fKZrNp7NixzmWhcC6mTZsmm83m8teiRQvn+lA4B5L0888/67bbblPt2rUVHR2t1q1ba/369c71xhg9+uijSk5OVnR0tHr16qUdO3a47OPQoUMaPHiwYmNjFR8frxEjRujIkSOVfSgeS0lJOee9YLPZNHLkSEmh814oLi7WlClTlJqaqujoaDVp0kSPP/64y7xEofB+OHz4sMaOHatGjRopOjpanTt3VlZWlnO9Fc/BV199peuuu0716tWTzWbThx9+6LLeW8f89ddf68orr1TVqlXVoEEDPf300945AAOnRYsWmU8++cR8//33Zvv27ebhhx82VapUMVu3bjXGGHPPPfeYBg0amGXLlpn169ebK664wnTu3Nn5+FOnTplWrVqZXr16mU2bNplPP/3U1KlTx0yePNlfh1Rh69atMykpKaZNmzZmzJgxzuWhcC6mTp1qLrnkEpObm+v8O3DggHN9KJyDQ4cOmUaNGplhw4aZtWvXmh9++MF88cUXZufOnc5tZs6caeLi4syHH35otmzZYq6//nqTmppqjh075tzmmmuuMW3btjX/+c9/zL///W/TtGlTM2jQIH8ckkf279/v8j5YunSpkWRWrFhhjAmN94IxxsyYMcPUrl3bLF682Ozatcu8++67pnr16ub55593bhMK74ebb77ZpKWlmZUrV5odO3aYqVOnmtjYWPPTTz8ZY6x5Dj799FPzyCOPmIULFxpJ5oMPPnBZ741jttvtJjEx0QwePNhs3brVvP322yY6Otq8/PLLFS4/YecCatasaf7+97+b/Px8U6VKFfPuu+8613333XdGksnMzDTGnH4zhIWFmby8POc2s2fPNrGxsebEiROVXvaKOnz4sGnWrJlZunSp6d69uzPshMq5mDp1qmnbtm2p60LlHEycONF07dq1zPUOh8MkJSWZP/3pT85l+fn5Jioqyrz99tvGGGO+/fZbI8lkZWU5t/nss8+MzWYzP//8s+8K70NjxowxTZo0MQ6HI2TeC8YY069fPzN8+HCXZTfeeKMZPHiwMSY03g+FhYUmPDzcLF682GV5+/btzSOPPBIS5+DssOOtY37ppZdMzZo1XT4TEydONBdffHGFy8xtrDIUFxfrnXfe0dGjR5Wenq4NGzbo5MmT6tWrl3ObFi1aqGHDhsrMzJQkZWZmqnXr1kpMTHRu06dPHxUUFGjbtm2VfgwVNXLkSPXr18/lmCWF1LnYsWOH6tWrp8aNG2vw4MHKycmRFDrnYNGiRerYsaN+//vfKyEhQe3atdPcuXOd63ft2qW8vDyX8xAXF6dOnTq5nIf4+Hh17NjRuU2vXr0UFhamtWvXVt7BeElRUZHeeOMNDR8+XDabLWTeC5LUuXNnLVu2TN9//70kacuWLVq1apX69u0rKTTeD6dOnVJxcbGqVq3qsjw6OlqrVq0KiXNwNm8dc2Zmprp166bIyEjnNn369NH27dv166+/VqiMTAR6lm+++Ubp6ek6fvy4qlevrg8++EBpaWnavHmzIiMjFR8f77J9YmKi8vLyJEl5eXkuX2Yl60vWBZN33nlHGzdudLkPXSIvLy8kzkWnTp00b948XXzxxcrNzdX06dN15ZVXauvWrSFzDn744QfNnj1bDzzwgB5++GFlZWVp9OjRioyM1NChQ53HUdpxnnkeEhISXNZHRESoVq1aQXMezvThhx8qPz9fw4YNkxQ6nwdJmjRpkgoKCtSiRQuFh4eruLhYM2bM0ODBgyUpJN4PNWrUUHp6uh5//HG1bNlSiYmJevvtt5WZmammTZuGxDk4m7eOOS8vT6mpqefso2RdzZo1PS4jYecsF198sTZv3iy73a733ntPQ4cO1cqVK/1drEq1Z88ejRkzRkuXLj3n10soKfm1Kklt2rRRp06d1KhRI/3zn/9UdHS0H0tWeRwOhzp27Kgnn3xSktSuXTtt3bpVc+bM0dChQ/1cOv945ZVX1LdvX9WrV8/fRal0//znP/Xmm2/qrbfe0iWXXKLNmzdr7NixqlevXki9H/7xj39o+PDhql+/vsLDw9W+fXsNGjRIGzZs8HfRUAZuY50lMjJSTZs2VYcOHZSRkaG2bdvq+eefV1JSkoqKipSfn++y/b59+5SUlCRJSkpKOqcHRsn/S7YJBhs2bND+/fvVvn17RUREKCIiQitXrtSsWbMUERGhxMTEkDkXZ4qPj1fz5s21c+fOkHk/JCcnKy0tzWVZy5YtnbfzSo6jtOM88zzs37/fZf2pU6d06NChoDkPJX788Uf961//0p133ulcFirvBUmaMGGCJk2apFtuuUWtW7fWkCFDNG7cOGVkZEgKnfdDkyZNtHLlSh05ckR79uzRunXrdPLkSTVu3DhkzsGZvHXMvvycEHYuwOFw6MSJE+rQoYOqVKmiZcuWOddt375dOTk5Sk9PlySlp6frm2++cXlBly5dqtjY2HMuGIGsZ8+e+uabb7R582bnX8eOHTV48GDnv0PlXJzpyJEjys7OVnJycsi8H7p06aLt27e7LPv+++/VqFEjSVJqaqqSkpJczkNBQYHWrl3rch7y8/NdfvUuX75cDodDnTp1qoSj8J7XXntNCQkJ6tevn3NZqLwXJKmwsFBhYa6XjfDwcDkcDkmh936oVq2akpOT9euvv+qLL77Q7373u5A7B5L3Xvf09HR99dVXOnnypHObpUuX6uKLL67QLSxJdD0/06RJk8zKlSvNrl27zNdff20mTZpkbDabWbJkiTHmdPfShg0bmuXLl5v169eb9PR0k56e7nx8SffS3r17m82bN5vPP//c1K1bN+i6l5bmzN5YxoTGuXjwwQfNl19+aXbt2mVWr15tevXqZerUqWP2799vjAmNc7Bu3ToTERFhZsyYYXbs2GHefPNNExMTY9544w3nNjNnzjTx8fHmo48+Ml9//bX53e9+V2qX03bt2pm1a9eaVatWmWbNmgV0N9vSFBcXm4YNG5qJEyeesy4U3gvGGDN06FBTv359Z9fzhQsXmjp16piHHnrIuU0ovB8+//xz89lnn5kffvjBLFmyxLRt29Z06tTJFBUVGWOseQ4OHz5sNm3aZDZt2mQkmb/85S9m06ZN5scffzTGeOeY8/PzTWJiohkyZIjZunWreeedd0xMTAxdz71t+PDhplGjRiYyMtLUrVvX9OzZ0xl0jDHm2LFj5r777jM1a9Y0MTEx5oYbbjC5ubku+9i9e7fp27eviY6ONnXq1DEPPvigOXnyZGUfitedHXZC4VwMHDjQJCcnm8jISFO/fn0zcOBAl/FlQuEcGGPMxx9/bFq1amWioqJMixYtzN/+9jeX9Q6Hw0yZMsUkJiaaqKgo07NnT7N9+3aXbX755RczaNAgU716dRMbG2vuuOMOc/jw4co8jAr74osvjKRzjs2Y0HkvFBQUmDFjxpiGDRuaqlWrmsaNG5tHHnnEpatwKLwfFixYYBo3bmwiIyNNUlKSGTlypMnPz3eut+I5WLFihZF0zt/QoUONMd475i1btpiuXbuaqKgoU79+fTNz5kyvlN9mzBlDXwIAAFgMbXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAeKRHjx4aO3asv4vhc9OmTdOll17q72IAqADCDoCQVFRUVKnPZ4zRqVOnKvU5AZxG2AFQbsOGDdPKlSv1/PPPy2azyWazaffu3dq6dav69u2r6tWrKzExUUOGDNHBgwedj+vRo4fuv/9+jR07VjVr1lRiYqLmzp2ro0eP6o477lCNGjXUtGlTffbZZ87HfPnll7LZbPrkk0/Upk0bVa1aVVdccYW2bt3qUqZVq1bpyiuvVHR0tBo0aKDRo0fr6NGjzvUpKSl6/PHHdfvttys2NlZ33323JGnixIlq3ry5YmJi1LhxY02ZMsU56/K8efM0ffp0bdmyxXmc8+bN0+7du2Wz2bR582bn/vPz82Wz2fTll1+6lPuzzz5Thw4dFBUVpVWrVsnhcCgjI0OpqamKjo5W27Zt9d5773n7JQJwBsIOgHJ7/vnnlZ6errvuuku5ubnKzc1VjRo1dPXVV6tdu3Zav369Pv/8c+3bt08333yzy2Pnz5+vOnXqaN26dbr//vt177336ve//706d+6sjRs3qnfv3hoyZIgKCwtdHjdhwgQ988wzysrKUt26dXXdddc5Q0l2drauueYaDRgwQF9//bUWLFigVatWadSoUS77+POf/6y2bdtq06ZNmjJliiSpRo0amjdvnr799ls9//zzmjt3rp599llJ0sCBA/Xggw/qkksucR7nwIEDy3WuJk2apJkzZ+q7775TmzZtlJGRoddff11z5szRtm3bNG7cON12221auXJlufYLoBy8Mp0ogJDTvXt3M2bMGOf/H3/8cdO7d2+Xbfbs2eMyU3j37t1N165dnetPnTplqlWrZoYMGeJclpubaySZzMxMY8z/z7b8zjvvOLf55ZdfTHR0tFmwYIExxpgRI0aYu+++2+W5//3vf5uwsDBz7NgxY4wxjRo1Mv3797/gcf3pT38yHTp0cP5/6tSppm3bti7b7Nq1y0gymzZtci779ddfjSSzYsUKl3J/+OGHzm2OHz9uYmJizJo1a1z2N2LECDNo0KALlg2AZyL8GbQAWMeWLVu0YsUKVa9e/Zx12dnZat68uSSpTZs2zuXh4eGqXbu2Wrdu7VyWmJgoSdq/f7/LPtLT053/rlWrli6++GJ99913zuf++uuv9eabbzq3McbI4XBo165datmypSSpY8eO55RtwYIFmjVrlrKzs3XkyBGdOnVKsbGx5T7+spz5nDt37lRhYaF+85vfuGxTVFSkdu3aee05Abgi7ADwiiNHjui6667TU089dc665ORk57+rVKniss5ms7kss9lskiSHw1Gu5/7DH/6g0aNHn7OuYcOGzn9Xq1bNZV1mZqYGDx6s6dOnq0+fPoqLi9M777yjZ5555rzPFxZ2ugWAMca5rOSW2tnOfM4jR45Ikj755BPVr1/fZbuoqKjzPicAzxF2AHgkMjJSxcXFzv+3b99e77//vlJSUhQR4f2vlv/85z/O4PLrr7/q+++/d9bYtG/fXt9++62aNm1arn2uWbNGjRo10iOPPOJc9uOPP7psc/ZxSlLdunUlSbm5uc4amTMbK5clLS1NUVFRysnJUffu3ctVVgCeo4EyAI+kpKRo7dq12r17tw4ePKiRI0fq0KFDGjRokLKyspSdna0vvvhCd9xxxzlhwROPPfaYli1bpq1bt2rYsGGqU6eO+vfvL+l0j6o1a9Zo1KhR2rx5s3bs2KGPPvronAbKZ2vWrJlycnL0zjvvKDs7W7NmzdIHH3xwznHu2rVLmzdv1sGDB3XixAlFR0friiuucDY8Xrlypf74xz9e8Bhq1Kih8ePHa9y4cZo/f76ys7O1ceNGvfDCC5o/f77H5wbA+RF2AHhk/PjxCg8PV1pamurWrauioiKtXr1axcXF6t27t1q3bq2xY8cqPj7eedunImbOnKkxY8aoQ4cOysvL08cff6zIyEhJp9sBrVy5Ut9//72uvPJKtWvXTo8++qjq1at33n1ef/31GjdunEaNGqVLL71Ua9ascfbSKjFgwABdc801uuqqq1S3bl29/fbbkqRXX31Vp06dUocOHTR27Fg98cQTbh3H448/rilTpigjI0MtW7bUNddco08++USpqakenBUA7rCZM286A0CA+fLLL3XVVVfp119/VXx8vL+LAyAIUbMDAAAsjbADAAAsjdtYAADA0qjZAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlvZ/5oPfigwJYygAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJXElEQVR4nO3deXwU9eH/8fcmkJBAEo6cIJAAckO4NaAclYqUnxaxFfHgEGhVqCBqAa0CogZrVay1oFjFowpVEe+DchZBCkKQeKDEYKImQMRsgIQAyef3B99sWXKQbPacfT0fjzweMDO7+5nZ2Zn3fD6f+YzNGGMEAABgESG+LgAAAIA7EW4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4A+MT8+fNls9lqtazNZtP8+fM9Wp6hQ4dq6NChfvt+AGqPcAMEueXLl8tmszn+GjRooFatWmnixIn64YcffF08v5OcnOy0veLj43XxxRfrjTfecMv7FxcXa/78+dqwYYNb3g8IRoQbAJKk++67Ty+++KKWLl2qkSNH6qWXXtKQIUN0/Phxj3zen/70J5WUlHjkvT2tV69eevHFF/Xiiy/qjjvu0I8//qgxY8Zo6dKl9X7v4uJiLViwgHAD1EMDXxcAgH8YOXKk+vXrJ0maMmWKYmNj9dBDD+mtt97S1Vdf7fbPa9CggRo0CMxDUKtWrXT99dc7/j9+/Hh16NBBjz32mG666SYflgyARM0NgGpcfPHFkqSsrCyn6V999ZV+85vfqHnz5mrUqJH69eunt956y2mZkydPasGCBTr//PPVqFEjtWjRQhdddJHWrFnjWKaqPjelpaW67bbbFBcXp6ioKF1xxRX6/vvvK5Vt4sSJSk5OrjS9qvd87rnn9Itf/ELx8fEKDw9X165dtWTJkjpti3NJTExUly5dlJ2dXeNyBw8e1OTJk5WQkKBGjRopNTVVzz//vGP+/v37FRcXJ0lasGCBo+nL0/2NAKsJzMsmAB63f/9+SVKzZs0c0z7//HMNGjRIrVq10pw5c9S4cWP961//0ujRo/X666/ryiuvlHQ6ZKSnp2vKlCkaMGCAioqKtGPHDu3cuVO//OUvq/3MKVOm6KWXXtK1116rgQMHat26dRo1alS91mPJkiXq1q2brrjiCjVo0EBvv/22brnlFpWXl2vatGn1eu8KJ0+eVG5urlq0aFHtMiUlJRo6dKj27dun6dOnKyUlRa+++qomTpyowsJCzZgxQ3FxcVqyZIluvvlmXXnllRozZowkqWfPnm4pJxA0DICg9txzzxlJ5t///rc5dOiQyc3NNa+99pqJi4sz4eHhJjc317HsJZdcYnr06GGOHz/umFZeXm4GDhxozj//fMe01NRUM2rUqBo/d968eebMQ1BGRoaRZG655Ran5a699lojycybN88xbcKECaZt27bnfE9jjCkuLq603IgRI0y7du2cpg0ZMsQMGTKkxjIbY0zbtm3NpZdeag4dOmQOHTpkdu/eba655hojyfzhD3+o9v0WL15sJJmXXnrJMe3EiRMmLS3NNGnSxBQVFRljjDl06FCl9QVQNzRLAZAkDR8+XHFxcWrdurV+85vfqHHjxnrrrbd03nnnSZIOHz6sdevW6eqrr9aRI0dUUFCggoIC/fTTTxoxYoS++eYbx91VTZs21eeff65vvvmm1p//3nvvSZJuvfVWp+kzZ86s13pFREQ4/m2321VQUKAhQ4bo22+/ld1ud+k9P/roI8XFxSkuLk6pqal69dVXdcMNN+ihhx6q9jXvvfeeEhMTNW7cOMe0hg0b6tZbb9XRo0e1ceNGl8oCoDKapQBIkp588kl17NhRdrtdzz77rDZt2qTw8HDH/H379skYo3vuuUf33HNPle9x8OBBtWrVSvfdd59+/etfq2PHjurevbsuu+wy3XDDDTU2r3z33XcKCQlR+/btnaZ36tSpXuv18ccfa968edq6dauKi4ud5tntdsXExNT5PS+44ALdf//9stlsioyMVJcuXdS0adMaX/Pdd9/p/PPPV0iI8zVlly5dHPMBuAfhBoAkacCAAY67pUaPHq2LLrpI1157rfbu3asmTZqovLxcknTHHXdoxIgRVb5Hhw4dJEmDBw9WVlaW3nzzTX300Ud65pln9Nhjj2np0qWaMmVKvcta3eB/ZWVlTv/PysrSJZdcos6dO+vRRx9V69atFRYWpvfee0+PPfaYY53qKjY2VsOHD3fptQA8j3ADoJLQ0FClp6dr2LBh+tvf/qY5c+aoXbt2kk43pdTmxN68eXNNmjRJkyZN0tGjRzV48GDNnz+/2nDTtm1blZeXKysry6m2Zu/evZWWbdasmQoLCytNP7v24+2331ZpaaneeusttWnTxjF9/fr15yy/u7Vt21afffaZysvLnWpvvvrqK8d8qfrgBqD26HMDoEpDhw7VgAEDtHjxYh0/flzx8fEaOnSonnrqKeXl5VVa/tChQ45///TTT07zmjRpog4dOqi0tLTazxs5cqQk6a9//avT9MWLF1datn379rLb7frss88c0/Ly8iqNEhwaGipJMsY4ptntdj333HPVlsNTfvWrXyk/P18rV650TDt16pSeeOIJNWnSREOGDJEkRUZGSlKV4Q1A7VBzA6Bad955p377299q+fLluummm/Tkk0/qoosuUo8ePTR16lS1a9dOBw4c0NatW/X9999r9+7dkqSuXbtq6NCh6tu3r5o3b64dO3botdde0/Tp06v9rF69emncuHH6+9//LrvdroEDB2rt2rXat29fpWWvueYazZ49W1deeaVuvfVWFRcXa8mSJerYsaN27tzpWO7SSy9VWFiYLr/8cv3+97/X0aNHtWzZMsXHx1cZ0Dzpd7/7nZ566ilNnDhRn376qZKTk/Xaa6/p448/1uLFixUVFSXpdAforl27auXKlerYsaOaN2+u7t27q3v37l4tLxDQfH27FgDfqrgVfPv27ZXmlZWVmfbt25v27dubU6dOGWOMycrKMuPHjzeJiYmmYcOGplWrVub//b//Z1577TXH6+6//34zYMAA07RpUxMREWE6d+5sHnjgAXPixAnHMlXdtl1SUmJuvfVW06JFC9O4cWNz+eWXm9zc3Cpvjf7oo49M9+7dTVhYmOnUqZN56aWXqnzPt956y/Ts2dM0atTIJCcnm4ceesg8++yzRpLJzs52LFeXW8HPdZt7de934MABM2nSJBMbG2vCwsJMjx49zHPPPVfptVu2bDF9+/Y1YWFh3BYOuMBmzBn1tQAAAAGOPjcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSCDcAAMBSgm4Qv/Lycv3444+KiopimHMAAAKEMUZHjhxRy5YtKz2A9mxBF25+/PFHtW7d2tfFAAAALsjNzdV5551X4zJBF24qhjjPzc1VdHS0j0sDAABqo6ioSK1bt3acx2sSdOGmoikqOjqacAMAQICpTZcSOhQDAABLIdwAAABLIdwAAABLCbo+NwCA4FFWVqaTJ0/6uhiopbCwsHPe5l0bhBsAgOUYY5Sfn6/CwkJfFwV1EBISopSUFIWFhdXrfQg3AADLqQg28fHxioyMZNDWAFAxyG5eXp7atGlTr++McAMAsJSysjJHsGnRooWvi4M6iIuL048//qhTp06pYcOGLr8PHYoBAJZS0ccmMjLSxyVBXVU0R5WVldXrfQg3AABLoikq8LjrOyPcAAAASyHcAAAAr9iwYYNsNpvH72LzabhJT09X//79FRUVpfj4eI0ePVp79+6t8TXLly+XzWZz+mvUqJGXSlyzPHuJtmQVKM9e4uuiAACC0Pz589WrVy9fF8PnfHq31MaNGzVt2jT1799fp06d0l133aVLL71UX3zxhRo3blzt66Kjo51CkD+0q67cnqO5q/ao3EghNil9TA+N7d/G18UCAKCSkydP1utuJH/n05qbDz74QBMnTlS3bt2Umpqq5cuXKycnR59++mmNr7PZbEpMTHT8JSQkeKnEVcuzlziCjSSVG+muVZnU4AAA6qS8vFzp6elKSUlRRESEUlNT9dprr0n6X5PO2rVr1a9fP0VGRmrgwIGOi/3ly5drwYIF2r17t6NlY/ny5ZJOnzeXLFmiK664Qo0bN9YDDzxQYzkqPuvDDz9U7969FRERoV/84hc6ePCg3n//fXXp0kXR0dG69tprVVxc7HhdaWmpbr31VsXHx6tRo0a66KKLtH37ds9srBr4VZ8bu90uSWrevHmNyx09elRt27ZV69at9etf/1qff/55tcuWlpaqqKjI6c/dsguOOYJNhTJjtL+guOoXAAAChje7HKSnp+uFF17Q0qVL9fnnn+u2227T9ddfr40bNzqWufvuu/XII49ox44datCggW688UZJ0tixY3X77berW7duysvLU15ensaOHet43fz583XllVdqz549jtecy/z58/W3v/1NW7ZsUW5urq6++motXrxYL7/8st5991199NFHeuKJJxzL//GPf9Trr7+u559/Xjt37lSHDh00YsQIHT582E1bqHb8ZhC/8vJyzZw5U4MGDVL37t2rXa5Tp0569tln1bNnT9ntdv3lL3/RwIED9fnnn+u8886rtHx6eroWLFjgyaIrJbaxQmxyCjihNpuSYxljAQACmTe7HJSWlurBBx/Uv//9b6WlpUmS2rVrp82bN+upp57S7373O0nSAw88oCFDhkiS5syZo1GjRun48eOKiIhQkyZN1KBBAyUmJlZ6/2uvvVaTJk2qU5nuv/9+DRo0SJI0efJkzZ07V1lZWWrXrp0k6Te/+Y3Wr1+v2bNn69ixY1qyZImWL1+ukSNHSpKWLVumNWvW6B//+IfuvPNO1zaMC/ym5mbatGnKzMzUihUralwuLS1N48ePV69evTRkyBCtWrVKcXFxeuqpp6pcfu7cubLb7Y6/3Nxct5c9KSZC6WN6KPT/+v6E2mx6cEx3JcVEuP2zAADe4e0uB/v27VNxcbF++ctfqkmTJo6/F154QVlZWY7levbs6fh3UlKSJOngwYPnfP9+/frVuUxnflZCQoIiIyMdwaZiWsVnZ2Vl6eTJk44wJEkNGzbUgAED9OWXX9b5s+vDL2pupk+frnfeeUebNm2qsvalJg0bNlTv3r21b9++KueHh4crPDzcHcWs0dj+bTS4Y5z2FxQrOTaSYAMAAa6mLgeeOMYfPXpUkvTuu++qVatWTvPCw8MdAefMjsAVN9SUl5ef8/1rulGnOmd/1tmdkG02W60+29t8WnNjjNH06dP1xhtvaN26dUpJSanze5SVlWnPnj2O9OpLSTERSmvfgmADABZQ0eXgTJ7sctC1a1eFh4crJydHHTp0cPpr3bp1rd4jLCys3o8ucFX79u0VFhamjz/+2DHt5MmT2r59u7p27erVsvi05mbatGl6+eWX9eabbyoqKkr5+fmSpJiYGEVEnA4I48ePV6tWrZSeni5Juu+++3ThhReqQ4cOKiws1MMPP6zvvvtOU6ZM8dl6AACsp6LLwV2rMlVmjMe7HERFRemOO+7QbbfdpvLycl100UWy2+36+OOPFR0drbZt257zPZKTk5Wdna2MjAydd955ioqK8krrhXS6Zujmm2/WnXfeqebNm6tNmzb685//rOLiYk2ePNkrZajg03CzZMkSSdLQoUOdpj/33HOaOHGiJCknJ0chIf+rYPr55581depU5efnq1mzZurbt6+2bNni9VQIALA+b3c5WLhwoeLi4pSenq5vv/1WTZs2VZ8+fXTXXXfVqvnnqquu0qpVqzRs2DAVFhY6nU+9YdGiRSovL9cNN9ygI0eOqF+/fvrwww/VrFkzr5VBkmzGGHPuxayjqKhIMTExstvtio6O9nVxAABudvz4cWVnZyslJcVvRrBH7dT03dXl/O03d0sBAAC4A+EGAIAgc9NNNzndbn7m30033eTr4tWbX9wKDgAAvOe+++7THXfcUeU8K3TZINwAABBk4uPjFR8f7+tieAzNUgAAwFIINwAAS/LHkXNRM3fdwE2zFADAUsLCwhQSEqIff/xRcXFxCgsLczymAP7LGKNDhw5V+ZiHuiLcAAAsJSQkRCkpKcrLy9OPP/7o6+KgDmw2m8477zyFhobW630INwAAywkLC1ObNm106tQpnz1rCXXXsGHDegcbiXADALCoiuaN+jZxIPDQoRgAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFgK4QYAAFiKT8NNenq6+vfvr6ioKMXHx2v06NHau3fvOV/36quvqnPnzmrUqJF69Oih9957zwulBQAAgcCn4Wbjxo2aNm2aPvnkE61Zs0YnT57UpZdeqmPHjlX7mi1btmjcuHGaPHmydu3apdGjR2v06NHKzMz0YskBAIC/shljjK8LUeHQoUOKj4/Xxo0bNXjw4CqXGTt2rI4dO6Z33nnHMe3CCy9Ur169tHTp0nN+RlFRkWJiYmS32xUdHe22sgMAAM+py/nbr/rc2O12SVLz5s2rXWbr1q0aPny407QRI0Zo69atVS5fWlqqoqIipz8AAGBdfhNuysvLNXPmTA0aNEjdu3evdrn8/HwlJCQ4TUtISFB+fn6Vy6enpysmJsbx17p1a7eWGwAA+Be/CTfTpk1TZmamVqxY4db3nTt3rux2u+MvNzfXre8PAAD8SwNfF0CSpk+frnfeeUebNm3SeeedV+OyiYmJOnDggNO0AwcOKDExscrlw8PDFR4e7rayAgAA/+bTmhtjjKZPn6433nhD69atU0pKyjlfk5aWprVr1zpNW7NmjdLS0jxVTAAAEEB8WnMzbdo0vfzyy3rzzTcVFRXl6DcTExOjiIgISdL48ePVqlUrpaenS5JmzJihIUOG6JFHHtGoUaO0YsUK7dixQ08//bTP1gMAAPgPn9bcLFmyRHa7XUOHDlVSUpLjb+XKlY5lcnJylJeX5/j/wIED9fLLL+vpp59WamqqXnvtNa1evbrGTsgAACB4+NU4N97AODcAAASegB3nBgAAoL4INwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIINwAAwFIIN0Eqz16iLVkFyrOX+LooAAC4VQNfFwDet3J7juau2qNyI4XYpPQxPTS2fxtfFwsAALeg5ibI5NlLHMFGksqNdNeqTGpwAACWQbgJMtkFxxzBpkKZMdpfUOybAgEA4GaEmyCTEttYITbnaaE2m5JjI31TIAAA3IxwE2SSYiKUPqaHQm2nE06ozaYHx3RXUkyEj0sGAIB70KE4CI3t30aDO8Zpf0GxkmMjCTYAAEsh3ASppJgIQg0AwJJolgIAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuLGYPHuJtmQV8JRvAEDQYoRiC1m5PUdzV+1RuZFCbFL6mB4a27+Nr4sFAIBXUXNjEXn2EkewkaRyI921KpMaHABA0CHcWER2wTFHsKlQZoz2FxT7pkAAAPgI4cYiUmIbK8TmPC3UZlNybKRvCgQAgI/4NNxs2rRJl19+uVq2bCmbzabVq1fXuPyGDRtks9kq/eXn53unwH4sKSZC6WN6KNR2OuGE2mx6cEx3nvwNAAg6Pu1QfOzYMaWmpurGG2/UmDFjav26vXv3Kjo62vH/+Ph4TxQv4Izt30aDO8Zpf0GxkmMjCTYAgKDk03AzcuRIjRw5ss6vi4+PV9OmTd1fIAtIiokg1AAAglpA9rnp1auXkpKS9Mtf/lIff/yxr4sTsBgTBwBgRQE1zk1SUpKWLl2qfv36qbS0VM8884yGDh2qbdu2qU+fPlW+prS0VKWlpY7/FxUVeau4fo0xcQAAVhVQ4aZTp07q1KmT4/8DBw5UVlaWHnvsMb344otVviY9PV0LFizwVhEDQnVj4gzuGEeTFgAg4AVks9SZBgwYoH379lU7f+7cubLb7Y6/3NxcL5bOPzEmDgDAygKq5qYqGRkZSkpKqnZ+eHi4wsPDvVgi/1cxJs6ZAYcxcQAAVuHTcHP06FGnWpfs7GxlZGSoefPmatOmjebOnasffvhBL7zwgiRp8eLFSklJUbdu3XT8+HE988wzWrdunT766CNfrUJAqhgT565VmSozhjFxAACWUutwU5eOuGeOQVOTHTt2aNiwYY7/z5o1S5I0YcIELV++XHl5ecrJyXHMP3HihG6//Xb98MMPioyMVM+ePfXvf//b6T1QO4yJAwCwKpsxxpx7MSkkJEQ2m63GZYwxstlsKisrc0vhPKGoqEgxMTGy2+21DmGekGcvUXbBMaXENiZYAABwDnU5f9e65mb9+vX1LhhO4zZsAAA8p9bhZsiQIZ4sR9DgNmwAADzL5Q7FhYWF+sc//qEvv/xSktStWzfdeOONiomJcVvhrKim27AJNwAA1J9L49zs2LFD7du312OPPabDhw/r8OHDevTRR9W+fXvt3LnT3WW0lIrbsM/EbdgAALhPrTsUn+niiy9Whw4dtGzZMjVocLry59SpU5oyZYq+/fZbbdq0ye0FdRd/6FC8cntOpduw6XMDAED16nL+dincREREaNeuXercubPT9C+++EL9+vVTcbH/jnTrD+FGOt33htuwAQConbqcv11qloqOjnYaf6ZCbm6uoqKiXHnLoJMUE6G09i0INgAAuJlL4Wbs2LGaPHmyVq5cqdzcXOXm5mrFihWaMmWKxo0b5+4yAgAA1JpLd0v95S9/kc1m0/jx43Xq1ClJUsOGDXXzzTdr0aJFbi0gAABAXbjU56ZCcXGxsrKyJEnt27dXZKT/3/HjL31uAABA7XlkhOKqREZGqkePHvV5CwAAALdyKdwcP35cTzzxhNavX6+DBw+qvLzcaT5j3QAAAF9xKdxMnjxZH330kX7zm99owIAB53ygJgAAgLe4FG7eeecdvffeexo0aJC7ywMAAFAvLt0K3qpVK8azAQAAfsmlcPPII49o9uzZ+u6779xdHgAAgHpxqVmqX79+On78uNq1a6fIyEg1bNjQaf7hw4fdUjgAAIC6cincjBs3Tj/88IMefPBBJSQk0KEYAAD4DZfCzZYtW7R161alpqa6uzwAAAD14lKfm86dO6ukpMTdZQEAAKg3l8LNokWLdPvtt2vDhg366aefVFRU5PQHAADgKy49Wyok5HQmOruvjTFGNptNZWVl7imdB/BsKQAAAo/Hny21fv16lwoGAADgaS6FmyFDhtRquVtuuUX33XefYmNjXfkYAACAOnOpz01tvfTSS/TBAQAAXuXRcONCdx4AAIB68Wi4AQAA8DbCDQAAsBTCDQAAsBTCDQAAsJQ6h5tTp07pvvvu0/fff3/OZa+//noGygMAAF7l0gjFUVFR2rNnj5KTkz1QJM9ihGIAAAJPXc7fLjVL/eIXv9DGjRtdKhwAAIAnuTRC8ciRIzVnzhzt2bNHffv2VePGjZ3mX3HFFW4pHAAAQF3V68GZVb4hD84EAABu5vEHZ5aXl7tUMAAAAE9zqc/NCy+8oNLS0krTT5w4oRdeeKHehQIAAHCVS81SoaGhysvLU3x8vNP0n376SfHx8TRLAQAAt/L43VLGGNlstkrTv//+e8XExLjylvCRPHuJtmQVKM9e4uuiAADgFnXqc9O7d2/ZbDbZbDZdcsklatDgfy8vKytTdna2LrvsMrcXEp6xcnuO5q7ao3Ijhdik9DE9NLZ/G18XCwCAeqlTuBk9erQkKSMjQyNGjFCTJk0c88LCwpScnKyrrrrKrQWEZ+TZSxzBRpLKjXTXqkwN7hinpJgI3xYOAIB6qFO4mTdvniQpOTlZY8eOVaNGjTxSKHhedsExR7CpUGaM9hcUE24ABLU8e4myC44pJbYxx8MA5dKt4BMmTJB0+u6ogwcPVro1vE0bmjb8XUpsY4XY5BRwQm02JcdG+q5QAOBjNNdbg0sdir/55htdfPHFioiIUNu2bZWSkqKUlBQlJycrJSXF3WWEByTFRCh9TA+F/l/H8FCbTQ+O6c5VCoCgVV1zPTdcBB6Xam4mTpyoBg0a6J133lFSUlKVd07B/43t30aDO8Zpf0GxkmMjCTYAghrN9dbhUrjJyMjQp59+qs6dO7u7PPCypJgIfrQAIJrrrcSlZqmuXbuqoKDA3WUBAMBnaK63DpdGKF63bp3+9Kc/6cEHH1SPHj3UsGFDp/n+PPIvIxSfG3cKAAhmefYSmuv9UF3O3/V+KviZ/W0qRi7m8QuBizsFAAD+yONPBV+/fr1LBYN/Y2A/AIAVuNTnZsiQIQoJCdGyZcs0Z84cdejQQUOGDFFOTo5CQ0PdXUZ4SU13CngKz7YCALibS+Hm9ddf14gRIxQREaFdu3aptLRUkmS32/Xggw+6tYDwnoo7Bc7kyTsFVm7P0aBF63Ttsm0atGidVm7P8cjnAACCi0vh5v7779fSpUu1bNkyp87EgwYN0s6dO91WOHiXN+8UYLAsAICnuNTnZu/evRo8eHCl6TExMSosLKxvmeBD3hrYj8GyAACe4lK4SUxM1L59+5ScnOw0ffPmzWrXrp07ygUf8sbAfgyWBQDwFJeapaZOnaoZM2Zo27Ztstls+vHHH/XPf/5Td9xxh26++WZ3lxEWxGBZAABPcSnczJkzR9dee60uueQSHT16VIMHD9aUKVP0+9//Xn/4wx9q/T6bNm3S5ZdfrpYtW8pms2n16tXnfM2GDRvUp08fhYeHq0OHDlq+fLkrqwA/MLZ/G22eM0yvTL1Qm+cMYzwdAIBbuBRubDab7r77bh0+fFiZmZn65JNPdOjQIS1cuLBO73Ps2DGlpqbqySefrNXy2dnZGjVqlIYNG6aMjAzNnDlTU6ZM0YcffujKasAPJMVEKK19C2psAABu49IIxZ5gs9n0xhtvaPTo0dUuM3v2bL377rvKzMx0TLvmmmtUWFioDz74oFafwwjFAAAEnrqcv12qufGVrVu3avjw4U7TRowYoa1bt/qoRAAAwN+4dLeUr+Tn5yshIcFpWkJCgoqKilRSUqKIiMpNG6WlpY5BBqXTyQ8AAFhXQNXcuCI9PV0xMTGOv9atW/u6SAAAwIMCKtwkJibqwIEDTtMOHDig6OjoKmttJGnu3Lmy2+2Ov9zcXG8UFQAA+EhANUulpaXpvffec5q2Zs0apaWlVfua8PBwhYeHe7poAADAT/i05ubo0aPKyMhQRkaGpNO3emdkZCgn5/QDFOfOnavx48c7lr/pppv07bff6o9//KO++uor/f3vf9e//vUv3Xbbbb4oPgAA8EM+DTc7duxQ79691bt3b0nSrFmz1Lt3b917772SpLy8PEfQkaSUlBS9++67WrNmjVJTU/XII4/omWee0YgRI3xSfgAA4H/8Zpwbb2Gcm+CUZy9RdsExpcQ2ZsBAAAhAdTl/B1SfG8AVK7fnaO6qPSo3UohNSh/Tg0c9AICFBdTdUkBd5dlLHMFGOv0U8rtWZSrPXuLbggEAPIZwA0vLLjjmCDYVyozR/oJi3xQIAOBxhBtYWkpsY4XYnKeF2mxKjo30TYEAAB5HuIGlJcVEKH1MD4XaTiecUJtND47pTqdiALAwOhTD8sb2b6PBHeO0v6BYybGRBBsAsDjCDYJCUkwEoQYAggTNUgAAwFIINwAAwFIINwAAwFIIN6iVPHuJtmQVMPgdAMDv0aEY58TjCwAAgYSaG9SIxxcAAAIN4QY14vEFAIBAQ7hBjXh8AQAg0BBuUCMeXwAACDR0KMY58fgCAEAgIdygVnh8AQAgUNAsBQAALIVwAwAALIVwAwAALIVwAwAALIVwAwAALIVwg2rxsEwAQCDiVnBUiYdlAgACFTU3qISHZQIAAhnhBpXwsEwAQCAj3KASHpYJAAhkhBtUwsMyAQCBjA7FqBIPywQABCrCDarFwzIBAIGIZik/xjgzAADUHTU3fopxZgAAcA01N36IcWYAAHAd4cYPMc4MAACuI9z4IcaZAQDAdYQbP8Q4MwAAuI4OxX6KcWYAAHAN4caPMc4MAAB1R7MUAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMINAACwFMIN4Kfy7CXaklXAA1MBoI4YxA/wQyu35zieDB9ik9LH9NDY/m18XSwACAjU3AB+Js9e4gg2klRupLtWZVKDAwC1RLgB/Ex2wTFHsKlQZoz2FxT7pkAAEGAIN36IvhbBLSW2sUJsztNCbTYlx0b6pkAAEGAIN35m5fYcDVq0Ttcu26ZBi9Zp5fYcXxcJXpYUE6H0MT0UajudcEJtNj04pjsPUQWAWrIZY8y5F7OOoqIixcTEyG63Kzo62tfFcZJnL9GgReucmiRCbTZtnjOME1sQyrOXaH9BsZJjI/n+AQS9upy/uVvKj9TU14KTW/BJionge4dfy7OXKLvgmFJiG7Ovwq8QbvxIRV+Ls2tu6GtRdxx0Ac9iuAL4M/rc+BGr9LXwdYdo+i0BnsVwBfB3fhFunnzySSUnJ6tRo0a64IIL9N///rfaZZcvXy6bzeb016hRIy+W1rPG9m+jzXOG6ZWpF2rznGEBdyXk62DBQdc1vg6kCCwMVwB/5/NmqZUrV2rWrFlaunSpLrjgAi1evFgjRozQ3r17FR8fX+VroqOjtXfvXsf/bTZblcsFqkDta1FdsBjcMc5r60O/pbqjeQF1RRM6/J3Pa24effRRTZ06VZMmTVLXrl21dOlSRUZG6tlnn632NTabTYmJiY6/hIQEL5YY1fGHqznGiKnZmTU0efYSvb37B2q6UGdWaUKHdfm05ubEiRP69NNPNXfuXMe0kJAQDR8+XFu3bq32dUePHlXbtm1VXl6uPn366MEHH1S3bt28UWTUwB+u5ioOunetylSZMRx0z3BmDU1F/qtqHAhqulAbY/u30eCOcQxXAL/k03BTUFCgsrKySjUvCQkJ+uqrr6p8TadOnfTss8+qZ8+estvt+stf/qKBAwfq888/13nnnVdp+dLSUpWWljr+X1RU5N6VgIO/BAsOupWd3WRY0+BW1HShtgK1CR3W5/M+N3WVlpamtLQ0x/8HDhyoLl266KmnntLChQsrLZ+enq4FCxZ4s4hBzV+CBQddZ1U1GVaFmi4AVuDTcBMbG6vQ0FAdOHDAafqBAweUmJhYq/do2LChevfurX379lU5f+7cuZo1a5bj/0VFRWrdurXrhcY5ESz8T1VNhmcKkfTEtb3Vp20zvjsAAc+nHYrDwsLUt29frV271jGtvLxca9eudaqdqUlZWZn27NmjpKSkKueHh4crOjra6Q8INmd3ALVJqrjJMNRmU/pVPTSqZ0uCDWqN4QPgz3zeLDVr1ixNmDBB/fr104ABA7R48WIdO3ZMkyZNkiSNHz9erVq1Unp6uiTpvvvu04UXXqgOHTqosLBQDz/8sL777jtNmTLFl6sB+L2zmwwl+bz5EIGJ4QPg73websaOHatDhw7p3nvvVX5+vnr16qUPPvjA0ck4JydHISH/q2D6+eefNXXqVOXn56tZs2bq27evtmzZoq5du/pqFYBa8/VjIc5uMiTUoK78YTwr4Fx4KjjgJVztwgq2ZBXo2mXbKk1/ZeqFSmvfwgclQrCoy/nb54P4AcHAE4+FoM8DfIGBMhEICDeAF7h79GZfP8MLwYvRiREIfN7nBggG7hy9mT4P8DV/Gc8KqA41N4AXuPNq1x+e4QUkxUQorX0Lgg38EjU3gJe462rXH57hBQD+jJobwIvccbVLnwcAqBk1N0AAGtu/jTonRmn7/p/VP7mZUls383WR4GO+HkMJ8CeEGyAAMWYOzsT+ADijWcrCGAfFmjwxZg4CF/sDJI73Z6PmxqK4krOumu6Wojki+Lhjf6BJK7BxvK+MmhsL4krO2hghFmeq7/7gqwEhqWlwD473VSPcWBDjoFgbd0vhTPXZH2o6MXoyfDDCtvtwvK8azVIWFGjjoFAlXneMEIszubo/VHdifO7jbD3zn2yPNHMwwrbrqjpWBtrx3lsINxZUcSV316pMlRnj11f2tBW7Likmwi+/U/iGK/tDVSfGEJu0bFO2Kia5M3zk2Uv0zmc/0mfMBdUdKwPpeO9NNmOMOfdi1lGXR6YHujx7ic+v7Guqlcmzl2jQonWVrjg2zxkW9D9MwFtWbs9xOjHeeFGylv0nu9Jyr0y9UGntW9Trc86ssTlTdb97anVPq82x0h+O955Wl/M3NTcW5usr+3PVytTlLg8OcoBnnN2kJUn/2Jzt1maOs5uizlRdTQO1uv9Tm2Olr4/3/oZwA4+oTbt6bduKOcghWHkr1J99YnR3M0dVJ2dJumdUF/2qZ1KVFzP0y/mf2hwruQB0RriBR9T2SuNcB1EOctbBwbdufBnq3d1hvbqTc1XBRrLOWE7u2ufPdaz01L4SyL9Zwg08ora1Muc6iFrlIBfsgqn2zR0nhPqEeneeUN31G6trp1cr3AHk6j5f3fdX3bHSUxeAgf6bJdzAI+pyMKvpIGqFg1ywC6baN3edEM41dkl14cWfT0h1qQ0K9DuAXN3nz/X9VXWsdHVf8UT5/QnhBh7jjqrtQD/IIXhq39x5Qqgu1H/2Q6Gue+aTKk9+gXBCqkttUCCP5eTKPu/q9+fKvuKJ8vsbRiiGRyXFRCitfYt6/SDG9m+jzXOG6ZWpF2rznGF+cyUarOo6cm2wPC7CnSPFVjXq8B8v66SH3v+q2mH2rThSbV2OH/70OIeq9nlJ+uz7wmpf4+r3V9t9Ze7re7Q792eXyx9ov1lqbhAQuM3RP7jS7BEstW/ubkI9u+biXFfTvm7C9WXnU39rjkuKidDskZ2V/t5XTtP//MFeXdGrZZXbpz7fX232lXJJo/++RYuC5DdLuAGCwLkGU6zNSak+zR6B3MRQW544IZwd6ms6+fnyhOTLcOGvzXE9WsVUmlZT0059v79z7SuSZILoN0u4ASyuphNPXU5K9W2HD4baN0+eEGpz8vPFCamu4cLdNTz+2j/ElZoYd31/FfvK3Nf3qPysecHymyXcABZW04nnYNFxzXl9T62fIeTrZo9A4ckTQm1Oft4+IdUlXHiihsdf98u61sScGfrq85iLCmP7t1HnxCiN/vsWGT/bNt5AuAEsrNqnPm/er2Wbv9VZszxabQ738Ler6dqGC081H/nzflnbmhhPNeultm6mRS5um/rUsPnD4H+EG/gNf/hBWE2VT32W9Mzmb52u5ip4q9oc1lHbcOHJ5iN/3i/PFUY93WfozG0TGRaiYyfKlGcvqdd4OzXxl87dhBv4BX/5QVhNVSeeyRcl6+kqnvocItXqqs7fag7ge7UJF55uPqppv/TnCydv9BlKionQpq8P1eoYW1XYmvv6HnVOjFJq62Y1fo4/de4m3MDn/OkHYUVVPfX5mbOe+hxik964ZeA5D15wH38+4briXKHXV81H/n7h5I0+Q3U5xtbnNnJ/6txNuIHP+dMPwqrOPvFUdZIh2HiPv59wPcXbzUeBcOHkjdBXl2NsVWFLqt1t5P7UuZtwA5/zpx9EsPDnPgpWFwgnXE/yZrOmOy+cPFnT5unfY12OsfW5jdyfOncTbuAydz592F9+EMGEvjO+UdsTrtWarXzBXRdO3qhp8+Tvsa7H2PrcRu4vF06EG7jE3T92f/lBAJ5WmxPuU5uytOj9r2SCrNnK3dxx4eSJmjZfBNe6HmPrcxu5P1w42Yyp6oZQ6yoqKlJMTIzsdruio6N9XZyAlGcv0aBF6yodnDfPGebzHRoIBCu351Q6aVSEl6c2Zin9fednEvH7qp88e4nLF05bsgp07bJtlaa/MvVClwbbC7T+VvXZdu5Wl/M3NTeoMzoAA/VT3VV0nr1Ei84KNhK/r/qqT02CO/sEBmJ/K3+ohXFFiK8LgMBT8WM/Ex2AYVV59hJtySpQnr3Ere+bFBOhtPYtnE4c2QXHKo0aLZ2+wuf35RsVTVuhttMHvfr0CazpwhDuRc0N6owOwAgW3m5CqO423NkjO/P78iF39QnkzlDvoc8NXObptljuFoGr3LHv+Kpv2Zn9cUJ0Otj8fkh7j32e1fnbcaSm/laoGX1u4BWebIsNtE538B/u2nd81beMOwfdxx+PI3y/3kGfG/id6jrdubvPA6zHnfuOL/uWVdUfB3Xjz8eRQP1+PdX/zBMIN/A7dLqDq9y577izIym8j+OIe63cnqNBi9bp2mXbNGjROq3cnuPrItWIZin4HW89SM6f2uHhHu7ed2hCCFx03nWfQLyFnZob+B1PXzEH2hUIas8T+06gNiEEO2re3CcQa8G4Wwp+yxN3YzG6cnDwp1FV4VvsC/XnL8dN7paCJXjibixGVw4OgTqqKtyPfaH+AnFsM8INggrt8MHB3/pU+Vt5UDW+p+qd3f9MOv3cLX/dVoQbBJVAvAKpwIG3dvxtbBN/Kw+qxvd0bhW1YIGwrehzg6Dk63b4ugaVQDiY+AN/6Rvgr+VB1fieas+X24o+N8A5+LIdvq5BJRBvw/QVf+tT5W/lsSJ31GjyPdVeoGwrwg1wBk83/bgSVALlYOIP/K1Plb+Vxx/V5zfnrhpNvqfaC5RtxTg3wP/x1Pg3Zw5Z7sp4Eb58DECg8cXYJjUNSc9YKzWrz2/OnY9X4HuqvUDZVtTcAPJc08/ZV5azL+tc56ueQO4E7QveHFW4NjUHjHJctfr+5txdo+mO7ylYOv0Hwj5NuAHkmaafqg7ef/5gr2aP7Kw/v7+3TkElEA4m/sRdfapqOlnV5eTMWCv/U7FNDx87Ua/fnCeaR+rzPQVbp39/36cJN4Bqd6Cs61VZdYGpZ6um2jxnWJ2Dir8fTLzN01fJ5zpZWakvVMW2bBwWqmMnyryyTW06/XfmJqxLOPGnGs1g6/QfCDVUhBtA5z5QunJVVlNgIqjUj6evkmtzsvJ1x0p3nWDO3JYVvLFNjU6Hm4pt6Eo48ZcaTSsF3XMJlBoqwg2CTnUnheoOlK5elfnTlaWVeOMq+Vwnq4p9yJUmRndw5QRT1X5/9ras4K1taiQ9cU1vtWgS7nI48YcLBV8HXW8JpBoqvwg3Tz75pB5++GHl5+crNTVVTzzxhAYMGFDt8q+++qruuece7d+/X+eff74eeugh/epXv/JiiRGoznVSqOpAWZ+rMn+5sqwPf6uC9sZVck0nq6o6ifc8r6nXvl9XTjDV7fdVbcsK3tqmfZOb+cV+VZ3a7P/BciETSDVUPr8VfOXKlZo1a5bmzZunnTt3KjU1VSNGjNDBgwerXH7Lli0aN26cJk+erF27dmn06NEaPXq0MjMzvVxyBBpXbx2t763YSTERSmvfwu9+/LXhqdvj68Mbt8ZXd7urpCo7iXszuNZ1OIGa9vuqtmUFb21Tf/5d1GX/H9u/jTbPGaZXpl6ozXOG+WVTTX0F0rAUPg83jz76qKZOnapJkyapa9euWrp0qSIjI/Xss89Wufzjjz+uyy67THfeeae6dOmihQsXqk+fPvrb3/7m5ZIj0LgyxowUmAdld3DnOCLu5K3vo6qTlav7kDvV9QRzrqvtM7flme/nrW3qr1zZ/wP5QqY2AulY6NNmqRMnTujTTz/V3LlzHdNCQkI0fPhwbd26tcrXbN26VbNmzXKaNmLECK1evbrK5UtLS1VaWur4f1FRUf0LjoBUn3ZxKzQv1ZU/V0F76/s4u5nSH/pW1LUJ5FxlPnNbRoaFqPhEuVe3qb/y5/3flwLlWOjTcFNQUKCysjIlJCQ4TU9ISNBXX31V5Wvy8/OrXD4/P7/K5dPT07VgwQL3FBgBrb7t4oFyUHYXfziR18QX34e/9K2oywmmNmUOtn27Nvx9//elQNhf/KJDsSfNnTvXqaanqKhIrVu39mGJ4EuBctXhD/zlRO5v/GUfqssJxl/KHEjY/wObT8NNbGysQkNDdeDAAafpBw4cUGJiYpWvSUxMrNPy4eHhCg8Pd0+BYQmBcNXhLzgpVi0Q96FALLOvsf8HLp92KA4LC1Pfvn21du1ax7Ty8nKtXbtWaWlpVb4mLS3NaXlJWrNmTbXLA6gfq3eSBGrC/h+YfN4sNWvWLE2YMEH9+vXTgAEDtHjxYh07dkyTJk2SJI0fP16tWrVSenq6JGnGjBkaMmSIHnnkEY0aNUorVqzQjh079PTTT/tyNQAAgJ/webgZO3asDh06pHvvvVf5+fnq1auXPvjgA0en4ZycHIWE/K+CaeDAgXr55Zf1pz/9SXfddZfOP/98rV69Wt27d/fVKgAAAD9iM8ZUMz6lNRUVFSkmJkZ2u13R0dG+Lg4AAKiFupy/fT6IHwAAgDsRbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKX4fIRib6sYs7CoqMjHJQEAALVVcd6uzdjDQRdujhw5Iklq3bq1j0sCAADq6siRI4qJialxmaB7/EJ5ebl+/PFHRUVFyWaz1fp1RUVFat26tXJzc4P6sQ1sB7ZBBbbDaWwHtkEFtsNpntoOxhgdOXJELVu2dHrmZFWCruYmJCRE5513nsuvj46ODuqdtgLbgW1Qge1wGtuBbVCB7XCaJ7bDuWpsKtChGAAAWArhBgAAWArhppbCw8M1b948hYeH+7ooPsV2YBtUYDucxnZgG1RgO5zmD9sh6DoUAwAAa6PmBgAAWArhBgAAWArhBgAAWArhBgAAWEpQh5slS5aoZ8+ejoGG0tLS9P777zvmHz9+XNOmTVOLFi3UpEkTXXXVVTpw4IDTe+Tk5GjUqFGKjIxUfHy87rzzTp06dcrbq+I2ixYtks1m08yZMx3TgmE7zJ8/Xzabzemvc+fOjvnBsA0q/PDDD7r++uvVokULRUREqEePHtqxY4djvjFG9957r5KSkhQREaHhw4frm2++cXqPw4cP67rrrlN0dLSaNm2qyZMn6+jRo95eFZclJydX2h9sNpumTZsmKTj2h7KyMt1zzz1KSUlRRESE2rdvr4ULFzo91ycY9gXp9HD/M2fOVNu2bRUREaGBAwdq+/btjvlW3A6bNm3S5ZdfrpYtW8pms2n16tVO8921zp999pkuvvhiNWrUSK1bt9af//xn96yACWJvvfWWeffdd83XX39t9u7da+666y7TsGFDk5mZaYwx5qabbjKtW7c2a9euNTt27DAXXnihGThwoOP1p06dMt27dzfDhw83u3btMu+9956JjY01c+fO9dUq1ct///tfk5ycbHr27GlmzJjhmB4M22HevHmmW7duJi8vz/F36NAhx/xg2AbGGHP48GHTtm1bM3HiRLNt2zbz7bffmg8//NDs27fPscyiRYtMTEyMWb16tdm9e7e54oorTEpKiikpKXEsc9lll5nU1FTzySefmP/85z+mQ4cOZty4cb5YJZccPHjQaV9Ys2aNkWTWr19vjAmO/eGBBx4wLVq0MO+8847Jzs42r776qmnSpIl5/PHHHcsEw75gjDFXX3216dq1q9m4caP55ptvzLx580x0dLT5/vvvjTHW3A7vvfeeufvuu82qVauMJPPGG284zXfHOtvtdpOQkGCuu+46k5mZaV555RUTERFhnnrqqXqXP6jDTVWaNWtmnnnmGVNYWGgaNmxoXn31Vce8L7/80kgyW7duNcac/vJDQkJMfn6+Y5klS5aY6OhoU1pa6vWy18eRI0fM+eefb9asWWOGDBniCDfBsh3mzZtnUlNTq5wXLNvAGGNmz55tLrroomrnl5eXm8TERPPwww87phUWFprw8HDzyiuvGGOM+eKLL4wks337dscy77//vrHZbOaHH37wXOE9aMaMGaZ9+/amvLw8aPaHUaNGmRtvvNFp2pgxY8x1111njAmefaG4uNiEhoaad955x2l6nz59zN133x0U2+HscOOudf773/9umjVr5vSbmD17tunUqVO9yxzUzVJnKisr04oVK3Ts2DGlpaXp008/1cmTJzV8+HDHMp07d1abNm20detWSdLWrVvVo0cPJSQkOJYZMWKEioqK9Pnnn3t9Hepj2rRpGjVqlNP6Sgqq7fDNN9+oZcuWateuna677jrl5ORICq5t8NZbb6lfv3767W9/q/j4ePXu3VvLli1zzM/OzlZ+fr7TtoiJidEFF1zgtC2aNm2qfv36OZYZPny4QkJCtG3bNu+tjJucOHFCL730km688UbZbLag2R8GDhyotWvX6uuvv5Yk7d69W5s3b9bIkSMlBc++cOrUKZWVlalRo0ZO0yMiIrR58+ag2Q5nctc6b926VYMHD1ZYWJhjmREjRmjv3r36+eef61XGoHtw5tn27NmjtLQ0HT9+XE2aNNEbb7yhrl27KiMjQ2FhYWratKnT8gkJCcrPz5ck5efnOx28KuZXzAsUK1as0M6dO53akCvk5+cHxXa44IILtHz5cnXq1El5eXlasGCBLr74YmVmZgbNNpCkb7/9VkuWLNGsWbN01113afv27br11lsVFhamCRMmONalqnU9c1vEx8c7zW/QoIGaN28eUNuiwurVq1VYWKiJEydKCp7fxJw5c1RUVKTOnTsrNDRUZWVleuCBB3TddddJUtDsC1FRUUpLS9PChQvVpUsXJSQk6JVXXtHWrVvVoUOHoNkOZ3LXOufn5yslJaXSe1TMa9asmctlDPpw06lTJ2VkZMhut+u1117ThAkTtHHjRl8Xy2tyc3M1Y8YMrVmzptKVSTCpuBqVpJ49e+qCCy5Q27Zt9a9//UsRERE+LJl3lZeXq1+/fnrwwQclSb1791ZmZqaWLl2qCRMm+Lh0vvGPf/xDI0eOVMuWLX1dFK/617/+pX/+8596+eWX1a1bN2VkZGjmzJlq2bJl0O0LL774om688Ua1atVKoaGh6tOnj8aNG6dPP/3U10VDNYK+WSosLEwdOnRQ3759lZ6ertTUVD3++ONKTEzUiRMnVFhY6LT8gQMHlJiYKElKTEysdIdExf8rlvF3n376qQ4ePKg+ffqoQYMGatCggTZu3Ki//vWvatCggRISEoJiO5ytadOm6tixo/bt2xc0+4IkJSUlqWvXrk7TunTp4miiq1iXqtb1zG1x8OBBp/mnTp3S4cOHA2pbSNJ3332nf//735oyZYpjWrDsD3feeafmzJmja665Rj169NANN9yg2267Tenp6ZKCa19o3769Nm7cqKNHjyo3N1f//e9/dfLkSbVr1y6otkMFd62zJ38nQR9uzlZeXq7S0lL17dtXDRs21Nq1ax3z9u7dq5ycHKWlpUmS0tLStGfPHqcvcM2aNYqOjq50gvBXl1xyifbs2aOMjAzHX79+/XTdddc5/h0M2+FsR48eVVZWlpKSkoJmX5CkQYMGae/evU7Tvv76a7Vt21aSlJKSosTERKdtUVRUpG3btjlti8LCQqer2nXr1qm8vFwXXHCBF9bCfZ577jnFx8dr1KhRjmnBsj8UFxcrJMT5FBEaGqry8nJJwbcvSFLjxo2VlJSkn3/+WR9++KF+/etfB+V2cNc6p6WladOmTTp58qRjmTVr1qhTp071apKSFNy3gs+ZM8ds3LjRZGdnm88++8zMmTPH2Gw289FHHxljTt/u2aZNG7Nu3TqzY8cOk5aWZtLS0hyvr7jd89JLLzUZGRnmgw8+MHFxcQF1u2dVzrxbypjg2A6333672bBhg8nOzjYff/yxGT58uImNjTUHDx40xgTHNjDm9HAADRo0MA888ID55ptvzD//+U8TGRlpXnrpJccyixYtMk2bNjVvvvmm+eyzz8yvf/3rKm8B7d27t9m2bZvZvHmzOf/88/36tteqlJWVmTZt2pjZs2dXmhcM+8OECRNMq1atHLeCr1q1ysTGxpo//vGPjmWCZV/44IMPzPvvv2++/fZb89FHH5nU1FRzwQUXmBMnThhjrLkdjhw5Ynbt2mV27dplJJlHH33U7Nq1y3z33XfGGPesc2FhoUlISDA33HCDyczMNCtWrDCRkZHcCl5fN954o2nbtq0JCwszcXFx5pJLLnEEG2OMKSkpMbfccotp1qyZiYyMNFdeeaXJy8tzeo/9+/ebkSNHmoiICBMbG2tuv/12c/LkSW+viludHW6CYTuMHTvWJCUlmbCwMNOqVSszduxYp7FdgmEbVHj77bdN9+7dTXh4uOncubN5+umnneaXl5ebe+65xyQkJJjw8HBzySWXmL179zot89NPP5lx48aZJk2amOjoaDNp0iRz5MgRb65GvX344YdGUqV1MyY49oeioiIzY8YM06ZNG9OoUSPTrl07c/fddzvdthss+8LKlStNu3btTFhYmElMTDTTpk0zhYWFjvlW3A7r1683kir9TZgwwRjjvnXevXu3ueiii0x4eLhp1aqVWbRokVvKbzPmjOEmAQAAAhx9bgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgDUytChQzVz5kxfF8Pj5s+fr169evm6GADqgXADICicOHHCq59njNGpU6e8+pkATiPcADiniRMnauPGjXr88cdls9lks9m0f/9+ZWZmauTIkWrSpIkSEhJ0ww03qKCgwPG6oUOH6g9/+INmzpypZs2aKSEhQcuWLdOxY8c0adIkRUVFqUOHDnr//fcdr9mwYYNsNpveffdd9ezZU40aNdKFF16ozMxMpzJt3rxZF198sSIiItS6dWvdeuutOnbsmGN+cnKyFi5cqPHjxys6Olq/+93vJEmzZ89Wx44dFRkZqXbt2umee+5xPJV4+fLlWrBggXbv3u1Yz+XLl2v//v2y2WzKyMhwvH9hYaFsNps2bNjgVO73339fffv2VXh4uDZv3qzy8nKlp6crJSVFERERSk1N1WuvveburwjAGQg3AM7p8ccfV1pamqZOnaq8vDzl5eUpKipKv/jFL9S7d2/t2LFDH3zwgQ4cOKCrr77a6bXPP/+8YmNj9d///ld/+MMfdPPNN+u3v/2tBg4cqJ07d+rSSy/VDTfcoOLiYqfX3XnnnXrkkUe0fft2xcXF6fLLL3eEkKysLF122WW66qqr9Nlnn2nlypXavHmzpk+f7vQef/nLX5Samqpdu3bpnnvukSRFRUVp+fLl+uKLL/T4449r2bJleuyxxyRJY8eO1e23365u3bo51nPs2LF12lZz5szRokWL9OWXX6pnz55KT0/XCy+8oKVLl+rzzz/Xbbfdpuuvv14bN26s0/sCqAO3PH4TgOWd/bT4hQsXmksvvdRpmdzcXKcnaQ8ZMsRcdNFFjvmnTp0yjRs3NjfccINjWl5enpFktm7daoz539OIV6xY4Vjmp59+MhEREWblypXGGGMmT55sfve73zl99n/+8x8TEhJiSkpKjDHGtG3b1owePfqc6/Xwww+bvn37Ov4/b948k5qa6rRMdna2kWR27drlmPbzzz8bSWb9+vVO5V69erVjmePHj5vIyEizZcsWp/ebPHmyGTdu3DnLBsA1DXwZrAAErt27d2v9+vVq0qRJpXlZWVnq2LGjJKlnz56O6aGhoWrRooV69OjhmJaQkCBJOnjwoNN7pKWlOf7dvHlzderUSV9++aXjsz/77DP985//dCxjjFF5ebmys7PVpUsXSVK/fv0qlW3lypX661//qqysLB09elSnTp1SdHR0nde/Omd+5r59+1RcXKxf/vKXTsucOHFCvXv3dttnAnBGuAHgkqNHj+ryyy/XQw89VGleUlKS498NGzZ0mmez2Zym2Ww2SVJ5eXmdPvv3v/+9br311krz2rRp4/h348aNneZt3bpV1113nRYsWKARI0YoJiZGK1as0COPPFLj54WEnG7BN8Y4plU0kZ3tzM88evSoJOndd99Vq1atnJYLDw+v8TMBuI5wA6BWwsLCVFZW5vh/nz599Prrrys5OVkNGrj/UPLJJ584gsrPP/+sr7/+2lEj06dPH33xxRfq0KFDnd5zy5Ytatu2re6++27HtO+++85pmbPXU5Li4uIkSXl5eY4alzM7F1ena9euCg8PV05OjoYMGVKnsgJwHR2KAdRKcnKytm3bpv3796ugoEDTpk3T4cOHNW7cOG3fvl1ZWVn68MMPNWnSpErhwBX33Xef1q5dq8zMTE2cOFGxsbEaPXq0pNN3PG3ZskXTp09XRkaGvvnmG7355puVOhSf7fzzz1dOTo5WrFihrKws/fWvf9Ubb7xRaT2zs7OVkZGhgoIClZaWKiIiQhdeeKGjo/DGjRv1pz/96ZzrEBUVpTvuuEO33Xabnn/+eWVlZWnnzp164okn9Pzzz7u8bQDUjHADoFbuuOMOhYaGqmvXroqLi9OJEyf08ccfq6ysTJdeeql69OihmTNnqmnTpo5mnPpYtGiRZsyYob59+yo/P19vv/22wsLCJJ3ux7Nx40Z9/fXXuvjii9W7d2/de++9atmyZY3vecUVV+i2227T9OnT1atXL23ZssVxF1WFq666SpdddpmGDRumuLg4vfLKK5KkZ599VqdOnVLfvn01c+ZM3X///bVaj4ULF+qee+5Renq6unTpossuu0zvvvuuUlJSXNgqAGrDZs5sRAYAH9uwYYOGDRumn3/+WU2bNvV1cQAEIGpuAACApRBuAACApdAsBQAALIWaGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCn/Hwm4xhZQNiCSAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" } - ], - "source": [ - "# visualize with IDAES surrogate plotting tools\n", - "surrogate_scatter2D(poly_surr, data_validation, filename=\"pysmo_poly_val_scatter2D.pdf\")\n", - "surrogate_parity(poly_surr, data_validation, filename=\"pysmo_poly_val_parity.pdf\")\n", - "surrogate_residual(poly_surr, data_validation, filename=\"pysmo_poly_val_residual.pdf\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the surrogate is trained and validated, we shall embed it in the property package, which is demonstrated in the [surrogate_embedding](./surrogate_embedding_usr.ipynb) file." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding.ipynb index 18c47c59..6d115998 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "f51679f9", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": null, @@ -488,8 +515,7 @@ "metadata": { "language_info": { "name": "python" - }, - "orig_nbformat": 4 + } }, "nbformat": 4, "nbformat_minor": 2 diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding_doc.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding_doc.ipynb index aac02d9c..f29ac8d3 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding_doc.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding_doc.ipynb @@ -2,7 +2,33 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -60,7 +86,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -141,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -212,7 +238,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -336,7 +362,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -481,16 +507,24 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_doc.ipynb). To learn in detail about making a custom property package, one should go through [Property Package Example](../../../properties/custom/custom_physical_property_packages_doc.ipynb). " + "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_doc.md). To learn in detail about making a custom property package, one should go through [Property Package Example](../../../properties/custom/custom_physical_property_packages_doc.md). " ] } ], "metadata": { "language_info": { - "name": "python" - }, - "orig_nbformat": 4 + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding_test.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding_test.ipynb index e2b362b7..a3ee9ef5 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding_test.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding_test.ipynb @@ -1,498 +1,521 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "##############################################################################\n", - "# Institute for the Design of Advanced Energy Systems Process Systems\n", - "# Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the\n", - "# software owners: The Regents of the University of California, through\n", - "# Lawrence Berkeley National Laboratory, National Technology & Engineering\n", - "# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia\n", - "# University Research Corporation, et al. All rights reserved.\n", - "#\n", - "# Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and\n", - "# license information, respectively. Both files are also available online\n", - "# at the URL \"https://github.com/IDAES/idaes-pse\".\n", - "##############################################################################" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "##############################################################################\n", + "# Institute for the Design of Advanced Energy Systems Process Systems\n", + "# Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the\n", + "# software owners: The Regents of the University of California, through\n", + "# Lawrence Berkeley National Laboratory, National Technology & Engineering\n", + "# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia\n", + "# University Research Corporation, et al. All rights reserved.\n", + "#\n", + "# Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and\n", + "# license information, respectively. Both files are also available online\n", + "# at the URL \"https://github.com/IDAES/idaes-pse\".\n", + "##############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with PySMO Surrogate Object - Embedding Surrogate (Part 2)\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "## 1. Integration of Surrogate into Custom Property Package\n", + "\n", + "Here we shall see how to integrate the trained surrogate in the custom property package. One can read more about making a properties package from read the docs. To integrate the surrogate we first define the physical parameter block which will return the properties based on the state variables. State variables would be called from the State Block as Pyomo variables. We will define the surrogate input and output as pyomo variables as well. Once we have defined the variables in the state block then we define our surrogate block.\n", + "\n", + "*NOTE:* For ease of explanation the property package is written in \".ipynb\" format, ideally it should be in a python script. Each class of this package is separated in different cell for the same reason, in practice all the classes in this notebook should be part of the same python script. This folder includes \"properties.py\" file which is how embedding file should look like. \n", + "\n", + "### 1.1 Steps in Creating a Property Package\n", + "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", + "\n", + "1. Defining the **units of measurement** for the property package.\n", + "2. Defining the **properties supported** by the property package and the associated metadata.\n", + "3. Defining the **phases and components** of interest.\n", + "4. Defining the necessary **parameters** required to calculate the properties of interest.\n", + "5. Declaring the **state variables** to be used for the property package.\n", + "6. Creating **variables and constraints** to describe the properties of interest.\n", + "7. Creating an **initialization routine** for the property package.\n", + "8. Defining **interface methods** used to couple the property package with unit models." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Importing libraries for making Property Package\n", + "\n", + "To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries. We shall also use the Surrogate API in the IDAES framework to embed the trained surrogate in the property package." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Python libraries\n", + "import logging\n", + "\n", + "# Import Pyomo libraries\n", + "from pyomo.environ import (\n", + " Constraint,\n", + " Param,\n", + " Reals,\n", + " Set,\n", + " value,\n", + " Var,\n", + " NonNegativeReals,\n", + " units,\n", + ")\n", + "from pyomo.opt import SolverFactory, TerminationCondition\n", + "\n", + "# Import IDAES cores\n", + "from idaes.core import (\n", + " declare_process_block_class,\n", + " PhysicalParameterBlock,\n", + " StateBlockData,\n", + " StateBlock,\n", + " MaterialBalanceType,\n", + " EnergyBalanceType,\n", + " LiquidPhase,\n", + " Component,\n", + ")\n", + "from idaes.core.util.initialization import solve_indexed_blocks\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.misc import extract_data\n", + "from idaes.core.solvers import get_solver\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", + "from idaes.core.surrogate.pysmo_surrogate import PysmoSurrogate\n", + "\n", + "from pyomo.util.model_size import build_model_size_report\n", + "\n", + "# Some more information about this module\n", + "__author__ = \"Javal Vyas\"\n", + "\n", + "\n", + "# Set up logger\n", + "_log = logging.getLogger(__name__)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3 Defining Classes\n", + "\n", + "We shall be going through each class of the property package in detail. Since there are not reactions occurring in the flowsheet we shall only write the Physical Parameter Block.\n", + "\n", + "## 3.1 Physical Parameter Block\n", + "\n", + "The Physical Parameter Block serves as the central point of reference for all aspects of the property package, and needs to define a number of things about the package. These are summarized below:\n", + "\n", + "* Units of measurement\n", + "* What properties are supported and how they are implemented\n", + "* What components and phases are included in the packages\n", + "* All the global parameters necessary for calculating properties\n", + "* A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", + "\n", + "To assemble the above mentioned things in a class we need to follow the following steps:\n", + "\n", + "* Declaring the new class and inheriting from the PhysicalParameterBlock base class\n", + "* Declaring any necessary configuration arguments\n", + "* Writing the build method for our class\n", + "* Creating a define_metadata method for the class.\n", + "\n", + "The code below follows the above mentioned steps. \n", + "\n", + "*NOTE*: The SCO2StateBlock will be discussed in the next section." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"SCO2ParameterBlock\")\n", + "class PhysicalParameterData(PhysicalParameterBlock):\n", + " \"\"\"\n", + " Property Parameter Block Class\n", + "\n", + " Contains parameters and indexing sets associated with properties for\n", + " supercritical CO2.\n", + "\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction.\n", + " \"\"\"\n", + " super(PhysicalParameterData, self).build()\n", + "\n", + " self._state_block_class = SCO2StateBlock\n", + "\n", + " # List of valid phases in property package\n", + " self.Liq = LiquidPhase()\n", + "\n", + " # Component list - a list of component identifiers\n", + " self.CO2 = Component()\n", + "\n", + " @classmethod\n", + " def define_metadata(cls, obj):\n", + " obj.add_properties(\n", + " {\n", + " \"flow_mol\": {\"method\": None, \"units\": \"kmol/s\"},\n", + " \"pressure\": {\"method\": None, \"units\": \"MPa\"},\n", + " \"temperature\": {\"method\": None, \"units\": \"K\"},\n", + " \"enth_mol\": {\"method\": None, \"units\": \"kJ/kmol\"},\n", + " \"entr_mol\": {\"method\": None, \"units\": \"kJ/kmol/K\"},\n", + " }\n", + " )\n", + "\n", + " obj.add_default_units(\n", + " {\n", + " \"time\": units.s,\n", + " \"length\": units.m,\n", + " \"mass\": units.kg,\n", + " \"amount\": units.mol,\n", + " \"temperature\": units.K,\n", + " }\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.2 State Block\n", + "\n", + "After the Physical Parameter Block class has been created, the next step is to write the code necessary to create the State Blocks that will be used through out the flowsheet.\n", + "\n", + "For this example, we will begin by describing the content of the StateBlockData objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. \n", + "\n", + "We start by defining the 5 state variables: flow_mol, pressure, temperature, enth_mol and entr_mol as the Pyomo Var, each of this variable has a unit for unit consistency. This is done in _make_state_vars function. We get the enth_mol and entr_mol variables from trained surrogate which we define in this function as well. To get the output variables from the surrogate:\n", + "\n", + "1. Define the input and output variables to the trained surrogate\n", + "2. Load the surrogate from the folder it is saved in, here it is saved in the folder called pysmo_surrogate (look at the pysmo_training_test.ipynb file) using the PySMO Surrogate API of IDAES package\n", + "3. Define a `SurrogateBlock` and call the build_model method on the block with the input variables, output variables, model formulation and the loaded surrogate as the arguments. \n", + "4. Define the constraints necessary for ensuring physical feasibility of the system like the mass balance and energy balance. Check for the state variables to be within the bounds. \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"SCO2StateBlock\", block_class=StateBlock)\n", + "class SCO2StateBlockData(StateBlockData):\n", + " \"\"\"\n", + " An example property package for ideal gas properties with Gibbs energy\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction\n", + " \"\"\"\n", + " super(SCO2StateBlockData, self).build()\n", + " self._make_state_vars()\n", + "\n", + " def _make_state_vars(self):\n", + "\n", + " self.flow_mol = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=1.0,\n", + " units=units.kmol / units.s,\n", + " doc=\"Total molar flowrate [kmol/s]\",\n", + " )\n", + " self.pressure = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=8,\n", + " bounds=(7.38, 40),\n", + " units=units.MPa,\n", + " doc=\"State pressure [MPa]\",\n", + " )\n", + "\n", + " self.temperature = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=350,\n", + " bounds=(304.2, 760 + 273.15),\n", + " units=units.K,\n", + " doc=\"State temperature [K]\",\n", + " )\n", + "\n", + " self.entr_mol = Var(\n", + " domain=Reals,\n", + " initialize=10,\n", + " units=units.kJ / units.kmol / units.K,\n", + " doc=\"Entropy [kJ/ kmol / K]\",\n", + " )\n", + "\n", + " self.enth_mol = Var(\n", + " domain=Reals,\n", + " initialize=1,\n", + " units=units.kJ / units.kmol,\n", + " doc=\"Enthalpy [kJ/ kmol]\",\n", + " )\n", + "\n", + " inputs = [self.pressure, self.temperature]\n", + " outputs = [self.enth_mol, self.entr_mol]\n", + " self.pysmo_surrogate = PysmoSurrogate.load_from_file(\n", + " \"pysmo_poly_surrogate.json\"\n", + " )\n", + " self.surrogate_enth = SurrogateBlock()\n", + " self.surrogate_enth.build_model(\n", + " self.pysmo_surrogate,\n", + " input_vars=inputs,\n", + " output_vars=outputs,\n", + " )\n", + "\n", + " def get_material_flow_terms(self, p, j):\n", + " return self.flow_mol\n", + "\n", + " def get_enthalpy_flow_terms(self, p):\n", + " return self.flow_mol * self.enth_mol\n", + "\n", + " def default_material_balance_type(self):\n", + " return MaterialBalanceType.componentTotal\n", + "\n", + " def default_energy_balance_type(self):\n", + " return EnergyBalanceType.enthalpyTotal\n", + "\n", + " def define_state_vars(self):\n", + " return {\n", + " \"flow_mol\": self.flow_mol,\n", + " \"temperature\": self.temperature,\n", + " \"pressure\": self.pressure,\n", + " }\n", + "\n", + " def model_check(blk):\n", + " \"\"\"\n", + " Model checks for property block\n", + " \"\"\"\n", + " # Check temperature bounds\n", + " if value(blk.temperature) < blk.temperature.lb:\n", + " _log.error(\"{} Temperature set below lower bound.\".format(blk.name))\n", + " if value(blk.temperature) > blk.temperature.ub:\n", + " _log.error(\"{} Temperature set above upper bound.\".format(blk.name))\n", + "\n", + " # Check pressure bounds\n", + " if value(blk.pressure) < blk.pressure.lb:\n", + " _log.error(\"{} Pressure set below lower bound.\".format(blk.name))\n", + " if value(blk.pressure) > blk.pressure.ub:\n", + " _log.error(\"{} Pressure set above upper bound.\".format(blk.name))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.3 Define Initialization Routine\n", + "\n", + "After defining the variables and constraints required to describe the properties of interest for S-CO2, we need to provide them with a good initial guess. It is often the case that the default values provided to the variables while creating the model are not likely the actual conditions the user would simulate. Given the highly non-linear nature of the physical property calculations, it is more often than not impossible to solve a State Block without providing a set of good initial values for all the variables we have declared.\n", + "\n", + "Any initialization routine can be written by following a 3 step process:\n", + "1. `Fix the state` of the model such that there are no degrees of freedom. For State Blocks, it should only be necessary to fix the state variables to a set of initial guesses provided by the user or unit model, as well as deactivating any constraints like the sum of mole fractions.\n", + "\n", + "2. `Iteratively build up a solution` for the full model. This often involves multiple steps and can involve deactivating constraints and fixing some variables to reduce complexity, as well as analytically calculating values for variables based on the known state (and any previously calculated variables). Solvers can be called as part of any step to efficiently initialize large numbers of variables simultaneously.\n", + "\n", + "3. `Return the state of the model` to where it originally started (with the exception of variable values). Any variable that was fixed or constraint that was deactivated during initialization should be unfixed or reactivated, so that the degrees of freedom are restored to what they were before the initialization began.\n", + "\n", + "\n", + "Thus, we start with fixing the state variables. Here since enth_mol and entr_mol are a function of pressure and temperature, we do not fix them as fixing pressure and temperature would define them. So, we check if a state variable if fixed or not, if it is fixed then we do not change them, if they are not fixed then we check for an initial guess from the `state_args`, if we get a value then we fix the variable with state_args, else we fix it with the value provided by the user. This should bring the degrees of freedom to 0. Here since we do not have any variable/constrained that we have unfixed/deactivated we can skip step 2 and move to step 3. We unfix the variables that were fixed in step 1 using the `release_state` function. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class _StateBlock(StateBlock):\n", + " \"\"\"\n", + " This Class contains methods which should be applied to Property Blocks as a\n", + " whole, rather than individual elements of indexed Property Blocks.\n", + " \"\"\"\n", + "\n", + " def initialize(\n", + " blk,\n", + " state_args=None,\n", + " hold_state=False,\n", + " outlvl=1,\n", + " state_vars_fixed=False,\n", + " solver=\"ipopt\",\n", + " optarg={\"tol\": 1e-8},\n", + " ):\n", + " \"\"\"\n", + " Initialisation routine for property package.\n", + "\n", + " Keyword Arguments:\n", + " flow_mol : value at which to initialize component flows\n", + " (default=None)\n", + " pressure : value at which to initialize pressure (default=None)\n", + " temperature : value at which to initialize temperature\n", + " (default=None)\n", + " outlvl : sets output level of initialisation routine\n", + "\n", + " * 0 = no output (default)\n", + " * 1 = return solver state for each step in routine\n", + " * 2 = include solver output information (tee=True)\n", + " state_vars_fixed: Flag to denote if state vars have already been\n", + " fixed.\n", + " - True - states have already been fixed by the\n", + " control volume 1D. Control volume 0D\n", + " does not fix the state vars, so will\n", + " be False if this state block is used\n", + " with 0D blocks.\n", + " - False - states have not been fixed. The state\n", + " block will deal with fixing/unfixing.\n", + " optarg : solver options dictionary object (default=None)\n", + " solver : str indicating which solver to use during\n", + " initialization (default = 'ipopt')\n", + " hold_state : flag indicating whether the initialization routine\n", + " should unfix any state variables fixed during\n", + " initialization (default=False).\n", + " - True - states variables are not unfixed, and\n", + " a dict of returned containing flags for\n", + " which states were fixed during\n", + " initialization.\n", + " - False - state variables are unfixed after\n", + " initialization by calling the\n", + " release_state method\n", + "\n", + " Returns:\n", + " If hold_states is True, returns a dict containing flags for\n", + " which states were fixed during initialization.\n", + " \"\"\"\n", + " if state_vars_fixed is False:\n", + " # Fix state variables if not already fixed\n", + " Fcflag = {}\n", + " Pflag = {}\n", + " Tflag = {}\n", + "\n", + " for k in blk.keys():\n", + " if blk[k].flow_mol.fixed is True:\n", + " Fcflag[k] = True\n", + " else:\n", + " Fcflag[k] = False\n", + " if state_args is None:\n", + " blk[k].flow_mol.fix()\n", + " else:\n", + " blk[k].flow_mol.fix(state_args[\"flow_mol\"])\n", + "\n", + " if blk[k].pressure.fixed is True:\n", + " Pflag[k] = True\n", + " else:\n", + " Pflag[k] = False\n", + " if state_args is None:\n", + " blk[k].pressure.fix()\n", + " else:\n", + " blk[k].pressure.fix(state_args[\"pressure\"])\n", + "\n", + " if blk[k].temperature.fixed is True:\n", + " Tflag[k] = True\n", + " else:\n", + " Tflag[k] = False\n", + " if state_args is None:\n", + " blk[k].temperature.fix()\n", + " else:\n", + " blk[k].temperature.fix(state_args[\"temperature\"])\n", + "\n", + " # If input block, return flags, else release state\n", + " flags = {\"Fcflag\": Fcflag, \"Pflag\": Pflag, \"Tflag\": Tflag}\n", + "\n", + " else:\n", + " # Check when the state vars are fixed already result in dof 0\n", + " for k in blk.keys():\n", + " if degrees_of_freedom(blk[k]) != 0:\n", + " raise Exception(\n", + " \"State vars fixed but degrees of freedom \"\n", + " \"for state block is not zero during \"\n", + " \"initialization.\"\n", + " )\n", + "\n", + " if state_vars_fixed is False:\n", + " if hold_state is True:\n", + " return flags\n", + " else:\n", + " blk.release_state(flags)\n", + "\n", + " def release_state(blk, flags, outlvl=0):\n", + " \"\"\"\n", + " Method to release state variables fixed during initialisation.\n", + "\n", + " Keyword Arguments:\n", + " flags : dict containing information of which state variables\n", + " were fixed during initialization, and should now be\n", + " unfixed. This dict is returned by initialize if\n", + " hold_state=True.\n", + " outlvl : sets output level of of logging\n", + " \"\"\"\n", + " if flags is None:\n", + " return\n", + "\n", + " # Unfix state variables\n", + " for k in blk.keys():\n", + " if flags[\"Fcflag\"][k] is False:\n", + " blk[k].flow_mol.unfix()\n", + " if flags[\"Pflag\"][k] is False:\n", + " blk[k].pressure.unfix()\n", + " if flags[\"Tflag\"][k] is False:\n", + " blk[k].temperature.unfix()\n", + "\n", + " if outlvl > 0:\n", + " if outlvl > 0:\n", + " _log.info(\"{} State Released.\".format(blk.name))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_test.ipynb). To learn in detail about making a custom property package, one should go through [Property Package Example](../../../properties/custom/custom_physical_property_packages_test.ipynb). " + ] + } + ], + "metadata": { + "language_info": { + "name": "python" + } }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with PySMO Surrogate Object - Embedding Surrogate (Part 2)\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "## 1. Integration of Surrogate into Custom Property Package\n", - "\n", - "Here we shall see how to integrate the trained surrogate in the custom property package. One can read more about making a properties package from read the docs. To integrate the surrogate we first define the physical parameter block which will return the properties based on the state variables. State variables would be called from the State Block as Pyomo variables. We will define the surrogate input and output as pyomo variables as well. Once we have defined the variables in the state block then we define our surrogate block.\n", - "\n", - "*NOTE:* For ease of explanation the property package is written in \".ipynb\" format, ideally it should be in a python script. Each class of this package is separated in different cell for the same reason, in practice all the classes in this notebook should be part of the same python script. This folder includes \"properties.py\" file which is how embedding file should look like. \n", - "\n", - "### 1.1 Steps in Creating a Property Package\n", - "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", - "\n", - "1. Defining the **units of measurement** for the property package.\n", - "2. Defining the **properties supported** by the property package and the associated metadata.\n", - "3. Defining the **phases and components** of interest.\n", - "4. Defining the necessary **parameters** required to calculate the properties of interest.\n", - "5. Declaring the **state variables** to be used for the property package.\n", - "6. Creating **variables and constraints** to describe the properties of interest.\n", - "7. Creating an **initialization routine** for the property package.\n", - "8. Defining **interface methods** used to couple the property package with unit models." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Importing libraries for making Property Package\n", - "\n", - "To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries. We shall also use the Surrogate API in the IDAES framework to embed the trained surrogate in the property package." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Python libraries\n", - "import logging\n", - "\n", - "# Import Pyomo libraries\n", - "from pyomo.environ import (\n", - " Constraint,\n", - " Param,\n", - " Reals,\n", - " Set,\n", - " value,\n", - " Var,\n", - " NonNegativeReals,\n", - " units,\n", - ")\n", - "from pyomo.opt import SolverFactory, TerminationCondition\n", - "\n", - "# Import IDAES cores\n", - "from idaes.core import (\n", - " declare_process_block_class,\n", - " PhysicalParameterBlock,\n", - " StateBlockData,\n", - " StateBlock,\n", - " MaterialBalanceType,\n", - " EnergyBalanceType,\n", - " LiquidPhase,\n", - " Component,\n", - ")\n", - "from idaes.core.util.initialization import solve_indexed_blocks\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.misc import extract_data\n", - "from idaes.core.solvers import get_solver\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", - "from idaes.core.surrogate.pysmo_surrogate import PysmoSurrogate\n", - "\n", - "import os\n", - "\n", - "from pyomo.util.model_size import build_model_size_report\n", - "\n", - "# Some more information about this module\n", - "__author__ = \"Javal Vyas\"\n", - "\n", - "\n", - "# Set up logger\n", - "_log = logging.getLogger(__name__)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3 Defining Classes\n", - "\n", - "We shall be going through each class of the property package in detail. Since there are not reactions occurring in the flowsheet we shall only write the Physical Parameter Block.\n", - "\n", - "## 3.1 Physical Parameter Block\n", - "\n", - "The Physical Parameter Block serves as the central point of reference for all aspects of the property package, and needs to define a number of things about the package. These are summarized below:\n", - "\n", - "* Units of measurement\n", - "* What properties are supported and how they are implemented\n", - "* What components and phases are included in the packages\n", - "* All the global parameters necessary for calculating properties\n", - "* A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", - "\n", - "To assemble the above mentioned things in a class we need to follow the following steps:\n", - "\n", - "* Declaring the new class and inheriting from the PhysicalParameterBlock base class\n", - "* Declaring any necessary configuration arguments\n", - "* Writing the build method for our class\n", - "* Creating a define_metadata method for the class.\n", - "\n", - "The code below follows the above mentioned steps. \n", - "\n", - "*NOTE*: The SCO2StateBlock will be discussed in the next section." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"SCO2ParameterBlock\")\n", - "class PhysicalParameterData(PhysicalParameterBlock):\n", - " \"\"\"\n", - " Property Parameter Block Class\n", - "\n", - " Contains parameters and indexing sets associated with properties for\n", - " supercritical CO2.\n", - "\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction.\n", - " \"\"\"\n", - " super(PhysicalParameterData, self).build()\n", - "\n", - " self._state_block_class = SCO2StateBlock\n", - "\n", - " # List of valid phases in property package\n", - " self.Liq = LiquidPhase()\n", - "\n", - " # Component list - a list of component identifiers\n", - " self.CO2 = Component()\n", - "\n", - " @classmethod\n", - " def define_metadata(cls, obj):\n", - " obj.add_properties(\n", - " {\n", - " \"flow_mol\": {\"method\": None, \"units\": \"kmol/s\"},\n", - " \"pressure\": {\"method\": None, \"units\": \"MPa\"},\n", - " \"temperature\": {\"method\": None, \"units\": \"K\"},\n", - " \"enth_mol\": {\"method\": None, \"units\": \"kJ/kmol\"},\n", - " \"entr_mol\": {\"method\": None, \"units\": \"kJ/kmol/K\"},\n", - " }\n", - " )\n", - "\n", - " obj.add_default_units(\n", - " {\n", - " \"time\": units.s,\n", - " \"length\": units.m,\n", - " \"mass\": units.kg,\n", - " \"amount\": units.mol,\n", - " \"temperature\": units.K,\n", - " }\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.2 State Block\n", - "\n", - "After the Physical Parameter Block class has been created, the next step is to write the code necessary to create the State Blocks that will be used through out the flowsheet.\n", - "\n", - "For this example, we will begin by describing the content of the StateBlockData objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. \n", - "\n", - "We start by defining the 5 state variables: flow_mol, pressure, temperature, enth_mol and entr_mol as the Pyomo Var, each of this variable has a unit for unit consistency. This is done in _make_state_vars function. We get the enth_mol and entr_mol variables from trained surrogate which we define in this function as well. To get the output variables from the surrogate:\n", - "\n", - "1. Define the input and output variables to the trained surrogate\n", - "2. Load the surrogate from the folder it is saved in, here it is saved in the folder called pysmo_surrogate (look at the pysmo_training_test.ipynb file) using the PySMO Surrogate API of IDAES package\n", - "3. Define a `SurrogateBlock` and call the build_model method on the block with the input variables, output variables, model formulation and the loaded surrogate as the arguments. \n", - "4. Define the constraints necessary for ensuring physical feasibility of the system like the mass balance and energy balance. Check for the state variables to be within the bounds. \n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"SCO2StateBlock\", block_class=StateBlock)\n", - "class SCO2StateBlockData(StateBlockData):\n", - " \"\"\"\n", - " An example property package for ideal gas properties with Gibbs energy\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction\n", - " \"\"\"\n", - " super(SCO2StateBlockData, self).build()\n", - " self._make_state_vars()\n", - "\n", - " def _make_state_vars(self):\n", - "\n", - " self.flow_mol = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=1.0,\n", - " units=units.kmol / units.s,\n", - " doc=\"Total molar flowrate [kmol/s]\",\n", - " )\n", - " self.pressure = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=8,\n", - " bounds=(7.38, 40),\n", - " units=units.MPa,\n", - " doc=\"State pressure [MPa]\",\n", - " )\n", - "\n", - " self.temperature = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=350,\n", - " bounds=(304.2, 760 + 273.15),\n", - " units=units.K,\n", - " doc=\"State temperature [K]\",\n", - " )\n", - "\n", - " self.entr_mol = Var(\n", - " domain=Reals,\n", - " initialize=10,\n", - " units=units.kJ / units.kmol / units.K,\n", - " doc=\"Entropy [kJ/ kmol / K]\",\n", - " )\n", - "\n", - " self.enth_mol = Var(\n", - " domain=Reals,\n", - " initialize=1,\n", - " units=units.kJ / units.kmol,\n", - " doc=\"Enthalpy [kJ/ kmol]\",\n", - " )\n", - "\n", - " inputs = [self.pressure, self.temperature]\n", - " outputs = [self.enth_mol, self.entr_mol]\n", - " self.pysmo_surrogate = PysmoSurrogate.load_from_file(\n", - " \"pysmo_poly_surrogate.json\"\n", - " )\n", - " self.surrogate_enth = SurrogateBlock()\n", - " self.surrogate_enth.build_model(\n", - " self.pysmo_surrogate,\n", - " input_vars=inputs,\n", - " output_vars=outputs,\n", - " )\n", - "\n", - " def get_material_flow_terms(self, p, j):\n", - " return self.flow_mol\n", - "\n", - " def get_enthalpy_flow_terms(self, p):\n", - " return self.flow_mol * self.enth_mol\n", - "\n", - " def default_material_balance_type(self):\n", - " return MaterialBalanceType.componentTotal\n", - "\n", - " def default_energy_balance_type(self):\n", - " return EnergyBalanceType.enthalpyTotal\n", - "\n", - " def define_state_vars(self):\n", - " return {\n", - " \"flow_mol\": self.flow_mol,\n", - " \"temperature\": self.temperature,\n", - " \"pressure\": self.pressure,\n", - " }\n", - "\n", - " def model_check(blk):\n", - " \"\"\"\n", - " Model checks for property block\n", - " \"\"\"\n", - " # Check temperature bounds\n", - " if value(blk.temperature) < blk.temperature.lb:\n", - " _log.error(\"{} Temperature set below lower bound.\".format(blk.name))\n", - " if value(blk.temperature) > blk.temperature.ub:\n", - " _log.error(\"{} Temperature set above upper bound.\".format(blk.name))\n", - "\n", - " # Check pressure bounds\n", - " if value(blk.pressure) < blk.pressure.lb:\n", - " _log.error(\"{} Pressure set below lower bound.\".format(blk.name))\n", - " if value(blk.pressure) > blk.pressure.ub:\n", - " _log.error(\"{} Pressure set above upper bound.\".format(blk.name))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.3 Define Initialization Routine\n", - "\n", - "After defining the variables and constraints required to describe the properties of interest for S-CO2, we need to provide them with a good initial guess. It is often the case that the default values provided to the variables while creating the model are not likely the actual conditions the user would simulate. Given the highly non-linear nature of the physical property calculations, it is more often than not impossible to solve a State Block without providing a set of good initial values for all the variables we have declared.\n", - "\n", - "Any initialization routine can be written by following a 3 step process:\n", - "1. `Fix the state` of the model such that there are no degrees of freedom. For State Blocks, it should only be necessary to fix the state variables to a set of initial guesses provided by the user or unit model, as well as deactivating any constraints like the sum of mole fractions.\n", - "\n", - "2. `Iteratively build up a solution` for the full model. This often involves multiple steps and can involve deactivating constraints and fixing some variables to reduce complexity, as well as analytically calculating values for variables based on the known state (and any previously calculated variables). Solvers can be called as part of any step to efficiently initialize large numbers of variables simultaneously.\n", - "\n", - "3. `Return the state of the model` to where it originally started (with the exception of variable values). Any variable that was fixed or constraint that was deactivated during initialization should be unfixed or reactivated, so that the degrees of freedom are restored to what they were before the initialization began.\n", - "\n", - "\n", - "Thus, we start with fixing the state variables. Here since enth_mol and entr_mol are a function of pressure and temperature, we do not fix them as fixing pressure and temperature would define them. So, we check if a state variable if fixed or not, if it is fixed then we do not change them, if they are not fixed then we check for an initial guess from the `state_args`, if we get a value then we fix the variable with state_args, else we fix it with the value provided by the user. This should bring the degrees of freedom to 0. Here since we do not have any variable/constrained that we have unfixed/deactivated we can skip step 2 and move to step 3. We unfix the variables that were fixed in step 1 using the `release_state` function. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "class _StateBlock(StateBlock):\n", - " \"\"\"\n", - " This Class contains methods which should be applied to Property Blocks as a\n", - " whole, rather than individual elements of indexed Property Blocks.\n", - " \"\"\"\n", - "\n", - " def initialize(\n", - " blk,\n", - " state_args=None,\n", - " hold_state=False,\n", - " outlvl=1,\n", - " state_vars_fixed=False,\n", - " solver=\"ipopt\",\n", - " optarg={\"tol\": 1e-8},\n", - " ):\n", - " \"\"\"\n", - " Initialisation routine for property package.\n", - "\n", - " Keyword Arguments:\n", - " flow_mol : value at which to initialize component flows\n", - " (default=None)\n", - " pressure : value at which to initialize pressure (default=None)\n", - " temperature : value at which to initialize temperature\n", - " (default=None)\n", - " outlvl : sets output level of initialisation routine\n", - "\n", - " * 0 = no output (default)\n", - " * 1 = return solver state for each step in routine\n", - " * 2 = include solver output information (tee=True)\n", - " state_vars_fixed: Flag to denote if state vars have already been\n", - " fixed.\n", - " - True - states have already been fixed by the\n", - " control volume 1D. Control volume 0D\n", - " does not fix the state vars, so will\n", - " be False if this state block is used\n", - " with 0D blocks.\n", - " - False - states have not been fixed. The state\n", - " block will deal with fixing/unfixing.\n", - " optarg : solver options dictionary object (default=None)\n", - " solver : str indicating which solver to use during\n", - " initialization (default = 'ipopt')\n", - " hold_state : flag indicating whether the initialization routine\n", - " should unfix any state variables fixed during\n", - " initialization (default=False).\n", - " - True - states variables are not unfixed, and\n", - " a dict of returned containing flags for\n", - " which states were fixed during\n", - " initialization.\n", - " - False - state variables are unfixed after\n", - " initialization by calling the\n", - " release_state method\n", - "\n", - " Returns:\n", - " If hold_states is True, returns a dict containing flags for\n", - " which states were fixed during initialization.\n", - " \"\"\"\n", - " if state_vars_fixed is False:\n", - " # Fix state variables if not already fixed\n", - " Fcflag = {}\n", - " Pflag = {}\n", - " Tflag = {}\n", - "\n", - " for k in blk.keys():\n", - " if blk[k].flow_mol.fixed is True:\n", - " Fcflag[k] = True\n", - " else:\n", - " Fcflag[k] = False\n", - " if state_args is None:\n", - " blk[k].flow_mol.fix()\n", - " else:\n", - " blk[k].flow_mol.fix(state_args[\"flow_mol\"])\n", - "\n", - " if blk[k].pressure.fixed is True:\n", - " Pflag[k] = True\n", - " else:\n", - " Pflag[k] = False\n", - " if state_args is None:\n", - " blk[k].pressure.fix()\n", - " else:\n", - " blk[k].pressure.fix(state_args[\"pressure\"])\n", - "\n", - " if blk[k].temperature.fixed is True:\n", - " Tflag[k] = True\n", - " else:\n", - " Tflag[k] = False\n", - " if state_args is None:\n", - " blk[k].temperature.fix()\n", - " else:\n", - " blk[k].temperature.fix(state_args[\"temperature\"])\n", - "\n", - " # If input block, return flags, else release state\n", - " flags = {\"Fcflag\": Fcflag, \"Pflag\": Pflag, \"Tflag\": Tflag}\n", - "\n", - " else:\n", - " # Check when the state vars are fixed already result in dof 0\n", - " for k in blk.keys():\n", - " if degrees_of_freedom(blk[k]) != 0:\n", - " raise Exception(\n", - " \"State vars fixed but degrees of freedom \"\n", - " \"for state block is not zero during \"\n", - " \"initialization.\"\n", - " )\n", - "\n", - " if state_vars_fixed is False:\n", - " if hold_state is True:\n", - " return flags\n", - " else:\n", - " blk.release_state(flags)\n", - "\n", - " def release_state(blk, flags, outlvl=0):\n", - " \"\"\"\n", - " Method to release state variables fixed during initialisation.\n", - "\n", - " Keyword Arguments:\n", - " flags : dict containing information of which state variables\n", - " were fixed during initialization, and should now be\n", - " unfixed. This dict is returned by initialize if\n", - " hold_state=True.\n", - " outlvl : sets output level of of logging\n", - " \"\"\"\n", - " if flags is None:\n", - " return\n", - "\n", - " # Unfix state variables\n", - " for k in blk.keys():\n", - " if flags[\"Fcflag\"][k] is False:\n", - " blk[k].flow_mol.unfix()\n", - " if flags[\"Pflag\"][k] is False:\n", - " blk[k].pressure.unfix()\n", - " if flags[\"Tflag\"][k] is False:\n", - " blk[k].temperature.unfix()\n", - "\n", - " if outlvl > 0:\n", - " if outlvl > 0:\n", - " _log.info(\"{} State Released.\".format(blk.name))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_test.ipynb). To learn in detail about making a custom property package, one should go through [Property Package Example](../../../properties/custom/custom_physical_property_packages_test.ipynb). " - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding_usr.ipynb b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding_usr.ipynb index 5ac4559d..c70306f3 100644 --- a/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding_usr.ipynb +++ b/idaes_examples/notebooks/docs/surrogates/sco2/pysmo/surrogate_embedding_usr.ipynb @@ -1,496 +1,521 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "##############################################################################\n", - "# Institute for the Design of Advanced Energy Systems Process Systems\n", - "# Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the\n", - "# software owners: The Regents of the University of California, through\n", - "# Lawrence Berkeley National Laboratory, National Technology & Engineering\n", - "# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia\n", - "# University Research Corporation, et al. All rights reserved.\n", - "#\n", - "# Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and\n", - "# license information, respectively. Both files are also available online\n", - "# at the URL \"https://github.com/IDAES/idaes-pse\".\n", - "##############################################################################" - ] + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "##############################################################################\n", + "# Institute for the Design of Advanced Energy Systems Process Systems\n", + "# Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the\n", + "# software owners: The Regents of the University of California, through\n", + "# Lawrence Berkeley National Laboratory, National Technology & Engineering\n", + "# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia\n", + "# University Research Corporation, et al. All rights reserved.\n", + "#\n", + "# Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and\n", + "# license information, respectively. Both files are also available online\n", + "# at the URL \"https://github.com/IDAES/idaes-pse\".\n", + "##############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Supercritical CO2 Property Surrogate with PySMO Surrogate Object - Embedding Surrogate (Part 2)\n", + "Maintainer: Javal Vyas\n", + "\n", + "Author: Javal Vyas\n", + "\n", + "Updated: 2024-01-24\n", + "## 1. Integration of Surrogate into Custom Property Package\n", + "\n", + "Here we shall see how to integrate the trained surrogate in the custom property package. One can read more about making a properties package from read the docs. To integrate the surrogate we first define the physical parameter block which will return the properties based on the state variables. State variables would be called from the State Block as Pyomo variables. We will define the surrogate input and output as pyomo variables as well. Once we have defined the variables in the state block then we define our surrogate block.\n", + "\n", + "*NOTE:* For ease of explanation the property package is written in \".ipynb\" format, ideally it should be in a python script. Each class of this package is separated in different cell for the same reason, in practice all the classes in this notebook should be part of the same python script. This folder includes \"properties.py\" file which is how embedding file should look like. \n", + "\n", + "### 1.1 Steps in Creating a Property Package\n", + "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", + "\n", + "1. Defining the **units of measurement** for the property package.\n", + "2. Defining the **properties supported** by the property package and the associated metadata.\n", + "3. Defining the **phases and components** of interest.\n", + "4. Defining the necessary **parameters** required to calculate the properties of interest.\n", + "5. Declaring the **state variables** to be used for the property package.\n", + "6. Creating **variables and constraints** to describe the properties of interest.\n", + "7. Creating an **initialization routine** for the property package.\n", + "8. Defining **interface methods** used to couple the property package with unit models." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Importing libraries for making Property Package\n", + "\n", + "To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries. We shall also use the Surrogate API in the IDAES framework to embed the trained surrogate in the property package." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Python libraries\n", + "import logging\n", + "\n", + "# Import Pyomo libraries\n", + "from pyomo.environ import (\n", + " Constraint,\n", + " Param,\n", + " Reals,\n", + " Set,\n", + " value,\n", + " Var,\n", + " NonNegativeReals,\n", + " units,\n", + ")\n", + "from pyomo.opt import SolverFactory, TerminationCondition\n", + "\n", + "# Import IDAES cores\n", + "from idaes.core import (\n", + " declare_process_block_class,\n", + " PhysicalParameterBlock,\n", + " StateBlockData,\n", + " StateBlock,\n", + " MaterialBalanceType,\n", + " EnergyBalanceType,\n", + " LiquidPhase,\n", + " Component,\n", + ")\n", + "from idaes.core.util.initialization import solve_indexed_blocks\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.misc import extract_data\n", + "from idaes.core.solvers import get_solver\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", + "from idaes.core.surrogate.pysmo_surrogate import PysmoSurrogate\n", + "\n", + "from pyomo.util.model_size import build_model_size_report\n", + "\n", + "# Some more information about this module\n", + "__author__ = \"Javal Vyas\"\n", + "\n", + "\n", + "# Set up logger\n", + "_log = logging.getLogger(__name__)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3 Defining Classes\n", + "\n", + "We shall be going through each class of the property package in detail. Since there are not reactions occurring in the flowsheet we shall only write the Physical Parameter Block.\n", + "\n", + "## 3.1 Physical Parameter Block\n", + "\n", + "The Physical Parameter Block serves as the central point of reference for all aspects of the property package, and needs to define a number of things about the package. These are summarized below:\n", + "\n", + "* Units of measurement\n", + "* What properties are supported and how they are implemented\n", + "* What components and phases are included in the packages\n", + "* All the global parameters necessary for calculating properties\n", + "* A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", + "\n", + "To assemble the above mentioned things in a class we need to follow the following steps:\n", + "\n", + "* Declaring the new class and inheriting from the PhysicalParameterBlock base class\n", + "* Declaring any necessary configuration arguments\n", + "* Writing the build method for our class\n", + "* Creating a define_metadata method for the class.\n", + "\n", + "The code below follows the above mentioned steps. \n", + "\n", + "*NOTE*: The SCO2StateBlock will be discussed in the next section." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"SCO2ParameterBlock\")\n", + "class PhysicalParameterData(PhysicalParameterBlock):\n", + " \"\"\"\n", + " Property Parameter Block Class\n", + "\n", + " Contains parameters and indexing sets associated with properties for\n", + " supercritical CO2.\n", + "\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction.\n", + " \"\"\"\n", + " super(PhysicalParameterData, self).build()\n", + "\n", + " self._state_block_class = SCO2StateBlock\n", + "\n", + " # List of valid phases in property package\n", + " self.Liq = LiquidPhase()\n", + "\n", + " # Component list - a list of component identifiers\n", + " self.CO2 = Component()\n", + "\n", + " @classmethod\n", + " def define_metadata(cls, obj):\n", + " obj.add_properties(\n", + " {\n", + " \"flow_mol\": {\"method\": None, \"units\": \"kmol/s\"},\n", + " \"pressure\": {\"method\": None, \"units\": \"MPa\"},\n", + " \"temperature\": {\"method\": None, \"units\": \"K\"},\n", + " \"enth_mol\": {\"method\": None, \"units\": \"kJ/kmol\"},\n", + " \"entr_mol\": {\"method\": None, \"units\": \"kJ/kmol/K\"},\n", + " }\n", + " )\n", + "\n", + " obj.add_default_units(\n", + " {\n", + " \"time\": units.s,\n", + " \"length\": units.m,\n", + " \"mass\": units.kg,\n", + " \"amount\": units.mol,\n", + " \"temperature\": units.K,\n", + " }\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.2 State Block\n", + "\n", + "After the Physical Parameter Block class has been created, the next step is to write the code necessary to create the State Blocks that will be used through out the flowsheet.\n", + "\n", + "For this example, we will begin by describing the content of the StateBlockData objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. \n", + "\n", + "We start by defining the 5 state variables: flow_mol, pressure, temperature, enth_mol and entr_mol as the Pyomo Var, each of this variable has a unit for unit consistency. This is done in _make_state_vars function. We get the enth_mol and entr_mol variables from trained surrogate which we define in this function as well. To get the output variables from the surrogate:\n", + "\n", + "1. Define the input and output variables to the trained surrogate\n", + "2. Load the surrogate from the folder it is saved in, here it is saved in the folder called pysmo_surrogate (look at the pysmo_training_usr.ipynb file) using the PySMO Surrogate API of IDAES package\n", + "3. Define a `SurrogateBlock` and call the build_model method on the block with the input variables, output variables, model formulation and the loaded surrogate as the arguments. \n", + "4. Define the constraints necessary for ensuring physical feasibility of the system like the mass balance and energy balance. Check for the state variables to be within the bounds. \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"SCO2StateBlock\", block_class=StateBlock)\n", + "class SCO2StateBlockData(StateBlockData):\n", + " \"\"\"\n", + " An example property package for ideal gas properties with Gibbs energy\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction\n", + " \"\"\"\n", + " super(SCO2StateBlockData, self).build()\n", + " self._make_state_vars()\n", + "\n", + " def _make_state_vars(self):\n", + "\n", + " self.flow_mol = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=1.0,\n", + " units=units.kmol / units.s,\n", + " doc=\"Total molar flowrate [kmol/s]\",\n", + " )\n", + " self.pressure = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=8,\n", + " bounds=(7.38, 40),\n", + " units=units.MPa,\n", + " doc=\"State pressure [MPa]\",\n", + " )\n", + "\n", + " self.temperature = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=350,\n", + " bounds=(304.2, 760 + 273.15),\n", + " units=units.K,\n", + " doc=\"State temperature [K]\",\n", + " )\n", + "\n", + " self.entr_mol = Var(\n", + " domain=Reals,\n", + " initialize=10,\n", + " units=units.kJ / units.kmol / units.K,\n", + " doc=\"Entropy [kJ/ kmol / K]\",\n", + " )\n", + "\n", + " self.enth_mol = Var(\n", + " domain=Reals,\n", + " initialize=1,\n", + " units=units.kJ / units.kmol,\n", + " doc=\"Enthalpy [kJ/ kmol]\",\n", + " )\n", + "\n", + " inputs = [self.pressure, self.temperature]\n", + " outputs = [self.enth_mol, self.entr_mol]\n", + " self.pysmo_surrogate = PysmoSurrogate.load_from_file(\n", + " \"pysmo_poly_surrogate.json\"\n", + " )\n", + " self.surrogate_enth = SurrogateBlock()\n", + " self.surrogate_enth.build_model(\n", + " self.pysmo_surrogate,\n", + " input_vars=inputs,\n", + " output_vars=outputs,\n", + " )\n", + "\n", + " def get_material_flow_terms(self, p, j):\n", + " return self.flow_mol\n", + "\n", + " def get_enthalpy_flow_terms(self, p):\n", + " return self.flow_mol * self.enth_mol\n", + "\n", + " def default_material_balance_type(self):\n", + " return MaterialBalanceType.componentTotal\n", + "\n", + " def default_energy_balance_type(self):\n", + " return EnergyBalanceType.enthalpyTotal\n", + "\n", + " def define_state_vars(self):\n", + " return {\n", + " \"flow_mol\": self.flow_mol,\n", + " \"temperature\": self.temperature,\n", + " \"pressure\": self.pressure,\n", + " }\n", + "\n", + " def model_check(blk):\n", + " \"\"\"\n", + " Model checks for property block\n", + " \"\"\"\n", + " # Check temperature bounds\n", + " if value(blk.temperature) < blk.temperature.lb:\n", + " _log.error(\"{} Temperature set below lower bound.\".format(blk.name))\n", + " if value(blk.temperature) > blk.temperature.ub:\n", + " _log.error(\"{} Temperature set above upper bound.\".format(blk.name))\n", + "\n", + " # Check pressure bounds\n", + " if value(blk.pressure) < blk.pressure.lb:\n", + " _log.error(\"{} Pressure set below lower bound.\".format(blk.name))\n", + " if value(blk.pressure) > blk.pressure.ub:\n", + " _log.error(\"{} Pressure set above upper bound.\".format(blk.name))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.3 Define Initialization Routine\n", + "\n", + "After defining the variables and constraints required to describe the properties of interest for S-CO2, we need to provide them with a good initial guess. It is often the case that the default values provided to the variables while creating the model are not likely the actual conditions the user would simulate. Given the highly non-linear nature of the physical property calculations, it is more often than not impossible to solve a State Block without providing a set of good initial values for all the variables we have declared.\n", + "\n", + "Any initialization routine can be written by following a 3 step process:\n", + "1. `Fix the state` of the model such that there are no degrees of freedom. For State Blocks, it should only be necessary to fix the state variables to a set of initial guesses provided by the user or unit model, as well as deactivating any constraints like the sum of mole fractions.\n", + "\n", + "2. `Iteratively build up a solution` for the full model. This often involves multiple steps and can involve deactivating constraints and fixing some variables to reduce complexity, as well as analytically calculating values for variables based on the known state (and any previously calculated variables). Solvers can be called as part of any step to efficiently initialize large numbers of variables simultaneously.\n", + "\n", + "3. `Return the state of the model` to where it originally started (with the exception of variable values). Any variable that was fixed or constraint that was deactivated during initialization should be unfixed or reactivated, so that the degrees of freedom are restored to what they were before the initialization began.\n", + "\n", + "\n", + "Thus, we start with fixing the state variables. Here since enth_mol and entr_mol are a function of pressure and temperature, we do not fix them as fixing pressure and temperature would define them. So, we check if a state variable if fixed or not, if it is fixed then we do not change them, if they are not fixed then we check for an initial guess from the `state_args`, if we get a value then we fix the variable with state_args, else we fix it with the value provided by the user. This should bring the degrees of freedom to 0. Here since we do not have any variable/constrained that we have unfixed/deactivated we can skip step 2 and move to step 3. We unfix the variables that were fixed in step 1 using the `release_state` function. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class _StateBlock(StateBlock):\n", + " \"\"\"\n", + " This Class contains methods which should be applied to Property Blocks as a\n", + " whole, rather than individual elements of indexed Property Blocks.\n", + " \"\"\"\n", + "\n", + " def initialize(\n", + " blk,\n", + " state_args=None,\n", + " hold_state=False,\n", + " outlvl=1,\n", + " state_vars_fixed=False,\n", + " solver=\"ipopt\",\n", + " optarg={\"tol\": 1e-8},\n", + " ):\n", + " \"\"\"\n", + " Initialisation routine for property package.\n", + "\n", + " Keyword Arguments:\n", + " flow_mol : value at which to initialize component flows\n", + " (default=None)\n", + " pressure : value at which to initialize pressure (default=None)\n", + " temperature : value at which to initialize temperature\n", + " (default=None)\n", + " outlvl : sets output level of initialisation routine\n", + "\n", + " * 0 = no output (default)\n", + " * 1 = return solver state for each step in routine\n", + " * 2 = include solver output information (tee=True)\n", + " state_vars_fixed: Flag to denote if state vars have already been\n", + " fixed.\n", + " - True - states have already been fixed by the\n", + " control volume 1D. Control volume 0D\n", + " does not fix the state vars, so will\n", + " be False if this state block is used\n", + " with 0D blocks.\n", + " - False - states have not been fixed. The state\n", + " block will deal with fixing/unfixing.\n", + " optarg : solver options dictionary object (default=None)\n", + " solver : str indicating which solver to use during\n", + " initialization (default = 'ipopt')\n", + " hold_state : flag indicating whether the initialization routine\n", + " should unfix any state variables fixed during\n", + " initialization (default=False).\n", + " - True - states variables are not unfixed, and\n", + " a dict of returned containing flags for\n", + " which states were fixed during\n", + " initialization.\n", + " - False - state variables are unfixed after\n", + " initialization by calling the\n", + " release_state method\n", + "\n", + " Returns:\n", + " If hold_states is True, returns a dict containing flags for\n", + " which states were fixed during initialization.\n", + " \"\"\"\n", + " if state_vars_fixed is False:\n", + " # Fix state variables if not already fixed\n", + " Fcflag = {}\n", + " Pflag = {}\n", + " Tflag = {}\n", + "\n", + " for k in blk.keys():\n", + " if blk[k].flow_mol.fixed is True:\n", + " Fcflag[k] = True\n", + " else:\n", + " Fcflag[k] = False\n", + " if state_args is None:\n", + " blk[k].flow_mol.fix()\n", + " else:\n", + " blk[k].flow_mol.fix(state_args[\"flow_mol\"])\n", + "\n", + " if blk[k].pressure.fixed is True:\n", + " Pflag[k] = True\n", + " else:\n", + " Pflag[k] = False\n", + " if state_args is None:\n", + " blk[k].pressure.fix()\n", + " else:\n", + " blk[k].pressure.fix(state_args[\"pressure\"])\n", + "\n", + " if blk[k].temperature.fixed is True:\n", + " Tflag[k] = True\n", + " else:\n", + " Tflag[k] = False\n", + " if state_args is None:\n", + " blk[k].temperature.fix()\n", + " else:\n", + " blk[k].temperature.fix(state_args[\"temperature\"])\n", + "\n", + " # If input block, return flags, else release state\n", + " flags = {\"Fcflag\": Fcflag, \"Pflag\": Pflag, \"Tflag\": Tflag}\n", + "\n", + " else:\n", + " # Check when the state vars are fixed already result in dof 0\n", + " for k in blk.keys():\n", + " if degrees_of_freedom(blk[k]) != 0:\n", + " raise Exception(\n", + " \"State vars fixed but degrees of freedom \"\n", + " \"for state block is not zero during \"\n", + " \"initialization.\"\n", + " )\n", + "\n", + " if state_vars_fixed is False:\n", + " if hold_state is True:\n", + " return flags\n", + " else:\n", + " blk.release_state(flags)\n", + "\n", + " def release_state(blk, flags, outlvl=0):\n", + " \"\"\"\n", + " Method to release state variables fixed during initialisation.\n", + "\n", + " Keyword Arguments:\n", + " flags : dict containing information of which state variables\n", + " were fixed during initialization, and should now be\n", + " unfixed. This dict is returned by initialize if\n", + " hold_state=True.\n", + " outlvl : sets output level of of logging\n", + " \"\"\"\n", + " if flags is None:\n", + " return\n", + "\n", + " # Unfix state variables\n", + " for k in blk.keys():\n", + " if flags[\"Fcflag\"][k] is False:\n", + " blk[k].flow_mol.unfix()\n", + " if flags[\"Pflag\"][k] is False:\n", + " blk[k].pressure.unfix()\n", + " if flags[\"Tflag\"][k] is False:\n", + " blk[k].temperature.unfix()\n", + "\n", + " if outlvl > 0:\n", + " if outlvl > 0:\n", + " _log.info(\"{} State Released.\".format(blk.name))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_usr.ipynb). To learn in detail about making a custom property package, one should go through [Property Package Example](../../../properties/custom/custom_physical_property_packages_usr.ipynb). " + ] + } + ], + "metadata": { + "language_info": { + "name": "python" + } }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Supercritical CO2 Property Surrogate with PySMO Surrogate Object - Embedding Surrogate (Part 2)\n", - "Maintainer: Javal Vyas\n", - "\n", - "Author: Javal Vyas\n", - "\n", - "Updated: 2024-01-24\n", - "## 1. Integration of Surrogate into Custom Property Package\n", - "\n", - "Here we shall see how to integrate the trained surrogate in the custom property package. One can read more about making a properties package from read the docs. To integrate the surrogate we first define the physical parameter block which will return the properties based on the state variables. State variables would be called from the State Block as Pyomo variables. We will define the surrogate input and output as pyomo variables as well. Once we have defined the variables in the state block then we define our surrogate block.\n", - "\n", - "*NOTE:* For ease of explanation the property package is written in \".ipynb\" format, ideally it should be in a python script. Each class of this package is separated in different cell for the same reason, in practice all the classes in this notebook should be part of the same python script. This folder includes \"properties.py\" file which is how embedding file should look like. \n", - "\n", - "### 1.1 Steps in Creating a Property Package\n", - "Creating a new property package can be broken down into the following steps, which will be demonstrated in the next part of this tutorial.\n", - "\n", - "1. Defining the **units of measurement** for the property package.\n", - "2. Defining the **properties supported** by the property package and the associated metadata.\n", - "3. Defining the **phases and components** of interest.\n", - "4. Defining the necessary **parameters** required to calculate the properties of interest.\n", - "5. Declaring the **state variables** to be used for the property package.\n", - "6. Creating **variables and constraints** to describe the properties of interest.\n", - "7. Creating an **initialization routine** for the property package.\n", - "8. Defining **interface methods** used to couple the property package with unit models." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Importing libraries for making Property Package\n", - "\n", - "To begin with, we are going to need a number of components from the Pyomo modeling environment to construct the variables, constraints and parameters that will make up the property package, and we will also make use of the Pyomo units of measurement tools to define the units of our properties. We will also make use of a number of components and supporting methods from the IDAES modeling framework and libraries. We shall also use the Surrogate API in the IDAES framework to embed the trained surrogate in the property package." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Python libraries\n", - "import logging\n", - "\n", - "# Import Pyomo libraries\n", - "from pyomo.environ import (\n", - " Constraint,\n", - " Param,\n", - " Reals,\n", - " Set,\n", - " value,\n", - " Var,\n", - " NonNegativeReals,\n", - " units,\n", - ")\n", - "from pyomo.opt import SolverFactory, TerminationCondition\n", - "\n", - "# Import IDAES cores\n", - "from idaes.core import (\n", - " declare_process_block_class,\n", - " PhysicalParameterBlock,\n", - " StateBlockData,\n", - " StateBlock,\n", - " MaterialBalanceType,\n", - " EnergyBalanceType,\n", - " LiquidPhase,\n", - " Component,\n", - ")\n", - "from idaes.core.util.initialization import solve_indexed_blocks\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.misc import extract_data\n", - "from idaes.core.solvers import get_solver\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "from idaes.core.surrogate.surrogate_block import SurrogateBlock\n", - "from idaes.core.surrogate.pysmo_surrogate import PysmoSurrogate\n", - "\n", - "from pyomo.util.model_size import build_model_size_report\n", - "\n", - "# Some more information about this module\n", - "__author__ = \"Javal Vyas\"\n", - "\n", - "\n", - "# Set up logger\n", - "_log = logging.getLogger(__name__)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3 Defining Classes\n", - "\n", - "We shall be going through each class of the property package in detail. Since there are not reactions occurring in the flowsheet we shall only write the Physical Parameter Block.\n", - "\n", - "## 3.1 Physical Parameter Block\n", - "\n", - "The Physical Parameter Block serves as the central point of reference for all aspects of the property package, and needs to define a number of things about the package. These are summarized below:\n", - "\n", - "* Units of measurement\n", - "* What properties are supported and how they are implemented\n", - "* What components and phases are included in the packages\n", - "* All the global parameters necessary for calculating properties\n", - "* A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", - "\n", - "To assemble the above mentioned things in a class we need to follow the following steps:\n", - "\n", - "* Declaring the new class and inheriting from the PhysicalParameterBlock base class\n", - "* Declaring any necessary configuration arguments\n", - "* Writing the build method for our class\n", - "* Creating a define_metadata method for the class.\n", - "\n", - "The code below follows the above mentioned steps. \n", - "\n", - "*NOTE*: The SCO2StateBlock will be discussed in the next section." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"SCO2ParameterBlock\")\n", - "class PhysicalParameterData(PhysicalParameterBlock):\n", - " \"\"\"\n", - " Property Parameter Block Class\n", - "\n", - " Contains parameters and indexing sets associated with properties for\n", - " supercritical CO2.\n", - "\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction.\n", - " \"\"\"\n", - " super(PhysicalParameterData, self).build()\n", - "\n", - " self._state_block_class = SCO2StateBlock\n", - "\n", - " # List of valid phases in property package\n", - " self.Liq = LiquidPhase()\n", - "\n", - " # Component list - a list of component identifiers\n", - " self.CO2 = Component()\n", - "\n", - " @classmethod\n", - " def define_metadata(cls, obj):\n", - " obj.add_properties(\n", - " {\n", - " \"flow_mol\": {\"method\": None, \"units\": \"kmol/s\"},\n", - " \"pressure\": {\"method\": None, \"units\": \"MPa\"},\n", - " \"temperature\": {\"method\": None, \"units\": \"K\"},\n", - " \"enth_mol\": {\"method\": None, \"units\": \"kJ/kmol\"},\n", - " \"entr_mol\": {\"method\": None, \"units\": \"kJ/kmol/K\"},\n", - " }\n", - " )\n", - "\n", - " obj.add_default_units(\n", - " {\n", - " \"time\": units.s,\n", - " \"length\": units.m,\n", - " \"mass\": units.kg,\n", - " \"amount\": units.mol,\n", - " \"temperatureo\": units.K,\n", - " }\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.2 State Block\n", - "\n", - "After the Physical Parameter Block class has been created, the next step is to write the code necessary to create the State Blocks that will be used through out the flowsheet.\n", - "\n", - "For this example, we will begin by describing the content of the StateBlockData objects, as this is where we create the variables and constraints that describe how to calculate the thermophysical properties of the material. \n", - "\n", - "We start by defining the 5 state variables: flow_mol, pressure, temperature, enth_mol and entr_mol as the Pyomo Var, each of this variable has a unit for unit consistency. This is done in _make_state_vars function. We get the enth_mol and entr_mol variables from trained surrogate which we define in this function as well. To get the output variables from the surrogate:\n", - "\n", - "1. Define the input and output variables to the trained surrogate\n", - "2. Load the surrogate from the folder it is saved in, here it is saved in the folder called pysmo_surrogate (look at the pysmo_training_usr.ipynb file) using the PySMO Surrogate API of IDAES package\n", - "3. Define a `SurrogateBlock` and call the build_model method on the block with the input variables, output variables, model formulation and the loaded surrogate as the arguments. \n", - "4. Define the constraints necessary for ensuring physical feasibility of the system like the mass balance and energy balance. Check for the state variables to be within the bounds. \n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"SCO2StateBlock\", block_class=StateBlock)\n", - "class SCO2StateBlockData(StateBlockData):\n", - " \"\"\"\n", - " An example property package for ideal gas properties with Gibbs energy\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction\n", - " \"\"\"\n", - " super(SCO2StateBlockData, self).build()\n", - " self._make_state_vars()\n", - "\n", - " def _make_state_vars(self):\n", - "\n", - " self.flow_mol = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=1.0,\n", - " units=units.kmol / units.s,\n", - " doc=\"Total molar flowrate [kmol/s]\",\n", - " )\n", - " self.pressure = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=8,\n", - " bounds=(7.38, 40),\n", - " units=units.MPa,\n", - " doc=\"State pressure [MPa]\",\n", - " )\n", - "\n", - " self.temperature = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=350,\n", - " bounds=(304.2, 760 + 273.15),\n", - " units=units.K,\n", - " doc=\"State temperature [K]\",\n", - " )\n", - "\n", - " self.entr_mol = Var(\n", - " domain=Reals,\n", - " initialize=10,\n", - " units=units.kJ / units.kmol / units.K,\n", - " doc=\"Entropy [kJ/ kmol / K]\",\n", - " )\n", - "\n", - " self.enth_mol = Var(\n", - " domain=Reals,\n", - " initialize=1,\n", - " units=units.kJ / units.kmol,\n", - " doc=\"Enthalpy [kJ/ kmol]\",\n", - " )\n", - "\n", - " inputs = [self.pressure, self.temperature]\n", - " outputs = [self.enth_mol, self.entr_mol]\n", - " self.pysmo_surrogate = PysmoSurrogate.load_from_file(\n", - " \"pysmo_poly_surrogate.json\"\n", - " )\n", - " self.surrogate_enth = SurrogateBlock()\n", - " self.surrogate_enth.build_model(\n", - " self.pysmo_surrogate,\n", - " input_vars=inputs,\n", - " output_vars=outputs,\n", - " )\n", - "\n", - " def get_material_flow_terms(self, p, j):\n", - " return self.flow_mol\n", - "\n", - " def get_enthalpy_flow_terms(self, p):\n", - " return self.flow_mol * self.enth_mol\n", - "\n", - " def default_material_balance_type(self):\n", - " return MaterialBalanceType.componentTotal\n", - "\n", - " def default_energy_balance_type(self):\n", - " return EnergyBalanceType.enthalpyTotal\n", - "\n", - " def define_state_vars(self):\n", - " return {\n", - " \"flow_mol\": self.flow_mol,\n", - " \"temperature\": self.temperature,\n", - " \"pressure\": self.pressure,\n", - " }\n", - "\n", - " def model_check(blk):\n", - " \"\"\"\n", - " Model checks for property block\n", - " \"\"\"\n", - " # Check temperature bounds\n", - " if value(blk.temperature) < blk.temperature.lb:\n", - " _log.error(\"{} Temperature set below lower bound.\".format(blk.name))\n", - " if value(blk.temperature) > blk.temperature.ub:\n", - " _log.error(\"{} Temperature set above upper bound.\".format(blk.name))\n", - "\n", - " # Check pressure bounds\n", - " if value(blk.pressure) < blk.pressure.lb:\n", - " _log.error(\"{} Pressure set below lower bound.\".format(blk.name))\n", - " if value(blk.pressure) > blk.pressure.ub:\n", - " _log.error(\"{} Pressure set above upper bound.\".format(blk.name))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.3 Define Initialization Routine\n", - "\n", - "After defining the variables and constraints required to describe the properties of interest for S-CO2, we need to provide them with a good initial guess. It is often the case that the default values provided to the variables while creating the model are not likely the actual conditions the user would simulate. Given the highly non-linear nature of the physical property calculations, it is more often than not impossible to solve a State Block without providing a set of good initial values for all the variables we have declared.\n", - "\n", - "Any initialization routine can be written by following a 3 step process:\n", - "1. `Fix the state` of the model such that there are no degrees of freedom. For State Blocks, it should only be necessary to fix the state variables to a set of initial guesses provided by the user or unit model, as well as deactivating any constraints like the sum of mole fractions.\n", - "\n", - "2. `Iteratively build up a solution` for the full model. This often involves multiple steps and can involve deactivating constraints and fixing some variables to reduce complexity, as well as analytically calculating values for variables based on the known state (and any previously calculated variables). Solvers can be called as part of any step to efficiently initialize large numbers of variables simultaneously.\n", - "\n", - "3. `Return the state of the model` to where it originally started (with the exception of variable values). Any variable that was fixed or constraint that was deactivated during initialization should be unfixed or reactivated, so that the degrees of freedom are restored to what they were before the initialization began.\n", - "\n", - "\n", - "Thus, we start with fixing the state variables. Here since enth_mol and entr_mol are a function of pressure and temperature, we do not fix them as fixing pressure and temperature would define them. So, we check if a state variable if fixed or not, if it is fixed then we do not change them, if they are not fixed then we check for an initial guess from the `state_args`, if we get a value then we fix the variable with state_args, else we fix it with the value provided by the user. This should bring the degrees of freedom to 0. Here since we do not have any variable/constrained that we have unfixed/deactivated we can skip step 2 and move to step 3. We unfix the variables that were fixed in step 1 using the `release_state` function. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "class _StateBlock(StateBlock):\n", - " \"\"\"\n", - " This Class contains methods which should be applied to Property Blocks as a\n", - " whole, rather than individual elements of indexed Property Blocks.\n", - " \"\"\"\n", - "\n", - " def initialize(\n", - " blk,\n", - " state_args=None,\n", - " hold_state=False,\n", - " outlvl=1,\n", - " state_vars_fixed=False,\n", - " solver=\"ipopt\",\n", - " optarg={\"tol\": 1e-8},\n", - " ):\n", - " \"\"\"\n", - " Initialisation routine for property package.\n", - "\n", - " Keyword Arguments:\n", - " flow_mol : value at which to initialize component flows\n", - " (default=None)\n", - " pressure : value at which to initialize pressure (default=None)\n", - " temperature : value at which to initialize temperature\n", - " (default=None)\n", - " outlvl : sets output level of initialisation routine\n", - "\n", - " * 0 = no output (default)\n", - " * 1 = return solver state for each step in routine\n", - " * 2 = include solver output information (tee=True)\n", - " state_vars_fixed: Flag to denote if state vars have already been\n", - " fixed.\n", - " - True - states have already been fixed by the\n", - " control volume 1D. Control volume 0D\n", - " does not fix the state vars, so will\n", - " be False if this state block is used\n", - " with 0D blocks.\n", - " - False - states have not been fixed. The state\n", - " block will deal with fixing/unfixing.\n", - " optarg : solver options dictionary object (default=None)\n", - " solver : str indicating which solver to use during\n", - " initialization (default = 'ipopt')\n", - " hold_state : flag indicating whether the initialization routine\n", - " should unfix any state variables fixed during\n", - " initialization (default=False).\n", - " - True - states variables are not unfixed, and\n", - " a dict of returned containing flags for\n", - " which states were fixed during\n", - " initialization.\n", - " - False - state variables are unfixed after\n", - " initialization by calling the\n", - " release_state method\n", - "\n", - " Returns:\n", - " If hold_states is True, returns a dict containing flags for\n", - " which states were fixed during initialization.\n", - " \"\"\"\n", - " if state_vars_fixed is False:\n", - " # Fix state variables if not already fixed\n", - " Fcflag = {}\n", - " Pflag = {}\n", - " Tflag = {}\n", - "\n", - " for k in blk.keys():\n", - " if blk[k].flow_mol.fixed is True:\n", - " Fcflag[k] = True\n", - " else:\n", - " Fcflag[k] = False\n", - " if state_args is None:\n", - " blk[k].flow_mol.fix()\n", - " else:\n", - " blk[k].flow_mol.fix(state_args[\"flow_mol\"])\n", - "\n", - " if blk[k].pressure.fixed is True:\n", - " Pflag[k] = True\n", - " else:\n", - " Pflag[k] = False\n", - " if state_args is None:\n", - " blk[k].pressure.fix()\n", - " else:\n", - " blk[k].pressure.fix(state_args[\"pressure\"])\n", - "\n", - " if blk[k].temperature.fixed is True:\n", - " Tflag[k] = True\n", - " else:\n", - " Tflag[k] = False\n", - " if state_args is None:\n", - " blk[k].temperature.fix()\n", - " else:\n", - " blk[k].temperature.fix(state_args[\"temperature\"])\n", - "\n", - " # If input block, return flags, else release state\n", - " flags = {\"Fcflag\": Fcflag, \"Pflag\": Pflag, \"Tflag\": Tflag}\n", - "\n", - " else:\n", - " # Check when the state vars are fixed already result in dof 0\n", - " for k in blk.keys():\n", - " if degrees_of_freedom(blk[k]) != 0:\n", - " raise Exception(\n", - " \"State vars fixed but degrees of freedom \"\n", - " \"for state block is not zero during \"\n", - " \"initialization.\"\n", - " )\n", - "\n", - " if state_vars_fixed is False:\n", - " if hold_state is True:\n", - " return flags\n", - " else:\n", - " blk.release_state(flags)\n", - "\n", - " def release_state(blk, flags, outlvl=0):\n", - " \"\"\"\n", - " Method to release state variables fixed during initialisation.\n", - "\n", - " Keyword Arguments:\n", - " flags : dict containing information of which state variables\n", - " were fixed during initialization, and should now be\n", - " unfixed. This dict is returned by initialize if\n", - " hold_state=True.\n", - " outlvl : sets output level of of logging\n", - " \"\"\"\n", - " if flags is None:\n", - " return\n", - "\n", - " # Unfix state variables\n", - " for k in blk.keys():\n", - " if flags[\"Fcflag\"][k] is False:\n", - " blk[k].flow_mol.unfix()\n", - " if flags[\"Pflag\"][k] is False:\n", - " blk[k].pressure.unfix()\n", - " if flags[\"Tflag\"][k] is False:\n", - " blk[k].temperature.unfix()\n", - "\n", - " if outlvl > 0:\n", - " if outlvl > 0:\n", - " _log.info(\"{} State Released.\".format(blk.name))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we have our property package ready for being used in the flowsheet for optimization. We shall see that in the next part of this tutorial, [flowsheet_optimization](./flowsheet_optimization_usr.ipynb). To learn in detail about making a custom property package, one should go through [Property Package Example](../../../properties/custom/custom_physical_property_packages_usr.ipynb). " - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/surrogates/solution.pickle b/idaes_examples/notebooks/docs/surrogates/solution.pickle index 260d20b2..3305e66d 100644 Binary files a/idaes_examples/notebooks/docs/surrogates/solution.pickle and b/idaes_examples/notebooks/docs/surrogates/solution.pickle differ diff --git a/idaes_examples/notebooks/docs/tut/core/flash_unit.ipynb b/idaes_examples/notebooks/docs/tut/core/flash_unit.ipynb index 6dc88109..f2e10b28 100644 --- a/idaes_examples/notebooks/docs/tut/core/flash_unit.ipynb +++ b/idaes_examples/notebooks/docs/tut/core/flash_unit.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/tut/core/flash_unit_doc.ipynb b/idaes_examples/notebooks/docs/tut/core/flash_unit_doc.ipynb index 9432ccbe..91dfd48a 100644 --- a/idaes_examples/notebooks/docs/tut/core/flash_unit_doc.ipynb +++ b/idaes_examples/notebooks/docs/tut/core/flash_unit_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -448,98 +449,98 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:25 [INFO] idaes.init.fs.flash.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n" + "2025-03-17 17:39:41 [INFO] idaes.init.fs.flash.control_volume.properties_in: Initialization Step 1 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:25 [INFO] idaes.init.fs.flash.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n" + "2025-03-17 17:39:41 [INFO] idaes.init.fs.flash.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:25 [INFO] idaes.init.fs.flash.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n" + "2025-03-17 17:39:41 [INFO] idaes.init.fs.flash.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:25 [INFO] idaes.init.fs.flash.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n" + "2025-03-17 17:39:41 [INFO] idaes.init.fs.flash.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:25 [INFO] idaes.init.fs.flash.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n" + "2025-03-17 17:39:41 [INFO] idaes.init.fs.flash.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:25 [INFO] idaes.init.fs.flash.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n" + "2025-03-17 17:39:41 [INFO] idaes.init.fs.flash.control_volume.properties_out: Initialization Step 1 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:25 [INFO] idaes.init.fs.flash.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" + "2025-03-17 17:39:41 [INFO] idaes.init.fs.flash.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:25 [INFO] idaes.init.fs.flash.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" + "2025-03-17 17:39:41 [INFO] idaes.init.fs.flash.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:25 [INFO] idaes.init.fs.flash.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" + "2025-03-17 17:39:41 [INFO] idaes.init.fs.flash.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:25 [INFO] idaes.init.fs.flash.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" + "2025-03-17 17:39:41 [INFO] idaes.init.fs.flash.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:25 [INFO] idaes.init.fs.flash.control_volume.properties_out: State Released.\n" + "2025-03-17 17:39:41 [INFO] idaes.init.fs.flash.control_volume.properties_out: State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:25 [INFO] idaes.init.fs.flash.control_volume: Initialization Complete\n" + "2025-03-17 17:39:41 [INFO] idaes.init.fs.flash.control_volume: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:25 [INFO] idaes.init.fs.flash.control_volume.properties_in: State Released.\n" + "2025-03-17 17:39:41 [INFO] idaes.init.fs.flash.control_volume.properties_in: State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:25 [INFO] idaes.init.fs.flash: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:39:41 [INFO] idaes.init.fs.flash: Initialization Complete: optimal - Optimal Solution Found\n" ] } ], @@ -682,14 +683,14 @@ "Output from display:\n", "vap_outlet : Size=1\n", " Key : Name : Value\n", - " None : flow_mol : {0.0: 0.39611817487741735}\n", - " : mole_frac_comp : {(0.0, 'benzene'): 0.6339766485081294, (0.0, 'toluene'): 0.36602335149187054}\n", + " None : flow_mol : {0.0: 0.3961181748774178}\n", + " : mole_frac_comp : {(0.0, 'benzene'): 0.6339766485081293, (0.0, 'toluene'): 0.3660233514918707}\n", " : pressure : {0.0: 101325.0}\n", " : temperature : {0.0: 368.0}\n", "liq_outlet : Size=1\n", " Key : Name : Value\n", - " None : flow_mol : {0.0: 0.6038818251225827}\n", - " : mole_frac_comp : {(0.0, 'benzene'): 0.4121175977229309, (0.0, 'toluene'): 0.587882402277069}\n", + " None : flow_mol : {0.0: 0.6038818251225821}\n", + " : mole_frac_comp : {(0.0, 'benzene'): 0.41211759772293083, (0.0, 'toluene'): 0.5878824022770692}\n", " : pressure : {0.0: 101325.0}\n", " : temperature : {0.0: 368.0}\n" ] @@ -740,7 +741,13 @@ " Pressure Change : 0.0000 : pascal : True : (None, None)\n", "\n", "------------------------------------------------------------------------------------\n", - " Stream Table\n", + " Stream Table\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Units Inlet Vapor Outlet Liquid Outlet\n", " flow_mol mole / second 1.0000 0.39612 0.60388 \n", " mole_frac_comp benzene dimensionless 0.50000 0.63398 0.41212 \n", @@ -990,7 +997,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "... solve successful.\n", + "... solve successful." + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", "Simulating with Q = 2714.2857142857138\n" ] }, @@ -1158,7 +1172,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "... solve successful.\n", + "... solve successful." + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", "Simulating with Q = 20714.28571428571\n" ] }, @@ -1211,16 +1232,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQiUlEQVR4nO3deVxU5eIG8GdmYIYdRAQUQVTcUUEQRHOpVCrT26bmAohLWpElbXqvaeYtbPOaZaK54JpLi1Z6TdwrERRFRQWXRBQFREV2GGbe3x/+nBuBOoPAmRme7+fj5945887Mw7zM8HTmnHllQggBIiIiIjMhlzoAERERUV1iuSEiIiKzwnJDREREZoXlhoiIiMwKyw0RERGZFZYbIiIiMissN0RERGRWLKQO0NC0Wi2uXr0Ke3t7yGQyqeMQERGRHoQQKCwsRIsWLSCX33/fTKMrN1evXoWnp6fUMYiIiKgWLl++jJYtW953TKMrN/b29gDuPDkODg4Sp2m81Go1du7cicGDB8PS0lLqOHQfnCvTwvkyHZwrwxQUFMDT01P3d/x+Gl25uftRlIODA8uNhNRqNWxsbODg4MAXtZHjXJkWzpfp4FzVjj6HlPCAYiIiIjIrLDdERERkVlhuiIiIyKyw3BAREZFZYbkhIiIis8JyQ0RERGaF5YaIiIjMCssNERERmRWWGyIiIjIrLDdERERkViQtNwcOHMDQoUPRokULyGQybNmy5YG32bdvH3r06AGVSgUfHx/ExcXVe04iIiIyHZKWm+LiYnTv3h2LFi3Sa/zFixcxZMgQPProo0hJScEbb7yBiRMn4tdff63npERERGQqJF0488knn8STTz6p9/jY2Fi0bt0an3/+OQCgU6dO+P333/Gf//wHoaGh9RWTiIiowd0uUaOwXC11jFpRWsjham8l2eOb1KrgCQkJGDhwYJVtoaGheOONN+55m/LycpSXl+suFxQUALizGqtabZq/NObg7nPPOTB+nCvTwvkyHfeaq/O5RVi8/yJ+OXkNWiFFsofn7+mITS8F1+l9GvI7bVLlJjs7G25ublW2ubm5oaCgAKWlpbC2tq52m5iYGMyZM6fa9p07d8LGxqbespJ+4uPjpY5AeuJcmRbOl+m4O1dXi4GdWXKk3JBBQAYAsJSZZrspvJ2P7du31+l9lpSU6D3WpMpNbcyYMQPR0dG6ywUFBfD09MTgwYPh4OAgYbLGTa1WIz4+HoMGDYKlpaXUceg+OFemhfNlOu7OlYdvLyz5PRPxZ3J11w3q5IpXB7RBlxb8O3XX3U9e9GFS5cbd3R05OTlVtuXk5MDBwaHGvTYAoFKpoFKpqm23tLTkC98IcB5MB+fKtHC+jN/xK7exNE2OUwlHAAAyGfBU1+aIetQHnZqz1PydIb/PJlVuQkJCqu3mio+PR0hIiESJiIiIDJN5owTvbU3F/rPXAcghlwFDu7dA1KM+aOdmL3U8syBpuSkqKsL58+d1ly9evIiUlBQ4OzvDy8sLM2bMQFZWFlavXg0AmDJlCr766iu88847GD9+PPbs2YNNmzZh27ZtUv0IREREejt9tQDhK5KQV1QOhVyGgKYa/Ht0X7Rv7iR1NLMi6ffcHDlyBP7+/vD39wcAREdHw9/fH7NmzQIAXLt2DZmZmbrxrVu3xrZt2xAfH4/u3bvj888/x7Jly3gaOBERGb3DGTcxcmkC8orK0am5A359vQ/G+GjR2sVW6mhmR9I9NwMGDIAQ9z4SvKZvHx4wYACOHTtWj6mIiIjq1p60HLy89ijKK7Xo6d0EyyJ6wsYCOCV1MDNlUsfcEBERmZotx7Lw5ubj0GgFHuvoikWje8BaqeB3EdUjlhsiIqJ6EvfHRbz/82kAwLP+HvjkhW6wVHDN6vrGckNERFTHhBBYsOscvth9DgAwrrc3Zj3dGXK5TOJkjQPLDRERUR3SagXm/HwKqxIuAQCiB7XHa4/5QCZjsWkoLDdERER1RK3R4s1Nx/HT8auQyYA5w7ogPMRb6liNDssNERFRHSit0OCVdcnYm34dFnIZPh/RHf/w85A6VqPEckNERPSQbpeqMSHuMI5cugUrSzkWjwnAox1dpY7VaLHcEBERPYTcgjKEr0hCWnYhHKwssGJcTwR6O0sdq1FjuSEiIqqlzBslGLs8EZk3S+Bip8KaCUFc9NIIsNwQERHVQlp2AcKXJyG3sByeztZYOyEYrZpyKQVjwHJDRERkoORLtxC5MgkFZZXo4GaP1ROC4OZgJXUs+n8sN0RERAbYf/Y6pqxJRqlagx5eTlg5LgiONpZSx6K/YLkhIiLS08/HryJ6UwrUGoH+7Zth8dgesFHyT6mx4YwQERHpYe2hS3hvayqEAIZ2b4HPh3eH0oLrRBkjlhsiIqL7EELgqz3n8Xn8WQDA2F5emDPMFwquE2W0WG6IiIjuQasV+Pe2M1jxx0UAwGuP+SB6UHuuE2XkWG6IiIhqUKnR4p3vT+CHo1kAgPee7owJj7SWOBXpg+WGiIjob8rUGkStP4ZdZ3KgkMvwyfPd8HxAS6ljkZ5YboiIiP6ioEyNSauOIPHiTSgt5Fg0ugcGdXaTOhYZgOWGiIjo/+UVlSNiRRJOXS2AncoCyyIC0atNU6ljkYFYboiIiABcuVWCsOVJuJhXjKa2SqwaHwRfD0epY1EtsNwQEVGjdy6nEGHLk5BdUAYPJ2usmRCENs3spI5FtcRyQ0REjdrxy/kYtzIJt0rUaNvMFmsnBqO5o7XUseghsNwQEVGj9cf5PExafQQlFRp0a+mIuMggONsqpY5FD4nlhoiIGqUdqdcw9dsUVGi06OPTFEvCAmGn4p9Fc8BZJCKiRmfj4UzM+OEktAJ4oos7vhjlB5WFQupYVEdYboiIqFFZsv8CYv6bBgAYGeiJj57rynWizAzLDRERNQpCCHy8Ix2x+y8AACb3b4PpT3TkOlFmiOWGiIjMnkYrMHPLSXybdBkAMP3JjpjSv63Eqai+sNwQEZFZK6/UYNrGFGw/mQ25DPjo2a54MchL6lhUj1huiIjIbBWXV2LK2mT8di4PSoUcX7zohye7Npc6FtUzlhsiIjJLt4orEBl3GCmX82GjVGBpWCAeaecidSxqACw3RERkdrJvlyFseSLO5RbBycYScZFB8PN0kjoWNRCWGyIiMisX84oxdlkisvJL4e5ghTUTgtDOzV7qWNSAWG6IiMhsnLp6GxErkpBXVIHWLrZYMyEILZvYSB2LGhjLDRERmYWkizcxIe4wCssr0bm5A1aND0Ize5XUsUgCLDdERGTy9qTl4OW1R1FeqUWQtzOWjQuEg5Wl1LFIIiw3RERk0rYcy8Jbm4+jUivweEdXLBrTA1aWXCeqMWO5ISIik7XqYAZm/3QKAPCsvwc+eaEbLBVyiVOR1FhuiIjI5Agh8MXuc1iw6xwAYFxvb8x6ujPkXACTwHJDREQmRqsV+OCX04g7mAEAmDawPaY+7sMFMEmH5YaIiEyGWqPFO9+dwI/HsgAAc4Z1QURvb2lDkdFhuSEiIpNQptbg1XVHsTstFxZyGT4f0R3/8POQOhYZIZYbIiIyegVlakyMO4KkjJtQWcixeGwPPNbRTepYZKRYboiIyKhdLyxHxIoknL5WAHsrC6wY1xM9vZ2ljkVGjOWGiIiM1uWbJQhfkYSLecVwsVNh1fie6NLCUepYZORYboiIyCidyylE2PIkZBeUoWUTa6ydEAxvF1upY5EJYLkhIiKjk3I5H+NWJiG/RI12rnZYMyEY7o5WUsciE8FyQ0RERuWP83mYtPoISio08PN0wspxPdHEVil1LDIhLDdERGQ0dqRew9RvU1Ch0eIRHxcsCQuArYp/qsgw/I0hIiKjsOnwZUz/4QS0AnjS1x0LXvSDyoILYJLhWG6IiEhySw9cwEfb0wAAIwM98dFzXaHgOlFUSyw3REQkGSEEPvk1HYv3XQAATO7fBtOf6Mh1ouihsNwQEZEkNFqBmVtS8W1SJgDg3Sc64uUBbSVOReaA5YaIiBpceaUG0RuPY9vJa5DJgI+e7YpRQV5SxyIzwXJDREQNqri8ElPWJuO3c3mwVMiwYKQ/hnRrLnUsMiMsN0RE1GDySyoQGXcYxzLzYW2pwJKwAPRr30zqWGRm5FIHWLRoEby9vWFlZYXg4GAkJSXdd/yCBQvQoUMHWFtbw9PTE9OmTUNZWVkDpSUiotrKKSjDyCWHcCwzH47Wllg7MZjFhuqFpOVm48aNiI6OxuzZs3H06FF0794doaGhyM3NrXH8+vXrMX36dMyePRtnzpzB8uXLsXHjRvzzn/9s4ORERGSISzeK8ULsQaTnFMLVXoVNk0MQ0KqJ1LHITEn6sdT8+fMxadIkREZGAgBiY2Oxbds2rFixAtOnT682/uDBg+jTpw9Gjx4NAPD29saoUaOQmJh4z8coLy9HeXm57nJBQQEAQK1WQ61W1+WPQwa4+9xzDowf58q0GON8pWUXYvyqZFwvqoCXszVWRgTAy9nKqDJKwRjnypgZ8jxJVm4qKiqQnJyMGTNm6LbJ5XIMHDgQCQkJNd6md+/eWLt2LZKSkhAUFIQ///wT27dvR1hY2D0fJyYmBnPmzKm2fefOnbCxsXn4H4QeSnx8vNQRSE+cK9NiLPN1sRBYckaBUo0MLWwEJrUuROqhfUiVOpgRMZa5MnYlJSV6j5Ws3OTl5UGj0cDNza3Kdjc3N6SlpdV4m9GjRyMvLw+PPPIIhBCorKzElClT7vux1IwZMxAdHa27XFBQAE9PTwwePBgODg5188OQwdRqNeLj4zFo0CBYWlpKHYfug3NlWoxpvg6cy0Pstyko02jRw8sJS8f6w9Gav0N3GdNcmYK7n7zow6TOltq3bx8++ugjfP311wgODsb58+fx+uuvY+7cuXjvvfdqvI1KpYJKpaq23dLSkr9MRoDzYDo4V6ZF6vn6+fhVRG9KgVoj0L99Mywe2wM2SpP6k9NgpJ4rU2HIcyTZb5qLiwsUCgVycnKqbM/JyYG7u3uNt3nvvfcQFhaGiRMnAgC6du2K4uJivPTSS/jXv/4FuVzyk7+IiBq9dYmXMHNLKoQAnu7WHPNH+EFpwfdnajiS/bYplUoEBARg9+7dum1arRa7d+9GSEhIjbcpKSmpVmAUijsrxgoh6i8sERE9kBACi/aex79+vFNsxgR74YsX/VlsqMFJuo8wOjoaERERCAwMRFBQEBYsWIDi4mLd2VPh4eHw8PBATEwMAGDo0KGYP38+/P39dR9Lvffeexg6dKiu5BARUcMTQuCj7WfwzW8XAQBRj/rgzcHtuQAmSULScjNy5Ehcv34ds2bNQnZ2Nvz8/LBjxw7dQcaZmZlV9tTMnDkTMpkMM2fORFZWFpo1a4ahQ4fiww8/lOpHICJq9Co1Wvzzx5PYdOQKAGDmkE6Y2LeNxKmoMZP86K6oqChERUXVeN2+ffuqXLawsMDs2bMxe/bsBkhGREQPUqbW4PUNx/DrqRzIZcC857thRKCn1LGokZO83BARkWkqKq/E5DVH8Mf5G1Aq5Fg4yh9P+NZ8QghRQ2K5ISIig90qrsC4uMM4fjkftkoFloYHoo+Pi9SxiACw3BARkYGyb5chbHkizuUWoYmNJeIig9Dd00nqWEQ6LDdERKS3i3nFGLssEVn5pXB3sMKaCUFo52YvdSyiKlhuiIhIL6evFiB8RRLyisrR2sUWayYEoWUTrtFHxoflhoiIHuhIxk1Exh1GYVklOjd3wKrxQWhmX31pGyJjwHJDRET3tTc9Fy+vTUaZWoue3k2wfFxPOFhxLSQyXiw3RER0Tz8dv4rojSmo1Ao82qEZvh4TAGslvxGejBvLDRER1WjtoUt4b+uddaL+4dcCnw3vDksF14ki48dyQ0REVQgh8PW+C/j013QAQHhIK7w/tAvkcq4TRaaB5YaIiHT+vgDm1Md8MG0QF8Ak08JyQ0REAKovgPne050x4ZHWEqciMhzLDRERVVkAUyGX4ePnu+GFgJZSxyKqFZYbIqJGrri8Ei/9ZQHML0f7I7QLF8Ak08VyQ0TUiP19AcxvwgPRmwtgkoljuSEiaqS4ACaZK5YbIqJGKCOvGGOXJ+LKrTsLYK6dGAQfVy6ASeaB5YaIqJHhAphk7lhuiIgaES6ASY0Byw0RUSOxLz0XU/6yAOayiJ5wtOYCmGR+WG6IiBqBn49fxbT/XwBzQIdmWMwFMMmMsdwQEZm5dYmXMHPLnQUwh3W/swCm0oILYJL5YrkhIjJTQggs3n8Bn+y4swDm2F5e+GCYLxfAJLPHckNEZIaEEIj5bxqWHvgTABD1qA/eHMwFMKlxYLkhIjIzWgH8a+tpbE7OAgDMHNIJE/u2kTgVUcNhuSEiMiPllVrEnZXj+M0syGXAvOe7YUSgp9SxiBoUyw0RkZkoLq/E5LXHcPymHJYKGb4c1QNP+HIBTGp8WG6IiMxAfkkFxq08jJTL+VDKBb4JC0D/jiw21Dix3BARmbicgjKEL09Cek4hHK0tML5tGXq3bSp1LCLJ8IsOiIhM2KUbxXgh9iDScwrh5qDCtxOC4M31L6mR454bIiITlZZdgLDlSbheWI5WTW2wdkIw3O0tcU7qYEQSY7khIjJByZduYXzcYdwuVaOjuz1Wjw+Cq4MV1Gq11NGIJMdyQ0RkYg6cvY7Ja5JRqtagh5cTVo4LgqMNF8AkuovlhojIhGw/eQ2vbzgGtUagbzsXLAkLgI2Sb+VEf8VXBBGRidh4OBMzfjgJrQCGdG2O+SO7Q2XBlb2J/k6vcnPixAmD77hz586wsGB3IiKqC0sPXMBH29MAAC/29MSHz3aFggtgEtVIr/bh5+cHmUwGIYRedyqXy3H27Fm0acO1TIiIHoYQAp/+mo6v910AAEzu1wbTn+zIBTCJ7kPvXSuJiYlo1qzZA8cJIeDr6/tQoYiICNBoBWZtTcW6xEwAwLtPdMTLA9pKnIrI+OlVbvr37w8fHx84OTnpdaf9+vWDtbX1w+QiImrUKiq1iN6Ugl9OXINMBnz4TFeMDvaSOhaRSdCr3Ozdu9egO92+fXutwhAREVBaocHL65KxL/06LBUyzB/hh6HdW0gdi8hkPNTyC3/88QfKy8vrKgsRUaN3u1SNsOWJ2Jd+HVaWcnwTHshiQ2Sghyo3Tz75JLKysuoqCxFRo3a9sByjlh7CkUu3YG9lgTUTgjGgg6vUsYhMzkOdq63v2VNERHR/V26VIGx5Ei7mFcPFTolV44PQpYWj1LGITBK/iIaISGLnc4sQtjwR126XwcPJGmsmBKFNMzupYxGZrIcqN0uWLIGbm1tdZSEianROXrmNiJVJuFlcgbbNbLF2YjCaO/JsU6KH8VDlZvTo0XWVg4io0Um4cAOTVh9BUXkluno4YtX4IDjbKqWORWTy9Dqg+LnnnkNBQYHedzpmzBjk5ubWOhQRkbnbdToHESuTUFReieDWzlg/KZjFhqiO6LXnZuvWrbh+/bpedyiEwM8//4y5c+fC1ZVH+RMR/d2Px67grc0noNEKDOzkiq9G94CVJRfAJKorepUbIQTat29f31mIiMzeqoMZmP3TKQDAs/4e+OSFbrBUPNS3chDR39TLNxQDgIeHh8G3ISIyV0IIfLnnPObHnwUARIS0wuyhXSDnyt5EdU7vtaWIiKh2tFqBD7efwfLfLwIAXn+8Hd4Y2I4rexPVE37PDRFRParUaDH9h5P4LvkKAGDW050x/pHWEqciMm8sN0RE9aS8UoPXv03BjlPZkMuAj5/vhuGBnlLHIjJ7LDdERPWguLwSL605gj/O34BSIceXo/0R2sVd6lhEjQLLDRFRHcsvqcC4lYeRcjkfNkoFvgkPRB8fF6ljETUaLDdERHUot6AMYcuTkJ5TCCcbS8RFBsHP00nqWESNisFfrpCTk4OwsDC0aNECFhYWUCgUVf4ZatGiRfD29oaVlRWCg4ORlJR03/H5+fl49dVX0bx5c6hUKrRv3x7bt283+HGJiOpa5o0SvBCbgPScQrjaq7DxpRAWGyIJGLznZty4ccjMzMR7772H5s2bP9SpjBs3bkR0dDRiY2MRHByMBQsWIDQ0FOnp6TV+u3FFRQUGDRoEV1dXfPfdd/Dw8MClS5fg5ORU6wxERHUhPbsQYcsTkVtYDi9nG6ybGAxPZxupYxE1SgaXm99//x2//fYb/Pz8HvrB58+fj0mTJiEyMhIAEBsbi23btmHFihWYPn16tfErVqzAzZs3cfDgQVhaWgIAvL297/sY5eXlKC8v112+u0aWWq2GWq1+6J+Baufuc885MH6cqwdLuZyPiWuO4nZpJdq72mHluAC42ltK8pxxvkwH58owhjxPMiGEMOTOO3fujHXr1sHf39/gYH9VUVEBGxsbfPfdd3jmmWd02yMiIpCfn4+tW7dWu81TTz0FZ2dn2NjYYOvWrWjWrBlGjx6Nd999954fib3//vuYM2dOte3r16+HjQ3/q4qIHk76bRmWpclRoZXB207gpY4a2FpKnYrI/JSUlGD06NG4ffs2HBwc7jvW4D03CxYswPTp07FkyZIH7jW5n7y8PGg0Gri5uVXZ7ubmhrS0tBpv8+eff2LPnj0YM2YMtm/fjvPnz+OVV16BWq3G7Nmza7zNjBkzEB0drbtcUFAAT09PDB48+IFPDtUftVqN+Ph4DBo0SLcXjowT5+re4k/n4ptNx6HWCvRu64yvR/nBViXteRqcL9PBuTLM3U9e9GHwq3DkyJEoKSlB27ZtYWNjU21Cbt68aehd6k2r1cLV1RVLly6FQqFAQEAAsrKy8Omnn96z3KhUKqhUqmrbLS0t+ctkBDgPpoNzVdV3yVfwznfHoRXAE13c8cUoP6gsjGdlb86X6eBc6ceQ56hWe27qgouLCxQKBXJycqpsz8nJgbt7zV901bx5c1haWlb5CKpTp07Izs5GRUUFlEplnWQjIrqflX9cxJyfTwMAhge0RMxzXWHBlb2JjIbB5SYiIqJOHlipVCIgIAC7d+/WHXOj1Wqxe/duREVF1XibPn36YP369dBqtZDL77yRnD17Fs2bN2exIaJ6J4TAF7vPYcGucwCACY+0xr+e6sSVvYmMTK0+HNZoNNiyZQvOnDkDAOjSpQuGDRtm8PfcREdHIyIiAoGBgQgKCsKCBQtQXFysO3sqPDwcHh4eiImJAQC8/PLL+Oqrr/D666/jtddew7lz5/DRRx9h6tSptfkxiIj0ptUKfPDLacQdzAAAvDmoPaIe8+HK3kRGyOByc/78eTz11FPIyspChw4dAAAxMTHw9PTEtm3b0LZtW73va+TIkbh+/TpmzZqF7Oxs+Pn5YceOHbqDjDMzM3V7aADA09MTv/76K6ZNm4Zu3brBw8MDr7/+Ot59911DfwwiIr1VarR49/uT+P7onZW95wzrgoje3tKGIqJ7MrjcTJ06FW3btsWhQ4fg7OwMALhx4wbGjh2LqVOnYtu2bQbdX1RU1D0/htq3b1+1bSEhITh06JChsYmIaqVMrcHUb49h5+kcKOQyfPpCNzzXo6XUsYjoPgwuN/v3769SbACgadOmmDdvHvr06VOn4YiIpFRUXonJd1f2tpBj0egeGNTZ7cE3JCJJGVxuVCoVCgsLq20vKiriQb1EZDbySyoQsfIwjl/Oh61SgW8iAtG7LVf2JjIFBp+7+PTTT+Oll15CYmIihBAQQuDQoUOYMmUKhg0bVh8ZiYgaVE5BGUYsScDxy/lwsrHE+km9WGyITIjB5WbhwoVo27YtQkJCYGVlBSsrK/Tp0wc+Pj744osv6iMjEVGDybxRguGxCTibUwQ3BxU2TQ5Bd67sTWRSDP5YysnJCVu3bsW5c+d0yyR06tQJPj4+dR6OiKghcWVvIvNQ60VQ2rVrh3bt2tVlFiIiyRzLvIVxKw/jdqkaHd3tsXp8EFwdrKSORUS1oFe5iY6Oxty5c2Fra1tlEcqazJ8/v06CERE1lIPn8zBx9RGUVGjg7+WEleN6wsmGJ0gQmSq9ys2xY8egVqt1/5+IyFz8eiobr60/hgqNFo/4uGBJWIDkK3sT0cPR6xW8d+/eGv8/EZEp+z75Ct75/gQ0WoHQLm5YOMrfqFb2JqLaMfhsqfHjx9f4PTfFxcUYP358nYQiIqpvcX9cxJubj0OjFXghoCUWje7BYkNkJgwuN6tWrUJpaWm17aWlpVi9enWdhCIiqi9CCHyx6xze//k0AGB8n9b45PlusFAY/HZIREZK7w+WCwoKdF/aV1hYCCur/51FoNFosH37dri6utZLSCKiuqDVCvx72xms+OMiAGDawPaY+jhX9iYyN3qXGycnJ8hkMshkMrRv377a9TKZDHPmzKnTcEREdaVSo8X0H07iu+Q7K3vPHtoZkX1aS5yKiOqD3uVm7969EELgsccew/fff19l4UylUolWrVqhRYsW9RKSiOhhlFdq8Pq3KdhxKhtyGfDpC93xfABX9iYyV3qXm/79+wMALl68CC8vL+7GJSKTUFxeiSlrk/HbuTwoFXIsHOWPJ3zdpY5FRPXI4CPo9uzZg++++67a9s2bN2PVqlV1EoqIqC7cLlEjbHkifjuXBxulAivG9WSxIWoEDC43MTExcHGpvjquq6srPvroozoJRUT0sHILyzByaQKOZubD0doSaycG45F2XNmbqDEw+Gs4MzMz0bp19YPwWrVqhczMzDoJRUT0MC7fLEHY8kRk3ChBM3sV1kwIQkd3B6ljEVEDMXjPjaurK06cOFFt+/Hjx9G0adM6CUVEVFvncwsxPDYBGTdK4Olsje+mhLDYEDUyBu+5GTVqFKZOnQp7e3v069cPALB//368/vrrePHFF+s8IBGRvk5euY2IlUm4WVyBdq52WDMhGO6OXNmbqLExuNzMnTsXGRkZePzxx2FhcefmWq0W4eHhPOaGiCST+OcNTFh1BEXllejW0hFxkUFwtuXK3kSNkcHlRqlUYuPGjZg7dy6OHz8Oa2trdO3aFa1ataqPfERED7QnLQcvrz2K8koterVxxjfhgbC3spQ6FhFJxOByc1f79u1r/KZiIqKG9NPxq4jemIJKrcDATq74anQPWFlyAUyixqxW5ebKlSv46aefkJmZiYqKiirXzZ8/v06CERE9yLrES5i5JRVCAM/4tcCnw7vDkgtgEjV6Bpeb3bt3Y9iwYWjTpg3S0tLg6+uLjIwMCCHQo0eP+shIRFRN7P4LmPffNABAWK9WmDOsC+RyfnM6EdXiVPAZM2bgrbfewsmTJ2FlZYXvv/8ely9fRv/+/TF8+PD6yEhEpCOEwMc70nTF5tVH2+KDf7DYENH/GFxuzpw5g/DwcACAhYUFSktLYWdnhw8++AAff/xxnQckIrpLqxWYuSUVi/ddAADMeLIj3g7tyLXuiKgKg8uNra2t7jib5s2b48KFC7rr8vLy6i4ZEdFfqDVaTNuUgnWJmZDJgJjnumJy/7ZSxyIiI2TwMTe9evXC77//jk6dOuGpp57Cm2++iZMnT+KHH35Ar1696iMjETVyZWoNXl13FLvTcmEhl+E/I/0wtHsLqWMRkZEyuNzMnz8fRUVFAIA5c+agqKgIGzduRLt27XimFBHVucIyNSauOoLEizehspAjdmwAHu3oKnUsIjJiBpUbjUaDK1euoFu3bgDufEQVGxtbL8GIiG4WV2DcyiScuHIbdioLLI8IRHAbrmFHRPdn0DE3CoUCgwcPxq1bt+orDxERACD7dhlGLEnAiSu34WyrxLeTerHYEJFeDD6g2NfXF3/++Wd9ZCEiAgBculGMF2IP4nxuEdwdrLBpcgi6tnSUOhYRmQiDy82///1vvPXWW/jll19w7do1FBQUVPlHRPQw0rML8UJsAq7cKoV3UxtsnhICH1c7qWMRkQkx+IDip556CgAwbNiwKt8tIYSATCaDRqOpu3RE1Kgcy7yFcSsP43apGh3d7bF6QhBc7a2kjkVEJsbgcrN37976yEFEjdzB83mYuPoISio08PdyQty4IDjacGVvIjKc3uUmPDwcixYtQv/+/QEAx48fR+fOnWFpyTcfIno4O09lI+rbY6io1KKPT1MsDQuErapW6/oSEel/zM26detQWlqqu9y3b19cvny5XkIRUePx47EreHndUVRUajG4sxuWR/RksSGih6L3O4gQ4r6XiYgMtSYhA+9tPQUAeK6HBz55vhssFAaf50BEVAX/84iIGpwQAl/vu4BPf00HAIzr7Y1ZT3fmyt5EVCcMKjenT59GdnY2gDtvTmlpabqlGO66++3FREQ1EUJg3n/TsOTAne/LmvqYD6YNas+VvYmozhhUbh5//PEqH0c9/fTTAACZTMZTwYnogTRagZlbUvFtUiYAYOaQTpjYt43EqYjI3Ohdbi5evFifOYjIzKk1WkzbmIJfTlyDXAbEPNcVI3t6SR2LiMyQ3uWmVatW9ZmDiMxYmVqDV9YdxZ60XFgqZFgw0h9DujWXOhYRmSkeUExE9aqwTI0Jq44g6eJNWFnKETs2AAM6uEodi4jMGMsNEdWbm8UViFiRhJNZt2GvssDycT0R1NpZ6lhEZOZYboioXmTfLsPY5Yk4n1sEZ1slVo8Pgq8HV/Ymovpn0LdlCSGQmZmJsrKy+spDRGbg0o1ivBB7EOdzi+DuYIVNk0NYbIiowRhcbnx8fLjsAhHdU3p2IV6ITcCVW6XwbmqDzVNC4ONqJ3UsImpEDCo3crkc7dq1w40bN+orDxGZsJTL+RixJAHXC8vR0d0em6aEwNPZRupYRNTIGLyIy7x58/D2228jNTW1PvIQkYk6eCEPY745hNulavh7OWHDS73gam8ldSwiaoQMPqA4PDwcJSUl6N69O5RKJaytratcf/PmzToLR0SmYdfpHLyy/s7K3n18mmJpWCBX9iYiyRj87rNgwYJ6iEFEpmprShaiNx2HRiswqLMbvhzlDytLhdSxiKgRM7jcRERE1EcOIjJBaw9dwntbUyEE8Ky/Bz55oRssFQZ/2k1EVKdqtd9Yo9Fgy5YtOHPmDACgS5cuGDZsGBQK/tcaUWOxeN8FfLwjDQAQ1qsV5gzrArmcK3sTkfQMLjfnz5/HU089haysLHTo0AEAEBMTA09PT2zbtg1t27at85BEZDyEEPj013R8ve8CAOCVAW3xdmgHyGQsNkRkHAzefzx16lS0bdsWly9fxtGjR3H06FFkZmaidevWmDp1aq1CLFq0CN7e3rCyskJwcDCSkpL0ut2GDRsgk8nwzDPP1OpxicgwWq3ArK2ndMXm3Sc64p0nOrLYEJFRMbjc7N+/H5988gmcnf+3PkzTpk0xb9487N+/3+AAGzduRHR0NGbPno2jR4+ie/fuCA0NRW5u7n1vl5GRgbfeegt9+/Y1+DGJyHCVGi3e3Hwcaw5dgkwG/PsZX7w8gHtqicj4GFxuVCoVCgsLq20vKiqCUqk0OMD8+fMxadIkREZGonPnzoiNjYWNjQ1WrFhxz9toNBqMGTMGc+bMQZs2bQx+TCIyjFoLTN14Aj8ey4JCLsOCkX4Y26uV1LGIiGpk8DE3Tz/9NF566SUsX74cQUFBAIDExERMmTIFw4YNM+i+KioqkJycjBkzZui2yeVyDBw4EAkJCfe83QcffABXV1dMmDABv/32230fo7y8HOXl5brLBQUFAAC1Wg21Wm1QXqo7d597zoHxyy8uxdI0Oc7ezoXSQo6FI7vh8Y6unDsjxdeW6eBcGcaQ58ngcrNw4UJEREQgJCQElpaWAIDKykoMGzYMX3zxhUH3lZeXB41GAzc3tyrb3dzckJaWVuNtfv/9dyxfvhwpKSl6PUZMTAzmzJlTbfvOnTthY8OvhZdafHy81BHoPkoqgSVnFMgokkMpF5jUXo3yP49g+59SJ6MH4WvLdHCu9FNSUqL3WIPLjZOTE7Zu3Ypz587hzJkzkMlk6NSpE3x8fAy9K4MVFhYiLCwM33zzDVxcXPS6zYwZMxAdHa27XFBQAE9PTwwePBgODg71FZUeQK1WIz4+HoMGDdKVZDIueUXliIxLRkZREWwUAssjAhDYWr/XHUmHry3TwbkyzN1PXvRR6+9Hb9euna7Q1PZMCRcXFygUCuTk5FTZnpOTA3d392rjL1y4gIyMDAwdOlS3TavVAgAsLCyQnp5e7VR0lUoFlUpV7b4sLS35y2QEOA/G6cqtEoQtP4KLecVoZqfE+LYlCGztwrkyIXxtmQ7OlX4MeY5q9VWiy5cvh6+vL6ysrGBlZQVfX18sW7bM4PtRKpUICAjA7t27ddu0Wi12796NkJCQauM7duyIkydPIiUlRfdv2LBhePTRR5GSkgJPT8/a/DhE9BcXrhdhRGwCLuYVw8PJGt9ODEILfoJLRCbE4D03s2bNwvz58/Haa6/pCkhCQgKmTZuGzMxMfPDBBwbdX3R0NCIiIhAYGIigoCAsWLAAxcXFiIyMBHBnoU4PDw/ExMToitRfOTk5AUC17URkuFNXbyN8eRJuFFegbTNbrJ0YDBcbC5ySOhgRkQEMLjeLFy/GN998g1GjRum2DRs2DN26dcNrr71mcLkZOXIkrl+/jlmzZiE7Oxt+fn7YsWOH7iDjzMxMyOVcq4aoviVfuolxKw+jsKwSXVo4YPX4IDS1U/FMDiIyOQaXG7VajcDAwGrbAwICUFlZWasQUVFRiIqKqvG6ffv23fe2cXFxtXpMIvqf385dx0urk1Gq1qCndxMsH9cTDlY8BoCITJPBu0TCwsKwePHiatuXLl2KMWPG1EkoImo4O1KzMSHuCErVGvRr3wyrxwez2BCRSavV2VLLly/Hzp070atXLwB3vsQvMzMT4eHhVU67nj9/ft2kJKJ68X3yFbzz/QlotAJP+rrjixf9obTgx8BEZNoMLjepqano0aMHgDunZgN3Tul2cXFBamqqbhwX0iMybqsTMjBr651DhYcHtETMc11hoWCxISLTZ3C52bt3b33kIKIGIoTA1/su4NNf0wEAkX288d6QzpDL+R8kRGQeav0lfkRkeoQQmLcjDUv231k/Yerj7TBtYDvuaSUis1KrcnPkyBFs2rQJmZmZqKioqHLdDz/8UCfBiKhuabQC721NxfrETADAzCGdMLFvG4lTERHVPYM/YN+wYQN69+6NM2fO4Mcff4RarcapU6ewZ88eODo61kdGInpIao0W0ZtSsD4xEzIZMO+5riw2RGS2DC43H330Ef7zn//g559/hlKpxBdffIG0tDSMGDECXl5e9ZGRiB5CmVqDl9cmY2vKVVjIZVj4oj9eDOJrlYjMl8Hl5sKFCxgyZAiAO2tDFRcXQyaTYdq0aVi6dGmdBySi2isur8T4uMPYdSYXKgs5loYHYGj3FlLHIiKqVwaXmyZNmqCwsBAA4OHhoTv9Oz8/HyUlJXWbjohqLb+kAmOWJeLghRuwVSqwanwQHuvoJnUsIqJ6Z/ABxf369UN8fDy6du2K4cOH4/XXX8eePXsQHx+Pxx9/vD4yEpGBcgvLEL48CWnZhXCyscSqyCB093SSOhYRUYPQu9ykpqbC19cXX331FcrKygAA//rXv2BpaYmDBw/i+eefx8yZM+stKBHpJyu/FGOXJeJiXjFc7VVYMyEYHdztpY5FRNRg9C433bp1Q8+ePTFx4kS8+OKLAAC5XI7p06fXWzgiMsyf14swdlkirt4uQ8sm1lg3MRitmtpKHYuIqEHpfczN/v370aVLF7z55pto3rw5IiIi8Ntvv9VnNiIywOmrBRixJAFXb5ehbTNbbJ4SwmJDRI2S3uWmb9++WLFiBa5du4Yvv/wSGRkZ6N+/P9q3b4+PP/4Y2dnZ9ZmTiO4j+dItvLg0AXlFFejSwgGbJoeguaO11LGIiCRh8NlStra2iIyMxP79+3H27FkMHz4cixYtgpeXF4YNG1YfGYnoPv44n4ew5YkoKKtEYKsmWD+pF5raqaSORUQkmYdaAtjHxwf//Oc/MXPmTNjb22Pbtm11lYuI9LDzVDYiVx5GSYUGfdu5YPWEIDhaW0odi4hIUrVeOPPAgQNYsWIFvv/+e8jlcowYMQITJkyoy2xEdB9bjmXhzc3HodEKhHZxw8JR/lBZKKSORUQkOYPKzdWrVxEXF4e4uDicP38evXv3xsKFCzFixAjY2vLARaKGsvbQJby3NRVCAM/18MAnz3eDheKhdsQSEZkNvcvNk08+iV27dsHFxQXh4eEYP348OnToUJ/ZiKgGsfsvYN5/0wAA4SGt8P7QLpDLZRKnIiIyHnqXG0tLS3z33Xd4+umnoVBw1zdRQxNC4POdZ/HV3vMAgFcfbYu3BneATMZiQ0T0V3qXm59++qk+cxDRfWi1Ah/8chpxBzMAAO8+0REvD2grbSgiIiNV6wOKiahhVGq0ePf7k/j+6BXIZMAH//BFWK9WUsciIjJaLDdERqy8UoM3NqTgv6nZUMhl+Gx4Nzzr31LqWERERo3lhshIlVZoMHltMg6cvQ6lQo4vR/sjtIu71LGIiIweyw2RESooU2NC3GEczrgFa0sFloYHoG+7ZlLHIiIyCSw3REbmZnEFIlYk4WTWbdhbWSAusicCWjlLHYuIyGSw3BAZkZyCMoxdlohzuUVwtlVi9fgg+Ho4Sh2LiMiksNwQGYnLN0swZlkiMm+WwN3BCmsnBsPH1U7qWEREJoflhsgInM8txJhlicgpKIeXsw3WTQyGp7ON1LGIiEwSyw2RxFKzbiN8RRJuFlegvZsd1kwIhpuDldSxiIhMFssNkYSOZNxE5MrDKCyvRLeWjlgVGYQmtkqpYxERmTSWGyKJHDh7HZPXJKNUrUFQa2csjwiEvZWl1LGIiEweyw2RBHakZmPqt8dQodGif/tmiB0bAGslF6QlIqoLLDdEDeyHo1fw9ncnoNEKPNXVHQtG+kNpIZc6FhGR2WC5IWpAaxIy8N7WUwCAFwJaYt5zXWGhYLEhIqpLLDdEDWTxvgv4eEcaAGBcb2/Meroz5HKZxKmIiMwPyw1RPRNC4LOd6Vi09wIA4LXHfBA9qD1kMhYbIqL6wHJDVI+0WoE5P5/CqoRLAIDpT3bElP5tJU5FRGTeWG6I6kmlRovpP5zEd8lXIJMBH/zDF2G9Wkkdi4jI7LHcENWDikot3th4DNtPZkMhl+Gz4d3wrH9LqWMRETUKLDdEday0QoMpa5Ox/+x1KBVyLBzljyd83aWORUTUaLDcENWhwjI1Jqw6gqSLN2FlKcfSsED0a99M6lhERI0Kyw1RHblVXIGIlUk4ceU27FUWWBHZEz29naWORUTU6LDcENWB3IIyjF2eiLM5RXC2VWL1+CD4ejhKHYuIqFFiuSF6SFdulWDsskRk3CiBm4MKaycEo52bvdSxiIgaLZYboofw5/UijFmWiGu3y9CyiTXWT+wFr6Y2UsciImrUWG6IaunMtQKELU9EXlEF2jazxbqJveDuaCV1LCKiRo/lhqgWjmXeQsSKJBSUVaJzcwesmRCEpnYqqWMRERFYbogMdvBCHiauOoKSCg16eDlhZWQQHK0tpY5FRET/j+WGyAB70nLw8tqjKK/Uoo9PUywNC4Stii8jIiJjwndlIj39cuIq3tiQgkqtwMBObvhqtD+sLBVSxyIior9huSHSw6YjlzH9+xPQCmBY9xb4fER3WCrkUsciIqIasNwQPcDKPy5izs+nAQCjgjzx72e6QiGXSZyKiIjuheWG6B6EEFi09zw+23kWADCpb2v886lOkMlYbIiIjBnLDVENhBD4eEc6YvdfAAC8MbAdXn+8HYsNEZEJMIqDBhYtWgRvb29YWVkhODgYSUlJ9xz7zTffoG/fvmjSpAmaNGmCgQMH3nc8kaG0WoFZW0/pis3MIZ3wxsD2LDZERCZC8nKzceNGREdHY/bs2Th69Ci6d++O0NBQ5Obm1jh+3759GDVqFPbu3YuEhAR4enpi8ODByMrKauDkZI4qNVq89d1xrDl0CTIZ8NGzXTGxbxupYxERkQEkLzfz58/HpEmTEBkZic6dOyM2NhY2NjZYsWJFjePXrVuHV155BX5+fujYsSOWLVsGrVaL3bt3N3ByMjfllRpErT+GH45mQSGXYcFIP4wO9pI6FhERGUjSY24qKiqQnJyMGTNm6LbJ5XIMHDgQCQkJet1HSUkJ1Go1nJ2da7y+vLwc5eXlussFBQUAALVaDbVa/RDp6WHcfe6NZQ5KKzR49dsU/Hb+BiwVMiwc2R0DO7kaTT4pGdtc0f1xvkwH58owhjxPkpabvLw8aDQauLm5Vdnu5uaGtLQ0ve7j3XffRYsWLTBw4MAar4+JicGcOXOqbd+5cydsbLh6s9Ti4+OljoCySmBpmgIXCmVQygUmtNeg4uIRbL8odTLjYgxzRfrjfJkOzpV+SkpK9B5r0mdLzZs3Dxs2bMC+fftgZVXzaswzZsxAdHS07nJBQYHuOB0HB4eGikp/o1arER8fj0GDBsHSUrp1mW6VVGDC6qO4UFgAO5UFloX5I6BVE8nyGCNjmSvSD+fLdHCuDHP3kxd9SFpuXFxcoFAokJOTU2V7Tk4O3N3d73vbzz77DPPmzcOuXbvQrVu3e45TqVRQqaqv1mxpaclfJiMg5TzkFpYhbEUy0nMK0cTGEmsmBMPXw1GSLKaArxnTwvkyHZwr/RjyHEl6QLFSqURAQECVg4HvHhwcEhJyz9t98sknmDt3Lnbs2IHAwMCGiEpm5sqtEoyITUB6TiFc7VXYNDmExYaIyExI/rFUdHQ0IiIiEBgYiKCgICxYsADFxcWIjIwEAISHh8PDwwMxMTEAgI8//hizZs3C+vXr4e3tjezsbACAnZ0d7OzsJPs5yHRczCvGmG8O4ertMrRsYo31E3vBqymPvyIiMheSl5uRI0fi+vXrmDVrFrKzs+Hn54cdO3boDjLOzMyEXP6/HUyLFy9GRUUFXnjhhSr3M3v2bLz//vsNGZ1MUFp2AcYuS0JeUTnaNLPFuonBaO5oLXUsIiKqQ5KXGwCIiopCVFRUjdft27evyuWMjIz6D0Rm6cSVfISvSEJ+iRqdmjtgzYQguNhVPx6LiIhMm1GUG6L6lnTxJsbHHUZReSX8PJ2wKjIIjjY8gI+IyByx3JDZ23/2OiavOYIytRYhbZrim4hA2Kn4q09EZK74Dk9mbUdqNl779ijUGoHHOrri6zE9YGWpkDoWERHVI5YbMls/HruCtzafgEYrMKRrc/xnpB+UFpIvp0ZERPWM5YbM0rrES5i5JRVCAC8EtMTHz3eDQi6TOhYRETUAlhsyO0sPXMBH2++sTTautzdmPd0ZchYbIqJGg+WGzIYQAgt2ncMXu88BAF4Z0BZvh3aATMZiQ0TUmLDckFkQQuDDbWew7Pc7S3m/HdoBrz7qI3EqIiKSAssNmTyNVmDmllR8m5QJAHh/aGeM69Na4lRERCQVlhsyaWqNFm9tPo6tKVchlwHznuuGET09pY5FREQSYrkhk1VeqUHU+mOIP50DC7kMC170w9PdWkgdi4iIJMZyQyappKISk9ck47dzeVBayLF4TA883slN6lhERGQEWG7I5BSUqTEh7jAOZ9yCjVKBZeGB6O3jInUsIiIyEiw3ZFJuFVcgfEUSTmbdhr2VBeIigxDQqonUsYiIyIiw3JDJyC0sQ9iyJKTnFMLZVonV44Pg6+EodSwiIjIyLDdkErLySzHmm0PIuFECV3sV1k0MRjs3e6ljERGREWK5IaN3Ma8YY5clIiu/FB5O1lg/KRitmtpKHYuIiIwUyw0ZtfTsQoxdnojrheVo42KLtROD0cLJWupYRERkxFhuyGiduJKP8BVJyC9Ro6O7PdZMCEYze5XUsYiIyMix3JBROpxxE5ErD6OovBLdPZ2wKrInnGyUUsciIiITwHJDRue3c9cxafURlKm1CGrtjBXjesJOxV9VIiLSD/9ikFGJP52DV9cdRYVGi37tm2HJ2ABYKxVSxyIiIhPCckNG46fjVzFtYwo0WoHQLm5YOMofKgsWGyIiMgzLDRmFjYczMf2HkxACeNbfA5++0A0WCrnUsYiIyASx3JDkVvx+ER/8choAMDrYC//+hy/kcpnEqYiIyFSx3JCkFu//E/N3nQcATOrbGv98qhNkMhYbIiKqPZYbkoQQAj9nyrEr606xeWNgO7z+eDsWGyIiemgsN9TgtFqBudvTsSvrzjE1/3qqEyb1ayNxKiIiMhcsN9SgNFqB6d+fwObkKwCAOUM7IaIPiw0REdUdlhtqMGqNFtM2puCXE9cglwGj2mowOshT6lhERGRmWG6oQZSpNYhafxS7zuTCUiHD/OHdoL2ULHUsIiIyQ/wiEap3JRWVmLjqCHadyYXKQo6lYYF4ooub1LGIiMhMcc8N1auCMjXGrzyMI5duwUapwLKIQPRu6wK1Wi11NCIiMlMsN1RvbhVXIHxFEk5m3Ya9lQVWjQ9CD68mUsciIiIzx3JD9SK3sAxhy5KQnlMIZ1slVo8Pgq+Ho9SxiIioEWC5oTqXlV+KscsScTGvGK72KqyfFAwfV3upYxERUSPBckN1KiOvGGOWJSIrvxQeTtZYPykYrZraSh2LiIgaEZYbqjPncgoxZlkicgvL0cbFFmsnBqOFk7XUsYiIqJFhuaE6kZp1G2HLE3GrRI0ObvZYOzEYzexVUsciIqJGiOWGHlrypVsYtzIJhWWV6NbSEasig9DEVil1LCIiaqRYbuihHLyQh4mrjqCkQoOe3k2wYlxP2FtZSh2LiIgaMZYbqrW9abmYsjYZ5ZVa9G3ngiVhAbBR8leKiIikxb9EVCv/PXkNUzccg1ojMLCTG74a7Q8rS4XUsYiIiFhuyHDfJ1/B298dh1YAT3drjv+M9IOlgsuUERGRcWC5IYOsPXQJM7ekAgCGB7TEvOe7QSGXSZyKiIjof1huSG/LfvsT/952BgAQEdIKs4d2gZzFhoiIjAzLDT2QEAILd5/Hf3adBQBM6d8W7z7RATIZiw0RERkflhu6LyEE5u1Iw5L9fwIA3hzUHlGP+bDYEBGR0WK5oXvSagXe//kUVidcAgDMHNIJE/u2kTgVERHR/bHcUI00WoF3vz+B75KvQCYDPnymK0YHe0kdi4iI6IFYbqgatUaLaRtT8MuJa5DLgM9HdMez/i2ljkVERKQXlhuqokytQdT6o9h1JheWChkWvuiPJ7s2lzoWERGR3lhuSKekohKT1yTjt3N5UFnIETs2AI92dJU6FhERkUFYbggAUFimxvi4wziccQs2SgWWRQSid1sXqWMREREZjOWGkF9SgfAVSThx5TbsrSwQFxmEgFZNpI5FRERUKyw3jViZWoMdqdn4au95nM8tgrOtEqvHB8HXw1HqaERERLVmFKsdLlq0CN7e3rCyskJwcDCSkpLuO37z5s3o2LEjrKys0LVrV2zfvr2BkpqH87lFmPvLafSK2Y03NqbgfG4RmtmrsPGlXiw2RERk8iTfc7Nx40ZER0cjNjYWwcHBWLBgAUJDQ5Geng5X1+oHsx48eBCjRo1CTEwMnn76aaxfvx7PPPMMjh49Cl9fXwl+AtNwdy/N+qRMJF28qdvewtEKI3t6YXSwF5rZqyRMSEREVDckLzfz58/HpEmTEBkZCQCIjY3Ftm3bsGLFCkyfPr3a+C+++AJPPPEE3n77bQDA3LlzER8fj6+++gqxsbENmv2vyis1uF5YLtnj38vtUjV+PJqF749ewa0SNQBALgMe6+iG0cGe6N/elat6ExGRWZG03FRUVCA5ORkzZszQbZPL5Rg4cCASEhJqvE1CQgKio6OrbAsNDcWWLVtqHF9eXo7y8v+VjoKCAgCAWq2GWq1+yJ/gf45fzseIpff/OE1q7g4qjAhoiRcCPNDc0QoAoNVUQqtp+Cx3n/u6nAOqH5wr08L5Mh2cK8MY8jxJWm7y8vKg0Wjg5uZWZbubmxvS0tJqvE12dnaN47Ozs2scHxMTgzlz5lTbvnPnTtjY2NQyeXUZhYClTFFn91dXZDKgnaNAbzeBzk7FkJel49gf6TgmdbD/Fx8fL3UE0hPnyrRwvkwH50o/JSUleo+V/GOp+jZjxowqe3oKCgrg6emJwYMHw8HBoU4f65U6vTfzplarER8fj0GDBsHS0lLqOHQfnCvTwvkyHZwrw9z95EUfkpYbFxcXKBQK5OTkVNmek5MDd3f3Gm/j7u5u0HiVSgWVqvqBspaWlvxlMgKcB9PBuTItnC/TwbnSjyHPkaSngiuVSgQEBGD37t26bVqtFrt370ZISEiNtwkJCakyHrizS+9e44mIiKhxkfxjqejoaERERCAwMBBBQUFYsGABiouLdWdPhYeHw8PDAzExMQCA119/Hf3798fnn3+OIUOGYMOGDThy5AiWLl0q5Y9BRERERkLycjNy5Ehcv34ds2bNQnZ2Nvz8/LBjxw7dQcOZmZmQy/+3g6l3795Yv349Zs6ciX/+859o164dtmzZwu+4ISIiIgBGUG4AICoqClFRUTVet2/fvmrbhg8fjuHDh9dzKiIiIjJFRrH8AhEREVFdYbkhIiIis8JyQ0RERGaF5YaIiIjMCssNERERmRWWGyIiIjIrLDdERERkVlhuiIiIyKyw3BAREZFZMYpvKG5IQggAhi2dTnVPrVajpKQEBQUFXA3XyHGuTAvny3Rwrgxz9+/23b/j99Poyk1hYSEAwNPTU+IkREREZKjCwkI4Ojred4xM6FOBzIhWq8XVq1dhb28PmUwmdZxGq6CgAJ6enrh8+TIcHBykjkP3wbkyLZwv08G5MowQAoWFhWjRokWVBbVr0uj23MjlcrRs2VLqGPT/HBwc+KI2EZwr08L5Mh2cK/09aI/NXTygmIiIiMwKyw0RERGZFZYbkoRKpcLs2bOhUqmkjkIPwLkyLZwv08G5qj+N7oBiIiIiMm/cc0NERERmheWGiIiIzArLDREREZkVlhsiIiIyKyw39FA+/PBD9O7dGzY2NnBycqpxTGZmJoYMGQIbGxu4urri7bffRmVlZZUx+/btQ48ePaBSqeDj44O4uLhq97No0SJ4e3vDysoKwcHBSEpKqnJ9WVkZXn31VTRt2hR2dnZ4/vnnkZOTU1c/aqP1oOedHs6BAwcwdOhQtGjRAjKZDFu2bKlyvRACs2bNQvPmzWFtbY2BAwfi3LlzVcbcvHkTY8aMgYODA5ycnDBhwgQUFRVVGXPixAn07dsXVlZW8PT0xCeffFIty+bNm9GxY0dYWVmha9eu2L59e53/vKYsJiYGPXv2hL29PVxdXfHMM88gPT29yhh93oca6j2xURNED2HWrFli/vz5Ijo6Wjg6Ola7vrKyUvj6+oqBAweKY8eOie3btwsXFxcxY8YM3Zg///xT2NjYiOjoaHH69Gnx5ZdfCoVCIXbs2KEbs2HDBqFUKsWKFSvEqVOnxKRJk4STk5PIycnRjZkyZYrw9PQUu3fvFkeOHBG9evUSvXv3rtef39zp87zTw9m+fbv417/+JX744QcBQPz4449Vrp83b55wdHQUW7ZsEcePHxfDhg0TrVu3FqWlpboxTzzxhOjevbs4dOiQ+O2334SPj48YNWqU7vrbt28LNzc3MWbMGJGamiq+/fZbYW1tLZYsWaIb88cffwiFQiE++eQTcfr0aTFz5kxhaWkpTp48We/PgakIDQ0VK1euFKmpqSIlJUU89dRTwsvLSxQVFenGPOh9qCHfExszlhuqEytXrqyx3Gzfvl3I5XKRnZ2t27Z48WLh4OAgysvLhRBCvPPOO6JLly5Vbjdy5EgRGhqquxwUFCReffVV3WWNRiNatGghYmJihBBC5OfnC0tLS7F582bdmDNnzggAIiEhoU5+xsboQc871a2/lxutVivc3d3Fp59+qtuWn58vVCqV+Pbbb4UQQpw+fVoAEIcPH9aN+e9//ytkMpnIysoSQgjx9ddfiyZNmuhec0II8e6774oOHTroLo8YMUIMGTKkSp7g4GAxefLkOv0ZzUlubq4AIPbv3y+E0O99qKHeExs7fixF9SohIQFdu3aFm5ubbltoaCgKCgpw6tQp3ZiBAwdWuV1oaCgSEhIAABUVFUhOTq4yRi6XY+DAgboxycnJUKvVVcZ07NgRXl5eujFkGH2ed6pfFy9eRHZ2dpU5cHR0RHBwsG4OEhIS4OTkhMDAQN2YgQMHQi6XIzExUTemX79+UCqVujGhoaFIT0/HrVu3dGPu9zqk6m7fvg0AcHZ2BqDf+1BDvSc2diw3VK+ys7OrvIgB6C5nZ2ffd0xBQQFKS0uRl5cHjUZT45i/3odSqax23M9fx5Bh9HneqX7dfZ4f9Lvv6upa5XoLCws4Ozs/8DX218e41xjOdc20Wi3eeOMN9OnTB76+vgD0ex9qqPfExo7lhqqZPn06ZDLZff+lpaVJHZOISDKvvvoqUlNTsWHDBqmjUA0spA5AxufNN9/EuHHj7jumTZs2et2Xu7t7tSP475454O7urvvfv59NkJOTAwcHB1hbW0OhUEChUNQ45q/3UVFRgfz8/Cr/1fTXMWQYFxeXBz7vVL/uPs85OTlo3ry5bntOTg78/Px0Y3Jzc6vcrrKyEjdv3nzga+yvj3GvMZzr6qKiovDLL7/gwIEDaNmypW67Pu9DDfWe2Nhxzw1V06xZM3Ts2PG+//762f39hISE4OTJk1XefOPj4+Hg4IDOnTvrxuzevbvK7eLj4xESEgIAUCqVCAgIqDJGq9Vi9+7dujEBAQGwtLSsMiY9PR2ZmZm6MWQYfZ53ql+tW7eGu7t7lTkoKChAYmKibg5CQkKQn5+P5ORk3Zg9e/ZAq9UiODhYN+bAgQNQq9W6MfHx8ejQoQOaNGmiG3O/1yHdOS0/KioKP/74I/bs2YPWrVtXuV6f96GGek9s9KQ+oplM26VLl8SxY8fEnDlzhJ2dnTh27Jg4duyYKCwsFEL877THwYMHi5SUFLFjxw7RrFmzGk97fPvtt8WZM2fEokWLajztUaVSibi4OHH69Gnx0ksvCScnpypnHEyZMkV4eXmJPXv2iCNHjoiQkBAREhLScE+GGdLneaeHU1hYqHvdABDz588Xx44dE5cuXRJC3DkV3MnJSWzdulWcOHFC/OMf/6jxVHB/f3+RmJgofv/9d9GuXbsqp4Ln5+cLNzc3ERYWJlJTU8WGDRuEjY1NtVPBLSwsxGeffSbOnDkjZs+ezVPB/+bll18Wjo6OYt++feLatWu6fyUlJboxD3ofasj3xMaM5YYeSkREhABQ7d/evXt1YzIyMsSTTz4prK2thYuLi3jzzTeFWq2ucj979+4Vfn5+QqlUijZt2oiVK1dWe6wvv/xSeHl5CaVSKYKCgsShQ4eqXF9aWipeeeUV0aRJE2FjYyOeffZZce3atfr4sRuVBz3v9HD27t1b42soIiJCCHHndPD33ntPuLm5CZVKJR5//HGRnp5e5T5u3LghRo0aJezs7ISDg4OIjIzU/QfGXcePHxePPPKIUKlUwsPDQ8ybN69alk2bNon27dsLpVIpunTpIrZt21ZvP7cpqmmeAFR5v9Lnfaih3hMbM5kQQjT47iIiIiKiesJjboiIiMissNwQERGRWWG5ISIiIrPCckNERERmheWGiIiIzArLDREREZkVlhsiIiIyKyw3REREZFZYboiI6siAAQMgk8kgk8mQkpJS45iMjAzdmLuLXxJR3WK5IaL7GjduHJ555plq2/ft2weZTIb8/Pw6eyx97/PuOJlMBrlcDkdHR/j7++Odd97BtWvXDH5cb29vLFiwoHah/2bSpEm4du0afH19AfyvzNwtO56enrh27RrefPPNOnk8IqqO5YaITFZ6ejquXr2Kw4cP491338WuXbvg6+uLkydPSpbJxsYG7u7usLCwqPF6hUIBd3d32NnZNXAyosaD5YaI6szvv/+Ovn37wtraGp6enpg6dSqKi4t1169ZswaBgYGwt7eHu7s7Ro8ejdzcXAB39nA8+uijAIAmTZpAJpNh3Lhx9308V1dXuLu7o3379njxxRfxxx9/oFmzZnj55Zd1YwYMGIA33nijyu2eeeYZ3X0PGDAAly5dwrRp03R7g4qLi+Hg4IDvvvuuyu22bNkCW1tbFBYW1vIZIqKGwHJDRHXiwoULeOKJJ/D888/jxIkT2LhxI37//XdERUXpxqjVasydOxfHjx/Hli1bkJGRoSsZnp6e+P777wHc2SNz7do1fPHFFwZlsLa2xpQpU/DHH3/oStOD/PDDD2jZsiU++OADXLt2DdeuXYOtrS1efPFFrFy5ssrYlStX4oUXXoC9vb1BuYioYdW835SI6C9++eWXah+jaDSaKpdjYmIwZswY3V6Sdu3aYeHChejfvz8WL14MKysrjB8/Xje+TZs2WLhwIXr27ImioiLY2dnB2dkZwJ09Mk5OTrXK2rFjRwB39gS5uro+cLyzszMUCoVub9JdEydORO/evXHt2jU0b94cubm52L59O3bt2lWrXETUcLjnhoge6NFHH0VKSkqVf8uWLasy5vjx44iLi4OdnZ3uX2hoKLRaLS5evAgASE5OxtChQ+Hl5QV7e3v0798fAJCZmVlnWYUQAACZTPZQ9xMUFIQuXbpg1apVAIC1a9eiVatW6Nev30NnJKL6xT03RPRAtra28PHxqbLtypUrVS4XFRVh8uTJmDp1arXbe3l5obi4GKGhoQgNDcW6devQrFkzZGZmIjQ0FBUVFXWW9cyZMwDunAEFAHK5XFd47lKr1Xrd18SJE7Fo0SJMnz4dK1euRGRk5EOXJiKqfyw3RFQnevTogdOnT1crQXedPHkSN27cwLx58+Dp6QkAOHLkSJUxSqUSQPWPvPRVWlqKpUuXol+/fmjWrBkAoFmzZlVOD9doNEhNTdUdvHz3cWt6zLFjx+Kdd97BwoULcfr0aURERNQqFxE1LH4sRUR14t1338XBgwcRFRWFlJQUnDt3Dlu3btUdUOzl5QWlUokvv/wSf/75J3766SfMnTu3yn20atUKMpkMv/zyC65fv46ioqL7PmZubi6ys7Nx7tw5bNiwAX369EFeXh4WL16sG/PYY49h27Zt2LZtG9LS0vDyyy9X+x4db29vHDhwAFlZWcjLy9Ntb9KkCZ577jm8/fbbGDx4MFq2bPmQzxIRNQSWGyKqE926dcP+/ftx9uxZ9O3bF/7+/pg1axZatGgB4M4elLi4OGzevBmdO3fGvHnz8Nlnn1W5Dw8PD8yZMwfTp0+Hm5tblTOtatKhQwe0aNECAQEBmDdvHgYOHIjU1FR07txZN2b8+PGIiIhAeHg4+vfvjzZt2lTZawMAH3zwATIyMtC2bVvdHp+7JkyYgIqKiioHQxtCq9UCwD2/94aI6p5M/P3DaCIi0lmzZg2mTZuGq1ev6j42u5cBAwbAz8+vyrcdHzp0CCEhIbh+/TpcXFx0299//31s2bLlnss0EFHtcc8NEVENSkpKcOHCBcybNw+TJ09+YLG56+uvv4adnR1OnjyJ8+fP49NPP0X37t11xSYzMxN2dnb46KOP6jM+UaPGPTdERDV4//338eGHH6Jfv37YunWrXsslZGVlobS0FABw8+ZN3Z6c2NhYdOvWDQBQWVmJjIwMAIBKpdIdXE1EdYflhoiIiMwKP5YiIiIis8JyQ0RERGaF5YaIiIjMCssNERERmRWWGyIiIjIrLDdERERkVlhuiIiIyKyw3BAREZFZ+T9nfJu7QnQLtQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUIlJREFUeJzt3XlcVOXiBvBnZmCGHUQEFEFU3FFBEERzqVQq09um5gKIS1qRJW16r2nmLWzzmmWiueCaS4tWek3cKxEURUUFl0QUBURFdhhm3t8f/pwbgTqDwJkZnu/n4+feOfPOzMO8zPB05px5ZUIIASIiIiIzIZc6ABEREVFdYrkhIiIis8JyQ0RERGaF5YaIiIjMCssNERERmRWWGyIiIjIrLDdERERkViykDtDQtFotrl69Cnt7e8hkMqnjEBERkR6EECgsLESLFi0gl99/30yjKzdXr16Fp6en1DGIiIioFi5fvoyWLVved0yjKzf29vYA7jw5Dg4OEqdpvNRqNXbu3InBgwfD0tJS6jh0H5wr08L5Mh2cK8MUFBTA09NT93f8fhpdubn7UZSDgwPLjYTUajVsbGzg4ODAF7WR41yZFs6X6eBc1Y4+h5TwgGIiIiIyKyw3REREZFZYboiIiMissNwQERGRWWG5ISIiIrPCckNERERmheWGiIiIzArLDREREZkVlhsiIiIyKyw3REREZFYkLTcHDhzA0KFD0aJFC8hkMmzZsuWBt9m3bx969OgBlUoFHx8fxMXF1XtOIiIiMh2Slpvi4mJ0794dixYt0mv8xYsXMWTIEDz66KNISUnBG2+8gYkTJ+LXX3+t56RERERkKiRdOPPJJ5/Ek08+qff42NhYtG7dGp9//jkAoFOnTvj999/xn//8B6GhofUVk4iIqMHdLlGjsFwtdYxaUVrI4WpvJdnjm9Sq4AkJCRg4cGCVbaGhoXjjjTfueZvy8nKUl5frLhcUFAC4sxqrWm2avzTm4O5zzzkwfpwr08L5Mh33mqvzuUVYvP8ifjl5DVohRbKH5+/piE0vBdfpfRryO21S5SY7Oxtubm5Vtrm5uaGgoAClpaWwtraudpuYmBjMmTOn2vadO3fCxsam3rKSfuLj46WOQHriXJkWzpfpuDtXV4uBnVlypNyQQUAGALCUmWa7Kbydj+3bt9fpfZaUlOg91qTKTW3MmDED0dHRussFBQXw9PTE4MGD4eDgIGGyxk2tViM+Ph6DBg2CpaWl1HHoPjhXpoXzZTruzpWHby8s+T0T8WdyddcN6uSKVwe0QZcW/Dt1191PXvRhUuXG3d0dOTk5Vbbl5OTAwcGhxr02AKBSqaBSqaptt7S05AvfCHAeTAfnyrRwvozf8Su3sTRNjlMJRwAAMhnwVNfmiHrUB52as9T8nSG/zyZVbkJCQqrt5oqPj0dISIhEiYiIiAyTeaME721Nxf6z1wHIIZcBQ7u3QNSjPmjnZi91PLMgabkpKirC+fPndZcvXryIlJQUODs7w8vLCzNmzEBWVhZWr14NAJgyZQq++uorvPPOOxg/fjz27NmDTZs2Ydu2bVL9CERERHo7fbUA4SuSkFdUDoVchoCmGvx7dF+0b+4kdTSzIun33Bw5cgT+/v7w9/cHAERHR8Pf3x+zZs0CAFy7dg2ZmZm68a1bt8a2bdsQHx+P7t274/PPP8eyZct4GjgRERm9wxk3MXJpAvKKytGpuQN+fb0Pxvho0drFVupoZkfSPTcDBgyAEPc+Erymbx8eMGAAjh07Vo+piIiI6taetBy8vPYoyiu16OndBMsiesLGAjgldTAzZVLH3BAREZmaLcey8Obm49BoBR7r6IpFo3vAWqngdxHVI5YbIiKiehL3x0W8//NpAMCz/h745IVusFRwzer6xnJDRERUx4QQWLDrHL7YfQ4AMK63N2Y93RlyuUziZI0Dyw0REVEd0moF5vx8CqsSLgEAoge1x2uP+UAmY7FpKCw3REREdUSt0eLNTcfx0/GrkMmAOcO6IDzEW+pYjQ7LDRERUR0ordDglXXJ2Jt+HRZyGT4f0R3/8POQOlajxHJDRET0kG6XqjEh7jCOXLoFK0s5Fo8JwKMdXaWO1Wix3BARET2E3IIyhK9IQlp2IRysLLBiXE8EejtLHatRY7khIiKqpcwbJRi7PBGZN0vgYqfCmglBXPTSCLDcEBER1UJadgHClycht7Acns7WWDshGK2acikFY8ByQ0REZKDkS7cQuTIJBWWV6OBmj9UTguDmYCV1LPp/LDdEREQG2H/2OqasSUapWoMeXk5YOS4IjjaWUseiv2C5ISIi0tPPx68ielMK1BqB/u2bYfHYHrBR8k+pseGMEBER6WHtoUt4b2sqhACGdm+Bz4d3h9KC60QZI5YbIiKi+xBC4Ks95/F5/FkAwNheXpgzzBcKrhNltFhuiIiI7kGrFfj3tjNY8cdFAMBrj/kgelB7rhNl5FhuiIiIalCp0eKd70/gh6NZAID3nu6MCY+0ljgV6YPlhoiI6G/K1BpErT+GXWdyoJDL8Mnz3fB8QEupY5GeWG6IiIj+oqBMjUmrjiDx4k0oLeRYNLoHBnV2kzoWGYDlhoiI6P/lFZUjYkUSTl0tgJ3KAssiAtGrTVOpY5GBWG6IiIgAXLlVgrDlSbiYV4ymtkqsGh8EXw9HqWNRLbDcEBFRo3cupxBhy5OQXVAGDydrrJkQhDbN7KSORbXEckNERI3a8cv5GLcyCbdK1GjbzBZrJwajuaO11LHoIbDcEBFRo/XH+TxMWn0EJRUadGvpiLjIIDjbKqWORQ+J5YaIiBqlHanXMPXbFFRotOjj0xRLwgJhp+KfRXPAWSQiokZn4+FMzPjhJLQCeKKLO74Y5QeVhULqWFRHWG6IiKhRWbL/AmL+mwYAGBnoiY+e68p1oswMyw0RETUKQgh8vCMdsfsvAAAm92+D6U905DpRZojlhoiIzJ5GKzBzy0l8m3QZADD9yY6Y0r+txKmovrDcEBGRWSuv1GDaxhRsP5kNuQz46NmueDHIS+pYVI9YboiIyGwVl1diytpk/HYuD0qFHF+86IcnuzaXOhbVM5YbIiIyS7eKKxAZdxgpl/Nho1RgaVggHmnnInUsagAsN0REZHayb5chbHkizuUWwcnGEnGRQfDzdJI6FjUQlhsiIjIrF/OKMXZZIrLyS+HuYIU1E4LQzs1e6ljUgFhuiIjIbJy6ehsRK5KQV1SB1i62WDMhCC2b2EgdixoYyw0REZmFpIs3MSHuMArLK9G5uQNWjQ9CM3uV1LFIAiw3RERk8vak5eDltUdRXqlFkLczlo0LhIOVpdSxSCIsN0REZNK2HMvCW5uPo1Ir8HhHVywa0wNWllwnqjFjuSEiIpO16mAGZv90CgDwrL8HPnmhGywVcolTkdRYboiIyOQIIfDF7nNYsOscAGBcb2/Meroz5FwAk8ByQ0REJkarFfjgl9OIO5gBAJg2sD2mPu7DBTBJh+WGiIhMhlqjxTvfncCPx7IAAHOGdUFEb29pQ5HRYbkhIiKTUKbW4NV1R7E7LRcWchk+H9Ed//DzkDoWGSGWGyIiMnoFZWpMjDuCpIybUFnIsXhsDzzW0U3qWGSkWG6IiMioXS8sR8SKJJy+VgB7KwusGNcTPb2dpY5FRozlhoiIjNblmyUIX5GEi3nFcLFTYdX4nujSwlHqWGTkWG6IiMgoncspRNjyJGQXlKFlE2usnRAMbxdbqWORCWC5ISIio5NyOR/jViYhv0SNdq52WDMhGO6OVlLHIhPBckNEREblj/N5mLT6CEoqNPDzdMLKcT3RxFYpdSwyISw3RERkNHakXsPUb1NQodHiER8XLAkLgK2Kf6rIMPyNISIio7Dp8GVM/+EEtAJ40tcdC170g8qCC2CS4VhuiIhIcksPXMBH29MAACMDPfHRc12h4DpRVEssN0REJBkhBD75NR2L910AAEzu3wbTn+jIdaLoobDcEBGRJDRagZlbUvFtUiYA4N0nOuLlAW0lTkXmgOWGiIgaXHmlBtEbj2PbyWuQyYCPnu2KUUFeUsciM8FyQ0REDaq4vBJT1ibjt3N5sFTIsGCkP4Z0ay51LDIjLDdERNRg8ksqEBl3GMcy82FtqcCSsAD0a99M6lhkZuRSB1i0aBG8vb1hZWWF4OBgJCUl3Xf8ggUL0KFDB1hbW8PT0xPTpk1DWVlZA6UlIqLayikow8glh3AsMx+O1pZYOzGYxYbqhaTlZuPGjYiOjsbs2bNx9OhRdO/eHaGhocjNza1x/Pr16zF9+nTMnj0bZ86cwfLly7Fx40b885//bODkRERkiEs3ivFC7EGk5xTC1V6FTZNDENCqidSxyExJ+rHU/PnzMWnSJERGRgIAYmNjsW3bNqxYsQLTp0+vNv7gwYPo06cPRo8eDQDw9vbGqFGjkJiYeM/HKC8vR3l5ue5yQUEBAECtVkOtVtflj0MGuPvccw6MH+fKtBjjfKVlF2L8qmRcL6qAl7M1VkYEwMvZyqgySsEY58qYGfI8SVZuKioqkJycjBkzZui2yeVyDBw4EAkJCTXepnfv3li7di2SkpIQFBSEP//8E9u3b0dYWNg9HycmJgZz5syptn3nzp2wsbF5+B+EHkp8fLzUEUhPnCvTYizzdbEQWHJGgVKNDC1sBCa1LkTqoX1IlTqYETGWuTJ2JSUleo+VrNzk5eVBo9HAzc2tynY3NzekpaXVeJvRo0cjLy8PjzzyCIQQqKysxJQpU+77sdSMGTMQHR2tu1xQUABPT08MHjwYDg4OdfPDkMHUajXi4+MxaNAgWFpaSh2H7oNzZVqMab4OnMtD7LcpKNNo0cPLCUvH+sPRmr9DdxnTXJmCu5+86MOkzpbat28fPvroI3z99dcIDg7G+fPn8frrr2Pu3Ll47733aryNSqWCSqWqtt3S0pK/TEaA82A6OFemRer5+vn4VURvSoFaI9C/fTMsHtsDNkqT+pPTYKSeK1NhyHMk2W+ai4sLFAoFcnJyqmzPycmBu7t7jbd57733EBYWhokTJwIAunbtiuLiYrz00kv417/+Bblc8pO/iIgavXWJlzBzSyqEAJ7u1hzzR/hBacH3Z2o4kv22KZVKBAQEYPfu3bptWq0Wu3fvRkhISI23KSkpqVZgFIo7K8YKIeovLBERPZAQAov2nse/frxTbMYEe+GLF/1ZbKjBSbqPMDo6GhEREQgMDERQUBAWLFiA4uJi3dlT4eHh8PDwQExMDABg6NChmD9/Pvz9/XUfS7333nsYOnSoruQQEVHDE0Lgo+1n8M1vFwEAUY/64M3B7bkAJklC0nIzcuRIXL9+HbNmzUJ2djb8/PywY8cO3UHGmZmZVfbUzJw5EzKZDDNnzkRWVhaaNWuGoUOH4sMPP5TqRyAiavQqNVr888eT2HTkCgBg5pBOmNi3jcSpqDGT/OiuqKgoREVF1Xjdvn37qly2sLDA7NmzMXv27AZIRkRED1Km1uD1Dcfw66kcyGXAvOe7YUSgp9SxqJGTvNwQEZFpKiqvxOQ1R/DH+RtQKuRYOMofT/jWfEIIUUNiuSEiIoPdKq7AuLjDOH45H7ZKBZaGB6KPj4vUsYgAsNwQEZGBsm+XIWx5Is7lFqGJjSXiIoPQ3dNJ6lhEOiw3RESkt4t5xRi7LBFZ+aVwd7DCmglBaOdmL3UsoipYboiISC+nrxYgfEUS8orK0drFFmsmBKFlE67RR8aH5YaIiB7oSMZNRMYdRmFZJTo3d8Cq8UFoZl99aRsiY8ByQ0RE97U3PRcvr01GmVqLnt5NsHxcTzhYcS0kMl4sN0REdE8/Hb+K6I0pqNQKPNqhGb4eEwBrJb8Rnowbyw0REdVo7aFLeG/rnXWi/uHXAp8N7w5LBdeJIuPHckNERFUIIfD1vgv49Nd0AEB4SCu8P7QL5HKuE0WmgeWGiIh0/r4A5tTHfDBtEBfAJNPCckNERACqL4D53tOdMeGR1hKnIjIcyw0REVVZAFMhl+Hj57vhhYCWUsciqhWWGyKiRq64vBIv/WUBzC9H+yO0CxfAJNPFckNE1Ij9fQHMb8ID0ZsLYJKJY7khImqkuAAmmSuWGyKiRigjrxhjlyfiyq07C2CunRgEH1cugEnmgeWGiKiR4QKYZO5YboiIGhEugEmNAcsNEVEjsS89F1P+sgDmsoiecLTmAphkflhuiIgagZ+PX8W0/18Ac0CHZljMBTDJjLHcEBGZuXWJlzBzy50FMId1v7MAptKCC2CS+WK5ISIyU0IILN5/AZ/suLMA5theXvhgmC8XwCSzx3JDRGSGhBCI+W8alh74EwAQ9agP3hzMBTCpcWC5ISIyM1oB/GvraWxOzgIAzBzSCRP7tpE4FVHDYbkhIjIj5ZVaxJ2V4/jNLMhlwLznu2FEoKfUsYgaFMsNEZGZKC6vxOS1x3D8phyWChm+HNUDT/hyAUxqfFhuiIjMQH5JBcatPIyUy/lQygW+CQtA/44sNtQ4sdwQEZm4nIIyhC9PQnpOIRytLTC+bRl6t20qdSwiyfCLDoiITNilG8V4IfYg0nMK4eagwrcTguDN9S+pkeOeGyIiE5WWXYCw5Um4XliOVk1tsHZCMNztLXFO6mBEEmO5ISIyQcmXbmF83GHcLlWjo7s9Vo8PgquDFdRqtdTRiCTHckNEZGIOnL2OyWuSUarWoIeXE1aOC4KjDRfAJLqL5YaIyIRsP3kNr284BrVGoG87FywJC4CNkm/lRH/FVwQRkYnYeDgTM344Ca0AhnRtjvkju0NlwZW9if5Or3Jz4sQJg++4c+fOsLBgdyIiqgtLD1zAR9vTAAAv9vTEh892hYILYBLVSK/24efnB5lMBiGEXncql8tx9uxZtGnDtUyIiB6GEAKf/pqOr/ddAABM7tcG05/syAUwie5D710riYmJaNas2QPHCSHg6+v7UKGIiAjQaAVmbU3FusRMAMC7T3TEywPaSpyKyPjpVW769+8PHx8fODk56XWn/fr1g7W19cPkIiJq1CoqtYjelIJfTlyDTAZ8+ExXjA72kjoWkUnQq9zs3bvXoDvdvn17rcIQERFQWqHBy+uSsS/9OiwVMswf4Yeh3VtIHYvIZDzU8gt//PEHysvL6yoLEVGjd7tUjbDlidiXfh1WlnJ8Ex7IYkNkoIcqN08++SSysrLqKgsRUaN2vbAco5YewpFLt2BvZYE1E4IxoIOr1LGITM5Dnaut79lTRER0f1dulSBseRIu5hXDxU6JVeOD0KWFo9SxiEwSv4iGiEhi53OLELY8Eddul8HDyRprJgShTTM7qWMRmayHKjdLliyBm5tbXWUhImp0Tl65jYiVSbhZXIG2zWyxdmIwmjvybFOih/FQ5Wb06NF1lYOIqNFJuHADk1YfQVF5Jbp6OGLV+CA42yqljkVk8vQ6oPi5555DQUGB3nc6ZswY5Obm1joUEZG523U6BxErk1BUXong1s5YPymYxYaojui152br1q24fv26XncohMDPP/+MuXPnwtWVR/kTEf3dj8eu4K3NJ6DRCgzs5IqvRveAlSUXwCSqK3qVGyEE2rdvX99ZiIjM3qqDGZj90ykAwLP+HvjkhW6wVDzUt3IQ0d/UyzcUA4CHh4fBtyEiMldCCHy55zzmx58FAESEtMLsoV0g58reRHVO77WliIiodrRagQ+3n8Hy3y8CAF5/vB3eGNiOK3sT1RN+zw0RUT2q1Ggx/YeT+C75CgBg1tOdMf6R1hKnIjJvLDdERPWkvFKD179NwY5T2ZDLgI+f74bhgZ5SxyIyeyw3RET1oLi8Ei+tOYI/zt+AUiHHl6P9EdrFXepYRI0Cyw0RUR3LL6nAuJWHkXI5HzZKBb4JD0QfHxepYxE1Giw3RER1KLegDGHLk5CeUwgnG0vERQbBz9NJ6lhEjYrBX66Qk5ODsLAwtGjRAhYWFlAoFFX+GWrRokXw9vaGlZUVgoODkZSUdN/x+fn5ePXVV9G8eXOoVCq0b98e27dvN/hxiYjqWuaNErwQm4D0nEK42quw8aUQFhsiCRi852bcuHHIzMzEe++9h+bNmz/UqYwbN25EdHQ0YmNjERwcjAULFiA0NBTp6ek1frtxRUUFBg0aBFdXV3z33Xfw8PDApUuX4OTkVOsMRER1IT27EGHLE5FbWA4vZxusmxgMT2cbqWMRNUoGl5vff/8dv/32G/z8/B76wefPn49JkyYhMjISABAbG4tt27ZhxYoVmD59erXxK1aswM2bN3Hw4EFYWloCALy9ve/7GOXl5SgvL9ddvrtGllqthlqtfuifgWrn7nPPOTB+nKsHS7mcj4lrjuJ2aSXau9ph5bgAuNpbSvKccb5MB+fKMIY8TzIhhDDkzjt37ox169bB39/f4GB/VVFRARsbG3z33Xd45plndNsjIiKQn5+PrVu3VrvNU089BWdnZ9jY2GDr1q1o1qwZRo8ejXffffeeH4m9//77mDNnTrXt69evh40N/6uKiB5O+m0ZlqXJUaGVwdtO4KWOGthaSp2KyPyUlJRg9OjRuH37NhwcHO471uA9NwsWLMD06dOxZMmSB+41uZ+8vDxoNBq4ublV2e7m5oa0tLQab/Pnn39iz549GDNmDLZv347z58/jlVdegVqtxuzZs2u8zYwZMxAdHa27XFBQAE9PTwwePPiBTw7VH7Vajfj4eAwaNEi3F46ME+fq3uJP5+KbTceh1gr0buuMr0f5wVYl7XkanC/TwbkyzN1PXvRh8Ktw5MiRKCkpQdu2bWFjY1NtQm7evGnoXepNq9XC1dUVS5cuhUKhQEBAALKysvDpp5/es9yoVCqoVKpq2y0tLfnLZAQ4D6aDc1XVd8lX8M53x6EVwBNd3PHFKD+oLIxnZW/Ol+ngXOnHkOeoVntu6oKLiwsUCgVycnKqbM/JyYG7e81fdNW8eXNYWlpW+QiqU6dOyM7ORkVFBZRKZZ1kIyK6n5V/XMScn08DAIYHtETMc11hwZW9iYyGweUmIiKiTh5YqVQiICAAu3fv1h1zo9VqsXv3bkRFRdV4mz59+mD9+vXQarWQy++8kZw9exbNmzdnsSGieieEwBe7z2HBrnMAgAmPtMa/nurElb2JjEytPhzWaDTYsmULzpw5AwDo0qULhg0bZvD33ERHRyMiIgKBgYEICgrCggULUFxcrDt7Kjw8HB4eHoiJiQEAvPzyy/jqq6/w+uuv47XXXsO5c+fw0UcfYerUqbX5MYiI9KbVCnzwy2nEHcwAALw5qD2iHvPhyt5ERsjgcnP+/Hk89dRTyMrKQocOHQAAMTEx8PT0xLZt29C2bVu972vkyJG4fv06Zs2ahezsbPj5+WHHjh26g4wzMzN1e2gAwNPTE7/++iumTZuGbt26wcPDA6+//jreffddQ38MIiK9VWq0ePf7k/j+6J2VvecM64KI3t7ShiKiezK43EydOhVt27bFoUOH4OzsDAC4ceMGxo4di6lTp2Lbtm0G3V9UVNQ9P4bat29ftW0hISE4dOiQobGJiGqlTK3B1G+PYefpHCjkMnz6Qjc816Ol1LGI6D4MLjf79++vUmwAoGnTppg3bx769OlTp+GIiKRUVF6JyXdX9raQY9HoHhjU2e3BNyQiSRlcblQqFQoLC6ttLyoq4kG9RGQ28ksqELHyMI5fzoetUoFvIgLRuy1X9iYyBQafu/j000/jpZdeQmJiIoQQEELg0KFDmDJlCoYNG1YfGYmIGlROQRlGLEnA8cv5cLKxxPpJvVhsiEyIweVm4cKFaNu2LUJCQmBlZQUrKyv06dMHPj4++OKLL+ojIxFRg8m8UYLhsQk4m1MENwcVNk0OQXeu7E1kUgz+WMrJyQlbt27FuXPndMskdOrUCT4+PnUejoioIXFlbyLzUOtFUNq1a4d27drVZRYiIskcy7yFcSsP43apGh3d7bF6fBBcHaykjkVEtaBXuYmOjsbcuXNha2tbZRHKmsyfP79OghERNZSD5/MwcfURlFRo4O/lhJXjesLJhidIEJkqvcrNsWPHoFardf+fiMhc/HoqG6+tP4YKjRaP+LhgSViA5Ct7E9HD0esVvHfv3hr/PxGRKfs++Qre+f4ENFqB0C5uWDjK36hW9iai2jH4bKnx48fX+D03xcXFGD9+fJ2EIiKqb3F/XMSbm49DoxV4IaAlFo3uwWJDZCYMLjerVq1CaWlpte2lpaVYvXp1nYQiIqovQgh8sesc3v/5NABgfJ/W+OT5brBQGPx2SERGSu8PlgsKCnRf2ldYWAgrq/+dRaDRaLB9+3a4urrWS0giorqg1Qr8e9sZrPjjIgBg2sD2mPo4V/YmMjd6lxsnJyfIZDLIZDK0b9++2vUymQxz5syp03BERHWlUqPF9B9O4rvkOyt7zx7aGZF9Wkuciojqg97lZu/evRBC4LHHHsP3339fZeFMpVKJVq1aoUWLFvUSkojoYZRXavD6tynYcSobchnw6Qvd8XwAV/YmMld6l5v+/fsDAC5evAgvLy/uxiUik1BcXokpa5Px27k8KBVyLBzljyd83aWORUT1yOAj6Pbs2YPvvvuu2vbNmzdj1apVdRKKiKgu3C5RI2x5In47lwcbpQIrxvVksSFqBAwuNzExMXBxqb46rqurKz766KM6CUVE9LByC8swcmkCjmbmw9HaEmsnBuORdlzZm6gxMPhrODMzM9G6dfWD8Fq1aoXMzMw6CUVE9DAu3yxB2PJEZNwoQTN7FdZMCEJHdwepYxFRAzF4z42rqytOnDhRbfvx48fRtGnTOglFRFRb53MLMTw2ARk3SuDpbI3vpoSw2BA1MgbvuRk1ahSmTp0Ke3t79OvXDwCwf/9+vP7663jxxRfrPCARkb5OXrmNiJVJuFlcgXaudlgzIRjujlzZm6ixMbjczJ07FxkZGXj88cdhYXHn5lqtFuHh4Tzmhogkk/jnDUxYdQRF5ZXo1tIRcZFBcLblyt5EjZHB5UapVGLjxo2YO3cujh8/Dmtra3Tt2hWtWrWqj3xERA+0Jy0HL689ivJKLXq1ccY34YGwt7KUOhYRScTgcnNX+/bta/ymYiKihvTT8auI3piCSq3AwE6u+Gp0D1hZcgFMosasVuXmypUr+Omnn5CZmYmKiooq182fP79OghERPci6xEuYuSUVQgDP+LXAp8O7w5ILYBI1egaXm927d2PYsGFo06YN0tLS4Ovri4yMDAgh0KNHj/rISERUTez+C5j33zQAQFivVpgzrAvkcn5zOhHV4lTwGTNm4K233sLJkydhZWWF77//HpcvX0b//v0xfPjw+shIRKQjhMDHO9J0xebVR9vig3+w2BDR/xhcbs6cOYPw8HAAgIWFBUpLS2FnZ4cPPvgAH3/8cZ0HJCK6S6sVmLklFYv3XQAAzHiyI94O7ci17oioCoPLja2tre44m+bNm+PChQu66/Ly8uouGRHRX6g1WkzblIJ1iZmQyYCY57picv+2UsciIiNk8DE3vXr1wu+//45OnTrhqaeewptvvomTJ0/ihx9+QK9eveojIxE1cmVqDV5ddxS703JhIZfhPyP9MLR7C6ljEZGRMrjczJ8/H0VFRQCAOXPmoKioCBs3bkS7du14phQR1bnCMjUmrjqCxIs3obKQI3ZsAB7t6Cp1LCIyYgaVG41GgytXrqBbt24A7nxEFRsbWy/BiIhuFldg3MoknLhyG3YqCyyPCERwG65hR0T3Z9AxNwqFAoMHD8atW7fqKw8REQAg+3YZRixJwIkrt+Fsq8S3k3qx2BCRXgw+oNjX1xd//vlnfWQhIgIAXLpRjBdiD+J8bhHcHaywaXIIurZ0lDoWEZkIg8vNv//9b7z11lv45ZdfcO3aNRQUFFT5R0T0MNKzC/FCbAKu3CqFd1MbbJ4SAh9XO6ljEZEJMfiA4qeeegoAMGzYsCrfLSGEgEwmg0ajqbt0RNSoHMu8hXErD+N2qRod3e2xekIQXO2tpI5FRCbG4HKzd+/e+shBRI3cwfN5mLj6CEoqNPD3ckLcuCA42nBlbyIynN7lJjw8HIsWLUL//v0BAMePH0fnzp1hack3HyJ6ODtPZSPq22OoqNSij09TLA0LhK2qVuv6EhHpf8zNunXrUFpaqrvct29fXL58uV5CEVHj8eOxK3h53VFUVGoxuLMblkf0ZLEhooei9zuIEOK+l4mIDLUmIQPvbT0FAHiuhwc+eb4bLBQGn+dARFQF//OIiBqcEAJf77uAT39NBwCM6+2NWU935sreRFQnDCo3p0+fRnZ2NoA7b05paWm6pRjuuvvtxURENRFCYN5/07DkwJ3vy5r6mA+mDWrPlb2JqM4YVG4ef/zxKh9HPf300wAAmUzGU8GJ6IE0WoGZW1LxbVImAGDmkE6Y2LeNxKmIyNzoXW4uXrxYnzmIyMypNVpM25iCX05cg1wGxDzXFSN7ekkdi4jMkN7lplWrVvWZg4jMWJlag1fWHcWetFxYKmRYMNIfQ7o1lzoWEZkpHlBMRPWqsEyNCauOIOniTVhZyhE7NgADOrhKHYuIzBjLDRHVm5vFFYhYkYSTWbdhr7LA8nE9EdTaWepYRGTmWG6IqF5k3y7D2OWJOJ9bBGdbJVaPD4KvB1f2JqL6Z9C3ZQkhkJmZibKysvrKQ0Rm4NKNYrwQexDnc4vg7mCFTZNDWGyIqMEYXG58fHy47AIR3VN6diFeiE3AlVul8G5qg81TQuDjaid1LCJqRAwqN3K5HO3atcONGzfqKw8RmbCUy/kYsSQB1wvL0dHdHpumhMDT2UbqWETUyBi8iMu8efPw9ttvIzU1tT7yEJGJOnghD2O+OYTbpWr4ezlhw0u94GpvJXUsImqEDD6gODw8HCUlJejevTuUSiWsra2rXH/z5s06C0dEpmHX6Ry8sv7Oyt59fJpiaVggV/YmIskY/O6zYMGCeohBRKZqa0oWojcdh0YrMKizG74c5Q8rS4XUsYioETO43ERERNRHDiIyQWsPXcJ7W1MhBPCsvwc+eaEbLBUGf9pNRFSnarXfWKPRYMuWLThz5gwAoEuXLhg2bBgUCv7XGlFjsXjfBXy8Iw0AENarFeYM6wK5nCt7E5H0DC4358+fx1NPPYWsrCx06NABABATEwNPT09s27YNbdu2rfOQRGQ8hBD49Nd0fL3vAgDglQFt8XZoB8hkLDZEZBwM3n88depUtG3bFpcvX8bRo0dx9OhRZGZmonXr1pg6dWqtQixatAje3t6wsrJCcHAwkpKS9Lrdhg0bIJPJ8Mwzz9TqcYnIMFqtwKytp3TF5t0nOuKdJzqy2BCRUTG43Ozfvx+ffPIJnJ3/tz5M06ZNMW/ePOzfv9/gABs3bkR0dDRmz56No0ePonv37ggNDUVubu59b5eRkYG33noLffv2NfgxichwlRot3tx8HGsOXYJMBvz7GV+8PIB7aonI+BhcblQqFQoLC6ttLyoqglKpNDjA/PnzMWnSJERGRqJz586IjY2FjY0NVqxYcc/baDQajBkzBnPmzEGbNm0MfkwiMoxaC0zdeAI/HsuCQi7DgpF+GNurldSxiIhqZPAxN08//TReeuklLF++HEFBQQCAxMRETJkyBcOGDTPovioqKpCcnIwZM2botsnlcgwcOBAJCQn3vN0HH3wAV1dXTJgwAb/99tt9H6O8vBzl5eW6ywUFBQAAtVoNtVptUF6qO3efe86B8csvLsXSNDnO3s6F0kKOhSO74fGOrpw7I8XXlungXBnGkOfJ4HKzcOFCREREICQkBJaWlgCAyspKDBs2DF988YVB95WXlweNRgM3N7cq293c3JCWllbjbX7//XcsX74cKSkpej1GTEwM5syZU237zp07YWPDr4WXWnx8vNQR6D5KKoElZxTIKJJDKReY1F6N8j+PYPufUiejB+Fry3RwrvRTUlKi91iDy42TkxO2bt2Kc+fO4cyZM5DJZOjUqRN8fHwMvSuDFRYWIiwsDN988w1cXFz0us2MGTMQHR2tu1xQUABPT08MHjwYDg4O9RWVHkCtViM+Ph6DBg3SlWQyLnlF5YiMS0ZGURFsFALLIwIQ2Fq/1x1Jh68t08G5MszdT170UevvR2/Xrp2u0NT2TAkXFxcoFArk5ORU2Z6TkwN3d/dq4y9cuICMjAwMHTpUt02r1QIALCwskJ6eXu1UdJVKBZVKVe2+LC0t+ctkBDgPxunKrRKELT+Ci3nFaGanxPi2JQhs7cK5MiF8bZkOzpV+DHmOavVVosuXL4evry+srKxgZWUFX19fLFu2zOD7USqVCAgIwO7du3XbtFotdu/ejZCQkGrjO3bsiJMnTyIlJUX3b9iwYXj00UeRkpICT0/P2vw4RPQXF64XYURsAi7mFcPDyRrfTgxCC36CS0QmxOA9N7NmzcL8+fPx2muv6QpIQkICpk2bhszMTHzwwQcG3V90dDQiIiIQGBiIoKAgLFiwAMXFxYiMjARwZ6FODw8PxMTE6IrUXzk5OQFAte1EZLhTV28jfHkSbhRXoG0zW6ydGAwXGwuckjoYEZEBDC43ixcvxjfffINRo0bptg0bNgzdunXDa6+9ZnC5GTlyJK5fv45Zs2YhOzsbfn5+2LFjh+4g48zMTMjlXKuGqL4lX7qJcSsPo7CsEl1aOGD1+CA0tVPxTA4iMjkGlxu1Wo3AwMBq2wMCAlBZWVmrEFFRUYiKiqrxun379t33tnFxcbV6TCL6n9/OXcdLq5NRqtagp3cTLB/XEw5WPAaAiEyTwbtEwsLCsHjx4mrbly5dijFjxtRJKCJqODtSszEh7ghK1Rr0a98Mq8cHs9gQkUmr1dlSy5cvx86dO9GrVy8Ad77ELzMzE+Hh4VVOu54/f37dpCSievF98hW88/0JaLQCT/q644sX/aG04MfARGTaDC43qamp6NGjB4A7p2YDd07pdnFxQWpqqm4cF9IjMm6rEzIwa+udQ4WHB7REzHNdYaFgsSEi02dwudm7d2995CCiBiKEwNf7LuDTX9MBAJF9vPHekM6Qy/kfJERkHmr9JX5EZHqEEJi3Iw1L9t9ZP2Hq4+0wbWA77mklIrNSq3Jz5MgRbNq0CZmZmaioqKhy3Q8//FAnwYiobmm0Au9tTcX6xEwAwMwhnTCxbxuJUxER1T2DP2DfsGEDevfujTNnzuDHH3+EWq3GqVOnsGfPHjg6OtZHRiJ6SGqNFtGbUrA+MRMyGTDvua4sNkRktgwuNx999BH+85//4Oeff4ZSqcQXX3yBtLQ0jBgxAl5eXvWRkYgeQplag5fXJmNrylVYyGVY+KI/Xgzia5WIzJfB5ebChQsYMmQIgDtrQxUXF0Mmk2HatGlYunRpnQckotorLq/E+LjD2HUmFyoLOZaGB2Bo9xZSxyIiqlcGl5smTZqgsLAQAODh4aE7/Ts/Px8lJSV1m46Iai2/pAJjliXi4IUbsFUqsGp8EB7r6CZ1LCKiemfwAcX9+vVDfHw8unbtiuHDh+P111/Hnj17EB8fj8cff7w+MhKRgXILyxC+PAlp2YVwsrHEqsggdPd0kjoWEVGD0LvcpKamwtfXF1999RXKysoAAP/6179gaWmJgwcP4vnnn8fMmTPrLSgR6ScrvxRjlyXiYl4xXO1VWDMhGB3c7aWORUTUYPQuN926dUPPnj0xceJEvPjiiwAAuVyO6dOn11s4IjLMn9eLMHZZIq7eLkPLJtZYNzEYrZraSh2LiKhB6X3Mzf79+9GlSxe8+eabaN68OSIiIvDbb7/VZzYiMsDpqwUYsSQBV2+XoW0zW2yeEsJiQ0SNkt7lpm/fvlixYgWuXbuGL7/8EhkZGejfvz/at2+Pjz/+GNnZ2fWZk4juI/nSLby4NAF5RRXo0sIBmyaHoLmjtdSxiIgkYfDZUra2toiMjMT+/ftx9uxZDB8+HIsWLYKXlxeGDRtWHxmJ6D7+OJ+HsOWJKCirRGCrJlg/qRea2qmkjkVEJJmHWgLYx8cH//znPzFz5kzY29tj27ZtdZWLiPSw81Q2IlceRkmFBn3buWD1hCA4WltKHYuISFK1XjjzwIEDWLFiBb7//nvI5XKMGDECEyZMqMtsRHQfW45l4c3Nx6HRCoR2ccPCUf5QWSikjkVEJDmDys3Vq1cRFxeHuLg4nD9/Hr1798bChQsxYsQI2NrywEWihrL20CW8tzUVQgDP9fDAJ893g4XioXbEEhGZDb3LzZNPPoldu3bBxcUF4eHhGD9+PDp06FCf2YioBrH7L2Def9MAAOEhrfD+0C6Qy2USpyIiMh56lxtLS0t89913ePrpp6FQcNc3UUMTQuDznWfx1d7zAIBXH22LtwZ3gEzGYkNE9Fd6l5uffvqpPnMQ0X1otQIf/HIacQczAADvPtERLw9oK20oIiIjVesDiomoYVRqtHj3+5P4/ugVyGTAB//wRVivVlLHIiIyWiw3REasvFKDNzak4L+p2VDIZfhseDc8699S6lhEREaN5YbISJVWaDB5bTIOnL0OpUKOL0f7I7SLu9SxiIiMHssNkREqKFNjQtxhHM64BWtLBZaGB6Bvu2ZSxyIiMgksN0RG5mZxBSJWJOFk1m3YW1kgLrInAlo5Sx2LiMhksNwQGZGcgjKMXZaIc7lFcLZVYvX4IPh6OEodi4jIpLDcEBmJyzdLMGZZIjJvlsDdwQprJwbDx9VO6lhERCaH5YbICJzPLcSYZYnIKSiHl7MN1k0MhqezjdSxiIhMEssNkcRSs24jfEUSbhZXoL2bHdZMCIabg5XUsYiITBbLDZGEjmTcROTKwygsr0S3lo5YFRmEJrZKqWMREZk0lhsiiRw4ex2T1ySjVK1BUGtnLI8IhL2VpdSxiIhMHssNkQR2pGZj6rfHUKHRon/7ZogdGwBrJRekJSKqCyw3RA3sh6NX8PZ3J6DRCjzV1R0LRvpDaSGXOhYRkdlguSFqQGsSMvDe1lMAgBcCWmLec11hoWCxISKqSyw3RA1k8b4L+HhHGgBgXG9vzHq6M+RymcSpiIjMD8sNUT0TQuCznelYtPcCAOC1x3wQPag9ZDIWGyKi+sByQ1SPtFqBOT+fwqqESwCA6U92xJT+bSVORURk3lhuiOpJpUaL6T+cxHfJVyCTAR/8wxdhvVpJHYuIyOyx3BDVg4pKLd7YeAzbT2ZDIZfhs+Hd8Kx/S6ljERE1Ciw3RHWstEKDKWuTsf/sdSgVciwc5Y8nfN2ljkVE1Giw3BDVocIyNSasOoKkizdhZSnH0rBA9GvfTOpYRESNCssNUR25VVyBiJVJOHHlNuxVFlgR2RM9vZ2ljkVE1Oiw3BDVgdyCMoxdnoizOUVwtlVi9fgg+Ho4Sh2LiKhRYrkhekhXbpVg7LJEZNwogZuDCmsnBKOdm73UsYiIGi2WG6KH8Of1IoxZlohrt8vQsok11k/sBa+mNlLHIiJq1FhuiGrpzLUChC1PRF5RBdo2s8W6ib3g7mgldSwiokaP5YaoFo5l3kLEiiQUlFWic3MHrJkQhKZ2KqljERERWG6IDHbwQh4mrjqCkgoNeng5YWVkEBytLaWORURE/4/lhsgAe9Jy8PLaoyiv1KKPT1MsDQuErYovIyIiY8J3ZSI9/XLiKt7YkIJKrcDATm74arQ/rCwVUsciIqK/Ybkh0sOmI5cx/fsT0ApgWPcW+HxEd1gq5FLHIiKiGrDcED3Ayj8uYs7PpwEAo4I88e9nukIhl0mcioiI7oXlhugehBBYtPc8Ptt5FgAwqW9r/POpTpDJWGyIiIwZyw1RDYQQ+HhHOmL3XwAAvDGwHV5/vB2LDRGRCTCKgwYWLVoEb29vWFlZITg4GElJSfcc+80336Bv375o0qQJmjRpgoEDB953PJGhtFqBWVtP6YrNzCGd8MbA9iw2REQmQvJys3HjRkRHR2P27Nk4evQounfvjtDQUOTm5tY4ft++fRg1ahT27t2LhIQEeHp6YvDgwcjKymrg5GSOKjVavPXdcaw5dAkyGfDRs10xsW8bqWMREZEBJC838+fPx6RJkxAZGYnOnTsjNjYWNjY2WLFiRY3j161bh1deeQV+fn7o2LEjli1bBq1Wi927dzdwcjI35ZUaRK0/hh+OZkEhl2HBSD+MDvaSOhYRERlI0mNuKioqkJycjBkzZui2yeVyDBw4EAkJCXrdR0lJCdRqNZydnWu8vry8HOXl5brLBQUFAAC1Wg21Wv0Q6elh3H3ujWUOSis0ePXbFPx2/gYsFTIsHNkdAzu5Gk0+KRnbXNH9cb5MB+fKMIY8T5KWm7y8PGg0Gri5uVXZ7ubmhrS0NL3u491330WLFi0wcODAGq+PiYnBnDlzqm3fuXMnbGy4erPU4uPjpY6AskpgaZoCFwplUMoFJrTXoOLiEWy/KHUy42IMc0X643yZDs6VfkpKSvQea9JnS82bNw8bNmzAvn37YGVV82rMM2bMQHR0tO5yQUGB7jgdBweHhopKf6NWqxEfH49BgwbB0lK6dZlulVRgwuqjuFBYADuVBZaF+SOgVRPJ8hgjY5kr0g/ny3Rwrgxz95MXfUhablxcXKBQKJCTk1Nle05ODtzd3e97288++wzz5s3Drl270K1bt3uOU6lUUKmqr9ZsaWnJXyYjIOU85BaWIWxFMtJzCtHExhJrJgTD18NRkiymgK8Z08L5Mh2cK/0Y8hxJekCxUqlEQEBAlYOB7x4cHBIScs/bffLJJ5g7dy527NiBwMDAhohKZubKrRKMiE1Aek4hXO1V2DQ5hMWGiMhMSP6xVHR0NCIiIhAYGIigoCAsWLAAxcXFiIyMBACEh4fDw8MDMTExAICPP/4Ys2bNwvr16+Ht7Y3s7GwAgJ2dHezs7CT7Och0XMwrxphvDuHq7TK0bGKN9RN7waspj78iIjIXkpebkSNH4vr165g1axays7Ph5+eHHTt26A4yzszMhFz+vx1MixcvRkVFBV544YUq9zN79my8//77DRmdTFBadgHGLktCXlE52jSzxbqJwWjuaC11LCIiqkOSlxsAiIqKQlRUVI3X7du3r8rljIyM+g9EZunElXyEr0hCfokanZo7YM2EILjYVT8ei4iITJtRlBui+pZ08SbGxx1GUXkl/DydsCoyCI42PICPiMgcsdyQ2dt/9jomrzmCMrUWIW2a4puIQNip+KtPRGSu+A5PZm1HajZe+/Yo1BqBxzq64usxPWBlqZA6FhER1SOWGzJbPx67grc2n4BGKzCka3P8Z6QflBaSL6dGRET1jOWGzNK6xEuYuSUVQgAvBLTEx893g0IukzoWERE1AJYbMjtLD1zAR9vvrE02rrc3Zj3dGXIWGyKiRoPlhsyGEAILdp3DF7vPAQBeGdAWb4d2gEzGYkNE1Jiw3JBZEELgw21nsOz3O0t5vx3aAa8+6iNxKiIikgLLDZk8jVZg5pZUfJuUCQB4f2hnjOvTWuJUREQkFZYbMmlqjRZvbT6OrSlXIZcB857rhhE9PaWORUREEmK5IZNVXqlB1PpjiD+dAwu5DAte9MPT3VpIHYuIiCTGckMmqaSiEpPXJOO3c3lQWsixeEwPPN7JTepYRERkBFhuyOQUlKkxIe4wDmfcgo1SgWXhgejt4yJ1LCIiMhIsN2RSbhVXIHxFEk5m3Ya9lQXiIoMQ0KqJ1LGIiMiIsNyQycgtLEPYsiSk5xTC2VaJ1eOD4OvhKHUsIiIyMiw3ZBKy8ksx5ptDyLhRAld7FdZNDEY7N3upYxERkRFiuSGjdzGvGGOXJSIrvxQeTtZYPykYrZraSh2LiIiMFMsNGbX07EKMXZ6I64XlaONii7UTg9HCyVrqWEREZMRYbshonbiSj/AVScgvUaOjuz3WTAhGM3uV1LGIiMjIsdyQUTqccRORKw+jqLwS3T2dsCqyJ5xslFLHIiIiE8ByQ0bnt3PXMWn1EZSptQhq7YwV43rCTsVfVSIi0g//YpBRiT+dg1fXHUWFRot+7ZthydgAWCsVUsciIiITwnJDRuOn41cxbWMKNFqB0C5uWDjKHyoLFhsiIjIMyw0ZhY2HMzH9h5MQAnjW3wOfvtANFgq51LGIiMgEsdyQ5Fb8fhEf/HIaADA62Av//ocv5HKZxKmIiMhUsdyQpBbv/xPzd50HAEzq2xr/fKoTZDIWGyIiqj2WG5KEEAI/Z8qxK+tOsXljYDu8/ng7FhsiInpoLDfU4LRagbnb07Er684xNf96qhMm9WsjcSoiIjIXLDfUoDRagenfn8Dm5CsAgDlDOyGiD4sNERHVHZYbajBqjRbTNqbglxPXIJcBo9pqMDrIU+pYRERkZlhuqEGUqTWIWn8Uu87kwlIhw/zh3aC9lCx1LCIiMkP8IhGqdyUVlZi46gh2ncmFykKOpWGBeKKLm9SxiIjITHHPDdWrgjI1xq88jCOXbsFGqcCyiED0busCtVotdTQiIjJTLDdUb24VVyB8RRJOZt2GvZUFVo0PQg+vJlLHIiIiM8dyQ/Uit7AMYcuSkJ5TCGdbJVaPD4Kvh6PUsYiIqBFguaE6l5VfirHLEnExrxiu9iqsnxQMH1d7qWMREVEjwXJDdSojrxhjliUiK78UHk7WWD8pGK2a2kodi4iIGhGWG6oz53IKMWZZInILy9HGxRZrJwajhZO11LGIiKiRYbmhOpGadRthyxNxq0SNDm72WDsxGM3sVVLHIiKiRojlhh5a8qVbGLcyCYVllejW0hGrIoPQxFYpdSwiImqkWG7ooRy8kIeJq46gpEKDnt5NsGJcT9hbWUodi4iIGjGWG6q1vWm5mLI2GeWVWvRt54IlYQGwUfJXioiIpMW/RFQr/z15DVM3HINaIzCwkxu+Gu0PK0uF1LGIiIhYbshw3ydfwdvfHYdWAE93a47/jPSDpYLLlBERkXFguSGDrD10CTO3pAIAhge0xLznu0Ehl0mcioiI6H9Ybkhvy377E//edgYAEBHSCrOHdoGcxYaIiIwMyw09kBACC3efx392nQUATOnfFu8+0QEyGYsNEREZH5Ybui8hBObtSMOS/X8CAN4c1B5Rj/mw2BARkdFiuaF70moF3v/5FFYnXAIAzBzSCRP7tpE4FRER0f2x3FCNNFqBd78/ge+Sr0AmAz58pitGB3tJHYuIiOiBWG6oGrVGi2kbU/DLiWuQy4DPR3THs/4tpY5FRESkF5YbqqJMrUHU+qPYdSYXlgoZFr7ojye7Npc6FhERkd5YbkinpKISk9ck47dzeVBZyBE7NgCPdnSVOhYREZFBWG4IAFBYpsb4uMM4nHELNkoFlkUEondbF6ljERERGYzlhpBfUoHwFUk4ceU27K0sEBcZhIBWTaSORUREVCssN41YmVqDHanZ+GrveZzPLYKzrRKrxwfB18NR6mhERES1ZhSrHS5atAje3t6wsrJCcHAwkpKS7jt+8+bN6NixI6ysrNC1a1ds3769gZKah/O5RZj7y2n0itmNNzam4HxuEZrZq7DxpV4sNkREZPIk33OzceNGREdHIzY2FsHBwViwYAFCQ0ORnp4OV9fqB7MePHgQo0aNQkxMDJ5++mmsX78ezzzzDI4ePQpfX18JfgLTcHcvzfqkTCRdvKnb3sLRCiN7emF0sBea2askTEhERFQ3JC838+fPx6RJkxAZGQkAiI2NxbZt27BixQpMnz692vgvvvgCTzzxBN5++20AwNy5cxEfH4+vvvoKsbGxDZr9r8orNbheWC7Z49/L7VI1fjyahe+PXsGtEjUAQC4DHuvohtHBnujf3pWrehMRkVmRtNxUVFQgOTkZM2bM0G2Ty+UYOHAgEhISarxNQkICoqOjq2wLDQ3Fli1bahxfXl6O8vL/lY6CggIAgFqthlqtfsif4H+OX87HiKX3/zhNau4OKowIaIkXAjzQ3NEKAKDVVEKrafgsd5/7upwDqh+cK9PC+TIdnCvDGPI8SVpu8vLyoNFo4ObmVmW7m5sb0tLSarxNdnZ2jeOzs7NrHB8TE4M5c+ZU275z507Y2NjUMnl1GYWApUxRZ/dXV2QyoJ2jQG83gc5OxZCXpePYH+k4JnWw/xcfHy91BNIT58q0cL5MB+dKPyUlJXqPlfxjqfo2Y8aMKnt6CgoK4OnpicGDB8PBwaFOH+uVOr0386ZWqxEfH49BgwbB0tJS6jh0H5wr08L5Mh2cK8Pc/eRFH5KWGxcXFygUCuTk5FTZnpOTA3d39xpv4+7ubtB4lUoFlar6gbKWlpb8ZTICnAfTwbkyLZwv08G50o8hz5Gkp4IrlUoEBARg9+7dum1arRa7d+9GSEhIjbcJCQmpMh64s0vvXuOJiIiocZH8Y6no6GhEREQgMDAQQUFBWLBgAYqLi3VnT4WHh8PDwwMxMTEAgNdffx39+/fH559/jiFDhmDDhg04cuQIli5dKuWPQUREREZC8nIzcuRIXL9+HbNmzUJ2djb8/PywY8cO3UHDmZmZkMv/t4Opd+/eWL9+PWbOnIl//vOfaNeuHbZs2cLvuCEiIiIARlBuACAqKgpRUVE1Xrdv375q24YPH47hw4fXcyoiIiIyRUax/AIRERFRXWG5ISIiIrPCckNERERmheWGiIiIzArLDREREZkVlhsiIiIyKyw3REREZFZYboiIiMissNwQERGRWTGKbyhuSEIIAIYtnU51T61Wo6SkBAUFBVwN18hxrkwL58t0cK4Mc/fv9t2/4/fT6MpNYWEhAMDT01PiJERERGSowsJCODo63neMTOhTgcyIVqvF1atXYW9vD5lMJnWcRqugoACenp64fPkyHBwcpI5D98G5Mi2cL9PBuTKMEAKFhYVo0aJFlQW1a9Lo9tzI5XK0bNlS6hj0/xwcHPiiNhGcK9PC+TIdnCv9PWiPzV08oJiIiIjMCssNERERmRWWG5KESqXC7NmzoVKppI5CD8C5Mi2cL9PBuao/je6AYiIiIjJv3HNDREREZoXlhoiIiMwKyw0RERGZFZYbIiIiMissN/RQPvzwQ/Tu3Rs2NjZwcnKqcUxmZiaGDBkCGxsbuLq64u2330ZlZWWVMfv27UOPHj2gUqng4+ODuLi4avezaNEieHt7w8rKCsHBwUhKSqpyfVlZGV599VU0bdoUdnZ2eP7555GTk1NXP2qj9aDnnR7OgQMHMHToULRo0QIymQxbtmypcr0QArNmzULz5s1hbW2NgQMH4ty5c1XG3Lx5E2PGjIGDgwOcnJwwYcIEFBUVVRlz4sQJ9O3bF1ZWVvD09MQnn3xSLcvmzZvRsWNHWFlZoWvXrti+fXud/7ymLCYmBj179oS9vT1cXV3xzDPPID09vcoYfd6HGuo9sVETRA9h1qxZYv78+SI6Olo4OjpWu76yslL4+vqKgQMHimPHjont27cLFxcXMWPGDN2YP//8U9jY2Ijo6Ghx+vRp8eWXXwqFQiF27NihG7NhwwahVCrFihUrxKlTp8SkSZOEk5OTyMnJ0Y2ZMmWK8PT0FLt37xZHjhwRvXr1Er17967Xn9/c6fO808PZvn27+Ne//iV++OEHAUD8+OOPVa6fN2+ecHR0FFu2bBHHjx8Xw4YNE61btxalpaW6MU888YTo3r27OHTokPjtt9+Ej4+PGDVqlO7627dvCzc3NzFmzBiRmpoqvv32W2FtbS2WLFmiG/PHH38IhUIhPvnkE3H69Gkxc+ZMYWlpKU6ePFnvz4GpCA0NFStXrhSpqakiJSVFPPXUU8LLy0sUFRXpxjzofagh3xMbM5YbqhMrV66ssdxs375dyOVykZ2drdu2ePFi4eDgIMrLy4UQQrzzzjuiS5cuVW43cuRIERoaqrscFBQkXn31Vd1ljUYjWrRoIWJiYoQQQuTn5wtLS0uxefNm3ZgzZ84IACIhIaFOfsbG6EHPO9Wtv5cbrVYr3N3dxaeffqrblp+fL1Qqlfj222+FEEKcPn1aABCHDx/Wjfnvf/8rZDKZyMrKEkII8fXXX4smTZroXnNCCPHuu++KDh066C6PGDFCDBkypEqe4OBgMXny5Dr9Gc1Jbm6uACD2798vhNDvfaih3hMbO34sRfUqISEBXbt2hZubm25baGgoCgoKcOrUKd2YgQMHVrldaGgoEhISAAAVFRVITk6uMkYul2PgwIG6McnJyVCr1VXGdOzYEV5eXroxZBh9nneqXxcvXkR2dnaVOXB0dERwcLBuDhISEuDk5ITAwEDdmIEDB0IulyMxMVE3pl+/flAqlboxoaGhSE9Px61bt3Rj7vc6pOpu374NAHB2dgag3/tQQ70nNnYsN1SvsrOzq7yIAeguZ2dn33dMQUEBSktLkZeXB41GU+OYv96HUqmsdtzPX8eQYfR53ql+3X2eH/S77+rqWuV6CwsLODs7P/A19tfHuNcYznXNtFot3njjDfTp0we+vr4A9Hsfaqj3xMaO5YaqmT59OmQy2X3/paWlSR2TiEgyr776KlJTU7Fhwwapo1ANLKQOQMbnzTffxLhx4+47pk2bNnrdl7u7e7Uj+O+eOeDu7q7737+fTZCTkwMHBwdYW1tDoVBAoVDUOOav91FRUYH8/Pwq/9X01zFkGBcXlwc+71S/7j7POTk5aN68uW57Tk4O/Pz8dGNyc3Or3K6yshI3b9584Gvsr49xrzGc6+qioqLwyy+/4MCBA2jZsqVuuz7vQw31ntjYcc8NVdOsWTN07Njxvv/++tn9/YSEhODkyZNV3nzj4+Ph4OCAzp0768bs3r27yu3i4+MREhICAFAqlQgICKgyRqvVYvfu3boxAQEBsLS0rDImPT0dmZmZujFkGH2ed6pfrVu3hru7e5U5KCgoQGJiom4OQkJCkJ+fj+TkZN2YPXv2QKvVIjg4WDfmwIEDUKvVujHx8fHo0KEDmjRpohtzv9ch3TktPyoqCj/++CP27NmD1q1bV7len/ehhnpPbPSkPqKZTNulS5fEsWPHxJw5c4SdnZ04duyYOHbsmCgsLBRC/O+0x8GDB4uUlBSxY8cO0axZsxpPe3z77bfFmTNnxKJFi2o87VGlUom4uDhx+vRp8dJLLwknJ6cqZxxMmTJFeHl5iT179ogjR46IkJAQERIS0nBPhhnS53mnh1NYWKh73QAQ8+fPF8eOHROXLl0SQtw5FdzJyUls3bpVnDhxQvzjH/+o8VRwf39/kZiYKH7//XfRrl27KqeC5+fnCzc3NxEWFiZSU1PFhg0bhI2NTbVTwS0sLMRnn30mzpw5I2bPns1Twf/m5ZdfFo6OjmLfvn3i2rVrun8lJSW6MQ96H2rI98TGjOWGHkpERIQAUO3f3r17dWMyMjLEk08+KaytrYWLi4t48803hVqtrnI/e/fuFX5+fkKpVIo2bdqIlStXVnusL7/8Unh5eQmlUimCgoLEoUOHqlxfWloqXnnlFdGkSRNhY2Mjnn32WXHt2rX6+LEblQc97/Rw9u7dW+NrKCIiQghx53Tw9957T7i5uQmVSiUef/xxkZ6eXuU+bty4IUaNGiXs7OyEg4ODiIyM1P0Hxl3Hjx8XjzzyiFCpVMLDw0PMmzevWpZNmzaJ9u3bC6VSKbp06SK2bdtWbz+3KappngBUeb/S532ood4TGzOZEEI0+O4iIiIionrCY26IiIjIrLDcEBERkVlhuSEiIiKzwnJDREREZoXlhoiIiMwKyw0RERGZFZYbIiIiMissN0RERGRWWG6IiOrIgAEDIJPJIJPJkJKSUuOYjIwM3Zi7i18SUd1iuSGi+xo3bhyeeeaZatv37dsHmUyG/Pz8Onssfe/z7jiZTAa5XA5HR0f4+/vjnXfewbVr1wx+XG9vbyxYsKB2of9m0qRJuHbtGnx9fQH8r8zcLTuenp64du0a3nzzzTp5PCKqjuWGiExWeno6rl69isOHD+Pdd9/Frl274Ovri5MnT0qWycbGBu7u7rCwsKjxeoVCAXd3d9jZ2TVwMqLGg+WGiOrM77//jr59+8La2hqenp6YOnUqiouLddevWbMGgYGBsLe3h7u7O0aPHo3c3FwAd/ZwPProowCAJk2aQCaTYdy4cfd9PFdXV7i7u6N9+/Z48cUX8ccff6BZs2Z4+eWXdWMGDBiAN954o8rtnnnmGd19DxgwAJcuXcK0adN0e4OKi4vh4OCA7777rsrttmzZAltbWxQWFtbyGSKihsByQ0R14sKFC3jiiSfw/PPP48SJE9i4cSN+//13REVF6cao1WrMnTsXx48fx5YtW5CRkaErGZ6envj+++8B3Nkjc+3aNXzxxRcGZbC2tsaUKVPwxx9/6ErTg/zwww9o2bIlPvjgA1y7dg3Xrl2Dra0tXnzxRaxcubLK2JUrV+KFF16Avb29QbmIqGHVvN+UiOgvfvnll2ofo2g0miqXY2JiMGbMGN1eknbt2mHhwoXo378/Fi9eDCsrK4wfP143vk2bNli4cCF69uyJoqIi2NnZwdnZGcCdPTJOTk61ytqxY0cAd/YEubq6PnC8s7MzFAqFbm/SXRMnTkTv3r1x7do1NG/eHLm5udi+fTt27dpVq1xE1HC454aIHujRRx9FSkpKlX/Lli2rMub48eOIi4uDnZ2d7l9oaCi0Wi0uXrwIAEhOTsbQoUPh5eUFe3t79O/fHwCQmZlZZ1mFEAAAmUz2UPcTFBSELl26YNWqVQCAtWvXolWrVujXr99DZySi+sU9N0T0QLa2tvDx8amy7cqVK1UuFxUVYfLkyZg6dWq123t5eaG4uBihoaEIDQ3FunXr0KxZM2RmZiI0NBQVFRV1lvXMmTMA7pwBBQByuVxXeO5Sq9V63dfEiROxaNEiTJ8+HStXrkRkZORDlyYiqn8sN0RUJ3r06IHTp09XK0F3nTx5Ejdu3MC8efPg6ekJADhy5EiVMUqlEkD1j7z0VVpaiqVLl6Jfv35o1qwZAKBZs2ZVTg/XaDRITU3VHbx893FresyxY8finXfewcKFC3H69GlERETUKhcRNSx+LEVEdeLdd9/FwYMHERUVhZSUFJw7dw5bt27VHVDs5eUFpVKJL7/8En/++Sd++uknzJ07t8p9tGrVCjKZDL/88guuX7+OoqKi+z5mbm4usrOzce7cOWzYsAF9+vRBXl4eFi9erBvz2GOPYdu2bdi2bRvS0tLw8ssvV/seHW9vbxw4cABZWVnIy8vTbW/SpAmee+45vP322xg8eDBatmz5kM8SETUElhsiqhPdunXD/v37cfbsWfTt2xf+/v6YNWsWWrRoAeDOHpS4uDhs3rwZnTt3xrx58/DZZ59VuQ8PDw/MmTMH06dPh5ubW5UzrWrSoUMHtGjRAgEBAZg3bx4GDhyI1NRUdO7cWTdm/PjxiIiIQHh4OPr37482bdpU2WsDAB988AEyMjLQtm1b3R6fuyZMmICKiooqB0MbQqvVAsA9v/eGiOqeTPz9w2giItJZs2YNpk2bhqtXr+o+NruXAQMGwM/Pr8q3HR86dAghISG4fv06XFxcdNvff/99bNmy5Z7LNBBR7XHPDRFRDUpKSnDhwgXMmzcPkydPfmCxuevrr7+GnZ0dTp48ifPnz+PTTz9F9+7ddcUmMzMTdnZ2+Oijj+ozPlGjxj03REQ1eP/99/Hhhx+iX79+2Lp1q17LJWRlZaG0tBQAcPPmTd2enNjYWHTr1g0AUFlZiYyMDACASqXSHVxNRHWH5YaIiIjMCj+WIiIiIrPCckNERERmheWGiIiIzArLDREREZkVlhsiIiIyKyw3REREZFZYboiIiMissNwQERGRWfk/Z3ybu0J0C7UAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\tut\\core\\flash_unit_doc_33_51.png" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -1696,16 +1713,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdEElEQVR4nO3deVhUZcMG8PvMMDPsi7Ij4IK7ggoKuNaXSmmZZbmLuODeRpnaommlZmVmWbjjvq+l+WqYmgm44IYKihsuLCKxCwzM+f4w540X1BlkOMDcv+viKs48c7hnHhlvzyqIoiiCiIiIyIjIpA5AREREVNVYgIiIiMjosAARERGR0WEBIiIiIqPDAkRERERGhwWIiIiIjA4LEBERERkdE6kDVEcajQZ3796FlZUVBEGQOg4RERHpQBRF5OTkwNXVFTLZk7fxsACV4+7du3B3d5c6BhEREVXArVu3UK9evSeOYQEqh5WVFYCHb6C1tbXEaYyXWq3G/v370bNnTygUCqnj0BNwrmoOzlXNwvnST3Z2Ntzd3bV/jz8JC1A5Hu32sra2ZgGSkFqthrm5OaytrfmLX81xrmoOzlXNwvmqGF0OX+FB0ERERGR0WICIiIjI6LAAERERkdFhASIiIiKjwwJERERERocFiIiIiIwOCxAREREZHRYgIiIiMjosQERERGR0WICIiIjI6LAAERERkdFhASIiIiKjw5uhVqHsAjWyH6iljlGGqUIOe0uV1DGIiIiqDAtQFVobfRPz9iVIHaNcLV2t0dvbBS+3doVHXXOp4xARERkUC1AVMpEJUJlUv72ORSUaXLibjQt3szFvXwK869mgd2sX9PZ2QT07liEiIqp9WICq0JiujTCmayOpY5RxP7cQ/7mQij3n7yLq6n2cu52Fc7ezMOe3eLRxt8XL3i7o1doFrrZmUkclIiKqFCxAhLqWKgz298Bgfw+k5xZiX1wKfj13FzHXM3DmVibO3MrEF3suIaRjfXzcuzkU8uq3FYuIiEgfLEBUir2lCkMDPDE0wBNpOQX/lKFkHL+egYhjNxCfko2fhviijoVS6qhEREQVxn/K02M5WpkiOLA+No8NxJJhvrBQyhF9LQN9fjyKi3ezpY5HRERUYSxApJOeLZ2xY2IneNY1x+2/H6Dfz8fw2/lkqWMRERFVCAsQ6ayJkxV2TeyELo3t8UBdgvHrYjF/fwI0GlHqaERERHphASK92JorsTKkPUZ1bgAAWHgwEWPXnkJuYbHEyYiIiHTHAkR6M5HL8OnLLfDNmz5Qmshw4GIqXv/pL9y8nyd1NCIiIp2wAFGFveFbD5vGBMDRSoXLqbno8+NfOHolXepYRERET8UCRM+krYcdfnmrM9q42yLrgRrDVx7HqmM3IIo8LoiIiKovFiB6Zk7Wptg4JgCvt3NDiUbEjN0X8NGOOBQVa6SORkREVC4WIKoUpgo5vn3TBx/1agZBADYcT8Kw5THIyCuSOhoREVEZLEBUaQRBwJiujbAs2A+WKhPEXM/Aq4uO4nJqjtTRiIiISmEBokr3QnMnbJ/QEe51zHAr4wFe/+kYIi+lSh2LiIhIiwWIDOLhRRM7w79BHeQWFmP06pNYfPgqD44mIqJqgQWIDKaOhRJrRvljUAcPiCIw57d4vL/lLArUJVJHIyIiI8cCRAalNJFh9mutMLNPS8hlArbH3sHgpdG4l1ModTQiIjJi1aIALVq0CPXr14epqSn8/f1x/Pjxx4597rnnIAhCma/evXtrx4iiiOnTp8PFxQVmZmbo3r07rly5UhUvhcohCAKGd6yPiBHtYW1qgtikTPRd9BfiU3hHeSIikobkBWjTpk0ICwvDjBkzEBsbCx8fHwQFBSEtLa3c8du3b0dycrL2Ky4uDnK5HG+++aZ2zLx587Bw4UKEh4cjJiYGFhYWCAoKQkFBQVW9LCpHl8YO2DGxExrYW+BO5gP0++kYDsbz4GgiIqp6JlIHmD9/PkJDQzFixAgAQHh4OPbs2YMVK1Zg6tSpZcbXqVOn1PcbN26Eubm5tgCJoogFCxbgk08+wauvvgoAWL16NZycnLBz504MHDiwzDoLCwtRWPjfXTLZ2Q+3TKjVaqjV6sp5oQQA8LBVYXNoB7y18Qyir/+N0atOYuqLTRES6AFBEEqNffTecw6qP85VzcG5qlk4X/rR530SRAlPyykqKoK5uTm2bt2Kvn37apcPHz4cmZmZ2LVr11PX0bp1awQGBmLJkiUAgGvXrqFRo0Y4ffo02rRpox3XrVs3tGnTBt9//32ZdXz22WeYOXNmmeXr16+Hubm5/i+MnqpYA2y9LkNU2sONkIGOGrzZQAO55NskiYiopsrPz8fgwYORlZUFa2vrJ46VdAtQeno6SkpK4OTkVGq5k5MT4uPjn/r848ePIy4uDsuXL9cuS0lJ0a7jf9f56LH/NW3aNISFhWm/z87Ohru7O3r27PnUN5Aq7hVRRERUEubsS3hYhCztsXCAD2zNFQAeNvkDBw6gR48eUCgUEqelJ+Fc1Rycq5qF86WfR3twdCH5LrBnsXz5crRu3RodOnR4pvWoVCqoVKoyyxUKBf/AGdiYbl5o5GiFtzecRtS1DPRfehzLh/uhoYOldgznoebgXNUcnKuahfOlG33eI0l3ONjb20MulyM1tfSBsKmpqXB2dn7ic/Py8rBx40aMGjWq1PJHz6vIOkkaLzR3wtbxHeFma4br6Xl47adjOJaYLnUsIiKqxSQtQEqlEr6+voiMjNQu02g0iIyMRGBg4BOfu2XLFhQWFmLo0KGlljdo0ADOzs6l1pmdnY2YmJinrpOk09zFGjsndkJbD1tkPVAjeMVxbD55W+pYRERUS0l+yGlYWBiWLl2KVatW4dKlSxg/fjzy8vK0Z4UFBwdj2rRpZZ63fPly9O3bF3Xr1i21XBAEvPvuu/jiiy+we/dunD9/HsHBwXB1dS11oDVVPw5WKmwIDcCrbVxRrBHx8a6L2H1TBo2Gt88gIqLKJfkxQAMGDMC9e/cwffp0pKSkoE2bNti3b5/2IOakpCTIZKV7WkJCAo4ePYr9+/eXu84PP/wQeXl5GDNmDDIzM9G5c2fs27cPpqamBn899GxMFXIsGNAG9eta4PvIK4i8K8Pbm85iwcB2MFPKpY5HRES1hKSnwVdX2dnZsLGx0ek0OjKcrSeTMGXbOZSIAnzq2WDpcD84WrHEVkdqtRp79+5Fr169eKBmNce5qlk4X/rR5+9vyXeBET3Oqz4umNiiBHbmCpy9nYXXFh3j7TOIiKhSsABRtdbIGtgyxh8N/7l9xhs/R+FQQvm3SSEiItIVCxBVe551zbF9QkcENKyD3MJijIw4gTVRN6SORURENRgLENUItuZKrB7pj37t6kEjAp/uuoBZv1xECc8QIyKiCmABohpDaSLDN296Y3JQUwDAir+uY9zaU8gvKpY4GRER1TQsQFSjCIKAic974cfBbaE0keHAxVQMXBKNtJwCqaMREVENwgJENdLL3q7YEOoPO3MFzv1zhtiV1BypYxERUQ3BAkQ1lq9nHeyY0AkN/jlD7PWfeQ8xIiLSDQsQ1Wj17S2wfXxH+HnaIaegGMErjmPrKd5DjIiInowFiGo8Owsl1o72x8veLijWiPhgy1l8d+AyeJFzIiJ6HBYgqhVMFXIsHNgW459rBAD4PvIK3t98FkXFGomTERFRdcQCRLWGTCZgyovNMOf11pDLBGw/fQfBK2KQla+WOhoREVUzLEBU6wzq4IEVIe1hqTJB9LUM9As/htt/50sdi4iIqhEWIKqVujVxwOaxgXC2NkViWi5e++kY4u5kSR2LiIiqCRYgqrVauFpjx8SOaOpkhXs5hRiwmDdSJSKih1iAqFZzsTHDlvGB6ORVF3lFJRi16iQ2nUiSOhYREUmMBYhqPWtTBVaGdMDrbd1QohExZdt5zOdp8kRERo0FiIyC0kSGb/v7YNLzXgCAhZFX8MGWczxNnojISLEAkdEQBAEfBDXF7Ncenia/LfY2RkacQE4BT5MnIjI2LEBkdAb7e2BZsB/MlXIcTUzHm+FRSMni3eSJiIwJCxAZpeebOWLTmEDYW6oQn5KD1376C5d5N3kiIqPBAkRGq3U9G+yY0BENHSyQnFWAN34+hphr96WORUREVYAFiIyaex1zbBvXEb6edsguKMaw5cex93yy1LGIiMjAWIDI6NlZKLFutD96tnBCUYkGE9fHYuVf16WORUREBsQCRISHd5P/eagvhgV4QhSBmb9cxJy9l6DR8FpBRES1EQsQ0T/kMgGzXm2JyUFNAQCLj1zDe5vP8FpBRES1EAsQ0b8IgoCJz3vhmzd9YCITsOvMXYyIOI5sXiuIiKhWYQEiKscbvvWwPKQ9zJVy/JV4H/3Do5CazWsFERHVFixARI/RrYlDqWsFvf7TMSSm5Uodi4iIKgELENETaK8VZG+BO5kP8Eb4McQm/S11LCIiekYsQERP4V7HHFvGBcLH3RaZ+WoMXhqNg/GpUsciIqJnYKLLoHbt2um1UkEQsHv3bri5uVUoFFF1U9dShQ2h/piwLhaHEu4hdPUpzHm9Nfr7uUsdjYiIKkCnAnTmzBm8//77sLS0fOpYURQxd+5cFBYWPnM4ourEXGmCpcF+mLrtPLbF3saHW8/hXk4hJjzXCIIgSB2PiIj0oFMBAoDJkyfD0dFRp7HffvtthQMRVWcKuQzfvOkNBysVwg9fxdf/SUBadgGmv9ISchlLEBFRTaHTMUDXr1+Hg4ODziu9ePEiPD09KxyKqDoTBAFTX2qG6S+3AACsirqJtzecRmFxicTJiIhIVzoVIE9PT7028bu7u0Mul1c4FFFNMLJzAywc1BYKuYA955MxfAUvmEhEVFM801lgrVu3xq1btyorC1GN08fHFREjOsBSZYLoaxkYsDgaabxgIhFRtfdMBejGjRtQq/kvXjJunbzssXFMAOwtVbiUnI1+4cdwIz1P6lhERPQEvA4QUSVo5WaD7eM7wrOuOW5lPLxgYtydLKljERHRYzxTAerSpQvMzMwqKwtRjeZR1xxbx3VECxdrpOcWYeCSaBy7mi51LCIiKsczFaC9e/fCxcWlsrIQ1XgOVipsHBuAgIZ1kFtYjJAVJ/Db+WSpYxER0f/QqQDt3r1br2N99u7diwcPHlQ4FFFNZm2qQMSIDnixpTOKSjSYsD4W62JuSh2LiIj+RacC9NprryEzM1PnlQ4cOBDJyfxXLxkvU4Uci4a0w6AOHhBF4OMdcVgYeQWiKEodjYiIoOOVoEVRREhICFQqlU4rLSjgacBEcpmA2a+1gr2lEj8cTMT8A5dxP7cQM15pCRmvGk1EJCmdCtDw4cP1WumQIUNgbW1doUBEtYkgCHi/Z1PUtVDis18uYlXUTdzPK8L8/m2gNOFJmEREUtGpAK1cudLQOYhqtZBODWBnocQHW87i13PJyHqgRvhQX1iodL4dHxERVSL+E5Soirzaxg3Lh7eHmUKOP6+kY8iyGPydVyR1LCIio8QCRFSFujZxwLpQf9iYKXDmVib6L45CShaPmSMiqmosQERVrJ2HHbaMC4STtQpX0nLR7+djuM5bZxARVSkWICIJNHGywtZxHdHA3gJ3Mh/gjZ956wwioqrEAkQkEfc65tgyLhAtXa1xP+/hrTOir92XOhYRkVGo0CkokZGRiIyMRFpaGjQaTanHVqxYUSnBiIyBvaUKG8YEIHTVScRcz0DwiuNYNLgderRwkjoaEVGtpvcWoJkzZ6Jnz56IjIxEeno6/v7771JfRKQfa1MFVo3sgO7NnVBUrMG4taew9dRtqWMREdVqem8BCg8PR0REBIYNG2aIPERGyVQhR/jQdpiy7Ty2xd7GB1vOIjO/CKO7NJQ6GhFRraT3FqCioiJ07NjREFmIjJqJXIav3/DG6M4NAABf7LmEb/cn8P5hREQGoHcBGj16NNavX2+ILERGTyYT8HHv5pgc1BQA8MPBRMzYfQEaDUsQEVFl0nsXWEFBAZYsWYLff/8d3t7eUCgUpR6fP39+pYUjMkaCIGDi816wNlNg+q44rI66iewHanz9pg8Ucp64SURUGfQuQOfOnUObNm0AAHFxcaUeEwTe4ZqosgwL8IS1qQne33wWO8/cRU5BMRYNaQdThVzqaERENZ7eBeiPP/4wRA4iKserbdxgZWqC8WtjERmfhuErjmPZcD9YmSqe/mQiInqsZ9qefvv2bdy+zdN1iQzp/5o5YfXIDrBSmSDmegYGL43B/dxCqWMREdVoehcgjUaDWbNmwcbGBp6envD09IStrS0+//zzMhdFJKLK4d+wLjaMCUBdCyXO38lC/8VRuJv5QOpYREQ1lt4F6OOPP8aPP/6IuXPn4vTp0zh9+jRmz56NH374AZ9++qkhMhIRgFZuNtg8LhCuNqa4ei8Pb4ZH4dq9XKljERHVSHoXoFWrVmHZsmUYP348vL294e3tjQkTJmDp0qWIiIgwQEQieqSRgyW2jO+Ihv/cRLX/4ihcSs6WOhYRUY2jdwHKyMhAs2bNyixv1qwZMjIyKiUUET2em60ZNv9zE9X03CIMWByF2CTehoaISB96FyAfHx/8+OOPZZb/+OOP8PHxqZRQRPRk9pYqrA8NgJ+nHbILijF0WQyOXkmXOhYRUY2h92nw8+bNQ+/evfH7778jMDAQABAVFYVbt25h7969lR6QiMpnY6bA6lEdMHbNKfx5JR0jI07gx8Ft0bOls9TRiIiqPb23AHXr1g2XL1/Ga6+9hszMTGRmZuL1119HQkICunTpYoiMRPQY5koTLBvuhxdbOqOoRIPx62Kx4zQvTUFE9DQVug6Qq6srvvzyS2zbtg3btm3DF198AVdX1woFWLRoEerXrw9TU1P4+/vj+PHjTxyfmZmJiRMnwsXFBSqVCk2aNCm15emzzz6DIAilvso7ZomotlCZyPHj4LZ4w7ceSjQi3tt0Fmuibkgdi4ioWtNpF9i5c+fQqlUryGQynDt37oljvb29df7hmzZtQlhYGMLDw+Hv748FCxYgKCgICQkJcHR0LDO+qKgIPXr0gKOjI7Zu3Qo3NzfcvHkTtra2pca1bNkSv//+u/Z7ExO99/QR1Sgmchnm9fOGpcoEEcdu4NNdF5BTWIwJz3lJHY2IqFrSqRm0adMGKSkpcHR0RJs2bSAIAkSx7N2pBUFASUmJzj98/vz5CA0NxYgRIwAA4eHh2LNnD1asWIGpU6eWGb9ixQpkZGTg2LFj2puw1q9fv+yLMjGBszOPgyDjIpMJmPFKC1ibmmDhwUTM25eA7AfFmPJiU96nj4jof+hUgK5fvw4HBwft/1eGoqIinDp1CtOmTdMuk8lk6N69O6Kiosp9zu7duxEYGIiJEydi165dcHBwwODBgzFlyhTI5f+9QeSVK1fg6uoKU1NTBAYGYs6cOfDw8HhslsLCQhQW/vfWAtnZD6+rolaroVarn/WlUgU9eu85B/p56/mGMFfKMHffZYQfvorsB4WY0bs5ZDLDlSDOVc3BuapZOF/60ed90qkAeXp6av//5s2b6NixY5ndSsXFxTh27FipsU+Snp6OkpISODk5lVru5OSE+Pj4cp9z7do1HDx4EEOGDMHevXuRmJiICRMmQK1WY8aMGQAAf39/REREoGnTpkhOTsbMmTPRpUsXxMXFwcrKqtz1zpkzBzNnziyzfP/+/TA3N9fp9ZDhHDhwQOoINY4LgAENBWy+JsP647dx+VoSBntpIDfwhiDOVc3BuapZOF+6yc/P13msIJa3L+sJ5HI5kpOTyxyjc//+fTg6Ouq8C+zu3btwc3PDsWPHtKfTA8CHH36Iw4cPIyYmpsxzmjRpgoKCAly/fl27xWf+/Pn4+uuvkZycXO7PyczMhKenJ+bPn49Ro0aVO6a8LUDu7u5IT0+HtbW1Tq+HKp9arcaBAwfQo0cP7S5P0s+v55IxeVscijUiejR3xHf9vaEyeaZ7IJeLc1VzcK5qFs6XfrKzs2Fvb4+srKyn/v2t99HBoiiWezzB/fv3YWFhofN67O3tIZfLkZqaWmp5amrqY4/fcXFxgUKhKLW7q3nz5khJSUFRURGUSmWZ59ja2qJJkyZITEx8bBaVSgWVSlVmuUKh4B+4aoDzUHGv+XrAykyFCetjceBSGiZsOIvFQ31hppQ//ckVwLmqOThXNQvnSzf6vEc6F6DXX38dwMMDnUNCQkoVhpKSEpw7dw4dO3bU+QcrlUr4+voiMjISffv2BfDwTvORkZGYNGlSuc/p1KkT1q9fD41GA5ns4b9iL1++DBcXl3LLDwDk5ubi6tWrGDZsmM7ZiGqT7i2csDKkPUavOokjl+9h+IrjWB7iBytTfpgSkfHSeVu4jY0NbGxsIIoirKystN/b2NjA2dkZY8aMwdq1a/X64WFhYVi6dClWrVqFS5cuYfz48cjLy9OeFRYcHFzqIOnx48cjIyMD77zzDi5fvow9e/Zg9uzZmDhxonbMBx98gMOHD+PGjRs4duwYXnvtNcjlcgwaNEivbES1SScve6wd3QFWpiY4fiMDQ5bF4O+8IqljERFJRuctQCtXrgTw8LTzyZMnV8rBwQMGDMC9e/cwffp0pKSkoE2bNti3b5/2wOikpCTtlh4AcHd3x3/+8x+899578Pb2hpubG9555x1MmTJFO+b27dsYNGgQ7t+/DwcHB3Tu3BnR0dHas9iIjJWvZx1sCA1A8IrjOHc7CwOWRGHtKH84WptKHY2IqMrpfQxQcHAw7ty5g8aNG5dafuXKFSgUinKvy/MkkyZNeuwur0OHDpVZFhgYiOjo6Meub+PGjXr9fCJj0srNBpvGBGDo8hhcTs1F/8VRWDvaH/XseLYjERkXvU8HCQkJwbFjx8osj4mJQUhISGVkIiIDauxkhS1jO6KenRlu3M9H//AoXLuXK3UsIqIqpXcBOn36NDp16lRmeUBAAM6cOVMZmYjIwDzqmmPruI5o5GCBu1kF6L84GvEp2VLHIiKqMnoXIEEQkJOTU2Z5VlaWXrfBICJpOduYYtPYQLRwsUZ6biEGLonGuduZUsciIqoSehegrl27Ys6cOaXKTklJCebMmYPOnTtXajgiMix7SxU2hAagjbstMvPVGLI0BidvZEgdi4jI4PQ+CPqrr75C165d0bRpU3Tp0gUA8OeffyI7OxsHDx6s9IBEZFg25gqsHe2PUREnEHM9A8OWH8ey4X7o5GUvdTQiIoPRewtQixYtcO7cOfTv3x9paWnIyclBcHAw4uPj0apVK0NkJCIDs1SZIGJEB3Rt4oAH6hKMiDiByEupT38iEVENpfcWIABwdXXF7NmzKzsLEUnITCnH0mBfvLX+NPZfTMXYNafw/cC26O3tInU0IqJKV6ECBDy842pSUhKKikpfTdbb2/uZQxGRNFQmciwa0g4fbDmLXWfu4q0NsXig9sEbvvWkjkZEVKn0LkD37t3DiBEj8Ntvv5X7OM8EI6rZFHIZ5vdvAzOFHBtP3MIHW87igboEwwI8pY5GRFRp9D4G6N1330VmZiZiYmJgZmaGffv2YdWqVWjcuDF2795tiIxEVMXkMgGzX2uNkI71AQCf7ozD0iPXpA1FRFSJ9N4CdPDgQezatQt+fn6QyWTw9PREjx49YG1tjTlz5qB3796GyElEVUwmEzDjlRYwV8rx06Gr+HLvJeQXleDtF7wgCILU8YiInoneW4Dy8vLg6OgIALCzs8O9e/cAAK1bt0ZsbGzlpiMiSQmCgA9fbIYPejYBAHz3+2XM+08CRFGUOBkR0bPRuwA1bdoUCQkJAAAfHx8sXrwYd+7cQXh4OFxceLYIUW006f8a45PezQEAPx+6ilm/XmQJIqIaTe9dYO+88w6Sk5MBADNmzMCLL76IdevWQalUIiIiorLzEVE1MbpLQ6gUcny6Mw4r/7qBArUGX/ZtBZmMu8OIqObRuwANHTpU+/++vr64efMm4uPj4eHhAXt7XjmWqDYbFuAJUxMZpmw7hw3Hk1BYXIJ5/XjpCyKqefTaBaZWq9GoUSNcunRJu8zc3Bzt2rVj+SEyEm/6uWPBwLaQywRsj72DdzadgbpEI3UsIiK96LUFSKFQoKCgwFBZiKiG6OPjCpWJDJPWx2LPuWQUFBWjl43UqYiIdKf3QdATJ07EV199heLiYkPkIaIaIqilM5YG+0FlIkNk/D0sjZfhQREvhEpENYPexwCdOHECkZGR2L9/P1q3bg0LC4tSj2/fvr3SwhFR9fZcU0esDGmP0atPIj4LCF0bixUhHWChqvBddoiIqoTeW4BsbW3Rr18/BAUFwdXVFTY2NqW+iMi4dPSyx4rgdlDJRcRc/xvDlscgu0AtdSwioifS+Z9pBw8eRNeuXbFy5UpD5iGiGsjX0w4TW5RgeaIpYpMyMXRZDFaP7ABbc6XU0YiIyqXzFqAePXogIyND+31AQADu3LljkFBEVPN4WgKrR/ihjoUS525nYdDSGNzPLZQ6FhFRuXQuQP971dcLFy6gsJAfbkT0Xy1crLFxTADsLVW4lJyNgUuikZbDM0eJqPrR+xggIqInaeJkhc1jA+BsbYorabkYuDgayVkPpI5FRFSKzgVIEIRSd4D+3++JiB5p6GCJzWMD4WZrhmvpeei/OAq3MvKljkVEpKXzQdCiKOKFF16AicnDp+Tn5+OVV16BUln6IEfeEZ6IAMCjrjk2jwvE4KXRuHk/HwMWR2F9aADq21s8/clERAamcwGaMWNGqe9fffXVSg9DRLWLm60ZNo99WIKu3nu4JWh9qD+8HK2kjkZERq7CBYiISBdO1qbYOCYQQ5fFICE1BwMWR2PtaH80d7GWOhoRGTEeBE1EBudgpcKGMQFo6WqN+3lFGLQ0GnF3sqSORURGjAWIiKpEHQsl1o8OgI+7LTLz1Ri8NBpnbmVKHYuIjBQLEBFVGRtzBdaO6gBfTztkFxRj6LIYnLqZ8fQnEhFVMhYgIqpSVqYKrB7ZAf4N6iC3sBjDlh9H9LX7UsciIiPzTAWooIBXeCUi/VmoTBAxogM6e9kjv6gEISuP46/EdKljEZER0bsAaTQafP7553Bzc4OlpSWuXbsGAPj000+xfPnySg9IRLWTmVKOZcP90K2JAwrUGoyMOIFDCWlSxyIiI6F3Afriiy8QERGBefPmlboIYqtWrbBs2bJKDUdEtZupQo4lwb7o3twJhcUajFl9Cr9fTJU6FhEZAb0L0OrVq7FkyRIMGTIEcrlcu9zHxwfx8fGVGo6Iaj+ViRw/DWmHl1o5o6hEg3FrT+G388lSxyKiWk7vAnTnzh14eXmVWa7RaKBWqyslFBEZF6WJDD8MaotXfFxRrBExacNp7D57V+pYRFSL6V2AWrRogT///LPM8q1bt6Jt27aVEoqIjI+JXIYFA9rg9XZuKNGIeHfjaWyPvS11LCKqpXS+FcYj06dPx/Dhw3Hnzh1oNBps374dCQkJWL16NX799VdDZCQiIyGXCfjmDR8o5TJsPHEL7285i+ISEf3bu0sdjYhqGb23AL366qv45Zdf8Pvvv8PCwgLTp0/HpUuX8Msvv6BHjx6GyEhERkQmEzD7tdYYGuABUQQ+3HYO62OSpI5FRLWM3luAAKBLly44cOBAZWchIgLwsAR9/mormMhkiDh2Ax/tOI9ijQbBgfWljkZEtQSvBE1E1ZIgCJjxSguEdmkAAJi+6wKW/XlN4lREVFvotAXIzs4OgiDotMKMDN7Xh4gqhyAI+KhXcyjkMvx06Cq+2HMJxRoR47o1kjoaEdVwOhWgBQsWGDgGEVH5BEHA5KCmUMhl+D7yCub+Fo/iEg0m/V9jqaMRUQ2mUwEaPny4oXMQET2WIAh4r0cTmMgEfHvgMr7ZfxnqEhHvdm+s89ZpIqJ/q9BB0CUlJdi5cycuXboEAGjZsiX69OlT6srQRESV7a0XGkNhIsPc3+LxfeQVqEs0mBzUlCWIiPSmdwFKTExEr169cOfOHTRt2hQAMGfOHLi7u2PPnj1o1Ij75onIcMZ1awQTmYAv9lzCT4euolgjYtpLzViCiEgvep8F9vbbb6NRo0a4desWYmNjERsbi6SkJDRo0ABvv/22ITISEZUyuktDzOzTEgCw5Mg1fP7rJYiiKHEqIqpJ9N4CdPjwYURHR6NOnTraZXXr1sXcuXPRqVOnSg1HRPQ4wzvWh4lcwMc74rDir+so0WjwWZ+W3BJERDrRewuQSqVCTk5OmeW5ublQKpWVEoqISBdD/D3xVb/WEARgVdRNfLIzDhoNtwQR0dPpXYBefvlljBkzBjExMRBFEaIoIjo6GuPGjUOfPn0MkZGI6LEGtPfA12/4QBCAdTFJ+GjHeZYgInoqvQvQwoUL0ahRIwQGBsLU1BSmpqbo1KkTvLy88P333xsiIxHRE73hWw/f9W8DmQBsPHELk7eeQwlLEBE9gd7HANna2mLXrl24cuUK4uPjAQDNmzeHl5dXpYcjItJV37ZukMsEvLvpDLbF3kaJRoNv3vSBiZx3/CGisip0HSAAaNy4MRo35pVYiaj6eMXHFXKZgLc3nMbOM3dRIgLf9WcJIqKydC5As2bN0mnc9OnTKxyGiOhZ9WrtArlMwKT1sfjl7F0Ul2iwcFBbKFiCiOhfdC5An332GVxdXeHo6PjY620IgsACRESSC2rpjPChvhi/Nha/xaVg4rpY/Di4HZQmLEFE9JDOBeill17CwYMH4efnh5EjR+Lll1+GTMYPEyKqnl5o7oTFwb4Yu+YU9l9MxYR1p7BoSDuoTHjLHiLS4yywPXv24OrVq/D398fkyZPh5uaGKVOmICEhwZD5iIgq7PmmjlgW7AeViQy/X0rDuDWnUKAukToWEVUDem3CcXV1xbRp05CQkIBNmzYhLS0N7du3R6dOnfDgwQNDZSQiqrCuTRywIqQ9TBUy/JFwD2NZgogIFbgO0CPt27fH888/j+bNm+P06dNQq9WVmYuIqNJ08rLHipD2MFPIcfjyPYSuPokHRSxBRMZM7wIUFRWF0NBQODs744cffsDw4cNx9+5dWFtbGyIfEVGl6NjIHhEj2sNcKcefV9IxatUJ5BcVSx2LiCSicwGaN28eWrRogVdffRWWlpb4888/ceLECUyYMAG2trYGjEhEVDn8G9bF6pEdYKGU49jV+xix8gTyClmCiIyRzmeBTZ06FR4eHujfvz8EQUBERES54+bPn19Z2YiIKp1f/TpYPcofISuOI+Z6BkJWHsfKER1gqarwdWGJqAbS+Te+a9euEAQBFy5ceOwYQRAqJRQRkSH5etphzWh/DFsegxM3/kbw8hisGtkBVqYKqaMRURXRuQAdOnTIgDGIiKpWG3dbrB8dgKHLYxCblIlhy49j9agOsGYJIjIKvJIhERmt1vVssG60P2zNFThzKxPDlsUg6wHPaCUyBixARGTUWrnZYP3oANiZK3D2dhaGLotBZn6R1LGIyMBYgIjI6LVwtcaGMQGoa6HE+TtZGLIsBn/nsQQR1WaSF6BFixahfv36MDU1hb+/P44fP/7E8ZmZmZg4cSJcXFygUqnQpEkT7N2795nWSUTUzPlhCbK3VOLC3WwMXhaDDJYgolpL0gK0adMmhIWFYcaMGYiNjYWPjw+CgoKQlpZW7viioiL06NEDN27cwNatW5GQkIClS5fCzc2twuskInqkiZMVNoQGwN5ShUvJ2Ri8NBr3cwuljkVEBlChAvTnn39i6NChCAwMxJ07dwAAa9aswdGjR/Vaz/z58xEaGooRI0agRYsWCA8Ph7m5OVasWFHu+BUrViAjIwM7d+5Ep06dUL9+fXTr1g0+Pj4VXicR0b81drLCxjEBcLRSIT4lB4OWRuNeDksQUW2j95W/tm3bhmHDhmHIkCE4ffo0CgsffjBkZWVh9uzZZXZHPU5RURFOnTqFadOmaZfJZDJ0794dUVFR5T5n9+7dCAwMxMSJE7Fr1y44ODhg8ODBmDJlCuRyeYXWCQCFhYXa1wEA2dnZAAC1Ws17nEno0XvPOaj+attcedqpsHakH4atOInLqbkYuCQKa0b4wcFKJXW0Z1bb5qq243zpR5/3Se8C9MUXXyA8PBzBwcHYuHGjdnmnTp3wxRdf6Lye9PR0lJSUwMnJqdRyJycnxMfHl/uca9eu4eDBgxgyZAj27t2LxMRETJgwAWq1GjNmzKjQOgFgzpw5mDlzZpnl+/fvh7m5uc6viQzjwIEDUkcgHdW2uQptBPx4UY6r9/LQd+EhTGpZAhul1KkqR22bq9qO86Wb/Px8ncfqXYASEhLQtWvXMsttbGyQmZmp7+r0otFo4OjoiCVLlkAul8PX1xd37tzB119/jRkzZlR4vdOmTUNYWJj2++zsbLi7u6Nnz568yauE1Go1Dhw4gB49ekCh4MXpqrPaPFfPP5+PYStO4m5WAVbcsMaakX5wtjaVOlaF1ea5qo04X/p5tAdHF3oXIGdnZyQmJqJ+/fqllh89ehQNGzbUeT329vaQy+VITU0ttTw1NRXOzs7lPsfFxQUKhQJyuVy7rHnz5khJSUFRUVGF1gkAKpUKKlXZTdsKhYJ/4KoBzkPNURvnqpGTDTaNDcTAJdG4cf9hGdowJgAuNmZSR3smtXGuajPOl270eY/0Pgg6NDQU77zzDmJiYiAIAu7evYt169bhgw8+wPjx43Vej1KphK+vLyIjI7XLNBoNIiMjERgYWO5zOnXqhMTERGg0Gu2yy5cvw8XFBUqlskLrJCJ6Gvc65tg0NgDudcxw434+BiyOxp3MB1LHIqJnoHcBmjp1KgYPHowXXngBubm56Nq1K0aPHo2xY8firbfe0mtdYWFhWLp0KVatWoVLly5h/PjxyMvLw4gRIwAAwcHBpQ5oHj9+PDIyMvDOO+/g8uXL2LNnD2bPno2JEyfqvE4iooqoZ2eOjWMC4VHHHEkZ+Ri4JAq3/9b9eAMiql703gUmCAI+/vhjTJ48GYmJicjNzUWLFi1gaWmp9w8fMGAA7t27h+nTpyMlJQVt2rTBvn37tAcxJyUlQSb7b0dzd3fHf/7zH7z33nvw9vaGm5sb3nnnHUyZMkXndRIRVZSbrRk2jQ3AoH92hw1YHI2NYwLgXocnSxDVNIIoiqLUIaqb7Oxs2NjYICsriwdBS0itVmPv3r3o1asX931Xc8Y2VylZBRi8NBrX0vPgamOKDWMC4FnXQupYOjG2uarpOF/60efvb713geXl5eHTTz9Fx44d4eXlhYYNG5b6IiKq7ZxtTLFxTAAaOljgblbBwwOk0/OkjkVEetB7F9jo0aNx+PBhDBs2DC4uLhAEwRC5iIiqNUfrhyVo8NIYJKblYsCSKGwIDUBDB/0PByCiqqd3Afrtt9+wZ88edOrUyRB5iIhqDEcrU2wIDcCQZdH/XDE6GutDA+DlyBJEVN3pvQvMzs4OderUMUQWIqIax8FKhfWhAWjmbIW0nEIMXBKNxLQcqWMR0VPoXYA+//xzTJ8+Xa/LTRMR1Wb2lv8tQem5D0vQ5VSWIKLqTO9dYN9++y2uXr0KJycn1K9fv8xR6bGxsZUWjoiopqhjofxnd1gMLiZnY9CSaKwL9UczZ55JSlQd6V2A+vbta4AYREQ1n52FEutD/TF0eQzi7mRj8NIYrB3ljxauLEFE1Y3eBehZbjpKRFTb2ZorsW5UAIatiMG521kYvCwa60b7o6WrjdTRiOhf9D4GCAAyMzOxbNkyTJs2DRkZGQAe7vq6c+dOpYYjIqqJbMwVWDPKHz7utsjMV2Pw0hjE3cmSOhYR/YveBejcuXNo0qQJvvrqK3zzzTfIzMwEAGzfvr3UfbuIiIyZjZkCa0Z1QFsPW2Q9UGPw0micu50pdSwi+ofeBSgsLAwhISG4cuUKTE1Ntct79eqFI0eOVGo4IqKazNpUgdUjO8DX0w7ZBcUYsiwGZ25lSh2LiFCBAnTixAmMHTu2zHI3NzekpKRUSigiotrCylSBVSM7oH19O+QUFGPYshjEJv0tdSwio6d3AVKpVMjOzi6z/PLly3BwcKiUUEREtYmlygQRIzqgQ4M6yCksRvDy4zh1M0PqWERGTe8C1KdPH8yaNQtqtRoAIAgCkpKSMGXKFPTr16/SAxIR1QYWKhNEjGiPgIZ1kPtPCTpxgyWISCp6F6Bvv/0Wubm5cHR0xIMHD9CtWzd4eXnBysoKX375pSEyEhHVCuZKE6wM6YCOjeoir6gEw1ccR8y1+1LHIjJKel8HyMbGBgcOHMDRo0dx7tw55Obmol27dujevbsh8hER1SpmSjmWD2+P0NUncTQxHSErT2DliPYIaFhX6mhERkXvApSUlAQnJyd07twZnTt31i4XRRG3bt2Ch4dHpQYkIqptzJRyLBvuh9DVJ/HnlXSMWHkCy0P80LGRvdTRiIyG3rvA6tevj3bt2uHq1aullqelpaFBgwaVFoyIqDYzVcixNNgPzzV1wAN1CUZGnMBfielSxyIyGhW6EnTz5s3RoUMHREZGllouimKlhCIiMgamCjkWD/PF/zVzRIFag5ERJ3Dk8j2pYxEZBb0LkCAI+Omnn/DJJ5+gd+/eWLhwYanHiIhIdyoTOX4e2g7dmzuhsFiD0atP4lBCmtSxiGo9vQvQo6087733Hnbs2IHp06cjNDQURUVFlR6OiMgYqEzk+GlIOwS1dEJRsQZjVp/CH/EsQUSGVKFdYI+89NJLOHbsGP744w+8/PLLlZWJiMjoKE1k+HFwO7zUyhlFJRqMXXMKv19MlToWUa2ldwHq1q0blEql9vsWLVogOjoatra2PAaIiOgZKOQyLBzUFr29XVBUosH4daew/wJvMURkCHoXoD/++AO2tralltnb2+Pw4cPQaDSVlYuIyCgp5DJ8P6ANXvFxhbpExIR1sdgXlyx1LKJaR+/rAAGARqNBYmIi0tLSSpUeQRDQpUuXSgtHRGSMTOQyfNffB3IB2HnmLiauP42FA4He3i5SRyOqNfQuQNHR0Rg8eDBu3rxZZpeXIAgoKSmptHBERMbKRC7Dt/3bQCYTsD32Dt7eeBoaUcQrPq5SRyOqFfQuQOPGjYOfnx/27NkDFxcXnvpORGQgcpmAr9/wgUwQsPXUbbzzTwl6tY2b1NGIajy9C9CVK1ewdetWeHl5GSIPERH9i1wmYF4/b8gFAZtO3sJ7m86gRCPi9Xb1pI5GVKPpfRC0v78/EhMTDZGFiIjKIZMJmPN6awzq4AGNCLy/5Sy2nLwldSyiGk3vLUBvvfUW3n//faSkpKB169ZQKBSlHvf29q60cERE9JBMJuDLvq0glwFro5Pw4bZz0IgiBrTnDaiJKkLvAtSvXz8AwMiRI7XLBEGAKIo8CJqIyIBkMgGfv9oKckHAqqibmLLtPEo0wGB/liAifeldgK5fv26IHEREpANBEPBZn5aQy2RY8dd1fLTjPEo0GgwLrC91NKIaRe8C5OnpaYgcRESkI0EQ8OnLzSGXAUv/vI5Pd11AsUbEiE4NpI5GVGNU6F5ga9asQadOneDq6oqbN28CABYsWIBdu3ZVajgiIiqfIAj4qFdzjO3WEAAw85eLWPbnNYlTEdUcehegn3/+GWFhYejVqxcyMzO1x/zY2tpiwYIFlZ2PiIgeQxAETH2xGSY+3wgA8MWeS1hy5KrEqYhqBr0L0A8//IClS5fi448/hlwu1y738/PD+fPnKzUcERE9mSAI+KBnU7z9QmMAwOy98fjpEC9VQvQ0eheg69evo23btmWWq1Qq5OXlVUooIiLSnSAICOvRBO91bwIAmLcvAT9EXpE4FVH1pncBatCgAc6cOVNm+b59+9C8efPKyERERBXwTvfGmBzUFADw7YHL+O7A5TL3bCSih/Q+CywsLAwTJ05EQUEBRFHE8ePHsWHDBsyZMwfLli0zREYiItLRxOe9IJcJmPtbPL6PvAKNKCKsRxPet5Hof+hdgEaPHg0zMzN88sknyM/Px+DBg+Hq6orvv/8eAwcONERGIiLSw7hujWAiE/DFnkv44WAi1CUiprzYlCWI6F/0LkAAMGTIEAwZMgT5+fnIzc2Fo6NjZeciIqJnMLpLQ8gEAbN+vYjww1dRotHgo148TIHokQoVoEfMzc1hYmKC3NxcWFpaVlYmIiKqBCM7N4CJXMD0XRew9M/rKNaImBbUWOpYRNWCXgdBr1y5Em+99RbWrVsHAJg2bRqsrKxgY2ODHj164P79+wYJSUREFRMcWB+zX2sNAFj51w3M2hMPDY+LJtK9AH355ZeYOHEi4uPj8fbbb2P8+PGIiIjArFmzMHfuXMTHx+OTTz4xZFYiIqqAwf4emNfPG4IArI25hS3XZdCwBZGR03kXWEREBJYvX45Bgwbh5MmT8Pf3x+bNm7V3h2/VqhXGjRtnsKBERFRx/du7QyYTMHnrWRxLleGT3RfxVT8fyGQ8MJqMk85bgJKSktC5c2cAD6/6bGJiglatWmkf9/b2RnJycuUnJCKiSvGGbz180681BIjYcuoOJm89hxJuCSIjpXMBUqvVUKlU2u+VSiUUCoX2exMTE+19wYiIqHrq4+OC4MYayGUCtsXexvubz6C4RCN1LKIqp9dZYBcvXkRKSgoAQBRFxMfHIzc3FwCQnp5e+emIiKjStbMX4efrjfc2n8POM3dRIgLf9feBiVzvmwMQ1Vh6FaAXXnih1GXVX375ZQAP70MjiiIvskVEVEO82NIJqiHtMHF9LH45exclGg2+H9gWCpYgMhI6F6Dr168bMgcREVWxni2dET7UF+PXxmLv+RQUl8Tix8HtoDRhCaLaT+cC5OnpacgcREQkgReaO2FJsC/GrDmF/RdTMW7tKfw0pB1MFXKpoxEZFGs+EZGRe66pI1YMbw9ThQwH49MwZs0pFKh5UgvVbixARESEzo3tsTKkA8wUchy5fA+jVp3AgyKWIKq9WICIiAgAENioLlaN7AALpRx/Jd5HyMrjyCssljoWkUHoVYBEUURSUhIKCgoMlYeIiCTUoUEdrB7lDyuVCWKuZ2D4iuPIKVBLHYuo0uldgLy8vHDr1i1D5SEiIon5etphzWh/WJua4OTNvxG84jiyHrAEUe2iVwGSyWRo3Lgx7/pORFTLtXG3xfrQANiaK3A6KRPDlscgM79I6lhElUbvY4Dmzp2LyZMnIy4uzhB5iIiommjlZoP1owNQx0KJc7ezMHhpDDLyWIKodtC7AAUHB+P48ePw8fGBmZkZ6tSpU+qLiIhqjxau1tgQGgB7SyUuJmdj8NJopOcWSh2L6JnpdSsMAFiwYIEBYhARUXXV1NkKG8cEYvDSaMSn5GDgkmisH+0PR2tTqaMRVZjeBWj48OGGyEFERNWYl6MlNo19WIIS03IxYEk01of6w8XGTOpoRBWidwECgJKSEuzcuROXLl0CALRs2RJ9+vSBXM5LpxMR1VYN7C2weWwgBi6JxvX0PAxY/LAE1bMzlzoakd70PgYoMTERzZs3R3BwMLZv347t27dj6NChaNmyJa5evWqIjEREVE241zHH5nGB8KhjjqSMfAxYHI2k+/lSxyLSm94F6O2330ajRo1w69YtxMbGIjY2FklJSWjQoAHefvttQ2QkIqJqxM3WDJvHBqKhvQXuZD5A/8VRuHYvV+pYRHrRuwAdPnwY8+bNK3XGV926dTF37lwcPny4UsMREVH15Gxjio1jA9DY0RIp2QUYsCQaiWk5Usci0pneBUilUiEnp+wf8tzcXCiVykoJRURE1Z+jlSk2jAlAM2cr3MspxIDF0YhPyZY6FpFO9C5AL7/8MsaMGYOYmBiIoghRFBEdHY1x48ahT58+hshIRETVlL2lChtCA9DKzRr384owaEk04u5kSR2L6Kn0LkALFy5Eo0aNEBgYCFNTU5iamqJTp07w8vLC999/b4iMRERUjdlZKLFudAB83G3xd74ag5dG48ytTKljET2R3gXI1tYWu3btQkJCArZs2YKtW7ciISEBO3bsgI2NTYVCLFq0CPXr14epqSn8/f1x/Pjxx46NiIiAIAilvkxNS1+MKyQkpMyYF198sULZiIjo6WzMFFg7qgP8PO2QXVCMocticPJGhtSxiB6rQtcBAoDGjRvDy8sLACAIQoUDbNq0CWFhYQgPD4e/vz8WLFiAoKAgJCQkwNHRsdznWFtbIyEhQft9eT//xRdfxMqVK7Xfq1SqCmckIqKnszJVYNXIDhi16gSir2UgeMVxLB/eHoGN6kodjaiMChWg5cuX47vvvsOVK1cAPCxD7777LkaPHq33uubPn4/Q0FCMGDECABAeHo49e/ZgxYoVmDp1arnPEQQBzs7OT1yvSqV66phHCgsLUVj433vbZGc/PIhPrVZDrVbrtA6qfI/ee85B9ce5qjkMPVdKGbBkSFuMX38Gf129j5CVx/HzkDbo4mVvkJ9X2/F3Sz/6vE96F6Dp06dj/vz5eOuttxAYGAgAiIqKwnvvvYekpCTMmjVL53UVFRXh1KlTmDZtmnaZTCZD9+7dERUV9djn5ebmwtPTExqNBu3atcPs2bPRsmXLUmMOHToER0dH2NnZ4f/+7//wxRdfoG7d8v8VMmfOHMycObPM8v3798PcnFc4ldqBAwekjkA64lzVHIaeq9fsgb/vy3AxEwhdfQojm2rQyk406M+szfi7pZv8fN0vyimIoqjXn0gHBwcsXLgQgwYNKrV8w4YNeOutt5Cenq7zuu7evQs3NzccO3ZMW6YA4MMPP8Thw4cRExNT5jlRUVG4cuUKvL29kZWVhW+++QZHjhzBhQsXUK9ePQDAxo0bYW5ujgYNGuDq1av46KOPYGlpiaioqHJv11HeFiB3d3ekp6fD2tpa59dDlUutVuPAgQPo0aMHFAqF1HHoCThXNUdVzlVRsQbvbj6HA5fSoJAL+O5NbwS1dDLoz6xt+Luln+zsbNjb2yMrK+upf3/rvQVIrVbDz8+vzHJfX18UFxfruzq9BQYGlipLHTt2RPPmzbF48WJ8/vnnAICBAwdqH2/dujW8vb3RqFEjHDp0CC+88EKZdapUqnKPEVIoFPwDVw1wHmoOzlXNURVzpVAAPw31Rdjms/jl7F28s/kcvhvQBn18XA36c2sj/m7pRp/3SO+zwIYNG4aff/65zPIlS5ZgyJAheq3L3t4ecrkcqamppZanpqbqfPyOQqFA27ZtkZiY+NgxDRs2hL29/RPHEBFR5VPIZVgwoA1eb+eGEo2IdzeextZTt6WORVTxg6D379+PgIAAAEBMTAySkpIQHByMsLAw7bj58+c/cT1KpRK+vr6IjIxE3759AQAajQaRkZGYNGmSTllKSkpw/vx59OrV67Fjbt++jfv378PFxUWndRIRUeWRywR884YPlHIZNp64hQ+2nEVRsQaD/T2kjkZGTO8CFBcXh3bt2gGA9u7v9vb2sLe3R1xcnHacrqfGh4WFYfjw4fDz80OHDh2wYMEC5OXlac8KCw4OhpubG+bMmQMAmDVrFgICAuDl5YXMzEx8/fXXuHnzpvYMtNzcXMycORP9+vWDs7Mzrl69ig8//BBeXl4ICgrS9+USEVElkMkEzH6tNVQmMqyKuomPdpxHUXEJQjo1kDoaGSm9C9Aff/xRqQEGDBiAe/fuYfr06UhJSUGbNm2wb98+ODk9PFAuKSkJMtl/99T9/fffCA0NRUpKCuzs7ODr64tjx46hRYsWAAC5XI5z585h1apVyMzMhKurK3r27InPP/+c1wIiIpKQTCbgsz4toVLIseTINXz2y0UUFGswrlsjqaOREarwhRAr06RJkx67y+vQoUOlvv/uu+/w3XffPXZdZmZm+M9//lOZ8YiIqJIIgoBpLzWDqYkMCw8mYu5v8ShQl+CdFxo/00V1ifRVoQJ08uRJbN68GUlJSSgqKir12Pbt2yslGBER1U6CICCsZ1OoFHJ8/Z8ELPj9CgrUGkx5sSlLEFUZvc8C27hxIzp27IhLly5hx44dUKvVuHDhAg4ePFjhe4EREZHxmfi8Fz59+eHhC+GHr2LmLxeh56XpiCpM7wI0e/ZsfPfdd/jll1+gVCrx/fffIz4+Hv3794eHB4/oJyIi3Y3q3ABf9G0FAIg4dgMf7YiDRsMSRIandwG6evUqevfuDeDhaex5eXkQBAHvvfcelixZUukBiYiodhsa4Imv3/CGTAA2HE/CB1vPorhEI3UsquX0LkB2dnbIyckBALi5uWlPfc/MzNTrHhxERESPvOnnjgUD20IuE7A99g7e2XQGapYgMiC9D4Lu2rUrDhw4gNatW+PNN9/EO++8g4MHD+LAgQPl3maCiIhIF318XKGUy/DWhljsOZeMomINfhzcFiqTsvdwJHpWOm8BerSl58cff9Tea+vjjz9GWFgYUlNT0a9fPyxfvtwwKYmIyCi82MoZS4L9oDKR4cDFVISuPoUHRSVSx6JaSOcC5O3tDX9/f2zbtg1WVlYPnyyTYerUqdi9eze+/fZb2NnZGSwoEREZh+ebOmJlSHuYK+U4cvkeQlYeR26h4W+2TcZF5wJ0+PBhtGzZEu+//z5cXFwwfPhw/Pnnn4bMRkRERqqjlz3WjOoAK5UJYq5nYNjyGGQ9UEsdi2oRnQtQly5dsGLFCiQnJ+OHH37AjRs30K1bNzRp0gRfffUVUlJSDJmTiIiMjK9nHawPDYCtuQKnkzIxeGk0MvKKnv5EIh3ofRaYhYUFRowYgcOHD+Py5ct48803sWjRInh4eKBPnz6GyEhEREaqdT0bbBwTAHtLJS7czcaAxVFIyy6QOhbVAnoXoH/z8vLCRx99hE8++QRWVlbYs2dPZeUiIiICADRztsamsYFwtjbFlbRc9F8chTuZD6SORTVchQvQkSNHEBISAmdnZ0yePBmvv/46/vrrr8rMRkREBABo5GCJLeMCUc/ODDfu56N/eBRu3s+TOhbVYHoVoLt372L27Nlo0qQJnnvuOSQmJmLhwoW4e/culi5dioCAAEPlJCIiI+dexxxbxgWiob0F7mQ+wJvhUUhMy5E6FtVQOhegl156CZ6envjhhx/w2muv4dKlSzh69ChGjBgBCwsLQ2YkIiICALjYmGHT2EA0dbJCWk4hBiyOxoW7WVLHohpI5wKkUCiwdetW3L59G1999RWaNm1qyFxERETlcrBSYeOYALR2s8H9vCIMWhKN2KS/pY5FNYzOBWj37t149dVXIZfzkuRERCQtOwsl1oX6w8/TDtkFxRi6LAZRV+9LHYtqkGc6C4yIiEgq1qYKrB7VAZ297JFfVIKQlcfxR3ya1LGohmABIiKiGstcaYJlw/3QvbkjCos1GLPmJH47nyx1LKoBWICIiKhGM1XI8fNQX7zs7QJ1iYiJ62Ox7dRtqWNRNccCRERENZ5CLsP3A9uiv189aETg/S1nsTb6ptSxqBpjASIiolpBLhMw93VvhHSsDwD4ZGcclhy5Km0oqrZYgIiIqNaQyQTMeKUFJjzXCAAwe2885h+4DFEUJU5G1Q0LEBER1SqCIODDF5thctDD69UtjLyCL/dcYgmiUliAiIioVpr4vBdmvNICALDs6HVM234eJRqWIHqIBYiIiGqtEZ0aYF4/b8gEYOOJW3h30xmoSzRSx6JqgAWIiIhqtf7t3bFwUFuYyAT8cvYuxq89hQJ1idSxSGIsQEREVOu97O2KpcF+UJnI8PulNIyMOIG8wmKpY5GEWICIiMgoPN/MEatGdoCFUo5jV+9j6PIYZOWrpY5FEmEBIiIioxHQsC7WhQbAxkyB00mZGLg0Gum5hVLHIgmwABERkVFp426LTWMDYG+pwqXkbPQPj8LdzAdSx6IqxgJERERGp5mzNbaMC4SbrRmupefhzfAo3EjPkzoWVSEWICIiMkoN7C2weVwgGthb4E7mA7wRHoX4lGypY1EVYQEiIiKj5WZrhs1jA9HcxRrpuYUYsDgasUl/Sx2LqgALEBERGTUHKxU2hgagnYctsh6oMXRZDP5KTJc6FhkYCxARERk9G3MF1ozyR2cve+QXlWDEyhPYfyFF6lhkQCxAREREACxUJlge4oeglk4oKtFg/LpY7Dh9W+pYZCAsQERERP9QmcixaHA79GtXDyUaEe9tOos1UTekjkUGwAJERET0LyZyGb5+wxshHesDAD7ddQGL/kiEKPJO8rUJCxAREdH/kMkEzHilBd5+oTEA4Ov/JGDuvniWoFqEBYiIiKgcgiAgrEcTfNK7OQBg8eFr+GhHHEo0LEG1AQsQERHRE4zu0hBf9WsNmQBsOJ6EtzeeRlGxRupY9IxYgIiIiJ5iQHsP/Di4HRRyAXvOJWP06pPILyqWOhY9AxYgIiIiHfRq7YLlw9vDTCHHkcv3MGz5cWTlq6WORRXEAkRERKSjrk0csHa0P6xNTXDq5t8YsCQKaTkFUseiCmABIiIi0oOvpx02jwuEg5UK8Sk5eDM8Crcy8qWORXpiASIiItJTM2drbB0XCPc6Zrh5Px9vhB/D5dQcqWORHliAiIiIKsCzrgW2juuIJk6WSM0uRP/FUThzK1PqWKQjFiAiIqIKcrI2xaYxgfBxt0VmvhqDl0bzTvI1BAsQERHRM7CzUGL9aH908qqrvZP8vrhkqWPRU7AAERERPSMLlQlWhLTHiy2dUVSiwYR1sdh4PEnqWPQELEBERESVQGUix6Ih7TCwvTs0IjB1+3mEH74qdSx6DBYgIiKiSiKXCZjzemuMf64RAGDub/GYs/cSb6JaDbEAERERVSJBEDDlxWb4qFczAMDiI9cwZds5FJfw/mHVCQsQERGRAYzp2gjz3vCGTAA2n7yNCetiUaAukToW/YMFiIiIyED6+7nj56G+UJrIsP9iKkasPIGcAt4/rDpgASIiIjKgoJbOWDWiAyxVJoi6dh+DlkYjPbdQ6lhGjwWIiIjIwAIb1cXGMQGoa6FE3J1s9A+Pwu2/ef8wKbEAERERVYFWbjbYMi4QbrZmuJaeh34/8/5hUmIBIiIiqiINHSyxbfx/7x/2ZngUTt3MkDqWUWIBIiIiqkLONqbYPDYQvp52yHqgxpBlMTgYnyp1LKPDAkRERFTFbM2VWDvKH//XzBEFag1CV5/CtlO3pY5lVFiAiIiIJGCmlGPxMF+83tYNJRoR7285i6VHrkkdy2iwABEREUlEIZfhmzd9MLpzAwDAl3svYc5vvHVGVWABIiIikpBMJuDj3s0x9aV/bp1x+Bo+3MpbZxgaCxAREZHEBEHAuG7/vXXGllO3MXbNKaRmF0gdrdYykToAERERPdTfzx125kpMWh+LyPg0HLlyD+3tZWj9dz4aOtpIHa9WqRZbgBYtWoT69evD1NQU/v7+OH78+GPHRkREQBCEUl+mpqalxoiiiOnTp8PFxQVmZmbo3r07rly5YuiXQURE9Mx6tHDCxjEB6FC/DtQlIo6lytBjwV8I23wGiWm5UserNSQvQJs2bUJYWBhmzJiB2NhY+Pj4ICgoCGlpaY99jrW1NZKTk7VfN2/eLPX4vHnzsHDhQoSHhyMmJgYWFhYICgpCQQE3JRIRUfXX1sMOm8cFYt0oPzSz0aBEI2J77B30+O4wJqw7hQt3s6SOWONJvgts/vz5CA0NxYgRIwAA4eHh2LNnD1asWIGpU6eW+xxBEODs7FzuY6IoYsGCBfjkk0/w6quvAgBWr14NJycn7Ny5EwMHDjTMCyEiIqpkHerXwfgWGtTzDsTiP29g/8VU7D2fgr3nU/B8UweM7dYI9ezMpI5ZIVYqBWzMFZL9fEkLUFFREU6dOoVp06Zpl8lkMnTv3h1RUVGPfV5ubi48PT2h0WjQrl07zJ49Gy1btgQAXL9+HSkpKejevbt2vI2NDfz9/REVFVVuASosLERh4X/vzJudnQ0AUKvVUKvVz/w6qWIevfecg+qPc1VzcK5qlkfz1NzJHIsG+eByag5+Pnwde+NS8EfCPfyRcE/ihBU3rmsDvN+jcaWuU58/15IWoPT0dJSUlMDJyanUcicnJ8THx5f7nKZNm2LFihXw9vZGVlYWvvnmG3Ts2BEXLlxAvXr1kJKSol3H/67z0WP/a86cOZg5c2aZ5fv374e5uXlFXhpVogMHDkgdgXTEuao5OFc1y7/nq4cl4OMDRN6V4cx9ATX1bPnrV69ir7pyj8/Nz8/Xeazku8D0FRgYiMDAQO33HTt2RPPmzbF48WJ8/vnnFVrntGnTEBYWpv0+Ozsb7u7u6NmzJ6ytrZ85M1WMWq3GgQMH0KNHDygU0m0mpafjXNUcnKua5UnzFSJNpGrt0R4cXUhagOzt7SGXy5GaWvomcKmpqY89xud/KRQKtG3bFomJiQCgfV5qaipcXFxKrbNNmzblrkOlUkGlUpW7bn5ASI/zUHNwrmoOzlXNwvnSjT7vkaRngSmVSvj6+iIyMlK7TKPRIDIystRWnicpKSnB+fPntWWnQYMGcHZ2LrXO7OxsxMTE6LxOIiIiqt0k3wUWFhaG4cOHw8/PDx06dMCCBQuQl5enPSssODgYbm5umDNnDgBg1qxZCAgIgJeXFzIzM/H111/j5s2bGD16NICHZ4i9++67+OKLL9C4cWM0aNAAn376KVxdXdG3b1+pXiYRERFVI5IXoAEDBuDevXuYPn06UlJS0KZNG+zbt097EHNSUhJksv9uqPr7778RGhqKlJQU2NnZwdfXF8eOHUOLFi20Yz788EPk5eVhzJgxyMzMROfOnbFv374yF0wkIiIi4ySIvOVsGdnZ2bCxsUFWVhYPgpaQWq3G3r170atXL+77ruY4VzUH56pm4XzpR5+/vyW/EjQRERFRVWMBIiIiIqPDAkRERERGhwWIiIiIjA4LEBERERkdFiAiIiIyOixAREREZHRYgIiIiMjosAARERGR0ZH8VhjV0aOLY2dnZ0ucxLip1Wrk5+cjOzubV0Ct5jhXNQfnqmbhfOnn0d/butzkggWoHDk5OQAAd3d3iZMQERGRvnJycmBjY/PEMbwXWDk0Gg3u3r0LKysrCIIgdRyjlZ2dDXd3d9y6dYv3ZKvmOFc1B+eqZuF86UcUReTk5MDV1bXUjdTLwy1A5ZDJZKhXr57UMegf1tbW/MWvIThXNQfnqmbhfOnuaVt+HuFB0ERERGR0WICIiIjI6LAAUbWlUqkwY8YMqFQqqaPQU3Cuag7OVc3C+TIcHgRNRERERodbgIiIiMjosAARERGR0WEBIiIiIqPDAkRERERGhwWIDOrLL79Ex44dYW5uDltb23LHJCUloXfv3jA3N4ejoyMmT56M4uLiUmMOHTqEdu3aQaVSwcvLCxEREWXWs2jRItSvXx+mpqbw9/fH8ePHSz1eUFCAiRMnom7durC0tES/fv2QmppaWS/VqD3tvadnc+TIEbzyyitwdXWFIAjYuXNnqcdFUcT06dPh4uICMzMzdO/eHVeuXCk1JiMjA0OGDIG1tTVsbW0xatQo5Obmlhpz7tw5dOnSBaampnB3d8e8efPKZNmyZQuaNWsGU1NTtG7dGnv37q3011uTzZkzB+3bt4eVlRUcHR3Rt29fJCQklBqjy2dRVX0uGjWRyICmT58uzp8/XwwLCxNtbGzKPF5cXCy2atVK7N69u3j69Glx7969or29vTht2jTtmGvXronm5uZiWFiYePHiRfGHH34Q5XK5uG/fPu2YjRs3ikqlUlyxYoV44cIFMTQ0VLS1tRVTU1O1Y8aNGye6u7uLkZGR4smTJ8WAgACxY8eOBn39xkCX956ezd69e8WPP/5Y3L59uwhA3LFjR6nH586dK9rY2Ig7d+4Uz549K/bp00ds0KCB+ODBA+2YF198UfTx8RGjo6PFP//8U/Ty8hIHDRqkfTwrK0t0cnIShwwZIsbFxYkbNmwQzczMxMWLF2vH/PXXX6JcLhfnzZsnXrx4Ufzkk09EhUIhnj9/3uDvQU0RFBQkrly5UoyLixPPnDkj9urVS/Tw8BBzc3O1Y572WVSVn4vGjAWIqsTKlSvLLUB79+4VZTKZmJKSol32888/i9bW1mJhYaEoiqL44Ycfii1btiz1vAEDBohBQUHa7zt06CBOnDhR+31JSYno6uoqzpkzRxRFUczMzBQVCoW4ZcsW7ZhLly6JAMSoqKhKeY3G6mnvPVWu/y1AGo1GdHZ2Fr/++mvtsszMTFGlUokbNmwQRVEUL168KAIQT5w4oR3z22+/iYIgiHfu3BFFURR/+ukn0c7OTvt7J4qiOGXKFLFp06ba7/v37y/27t27VB5/f39x7Nixlfoaa5O0tDQRgHj48GFRFHX7LKqqz0Vjx11gJKmoqCi0bt0aTk5O2mVBQUHIzs7GhQsXtGO6d+9e6nlBQUGIiooCABQVFeHUqVOlxshkMnTv3l075tSpU1Cr1aXGNGvWDB4eHtoxpD9d3nsyrOvXryMlJaXUHNjY2MDf3187B1FRUbC1tYWfn592TPfu3SGTyRATE6Md07VrVyiVSu2YoKAgJCQk4O+//9aOedLvIpWVlZUFAKhTpw4A3T6Lqupz0dixAJGkUlJSSv2SA9B+n5KS8sQx2dnZePDgAdLT01FSUlLumH+vQ6lUljkO6d9jSH+6vPdkWI/e56f9+Xd0dCz1uImJCerUqfPU37N//4zHjeFcl0+j0eDdd99Fp06d0KpVKwC6fRZV1eeisWMBIr1NnToVgiA88Ss+Pl7qmEREkpo4cSLi4uKwceNGqaNQOUykDkA1z/vvv4+QkJAnjmnYsKFO63J2di5zVsKjsyGcnZ21//3fMyRSU1NhbW0NMzMzyOVyyOXycsf8ex1FRUXIzMws9S+vf48h/dnb2z/1vSfDevQ+p6amwsXFRbs8NTUVbdq00Y5JS0sr9bzi4mJkZGQ89ffs3z/jcWM412VNmjQJv/76K44cOYJ69eppl+vyWVRVn4vGjluASG8ODg5o1qzZE7/+fRzBkwQGBuL8+fOlPpwPHDgAa2trtGjRQjsmMjKy1PMOHDiAwMBAAIBSqYSvr2+pMRqNBpGRkdoxvr6+UCgUpcYkJCQgKSlJO4b0p8t7T4bVoEEDODs7l5qD7OxsxMTEaOcgMDAQmZmZOHXqlHbMwYMHodFo4O/vrx1z5MgRqNVq7ZgDBw6gadOmsLOz04550u8iPbwkwaRJk7Bjxw4cPHgQDRo0KPW4Lp9FVfW5aPSkPgqbarebN2+Kp0+fFmfOnClaWlqKp0+fFk+fPi3m5OSIovjf0z179uwpnjlzRty3b5/o4OBQ7umekydPFi9duiQuWrSo3NM9VSqVGBERIV68eFEcM2aMaGtrW+osinHjxokeHh7iwYMHxZMnT4qBgYFiYGBg1b0ZtZQu7z09m5ycHO3vDgBx/vz54unTp8WbN2+KovjwNHhbW1tx165d4rlz58RXX3213NPg27ZtK8bExIhHjx4VGzduXOo0+MzMTNHJyUkcNmyYGBcXJ27cuFE0Nzcvcxq8iYmJ+M0334iXLl0SZ8yYwdPg/8f48eNFGxsb8dChQ2JycrL2Kz8/XzvmaZ9FVfm5aMxYgMighg8fLgIo8/XHH39ox9y4cUN86aWXRDMzM9He3l58//33RbVaXWo9f/zxh9imTRtRqVSKDRs2FFeuXFnmZ/3www+ih4eHqFQqxQ4dOojR0dGlHn/w4IE4YcIE0c7OTjQ3Nxdfe+01MTk52RAv2+g87b2nZ/PHH3+U+3s0fPhwURQfngr/6aefik5OTqJKpRJfeOEFMSEhodQ67t+/Lw4aNEi0tLQUra2txREjRmj/IfLI2bNnxc6dO4sqlUp0c3MT586dWybL5s2bxSZNmohKpVJs2bKluGfPHoO97pqovHkCUOozS5fPoqr6XDRmgiiKYpVvdiIiIiKSEI8BIiIiIqPDAkRERERGhwWIiIiIjA4LEBERERkdFiAiIiIyOixAREREZHRYgIiIiMjosAARERGR0WEBIiKqQs899xwEQYAgCDhz5ky5Y27cuKEd8+iGpkRUuViAiOiZhYSEoG/fvmWWHzp0CIIgIDMzs9J+lq7rfDROEATIZDLY2Nigbdu2+PDDD5GcnKz3z61fvz4WLFhQsdD/IzQ0FMnJyWjVqhWA/xaeR4XI3d0dycnJeP/99yvl5xFRWSxARFSrJSQk4O7duzhx4gSmTJmC33//Ha1atcL58+cly2Rubg5nZ2eYmJiU+7hcLoezszMsLS2rOBmR8WABIqIqdfToUXTp0gVmZmZwd3fH22+/jby8PO3ja9asgZ+fH6ysrODs7IzBgwcjLS0NwMMtJc8//zwAwM7ODoIgICQk5Ik/z9HREc7OzmjSpAkGDhyIv/76Cw4ODhg/frx2zHPPPYd333231PP69u2rXfdzzz2Hmzdv4r333tNuVcrLy4O1tTW2bt1a6nk7d+6EhYUFcnJyKvgOEVFVYAEioipz9epVvPjii+jXrx/OnTuHTZs24ejRo5g0aZJ2jFqtxueff46zZ89i586duHHjhraIuLu7Y9u2bQAebtlJTk7G999/r1cGMzMzjBs3Dn/99Ze2WD3N9u3bUa9ePcyaNQvJyclITk6GhYUFBg4ciJUrV5Yau3LlSrzxxhuwsrLSKxcRVa3yt78SEenp119/LbPLpqSkpNT3c+bMwZAhQ7RbWxo3boyFCxeiW7du+Pnnn2FqaoqRI0dqxzds2BALFy5E+/btkZubC0tLS9SpUwfAwy07tra2FcrarFkzAA+3KDk6Oj51fJ06dSCXy7VbpR4ZPXo0OnbsiOTkZLi4uCAtLQ179+7F77//XqFcRFR1uAWIiCrF888/jzNnzpT6WrZsWakxZ8+eRUREBCwtLbVfQUFB0Gg0uH79OgDg1KlTeOWVV+Dh4QErKyt069YNAJCUlFRpWUVRBAAIgvBM6+nQoQNatmyJVatWAQDWrl0LT09PdO3a9ZkzEpFhcQsQEVUKCwsLeHl5lVp2+/btUt/n5uZi7NixePvtt8s838PDA3l5eQgKCkJQUBDWrVsHBwcHJCUlISgoCEVFRZWW9dKlSwAentkFADKZTFuKHlGr1Tqta/To0Vi0aBGmTp2KlStXYsSIEc9crIjI8FiAiKjKtGvXDhcvXixTlB45f/487t+/j7lz58Ld3R0AcPLkyVJjlEolgLK713T14MEDLFmyBF27doWDgwMAwMHBodSp8SUlJYiLi9MecP3o55b3M4cOHYoPP/wQCxcuxMWLFzF8+PAK5SKiqsVdYERUZaZMmYJjx45h0qRJOHPmDK5cuYJdu3ZpD4L28PCAUqnEDz/8gGvXrmH37t34/PPPS63D09MTgiDg119/xb1795Cbm/vEn5mWloaUlBRcuXIFGzduRKdOnZCeno6ff/5ZO+b//u//sGfPHuzZswfx8fEYP358mesM1a9fH0eOHMGdO3eQnp6uXW5nZ4fXX38dkydPRs+ePVGvXr1nfJeIqCqwABFRlfH29sbhw4dx+fJldOnSBW3btsX06dPh6uoK4OGWmIiICGzZsgUtWrTA3Llz8c0335Rah5ubG2bOnImpU6fCycmp1Blk5WnatClcXV3h6+uLuXPnonv37oiLi0OLFi20Y0aOHInhw4cjODgY3bp1Q8OGDUtt/QGAWbNm4caNG2jUqJF2y9Ejo0aNQlFRUakDuPWh0WgA4LHXBSKiyieI/7vjm4iI9LJmzRq89957uHv3rnYX3eM899xzaNOmTamrSkdHRyMwMBD37t2Dvb29dvlnn32GnTt3PvaWGURUcdwCRERUQfn5+bh69Srmzp2LsWPHPrX8PPLTTz/B0tIS58+fR2JiIr7++mv4+Phoy09SUhIsLS0xe/ZsQ8YnMmrcAkREVEGfffYZvvzyS3Tt2hW7du3S6dYVd+7cwYMHDwAAGRkZ2i1C4eHh8Pb2BgAUFxfjxo0bAACVSqU9IJyIKg8LEBERERkd7gIjIiIio8MCREREREaHBYiIiIiMDgsQERERGR0WICIiIjI6LEBERERkdFiAiIiIyOiwABEREZHR+X8LU4x9rV0obwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXRBJREFUeJzt3XlYVGXDBvD7zDAz7IuyI+CCu4IKCrjWl0ppmWW5i7jg3kaZ2qJppWZlZlm4476vpflqmJoJuOCGCoobLiwisQsMzPn+MOeNF9QZZDjA3L/r4irOPHO4Zx4Zb88qiKIogoiIiMiIyKQOQERERFTVWICIiIjI6LAAERERkdFhASIiIiKjwwJERERERocFiIiIiIwOCxAREREZHROpA1RHGo0Gd+/ehZWVFQRBkDoOERER6UAUReTk5MDV1RUy2ZO38bAAlePu3btwd3eXOgYRERFVwK1bt1CvXr0njmEBKoeVlRWAh2+gtbW1xGmMl1qtxv79+9GzZ08oFAqp49ATcK5qDs5VzcL50k92djbc3d21f48/CQtQOR7t9rK2tmYBkpBarYa5uTmsra35i1/Nca5qDs5VzcL5qhhdDl/hQdBERERkdFiAiIiIyOiwABEREZHRYQEiIiIio8MCREREREaHBYiIiIiMDgsQERERGR0WICIiIjI6LEBERERkdFiAiIiIyOiwABEREZHRYQEiIiIio8OboVah7AI1sh+opY5RhqlCDntLldQxiIiIqgwLUBVaG30T8/YlSB2jXC1drdHb2wUvt3aFR11zqeMQEREZFAtQFTKRCVCZVL+9jkUlGly4m40Ld7Mxb18CvOvZoHdrF/T2dkE9O5YhIiKqfViAqtCYro0wpmsjqWOUcT+3EP+5kIo95+8i6up9nLudhXO3szDnt3i0cbfFy94u6NXaBa62ZlJHJSIiqhQsQIS6lioM9vfAYH8PpOcWYl9cCn49dxcx1zNw5lYmztzKxBd7LiGkY3183Ls5FPLqtxWLiIhIHyxAVIq9pQpDAzwxNMATaTkF/5ShZBy/noGIYzcQn5KNn4b4oo6FUuqoREREFcZ/ytNjOVqZIjiwPjaPDcSSYb6wUMoRfS0DfX48iot3s6WOR0REVGEsQKSTni2dsWNiJ3jWNcftvx+g38/H8Nv5ZKljERERVQgLEOmsiZMVdk3shC6N7fFAXYLx62Ixf38CNBpR6mhERER6YQEivdiaK7EypD1GdW4AAFh4MBFj155CbmGxxMmIiIh0xwJEejORy/Dpyy3wzZs+UJrIcOBiKl7/6S/cvJ8ndTQiIiKdsABRhb3hWw+bxgTA0UqFy6m56PPjXzh6JV3qWERERE/FAkTPpK2HHX55qzPauNsi64Eaw1cex6pjNyCKPC6IiIiqLxYgemZO1qbYOCYAr7dzQ4lGxIzdF/DRjjgUFWukjkZERFQuFiCqFKYKOb590wcf9WoGQQA2HE/CsOUxyMgrkjoaERFRGSxAVGkEQcCYro2wLNgPlioTxFzPwKuLjuJyao7U0YiIiEphAaJK90JzJ2yf0BHudcxwK+MBXv/pGCIvpUodi4iISIsFiAzi4UUTO8O/QR3kFhZj9OqTWHz4Kg+OJiKiaoEFiAymjoUSa0b5Y1AHD4giMOe3eLy/5SwK1CVSRyMiIiPHAkQGpTSRYfZrrTCzT0vIZQK2x97B4KXRuJdTKHU0IiIyYtWiAC1atAj169eHqakp/P39cfz48ceOfe655yAIQpmv3r17a8eIoojp06fDxcUFZmZm6N69O65cuVIVL4XKIQgChnesj4gR7WFtaoLYpEz0XfQX4lN4R3kiIpKG5AVo06ZNCAsLw4wZMxAbGwsfHx8EBQUhLS2t3PHbt29HcnKy9isuLg5yuRxvvvmmdsy8efOwcOFChIeHIyYmBhYWFggKCkJBQUFVvSwqR5fGDtgxsRMa2FvgTuYD9PvpGA7G8+BoIiKqeiZSB5g/fz5CQ0MxYsQIAEB4eDj27NmDFStWYOrUqWXG16lTp9T3GzduhLm5ubYAiaKIBQsW4JNPPsGrr74KAFi9ejWcnJywc+dODBw4sMw6CwsLUVj4310y2dkPt0yo1Wqo1erKeaEEAPCwVWFzaAe8tfEMoq//jdGrTmLqi00REugBQRBKjX303nMOqj/OVc3BuapZOF/60ed9EkQJT8spKiqCubk5tm7dir59+2qXDx8+HJmZmdi1a9dT19G6dWsEBgZiyZIlAIBr166hUaNGOH36NNq0aaMd161bN7Rp0wbff/99mXV89tlnmDlzZpnl69evh7m5uf4vjJ6qWANsvS5DVNrDjZCBjhq82UADueTbJImIqKbKz8/H4MGDkZWVBWtr6yeOlXQLUHp6OkpKSuDk5FRquZOTE+Lj45/6/OPHjyMuLg7Lly/XLktJSdGu43/X+eix/zVt2jSEhYVpv8/Ozoa7uzt69uz51DeQKu4VUUREVBLm7Et4WIQs7bFwgA9szRUAHjb5AwcOoEePHlAoFBKnpSfhXNUcnKuahfOln0d7cHQh+S6wZ7F8+XK0bt0aHTp0eKb1qFQqqFSqMssVCgX/wBnYmG5eaORohbc3nEbUtQz0X3ocy4f7oaGDpXYM56Hm4FzVHJyrmoXzpRt93iNJdzjY29tDLpcjNbX0gbCpqalwdnZ+4nPz8vKwceNGjBo1qtTyR8+ryDpJGi80d8LW8R3hZmuG6+l5eO2nYziWmC51LCIiqsUkLUBKpRK+vr6IjIzULtNoNIiMjERgYOATn7tlyxYUFhZi6NChpZY3aNAAzs7OpdaZnZ2NmJiYp66TpNPcxRo7J3ZCWw9bZD1QI3jFcWw+eVvqWEREVEtJfshpWFgYli5dilWrVuHSpUsYP3488vLytGeFBQcHY9q0aWWet3z5cvTt2xd169YttVwQBLz77rv44osvsHv3bpw/fx7BwcFwdXUtdaA1VT8OVipsCA3Aq21cUawR8fGui9h9UwaNhrfPICKiyiX5MUADBgzAvXv3MH36dKSkpKBNmzbYt2+f9iDmpKQkyGSle1pCQgKOHj2K/fv3l7vODz/8EHl5eRgzZgwyMzPRuXNn7Nu3D6ampgZ/PfRsTBVyLBjQBvXrWuD7yCuIvCvD25vOYsHAdjBTyqWOR0REtYSkp8FXV9nZ2bCxsdHpNDoynK0nkzBl2zmUiAJ86tlg6XA/OFqxxFZHarUae/fuRa9evXigZjXHuapZOF/60efvb8l3gRE9zqs+LpjYogR25gqcvZ2F1xYd4+0ziIioUrAAUbXWyBrYMsYfDf+5fcYbP0fhUEL5t0khIiLSFQsQVXuedc2xfUJHBDSsg9zCYoyMOIE1UTekjkVERDUYCxDVCLbmSqwe6Y9+7epBIwKf7rqAWb9cRAnPECMiogpgAaIaQ2kiwzdvemNyUFMAwIq/rmPc2lPILyqWOBkREdU0LEBUowiCgInPe+HHwW2hNJHhwMVUDFwSjbScAqmjERFRDcICRDXSy96u2BDqDztzBc79c4bYldQcqWMREVENwQJENZavZx3smNAJDf45Q+z1n3kPMSIi0g0LENVo9e0tsH18R/h52iGnoBjBK45j6yneQ4yIiJ6MBYhqPDsLJdaO9sfL3i4o1oj4YMtZfHfgMniRcyIiehwWIKoVTBVyLBzYFuOfawQA+D7yCt7ffBZFxRqJkxERUXXEAkS1hkwmYMqLzTDn9daQywRsP30HwStikJWvljoaERFVMyxAVOsM6uCBFSHtYakyQfS1DPQLP4bbf+dLHYuIiKoRFiCqlbo1ccDmsYFwtjZFYlouXvvpGOLuZEkdi4iIqgkWIKq1WrhaY8fEjmjqZIV7OYUYsJg3UiUioodYgKhWc7Exw5bxgejkVRd5RSUYteokNp1IkjoWERFJjAWIaj1rUwVWhnTA623dUKIRMWXbecznafJEREaNBYiMgtJEhm/7+2DS814AgIWRV/DBlnM8TZ6IyEixAJHREAQBHwQ1xezXHp4mvy32NkZGnEBOAU+TJyIyNixAZHQG+3tgWbAfzJVyHE1Mx5vhUUjJ4t3kiYiMCQsQGaXnmzli05hA2FuqEJ+Sg9d++guXeTd5IiKjwQJERqt1PRvsmNARDR0skJxVgDd+PoaYa/eljkVERFWABYiMmnsdc2wb1xG+nnbILijGsOXHsfd8stSxiIjIwFiAyOjZWSixbrQ/erZwQlGJBhPXx2LlX9eljkVERAbEAkSEh3eT/3moL4YFeEIUgZm/XMScvZeg0fBaQUREtRELENE/5DIBs15ticlBTQEAi49cw3ubz/BaQUREtRALENG/CIKAic974Zs3fWAiE7DrzF2MiDiObF4riIioVmEBIirHG771sDykPcyVcvyVeB/9w6OQms1rBRER1RYsQESP0a2JQ6lrBb3+0zEkpuVKHYuIiCoBCxDRE2ivFWRvgTuZD/BG+DHEJv0tdSwiInpGLEBET+FexxxbxgXCx90WmflqDF4ajYPxqVLHIiKiZ2Ciy6B27drptVJBELB79264ublVKBRRdVPXUoUNof6YsC4WhxLuIXT1Kcx5vTX6+7lLHY2IiCpApwJ05swZvP/++7C0tHzqWFEUMXfuXBQWFj5zOKLqxFxpgqXBfpi67Ty2xd7Gh1vP4V5OISY81wiCIEgdj4iI9KBTAQKAyZMnw9HRUaex3377bYUDEVVnCrkM37zpDQcrFcIPX8XX/0lAWnYBpr/SEnIZSxARUU2h0zFA169fh4ODg84rvXjxIjw9PSsciqg6EwQBU19qhukvtwAArIq6ibc3nEZhcYnEyYiISFc6FSBPT0+9NvG7u7tDLpdXOBRRTTCycwMsHNQWCrmAPeeTMXwFL5hIRFRTPNNZYK1bt8atW7cqKwtRjdPHxxURIzrAUmWC6GsZGLA4Gmm8YCIRUbX3TAXoxo0bUKv5L14ybp287LFxTADsLVW4lJyNfuHHcCM9T+pYRET0BLwOEFElaOVmg+3jO8KzrjluZTy8YGLcnSypYxER0WM8UwHq0qULzMzMKisLUY3mUdccW8d1RAsXa6TnFmHgkmgcu5oudSwiIirHMxWgvXv3wsXFpbKyENV4DlYqbBwbgICGdZBbWIyQFSfw2/lkqWMREdH/0KkA7d69W69jffbu3YsHDx5UOBRRTWZtqkDEiA54saUziko0mLA+Futibkodi4iI/kWnAvTaa68hMzNT55UOHDgQycn8Vy8ZL1OFHIuGtMOgDh4QReDjHXFYGHkFoihKHY2IiKDjlaBFUURISAhUKpVOKy0o4GnARHKZgNmvtYK9pRI/HEzE/AOXcT+3EDNeaQkZrxpNRCQpnQrQ8OHD9VrpkCFDYG1tXaFARLWJIAh4v2dT1LVQ4rNfLmJV1E3czyvC/P5toDThSZhERFLRqQCtXLnS0DmIarWQTg1gZ6HEB1vO4tdzych6oEb4UF9YqHS+HR8REVUi/hOUqIq82sYNy4e3h5lCjj+vpGPIshj8nVckdSwiIqPEAkRUhbo2ccC6UH/YmClw5lYm+i+OQkoWj5kjIqpqLEBEVaydhx22jAuEk7UKV9Jy0e/nY7jOW2cQEVUpFiAiCTRxssLWcR3RwN4CdzIf4I2feesMIqKqxAJEJBH3OubYMi4QLV2tcT/v4a0zoq/dlzoWEZFRqNApKJGRkYiMjERaWho0Gk2px1asWFEpwYiMgb2lChvGBCB01UnEXM9A8IrjWDS4HXq0cJI6GhFRrab3FqCZM2eiZ8+eiIyMRHp6Ov7+++9SX0SkH2tTBVaN7IDuzZ1QVKzBuLWnsPXUbaljERHVanpvAQoPD0dERASGDRtmiDxERslUIUf40HaYsu08tsXexgdbziIzvwijuzSUOhoRUa2k9xagoqIidOzY0RBZiIyaiVyGr9/wxujODQAAX+y5hG/3J/D+YUREBqB3ARo9ejTWr19viCxERk8mE/Bx7+aYHNQUAPDDwUTM2H0BGg1LEBFRZdJ7F1hBQQGWLFmC33//Hd7e3lAoFKUenz9/fqWFIzJGgiBg4vNesDZTYPquOKyOuonsB2p8/aYPFHKeuElEVBn0LkDnzp1DmzZtAABxcXGlHhME3uGaqLIMC/CEtakJ3t98FjvP3EVOQTEWDWkHU4Vc6mhERDWe3gXojz/+MEQOIirHq23cYGVqgvFrYxEZn4bhK45j2XA/WJkqnv5kIiJ6rGfann779m3cvs3TdYkM6f+aOWH1yA6wUpkg5noGBi+Nwf3cQqljERHVaHoXII1Gg1mzZsHGxgaenp7w9PSEra0tPv/88zIXRSSiyuHfsC42jAlAXQslzt/JQv/FUbib+UDqWERENZbeBejjjz/Gjz/+iLlz5+L06dM4ffo0Zs+ejR9++AGffvqpITISEYBWbjbYPC4QrjamuHovD2+GR+HavVypYxER1Uh6F6BVq1Zh2bJlGD9+PLy9veHt7Y0JEyZg6dKliIiIMEBEInqkkYMltozviIb/3ES1/+IoXErOljoWEVGNo3cBysjIQLNmzcosb9asGTIyMiolFBE9nputGTb/cxPV9NwiDFgchdgk3oaGiEgfehcgHx8f/Pjjj2WW//jjj/Dx8amUUET0ZPaWKqwPDYCfpx2yC4oxdFkMjl5JlzoWEVGNofdp8PPmzUPv3r3x+++/IzAwEAAQFRWFW7duYe/evZUekIjKZ2OmwOpRHTB2zSn8eSUdIyNO4MfBbdGzpbPU0YiIqj29twB169YNly9fxmuvvYbMzExkZmbi9ddfR0JCArp06WKIjET0GOZKEywb7ocXWzqjqESD8etiseM0L01BRPQ0FboOkKurK7788kts27YN27ZtwxdffAFXV9cKBVi0aBHq168PU1NT+Pv74/jx408cn5mZiYkTJ8LFxQUqlQpNmjQpteXps88+gyAIpb7KO2aJqLZQmcjx4+C2eMO3Hko0It7bdBZrom5IHYuIqFrTaRfYuXPn0KpVK8hkMpw7d+6JY729vXX+4Zs2bUJYWBjCw8Ph7++PBQsWICgoCAkJCXB0dCwzvqioCD169ICjoyO2bt0KNzc33Lx5E7a2tqXGtWzZEr///rv2exMTvff0EdUoJnIZ5vXzhqXKBBHHbuDTXReQU1iMCc95SR2NiKha0qkZtGnTBikpKXB0dESbNm0gCAJEsezdqQVBQElJic4/fP78+QgNDcWIESMAAOHh4dizZw9WrFiBqVOnlhm/YsUKZGRk4NixY9qbsNavX7/sizIxgbMzj4Mg4yKTCZjxSgtYm5pg4cFEzNuXgOwHxZjyYlPep4+I6H/oVICuX78OBwcH7f9XhqKiIpw6dQrTpk3TLpPJZOjevTuioqLKfc7u3bsRGBiIiRMnYteuXXBwcMDgwYMxZcoUyOX/vUHklStX4OrqClNTUwQGBmLOnDnw8PB4bJbCwkIUFv731gLZ2Q+vq6JWq6FWq5/1pVIFPXrvOQf6eev5hjBXyjB332WEH76K7AeFmNG7OWQyw5UgzlXNwbmqWThf+tHnfdKpAHl6emr//+bNm+jYsWOZ3UrFxcU4duxYqbFPkp6ejpKSEjg5OZVa7uTkhPj4+HKfc+3aNRw8eBBDhgzB3r17kZiYiAkTJkCtVmPGjBkAAH9/f0RERKBp06ZITk7GzJkz0aVLF8TFxcHKyqrc9c6ZMwczZ84ss3z//v0wNzfX6fWQ4Rw4cEDqCDWOC4ABDQVsvibD+uO3cflaEgZ7aSA38IYgzlXNwbmqWThfusnPz9d5rCCWty/rCeRyOZKTk8sco3P//n04OjrqvAvs7t27cHNzw7Fjx7Sn0wPAhx9+iMOHDyMmJqbMc5o0aYKCggJcv35du8Vn/vz5+Prrr5GcnFzuz8nMzISnpyfmz5+PUaNGlTumvC1A7u7uSE9Ph7W1tU6vhyqfWq3GgQMH0KNHD+0uT9LPr+eSMXlbHIo1Ino0d8R3/b2hMnmmeyCXi3NVc3CuahbOl36ys7Nhb2+PrKysp/79rffRwaIolns8wf3792FhYaHzeuzt7SGXy5GamlpqeWpq6mOP33FxcYFCoSi1u6t58+ZISUlBUVERlEplmefY2tqiSZMmSExMfGwWlUoFlUpVZrlCoeAfuGqA81Bxr/l6wMpMhQnrY3HgUhombDiLxUN9YaaUP/3JFcC5qjk4VzUL50s3+rxHOheg119/HcDDA51DQkJKFYaSkhKcO3cOHTt21PkHK5VK+Pr6IjIyEn379gXw8E7zkZGRmDRpUrnP6dSpE9avXw+NRgOZ7OG/Yi9fvgwXF5dyyw8A5Obm4urVqxg2bJjO2Yhqk+4tnLAypD1GrzqJI5fvYfiK41ge4gcrU36YEpHx0nlbuI2NDWxsbCCKIqysrLTf29jYwNnZGWPGjMHatWv1+uFhYWFYunQpVq1ahUuXLmH8+PHIy8vTnhUWHBxc6iDp8ePHIyMjA++88w4uX76MPXv2YPbs2Zg4caJ2zAcffIDDhw/jxo0bOHbsGF577TXI5XIMGjRIr2xEtUknL3usHd0BVqYmOH4jA0OWxeDvvCKpYxERSUbnLUArV64E8PC088mTJ1fKwcEDBgzAvXv3MH36dKSkpKBNmzbYt2+f9sDopKQk7ZYeAHB3d8d//vMfvPfee/D29oabmxveeecdTJkyRTvm9u3bGDRoEO7fvw8HBwd07twZ0dHR2rPYiIyVr2cdbAgNQPCK4zh3OwsDlkRh7Sh/OFqbSh2NiKjK6X0MUHBwMO7cuYPGjRuXWn7lyhUoFIpyr8vzJJMmTXrsLq9Dhw6VWRYYGIjo6OjHrm/jxo16/XwiY9LKzQabxgRg6PIYXE7NRf/FUVg72h/17Hi2IxEZF71PBwkJCcGxY8fKLI+JiUFISEhlZCIiA2rsZIUtYzuinp0ZbtzPR//wKFy7lyt1LCKiKqV3ATp9+jQ6depUZnlAQADOnDlTGZmIyMA86ppj67iOaORggbtZBei/OBrxKdlSxyIiqjJ6FyBBEJCTk1NmeVZWll63wSAiaTnbmGLT2EC0cLFGem4hBi6JxrnbmVLHIiKqEnoXoK5du2LOnDmlyk5JSQnmzJmDzp07V2o4IjIse0sVNoQGoI27LTLz1RiyNAYnb2RIHYuIyOD0Pgj6q6++QteuXdG0aVN06dIFAPDnn38iOzsbBw8erPSARGRYNuYKrB3tj1ERJxBzPQPDlh/HsuF+6ORlL3U0IiKD0XsLUIsWLXDu3Dn0798faWlpyMnJQXBwMOLj49GqVStDZCQiA7NUmSBiRAd0beKAB+oSjIg4gchLqU9/IhFRDaX3FiAAcHV1xezZsys7CxFJyEwpx9JgX7y1/jT2X0zF2DWn8P3Atujt7SJ1NCKiSlehAgQ8vONqUlISiopKX03W29v7mUMRkTRUJnIsGtIOH2w5i11n7uKtDbF4oPbBG771pI5GRFSp9C5A9+7dw4gRI/Dbb7+V+zjPBCOq2RRyGeb3bwMzhRwbT9zCB1vO4oG6BMMCPKWORkRUafQ+Bujdd99FZmYmYmJiYGZmhn379mHVqlVo3Lgxdu/ebYiMRFTF5DIBs19rjZCO9QEAn+6Mw9Ij16QNRURUifTeAnTw4EHs2rULfn5+kMlk8PT0RI8ePWBtbY05c+agd+/ehshJRFVMJhMw45UWMFfK8dOhq/hy7yXkF5Xg7Re8IAiC1PGIiJ6J3luA8vLy4OjoCACws7PDvXv3AACtW7dGbGxs5aYjIkkJgoAPX2yGD3o2AQB89/tlzPtPAkRRlDgZEdGz0bsANW3aFAkJCQAAHx8fLF68GHfu3EF4eDhcXHi2CFFtNOn/GuOT3s0BAD8fuopZv15kCSKiGk3vXWDvvPMOkpOTAQAzZszAiy++iHXr1kGpVCIiIqKy8xFRNTG6S0OoFHJ8ujMOK/+6gQK1Bl/2bQWZjLvDiKjm0bsADR06VPv/vr6+uHnzJuLj4+Hh4QF7e145lqg2GxbgCVMTGaZsO4cNx5NQWFyCef146Qsiqnn02gWmVqvRqFEjXLp0SbvM3Nwc7dq1Y/khMhJv+rljwcC2kMsEbI+9g3c2nYG6RCN1LCIivei1BUihUKCgoMBQWYiohujj4wqViQyT1sdiz7lkFBQVo5eN1KmIiHSn90HQEydOxFdffYXi4mJD5CGiGiKopTOWBvtBZSJDZPw9LI2X4UERL4RKRDWD3scAnThxApGRkdi/fz9at24NCwuLUo9v37690sIRUfX2XFNHrAxpj9GrTyI+CwhdG4sVIR1goarwXXaIiKqE3luAbG1t0a9fPwQFBcHV1RU2NjalvojIuHT0sseK4HZQyUXEXP8bw5bHILtALXUsIqIn0vmfaQcPHkTXrl2xcuVKQ+YhohrI19MOE1uUYHmiKWKTMjF0WQxWj+wAW3Ol1NGIiMql8xagHj16ICMjQ/t9QEAA7ty5Y5BQRFTzeFoCq0f4oY6FEuduZ2HQ0hjczy2UOhYRUbl0LkD/e9XXCxcuoLCQH25E9F8tXKyxcUwA7C1VuJScjYFLopGWwzNHiaj60fsYICKiJ2niZIXNYwPgbG2KK2m5GLg4GslZD6SORURUis4FSBCEUneA/t/viYgeaehgic1jA+Fma4Zr6XnovzgKtzLypY5FRKSl80HQoijihRdegInJw6fk5+fjlVdegVJZ+iBH3hGeiADAo645No8LxOCl0bh5Px8DFkdhfWgA6ttbPP3JREQGpnMBmjFjRqnvX3311UoPQ0S1i5utGTaPfViCrt57uCVofag/vBytpI5GREauwgWIiEgXTtam2DgmEEOXxSAhNQcDFkdj7Wh/NHexljoaERkxHgRNRAbnYKXChjEBaOlqjft5RRi0NBpxd7KkjkVERowFiIiqRB0LJdaPDoCPuy0y89UYvDQaZ25lSh2LiIwUCxARVRkbcwXWjuoAX087ZBcUY+iyGJy6mfH0JxIRVTIWICKqUlamCqwe2QH+Deogt7AYw5YfR/S1+1LHIiIj80wFqKCAV3glIv1ZqEwQMaIDOnvZI7+oBCErj+OvxHSpYxGREdG7AGk0Gnz++edwc3ODpaUlrl27BgD49NNPsXz58koPSES1k5lSjmXD/dCtiQMK1BqMjDiBQwlpUsciIiOhdwH64osvEBERgXnz5pW6CGKrVq2wbNmySg1HRLWbqUKOJcG+6N7cCYXFGoxZfQq/X0yVOhYRGQG9C9Dq1auxZMkSDBkyBHK5XLvcx8cH8fHxlRqOiGo/lYkcPw1ph5daOaOoRINxa0/ht/PJUsciolpO7wJ0584deHl5lVmu0WigVqsrJRQRGReliQw/DGqLV3xcUawRMWnDaew+e1fqWERUi+ldgFq0aIE///yzzPKtW7eibdu2lRKKiIyPiVyGBQPa4PV2bijRiHh342lsj70tdSwiqqV0vhXGI9OnT8fw4cNx584daDQabN++HQkJCVi9ejV+/fVXQ2QkIiMhlwn45g0fKOUybDxxC+9vOYviEhH927tLHY2Iahm9twC9+uqr+OWXX/D777/DwsIC06dPx6VLl/DLL7+gR48ehshIREZEJhMw+7XWGBrgAVEEPtx2DutjkqSORUS1jN5bgACgS5cuOHDgQGVnISIC8LAEff5qK5jIZIg4dgMf7TiPYo0GwYH1pY5GRLUErwRNRNWSIAiY8UoLhHZpAACYvusClv15TeJURFRb6LQFyM7ODoIg6LTCjAze14eIKocgCPioV3Mo5DL8dOgqvthzCcUaEeO6NZI6GhHVcDoVoAULFhg4BhFR+QRBwOSgplDIZfg+8grm/haP4hINJv1fY6mjEVENplMBGj58uKFzEBE9liAIeK9HE5jIBHx74DK+2X8Z6hIR73ZvrPPWaSKif6vQQdAlJSXYuXMnLl26BABo2bIl+vTpU+rK0EREle2tFxpDYSLD3N/i8X3kFahLNJgc1JQliIj0pncBSkxMRK9evXDnzh00bdoUADBnzhy4u7tjz549aNSI++aJyHDGdWsEE5mAL/Zcwk+HrqJYI2LaS81YgohIL3qfBfb222+jUaNGuHXrFmJjYxEbG4ukpCQ0aNAAb7/9tiEyEhGVMrpLQ8zs0xIAsOTINXz+6yWIoihxKiKqSfTeAnT48GFER0ejTp062mV169bF3Llz0alTp0oNR0T0OMM71oeJXMDHO+Kw4q/rKNFo8FmfltwSREQ60XsLkEqlQk5OTpnlubm5UCqVlRKKiEgXQ/w98VW/1hAEYFXUTXyyMw4aDbcEEdHT6V2AXn75ZYwZMwYxMTEQRRGiKCI6Ohrjxo1Dnz59DJGRiOixBrT3wNdv+EAQgHUxSfhox3mWICJ6Kr0L0MKFC9GoUSMEBgbC1NQUpqam6NSpE7y8vPD9998bIiMR0RO94VsP3/VvA5kAbDxxC5O3nkMJSxARPYHexwDZ2tpi165duHLlCuLj4wEAzZs3h5eXV6WHIyLSVd+2bpDLBLy76Qy2xd5GiUaDb970gYmcd/whorIqdB0gAGjcuDEaN+aVWImo+njFxxVymYC3N5zGzjN3USIC3/VnCSKisnQuQLNmzdJp3PTp0yschojoWfVq7QK5TMCk9bH45exdFJdosHBQWyhYgojoX3QuQJ999hlcXV3h6Oj42OttCILAAkREkgtq6Yzwob4YvzYWv8WlYOK6WPw4uB2UJixBRPSQzgXopZdewsGDB+Hn54eRI0fi5ZdfhkzGDxMiqp5eaO6ExcG+GLvmFPZfTMWEdaewaEg7qEx4yx4i0uMssD179uDq1avw9/fH5MmT4ebmhilTpiAhIcGQ+YiIKuz5po5YFuwHlYkMv19Kw7g1p1CgLpE6FhFVA3ptwnF1dcW0adOQkJCATZs2IS0tDe3bt0enTp3w4MEDQ2UkIqqwrk0csCKkPUwVMvyRcA9jWYKICBW4DtAj7du3x/PPP4/mzZvj9OnTUKvVlZmLiKjSdPKyx4qQ9jBTyHH48j2Erj6JB0UsQUTGTO8CFBUVhdDQUDg7O+OHH37A8OHDcffuXVhbWxsiHxFRpejYyB4RI9rDXCnHn1fSMWrVCeQXFUsdi4gkonMBmjdvHlq0aIFXX30VlpaW+PPPP3HixAlMmDABtra2BoxIRFQ5/BvWxeqRHWChlOPY1fsYsfIE8gpZgoiMkc5ngU2dOhUeHh7o378/BEFAREREuePmz59fWdmIiCqdX/06WD3KHyErjiPmegZCVh7HyhEdYKmq8HVhiagG0vk3vmvXrhAEARcuXHjsGEEQKiUUEZEh+XraYc1ofwxbHoMTN/5G8PIYrBrZAVamCqmjEVEV0bkAHTp0yIAxiIiqVht3W6wfHYChy2MQm5SJYcuPY/WoDrBmCSIyCrySIREZrdb1bLButD9szRU4cysTw5bFIOsBz2glMgYsQERk1Fq52WD96ADYmStw9nYWhi6LQWZ+kdSxiMjAWICIyOi1cLXGhjEBqGuhxPk7WRiyLAZ/57EEEdVmkhegRYsWoX79+jA1NYW/vz+OHz/+xPGZmZmYOHEiXFxcoFKp0KRJE+zdu/eZ1klE1Mz5YQmyt1Tiwt1sDF4WgwyWIKJaS9ICtGnTJoSFhWHGjBmIjY2Fj48PgoKCkJaWVu74oqIi9OjRAzdu3MDWrVuRkJCApUuXws3NrcLrJCJ6pImTFTaEBsDeUoVLydkYvDQa93MLpY5FRAZQoQL0559/YujQoQgMDMSdO3cAAGvWrMHRo0f1Ws/8+fMRGhqKESNGoEWLFggPD4e5uTlWrFhR7vgVK1YgIyMDO3fuRKdOnVC/fn1069YNPj4+FV4nEdG/NXaywsYxAXC0UiE+JQeDlkbjXg5LEFFto/eVv7Zt24Zhw4ZhyJAhOH36NAoLH34wZGVlYfbs2WV2Rz1OUVERTp06hWnTpmmXyWQydO/eHVFRUeU+Z/fu3QgMDMTEiROxa9cuODg4YPDgwZgyZQrkcnmF1gkAhYWF2tcBANnZ2QAAtVrNe5xJ6NF7zzmo/mrbXHnaqbB2pB+GrTiJy6m5GLgkCmtG+MHBSiV1tGdW2+aqtuN86Uef90nvAvTFF18gPDwcwcHB2Lhxo3Z5p06d8MUXX+i8nvT0dJSUlMDJyanUcicnJ8THx5f7nGvXruHgwYMYMmQI9u7di8TEREyYMAFqtRozZsyo0DoBYM6cOZg5c2aZ5fv374e5ubnOr4kM48CBA1JHIB3VtrkKbQT8eFGOq/fy0HfhIUxqWQIbpdSpKkdtm6vajvOlm/z8fJ3H6l2AEhIS0LVr1zLLbWxskJmZqe/q9KLRaODo6IglS5ZALpfD19cXd+7cwddff40ZM2ZUeL3Tpk1DWFiY9vvs7Gy4u7ujZ8+evMmrhNRqNQ4cOIAePXpAoeDF6aqz2jxXzz+fj2ErTuJuVgFW3LDGmpF+cLY2lTpWhdXmuaqNOF/6ebQHRxd6FyBnZ2ckJiaifv36pZYfPXoUDRs21Hk99vb2kMvlSE1NLbU8NTUVzs7O5T7HxcUFCoUCcrlcu6x58+ZISUlBUVFRhdYJACqVCipV2U3bCoWCf+CqAc5DzVEb56qRkw02jQ3EwCXRuHH/YRnaMCYALjZmUkd7JrVxrmozzpdu9HmP9D4IOjQ0FO+88w5iYmIgCALu3r2LdevW4YMPPsD48eN1Xo9SqYSvry8iIyO1yzQaDSIjIxEYGFjuczp16oTExERoNBrtssuXL8PFxQVKpbJC6yQiehr3OubYNDYA7nXMcON+PgYsjsadzAdSxyKiZ6B3AZo6dSoGDx6MF154Abm5uejatStGjx6NsWPH4q233tJrXWFhYVi6dClWrVqFS5cuYfz48cjLy8OIESMAAMHBwaUOaB4/fjwyMjLwzjvv4PLly9izZw9mz56NiRMn6rxOIqKKqGdnjo1jAuFRxxxJGfkYuCQKt//W/XgDIqpe9N4FJggCPv74Y0yePBmJiYnIzc1FixYtYGlpqfcPHzBgAO7du4fp06cjJSUFbdq0wb59+7QHMSclJUEm+29Hc3d3x3/+8x+899578Pb2hpubG9555x1MmTJF53USEVWUm60ZNo0NwKB/docNWByNjWMC4F6HJ0sQ1TSCKIqi1CGqm+zsbNjY2CArK4sHQUtIrVZj79696NWrF/d9V3PGNlcpWQUYvDQa19Lz4Gpjig1jAuBZ10LqWDoxtrmq6Thf+tHn72+9d4Hl5eXh008/RceOHeHl5YWGDRuW+iIiqu2cbUyxcUwAGjpY4G5WwcMDpNPzpI5FRHrQexfY6NGjcfjwYQwbNgwuLi4QBMEQuYiIqjVH64claPDSGCSm5WLAkihsCA1AQwf9DwcgoqqndwH67bffsGfPHnTq1MkQeYiIagxHK1NsCA3AkGXR/1wxOhrrQwPg5cgSRFTd6b0LzM7ODnXq1DFEFiKiGsfBSoX1oQFo5myFtJxCDFwSjcS0HKljEdFT6F2APv/8c0yfPl2vy00TEdVm9pb/LUHpuQ9L0OVUliCi6kzvXWDffvstrl69CicnJ9SvX7/MUemxsbGVFo6IqKaoY6H8Z3dYDC4mZ2PQkmisC/VHM2eeSUpUHeldgPr27WuAGERENZ+dhRLrQ/0xdHkM4u5kY/DSGKwd5Y8WrixBRNWN3gXoWW46SkRU29maK7FuVACGrYjBudtZGLwsGutG+6Olq43U0YjoX/Q+BggAMjMzsWzZMkybNg0ZGRkAHu76unPnTqWGIyKqiWzMFVgzyh8+7rbIzFdj8NIYxN3JkjoWEf2L3gXo3LlzaNKkCb766it88803yMzMBABs37691H27iIiMmY2ZAmtGdUBbD1tkPVBj8NJonLudKXUsIvqH3gUoLCwMISEhuHLlCkxNTbXLe/XqhSNHjlRqOCKimszaVIHVIzvA19MO2QXFGLIsBmduZUodi4hQgQJ04sQJjB07tsxyNzc3pKSkVEooIqLawspUgVUjO6B9fTvkFBRj2LIYxCb9LXUsIqOndwFSqVTIzs4us/zy5ctwcHColFBERLWJpcoEESM6oEODOsgpLEbw8uM4dTND6lhERk3vAtSnTx/MmjULarUaACAIApKSkjBlyhT069ev0gMSEdUGFioTRIxoj4CGdZD7Twk6cYMliEgqehegb7/9Frm5uXB0dMSDBw/QrVs3eHl5wcrKCl9++aUhMhIR1QrmShOsDOmAjo3qIq+oBMNXHEfMtftSxyIySnpfB8jGxgYHDhzA0aNHce7cOeTm5qJdu3bo3r27IfIREdUqZko5lg9vj9DVJ3E0MR0hK09g5Yj2CGhYV+poREZF7wKUlJQEJycndO7cGZ07d9YuF0URt27dgoeHR6UGJCKqbcyUciwb7ofQ1Sfx55V0jFh5AstD/NCxkb3U0YiMht67wOrXr4927drh6tWrpZanpaWhQYMGlRaMiKg2M1XIsTTYD881dcADdQlGRpzAX4npUsciMhoVuhJ08+bN0aFDB0RGRpZaLopipYQiIjIGpgo5Fg/zxf81c0SBWoORESdw5PI9qWMRGQW9C5AgCPjpp5/wySefoHfv3li4cGGpx4iISHcqEzl+HtoO3Zs7obBYg9GrT+JQQprUsYhqPb0L0KOtPO+99x527NiB6dOnIzQ0FEVFRZUejojIGKhM5PhpSDsEtXRCUbEGY1afwh/xLEFEhlShXWCPvPTSSzh27Bj++OMPvPzyy5WViYjI6ChNZPhxcDu81MoZRSUajF1zCr9fTJU6FlGtpXcB6tatG5RKpfb7Fi1aIDo6Gra2tjwGiIjoGSjkMiwc1Ba9vV1QVKLB+HWnsP8CbzFEZAh6F6A//vgDtra2pZbZ29vj8OHD0Gg0lZWLiMgoKeQyfD+gDV7xcYW6RMSEdbHYF5csdSyiWkfv6wABgEajQWJiItLS0kqVHkEQ0KVLl0oLR0RkjEzkMnzX3wdyAdh55i4mrj+NhQOB3t4uUkcjqjX0LkDR0dEYPHgwbt68WWaXlyAIKCkpqbRwRETGykQuw7f920AmE7A99g7e3ngaGlHEKz6uUkcjqhX0LkDjxo2Dn58f9uzZAxcXF576TkRkIHKZgK/f8IFMELD11G28808JerWNm9TRiGo8vQvQlStXsHXrVnh5eRkiDxER/YtcJmBeP2/IBQGbTt7Ce5vOoEQj4vV29aSORlSj6X0QtL+/PxITEw2RhYiIyiGTCZjzemsM6uABjQi8v+Ustpy8JXUsohpN7y1Ab731Ft5//32kpKSgdevWUCgUpR739vautHBERPSQTCbgy76tIJcBa6OT8OG2c9CIIga05w2oiSpC7wLUr18/AMDIkSO1ywRBgCiKPAiaiMiAZDIBn7/aCnJBwKqom5iy7TxKNMBgf5YgIn3pXYCuX79uiBxERKQDQRDwWZ+WkMtkWPHXdXy04zxKNBoMC6wvdTSiGkXvAuTp6WmIHEREpCNBEPDpy80hlwFL/7yOT3ddQLFGxIhODaSORlRjVOheYGvWrEGnTp3g6uqKmzdvAgAWLFiAXbt2VWo4IiIqnyAI+KhXc4zt1hAAMPOXi1j25zWJUxHVHHoXoJ9//hlhYWHo1asXMjMztcf82NraYsGCBZWdj4iIHkMQBEx9sRkmPt8IAPDFnktYcuSqxKmIaga9C9APP/yApUuX4uOPP4ZcLtcu9/Pzw/nz5ys1HBERPZkgCPigZ1O8/UJjAMDsvfH46RAvVUL0NHoXoOvXr6Nt27ZllqtUKuTl5VVKKCIi0p0gCAjr0QTvdW8CAJi3LwE/RF6ROBVR9aZ3AWrQoAHOnDlTZvm+ffvQvHnzyshEREQV8E73xpgc1BQA8O2By/juwOUy92wkoof0PgssLCwMEydOREFBAURRxPHjx7FhwwbMmTMHy5YtM0RGIiLS0cTnvSCXCZj7Wzy+j7wCjSgirEcT3reR6H/oXYBGjx4NMzMzfPLJJ8jPz8fgwYPh6uqK77//HgMHDjRERiIi0sO4bo1gIhPwxZ5L+OFgItQlIqa82JQliOhf9C5AADBkyBAMGTIE+fn5yM3NhaOjY2XnIiKiZzC6S0PIBAGzfr2I8MNXUaLR4KNePEyB6JEKFaBHzM3NYWJigtzcXFhaWlZWJiIiqgQjOzeAiVzA9F0XsPTP6yjWiJgW1FjqWETVgl4HQa9cuRJvvfUW1q1bBwCYNm0arKysYGNjgx49euD+/fsGCUlERBUTHFgfs19rDQBY+dcNzNoTDw2PiybSvQB9+eWXmDhxIuLj4/H2229j/PjxiIiIwKxZszB37lzEx8fjk08+MWRWIiKqgMH+HpjXzxuCAKyNuYUt12XQsAWRkdN5F1hERASWL1+OQYMG4eTJk/D398fmzZu1d4dv1aoVxo0bZ7CgRERUcf3bu0MmEzB561kcS5Xhk90X8VU/H8hkPDCajJPOW4CSkpLQuXNnAA+v+mxiYoJWrVppH/f29kZycnLlJyQiokrxhm89fNOvNQSI2HLqDiZvPYcSbgkiI6VzAVKr1VCpVNrvlUolFAqF9nsTExPtfcGIiKh66uPjguDGGshlArbF3sb7m8+guEQjdSyiKqfXWWAXL15ESkoKAEAURcTHxyM3NxcAkJ6eXvnpiIio0rWzF+Hn6433Np/DzjN3USIC3/X3gYlc75sDENVYehWgF154odRl1V9++WUAD+9DI4oiL7JFRFRDvNjSCaoh7TBxfSx+OXsXJRoNvh/YFgqWIDISOheg69evGzIHERFVsZ4tnRE+1Bfj18Zi7/kUFJfE4sfB7aA0YQmi2k/nAuTp6WnIHEREJIEXmjthSbAvxqw5hf0XUzFu7Sn8NKQdTBVyqaMRGRRrPhGRkXuuqSNWDG8PU4UMB+PTMGbNKRSoeVIL1W4sQEREhM6N7bEypAPMFHIcuXwPo1adwIMiliCqvViAiIgIABDYqC5WjewAC6UcfyXeR8jK48grLJY6FpFB6FWARFFEUlISCgoKDJWHiIgk1KFBHawe5Q8rlQlirmdg+IrjyClQSx2LqNLpXYC8vLxw69YtQ+UhIiKJ+XraYc1of1ibmuDkzb8RvOI4sh6wBFHtolcBkslkaNy4Me/6TkRUy7Vxt8X60ADYmitwOikTw5bHIDO/SOpYRJVG72OA5s6di8mTJyMuLs4QeYiIqJpo5WaD9aMDUMdCiXO3szB4aQwy8liCqHbQuwAFBwfj+PHj8PHxgZmZGerUqVPqi4iIao8WrtbYEBoAe0slLiZnY/DSaKTnFkodi+iZ6XUrDABYsGCBAWIQEVF11dTZChvHBGLw0mjEp+Rg4JJorB/tD0drU6mjEVWY3gVo+PDhhshBRETVmJejJTaNfViCEtNyMWBJNNaH+sPFxkzqaEQVoncBAoCSkhLs3LkTly5dAgC0bNkSffr0gVzOS6cTEdVWDewtsHlsIAYuicb19DwMWPywBNWzM5c6GpHe9D4GKDExEc2bN0dwcDC2b9+O7du3Y+jQoWjZsiWuXr1qiIxERFRNuNcxx+ZxgfCoY46kjHwMWByNpPv5Usci0pveBejtt99Go0aNcOvWLcTGxiI2NhZJSUlo0KAB3n77bUNkJCKiasTN1gybxwaiob0F7mQ+QP/FUbh2L1fqWER60bsAHT58GPPmzSt1xlfdunUxd+5cHD58uFLDERFR9eRsY4qNYwPQ2NESKdkFGLAkGolpOVLHItKZ3gVIpVIhJ6fsH/Lc3FwolcpKCUVERNWfo5UpNowJQDNnK9zLKcSAxdGIT8mWOhaRTvQuQC+//DLGjBmDmJgYiKIIURQRHR2NcePGoU+fPobISERE1ZS9pQobQgPQys0a9/OKMGhJNOLuZEkdi+ip9C5ACxcuRKNGjRAYGAhTU1OYmpqiU6dO8PLywvfff2+IjEREVI3ZWSixbnQAfNxt8Xe+GoOXRuPMrUypYxE9kd4FyNbWFrt27UJCQgK2bNmCrVu3IiEhATt27ICNjU2FQixatAj169eHqakp/P39cfz48ceOjYiIgCAIpb5MTUtfjCskJKTMmBdffLFC2YiI6OlszBRYO6oD/DztkF1QjKHLYnDyRobUsYgeq0LXAQKAxo0bw8vLCwAgCEKFA2zatAlhYWEIDw+Hv78/FixYgKCgICQkJMDR0bHc51hbWyMhIUH7fXk//8UXX8TKlSu136tUqgpnJCKip7MyVWDVyA4YteoEoq9lIHjFcSwf3h6BjepKHY2ojAoVoOXLl+O7777DlStXADwsQ++++y5Gjx6t97rmz5+P0NBQjBgxAgAQHh6OPXv2YMWKFZg6dWq5zxEEAc7Ozk9cr0qleuqYRwoLC1FY+N9722RnPzyIT61WQ61W67QOqnyP3nvOQfXHuao5DD1XShmwZEhbjF9/Bn9dvY+Qlcfx85A26OJlb5CfV9vxd0s/+rxPeheg6dOnY/78+XjrrbcQGBgIAIiKisJ7772HpKQkzJo1S+d1FRUV4dSpU5g2bZp2mUwmQ/fu3REVFfXY5+Xm5sLT0xMajQbt2rXD7Nmz0bJly1JjDh06BEdHR9jZ2eH//u//8MUXX6Bu3fL/FTJnzhzMnDmzzPL9+/fD3JxXOJXagQMHpI5AOuJc1RyGnqvX7IG/78twMRMIXX0KI5tq0MpONOjPrM34u6Wb/HzdL8opiKKo159IBwcHLFy4EIMGDSq1fMOGDXjrrbeQnp6u87ru3r0LNzc3HDt2TFumAODDDz/E4cOHERMTU+Y5UVFRuHLlCry9vZGVlYVvvvkGR44cwYULF1CvXj0AwMaNG2Fubo4GDRrg6tWr+Oijj2BpaYmoqKhyb9dR3hYgd3d3pKenw9raWufXQ5VLrVbjwIED6NGjBxQKhdRx6Ak4VzVHVc5VUbEG724+hwOX0qCQC/juTW8EtXQy6M+sbfi7pZ/s7GzY29sjKyvrqX9/670FSK1Ww8/Pr8xyX19fFBcX67s6vQUGBpYqSx07dkTz5s2xePFifP755wCAgQMHah9v3bo1vL290ahRIxw6dAgvvPBCmXWqVKpyjxFSKBT8A1cNcB5qDs5VzVEVc6VQAD8N9UXY5rP45exdvLP5HL4b0AZ9fFwN+nNrI/5u6Uaf90jvs8CGDRuGn3/+uczyJUuWYMiQIXqty97eHnK5HKmpqaWWp6am6nz8jkKhQNu2bZGYmPjYMQ0bNoS9vf0TxxARUeVTyGVYMKANXm/nhhKNiHc3nsbWU7eljkVU8YOg9+/fj4CAAABATEwMkpKSEBwcjLCwMO24+fPnP3E9SqUSvr6+iIyMRN++fQEAGo0GkZGRmDRpkk5ZSkpKcP78efTq1euxY27fvo379+/DxcVFp3USEVHlkcsEfPOGD5RyGTaeuIUPtpxFUbEGg/09pI5GRkzvAhQXF4d27doBgPbu7/b29rC3t0dcXJx2nK6nxoeFhWH48OHw8/NDhw4dsGDBAuTl5WnPCgsODoabmxvmzJkDAJg1axYCAgLg5eWFzMxMfP3117h586b2DLTc3FzMnDkT/fr1g7OzM65evYoPP/wQXl5eCAoK0vflEhFRJZDJBMx+rTVUJjKsirqJj3acR1FxCUI6NZA6GhkpvQvQH3/8UakBBgwYgHv37mH69OlISUlBmzZtsG/fPjg5PTxQLikpCTLZf/fU/f333wgNDUVKSgrs7Ozg6+uLY8eOoUWLFgAAuVyOc+fOYdWqVcjMzISrqyt69uyJzz//nNcCIiKSkEwm4LM+LaFSyLHkyDV89stFFBRrMK5bI6mjkRGq8IUQK9OkSZMeu8vr0KFDpb7/7rvv8N133z12XWZmZvjPf/5TmfGIiKiSCIKAaS81g6mJDAsPJmLub/EoUJfgnRcaP9NFdYn0VaECdPLkSWzevBlJSUkoKioq9dj27dsrJRgREdVOgiAgrGdTqBRyfP2fBCz4/QoK1BpMebEpSxBVGb3PAtu4cSM6duyIS5cuYceOHVCr1bhw4QIOHjxY4XuBERGR8Zn4vBc+ffnh4Qvhh69i5i8Xoeel6YgqTO8CNHv2bHz33Xf45ZdfoFQq8f333yM+Ph79+/eHhweP6CciIt2N6twAX/RtBQCIOHYDH+2Ig0bDEkSGp3cBunr1Knr37g3g4WnseXl5EAQB7733HpYsWVLpAYmIqHYbGuCJr9/whkwANhxPwgdbz6K4RCN1LKrl9C5AdnZ2yMnJAQC4ublpT33PzMzU6x4cREREj7zp544FA9tCLhOwPfYO3tl0BmqWIDIgvQ+C7tq1Kw4cOIDWrVvjzTffxDvvvIODBw/iwIED5d5mgoiISBd9fFyhlMvw1oZY7DmXjKJiDX4c3BYqk7L3cCR6VjpvAXq0pefHH3/U3mvr448/RlhYGFJTU9GvXz8sX77cMCmJiMgovNjKGUuC/aAykeHAxVSErj6FB0UlUseiWkjnAuTt7Q1/f39s27YNVlZWD58sk2Hq1KnYvXs3vv32W9jZ2RksKBERGYfnmzpiZUh7mCvlOHL5HkJWHkduoeFvtk3GRecCdPjwYbRs2RLvv/8+XFxcMHz4cPz555+GzEZEREaqo5c91ozqACuVCWKuZ2DY8hhkPVBLHYtqEZ0LUJcuXbBixQokJyfjhx9+wI0bN9CtWzc0adIEX331FVJSUgyZk4iIjIyvZx2sDw2ArbkCp5MyMXhpNDLyip7+RCId6H0WmIWFBUaMGIHDhw/j8uXLePPNN7Fo0SJ4eHigT58+hshIRERGqnU9G2wcEwB7SyUu3M3GgMVRSMsukDoW1QJ6F6B/8/LywkcffYRPPvkEVlZW2LNnT2XlIiIiAgA0c7bGprGBcLY2xZW0XPRfHIU7mQ+kjkU1XIUL0JEjRxASEgJnZ2dMnjwZr7/+Ov7666/KzEZERAQAaORgiS3jAlHPzgw37uejf3gUbt7PkzoW1WB6FaC7d+9i9uzZaNKkCZ577jkkJiZi4cKFuHv3LpYuXYqAgABD5SQiIiPnXsccW8YFoqG9Be5kPsCb4VFITMuROhbVUDoXoJdeegmenp744Ycf8Nprr+HSpUs4evQoRowYAQsLC0NmJCIiAgC42Jhh09hANHWyQlpOIQYsjsaFu1lSx6IaSOcCpFAosHXrVty+fRtfffUVmjZtashcRERE5XKwUmHjmAC0drPB/bwiDFoSjdikv6WORTWMzgVo9+7dePXVVyGX85LkREQkLTsLJdaF+sPP0w7ZBcUYuiwGUVfvSx2LapBnOguMiIhIKtamCqwe1QGdveyRX1SCkJXH8Ud8mtSxqIZgASIiohrLXGmCZcP90L25IwqLNRiz5iR+O58sdSyqAViAiIioRjNVyPHzUF+87O0CdYmIietjse3UbaljUTXHAkRERDWeQi7D9wPbor9fPWhE4P0tZ7E2+qbUsagaYwEiIqJaQS4TMPd1b4R0rA8A+GRnHJYcuSptKKq2WICIiKjWkMkEzHilBSY81wgAMHtvPOYfuAxRFCVORtUNCxAREdUqgiDgwxebYXLQw+vVLYy8gi/3XGIJolJYgIiIqFaa+LwXZrzSAgCw7Oh1TNt+HiUaliB6iAWIiIhqrRGdGmBeP2/IBGDjiVt4d9MZqEs0UseiaoAFiIiIarX+7d2xcFBbmMgE/HL2LsavPYUCdYnUsUhiLEBERFTrveztiqXBflCZyPD7pTSMjDiBvMJiqWORhFiAiIjIKDzfzBGrRnaAhVKOY1fvY+jyGGTlq6WORRJhASIiIqMR0LAu1oUGwMZMgdNJmRi4NBrpuYVSxyIJsAAREZFRaeNui01jA2BvqcKl5Gz0D4/C3cwHUseiKsYCRERERqeZszW2jAuEm60ZrqXn4c3wKNxIz5M6FlUhFiAiIjJKDewtsHlcIBrYW+BO5gO8ER6F+JRsqWNRFWEBIiIio+Vma4bNYwPR3MUa6bmFGLA4GrFJf0sdi6oACxARERk1BysVNoYGoJ2HLbIeqDF0WQz+SkyXOhYZGAsQEREZPRtzBdaM8kdnL3vkF5VgxMoT2H8hRepYZEAsQERERAAsVCZYHuKHoJZOKCrRYPy6WOw4fVvqWGQgLEBERET/UJnIsWhwO/RrVw8lGhHvbTqLNVE3pI5FBsACRERE9C8mchm+fsMbIR3rAwA+3XUBi/5IhCjyTvK1CQsQERHR/5DJBMx4pQXefqExAODr/yRg7r54lqBahAWIiIioHIIgIKxHE3zSuzkAYPHha/hoRxxKNCxBtQELEBER0ROM7tIQX/VrDZkAbDiehLc3nkZRsUbqWPSMWICIiIieYkB7D/w4uB0UcgF7ziVj9OqTyC8qljoWPQMWICIiIh30au2C5cPbw0whx5HL9zBs+XFk5auljkUVxAJERESko65NHLB2tD+sTU1w6ubfGLAkCmk5BVLHogpgASIiItKDr6cdNo8LhIOVCvEpOXgzPAq3MvKljkV6YgEiIiLSUzNna2wdFwj3Oma4eT8fb4Qfw+XUHKljkR5YgIiIiCrAs64Fto7riCZOlkjNLkT/xVE4cytT6likIxYgIiKiCnKyNsWmMYHwcbdFZr4ag5dG807yNQQLEBER0TOws1Bi/Wh/dPKqq72T/L64ZKlj0VOwABERET0jC5UJVoS0x4stnVFUosGEdbHYeDxJ6lj0BCxARERElUBlIseiIe0wsL07NCIwdft5hB++KnUsegwWICIiokoilwmY83prjH+uEQBg7m/xmLP3Em+iWg2xABEREVUiQRAw5cVm+KhXMwDA4iPXMGXbORSX8P5h1QkLEBERkQGM6doI897whkwANp+8jQnrYlGgLpE6Fv2DBYiIiMhA+vu54+ehvlCayLD/YipGrDyBnALeP6w6YAEiIiIyoKCWzlg1ogMsVSaIunYfg5ZGIz23UOpYRo8FiIiIyMACG9XFxjEBqGuhRNydbPQPj8Ltv3n/MCmxABEREVWBVm422DIuEG62ZriWnod+P/P+YVJiASIiIqoiDR0ssW38f+8f9mZ4FE7dzJA6llFiASIiIqpCzjam2Dw2EL6edsh6oMaQZTE4GJ8qdSyjwwJERERUxWzNlVg7yh//18wRBWoNQlefwrZTt6WOZVRYgIiIiCRgppRj8TBfvN7WDSUaEe9vOYulR65JHctosAARERFJRCGX4Zs3fTC6cwMAwJd7L2HOb7x1RlVgASIiIpKQTCbg497NMfWlf26dcfgaPtzKW2cYGgsQERGRxARBwLhu/711xpZTtzF2zSmkZhdIHa3WMpE6ABERET3U388dduZKTFofi8j4NBy5cg/t7WVo/Xc+GjraSB2vVqkWW4AWLVqE+vXrw9TUFP7+/jh+/Phjx0ZEREAQhFJfpqampcaIoojp06fDxcUFZmZm6N69O65cuWLol0FERPTMerRwwsYxAehQvw7UJSKOpcrQY8FfCNt8BolpuVLHqzUkL0CbNm1CWFgYZsyYgdjYWPj4+CAoKAhpaWmPfY61tTWSk5O1Xzdv3iz1+Lx587Bw4UKEh4cjJiYGFhYWCAoKQkEBNyUSEVH119bDDpvHBWLdKD80s9GgRCNie+wd9PjuMCasO4ULd7OkjljjSb4LbP78+QgNDcWIESMAAOHh4dizZw9WrFiBqVOnlvscQRDg7Oxc7mOiKGLBggX45JNP8OqrrwIAVq9eDScnJ+zcuRMDBw40zAshIiKqZB3q18H4FhrU8w7E4j9vYP/FVOw9n4K951PwfFMHjO3WCPXszKSOWSFWKgVszBWS/XxJC1BRURFOnTqFadOmaZfJZDJ0794dUVFRj31ebm4uPD09odFo0K5dO8yePRstW7YEAFy/fh0pKSno3r27dryNjQ38/f0RFRVVbgEqLCxEYeF/78ybnZ0NAFCr1VCr1c/8OqliHr33nIPqj3NVc3CuapZH89TcyRyLBvngcmoOfj58HXvjUvBHwj38kXBP4oQVN65rA7zfo3GlrlOfP9eSFqD09HSUlJTAycmp1HInJyfEx8eX+5ymTZtixYoV8Pb2RlZWFr755ht07NgRFy5cQL169ZCSkqJdx/+u89Fj/2vOnDmYOXNmmeX79++Hubl5RV4aVaIDBw5IHYF0xLmqOThXNcu/56uHJeDjA0TeleHMfQE19Wz561evYq+6co/Pzc/P13ms5LvA9BUYGIjAwEDt9x07dkTz5s2xePFifP755xVa57Rp0xAWFqb9Pjs7G+7u7ujZsyesra2fOTNVjFqtxoEDB9CjRw8oFNJtJqWn41zVHJyrmuVJ8xUiTaRq7dEeHF1IWoDs7e0hl8uRmlr6JnCpqamPPcbnfykUCrRt2xaJiYkAoH1eamoqXFxcSq2zTZs25a5DpVJBpVKVu25+QEiP81BzcK5qDs5VzcL50o0+75GkZ4EplUr4+voiMjJSu0yj0SAyMrLUVp4nKSkpwfnz57Vlp0GDBnB2di61zuzsbMTExOi8TiIiIqrdJN8FFhYWhuHDh8PPzw8dOnTAggULkJeXpz0rLDg4GG5ubpgzZw4AYNasWQgICICXlxcyMzPx9ddf4+bNmxg9ejSAh2eIvfvuu/jiiy/QuHFjNGjQAJ9++ilcXV3Rt29fqV4mERERVSOSF6ABAwbg3r17mD59OlJSUtCmTRvs27dPexBzUlISZLL/bqj6+++/ERoaipSUFNjZ2cHX1xfHjh1DixYttGM+/PBD5OXlYcyYMcjMzETnzp2xb9++MhdMJCIiIuMkiLzlbBnZ2dmwsbFBVlYWD4KWkFqtxt69e9GrVy/u+67mOFc1B+eqZuF86Uefv78lvxI0ERERUVVjASIiIiKjwwJERERERocFiIiIiIwOCxAREREZHRYgIiIiMjosQERERGR0WICIiIjI6LAAERERkdGR/FYY1dGji2NnZ2dLnMS4qdVq5OfnIzs7m1dAreY4VzUH56pm4Xzp59Hf27rc5IIFqBw5OTkAAHd3d4mTEBERkb5ycnJgY2PzxDG8F1g5NBoN7t69CysrKwiCIHUco5WdnQ13d3fcunWL92Sr5jhXNQfnqmbhfOlHFEXk5OTA1dW11I3Uy8MtQOWQyWSoV6+e1DHoH9bW1vzFryE4VzUH56pm4Xzp7mlbfh7hQdBERERkdFiAiIiIyOiwAFG1pVKpMGPGDKhUKqmj0FNwrmoOzlXNwvkyHB4ETUREREaHW4CIiIjI6LAAERERkdFhASIiIiKjwwJERERERocFiAzqyy+/RMeOHWFubg5bW9tyxyQlJaF3794wNzeHo6MjJk+ejOLi4lJjDh06hHbt2kGlUsHLywsRERFl1rNo0SLUr18fpqam8Pf3x/Hjx0s9XlBQgIkTJ6Ju3bqwtLREv379kJqaWlkv1ag97b2nZ3PkyBG88sorcHV1hSAI2LlzZ6nHRVHE9OnT4eLiAjMzM3Tv3h1XrlwpNSYjIwNDhgyBtbU1bG1tMWrUKOTm5pYac+7cOXTp0gWmpqZwd3fHvHnzymTZsmULmjVrBlNTU7Ru3Rp79+6t9Ndbk82ZMwft27eHlZUVHB0d0bdvXyQkJJQao8tnUVV9Lho1kciApk+fLs6fP18MCwsTbWxsyjxeXFwstmrVSuzevbt4+vRpce/evaK9vb04bdo07Zhr166J5ubmYlhYmHjx4kXxhx9+EOVyubhv3z7tmI0bN4pKpVJcsWKFeOHCBTE0NFS0tbUVU1NTtWPGjRsnuru7i5GRkeLJkyfFgIAAsWPHjgZ9/cZAl/eens3evXvFjz/+WNy+fbsIQNyxY0epx+fOnSva2NiIO3fuFM+ePSv26dNHbNCggfjgwQPtmBdffFH08fERo6OjxT///FP08vISBw0apH08KytLdHJyEocMGSLGxcWJGzZsEM3MzMTFixdrx/z111+iXC4X582bJ168eFH85JNPRIVCIZ4/f97g70FNERQUJK5cuVKMi4sTz5w5I/bq1Uv08PAQc3NztWOe9llUlZ+LxowFiKrEypUryy1Ae/fuFWUymZiSkqJd9vPPP4vW1tZiYWGhKIqi+OGHH4otW7Ys9bwBAwaIQUFB2u87dOggTpw4Uft9SUmJ6OrqKs6ZM0cURVHMzMwUFQqFuGXLFu2YS5cuiQDEqKioSnmNxupp7z1Vrv8tQBqNRnR2dha//vpr7bLMzExRpVKJGzZsEEVRFC9evCgCEE+cOKEd89tvv4mCIIh37twRRVEUf/rpJ9HOzk77eyeKojhlyhSxadOm2u/79+8v9u7du1Qef39/cezYsZX6GmuTtLQ0EYB4+PBhURR1+yyqqs9FY8ddYCSpqKgotG7dGk5OTtplQUFByM7OxoULF7RjunfvXup5QUFBiIqKAgAUFRXh1KlTpcbIZDJ0795dO+bUqVNQq9WlxjRr1gweHh7aMaQ/Xd57Mqzr168jJSWl1BzY2NjA399fOwdRUVGwtbWFn5+fdkz37t0hk8kQExOjHdO1a1colUrtmKCgICQkJODvv//WjnnS7yKVlZWVBQCoU6cOAN0+i6rqc9HYsQCRpFJSUkr9kgPQfp+SkvLEMdnZ2Xjw4AHS09NRUlJS7ph/r0OpVJY5DunfY0h/urz3ZFiP3uen/fl3dHQs9biJiQnq1Knz1N+zf/+Mx43hXJdPo9Hg3XffRadOndCqVSsAun0WVdXnorFjASK9TZ06FYIgPPErPj5e6phERJKaOHEi4uLisHHjRqmjUDlMpA5ANc/777+PkJCQJ45p2LChTutydnYuc1bCo7MhnJ2dtf/93zMkUlNTYW1tDTMzM8jlcsjl8nLH/HsdRUVFyMzMLPUvr3+PIf3Z29s/9b0nw3r0PqempsLFxUW7PDU1FW3atNGOSUtLK/W84uJiZGRkPPX37N8/43FjONdlTZo0Cb/++iuOHDmCevXqaZfr8llUVZ+Lxo5bgEhvDg4OaNas2RO//n0cwZMEBgbi/PnzpT6cDxw4AGtra7Ro0UI7JjIystTzDhw4gMDAQACAUqmEr69vqTEajQaRkZHaMb6+vlAoFKXGJCQkICkpSTuG9KfLe0+G1aBBAzg7O5eag+zsbMTExGjnIDAwEJmZmTh16pR2zMGDB6HRaODv768dc+TIEajVau2YAwcOoGnTprCzs9OOedLvIj28JMGkSZOwY8cOHDx4EA0aNCj1uC6fRVX1uWj0pD4Km2q3mzdviqdPnxZnzpwpWlpaiqdPnxZPnz4t5uTkiKL439M9e/bsKZ45c0bct2+f6ODgUO7pnpMnTxYvXbokLlq0qNzTPVUqlRgRESFevHhRHDNmjGhra1vqLIpx48aJHh4e4sGDB8WTJ0+KgYGBYmBgYNW9GbWULu89PZucnBzt7w4Acf78+eLp06fFmzdviqL48DR4W1tbcdeuXeK5c+fEV199tdzT4Nu2bSvGxMSIR48eFRs3blzqNPjMzEzRyclJHDZsmBgXFydu3LhRNDc3L3MavImJifjNN9+Ily5dEmfMmMHT4P/H+PHjRRsbG/HQoUNicnKy9is/P1875mmfRVX5uWjMWIDIoIYPHy4CKPP1xx9/aMfcuHFDfOmll0QzMzPR3t5efP/990W1Wl1qPX/88YfYpk0bUalUig0bNhRXrlxZ5mf98MMPooeHh6hUKsUOHTqI0dHRpR5/8OCBOGHCBNHOzk40NzcXX3vtNTE5OdkQL9voPO29p2fzxx9/lPt7NHz4cFEUH54K/+mnn4pOTk6iSqUSX3jhBTEhIaHUOu7fvy8OGjRItLS0FK2trcURI0Zo/yHyyNmzZ8XOnTuLKpVKdHNzE+fOnVsmy+bNm8UmTZqISqVSbNmypbhnzx6Dve6aqLx5AlDqM0uXz6Kq+lw0ZoIoimKVb3YiIiIikhCPASIiIiKjwwJERERERocFiIiIiIwOCxAREREZHRYgIiIiMjosQERERGR0WICIiIjI6LAAERERkdFhASIiqkLPPfccBEGAIAg4c+ZMuWNu3LihHfPohqZEVLlYgIjomYWEhKBv375llh86dAiCICAzM7PSfpau63w0ThAEyGQy2NjYoG3btvjwww+RnJys98+tX78+FixYULHQ/yM0NBTJyclo1aoVgP8WnkeFyN3dHcnJyXj//fcr5ecRUVksQERUqyUkJODu3bs4ceIEpkyZgt9//x2tWrXC+fPnJctkbm4OZ2dnmJiYlPu4XC6Hs7MzLC0tqzgZkfFgASKiKnX06FF06dIFZmZmcHd3x9tvv428vDzt42vWrIGfnx+srKzg7OyMwYMHIy0tDcDDLSXPP/88AMDOzg6CICAkJOSJP8/R0RHOzs5o0qQJBg4ciL/++gsODg4YP368dsxzzz2Hd999t9Tz+vbtq133c889h5s3b+K9997TblXKy8uDtbU1tm7dWup5O3fuhIWFBXJycir4DhFRVWABIqIqc/XqVbz44ovo168fzp07h02bNuHo0aOYNGmSdoxarcbnn3+Os2fPYufOnbhx44a2iLi7u2Pbtm0AHm7ZSU5Oxvfff69XBjMzM4wbNw5//fWXtlg9zfbt21GvXj3MmjULycnJSE5OhoWFBQYOHIiVK1eWGrty5Uq88cYbsLKy0isXEVWt8re/EhHp6ddffy2zy6akpKTU93PmzMGQIUO0W1saN26MhQsXolu3bvj5559hamqKkSNHasc3bNgQCxcuRPv27ZGbmwtLS0vUqVMHwMMtO7a2thXK2qxZMwAPtyg5Ojo+dXydOnUgl8u1W6UeGT16NDp27Ijk5GS4uLggLS0Ne/fuxe+//16hXERUdbgFiIgqxfPPP48zZ86U+lq2bFmpMWfPnkVERAQsLS21X0FBQdBoNLh+/ToA4NSpU3jllVfg4eEBKysrdOvWDQCQlJRUaVlFUQQACILwTOvp0KEDWrZsiVWrVgEA1q5dC09PT3Tt2vWZMxKRYXELEBFVCgsLC3h5eZVadvv27VLf5+bmYuzYsXj77bfLPN/DwwN5eXkICgpCUFAQ1q1bBwcHByQlJSEoKAhFRUWVlvXSpUsAHp7ZBQAymUxbih5Rq9U6rWv06NFYtGgRpk6dipUrV2LEiBHPXKyIyPBYgIioyrRr1w4XL14sU5QeOX/+PO7fv4+5c+fC3d0dAHDy5MlSY5RKJYCyu9d09eDBAyxZsgRdu3aFg4MDAMDBwaHUqfElJSWIi4vTHnD96OeW9zOHDh2KDz/8EAsXLsTFixcxfPjwCuUioqrFXWBEVGWmTJmCY8eOYdKkSThz5gyuXLmCXbt2aQ+C9vDwgFKpxA8//IBr165h9+7d+Pzzz0utw9PTE4Ig4Ndff8W9e/eQm5v7xJ+ZlpaGlJQUXLlyBRs3bkSnTp2Qnp6On3/+WTvm//7v/7Bnzx7s2bMH8fHxGD9+fJnrDNWvXx9HjhzBnTt3kJ6erl1uZ2eH119/HZMnT0bPnj1Rr169Z3yXiKgqsAARUZXx9vbG4cOHcfnyZXTp0gVt27bF9OnT4erqCuDhlpiIiAhs2bIFLVq0wNy5c/HNN9+UWoebmxtmzpyJqVOnwsnJqdQZZOVp2rQpXF1d4evri7lz56J79+6Ii4tDixYttGNGjhyJ4cOHIzg4GN26dUPDhg1Lbf0BgFmzZuHGjRto1KiRdsvRI6NGjUJRUVGpA7j1odFoAOCx1wUiosoniP+745uIiPSyZs0avPfee7h79652F93jPPfcc2jTpk2pq0pHR0cjMDAQ9+7dg729vXb5Z599hp07dz72lhlEVHHcAkREVEH5+fm4evUq5s6di7Fjxz61/Dzy008/wdLSEufPn0diYiK+/vpr+Pj4aMtPUlISLC0tMXv2bEPGJzJq3AJERFRBn332Gb788kt07doVu3bt0unWFXfu3MGDBw8AABkZGdotQuHh4fD29gYAFBcX48aNGwAAlUqlPSCciCoPCxAREREZHe4CIyIiIqPDAkRERERGhwWIiIiIjA4LEBERERkdFiAiIiIyOixAREREZHRYgIiIiMjosAARERGR0fl/C1OMfa1dKG8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\tut\\core\\flash_unit_doc_35_51.png" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -1812,16 +1825,16 @@ " 0 0.0000000e+00 3.40e-02 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", " 1 0.0000000e+00 1.64e+02 7.01e-02 -1.0 5.15e+03 - 9.87e-01 1.00e+00h 1\n", " 2 0.0000000e+00 9.59e-02 2.03e-03 -1.0 7.07e+01 - 9.90e-01 1.00e+00h 1\n", - " 3 0.0000000e+00 6.95e-08 2.50e-06 -1.0 4.13e-01 - 9.98e-01 1.00e+00h 1\n", + " 3 0.0000000e+00 6.96e-08 2.50e-06 -1.0 4.13e-01 - 9.98e-01 1.00e+00h 1\n", "\n", "Number of Iterations....: 3\n", "\n", " (scaled) (unscaled)\n", "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 8.9144743362344083e-11 6.9545421865768731e-08\n", + "Constraint violation....: 8.9151738215745240e-11 6.9550878833979368e-08\n", "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 8.9144743362344083e-11 6.9545421865768731e-08\n", + "Overall NLP error.......: 8.9151738215745240e-11 6.9550878833979368e-08\n", "\n", "\n", "Number of objective function evaluations = 4\n", @@ -1843,7 +1856,13 @@ "output_type": "stream", "text": [ "\n", - "====================================================================================\n", + "====================================================================================\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Unit : fs.flash Time: 0.0\n", "------------------------------------------------------------------------------------\n", " Unit Performance\n", @@ -1904,9 +1923,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/tut/core/flash_unit_exercise.ipynb b/idaes_examples/notebooks/docs/tut/core/flash_unit_exercise.ipynb index 19e3b691..ad695f94 100644 --- a/idaes_examples/notebooks/docs/tut/core/flash_unit_exercise.ipynb +++ b/idaes_examples/notebooks/docs/tut/core/flash_unit_exercise.ipynb @@ -1,657 +1,658 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Flash Unit Model\n", - "\n", - "Author: Jaffer Ghouse \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-06-01 \n", - "\n", - "In this module, we will familiarize ourselves with the IDAES framework by creating and working with a flowsheet that contains a single flash tank. The flash tank will be used to perform separation of Benzene and Toluene. The inlet specifications for this flash tank are:\n", - "\n", - "Inlet Specifications:\n", - "* Mole fraction (Benzene) = 0.5\n", - "* Mole fraction (Toluene) = 0.5\n", - "* Pressure = 101325 Pa\n", - "* Temperature = 368 K\n", - "\n", - "We will complete the following tasks:\n", - "* Create the model and the IDAES Flowsheet object\n", - "* Import the appropriate property packages\n", - "* Create the flash unit and set the operating conditions\n", - "* Initialize the model and simulate the system\n", - "* Demonstrate analyses on this model through some examples and exercises\n", - "\n", - "## Key links to documentation\n", - "* Main IDAES online documentation page: https://idaes-pse.readthedocs.io/en/stable/\n", - "\n", - "## Create the Model and the IDAES Flowsheet\n", - "\n", - "In the next cell, we will perform the necessary imports to get us started. From `pyomo.environ` (a standard import for the Pyomo package), we are importing `ConcreteModel` (to create the Pyomo model that will contain the IDAES flowsheet) and `SolverFactory` (to create the object we will use to solve the equations). We will also import `Constraint` as we will be adding a constraint to the model later in the module. Lastly, we also import `value` from Pyomo. This is a function that can be used to return the current numerical value for variables and parameters in the model. These are all part of Pyomo.\n", - "\n", - "We will also import the main `FlowsheetBlock` from IDAES. The flowsheet block will contain our unit model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below to perform the imports. Let a workshop organizer know if you see any errors.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import ConcreteModel, SolverFactory, Constraint, value\n", - "from idaes.core import FlowsheetBlock\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next cell, we will create the `ConcreteModel` and the `FlowsheetBlock`, and attach the flowsheet block to the Pyomo model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below to create the objects\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "At this point, we have a single Pyomo model that contains an (almost) empty flowsheet block.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Use the pprint method on the model, i.e. m.pprint(), to see what is currently contained in the model.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: call pprint on the model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define Properties\n", - "\n", - "We need to define the property package for our flowsheet. In this example, we will be using the ideal property package that is available as part of the IDAES framework. This property package supports ideal gas - ideal liquid, ideal gas - NRTL, and ideal gas - Wilson models for VLE. More details on this property package can be found at: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", - "\n", - "IDAES also supports creation of your own property packages that allow for specification of the fluid using any set of valid state variables (e.g., component molar flows vs overall flow and mole fractions). This flexibility is designed to support advanced modeling needs that may rely on specific formulations. To learn about creating your own property package, please consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html and look at examples within IDAES\n", - "\n", - "For this workshop, we will import the BTX_activity_coeff_VLE property parameter block to be used in the flowsheet. This properties block will be passed to our unit model to define the appropriate state variables and equations for performing thermodynamic calculations.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the following two cells to import and create the properties block.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", - " BTXParameterBlock,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.properties = BTXParameterBlock(\n", - " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\", state_vars=\"FTPz\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Flash Unit\n", - "\n", - "Now that we have the flowsheet and the properties defined, we can create the flash unit and add it to the flowsheet. \n", - "\n", - "**The Unit Model Library within IDAES includes a large set of common unit operations (see the online documentation for details: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html**\n", - "\n", - "IDAES also fully supports the development of customized unit models (which we will see in a later module).\n", - "\n", - "Some of the IDAES pre-written unit models:\n", - "* Mixer / Splitter\n", - "* Heater / Cooler\n", - "* Heat Exchangers (simple and 1D discretized)\n", - "* Flash\n", - "* Reactors (kinetic, equilibrium, gibbs, stoichiometric conversion)\n", - "* Pressure changing equipment (compressors, expanders, pumps)\n", - "* Feed and Product (source / sink) components\n", - "\n", - "In this module, we will import the `Flash` unit model from `idaes.models.unit_models` and create an instance of the flash unit, attaching it to the flowsheet. Each IDAES unit model has several configurable options to customize the model behavior, but also includes defaults for these options. In this example, we will specify that the property package to be used with the Flash is the one we created earlier.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the following two cells to import the Flash and create an instance of the unit model, attaching it to the flowsheet object.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models import Flash" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.flash = Flash(property_package=m.fs.properties)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "At this point, we have created a flowsheet and a properties block. We have also created a flash unit and added it to the flowsheet. Under the hood, IDAES has created the required state variables and model equations. Everything is open. You can see these variables and equations by calling the Pyomo method `pprint` on the model, flowsheet, or flash tank objects. Note that this output is very exhaustive, and is not intended to provide any summary information about the model, but rather a complete picture of all of the variables and equations in the model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Set Operating Conditions\n", - "\n", - "Now that we have created our unit model, we can specify the necessary operating conditions. It is often very useful to determine the degrees of freedom before we specify any conditions.\n", - "\n", - "The `idaes.core.util.model_statistics` package has a function `degrees_of_freedom`. To see how to use this function, we can make use of the Python function `help(func)`. This function prints the appropriate documentation string for the function.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Import the degrees_of_freedom function and print the help for the function by calling the Python help function.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", - "\n", - "\n", - "# Todo: Call the python help on the degrees_of_freedom function" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now print the degrees of freedom for your model. The result should be 7.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the degrees of freedom for your model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To satisfy our degrees of freedom, we will first specify the inlet conditions. We can specify these values through the `inlet` port of the flash unit.\n", - "\n", - "**To see the list of naming conventions for variables within the IDAES framework, consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/conventions.html#standard-naming-format**\n", - "\n", - "As an example, to fix the molar flow of the inlet to be 1.0, you can use the following notation:\n", - "```python\n", - "m.fs.flash.inlet.flow_mol.fix(1.0)\n", - "```\n", - "\n", - "To specify variables that are indexed by components, you can use the following notation:\n", - "```python\n", - "m.fs.flash.inlet.mole_frac_comp[0, \"benzene\"].fix(0.5)\n", - "```\n", - "\n", - "
\n", - "Note:\n", - "The \"0\" in the indexing of the component mole fraction is present because IDAES models support both dynamic and steady state simulation, and the \"0\" refers to a timestep. Dynamic modeling is beyond the scope of this workshop. Since we are performing steady state modeling, there is only a single timestep in the model.\n", - "
\n", - "\n", - "In the next cell, we will specify the inlet conditions. To satisfy the remaining degrees of freedom, we will make two additional specifications on the flash tank itself. The names of the key variables within the Flash unit model can also be found in the online documentation: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/flash.html#variables.\n", - "\n", - "\n", - "To specify the value of a variable on the unit itself, use the following notation.\n", - "\n", - "```python\n", - "m.fs.flash.heat_duty.fix(0)\n", - "```\n", - "\n", - "For this module, we will use the following specifications:\n", - "* inlet overall molar flow = 1.0 (`flow_mol`)\n", - "* inlet temperature = 368 K (`temperature`)\n", - "* inlet pressure = 101325 Pa (`pressure`)\n", - "* inlet mole fraction (benzene) = 0.5 (`mole_frac_comp[0, \"benzene\"]`)\n", - "* inlet mole fraction (toluene) = 0.5 (`mole_frac_comp[0, \"toluene\"]`)\n", - "* The heat duty on the flash set to 0 (`heat_duty`)\n", - "* The pressure drop across the flash tank set to 0 (`deltaP`)\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Write the code below to specify the inlet conditions and unit specifications described above\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add inlet specifications given above\n", - "\n", - "\n", - "# Todo: Add 2 flash unit specifications given above" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Check the degrees of freedom again to ensure that the system is now square. You should see that the degrees of freedom is now 0.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the degrees of freedom for your model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Initializing the Model\n", - "\n", - "IDAES includes pre-written initialization routines for all unit models. You can call this initialize method on the units. In the next module, we will demonstrate the use of a sequential modular solve cycle to initialize flowsheets.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call the initialize method on the flash unit to initialize the model.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: initialize the flash unit" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that the model has been defined and initialized, we can solve the model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Using the notation described in the previous model, create an instance of the \"ipopt\" solver and use it to solve the model. Set the tee option to True to see the log output.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: create the ipopt solver\n", - "\n", - "# Todo: solve the model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Viewing the Results\n", - "\n", - "Once a model is solved, the values returned by the solver are loaded into the model object itself. We can access the value of any variable in the model with the `value` function. For example:\n", - "```python\n", - "print('Vap. Outlet Temperature = ', value(m.fs.flash.vap_outlet.temperature[0]))\n", - "```\n", - "\n", - "You can also find more information about a variable or an entire port using the `display` method from Pyomo:\n", - "```python\n", - "m.fs.flash.vap_outlet.temperature.display()\n", - "m.fs.flash.vap_outlet.display()\n", - "```\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cells below to show the current value of the flash vapor outlet pressure. This cell also shows use of the display function to see the values of the variables in the vap_outlet and the liq_outlet.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "# Print the pressure of the flash vapor outlet\n", - "print(\"Pressure =\", value(m.fs.flash.vap_outlet.pressure[0]))\n", - "\n", - "print()\n", - "print(\"Output from display:\")\n", - "# Call display on vap_outlet and liq_outlet of the flash\n", - "m.fs.flash.vap_outlet.display()\n", - "m.fs.flash.liq_outlet.display()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The output from `display` is quite exhaustive and not really intended to provide quick summary information. Because Pyomo is built on Python, there are opportunities to format the output any way we like. Most IDAES models have a `report` method which provides a summary of the results for the model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below which uses the function above to print a summary of the key variables in the flash model, including the inlet, the vapor, and the liquid ports. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.flash.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Studying Purity as a Function of Heat Duty\n", - "\n", - "Since the entire modeling framework is built upon Python, it includes a complete programming environment for whatever analysis we may want to perform. In this next exercise, we will make use of what we learned in this and the previous module to generate a figure showing some output variables as a function of the heat duty in the flash tank.\n", - "\n", - "First, let's import the matplotlib package for plotting as we did in the previous module.\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below to import matplotlib appropriately.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Exercise specifications:\n", - "* Generate a figure showing the flash tank heat duty (`m.fs.flash.heat_duty[0]`) vs. the vapor flowrate (`m.fs.flash.vap_outlet.flow_mol[0]`)\n", - "* Specify the heat duty from -17000 to 25000 over 50 steps\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Using what you have learned so far, fill in the missing code below to generate the figure specified above. (Hint: import numpy and use the linspace function from the previous module)\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# import the solve_successful checking function from workshop tools\n", - "from idaes_examples.mod.tut.workshoptools import solve_successful\n", - "\n", - "# Todo: import numpy as np\n", - "\n", - "\n", - "# create the empty lists to store the results that will be plotted\n", - "Q = []\n", - "V = []\n", - "\n", - "# re-initialize model\n", - "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", - "\n", - "# Todo: Write the for loop specification using numpy's linspace\n", - "\n", - " # fix the heat duty\n", - " m.fs.flash.heat_duty.fix(duty)\n", - " \n", - " # append the value of the duty to the Q list\n", - " Q.append(duty)\n", - " \n", - " # print the current simulation\n", - " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", - "\n", - " # Solve the model\n", - " status = solver.solve(m)\n", - " \n", - " # append the value for vapor fraction if the solve was successful\n", - " if solve_successful(status):\n", - " V.append(value(m.fs.flash.vap_outlet.flow_mol[0]))\n", - " print('... solve successful.')\n", - " else:\n", - " V.append(0.0)\n", - " print('... solve failed.')\n", - " \n", - "# Create and show the figure\n", - "plt.figure(\"Vapor Fraction\")\n", - "plt.plot(Q, V)\n", - "plt.grid()\n", - "plt.xlabel(\"Heat Duty [J]\")\n", - "plt.ylabel(\"Vapor Fraction [-]\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Repeat the exercise above, but create a figure showing the heat duty vs. the mole fraction of Benzene in the vapor outlet. Remove any unnecessary printing to create cleaner results.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: generate a figure of heat duty vs. mole fraction of Benzene in the vapor" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Recall that the IDAES framework is an equation-oriented modeling environment. This means that we can specify \"design\" problems natively. That is, there is no need to have our specifications on the inlet alone. We can put specifications on the outlet as long as we retain a well-posed, square system of equations.\n", - "\n", - "For example, we can remove the specification on heat duty and instead specify that we want the mole fraction of Benzene in the vapor outlet to be equal to 0.6. The mole fraction is not a native variable in the property block, so we cannot use \"fix\". We can, however, add a constraint to the model.\n", - "\n", - "Note that we have been executing a number of solves on the problem, and may not be sure of the current state. To help convergence, therefore, we will first call initialize, then add the new constraint and solve the problem. Note that the reference for the mole fraction of Benzene in the vapor outlet is `m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]`.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Fill in the missing code below and add a constraint on the mole fraction of Benzene (to a value of 0.6) to find the required heat duty.\n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# re-initialize the model - this may or may not be required depending on current state but safe to initialize\n", - "m.fs.flash.heat_duty.fix(0)\n", - "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", - "\n", - "# Unfix the heat_duty variable\n", - "m.fs.flash.heat_duty.unfix()\n", - "\n", - "# Todo: Add a new constraint (benzene mole fraction to 0.6)\n", - "\n", - "# solve the problem\n", - "status = solver.solve(m, tee=True)\n", - "\n", - "# Check stream condition\n", - "m.fs.flash.report()" - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Flash Unit Model\n", + "\n", + "Author: Jaffer Ghouse \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-06-01 \n", + "\n", + "In this module, we will familiarize ourselves with the IDAES framework by creating and working with a flowsheet that contains a single flash tank. The flash tank will be used to perform separation of Benzene and Toluene. The inlet specifications for this flash tank are:\n", + "\n", + "Inlet Specifications:\n", + "* Mole fraction (Benzene) = 0.5\n", + "* Mole fraction (Toluene) = 0.5\n", + "* Pressure = 101325 Pa\n", + "* Temperature = 368 K\n", + "\n", + "We will complete the following tasks:\n", + "* Create the model and the IDAES Flowsheet object\n", + "* Import the appropriate property packages\n", + "* Create the flash unit and set the operating conditions\n", + "* Initialize the model and simulate the system\n", + "* Demonstrate analyses on this model through some examples and exercises\n", + "\n", + "## Key links to documentation\n", + "* Main IDAES online documentation page: https://idaes-pse.readthedocs.io/en/stable/\n", + "\n", + "## Create the Model and the IDAES Flowsheet\n", + "\n", + "In the next cell, we will perform the necessary imports to get us started. From `pyomo.environ` (a standard import for the Pyomo package), we are importing `ConcreteModel` (to create the Pyomo model that will contain the IDAES flowsheet) and `SolverFactory` (to create the object we will use to solve the equations). We will also import `Constraint` as we will be adding a constraint to the model later in the module. Lastly, we also import `value` from Pyomo. This is a function that can be used to return the current numerical value for variables and parameters in the model. These are all part of Pyomo.\n", + "\n", + "We will also import the main `FlowsheetBlock` from IDAES. The flowsheet block will contain our unit model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below to perform the imports. Let a workshop organizer know if you see any errors.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import ConcreteModel, SolverFactory, Constraint, value\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the next cell, we will create the `ConcreteModel` and the `FlowsheetBlock`, and attach the flowsheet block to the Pyomo model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below to create the objects\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this point, we have a single Pyomo model that contains an (almost) empty flowsheet block.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Use the pprint method on the model, i.e. m.pprint(), to see what is currently contained in the model.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: call pprint on the model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define Properties\n", + "\n", + "We need to define the property package for our flowsheet. In this example, we will be using the ideal property package that is available as part of the IDAES framework. This property package supports ideal gas - ideal liquid, ideal gas - NRTL, and ideal gas - Wilson models for VLE. More details on this property package can be found at: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", + "\n", + "IDAES also supports creation of your own property packages that allow for specification of the fluid using any set of valid state variables (e.g., component molar flows vs overall flow and mole fractions). This flexibility is designed to support advanced modeling needs that may rely on specific formulations. To learn about creating your own property package, please consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html and look at examples within IDAES\n", + "\n", + "For this workshop, we will import the BTX_activity_coeff_VLE property parameter block to be used in the flowsheet. This properties block will be passed to our unit model to define the appropriate state variables and equations for performing thermodynamic calculations.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the following two cells to import and create the properties block.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", + " BTXParameterBlock,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.properties = BTXParameterBlock(\n", + " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\", state_vars=\"FTPz\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Flash Unit\n", + "\n", + "Now that we have the flowsheet and the properties defined, we can create the flash unit and add it to the flowsheet. \n", + "\n", + "**The Unit Model Library within IDAES includes a large set of common unit operations (see the online documentation for details: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html**\n", + "\n", + "IDAES also fully supports the development of customized unit models (which we will see in a later module).\n", + "\n", + "Some of the IDAES pre-written unit models:\n", + "* Mixer / Splitter\n", + "* Heater / Cooler\n", + "* Heat Exchangers (simple and 1D discretized)\n", + "* Flash\n", + "* Reactors (kinetic, equilibrium, gibbs, stoichiometric conversion)\n", + "* Pressure changing equipment (compressors, expanders, pumps)\n", + "* Feed and Product (source / sink) components\n", + "\n", + "In this module, we will import the `Flash` unit model from `idaes.models.unit_models` and create an instance of the flash unit, attaching it to the flowsheet. Each IDAES unit model has several configurable options to customize the model behavior, but also includes defaults for these options. In this example, we will specify that the property package to be used with the Flash is the one we created earlier.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the following two cells to import the Flash and create an instance of the unit model, attaching it to the flowsheet object.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models import Flash" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.flash = Flash(property_package=m.fs.properties)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this point, we have created a flowsheet and a properties block. We have also created a flash unit and added it to the flowsheet. Under the hood, IDAES has created the required state variables and model equations. Everything is open. You can see these variables and equations by calling the Pyomo method `pprint` on the model, flowsheet, or flash tank objects. Note that this output is very exhaustive, and is not intended to provide any summary information about the model, but rather a complete picture of all of the variables and equations in the model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Set Operating Conditions\n", + "\n", + "Now that we have created our unit model, we can specify the necessary operating conditions. It is often very useful to determine the degrees of freedom before we specify any conditions.\n", + "\n", + "The `idaes.core.util.model_statistics` package has a function `degrees_of_freedom`. To see how to use this function, we can make use of the Python function `help(func)`. This function prints the appropriate documentation string for the function.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Import the degrees_of_freedom function and print the help for the function by calling the Python help function.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", + "\n", + "\n", + "# Todo: Call the python help on the degrees_of_freedom function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now print the degrees of freedom for your model. The result should be 7.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the degrees of freedom for your model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To satisfy our degrees of freedom, we will first specify the inlet conditions. We can specify these values through the `inlet` port of the flash unit.\n", + "\n", + "**To see the list of naming conventions for variables within the IDAES framework, consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/conventions.html#standard-naming-format**\n", + "\n", + "As an example, to fix the molar flow of the inlet to be 1.0, you can use the following notation:\n", + "```python\n", + "m.fs.flash.inlet.flow_mol.fix(1.0)\n", + "```\n", + "\n", + "To specify variables that are indexed by components, you can use the following notation:\n", + "```python\n", + "m.fs.flash.inlet.mole_frac_comp[0, \"benzene\"].fix(0.5)\n", + "```\n", + "\n", + "
\n", + "Note:\n", + "The \"0\" in the indexing of the component mole fraction is present because IDAES models support both dynamic and steady state simulation, and the \"0\" refers to a timestep. Dynamic modeling is beyond the scope of this workshop. Since we are performing steady state modeling, there is only a single timestep in the model.\n", + "
\n", + "\n", + "In the next cell, we will specify the inlet conditions. To satisfy the remaining degrees of freedom, we will make two additional specifications on the flash tank itself. The names of the key variables within the Flash unit model can also be found in the online documentation: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/flash.html#variables.\n", + "\n", + "\n", + "To specify the value of a variable on the unit itself, use the following notation.\n", + "\n", + "```python\n", + "m.fs.flash.heat_duty.fix(0)\n", + "```\n", + "\n", + "For this module, we will use the following specifications:\n", + "* inlet overall molar flow = 1.0 (`flow_mol`)\n", + "* inlet temperature = 368 K (`temperature`)\n", + "* inlet pressure = 101325 Pa (`pressure`)\n", + "* inlet mole fraction (benzene) = 0.5 (`mole_frac_comp[0, \"benzene\"]`)\n", + "* inlet mole fraction (toluene) = 0.5 (`mole_frac_comp[0, \"toluene\"]`)\n", + "* The heat duty on the flash set to 0 (`heat_duty`)\n", + "* The pressure drop across the flash tank set to 0 (`deltaP`)\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Write the code below to specify the inlet conditions and unit specifications described above\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add inlet specifications given above\n", + "\n", + "\n", + "# Todo: Add 2 flash unit specifications given above" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Check the degrees of freedom again to ensure that the system is now square. You should see that the degrees of freedom is now 0.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the degrees of freedom for your model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initializing the Model\n", + "\n", + "IDAES includes pre-written initialization routines for all unit models. You can call this initialize method on the units. In the next module, we will demonstrate the use of a sequential modular solve cycle to initialize flowsheets.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call the initialize method on the flash unit to initialize the model.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: initialize the flash unit" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that the model has been defined and initialized, we can solve the model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Using the notation described in the previous model, create an instance of the \"ipopt\" solver and use it to solve the model. Set the tee option to True to see the log output.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: create the ipopt solver\n", + "\n", + "# Todo: solve the model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Viewing the Results\n", + "\n", + "Once a model is solved, the values returned by the solver are loaded into the model object itself. We can access the value of any variable in the model with the `value` function. For example:\n", + "```python\n", + "print('Vap. Outlet Temperature = ', value(m.fs.flash.vap_outlet.temperature[0]))\n", + "```\n", + "\n", + "You can also find more information about a variable or an entire port using the `display` method from Pyomo:\n", + "```python\n", + "m.fs.flash.vap_outlet.temperature.display()\n", + "m.fs.flash.vap_outlet.display()\n", + "```\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cells below to show the current value of the flash vapor outlet pressure. This cell also shows use of the display function to see the values of the variables in the vap_outlet and the liq_outlet.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# Print the pressure of the flash vapor outlet\n", + "print(\"Pressure =\", value(m.fs.flash.vap_outlet.pressure[0]))\n", + "\n", + "print()\n", + "print(\"Output from display:\")\n", + "# Call display on vap_outlet and liq_outlet of the flash\n", + "m.fs.flash.vap_outlet.display()\n", + "m.fs.flash.liq_outlet.display()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The output from `display` is quite exhaustive and not really intended to provide quick summary information. Because Pyomo is built on Python, there are opportunities to format the output any way we like. Most IDAES models have a `report` method which provides a summary of the results for the model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below which uses the function above to print a summary of the key variables in the flash model, including the inlet, the vapor, and the liquid ports. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.flash.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Studying Purity as a Function of Heat Duty\n", + "\n", + "Since the entire modeling framework is built upon Python, it includes a complete programming environment for whatever analysis we may want to perform. In this next exercise, we will make use of what we learned in this and the previous module to generate a figure showing some output variables as a function of the heat duty in the flash tank.\n", + "\n", + "First, let's import the matplotlib package for plotting as we did in the previous module.\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below to import matplotlib appropriately.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Exercise specifications:\n", + "* Generate a figure showing the flash tank heat duty (`m.fs.flash.heat_duty[0]`) vs. the vapor flowrate (`m.fs.flash.vap_outlet.flow_mol[0]`)\n", + "* Specify the heat duty from -17000 to 25000 over 50 steps\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Using what you have learned so far, fill in the missing code below to generate the figure specified above. (Hint: import numpy and use the linspace function from the previous module)\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# import the solve_successful checking function from workshop tools\n", + "from idaes_examples.mod.tut.workshoptools import solve_successful\n", + "\n", + "# Todo: import numpy as np\n", + "\n", + "\n", + "# create the empty lists to store the results that will be plotted\n", + "Q = []\n", + "V = []\n", + "\n", + "# re-initialize model\n", + "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", + "\n", + "# Todo: Write the for loop specification using numpy's linspace\n", + "\n", + " # fix the heat duty\n", + " m.fs.flash.heat_duty.fix(duty)\n", + " \n", + " # append the value of the duty to the Q list\n", + " Q.append(duty)\n", + " \n", + " # print the current simulation\n", + " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", + "\n", + " # Solve the model\n", + " status = solver.solve(m)\n", + " \n", + " # append the value for vapor fraction if the solve was successful\n", + " if solve_successful(status):\n", + " V.append(value(m.fs.flash.vap_outlet.flow_mol[0]))\n", + " print('... solve successful.')\n", + " else:\n", + " V.append(0.0)\n", + " print('... solve failed.')\n", + " \n", + "# Create and show the figure\n", + "plt.figure(\"Vapor Fraction\")\n", + "plt.plot(Q, V)\n", + "plt.grid()\n", + "plt.xlabel(\"Heat Duty [J]\")\n", + "plt.ylabel(\"Vapor Fraction [-]\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Repeat the exercise above, but create a figure showing the heat duty vs. the mole fraction of Benzene in the vapor outlet. Remove any unnecessary printing to create cleaner results.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: generate a figure of heat duty vs. mole fraction of Benzene in the vapor" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Recall that the IDAES framework is an equation-oriented modeling environment. This means that we can specify \"design\" problems natively. That is, there is no need to have our specifications on the inlet alone. We can put specifications on the outlet as long as we retain a well-posed, square system of equations.\n", + "\n", + "For example, we can remove the specification on heat duty and instead specify that we want the mole fraction of Benzene in the vapor outlet to be equal to 0.6. The mole fraction is not a native variable in the property block, so we cannot use \"fix\". We can, however, add a constraint to the model.\n", + "\n", + "Note that we have been executing a number of solves on the problem, and may not be sure of the current state. To help convergence, therefore, we will first call initialize, then add the new constraint and solve the problem. Note that the reference for the mole fraction of Benzene in the vapor outlet is `m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]`.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Fill in the missing code below and add a constraint on the mole fraction of Benzene (to a value of 0.6) to find the required heat duty.\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# re-initialize the model - this may or may not be required depending on current state but safe to initialize\n", + "m.fs.flash.heat_duty.fix(0)\n", + "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", + "\n", + "# Unfix the heat_duty variable\n", + "m.fs.flash.heat_duty.unfix()\n", + "\n", + "# Todo: Add a new constraint (benzene mole fraction to 0.6)\n", + "\n", + "# solve the problem\n", + "status = solver.solve(m, tee=True)\n", + "\n", + "# Check stream condition\n", + "m.fs.flash.report()" + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } diff --git a/idaes_examples/notebooks/docs/tut/core/flash_unit_solution.ipynb b/idaes_examples/notebooks/docs/tut/core/flash_unit_solution.ipynb index 6b4b3752..a986e1df 100644 --- a/idaes_examples/notebooks/docs/tut/core/flash_unit_solution.ipynb +++ b/idaes_examples/notebooks/docs/tut/core/flash_unit_solution.ipynb @@ -1,896 +1,897 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Flash Unit Model\n", - "\n", - "Author: Jaffer Ghouse \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-06-01 \n", - "\n", - "In this module, we will familiarize ourselves with the IDAES framework by creating and working with a flowsheet that contains a single flash tank. The flash tank will be used to perform separation of Benzene and Toluene. The inlet specifications for this flash tank are:\n", - "\n", - "Inlet Specifications:\n", - "* Mole fraction (Benzene) = 0.5\n", - "* Mole fraction (Toluene) = 0.5\n", - "* Pressure = 101325 Pa\n", - "* Temperature = 368 K\n", - "\n", - "We will complete the following tasks:\n", - "* Create the model and the IDAES Flowsheet object\n", - "* Import the appropriate property packages\n", - "* Create the flash unit and set the operating conditions\n", - "* Initialize the model and simulate the system\n", - "* Demonstrate analyses on this model through some examples and exercises\n", - "\n", - "## Key links to documentation\n", - "* Main IDAES online documentation page: https://idaes-pse.readthedocs.io/en/stable/\n", - "\n", - "## Create the Model and the IDAES Flowsheet\n", - "\n", - "In the next cell, we will perform the necessary imports to get us started. From `pyomo.environ` (a standard import for the Pyomo package), we are importing `ConcreteModel` (to create the Pyomo model that will contain the IDAES flowsheet) and `SolverFactory` (to create the object we will use to solve the equations). We will also import `Constraint` as we will be adding a constraint to the model later in the module. Lastly, we also import `value` from Pyomo. This is a function that can be used to return the current numerical value for variables and parameters in the model. These are all part of Pyomo.\n", - "\n", - "We will also import the main `FlowsheetBlock` from IDAES. The flowsheet block will contain our unit model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below to perform the imports. Let a workshop organizer know if you see any errors.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import ConcreteModel, SolverFactory, Constraint, value\n", - "from idaes.core import FlowsheetBlock\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next cell, we will create the `ConcreteModel` and the `FlowsheetBlock`, and attach the flowsheet block to the Pyomo model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below to create the objects\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "At this point, we have a single Pyomo model that contains an (almost) empty flowsheet block.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Use the pprint method on the model, i.e. m.pprint(), to see what is currently contained in the model.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: call pprint on the model" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: call pprint on the model\n", - "m.pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define Properties\n", - "\n", - "We need to define the property package for our flowsheet. In this example, we will be using the ideal property package that is available as part of the IDAES framework. This property package supports ideal gas - ideal liquid, ideal gas - NRTL, and ideal gas - Wilson models for VLE. More details on this property package can be found at: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", - "\n", - "IDAES also supports creation of your own property packages that allow for specification of the fluid using any set of valid state variables (e.g., component molar flows vs overall flow and mole fractions). This flexibility is designed to support advanced modeling needs that may rely on specific formulations. To learn about creating your own property package, please consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html and look at examples within IDAES\n", - "\n", - "For this workshop, we will import the BTX_activity_coeff_VLE property parameter block to be used in the flowsheet. This properties block will be passed to our unit model to define the appropriate state variables and equations for performing thermodynamic calculations.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the following two cells to import and create the properties block.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", - " BTXParameterBlock,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.properties = BTXParameterBlock(\n", - " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\", state_vars=\"FTPz\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Flash Unit\n", - "\n", - "Now that we have the flowsheet and the properties defined, we can create the flash unit and add it to the flowsheet. \n", - "\n", - "**The Unit Model Library within IDAES includes a large set of common unit operations (see the online documentation for details: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html**\n", - "\n", - "IDAES also fully supports the development of customized unit models (which we will see in a later module).\n", - "\n", - "Some of the IDAES pre-written unit models:\n", - "* Mixer / Splitter\n", - "* Heater / Cooler\n", - "* Heat Exchangers (simple and 1D discretized)\n", - "* Flash\n", - "* Reactors (kinetic, equilibrium, gibbs, stoichiometric conversion)\n", - "* Pressure changing equipment (compressors, expanders, pumps)\n", - "* Feed and Product (source / sink) components\n", - "\n", - "In this module, we will import the `Flash` unit model from `idaes.models.unit_models` and create an instance of the flash unit, attaching it to the flowsheet. Each IDAES unit model has several configurable options to customize the model behavior, but also includes defaults for these options. In this example, we will specify that the property package to be used with the Flash is the one we created earlier.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the following two cells to import the Flash and create an instance of the unit model, attaching it to the flowsheet object.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models import Flash" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.flash = Flash(property_package=m.fs.properties)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "At this point, we have created a flowsheet and a properties block. We have also created a flash unit and added it to the flowsheet. Under the hood, IDAES has created the required state variables and model equations. Everything is open. You can see these variables and equations by calling the Pyomo method `pprint` on the model, flowsheet, or flash tank objects. Note that this output is very exhaustive, and is not intended to provide any summary information about the model, but rather a complete picture of all of the variables and equations in the model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Set Operating Conditions\n", - "\n", - "Now that we have created our unit model, we can specify the necessary operating conditions. It is often very useful to determine the degrees of freedom before we specify any conditions.\n", - "\n", - "The `idaes.core.util.model_statistics` package has a function `degrees_of_freedom`. To see how to use this function, we can make use of the Python function `help(func)`. This function prints the appropriate documentation string for the function.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Import the degrees_of_freedom function and print the help for the function by calling the Python help function.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", - "\n", - "\n", - "# Todo: Call the python help on the degrees_of_freedom function" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "\n", - "# Todo: Call the python help on the degrees_of_freedom function\n", - "help(degrees_of_freedom)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now print the degrees of freedom for your model. The result should be 7.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the degrees of freedom for your model" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the degrees of freedom for your model\n", - "print(\"Degrees of Freedom =\", degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To satisfy our degrees of freedom, we will first specify the inlet conditions. We can specify these values through the `inlet` port of the flash unit.\n", - "\n", - "**To see the list of naming conventions for variables within the IDAES framework, consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/conventions.html#standard-naming-format**\n", - "\n", - "As an example, to fix the molar flow of the inlet to be 1.0, you can use the following notation:\n", - "```python\n", - "m.fs.flash.inlet.flow_mol.fix(1.0)\n", - "```\n", - "\n", - "To specify variables that are indexed by components, you can use the following notation:\n", - "```python\n", - "m.fs.flash.inlet.mole_frac_comp[0, \"benzene\"].fix(0.5)\n", - "```\n", - "\n", - "
\n", - "Note:\n", - "The \"0\" in the indexing of the component mole fraction is present because IDAES models support both dynamic and steady state simulation, and the \"0\" refers to a timestep. Dynamic modeling is beyond the scope of this workshop. Since we are performing steady state modeling, there is only a single timestep in the model.\n", - "
\n", - "\n", - "In the next cell, we will specify the inlet conditions. To satisfy the remaining degrees of freedom, we will make two additional specifications on the flash tank itself. The names of the key variables within the Flash unit model can also be found in the online documentation: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/flash.html#variables.\n", - "\n", - "\n", - "To specify the value of a variable on the unit itself, use the following notation.\n", - "\n", - "```python\n", - "m.fs.flash.heat_duty.fix(0)\n", - "```\n", - "\n", - "For this module, we will use the following specifications:\n", - "* inlet overall molar flow = 1.0 (`flow_mol`)\n", - "* inlet temperature = 368 K (`temperature`)\n", - "* inlet pressure = 101325 Pa (`pressure`)\n", - "* inlet mole fraction (benzene) = 0.5 (`mole_frac_comp[0, \"benzene\"]`)\n", - "* inlet mole fraction (toluene) = 0.5 (`mole_frac_comp[0, \"toluene\"]`)\n", - "* The heat duty on the flash set to 0 (`heat_duty`)\n", - "* The pressure drop across the flash tank set to 0 (`deltaP`)\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Write the code below to specify the inlet conditions and unit specifications described above\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add inlet specifications given above\n", - "\n", - "\n", - "# Todo: Add 2 flash unit specifications given above" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add inlet specifications given above\n", - "m.fs.flash.inlet.flow_mol.fix(1)\n", - "m.fs.flash.inlet.temperature.fix(368)\n", - "m.fs.flash.inlet.pressure.fix(101325)\n", - "m.fs.flash.inlet.mole_frac_comp[0, \"benzene\"].fix(0.5)\n", - "m.fs.flash.inlet.mole_frac_comp[0, \"toluene\"].fix(0.5)\n", - "\n", - "# Todo: Add 2 flash unit specifications given above\n", - "m.fs.flash.heat_duty.fix(0)\n", - "m.fs.flash.deltaP.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Check the degrees of freedom again to ensure that the system is now square. You should see that the degrees of freedom is now 0.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the degrees of freedom for your model" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the degrees of freedom for your model\n", - "print(\"Degrees of Freedom =\", degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Initializing the Model\n", - "\n", - "IDAES includes pre-written initialization routines for all unit models. You can call this initialize method on the units. In the next module, we will demonstrate the use of a sequential modular solve cycle to initialize flowsheets.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call the initialize method on the flash unit to initialize the model.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: initialize the flash unit" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: initialize the flash unit\n", - "m.fs.flash.initialize(outlvl=idaeslog.INFO)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that the model has been defined and initialized, we can solve the model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Using the notation described in the previous model, create an instance of the \"ipopt\" solver and use it to solve the model. Set the tee option to True to see the log output.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: create the ipopt solver\n", - "\n", - "# Todo: solve the model" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: create the ipopt solver\n", - "solver = SolverFactory(\"ipopt\")\n", - "\n", - "# Todo: solve the model\n", - "status = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Viewing the Results\n", - "\n", - "Once a model is solved, the values returned by the solver are loaded into the model object itself. We can access the value of any variable in the model with the `value` function. For example:\n", - "```python\n", - "print('Vap. Outlet Temperature = ', value(m.fs.flash.vap_outlet.temperature[0]))\n", - "```\n", - "\n", - "You can also find more information about a variable or an entire port using the `display` method from Pyomo:\n", - "```python\n", - "m.fs.flash.vap_outlet.temperature.display()\n", - "m.fs.flash.vap_outlet.display()\n", - "```\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cells below to show the current value of the flash vapor outlet pressure. This cell also shows use of the display function to see the values of the variables in the vap_outlet and the liq_outlet.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "# Print the pressure of the flash vapor outlet\n", - "print(\"Pressure =\", value(m.fs.flash.vap_outlet.pressure[0]))\n", - "\n", - "print()\n", - "print(\"Output from display:\")\n", - "# Call display on vap_outlet and liq_outlet of the flash\n", - "m.fs.flash.vap_outlet.display()\n", - "m.fs.flash.liq_outlet.display()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The output from `display` is quite exhaustive and not really intended to provide quick summary information. Because Pyomo is built on Python, there are opportunities to format the output any way we like. Most IDAES models have a `report` method which provides a summary of the results for the model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below which uses the function above to print a summary of the key variables in the flash model, including the inlet, the vapor, and the liquid ports. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.flash.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Studying Purity as a Function of Heat Duty\n", - "\n", - "Since the entire modeling framework is built upon Python, it includes a complete programming environment for whatever analysis we may want to perform. In this next exercise, we will make use of what we learned in this and the previous module to generate a figure showing some output variables as a function of the heat duty in the flash tank.\n", - "\n", - "First, let's import the matplotlib package for plotting as we did in the previous module.\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below to import matplotlib appropriately.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Exercise specifications:\n", - "* Generate a figure showing the flash tank heat duty (`m.fs.flash.heat_duty[0]`) vs. the vapor flowrate (`m.fs.flash.vap_outlet.flow_mol[0]`)\n", - "* Specify the heat duty from -17000 to 25000 over 50 steps\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Using what you have learned so far, fill in the missing code below to generate the figure specified above. (Hint: import numpy and use the linspace function from the previous module)\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# import the solve_successful checking function from workshop tools\n", - "from idaes_examples.mod.tut.workshoptools import solve_successful\n", - "\n", - "# Todo: import numpy as np\n", - "\n", - "\n", - "# create the empty lists to store the results that will be plotted\n", - "Q = []\n", - "V = []\n", - "\n", - "# re-initialize model\n", - "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", - "\n", - "# Todo: Write the for loop specification using numpy's linspace\n", - "\n", - " # fix the heat duty\n", - " m.fs.flash.heat_duty.fix(duty)\n", - " \n", - " # append the value of the duty to the Q list\n", - " Q.append(duty)\n", - " \n", - " # print the current simulation\n", - " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", - "\n", - " # Solve the model\n", - " status = solver.solve(m)\n", - " \n", - " # append the value for vapor fraction if the solve was successful\n", - " if solve_successful(status):\n", - " V.append(value(m.fs.flash.vap_outlet.flow_mol[0]))\n", - " print('... solve successful.')\n", - " else:\n", - " V.append(0.0)\n", - " print('... solve failed.')\n", - " \n", - "# Create and show the figure\n", - "plt.figure(\"Vapor Fraction\")\n", - "plt.plot(Q, V)\n", - "plt.grid()\n", - "plt.xlabel(\"Heat Duty [J]\")\n", - "plt.ylabel(\"Vapor Fraction [-]\")\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "scrolled": true, - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# import the solve_successful checking function from workshop tools\n", - "from idaes_examples.mod.tut.workshoptools import solve_successful\n", - "\n", - "# Todo: import numpy\n", - "import numpy as np\n", - "\n", - "# create the empty lists to store the results that will be plotted\n", - "Q = []\n", - "V = []\n", - "\n", - "# re-initialize model\n", - "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", - "\n", - "# Todo: Write the for loop specification using numpy's linspace\n", - "for duty in np.linspace(-17000, 25000, 50):\n", - " # fix the heat duty\n", - " m.fs.flash.heat_duty.fix(duty)\n", - "\n", - " # append the value of the duty to the Q list\n", - " Q.append(duty)\n", - "\n", - " # print the current simulation\n", - " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", - "\n", - " # Solve the model\n", - " status = solver.solve(m)\n", - "\n", - " # append the value for vapor fraction if the solve was successful\n", - " if solve_successful(status):\n", - " V.append(value(m.fs.flash.vap_outlet.flow_mol[0]))\n", - " print(\"... solve successful.\")\n", - " else:\n", - " V.append(0.0)\n", - " print(\"... solve failed.\")\n", - "\n", - "# Create and show the figure\n", - "plt.figure(\"Vapor Fraction\")\n", - "plt.plot(Q, V)\n", - "plt.grid()\n", - "plt.xlabel(\"Heat Duty [J]\")\n", - "plt.ylabel(\"Vapor Fraction [-]\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Repeat the exercise above, but create a figure showing the heat duty vs. the mole fraction of Benzene in the vapor outlet. Remove any unnecessary printing to create cleaner results.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: generate a figure of heat duty vs. mole fraction of Benzene in the vapor" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: generate a figure of heat duty vs. mole fraction of Benzene in the vapor\n", - "Q = []\n", - "V = []\n", - "\n", - "for duty in np.linspace(-17000, 25000, 50):\n", - " # fix the heat duty\n", - " m.fs.flash.heat_duty.fix(duty)\n", - "\n", - " # append the value of the duty to the Q list\n", - " Q.append(duty)\n", - "\n", - " # print the current simulation\n", - " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", - "\n", - " # solve the model\n", - " status = solver.solve(m)\n", - "\n", - " # append the value for vapor fraction if the solve was successful\n", - " if solve_successful(status):\n", - " V.append(value(m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]))\n", - " print(\"... solve successful.\")\n", - " else:\n", - " V.append(0.0)\n", - " print(\"... solve failed.\")\n", - "\n", - "plt.figure(\"Purity\")\n", - "plt.plot(Q, V)\n", - "plt.grid()\n", - "plt.xlabel(\"Heat Duty [J]\")\n", - "plt.ylabel(\"Vapor Benzene Mole Fraction [-]\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Recall that the IDAES framework is an equation-oriented modeling environment. This means that we can specify \"design\" problems natively. That is, there is no need to have our specifications on the inlet alone. We can put specifications on the outlet as long as we retain a well-posed, square system of equations.\n", - "\n", - "For example, we can remove the specification on heat duty and instead specify that we want the mole fraction of Benzene in the vapor outlet to be equal to 0.6. The mole fraction is not a native variable in the property block, so we cannot use \"fix\". We can, however, add a constraint to the model.\n", - "\n", - "Note that we have been executing a number of solves on the problem, and may not be sure of the current state. To help convergence, therefore, we will first call initialize, then add the new constraint and solve the problem. Note that the reference for the mole fraction of Benzene in the vapor outlet is `m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]`.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Fill in the missing code below and add a constraint on the mole fraction of Benzene (to a value of 0.6) to find the required heat duty.\n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# re-initialize the model - this may or may not be required depending on current state but safe to initialize\n", - "m.fs.flash.heat_duty.fix(0)\n", - "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", - "\n", - "# Unfix the heat_duty variable\n", - "m.fs.flash.heat_duty.unfix()\n", - "\n", - "# Todo: Add a new constraint (benzene mole fraction to 0.6)\n", - "\n", - "# solve the problem\n", - "status = solver.solve(m, tee=True)\n", - "\n", - "# Check stream condition\n", - "m.fs.flash.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# re-initialize the model - this may or may not be required depending on current state but safe to initialize\n", - "m.fs.flash.heat_duty.fix(0)\n", - "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", - "\n", - "# Unfix the heat_duty variable\n", - "m.fs.flash.heat_duty.unfix()\n", - "\n", - "# Todo: Add a new constraint (benzene mole fraction to 0.6)\n", - "m.benz_purity_con = Constraint(\n", - " expr=m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"] == 0.6\n", - ")\n", - "\n", - "# solve the problem\n", - "status = solver.solve(m, tee=True)\n", - "\n", - "# Check stream condition\n", - "m.fs.flash.report()" - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Flash Unit Model\n", + "\n", + "Author: Jaffer Ghouse \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-06-01 \n", + "\n", + "In this module, we will familiarize ourselves with the IDAES framework by creating and working with a flowsheet that contains a single flash tank. The flash tank will be used to perform separation of Benzene and Toluene. The inlet specifications for this flash tank are:\n", + "\n", + "Inlet Specifications:\n", + "* Mole fraction (Benzene) = 0.5\n", + "* Mole fraction (Toluene) = 0.5\n", + "* Pressure = 101325 Pa\n", + "* Temperature = 368 K\n", + "\n", + "We will complete the following tasks:\n", + "* Create the model and the IDAES Flowsheet object\n", + "* Import the appropriate property packages\n", + "* Create the flash unit and set the operating conditions\n", + "* Initialize the model and simulate the system\n", + "* Demonstrate analyses on this model through some examples and exercises\n", + "\n", + "## Key links to documentation\n", + "* Main IDAES online documentation page: https://idaes-pse.readthedocs.io/en/stable/\n", + "\n", + "## Create the Model and the IDAES Flowsheet\n", + "\n", + "In the next cell, we will perform the necessary imports to get us started. From `pyomo.environ` (a standard import for the Pyomo package), we are importing `ConcreteModel` (to create the Pyomo model that will contain the IDAES flowsheet) and `SolverFactory` (to create the object we will use to solve the equations). We will also import `Constraint` as we will be adding a constraint to the model later in the module. Lastly, we also import `value` from Pyomo. This is a function that can be used to return the current numerical value for variables and parameters in the model. These are all part of Pyomo.\n", + "\n", + "We will also import the main `FlowsheetBlock` from IDAES. The flowsheet block will contain our unit model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below to perform the imports. Let a workshop organizer know if you see any errors.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import ConcreteModel, SolverFactory, Constraint, value\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the next cell, we will create the `ConcreteModel` and the `FlowsheetBlock`, and attach the flowsheet block to the Pyomo model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below to create the objects\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this point, we have a single Pyomo model that contains an (almost) empty flowsheet block.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Use the pprint method on the model, i.e. m.pprint(), to see what is currently contained in the model.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: call pprint on the model" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: call pprint on the model\n", + "m.pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define Properties\n", + "\n", + "We need to define the property package for our flowsheet. In this example, we will be using the ideal property package that is available as part of the IDAES framework. This property package supports ideal gas - ideal liquid, ideal gas - NRTL, and ideal gas - Wilson models for VLE. More details on this property package can be found at: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", + "\n", + "IDAES also supports creation of your own property packages that allow for specification of the fluid using any set of valid state variables (e.g., component molar flows vs overall flow and mole fractions). This flexibility is designed to support advanced modeling needs that may rely on specific formulations. To learn about creating your own property package, please consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html and look at examples within IDAES\n", + "\n", + "For this workshop, we will import the BTX_activity_coeff_VLE property parameter block to be used in the flowsheet. This properties block will be passed to our unit model to define the appropriate state variables and equations for performing thermodynamic calculations.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the following two cells to import and create the properties block.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", + " BTXParameterBlock,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.properties = BTXParameterBlock(\n", + " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\", state_vars=\"FTPz\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Flash Unit\n", + "\n", + "Now that we have the flowsheet and the properties defined, we can create the flash unit and add it to the flowsheet. \n", + "\n", + "**The Unit Model Library within IDAES includes a large set of common unit operations (see the online documentation for details: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html**\n", + "\n", + "IDAES also fully supports the development of customized unit models (which we will see in a later module).\n", + "\n", + "Some of the IDAES pre-written unit models:\n", + "* Mixer / Splitter\n", + "* Heater / Cooler\n", + "* Heat Exchangers (simple and 1D discretized)\n", + "* Flash\n", + "* Reactors (kinetic, equilibrium, gibbs, stoichiometric conversion)\n", + "* Pressure changing equipment (compressors, expanders, pumps)\n", + "* Feed and Product (source / sink) components\n", + "\n", + "In this module, we will import the `Flash` unit model from `idaes.models.unit_models` and create an instance of the flash unit, attaching it to the flowsheet. Each IDAES unit model has several configurable options to customize the model behavior, but also includes defaults for these options. In this example, we will specify that the property package to be used with the Flash is the one we created earlier.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the following two cells to import the Flash and create an instance of the unit model, attaching it to the flowsheet object.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models import Flash" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.flash = Flash(property_package=m.fs.properties)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this point, we have created a flowsheet and a properties block. We have also created a flash unit and added it to the flowsheet. Under the hood, IDAES has created the required state variables and model equations. Everything is open. You can see these variables and equations by calling the Pyomo method `pprint` on the model, flowsheet, or flash tank objects. Note that this output is very exhaustive, and is not intended to provide any summary information about the model, but rather a complete picture of all of the variables and equations in the model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Set Operating Conditions\n", + "\n", + "Now that we have created our unit model, we can specify the necessary operating conditions. It is often very useful to determine the degrees of freedom before we specify any conditions.\n", + "\n", + "The `idaes.core.util.model_statistics` package has a function `degrees_of_freedom`. To see how to use this function, we can make use of the Python function `help(func)`. This function prints the appropriate documentation string for the function.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Import the degrees_of_freedom function and print the help for the function by calling the Python help function.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", + "\n", + "\n", + "# Todo: Call the python help on the degrees_of_freedom function" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "\n", + "# Todo: Call the python help on the degrees_of_freedom function\n", + "help(degrees_of_freedom)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now print the degrees of freedom for your model. The result should be 7.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the degrees of freedom for your model" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the degrees of freedom for your model\n", + "print(\"Degrees of Freedom =\", degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To satisfy our degrees of freedom, we will first specify the inlet conditions. We can specify these values through the `inlet` port of the flash unit.\n", + "\n", + "**To see the list of naming conventions for variables within the IDAES framework, consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/conventions.html#standard-naming-format**\n", + "\n", + "As an example, to fix the molar flow of the inlet to be 1.0, you can use the following notation:\n", + "```python\n", + "m.fs.flash.inlet.flow_mol.fix(1.0)\n", + "```\n", + "\n", + "To specify variables that are indexed by components, you can use the following notation:\n", + "```python\n", + "m.fs.flash.inlet.mole_frac_comp[0, \"benzene\"].fix(0.5)\n", + "```\n", + "\n", + "
\n", + "Note:\n", + "The \"0\" in the indexing of the component mole fraction is present because IDAES models support both dynamic and steady state simulation, and the \"0\" refers to a timestep. Dynamic modeling is beyond the scope of this workshop. Since we are performing steady state modeling, there is only a single timestep in the model.\n", + "
\n", + "\n", + "In the next cell, we will specify the inlet conditions. To satisfy the remaining degrees of freedom, we will make two additional specifications on the flash tank itself. The names of the key variables within the Flash unit model can also be found in the online documentation: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/flash.html#variables.\n", + "\n", + "\n", + "To specify the value of a variable on the unit itself, use the following notation.\n", + "\n", + "```python\n", + "m.fs.flash.heat_duty.fix(0)\n", + "```\n", + "\n", + "For this module, we will use the following specifications:\n", + "* inlet overall molar flow = 1.0 (`flow_mol`)\n", + "* inlet temperature = 368 K (`temperature`)\n", + "* inlet pressure = 101325 Pa (`pressure`)\n", + "* inlet mole fraction (benzene) = 0.5 (`mole_frac_comp[0, \"benzene\"]`)\n", + "* inlet mole fraction (toluene) = 0.5 (`mole_frac_comp[0, \"toluene\"]`)\n", + "* The heat duty on the flash set to 0 (`heat_duty`)\n", + "* The pressure drop across the flash tank set to 0 (`deltaP`)\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Write the code below to specify the inlet conditions and unit specifications described above\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add inlet specifications given above\n", + "\n", + "\n", + "# Todo: Add 2 flash unit specifications given above" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add inlet specifications given above\n", + "m.fs.flash.inlet.flow_mol.fix(1)\n", + "m.fs.flash.inlet.temperature.fix(368)\n", + "m.fs.flash.inlet.pressure.fix(101325)\n", + "m.fs.flash.inlet.mole_frac_comp[0, \"benzene\"].fix(0.5)\n", + "m.fs.flash.inlet.mole_frac_comp[0, \"toluene\"].fix(0.5)\n", + "\n", + "# Todo: Add 2 flash unit specifications given above\n", + "m.fs.flash.heat_duty.fix(0)\n", + "m.fs.flash.deltaP.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Check the degrees of freedom again to ensure that the system is now square. You should see that the degrees of freedom is now 0.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the degrees of freedom for your model" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the degrees of freedom for your model\n", + "print(\"Degrees of Freedom =\", degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initializing the Model\n", + "\n", + "IDAES includes pre-written initialization routines for all unit models. You can call this initialize method on the units. In the next module, we will demonstrate the use of a sequential modular solve cycle to initialize flowsheets.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call the initialize method on the flash unit to initialize the model.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: initialize the flash unit" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: initialize the flash unit\n", + "m.fs.flash.initialize(outlvl=idaeslog.INFO)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that the model has been defined and initialized, we can solve the model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Using the notation described in the previous model, create an instance of the \"ipopt\" solver and use it to solve the model. Set the tee option to True to see the log output.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: create the ipopt solver\n", + "\n", + "# Todo: solve the model" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: create the ipopt solver\n", + "solver = SolverFactory(\"ipopt\")\n", + "\n", + "# Todo: solve the model\n", + "status = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Viewing the Results\n", + "\n", + "Once a model is solved, the values returned by the solver are loaded into the model object itself. We can access the value of any variable in the model with the `value` function. For example:\n", + "```python\n", + "print('Vap. Outlet Temperature = ', value(m.fs.flash.vap_outlet.temperature[0]))\n", + "```\n", + "\n", + "You can also find more information about a variable or an entire port using the `display` method from Pyomo:\n", + "```python\n", + "m.fs.flash.vap_outlet.temperature.display()\n", + "m.fs.flash.vap_outlet.display()\n", + "```\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cells below to show the current value of the flash vapor outlet pressure. This cell also shows use of the display function to see the values of the variables in the vap_outlet and the liq_outlet.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# Print the pressure of the flash vapor outlet\n", + "print(\"Pressure =\", value(m.fs.flash.vap_outlet.pressure[0]))\n", + "\n", + "print()\n", + "print(\"Output from display:\")\n", + "# Call display on vap_outlet and liq_outlet of the flash\n", + "m.fs.flash.vap_outlet.display()\n", + "m.fs.flash.liq_outlet.display()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The output from `display` is quite exhaustive and not really intended to provide quick summary information. Because Pyomo is built on Python, there are opportunities to format the output any way we like. Most IDAES models have a `report` method which provides a summary of the results for the model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below which uses the function above to print a summary of the key variables in the flash model, including the inlet, the vapor, and the liquid ports. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.flash.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Studying Purity as a Function of Heat Duty\n", + "\n", + "Since the entire modeling framework is built upon Python, it includes a complete programming environment for whatever analysis we may want to perform. In this next exercise, we will make use of what we learned in this and the previous module to generate a figure showing some output variables as a function of the heat duty in the flash tank.\n", + "\n", + "First, let's import the matplotlib package for plotting as we did in the previous module.\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below to import matplotlib appropriately.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Exercise specifications:\n", + "* Generate a figure showing the flash tank heat duty (`m.fs.flash.heat_duty[0]`) vs. the vapor flowrate (`m.fs.flash.vap_outlet.flow_mol[0]`)\n", + "* Specify the heat duty from -17000 to 25000 over 50 steps\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Using what you have learned so far, fill in the missing code below to generate the figure specified above. (Hint: import numpy and use the linspace function from the previous module)\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# import the solve_successful checking function from workshop tools\n", + "from idaes_examples.mod.tut.workshoptools import solve_successful\n", + "\n", + "# Todo: import numpy as np\n", + "\n", + "\n", + "# create the empty lists to store the results that will be plotted\n", + "Q = []\n", + "V = []\n", + "\n", + "# re-initialize model\n", + "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", + "\n", + "# Todo: Write the for loop specification using numpy's linspace\n", + "\n", + " # fix the heat duty\n", + " m.fs.flash.heat_duty.fix(duty)\n", + " \n", + " # append the value of the duty to the Q list\n", + " Q.append(duty)\n", + " \n", + " # print the current simulation\n", + " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", + "\n", + " # Solve the model\n", + " status = solver.solve(m)\n", + " \n", + " # append the value for vapor fraction if the solve was successful\n", + " if solve_successful(status):\n", + " V.append(value(m.fs.flash.vap_outlet.flow_mol[0]))\n", + " print('... solve successful.')\n", + " else:\n", + " V.append(0.0)\n", + " print('... solve failed.')\n", + " \n", + "# Create and show the figure\n", + "plt.figure(\"Vapor Fraction\")\n", + "plt.plot(Q, V)\n", + "plt.grid()\n", + "plt.xlabel(\"Heat Duty [J]\")\n", + "plt.ylabel(\"Vapor Fraction [-]\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "scrolled": true, + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# import the solve_successful checking function from workshop tools\n", + "from idaes_examples.mod.tut.workshoptools import solve_successful\n", + "\n", + "# Todo: import numpy\n", + "import numpy as np\n", + "\n", + "# create the empty lists to store the results that will be plotted\n", + "Q = []\n", + "V = []\n", + "\n", + "# re-initialize model\n", + "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", + "\n", + "# Todo: Write the for loop specification using numpy's linspace\n", + "for duty in np.linspace(-17000, 25000, 50):\n", + " # fix the heat duty\n", + " m.fs.flash.heat_duty.fix(duty)\n", + "\n", + " # append the value of the duty to the Q list\n", + " Q.append(duty)\n", + "\n", + " # print the current simulation\n", + " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", + "\n", + " # Solve the model\n", + " status = solver.solve(m)\n", + "\n", + " # append the value for vapor fraction if the solve was successful\n", + " if solve_successful(status):\n", + " V.append(value(m.fs.flash.vap_outlet.flow_mol[0]))\n", + " print(\"... solve successful.\")\n", + " else:\n", + " V.append(0.0)\n", + " print(\"... solve failed.\")\n", + "\n", + "# Create and show the figure\n", + "plt.figure(\"Vapor Fraction\")\n", + "plt.plot(Q, V)\n", + "plt.grid()\n", + "plt.xlabel(\"Heat Duty [J]\")\n", + "plt.ylabel(\"Vapor Fraction [-]\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Repeat the exercise above, but create a figure showing the heat duty vs. the mole fraction of Benzene in the vapor outlet. Remove any unnecessary printing to create cleaner results.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: generate a figure of heat duty vs. mole fraction of Benzene in the vapor" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: generate a figure of heat duty vs. mole fraction of Benzene in the vapor\n", + "Q = []\n", + "V = []\n", + "\n", + "for duty in np.linspace(-17000, 25000, 50):\n", + " # fix the heat duty\n", + " m.fs.flash.heat_duty.fix(duty)\n", + "\n", + " # append the value of the duty to the Q list\n", + " Q.append(duty)\n", + "\n", + " # print the current simulation\n", + " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", + "\n", + " # solve the model\n", + " status = solver.solve(m)\n", + "\n", + " # append the value for vapor fraction if the solve was successful\n", + " if solve_successful(status):\n", + " V.append(value(m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]))\n", + " print(\"... solve successful.\")\n", + " else:\n", + " V.append(0.0)\n", + " print(\"... solve failed.\")\n", + "\n", + "plt.figure(\"Purity\")\n", + "plt.plot(Q, V)\n", + "plt.grid()\n", + "plt.xlabel(\"Heat Duty [J]\")\n", + "plt.ylabel(\"Vapor Benzene Mole Fraction [-]\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Recall that the IDAES framework is an equation-oriented modeling environment. This means that we can specify \"design\" problems natively. That is, there is no need to have our specifications on the inlet alone. We can put specifications on the outlet as long as we retain a well-posed, square system of equations.\n", + "\n", + "For example, we can remove the specification on heat duty and instead specify that we want the mole fraction of Benzene in the vapor outlet to be equal to 0.6. The mole fraction is not a native variable in the property block, so we cannot use \"fix\". We can, however, add a constraint to the model.\n", + "\n", + "Note that we have been executing a number of solves on the problem, and may not be sure of the current state. To help convergence, therefore, we will first call initialize, then add the new constraint and solve the problem. Note that the reference for the mole fraction of Benzene in the vapor outlet is `m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]`.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Fill in the missing code below and add a constraint on the mole fraction of Benzene (to a value of 0.6) to find the required heat duty.\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# re-initialize the model - this may or may not be required depending on current state but safe to initialize\n", + "m.fs.flash.heat_duty.fix(0)\n", + "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", + "\n", + "# Unfix the heat_duty variable\n", + "m.fs.flash.heat_duty.unfix()\n", + "\n", + "# Todo: Add a new constraint (benzene mole fraction to 0.6)\n", + "\n", + "# solve the problem\n", + "status = solver.solve(m, tee=True)\n", + "\n", + "# Check stream condition\n", + "m.fs.flash.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# re-initialize the model - this may or may not be required depending on current state but safe to initialize\n", + "m.fs.flash.heat_duty.fix(0)\n", + "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", + "\n", + "# Unfix the heat_duty variable\n", + "m.fs.flash.heat_duty.unfix()\n", + "\n", + "# Todo: Add a new constraint (benzene mole fraction to 0.6)\n", + "m.benz_purity_con = Constraint(\n", + " expr=m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"] == 0.6\n", + ")\n", + "\n", + "# solve the problem\n", + "status = solver.solve(m, tee=True)\n", + "\n", + "# Check stream condition\n", + "m.fs.flash.report()" + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } diff --git a/idaes_examples/notebooks/docs/tut/core/flash_unit_test.ipynb b/idaes_examples/notebooks/docs/tut/core/flash_unit_test.ipynb index 562af431..8136aac7 100644 --- a/idaes_examples/notebooks/docs/tut/core/flash_unit_test.ipynb +++ b/idaes_examples/notebooks/docs/tut/core/flash_unit_test.ipynb @@ -1,817 +1,818 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Flash Unit Model\n", - "\n", - "Author: Jaffer Ghouse \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-06-01 \n", - "\n", - "In this module, we will familiarize ourselves with the IDAES framework by creating and working with a flowsheet that contains a single flash tank. The flash tank will be used to perform separation of Benzene and Toluene. The inlet specifications for this flash tank are:\n", - "\n", - "Inlet Specifications:\n", - "* Mole fraction (Benzene) = 0.5\n", - "* Mole fraction (Toluene) = 0.5\n", - "* Pressure = 101325 Pa\n", - "* Temperature = 368 K\n", - "\n", - "We will complete the following tasks:\n", - "* Create the model and the IDAES Flowsheet object\n", - "* Import the appropriate property packages\n", - "* Create the flash unit and set the operating conditions\n", - "* Initialize the model and simulate the system\n", - "* Demonstrate analyses on this model through some examples and exercises\n", - "\n", - "## Key links to documentation\n", - "* Main IDAES online documentation page: https://idaes-pse.readthedocs.io/en/stable/\n", - "\n", - "## Create the Model and the IDAES Flowsheet\n", - "\n", - "In the next cell, we will perform the necessary imports to get us started. From `pyomo.environ` (a standard import for the Pyomo package), we are importing `ConcreteModel` (to create the Pyomo model that will contain the IDAES flowsheet) and `SolverFactory` (to create the object we will use to solve the equations). We will also import `Constraint` as we will be adding a constraint to the model later in the module. Lastly, we also import `value` from Pyomo. This is a function that can be used to return the current numerical value for variables and parameters in the model. These are all part of Pyomo.\n", - "\n", - "We will also import the main `FlowsheetBlock` from IDAES. The flowsheet block will contain our unit model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below to perform the imports. Let a workshop organizer know if you see any errors.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import ConcreteModel, SolverFactory, Constraint, value\n", - "from idaes.core import FlowsheetBlock\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next cell, we will create the `ConcreteModel` and the `FlowsheetBlock`, and attach the flowsheet block to the Pyomo model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below to create the objects\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "At this point, we have a single Pyomo model that contains an (almost) empty flowsheet block.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Use the pprint method on the model, i.e. m.pprint(), to see what is currently contained in the model.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: call pprint on the model\n", - "m.pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define Properties\n", - "\n", - "We need to define the property package for our flowsheet. In this example, we will be using the ideal property package that is available as part of the IDAES framework. This property package supports ideal gas - ideal liquid, ideal gas - NRTL, and ideal gas - Wilson models for VLE. More details on this property package can be found at: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", - "\n", - "IDAES also supports creation of your own property packages that allow for specification of the fluid using any set of valid state variables (e.g., component molar flows vs overall flow and mole fractions). This flexibility is designed to support advanced modeling needs that may rely on specific formulations. To learn about creating your own property package, please consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html and look at examples within IDAES\n", - "\n", - "For this workshop, we will import the BTX_activity_coeff_VLE property parameter block to be used in the flowsheet. This properties block will be passed to our unit model to define the appropriate state variables and equations for performing thermodynamic calculations.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the following two cells to import and create the properties block.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", - " BTXParameterBlock,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.properties = BTXParameterBlock(\n", - " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\", state_vars=\"FTPz\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Flash Unit\n", - "\n", - "Now that we have the flowsheet and the properties defined, we can create the flash unit and add it to the flowsheet. \n", - "\n", - "**The Unit Model Library within IDAES includes a large set of common unit operations (see the online documentation for details: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html**\n", - "\n", - "IDAES also fully supports the development of customized unit models (which we will see in a later module).\n", - "\n", - "Some of the IDAES pre-written unit models:\n", - "* Mixer / Splitter\n", - "* Heater / Cooler\n", - "* Heat Exchangers (simple and 1D discretized)\n", - "* Flash\n", - "* Reactors (kinetic, equilibrium, gibbs, stoichiometric conversion)\n", - "* Pressure changing equipment (compressors, expanders, pumps)\n", - "* Feed and Product (source / sink) components\n", - "\n", - "In this module, we will import the `Flash` unit model from `idaes.models.unit_models` and create an instance of the flash unit, attaching it to the flowsheet. Each IDAES unit model has several configurable options to customize the model behavior, but also includes defaults for these options. In this example, we will specify that the property package to be used with the Flash is the one we created earlier.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the following two cells to import the Flash and create an instance of the unit model, attaching it to the flowsheet object.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models import Flash" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.flash = Flash(property_package=m.fs.properties)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "At this point, we have created a flowsheet and a properties block. We have also created a flash unit and added it to the flowsheet. Under the hood, IDAES has created the required state variables and model equations. Everything is open. You can see these variables and equations by calling the Pyomo method `pprint` on the model, flowsheet, or flash tank objects. Note that this output is very exhaustive, and is not intended to provide any summary information about the model, but rather a complete picture of all of the variables and equations in the model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Set Operating Conditions\n", - "\n", - "Now that we have created our unit model, we can specify the necessary operating conditions. It is often very useful to determine the degrees of freedom before we specify any conditions.\n", - "\n", - "The `idaes.core.util.model_statistics` package has a function `degrees_of_freedom`. To see how to use this function, we can make use of the Python function `help(func)`. This function prints the appropriate documentation string for the function.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Import the degrees_of_freedom function and print the help for the function by calling the Python help function.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "\n", - "# Todo: Call the python help on the degrees_of_freedom function\n", - "help(degrees_of_freedom)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now print the degrees of freedom for your model. The result should be 7.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the degrees of freedom for your model\n", - "print(\"Degrees of Freedom =\", degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check the degrees of freedom\n", - "assert degrees_of_freedom(m) == 7" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To satisfy our degrees of freedom, we will first specify the inlet conditions. We can specify these values through the `inlet` port of the flash unit.\n", - "\n", - "**To see the list of naming conventions for variables within the IDAES framework, consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/conventions.html#standard-naming-format**\n", - "\n", - "As an example, to fix the molar flow of the inlet to be 1.0, you can use the following notation:\n", - "```python\n", - "m.fs.flash.inlet.flow_mol.fix(1.0)\n", - "```\n", - "\n", - "To specify variables that are indexed by components, you can use the following notation:\n", - "```python\n", - "m.fs.flash.inlet.mole_frac_comp[0, \"benzene\"].fix(0.5)\n", - "```\n", - "\n", - "
\n", - "Note:\n", - "The \"0\" in the indexing of the component mole fraction is present because IDAES models support both dynamic and steady state simulation, and the \"0\" refers to a timestep. Dynamic modeling is beyond the scope of this workshop. Since we are performing steady state modeling, there is only a single timestep in the model.\n", - "
\n", - "\n", - "In the next cell, we will specify the inlet conditions. To satisfy the remaining degrees of freedom, we will make two additional specifications on the flash tank itself. The names of the key variables within the Flash unit model can also be found in the online documentation: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/flash.html#variables.\n", - "\n", - "\n", - "To specify the value of a variable on the unit itself, use the following notation.\n", - "\n", - "```python\n", - "m.fs.flash.heat_duty.fix(0)\n", - "```\n", - "\n", - "For this module, we will use the following specifications:\n", - "* inlet overall molar flow = 1.0 (`flow_mol`)\n", - "* inlet temperature = 368 K (`temperature`)\n", - "* inlet pressure = 101325 Pa (`pressure`)\n", - "* inlet mole fraction (benzene) = 0.5 (`mole_frac_comp[0, \"benzene\"]`)\n", - "* inlet mole fraction (toluene) = 0.5 (`mole_frac_comp[0, \"toluene\"]`)\n", - "* The heat duty on the flash set to 0 (`heat_duty`)\n", - "* The pressure drop across the flash tank set to 0 (`deltaP`)\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Write the code below to specify the inlet conditions and unit specifications described above\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add inlet specifications given above\n", - "m.fs.flash.inlet.flow_mol.fix(1)\n", - "m.fs.flash.inlet.temperature.fix(368)\n", - "m.fs.flash.inlet.pressure.fix(101325)\n", - "m.fs.flash.inlet.mole_frac_comp[0, \"benzene\"].fix(0.5)\n", - "m.fs.flash.inlet.mole_frac_comp[0, \"toluene\"].fix(0.5)\n", - "\n", - "# Todo: Add 2 flash unit specifications given above\n", - "m.fs.flash.heat_duty.fix(0)\n", - "m.fs.flash.deltaP.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Check the degrees of freedom again to ensure that the system is now square. You should see that the degrees of freedom is now 0.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the degrees of freedom for your model\n", - "print(\"Degrees of Freedom =\", degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check the degrees of freedom\n", - "assert degrees_of_freedom(m) == 0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Initializing the Model\n", - "\n", - "IDAES includes pre-written initialization routines for all unit models. You can call this initialize method on the units. In the next module, we will demonstrate the use of a sequential modular solve cycle to initialize flowsheets.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call the initialize method on the flash unit to initialize the model.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: initialize the flash unit\n", - "m.fs.flash.initialize(outlvl=idaeslog.INFO)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that the model has been defined and initialized, we can solve the model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Using the notation described in the previous model, create an instance of the \"ipopt\" solver and use it to solve the model. Set the tee option to True to see the log output.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: create the ipopt solver\n", - "solver = SolverFactory(\"ipopt\")\n", - "\n", - "# Todo: solve the model\n", - "status = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check for optimal solution\n", - "from pyomo.environ import TerminationCondition\n", - "\n", - "assert status.solver.termination_condition == TerminationCondition.optimal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Viewing the Results\n", - "\n", - "Once a model is solved, the values returned by the solver are loaded into the model object itself. We can access the value of any variable in the model with the `value` function. For example:\n", - "```python\n", - "print('Vap. Outlet Temperature = ', value(m.fs.flash.vap_outlet.temperature[0]))\n", - "```\n", - "\n", - "You can also find more information about a variable or an entire port using the `display` method from Pyomo:\n", - "```python\n", - "m.fs.flash.vap_outlet.temperature.display()\n", - "m.fs.flash.vap_outlet.display()\n", - "```\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cells below to show the current value of the flash vapor outlet pressure. This cell also shows use of the display function to see the values of the variables in the vap_outlet and the liq_outlet.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "# Print the pressure of the flash vapor outlet\n", - "print(\"Pressure =\", value(m.fs.flash.vap_outlet.pressure[0]))\n", - "\n", - "print()\n", - "print(\"Output from display:\")\n", - "# Call display on vap_outlet and liq_outlet of the flash\n", - "m.fs.flash.vap_outlet.display()\n", - "m.fs.flash.liq_outlet.display()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The output from `display` is quite exhaustive and not really intended to provide quick summary information. Because Pyomo is built on Python, there are opportunities to format the output any way we like. Most IDAES models have a `report` method which provides a summary of the results for the model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below which uses the function above to print a summary of the key variables in the flash model, including the inlet, the vapor, and the liquid ports. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.flash.report()" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check optimal solution values\n", - "import pytest\n", - "\n", - "assert value(m.fs.flash.liq_outlet.flow_mol[0]) == pytest.approx(0.6038, abs=1e-3)\n", - "assert value(m.fs.flash.liq_outlet.mole_frac_comp[0, \"benzene\"]) == pytest.approx(\n", - " 0.4121, abs=1e-3\n", - ")\n", - "assert value(m.fs.flash.liq_outlet.mole_frac_comp[0, \"toluene\"]) == pytest.approx(\n", - " 0.5878, abs=1e-3\n", - ")\n", - "assert value(m.fs.flash.liq_outlet.temperature[0]) == pytest.approx(368, abs=1e-3)\n", - "assert value(m.fs.flash.liq_outlet.pressure[0]) == pytest.approx(101325, abs=1e-3)\n", - "\n", - "assert value(m.fs.flash.vap_outlet.flow_mol[0]) == pytest.approx(0.3961, abs=1e-3)\n", - "assert value(m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]) == pytest.approx(\n", - " 0.6339, abs=1e-3\n", - ")\n", - "assert value(m.fs.flash.vap_outlet.mole_frac_comp[0, \"toluene\"]) == pytest.approx(\n", - " 0.3660, abs=1e-3\n", - ")\n", - "assert value(m.fs.flash.vap_outlet.temperature[0]) == pytest.approx(368, abs=1e-3)\n", - "assert value(m.fs.flash.vap_outlet.pressure[0]) == pytest.approx(101325, abs=1e-3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Studying Purity as a Function of Heat Duty\n", - "\n", - "Since the entire modeling framework is built upon Python, it includes a complete programming environment for whatever analysis we may want to perform. In this next exercise, we will make use of what we learned in this and the previous module to generate a figure showing some output variables as a function of the heat duty in the flash tank.\n", - "\n", - "First, let's import the matplotlib package for plotting as we did in the previous module.\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below to import matplotlib appropriately.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Exercise specifications:\n", - "* Generate a figure showing the flash tank heat duty (`m.fs.flash.heat_duty[0]`) vs. the vapor flowrate (`m.fs.flash.vap_outlet.flow_mol[0]`)\n", - "* Specify the heat duty from -17000 to 25000 over 50 steps\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Using what you have learned so far, fill in the missing code below to generate the figure specified above. (Hint: import numpy and use the linspace function from the previous module)\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "scrolled": true, - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# import the solve_successful checking function from workshop tools\n", - "from idaes_examples.mod.tut.workshoptools import solve_successful\n", - "\n", - "# Todo: import numpy\n", - "import numpy as np\n", - "\n", - "# create the empty lists to store the results that will be plotted\n", - "Q = []\n", - "V = []\n", - "\n", - "# re-initialize model\n", - "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", - "\n", - "# Todo: Write the for loop specification using numpy's linspace\n", - "for duty in np.linspace(-17000, 25000, 50):\n", - " # fix the heat duty\n", - " m.fs.flash.heat_duty.fix(duty)\n", - "\n", - " # append the value of the duty to the Q list\n", - " Q.append(duty)\n", - "\n", - " # print the current simulation\n", - " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", - "\n", - " # Solve the model\n", - " status = solver.solve(m)\n", - "\n", - " # append the value for vapor fraction if the solve was successful\n", - " if solve_successful(status):\n", - " V.append(value(m.fs.flash.vap_outlet.flow_mol[0]))\n", - " print(\"... solve successful.\")\n", - " else:\n", - " V.append(0.0)\n", - " print(\"... solve failed.\")\n", - "\n", - "# Create and show the figure\n", - "plt.figure(\"Vapor Fraction\")\n", - "plt.plot(Q, V)\n", - "plt.grid()\n", - "plt.xlabel(\"Heat Duty [J]\")\n", - "plt.ylabel(\"Vapor Fraction [-]\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Repeat the exercise above, but create a figure showing the heat duty vs. the mole fraction of Benzene in the vapor outlet. Remove any unnecessary printing to create cleaner results.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: generate a figure of heat duty vs. mole fraction of Benzene in the vapor\n", - "Q = []\n", - "V = []\n", - "\n", - "for duty in np.linspace(-17000, 25000, 50):\n", - " # fix the heat duty\n", - " m.fs.flash.heat_duty.fix(duty)\n", - "\n", - " # append the value of the duty to the Q list\n", - " Q.append(duty)\n", - "\n", - " # print the current simulation\n", - " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", - "\n", - " # solve the model\n", - " status = solver.solve(m)\n", - "\n", - " # append the value for vapor fraction if the solve was successful\n", - " if solve_successful(status):\n", - " V.append(value(m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]))\n", - " print(\"... solve successful.\")\n", - " else:\n", - " V.append(0.0)\n", - " print(\"... solve failed.\")\n", - "\n", - "plt.figure(\"Purity\")\n", - "plt.plot(Q, V)\n", - "plt.grid()\n", - "plt.xlabel(\"Heat Duty [J]\")\n", - "plt.ylabel(\"Vapor Benzene Mole Fraction [-]\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Recall that the IDAES framework is an equation-oriented modeling environment. This means that we can specify \"design\" problems natively. That is, there is no need to have our specifications on the inlet alone. We can put specifications on the outlet as long as we retain a well-posed, square system of equations.\n", - "\n", - "For example, we can remove the specification on heat duty and instead specify that we want the mole fraction of Benzene in the vapor outlet to be equal to 0.6. The mole fraction is not a native variable in the property block, so we cannot use \"fix\". We can, however, add a constraint to the model.\n", - "\n", - "Note that we have been executing a number of solves on the problem, and may not be sure of the current state. To help convergence, therefore, we will first call initialize, then add the new constraint and solve the problem. Note that the reference for the mole fraction of Benzene in the vapor outlet is `m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]`.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Fill in the missing code below and add a constraint on the mole fraction of Benzene (to a value of 0.6) to find the required heat duty.\n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# re-initialize the model - this may or may not be required depending on current state but safe to initialize\n", - "m.fs.flash.heat_duty.fix(0)\n", - "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", - "\n", - "# Unfix the heat_duty variable\n", - "m.fs.flash.heat_duty.unfix()\n", - "\n", - "# Todo: Add a new constraint (benzene mole fraction to 0.6)\n", - "m.benz_purity_con = Constraint(\n", - " expr=m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"] == 0.6\n", - ")\n", - "\n", - "# solve the problem\n", - "status = solver.solve(m, tee=True)\n", - "\n", - "# Check stream condition\n", - "m.fs.flash.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check for solver status\n", - "assert status.solver.termination_condition == TerminationCondition.optimal\n", - "\n", - "# Check for optimal values\n", - "assert value(m.fs.flash.liq_outlet.flow_mol[0]) == pytest.approx(0.4516, abs=1e-3)\n", - "assert value(m.fs.flash.liq_outlet.mole_frac_comp[0, \"benzene\"]) == pytest.approx(\n", - " 0.3786, abs=1e-3\n", - ")\n", - "assert value(m.fs.flash.liq_outlet.mole_frac_comp[0, \"toluene\"]) == pytest.approx(\n", - " 0.6214, abs=1e-3\n", - ")\n", - "assert value(m.fs.flash.liq_outlet.temperature[0]) == pytest.approx(369.07, abs=1e-2)\n", - "assert value(m.fs.flash.liq_outlet.pressure[0]) == pytest.approx(101325, abs=1e-3)\n", - "\n", - "assert value(m.fs.flash.vap_outlet.flow_mol[0]) == pytest.approx(0.5483, abs=1e-3)\n", - "assert value(m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]) == pytest.approx(\n", - " 0.6, abs=1e-3\n", - ")\n", - "assert value(m.fs.flash.vap_outlet.mole_frac_comp[0, \"toluene\"]) == pytest.approx(\n", - " 0.4, abs=1e-3\n", - ")\n", - "assert value(m.fs.flash.vap_outlet.temperature[0]) == pytest.approx(369.07, abs=1e-2)\n", - "assert value(m.fs.flash.vap_outlet.pressure[0]) == pytest.approx(101325, abs=1e-3)" - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Flash Unit Model\n", + "\n", + "Author: Jaffer Ghouse \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-06-01 \n", + "\n", + "In this module, we will familiarize ourselves with the IDAES framework by creating and working with a flowsheet that contains a single flash tank. The flash tank will be used to perform separation of Benzene and Toluene. The inlet specifications for this flash tank are:\n", + "\n", + "Inlet Specifications:\n", + "* Mole fraction (Benzene) = 0.5\n", + "* Mole fraction (Toluene) = 0.5\n", + "* Pressure = 101325 Pa\n", + "* Temperature = 368 K\n", + "\n", + "We will complete the following tasks:\n", + "* Create the model and the IDAES Flowsheet object\n", + "* Import the appropriate property packages\n", + "* Create the flash unit and set the operating conditions\n", + "* Initialize the model and simulate the system\n", + "* Demonstrate analyses on this model through some examples and exercises\n", + "\n", + "## Key links to documentation\n", + "* Main IDAES online documentation page: https://idaes-pse.readthedocs.io/en/stable/\n", + "\n", + "## Create the Model and the IDAES Flowsheet\n", + "\n", + "In the next cell, we will perform the necessary imports to get us started. From `pyomo.environ` (a standard import for the Pyomo package), we are importing `ConcreteModel` (to create the Pyomo model that will contain the IDAES flowsheet) and `SolverFactory` (to create the object we will use to solve the equations). We will also import `Constraint` as we will be adding a constraint to the model later in the module. Lastly, we also import `value` from Pyomo. This is a function that can be used to return the current numerical value for variables and parameters in the model. These are all part of Pyomo.\n", + "\n", + "We will also import the main `FlowsheetBlock` from IDAES. The flowsheet block will contain our unit model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below to perform the imports. Let a workshop organizer know if you see any errors.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import ConcreteModel, SolverFactory, Constraint, value\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the next cell, we will create the `ConcreteModel` and the `FlowsheetBlock`, and attach the flowsheet block to the Pyomo model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below to create the objects\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this point, we have a single Pyomo model that contains an (almost) empty flowsheet block.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Use the pprint method on the model, i.e. m.pprint(), to see what is currently contained in the model.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: call pprint on the model\n", + "m.pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define Properties\n", + "\n", + "We need to define the property package for our flowsheet. In this example, we will be using the ideal property package that is available as part of the IDAES framework. This property package supports ideal gas - ideal liquid, ideal gas - NRTL, and ideal gas - Wilson models for VLE. More details on this property package can be found at: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", + "\n", + "IDAES also supports creation of your own property packages that allow for specification of the fluid using any set of valid state variables (e.g., component molar flows vs overall flow and mole fractions). This flexibility is designed to support advanced modeling needs that may rely on specific formulations. To learn about creating your own property package, please consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html and look at examples within IDAES\n", + "\n", + "For this workshop, we will import the BTX_activity_coeff_VLE property parameter block to be used in the flowsheet. This properties block will be passed to our unit model to define the appropriate state variables and equations for performing thermodynamic calculations.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the following two cells to import and create the properties block.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", + " BTXParameterBlock,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.properties = BTXParameterBlock(\n", + " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\", state_vars=\"FTPz\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Flash Unit\n", + "\n", + "Now that we have the flowsheet and the properties defined, we can create the flash unit and add it to the flowsheet. \n", + "\n", + "**The Unit Model Library within IDAES includes a large set of common unit operations (see the online documentation for details: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html**\n", + "\n", + "IDAES also fully supports the development of customized unit models (which we will see in a later module).\n", + "\n", + "Some of the IDAES pre-written unit models:\n", + "* Mixer / Splitter\n", + "* Heater / Cooler\n", + "* Heat Exchangers (simple and 1D discretized)\n", + "* Flash\n", + "* Reactors (kinetic, equilibrium, gibbs, stoichiometric conversion)\n", + "* Pressure changing equipment (compressors, expanders, pumps)\n", + "* Feed and Product (source / sink) components\n", + "\n", + "In this module, we will import the `Flash` unit model from `idaes.models.unit_models` and create an instance of the flash unit, attaching it to the flowsheet. Each IDAES unit model has several configurable options to customize the model behavior, but also includes defaults for these options. In this example, we will specify that the property package to be used with the Flash is the one we created earlier.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the following two cells to import the Flash and create an instance of the unit model, attaching it to the flowsheet object.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models import Flash" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.flash = Flash(property_package=m.fs.properties)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this point, we have created a flowsheet and a properties block. We have also created a flash unit and added it to the flowsheet. Under the hood, IDAES has created the required state variables and model equations. Everything is open. You can see these variables and equations by calling the Pyomo method `pprint` on the model, flowsheet, or flash tank objects. Note that this output is very exhaustive, and is not intended to provide any summary information about the model, but rather a complete picture of all of the variables and equations in the model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Set Operating Conditions\n", + "\n", + "Now that we have created our unit model, we can specify the necessary operating conditions. It is often very useful to determine the degrees of freedom before we specify any conditions.\n", + "\n", + "The `idaes.core.util.model_statistics` package has a function `degrees_of_freedom`. To see how to use this function, we can make use of the Python function `help(func)`. This function prints the appropriate documentation string for the function.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Import the degrees_of_freedom function and print the help for the function by calling the Python help function.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "\n", + "# Todo: Call the python help on the degrees_of_freedom function\n", + "help(degrees_of_freedom)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now print the degrees of freedom for your model. The result should be 7.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the degrees of freedom for your model\n", + "print(\"Degrees of Freedom =\", degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check the degrees of freedom\n", + "assert degrees_of_freedom(m) == 7" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To satisfy our degrees of freedom, we will first specify the inlet conditions. We can specify these values through the `inlet` port of the flash unit.\n", + "\n", + "**To see the list of naming conventions for variables within the IDAES framework, consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/conventions.html#standard-naming-format**\n", + "\n", + "As an example, to fix the molar flow of the inlet to be 1.0, you can use the following notation:\n", + "```python\n", + "m.fs.flash.inlet.flow_mol.fix(1.0)\n", + "```\n", + "\n", + "To specify variables that are indexed by components, you can use the following notation:\n", + "```python\n", + "m.fs.flash.inlet.mole_frac_comp[0, \"benzene\"].fix(0.5)\n", + "```\n", + "\n", + "
\n", + "Note:\n", + "The \"0\" in the indexing of the component mole fraction is present because IDAES models support both dynamic and steady state simulation, and the \"0\" refers to a timestep. Dynamic modeling is beyond the scope of this workshop. Since we are performing steady state modeling, there is only a single timestep in the model.\n", + "
\n", + "\n", + "In the next cell, we will specify the inlet conditions. To satisfy the remaining degrees of freedom, we will make two additional specifications on the flash tank itself. The names of the key variables within the Flash unit model can also be found in the online documentation: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/flash.html#variables.\n", + "\n", + "\n", + "To specify the value of a variable on the unit itself, use the following notation.\n", + "\n", + "```python\n", + "m.fs.flash.heat_duty.fix(0)\n", + "```\n", + "\n", + "For this module, we will use the following specifications:\n", + "* inlet overall molar flow = 1.0 (`flow_mol`)\n", + "* inlet temperature = 368 K (`temperature`)\n", + "* inlet pressure = 101325 Pa (`pressure`)\n", + "* inlet mole fraction (benzene) = 0.5 (`mole_frac_comp[0, \"benzene\"]`)\n", + "* inlet mole fraction (toluene) = 0.5 (`mole_frac_comp[0, \"toluene\"]`)\n", + "* The heat duty on the flash set to 0 (`heat_duty`)\n", + "* The pressure drop across the flash tank set to 0 (`deltaP`)\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Write the code below to specify the inlet conditions and unit specifications described above\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add inlet specifications given above\n", + "m.fs.flash.inlet.flow_mol.fix(1)\n", + "m.fs.flash.inlet.temperature.fix(368)\n", + "m.fs.flash.inlet.pressure.fix(101325)\n", + "m.fs.flash.inlet.mole_frac_comp[0, \"benzene\"].fix(0.5)\n", + "m.fs.flash.inlet.mole_frac_comp[0, \"toluene\"].fix(0.5)\n", + "\n", + "# Todo: Add 2 flash unit specifications given above\n", + "m.fs.flash.heat_duty.fix(0)\n", + "m.fs.flash.deltaP.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Check the degrees of freedom again to ensure that the system is now square. You should see that the degrees of freedom is now 0.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the degrees of freedom for your model\n", + "print(\"Degrees of Freedom =\", degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check the degrees of freedom\n", + "assert degrees_of_freedom(m) == 0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initializing the Model\n", + "\n", + "IDAES includes pre-written initialization routines for all unit models. You can call this initialize method on the units. In the next module, we will demonstrate the use of a sequential modular solve cycle to initialize flowsheets.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call the initialize method on the flash unit to initialize the model.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: initialize the flash unit\n", + "m.fs.flash.initialize(outlvl=idaeslog.INFO)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that the model has been defined and initialized, we can solve the model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Using the notation described in the previous model, create an instance of the \"ipopt\" solver and use it to solve the model. Set the tee option to True to see the log output.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: create the ipopt solver\n", + "solver = SolverFactory(\"ipopt\")\n", + "\n", + "# Todo: solve the model\n", + "status = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check for optimal solution\n", + "from pyomo.environ import TerminationCondition\n", + "\n", + "assert status.solver.termination_condition == TerminationCondition.optimal" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Viewing the Results\n", + "\n", + "Once a model is solved, the values returned by the solver are loaded into the model object itself. We can access the value of any variable in the model with the `value` function. For example:\n", + "```python\n", + "print('Vap. Outlet Temperature = ', value(m.fs.flash.vap_outlet.temperature[0]))\n", + "```\n", + "\n", + "You can also find more information about a variable or an entire port using the `display` method from Pyomo:\n", + "```python\n", + "m.fs.flash.vap_outlet.temperature.display()\n", + "m.fs.flash.vap_outlet.display()\n", + "```\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cells below to show the current value of the flash vapor outlet pressure. This cell also shows use of the display function to see the values of the variables in the vap_outlet and the liq_outlet.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# Print the pressure of the flash vapor outlet\n", + "print(\"Pressure =\", value(m.fs.flash.vap_outlet.pressure[0]))\n", + "\n", + "print()\n", + "print(\"Output from display:\")\n", + "# Call display on vap_outlet and liq_outlet of the flash\n", + "m.fs.flash.vap_outlet.display()\n", + "m.fs.flash.liq_outlet.display()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The output from `display` is quite exhaustive and not really intended to provide quick summary information. Because Pyomo is built on Python, there are opportunities to format the output any way we like. Most IDAES models have a `report` method which provides a summary of the results for the model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below which uses the function above to print a summary of the key variables in the flash model, including the inlet, the vapor, and the liquid ports. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.flash.report()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check optimal solution values\n", + "import pytest\n", + "\n", + "assert value(m.fs.flash.liq_outlet.flow_mol[0]) == pytest.approx(0.6038, abs=1e-3)\n", + "assert value(m.fs.flash.liq_outlet.mole_frac_comp[0, \"benzene\"]) == pytest.approx(\n", + " 0.4121, abs=1e-3\n", + ")\n", + "assert value(m.fs.flash.liq_outlet.mole_frac_comp[0, \"toluene\"]) == pytest.approx(\n", + " 0.5878, abs=1e-3\n", + ")\n", + "assert value(m.fs.flash.liq_outlet.temperature[0]) == pytest.approx(368, abs=1e-3)\n", + "assert value(m.fs.flash.liq_outlet.pressure[0]) == pytest.approx(101325, abs=1e-3)\n", + "\n", + "assert value(m.fs.flash.vap_outlet.flow_mol[0]) == pytest.approx(0.3961, abs=1e-3)\n", + "assert value(m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]) == pytest.approx(\n", + " 0.6339, abs=1e-3\n", + ")\n", + "assert value(m.fs.flash.vap_outlet.mole_frac_comp[0, \"toluene\"]) == pytest.approx(\n", + " 0.3660, abs=1e-3\n", + ")\n", + "assert value(m.fs.flash.vap_outlet.temperature[0]) == pytest.approx(368, abs=1e-3)\n", + "assert value(m.fs.flash.vap_outlet.pressure[0]) == pytest.approx(101325, abs=1e-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Studying Purity as a Function of Heat Duty\n", + "\n", + "Since the entire modeling framework is built upon Python, it includes a complete programming environment for whatever analysis we may want to perform. In this next exercise, we will make use of what we learned in this and the previous module to generate a figure showing some output variables as a function of the heat duty in the flash tank.\n", + "\n", + "First, let's import the matplotlib package for plotting as we did in the previous module.\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below to import matplotlib appropriately.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Exercise specifications:\n", + "* Generate a figure showing the flash tank heat duty (`m.fs.flash.heat_duty[0]`) vs. the vapor flowrate (`m.fs.flash.vap_outlet.flow_mol[0]`)\n", + "* Specify the heat duty from -17000 to 25000 over 50 steps\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Using what you have learned so far, fill in the missing code below to generate the figure specified above. (Hint: import numpy and use the linspace function from the previous module)\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "scrolled": true, + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# import the solve_successful checking function from workshop tools\n", + "from idaes_examples.mod.tut.workshoptools import solve_successful\n", + "\n", + "# Todo: import numpy\n", + "import numpy as np\n", + "\n", + "# create the empty lists to store the results that will be plotted\n", + "Q = []\n", + "V = []\n", + "\n", + "# re-initialize model\n", + "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", + "\n", + "# Todo: Write the for loop specification using numpy's linspace\n", + "for duty in np.linspace(-17000, 25000, 50):\n", + " # fix the heat duty\n", + " m.fs.flash.heat_duty.fix(duty)\n", + "\n", + " # append the value of the duty to the Q list\n", + " Q.append(duty)\n", + "\n", + " # print the current simulation\n", + " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", + "\n", + " # Solve the model\n", + " status = solver.solve(m)\n", + "\n", + " # append the value for vapor fraction if the solve was successful\n", + " if solve_successful(status):\n", + " V.append(value(m.fs.flash.vap_outlet.flow_mol[0]))\n", + " print(\"... solve successful.\")\n", + " else:\n", + " V.append(0.0)\n", + " print(\"... solve failed.\")\n", + "\n", + "# Create and show the figure\n", + "plt.figure(\"Vapor Fraction\")\n", + "plt.plot(Q, V)\n", + "plt.grid()\n", + "plt.xlabel(\"Heat Duty [J]\")\n", + "plt.ylabel(\"Vapor Fraction [-]\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Repeat the exercise above, but create a figure showing the heat duty vs. the mole fraction of Benzene in the vapor outlet. Remove any unnecessary printing to create cleaner results.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: generate a figure of heat duty vs. mole fraction of Benzene in the vapor\n", + "Q = []\n", + "V = []\n", + "\n", + "for duty in np.linspace(-17000, 25000, 50):\n", + " # fix the heat duty\n", + " m.fs.flash.heat_duty.fix(duty)\n", + "\n", + " # append the value of the duty to the Q list\n", + " Q.append(duty)\n", + "\n", + " # print the current simulation\n", + " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", + "\n", + " # solve the model\n", + " status = solver.solve(m)\n", + "\n", + " # append the value for vapor fraction if the solve was successful\n", + " if solve_successful(status):\n", + " V.append(value(m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]))\n", + " print(\"... solve successful.\")\n", + " else:\n", + " V.append(0.0)\n", + " print(\"... solve failed.\")\n", + "\n", + "plt.figure(\"Purity\")\n", + "plt.plot(Q, V)\n", + "plt.grid()\n", + "plt.xlabel(\"Heat Duty [J]\")\n", + "plt.ylabel(\"Vapor Benzene Mole Fraction [-]\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Recall that the IDAES framework is an equation-oriented modeling environment. This means that we can specify \"design\" problems natively. That is, there is no need to have our specifications on the inlet alone. We can put specifications on the outlet as long as we retain a well-posed, square system of equations.\n", + "\n", + "For example, we can remove the specification on heat duty and instead specify that we want the mole fraction of Benzene in the vapor outlet to be equal to 0.6. The mole fraction is not a native variable in the property block, so we cannot use \"fix\". We can, however, add a constraint to the model.\n", + "\n", + "Note that we have been executing a number of solves on the problem, and may not be sure of the current state. To help convergence, therefore, we will first call initialize, then add the new constraint and solve the problem. Note that the reference for the mole fraction of Benzene in the vapor outlet is `m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]`.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Fill in the missing code below and add a constraint on the mole fraction of Benzene (to a value of 0.6) to find the required heat duty.\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# re-initialize the model - this may or may not be required depending on current state but safe to initialize\n", + "m.fs.flash.heat_duty.fix(0)\n", + "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", + "\n", + "# Unfix the heat_duty variable\n", + "m.fs.flash.heat_duty.unfix()\n", + "\n", + "# Todo: Add a new constraint (benzene mole fraction to 0.6)\n", + "m.benz_purity_con = Constraint(\n", + " expr=m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"] == 0.6\n", + ")\n", + "\n", + "# solve the problem\n", + "status = solver.solve(m, tee=True)\n", + "\n", + "# Check stream condition\n", + "m.fs.flash.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check for solver status\n", + "assert status.solver.termination_condition == TerminationCondition.optimal\n", + "\n", + "# Check for optimal values\n", + "assert value(m.fs.flash.liq_outlet.flow_mol[0]) == pytest.approx(0.4516, abs=1e-3)\n", + "assert value(m.fs.flash.liq_outlet.mole_frac_comp[0, \"benzene\"]) == pytest.approx(\n", + " 0.3786, abs=1e-3\n", + ")\n", + "assert value(m.fs.flash.liq_outlet.mole_frac_comp[0, \"toluene\"]) == pytest.approx(\n", + " 0.6214, abs=1e-3\n", + ")\n", + "assert value(m.fs.flash.liq_outlet.temperature[0]) == pytest.approx(369.07, abs=1e-2)\n", + "assert value(m.fs.flash.liq_outlet.pressure[0]) == pytest.approx(101325, abs=1e-3)\n", + "\n", + "assert value(m.fs.flash.vap_outlet.flow_mol[0]) == pytest.approx(0.5483, abs=1e-3)\n", + "assert value(m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]) == pytest.approx(\n", + " 0.6, abs=1e-3\n", + ")\n", + "assert value(m.fs.flash.vap_outlet.mole_frac_comp[0, \"toluene\"]) == pytest.approx(\n", + " 0.4, abs=1e-3\n", + ")\n", + "assert value(m.fs.flash.vap_outlet.temperature[0]) == pytest.approx(369.07, abs=1e-2)\n", + "assert value(m.fs.flash.vap_outlet.pressure[0]) == pytest.approx(101325, abs=1e-3)" + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } diff --git a/idaes_examples/notebooks/docs/tut/core/flash_unit_usr.ipynb b/idaes_examples/notebooks/docs/tut/core/flash_unit_usr.ipynb index 6b4b3752..a986e1df 100644 --- a/idaes_examples/notebooks/docs/tut/core/flash_unit_usr.ipynb +++ b/idaes_examples/notebooks/docs/tut/core/flash_unit_usr.ipynb @@ -1,896 +1,897 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Flash Unit Model\n", - "\n", - "Author: Jaffer Ghouse \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-06-01 \n", - "\n", - "In this module, we will familiarize ourselves with the IDAES framework by creating and working with a flowsheet that contains a single flash tank. The flash tank will be used to perform separation of Benzene and Toluene. The inlet specifications for this flash tank are:\n", - "\n", - "Inlet Specifications:\n", - "* Mole fraction (Benzene) = 0.5\n", - "* Mole fraction (Toluene) = 0.5\n", - "* Pressure = 101325 Pa\n", - "* Temperature = 368 K\n", - "\n", - "We will complete the following tasks:\n", - "* Create the model and the IDAES Flowsheet object\n", - "* Import the appropriate property packages\n", - "* Create the flash unit and set the operating conditions\n", - "* Initialize the model and simulate the system\n", - "* Demonstrate analyses on this model through some examples and exercises\n", - "\n", - "## Key links to documentation\n", - "* Main IDAES online documentation page: https://idaes-pse.readthedocs.io/en/stable/\n", - "\n", - "## Create the Model and the IDAES Flowsheet\n", - "\n", - "In the next cell, we will perform the necessary imports to get us started. From `pyomo.environ` (a standard import for the Pyomo package), we are importing `ConcreteModel` (to create the Pyomo model that will contain the IDAES flowsheet) and `SolverFactory` (to create the object we will use to solve the equations). We will also import `Constraint` as we will be adding a constraint to the model later in the module. Lastly, we also import `value` from Pyomo. This is a function that can be used to return the current numerical value for variables and parameters in the model. These are all part of Pyomo.\n", - "\n", - "We will also import the main `FlowsheetBlock` from IDAES. The flowsheet block will contain our unit model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below to perform the imports. Let a workshop organizer know if you see any errors.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import ConcreteModel, SolverFactory, Constraint, value\n", - "from idaes.core import FlowsheetBlock\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next cell, we will create the `ConcreteModel` and the `FlowsheetBlock`, and attach the flowsheet block to the Pyomo model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below to create the objects\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "At this point, we have a single Pyomo model that contains an (almost) empty flowsheet block.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Use the pprint method on the model, i.e. m.pprint(), to see what is currently contained in the model.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: call pprint on the model" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: call pprint on the model\n", - "m.pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define Properties\n", - "\n", - "We need to define the property package for our flowsheet. In this example, we will be using the ideal property package that is available as part of the IDAES framework. This property package supports ideal gas - ideal liquid, ideal gas - NRTL, and ideal gas - Wilson models for VLE. More details on this property package can be found at: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", - "\n", - "IDAES also supports creation of your own property packages that allow for specification of the fluid using any set of valid state variables (e.g., component molar flows vs overall flow and mole fractions). This flexibility is designed to support advanced modeling needs that may rely on specific formulations. To learn about creating your own property package, please consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html and look at examples within IDAES\n", - "\n", - "For this workshop, we will import the BTX_activity_coeff_VLE property parameter block to be used in the flowsheet. This properties block will be passed to our unit model to define the appropriate state variables and equations for performing thermodynamic calculations.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the following two cells to import and create the properties block.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", - " BTXParameterBlock,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.properties = BTXParameterBlock(\n", - " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\", state_vars=\"FTPz\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Flash Unit\n", - "\n", - "Now that we have the flowsheet and the properties defined, we can create the flash unit and add it to the flowsheet. \n", - "\n", - "**The Unit Model Library within IDAES includes a large set of common unit operations (see the online documentation for details: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html**\n", - "\n", - "IDAES also fully supports the development of customized unit models (which we will see in a later module).\n", - "\n", - "Some of the IDAES pre-written unit models:\n", - "* Mixer / Splitter\n", - "* Heater / Cooler\n", - "* Heat Exchangers (simple and 1D discretized)\n", - "* Flash\n", - "* Reactors (kinetic, equilibrium, gibbs, stoichiometric conversion)\n", - "* Pressure changing equipment (compressors, expanders, pumps)\n", - "* Feed and Product (source / sink) components\n", - "\n", - "In this module, we will import the `Flash` unit model from `idaes.models.unit_models` and create an instance of the flash unit, attaching it to the flowsheet. Each IDAES unit model has several configurable options to customize the model behavior, but also includes defaults for these options. In this example, we will specify that the property package to be used with the Flash is the one we created earlier.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the following two cells to import the Flash and create an instance of the unit model, attaching it to the flowsheet object.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models import Flash" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.flash = Flash(property_package=m.fs.properties)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "At this point, we have created a flowsheet and a properties block. We have also created a flash unit and added it to the flowsheet. Under the hood, IDAES has created the required state variables and model equations. Everything is open. You can see these variables and equations by calling the Pyomo method `pprint` on the model, flowsheet, or flash tank objects. Note that this output is very exhaustive, and is not intended to provide any summary information about the model, but rather a complete picture of all of the variables and equations in the model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Set Operating Conditions\n", - "\n", - "Now that we have created our unit model, we can specify the necessary operating conditions. It is often very useful to determine the degrees of freedom before we specify any conditions.\n", - "\n", - "The `idaes.core.util.model_statistics` package has a function `degrees_of_freedom`. To see how to use this function, we can make use of the Python function `help(func)`. This function prints the appropriate documentation string for the function.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Import the degrees_of_freedom function and print the help for the function by calling the Python help function.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", - "\n", - "\n", - "# Todo: Call the python help on the degrees_of_freedom function" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "\n", - "# Todo: Call the python help on the degrees_of_freedom function\n", - "help(degrees_of_freedom)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now print the degrees of freedom for your model. The result should be 7.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the degrees of freedom for your model" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the degrees of freedom for your model\n", - "print(\"Degrees of Freedom =\", degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To satisfy our degrees of freedom, we will first specify the inlet conditions. We can specify these values through the `inlet` port of the flash unit.\n", - "\n", - "**To see the list of naming conventions for variables within the IDAES framework, consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/conventions.html#standard-naming-format**\n", - "\n", - "As an example, to fix the molar flow of the inlet to be 1.0, you can use the following notation:\n", - "```python\n", - "m.fs.flash.inlet.flow_mol.fix(1.0)\n", - "```\n", - "\n", - "To specify variables that are indexed by components, you can use the following notation:\n", - "```python\n", - "m.fs.flash.inlet.mole_frac_comp[0, \"benzene\"].fix(0.5)\n", - "```\n", - "\n", - "
\n", - "Note:\n", - "The \"0\" in the indexing of the component mole fraction is present because IDAES models support both dynamic and steady state simulation, and the \"0\" refers to a timestep. Dynamic modeling is beyond the scope of this workshop. Since we are performing steady state modeling, there is only a single timestep in the model.\n", - "
\n", - "\n", - "In the next cell, we will specify the inlet conditions. To satisfy the remaining degrees of freedom, we will make two additional specifications on the flash tank itself. The names of the key variables within the Flash unit model can also be found in the online documentation: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/flash.html#variables.\n", - "\n", - "\n", - "To specify the value of a variable on the unit itself, use the following notation.\n", - "\n", - "```python\n", - "m.fs.flash.heat_duty.fix(0)\n", - "```\n", - "\n", - "For this module, we will use the following specifications:\n", - "* inlet overall molar flow = 1.0 (`flow_mol`)\n", - "* inlet temperature = 368 K (`temperature`)\n", - "* inlet pressure = 101325 Pa (`pressure`)\n", - "* inlet mole fraction (benzene) = 0.5 (`mole_frac_comp[0, \"benzene\"]`)\n", - "* inlet mole fraction (toluene) = 0.5 (`mole_frac_comp[0, \"toluene\"]`)\n", - "* The heat duty on the flash set to 0 (`heat_duty`)\n", - "* The pressure drop across the flash tank set to 0 (`deltaP`)\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Write the code below to specify the inlet conditions and unit specifications described above\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add inlet specifications given above\n", - "\n", - "\n", - "# Todo: Add 2 flash unit specifications given above" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add inlet specifications given above\n", - "m.fs.flash.inlet.flow_mol.fix(1)\n", - "m.fs.flash.inlet.temperature.fix(368)\n", - "m.fs.flash.inlet.pressure.fix(101325)\n", - "m.fs.flash.inlet.mole_frac_comp[0, \"benzene\"].fix(0.5)\n", - "m.fs.flash.inlet.mole_frac_comp[0, \"toluene\"].fix(0.5)\n", - "\n", - "# Todo: Add 2 flash unit specifications given above\n", - "m.fs.flash.heat_duty.fix(0)\n", - "m.fs.flash.deltaP.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Check the degrees of freedom again to ensure that the system is now square. You should see that the degrees of freedom is now 0.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the degrees of freedom for your model" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the degrees of freedom for your model\n", - "print(\"Degrees of Freedom =\", degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Initializing the Model\n", - "\n", - "IDAES includes pre-written initialization routines for all unit models. You can call this initialize method on the units. In the next module, we will demonstrate the use of a sequential modular solve cycle to initialize flowsheets.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Call the initialize method on the flash unit to initialize the model.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: initialize the flash unit" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: initialize the flash unit\n", - "m.fs.flash.initialize(outlvl=idaeslog.INFO)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now that the model has been defined and initialized, we can solve the model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Using the notation described in the previous model, create an instance of the \"ipopt\" solver and use it to solve the model. Set the tee option to True to see the log output.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: create the ipopt solver\n", - "\n", - "# Todo: solve the model" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: create the ipopt solver\n", - "solver = SolverFactory(\"ipopt\")\n", - "\n", - "# Todo: solve the model\n", - "status = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Viewing the Results\n", - "\n", - "Once a model is solved, the values returned by the solver are loaded into the model object itself. We can access the value of any variable in the model with the `value` function. For example:\n", - "```python\n", - "print('Vap. Outlet Temperature = ', value(m.fs.flash.vap_outlet.temperature[0]))\n", - "```\n", - "\n", - "You can also find more information about a variable or an entire port using the `display` method from Pyomo:\n", - "```python\n", - "m.fs.flash.vap_outlet.temperature.display()\n", - "m.fs.flash.vap_outlet.display()\n", - "```\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cells below to show the current value of the flash vapor outlet pressure. This cell also shows use of the display function to see the values of the variables in the vap_outlet and the liq_outlet.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "# Print the pressure of the flash vapor outlet\n", - "print(\"Pressure =\", value(m.fs.flash.vap_outlet.pressure[0]))\n", - "\n", - "print()\n", - "print(\"Output from display:\")\n", - "# Call display on vap_outlet and liq_outlet of the flash\n", - "m.fs.flash.vap_outlet.display()\n", - "m.fs.flash.liq_outlet.display()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The output from `display` is quite exhaustive and not really intended to provide quick summary information. Because Pyomo is built on Python, there are opportunities to format the output any way we like. Most IDAES models have a `report` method which provides a summary of the results for the model.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below which uses the function above to print a summary of the key variables in the flash model, including the inlet, the vapor, and the liquid ports. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.flash.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Studying Purity as a Function of Heat Duty\n", - "\n", - "Since the entire modeling framework is built upon Python, it includes a complete programming environment for whatever analysis we may want to perform. In this next exercise, we will make use of what we learned in this and the previous module to generate a figure showing some output variables as a function of the heat duty in the flash tank.\n", - "\n", - "First, let's import the matplotlib package for plotting as we did in the previous module.\n", - "
\n", - "Inline Exercise:\n", - "Execute the cell below to import matplotlib appropriately.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Exercise specifications:\n", - "* Generate a figure showing the flash tank heat duty (`m.fs.flash.heat_duty[0]`) vs. the vapor flowrate (`m.fs.flash.vap_outlet.flow_mol[0]`)\n", - "* Specify the heat duty from -17000 to 25000 over 50 steps\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Using what you have learned so far, fill in the missing code below to generate the figure specified above. (Hint: import numpy and use the linspace function from the previous module)\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# import the solve_successful checking function from workshop tools\n", - "from idaes_examples.mod.tut.workshoptools import solve_successful\n", - "\n", - "# Todo: import numpy as np\n", - "\n", - "\n", - "# create the empty lists to store the results that will be plotted\n", - "Q = []\n", - "V = []\n", - "\n", - "# re-initialize model\n", - "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", - "\n", - "# Todo: Write the for loop specification using numpy's linspace\n", - "\n", - " # fix the heat duty\n", - " m.fs.flash.heat_duty.fix(duty)\n", - " \n", - " # append the value of the duty to the Q list\n", - " Q.append(duty)\n", - " \n", - " # print the current simulation\n", - " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", - "\n", - " # Solve the model\n", - " status = solver.solve(m)\n", - " \n", - " # append the value for vapor fraction if the solve was successful\n", - " if solve_successful(status):\n", - " V.append(value(m.fs.flash.vap_outlet.flow_mol[0]))\n", - " print('... solve successful.')\n", - " else:\n", - " V.append(0.0)\n", - " print('... solve failed.')\n", - " \n", - "# Create and show the figure\n", - "plt.figure(\"Vapor Fraction\")\n", - "plt.plot(Q, V)\n", - "plt.grid()\n", - "plt.xlabel(\"Heat Duty [J]\")\n", - "plt.ylabel(\"Vapor Fraction [-]\")\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "scrolled": true, - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# import the solve_successful checking function from workshop tools\n", - "from idaes_examples.mod.tut.workshoptools import solve_successful\n", - "\n", - "# Todo: import numpy\n", - "import numpy as np\n", - "\n", - "# create the empty lists to store the results that will be plotted\n", - "Q = []\n", - "V = []\n", - "\n", - "# re-initialize model\n", - "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", - "\n", - "# Todo: Write the for loop specification using numpy's linspace\n", - "for duty in np.linspace(-17000, 25000, 50):\n", - " # fix the heat duty\n", - " m.fs.flash.heat_duty.fix(duty)\n", - "\n", - " # append the value of the duty to the Q list\n", - " Q.append(duty)\n", - "\n", - " # print the current simulation\n", - " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", - "\n", - " # Solve the model\n", - " status = solver.solve(m)\n", - "\n", - " # append the value for vapor fraction if the solve was successful\n", - " if solve_successful(status):\n", - " V.append(value(m.fs.flash.vap_outlet.flow_mol[0]))\n", - " print(\"... solve successful.\")\n", - " else:\n", - " V.append(0.0)\n", - " print(\"... solve failed.\")\n", - "\n", - "# Create and show the figure\n", - "plt.figure(\"Vapor Fraction\")\n", - "plt.plot(Q, V)\n", - "plt.grid()\n", - "plt.xlabel(\"Heat Duty [J]\")\n", - "plt.ylabel(\"Vapor Fraction [-]\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Repeat the exercise above, but create a figure showing the heat duty vs. the mole fraction of Benzene in the vapor outlet. Remove any unnecessary printing to create cleaner results.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: generate a figure of heat duty vs. mole fraction of Benzene in the vapor" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: generate a figure of heat duty vs. mole fraction of Benzene in the vapor\n", - "Q = []\n", - "V = []\n", - "\n", - "for duty in np.linspace(-17000, 25000, 50):\n", - " # fix the heat duty\n", - " m.fs.flash.heat_duty.fix(duty)\n", - "\n", - " # append the value of the duty to the Q list\n", - " Q.append(duty)\n", - "\n", - " # print the current simulation\n", - " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", - "\n", - " # solve the model\n", - " status = solver.solve(m)\n", - "\n", - " # append the value for vapor fraction if the solve was successful\n", - " if solve_successful(status):\n", - " V.append(value(m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]))\n", - " print(\"... solve successful.\")\n", - " else:\n", - " V.append(0.0)\n", - " print(\"... solve failed.\")\n", - "\n", - "plt.figure(\"Purity\")\n", - "plt.plot(Q, V)\n", - "plt.grid()\n", - "plt.xlabel(\"Heat Duty [J]\")\n", - "plt.ylabel(\"Vapor Benzene Mole Fraction [-]\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Recall that the IDAES framework is an equation-oriented modeling environment. This means that we can specify \"design\" problems natively. That is, there is no need to have our specifications on the inlet alone. We can put specifications on the outlet as long as we retain a well-posed, square system of equations.\n", - "\n", - "For example, we can remove the specification on heat duty and instead specify that we want the mole fraction of Benzene in the vapor outlet to be equal to 0.6. The mole fraction is not a native variable in the property block, so we cannot use \"fix\". We can, however, add a constraint to the model.\n", - "\n", - "Note that we have been executing a number of solves on the problem, and may not be sure of the current state. To help convergence, therefore, we will first call initialize, then add the new constraint and solve the problem. Note that the reference for the mole fraction of Benzene in the vapor outlet is `m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]`.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Fill in the missing code below and add a constraint on the mole fraction of Benzene (to a value of 0.6) to find the required heat duty.\n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# re-initialize the model - this may or may not be required depending on current state but safe to initialize\n", - "m.fs.flash.heat_duty.fix(0)\n", - "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", - "\n", - "# Unfix the heat_duty variable\n", - "m.fs.flash.heat_duty.unfix()\n", - "\n", - "# Todo: Add a new constraint (benzene mole fraction to 0.6)\n", - "\n", - "# solve the problem\n", - "status = solver.solve(m, tee=True)\n", - "\n", - "# Check stream condition\n", - "m.fs.flash.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# re-initialize the model - this may or may not be required depending on current state but safe to initialize\n", - "m.fs.flash.heat_duty.fix(0)\n", - "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", - "\n", - "# Unfix the heat_duty variable\n", - "m.fs.flash.heat_duty.unfix()\n", - "\n", - "# Todo: Add a new constraint (benzene mole fraction to 0.6)\n", - "m.benz_purity_con = Constraint(\n", - " expr=m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"] == 0.6\n", - ")\n", - "\n", - "# solve the problem\n", - "status = solver.solve(m, tee=True)\n", - "\n", - "# Check stream condition\n", - "m.fs.flash.report()" - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Flash Unit Model\n", + "\n", + "Author: Jaffer Ghouse \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-06-01 \n", + "\n", + "In this module, we will familiarize ourselves with the IDAES framework by creating and working with a flowsheet that contains a single flash tank. The flash tank will be used to perform separation of Benzene and Toluene. The inlet specifications for this flash tank are:\n", + "\n", + "Inlet Specifications:\n", + "* Mole fraction (Benzene) = 0.5\n", + "* Mole fraction (Toluene) = 0.5\n", + "* Pressure = 101325 Pa\n", + "* Temperature = 368 K\n", + "\n", + "We will complete the following tasks:\n", + "* Create the model and the IDAES Flowsheet object\n", + "* Import the appropriate property packages\n", + "* Create the flash unit and set the operating conditions\n", + "* Initialize the model and simulate the system\n", + "* Demonstrate analyses on this model through some examples and exercises\n", + "\n", + "## Key links to documentation\n", + "* Main IDAES online documentation page: https://idaes-pse.readthedocs.io/en/stable/\n", + "\n", + "## Create the Model and the IDAES Flowsheet\n", + "\n", + "In the next cell, we will perform the necessary imports to get us started. From `pyomo.environ` (a standard import for the Pyomo package), we are importing `ConcreteModel` (to create the Pyomo model that will contain the IDAES flowsheet) and `SolverFactory` (to create the object we will use to solve the equations). We will also import `Constraint` as we will be adding a constraint to the model later in the module. Lastly, we also import `value` from Pyomo. This is a function that can be used to return the current numerical value for variables and parameters in the model. These are all part of Pyomo.\n", + "\n", + "We will also import the main `FlowsheetBlock` from IDAES. The flowsheet block will contain our unit model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below to perform the imports. Let a workshop organizer know if you see any errors.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import ConcreteModel, SolverFactory, Constraint, value\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the next cell, we will create the `ConcreteModel` and the `FlowsheetBlock`, and attach the flowsheet block to the Pyomo model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below to create the objects\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this point, we have a single Pyomo model that contains an (almost) empty flowsheet block.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Use the pprint method on the model, i.e. m.pprint(), to see what is currently contained in the model.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: call pprint on the model" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: call pprint on the model\n", + "m.pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define Properties\n", + "\n", + "We need to define the property package for our flowsheet. In this example, we will be using the ideal property package that is available as part of the IDAES framework. This property package supports ideal gas - ideal liquid, ideal gas - NRTL, and ideal gas - Wilson models for VLE. More details on this property package can be found at: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/property_models/activity_coefficient.html\n", + "\n", + "IDAES also supports creation of your own property packages that allow for specification of the fluid using any set of valid state variables (e.g., component molar flows vs overall flow and mole fractions). This flexibility is designed to support advanced modeling needs that may rely on specific formulations. To learn about creating your own property package, please consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html and look at examples within IDAES\n", + "\n", + "For this workshop, we will import the BTX_activity_coeff_VLE property parameter block to be used in the flowsheet. This properties block will be passed to our unit model to define the appropriate state variables and equations for performing thermodynamic calculations.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the following two cells to import and create the properties block.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.properties.activity_coeff_models.BTX_activity_coeff_VLE import (\n", + " BTXParameterBlock,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.properties = BTXParameterBlock(\n", + " valid_phase=(\"Liq\", \"Vap\"), activity_coeff_model=\"Ideal\", state_vars=\"FTPz\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Flash Unit\n", + "\n", + "Now that we have the flowsheet and the properties defined, we can create the flash unit and add it to the flowsheet. \n", + "\n", + "**The Unit Model Library within IDAES includes a large set of common unit operations (see the online documentation for details: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html**\n", + "\n", + "IDAES also fully supports the development of customized unit models (which we will see in a later module).\n", + "\n", + "Some of the IDAES pre-written unit models:\n", + "* Mixer / Splitter\n", + "* Heater / Cooler\n", + "* Heat Exchangers (simple and 1D discretized)\n", + "* Flash\n", + "* Reactors (kinetic, equilibrium, gibbs, stoichiometric conversion)\n", + "* Pressure changing equipment (compressors, expanders, pumps)\n", + "* Feed and Product (source / sink) components\n", + "\n", + "In this module, we will import the `Flash` unit model from `idaes.models.unit_models` and create an instance of the flash unit, attaching it to the flowsheet. Each IDAES unit model has several configurable options to customize the model behavior, but also includes defaults for these options. In this example, we will specify that the property package to be used with the Flash is the one we created earlier.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the following two cells to import the Flash and create an instance of the unit model, attaching it to the flowsheet object.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models import Flash" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.flash = Flash(property_package=m.fs.properties)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this point, we have created a flowsheet and a properties block. We have also created a flash unit and added it to the flowsheet. Under the hood, IDAES has created the required state variables and model equations. Everything is open. You can see these variables and equations by calling the Pyomo method `pprint` on the model, flowsheet, or flash tank objects. Note that this output is very exhaustive, and is not intended to provide any summary information about the model, but rather a complete picture of all of the variables and equations in the model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Set Operating Conditions\n", + "\n", + "Now that we have created our unit model, we can specify the necessary operating conditions. It is often very useful to determine the degrees of freedom before we specify any conditions.\n", + "\n", + "The `idaes.core.util.model_statistics` package has a function `degrees_of_freedom`. To see how to use this function, we can make use of the Python function `help(func)`. This function prints the appropriate documentation string for the function.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Import the degrees_of_freedom function and print the help for the function by calling the Python help function.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", + "\n", + "\n", + "# Todo: Call the python help on the degrees_of_freedom function" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "\n", + "# Todo: Call the python help on the degrees_of_freedom function\n", + "help(degrees_of_freedom)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now print the degrees of freedom for your model. The result should be 7.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the degrees of freedom for your model" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the degrees of freedom for your model\n", + "print(\"Degrees of Freedom =\", degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To satisfy our degrees of freedom, we will first specify the inlet conditions. We can specify these values through the `inlet` port of the flash unit.\n", + "\n", + "**To see the list of naming conventions for variables within the IDAES framework, consult the online documentation at: https://idaes-pse.readthedocs.io/en/stable/explanations/conventions.html#standard-naming-format**\n", + "\n", + "As an example, to fix the molar flow of the inlet to be 1.0, you can use the following notation:\n", + "```python\n", + "m.fs.flash.inlet.flow_mol.fix(1.0)\n", + "```\n", + "\n", + "To specify variables that are indexed by components, you can use the following notation:\n", + "```python\n", + "m.fs.flash.inlet.mole_frac_comp[0, \"benzene\"].fix(0.5)\n", + "```\n", + "\n", + "
\n", + "Note:\n", + "The \"0\" in the indexing of the component mole fraction is present because IDAES models support both dynamic and steady state simulation, and the \"0\" refers to a timestep. Dynamic modeling is beyond the scope of this workshop. Since we are performing steady state modeling, there is only a single timestep in the model.\n", + "
\n", + "\n", + "In the next cell, we will specify the inlet conditions. To satisfy the remaining degrees of freedom, we will make two additional specifications on the flash tank itself. The names of the key variables within the Flash unit model can also be found in the online documentation: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/flash.html#variables.\n", + "\n", + "\n", + "To specify the value of a variable on the unit itself, use the following notation.\n", + "\n", + "```python\n", + "m.fs.flash.heat_duty.fix(0)\n", + "```\n", + "\n", + "For this module, we will use the following specifications:\n", + "* inlet overall molar flow = 1.0 (`flow_mol`)\n", + "* inlet temperature = 368 K (`temperature`)\n", + "* inlet pressure = 101325 Pa (`pressure`)\n", + "* inlet mole fraction (benzene) = 0.5 (`mole_frac_comp[0, \"benzene\"]`)\n", + "* inlet mole fraction (toluene) = 0.5 (`mole_frac_comp[0, \"toluene\"]`)\n", + "* The heat duty on the flash set to 0 (`heat_duty`)\n", + "* The pressure drop across the flash tank set to 0 (`deltaP`)\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Write the code below to specify the inlet conditions and unit specifications described above\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add inlet specifications given above\n", + "\n", + "\n", + "# Todo: Add 2 flash unit specifications given above" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add inlet specifications given above\n", + "m.fs.flash.inlet.flow_mol.fix(1)\n", + "m.fs.flash.inlet.temperature.fix(368)\n", + "m.fs.flash.inlet.pressure.fix(101325)\n", + "m.fs.flash.inlet.mole_frac_comp[0, \"benzene\"].fix(0.5)\n", + "m.fs.flash.inlet.mole_frac_comp[0, \"toluene\"].fix(0.5)\n", + "\n", + "# Todo: Add 2 flash unit specifications given above\n", + "m.fs.flash.heat_duty.fix(0)\n", + "m.fs.flash.deltaP.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Check the degrees of freedom again to ensure that the system is now square. You should see that the degrees of freedom is now 0.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the degrees of freedom for your model" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the degrees of freedom for your model\n", + "print(\"Degrees of Freedom =\", degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initializing the Model\n", + "\n", + "IDAES includes pre-written initialization routines for all unit models. You can call this initialize method on the units. In the next module, we will demonstrate the use of a sequential modular solve cycle to initialize flowsheets.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Call the initialize method on the flash unit to initialize the model.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: initialize the flash unit" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: initialize the flash unit\n", + "m.fs.flash.initialize(outlvl=idaeslog.INFO)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that the model has been defined and initialized, we can solve the model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Using the notation described in the previous model, create an instance of the \"ipopt\" solver and use it to solve the model. Set the tee option to True to see the log output.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: create the ipopt solver\n", + "\n", + "# Todo: solve the model" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: create the ipopt solver\n", + "solver = SolverFactory(\"ipopt\")\n", + "\n", + "# Todo: solve the model\n", + "status = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Viewing the Results\n", + "\n", + "Once a model is solved, the values returned by the solver are loaded into the model object itself. We can access the value of any variable in the model with the `value` function. For example:\n", + "```python\n", + "print('Vap. Outlet Temperature = ', value(m.fs.flash.vap_outlet.temperature[0]))\n", + "```\n", + "\n", + "You can also find more information about a variable or an entire port using the `display` method from Pyomo:\n", + "```python\n", + "m.fs.flash.vap_outlet.temperature.display()\n", + "m.fs.flash.vap_outlet.display()\n", + "```\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cells below to show the current value of the flash vapor outlet pressure. This cell also shows use of the display function to see the values of the variables in the vap_outlet and the liq_outlet.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# Print the pressure of the flash vapor outlet\n", + "print(\"Pressure =\", value(m.fs.flash.vap_outlet.pressure[0]))\n", + "\n", + "print()\n", + "print(\"Output from display:\")\n", + "# Call display on vap_outlet and liq_outlet of the flash\n", + "m.fs.flash.vap_outlet.display()\n", + "m.fs.flash.liq_outlet.display()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The output from `display` is quite exhaustive and not really intended to provide quick summary information. Because Pyomo is built on Python, there are opportunities to format the output any way we like. Most IDAES models have a `report` method which provides a summary of the results for the model.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below which uses the function above to print a summary of the key variables in the flash model, including the inlet, the vapor, and the liquid ports. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.flash.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Studying Purity as a Function of Heat Duty\n", + "\n", + "Since the entire modeling framework is built upon Python, it includes a complete programming environment for whatever analysis we may want to perform. In this next exercise, we will make use of what we learned in this and the previous module to generate a figure showing some output variables as a function of the heat duty in the flash tank.\n", + "\n", + "First, let's import the matplotlib package for plotting as we did in the previous module.\n", + "
\n", + "Inline Exercise:\n", + "Execute the cell below to import matplotlib appropriately.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Exercise specifications:\n", + "* Generate a figure showing the flash tank heat duty (`m.fs.flash.heat_duty[0]`) vs. the vapor flowrate (`m.fs.flash.vap_outlet.flow_mol[0]`)\n", + "* Specify the heat duty from -17000 to 25000 over 50 steps\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Using what you have learned so far, fill in the missing code below to generate the figure specified above. (Hint: import numpy and use the linspace function from the previous module)\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# import the solve_successful checking function from workshop tools\n", + "from idaes_examples.mod.tut.workshoptools import solve_successful\n", + "\n", + "# Todo: import numpy as np\n", + "\n", + "\n", + "# create the empty lists to store the results that will be plotted\n", + "Q = []\n", + "V = []\n", + "\n", + "# re-initialize model\n", + "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", + "\n", + "# Todo: Write the for loop specification using numpy's linspace\n", + "\n", + " # fix the heat duty\n", + " m.fs.flash.heat_duty.fix(duty)\n", + " \n", + " # append the value of the duty to the Q list\n", + " Q.append(duty)\n", + " \n", + " # print the current simulation\n", + " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", + "\n", + " # Solve the model\n", + " status = solver.solve(m)\n", + " \n", + " # append the value for vapor fraction if the solve was successful\n", + " if solve_successful(status):\n", + " V.append(value(m.fs.flash.vap_outlet.flow_mol[0]))\n", + " print('... solve successful.')\n", + " else:\n", + " V.append(0.0)\n", + " print('... solve failed.')\n", + " \n", + "# Create and show the figure\n", + "plt.figure(\"Vapor Fraction\")\n", + "plt.plot(Q, V)\n", + "plt.grid()\n", + "plt.xlabel(\"Heat Duty [J]\")\n", + "plt.ylabel(\"Vapor Fraction [-]\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "scrolled": true, + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# import the solve_successful checking function from workshop tools\n", + "from idaes_examples.mod.tut.workshoptools import solve_successful\n", + "\n", + "# Todo: import numpy\n", + "import numpy as np\n", + "\n", + "# create the empty lists to store the results that will be plotted\n", + "Q = []\n", + "V = []\n", + "\n", + "# re-initialize model\n", + "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", + "\n", + "# Todo: Write the for loop specification using numpy's linspace\n", + "for duty in np.linspace(-17000, 25000, 50):\n", + " # fix the heat duty\n", + " m.fs.flash.heat_duty.fix(duty)\n", + "\n", + " # append the value of the duty to the Q list\n", + " Q.append(duty)\n", + "\n", + " # print the current simulation\n", + " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", + "\n", + " # Solve the model\n", + " status = solver.solve(m)\n", + "\n", + " # append the value for vapor fraction if the solve was successful\n", + " if solve_successful(status):\n", + " V.append(value(m.fs.flash.vap_outlet.flow_mol[0]))\n", + " print(\"... solve successful.\")\n", + " else:\n", + " V.append(0.0)\n", + " print(\"... solve failed.\")\n", + "\n", + "# Create and show the figure\n", + "plt.figure(\"Vapor Fraction\")\n", + "plt.plot(Q, V)\n", + "plt.grid()\n", + "plt.xlabel(\"Heat Duty [J]\")\n", + "plt.ylabel(\"Vapor Fraction [-]\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Repeat the exercise above, but create a figure showing the heat duty vs. the mole fraction of Benzene in the vapor outlet. Remove any unnecessary printing to create cleaner results.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: generate a figure of heat duty vs. mole fraction of Benzene in the vapor" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: generate a figure of heat duty vs. mole fraction of Benzene in the vapor\n", + "Q = []\n", + "V = []\n", + "\n", + "for duty in np.linspace(-17000, 25000, 50):\n", + " # fix the heat duty\n", + " m.fs.flash.heat_duty.fix(duty)\n", + "\n", + " # append the value of the duty to the Q list\n", + " Q.append(duty)\n", + "\n", + " # print the current simulation\n", + " print(\"Simulating with Q = \", value(m.fs.flash.heat_duty[0]))\n", + "\n", + " # solve the model\n", + " status = solver.solve(m)\n", + "\n", + " # append the value for vapor fraction if the solve was successful\n", + " if solve_successful(status):\n", + " V.append(value(m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]))\n", + " print(\"... solve successful.\")\n", + " else:\n", + " V.append(0.0)\n", + " print(\"... solve failed.\")\n", + "\n", + "plt.figure(\"Purity\")\n", + "plt.plot(Q, V)\n", + "plt.grid()\n", + "plt.xlabel(\"Heat Duty [J]\")\n", + "plt.ylabel(\"Vapor Benzene Mole Fraction [-]\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Recall that the IDAES framework is an equation-oriented modeling environment. This means that we can specify \"design\" problems natively. That is, there is no need to have our specifications on the inlet alone. We can put specifications on the outlet as long as we retain a well-posed, square system of equations.\n", + "\n", + "For example, we can remove the specification on heat duty and instead specify that we want the mole fraction of Benzene in the vapor outlet to be equal to 0.6. The mole fraction is not a native variable in the property block, so we cannot use \"fix\". We can, however, add a constraint to the model.\n", + "\n", + "Note that we have been executing a number of solves on the problem, and may not be sure of the current state. To help convergence, therefore, we will first call initialize, then add the new constraint and solve the problem. Note that the reference for the mole fraction of Benzene in the vapor outlet is `m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"]`.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Fill in the missing code below and add a constraint on the mole fraction of Benzene (to a value of 0.6) to find the required heat duty.\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# re-initialize the model - this may or may not be required depending on current state but safe to initialize\n", + "m.fs.flash.heat_duty.fix(0)\n", + "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", + "\n", + "# Unfix the heat_duty variable\n", + "m.fs.flash.heat_duty.unfix()\n", + "\n", + "# Todo: Add a new constraint (benzene mole fraction to 0.6)\n", + "\n", + "# solve the problem\n", + "status = solver.solve(m, tee=True)\n", + "\n", + "# Check stream condition\n", + "m.fs.flash.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# re-initialize the model - this may or may not be required depending on current state but safe to initialize\n", + "m.fs.flash.heat_duty.fix(0)\n", + "m.fs.flash.initialize(outlvl=idaeslog.WARNING)\n", + "\n", + "# Unfix the heat_duty variable\n", + "m.fs.flash.heat_duty.unfix()\n", + "\n", + "# Todo: Add a new constraint (benzene mole fraction to 0.6)\n", + "m.benz_purity_con = Constraint(\n", + " expr=m.fs.flash.vap_outlet.mole_frac_comp[0, \"benzene\"] == 0.6\n", + ")\n", + "\n", + "# solve the problem\n", + "status = solver.solve(m, tee=True)\n", + "\n", + "# Check stream condition\n", + "m.fs.flash.report()" + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } diff --git a/idaes_examples/notebooks/docs/tut/core/hda_flowsheet.ipynb b/idaes_examples/notebooks/docs/tut/core/hda_flowsheet.ipynb index a7645f92..4f913d3f 100644 --- a/idaes_examples/notebooks/docs/tut/core/hda_flowsheet.ipynb +++ b/idaes_examples/notebooks/docs/tut/core/hda_flowsheet.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_doc.ipynb b/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_doc.ipynb index 2d862e0d..78b08fd8 100644 --- a/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_doc.ipynb +++ b/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_doc.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "tags": [ "header", @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -100,7 +101,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -132,7 +133,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -141,7 +142,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -166,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "tags": [ "solution" @@ -187,7 +188,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -220,7 +221,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -239,7 +240,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -256,7 +257,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -277,7 +278,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -312,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { "tags": [ "solution" @@ -344,7 +345,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -364,7 +365,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -399,7 +400,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -422,7 +423,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { "tags": [ "solution" @@ -443,7 +444,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -463,7 +464,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -490,7 +491,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -512,7 +513,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -536,7 +537,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -554,7 +555,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -574,9 +575,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "29\n" + ] + } + ], "source": [ "print(degrees_of_freedom(m))" ] @@ -590,7 +599,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -624,7 +633,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -651,7 +660,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -667,7 +676,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -694,7 +703,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ @@ -720,7 +729,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": { "tags": [ "solution" @@ -741,7 +750,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -763,13 +772,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": { "tags": [ "solution" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] + } + ], "source": [ "print(degrees_of_freedom(m))" ] @@ -795,7 +812,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": {}, "outputs": [], "source": [ @@ -819,9 +836,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fs.s03\n" + ] + } + ], "source": [ "for o in heuristic_tear_set:\n", " print(o.name)" @@ -836,11 +861,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 33, "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fs.H101\n", + "fs.R101\n", + "fs.F101\n", + "fs.S101\n", + "fs.C101\n", + "fs.M101\n" + ] + } + ], "source": [ "for o in order:\n", " print(o[0].name)" @@ -860,7 +898,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 34, "metadata": {}, "outputs": [], "source": [ @@ -892,7 +930,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -914,9 +952,640 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:46 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.F102.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.F102.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:47 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING: Wegstein failed to converge in 3 iterations\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:48 [INFO] idaes.init.fs.F102.control_volume.properties_in: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:39:49 [INFO] idaes.init.fs.F102.control_volume.properties_out: Initialization Complete\n" + ] + } + ], "source": [ "seq.run(m, function)" ] @@ -938,13 +1607,99 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": { "tags": [ "solution" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 1031\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 934\n", + "\n", + "Total number of variables............................: 340\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 146\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 340\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 6.60e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 8.69e+03 1.42e+03 -1.0 2.00e+04 - 9.71e-01 4.67e-01H 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 2 0.0000000e+00 3.05e+03 1.56e+03 -1.0 1.60e+04 - 9.79e-01 4.90e-01h 1\n", + " 3 0.0000000e+00 1.58e+03 1.55e+05 -1.0 1.40e+04 - 9.90e-01 4.99e-01h 1\n", + " 4 0.0000000e+00 5.49e+02 8.87e+08 -1.0 8.42e+03 - 1.00e+00 9.57e-01h 1\n", + " 5 0.0000000e+00 4.25e+03 2.87e+10 -1.0 8.02e+02 - 1.00e+00 9.90e-01h 1\n", + " 6 0.0000000e+00 2.25e+03 1.51e+10 -1.0 8.39e+00 - 1.00e+00 1.00e+00h 1\n", + " 7 0.0000000e+00 2.27e+01 1.40e+08 -1.0 2.45e-03 - 1.00e+00 1.00e+00f 1\n", + " 8 0.0000000e+00 2.45e-03 1.23e+04 -1.0 2.38e-05 - 1.00e+00 1.00e+00h 1\n", + " 9 0.0000000e+00 3.73e-08 3.38e-01 -2.5 1.06e-07 - 1.00e+00 1.00e+00h 1\n", + "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", + "\n", + "Number of Iterations....: 9\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 2.8284425441187131e+05 2.8284425441187131e+05\n", + "Constraint violation....: 5.8207660913467407e-11 3.7252902984619141e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 5.8207660913467407e-11 2.8284425441187131e+05\n", + "\n", + "\n", + "Number of objective function evaluations = 11\n", + "Number of objective gradient evaluations = 10\n", + "Number of equality constraint evaluations = 11\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 10\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 9\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.010\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], "source": [ "# Create the solver object\n", "from idaes.core.solvers import get_solver\n", @@ -967,9 +1722,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $ 419122.3387677973\n" + ] + } + ], "source": [ "print(\"operating cost = $\", value(m.fs.operating_cost))" ] @@ -983,9 +1746,50 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.F102 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 7352.5 : watt : False : (None, None)\n", + " Pressure Change : -2.0000e+05 : pascal : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Units Inlet Vapor Outlet Liquid Outlet\n", + " flow_mol_phase_comp ('Liq', 'benzene') mole / second 0.20460 1.0000e-08 0.062620 \n", + " flow_mol_phase_comp ('Liq', 'toluene') mole / second 0.062520 1.0000e-08 0.032257 \n", + " flow_mol_phase_comp ('Liq', 'methane') mole / second 2.6712e-07 1.0000e-08 9.4877e-08 \n", + " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 2.6712e-07 1.0000e-08 9.4877e-08 \n", + " flow_mol_phase_comp ('Vap', 'benzene') mole / second 1.0000e-08 0.14198 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'toluene') mole / second 1.0000e-08 0.030264 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.0000e-08 1.8224e-07 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 1.0000e-08 1.8224e-07 1.0000e-08 \n", + " temperature kelvin 325.00 375.00 375.00 \n", + " pressure pascal 3.5000e+05 1.5000e+05 1.5000e+05 \n", + "====================================================================================\n", + "\n", + "benzene purity = 0.8242962943918926\n" + ] + } + ], "source": [ "m.fs.F102.report()\n", "\n", @@ -1007,9 +1811,27 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Units Reactor Light Gases\n", + "flow_mol_phase_comp ('Liq', 'benzene') mole / second 1.2993e-07 1.0000e-08 \n", + "flow_mol_phase_comp ('Liq', 'toluene') mole / second 8.4147e-07 1.0000e-08 \n", + "flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 \n", + "flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 \n", + "flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.35374 0.14915 \n", + "flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.078129 0.015610 \n", + "flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2721 1.2721 \n", + "flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.32821 0.32821 \n", + "temperature kelvin 771.85 325.00 \n", + "pressure pascal 3.5000e+05 3.5000e+05 \n" + ] + } + ], "source": [ "from idaes.core.util.tables import (\n", " create_stream_table_dataframe,\n", @@ -1063,7 +1885,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "metadata": {}, "outputs": [], "source": [ @@ -1079,7 +1901,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 42, "metadata": {}, "outputs": [], "source": [ @@ -1104,7 +1926,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 43, "metadata": { "tags": [ "solution" @@ -1133,7 +1955,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 44, "metadata": {}, "outputs": [], "source": [ @@ -1155,7 +1977,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 45, "metadata": { "tags": [ "solution" @@ -1177,7 +1999,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 46, "metadata": {}, "outputs": [], "source": [ @@ -1198,7 +2020,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 47, "metadata": {}, "outputs": [], "source": [ @@ -1222,7 +2044,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 48, "metadata": { "tags": [ "solution" @@ -1245,7 +2067,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ @@ -1264,9 +2086,107 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 1057\n", + "Number of nonzeros in inequality constraint Jacobian.: 5\n", + "Number of nonzeros in Lagrangian Hessian.............: 937\n", + "\n", + "Total number of variables............................: 345\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 149\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 340\n", + "Total number of inequality constraints...............: 3\n", + " inequality constraints with only lower bounds: 2\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 1\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 4.1912234e+05 2.99e+05 6.94e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 4.1628385e+05 2.99e+05 6.94e+00 -1.0 4.82e+09 - 1.80e-05 5.83e-06f 1\n", + " 2 4.1616723e+05 2.99e+05 1.59e+02 -1.0 1.46e+09 - 5.83e-04 1.47e-05f 1\n", + " 3 4.0789953e+05 2.94e+05 4.83e+02 -1.0 1.36e+09 - 2.64e-04 9.30e-04f 1\n", + " 4 2.9668590e+05 2.83e+06 6.97e+02 -1.0 4.80e+08 - 7.26e-05 1.50e-03f 1\n", + " 5 2.9555461e+05 2.83e+06 4.95e+04 -1.0 1.90e+08 - 1.88e-01 1.04e-03f 1\n", + " 6 2.9451022e+05 2.73e+06 4.60e+05 -1.0 4.43e+07 - 1.87e-01 3.43e-02f 1\n", + " 7 2.9628497e+05 2.13e+06 4.43e+05 -1.0 1.48e+07 - 7.40e-02 2.18e-01h 1\n", + " 8 2.9632658e+05 2.13e+06 4.41e+05 -1.0 5.91e+06 - 6.37e-01 3.36e-03h 1\n", + " 9 2.9642679e+05 2.11e+06 4.39e+05 -1.0 6.54e+06 - 7.26e-01 7.12e-03h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 2.9954735e+05 1.64e+06 4.13e+05 -1.0 6.57e+06 - 3.57e-02 2.24e-01h 1\n", + " 11 3.0435085e+05 9.50e+05 6.95e+05 -1.0 5.56e+06 - 9.46e-01 4.20e-01h 1\n", + " 12 3.0895827e+05 3.69e+05 1.22e+07 -1.0 4.03e+06 - 9.90e-01 6.11e-01h 1\n", + " 13 3.1246277e+05 1.42e+06 1.80e+10 -1.0 2.25e+06 - 9.95e-01 9.65e-01h 1\n", + " 14 3.1266092e+05 5.66e+05 7.10e+10 -1.0 2.77e+05 - 4.14e-01 6.11e-01h 1\n", + " 15 3.1266072e+05 5.65e+05 7.08e+10 -1.0 1.18e+06 - 1.09e-02 2.60e-04h 1\n", + " 16 3.1266230e+05 5.58e+05 7.01e+10 -1.0 1.08e+05 - 1.00e+00 1.26e-02h 1\n", + " 17 3.1271669e+05 3.14e+05 7.23e+10 -1.0 1.07e+05 - 4.05e-01 4.39e-01h 1\n", + " 18 3.1278583e+05 3.89e+03 1.58e+10 -1.0 6.01e+04 - 7.76e-03 9.91e-01h 1\n", + " 19 3.1278664e+05 1.57e+03 6.81e+10 -1.0 5.59e+02 - 9.87e-01 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 20 3.1278678e+05 2.39e+01 1.24e+09 -1.0 1.96e+02 - 1.00e+00 1.00e+00f 1\n", + " 21 3.1278674e+05 1.19e+01 6.32e+08 -1.0 1.30e+02 - 1.00e+00 5.00e-01f 2\n", + " 22 3.1278674e+05 1.21e-02 9.82e+04 -1.0 2.70e+00 - 1.00e+00 1.00e+00f 1\n", + " 23 3.1278642e+05 2.23e-05 2.00e+05 -1.7 1.62e+02 - 1.00e+00 1.00e+00f 1\n", + " 24 3.1278642e+05 7.45e-09 2.01e-03 -1.7 6.37e-01 - 1.00e+00 1.00e+00h 1\n", + " 25 3.1278634e+05 1.39e-06 1.26e+04 -7.0 4.04e+01 - 1.00e+00 1.00e+00f 1\n", + " 26 3.1278634e+05 1.49e-08 3.18e-05 -7.0 6.55e-03 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 26\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 3.1278633834102680e+05 3.1278633834102680e+05\n", + "Dual infeasibility......: 3.1783416921129853e-05 3.1783416921129853e-05\n", + "Constraint violation....: 2.9103830456733704e-11 1.4901161193847656e-08\n", + "Complementarity.........: 9.0926527280252930e-08 9.0926527280252930e-08\n", + "Overall NLP error.......: 6.6903080882733604e-09 3.1783416921129853e-05\n", + "\n", + "\n", + "Number of objective function evaluations = 28\n", + "Number of objective gradient evaluations = 27\n", + "Number of equality constraint evaluations = 28\n", + "Number of inequality constraint evaluations = 28\n", + "Number of equality constraint Jacobian evaluations = 27\n", + "Number of inequality constraint Jacobian evaluations = 27\n", + "Number of Lagrangian Hessian evaluations = 26\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.018\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], "source": [ "results = solver.solve(m, tee=True)" ] @@ -1282,9 +2202,75 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $ 312786.3383410268\n", + "\n", + "Product flow rate and purity in F102\n", + "\n", + "====================================================================================\n", + "Unit : fs.F102 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 8377.0 : watt : False : (None, None)\n", + " Pressure Change : -2.4500e+05 : pascal : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Vapor Outlet Liquid Outlet\n", + " flow_mol_phase_comp ('Liq', 'benzene') mole / second 0.21743 1.0000e-08 0.067425 \n", + " flow_mol_phase_comp ('Liq', 'toluene') mole / second 0.070695 1.0000e-08 0.037507 \n", + " flow_mol_phase_comp ('Liq', 'methane') mole / second 2.8812e-07 1.0000e-08 1.0493e-07 \n", + " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 2.8812e-07 1.0000e-08 1.0493e-07 \n", + " flow_mol_phase_comp ('Vap', 'benzene') mole / second 1.0000e-08 0.15000 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'toluene') mole / second 1.0000e-08 0.033189 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.0000e-08 1.9319e-07 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 1.0000e-08 1.9319e-07 1.0000e-08 \n", + " temperature kelvin 301.88 362.93 362.93 \n", + " pressure pascal 3.5000e+05 1.0500e+05 1.0500e+05 \n", + "====================================================================================\n", + "\n", + "benzene purity = 0.8188276578112275\n", + "\n", + "Overhead loss in F101\n", + "\n", + "====================================================================================\n", + "Unit : fs.F101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -56353. : watt : False : (None, None)\n", + " Pressure Change : 0.0000 : pascal : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Vapor Outlet Liquid Outlet\n", + " flow_mol_phase_comp ('Liq', 'benzene') mole / second 4.3534e-08 1.0000e-08 0.21743 \n", + " flow_mol_phase_comp ('Liq', 'toluene') mole / second 7.5866e-07 1.0000e-08 0.070695 \n", + " flow_mol_phase_comp ('Liq', 'methane') mole / second 1.0000e-12 1.0000e-08 2.8812e-07 \n", + " flow_mol_phase_comp ('Liq', 'hydrogen') mole / second 1.0000e-12 1.0000e-08 2.8812e-07 \n", + " flow_mol_phase_comp ('Vap', 'benzene') mole / second 0.27178 0.054356 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'toluene') mole / second 0.076085 0.0053908 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'methane') mole / second 1.2414 1.2414 1.0000e-08 \n", + " flow_mol_phase_comp ('Vap', 'hydrogen') mole / second 0.35887 0.35887 1.0000e-08 \n", + " temperature kelvin 696.11 301.88 301.88 \n", + " pressure pascal 3.5000e+05 3.5000e+05 3.5000e+05 \n", + "====================================================================================\n" + ] + } + ], "source": [ "print(\"operating cost = $\", value(m.fs.operating_cost))\n", "\n", @@ -1310,9 +2296,26 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal Values\n", + "\n", + "H101 outlet temperature = 500.0 K\n", + "\n", + "R101 outlet temperature = 696.1117584980856 K\n", + "\n", + "F101 outlet temperature = 301.8784760569282 K\n", + "\n", + "F102 outlet temperature = 362.93476830548985 K\n", + "F102 outlet pressure = 105000.0 Pa\n" + ] + } + ], "source": [ "print(\"Optimal Values\")\n", "print()\n", @@ -1355,7 +2358,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.12" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_exercise.ipynb b/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_exercise.ipynb index bcdc90bb..1bb4ae0e 100644 --- a/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_exercise.ipynb +++ b/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_exercise.ipynb @@ -1,1344 +1,1345 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# HDA Flowsheet Simulation and Optimization\n", - "\n", - "Author: Jaffer Ghouse \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "## Learning outcomes\n", - "\n", - "\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Hydrodealkylation is a chemical reaction that often involves reacting\n", - "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", - "simpler aromatic hydrocarbon devoid of functional groups. In this\n", - "example, toluene will be reacted with hydrogen gas at high temperatures\n", - " to form benzene via the following reaction:\n", - "\n", - "**C6H5CH3 + H2 → C6H6 + CH4**\n", - "\n", - "\n", - "This reaction is often accompanied by an equilibrium side reaction\n", - "which forms diphenyl, which we will neglect for this example.\n", - "\n", - "This example is based on the 1967 AIChE Student Contest problem as\n", - "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", - "McGraw-Hill.\n", - "\n", - "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, there are two flash tanks, F101 to separate out the non-condensibles and F102 to further separate the benzene-toluene mixture to improve the benzene purity. Note that typically a distillation column is required to obtain high purity benzene but that is beyond the scope of this workshop. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be either purged or combusted for power generation.We will assume ideal gas for this flowsheet. The properties required for this module are available in the same directory:\n", - "\n", - "- hda_ideal_VLE.py\n", - "- hda_reaction.py\n", - "\n", - "The state variables chosen for the property package are **flows of component by phase, temperature and pressure**. The components considered are: **toluene, hydrogen, benzene and methane**. Therefore, every stream has 8 flow variables, 1 temperature and 1 pressure variable. \n", - "\n", - "![](HDA_flowsheet.png)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required pyomo and idaes components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- ConcreteModel (to create the concrete model object)\n", - "- Expression (to evaluate values as a function of variables defined in the model)\n", - "- Objective (to define an objective function for optimization)\n", - "- SolverFactory (to solve the problem)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- Arc (to connect two unit models)\n", - "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " SolverFactory,\n", - " TransformationFactory,\n", - " value,\n", - ")\n", - "from pyomo.network import Arc, SequentialDecomposition" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From idaes, we will be needing the FlowsheetBlock and the following unit models:\n", - "- Mixer\n", - "- Heater\n", - "- StoichiometricReactor\n", - "- **Flash**\n", - "- Separator (splitter) \n", - "- PressureChanger" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core import FlowsheetBlock" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models import (\n", - " PressureChanger,\n", - " Mixer,\n", - " Separator as Splitter,\n", - " Heater,\n", - " StoichiometricReactor,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, import the remaining unit models highlighted in blue above and run the cell using `Shift+Enter` after typing in the code. \n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: import flash model from idaes.models.unit_models" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.exceptions import InitializationError" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required thermo and reaction package\n", - "\n", - "The final set of imports are to import the thermo and reaction package for the HDA process. We have created a custom thermo package that assumes Ideal Gas with support for VLE. \n", - "\n", - "The reaction package here is very simple as we will be using only a StochiometricReactor and the reaction package consists of the stochiometric coefficients for the reaction and the parameter for the heat of reaction. \n", - "\n", - "Let us import the following modules and they are in the same directory as this jupyter notebook:\n", - "
    \n", - "
  • hda_ideal_VLE as thermo_props
  • \n", - "
  • hda_reaction as reaction_props
  • \n", - "
\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes_examples.mod.hda import hda_ideal_VLE as thermo_props\n", - "from idaes_examples.mod.hda import hda_reaction as reaction_props" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block as we did in module 1. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need to add the property packages to the flowsheet. Unlike Module 1, where we only had a thermo property package, for this flowsheet we will also need to add a reaction property package. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.thermo_params = thermo_props.HDAParameterBlock()\n", - "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", - " property_package=m.fs.thermo_params\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details (https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html). For example, the Mixer unit model here is given a `list` consisting of names to the three inlets. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params,\n", - " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", - ")\n", - "\n", - "m.fs.H101 = Heater(\n", - " property_package=m.fs.thermo_params,\n", - " has_pressure_change=False,\n", - " has_phase_equilibrium=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now add the StoichiometricReactor(assign the name R101) and pass the following arguments:\n", - "
    \n", - "
  • \"property_package\": m.fs.thermo_params
  • \n", - "
  • \"reaction_package\": m.fs.reaction_params
  • \n", - "
  • \"has_heat_of_reaction\": True
  • \n", - "
  • \"has_heat_transfer\": True
  • \n", - "
  • \"has_pressure_change\": False
  • \n", - "
\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add reactor with the specifications above" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add the Flash(assign the name F101) and pass the following arguments:\n", - "
    \n", - "
  • \"property_package\": m.fs.thermo_params
  • \n", - "
  • \"has_heat_transfer\": True
  • \n", - "
  • \"has_pressure_change\": False
  • \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F101 = Flash(\n", - " property_package=m.fs.thermo_params,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add the Splitter(S101), PressureChanger(C101) and the second Flash(F102). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.S101 = Splitter(\n", - " property_package=m.fs.thermo_params,\n", - " ideal_separation=False,\n", - " outlet_list=[\"purge\", \"recycle\"],\n", - ")\n", - "\n", - "\n", - "m.fs.C101 = PressureChanger(\n", - " property_package=m.fs.thermo_params,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", - ")\n", - "\n", - "m.fs.F102 = Flash(\n", - " property_package=m.fs.thermo_params,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models using Arcs\n", - "\n", - "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer(M101) to the inlet of the heater(H101). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "![](HDA_flowsheet.png) \n", - "\n", - "
\n", - "Inline Exercise:\n", - "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Connect the H101 outlet to R101 inlet" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be connecting the rest of the flowsheet as shown below. Notice how the outlet names are different for the flash tanks F101 and F102 as they have a vapor and a liquid outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", - "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", - "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", - "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", - "m.fs.s10 = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.F102.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding expressions to compute purity and operating costs\n", - "\n", - "In this section, we will add a few Expressions that allows us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html\n", - "\n", - "For this flowsheet, we are interested in computing the purity of the product Benzene stream (i.e. the mole fraction) and the operating cost which is a sum of the cooling and heating cost. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us first add an Expression to compute the mole fraction of benzene in the `vap_outlet` of F102 which is our product stream. Please note that the var flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.purity = Expression(\n", - " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " / (\n", - " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " + m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let us add an expression to compute the cooling cost assuming a cost of 0.212E-4 $/kW. Note that cooling utility is required for the reactor (R101) and the first flash (F101). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.cooling_cost = Expression(\n", - " expr=0.212e-7 * (-m.fs.F101.heat_duty[0]) + 0.212e-7 * (-m.fs.R101.heat_duty[0])\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "Now, let us add an expression to compute the heating cost assuming the utility cost as follows:\n", - "
    \n", - "
  • 2.2E-4 dollars/kW for H101
  • \n", - "
  • 1.9E-4 dollars/kW for F102
  • \n", - "
\n", - "Note that the heat duty is in units of watt (J/s). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add an expression to compute the total operating cost per year which is basically the sum of the cooling and heating cost we defined above. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing feed conditions\n", - "\n", - "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", - "m.fs.M101.toluene_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", - "
    \n", - "
  • FH2 = 0.30 mol/s
  • \n", - "
  • FCH4 = 0.02 mol/s
  • \n", - "
  • Remaining components = 1e-5 mol/s
  • \n", - "
  • T = 303.2 K
  • \n", - "
  • P = 350000 Pa
  • \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", - "m.fs.M101.hydrogen_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing unit model specifications\n", - "\n", - "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set set the H101 outlet temperature to 600 K. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.fix(600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the StoichiometricReactor, we have to define the conversion in terms of toluene. This requires us to create a new variable for specifying the conversion and adding a Constraint that defines the conversion with respect to toluene. The second degree of freedom for the reactor is to define the heat duty. In this case, let us assume the reactor to be adiabatic i.e. Q = 0. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", - "\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " )\n", - ")\n", - "\n", - "m.fs.R101.conversion.fix(0.75)\n", - "m.fs.R101.heat_duty.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Flash conditions for F101 can be set as follows. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", - "m.fs.F101.deltaP.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Set the conditions for Flash F102 to the following conditions:\n", - "
    \n", - "
  • T = 375 K
  • \n", - "
  • deltaP = -200000
  • \n", - "
\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Set conditions for Flash F102" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us fix the purge split fraction to 20% and the outlet pressure of the compressor is set to 350000 Pa. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", - "m.fs.C101.outlet.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the degrees of freedom" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Initialization\n", - "\n", - "\n", - "This section will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", - "\n", - "![](HDA_flowsheet.png) \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us first create an object for the SequentialDecomposition and specify our options for this. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "seq = SequentialDecomposition()\n", - "seq.options.select_tear_method = \"heuristic\"\n", - "seq.options.tear_method = \"Wegstein\"\n", - "seq.options.iterLim = 3\n", - "\n", - "# Using the SD tool\n", - "G = seq.create_graph(m)\n", - "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", - "order = seq.calculation_order(G)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Which is the tear stream? Display tear set and order" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "for o in heuristic_tear_set:\n", - " print(o.name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "for o in order:\n", - " print(o[0].name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " \n", - "\n", - "![](HDA_tear_stream.png) \n", - "\n", - "\n", - "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet. We will need to provide a reasonable guess for this." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "tear_guesses = {\n", - " \"flow_mol_phase_comp\": {\n", - " (0, \"Vap\", \"benzene\"): 1e-5,\n", - " (0, \"Vap\", \"toluene\"): 1e-5,\n", - " (0, \"Vap\", \"hydrogen\"): 0.30,\n", - " (0, \"Vap\", \"methane\"): 0.02,\n", - " (0, \"Liq\", \"benzene\"): 1e-5,\n", - " (0, \"Liq\", \"toluene\"): 0.30,\n", - " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", - " (0, \"Liq\", \"methane\"): 1e-5,\n", - " },\n", - " \"temperature\": {0: 303},\n", - " \"pressure\": {0: 350000},\n", - "}\n", - "\n", - "# Pass the tear_guess to the SD tool\n", - "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def function(unit):\n", - " try:\n", - " initializer = unit.default_initializer()\n", - " initializer.initialize(unit, output_level=idaeslog.INFO)\n", - " except InitializationError:\n", - " solver = get_solver()\n", - " solver.solve(unit)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 5 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "seq.run(m, function)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. To do this, complete the last line of code where we pass the model to the solver. You will need to type the following:\n", - " \n", - "results = solver.solve(m, tee=True)\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create the solver object\n", - "\n", - "\n", - "# Solve the model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the results of the square problem\n", - "\n", - "\n", - "What is the total operating cost? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"operating cost = $\", value(m.fs.operating_cost))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this operating cost, what is the amount of benzene we are able to produce and what purity we are able to achieve? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F102.report()\n", - "\n", - "print()\n", - "print(\"benzene purity = \", value(m.fs.purity))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "How much benzene are we losing in the F101 vapor outlet stream?\n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.util.tables import (\n", - " create_stream_table_dataframe,\n", - " stream_table_dataframe_to_string,\n", - ")\n", - "\n", - "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", - "print(stream_table_dataframe_to_string(st))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "You can query additional variables here if you like. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimization\n", - "\n", - "\n", - "We saw from the results above that the total operating cost for the base case was $419,122 per year. We are producing 0.142 mol/s of benzene at a purity of 82\\%. However, we are losing around 42\\% of benzene in F101 vapor outlet stream. \n", - "\n", - "Let us try to minimize this cost such that:\n", - "- we are producing at least 0.15 mol/s of benzene in F102 vapor outlet i.e. our product stream\n", - "- purity of benzene i.e. the mole fraction of benzene in F102 vapor outlet is at least 80%\n", - "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", - "\n", - "For this problem, our decision variables are as follows:\n", - "- H101 outlet temperature\n", - "- R101 cooling duty provided\n", - "- F101 outlet temperature\n", - "- F102 outlet temperature\n", - "- F102 deltaP in the flash tank\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.R101.heat_duty.unfix()\n", - "m.fs.F101.vap_outlet.temperature.unfix()\n", - "m.fs.F102.vap_outlet.temperature.unfix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now unfix the remaining variable which is F102 pressure drop (F102.deltaP) \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Unfix deltaP for F102" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to set bounds on these decision variables to values shown below:\n", - "\n", - " - H101 outlet temperature [500, 600] K\n", - " - R101 outlet temperature [600, 800] K\n", - " - F101 outlet temperature [298, 450] K\n", - " - F102 outlet temperature [298, 450] K\n", - " - F102 outlet pressure [105000, 110000] Pa\n", - "\n", - "Let us first set the variable bound for the H101 outlet temperature as shown below:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature[0].setlb(500)\n", - "m.fs.H101.outlet.temperature[0].setub(600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, set the variable bound for the R101 outlet temperature.\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Set the bounds for reactor outlet temperature" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us fix the bounds for the rest of the decision variables. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F101.vap_outlet.temperature[0].setlb(298.0)\n", - "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", - "m.fs.F102.vap_outlet.temperature[0].setlb(298.0)\n", - "m.fs.F102.vap_outlet.temperature[0].setub(450.0)\n", - "m.fs.F102.vap_outlet.pressure[0].setlb(105000)\n", - "m.fs.F102.vap_outlet.pressure[0].setub(110000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the only things left to define are our constraints on overhead loss in F101, product flow rate and purity in F102. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 \\% of the benzene available in the reactor outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.overhead_loss = Constraint(\n", - " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, add the constraint such that we are producing at least 0.15 mol/s of benzene in the product stream which is the vapor outlet of F102. Let us name this constraint as m.fs.product_flow. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add minimum product flow constraint" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us add the final constraint on product purity or the mole fraction of benzene in the product stream such that it is at least greater than 80%. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.product_purity = Constraint(expr=m.fs.purity >= 0.80)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimization Results\n", - "\n", - "Display the results and product specifications" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"operating cost = $\", value(m.fs.operating_cost))\n", - "\n", - "print()\n", - "print(\"Product flow rate and purity in F102\")\n", - "\n", - "m.fs.F102.report()\n", - "\n", - "print()\n", - "print(\"benzene purity = \", value(m.fs.purity))\n", - "\n", - "print()\n", - "print(\"Overhead loss in F101\")\n", - "m.fs.F101.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"F102 outlet temperature = \", value(m.fs.F102.vap_outlet.temperature[0]), \"K\")\n", - "print(\"F102 outlet pressure = \", value(m.fs.F102.vap_outlet.pressure[0]), \"Pa\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# HDA Flowsheet Simulation and Optimization\n", + "\n", + "Author: Jaffer Ghouse \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "## Learning outcomes\n", + "\n", + "\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Hydrodealkylation is a chemical reaction that often involves reacting\n", + "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", + "simpler aromatic hydrocarbon devoid of functional groups. In this\n", + "example, toluene will be reacted with hydrogen gas at high temperatures\n", + " to form benzene via the following reaction:\n", + "\n", + "**C6H5CH3 + H2 \u2192 C6H6 + CH4**\n", + "\n", + "\n", + "This reaction is often accompanied by an equilibrium side reaction\n", + "which forms diphenyl, which we will neglect for this example.\n", + "\n", + "This example is based on the 1967 AIChE Student Contest problem as\n", + "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", + "McGraw-Hill.\n", + "\n", + "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, there are two flash tanks, F101 to separate out the non-condensibles and F102 to further separate the benzene-toluene mixture to improve the benzene purity. Note that typically a distillation column is required to obtain high purity benzene but that is beyond the scope of this workshop. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be either purged or combusted for power generation.We will assume ideal gas for this flowsheet. The properties required for this module are available in the same directory:\n", + "\n", + "- hda_ideal_VLE.py\n", + "- hda_reaction.py\n", + "\n", + "The state variables chosen for the property package are **flows of component by phase, temperature and pressure**. The components considered are: **toluene, hydrogen, benzene and methane**. Therefore, every stream has 8 flow variables, 1 temperature and 1 pressure variable. \n", + "\n", + "![](HDA_flowsheet.png)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required pyomo and idaes components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- ConcreteModel (to create the concrete model object)\n", + "- Expression (to evaluate values as a function of variables defined in the model)\n", + "- Objective (to define an objective function for optimization)\n", + "- SolverFactory (to solve the problem)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- Arc (to connect two unit models)\n", + "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " SolverFactory,\n", + " TransformationFactory,\n", + " value,\n", + ")\n", + "from pyomo.network import Arc, SequentialDecomposition" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From idaes, we will be needing the FlowsheetBlock and the following unit models:\n", + "- Mixer\n", + "- Heater\n", + "- StoichiometricReactor\n", + "- **Flash**\n", + "- Separator (splitter) \n", + "- PressureChanger" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core import FlowsheetBlock" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models import (\n", + " PressureChanger,\n", + " Mixer,\n", + " Separator as Splitter,\n", + " Heater,\n", + " StoichiometricReactor,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, import the remaining unit models highlighted in blue above and run the cell using `Shift+Enter` after typing in the code. \n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: import flash model from idaes.models.unit_models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.exceptions import InitializationError" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required thermo and reaction package\n", + "\n", + "The final set of imports are to import the thermo and reaction package for the HDA process. We have created a custom thermo package that assumes Ideal Gas with support for VLE. \n", + "\n", + "The reaction package here is very simple as we will be using only a StochiometricReactor and the reaction package consists of the stochiometric coefficients for the reaction and the parameter for the heat of reaction. \n", + "\n", + "Let us import the following modules and they are in the same directory as this jupyter notebook:\n", + "
    \n", + "
  • hda_ideal_VLE as thermo_props
  • \n", + "
  • hda_reaction as reaction_props
  • \n", + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes_examples.mod.hda import hda_ideal_VLE as thermo_props\n", + "from idaes_examples.mod.hda import hda_reaction as reaction_props" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block as we did in module 1. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now need to add the property packages to the flowsheet. Unlike Module 1, where we only had a thermo property package, for this flowsheet we will also need to add a reaction property package. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.thermo_params = thermo_props.HDAParameterBlock()\n", + "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", + " property_package=m.fs.thermo_params\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details (https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html). For example, the Mixer unit model here is given a `list` consisting of names to the three inlets. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params,\n", + " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", + ")\n", + "\n", + "m.fs.H101 = Heater(\n", + " property_package=m.fs.thermo_params,\n", + " has_pressure_change=False,\n", + " has_phase_equilibrium=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now add the StoichiometricReactor(assign the name R101) and pass the following arguments:\n", + "
    \n", + "
  • \"property_package\": m.fs.thermo_params
  • \n", + "
  • \"reaction_package\": m.fs.reaction_params
  • \n", + "
  • \"has_heat_of_reaction\": True
  • \n", + "
  • \"has_heat_transfer\": True
  • \n", + "
  • \"has_pressure_change\": False
  • \n", + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add reactor with the specifications above" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add the Flash(assign the name F101) and pass the following arguments:\n", + "
    \n", + "
  • \"property_package\": m.fs.thermo_params
  • \n", + "
  • \"has_heat_transfer\": True
  • \n", + "
  • \"has_pressure_change\": False
  • \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F101 = Flash(\n", + " property_package=m.fs.thermo_params,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add the Splitter(S101), PressureChanger(C101) and the second Flash(F102). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.S101 = Splitter(\n", + " property_package=m.fs.thermo_params,\n", + " ideal_separation=False,\n", + " outlet_list=[\"purge\", \"recycle\"],\n", + ")\n", + "\n", + "\n", + "m.fs.C101 = PressureChanger(\n", + " property_package=m.fs.thermo_params,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", + ")\n", + "\n", + "m.fs.F102 = Flash(\n", + " property_package=m.fs.thermo_params,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models using Arcs\n", + "\n", + "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer(M101) to the inlet of the heater(H101). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "![](HDA_flowsheet.png) \n", + "\n", + "
\n", + "Inline Exercise:\n", + "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Connect the H101 outlet to R101 inlet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be connecting the rest of the flowsheet as shown below. Notice how the outlet names are different for the flash tanks F101 and F102 as they have a vapor and a liquid outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", + "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", + "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", + "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", + "m.fs.s10 = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.F102.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding expressions to compute purity and operating costs\n", + "\n", + "In this section, we will add a few Expressions that allows us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html\n", + "\n", + "For this flowsheet, we are interested in computing the purity of the product Benzene stream (i.e. the mole fraction) and the operating cost which is a sum of the cooling and heating cost. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us first add an Expression to compute the mole fraction of benzene in the `vap_outlet` of F102 which is our product stream. Please note that the var flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.purity = Expression(\n", + " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " / (\n", + " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " + m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let us add an expression to compute the cooling cost assuming a cost of 0.212E-4 $/kW. Note that cooling utility is required for the reactor (R101) and the first flash (F101). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.cooling_cost = Expression(\n", + " expr=0.212e-7 * (-m.fs.F101.heat_duty[0]) + 0.212e-7 * (-m.fs.R101.heat_duty[0])\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Now, let us add an expression to compute the heating cost assuming the utility cost as follows:\n", + "
    \n", + "
  • 2.2E-4 dollars/kW for H101
  • \n", + "
  • 1.9E-4 dollars/kW for F102
  • \n", + "
\n", + "Note that the heat duty is in units of watt (J/s). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add an expression to compute the total operating cost per year which is basically the sum of the cooling and heating cost we defined above. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing feed conditions\n", + "\n", + "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", + "m.fs.M101.toluene_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", + "
    \n", + "
  • FH2 = 0.30 mol/s
  • \n", + "
  • FCH4 = 0.02 mol/s
  • \n", + "
  • Remaining components = 1e-5 mol/s
  • \n", + "
  • T = 303.2 K
  • \n", + "
  • P = 350000 Pa
  • \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", + "m.fs.M101.hydrogen_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing unit model specifications\n", + "\n", + "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set set the H101 outlet temperature to 600 K. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.fix(600)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the StoichiometricReactor, we have to define the conversion in terms of toluene. This requires us to create a new variable for specifying the conversion and adding a Constraint that defines the conversion with respect to toluene. The second degree of freedom for the reactor is to define the heat duty. In this case, let us assume the reactor to be adiabatic i.e. Q = 0. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", + "\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " )\n", + ")\n", + "\n", + "m.fs.R101.conversion.fix(0.75)\n", + "m.fs.R101.heat_duty.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Flash conditions for F101 can be set as follows. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", + "m.fs.F101.deltaP.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Set the conditions for Flash F102 to the following conditions:\n", + "
    \n", + "
  • T = 375 K
  • \n", + "
  • deltaP = -200000
  • \n", + "
\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Set conditions for Flash F102" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us fix the purge split fraction to 20% and the outlet pressure of the compressor is set to 350000 Pa. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", + "m.fs.C101.outlet.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the degrees of freedom" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initialization\n", + "\n", + "\n", + "This section will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", + "\n", + "![](HDA_flowsheet.png) \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us first create an object for the SequentialDecomposition and specify our options for this. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "seq = SequentialDecomposition()\n", + "seq.options.select_tear_method = \"heuristic\"\n", + "seq.options.tear_method = \"Wegstein\"\n", + "seq.options.iterLim = 3\n", + "\n", + "# Using the SD tool\n", + "G = seq.create_graph(m)\n", + "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", + "order = seq.calculation_order(G)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Which is the tear stream? Display tear set and order" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for o in heuristic_tear_set:\n", + " print(o.name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "for o in order:\n", + " print(o[0].name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " \n", + "\n", + "![](HDA_tear_stream.png) \n", + "\n", + "\n", + "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet. We will need to provide a reasonable guess for this." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tear_guesses = {\n", + " \"flow_mol_phase_comp\": {\n", + " (0, \"Vap\", \"benzene\"): 1e-5,\n", + " (0, \"Vap\", \"toluene\"): 1e-5,\n", + " (0, \"Vap\", \"hydrogen\"): 0.30,\n", + " (0, \"Vap\", \"methane\"): 0.02,\n", + " (0, \"Liq\", \"benzene\"): 1e-5,\n", + " (0, \"Liq\", \"toluene\"): 0.30,\n", + " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", + " (0, \"Liq\", \"methane\"): 1e-5,\n", + " },\n", + " \"temperature\": {0: 303},\n", + " \"pressure\": {0: 350000},\n", + "}\n", + "\n", + "# Pass the tear_guess to the SD tool\n", + "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def function(unit):\n", + " try:\n", + " initializer = unit.default_initializer()\n", + " initializer.initialize(unit, output_level=idaeslog.INFO)\n", + " except InitializationError:\n", + " solver = get_solver()\n", + " solver.solve(unit)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 5 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "seq.run(m, function)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. To do this, complete the last line of code where we pass the model to the solver. You will need to type the following:\n", + " \n", + "results = solver.solve(m, tee=True)\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create the solver object\n", + "\n", + "\n", + "# Solve the model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the results of the square problem\n", + "\n", + "\n", + "What is the total operating cost? " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"operating cost = $\", value(m.fs.operating_cost))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this operating cost, what is the amount of benzene we are able to produce and what purity we are able to achieve? " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F102.report()\n", + "\n", + "print()\n", + "print(\"benzene purity = \", value(m.fs.purity))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "How much benzene are we losing in the F101 vapor outlet stream?\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.util.tables import (\n", + " create_stream_table_dataframe,\n", + " stream_table_dataframe_to_string,\n", + ")\n", + "\n", + "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", + "print(stream_table_dataframe_to_string(st))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "You can query additional variables here if you like. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimization\n", + "\n", + "\n", + "We saw from the results above that the total operating cost for the base case was $419,122 per year. We are producing 0.142 mol/s of benzene at a purity of 82\\%. However, we are losing around 42\\% of benzene in F101 vapor outlet stream. \n", + "\n", + "Let us try to minimize this cost such that:\n", + "- we are producing at least 0.15 mol/s of benzene in F102 vapor outlet i.e. our product stream\n", + "- purity of benzene i.e. the mole fraction of benzene in F102 vapor outlet is at least 80%\n", + "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", + "\n", + "For this problem, our decision variables are as follows:\n", + "- H101 outlet temperature\n", + "- R101 cooling duty provided\n", + "- F101 outlet temperature\n", + "- F102 outlet temperature\n", + "- F102 deltaP in the flash tank\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.R101.heat_duty.unfix()\n", + "m.fs.F101.vap_outlet.temperature.unfix()\n", + "m.fs.F102.vap_outlet.temperature.unfix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now unfix the remaining variable which is F102 pressure drop (F102.deltaP) \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Unfix deltaP for F102" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to set bounds on these decision variables to values shown below:\n", + "\n", + " - H101 outlet temperature [500, 600] K\n", + " - R101 outlet temperature [600, 800] K\n", + " - F101 outlet temperature [298, 450] K\n", + " - F102 outlet temperature [298, 450] K\n", + " - F102 outlet pressure [105000, 110000] Pa\n", + "\n", + "Let us first set the variable bound for the H101 outlet temperature as shown below:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature[0].setlb(500)\n", + "m.fs.H101.outlet.temperature[0].setub(600)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, set the variable bound for the R101 outlet temperature.\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Set the bounds for reactor outlet temperature" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us fix the bounds for the rest of the decision variables. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F101.vap_outlet.temperature[0].setlb(298.0)\n", + "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", + "m.fs.F102.vap_outlet.temperature[0].setlb(298.0)\n", + "m.fs.F102.vap_outlet.temperature[0].setub(450.0)\n", + "m.fs.F102.vap_outlet.pressure[0].setlb(105000)\n", + "m.fs.F102.vap_outlet.pressure[0].setub(110000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the only things left to define are our constraints on overhead loss in F101, product flow rate and purity in F102. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 \\% of the benzene available in the reactor outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.overhead_loss = Constraint(\n", + " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, add the constraint such that we are producing at least 0.15 mol/s of benzene in the product stream which is the vapor outlet of F102. Let us name this constraint as m.fs.product_flow. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add minimum product flow constraint" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us add the final constraint on product purity or the mole fraction of benzene in the product stream such that it is at least greater than 80%. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.product_purity = Constraint(expr=m.fs.purity >= 0.80)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimization Results\n", + "\n", + "Display the results and product specifications" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"operating cost = $\", value(m.fs.operating_cost))\n", + "\n", + "print()\n", + "print(\"Product flow rate and purity in F102\")\n", + "\n", + "m.fs.F102.report()\n", + "\n", + "print()\n", + "print(\"benzene purity = \", value(m.fs.purity))\n", + "\n", + "print()\n", + "print(\"Overhead loss in F101\")\n", + "m.fs.F101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"F102 outlet temperature = \", value(m.fs.F102.vap_outlet.temperature[0]), \"K\")\n", + "print(\"F102 outlet pressure = \", value(m.fs.F102.vap_outlet.pressure[0]), \"Pa\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_solution.ipynb b/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_solution.ipynb index 6f8b47f4..6a8537b3 100644 --- a/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_solution.ipynb +++ b/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_solution.ipynb @@ -1,1483 +1,1484 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# HDA Flowsheet Simulation and Optimization\n", - "\n", - "Author: Jaffer Ghouse \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "## Learning outcomes\n", - "\n", - "\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Hydrodealkylation is a chemical reaction that often involves reacting\n", - "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", - "simpler aromatic hydrocarbon devoid of functional groups. In this\n", - "example, toluene will be reacted with hydrogen gas at high temperatures\n", - " to form benzene via the following reaction:\n", - "\n", - "**C6H5CH3 + H2 → C6H6 + CH4**\n", - "\n", - "\n", - "This reaction is often accompanied by an equilibrium side reaction\n", - "which forms diphenyl, which we will neglect for this example.\n", - "\n", - "This example is based on the 1967 AIChE Student Contest problem as\n", - "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", - "McGraw-Hill.\n", - "\n", - "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, there are two flash tanks, F101 to separate out the non-condensibles and F102 to further separate the benzene-toluene mixture to improve the benzene purity. Note that typically a distillation column is required to obtain high purity benzene but that is beyond the scope of this workshop. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be either purged or combusted for power generation.We will assume ideal gas for this flowsheet. The properties required for this module are available in the same directory:\n", - "\n", - "- hda_ideal_VLE.py\n", - "- hda_reaction.py\n", - "\n", - "The state variables chosen for the property package are **flows of component by phase, temperature and pressure**. The components considered are: **toluene, hydrogen, benzene and methane**. Therefore, every stream has 8 flow variables, 1 temperature and 1 pressure variable. \n", - "\n", - "![](HDA_flowsheet.png)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required pyomo and idaes components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- ConcreteModel (to create the concrete model object)\n", - "- Expression (to evaluate values as a function of variables defined in the model)\n", - "- Objective (to define an objective function for optimization)\n", - "- SolverFactory (to solve the problem)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- Arc (to connect two unit models)\n", - "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " SolverFactory,\n", - " TransformationFactory,\n", - " value,\n", - ")\n", - "from pyomo.network import Arc, SequentialDecomposition" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From idaes, we will be needing the FlowsheetBlock and the following unit models:\n", - "- Mixer\n", - "- Heater\n", - "- StoichiometricReactor\n", - "- **Flash**\n", - "- Separator (splitter) \n", - "- PressureChanger" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core import FlowsheetBlock" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models import (\n", - " PressureChanger,\n", - " Mixer,\n", - " Separator as Splitter,\n", - " Heater,\n", - " StoichiometricReactor,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, import the remaining unit models highlighted in blue above and run the cell using `Shift+Enter` after typing in the code. \n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: import flash model from idaes.models.unit_models" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: import flash model from idaes.models.unit_models\n", - "from idaes.models.unit_models import Flash" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.exceptions import InitializationError" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required thermo and reaction package\n", - "\n", - "The final set of imports are to import the thermo and reaction package for the HDA process. We have created a custom thermo package that assumes Ideal Gas with support for VLE. \n", - "\n", - "The reaction package here is very simple as we will be using only a StochiometricReactor and the reaction package consists of the stochiometric coefficients for the reaction and the parameter for the heat of reaction. \n", - "\n", - "Let us import the following modules and they are in the same directory as this jupyter notebook:\n", - "
    \n", - "
  • hda_ideal_VLE as thermo_props
  • \n", - "
  • hda_reaction as reaction_props
  • \n", - "
\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes_examples.mod.hda import hda_ideal_VLE as thermo_props\n", - "from idaes_examples.mod.hda import hda_reaction as reaction_props" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block as we did in module 1. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need to add the property packages to the flowsheet. Unlike Module 1, where we only had a thermo property package, for this flowsheet we will also need to add a reaction property package. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.thermo_params = thermo_props.HDAParameterBlock()\n", - "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", - " property_package=m.fs.thermo_params\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details (https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html). For example, the Mixer unit model here is given a `list` consisting of names to the three inlets. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params,\n", - " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", - ")\n", - "\n", - "m.fs.H101 = Heater(\n", - " property_package=m.fs.thermo_params,\n", - " has_pressure_change=False,\n", - " has_phase_equilibrium=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now add the StoichiometricReactor(assign the name R101) and pass the following arguments:\n", - "
    \n", - "
  • \"property_package\": m.fs.thermo_params
  • \n", - "
  • \"reaction_package\": m.fs.reaction_params
  • \n", - "
  • \"has_heat_of_reaction\": True
  • \n", - "
  • \"has_heat_transfer\": True
  • \n", - "
  • \"has_pressure_change\": False
  • \n", - "
\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add reactor with the specifications above" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add reactor with the specifications above\n", - "m.fs.R101 = StoichiometricReactor(\n", - " property_package=m.fs.thermo_params,\n", - " reaction_package=m.fs.reaction_params,\n", - " has_heat_of_reaction=True,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=False,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add the Flash(assign the name F101) and pass the following arguments:\n", - "
    \n", - "
  • \"property_package\": m.fs.thermo_params
  • \n", - "
  • \"has_heat_transfer\": True
  • \n", - "
  • \"has_pressure_change\": False
  • \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F101 = Flash(\n", - " property_package=m.fs.thermo_params,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add the Splitter(S101), PressureChanger(C101) and the second Flash(F102). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.S101 = Splitter(\n", - " property_package=m.fs.thermo_params,\n", - " ideal_separation=False,\n", - " outlet_list=[\"purge\", \"recycle\"],\n", - ")\n", - "\n", - "\n", - "m.fs.C101 = PressureChanger(\n", - " property_package=m.fs.thermo_params,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", - ")\n", - "\n", - "m.fs.F102 = Flash(\n", - " property_package=m.fs.thermo_params,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models using Arcs\n", - "\n", - "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer(M101) to the inlet of the heater(H101). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "![](HDA_flowsheet.png) \n", - "\n", - "
\n", - "Inline Exercise:\n", - "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Connect the H101 outlet to R101 inlet" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Connect the H101 outlet to R101 inlet\n", - "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be connecting the rest of the flowsheet as shown below. Notice how the outlet names are different for the flash tanks F101 and F102 as they have a vapor and a liquid outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", - "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", - "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", - "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", - "m.fs.s10 = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.F102.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding expressions to compute purity and operating costs\n", - "\n", - "In this section, we will add a few Expressions that allows us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html\n", - "\n", - "For this flowsheet, we are interested in computing the purity of the product Benzene stream (i.e. the mole fraction) and the operating cost which is a sum of the cooling and heating cost. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us first add an Expression to compute the mole fraction of benzene in the `vap_outlet` of F102 which is our product stream. Please note that the var flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.purity = Expression(\n", - " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " / (\n", - " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " + m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let us add an expression to compute the cooling cost assuming a cost of 0.212E-4 $/kW. Note that cooling utility is required for the reactor (R101) and the first flash (F101). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.cooling_cost = Expression(\n", - " expr=0.212e-7 * (-m.fs.F101.heat_duty[0]) + 0.212e-7 * (-m.fs.R101.heat_duty[0])\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "Now, let us add an expression to compute the heating cost assuming the utility cost as follows:\n", - "
    \n", - "
  • 2.2E-4 dollars/kW for H101
  • \n", - "
  • 1.9E-4 dollars/kW for F102
  • \n", - "
\n", - "Note that the heat duty is in units of watt (J/s). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add an expression to compute the total operating cost per year which is basically the sum of the cooling and heating cost we defined above. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing feed conditions\n", - "\n", - "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", - "m.fs.M101.toluene_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", - "
    \n", - "
  • FH2 = 0.30 mol/s
  • \n", - "
  • FCH4 = 0.02 mol/s
  • \n", - "
  • Remaining components = 1e-5 mol/s
  • \n", - "
  • T = 303.2 K
  • \n", - "
  • P = 350000 Pa
  • \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", - "m.fs.M101.hydrogen_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing unit model specifications\n", - "\n", - "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set set the H101 outlet temperature to 600 K. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.fix(600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the StoichiometricReactor, we have to define the conversion in terms of toluene. This requires us to create a new variable for specifying the conversion and adding a Constraint that defines the conversion with respect to toluene. The second degree of freedom for the reactor is to define the heat duty. In this case, let us assume the reactor to be adiabatic i.e. Q = 0. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", - "\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " )\n", - ")\n", - "\n", - "m.fs.R101.conversion.fix(0.75)\n", - "m.fs.R101.heat_duty.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Flash conditions for F101 can be set as follows. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", - "m.fs.F101.deltaP.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Set the conditions for Flash F102 to the following conditions:\n", - "
    \n", - "
  • T = 375 K
  • \n", - "
  • deltaP = -200000
  • \n", - "
\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Set conditions for Flash F102" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "m.fs.F102.vap_outlet.temperature.fix(375)\n", - "m.fs.F102.deltaP.fix(-200000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us fix the purge split fraction to 20% and the outlet pressure of the compressor is set to 350000 Pa. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", - "m.fs.C101.outlet.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the degrees of freedom" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Initialization\n", - "\n", - "\n", - "This section will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", - "\n", - "![](HDA_flowsheet.png) \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us first create an object for the SequentialDecomposition and specify our options for this. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "seq = SequentialDecomposition()\n", - "seq.options.select_tear_method = \"heuristic\"\n", - "seq.options.tear_method = \"Wegstein\"\n", - "seq.options.iterLim = 3\n", - "\n", - "# Using the SD tool\n", - "G = seq.create_graph(m)\n", - "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", - "order = seq.calculation_order(G)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Which is the tear stream? Display tear set and order" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "for o in heuristic_tear_set:\n", - " print(o.name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "for o in order:\n", - " print(o[0].name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " \n", - "\n", - "![](HDA_tear_stream.png) \n", - "\n", - "\n", - "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet. We will need to provide a reasonable guess for this." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "tear_guesses = {\n", - " \"flow_mol_phase_comp\": {\n", - " (0, \"Vap\", \"benzene\"): 1e-5,\n", - " (0, \"Vap\", \"toluene\"): 1e-5,\n", - " (0, \"Vap\", \"hydrogen\"): 0.30,\n", - " (0, \"Vap\", \"methane\"): 0.02,\n", - " (0, \"Liq\", \"benzene\"): 1e-5,\n", - " (0, \"Liq\", \"toluene\"): 0.30,\n", - " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", - " (0, \"Liq\", \"methane\"): 1e-5,\n", - " },\n", - " \"temperature\": {0: 303},\n", - " \"pressure\": {0: 350000},\n", - "}\n", - "\n", - "# Pass the tear_guess to the SD tool\n", - "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def function(unit):\n", - " try:\n", - " initializer = unit.default_initializer()\n", - " initializer.initialize(unit, output_level=idaeslog.INFO)\n", - " except InitializationError:\n", - " solver = get_solver()\n", - " solver.solve(unit)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 5 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "seq.run(m, function)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. To do this, complete the last line of code where we pass the model to the solver. You will need to type the following:\n", - " \n", - "results = solver.solve(m, tee=True)\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create the solver object\n", - "\n", - "\n", - "# Solve the model" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Create the solver object\n", - "from idaes.core.solvers import get_solver\n", - "\n", - "solver = get_solver()\n", - "\n", - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the results of the square problem\n", - "\n", - "\n", - "What is the total operating cost? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"operating cost = $\", value(m.fs.operating_cost))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this operating cost, what is the amount of benzene we are able to produce and what purity we are able to achieve? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F102.report()\n", - "\n", - "print()\n", - "print(\"benzene purity = \", value(m.fs.purity))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "How much benzene are we losing in the F101 vapor outlet stream?\n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.util.tables import (\n", - " create_stream_table_dataframe,\n", - " stream_table_dataframe_to_string,\n", - ")\n", - "\n", - "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", - "print(stream_table_dataframe_to_string(st))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "You can query additional variables here if you like. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimization\n", - "\n", - "\n", - "We saw from the results above that the total operating cost for the base case was $419,122 per year. We are producing 0.142 mol/s of benzene at a purity of 82\\%. However, we are losing around 42\\% of benzene in F101 vapor outlet stream. \n", - "\n", - "Let us try to minimize this cost such that:\n", - "- we are producing at least 0.15 mol/s of benzene in F102 vapor outlet i.e. our product stream\n", - "- purity of benzene i.e. the mole fraction of benzene in F102 vapor outlet is at least 80%\n", - "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", - "\n", - "For this problem, our decision variables are as follows:\n", - "- H101 outlet temperature\n", - "- R101 cooling duty provided\n", - "- F101 outlet temperature\n", - "- F102 outlet temperature\n", - "- F102 deltaP in the flash tank\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.R101.heat_duty.unfix()\n", - "m.fs.F101.vap_outlet.temperature.unfix()\n", - "m.fs.F102.vap_outlet.temperature.unfix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now unfix the remaining variable which is F102 pressure drop (F102.deltaP) \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Unfix deltaP for F102" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Unfix deltaP for F102\n", - "m.fs.F102.deltaP.unfix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to set bounds on these decision variables to values shown below:\n", - "\n", - " - H101 outlet temperature [500, 600] K\n", - " - R101 outlet temperature [600, 800] K\n", - " - F101 outlet temperature [298, 450] K\n", - " - F102 outlet temperature [298, 450] K\n", - " - F102 outlet pressure [105000, 110000] Pa\n", - "\n", - "Let us first set the variable bound for the H101 outlet temperature as shown below:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature[0].setlb(500)\n", - "m.fs.H101.outlet.temperature[0].setub(600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, set the variable bound for the R101 outlet temperature.\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Set the bounds for reactor outlet temperature" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Set the bounds for reactor outlet temperature\n", - "m.fs.R101.outlet.temperature[0].setlb(600)\n", - "m.fs.R101.outlet.temperature[0].setub(800)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us fix the bounds for the rest of the decision variables. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F101.vap_outlet.temperature[0].setlb(298.0)\n", - "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", - "m.fs.F102.vap_outlet.temperature[0].setlb(298.0)\n", - "m.fs.F102.vap_outlet.temperature[0].setub(450.0)\n", - "m.fs.F102.vap_outlet.pressure[0].setlb(105000)\n", - "m.fs.F102.vap_outlet.pressure[0].setub(110000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the only things left to define are our constraints on overhead loss in F101, product flow rate and purity in F102. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 \\% of the benzene available in the reactor outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.overhead_loss = Constraint(\n", - " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, add the constraint such that we are producing at least 0.15 mol/s of benzene in the product stream which is the vapor outlet of F102. Let us name this constraint as m.fs.product_flow. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add minimum product flow constraint" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add minimum product flow constraint\n", - "m.fs.product_flow = Constraint(\n", - " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"] >= 0.15\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us add the final constraint on product purity or the mole fraction of benzene in the product stream such that it is at least greater than 80%. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.product_purity = Constraint(expr=m.fs.purity >= 0.80)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimization Results\n", - "\n", - "Display the results and product specifications" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"operating cost = $\", value(m.fs.operating_cost))\n", - "\n", - "print()\n", - "print(\"Product flow rate and purity in F102\")\n", - "\n", - "m.fs.F102.report()\n", - "\n", - "print()\n", - "print(\"benzene purity = \", value(m.fs.purity))\n", - "\n", - "print()\n", - "print(\"Overhead loss in F101\")\n", - "m.fs.F101.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"F102 outlet temperature = \", value(m.fs.F102.vap_outlet.temperature[0]), \"K\")\n", - "print(\"F102 outlet pressure = \", value(m.fs.F102.vap_outlet.pressure[0]), \"Pa\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# HDA Flowsheet Simulation and Optimization\n", + "\n", + "Author: Jaffer Ghouse \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "## Learning outcomes\n", + "\n", + "\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Hydrodealkylation is a chemical reaction that often involves reacting\n", + "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", + "simpler aromatic hydrocarbon devoid of functional groups. In this\n", + "example, toluene will be reacted with hydrogen gas at high temperatures\n", + " to form benzene via the following reaction:\n", + "\n", + "**C6H5CH3 + H2 \u2192 C6H6 + CH4**\n", + "\n", + "\n", + "This reaction is often accompanied by an equilibrium side reaction\n", + "which forms diphenyl, which we will neglect for this example.\n", + "\n", + "This example is based on the 1967 AIChE Student Contest problem as\n", + "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", + "McGraw-Hill.\n", + "\n", + "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, there are two flash tanks, F101 to separate out the non-condensibles and F102 to further separate the benzene-toluene mixture to improve the benzene purity. Note that typically a distillation column is required to obtain high purity benzene but that is beyond the scope of this workshop. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be either purged or combusted for power generation.We will assume ideal gas for this flowsheet. The properties required for this module are available in the same directory:\n", + "\n", + "- hda_ideal_VLE.py\n", + "- hda_reaction.py\n", + "\n", + "The state variables chosen for the property package are **flows of component by phase, temperature and pressure**. The components considered are: **toluene, hydrogen, benzene and methane**. Therefore, every stream has 8 flow variables, 1 temperature and 1 pressure variable. \n", + "\n", + "![](HDA_flowsheet.png)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required pyomo and idaes components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- ConcreteModel (to create the concrete model object)\n", + "- Expression (to evaluate values as a function of variables defined in the model)\n", + "- Objective (to define an objective function for optimization)\n", + "- SolverFactory (to solve the problem)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- Arc (to connect two unit models)\n", + "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " SolverFactory,\n", + " TransformationFactory,\n", + " value,\n", + ")\n", + "from pyomo.network import Arc, SequentialDecomposition" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From idaes, we will be needing the FlowsheetBlock and the following unit models:\n", + "- Mixer\n", + "- Heater\n", + "- StoichiometricReactor\n", + "- **Flash**\n", + "- Separator (splitter) \n", + "- PressureChanger" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core import FlowsheetBlock" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models import (\n", + " PressureChanger,\n", + " Mixer,\n", + " Separator as Splitter,\n", + " Heater,\n", + " StoichiometricReactor,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, import the remaining unit models highlighted in blue above and run the cell using `Shift+Enter` after typing in the code. \n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: import flash model from idaes.models.unit_models" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: import flash model from idaes.models.unit_models\n", + "from idaes.models.unit_models import Flash" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.exceptions import InitializationError" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required thermo and reaction package\n", + "\n", + "The final set of imports are to import the thermo and reaction package for the HDA process. We have created a custom thermo package that assumes Ideal Gas with support for VLE. \n", + "\n", + "The reaction package here is very simple as we will be using only a StochiometricReactor and the reaction package consists of the stochiometric coefficients for the reaction and the parameter for the heat of reaction. \n", + "\n", + "Let us import the following modules and they are in the same directory as this jupyter notebook:\n", + "
    \n", + "
  • hda_ideal_VLE as thermo_props
  • \n", + "
  • hda_reaction as reaction_props
  • \n", + "
\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes_examples.mod.hda import hda_ideal_VLE as thermo_props\n", + "from idaes_examples.mod.hda import hda_reaction as reaction_props" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block as we did in module 1. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now need to add the property packages to the flowsheet. Unlike Module 1, where we only had a thermo property package, for this flowsheet we will also need to add a reaction property package. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.thermo_params = thermo_props.HDAParameterBlock()\n", + "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", + " property_package=m.fs.thermo_params\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details (https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html). For example, the Mixer unit model here is given a `list` consisting of names to the three inlets. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params,\n", + " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", + ")\n", + "\n", + "m.fs.H101 = Heater(\n", + " property_package=m.fs.thermo_params,\n", + " has_pressure_change=False,\n", + " has_phase_equilibrium=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now add the StoichiometricReactor(assign the name R101) and pass the following arguments:\n", + "
    \n", + "
  • \"property_package\": m.fs.thermo_params
  • \n", + "
  • \"reaction_package\": m.fs.reaction_params
  • \n", + "
  • \"has_heat_of_reaction\": True
  • \n", + "
  • \"has_heat_transfer\": True
  • \n", + "
  • \"has_pressure_change\": False
  • \n", + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add reactor with the specifications above" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add reactor with the specifications above\n", + "m.fs.R101 = StoichiometricReactor(\n", + " property_package=m.fs.thermo_params,\n", + " reaction_package=m.fs.reaction_params,\n", + " has_heat_of_reaction=True,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add the Flash(assign the name F101) and pass the following arguments:\n", + "
    \n", + "
  • \"property_package\": m.fs.thermo_params
  • \n", + "
  • \"has_heat_transfer\": True
  • \n", + "
  • \"has_pressure_change\": False
  • \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F101 = Flash(\n", + " property_package=m.fs.thermo_params,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add the Splitter(S101), PressureChanger(C101) and the second Flash(F102). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.S101 = Splitter(\n", + " property_package=m.fs.thermo_params,\n", + " ideal_separation=False,\n", + " outlet_list=[\"purge\", \"recycle\"],\n", + ")\n", + "\n", + "\n", + "m.fs.C101 = PressureChanger(\n", + " property_package=m.fs.thermo_params,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", + ")\n", + "\n", + "m.fs.F102 = Flash(\n", + " property_package=m.fs.thermo_params,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models using Arcs\n", + "\n", + "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer(M101) to the inlet of the heater(H101). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "![](HDA_flowsheet.png) \n", + "\n", + "
\n", + "Inline Exercise:\n", + "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Connect the H101 outlet to R101 inlet" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Connect the H101 outlet to R101 inlet\n", + "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be connecting the rest of the flowsheet as shown below. Notice how the outlet names are different for the flash tanks F101 and F102 as they have a vapor and a liquid outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", + "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", + "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", + "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", + "m.fs.s10 = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.F102.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding expressions to compute purity and operating costs\n", + "\n", + "In this section, we will add a few Expressions that allows us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html\n", + "\n", + "For this flowsheet, we are interested in computing the purity of the product Benzene stream (i.e. the mole fraction) and the operating cost which is a sum of the cooling and heating cost. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us first add an Expression to compute the mole fraction of benzene in the `vap_outlet` of F102 which is our product stream. Please note that the var flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.purity = Expression(\n", + " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " / (\n", + " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " + m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let us add an expression to compute the cooling cost assuming a cost of 0.212E-4 $/kW. Note that cooling utility is required for the reactor (R101) and the first flash (F101). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.cooling_cost = Expression(\n", + " expr=0.212e-7 * (-m.fs.F101.heat_duty[0]) + 0.212e-7 * (-m.fs.R101.heat_duty[0])\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Now, let us add an expression to compute the heating cost assuming the utility cost as follows:\n", + "
    \n", + "
  • 2.2E-4 dollars/kW for H101
  • \n", + "
  • 1.9E-4 dollars/kW for F102
  • \n", + "
\n", + "Note that the heat duty is in units of watt (J/s). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add an expression to compute the total operating cost per year which is basically the sum of the cooling and heating cost we defined above. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing feed conditions\n", + "\n", + "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", + "m.fs.M101.toluene_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", + "
    \n", + "
  • FH2 = 0.30 mol/s
  • \n", + "
  • FCH4 = 0.02 mol/s
  • \n", + "
  • Remaining components = 1e-5 mol/s
  • \n", + "
  • T = 303.2 K
  • \n", + "
  • P = 350000 Pa
  • \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", + "m.fs.M101.hydrogen_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing unit model specifications\n", + "\n", + "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set set the H101 outlet temperature to 600 K. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.fix(600)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the StoichiometricReactor, we have to define the conversion in terms of toluene. This requires us to create a new variable for specifying the conversion and adding a Constraint that defines the conversion with respect to toluene. The second degree of freedom for the reactor is to define the heat duty. In this case, let us assume the reactor to be adiabatic i.e. Q = 0. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", + "\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " )\n", + ")\n", + "\n", + "m.fs.R101.conversion.fix(0.75)\n", + "m.fs.R101.heat_duty.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Flash conditions for F101 can be set as follows. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", + "m.fs.F101.deltaP.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Set the conditions for Flash F102 to the following conditions:\n", + "
    \n", + "
  • T = 375 K
  • \n", + "
  • deltaP = -200000
  • \n", + "
\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Set conditions for Flash F102" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "m.fs.F102.vap_outlet.temperature.fix(375)\n", + "m.fs.F102.deltaP.fix(-200000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us fix the purge split fraction to 20% and the outlet pressure of the compressor is set to 350000 Pa. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", + "m.fs.C101.outlet.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the degrees of freedom" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initialization\n", + "\n", + "\n", + "This section will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", + "\n", + "![](HDA_flowsheet.png) \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us first create an object for the SequentialDecomposition and specify our options for this. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "seq = SequentialDecomposition()\n", + "seq.options.select_tear_method = \"heuristic\"\n", + "seq.options.tear_method = \"Wegstein\"\n", + "seq.options.iterLim = 3\n", + "\n", + "# Using the SD tool\n", + "G = seq.create_graph(m)\n", + "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", + "order = seq.calculation_order(G)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Which is the tear stream? Display tear set and order" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for o in heuristic_tear_set:\n", + " print(o.name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "for o in order:\n", + " print(o[0].name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " \n", + "\n", + "![](HDA_tear_stream.png) \n", + "\n", + "\n", + "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet. We will need to provide a reasonable guess for this." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tear_guesses = {\n", + " \"flow_mol_phase_comp\": {\n", + " (0, \"Vap\", \"benzene\"): 1e-5,\n", + " (0, \"Vap\", \"toluene\"): 1e-5,\n", + " (0, \"Vap\", \"hydrogen\"): 0.30,\n", + " (0, \"Vap\", \"methane\"): 0.02,\n", + " (0, \"Liq\", \"benzene\"): 1e-5,\n", + " (0, \"Liq\", \"toluene\"): 0.30,\n", + " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", + " (0, \"Liq\", \"methane\"): 1e-5,\n", + " },\n", + " \"temperature\": {0: 303},\n", + " \"pressure\": {0: 350000},\n", + "}\n", + "\n", + "# Pass the tear_guess to the SD tool\n", + "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def function(unit):\n", + " try:\n", + " initializer = unit.default_initializer()\n", + " initializer.initialize(unit, output_level=idaeslog.INFO)\n", + " except InitializationError:\n", + " solver = get_solver()\n", + " solver.solve(unit)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 5 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "seq.run(m, function)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. To do this, complete the last line of code where we pass the model to the solver. You will need to type the following:\n", + " \n", + "results = solver.solve(m, tee=True)\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create the solver object\n", + "\n", + "\n", + "# Solve the model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Create the solver object\n", + "from idaes.core.solvers import get_solver\n", + "\n", + "solver = get_solver()\n", + "\n", + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the results of the square problem\n", + "\n", + "\n", + "What is the total operating cost? " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"operating cost = $\", value(m.fs.operating_cost))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this operating cost, what is the amount of benzene we are able to produce and what purity we are able to achieve? " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F102.report()\n", + "\n", + "print()\n", + "print(\"benzene purity = \", value(m.fs.purity))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "How much benzene are we losing in the F101 vapor outlet stream?\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.util.tables import (\n", + " create_stream_table_dataframe,\n", + " stream_table_dataframe_to_string,\n", + ")\n", + "\n", + "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", + "print(stream_table_dataframe_to_string(st))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "You can query additional variables here if you like. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimization\n", + "\n", + "\n", + "We saw from the results above that the total operating cost for the base case was $419,122 per year. We are producing 0.142 mol/s of benzene at a purity of 82\\%. However, we are losing around 42\\% of benzene in F101 vapor outlet stream. \n", + "\n", + "Let us try to minimize this cost such that:\n", + "- we are producing at least 0.15 mol/s of benzene in F102 vapor outlet i.e. our product stream\n", + "- purity of benzene i.e. the mole fraction of benzene in F102 vapor outlet is at least 80%\n", + "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", + "\n", + "For this problem, our decision variables are as follows:\n", + "- H101 outlet temperature\n", + "- R101 cooling duty provided\n", + "- F101 outlet temperature\n", + "- F102 outlet temperature\n", + "- F102 deltaP in the flash tank\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.R101.heat_duty.unfix()\n", + "m.fs.F101.vap_outlet.temperature.unfix()\n", + "m.fs.F102.vap_outlet.temperature.unfix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now unfix the remaining variable which is F102 pressure drop (F102.deltaP) \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Unfix deltaP for F102" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Unfix deltaP for F102\n", + "m.fs.F102.deltaP.unfix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to set bounds on these decision variables to values shown below:\n", + "\n", + " - H101 outlet temperature [500, 600] K\n", + " - R101 outlet temperature [600, 800] K\n", + " - F101 outlet temperature [298, 450] K\n", + " - F102 outlet temperature [298, 450] K\n", + " - F102 outlet pressure [105000, 110000] Pa\n", + "\n", + "Let us first set the variable bound for the H101 outlet temperature as shown below:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature[0].setlb(500)\n", + "m.fs.H101.outlet.temperature[0].setub(600)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, set the variable bound for the R101 outlet temperature.\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Set the bounds for reactor outlet temperature" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Set the bounds for reactor outlet temperature\n", + "m.fs.R101.outlet.temperature[0].setlb(600)\n", + "m.fs.R101.outlet.temperature[0].setub(800)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us fix the bounds for the rest of the decision variables. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F101.vap_outlet.temperature[0].setlb(298.0)\n", + "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", + "m.fs.F102.vap_outlet.temperature[0].setlb(298.0)\n", + "m.fs.F102.vap_outlet.temperature[0].setub(450.0)\n", + "m.fs.F102.vap_outlet.pressure[0].setlb(105000)\n", + "m.fs.F102.vap_outlet.pressure[0].setub(110000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the only things left to define are our constraints on overhead loss in F101, product flow rate and purity in F102. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 \\% of the benzene available in the reactor outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.overhead_loss = Constraint(\n", + " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, add the constraint such that we are producing at least 0.15 mol/s of benzene in the product stream which is the vapor outlet of F102. Let us name this constraint as m.fs.product_flow. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add minimum product flow constraint" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add minimum product flow constraint\n", + "m.fs.product_flow = Constraint(\n", + " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"] >= 0.15\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us add the final constraint on product purity or the mole fraction of benzene in the product stream such that it is at least greater than 80%. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.product_purity = Constraint(expr=m.fs.purity >= 0.80)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimization Results\n", + "\n", + "Display the results and product specifications" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"operating cost = $\", value(m.fs.operating_cost))\n", + "\n", + "print()\n", + "print(\"Product flow rate and purity in F102\")\n", + "\n", + "m.fs.F102.report()\n", + "\n", + "print()\n", + "print(\"benzene purity = \", value(m.fs.purity))\n", + "\n", + "print()\n", + "print(\"Overhead loss in F101\")\n", + "m.fs.F101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"F102 outlet temperature = \", value(m.fs.F102.vap_outlet.temperature[0]), \"K\")\n", + "print(\"F102 outlet pressure = \", value(m.fs.F102.vap_outlet.pressure[0]), \"Pa\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_test.ipynb b/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_test.ipynb index 415cf48c..b532c485 100644 --- a/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_test.ipynb +++ b/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_test.ipynb @@ -1,1498 +1,1499 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# HDA Flowsheet Simulation and Optimization\n", - "\n", - "Author: Jaffer Ghouse \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "## Learning outcomes\n", - "\n", - "\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Hydrodealkylation is a chemical reaction that often involves reacting\n", - "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", - "simpler aromatic hydrocarbon devoid of functional groups. In this\n", - "example, toluene will be reacted with hydrogen gas at high temperatures\n", - " to form benzene via the following reaction:\n", - "\n", - "**C6H5CH3 + H2 → C6H6 + CH4**\n", - "\n", - "\n", - "This reaction is often accompanied by an equilibrium side reaction\n", - "which forms diphenyl, which we will neglect for this example.\n", - "\n", - "This example is based on the 1967 AIChE Student Contest problem as\n", - "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", - "McGraw-Hill.\n", - "\n", - "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, there are two flash tanks, F101 to separate out the non-condensibles and F102 to further separate the benzene-toluene mixture to improve the benzene purity. Note that typically a distillation column is required to obtain high purity benzene but that is beyond the scope of this workshop. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be either purged or combusted for power generation.We will assume ideal gas for this flowsheet. The properties required for this module are available in the same directory:\n", - "\n", - "- hda_ideal_VLE.py\n", - "- hda_reaction.py\n", - "\n", - "The state variables chosen for the property package are **flows of component by phase, temperature and pressure**. The components considered are: **toluene, hydrogen, benzene and methane**. Therefore, every stream has 8 flow variables, 1 temperature and 1 pressure variable. \n", - "\n", - "![](HDA_flowsheet.png)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required pyomo and idaes components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- ConcreteModel (to create the concrete model object)\n", - "- Expression (to evaluate values as a function of variables defined in the model)\n", - "- Objective (to define an objective function for optimization)\n", - "- SolverFactory (to solve the problem)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- Arc (to connect two unit models)\n", - "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " SolverFactory,\n", - " TransformationFactory,\n", - " value,\n", - ")\n", - "from pyomo.network import Arc, SequentialDecomposition" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From idaes, we will be needing the FlowsheetBlock and the following unit models:\n", - "- Mixer\n", - "- Heater\n", - "- StoichiometricReactor\n", - "- **Flash**\n", - "- Separator (splitter) \n", - "- PressureChanger" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core import FlowsheetBlock" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models import (\n", - " PressureChanger,\n", - " Mixer,\n", - " Separator as Splitter,\n", - " Heater,\n", - " StoichiometricReactor,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, import the remaining unit models highlighted in blue above and run the cell using `Shift+Enter` after typing in the code. \n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: import flash model from idaes.models.unit_models\n", - "from idaes.models.unit_models import Flash" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.exceptions import InitializationError" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required thermo and reaction package\n", - "\n", - "The final set of imports are to import the thermo and reaction package for the HDA process. We have created a custom thermo package that assumes Ideal Gas with support for VLE. \n", - "\n", - "The reaction package here is very simple as we will be using only a StochiometricReactor and the reaction package consists of the stochiometric coefficients for the reaction and the parameter for the heat of reaction. \n", - "\n", - "Let us import the following modules and they are in the same directory as this jupyter notebook:\n", - "
    \n", - "
  • hda_ideal_VLE as thermo_props
  • \n", - "
  • hda_reaction as reaction_props
  • \n", - "
\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes_examples.mod.hda import hda_ideal_VLE as thermo_props\n", - "from idaes_examples.mod.hda import hda_reaction as reaction_props" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block as we did in module 1. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need to add the property packages to the flowsheet. Unlike Module 1, where we only had a thermo property package, for this flowsheet we will also need to add a reaction property package. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.thermo_params = thermo_props.HDAParameterBlock()\n", - "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", - " property_package=m.fs.thermo_params\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details (https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html). For example, the Mixer unit model here is given a `list` consisting of names to the three inlets. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params,\n", - " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", - ")\n", - "\n", - "m.fs.H101 = Heater(\n", - " property_package=m.fs.thermo_params,\n", - " has_pressure_change=False,\n", - " has_phase_equilibrium=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now add the StoichiometricReactor(assign the name R101) and pass the following arguments:\n", - "
    \n", - "
  • \"property_package\": m.fs.thermo_params
  • \n", - "
  • \"reaction_package\": m.fs.reaction_params
  • \n", - "
  • \"has_heat_of_reaction\": True
  • \n", - "
  • \"has_heat_transfer\": True
  • \n", - "
  • \"has_pressure_change\": False
  • \n", - "
\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add reactor with the specifications above\n", - "m.fs.R101 = StoichiometricReactor(\n", - " property_package=m.fs.thermo_params,\n", - " reaction_package=m.fs.reaction_params,\n", - " has_heat_of_reaction=True,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=False,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add the Flash(assign the name F101) and pass the following arguments:\n", - "
    \n", - "
  • \"property_package\": m.fs.thermo_params
  • \n", - "
  • \"has_heat_transfer\": True
  • \n", - "
  • \"has_pressure_change\": False
  • \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F101 = Flash(\n", - " property_package=m.fs.thermo_params,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add the Splitter(S101), PressureChanger(C101) and the second Flash(F102). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.S101 = Splitter(\n", - " property_package=m.fs.thermo_params,\n", - " ideal_separation=False,\n", - " outlet_list=[\"purge\", \"recycle\"],\n", - ")\n", - "\n", - "\n", - "m.fs.C101 = PressureChanger(\n", - " property_package=m.fs.thermo_params,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", - ")\n", - "\n", - "m.fs.F102 = Flash(\n", - " property_package=m.fs.thermo_params,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models using Arcs\n", - "\n", - "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer(M101) to the inlet of the heater(H101). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "![](HDA_flowsheet.png) \n", - "\n", - "
\n", - "Inline Exercise:\n", - "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Connect the H101 outlet to R101 inlet\n", - "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be connecting the rest of the flowsheet as shown below. Notice how the outlet names are different for the flash tanks F101 and F102 as they have a vapor and a liquid outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", - "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", - "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", - "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", - "m.fs.s10 = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.F102.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding expressions to compute purity and operating costs\n", - "\n", - "In this section, we will add a few Expressions that allows us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html\n", - "\n", - "For this flowsheet, we are interested in computing the purity of the product Benzene stream (i.e. the mole fraction) and the operating cost which is a sum of the cooling and heating cost. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us first add an Expression to compute the mole fraction of benzene in the `vap_outlet` of F102 which is our product stream. Please note that the var flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.purity = Expression(\n", - " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " / (\n", - " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " + m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let us add an expression to compute the cooling cost assuming a cost of 0.212E-4 $/kW. Note that cooling utility is required for the reactor (R101) and the first flash (F101). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.cooling_cost = Expression(\n", - " expr=0.212e-7 * (-m.fs.F101.heat_duty[0]) + 0.212e-7 * (-m.fs.R101.heat_duty[0])\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "Now, let us add an expression to compute the heating cost assuming the utility cost as follows:\n", - "
    \n", - "
  • 2.2E-4 dollars/kW for H101
  • \n", - "
  • 1.9E-4 dollars/kW for F102
  • \n", - "
\n", - "Note that the heat duty is in units of watt (J/s). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add an expression to compute the total operating cost per year which is basically the sum of the cooling and heating cost we defined above. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing feed conditions\n", - "\n", - "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check the degrees of freedom\n", - "assert degrees_of_freedom(m) == 29" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", - "m.fs.M101.toluene_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", - "
    \n", - "
  • FH2 = 0.30 mol/s
  • \n", - "
  • FCH4 = 0.02 mol/s
  • \n", - "
  • Remaining components = 1e-5 mol/s
  • \n", - "
  • T = 303.2 K
  • \n", - "
  • P = 350000 Pa
  • \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", - "m.fs.M101.hydrogen_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing unit model specifications\n", - "\n", - "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set set the H101 outlet temperature to 600 K. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.fix(600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the StoichiometricReactor, we have to define the conversion in terms of toluene. This requires us to create a new variable for specifying the conversion and adding a Constraint that defines the conversion with respect to toluene. The second degree of freedom for the reactor is to define the heat duty. In this case, let us assume the reactor to be adiabatic i.e. Q = 0. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", - "\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " )\n", - ")\n", - "\n", - "m.fs.R101.conversion.fix(0.75)\n", - "m.fs.R101.heat_duty.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Flash conditions for F101 can be set as follows. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", - "m.fs.F101.deltaP.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Set the conditions for Flash F102 to the following conditions:\n", - "
    \n", - "
  • T = 375 K
  • \n", - "
  • deltaP = -200000
  • \n", - "
\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "m.fs.F102.vap_outlet.temperature.fix(375)\n", - "m.fs.F102.deltaP.fix(-200000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us fix the purge split fraction to 20% and the outlet pressure of the compressor is set to 350000 Pa. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", - "m.fs.C101.outlet.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check the degrees of freedom\n", - "assert degrees_of_freedom(m) == 0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Initialization\n", - "\n", - "\n", - "This section will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", - "\n", - "![](HDA_flowsheet.png) \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us first create an object for the SequentialDecomposition and specify our options for this. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "seq = SequentialDecomposition()\n", - "seq.options.select_tear_method = \"heuristic\"\n", - "seq.options.tear_method = \"Wegstein\"\n", - "seq.options.iterLim = 3\n", - "\n", - "# Using the SD tool\n", - "G = seq.create_graph(m)\n", - "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", - "order = seq.calculation_order(G)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Which is the tear stream? Display tear set and order" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "for o in heuristic_tear_set:\n", - " print(o.name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "for o in order:\n", - " print(o[0].name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " \n", - "\n", - "![](HDA_tear_stream.png) \n", - "\n", - "\n", - "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet. We will need to provide a reasonable guess for this." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "tear_guesses = {\n", - " \"flow_mol_phase_comp\": {\n", - " (0, \"Vap\", \"benzene\"): 1e-5,\n", - " (0, \"Vap\", \"toluene\"): 1e-5,\n", - " (0, \"Vap\", \"hydrogen\"): 0.30,\n", - " (0, \"Vap\", \"methane\"): 0.02,\n", - " (0, \"Liq\", \"benzene\"): 1e-5,\n", - " (0, \"Liq\", \"toluene\"): 0.30,\n", - " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", - " (0, \"Liq\", \"methane\"): 1e-5,\n", - " },\n", - " \"temperature\": {0: 303},\n", - " \"pressure\": {0: 350000},\n", - "}\n", - "\n", - "# Pass the tear_guess to the SD tool\n", - "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def function(unit):\n", - " try:\n", - " initializer = unit.default_initializer()\n", - " initializer.initialize(unit, output_level=idaeslog.INFO)\n", - " except InitializationError:\n", - " solver = get_solver()\n", - " solver.solve(unit)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 5 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "seq.run(m, function)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. To do this, complete the last line of code where we pass the model to the solver. You will need to type the following:\n", - " \n", - "results = solver.solve(m, tee=True)\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Create the solver object\n", - "from idaes.core.solvers import get_solver\n", - "\n", - "solver = get_solver()\n", - "\n", - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check solver solve status\n", - "from pyomo.environ import TerminationCondition\n", - "\n", - "assert results.solver.termination_condition == TerminationCondition.optimal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the results of the square problem\n", - "\n", - "\n", - "What is the total operating cost? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"operating cost = $\", value(m.fs.operating_cost))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "import pytest\n", - "\n", - "assert value(m.fs.operating_cost) == pytest.approx(419122.3387, abs=1e-3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this operating cost, what is the amount of benzene we are able to produce and what purity we are able to achieve? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F102.report()\n", - "\n", - "print()\n", - "print(\"benzene purity = \", value(m.fs.purity))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert value(m.fs.purity) == pytest.approx(0.82429, abs=1e-3)\n", - "\n", - "assert value(m.fs.F102.heat_duty[0]) == pytest.approx(7352.4828, abs=1e-3)\n", - "assert value(m.fs.F102.vap_outlet.pressure[0]) == pytest.approx(1.5000e05, abs=1e-3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "How much benzene are we losing in the F101 vapor outlet stream?\n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.util.tables import (\n", - " create_stream_table_dataframe,\n", - " stream_table_dataframe_to_string,\n", - ")\n", - "\n", - "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", - "print(stream_table_dataframe_to_string(st))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "You can query additional variables here if you like. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimization\n", - "\n", - "\n", - "We saw from the results above that the total operating cost for the base case was $419,122 per year. We are producing 0.142 mol/s of benzene at a purity of 82\\%. However, we are losing around 42\\% of benzene in F101 vapor outlet stream. \n", - "\n", - "Let us try to minimize this cost such that:\n", - "- we are producing at least 0.15 mol/s of benzene in F102 vapor outlet i.e. our product stream\n", - "- purity of benzene i.e. the mole fraction of benzene in F102 vapor outlet is at least 80%\n", - "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", - "\n", - "For this problem, our decision variables are as follows:\n", - "- H101 outlet temperature\n", - "- R101 cooling duty provided\n", - "- F101 outlet temperature\n", - "- F102 outlet temperature\n", - "- F102 deltaP in the flash tank\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.R101.heat_duty.unfix()\n", - "m.fs.F101.vap_outlet.temperature.unfix()\n", - "m.fs.F102.vap_outlet.temperature.unfix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now unfix the remaining variable which is F102 pressure drop (F102.deltaP) \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Unfix deltaP for F102\n", - "m.fs.F102.deltaP.unfix()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert degrees_of_freedom(m) == 5" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to set bounds on these decision variables to values shown below:\n", - "\n", - " - H101 outlet temperature [500, 600] K\n", - " - R101 outlet temperature [600, 800] K\n", - " - F101 outlet temperature [298, 450] K\n", - " - F102 outlet temperature [298, 450] K\n", - " - F102 outlet pressure [105000, 110000] Pa\n", - "\n", - "Let us first set the variable bound for the H101 outlet temperature as shown below:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature[0].setlb(500)\n", - "m.fs.H101.outlet.temperature[0].setub(600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, set the variable bound for the R101 outlet temperature.\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Set the bounds for reactor outlet temperature\n", - "m.fs.R101.outlet.temperature[0].setlb(600)\n", - "m.fs.R101.outlet.temperature[0].setub(800)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us fix the bounds for the rest of the decision variables. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F101.vap_outlet.temperature[0].setlb(298.0)\n", - "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", - "m.fs.F102.vap_outlet.temperature[0].setlb(298.0)\n", - "m.fs.F102.vap_outlet.temperature[0].setub(450.0)\n", - "m.fs.F102.vap_outlet.pressure[0].setlb(105000)\n", - "m.fs.F102.vap_outlet.pressure[0].setub(110000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the only things left to define are our constraints on overhead loss in F101, product flow rate and purity in F102. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 \\% of the benzene available in the reactor outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.overhead_loss = Constraint(\n", - " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, add the constraint such that we are producing at least 0.15 mol/s of benzene in the product stream which is the vapor outlet of F102. Let us name this constraint as m.fs.product_flow. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add minimum product flow constraint\n", - "m.fs.product_flow = Constraint(\n", - " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"] >= 0.15\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us add the final constraint on product purity or the mole fraction of benzene in the product stream such that it is at least greater than 80%. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.product_purity = Constraint(expr=m.fs.purity >= 0.80)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check for solver solve status\n", - "from pyomo.environ import TerminationCondition\n", - "\n", - "assert results.solver.termination_condition == TerminationCondition.optimal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimization Results\n", - "\n", - "Display the results and product specifications" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"operating cost = $\", value(m.fs.operating_cost))\n", - "\n", - "print()\n", - "print(\"Product flow rate and purity in F102\")\n", - "\n", - "m.fs.F102.report()\n", - "\n", - "print()\n", - "print(\"benzene purity = \", value(m.fs.purity))\n", - "\n", - "print()\n", - "print(\"Overhead loss in F101\")\n", - "m.fs.F101.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert value(m.fs.operating_cost) == pytest.approx(312786.338, abs=1e-3)\n", - "assert value(m.fs.purity) == pytest.approx(0.818827, abs=1e-3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"F102 outlet temperature = \", value(m.fs.F102.vap_outlet.temperature[0]), \"K\")\n", - "print(\"F102 outlet pressure = \", value(m.fs.F102.vap_outlet.pressure[0]), \"Pa\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert value(m.fs.H101.outlet.temperature[0]) == pytest.approx(500, abs=1e-3)\n", - "assert value(m.fs.R101.outlet.temperature[0]) == pytest.approx(696.112, abs=1e-3)\n", - "assert value(m.fs.F101.vap_outlet.temperature[0]) == pytest.approx(301.878, abs=1e-3)\n", - "assert value(m.fs.F102.vap_outlet.temperature[0]) == pytest.approx(362.935, abs=1e-3)\n", - "assert value(m.fs.F102.vap_outlet.pressure[0]) == pytest.approx(105000, abs=1e-2)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# HDA Flowsheet Simulation and Optimization\n", + "\n", + "Author: Jaffer Ghouse \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "## Learning outcomes\n", + "\n", + "\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Hydrodealkylation is a chemical reaction that often involves reacting\n", + "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", + "simpler aromatic hydrocarbon devoid of functional groups. In this\n", + "example, toluene will be reacted with hydrogen gas at high temperatures\n", + " to form benzene via the following reaction:\n", + "\n", + "**C6H5CH3 + H2 \u2192 C6H6 + CH4**\n", + "\n", + "\n", + "This reaction is often accompanied by an equilibrium side reaction\n", + "which forms diphenyl, which we will neglect for this example.\n", + "\n", + "This example is based on the 1967 AIChE Student Contest problem as\n", + "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", + "McGraw-Hill.\n", + "\n", + "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, there are two flash tanks, F101 to separate out the non-condensibles and F102 to further separate the benzene-toluene mixture to improve the benzene purity. Note that typically a distillation column is required to obtain high purity benzene but that is beyond the scope of this workshop. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be either purged or combusted for power generation.We will assume ideal gas for this flowsheet. The properties required for this module are available in the same directory:\n", + "\n", + "- hda_ideal_VLE.py\n", + "- hda_reaction.py\n", + "\n", + "The state variables chosen for the property package are **flows of component by phase, temperature and pressure**. The components considered are: **toluene, hydrogen, benzene and methane**. Therefore, every stream has 8 flow variables, 1 temperature and 1 pressure variable. \n", + "\n", + "![](HDA_flowsheet.png)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required pyomo and idaes components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- ConcreteModel (to create the concrete model object)\n", + "- Expression (to evaluate values as a function of variables defined in the model)\n", + "- Objective (to define an objective function for optimization)\n", + "- SolverFactory (to solve the problem)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- Arc (to connect two unit models)\n", + "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " SolverFactory,\n", + " TransformationFactory,\n", + " value,\n", + ")\n", + "from pyomo.network import Arc, SequentialDecomposition" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From idaes, we will be needing the FlowsheetBlock and the following unit models:\n", + "- Mixer\n", + "- Heater\n", + "- StoichiometricReactor\n", + "- **Flash**\n", + "- Separator (splitter) \n", + "- PressureChanger" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core import FlowsheetBlock" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models import (\n", + " PressureChanger,\n", + " Mixer,\n", + " Separator as Splitter,\n", + " Heater,\n", + " StoichiometricReactor,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, import the remaining unit models highlighted in blue above and run the cell using `Shift+Enter` after typing in the code. \n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: import flash model from idaes.models.unit_models\n", + "from idaes.models.unit_models import Flash" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.exceptions import InitializationError" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required thermo and reaction package\n", + "\n", + "The final set of imports are to import the thermo and reaction package for the HDA process. We have created a custom thermo package that assumes Ideal Gas with support for VLE. \n", + "\n", + "The reaction package here is very simple as we will be using only a StochiometricReactor and the reaction package consists of the stochiometric coefficients for the reaction and the parameter for the heat of reaction. \n", + "\n", + "Let us import the following modules and they are in the same directory as this jupyter notebook:\n", + "
    \n", + "
  • hda_ideal_VLE as thermo_props
  • \n", + "
  • hda_reaction as reaction_props
  • \n", + "
\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes_examples.mod.hda import hda_ideal_VLE as thermo_props\n", + "from idaes_examples.mod.hda import hda_reaction as reaction_props" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block as we did in module 1. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now need to add the property packages to the flowsheet. Unlike Module 1, where we only had a thermo property package, for this flowsheet we will also need to add a reaction property package. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.thermo_params = thermo_props.HDAParameterBlock()\n", + "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", + " property_package=m.fs.thermo_params\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details (https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html). For example, the Mixer unit model here is given a `list` consisting of names to the three inlets. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params,\n", + " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", + ")\n", + "\n", + "m.fs.H101 = Heater(\n", + " property_package=m.fs.thermo_params,\n", + " has_pressure_change=False,\n", + " has_phase_equilibrium=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now add the StoichiometricReactor(assign the name R101) and pass the following arguments:\n", + "
    \n", + "
  • \"property_package\": m.fs.thermo_params
  • \n", + "
  • \"reaction_package\": m.fs.reaction_params
  • \n", + "
  • \"has_heat_of_reaction\": True
  • \n", + "
  • \"has_heat_transfer\": True
  • \n", + "
  • \"has_pressure_change\": False
  • \n", + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add reactor with the specifications above\n", + "m.fs.R101 = StoichiometricReactor(\n", + " property_package=m.fs.thermo_params,\n", + " reaction_package=m.fs.reaction_params,\n", + " has_heat_of_reaction=True,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add the Flash(assign the name F101) and pass the following arguments:\n", + "
    \n", + "
  • \"property_package\": m.fs.thermo_params
  • \n", + "
  • \"has_heat_transfer\": True
  • \n", + "
  • \"has_pressure_change\": False
  • \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F101 = Flash(\n", + " property_package=m.fs.thermo_params,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add the Splitter(S101), PressureChanger(C101) and the second Flash(F102). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.S101 = Splitter(\n", + " property_package=m.fs.thermo_params,\n", + " ideal_separation=False,\n", + " outlet_list=[\"purge\", \"recycle\"],\n", + ")\n", + "\n", + "\n", + "m.fs.C101 = PressureChanger(\n", + " property_package=m.fs.thermo_params,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", + ")\n", + "\n", + "m.fs.F102 = Flash(\n", + " property_package=m.fs.thermo_params,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models using Arcs\n", + "\n", + "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer(M101) to the inlet of the heater(H101). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "![](HDA_flowsheet.png) \n", + "\n", + "
\n", + "Inline Exercise:\n", + "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Connect the H101 outlet to R101 inlet\n", + "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be connecting the rest of the flowsheet as shown below. Notice how the outlet names are different for the flash tanks F101 and F102 as they have a vapor and a liquid outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", + "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", + "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", + "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", + "m.fs.s10 = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.F102.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding expressions to compute purity and operating costs\n", + "\n", + "In this section, we will add a few Expressions that allows us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html\n", + "\n", + "For this flowsheet, we are interested in computing the purity of the product Benzene stream (i.e. the mole fraction) and the operating cost which is a sum of the cooling and heating cost. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us first add an Expression to compute the mole fraction of benzene in the `vap_outlet` of F102 which is our product stream. Please note that the var flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.purity = Expression(\n", + " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " / (\n", + " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " + m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let us add an expression to compute the cooling cost assuming a cost of 0.212E-4 $/kW. Note that cooling utility is required for the reactor (R101) and the first flash (F101). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.cooling_cost = Expression(\n", + " expr=0.212e-7 * (-m.fs.F101.heat_duty[0]) + 0.212e-7 * (-m.fs.R101.heat_duty[0])\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Now, let us add an expression to compute the heating cost assuming the utility cost as follows:\n", + "
    \n", + "
  • 2.2E-4 dollars/kW for H101
  • \n", + "
  • 1.9E-4 dollars/kW for F102
  • \n", + "
\n", + "Note that the heat duty is in units of watt (J/s). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add an expression to compute the total operating cost per year which is basically the sum of the cooling and heating cost we defined above. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing feed conditions\n", + "\n", + "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check the degrees of freedom\n", + "assert degrees_of_freedom(m) == 29" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", + "m.fs.M101.toluene_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", + "
    \n", + "
  • FH2 = 0.30 mol/s
  • \n", + "
  • FCH4 = 0.02 mol/s
  • \n", + "
  • Remaining components = 1e-5 mol/s
  • \n", + "
  • T = 303.2 K
  • \n", + "
  • P = 350000 Pa
  • \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", + "m.fs.M101.hydrogen_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing unit model specifications\n", + "\n", + "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set set the H101 outlet temperature to 600 K. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.fix(600)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the StoichiometricReactor, we have to define the conversion in terms of toluene. This requires us to create a new variable for specifying the conversion and adding a Constraint that defines the conversion with respect to toluene. The second degree of freedom for the reactor is to define the heat duty. In this case, let us assume the reactor to be adiabatic i.e. Q = 0. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", + "\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " )\n", + ")\n", + "\n", + "m.fs.R101.conversion.fix(0.75)\n", + "m.fs.R101.heat_duty.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Flash conditions for F101 can be set as follows. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", + "m.fs.F101.deltaP.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Set the conditions for Flash F102 to the following conditions:\n", + "
    \n", + "
  • T = 375 K
  • \n", + "
  • deltaP = -200000
  • \n", + "
\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "m.fs.F102.vap_outlet.temperature.fix(375)\n", + "m.fs.F102.deltaP.fix(-200000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us fix the purge split fraction to 20% and the outlet pressure of the compressor is set to 350000 Pa. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", + "m.fs.C101.outlet.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check the degrees of freedom\n", + "assert degrees_of_freedom(m) == 0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initialization\n", + "\n", + "\n", + "This section will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", + "\n", + "![](HDA_flowsheet.png) \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us first create an object for the SequentialDecomposition and specify our options for this. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "seq = SequentialDecomposition()\n", + "seq.options.select_tear_method = \"heuristic\"\n", + "seq.options.tear_method = \"Wegstein\"\n", + "seq.options.iterLim = 3\n", + "\n", + "# Using the SD tool\n", + "G = seq.create_graph(m)\n", + "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", + "order = seq.calculation_order(G)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Which is the tear stream? Display tear set and order" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for o in heuristic_tear_set:\n", + " print(o.name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "for o in order:\n", + " print(o[0].name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " \n", + "\n", + "![](HDA_tear_stream.png) \n", + "\n", + "\n", + "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet. We will need to provide a reasonable guess for this." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tear_guesses = {\n", + " \"flow_mol_phase_comp\": {\n", + " (0, \"Vap\", \"benzene\"): 1e-5,\n", + " (0, \"Vap\", \"toluene\"): 1e-5,\n", + " (0, \"Vap\", \"hydrogen\"): 0.30,\n", + " (0, \"Vap\", \"methane\"): 0.02,\n", + " (0, \"Liq\", \"benzene\"): 1e-5,\n", + " (0, \"Liq\", \"toluene\"): 0.30,\n", + " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", + " (0, \"Liq\", \"methane\"): 1e-5,\n", + " },\n", + " \"temperature\": {0: 303},\n", + " \"pressure\": {0: 350000},\n", + "}\n", + "\n", + "# Pass the tear_guess to the SD tool\n", + "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def function(unit):\n", + " try:\n", + " initializer = unit.default_initializer()\n", + " initializer.initialize(unit, output_level=idaeslog.INFO)\n", + " except InitializationError:\n", + " solver = get_solver()\n", + " solver.solve(unit)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 5 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "seq.run(m, function)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. To do this, complete the last line of code where we pass the model to the solver. You will need to type the following:\n", + " \n", + "results = solver.solve(m, tee=True)\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Create the solver object\n", + "from idaes.core.solvers import get_solver\n", + "\n", + "solver = get_solver()\n", + "\n", + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check solver solve status\n", + "from pyomo.environ import TerminationCondition\n", + "\n", + "assert results.solver.termination_condition == TerminationCondition.optimal" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the results of the square problem\n", + "\n", + "\n", + "What is the total operating cost? " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"operating cost = $\", value(m.fs.operating_cost))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "import pytest\n", + "\n", + "assert value(m.fs.operating_cost) == pytest.approx(419122.3387, abs=1e-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this operating cost, what is the amount of benzene we are able to produce and what purity we are able to achieve? " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F102.report()\n", + "\n", + "print()\n", + "print(\"benzene purity = \", value(m.fs.purity))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert value(m.fs.purity) == pytest.approx(0.82429, abs=1e-3)\n", + "\n", + "assert value(m.fs.F102.heat_duty[0]) == pytest.approx(7352.4828, abs=1e-3)\n", + "assert value(m.fs.F102.vap_outlet.pressure[0]) == pytest.approx(1.5000e05, abs=1e-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "How much benzene are we losing in the F101 vapor outlet stream?\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.util.tables import (\n", + " create_stream_table_dataframe,\n", + " stream_table_dataframe_to_string,\n", + ")\n", + "\n", + "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", + "print(stream_table_dataframe_to_string(st))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "You can query additional variables here if you like. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimization\n", + "\n", + "\n", + "We saw from the results above that the total operating cost for the base case was $419,122 per year. We are producing 0.142 mol/s of benzene at a purity of 82\\%. However, we are losing around 42\\% of benzene in F101 vapor outlet stream. \n", + "\n", + "Let us try to minimize this cost such that:\n", + "- we are producing at least 0.15 mol/s of benzene in F102 vapor outlet i.e. our product stream\n", + "- purity of benzene i.e. the mole fraction of benzene in F102 vapor outlet is at least 80%\n", + "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", + "\n", + "For this problem, our decision variables are as follows:\n", + "- H101 outlet temperature\n", + "- R101 cooling duty provided\n", + "- F101 outlet temperature\n", + "- F102 outlet temperature\n", + "- F102 deltaP in the flash tank\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.R101.heat_duty.unfix()\n", + "m.fs.F101.vap_outlet.temperature.unfix()\n", + "m.fs.F102.vap_outlet.temperature.unfix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now unfix the remaining variable which is F102 pressure drop (F102.deltaP) \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Unfix deltaP for F102\n", + "m.fs.F102.deltaP.unfix()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert degrees_of_freedom(m) == 5" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to set bounds on these decision variables to values shown below:\n", + "\n", + " - H101 outlet temperature [500, 600] K\n", + " - R101 outlet temperature [600, 800] K\n", + " - F101 outlet temperature [298, 450] K\n", + " - F102 outlet temperature [298, 450] K\n", + " - F102 outlet pressure [105000, 110000] Pa\n", + "\n", + "Let us first set the variable bound for the H101 outlet temperature as shown below:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature[0].setlb(500)\n", + "m.fs.H101.outlet.temperature[0].setub(600)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, set the variable bound for the R101 outlet temperature.\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Set the bounds for reactor outlet temperature\n", + "m.fs.R101.outlet.temperature[0].setlb(600)\n", + "m.fs.R101.outlet.temperature[0].setub(800)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us fix the bounds for the rest of the decision variables. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F101.vap_outlet.temperature[0].setlb(298.0)\n", + "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", + "m.fs.F102.vap_outlet.temperature[0].setlb(298.0)\n", + "m.fs.F102.vap_outlet.temperature[0].setub(450.0)\n", + "m.fs.F102.vap_outlet.pressure[0].setlb(105000)\n", + "m.fs.F102.vap_outlet.pressure[0].setub(110000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the only things left to define are our constraints on overhead loss in F101, product flow rate and purity in F102. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 \\% of the benzene available in the reactor outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.overhead_loss = Constraint(\n", + " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, add the constraint such that we are producing at least 0.15 mol/s of benzene in the product stream which is the vapor outlet of F102. Let us name this constraint as m.fs.product_flow. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add minimum product flow constraint\n", + "m.fs.product_flow = Constraint(\n", + " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"] >= 0.15\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us add the final constraint on product purity or the mole fraction of benzene in the product stream such that it is at least greater than 80%. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.product_purity = Constraint(expr=m.fs.purity >= 0.80)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check for solver solve status\n", + "from pyomo.environ import TerminationCondition\n", + "\n", + "assert results.solver.termination_condition == TerminationCondition.optimal" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimization Results\n", + "\n", + "Display the results and product specifications" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"operating cost = $\", value(m.fs.operating_cost))\n", + "\n", + "print()\n", + "print(\"Product flow rate and purity in F102\")\n", + "\n", + "m.fs.F102.report()\n", + "\n", + "print()\n", + "print(\"benzene purity = \", value(m.fs.purity))\n", + "\n", + "print()\n", + "print(\"Overhead loss in F101\")\n", + "m.fs.F101.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert value(m.fs.operating_cost) == pytest.approx(312786.338, abs=1e-3)\n", + "assert value(m.fs.purity) == pytest.approx(0.818827, abs=1e-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"F102 outlet temperature = \", value(m.fs.F102.vap_outlet.temperature[0]), \"K\")\n", + "print(\"F102 outlet pressure = \", value(m.fs.F102.vap_outlet.pressure[0]), \"Pa\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert value(m.fs.H101.outlet.temperature[0]) == pytest.approx(500, abs=1e-3)\n", + "assert value(m.fs.R101.outlet.temperature[0]) == pytest.approx(696.112, abs=1e-3)\n", + "assert value(m.fs.F101.vap_outlet.temperature[0]) == pytest.approx(301.878, abs=1e-3)\n", + "assert value(m.fs.F102.vap_outlet.temperature[0]) == pytest.approx(362.935, abs=1e-3)\n", + "assert value(m.fs.F102.vap_outlet.pressure[0]) == pytest.approx(105000, abs=1e-2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_usr.ipynb b/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_usr.ipynb index 6f8b47f4..6a8537b3 100644 --- a/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_usr.ipynb +++ b/idaes_examples/notebooks/docs/tut/core/hda_flowsheet_usr.ipynb @@ -1,1483 +1,1484 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# HDA Flowsheet Simulation and Optimization\n", - "\n", - "Author: Jaffer Ghouse \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "## Learning outcomes\n", - "\n", - "\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Hydrodealkylation is a chemical reaction that often involves reacting\n", - "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", - "simpler aromatic hydrocarbon devoid of functional groups. In this\n", - "example, toluene will be reacted with hydrogen gas at high temperatures\n", - " to form benzene via the following reaction:\n", - "\n", - "**C6H5CH3 + H2 → C6H6 + CH4**\n", - "\n", - "\n", - "This reaction is often accompanied by an equilibrium side reaction\n", - "which forms diphenyl, which we will neglect for this example.\n", - "\n", - "This example is based on the 1967 AIChE Student Contest problem as\n", - "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", - "McGraw-Hill.\n", - "\n", - "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, there are two flash tanks, F101 to separate out the non-condensibles and F102 to further separate the benzene-toluene mixture to improve the benzene purity. Note that typically a distillation column is required to obtain high purity benzene but that is beyond the scope of this workshop. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be either purged or combusted for power generation.We will assume ideal gas for this flowsheet. The properties required for this module are available in the same directory:\n", - "\n", - "- hda_ideal_VLE.py\n", - "- hda_reaction.py\n", - "\n", - "The state variables chosen for the property package are **flows of component by phase, temperature and pressure**. The components considered are: **toluene, hydrogen, benzene and methane**. Therefore, every stream has 8 flow variables, 1 temperature and 1 pressure variable. \n", - "\n", - "![](HDA_flowsheet.png)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required pyomo and idaes components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- ConcreteModel (to create the concrete model object)\n", - "- Expression (to evaluate values as a function of variables defined in the model)\n", - "- Objective (to define an objective function for optimization)\n", - "- SolverFactory (to solve the problem)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- Arc (to connect two unit models)\n", - "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " SolverFactory,\n", - " TransformationFactory,\n", - " value,\n", - ")\n", - "from pyomo.network import Arc, SequentialDecomposition" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From idaes, we will be needing the FlowsheetBlock and the following unit models:\n", - "- Mixer\n", - "- Heater\n", - "- StoichiometricReactor\n", - "- **Flash**\n", - "- Separator (splitter) \n", - "- PressureChanger" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core import FlowsheetBlock" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models import (\n", - " PressureChanger,\n", - " Mixer,\n", - " Separator as Splitter,\n", - " Heater,\n", - " StoichiometricReactor,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, import the remaining unit models highlighted in blue above and run the cell using `Shift+Enter` after typing in the code. \n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: import flash model from idaes.models.unit_models" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: import flash model from idaes.models.unit_models\n", - "from idaes.models.unit_models import Flash" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.exceptions import InitializationError" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing required thermo and reaction package\n", - "\n", - "The final set of imports are to import the thermo and reaction package for the HDA process. We have created a custom thermo package that assumes Ideal Gas with support for VLE. \n", - "\n", - "The reaction package here is very simple as we will be using only a StochiometricReactor and the reaction package consists of the stochiometric coefficients for the reaction and the parameter for the heat of reaction. \n", - "\n", - "Let us import the following modules and they are in the same directory as this jupyter notebook:\n", - "
    \n", - "
  • hda_ideal_VLE as thermo_props
  • \n", - "
  • hda_reaction as reaction_props
  • \n", - "
\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes_examples.mod.hda import hda_ideal_VLE as thermo_props\n", - "from idaes_examples.mod.hda import hda_reaction as reaction_props" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block as we did in module 1. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need to add the property packages to the flowsheet. Unlike Module 1, where we only had a thermo property package, for this flowsheet we will also need to add a reaction property package. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.thermo_params = thermo_props.HDAParameterBlock()\n", - "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", - " property_package=m.fs.thermo_params\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details (https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html). For example, the Mixer unit model here is given a `list` consisting of names to the three inlets. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params,\n", - " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", - ")\n", - "\n", - "m.fs.H101 = Heater(\n", - " property_package=m.fs.thermo_params,\n", - " has_pressure_change=False,\n", - " has_phase_equilibrium=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now add the StoichiometricReactor(assign the name R101) and pass the following arguments:\n", - "
    \n", - "
  • \"property_package\": m.fs.thermo_params
  • \n", - "
  • \"reaction_package\": m.fs.reaction_params
  • \n", - "
  • \"has_heat_of_reaction\": True
  • \n", - "
  • \"has_heat_transfer\": True
  • \n", - "
  • \"has_pressure_change\": False
  • \n", - "
\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add reactor with the specifications above" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add reactor with the specifications above\n", - "m.fs.R101 = StoichiometricReactor(\n", - " property_package=m.fs.thermo_params,\n", - " reaction_package=m.fs.reaction_params,\n", - " has_heat_of_reaction=True,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=False,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add the Flash(assign the name F101) and pass the following arguments:\n", - "
    \n", - "
  • \"property_package\": m.fs.thermo_params
  • \n", - "
  • \"has_heat_transfer\": True
  • \n", - "
  • \"has_pressure_change\": False
  • \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F101 = Flash(\n", - " property_package=m.fs.thermo_params,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add the Splitter(S101), PressureChanger(C101) and the second Flash(F102). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.S101 = Splitter(\n", - " property_package=m.fs.thermo_params,\n", - " ideal_separation=False,\n", - " outlet_list=[\"purge\", \"recycle\"],\n", - ")\n", - "\n", - "\n", - "m.fs.C101 = PressureChanger(\n", - " property_package=m.fs.thermo_params,\n", - " compressor=True,\n", - " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", - ")\n", - "\n", - "m.fs.F102 = Flash(\n", - " property_package=m.fs.thermo_params,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models using Arcs\n", - "\n", - "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer(M101) to the inlet of the heater(H101). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "![](HDA_flowsheet.png) \n", - "\n", - "
\n", - "Inline Exercise:\n", - "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Connect the H101 outlet to R101 inlet" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Connect the H101 outlet to R101 inlet\n", - "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be connecting the rest of the flowsheet as shown below. Notice how the outlet names are different for the flash tanks F101 and F102 as they have a vapor and a liquid outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", - "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", - "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", - "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", - "m.fs.s10 = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.F102.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding expressions to compute purity and operating costs\n", - "\n", - "In this section, we will add a few Expressions that allows us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html\n", - "\n", - "For this flowsheet, we are interested in computing the purity of the product Benzene stream (i.e. the mole fraction) and the operating cost which is a sum of the cooling and heating cost. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us first add an Expression to compute the mole fraction of benzene in the `vap_outlet` of F102 which is our product stream. Please note that the var flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.purity = Expression(\n", - " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " / (\n", - " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " + m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let us add an expression to compute the cooling cost assuming a cost of 0.212E-4 $/kW. Note that cooling utility is required for the reactor (R101) and the first flash (F101). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.cooling_cost = Expression(\n", - " expr=0.212e-7 * (-m.fs.F101.heat_duty[0]) + 0.212e-7 * (-m.fs.R101.heat_duty[0])\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "Now, let us add an expression to compute the heating cost assuming the utility cost as follows:\n", - "
    \n", - "
  • 2.2E-4 dollars/kW for H101
  • \n", - "
  • 1.9E-4 dollars/kW for F102
  • \n", - "
\n", - "Note that the heat duty is in units of watt (J/s). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us now add an expression to compute the total operating cost per year which is basically the sum of the cooling and heating cost we defined above. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing feed conditions\n", - "\n", - "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", - "m.fs.M101.toluene_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", - "
    \n", - "
  • FH2 = 0.30 mol/s
  • \n", - "
  • FCH4 = 0.02 mol/s
  • \n", - "
  • Remaining components = 1e-5 mol/s
  • \n", - "
  • T = 303.2 K
  • \n", - "
  • P = 350000 Pa
  • \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", - "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", - "m.fs.M101.hydrogen_feed.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing unit model specifications\n", - "\n", - "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set set the H101 outlet temperature to 600 K. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.fix(600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the StoichiometricReactor, we have to define the conversion in terms of toluene. This requires us to create a new variable for specifying the conversion and adding a Constraint that defines the conversion with respect to toluene. The second degree of freedom for the reactor is to define the heat duty. In this case, let us assume the reactor to be adiabatic i.e. Q = 0. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", - "\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " )\n", - ")\n", - "\n", - "m.fs.R101.conversion.fix(0.75)\n", - "m.fs.R101.heat_duty.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Flash conditions for F101 can be set as follows. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", - "m.fs.F101.deltaP.fix(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Set the conditions for Flash F102 to the following conditions:\n", - "
    \n", - "
  • T = 375 K
  • \n", - "
  • deltaP = -200000
  • \n", - "
\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Set conditions for Flash F102" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "m.fs.F102.vap_outlet.temperature.fix(375)\n", - "m.fs.F102.deltaP.fix(-200000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us fix the purge split fraction to 20% and the outlet pressure of the compressor is set to 350000 Pa. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", - "m.fs.C101.outlet.pressure.fix(350000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the degrees of freedom" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Initialization\n", - "\n", - "\n", - "This section will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", - "\n", - "![](HDA_flowsheet.png) \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us first create an object for the SequentialDecomposition and specify our options for this. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "seq = SequentialDecomposition()\n", - "seq.options.select_tear_method = \"heuristic\"\n", - "seq.options.tear_method = \"Wegstein\"\n", - "seq.options.iterLim = 3\n", - "\n", - "# Using the SD tool\n", - "G = seq.create_graph(m)\n", - "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", - "order = seq.calculation_order(G)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Which is the tear stream? Display tear set and order" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "for o in heuristic_tear_set:\n", - " print(o.name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "for o in order:\n", - " print(o[0].name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " \n", - "\n", - "![](HDA_tear_stream.png) \n", - "\n", - "\n", - "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet. We will need to provide a reasonable guess for this." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "tear_guesses = {\n", - " \"flow_mol_phase_comp\": {\n", - " (0, \"Vap\", \"benzene\"): 1e-5,\n", - " (0, \"Vap\", \"toluene\"): 1e-5,\n", - " (0, \"Vap\", \"hydrogen\"): 0.30,\n", - " (0, \"Vap\", \"methane\"): 0.02,\n", - " (0, \"Liq\", \"benzene\"): 1e-5,\n", - " (0, \"Liq\", \"toluene\"): 0.30,\n", - " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", - " (0, \"Liq\", \"methane\"): 1e-5,\n", - " },\n", - " \"temperature\": {0: 303},\n", - " \"pressure\": {0: 350000},\n", - "}\n", - "\n", - "# Pass the tear_guess to the SD tool\n", - "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def function(unit):\n", - " try:\n", - " initializer = unit.default_initializer()\n", - " initializer.initialize(unit, output_level=idaeslog.INFO)\n", - " except InitializationError:\n", - " solver = get_solver()\n", - " solver.solve(unit)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 5 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "seq.run(m, function)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. To do this, complete the last line of code where we pass the model to the solver. You will need to type the following:\n", - " \n", - "results = solver.solve(m, tee=True)\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create the solver object\n", - "\n", - "\n", - "# Solve the model" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Create the solver object\n", - "from idaes.core.solvers import get_solver\n", - "\n", - "solver = get_solver()\n", - "\n", - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the results of the square problem\n", - "\n", - "\n", - "What is the total operating cost? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"operating cost = $\", value(m.fs.operating_cost))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this operating cost, what is the amount of benzene we are able to produce and what purity we are able to achieve? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F102.report()\n", - "\n", - "print()\n", - "print(\"benzene purity = \", value(m.fs.purity))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "How much benzene are we losing in the F101 vapor outlet stream?\n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.util.tables import (\n", - " create_stream_table_dataframe,\n", - " stream_table_dataframe_to_string,\n", - ")\n", - "\n", - "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", - "print(stream_table_dataframe_to_string(st))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "You can query additional variables here if you like. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimization\n", - "\n", - "\n", - "We saw from the results above that the total operating cost for the base case was $419,122 per year. We are producing 0.142 mol/s of benzene at a purity of 82\\%. However, we are losing around 42\\% of benzene in F101 vapor outlet stream. \n", - "\n", - "Let us try to minimize this cost such that:\n", - "- we are producing at least 0.15 mol/s of benzene in F102 vapor outlet i.e. our product stream\n", - "- purity of benzene i.e. the mole fraction of benzene in F102 vapor outlet is at least 80%\n", - "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", - "\n", - "For this problem, our decision variables are as follows:\n", - "- H101 outlet temperature\n", - "- R101 cooling duty provided\n", - "- F101 outlet temperature\n", - "- F102 outlet temperature\n", - "- F102 deltaP in the flash tank\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.R101.heat_duty.unfix()\n", - "m.fs.F101.vap_outlet.temperature.unfix()\n", - "m.fs.F102.vap_outlet.temperature.unfix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Let us now unfix the remaining variable which is F102 pressure drop (F102.deltaP) \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Unfix deltaP for F102" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Unfix deltaP for F102\n", - "m.fs.F102.deltaP.unfix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we need to set bounds on these decision variables to values shown below:\n", - "\n", - " - H101 outlet temperature [500, 600] K\n", - " - R101 outlet temperature [600, 800] K\n", - " - F101 outlet temperature [298, 450] K\n", - " - F102 outlet temperature [298, 450] K\n", - " - F102 outlet pressure [105000, 110000] Pa\n", - "\n", - "Let us first set the variable bound for the H101 outlet temperature as shown below:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature[0].setlb(500)\n", - "m.fs.H101.outlet.temperature[0].setub(600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, set the variable bound for the R101 outlet temperature.\n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Set the bounds for reactor outlet temperature" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Set the bounds for reactor outlet temperature\n", - "m.fs.R101.outlet.temperature[0].setlb(600)\n", - "m.fs.R101.outlet.temperature[0].setub(800)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us fix the bounds for the rest of the decision variables. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.F101.vap_outlet.temperature[0].setlb(298.0)\n", - "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", - "m.fs.F102.vap_outlet.temperature[0].setlb(298.0)\n", - "m.fs.F102.vap_outlet.temperature[0].setub(450.0)\n", - "m.fs.F102.vap_outlet.pressure[0].setlb(105000)\n", - "m.fs.F102.vap_outlet.pressure[0].setub(110000)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, the only things left to define are our constraints on overhead loss in F101, product flow rate and purity in F102. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 \\% of the benzene available in the reactor outlet. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.overhead_loss = Constraint(\n", - " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now, add the constraint such that we are producing at least 0.15 mol/s of benzene in the product stream which is the vapor outlet of F102. Let us name this constraint as m.fs.product_flow. \n", - "\n", - "Use Shift+Enter to run the cell once you have typed in your code. \n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add minimum product flow constraint" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Add minimum product flow constraint\n", - "m.fs.product_flow = Constraint(\n", - " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"] >= 0.15\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us add the final constraint on product purity or the mole fraction of benzene in the product stream such that it is at least greater than 80%. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.product_purity = Constraint(expr=m.fs.purity >= 0.80)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimization Results\n", - "\n", - "Display the results and product specifications" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"operating cost = $\", value(m.fs.operating_cost))\n", - "\n", - "print()\n", - "print(\"Product flow rate and purity in F102\")\n", - "\n", - "m.fs.F102.report()\n", - "\n", - "print()\n", - "print(\"benzene purity = \", value(m.fs.purity))\n", - "\n", - "print()\n", - "print(\"Overhead loss in F101\")\n", - "m.fs.F101.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", - "\n", - "print()\n", - "print(\"F102 outlet temperature = \", value(m.fs.F102.vap_outlet.temperature[0]), \"K\")\n", - "print(\"F102 outlet pressure = \", value(m.fs.F102.vap_outlet.pressure[0]), \"Pa\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# HDA Flowsheet Simulation and Optimization\n", + "\n", + "Author: Jaffer Ghouse \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "## Learning outcomes\n", + "\n", + "\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Using the SequentialDecomposition tool to initialize a flowsheet with recycle\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Hydrodealkylation is a chemical reaction that often involves reacting\n", + "an aromatic hydrocarbon in the presence of hydrogen gas to form a\n", + "simpler aromatic hydrocarbon devoid of functional groups. In this\n", + "example, toluene will be reacted with hydrogen gas at high temperatures\n", + " to form benzene via the following reaction:\n", + "\n", + "**C6H5CH3 + H2 \u2192 C6H6 + CH4**\n", + "\n", + "\n", + "This reaction is often accompanied by an equilibrium side reaction\n", + "which forms diphenyl, which we will neglect for this example.\n", + "\n", + "This example is based on the 1967 AIChE Student Contest problem as\n", + "present by Douglas, J.M., Chemical Design of Chemical Processes, 1988,\n", + "McGraw-Hill.\n", + "\n", + "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, there are two flash tanks, F101 to separate out the non-condensibles and F102 to further separate the benzene-toluene mixture to improve the benzene purity. Note that typically a distillation column is required to obtain high purity benzene but that is beyond the scope of this workshop. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be either purged or combusted for power generation.We will assume ideal gas for this flowsheet. The properties required for this module are available in the same directory:\n", + "\n", + "- hda_ideal_VLE.py\n", + "- hda_reaction.py\n", + "\n", + "The state variables chosen for the property package are **flows of component by phase, temperature and pressure**. The components considered are: **toluene, hydrogen, benzene and methane**. Therefore, every stream has 8 flow variables, 1 temperature and 1 pressure variable. \n", + "\n", + "![](HDA_flowsheet.png)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required pyomo and idaes components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- ConcreteModel (to create the concrete model object)\n", + "- Expression (to evaluate values as a function of variables defined in the model)\n", + "- Objective (to define an objective function for optimization)\n", + "- SolverFactory (to solve the problem)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- Arc (to connect two unit models)\n", + "- SequentialDecomposition (to initialize the flowsheet in a sequential mode)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " SolverFactory,\n", + " TransformationFactory,\n", + " value,\n", + ")\n", + "from pyomo.network import Arc, SequentialDecomposition" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From idaes, we will be needing the FlowsheetBlock and the following unit models:\n", + "- Mixer\n", + "- Heater\n", + "- StoichiometricReactor\n", + "- **Flash**\n", + "- Separator (splitter) \n", + "- PressureChanger" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core import FlowsheetBlock" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models import (\n", + " PressureChanger,\n", + " Mixer,\n", + " Separator as Splitter,\n", + " Heater,\n", + " StoichiometricReactor,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, import the remaining unit models highlighted in blue above and run the cell using `Shift+Enter` after typing in the code. \n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: import flash model from idaes.models.unit_models" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: import flash model from idaes.models.unit_models\n", + "from idaes.models.unit_models import Flash" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models.unit_models.pressure_changer import ThermodynamicAssumption\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.exceptions import InitializationError" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing required thermo and reaction package\n", + "\n", + "The final set of imports are to import the thermo and reaction package for the HDA process. We have created a custom thermo package that assumes Ideal Gas with support for VLE. \n", + "\n", + "The reaction package here is very simple as we will be using only a StochiometricReactor and the reaction package consists of the stochiometric coefficients for the reaction and the parameter for the heat of reaction. \n", + "\n", + "Let us import the following modules and they are in the same directory as this jupyter notebook:\n", + "
    \n", + "
  • hda_ideal_VLE as thermo_props
  • \n", + "
  • hda_reaction as reaction_props
  • \n", + "
\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes_examples.mod.hda import hda_ideal_VLE as thermo_props\n", + "from idaes_examples.mod.hda import hda_reaction as reaction_props" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block as we did in module 1. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now need to add the property packages to the flowsheet. Unlike Module 1, where we only had a thermo property package, for this flowsheet we will also need to add a reaction property package. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.thermo_params = thermo_props.HDAParameterBlock()\n", + "m.fs.reaction_params = reaction_props.HDAReactionParameterBlock(\n", + " property_package=m.fs.thermo_params\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details (https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/index.html). For example, the Mixer unit model here is given a `list` consisting of names to the three inlets. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params,\n", + " inlet_list=[\"toluene_feed\", \"hydrogen_feed\", \"vapor_recycle\"],\n", + ")\n", + "\n", + "m.fs.H101 = Heater(\n", + " property_package=m.fs.thermo_params,\n", + " has_pressure_change=False,\n", + " has_phase_equilibrium=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now add the StoichiometricReactor(assign the name R101) and pass the following arguments:\n", + "
    \n", + "
  • \"property_package\": m.fs.thermo_params
  • \n", + "
  • \"reaction_package\": m.fs.reaction_params
  • \n", + "
  • \"has_heat_of_reaction\": True
  • \n", + "
  • \"has_heat_transfer\": True
  • \n", + "
  • \"has_pressure_change\": False
  • \n", + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add reactor with the specifications above" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add reactor with the specifications above\n", + "m.fs.R101 = StoichiometricReactor(\n", + " property_package=m.fs.thermo_params,\n", + " reaction_package=m.fs.reaction_params,\n", + " has_heat_of_reaction=True,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add the Flash(assign the name F101) and pass the following arguments:\n", + "
    \n", + "
  • \"property_package\": m.fs.thermo_params
  • \n", + "
  • \"has_heat_transfer\": True
  • \n", + "
  • \"has_pressure_change\": False
  • \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F101 = Flash(\n", + " property_package=m.fs.thermo_params,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add the Splitter(S101), PressureChanger(C101) and the second Flash(F102). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.S101 = Splitter(\n", + " property_package=m.fs.thermo_params,\n", + " ideal_separation=False,\n", + " outlet_list=[\"purge\", \"recycle\"],\n", + ")\n", + "\n", + "\n", + "m.fs.C101 = PressureChanger(\n", + " property_package=m.fs.thermo_params,\n", + " compressor=True,\n", + " thermodynamic_assumption=ThermodynamicAssumption.isothermal,\n", + ")\n", + "\n", + "m.fs.F102 = Flash(\n", + " property_package=m.fs.thermo_params,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models using Arcs\n", + "\n", + "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer(M101) to the inlet of the heater(H101). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "![](HDA_flowsheet.png) \n", + "\n", + "
\n", + "Inline Exercise:\n", + "Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Connect the H101 outlet to R101 inlet" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Connect the H101 outlet to R101 inlet\n", + "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be connecting the rest of the flowsheet as shown below. Notice how the outlet names are different for the flash tanks F101 and F102 as they have a vapor and a liquid outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet)\n", + "m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet)\n", + "m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet)\n", + "m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle)\n", + "m.fs.s10 = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.F102.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding expressions to compute purity and operating costs\n", + "\n", + "In this section, we will add a few Expressions that allows us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html\n", + "\n", + "For this flowsheet, we are interested in computing the purity of the product Benzene stream (i.e. the mole fraction) and the operating cost which is a sum of the cooling and heating cost. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us first add an Expression to compute the mole fraction of benzene in the `vap_outlet` of F102 which is our product stream. Please note that the var flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are [\"Liq\", \"Vap\"]. Similarly the valid component list is [\"benzene\", \"toluene\", \"hydrogen\", \"methane\"]." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.purity = Expression(\n", + " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " / (\n", + " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " + m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " )\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let us add an expression to compute the cooling cost assuming a cost of 0.212E-4 $/kW. Note that cooling utility is required for the reactor (R101) and the first flash (F101). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.cooling_cost = Expression(\n", + " expr=0.212e-7 * (-m.fs.F101.heat_duty[0]) + 0.212e-7 * (-m.fs.R101.heat_duty[0])\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Now, let us add an expression to compute the heating cost assuming the utility cost as follows:\n", + "
    \n", + "
  • 2.2E-4 dollars/kW for H101
  • \n", + "
  • 1.9E-4 dollars/kW for F102
  • \n", + "
\n", + "Note that the heat duty is in units of watt (J/s). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now add an expression to compute the total operating cost per year which is basically the sum of the cooling and heating cost we defined above. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing feed conditions\n", + "\n", + "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(0.30)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.toluene_feed.temperature.fix(303.2)\n", + "m.fs.M101.toluene_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Similarly, let us fix the hydrogen feed to the following conditions in the next cell:\n", + "
    \n", + "
  • FH2 = 0.30 mol/s
  • \n", + "
  • FCH4 = 0.02 mol/s
  • \n", + "
  • Remaining components = 1e-5 mol/s
  • \n", + "
  • T = 303.2 K
  • \n", + "
  • P = 350000 Pa
  • \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"hydrogen\"].fix(0.30)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Vap\", \"methane\"].fix(0.02)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"benzene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"toluene\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"hydrogen\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, \"Liq\", \"methane\"].fix(1e-5)\n", + "m.fs.M101.hydrogen_feed.temperature.fix(303.2)\n", + "m.fs.M101.hydrogen_feed.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing unit model specifications\n", + "\n", + "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set set the H101 outlet temperature to 600 K. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.fix(600)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the StoichiometricReactor, we have to define the conversion in terms of toluene. This requires us to create a new variable for specifying the conversion and adding a Constraint that defines the conversion with respect to toluene. The second degree of freedom for the reactor is to define the heat duty. In this case, let us assume the reactor to be adiabatic i.e. Q = 0. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1))\n", + "\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " )\n", + ")\n", + "\n", + "m.fs.R101.conversion.fix(0.75)\n", + "m.fs.R101.heat_duty.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Flash conditions for F101 can be set as follows. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F101.vap_outlet.temperature.fix(325.0)\n", + "m.fs.F101.deltaP.fix(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Set the conditions for Flash F102 to the following conditions:\n", + "
    \n", + "
  • T = 375 K
  • \n", + "
  • deltaP = -200000
  • \n", + "
\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Set conditions for Flash F102" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "m.fs.F102.vap_outlet.temperature.fix(375)\n", + "m.fs.F102.deltaP.fix(-200000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us fix the purge split fraction to 20% and the outlet pressure of the compressor is set to 350000 Pa. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.S101.split_fraction[0, \"purge\"].fix(0.2)\n", + "m.fs.C101.outlet.pressure.fix(350000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the degrees of freedom" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initialization\n", + "\n", + "\n", + "This section will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.\n", + "\n", + "![](HDA_flowsheet.png) \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us first create an object for the SequentialDecomposition and specify our options for this. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "seq = SequentialDecomposition()\n", + "seq.options.select_tear_method = \"heuristic\"\n", + "seq.options.tear_method = \"Wegstein\"\n", + "seq.options.iterLim = 3\n", + "\n", + "# Using the SD tool\n", + "G = seq.create_graph(m)\n", + "heuristic_tear_set = seq.tear_set_arcs(G, method=\"heuristic\")\n", + "order = seq.calculation_order(G)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Which is the tear stream? Display tear set and order" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for o in heuristic_tear_set:\n", + " print(o.name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What sequence did the SD tool determine to solve this flowsheet with the least number of tears? " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "for o in order:\n", + " print(o[0].name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " \n", + "\n", + "![](HDA_tear_stream.png) \n", + "\n", + "\n", + "The SequentialDecomposition tool has determined that the tear stream is the mixer outlet. We will need to provide a reasonable guess for this." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tear_guesses = {\n", + " \"flow_mol_phase_comp\": {\n", + " (0, \"Vap\", \"benzene\"): 1e-5,\n", + " (0, \"Vap\", \"toluene\"): 1e-5,\n", + " (0, \"Vap\", \"hydrogen\"): 0.30,\n", + " (0, \"Vap\", \"methane\"): 0.02,\n", + " (0, \"Liq\", \"benzene\"): 1e-5,\n", + " (0, \"Liq\", \"toluene\"): 0.30,\n", + " (0, \"Liq\", \"hydrogen\"): 1e-5,\n", + " (0, \"Liq\", \"methane\"): 1e-5,\n", + " },\n", + " \"temperature\": {0: 303},\n", + " \"pressure\": {0: 350000},\n", + "}\n", + "\n", + "# Pass the tear_guess to the SD tool\n", + "seq.set_guesses_for(m.fs.H101.inlet, tear_guesses)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a \"unit\" and calls the initialize method on that unit. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def function(unit):\n", + " try:\n", + " initializer = unit.default_initializer()\n", + " initializer.initialize(unit, output_level=idaeslog.INFO)\n", + " except InitializationError:\n", + " solver = get_solver()\n", + " solver.solve(unit)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 5 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "seq.run(m, function)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. To do this, complete the last line of code where we pass the model to the solver. You will need to type the following:\n", + " \n", + "results = solver.solve(m, tee=True)\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create the solver object\n", + "\n", + "\n", + "# Solve the model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Create the solver object\n", + "from idaes.core.solvers import get_solver\n", + "\n", + "solver = get_solver()\n", + "\n", + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the results of the square problem\n", + "\n", + "\n", + "What is the total operating cost? " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"operating cost = $\", value(m.fs.operating_cost))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this operating cost, what is the amount of benzene we are able to produce and what purity we are able to achieve? " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F102.report()\n", + "\n", + "print()\n", + "print(\"benzene purity = \", value(m.fs.purity))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, let's look at how much benzene we are losing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "How much benzene are we losing in the F101 vapor outlet stream?\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.util.tables import (\n", + " create_stream_table_dataframe,\n", + " stream_table_dataframe_to_string,\n", + ")\n", + "\n", + "st = create_stream_table_dataframe({\"Reactor\": m.fs.s05, \"Light Gases\": m.fs.s06})\n", + "print(stream_table_dataframe_to_string(st))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "You can query additional variables here if you like. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimization\n", + "\n", + "\n", + "We saw from the results above that the total operating cost for the base case was $419,122 per year. We are producing 0.142 mol/s of benzene at a purity of 82\\%. However, we are losing around 42\\% of benzene in F101 vapor outlet stream. \n", + "\n", + "Let us try to minimize this cost such that:\n", + "- we are producing at least 0.15 mol/s of benzene in F102 vapor outlet i.e. our product stream\n", + "- purity of benzene i.e. the mole fraction of benzene in F102 vapor outlet is at least 80%\n", + "- restricting the benzene loss in F101 vapor outlet to less than 20%\n", + "\n", + "For this problem, our decision variables are as follows:\n", + "- H101 outlet temperature\n", + "- R101 cooling duty provided\n", + "- F101 outlet temperature\n", + "- F102 outlet temperature\n", + "- F102 deltaP in the flash tank\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.R101.heat_duty.unfix()\n", + "m.fs.F101.vap_outlet.temperature.unfix()\n", + "m.fs.F102.vap_outlet.temperature.unfix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Let us now unfix the remaining variable which is F102 pressure drop (F102.deltaP) \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Unfix deltaP for F102" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Unfix deltaP for F102\n", + "m.fs.F102.deltaP.unfix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to set bounds on these decision variables to values shown below:\n", + "\n", + " - H101 outlet temperature [500, 600] K\n", + " - R101 outlet temperature [600, 800] K\n", + " - F101 outlet temperature [298, 450] K\n", + " - F102 outlet temperature [298, 450] K\n", + " - F102 outlet pressure [105000, 110000] Pa\n", + "\n", + "Let us first set the variable bound for the H101 outlet temperature as shown below:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature[0].setlb(500)\n", + "m.fs.H101.outlet.temperature[0].setub(600)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, set the variable bound for the R101 outlet temperature.\n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Set the bounds for reactor outlet temperature" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Set the bounds for reactor outlet temperature\n", + "m.fs.R101.outlet.temperature[0].setlb(600)\n", + "m.fs.R101.outlet.temperature[0].setub(800)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us fix the bounds for the rest of the decision variables. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.F101.vap_outlet.temperature[0].setlb(298.0)\n", + "m.fs.F101.vap_outlet.temperature[0].setub(450.0)\n", + "m.fs.F102.vap_outlet.temperature[0].setlb(298.0)\n", + "m.fs.F102.vap_outlet.temperature[0].setub(450.0)\n", + "m.fs.F102.vap_outlet.pressure[0].setlb(105000)\n", + "m.fs.F102.vap_outlet.pressure[0].setub(110000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the only things left to define are our constraints on overhead loss in F101, product flow rate and purity in F102. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 \\% of the benzene available in the reactor outlet. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.overhead_loss = Constraint(\n", + " expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now, add the constraint such that we are producing at least 0.15 mol/s of benzene in the product stream which is the vapor outlet of F102. Let us name this constraint as m.fs.product_flow. \n", + "\n", + "Use Shift+Enter to run the cell once you have typed in your code. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add minimum product flow constraint" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Add minimum product flow constraint\n", + "m.fs.product_flow = Constraint(\n", + " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"] >= 0.15\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us add the final constraint on product purity or the mole fraction of benzene in the product stream such that it is at least greater than 80%. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.product_purity = Constraint(expr=m.fs.purity >= 0.80)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimization Results\n", + "\n", + "Display the results and product specifications" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"operating cost = $\", value(m.fs.operating_cost))\n", + "\n", + "print()\n", + "print(\"Product flow rate and purity in F102\")\n", + "\n", + "m.fs.F102.report()\n", + "\n", + "print()\n", + "print(\"benzene purity = \", value(m.fs.purity))\n", + "\n", + "print()\n", + "print(\"Overhead loss in F101\")\n", + "m.fs.F101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(\"H101 outlet temperature = \", value(m.fs.H101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"R101 outlet temperature = \", value(m.fs.R101.outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"F101 outlet temperature = \", value(m.fs.F101.vap_outlet.temperature[0]), \"K\")\n", + "\n", + "print()\n", + "print(\"F102 outlet temperature = \", value(m.fs.F102.vap_outlet.temperature[0]), \"K\")\n", + "print(\"F102 outlet pressure = \", value(m.fs.F102.vap_outlet.pressure[0]), \"Pa\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/tut/introduction.ipynb b/idaes_examples/notebooks/docs/tut/introduction.ipynb index 62978e37..c03c3a9b 100644 --- a/idaes_examples/notebooks/docs/tut/introduction.ipynb +++ b/idaes_examples/notebooks/docs/tut/introduction.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/tut/introduction_doc.ipynb b/idaes_examples/notebooks/docs/tut/introduction_doc.ipynb index 4ac33b41..184b3745 100644 --- a/idaes_examples/notebooks/docs/tut/introduction_doc.ipynb +++ b/idaes_examples/notebooks/docs/tut/introduction_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -699,8 +700,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "[0.0, 3.3333333333333335, 6.666666666666667, 10.0, 13.333333333333334, 16.666666666666668, 20.0, 23.333333333333336, 26.666666666666668, 30.0, 33.333333333333336, 36.66666666666667, 40.0, 43.333333333333336, 46.66666666666667, 50.0]\n", - "[0.0, 11.111111111111112, 44.44444444444445, 100.0, 177.7777777777778, 277.7777777777778, 400.0, 544.4444444444446, 711.1111111111112, 900.0, 1111.1111111111113, 1344.4444444444448, 1600.0, 1877.777777777778, 2177.7777777777783, 2500.0]\n" + "[np.float64(0.0), np.float64(3.3333333333333335), np.float64(6.666666666666667), np.float64(10.0), np.float64(13.333333333333334), np.float64(16.666666666666668), np.float64(20.0), np.float64(23.333333333333336), np.float64(26.666666666666668), np.float64(30.0), np.float64(33.333333333333336), np.float64(36.66666666666667), np.float64(40.0), np.float64(43.333333333333336), np.float64(46.66666666666667), np.float64(50.0)]\n", + "[np.float64(0.0), np.float64(11.111111111111112), np.float64(44.44444444444445), np.float64(100.0), np.float64(177.7777777777778), np.float64(277.7777777777778), np.float64(400.0), np.float64(544.4444444444446), np.float64(711.1111111111112), np.float64(900.0), np.float64(1111.1111111111113), np.float64(1344.4444444444448), np.float64(1600.0), np.float64(1877.777777777778), np.float64(2177.7777777777783), np.float64(2500.0)]\n" ] } ], @@ -739,16 +740,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXCElEQVR4nO3deVhUZf8G8HtYZtgH2UEQwQ1XcCVyyyRxTdNyzaU0zdBSy8x+5ZIlpb0tmq3m8pqaaWppmuKC5q4oiqiIioKyKjLDvsw8vz+IeR3BHTgzzP25rrlyznnOme95QOfunOc8RyaEECAiIiIyYWZSF0BEREQkNQYiIiIiMnkMRERERGTyGIiIiIjI5DEQERERkcljICIiIiKTx0BEREREJo+BiIiIiEweAxERERGZPAYiIhNSv3599O3bt9o/5+rVq5DJZFixYsUD244ZMwb169ev0s+vX78+xowZU6X7NCalpaV499134ePjAzMzMwwYMAAAIJPJMGfOHElrIzJUDEREEluxYgVkMtk9X0eOHJG6RDIyy5Ytw8KFC/Hiiy9i5cqVmDp1qtQlERk8C6kLIKIyH330Efz8/Cosb9iwoQTVkDHbs2cP6tatiy+//FJveUFBASws+M8+UWX4N4PIQPTq1Qvt2rWTugyqBTIyMuDo6FhhuZWVVc0XAyAvLw+2traSfDbRw+IlMyIjUT4u5/PPP8eSJUvg7+8PGxsb9OjRA8nJyRBCYN68efD29oa1tTX69++PrKysSve1c+dOBAUFwcrKCs2aNcPGjRsrtMnOzsaUKVPg4+MDhUKBhg0b4rPPPoNWq63QbsyYMVAqlXB0dMTo0aORnZ1d6edu3rwZLVq0gJWVFVq0aIFNmzZV2k6r1eKrr75C8+bNYWVlBXd3d0yYMAG3b9/WayeEwMcffwxvb2/Y2NigW7duiIuLe4jeBGbPng0zMzPs3r1bb/n48eMhl8tx+vTpe27bokULdOvWrdK669atixdffFG37Ndff0Xbtm1hb28PBwcHtGzZEl9//fU99y2EQP369dG/f/8K6woLC6FUKjFhwoRKty3/Hdm7dy/i4uJ0l12joqIAVD6GKCoqCu3atYOVlRUaNGiAH374AXPmzIFMJquw38rGhN29z/Jtz507h+HDh6NOnTro1KmTbv0vv/yCtm3bwtraGk5OThg6dCiSk5Pv2R9ENYVniIgMhEqlws2bN/WWyWQyODs76y1bvXo1iouLMXnyZGRlZWHBggUYPHgwnn32WURFRWHGjBm4dOkSFi9ejHfeeQfLli3T2z4hIQFDhgzB66+/jtGjR2P58uV46aWX8Pfff+O5554DAOTn56Nr1664ceMGJkyYgHr16uHQoUOYOXMmUlNT8dVXXwEo+/Lu378/Dhw4gNdffx1NmzbFpk2bMHr06ArHt3PnTgwaNAjNmjVDREQEbt26hVdeeQXe3t4V2k6YMAErVqzAK6+8gjfffBOJiYn45ptvcOrUKRw8eBCWlpYAgFmzZuHjjz9G79690bt3b5w8eRI9evRAcXHxA/v7gw8+wJYtWzB27FjExsbC3t4eO3bswE8//YR58+YhMDDwntsOGTIEc+bMQVpaGjw8PHTLDxw4gJSUFAwdOhQAEBkZiWHDhqF79+747LPPAADnz5/HwYMH8dZbb1W6b5lMhpdffhkLFixAVlYWnJycdOu2bNkCtVqNl19+udJtXV1dsWrVKnzyySfIzc1FREQEAKBp06aVtj916hR69uwJT09PzJ07FxqNBh999BFcXV3v03MP56WXXkKjRo0wf/58CCEAAJ988gk+/PBDDB48GOPGjUNmZiYWL16MLl264NSpU5We1SKqMYKIJLV8+XIBoNKXQqHQtUtMTBQAhKurq8jOztYtnzlzpgAgAgMDRUlJiW75sGHDhFwuF4WFhbplvr6+AoD4/fffdctUKpXw9PQUrVu31i2bN2+esLW1FRcvXtSr9b333hPm5uYiKSlJCCHE5s2bBQCxYMECXZvS0lLRuXNnAUAsX75ctzwoKEh4enrq1b5z504BQPj6+uqW/fPPPwKAWL16td5n//3333rLMzIyhFwuF3369BFarVbX7v333xcAxOjRoyvv8DvExsYKuVwuxo0bJ27fvi3q1q0r2rVrp9ePlYmPjxcAxOLFi/WWv/HGG8LOzk7k5+cLIYR46623hIODgygtLX1gLZXt/7vvvtNb/vzzz4v69evrHW9lunbtKpo3b15hOQAxe/Zs3ft+/foJGxsbcePGDd2yhIQEYWFhIe78eij/3bvz53mvfc6ePVsAEMOGDdNrd/XqVWFubi4++eQTveWxsbHCwsKiwnKimsZLZkQGYsmSJYiMjNR7bd++vUK7l156CUqlUvc+ODgYAPDyyy/rDZgNDg5GcXExbty4obe9l5cXXnjhBd17BwcHjBo1CqdOnUJaWhoAYP369ejcuTPq1KmDmzdv6l6hoaHQaDTYv38/AGDbtm2wsLDAxIkTdfszNzfH5MmT9T4zNTUVMTExGD16tF7tzz33HJo1a6bXdv369VAqlXjuuef0Prtt27aws7PD3r17AQC7du3SnSm78/LOlClT7tPL+lq0aIG5c+di6dKlCAsLw82bN7Fy5coHDjxu3LgxgoKCsG7dOt0yjUaDDRs2oF+/frC2tgYAODo6Ii8vD5GRkQ9dU/n+g4ODsXr1at2yrKwsbN++HSNGjNA73sel0Wiwa9cuDBgwAF5eXrrlDRs2RK9evZ54/6+//rre+40bN0Kr1WLw4MF6P1cPDw80atRI93MlkgovmREZiA4dOjzUoOp69erpvS8PGD4+PpUuv3vcTcOGDSt8oTZu3BhA2VgRDw8PJCQk4MyZM/e8dJKRkQEAuHbtGjw9PWFnZ6e3vkmTJnrvr127BgBo1KhRhX01adIEJ0+e1L1PSEiASqWCm5vbAz+7sn26urqiTp06lW5bmenTp+PXX3/FsWPHMH/+/AoB7V6GDBmC999/Hzdu3EDdunURFRWFjIwMDBkyRNfmjTfewG+//YZevXqhbt266NGjBwYPHoyePXs+cP+jRo3CpEmTcO3aNfj6+mL9+vUoKSnByJEjH/rY7icjIwMFBQWV3sVYFXc23n3HZEJCAoQQlf4OANBdBiWSCgMRkZExNzd/pOXi3/Ebj0Kr1eK5557Du+++W+n68gBVHbRaLdzc3PTOjtypKsa33OnKlStISEgAAMTGxj70dkOGDMHMmTOxfv16TJkyBb/99huUSqVe2HFzc0NMTAx27NiB7du3Y/v27Vi+fDlGjRqFlStX3nf/Q4cOxdSpU7F69Wq8//77+OWXX9CuXbsKYbMm3OuMlEajuec25WfJymm1WshkMmzfvr3S39W7QzVRTWMgIjIxly5dghBC70vu4sWLAKCbMbpBgwbIzc1FaGjofffl6+uL3bt3Izc3V+8LLT4+vkI7ALrgcae72zZo0AC7du1Cx44dK3yp3muf/v7+uuWZmZkVzordi1arxZgxY+Dg4IApU6Zg/vz5ePHFFzFw4MAHbuvn54cOHTpg3bp1mDRpEjZu3IgBAwZAoVDotZPL5ejXrx/69esHrVaLN954Az/88AM+/PDD+56JcXJyQp8+fbB69WqMGDECBw8e1A1mrwpubm6wsrLCpUuXKqy7e1n5Gbe77x4sP0v3MBo0aAAhBPz8/Ko1UBM9Lo4hIjIxKSkpere7q9Vq/Pe//0VQUJDujqnBgwfj8OHD2LFjR4Xts7OzUVpaCgDo3bs3SktL8d133+nWazQaLF68WG8bT09PBAUFYeXKlVCpVLrlkZGROHfunF7bwYMHQ6PRYN68eRU+u7S0VPelHBoaCktLSyxevFjvLNijhIYvvvgChw4dwo8//oh58+bh6aefxsSJEyvc7XcvQ4YMwZEjR7Bs2TLcvHlT73IZANy6dUvvvZmZGVq1agUAKCoqeuD+R44ciXPnzmH69OkwNzfX3b1WFczNzREaGorNmzcjJSVFt/zSpUsVxq45ODjAxcVFN3as3LfffvvQnzdw4ECYm5tj7ty5Fc5aCiEq9BVRTeMZIiIDsX37dly4cKHC8qefflrvDMiTaty4McaOHYvjx4/D3d0dy5YtQ3p6OpYvX65rM336dPz555/o27cvxowZg7Zt2yIvLw+xsbHYsGEDrl69ChcXF/Tr1w8dO3bEe++9h6tXr+rmNLoz9JSLiIhAnz590KlTJ7z66qvIysrC4sWL0bx5c+Tm5urade3aFRMmTEBERARiYmLQo0cPWFpaIiEhAevXr8fXX3+NF198Ea6urnjnnXcQERGBvn37onfv3jh16hS2b98OFxeXB/bD+fPn8eGHH2LMmDHo168fgLLHqAQFBenG/jzI4MGD8c477+Cdd96Bk5NThTNq48aNQ1ZWFp599ll4e3vj2rVrWLx4MYKCgu55K/yd+vTpA2dnZ6xfvx69evW657iqxzVnzhzs3LkTHTt2xMSJE6HRaPDNN9+gRYsWiImJqXAsn376KcaNG4d27dph//79ujOLD6NBgwb4+OOPMXPmTFy9ehUDBgyAvb09EhMTsWnTJowfPx7vvPNOlR4f0SOR8A43IhL3v+0ed9zqXH7r88KFC/W237t3rwAg1q9fX+l+jx8/rlvm6+sr+vTpI3bs2CFatWolFAqFCAgIqLCtEELk5OSImTNnioYNGwq5XC5cXFzE008/LT7//HNRXFysa3fr1i0xcuRI4eDgIJRKpRg5cqQ4depUpbdp//7776Jp06ZCoVCIZs2aiY0bN4rRo0fr3XZf7scffxRt27YV1tbWwt7eXrRs2VK8++67IiUlRddGo9GIuXPnCk9PT2FtbS2eeeYZcfbsWeHr63vf2+5LS0tF+/bthbe3t940AEII8fXXXwsAYt26dffc/k4dO3YUAMS4ceMqrNuwYYPo0aOHcHNzE3K5XNSrV09MmDBBpKamPtS+hSi7lR+AWLNmzUNv87C33QshxO7du0Xr1q2FXC4XDRo0EEuXLhVvv/22sLKy0muXn58vxo4dK5RKpbC3txeDBw8WGRkZ97ztPjMzs9Lafv/9d9GpUydha2srbG1tRUBAgAgPDxfx8fEPfXxE1UEmxGOMuCQiohoxdepU/Pzzz0hLS4ONjU2NfOaAAQMQFxdX6ZgvotqKY4iIiAxUYWEhfvnlFwwaNKjawlBBQYHe+4SEBGzbtg3PPPNMtXwekaHiGCIiIgOTkZGBXbt2YcOGDbh169Y9H/NRFfz9/TFmzBj4+/vj2rVr+O677yCXy+855QJRbcVARERkYM6dO4cRI0bAzc0NixYtQlBQULV9Vs+ePbF27VqkpaVBoVAgJCQE8+fPv+cEikS1FccQERERkcnjGCIiIiIyeQxEREREZPI4hughaLVapKSkwN7evkqeMk1ERETVTwiBnJwceHl5wczs/ueAGIgeQkpKSoUniRMREZFxSE5Ohre3933bMBA9BHt7ewBlHerg4CBxNURERPQw1Go1fHx8dN/j98NA9BDKL5M5ODgwEBERERmZhxnuwkHVREREZPIYiIiIiMjkMRARERGRyeMYoiqk0WhQUlIidRlGx9LSEubm5lKXQUREJoyBqAoIIZCWlobs7GypSzFajo6O8PDw4DxPREQkCQaiKlAehtzc3GBjY8Mv9UcghEB+fj4yMjIAAJ6enhJXREREpoiB6AlpNBpdGHJ2dpa6HKNkbW0NAMjIyICbmxsvnxERUY3joOonVD5myMbGRuJKjFt5/3EMFhERSYGBqIrwMtmTYf8REZGUGIiIiIjI5EkaiCIiItC+fXvY29vDzc0NAwYMQHx8vF6bZ555BjKZTO/1+uuv67VJSkpCnz59YGNjAzc3N0yfPh2lpaV6baKiotCmTRsoFAo0bNgQK1asqO7DM1rPPPMMpkyZInUZRERENUbSQLRv3z6Eh4fjyJEjiIyMRElJCXr06IG8vDy9dq+99hpSU1N1rwULFujWaTQa9OnTB8XFxTh06BBWrlyJFStWYNasWbo2iYmJ6NOnD7p164aYmBhMmTIF48aNw44dO2rsWGurqKgoyGQyTjlARERGTdK7zP7++2+99ytWrICbmxuio6PRpUsX3XIbGxt4eHhUuo+dO3fi3Llz2LVrF9zd3REUFIR58+ZhxowZmDNnDuRyOb7//nv4+fnhP//5DwCgadOmOHDgAL788kuEhYVV3wESERHRAx26dBOBPo6wVUgXSwxqDJFKpQIAODk56S1fvXo1XFxc0KJFC8ycORP5+fm6dYcPH0bLli3h7u6uWxYWFga1Wo24uDhdm9DQUL19hoWF4fDhw5XWUVRUBLVarfeqrfLy8jBq1CjY2dnB09NTFxrLrVq1Cu3atYO9vT08PDwwfPhw3ZxBV69eRbdu3QAAderUgUwmw5gxYwCUhd1OnTrB0dERzs7O6Nu3Ly5fvlyjx0ZERIbvUkYOXllxHL0X/YMMdaFkdRjMPERarRZTpkxBx44d0aJFC93y4cOHw9fXF15eXjhz5gxmzJiB+Ph4bNy4EUDZpIh3hiEAuvdpaWn3baNWq1FQUKCbB6dcREQE5s6d+9jHIoRAQYnmsbd/EtaW5o90x9b06dOxb98+/PHHH3Bzc8P777+PkydPIigoCEDZbfDz5s1DkyZNkJGRgWnTpmHMmDHYtm0bfHx88Pvvv2PQoEGIj4+Hg4ODri/z8vIwbdo0tGrVCrm5uZg1axZeeOEFxMTEwMzMoHI4ERFJpLhUiynrYlBUqoWvsy1c7RWS1WIwgSg8PBxnz57FgQMH9JaPHz9e9+eWLVvC09MT3bt3x+XLl9GgQYNqqWXmzJmYNm2a7r1arYaPj89Db19QokGzWdKMTzr3URhs5A/3Y83NzcXPP/+MX375Bd27dwcArFy5Et7e3ro2r776qu7P/v7+WLRoEdq3b4/c3FzY2dnpzua5ubnB0dFR13bQoEF6n7Vs2TK4urri3LlzeoGXiIhM1+I9CTh7Qw2ltSUWvthK0ilYDOJ/1SdNmoStW7di7969el/GlQkODgYAXLp0CQDg4eGB9PR0vTbl78vHHd2rzZ1nNO6kUCjg4OCg96qNLl++jOLiYl2fAmWXK5s0aaJ7Hx0djX79+qFevXqwt7dH165dAZTd2Xc/CQkJGDZsGPz9/eHg4ID69es/1HZERGQaTibdxpK9Zd/ln7zQAu4OVpLWI+kZIiEEJk+ejE2bNiEqKgp+fn4P3CYmJgbA/555FRISgk8++UT32AcAiIyMhIODA5o1a6Zrs23bNr39REZGIiQkpAqP5n+sLc1x7iNpBmtbW1bdYy/y8vIQFhaGsLAwrF69Gq6urkhKSkJYWBiKi4vvu22/fv3g6+uLn376CV5eXtBqtWjRosUDtyMiotovr6gU09bFQCuAAUFe6NvKS+qSpA1E4eHhWLNmDf744w/Y29vrxvwolUpYW1vj8uXLWLNmDXr37g1nZ2ecOXMGU6dORZcuXdCqVSsAQI8ePdCsWTOMHDkSCxYsQFpaGj744AOEh4dDoSi7Fvn666/jm2++wbvvvotXX30Ve/bswW+//Ya//vqrWo5LJpM99GUrKTVo0ACWlpY4evQo6tWrBwC4ffs2Ll68iK5du+LChQu4desWPv30U90lwxMnTujtQy6XAyib/qDcrVu3EB8fj59++gmdO3cGgAqXQomIyHR9su08rt7Kh6fSCnP7G8YwCkkvmX333XdQqVR45pln4OnpqXutW7cOQNmX7a5du9CjRw8EBATg7bffxqBBg7BlyxbdPszNzbF161aYm5sjJCQEL7/8MkaNGoWPPvpI18bPzw9//fUXIiMjERgYiP/85z9YunSpyd9yb2dnh7Fjx2L69OnYs2cPzp49izFjxugGPderVw9yuRyLFy/GlStX8Oeff2LevHl6+/D19YVMJsPWrVuRmZmJ3Nxc1KlTB87Ozvjxxx9x6dIl7NmzR29MFhERma69FzKw5mjZ8InPXwqE0tpS4or+JeiBVCqVACBUKlWFdQUFBeLcuXOioKBAgsqeXE5Ojnj55ZeFjY2NcHd3FwsWLBBdu3YVb731lhBCiDVr1oj69esLhUIhQkJCxJ9//ikAiFOnTun28dFHHwkPDw8hk8nE6NGjhRBCREZGiqZNmwqFQiFatWoloqKiBACxadOmSusw9n4kIqIHu5VbJNrOixS+M7aKuX/GVfvn3e/7+24yIYSQNpIZPrVaDaVSCZVKVWGAdWFhIRITE+Hn5wcrK2kHhBkz9iMRUe0mhMDEX07i77g0NHKzw5bJnWBVheNeK3O/7++7GcRdZkRERFS7bTx5A3/HpcHCTIYvhwRVexh6VAxEREREVK2Ss/Ix+8+yp0dMfa4xWtRVSlxRRQxEREREVG00WoG3159GblEp2vrWwYQu/lKXVCkGIiIiIqo2Px+4gmOJWbCRm+OLwYGwMDfM6GGYVRkhjk1/Muw/IqLa50KaGp/vuAgA+LBvM/g620pc0b0xED0hS8uy+RPy8/MlrsS4lfdfeX8SEZFxKyrVYMqvMSjWaNE9wA1D2z/8M0GlYPjTKRs4c3NzODo6IiMjAwBgY2Mj6cPpjI0QAvn5+cjIyICjoyPMzQ3rrgMiIno8X0RexIW0HDjZyvHpIGkf3PowGIiqQPlDZMtDET06R0dHXT8SEZFxO5aYhR/3XwEARAxsCVd7hcQVPRgDURWQyWTw9PSEm5sbSkpKpC7H6FhaWvLMEBFRLZFTWIJpv8VACOCltt4Ia24c/7PLQFSFzM3N+cVOREQm7aMt53D9dgG861hjVr9mUpfz0DiomoiIiKrEjrg0rI++DpkM+GJwEOytjOdGGQYiIiIiemKZOUWYuTEWADC+iz86+DlJXNGjYSAiIiKiJyKEwHu/n0FWXjECPOwx7bnGUpf0yBiIiIiI6In8ejwZuy9kQG5uhq+GBkFhYXzjaRmIiIiI6LFdu5WHeVvPAQDeCWuMAA8HiSt6PAxERERE9FhKNVpMXReD/GINgv2cMLaTYT649WEwEBEREdFj+WH/FZxMyoadwgL/GRwIczPDno36fhiIiIiI6JGdvaHCl5FlD26d+3xzeNexkbiiJ8NARERERI+ksESDqetiUKoV6NncAwPb1JW6pCfGQERERESPZMHf8UjIyIWLnQLzB7Y0+Ae3PgwGIiIiInpoBy/dxLKDiQCAhS+2gpOtXOKKqgYDERERET0UVUEJ3ll/GgAwIrgeugW4SVxR1WEgIiIioocy+4+zSFUVor6zDf6vT1Opy6lSDERERET0QFvPpGBzTArMZMAXQ4JgI7eQuqQqxUBERERE95WmKsT/bToLAJjUrSHa1KsjcUVVj4GIiIiI7kkIgekbTkNVUIKWdZWY3L2R1CVVCwYiIiIiuqdVR67hn4SbUFiY4cshgbA0r53RoXYeFRERET2xy5m5mL/tPABgZq8ANHSzl7ii6sNARERERBWUaLSYti4GhSVadG7kglEh9aUuqVoxEBEREVEF3+y5hNPXVXCwssDCFwNhZsQPbn0YDERERESkJyY5G9/svQQA+PiFlvBQWklcUfVjICIiIiKd/OJSTF0XA41W4PlALzwf6CV1STWCgYiIiIh0IrZdQOLNPHg4WGFe/xZSl1NjGIiIiIgIABAVn4FVR64BABa+1ApKG0uJK6o5DERERESErLxivLvhDABgzNP10bmRq8QV1SwGIiIiIhOn1Qq8/VsMMnKK0MDVFu/1CpC6pBrHQERERGTifvrnCvbGZ0JhYYZvhreBlaW51CXVOAYiIiIiExZ97TYW7ogHAMzu1xxNPR0krkgaDEREREQmKju/GG+uPYVSrUC/QC8M6+AjdUmSYSAiIiIyQUIIvLP+DG5kF6C+sw3mv9ACMlntno36fhiIiIiITNCyg1ex63w65OZl44bsrUznFvvKMBARERGZmNPJ2fh0e9lT7D/o2xQt6iolrkh6DEREREQmRFVQgvA1J1GiEejd0gMjn/KVuiSDwEBERERkIoQQeO/3M7h+uwA+Ttb4dFArkx43dCcGIiIiIhOx6sg1bD+bBktzGb4Z1gYOJj5u6E4MRERERCbg7A0VPt5aNm7ovV5NEejjKG1BBoaBiIiIqJbLKSwbN1Ss0eK5Zu54tWN9qUsyOAxEREREtZgQAjM3xuLarXzUdbTGwhc5bqgyDERERES12JpjSdh6JhUWZjIsHt4ajjZyqUsySAxEREREtdS5FDXmbjkHAHi3ZxO0qVdH4ooMFwMRERFRLZRXVIpJa06iuFSLZwPcMK6Tv9QlGTQGIiIiolpGCIEPNp/FlZt58FRa4T8vBcLMjOOG7oeBiIiIqJZZf+I6Np26AXMzGRYNa406thw39CAMRERERLXIxfQczPrzLABg2nON0b6+k8QVGQcGIiIioloiv7gUb6w+icISLbo0dsXErg2kLsloSBqIIiIi0L59e9jb28PNzQ0DBgxAfHy8XpvCwkKEh4fD2dkZdnZ2GDRoENLT0/XaJCUloU+fPrCxsYGbmxumT5+O0tJSvTZRUVFo06YNFAoFGjZsiBUrVlT34REREdWoWX/E4VJGLtzsFfhiMMcNPQpJA9G+ffsQHh6OI0eOIDIyEiUlJejRowfy8vJ0baZOnYotW7Zg/fr12LdvH1JSUjBw4EDdeo1Ggz59+qC4uBiHDh3CypUrsWLFCsyaNUvXJjExEX369EG3bt0QExODKVOmYNy4cdixY0eNHi8REVF1+T36OjZEX4eZDFg0rDVc7BRSl2RUZEIIIXUR5TIzM+Hm5oZ9+/ahS5cuUKlUcHV1xZo1a/Diiy8CAC5cuICmTZvi8OHDeOqpp7B9+3b07dsXKSkpcHd3BwB8//33mDFjBjIzMyGXyzFjxgz89ddfOHv2rO6zhg4diuzsbPz9998PrEutVkOpVEKlUsHBwaF6Dp6IiOgxXcrIxfPfHEB+sQbTnmuMN7s3krokg/Ao398GNYZIpVIBAJycygaARUdHo6SkBKGhobo2AQEBqFevHg4fPgwAOHz4MFq2bKkLQwAQFhYGtVqNuLg4XZs791HepnwfdysqKoJardZ7ERERGaLCEg0mrTmJ/GINnm7gjPBuDaUuySgZTCDSarWYMmUKOnbsiBYtWgAA0tLSIJfL4ejoqNfW3d0daWlpujZ3hqHy9eXr7tdGrVajoKCgQi0RERFQKpW6l4+PT5UcIxERUVWbuyUOF9Jy4GKnwFdDg2DOcUOPxWACUXh4OM6ePYtff/1V6lIwc+ZMqFQq3Ss5OVnqkoiIiCr4I+YG1h5LhkwGfD00CG72VlKXZLQspC4AACZNmoStW7di//798Pb21i338PBAcXExsrOz9c4Spaenw8PDQ9fm2LFjevsrvwvtzjZ335mWnp4OBwcHWFtbV6hHoVBAoeBgNCIiMlxXMnPx/sZYAMDkbg3RsaGLxBUZN0nPEAkhMGnSJGzatAl79uyBn5+f3vq2bdvC0tISu3fv1i2Lj49HUlISQkJCAAAhISGIjY1FRkaGrk1kZCQcHBzQrFkzXZs791HepnwfRERExqRs3NAp5BVrEOznhLdCG0tdktGT9AxReHg41qxZgz/++AP29va6MT9KpRLW1tZQKpUYO3Yspk2bBicnJzg4OGDy5MkICQnBU089BQDo0aMHmjVrhpEjR2LBggVIS0vDBx98gPDwcN1Zntdffx3ffPMN3n33Xbz66qvYs2cPfvvtN/z111+SHTsREdHj+uSv8ziXqoazrRyLhrXmuKEqIOlt9zJZ5T/A5cuXY8yYMQDKJmZ8++23sXbtWhQVFSEsLAzffvut7nIYAFy7dg0TJ05EVFQUbG1tMXr0aHz66aewsPhf3ouKisLUqVNx7tw5eHt748MPP9R9xoPwtnsiIjIU22JT8cbqkwCAla92QNfGrhJXZLge5fvboOYhMlQMREREZAiu3cpD30UHkFNUionPNMCMngFSl2TQjHYeIiIiIqpcUWnZuKGcolK0862Dt5/juKGqxEBERERkBCK2XUDsDRUcbSyxaFhrWJjzK7wqsTeJiIgM3N9n07Di0FUAwBeDA+HlWHHKGHoyDEREREQGLDkrH+9uOA0AGN/FH88GuD9gC3ocDEREREQGqrhUi8lrT0FdWIrW9RwxPayJ1CXVWgxEREREBmrhjguISc6Gg5UFFg1tDUuOG6o27FkiIiIDtPt8On76JxEAsPClQPg42UhcUe3GQERERGRgUrIL8Pb6snFDr3Ssj7DmHg/Ygp4UAxEREZEBKdGUjRvKzi9BK28lZvZqKnVJJoGBiIiIyIDM33Ye0dduw15hgW+GtYHcgl/VNYG9TEREZCA2RF/H8oNXAQCfDw5EPWeOG6opDEREREQG4HRyNt7fFAsAeKt7I44bqmEMRERERBLLyCnEhFXRKC7VIrSpO97q3kjqkkwOAxEREZGEiku1eOOXk0hTF6KBqy2+HBIIMzOZ1GWZHAYiIiIiCc3dEocT127D3soCP41qB3srS6lLMkkMRERERBJZczQJq48mQSYDFg1tDX9XO6lLMlkMRERERBKIvpaF2X+eBQC806MJugW4SVyRaWMgIiIiqmFpqkK8/stJlGgEerf0wBvPNJC6JJPHQERERFSDCks0mPBLNDJzihDgYY+FLwZCJuMgaqkxEBEREdUQIQQ+3HwWp5OzobS2xI8j28FWYSF1WQQGIiIiohrz38PXsD76OsxkwDfDW3MmagPCQERERFQDDl++hY+2ngMAzOzVFJ0buUpcEd2JgYiIiKia3cguQPiak9BoBQYEeWFcZz+pS6K7MBARERFVo4JiDcb/9wSy8orRoq4DPh3UioOoDRADERERUTURQmDmxjOIS1HD2VaOH0a2g5WludRlUSUYiIiIiKrJzwcSsTkmBeZmMiwZ0QZ1Ha2lLonugYGIiIioGhxIuIn5284DAGb1bYan/J0lrojuh4GIiIioiiXdysektSehFcBLbb0xKsRX6pLoARiIiIiIqlBeUSnGrzqB7PwSBPo4Yt6AFhxEbQQYiIiIiKqIEALTN5zGhbQcuNor8MPLbTmI2kgwEBEREVWRb6MuY1tsGizNZfj+5TbwUFpJXRI9JAYiIiKiKrD3QgY+3xkPAPiofwu09XWSuCJ6FAxERERET+hKZi7e/PUUhABGBNfDsA71pC6JHhEDERER0RPIKSzB+FXRyCksRTvfOpjdr7nUJdFjYCAiIiJ6TFqtwNR1p3EpIxceDlb49uU2kFvwq9UY8adGRET0mL7enYBd59MhtzDDDyPbws2eg6iNFQMRERHRY9gRl4avdycAAOa/0BKBPo7SFkRPhIGIiIjoESWk52DauhgAwCsd6+PFtt7SFkRPjIGIiIjoEagKSvDaf08gr1iDEH9nvN+7qdQlURVgICIiInpIGq3AW7+ewtVb+ajraI1vhreGpTm/SmsD/hSJiIge0n92xiMqPhNWlmWDqJ3tFFKXRFWEgYiIiOghbD2Tgm+jLgMAPhvUCi3qKiWuiKoSAxEREdEDnEtRY/r6MwCACV380T+orsQVUVVjICIiIrqP23nFGL/qBApKNOjcyAXv9gyQuiSqBgxERERE91Cq0WLS2pO4frsAvs42WDysNczNZFKXRdWAgYiIiOgePt1+AQcv3YKN3Bw/jmwHRxu51CVRNWEgIiIiqsRvJ5Kx9EAiAOCLwYFo4mEvcUVUnRiIiIiI7rL/Yibe3xgLAHjz2Ybo2cJT4oqoujEQERER3eFcihpvrD6JUq3AC63rYupzjaUuiWoAAxEREdG/UlUFeHXFceQWlSLE3xmfDWoFmYyDqE0BAxEREREAdWEJxiw7jjR1IRq52eH7kW0ht+DXpKngT5qIiExecakWE3+JRnx6DtzsFVjxagcorS2lLotqEAMRERGZNCEE3tt4Rnd7/bIx7VHX0VrqsqiGMRAREZFJ+3JXAjaevAFzMxmWjGjDZ5SZKAYiIiIyWb8dT8ai3QkAgI8HtEC3Jm4SV0RSYSAiIiKTtO9iJmZuKptraFK3hhjWoZ7EFZGUJA1E+/fvR79+/eDl5QWZTIbNmzfrrR8zZgxkMpneq2fPnnptsrKyMGLECDg4OMDR0RFjx45Fbm6uXpszZ86gc+fOsLKygo+PDxYsWFDdh0ZERAYsLkWFN36JhubfuYbe7sG5hkydpIEoLy8PgYGBWLJkyT3b9OzZE6mpqbrX2rVr9daPGDECcXFxiIyMxNatW7F//36MHz9et16tVqNHjx7w9fVFdHQ0Fi5ciDlz5uDHH3+stuMiIiLDlZJdNtdQXrGGcw2RjoWUH96rVy/06tXrvm0UCgU8PDwqXXf+/Hn8/fffOH78ONq1awcAWLx4MXr37o3PP/8cXl5eWL16NYqLi7Fs2TLI5XI0b94cMTEx+OKLL/SCExER1X7qwhK8svw40tVFaOzOuYbofwz+tyAqKgpubm5o0qQJJk6ciFu3bunWHT58GI6OjrowBAChoaEwMzPD0aNHdW26dOkCufx/TygOCwtDfHw8bt++XelnFhUVQa1W672IiMi43T3X0PJXONcQ/Y9BB6KePXviv//9L3bv3o3PPvsM+/btQ69evaDRaAAAaWlpcHPTvyPAwsICTk5OSEtL07Vxd3fXa1P+vrzN3SIiIqBUKnUvHx+fqj40IiKqQXfONWTLuYaoEpJeMnuQoUOH6v7csmVLtGrVCg0aNEBUVBS6d+9ebZ87c+ZMTJs2TfderVYzFBERGTHONUQPYtBniO7m7+8PFxcXXLp0CQDg4eGBjIwMvTalpaXIysrSjTvy8PBAenq6Xpvy9/cam6RQKODg4KD3IiIi43TnXEOfDGiBZzjXEFXCqALR9evXcevWLXh6egIAQkJCkJ2djejoaF2bPXv2QKvVIjg4WNdm//79KCkp0bWJjIxEkyZNUKdOnZo9ACIiqlF3zjU0+dmGGMq5hugeJA1Eubm5iImJQUxMDAAgMTERMTExSEpKQm5uLqZPn44jR47g6tWr2L17N/r374+GDRsiLCwMANC0aVP07NkTr732Go4dO4aDBw9i0qRJGDp0KLy8vAAAw4cPh1wux9ixYxEXF4d169bh66+/1rskRkREtc+dcw0NbF0X057jXEN0bzIhhJDqw6OiotCtW7cKy0ePHo3vvvsOAwYMwKlTp5CdnQ0vLy/06NED8+bN0xsknZWVhUmTJmHLli0wMzPDoEGDsGjRItjZ2enanDlzBuHh4Th+/DhcXFwwefJkzJgx46HrVKvVUCqVUKlUvHxGRGQEUrIL8MK3B5GuLkKIvzNWvtqBt9eboEf5/pY0EBkLBiIiIuOhLizBS98dRnx6Dhq722H960/z9noT9Sjf34zLRERUa3CuIXpcDERERFQrCCHw3u+ca4geDwMRERHVCl9GXsTGU5xriB4PAxERERm9dceTsGhP2Rx1nGuIHgcDERERGbV9FzPx/qazADjXED0+BiIiIjJanGuIqgoDERERGaUb2QV4Zflx5BVrEOLvjE8HtYJMJpO6LDJSDERERGR0VAUleGX5MWTkFKGxux2+H9mWEy/SE+FvDxERGZXyuYYupudyriGqMgxERERkNMrnGjp0mXMNUdViICIiIqPBuYaoujAQERGRUeBcQ1SdGIiIiMjgca4hqm4MREREZNDO3uBcQ1T9GIiIiMhgxaflYOTPRznXEFU7BiIiIjJIVzJzMWLpUdzOL0GgjyN+HMW5hqj68DeLiIgMTnJWPkYsPYqbuUVo6umAla+0h70V5xqi6sNAREREBiVNVYjhS48gVVWIBq62WDW2Axxt5FKXRbUcAxERERmMm7lFGLH0CJKzClDPyQarxz0FFzuF1GWRCWAgIiIig5CdX4yXlx7F5cw8eCmtsHpcMDyUVlKXRSaCgYiIiCSXU1iC0cuO4UJaDlztFVj92lPwcbKRuiwyIQxEREQkqfziUry64jhOX1ehjo0lVo8Lhp+LrdRlkYlhICIiIskUlmgw/r/ROH71NuytLLBqbDAau9tLXRaZIAYiIiKSRHGpFuGrT+LApZuwkZtjxSsd+LBWkswjB6LRo0dj//791VELERGZiFKNFlPXxWD3hQwoLMzw8+j2aOtbR+qyyIQ9ciBSqVQIDQ1Fo0aNMH/+fNy4caM66iIiolpKqxV4d8MZ/BWbCktzGX4Y2RYhDZylLotM3CMHos2bN+PGjRuYOHEi1q1bh/r166NXr17YsGEDSkpKqqNGIiKqJYQQ+OCPs9h46gbMzWT4ZngbPNPETeqyiB5vDJGrqyumTZuG06dP4+jRo2jYsCFGjhwJLy8vTJ06FQkJCVVdJxERGTkhBD7+6zzWHE2CTAZ8MTgQYc09pC6LCMATDqpOTU1FZGQkIiMjYW5ujt69eyM2NhbNmjXDl19+WVU1EhFRLfBF5EX8fCARAPDZwFboH1RX4oqI/ueRA1FJSQl+//139O3bF76+vli/fj2mTJmClJQUrFy5Ert27cJvv/2Gjz76qDrqJSIiI7Rk7yUs3nMJADD3+eYY3N5H4oqI9Fk86gaenp7QarUYNmwYjh07hqCgoAptunXrBkdHxyooj4iIjN2yA4lYuCMeAPBerwCMfrq+tAURVeKRA9GXX36Jl156CVZW936+jKOjIxITE5+oMCIiMn5rjyXho63nAABvdm+E17s2kLgioso9ciAaOXJkddRBRES1zKZT1/H+plgAwPgu/pga2kjiiojujTNVExFRlfv7bCreWX8GQgAjn/LFzF4BkMlkUpdFdE8MREREVKX2XsjA5LWnoNEKvNjWG3Ofb84wRAaPgYiIiKrMoUs3MeGXaJRoBPq28sRng1rBzIxhiAwfAxEREVWJE1ezMO6/J1BcqkVoU3d8OSQI5gxDZCQYiIiI6ImduZ6NV5YfR36xBp0bueCb4a1hac6vGDIe/G0lIqInciFNjVHLjiGnqBQd/Jzw48h2sLI0l7osokfCQERERI/tcmYuXl56DNn5JQjyccSyMe1hLWcYIuPDQERERI8lOSsfI346ipu5RWjm6YCVr3SAneKRp7cjMggMRERE9MhSVQUYvvQI0tSFaOhmh1VjO0BpYyl1WUSPjYGIiIgeSWZOEUb8dBTJWQXwdbbB6nHBcLZTSF0W0RNhICIiood2O68YI38+iis38+CltMLqccFwd7j3sy2JjAUDERERPRR1YQlGLz+GC2k5cLNXYM1rT8G7jo3UZRFVCY5+IyKiB8rKK8aoZUdx9oYaTrZyrB4XjPoutlKXRVRlGIiIiOi+0tWFeHnpUSRk5MLJVo5VYzugkbu91GURVSkGIiIiuqfkrHyMWHoUSVn58HCwwi/jgtHQzU7qsoiqHAMRERFVKiE9By//fBTp6iLUcyq7m8zHiWOGqHZiICIiogrO3lBh1LJjyMorRiM3O/zCu8molmMgIiIiPcevZuHV5ceRU1SKVt5KrHilA5xs5VKXRVStGIiIiEhn/8VMjF91AoUlWnTwc8LPo9vB3oozUFPtx0BEREQAgL/PpuLNtTEo1mjRtbErvn+5LR/USiaDgYiIiPB79HVM33AaWgH0bumBr4a0htyCc/eS6WAgIiIycf89fBWz/ogDALzU1hsRA1vCwpxhiEwLAxERkQlbsvcSFu6IBwCMebo+ZvVtBjMzmcRVEdU8Sf8XYP/+/ejXrx+8vLwgk8mwefNmvfVCCMyaNQuenp6wtrZGaGgoEhIS9NpkZWVhxIgRcHBwgKOjI8aOHYvc3Fy9NmfOnEHnzp1hZWUFHx8fLFiwoLoPjYjIoAkh8NnfF3Rh6M1nG2J2P4YhMl2SBqK8vDwEBgZiyZIlla5fsGABFi1ahO+//x5Hjx6Fra0twsLCUFhYqGszYsQIxMXFITIyElu3bsX+/fsxfvx43Xq1Wo0ePXrA19cX0dHRWLhwIebMmYMff/yx2o+PiMgQabUCs/6Iw3dRlwEAM3sFYFqPJpDJGIbIhAkDAUBs2rRJ916r1QoPDw+xcOFC3bLs7GyhUCjE2rVrhRBCnDt3TgAQx48f17XZvn27kMlk4saNG0IIIb799ltRp04dUVRUpGszY8YM0aRJk4euTaVSCQBCpVI97uERERmEklKNmPrrKeE7Y6uo/95W8cuRq1KXRFRtHuX722BHzSUmJiItLQ2hoaG6ZUqlEsHBwTh8+DAA4PDhw3B0dES7du10bUJDQ2FmZoajR4/q2nTp0gVy+f8mFQsLC0N8fDxu375dQ0dDRCS9olINwtecxMZTN2BuJsNXQ4IwIthX6rKIDILBDqpOS0sDALi7u+std3d3161LS0uDm5ub3noLCws4OTnptfHz86uwj/J1derUqfDZRUVFKCoq0r1Xq9VPeDRERNLKLy7FhFXR+CfhJuQWZlgyvA2ea+b+4A2JTITBniGSUkREBJRKpe7l4+MjdUlERI9NVVCCUT8fwz8JN2EjN8fyMe0ZhojuYrCByMPDAwCQnp6utzw9PV23zsPDAxkZGXrrS0tLkZWVpdemsn3c+Rl3mzlzJlQqle6VnJz85AdERCSBW7lFGP7TEZy4dhsOVhZYNTYYHRu6SF0WkcEx2EDk5+cHDw8P7N69W7dMrVbj6NGjCAkJAQCEhIQgOzsb0dHRujZ79uyBVqtFcHCwrs3+/ftRUlKiaxMZGYkmTZpUerkMABQKBRwcHPReRETGJlVVgME/HEZcihoudnL8Oj4EbX0r/3ePyNRJGohyc3MRExODmJgYAGUDqWNiYpCUlASZTIYpU6bg448/xp9//onY2FiMGjUKXl5eGDBgAACgadOm6NmzJ1577TUcO3YMBw8exKRJkzB06FB4eXkBAIYPHw65XI6xY8ciLi4O69atw9dff41p06ZJdNRERNXv2q08vPT9YVzOzIOn0grrJoSgmRf/547oXmRCCCHVh0dFRaFbt24Vlo8ePRorVqyAEAKzZ8/Gjz/+iOzsbHTq1AnffvstGjdurGublZWFSZMmYcuWLTAzM8OgQYOwaNEi2NnZ6dqcOXMG4eHhOH78OFxcXDB58mTMmDHjoetUq9VQKpVQqVQ8W0REBu9ieg5eXnoUGTlFqO9sg1/GBcO7jo3UZRHVuEf5/pY0EBkLBiIiMhax11UYtewobueXoIm7PVaN6wA3eyupyyKSxKN8fxvsbfdERPRojl65hbErTyC3qBSBPo5Y+Up7ONrIH7whETEQERHVBlHxGZiwKhpFpVo85e+EpaPbw07Bf+KJHhb/thARGbltsal469dTKNEIPBvghm9HtIGVpbnUZREZFQYiIiIjtv5EMmb8fgZaAfRt5YkvBgdBbmGwM6oQGSwGIiIiI7XiYCLmbDkHABja3gefvNAS5mZ8Yj3R42AgIiIyMkIILNl7CZ/vvAgAGNvJDx/0aQqZjGGI6HExEBERGZFSjRYf/3UeKw5dBQBMCW2Et7o3YhgiekIMRERERiKnsAST155CVHwmAOCDPk0xrrO/xFUR1Q4MRERERiA5Kx/jVp5AfHoOrCzN8OXgIPRq6Sl1WUS1BgMREZGBi752GxNWncDN3GK42SuwdHQ7tPJ2lLosolqFgYiIyID9EXMD0zecQXGpFs08HfDzmHbwVFpLXRZRrcNARERkgIQQ+GpXAr7enQAACG3qjq+HBsGWs08TVQv+zSIiMjCFJRpM33AGW06nAAAmdPHHuz0DOMcQUTViICIiMiCZOUUYv+oETiVlw8JMhk9eaIEh7etJXRZRrcdARERkIC6kqTF2xQncyC6A0toS37/cFiENnKUui8gkMBARERmAvRcyMGnNSeQVa+DnYotlY9rDz8VW6rKITAYDERGRhIQQWHHoKuZtPQetAEL8nfHdy23gaCOXujQik8JAREQkkRKNFnP+jMPqo0kAgCHtfDBvQAs+rZ5IAgxEREQSUBWUYNKak/gn4SZkMuD9Xk0xrrMfn0lGJBEGIiKiGnbtVh5eXXEclzPzYG1pjq+HBqFHcw+pyyIyaQxEREQ16FhiFiasOoHb+SXwcLDC0tHt0KKuUuqyiEweAxERUQ35Pfo63tt4BiUagVbeSvw0qh3cHaykLouIwEBERFTttFqB/0TGY8neywCA3i098J+XgmAtN5e4MiIqx0BERFSNCoo1mPZbDLafTQMATOrWENOeawwzPoaDyKAwEBERVZN0dSFe++8JnLmugqW5DJ8ObIVBbb2lLouIKsFARERUDc7eUGHcyhNIUxeijo0lfhjZDh38nKQui4jugYGIiKiK7YxLw1u/xqCgRIMGrmWP4fB15mM4iAwZAxERURURQuCnf64gYvsFCAF0buSCb4a3gdLaUurSiOgBGIiIiKpAcakWH24+i3UnkgEAI4LrYc7zzWFpzsdwEBkDBiIioieUnV+M13+JxpErWTCTAR/2bYYxT9fnYziIjAgDERHRE7iSmYuxK08g8WYe7BQWWDysNboFuEldFhE9IgYiIqLH9E9CJiatOQVVQQnqOlrj5zHtEODhIHVZRPQYGIiIiB5RqUaLr3YlYEnUJQgBtK7niB9HtoOrvULq0ojoMTEQERE9glRVAd5aG4NjV7MAAMOD62FW32awsuRjOIiMGQMREdFD2hufgWnrYnA7vwR2CgvMH9gSzwd6SV0WEVUBBiIiogco0Wjx+c54/LDvCgCguZcDvhneBn4unGyRqLZgICIiuo8b2QWYvOYkTiZlAwBGhfji/d5NeYmMqJZhICIiuofIc+l4Z/1pqApKYG9lgQWDWqFXS0+pyyKiasBARER0l+JSLT77+wJ+PpAIAAj0VmLxsDao52wjcWVEVF0YiIiI7pCclY9Ja0/hdHI2AODVjn54r1cA5BZ8BAdRbcZARET0r7/PpmL6hjPIKSyFg5UFPn8pED2ae0hdFhHVAAYiIjJ5RaUazP/rPFYevgagbKLFxcNaw7sOL5ERmQoGIiIyaVdv5mHS2pM4e0MNAJjQxR/vhDXhU+qJTAwDERGZrK1nUvDe77HILSpFHRtL/GdwIJ4NcJe6LCKSAAMREZmcwhINPtp6DmuOJgEA2tevg0XDWsNTaS1xZUQkFQYiIjIplzNzEb76JC6k5UAmA954pgGmhjaGBS+REZk0BiIiMhmbT93A+5tikV+sgbOtHF8OCUKXxq5Sl0VEBoCBiIhqvYJiDeb8GYd1J5IBAE/5O+Hroa3h7mAlcWVEZCgYiIioVktIz0H4mpO4mJ4LmQx489lGeLN7I5ibyaQujYgMCAMREdVa608kY9YfcSgo0cDVXoGvhwTh6YYuUpdFRAaIgYiIap28olJ8+MdZbDx5AwDQqaELvhwSBFd7hcSVEZGhYiAiolrlQpoa4atP4nJmHsxkwLTnGmPiMw15iYyI7ouBiIhqBSEEfj2ejDl/xqGoVAt3BwUWDW2NYH9nqUsjIiPAQERERi+nsAT/t+ks/jydAgDo2tgVXwwOhLMdL5ER0cNhICIio7Y3PgP/tzEWKapCmJvJMD2sCcZ39ocZL5ER0SNgICIio5SVV4yPtsRhc0zZWSEfJ2t8NSQIbX2dJK6MiIyRQc9VP2fOHMhkMr1XQECAbn1hYSHCw8Ph7OwMOzs7DBo0COnp6Xr7SEpKQp8+fWBjYwM3NzdMnz4dpaWlNX0oRFRFhBD4I+YGQr/Yh80xKTCTAeM6+WHHlC4MQ0T02Az+DFHz5s2xa9cu3XsLi/+VPHXqVPz1119Yv349lEolJk2ahIEDB+LgwYMAAI1Ggz59+sDDwwOHDh1CamoqRo0aBUtLS8yfP7/Gj4WInkxKdgE+2HwWey5kAACauNvjsxdbIcjHUdrCiMjoGXwgsrCwgIeHR4XlKpUKP//8M9asWYNnn30WALB8+XI0bdoUR44cwVNPPYWdO3fi3Llz2LVrF9zd3REUFIR58+ZhxowZmDNnDuRyeU0fDhE9Bq1WYPWxJHy2/QJyi0phaS7D5Gcb4fWuDSC3MOgT3URkJAz+X5KEhAR4eXnB398fI0aMQFJSEgAgOjoaJSUlCA0N1bUNCAhAvXr1cPjwYQDA4cOH0bJlS7i7u+vahIWFQa1WIy4urmYPhIgey+XMXAz98Qg+3HwWuUWlaFPPEdve7Iw3uzdiGCKiKmPQZ4iCg4OxYsUKNGnSBKmpqZg7dy46d+6Ms2fPIi0tDXK5HI6OjnrbuLu7Iy0tDQCQlpamF4bK15evu5eioiIUFRXp3qvV6io6IiJ6WCUaLX7cfwVf705AcakWNnJzvBvWBCND6nOSRSKqcgYdiHr16qX7c6tWrRAcHAxfX1/89ttvsLa2rrbPjYiIwNy5c6tt/0R0f7HXVXj39zM4n1r2PyNdGrti/gst4F3HRuLKiKi2MqrzzY6OjmjcuDEuXboEDw8PFBcXIzs7W69Nenq6bsyRh4dHhbvOyt9XNi6p3MyZM6FSqXSv5OTkqj0QIqpUQbEGEdvOY8C3B3E+VQ1HG0t8MTgQK19pzzBERNXKqAJRbm4uLl++DE9PT7Rt2xaWlpbYvXu3bn18fDySkpIQEhICAAgJCUFsbCwyMjJ0bSIjI+Hg4IBmzZrd83MUCgUcHBz0XkRUvQ5fvoVeX+/HD/uvQKMV6NvKE7umdcXANt6QyXiJjIiql0FfMnvnnXfQr18/+Pr6IiUlBbNnz4a5uTmGDRsGpVKJsWPHYtq0aXBycoKDgwMmT56MkJAQPPXUUwCAHj16oFmzZhg5ciQWLFiAtLQ0fPDBBwgPD4dCwSn9iQyBurAEEdsuYO2xshsmPBysMG9ACzzXzP0BWxIRVR2DDkTXr1/HsGHDcOvWLbi6uqJTp044cuQIXF1dAQBffvklzMzMMGjQIBQVFSEsLAzffvutbntzc3Ns3boVEydOREhICGxtbTF69Gh89NFHUh0SEd1hZ1waPvzjLNLVZTcxDA+uh/d6BcDBylLiyojI1MiEEELqIgydWq2GUqmESqXi5TOiKpCZU4Q5W+Lw15lUAICfiy0iBrbEU3wyPRFVoUf5/jboM0REVLsIIfD7yRuYt/UcVAUlMDeT4bXO/pgS2ghWluZSl0dEJoyBiIhqRHJWPt7fFIt/Em4CAJp7OeCzQa3Qoq5S4sqIiBiIiKiaabQCKw9dxec745FfrIHcwgxTQxtjXGc/WJob1Y2uRFSLMRARUbW5mJ6DdzecQUxyNgCgg58TPh3YEv6udtIWRkR0FwYiIqpyxaVafBt1CUv2XkKJRsBOYYGZvQMwrH09mPGxG0RkgBiIiKhKnUq6jRm/n8HF9FwAQPcAN3z8Qgt4KqvvcTtERE+KgYiIqkRmThG+2nURa44lQQjA2VaO2c83R79WnpxpmogMHgMRET2RvKJSLP0nET/uv4y8Yg0AYGDruviwbzPUsZVLXB0R0cNhICKix1Kq0eK3E9fx5a6LyMwpm2k60FuJmb2bcoJFIjI6DERE9EiEEIg8l47P/r6Ay5l5AIB6TjZ4t2cT9GnJy2NEZJwYiIjooZ1Muo2Ibedx/OptAEAdG0u82b0RRgT7Qm7BOYWIyHgxEBHRAyXezMPCHRewLTYNAKCwMMPYTn54/ZkGfBArEdUKDEREdE83c4uweHcCVh9NQqlWQCYDXmzjjWk9GvM2eiKqVRiIiKiCgmINfj5wBd/vu4LcolIAQLcmrpjRKwABHvd/YjQRkTFiICIiHY1WYEN0Mr6IvIh0ddmdYy3qOuD9Xk3xdEMXiasjIqo+DEREBCEE9sZn4NPtF3QzTHvXscb0sCbo18qLj9sgolqPgYjIxJ1OzkbE9vM4ciULAKC0tsTkZxtiZIgvFBbmEldHRFQzGIiITNS1W3lYuCMeW8+kAgDkFmZ4pWN9vNG1IZQ2vHOMiEwLAxGRicnKK8biPQn45cg1lGjK7hwb2LrszrG6jrxzjIhMEwMRkYkoLNFg2cFEfLf3MnL+vXOsS2NXvNczAM28eOcYEZk2BiKiWk6jFdh48jq+iLyIVFUhAKCZpwNm9g5A50auEldHRGQYGIiIaikhBPZdzMSn2y/gQloOAKCuozXeCWuM/oF1eecYEdEdGIiIaqGTSbfxn53xOHjpFgDAwcoCk55tiFEh9WFlyTvHiIjuxkBEVEtotAI749Kw9EAioq+VPXxVbm6G0U/7IrxbQzjayCWukIjIcDEQERm53KJSrD+RjGUHE5GcVQCgLAj1D/LCm90bwcfJRuIKiYgMHwMRkZFKVRVgxaGrWHM0CTmFZXeN1bGxxMtP+WJkiC/c7K0krpCIyHgwEBEZmbM3VPjpnyv460wqSrUCAODvYotXO/lhUBtvWMs5RoiI6FExEBEZAa1WYM+FDCw9cEX3iA0AeMrfCeM6+ePZADfeNUZE9AQYiIgMWEGxBr+fvI5lBxJx5WYeAMDCTIa+rTwxtpM/WnorJa6QiKh2YCAiMkAZOYX476Fr+OXoNWTnlwAA7K0sMDy4HsY8XR+eSj5ig4ioKjEQERmQC2lqLP0nEX/GpKBYowUA+DhZ49WOfnipnQ/sFPwrS0RUHfivK5HEhBDYn3ATS/+5gn8SbuqWt6nniNc6+6NHcw+Yc3wQEVG1YiAikkhhiQZ/xNzAzwcScTE9FwBgJgN6tfDEq5380Na3jsQVEhGZDgYiohp2K7cIvxxJwqojV3EztxgAYCs3x5D29fBKx/qcSJGISAIMREQ15FJGLn4+kIiNJ6+jqLRsfJCn0gqvdKyPIe3rQWltKXGFRESmi4GIqBoJIXD4yi0s/ScRey5k6Ja3rKvEuM5+6N3SE5bmZhJWSEREAAMRUbVIvJmHP2NS8OfpG7icWTZ/kEwGdA9wx2ud/dDBzwkyGQdKExEZCgYioiqSqirA1tOp+PN0CmJvqHTLrSzN8GJbb7za0Q/+rnYSVkhERPfCQET0BLLyirEttiwEHb+aBVH2aDGYm8nQsaELng/0Qo/m7nCw4vggIiJDxkBE9Ihyi0oReS4Nf8ak4J+Em7oHrAJA+/p18HygF3q19ISLnULCKomI6FEwEBE9hMISDaLiM7HldAp2nU/X3SUGAM29HPB8oBf6BnqhriMfqUFEZIwYiIjuoVSjxaHLt/Dn6RTsOJuGnKJS3Tp/F1v0C/RCv0AvNHTjuCAiImPHQER0B61W4GTSbfx5OgXbYlN1EycCZXMG9Qv0wvOBXmju5cC7xIiIahEGIjJ5QgicS1Xjz9Mp2Ho6FTeyC3TrnGzl6N3SA88H1kU73zow4zPFiIhqJQYiMlmVzRUEAHYKC/Ro7o7nA73QsaELJ04kIjIBDERkUu41V5DcwgzPNnFD/yAvdAtwg5WluYRVEhFRTWMgolpNqxU4n6bGkStZ2BmXhmN3zRXU6d+5gp7jXEFERCaNgYhqFY1W4HyqGkeu3MKRK1k4lngL6sJSvTYd6juhX5AXerfwgDPnCiIiIjAQkZEr1WhxLlWNo1eycOTKLRy7moWcuwKQncIC7erXQccGLujdypNzBRERUQUMRGRUSjVaxKWUnQE6mpiF44lZevMDAYC9wgLt/ZwQ7OeEp/yd0dzLARYcGE1ERPfBQEQGrUSjxdkbKhxNLDsDdOLqbeTeHYCsLBDs54RgP2c85e+MZl4OMOft8URE9AgYiMiglGi0OHNdhaOJZWOAoq9mIa9Yo9fGwcoCHfyc8ZR/2Rmgpp4MQERE9GQYiEhSxaVaxN7IxpF/xwBFX7uN/LsCkNLasuwMkH9ZCArwYAAiIqKqxUBENaqwRIPYGyocuVw2BujEtSwUlmj12tSxsUSHf8f/BPs5I8DDnjNEExFRtWIgoiqn0QqkZBfgys08JGbmIvFmXtmfb+bhRnaBbh6gck628n/HADnhqQbOaOzGAERERDWLgYgeixACt/KKkXgzD4mZ5YGnLPxcvZWP4lLtPbd1tpUj+N/xP0/5O6Ohqx0DEBERSYqBiO4rr6i0LPTc8So/83P3hId3kpubwdfZBn4utvBztUUDFzv4udrCz8UWzrZyPimeiIgMikkFoiVLlmDhwoVIS0tDYGAgFi9ejA4dOkhdluRKNFokZ+XfFXjycOVmLtLVRffcTiYDvJTW8P836Pi52MLf1Q7+LrbwcrTmwGciIjIaJhOI1q1bh2nTpuH7779HcHAwvvrqK4SFhSE+Ph5ubm5Sl/fEhBDIL9Ygr6gUef/+N7eoFPnFpcgt+nd5USnyijTIKy5bl64qROLNPCRl5aNUK+65bydbuS7w+LnYooGrLfxc7ODrbMOHoBIRUa0gE+LuIa61U3BwMNq3b49vvvkGAKDVauHj44PJkyfjvffeu++2arUaSqUSKpUKDg4OVVaTRitwM7cIuXeGlaJS5BX/78+6dcV3hJq71ucXl4WcJ/lJWlmawc+l7OzO/872lP3X0UZeZcdMRERUUx7l+9skzhAVFxcjOjoaM2fO1C0zMzNDaGgoDh8+XKF9UVERior+d6lIrVZXS12pqgJ0+mxvle5TJgNs5RawVZjDVmEBO4UFbOTmsFNYwLb8JS9b52yngP+/wcfd3ooDm4mIyGSZRCC6efMmNBoN3N3d9Za7u7vjwoULFdpHRERg7ty51V6XncICZjL8G1LKQkx5cLGRW8BOL9Tor7dVmP+7zb/r/11nbWnOActERESPyCQC0aOaOXMmpk2bpnuvVqvh4+NT5Z+jtLbE5fm9GWCIiIgkZhKByMXFBebm5khPT9dbnp6eDg8PjwrtFQoFFApFtdfFIERERGQYzKQuoCbI5XK0bdsWu3fv1i3TarXYvXs3QkJCJKyMiIiIDIFJnCECgGnTpmH06NFo164dOnTogK+++gp5eXl45ZVXpC6NiIiIJGYygWjIkCHIzMzErFmzkJaWhqCgIPz9998VBloTERGR6TGZeYieRHXNQ0RERETV51G+v01iDBERERHR/TAQERERkcljICIiIiKTx0BEREREJo+BiIiIiEweAxERERGZPAYiIiIiMnkMRERERGTyGIiIiIjI5JnMozueRPlk3mq1WuJKiIiI6GGVf28/zEM5GIgeQk5ODgDAx8dH4kqIiIjoUeXk5ECpVN63DZ9l9hC0Wi1SUlJgb28PmUxWpftWq9Xw8fFBcnIyn5NWjdjPNYP9XDPYzzWHfV0zqqufhRDIycmBl5cXzMzuP0qIZ4gegpmZGby9vav1MxwcHPiXrQawn2sG+7lmsJ9rDvu6ZlRHPz/ozFA5DqomIiIik8dARERERCaPgUhiCoUCs2fPhkKhkLqUWo39XDPYzzWD/Vxz2Nc1wxD6mYOqiYiIyOTxDBERERGZPAYiIiIiMnkMRERERGTyGIiIiIjI5DEQSWjJkiWoX78+rKysEBwcjGPHjkldktHbv38/+vXrBy8vL8hkMmzevFlvvRACs2bNgqenJ6ytrREaGoqEhARpijViERERaN++Pezt7eHm5oYBAwYgPj5er01hYSHCw8Ph7OwMOzs7DBo0COnp6RJVbJy+++47tGrVSjdZXUhICLZv365bzz6uHp9++ilkMhmmTJmiW8a+fnJz5syBTCbTewUEBOjWS93HDEQSWbduHaZNm4bZs2fj5MmTCAwMRFhYGDIyMqQuzajl5eUhMDAQS5YsqXT9ggULsGjRInz//fc4evQobG1tERYWhsLCwhqu1Ljt27cP4eHhOHLkCCIjI1FSUoIePXogLy9P12bq1KnYsmUL1q9fj3379iElJQUDBw6UsGrj4+3tjU8//RTR0dE4ceIEnn32WfTv3x9xcXEA2MfV4fjx4/jhhx/QqlUrveXs66rRvHlzpKam6l4HDhzQrZO8jwVJokOHDiI8PFz3XqPRCC8vLxERESFhVbULALFp0ybde61WKzw8PMTChQt1y7Kzs4VCoRBr166VoMLaIyMjQwAQ+/btE0KU9aulpaVYv369rs358+cFAHH48GGpyqwV6tSpI5YuXco+rgY5OTmiUaNGIjIyUnTt2lW89dZbQgj+PleV2bNni8DAwErXGUIf8wyRBIqLixEdHY3Q0FDdMjMzM4SGhuLw4cMSVla7JSYmIi0tTa/flUolgoOD2e9PSKVSAQCcnJwAANHR0SgpKdHr64CAANSrV499/Zg0Gg1+/fVX5OXlISQkhH1cDcLDw9GnTx+9PgX4+1yVEhIS4OXlBX9/f4wYMQJJSUkADKOP+XBXCdy8eRMajQbu7u56y93d3XHhwgWJqqr90tLSAKDSfi9fR49Oq9ViypQp6NixI1q0aAGgrK/lcjkcHR312rKvH11sbCxCQkJQWFgIOzs7bNq0Cc2aNUNMTAz7uAr9+uuvOHnyJI4fP15hHX+fq0ZwcDBWrFiBJk2aIDU1FXPnzkXnzp1x9uxZg+hjBiIieiLh4eE4e/as3lgAqjpNmjRBTEwMVCoVNmzYgNGjR2Pfvn1Sl1WrJCcn46233kJkZCSsrKykLqfW6tWrl+7PrVq1QnBwMHx9ffHbb7/B2tpawsrK8JKZBFxcXGBubl5h9Hx6ejo8PDwkqqr2K+9b9nvVmTRpErZu3Yq9e/fC29tbt9zDwwPFxcXIzs7Wa8++fnRyuRwNGzZE27ZtERERgcDAQHz99dfs4yoUHR2NjIwMtGnTBhYWFrCwsMC+ffuwaNEiWFhYwN3dnX1dDRwdHdG4cWNcunTJIH6fGYgkIJfL0bZtW+zevVu3TKvVYvfu3QgJCZGwstrNz88PHh4eev2uVqtx9OhR9vsjEkJg0qRJ2LRpE/bs2QM/Pz+99W3btoWlpaVeX8fHxyMpKYl9/YS0Wi2KiorYx1Woe/fuiI2NRUxMjO7Vrl07jBgxQvdn9nXVy83NxeXLl+Hp6WkYv881MnSbKvj111+FQqEQK1asEOfOnRPjx48Xjo6OIi0tTerSjFpOTo44deqUOHXqlAAgvvjiC3Hq1Clx7do1IYQQn376qXB0dBR//PGHOHPmjOjfv7/w8/MTBQUFElduXCZOnCiUSqWIiooSqampuld+fr6uzeuvvy7q1asn9uzZI06cOCFCQkJESEiIhFUbn/fee0/s27dPJCYmijNnzoj33ntPyGQysXPnTiEE+7g63XmXmRDs66rw9ttvi6ioKJGYmCgOHjwoQkNDhYuLi8jIyBBCSN/HDEQSWrx4sahXr56Qy+WiQ4cO4siRI1KXZPT27t0rAFR4jR49WghRduv9hx9+KNzd3YVCoRDdu3cX8fHx0hZthCrrYwBi+fLlujYFBQXijTfeEHXq1BE2NjbihRdeEKmpqdIVbYReffVV4evrK+RyuXB1dRXdu3fXhSEh2MfV6e5AxL5+ckOGDBGenp5CLpeLunXriiFDhohLly7p1kvdxzIhhKiZc1FEREREholjiIiIiMjkMRARERGRyWMgIiIiIpPHQEREREQmj4GIiIiITB4DEREREZk8BiIiIiIyeQxEREREZPIYiIiIiMjkMRARERGRyWMgIiKTlJmZCQ8PD8yfP1+37NChQ5DL5XpP3CYi08BnmRGRydq2bRsGDBiAQ4cOoUmTJggKCkL//v3xxRdfSF0aEdUwBiIiMmnh4eHYtWsX2rVrh9jYWBw/fhwKhULqsoiohjEQEZFJKygoQIsWLZCcnIzo6Gi0bNlS6pKISAIcQ0REJu3y5ctISUmBVqvF1atXpS6HiCTCM0REZLKKi4vRoUMHBAUFoUmTJvjqq68QGxsLNzc3qUsjohrGQEREJmv69OnYsGEDTp8+DTs7O3Tt2hVKpRJbt26VujQiqmG8ZEZEJikqKgpfffUVVq1aBQcHB5iZmWHVqlX4559/8N1330ldHhHVMJ4hIiIiIpPHM0RERERk8hiIiIiIyOQxEBEREZHJYyAiIiIik8dARERERCaPgYiIiIhMHgMRERERmTwGIiIiIjJ5DERERERk8hiIiIiIyOQxEBEREZHJYyAiIiIik/f/2+SdoecRKSgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVwhJREFUeJzt3XlYVGX/BvB7WGbYB9lBEMENV3AlcsskcU3Tcs2lNM3QUsvMfuWSJaW9LZqt5vKammlqaZriguauKIqoiIqCsioyw77MPL8/iHkdwR04M8z9ua65cs55zpnveUDn7pznPEcmhBAgIiIiMmFmUhdAREREJDUGIiIiIjJ5DERERERk8hiIiIiIyOQxEBEREZHJYyAiIiIik8dARERERCaPgYiIiIhMHgMRERERmTwGIiITUr9+ffTt27faP+fq1auQyWRYsWLFA9uOGTMG9evXr9LPr1+/PsaMGVOl+zQmpaWlePfdd+Hj4wMzMzMMGDAAACCTyTBnzhxJayMyVAxERBJbsWIFZDLZPV9HjhyRukQyMsuWLcPChQvx4osvYuXKlZg6darUJREZPAupCyCiMh999BH8/PwqLG/YsKEE1ZAx27NnD+rWrYsvv/xSb3lBQQEsLPjPPlFl+DeDyED06tUL7dq1k7oMqgUyMjLg6OhYYbmVlVXNFwMgLy8Ptra2knw20cPiJTMiI1E+Lufzzz/HkiVL4O/vDxsbG/To0QPJyckQQmDevHnw9vaGtbU1+vfvj6ysrEr3tXPnTgQFBcHKygrNmjXDxo0bK7TJzs7GlClT4OPjA4VCgYYNG+Kzzz6DVqut0G7MmDFQKpVwdHTE6NGjkZ2dXennbt68GS1atICVlRVatGiBTZs2VdpOq9Xiq6++QvPmzWFlZQV3d3dMmDABt2/f1msnhMDHH38Mb29v2NjYoFu3boiLi3uI3gRmz54NMzMz7N69W2/5+PHjIZfLcfr06Xtu26JFC3Tr1q3SuuvWrYsXX3xRt+zXX39F27ZtYW9vDwcHB7Rs2RJff/31PfcthED9+vXRv3//CusKCwuhVCoxYcKESrct/x3Zu3cv4uLidJddo6KiAFQ+higqKgrt2rWDlZUVGjRogB9++AFz5syBTCarsN/KxoTdvc/ybc+dO4fhw4ejTp066NSpk279L7/8grZt28La2hpOTk4YOnQokpOT79kfRDWFZ4iIDIRKpcLNmzf1lslkMjg7O+stW716NYqLizF58mRkZWVhwYIFGDx4MJ599llERUVhxowZuHTpEhYvXox33nkHy5Yt09s+ISEBQ4YMweuvv47Ro0dj+fLleOmll/D333/jueeeAwDk5+eja9euuHHjBiZMmIB69erh0KFDmDlzJlJTU/HVV18BKPvy7t+/Pw4cOIDXX38dTZs2xaZNmzB69OgKx7dz504MGjQIzZo1Q0REBG7duoVXXnkF3t7eFdpOmDABK1aswCuvvII333wTiYmJ+Oabb3Dq1CkcPHgQlpaWAIBZs2bh448/Ru/evdG7d2+cPHkSPXr0QHFx8QP7+4MPPsCWLVswduxYxMbGwt7eHjt27MBPP/2EefPmITAw8J7bDhkyBHPmzEFaWho8PDx0yw8cOICUlBQMHToUABAZGYlhw4ahe/fu+OyzzwAA58+fx8GDB/HWW29Vum+ZTIaXX34ZCxYsQFZWFpycnHTrtmzZArVajZdffrnSbV1dXbFq1Sp88sknyM3NRUREBACgadOmlbY/deoUevbsCU9PT8ydOxcajQYfffQRXF1d79NzD+ell15Co0aNMH/+fAghAACffPIJPvzwQwwePBjjxo1DZmYmFi9ejC5duuDUqVOVntUiqjGCiCS1fPlyAaDSl0Kh0LVLTEwUAISrq6vIzs7WLZ85c6YAIAIDA0VJSYlu+bBhw4RcLheFhYW6Zb6+vgKA+P3333XLVCqV8PT0FK1bt9YtmzdvnrC1tRUXL17Uq/W9994T5ubmIikpSQghxObNmwUAsWDBAl2b0tJS0blzZwFALF++XLc8KChIeHp66tW+c+dOAUD4+vrqlv3zzz8CgFi9erXeZ//99996yzMyMoRcLhd9+vQRWq1W1+79998XAMTo0aMr7/A7xMbGCrlcLsaNGydu374t6tatK9q1a6fXj5WJj48XAMTixYv1lr/xxhvCzs5O5OfnCyGEeOutt4SDg4MoLS19YC2V7f+7777TW/7888+L+vXr6x1vZbp27SqaN29eYTkAMXv2bN37fv36CRsbG3Hjxg3dsoSEBGFhYSHu/Hoo/9278+d5r33Onj1bABDDhg3Ta3f16lVhbm4uPvnkE73lsbGxwsLCosJyoprGS2ZEBmLJkiWIjIzUe23fvr1Cu5deeglKpVL3Pjg4GADw8ssv6w2YDQ4ORnFxMW7cuKG3vZeXF1544QXdewcHB4waNQqnTp1CWloaAGD9+vXo3Lkz6tSpg5s3b+peoaGh0Gg02L9/PwBg27ZtsLCwwMSJE3X7Mzc3x+TJk/U+MzU1FTExMRg9erRe7c899xyaNWum13b9+vVQKpV47rnn9D67bdu2sLOzw969ewEAu3bt0p0pu/PyzpQpU+7Ty/patGiBuXPnYunSpQgLC8PNmzexcuXKBw48bty4MYKCgrBu3TrdMo1Ggw0bNqBfv36wtrYGADg6OiIvLw+RkZEPXVP5/oODg7F69WrdsqysLGzfvh0jRozQO97HpdFosGvXLgwYMABeXl665Q0bNkSvXr2eeP+vv/663vuNGzdCq9Vi8ODBej9XDw8PNGrUSPdzJZIKL5kRGYgOHTo81KDqevXq6b0vDxg+Pj6VLr973E3Dhg0rfKE2btwYQNlYEQ8PDyQkJODMmTP3vHSSkZEBALh27Ro8PT1hZ2ent75JkyZ6769duwYAaNSoUYV9NWnSBCdPntS9T0hIgEqlgpub2wM/u7J9urq6ok6dOpVuW5np06fj119/xbFjxzB//vwKAe1ehgwZgvfffx83btxA3bp1ERUVhYyMDAwZMkTX5o033sBvv/2GXr16oW7duujRowcGDx6Mnj17PnD/o0aNwqRJk3Dt2jX4+vpi/fr1KCkpwciRIx/62O4nIyMDBQUFld7FWBV3Nt59x2RCQgKEEJX+DgDQXQYlkgoDEZGRMTc3f6Tl4t/xG49Cq9Xiueeew7vvvlvp+vIAVR20Wi3c3Nz0zo7cqSrGt9zpypUrSEhIAADExsY+9HZDhgzBzJkzsX79ekyZMgW//fYblEqlXthxc3NDTEwMduzYge3bt2P79u1Yvnw5Ro0ahZUrV953/0OHDsXUqVOxevVqvP/++/jll1/Qrl27CmGzJtzrjJRGo7nnNuVnycpptVrIZDJs37690t/Vu0M1UU1jICIyMZcuXYIQQu9L7uLFiwCgmzG6QYMGyM3NRWho6H335evri927dyM3N1fvCy0+Pr5COwC64HGnu9s2aNAAu3btQseOHSt8qd5rn/7+/rrlmZmZFc6K3YtWq8WYMWPg4OCAKVOmYP78+XjxxRcxcODAB27r5+eHDh06YN26dZg0aRI2btyIAQMGQKFQ6LWTy+Xo168f+vXrB61WizfeeAM//PADPvzww/ueiXFyckKfPn2wevVqjBgxAgcPHtQNZq8Kbm5usLKywqVLlyqsu3tZ+Rm3u+8eLD9L9zAaNGgAIQT8/PyqNVATPS6OISIyMSkpKXq3u6vVavz3v/9FUFCQ7o6pwYMH4/Dhw9ixY0eF7bOzs1FaWgoA6N27N0pLS/Hdd9/p1ms0GixevFhvG09PTwQFBWHlypVQqVS65ZGRkTh37pxe28GDB0Oj0WDevHkVPru0tFT3pRwaGgpLS0ssXrxY7yzYo4SGL774AocOHcKPP/6IefPm4emnn8bEiRMr3O13L0OGDMGRI0ewbNky3Lx5U+9yGQDcunVL772ZmRlatWoFACgqKnrg/keOHIlz585h+vTpMDc31929VhXMzc0RGhqKzZs3IyUlRbf80qVLFcauOTg4wMXFRTd2rNy333770J83cOBAmJubY+7cuRXOWgohKvQVUU3jGSIiA7F9+3ZcuHChwvKnn35a7wzIk2rcuDHGjh2L48ePw93dHcuWLUN6ejqWL1+uazN9+nT8+eef6Nu3L8aMGYO2bdsiLy8PsbGx2LBhA65evQoXFxf069cPHTt2xHvvvYerV6/q5jS6M/SUi4iIQJ8+fdCpUye8+uqryMrKwuLFi9G8eXPk5ubq2nXt2hUTJkxAREQEYmJi0KNHD1haWiIhIQHr16/H119/jRdffBGurq545513EBERgb59+6J37944deoUtm/fDhcXlwf2w/nz5/Hhhx9izJgx6NevH4Cyx6gEBQXpxv48yODBg/HOO+/gnXfegZOTU4UzauPGjUNWVhaeffZZeHt749q1a1i8eDGCgoLueSv8nfr06QNnZ2esX78evXr1uue4qsc1Z84c7Ny5Ex07dsTEiROh0WjwzTffoEWLFoiJialwLJ9++inGjRuHdu3aYf/+/boziw+jQYMG+PjjjzFz5kxcvXoVAwYMgL29PRITE7Fp0yaMHz8e77zzTpUeH9EjkfAONyIS97/tHnfc6lx+6/PChQv1tt+7d68AINavX1/pfo8fP65b5uvrK/r06SN27NghWrVqJRQKhQgICKiwrRBC5OTkiJkzZ4qGDRsKuVwuXFxcxNNPPy0+//xzUVxcrGt369YtMXLkSOHg4CCUSqUYOXKkOHXqVKW3af/++++iadOmQqFQiGbNmomNGzeK0aNH6912X+7HH38Ubdu2FdbW1sLe3l60bNlSvPvuuyIlJUXXRqPRiLlz5wpPT09hbW0tnnnmGXH27Fnh6+t739vuS0tLRfv27YW3t7feNABCCPH1118LAGLdunX33P5OHTt2FADEuHHjKqzbsGGD6NGjh3BzcxNyuVzUq1dPTJgwQaSmpj7UvoUou5UfgFizZs1Db/Owt90LIcTu3btF69athVwuFw0aNBBLly4Vb7/9trCystJrl5+fL8aOHSuUSqWwt7cXgwcPFhkZGfe87T4zM7PS2n7//XfRqVMnYWtrK2xtbUVAQIAIDw8X8fHxD318RNVBJsRjjLgkIqIaMXXqVPz8889IS0uDjY1NjXzmgAEDEBcXV+mYL6LaimOIiIgMVGFhIX755RcMGjSo2sJQQUGB3vuEhARs27YNzzzzTLV8HpGh4hgiIiIDk5GRgV27dmHDhg24devWPR/zURX8/f0xZswY+Pv749q1a/juu+8gl8vvOeUCUW3FQEREZGDOnTuHESNGwM3NDYsWLUJQUFC1fVbPnj2xdu1apKWlQaFQICQkBPPnz7/nBIpEtRXHEBEREZHJ4xgiIiIiMnkMRERERGTyOIboIWi1WqSkpMDe3r5KnjJNRERE1U8IgZycHHh5ecHM7P7ngBiIHkJKSkqFJ4kTERGRcUhOToa3t/d92zAQPQR7e3sAZR3q4OAgcTVERET0MNRqNXx8fHTf4/fDQPQQyi+TOTg4MBAREREZmYcZ7sJB1URERGTyGIiIiIjI5DEQERERkcnjGKIqpNFoUFJSInUZRsfS0hLm5uZSl0FERCaMgagKCCGQlpaG7OxsqUsxWo6OjvDw8OA8T0REJAkGoipQHobc3NxgY2PDL/VHIIRAfn4+MjIyAACenp4SV0RERKaIgegJaTQaXRhydnaWuhyjZG1tDQDIyMiAm5sbL58REVGN46DqJ1Q+ZsjGxkbiSoxbef9xDBYREUmBgaiK8DLZk2H/ERGRlBiIiIiIyORJGogiIiLQvn172Nvbw83NDQMGDEB8fLxem2eeeQYymUzv9frrr+u1SUpKQp8+fWBjYwM3NzdMnz4dpaWlem2ioqLQpk0bKBQKNGzYECtWrKjuwzNazzzzDKZMmSJ1GURERDVG0kC0b98+hIeH48iRI4iMjERJSQl69OiBvLw8vXavvfYaUlNTda8FCxbo1mk0GvTp0wfFxcU4dOgQVq5ciRUrVmDWrFm6NomJiejTpw+6deuGmJgYTJkyBePGjcOOHTtq7Fhrq6ioKMhkMk45QERERk3Su8z+/vtvvfcrVqyAm5sboqOj0aVLF91yGxsbeHh4VLqPnTt34ty5c9i1axfc3d0RFBSEefPmYcaMGZgzZw7kcjm+//57+Pn54T//+Q8AoGnTpjhw4AC+/PJLhIWFVd8BEhER0QMdunQTgT6OsFVIF0sMagyRSqUCADg5OektX716NVxcXNCiRQvMnDkT+fn5unWHDx9Gy5Yt4e7urlsWFhYGtVqNuLg4XZvQ0FC9fYaFheHw4cOV1lFUVAS1Wq33qq3y8vIwatQo2NnZwdPTUxcay61atQrt2rWDvb09PDw8MHz4cN2cQVevXkW3bt0AAHXq1IFMJsOYMWMAlIXdTp06wdHREc7Ozujbty8uX75co8dGRESG71JGDl5ZcRy9F/2DDHWhZHUYzDxEWq0WU6ZMQceOHdGiRQvd8uHDh8PX1xdeXl44c+YMZsyYgfj4eGzcuBFA2aSId4YhALr3aWlp922jVqtRUFCgmwenXEREBObOnfvYxyKEQEGJ5rG3fxLWluaPdMfW9OnTsW/fPvzxxx9wc3PD+++/j5MnTyIoKAhA2W3w8+bNQ5MmTZCRkYFp06ZhzJgx2LZtG3x8fPD7779j0KBBiI+Ph4ODg64v8/LyMG3aNLRq1Qq5ubmYNWsWXnjhBcTExMDMzKByOBERSaS4VIsp62JQVKqFr7MtXO0VktViMIEoPDwcZ8+exYEDB/SWjx8/Xvfnli1bwtPTE927d8fly5fRoEGDaqll5syZmDZtmu69Wq2Gj4/PQ29fUKJBs1nSjE8691EYbOQP92PNzc3Fzz//jF9++QXdu3cHAKxcuRLe3t66Nq+++qruz/7+/li0aBHat2+P3Nxc2NnZ6c7mubm5wdHRUdd20KBBep+1bNkyuLq64ty5c3qBl4iITNfiPQk4e0MNpbUlFr7YStIpWAzif9UnTZqErVu3Yu/evXpfxpUJDg4GAFy6dAkA4OHhgfT0dL025e/Lxx3dq82dZzTupFAo4ODgoPeqjS5fvozi4mJdnwJllyubNGmiex8dHY1+/fqhXr16sLe3R9euXQGU3dl3PwkJCRg2bBj8/f3h4OCA+vXrP9R2RERkGk4m3caSvWXf5Z+80ALuDlaS1iPpGSIhBCZPnoxNmzYhKioKfn5+D9wmJiYGwP+eeRUSEoJPPvlE99gHAIiMjISDgwOaNWuma7Nt2za9/URGRiIkJKQKj+Z/rC3Nce4jaQZrW1tW3WMv8vLyEBYWhrCwMKxevRqurq5ISkpCWFgYiouL77ttv3794Ovri59++gleXl7QarVo0aLFA7cjIqLaL6+oFNPWxUArgAFBXujbykvqkqQNROHh4VizZg3++OMP2Nvb68b8KJVKWFtb4/Lly1izZg169+4NZ2dnnDlzBlOnTkWXLl3QqlUrAECPHj3QrFkzjBw5EgsWLEBaWho++OADhIeHQ6Eouxb5+uuv45tvvsG7776LV199FXv27MFvv/2Gv/76q1qOSyaTPfRlKyk1aNAAlpaWOHr0KOrVqwcAuH37Ni5evIiuXbviwoULuHXrFj799FPdJcMTJ07o7UMulwMom/6g3K1btxAfH4+ffvoJnTt3BoAKl0KJiMh0fbLtPK7eyoen0gpz+xvGMApJL5l99913UKlUeOaZZ+Dp6al7rVu3DkDZl+2uXbvQo0cPBAQE4O2338agQYOwZcsW3T7Mzc2xdetWmJubIyQkBC+//DJGjRqFjz76SNfGz88Pf/31FyIjIxEYGIj//Oc/WLp0qcnfcm9nZ4exY8di+vTp2LNnD86ePYsxY8boBj3Xq1cPcrkcixcvxpUrV/Dnn39i3rx5evvw9fWFTCbD1q1bkZmZidzcXNSpUwfOzs748ccfcenSJezZs0dvTBYREZmuvRcysOZo2fCJz18KhNLaUuKK/iXogVQqlQAgVCpVhXUFBQXi3LlzoqCgQILKnlxOTo54+eWXhY2NjXB3dxcLFiwQXbt2FW+99ZYQQog1a9aI+vXrC4VCIUJCQsSff/4pAIhTp07p9vHRRx8JDw8PIZPJxOjRo4UQQkRGRoqmTZsKhUIhWrVqJaKiogQAsWnTpkrrMPZ+JCKiB7uVWyTazosUvjO2irl/xlX7593v+/tuMiGEkDaSGT61Wg2lUgmVSlVhgHVhYSESExPh5+cHKytpB4QZM/YjEVHtJoTAxF9O4u+4NDRys8OWyZ1gVYXjXitzv+/vuxnEXWZERERUu208eQN/x6XBwkyGL4cEVXsYelQMRERERFStkrPyMfvPsqdHTH2uMVrUVUpcUUUMRERERFRtNFqBt9efRm5RKdr61sGELv5Sl1QpBiIiIiKqNj8fuIJjiVmwkZvji8GBsDA3zOhhmFUZIY5NfzLsPyKi2udCmhqf77gIAPiwbzP4OttKXNG9MRA9IUvLsvkT8vPzJa7EuJX3X3l/EhGRcSsq1WDKrzEo1mjRPcANQ9s//DNBpWD40ykbOHNzczg6OiIjIwMAYGNjI+nD6YyNEAL5+fnIyMiAo6MjzM0N664DIiJ6PF9EXsSFtBw42crx6SBpH9z6MBiIqkD5Q2TLQxE9OkdHR10/EhGRcTuWmIUf918BAEQMbAlXe4XEFT0YA1EVkMlk8PT0hJubG0pKSqQux+hYWlryzBARUS2RU1iCab/FQAjgpbbeCGtuHP+zy0BUhczNzfnFTkREJu2jLedw/XYBvOtYY1a/ZlKX89A4qJqIiIiqxI64NKyPvg6ZDPhicBDsrYznRhkGIiIiInpimTlFmLkxFgAwvos/Ovg5SVzRo2EgIiIioicihMB7v59BVl4xAjzsMe25xlKX9MgYiIiIiOiJ/Ho8GbsvZEBuboavhgZBYWF842kZiIiIiOixXbuVh3lbzwEA3glrjAAPB4krejwMRERERPRYSjVaTF0Xg/xiDYL9nDC2k2E+uPVhMBARERHRY/lh/xWcTMqGncIC/xkcCHMzw56N+n4YiIiIiOiRnb2hwpeRZQ9unft8c3jXsZG4oifDQERERESPpLBEg6nrYlCqFejZ3AMD29SVuqQnxkBEREREj2TB3/FIyMiFi50C8we2NPgHtz4MBiIiIiJ6aAcv3cSyg4kAgIUvtoKTrVziiqoGAxERERE9FFVBCd5ZfxoAMCK4HroFuElcUdVhICIiIqKHMvuPs0hVFaK+sw3+r09TqcupUgxERERE9EBbz6Rgc0wKzGTAF0OCYCO3kLqkKsVARERERPeVpirE/206CwCY1K0h2tSrI3FFVY+BiIiIiO5JCIHpG05DVVCClnWVmNy9kdQlVQsGIiIiIrqnVUeu4Z+Em1BYmOHLIYGwNK+d0aF2HhURERE9scuZuZi/7TwAYGavADR0s5e4ourDQEREREQVlGi0mLYuBoUlWnRu5IJRIfWlLqlaMRARERFRBd/suYTT11VwsLLAwhcDYWbED259GAxEREREpCcmORvf7L0EAPj4hZbwUFpJXFH1YyAiIiIinfziUkxdFwONVuD5QC88H+gldUk1goGIiIiIdCK2XUDizTx4OFhhXv8WUpdTYxiIiIiICAAQFZ+BVUeuAQAWvtQKShtLiSuqOQxEREREhKy8Yry74QwAYMzT9dG5kavEFdUsBiIiIiITp9UKvP1bDDJyitDA1Rbv9QqQuqQax0BERERk4n765wr2xmdCYWGGb4a3gZWludQl1TgGIiIiIhMWfe02Fu6IBwDM7tccTT0dJK5IGgxEREREJio7vxhvrj2FUq1Av0AvDOvgI3VJkmEgIiIiMkFCCLyz/gxuZBegvrMN5r/QAjJZ7Z6N+n4YiIiIiEzQsoNXset8OuTmZeOG7K1M5xb7yjAQERERmZjTydn4dHvZU+w/6NsULeoqJa5IegxEREREJkRVUILwNSdRohHo3dIDI5/ylbokg8BAREREZCKEEHjv9zO4frsAPk7W+HRQK5MeN3QnBiIiIiITserINWw/mwZLcxm+GdYGDiY+buhODEREREQm4OwNFT7eWjZu6L1eTRHo4yhtQQaGgYiIiKiWyyksGzdUrNHiuWbueLVjfalLMjgMRERERLWYEAIzN8bi2q181HW0xsIXOW6oMgxEREREtdiaY0nYeiYVFmYyLB7eGo42cqlLMkgMRERERLXUuRQ15m45BwB4t2cTtKlXR+KKDBcDERERUS2UV1SKSWtOorhUi2cD3DCuk7/UJRk0BiIiIqJaRgiBDzafxZWbefBUWuE/LwXCzIzjhu6HgYiIiKiWWX/iOjadugFzMxkWDWuNOrYcN/QgDERERES1yMX0HMz68ywAYNpzjdG+vpPEFRkHBiIiIqJaIr+4FG+sPonCEi26NHbFxK4NpC7JaEgaiCIiItC+fXvY29vDzc0NAwYMQHx8vF6bwsJChIeHw9nZGXZ2dhg0aBDS09P12iQlJaFPnz6wsbGBm5sbpk+fjtLSUr02UVFRaNOmDRQKBRo2bIgVK1ZU9+ERERHVqFl/xOFSRi7c7BX4YjDHDT0KSQPRvn37EB4ejiNHjiAyMhIlJSXo0aMH8vLydG2mTp2KLVu2YP369di3bx9SUlIwcOBA3XqNRoM+ffqguLgYhw4dwsqVK7FixQrMmjVL1yYxMRF9+vRBt27dEBMTgylTpmDcuHHYsWNHjR4vERFRdfk9+jo2RF+HmQxYNKw1XOwUUpdkVGRCCCF1EeUyMzPh5uaGffv2oUuXLlCpVHB1dcWaNWvw4osvAgAuXLiApk2b4vDhw3jqqaewfft29O3bFykpKXB3dwcAfP/995gxYwYyMzMhl8sxY8YM/PXXXzh79qzus4YOHYrs7Gz8/fffD6xLrVZDqVRCpVLBwcGheg6eiIjoMV3KyMXz3xxAfrEG055rjDe7N5K6JIPwKN/fBjWGSKVSAQCcnMoGgEVHR6OkpAShoaG6NgEBAahXrx4OHz4MADh8+DBatmypC0MAEBYWBrVajbi4OF2bO/dR3qZ8H3crKiqCWq3WexERERmiwhINJq05ifxiDZ5u4Izwbg2lLskoGUwg0mq1mDJlCjp27IgWLVoAANLS0iCXy+Ho6KjX1t3dHWlpabo2d4ah8vXl6+7XRq1Wo6CgoEItERERUCqVupePj0+VHCMREVFVm7slDhfScuBip8BXQ4NgznFDj8VgAlF4eDjOnj2LX3/9VepSMHPmTKhUKt0rOTlZ6pKIiIgq+CPmBtYeS4ZMBnw9NAhu9lZSl2S0LKQuAAAmTZqErVu3Yv/+/fD29tYt9/DwQHFxMbKzs/XOEqWnp8PDw0PX5tixY3r7K78L7c42d9+Zlp6eDgcHB1hbW1eoR6FQQKHgYDQiIjJcVzJz8f7GWADA5G4N0bGhi8QVGTdJzxAJITBp0iRs2rQJe/bsgZ+fn976tm3bwtLSErt379Yti4+PR1JSEkJCQgAAISEhiI2NRUZGhq5NZGQkHBwc0KxZM12bO/dR3qZ8H0RERMakbNzQKeQVaxDs54S3QhtLXZLRk/QMUXh4ONasWYM//vgD9vb2ujE/SqUS1tbWUCqVGDt2LKZNmwYnJyc4ODhg8uTJCAkJwVNPPQUA6NGjB5o1a4aRI0diwYIFSEtLwwcffIDw8HDdWZ7XX38d33zzDd599128+uqr2LNnD3777Tf89ddfkh07ERHR4/rkr/M4l6qGs60ci4a15rihKiDpbfcyWeU/wOXLl2PMmDEAyiZmfPvtt7F27VoUFRUhLCwM3377re5yGABcu3YNEydORFRUFGxtbTF69Gh8+umnsLD4X96LiorC1KlTce7cOXh7e+PDDz/UfcaD8LZ7IiIyFNtiU/HG6pMAgJWvdkDXxq4SV2S4HuX726DmITJUDERERGQIrt3KQ99FB5BTVIqJzzTAjJ4BUpdk0Ix2HiIiIiKqXFFp2bihnKJStPOtg7ef47ihqsRAREREZAQitl1A7A0VHG0ssWhYa1iY8yu8KrE3iYiIDNzfZ9Ow4tBVAMAXgwPh5Vhxyhh6MgxEREREBiw5Kx/vbjgNABjfxR/PBrg/YAt6HAxEREREBqq4VIvJa09BXViK1vUcMT2sidQl1VoMRERERAZq4Y4LiEnOhoOVBRYNbQ1LjhuqNuxZIiIiA7T7fDp++icRALDwpUD4ONlIXFHtxkBERERkYFKyC/D2+rJxQ690rI+w5h4P2IKeFAMRERGRASnRlI0bys4vQStvJWb2aip1SSaBgYiIiMiAzN92HtHXbsNeYYFvhrWB3IJf1TWBvUxERGQgNkRfx/KDVwEAnw8ORD1njhuqKQxEREREBuB0cjbe3xQLAHireyOOG6phDEREREQSy8gpxIRV0Sgu1SK0qTve6t5I6pJMDgMRERGRhIpLtXjjl5NIUxeigastvhwSCDMzmdRlmRwGIiIiIgnN3RKHE9duw97KAj+Nagd7K0upSzJJDEREREQSWXM0CauPJkEmAxYNbQ1/VzupSzJZDEREREQSiL6Whdl/ngUAvNOjCboFuElckWljICIiIqphaapCvP7LSZRoBHq39MAbzzSQuiSTx0BERERUgwpLNJjwSzQyc4oQ4GGPhS8GQibjIGqpMRARERHVECEEPtx8FqeTs6G0tsSPI9vBVmEhdVkEBiIiIqIa89/D17A++jrMZMA3w1tzJmoDwkBERERUAw5fvoWPtp4DAMzs1RSdG7lKXBHdiYGIiIiomt3ILkD4mpPQaAUGBHlhXGc/qUuiuzAQERERVaOCYg3G//cEsvKK0aKuAz4d1IqDqA0QAxEREVE1EUJg5sYziEtRw9lWjh9GtoOVpbnUZVElGIiIiIiqyc8HErE5JgXmZjIsGdEGdR2tpS6J7oGBiIiIqBocSLiJ+dvOAwBm9W2Gp/ydJa6I7oeBiIiIqIol3crHpLUnoRXAS229MSrEV+qS6AEYiIiIiKpQXlEpxq86gez8EgT6OGLegBYcRG0EGIiIiIiqiBAC0zecxoW0HLjaK/DDy205iNpIMBARERFVkW+jLmNbbBoszWX4/uU28FBaSV0SPSQGIiIioiqw90IGPt8ZDwD4qH8LtPV1krgiehQMRERERE/oSmYu3vz1FIQARgTXw7AO9aQuiR4RAxEREdETyCkswfhV0cgpLEU73zqY3a+51CXRY2AgIiIiekxarcDUdadxKSMXHg5W+PblNpBb8KvVGPGnRkRE9Ji+3p2AXefTIbcwww8j28LNnoOojRUDERER0WPYEZeGr3cnAADmv9ASgT6O0hZET4SBiIiI6BElpOdg2roYAMArHevjxbbe0hZET4yBiIiI6BGoCkrw2n9PIK9YgxB/Z7zfu6nUJVEVYCAiIiJ6SBqtwFu/nsLVW/mo62iNb4a3hqU5v0prA/4UiYiIHtJ/dsYjKj4TVpZlg6id7RRSl0RVhIGIiIjoIWw9k4Jvoy4DAD4b1Aot6iolroiqEgMRERHRA5xLUWP6+jMAgAld/NE/qK7EFVFVYyAiIiK6j9t5xRi/6gQKSjTo3MgF7/YMkLokqgYMRERERPdQqtFi0tqTuH67AL7ONlg8rDXMzWRSl0XVgIGIiIjoHj7dfgEHL92CjdwcP45sB0cbudQlUTVhICIiIqrEbyeSsfRAIgDgi8GBaOJhL3FFVJ0YiIiIiO6y/2Im3t8YCwB489mG6NnCU+KKqLoxEBEREd3hXIoab6w+iVKtwAut62Lqc42lLolqAAMRERHRv1JVBXh1xXHkFpUixN8Znw1qBZmMg6hNAQMRERERAHVhCcYsO440dSEaudnh+5FtIbfg16Sp4E+aiIhMXnGpFhN/iUZ8eg7c7BVY8WoHKK0tpS6LahADERERmTQhBN7beEZ3e/2yMe1R19Fa6rKohjEQERGRSftyVwI2nrwBczMZloxow2eUmSgGIiIiMlm/HU/Got0JAICPB7RAtyZuEldEUmEgIiIik7TvYiZmbiqba2hSt4YY1qGexBWRlCQNRPv370e/fv3g5eUFmUyGzZs3660fM2YMZDKZ3qtnz556bbKysjBixAg4ODjA0dERY8eORW5url6bM2fOoHPnzrCysoKPjw8WLFhQ3YdGREQGLC5FhTd+iYbm37mG3u7BuYZMnaSBKC8vD4GBgViyZMk92/Ts2ROpqam619q1a/XWjxgxAnFxcYiMjMTWrVuxf/9+jB8/XrderVajR48e8PX1RXR0NBYuXIg5c+bgxx9/rLbjIiIiw5WSXTbXUF6xhnMNkY6FlB/eq1cv9OrV675tFAoFPDw8Kl13/vx5/P333zh+/DjatWsHAFi8eDF69+6Nzz//HF5eXli9ejWKi4uxbNkyyOVyNG/eHDExMfjiiy/0ghMREdV+6sISvLL8ONLVRWjszrmG6H8M/rcgKioKbm5uaNKkCSZOnIhbt27p1h0+fBiOjo66MAQAoaGhMDMzw9GjR3VtunTpArn8f08oDgsLQ3x8PG7fvl3pZxYVFUGtVuu9iIjIuN0919DyVzjXEP2PQQeinj174r///S92796Nzz77DPv27UOvXr2g0WgAAGlpaXBz078jwMLCAk5OTkhLS9O1cXd312tT/r68zd0iIiKgVCp1Lx8fn6o+NCIiqkF3zjVky7mGqBKSXjJ7kKFDh+r+3LJlS7Rq1QoNGjRAVFQUunfvXm2fO3PmTEybNk33Xq1WMxQRERkxzjVED2LQZ4ju5u/vDxcXF1y6dAkA4OHhgYyMDL02paWlyMrK0o078vDwQHp6ul6b8vf3GpukUCjg4OCg9yIiIuN051xDnwxogWc41xBVwqgC0fXr13Hr1i14enoCAEJCQpCdnY3o6Ghdmz179kCr1SI4OFjXZv/+/SgpKdG1iYyMRJMmTVCnTp2aPQAiIqpRd841NPnZhhjKuYboHiQNRLm5uYiJiUFMTAwAIDExETExMUhKSkJubi6mT5+OI0eO4OrVq9i9ezf69++Phg0bIiwsDADQtGlT9OzZE6+99hqOHTuGgwcPYtKkSRg6dCi8vLwAAMOHD4dcLsfYsWMRFxeHdevW4euvv9a7JEZERLXPnXMNDWxdF9Oe41xDdG8yIYSQ6sOjoqLQrVu3CstHjx6N7777DgMGDMCpU6eQnZ0NLy8v9OjRA/PmzdMbJJ2VlYVJkyZhy5YtMDMzw6BBg7Bo0SLY2dnp2pw5cwbh4eE4fvw4XFxcMHnyZMyYMeOh61Sr1VAqlVCpVLx8RkRkBFKyC/DCtweRri5CiL8zVr7agbfXm6BH+f6WNBAZCwYiIiLjoS4swUvfHUZ8eg4au9th/etP8/Z6E/Uo39+My0REVGtwriF6XAxERERUKwgh8N7vnGuIHg8DERER1QpfRl7ExlOca4geDwMREREZvXXHk7BoT9kcdZxriB4HAxERERm1fRcz8f6mswA41xA9PgYiIiIyWpxriKoKAxERERmlG9kFeGX5ceQVaxDi74xPB7WCTCaTuiwyUgxERERkdFQFJXhl+TFk5BShsbsdvh/ZlhMv0hPhbw8RERmV8rmGLqbncq4hqjIMREREZDTK5xo6dJlzDVHVYiAiIiKjwbmGqLowEBERkVHgXENUnRiIiIjI4HGuIapuDERERGTQzt7gXENU/RiIiIjIYMWn5WDkz0c51xBVOwYiIiIySFcyczFi6VHczi9BoI8jfhzFuYao+vA3i4iIDE5yVj5GLD2Km7lFaOrpgJWvtIe9FecaourDQERERAYlTVWI4UuPIFVViAautlg1tgMcbeRSl0W1HAMREREZjJu5RRix9AiSswpQz8kGq8c9BRc7hdRlkQlgICIiIoOQnV+Ml5cexeXMPHgprbB6XDA8lFZSl0UmgoGIiIgkl1NYgtHLjuFCWg5c7RVY/dpT8HGykbosMiEMREREJKn84lK8uuI4Tl9XoY6NJVaPC4afi63UZZGJYSAiIiLJFJZoMP6/0Th+9TbsrSywamwwGrvbS10WmSAGIiIikkRxqRbhq0/iwKWbsJGbY8UrHfiwVpLMIwei0aNHY//+/dVRCxERmYhSjRZT18Vg94UMKCzM8PPo9mjrW0fqssiEPXIgUqlUCA0NRaNGjTB//nzcuHGjOuoiIqJaSqsVeHfDGfwVmwpLcxl+GNkWIQ2cpS6LTNwjB6LNmzfjxo0bmDhxItatW4f69eujV69e2LBhA0pKSqqjRiIiqiWEEPjgj7PYeOoGzM1k+GZ4GzzTxE3qsogebwyRq6srpk2bhtOnT+Po0aNo2LAhRo4cCS8vL0ydOhUJCQlVXScRERk5IQQ+/us81hxNgkwGfDE4EGHNPaQuiwjAEw6qTk1NRWRkJCIjI2Fubo7evXsjNjYWzZo1w5dffllVNRIRUS3wReRF/HwgEQDw2cBW6B9UV+KKiP7nkQNRSUkJfv/9d/Tt2xe+vr5Yv349pkyZgpSUFKxcuRK7du3Cb7/9ho8++qg66iUiIiO0ZO8lLN5zCQAw9/nmGNzeR+KKiPRZPOoGnp6e0Gq1GDZsGI4dO4agoKAKbbp16wZHR8cqKI+IiIzdsgOJWLgjHgDwXq8AjH66vrQFEVXikQPRl19+iZdeeglWVvd+voyjoyMSExOfqDAiIjJ+a48l4aOt5wAAb3ZvhNe7NpC4IqLKPXIgGjlyZHXUQUREtcymU9fx/qZYAMD4Lv6YGtpI4oqI7o0zVRMRUZX7+2wq3ll/BkIAI5/yxcxeAZDJZFKXRXRPDERERFSl9l7IwOS1p6DRCrzY1htzn2/OMEQGj4GIiIiqzKFLNzHhl2iUaAT6tvLEZ4NawcyMYYgMHwMRERFViRNXszDuvydQXKpFaFN3fDkkCOYMQ2QkGIiIiOiJnbmejVeWH0d+sQadG7ngm+GtYWnOrxgyHvxtJSKiJ3IhTY1Ry44hp6gUHfyc8OPIdrCyNJe6LKJHwkBERESP7XJmLl5eegzZ+SUI8nHEsjHtYS1nGCLjw0BERESPJTkrHyN+OoqbuUVo5umAla90gJ3ikae3IzIIDERERPTIUlUFGL70CNLUhWjoZodVYztAaWMpdVlEj42BiIiIHklmThFG/HQUyVkF8HW2wepxwXC2U0hdFtETYSAiIqKHdjuvGCN/PoorN/PgpbTC6nHBcHe497MtiYwFAxERET0UdWEJRi8/hgtpOXCzV2DNa0/Bu46N1GURVQmOfiMiogfKyivGqGVHcfaGGk62cqweF4z6LrZSl0VUZRiIiIjovtLVhXh56VEkZOTCyVaOVWM7oJG7vdRlEVUpBiIiIrqn5Kx8jFh6FElZ+fBwsMIv44LR0M1O6rKIqhwDERERVSohPQcv/3wU6eoi1HMqu5vMx4ljhqh2YiAiIqIKzt5QYdSyY8jKK0YjNzv8wrvJqJZjICIiIj3Hr2bh1eXHkVNUilbeSqx4pQOcbOVSl0VUrRiIiIhIZ//FTIxfdQKFJVp08HPCz6Pbwd6KM1BT7cdAREREAIC/z6bizbUxKNZo0bWxK75/uS0f1Eomg4GIiIjwe/R1TN9wGloB9G7pga+GtIbcgnP3kulgICIiMnH/PXwVs/6IAwC81NYbEQNbwsKcYYhMCwMREZEJW7L3EhbuiAcAjHm6Pmb1bQYzM5nEVRHVPEn/F2D//v3o168fvLy8IJPJsHnzZr31QgjMmjULnp6esLa2RmhoKBISEvTaZGVlYcSIEXBwcICjoyPGjh2L3NxcvTZnzpxB586dYWVlBR8fHyxYsKC6D42IyKAJIfDZ3xd0YejNZxtidj+GITJdkgaivLw8BAYGYsmSJZWuX7BgARYtWoTvv/8eR48eha2tLcLCwlBYWKhrM2LECMTFxSEyMhJbt27F/v37MX78eN16tVqNHj16wNfXF9HR0Vi4cCHmzJmDH3/8sdqPj4jIEGm1ArP+iMN3UZcBADN7BWBajyaQyRiGyIQJAwFAbNq0Sfdeq9UKDw8PsXDhQt2y7OxsoVAoxNq1a4UQQpw7d04AEMePH9e12b59u5DJZOLGjRtCCCG+/fZbUadOHVFUVKRrM2PGDNGkSZOHrk2lUgkAQqVSPe7hEREZhJJSjZj66ynhO2OrqP/eVvHLkatSl0RUbR7l+9tgR80lJiYiLS0NoaGhumVKpRLBwcE4fPgwAODw4cNwdHREu3btdG1CQ0NhZmaGo0eP6tp06dIFcvn/JhULCwtDfHw8bt++XUNHQ0QkvaJSDcLXnMTGUzdgbibDV0OCMCLYV+qyiAyCwQ6qTktLAwC4u7vrLXd3d9etS0tLg5ubm956CwsLODk56bXx8/OrsI/ydXXq1Knw2UVFRSgqKtK9V6vVT3g0RETSyi8uxYRV0fgn4SbkFmZYMrwNnmvm/uANiUyEwZ4hklJERASUSqXu5ePjI3VJRESPTVVQglE/H8M/CTdhIzfH8jHtGYaI7mKwgcjDwwMAkJ6errc8PT1dt87DwwMZGRl660tLS5GVlaXXprJ93PkZd5s5cyZUKpXulZyc/OQHREQkgVu5RRj+0xGcuHYbDlYWWDU2GB0bukhdFpHBMdhA5OfnBw8PD+zevVu3TK1W4+jRowgJCQEAhISEIDs7G9HR0bo2e/bsgVarRXBwsK7N/v37UVJSomsTGRmJJk2aVHq5DAAUCgUcHBz0XkRExiZVVYDBPxxGXIoaLnZy/Do+BG19K/93j8jUSRqIcnNzERMTg5iYGABlA6ljYmKQlJQEmUyGKVOm4OOPP8aff/6J2NhYjBo1Cl5eXhgwYAAAoGnTpujZsydee+01HDt2DAcPHsSkSZMwdOhQeHl5AQCGDx8OuVyOsWPHIi4uDuvWrcPXX3+NadOmSXTURETV79qtPLz0/WFczsyDp9IK6yaEoJkX/+eO6F5kQggh1YdHRUWhW7duFZaPHj0aK1asgBACs2fPxo8//ojs7Gx06tQJ3377LRo3bqxrm5WVhUmTJmHLli0wMzPDoEGDsGjRItjZ2enanDlzBuHh4Th+/DhcXFwwefJkzJgx46HrVKvVUCqVUKlUPFtERAbvYnoOXl56FBk5RajvbINfxgXDu46N1GUR1bhH+f6WNBAZCwYiIjIWsddVGLXsKG7nl6CJuz1WjesAN3srqcsiksSjfH8b7G33RET0aI5euYWxK08gt6gUgT6OWPlKezjayB+8IRExEBER1QZR8RmYsCoaRaVaPOXvhKWj28NOwX/iiR4W/7YQERm5bbGpeOvXUyjRCDwb4IZvR7SBlaW51GURGRUGIiIiI7b+RDJm/H4GWgH0beWJLwYHQW5hsDOqEBksBiIiIiO14mAi5mw5BwAY2t4Hn7zQEuZmfGI90eNgICIiMjJCCCzZewmf77wIABjbyQ8f9GkKmYxhiOhxMRARERmRUo0WH/91HisOXQUATAlthLe6N2IYInpCDEREREYip7AEk9eeQlR8JgDggz5NMa6zv8RVEdUODEREREYgOSsf41aeQHx6DqwszfDl4CD0aukpdVlEtQYDERGRgYu+dhsTVp3AzdxiuNkrsHR0O7TydpS6LKJahYGIiMiA/RFzA9M3nEFxqRbNPB3w85h28FRaS10WUa3DQEREZICEEPhqVwK+3p0AAAht6o6vhwbBlrNPE1UL/s0iIjIwhSUaTN9wBltOpwAAJnTxx7s9AzjHEFE1YiAiIjIgmTlFGL/qBE4lZcPCTIZPXmiBIe3rSV0WUa3HQEREZCAupKkxdsUJ3MgugNLaEt+/3BYhDZylLovIJDAQEREZgL0XMjBpzUnkFWvg52KLZWPaw8/FVuqyiEwGAxERkYSEEFhx6CrmbT0HrQBC/J3x3ctt4Ggjl7o0IpPCQEREJJESjRZz/ozD6qNJAIAh7Xwwb0ALPq2eSAIMREREElAVlGDSmpP4J+EmZDLg/V5NMa6zH59JRiQRBiIiohp27VYeXl1xHJcz82BtaY6vhwahR3MPqcsiMmkMRERENehYYhYmrDqB2/kl8HCwwtLR7dCirlLqsohMHgMREVEN+T36Ot7beAYlGoFW3kr8NKod3B2spC6LiMBARERU7bRagf9ExmPJ3ssAgN4tPfCfl4JgLTeXuDIiKsdARERUjQqKNZj2Wwy2n00DAEzq1hDTnmsMMz6Gg8igMBAREVWTdHUhXvvvCZy5roKluQyfDmyFQW29pS6LiCrBQEREVA3O3lBh3MoTSFMXoo6NJX4Y2Q4d/JykLouI7oGBiIioiu2MS8Nbv8agoESDBq5lj+HwdeZjOIgMGQMREVEVEULgp3+uIGL7BQgBdG7kgm+Gt4HS2lLq0ojoARiIiIiqQHGpFh9uPot1J5IBACOC62HO881hac7HcBAZAwYiIqInlJ1fjNd/icaRK1kwkwEf9m2GMU/X52M4iIwIAxER0RO4kpmLsStPIPFmHuwUFlg8rDW6BbhJXRYRPSIGIiKix/RPQiYmrTkFVUEJ6jpa4+cx7RDg4SB1WUT0GBiIiIgeUalGi692JWBJ1CUIAbSu54gfR7aDq71C6tKI6DExEBERPYJUVQHeWhuDY1ezAADDg+thVt9msLLkYziIjBkDERHRQ9obn4Fp62JwO78EdgoLzB/YEs8HekldFhFVAQYiIqIHKNFo8fnOePyw7woAoLmXA74Z3gZ+Lpxskai2YCAiIrqPG9kFmLzmJE4mZQMARoX44v3eTXmJjKiWYSAiIrqHyHPpeGf9aagKSmBvZYEFg1qhV0tPqcsiomrAQEREdJfiUi0++/sCfj6QCAAI9FZi8bA2qOdsI3FlRFRdGIiIiO6QnJWPSWtP4XRyNgDg1Y5+eK9XAOQWfAQHUW3GQERE9K+/z6Zi+oYzyCkshYOVBT5/KRA9mntIXRYR1QAGIiIyeUWlGsz/6zxWHr4GoGyixcXDWsO7Di+REZkKBiIiMmlXb+Zh0tqTOHtDDQCY0MUf74Q14VPqiUwMAxERmaytZ1Lw3u+xyC0qRR0bS/xncCCeDXCXuiwikgADERGZnMISDT7aeg5rjiYBANrXr4NFw1rDU2ktcWVEJBUGIiIyKZczcxG++iQupOVAJgPeeKYBpoY2hgUvkRGZNAYiIjIZm0/dwPubYpFfrIGzrRxfDglCl8auUpdFRAaAgYiIar2CYg3m/BmHdSeSAQBP+Tvh66Gt4e5gJXFlRGQoGIiIqFZLSM9B+JqTuJieC5kMePPZRnizeyOYm8mkLo2IDAgDERHVWutPJGPWH3EoKNHA1V6Br4cE4emGLlKXRUQGiIGIiGqdvKJSfPjHWWw8eQMA0KmhC74cEgRXe4XElRGRoWIgIqJa5UKaGuGrT+JyZh7MZMC05xpj4jMNeYmMiO6LgYiIagUhBH49now5f8ahqFQLdwcFFg1tjWB/Z6lLIyIjwEBEREYvp7AE/7fpLP48nQIA6NrYFV8MDoSzHS+REdHDYSAiIqO2Nz4D/7cxFimqQpibyTA9rAnGd/aHGS+REdEjYCAiIqOUlVeMj7bEYXNM2VkhHydrfDUkCG19nSSujIiMkUHPVT9nzhzIZDK9V0BAgG59YWEhwsPD4ezsDDs7OwwaNAjp6el6+0hKSkKfPn1gY2MDNzc3TJ8+HaWlpTV9KERURYQQ+CPmBkK/2IfNMSkwkwHjOvlhx5QuDENE9NgM/gxR8+bNsWvXLt17C4v/lTx16lT89ddfWL9+PZRKJSZNmoSBAwfi4MGDAACNRoM+ffrAw8MDhw4dQmpqKkaNGgVLS0vMnz+/xo+FiJ5MSnYBPth8FnsuZAAAmrjb47MXWyHIx1HawojI6Bl8ILKwsICHh0eF5SqVCj///DPWrFmDZ599FgCwfPlyNG3aFEeOHMFTTz2FnTt34ty5c9i1axfc3d0RFBSEefPmYcaMGZgzZw7kcnlNHw4RPQatVmD1sSR8tv0CcotKYWkuw+RnG+H1rg0gtzDoE91EZCQM/l+ShIQEeHl5wd/fHyNGjEBSUhIAIDo6GiUlJQgNDdW1DQgIQL169XD48GEAwOHDh9GyZUu4u7vr2oSFhUGtViMuLq5mD4SIHsvlzFwM/fEIPtx8FrlFpWhTzxHb3uyMN7s3Yhgioipj0GeIgoODsWLFCjRp0gSpqamYO3cuOnfujLNnzyItLQ1yuRyOjo5627i7uyMtLQ0AkJaWpheGyteXr7uXoqIiFBUV6d6r1eoqOiIielglGi1+3H8FX+9OQHGpFjZyc7wb1gQjQ+pzkkUiqnIGHYh69eql+3OrVq0QHBwMX19f/Pbbb7C2tq62z42IiMDcuXOrbf9EdH+x11V49/czOJ9a9j8jXRq7Yv4LLeBdx0biyoiotjKq882Ojo5o3LgxLl26BA8PDxQXFyM7O1uvTXp6um7MkYeHR4W7zsrfVzYuqdzMmTOhUql0r+Tk5Ko9ECKqVEGxBhHbzmPAtwdxPlUNRxtLfDE4ECtfac8wRETVyqgCUW5uLi5fvgxPT0+0bdsWlpaW2L17t259fHw8kpKSEBISAgAICQlBbGwsMjIydG0iIyPh4OCAZs2a3fNzFAoFHBwc9F5EVL0OX76FXl/vxw/7r0CjFejbyhO7pnXFwDbekMl4iYyIqpdBXzJ755130K9fP/j6+iIlJQWzZ8+Gubk5hg0bBqVSibFjx2LatGlwcnKCg4MDJk+ejJCQEDz11FMAgB49eqBZs2YYOXIkFixYgLS0NHzwwQcIDw+HQsEp/YkMgbqwBBHbLmDtsbIbJjwcrDBvQAs818z9AVsSEVUdgw5E169fx7Bhw3Dr1i24urqiU6dOOHLkCFxdXQEAX375JczMzDBo0CAUFRUhLCwM3377rW57c3NzbN26FRMnTkRISAhsbW0xevRofPTRR1IdEhHdYWdcGj784yzS1WU3MQwProf3egXAwcpS4sqIyNTIhBBC6iIMnVqthlKphEql4uUzoiqQmVOEOVvi8NeZVACAn4stIga2xFN8Mj0RVaFH+f426DNERFS7CCHw+8kbmLf1HFQFJTA3k+G1zv6YEtoIVpbmUpdHRCaMgYiIakRyVj7e3xSLfxJuAgCaezngs0Gt0KKuUuLKiIgYiIiommm0AisPXcXnO+ORX6yB3MIMU0MbY1xnP1iaG9WNrkRUizEQEVG1uZieg3c3nEFMcjYAoIOfEz4d2BL+rnbSFkZEdBcGIiKqcsWlWnwbdQlL9l5CiUbATmGBmb0DMKx9PZjxsRtEZIAYiIioSp1Kuo0Zv5/BxfRcAED3ADd8/EILeCqr73E7RERPioGIiKpEZk4Rvtp1EWuOJUEIwNlWjtnPN0e/Vp6caZqIDB4DERE9kbyiUiz9JxE/7r+MvGINAGBg67r4sG8z1LGVS1wdEdHDYSAiosdSqtHitxPX8eWui8jMKZtpOtBbiZm9m3KCRSIyOgxERPRIhBCIPJeOz/6+gMuZeQCAek42eLdnE/RpyctjRGScGIiI6KGdTLqNiG3ncfzqbQBAHRtLvNm9EUYE+0JuwTmFiMh4MRAR0QMl3szDwh0XsC02DQCgsDDD2E5+eP2ZBnwQKxHVCgxERHRPN3OLsHh3AlYfTUKpVkAmA15s441pPRrzNnoiqlUYiIiogoJiDX4+cAXf77uC3KJSAEC3Jq6Y0SsAAR73f2I0EZExYiAiIh2NVmBDdDK+iLyIdHXZnWMt6jrg/V5N8XRDF4mrIyKqPgxERAQhBPbGZ+DT7Rd0M0x717HG9LAm6NfKi4/bIKJaj4GIyMSdTs5GxPbzOHIlCwCgtLbE5GcbYmSILxQW5hJXR0RUMxiIiEzUtVt5WLgjHlvPpAIA5BZmeKVjfbzRtSGUNrxzjIhMCwMRkYnJyivG4j0J+OXINZRoyu4cG9i67M6xuo68c4yITBMDEZGJKCzRYNnBRHy39zJy/r1zrEtjV7zXMwDNvHjnGBGZNgYiolpOoxXYePI6voi8iFRVIQCgmacDZvYOQOdGrhJXR0RkGBiIiGopIQT2XczEp9sv4EJaDgCgrqM13glrjP6BdXnnGBHRHRiIiGqhk0m38Z+d8Th46RYAwMHKApOebYhRIfVhZck7x4iI7sZARFRLaLQCO+PSsPRAIqKvlT18VW5uhtFP+yK8W0M42sglrpCIyHAxEBEZudyiUqw/kYxlBxORnFUAoCwI9Q/ywpvdG8HHyUbiComIDB8DEZGRSlUVYMWhq1hzNAk5hWV3jdWxscTLT/liZIgv3OytJK6QiMh4MBARGZmzN1T46Z8r+OtMKkq1AgDg72KLVzv5YVAbb1jLOUaIiOhRMRARGQGtVmDPhQwsPXBF94gNAHjK3wnjOvnj2QA33jVGRPQEGIiIDFhBsQa/n7yOZQcSceVmHgDAwkyGvq08MbaTP1p6KyWukIiodmAgIjJAGTmF+O+ha/jl6DVk55cAAOytLDA8uB7GPF0fnko+YoOIqCoxEBEZkAtpaiz9JxF/xqSgWKMFAPg4WePVjn54qZ0P7BT8K0tEVB34ryuRxIQQ2J9wE0v/uYJ/Em7qlrep54jXOvujR3MPmHN8EBFRtWIgIpJIYYkGf8TcwM8HEnExPRcAYCYDerXwxKud/NDWt47EFRIRmQ4GIqIadiu3CL8cScKqI1dxM7cYAGArN8eQ9vXwSsf6nEiRiEgCDERENeRSRi5+PpCIjSevo6i0bHyQp9IKr3SsjyHt60FpbSlxhUREpouBiKgaCSFw+MotLP0nEXsuZOiWt6yrxLjOfujd0hOW5mYSVkhERAADEVG1SLyZhz9jUvDn6Ru4nFk2f5BMBnQPcMdrnf3Qwc8JMhkHShMRGQoGIqIqkqoqwNbTqfjzdApib6h0y60szfBiW2+82tEP/q52ElZIRET3wkBE9ASy8oqxLbYsBB2/mgVR9mgxmJvJ0LGhC54P9EKP5u5wsOL4ICIiQ8ZARPSIcotKEXkuDX/GpOCfhJu6B6wCQPv6dfB8oBd6tfSEi51CwiqJiOhRMBARPYTCEg2i4jOx5XQKdp1P190lBgDNvRzwfKAX+gZ6oa4jH6lBRGSMGIiI7qFUo8Why7fw5+kU7DibhpyiUt06fxdb9Av0Qr9ALzR047ggIiJjx0BEdAetVuBk0m38eToF22JTdRMnAmVzBvUL9MLzgV5o7uXAu8SIiGoRBiIyeUIInEtV48/TKdh6OhU3sgt065xs5ejd0gPPB9ZFO986MOMzxYiIaiUGIjJZlc0VBAB2Cgv0aO6O5wO90LGhCydOJCIyAQxEZFLuNVeQ3MIMzzZxQ/8gL3QLcIOVpbmEVRIRUU1jIKJaTasVOJ+mxpErWdgZl4Zjd80V1OnfuYKe41xBREQmjYGIahWNVuB8qhpHrtzCkStZOJZ4C+rCUr02Heo7oV+QF3q38IAz5woiIiIwEJGRK9VocS5VjaNXsnDkyi0cu5qFnLsCkJ3CAu3q10HHBi7o3cqTcwUREVEFDERkVEo1WsSllJ0BOpqYheOJWXrzAwGAvcIC7f2cEOznhKf8ndHcywEWHBhNRET3wUBEBq1Eo8XZGyocTSw7A3Ti6m3k3h2ArCwQ7OeEYD9nPOXvjGZeDjDn7fFERPQIGIjIoJRotDhzXYWjiWVjgKKvZiGvWKPXxsHKAh38nPGUf9kZoKaeDEBERPRkGIhIUsWlWsTeyMaRf8cARV+7jfy7ApDS2rLsDJB/WQgK8GAAIiKiqsVARDWqsESD2BsqHLlcNgboxLUsFJZo9drUsbFEh3/H/wT7OSPAw54zRBMRUbViIKIqp9EKpGQX4MrNPCRm5iLxZl7Zn2/m4UZ2gW4eoHJOtvJ/xwA54akGzmjsxgBEREQ1i4GIHosQArfyipF4Mw+JmeWBpyz8XL2Vj+JS7T23dbaVI/jf8T9P+TujoasdAxAREUmKgYjuK6+otCz03PEqP/Nz94SHd5Kbm8HX2QZ+Lrbwc7VFAxc7+Lnaws/FFs62cj4pnoiIDIpJBaIlS5Zg4cKFSEtLQ2BgIBYvXowOHTpIXZbkSjRaJGfl3xV48nDlZi7S1UX33E4mA7yU1vD/N+j4udjC39UO/i628HK05sBnIiIyGiYTiNatW4dp06bh+++/R3BwML766iuEhYUhPj4ebm5uUpf3xIQQyC/WIK+oFHn//je3qBT5xaXILfp3eVEp8oo0yCsuW5euKkTizTwkZeWjVCvuuW8nW7ku8Pi52KKBqy38XOzg62zDh6ASEVGtIBPi7iGutVNwcDDat2+Pb775BgCg1Wrh4+ODyZMn47333rvvtmq1GkqlEiqVCg4ODlVWk0YrcDO3CLl3hpWiUuQV/+/PunXFd4Sau9bnF5eFnCf5SVpZmsHPpezszv/O9pT919FGXmXHTEREVFMe5fvbJM4QFRcXIzo6GjNnztQtMzMzQ2hoKA4fPlyhfVFREYqK/nepSK1WV0tdqaoCdPpsb5XuUyYDbOUWsFWYw1ZhATuFBWzk5rBTWMC2/CUvW+dsp4D/v8HH3d6KA5uJiMhkmUQgunnzJjQaDdzd3fWWu7u748KFCxXaR0REYO7cudVel53CAmYy/BtSykJMeXCxkVvATi/U6K+3VZj/u82/6/9dZ21pzgHLREREj8gkAtGjmjlzJqZNm6Z7r1ar4ePjU+Wfo7S2xOX5vRlgiIiIJGYSgcjFxQXm5uZIT0/XW56eng4PD48K7RUKBRQKRbXXxSBERERkGMykLqAmyOVytG3bFrt379Yt02q12L17N0JCQiSsjIiIiAyBSZwhAoBp06Zh9OjRaNeuHTp06ICvvvoKeXl5eOWVV6QujYiIiCRmMoFoyJAhyMzMxKxZs5CWloagoCD8/fffFQZaExERkekxmXmInkR1zUNERERE1edRvr9NYgwRERER0f0wEBEREZHJYyAiIiIik8dARERERCaPgYiIiIhMHgMRERERmTwGIiIiIjJ5DERERERk8hiIiIiIyOSZzKM7nkT5ZN5qtVriSoiIiOhhlX9vP8xDORiIHkJOTg4AwMfHR+JKiIiI6FHl5ORAqVTetw2fZfYQtFotUlJSYG9vD5lMVqX7VqvV8PHxQXJyMp+TVo3YzzWD/Vwz2M81h31dM6qrn4UQyMnJgZeXF8zM7j9KiGeIHoKZmRm8vb2r9TMcHBz4l60GsJ9rBvu5ZrCfaw77umZURz8/6MxQOQ6qJiIiIpPHQEREREQmj4FIYgqFArNnz4ZCoZC6lFqN/Vwz2M81g/1cc9jXNcMQ+pmDqomIiMjk8QwRERERmTwGIiIiIjJ5DERERERk8hiIiIiIyOQxEEloyZIlqF+/PqysrBAcHIxjx45JXZLR279/P/r16wcvLy/IZDJs3rxZb70QArNmzYKnpyesra0RGhqKhIQEaYo1YhEREWjfvj3s7e3h5uaGAQMGID4+Xq9NYWEhwsPD4ezsDDs7OwwaNAjp6ekSVWycvvvuO7Rq1Uo3WV1ISAi2b9+uW88+rh6ffvopZDIZpkyZolvGvn5yc+bMgUwm03sFBATo1kvdxwxEElm3bh2mTZuG2bNn4+TJkwgMDERYWBgyMjKkLs2o5eXlITAwEEuWLKl0/YIFC7Bo0SJ8//33OHr0KGxtbREWFobCwsIartS47du3D+Hh4Thy5AgiIyNRUlKCHj16IC8vT9dm6tSp2LJlC9avX499+/YhJSUFAwcOlLBq4+Pt7Y1PP/0U0dHROHHiBJ599ln0798fcXFxANjH1eH48eP44Ycf0KpVK73l7Ouq0bx5c6SmpupeBw4c0K2TvI8FSaJDhw4iPDxc916j0QgvLy8REREhYVW1CwCxadMm3XutVis8PDzEwoULdcuys7OFQqEQa9eulaDC2iMjI0MAEPv27RNClPWrpaWlWL9+va7N+fPnBQBx+PBhqcqsFerUqSOWLl3KPq4GOTk5olGjRiIyMlJ07dpVvPXWW0II/j5XldmzZ4vAwMBK1xlCH/MMkQSKi4sRHR2N0NBQ3TIzMzOEhobi8OHDElZWuyUmJiItLU2v35VKJYKDg9nvT0ilUgEAnJycAADR0dEoKSnR6+uAgADUq1ePff2YNBoNfv31V+Tl5SEkJIR9XA3Cw8PRp08fvT4F+PtclRISEuDl5QV/f3+MGDECSUlJAAyjj/lwVwncvHkTGo0G7u7uesvd3d1x4cIFiaqq/dLS0gCg0n4vX0ePTqvVYsqUKejYsSNatGgBoKyv5XI5HB0d9dqyrx9dbGwsQkJCUFhYCDs7O2zatAnNmjVDTEwM+7gK/frrrzh58iSOHz9eYR1/n6tGcHAwVqxYgSZNmiA1NRVz585F586dcfbsWYPoYwYiInoi4eHhOHv2rN5YAKo6TZo0QUxMDFQqFTZs2IDRo0dj3759UpdVqyQnJ+Ott95CZGQkrKyspC6n1urVq5fuz61atUJwcDB8fX3x22+/wdraWsLKyvCSmQRcXFxgbm5eYfR8eno6PDw8JKqq9ivvW/Z71Zk0aRK2bt2KvXv3wtvbW7fcw8MDxcXFyM7O1mvPvn50crkcDRs2RNu2bREREYHAwEB8/fXX7OMqFB0djYyMDLRp0wYWFhawsLDAvn37sGjRIlhYWMDd3Z19XQ0cHR3RuHFjXLp0ySB+nxmIJCCXy9G2bVvs3r1bt0yr1WL37t0ICQmRsLLazc/PDx4eHnr9rlarcfToUfb7IxJCYNKkSdi0aRP27NkDPz8/vfVt27aFpaWlXl/Hx8cjKSmJff2EtFotioqK2MdVqHv37oiNjUVMTIzu1a5dO4wYMUL3Z/Z11cvNzcXly5fh6elpGL/PNTJ0myr49ddfhUKhECtWrBDnzp0T48ePF46OjiItLU3q0oxaTk6OOHXqlDh16pQAIL744gtx6tQpce3aNSGEEJ9++qlwdHQUf/zxhzhz5ozo37+/8PPzEwUFBRJXblwmTpwolEqliIqKEqmpqbpXfn6+rs3rr78u6tWrJ/bs2SNOnDghQkJCREhIiIRVG5/33ntP7Nu3TyQmJoozZ86I9957T8hkMrFz504hBPu4Ot15l5kQ7Ouq8Pbbb4uoqCiRmJgoDh48KEJDQ4WLi4vIyMgQQkjfxwxEElq8eLGoV6+ekMvlokOHDuLIkSNSl2T09u7dKwBUeI0ePVoIUXbr/Ycffijc3d2FQqEQ3bt3F/Hx8dIWbYQq62MAYvny5bo2BQUF4o033hB16tQRNjY24oUXXhCpqanSFW2EXn31VeHr6yvkcrlwdXUV3bt314UhIdjH1enuQMS+fnJDhgwRnp6eQi6Xi7p164ohQ4aIS5cu6dZL3ccyIYSomXNRRERERIaJY4iIiIjI5DEQERERkcljICIiIiKTx0BEREREJo+BiIiIiEweAxERERGZPAYiIiIiMnkMRERERGTyGIiIiIjI5DEQERERkcljICIik5SZmQkPDw/Mnz9ft+zQoUOQy+V6T9wmItPAZ5kRkcnatm0bBgwYgEOHDqFJkyYICgpC//798cUXX0hdGhHVMAYiIjJp4eHh2LVrF9q1a4fY2FgcP34cCoVC6rKIqIYxEBGRSSsoKECLFi2QnJyM6OhotGzZUuqSiEgCHENERCbt8uXLSElJgVarxdWrV6Uuh4gkwjNERGSyiouL0aFDBwQFBaFJkyb46quvEBsbCzc3N6lLI6IaxkBERCZr+vTp2LBhA06fPg07Ozt07doVSqUSW7dulbo0IqphvGRGRCYpKioKX331FVatWgUHBweYmZlh1apV+Oeff/Ddd99JXR4R1TCeISIiIiKTxzNEREREZPIYiIiIiMjkMRARERGRyWMgIiIiIpPHQEREREQmj4GIiIiITB4DEREREZk8BiIiIiIyeQxEREREZPIYiIiIiMjkMRARERGRyWMgIiIiIpP3/9vknaHnESkoAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\tut\\introduction_doc_38_0.png" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -792,16 +789,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrcElEQVR4nO3deVhUZf8G8HtmgGHfZFeUxRVFwA1xSU0Sl1zKSk1zye01NU3LokUrK1vUTPPnvi+5VJpZoYbiiqIgKgoqyKKsCjLDvszM74/RKVIQETgzw/25rnO9L2fOOdwzlfP1Oc/5PiKVSqUCERERET2WWOgARERERNqMxRIRERFRFVgsEREREVWBxRIRERFRFVgsEREREVWBxRIRERFRFVgsEREREVWBxRIRERFRFVgsEREREVWBxRIR1arevXujd+/eQscAALi5uWH8+PG1es2QkBD4+vrC2NgYIpEIubm5tXr92iISifDpp58KHYNIL7BYIqIKRCJRtbawsDCho9a77OxsvPbaazAxMcHKlSuxbds2mJmZCZbnzz//ZEFEVA9EXBuOiP5t+/btFX7eunUrjhw5gm3btlXY/8ILL8DR0fGR80tLSwEARkZGdReymkpKSiAWi2FoaFgr1wsJCcGAAQNw5MgRBAYG1so1n8WMGTOwcuVKPO6P8eLiYhgYGMDAwECAZET6hf8VEVEFY8aMqfDz2bNnceTIkUf2/1dhYSFMTU21okh6SCqV1ur1srKyAADW1ta1et26YGxsLHQEIr3B23BE9NR69+6Ndu3aITIyEs899xxMTU3x4Ycfal7775yl5ORkDBkyBGZmZnBwcMA777yDQ4cOPXI7r7CwEHFxcbh3794TM9y8eRPDhw+Hk5MTjI2N0aRJE4wcORIymUxzzH/nLG3evBkikQinT5/GnDlzYG9vDzMzM7z00ku4e/fuE9/zuHHjAACdO3eGSCTSXLuyuVH//SzCwsIgEomwZ88efPnll2jSpAmMjY3Rt29fxMfHP3L+uXPnMHDgQNjY2MDMzAzt27fHDz/8AAAYP348Vq5cCaDirdOHHjdn6eLFixgwYAAsLS1hbm6Ovn374uzZsxWOeZbPiEhfcWSJiGokOzsbAwYMwMiRIzFmzJjH3pIDgIKCAjz//PNIT0/HrFmz4OTkhJ07d+LYsWOPHBsREYE+ffpgwYIFVc7FKS0tRVBQEEpKSjBz5kw4OTkhNTUVBw8eRG5uLqysrKrMPnPmTNjY2GDBggVISkrCsmXLMGPGDOzevbvScz766CO0atUKa9euxeeffw53d3d4enpW+Xsq8/XXX0MsFuPdd9+FTCbDt99+i9GjR+PcuXOaY44cOYIXX3wRzs7Oms8tNjYWBw8exKxZszB16lSkpaU99hbp41y9ehU9e/aEpaUl5s2bB0NDQ6xZswa9e/fG8ePH4e/v/8yfEZG+YrFERDWSkZGB1atXY+rUqVUet2bNGty6dQv79+/H0KFDAQBTp06Fn59fjX/3tWvXkJiYiL179+KVV17R7J8/f361zm/UqBEOHz6sGYlRKpVYvnw5ZDJZpYXWCy+8gNTUVKxduxYDBgxAp06dapy/uLgY0dHRmluWNjY2mDVrFmJiYtCuXTsoFApMnToVzs7OiI6OrnDb7+H8pICAALRs2bJat0gB4OOPP0ZZWRlOnToFDw8PAMDYsWPRqlUrzJs3D8ePH69wfE0+IyJ9xdtwRFQjUqkUEyZMeOJxISEhaNy4MYYMGaLZZ2xsjMmTJz9ybO/evaFSqZ74hNfDL+tDhw6hsLDw6YIDmDJlSoVbVj179oRCoUBycvJTX6smJkyYUGFuV8+ePQEAt27dAqC+XZaYmIjZs2c/Mj/q37mrS6FQ4PDhwxg2bJimUAIAZ2dnvP766zh16hTkcnmFc4T+jIi0CYslIqqRxo0bV2syd3JyMjw9PR/5km/evHmNf7e7uzvmzJmD9evXw87ODkFBQVi5cmWF+UpVadq0aYWfbWxsAAD379+vcaan8aTfn5CQAABo165drfy+u3fvorCwEK1atXrktTZt2kCpVOL27dtPlZGoIWGxREQ1YmJiIujvX7JkCS5fvowPP/wQRUVFePvtt9G2bVvcuXPniedKJJLH7q9pJ5XKRnsUCkW9/P66oAsZieoLiyUiqlPNmjVDQkLCI1+yj3v662l5e3vj448/xokTJ3Dy5EmkpqZi9erVz3zdp2VjY/PYTt41vWX1cOJ4TExMlcdV95acvb09TE1Ncf369Udei4uLg1gshqur69MHJWogWCwRUZ0KCgpCamoqDhw4oNlXXFyMdevWPXJsdVsHyOVylJeXV9jn7e0NsViMkpKS2gn+FDw9PXH27FlNQ04AOHjw4CO3tqqrQ4cOcHd3x7Jlyx4pwv5ddD7sHv6kJVckEgn69euH3377DUlJSZr9mZmZ2LlzJ3r06AFLS8saZSVqCPg0HBHVqalTp+LHH3/EqFGjMGvWLDg7O2PHjh2apon/Hh2pbuuAo0ePYsaMGXj11VfRsmVLlJeXY9u2bZBIJBg+fHhdv6VHTJo0CT///DP69++P1157DQkJCdi+fXuNWwuIxWKsWrUKgwcPhq+vLyZMmABnZ2fExcXh6tWrOHToEACgY8eOAIC3334bQUFBkEgkGDly5GOv+cUXX+DIkSPo0aMH3nrrLRgYGGDNmjUoKSnBt99+W7M3TtRAsFgiojplbm6Oo0ePYubMmfjhhx9gbm6OsWPHolu3bhg+fHiNOk37+PggKCgIv//+O1JTU2FqagofHx/89ddf6Nq1ax28i6oFBQVhyZIlWLp0KWbPno1OnTrh4MGDmDt37jNd89ixY/jss8+wZMkSKJVKeHp6VniK8OWXX8bMmTOxa9cubN++HSqVqtJiqW3btjh58iSCg4OxaNEiKJVK+Pv7Y/v27Y/0WCKiirg2HBEJYtmyZXjnnXdw584dNG7cWOg4RESVYrFERHWuqKiowtNzxcXF8PPzg0KhwI0bNwRMRkT0ZLwNR0R17uWXX0bTpk3h6+sLmUyG7du3Iy4uDjt27BA6GhHRE7FYIqI6FxQUhPXr12PHjh1QKBTw8vLCrl27MGLECKGjERE9EW/DEREREVWBfZaIiIiIqsBiiYiIiKgKnLNUC5RKJdLS0mBhYVGjFcGJiIio/qlUKuTl5cHFxQViceXjRyyWakFaWhrXVSIiItJRt2/fRpMmTSp9ncVSLbCwsACg/rC5vhIREZFukMvlcHV11XyPV4bFUi14eOvN0tKSxRIREZGOedIUGk7wJiIiIqoCiyUiIiKiKrBYIiIiIqoCiyUiIiKiKrBYIiIiIqoCiyUiIiKiKrBYIiIiIqoCiyUiIiKiKrBYIiIiIqoCiyUiIiKiKuhUsXTixAkMHjwYLi4uEIlE2L9//xPPCQsLQ4cOHSCVStG8eXNs3rz5kWNWrlwJNzc3GBsbw9/fHxEREbUfnoiIiHSSThVLBQUF8PHxwcqVK6t1fGJiIgYNGoQ+ffogOjoas2fPxqRJk3Do0CHNMbt378acOXOwYMECREVFwcfHB0FBQcjKyqqrt0FEREQ6RKRSqVRCh6gJkUiEffv2YdiwYZUe8/777+OPP/5ATEyMZt/IkSORm5uLkJAQAIC/vz86d+6MH3/8EQCgVCrh6uqKmTNn4oMPPqhWFrlcDisrK8hkMi6kSwAAlUqFUoUSxWVKFJcpYCgRw8bU8ImLNRIRUf2p7ve3QT1mqnfh4eEIDAyssC8oKAizZ88GAJSWliIyMhLBwcGa18ViMQIDAxEeHl7pdUtKSlBSUqL5WS6X125w0hmFpeWITZfjWnoerqXJcS1djltZ+SgoLYfyP38NMTIQw9nKGM5WxnCxNoGvqzW6eTaCp705iygiIi2m18VSRkYGHB0dK+xzdHSEXC5HUVER7t+/D4VC8dhj4uLiKr3uokWL8Nlnn9VJZtJ++SXlCI3NxJ9X0hF2/S5KypVVHi8Ri6BQqlBarkRydiGSswsBAL9GpQIAHCyk6ObZCD1b2GOAtxNMjfT6P0siIp3DP5VrIDg4GHPmzNH8LJfL4erqKmAiqmsqlQonb97DjnPJjxRIDhZStHWxRBtnS3i5WKKVowWsTA1hbCiBiaEEhhIxSsuVyJQXIy23CBnyYiRnF+JcYjYuJN1HVl4J9kenYX90Gj79/SqGd2iC1/2boqWjhYDvmIiIHtLrYsnJyQmZmZkV9mVmZsLS0hImJiaQSCSQSCSPPcbJyanS60qlUkil0jrJTNpFqVThSGwmVh6Lx+U7Ms1+dzszDPR2wkBvZ3g5Wz7xNpqRgRiutqZwtTX9194WKC5TICrlPs7EZ+PApTSk5BRi85kkbD6ThC5utpjynAf6tnHgbToiIgHpdbEUEBCAP//8s8K+I0eOICAgAABgZGSEjh07IjQ0VDNRXKlUIjQ0FDNmzKjvuKRFVCoVDlxKw8pj8biRmQ8AMDYUY2Tnpni1U5NqFUjVYWwoQTdPO3TztMOcF1riVPw9bD+bjNC4LEQk5SAiKQf+7rb4aFAbtG9i/cy/j4iInp5OFUv5+fmIj4/X/JyYmIjo6GjY2tqiadOmCA4ORmpqKrZu3QoA+N///ocff/wR8+bNw5tvvomjR49iz549+OOPPzTXmDNnDsaNG4dOnTqhS5cuWLZsGQoKCjBhwoR6f3+kHeKz8vDhvhhEJOYAACykBhjbrRne7O6ORuZ1N6IoFovwXEt7PNfSHumyImw+k4RNp5NwLjEHQ348jSE+LngvqNV/RqeIiKiu6VTrgLCwMPTp0+eR/ePGjcPmzZsxfvx4JCUlISwsrMI577zzDq5du4YmTZrgk08+wfjx4yuc/+OPP+K7775DRkYGfH19sXz5cvj7+1c7F1sH6IfiMgX+71g8Vh1PQJlCBRNDCab19sT47m6wNDYUJFNqbhGWHLqOXy+qJ4MbGYjxXr9WmNjDHWIxb80RET2L6n5/61SxpK1YLOm+iMQczPv5EpIePKn2fGsHfD60LZrYaMcoTkyqDF/+EYvwW9kAgK4etlj8qo/W5CMi0kUsluoRiyXdpVSqsObELXx3KA5KFeBoKcWng9uifzsnrZtUrVKp8FPEbSw8eA1FZQpYSA3w2dC2eMmvsdZlJSLSBSyW6hGLJd0kKyzD3L3R+DtWvbTNyx0a49MhbQW75VZdSfcK8M6eaFxMyQUADPFxwbevtIexoUTYYEREOqa63986tTYcUW25ckeGQStO4u/YLBgZiPH1y95Y8qqP1hdKAOBmZ4a9UwMw94WWMBCLcOBSGkasCUemvFjoaEREeonFEjU4f1xOx/BVZ3DnfhGa2pri12ndMLJLU526lWUgEWNm3xbYPskfNqaGuHRHhqE/nkZMquzJJxMR0VNhsUQNypYzSZjxUxRKFUoEtnHA7zN7oF1jK6Fj1VhXj0bYP707mjuYI0NejFdWn8GfV9KFjkVEpFdYLFGDoFKpsPjQdSw4cBUqFTA2oBnWvNEJVibaf9vtSZo1MsOvb3VDr5b2KC5T4q0dUdh0OlHoWEREeoPFEum9coUSH/xyBT8eUzc0nftCS3w2pC0ketSnyNLYEBvGdcL4bm4AgM9+v4Y1xxOEDUVEpCd0qoM30dMqUygxY2cUDl3NhFgEfPWSN0Z2aSp0rDphIBFjwWAvWBobYPnReCz6Kw4l5Uq83beF0NGIiHQaiyXSWwqlCu/sjsahq5kwMhDjx1F+6Ne28gWS9YFIJMKcfq1gZCDG4sM3sPTIDZQplJjzQkudmsBORKRNeBuO9JJSqcL7v1zGwcvpMJSIsGZMR70vlP5txvMt8OHA1gCAFUfj8U3IdbClGhFRzbBYIr2jUqkw/0AMfo68A4lYhBWj/NCntYPQserdlOc8sWCwFwBg9fEErDlxS+BERES6icUS6RWVSoUv/ojF9rMpEImApa/5oH87Z6FjCWZCd3d8PKgNAODrv+Lwc+QdgRMREekeFkukV/4vLAEbTqkfm//m5fYY6ttY4ETCm9TTA1Oe8wAAvP/LZRyNyxQ4ERGRbmGxRHrj4OU0fHfoOgBgwWAvvNbZVeBE2uOD/q3xsl9jKJQqvLUjClEp94WORESkM1gskV6ISrmPOXsuAQDe7O6OCd3dBU6kXcRiEb55pT16t1I3rnxz83nEZ+ULHYuISCewWCKddzunEJO3XEBpuXoJk48ezNGhigwlYvzf6A7wcbVGbmEZJm+9AFlRmdCxiIi0Hosl0mmyojJM2Hwe2QWl8HK2xA8j/fSqM3dtMzUywMZxndDY2gSJ9wrw9k8XoVCypQARUVVYLJHOUihVmLEzCvFZ+XC0lGLD+E4wk7LP6pM0MpdizRsdYWwoxvEbdzXzvIiI6PFYLJHOWnrkOk7evAcTQwk2jOsMZysToSPpjHaNrfDtKz4A1D2YfotOFTgREZH2YrFEOik0NhMrj6kXiv16uDfaNbYSOJHuGeLjgv/18gSgbikQkyoTOBERkXZisUQ653ZOId7ZHQ0AGBvQjL2UnsF7Qa00T8hN2XoB9wtKhY5ERKR1WCyRTikuU2DajkjIi8vh62rNJ9+ekUQswg8j/eDWyBRpsmK89/NlriFHRPQfLJZIp3z2+1XEpMphY2qIlaM7QGogETqSzrMyMcSPr3eAkUSMv2MzsflMktCRiIi0Cosl0hn7Lt7BTxG3IRIBP4z0Q2NrTuiuLe0aW+HDga0BAIv+jOP8JSKif2GxRDrhdk4hPtl/FQAwq28LPNfSXuBE+mdcNze84OWIUoUSM3ZGIb+kXOhIRERagcUSab1yhRLv7I5Gfkk5OrvZYObzLYSOpJdEIhG+e6U9XKyMkZRdiI/3XeH8JSIisFgiHbAqLAEXku/DXGqApa/5skN3HbI2NcIPo9Rd0PdHp+GXKPZfIiJisURaLfp2LpaF3gQAfD60LVxtTQVOpP86u9ninUD16N2nB64iNbdI4ERERMJisURaq6CkHO/sjoZCqcKL7Z3xkh/7KdWXab2bo0NTa+SXlOP9ny9DyfXjiKgBY7FEWuuLP2KReK8AzlbG+HKYN0Qi3n6rLxKxCItf9YGxoRin4u9hx7lkoSMREQmGxRJppeM37uKniBSIRMCS13xgZWoodKQGx8PeHO/3V7cT+OrPOCTdKxA4ERGRMHSuWFq5ciXc3NxgbGwMf39/REREVHps7969IRKJHtkGDRqkOWb8+PGPvN6/f//6eCtUifyScnz46xUAwPhubujmaSdwooZrXIAbunrYoqhMgfd+vgQFb8cRUQOkU8XS7t27MWfOHCxYsABRUVHw8fFBUFAQsrKyHnv8r7/+ivT0dM0WExMDiUSCV199tcJx/fv3r3DcTz/9VB9vhyrxbUgcUnOL4GprgveCWgkdp0ETi0X47hUfmBlJcD7pPjaeShQ6EhFRvdOpYmnp0qWYPHkyJkyYAC8vL6xevRqmpqbYuHHjY4+3tbWFk5OTZjty5AhMTU0fKZakUmmF42xsbOrj7dBjRCTmYGu4en7M1y+3h6mRgcCJyNXWFB+/6AUA+O7wdSTczRc4ERFR/dKZYqm0tBSRkZEIDAzU7BOLxQgMDER4eHi1rrFhwwaMHDkSZmZmFfaHhYXBwcEBrVq1wrRp05CdnV3ldUpKSiCXyyts9OyKyxR4/5fLAICRnV3RvTlvv2mLkZ1d0bOFHUrLlfiIzSqJqIHRmWLp3r17UCgUcHR0rLDf0dERGRkZTzw/IiICMTExmDRpUoX9/fv3x9atWxEaGopvvvkGx48fx4ABA6BQKCq91qJFi2BlZaXZXF1da/amqILv/76BxHsFcLSU4sNBbYSOQ/8iEonw1UveMDYU4+ytHOyNvCN0JCKieqMzxdKz2rBhA7y9vdGlS5cK+0eOHIkhQ4bA29sbw4YNw8GDB3H+/HmEhYVVeq3g4GDIZDLNdvv27TpOr/8u38nFuhO3AABfDvOGpTGfftM2rrameCewJQDgqz9jkZ1fInAiIqL6oTPFkp2dHSQSCTIzMyvsz8zMhJOTU5XnFhQUYNeuXZg4ceITf4+Hhwfs7OwQHx9f6TFSqRSWlpYVNqq5coUSwb9egVIFDPFxQaCX45NPIkG82cMdbZwtkVtYhi/+iBU6DhFRvdCZYsnIyAgdO3ZEaGioZp9SqURoaCgCAgKqPHfv3r0oKSnBmDFjnvh77ty5g+zsbDg7Oz9zZqqe7WeTcTVNDktjA8wf7CV0HKqCoUSMRS97QyQC9l1Mxcmbd4WORERU53SmWAKAOXPmYN26ddiyZQtiY2Mxbdo0FBQUYMKECQCAsWPHIjg4+JHzNmzYgGHDhqFRo0YV9ufn5+O9997D2bNnkZSUhNDQUAwdOhTNmzdHUFBQvbynhi4rrxhLDt8AAMzr3xp25lKBE9GT+LpaY1yAGwDgo30xKCqtfH4fEZE+0KnnskeMGIG7d+9i/vz5yMjIgK+vL0JCQjSTvlNSUiAWV6z/rl+/jlOnTuHw4cOPXE8ikeDy5cvYsmULcnNz4eLign79+mHhwoWQSvmlXR+++iMWeSXl8GlihVFdmgodh6rp3aBWOHQ1Ayk5hVhx9CbmPej0TUSkj0QqPgP8zORyOaysrCCTyTh/6SmcSbiH19edg0gEHJjeA95NrISORE/h8NUMTNkWCUOJCIdmPwcPe3OhIxERPZXqfn/r1G040h+l5Up8sj8GAPBG12YslHTQC16O6N3KHmUKFT4/eI29l4hIb7FYIkGsP3ULCXcLYGduhLn9uKSJLhKJRJj/ohcMJSKEXb+L0NjHLztERKTrWCxRvUvNLcLy0JsAgI8GtYGVCXsq6SoPe3NM7OEBAPj84DUUl3GyNxHpHxZLVO++/isOxWVKdHG3xTDfxkLHoWc08/nmcLSUIiWnUNNYlIhIn7BYonoVmZyD3y+lQSQC5r/oBZFIJHQkekZmUgN8OFC9PM3KsHik5hYJnIiIqHaxWKJ6o1Sq8Nnv1wAAIzq5ol1jTurWF0N8XNDFzRbFZUp8xc7eRKRnWCxRvfn1Yiou35HBXGrASd16RiQS4dMhbSEWAX9cSUd4QrbQkYiIag2LJaoXBSXl+DYkDoB6jou9BZt+6hsvF0uM9m8GAPjyz2tQKtlKgIj0A4slqherwhKQlVeCZo1MMb67m9BxqI7MDmwBC6kBYlLl2HcxVeg4RES1gsUS1bnbOYVYe1L9lNSHA9tAaiAROBHVlUbmUrzVpzkAYPHh61w3joj0AoslqnPfhMShtFyJbp6N0M/LUeg4VMcmdHdDY2sTpMuKseEUWwkQke5jsUR16tLtXBy8nA6RCPh4EFsFNATGhhLM66+ewK++/VoscCIiomfDYonqjEqlwqK/1I+Rv+zXBF4uXGS4oRjc3gU+TaxQUKrA90duCh2HiOiZsFiiOhN2/S7O3sqBkYEYc/q1FDoO1SOxWISPBnkBAHafT8GNzDyBExER1RyLJaoTCqUKX/+lbhUwoZt6Dgs1LF3cbRHU1hFKFfDVn2xUSUS6i8US1Ylfou7gemYerEwM8Vbv5kLHIYF8MKANDMSiB6OMbFRJRLqJxRLVuuIyBb4/cgMAML2PJ6xMDQVOREJxtzPDyC6uAIBvQ+KgUrFRJRHpHhZLVOs2nU5CuqwYja1NMDbATeg4JLC3n28BY0MxolJyERqbJXQcIqKnxmKJatX9glL8X1g8AGBuv5YwNmQDyobOwdIYE7q7AwC+O3QdCi6DQkQ6hsUS1arVJxKQV1yONs6WGObbWOg4pCX+95wnLI0NcD0zD79FcxkUItItLJao1mTJi7HlTBIA4L2glhCL2YCS1KxMDTHtwUT/pUduoKScy6AQke5gsUS1ZuWxeBSXKeHX1Bp9WjkIHYe0zPhubnCwkOLO/SL8dC5F6DhERNXGYolqxZ37hdgZof4CfK9fKy5rQo8wMZJgVmALAMCPx+JRUFIucCIiouphsUS1YkVoPMoUKnTzbIRuze2EjkNa6rVOrnBrZIp7+aXYdDpR6DhERNXCYomeWeK9AvwcdQcAMLdfK4HTkDYzlIjxzgvqpW/WnUyEvLhM4ERERE/GYome2fdHbkChVOH51g7o2MxG6Dik5V5s74LmDuaQFZVh06kkoeMQET0RiyV6JnEZcvx+OQ2Auq8S0ZNIxCLMfjB3af2pW5AVcnSJiLQbiyV6JksP34BKBQzydkZbFyuh45COGNjOGa0cLZBXXI4Np24JHYeIqEoslqjGYlJlOHwtEyIR8M4LLYSOQzpELBZp/p3ZeDoJ9wtKBU5ERFQ5FktUY8tDbwIAhvi4oLmDhcBpSNf083KCl7Ml8kvKse4kR5eISHuxWKIauZr2z6jSzOebCx2HdJB6dEk9z23zmSRk55cInIiI6PF0rlhauXIl3NzcYGxsDH9/f0RERFR67ObNmyESiSpsxsbGFY5RqVSYP38+nJ2dYWJigsDAQNy8ebOu34bOeziqNLg9R5Wo5gLbOMC7sRUKSxVYe4KjS0SknXSqWNq9ezfmzJmDBQsWICoqCj4+PggKCkJWVlal51haWiI9PV2zJScnV3j922+/xfLly7F69WqcO3cOZmZmCAoKQnFxcV2/HZ11LU2OQ1fVo0pv9+WoEtWcSCTCnAejS1vCk3CPo0tEpIV0qlhaunQpJk+ejAkTJsDLywurV6+GqakpNm7cWOk5IpEITk5Oms3R0VHzmkqlwrJly/Dxxx9j6NChaN++PbZu3Yq0tDTs37+/Ht6Rbno4qvQiR5WoFvRuZQ+fJlYoLlNi/Ul29SYi7aMzxVJpaSkiIyMRGBio2ScWixEYGIjw8PBKz8vPz0ezZs3g6uqKoUOH4urVq5rXEhMTkZGRUeGaVlZW8Pf3r/KaJSUlkMvlFbaGIjZdjpCrGepRJc5VologEokw83n1k3HbwvlkHBFpH50plu7duweFQlFhZAgAHB0dkZGR8dhzWrVqhY0bN+K3337D9u3boVQq0a1bN9y5o16a4+F5T3NNAFi0aBGsrKw0m6ur67O8NZ2y4qh6VGmgtzNaOHJUiWpH3zYO8HK2REGpgmvGEZHW0ZliqSYCAgIwduxY+Pr6olevXvj1119hb2+PNWvWPNN1g4ODIZPJNNvt27drKbF2i8uQ488rD0eV2FeJao96dEk9UrnpdBJkRezqTUTaQ2eKJTs7O0gkEmRmZlbYn5mZCScnp2pdw9DQEH5+foiPjwcAzXlPe02pVApLS8sKW0Ow8lgCgAfdl504qkS1K6itE1o6miOvpBxbziQJHYeISENniiUjIyN07NgRoaGhmn1KpRKhoaEICAio1jUUCgWuXLkCZ2dnAIC7uzucnJwqXFMul+PcuXPVvmZDkXivAH88WANueh/OVaLaJxaLNP9ubTydiPyScoETERGp6UyxBABz5szBunXrsGXLFsTGxmLatGkoKCjAhAkTAABjx45FcHCw5vjPP/8chw8fxq1btxAVFYUxY8YgOTkZkyZNAqAe+p89eza++OILHDhwAFeuXMHYsWPh4uKCYcOGCfEWtdaqsHgoVUDf1g7wcmkYI2lU/15s7wIPOzPkFpZhW3jyk08gIqoHBkIHeBojRozA3bt3MX/+fGRkZMDX1xchISGaCdopKSkQi/+p/+7fv4/JkycjIyMDNjY26NixI86cOQMvLy/NMfPmzUNBQQGmTJmC3Nxc9OjRAyEhIY80r2zIUnOL8GtUKgBgOp+AozokeTC6NHfvJaw/eQvjujWDqZFO/TFFRHpIpFKpVEKH0HVyuRxWVlaQyWR6OX9pwW8x2BKejG6ejbBzcleh45CeK1co8fyS40jJKcTHg9pgUk8PoSMRkZ6q7ve3Tt2Go/p3N68Eu86rn/abwblKVA8MJGJM6+0JAFh/MhEl5QqBExFRQ8diiaq0/tQtlJQr4dfUGgGejYSOQw3Eyx0aw9FSigx5MfY9uAVMRCQUFktUqdzCUmx/MMl2Rp/mEIlEAieihkJqIMHkB7ff1py4BYWSswWISDgslqhSm88koaBUgTbOlni+tYPQcaiBGdWlKaxNDZF4rwB/xaQLHYeIGjAWS/RYBSXl2HQ6CQAwvY8nR5Wo3plJDTAuwA0A8H/HEsBnUYhIKCyW6LF+ikiBrKgM7nZmGNDOWeg41ECN7+YGUyMJrqXLcfzGXaHjEFEDxWKJHlFarsSGU+rFTKc85wGJmKNKJAwbMyOM6tIUAPB/YQkCpyGihorFEj3it+hUpMuKYW8hxUt+jYWOQw3c5J4eMJSIEJGYg8jkHKHjEFEDxGKJKlAqVVhz4hYAYGIPdxgbSgRORA2dk5UxhndoAkA9d4mIqL6xWKIK/o7NRHxWPiykBnjdv6nQcYgAAFN7eUIsAkLjsnA9I0/oOETUwLBYIg2VSoXVx9V/cx8T0AyWxoYCJyJS+/eDBmsfjHwSEdUXFkukcT7pPqJScmFkIMaE7m5CxyGqYMpz6iaV6jl1RQKnIaKGhMUSaawKiwcADO/QBA4WxgKnIarIx9UaXT1sUa5UYeODpzWJiOoDiyUCAMSmy3Hs+l2IRcDU57jKO2mnqb3UC+zuPKfuA0ZEVB9YLBEAYN2DeSAD2jnDzc5M4DREj9e7pT1aOVqgoFSBHeeShY5DRA0EiyVCWm4RDlxKAwBM7cVRJdJeIpFIM3dp0+kklJQrBE5ERA0BiyXC5jNJKFeq4O9ui/ZNrIWOQ1SlwT4ucLYyxt28Euy/mCp0HCJqAFgsNXDy4jLsPJcCgKNKpBuMDMR4s7s7AGDNiVtQKrnALhHVLRZLDdyuiBTkl5SjuYM5erd0EDoOUbWM7OIKC2MD3LpbgL9jM4WOQ0R6jsVSA1ZarsTGU0kAgMk93SHmgrmkIyyMDTGmazMAbFJJRHWPxVIDdvByGjLkxbAzl2IYF8wlHTO+mxsMJSJcSL6Piyn3hY5DRHqMxVIDpVKpNH8jn9DdDVIDLphLusXR0hhDfNRF/vqTbFJJRHWHxVIDdSr+HuIy8mBqJMFoLphLOmpST/VE779i0nE7p1DgNESkr1gsNVAPR5Ve6+QKa1MjgdMQ1UwbZ0v0bGEHpQrYeJqjS0RUN1gsNUCx6XKcvHkPYhEwsYe70HGInsnknuqWF7vP34askEugEFHtY7HUAG14sAjpgHbOcLU1FTgN0bPp2cIOrZ0sUFiqwM6IFKHjEJEeYrHUwGTJi/FbtLrr8cSeHFUi3ScSiTQjpJvPJKK0XClwIiLSNyyWGphtZ5NRplChQ1NrdGhqI3QcoloxxNcF9hZSZMpLcPBymtBxiEjPsFhqQIrLFNh+Vr1S+6SeXNqE9IfUQILx3dwAAOtOJkKl4hIoRFR7WCw1IL9GpeJ+YRma2Jign5ej0HGIatVo/6YwMZQgNl2O8IRsoeMQkR5hsdRAKJUqbDj1sAmlOwwk/EdP+sXa1AivdmoC4J+HGIiIaoPOfWOuXLkSbm5uMDY2hr+/PyIiIio9dt26dejZsydsbGxgY2ODwMDAR44fP348RCJRha1///51/Tbq3fEbd5FwtwAWUgO89uALhUjfTOiunugdGpeFW3fzBU5DRPpCp4ql3bt3Y86cOViwYAGioqLg4+ODoKAgZGVlPfb4sLAwjBo1CseOHUN4eDhcXV3Rr18/pKamVjiuf//+SE9P12w//fRTfbyderX+waiSerV2Q4HTENUNdzsz9G3tAADYdDpJ2DBEpDd0qlhaunQpJk+ejAkTJsDLywurV6+GqakpNm7c+Njjd+zYgbfeegu+vr5o3bo11q9fD6VSidDQ0ArHSaVSODk5aTYbG/16Suxamhyn47MhEYsw7sEkWCJ99bCNwM+Rd5BbWCpwGiLSBzpTLJWWliIyMhKBgYGafWKxGIGBgQgPD6/WNQoLC1FWVgZbW9sK+8PCwuDg4IBWrVph2rRpyM6uenJoSUkJ5HJ5hU2b/dOE0glNbNiEkvRbgGcjtHayQFGZAj9F3BY6DhHpAZ0plu7duweFQgFHx4pPcTk6OiIjI6Na13j//ffh4uJSoeDq378/tm7ditDQUHzzzTc4fvw4BgwYAIVCUel1Fi1aBCsrK83m6upaszdVD7LyivH7JXXfGS5tQg3Bv5tUbjmThDIFm1QS0bPRmWLpWX399dfYtWsX9u3bB2NjY83+kSNHYsiQIfD29sawYcNw8OBBnD9/HmFhYZVeKzg4GDKZTLPdvq29f3vdcTYFpQol/Jpaw49NKKmBGOLrAjtzKTLkxfjzSrrQcYhIx+lMsWRnZweJRILMzMwK+zMzM+Hk5FTluYsXL8bXX3+Nw4cPo3379lUe6+HhATs7O8THx1d6jFQqhaWlZYVNGxWXKbDjnLoJJUeVqCGRGkjwRtdmAICNp9ikkoiejc4US0ZGRujYsWOFydkPJ2sHBARUet63336LhQsXIiQkBJ06dXri77lz5w6ys7Ph7OxcK7mF9PulNNzLL4WLlTH6t626oCTSN6O7NoWRgRiX7sgQlXJf6DhEpMN0plgCgDlz5mDdunXYsmULYmNjMW3aNBQUFGDChAkAgLFjxyI4OFhz/DfffINPPvkEGzduhJubGzIyMpCRkYH8fHX/lfz8fLz33ns4e/YskpKSEBoaiqFDh6J58+YICgoS5D3WFpVKhY0PHp0e282NTSipwbEzl+Il38YA2KSSiJ6NTn2DjhgxAosXL8b8+fPh6+uL6OhohISEaCZ9p6SkID39n/kJq1atQmlpKV555RU4OztrtsWLFwMAJBIJLl++jCFDhqBly5aYOHEiOnbsiJMnT0IqlQryHmtL+K1sxKbLYWIowcjO2jsBnaguvfng9nNITAbu3C8UOA0R6SqRijfzn5lcLoeVlRVkMpnWzF+atOUC/o7NxJiuTfHFMG+h4xAJZvT6szgdn42pz3kgeGAboeMQkRap7ve3To0sUfUk3StAaJx6IvzD5R+IGqoJ3dT/DfwUkYLC0nKB0xCRLmKxpIc2n0mCSgX0aWUPT3tzoeMQCer51g5o1sgU8uJy/BKV+uQTiIj+g8WSnpEXl2HvBXXfpzfZLoAIYrEI4x8s87P5dCKUSs48IKKnw2JJz+w5fxsFpQq0cDBHj+Z2Qsch0gqvdGwCc6kBEu4W4MTNu0LHISIdw2JJjyiUKmwNVzehnNDdHSKRSOBERNrBwtgQr3VSPxW66UFLDSKi6mKxpEeOxmUhJacQViaGeMmvsdBxiLTK+G5uEImA4zfuIj4rX+g4RKRDWCzpkU2n1Y33RnZxhYmRROA0RNqlaSNT9G2t7sm2+QybVBJR9bFY0hNxGXKcSciGWASMDXATOg6RVnqzhxsA4JfIVMgKy4QNQ0Q6g8WSnthyJgkAENTWCY2tTYQNQ6SlAjwaobWTBYrKFNh9IUXoOESkI1gs6YH7BaX49UH/GDahJKqcSCTChO5uAIAtZ5KhYBsBIqoGFkt64KfzKSgpV6KtiyU6u9kIHYdIqw31bQxrU0Ok5hbh79hMoeMQkQ5gsaTjyhVKbHvQLkD9tA/bBRBVxdhQglFdmgL456EIIqKqsFjScYeuZiJdVoxGZkYY7OMidBwinfBG12aQiEU4eysHselyoeMQkZZjsaTjHj4CPdq/KYwN2S6AqDpcrE3Qv60TgH8ejiAiqgyLJR0WkyrD+aT7MBCLMLprM6HjEOmU8Q8meu+7mIr7BaXChiEircZiSYdtfvA34oHeznC0NBY2DJGO6dTMBm1dLFFSrsRP59lGgIgqx2JJR93LL8GB6DQA//wNmYiqT91GQN1qY1t4MsoVSoETEZG2YrGko3ZFpKBUoYRPEyv4uVoLHYdIJ73Y3hmNzIyQLivG4WtsI0BEj8diSQeVKZTYflZ922B8d7YLIKopY0MJXvdnGwEiqprB056gVCpx/PhxnDx5EsnJySgsLIS9vT38/PwQGBgIV1fXushJ/3LoagYy5MWwM5dioLez0HGIdNqYrs2wKiwB55PuIyZVhnaNrYSORERaptojS0VFRfjiiy/g6uqKgQMH4q+//kJubi4kEgni4+OxYMECuLu7Y+DAgTh79mxdZm7wNp9OAqBuFyA1YLsAomfhaGmMAQ/+0sE2AkT0ONUullq2bInLly9j3bp1kMvlCA8Pxy+//ILt27fjzz//REpKChISEtCzZ0+MHDkS69atq8vcDdaVOzJcSL4PQ4kIox/cPiCiZzO+mxsA4LdLachhGwEi+o9qF0uHDx/Gnj17MHDgQBgaGj72mGbNmiE4OBg3b97E888/X2sh6R//bhfgwHYBRLWiQ1NreDe2Qmm5Ej9FsI0AEVVU7WKpTZs21b6ooaEhPD09axSIKncvvwS/X3rQLuDB34SJ6NmJRCLNf1Pbz7KNABFVVKOn4T799FMolY/+YSKTyTBq1KhnDkWPV6FdQFMboeMQ6ZUXfdhGgIger0bF0oYNG9CjRw/cunVLsy8sLAze3t5ISEiotXD0jzKFEtvOJgNgE0qiuiA1+KeNwGZO9Caif6lRsXT58mU0adIEvr6+WLduHd577z3069cPb7zxBs6cOVPbGQnqdgGZ8hK2CyCqQ6P9m8FALEJEYg6upcmFjkNEWuKp+ywBgI2NDfbs2YMPP/wQU6dOhYGBAf766y/07du3tvPRAw/bBbzOdgFEdcbJyhj92znh4OV0bDmThG9eaS90JCLSAjXu4L1ixQr88MMPGDVqFDw8PPD222/j0qVLtZmNHohJVbcLMBCLMIbtAojq1IQHt7n3R6fiPtsIEBFqWCz1798fn332GbZs2YIdO3bg4sWLeO6559C1a1d8++23tZ2xwWO7AKL606GpDbwbW6GkXImfzrONABHVsFhSKBS4fPkyXnnlFQCAiYkJVq1ahZ9//hnff/99rQZs6LLzS3DgYbsATuwmqnMikQjjHrYRCGcbASKqYbF05MgRuLi4PLJ/0KBBuHLlyjOHqsrKlSvh5uYGY2Nj+Pv7IyIiosrj9+7di9atW8PY2Bje3t74888/K7yuUqkwf/58ODs7w8TEBIGBgbh582ZdvoWnsuv8bZSWK9G+iRX8XK2FjkPUILzY3hm2ZkZIkxXj71i2ESBq6KpdLKlUqmodZ2dnV+MwT7J7927MmTMHCxYsQFRUFHx8fBAUFISsrKzHHn/mzBmMGjUKEydOxMWLFzFs2DAMGzYMMTExmmO+/fZbLF++HKtXr8a5c+dgZmaGoKAgFBcX19n7qK5yhRLbH7YL6OYGkUgkcCKihsHYUILXu6jnB2568HAFETVc1S6W2rZti127dqG0tOoJjzdv3sS0adPw9ddfP3O4/1q6dCkmT56MCRMmwMvLC6tXr4apqSk2btz42ON/+OEH9O/fH++99x7atGmDhQsXokOHDvjxxx8BqAvAZcuW4eOPP8bQoUPRvn17bN26FWlpadi/f3+t539ah69lIl1WDDtzIwxqz3YBRPVpdNemkIhFOJeYg9h0thEgEsqVOzLB12ysdrG0YsUKLF68GE5OThgxYgS+++477NixA7/88gvWr1+POXPmoEuXLvD19YWlpSWmTZtWq0FLS0sRGRmJwMDAf8KLxQgMDER4ePhjzwkPD69wPAAEBQVpjk9MTERGRkaFY6ysrODv71/pNQGgpKQEcrm8wlYXHrYLGNWF7QKI6puzlQn6t3UCAGwNTxI2DFEDpVSqMGv3RXRdFIrT8fcEy1HtPkt9+/bFhQsXcOrUKezevRs7duxAcnIyioqKYGdnBz8/P4wdOxajR4+GjU3tL8Vx7949KBQKODo6Vtjv6OiIuLi4x56TkZHx2OMzMjI0rz/cV9kxj7No0SJ89tlnT/0enkZhaTkgAgzEIoz2b1anv4uIHm98dzf8cSUd+y6m4v3+rWFtaiR0JKIG5WT8Pdy6WwBzqQF8BJy3+9RNKXv06IEePXrURRadERwcjDlz5mh+lsvlcHV1rdXfYWpkgD1TA5CaWwQnK7YLIBJCp2Y28HK2xLV0OXafv42pvbhAOFF92vKgdc6rnZrAXFqjPtq1osZNKeubnZ0dJBIJMjMrPpmSmZkJJyenx57j5ORU5fEP//dprgkAUqkUlpaWFba60tjapM6uTURVE4lEGP+gjcDW8GQolNV70IWInl3SvQIcu65+gGtsgJugWWpcLIWGhuLDDz/EpEmT8Oabb1bY6oKRkRE6duyI0NBQzT6lUonQ0FAEBAQ89pyAgIAKxwPqtgcPj3d3d4eTk1OFY+RyOc6dO1fpNYmoYRni6wIbU0Ok5haxjQBRPdoangyVCujdyh7udmaCZqlRsfTZZ5+hX79+CA0Nxb1793D//v0KW12ZM2cO1q1bhy1btiA2NhbTpk1DQUEBJkyYAAAYO3YsgoODNcfPmjULISEhWLJkCeLi4vDpp5/iwoULmDFjBgD13xpnz56NL774AgcOHMCVK1cwduxYuLi4YNiwYXX2PohIdxgbSjDyQRuBzWwjQFQvCkrKsffCbQDQjO4KqUY3AFevXo3NmzfjjTfeqO08VRoxYgTu3r2L+fPnIyMjA76+vggJCdFM0E5JSYFY/E/9161bN+zcuRMff/wxPvzwQ7Ro0QL79+9Hu3btNMfMmzcPBQUFmDJlCnJzc9GjRw+EhITA2JjzhIhIbUzXZlhzPAHht7JxPSMPrZwshI5EpNd+jbqDvJJyuNuZ4bkW9kLHgUhV3W6T/9KoUSNERETA05OTHQH1rTsrKyvIZLI6nb9ERMKZtj0Sf8Vk4HX/pvjqJW+h4xDpLZVKhcClx5FwtwALBnthQnf3Ovtd1f3+rtFtuEmTJmHnzp01DkdEpGserhe3LyoVssIyYcMQ6bFT8feQcLcAZkYSvNKxidBxANTwNlxxcTHWrl2Lv//+G+3bt4ehoWGF15cuXVor4YiItIW/uy1aO1kgLiMPey7cxuTnPISORKSXHrYLeKVjE1gYG1Z9cD2pUbF0+fJl+Pr6AkCFddYAcP0yItJLIpEIE7q74f1frmBLeBLe7OEOiZh/3hHVppTsQoTGPWgXoAUTux+qUbF07Nix2s5BRKT1hvo2xqK/4nDnfhFCYzPRr23l/diI6OltDU+CSgX0bGEHT3tzoeNo6ExTSiIioRkbSjCys7qNwBauF0dUqwpKyrH7QbuAN+twUndNVHtk6eWXX8bmzZthaWmJl19+ucpjf/3112cORkSkjcZ0bYq1JxJwOj4bNzLz0NKRbQSIasOvF1ORV1wOt0am6NVS+HYB/1btkSUrKyvNfCQrK6sqNyIifdXExhT9vNS33x5ORCWiZ6NSqTT/PY3r5gaxls0HrFGfpaKiIiiVSpiZqduPJyUlYf/+/WjTpg2CgoJqPaS2Y58loobl7K1sjFx7FiaGEpwN7gsrU+14YodIV526eQ9jNpyDmZEEZz/sW29PwdVpn6WhQ4di27ZtAIDc3Fx07doVS5YswbBhw7Bq1aqaJSYi0hEP2wgUlSmw58EcCyKquc1nEgFoV7uAf6tRsRQVFYWePXsCAH7++Wc4OjoiOTkZW7duxfLly2s1IBGRthGJRJr1qraEJ0GhfOoBeiJ6QFvbBfxbjYqlwsJCWFioJzUePnwYL7/8MsRiMbp27Yrk5ORaDUhEpI2G+jaGtamhpo0AEdXMw3YBvVraa1W7gH+rUbHUvHlz7N+/H7dv38ahQ4fQr18/AEBWVhbn7BBRg2Bi9E8bgc2c6E1UI/9uFzC+u5uwYapQo2Jp/vz5ePfdd+Hm5gZ/f38EBAQAUI8y+fn51WpAIiJt9UZAM0jEIpxJyEZchlzoOEQ652G7AHc7M/RqoV3tAv6tRsXSK6+8gpSUFFy4cAEhISGa/X379sX3339fa+GIiLRZY2sTBLV1BMA2AkRPq0K7gIBmWtcu4N9q3MHbyckJfn5+EIv/uUSXLl3QunXrWglGRKQLxndTdxredzEV9wtKBU5DpDtO3ryH+Kx8mEsNMLxjE6HjVInLnRARPYPObjbwcrZEcZkSu86zjQBRdT2c66et7QL+jcUSEdEzEIlEmPBgYuq28CSUK5TCBiLSAYn3CnA0LgsiETRtOLQZiyUiomc02McFtmZGSJMV48g1thEgepKHc5Web+UANzszYcNUA4slIqJnZGwowetd1G0ENnGiN1GV5MVl2KsD7QL+jcUSEVEtGNO1GQzEIkQk5iAmVSZ0HCKttffCHRSUKtDCwRw9mtsJHadaWCwREdUCJytjDPB2BgBsOp0kbBgiLaVQ/tMuYHx3N4hE2tsu4N9YLBER1ZKHE71/v5SGu3klwoYh0kLH4rKQklMIS2MDvOTXWOg41cZiiYiolnRoagNfV2uUKpTYeS5F6DhEWmfTmUQAwKguTWFqZCBwmupjsUREVIs0bQTOJqOkXCFsGCItcj0jD6fjsyEWqZcK0iUsloiIatFAb2c4WkpxL78Ef1xOFzoOkdbY/GBUKaitE5rYmAqc5umwWCIiqkWGEjHGBrgBADaeToRKpRI2EJEWyCkoxa9RqQB0ownlf7FYIiKqZaO6NIXUQIyYVDkuJN8XOg6R4H6KSEFJuRLtGluii7ut0HGeGoslIqJaZmtmpHnSZ9PpRIHTEAmrtFyJreFJAIA3u7vrTLuAf2OxRERUBx52Jg6JycCd+4XChiES0F8x6ciUl8DeQooX27sIHadGWCwREdWB1k6W6N68EZQqYFt4stBxiAShUqmw4ZR6dHVs12YwMtDNskM3UxMR6YA3u7sDAHZGpKCgpFzgNET1LyrlPi7fkcHIQIzX/ZsKHafGdKZYysnJwejRo2FpaQlra2tMnDgR+fn5VR4/c+ZMtGrVCiYmJmjatCnefvttyGQV12wSiUSPbLt27arrt0NEDUCfVg5wtzNDXnE5fo68I3Qconq38VQSAOAl38ZoZC4VNswz0JliafTo0bh69SqOHDmCgwcP4sSJE5gyZUqlx6elpSEtLQ2LFy9GTEwMNm/ejJCQEEycOPGRYzdt2oT09HTNNmzYsDp8J0TUUIjFIk2Tyk2nE6FUso0ANRx37hfirxh1r7EJPdyEDfOMdKLXeGxsLEJCQnD+/Hl06tQJALBixQoMHDgQixcvhovLoxPG2rVrh19++UXzs6enJ7788kuMGTMG5eXlMDD4561bW1vDycmp7t8IETU4wzs0weJD15GUXYjQuCy84OUodCSierEtPBlKFdC9eSO0drIUOs4z0YmRpfDwcFhbW2sKJQAIDAyEWCzGuXPnqn0dmUwGS0vLCoUSAEyfPh12dnbo0qULNm7c+MQmciUlJZDL5RU2IqLHMZMaYNSDuRobTt0SOA1R/SgoKcdPEer1ER/O3dNlOlEsZWRkwMHBocI+AwMD2NraIiMjo1rXuHfvHhYuXPjIrbvPP/8ce/bswZEjRzB8+HC89dZbWLFiRZXXWrRoEaysrDSbq6vr070hImpQxgW4QSIW4eytHFxNkz35BCId93PkHciLy+FuZ4Y+rRyefIKWE7RY+uCDDx47wfrfW1xc3DP/HrlcjkGDBsHLywuffvpphdc++eQTdO/eHX5+fnj//fcxb948fPfdd1VeLzg4GDKZTLPdvn37mTMSkf5ysTbBQG9nANA8Rk2krxRKFTY+aMb6Znc3iMW614TyvwSdszR37lyMHz++ymM8PDzg5OSErKysCvvLy8uRk5PzxLlGeXl56N+/PywsLLBv3z4YGhpWeby/vz8WLlyIkpISSKWPn7kvlUorfY2I6HEm9nDH75fS8PulNHzQvzUcLI2FjkRUJ/6OzURydiGsTAwxvGMToePUCkGLJXt7e9jb2z/xuICAAOTm5iIyMhIdO3YEABw9ehRKpRL+/v6VnieXyxEUFASpVIoDBw7A2PjJfzhFR0fDxsaGxRAR1SpfV2t0bGaDyOT72HY2GXP7tRI6ElGd2HBSPao02r8pTI104jmyJ9KJOUtt2rRB//79MXnyZEREROD06dOYMWMGRo4cqXkSLjU1Fa1bt0ZERAQAdaHUr18/FBQUYMOGDZDL5cjIyEBGRgYUCgUA4Pfff8f69esRExOD+Ph4rFq1Cl999RVmzpwp2HslIv31cKLr9rPJKC5TCJyGqPZdup2LiKQcGEpEGNfNTeg4tUZnSr4dO3ZgxowZ6Nu3L8RiMYYPH47ly5drXi8rK8P169dRWKhegykqKkrzpFzz5s0rXCsxMRFubm4wNDTEypUr8c4770ClUqF58+ZYunQpJk+eXH9vjIgajKC2jmhsbYLU3CL8GpWq0x2NiR7n4Zy8we1d4KhHt5pFqic9J09PJJfLYWVlpWlNQERUmfUnb+GLP2LhYW+Gv9/ppReTX4kAIC23CD2/PQaFUoWDM3ugXWMroSM9UXW/v3XiNhwRkb4Y0dkVFlID3LpbgKNxWU8+gUhHbDmTBIVShQCPRjpRKD0NFktERPXIwthQ06Ry3Uk2qST9kF9Sjp0PmlBO6qn7TSj/i8USEVE9G9/NDQZiEc4l5uDKHTapJN2398Jt5BWXw0NPmlD+F4slIqJ65mJtghfbq5tUcnSJdF25QqmZ2D2hh7tezsNjsUREJIBJPT0AAH9cSUdqbpHAaYhqLuRqBu7cL4KtmRFe6aAfTSj/i8USEZEA2jW2QoBHIyiUKmw+zSVQSDepVCqsPaEeHX2jazOYGEkETlQ3WCwREQlk8nPqibC7Im4jr7hM4DRET+9cYg4u35FBaiDG2IBmQsepMyyWiIgE0rulAzztzZBXUo7d57kgN+medQ9GlV7p2ASNzPV3mTAWS0REAhGLRZq5SxtPJaJMoRQ4EVH13czMQ2hcFkQi9ULR+ozFEhGRgF7yaww7cynSZMU4eDlN6DhE1bb+wYK5L7RxhIe9ucBp6haLJSIiARkbSjChuxsAYM3xW+AKVKQLsvKKse9iKgBgai8PgdPUPRZLREQCG+PfDKZGEsRl5OH4jbtCxyF6oi1nklCqUKJDU2t0bGYrdJw6x2KJiEhgVqaGGNVFvQTKmuNsUknaraCkHNvPqpc2mfKc/o8qASyWiIi0wps93GEgFiH8VjYu38kVOg5RpXafvw1ZURncGpniBS8noePUCxZLRERaoLG1CQb7uAAA1pzg6BJppzKFEusfLNEz+TkPSPRwaZPHYbFERKQlHt7S+OtKOpKzCwROQ/SoA9FpSJMVw85ciuF6urTJ47BYIiLSEm2cLdGrpT2Uqn8eyybSFkqlCmtOJAAA3uzhBmND/Vza5HFYLBERaZGHj2HvuXAb2fklAqch+sfRuCzcyMyHudQAo/31d2mTx2GxRESkRQI8GqF9EyuUlCux+UyS0HGINFYfV48qje7aFFYmhgKnqV8sloiItIhIJMK0Xp4A1L1suMAuaYMLSTm4kHwfRhIxJnbX76VNHofFEhGRlglq6wQPezPIi8ux81yK0HGINKNKL3doDAdLY4HT1D8WS0REWkYsFuF/D0aX1p9KRHGZQuBE1JBdz8jD37HqBXMbShPK/2KxRESkhYb5NoazlTHu5pXgl6g7QsehBuzhE3D92zrp/YK5lWGxRESkhYwMxJjcU/23+DXHb6FcoRQ4ETVEt3MK8Vt0GgBoRjsbIhZLRERaamQXV9iaGSElpxB/XEkXOg41QKuPJ0ChVKFnCzv4uFoLHUcwLJaIiLSUqZEBJnRzAwCsCkuASqUSNhA1KJnyYuy9oL4FPL1Pc4HTCIvFEhGRFhsb4AYzIwniMvJwNC5L6DjUgKw7cQulCiU6NbOBv7ut0HEExWKJiEiLWZkaYkxXdbfklcfiObpE9SKnoBQ7HrStmP58c4hEDWPB3MqwWCIi0nITe7jDyECMqJRchCdkCx2HGoBNpxNRVKZAu8aW6N3SXug4gmOxRESk5RwsjTGqsysAYPnRmwKnIX0nLy7TLLUzow9HlQAWS0REOmFqL08YSkQ4eysHEYk5QschPbYtPBl5xeVo4WCOfl5OQsfRCjpTLOXk5GD06NGwtLSEtbU1Jk6ciPz8/CrP6d27N0QiUYXtf//7X4VjUlJSMGjQIJiamsLBwQHvvfceysvL6/KtEBE9NRdrE7zSUT26tIKjS1RHikoV2HgqEQDwVh9PiMUcVQJ0qFgaPXo0rl69iiNHjuDgwYM4ceIEpkyZ8sTzJk+ejPT0dM327bffal5TKBQYNGgQSktLcebMGWzZsgWbN2/G/Pnz6/KtEBHVyFu9PSERi3Dy5j1cTLkvdBzSQzvOJSO7oBRNbU0xuL2L0HG0hk4US7GxsQgJCcH69evh7++PHj16YMWKFdi1axfS0tKqPNfU1BROTk6azdLSUvPa4cOHce3aNWzfvh2+vr4YMGAAFi5ciJUrV6K0tLSu3xYR0VNxtTXFS36NAQArjsYLnIb0TXGZAmtO3AKgLswNJDpRItQLnfgkwsPDYW1tjU6dOmn2BQYGQiwW49y5c1Weu2PHDtjZ2aFdu3YIDg5GYWFhhet6e3vD0dFRsy8oKAhyuRxXr16t9JolJSWQy+UVNiKi+jC9T3OIRcDRuCzEpMqEjkN6ZOe5FNzNK0FjaxO83KGJ0HG0ik4USxkZGXBwcKiwz8DAALa2tsjIyKj0vNdffx3bt2/HsWPHEBwcjG3btmHMmDEVrvvvQgmA5ueqrrto0SJYWVlpNldX15q8LSKip+ZuZ4bBPurbI5y7RLWluEyBVcfVC+bOeL45jAx0ojyoN4J+Gh988MEjE7D/u8XFxdX4+lOmTEFQUBC8vb0xevRobN26Ffv27UNCQsIz5Q4ODoZMJtNst2/ffqbrERE9DfXj3MChq5mITefINj27nyL+GVUazlGlRxgI+cvnzp2L8ePHV3mMh4cHnJyckJVVsc1/eXk5cnJy4ORU/cca/f39AQDx8fHw9PSEk5MTIiIiKhyTmZkJAFVeVyqVQiqVVvv3EhHVphaOFhjYzhl/XEnH8tCbWDWmo9CRSIcVlymwKkw9iDC9D0eVHkfQYsne3h729k/uDBoQEIDc3FxERkaiY0f1HwpHjx6FUqnUFEDVER0dDQBwdnbWXPfLL79EVlaW5jbfkSNHYGlpCS8vr6d8N0RE9eftvi3wZ0w6/orJwNU0Gdq6WAkdiXTUrogUZD0YVXqlI0eVHkcnysc2bdqgf//+mDx5MiIiInD69GnMmDEDI0eOhIuL+t59amoqWrdurRkpSkhIwMKFCxEZGYmkpCQcOHAAY8eOxXPPPYf27dsDAPr16wcvLy+88cYbuHTpEg4dOoSPP/4Y06dP58gREWm1Vk4WePHBo93L/ubcJaqZf89VequPJ0eVKqEzn8qOHTvQunVr9O3bFwMHDkSPHj2wdu1azetlZWW4fv265mk3IyMj/P333+jXrx9at26NuXPnYvjw4fj9998150gkEhw8eBASiQQBAQEYM2YMxo4di88//7ze3x8R0dOa1bcFxCLgyLVMXLnDJ+Po6e0+fxuZ8hK4WBnj1Y58WKkyIhWXsH5mcrkcVlZWkMlkFfo4ERHVtXd2R2PfxVQ839oBG8d3FjoO6ZDiMgV6fXcMmfISfDGsHcZ0bSZ0pHpX3e9vnRlZIiKiR73dtwUkYhGOxmWxqzc9le1nk5EpV89VerUT5ypVhcUSEZEOc7cz03T1/p5zl6iaCkrK8X8PnoB7u29zSA0kAifSbiyWiIh03NvPq0eXTty4iwtJOULHIR2w6XQicgpK4W5nxr5K1cBiiYhIxzVtZIpXHzzyvfTIDYHTkLaTFZZp1oCbHdiCa8BVAz8hIiI9MOP55jCUiHAmIRun4+8JHYe02NqTCcgrLkcrRwsMftB+gqrGYomISA80sTHFaH/100zfhsSBDzrT49zLL8Gm00kAgDn9WkIsFgkbSEewWCIi0hPT+zSHqZEEl+7IcOhq5YuBU8O1KiwBhaUK+DSxQj8vxyefQABYLBER6Q17Cykm9XAHAHx36DrKFUqBE5E2SZcVYdvZZADA3H6tIBJxVKm6WCwREemRSc95wNrUEAl3C/DrxVSh45AW+eHvmygtV6KLuy16trATOo5OYbFERKRHLI0NMb13cwDAsiM3UFymEDgRaYObmXnYc+E2AOD9/hxVelosloiI9MwbAc3gbGWMNFkxtj+47UIN2zch16FUAf28HNGxma3QcXQOiyUiIj1jbCjB7MAWAICVx+KRV1wmcCIS0vmkHPwdmwmJWIR5/VsLHUcnsVgiItJDwzs0gYe9Ge4XlmHtgwaE1PCoVCp89WcsAGBEZ1c0dzAXOJFuYrFERKSHDCRizAtqBQBYd/IW0mVFAiciIRy6moGLKbkwMZRgdt8WQsfRWSyWiIj0VFBbJ3R2s0FxmRKLD3EZlIamTKHEtyHXAQCTe7rDwdJY4ES6i8USEZGeEolE+GiQFwDg14t3EJMqEzgR1afd52/j1r0CNDIzwpRenkLH0WksloiI9JivqzWG+LhApQK++jOWy6A0EPkl5Vj2900AwNt9W8BcaiBwIt3GYomISM/N698KRgZinEnIxtG4LKHjUD1YeSwe9/JL4G5nhlFdmgodR+exWCIi0nNNbEzxZnf1Mihf/RmLMi6DotdSsgux4WQiAOCjgW1gZMCv+mfFT5CIqAF4q48nbM2MkHC3ALsiUoSOQ3Vo0V+xKFUo0aO5Hfq2cRA6jl5gsURE1ABYGhtqGlV+//dNyIrYqFIfnb2Vjb9iMiAWAZ+86MVlTWoJiyUiogZiVJemaO5gjpyCUiz7m60E9I1CqcJnv18DAIz2b4ZWThYCJ9IfLJaIiBoIQ4kYCwarWwlsDU/G9Yw8gRNRbdpz4TZi0+WwNDbAOy+0FDqOXmGxRETUgPRsYY+gto5QKFX49MBVthLQE/LiMiw+pG5AOSuwJWzNjAROpF9YLBERNTAfD/KC1ECM8FvZ+PNKhtBxqBasCL2J7IJSeNibYWxAM6Hj6B0WS0REDYyrrSn+96Cj8xd/XENhabnAiehZXM/Iw8bTSQDUk7oNJfxqr238RImIGqBpvT3RxMYE6bJi/N+xBKHjUA2pVCp8vP8KFEoV+rd1Qp9WbBVQF1gsERE1QMaGEnz8YN24tSduITm7QOBEVBO/RKXifNJ9mBpJMP/B5H2qfSyWiIgaqKC2jujZwg6lCiUWcLK3zsktLMWiP2MBALP6toCLtYnAifQXiyUiogZKJBLh0yFtYSQRI+z6XRy8nC50JHoK3x26juyCUrRwMMebPdyFjqPXWCwRETVgnvbmeKuPerL3Z79fg6yQnb11QfTtXOx8sGzNwmHtOKm7junMp5uTk4PRo0fD0tIS1tbWmDhxIvLz8ys9PikpCSKR6LHb3r17Ncc97vVdu3bVx1siItIK03p7wtPeDPfyS/B1SJzQcegJFEr1pG6VCnjZrzG6ejQSOpLe05liafTo0bh69SqOHDmCgwcP4sSJE5gyZUqlx7u6uiI9Pb3C9tlnn8Hc3BwDBgyocOymTZsqHDds2LA6fjdERNpDaiDBVy95AwB+ikjB+aQcgRNRVTaeSkRMqhwWxgYIHthG6DgNgk4US7GxsQgJCcH69evh7++PHj16YMWKFdi1axfS0tIee45EIoGTk1OFbd++fXjttddgbm5e4Vhra+sKxxkbG9fH2yIi0hr+Ho0wsrMrAODDX6+gtFwpcCJ6nKR7BVh8WN2p+6OBbWBvIRU4UcOgE8VSeHg4rK2t0alTJ82+wMBAiMVinDt3rlrXiIyMRHR0NCZOnPjIa9OnT4ednR26dOmCjRs3PvGJkJKSEsjl8gobEZGuCx7QBnbmRriZlY81x9l7SdsolSq8/8tllJQr0b15I4x4UNxS3dOJYikjIwMODhUbbRkYGMDW1hYZGdVr1b9hwwa0adMG3bp1q7D/888/x549e3DkyBEMHz4cb731FlasWFHltRYtWgQrKyvN5urKf2GJSPdZmRrikxfVvXpWHItHfBYX2tUmOyNScC4xByaGEnz9cnuIRCKhIzUYghZLH3zwQaWTsB9ucXHPPtmwqKgIO3fufOyo0ieffILu3bvDz88P77//PubNm4fvvvuuyusFBwdDJpNpttu3bz9zRiIibTDExwV9WtmjtFyJuXsuoVzB23HaIC23CF//pf4+fC+oFVxtTQVO1LAYCPnL586di/Hjx1d5jIeHB5ycnJCVlVVhf3l5OXJycuDk5PTE3/Pzzz+jsLAQY8eOfeKx/v7+WLhwIUpKSiCVPv5esFQqrfQ1IiJdJhKJsOjl9uj3/XFcuiPDmhO3ML1Pc6FjNWgqlQof7ruC/JJydGhqjXHd3ISO1OAIWizZ29vD3t7+iccFBAQgNzcXkZGR6NixIwDg6NGjUCqV8Pf3f+L5GzZswJAhQ6r1u6Kjo2FjY8NiiIgaLCcrY3w2tC3e2X0Jy/6+gT6tHODlYil0rAZr38VUhF2/CyOJGN++0h4SMW+/1TedmLPUpk0b9O/fH5MnT0ZERAROnz6NGTNmYOTIkXBxcQEApKamonXr1oiIiKhwbnx8PE6cOIFJkyY9ct3ff/8d69evR0xMDOLj47Fq1Sp89dVXmDlzZr28LyIibTXMtzH6eTmiTKHC3L2X+HScQO7cL8SCA1cBALMCW6C5g4XAiRomnSiWAGDHjh1o3bo1+vbti4EDB6JHjx5Yu3at5vWysjJcv34dhYWFFc7buHEjmjRpgn79+j1yTUNDQ6xcuRIBAQHw9fXFmjVrsHTpUixYsKDO3w8RkTYTiUT48iVv2JgaIjZdjhVHbwodqcFRKFWYs+cS8orL4dfUGlOf8xA6UoMlUnHlxGcml8thZWUFmUwGS0sOVROR/vjzSjre2hEFiViEX6d1g4+rtdCRGoxVYQn4JiQOZkYS/DmrJ5o1MhM6kt6p7ve3zowsERFR/Rvo7YzBPi5QKFWYvTsa+SXlQkdqEGJSZVh6RN18csGQtiyUBMZiiYiIqrRwaFs4Wxkj8V4B5v8WI3QcvVdUqsDbuy6iTKFC/7ZOeLVjE6EjNXgsloiIqErWpkb4YaQfxCLg16hU/BJ5R+hIeu2rP2Nx624BHCykWPSyN5tPagEWS0RE9ERd3G3xTmBLAMAnv8Ug4W6+wIn006GrGdh2NhkAsOQ1H9iYGQmciAAWS0REVE1v9WmObp6NUFiqwIydF1FcphA6kl5JvFeAd/dcAgBM7umOni2e3BuQ6geLJSIiqhaJWITvR/iikZkRYtPlWPRnrNCR9EZRqQLTtkcir6Qcnd1sMK9/a6Ej0b+wWCIiompztDTGktd8AABbwpNx4FKawIl0n0qlwie/xSAuIw925kb48fUOMJTw61mb8J8GERE9ld6tHDCttycAYN7PlxCTKhM4kW7bff42fo68A7EIWD7KD46WxkJHov9gsURERE/t3X6t0KulPYrLlJi6LRLZ+SVCR9JJMakyzH+wnMm7Qa3QzdNO4ET0OCyWiIjoqUnEIiwf6Qd3OzOk5hZh2o4olCm4ftzTyMorxtRtkSgtVyKwjQP+95yn0JGoEiyWiIioRqxMDbFubEeYSw0QkZiDhQevCR1JZxSVKjB5ywWk5hbBw84MS171hVjMfkraisUSERHVWHMHC3w/whcAsDU8GTvPpQgbSAcolSq8szsal+7IYGNqiI3jO8PK1FDoWFQFFktERPRMXvByxNwX/mlYeTQuU+BE2u2bkDiEXM2AkUSMtWM7wc2O675pOxZLRET0zGY83xwv+zWGQqnCWzuiEJVyX+hIWumniBSsOXELAPDtK+3R2c1W4ERUHSyWiIjomYlEInzzSnvNE3Jvbj6P+Kw8oWNplaNxmfh4v3oh4tmBLTDMr7HAiai6WCwREVGtMJSI8X+jO8DH1Rq5hWUYuyECGbJioWNphdPx9/C/7VFQKFV4ya8xZvVtIXQkegosloiIqNaYSQ2waXxneNibIU1WjHEbI5BbWCp0LEGdT8rBpC0XUFquxAtejvj2lfYQifjkmy5hsURERLXK1swIW9/sAgcLKa5n5uH1deeQU9AwC6ZLt3MxYdN5FJUp0KulPX583Y9Lmegg/hMjIqJa18TGFNsn+cPOXIpr6XKMXBuOu3kNq8v3tTQ5xm6MQH5JOQI8GmHNGx0hNZAIHYtqgMUSERHViZaOFtg1pSscLKS4kZmPkWvDkSlvGHOYolLu4/X1ZyErKkOHptZYP64TjA1ZKOkqFktERFRnmjuYY8/UALhYGSPhbgFeWxOO1NwioWPVqaNxmXh93VnkFpbB19Uam9/sAjOpgdCx6BmwWCIiojrlZmeG3VMD4GprguTsQry66gyupcmFjlUn9l64jclbI1FcpkSfVvbYOdkflsbszq3rWCwREVGdc7U1xe4pAZqn5F5ZfQaHr2YIHavWqFQqrApLwHs/X4ZCqcLwDk2wdmwnmBpxREkfsFgiIqJ64WJtgn3TuqNHczsUliowdXskVoUlQKVSCR3tmRSVKjDv58v4JiQOAPC/Xp5Y/Gp7PvWmR/hPkoiI6o2VqSE2TeiMN7o2g0qlXidt7t5LKC5TCB2tRhLvFeCl/zuNvZF3IBYBn7zohQ8GtGYfJT3DYomIiOqVoUSMhcPa4fOhbSERi/BrVCqGrTyN2HTdmsf015V0DF5xCnEZebAzN8L2Sf6Y2MNd6FhUB1gsERGRIMYGuGHLhC6wMzdCXEYehvx4CquPJ0Ch1O7bcoWl5fj0wFVM2xGF/JJydHGzxR9v90Q3Tzuho1EdEal0/WaxFpDL5bCysoJMJoOlpaXQcYiIdMq9/BIE/3oFR65lAgC6uNliyWs+cLU1FTjZo0JjMzH/t6ua9gdTe3ngvX6tYMD5STqput/fLJZqAYslIqJno1KpsPfCHXz2+1UUlCpgbCjG5J4emNrLE+Za0KMoQ1aMz36/ir9i1E/wNbY2wRcvtUOfVg4CJ6NnwWKpHrFYIiKqHSnZhXj350uISMwBANiZG2F2YEuM7OwqyOiNrLAMm88kYd3JW8gvKYdELMKknu6Y1bcF2wLoARZL9YjFEhFR7VGpVAiJycA3IXFIyi4EoO4EPq2XJwa1d66XZUPu5pVg/alb2B6ejIJS9ZN6fk2t8dVL3mjjzD/n9UV1v7915ibrl19+iW7dusHU1BTW1tbVOkelUmH+/PlwdnaGiYkJAgMDcfPmzQrH5OTkYPTo0bC0tIS1tTUmTpyI/Pz8OngHRERUHSKRCAO8nXH4nV74dLAXbEwNEZ+Vj7l7L8H/q1AsPHgNCXdr/89phVKFc7ey8eG+K+jxzVGsOX4LBaUKtHaywIpRfvjlf91YKDVQOjOytGDBAlhbW+POnTvYsGEDcnNzn3jON998g0WLFmHLli1wd3fHJ598gitXruDatWswNjYGAAwYMADp6elYs2YNysrKMGHCBHTu3Bk7d+6sdjaOLBER1R15cRm2hSdj57mUCuvKdWpmg54t7NG9eSP4uFrXqAlkabkSF1Pu488r6fgzJgN380o0r/m6WmNGn+bo28aBfZP0lN7ehtu8eTNmz579xGJJpVLBxcUFc+fOxbvvvgsAkMlkcHR0xObNmzFy5EjExsbCy8sL58+fR6dOnQAAISEhGDhwIO7cuQMXF5dqZWKxRERU9xRKFU7cuIsd55JxNC4L/+4wYGokQWc3W7R0NIezlQmcrYzhbG0CG1NDlJQrUVSqQHGZAoWlCiTczUdseh6upcsRn5WHMsU/F7I0NkC/tk54uUNjBHg0YpGk56r7/a23s9MSExORkZGBwMBAzT4rKyv4+/sjPDwcI0eORHh4OKytrTWFEgAEBgZCLBbj3LlzeOmllx577ZKSEpSU/PO3D7lctxqpERHpIolYhD6tHdCntQPScotw7HoWzsRnI/xWNnIKSnH8xl0cv3H3qa9rbWqIwDaOGOTtjO7N7WBkoDMzVKie6G2xlJGhfrzT0dGxwn5HR0fNaxkZGXBwqPjYp4GBAWxtbTXHPM6iRYvw2Wef1XJiIiKqLhdrE4z2b4bR/s2gVKpwPTMPEYk5uJ1TiHRZMdJlRUiXFUNWVAZjQwlMDCWQGophYihBExsTtHG2hJezJdo4W6KJjQlHkKhKghZLH3zwAb755psqj4mNjUXr1q3rKVH1BAcHY86cOZqf5XI5XF1dBUxERNRwicUitHlQ+BDVBUGLpblz52L8+PFVHuPh4VGjazs5OQEAMjMz4ezsrNmfmZkJX19fzTFZWVkVzisvL0dOTo7m/MeRSqWQSqU1ykVERES6RdBiyd7eHvb29nVybXd3dzg5OSE0NFRTHMnlcpw7dw7Tpk0DAAQEBCA3NxeRkZHo2LEjAODo0aNQKpXw9/evk1xERESkW3RmFltKSgqio6ORkpIChUKB6OhoREdHV+iJ1Lp1a+zbtw+Auk/H7Nmz8cUXX+DAgQO4cuUKxo4dCxcXFwwbNgwA0KZNG/Tv3x+TJ09GREQETp8+jRkzZmDkyJHVfhKOiIiI9JvOTPCeP38+tmzZovnZz88PAHDs2DH07t0bAHD9+nXIZDLNMfPmzUNBQQGmTJmC3Nxc9OjRAyEhIZoeSwCwY8cOzJgxA3379oVYLMbw4cOxfPny+nlTREREpPV0rs+SNmKfJSIiIt2jd8udEBEREQmBxRIRERFRFVgsEREREVWBxRIRERFRFVgsEREREVWBxRIRERFRFVgsEREREVWBxRIRERFRFVgsEREREVVBZ5Y70WYPm6DL5XKBkxAREVF1PfzeftJiJiyWakFeXh4AwNXVVeAkRERE9LTy8vJgZWVV6etcG64WKJVKpKWlwcLCAiKRqNauK5fL4erqitu3b3PNucfg51M1fj6V42dTNX4+VePnUzVd+nxUKhXy8vLg4uICsbjymUkcWaoFYrEYTZo0qbPrW1paav2/cELi51M1fj6V42dTNX4+VePnUzVd+XyqGlF6iBO8iYiIiKrAYomIiIioCiyWtJhUKsWCBQsglUqFjqKV+PlUjZ9P5fjZVI2fT9X4+VRNHz8fTvAmIiIiqgJHloiIiIiqwGKJiIiIqAosloiIiIiqwGKJiIiIqAoslrTYypUr4ebmBmNjY/j7+yMiIkLoSFrhxIkTGDx4MFxcXCASibB//36hI2mNRYsWoXPnzrCwsICDgwOGDRuG69evCx1La6xatQrt27fXNMsLCAjAX3/9JXQsrfX1119DJBJh9uzZQkfRCp9++ilEIlGFrXXr1kLH0hqpqakYM2YMGjVqBBMTE3h7e+PChQtCx6oVLJa01O7duzFnzhwsWLAAUVFR8PHxQVBQELKysoSOJriCggL4+Phg5cqVQkfROsePH8f06dNx9uxZHDlyBGVlZejXrx8KCgqEjqYVmjRpgq+//hqRkZG4cOECnn/+eQwdOhRXr14VOprWOX/+PNasWYP27dsLHUWrtG3bFunp6Zrt1KlTQkfSCvfv30f37t1haGiIv/76C9euXcOSJUtgY2MjdLRawdYBWsrf3x+dO3fGjz/+CEC9/pyrqytmzpyJDz74QOB02kMkEmHfvn0YNmyY0FG00t27d+Hg4IDjx4/jueeeEzqOVrK1tcV3332HiRMnCh1Fa+Tn56NDhw74v//7P3zxxRfw9fXFsmXLhI4luE8//RT79+9HdHS00FG0zgcffIDTp0/j5MmTQkepExxZ0kKlpaWIjIxEYGCgZp9YLEZgYCDCw8MFTEa6RiaTAVAXBFSRQqHArl27UFBQgICAAKHjaJXp06dj0KBBFf4MIrWbN2/CxcUFHh4eGD16NFJSUoSOpBUOHDiATp064dVXX4WDgwP8/Pywbt06oWPVGhZLWujevXtQKBRwdHSssN/R0REZGRkCpSJdo1QqMXv2bHTv3h3t2rUTOo7WuHLlCszNzSGVSvG///0P+/btg5eXl9CxtMauXbsQFRWFRYsWCR1F6/j7+2Pz5s0ICQnBqlWrkJiYiJ49eyIvL0/oaIK7desWVq1ahRYtWuDQoUOYNm0a3n77bWzZskXoaLXCQOgARFQ3pk+fjpiYGM6p+I9WrVohOjoaMpkMP//8M8aNG4fjx4+zYAJw+/ZtzJo1C0eOHIGxsbHQcbTOgAEDNP+/ffv28Pf3R7NmzbBnz54GfxtXqVSiU6dO+OqrrwAAfn5+iImJwerVqzFu3DiB0z07jixpITs7O0gkEmRmZlbYn5mZCScnJ4FSkS6ZMWMGDh48iGPHjqFJkyZCx9EqRkZGaN68OTp27IhFixbBx8cHP/zwg9CxtEJkZCSysrLQoUMHGBgYwMDAAMePH8fy5cthYGAAhUIhdEStYm1tjZYtWyI+Pl7oKIJzdnZ+5C8cbdq00ZvblCyWtJCRkRE6duyI0NBQzT6lUonQ0FDOraAqqVQqzJgxA/v27cPRo0fh7u4udCStp1QqUVJSInQMrdC3b19cuXIF0dHRmq1Tp04YPXo0oqOjIZFIhI6oVfLz85GQkABnZ2ehowiue/fuj7QpuXHjBpo1ayZQotrF23Baas6cORg3bhw6deqELl26YNmyZSgoKMCECROEjia4/Pz8Cn+TS0xMRHR0NGxtbdG0aVMBkwlv+vTp2LlzJ3777TdYWFho5rhZWVnBxMRE4HTCCw4OxoABA9C0aVPk5eVh586dCAsLw6FDh4SOphUsLCwemd9mZmaGRo0acd4bgHfffReDBw9Gs2bNkJaWhgULFkAikWDUqFFCRxPcO++8g27duuGrr77Ca6+9hoiICKxduxZr164VOlrtUJHWWrFihapp06YqIyMjVZcuXVRnz54VOpJWOHbsmArAI9u4ceOEjia4x30uAFSbNm0SOppWePPNN1XNmjVTGRkZqezt7VV9+/ZVHT58WOhYWq1Xr16qWbNmCR1DK4wYMULl7OysMjIyUjVu3Fg1YsQIVXx8vNCxtMbvv/+uateunUoqlapat26tWrt2rdCRag37LBERERFVgXOWiIiIiKrAYomIiIioCiyWiIiIiKrAYomIiIioCiyWiIiIiKrAYomIiIioCiyWiIiIiKrAYomIdE5SUhJEIhGio6OFjqLRu3dvzJ49W/Ozm5sbli1bJlgeIqo9XO6EiHSOq6sr0tPTYWdnJ3SUSp0/fx5mZmZCxyCiWsBiiYh0jkQigZOTU61ft6ysDIaGhrVyLXt7+1q5DhEJj7fhiEhQd+/ehZOTE7766ivNvjNnzsDIyAihoaGPPee/t+HCwsIgEokQGhqKTp06wdTUFN26dXtkFfTHXWP37t3o1asXjI2NsWPHDmRnZ2PUqFFo3LgxTE1N4e3tjZ9++qnCuQUFBRg7dizMzc3h7OyMJUuWPHL9/96GW7p0Kby9vWFmZgZXV1e89dZbyM/P17y+efNmWFtb49ChQ2jTpg3Mzc3Rv39/pKena44JCwtDly5dYGZmBmtra3Tv3h3JyclVfr5E9OxYLBGRoOzt7bFx40Z8+umnuHDhAvLy8vDGG29gxowZ6Nu371Nd66OPPsKSJUtw4cIFGBgY4M0333ziOR988AFmzZqF2NhYBAUFobi4GB07dsQff/yBmJgYTJkyBW+88QYiIiI057z33ns4fvw4fvvtNxw+fBhhYWGIioqq8veIxWIsX74cV69exZYtW3D06FHMmzevwjGFhYVYvHgxtm3bhhMnTiAlJQXvvvsuAKC8vBzDhg1Dr169cPnyZYSHh2PKlCkQiURP9RkRUQ0IvZIvEZFKpVK99dZbqpYtW6pef/11lbe3t6q4uLjSYxMTE1UAVBcvXlSpVCrVsWPHVABUf//9t+aYP/74QwVAVVRUVOU1li1b9sRsgwYNUs2dO1elUqlUeXl5KiMjI9WePXs0r2dnZ6tMTExUs2bN0uxr1qyZ6vvvv6/0mnv37lU1atRI8/OmTZtUACqsYr9y5UqVo6Oj5ncAUIWFhT0xLxHVLo4sEZFWWLx4McrLy7F3717s2LEDUqn0qa/Rvn17zf93dnYGAGRlZVV5TqdOnSr8rFAosHDhQnh7e8PW1hbm5uY4dOgQUlJSAAAJCQkoLS2Fv7+/5hxbW1u0atWqyt/z999/o2/fvmjcuDEsLCzwxhtvIDs7G4WFhZpjTE1N4enpWeE9PMxva2uL8ePHIygoCIMHD8YPP/xQ4RYdEdUdFktEpBUSEhKQlpYGpVKJpKSkGl3j35OzH96eUiqVVZ7z3yfWvvvuO/zwww94//33cezYMURHRyMoKAilpaU1ygSo50e9+OKLaN++PX755RdERkZi5cqVAFDhuv+dXC4SiaBSqTQ/b9q0CeHh4ejWrRt2796Nli1b4uzZszXORUTVw2KJiARXWlqKMWPGYMSIEVi4cCEmTZr0xBGhunL69GkMHToUY8aMgY+PDzw8PHDjxg3N656enjA0NMS5c+c0++7fv1/hmP+KjIyEUqnEkiVL0LVrV7Rs2RJpaWk1yufn54fg4GCcOXMG7dq1w86dO2t0HSKqPhZLRCS4jz76CDKZDMuXL8f777+Pli1bVmtydl1o0aIFjhw5gjNnziA2NhZTp05FZmam5nVzc3NMnDgR7733Ho4ePYqYmBiMHz8eYnHlf5w2b94cZWVlWLFiBW7duoVt27Zh9erVT5UrMTERwcHBCA8PR3JyMg4fPoybN2+iTZs2NX6vRFQ9LJaISFBhYWFYtmwZtm3bBktLS4jFYmzbtg0nT57EqlWr6j3Pxx9/jA4dOiAoKAi9e/eGk5MThg0bVuGY7777Dj179sTgwYMRGBiIHj16oGPHjpVe08fHB0uXLsU333yDdu3aYceOHVi0aNFT5TI1NUVcXByGDx+Oli1bYsqUKZg+fTqmTp1ak7dJRE9BpPr3DXEiIiIiqoAjS0RERERVYLFEREREVAUWS0RERERVYLFEREREVAUWS0RERERVYLFEREREVAUWS0RERERVYLFEREREVAUWS0RERERVYLFEREREVAUWS0RERERVYLFEREREVIX/B3JBYLARGDEPAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAa3BJREFUeJzt3XlYVGX/BvB7ZoBh32RXlMUVRcANcUlNEpdcykpNc8ntNTVNy6JFKytb1Ezz574vuVSaWaGG4oqiICoKKsiirAoyw77MzO+P0SlSEBE4M8P9ua5zvS9nzjncM5Xz9TnP+T4ilUqlAhERERE9lljoAERERETajMUSERERURVYLBERERFVgcUSERERURVYLBERERFVgcUSERERURVYLBERERFVgcUSERERURVYLBERERFVgcUSEdWq3r17o3fv3kLHAAC4ublh/PjxtXrNkJAQ+Pr6wtjYGCKRCLm5ubV6/doiEonw6aefCh2DSC+wWCKiCkQiUbW2sLAwoaPWu+zsbLz22mswMTHBypUrsW3bNpiZmQmW588//2RBRFQPRFwbjoj+bfv27RV+3rp1K44cOYJt27ZV2P/CCy/A0dHxkfNLS0sBAEZGRnUXsppKSkogFothaGhYK9cLCQnBgAEDcOTIEQQGBtbKNZ/FjBkzsHLlSjzuj/Hi4mIYGBjAwMBAgGRE+oX/FRFRBWPGjKnw89mzZ3HkyJFH9v9XYWEhTE1NtaJIekgqldbq9bKysgAA1tbWtXrdumBsbCx0BCK9wdtwRPTUevfujXbt2iEyMhLPPfccTE1N8eGHH2pe+++cpeTkZAwZMgRmZmZwcHDAO++8g0OHDj1yO6+wsBBxcXG4d+/eEzPcvHkTw4cPh5OTE4yNjdGkSROMHDkSMplMc8x/5yxt3rwZIpEIp0+fxpw5c2Bvbw8zMzO89NJLuHv37hPf87hx4wAAnTt3hkgk0ly7srlR//0swsLCIBKJsGfPHnz55Zdo0qQJjI2N0bdvX8THxz9y/rlz5zBw4EDY2NjAzMwM7du3xw8//AAAGD9+PFauXAmg4q3Thx43Z+nixYsYMGAALC0tYW5ujr59++Ls2bMVjnmWz4hIX3FkiYhqJDs7GwMGDMDIkSMxZsyYx96SA4CCggI8//zzSE9Px6xZs+Dk5ISdO3fi2LFjjxwbERGBPn36YMGCBVXOxSktLUVQUBBKSkowc+ZMODk5ITU1FQcPHkRubi6srKyqzD5z5kzY2NhgwYIFSEpKwrJlyzBjxgzs3r270nM++ugjtGrVCmvXrsXnn38Od3d3eHp6Vvl7KvP1119DLBbj3XffhUwmw7fffovRo0fj3LlzmmOOHDmCF198Ec7OzprPLTY2FgcPHsSsWbMwdepUpKWlPfYW6eNcvXoVPXv2hKWlJebNmwdDQ0OsWbMGvXv3xvHjx+Hv7//MnxGRvmKxREQ1kpGRgdWrV2Pq1KlVHrdmzRrcunUL+/fvx9ChQwEAU6dOhZ+fX41/97Vr15CYmIi9e/filVde0eyfP39+tc5v1KgRDh8+rBmJUSqVWL58OWQyWaWF1gsvvIDU1FSsXbsWAwYMQKdOnWqcv7i4GNHR0ZpbljY2Npg1axZiYmLQrl07KBQKTJ06Fc7OzoiOjq5w2+/h/KSAgAC0bNmyWrdIAeDjjz9GWVkZTp06BQ8PDwDA2LFj0apVK8ybNw/Hjx+vcHxNPiMifcXbcERUI1KpFBMmTHjicSEhIWjcuDGGDBmi2WdsbIzJkyc/cmzv3r2hUqme+ITXwy/rQ4cOobCw8OmCA5gyZUqFW1Y9e/aEQqFAcnLyU1+rJiZMmFBhblfPnj0BALdu3QKgvl2WmJiI2bNnPzI/6t+5q0uhUODw4cMYNmyYplACAGdnZ7z++us4deoU5HJ5hXOE/oyItAmLJSKqkcaNG1drMndycjI8PT0f+ZJv3rx5jX+3u7s75syZg/Xr18POzg5BQUFYuXJlhflKVWnatGmFn21sbAAA9+/fr3Gmp/Gk35+QkAAAaNeuXa38vrt376KwsBCtWrV65LU2bdpAqVTi9u3bT5WRqCFhsURENWJiYiLo71+yZAkuX76MDz/8EEVFRXj77bfRtm1b3Llz54nnSiSSx+6vaSeVykZ7FApFvfz+uqALGYnqC4slIqpTzZo1Q0JCwiNfso97+utpeXt74+OPP8aJEydw8uRJpKamYvXq1c983adlY2Pz2E7eNb1l9XDieExMTJXHVfeWnL29PUxNTXH9+vVHXouLi4NYLIarq+vTByVqIFgsEVGdCgoKQmpqKg4cOKDZV1xcjHXr1j1ybHVbB8jlcpSXl1fY5+3tDbFYjJKSktoJ/hQ8PT1x9uxZTUNOADh48OAjt7aqq0OHDnB3d8eyZcseKcL+XXQ+7B7+pCVXJBIJ+vXrh99++w1JSUma/ZmZmdi5cyd69OgBS0vLGmUlagj4NBwR1ampU6fixx9/xKhRozBr1iw4Oztjx44dmqaJ/x4dqW7rgKNHj2LGjBl49dVX0bJlS5SXl2Pbtm2QSCQYPnx4Xb+lR0yaNAk///wz+vfvj9deew0JCQnYvn17jVsLiMVirFq1CoMHD4avry8mTJgAZ2dnxMXF4erVqzh06BAAoGPHjgCAt99+G0FBQZBIJBg5cuRjr/nFF1/gyJEj6NGjB9566y0YGBhgzZo1KCkpwbfffluzN07UQLBYIqI6ZW5ujqNHj2LmzJn44YcfYG5ujrFjx6Jbt24YPnx4jTpN+/j4ICgoCL///jtSU1NhamoKHx8f/PXXX+jatWsdvIuqBQUFYcmSJVi6dClmz56NTp064eDBg5g7d+4zXfPYsWP47LPPsGTJEiiVSnh6elZ4ivDll1/GzJkzsWvXLmzfvh0qlarSYqlt27Y4efIkgoODsWjRIiiVSvj7+2P79u2P9Fgiooq4NhwRCWLZsmV45513cOfOHTRu3FjoOERElWKxRER1rqioqMLTc8XFxfDz84NCocCNGzcETEZE9GS8DUdEde7ll19G06ZN4evrC5lMhu3btyMuLg47duwQOhoR0ROxWCKiOhcUFIT169djx44dUCgU8PLywq5duzBixAihoxERPRFvwxERERFVgX2WiIiIiKrAYomIiIioCpyzVAuUSiXS0tJgYWFRoxXBiYiIqP6pVCrk5eXBxcUFYnHl40cslmpBWloa11UiIiLSUbdv30aTJk0qfZ3FUi2wsLAAoP6wub4SERGRbpDL5XB1ddV8j1eGxVIteHjrzdLSksUSERGRjnnSFBpO8CYiIiKqAoslIiIioiqwWCIiIiKqAoslIiIioiqwWCIiIiKqAoslIiIioiqwWCIiIiKqAoslIiIioiqwWCIiIiKqAoslIiIioiroVLF04sQJDB48GC4uLhCJRNi/f/8TzwkLC0OHDh0glUrRvHlzbN68+ZFjVq5cCTc3NxgbG8Pf3x8RERG1H56IiIh0kk4VSwUFBfDx8cHKlSurdXxiYiIGDRqEPn36IDo6GrNnz8akSZNw6NAhzTG7d+/GnDlzsGDBAkRFRcHHxwdBQUHIysqqq7dBREREOkSkUqlUQoeoCZFIhH379mHYsGGVHvP+++/jjz/+QExMjGbfyJEjkZubi5CQEACAv78/OnfujB9//BEAoFQq4erqipkzZ+KDDz6oVha5XA4rKyvIZDIupEsAAJVKhVKFEsVlShSXKWAoEcPG1PCJizUSEVH9qe73t0E9Zqp34eHhCAwMrLAvKCgIs2fPBgCUlpYiMjISwcHBmtfFYjECAwMRHh5e6XVLSkpQUlKi+Vkul9ducNIZhaXliE2X41p6Hq6lyXEtXY5bWfkoKC2H8j9/DTEyEMPZyhjOVsZwsTaBr6s1unk2gqe9OYsoIiItptfFUkZGBhwdHSvsc3R0hFwuR1FREe7fvw+FQvHYY+Li4iq97qJFi/DZZ5/VSWbSfvkl5QiNzcSfV9IRdv0uSsqVVR4vEYugUKpQWq5EcnYhkrMLAQC/RqUCABwspOjm2Qg9W9hjgLcTTI30+j9LIiKdwz+VayA4OBhz5szR/CyXy+Hq6ipgIqprKpUKJ2/ew45zyY8USA4WUrR1sUQbZ0t4uViilaMFrEwNYWwogYmhBIYSMUrLlciUFyMttwgZ8mIkZxfiXGI2LiTdR1ZeCfZHp2F/dBo+/f0qhndogtf9m6Klo4WA75iIiB7S62LJyckJmZmZFfZlZmbC0tISJiYmkEgkkEgkjz3Gycmp0utKpVJIpdI6yUzaRalU4UhsJlYei8flOzLNfnc7Mwz0dsJAb2d4OVs+8TaakYEYrramcLU1/dfeFiguUyAq5T7OxGfjwKU0pOQUYvOZJGw+k4QubraY8pwH+rZx4G06IiIB6XWxFBAQgD///LPCviNHjiAgIAAAYGRkhI4dOyI0NFQzUVypVCI0NBQzZsyo77ikRVQqFQ5cSsPKY/G4kZkPADA2FGNk56Z4tVOTahVI1WFsKEE3Tzt087TDnBda4lT8PWw/m4zQuCxEJOUgIikH/u62+GhQG7RvYv3Mv4+IiJ6eThVL+fn5iI+P1/ycmJiI6Oho2NraomnTpggODkZqaiq2bt0KAPjf//6HH3/8EfPmzcObb76Jo0ePYs+ePfjjjz8015gzZw7GjRuHTp06oUuXLli2bBkKCgowYcKEen9/pB3is/Lw4b4YRCTmAAAspAYY260Z3uzujkbmdTeiKBaL8FxLezzX0h7psiJsPpOETaeTcC4xB0N+PI0hPi54L6jVf0aniIiorulU64CwsDD06dPnkf3jxo3D5s2bMX78eCQlJSEsLKzCOe+88w6uXbuGJk2a4JNPPsH48eMrnP/jjz/iu+++Q0ZGBnx9fbF8+XL4+/tXOxdbB+iH4jIF/u9YPFYdT0CZQgUTQwmm9fbE+O5usDQ2FCRTam4Rlhy6jl8vqieDGxmI8V6/VpjYwx1iMW/NERE9i+p+f+tUsaStWCzpvojEHMz7+RKSHjyp9nxrB3w+tC2a2GjHKE5Mqgxf/hGL8FvZAICuHrZY/KqP1uQjItJFLJbqEYsl3aVUqrDmxC18dygOShXgaCnFp4Pbon87J62bVK1SqfBTxG0sPHgNRWUKWEgN8NnQtnjJr7HWZSUi0gUsluoRiyXdJCssw9y90fg7Vr20zcsdGuPTIW0Fu+VWXUn3CvDOnmhcTMkFAAzxccG3r7SHsaFE2GBERDqmut/fOrU2HFFtuXJHhkErTuLv2CwYGYjx9cveWPKqj9YXSgDgZmeGvVMDMPeFljAQi3DgUhpGrAlHprxY6GhERHqJxRI1OH9cTsfwVWdw534Rmtqa4tdp3TCyS1OdupVlIBFjZt8W2D7JHzamhrh0R4ahP55GTKrsyScTEdFTYbFEDcqWM0mY8VMUShVKBLZxwO8ze6BdYyuhY9VYV49G2D+9O5o7mCNDXoxXVp/Bn1fShY5FRKRXWCxRg6BSqbD40HUsOHAVKhUwNqAZ1rzRCVYm2n/b7UmaNTLDr291Q6+W9iguU+KtHVHYdDpR6FhERHqDxRLpvXKFEh/8cgU/HlM3NJ37Qkt8NqQtJHrUp8jS2BAbxnXC+G5uAIDPfr+GNccThA1FRKQndKqDN9HTKlMoMWNnFA5dzYRYBHz1kjdGdmkqdKw6YSARY8FgL1gaG2D50Xgs+isOJeVKvN23hdDRiIh0Gosl0lsKpQrv7I7GoauZMDIQ48dRfujXtvIFkvWBSCTCnH6tYGQgxuLDN7D0yA2UKZSY80JLnZrATkSkTXgbjvSSUqnC+79cxsHL6TCUiLBmTEe9L5T+bcbzLfDhwNYAgBVH4/FNyHWwpRoRUc2wWCK9o1KpMP9ADH6OvAOJWIQVo/zQp7WD0LHq3ZTnPLFgsBcAYPXxBKw5cUvgREREuonFEukVlUqFL/6IxfazKRCJgKWv+aB/O2ehYwlmQnd3fDyoDQDg67/i8HPkHYETERHpHhZLpFf+LywBG06pH5v/5uX2GOrbWOBEwpvU0wNTnvMAALz/y2UcjcsUOBERkW5hsUR64+DlNHx36DoAYMFgL7zW2VXgRNrjg/6t8bJfYyiUKry1IwpRKfeFjkREpDNYLJFeiEq5jzl7LgEA3uzujgnd3QVOpF3EYhG+eaU9erdSN658c/N5xGflCx2LiEgnsFginXc7pxCTt1xAabl6CZOPHszRoYoMJWL83+gO8HG1Rm5hGSZvvQBZUZnQsYiItB6LJdJpsqIyTNh8HtkFpfBytsQPI/30qjN3bTM1MsDGcZ3Q2NoEifcK8PZPF6FQsqUAEVFVWCyRzlIoVZixMwrxWflwtJRiw/hOMJOyz+qTNDKXYs0bHWFsKMbxG3c187yIiOjxWCyRzlp65DpO3rwHE0MJNozrDGcrE6Ej6Yx2ja3w7Ss+ANQ9mH6LThU4ERGR9mKxRDopNDYTK4+pF4r9erg32jW2EjiR7hni44L/9fIEoG4pEJMqEzgREZF2YrFEOud2TiHe2R0NABgb0Iy9lJ7Be0GtNE/ITdl6AfcLSoWORESkdVgskU4pLlNg2o5IyIvL4etqzSffnpFELMIPI/3g1sgUabJivPfzZa4hR0T0HyyWSKd89vtVxKTKYWNqiJWjO0BqIBE6ks6zMjHEj693gJFEjL9jM7H5TJLQkYiItAqLJdIZ+y7ewU8RtyESAT+M9ENja07ori3tGlvhw4GtAQCL/ozj/CUion9hsUQ64XZOIT7ZfxUAMKtvCzzX0l7gRPpnXDc3vODliFKFEjN2RiG/pFzoSEREWoHFEmm9coUS7+yORn5JOTq72WDm8y2EjqSXRCIRvnulPVysjJGUXYiP913h/CUiIrBYIh2wKiwBF5Lvw1xqgKWv+bJDdx2yNjXCD6PUXdD3R6fhlyj2XyIiYrFEWi36di6Whd4EAHw+tC1cbU0FTqT/OrvZ4p1A9ejdpweuIjW3SOBERETCYrFEWqugpBzv7I6GQqnCi+2d8ZIf+ynVl2m9m6NDU2vkl5Tj/Z8vQ8n144ioAWOxRFrriz9ikXivAM5WxvhymDdEIt5+qy8SsQiLX/WBsaEYp+LvYce5ZKEjEREJhsUSaaXjN+7ip4gUiETAktd8YGVqKHSkBsfD3hzv91e3E/jqzzgk3SsQOBERkTB0rlhauXIl3NzcYGxsDH9/f0RERFR6bO/evSESiR7ZBg0apDlm/Pjxj7zev3//+ngrVIn8knJ8+OsVAMD4bm7o5mkncKKGa1yAG7p62KKoTIH3fr4EBW/HEVEDpFPF0u7duzFnzhwsWLAAUVFR8PHxQVBQELKysh57/K+//or09HTNFhMTA4lEgldffbXCcf37969w3E8//VQfb4cq8W1IHFJzi+Bqa4L3gloJHadBE4tF+O4VH5gZSXA+6T42nkoUOhIRUb3TqWJp6dKlmDx5MiZMmAAvLy+sXr0apqam2Lhx42OPt7W1hZOTk2Y7cuQITE1NHymWpFJpheNsbGzq4+3QY0Qk5mBruHp+zNcvt4epkYHAicjV1hQfv+gFAPju8HUk3M0XOBERUf3SmWKptLQUkZGRCAwM1OwTi8UIDAxEeHh4ta6xYcMGjBw5EmZmZhX2h4WFwcHBAa1atcK0adOQnZ1d5XVKSkogl8srbPTsissUeP+XywCAkZ1d0b05b79pi5GdXdGzhR1Ky5X4iM0qiaiB0Zli6d69e1AoFHB0dKyw39HRERkZGU88PyIiAjExMZg0aVKF/f3798fWrVsRGhqKb775BsePH8eAAQOgUCgqvdaiRYtgZWWl2VxdXWv2pqiC7/++gcR7BXC0lOLDQW2EjkP/IhKJ8NVL3jA2FOPsrRzsjbwjdCQionqjM8XSs9qwYQO8vb3RpUuXCvtHjhyJIUOGwNvbG8OGDcPBgwdx/vx5hIWFVXqt4OBgyGQyzXb79u06Tq//Lt/JxboTtwAAXw7zhqUxn37TNq62pngnsCUA4Ks/Y5GdXyJwIiKi+qEzxZKdnR0kEgkyMzMr7M/MzISTk1OV5xYUFGDXrl2YOHHiE3+Ph4cH7OzsEB8fX+kxUqkUlpaWFTaquXKFEsG/XoFSBQzxcUGgl+OTTyJBvNnDHW2cLZFbWIYv/ogVOg4RUb3QmWLJyMgIHTt2RGhoqGafUqlEaGgoAgICqjx37969KCkpwZgxY574e+7cuYPs7Gw4Ozs/c2aqnu1nk3E1TQ5LYwPMH+wldByqgqFEjEUve0MkAvZdTMXJm3eFjkREVOd0plgCgDlz5mDdunXYsmULYmNjMW3aNBQUFGDChAkAgLFjxyI4OPiR8zZs2IBhw4ahUaNGFfbn5+fjvffew9mzZ5GUlITQ0FAMHToUzZs3R1BQUL28p4YuK68YSw7fAADM698aduZSgRPRk/i6WmNcgBsA4KN9MSgqrXx+HxGRPtCp57JHjBiBu3fvYv78+cjIyICvry9CQkI0k75TUlIgFles/65fv45Tp07h8OHDj1xPIpHg8uXL2LJlC3Jzc+Hi4oJ+/fph4cKFkEr5pV0fvvojFnkl5fBpYoVRXZoKHYeq6d2gVjh0NQMpOYVYcfQm5j3o9E1EpI9EKj4D/MzkcjmsrKwgk8k4f+kpnEm4h9fXnYNIBByY3gPeTayEjkRP4fDVDEzZFglDiQiHZj8HD3tzoSMRET2V6n5/69RtONIfpeVKfLI/BgDwRtdmLJR00Atejujdyh5lChU+P3iNvZeISG+xWCJBrD91Cwl3C2BnboS5/bikiS4SiUSY/6IXDCUihF2/i9DYxy87RESk61gsUb1LzS3C8tCbAICPBrWBlQl7KukqD3tzTOzhAQD4/OA1FJdxsjcR6R8WS1Tvvv4rDsVlSnRxt8Uw38ZCx6FnNPP55nC0lCIlp1DTWJSISJ+wWKJ6FZmcg98vpUEkAua/6AWRSCR0JHpGZlIDfDhQvTzNyrB4pOYWCZyIiKh2sViieqNUqvDZ79cAACM6uaJdY07q1hdDfFzQxc0WxWVKfMXO3kSkZ1gsUb359WIqLt+RwVxqwEndekYkEuHTIW0hFgF/XElHeEK20JGIiGoNiyWqFwUl5fg2JA6Aeo6LvQWbfuobLxdLjPZvBgD48s9rUCrZSoCI9AOLJaoXq8ISkJVXgmaNTDG+u5vQcaiOzA5sAQupAWJS5dh3MVXoOEREtYLFEtW52zmFWHtS/ZTUhwPbQGogETgR1ZVG5lK81ac5AGDx4etcN46I9AKLJapz34TEobRciW6ejdDPy1HoOFTHJnR3Q2NrE6TLirHhFFsJEJHuY7FEderS7VwcvJwOkQj4eBBbBTQExoYSzOuvnsCvvv1aLHAiIqJnw2KJ6oxKpcKiv9SPkb/s1wReLlxkuKEY3N4FPk2sUFCqwPdHbgodh4jombBYojoTdv0uzt7KgZGBGHP6tRQ6DtUjsViEjwZ5AQB2n0/Bjcw8gRMREdUciyWqEwqlCl//pW4VMKGbeg4LNSxd3G0R1NYRShXw1Z9sVElEuovFEtWJX6Lu4HpmHqxMDPFW7+ZCxyGBfDCgDQzEogejjGxUSUS6icUS1briMgW+P3IDADC9jyesTA0FTkRCcbczw8gurgCAb0PioFKxUSUR6R4WS1TrNp1OQrqsGI2tTTA2wE3oOCSwt59vAWNDMaJSchEamyV0HCKip8ZiiWrV/YJS/F9YPABgbr+WMDZkA8qGzsHSGBO6uwMAvjt0HQoug0JEOobFEtWq1ScSkFdcjjbOlhjm21joOKQl/vecJyyNDXA9Mw+/RXMZFCLSLSyWqNZkyYux5UwSAOC9oJYQi9mAktSsTA0x7cFE/6VHbqCknMugEJHuYLFEtWblsXgUlynh19QafVo5CB2HtMz4bm5wsJDizv0i/HQuReg4RETVxmKJasWd+4XYGaH+AnyvXysua0KPMDGSYFZgCwDAj8fiUVBSLnAiIqLqYbFEtWJFaDzKFCp082yEbs3thI5DWuq1Tq5wa2SKe/ml2HQ6Ueg4RETVwmKJnlnivQL8HHUHADC3XyuB05A2M5SI8c4L6qVv1p1MhLy4TOBERERPxmKJntn3R25AoVTh+dYO6NjMRug4pOVebO+C5g7mkBWVYdOpJKHjEBE9EYsleiZxGXL8fjkNgLqvEtGTSMQizH4wd2n9qVuQFXJ0iYi0G4sleiZLD9+ASgUM8nZGWxcroeOQjhjYzhmtHC2QV1yODaduCR2HiKhKLJaoxmJSZTh8LRMiEfDOCy2EjkM6RCwWaf6d2Xg6CfcLSgVORERUORZLVGPLQ28CAIb4uKC5g4XAaUjX9PNygpezJfJLyrHuJEeXiEh7sViiGrma9s+o0sznmwsdh3SQenRJPc9t85kkZOeXCJyIiOjxdK5YWrlyJdzc3GBsbAx/f39ERERUeuzmzZshEokqbMbGxhWOUalUmD9/PpydnWFiYoLAwEDcvHmzrt+Gzns4qjS4PUeVqOYC2zjAu7EVCksVWHuCo0tEpJ10qljavXs35syZgwULFiAqKgo+Pj4ICgpCVlZWpedYWloiPT1dsyUnJ1d4/dtvv8Xy5cuxevVqnDt3DmZmZggKCkJxcXFdvx2ddS1NjkNX1aNKb/flqBLVnEgkwpwHo0tbwpNwj6NLRKSFdKpYWrp0KSZPnowJEybAy8sLq1evhqmpKTZu3FjpOSKRCE5OTprN0dFR85pKpcKyZcvw8ccfY+jQoWjfvj22bt2KtLQ07N+/vx7ekW56OKr0IkeVqBb0bmUPnyZWKC5TYv1JdvUmIu2jM8VSaWkpIiMjERgYqNknFosRGBiI8PDwSs/Lz89Hs2bN4OrqiqFDh+Lq1aua1xITE5GRkVHhmlZWVvD396/ymiUlJZDL5RW2hiI2XY6QqxnqUSXOVaJaIBKJMPN59ZNx28L5ZBwRaR+dKZbu3bsHhUJRYWQIABwdHZGRkfHYc1q1aoWNGzfit99+w/bt26FUKtGtWzfcuaNemuPheU9zTQBYtGgRrKysNJurq+uzvDWdsuKoelRpoLczWjhyVIlqR982DvBytkRBqYJrxhGR1tGZYqkmAgICMHbsWPj6+qJXr1749ddfYW9vjzVr1jzTdYODgyGTyTTb7du3aymxdovLkOPPKw9HldhXiWqPenRJPVK56XQSZEXs6k1E2kNniiU7OztIJBJkZmZW2J+ZmQknJ6dqXcPQ0BB+fn6Ij48HAM15T3tNqVQKS0vLCltDsPJYAoAH3ZedOKpEtSuorRNaOpojr6QcW84kCR2HiEhDZ4olIyMjdOzYEaGhoZp9SqUSoaGhCAgIqNY1FAoFrly5AmdnZwCAu7s7nJycKlxTLpfj3Llz1b5mQ5F4rwB/PFgDbnofzlWi2icWizT/bm08nYj8knKBExERqelMsQQAc+bMwbp167BlyxbExsZi2rRpKCgowIQJEwAAY8eORXBwsOb4zz//HIcPH8atW7cQFRWFMWPGIDk5GZMmTQKgHvqfPXs2vvjiCxw4cABXrlzB2LFj4eLigmHDhgnxFrXWqrB4KFVA39YO8HJpGCNpVP9ebO8CDzsz5BaWYVt48pNPICKqBwZCB3gaI0aMwN27dzF//nxkZGTA19cXISEhmgnaKSkpEIv/qf/u37+PyZMnIyMjAzY2NujYsSPOnDkDLy8vzTHz5s1DQUEBpkyZgtzcXPTo0QMhISGPNK9syFJzi/BrVCoAYDqfgKM6JHkwujR37yWsP3kL47o1g6mRTv0xRUR6SKRSqVRCh9B1crkcVlZWkMlkejl/acFvMdgSnoxuno2wc3JXoeOQnitXKPH8kuNIySnEx4PaYFJPD6EjEZGequ73t07dhqP6dzevBLvOq5/2m8G5SlQPDCRiTOvtCQBYfzIRJeUKgRMRUUPHYomqtP7ULZSUK+HX1BoBno2EjkMNxMsdGsPRUooMeTH2PbgFTEQkFBZLVKncwlJsfzDJdkaf5hCJRAInooZCaiDB5Ae339acuAWFkrMFiEg4LJaoUpvPJKGgVIE2zpZ4vrWD0HGogRnVpSmsTQ2ReK8Af8WkCx2HiBowFkv0WAUl5dh0OgkAML2PJ0eVqN6ZSQ0wLsANAPB/xxLAZ1GISCgsluixfopIgayoDO52ZhjQzlnoONRAje/mBlMjCa6ly3H8xl2h4xBRA8ViiR5RWq7EhlPqxUynPOcBiZijSiQMGzMjjOrSFADwf2EJAqchooaKxRI94rfoVKTLimFvIcVLfo2FjkMN3OSeHjCUiBCRmIPI5Byh4xBRA8RiiSpQKlVYc+IWAGBiD3cYG0oETkQNnZOVMYZ3aAJAPXeJiKi+sViiCv6OzUR8Vj4spAZ43b+p0HGIAABTe3lCLAJC47JwPSNP6DhE1MCwWCINlUqF1cfVf3MfE9AMlsaGAiciUvv3gwZrH4x8EhHVFxZLpHE+6T6iUnJhZCDGhO5uQschqmDKc+omleo5dUUCpyGihoTFEmmsCosHAAzv0AQOFsYCpyGqyMfVGl09bFGuVGHjg6c1iYjqA4slAgDEpstx7PpdiEXA1Oe4yjtpp6m91Avs7jyn7gNGRFQfWCwRAGDdg3kgA9o5w83OTOA0RI/Xu6U9WjlaoKBUgR3nkoWOQ0QNBIslQlpuEQ5cSgMATO3FUSXSXiKRSDN3adPpJJSUKwROREQNAYslwuYzSShXquDvbov2TayFjkNUpcE+LnC2MsbdvBLsv5gqdBwiagBYLDVw8uIy7DyXAoCjSqQbjAzEeLO7OwBgzYlbUCq5wC4R1S0WSw3crogU5JeUo7mDOXq3dBA6DlG1jOziCgtjA9y6W4C/YzOFjkNEeo7FUgNWWq7ExlNJAIDJPd0h5oK5pCMsjA0xpmszAGxSSUR1j8VSA3bwchoy5MWwM5diGBfMJR0zvpsbDCUiXEi+j4sp94WOQ0R6jMVSA6VSqTR/I5/Q3Q1SAy6YS7rF0dIYQ3zURf76k2xSSUR1h8VSA3Uq/h7iMvJgaiTBaC6YSzpqUk/1RO+/YtJxO6dQ4DREpK9YLDVQD0eVXuvkCmtTI4HTENVMG2dL9GxhB6UK2Hiao0tEVDdYLDVAselynLx5D2IRMLGHu9BxiJ7J5J7qlhe7z9+GrJBLoBBR7WOx1ABteLAI6YB2znC1NRU4DdGz6dnCDq2dLFBYqsDOiBSh4xCRHmKx1MBkyYvxW7S66/HEnhxVIt0nEok0I6SbzySitFwpcCIi0jcslhqYbWeTUaZQoUNTa3RoaiN0HKJaMcTXBfYWUmTKS3DwcprQcYhIz7BYakCKyxTYfla9UvuknlzahPSH1ECC8d3cAADrTiZCpeISKERUe1gsNSC/RqXifmEZmtiYoJ+Xo9BxiGrVaP+mMDGUIDZdjvCEbKHjEJEeYbHUQCiVKmw49bAJpTsMJPxHT/rF2tQIr3ZqAuCfhxiIiGqDzn1jrly5Em5ubjA2Noa/vz8iIiIqPXbdunXo2bMnbGxsYGNjg8DAwEeOHz9+PEQiUYWtf//+df026t3xG3eRcLcAFlIDvPbgC4VI30zorp7oHRqXhVt38wVOQ0T6QqeKpd27d2POnDlYsGABoqKi4OPjg6CgIGRlZT32+LCwMIwaNQrHjh1DeHg4XF1d0a9fP6SmplY4rn///khPT9dsP/30U328nXq1/sGoknq1dkOB0xDVDXc7M/Rt7QAA2HQ6SdgwRKQ3dKpYWrp0KSZPnowJEybAy8sLq1evhqmpKTZu3PjY43fs2IG33noLvr6+aN26NdavXw+lUonQ0NAKx0mlUjg5OWk2Gxv9ekrsWpocp+OzIRGLMO7BJFgiffWwjcDPkXeQW1gqcBoi0gc6UyyVlpYiMjISgYGBmn1isRiBgYEIDw+v1jUKCwtRVlYGW1vbCvvDwsLg4OCAVq1aYdq0acjOrnpyaElJCeRyeYVNm/3ThNIJTWzYhJL0W4BnI7R2skBRmQI/RdwWOg4R6QGdKZbu3bsHhUIBR8eKT3E5OjoiIyOjWtd4//334eLiUqHg6t+/P7Zu3YrQ0FB88803OH78OAYMGACFQlHpdRYtWgQrKyvN5urqWrM3VQ+y8orx+yV13xkubUINwb+bVG45k4QyBZtUEtGz0Zli6Vl9/fXX2LVrF/bt2wdjY2PN/pEjR2LIkCHw9vbGsGHDcPDgQZw/fx5hYWGVXis4OBgymUyz3b6tvX973XE2BaUKJfyaWsOPTSipgRji6wI7cyky5MX480q60HGISMfpTLFkZ2cHiUSCzMzMCvszMzPh5ORU5bmLFy/G119/jcOHD6N9+/ZVHuvh4QE7OzvEx8dXeoxUKoWlpWWFTRsVlymw45y6CSVHlaghkRpI8EbXZgCAjafYpJKIno3OFEtGRkbo2LFjhcnZDydrBwQEVHret99+i4ULFyIkJASdOnV64u+5c+cOsrOz4ezsXCu5hfT7pTTcyy+Fi5Ux+retuqAk0jejuzaFkYEYl+7IEJVyX+g4RKTDdKZYAoA5c+Zg3bp12LJlC2JjYzFt2jQUFBRgwoQJAICxY8ciODhYc/w333yDTz75BBs3boSbmxsyMjKQkZGB/Hx1/5X8/Hy89957OHv2LJKSkhAaGoqhQ4eiefPmCAoKEuQ91haVSoWNDx6dHtvNjU0oqcGxM5fiJd/GANikkoiejU59g44YMQKLFy/G/Pnz4evri+joaISEhGgmfaekpCA9/Z/5CatWrUJpaSleeeUVODs7a7bFixcDACQSCS5fvowhQ4agZcuWmDhxIjp27IiTJ09CKpUK8h5rS/itbMSmy2FiKMHIzto7AZ2oLr354PZzSEwG7twvFDgNEekqkYo385+ZXC6HlZUVZDKZ1sxfmrTlAv6OzcSYrk3xxTBvoeMQCWb0+rM4HZ+Nqc95IHhgG6HjEJEWqe73t06NLFH1JN0rQGiceiL8w+UfiBqqCd3U/w38FJGCwtJygdMQkS5isaSHNp9JgkoF9GllD097c6HjEAnq+dYOaNbIFPLicvwSlfrkE4iI/oPFkp6RF5dh7wV136c32S6ACGKxCOMfLPOz+XQilErOPCCip8NiSc/sOX8bBaUKtHAwR4/mdkLHIdIKr3RsAnOpARLuFuDEzbtCxyEiHcNiSY8olCpsDVc3oZzQ3R0ikUjgRETawcLYEK91Uj8VuulBSw0ioupisaRHjsZlISWnEFYmhnjJr7HQcYi0yvhubhCJgOM37iI+K1/oOESkQ1gs6ZFNp9WN90Z2cYWJkUTgNETapWkjU/Rtre7JtvkMm1QSUfWxWNITcRlynEnIhlgEjA1wEzoOkVZ6s4cbAOCXyFTICsuEDUNEOoPFkp7YciYJABDU1gmNrU2EDUOkpQI8GqG1kwWKyhTYfSFF6DhEpCNYLOmB+wWl+PVB/xg2oSSqnEgkwoTubgCALWeSoWAbASKqBhZLeuCn8ykoKVeirYslOrvZCB2HSKsN9W0Ma1NDpOYW4e/YTKHjEJEOYLGk48oVSmx70C5A/bQP2wUQVcXYUIJRXZoC+OehCCKiqrBY0nGHrmYiXVaMRmZGGOzjInQcIp3wRtdmkIhFOHsrB7HpcqHjEJGWY7Gk4x4+Aj3avymMDdkugKg6XKxN0L+tE4B/Ho4gIqoMiyUdFpMqw/mk+zAQizC6azOh4xDplPEPJnrvu5iK+wWlwoYhIq3GYkmHbX7wN+KB3s5wtDQWNgyRjunUzAZtXSxRUq7ET+fZRoCIKsdiSUfdyy/Bgeg0AP/8DZmIqk/dRkDdamNbeDLKFUqBExGRtmKxpKN2RaSgVKGETxMr+LlaCx2HSCe92N4ZjcyMkC4rxuFrbCNARI/HYkkHlSmU2H5WfdtgfHe2CyCqKWNDCV73ZxsBIqqawdOeoFQqcfz4cZw8eRLJyckoLCyEvb09/Pz8EBgYCFdX17rISf9y6GoGMuTFsDOXYqC3s9BxiHTamK7NsCosAeeT7iMmVYZ2ja2EjkREWqbaI0tFRUX44osv4OrqioEDB+Kvv/5Cbm4uJBIJ4uPjsWDBAri7u2PgwIE4e/ZsXWZu8DafTgKgbhcgNWC7AKJn4WhpjAEP/tLBNgJE9DjVLpZatmyJy5cvY926dZDL5QgPD8cvv/yC7du3488//0RKSgoSEhLQs2dPjBw5EuvWravL3A3WlTsyXEi+D0OJCKMf3D4gomczvpsbAOC3S2nIYRsBIvqPahdLhw8fxp49ezBw4EAYGho+9phmzZohODgYN2/exPPPP19rIekf/24X4MB2AUS1okNTa3g3tkJpuRI/RbCNABFVVO1iqU2bNtW+qKGhITw9PWsUiCp3L78Ev1960C7gwd+EiejZiUQizX9T28+yjQARVVSjp+E+/fRTKJWP/mEik8kwatSoZw5Fj1ehXUBTG6HjEOmVF33YRoCIHq9GxdKGDRvQo0cP3Lp1S7MvLCwM3t7eSEhIqLVw9I8yhRLbziYDYBNKorogNfinjcBmTvQmon+pUbF0+fJlNGnSBL6+vli3bh3ee+899OvXD2+88QbOnDlT2xkJ6nYBmfIStgsgqkOj/ZvBQCxCRGIOrqXJhY5DRFriqfssAYCNjQ327NmDDz/8EFOnToWBgQH++usv9O3bt7bz0QMP2wW8znYBRHXGycoY/ds54eDldGw5k4RvXmkvdCQi0gI17uC9YsUK/PDDDxg1ahQ8PDzw9ttv49KlS7WZjR6ISVW3CzAQizCG7QKI6tSEB7e590en4j7bCBARalgs9e/fH5999hm2bNmCHTt24OLFi3juuefQtWtXfPvtt7WdscFjuwCi+tOhqQ28G1uhpFyJn86zjQAR1bBYUigUuHz5Ml555RUAgImJCVatWoWff/4Z33//fa0GbOiy80tw4GG7AE7sJqpzIpEI4x62EQhnGwEiqmGxdOTIEbi4uDyyf9CgQbhy5cozh6rKypUr4ebmBmNjY/j7+yMiIqLK4/fu3YvWrVvD2NgY3t7e+PPPPyu8rlKpMH/+fDg7O8PExASBgYG4efNmXb6Fp7Lr/G2UlivRvokV/FythY5D1CC82N4ZtmZGSJMV4+9YthEgauiqXSypVKpqHWdnZ1fjME+ye/duzJkzBwsWLEBUVBR8fHwQFBSErKysxx5/5swZjBo1ChMnTsTFixcxbNgwDBs2DDExMZpjvv32WyxfvhyrV6/GuXPnYGZmhqCgIBQXF9fZ+6iucoUS2x+2C+jmBpFIJHAioobB2FCC17uo5wduevBwBRE1XNUultq2bYtdu3ahtLTqCY83b97EtGnT8PXXXz9zuP9aunQpJk+ejAkTJsDLywurV6+GqakpNm7c+Njjf/jhB/Tv3x/vvfce2rRpg4ULF6JDhw748ccfAagLwGXLluHjjz/G0KFD0b59e2zduhVpaWnYv39/red/WoevZSJdVgw7cyMMas92AUT1aXTXppCIRTiXmIPYdLYRIBLKlTsywddsrHaxtGLFCixevBhOTk4YMWIEvvvuO+zYsQO//PIL1q9fjzlz5qBLly7w9fWFpaUlpk2bVqtBS0tLERkZicDAwH/Ci8UIDAxEeHj4Y88JDw+vcDwABAUFaY5PTExERkZGhWOsrKzg7+9f6TUBoKSkBHK5vMJWFx62CxjVhe0CiOqbs5UJ+rd1AgBsDU8SNgxRA6VUqjBr90V0XRSK0/H3BMtR7T5Lffv2xYULF3Dq1Cns3r0bO3bsQHJyMoqKimBnZwc/Pz+MHTsWo0ePho1N7S/Fce/ePSgUCjg6OlbY7+joiLi4uMeek5GR8djjMzIyNK8/3FfZMY+zaNEifPbZZ0/9Hp5GYWk5IAIMxCKM9m9Wp7+LiB5vfHc3/HElHfsupuL9/q1hbWokdCSiBuVk/D3culsAc6kBfASct/vUTSl79OiBHj161EUWnREcHIw5c+ZofpbL5XB1da3V32FqZIA9UwOQmlsEJyu2CyASQqdmNvBytsS1dDl2n7+Nqb24QDhRfdryoHXOq52awFxaoz7ataLGTSnrm52dHSQSCTIzKz6ZkpmZCScnp8ee4+TkVOXxD//3aa4JAFKpFJaWlhW2utLY2qTOrk1EVROJRBj/oI3A1vBkKJTVe9CFiJ5d0r0CHLuufoBrbICboFlqXCyFhobiww8/xKRJk/Dmm29W2OqCkZEROnbsiNDQUM0+pVKJ0NBQBAQEPPacgICACscD6rYHD493d3eHk5NThWPkcjnOnTtX6TWJqGEZ4usCG1NDpOYWsY0AUT3aGp4MlQro3coe7nZmgmapUbH02WefoV+/fggNDcW9e/dw//79CltdmTNnDtatW4ctW7YgNjYW06ZNQ0FBASZMmAAAGDt2LIKDgzXHz5o1CyEhIViyZAni4uLw6aef4sKFC5gxYwYA9d8aZ8+ejS+++AIHDhzAlStXMHbsWLi4uGDYsGF19j6ISHcYG0ow8kEbgc1sI0BULwpKyrH3wm0A0IzuCqlGNwBXr16NzZs344033qjtPFUaMWIE7t69i/nz5yMjIwO+vr4ICQnRTNBOSUmBWPxP/detWzfs3LkTH3/8MT788EO0aNEC+/fvR7t27TTHzJs3DwUFBZgyZQpyc3PRo0cPhISEwNiY84SISG1M12ZYczwB4beycT0jD62cLISORKTXfo26g7yScrjbmeG5FvZCx4FIVd1uk//SqFEjREREwNOTkx0B9a07KysryGSyOp2/RETCmbY9En/FZOB1/6b46iVvoeMQ6S2VSoXApceRcLcACwZ7YUJ39zr7XdX9/q7RbbhJkyZh586dNQ5HRKRrHq4Xty8qFbLCMmHDEOmxU/H3kHC3AGZGErzSsYnQcQDU8DZccXEx1q5di7///hvt27eHoaFhhdeXLl1aK+GIiLSFv7stWjtZIC4jD3su3Mbk5zyEjkSklx62C3ilYxNYGBtWfXA9qVGxdPnyZfj6+gJAhXXWAHD9MiLSSyKRCBO6u+H9X65gS3gS3uzhDomYf94R1aaU7EKExj1oF6AFE7sfqlGxdOzYsdrOQUSk9Yb6Nsaiv+Jw534RQmMz0a9t5f3YiOjpbQ1PgkoF9GxhB097c6HjaOhMU0oiIqEZG0owsrO6jcAWrhdHVKsKSsqx+0G7gDfrcFJ3TVR7ZOnll1/G5s2bYWlpiZdffrnKY3/99ddnDkZEpI3GdG2KtScScDo+Gzcy89DSkW0EiGrDrxdTkVdcDrdGpujVUvh2Af9W7ZElKysrzXwkKyurKjciIn3VxMYU/bzUt98eTkQlomejUqk0/z2N6+YGsZbNB6xRn6WioiIolUqYmanbjyclJWH//v1o06YNgoKCaj2ktmOfJaKG5eytbIxcexYmhhKcDe4LK1PteGKHSFedunkPYzacg5mRBGc/7FtvT8HVaZ+loUOHYtu2bQCA3NxcdO3aFUuWLMGwYcOwatWqmiUmItIRD9sIFJUpsOfBHAsiqrnNZxIBaFe7gH+rUbEUFRWFnj17AgB+/vlnODo6Ijk5GVu3bsXy5ctrNSARkbYRiUSa9aq2hCdBoXzqAXoiekBb2wX8W42KpcLCQlhYqCc1Hj58GC+//DLEYjG6du2K5OTkWg1IRKSNhvo2hrWpoaaNABHVzMN2Ab1a2mtVu4B/q1Gx1Lx5c+zfvx+3b9/GoUOH0K9fPwBAVlYW5+wQUYNgYvRPG4HNnOhNVCP/bhcwvrubsGGqUKNiaf78+Xj33Xfh5uYGf39/BAQEAFCPMvn5+dVqQCIibfVGQDNIxCKcSchGXIZc6DhEOudhuwB3OzP0aqFd7QL+rUbF0iuvvIKUlBRcuHABISEhmv19+/bF999/X2vhiIi0WWNrEwS1dQTANgJET6tCu4CAZlrXLuDfatzB28nJCX5+fhCL/7lEly5d0Lp161oJRkSkC8Z3U3ca3ncxFfcLSgVOQ6Q7Tt68h/isfJhLDTC8YxOh41SJy50QET2Dzm428HK2RHGZErvOs40AUXU9nOunre0C/o3FEhHRMxCJRJjwYGLqtvAklCuUwgYi0gGJ9wpwNC4LIhE0bTi0GYslIqJnNNjHBbZmRkiTFePINbYRIHqSh3OVnm/lADc7M2HDVAOLJSKiZ2RsKMHrXdRtBDZxojdRleTFZdirA+0C/o3FEhFRLRjTtRkMxCJEJOYgJlUmdBwirbX3wh0UlCrQwsEcPZrbCR2nWlgsERHVAicrYwzwdgYAbDqdJGwYIi2lUP7TLmB8dzeIRNrbLuDfWCwREdWShxO9f7+Uhrt5JcKGIdJCx+KykJJTCEtjA7zk11joONXGYomIqJZ0aGoDX1drlCqU2HkuReg4RFpn05lEAMCoLk1hamQgcJrqY7FERFSLNG0EziajpFwhbBgiLXI9Iw+n47MhFqmXCtIlLJaIiGrRQG9nOFpKcS+/BH9cThc6DpHW2PxgVCmorROa2JgKnObpsFgiIqpFhhIxxga4AQA2nk6ESqUSNhCRFsgpKMWvUakAdKMJ5X+xWCIiqmWjujSF1ECMmFQ5LiTfFzoOkeB+ikhBSbkS7Rpboou7rdBxnhqLJSKiWmZrZqR50mfT6USB0xAJq7Rcia3hSQCAN7u760y7gH9jsUREVAcediYOicnAnfuFwoYhEtBfMenIlJfA3kKKF9u7CB2nRlgsERHVgdZOlujevBGUKmBbeLLQcYgEoVKpsOGUenR1bNdmMDLQzbJDN1MTEemAN7u7AwB2RqSgoKRc4DRE9S8q5T4u35HByECM1/2bCh2nxnSmWMrJycHo0aNhaWkJa2trTJw4Efn5+VUeP3PmTLRq1QomJiZo2rQp3n77bchkFddsEolEj2y7du2q67dDRA1An1YOcLczQ15xOX6OvCN0HKJ6t/FUEgDgJd/GaGQuFTbMM9CZYmn06NG4evUqjhw5goMHD+LEiROYMmVKpcenpaUhLS0NixcvRkxMDDZv3oyQkBBMnDjxkWM3bdqE9PR0zTZs2LA6fCdE1FCIxSJNk8pNpxOhVLKNADUcd+4X4q8Yda+xCT3chA3zjHSi13hsbCxCQkJw/vx5dOrUCQCwYsUKDBw4EIsXL4aLy6MTxtq1a4dffvlF87Onpye+/PJLjBkzBuXl5TAw+OetW1tbw8nJqe7fCBE1OMM7NMHiQ9eRlF2I0LgsvODlKHQkonqxLTwZShXQvXkjtHayFDrOM9GJkaXw8HBYW1trCiUACAwMhFgsxrlz56p9HZlMBktLywqFEgBMnz4ddnZ26NKlCzZu3PjEJnIlJSWQy+UVNiKixzGTGmDUg7kaG07dEjgNUf0oKCnHTxHq9REfzt3TZTpRLGVkZMDBwaHCPgMDA9ja2iIjI6Na17h37x4WLlz4yK27zz//HHv27MGRI0cwfPhwvPXWW1ixYkWV11q0aBGsrKw0m6ur69O9ISJqUMYFuEEiFuHsrRxcTZM9+QQiHfdz5B3Ii8vhbmeGPq0cnnyClhO0WPrggw8eO8H631tcXNwz/x65XI5BgwbBy8sLn376aYXXPvnkE3Tv3h1+fn54//33MW/ePHz33XdVXi84OBgymUyz3b59+5kzEpH+crE2wUBvZwDQPEZNpK8UShU2PmjG+mZ3N4jFuteE8r8EnbM0d+5cjB8/vspjPDw84OTkhKysrAr7y8vLkZOT88S5Rnl5eejfvz8sLCywb98+GBoaVnm8v78/Fi5ciJKSEkilj5+5L5VKK32NiOhxJvZwx++X0vD7pTR80L81HCyNhY5EVCf+js1EcnYhrEwMMbxjE6Hj1ApBiyV7e3vY29s/8biAgADk5uYiMjISHTt2BAAcPXoUSqUS/v7+lZ4nl8sRFBQEqVSKAwcOwNj4yX84RUdHw8bGhsUQEdUqX1drdGxmg8jk+9h2Nhlz+7USOhJRndhwUj2qNNq/KUyNdOI5sifSiTlLbdq0Qf/+/TF58mRERETg9OnTmDFjBkaOHKl5Ei41NRWtW7dGREQEAHWh1K9fPxQUFGDDhg2Qy+XIyMhARkYGFAoFAOD333/H+vXrERMTg/j4eKxatQpfffUVZs6cKdh7JSL99XCi6/azySguUwichqj2Xbqdi4ikHBhKRBjXzU3oOLVGZ0q+HTt2YMaMGejbty/EYjGGDx+O5cuXa14vKyvD9evXUVioXoMpKipK86Rc8+bNK1wrMTERbm5uMDQ0xMqVK/HOO+9ApVKhefPmWLp0KSZPnlx/b4yIGoygto5obG2C1Nwi/BqVqtMdjYke5+GcvMHtXeCoR7eaRaonPSdPTySXy2FlZaVpTUBEVJn1J2/hiz9i4WFvhr/f6aUXk1+JACAttwg9vz0GhVKFgzN7oF1jK6EjPVF1v7914jYcEZG+GNHZFRZSA9y6W4CjcVlPPoFIR2w5kwSFUoUAj0Y6USg9DRZLRET1yMLYUNOkct1JNqkk/ZBfUo6dD5pQTuqp+00o/4vFEhFRPRvfzQ0GYhHOJebgyh02qSTdt/fCbeQVl8NDT5pQ/heLJSKieuZibYIX26ubVHJ0iXRduUKpmdg9oYe7Xs7DY7FERCSAST09AAB/XElHam6RwGmIai7kagbu3C+CrZkRXumgH00o/4vFEhGRANo1tkKARyMolCpsPs0lUEg3qVQqrD2hHh19o2szmBhJBE5UN1gsEREJZPJz6omwuyJuI6+4TOA0RE/vXGIOLt+RQWogxtiAZkLHqTMsloiIBNK7pQM87c2QV1KO3ee5IDfpnnUPRpVe6dgEjcz1d5kwFktERAIRi0WauUsbTyWiTKEUOBFR9d3MzENoXBZEIvVC0fqMxRIRkYBe8msMO3Mp0mTFOHg5Teg4RNW2/sGCuS+0cYSHvbnAaeoWiyUiIgEZG0owobsbAGDN8VvgClSkC7LyirHvYioAYGovD4HT1D0WS0REAhvj3wymRhLEZeTh+I27QscheqItZ5JQqlCiQ1NrdGxmK3ScOsdiiYhIYFamhhjVRb0EyprjbFJJ2q2gpBzbz6qXNpnynP6PKgEsloiItMKbPdxhIBYh/FY2Lt/JFToOUaV2n78NWVEZ3BqZ4gUvJ6Hj1AsWS0REWqCxtQkG+7gAANac4OgSaacyhRLrHyzRM/k5D0j0cGmTx2GxRESkJR7e0vjrSjqSswsETkP0qAPRaUiTFcPOXIrherq0yeOwWCIi0hJtnC3Rq6U9lKp/Hssm0hZKpQprTiQAAN7s4QZjQ/1c2uRxWCwREWmRh49h77lwG9n5JQKnIfrH0bgs3MjMh7nUAKP99Xdpk8dhsUREpEUCPBqhfRMrlJQrsflMktBxiDRWH1ePKo3u2hRWJoYCp6lfLJaIiLSISCTCtF6eANS9bLjALmmDC0k5uJB8H0YSMSZ21++lTR6HxRIRkZYJausED3szyIvLsfNcitBxiDSjSi93aAwHS2OB09Q/FktERFpGLBbhfw9Gl9afSkRxmULgRNSQXc/Iw9+x6gVzG0oTyv9isUREpIWG+TaGs5Ux7uaV4JeoO0LHoQbs4RNw/ds66f2CuZVhsUREpIWMDMSY3FP9t/g1x2+hXKEUOBE1RLdzCvFbdBoAaEY7GyIWS0REWmpkF1fYmhkhJacQf1xJFzoONUCrjydAoVShZws7+LhaCx1HMCyWiIi0lKmRASZ0cwMArApLgEqlEjYQNSiZ8mLsvaC+BTy9T3OB0wiLxRIRkRYbG+AGMyMJ4jLycDQuS+g41ICsO3ELpQolOjWzgb+7rdBxBMViiYhIi1mZGmJMV3W35JXH4jm6RPUip6AUOx60rZj+fHOIRA1jwdzKsFgiItJyE3u4w8hAjKiUXIQnZAsdhxqATacTUVSmQLvGlujd0l7oOIJjsUREpOUcLI0xqrMrAGD50ZsCpyF9Jy8u0yy1M6MPR5UAFktERDphai9PGEpEOHsrBxGJOULHIT22LTwZecXlaOFgjn5eTkLH0Qo6Uyzl5ORg9OjRsLS0hLW1NSZOnIj8/Pwqz+nduzdEIlGF7X//+1+FY1JSUjBo0CCYmprCwcEB7733HsrLy+vyrRARPTUXaxO80lE9urSCo0tUR4pKFdh4KhEA8FYfT4jFHFUCdKhYGj16NK5evYojR47g4MGDOHHiBKZMmfLE8yZPnoz09HTN9u2332peUygUGDRoEEpLS3HmzBls2bIFmzdvxvz58+vyrRAR1chbvT0hEYtw8uY9XEy5L3Qc0kM7ziUju6AUTW1NMbi9i9BxtIZOFEuxsbEICQnB+vXr4e/vjx49emDFihXYtWsX0tLSqjzX1NQUTk5Oms3S0lLz2uHDh3Ht2jVs374dvr6+GDBgABYuXIiVK1eitLS0rt8WEdFTcbU1xUt+jQEAK47GC5yG9E1xmQJrTtwCoC7MDSQ6USLUC534JMLDw2FtbY1OnTpp9gUGBkIsFuPcuXNVnrtjxw7Y2dmhXbt2CA4ORmFhYYXrent7w9HRUbMvKCgIcrkcV69erfSaJSUlkMvlFTYiovowvU9ziEXA0bgsxKTKhI5DemTnuRTczStBY2sTvNyhidBxtIpOFEsZGRlwcHCosM/AwAC2trbIyMio9LzXX38d27dvx7FjxxAcHIxt27ZhzJgxFa7770IJgObnqq67aNEiWFlZaTZXV9eavC0ioqfmbmeGwT7q2yOcu0S1pbhMgVXH1Qvmzni+OYwMdKI8qDeCfhoffPDBIxOw/7vFxcXV+PpTpkxBUFAQvL29MXr0aGzduhX79u1DQkLCM+UODg6GTCbTbLdv336m6xERPQ3149zAoauZiE3nyDY9u58i/hlVGs5RpUcYCPnL586di/Hjx1d5jIeHB5ycnJCVVbHNf3l5OXJycuDkVP3HGv39/QEA8fHx8PT0hJOTEyIiIiock5mZCQBVXlcqlUIqlVb79xIR1aYWjhYY2M4Zf1xJx/LQm1g1pqPQkUiHFZcpsCpMPYgwvQ9HlR5H0GLJ3t4e9vZP7gwaEBCA3NxcREZGomNH9R8KR48ehVKp1BRA1REdHQ0AcHZ21lz3yy+/RFZWluY235EjR2BpaQkvL6+nfDdERPXn7b4t8GdMOv6KycDVNBnaulgJHYl01K6IFGQ9GFV6pSNHlR5HJ8rHNm3aoH///pg8eTIiIiJw+vRpzJgxAyNHjoSLi/refWpqKlq3bq0ZKUpISMDChQsRGRmJpKQkHDhwAGPHjsVzzz2H9u3bAwD69esHLy8vvPHGG7h06RIOHTqEjz/+GNOnT+fIERFptVZOFnjxwaPdy/7m3CWqmX/PVXqrjydHlSqhM5/Kjh070Lp1a/Tt2xcDBw5Ejx49sHbtWs3rZWVluH79uuZpNyMjI/z999/o168fWrdujblz52L48OH4/fffNedIJBIcPHgQEokEAQEBGDNmDMaOHYvPP/+83t8fEdHTmtW3BcQi4Mi1TFy5wyfj6OntPn8bmfISuFgZ49WOfFipMiIVl7B+ZnK5HFZWVpDJZBX6OBER1bV3dkdj38VUPN/aARvHdxY6DumQ4jIFen13DJnyEnwxrB3GdG0mdKR6V93vb50ZWSIioke93bcFJGIRjsZlsas3PZXtZ5ORKVfPVXq1E+cqVYXFEhGRDnO3M9N09f6ec5eomgpKyvF/D56Ae7tvc0gNJAIn0m4sloiIdNzbz6tHl07cuIsLSTlCxyEdsOl0InIKSuFuZ8a+StXAYomISMc1bWSKVx888r30yA2B05C2kxWWadaAmx3YgmvAVQM/ISIiPTDj+eYwlIhwJiEbp+PvCR2HtNjakwnIKy5HK0cLDH7QfoKqxmKJiEgPNLExxWh/9dNM34bEgQ860+Pcyy/BptNJAIA5/VpCLBYJG0hHsFgiItIT0/s0h6mRBJfuyHDoauWLgVPDtSosAYWlCvg0sUI/L8cnn0AAWCwREekNewspJvVwBwB8d+g6yhVKgRORNkmXFWHb2WQAwNx+rSAScVSpulgsERHpkUnPecDa1BAJdwvw68VUoeOQFvnh75soLVeii7sterawEzqOTmGxRESkRyyNDTG9d3MAwLIjN1BcphA4EWmDm5l52HPhNgDg/f4cVXpaLJaIiPTMGwHN4GxljDRZMbY/uO1CDds3IdehVAH9vBzRsZmt0HF0DoslIiI9Y2wowezAFgCAlcfikVdcJnAiEtL5pBz8HZsJiViEef1bCx1HJ7FYIiLSQ8M7NIGHvRnuF5Zh7YMGhNTwqFQqfPVnLABgRGdXNHcwFziRbmKxRESkhwwkYswLagUAWHfyFtJlRQInIiEcupqBiym5MDGUYHbfFkLH0VksloiI9FRQWyd0drNBcZkSiw9xGZSGpkyhxLch1wEAk3u6w8HSWOBEuovFEhGRnhKJRPhokBcA4NeLdxCTKhM4EdWn3edv49a9AjQyM8KUXp5Cx9FpLJaIiPSYr6s1hvi4QKUCvvozlsugNBD5JeVY9vdNAMDbfVvAXGogcCLdxmKJiEjPzevfCkYGYpxJyMbRuCyh41A9WHksHvfyS+BuZ4ZRXZoKHUfnsVgiItJzTWxM8WZ39TIoX/0ZizIug6LXUrILseFkIgDgo4FtYGTAr/pnxU+QiKgBeKuPJ2zNjJBwtwC7IlKEjkN1aNFfsShVKNGjuR36tnEQOo5eYLFERNQAWBobahpVfv/3TciK2KhSH529lY2/YjIgFgGfvOjFZU1qCYslIqIGYlSXpmjuYI6cglIs+5utBPSNQqnCZ79fAwCM9m+GVk4WAifSHyyWiIgaCEOJGAsGq1sJbA1PxvWMPIETUW3ac+E2YtPlsDQ2wDsvtBQ6jl5hsURE1ID0bGGPoLaOUChV+PTAVbYS0BPy4jIsPqRuQDkrsCVszYwETqRfWCwRETUwHw/ygtRAjPBb2fjzSobQcagWrAi9ieyCUnjYm2FsQDOh4+gdFktERA2Mq60p/vego/MXf1xDYWm5wInoWVzPyMPG00kA1JO6DSX8aq9t/ESJiBqgab090cTGBOmyYvzfsQSh41ANqVQqfLz/ChRKFfq3dUKfVmwVUBdYLBERNUDGhhJ8/GDduLUnbiE5u0DgRFQTv0Sl4nzSfZgaSTD/weR9qn0sloiIGqigto7o2cIOpQolFnCyt87JLSzFoj9jAQCz+raAi7WJwIn0F4slIqIGSiQS4dMhbWEkESPs+l0cvJwudCR6Ct8duo7sglK0cDDHmz3chY6j11gsERE1YJ725nirj3qy92e/X4OskJ29dUH07VzsfLBszcJh7Tipu47pzKebk5OD0aNHw9LSEtbW1pg4cSLy8/MrPT4pKQkikeix2969ezXHPe71Xbt21cdbIiLSCtN6e8LT3gz38kvwdUic0HHoCRRK9aRulQp42a8xuno0EjqS3tOZYmn06NG4evUqjhw5goMHD+LEiROYMmVKpce7uroiPT29wvbZZ5/B3NwcAwYMqHDspk2bKhw3bNiwOn43RETaQ2ogwVcveQMAfopIwfmkHIETUVU2nkpETKocFsYGCB7YRug4DYJOFEuxsbEICQnB+vXr4e/vjx49emDFihXYtWsX0tLSHnuORCKBk5NThW3fvn147bXXYG5uXuFYa2vrCscZGxvXx9siItIa/h6NMLKzKwDgw1+voLRcKXAiepykewVYfFjdqfujgW1gbyEVOFHDoBPFUnh4OKytrdGpUyfNvsDAQIjFYpw7d65a14iMjER0dDQmTpz4yGvTp0+HnZ0dunTpgo0bNz7xiZCSkhLI5fIKGxGRrgse0AZ25ka4mZWPNcfZe0nbKJUqvP/LZZSUK9G9eSOMeFDcUt3TiWIpIyMDDg4VG20ZGBjA1tYWGRnVa9W/YcMGtGnTBt26dauw//PPP8eePXtw5MgRDB8+HG+99RZWrFhR5bUWLVoEKysrzebqyn9hiUj3WZka4pMX1b16VhyLR3wWF9rVJjsjUnAuMQcmhhJ8/XJ7iEQioSM1GIIWSx988EGlk7AfbnFxzz7ZsKioCDt37nzsqNInn3yC7t27w8/PD++//z7mzZuH7777rsrrBQcHQyaTabbbt28/c0YiIm0wxMcFfVrZo7Rcibl7LqFcwdtx2iAttwhf/6X+PnwvqBVcbU0FTtSwGAj5y+fOnYvx48dXeYyHhwecnJyQlZVVYX95eTlycnLg5OT0xN/z888/o7CwEGPHjn3isf7+/li4cCFKSkoglT7+XrBUKq30NSIiXSYSibDo5fbo9/1xXLojw5oTtzC9T3OhYzVoKpUKH+67gvyScnRoao1x3dyEjtTgCFos2dvbw97e/onHBQQEIDc3F5GRkejYsSMA4OjRo1AqlfD393/i+Rs2bMCQIUOq9buio6NhY2PDYoiIGiwnK2N8NrQt3tl9Ccv+voE+rRzg5WIpdKwGa9/FVIRdvwsjiRjfvtIeEjFvv9U3nZiz1KZNG/Tv3x+TJ09GREQETp8+jRkzZmDkyJFwcXEBAKSmpqJ169aIiIiocG58fDxOnDiBSZMmPXLd33//HevXr0dMTAzi4+OxatUqfPXVV5g5c2a9vC8iIm01zLcx+nk5okyhwty9l/h0nEDu3C/EggNXAQCzAluguYOFwIkaJp0olgBgx44daN26Nfr27YuBAweiR48eWLt2reb1srIyXL9+HYWFhRXO27hxI5o0aYJ+/fo9ck1DQ0OsXLkSAQEB8PX1xZo1a7B06VIsWLCgzt8PEZE2E4lE+PIlb9iYGiI2XY4VR28KHanBUShVmLPnEvKKy+HX1BpTn/MQOlKDJVJx5cRnJpfLYWVlBZlMBktLDlUTkf7480o63toRBYlYhF+ndYOPq7XQkRqMVWEJ+CYkDmZGEvw5qyeaNTITOpLeqe73t86MLBERUf0b6O2MwT4uUChVmL07Gvkl5UJHahBiUmVYekTdfHLBkLYslATGYomIiKq0cGhbOFsZI/FeAeb/FiN0HL1XVKrA27suokyhQv+2Tni1YxOhIzV4LJaIiKhK1qZG+GGkH8Qi4NeoVPwSeUfoSHrtqz9jcetuARwspFj0sjebT2oBFktERPREXdxt8U5gSwDAJ7/FIOFuvsCJ9NOhqxnYdjYZALDkNR/YmBkJnIgAFktERFRNb/Vpjm6ejVBYqsCMnRdRXKYQOpJeSbxXgHf3XAIATO7pjp4tntwbkOoHiyUiIqoWiViE70f4opGZEWLT5Vj0Z6zQkfRGUakC07ZHIq+kHJ3dbDCvf2uhI9G/sFgiIqJqc7Q0xpLXfAAAW8KTceBSmsCJdJ9KpcInv8UgLiMPduZG+PH1DjCU8OtZm/CfBhERPZXerRwwrbcnAGDez5cQkyoTOJFu233+Nn6OvAOxCFg+yg+OlsZCR6L/YLFERERP7d1+rdCrpT2Ky5SYui0S2fklQkfSSTGpMsx/sJzJu0Gt0M3TTuBE9DgsloiI6KlJxCIsH+kHdzszpOYWYdqOKJQpuH7c08jKK8bUbZEoLVcisI0D/vecp9CRqBIsloiIqEasTA2xbmxHmEsNEJGYg4UHrwkdSWcUlSowecsFpOYWwcPODEte9YVYzH5K2orFEhER1VhzBwt8P8IXALA1PBk7z6UIG0gHKJUqvLM7GpfuyGBjaoiN4zvDytRQ6FhUBRZLRET0TF7wcsTcF/5pWHk0LlPgRNrtm5A4hFzNgJFEjLVjO8HNjuu+aTsWS0RE9MxmPN8cL/s1hkKpwls7ohCVcl/oSFrpp4gUrDlxCwDw7Svt0dnNVuBEVB0sloiI6JmJRCJ880p7zRNyb24+j/isPKFjaZWjcZn4eL96IeLZgS0wzK+xwImoulgsERFRrTCUiPF/ozvAx9UauYVlGLshAhmyYqFjaYXT8ffwv+1RUChVeMmvMWb1bSF0JHoKLJaIiKjWmEkNsGl8Z3jYmyFNVoxxGyOQW1gqdCxBnU/KwaQtF1BarsQLXo749pX2EIn45JsuYbFERES1ytbMCFvf7AIHCymuZ+bh9XXnkFPQMAumS7dzMWHTeRSVKdCrpT1+fN2PS5noIP4TIyKiWtfExhTbJ/nDzlyKa+lyjFwbjrt5DavL97U0OcZujEB+STkCPBphzRsdITWQCB2LaoDFEhER1YmWjhbYNaUrHCykuJGZj5Frw5EpbxhzmKJS7uP19WchKypDh6bWWD+uE4wNWSjpKhZLRERUZ5o7mGPP1AC4WBkj4W4BXlsTjtTcIqFj1amjcZl4fd1Z5BaWwdfVGpvf7AIzqYHQsegZsFgiIqI65WZnht1TA+Bqa4Lk7EK8uuoMrqXJhY5VJ/ZeuI3JWyNRXKZEn1b22DnZH5bG7M6t61gsERFRnXO1NcXuKQGap+ReWX0Gh69mCB2r1qhUKqwKS8B7P1+GQqnC8A5NsHZsJ5gacURJH7BYIiKieuFibYJ907qjR3M7FJYqMHV7JFaFJUClUgkd7ZkUlSow7+fL+CYkDgDwv16eWPxqez71pkf4T5KIiOqNlakhNk3ojDe6NoNKpV4nbe7eSyguUwgdrUYS7xXgpf87jb2RdyAWAZ+86IUPBrRmHyU9w2KJiIjqlaFEjIXD2uHzoW0hEYvwa1Qqhq08jdh03ZrH9NeVdAxecQpxGXmwMzfC9kn+mNjDXehYVAdYLBERkSDGBrhhy4QusDM3QlxGHob8eAqrjydAodTu23KFpeX49MBVTNsRhfyScnRxs8Ufb/dEN087oaNRHRGpdP1msRaQy+WwsrKCTCaDpaWl0HGIiHTKvfwSBP96BUeuZQIAurjZYslrPnC1NRU42aNCYzMx/7ermvYHU3t54L1+rWDA+Uk6qbrf3yyWagGLJSKiZ6NSqbD3wh189vtVFJQqYGwoxuSeHpjayxPmWtCjKENWjM9+v4q/YtRP8DW2NsEXL7VDn1YOAiejZ8FiqR6xWCIiqh0p2YV49+dLiEjMAQDYmRthdmBLjOzsKsjojaywDJvPJGHdyVvILymHRCzCpJ7umNW3BdsC6AEWS/WIxRIRUe1RqVQIicnANyFxSMouBKDuBD6tlycGtXeul2VD7uaVYP2pW9genoyCUvWTen5NrfHVS95o48w/5/VFdb+/deYm65dffolu3brB1NQU1tbW1TpHpVJh/vz5cHZ2homJCQIDA3Hz5s0Kx+Tk5GD06NGwtLSEtbU1Jk6ciPz8/Dp4B0REVB0ikQgDvJ1x+J1e+HSwF2xMDRGflY+5ey/B/6tQLDx4DQl3a//PaYVShXO3svHhvivo8c1RrDl+CwWlCrR2ssCKUX745X/dWCg1UDozsrRgwQJYW1vjzp072LBhA3Jzc594zjfffINFixZhy5YtcHd3xyeffIIrV67g2rVrMDY2BgAMGDAA6enpWLNmDcrKyjBhwgR07twZO3furHY2jiwREdUdeXEZtoUnY+e5lArrynVqZoOeLezRvXkj+Lha16gJZGm5EhdT7uPPK+n4MyYDd/NKNK/5ulpjRp/m6NvGgX2T9JTe3obbvHkzZs+e/cRiSaVSwcXFBXPnzsW7774LAJDJZHB0dMTmzZsxcuRIxMbGwsvLC+fPn0enTp0AACEhIRg4cCDu3LkDFxeXamVisUREVPcUShVO3LiLHeeScTQuC//uMGBqJEFnN1u0dDSHs5UJnK2M4WxtAhtTQ5SUK1FUqkBxmQKFpQok3M1HbHoerqXLEZ+VhzLFPxeyNDZAv7ZOeLlDYwR4NGKRpOeq+/2tt7PTEhMTkZGRgcDAQM0+Kysr+Pv7Izw8HCNHjkR4eDisra01hRIABAYGQiwW49y5c3jppZcee+2SkhKUlPzztw+5XLcaqRER6SKJWIQ+rR3Qp7UD0nKLcOx6Fs7EZyP8VjZyCkpx/MZdHL9x96mva21qiMA2jhjk7Yzuze1gZKAzM1SonuhtsZSRoX6809HRscJ+R0dHzWsZGRlwcKj42KeBgQFsbW01xzzOokWL8Nlnn9VyYiIiqi4XaxOM9m+G0f7NoFSqcD0zDxGJObidU4h0WTHSZUVIlxVDVlQGY0MJTAwlkBqKYWIoQRMbE7RxtoSXsyXaOFuiiY0JR5CoSoIWSx988AG++eabKo+JjY1F69at6ylR9QQHB2POnDman+VyOVxdXQVMRETUcInFIrR5UPgQ1QVBi6W5c+di/PjxVR7j4eFRo2s7OTkBADIzM+Hs7KzZn5mZCV9fX80xWVlZFc4rLy9HTk6O5vzHkUqlkEqlNcpFREREukXQYsne3h729vZ1cm13d3c4OTkhNDRUUxzJ5XKcO3cO06ZNAwAEBAQgNzcXkZGR6NixIwDg6NGjUCqV8Pf3r5NcREREpFt0ZhZbSkoKoqOjkZKSAoVCgejoaERHR1foidS6dWvs27cPgLpPx+zZs/HFF1/gwIEDuHLlCsaOHQsXFxcMGzYMANCmTRv0798fkydPRkREBE6fPo0ZM2Zg5MiR1X4SjoiIiPSbzkzwnj9/PrZs2aL52c/PDwBw7Ngx9O7dGwBw/fp1yGQyzTHz5s1DQUEBpkyZgtzcXPTo0QMhISGaHksAsGPHDsyYMQN9+/aFWCzG8OHDsXz58vp5U0RERKT1dK7PkjZinyUiIiLdo3fLnRAREREJgcUSERERURVYLBERERFVgcUSERERURVYLBERERFVgcUSERERURVYLBERERFVgcUSERERURVYLBERERFVQWeWO9FmD5ugy+VygZMQERFRdT383n7SYiYslmpBXl4eAMDV1VXgJERERPS08vLyYGVlVenrXBuuFiiVSqSlpcHCwgIikajWriuXy+Hq6orbt29zzbnH4OdTNX4+leNnUzV+PlXj51M1Xfp8VCoV8vLy4OLiArG48plJHFmqBWKxGE2aNKmz61taWmr9v3BC4udTNX4+leNnUzV+PlXj51M1Xfl8qhpReogTvImIiIiqwGKJiIiIqAoslrSYVCrFggULIJVKhY6ilfj5VI2fT+X42VSNn0/V+PlUTR8/H07wJiIiIqoCR5aIiIiIqsBiiYiIiKgKLJaIiIiIqsBiiYiIiKgKLJa02MqVK+Hm5gZjY2P4+/sjIiJC6Eha4cSJExg8eDBcXFwgEomwf/9+oSNpjUWLFqFz586wsLCAg4MDhg0bhuvXrwsdS2usWrUK7du31zTLCwgIwF9//SV0LK319ddfQyQSYfbs2UJH0QqffvopRCJRha1169ZCx9IaqampGDNmDBo1agQTExN4e3vjwoULQseqFSyWtNTu3bsxZ84cLFiwAFFRUfDx8UFQUBCysrKEjia4goIC+Pj4YOXKlUJH0TrHjx/H9OnTcfbsWRw5cgRlZWXo168fCgoKhI6mFZo0aYKvv/4akZGRuHDhAp5//nkMHToUV69eFTqa1jl//jzWrFmD9u3bCx1Fq7Rt2xbp6ema7dSpU0JH0gr3799H9+7dYWhoiL/++gvXrl3DkiVLYGNjI3S0WsHWAVrK398fnTt3xo8//ghAvf6cq6srZs6ciQ8++EDgdNpDJBJh3759GDZsmNBRtNLdu3fh4OCA48eP47nnnhM6jlaytbXFd999h4kTJwodRWvk5+ejQ4cO+L//+z988cUX8PX1xbJly4SOJbhPP/0U+/fvR3R0tNBRtM4HH3yA06dP4+TJk0JHqRMcWdJCpaWliIyMRGBgoGafWCxGYGAgwsPDBUxGukYmkwFQFwRUkUKhwK5du1BQUICAgACh42iV6dOnY9CgQRX+DCK1mzdvwsXFBR4eHhg9ejRSUlKEjqQVDhw4gE6dOuHVV1+Fg4MD/Pz8sG7dOqFj1RoWS1ro3r17UCgUcHR0rLDf0dERGRkZAqUiXaNUKjF79mx0794d7dq1EzqO1rhy5QrMzc0hlUrxv//9D/v27YOXl5fQsbTGrl27EBUVhUWLFgkdRev4+/tj8+bNCAkJwapVq5CYmIiePXsiLy9P6GiCu3XrFlatWoUWLVrg0KFDmDZtGt5++21s2bJF6Gi1wkDoAERUN6ZPn46YmBjOqfiPVq1aITo6GjKZDD///DPGjRuH48ePs2ACcPv2bcyaNQtHjhyBsbGx0HG0zoABAzT/v3379vD390ezZs2wZ8+eBn8bV6lUolOnTvjqq68AAH5+foiJicHq1asxbtw4gdM9O44saSE7OztIJBJkZmZW2J+ZmQknJyeBUpEumTFjBg4ePIhjx46hSZMmQsfRKkZGRmjevDk6duyIRYsWwcfHBz/88IPQsbRCZGQksrKy0KFDBxgYGMDAwADHjx/H8uXLYWBgAIVCIXRErWJtbY2WLVsiPj5e6CiCc3Z2fuQvHG3atNGb25QslrSQkZEROnbsiNDQUM0+pVKJ0NBQzq2gKqlUKsyYMQP79u3D0aNH4e7uLnQkradUKlFSUiJ0DK3Qt29fXLlyBdHR0ZqtU6dOGD16NKKjoyGRSISOqFXy8/ORkJAAZ2dnoaMIrnv37o+0Kblx4waaNWsmUKLaxdtwWmrOnDkYN24cOnXqhC5dumDZsmUoKCjAhAkThI4muPz8/Ap/k0tMTER0dDRsbW3RtGlTAZMJb/r06di5cyd+++03WFhYaOa4WVlZwcTEROB0wgsODsaAAQPQtGlT5OXlYefOnQgLC8OhQ4eEjqYVLCwsHpnfZmZmhkaNGnHeG4B3330XgwcPRrNmzZCWloYFCxZAIpFg1KhRQkcT3DvvvINu3brhq6++wmuvvYaIiAisXbsWa9euFTpa7VCR1lqxYoWqadOmKiMjI1WXLl1UZ8+eFTqSVjh27JgKwCPbuHHjhI4muMd9LgBUmzZtEjqaVnjzzTdVzZo1UxkZGans7e1Vffv2VR0+fFjoWFqtV69eqlmzZgkdQyuMGDFC5ezsrDIyMlI1btxYNWLECFV8fLzQsbTG77//rmrXrp1KKpWqWrdurVq7dq3QkWoN+ywRERERVYFzloiIiIiqwGKJiIiIqAosloiIiIiqwGKJiIiIqAosloiIiIiqwGKJiIiIqAosloiIiIiqwGKJiHROUlISRCIRoqOjhY6i0bt3b8yePVvzs5ubG5YtWyZYHiKqPVzuhIh0jqurK9LT02FnZyd0lEqdP38eZmZmQscgolrAYomIdI5EIoGTk1OtX7esrAyGhoa1ci17e/tauQ4RCY+34YhIUHfv3oWTkxO++uorzb4zZ87AyMgIoaGhjz3nv7fhwsLCIBKJEBoaik6dOsHU1BTdunV7ZBX0x11j9+7d6NWrF4yNjbFjxw5kZ2dj1KhRaNy4MUxNTeHt7Y2ffvqpwrkFBQUYO3YszM3N4ezsjCVLljxy/f/ehlu6dCm8vb1hZmYGV1dXvPXWW8jPz9e8vnnzZlhbW+PQoUNo06YNzM3N0b9/f6Snp2uOCQsLQ5cuXWBmZgZra2t0794dycnJVX6+RPTsWCwRkaDs7e2xceNGfPrpp7hw4QLy8vLwxhtvYMaMGejbt+9TXeujjz7CkiVLcOHCBRgYGODNN9984jkffPABZs2ahdjYWAQFBaG4uBgdO3bEH3/8gZiYGEyZMgVvvPEGIiIiNOe89957OH78OH777TccPnwYYWFhiIqKqvL3iMViLF++HFevXsWWLVtw9OhRzJs3r8IxhYWFWLx4MbZt24YTJ04gJSUF7777LgCgvLwcw4YNQ69evXD58mWEh4djypQpEIlET/UZEVENCL2SLxGRSqVSvfXWW6qWLVuqXn/9dZW3t7equLi40mMTExNVAFQXL15UqVQq1bFjx1QAVH///bfmmD/++EMFQFVUVFTlNZYtW/bEbIMGDVLNnTtXpVKpVHl5eSojIyPVnj17NK9nZ2erTExMVLNmzdLsa9asmer777+v9Jp79+5VNWrUSPPzpk2bVAAqrGK/cuVKlaOjo+Z3AFCFhYU9MS8R1S6OLBGRVli8eDHKy8uxd+9e7NixA1Kp9Kmv0b59e83/d3Z2BgBkZWVVeU6nTp0q/KxQKLBw4UJ4e3vD1tYW5ubmOHToEFJSUgAACQkJKC0thb+/v+YcW1tbtGrVqsrf8/fff6Nv375o3LgxLCws8MYbbyA7OxuFhYWaY0xNTeHp6VnhPTzMb2tri/HjxyMoKAiDBw/GDz/8UOEWHRHVHRZLRKQVEhISkJaWBqVSiaSkpBpd49+Tsx/enlIqlVWe898n1r777jv88MMPeP/993Hs2DFER0cjKCgIpaWlNcoEqOdHvfjii2jfvj1++eUXREZGYuXKlQBQ4br/nVwuEomgUqk0P2/atAnh4eHo1q0bdu/ejZYtW+Ls2bM1zkVE1cNiiYgEV1paijFjxmDEiBFYuHAhJk2a9MQRobpy+vRpDB06FGPGjIGPjw88PDxw48YNzeuenp4wNDTEuXPnNPvu379f4Zj/ioyMhFKpxJIlS9C1a1e0bNkSaWlpNcrn5+eH4OBgnDlzBu3atcPOnTtrdB0iqj4WS0QkuI8++ggymQzLly/H+++/j5YtW1ZrcnZdaNGiBY4cOYIzZ84gNjYWU6dORWZmpuZ1c3NzTJw4Ee+99x6OHj2KmJgYjB8/HmJx5X+cNm/eHGVlZVixYgVu3bqFbdu2YfXq1U+VKzExEcHBwQgPD0dycjIOHz6Mmzdvok2bNjV+r0RUPSyWiEhQYWFhWLZsGbZt2wZLS0uIxWJs27YNJ0+exKpVq+o9z8cff4wOHTogKCgIvXv3hpOTE4YNG1bhmO+++w49e/bE4MGDERgYiB49eqBjx46VXtPHxwdLly7FN998g3bt2mHHjh1YtGjRU+UyNTVFXFwchg8fjpYtW2LKlCmYPn06pk6dWpO3SURPQaT69w1xIiIiIqqAI0tEREREVWCxRERERFQFFktEREREVWCxRERERFQFFktEREREVWCxRERERFQFFktEREREVWCxRERERFQFFktEREREVWCxRERERFQFFktEREREVWCxRERERFSF/wdyQWCwERgxDwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\tut\\introduction_doc_41_0.png" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -1154,7 +1147,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/tut/introduction_exercise.ipynb b/idaes_examples/notebooks/docs/tut/introduction_exercise.ipynb index 251e8e94..6f36a3a6 100644 --- a/idaes_examples/notebooks/docs/tut/introduction_exercise.ipynb +++ b/idaes_examples/notebooks/docs/tut/introduction_exercise.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/tut/introduction_short.ipynb b/idaes_examples/notebooks/docs/tut/introduction_short.ipynb index 4122c058..2f6a0961 100644 --- a/idaes_examples/notebooks/docs/tut/introduction_short.ipynb +++ b/idaes_examples/notebooks/docs/tut/introduction_short.ipynb @@ -1,930 +1,931 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Introduction to IDAES (short)\n", - "Author: Jaffer Ghouse, Andrew Lee \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-06-01 \n", - "\n", - "The fundamentals of working with the IDAES process modeling toolset, and how these tools can be applied for optimization applications.\n", - "\n", - "This material was originally presented in an IDAES workshop." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "run \"notebook_test_script.py\"" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes_examples.mod.notebook_checks import run_checks\n", - "\n", - "assert run_checks() == 4" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Welcome and thank you for taking the time to attend today's workshop. Today we will introduce you to the fundamentals of working with the IDAES process modeling toolset, and we will demonstrate how these tools can be applied for optimization applications.\n", - "\n", - "Today's workshop will be conducted using Jupyter Notebooks which provide an online, interactive Python environment for you to use (without the need for installing anything).\n", - "\n", - "Before we get started on some actual examples, let's make sure that everything is working correctly. The cell below contains a command to run a simple test script that will test that everything we will need for today is working properly.\n", - "\n", - "You can execute a cell by pressing `Shift+Enter`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If everything worked properly, you should see a message saying `All good!` and a summary of all the checks that were run. If you don't see this, please contact someone for assistance." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Outline of Workshop\n", - "\n", - "Today's workshop is divided into four modules which will take you through the steps of setting up a flowsheet within the IDAES framework.\n", - "\n", - "Welcome Module (this one):\n", - "\n", - "* Introduction to Jupyter notebooks and Python\n", - "* Introduction to Pyomo\n", - "\n", - "Module 1 will cover:\n", - "\n", - "* how to import models from the core IDAES model library,\n", - "* how to create a model for a single unit operation,\n", - "* how to define feed and operating conditions,\n", - "* how to initialize and solve a single unit model,\n", - "* some ways we can manipulate the model and examine the results.\n", - "\n", - "Module 2 will demonstrate:\n", - "\n", - "* how to combine unit models together to form flowsheets,\n", - "* tools to initialize and solve flowsheets with recycle loops,\n", - "* how to optimize process operating conditions to meet product specifications.\n", - "\n", - "Module 3 will demonstrate:\n", - "\n", - "* how to build new unit models using the IDAES tools,\n", - "* how to include new unit models into flowsheets.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introduction to Jupyter Notebooks and Python\n", - "\n", - "In this short notebook, we will briefly describe the uses of Jupyter notebooks like this one, and provide you with the necessary background in Python for this workshop. We will cover `if` statements, looping, array-like containers called lists and dictionaries, as well as the use of some external packages for working with data. \n", - "\n", - "There are many additional tutorials online to learn more about the Python syntax. One recommended by the IDAES team is https://www.coursera.org/learn/python." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In Python, variables do not need to be declared before they are used. You can simply define a new variable using `x = 5`.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "In the cell below, assign a value of 5 to the variable x. Don't forget to type Shift+Enter to execute the line.
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Assign a value of 5 to the variable x" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Assign a value of 5 to the variable x\n", - "x = 5" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can easily see the value of a variable using the built-in `print` function. For example, to print the value of `x` use `print(x)`.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Write the code to print the value of x. Don't forget to hit Shift+Enter to execute the cell.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the value of x" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the value of x\n", - "print(x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - "Inline Exercise:\n", - "Now change the value of the x variable to 8 and execute the cell.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: Assign a value of 8 to the variable x" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Todo: Assign a value of 8 to the variable x\n", - "x = 8" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Jupyter notebooks and execution order\n", - "\n", - "
\n", - "Note:\n", - "When using Jupyter notebooks, it is very important to know that the cells can be executed out of order (intentionally or not). The state of the environment (e.g., values of variables, imports, etc.) is defined by the execution order.\n", - "
\n", - "\n", - "
\n", - "Inline Exercise:\n", - "To see this concept, select the cell above that contained the print statement and execute the cell again using Shift+Enter.\n", - "
\n", - "\n", - "You should see that the value `8` is now printed. This may seem problematic if you are used to programming in environments where the state is linked to the order of the commands as *written*, not as *executed*.\n", - "\n", - "**Again, notice that the state of the environment is determined by the execution order.**\n", - "\n", - "Note also that the square brackets to the left of the cell show the order that cells were executed. If you scroll to the top, you should see that the code cells show an execution order of `[1]`, `[2]`, `[5]`, and `[4]`, indicating the actual execution order.\n", - "\n", - "There are some useful menu commands at the top of the Jupyter notebook to help with these problems and make sure you retain the execution order as expected.\n", - "\n", - "Some important commands to remember:\n", - "* You can clear the current state with the menu item `Kernel | Restart & Clear Output`\n", - "* It is often useful to clear the state using the menu command just described, and then execute all the lines **above the currently selected cell** using `Cell | Run All Above`.\n", - "* You can clear all the state and re-run the entire notebook using `Kernel | Restart & Run All`.\n", - "\n", - "To show the use of these commands, complete the following.\n", - "
\n", - "Inline Exercise:\n", - "
    \n", - "
  • Clear the current state (using Kernel | Restart & Clear Output). You should notice that the square brackets that listed the execution order are all now empty.
  • \n", - "
  • Select the cell immediately below this text\n", - "
  • Re-run all the code up to this point (Cell | Run All Above). You should now see that the square brackets indicate the expected execution order.
  • \n", - "
  • Print the value of x again using the print function. You should see the value 8 printed, while the earlier cell printing x shows the value of 5 as expected.
  • \n", - "
\n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "print(x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Python `if` statements\n", - "\n", - "In the code below, we show an example of an `if` statement in Python.\n", - "\n", - "```python\n", - "temp = 325\n", - "# some other code\n", - "if temp > 320:\n", - " print('temperature is too high')\n", - "elif x < 290:\n", - " print('temperature is too low')\n", - "else:\n", - " print('temperature is just right')\n", - "```\n", - "\n", - "
\n", - "Note:\n", - "You will notice that there are no braces to separate blocks in the if-else tree. In Python, indentation is used to delineate blocks of code throughout Python (e.g., if statements, for loops, functions, etc.). The indentation in the above example is not only to improve legibility of the code. It is necessary for the code to run correctly. As well, the number of spaces required to define the indentation is arbitrary, but it must be consistent throughout the code. For example, we could use 3 spaces (instead of the 4 used in the example above, but we could not use 3 for one of the blocks and 4 for another).\n", - "
\n", - "\n", - "Using the syntax above for the `if` statement, write the following code.\n", - "
\n", - "Inline Exercise:\n", - "
    \n", - "
  • set the value of the variable T_degC to 20
  • \n", - "
  • convert this from degrees Celsius to degrees Fahrenheit (use variable name T_degF)
  • \n", - "
  • write an `if` statement that prints a message if the degrees Fahrenheit are below 70
  • \n", - "
\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "T_degC = 20\n", - "# some other code\n", - "T_degF = (T_degC * 9.0 / 5.0) + 32.0\n", - "\n", - "# Todo: put the if statement here" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "T_degC = 20\n", - "# some other code\n", - "T_degF = (T_degC * 9.0 / 5.0) + 32.0\n", - "\n", - "# Todo: put the if statement here\n", - "if T_degF < 70:\n", - " print(\"The room is too cold.\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Python list containers\n", - "\n", - "Now we will illustrate the use of lists in Python. Lists are similar to vectors or arrays in other languages. A list in Python is indexed by integers from 0 up to the length of the array minus 1. The list can contain standard types (int, float, string), or other objects.\n", - "\n", - "In the next inline exercise, we will create a list that contains the values from 0 to 50 by steps of 5 using a for loop. Note that the python function `range(n)` can be used to iterate from 0 to (n-1) in a for loop. Also note that lists have an `append` method which adds an entry to the end of the list (e.g., if the list `l` currently has 5 elements, then `l.append('temp')` will add the string \"temp\" as the sixth element). Print the new list after the for loop. If this is done correctly, you should see:\n", - "`[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]` printed after the cell.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Complete the code block below to create the desired list and print the result.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Create a list with the values 0 to 50 with steps of 5.\n", - "xlist = list()\n", - "for i in range(11):\n", - " # Todo: use the append method of list to append the correct value\n", - "\n", - "# Todo: print the value of xlist to verify the results\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "# Create a list with the values 0 to 50 with steps of 5.\n", - "xlist = list()\n", - "for i in range(11):\n", - " # Todo: use the append method of list to append the correct value\n", - " xlist.append(i * 5)\n", - "\n", - "print(xlist) # Todo: print the value of xlist to verify the results" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can easily check the length of a list using the python `len(l)` function.\n", - "
\n", - "Inline Exercise:\n", - "Print the length of `xlist`. It should be 11.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "# Todo: print the len of the list" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "print(len(xlist)) # Todo: print the len of the list" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you have a list of values or objects, it is easy to iterate through that list in a for loop. In the next inline exercise, we will create another list, `ylist` where each of the values is equal to the corresponding value in `xlist` squared. That is, $y_i = x_i^2$.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Modify the code below to create ylist as described above. Print the values in ylist to check the result.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "ylist = list()\n", - "\n", - "# Todo: define the for loop to add elements to ylist using the values in xlist\n", - "\n", - "print(ylist)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "ylist = list()\n", - "\n", - "# Todo: define the for loop to add elements to ylist using the values in xlist\n", - "for x in xlist:\n", - " ylist.append(x**2)\n", - "\n", - "print(ylist)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Python dictionary containers\n", - "\n", - "Another valuable data structure in Python are *dictionaries*. Dictionaries are an associative array; that is, a map from keys to values or objects. The keys can be *almost* anything, including floats, integers, and strings. The code below shows an example of creating a dictionary (here, to store the areas of some of the states).\n", - "
\n", - "Inline Exercise:\n", - "Execute the lines below to see the areas dictionary.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "areas = dict()\n", - "areas[\"South Dakota\"] = 199742\n", - "areas[\"Oklahoma\"] = 181035\n", - "print(areas)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Dictionaries can contain mixed types (i.e., it is valid to add `areas['Texas'] = 'Really big!'`) but this may lead to unpredictable behavior if the different types are unexpected in other parts of the code.\n", - "\n", - "You can loop through dictionaries in different ways. For example,\n", - "```python\n", - "d = {'A': 2, 'B': 4, 'D': 16}\n", - "for k in d.keys():\n", - " # loop through the keys in the dictionary\n", - " # access the value with d[k]\n", - " print('key=', k, 'value=', d[k])\n", - " \n", - "for v in d.values():\n", - " # loop through the values in the dictionary, ignoring the keys\n", - " print('value=', v)\n", - " \n", - "for k,v in d.items():\n", - " # loop through the entries in the dictionary, retrieving both\n", - " # the key and the value\n", - " print('key=', k, 'value=', v)\n", - "```\n", - "\n", - "
\n", - "Inline Exercise:\n", - "The areas listed above for the two states are in square kilometers. Modify the loop below to create a new dictionary that contains the areas in square miles. Print the new dictionary to verify the correct behavior. Note that 1 kilometer is equal to 0.62137 miles.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "areas_mi = dict()\n", - "for state_name, area in areas.items():\n", - " # Todo: convert the area to sq. mi and assign to the areas_mi dict.\n", - "\n", - "print(areas_mi)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "areas_mi = dict()\n", - "for state_name, area in areas.items():\n", - " # Todo: convert the area to sq. mi and assign to the areas_mi dict.\n", - " areas_mi[state_name] = area * (0.62137**2)\n", - "print(areas_mi)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Matplotlib for generating figures\n", - "\n", - "We will now briefly explore the use of the `matplotlib` package to generate figures. Before we do this, we will introduce some other helpful tools.\n", - "\n", - "Another effective way to create a list of evenly spaced numbers (e.g., for plotting or other computation) is to use the `linspace` function from the `numpy` package (more information [here](https://numpy.org/devdocs/)). Let's import the `numpy` package and use linspace function to create a list of 15 evenly spaced intervals (that is, 16 points) from 0 to 50 and store this in `xlist`. We will also create the `ylist` that corresponds to the square of the values in `xlist`. Note, we must first import the `numpy` package.\n", - "
\n", - "Inline Exercise:\n", - "Execute the next two cells to see the output.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "xlist = list(np.linspace(0, 50, 16))\n", - "ylist = [x**2 for x in xlist]\n", - "print(xlist)\n", - "print(ylist)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This printed output is not a very effective way to communicate these results. Let's use matplotlib to create a figure of x versus y. A full treatment of the `matplotlib` package is beyond the scope of this tutorial, and further documentation can be found [here](https://matplotlib.org/). For now, we will import the plotting capability and show how to generate a straightforward figure. You can consult the documentation for matplotlib for further details.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the next two cells to see the output.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "plt.plot(xlist, ylist)\n", - "plt.title(\"Embedded x vs y figure\")\n", - "plt.xlabel(\"x\")\n", - "plt.ylabel(\"y\")\n", - "plt.legend([\"data\"])\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we will use what you have learned so far to create a plot of `sin(x)` for `x` from 0 to $2 \\pi$ with 100 points. Note, you can get the `sin` function and the value for $\\pi$ from the `math` package.\n", - "
\n", - "Inline Exercise:\n", - "Execute the import statement in the next cell, and then complete the missing code in the following cell to create the figure discussed above.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "import math" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "x = list(np.linspace(0, 2 * math.pi, 100))\n", - "\n", - "# Todo: create the list for y\n", - "\n", - "for xv in x:\n", - " y.append(math.sin(xv))\n", - "\n", - "# Todo: Generate the figure" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "x = list(np.linspace(0, 2 * math.pi, 100))\n", - "\n", - "# Todo: create the list for y\n", - "y = []\n", - "for xv in x:\n", - " y.append(math.sin(xv))\n", - "\n", - "# Todo: Generate the figure\n", - "plt.plot(x, y)\n", - "plt.title(\"Trig: sin function\")\n", - "plt.xlabel(\"x in radians\")\n", - "plt.ylabel(\"sin(x)\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Further Information\n", - "\n", - "Further information of the packages mentioned above can be found using the following links:\n", - "\n", - "* [numpy](https://numpy.org/devdocs/)\n", - "* [matplotlib](https://matplotlib.org/)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introduction to Pyomo\n", - "\n", - "[Pyomo](https://www.pyomo.org) is an object-oriented, python-based package for equation-oriented (or *algebraic*) modeling and optimization, and the IDAES framework is built upon the Pyomo package. IDAES extends the Pyomo package and defines a class hierarchy for flowsheet based modeling, including definition of property packages, unit models, and flowsheets.\n", - "\n", - "The use of IDAES does not require extensive knowledge about Pyomo, however, it can be beneficial to have some familiarity with the Pyomo package for certain tasks:\n", - "* IDAES models are open, and you can interrogating the underlying Pyomo model to view the variables, constraints, and objective functions defined in the model.\n", - "* You can use Pyomo components to define your objective function or to create additional constraints.\n", - "* Since IDAES models **are** Pyomo models, any advanced meta-algorithms or analysis tools that can be developed and/or used on a Pyomo model can also be used on an IDAES model.\n", - "\n", - "A full tutorial on Pyomo is beyond the scope of this workshop, however in this section we will briefly cover the commands required to specify an objective function or add a constraint to an existing model.\n", - "\n", - "In the next cell, we will create a Pyomo model, and add a couple of variables to that model. When using IDAES, you will define a flowsheet and the addition of variables and model equations will be handled by the IDAES framework.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the following cell to create a Pyomo model with some variables that will be used later.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import ConcreteModel, Var\n", - "\n", - "model = ConcreteModel()\n", - "model.x = Var()\n", - "model.y = Var()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Pyomo syntax to define a scalar objective function is shown below. This defines the objective function as $x^2$. By default Pyomo models (and IDAES models) seek to *minimize* the objective function.\n", - "```python\n", - "model.obj = Objective(expr=model.x**2)\n", - "```\n", - "To maximize a quantity, include the keyword argument `sense=maximize` as in the following:\n", - "```python\n", - "model.obj = Objective(expr=model.y, sense=maximize)\n", - "```\n", - "Note that `Objective` and `maximize` would need to be imported from `pyomo.environ`.\n", - "\n", - "The Pyomo syntax to define a scalar constraint is shown below. This code defines the equality constraint $x^2 + y^2 = 1$.\n", - "```python\n", - "model.on_unit_circle_con = Constraint(expr=model.x**2 + model.y**2 == 1)\n", - "```\n", - "Pyomo also supports inequalities. For example, the code for the inequality constraint $x^2 + y^2 \\le 1$ is given as the following.\n", - "```python\n", - "model.inside_unit_circle_con = Constraint(expr=model.x**2 + model.y**2 <= 1)\n", - "```\n", - "Note that, as before, we would need to include the appropriate imports. In this case `Constraint` would need to be imported from `pyomo.environ`.\n", - "\n", - "Using the syntax shown above, we will now add the objective function: $\\min x^2 + y^2$ and the constraint $x + y = 1$.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Complete the missing code in the cell below. If this is done correctly, after executing the cell, you should see the log output from the solver and the printed solution should show that x, y, and the objective value are all equal to 0.5.\n", - "
\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "exercise" - ] - }, - "outputs": [], - "source": [ - "from pyomo.environ import Objective, Constraint, value, SolverFactory\n", - "\n", - "# Todo: add the objective function here\n", - "\n", - "\n", - "# Todo: add the constraint here\n", - "\n", - "\n", - "# now solve the problem\n", - "status = SolverFactory(\"ipopt\").solve(model, tee=True) # tee=True shows the solver log\n", - "\n", - "# print the values of x, y, and the objective function at the solution\n", - "# Note that the results are automatically stored in the model variables\n", - "print(\"x =\", value(model.x))\n", - "print(\"y =\", value(model.y))\n", - "print(\"obj =\", value(model.obj))" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "tags": [ - "solution" - ] - }, - "outputs": [], - "source": [ - "from pyomo.environ import Objective, Constraint, value, SolverFactory\n", - "\n", - "# Todo: add the objective function here\n", - "model.obj = Objective(expr=model.x**2 + model.y**2)\n", - "\n", - "# Todo: add the constraint here\n", - "model.con = Constraint(expr=model.x + model.y == 1)\n", - "\n", - "# now solve the problem\n", - "status = SolverFactory(\"ipopt\").solve(model, tee=True) # tee=True shows the solver log\n", - "\n", - "# print the values of x, y, and the objective function at the solution\n", - "# Note that the results are automatically stored in the model variables\n", - "print(\"x =\", value(model.x))\n", - "print(\"y =\", value(model.y))\n", - "print(\"obj =\", value(model.obj))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice that the code above also imported the `value` function. This is a Pyomo function that should be used to retrieve the value of variables in Pyomo (or IDAES) models. Note that you can display the complete list of all variables, objectives, and constraints (with their expressions) using `model.pprint()`. The `display` method is similar to the `pprint` method except that is shows the *values* of the constraints and objectives instead of the underlying expressions. The `pprint` and `display` methods can also be used on individual components.\n", - "\n", - "
\n", - "Inline Exercise:\n", - "Execute the lines of code below to see the output from pprint and display for a Pyomo model.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "# Check the solution\n", - "\n", - "assert value(model.obj) == 0.5\n", - "assert value(model.x) == 0.5\n", - "assert value(model.y) == 0.5" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"*** Output from model.pprint():\")\n", - "model.pprint()\n", - "\n", - "print()\n", - "print(\"*** Output from model.display():\")\n", - "model.display()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.11" - } - }, - "nbformat": 4, - "nbformat_minor": 2 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Introduction to IDAES (short)\n", + "Author: Jaffer Ghouse, Andrew Lee \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-06-01 \n", + "\n", + "The fundamentals of working with the IDAES process modeling toolset, and how these tools can be applied for optimization applications.\n", + "\n", + "This material was originally presented in an IDAES workshop." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "run \"notebook_test_script.py\"" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes_examples.mod.notebook_checks import run_checks\n", + "\n", + "assert run_checks() == 4" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Welcome and thank you for taking the time to attend today's workshop. Today we will introduce you to the fundamentals of working with the IDAES process modeling toolset, and we will demonstrate how these tools can be applied for optimization applications.\n", + "\n", + "Today's workshop will be conducted using Jupyter Notebooks which provide an online, interactive Python environment for you to use (without the need for installing anything).\n", + "\n", + "Before we get started on some actual examples, let's make sure that everything is working correctly. The cell below contains a command to run a simple test script that will test that everything we will need for today is working properly.\n", + "\n", + "You can execute a cell by pressing `Shift+Enter`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If everything worked properly, you should see a message saying `All good!` and a summary of all the checks that were run. If you don't see this, please contact someone for assistance." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Outline of Workshop\n", + "\n", + "Today's workshop is divided into four modules which will take you through the steps of setting up a flowsheet within the IDAES framework.\n", + "\n", + "Welcome Module (this one):\n", + "\n", + "* Introduction to Jupyter notebooks and Python\n", + "* Introduction to Pyomo\n", + "\n", + "Module 1 will cover:\n", + "\n", + "* how to import models from the core IDAES model library,\n", + "* how to create a model for a single unit operation,\n", + "* how to define feed and operating conditions,\n", + "* how to initialize and solve a single unit model,\n", + "* some ways we can manipulate the model and examine the results.\n", + "\n", + "Module 2 will demonstrate:\n", + "\n", + "* how to combine unit models together to form flowsheets,\n", + "* tools to initialize and solve flowsheets with recycle loops,\n", + "* how to optimize process operating conditions to meet product specifications.\n", + "\n", + "Module 3 will demonstrate:\n", + "\n", + "* how to build new unit models using the IDAES tools,\n", + "* how to include new unit models into flowsheets.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction to Jupyter Notebooks and Python\n", + "\n", + "In this short notebook, we will briefly describe the uses of Jupyter notebooks like this one, and provide you with the necessary background in Python for this workshop. We will cover `if` statements, looping, array-like containers called lists and dictionaries, as well as the use of some external packages for working with data. \n", + "\n", + "There are many additional tutorials online to learn more about the Python syntax. One recommended by the IDAES team is https://www.coursera.org/learn/python." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In Python, variables do not need to be declared before they are used. You can simply define a new variable using `x = 5`.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "In the cell below, assign a value of 5 to the variable x. Don't forget to type Shift+Enter to execute the line.
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Assign a value of 5 to the variable x" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Assign a value of 5 to the variable x\n", + "x = 5" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can easily see the value of a variable using the built-in `print` function. For example, to print the value of `x` use `print(x)`.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Write the code to print the value of x. Don't forget to hit Shift+Enter to execute the cell.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the value of x" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the value of x\n", + "print(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Inline Exercise:\n", + "Now change the value of the x variable to 8 and execute the cell.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: Assign a value of 8 to the variable x" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Todo: Assign a value of 8 to the variable x\n", + "x = 8" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Jupyter notebooks and execution order\n", + "\n", + "
\n", + "Note:\n", + "When using Jupyter notebooks, it is very important to know that the cells can be executed out of order (intentionally or not). The state of the environment (e.g., values of variables, imports, etc.) is defined by the execution order.\n", + "
\n", + "\n", + "
\n", + "Inline Exercise:\n", + "To see this concept, select the cell above that contained the print statement and execute the cell again using Shift+Enter.\n", + "
\n", + "\n", + "You should see that the value `8` is now printed. This may seem problematic if you are used to programming in environments where the state is linked to the order of the commands as *written*, not as *executed*.\n", + "\n", + "**Again, notice that the state of the environment is determined by the execution order.**\n", + "\n", + "Note also that the square brackets to the left of the cell show the order that cells were executed. If you scroll to the top, you should see that the code cells show an execution order of `[1]`, `[2]`, `[5]`, and `[4]`, indicating the actual execution order.\n", + "\n", + "There are some useful menu commands at the top of the Jupyter notebook to help with these problems and make sure you retain the execution order as expected.\n", + "\n", + "Some important commands to remember:\n", + "* You can clear the current state with the menu item `Kernel | Restart & Clear Output`\n", + "* It is often useful to clear the state using the menu command just described, and then execute all the lines **above the currently selected cell** using `Cell | Run All Above`.\n", + "* You can clear all the state and re-run the entire notebook using `Kernel | Restart & Run All`.\n", + "\n", + "To show the use of these commands, complete the following.\n", + "
\n", + "Inline Exercise:\n", + "
    \n", + "
  • Clear the current state (using Kernel | Restart & Clear Output). You should notice that the square brackets that listed the execution order are all now empty.
  • \n", + "
  • Select the cell immediately below this text\n", + "
  • Re-run all the code up to this point (Cell | Run All Above). You should now see that the square brackets indicate the expected execution order.
  • \n", + "
  • Print the value of x again using the print function. You should see the value 8 printed, while the earlier cell printing x shows the value of 5 as expected.
  • \n", + "
\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "print(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Python `if` statements\n", + "\n", + "In the code below, we show an example of an `if` statement in Python.\n", + "\n", + "```python\n", + "temp = 325\n", + "# some other code\n", + "if temp > 320:\n", + " print('temperature is too high')\n", + "elif x < 290:\n", + " print('temperature is too low')\n", + "else:\n", + " print('temperature is just right')\n", + "```\n", + "\n", + "
\n", + "Note:\n", + "You will notice that there are no braces to separate blocks in the if-else tree. In Python, indentation is used to delineate blocks of code throughout Python (e.g., if statements, for loops, functions, etc.). The indentation in the above example is not only to improve legibility of the code. It is necessary for the code to run correctly. As well, the number of spaces required to define the indentation is arbitrary, but it must be consistent throughout the code. For example, we could use 3 spaces (instead of the 4 used in the example above, but we could not use 3 for one of the blocks and 4 for another).\n", + "
\n", + "\n", + "Using the syntax above for the `if` statement, write the following code.\n", + "
\n", + "Inline Exercise:\n", + "
    \n", + "
  • set the value of the variable T_degC to 20
  • \n", + "
  • convert this from degrees Celsius to degrees Fahrenheit (use variable name T_degF)
  • \n", + "
  • write an `if` statement that prints a message if the degrees Fahrenheit are below 70
  • \n", + "
\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "T_degC = 20\n", + "# some other code\n", + "T_degF = (T_degC * 9.0 / 5.0) + 32.0\n", + "\n", + "# Todo: put the if statement here" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "T_degC = 20\n", + "# some other code\n", + "T_degF = (T_degC * 9.0 / 5.0) + 32.0\n", + "\n", + "# Todo: put the if statement here\n", + "if T_degF < 70:\n", + " print(\"The room is too cold.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Python list containers\n", + "\n", + "Now we will illustrate the use of lists in Python. Lists are similar to vectors or arrays in other languages. A list in Python is indexed by integers from 0 up to the length of the array minus 1. The list can contain standard types (int, float, string), or other objects.\n", + "\n", + "In the next inline exercise, we will create a list that contains the values from 0 to 50 by steps of 5 using a for loop. Note that the python function `range(n)` can be used to iterate from 0 to (n-1) in a for loop. Also note that lists have an `append` method which adds an entry to the end of the list (e.g., if the list `l` currently has 5 elements, then `l.append('temp')` will add the string \"temp\" as the sixth element). Print the new list after the for loop. If this is done correctly, you should see:\n", + "`[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]` printed after the cell.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Complete the code block below to create the desired list and print the result.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Create a list with the values 0 to 50 with steps of 5.\n", + "xlist = list()\n", + "for i in range(11):\n", + " # Todo: use the append method of list to append the correct value\n", + "\n", + "# Todo: print the value of xlist to verify the results\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "# Create a list with the values 0 to 50 with steps of 5.\n", + "xlist = list()\n", + "for i in range(11):\n", + " # Todo: use the append method of list to append the correct value\n", + " xlist.append(i * 5)\n", + "\n", + "print(xlist) # Todo: print the value of xlist to verify the results" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can easily check the length of a list using the python `len(l)` function.\n", + "
\n", + "Inline Exercise:\n", + "Print the length of `xlist`. It should be 11.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "# Todo: print the len of the list" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "print(len(xlist)) # Todo: print the len of the list" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you have a list of values or objects, it is easy to iterate through that list in a for loop. In the next inline exercise, we will create another list, `ylist` where each of the values is equal to the corresponding value in `xlist` squared. That is, $y_i = x_i^2$.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Modify the code below to create ylist as described above. Print the values in ylist to check the result.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "ylist = list()\n", + "\n", + "# Todo: define the for loop to add elements to ylist using the values in xlist\n", + "\n", + "print(ylist)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "ylist = list()\n", + "\n", + "# Todo: define the for loop to add elements to ylist using the values in xlist\n", + "for x in xlist:\n", + " ylist.append(x**2)\n", + "\n", + "print(ylist)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Python dictionary containers\n", + "\n", + "Another valuable data structure in Python are *dictionaries*. Dictionaries are an associative array; that is, a map from keys to values or objects. The keys can be *almost* anything, including floats, integers, and strings. The code below shows an example of creating a dictionary (here, to store the areas of some of the states).\n", + "
\n", + "Inline Exercise:\n", + "Execute the lines below to see the areas dictionary.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "areas = dict()\n", + "areas[\"South Dakota\"] = 199742\n", + "areas[\"Oklahoma\"] = 181035\n", + "print(areas)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Dictionaries can contain mixed types (i.e., it is valid to add `areas['Texas'] = 'Really big!'`) but this may lead to unpredictable behavior if the different types are unexpected in other parts of the code.\n", + "\n", + "You can loop through dictionaries in different ways. For example,\n", + "```python\n", + "d = {'A': 2, 'B': 4, 'D': 16}\n", + "for k in d.keys():\n", + " # loop through the keys in the dictionary\n", + " # access the value with d[k]\n", + " print('key=', k, 'value=', d[k])\n", + " \n", + "for v in d.values():\n", + " # loop through the values in the dictionary, ignoring the keys\n", + " print('value=', v)\n", + " \n", + "for k,v in d.items():\n", + " # loop through the entries in the dictionary, retrieving both\n", + " # the key and the value\n", + " print('key=', k, 'value=', v)\n", + "```\n", + "\n", + "
\n", + "Inline Exercise:\n", + "The areas listed above for the two states are in square kilometers. Modify the loop below to create a new dictionary that contains the areas in square miles. Print the new dictionary to verify the correct behavior. Note that 1 kilometer is equal to 0.62137 miles.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "areas_mi = dict()\n", + "for state_name, area in areas.items():\n", + " # Todo: convert the area to sq. mi and assign to the areas_mi dict.\n", + "\n", + "print(areas_mi)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "areas_mi = dict()\n", + "for state_name, area in areas.items():\n", + " # Todo: convert the area to sq. mi and assign to the areas_mi dict.\n", + " areas_mi[state_name] = area * (0.62137**2)\n", + "print(areas_mi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Matplotlib for generating figures\n", + "\n", + "We will now briefly explore the use of the `matplotlib` package to generate figures. Before we do this, we will introduce some other helpful tools.\n", + "\n", + "Another effective way to create a list of evenly spaced numbers (e.g., for plotting or other computation) is to use the `linspace` function from the `numpy` package (more information [here](https://numpy.org/devdocs/)). Let's import the `numpy` package and use linspace function to create a list of 15 evenly spaced intervals (that is, 16 points) from 0 to 50 and store this in `xlist`. We will also create the `ylist` that corresponds to the square of the values in `xlist`. Note, we must first import the `numpy` package.\n", + "
\n", + "Inline Exercise:\n", + "Execute the next two cells to see the output.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "xlist = list(np.linspace(0, 50, 16))\n", + "ylist = [x**2 for x in xlist]\n", + "print(xlist)\n", + "print(ylist)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This printed output is not a very effective way to communicate these results. Let's use matplotlib to create a figure of x versus y. A full treatment of the `matplotlib` package is beyond the scope of this tutorial, and further documentation can be found [here](https://matplotlib.org/). For now, we will import the plotting capability and show how to generate a straightforward figure. You can consult the documentation for matplotlib for further details.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the next two cells to see the output.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "plt.plot(xlist, ylist)\n", + "plt.title(\"Embedded x vs y figure\")\n", + "plt.xlabel(\"x\")\n", + "plt.ylabel(\"y\")\n", + "plt.legend([\"data\"])\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we will use what you have learned so far to create a plot of `sin(x)` for `x` from 0 to $2 \\pi$ with 100 points. Note, you can get the `sin` function and the value for $\\pi$ from the `math` package.\n", + "
\n", + "Inline Exercise:\n", + "Execute the import statement in the next cell, and then complete the missing code in the following cell to create the figure discussed above.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "import math" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "x = list(np.linspace(0, 2 * math.pi, 100))\n", + "\n", + "# Todo: create the list for y\n", + "\n", + "for xv in x:\n", + " y.append(math.sin(xv))\n", + "\n", + "# Todo: Generate the figure" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "x = list(np.linspace(0, 2 * math.pi, 100))\n", + "\n", + "# Todo: create the list for y\n", + "y = []\n", + "for xv in x:\n", + " y.append(math.sin(xv))\n", + "\n", + "# Todo: Generate the figure\n", + "plt.plot(x, y)\n", + "plt.title(\"Trig: sin function\")\n", + "plt.xlabel(\"x in radians\")\n", + "plt.ylabel(\"sin(x)\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Further Information\n", + "\n", + "Further information of the packages mentioned above can be found using the following links:\n", + "\n", + "* [numpy](https://numpy.org/devdocs/)\n", + "* [matplotlib](https://matplotlib.org/)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction to Pyomo\n", + "\n", + "[Pyomo](https://www.pyomo.org) is an object-oriented, python-based package for equation-oriented (or *algebraic*) modeling and optimization, and the IDAES framework is built upon the Pyomo package. IDAES extends the Pyomo package and defines a class hierarchy for flowsheet based modeling, including definition of property packages, unit models, and flowsheets.\n", + "\n", + "The use of IDAES does not require extensive knowledge about Pyomo, however, it can be beneficial to have some familiarity with the Pyomo package for certain tasks:\n", + "* IDAES models are open, and you can interrogating the underlying Pyomo model to view the variables, constraints, and objective functions defined in the model.\n", + "* You can use Pyomo components to define your objective function or to create additional constraints.\n", + "* Since IDAES models **are** Pyomo models, any advanced meta-algorithms or analysis tools that can be developed and/or used on a Pyomo model can also be used on an IDAES model.\n", + "\n", + "A full tutorial on Pyomo is beyond the scope of this workshop, however in this section we will briefly cover the commands required to specify an objective function or add a constraint to an existing model.\n", + "\n", + "In the next cell, we will create a Pyomo model, and add a couple of variables to that model. When using IDAES, you will define a flowsheet and the addition of variables and model equations will be handled by the IDAES framework.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the following cell to create a Pyomo model with some variables that will be used later.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import ConcreteModel, Var\n", + "\n", + "model = ConcreteModel()\n", + "model.x = Var()\n", + "model.y = Var()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Pyomo syntax to define a scalar objective function is shown below. This defines the objective function as $x^2$. By default Pyomo models (and IDAES models) seek to *minimize* the objective function.\n", + "```python\n", + "model.obj = Objective(expr=model.x**2)\n", + "```\n", + "To maximize a quantity, include the keyword argument `sense=maximize` as in the following:\n", + "```python\n", + "model.obj = Objective(expr=model.y, sense=maximize)\n", + "```\n", + "Note that `Objective` and `maximize` would need to be imported from `pyomo.environ`.\n", + "\n", + "The Pyomo syntax to define a scalar constraint is shown below. This code defines the equality constraint $x^2 + y^2 = 1$.\n", + "```python\n", + "model.on_unit_circle_con = Constraint(expr=model.x**2 + model.y**2 == 1)\n", + "```\n", + "Pyomo also supports inequalities. For example, the code for the inequality constraint $x^2 + y^2 \\le 1$ is given as the following.\n", + "```python\n", + "model.inside_unit_circle_con = Constraint(expr=model.x**2 + model.y**2 <= 1)\n", + "```\n", + "Note that, as before, we would need to include the appropriate imports. In this case `Constraint` would need to be imported from `pyomo.environ`.\n", + "\n", + "Using the syntax shown above, we will now add the objective function: $\\min x^2 + y^2$ and the constraint $x + y = 1$.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Complete the missing code in the cell below. If this is done correctly, after executing the cell, you should see the log output from the solver and the printed solution should show that x, y, and the objective value are all equal to 0.5.\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "exercise" + ] + }, + "outputs": [], + "source": [ + "from pyomo.environ import Objective, Constraint, value, SolverFactory\n", + "\n", + "# Todo: add the objective function here\n", + "\n", + "\n", + "# Todo: add the constraint here\n", + "\n", + "\n", + "# now solve the problem\n", + "status = SolverFactory(\"ipopt\").solve(model, tee=True) # tee=True shows the solver log\n", + "\n", + "# print the values of x, y, and the objective function at the solution\n", + "# Note that the results are automatically stored in the model variables\n", + "print(\"x =\", value(model.x))\n", + "print(\"y =\", value(model.y))\n", + "print(\"obj =\", value(model.obj))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [ + "solution" + ] + }, + "outputs": [], + "source": [ + "from pyomo.environ import Objective, Constraint, value, SolverFactory\n", + "\n", + "# Todo: add the objective function here\n", + "model.obj = Objective(expr=model.x**2 + model.y**2)\n", + "\n", + "# Todo: add the constraint here\n", + "model.con = Constraint(expr=model.x + model.y == 1)\n", + "\n", + "# now solve the problem\n", + "status = SolverFactory(\"ipopt\").solve(model, tee=True) # tee=True shows the solver log\n", + "\n", + "# print the values of x, y, and the objective function at the solution\n", + "# Note that the results are automatically stored in the model variables\n", + "print(\"x =\", value(model.x))\n", + "print(\"y =\", value(model.y))\n", + "print(\"obj =\", value(model.obj))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice that the code above also imported the `value` function. This is a Pyomo function that should be used to retrieve the value of variables in Pyomo (or IDAES) models. Note that you can display the complete list of all variables, objectives, and constraints (with their expressions) using `model.pprint()`. The `display` method is similar to the `pprint` method except that is shows the *values* of the constraints and objectives instead of the underlying expressions. The `pprint` and `display` methods can also be used on individual components.\n", + "\n", + "
\n", + "Inline Exercise:\n", + "Execute the lines of code below to see the output from pprint and display for a Pyomo model.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# Check the solution\n", + "\n", + "assert value(model.obj) == 0.5\n", + "assert value(model.x) == 0.5\n", + "assert value(model.y) == 0.5" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"*** Output from model.pprint():\")\n", + "model.pprint()\n", + "\n", + "print()\n", + "print(\"*** Output from model.display():\")\n", + "model.display()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + } + }, + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/idaes_examples/notebooks/docs/tut/introduction_short_doc.ipynb b/idaes_examples/notebooks/docs/tut/introduction_short_doc.ipynb index 98b8ece2..f234c964 100644 --- a/idaes_examples/notebooks/docs/tut/introduction_short_doc.ipynb +++ b/idaes_examples/notebooks/docs/tut/introduction_short_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -598,8 +599,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "[0.0, 3.3333333333333335, 6.666666666666667, 10.0, 13.333333333333334, 16.666666666666668, 20.0, 23.333333333333336, 26.666666666666668, 30.0, 33.333333333333336, 36.66666666666667, 40.0, 43.333333333333336, 46.66666666666667, 50.0]\n", - "[0.0, 11.111111111111112, 44.44444444444445, 100.0, 177.7777777777778, 277.7777777777778, 400.0, 544.4444444444446, 711.1111111111112, 900.0, 1111.1111111111113, 1344.4444444444448, 1600.0, 1877.777777777778, 2177.7777777777783, 2500.0]\n" + "[np.float64(0.0), np.float64(3.3333333333333335), np.float64(6.666666666666667), np.float64(10.0), np.float64(13.333333333333334), np.float64(16.666666666666668), np.float64(20.0), np.float64(23.333333333333336), np.float64(26.666666666666668), np.float64(30.0), np.float64(33.333333333333336), np.float64(36.66666666666667), np.float64(40.0), np.float64(43.333333333333336), np.float64(46.66666666666667), np.float64(50.0)]\n", + "[np.float64(0.0), np.float64(11.111111111111112), np.float64(44.44444444444445), np.float64(100.0), np.float64(177.7777777777778), np.float64(277.7777777777778), np.float64(400.0), np.float64(544.4444444444446), np.float64(711.1111111111112), np.float64(900.0), np.float64(1111.1111111111113), np.float64(1344.4444444444448), np.float64(1600.0), np.float64(1877.777777777778), np.float64(2177.7777777777783), np.float64(2500.0)]\n" ] } ], @@ -638,16 +639,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXCElEQVR4nO3deVhUZf8G8HtYZtgH2UEQwQ1XcCVyyyRxTdNyzaU0zdBSy8x+5ZIlpb0tmq3m8pqaaWppmuKC5q4oiqiIioKyKjLDvsw8vz+IeR3BHTgzzP25rrlyznnOme95QOfunOc8RyaEECAiIiIyYWZSF0BEREQkNQYiIiIiMnkMRERERGTyGIiIiIjI5DEQERERkcljICIiIiKTx0BEREREJo+BiIiIiEweAxERERGZPAYiIhNSv3599O3bt9o/5+rVq5DJZFixYsUD244ZMwb169ev0s+vX78+xowZU6X7NCalpaV499134ePjAzMzMwwYMAAAIJPJMGfOHElrIzJUDEREEluxYgVkMtk9X0eOHJG6RDIyy5Ytw8KFC/Hiiy9i5cqVmDp1qtQlERk8C6kLIKIyH330Efz8/Cosb9iwoQTVkDHbs2cP6tatiy+//FJveUFBASws+M8+UWX4N4PIQPTq1Qvt2rWTugyqBTIyMuDo6FhhuZWVVc0XAyAvLw+2traSfDbRw+IlMyIjUT4u5/PPP8eSJUvg7+8PGxsb9OjRA8nJyRBCYN68efD29oa1tTX69++PrKysSve1c+dOBAUFwcrKCs2aNcPGjRsrtMnOzsaUKVPg4+MDhUKBhg0b4rPPPoNWq63QbsyYMVAqlXB0dMTo0aORnZ1d6edu3rwZLVq0gJWVFVq0aIFNmzZV2k6r1eKrr75C8+bNYWVlBXd3d0yYMAG3b9/WayeEwMcffwxvb2/Y2NigW7duiIuLe4jeBGbPng0zMzPs3r1bb/n48eMhl8tx+vTpe27bokULdOvWrdK669atixdffFG37Ndff0Xbtm1hb28PBwcHtGzZEl9//fU99y2EQP369dG/f/8K6woLC6FUKjFhwoRKty3/Hdm7dy/i4uJ0l12joqIAVD6GKCoqCu3atYOVlRUaNGiAH374AXPmzIFMJquw38rGhN29z/Jtz507h+HDh6NOnTro1KmTbv0vv/yCtm3bwtraGk5OThg6dCiSk5Pv2R9ENYVniIgMhEqlws2bN/WWyWQyODs76y1bvXo1iouLMXnyZGRlZWHBggUYPHgwnn32WURFRWHGjBm4dOkSFi9ejHfeeQfLli3T2z4hIQFDhgzB66+/jtGjR2P58uV46aWX8Pfff+O5554DAOTn56Nr1664ceMGJkyYgHr16uHQoUOYOXMmUlNT8dVXXwEo+/Lu378/Dhw4gNdffx1NmzbFpk2bMHr06ArHt3PnTgwaNAjNmjVDREQEbt26hVdeeQXe3t4V2k6YMAErVqzAK6+8gjfffBOJiYn45ptvcOrUKRw8eBCWlpYAgFmzZuHjjz9G79690bt3b5w8eRI9evRAcXHxA/v7gw8+wJYtWzB27FjExsbC3t4eO3bswE8//YR58+YhMDDwntsOGTIEc+bMQVpaGjw8PHTLDxw4gJSUFAwdOhQAEBkZiWHDhqF79+747LPPAADnz5/HwYMH8dZbb1W6b5lMhpdffhkLFixAVlYWnJycdOu2bNkCtVqNl19+udJtXV1dsWrVKnzyySfIzc1FREQEAKBp06aVtj916hR69uwJT09PzJ07FxqNBh999BFcXV3v03MP56WXXkKjRo0wf/58CCEAAJ988gk+/PBDDB48GOPGjUNmZiYWL16MLl264NSpU5We1SKqMYKIJLV8+XIBoNKXQqHQtUtMTBQAhKurq8jOztYtnzlzpgAgAgMDRUlJiW75sGHDhFwuF4WFhbplvr6+AoD4/fffdctUKpXw9PQUrVu31i2bN2+esLW1FRcvXtSr9b333hPm5uYiKSlJCCHE5s2bBQCxYMECXZvS0lLRuXNnAUAsX75ctzwoKEh4enrq1b5z504BQPj6+uqW/fPPPwKAWL16td5n//3333rLMzIyhFwuF3369BFarVbX7v333xcAxOjRoyvv8DvExsYKuVwuxo0bJ27fvi3q1q0r2rVrp9ePlYmPjxcAxOLFi/WWv/HGG8LOzk7k5+cLIYR46623hIODgygtLX1gLZXt/7vvvtNb/vzzz4v69evrHW9lunbtKpo3b15hOQAxe/Zs3ft+/foJGxsbcePGDd2yhIQEYWFhIe78eij/3bvz53mvfc6ePVsAEMOGDdNrd/XqVWFubi4++eQTveWxsbHCwsKiwnKimsZLZkQGYsmSJYiMjNR7bd++vUK7l156CUqlUvc+ODgYAPDyyy/rDZgNDg5GcXExbty4obe9l5cXXnjhBd17BwcHjBo1CqdOnUJaWhoAYP369ejcuTPq1KmDmzdv6l6hoaHQaDTYv38/AGDbtm2wsLDAxIkTdfszNzfH5MmT9T4zNTUVMTExGD16tF7tzz33HJo1a6bXdv369VAqlXjuuef0Prtt27aws7PD3r17AQC7du3SnSm78/LOlClT7tPL+lq0aIG5c+di6dKlCAsLw82bN7Fy5coHDjxu3LgxgoKCsG7dOt0yjUaDDRs2oF+/frC2tgYAODo6Ii8vD5GRkQ9dU/n+g4ODsXr1at2yrKwsbN++HSNGjNA73sel0Wiwa9cuDBgwAF5eXrrlDRs2RK9evZ54/6+//rre+40bN0Kr1WLw4MF6P1cPDw80atRI93MlkgovmREZiA4dOjzUoOp69erpvS8PGD4+PpUuv3vcTcOGDSt8oTZu3BhA2VgRDw8PJCQk4MyZM/e8dJKRkQEAuHbtGjw9PWFnZ6e3vkmTJnrvr127BgBo1KhRhX01adIEJ0+e1L1PSEiASqWCm5vbAz+7sn26urqiTp06lW5bmenTp+PXX3/FsWPHMH/+/AoB7V6GDBmC999/Hzdu3EDdunURFRWFjIwMDBkyRNfmjTfewG+//YZevXqhbt266NGjBwYPHoyePXs+cP+jRo3CpEmTcO3aNfj6+mL9+vUoKSnByJEjH/rY7icjIwMFBQWV3sVYFXc23n3HZEJCAoQQlf4OANBdBiWSCgMRkZExNzd/pOXi3/Ebj0Kr1eK5557Du+++W+n68gBVHbRaLdzc3PTOjtypKsa33OnKlStISEgAAMTGxj70dkOGDMHMmTOxfv16TJkyBb/99huUSqVe2HFzc0NMTAx27NiB7du3Y/v27Vi+fDlGjRqFlStX3nf/Q4cOxdSpU7F69Wq8//77+OWXX9CuXbsKYbMm3OuMlEajuec25WfJymm1WshkMmzfvr3S39W7QzVRTWMgIjIxly5dghBC70vu4sWLAKCbMbpBgwbIzc1FaGjofffl6+uL3bt3Izc3V+8LLT4+vkI7ALrgcae72zZo0AC7du1Cx44dK3yp3muf/v7+uuWZmZkVzordi1arxZgxY+Dg4IApU6Zg/vz5ePHFFzFw4MAHbuvn54cOHTpg3bp1mDRpEjZu3IgBAwZAoVDotZPL5ejXrx/69esHrVaLN954Az/88AM+/PDD+56JcXJyQp8+fbB69WqMGDECBw8e1A1mrwpubm6wsrLCpUuXKqy7e1n5Gbe77x4sP0v3MBo0aAAhBPz8/Ko1UBM9Lo4hIjIxKSkpere7q9Vq/Pe//0VQUJDujqnBgwfj8OHD2LFjR4Xts7OzUVpaCgDo3bs3SktL8d133+nWazQaLF68WG8bT09PBAUFYeXKlVCpVLrlkZGROHfunF7bwYMHQ6PRYN68eRU+u7S0VPelHBoaCktLSyxevFjvLNijhIYvvvgChw4dwo8//oh58+bh6aefxsSJEyvc7XcvQ4YMwZEjR7Bs2TLcvHlT73IZANy6dUvvvZmZGVq1agUAKCoqeuD+R44ciXPnzmH69OkwNzfX3b1WFczNzREaGorNmzcjJSVFt/zSpUsVxq45ODjAxcVFN3as3LfffvvQnzdw4ECYm5tj7ty5Fc5aCiEq9BVRTeMZIiIDsX37dly4cKHC8qefflrvDMiTaty4McaOHYvjx4/D3d0dy5YtQ3p6OpYvX65rM336dPz555/o27cvxowZg7Zt2yIvLw+xsbHYsGEDrl69ChcXF/Tr1w8dO3bEe++9h6tXr+rmNLoz9JSLiIhAnz590KlTJ7z66qvIysrC4sWL0bx5c+Tm5urade3aFRMmTEBERARiYmLQo0cPWFpaIiEhAevXr8fXX3+NF198Ea6urnjnnXcQERGBvn37onfv3jh16hS2b98OFxeXB/bD+fPn8eGHH2LMmDHo168fgLLHqAQFBenG/jzI4MGD8c477+Cdd96Bk5NThTNq48aNQ1ZWFp599ll4e3vj2rVrWLx4MYKCgu55K/yd+vTpA2dnZ6xfvx69evW657iqxzVnzhzs3LkTHTt2xMSJE6HRaPDNN9+gRYsWiImJqXAsn376KcaNG4d27dph//79ujOLD6NBgwb4+OOPMXPmTFy9ehUDBgyAvb09EhMTsWnTJowfPx7vvPNOlR4f0SOR8A43IhL3v+0ed9zqXH7r88KFC/W237t3rwAg1q9fX+l+jx8/rlvm6+sr+vTpI3bs2CFatWolFAqFCAgIqLCtEELk5OSImTNnioYNGwq5XC5cXFzE008/LT7//HNRXFysa3fr1i0xcuRI4eDgIJRKpRg5cqQ4depUpbdp//7776Jp06ZCoVCIZs2aiY0bN4rRo0fr3XZf7scffxRt27YV1tbWwt7eXrRs2VK8++67IiUlRddGo9GIuXPnCk9PT2FtbS2eeeYZcfbsWeHr63vf2+5LS0tF+/bthbe3t940AEII8fXXXwsAYt26dffc/k4dO3YUAMS4ceMqrNuwYYPo0aOHcHNzE3K5XNSrV09MmDBBpKamPtS+hSi7lR+AWLNmzUNv87C33QshxO7du0Xr1q2FXC4XDRo0EEuXLhVvv/22sLKy0muXn58vxo4dK5RKpbC3txeDBw8WGRkZ97ztPjMzs9Lafv/9d9GpUydha2srbG1tRUBAgAgPDxfx8fEPfXxE1UEmxGOMuCQiohoxdepU/Pzzz0hLS4ONjU2NfOaAAQMQFxdX6ZgvotqKY4iIiAxUYWEhfvnlFwwaNKjawlBBQYHe+4SEBGzbtg3PPPNMtXwekaHiGCIiIgOTkZGBXbt2YcOGDbh169Y9H/NRFfz9/TFmzBj4+/vj2rVr+O677yCXy+855QJRbcVARERkYM6dO4cRI0bAzc0NixYtQlBQULV9Vs+ePbF27VqkpaVBoVAgJCQE8+fPv+cEikS1FccQERERkcnjGCIiIiIyeQxEREREZPI4hughaLVapKSkwN7evkqeMk1ERETVTwiBnJwceHl5wczs/ueAGIgeQkpKSoUniRMREZFxSE5Ohre3933bMBA9BHt7ewBlHerg4CBxNURERPQw1Go1fHx8dN/j98NA9BDKL5M5ODgwEBERERmZhxnuwkHVREREZPIYiIiIiMjkMRARERGRyeMYoiqk0WhQUlIidRlGx9LSEubm5lKXQUREJoyBqAoIIZCWlobs7GypSzFajo6O8PDw4DxPREQkCQaiKlAehtzc3GBjY8Mv9UcghEB+fj4yMjIAAJ6enhJXREREpoiB6AlpNBpdGHJ2dpa6HKNkbW0NAMjIyICbmxsvnxERUY3joOonVD5myMbGRuJKjFt5/3EMFhERSYGBqIrwMtmTYf8REZGUGIiIiIjI5EkaiCIiItC+fXvY29vDzc0NAwYMQHx8vF6bZ555BjKZTO/1+uuv67VJSkpCnz59YGNjAzc3N0yfPh2lpaV6baKiotCmTRsoFAo0bNgQK1asqO7DM1rPPPMMpkyZInUZRERENUbSQLRv3z6Eh4fjyJEjiIyMRElJCXr06IG8vDy9dq+99hpSU1N1rwULFujWaTQa9OnTB8XFxTh06BBWrlyJFStWYNasWbo2iYmJ6NOnD7p164aYmBhMmTIF48aNw44dO2rsWGurqKgoyGQyTjlARERGTdK7zP7++2+99ytWrICbmxuio6PRpUsX3XIbGxt4eHhUuo+dO3fi3Llz2LVrF9zd3REUFIR58+ZhxowZmDNnDuRyOb7//nv4+fnhP//5DwCgadOmOHDgAL788kuEhYVV3wESERHRAx26dBOBPo6wVUgXSwxqDJFKpQIAODk56S1fvXo1XFxc0KJFC8ycORP5+fm6dYcPH0bLli3h7u6uWxYWFga1Wo24uDhdm9DQUL19hoWF4fDhw5XWUVRUBLVarfeqrfLy8jBq1CjY2dnB09NTFxrLrVq1Cu3atYO9vT08PDwwfPhw3ZxBV69eRbdu3QAAderUgUwmw5gxYwCUhd1OnTrB0dERzs7O6Nu3Ly5fvlyjx0ZERIbvUkYOXllxHL0X/YMMdaFkdRjMPERarRZTpkxBx44d0aJFC93y4cOHw9fXF15eXjhz5gxmzJiB+Ph4bNy4EUDZpIh3hiEAuvdpaWn3baNWq1FQUKCbB6dcREQE5s6d+9jHIoRAQYnmsbd/EtaW5o90x9b06dOxb98+/PHHH3Bzc8P777+PkydPIigoCEDZbfDz5s1DkyZNkJGRgWnTpmHMmDHYtm0bfHx88Pvvv2PQoEGIj4+Hg4ODri/z8vIwbdo0tGrVCrm5uZg1axZeeOEFxMTEwMzMoHI4ERFJpLhUiynrYlBUqoWvsy1c7RWS1WIwgSg8PBxnz57FgQMH9JaPHz9e9+eWLVvC09MT3bt3x+XLl9GgQYNqqWXmzJmYNm2a7r1arYaPj89Db19QokGzWdKMTzr3URhs5A/3Y83NzcXPP/+MX375Bd27dwcArFy5Et7e3ro2r776qu7P/v7+WLRoEdq3b4/c3FzY2dnpzua5ubnB0dFR13bQoEF6n7Vs2TK4urri3LlzeoGXiIhM1+I9CTh7Qw2ltSUWvthK0ilYDOJ/1SdNmoStW7di7969el/GlQkODgYAXLp0CQDg4eGB9PR0vTbl78vHHd2rzZ1nNO6kUCjg4OCg96qNLl++jOLiYl2fAmWXK5s0aaJ7Hx0djX79+qFevXqwt7dH165dAZTd2Xc/CQkJGDZsGPz9/eHg4ID69es/1HZERGQaTibdxpK9Zd/ln7zQAu4OVpLWI+kZIiEEJk+ejE2bNiEqKgp+fn4P3CYmJgbA/555FRISgk8++UT32AcAiIyMhIODA5o1a6Zrs23bNr39REZGIiQkpAqP5n+sLc1x7iNpBmtbW1bdYy/y8vIQFhaGsLAwrF69Gq6urkhKSkJYWBiKi4vvu22/fv3g6+uLn376CV5eXtBqtWjRosUDtyMiotovr6gU09bFQCuAAUFe6NvKS+qSpA1E4eHhWLNmDf744w/Y29vrxvwolUpYW1vj8uXLWLNmDXr37g1nZ2ecOXMGU6dORZcuXdCqVSsAQI8ePdCsWTOMHDkSCxYsQFpaGj744AOEh4dDoSi7Fvn666/jm2++wbvvvotXX30Ve/bswW+//Ya//vqrWo5LJpM99GUrKTVo0ACWlpY4evQo6tWrBwC4ffs2Ll68iK5du+LChQu4desWPv30U90lwxMnTujtQy6XAyib/qDcrVu3EB8fj59++gmdO3cGgAqXQomIyHR9su08rt7Kh6fSCnP7G8YwCkkvmX333XdQqVR45pln4OnpqXutW7cOQNmX7a5du9CjRw8EBATg7bffxqBBg7BlyxbdPszNzbF161aYm5sjJCQEL7/8MkaNGoWPPvpI18bPzw9//fUXIiMjERgYiP/85z9YunSpyd9yb2dnh7Fjx2L69OnYs2cPzp49izFjxugGPderVw9yuRyLFy/GlStX8Oeff2LevHl6+/D19YVMJsPWrVuRmZmJ3Nxc1KlTB87Ozvjxxx9x6dIl7NmzR29MFhERma69FzKw5mjZ8InPXwqE0tpS4or+JeiBVCqVACBUKlWFdQUFBeLcuXOioKBAgsqeXE5Ojnj55ZeFjY2NcHd3FwsWLBBdu3YVb731lhBCiDVr1oj69esLhUIhQkJCxJ9//ikAiFOnTun28dFHHwkPDw8hk8nE6NGjhRBCREZGiqZNmwqFQiFatWoloqKiBACxadOmSusw9n4kIqIHu5VbJNrOixS+M7aKuX/GVfvn3e/7+24yIYSQNpIZPrVaDaVSCZVKVWGAdWFhIRITE+Hn5wcrK2kHhBkz9iMRUe0mhMDEX07i77g0NHKzw5bJnWBVheNeK3O/7++7GcRdZkRERFS7bTx5A3/HpcHCTIYvhwRVexh6VAxEREREVK2Ss/Ix+8+yp0dMfa4xWtRVSlxRRQxEREREVG00WoG3159GblEp2vrWwYQu/lKXVCkGIiIiIqo2Px+4gmOJWbCRm+OLwYGwMDfM6GGYVRkhjk1/Muw/IqLa50KaGp/vuAgA+LBvM/g620pc0b0xED0hS8uy+RPy8/MlrsS4lfdfeX8SEZFxKyrVYMqvMSjWaNE9wA1D2z/8M0GlYPjTKRs4c3NzODo6IiMjAwBgY2Mj6cPpjI0QAvn5+cjIyICjoyPMzQ3rrgMiIno8X0RexIW0HDjZyvHpIGkf3PowGIiqQPlDZMtDET06R0dHXT8SEZFxO5aYhR/3XwEARAxsCVd7hcQVPRgDURWQyWTw9PSEm5sbSkpKpC7H6FhaWvLMEBFRLZFTWIJpv8VACOCltt4Ia24c/7PLQFSFzM3N+cVOREQm7aMt53D9dgG861hjVr9mUpfz0DiomoiIiKrEjrg0rI++DpkM+GJwEOytjOdGGQYiIiIiemKZOUWYuTEWADC+iz86+DlJXNGjYSAiIiKiJyKEwHu/n0FWXjECPOwx7bnGUpf0yBiIiIiI6In8ejwZuy9kQG5uhq+GBkFhYXzjaRmIiIiI6LFdu5WHeVvPAQDeCWuMAA8HiSt6PAxERERE9FhKNVpMXReD/GINgv2cMLaTYT649WEwEBEREdFj+WH/FZxMyoadwgL/GRwIczPDno36fhiIiIiI6JGdvaHCl5FlD26d+3xzeNexkbiiJ8NARERERI+ksESDqetiUKoV6NncAwPb1JW6pCfGQERERESPZMHf8UjIyIWLnQLzB7Y0+Ae3PgwGIiIiInpoBy/dxLKDiQCAhS+2gpOtXOKKqgYDERERET0UVUEJ3ll/GgAwIrgeugW4SVxR1WEgIiIioocy+4+zSFUVor6zDf6vT1Opy6lSDERERET0QFvPpGBzTArMZMAXQ4JgI7eQuqQqxUBERERE95WmKsT/bToLAJjUrSHa1KsjcUVVj4GIiIiI7kkIgekbTkNVUIKWdZWY3L2R1CVVCwYiIiIiuqdVR67hn4SbUFiY4cshgbA0r53RoXYeFRERET2xy5m5mL/tPABgZq8ANHSzl7ii6sNARERERBWUaLSYti4GhSVadG7kglEh9aUuqVoxEBEREVEF3+y5hNPXVXCwssDCFwNhZsQPbn0YDERERESkJyY5G9/svQQA+PiFlvBQWklcUfVjICIiIiKd/OJSTF0XA41W4PlALzwf6CV1STWCgYiIiIh0IrZdQOLNPHg4WGFe/xZSl1NjGIiIiIgIABAVn4FVR64BABa+1ApKG0uJK6o5DERERESErLxivLvhDABgzNP10bmRq8QV1SwGIiIiIhOn1Qq8/VsMMnKK0MDVFu/1CpC6pBrHQERERGTifvrnCvbGZ0JhYYZvhreBlaW51CXVOAYiIiIiExZ97TYW7ogHAMzu1xxNPR0krkgaDEREREQmKju/GG+uPYVSrUC/QC8M6+AjdUmSYSAiIiIyQUIIvLP+DG5kF6C+sw3mv9ACMlntno36fhiIiIiITNCyg1ex63w65OZl44bsrUznFvvKMBARERGZmNPJ2fh0e9lT7D/o2xQt6iolrkh6DEREREQmRFVQgvA1J1GiEejd0gMjn/KVuiSDwEBERERkIoQQeO/3M7h+uwA+Ttb4dFArkx43dCcGIiIiIhOx6sg1bD+bBktzGb4Z1gYOJj5u6E4MRERERCbg7A0VPt5aNm7ovV5NEejjKG1BBoaBiIiIqJbLKSwbN1Ss0eK5Zu54tWN9qUsyOAxEREREtZgQAjM3xuLarXzUdbTGwhc5bqgyDERERES12JpjSdh6JhUWZjIsHt4ajjZyqUsySAxEREREtdS5FDXmbjkHAHi3ZxO0qVdH4ooMFwMRERFRLZRXVIpJa06iuFSLZwPcMK6Tv9QlGTQGIiIiolpGCIEPNp/FlZt58FRa4T8vBcLMjOOG7oeBiIiIqJZZf+I6Np26AXMzGRYNa406thw39CAMRERERLXIxfQczPrzLABg2nON0b6+k8QVGQcGIiIioloiv7gUb6w+icISLbo0dsXErg2kLsloSBqIIiIi0L59e9jb28PNzQ0DBgxAfHy8XpvCwkKEh4fD2dkZdnZ2GDRoENLT0/XaJCUloU+fPrCxsYGbmxumT5+O0tJSvTZRUVFo06YNFAoFGjZsiBUrVlT34REREdWoWX/E4VJGLtzsFfhiMMcNPQpJA9G+ffsQHh6OI0eOIDIyEiUlJejRowfy8vJ0baZOnYotW7Zg/fr12LdvH1JSUjBw4EDdeo1Ggz59+qC4uBiHDh3CypUrsWLFCsyaNUvXJjExEX369EG3bt0QExODKVOmYNy4cdixY0eNHi8REVF1+T36OjZEX4eZDFg0rDVc7BRSl2RUZEIIIXUR5TIzM+Hm5oZ9+/ahS5cuUKlUcHV1xZo1a/Diiy8CAC5cuICmTZvi8OHDeOqpp7B9+3b07dsXKSkpcHd3BwB8//33mDFjBjIzMyGXyzFjxgz89ddfOHv2rO6zhg4diuzsbPz9998PrEutVkOpVEKlUsHBwaF6Dp6IiOgxXcrIxfPfHEB+sQbTnmuMN7s3krokg/Ao398GNYZIpVIBAJycygaARUdHo6SkBKGhobo2AQEBqFevHg4fPgwAOHz4MFq2bKkLQwAQFhYGtVqNuLg4XZs791HepnwfdysqKoJardZ7ERERGaLCEg0mrTmJ/GINnm7gjPBuDaUuySgZTCDSarWYMmUKOnbsiBYtWgAA0tLSIJfL4ejoqNfW3d0daWlpujZ3hqHy9eXr7tdGrVajoKCgQi0RERFQKpW6l4+PT5UcIxERUVWbuyUOF9Jy4GKnwFdDg2DOcUOPxWACUXh4OM6ePYtff/1V6lIwc+ZMqFQq3Ss5OVnqkoiIiCr4I+YG1h5LhkwGfD00CG72VlKXZLQspC4AACZNmoStW7di//798Pb21i338PBAcXExsrOz9c4Spaenw8PDQ9fm2LFjevsrvwvtzjZ335mWnp4OBwcHWFtbV6hHoVBAoeBgNCIiMlxXMnPx/sZYAMDkbg3RsaGLxBUZN0nPEAkhMGnSJGzatAl79uyBn5+f3vq2bdvC0tISu3fv1i2Lj49HUlISQkJCAAAhISGIjY1FRkaGrk1kZCQcHBzQrFkzXZs791HepnwfRERExqRs3NAp5BVrEOznhLdCG0tdktGT9AxReHg41qxZgz/++AP29va6MT9KpRLW1tZQKpUYO3Yspk2bBicnJzg4OGDy5MkICQnBU089BQDo0aMHmjVrhpEjR2LBggVIS0vDBx98gPDwcN1Zntdffx3ffPMN3n33Xbz66qvYs2cPfvvtN/z111+SHTsREdHj+uSv8ziXqoazrRyLhrXmuKEqIOlt9zJZ5T/A5cuXY8yYMQDKJmZ8++23sXbtWhQVFSEsLAzffvut7nIYAFy7dg0TJ05EVFQUbG1tMXr0aHz66aewsPhf3ouKisLUqVNx7tw5eHt748MPP9R9xoPwtnsiIjIU22JT8cbqkwCAla92QNfGrhJXZLge5fvboOYhMlQMREREZAiu3cpD30UHkFNUionPNMCMngFSl2TQjHYeIiIiIqpcUWnZuKGcolK0862Dt5/juKGqxEBERERkBCK2XUDsDRUcbSyxaFhrWJjzK7wqsTeJiIgM3N9n07Di0FUAwBeDA+HlWHHKGHoyDEREREQGLDkrH+9uOA0AGN/FH88GuD9gC3ocDEREREQGqrhUi8lrT0FdWIrW9RwxPayJ1CXVWgxEREREBmrhjguISc6Gg5UFFg1tDUuOG6o27FkiIiIDtPt8On76JxEAsPClQPg42UhcUe3GQERERGRgUrIL8Pb6snFDr3Ssj7DmHg/Ygp4UAxEREZEBKdGUjRvKzi9BK28lZvZqKnVJJoGBiIiIyIDM33Ye0dduw15hgW+GtYHcgl/VNYG9TEREZCA2RF/H8oNXAQCfDw5EPWeOG6opDEREREQG4HRyNt7fFAsAeKt7I44bqmEMRERERBLLyCnEhFXRKC7VIrSpO97q3kjqkkwOAxEREZGEiku1eOOXk0hTF6KBqy2+HBIIMzOZ1GWZHAYiIiIiCc3dEocT127D3soCP41qB3srS6lLMkkMRERERBJZczQJq48mQSYDFg1tDX9XO6lLMlkMRERERBKIvpaF2X+eBQC806MJugW4SVyRaWMgIiIiqmFpqkK8/stJlGgEerf0wBvPNJC6JJPHQERERFSDCks0mPBLNDJzihDgYY+FLwZCJuMgaqkxEBEREdUQIQQ+3HwWp5OzobS2xI8j28FWYSF1WQQGIiIiohrz38PXsD76OsxkwDfDW3MmagPCQERERFQDDl++hY+2ngMAzOzVFJ0buUpcEd2JgYiIiKia3cguQPiak9BoBQYEeWFcZz+pS6K7MBARERFVo4JiDcb/9wSy8orRoq4DPh3UioOoDRADERERUTURQmDmxjOIS1HD2VaOH0a2g5WludRlUSUYiIiIiKrJzwcSsTkmBeZmMiwZ0QZ1Ha2lLonugYGIiIioGhxIuIn5284DAGb1bYan/J0lrojuh4GIiIioiiXdysektSehFcBLbb0xKsRX6pLoARiIiIiIqlBeUSnGrzqB7PwSBPo4Yt6AFhxEbQQYiIiIiKqIEALTN5zGhbQcuNor8MPLbTmI2kgwEBEREVWRb6MuY1tsGizNZfj+5TbwUFpJXRI9JAYiIiKiKrD3QgY+3xkPAPiofwu09XWSuCJ6FAxERERET+hKZi7e/PUUhABGBNfDsA71pC6JHhEDERER0RPIKSzB+FXRyCksRTvfOpjdr7nUJdFjYCAiIiJ6TFqtwNR1p3EpIxceDlb49uU2kFvwq9UY8adGRET0mL7enYBd59MhtzDDDyPbws2eg6iNFQMRERHRY9gRl4avdycAAOa/0BKBPo7SFkRPhIGIiIjoESWk52DauhgAwCsd6+PFtt7SFkRPjIGIiIjoEagKSvDaf08gr1iDEH9nvN+7qdQlURVgICIiInpIGq3AW7+ewtVb+ajraI1vhreGpTm/SmsD/hSJiIge0n92xiMqPhNWlmWDqJ3tFFKXRFWEgYiIiOghbD2Tgm+jLgMAPhvUCi3qKiWuiKoSAxEREdEDnEtRY/r6MwCACV380T+orsQVUVVjICIiIrqP23nFGL/qBApKNOjcyAXv9gyQuiSqBgxERERE91Cq0WLS2pO4frsAvs42WDysNczNZFKXRdWAgYiIiOgePt1+AQcv3YKN3Bw/jmwHRxu51CVRNWEgIiIiqsRvJ5Kx9EAiAOCLwYFo4mEvcUVUnRiIiIiI7rL/Yibe3xgLAHjz2Ybo2cJT4oqoujEQERER3eFcihpvrD6JUq3AC63rYupzjaUuiWoAAxEREdG/UlUFeHXFceQWlSLE3xmfDWoFmYyDqE0BAxEREREAdWEJxiw7jjR1IRq52eH7kW0ht+DXpKngT5qIiExecakWE3+JRnx6DtzsFVjxagcorS2lLotqEAMRERGZNCEE3tt4Rnd7/bIx7VHX0VrqsqiGMRAREZFJ+3JXAjaevAFzMxmWjGjDZ5SZKAYiIiIyWb8dT8ai3QkAgI8HtEC3Jm4SV0RSYSAiIiKTtO9iJmZuKptraFK3hhjWoZ7EFZGUJA1E+/fvR79+/eDl5QWZTIbNmzfrrR8zZgxkMpneq2fPnnptsrKyMGLECDg4OMDR0RFjx45Fbm6uXpszZ86gc+fOsLKygo+PDxYsWFDdh0ZERAYsLkWFN36JhubfuYbe7sG5hkydpIEoLy8PgYGBWLJkyT3b9OzZE6mpqbrX2rVr9daPGDECcXFxiIyMxNatW7F//36MHz9et16tVqNHjx7w9fVFdHQ0Fi5ciDlz5uDHH3+stuMiIiLDlZJdNtdQXrGGcw2RjoWUH96rVy/06tXrvm0UCgU8PDwqXXf+/Hn8/fffOH78ONq1awcAWLx4MXr37o3PP/8cXl5eWL16NYqLi7Fs2TLI5XI0b94cMTEx+OKLL/SCExER1X7qwhK8svw40tVFaOzOuYbofwz+tyAqKgpubm5o0qQJJk6ciFu3bunWHT58GI6OjrowBAChoaEwMzPD0aNHdW26dOkCufx/TygOCwtDfHw8bt++XelnFhUVQa1W672IiMi43T3X0PJXONcQ/Y9BB6KePXviv//9L3bv3o3PPvsM+/btQ69evaDRaAAAaWlpcHPTvyPAwsICTk5OSEtL07Vxd3fXa1P+vrzN3SIiIqBUKnUvHx+fqj40IiKqQXfONWTLuYaoEpJeMnuQoUOH6v7csmVLtGrVCg0aNEBUVBS6d+9ebZ87c+ZMTJs2TfderVYzFBERGTHONUQPYtBniO7m7+8PFxcXXLp0CQDg4eGBjIwMvTalpaXIysrSjTvy8PBAenq6Xpvy9/cam6RQKODg4KD3IiIi43TnXEOfDGiBZzjXEFXCqALR9evXcevWLXh6egIAQkJCkJ2djejoaF2bPXv2QKvVIjg4WNdm//79KCkp0bWJjIxEkyZNUKdOnZo9ACIiqlF3zjU0+dmGGMq5hugeJA1Eubm5iImJQUxMDAAgMTERMTExSEpKQm5uLqZPn44jR47g6tWr2L17N/r374+GDRsiLCwMANC0aVP07NkTr732Go4dO4aDBw9i0qRJGDp0KLy8vAAAw4cPh1wux9ixYxEXF4d169bh66+/1rskRkREtc+dcw0NbF0X057jXEN0bzIhhJDqw6OiotCtW7cKy0ePHo3vvvsOAwYMwKlTp5CdnQ0vLy/06NED8+bN0xsknZWVhUmTJmHLli0wMzPDoEGDsGjRItjZ2enanDlzBuHh4Th+/DhcXFwwefJkzJgx46HrVKvVUCqVUKlUvHxGRGQEUrIL8MK3B5GuLkKIvzNWvtqBt9eboEf5/pY0EBkLBiIiIuOhLizBS98dRnx6Dhq722H960/z9noT9Sjf34zLRERUa3CuIXpcDERERFQrCCHw3u+ca4geDwMRERHVCl9GXsTGU5xriB4PAxERERm9dceTsGhP2Rx1nGuIHgcDERERGbV9FzPx/qazADjXED0+BiIiIjJanGuIqgoDERERGaUb2QV4Zflx5BVrEOLvjE8HtYJMJpO6LDJSDERERGR0VAUleGX5MWTkFKGxux2+H9mWEy/SE+FvDxERGZXyuYYupudyriGqMgxERERkNMrnGjp0mXMNUdViICIiIqPBuYaoujAQERGRUeBcQ1SdGIiIiMjgca4hqm4MREREZNDO3uBcQ1T9GIiIiMhgxaflYOTPRznXEFU7BiIiIjJIVzJzMWLpUdzOL0GgjyN+HMW5hqj68DeLiIgMTnJWPkYsPYqbuUVo6umAla+0h70V5xqi6sNAREREBiVNVYjhS48gVVWIBq62WDW2Axxt5FKXRbUcAxERERmMm7lFGLH0CJKzClDPyQarxz0FFzuF1GWRCWAgIiIig5CdX4yXlx7F5cw8eCmtsHpcMDyUVlKXRSaCgYiIiCSXU1iC0cuO4UJaDlztFVj92lPwcbKRuiwyIQxEREQkqfziUry64jhOX1ehjo0lVo8Lhp+LrdRlkYlhICIiIskUlmgw/r/ROH71NuytLLBqbDAau9tLXRaZIAYiIiKSRHGpFuGrT+LApZuwkZtjxSsd+LBWkswjB6LRo0dj//791VELERGZiFKNFlPXxWD3hQwoLMzw8+j2aOtbR+qyyIQ9ciBSqVQIDQ1Fo0aNMH/+fNy4caM66iIiolpKqxV4d8MZ/BWbCktzGX4Y2RYhDZylLotM3CMHos2bN+PGjRuYOHEi1q1bh/r166NXr17YsGEDSkpKqqNGIiKqJYQQ+OCPs9h46gbMzWT4ZngbPNPETeqyiB5vDJGrqyumTZuG06dP4+jRo2jYsCFGjhwJLy8vTJ06FQkJCVVdJxERGTkhBD7+6zzWHE2CTAZ8MTgQYc09pC6LCMATDqpOTU1FZGQkIiMjYW5ujt69eyM2NhbNmjXDl19+WVU1EhFRLfBF5EX8fCARAPDZwFboH1RX4oqI/ueRA1FJSQl+//139O3bF76+vli/fj2mTJmClJQUrFy5Ert27cJvv/2Gjz76qDrqJSIiI7Rk7yUs3nMJADD3+eYY3N5H4oqI9Fk86gaenp7QarUYNmwYjh07hqCgoAptunXrBkdHxyooj4iIjN2yA4lYuCMeAPBerwCMfrq+tAURVeKRA9GXX36Jl156CVZW936+jKOjIxITE5+oMCIiMn5rjyXho63nAABvdm+E17s2kLgioso9ciAaOXJkddRBRES1zKZT1/H+plgAwPgu/pga2kjiiojujTNVExFRlfv7bCreWX8GQgAjn/LFzF4BkMlkUpdFdE8MREREVKX2XsjA5LWnoNEKvNjWG3Ofb84wRAaPgYiIiKrMoUs3MeGXaJRoBPq28sRng1rBzIxhiAwfAxEREVWJE1ezMO6/J1BcqkVoU3d8OSQI5gxDZCQYiIiI6ImduZ6NV5YfR36xBp0bueCb4a1hac6vGDIe/G0lIqInciFNjVHLjiGnqBQd/Jzw48h2sLI0l7osokfCQERERI/tcmYuXl56DNn5JQjyccSyMe1hLWcYIuPDQERERI8lOSsfI346ipu5RWjm6YCVr3SAneKRp7cjMggMRERE9MhSVQUYvvQI0tSFaOhmh1VjO0BpYyl1WUSPjYGIiIgeSWZOEUb8dBTJWQXwdbbB6nHBcLZTSF0W0RNhICIiood2O68YI38+iis38+CltMLqccFwd7j3sy2JjAUDERERPRR1YQlGLz+GC2k5cLNXYM1rT8G7jo3UZRFVCY5+IyKiB8rKK8aoZUdx9oYaTrZyrB4XjPoutlKXRVRlGIiIiOi+0tWFeHnpUSRk5MLJVo5VYzugkbu91GURVSkGIiIiuqfkrHyMWHoUSVn58HCwwi/jgtHQzU7qsoiqHAMRERFVKiE9By//fBTp6iLUcyq7m8zHiWOGqHZiICIiogrO3lBh1LJjyMorRiM3O/zCu8molmMgIiIiPcevZuHV5ceRU1SKVt5KrHilA5xs5VKXRVStGIiIiEhn/8VMjF91AoUlWnTwc8LPo9vB3oozUFPtx0BEREQAgL/PpuLNtTEo1mjRtbErvn+5LR/USiaDgYiIiPB79HVM33AaWgH0bumBr4a0htyCc/eS6WAgIiIycf89fBWz/ogDALzU1hsRA1vCwpxhiEwLAxERkQlbsvcSFu6IBwCMebo+ZvVtBjMzmcRVEdU8Sf8XYP/+/ejXrx+8vLwgk8mwefNmvfVCCMyaNQuenp6wtrZGaGgoEhIS9NpkZWVhxIgRcHBwgKOjI8aOHYvc3Fy9NmfOnEHnzp1hZWUFHx8fLFiwoLoPjYjIoAkh8NnfF3Rh6M1nG2J2P4YhMl2SBqK8vDwEBgZiyZIlla5fsGABFi1ahO+//x5Hjx6Fra0twsLCUFhYqGszYsQIxMXFITIyElu3bsX+/fsxfvx43Xq1Wo0ePXrA19cX0dHRWLhwIebMmYMff/yx2o+PiMgQabUCs/6Iw3dRlwEAM3sFYFqPJpDJGIbIhAkDAUBs2rRJ916r1QoPDw+xcOFC3bLs7GyhUCjE2rVrhRBCnDt3TgAQx48f17XZvn27kMlk4saNG0IIIb799ltRp04dUVRUpGszY8YM0aRJk4euTaVSCQBCpVI97uERERmEklKNmPrrKeE7Y6uo/95W8cuRq1KXRFRtHuX722BHzSUmJiItLQ2hoaG6ZUqlEsHBwTh8+DAA4PDhw3B0dES7du10bUJDQ2FmZoajR4/q2nTp0gVy+f8mFQsLC0N8fDxu375dQ0dDRCS9olINwtecxMZTN2BuJsNXQ4IwIthX6rKIDILBDqpOS0sDALi7u+std3d3161LS0uDm5ub3noLCws4OTnptfHz86uwj/J1derUqfDZRUVFKCoq0r1Xq9VPeDRERNLKLy7FhFXR+CfhJuQWZlgyvA2ea+b+4A2JTITBniGSUkREBJRKpe7l4+MjdUlERI9NVVCCUT8fwz8JN2EjN8fyMe0ZhojuYrCByMPDAwCQnp6utzw9PV23zsPDAxkZGXrrS0tLkZWVpdemsn3c+Rl3mzlzJlQqle6VnJz85AdERCSBW7lFGP7TEZy4dhsOVhZYNTYYHRu6SF0WkcEx2EDk5+cHDw8P7N69W7dMrVbj6NGjCAkJAQCEhIQgOzsb0dHRujZ79uyBVqtFcHCwrs3+/ftRUlKiaxMZGYkmTZpUerkMABQKBRwcHPReRETGJlVVgME/HEZcihoudnL8Oj4EbX0r/3ePyNRJGohyc3MRExODmJgYAGUDqWNiYpCUlASZTIYpU6bg448/xp9//onY2FiMGjUKXl5eGDBgAACgadOm6NmzJ1577TUcO3YMBw8exKRJkzB06FB4eXkBAIYPHw65XI6xY8ciLi4O69atw9dff41p06ZJdNRERNXv2q08vPT9YVzOzIOn0grrJoSgmRf/547oXmRCCCHVh0dFRaFbt24Vlo8ePRorVqyAEAKzZ8/Gjz/+iOzsbHTq1AnffvstGjdurGublZWFSZMmYcuWLTAzM8OgQYOwaNEi2NnZ6dqcOXMG4eHhOH78OFxcXDB58mTMmDHjoetUq9VQKpVQqVQ8W0REBu9ieg5eXnoUGTlFqO9sg1/GBcO7jo3UZRHVuEf5/pY0EBkLBiIiMhax11UYtewobueXoIm7PVaN6wA3eyupyyKSxKN8fxvsbfdERPRojl65hbErTyC3qBSBPo5Y+Up7ONrIH7whETEQERHVBlHxGZiwKhpFpVo85e+EpaPbw07Bf+KJHhb/thARGbltsal469dTKNEIPBvghm9HtIGVpbnUZREZFQYiIiIjtv5EMmb8fgZaAfRt5YkvBgdBbmGwM6oQGSwGIiIiI7XiYCLmbDkHABja3gefvNAS5mZ8Yj3R42AgIiIyMkIILNl7CZ/vvAgAGNvJDx/0aQqZjGGI6HExEBERGZFSjRYf/3UeKw5dBQBMCW2Et7o3YhgiekIMRERERiKnsAST155CVHwmAOCDPk0xrrO/xFUR1Q4MRERERiA5Kx/jVp5AfHoOrCzN8OXgIPRq6Sl1WUS1BgMREZGBi752GxNWncDN3GK42SuwdHQ7tPJ2lLosolqFgYiIyID9EXMD0zecQXGpFs08HfDzmHbwVFpLXRZRrcNARERkgIQQ+GpXAr7enQAACG3qjq+HBsGWs08TVQv+zSIiMjCFJRpM33AGW06nAAAmdPHHuz0DOMcQUTViICIiMiCZOUUYv+oETiVlw8JMhk9eaIEh7etJXRZRrcdARERkIC6kqTF2xQncyC6A0toS37/cFiENnKUui8gkMBARERmAvRcyMGnNSeQVa+DnYotlY9rDz8VW6rKITAYDERGRhIQQWHHoKuZtPQetAEL8nfHdy23gaCOXujQik8JAREQkkRKNFnP+jMPqo0kAgCHtfDBvQAs+rZ5IAgxEREQSUBWUYNKak/gn4SZkMuD9Xk0xrrMfn0lGJBEGIiKiGnbtVh5eXXEclzPzYG1pjq+HBqFHcw+pyyIyaQxEREQ16FhiFiasOoHb+SXwcLDC0tHt0KKuUuqyiEweAxERUQ35Pfo63tt4BiUagVbeSvw0qh3cHaykLouIwEBERFTttFqB/0TGY8neywCA3i098J+XgmAtN5e4MiIqx0BERFSNCoo1mPZbDLafTQMATOrWENOeawwzPoaDyKAwEBERVZN0dSFe++8JnLmugqW5DJ8ObIVBbb2lLouIKsFARERUDc7eUGHcyhNIUxeijo0lfhjZDh38nKQui4jugYGIiKiK7YxLw1u/xqCgRIMGrmWP4fB15mM4iAwZAxERURURQuCnf64gYvsFCAF0buSCb4a3gdLaUurSiOgBGIiIiKpAcakWH24+i3UnkgEAI4LrYc7zzWFpzsdwEBkDBiIioieUnV+M13+JxpErWTCTAR/2bYYxT9fnYziIjAgDERHRE7iSmYuxK08g8WYe7BQWWDysNboFuEldFhE9IgYiIqLH9E9CJiatOQVVQQnqOlrj5zHtEODhIHVZRPQYGIiIiB5RqUaLr3YlYEnUJQgBtK7niB9HtoOrvULq0ojoMTEQERE9glRVAd5aG4NjV7MAAMOD62FW32awsuRjOIiMGQMREdFD2hufgWnrYnA7vwR2CgvMH9gSzwd6SV0WEVUBBiIiogco0Wjx+c54/LDvCgCguZcDvhneBn4unGyRqLZgICIiuo8b2QWYvOYkTiZlAwBGhfji/d5NeYmMqJZhICIiuofIc+l4Z/1pqApKYG9lgQWDWqFXS0+pyyKiasBARER0l+JSLT77+wJ+PpAIAAj0VmLxsDao52wjcWVEVF0YiIiI7pCclY9Ja0/hdHI2AODVjn54r1cA5BZ8BAdRbcZARET0r7/PpmL6hjPIKSyFg5UFPn8pED2ae0hdFhHVAAYiIjJ5RaUazP/rPFYevgagbKLFxcNaw7sOL5ERmQoGIiIyaVdv5mHS2pM4e0MNAJjQxR/vhDXhU+qJTAwDERGZrK1nUvDe77HILSpFHRtL/GdwIJ4NcJe6LCKSAAMREZmcwhINPtp6DmuOJgEA2tevg0XDWsNTaS1xZUQkFQYiIjIplzNzEb76JC6k5UAmA954pgGmhjaGBS+REZk0BiIiMhmbT93A+5tikV+sgbOtHF8OCUKXxq5Sl0VEBoCBiIhqvYJiDeb8GYd1J5IBAE/5O+Hroa3h7mAlcWVEZCgYiIioVktIz0H4mpO4mJ4LmQx489lGeLN7I5ibyaQujYgMCAMREdVa608kY9YfcSgo0cDVXoGvhwTh6YYuUpdFRAaIgYiIap28olJ8+MdZbDx5AwDQqaELvhwSBFd7hcSVEZGhYiAiolrlQpoa4atP4nJmHsxkwLTnGmPiMw15iYyI7ouBiIhqBSEEfj2ejDl/xqGoVAt3BwUWDW2NYH9nqUsjIiPAQERERi+nsAT/t+ks/jydAgDo2tgVXwwOhLMdL5ER0cNhICIio7Y3PgP/tzEWKapCmJvJMD2sCcZ39ocZL5ER0SNgICIio5SVV4yPtsRhc0zZWSEfJ2t8NSQIbX2dJK6MiIyRQc9VP2fOHMhkMr1XQECAbn1hYSHCw8Ph7OwMOzs7DBo0COnp6Xr7SEpKQp8+fWBjYwM3NzdMnz4dpaWlNX0oRFRFhBD4I+YGQr/Yh80xKTCTAeM6+WHHlC4MQ0T02Az+DFHz5s2xa9cu3XsLi/+VPHXqVPz1119Yv349lEolJk2ahIEDB+LgwYMAAI1Ggz59+sDDwwOHDh1CamoqRo0aBUtLS8yfP7/Gj4WInkxKdgE+2HwWey5kAACauNvjsxdbIcjHUdrCiMjoGXwgsrCwgIeHR4XlKpUKP//8M9asWYNnn30WALB8+XI0bdoUR44cwVNPPYWdO3fi3Llz2LVrF9zd3REUFIR58+ZhxowZmDNnDuRyeU0fDhE9Bq1WYPWxJHy2/QJyi0phaS7D5Gcb4fWuDSC3MOgT3URkJAz+X5KEhAR4eXnB398fI0aMQFJSEgAgOjoaJSUlCA0N1bUNCAhAvXr1cPjwYQDA4cOH0bJlS7i7u+vahIWFQa1WIy4urmYPhIgey+XMXAz98Qg+3HwWuUWlaFPPEdve7Iw3uzdiGCKiKmPQZ4iCg4OxYsUKNGnSBKmpqZg7dy46d+6Ms2fPIi0tDXK5HI6OjnrbuLu7Iy0tDQCQlpamF4bK15evu5eioiIUFRXp3qvV6io6IiJ6WCUaLX7cfwVf705AcakWNnJzvBvWBCND6nOSRSKqcgYdiHr16qX7c6tWrRAcHAxfX1/89ttvsLa2rrbPjYiIwNy5c6tt/0R0f7HXVXj39zM4n1r2PyNdGrti/gst4F3HRuLKiKi2MqrzzY6OjmjcuDEuXboEDw8PFBcXIzs7W69Nenq6bsyRh4dHhbvOyt9XNi6p3MyZM6FSqXSv5OTkqj0QIqpUQbEGEdvOY8C3B3E+VQ1HG0t8MTgQK19pzzBERNXKqAJRbm4uLl++DE9PT7Rt2xaWlpbYvXu3bn18fDySkpIQEhICAAgJCUFsbCwyMjJ0bSIjI+Hg4IBmzZrd83MUCgUcHBz0XkRUvQ5fvoVeX+/HD/uvQKMV6NvKE7umdcXANt6QyXiJjIiql0FfMnvnnXfQr18/+Pr6IiUlBbNnz4a5uTmGDRsGpVKJsWPHYtq0aXBycoKDgwMmT56MkJAQPPXUUwCAHj16oFmzZhg5ciQWLFiAtLQ0fPDBBwgPD4dCwSn9iQyBurAEEdsuYO2xshsmPBysMG9ACzzXzP0BWxIRVR2DDkTXr1/HsGHDcOvWLbi6uqJTp044cuQIXF1dAQBffvklzMzMMGjQIBQVFSEsLAzffvutbntzc3Ns3boVEydOREhICGxtbTF69Gh89NFHUh0SEd1hZ1waPvzjLNLVZTcxDA+uh/d6BcDBylLiyojI1MiEEELqIgydWq2GUqmESqXi5TOiKpCZU4Q5W+Lw15lUAICfiy0iBrbEU3wyPRFVoUf5/jboM0REVLsIIfD7yRuYt/UcVAUlMDeT4bXO/pgS2ghWluZSl0dEJoyBiIhqRHJWPt7fFIt/Em4CAJp7OeCzQa3Qoq5S4sqIiBiIiKiaabQCKw9dxec745FfrIHcwgxTQxtjXGc/WJob1Y2uRFSLMRARUbW5mJ6DdzecQUxyNgCgg58TPh3YEv6udtIWRkR0FwYiIqpyxaVafBt1CUv2XkKJRsBOYYGZvQMwrH09mPGxG0RkgBiIiKhKnUq6jRm/n8HF9FwAQPcAN3z8Qgt4KqvvcTtERE+KgYiIqkRmThG+2nURa44lQQjA2VaO2c83R79WnpxpmogMHgMRET2RvKJSLP0nET/uv4y8Yg0AYGDruviwbzPUsZVLXB0R0cNhICKix1Kq0eK3E9fx5a6LyMwpm2k60FuJmb2bcoJFIjI6DERE9EiEEIg8l47P/r6Ay5l5AIB6TjZ4t2cT9GnJy2NEZJwYiIjooZ1Muo2Ibedx/OptAEAdG0u82b0RRgT7Qm7BOYWIyHgxEBHRAyXezMPCHRewLTYNAKCwMMPYTn54/ZkGfBArEdUKDEREdE83c4uweHcCVh9NQqlWQCYDXmzjjWk9GvM2eiKqVRiIiKiCgmINfj5wBd/vu4LcolIAQLcmrpjRKwABHvd/YjQRkTFiICIiHY1WYEN0Mr6IvIh0ddmdYy3qOuD9Xk3xdEMXiasjIqo+DEREBCEE9sZn4NPtF3QzTHvXscb0sCbo18qLj9sgolqPgYjIxJ1OzkbE9vM4ciULAKC0tsTkZxtiZIgvFBbmEldHRFQzGIiITNS1W3lYuCMeW8+kAgDkFmZ4pWN9vNG1IZQ2vHOMiEwLAxGRicnKK8biPQn45cg1lGjK7hwb2LrszrG6jrxzjIhMEwMRkYkoLNFg2cFEfLf3MnL+vXOsS2NXvNczAM28eOcYEZk2BiKiWk6jFdh48jq+iLyIVFUhAKCZpwNm9g5A50auEldHRGQYGIiIaikhBPZdzMSn2y/gQloOAKCuozXeCWuM/oF1eecYEdEdGIiIaqGTSbfxn53xOHjpFgDAwcoCk55tiFEh9WFlyTvHiIjuxkBEVEtotAI749Kw9EAioq+VPXxVbm6G0U/7IrxbQzjayCWukIjIcDEQERm53KJSrD+RjGUHE5GcVQCgLAj1D/LCm90bwcfJRuIKiYgMHwMRkZFKVRVgxaGrWHM0CTmFZXeN1bGxxMtP+WJkiC/c7K0krpCIyHgwEBEZmbM3VPjpnyv460wqSrUCAODvYotXO/lhUBtvWMs5RoiI6FExEBEZAa1WYM+FDCw9cEX3iA0AeMrfCeM6+ePZADfeNUZE9AQYiIgMWEGxBr+fvI5lBxJx5WYeAMDCTIa+rTwxtpM/WnorJa6QiKh2YCAiMkAZOYX476Fr+OXoNWTnlwAA7K0sMDy4HsY8XR+eSj5ig4ioKjEQERmQC2lqLP0nEX/GpKBYowUA+DhZ49WOfnipnQ/sFPwrS0RUHfivK5HEhBDYn3ATS/+5gn8SbuqWt6nniNc6+6NHcw+Yc3wQEVG1YiAikkhhiQZ/xNzAzwcScTE9FwBgJgN6tfDEq5380Na3jsQVEhGZDgYiohp2K7cIvxxJwqojV3EztxgAYCs3x5D29fBKx/qcSJGISAIMREQ15FJGLn4+kIiNJ6+jqLRsfJCn0gqvdKyPIe3rQWltKXGFRESmi4GIqBoJIXD4yi0s/ScRey5k6Ja3rKvEuM5+6N3SE5bmZhJWSEREAAMRUbVIvJmHP2NS8OfpG7icWTZ/kEwGdA9wx2ud/dDBzwkyGQdKExEZCgYioiqSqirA1tOp+PN0CmJvqHTLrSzN8GJbb7za0Q/+rnYSVkhERPfCQET0BLLyirEttiwEHb+aBVH2aDGYm8nQsaELng/0Qo/m7nCw4vggIiJDxkBE9Ihyi0oReS4Nf8ak4J+Em7oHrAJA+/p18HygF3q19ISLnULCKomI6FEwEBE9hMISDaLiM7HldAp2nU/X3SUGAM29HPB8oBf6BnqhriMfqUFEZIwYiIjuoVSjxaHLt/Dn6RTsOJuGnKJS3Tp/F1v0C/RCv0AvNHTjuCAiImPHQER0B61W4GTSbfx5OgXbYlN1EycCZXMG9Qv0wvOBXmju5cC7xIiIahEGIjJ5QgicS1Xjz9Mp2Ho6FTeyC3TrnGzl6N3SA88H1kU73zow4zPFiIhqJQYiMlmVzRUEAHYKC/Ro7o7nA73QsaELJ04kIjIBDERkUu41V5DcwgzPNnFD/yAvdAtwg5WluYRVEhFRTWMgolpNqxU4n6bGkStZ2BmXhmN3zRXU6d+5gp7jXEFERCaNgYhqFY1W4HyqGkeu3MKRK1k4lngL6sJSvTYd6juhX5AXerfwgDPnCiIiIjAQkZEr1WhxLlWNo1eycOTKLRy7moWcuwKQncIC7erXQccGLujdypNzBRERUQUMRGRUSjVaxKWUnQE6mpiF44lZevMDAYC9wgLt/ZwQ7OeEp/yd0dzLARYcGE1ERPfBQEQGrUSjxdkbKhxNLDsDdOLqbeTeHYCsLBDs54RgP2c85e+MZl4OMOft8URE9AgYiMiglGi0OHNdhaOJZWOAoq9mIa9Yo9fGwcoCHfyc8ZR/2Rmgpp4MQERE9GQYiEhSxaVaxN7IxpF/xwBFX7uN/LsCkNLasuwMkH9ZCArwYAAiIqKqxUBENaqwRIPYGyocuVw2BujEtSwUlmj12tSxsUSHf8f/BPs5I8DDnjNEExFRtWIgoiqn0QqkZBfgys08JGbmIvFmXtmfb+bhRnaBbh6gck628n/HADnhqQbOaOzGAERERDWLgYgeixACt/KKkXgzD4mZ5YGnLPxcvZWP4lLtPbd1tpUj+N/xP0/5O6Ohqx0DEBERSYqBiO4rr6i0LPTc8So/83P3hId3kpubwdfZBn4utvBztUUDFzv4udrCz8UWzrZyPimeiIgMikkFoiVLlmDhwoVIS0tDYGAgFi9ejA4dOkhdluRKNFokZ+XfFXjycOVmLtLVRffcTiYDvJTW8P836Pi52MLf1Q7+LrbwcrTmwGciIjIaJhOI1q1bh2nTpuH7779HcHAwvvrqK4SFhSE+Ph5ubm5Sl/fEhBDIL9Ygr6gUef/+N7eoFPnFpcgt+nd5USnyijTIKy5bl64qROLNPCRl5aNUK+65bydbuS7w+LnYooGrLfxc7ODrbMOHoBIRUa0gE+LuIa61U3BwMNq3b49vvvkGAKDVauHj44PJkyfjvffeu++2arUaSqUSKpUKDg4OVVaTRitwM7cIuXeGlaJS5BX/78+6dcV3hJq71ucXl4WcJ/lJWlmawc+l7OzO/872lP3X0UZeZcdMRERUUx7l+9skzhAVFxcjOjoaM2fO1C0zMzNDaGgoDh8+XKF9UVERior+d6lIrVZXS12pqgJ0+mxvle5TJgNs5RawVZjDVmEBO4UFbOTmsFNYwLb8JS9b52yngP+/wcfd3ooDm4mIyGSZRCC6efMmNBoN3N3d9Za7u7vjwoULFdpHRERg7ty51V6XncICZjL8G1LKQkx5cLGRW8BOL9Tor7dVmP+7zb/r/11nbWnOActERESPyCQC0aOaOXMmpk2bpnuvVqvh4+NT5Z+jtLbE5fm9GWCIiIgkZhKByMXFBebm5khPT9dbnp6eDg8PjwrtFQoFFApFtdfFIERERGQYzKQuoCbI5XK0bdsWu3fv1i3TarXYvXs3QkJCJKyMiIiIDIFJnCECgGnTpmH06NFo164dOnTogK+++gp5eXl45ZVXpC6NiIiIJGYygWjIkCHIzMzErFmzkJaWhqCgIPz9998VBloTERGR6TGZeYieRHXNQ0RERETV51G+v01iDBERERHR/TAQERERkcljICIiIiKTx0BEREREJo+BiIiIiEweAxERERGZPAYiIiIiMnkMRERERGTyGIiIiIjI5JnMozueRPlk3mq1WuJKiIiI6GGVf28/zEM5GIgeQk5ODgDAx8dH4kqIiIjoUeXk5ECpVN63DZ9l9hC0Wi1SUlJgb28PmUxWpftWq9Xw8fFBcnIyn5NWjdjPNYP9XDPYzzWHfV0zqqufhRDIycmBl5cXzMzuP0qIZ4gegpmZGby9vav1MxwcHPiXrQawn2sG+7lmsJ9rDvu6ZlRHPz/ozFA5DqomIiIik8dARERERCaPgUhiCoUCs2fPhkKhkLqUWo39XDPYzzWD/Vxz2Nc1wxD6mYOqiYiIyOTxDBERERGZPAYiIiIiMnkMRERERGTyGIiIiIjI5DEQSWjJkiWoX78+rKysEBwcjGPHjkldktHbv38/+vXrBy8vL8hkMmzevFlvvRACs2bNgqenJ6ytrREaGoqEhARpijViERERaN++Pezt7eHm5oYBAwYgPj5er01hYSHCw8Ph7OwMOzs7DBo0COnp6RJVbJy+++47tGrVSjdZXUhICLZv365bzz6uHp9++ilkMhmmTJmiW8a+fnJz5syBTCbTewUEBOjWS93HDEQSWbduHaZNm4bZs2fj5MmTCAwMRFhYGDIyMqQuzajl5eUhMDAQS5YsqXT9ggULsGjRInz//fc4evQobG1tERYWhsLCwhqu1Ljt27cP4eHhOHLkCCIjI1FSUoIePXogLy9P12bq1KnYsmUL1q9fj3379iElJQUDBw6UsGrj4+3tjU8//RTR0dE4ceIEnn32WfTv3x9xcXEA2MfV4fjx4/jhhx/QqlUrveXs66rRvHlzpKam6l4HDhzQrZO8jwVJokOHDiI8PFz3XqPRCC8vLxERESFhVbULALFp0ybde61WKzw8PMTChQt1y7Kzs4VCoRBr166VoMLaIyMjQwAQ+/btE0KU9aulpaVYv369rs358+cFAHH48GGpyqwV6tSpI5YuXco+rgY5OTmiUaNGIjIyUnTt2lW89dZbQgj+PleV2bNni8DAwErXGUIf8wyRBIqLixEdHY3Q0FDdMjMzM4SGhuLw4cMSVla7JSYmIi0tTa/flUolgoOD2e9PSKVSAQCcnJwAANHR0SgpKdHr64CAANSrV499/Zg0Gg1+/fVX5OXlISQkhH1cDcLDw9GnTx+9PgX4+1yVEhIS4OXlBX9/f4wYMQJJSUkADKOP+XBXCdy8eRMajQbu7u56y93d3XHhwgWJqqr90tLSAKDSfi9fR49Oq9ViypQp6NixI1q0aAGgrK/lcjkcHR312rKvH11sbCxCQkJQWFgIOzs7bNq0Cc2aNUNMTAz7uAr9+uuvOHnyJI4fP15hHX+fq0ZwcDBWrFiBJk2aIDU1FXPnzkXnzp1x9uxZg+hjBiIieiLh4eE4e/as3lgAqjpNmjRBTEwMVCoVNmzYgNGjR2Pfvn1Sl1WrJCcn46233kJkZCSsrKykLqfW6tWrl+7PrVq1QnBwMHx9ffHbb7/B2tpawsrK8JKZBFxcXGBubl5h9Hx6ejo8PDwkqqr2K+9b9nvVmTRpErZu3Yq9e/fC29tbt9zDwwPFxcXIzs7Wa8++fnRyuRwNGzZE27ZtERERgcDAQHz99dfs4yoUHR2NjIwMtGnTBhYWFrCwsMC+ffuwaNEiWFhYwN3dnX1dDRwdHdG4cWNcunTJIH6fGYgkIJfL0bZtW+zevVu3TKvVYvfu3QgJCZGwstrNz88PHh4eev2uVqtx9OhR9vsjEkJg0qRJ2LRpE/bs2QM/Pz+99W3btoWlpaVeX8fHxyMpKYl9/YS0Wi2KiorYx1Woe/fuiI2NRUxMjO7Vrl07jBgxQvdn9nXVy83NxeXLl+Hp6WkYv881MnSbKvj111+FQqEQK1asEOfOnRPjx48Xjo6OIi0tTerSjFpOTo44deqUOHXqlAAgvvjiC3Hq1Clx7do1IYQQn376qXB0dBR//PGHOHPmjOjfv7/w8/MTBQUFElduXCZOnCiUSqWIiooSqampuld+fr6uzeuvvy7q1asn9uzZI06cOCFCQkJESEiIhFUbn/fee0/s27dPJCYmijNnzoj33ntPyGQysXPnTiEE+7g63XmXmRDs66rw9ttvi6ioKJGYmCgOHjwoQkNDhYuLi8jIyBBCSN/HDEQSWrx4sahXr56Qy+WiQ4cO4siRI1KXZPT27t0rAFR4jR49WghRduv9hx9+KNzd3YVCoRDdu3cX8fHx0hZthCrrYwBi+fLlujYFBQXijTfeEHXq1BE2NjbihRdeEKmpqdIVbYReffVV4evrK+RyuXB1dRXdu3fXhSEh2MfV6e5AxL5+ckOGDBGenp5CLpeLunXriiFDhohLly7p1kvdxzIhhKiZc1FEREREholjiIiIiMjkMRARERGRyWMgIiIiIpPHQEREREQmj4GIiIiITB4DEREREZk8BiIiIiIyeQxEREREZPIYiIiIiMjkMRARERGRyWMgIiKTlJmZCQ8PD8yfP1+37NChQ5DL5XpP3CYi08BnmRGRydq2bRsGDBiAQ4cOoUmTJggKCkL//v3xxRdfSF0aEdUwBiIiMmnh4eHYtWsX2rVrh9jYWBw/fhwKhULqsoiohjEQEZFJKygoQIsWLZCcnIzo6Gi0bNlS6pKISAIcQ0REJu3y5ctISUmBVqvF1atXpS6HiCTCM0REZLKKi4vRoUMHBAUFoUmTJvjqq68QGxsLNzc3qUsjohrGQEREJmv69OnYsGEDTp8+DTs7O3Tt2hVKpRJbt26VujQiqmG8ZEZEJikqKgpfffUVVq1aBQcHB5iZmWHVqlX4559/8N1330ldHhHVMJ4hIiIiIpPHM0RERERk8hiIiIiIyOQxEBEREZHJYyAiIiIik8dARERERCaPgYiIiIhMHgMRERERmTwGIiIiIjJ5DERERERk8hiIiIiIyOQxEBEREZHJYyAiIiIik/f/2+SdoecRKSgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVwhJREFUeJzt3XlYVGX/BvB7WGbYB9lBEMENV3AlcsskcU3Tcs2lNM3QUsvMfuWSJaW9LZqt5vKammlqaZriguauKIqoiIqCsioyw77MPL8/iHkdwR04M8z9ua65cs55zpnveUDn7pznPEcmhBAgIiIiMmFmUhdAREREJDUGIiIiIjJ5DERERERk8hiIiIiIyOQxEBEREZHJYyAiIiIik8dARERERCaPgYiIiIhMHgMRERERmTwGIiITUr9+ffTt27faP+fq1auQyWRYsWLFA9uOGTMG9evXr9LPr1+/PsaMGVOl+zQmpaWlePfdd+Hj4wMzMzMMGDAAACCTyTBnzhxJayMyVAxERBJbsWIFZDLZPV9HjhyRukQyMsuWLcPChQvx4osvYuXKlZg6darUJREZPAupCyCiMh999BH8/PwqLG/YsKEE1ZAx27NnD+rWrYsvv/xSb3lBQQEsLPjPPlFl+DeDyED06tUL7dq1k7oMqgUyMjLg6OhYYbmVlVXNFwMgLy8Ptra2knw20cPiJTMiI1E+Lufzzz/HkiVL4O/vDxsbG/To0QPJyckQQmDevHnw9vaGtbU1+vfvj6ysrEr3tXPnTgQFBcHKygrNmjXDxo0bK7TJzs7GlClT4OPjA4VCgYYNG+Kzzz6DVqut0G7MmDFQKpVwdHTE6NGjkZ2dXennbt68GS1atICVlRVatGiBTZs2VdpOq9Xiq6++QvPmzWFlZQV3d3dMmDABt2/f1msnhMDHH38Mb29v2NjYoFu3boiLi3uI3gRmz54NMzMz7N69W2/5+PHjIZfLcfr06Xtu26JFC3Tr1q3SuuvWrYsXX3xRt+zXX39F27ZtYW9vDwcHB7Rs2RJff/31PfcthED9+vXRv3//CusKCwuhVCoxYcKESrct/x3Zu3cv4uLidJddo6KiAFQ+higqKgrt2rWDlZUVGjRogB9++AFz5syBTCarsN/KxoTdvc/ybc+dO4fhw4ejTp066NSpk279L7/8grZt28La2hpOTk4YOnQokpOT79kfRDWFZ4iIDIRKpcLNmzf1lslkMjg7O+stW716NYqLizF58mRkZWVhwYIFGDx4MJ599llERUVhxowZuHTpEhYvXox33nkHy5Yt09s+ISEBQ4YMweuvv47Ro0dj+fLleOmll/D333/jueeeAwDk5+eja9euuHHjBiZMmIB69erh0KFDmDlzJlJTU/HVV18BKPvy7t+/Pw4cOIDXX38dTZs2xaZNmzB69OgKx7dz504MGjQIzZo1Q0REBG7duoVXXnkF3t7eFdpOmDABK1aswCuvvII333wTiYmJ+Oabb3Dq1CkcPHgQlpaWAIBZs2bh448/Ru/evdG7d2+cPHkSPXr0QHFx8QP7+4MPPsCWLVswduxYxMbGwt7eHjt27MBPP/2EefPmITAw8J7bDhkyBHPmzEFaWho8PDx0yw8cOICUlBQMHToUABAZGYlhw4ahe/fu+OyzzwAA58+fx8GDB/HWW29Vum+ZTIaXX34ZCxYsQFZWFpycnHTrtmzZArVajZdffrnSbV1dXbFq1Sp88sknyM3NRUREBACgadOmlbY/deoUevbsCU9PT8ydOxcajQYfffQRXF1d79NzD+ell15Co0aNMH/+fAghAACffPIJPvzwQwwePBjjxo1DZmYmFi9ejC5duuDUqVOVntUiqjGCiCS1fPlyAaDSl0Kh0LVLTEwUAISrq6vIzs7WLZ85c6YAIAIDA0VJSYlu+bBhw4RcLheFhYW6Zb6+vgKA+P3333XLVCqV8PT0FK1bt9YtmzdvnrC1tRUXL17Uq/W9994T5ubmIikpSQghxObNmwUAsWDBAl2b0tJS0blzZwFALF++XLc8KChIeHp66tW+c+dOAUD4+vrqlv3zzz8CgFi9erXeZ//99996yzMyMoRcLhd9+vQRWq1W1+79998XAMTo0aMr7/A7xMbGCrlcLsaNGydu374t6tatK9q1a6fXj5WJj48XAMTixYv1lr/xxhvCzs5O5OfnCyGEeOutt4SDg4MoLS19YC2V7f+7777TW/7888+L+vXr6x1vZbp27SqaN29eYTkAMXv2bN37fv36CRsbG3Hjxg3dsoSEBGFhYSHu/Hoo/9278+d5r33Onj1bABDDhg3Ta3f16lVhbm4uPvnkE73lsbGxwsLCosJyoprGS2ZEBmLJkiWIjIzUe23fvr1Cu5deeglKpVL3Pjg4GADw8ssv6w2YDQ4ORnFxMW7cuKG3vZeXF1544QXdewcHB4waNQqnTp1CWloaAGD9+vXo3Lkz6tSpg5s3b+peoaGh0Gg02L9/PwBg27ZtsLCwwMSJE3X7Mzc3x+TJk/U+MzU1FTExMRg9erRe7c899xyaNWum13b9+vVQKpV47rnn9D67bdu2sLOzw969ewEAu3bt0p0pu/PyzpQpU+7Ty/patGiBuXPnYunSpQgLC8PNmzexcuXKBw48bty4MYKCgrBu3TrdMo1Ggw0bNqBfv36wtrYGADg6OiIvLw+RkZEPXVP5/oODg7F69WrdsqysLGzfvh0jRozQO97HpdFosGvXLgwYMABeXl665Q0bNkSvXr2eeP+vv/663vuNGzdCq9Vi8ODBej9XDw8PNGrUSPdzJZIKL5kRGYgOHTo81KDqevXq6b0vDxg+Pj6VLr973E3Dhg0rfKE2btwYQNlYEQ8PDyQkJODMmTP3vHSSkZEBALh27Ro8PT1hZ2ent75JkyZ6769duwYAaNSoUYV9NWnSBCdPntS9T0hIgEqlgpub2wM/u7J9urq6ok6dOpVuW5np06fj119/xbFjxzB//vwKAe1ehgwZgvfffx83btxA3bp1ERUVhYyMDAwZMkTX5o033sBvv/2GXr16oW7duujRowcGDx6Mnj17PnD/o0aNwqRJk3Dt2jX4+vpi/fr1KCkpwciRIx/62O4nIyMDBQUFld7FWBV3Nt59x2RCQgKEEJX+DgDQXQYlkgoDEZGRMTc3f6Tl4t/xG49Cq9Xiueeew7vvvlvp+vIAVR20Wi3c3Nz0zo7cqSrGt9zpypUrSEhIAADExsY+9HZDhgzBzJkzsX79ekyZMgW//fYblEqlXthxc3NDTEwMduzYge3bt2P79u1Yvnw5Ro0ahZUrV953/0OHDsXUqVOxevVqvP/++/jll1/Qrl27CmGzJtzrjJRGo7nnNuVnycpptVrIZDJs37690t/Vu0M1UU1jICIyMZcuXYIQQu9L7uLFiwCgmzG6QYMGyM3NRWho6H335evri927dyM3N1fvCy0+Pr5COwC64HGnu9s2aNAAu3btQseOHSt8qd5rn/7+/rrlmZmZFc6K3YtWq8WYMWPg4OCAKVOmYP78+XjxxRcxcODAB27r5+eHDh06YN26dZg0aRI2btyIAQMGQKFQ6LWTy+Xo168f+vXrB61WizfeeAM//PADPvzww/ueiXFyckKfPn2wevVqjBgxAgcPHtQNZq8Kbm5usLKywqVLlyqsu3tZ+Rm3u+8eLD9L9zAaNGgAIQT8/PyqNVATPS6OISIyMSkpKXq3u6vVavz3v/9FUFCQ7o6pwYMH4/Dhw9ixY0eF7bOzs1FaWgoA6N27N0pLS/Hdd9/p1ms0GixevFhvG09PTwQFBWHlypVQqVS65ZGRkTh37pxe28GDB0Oj0WDevHkVPru0tFT3pRwaGgpLS0ssXrxY7yzYo4SGL774AocOHcKPP/6IefPm4emnn8bEiRMr3O13L0OGDMGRI0ewbNky3Lx5U+9yGQDcunVL772ZmRlatWoFACgqKnrg/keOHIlz585h+vTpMDc31929VhXMzc0RGhqKzZs3IyUlRbf80qVLFcauOTg4wMXFRTd2rNy333770J83cOBAmJubY+7cuRXOWgohKvQVUU3jGSIiA7F9+3ZcuHChwvKnn35a7wzIk2rcuDHGjh2L48ePw93dHcuWLUN6ejqWL1+uazN9+nT8+eef6Nu3L8aMGYO2bdsiLy8PsbGx2LBhA65evQoXFxf069cPHTt2xHvvvYerV6/q5jS6M/SUi4iIQJ8+fdCpUye8+uqryMrKwuLFi9G8eXPk5ubq2nXt2hUTJkxAREQEYmJi0KNHD1haWiIhIQHr16/H119/jRdffBGurq545513EBERgb59+6J37944deoUtm/fDhcXlwf2w/nz5/Hhhx9izJgx6NevH4Cyx6gEBQXpxv48yODBg/HOO+/gnXfegZOTU4UzauPGjUNWVhaeffZZeHt749q1a1i8eDGCgoLueSv8nfr06QNnZ2esX78evXr1uue4qsc1Z84c7Ny5Ex07dsTEiROh0WjwzTffoEWLFoiJialwLJ9++inGjRuHdu3aYf/+/boziw+jQYMG+PjjjzFz5kxcvXoVAwYMgL29PRITE7Fp0yaMHz8e77zzTpUeH9EjkfAONyIS97/tHnfc6lx+6/PChQv1tt+7d68AINavX1/pfo8fP65b5uvrK/r06SN27NghWrVqJRQKhQgICKiwrRBC5OTkiJkzZ4qGDRsKuVwuXFxcxNNPPy0+//xzUVxcrGt369YtMXLkSOHg4CCUSqUYOXKkOHXqVKW3af/++++iadOmQqFQiGbNmomNGzeK0aNH6912X+7HH38Ubdu2FdbW1sLe3l60bNlSvPvuuyIlJUXXRqPRiLlz5wpPT09hbW0tnnnmGXH27Fnh6+t739vuS0tLRfv27YW3t7feNABCCPH1118LAGLdunX33P5OHTt2FADEuHHjKqzbsGGD6NGjh3BzcxNyuVzUq1dPTJgwQaSmpj7UvoUou5UfgFizZs1Db/Owt90LIcTu3btF69athVwuFw0aNBBLly4Vb7/9trCystJrl5+fL8aOHSuUSqWwt7cXgwcPFhkZGfe87T4zM7PS2n7//XfRqVMnYWtrK2xtbUVAQIAIDw8X8fHxD318RNVBJsRjjLgkIqIaMXXqVPz8889IS0uDjY1NjXzmgAEDEBcXV+mYL6LaimOIiIgMVGFhIX755RcMGjSo2sJQQUGB3vuEhARs27YNzzzzTLV8HpGh4hgiIiIDk5GRgV27dmHDhg24devWPR/zURX8/f0xZswY+Pv749q1a/juu+8gl8vvOeUCUW3FQEREZGDOnTuHESNGwM3NDYsWLUJQUFC1fVbPnj2xdu1apKWlQaFQICQkBPPnz7/nBIpEtRXHEBEREZHJ4xgiIiIiMnkMRERERGTyOIboIWi1WqSkpMDe3r5KnjJNRERE1U8IgZycHHh5ecHM7P7ngBiIHkJKSkqFJ4kTERGRcUhOToa3t/d92zAQPQR7e3sAZR3q4OAgcTVERET0MNRqNXx8fHTf4/fDQPQQyi+TOTg4MBAREREZmYcZ7sJB1URERGTyGIiIiIjI5DEQERERkcnjGKIqpNFoUFJSInUZRsfS0hLm5uZSl0FERCaMgagKCCGQlpaG7OxsqUsxWo6OjvDw8OA8T0REJAkGoipQHobc3NxgY2PDL/VHIIRAfn4+MjIyAACenp4SV0RERKaIgegJaTQaXRhydnaWuhyjZG1tDQDIyMiAm5sbL58REVGN46DqJ1Q+ZsjGxkbiSoxbef9xDBYREUmBgaiK8DLZk2H/ERGRlBiIiIiIyORJGogiIiLQvn172Nvbw83NDQMGDEB8fLxem2eeeQYymUzv9frrr+u1SUpKQp8+fWBjYwM3NzdMnz4dpaWlem2ioqLQpk0bKBQKNGzYECtWrKjuwzNazzzzDKZMmSJ1GURERDVG0kC0b98+hIeH48iRI4iMjERJSQl69OiBvLw8vXavvfYaUlNTda8FCxbo1mk0GvTp0wfFxcU4dOgQVq5ciRUrVmDWrFm6NomJiejTpw+6deuGmJgYTJkyBePGjcOOHTtq7Fhrq6ioKMhkMk45QERERk3Su8z+/vtvvfcrVqyAm5sboqOj0aVLF91yGxsbeHh4VLqPnTt34ty5c9i1axfc3d0RFBSEefPmYcaMGZgzZw7kcjm+//57+Pn54T//+Q8AoGnTpjhw4AC+/PJLhIWFVd8BEhER0QMdunQTgT6OsFVIF0sMagyRSqUCADg5OektX716NVxcXNCiRQvMnDkT+fn5unWHDx9Gy5Yt4e7urlsWFhYGtVqNuLg4XZvQ0FC9fYaFheHw4cOV1lFUVAS1Wq33qq3y8vIwatQo2NnZwdPTUxcay61atQrt2rWDvb09PDw8MHz4cN2cQVevXkW3bt0AAHXq1IFMJsOYMWMAlIXdTp06wdHREc7Ozujbty8uX75co8dGRESG71JGDl5ZcRy9F/2DDHWhZHUYzDxEWq0WU6ZMQceOHdGiRQvd8uHDh8PX1xdeXl44c+YMZsyYgfj4eGzcuBFA2aSId4YhALr3aWlp922jVqtRUFCgmwenXEREBObOnfvYxyKEQEGJ5rG3fxLWluaPdMfW9OnTsW/fPvzxxx9wc3PD+++/j5MnTyIoKAhA2W3w8+bNQ5MmTZCRkYFp06ZhzJgx2LZtG3x8fPD7779j0KBBiI+Ph4ODg64v8/LyMG3aNLRq1Qq5ubmYNWsWXnjhBcTExMDMzKByOBERSaS4VIsp62JQVKqFr7MtXO0VktViMIEoPDwcZ8+exYEDB/SWjx8/Xvfnli1bwtPTE927d8fly5fRoEGDaqll5syZmDZtmu69Wq2Gj4/PQ29fUKJBs1nSjE8691EYbOQP92PNzc3Fzz//jF9++QXdu3cHAKxcuRLe3t66Nq+++qruz/7+/li0aBHat2+P3Nxc2NnZ6c7mubm5wdHRUdd20KBBep+1bNkyuLq64ty5c3qBl4iITNfiPQk4e0MNpbUlFr7YStIpWAzif9UnTZqErVu3Yu/evXpfxpUJDg4GAFy6dAkA4OHhgfT0dL025e/Lxx3dq82dZzTupFAo4ODgoPeqjS5fvozi4mJdnwJllyubNGmiex8dHY1+/fqhXr16sLe3R9euXQGU3dl3PwkJCRg2bBj8/f3h4OCA+vXrP9R2RERkGk4m3caSvWXf5Z+80ALuDlaS1iPpGSIhBCZPnoxNmzYhKioKfn5+D9wmJiYGwP+eeRUSEoJPPvlE99gHAIiMjISDgwOaNWuma7Nt2za9/URGRiIkJKQKj+Z/rC3Nce4jaQZrW1tW3WMv8vLyEBYWhrCwMKxevRqurq5ISkpCWFgYiouL77ttv3794Ovri59++gleXl7QarVo0aLFA7cjIqLaL6+oFNPWxUArgAFBXujbykvqkqQNROHh4VizZg3++OMP2Nvb68b8KJVKWFtb4/Lly1izZg169+4NZ2dnnDlzBlOnTkWXLl3QqlUrAECPHj3QrFkzjBw5EgsWLEBaWho++OADhIeHQ6Eouxb5+uuv45tvvsG7776LV199FXv27MFvv/2Gv/76q1qOSyaTPfRlKyk1aNAAlpaWOHr0KOrVqwcAuH37Ni5evIiuXbviwoULuHXrFj799FPdJcMTJ07o7UMulwMom/6g3K1btxAfH4+ffvoJnTt3BoAKl0KJiMh0fbLtPK7eyoen0gpz+xvGMApJL5l99913UKlUeOaZZ+Dp6al7rVu3DkDZl+2uXbvQo0cPBAQE4O2338agQYOwZcsW3T7Mzc2xdetWmJubIyQkBC+//DJGjRqFjz76SNfGz88Pf/31FyIjIxEYGIj//Oc/WLp0qcnfcm9nZ4exY8di+vTp2LNnD86ePYsxY8boBj3Xq1cPcrkcixcvxpUrV/Dnn39i3rx5evvw9fWFTCbD1q1bkZmZidzcXNSpUwfOzs748ccfcenSJezZs0dvTBYREZmuvRcysOZo2fCJz18KhNLaUuKK/iXogVQqlQAgVCpVhXUFBQXi3LlzoqCgQILKnlxOTo54+eWXhY2NjXB3dxcLFiwQXbt2FW+99ZYQQog1a9aI+vXrC4VCIUJCQsSff/4pAIhTp07p9vHRRx8JDw8PIZPJxOjRo4UQQkRGRoqmTZsKhUIhWrVqJaKiogQAsWnTpkrrMPZ+JCKiB7uVWyTazosUvjO2irl/xlX7593v+/tuMiGEkDaSGT61Wg2lUgmVSlVhgHVhYSESExPh5+cHKytpB4QZM/YjEVHtJoTAxF9O4u+4NDRys8OWyZ1gVYXjXitzv+/vuxnEXWZERERUu208eQN/x6XBwkyGL4cEVXsYelQMRERERFStkrPyMfvPsqdHTH2uMVrUVUpcUUUMRERERFRtNFqBt9efRm5RKdr61sGELv5Sl1QpBiIiIiKqNj8fuIJjiVmwkZvji8GBsDA3zOhhmFUZIY5NfzLsPyKi2udCmhqf77gIAPiwbzP4OttKXNG9MRA9IUvLsvkT8vPzJa7EuJX3X3l/EhGRcSsq1WDKrzEo1mjRPcANQ9s//DNBpWD40ykbOHNzczg6OiIjIwMAYGNjI+nD6YyNEAL5+fnIyMiAo6MjzM0N664DIiJ6PF9EXsSFtBw42crx6SBpH9z6MBiIqkD5Q2TLQxE9OkdHR10/EhGRcTuWmIUf918BAEQMbAlXe4XEFT0YA1EVkMlk8PT0hJubG0pKSqQux+hYWlryzBARUS2RU1iCab/FQAjgpbbeCGtuHP+zy0BUhczNzfnFTkREJu2jLedw/XYBvOtYY1a/ZlKX89A4qJqIiIiqxI64NKyPvg6ZDPhicBDsrYznRhkGIiIiInpimTlFmLkxFgAwvos/Ovg5SVzRo2EgIiIioicihMB7v59BVl4xAjzsMe25xlKX9MgYiIiIiOiJ/Ho8GbsvZEBuboavhgZBYWF842kZiIiIiOixXbuVh3lbzwEA3glrjAAPB4krejwMRERERPRYSjVaTF0Xg/xiDYL9nDC2k2E+uPVhMBARERHRY/lh/xWcTMqGncIC/xkcCHMzw56N+n4YiIiIiOiRnb2hwpeRZQ9unft8c3jXsZG4oifDQERERESPpLBEg6nrYlCqFejZ3AMD29SVuqQnxkBEREREj2TB3/FIyMiFi50C8we2NPgHtz4MBiIiIiJ6aAcv3cSyg4kAgIUvtoKTrVziiqoGAxERERE9FFVBCd5ZfxoAMCK4HroFuElcUdVhICIiIqKHMvuPs0hVFaK+sw3+r09TqcupUgxERERE9EBbz6Rgc0wKzGTAF0OCYCO3kLqkKsVARERERPeVpirE/206CwCY1K0h2tSrI3FFVY+BiIiIiO5JCIHpG05DVVCClnWVmNy9kdQlVQsGIiIiIrqnVUeu4Z+Em1BYmOHLIYGwNK+d0aF2HhURERE9scuZuZi/7TwAYGavADR0s5e4ourDQEREREQVlGi0mLYuBoUlWnRu5IJRIfWlLqlaMRARERFRBd/suYTT11VwsLLAwhcDYWbED259GAxEREREpCcmORvf7L0EAPj4hZbwUFpJXFH1YyAiIiIinfziUkxdFwONVuD5QC88H+gldUk1goGIiIiIdCK2XUDizTx4OFhhXv8WUpdTYxiIiIiICAAQFZ+BVUeuAQAWvtQKShtLiSuqOQxEREREhKy8Yry74QwAYMzT9dG5kavEFdUsBiIiIiITp9UKvP1bDDJyitDA1Rbv9QqQuqQax0BERERk4n765wr2xmdCYWGGb4a3gZWludQl1TgGIiIiIhMWfe02Fu6IBwDM7tccTT0dJK5IGgxEREREJio7vxhvrj2FUq1Av0AvDOvgI3VJkmEgIiIiMkFCCLyz/gxuZBegvrMN5r/QAjJZ7Z6N+n4YiIiIiEzQsoNXset8OuTmZeOG7K1M5xb7yjAQERERmZjTydn4dHvZU+w/6NsULeoqJa5IegxEREREJkRVUILwNSdRohHo3dIDI5/ylbokg8BAREREZCKEEHjv9zO4frsAPk7W+HRQK5MeN3QnBiIiIiITserINWw/mwZLcxm+GdYGDiY+buhODEREREQm4OwNFT7eWjZu6L1eTRHo4yhtQQaGgYiIiKiWyyksGzdUrNHiuWbueLVjfalLMjgMRERERLWYEAIzN8bi2q181HW0xsIXOW6oMgxEREREtdiaY0nYeiYVFmYyLB7eGo42cqlLMkgMRERERLXUuRQ15m45BwB4t2cTtKlXR+KKDBcDERERUS2UV1SKSWtOorhUi2cD3DCuk7/UJRk0BiIiIqJaRgiBDzafxZWbefBUWuE/LwXCzIzjhu6HgYiIiKiWWX/iOjadugFzMxkWDWuNOrYcN/QgDERERES1yMX0HMz68ywAYNpzjdG+vpPEFRkHBiIiIqJaIr+4FG+sPonCEi26NHbFxK4NpC7JaEgaiCIiItC+fXvY29vDzc0NAwYMQHx8vF6bwsJChIeHw9nZGXZ2dhg0aBDS09P12iQlJaFPnz6wsbGBm5sbpk+fjtLSUr02UVFRaNOmDRQKBRo2bIgVK1ZU9+ERERHVqFl/xOFSRi7c7BX4YjDHDT0KSQPRvn37EB4ejiNHjiAyMhIlJSXo0aMH8vLydG2mTp2KLVu2YP369di3bx9SUlIwcOBA3XqNRoM+ffqguLgYhw4dwsqVK7FixQrMmjVL1yYxMRF9+vRBt27dEBMTgylTpmDcuHHYsWNHjR4vERFRdfk9+jo2RF+HmQxYNKw1XOwUUpdkVGRCCCF1EeUyMzPh5uaGffv2oUuXLlCpVHB1dcWaNWvw4osvAgAuXLiApk2b4vDhw3jqqaewfft29O3bFykpKXB3dwcAfP/995gxYwYyMzMhl8sxY8YM/PXXXzh79qzus4YOHYrs7Gz8/fffD6xLrVZDqVRCpVLBwcGheg6eiIjoMV3KyMXz3xxAfrEG055rjDe7N5K6JIPwKN/fBjWGSKVSAQCcnMoGgEVHR6OkpAShoaG6NgEBAahXrx4OHz4MADh8+DBatmypC0MAEBYWBrVajbi4OF2bO/dR3qZ8H3crKiqCWq3WexERERmiwhINJq05ifxiDZ5u4Izwbg2lLskoGUwg0mq1mDJlCjp27IgWLVoAANLS0iCXy+Ho6KjX1t3dHWlpabo2d4ah8vXl6+7XRq1Wo6CgoEItERERUCqVupePj0+VHCMREVFVm7slDhfScuBip8BXQ4NgznFDj8VgAlF4eDjOnj2LX3/9VepSMHPmTKhUKt0rOTlZ6pKIiIgq+CPmBtYeS4ZMBnw9NAhu9lZSl2S0LKQuAAAmTZqErVu3Yv/+/fD29tYt9/DwQHFxMbKzs/XOEqWnp8PDw0PX5tixY3r7K78L7c42d9+Zlp6eDgcHB1hbW1eoR6FQQKHgYDQiIjJcVzJz8f7GWADA5G4N0bGhi8QVGTdJzxAJITBp0iRs2rQJe/bsgZ+fn976tm3bwtLSErt379Yti4+PR1JSEkJCQgAAISEhiI2NRUZGhq5NZGQkHBwc0KxZM12bO/dR3qZ8H0RERMakbNzQKeQVaxDs54S3QhtLXZLRk/QMUXh4ONasWYM//vgD9vb2ujE/SqUS1tbWUCqVGDt2LKZNmwYnJyc4ODhg8uTJCAkJwVNPPQUA6NGjB5o1a4aRI0diwYIFSEtLwwcffIDw8HDdWZ7XX38d33zzDd599128+uqr2LNnD3777Tf89ddfkh07ERHR4/rkr/M4l6qGs60ci4a15rihKiDpbfcyWeU/wOXLl2PMmDEAyiZmfPvtt7F27VoUFRUhLCwM3377re5yGABcu3YNEydORFRUFGxtbTF69Gh8+umnsLD4X96LiorC1KlTce7cOXh7e+PDDz/UfcaD8LZ7IiIyFNtiU/HG6pMAgJWvdkDXxq4SV2S4HuX726DmITJUDERERGQIrt3KQ99FB5BTVIqJzzTAjJ4BUpdk0Ix2HiIiIiKqXFFp2bihnKJStPOtg7ef47ihqsRAREREZAQitl1A7A0VHG0ssWhYa1iY8yu8KrE3iYiIDNzfZ9Ow4tBVAMAXgwPh5Vhxyhh6MgxEREREBiw5Kx/vbjgNABjfxR/PBrg/YAt6HAxEREREBqq4VIvJa09BXViK1vUcMT2sidQl1VoMRERERAZq4Y4LiEnOhoOVBRYNbQ1LjhuqNuxZIiIiA7T7fDp++icRALDwpUD4ONlIXFHtxkBERERkYFKyC/D2+rJxQ690rI+w5h4P2IKeFAMRERGRASnRlI0bys4vQStvJWb2aip1SSaBgYiIiMiAzN92HtHXbsNeYYFvhrWB3IJf1TWBvUxERGQgNkRfx/KDVwEAnw8ORD1njhuqKQxEREREBuB0cjbe3xQLAHireyOOG6phDEREREQSy8gpxIRV0Sgu1SK0qTve6t5I6pJMDgMRERGRhIpLtXjjl5NIUxeigastvhwSCDMzmdRlmRwGIiIiIgnN3RKHE9duw97KAj+Nagd7K0upSzJJDEREREQSWXM0CauPJkEmAxYNbQ1/VzupSzJZDEREREQSiL6Whdl/ngUAvNOjCboFuElckWljICIiIqphaapCvP7LSZRoBHq39MAbzzSQuiSTx0BERERUgwpLNJjwSzQyc4oQ4GGPhS8GQibjIGqpMRARERHVECEEPtx8FqeTs6G0tsSPI9vBVmEhdVkEBiIiIqIa89/D17A++jrMZMA3w1tzJmoDwkBERERUAw5fvoWPtp4DAMzs1RSdG7lKXBHdiYGIiIiomt3ILkD4mpPQaAUGBHlhXGc/qUuiuzAQERERVaOCYg3G//cEsvKK0aKuAz4d1IqDqA0QAxEREVE1EUJg5sYziEtRw9lWjh9GtoOVpbnUZVElGIiIiIiqyc8HErE5JgXmZjIsGdEGdR2tpS6J7oGBiIiIqBocSLiJ+dvOAwBm9W2Gp/ydJa6I7oeBiIiIqIol3crHpLUnoRXAS229MSrEV+qS6AEYiIiIiKpQXlEpxq86gez8EgT6OGLegBYcRG0EGIiIiIiqiBAC0zecxoW0HLjaK/DDy205iNpIMBARERFVkW+jLmNbbBoszWX4/uU28FBaSV0SPSQGIiIioiqw90IGPt8ZDwD4qH8LtPV1krgiehQMRERERE/oSmYu3vz1FIQARgTXw7AO9aQuiR4RAxEREdETyCkswfhV0cgpLEU73zqY3a+51CXRY2AgIiIiekxarcDUdadxKSMXHg5W+PblNpBb8KvVGPGnRkRE9Ji+3p2AXefTIbcwww8j28LNnoOojRUDERER0WPYEZeGr3cnAADmv9ASgT6O0hZET4SBiIiI6BElpOdg2roYAMArHevjxbbe0hZET4yBiIiI6BGoCkrw2n9PIK9YgxB/Z7zfu6nUJVEVYCAiIiJ6SBqtwFu/nsLVW/mo62iNb4a3hqU5v0prA/4UiYiIHtJ/dsYjKj4TVpZlg6id7RRSl0RVhIGIiIjoIWw9k4Jvoy4DAD4b1Aot6iolroiqEgMRERHRA5xLUWP6+jMAgAld/NE/qK7EFVFVYyAiIiK6j9t5xRi/6gQKSjTo3MgF7/YMkLokqgYMRERERPdQqtFi0tqTuH67AL7ONlg8rDXMzWRSl0XVgIGIiIjoHj7dfgEHL92CjdwcP45sB0cbudQlUTVhICIiIqrEbyeSsfRAIgDgi8GBaOJhL3FFVJ0YiIiIiO6y/2Im3t8YCwB489mG6NnCU+KKqLoxEBEREd3hXIoab6w+iVKtwAut62Lqc42lLolqAAMRERHRv1JVBXh1xXHkFpUixN8Znw1qBZmMg6hNAQMRERERAHVhCcYsO440dSEaudnh+5FtIbfg16Sp4E+aiIhMXnGpFhN/iUZ8eg7c7BVY8WoHKK0tpS6LahADERERmTQhBN7beEZ3e/2yMe1R19Fa6rKohjEQERGRSftyVwI2nrwBczMZloxow2eUmSgGIiIiMlm/HU/Got0JAICPB7RAtyZuEldEUmEgIiIik7TvYiZmbiqba2hSt4YY1qGexBWRlCQNRPv370e/fv3g5eUFmUyGzZs3660fM2YMZDKZ3qtnz556bbKysjBixAg4ODjA0dERY8eORW5url6bM2fOoHPnzrCysoKPjw8WLFhQ3YdGREQGLC5FhTd+iYbm37mG3u7BuYZMnaSBKC8vD4GBgViyZMk92/Ts2ROpqam619q1a/XWjxgxAnFxcYiMjMTWrVuxf/9+jB8/XrderVajR48e8PX1RXR0NBYuXIg5c+bgxx9/rLbjIiIiw5WSXTbXUF6xhnMNkY6FlB/eq1cv9OrV675tFAoFPDw8Kl13/vx5/P333zh+/DjatWsHAFi8eDF69+6Nzz//HF5eXli9ejWKi4uxbNkyyOVyNG/eHDExMfjiiy/0ghMREdV+6sISvLL8ONLVRWjszrmG6H8M/rcgKioKbm5uaNKkCSZOnIhbt27p1h0+fBiOjo66MAQAoaGhMDMzw9GjR3VtunTpArn8f08oDgsLQ3x8PG7fvl3pZxYVFUGtVuu9iIjIuN0919DyVzjXEP2PQQeinj174r///S92796Nzz77DPv27UOvXr2g0WgAAGlpaXBz078jwMLCAk5OTkhLS9O1cXd312tT/r68zd0iIiKgVCp1Lx8fn6o+NCIiqkF3zjVky7mGqBKSXjJ7kKFDh+r+3LJlS7Rq1QoNGjRAVFQUunfvXm2fO3PmTEybNk33Xq1WMxQRERkxzjVED2LQZ4ju5u/vDxcXF1y6dAkA4OHhgYyMDL02paWlyMrK0o078vDwQHp6ul6b8vf3GpukUCjg4OCg9yIiIuN051xDnwxogWc41xBVwqgC0fXr13Hr1i14enoCAEJCQpCdnY3o6Ghdmz179kCr1SI4OFjXZv/+/SgpKdG1iYyMRJMmTVCnTp2aPQAiIqpRd841NPnZhhjKuYboHiQNRLm5uYiJiUFMTAwAIDExETExMUhKSkJubi6mT5+OI0eO4OrVq9i9ezf69++Phg0bIiwsDADQtGlT9OzZE6+99hqOHTuGgwcPYtKkSRg6dCi8vLwAAMOHD4dcLsfYsWMRFxeHdevW4euvv9a7JEZERLXPnXMNDWxdF9Oe41xDdG8yIYSQ6sOjoqLQrVu3CstHjx6N7777DgMGDMCpU6eQnZ0NLy8v9OjRA/PmzdMbJJ2VlYVJkyZhy5YtMDMzw6BBg7Bo0SLY2dnp2pw5cwbh4eE4fvw4XFxcMHnyZMyYMeOh61Sr1VAqlVCpVLx8RkRkBFKyC/DCtweRri5CiL8zVr7agbfXm6BH+f6WNBAZCwYiIiLjoS4swUvfHUZ8eg4au9th/etP8/Z6E/Uo39+My0REVGtwriF6XAxERERUKwgh8N7vnGuIHg8DERER1QpfRl7ExlOca4geDwMREREZvXXHk7BoT9kcdZxriB4HAxERERm1fRcz8f6mswA41xA9PgYiIiIyWpxriKoKAxERERmlG9kFeGX5ceQVaxDi74xPB7WCTCaTuiwyUgxERERkdFQFJXhl+TFk5BShsbsdvh/ZlhMv0hPhbw8RERmV8rmGLqbncq4hqjIMREREZDTK5xo6dJlzDVHVYiAiIiKjwbmGqLowEBERkVHgXENUnRiIiIjI4HGuIapuDERERGTQzt7gXENU/RiIiIjIYMWn5WDkz0c51xBVOwYiIiIySFcyczFi6VHczi9BoI8jfhzFuYao+vA3i4iIDE5yVj5GLD2Km7lFaOrpgJWvtIe9FecaourDQERERAYlTVWI4UuPIFVViAautlg1tgMcbeRSl0W1HAMREREZjJu5RRix9AiSswpQz8kGq8c9BRc7hdRlkQlgICIiIoOQnV+Ml5cexeXMPHgprbB6XDA8lFZSl0UmgoGIiIgkl1NYgtHLjuFCWg5c7RVY/dpT8HGykbosMiEMREREJKn84lK8uuI4Tl9XoY6NJVaPC4afi63UZZGJYSAiIiLJFJZoMP6/0Th+9TbsrSywamwwGrvbS10WmSAGIiIikkRxqRbhq0/iwKWbsJGbY8UrHfiwVpLMIwei0aNHY//+/dVRCxERmYhSjRZT18Vg94UMKCzM8PPo9mjrW0fqssiEPXIgUqlUCA0NRaNGjTB//nzcuHGjOuoiIqJaSqsVeHfDGfwVmwpLcxl+GNkWIQ2cpS6LTNwjB6LNmzfjxo0bmDhxItatW4f69eujV69e2LBhA0pKSqqjRiIiqiWEEPjgj7PYeOoGzM1k+GZ4GzzTxE3qsogebwyRq6srpk2bhtOnT+Po0aNo2LAhRo4cCS8vL0ydOhUJCQlVXScRERk5IQQ+/us81hxNgkwGfDE4EGHNPaQuiwjAEw6qTk1NRWRkJCIjI2Fubo7evXsjNjYWzZo1w5dffllVNRIRUS3wReRF/HwgEQDw2cBW6B9UV+KKiP7nkQNRSUkJfv/9d/Tt2xe+vr5Yv349pkyZgpSUFKxcuRK7du3Cb7/9ho8++qg66iUiIiO0ZO8lLN5zCQAw9/nmGNzeR+KKiPRZPOoGnp6e0Gq1GDZsGI4dO4agoKAKbbp16wZHR8cqKI+IiIzdsgOJWLgjHgDwXq8AjH66vrQFEVXikQPRl19+iZdeeglWVvd+voyjoyMSExOfqDAiIjJ+a48l4aOt5wAAb3ZvhNe7NpC4IqLKPXIgGjlyZHXUQUREtcymU9fx/qZYAMD4Lv6YGtpI4oqI7o0zVRMRUZX7+2wq3ll/BkIAI5/yxcxeAZDJZFKXRXRPDERERFSl9l7IwOS1p6DRCrzY1htzn2/OMEQGj4GIiIiqzKFLNzHhl2iUaAT6tvLEZ4NawcyMYYgMHwMRERFViRNXszDuvydQXKpFaFN3fDkkCOYMQ2QkGIiIiOiJnbmejVeWH0d+sQadG7ngm+GtYWnOrxgyHvxtJSKiJ3IhTY1Ry44hp6gUHfyc8OPIdrCyNJe6LKJHwkBERESP7XJmLl5eegzZ+SUI8nHEsjHtYS1nGCLjw0BERESPJTkrHyN+OoqbuUVo5umAla90gJ3ikae3IzIIDERERPTIUlUFGL70CNLUhWjoZodVYztAaWMpdVlEj42BiIiIHklmThFG/HQUyVkF8HW2wepxwXC2U0hdFtETYSAiIqKHdjuvGCN/PoorN/PgpbTC6nHBcHe497MtiYwFAxERET0UdWEJRi8/hgtpOXCzV2DNa0/Bu46N1GURVQmOfiMiogfKyivGqGVHcfaGGk62cqweF4z6LrZSl0VUZRiIiIjovtLVhXh56VEkZOTCyVaOVWM7oJG7vdRlEVUpBiIiIrqn5Kx8jFh6FElZ+fBwsMIv44LR0M1O6rKIqhwDERERVSohPQcv/3wU6eoi1HMqu5vMx4ljhqh2YiAiIqIKzt5QYdSyY8jKK0YjNzv8wrvJqJZjICIiIj3Hr2bh1eXHkVNUilbeSqx4pQOcbOVSl0VUrRiIiIhIZ//FTIxfdQKFJVp08HPCz6Pbwd6KM1BT7cdAREREAIC/z6bizbUxKNZo0bWxK75/uS0f1Eomg4GIiIjwe/R1TN9wGloB9G7pga+GtIbcgnP3kulgICIiMnH/PXwVs/6IAwC81NYbEQNbwsKcYYhMCwMREZEJW7L3EhbuiAcAjHm6Pmb1bQYzM5nEVRHVPEn/F2D//v3o168fvLy8IJPJsHnzZr31QgjMmjULnp6esLa2RmhoKBISEvTaZGVlYcSIEXBwcICjoyPGjh2L3NxcvTZnzpxB586dYWVlBR8fHyxYsKC6D42IyKAJIfDZ3xd0YejNZxtidj+GITJdkgaivLw8BAYGYsmSJZWuX7BgARYtWoTvv/8eR48eha2tLcLCwlBYWKhrM2LECMTFxSEyMhJbt27F/v37MX78eN16tVqNHj16wNfXF9HR0Vi4cCHmzJmDH3/8sdqPj4jIEGm1ArP+iMN3UZcBADN7BWBajyaQyRiGyIQJAwFAbNq0Sfdeq9UKDw8PsXDhQt2y7OxsoVAoxNq1a4UQQpw7d04AEMePH9e12b59u5DJZOLGjRtCCCG+/fZbUadOHVFUVKRrM2PGDNGkSZOHrk2lUgkAQqVSPe7hEREZhJJSjZj66ynhO2OrqP/eVvHLkatSl0RUbR7l+9tgR80lJiYiLS0NoaGhumVKpRLBwcE4fPgwAODw4cNwdHREu3btdG1CQ0NhZmaGo0eP6tp06dIFcvn/JhULCwtDfHw8bt++XUNHQ0QkvaJSDcLXnMTGUzdgbibDV0OCMCLYV+qyiAyCwQ6qTktLAwC4u7vrLXd3d9etS0tLg5ubm956CwsLODk56bXx8/OrsI/ydXXq1Knw2UVFRSgqKtK9V6vVT3g0RETSyi8uxYRV0fgn4SbkFmZYMrwNnmvm/uANiUyEwZ4hklJERASUSqXu5ePjI3VJRESPTVVQglE/H8M/CTdhIzfH8jHtGYaI7mKwgcjDwwMAkJ6errc8PT1dt87DwwMZGRl660tLS5GVlaXXprJ93PkZd5s5cyZUKpXulZyc/OQHREQkgVu5RRj+0xGcuHYbDlYWWDU2GB0bukhdFpHBMdhA5OfnBw8PD+zevVu3TK1W4+jRowgJCQEAhISEIDs7G9HR0bo2e/bsgVarRXBwsK7N/v37UVJSomsTGRmJJk2aVHq5DAAUCgUcHBz0XkRExiZVVYDBPxxGXIoaLnZy/Do+BG19K/93j8jUSRqIcnNzERMTg5iYGABlA6ljYmKQlJQEmUyGKVOm4OOPP8aff/6J2NhYjBo1Cl5eXhgwYAAAoGnTpujZsydee+01HDt2DAcPHsSkSZMwdOhQeHl5AQCGDx8OuVyOsWPHIi4uDuvWrcPXX3+NadOmSXTURETV79qtPLz0/WFczsyDp9IK6yaEoJkX/+eO6F5kQggh1YdHRUWhW7duFZaPHj0aK1asgBACs2fPxo8//ojs7Gx06tQJ3377LRo3bqxrm5WVhUmTJmHLli0wMzPDoEGDsGjRItjZ2enanDlzBuHh4Th+/DhcXFwwefJkzJgx46HrVKvVUCqVUKlUPFtERAbvYnoOXl56FBk5RajvbINfxgXDu46N1GUR1bhH+f6WNBAZCwYiIjIWsddVGLXsKG7nl6CJuz1WjesAN3srqcsiksSjfH8b7G33RET0aI5euYWxK08gt6gUgT6OWPlKezjayB+8IRExEBER1QZR8RmYsCoaRaVaPOXvhKWj28NOwX/iiR4W/7YQERm5bbGpeOvXUyjRCDwb4IZvR7SBlaW51GURGRUGIiIiI7b+RDJm/H4GWgH0beWJLwYHQW5hsDOqEBksBiIiIiO14mAi5mw5BwAY2t4Hn7zQEuZmfGI90eNgICIiMjJCCCzZewmf77wIABjbyQ8f9GkKmYxhiOhxMRARERmRUo0WH/91HisOXQUATAlthLe6N2IYInpCDEREREYip7AEk9eeQlR8JgDggz5NMa6zv8RVEdUODEREREYgOSsf41aeQHx6DqwszfDl4CD0aukpdVlEtQYDERGRgYu+dhsTVp3AzdxiuNkrsHR0O7TydpS6LKJahYGIiMiA/RFzA9M3nEFxqRbNPB3w85h28FRaS10WUa3DQEREZICEEPhqVwK+3p0AAAht6o6vhwbBlrNPE1UL/s0iIjIwhSUaTN9wBltOpwAAJnTxx7s9AzjHEFE1YiAiIjIgmTlFGL/qBE4lZcPCTIZPXmiBIe3rSV0WUa3HQEREZCAupKkxdsUJ3MgugNLaEt+/3BYhDZylLovIJDAQEREZgL0XMjBpzUnkFWvg52KLZWPaw8/FVuqyiEwGAxERkYSEEFhx6CrmbT0HrQBC/J3x3ctt4Ggjl7o0IpPCQEREJJESjRZz/ozD6qNJAIAh7Xwwb0ALPq2eSAIMREREElAVlGDSmpP4J+EmZDLg/V5NMa6zH59JRiQRBiIiohp27VYeXl1xHJcz82BtaY6vhwahR3MPqcsiMmkMRERENehYYhYmrDqB2/kl8HCwwtLR7dCirlLqsohMHgMREVEN+T36Ot7beAYlGoFW3kr8NKod3B2spC6LiMBARERU7bRagf9ExmPJ3ssAgN4tPfCfl4JgLTeXuDIiKsdARERUjQqKNZj2Wwy2n00DAEzq1hDTnmsMMz6Gg8igMBAREVWTdHUhXvvvCZy5roKluQyfDmyFQW29pS6LiCrBQEREVA3O3lBh3MoTSFMXoo6NJX4Y2Q4d/JykLouI7oGBiIioiu2MS8Nbv8agoESDBq5lj+HwdeZjOIgMGQMREVEVEULgp3+uIGL7BQgBdG7kgm+Gt4HS2lLq0ojoARiIiIiqQHGpFh9uPot1J5IBACOC62HO881hac7HcBAZAwYiIqInlJ1fjNd/icaRK1kwkwEf9m2GMU/X52M4iIwIAxER0RO4kpmLsStPIPFmHuwUFlg8rDW6BbhJXRYRPSIGIiKix/RPQiYmrTkFVUEJ6jpa4+cx7RDg4SB1WUT0GBiIiIgeUalGi692JWBJ1CUIAbSu54gfR7aDq71C6tKI6DExEBERPYJUVQHeWhuDY1ezAADDg+thVt9msLLkYziIjBkDERHRQ9obn4Fp62JwO78EdgoLzB/YEs8HekldFhFVAQYiIqIHKNFo8fnOePyw7woAoLmXA74Z3gZ+Lpxskai2YCAiIrqPG9kFmLzmJE4mZQMARoX44v3eTXmJjKiWYSAiIrqHyHPpeGf9aagKSmBvZYEFg1qhV0tPqcsiomrAQEREdJfiUi0++/sCfj6QCAAI9FZi8bA2qOdsI3FlRFRdGIiIiO6QnJWPSWtP4XRyNgDg1Y5+eK9XAOQWfAQHUW3GQERE9K+/z6Zi+oYzyCkshYOVBT5/KRA9mntIXRYR1QAGIiIyeUWlGsz/6zxWHr4GoGyixcXDWsO7Di+REZkKBiIiMmlXb+Zh0tqTOHtDDQCY0MUf74Q14VPqiUwMAxERmaytZ1Lw3u+xyC0qRR0bS/xncCCeDXCXuiwikgADERGZnMISDT7aeg5rjiYBANrXr4NFw1rDU2ktcWVEJBUGIiIyKZczcxG++iQupOVAJgPeeKYBpoY2hgUvkRGZNAYiIjIZm0/dwPubYpFfrIGzrRxfDglCl8auUpdFRAaAgYiIar2CYg3m/BmHdSeSAQBP+Tvh66Gt4e5gJXFlRGQoGIiIqFZLSM9B+JqTuJieC5kMePPZRnizeyOYm8mkLo2IDAgDERHVWutPJGPWH3EoKNHA1V6Br4cE4emGLlKXRUQGiIGIiGqdvKJSfPjHWWw8eQMA0KmhC74cEgRXe4XElRGRoWIgIqJa5UKaGuGrT+JyZh7MZMC05xpj4jMNeYmMiO6LgYiIagUhBH49now5f8ahqFQLdwcFFg1tjWB/Z6lLIyIjwEBEREYvp7AE/7fpLP48nQIA6NrYFV8MDoSzHS+REdHDYSAiIqO2Nz4D/7cxFimqQpibyTA9rAnGd/aHGS+REdEjYCAiIqOUlVeMj7bEYXNM2VkhHydrfDUkCG19nSSujIiMkUHPVT9nzhzIZDK9V0BAgG59YWEhwsPD4ezsDDs7OwwaNAjp6el6+0hKSkKfPn1gY2MDNzc3TJ8+HaWlpTV9KERURYQQ+CPmBkK/2IfNMSkwkwHjOvlhx5QuDENE9NgM/gxR8+bNsWvXLt17C4v/lTx16lT89ddfWL9+PZRKJSZNmoSBAwfi4MGDAACNRoM+ffrAw8MDhw4dQmpqKkaNGgVLS0vMnz+/xo+FiJ5MSnYBPth8FnsuZAAAmrjb47MXWyHIx1HawojI6Bl8ILKwsICHh0eF5SqVCj///DPWrFmDZ599FgCwfPlyNG3aFEeOHMFTTz2FnTt34ty5c9i1axfc3d0RFBSEefPmYcaMGZgzZw7kcnlNHw4RPQatVmD1sSR8tv0CcotKYWkuw+RnG+H1rg0gtzDoE91EZCQM/l+ShIQEeHl5wd/fHyNGjEBSUhIAIDo6GiUlJQgNDdW1DQgIQL169XD48GEAwOHDh9GyZUu4u7vr2oSFhUGtViMuLq5mD4SIHsvlzFwM/fEIPtx8FrlFpWhTzxHb3uyMN7s3Yhgioipj0GeIgoODsWLFCjRp0gSpqamYO3cuOnfujLNnzyItLQ1yuRyOjo5627i7uyMtLQ0AkJaWpheGyteXr7uXoqIiFBUV6d6r1eoqOiIielglGi1+3H8FX+9OQHGpFjZyc7wb1gQjQ+pzkkUiqnIGHYh69eql+3OrVq0QHBwMX19f/Pbbb7C2tq62z42IiMDcuXOrbf9EdH+x11V49/czOJ9a9j8jXRq7Yv4LLeBdx0biyoiotjKq882Ojo5o3LgxLl26BA8PDxQXFyM7O1uvTXp6um7MkYeHR4W7zsrfVzYuqdzMmTOhUql0r+Tk5Ko9ECKqVEGxBhHbzmPAtwdxPlUNRxtLfDE4ECtfac8wRETVyqgCUW5uLi5fvgxPT0+0bdsWlpaW2L17t259fHw8kpKSEBISAgAICQlBbGwsMjIydG0iIyPh4OCAZs2a3fNzFAoFHBwc9F5EVL0OX76FXl/vxw/7r0CjFejbyhO7pnXFwDbekMl4iYyIqpdBXzJ755130K9fP/j6+iIlJQWzZ8+Gubk5hg0bBqVSibFjx2LatGlwcnKCg4MDJk+ejJCQEDz11FMAgB49eqBZs2YYOXIkFixYgLS0NHzwwQcIDw+HQsEp/YkMgbqwBBHbLmDtsbIbJjwcrDBvQAs818z9AVsSEVUdgw5E169fx7Bhw3Dr1i24urqiU6dOOHLkCFxdXQEAX375JczMzDBo0CAUFRUhLCwM3377rW57c3NzbN26FRMnTkRISAhsbW0xevRofPTRR1IdEhHdYWdcGj784yzS1WU3MQwProf3egXAwcpS4sqIyNTIhBBC6iIMnVqthlKphEql4uUzoiqQmVOEOVvi8NeZVACAn4stIga2xFN8Mj0RVaFH+f426DNERFS7CCHw+8kbmLf1HFQFJTA3k+G1zv6YEtoIVpbmUpdHRCaMgYiIakRyVj7e3xSLfxJuAgCaezngs0Gt0KKuUuLKiIgYiIiommm0AisPXcXnO+ORX6yB3MIMU0MbY1xnP1iaG9WNrkRUizEQEVG1uZieg3c3nEFMcjYAoIOfEz4d2BL+rnbSFkZEdBcGIiKqcsWlWnwbdQlL9l5CiUbATmGBmb0DMKx9PZjxsRtEZIAYiIioSp1Kuo0Zv5/BxfRcAED3ADd8/EILeCqr73E7RERPioGIiKpEZk4Rvtp1EWuOJUEIwNlWjtnPN0e/Vp6caZqIDB4DERE9kbyiUiz9JxE/7r+MvGINAGBg67r4sG8z1LGVS1wdEdHDYSAiosdSqtHitxPX8eWui8jMKZtpOtBbiZm9m3KCRSIyOgxERPRIhBCIPJeOz/6+gMuZeQCAek42eLdnE/RpyctjRGScGIiI6KGdTLqNiG3ncfzqbQBAHRtLvNm9EUYE+0JuwTmFiMh4MRAR0QMl3szDwh0XsC02DQCgsDDD2E5+eP2ZBnwQKxHVCgxERHRPN3OLsHh3AlYfTUKpVkAmA15s441pPRrzNnoiqlUYiIiogoJiDX4+cAXf77uC3KJSAEC3Jq6Y0SsAAR73f2I0EZExYiAiIh2NVmBDdDK+iLyIdHXZnWMt6jrg/V5N8XRDF4mrIyKqPgxERAQhBPbGZ+DT7Rd0M0x717HG9LAm6NfKi4/bIKJaj4GIyMSdTs5GxPbzOHIlCwCgtLbE5GcbYmSILxQW5hJXR0RUMxiIiEzUtVt5WLgjHlvPpAIA5BZmeKVjfbzRtSGUNrxzjIhMCwMRkYnJyivG4j0J+OXINZRoyu4cG9i67M6xuo68c4yITBMDEZGJKCzRYNnBRHy39zJy/r1zrEtjV7zXMwDNvHjnGBGZNgYiolpOoxXYePI6voi8iFRVIQCgmacDZvYOQOdGrhJXR0RkGBiIiGopIQT2XczEp9sv4EJaDgCgrqM13glrjP6BdXnnGBHRHRiIiGqhk0m38Z+d8Th46RYAwMHKApOebYhRIfVhZck7x4iI7sZARFRLaLQCO+PSsPRAIqKvlT18VW5uhtFP+yK8W0M42sglrpCIyHAxEBEZudyiUqw/kYxlBxORnFUAoCwI9Q/ywpvdG8HHyUbiComIDB8DEZGRSlUVYMWhq1hzNAk5hWV3jdWxscTLT/liZIgv3OytJK6QiMh4MBARGZmzN1T46Z8r+OtMKkq1AgDg72KLVzv5YVAbb1jLOUaIiOhRMRARGQGtVmDPhQwsPXBF94gNAHjK3wnjOvnj2QA33jVGRPQEGIiIDFhBsQa/n7yOZQcSceVmHgDAwkyGvq08MbaTP1p6KyWukIiodmAgIjJAGTmF+O+ha/jl6DVk55cAAOytLDA8uB7GPF0fnko+YoOIqCoxEBEZkAtpaiz9JxF/xqSgWKMFAPg4WePVjn54qZ0P7BT8K0tEVB34ryuRxIQQ2J9wE0v/uYJ/Em7qlrep54jXOvujR3MPmHN8EBFRtWIgIpJIYYkGf8TcwM8HEnExPRcAYCYDerXwxKud/NDWt47EFRIRmQ4GIqIadiu3CL8cScKqI1dxM7cYAGArN8eQ9vXwSsf6nEiRiEgCDERENeRSRi5+PpCIjSevo6i0bHyQp9IKr3SsjyHt60FpbSlxhUREpouBiKgaCSFw+MotLP0nEXsuZOiWt6yrxLjOfujd0hOW5mYSVkhERAADEVG1SLyZhz9jUvDn6Ru4nFk2f5BMBnQPcMdrnf3Qwc8JMhkHShMRGQoGIqIqkqoqwNbTqfjzdApib6h0y60szfBiW2+82tEP/q52ElZIRET3wkBE9ASy8oqxLbYsBB2/mgVR9mgxmJvJ0LGhC54P9EKP5u5wsOL4ICIiQ8ZARPSIcotKEXkuDX/GpOCfhJu6B6wCQPv6dfB8oBd6tfSEi51CwiqJiOhRMBARPYTCEg2i4jOx5XQKdp1P190lBgDNvRzwfKAX+gZ6oa4jH6lBRGSMGIiI7qFUo8Why7fw5+kU7DibhpyiUt06fxdb9Av0Qr9ALzR047ggIiJjx0BEdAetVuBk0m38eToF22JTdRMnAmVzBvUL9MLzgV5o7uXAu8SIiGoRBiIyeUIInEtV48/TKdh6OhU3sgt065xs5ejd0gPPB9ZFO986MOMzxYiIaiUGIjJZlc0VBAB2Cgv0aO6O5wO90LGhCydOJCIyAQxEZFLuNVeQ3MIMzzZxQ/8gL3QLcIOVpbmEVRIRUU1jIKJaTasVOJ+mxpErWdgZl4Zjd80V1OnfuYKe41xBREQmjYGIahWNVuB8qhpHrtzCkStZOJZ4C+rCUr02Heo7oV+QF3q38IAz5woiIiIwEJGRK9VocS5VjaNXsnDkyi0cu5qFnLsCkJ3CAu3q10HHBi7o3cqTcwUREVEFDERkVEo1WsSllJ0BOpqYheOJWXrzAwGAvcIC7f2cEOznhKf8ndHcywEWHBhNRET3wUBEBq1Eo8XZGyocTSw7A3Ti6m3k3h2ArCwQ7OeEYD9nPOXvjGZeDjDn7fFERPQIGIjIoJRotDhzXYWjiWVjgKKvZiGvWKPXxsHKAh38nPGUf9kZoKaeDEBERPRkGIhIUsWlWsTeyMaRf8cARV+7jfy7ApDS2rLsDJB/WQgK8GAAIiKiqsVARDWqsESD2BsqHLlcNgboxLUsFJZo9drUsbFEh3/H/wT7OSPAw54zRBMRUbViIKIqp9EKpGQX4MrNPCRm5iLxZl7Zn2/m4UZ2gW4eoHJOtvJ/xwA54akGzmjsxgBEREQ1i4GIHosQArfyipF4Mw+JmeWBpyz8XL2Vj+JS7T23dbaVI/jf8T9P+TujoasdAxAREUmKgYjuK6+otCz03PEqP/Nz94SHd5Kbm8HX2QZ+Lrbwc7VFAxc7+Lnaws/FFs62cj4pnoiIDIpJBaIlS5Zg4cKFSEtLQ2BgIBYvXowOHTpIXZbkSjRaJGfl3xV48nDlZi7S1UX33E4mA7yU1vD/N+j4udjC39UO/i628HK05sBnIiIyGiYTiNatW4dp06bh+++/R3BwML766iuEhYUhPj4ebm5uUpf3xIQQyC/WIK+oFHn//je3qBT5xaXILfp3eVEp8oo0yCsuW5euKkTizTwkZeWjVCvuuW8nW7ku8Pi52KKBqy38XOzg62zDh6ASEVGtIBPi7iGutVNwcDDat2+Pb775BgCg1Wrh4+ODyZMn47333rvvtmq1GkqlEiqVCg4ODlVWk0YrcDO3CLl3hpWiUuQV/+/PunXFd4Sau9bnF5eFnCf5SVpZmsHPpezszv/O9pT919FGXmXHTEREVFMe5fvbJM4QFRcXIzo6GjNnztQtMzMzQ2hoKA4fPlyhfVFREYqK/nepSK1WV0tdqaoCdPpsb5XuUyYDbOUWsFWYw1ZhATuFBWzk5rBTWMC2/CUvW+dsp4D/v8HH3d6KA5uJiMhkmUQgunnzJjQaDdzd3fWWu7u748KFCxXaR0REYO7cudVel53CAmYy/BtSykJMeXCxkVvATi/U6K+3VZj/u82/6/9dZ21pzgHLREREj8gkAtGjmjlzJqZNm6Z7r1ar4ePjU+Wfo7S2xOX5vRlgiIiIJGYSgcjFxQXm5uZIT0/XW56eng4PD48K7RUKBRQKRbXXxSBERERkGMykLqAmyOVytG3bFrt379Yt02q12L17N0JCQiSsjIiIiAyBSZwhAoBp06Zh9OjRaNeuHTp06ICvvvoKeXl5eOWVV6QujYiIiCRmMoFoyJAhyMzMxKxZs5CWloagoCD8/fffFQZaExERkekxmXmInkR1zUNERERE1edRvr9NYgwRERER0f0wEBEREZHJYyAiIiIik8dARERERCaPgYiIiIhMHgMRERERmTwGIiIiIjJ5DERERERk8hiIiIiIyOSZzKM7nkT5ZN5qtVriSoiIiOhhlX9vP8xDORiIHkJOTg4AwMfHR+JKiIiI6FHl5ORAqVTetw2fZfYQtFotUlJSYG9vD5lMVqX7VqvV8PHxQXJyMp+TVo3YzzWD/Vwz2M81h31dM6qrn4UQyMnJgZeXF8zM7j9KiGeIHoKZmRm8vb2r9TMcHBz4l60GsJ9rBvu5ZrCfaw77umZURz8/6MxQOQ6qJiIiIpPHQEREREQmj4FIYgqFArNnz4ZCoZC6lFqN/Vwz2M81g/1cc9jXNcMQ+pmDqomIiMjk8QwRERERmTwGIiIiIjJ5DERERERk8hiIiIiIyOQxEEloyZIlqF+/PqysrBAcHIxjx45JXZLR279/P/r16wcvLy/IZDJs3rxZb70QArNmzYKnpyesra0RGhqKhIQEaYo1YhEREWjfvj3s7e3h5uaGAQMGID4+Xq9NYWEhwsPD4ezsDDs7OwwaNAjp6ekSVWycvvvuO7Rq1Uo3WV1ISAi2b9+uW88+rh6ffvopZDIZpkyZolvGvn5yc+bMgUwm03sFBATo1kvdxwxEElm3bh2mTZuG2bNn4+TJkwgMDERYWBgyMjKkLs2o5eXlITAwEEuWLKl0/YIFC7Bo0SJ8//33OHr0KGxtbREWFobCwsIartS47du3D+Hh4Thy5AgiIyNRUlKCHj16IC8vT9dm6tSp2LJlC9avX499+/YhJSUFAwcOlLBq4+Pt7Y1PP/0U0dHROHHiBJ599ln0798fcXFxANjH1eH48eP44Ycf0KpVK73l7Ouq0bx5c6SmpupeBw4c0K2TvI8FSaJDhw4iPDxc916j0QgvLy8REREhYVW1CwCxadMm3XutVis8PDzEwoULdcuys7OFQqEQa9eulaDC2iMjI0MAEPv27RNClPWrpaWlWL9+va7N+fPnBQBx+PBhqcqsFerUqSOWLl3KPq4GOTk5olGjRiIyMlJ07dpVvPXWW0II/j5XldmzZ4vAwMBK1xlCH/MMkQSKi4sRHR2N0NBQ3TIzMzOEhobi8OHDElZWuyUmJiItLU2v35VKJYKDg9nvT0ilUgEAnJycAADR0dEoKSnR6+uAgADUq1ePff2YNBoNfv31V+Tl5SEkJIR9XA3Cw8PRp08fvT4F+PtclRISEuDl5QV/f3+MGDECSUlJAAyjj/lwVwncvHkTGo0G7u7uesvd3d1x4cIFiaqq/dLS0gCg0n4vX0ePTqvVYsqUKejYsSNatGgBoKyv5XI5HB0d9dqyrx9dbGwsQkJCUFhYCDs7O2zatAnNmjVDTEwM+7gK/frrrzh58iSOHz9eYR1/n6tGcHAwVqxYgSZNmiA1NRVz585F586dcfbsWYPoYwYiInoi4eHhOHv2rN5YAKo6TZo0QUxMDFQqFTZs2IDRo0dj3759UpdVqyQnJ+Ott95CZGQkrKyspC6n1urVq5fuz61atUJwcDB8fX3x22+/wdraWsLKyvCSmQRcXFxgbm5eYfR8eno6PDw8JKqq9ivvW/Z71Zk0aRK2bt2KvXv3wtvbW7fcw8MDxcXFyM7O1mvPvn50crkcDRs2RNu2bREREYHAwEB8/fXX7OMqFB0djYyMDLRp0wYWFhawsLDAvn37sGjRIlhYWMDd3Z19XQ0cHR3RuHFjXLp0ySB+nxmIJCCXy9G2bVvs3r1bt0yr1WL37t0ICQmRsLLazc/PDx4eHnr9rlarcfToUfb7IxJCYNKkSdi0aRP27NkDPz8/vfVt27aFpaWlXl/Hx8cjKSmJff2EtFotioqK2MdVqHv37oiNjUVMTIzu1a5dO4wYMUL3Z/Z11cvNzcXly5fh6elpGL/PNTJ0myr49ddfhUKhECtWrBDnzp0T48ePF46OjiItLU3q0oxaTk6OOHXqlDh16pQAIL744gtx6tQpce3aNSGEEJ9++qlwdHQUf/zxhzhz5ozo37+/8PPzEwUFBRJXblwmTpwolEqliIqKEqmpqbpXfn6+rs3rr78u6tWrJ/bs2SNOnDghQkJCREhIiIRVG5/33ntP7Nu3TyQmJoozZ86I9957T8hkMrFz504hBPu4Ot15l5kQ7Ouq8Pbbb4uoqCiRmJgoDh48KEJDQ4WLi4vIyMgQQkjfxwxEElq8eLGoV6+ekMvlokOHDuLIkSNSl2T09u7dKwBUeI0ePVoIUXbr/Ycffijc3d2FQqEQ3bt3F/Hx8dIWbYQq62MAYvny5bo2BQUF4o033hB16tQRNjY24oUXXhCpqanSFW2EXn31VeHr6yvkcrlwdXUV3bt314UhIdjH1enuQMS+fnJDhgwRnp6eQi6Xi7p164ohQ4aIS5cu6dZL3ccyIYSomXNRRERERIaJY4iIiIjI5DEQERERkcljICIiIiKTx0BEREREJo+BiIiIiEweAxERERGZPAYiIiIiMnkMRERERGTyGIiIiIjI5DEQERERkcljICIik5SZmQkPDw/Mnz9ft+zQoUOQy+V6T9wmItPAZ5kRkcnatm0bBgwYgEOHDqFJkyYICgpC//798cUXX0hdGhHVMAYiIjJp4eHh2LVrF9q1a4fY2FgcP34cCoVC6rKIqIYxEBGRSSsoKECLFi2QnJyM6OhotGzZUuqSiEgCHENERCbt8uXLSElJgVarxdWrV6Uuh4gkwjNERGSyiouL0aFDBwQFBaFJkyb46quvEBsbCzc3N6lLI6IaxkBERCZr+vTp2LBhA06fPg07Ozt07doVSqUSW7dulbo0IqphvGRGRCYpKioKX331FVatWgUHBweYmZlh1apV+Oeff/Ddd99JXR4R1TCeISIiIiKTxzNEREREZPIYiIiIiMjkMRARERGRyWMgIiIiIpPHQEREREQmj4GIiIiITB4DEREREZk8BiIiIiIyeQxEREREZPIYiIiIiMjkMRARERGRyWMgIiIiIpP3/9vknaHnESkoAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\tut\\introduction_short_doc_33_0.png" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -691,16 +688,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrcElEQVR4nO3deVhUZf8G8HtmgGHfZFeUxRVFwA1xSU0Sl1zKSk1zye01NU3LokUrK1vUTPPnvi+5VJpZoYbiiqIgKgoqyKKsCjLDvszM74/RKVIQETgzw/25rnO9L2fOOdwzlfP1Oc/5PiKVSqUCERERET2WWOgARERERNqMxRIRERFRFVgsEREREVWBxRIRERFRFVgsEREREVWBxRIRERFRFVgsEREREVWBxRIRERFRFVgsEREREVWBxRIR1arevXujd+/eQscAALi5uWH8+PG1es2QkBD4+vrC2NgYIpEIubm5tXr92iISifDpp58KHYNIL7BYIqIKRCJRtbawsDCho9a77OxsvPbaazAxMcHKlSuxbds2mJmZCZbnzz//ZEFEVA9EXBuOiP5t+/btFX7eunUrjhw5gm3btlXY/8ILL8DR0fGR80tLSwEARkZGdReymkpKSiAWi2FoaFgr1wsJCcGAAQNw5MgRBAYG1so1n8WMGTOwcuVKPO6P8eLiYhgYGMDAwECAZET6hf8VEVEFY8aMqfDz2bNnceTIkUf2/1dhYSFMTU21okh6SCqV1ur1srKyAADW1ta1et26YGxsLHQEIr3B23BE9NR69+6Ndu3aITIyEs899xxMTU3x4Ycfal7775yl5ORkDBkyBGZmZnBwcMA777yDQ4cOPXI7r7CwEHFxcbh3794TM9y8eRPDhw+Hk5MTjI2N0aRJE4wcORIymUxzzH/nLG3evBkikQinT5/GnDlzYG9vDzMzM7z00ku4e/fuE9/zuHHjAACdO3eGSCTSXLuyuVH//SzCwsIgEomwZ88efPnll2jSpAmMjY3Rt29fxMfHP3L+uXPnMHDgQNjY2MDMzAzt27fHDz/8AAAYP348Vq5cCaDirdOHHjdn6eLFixgwYAAsLS1hbm6Ovn374uzZsxWOeZbPiEhfcWSJiGokOzsbAwYMwMiRIzFmzJjH3pIDgIKCAjz//PNIT0/HrFmz4OTkhJ07d+LYsWOPHBsREYE+ffpgwYIFVc7FKS0tRVBQEEpKSjBz5kw4OTkhNTUVBw8eRG5uLqysrKrMPnPmTNjY2GDBggVISkrCsmXLMGPGDOzevbvScz766CO0atUKa9euxeeffw53d3d4enpW+Xsq8/XXX0MsFuPdd9+FTCbDt99+i9GjR+PcuXOaY44cOYIXX3wRzs7Oms8tNjYWBw8exKxZszB16lSkpaU99hbp41y9ehU9e/aEpaUl5s2bB0NDQ6xZswa9e/fG8ePH4e/v/8yfEZG+YrFERDWSkZGB1atXY+rUqVUet2bNGty6dQv79+/H0KFDAQBTp06Fn59fjX/3tWvXkJiYiL179+KVV17R7J8/f361zm/UqBEOHz6sGYlRKpVYvnw5ZDJZpYXWCy+8gNTUVKxduxYDBgxAp06dapy/uLgY0dHRmluWNjY2mDVrFmJiYtCuXTsoFApMnToVzs7OiI6OrnDb7+H8pICAALRs2bJat0gB4OOPP0ZZWRlOnToFDw8PAMDYsWPRqlUrzJs3D8ePH69wfE0+IyJ9xdtwRFQjUqkUEyZMeOJxISEhaNy4MYYMGaLZZ2xsjMmTJz9ybO/evaFSqZ74hNfDL+tDhw6hsLDw6YIDmDJlSoVbVj179oRCoUBycvJTX6smJkyYUGFuV8+ePQEAt27dAqC+XZaYmIjZs2c/Mj/q37mrS6FQ4PDhwxg2bJimUAIAZ2dnvP766zh16hTkcnmFc4T+jIi0CYslIqqRxo0bV2syd3JyMjw9PR/5km/evHmNf7e7uzvmzJmD9evXw87ODkFBQVi5cmWF+UpVadq0aYWfbWxsAAD379+vcaan8aTfn5CQAABo165drfy+u3fvorCwEK1atXrktTZt2kCpVOL27dtPlZGoIWGxREQ1YmJiIujvX7JkCS5fvowPP/wQRUVFePvtt9G2bVvcuXPniedKJJLH7q9pJ5XKRnsUCkW9/P66oAsZieoLiyUiqlPNmjVDQkLCI1+yj3v662l5e3vj448/xokTJ3Dy5EmkpqZi9erVz3zdp2VjY/PYTt41vWX1cOJ4TExMlcdV95acvb09TE1Ncf369Udei4uLg1gshqur69MHJWogWCwRUZ0KCgpCamoqDhw4oNlXXFyMdevWPXJsdVsHyOVylJeXV9jn7e0NsViMkpKS2gn+FDw9PXH27FlNQ04AOHjw4CO3tqqrQ4cOcHd3x7Jlyx4pwv5ddD7sHv6kJVckEgn69euH3377DUlJSZr9mZmZ2LlzJ3r06AFLS8saZSVqCPg0HBHVqalTp+LHH3/EqFGjMGvWLDg7O2PHjh2apon/Hh2pbuuAo0ePYsaMGXj11VfRsmVLlJeXY9u2bZBIJBg+fHhdv6VHTJo0CT///DP69++P1157DQkJCdi+fXuNWwuIxWKsWrUKgwcPhq+vLyZMmABnZ2fExcXh6tWrOHToEACgY8eOAIC3334bQUFBkEgkGDly5GOv+cUXX+DIkSPo0aMH3nrrLRgYGGDNmjUoKSnBt99+W7M3TtRAsFgiojplbm6Oo0ePYubMmfjhhx9gbm6OsWPHolu3bhg+fHiNOk37+PggKCgIv//+O1JTU2FqagofHx/89ddf6Nq1ax28i6oFBQVhyZIlWLp0KWbPno1OnTrh4MGDmDt37jNd89ixY/jss8+wZMkSKJVKeHp6VniK8OWXX8bMmTOxa9cubN++HSqVqtJiqW3btjh58iSCg4OxaNEiKJVK+Pv7Y/v27Y/0WCKiirg2HBEJYtmyZXjnnXdw584dNG7cWOg4RESVYrFERHWuqKiowtNzxcXF8PPzg0KhwI0bNwRMRkT0ZLwNR0R17uWXX0bTpk3h6+sLmUyG7du3Iy4uDjt27BA6GhHRE7FYIqI6FxQUhPXr12PHjh1QKBTw8vLCrl27MGLECKGjERE9EW/DEREREVWBfZaIiIiIqsBiiYiIiKgKnLNUC5RKJdLS0mBhYVGjFcGJiIio/qlUKuTl5cHFxQViceXjRyyWakFaWhrXVSIiItJRt2/fRpMmTSp9ncVSLbCwsACg/rC5vhIREZFukMvlcHV11XyPV4bFUi14eOvN0tKSxRIREZGOedIUGk7wJiIiIqoCiyUiIiKiKrBYIiIiIqoCiyUiIiKiKrBYIiIiIqoCiyUiIiKiKrBYIiIiIqoCiyUiIiKiKrBYIiIiIqoCiyUiIiKiKuhUsXTixAkMHjwYLi4uEIlE2L9//xPPCQsLQ4cOHSCVStG8eXNs3rz5kWNWrlwJNzc3GBsbw9/fHxEREbUfnoiIiHSSThVLBQUF8PHxwcqVK6t1fGJiIgYNGoQ+ffogOjoas2fPxqRJk3Do0CHNMbt378acOXOwYMECREVFwcfHB0FBQcjKyqqrt0FEREQ6RKRSqVRCh6gJkUiEffv2YdiwYZUe8/777+OPP/5ATEyMZt/IkSORm5uLkJAQAIC/vz86d+6MH3/8EQCgVCrh6uqKmTNn4oMPPqhWFrlcDisrK8hkMi6kSwAAlUqFUoUSxWVKFJcpYCgRw8bU8ImLNRIRUf2p7ve3QT1mqnfh4eEIDAyssC8oKAizZ88GAJSWliIyMhLBwcGa18ViMQIDAxEeHl7pdUtKSlBSUqL5WS6X125w0hmFpeWITZfjWnoerqXJcS1djltZ+SgoLYfyP38NMTIQw9nKGM5WxnCxNoGvqzW6eTaCp705iygiIi2m18VSRkYGHB0dK+xzdHSEXC5HUVER7t+/D4VC8dhj4uLiKr3uokWL8Nlnn9VJZtJ++SXlCI3NxJ9X0hF2/S5KypVVHi8Ri6BQqlBarkRydiGSswsBAL9GpQIAHCyk6ObZCD1b2GOAtxNMjfT6P0siIp3DP5VrIDg4GHPmzNH8LJfL4erqKmAiqmsqlQonb97DjnPJjxRIDhZStHWxRBtnS3i5WKKVowWsTA1hbCiBiaEEhhIxSsuVyJQXIy23CBnyYiRnF+JcYjYuJN1HVl4J9kenYX90Gj79/SqGd2iC1/2boqWjhYDvmIiIHtLrYsnJyQmZmZkV9mVmZsLS0hImJiaQSCSQSCSPPcbJyanS60qlUkil0jrJTNpFqVThSGwmVh6Lx+U7Ms1+dzszDPR2wkBvZ3g5Wz7xNpqRgRiutqZwtTX9194WKC5TICrlPs7EZ+PApTSk5BRi85kkbD6ThC5utpjynAf6tnHgbToiIgHpdbEUEBCAP//8s8K+I0eOICAgAABgZGSEjh07IjQ0VDNRXKlUIjQ0FDNmzKjvuKRFVCoVDlxKw8pj8biRmQ8AMDYUY2Tnpni1U5NqFUjVYWwoQTdPO3TztMOcF1riVPw9bD+bjNC4LEQk5SAiKQf+7rb4aFAbtG9i/cy/j4iInp5OFUv5+fmIj4/X/JyYmIjo6GjY2tqiadOmCA4ORmpqKrZu3QoA+N///ocff/wR8+bNw5tvvomjR49iz549+OOPPzTXmDNnDsaNG4dOnTqhS5cuWLZsGQoKCjBhwoR6f3+kHeKz8vDhvhhEJOYAACykBhjbrRne7O6ORuZ1N6IoFovwXEt7PNfSHumyImw+k4RNp5NwLjEHQ348jSE+LngvqNV/RqeIiKiu6VTrgLCwMPTp0+eR/ePGjcPmzZsxfvx4JCUlISwsrMI577zzDq5du4YmTZrgk08+wfjx4yuc/+OPP+K7775DRkYGfH19sXz5cvj7+1c7F1sH6IfiMgX+71g8Vh1PQJlCBRNDCab19sT47m6wNDYUJFNqbhGWHLqOXy+qJ4MbGYjxXr9WmNjDHWIxb80RET2L6n5/61SxpK1YLOm+iMQczPv5EpIePKn2fGsHfD60LZrYaMcoTkyqDF/+EYvwW9kAgK4etlj8qo/W5CMi0kUsluoRiyXdpVSqsObELXx3KA5KFeBoKcWng9uifzsnrZtUrVKp8FPEbSw8eA1FZQpYSA3w2dC2eMmvsdZlJSLSBSyW6hGLJd0kKyzD3L3R+DtWvbTNyx0a49MhbQW75VZdSfcK8M6eaFxMyQUADPFxwbevtIexoUTYYEREOqa63986tTYcUW25ckeGQStO4u/YLBgZiPH1y95Y8qqP1hdKAOBmZ4a9UwMw94WWMBCLcOBSGkasCUemvFjoaEREeonFEjU4f1xOx/BVZ3DnfhGa2pri12ndMLJLU526lWUgEWNm3xbYPskfNqaGuHRHhqE/nkZMquzJJxMR0VNhsUQNypYzSZjxUxRKFUoEtnHA7zN7oF1jK6Fj1VhXj0bYP707mjuYI0NejFdWn8GfV9KFjkVEpFdYLFGDoFKpsPjQdSw4cBUqFTA2oBnWvNEJVibaf9vtSZo1MsOvb3VDr5b2KC5T4q0dUdh0OlHoWEREeoPFEum9coUSH/xyBT8eUzc0nftCS3w2pC0ketSnyNLYEBvGdcL4bm4AgM9+v4Y1xxOEDUVEpCd0qoM30dMqUygxY2cUDl3NhFgEfPWSN0Z2aSp0rDphIBFjwWAvWBobYPnReCz6Kw4l5Uq83beF0NGIiHQaiyXSWwqlCu/sjsahq5kwMhDjx1F+6Ne28gWS9YFIJMKcfq1gZCDG4sM3sPTIDZQplJjzQkudmsBORKRNeBuO9JJSqcL7v1zGwcvpMJSIsGZMR70vlP5txvMt8OHA1gCAFUfj8U3IdbClGhFRzbBYIr2jUqkw/0AMfo68A4lYhBWj/NCntYPQserdlOc8sWCwFwBg9fEErDlxS+BERES6icUS6RWVSoUv/ojF9rMpEImApa/5oH87Z6FjCWZCd3d8PKgNAODrv+Lwc+QdgRMREekeFkukV/4vLAEbTqkfm//m5fYY6ttY4ETCm9TTA1Oe8wAAvP/LZRyNyxQ4ERGRbmGxRHrj4OU0fHfoOgBgwWAvvNbZVeBE2uOD/q3xsl9jKJQqvLUjClEp94WORESkM1gskV6ISrmPOXsuAQDe7O6OCd3dBU6kXcRiEb55pT16t1I3rnxz83nEZ+ULHYuISCewWCKddzunEJO3XEBpuXoJk48ezNGhigwlYvzf6A7wcbVGbmEZJm+9AFlRmdCxiIi0Hosl0mmyojJM2Hwe2QWl8HK2xA8j/fSqM3dtMzUywMZxndDY2gSJ9wrw9k8XoVCypQARUVVYLJHOUihVmLEzCvFZ+XC0lGLD+E4wk7LP6pM0MpdizRsdYWwoxvEbdzXzvIiI6PFYLJHOWnrkOk7evAcTQwk2jOsMZysToSPpjHaNrfDtKz4A1D2YfotOFTgREZH2YrFEOik0NhMrj6kXiv16uDfaNbYSOJHuGeLjgv/18gSgbikQkyoTOBERkXZisUQ653ZOId7ZHQ0AGBvQjL2UnsF7Qa00T8hN2XoB9wtKhY5ERKR1WCyRTikuU2DajkjIi8vh62rNJ9+ekUQswg8j/eDWyBRpsmK89/NlriFHRPQfLJZIp3z2+1XEpMphY2qIlaM7QGogETqSzrMyMcSPr3eAkUSMv2MzsflMktCRiIi0Cosl0hn7Lt7BTxG3IRIBP4z0Q2NrTuiuLe0aW+HDga0BAIv+jOP8JSKif2GxRDrhdk4hPtl/FQAwq28LPNfSXuBE+mdcNze84OWIUoUSM3ZGIb+kXOhIRERagcUSab1yhRLv7I5Gfkk5OrvZYObzLYSOpJdEIhG+e6U9XKyMkZRdiI/3XeH8JSIisFgiHbAqLAEXku/DXGqApa/5skN3HbI2NcIPo9Rd0PdHp+GXKPZfIiJisURaLfp2LpaF3gQAfD60LVxtTQVOpP86u9ninUD16N2nB64iNbdI4ERERMJisURaq6CkHO/sjoZCqcKL7Z3xkh/7KdWXab2bo0NTa+SXlOP9ny9DyfXjiKgBY7FEWuuLP2KReK8AzlbG+HKYN0Qi3n6rLxKxCItf9YGxoRin4u9hx7lkoSMREQmGxRJppeM37uKniBSIRMCS13xgZWoodKQGx8PeHO/3V7cT+OrPOCTdKxA4ERGRMHSuWFq5ciXc3NxgbGwMf39/REREVHps7969IRKJHtkGDRqkOWb8+PGPvN6/f//6eCtUifyScnz46xUAwPhubujmaSdwooZrXIAbunrYoqhMgfd+vgQFb8cRUQOkU8XS7t27MWfOHCxYsABRUVHw8fFBUFAQsrKyHnv8r7/+ivT0dM0WExMDiUSCV199tcJx/fv3r3DcTz/9VB9vhyrxbUgcUnOL4GprgveCWgkdp0ETi0X47hUfmBlJcD7pPjaeShQ6EhFRvdOpYmnp0qWYPHkyJkyYAC8vL6xevRqmpqbYuHHjY4+3tbWFk5OTZjty5AhMTU0fKZakUmmF42xsbOrj7dBjRCTmYGu4en7M1y+3h6mRgcCJyNXWFB+/6AUA+O7wdSTczRc4ERFR/dKZYqm0tBSRkZEIDAzU7BOLxQgMDER4eHi1rrFhwwaMHDkSZmZmFfaHhYXBwcEBrVq1wrRp05CdnV3ldUpKSiCXyyts9OyKyxR4/5fLAICRnV3RvTlvv2mLkZ1d0bOFHUrLlfiIzSqJqIHRmWLp3r17UCgUcHR0rLDf0dERGRkZTzw/IiICMTExmDRpUoX9/fv3x9atWxEaGopvvvkGx48fx4ABA6BQKCq91qJFi2BlZaXZXF1da/amqILv/76BxHsFcLSU4sNBbYSOQ/8iEonw1UveMDYU4+ytHOyNvCN0JCKieqMzxdKz2rBhA7y9vdGlS5cK+0eOHIkhQ4bA29sbw4YNw8GDB3H+/HmEhYVVeq3g4GDIZDLNdvv27TpOr/8u38nFuhO3AABfDvOGpTGfftM2rrameCewJQDgqz9jkZ1fInAiIqL6oTPFkp2dHSQSCTIzMyvsz8zMhJOTU5XnFhQUYNeuXZg4ceITf4+Hhwfs7OwQHx9f6TFSqRSWlpYVNqq5coUSwb9egVIFDPFxQaCX45NPIkG82cMdbZwtkVtYhi/+iBU6DhFRvdCZYsnIyAgdO3ZEaGioZp9SqURoaCgCAgKqPHfv3r0oKSnBmDFjnvh77ty5g+zsbDg7Oz9zZqqe7WeTcTVNDktjA8wf7CV0HKqCoUSMRS97QyQC9l1Mxcmbd4WORERU53SmWAKAOXPmYN26ddiyZQtiY2Mxbdo0FBQUYMKECQCAsWPHIjg4+JHzNmzYgGHDhqFRo0YV9ufn5+O9997D2bNnkZSUhNDQUAwdOhTNmzdHUFBQvbynhi4rrxhLDt8AAMzr3xp25lKBE9GT+LpaY1yAGwDgo30xKCqtfH4fEZE+0KnnskeMGIG7d+9i/vz5yMjIgK+vL0JCQjSTvlNSUiAWV6z/rl+/jlOnTuHw4cOPXE8ikeDy5cvYsmULcnNz4eLign79+mHhwoWQSvmlXR+++iMWeSXl8GlihVFdmgodh6rp3aBWOHQ1Ayk5hVhx9CbmPej0TUSkj0QqPgP8zORyOaysrCCTyTh/6SmcSbiH19edg0gEHJjeA95NrISORE/h8NUMTNkWCUOJCIdmPwcPe3OhIxERPZXqfn/r1G040h+l5Up8sj8GAPBG12YslHTQC16O6N3KHmUKFT4/eI29l4hIb7FYIkGsP3ULCXcLYGduhLn9uKSJLhKJRJj/ohcMJSKEXb+L0NjHLztERKTrWCxRvUvNLcLy0JsAgI8GtYGVCXsq6SoPe3NM7OEBAPj84DUUl3GyNxHpHxZLVO++/isOxWVKdHG3xTDfxkLHoWc08/nmcLSUIiWnUNNYlIhIn7BYonoVmZyD3y+lQSQC5r/oBZFIJHQkekZmUgN8OFC9PM3KsHik5hYJnIiIqHaxWKJ6o1Sq8Nnv1wAAIzq5ol1jTurWF0N8XNDFzRbFZUp8xc7eRKRnWCxRvfn1Yiou35HBXGrASd16RiQS4dMhbSEWAX9cSUd4QrbQkYiIag2LJaoXBSXl+DYkDoB6jou9BZt+6hsvF0uM9m8GAPjyz2tQKtlKgIj0A4slqherwhKQlVeCZo1MMb67m9BxqI7MDmwBC6kBYlLl2HcxVeg4RES1gsUS1bnbOYVYe1L9lNSHA9tAaiAROBHVlUbmUrzVpzkAYPHh61w3joj0AoslqnPfhMShtFyJbp6N0M/LUeg4VMcmdHdDY2sTpMuKseEUWwkQke5jsUR16tLtXBy8nA6RCPh4EFsFNATGhhLM66+ewK++/VoscCIiomfDYonqjEqlwqK/1I+Rv+zXBF4uXGS4oRjc3gU+TaxQUKrA90duCh2HiOiZsFiiOhN2/S7O3sqBkYEYc/q1FDoO1SOxWISPBnkBAHafT8GNzDyBExER1RyLJaoTCqUKX/+lbhUwoZt6Dgs1LF3cbRHU1hFKFfDVn2xUSUS6i8US1Ylfou7gemYerEwM8Vbv5kLHIYF8MKANDMSiB6OMbFRJRLqJxRLVuuIyBb4/cgMAML2PJ6xMDQVOREJxtzPDyC6uAIBvQ+KgUrFRJRHpHhZLVOs2nU5CuqwYja1NMDbATeg4JLC3n28BY0MxolJyERqbJXQcIqKnxmKJatX9glL8X1g8AGBuv5YwNmQDyobOwdIYE7q7AwC+O3QdCi6DQkQ6hsUS1arVJxKQV1yONs6WGObbWOg4pCX+95wnLI0NcD0zD79FcxkUItItLJao1mTJi7HlTBIA4L2glhCL2YCS1KxMDTHtwUT/pUduoKScy6AQke5gsUS1ZuWxeBSXKeHX1Bp9WjkIHYe0zPhubnCwkOLO/SL8dC5F6DhERNXGYolqxZ37hdgZof4CfK9fKy5rQo8wMZJgVmALAMCPx+JRUFIucCIiouphsUS1YkVoPMoUKnTzbIRuze2EjkNa6rVOrnBrZIp7+aXYdDpR6DhERNXCYomeWeK9AvwcdQcAMLdfK4HTkDYzlIjxzgvqpW/WnUyEvLhM4ERERE/GYome2fdHbkChVOH51g7o2MxG6Dik5V5s74LmDuaQFZVh06kkoeMQET0RiyV6JnEZcvx+OQ2Auq8S0ZNIxCLMfjB3af2pW5AVcnSJiLQbiyV6JksP34BKBQzydkZbFyuh45COGNjOGa0cLZBXXI4Np24JHYeIqEoslqjGYlJlOHwtEyIR8M4LLYSOQzpELBZp/p3ZeDoJ9wtKBU5ERFQ5FktUY8tDbwIAhvi4oLmDhcBpSNf083KCl7Ml8kvKse4kR5eISHuxWKIauZr2z6jSzOebCx2HdJB6dEk9z23zmSRk55cInIiI6PF0rlhauXIl3NzcYGxsDH9/f0RERFR67ObNmyESiSpsxsbGFY5RqVSYP38+nJ2dYWJigsDAQNy8ebOu34bOeziqNLg9R5Wo5gLbOMC7sRUKSxVYe4KjS0SknXSqWNq9ezfmzJmDBQsWICoqCj4+PggKCkJWVlal51haWiI9PV2zJScnV3j922+/xfLly7F69WqcO3cOZmZmCAoKQnFxcV2/HZ11LU2OQ1fVo0pv9+WoEtWcSCTCnAejS1vCk3CPo0tEpIV0qlhaunQpJk+ejAkTJsDLywurV6+GqakpNm7cWOk5IpEITk5Oms3R0VHzmkqlwrJly/Dxxx9j6NChaN++PbZu3Yq0tDTs37+/Ht6Rbno4qvQiR5WoFvRuZQ+fJlYoLlNi/Ul29SYi7aMzxVJpaSkiIyMRGBio2ScWixEYGIjw8PBKz8vPz0ezZs3g6uqKoUOH4urVq5rXEhMTkZGRUeGaVlZW8Pf3r/KaJSUlkMvlFbaGIjZdjpCrGepRJc5VologEokw83n1k3HbwvlkHBFpH50plu7duweFQlFhZAgAHB0dkZGR8dhzWrVqhY0bN+K3337D9u3boVQq0a1bN9y5o16a4+F5T3NNAFi0aBGsrKw0m6ur67O8NZ2y4qh6VGmgtzNaOHJUiWpH3zYO8HK2REGpgmvGEZHW0ZliqSYCAgIwduxY+Pr6olevXvj1119hb2+PNWvWPNN1g4ODIZPJNNvt27drKbF2i8uQ488rD0eV2FeJao96dEk9UrnpdBJkRezqTUTaQ2eKJTs7O0gkEmRmZlbYn5mZCScnp2pdw9DQEH5+foiPjwcAzXlPe02pVApLS8sKW0Ow8lgCgAfdl504qkS1K6itE1o6miOvpBxbziQJHYeISENniiUjIyN07NgRoaGhmn1KpRKhoaEICAio1jUUCgWuXLkCZ2dnAIC7uzucnJwqXFMul+PcuXPVvmZDkXivAH88WANueh/OVaLaJxaLNP9ubTydiPyScoETERGp6UyxBABz5szBunXrsGXLFsTGxmLatGkoKCjAhAkTAABjx45FcHCw5vjPP/8chw8fxq1btxAVFYUxY8YgOTkZkyZNAqAe+p89eza++OILHDhwAFeuXMHYsWPh4uKCYcOGCfEWtdaqsHgoVUDf1g7wcmkYI2lU/15s7wIPOzPkFpZhW3jyk08gIqoHBkIHeBojRozA3bt3MX/+fGRkZMDX1xchISGaCdopKSkQi/+p/+7fv4/JkycjIyMDNjY26NixI86cOQMvLy/NMfPmzUNBQQGmTJmC3Nxc9OjRAyEhIY80r2zIUnOL8GtUKgBgOp+AozokeTC6NHfvJaw/eQvjujWDqZFO/TFFRHpIpFKpVEKH0HVyuRxWVlaQyWR6OX9pwW8x2BKejG6ejbBzcleh45CeK1co8fyS40jJKcTHg9pgUk8PoSMRkZ6q7ve3Tt2Go/p3N68Eu86rn/abwblKVA8MJGJM6+0JAFh/MhEl5QqBExFRQ8diiaq0/tQtlJQr4dfUGgGejYSOQw3Eyx0aw9FSigx5MfY9uAVMRCQUFktUqdzCUmx/MMl2Rp/mEIlEAieihkJqIMHkB7ff1py4BYWSswWISDgslqhSm88koaBUgTbOlni+tYPQcaiBGdWlKaxNDZF4rwB/xaQLHYeIGjAWS/RYBSXl2HQ6CQAwvY8nR5Wo3plJDTAuwA0A8H/HEsBnUYhIKCyW6LF+ikiBrKgM7nZmGNDOWeg41ECN7+YGUyMJrqXLcfzGXaHjEFEDxWKJHlFarsSGU+rFTKc85wGJmKNKJAwbMyOM6tIUAPB/YQkCpyGihorFEj3it+hUpMuKYW8hxUt+jYWOQw3c5J4eMJSIEJGYg8jkHKHjEFEDxGKJKlAqVVhz4hYAYGIPdxgbSgRORA2dk5UxhndoAkA9d4mIqL6xWKIK/o7NRHxWPiykBnjdv6nQcYgAAFN7eUIsAkLjsnA9I0/oOETUwLBYIg2VSoXVx9V/cx8T0AyWxoYCJyJS+/eDBmsfjHwSEdUXFkukcT7pPqJScmFkIMaE7m5CxyGqYMpz6iaV6jl1RQKnIaKGhMUSaawKiwcADO/QBA4WxgKnIarIx9UaXT1sUa5UYeODpzWJiOoDiyUCAMSmy3Hs+l2IRcDU57jKO2mnqb3UC+zuPKfuA0ZEVB9YLBEAYN2DeSAD2jnDzc5M4DREj9e7pT1aOVqgoFSBHeeShY5DRA0EiyVCWm4RDlxKAwBM7cVRJdJeIpFIM3dp0+kklJQrBE5ERA0BiyXC5jNJKFeq4O9ui/ZNrIWOQ1SlwT4ucLYyxt28Euy/mCp0HCJqAFgsNXDy4jLsPJcCgKNKpBuMDMR4s7s7AGDNiVtQKrnALhHVLRZLDdyuiBTkl5SjuYM5erd0EDoOUbWM7OIKC2MD3LpbgL9jM4WOQ0R6jsVSA1ZarsTGU0kAgMk93SHmgrmkIyyMDTGmazMAbFJJRHWPxVIDdvByGjLkxbAzl2IYF8wlHTO+mxsMJSJcSL6Piyn3hY5DRHqMxVIDpVKpNH8jn9DdDVIDLphLusXR0hhDfNRF/vqTbFJJRHWHxVIDdSr+HuIy8mBqJMFoLphLOmpST/VE779i0nE7p1DgNESkr1gsNVAPR5Ve6+QKa1MjgdMQ1UwbZ0v0bGEHpQrYeJqjS0RUN1gsNUCx6XKcvHkPYhEwsYe70HGInsnknuqWF7vP34askEugEFHtY7HUAG14sAjpgHbOcLU1FTgN0bPp2cIOrZ0sUFiqwM6IFKHjEJEeYrHUwGTJi/FbtLrr8cSeHFUi3ScSiTQjpJvPJKK0XClwIiLSNyyWGphtZ5NRplChQ1NrdGhqI3QcoloxxNcF9hZSZMpLcPBymtBxiEjPsFhqQIrLFNh+Vr1S+6SeXNqE9IfUQILx3dwAAOtOJkKl4hIoRFR7WCw1IL9GpeJ+YRma2Jign5ej0HGIatVo/6YwMZQgNl2O8IRsoeMQkR5hsdRAKJUqbDj1sAmlOwwk/EdP+sXa1AivdmoC4J+HGIiIaoPOfWOuXLkSbm5uMDY2hr+/PyIiIio9dt26dejZsydsbGxgY2ODwMDAR44fP348RCJRha1///51/Tbq3fEbd5FwtwAWUgO89uALhUjfTOiunugdGpeFW3fzBU5DRPpCp4ql3bt3Y86cOViwYAGioqLg4+ODoKAgZGVlPfb4sLAwjBo1CseOHUN4eDhcXV3Rr18/pKamVjiuf//+SE9P12w//fRTfbyderX+waiSerV2Q4HTENUNdzsz9G3tAADYdDpJ2DBEpDd0qlhaunQpJk+ejAkTJsDLywurV6+GqakpNm7c+Njjd+zYgbfeegu+vr5o3bo11q9fD6VSidDQ0ArHSaVSODk5aTYbG/16Suxamhyn47MhEYsw7sEkWCJ99bCNwM+Rd5BbWCpwGiLSBzpTLJWWliIyMhKBgYGafWKxGIGBgQgPD6/WNQoLC1FWVgZbW9sK+8PCwuDg4IBWrVph2rRpyM6uenJoSUkJ5HJ5hU2b/dOE0glNbNiEkvRbgGcjtHayQFGZAj9F3BY6DhHpAZ0plu7duweFQgFHx4pPcTk6OiIjI6Na13j//ffh4uJSoeDq378/tm7ditDQUHzzzTc4fvw4BgwYAIVCUel1Fi1aBCsrK83m6upaszdVD7LyivH7JXXfGS5tQg3Bv5tUbjmThDIFm1QS0bPRmWLpWX399dfYtWsX9u3bB2NjY83+kSNHYsiQIfD29sawYcNw8OBBnD9/HmFhYZVeKzg4GDKZTLPdvq29f3vdcTYFpQol/Jpaw49NKKmBGOLrAjtzKTLkxfjzSrrQcYhIx+lMsWRnZweJRILMzMwK+zMzM+Hk5FTluYsXL8bXX3+Nw4cPo3379lUe6+HhATs7O8THx1d6jFQqhaWlZYVNGxWXKbDjnLoJJUeVqCGRGkjwRtdmAICNp9ikkoiejc4US0ZGRujYsWOFydkPJ2sHBARUet63336LhQsXIiQkBJ06dXri77lz5w6ys7Ph7OxcK7mF9PulNNzLL4WLlTH6t626oCTSN6O7NoWRgRiX7sgQlXJf6DhEpMN0plgCgDlz5mDdunXYsmULYmNjMW3aNBQUFGDChAkAgLFjxyI4OFhz/DfffINPPvkEGzduhJubGzIyMpCRkYH8fHX/lfz8fLz33ns4e/YskpKSEBoaiqFDh6J58+YICgoS5D3WFpVKhY0PHp0e282NTSipwbEzl+Il38YA2KSSiJ6NTn2DjhgxAosXL8b8+fPh6+uL6OhohISEaCZ9p6SkID39n/kJq1atQmlpKV555RU4OztrtsWLFwMAJBIJLl++jCFDhqBly5aYOHEiOnbsiJMnT0IqlQryHmtL+K1sxKbLYWIowcjO2jsBnaguvfng9nNITAbu3C8UOA0R6SqRijfzn5lcLoeVlRVkMpnWzF+atOUC/o7NxJiuTfHFMG+h4xAJZvT6szgdn42pz3kgeGAboeMQkRap7ve3To0sUfUk3StAaJx6IvzD5R+IGqoJ3dT/DfwUkYLC0nKB0xCRLmKxpIc2n0mCSgX0aWUPT3tzoeMQCer51g5o1sgU8uJy/BKV+uQTiIj+g8WSnpEXl2HvBXXfpzfZLoAIYrEI4x8s87P5dCKUSs48IKKnw2JJz+w5fxsFpQq0cDBHj+Z2Qsch0gqvdGwCc6kBEu4W4MTNu0LHISIdw2JJjyiUKmwNVzehnNDdHSKRSOBERNrBwtgQr3VSPxW66UFLDSKi6mKxpEeOxmUhJacQViaGeMmvsdBxiLTK+G5uEImA4zfuIj4rX+g4RKRDWCzpkU2n1Y33RnZxhYmRROA0RNqlaSNT9G2t7sm2+QybVBJR9bFY0hNxGXKcSciGWASMDXATOg6RVnqzhxsA4JfIVMgKy4QNQ0Q6g8WSnthyJgkAENTWCY2tTYQNQ6SlAjwaobWTBYrKFNh9IUXoOESkI1gs6YH7BaX49UH/GDahJKqcSCTChO5uAIAtZ5KhYBsBIqoGFkt64KfzKSgpV6KtiyU6u9kIHYdIqw31bQxrU0Ok5hbh79hMoeMQkQ5gsaTjyhVKbHvQLkD9tA/bBRBVxdhQglFdmgL456EIIqKqsFjScYeuZiJdVoxGZkYY7OMidBwinfBG12aQiEU4eysHselyoeMQkZZjsaTjHj4CPdq/KYwN2S6AqDpcrE3Qv60TgH8ejiAiqgyLJR0WkyrD+aT7MBCLMLprM6HjEOmU8Q8meu+7mIr7BaXChiEircZiSYdtfvA34oHeznC0NBY2DJGO6dTMBm1dLFFSrsRP59lGgIgqx2JJR93LL8GB6DQA//wNmYiqT91GQN1qY1t4MsoVSoETEZG2YrGko3ZFpKBUoYRPEyv4uVoLHYdIJ73Y3hmNzIyQLivG4WtsI0BEj8diSQeVKZTYflZ922B8d7YLIKopY0MJXvdnGwEiqprB056gVCpx/PhxnDx5EsnJySgsLIS9vT38/PwQGBgIV1fXushJ/3LoagYy5MWwM5dioLez0HGIdNqYrs2wKiwB55PuIyZVhnaNrYSORERaptojS0VFRfjiiy/g6uqKgQMH4q+//kJubi4kEgni4+OxYMECuLu7Y+DAgTh79mxdZm7wNp9OAqBuFyA1YLsAomfhaGmMAQ/+0sE2AkT0ONUullq2bInLly9j3bp1kMvlCA8Pxy+//ILt27fjzz//REpKChISEtCzZ0+MHDkS69atq8vcDdaVOzJcSL4PQ4kIox/cPiCiZzO+mxsA4LdLachhGwEi+o9qF0uHDx/Gnj17MHDgQBgaGj72mGbNmiE4OBg3b97E888/X2sh6R//bhfgwHYBRLWiQ1NreDe2Qmm5Ej9FsI0AEVVU7WKpTZs21b6ooaEhPD09axSIKncvvwS/X3rQLuDB34SJ6NmJRCLNf1Pbz7KNABFVVKOn4T799FMolY/+YSKTyTBq1KhnDkWPV6FdQFMboeMQ6ZUXfdhGgIger0bF0oYNG9CjRw/cunVLsy8sLAze3t5ISEiotXD0jzKFEtvOJgNgE0qiuiA1+KeNwGZO9Caif6lRsXT58mU0adIEvr6+WLduHd577z3069cPb7zxBs6cOVPbGQnqdgGZ8hK2CyCqQ6P9m8FALEJEYg6upcmFjkNEWuKp+ywBgI2NDfbs2YMPP/wQU6dOhYGBAf766y/07du3tvPRAw/bBbzOdgFEdcbJyhj92znh4OV0bDmThG9eaS90JCLSAjXu4L1ixQr88MMPGDVqFDw8PPD222/j0qVLtZmNHohJVbcLMBCLMIbtAojq1IQHt7n3R6fiPtsIEBFqWCz1798fn332GbZs2YIdO3bg4sWLeO6559C1a1d8++23tZ2xwWO7AKL606GpDbwbW6GkXImfzrONABHVsFhSKBS4fPkyXnnlFQCAiYkJVq1ahZ9//hnff/99rQZs6LLzS3DgYbsATuwmqnMikQjjHrYRCGcbASKqYbF05MgRuLi4PLJ/0KBBuHLlyjOHqsrKlSvh5uYGY2Nj+Pv7IyIiosrj9+7di9atW8PY2Bje3t74888/K7yuUqkwf/58ODs7w8TEBIGBgbh582ZdvoWnsuv8bZSWK9G+iRX8XK2FjkPUILzY3hm2ZkZIkxXj71i2ESBq6KpdLKlUqmodZ2dnV+MwT7J7927MmTMHCxYsQFRUFHx8fBAUFISsrKzHHn/mzBmMGjUKEydOxMWLFzFs2DAMGzYMMTExmmO+/fZbLF++HKtXr8a5c+dgZmaGoKAgFBcX19n7qK5yhRLbH7YL6OYGkUgkcCKihsHYUILXu6jnB2568HAFETVc1S6W2rZti127dqG0tOoJjzdv3sS0adPw9ddfP3O4/1q6dCkmT56MCRMmwMvLC6tXr4apqSk2btz42ON/+OEH9O/fH++99x7atGmDhQsXokOHDvjxxx8BqAvAZcuW4eOPP8bQoUPRvn17bN26FWlpadi/f3+t539ah69lIl1WDDtzIwxqz3YBRPVpdNemkIhFOJeYg9h0thEgEsqVOzLB12ysdrG0YsUKLF68GE5OThgxYgS+++477NixA7/88gvWr1+POXPmoEuXLvD19YWlpSWmTZtWq0FLS0sRGRmJwMDAf8KLxQgMDER4ePhjzwkPD69wPAAEBQVpjk9MTERGRkaFY6ysrODv71/pNQGgpKQEcrm8wlYXHrYLGNWF7QKI6puzlQn6t3UCAGwNTxI2DFEDpVSqMGv3RXRdFIrT8fcEy1HtPkt9+/bFhQsXcOrUKezevRs7duxAcnIyioqKYGdnBz8/P4wdOxajR4+GjU3tL8Vx7949KBQKODo6Vtjv6OiIuLi4x56TkZHx2OMzMjI0rz/cV9kxj7No0SJ89tlnT/0enkZhaTkgAgzEIoz2b1anv4uIHm98dzf8cSUd+y6m4v3+rWFtaiR0JKIG5WT8Pdy6WwBzqQF8BJy3+9RNKXv06IEePXrURRadERwcjDlz5mh+lsvlcHV1rdXfYWpkgD1TA5CaWwQnK7YLIBJCp2Y28HK2xLV0OXafv42pvbhAOFF92vKgdc6rnZrAXFqjPtq1osZNKeubnZ0dJBIJMjMrPpmSmZkJJyenx57j5ORU5fEP//dprgkAUqkUlpaWFba60tjapM6uTURVE4lEGP+gjcDW8GQolNV70IWInl3SvQIcu65+gGtsgJugWWpcLIWGhuLDDz/EpEmT8Oabb1bY6oKRkRE6duyI0NBQzT6lUonQ0FAEBAQ89pyAgIAKxwPqtgcPj3d3d4eTk1OFY+RyOc6dO1fpNYmoYRni6wIbU0Ok5haxjQBRPdoangyVCujdyh7udmaCZqlRsfTZZ5+hX79+CA0Nxb1793D//v0KW12ZM2cO1q1bhy1btiA2NhbTpk1DQUEBJkyYAAAYO3YsgoODNcfPmjULISEhWLJkCeLi4vDpp5/iwoULmDFjBgD13xpnz56NL774AgcOHMCVK1cwduxYuLi4YNiwYXX2PohIdxgbSjDyQRuBzWwjQFQvCkrKsffCbQDQjO4KqUY3AFevXo3NmzfjjTfeqO08VRoxYgTu3r2L+fPnIyMjA76+vggJCdFM0E5JSYFY/E/9161bN+zcuRMff/wxPvzwQ7Ro0QL79+9Hu3btNMfMmzcPBQUFmDJlCnJzc9GjRw+EhITA2JjzhIhIbUzXZlhzPAHht7JxPSMPrZwshI5EpNd+jbqDvJJyuNuZ4bkW9kLHgUhV3W6T/9KoUSNERETA05OTHQH1rTsrKyvIZLI6nb9ERMKZtj0Sf8Vk4HX/pvjqJW+h4xDpLZVKhcClx5FwtwALBnthQnf3Ovtd1f3+rtFtuEmTJmHnzp01DkdEpGserhe3LyoVssIyYcMQ6bFT8feQcLcAZkYSvNKxidBxANTwNlxxcTHWrl2Lv//+G+3bt4ehoWGF15cuXVor4YiItIW/uy1aO1kgLiMPey7cxuTnPISORKSXHrYLeKVjE1gYG1Z9cD2pUbF0+fJl+Pr6AkCFddYAcP0yItJLIpEIE7q74f1frmBLeBLe7OEOiZh/3hHVppTsQoTGPWgXoAUTux+qUbF07Nix2s5BRKT1hvo2xqK/4nDnfhFCYzPRr23l/diI6OltDU+CSgX0bGEHT3tzoeNo6ExTSiIioRkbSjCys7qNwBauF0dUqwpKyrH7QbuAN+twUndNVHtk6eWXX8bmzZthaWmJl19+ucpjf/3112cORkSkjcZ0bYq1JxJwOj4bNzLz0NKRbQSIasOvF1ORV1wOt0am6NVS+HYB/1btkSUrKyvNfCQrK6sqNyIifdXExhT9vNS33x5ORCWiZ6NSqTT/PY3r5gaxls0HrFGfpaKiIiiVSpiZqduPJyUlYf/+/WjTpg2CgoJqPaS2Y58loobl7K1sjFx7FiaGEpwN7gsrU+14YodIV526eQ9jNpyDmZEEZz/sW29PwdVpn6WhQ4di27ZtAIDc3Fx07doVS5YswbBhw7Bq1aqaJSYi0hEP2wgUlSmw58EcCyKquc1nEgFoV7uAf6tRsRQVFYWePXsCAH7++Wc4OjoiOTkZW7duxfLly2s1IBGRthGJRJr1qraEJ0GhfOoBeiJ6QFvbBfxbjYqlwsJCWFioJzUePnwYL7/8MsRiMbp27Yrk5ORaDUhEpI2G+jaGtamhpo0AEdXMw3YBvVraa1W7gH+rUbHUvHlz7N+/H7dv38ahQ4fQr18/AEBWVhbn7BBRg2Bi9E8bgc2c6E1UI/9uFzC+u5uwYapQo2Jp/vz5ePfdd+Hm5gZ/f38EBAQAUI8y+fn51WpAIiJt9UZAM0jEIpxJyEZchlzoOEQ652G7AHc7M/RqoV3tAv6tRsXSK6+8gpSUFFy4cAEhISGa/X379sX3339fa+GIiLRZY2sTBLV1BMA2AkRPq0K7gIBmWtcu4N9q3MHbyckJfn5+EIv/uUSXLl3QunXrWglGRKQLxndTdxredzEV9wtKBU5DpDtO3ryH+Kx8mEsNMLxjE6HjVInLnRARPYPObjbwcrZEcZkSu86zjQBRdT2c66et7QL+jcUSEdEzEIlEmPBgYuq28CSUK5TCBiLSAYn3CnA0LgsiETRtOLQZiyUiomc02McFtmZGSJMV48g1thEgepKHc5Web+UANzszYcNUA4slIqJnZGwowetd1G0ENnGiN1GV5MVl2KsD7QL+jcUSEVEtGNO1GQzEIkQk5iAmVSZ0HCKttffCHRSUKtDCwRw9mtsJHadaWCwREdUCJytjDPB2BgBsOp0kbBgiLaVQ/tMuYHx3N4hE2tsu4N9YLBER1ZKHE71/v5SGu3klwoYh0kLH4rKQklMIS2MDvOTXWOg41cZiiYiolnRoagNfV2uUKpTYeS5F6DhEWmfTmUQAwKguTWFqZCBwmupjsUREVIs0bQTOJqOkXCFsGCItcj0jD6fjsyEWqZcK0iUsloiIatFAb2c4WkpxL78Ef1xOFzoOkdbY/GBUKaitE5rYmAqc5umwWCIiqkWGEjHGBrgBADaeToRKpRI2EJEWyCkoxa9RqQB0ownlf7FYIiKqZaO6NIXUQIyYVDkuJN8XOg6R4H6KSEFJuRLtGluii7ut0HGeGoslIqJaZmtmpHnSZ9PpRIHTEAmrtFyJreFJAIA3u7vrTLuAf2OxRERUBx52Jg6JycCd+4XChiES0F8x6ciUl8DeQooX27sIHadGWCwREdWB1k6W6N68EZQqYFt4stBxiAShUqmw4ZR6dHVs12YwMtDNskM3UxMR6YA3u7sDAHZGpKCgpFzgNET1LyrlPi7fkcHIQIzX/ZsKHafGdKZYysnJwejRo2FpaQlra2tMnDgR+fn5VR4/c+ZMtGrVCiYmJmjatCnefvttyGQV12wSiUSPbLt27arrt0NEDUCfVg5wtzNDXnE5fo68I3Qconq38VQSAOAl38ZoZC4VNswz0JliafTo0bh69SqOHDmCgwcP4sSJE5gyZUqlx6elpSEtLQ2LFy9GTEwMNm/ejJCQEEycOPGRYzdt2oT09HTNNmzYsDp8J0TUUIjFIk2Tyk2nE6FUso0ANRx37hfirxh1r7EJPdyEDfOMdKLXeGxsLEJCQnD+/Hl06tQJALBixQoMHDgQixcvhovLoxPG2rVrh19++UXzs6enJ7788kuMGTMG5eXlMDD4561bW1vDycmp7t8IETU4wzs0weJD15GUXYjQuCy84OUodCSierEtPBlKFdC9eSO0drIUOs4z0YmRpfDwcFhbW2sKJQAIDAyEWCzGuXPnqn0dmUwGS0vLCoUSAEyfPh12dnbo0qULNm7c+MQmciUlJZDL5RU2IqLHMZMaYNSDuRobTt0SOA1R/SgoKcdPEer1ER/O3dNlOlEsZWRkwMHBocI+AwMD2NraIiMjo1rXuHfvHhYuXPjIrbvPP/8ce/bswZEjRzB8+HC89dZbWLFiRZXXWrRoEaysrDSbq6vr070hImpQxgW4QSIW4eytHFxNkz35BCId93PkHciLy+FuZ4Y+rRyefIKWE7RY+uCDDx47wfrfW1xc3DP/HrlcjkGDBsHLywuffvpphdc++eQTdO/eHX5+fnj//fcxb948fPfdd1VeLzg4GDKZTLPdvn37mTMSkf5ysTbBQG9nANA8Rk2krxRKFTY+aMb6Znc3iMW614TyvwSdszR37lyMHz++ymM8PDzg5OSErKysCvvLy8uRk5PzxLlGeXl56N+/PywsLLBv3z4YGhpWeby/vz8WLlyIkpISSKWPn7kvlUorfY2I6HEm9nDH75fS8PulNHzQvzUcLI2FjkRUJ/6OzURydiGsTAwxvGMToePUCkGLJXt7e9jb2z/xuICAAOTm5iIyMhIdO3YEABw9ehRKpRL+/v6VnieXyxEUFASpVIoDBw7A2PjJfzhFR0fDxsaGxRAR1SpfV2t0bGaDyOT72HY2GXP7tRI6ElGd2HBSPao02r8pTI104jmyJ9KJOUtt2rRB//79MXnyZEREROD06dOYMWMGRo4cqXkSLjU1Fa1bt0ZERAQAdaHUr18/FBQUYMOGDZDL5cjIyEBGRgYUCgUA4Pfff8f69esRExOD+Ph4rFq1Cl999RVmzpwp2HslIv31cKLr9rPJKC5TCJyGqPZdup2LiKQcGEpEGNfNTeg4tUZnSr4dO3ZgxowZ6Nu3L8RiMYYPH47ly5drXi8rK8P169dRWKhegykqKkrzpFzz5s0rXCsxMRFubm4wNDTEypUr8c4770ClUqF58+ZYunQpJk+eXH9vjIgajKC2jmhsbYLU3CL8GpWq0x2NiR7n4Zy8we1d4KhHt5pFqic9J09PJJfLYWVlpWlNQERUmfUnb+GLP2LhYW+Gv9/ppReTX4kAIC23CD2/PQaFUoWDM3ugXWMroSM9UXW/v3XiNhwRkb4Y0dkVFlID3LpbgKNxWU8+gUhHbDmTBIVShQCPRjpRKD0NFktERPXIwthQ06Ry3Uk2qST9kF9Sjp0PmlBO6qn7TSj/i8USEVE9G9/NDQZiEc4l5uDKHTapJN2398Jt5BWXw0NPmlD+F4slIqJ65mJtghfbq5tUcnSJdF25QqmZ2D2hh7tezsNjsUREJIBJPT0AAH9cSUdqbpHAaYhqLuRqBu7cL4KtmRFe6aAfTSj/i8USEZEA2jW2QoBHIyiUKmw+zSVQSDepVCqsPaEeHX2jazOYGEkETlQ3WCwREQlk8nPqibC7Im4jr7hM4DRET+9cYg4u35FBaiDG2IBmQsepMyyWiIgE0rulAzztzZBXUo7d57kgN+medQ9GlV7p2ASNzPV3mTAWS0REAhGLRZq5SxtPJaJMoRQ4EVH13czMQ2hcFkQi9ULR+ozFEhGRgF7yaww7cynSZMU4eDlN6DhE1bb+wYK5L7RxhIe9ucBp6haLJSIiARkbSjChuxsAYM3xW+AKVKQLsvKKse9iKgBgai8PgdPUPRZLREQCG+PfDKZGEsRl5OH4jbtCxyF6oi1nklCqUKJDU2t0bGYrdJw6x2KJiEhgVqaGGNVFvQTKmuNsUknaraCkHNvPqpc2mfKc/o8qASyWiIi0wps93GEgFiH8VjYu38kVOg5RpXafvw1ZURncGpniBS8noePUCxZLRERaoLG1CQb7uAAA1pzg6BJppzKFEusfLNEz+TkPSPRwaZPHYbFERKQlHt7S+OtKOpKzCwROQ/SoA9FpSJMVw85ciuF6urTJ47BYIiLSEm2cLdGrpT2Uqn8eyybSFkqlCmtOJAAA3uzhBmND/Vza5HFYLBERaZGHj2HvuXAb2fklAqch+sfRuCzcyMyHudQAo/31d2mTx2GxRESkRQI8GqF9EyuUlCux+UyS0HGINFYfV48qje7aFFYmhgKnqV8sloiItIhIJMK0Xp4A1L1suMAuaYMLSTm4kHwfRhIxJnbX76VNHofFEhGRlglq6wQPezPIi8ux81yK0HGINKNKL3doDAdLY4HT1D8WS0REWkYsFuF/D0aX1p9KRHGZQuBE1JBdz8jD37HqBXMbShPK/2KxRESkhYb5NoazlTHu5pXgl6g7QsehBuzhE3D92zrp/YK5lWGxRESkhYwMxJjcU/23+DXHb6FcoRQ4ETVEt3MK8Vt0GgBoRjsbIhZLRERaamQXV9iaGSElpxB/XEkXOg41QKuPJ0ChVKFnCzv4uFoLHUcwLJaIiLSUqZEBJnRzAwCsCkuASqUSNhA1KJnyYuy9oL4FPL1Pc4HTCIvFEhGRFhsb4AYzIwniMvJwNC5L6DjUgKw7cQulCiU6NbOBv7ut0HEExWKJiEiLWZkaYkxXdbfklcfiObpE9SKnoBQ7HrStmP58c4hEDWPB3MqwWCIi0nITe7jDyECMqJRchCdkCx2HGoBNpxNRVKZAu8aW6N3SXug4gmOxRESk5RwsjTGqsysAYPnRmwKnIX0nLy7TLLUzow9HlQAWS0REOmFqL08YSkQ4eysHEYk5QschPbYtPBl5xeVo4WCOfl5OQsfRCjpTLOXk5GD06NGwtLSEtbU1Jk6ciPz8/CrP6d27N0QiUYXtf//7X4VjUlJSMGjQIJiamsLBwQHvvfceysvL6/KtEBE9NRdrE7zSUT26tIKjS1RHikoV2HgqEQDwVh9PiMUcVQJ0qFgaPXo0rl69iiNHjuDgwYM4ceIEpkyZ8sTzJk+ejPT0dM327bffal5TKBQYNGgQSktLcebMGWzZsgWbN2/G/Pnz6/KtEBHVyFu9PSERi3Dy5j1cTLkvdBzSQzvOJSO7oBRNbU0xuL2L0HG0hk4US7GxsQgJCcH69evh7++PHj16YMWKFdi1axfS0tKqPNfU1BROTk6azdLSUvPa4cOHce3aNWzfvh2+vr4YMGAAFi5ciJUrV6K0tLSu3xYR0VNxtTXFS36NAQArjsYLnIb0TXGZAmtO3AKgLswNJDpRItQLnfgkwsPDYW1tjU6dOmn2BQYGQiwW49y5c1Weu2PHDtjZ2aFdu3YIDg5GYWFhhet6e3vD0dFRsy8oKAhyuRxXr16t9JolJSWQy+UVNiKi+jC9T3OIRcDRuCzEpMqEjkN6ZOe5FNzNK0FjaxO83KGJ0HG0ik4USxkZGXBwcKiwz8DAALa2tsjIyKj0vNdffx3bt2/HsWPHEBwcjG3btmHMmDEVrvvvQgmA5ueqrrto0SJYWVlpNldX15q8LSKip+ZuZ4bBPurbI5y7RLWluEyBVcfVC+bOeL45jAx0ojyoN4J+Gh988MEjE7D/u8XFxdX4+lOmTEFQUBC8vb0xevRobN26Ffv27UNCQsIz5Q4ODoZMJtNst2/ffqbrERE9DfXj3MChq5mITefINj27nyL+GVUazlGlRxgI+cvnzp2L8ePHV3mMh4cHnJyckJVVsc1/eXk5cnJy4ORU/cca/f39AQDx8fHw9PSEk5MTIiIiKhyTmZkJAFVeVyqVQiqVVvv3EhHVphaOFhjYzhl/XEnH8tCbWDWmo9CRSIcVlymwKkw9iDC9D0eVHkfQYsne3h729k/uDBoQEIDc3FxERkaiY0f1HwpHjx6FUqnUFEDVER0dDQBwdnbWXPfLL79EVlaW5jbfkSNHYGlpCS8vr6d8N0RE9eftvi3wZ0w6/orJwNU0Gdq6WAkdiXTUrogUZD0YVXqlI0eVHkcnysc2bdqgf//+mDx5MiIiInD69GnMmDEDI0eOhIuL+t59amoqWrdurRkpSkhIwMKFCxEZGYmkpCQcOHAAY8eOxXPPPYf27dsDAPr16wcvLy+88cYbuHTpEg4dOoSPP/4Y06dP58gREWm1Vk4WePHBo93L/ubcJaqZf89VequPJ0eVKqEzn8qOHTvQunVr9O3bFwMHDkSPHj2wdu1azetlZWW4fv265mk3IyMj/P333+jXrx9at26NuXPnYvjw4fj9998150gkEhw8eBASiQQBAQEYM2YMxo4di88//7ze3x8R0dOa1bcFxCLgyLVMXLnDJ+Po6e0+fxuZ8hK4WBnj1Y58WKkyIhWXsH5mcrkcVlZWkMlkFfo4ERHVtXd2R2PfxVQ839oBG8d3FjoO6ZDiMgV6fXcMmfISfDGsHcZ0bSZ0pHpX3e9vnRlZIiKiR73dtwUkYhGOxmWxqzc9le1nk5EpV89VerUT5ypVhcUSEZEOc7cz03T1/p5zl6iaCkrK8X8PnoB7u29zSA0kAifSbiyWiIh03NvPq0eXTty4iwtJOULHIR2w6XQicgpK4W5nxr5K1cBiiYhIxzVtZIpXHzzyvfTIDYHTkLaTFZZp1oCbHdiCa8BVAz8hIiI9MOP55jCUiHAmIRun4+8JHYe02NqTCcgrLkcrRwsMftB+gqrGYomISA80sTHFaH/100zfhsSBDzrT49zLL8Gm00kAgDn9WkIsFgkbSEewWCIi0hPT+zSHqZEEl+7IcOhq5YuBU8O1KiwBhaUK+DSxQj8vxyefQABYLBER6Q17Cykm9XAHAHx36DrKFUqBE5E2SZcVYdvZZADA3H6tIBJxVKm6WCwREemRSc95wNrUEAl3C/DrxVSh45AW+eHvmygtV6KLuy16trATOo5OYbFERKRHLI0NMb13cwDAsiM3UFymEDgRaYObmXnYc+E2AOD9/hxVelosloiI9MwbAc3gbGWMNFkxtj+47UIN2zch16FUAf28HNGxma3QcXQOiyUiIj1jbCjB7MAWAICVx+KRV1wmcCIS0vmkHPwdmwmJWIR5/VsLHUcnsVgiItJDwzs0gYe9Ge4XlmHtgwaE1PCoVCp89WcsAGBEZ1c0dzAXOJFuYrFERKSHDCRizAtqBQBYd/IW0mVFAiciIRy6moGLKbkwMZRgdt8WQsfRWSyWiIj0VFBbJ3R2s0FxmRKLD3EZlIamTKHEtyHXAQCTe7rDwdJY4ES6i8USEZGeEolE+GiQFwDg14t3EJMqEzgR1afd52/j1r0CNDIzwpRenkLH0WksloiI9JivqzWG+LhApQK++jOWy6A0EPkl5Vj2900AwNt9W8BcaiBwIt3GYomISM/N698KRgZinEnIxtG4LKHjUD1YeSwe9/JL4G5nhlFdmgodR+exWCIi0nNNbEzxZnf1Mihf/RmLMi6DotdSsgux4WQiAOCjgW1gZMCv+mfFT5CIqAF4q48nbM2MkHC3ALsiUoSOQ3Vo0V+xKFUo0aO5Hfq2cRA6jl5gsURE1ABYGhtqGlV+//dNyIrYqFIfnb2Vjb9iMiAWAZ+86MVlTWoJiyUiogZiVJemaO5gjpyCUiz7m60E9I1CqcJnv18DAIz2b4ZWThYCJ9IfLJaIiBoIQ4kYCwarWwlsDU/G9Yw8gRNRbdpz4TZi0+WwNDbAOy+0FDqOXmGxRETUgPRsYY+gto5QKFX49MBVthLQE/LiMiw+pG5AOSuwJWzNjAROpF9YLBERNTAfD/KC1ECM8FvZ+PNKhtBxqBasCL2J7IJSeNibYWxAM6Hj6B0WS0REDYyrrSn+96Cj8xd/XENhabnAiehZXM/Iw8bTSQDUk7oNJfxqr238RImIGqBpvT3RxMYE6bJi/N+xBKHjUA2pVCp8vP8KFEoV+rd1Qp9WbBVQF1gsERE1QMaGEnz8YN24tSduITm7QOBEVBO/RKXifNJ9mBpJMP/B5H2qfSyWiIgaqKC2jujZwg6lCiUWcLK3zsktLMWiP2MBALP6toCLtYnAifQXiyUiogZKJBLh0yFtYSQRI+z6XRy8nC50JHoK3x26juyCUrRwMMebPdyFjqPXWCwRETVgnvbmeKuPerL3Z79fg6yQnb11QfTtXOx8sGzNwmHtOKm7junMp5uTk4PRo0fD0tIS1tbWmDhxIvLz8ys9PikpCSKR6LHb3r17Ncc97vVdu3bVx1siItIK03p7wtPeDPfyS/B1SJzQcegJFEr1pG6VCnjZrzG6ejQSOpLe05liafTo0bh69SqOHDmCgwcP4sSJE5gyZUqlx7u6uiI9Pb3C9tlnn8Hc3BwDBgyocOymTZsqHDds2LA6fjdERNpDaiDBVy95AwB+ikjB+aQcgRNRVTaeSkRMqhwWxgYIHthG6DgNgk4US7GxsQgJCcH69evh7++PHj16YMWKFdi1axfS0tIee45EIoGTk1OFbd++fXjttddgbm5e4Vhra+sKxxkbG9fH2yIi0hr+Ho0wsrMrAODDX6+gtFwpcCJ6nKR7BVh8WN2p+6OBbWBvIRU4UcOgE8VSeHg4rK2t0alTJ82+wMBAiMVinDt3rlrXiIyMRHR0NCZOnPjIa9OnT4ednR26dOmCjRs3PvGJkJKSEsjl8gobEZGuCx7QBnbmRriZlY81x9l7SdsolSq8/8tllJQr0b15I4x4UNxS3dOJYikjIwMODhUbbRkYGMDW1hYZGdVr1b9hwwa0adMG3bp1q7D/888/x549e3DkyBEMHz4cb731FlasWFHltRYtWgQrKyvN5urKf2GJSPdZmRrikxfVvXpWHItHfBYX2tUmOyNScC4xByaGEnz9cnuIRCKhIzUYghZLH3zwQaWTsB9ucXHPPtmwqKgIO3fufOyo0ieffILu3bvDz88P77//PubNm4fvvvuuyusFBwdDJpNpttu3bz9zRiIibTDExwV9WtmjtFyJuXsuoVzB23HaIC23CF//pf4+fC+oFVxtTQVO1LAYCPnL586di/Hjx1d5jIeHB5ycnJCVlVVhf3l5OXJycuDk5PTE3/Pzzz+jsLAQY8eOfeKx/v7+WLhwIUpKSiCVPv5esFQqrfQ1IiJdJhKJsOjl9uj3/XFcuiPDmhO3ML1Pc6FjNWgqlQof7ruC/JJydGhqjXHd3ISO1OAIWizZ29vD3t7+iccFBAQgNzcXkZGR6NixIwDg6NGjUCqV8Pf3f+L5GzZswJAhQ6r1u6Kjo2FjY8NiiIgaLCcrY3w2tC3e2X0Jy/6+gT6tHODlYil0rAZr38VUhF2/CyOJGN++0h4SMW+/1TedmLPUpk0b9O/fH5MnT0ZERAROnz6NGTNmYOTIkXBxcQEApKamonXr1oiIiKhwbnx8PE6cOIFJkyY9ct3ff/8d69evR0xMDOLj47Fq1Sp89dVXmDlzZr28LyIibTXMtzH6eTmiTKHC3L2X+HScQO7cL8SCA1cBALMCW6C5g4XAiRomnSiWAGDHjh1o3bo1+vbti4EDB6JHjx5Yu3at5vWysjJcv34dhYWFFc7buHEjmjRpgn79+j1yTUNDQ6xcuRIBAQHw9fXFmjVrsHTpUixYsKDO3w8RkTYTiUT48iVv2JgaIjZdjhVHbwodqcFRKFWYs+cS8orL4dfUGlOf8xA6UoMlUnHlxGcml8thZWUFmUwGS0sOVROR/vjzSjre2hEFiViEX6d1g4+rtdCRGoxVYQn4JiQOZkYS/DmrJ5o1MhM6kt6p7ve3zowsERFR/Rvo7YzBPi5QKFWYvTsa+SXlQkdqEGJSZVh6RN18csGQtiyUBMZiiYiIqrRwaFs4Wxkj8V4B5v8WI3QcvVdUqsDbuy6iTKFC/7ZOeLVjE6EjNXgsloiIqErWpkb4YaQfxCLg16hU/BJ5R+hIeu2rP2Nx624BHCykWPSyN5tPagEWS0RE9ERd3G3xTmBLAMAnv8Ug4W6+wIn006GrGdh2NhkAsOQ1H9iYGQmciAAWS0REVE1v9WmObp6NUFiqwIydF1FcphA6kl5JvFeAd/dcAgBM7umOni2e3BuQ6geLJSIiqhaJWITvR/iikZkRYtPlWPRnrNCR9EZRqQLTtkcir6Qcnd1sMK9/a6Ej0b+wWCIiompztDTGktd8AABbwpNx4FKawIl0n0qlwie/xSAuIw925kb48fUOMJTw61mb8J8GERE9ld6tHDCttycAYN7PlxCTKhM4kW7bff42fo68A7EIWD7KD46WxkJHov9gsURERE/t3X6t0KulPYrLlJi6LRLZ+SVCR9JJMakyzH+wnMm7Qa3QzdNO4ET0OCyWiIjoqUnEIiwf6Qd3OzOk5hZh2o4olCm4ftzTyMorxtRtkSgtVyKwjQP+95yn0JGoEiyWiIioRqxMDbFubEeYSw0QkZiDhQevCR1JZxSVKjB5ywWk5hbBw84MS171hVjMfkraisUSERHVWHMHC3w/whcAsDU8GTvPpQgbSAcolSq8szsal+7IYGNqiI3jO8PK1FDoWFQFFktERPRMXvByxNwX/mlYeTQuU+BE2u2bkDiEXM2AkUSMtWM7wc2O675pOxZLRET0zGY83xwv+zWGQqnCWzuiEJVyX+hIWumniBSsOXELAPDtK+3R2c1W4ERUHSyWiIjomYlEInzzSnvNE3Jvbj6P+Kw8oWNplaNxmfh4v3oh4tmBLTDMr7HAiai6WCwREVGtMJSI8X+jO8DH1Rq5hWUYuyECGbJioWNphdPx9/C/7VFQKFV4ya8xZvVtIXQkegosloiIqNaYSQ2waXxneNibIU1WjHEbI5BbWCp0LEGdT8rBpC0XUFquxAtejvj2lfYQifjkmy5hsURERLXK1swIW9/sAgcLKa5n5uH1deeQU9AwC6ZLt3MxYdN5FJUp0KulPX583Y9Lmegg/hMjIqJa18TGFNsn+cPOXIpr6XKMXBuOu3kNq8v3tTQ5xm6MQH5JOQI8GmHNGx0hNZAIHYtqgMUSERHViZaOFtg1pSscLKS4kZmPkWvDkSlvGHOYolLu4/X1ZyErKkOHptZYP64TjA1ZKOkqFktERFRnmjuYY8/UALhYGSPhbgFeWxOO1NwioWPVqaNxmXh93VnkFpbB19Uam9/sAjOpgdCx6BmwWCIiojrlZmeG3VMD4GprguTsQry66gyupcmFjlUn9l64jclbI1FcpkSfVvbYOdkflsbszq3rWCwREVGdc7U1xe4pAZqn5F5ZfQaHr2YIHavWqFQqrApLwHs/X4ZCqcLwDk2wdmwnmBpxREkfsFgiIqJ64WJtgn3TuqNHczsUliowdXskVoUlQKVSCR3tmRSVKjDv58v4JiQOAPC/Xp5Y/Gp7PvWmR/hPkoiI6o2VqSE2TeiMN7o2g0qlXidt7t5LKC5TCB2tRhLvFeCl/zuNvZF3IBYBn7zohQ8GtGYfJT3DYomIiOqVoUSMhcPa4fOhbSERi/BrVCqGrTyN2HTdmsf015V0DF5xCnEZebAzN8L2Sf6Y2MNd6FhUB1gsERGRIMYGuGHLhC6wMzdCXEYehvx4CquPJ0Ch1O7bcoWl5fj0wFVM2xGF/JJydHGzxR9v90Q3Tzuho1EdEal0/WaxFpDL5bCysoJMJoOlpaXQcYiIdMq9/BIE/3oFR65lAgC6uNliyWs+cLU1FTjZo0JjMzH/t6ua9gdTe3ngvX6tYMD5STqput/fLJZqAYslIqJno1KpsPfCHXz2+1UUlCpgbCjG5J4emNrLE+Za0KMoQ1aMz36/ir9i1E/wNbY2wRcvtUOfVg4CJ6NnwWKpHrFYIiKqHSnZhXj350uISMwBANiZG2F2YEuM7OwqyOiNrLAMm88kYd3JW8gvKYdELMKknu6Y1bcF2wLoARZL9YjFEhFR7VGpVAiJycA3IXFIyi4EoO4EPq2XJwa1d66XZUPu5pVg/alb2B6ejIJS9ZN6fk2t8dVL3mjjzD/n9UV1v7915ibrl19+iW7dusHU1BTW1tbVOkelUmH+/PlwdnaGiYkJAgMDcfPmzQrH5OTkYPTo0bC0tIS1tTUmTpyI/Pz8OngHRERUHSKRCAO8nXH4nV74dLAXbEwNEZ+Vj7l7L8H/q1AsPHgNCXdr/89phVKFc7ey8eG+K+jxzVGsOX4LBaUKtHaywIpRfvjlf91YKDVQOjOytGDBAlhbW+POnTvYsGEDcnNzn3jON998g0WLFmHLli1wd3fHJ598gitXruDatWswNjYGAAwYMADp6elYs2YNysrKMGHCBHTu3Bk7d+6sdjaOLBER1R15cRm2hSdj57mUCuvKdWpmg54t7NG9eSP4uFrXqAlkabkSF1Pu488r6fgzJgN380o0r/m6WmNGn+bo28aBfZP0lN7ehtu8eTNmz579xGJJpVLBxcUFc+fOxbvvvgsAkMlkcHR0xObNmzFy5EjExsbCy8sL58+fR6dOnQAAISEhGDhwIO7cuQMXF5dqZWKxRERU9xRKFU7cuIsd55JxNC4L/+4wYGokQWc3W7R0NIezlQmcrYzhbG0CG1NDlJQrUVSqQHGZAoWlCiTczUdseh6upcsRn5WHMsU/F7I0NkC/tk54uUNjBHg0YpGk56r7/a23s9MSExORkZGBwMBAzT4rKyv4+/sjPDwcI0eORHh4OKytrTWFEgAEBgZCLBbj3LlzeOmllx577ZKSEpSU/PO3D7lctxqpERHpIolYhD6tHdCntQPScotw7HoWzsRnI/xWNnIKSnH8xl0cv3H3qa9rbWqIwDaOGOTtjO7N7WBkoDMzVKie6G2xlJGhfrzT0dGxwn5HR0fNaxkZGXBwqPjYp4GBAWxtbTXHPM6iRYvw2Wef1XJiIiKqLhdrE4z2b4bR/s2gVKpwPTMPEYk5uJ1TiHRZMdJlRUiXFUNWVAZjQwlMDCWQGophYihBExsTtHG2hJezJdo4W6KJjQlHkKhKghZLH3zwAb755psqj4mNjUXr1q3rKVH1BAcHY86cOZqf5XI5XF1dBUxERNRwicUitHlQ+BDVBUGLpblz52L8+PFVHuPh4VGjazs5OQEAMjMz4ezsrNmfmZkJX19fzTFZWVkVzisvL0dOTo7m/MeRSqWQSqU1ykVERES6RdBiyd7eHvb29nVybXd3dzg5OSE0NFRTHMnlcpw7dw7Tpk0DAAQEBCA3NxeRkZHo2LEjAODo0aNQKpXw9/evk1xERESkW3RmFltKSgqio6ORkpIChUKB6OhoREdHV+iJ1Lp1a+zbtw+Auk/H7Nmz8cUXX+DAgQO4cuUKxo4dCxcXFwwbNgwA0KZNG/Tv3x+TJ09GREQETp8+jRkzZmDkyJHVfhKOiIiI9JvOTPCeP38+tmzZovnZz88PAHDs2DH07t0bAHD9+nXIZDLNMfPmzUNBQQGmTJmC3Nxc9OjRAyEhIZoeSwCwY8cOzJgxA3379oVYLMbw4cOxfPny+nlTREREpPV0rs+SNmKfJSIiIt2jd8udEBEREQmBxRIRERFRFVgsEREREVWBxRIRERFRFVgsEREREVWBxRIRERFRFVgsEREREVWBxRIRERFRFVgsEREREVVBZ5Y70WYPm6DL5XKBkxAREVF1PfzeftJiJiyWakFeXh4AwNXVVeAkRERE9LTy8vJgZWVV6etcG64WKJVKpKWlwcLCAiKRqNauK5fL4erqitu3b3PNucfg51M1fj6V42dTNX4+VePnUzVd+nxUKhXy8vLg4uICsbjymUkcWaoFYrEYTZo0qbPrW1paav2/cELi51M1fj6V42dTNX4+VePnUzVd+XyqGlF6iBO8iYiIiKrAYomIiIioCiyWtJhUKsWCBQsglUqFjqKV+PlUjZ9P5fjZVI2fT9X4+VRNHz8fTvAmIiIiqgJHloiIiIiqwGKJiIiIqAosloiIiIiqwGKJiIiIqAoslrTYypUr4ebmBmNjY/j7+yMiIkLoSFrhxIkTGDx4MFxcXCASibB//36hI2mNRYsWoXPnzrCwsICDgwOGDRuG69evCx1La6xatQrt27fXNMsLCAjAX3/9JXQsrfX1119DJBJh9uzZQkfRCp9++ilEIlGFrXXr1kLH0hqpqakYM2YMGjVqBBMTE3h7e+PChQtCx6oVLJa01O7duzFnzhwsWLAAUVFR8PHxQVBQELKysoSOJriCggL4+Phg5cqVQkfROsePH8f06dNx9uxZHDlyBGVlZejXrx8KCgqEjqYVmjRpgq+//hqRkZG4cOECnn/+eQwdOhRXr14VOprWOX/+PNasWYP27dsLHUWrtG3bFunp6Zrt1KlTQkfSCvfv30f37t1haGiIv/76C9euXcOSJUtgY2MjdLRawdYBWsrf3x+dO3fGjz/+CEC9/pyrqytmzpyJDz74QOB02kMkEmHfvn0YNmyY0FG00t27d+Hg4IDjx4/jueeeEzqOVrK1tcV3332HiRMnCh1Fa+Tn56NDhw74v//7P3zxxRfw9fXFsmXLhI4luE8//RT79+9HdHS00FG0zgcffIDTp0/j5MmTQkepExxZ0kKlpaWIjIxEYGCgZp9YLEZgYCDCw8MFTEa6RiaTAVAXBFSRQqHArl27UFBQgICAAKHjaJXp06dj0KBBFf4MIrWbN2/CxcUFHh4eGD16NFJSUoSOpBUOHDiATp064dVXX4WDgwP8/Pywbt06oWPVGhZLWujevXtQKBRwdHSssN/R0REZGRkCpSJdo1QqMXv2bHTv3h3t2rUTOo7WuHLlCszNzSGVSvG///0P+/btg5eXl9CxtMauXbsQFRWFRYsWCR1F6/j7+2Pz5s0ICQnBqlWrkJiYiJ49eyIvL0/oaIK7desWVq1ahRYtWuDQoUOYNm0a3n77bWzZskXoaLXCQOgARFQ3pk+fjpiYGM6p+I9WrVohOjoaMpkMP//8M8aNG4fjx4+zYAJw+/ZtzJo1C0eOHIGxsbHQcbTOgAEDNP+/ffv28Pf3R7NmzbBnz54GfxtXqVSiU6dO+OqrrwAAfn5+iImJwerVqzFu3DiB0z07jixpITs7O0gkEmRmZlbYn5mZCScnJ4FSkS6ZMWMGDh48iGPHjqFJkyZCx9EqRkZGaN68OTp27IhFixbBx8cHP/zwg9CxtEJkZCSysrLQoUMHGBgYwMDAAMePH8fy5cthYGAAhUIhdEStYm1tjZYtWyI+Pl7oKIJzdnZ+5C8cbdq00ZvblCyWtJCRkRE6duyI0NBQzT6lUonQ0FDOraAqqVQqzJgxA/v27cPRo0fh7u4udCStp1QqUVJSInQMrdC3b19cuXIF0dHRmq1Tp04YPXo0oqOjIZFIhI6oVfLz85GQkABnZ2ehowiue/fuj7QpuXHjBpo1ayZQotrF23Baas6cORg3bhw6deqELl26YNmyZSgoKMCECROEjia4/Pz8Cn+TS0xMRHR0NGxtbdG0aVMBkwlv+vTp2LlzJ3777TdYWFho5rhZWVnBxMRE4HTCCw4OxoABA9C0aVPk5eVh586dCAsLw6FDh4SOphUsLCwemd9mZmaGRo0acd4bgHfffReDBw9Gs2bNkJaWhgULFkAikWDUqFFCRxPcO++8g27duuGrr77Ca6+9hoiICKxduxZr164VOlrtUJHWWrFihapp06YqIyMjVZcuXVRnz54VOpJWOHbsmArAI9u4ceOEjia4x30uAFSbNm0SOppWePPNN1XNmjVTGRkZqezt7VV9+/ZVHT58WOhYWq1Xr16qWbNmCR1DK4wYMULl7OysMjIyUjVu3Fg1YsQIVXx8vNCxtMbvv/+uateunUoqlapat26tWrt2rdCRag37LBERERFVgXOWiIiIiKrAYomIiIioCiyWiIiIiKrAYomIiIioCiyWiIiIiKrAYomIiIioCiyWiIiIiKrAYomIdE5SUhJEIhGio6OFjqLRu3dvzJ49W/Ozm5sbli1bJlgeIqo9XO6EiHSOq6sr0tPTYWdnJ3SUSp0/fx5mZmZCxyCiWsBiiYh0jkQigZOTU61ft6ysDIaGhrVyLXt7+1q5DhEJj7fhiEhQd+/ehZOTE7766ivNvjNnzsDIyAihoaGPPee/t+HCwsIgEokQGhqKTp06wdTUFN26dXtkFfTHXWP37t3o1asXjI2NsWPHDmRnZ2PUqFFo3LgxTE1N4e3tjZ9++qnCuQUFBRg7dizMzc3h7OyMJUuWPHL9/96GW7p0Kby9vWFmZgZXV1e89dZbyM/P17y+efNmWFtb49ChQ2jTpg3Mzc3Rv39/pKena44JCwtDly5dYGZmBmtra3Tv3h3JyclVfr5E9OxYLBGRoOzt7bFx40Z8+umnuHDhAvLy8vDGG29gxowZ6Nu371Nd66OPPsKSJUtw4cIFGBgY4M0333ziOR988AFmzZqF2NhYBAUFobi4GB07dsQff/yBmJgYTJkyBW+88QYiIiI057z33ns4fvw4fvvtNxw+fBhhYWGIioqq8veIxWIsX74cV69exZYtW3D06FHMmzevwjGFhYVYvHgxtm3bhhMnTiAlJQXvvvsuAKC8vBzDhg1Dr169cPnyZYSHh2PKlCkQiURP9RkRUQ0IvZIvEZFKpVK99dZbqpYtW6pef/11lbe3t6q4uLjSYxMTE1UAVBcvXlSpVCrVsWPHVABUf//9t+aYP/74QwVAVVRUVOU1li1b9sRsgwYNUs2dO1elUqlUeXl5KiMjI9WePXs0r2dnZ6tMTExUs2bN0uxr1qyZ6vvvv6/0mnv37lU1atRI8/OmTZtUACqsYr9y5UqVo6Oj5ncAUIWFhT0xLxHVLo4sEZFWWLx4McrLy7F3717s2LEDUqn0qa/Rvn17zf93dnYGAGRlZVV5TqdOnSr8rFAosHDhQnh7e8PW1hbm5uY4dOgQUlJSAAAJCQkoLS2Fv7+/5hxbW1u0atWqyt/z999/o2/fvmjcuDEsLCzwxhtvIDs7G4WFhZpjTE1N4enpWeE9PMxva2uL8ePHIygoCIMHD8YPP/xQ4RYdEdUdFktEpBUSEhKQlpYGpVKJpKSkGl3j35OzH96eUiqVVZ7z3yfWvvvuO/zwww94//33cezYMURHRyMoKAilpaU1ygSo50e9+OKLaN++PX755RdERkZi5cqVAFDhuv+dXC4SiaBSqTQ/b9q0CeHh4ejWrRt2796Nli1b4uzZszXORUTVw2KJiARXWlqKMWPGYMSIEVi4cCEmTZr0xBGhunL69GkMHToUY8aMgY+PDzw8PHDjxg3N656enjA0NMS5c+c0++7fv1/hmP+KjIyEUqnEkiVL0LVrV7Rs2RJpaWk1yufn54fg4GCcOXMG7dq1w86dO2t0HSKqPhZLRCS4jz76CDKZDMuXL8f777+Pli1bVmtydl1o0aIFjhw5gjNnziA2NhZTp05FZmam5nVzc3NMnDgR7733Ho4ePYqYmBiMHz8eYnHlf5w2b94cZWVlWLFiBW7duoVt27Zh9erVT5UrMTERwcHBCA8PR3JyMg4fPoybN2+iTZs2NX6vRFQ9LJaISFBhYWFYtmwZtm3bBktLS4jFYmzbtg0nT57EqlWr6j3Pxx9/jA4dOiAoKAi9e/eGk5MThg0bVuGY7777Dj179sTgwYMRGBiIHj16oGPHjpVe08fHB0uXLsU333yDdu3aYceOHVi0aNFT5TI1NUVcXByGDx+Oli1bYsqUKZg+fTqmTp1ak7dJRE9BpPr3DXEiIiIiqoAjS0RERERVYLFEREREVAUWS0RERERVYLFEREREVAUWS0RERERVYLFEREREVAUWS0RERERVYLFEREREVAUWS0RERERVYLFEREREVAUWS0RERERVYLFEREREVIX/B3JBYLARGDEPAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAa3BJREFUeJzt3XlYVGX/BvB7ZoBh32RXlMUVRcANcUlNEpdcykpNc8ntNTVNy6JFKytb1Ezz574vuVSaWaGG4oqiICoKKsiirAoyw77MzO+P0SlSEBE4M8P9ua5zvS9nzjncM5Xz9TnP+T4ilUqlAhERERE9lljoAERERETajMUSERERURVYLBERERFVgcUSERERURVYLBERERFVgcUSERERURVYLBERERFVgcUSERERURVYLBERERFVgcUSEdWq3r17o3fv3kLHAAC4ublh/PjxtXrNkJAQ+Pr6wtjYGCKRCLm5ubV6/doiEonw6aefCh2DSC+wWCKiCkQiUbW2sLAwoaPWu+zsbLz22mswMTHBypUrsW3bNpiZmQmW588//2RBRFQPRFwbjoj+bfv27RV+3rp1K44cOYJt27ZV2P/CCy/A0dHxkfNLS0sBAEZGRnUXsppKSkogFothaGhYK9cLCQnBgAEDcOTIEQQGBtbKNZ/FjBkzsHLlSjzuj/Hi4mIYGBjAwMBAgGRE+oX/FRFRBWPGjKnw89mzZ3HkyJFH9v9XYWEhTE1NtaJIekgqldbq9bKysgAA1tbWtXrdumBsbCx0BCK9wdtwRPTUevfujXbt2iEyMhLPPfccTE1N8eGHH2pe+++cpeTkZAwZMgRmZmZwcHDAO++8g0OHDj1yO6+wsBBxcXG4d+/eEzPcvHkTw4cPh5OTE4yNjdGkSROMHDkSMplMc8x/5yxt3rwZIpEIp0+fxpw5c2Bvbw8zMzO89NJLuHv37hPf87hx4wAAnTt3hkgk0ly7srlR//0swsLCIBKJsGfPHnz55Zdo0qQJjI2N0bdvX8THxz9y/rlz5zBw4EDY2NjAzMwM7du3xw8//AAAGD9+PFauXAmg4q3Thx43Z+nixYsYMGAALC0tYW5ujr59++Ls2bMVjnmWz4hIX3FkiYhqJDs7GwMGDMDIkSMxZsyYx96SA4CCggI8//zzSE9Px6xZs+Dk5ISdO3fi2LFjjxwbERGBPn36YMGCBVXOxSktLUVQUBBKSkowc+ZMODk5ITU1FQcPHkRubi6srKyqzD5z5kzY2NhgwYIFSEpKwrJlyzBjxgzs3r270nM++ugjtGrVCmvXrsXnn38Od3d3eHp6Vvl7KvP1119DLBbj3XffhUwmw7fffovRo0fj3LlzmmOOHDmCF198Ec7OzprPLTY2FgcPHsSsWbMwdepUpKWlPfYW6eNcvXoVPXv2hKWlJebNmwdDQ0OsWbMGvXv3xvHjx+Hv7//MnxGRvmKxREQ1kpGRgdWrV2Pq1KlVHrdmzRrcunUL+/fvx9ChQwEAU6dOhZ+fX41/97Vr15CYmIi9e/filVde0eyfP39+tc5v1KgRDh8+rBmJUSqVWL58OWQyWaWF1gsvvIDU1FSsXbsWAwYMQKdOnWqcv7i4GNHR0ZpbljY2Npg1axZiYmLQrl07KBQKTJ06Fc7OzoiOjq5w2+/h/KSAgAC0bNmyWrdIAeDjjz9GWVkZTp06BQ8PDwDA2LFj0apVK8ybNw/Hjx+vcHxNPiMifcXbcERUI1KpFBMmTHjicSEhIWjcuDGGDBmi2WdsbIzJkyc/cmzv3r2hUqme+ITXwy/rQ4cOobCw8OmCA5gyZUqFW1Y9e/aEQqFAcnLyU1+rJiZMmFBhblfPnj0BALdu3QKgvl2WmJiI2bNnPzI/6t+5q0uhUODw4cMYNmyYplACAGdnZ7z++us4deoU5HJ5hXOE/oyItAmLJSKqkcaNG1drMndycjI8PT0f+ZJv3rx5jX+3u7s75syZg/Xr18POzg5BQUFYuXJlhflKVWnatGmFn21sbAAA9+/fr3Gmp/Gk35+QkAAAaNeuXa38vrt376KwsBCtWrV65LU2bdpAqVTi9u3bT5WRqCFhsURENWJiYiLo71+yZAkuX76MDz/8EEVFRXj77bfRtm1b3Llz54nnSiSSx+6vaSeVykZ7FApFvfz+uqALGYnqC4slIqpTzZo1Q0JCwiNfso97+utpeXt74+OPP8aJEydw8uRJpKamYvXq1c983adlY2Pz2E7eNb1l9XDieExMTJXHVfeWnL29PUxNTXH9+vVHXouLi4NYLIarq+vTByVqIFgsEVGdCgoKQmpqKg4cOKDZV1xcjHXr1j1ybHVbB8jlcpSXl1fY5+3tDbFYjJKSktoJ/hQ8PT1x9uxZTUNOADh48OAjt7aqq0OHDnB3d8eyZcseKcL+XXQ+7B7+pCVXJBIJ+vXrh99++w1JSUma/ZmZmdi5cyd69OgBS0vLGmUlagj4NBwR1ampU6fixx9/xKhRozBr1iw4Oztjx44dmqaJ/x4dqW7rgKNHj2LGjBl49dVX0bJlS5SXl2Pbtm2QSCQYPnx4Xb+lR0yaNAk///wz+vfvj9deew0JCQnYvn17jVsLiMVirFq1CoMHD4avry8mTJgAZ2dnxMXF4erVqzh06BAAoGPHjgCAt99+G0FBQZBIJBg5cuRjr/nFF1/gyJEj6NGjB9566y0YGBhgzZo1KCkpwbfffluzN07UQLBYIqI6ZW5ujqNHj2LmzJn44YcfYG5ujrFjx6Jbt24YPnx4jTpN+/j4ICgoCL///jtSU1NhamoKHx8f/PXXX+jatWsdvIuqBQUFYcmSJVi6dClmz56NTp064eDBg5g7d+4zXfPYsWP47LPPsGTJEiiVSnh6elZ4ivDll1/GzJkzsWvXLmzfvh0qlarSYqlt27Y4efIkgoODsWjRIiiVSvj7+2P79u2P9Fgiooq4NhwRCWLZsmV45513cOfOHTRu3FjoOERElWKxRER1rqioqMLTc8XFxfDz84NCocCNGzcETEZE9GS8DUdEde7ll19G06ZN4evrC5lMhu3btyMuLg47duwQOhoR0ROxWCKiOhcUFIT169djx44dUCgU8PLywq5duzBixAihoxERPRFvwxERERFVgX2WiIiIiKrAYomIiIioCpyzVAuUSiXS0tJgYWFRoxXBiYiIqP6pVCrk5eXBxcUFYnHl40cslmpBWloa11UiIiLSUbdv30aTJk0qfZ3FUi2wsLAAoP6wub4SERGRbpDL5XB1ddV8j1eGxVIteHjrzdLSksUSERGRjnnSFBpO8CYiIiKqAoslIiIioiqwWCIiIiKqAoslIiIioiqwWCIiIiKqAoslIiIioiqwWCIiIiKqAoslIiIioiqwWCIiIiKqAoslIiIioiroVLF04sQJDB48GC4uLhCJRNi/f/8TzwkLC0OHDh0glUrRvHlzbN68+ZFjVq5cCTc3NxgbG8Pf3x8RERG1H56IiIh0kk4VSwUFBfDx8cHKlSurdXxiYiIGDRqEPn36IDo6GrNnz8akSZNw6NAhzTG7d+/GnDlzsGDBAkRFRcHHxwdBQUHIysqqq7dBREREOkSkUqlUQoeoCZFIhH379mHYsGGVHvP+++/jjz/+QExMjGbfyJEjkZubi5CQEACAv78/OnfujB9//BEAoFQq4erqipkzZ+KDDz6oVha5XA4rKyvIZDIupEsAAJVKhVKFEsVlShSXKWAoEcPG1PCJizUSEVH9qe73t0E9Zqp34eHhCAwMrLAvKCgIs2fPBgCUlpYiMjISwcHBmtfFYjECAwMRHh5e6XVLSkpQUlKi+Vkul9ducNIZhaXliE2X41p6Hq6lyXEtXY5bWfkoKC2H8j9/DTEyEMPZyhjOVsZwsTaBr6s1unk2gqe9OYsoIiItptfFUkZGBhwdHSvsc3R0hFwuR1FREe7fvw+FQvHYY+Li4iq97qJFi/DZZ5/VSWbSfvkl5QiNzcSfV9IRdv0uSsqVVR4vEYugUKpQWq5EcnYhkrMLAQC/RqUCABwspOjm2Qg9W9hjgLcTTI30+j9LIiKdwz+VayA4OBhz5szR/CyXy+Hq6ipgIqprKpUKJ2/ew45zyY8USA4WUrR1sUQbZ0t4uViilaMFrEwNYWwogYmhBIYSMUrLlciUFyMttwgZ8mIkZxfiXGI2LiTdR1ZeCfZHp2F/dBo+/f0qhndogtf9m6Klo4WA75iIiB7S62LJyckJmZmZFfZlZmbC0tISJiYmkEgkkEgkjz3Gycmp0utKpVJIpdI6yUzaRalU4UhsJlYei8flOzLNfnc7Mwz0dsJAb2d4OVs+8TaakYEYrramcLU1/dfeFiguUyAq5T7OxGfjwKU0pOQUYvOZJGw+k4QubraY8pwH+rZx4G06IiIB6XWxFBAQgD///LPCviNHjiAgIAAAYGRkhI4dOyI0NFQzUVypVCI0NBQzZsyo77ikRVQqFQ5cSsPKY/G4kZkPADA2FGNk56Z4tVOTahVI1WFsKEE3Tzt087TDnBda4lT8PWw/m4zQuCxEJOUgIikH/u62+GhQG7RvYv3Mv4+IiJ6eThVL+fn5iI+P1/ycmJiI6Oho2NraomnTpggODkZqaiq2bt0KAPjf//6HH3/8EfPmzcObb76Jo0ePYs+ePfjjjz8015gzZw7GjRuHTp06oUuXLli2bBkKCgowYcKEen9/pB3is/Lw4b4YRCTmAAAspAYY260Z3uzujkbmdTeiKBaL8FxLezzX0h7psiJsPpOETaeTcC4xB0N+PI0hPi54L6jVf0aniIiorulU64CwsDD06dPnkf3jxo3D5s2bMX78eCQlJSEsLKzCOe+88w6uXbuGJk2a4JNPPsH48eMrnP/jjz/iu+++Q0ZGBnx9fbF8+XL4+/tXOxdbB+iH4jIF/u9YPFYdT0CZQgUTQwmm9fbE+O5usDQ2FCRTam4Rlhy6jl8vqieDGxmI8V6/VpjYwx1iMW/NERE9i+p+f+tUsaStWCzpvojEHMz7+RKSHjyp9nxrB3w+tC2a2GjHKE5Mqgxf/hGL8FvZAICuHrZY/KqP1uQjItJFLJbqEYsl3aVUqrDmxC18dygOShXgaCnFp4Pbon87J62bVK1SqfBTxG0sPHgNRWUKWEgN8NnQtnjJr7HWZSUi0gUsluoRiyXdJCssw9y90fg7Vr20zcsdGuPTIW0Fu+VWXUn3CvDOnmhcTMkFAAzxccG3r7SHsaFE2GBERDqmut/fOrU2HFFtuXJHhkErTuLv2CwYGYjx9cveWPKqj9YXSgDgZmeGvVMDMPeFljAQi3DgUhpGrAlHprxY6GhERHqJxRI1OH9cTsfwVWdw534Rmtqa4tdp3TCyS1OdupVlIBFjZt8W2D7JHzamhrh0R4ahP55GTKrsyScTEdFTYbFEDcqWM0mY8VMUShVKBLZxwO8ze6BdYyuhY9VYV49G2D+9O5o7mCNDXoxXVp/Bn1fShY5FRKRXWCxRg6BSqbD40HUsOHAVKhUwNqAZ1rzRCVYm2n/b7UmaNTLDr291Q6+W9iguU+KtHVHYdDpR6FhERHqDxRLpvXKFEh/8cgU/HlM3NJ37Qkt8NqQtJHrUp8jS2BAbxnXC+G5uAIDPfr+GNccThA1FRKQndKqDN9HTKlMoMWNnFA5dzYRYBHz1kjdGdmkqdKw6YSARY8FgL1gaG2D50Xgs+isOJeVKvN23hdDRiIh0Gosl0lsKpQrv7I7GoauZMDIQ48dRfujXtvIFkvWBSCTCnH6tYGQgxuLDN7D0yA2UKZSY80JLnZrATkSkTXgbjvSSUqnC+79cxsHL6TCUiLBmTEe9L5T+bcbzLfDhwNYAgBVH4/FNyHWwpRoRUc2wWCK9o1KpMP9ADH6OvAOJWIQVo/zQp7WD0LHq3ZTnPLFgsBcAYPXxBKw5cUvgREREuonFEukVlUqFL/6IxfazKRCJgKWv+aB/O2ehYwlmQnd3fDyoDQDg67/i8HPkHYETERHpHhZLpFf+LywBG06pH5v/5uX2GOrbWOBEwpvU0wNTnvMAALz/y2UcjcsUOBERkW5hsUR64+DlNHx36DoAYMFgL7zW2VXgRNrjg/6t8bJfYyiUKry1IwpRKfeFjkREpDNYLJFeiEq5jzl7LgEA3uzujgnd3QVOpF3EYhG+eaU9erdSN658c/N5xGflCx2LiEgnsFginXc7pxCTt1xAabl6CZOPHszRoYoMJWL83+gO8HG1Rm5hGSZvvQBZUZnQsYiItB6LJdJpsqIyTNh8HtkFpfBytsQPI/30qjN3bTM1MsDGcZ3Q2NoEifcK8PZPF6FQsqUAEVFVWCyRzlIoVZixMwrxWflwtJRiw/hOMJOyz+qTNDKXYs0bHWFsKMbxG3c187yIiOjxWCyRzlp65DpO3rwHE0MJNozrDGcrE6Ej6Yx2ja3w7Ss+ANQ9mH6LThU4ERGR9mKxRDopNDYTK4+pF4r9erg32jW2EjiR7hni44L/9fIEoG4pEJMqEzgREZF2YrFEOud2TiHe2R0NABgb0Iy9lJ7Be0GtNE/ITdl6AfcLSoWORESkdVgskU4pLlNg2o5IyIvL4etqzSffnpFELMIPI/3g1sgUabJivPfzZa4hR0T0HyyWSKd89vtVxKTKYWNqiJWjO0BqIBE6ks6zMjHEj693gJFEjL9jM7H5TJLQkYiItAqLJdIZ+y7ewU8RtyESAT+M9ENja07ori3tGlvhw4GtAQCL/ozj/CUion9hsUQ64XZOIT7ZfxUAMKtvCzzX0l7gRPpnXDc3vODliFKFEjN2RiG/pFzoSEREWoHFEmm9coUS7+yORn5JOTq72WDm8y2EjqSXRCIRvnulPVysjJGUXYiP913h/CUiIrBYIh2wKiwBF5Lvw1xqgKWv+bJDdx2yNjXCD6PUXdD3R6fhlyj2XyIiYrFEWi36di6Whd4EAHw+tC1cbU0FTqT/OrvZ4p1A9ejdpweuIjW3SOBERETCYrFEWqugpBzv7I6GQqnCi+2d8ZIf+ynVl2m9m6NDU2vkl5Tj/Z8vQ8n144ioAWOxRFrriz9ikXivAM5WxvhymDdEIt5+qy8SsQiLX/WBsaEYp+LvYce5ZKEjEREJhsUSaaXjN+7ip4gUiETAktd8YGVqKHSkBsfD3hzv91e3E/jqzzgk3SsQOBERkTB0rlhauXIl3NzcYGxsDH9/f0RERFR6bO/evSESiR7ZBg0apDlm/Pjxj7zev3//+ngrVIn8knJ8+OsVAMD4bm7o5mkncKKGa1yAG7p62KKoTIH3fr4EBW/HEVEDpFPF0u7duzFnzhwsWLAAUVFR8PHxQVBQELKysh57/K+//or09HTNFhMTA4lEgldffbXCcf37969w3E8//VQfb4cq8W1IHFJzi+Bqa4L3gloJHadBE4tF+O4VH5gZSXA+6T42nkoUOhIRUb3TqWJp6dKlmDx5MiZMmAAvLy+sXr0apqam2Lhx42OPt7W1hZOTk2Y7cuQITE1NHymWpFJpheNsbGzq4+3QY0Qk5mBruHp+zNcvt4epkYHAicjV1hQfv+gFAPju8HUk3M0XOBERUf3SmWKptLQUkZGRCAwM1OwTi8UIDAxEeHh4ta6xYcMGjBw5EmZmZhX2h4WFwcHBAa1atcK0adOQnZ1d5XVKSkogl8srbPTsissUeP+XywCAkZ1d0b05b79pi5GdXdGzhR1Ky5X4iM0qiaiB0Zli6d69e1AoFHB0dKyw39HRERkZGU88PyIiAjExMZg0aVKF/f3798fWrVsRGhqKb775BsePH8eAAQOgUCgqvdaiRYtgZWWl2VxdXWv2pqiC7/++gcR7BXC0lOLDQW2EjkP/IhKJ8NVL3jA2FOPsrRzsjbwjdCQionqjM8XSs9qwYQO8vb3RpUuXCvtHjhyJIUOGwNvbG8OGDcPBgwdx/vx5hIWFVXqt4OBgyGQyzXb79u06Tq//Lt/JxboTtwAAXw7zhqUxn37TNq62pngnsCUA4Ks/Y5GdXyJwIiKi+qEzxZKdnR0kEgkyMzMr7M/MzISTk1OV5xYUFGDXrl2YOHHiE3+Ph4cH7OzsEB8fX+kxUqkUlpaWFTaquXKFEsG/XoFSBQzxcUGgl+OTTyJBvNnDHW2cLZFbWIYv/ogVOg4RUb3QmWLJyMgIHTt2RGhoqGafUqlEaGgoAgICqjx37969KCkpwZgxY574e+7cuYPs7Gw4Ozs/c2aqnu1nk3E1TQ5LYwPMH+wldByqgqFEjEUve0MkAvZdTMXJm3eFjkREVOd0plgCgDlz5mDdunXYsmULYmNjMW3aNBQUFGDChAkAgLFjxyI4OPiR8zZs2IBhw4ahUaNGFfbn5+fjvffew9mzZ5GUlITQ0FAMHToUzZs3R1BQUL28p4YuK68YSw7fAADM698aduZSgRPRk/i6WmNcgBsA4KN9MSgqrXx+HxGRPtCp57JHjBiBu3fvYv78+cjIyICvry9CQkI0k75TUlIgFles/65fv45Tp07h8OHDj1xPIpHg8uXL2LJlC3Jzc+Hi4oJ+/fph4cKFkEr5pV0fvvojFnkl5fBpYoVRXZoKHYeq6d2gVjh0NQMpOYVYcfQm5j3o9E1EpI9EKj4D/MzkcjmsrKwgk8k4f+kpnEm4h9fXnYNIBByY3gPeTayEjkRP4fDVDEzZFglDiQiHZj8HD3tzoSMRET2V6n5/69RtONIfpeVKfLI/BgDwRtdmLJR00Atejujdyh5lChU+P3iNvZeISG+xWCJBrD91Cwl3C2BnboS5/bikiS4SiUSY/6IXDCUihF2/i9DYxy87RESk61gsUb1LzS3C8tCbAICPBrWBlQl7KukqD3tzTOzhAQD4/OA1FJdxsjcR6R8WS1Tvvv4rDsVlSnRxt8Uw38ZCx6FnNPP55nC0lCIlp1DTWJSISJ+wWKJ6FZmcg98vpUEkAua/6AWRSCR0JHpGZlIDfDhQvTzNyrB4pOYWCZyIiKh2sViieqNUqvDZ79cAACM6uaJdY07q1hdDfFzQxc0WxWVKfMXO3kSkZ1gsUb359WIqLt+RwVxqwEndekYkEuHTIW0hFgF/XElHeEK20JGIiGoNiyWqFwUl5fg2JA6Aeo6LvQWbfuobLxdLjPZvBgD48s9rUCrZSoCI9AOLJaoXq8ISkJVXgmaNTDG+u5vQcaiOzA5sAQupAWJS5dh3MVXoOEREtYLFEtW52zmFWHtS/ZTUhwPbQGogETgR1ZVG5lK81ac5AGDx4etcN46I9AKLJapz34TEobRciW6ejdDPy1HoOFTHJnR3Q2NrE6TLirHhFFsJEJHuY7FEderS7VwcvJwOkQj4eBBbBTQExoYSzOuvnsCvvv1aLHAiIqJnw2KJ6oxKpcKiv9SPkb/s1wReLlxkuKEY3N4FPk2sUFCqwPdHbgodh4jombBYojoTdv0uzt7KgZGBGHP6tRQ6DtUjsViEjwZ5AQB2n0/Bjcw8gRMREdUciyWqEwqlCl//pW4VMKGbeg4LNSxd3G0R1NYRShXw1Z9sVElEuovFEtWJX6Lu4HpmHqxMDPFW7+ZCxyGBfDCgDQzEogejjGxUSUS6icUS1briMgW+P3IDADC9jyesTA0FTkRCcbczw8gurgCAb0PioFKxUSUR6R4WS1TrNp1OQrqsGI2tTTA2wE3oOCSwt59vAWNDMaJSchEamyV0HCKip8ZiiWrV/YJS/F9YPABgbr+WMDZkA8qGzsHSGBO6uwMAvjt0HQoug0JEOobFEtWq1ScSkFdcjjbOlhjm21joOKQl/vecJyyNDXA9Mw+/RXMZFCLSLSyWqNZkyYux5UwSAOC9oJYQi9mAktSsTA0x7cFE/6VHbqCknMugEJHuYLFEtWblsXgUlynh19QafVo5CB2HtMz4bm5wsJDizv0i/HQuReg4RETVxmKJasWd+4XYGaH+AnyvXysua0KPMDGSYFZgCwDAj8fiUVBSLnAiIqLqYbFEtWJFaDzKFCp082yEbs3thI5DWuq1Tq5wa2SKe/ml2HQ6Ueg4RETVwmKJnlnivQL8HHUHADC3XyuB05A2M5SI8c4L6qVv1p1MhLy4TOBERERPxmKJntn3R25AoVTh+dYO6NjMRug4pOVebO+C5g7mkBWVYdOpJKHjEBE9EYsleiZxGXL8fjkNgLqvEtGTSMQizH4wd2n9qVuQFXJ0iYi0G4sleiZLD9+ASgUM8nZGWxcroeOQjhjYzhmtHC2QV1yODaduCR2HiKhKLJaoxmJSZTh8LRMiEfDOCy2EjkM6RCwWaf6d2Xg6CfcLSgVORERUORZLVGPLQ28CAIb4uKC5g4XAaUjX9PNygpezJfJLyrHuJEeXiEh7sViiGrma9s+o0sznmwsdh3SQenRJPc9t85kkZOeXCJyIiOjxdK5YWrlyJdzc3GBsbAx/f39ERERUeuzmzZshEokqbMbGxhWOUalUmD9/PpydnWFiYoLAwEDcvHmzrt+Gzns4qjS4PUeVqOYC2zjAu7EVCksVWHuCo0tEpJ10qljavXs35syZgwULFiAqKgo+Pj4ICgpCVlZWpedYWloiPT1dsyUnJ1d4/dtvv8Xy5cuxevVqnDt3DmZmZggKCkJxcXFdvx2ddS1NjkNX1aNKb/flqBLVnEgkwpwHo0tbwpNwj6NLRKSFdKpYWrp0KSZPnowJEybAy8sLq1evhqmpKTZu3FjpOSKRCE5OTprN0dFR85pKpcKyZcvw8ccfY+jQoWjfvj22bt2KtLQ07N+/vx7ekW56OKr0IkeVqBb0bmUPnyZWKC5TYv1JdvUmIu2jM8VSaWkpIiMjERgYqNknFosRGBiI8PDwSs/Lz89Hs2bN4OrqiqFDh+Lq1aua1xITE5GRkVHhmlZWVvD396/ymiUlJZDL5RW2hiI2XY6QqxnqUSXOVaJaIBKJMPN59ZNx28L5ZBwRaR+dKZbu3bsHhUJRYWQIABwdHZGRkfHYc1q1aoWNGzfit99+w/bt26FUKtGtWzfcuaNemuPheU9zTQBYtGgRrKysNJurq+uzvDWdsuKoelRpoLczWjhyVIlqR982DvBytkRBqYJrxhGR1tGZYqkmAgICMHbsWPj6+qJXr1749ddfYW9vjzVr1jzTdYODgyGTyTTb7du3aymxdovLkOPPKw9HldhXiWqPenRJPVK56XQSZEXs6k1E2kNniiU7OztIJBJkZmZW2J+ZmQknJ6dqXcPQ0BB+fn6Ij48HAM15T3tNqVQKS0vLCltDsPJYAoAH3ZedOKpEtSuorRNaOpojr6QcW84kCR2HiEhDZ4olIyMjdOzYEaGhoZp9SqUSoaGhCAgIqNY1FAoFrly5AmdnZwCAu7s7nJycKlxTLpfj3Llz1b5mQ5F4rwB/PFgDbnofzlWi2icWizT/bm08nYj8knKBExERqelMsQQAc+bMwbp167BlyxbExsZi2rRpKCgowIQJEwAAY8eORXBwsOb4zz//HIcPH8atW7cQFRWFMWPGIDk5GZMmTQKgHvqfPXs2vvjiCxw4cABXrlzB2LFj4eLigmHDhgnxFrXWqrB4KFVA39YO8HJpGCNpVP9ebO8CDzsz5BaWYVt48pNPICKqBwZCB3gaI0aMwN27dzF//nxkZGTA19cXISEhmgnaKSkpEIv/qf/u37+PyZMnIyMjAzY2NujYsSPOnDkDLy8vzTHz5s1DQUEBpkyZgtzcXPTo0QMhISGPNK9syFJzi/BrVCoAYDqfgKM6JHkwujR37yWsP3kL47o1g6mRTv0xRUR6SKRSqVRCh9B1crkcVlZWkMlkejl/acFvMdgSnoxuno2wc3JXoeOQnitXKPH8kuNIySnEx4PaYFJPD6EjEZGequ73t07dhqP6dzevBLvOq5/2m8G5SlQPDCRiTOvtCQBYfzIRJeUKgRMRUUPHYomqtP7ULZSUK+HX1BoBno2EjkMNxMsdGsPRUooMeTH2PbgFTEQkFBZLVKncwlJsfzDJdkaf5hCJRAInooZCaiDB5Ae339acuAWFkrMFiEg4LJaoUpvPJKGgVIE2zpZ4vrWD0HGogRnVpSmsTQ2ReK8Af8WkCx2HiBowFkv0WAUl5dh0OgkAML2PJ0eVqN6ZSQ0wLsANAPB/xxLAZ1GISCgsluixfopIgayoDO52ZhjQzlnoONRAje/mBlMjCa6ly3H8xl2h4xBRA8ViiR5RWq7EhlPqxUynPOcBiZijSiQMGzMjjOrSFADwf2EJAqchooaKxRI94rfoVKTLimFvIcVLfo2FjkMN3OSeHjCUiBCRmIPI5Byh4xBRA8RiiSpQKlVYc+IWAGBiD3cYG0oETkQNnZOVMYZ3aAJAPXeJiKi+sViiCv6OzUR8Vj4spAZ43b+p0HGIAABTe3lCLAJC47JwPSNP6DhE1MCwWCINlUqF1cfVf3MfE9AMlsaGAiciUvv3gwZrH4x8EhHVFxZLpHE+6T6iUnJhZCDGhO5uQschqmDKc+omleo5dUUCpyGihoTFEmmsCosHAAzv0AQOFsYCpyGqyMfVGl09bFGuVGHjg6c1iYjqA4slAgDEpstx7PpdiEXA1Oe4yjtpp6m91Avs7jyn7gNGRFQfWCwRAGDdg3kgA9o5w83OTOA0RI/Xu6U9WjlaoKBUgR3nkoWOQ0QNBIslQlpuEQ5cSgMATO3FUSXSXiKRSDN3adPpJJSUKwROREQNAYslwuYzSShXquDvbov2TayFjkNUpcE+LnC2MsbdvBLsv5gqdBwiagBYLDVw8uIy7DyXAoCjSqQbjAzEeLO7OwBgzYlbUCq5wC4R1S0WSw3crogU5JeUo7mDOXq3dBA6DlG1jOziCgtjA9y6W4C/YzOFjkNEeo7FUgNWWq7ExlNJAIDJPd0h5oK5pCMsjA0xpmszAGxSSUR1j8VSA3bwchoy5MWwM5diGBfMJR0zvpsbDCUiXEi+j4sp94WOQ0R6jMVSA6VSqTR/I5/Q3Q1SAy6YS7rF0dIYQ3zURf76k2xSSUR1h8VSA3Uq/h7iMvJgaiTBaC6YSzpqUk/1RO+/YtJxO6dQ4DREpK9YLDVQD0eVXuvkCmtTI4HTENVMG2dL9GxhB6UK2Hiao0tEVDdYLDVAselynLx5D2IRMLGHu9BxiJ7J5J7qlhe7z9+GrJBLoBBR7WOx1ABteLAI6YB2znC1NRU4DdGz6dnCDq2dLFBYqsDOiBSh4xCRHmKx1MBkyYvxW7S66/HEnhxVIt0nEok0I6SbzySitFwpcCIi0jcslhqYbWeTUaZQoUNTa3RoaiN0HKJaMcTXBfYWUmTKS3DwcprQcYhIz7BYakCKyxTYfla9UvuknlzahPSH1ECC8d3cAADrTiZCpeISKERUe1gsNSC/RqXifmEZmtiYoJ+Xo9BxiGrVaP+mMDGUIDZdjvCEbKHjEJEeYbHUQCiVKmw49bAJpTsMJPxHT/rF2tQIr3ZqAuCfhxiIiGqDzn1jrly5Em5ubjA2Noa/vz8iIiIqPXbdunXo2bMnbGxsYGNjg8DAwEeOHz9+PEQiUYWtf//+df026t3xG3eRcLcAFlIDvPbgC4VI30zorp7oHRqXhVt38wVOQ0T6QqeKpd27d2POnDlYsGABoqKi4OPjg6CgIGRlZT32+LCwMIwaNQrHjh1DeHg4XF1d0a9fP6SmplY4rn///khPT9dsP/30U328nXq1/sGoknq1dkOB0xDVDXc7M/Rt7QAA2HQ6SdgwRKQ3dKpYWrp0KSZPnowJEybAy8sLq1evhqmpKTZu3PjY43fs2IG33noLvr6+aN26NdavXw+lUonQ0NAKx0mlUjg5OWk2Gxv9ekrsWpocp+OzIRGLMO7BJFgiffWwjcDPkXeQW1gqcBoi0gc6UyyVlpYiMjISgYGBmn1isRiBgYEIDw+v1jUKCwtRVlYGW1vbCvvDwsLg4OCAVq1aYdq0acjOrnpyaElJCeRyeYVNm/3ThNIJTWzYhJL0W4BnI7R2skBRmQI/RdwWOg4R6QGdKZbu3bsHhUIBR8eKT3E5OjoiIyOjWtd4//334eLiUqHg6t+/P7Zu3YrQ0FB88803OH78OAYMGACFQlHpdRYtWgQrKyvN5urqWrM3VQ+y8orx+yV13xkubUINwb+bVG45k4QyBZtUEtGz0Zli6Vl9/fXX2LVrF/bt2wdjY2PN/pEjR2LIkCHw9vbGsGHDcPDgQZw/fx5hYWGVXis4OBgymUyz3b6tvX973XE2BaUKJfyaWsOPTSipgRji6wI7cyky5MX480q60HGISMfpTLFkZ2cHiUSCzMzMCvszMzPh5ORU5bmLFy/G119/jcOHD6N9+/ZVHuvh4QE7OzvEx8dXeoxUKoWlpWWFTRsVlymw45y6CSVHlaghkRpI8EbXZgCAjafYpJKIno3OFEtGRkbo2LFjhcnZDydrBwQEVHret99+i4ULFyIkJASdOnV64u+5c+cOsrOz4ezsXCu5hfT7pTTcyy+Fi5Ux+retuqAk0jejuzaFkYEYl+7IEJVyX+g4RKTDdKZYAoA5c+Zg3bp12LJlC2JjYzFt2jQUFBRgwoQJAICxY8ciODhYc/w333yDTz75BBs3boSbmxsyMjKQkZGB/Hx1/5X8/Hy89957OHv2LJKSkhAaGoqhQ4eiefPmCAoKEuQ91haVSoWNDx6dHtvNjU0oqcGxM5fiJd/GANikkoiejU59g44YMQKLFy/G/Pnz4evri+joaISEhGgmfaekpCA9/Z/5CatWrUJpaSleeeUVODs7a7bFixcDACQSCS5fvowhQ4agZcuWmDhxIjp27IiTJ09CKpUK8h5rS/itbMSmy2FiKMHIzto7AZ2oLr354PZzSEwG7twvFDgNEekqkYo385+ZXC6HlZUVZDKZ1sxfmrTlAv6OzcSYrk3xxTBvoeMQCWb0+rM4HZ+Nqc95IHhgG6HjEJEWqe73t06NLFH1JN0rQGiceiL8w+UfiBqqCd3U/w38FJGCwtJygdMQkS5isaSHNp9JgkoF9GllD097c6HjEAnq+dYOaNbIFPLicvwSlfrkE4iI/oPFkp6RF5dh7wV136c32S6ACGKxCOMfLPOz+XQilErOPCCip8NiSc/sOX8bBaUKtHAwR4/mdkLHIdIKr3RsAnOpARLuFuDEzbtCxyEiHcNiSY8olCpsDVc3oZzQ3R0ikUjgRETawcLYEK91Uj8VuulBSw0ioupisaRHjsZlISWnEFYmhnjJr7HQcYi0yvhubhCJgOM37iI+K1/oOESkQ1gs6ZFNp9WN90Z2cYWJkUTgNETapWkjU/Rtre7JtvkMm1QSUfWxWNITcRlynEnIhlgEjA1wEzoOkVZ6s4cbAOCXyFTICsuEDUNEOoPFkp7YciYJABDU1gmNrU2EDUOkpQI8GqG1kwWKyhTYfSFF6DhEpCNYLOmB+wWl+PVB/xg2oSSqnEgkwoTubgCALWeSoWAbASKqBhZLeuCn8ykoKVeirYslOrvZCB2HSKsN9W0Ma1NDpOYW4e/YTKHjEJEOYLGk48oVSmx70C5A/bQP2wUQVcXYUIJRXZoC+OehCCKiqrBY0nGHrmYiXVaMRmZGGOzjInQcIp3wRtdmkIhFOHsrB7HpcqHjEJGWY7Gk4x4+Aj3avymMDdkugKg6XKxN0L+tE4B/Ho4gIqoMiyUdFpMqw/mk+zAQizC6azOh4xDplPEPJnrvu5iK+wWlwoYhIq3GYkmHbX7wN+KB3s5wtDQWNgyRjunUzAZtXSxRUq7ET+fZRoCIKsdiSUfdyy/Bgeg0AP/8DZmIqk/dRkDdamNbeDLKFUqBExGRtmKxpKN2RaSgVKGETxMr+LlaCx2HSCe92N4ZjcyMkC4rxuFrbCNARI/HYkkHlSmU2H5WfdtgfHe2CyCqKWNDCV73ZxsBIqqawdOeoFQqcfz4cZw8eRLJyckoLCyEvb09/Pz8EBgYCFdX17rISf9y6GoGMuTFsDOXYqC3s9BxiHTamK7NsCosAeeT7iMmVYZ2ja2EjkREWqbaI0tFRUX44osv4OrqioEDB+Kvv/5Cbm4uJBIJ4uPjsWDBAri7u2PgwIE4e/ZsXWZu8DafTgKgbhcgNWC7AKJn4WhpjAEP/tLBNgJE9DjVLpZatmyJy5cvY926dZDL5QgPD8cvv/yC7du3488//0RKSgoSEhLQs2dPjBw5EuvWravL3A3WlTsyXEi+D0OJCKMf3D4gomczvpsbAOC3S2nIYRsBIvqPahdLhw8fxp49ezBw4EAYGho+9phmzZohODgYN2/exPPPP19rIekf/24X4MB2AUS1okNTa3g3tkJpuRI/RbCNABFVVO1iqU2bNtW+qKGhITw9PWsUiCp3L78Ev1960C7gwd+EiejZiUQizX9T28+yjQARVVSjp+E+/fRTKJWP/mEik8kwatSoZw5Fj1ehXUBTG6HjEOmVF33YRoCIHq9GxdKGDRvQo0cP3Lp1S7MvLCwM3t7eSEhIqLVw9I8yhRLbziYDYBNKorogNfinjcBmTvQmon+pUbF0+fJlNGnSBL6+vli3bh3ee+899OvXD2+88QbOnDlT2xkJ6nYBmfIStgsgqkOj/ZvBQCxCRGIOrqXJhY5DRFriqfssAYCNjQ327NmDDz/8EFOnToWBgQH++usv9O3bt7bz0QMP2wW8znYBRHXGycoY/ds54eDldGw5k4RvXmkvdCQi0gI17uC9YsUK/PDDDxg1ahQ8PDzw9ttv49KlS7WZjR6ISVW3CzAQizCG7QKI6tSEB7e590en4j7bCBARalgs9e/fH5999hm2bNmCHTt24OLFi3juuefQtWtXfPvtt7WdscFjuwCi+tOhqQ28G1uhpFyJn86zjQAR1bBYUigUuHz5Ml555RUAgImJCVatWoWff/4Z33//fa0GbOiy80tw4GG7AE7sJqpzIpEI4x62EQhnGwEiqmGxdOTIEbi4uDyyf9CgQbhy5cozh6rKypUr4ebmBmNjY/j7+yMiIqLK4/fu3YvWrVvD2NgY3t7e+PPPPyu8rlKpMH/+fDg7O8PExASBgYG4efNmXb6Fp7Lr/G2UlivRvokV/FythY5D1CC82N4ZtmZGSJMV4+9YthEgauiqXSypVKpqHWdnZ1fjME+ye/duzJkzBwsWLEBUVBR8fHwQFBSErKysxx5/5swZjBo1ChMnTsTFixcxbNgwDBs2DDExMZpjvv32WyxfvhyrV6/GuXPnYGZmhqCgIBQXF9fZ+6iucoUS2x+2C+jmBpFIJHAioobB2FCC17uo5wduevBwBRE1XNUultq2bYtdu3ahtLTqCY83b97EtGnT8PXXXz9zuP9aunQpJk+ejAkTJsDLywurV6+GqakpNm7c+Njjf/jhB/Tv3x/vvfce2rRpg4ULF6JDhw748ccfAagLwGXLluHjjz/G0KFD0b59e2zduhVpaWnYv39/red/WoevZSJdVgw7cyMMas92AUT1aXTXppCIRTiXmIPYdLYRIBLKlTsywddsrHaxtGLFCixevBhOTk4YMWIEvvvuO+zYsQO//PIL1q9fjzlz5qBLly7w9fWFpaUlpk2bVqtBS0tLERkZicDAwH/Ci8UIDAxEeHj4Y88JDw+vcDwABAUFaY5PTExERkZGhWOsrKzg7+9f6TUBoKSkBHK5vMJWFx62CxjVhe0CiOqbs5UJ+rd1AgBsDU8SNgxRA6VUqjBr90V0XRSK0/H3BMtR7T5Lffv2xYULF3Dq1Cns3r0bO3bsQHJyMoqKimBnZwc/Pz+MHTsWo0ePho1N7S/Fce/ePSgUCjg6OlbY7+joiLi4uMeek5GR8djjMzIyNK8/3FfZMY+zaNEifPbZZ0/9Hp5GYWk5IAIMxCKM9m9Wp7+LiB5vfHc3/HElHfsupuL9/q1hbWokdCSiBuVk/D3culsAc6kBfASct/vUTSl79OiBHj161EUWnREcHIw5c+ZofpbL5XB1da3V32FqZIA9UwOQmlsEJyu2CyASQqdmNvBytsS1dDl2n7+Nqb24QDhRfdryoHXOq52awFxaoz7ataLGTSnrm52dHSQSCTIzKz6ZkpmZCScnp8ee4+TkVOXxD//3aa4JAFKpFJaWlhW2utLY2qTOrk1EVROJRBj/oI3A1vBkKJTVe9CFiJ5d0r0CHLuufoBrbICboFlqXCyFhobiww8/xKRJk/Dmm29W2OqCkZEROnbsiNDQUM0+pVKJ0NBQBAQEPPacgICACscD6rYHD493d3eHk5NThWPkcjnOnTtX6TWJqGEZ4usCG1NDpOYWsY0AUT3aGp4MlQro3coe7nZmgmapUbH02WefoV+/fggNDcW9e/dw//79CltdmTNnDtatW4ctW7YgNjYW06ZNQ0FBASZMmAAAGDt2LIKDgzXHz5o1CyEhIViyZAni4uLw6aef4sKFC5gxYwYA9d8aZ8+ejS+++AIHDhzAlStXMHbsWLi4uGDYsGF19j6ISHcYG0ow8kEbgc1sI0BULwpKyrH3wm0A0IzuCqlGNwBXr16NzZs344033qjtPFUaMWIE7t69i/nz5yMjIwO+vr4ICQnRTNBOSUmBWPxP/detWzfs3LkTH3/8MT788EO0aNEC+/fvR7t27TTHzJs3DwUFBZgyZQpyc3PRo0cPhISEwNiY84SISG1M12ZYczwB4beycT0jD62cLISORKTXfo26g7yScrjbmeG5FvZCx4FIVd1uk//SqFEjREREwNOTkx0B9a07KysryGSyOp2/RETCmbY9En/FZOB1/6b46iVvoeMQ6S2VSoXApceRcLcACwZ7YUJ39zr7XdX9/q7RbbhJkyZh586dNQ5HRKRrHq4Xty8qFbLCMmHDEOmxU/H3kHC3AGZGErzSsYnQcQDU8DZccXEx1q5di7///hvt27eHoaFhhdeXLl1aK+GIiLSFv7stWjtZIC4jD3su3Mbk5zyEjkSklx62C3ilYxNYGBtWfXA9qVGxdPnyZfj6+gJAhXXWAHD9MiLSSyKRCBO6u+H9X65gS3gS3uzhDomYf94R1aaU7EKExj1oF6AFE7sfqlGxdOzYsdrOQUSk9Yb6Nsaiv+Jw534RQmMz0a9t5f3YiOjpbQ1PgkoF9GxhB097c6HjaOhMU0oiIqEZG0owsrO6jcAWrhdHVKsKSsqx+0G7gDfrcFJ3TVR7ZOnll1/G5s2bYWlpiZdffrnKY3/99ddnDkZEpI3GdG2KtScScDo+Gzcy89DSkW0EiGrDrxdTkVdcDrdGpujVUvh2Af9W7ZElKysrzXwkKyurKjciIn3VxMYU/bzUt98eTkQlomejUqk0/z2N6+YGsZbNB6xRn6WioiIolUqYmanbjyclJWH//v1o06YNgoKCaj2ktmOfJaKG5eytbIxcexYmhhKcDe4LK1PteGKHSFedunkPYzacg5mRBGc/7FtvT8HVaZ+loUOHYtu2bQCA3NxcdO3aFUuWLMGwYcOwatWqmiUmItIRD9sIFJUpsOfBHAsiqrnNZxIBaFe7gH+rUbEUFRWFnj17AgB+/vlnODo6Ijk5GVu3bsXy5ctrNSARkbYRiUSa9aq2hCdBoXzqAXoiekBb2wX8W42KpcLCQlhYqCc1Hj58GC+//DLEYjG6du2K5OTkWg1IRKSNhvo2hrWpoaaNABHVzMN2Ab1a2mtVu4B/q1Gx1Lx5c+zfvx+3b9/GoUOH0K9fPwBAVlYW5+wQUYNgYvRPG4HNnOhNVCP/bhcwvrubsGGqUKNiaf78+Xj33Xfh5uYGf39/BAQEAFCPMvn5+dVqQCIibfVGQDNIxCKcSchGXIZc6DhEOudhuwB3OzP0aqFd7QL+rUbF0iuvvIKUlBRcuHABISEhmv19+/bF999/X2vhiIi0WWNrEwS1dQTANgJET6tCu4CAZlrXLuDfatzB28nJCX5+fhCL/7lEly5d0Lp161oJRkSkC8Z3U3ca3ncxFfcLSgVOQ6Q7Tt68h/isfJhLDTC8YxOh41SJy50QET2Dzm428HK2RHGZErvOs40AUXU9nOunre0C/o3FEhHRMxCJRJjwYGLqtvAklCuUwgYi0gGJ9wpwNC4LIhE0bTi0GYslIqJnNNjHBbZmRkiTFePINbYRIHqSh3OVnm/lADc7M2HDVAOLJSKiZ2RsKMHrXdRtBDZxojdRleTFZdirA+0C/o3FEhFRLRjTtRkMxCJEJOYgJlUmdBwirbX3wh0UlCrQwsEcPZrbCR2nWlgsERHVAicrYwzwdgYAbDqdJGwYIi2lUP7TLmB8dzeIRNrbLuDfWCwREdWShxO9f7+Uhrt5JcKGIdJCx+KykJJTCEtjA7zk11joONXGYomIqJZ0aGoDX1drlCqU2HkuReg4RFpn05lEAMCoLk1hamQgcJrqY7FERFSLNG0EziajpFwhbBgiLXI9Iw+n47MhFqmXCtIlLJaIiGrRQG9nOFpKcS+/BH9cThc6DpHW2PxgVCmorROa2JgKnObpsFgiIqpFhhIxxga4AQA2nk6ESqUSNhCRFsgpKMWvUakAdKMJ5X+xWCIiqmWjujSF1ECMmFQ5LiTfFzoOkeB+ikhBSbkS7Rpboou7rdBxnhqLJSKiWmZrZqR50mfT6USB0xAJq7Rcia3hSQCAN7u760y7gH9jsUREVAcediYOicnAnfuFwoYhEtBfMenIlJfA3kKKF9u7CB2nRlgsERHVgdZOlujevBGUKmBbeLLQcYgEoVKpsOGUenR1bNdmMDLQzbJDN1MTEemAN7u7AwB2RqSgoKRc4DRE9S8q5T4u35HByECM1/2bCh2nxnSmWMrJycHo0aNhaWkJa2trTJw4Efn5+VUeP3PmTLRq1QomJiZo2rQp3n77bchkFddsEolEj2y7du2q67dDRA1An1YOcLczQ15xOX6OvCN0HKJ6t/FUEgDgJd/GaGQuFTbMM9CZYmn06NG4evUqjhw5goMHD+LEiROYMmVKpcenpaUhLS0NixcvRkxMDDZv3oyQkBBMnDjxkWM3bdqE9PR0zTZs2LA6fCdE1FCIxSJNk8pNpxOhVLKNADUcd+4X4q8Yda+xCT3chA3zjHSi13hsbCxCQkJw/vx5dOrUCQCwYsUKDBw4EIsXL4aLy6MTxtq1a4dffvlF87Onpye+/PJLjBkzBuXl5TAw+OetW1tbw8nJqe7fCBE1OMM7NMHiQ9eRlF2I0LgsvODlKHQkonqxLTwZShXQvXkjtHayFDrOM9GJkaXw8HBYW1trCiUACAwMhFgsxrlz56p9HZlMBktLywqFEgBMnz4ddnZ26NKlCzZu3PjEJnIlJSWQy+UVNiKixzGTGmDUg7kaG07dEjgNUf0oKCnHTxHq9REfzt3TZTpRLGVkZMDBwaHCPgMDA9ja2iIjI6Na17h37x4WLlz4yK27zz//HHv27MGRI0cwfPhwvPXWW1ixYkWV11q0aBGsrKw0m6ur69O9ISJqUMYFuEEiFuHsrRxcTZM9+QQiHfdz5B3Ii8vhbmeGPq0cnnyClhO0WPrggw8eO8H631tcXNwz/x65XI5BgwbBy8sLn376aYXXPvnkE3Tv3h1+fn54//33MW/ePHz33XdVXi84OBgymUyz3b59+5kzEpH+crE2wUBvZwDQPEZNpK8UShU2PmjG+mZ3N4jFuteE8r8EnbM0d+5cjB8/vspjPDw84OTkhKysrAr7y8vLkZOT88S5Rnl5eejfvz8sLCywb98+GBoaVnm8v78/Fi5ciJKSEkilj5+5L5VKK32NiOhxJvZwx++X0vD7pTR80L81HCyNhY5EVCf+js1EcnYhrEwMMbxjE6Hj1ApBiyV7e3vY29s/8biAgADk5uYiMjISHTt2BAAcPXoUSqUS/v7+lZ4nl8sRFBQEqVSKAwcOwNj4yX84RUdHw8bGhsUQEdUqX1drdGxmg8jk+9h2Nhlz+7USOhJRndhwUj2qNNq/KUyNdOI5sifSiTlLbdq0Qf/+/TF58mRERETg9OnTmDFjBkaOHKl5Ei41NRWtW7dGREQEAHWh1K9fPxQUFGDDhg2Qy+XIyMhARkYGFAoFAOD333/H+vXrERMTg/j4eKxatQpfffUVZs6cKdh7JSL99XCi6/azySguUwichqj2Xbqdi4ikHBhKRBjXzU3oOLVGZ0q+HTt2YMaMGejbty/EYjGGDx+O5cuXa14vKyvD9evXUVioXoMpKipK86Rc8+bNK1wrMTERbm5uMDQ0xMqVK/HOO+9ApVKhefPmWLp0KSZPnlx/b4yIGoygto5obG2C1Nwi/BqVqtMdjYke5+GcvMHtXeCoR7eaRaonPSdPTySXy2FlZaVpTUBEVJn1J2/hiz9i4WFvhr/f6aUXk1+JACAttwg9vz0GhVKFgzN7oF1jK6EjPVF1v7914jYcEZG+GNHZFRZSA9y6W4CjcVlPPoFIR2w5kwSFUoUAj0Y6USg9DRZLRET1yMLYUNOkct1JNqkk/ZBfUo6dD5pQTuqp+00o/4vFEhFRPRvfzQ0GYhHOJebgyh02qSTdt/fCbeQVl8NDT5pQ/heLJSKieuZibYIX26ubVHJ0iXRduUKpmdg9oYe7Xs7DY7FERCSAST09AAB/XElHam6RwGmIai7kagbu3C+CrZkRXumgH00o/4vFEhGRANo1tkKARyMolCpsPs0lUEg3qVQqrD2hHh19o2szmBhJBE5UN1gsEREJZPJz6omwuyJuI6+4TOA0RE/vXGIOLt+RQWogxtiAZkLHqTMsloiIBNK7pQM87c2QV1KO3ee5IDfpnnUPRpVe6dgEjcz1d5kwFktERAIRi0WauUsbTyWiTKEUOBFR9d3MzENoXBZEIvVC0fqMxRIRkYBe8msMO3Mp0mTFOHg5Teg4RNW2/sGCuS+0cYSHvbnAaeoWiyUiIgEZG0owobsbAGDN8VvgClSkC7LyirHvYioAYGovD4HT1D0WS0REAhvj3wymRhLEZeTh+I27QscheqItZ5JQqlCiQ1NrdGxmK3ScOsdiiYhIYFamhhjVRb0EyprjbFJJ2q2gpBzbz6qXNpnynP6PKgEsloiItMKbPdxhIBYh/FY2Lt/JFToOUaV2n78NWVEZ3BqZ4gUvJ6Hj1AsWS0REWqCxtQkG+7gAANac4OgSaacyhRLrHyzRM/k5D0j0cGmTx2GxRESkJR7e0vjrSjqSswsETkP0qAPRaUiTFcPOXIrherq0yeOwWCIi0hJtnC3Rq6U9lKp/Hssm0hZKpQprTiQAAN7s4QZjQ/1c2uRxWCwREWmRh49h77lwG9n5JQKnIfrH0bgs3MjMh7nUAKP99Xdpk8dhsUREpEUCPBqhfRMrlJQrsflMktBxiDRWH1ePKo3u2hRWJoYCp6lfLJaIiLSISCTCtF6eANS9bLjALmmDC0k5uJB8H0YSMSZ21++lTR6HxRIRkZYJausED3szyIvLsfNcitBxiDSjSi93aAwHS2OB09Q/FktERFpGLBbhfw9Gl9afSkRxmULgRNSQXc/Iw9+x6gVzG0oTyv9isUREpIWG+TaGs5Ux7uaV4JeoO0LHoQbs4RNw/ds66f2CuZVhsUREpIWMDMSY3FP9t/g1x2+hXKEUOBE1RLdzCvFbdBoAaEY7GyIWS0REWmpkF1fYmhkhJacQf1xJFzoONUCrjydAoVShZws7+LhaCx1HMCyWiIi0lKmRASZ0cwMArApLgEqlEjYQNSiZ8mLsvaC+BTy9T3OB0wiLxRIRkRYbG+AGMyMJ4jLycDQuS+g41ICsO3ELpQolOjWzgb+7rdBxBMViiYhIi1mZGmJMV3W35JXH4jm6RPUip6AUOx60rZj+fHOIRA1jwdzKsFgiItJyE3u4w8hAjKiUXIQnZAsdhxqATacTUVSmQLvGlujd0l7oOIJjsUREpOUcLI0xqrMrAGD50ZsCpyF9Jy8u0yy1M6MPR5UAFktERDphai9PGEpEOHsrBxGJOULHIT22LTwZecXlaOFgjn5eTkLH0Qo6Uyzl5ORg9OjRsLS0hLW1NSZOnIj8/Pwqz+nduzdEIlGF7X//+1+FY1JSUjBo0CCYmprCwcEB7733HsrLy+vyrRARPTUXaxO80lE9urSCo0tUR4pKFdh4KhEA8FYfT4jFHFUCdKhYGj16NK5evYojR47g4MGDOHHiBKZMmfLE8yZPnoz09HTN9u2332peUygUGDRoEEpLS3HmzBls2bIFmzdvxvz58+vyrRAR1chbvT0hEYtw8uY9XEy5L3Qc0kM7ziUju6AUTW1NMbi9i9BxtIZOFEuxsbEICQnB+vXr4e/vjx49emDFihXYtWsX0tLSqjzX1NQUTk5Oms3S0lLz2uHDh3Ht2jVs374dvr6+GDBgABYuXIiVK1eitLS0rt8WEdFTcbU1xUt+jQEAK47GC5yG9E1xmQJrTtwCoC7MDSQ6USLUC534JMLDw2FtbY1OnTpp9gUGBkIsFuPcuXNVnrtjxw7Y2dmhXbt2CA4ORmFhYYXrent7w9HRUbMvKCgIcrkcV69erfSaJSUlkMvlFTYiovowvU9ziEXA0bgsxKTKhI5DemTnuRTczStBY2sTvNyhidBxtIpOFEsZGRlwcHCosM/AwAC2trbIyMio9LzXX38d27dvx7FjxxAcHIxt27ZhzJgxFa7770IJgObnqq67aNEiWFlZaTZXV9eavC0ioqfmbmeGwT7q2yOcu0S1pbhMgVXH1Qvmzni+OYwMdKI8qDeCfhoffPDBIxOw/7vFxcXV+PpTpkxBUFAQvL29MXr0aGzduhX79u1DQkLCM+UODg6GTCbTbLdv336m6xERPQ3149zAoauZiE3nyDY9u58i/hlVGs5RpUcYCPnL586di/Hjx1d5jIeHB5ycnJCVVbHNf3l5OXJycuDkVP3HGv39/QEA8fHx8PT0hJOTEyIiIiock5mZCQBVXlcqlUIqlVb79xIR1aYWjhYY2M4Zf1xJx/LQm1g1pqPQkUiHFZcpsCpMPYgwvQ9HlR5H0GLJ3t4e9vZP7gwaEBCA3NxcREZGomNH9R8KR48ehVKp1BRA1REdHQ0AcHZ21lz3yy+/RFZWluY235EjR2BpaQkvL6+nfDdERPXn7b4t8GdMOv6KycDVNBnaulgJHYl01K6IFGQ9GFV6pSNHlR5HJ8rHNm3aoH///pg8eTIiIiJw+vRpzJgxAyNHjoSLi/refWpqKlq3bq0ZKUpISMDChQsRGRmJpKQkHDhwAGPHjsVzzz2H9u3bAwD69esHLy8vvPHGG7h06RIOHTqEjz/+GNOnT+fIERFptVZOFnjxwaPdy/7m3CWqmX/PVXqrjydHlSqhM5/Kjh070Lp1a/Tt2xcDBw5Ejx49sHbtWs3rZWVluH79uuZpNyMjI/z999/o168fWrdujblz52L48OH4/fffNedIJBIcPHgQEokEAQEBGDNmDMaOHYvPP/+83t8fEdHTmtW3BcQi4Mi1TFy5wyfj6OntPn8bmfISuFgZ49WOfFipMiIVl7B+ZnK5HFZWVpDJZBX6OBER1bV3dkdj38VUPN/aARvHdxY6DumQ4jIFen13DJnyEnwxrB3GdG0mdKR6V93vb50ZWSIioke93bcFJGIRjsZlsas3PZXtZ5ORKVfPVXq1E+cqVYXFEhGRDnO3M9N09f6ec5eomgpKyvF/D56Ae7tvc0gNJAIn0m4sloiIdNzbz6tHl07cuIsLSTlCxyEdsOl0InIKSuFuZ8a+StXAYomISMc1bWSKVx888r30yA2B05C2kxWWadaAmx3YgmvAVQM/ISIiPTDj+eYwlIhwJiEbp+PvCR2HtNjakwnIKy5HK0cLDH7QfoKqxmKJiEgPNLExxWh/9dNM34bEgQ860+Pcyy/BptNJAIA5/VpCLBYJG0hHsFgiItIT0/s0h6mRBJfuyHDoauWLgVPDtSosAYWlCvg0sUI/L8cnn0AAWCwREekNewspJvVwBwB8d+g6yhVKgRORNkmXFWHb2WQAwNx+rSAScVSpulgsERHpkUnPecDa1BAJdwvw68VUoeOQFvnh75soLVeii7sterawEzqOTmGxRESkRyyNDTG9d3MAwLIjN1BcphA4EWmDm5l52HPhNgDg/f4cVXpaLJaIiPTMGwHN4GxljDRZMbY/uO1CDds3IdehVAH9vBzRsZmt0HF0DoslIiI9Y2wowezAFgCAlcfikVdcJnAiEtL5pBz8HZsJiViEef1bCx1HJ7FYIiLSQ8M7NIGHvRnuF5Zh7YMGhNTwqFQqfPVnLABgRGdXNHcwFziRbmKxRESkhwwkYswLagUAWHfyFtJlRQInIiEcupqBiym5MDGUYHbfFkLH0VksloiI9FRQWyd0drNBcZkSiw9xGZSGpkyhxLch1wEAk3u6w8HSWOBEuovFEhGRnhKJRPhokBcA4NeLdxCTKhM4EdWn3edv49a9AjQyM8KUXp5Cx9FpLJaIiPSYr6s1hvi4QKUCvvozlsugNBD5JeVY9vdNAMDbfVvAXGogcCLdxmKJiEjPzevfCkYGYpxJyMbRuCyh41A9WHksHvfyS+BuZ4ZRXZoKHUfnsVgiItJzTWxM8WZ39TIoX/0ZizIug6LXUrILseFkIgDgo4FtYGTAr/pnxU+QiKgBeKuPJ2zNjJBwtwC7IlKEjkN1aNFfsShVKNGjuR36tnEQOo5eYLFERNQAWBobahpVfv/3TciK2KhSH529lY2/YjIgFgGfvOjFZU1qCYslIqIGYlSXpmjuYI6cglIs+5utBPSNQqnCZ79fAwCM9m+GVk4WAifSHyyWiIgaCEOJGAsGq1sJbA1PxvWMPIETUW3ac+E2YtPlsDQ2wDsvtBQ6jl5hsURE1ID0bGGPoLaOUChV+PTAVbYS0BPy4jIsPqRuQDkrsCVszYwETqRfWCwRETUwHw/ygtRAjPBb2fjzSobQcagWrAi9ieyCUnjYm2FsQDOh4+gdFktERA2Mq60p/vego/MXf1xDYWm5wInoWVzPyMPG00kA1JO6DSX8aq9t/ESJiBqgab090cTGBOmyYvzfsQSh41ANqVQqfLz/ChRKFfq3dUKfVmwVUBdYLBERNUDGhhJ8/GDduLUnbiE5u0DgRFQTv0Sl4nzSfZgaSTD/weR9qn0sloiIGqigto7o2cIOpQolFnCyt87JLSzFoj9jAQCz+raAi7WJwIn0F4slIqIGSiQS4dMhbWEkESPs+l0cvJwudCR6Ct8duo7sglK0cDDHmz3chY6j11gsERE1YJ725nirj3qy92e/X4OskJ29dUH07VzsfLBszcJh7Tipu47pzKebk5OD0aNHw9LSEtbW1pg4cSLy8/MrPT4pKQkikeix2969ezXHPe71Xbt21cdbIiLSCtN6e8LT3gz38kvwdUic0HHoCRRK9aRulQp42a8xuno0EjqS3tOZYmn06NG4evUqjhw5goMHD+LEiROYMmVKpce7uroiPT29wvbZZ5/B3NwcAwYMqHDspk2bKhw3bNiwOn43RETaQ2ogwVcveQMAfopIwfmkHIETUVU2nkpETKocFsYGCB7YRug4DYJOFEuxsbEICQnB+vXr4e/vjx49emDFihXYtWsX0tLSHnuORCKBk5NThW3fvn147bXXYG5uXuFYa2vrCscZGxvXx9siItIa/h6NMLKzKwDgw1+voLRcKXAiepykewVYfFjdqfujgW1gbyEVOFHDoBPFUnh4OKytrdGpUyfNvsDAQIjFYpw7d65a14iMjER0dDQmTpz4yGvTp0+HnZ0dunTpgo0bNz7xiZCSkhLI5fIKGxGRrgse0AZ25ka4mZWPNcfZe0nbKJUqvP/LZZSUK9G9eSOMeFDcUt3TiWIpIyMDDg4VG20ZGBjA1tYWGRnVa9W/YcMGtGnTBt26dauw//PPP8eePXtw5MgRDB8+HG+99RZWrFhR5bUWLVoEKysrzebqyn9hiUj3WZka4pMX1b16VhyLR3wWF9rVJjsjUnAuMQcmhhJ8/XJ7iEQioSM1GIIWSx988EGlk7AfbnFxzz7ZsKioCDt37nzsqNInn3yC7t27w8/PD++//z7mzZuH7777rsrrBQcHQyaTabbbt28/c0YiIm0wxMcFfVrZo7Rcibl7LqFcwdtx2iAttwhf/6X+PnwvqBVcbU0FTtSwGAj5y+fOnYvx48dXeYyHhwecnJyQlZVVYX95eTlycnLg5OT0xN/z888/o7CwEGPHjn3isf7+/li4cCFKSkoglT7+XrBUKq30NSIiXSYSibDo5fbo9/1xXLojw5oTtzC9T3OhYzVoKpUKH+67gvyScnRoao1x3dyEjtTgCFos2dvbw97e/onHBQQEIDc3F5GRkejYsSMA4OjRo1AqlfD393/i+Rs2bMCQIUOq9buio6NhY2PDYoiIGiwnK2N8NrQt3tl9Ccv+voE+rRzg5WIpdKwGa9/FVIRdvwsjiRjfvtIeEjFvv9U3nZiz1KZNG/Tv3x+TJ09GREQETp8+jRkzZmDkyJFwcXEBAKSmpqJ169aIiIiocG58fDxOnDiBSZMmPXLd33//HevXr0dMTAzi4+OxatUqfPXVV5g5c2a9vC8iIm01zLcx+nk5okyhwty9l/h0nEDu3C/EggNXAQCzAluguYOFwIkaJp0olgBgx44daN26Nfr27YuBAweiR48eWLt2reb1srIyXL9+HYWFhRXO27hxI5o0aYJ+/fo9ck1DQ0OsXLkSAQEB8PX1xZo1a7B06VIsWLCgzt8PEZE2E4lE+PIlb9iYGiI2XY4VR28KHanBUShVmLPnEvKKy+HX1BpTn/MQOlKDJVJx5cRnJpfLYWVlBZlMBktLDlUTkf7480o63toRBYlYhF+ndYOPq7XQkRqMVWEJ+CYkDmZGEvw5qyeaNTITOpLeqe73t86MLBERUf0b6O2MwT4uUChVmL07Gvkl5UJHahBiUmVYekTdfHLBkLYslATGYomIiKq0cGhbOFsZI/FeAeb/FiN0HL1XVKrA27suokyhQv+2Tni1YxOhIzV4LJaIiKhK1qZG+GGkH8Qi4NeoVPwSeUfoSHrtqz9jcetuARwspFj0sjebT2oBFktERPREXdxt8U5gSwDAJ7/FIOFuvsCJ9NOhqxnYdjYZALDkNR/YmBkJnIgAFktERFRNb/Vpjm6ejVBYqsCMnRdRXKYQOpJeSbxXgHf3XAIATO7pjp4tntwbkOoHiyUiIqoWiViE70f4opGZEWLT5Vj0Z6zQkfRGUakC07ZHIq+kHJ3dbDCvf2uhI9G/sFgiIqJqc7Q0xpLXfAAAW8KTceBSmsCJdJ9KpcInv8UgLiMPduZG+PH1DjCU8OtZm/CfBhERPZXerRwwrbcnAGDez5cQkyoTOJFu233+Nn6OvAOxCFg+yg+OlsZCR6L/YLFERERP7d1+rdCrpT2Ky5SYui0S2fklQkfSSTGpMsx/sJzJu0Gt0M3TTuBE9DgsloiI6KlJxCIsH+kHdzszpOYWYdqOKJQpuH7c08jKK8bUbZEoLVcisI0D/vecp9CRqBIsloiIqEasTA2xbmxHmEsNEJGYg4UHrwkdSWcUlSowecsFpOYWwcPODEte9YVYzH5K2orFEhER1VhzBwt8P8IXALA1PBk7z6UIG0gHKJUqvLM7GpfuyGBjaoiN4zvDytRQ6FhUBRZLRET0TF7wcsTcF/5pWHk0LlPgRNrtm5A4hFzNgJFEjLVjO8HNjuu+aTsWS0RE9MxmPN8cL/s1hkKpwls7ohCVcl/oSFrpp4gUrDlxCwDw7Svt0dnNVuBEVB0sloiI6JmJRCJ880p7zRNyb24+j/isPKFjaZWjcZn4eL96IeLZgS0wzK+xwImoulgsERFRrTCUiPF/ozvAx9UauYVlGLshAhmyYqFjaYXT8ffwv+1RUChVeMmvMWb1bSF0JHoKLJaIiKjWmEkNsGl8Z3jYmyFNVoxxGyOQW1gqdCxBnU/KwaQtF1BarsQLXo749pX2EIn45JsuYbFERES1ytbMCFvf7AIHCymuZ+bh9XXnkFPQMAumS7dzMWHTeRSVKdCrpT1+fN2PS5noIP4TIyKiWtfExhTbJ/nDzlyKa+lyjFwbjrt5DavL97U0OcZujEB+STkCPBphzRsdITWQCB2LaoDFEhER1YmWjhbYNaUrHCykuJGZj5Frw5EpbxhzmKJS7uP19WchKypDh6bWWD+uE4wNWSjpKhZLRERUZ5o7mGPP1AC4WBkj4W4BXlsTjtTcIqFj1amjcZl4fd1Z5BaWwdfVGpvf7AIzqYHQsegZsFgiIqI65WZnht1TA+Bqa4Lk7EK8uuoMrqXJhY5VJ/ZeuI3JWyNRXKZEn1b22DnZH5bG7M6t61gsERFRnXO1NcXuKQGap+ReWX0Gh69mCB2r1qhUKqwKS8B7P1+GQqnC8A5NsHZsJ5gacURJH7BYIiKieuFibYJ907qjR3M7FJYqMHV7JFaFJUClUgkd7ZkUlSow7+fL+CYkDgDwv16eWPxqez71pkf4T5KIiOqNlakhNk3ojDe6NoNKpV4nbe7eSyguUwgdrUYS7xXgpf87jb2RdyAWAZ+86IUPBrRmHyU9w2KJiIjqlaFEjIXD2uHzoW0hEYvwa1Qqhq08jdh03ZrH9NeVdAxecQpxGXmwMzfC9kn+mNjDXehYVAdYLBERkSDGBrhhy4QusDM3QlxGHob8eAqrjydAodTu23KFpeX49MBVTNsRhfyScnRxs8Ufb/dEN087oaNRHRGpdP1msRaQy+WwsrKCTCaDpaWl0HGIiHTKvfwSBP96BUeuZQIAurjZYslrPnC1NRU42aNCYzMx/7ermvYHU3t54L1+rWDA+Uk6qbrf3yyWagGLJSKiZ6NSqbD3wh189vtVFJQqYGwoxuSeHpjayxPmWtCjKENWjM9+v4q/YtRP8DW2NsEXL7VDn1YOAiejZ8FiqR6xWCIiqh0p2YV49+dLiEjMAQDYmRthdmBLjOzsKsjojaywDJvPJGHdyVvILymHRCzCpJ7umNW3BdsC6AEWS/WIxRIRUe1RqVQIicnANyFxSMouBKDuBD6tlycGtXeul2VD7uaVYP2pW9genoyCUvWTen5NrfHVS95o48w/5/VFdb+/deYm65dffolu3brB1NQU1tbW1TpHpVJh/vz5cHZ2homJCQIDA3Hz5s0Kx+Tk5GD06NGwtLSEtbU1Jk6ciPz8/Dp4B0REVB0ikQgDvJ1x+J1e+HSwF2xMDRGflY+5ey/B/6tQLDx4DQl3a//PaYVShXO3svHhvivo8c1RrDl+CwWlCrR2ssCKUX745X/dWCg1UDozsrRgwQJYW1vjzp072LBhA3Jzc594zjfffINFixZhy5YtcHd3xyeffIIrV67g2rVrMDY2BgAMGDAA6enpWLNmDcrKyjBhwgR07twZO3furHY2jiwREdUdeXEZtoUnY+e5lArrynVqZoOeLezRvXkj+Lha16gJZGm5EhdT7uPPK+n4MyYDd/NKNK/5ulpjRp/m6NvGgX2T9JTe3obbvHkzZs+e/cRiSaVSwcXFBXPnzsW7774LAJDJZHB0dMTmzZsxcuRIxMbGwsvLC+fPn0enTp0AACEhIRg4cCDu3LkDFxeXamVisUREVPcUShVO3LiLHeeScTQuC//uMGBqJEFnN1u0dDSHs5UJnK2M4WxtAhtTQ5SUK1FUqkBxmQKFpQok3M1HbHoerqXLEZ+VhzLFPxeyNDZAv7ZOeLlDYwR4NGKRpOeq+/2tt7PTEhMTkZGRgcDAQM0+Kysr+Pv7Izw8HCNHjkR4eDisra01hRIABAYGQiwW49y5c3jppZcee+2SkhKUlPzztw+5XLcaqRER6SKJWIQ+rR3Qp7UD0nKLcOx6Fs7EZyP8VjZyCkpx/MZdHL9x96mva21qiMA2jhjk7Yzuze1gZKAzM1SonuhtsZSRoX6809HRscJ+R0dHzWsZGRlwcKj42KeBgQFsbW01xzzOokWL8Nlnn9VyYiIiqi4XaxOM9m+G0f7NoFSqcD0zDxGJObidU4h0WTHSZUVIlxVDVlQGY0MJTAwlkBqKYWIoQRMbE7RxtoSXsyXaOFuiiY0JR5CoSoIWSx988AG++eabKo+JjY1F69at6ylR9QQHB2POnDman+VyOVxdXQVMRETUcInFIrR5UPgQ1QVBi6W5c+di/PjxVR7j4eFRo2s7OTkBADIzM+Hs7KzZn5mZCV9fX80xWVlZFc4rLy9HTk6O5vzHkUqlkEqlNcpFREREukXQYsne3h729vZ1cm13d3c4OTkhNDRUUxzJ5XKcO3cO06ZNAwAEBAQgNzcXkZGR6NixIwDg6NGjUCqV8Pf3r5NcREREpFt0ZhZbSkoKoqOjkZKSAoVCgejoaERHR1foidS6dWvs27cPgLpPx+zZs/HFF1/gwIEDuHLlCsaOHQsXFxcMGzYMANCmTRv0798fkydPRkREBE6fPo0ZM2Zg5MiR1X4SjoiIiPSbzkzwnj9/PrZs2aL52c/PDwBw7Ngx9O7dGwBw/fp1yGQyzTHz5s1DQUEBpkyZgtzcXPTo0QMhISGaHksAsGPHDsyYMQN9+/aFWCzG8OHDsXz58vp5U0RERKT1dK7PkjZinyUiIiLdo3fLnRAREREJgcUSERERURVYLBERERFVgcUSERERURVYLBERERFVgcUSERERURVYLBERERFVgcUSERERURVYLBERERFVQWeWO9FmD5ugy+VygZMQERFRdT383n7SYiYslmpBXl4eAMDV1VXgJERERPS08vLyYGVlVenrXBuuFiiVSqSlpcHCwgIikajWriuXy+Hq6orbt29zzbnH4OdTNX4+leNnUzV+PlXj51M1Xfp8VCoV8vLy4OLiArG48plJHFmqBWKxGE2aNKmz61taWmr9v3BC4udTNX4+leNnUzV+PlXj51M1Xfl8qhpReogTvImIiIiqwGKJiIiIqAoslrSYVCrFggULIJVKhY6ilfj5VI2fT+X42VSNn0/V+PlUTR8/H07wJiIiIqoCR5aIiIiIqsBiiYiIiKgKLJaIiIiIqsBiiYiIiKgKLJa02MqVK+Hm5gZjY2P4+/sjIiJC6Eha4cSJExg8eDBcXFwgEomwf/9+oSNpjUWLFqFz586wsLCAg4MDhg0bhuvXrwsdS2usWrUK7du31zTLCwgIwF9//SV0LK319ddfQyQSYfbs2UJH0QqffvopRCJRha1169ZCx9IaqampGDNmDBo1agQTExN4e3vjwoULQseqFSyWtNTu3bsxZ84cLFiwAFFRUfDx8UFQUBCysrKEjia4goIC+Pj4YOXKlUJH0TrHjx/H9OnTcfbsWRw5cgRlZWXo168fCgoKhI6mFZo0aYKvv/4akZGRuHDhAp5//nkMHToUV69eFTqa1jl//jzWrFmD9u3bCx1Fq7Rt2xbp6ema7dSpU0JH0gr3799H9+7dYWhoiL/++gvXrl3DkiVLYGNjI3S0WsHWAVrK398fnTt3xo8//ghAvf6cq6srZs6ciQ8++EDgdNpDJBJh3759GDZsmNBRtNLdu3fh4OCA48eP47nnnhM6jlaytbXFd999h4kTJwodRWvk5+ejQ4cO+L//+z988cUX8PX1xbJly4SOJbhPP/0U+/fvR3R0tNBRtM4HH3yA06dP4+TJk0JHqRMcWdJCpaWliIyMRGBgoGafWCxGYGAgwsPDBUxGukYmkwFQFwRUkUKhwK5du1BQUICAgACh42iV6dOnY9CgQRX+DCK1mzdvwsXFBR4eHhg9ejRSUlKEjqQVDhw4gE6dOuHVV1+Fg4MD/Pz8sG7dOqFj1RoWS1ro3r17UCgUcHR0rLDf0dERGRkZAqUiXaNUKjF79mx0794d7dq1EzqO1rhy5QrMzc0hlUrxv//9D/v27YOXl5fQsbTGrl27EBUVhUWLFgkdRev4+/tj8+bNCAkJwapVq5CYmIiePXsiLy9P6GiCu3XrFlatWoUWLVrg0KFDmDZtGt5++21s2bJF6Gi1wkDoAERUN6ZPn46YmBjOqfiPVq1aITo6GjKZDD///DPGjRuH48ePs2ACcPv2bcyaNQtHjhyBsbGx0HG0zoABAzT/v3379vD390ezZs2wZ8+eBn8bV6lUolOnTvjqq68AAH5+foiJicHq1asxbtw4gdM9O44saSE7OztIJBJkZmZW2J+ZmQknJyeBUpEumTFjBg4ePIhjx46hSZMmQsfRKkZGRmjevDk6duyIRYsWwcfHBz/88IPQsbRCZGQksrKy0KFDBxgYGMDAwADHjx/H8uXLYWBgAIVCIXRErWJtbY2WLVsiPj5e6CiCc3Z2fuQvHG3atNGb25QslrSQkZEROnbsiNDQUM0+pVKJ0NBQzq2gKqlUKsyYMQP79u3D0aNH4e7uLnQkradUKlFSUiJ0DK3Qt29fXLlyBdHR0ZqtU6dOGD16NKKjoyGRSISOqFXy8/ORkJAAZ2dnoaMIrnv37o+0Kblx4waaNWsmUKLaxdtwWmrOnDkYN24cOnXqhC5dumDZsmUoKCjAhAkThI4muPz8/Ap/k0tMTER0dDRsbW3RtGlTAZMJb/r06di5cyd+++03WFhYaOa4WVlZwcTEROB0wgsODsaAAQPQtGlT5OXlYefOnQgLC8OhQ4eEjqYVLCwsHpnfZmZmhkaNGnHeG4B3330XgwcPRrNmzZCWloYFCxZAIpFg1KhRQkcT3DvvvINu3brhq6++wmuvvYaIiAisXbsWa9euFTpa7VCR1lqxYoWqadOmKiMjI1WXLl1UZ8+eFTqSVjh27JgKwCPbuHHjhI4muMd9LgBUmzZtEjqaVnjzzTdVzZo1UxkZGans7e1Vffv2VR0+fFjoWFqtV69eqlmzZgkdQyuMGDFC5ezsrDIyMlI1btxYNWLECFV8fLzQsbTG77//rmrXrp1KKpWqWrdurVq7dq3QkWoN+ywRERERVYFzloiIiIiqwGKJiIiIqAosloiIiIiqwGKJiIiIqAosloiIiIiqwGKJiIiIqAosloiIiIiqwGKJiHROUlISRCIRoqOjhY6i0bt3b8yePVvzs5ubG5YtWyZYHiKqPVzuhIh0jqurK9LT02FnZyd0lEqdP38eZmZmQscgolrAYomIdI5EIoGTk1OtX7esrAyGhoa1ci17e/tauQ4RCY+34YhIUHfv3oWTkxO++uorzb4zZ87AyMgIoaGhjz3nv7fhwsLCIBKJEBoaik6dOsHU1BTdunV7ZBX0x11j9+7d6NWrF4yNjbFjxw5kZ2dj1KhRaNy4MUxNTeHt7Y2ffvqpwrkFBQUYO3YszM3N4ezsjCVLljxy/f/ehlu6dCm8vb1hZmYGV1dXvPXWW8jPz9e8vnnzZlhbW+PQoUNo06YNzM3N0b9/f6Snp2uOCQsLQ5cuXWBmZgZra2t0794dycnJVX6+RPTsWCwRkaDs7e2xceNGfPrpp7hw4QLy8vLwxhtvYMaMGejbt+9TXeujjz7CkiVLcOHCBRgYGODNN9984jkffPABZs2ahdjYWAQFBaG4uBgdO3bEH3/8gZiYGEyZMgVvvPEGIiIiNOe89957OH78OH777TccPnwYYWFhiIqKqvL3iMViLF++HFevXsWWLVtw9OhRzJs3r8IxhYWFWLx4MbZt24YTJ04gJSUF7777LgCgvLwcw4YNQ69evXD58mWEh4djypQpEIlET/UZEVENCL2SLxGRSqVSvfXWW6qWLVuqXn/9dZW3t7equLi40mMTExNVAFQXL15UqVQq1bFjx1QAVH///bfmmD/++EMFQFVUVFTlNZYtW/bEbIMGDVLNnTtXpVKpVHl5eSojIyPVnj17NK9nZ2erTExMVLNmzdLsa9asmer777+v9Jp79+5VNWrUSPPzpk2bVAAqrGK/cuVKlaOjo+Z3AFCFhYU9MS8R1S6OLBGRVli8eDHKy8uxd+9e7NixA1Kp9Kmv0b59e83/d3Z2BgBkZWVVeU6nTp0q/KxQKLBw4UJ4e3vD1tYW5ubmOHToEFJSUgAACQkJKC0thb+/v+YcW1tbtGrVqsrf8/fff6Nv375o3LgxLCws8MYbbyA7OxuFhYWaY0xNTeHp6VnhPTzMb2tri/HjxyMoKAiDBw/GDz/8UOEWHRHVHRZLRKQVEhISkJaWBqVSiaSkpBpd49+Tsx/enlIqlVWe898n1r777jv88MMPeP/993Hs2DFER0cjKCgIpaWlNcoEqOdHvfjii2jfvj1++eUXREZGYuXKlQBQ4br/nVwuEomgUqk0P2/atAnh4eHo1q0bdu/ejZYtW+Ls2bM1zkVE1cNiiYgEV1paijFjxmDEiBFYuHAhJk2a9MQRobpy+vRpDB06FGPGjIGPjw88PDxw48YNzeuenp4wNDTEuXPnNPvu379f4Zj/ioyMhFKpxJIlS9C1a1e0bNkSaWlpNcrn5+eH4OBgnDlzBu3atcPOnTtrdB0iqj4WS0QkuI8++ggymQzLly/H+++/j5YtW1ZrcnZdaNGiBY4cOYIzZ84gNjYWU6dORWZmpuZ1c3NzTJw4Ee+99x6OHj2KmJgYjB8/HmJx5X+cNm/eHGVlZVixYgVu3bqFbdu2YfXq1U+VKzExEcHBwQgPD0dycjIOHz6Mmzdvok2bNjV+r0RUPSyWiEhQYWFhWLZsGbZt2wZLS0uIxWJs27YNJ0+exKpVq+o9z8cff4wOHTogKCgIvXv3hpOTE4YNG1bhmO+++w49e/bE4MGDERgYiB49eqBjx46VXtPHxwdLly7FN998g3bt2mHHjh1YtGjRU+UyNTVFXFwchg8fjpYtW2LKlCmYPn06pk6dWpO3SURPQaT69w1xIiIiIqqAI0tEREREVWCxRERERFQFFktEREREVWCxRERERFQFFktEREREVWCxRERERFQFFktEREREVWCxRERERFQFFktEREREVWCxRERERFQFFktEREREVWCxRERERFSF/wdyQWCwERgxDwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\tut\\introduction_short_doc_36_0.png" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -870,7 +863,7 @@ "Number of equality constraint Jacobian evaluations = 2\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 1\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", "Total CPU secs in NLP function evaluations = 0.000\n", "\n", "EXIT: Optimal Solution Found.\n", @@ -1018,7 +1011,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/tut/introduction_short_exercise.ipynb b/idaes_examples/notebooks/docs/tut/introduction_short_exercise.ipynb index ae8806cf..972f6e44 100644 --- a/idaes_examples/notebooks/docs/tut/introduction_short_exercise.ipynb +++ b/idaes_examples/notebooks/docs/tut/introduction_short_exercise.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/tut/introduction_short_solution.ipynb b/idaes_examples/notebooks/docs/tut/introduction_short_solution.ipynb index 4ee4acc7..144a5c4b 100644 --- a/idaes_examples/notebooks/docs/tut/introduction_short_solution.ipynb +++ b/idaes_examples/notebooks/docs/tut/introduction_short_solution.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/tut/introduction_short_test.ipynb b/idaes_examples/notebooks/docs/tut/introduction_short_test.ipynb index 37262790..ad5bb664 100644 --- a/idaes_examples/notebooks/docs/tut/introduction_short_test.ipynb +++ b/idaes_examples/notebooks/docs/tut/introduction_short_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/tut/introduction_short_usr.ipynb b/idaes_examples/notebooks/docs/tut/introduction_short_usr.ipynb index 4ee4acc7..144a5c4b 100644 --- a/idaes_examples/notebooks/docs/tut/introduction_short_usr.ipynb +++ b/idaes_examples/notebooks/docs/tut/introduction_short_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/tut/introduction_solution.ipynb b/idaes_examples/notebooks/docs/tut/introduction_solution.ipynb index e88a5a6a..278bd54b 100644 --- a/idaes_examples/notebooks/docs/tut/introduction_solution.ipynb +++ b/idaes_examples/notebooks/docs/tut/introduction_solution.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/tut/introduction_test.ipynb b/idaes_examples/notebooks/docs/tut/introduction_test.ipynb index 632f8150..895f5053 100644 --- a/idaes_examples/notebooks/docs/tut/introduction_test.ipynb +++ b/idaes_examples/notebooks/docs/tut/introduction_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/tut/introduction_usr.ipynb b/idaes_examples/notebooks/docs/tut/introduction_usr.ipynb index e88a5a6a..278bd54b 100644 --- a/idaes_examples/notebooks/docs/tut/introduction_usr.ipynb +++ b/idaes_examples/notebooks/docs/tut/introduction_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/tut/notebook_test_script.py b/idaes_examples/notebooks/docs/tut/notebook_test_script.py index 05585fe7..f59bf587 100644 --- a/idaes_examples/notebooks/docs/tut/notebook_test_script.py +++ b/idaes_examples/notebooks/docs/tut/notebook_test_script.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# """ Script to test functionality of key components for use in workshops. diff --git a/idaes_examples/notebooks/docs/tut/sin_data.csv b/idaes_examples/notebooks/docs/tut/sin_data.csv index 9a49e32e..630b25ae 100644 --- a/idaes_examples/notebooks/docs/tut/sin_data.csv +++ b/idaes_examples/notebooks/docs/tut/sin_data.csv @@ -32,13 +32,13 @@ 30,1.9039955476301778,0.9450008187146685 31,1.967462065884517,0.9223542941045814 32,2.0309285841388562,0.8959937742913359 -33,2.0943951023931957,0.8660254037844386 +33,2.0943951023931957,0.8660254037844385 34,2.1578616206475347,0.8325698546347714 35,2.221328138901874,0.795761840530832 36,2.284794657156213,0.7557495743542583 37,2.3482611754105527,0.7126941713788627 -38,2.4117276936648917,0.6667690005162916 -39,2.475194211919231,0.6181589862206052 +38,2.4117276936648917,0.6667690005162917 +39,2.475194211919231,0.6181589862206051 40,2.53866073017357,0.5670598638627709 41,2.6021272484279097,0.5136773915734063 42,2.6655937666822487,0.4582265217274105 @@ -85,7 +85,7 @@ 83,5.267721015110158,-0.8497254299495144 84,5.331187533364497,-0.8145759520503358 85,5.394654051618837,-0.7761464642917566 -86,5.458120569873176,-0.7345917086575331 +86,5.458120569873176,-0.7345917086575332 87,5.521587088127515,-0.690079011482112 88,5.585053606381854,-0.6427876096865396 89,5.648520124636194,-0.5929079290546402 diff --git a/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial.ipynb b/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial.ipynb index 78c7ac2d..07cd8161 100644 --- a/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial.ipynb +++ b/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial.ipynb @@ -1,498 +1,499 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "id": "18d74e8e", - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "id": "e0e52d92", - "metadata": {}, - "source": [ - "# Flowsheet Visualizer Tutorial\n", - "\n", - "Author: Dan Gunter \n", - "Maintainer: Dan Gunter \n", - "Updated: 2023-06-01 \n", - "\n", - "The IDAES Flowsheet Visualizer provides a web-based UI for visualization and inspection of an existing IDAES model.\n", - "## Outline\n", - "\n", - "- Introduction\n", - "- Example flowsheet\n", - "- Running the Flowsheet Visualizer\n", - "- Running from a script\n", - "- Further reading" - ] - }, - { - "cell_type": "markdown", - "id": "84316245", - "metadata": {}, - "source": [ - "## Introduction\n", - "The IDAES Flowsheet Visualizer (FV) is a Python tool that provides a web-based visualization of any existing IDAES model or flowsheet. The visualization shows a diagram of the\n", - "flowsheet as well as a stream table. You can interact with the diagram and export\n", - "it as an image for inclusion in presentations or publications.\n", - "\n", - "This tutorial will show the basic steps of running the FV on an example\n", - "flowsheet, interacting with the resulting GUI, saving your work, and exporting\n", - "the diagram as an image. It will also show how the Visualizer can be updated\n", - "to reflect changes in the model components and/or variable values. The tutorial\n", - "will also show how to run the Visualizer from a Python script." - ] - }, - { - "cell_type": "markdown", - "id": "be083d68", - "metadata": {}, - "source": [ - "## Example flowsheet\n", - "This initial section creates an example flowsheet.\n", - "\n", - "### Setup\n", - "Module imports and any additional housekeeping needed\n", - "to initialize the code." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "c740809a", - "metadata": {}, - "outputs": [], - "source": [ - "import idaes_examples.mod.tut.visualizer_tutorial as vistut\n", - "\n", - "vistut.quiet() # turn off default logging and most warnings\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from IPython.display import Markdown" - ] - }, - { - "cell_type": "markdown", - "id": "52ee0d6c", - "metadata": {}, - "source": [ - "### Create the flowsheet" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "414d3072", - "metadata": {}, - "outputs": [], - "source": [ - "# use the pre-defined function to create the flowsheet\n", - "model = vistut.create_model()\n", - "\n", - "# description of the flowsheet we created\n", - "display(Markdown(vistut.function_markdown(vistut.create_model)))\n", - "\n", - "vistut.quiet()\n", - "\n", - "# initialize the flowsheet as a square problem (dof=0)\n", - "vistut.initialize_model(model)\n", - "\n", - "# verify that there are zero degrees of freedom\n", - "print(f\"DOF = {degrees_of_freedom(model)}\")" - ] - }, - { - "cell_type": "markdown", - "id": "8e88c1e9", - "metadata": {}, - "source": [ - "## Running the Flowsheet Visualizer\n", - "In most cases, you will run the FV by calling the `visualize()` method attached to your flowsheet.\n", - "This function takes a number of optional arguments, which we will look at briefly later, and one required argument:\n", - "the **title** to give the visualization. Unless you give more information, this title also is used as the filename in which to save its current state.\n", - "\n", - "In the following, we start the FV with the title \"Hydrodealkylation\". This will pop up a new browser tab (and save the status in a file called _Hydrodealkylation.json_).\n", - "\n", - "
\n", - "After the visualizer starts, we recommend making its tab into its own browser window and viewing it side-by-side with this notebook window.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "f05ab3ef", - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "import os\n", - "\n", - "if os.path.exists(\"Hydrodealkylation.json\"):\n", - " os.remove(\"Hydrodealkylation.json\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "91758e92", - "metadata": { - "tags": [ - "noauto" - ] - }, - "outputs": [], - "source": [ - "model.fs.visualize(\"Hydrodealkylation\")" - ] - }, - { - "cell_type": "markdown", - "id": "1174e60c", - "metadata": {}, - "source": [ - "### Optional arguments\n", - "The optional (keyword) arguments are documented in the base function, which can be found in `idaes.core.ui.fsvis.visualize`:\n", - "\n", - " * name: Name of flowsheet to display as the title of the visualization\n", - " * load_from_saved: If True load from saved file if any. Otherwise create\n", - " a new file or overwrite it (depending on 'overwrite' flag).\n", - " * save: Where to save the current flowsheet layout and values. If this argument is not specified,\n", - " \"``name``.json\" will be used (if this file already exists, a \"-``\" number will be added\n", - " between the name and the extension). If the value given is the boolean 'False', then nothing\n", - " will be saved. The boolean 'True' value is treated the same as unspecified.\n", - " * save_dir: If this argument is given, and ``save`` is not given or a relative path, then it will\n", - " be used as the directory to save the default or given file. The current working directory is\n", - " the default. If ``save`` is given and an absolute path, this argument is ignored.\n", - " * save_time_interval: The time interval that the UI application checks if any changes has occurred\n", - " in the graph for it to save the model. Default is 5 seconds\n", - " * overwrite: If True, and the file given by ``save`` exists, overwrite instead of creating a new\n", - " numbered file.\n", - " * browser: If true, open a browser\n", - " * port: Start listening on this port. If not given, find an open port.\n", - " * log_level: An IDAES logging level, which is a superset of the built-in `logging` module levels.\n", - " See the `idaes.logger` module for details\n", - " * quiet: If True, suppress printing any messages to standard output (console)\n", - " * loop_forever: If True, don't return but instead loop until a Control-C is received. Useful when\n", - " invoking this function at the end of a script." - ] - }, - { - "cell_type": "markdown", - "id": "bd82cda1", - "metadata": {}, - "source": [ - "## Interacting with the visualizer\n", - "The first things you need to learn about the FV are how to manipulate the overall layout and control the view.\n", - "The UI should initially look something like the screenshot below:\n", - "![](\"fv1.png\") alt=\"Screenshot of Flowsheet Visualizer\"> \n", - "\n", - "
\n", - " As you can see, the FV has two main panels. We will call the top panel the diagram and the bottom panel the stream table.\n", - "
" - ] - }, - { - "cell_type": "markdown", - "id": "9f186a8a", - "metadata": {}, - "source": [ - "### View controls\n", - "Before looking at the two panels in detail, it helps to know some basic controls for making them easier to view.\n", - "\n", - "| Control | Description | Illustration |\n", - "|:----|:---------------------|:----:|\n", - "| Panel height | Change the height of the panels by grabbing the small handle in the lower right corner with your mouse. | ![](fv2.png) |\n", - "| Diagram size | Zoom in/out on the diagram with the magnifying glass \"+\" and \"-\" buttons in the upper-right corner of the top panel. The button labeled with two crossing arrows fits the diagram into the current panel height and width. | ![](fv3.png) |" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "59a33cbd", - "metadata": {}, - "source": [ - "### Rearranging the diagram\n", - "The diagram shown in the top panel is interactive. You can move the units shown there into different positions. Whatever arrangement you end up with will be saved for next time. The arcs (i.e., lines representing streams) connecting the units will automatically re-route themselves as you move them. Below is a summary of the different actions you can take when rearranging the diagram.\n", - "\n", - "|   |   |\n", - "|:--:|:--:|\n", - "| ![](fvr1.png)   |   ![](fvr2.png) |\n", - "| ![](fvr3.png)   |   ![](fvr4.png) |\n" - ] - }, - { - "cell_type": "markdown", - "id": "8ab50bbc", - "metadata": {}, - "source": [ - "### Stream table\n", - "The stream table panel shows the values of variables on all the streams between units, and also from units to outlets.\n", - "\n", - "### Stream table \"brushing\"\n", - "Brushing refers to the ability to have actions in one visual area influence the display in another. It is commonly used in statistics to show how points in one scatterplot correspond to their points in another, for the same samples. Here, we use it to link the position of a stream in the diagram with its variable values in the stream table.\n", - "#### Controls\n", - "\n", - "* Moving the mouse over an **arc** in the diagram → highlights the corresponding **column** in the stream table\n", - "* Moving the mouse over a **column** in the stream table → highlights the corresponding **arc** in the diagram\n", - "\n", - "![Illustration of stream table brushing](fvb1.png)\n", - " \n", - "#### Example\n", - "Stream table brushing is useful for answering questions like:\n", - "> How much benzene are we losing in the F101 vapor outlet stream?\n", - "\n", - "To answer this question, we will use some interactive elements of the stream table.\n", - "\n", - "1. Find the inlet of F101 on the diagram. Mouse over this to see the values for that stream highlighted in the stream table below. This is stream `s05`. Look across at the row for Benzene vapor (`flow_mol_phase_comp('Vap', 'benzene')`) and see that the value is $0.35384$\n", - "2. Find the vapor outlet of F101 by looking for the arc connecting to the splitter and compressor feedback loop. This is stream `s06`. Then look at the same row for the Benzene vapor mol fraction and see that the value is $0.14916$\n", - "3. Thus the amount of benzene lost is (in mole fractions) about $0.2$\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "297779ac", - "metadata": {}, - "source": [ - "### Showing and hiding streams\n", - "For complex diagrams, there are a lot of streams and the stream table does not fit in the window. To avoid having to scroll back and forth, there is the ability to \"hide\" selected streams in the stream table. \n", - "\n", - "* Click on the \"Hide Fields\" menu and select which fields to hide\n", - "* The mark will toggle between a check (shown) and open circle (hidden)\n", - "\n", - "For example, we can hide all the streams except the feeds and the flash inlets and outlets.\n", - "\n", - "![Illustration of stream table field hiding](fvst1.png)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "3b0f16ea", - "metadata": {}, - "source": [ - "### Saving and loading\n", - "The current layout and status can be saved to a file, and this file can then be loaded when the model is viewed again. The main benefit is that interactive layout of the diagram is saved for re-use.\n", - "\n", - "#### File name\n", - "This file is named, by default, for the title of the visualizer (e.g., \"Hydrodealkylation\") with a \".json\" extension to indicate the data format and saved in the same directory as the Jupyter notebook. \n", - "\n", - "You can select a different filename and location when you start the visualization, e.g.\n", - "\n", - " model.fs.visualize(\"The Title\", save=\"thefilename.json\", save_dir=\"/path/to/save/the/file\")\n", - "\n", - "#### Reloading\n", - "To reload the saved layout, simply choose the same title (since the filename, by default, matches the title) or explicitly use the `save` and `save_dir` keywords for the `visualize()` function to select a previously saved file. This means you only need to manually lay out the diagram once. Of course, if you add new pieces to the flowsheet you will need to position them correctly (as discussed below)." - ] - }, - { - "cell_type": "markdown", - "id": "db0e5eaf", - "metadata": {}, - "source": [ - "### Exporting\n", - "\n", - "#### Exporting the diagram as an image\n", - "You can export an image of the flowsheet diagram in the [Scalable Vector Graphics (SVG)](https://www.w3.org/Graphics/SVG/) format, which can render without fuzziness at arbitrary sizes. Almost all presentation and drawing programs, including MS Word and Powerpoint, can use SVG images.\n", - "\n", - "From the top menu select _Export -> Flowsheet_. You will get a preview of the flowsheet that you can then download to a file.\n", - "#### Exporting the stream table as CSV\n", - "You can export the stream table as comma-separated values. From the top menu select _Export -> Stream Table_." - ] - }, - { - "cell_type": "markdown", - "id": "68477e99", - "metadata": {}, - "source": [ - "### Updating when the flowsheet changes\n", - "The FV has a connection to the Python program that has the flowsheet (model) in memory. Therefore, when the underlying flowsheet changes, the visualization can be quickly updated to show the new state. This feature is particularly useful for interactive flowsheet creation and debugging in Jupyter Notebooks.\n", - "\n", - "To illustrate the feature, below is some IDAES modeling code that adds another Flash unit to the model, connecting the liquid outlet of the first flash unit to its inlet. There is a little more code that updates some of the output values of the model and sets initial values for this new unit, and then re-initializes the model.\n", - "\n", - "**After this code executes, the model will have a unit called \"F102\" connected to \"F101\".**" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "8d7976f9", - "metadata": {}, - "outputs": [], - "source": [ - "# Add a second flash unit\n", - "from idaes.models.unit_models import Flash\n", - "from pyomo.network import Arc\n", - "from pyomo.environ import Expression, TransformationFactory\n", - "\n", - "m = model # alias\n", - "m.fs.F102 = Flash(\n", - " property_package=m.fs.thermo_params,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=True,\n", - ")\n", - "# connect to 1st flash unit\n", - "m.fs.s10 = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.F102.inlet)\n", - "# update expressions for purity and cost\n", - "m.fs.purity = Expression(\n", - " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " / (\n", - " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " + m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " )\n", - ")\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", - ")\n", - "# fix unit output and pressure drop\n", - "m.fs.F102.vap_outlet.temperature.fix(375)\n", - "m.fs.F102.deltaP.fix(-200000)\n", - "\n", - "# expand arcs\n", - "TransformationFactory(\"network.expand_arcs\").apply_to(m)\n", - "# re-initialize\n", - "_ = vistut.initialize_model(m)" - ] - }, - { - "cell_type": "markdown", - "id": "5726059b", - "metadata": {}, - "source": [ - "
Since the FV is connected to the current state of the model in memory, simply hitting \"Refresh\" in the FV window will show the new flash unit in the diagram, and the new stream (liquid) in the stream table. We can then interactively rearrange the unit to be in the position we want in the diagram.
" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "42245268", - "metadata": {}, - "outputs": [], - "source": [ - "# v model.fs.visualize(\"Hydrodealkylation-new\")" - ] - }, - { - "cell_type": "markdown", - "id": "e75bfc03", - "metadata": {}, - "source": [ - "### Showing new values\n", - "The previous step showed how a new unit in the flowsheet will be automatically added to the diagram. Similarly, if the values in the flowsheet change these will be reflected in the stream table. Below, we solve the initialized flowsheet.\n", - "To make comparison a little easier, we will open a second UI window with the new values (the old values will not be updated unless we decide to hit the \"Refresh\" button)." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "81633474", - "metadata": { - "tags": [ - "noauto" - ] - }, - "outputs": [], - "source": [ - "# Create the solver object\n", - "from pyomo.environ import SolverFactory\n", - "\n", - "solver = SolverFactory(\"ipopt\")\n", - "solver.options = {\"tol\": 1e-6, \"max_iter\": 5000}\n", - "\n", - "# Solve the model\n", - "results = solver.solve(model, tee=False)\n", - "\n", - "# Open a second window\n", - "model.fs.visualize(\"HDA_solved\")" - ] - }, - { - "cell_type": "markdown", - "id": "350e8705", - "metadata": {}, - "source": [ - "When we look at the stream table, we can see the values in the stream between the first and second flash unit changing.\n" - ] - }, - { - "cell_type": "markdown", - "id": "ec68d7ef", - "metadata": {}, - "source": [ - "## Running from a script\n", - "Finally, although all examples have been shown in a Jupyter Notebook, there is nothing preventing the use of the FV from within a plain Python script (or module).\n", - "\n", - "For example, the code to run this same tutorial as a Python script is also in a module.\n", - "If you have installed the IDAES examples, then you can do the following to import and run the module:\n", - "```\n", - "from idaes_examples.mod.tut import visualizer_tutorial\n", - "visualizer_tutorial.main()\n", - "```\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "beef5b6f", - "metadata": {}, - "source": [ - "# Further reading\n", - "\n", - "Reference documentation for the FV is available in the IDAES main documentation, online at https://idaes-pse.readthedocs.io/" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "930eb620", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.9" - } + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "18d74e8e", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 5 + { + "cell_type": "markdown", + "id": "e0e52d92", + "metadata": {}, + "source": [ + "# Flowsheet Visualizer Tutorial\n", + "\n", + "Author: Dan Gunter \n", + "Maintainer: Dan Gunter \n", + "Updated: 2023-06-01 \n", + "\n", + "The IDAES Flowsheet Visualizer provides a web-based UI for visualization and inspection of an existing IDAES model.\n", + "## Outline\n", + "\n", + "- Introduction\n", + "- Example flowsheet\n", + "- Running the Flowsheet Visualizer\n", + "- Running from a script\n", + "- Further reading" + ] + }, + { + "cell_type": "markdown", + "id": "84316245", + "metadata": {}, + "source": [ + "## Introduction\n", + "The IDAES Flowsheet Visualizer (FV) is a Python tool that provides a web-based visualization of any existing IDAES model or flowsheet. The visualization shows a diagram of the\n", + "flowsheet as well as a stream table. You can interact with the diagram and export\n", + "it as an image for inclusion in presentations or publications.\n", + "\n", + "This tutorial will show the basic steps of running the FV on an example\n", + "flowsheet, interacting with the resulting GUI, saving your work, and exporting\n", + "the diagram as an image. It will also show how the Visualizer can be updated\n", + "to reflect changes in the model components and/or variable values. The tutorial\n", + "will also show how to run the Visualizer from a Python script." + ] + }, + { + "cell_type": "markdown", + "id": "be083d68", + "metadata": {}, + "source": [ + "## Example flowsheet\n", + "This initial section creates an example flowsheet.\n", + "\n", + "### Setup\n", + "Module imports and any additional housekeeping needed\n", + "to initialize the code." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "c740809a", + "metadata": {}, + "outputs": [], + "source": [ + "import idaes_examples.mod.tut.visualizer_tutorial as vistut\n", + "\n", + "vistut.quiet() # turn off default logging and most warnings\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from IPython.display import Markdown" + ] + }, + { + "cell_type": "markdown", + "id": "52ee0d6c", + "metadata": {}, + "source": [ + "### Create the flowsheet" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "414d3072", + "metadata": {}, + "outputs": [], + "source": [ + "# use the pre-defined function to create the flowsheet\n", + "model = vistut.create_model()\n", + "\n", + "# description of the flowsheet we created\n", + "display(Markdown(vistut.function_markdown(vistut.create_model)))\n", + "\n", + "vistut.quiet()\n", + "\n", + "# initialize the flowsheet as a square problem (dof=0)\n", + "vistut.initialize_model(model)\n", + "\n", + "# verify that there are zero degrees of freedom\n", + "print(f\"DOF = {degrees_of_freedom(model)}\")" + ] + }, + { + "cell_type": "markdown", + "id": "8e88c1e9", + "metadata": {}, + "source": [ + "## Running the Flowsheet Visualizer\n", + "In most cases, you will run the FV by calling the `visualize()` method attached to your flowsheet.\n", + "This function takes a number of optional arguments, which we will look at briefly later, and one required argument:\n", + "the **title** to give the visualization. Unless you give more information, this title also is used as the filename in which to save its current state.\n", + "\n", + "In the following, we start the FV with the title \"Hydrodealkylation\". This will pop up a new browser tab (and save the status in a file called _Hydrodealkylation.json_).\n", + "\n", + "
\n", + "After the visualizer starts, we recommend making its tab into its own browser window and viewing it side-by-side with this notebook window.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "f05ab3ef", + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "if os.path.exists(\"Hydrodealkylation.json\"):\n", + " os.remove(\"Hydrodealkylation.json\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "91758e92", + "metadata": { + "tags": [ + "noauto" + ] + }, + "outputs": [], + "source": [ + "model.fs.visualize(\"Hydrodealkylation\")" + ] + }, + { + "cell_type": "markdown", + "id": "1174e60c", + "metadata": {}, + "source": [ + "### Optional arguments\n", + "The optional (keyword) arguments are documented in the base function, which can be found in `idaes.core.ui.fsvis.visualize`:\n", + "\n", + " * name: Name of flowsheet to display as the title of the visualization\n", + " * load_from_saved: If True load from saved file if any. Otherwise create\n", + " a new file or overwrite it (depending on 'overwrite' flag).\n", + " * save: Where to save the current flowsheet layout and values. If this argument is not specified,\n", + " \"``name``.json\" will be used (if this file already exists, a \"-``\" number will be added\n", + " between the name and the extension). If the value given is the boolean 'False', then nothing\n", + " will be saved. The boolean 'True' value is treated the same as unspecified.\n", + " * save_dir: If this argument is given, and ``save`` is not given or a relative path, then it will\n", + " be used as the directory to save the default or given file. The current working directory is\n", + " the default. If ``save`` is given and an absolute path, this argument is ignored.\n", + " * save_time_interval: The time interval that the UI application checks if any changes has occurred\n", + " in the graph for it to save the model. Default is 5 seconds\n", + " * overwrite: If True, and the file given by ``save`` exists, overwrite instead of creating a new\n", + " numbered file.\n", + " * browser: If true, open a browser\n", + " * port: Start listening on this port. If not given, find an open port.\n", + " * log_level: An IDAES logging level, which is a superset of the built-in `logging` module levels.\n", + " See the `idaes.logger` module for details\n", + " * quiet: If True, suppress printing any messages to standard output (console)\n", + " * loop_forever: If True, don't return but instead loop until a Control-C is received. Useful when\n", + " invoking this function at the end of a script." + ] + }, + { + "cell_type": "markdown", + "id": "bd82cda1", + "metadata": {}, + "source": [ + "## Interacting with the visualizer\n", + "The first things you need to learn about the FV are how to manipulate the overall layout and control the view.\n", + "The UI should initially look something like the screenshot below:\n", + "![](\"fv1.png\") alt=\"Screenshot of Flowsheet Visualizer\"> \n", + "\n", + "
\n", + " As you can see, the FV has two main panels. We will call the top panel the diagram and the bottom panel the stream table.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "9f186a8a", + "metadata": {}, + "source": [ + "### View controls\n", + "Before looking at the two panels in detail, it helps to know some basic controls for making them easier to view.\n", + "\n", + "| Control | Description | Illustration |\n", + "|:----|:---------------------|:----:|\n", + "| Panel height | Change the height of the panels by grabbing the small handle in the lower right corner with your mouse. | ![](fv2.png) |\n", + "| Diagram size | Zoom in/out on the diagram with the magnifying glass \"+\" and \"-\" buttons in the upper-right corner of the top panel. The button labeled with two crossing arrows fits the diagram into the current panel height and width. | ![](fv3.png) |" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "59a33cbd", + "metadata": {}, + "source": [ + "### Rearranging the diagram\n", + "The diagram shown in the top panel is interactive. You can move the units shown there into different positions. Whatever arrangement you end up with will be saved for next time. The arcs (i.e., lines representing streams) connecting the units will automatically re-route themselves as you move them. Below is a summary of the different actions you can take when rearranging the diagram.\n", + "\n", + "|   |   |\n", + "|:--:|:--:|\n", + "| ![](fvr1.png)   |   ![](fvr2.png) |\n", + "| ![](fvr3.png)   |   ![](fvr4.png) |\n" + ] + }, + { + "cell_type": "markdown", + "id": "8ab50bbc", + "metadata": {}, + "source": [ + "### Stream table\n", + "The stream table panel shows the values of variables on all the streams between units, and also from units to outlets.\n", + "\n", + "### Stream table \"brushing\"\n", + "Brushing refers to the ability to have actions in one visual area influence the display in another. It is commonly used in statistics to show how points in one scatterplot correspond to their points in another, for the same samples. Here, we use it to link the position of a stream in the diagram with its variable values in the stream table.\n", + "#### Controls\n", + "\n", + "* Moving the mouse over an **arc** in the diagram → highlights the corresponding **column** in the stream table\n", + "* Moving the mouse over a **column** in the stream table → highlights the corresponding **arc** in the diagram\n", + "\n", + "![Illustration of stream table brushing](fvb1.png)\n", + " \n", + "#### Example\n", + "Stream table brushing is useful for answering questions like:\n", + "> How much benzene are we losing in the F101 vapor outlet stream?\n", + "\n", + "To answer this question, we will use some interactive elements of the stream table.\n", + "\n", + "1. Find the inlet of F101 on the diagram. Mouse over this to see the values for that stream highlighted in the stream table below. This is stream `s05`. Look across at the row for Benzene vapor (`flow_mol_phase_comp('Vap', 'benzene')`) and see that the value is $0.35384$\n", + "2. Find the vapor outlet of F101 by looking for the arc connecting to the splitter and compressor feedback loop. This is stream `s06`. Then look at the same row for the Benzene vapor mol fraction and see that the value is $0.14916$\n", + "3. Thus the amount of benzene lost is (in mole fractions) about $0.2$\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "297779ac", + "metadata": {}, + "source": [ + "### Showing and hiding streams\n", + "For complex diagrams, there are a lot of streams and the stream table does not fit in the window. To avoid having to scroll back and forth, there is the ability to \"hide\" selected streams in the stream table. \n", + "\n", + "* Click on the \"Hide Fields\" menu and select which fields to hide\n", + "* The mark will toggle between a check (shown) and open circle (hidden)\n", + "\n", + "For example, we can hide all the streams except the feeds and the flash inlets and outlets.\n", + "\n", + "![Illustration of stream table field hiding](fvst1.png)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "3b0f16ea", + "metadata": {}, + "source": [ + "### Saving and loading\n", + "The current layout and status can be saved to a file, and this file can then be loaded when the model is viewed again. The main benefit is that interactive layout of the diagram is saved for re-use.\n", + "\n", + "#### File name\n", + "This file is named, by default, for the title of the visualizer (e.g., \"Hydrodealkylation\") with a \".json\" extension to indicate the data format and saved in the same directory as the Jupyter notebook. \n", + "\n", + "You can select a different filename and location when you start the visualization, e.g.\n", + "\n", + " model.fs.visualize(\"The Title\", save=\"thefilename.json\", save_dir=\"/path/to/save/the/file\")\n", + "\n", + "#### Reloading\n", + "To reload the saved layout, simply choose the same title (since the filename, by default, matches the title) or explicitly use the `save` and `save_dir` keywords for the `visualize()` function to select a previously saved file. This means you only need to manually lay out the diagram once. Of course, if you add new pieces to the flowsheet you will need to position them correctly (as discussed below)." + ] + }, + { + "cell_type": "markdown", + "id": "db0e5eaf", + "metadata": {}, + "source": [ + "### Exporting\n", + "\n", + "#### Exporting the diagram as an image\n", + "You can export an image of the flowsheet diagram in the [Scalable Vector Graphics (SVG)](https://www.w3.org/Graphics/SVG/) format, which can render without fuzziness at arbitrary sizes. Almost all presentation and drawing programs, including MS Word and Powerpoint, can use SVG images.\n", + "\n", + "From the top menu select _Export -> Flowsheet_. You will get a preview of the flowsheet that you can then download to a file.\n", + "#### Exporting the stream table as CSV\n", + "You can export the stream table as comma-separated values. From the top menu select _Export -> Stream Table_." + ] + }, + { + "cell_type": "markdown", + "id": "68477e99", + "metadata": {}, + "source": [ + "### Updating when the flowsheet changes\n", + "The FV has a connection to the Python program that has the flowsheet (model) in memory. Therefore, when the underlying flowsheet changes, the visualization can be quickly updated to show the new state. This feature is particularly useful for interactive flowsheet creation and debugging in Jupyter Notebooks.\n", + "\n", + "To illustrate the feature, below is some IDAES modeling code that adds another Flash unit to the model, connecting the liquid outlet of the first flash unit to its inlet. There is a little more code that updates some of the output values of the model and sets initial values for this new unit, and then re-initializes the model.\n", + "\n", + "**After this code executes, the model will have a unit called \"F102\" connected to \"F101\".**" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "8d7976f9", + "metadata": {}, + "outputs": [], + "source": [ + "# Add a second flash unit\n", + "from idaes.models.unit_models import Flash\n", + "from pyomo.network import Arc\n", + "from pyomo.environ import Expression, TransformationFactory\n", + "\n", + "m = model # alias\n", + "m.fs.F102 = Flash(\n", + " property_package=m.fs.thermo_params,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=True,\n", + ")\n", + "# connect to 1st flash unit\n", + "m.fs.s10 = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.F102.inlet)\n", + "# update expressions for purity and cost\n", + "m.fs.purity = Expression(\n", + " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " / (\n", + " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " + m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " )\n", + ")\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", + ")\n", + "# fix unit output and pressure drop\n", + "m.fs.F102.vap_outlet.temperature.fix(375)\n", + "m.fs.F102.deltaP.fix(-200000)\n", + "\n", + "# expand arcs\n", + "TransformationFactory(\"network.expand_arcs\").apply_to(m)\n", + "# re-initialize\n", + "_ = vistut.initialize_model(m)" + ] + }, + { + "cell_type": "markdown", + "id": "5726059b", + "metadata": {}, + "source": [ + "
Since the FV is connected to the current state of the model in memory, simply hitting \"Refresh\" in the FV window will show the new flash unit in the diagram, and the new stream (liquid) in the stream table. We can then interactively rearrange the unit to be in the position we want in the diagram.
" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "42245268", + "metadata": {}, + "outputs": [], + "source": [ + "# v model.fs.visualize(\"Hydrodealkylation-new\")" + ] + }, + { + "cell_type": "markdown", + "id": "e75bfc03", + "metadata": {}, + "source": [ + "### Showing new values\n", + "The previous step showed how a new unit in the flowsheet will be automatically added to the diagram. Similarly, if the values in the flowsheet change these will be reflected in the stream table. Below, we solve the initialized flowsheet.\n", + "To make comparison a little easier, we will open a second UI window with the new values (the old values will not be updated unless we decide to hit the \"Refresh\" button)." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "81633474", + "metadata": { + "tags": [ + "noauto" + ] + }, + "outputs": [], + "source": [ + "# Create the solver object\n", + "from pyomo.environ import SolverFactory\n", + "\n", + "solver = SolverFactory(\"ipopt\")\n", + "solver.options = {\"tol\": 1e-6, \"max_iter\": 5000}\n", + "\n", + "# Solve the model\n", + "results = solver.solve(model, tee=False)\n", + "\n", + "# Open a second window\n", + "model.fs.visualize(\"HDA_solved\")" + ] + }, + { + "cell_type": "markdown", + "id": "350e8705", + "metadata": {}, + "source": [ + "When we look at the stream table, we can see the values in the stream between the first and second flash unit changing.\n" + ] + }, + { + "cell_type": "markdown", + "id": "ec68d7ef", + "metadata": {}, + "source": [ + "## Running from a script\n", + "Finally, although all examples have been shown in a Jupyter Notebook, there is nothing preventing the use of the FV from within a plain Python script (or module).\n", + "\n", + "For example, the code to run this same tutorial as a Python script is also in a module.\n", + "If you have installed the IDAES examples, then you can do the following to import and run the module:\n", + "```\n", + "from idaes_examples.mod.tut import visualizer_tutorial\n", + "visualizer_tutorial.main()\n", + "```\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "beef5b6f", + "metadata": {}, + "source": [ + "# Further reading\n", + "\n", + "Reference documentation for the FV is available in the IDAES main documentation, online at https://idaes-pse.readthedocs.io/" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "930eb620", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 } diff --git a/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial_doc.ipynb b/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial_doc.ipynb index 635edcca..7ac4500a 100644 --- a/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial_doc.ipynb +++ b/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -144,127815 +145,1934 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 1 0.0000000e+00 1.94e-08 0.00e+00 -1.0 7.00e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Constraint violation....: 1.9441358745098113e-09 1.9441358745098111e-08\n" + "2025-03-17 17:39:58 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:39:58 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Overall NLP error.......: 1.9441358745098113e-09 1.9441358745098111e-08\n" + "2025-03-17 17:39:58 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" + "2025-03-17 17:39:58 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" + "2025-03-17 17:39:58 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective function evaluations = 2\n" + "2025-03-17 17:39:58 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" + "2025-03-17 17:39:58 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:00 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: tol=1e-06\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: max_iter=200\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: contain the following acknowledgement:\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of variables............................: 17\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only lower bounds: 0\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with lower and upper bounds: 0\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only upper bounds: 0\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of equality constraints.................: 17\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" + "2025-03-17 17:39:59 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 1 0.0000000e+00 9.70e+02 0.00e+00 -1.0 7.69e+05 - 1.00e+00 1.00e+00h 1\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 2 0.0000000e+00 6.38e+02 0.00e+00 -1.0 4.73e+06 - 1.00e+00 1.00e+00h 1\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 3 0.0000000e+00 3.67e+02 0.00e+00 -1.0 2.00e+07 - 1.00e+00 1.00e+00h 1\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 4 0.0000000e+00 1.67e+02 0.00e+00 -1.0 5.27e+07 - 1.00e+00 1.00e+00h 1\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 5 0.0000000e+00 4.93e+01 0.00e+00 -1.0 7.34e+07 - 1.00e+00 1.00e+00h 1\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 6 0.0000000e+00 5.77e+00 0.00e+00 -1.0 4.19e+07 - 1.00e+00 1.00e+00h 1\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 7 0.0000000e+00 9.14e-02 0.00e+00 -1.0 6.27e+06 - 1.00e+00 1.00e+00h 1\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 8 0.0000000e+00 2.34e-05 0.00e+00 -2.5 1.02e+05 - 1.00e+00 1.00e+00h 1\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 9 0.0000000e+00 1.62e-12 0.00e+00 -5.7 2.62e+01 - 1.00e+00 1.00e+00h 1\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Iterations....: 9\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: (scaled) (unscaled)\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Constraint violation....: 1.6200374375330284e-12 1.6200374375330284e-12\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Overall NLP error.......: 1.6200374375330284e-12 1.6200374375330284e-12\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective function evaluations = 10\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective gradient evaluations = 10\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint evaluations = 10\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 10\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 9\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.H101.control_volume.properties_out: State Released.\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.H101: Initialization Step 1 Complete.\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: tol=1e-06\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: max_iter=200\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: \n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: \n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: For more information visit http://projects.coin-or.org/Ipopt\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: \n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled from source code available at\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: \n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: for large-scale scientific computation. All technical papers, sales and\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: publicity material resulting from use of the HSL codes within IPOPT must\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: contain the following acknowledgement:\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: HSL, a collection of Fortran codes for large-scale scientific\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: computation. See http://www.hsl.rl.ac.uk.\n" + "2025-03-17 17:40:00 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: \n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: \n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in equality constraint Jacobian...: 124\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in inequality constraint Jacobian.: 0\n" + "WARNING: Wegstein failed to converge in 5 iterations\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in Lagrangian Hessian.............: 115\n" + "DOF = 0\n" ] - }, + } + ], + "source": [ + "# use the pre-defined function to create the flowsheet\n", + "model = vistut.create_model()\n", + "\n", + "# description of the flowsheet we created\n", + "display(Markdown(vistut.function_markdown(vistut.create_model)))\n", + "\n", + "vistut.quiet()\n", + "\n", + "# initialize the flowsheet as a square problem (dof=0)\n", + "vistut.initialize_model(model)\n", + "\n", + "# verify that there are zero degrees of freedom\n", + "print(f\"DOF = {degrees_of_freedom(model)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Running the Flowsheet Visualizer\n", + "In most cases, you will run the FV by calling the `visualize()` method attached to your flowsheet.\n", + "This function takes a number of optional arguments, which we will look at briefly later, and one required argument:\n", + "the **title** to give the visualization. Unless you give more information, this title also is used as the filename in which to save its current state.\n", + "\n", + "In the following, we start the FV with the title \"Hydrodealkylation\". This will pop up a new browser tab (and save the status in a file called _Hydrodealkylation.json_).\n", + "\n", + "
\n", + "After the visualizer starts, we recommend making its tab into its own browser window and viewing it side-by-side with this notebook window.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Optional arguments\n", + "The optional (keyword) arguments are documented in the base function, which can be found in `idaes.core.ui.fsvis.visualize`:\n", + "\n", + " * name: Name of flowsheet to display as the title of the visualization\n", + " * load_from_saved: If True load from saved file if any. Otherwise create\n", + " a new file or overwrite it (depending on 'overwrite' flag).\n", + " * save: Where to save the current flowsheet layout and values. If this argument is not specified,\n", + " \"``name``.json\" will be used (if this file already exists, a \"-``\" number will be added\n", + " between the name and the extension). If the value given is the boolean 'False', then nothing\n", + " will be saved. The boolean 'True' value is treated the same as unspecified.\n", + " * save_dir: If this argument is given, and ``save`` is not given or a relative path, then it will\n", + " be used as the directory to save the default or given file. The current working directory is\n", + " the default. If ``save`` is given and an absolute path, this argument is ignored.\n", + " * save_time_interval: The time interval that the UI application checks if any changes has occurred\n", + " in the graph for it to save the model. Default is 5 seconds\n", + " * overwrite: If True, and the file given by ``save`` exists, overwrite instead of creating a new\n", + " numbered file.\n", + " * browser: If true, open a browser\n", + " * port: Start listening on this port. If not given, find an open port.\n", + " * log_level: An IDAES logging level, which is a superset of the built-in `logging` module levels.\n", + " See the `idaes.logger` module for details\n", + " * quiet: If True, suppress printing any messages to standard output (console)\n", + " * loop_forever: If True, don't return but instead loop until a Control-C is received. Useful when\n", + " invoking this function at the end of a script." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Interacting with the visualizer\n", + "The first things you need to learn about the FV are how to manipulate the overall layout and control the view.\n", + "The UI should initially look something like the screenshot below:\n", + "![](\"fv1.png\") alt=\"Screenshot of Flowsheet Visualizer\"> \n", + "\n", + "
\n", + " As you can see, the FV has two main panels. We will call the top panel the diagram and the bottom panel the stream table.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### View controls\n", + "Before looking at the two panels in detail, it helps to know some basic controls for making them easier to view.\n", + "\n", + "| Control | Description | Illustration |\n", + "|:----|:---------------------|:----:|\n", + "| Panel height | Change the height of the panels by grabbing the small handle in the lower right corner with your mouse. | ![](fv2.png) |\n", + "| Diagram size | Zoom in/out on the diagram with the magnifying glass \"+\" and \"-\" buttons in the upper-right corner of the top panel. The button labeled with two crossing arrows fits the diagram into the current panel height and width. | ![](fv3.png) |" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Rearranging the diagram\n", + "The diagram shown in the top panel is interactive. You can move the units shown there into different positions. Whatever arrangement you end up with will be saved for next time. The arcs (i.e., lines representing streams) connecting the units will automatically re-route themselves as you move them. Below is a summary of the different actions you can take when rearranging the diagram.\n", + "\n", + "|   |   |\n", + "|:--:|:--:|\n", + "| ![](fvr1.png)   |   ![](fvr2.png) |\n", + "| ![](fvr3.png)   |   ![](fvr4.png) |\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Stream table\n", + "The stream table panel shows the values of variables on all the streams between units, and also from units to outlets.\n", + "\n", + "### Stream table \"brushing\"\n", + "Brushing refers to the ability to have actions in one visual area influence the display in another. It is commonly used in statistics to show how points in one scatterplot correspond to their points in another, for the same samples. Here, we use it to link the position of a stream in the diagram with its variable values in the stream table.\n", + "#### Controls\n", + "\n", + "* Moving the mouse over an **arc** in the diagram → highlights the corresponding **column** in the stream table\n", + "* Moving the mouse over a **column** in the stream table → highlights the corresponding **arc** in the diagram\n", + "\n", + "![Illustration of stream table brushing](fvb1.png)\n", + " \n", + "#### Example\n", + "Stream table brushing is useful for answering questions like:\n", + "> How much benzene are we losing in the F101 vapor outlet stream?\n", + "\n", + "To answer this question, we will use some interactive elements of the stream table.\n", + "\n", + "1. Find the inlet of F101 on the diagram. Mouse over this to see the values for that stream highlighted in the stream table below. This is stream `s05`. Look across at the row for Benzene vapor (`flow_mol_phase_comp('Vap', 'benzene')`) and see that the value is $0.35384$\n", + "2. Find the vapor outlet of F101 by looking for the arc connecting to the splitter and compressor feedback loop. This is stream `s06`. Then look at the same row for the Benzene vapor mol fraction and see that the value is $0.14916$\n", + "3. Thus the amount of benzene lost is (in mole fractions) about $0.2$\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Showing and hiding streams\n", + "For complex diagrams, there are a lot of streams and the stream table does not fit in the window. To avoid having to scroll back and forth, there is the ability to \"hide\" selected streams in the stream table. \n", + "\n", + "* Click on the \"Hide Fields\" menu and select which fields to hide\n", + "* The mark will toggle between a check (shown) and open circle (hidden)\n", + "\n", + "For example, we can hide all the streams except the feeds and the flash inlets and outlets.\n", + "\n", + "![Illustration of stream table field hiding](fvst1.png)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Saving and loading\n", + "The current layout and status can be saved to a file, and this file can then be loaded when the model is viewed again. The main benefit is that interactive layout of the diagram is saved for re-use.\n", + "\n", + "#### File name\n", + "This file is named, by default, for the title of the visualizer (e.g., \"Hydrodealkylation\") with a \".json\" extension to indicate the data format and saved in the same directory as the Jupyter notebook. \n", + "\n", + "You can select a different filename and location when you start the visualization, e.g.\n", + "\n", + " model.fs.visualize(\"The Title\", save=\"thefilename.json\", save_dir=\"/path/to/save/the/file\")\n", + "\n", + "#### Reloading\n", + "To reload the saved layout, simply choose the same title (since the filename, by default, matches the title) or explicitly use the `save` and `save_dir` keywords for the `visualize()` function to select a previously saved file. This means you only need to manually lay out the diagram once. Of course, if you add new pieces to the flowsheet you will need to position them correctly (as discussed below)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exporting\n", + "\n", + "#### Exporting the diagram as an image\n", + "You can export an image of the flowsheet diagram in the [Scalable Vector Graphics (SVG)](https://www.w3.org/Graphics/SVG/) format, which can render without fuzziness at arbitrary sizes. Almost all presentation and drawing programs, including MS Word and Powerpoint, can use SVG images.\n", + "\n", + "From the top menu select _Export -> Flowsheet_. You will get a preview of the flowsheet that you can then download to a file.\n", + "#### Exporting the stream table as CSV\n", + "You can export the stream table as comma-separated values. From the top menu select _Export -> Stream Table_." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Updating when the flowsheet changes\n", + "The FV has a connection to the Python program that has the flowsheet (model) in memory. Therefore, when the underlying flowsheet changes, the visualization can be quickly updated to show the new state. This feature is particularly useful for interactive flowsheet creation and debugging in Jupyter Notebooks.\n", + "\n", + "To illustrate the feature, below is some IDAES modeling code that adds another Flash unit to the model, connecting the liquid outlet of the first flash unit to its inlet. There is a little more code that updates some of the output values of the model and sets initial values for this new unit, and then re-initializes the model.\n", + "\n", + "**After this code executes, the model will have a unit called \"F102\" connected to \"F101\".**" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: \n" + "WARNING: Implicitly replacing the Component attribute purity (type=) on block fs with a new\n", + "Component (type=). This\n", + "is usually indicative of a modelling error. To avoid this warning, use\n", + "block.del_component() and block.add_component().\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Total number of variables............................: 41\n" + "WARNING: Implicitly replacing the Component attribute heating_cost\n", + "(type=) on block fs with\n", + "a new Component (type=).\n", + "This is usually indicative of a modelling error. To avoid this warning, use\n", + "block.del_component() and block.add_component().\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: variables with only lower bounds: 0\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: variables with lower and upper bounds: 9\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: variables with only upper bounds: 0\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Total number of equality constraints.................: 41\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Total number of inequality constraints...............: 0\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: inequality constraints with only lower bounds: 0\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: inequality constraints with lower and upper bounds: 0\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: inequality constraints with only upper bounds: 0\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: \n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 0 0.0000000e+00 1.44e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.F102.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 1 0.0000000e+00 8.53e+04 1.03e+01 -1.0 3.65e+04 - 1.44e-01 5.96e-01h 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.F102.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 2 0.0000000e+00 5.59e+04 4.56e+02 -1.0 1.46e+04 - 9.90e-01 3.84e-01h 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 3 0.0000000e+00 5.46e+04 2.28e+04 -1.0 9.01e+03 - 9.64e-01 2.49e-02h 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 4 0.0000000e+00 5.45e+04 8.49e+07 -1.0 8.79e+03 - 9.90e-01 2.77e-04h 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 5r 0.0000000e+00 5.45e+04 1.00e+03 1.1 0.00e+00 - 0.00e+00 3.46e-07R 4\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 6r 0.0000000e+00 4.25e+04 4.01e+03 1.1 1.87e+04 - 1.19e-02 4.12e-03f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 7r 0.0000000e+00 4.16e+04 3.60e+03 1.1 4.84e+04 - 1.94e-03 2.54e-03f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 8r 0.0000000e+00 4.11e+04 3.15e+03 1.1 3.96e+04 - 5.35e-03 5.52e-03f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 9r 0.0000000e+00 4.07e+04 7.89e+04 1.1 1.47e+04 - 5.89e-01 6.35e-03f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 10r 0.0000000e+00 2.23e+04 9.22e+04 1.1 1.48e+04 - 1.63e-01 6.48e-01f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 11r 0.0000000e+00 2.54e+03 3.49e+04 1.1 5.74e+03 - 5.05e-01 7.97e-01f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 12r 0.0000000e+00 3.06e+03 1.01e+05 1.1 3.80e+02 - 7.25e-01 3.18e-01f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 13r 0.0000000e+00 5.72e+03 8.17e+03 1.1 4.83e+02 - 9.84e-01 5.00e-01h 2\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 14r 0.0000000e+00 1.84e+03 4.63e+04 1.1 1.39e+03 - 1.00e+00 4.11e-01h 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 15r 0.0000000e+00 1.98e+03 1.27e+04 1.1 1.43e+02 - 1.00e+00 1.00e+00f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 16r 0.0000000e+00 6.07e+03 2.97e+03 1.1 6.22e+01 - 1.00e+00 1.00e+00H 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 17r 0.0000000e+00 5.46e+03 3.14e+01 1.1 2.15e+01 - 1.00e+00 1.00e+00f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 18r 0.0000000e+00 5.04e+03 3.10e+03 -1.0 1.25e+03 - 9.65e-01 7.22e-01f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 19r 0.0000000e+00 3.83e+03 1.04e+04 -1.0 4.22e+04 - 8.76e-02 1.55e-02f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 20r 0.0000000e+00 5.65e+01 1.01e+05 -1.0 2.25e+04 - 1.87e-01 2.36e-02f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 21r 0.0000000e+00 4.94e+01 5.35e+04 -1.0 1.28e+04 - 6.97e-01 9.72e-02f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 22r 0.0000000e+00 6.91e+02 7.70e+03 -1.0 1.09e+04 - 1.00e+00 7.42e-01f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 23r 0.0000000e+00 1.26e+02 1.82e+03 -1.0 3.19e+02 - 1.00e+00 8.54e-01f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 24r 0.0000000e+00 1.12e+00 1.83e+02 -1.0 5.04e+01 - 1.00e+00 1.00e+00f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 25r 0.0000000e+00 2.83e-01 9.28e-02 -1.0 6.94e-01 - 1.00e+00 1.00e+00h 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 26r 0.0000000e+00 5.61e-01 8.91e+00 -3.9 6.16e+01 - 9.98e-01 9.48e-01f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 27r 0.0000000e+00 5.14e+03 1.52e+05 -3.9 8.37e+05 - 3.17e-01 3.42e-02f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 28r 0.0000000e+00 5.13e+03 3.10e+05 -3.9 5.26e+05 - 1.38e-01 1.45e-03f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 29r 0.0000000e+00 4.66e+03 2.85e+05 -3.9 2.85e+05 - 8.58e-02 9.92e-02f 1\n" + "2025-03-17 17:40:01 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 30r 0.0000000e+00 4.60e+03 2.87e+05 -3.9 6.24e+05 - 1.38e-05 1.22e-02f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 31r 0.0000000e+00 4.32e+03 2.91e+05 -3.9 1.68e+03 -4.0 6.44e-03 6.09e-02f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 32r 0.0000000e+00 4.32e+03 2.91e+05 -3.9 5.39e+05 - 4.58e-04 2.64e-04f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 33r 0.0000000e+00 4.32e+03 2.91e+05 -3.9 1.11e+03 -4.5 2.08e-05 3.37e-04f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 34r 0.0000000e+00 4.32e+03 2.91e+05 -3.9 4.06e+06 - 2.47e-08 1.04e-05f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 35r 0.0000000e+00 4.32e+03 2.75e+05 -3.9 6.60e+04 -5.0 6.33e-03 9.06e-07f 4\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 36r 0.0000000e+00 4.32e+03 2.75e+05 -3.9 1.97e+06 - 2.55e-05 1.48e-03f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 37r 0.0000000e+00 4.29e+03 2.75e+05 -3.9 3.44e+03 -5.4 3.12e-03 6.04e-03f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 38r 0.0000000e+00 4.29e+03 4.56e+04 -3.9 9.63e+03 -5.9 1.00e+00 6.91e-04f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 39r 0.0000000e+00 4.25e+03 4.71e+04 -3.9 2.91e+05 - 6.20e-02 8.82e-03f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 40r 0.0000000e+00 4.20e+03 6.91e+04 -3.9 2.00e+05 - 8.94e-01 1.13e-02f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 41r 0.0000000e+00 4.11e+03 6.67e+04 -3.9 1.49e+05 - 1.38e-01 2.22e-02f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 42r 0.0000000e+00 3.20e+03 4.92e+04 -3.9 1.45e+05 - 1.53e-01 2.23e-01f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 43r 0.0000000e+00 1.51e+03 9.84e+03 -3.9 1.13e+05 - 1.00e+00 5.35e-01f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 44r 0.0000000e+00 9.72e+02 4.26e+04 -3.9 2.82e+04 - 3.37e-01 3.59e-01f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 45r 0.0000000e+00 8.62e+02 6.68e+04 -3.9 5.81e+02 - 2.73e-02 1.13e-01f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 46r 0.0000000e+00 4.48e+02 1.74e+04 -3.9 8.71e+02 - 1.00e+00 4.85e-01f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 47r 0.0000000e+00 1.56e+03 1.21e+08 -3.9 3.99e+02 - 1.00e+00 9.88e-01f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 48r 0.0000000e+00 1.56e+03 1.21e+08 -3.9 1.17e+01 - 6.91e-04 1.79e-03h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 49r 0.0000000e+00 1.55e+03 1.17e+08 -3.9 1.47e+01 - 5.76e-01 5.05e-03h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 50r 0.0000000e+00 1.54e+03 1.16e+08 -3.9 2.27e+02 - 3.93e-02 8.92e-03h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 51r 0.0000000e+00 1.02e+03 7.71e+07 -3.9 5.86e+01 - 4.77e-02 5.12e-01h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 52r 0.0000000e+00 1.02e+03 7.56e+07 -3.9 3.15e+04 - 8.10e-03 6.82e-03h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 53r 0.0000000e+00 8.08e+02 3.75e+07 -3.9 9.39e+02 - 3.94e-01 2.56e-01h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 54r 0.0000000e+00 5.20e+02 7.83e+07 -3.9 4.67e+02 - 1.57e-03 5.70e-01h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 55r 0.0000000e+00 4.57e+02 6.97e+07 -3.9 4.79e+02 -6.4 4.40e-02 1.41e-01h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 56r 0.0000000e+00 3.94e+02 5.93e+07 -3.9 1.48e+01 -2.3 1.55e-01 1.71e-01h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 57r 0.0000000e+00 3.73e+02 7.03e+07 -3.9 1.07e+01 -1.9 6.30e-01 5.61e-02h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 58r 0.0000000e+00 3.10e+02 5.83e+07 -3.9 8.41e+01 -2.4 1.46e-02 3.92e-01h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 59r 0.0000000e+00 2.96e+02 6.27e+07 -3.9 2.32e+01 -1.1 3.57e-02 5.65e-02h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 60r 0.0000000e+00 2.62e+02 6.00e+07 -3.9 1.51e+01 -0.6 9.19e-02 1.95e-01f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 61r 0.0000000e+00 2.57e+02 6.07e+07 -3.9 3.06e-03 7.2 1.23e-02 1.83e-02f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 62r 0.0000000e+00 2.52e+02 1.16e+08 -3.9 1.06e-02 6.7 5.76e-05 2.54e-02h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 63r 0.0000000e+00 2.52e+02 1.35e+08 -3.9 7.74e-03 7.1 1.29e-02 2.50e-04h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 64r 0.0000000e+00 2.52e+02 1.70e+08 -3.9 6.87e-02 6.7 8.75e-06 3.40e-03h 2\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 65r 0.0000000e+00 2.50e+02 1.68e+08 -3.9 7.22e-03 7.1 6.82e-03 8.93e-03h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 66r 0.0000000e+00 2.50e+02 1.71e+08 -3.9 9.04e-03 7.5 1.87e-04 1.18e-05h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 67r 0.0000000e+00 2.37e+02 5.99e+07 -3.9 1.50e-02 7.0 8.12e-03 6.89e-02h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 68r 0.0000000e+00 2.37e+02 2.18e+08 -3.9 1.65e-02 6.6 4.95e-02 2.65e-05h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 69r 0.0000000e+00 2.35e+02 1.89e+08 -3.9 1.63e-02 7.0 1.42e-05 4.62e-03f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 70r 0.0000000e+00 2.35e+02 2.09e+08 -3.9 1.65e-02 6.5 1.08e-02 3.70e-03f 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 71r 0.0000000e+00 2.33e+02 1.85e+08 -3.9 1.24e-02 6.9 1.72e-06 5.77e-03h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 72r 0.0000000e+00 2.33e+02 2.05e+08 -3.9 1.05e-02 6.5 1.80e-02 3.01e-03h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 73r 0.0000000e+00 2.16e+02 8.46e+07 -3.9 4.90e-03 6.9 1.99e-06 8.32e-02h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 74r 0.0000000e+00 2.01e+02 7.95e+07 -3.9 8.40e-03 6.4 6.24e-02 7.85e-02h 1\n" + "2025-03-17 17:40:02 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 75r 0.0000000e+00 2.01e+02 7.94e+07 -3.9 2.04e-03 6.8 1.84e-01 3.25e-04h 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 76r 0.0000000e+00 1.40e+02 6.05e+07 -3.9 6.90e-03 6.4 1.61e-02 5.44e-01h 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 77r 0.0000000e+00 1.25e+02 5.38e+07 -3.9 1.35e-03 6.8 1.75e-01 1.12e-01h 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 78r 0.0000000e+00 8.55e+01 3.74e+07 -3.9 3.25e-03 6.3 3.52e-02 3.57e-01h 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 79r 0.0000000e+00 7.37e+01 3.21e+07 -3.9 5.54e-03 5.8 6.95e-01 1.56e-01h 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 80r 0.0000000e+00 5.85e+01 2.55e+07 -3.9 8.61e-04 6.3 3.05e-01 2.10e-01h 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 81r 0.0000000e+00 4.94e+01 2.15e+07 -3.9 1.32e-03 5.8 1.00e+00 1.60e-01f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 82r 0.0000000e+00 5.83e+00 2.96e+05 -3.9 5.86e-04 6.2 1.27e-01 1.00e+00f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 83r 0.0000000e+00 5.28e+00 2.56e+05 -3.9 1.88e-03 5.7 8.30e-01 1.33e-01f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 84r 0.0000000e+00 3.21e+00 1.98e+05 -3.9 5.75e-03 5.3 5.98e-01 2.00e-01f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 85r 0.0000000e+00 5.15e+00 1.81e+05 -3.9 1.75e-02 4.8 5.73e-02 7.58e-02f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 86r 0.0000000e+00 5.15e+00 1.81e+05 -3.9 4.01e-02 4.3 8.87e-03 6.82e-04f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 87r 0.0000000e+00 4.63e+00 1.79e+05 -3.9 1.43e-01 3.8 9.35e-04 8.37e-03f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 88r 0.0000000e+00 4.62e+00 1.71e+05 -3.9 3.17e-01 3.3 1.44e-02 3.65e-04f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 89r 0.0000000e+00 1.26e+01 1.72e+05 -3.9 7.65e-01 2.9 1.33e-02 5.14e-03f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 90r 0.0000000e+00 1.26e+01 4.11e+05 -3.9 1.44e-01 2.4 2.29e-01 2.36e-04f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 91r 0.0000000e+00 1.44e+01 3.89e+05 -3.9 1.77e-02 1.9 3.61e-05 6.69e-02f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.S101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 92r 0.0000000e+00 1.43e+01 2.21e+05 -3.9 1.77e-03 1.4 9.97e-01 9.35e-03h 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 93r 0.0000000e+00 1.18e+01 2.15e+05 -3.9 5.39e-03 1.0 2.84e-02 1.72e-01f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 94r 0.0000000e+00 2.71e+00 4.94e+04 -3.9 1.59e-02 0.5 1.00e+00 7.65e-01f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 95r 0.0000000e+00 5.22e-01 1.04e+04 -3.9 4.79e-02 0.0 1.00e+00 8.05e-01f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 96r 0.0000000e+00 4.94e-03 1.79e+01 -3.9 1.43e-01 -0.5 1.00e+00 1.00e+00f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 97r 0.0000000e+00 6.07e+01 1.30e+06 -3.9 2.64e+04 - 1.00e+00 1.16e-03f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 98r 0.0000000e+00 7.25e+01 5.06e+04 -3.9 2.57e+03 - 1.00e+00 3.50e-01f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 99r 0.0000000e+00 6.75e+01 1.65e+06 -3.9 5.60e+02 - 1.48e-01 6.64e-01h 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 100r 0.0000000e+00 5.42e+01 2.75e+06 -3.9 2.27e+02 - 1.00e+00 2.18e-01f 1\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 101r 0.0000000e+00 5.15e+01 5.37e+06 -3.9 1.72e+02 - 1.67e-01 1.58e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 102r 0.0000000e+00 3.28e+02 1.83e+08 -3.9 1.61e+02 - 4.21e-01 1.79e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 103r 0.0000000e+00 3.28e+02 1.81e+08 -3.9 5.02e+01 - 2.51e-02 3.70e-04h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 104r 0.0000000e+00 3.26e+02 1.81e+08 -3.9 6.06e+02 - 1.69e-02 4.20e-03h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 105r 0.0000000e+00 3.18e+02 1.73e+08 -3.9 1.61e+03 - 9.71e-02 1.27e-02f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 106r 0.0000000e+00 1.95e+02 1.05e+08 -3.9 1.95e+02 - 6.07e-01 6.53e-02h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 107r 0.0000000e+00 1.94e+02 1.06e+08 -3.9 1.52e+03 - 7.28e-02 1.84e-03h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 108r 0.0000000e+00 2.32e+02 1.41e+08 -3.9 1.13e+02 - 1.00e+00 8.76e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 109r 0.0000000e+00 8.57e+00 5.25e+06 -3.9 3.18e+01 - 1.00e+00 3.53e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 110r 0.0000000e+00 1.06e+00 6.48e+05 -3.9 1.15e+01 - 9.81e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 111r 0.0000000e+00 8.06e-01 6.48e+05 -3.9 9.04e+01 - 1.00e+00 1.16e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 112r 0.0000000e+00 8.94e-02 7.38e+04 -3.9 2.94e+00 - 1.00e+00 1.00e+00f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 113r 0.0000000e+00 1.04e-02 6.72e+03 -3.9 1.01e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: 114r 0.0000000e+00 2.21e-05 1.30e+01 -3.9 4.77e-02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Number of Iterations....: 114\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Constraint violation....: 2.5693904537327228e-07 2.2066466213388480e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Overall NLP error.......: 2.5693904537327228e-07 2.2066466213388480e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Number of objective function evaluations = 132\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Number of objective gradient evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Number of equality constraint evaluations = 132\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Number of equality constraint Jacobian evaluations = 116\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Number of Lagrangian Hessian evaluations = 114\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Total CPU secs in IPOPT (w/o function evaluations) = 0.031\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.H101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.H101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.H101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 1 0.0000000e+00 2.98e-08 0.00e+00 -1.0 7.00e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Constraint violation....: 2.9802322387695314e-09 2.9802322387695312e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Overall NLP error.......: 2.9802322387695314e-09 2.9802322387695312e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 1 0.0000000e+00 2.98e-08 0.00e+00 -1.0 7.00e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Constraint violation....: 2.9802322387695314e-09 2.9802322387695312e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Overall NLP error.......: 2.9802322387695314e-09 2.9802322387695312e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.R101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.R101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in equality constraint Jacobian...: 102\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in Lagrangian Hessian.............: 72\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: 0 0.0000000e+00 3.50e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: 1 0.0000000e+00 1.27e+07 1.40e+03 -1.0 1.10e+05 - 7.92e-02 4.95e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: 2 0.0000000e+00 1.13e+07 1.23e+03 -1.0 8.57e+04 - 7.40e-01 1.24e-01h 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: 3 0.0000000e+00 1.13e+07 1.25e+03 -1.0 7.81e+04 - 7.86e-01 1.93e-03h 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: 4 0.0000000e+00 1.13e+07 1.27e+03 -1.0 7.79e+04 - 9.90e-01 4.83e-04h 12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: 5 0.0000000e+00 1.13e+07 1.29e+03 -1.0 7.79e+04 - 9.90e-01 2.42e-04h 13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: 6 0.0000000e+00 1.13e+07 1.31e+03 -1.0 7.79e+04 - 1.00e+00 6.04e-05h 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: 7 0.0000000e+00 1.04e+07 1.31e+05 -1.0 7.79e+04 - 1.00e+00 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: 8 0.0000000e+00 1.08e+05 8.15e+04 -1.0 1.24e+04 - 1.00e+00 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: 9 0.0000000e+00 3.91e+04 8.98e+04 -1.0 7.64e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: 10 0.0000000e+00 5.55e-04 8.87e-02 -1.0 3.91e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: 11 0.0000000e+00 5.22e-08 9.54e-10 -7.0 9.96e-07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Number of Iterations....: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Constraint violation....: 2.0037676417114954e-11 5.2154064178466803e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Overall NLP error.......: 2.0037676417114954e-11 5.2154064178466803e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Number of objective function evaluations = 66\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Number of objective gradient evaluations = 12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Number of equality constraint evaluations = 66\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Number of equality constraint Jacobian evaluations = 12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Number of Lagrangian Hessian evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.R101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.R101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.R101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 1 0.0000000e+00 5.96e-08 0.00e+00 -1.0 7.00e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Constraint violation....: 5.9604644775390628e-09 5.9604644775390625e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Overall NLP error.......: 5.9604644775390628e-09 5.9604644775390625e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Error in an AMPL evaluation. Run with \"halt_on_ampl_error yes\" to see details.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Warning: Cutting back alpha due to evaluation error\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Error in an AMPL evaluation. Run with \"halt_on_ampl_error yes\" to see details.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Warning: Cutting back alpha due to evaluation error\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 1 0.0000000e+00 5.25e+08 0.00e+00 -1.0 7.56e+05 - 1.00e+00 2.50e-01h 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Error in an AMPL evaluation. Run with \"halt_on_ampl_error yes\" to see details.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Warning: Cutting back alpha due to evaluation error\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 2 0.0000000e+00 2.62e+08 0.00e+00 -1.0 1.86e+06 - 1.00e+00 5.00e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 3 0.0000000e+00 4.60e+02 0.00e+00 -1.0 6.06e+06 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 4 0.0000000e+00 2.53e+02 0.00e+00 -1.0 2.32e+07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 5 0.0000000e+00 1.07e+02 0.00e+00 -1.0 5.33e+07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 6 0.0000000e+00 2.69e+01 0.00e+00 -1.0 6.19e+07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 7 0.0000000e+00 2.22e+00 0.00e+00 -1.0 2.71e+07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 8 0.0000000e+00 1.69e-02 0.00e+00 -1.0 2.66e+06 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 9 0.0000000e+00 9.93e-07 0.00e+00 -3.8 2.06e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Iterations....: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Constraint violation....: 9.9315880675021617e-07 9.9315880675021617e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Overall NLP error.......: 9.9315880675021617e-07 9.9315880675021617e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective function evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective gradient evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint evaluations = 13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.F101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.F101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: 0 0.0000000e+00 1.17e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: 1 0.0000000e+00 1.28e+05 8.02e+01 -1.0 8.01e+04 - 1.39e-02 1.19e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: 2 0.0000000e+00 1.05e+05 2.50e+03 -1.0 2.81e+04 - 3.47e-03 2.64e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: 3 0.0000000e+00 4.52e+04 1.99e+03 -1.0 3.48e+04 - 9.89e-01 5.59e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: 4 0.0000000e+00 6.23e+03 3.63e+02 -1.0 1.39e+04 - 8.95e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: 5 0.0000000e+00 3.17e+02 1.80e+01 -1.0 3.02e+02 - 9.90e-01 9.66e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: 6 0.0000000e+00 2.76e-01 3.87e+01 -1.0 9.51e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: 7 0.0000000e+00 2.04e-07 3.21e-02 -3.8 1.64e-03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Number of Iterations....: 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Constraint violation....: 6.0661898475542513e-11 2.0431252778507769e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Overall NLP error.......: 6.0661898475542513e-11 2.0431252778507769e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Number of objective function evaluations = 8\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Number of objective gradient evaluations = 8\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Number of equality constraint evaluations = 8\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Number of equality constraint Jacobian evaluations = 8\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Number of Lagrangian Hessian evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.F101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.F101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.F101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.S101.purge_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.S101.recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in equality constraint Jacobian...: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Total number of variables............................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: variables with lower and upper bounds: 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Total number of equality constraints.................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: 0 0.0000000e+00 3.00e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: 1 0.0000000e+00 3.00e-03 1.14e-05 -1.0 3.00e-01 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: 2 0.0000000e+00 2.96e-05 1.04e-01 -1.0 3.00e-03 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: 3 0.0000000e+00 6.94e-18 8.47e+02 -1.0 2.96e-05 - 9.92e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Constraint violation....: 6.9388939039072284e-18 6.9388939039072284e-18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Overall NLP error.......: 6.9388939039072284e-18 6.9388939039072284e-18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.S101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.S101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 1 0.0000000e+00 3.63e-08 0.00e+00 -1.0 7.00e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Constraint violation....: 3.6321580410003665e-09 3.6321580410003662e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Overall NLP error.......: 3.6321580410003665e-09 3.6321580410003662e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 1 0.0000000e+00 3.63e-08 0.00e+00 -1.0 7.00e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Constraint violation....: 3.6321580410003665e-09 3.6321580410003662e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Overall NLP error.......: 3.6321580410003665e-09 3.6321580410003662e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.C101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.C101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in equality constraint Jacobian...: 74\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in Lagrangian Hessian.............: 63\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Total number of variables............................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Total number of equality constraints.................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: 0 0.0000000e+00 9.18e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: 1 0.0000000e+00 1.31e+01 1.59e-03 -1.0 2.28e+01 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: 2 0.0000000e+00 1.31e-01 9.82e+00 -1.0 2.25e+01 - 1.00e+00 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: 3 0.0000000e+00 2.31e-07 7.90e-13 -1.0 2.24e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Constraint violation....: 3.7594960952141457e-09 2.3093889467418194e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Overall NLP error.......: 3.7594960952141457e-09 2.3093889467418194e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.C101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.C101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.C101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: 1 0.0000000e+00 1.05e-07 0.00e+00 -1.0 7.00e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Constraint violation....: 1.0512303560972215e-08 1.0512303560972215e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Overall NLP error.......: 1.0512303560972215e-08 1.0512303560972215e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: 1 0.0000000e+00 1.05e-07 0.00e+00 -1.0 7.00e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Constraint violation....: 1.0512303560972215e-08 1.0512303560972215e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Overall NLP error.......: 1.0512303560972215e-08 1.0512303560972215e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 1 0.0000000e+00 3.63e-08 0.00e+00 -1.0 7.00e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Constraint violation....: 3.6321580410003665e-09 3.6321580410003662e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Overall NLP error.......: 3.6321580410003665e-09 3.6321580410003662e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:01 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: 1 0.0000000e+00 1.72e-08 0.00e+00 -1.0 7.00e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Constraint violation....: 1.7229467630386353e-09 1.7229467630386353e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Overall NLP error.......: 1.7229467630386353e-09 1.7229467630386353e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in equality constraint Jacobian...: 117\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in Lagrangian Hessian.............: 65\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Total number of variables............................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Total number of equality constraints.................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: 0 0.0000000e+00 3.50e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: 1 0.0000000e+00 2.80e+03 2.76e+00 -1.0 3.50e+05 - 9.85e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: 2 0.0000000e+00 3.49e+00 1.01e+01 -1.0 2.80e+03 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: 3 0.0000000e+00 5.90e-05 3.59e+01 -1.0 3.24e-02 - 9.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: 4 0.0000000e+00 7.45e-09 7.01e-13 -1.0 5.90e-05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of Iterations....: 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Constraint violation....: 2.9103830456733704e-11 7.4505805969238281e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Overall NLP error.......: 2.9103830456733704e-11 7.4505805969238281e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of objective function evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of objective gradient evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of equality constraint evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of equality constraint Jacobian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of Lagrangian Hessian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.toluene_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.hydrogen_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.vapor_recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 0 0.0000000e+00 6.00e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 1 0.0000000e+00 5.68e-14 0.00e+00 -1.0 1.61e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Constraint violation....: 5.6843418860808015e-14 5.6843418860808015e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Overall NLP error.......: 5.6843418860808015e-14 5.6843418860808015e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 0 0.0000000e+00 3.24e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 1 0.0000000e+00 1.09e+01 0.00e+00 -1.0 6.35e+06 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 2 0.0000000e+00 3.73e-01 0.00e+00 -1.0 2.52e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 3 0.0000000e+00 4.59e-04 0.00e+00 -1.7 4.46e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 4 0.0000000e+00 7.00e-10 0.00e+00 -5.7 3.70e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Iterations....: 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Constraint violation....: 6.9962879933882505e-10 6.9962879933882505e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Overall NLP error.......: 6.9962879933882505e-10 6.9962879933882505e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective function evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective gradient evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: 0 0.0000000e+00 1.05e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: 1 0.0000000e+00 5.93e+04 1.13e+01 -1.0 2.36e+04 - 9.10e-02 5.64e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: 2 0.0000000e+00 2.98e+04 3.85e+00 -1.0 1.03e+04 - 9.90e-01 5.47e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: 3 0.0000000e+00 1.39e+04 1.30e+04 -1.0 4.72e+03 - 9.90e-01 5.60e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: 4 0.0000000e+00 1.33e+03 1.60e+08 -1.0 2.08e+03 - 9.92e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: 5 0.0000000e+00 6.98e+02 8.18e+07 -1.0 2.38e+01 - 1.00e+00 6.05e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: 6 0.0000000e+00 1.49e+02 3.71e+08 -1.0 9.38e+00 - 4.26e-02 4.96e-01f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: 7 0.0000000e+00 7.19e+01 6.66e+06 -1.0 4.73e+00 - 1.00e+00 4.96e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: 8 0.0000000e+00 2.79e+01 7.00e+08 -1.0 2.38e+00 - 1.00e+00 9.94e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: 9 0.0000000e+00 7.04e+00 1.76e+08 -1.0 1.50e-02 - 1.00e+00 5.00e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: 10 0.0000000e+00 6.93e+00 1.74e+08 -1.0 7.52e-03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: 11 0.0000000e+00 1.47e-04 3.72e+03 -1.0 7.73e-07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: 12 0.0000000e+00 2.91e-11 1.82e-03 -1.7 1.65e-07 - 1.00e+00 1.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Number of Iterations....: 12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Constraint violation....: 1.7053025658242404e-13 2.9103830456733704e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Overall NLP error.......: 1.7053025658242404e-13 2.9103830456733704e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Number of objective function evaluations = 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Number of objective gradient evaluations = 13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Number of equality constraint evaluations = 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Number of equality constraint Jacobian evaluations = 13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Number of Lagrangian Hessian evaluations = 12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 0 0.0000000e+00 8.69e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 1 0.0000000e+00 2.73e-12 0.00e+00 -1.0 8.69e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Constraint violation....: 2.7284841053187847e-12 2.7284841053187847e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Overall NLP error.......: 2.7284841053187847e-12 2.7284841053187847e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 0 0.0000000e+00 1.55e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 1 0.0000000e+00 7.45e-09 0.00e+00 -1.0 1.55e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Constraint violation....: 7.4505805969238285e-10 7.4505805969238281e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Overall NLP error.......: 7.4505805969238285e-10 7.4505805969238281e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.R101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.R101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in equality constraint Jacobian...: 102\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in Lagrangian Hessian.............: 72\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: 0 0.0000000e+00 3.47e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: 1 0.0000000e+00 5.18e+05 3.27e+01 -1.0 9.30e+04 - 1.51e-01 1.24e-01h 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: 2 0.0000000e+00 5.16e+05 3.91e+01 -1.0 8.67e+04 - 5.58e-01 1.55e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: 3 0.0000000e+00 5.14e+05 4.24e+01 -1.0 8.59e+04 - 3.40e-01 1.55e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: 4 0.0000000e+00 5.12e+05 4.89e+01 -1.0 8.51e+04 - 6.07e-01 1.55e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: 5 0.0000000e+00 3.05e+04 1.27e+04 -1.0 8.43e+04 - 3.85e-01 9.90e-01H 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: 6 0.0000000e+00 2.19e+04 3.31e+04 -1.0 1.35e+03 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: 7 0.0000000e+00 5.80e+04 2.14e+04 -1.0 3.92e+04 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: 8 0.0000000e+00 2.71e-04 2.73e-02 -1.0 5.80e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: 9 0.0000000e+00 2.24e-08 9.54e-10 -7.0 1.92e-07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Number of Iterations....: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Constraint violation....: 9.2564253581013618e-12 2.2351741790771484e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Overall NLP error.......: 9.2564253581013618e-12 2.2351741790771484e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Number of objective function evaluations = 50\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Number of objective gradient evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Number of equality constraint evaluations = 50\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Number of equality constraint Jacobian evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Number of Lagrangian Hessian evaluations = 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.R101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.R101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.R101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 0 0.0000000e+00 3.51e+07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 1 0.0000000e+00 2.91e-11 0.00e+00 -1.0 3.59e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Constraint violation....: 2.9103830456733704e-11 2.9103830456733704e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Overall NLP error.......: 2.9103830456733704e-11 2.9103830456733704e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 0 0.0000000e+00 9.90e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 1 0.0000000e+00 8.81e-13 0.00e+00 -1.0 9.90e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Constraint violation....: 8.8107299234252423e-13 8.8107299234252423e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Overall NLP error.......: 8.8107299234252423e-13 8.8107299234252423e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.F101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.F101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: 0 0.0000000e+00 8.74e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: 1 0.0000000e+00 7.30e+04 3.10e+01 -1.0 1.08e+04 - 4.52e-02 3.85e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: 2 0.0000000e+00 3.99e+04 3.26e+01 -1.0 7.60e+03 - 2.91e-01 4.83e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: 3 0.0000000e+00 2.87e+03 1.84e+01 -1.0 3.50e+03 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: 4 0.0000000e+00 1.31e+02 8.00e-01 -1.0 2.46e+02 - 9.90e-01 9.65e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: 5 0.0000000e+00 5.89e-02 2.42e+02 -1.0 7.54e+00 - 9.92e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: 6 0.0000000e+00 1.09e-08 1.29e-02 -3.8 1.80e-03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Number of Iterations....: 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Constraint violation....: 5.2093202509210664e-12 1.0943040251731873e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Overall NLP error.......: 5.2093202509210664e-12 1.0943040251731873e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Number of objective function evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Number of objective gradient evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Number of equality constraint evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Number of equality constraint Jacobian evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Number of Lagrangian Hessian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.F101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.F101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.F101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.S101.purge_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.S101.recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in equality constraint Jacobian...: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Total number of variables............................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: variables with lower and upper bounds: 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Total number of equality constraints.................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: 0 0.0000000e+00 1.00e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: 1 0.0000000e+00 1.00e-04 1.14e-05 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: 2 0.0000000e+00 9.88e-07 1.04e-01 -1.0 1.00e-04 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Constraint violation....: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Overall NLP error.......: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.S101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.S101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 0 0.0000000e+00 1.73e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 1 0.0000000e+00 2.84e-14 0.00e+00 -1.0 1.73e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 0 0.0000000e+00 1.73e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 1 0.0000000e+00 2.27e-13 0.00e+00 -1.0 1.73e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Constraint violation....: 2.2737367544323206e-13 2.2737367544323206e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Overall NLP error.......: 2.2737367544323206e-13 2.2737367544323206e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.C101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.C101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in equality constraint Jacobian...: 74\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in Lagrangian Hessian.............: 63\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Total number of variables............................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Total number of equality constraints.................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: 0 0.0000000e+00 3.63e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: 1 0.0000000e+00 9.87e-01 5.18e-04 -1.0 3.56e+00 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: 2 0.0000000e+00 3.56e-04 9.67e-14 -1.0 3.52e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: 3 0.0000000e+00 5.82e-11 3.47e-13 -2.5 3.56e-04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Constraint violation....: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Overall NLP error.......: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.C101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.C101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.C101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: 0 0.0000000e+00 1.78e-12 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Constraint violation....: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Overall NLP error.......: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: 0 0.0000000e+00 2.84e-14 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 0 0.0000000e+00 1.73e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 1 0.0000000e+00 2.84e-14 0.00e+00 -1.0 1.73e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: 0 0.0000000e+00 5.85e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: 1 0.0000000e+00 1.71e-13 0.00e+00 -1.0 6.05e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Constraint violation....: 1.7053025658242404e-13 1.7053025658242404e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Overall NLP error.......: 1.7053025658242404e-13 1.7053025658242404e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101.mixed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in equality constraint Jacobian...: 117\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in Lagrangian Hessian.............: 65\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Total number of variables............................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Total number of equality constraints.................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: 0 0.0000000e+00 2.24e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: 1 0.0000000e+00 2.98e+02 5.66e-01 -1.0 2.35e+02 - 9.88e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: 2 0.0000000e+00 9.87e-01 9.99e+00 -1.0 1.69e+01 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: 3 0.0000000e+00 1.71e-07 3.28e+01 -1.0 1.13e-02 - 9.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Constraint violation....: 2.0915153662155086e-10 1.7136335372924805e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Overall NLP error.......: 2.0915153662155086e-10 1.7136335372924805e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.M101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.toluene_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.hydrogen_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.M101.vapor_recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 0 0.0000000e+00 7.74e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 1 0.0000000e+00 4.55e-13 0.00e+00 -1.0 1.43e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Constraint violation....: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Overall NLP error.......: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 0 0.0000000e+00 2.04e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 1 0.0000000e+00 6.24e+01 0.00e+00 -1.0 1.17e+07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 2 0.0000000e+00 1.07e+01 0.00e+00 -1.0 8.96e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 3 0.0000000e+00 3.90e-01 0.00e+00 -1.0 6.73e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 4 0.0000000e+00 5.39e-04 0.00e+00 -1.7 1.71e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 5 0.0000000e+00 1.03e-09 0.00e+00 -5.7 2.37e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Iterations....: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Constraint violation....: 1.0325038601877168e-09 1.0325038601877168e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Overall NLP error.......: 1.0325038601877168e-09 1.0325038601877168e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective function evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective gradient evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [INFO] idaes.init.fs.H101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:02 [DEBUG] idaes.solve.fs.H101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 0 0.0000000e+00 5.41e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 1 0.0000000e+00 2.71e+04 1.18e+01 -1.0 1.40e+04 - 6.37e-02 5.29e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 2 0.0000000e+00 1.27e+04 5.09e+00 -1.0 8.31e+03 - 9.90e-01 5.21e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 3 0.0000000e+00 5.78e+03 1.16e+04 -1.0 4.22e+03 - 9.90e-01 5.38e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 4 0.0000000e+00 9.65e+02 4.37e+08 -1.0 2.01e+03 - 9.92e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 5 0.0000000e+00 5.26e+02 2.40e+08 -1.0 1.89e+01 - 1.00e+00 6.08e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 6 0.0000000e+00 2.80e+01 4.07e+08 -1.0 7.37e+00 - 3.97e-02 4.96e-01f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 7 0.0000000e+00 1.17e+01 6.12e+06 -1.0 3.72e+00 - 1.00e+00 4.98e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 8 0.0000000e+00 1.74e+01 6.04e+08 -1.0 1.87e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 9 0.0000000e+00 8.15e-02 2.83e+06 -1.0 1.66e-04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 10 0.0000000e+00 3.57e-08 1.27e+00 -1.0 7.28e-08 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of Iterations....: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Constraint violation....: 7.1026156709134016e-12 3.5717675928026438e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Overall NLP error.......: 7.1026156709134016e-12 3.5717675928026438e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of objective function evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of objective gradient evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of equality constraint evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of equality constraint Jacobian evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of Lagrangian Hessian evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.H101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.H101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 0 0.0000000e+00 1.04e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 1 0.0000000e+00 4.55e-13 0.00e+00 -1.0 1.04e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Constraint violation....: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Overall NLP error.......: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 0 0.0000000e+00 1.20e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 1 0.0000000e+00 7.45e-09 0.00e+00 -1.0 1.20e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Constraint violation....: 7.4505805969238285e-10 7.4505805969238281e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Overall NLP error.......: 7.4505805969238285e-10 7.4505805969238281e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in equality constraint Jacobian...: 102\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in Lagrangian Hessian.............: 72\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 0 0.0000000e+00 3.37e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 1 0.0000000e+00 3.37e+04 5.26e+00 -1.0 5.46e+04 - 4.79e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 2 0.0000000e+00 3.37e+04 1.18e+01 -1.0 5.45e+04 - 6.18e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 3 0.0000000e+00 3.36e+04 1.87e+01 -1.0 5.45e+04 - 6.78e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 4 0.0000000e+00 3.36e+04 2.86e+01 -1.0 5.45e+04 - 9.90e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 5 0.0000000e+00 3.36e+04 3.49e+01 -1.0 5.44e+04 - 6.24e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 6 0.0000000e+00 3.35e+04 4.48e+01 -1.0 5.44e+04 - 9.91e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 7 0.0000000e+00 3.35e+04 5.02e+01 -1.0 5.43e+04 - 5.46e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 8 0.0000000e+00 3.35e+04 6.02e+01 -1.0 5.43e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 9 0.0000000e+00 3.34e+04 6.57e+01 -1.0 5.43e+04 - 5.48e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 10 0.0000000e+00 3.34e+04 7.57e+01 -1.0 5.42e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 11 0.0000000e+00 1.22e+07 3.70e+00 -1.0 5.42e+04 - 5.51e-01 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 12 0.0000000e+00 1.69e+05 7.90e+01 -1.0 7.67e+03 - 1.00e+00 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 13 0.0000000e+00 4.20e+04 6.56e+01 -1.0 2.33e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 14 0.0000000e+00 3.71e-05 4.35e-02 -1.7 4.20e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of Iterations....: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Constraint violation....: 1.2867050784990244e-08 3.7141144275665283e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Overall NLP error.......: 1.2867050784990244e-08 3.7141144275665283e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of objective function evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of objective gradient evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of equality constraint evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of equality constraint Jacobian evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of Lagrangian Hessian evaluations = 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 0 0.0000000e+00 5.79e+07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 1 0.0000000e+00 1.49e-08 0.00e+00 -1.0 5.94e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Constraint violation....: 1.4901161193847657e-09 1.4901161193847656e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Overall NLP error.......: 1.4901161193847657e-09 1.4901161193847656e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 0 0.0000000e+00 4.45e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 1 0.0000000e+00 5.40e-13 0.00e+00 -1.0 4.45e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Constraint violation....: 5.4001247917767614e-13 5.4001247917767614e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Overall NLP error.......: 5.4001247917767614e-13 5.4001247917767614e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: 0 0.0000000e+00 5.18e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: 1 0.0000000e+00 3.81e+04 6.10e+00 -1.0 1.66e+04 - 1.31e-01 6.60e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: 2 0.0000000e+00 9.85e+03 2.82e+01 -1.0 5.30e+03 - 8.83e-01 6.24e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: 3 0.0000000e+00 1.72e+02 1.96e+01 -1.0 2.30e+03 - 8.30e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: 4 0.0000000e+00 1.40e+00 2.52e+00 -1.0 1.54e+01 - 9.90e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: 5 0.0000000e+00 2.60e-06 7.26e+02 -1.0 1.27e-01 - 9.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Number of Iterations....: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Constraint violation....: 2.3443628029030458e-09 2.6049783627968282e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Overall NLP error.......: 2.3443628029030458e-09 2.6049783627968282e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Number of objective function evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Number of objective gradient evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Number of equality constraint evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Number of equality constraint Jacobian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Number of Lagrangian Hessian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.S101.purge_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.S101.recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in equality constraint Jacobian...: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Total number of variables............................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: variables with lower and upper bounds: 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Total number of equality constraints.................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: 0 0.0000000e+00 1.00e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: 1 0.0000000e+00 1.00e-04 1.14e-05 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: 2 0.0000000e+00 9.88e-07 1.04e-01 -1.0 1.00e-04 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Constraint violation....: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Overall NLP error.......: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.S101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.S101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 0 0.0000000e+00 7.35e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 1 0.0000000e+00 1.99e-13 0.00e+00 -1.0 7.35e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Constraint violation....: 1.9895196601282805e-13 1.9895196601282805e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Overall NLP error.......: 1.9895196601282805e-13 1.9895196601282805e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 0 0.0000000e+00 7.35e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 1 0.0000000e+00 1.99e-13 0.00e+00 -1.0 7.35e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Constraint violation....: 1.9895196601282805e-13 1.9895196601282805e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Overall NLP error.......: 1.9895196601282805e-13 1.9895196601282805e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.C101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.C101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in equality constraint Jacobian...: 74\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in Lagrangian Hessian.............: 63\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Total number of variables............................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Total number of equality constraints.................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: 0 0.0000000e+00 8.03e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: 1 0.0000000e+00 7.95e-01 5.18e-04 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: 2 0.0000000e+00 5.82e-11 9.67e-14 -1.0 9.90e-05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Constraint violation....: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Overall NLP error.......: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.C101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.C101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.C101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: 0 0.0000000e+00 1.78e-12 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Constraint violation....: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Overall NLP error.......: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: 0 0.0000000e+00 2.84e-14 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 0 0.0000000e+00 7.35e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 1 0.0000000e+00 1.99e-13 0.00e+00 -1.0 7.35e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Constraint violation....: 1.9895196601282805e-13 1.9895196601282805e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Overall NLP error.......: 1.9895196601282805e-13 1.9895196601282805e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: 0 0.0000000e+00 2.47e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: 1 0.0000000e+00 2.33e-10 0.00e+00 -1.0 7.72e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Constraint violation....: 2.3283064365386964e-11 2.3283064365386963e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Overall NLP error.......: 2.3283064365386964e-11 2.3283064365386963e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101.mixed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.M101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in equality constraint Jacobian...: 117\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in Lagrangian Hessian.............: 65\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Total number of variables............................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Total number of equality constraints.................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: 0 0.0000000e+00 3.58e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: 1 0.0000000e+00 1.84e+03 3.49e+00 -1.0 5.83e+02 - 7.71e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: 2 0.0000000e+00 1.22e-01 1.01e+01 -1.0 5.51e+01 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: 3 0.0000000e+00 1.45e-06 3.74e+01 -1.0 2.11e-02 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Constraint violation....: 1.6366937707051519e-09 1.4454126358032227e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Overall NLP error.......: 1.6366937707051519e-09 1.4454126358032227e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.M101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.M101.toluene_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.M101.hydrogen_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.M101.vapor_recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 0 0.0000000e+00 3.96e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 1 0.0000000e+00 4.66e-10 0.00e+00 -1.0 3.96e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Constraint violation....: 4.6566128730773928e-11 4.6566128730773926e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Overall NLP error.......: 4.6566128730773928e-11 4.6566128730773926e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 0 0.0000000e+00 1.04e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 1 0.0000000e+00 9.31e-04 0.00e+00 -1.0 5.33e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 2 0.0000000e+00 3.07e-09 0.00e+00 -5.7 2.33e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Constraint violation....: 3.0722731025889516e-09 3.0722731025889516e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Overall NLP error.......: 3.0722731025889516e-09 3.0722731025889516e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.H101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.H101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 0 0.0000000e+00 5.31e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 1 0.0000000e+00 2.73e+04 1.13e+01 -1.0 9.78e+03 - 9.29e-02 5.26e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 2 0.0000000e+00 1.30e+04 5.18e+00 -1.0 4.93e+03 - 9.90e-01 5.20e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 3 0.0000000e+00 5.95e+03 1.15e+04 -1.0 2.43e+03 - 9.90e-01 5.38e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 4 0.0000000e+00 9.00e+02 4.35e+08 -1.0 1.13e+03 - 9.92e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 5 0.0000000e+00 4.96e+02 2.42e+08 -1.0 1.74e+01 - 1.00e+00 6.09e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 6 0.0000000e+00 2.84e+01 4.10e+08 -1.0 6.78e+00 - 3.95e-02 4.96e-01f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 7 0.0000000e+00 1.21e+01 6.19e+06 -1.0 3.42e+00 - 1.00e+00 4.98e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 8 0.0000000e+00 1.65e+01 6.23e+08 -1.0 1.72e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 9 0.0000000e+00 7.93e-02 2.99e+06 -1.0 1.68e-04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: 10 0.0000000e+00 3.32e-08 1.28e+00 -1.0 6.80e-08 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of Iterations....: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Constraint violation....: 6.5958889984627885e-12 3.3225660445168614e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Overall NLP error.......: 6.5958889984627885e-12 3.3225660445168614e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of objective function evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of objective gradient evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of equality constraint evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of equality constraint Jacobian evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Number of Lagrangian Hessian evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.H101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.H101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.H101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 0 0.0000000e+00 2.53e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 1 0.0000000e+00 1.36e-12 0.00e+00 -1.0 2.53e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Constraint violation....: 1.3642420526593924e-12 1.3642420526593924e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Overall NLP error.......: 1.3642420526593924e-12 1.3642420526593924e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 0 0.0000000e+00 6.19e+07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 1 0.0000000e+00 2.27e-12 0.00e+00 -1.0 6.19e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Constraint violation....: 2.2737367544323206e-12 2.2737367544323206e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Overall NLP error.......: 2.2737367544323206e-12 2.2737367544323206e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in equality constraint Jacobian...: 102\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in Lagrangian Hessian.............: 72\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 0 0.0000000e+00 3.39e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 1 0.0000000e+00 3.39e+04 4.69e+00 -1.0 5.65e+04 - 4.27e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 2 0.0000000e+00 3.39e+04 1.11e+01 -1.0 5.64e+04 - 6.10e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 3 0.0000000e+00 3.38e+04 1.74e+01 -1.0 5.64e+04 - 6.20e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 4 0.0000000e+00 3.38e+04 2.74e+01 -1.0 5.64e+04 - 9.90e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 5 0.0000000e+00 3.38e+04 3.19e+01 -1.0 5.63e+04 - 4.45e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 6 0.0000000e+00 3.37e+04 4.18e+01 -1.0 5.63e+04 - 9.90e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 7 0.0000000e+00 3.37e+04 4.62e+01 -1.0 5.62e+04 - 4.49e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 8 0.0000000e+00 3.37e+04 5.63e+01 -1.0 5.62e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 9 0.0000000e+00 3.36e+04 6.07e+01 -1.0 5.62e+04 - 4.50e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 10 0.0000000e+00 3.36e+04 7.07e+01 -1.0 5.61e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 11 0.0000000e+00 1.32e+07 5.73e+01 -1.0 5.61e+04 - 4.53e-01 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 12 0.0000000e+00 1.83e+05 1.50e+02 -1.0 8.34e+03 - 1.00e+00 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 13 0.0000000e+00 4.35e+04 8.07e+01 -1.0 2.35e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: 14 0.0000000e+00 3.89e-05 4.87e-02 -1.7 4.35e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of Iterations....: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Constraint violation....: 1.3482493703515918e-08 3.8929283618927002e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Overall NLP error.......: 1.3482493703515918e-08 3.8929283618927002e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of objective function evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of objective gradient evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of equality constraint evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of equality constraint Jacobian evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Number of Lagrangian Hessian evaluations = 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.R101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 0 0.0000000e+00 2.57e+06 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 1 0.0000000e+00 1.49e-08 0.00e+00 -1.0 2.90e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Constraint violation....: 1.4901161193847657e-09 1.4901161193847656e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Overall NLP error.......: 1.4901161193847657e-09 1.4901161193847656e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 0 0.0000000e+00 4.21e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 1 0.0000000e+00 1.45e-12 0.00e+00 -1.0 4.21e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Constraint violation....: 1.4495071809506044e-12 1.4495071809506044e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Overall NLP error.......: 1.4495071809506044e-12 1.4495071809506044e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [INFO] idaes.init.fs.F101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:03 [DEBUG] idaes.solve.fs.F101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: 0 0.0000000e+00 4.96e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: 1 0.0000000e+00 3.54e+04 5.11e+00 -1.0 3.23e+03 - 1.46e-01 6.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: 2 0.0000000e+00 9.50e+03 2.82e+01 -1.0 2.15e+03 - 8.67e-01 6.00e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: 3 0.0000000e+00 1.87e+02 2.36e+01 -1.0 7.00e+02 - 7.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: 4 0.0000000e+00 1.45e+00 2.85e+00 -1.0 1.47e+01 - 9.90e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: 5 0.0000000e+00 4.74e-07 8.13e+02 -1.0 1.14e-01 - 9.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of Iterations....: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Constraint violation....: 3.9519780131877856e-10 4.7424327931366861e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Overall NLP error.......: 3.9519780131877856e-10 4.7424327931366861e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of objective function evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of objective gradient evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of equality constraint evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of equality constraint Jacobian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of Lagrangian Hessian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.F101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.F101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.purge_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in equality constraint Jacobian...: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Total number of variables............................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: variables with lower and upper bounds: 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Total number of equality constraints.................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: 0 0.0000000e+00 1.00e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: 1 0.0000000e+00 1.00e-04 1.14e-05 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: 2 0.0000000e+00 9.88e-07 1.04e-01 -1.0 1.00e-04 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Constraint violation....: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Overall NLP error.......: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 0 0.0000000e+00 3.19e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 1 0.0000000e+00 1.42e-13 0.00e+00 -1.0 3.19e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Constraint violation....: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Overall NLP error.......: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 0 0.0000000e+00 3.19e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 1 0.0000000e+00 1.42e-13 0.00e+00 -1.0 3.19e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Constraint violation....: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Overall NLP error.......: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in equality constraint Jacobian...: 74\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in Lagrangian Hessian.............: 63\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Total number of variables............................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Total number of equality constraints.................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: 0 0.0000000e+00 8.03e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: 1 0.0000000e+00 7.95e-01 5.18e-04 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: 2 0.0000000e+00 5.82e-11 9.67e-14 -1.0 9.90e-05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Constraint violation....: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Overall NLP error.......: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: 0 0.0000000e+00 1.78e-12 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Constraint violation....: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Overall NLP error.......: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: 0 0.0000000e+00 2.84e-14 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 0 0.0000000e+00 3.19e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 1 0.0000000e+00 1.42e-13 0.00e+00 -1.0 3.19e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Constraint violation....: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Overall NLP error.......: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: 0 0.0000000e+00 5.85e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: 1 0.0000000e+00 2.33e-10 0.00e+00 -1.0 5.85e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Constraint violation....: 2.3283064365386964e-11 2.3283064365386963e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Overall NLP error.......: 2.3283064365386964e-11 2.3283064365386963e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.mixed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in equality constraint Jacobian...: 117\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in Lagrangian Hessian.............: 65\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Total number of variables............................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Total number of equality constraints.................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: 0 0.0000000e+00 3.52e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: 1 0.0000000e+00 1.80e+03 3.46e+00 -1.0 5.77e+02 - 7.73e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: 2 0.0000000e+00 1.17e-01 1.01e+01 -1.0 5.46e+01 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: 3 0.0000000e+00 1.43e-06 3.74e+01 -1.0 2.10e-02 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Constraint violation....: 1.6234143080625137e-09 1.4305114746093750e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Overall NLP error.......: 1.6234143080625137e-09 1.4305114746093750e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101.toluene_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101.hydrogen_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101.vapor_recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 0 0.0000000e+00 6.38e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 1 0.0000000e+00 4.55e-13 0.00e+00 -1.0 1.82e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Constraint violation....: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Overall NLP error.......: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 0 0.0000000e+00 9.84e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 1 0.0000000e+00 3.92e-04 0.00e+00 -1.0 3.45e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 2 0.0000000e+00 5.45e-10 0.00e+00 -5.7 9.79e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Constraint violation....: 5.4455995268654078e-10 5.4455995268654078e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Overall NLP error.......: 5.4455995268654078e-10 5.4455995268654078e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.H101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.H101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: 0 0.0000000e+00 5.39e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: 1 0.0000000e+00 2.72e+04 1.17e+01 -1.0 9.60e+03 - 6.94e-02 5.28e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: 2 0.0000000e+00 1.28e+04 5.11e+00 -1.0 4.88e+03 - 9.90e-01 5.21e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: 3 0.0000000e+00 5.83e+03 1.16e+04 -1.0 2.41e+03 - 9.90e-01 5.38e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: 4 0.0000000e+00 9.55e+02 4.36e+08 -1.0 1.12e+03 - 9.92e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: 5 0.0000000e+00 5.22e+02 2.40e+08 -1.0 1.85e+01 - 1.00e+00 6.08e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: 6 0.0000000e+00 2.82e+01 4.08e+08 -1.0 7.23e+00 - 3.97e-02 4.96e-01f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: 7 0.0000000e+00 1.18e+01 6.14e+06 -1.0 3.64e+00 - 1.00e+00 4.98e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: 8 0.0000000e+00 1.74e+01 6.12e+08 -1.0 1.83e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: 9 0.0000000e+00 8.26e-02 2.90e+06 -1.0 1.68e-04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: 10 0.0000000e+00 3.65e-08 1.31e+00 -1.0 9.97e-09 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Number of Iterations....: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Constraint violation....: 7.2342399038511207e-12 3.6536221159622073e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Overall NLP error.......: 7.2342399038511207e-12 3.6536221159622073e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Number of objective function evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Number of objective gradient evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Number of equality constraint evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Number of equality constraint Jacobian evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Number of Lagrangian Hessian evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.H101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.H101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.H101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 0 0.0000000e+00 1.94e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 1 0.0000000e+00 1.36e-12 0.00e+00 -1.0 1.94e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Constraint violation....: 1.3642420526593924e-12 1.3642420526593924e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Overall NLP error.......: 1.3642420526593924e-12 1.3642420526593924e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 0 0.0000000e+00 6.44e+07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 1 0.0000000e+00 7.45e-09 0.00e+00 -1.0 6.44e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Constraint violation....: 7.4505805969238285e-10 7.4505805969238281e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Overall NLP error.......: 7.4505805969238285e-10 7.4505805969238281e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.R101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.R101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in equality constraint Jacobian...: 102\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in Lagrangian Hessian.............: 72\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: 0 0.0000000e+00 3.38e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: 1 0.0000000e+00 3.38e+04 5.12e+00 -1.0 5.51e+04 - 4.66e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: 2 0.0000000e+00 3.37e+04 1.16e+01 -1.0 5.50e+04 - 6.16e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: 3 0.0000000e+00 3.37e+04 1.84e+01 -1.0 5.50e+04 - 6.71e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: 4 0.0000000e+00 3.37e+04 2.84e+01 -1.0 5.49e+04 - 9.90e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: 5 0.0000000e+00 3.36e+04 3.41e+01 -1.0 5.49e+04 - 5.66e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: 6 0.0000000e+00 3.36e+04 4.40e+01 -1.0 5.49e+04 - 9.91e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: 7 0.0000000e+00 3.36e+04 4.92e+01 -1.0 5.48e+04 - 5.21e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: 8 0.0000000e+00 3.35e+04 5.92e+01 -1.0 5.48e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: 9 0.0000000e+00 3.35e+04 6.44e+01 -1.0 5.47e+04 - 5.22e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: 10 0.0000000e+00 3.35e+04 7.44e+01 -1.0 5.47e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: 11 0.0000000e+00 1.25e+07 1.48e+01 -1.0 5.47e+04 - 5.25e-01 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: 12 0.0000000e+00 1.73e+05 9.39e+01 -1.0 7.84e+03 - 1.00e+00 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: 13 0.0000000e+00 4.24e+04 6.91e+01 -1.0 2.33e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: 14 0.0000000e+00 3.76e-05 4.49e-02 -1.7 4.24e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Number of Iterations....: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Constraint violation....: 1.3035939771934499e-08 3.7617981433868408e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Overall NLP error.......: 1.3035939771934499e-08 3.7617981433868408e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Number of objective function evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Number of objective gradient evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Number of equality constraint evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Number of equality constraint Jacobian evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Number of Lagrangian Hessian evaluations = 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.R101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.R101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.R101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 0 0.0000000e+00 1.91e+06 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 1 0.0000000e+00 3.64e-12 0.00e+00 -1.0 2.16e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Constraint violation....: 3.6379788070917130e-12 3.6379788070917130e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Overall NLP error.......: 3.6379788070917130e-12 3.6379788070917130e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 0 0.0000000e+00 4.37e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 1 0.0000000e+00 1.22e-12 0.00e+00 -1.0 4.37e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Constraint violation....: 1.2221335055073723e-12 1.2221335055073723e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Overall NLP error.......: 1.2221335055073723e-12 1.2221335055073723e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.F101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.F101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: 0 0.0000000e+00 5.12e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: 1 0.0000000e+00 3.74e+04 5.83e+00 -1.0 3.26e+03 - 1.35e-01 6.68e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: 2 0.0000000e+00 9.79e+03 2.83e+01 -1.0 2.31e+03 - 8.78e-01 6.18e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: 3 0.0000000e+00 1.77e+02 2.07e+01 -1.0 7.29e+02 - 8.20e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: 4 0.0000000e+00 1.43e+00 2.59e+00 -1.0 1.53e+01 - 9.90e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: 5 0.0000000e+00 2.02e-06 7.46e+02 -1.0 1.25e-01 - 9.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of Iterations....: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Constraint violation....: 1.7885068906748583e-09 2.0238840079400688e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Overall NLP error.......: 1.7885068906748583e-09 2.0238840079400688e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of objective function evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of objective gradient evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of equality constraint evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of equality constraint Jacobian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Number of Lagrangian Hessian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.F101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.F101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.F101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.purge_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in equality constraint Jacobian...: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Total number of variables............................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: variables with lower and upper bounds: 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Total number of equality constraints.................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: 0 0.0000000e+00 1.00e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: 1 0.0000000e+00 1.00e-04 1.14e-05 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: 2 0.0000000e+00 9.88e-07 1.04e-01 -1.0 1.00e-04 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Constraint violation....: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Overall NLP error.......: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.S101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.S101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 0 0.0000000e+00 2.40e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 1 0.0000000e+00 1.99e-13 0.00e+00 -1.0 2.40e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Constraint violation....: 1.9895196601282805e-13 1.9895196601282805e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Overall NLP error.......: 1.9895196601282805e-13 1.9895196601282805e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 0 0.0000000e+00 2.40e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 1 0.0000000e+00 1.99e-13 0.00e+00 -1.0 2.40e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Constraint violation....: 1.9895196601282805e-13 1.9895196601282805e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Overall NLP error.......: 1.9895196601282805e-13 1.9895196601282805e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in equality constraint Jacobian...: 74\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in Lagrangian Hessian.............: 63\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Total number of variables............................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Total number of equality constraints.................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: 0 0.0000000e+00 8.03e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: 1 0.0000000e+00 7.95e-01 5.18e-04 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: 2 0.0000000e+00 5.82e-11 9.67e-14 -1.0 9.90e-05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Constraint violation....: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Overall NLP error.......: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.C101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: 0 0.0000000e+00 1.78e-12 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Constraint violation....: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Overall NLP error.......: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:04 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: 0 0.0000000e+00 2.84e-14 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 0 0.0000000e+00 2.40e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 1 0.0000000e+00 1.99e-13 0.00e+00 -1.0 2.40e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Constraint violation....: 1.9895196601282805e-13 1.9895196601282805e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Overall NLP error.......: 1.9895196601282805e-13 1.9895196601282805e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: 0 0.0000000e+00 5.78e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: 1 0.0000000e+00 5.68e-14 0.00e+00 -1.0 5.78e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Constraint violation....: 5.6843418860808015e-14 5.6843418860808015e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Overall NLP error.......: 5.6843418860808015e-14 5.6843418860808015e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in equality constraint Jacobian...: 117\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in Lagrangian Hessian.............: 65\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Total number of variables............................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Total number of equality constraints.................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: 0 0.0000000e+00 3.55e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: 1 0.0000000e+00 1.82e+03 3.47e+00 -1.0 5.80e+02 - 7.72e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: 2 0.0000000e+00 1.20e-01 1.01e+01 -1.0 5.49e+01 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: 3 0.0000000e+00 1.44e-06 3.74e+01 -1.0 2.11e-02 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Constraint violation....: 1.6300540393838327e-09 1.4379620552062988e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Overall NLP error.......: 1.6300540393838327e-09 1.4379620552062988e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.toluene_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.hydrogen_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.vapor_recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 0 0.0000000e+00 3.34e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 1 0.0000000e+00 4.55e-13 0.00e+00 -1.0 3.34e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Constraint violation....: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Overall NLP error.......: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 0 0.0000000e+00 1.00e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 1 0.0000000e+00 1.28e-05 0.00e+00 -1.0 1.00e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 2 0.0000000e+00 1.82e-12 0.00e+00 -7.0 3.20e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Constraint violation....: 1.8189894035458565e-12 1.8189894035458565e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Overall NLP error.......: 1.8189894035458565e-12 1.8189894035458565e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.H101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: 0 0.0000000e+00 5.39e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: 1 0.0000000e+00 2.72e+04 1.17e+01 -1.0 9.61e+03 - 6.95e-02 5.28e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: 2 0.0000000e+00 1.28e+04 5.11e+00 -1.0 4.88e+03 - 9.90e-01 5.21e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: 3 0.0000000e+00 5.84e+03 1.16e+04 -1.0 2.41e+03 - 9.90e-01 5.38e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: 4 0.0000000e+00 9.56e+02 4.35e+08 -1.0 1.12e+03 - 9.92e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: 5 0.0000000e+00 5.23e+02 2.40e+08 -1.0 1.85e+01 - 1.00e+00 6.08e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: 6 0.0000000e+00 2.83e+01 4.08e+08 -1.0 7.22e+00 - 3.97e-02 4.96e-01f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: 7 0.0000000e+00 1.18e+01 6.15e+06 -1.0 3.64e+00 - 1.00e+00 4.98e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: 8 0.0000000e+00 1.74e+01 6.12e+08 -1.0 1.83e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: 9 0.0000000e+00 8.29e-02 2.91e+06 -1.0 1.68e-04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: 10 0.0000000e+00 3.67e-08 1.32e+00 -1.0 3.06e-08 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Number of Iterations....: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Constraint violation....: 7.2839166460891293e-12 3.6718120099976659e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Overall NLP error.......: 7.2839166460891293e-12 3.6718120099976659e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Number of objective function evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Number of objective gradient evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Number of equality constraint evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Number of equality constraint Jacobian evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Number of Lagrangian Hessian evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.H101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.H101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.H101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 0 0.0000000e+00 2.73e+00 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 1 0.0000000e+00 7.28e-12 0.00e+00 -1.0 2.73e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Constraint violation....: 7.2759576141834259e-12 7.2759576141834259e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Overall NLP error.......: 7.2759576141834259e-12 7.2759576141834259e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 0 0.0000000e+00 6.25e+07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 1 0.0000000e+00 7.28e-12 0.00e+00 -1.0 6.25e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Constraint violation....: 7.2759576141834259e-12 7.2759576141834259e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Overall NLP error.......: 7.2759576141834259e-12 7.2759576141834259e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.R101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.R101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in equality constraint Jacobian...: 102\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in Lagrangian Hessian.............: 72\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: 0 0.0000000e+00 3.38e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: 1 0.0000000e+00 3.38e+04 5.12e+00 -1.0 5.51e+04 - 4.66e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: 2 0.0000000e+00 3.37e+04 1.16e+01 -1.0 5.51e+04 - 6.16e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: 3 0.0000000e+00 3.37e+04 1.84e+01 -1.0 5.50e+04 - 6.71e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: 4 0.0000000e+00 3.37e+04 2.84e+01 -1.0 5.50e+04 - 9.90e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: 5 0.0000000e+00 3.36e+04 3.40e+01 -1.0 5.49e+04 - 5.65e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: 6 0.0000000e+00 3.36e+04 4.39e+01 -1.0 5.49e+04 - 9.91e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: 7 0.0000000e+00 3.36e+04 4.91e+01 -1.0 5.49e+04 - 5.20e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: 8 0.0000000e+00 3.35e+04 5.91e+01 -1.0 5.48e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: 9 0.0000000e+00 3.35e+04 6.43e+01 -1.0 5.48e+04 - 5.21e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: 10 0.0000000e+00 3.35e+04 7.43e+01 -1.0 5.47e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: 11 0.0000000e+00 1.25e+07 1.53e+01 -1.0 5.47e+04 - 5.24e-01 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: 12 0.0000000e+00 1.73e+05 9.46e+01 -1.0 7.85e+03 - 1.00e+00 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: 13 0.0000000e+00 4.24e+04 6.93e+01 -1.0 2.33e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: 14 0.0000000e+00 3.77e-05 4.50e-02 -1.7 4.24e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Number of Iterations....: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Constraint violation....: 1.3055977448351614e-08 3.7685036659240723e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Overall NLP error.......: 1.3055977448351614e-08 3.7685036659240723e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Number of objective function evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Number of objective gradient evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Number of equality constraint evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Number of equality constraint Jacobian evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Number of Lagrangian Hessian evaluations = 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.R101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.R101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 0 0.0000000e+00 4.26e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 1 0.0000000e+00 6.37e-12 0.00e+00 -1.0 4.49e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Constraint violation....: 6.3664629124104977e-12 6.3664629124104977e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Overall NLP error.......: 6.3664629124104977e-12 6.3664629124104977e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 0 0.0000000e+00 4.35e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 1 0.0000000e+00 2.84e-13 0.00e+00 -1.0 4.35e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Constraint violation....: 2.8421709430404007e-13 2.8421709430404007e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Overall NLP error.......: 2.8421709430404007e-13 2.8421709430404007e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.F101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.F101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: 0 0.0000000e+00 5.12e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: 1 0.0000000e+00 3.74e+04 5.83e+00 -1.0 3.26e+03 - 1.35e-01 6.68e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: 2 0.0000000e+00 9.80e+03 2.83e+01 -1.0 2.31e+03 - 8.78e-01 6.17e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: 3 0.0000000e+00 1.77e+02 2.07e+01 -1.0 7.30e+02 - 8.20e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: 4 0.0000000e+00 1.43e+00 2.59e+00 -1.0 1.53e+01 - 9.90e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: 5 0.0000000e+00 2.03e-06 7.46e+02 -1.0 1.25e-01 - 9.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Number of Iterations....: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Constraint violation....: 1.7946090848256982e-09 2.0297338778618723e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Overall NLP error.......: 1.7946090848256982e-09 2.0297338778618723e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Number of objective function evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Number of objective gradient evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Number of equality constraint evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Number of equality constraint Jacobian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Number of Lagrangian Hessian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.F101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.F101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.F101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.S101.purge_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.S101.recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in equality constraint Jacobian...: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Total number of variables............................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: variables with lower and upper bounds: 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Total number of equality constraints.................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: 0 0.0000000e+00 1.00e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: 1 0.0000000e+00 1.00e-04 1.14e-05 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: 2 0.0000000e+00 9.88e-07 1.04e-01 -1.0 1.00e-04 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Constraint violation....: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Overall NLP error.......: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.S101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.S101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 0 0.0000000e+00 2.21e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 1 0.0000000e+00 3.98e-13 0.00e+00 -1.7 2.21e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Constraint violation....: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Overall NLP error.......: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 0 0.0000000e+00 2.21e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 1 0.0000000e+00 3.98e-13 0.00e+00 -1.7 2.21e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Constraint violation....: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Overall NLP error.......: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.C101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.C101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in equality constraint Jacobian...: 74\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in Lagrangian Hessian.............: 63\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Total number of variables............................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Total number of equality constraints.................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: 0 0.0000000e+00 8.03e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: 1 0.0000000e+00 7.95e-01 5.18e-04 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: 2 0.0000000e+00 5.82e-11 9.67e-14 -1.0 9.90e-05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Constraint violation....: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Overall NLP error.......: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.C101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.C101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.C101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: 0 0.0000000e+00 1.78e-12 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Constraint violation....: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Overall NLP error.......: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: 0 0.0000000e+00 2.84e-14 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 0 0.0000000e+00 2.21e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 1 0.0000000e+00 3.98e-13 0.00e+00 -1.7 2.21e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Constraint violation....: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Overall NLP error.......: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: 0 0.0000000e+00 5.82e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: 1 0.0000000e+00 2.33e-10 0.00e+00 -1.0 5.82e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Constraint violation....: 2.3283064365386964e-11 2.3283064365386963e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Overall NLP error.......: 2.3283064365386964e-11 2.3283064365386963e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [DEBUG] idaes.solve.fs.M101.mixed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:05 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in equality constraint Jacobian...: 117\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in Lagrangian Hessian.............: 65\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Total number of variables............................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Total number of equality constraints.................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: 0 0.0000000e+00 3.55e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: 1 0.0000000e+00 1.82e+03 3.47e+00 -1.0 5.79e+02 - 7.72e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: 2 0.0000000e+00 1.19e-01 1.01e+01 -1.0 5.48e+01 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: 3 0.0000000e+00 1.43e-06 3.74e+01 -1.0 2.10e-02 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Constraint violation....: 1.6234143080625137e-09 1.4305114746093750e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Overall NLP error.......: 1.6234143080625137e-09 1.4305114746093750e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.M101.toluene_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.M101.hydrogen_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.M101.vapor_recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 0 0.0000000e+00 5.83e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 1 0.0000000e+00 5.68e-14 0.00e+00 -1.0 5.83e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Constraint violation....: 5.6843418860808015e-14 5.6843418860808015e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Overall NLP error.......: 5.6843418860808015e-14 5.6843418860808015e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 0 0.0000000e+00 1.00e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 1 0.0000000e+00 4.68e-05 0.00e+00 -1.0 1.19e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 2 0.0000000e+00 7.73e-12 0.00e+00 -5.7 1.17e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Constraint violation....: 7.7307049650698900e-12 7.7307049650698900e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Overall NLP error.......: 7.7307049650698900e-12 7.7307049650698900e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.H101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.H101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: 0 0.0000000e+00 5.40e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: 1 0.0000000e+00 2.72e+04 1.17e+01 -1.0 9.62e+03 - 6.95e-02 5.28e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: 2 0.0000000e+00 1.28e+04 5.11e+00 -1.0 4.89e+03 - 9.90e-01 5.21e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: 3 0.0000000e+00 5.84e+03 1.16e+04 -1.0 2.42e+03 - 9.90e-01 5.38e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: 4 0.0000000e+00 9.57e+02 4.35e+08 -1.0 1.12e+03 - 9.92e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: 5 0.0000000e+00 5.23e+02 2.40e+08 -1.0 1.85e+01 - 1.00e+00 6.08e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: 6 0.0000000e+00 2.83e+01 4.08e+08 -1.0 7.23e+00 - 3.97e-02 4.96e-01f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: 7 0.0000000e+00 1.19e+01 6.15e+06 -1.0 3.64e+00 - 1.00e+00 4.98e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: 8 0.0000000e+00 1.75e+01 6.13e+08 -1.0 1.83e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: 9 0.0000000e+00 8.34e-02 2.93e+06 -1.0 1.68e-04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: 10 0.0000000e+00 3.71e-08 1.33e+00 -1.0 7.32e-08 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Number of Iterations....: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Constraint violation....: 7.3552916719798679e-12 3.7125573726370931e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Overall NLP error.......: 7.3552916719798679e-12 3.7125573726370931e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Number of objective function evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Number of objective gradient evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Number of equality constraint evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Number of equality constraint Jacobian evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Number of Lagrangian Hessian evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.H101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.H101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.H101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 0 0.0000000e+00 8.44e+00 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 1 0.0000000e+00 1.82e-12 0.00e+00 -1.0 8.44e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Constraint violation....: 1.8189894035458565e-12 1.8189894035458565e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Overall NLP error.......: 1.8189894035458565e-12 1.8189894035458565e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 0 0.0000000e+00 6.26e+07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 1 0.0000000e+00 7.28e-12 0.00e+00 -1.0 6.26e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Constraint violation....: 7.2759576141834259e-12 7.2759576141834259e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Overall NLP error.......: 7.2759576141834259e-12 7.2759576141834259e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.R101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.R101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in equality constraint Jacobian...: 102\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in Lagrangian Hessian.............: 72\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: 0 0.0000000e+00 3.38e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: 1 0.0000000e+00 3.38e+04 5.11e+00 -1.0 5.51e+04 - 4.66e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: 2 0.0000000e+00 3.37e+04 1.16e+01 -1.0 5.51e+04 - 6.16e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: 3 0.0000000e+00 3.37e+04 1.84e+01 -1.0 5.51e+04 - 6.71e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: 4 0.0000000e+00 3.37e+04 2.84e+01 -1.0 5.50e+04 - 9.90e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: 5 0.0000000e+00 3.36e+04 3.40e+01 -1.0 5.50e+04 - 5.64e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: 6 0.0000000e+00 3.36e+04 4.39e+01 -1.0 5.49e+04 - 9.91e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: 7 0.0000000e+00 3.36e+04 4.91e+01 -1.0 5.49e+04 - 5.20e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: 8 0.0000000e+00 3.35e+04 5.91e+01 -1.0 5.49e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: 9 0.0000000e+00 3.35e+04 6.43e+01 -1.0 5.48e+04 - 5.21e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: 10 0.0000000e+00 3.35e+04 7.43e+01 -1.0 5.48e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: 11 0.0000000e+00 1.25e+07 1.59e+01 -1.0 5.47e+04 - 5.24e-01 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: 12 0.0000000e+00 1.73e+05 9.54e+01 -1.0 7.86e+03 - 1.00e+00 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: 13 0.0000000e+00 4.24e+04 6.95e+01 -1.0 2.33e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: 14 0.0000000e+00 3.78e-05 4.51e-02 -1.7 4.24e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Number of Iterations....: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Constraint violation....: 1.3084602700376065e-08 3.7789344787597656e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Overall NLP error.......: 1.3084602700376065e-08 3.7789344787597656e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Number of objective function evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Number of objective gradient evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Number of equality constraint evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Number of equality constraint Jacobian evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Number of Lagrangian Hessian evaluations = 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Total CPU secs in IPOPT (w/o function evaluations) = 0.007\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.R101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.R101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.R101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 0 0.0000000e+00 5.60e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 1 0.0000000e+00 4.55e-13 0.00e+00 -1.0 5.69e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Constraint violation....: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Overall NLP error.......: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 0 0.0000000e+00 4.35e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 1 0.0000000e+00 5.26e-13 0.00e+00 -1.0 4.35e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Constraint violation....: 5.2580162446247414e-13 5.2580162446247414e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Overall NLP error.......: 5.2580162446247414e-13 5.2580162446247414e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.F101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.F101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: 0 0.0000000e+00 5.13e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: 1 0.0000000e+00 3.75e+04 5.85e+00 -1.0 3.26e+03 - 1.34e-01 6.67e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: 2 0.0000000e+00 9.81e+03 2.83e+01 -1.0 2.31e+03 - 8.78e-01 6.17e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: 3 0.0000000e+00 1.77e+02 2.07e+01 -1.0 7.31e+02 - 8.20e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: 4 0.0000000e+00 1.43e+00 2.58e+00 -1.0 1.54e+01 - 9.90e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: 5 0.0000000e+00 2.07e-06 7.45e+02 -1.0 1.25e-01 - 9.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Number of Iterations....: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Constraint violation....: 1.8323701215288182e-09 2.0685693016275764e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Overall NLP error.......: 1.8323701215288182e-09 2.0685693016275764e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Number of objective function evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Number of objective gradient evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Number of equality constraint evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Number of equality constraint Jacobian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Number of Lagrangian Hessian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.F101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.F101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.F101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.S101.purge_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.S101.recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in equality constraint Jacobian...: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Total number of variables............................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: variables with lower and upper bounds: 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Total number of equality constraints.................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: 0 0.0000000e+00 1.00e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: 1 0.0000000e+00 1.00e-04 1.14e-05 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: 2 0.0000000e+00 9.88e-07 1.04e-01 -1.0 1.00e-04 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Constraint violation....: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Overall NLP error.......: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.S101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.S101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 0 0.0000000e+00 7.91e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 1 0.0000000e+00 8.53e-14 0.00e+00 -2.5 7.91e-02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Constraint violation....: 8.5265128291212022e-14 8.5265128291212022e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Overall NLP error.......: 8.5265128291212022e-14 8.5265128291212022e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 0 0.0000000e+00 7.91e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 1 0.0000000e+00 8.53e-14 0.00e+00 -2.5 7.91e-02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Constraint violation....: 8.5265128291212022e-14 8.5265128291212022e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Overall NLP error.......: 8.5265128291212022e-14 8.5265128291212022e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.C101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.C101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in equality constraint Jacobian...: 74\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in Lagrangian Hessian.............: 63\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Total number of variables............................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Total number of equality constraints.................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: 0 0.0000000e+00 8.03e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: 1 0.0000000e+00 7.95e-01 5.18e-04 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: 2 0.0000000e+00 5.82e-11 9.67e-14 -1.0 9.90e-05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Constraint violation....: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Overall NLP error.......: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.C101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.C101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.C101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: 0 0.0000000e+00 1.78e-12 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Constraint violation....: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Overall NLP error.......: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: 0 0.0000000e+00 2.84e-14 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 0 0.0000000e+00 7.91e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 1 0.0000000e+00 8.53e-14 0.00e+00 -2.5 7.91e-02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Constraint violation....: 8.5265128291212022e-14 8.5265128291212022e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Overall NLP error.......: 8.5265128291212022e-14 8.5265128291212022e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: 0 0.0000000e+00 5.81e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: 1 0.0000000e+00 2.33e-10 0.00e+00 -1.0 5.81e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Constraint violation....: 2.3283064365386964e-11 2.3283064365386963e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Overall NLP error.......: 2.3283064365386964e-11 2.3283064365386963e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101.mixed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.M101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in equality constraint Jacobian...: 117\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in Lagrangian Hessian.............: 65\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Total number of variables............................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Total number of equality constraints.................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: 0 0.0000000e+00 3.54e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: 1 0.0000000e+00 1.81e+03 3.47e+00 -1.0 5.78e+02 - 7.72e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: 2 0.0000000e+00 1.19e-01 1.01e+01 -1.0 5.47e+01 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: 3 0.0000000e+00 1.44e-06 3.74e+01 -1.0 2.10e-02 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Constraint violation....: 1.6267341737231732e-09 1.4379620552062988e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:06 [DEBUG] idaes.solve.fs.M101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101: Overall NLP error.......: 1.6267341737231732e-09 1.4379620552062988e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.M101.toluene_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.M101.hydrogen_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.M101.vapor_recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: Wegstein failed to converge in 5 iterations\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "DOF = 0\n" - ] - } - ], - "source": [ - "# use the pre-defined function to create the flowsheet\n", - "model = vistut.create_model()\n", - "\n", - "# description of the flowsheet we created\n", - "display(Markdown(vistut.function_markdown(vistut.create_model)))\n", - "\n", - "vistut.quiet()\n", - "\n", - "# initialize the flowsheet as a square problem (dof=0)\n", - "vistut.initialize_model(model)\n", - "\n", - "# verify that there are zero degrees of freedom\n", - "print(f\"DOF = {degrees_of_freedom(model)}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Running the Flowsheet Visualizer\n", - "In most cases, you will run the FV by calling the `visualize()` method attached to your flowsheet.\n", - "This function takes a number of optional arguments, which we will look at briefly later, and one required argument:\n", - "the **title** to give the visualization. Unless you give more information, this title also is used as the filename in which to save its current state.\n", - "\n", - "In the following, we start the FV with the title \"Hydrodealkylation\". This will pop up a new browser tab (and save the status in a file called _Hydrodealkylation.json_).\n", - "\n", - "
\n", - "After the visualizer starts, we recommend making its tab into its own browser window and viewing it side-by-side with this notebook window.\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Optional arguments\n", - "The optional (keyword) arguments are documented in the base function, which can be found in `idaes.core.ui.fsvis.visualize`:\n", - "\n", - " * name: Name of flowsheet to display as the title of the visualization\n", - " * load_from_saved: If True load from saved file if any. Otherwise create\n", - " a new file or overwrite it (depending on 'overwrite' flag).\n", - " * save: Where to save the current flowsheet layout and values. If this argument is not specified,\n", - " \"``name``.json\" will be used (if this file already exists, a \"-``\" number will be added\n", - " between the name and the extension). If the value given is the boolean 'False', then nothing\n", - " will be saved. The boolean 'True' value is treated the same as unspecified.\n", - " * save_dir: If this argument is given, and ``save`` is not given or a relative path, then it will\n", - " be used as the directory to save the default or given file. The current working directory is\n", - " the default. If ``save`` is given and an absolute path, this argument is ignored.\n", - " * save_time_interval: The time interval that the UI application checks if any changes has occurred\n", - " in the graph for it to save the model. Default is 5 seconds\n", - " * overwrite: If True, and the file given by ``save`` exists, overwrite instead of creating a new\n", - " numbered file.\n", - " * browser: If true, open a browser\n", - " * port: Start listening on this port. If not given, find an open port.\n", - " * log_level: An IDAES logging level, which is a superset of the built-in `logging` module levels.\n", - " See the `idaes.logger` module for details\n", - " * quiet: If True, suppress printing any messages to standard output (console)\n", - " * loop_forever: If True, don't return but instead loop until a Control-C is received. Useful when\n", - " invoking this function at the end of a script." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Interacting with the visualizer\n", - "The first things you need to learn about the FV are how to manipulate the overall layout and control the view.\n", - "The UI should initially look something like the screenshot below:\n", - "![](\"fv1.png\") alt=\"Screenshot of Flowsheet Visualizer\"> \n", - "\n", - "
\n", - " As you can see, the FV has two main panels. We will call the top panel the diagram and the bottom panel the stream table.\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### View controls\n", - "Before looking at the two panels in detail, it helps to know some basic controls for making them easier to view.\n", - "\n", - "| Control | Description | Illustration |\n", - "|:----|:---------------------|:----:|\n", - "| Panel height | Change the height of the panels by grabbing the small handle in the lower right corner with your mouse. | ![](fv2.png) |\n", - "| Diagram size | Zoom in/out on the diagram with the magnifying glass \"+\" and \"-\" buttons in the upper-right corner of the top panel. The button labeled with two crossing arrows fits the diagram into the current panel height and width. | ![](fv3.png) |" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Rearranging the diagram\n", - "The diagram shown in the top panel is interactive. You can move the units shown there into different positions. Whatever arrangement you end up with will be saved for next time. The arcs (i.e., lines representing streams) connecting the units will automatically re-route themselves as you move them. Below is a summary of the different actions you can take when rearranging the diagram.\n", - "\n", - "|   |   |\n", - "|:--:|:--:|\n", - "| ![](fvr1.png)   |   ![](fvr2.png) |\n", - "| ![](fvr3.png)   |   ![](fvr4.png) |\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Stream table\n", - "The stream table panel shows the values of variables on all the streams between units, and also from units to outlets.\n", - "\n", - "### Stream table \"brushing\"\n", - "Brushing refers to the ability to have actions in one visual area influence the display in another. It is commonly used in statistics to show how points in one scatterplot correspond to their points in another, for the same samples. Here, we use it to link the position of a stream in the diagram with its variable values in the stream table.\n", - "#### Controls\n", - "\n", - "* Moving the mouse over an **arc** in the diagram → highlights the corresponding **column** in the stream table\n", - "* Moving the mouse over a **column** in the stream table → highlights the corresponding **arc** in the diagram\n", - "\n", - "![Illustration of stream table brushing](fvb1.png)\n", - " \n", - "#### Example\n", - "Stream table brushing is useful for answering questions like:\n", - "> How much benzene are we losing in the F101 vapor outlet stream?\n", - "\n", - "To answer this question, we will use some interactive elements of the stream table.\n", - "\n", - "1. Find the inlet of F101 on the diagram. Mouse over this to see the values for that stream highlighted in the stream table below. This is stream `s05`. Look across at the row for Benzene vapor (`flow_mol_phase_comp('Vap', 'benzene')`) and see that the value is $0.35384$\n", - "2. Find the vapor outlet of F101 by looking for the arc connecting to the splitter and compressor feedback loop. This is stream `s06`. Then look at the same row for the Benzene vapor mol fraction and see that the value is $0.14916$\n", - "3. Thus the amount of benzene lost is (in mole fractions) about $0.2$\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Showing and hiding streams\n", - "For complex diagrams, there are a lot of streams and the stream table does not fit in the window. To avoid having to scroll back and forth, there is the ability to \"hide\" selected streams in the stream table. \n", - "\n", - "* Click on the \"Hide Fields\" menu and select which fields to hide\n", - "* The mark will toggle between a check (shown) and open circle (hidden)\n", - "\n", - "For example, we can hide all the streams except the feeds and the flash inlets and outlets.\n", - "\n", - "![Illustration of stream table field hiding](fvst1.png)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Saving and loading\n", - "The current layout and status can be saved to a file, and this file can then be loaded when the model is viewed again. The main benefit is that interactive layout of the diagram is saved for re-use.\n", - "\n", - "#### File name\n", - "This file is named, by default, for the title of the visualizer (e.g., \"Hydrodealkylation\") with a \".json\" extension to indicate the data format and saved in the same directory as the Jupyter notebook. \n", - "\n", - "You can select a different filename and location when you start the visualization, e.g.\n", - "\n", - " model.fs.visualize(\"The Title\", save=\"thefilename.json\", save_dir=\"/path/to/save/the/file\")\n", - "\n", - "#### Reloading\n", - "To reload the saved layout, simply choose the same title (since the filename, by default, matches the title) or explicitly use the `save` and `save_dir` keywords for the `visualize()` function to select a previously saved file. This means you only need to manually lay out the diagram once. Of course, if you add new pieces to the flowsheet you will need to position them correctly (as discussed below)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exporting\n", - "\n", - "#### Exporting the diagram as an image\n", - "You can export an image of the flowsheet diagram in the [Scalable Vector Graphics (SVG)](https://www.w3.org/Graphics/SVG/) format, which can render without fuzziness at arbitrary sizes. Almost all presentation and drawing programs, including MS Word and Powerpoint, can use SVG images.\n", - "\n", - "From the top menu select _Export -> Flowsheet_. You will get a preview of the flowsheet that you can then download to a file.\n", - "#### Exporting the stream table as CSV\n", - "You can export the stream table as comma-separated values. From the top menu select _Export -> Stream Table_." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Updating when the flowsheet changes\n", - "The FV has a connection to the Python program that has the flowsheet (model) in memory. Therefore, when the underlying flowsheet changes, the visualization can be quickly updated to show the new state. This feature is particularly useful for interactive flowsheet creation and debugging in Jupyter Notebooks.\n", - "\n", - "To illustrate the feature, below is some IDAES modeling code that adds another Flash unit to the model, connecting the liquid outlet of the first flash unit to its inlet. There is a little more code that updates some of the output values of the model and sets initial values for this new unit, and then re-initializes the model.\n", - "\n", - "**After this code executes, the model will have a unit called \"F102\" connected to \"F101\".**" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: Implicitly replacing the Component attribute purity (type=) on block fs with a new\n", - "Component (type=). This\n", - "is usually indicative of a modelling error. To avoid this warning, use\n", - "block.del_component() and block.add_component().\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: Implicitly replacing the Component attribute heating_cost\n", - "(type=) on block fs with\n", - "a new Component (type=).\n", - "This is usually indicative of a modelling error. To avoid this warning, use\n", - "block.del_component() and block.add_component().\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 0 0.0000000e+00 1.77e+06 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 1 0.0000000e+00 3.49e-10 0.00e+00 -1.0 3.07e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Constraint violation....: 3.4924596548080450e-11 3.4924596548080450e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Overall NLP error.......: 3.4924596548080450e-11 3.4924596548080450e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 0 0.0000000e+00 1.73e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 1 0.0000000e+00 4.82e+01 0.00e+00 -1.0 1.49e+07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 2 0.0000000e+00 6.18e+00 0.00e+00 -1.0 1.95e+06 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 3 0.0000000e+00 1.19e-01 0.00e+00 -1.0 2.53e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 4 0.0000000e+00 4.53e-05 0.00e+00 -2.5 1.49e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 5 0.0000000e+00 6.37e-12 0.00e+00 -5.7 4.91e-02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Iterations....: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Constraint violation....: 6.3664629124104977e-12 6.3664629124104977e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Overall NLP error.......: 6.3664629124104977e-12 6.3664629124104977e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective function evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective gradient evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.H101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.H101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 0 0.0000000e+00 1.44e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 1 0.0000000e+00 8.53e+04 1.03e+01 -1.0 3.65e+04 - 1.44e-01 5.96e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 2 0.0000000e+00 5.59e+04 4.56e+02 -1.0 1.46e+04 - 9.90e-01 3.84e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 3 0.0000000e+00 5.46e+04 2.28e+04 -1.0 9.01e+03 - 9.64e-01 2.49e-02h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 4 0.0000000e+00 5.45e+04 8.49e+07 -1.0 8.79e+03 - 9.90e-01 2.77e-04h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 5r 0.0000000e+00 5.45e+04 1.00e+03 0.8 0.00e+00 - 0.00e+00 3.46e-07R 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 6r 0.0000000e+00 4.52e+04 1.72e+03 0.8 4.86e+04 - 3.39e-03 5.74e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 7r 0.0000000e+00 4.54e+04 2.22e+03 0.8 2.56e+04 - 7.23e-03 2.69e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 8r 0.0000000e+00 4.37e+04 2.43e+03 0.8 2.00e+04 - 1.36e-02 6.74e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 9r 0.0000000e+00 4.06e+04 4.57e+03 0.8 2.05e+04 - 7.28e-02 2.92e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 10r 0.0000000e+00 3.45e+04 7.90e+03 0.8 2.00e+04 - 2.01e-01 1.27e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 11r 0.0000000e+00 1.21e+04 2.39e+04 0.8 1.70e+04 - 2.59e-01 5.42e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 12r 0.0000000e+00 2.72e+03 1.77e+04 0.8 6.44e+03 - 1.00e+00 5.14e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 13r 0.0000000e+00 6.69e+02 6.62e+03 0.8 2.22e+03 - 1.00e+00 4.48e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 14r 0.0000000e+00 1.14e+03 6.61e+03 0.8 3.49e+02 - 1.00e+00 7.81e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 15r 0.0000000e+00 5.91e+02 1.93e+01 0.8 9.22e+01 - 1.00e+00 1.00e+00f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 16r 0.0000000e+00 2.19e+02 3.80e+02 -1.3 8.85e+02 - 9.43e-01 7.97e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 17r 0.0000000e+00 1.17e+02 2.34e+03 -1.3 8.99e+03 - 3.28e-01 1.18e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 18r 0.0000000e+00 2.25e+02 3.17e+03 -1.3 1.46e+04 - 2.67e-02 1.27e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 19r 0.0000000e+00 3.95e+02 1.19e+04 -1.3 4.01e+03 - 7.78e-01 1.99e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 20r 0.0000000e+00 2.40e+03 7.42e+03 -1.3 1.98e+03 - 1.00e+00 7.03e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 21r 0.0000000e+00 3.00e+02 1.47e+04 -1.3 3.39e+03 - 6.90e-01 1.00e+00f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 22r 0.0000000e+00 2.71e-01 4.33e+03 -1.3 2.52e+02 - 4.82e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 23r 0.0000000e+00 3.15e-01 5.75e+00 -1.3 2.74e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 24r 0.0000000e+00 1.02e-01 5.63e-02 -1.3 3.50e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 25r 0.0000000e+00 3.63e+00 8.07e+01 -4.5 6.57e+01 - 8.61e-01 9.36e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 26r 0.0000000e+00 1.31e+03 5.28e+03 -4.5 1.63e+06 - 1.55e-02 6.19e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 27r 0.0000000e+00 1.31e+03 5.27e+05 -4.5 6.86e+05 - 3.68e-01 5.27e-04f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 28r 0.0000000e+00 1.87e+03 4.39e+05 -4.5 1.60e+05 - 3.22e-02 1.15e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 29r 0.0000000e+00 1.78e+03 1.38e+05 -4.5 1.44e+05 - 1.00e+00 5.04e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 30r 0.0000000e+00 6.19e+02 1.35e+05 -4.5 3.83e+04 - 1.00e+00 6.55e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 31r 0.0000000e+00 4.41e+02 2.68e+05 -4.5 1.22e+04 - 1.00e+00 2.88e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 32r 0.0000000e+00 1.86e+02 4.62e+07 -4.5 9.50e+03 - 1.00e+00 9.78e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 33r 0.0000000e+00 1.84e+02 3.37e+07 -4.5 2.29e+02 - 4.62e-01 1.41e-02h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 34r 0.0000000e+00 1.76e+02 3.09e+07 -4.5 2.51e+02 - 4.97e-02 4.70e-02h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 35r 0.0000000e+00 9.49e+01 1.37e+07 -4.5 2.16e+02 - 6.25e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 36r 0.0000000e+00 8.67e+01 1.24e+07 -4.5 7.70e+00 -4.0 9.10e-02 1.02e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 37r 0.0000000e+00 8.67e+01 1.20e+07 -4.5 5.91e+04 - 2.30e-03 8.20e-05h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 38r 0.0000000e+00 8.66e+01 1.56e+07 -4.5 5.70e+02 -4.5 6.32e-06 1.89e-03h 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 39r 0.0000000e+00 8.66e+01 1.22e+07 -4.5 2.59e+01 -2.2 3.32e-02 5.58e-07f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 40r 0.0000000e+00 8.44e+01 1.98e+07 -4.5 6.14e+00 -1.8 5.60e-01 2.74e-02h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 41r 0.0000000e+00 8.12e+01 1.05e+07 -4.5 4.67e+01 -2.3 2.31e-02 1.18e-01h 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 42r 0.0000000e+00 7.88e+01 1.01e+07 -4.5 3.70e+01 -1.9 3.66e-02 4.33e-02h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 43r 0.0000000e+00 7.55e+01 3.32e+07 -4.5 1.51e+01 -1.4 2.07e-01 5.71e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 44r 0.0000000e+00 7.10e+01 2.94e+07 -4.5 7.40e+00 -1.0 5.30e-02 8.31e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 45r 0.0000000e+00 7.10e+01 1.00e+08 -4.5 4.33e+02 -1.5 1.89e-02 5.90e-04h 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 46r 0.0000000e+00 7.07e+01 9.61e+07 -4.5 3.30e+01 -1.1 3.22e-06 5.74e-03h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 47r 0.0000000e+00 7.07e+01 9.37e+07 -4.5 7.54e-01 0.3 3.39e-03 4.94e-05h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 48r 0.0000000e+00 7.02e+01 9.31e+07 -4.5 8.69e-01 -0.2 1.40e-02 6.86e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 49r 0.0000000e+00 7.02e+01 7.83e+07 -4.5 4.06e+00 -0.7 8.59e-03 5.24e-07h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 50r 0.0000000e+00 7.02e+01 8.84e+07 -4.5 5.36e+05 - 6.87e-03 6.32e-05f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 51r 0.0000000e+00 7.02e+01 8.84e+07 -4.5 2.23e+01 -1.2 6.00e-04 2.49e-04f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 52r 0.0000000e+00 7.02e+01 8.84e+07 -4.5 4.56e+04 - 8.86e-07 1.79e-07f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 53r 0.0000000e+00 7.02e+01 8.84e+07 -4.5 4.74e+01 -0.7 0.00e+00 1.05e-07R 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 54r 0.0000000e+00 7.02e+01 8.55e+07 -4.5 1.92e+00 -0.3 8.30e-03 5.53e-05f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 55r 0.0000000e+00 7.02e+01 8.49e+07 -4.5 6.73e+00 -0.8 2.21e-03 7.55e-04f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 56r 0.0000000e+00 7.02e+01 8.47e+07 -4.5 1.39e+01 -1.3 6.52e-04 1.79e-04f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 57r 0.0000000e+00 7.02e+01 5.83e+07 -4.5 2.41e+00 -0.8 6.44e-02 4.45e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 58r 0.0000000e+00 7.08e+01 3.00e+07 -4.5 1.27e+01 0.5 1.84e-06 4.40e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 59r 0.0000000e+00 7.09e+01 2.85e+07 -4.5 3.37e-01 5.4 1.62e-04 3.53e-04f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 60r 0.0000000e+00 8.17e+01 9.09e+07 -4.5 2.68e-03 5.8 3.44e-02 7.41e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 61r 0.0000000e+00 8.13e+01 5.59e+06 -4.5 6.99e-04 6.3 3.87e-01 2.13e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 62r 0.0000000e+00 7.94e+01 9.71e+06 -4.5 5.51e-03 5.8 6.09e-03 1.14e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 63r 0.0000000e+00 7.70e+01 8.49e+06 -4.5 6.42e-04 6.2 1.32e-01 1.44e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 64r 0.0000000e+00 6.99e+01 4.15e+07 -4.5 7.40e-04 5.7 5.90e-03 3.15e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 65r 0.0000000e+00 6.69e+01 3.05e+07 -4.5 1.94e-03 5.3 1.68e-01 9.35e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 66r 0.0000000e+00 6.65e+01 1.73e+07 -4.5 3.53e-03 4.8 1.66e-01 1.01e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 67r 0.0000000e+00 6.66e+01 1.91e+07 -4.5 7.12e-01 4.3 7.93e-08 2.39e-04f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 68r 0.0000000e+00 6.21e+01 2.26e+07 -4.5 4.72e-03 3.8 3.59e-02 8.03e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 69r 0.0000000e+00 6.11e+01 2.67e+07 -4.5 1.52e-02 5.2 1.18e-03 2.16e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 70r 0.0000000e+00 6.06e+01 2.57e+07 -4.5 9.33e-03 4.7 2.20e-02 4.71e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 71r 0.0000000e+00 5.94e+01 2.56e+07 -4.5 5.44e-02 4.2 1.17e-03 2.04e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 72r 0.0000000e+00 5.64e+01 2.54e+07 -4.5 6.63e-02 4.6 1.18e-03 5.86e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 73r 0.0000000e+00 5.62e+01 2.50e+07 -4.5 3.12e-04 6.9 2.11e-01 1.80e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 74r 0.0000000e+00 5.50e+01 2.23e+07 -4.5 5.06e-05 7.3 1.00e+00 1.06e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 75r 0.0000000e+00 4.42e+01 3.39e+05 -4.5 1.91e-04 6.8 1.09e-01 9.19e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 76r 0.0000000e+00 4.29e+01 1.76e+05 -4.5 4.67e-04 6.3 6.07e-01 3.51e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 77r 0.0000000e+00 3.52e+01 9.37e+04 -4.5 1.49e-03 5.9 6.76e-01 4.61e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 78r 0.0000000e+00 3.34e+01 8.98e+04 -4.5 4.08e-03 5.4 1.28e-01 4.34e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 79r 0.0000000e+00 2.98e+01 8.64e+04 -4.5 1.41e-02 4.9 7.39e-02 4.13e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 80r 0.0000000e+00 2.62e+01 8.59e+04 -4.5 3.69e-02 4.4 3.81e-02 8.89e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 81r 0.0000000e+00 1.82e+01 8.53e+04 -4.5 1.21e-01 4.0 2.37e-02 1.05e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 82r 0.0000000e+00 1.40e+00 8.44e+04 -4.5 3.05e-01 3.5 1.14e-02 1.05e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 83r 0.0000000e+00 1.40e+00 8.41e+04 -4.5 8.05e-03 3.0 5.54e-03 3.93e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 84r 0.0000000e+00 1.50e+00 8.38e+04 -4.5 6.63e-02 2.5 3.00e-03 4.01e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 85r 0.0000000e+00 6.67e-01 3.67e+04 -4.5 2.31e-04 2.0 3.35e-01 5.45e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 86r 0.0000000e+00 6.16e-01 3.35e+04 -4.5 6.49e-04 1.6 9.94e-01 7.55e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 87r 0.0000000e+00 3.67e-01 1.99e+04 -4.5 1.71e-03 1.1 4.48e-01 4.03e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 88r 0.0000000e+00 2.54e-01 1.38e+04 -4.5 3.84e-03 0.6 1.00e+00 3.06e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 89r 0.0000000e+00 1.58e-03 6.76e+01 -4.5 1.53e-02 0.1 9.18e-01 1.00e+00f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 90r 0.0000000e+00 5.50e+01 1.94e+06 -4.5 2.29e+04 - 1.00e+00 4.66e-04f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 91r 0.0000000e+00 4.48e+02 6.40e+07 -4.5 8.88e+00 - 2.70e-01 1.00e+00f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 92r 0.0000000e+00 4.43e+02 6.35e+07 -4.5 1.78e+03 - 6.05e-03 2.57e-02h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 93r 0.0000000e+00 4.41e+02 6.32e+07 -4.5 2.23e+00 -0.3 7.42e-03 4.12e-03h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 94r 0.0000000e+00 4.40e+02 6.30e+07 -4.5 1.50e+01 -0.8 9.90e-04 4.51e-03h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 95r 0.0000000e+00 4.40e+02 6.30e+07 -4.5 4.73e+03 -1.3 0.00e+00 4.75e-07R 8\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 96r 0.0000000e+00 4.40e+02 6.23e+07 -4.5 3.06e-04 6.6 1.31e-01 1.06e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 97r 0.0000000e+00 4.39e+02 5.85e+07 -4.5 8.53e-04 6.1 3.89e-01 5.90e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 98r 0.0000000e+00 4.39e+02 5.80e+07 -4.5 2.96e-03 5.6 9.68e-03 8.82e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 99r 0.0000000e+00 4.25e+02 4.95e+07 -4.5 1.13e-03 6.0 3.50e-02 1.00e+00f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 100r 0.0000000e+00 4.23e+02 1.52e+07 -4.5 3.81e-04 6.5 2.85e-01 1.00e+00f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 101r 0.0000000e+00 4.22e+02 1.50e+07 -4.5 1.03e-03 6.0 5.68e-01 1.11e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 102r 0.0000000e+00 4.21e+02 1.45e+07 -4.5 3.61e-03 5.5 2.88e-01 3.15e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 103r 0.0000000e+00 4.13e+02 1.45e+07 -4.5 1.59e-01 5.0 1.42e-03 3.88e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 104r 0.0000000e+00 4.13e+02 1.45e+07 -4.5 4.42e-04 6.3 9.74e-01 9.03e-04f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 105r 0.0000000e+00 4.01e+02 4.54e+06 -4.5 1.56e-03 5.9 2.61e-01 1.00e+00f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 106r 0.0000000e+00 3.99e+02 2.25e+06 -4.5 3.76e-03 5.4 7.08e-01 1.76e-01F 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 107r 0.0000000e+00 3.74e+02 1.90e+06 -4.5 1.31e-02 4.9 3.64e-01 2.05e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 108r 0.0000000e+00 3.42e+02 1.78e+06 -4.5 3.87e-02 4.4 2.09e-01 8.37e-02f 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 109r 0.0000000e+00 3.06e+02 1.75e+06 -4.5 1.39e-01 4.0 1.67e-02 2.31e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 110r 0.0000000e+00 3.04e+02 1.74e+06 -4.5 6.29e-02 4.4 3.47e-03 4.51e-03f 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 111r 0.0000000e+00 3.01e+02 1.70e+06 -4.5 1.41e-02 4.8 1.55e-02 1.89e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 112r 0.0000000e+00 3.01e+02 1.70e+06 -4.5 5.68e-02 4.3 3.23e-06 5.96e-05f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 113r 0.0000000e+00 3.01e+02 1.70e+06 -4.5 1.09e-01 4.8 7.36e-03 5.36e-06f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 114r 0.0000000e+00 2.83e+02 1.65e+06 -4.5 5.50e-02 4.3 7.29e-04 3.24e-02f 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 115r 0.0000000e+00 2.83e+02 1.65e+06 -4.5 1.79e-02 4.7 1.35e-01 3.48e-04f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 116r 0.0000000e+00 2.82e+02 1.65e+06 -4.5 6.16e-02 4.2 1.98e-03 2.04e-04f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 117r 0.0000000e+00 2.82e+02 1.65e+06 -4.5 9.60e-02 4.7 5.15e-03 2.06e-04h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 118r 0.0000000e+00 2.74e+02 1.63e+06 -4.5 7.03e-02 4.2 3.52e-02 1.16e-02f 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 119r 0.0000000e+00 2.72e+02 1.62e+06 -4.5 2.29e-02 4.6 1.26e-01 4.99e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 120r 0.0000000e+00 2.60e+02 1.60e+06 -4.5 7.89e-02 4.1 1.83e-04 1.45e-02f 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 121r 0.0000000e+00 2.60e+02 1.60e+06 -4.5 3.48e-03 5.5 1.00e+00 1.34e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 122r 0.0000000e+00 2.26e+02 1.13e+06 -4.5 1.11e-02 5.0 7.20e-01 3.27e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 123r 0.0000000e+00 1.98e+02 1.05e+06 -4.5 3.33e-02 4.5 4.09e-02 8.65e-02f 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 124r 0.0000000e+00 1.70e+02 1.02e+06 -4.5 9.90e-02 4.0 2.62e-01 2.71e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 125r 0.0000000e+00 1.60e+02 1.02e+06 -4.5 3.70e-01 3.6 3.45e-02 2.58e-03f 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 126r 0.0000000e+00 1.55e+02 1.02e+06 -4.5 3.14e+00 3.1 4.96e-04 1.42e-04f 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 127r 0.0000000e+00 1.55e+02 1.02e+06 -4.5 3.67e-02 4.4 1.77e-01 1.29e-04f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 128r 0.0000000e+00 1.48e+02 1.01e+06 -4.5 1.26e-01 3.9 8.13e-03 5.22e-03f 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 129r 0.0000000e+00 1.47e+02 1.01e+06 -4.5 7.75e-02 4.4 1.51e-02 9.33e-04f 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 130r 0.0000000e+00 1.43e+02 1.01e+06 -4.5 1.52e-01 3.9 6.57e-03 2.53e-03f 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 131r 0.0000000e+00 1.39e+02 9.99e+05 -4.5 4.81e-02 4.3 1.08e-01 8.55e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 132r 0.0000000e+00 1.33e+02 9.96e+05 -4.5 1.72e-01 3.8 2.16e-05 3.03e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 133r 0.0000000e+00 1.33e+02 9.96e+05 -4.5 1.04e-01 4.3 2.62e-07 1.60e-05f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 134r 0.0000000e+00 1.33e+02 9.96e+05 -4.5 2.22e+00 3.8 5.24e-10 3.85e-07f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 135r 0.0000000e+00 1.33e+02 9.96e+05 -4.5 6.49e-01 4.2 6.02e-09 1.73e-07f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 136r 0.0000000e+00 1.33e+02 9.95e+05 -4.5 2.05e-02 4.6 2.07e-02 8.34e-06f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 137r 0.0000000e+00 1.17e+02 9.75e+05 -4.5 7.55e-02 4.1 1.94e-02 2.11e-02f 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 138r 0.0000000e+00 1.17e+02 9.75e+05 -4.5 2.60e-02 4.6 7.70e-02 1.91e-05f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 139r 0.0000000e+00 1.11e+02 9.60e+05 -4.5 8.49e-02 4.1 5.34e-02 1.64e-02f 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 140r 0.0000000e+00 1.11e+02 9.54e+05 -4.5 3.58e-02 4.5 1.23e-01 6.78e-03f 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 141r 0.0000000e+00 1.08e+02 9.42e+05 -4.5 9.56e-02 4.0 1.78e-01 1.24e-02f 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 142r 0.0000000e+00 1.08e+02 9.37e+05 -4.5 3.05e-02 4.5 1.24e-01 5.17e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 143r 0.0000000e+00 1.05e+02 9.28e+05 -4.5 1.07e-01 4.0 2.08e-04 9.89e-03f 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 144r 0.0000000e+00 1.05e+02 9.28e+05 -4.5 3.43e-02 4.4 3.06e-02 1.73e-04f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 145r 0.0000000e+00 1.05e+02 9.26e+05 -4.5 1.19e-01 3.9 3.70e-04 2.21e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 146r 0.0000000e+00 1.05e+02 9.26e+05 -4.5 3.54e-02 4.4 8.94e-03 3.89e-06f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 147r 0.0000000e+00 1.03e+02 9.20e+05 -4.5 1.34e-01 3.9 1.57e-03 6.76e-03f 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 148r 0.0000000e+00 1.03e+02 9.20e+05 -4.5 5.08e-02 4.3 7.88e-01 1.75e-04f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 149r 0.0000000e+00 7.72e+01 8.46e+05 -4.5 1.45e-01 3.8 1.60e-01 7.86e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 150r 0.0000000e+00 5.06e+01 8.20e+05 -4.5 3.95e-01 3.4 1.69e-06 2.98e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 151r 0.0000000e+00 4.84e+01 7.78e+05 -4.5 1.87e-02 4.7 1.12e-01 3.37e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 152r 0.0000000e+00 2.27e+01 6.38e+05 -4.5 6.44e-02 4.2 3.65e-01 2.10e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 153r 0.0000000e+00 1.68e+01 6.38e+05 -4.5 5.31e+05 - 3.98e-02 4.51e-05f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 154r 0.0000000e+00 1.61e+01 6.09e+05 -4.5 3.54e-03 3.7 2.13e-02 3.70e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 155r 0.0000000e+00 1.65e+01 6.06e+05 -4.5 1.89e-01 3.3 1.31e-06 1.92e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 156r 0.0000000e+00 1.65e+01 6.06e+05 -4.5 6.90e+04 - 4.47e-06 7.87e-05f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 157r 0.0000000e+00 1.65e+01 6.06e+05 -4.5 2.08e+00 2.8 5.85e-04 2.48e-07f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 158r 0.0000000e+00 1.52e+01 8.19e+05 -4.5 1.57e+05 - 1.00e+00 7.37e-03f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 159r 0.0000000e+00 5.60e+01 1.03e+06 -4.5 7.41e+02 - 1.00e+00 1.29e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 160r 0.0000000e+00 5.54e+01 1.03e+06 -4.5 9.99e+02 - 9.92e-04 1.01e-02h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 161r 0.0000000e+00 1.06e+02 1.63e+06 -4.5 1.24e+03 - 1.00e+00 5.59e-02f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 162r 0.0000000e+00 2.66e+01 1.87e+06 -4.5 1.08e+03 - 6.59e-01 5.75e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 163r 0.0000000e+00 2.25e+01 4.38e+05 -4.5 4.42e+02 - 1.00e+00 9.71e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 164r 0.0000000e+00 2.05e-01 4.07e+03 -4.5 1.12e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: 165r 0.0000000e+00 7.88e-05 1.61e+00 -4.5 1.24e-02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Number of Iterations....: 165\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Constraint violation....: 1.4182702752789231e-08 7.8801036579534411e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Overall NLP error.......: 1.4182702752789231e-08 7.8801036579534411e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Number of objective function evaluations = 299\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Number of objective gradient evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Number of equality constraint evaluations = 301\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Number of equality constraint Jacobian evaluations = 169\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Number of Lagrangian Hessian evaluations = 165\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Total CPU secs in IPOPT (w/o function evaluations) = 0.069\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: Total CPU secs in NLP function evaluations = 0.003\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.H101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.H101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.H101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 0 0.0000000e+00 1.92e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 1 0.0000000e+00 1.46e-11 0.00e+00 -1.0 1.92e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Constraint violation....: 1.4551915228366852e-11 1.4551915228366852e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Overall NLP error.......: 1.4551915228366852e-11 1.4551915228366852e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 0 0.0000000e+00 6.26e+07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 1 0.0000000e+00 2.91e-11 0.00e+00 -1.0 6.26e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Constraint violation....: 2.9103830456733704e-11 2.9103830456733704e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Overall NLP error.......: 2.9103830456733704e-11 2.9103830456733704e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.R101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.R101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in equality constraint Jacobian...: 102\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in Lagrangian Hessian.............: 72\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: 0 0.0000000e+00 3.50e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: 1 0.0000000e+00 1.27e+07 1.40e+03 -1.0 1.10e+05 - 7.92e-02 4.95e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: 2 0.0000000e+00 1.13e+07 1.23e+03 -1.0 8.57e+04 - 7.40e-01 1.24e-01h 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: 3 0.0000000e+00 1.13e+07 1.25e+03 -1.0 7.81e+04 - 7.86e-01 1.93e-03h 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: 4 0.0000000e+00 1.13e+07 1.27e+03 -1.0 7.79e+04 - 9.90e-01 4.83e-04h 12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: 5 0.0000000e+00 1.13e+07 1.29e+03 -1.0 7.79e+04 - 9.90e-01 2.42e-04h 13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: 6 0.0000000e+00 1.13e+07 1.31e+03 -1.0 7.79e+04 - 1.00e+00 6.04e-05h 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: 7 0.0000000e+00 1.04e+07 1.31e+05 -1.0 7.79e+04 - 1.00e+00 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: 8 0.0000000e+00 1.08e+05 7.84e+04 -1.0 1.24e+04 - 1.00e+00 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: 9 0.0000000e+00 4.16e+04 9.36e+04 -1.0 7.40e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: 10 0.0000000e+00 5.09e-04 9.33e-02 -1.0 4.16e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: 11 0.0000000e+00 5.22e-08 2.29e-09 -7.0 9.13e-07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Number of Iterations....: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Constraint violation....: 2.0037676417114954e-11 5.2154064178466803e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Overall NLP error.......: 2.0037676417114954e-11 5.2154064178466803e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Number of objective function evaluations = 66\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Number of objective gradient evaluations = 12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Number of equality constraint evaluations = 66\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Number of equality constraint Jacobian evaluations = 12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Number of Lagrangian Hessian evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.R101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.R101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.R101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 0 0.0000000e+00 9.22e+07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 1 0.0000000e+00 2.98e-08 0.00e+00 -1.0 9.45e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Constraint violation....: 2.9802322387695314e-09 2.9802322387695312e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Overall NLP error.......: 2.9802322387695314e-09 2.9802322387695312e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 0 0.0000000e+00 1.43e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 1 0.0000000e+00 2.98e-13 0.00e+00 -1.0 1.43e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Constraint violation....: 2.9842794901924208e-13 2.9842794901924208e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Overall NLP error.......: 2.9842794901924208e-13 2.9842794901924208e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: 0 0.0000000e+00 1.17e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: 1 0.0000000e+00 1.28e+05 8.02e+01 -1.0 9.79e+03 - 1.39e-02 1.19e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: 2 0.0000000e+00 1.05e+05 2.50e+03 -1.0 3.38e+04 - 3.47e-03 2.64e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: 3 0.0000000e+00 4.52e+04 1.99e+03 -1.0 1.08e+04 - 9.89e-01 5.59e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: 4 0.0000000e+00 6.23e+03 3.63e+02 -1.0 6.26e+03 - 8.95e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: 5 0.0000000e+00 3.17e+02 1.80e+01 -1.0 3.02e+02 - 9.90e-01 9.66e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: 6 0.0000000e+00 2.76e-01 3.87e+01 -1.0 9.51e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: 7 0.0000000e+00 2.04e-07 3.21e-02 -3.8 1.64e-03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Number of Iterations....: 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Constraint violation....: 6.0647087810765159e-11 2.0424340618774292e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Overall NLP error.......: 6.0647087810765159e-11 2.0424340618774292e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Number of objective function evaluations = 8\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Number of objective gradient evaluations = 8\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Number of equality constraint evaluations = 8\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Number of equality constraint Jacobian evaluations = 8\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Number of Lagrangian Hessian evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.S101.purge_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.S101.recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in equality constraint Jacobian...: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Total number of variables............................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: variables with lower and upper bounds: 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Total number of equality constraints.................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: 0 0.0000000e+00 1.00e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: 1 0.0000000e+00 1.00e-04 1.14e-05 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: 2 0.0000000e+00 9.88e-07 1.04e-01 -1.0 1.00e-04 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Constraint violation....: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Overall NLP error.......: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.S101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.S101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F102.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F102.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: 1 0.0000000e+00 3.63e-08 0.00e+00 -1.0 7.00e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Constraint violation....: 3.6321580410003665e-09 3.6321580410003662e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Overall NLP error.......: 3.6321580410003665e-09 3.6321580410003662e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F102.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F102.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: 1 0.0000000e+00 8.98e+02 0.00e+00 -1.0 7.65e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: 2 0.0000000e+00 5.89e+02 0.00e+00 -1.0 4.68e+06 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: 3 0.0000000e+00 3.38e+02 0.00e+00 -1.0 1.97e+07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: 4 0.0000000e+00 1.53e+02 0.00e+00 -1.0 5.12e+07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: 5 0.0000000e+00 4.47e+01 0.00e+00 -1.0 7.04e+07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: 6 0.0000000e+00 5.10e+00 0.00e+00 -1.0 3.94e+07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: 7 0.0000000e+00 7.67e-02 0.00e+00 -1.0 5.71e+06 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: 8 0.0000000e+00 1.77e-05 0.00e+00 -2.5 8.86e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: 9 0.0000000e+00 9.95e-13 0.00e+00 -7.0 2.04e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of Iterations....: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Constraint violation....: 9.9475983006414026e-13 9.9475983006414026e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Overall NLP error.......: 9.9475983006414026e-13 9.9475983006414026e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of objective function evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of objective gradient evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of equality constraint evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F102.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F102.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F102: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: 0 0.0000000e+00 9.03e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: 1 0.0000000e+00 3.70e+04 6.71e+00 -1.0 2.03e+04 - 9.90e-01 7.88e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: 2 0.0000000e+00 7.96e+03 1.00e+02 -1.0 3.88e+03 - 8.89e-01 9.03e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: 3 0.0000000e+00 1.10e+03 2.77e+04 -1.0 1.55e+03 - 9.90e-01 9.82e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: 4 0.0000000e+00 2.97e+02 7.45e+05 -1.0 3.70e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: 5 0.0000000e+00 4.45e-01 2.09e+04 -1.0 5.52e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: 6 0.0000000e+00 2.57e-05 1.41e+01 -1.0 1.21e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Number of Iterations....: 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Constraint violation....: 1.5226407084512139e-10 2.5742469006218020e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Overall NLP error.......: 1.5226407084512139e-10 2.5742469006218020e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Number of objective function evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Number of objective gradient evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Number of equality constraint evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Number of equality constraint Jacobian evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Number of Lagrangian Hessian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.F102: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F102: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F102.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.F102: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 0 0.0000000e+00 8.25e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 1 0.0000000e+00 5.68e-14 0.00e+00 -1.0 8.25e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Constraint violation....: 5.6843418860808015e-14 5.6843418860808015e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Overall NLP error.......: 5.6843418860808015e-14 5.6843418860808015e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 0 0.0000000e+00 8.25e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 1 0.0000000e+00 5.68e-14 0.00e+00 -1.0 8.25e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Constraint violation....: 5.6843418860808015e-14 5.6843418860808015e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Overall NLP error.......: 5.6843418860808015e-14 5.6843418860808015e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.C101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.C101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in equality constraint Jacobian...: 74\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in Lagrangian Hessian.............: 63\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Total number of variables............................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Total number of equality constraints.................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: 0 0.0000000e+00 9.18e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: 1 0.0000000e+00 1.32e+01 5.18e-04 -1.0 2.28e+01 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: 2 0.0000000e+00 2.35e-03 9.67e-14 -1.0 2.25e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: 3 0.0000000e+00 3.64e-12 3.47e-13 -2.5 2.35e-03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Constraint violation....: 3.1719263458133377e-12 3.6379788070917130e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Overall NLP error.......: 3.1719263458133377e-12 3.6379788070917130e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.C101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.C101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.C101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: 0 0.0000000e+00 1.78e-12 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Constraint violation....: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Overall NLP error.......: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:07 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: 0 0.0000000e+00 2.84e-14 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 0 0.0000000e+00 8.25e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 1 0.0000000e+00 5.68e-14 0.00e+00 -1.0 8.25e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Constraint violation....: 5.6843418860808015e-14 5.6843418860808015e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Overall NLP error.......: 5.6843418860808015e-14 5.6843418860808015e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: 0 0.0000000e+00 5.80e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: 1 0.0000000e+00 3.13e-13 0.00e+00 -1.0 1.33e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Constraint violation....: 3.1263880373444408e-13 3.1263880373444408e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Overall NLP error.......: 3.1263880373444408e-13 3.1263880373444408e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.mixed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in equality constraint Jacobian...: 117\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in Lagrangian Hessian.............: 65\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Total number of variables............................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Total number of equality constraints.................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: 0 0.0000000e+00 4.42e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: 1 0.0000000e+00 1.72e+03 2.76e+00 -1.0 5.66e+02 - 9.85e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: 2 0.0000000e+00 3.48e+00 1.01e+01 -1.0 4.85e+01 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: 3 0.0000000e+00 2.84e-06 3.38e+01 -1.0 3.19e-02 - 9.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Constraint violation....: 3.3630239142481114e-09 2.8386712074279785e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Overall NLP error.......: 3.3630239142481114e-09 2.8386712074279785e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101.toluene_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101.hydrogen_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101.vapor_recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 0 0.0000000e+00 6.00e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 1 0.0000000e+00 2.27e-13 0.00e+00 -1.0 1.61e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Constraint violation....: 2.2737367544323206e-13 2.2737367544323206e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Overall NLP error.......: 2.2737367544323206e-13 2.2737367544323206e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 0 0.0000000e+00 3.24e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 1 0.0000000e+00 1.09e+01 0.00e+00 -1.0 6.35e+06 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 2 0.0000000e+00 3.73e-01 0.00e+00 -1.0 2.52e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 3 0.0000000e+00 4.59e-04 0.00e+00 -1.7 4.46e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 4 0.0000000e+00 7.00e-10 0.00e+00 -5.7 3.70e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Iterations....: 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Constraint violation....: 6.9962879933882505e-10 6.9962879933882505e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Overall NLP error.......: 6.9962879933882505e-10 6.9962879933882505e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective function evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective gradient evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.H101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.H101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: 0 0.0000000e+00 1.05e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: 1 0.0000000e+00 5.93e+04 1.13e+01 -1.0 2.36e+04 - 9.10e-02 5.64e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: 2 0.0000000e+00 2.98e+04 3.85e+00 -1.0 1.03e+04 - 9.90e-01 5.47e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: 3 0.0000000e+00 1.39e+04 1.30e+04 -1.0 4.72e+03 - 9.90e-01 5.60e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: 4 0.0000000e+00 1.33e+03 1.60e+08 -1.0 2.08e+03 - 9.92e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: 5 0.0000000e+00 6.98e+02 8.17e+07 -1.0 2.38e+01 - 1.00e+00 6.05e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: 6 0.0000000e+00 1.49e+02 3.71e+08 -1.0 9.38e+00 - 4.26e-02 4.96e-01f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: 7 0.0000000e+00 7.19e+01 6.66e+06 -1.0 4.73e+00 - 1.00e+00 4.96e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: 8 0.0000000e+00 2.79e+01 7.00e+08 -1.0 2.38e+00 - 1.00e+00 9.94e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: 9 0.0000000e+00 7.04e+00 1.76e+08 -1.0 1.50e-02 - 1.00e+00 5.00e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: 10 0.0000000e+00 6.93e+00 1.74e+08 -1.0 7.52e-03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: 11 0.0000000e+00 1.47e-04 3.72e+03 -1.0 7.73e-07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: 12 0.0000000e+00 4.37e-11 8.57e-03 -1.7 1.58e-07 - 1.00e+00 1.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Number of Iterations....: 12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Constraint violation....: 2.2737367544323206e-13 4.3655745685100555e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Overall NLP error.......: 2.2737367544323206e-13 4.3655745685100555e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Number of objective function evaluations = 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Number of objective gradient evaluations = 13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Number of equality constraint evaluations = 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Number of equality constraint Jacobian evaluations = 13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Number of Lagrangian Hessian evaluations = 12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.H101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.H101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.H101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 0 0.0000000e+00 8.69e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 1 0.0000000e+00 3.64e-12 0.00e+00 -1.0 8.69e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Constraint violation....: 3.6379788070917130e-12 3.6379788070917130e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Overall NLP error.......: 3.6379788070917130e-12 3.6379788070917130e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 0 0.0000000e+00 1.55e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 1 0.0000000e+00 2.98e-08 0.00e+00 -1.0 1.55e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Constraint violation....: 2.9802322387695314e-09 2.9802322387695312e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Overall NLP error.......: 2.9802322387695314e-09 2.9802322387695312e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.R101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.R101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in equality constraint Jacobian...: 102\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in Lagrangian Hessian.............: 72\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: 0 0.0000000e+00 3.47e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: 1 0.0000000e+00 5.18e+05 3.27e+01 -1.0 9.30e+04 - 1.51e-01 1.24e-01h 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: 2 0.0000000e+00 5.16e+05 3.91e+01 -1.0 8.67e+04 - 5.58e-01 1.55e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: 3 0.0000000e+00 5.14e+05 4.24e+01 -1.0 8.59e+04 - 3.40e-01 1.55e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: 4 0.0000000e+00 5.12e+05 4.89e+01 -1.0 8.51e+04 - 6.07e-01 1.55e-02h 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: 5 0.0000000e+00 3.05e+04 1.27e+04 -1.0 8.43e+04 - 3.85e-01 9.90e-01H 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: 6 0.0000000e+00 2.19e+04 3.31e+04 -1.0 1.35e+03 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: 7 0.0000000e+00 5.80e+04 2.14e+04 -1.0 3.92e+04 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: 8 0.0000000e+00 2.71e-04 2.73e-02 -1.0 5.80e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: 9 0.0000000e+00 5.22e-08 9.54e-10 -7.0 1.92e-07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Number of Iterations....: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Constraint violation....: 2.8097163774505327e-11 5.2154064178466797e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Overall NLP error.......: 2.8097163774505327e-11 5.2154064178466797e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Number of objective function evaluations = 50\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Number of objective gradient evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Number of equality constraint evaluations = 50\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Number of equality constraint Jacobian evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Number of Lagrangian Hessian evaluations = 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: Total CPU secs in NLP function evaluations = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.R101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.R101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.R101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 0 0.0000000e+00 3.51e+07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 1 0.0000000e+00 2.98e-08 0.00e+00 -1.0 3.59e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Constraint violation....: 2.9802322387695314e-09 2.9802322387695312e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Overall NLP error.......: 2.9802322387695314e-09 2.9802322387695312e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 0 0.0000000e+00 9.90e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 1 0.0000000e+00 2.27e-13 0.00e+00 -1.0 9.90e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Constraint violation....: 2.2737367544323206e-13 2.2737367544323206e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Overall NLP error.......: 2.2737367544323206e-13 2.2737367544323206e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.F101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.F101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: 0 0.0000000e+00 8.74e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: 1 0.0000000e+00 7.30e+04 3.10e+01 -1.0 1.08e+04 - 4.52e-02 3.85e-01f 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: 2 0.0000000e+00 3.99e+04 3.26e+01 -1.0 7.60e+03 - 2.91e-01 4.83e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: 3 0.0000000e+00 2.87e+03 1.84e+01 -1.0 3.50e+03 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: 4 0.0000000e+00 1.31e+02 8.00e-01 -1.0 2.46e+02 - 9.90e-01 9.65e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: 5 0.0000000e+00 5.89e-02 2.42e+02 -1.0 7.54e+00 - 9.92e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: 6 0.0000000e+00 1.09e-08 1.29e-02 -3.8 1.80e-03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Number of Iterations....: 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Constraint violation....: 5.2154013264316498e-12 1.0946678230538964e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Overall NLP error.......: 5.2154013264316498e-12 1.0946678230538964e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Number of objective function evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Number of objective gradient evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Number of equality constraint evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Number of equality constraint Jacobian evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Number of Lagrangian Hessian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.F101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.F101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.F101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.S101.purge_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.S101.recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in equality constraint Jacobian...: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Total number of variables............................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: variables with lower and upper bounds: 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Total number of equality constraints.................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: 0 0.0000000e+00 1.00e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: 1 0.0000000e+00 1.00e-04 1.14e-05 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: 2 0.0000000e+00 9.88e-07 1.04e-01 -1.0 1.00e-04 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Constraint violation....: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Overall NLP error.......: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.S101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.S101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 0 0.0000000e+00 1.72e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 1 0.0000000e+00 4.55e-13 0.00e+00 -1.0 1.72e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Constraint violation....: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Overall NLP error.......: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 0 0.0000000e+00 1.72e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 1 0.0000000e+00 4.55e-13 0.00e+00 -1.0 1.72e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Constraint violation....: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Overall NLP error.......: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.C101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.C101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in equality constraint Jacobian...: 74\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in Lagrangian Hessian.............: 63\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Total number of variables............................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Total number of equality constraints.................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: 0 0.0000000e+00 3.63e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: 1 0.0000000e+00 9.87e-01 5.18e-04 -1.0 3.56e+00 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: 2 0.0000000e+00 3.56e-04 9.67e-14 -1.0 3.52e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: 3 0.0000000e+00 5.82e-11 3.47e-13 -2.5 3.56e-04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Constraint violation....: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Overall NLP error.......: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.C101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.C101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.C101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: 0 0.0000000e+00 1.78e-12 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Constraint violation....: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Overall NLP error.......: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:08 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: 0 0.0000000e+00 2.84e-14 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 0 0.0000000e+00 1.72e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 1 0.0000000e+00 4.55e-13 0.00e+00 -1.0 1.72e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Constraint violation....: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Overall NLP error.......: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: 0 0.0000000e+00 5.85e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: 1 0.0000000e+00 3.98e-13 0.00e+00 -1.0 6.05e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Constraint violation....: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Overall NLP error.......: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.mixed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.M101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in equality constraint Jacobian...: 117\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in Lagrangian Hessian.............: 65\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Total number of variables............................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Total number of equality constraints.................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: 0 0.0000000e+00 2.24e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: 1 0.0000000e+00 2.98e+02 5.66e-01 -1.0 2.35e+02 - 9.88e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: 2 0.0000000e+00 9.87e-01 9.99e+00 -1.0 1.69e+01 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: 3 0.0000000e+00 1.71e-07 3.28e+01 -1.0 1.13e-02 - 9.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Constraint violation....: 2.0251180530023178e-10 1.7136335372924805e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Overall NLP error.......: 2.0251180530023178e-10 1.7136335372924805e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.M101.toluene_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.M101.hydrogen_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.M101.vapor_recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 0 0.0000000e+00 7.74e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 1 0.0000000e+00 4.69e-13 0.00e+00 -1.0 1.43e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Constraint violation....: 4.6895820560166612e-13 4.6895820560166612e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Overall NLP error.......: 4.6895820560166612e-13 4.6895820560166612e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 0 0.0000000e+00 2.04e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 1 0.0000000e+00 6.24e+01 0.00e+00 -1.0 1.17e+07 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 2 0.0000000e+00 1.08e+01 0.00e+00 -1.0 8.96e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 3 0.0000000e+00 3.91e-01 0.00e+00 -1.0 6.74e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 4 0.0000000e+00 5.40e-04 0.00e+00 -1.7 1.71e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 5 0.0000000e+00 1.04e-09 0.00e+00 -5.7 2.38e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Iterations....: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Constraint violation....: 1.0363692126702517e-09 1.0363692126702517e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Overall NLP error.......: 1.0363692126702517e-09 1.0363692126702517e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective function evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective gradient evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.H101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.H101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: 0 0.0000000e+00 5.41e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: 1 0.0000000e+00 2.71e+04 1.18e+01 -1.0 1.40e+04 - 6.36e-02 5.29e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: 2 0.0000000e+00 1.27e+04 5.09e+00 -1.0 8.31e+03 - 9.90e-01 5.21e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: 3 0.0000000e+00 5.78e+03 1.16e+04 -1.0 4.22e+03 - 9.90e-01 5.38e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: 4 0.0000000e+00 9.65e+02 4.37e+08 -1.0 2.01e+03 - 9.92e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: 5 0.0000000e+00 5.26e+02 2.40e+08 -1.0 1.89e+01 - 1.00e+00 6.08e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: 6 0.0000000e+00 2.80e+01 4.07e+08 -1.0 7.37e+00 - 3.97e-02 4.96e-01f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: 7 0.0000000e+00 1.17e+01 6.12e+06 -1.0 3.72e+00 - 1.00e+00 4.98e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: 8 0.0000000e+00 1.74e+01 6.04e+08 -1.0 1.87e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: 9 0.0000000e+00 8.15e-02 2.83e+06 -1.0 1.66e-04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: 10 0.0000000e+00 3.57e-08 1.27e+00 -1.0 1.54e-08 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Number of Iterations....: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Constraint violation....: 7.0889160467221185e-12 3.5739503800868988e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Overall NLP error.......: 7.0889160467221185e-12 3.5739503800868988e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Number of objective function evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Number of objective gradient evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Number of equality constraint evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Number of equality constraint Jacobian evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Number of Lagrangian Hessian evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.H101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.H101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.H101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 0 0.0000000e+00 1.04e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 1 0.0000000e+00 4.09e-12 0.00e+00 -1.0 1.04e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Constraint violation....: 4.0927261579781771e-12 4.0927261579781771e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Overall NLP error.......: 4.0927261579781771e-12 4.0927261579781771e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 0 0.0000000e+00 1.20e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 1 0.0000000e+00 2.24e-08 0.00e+00 -1.0 1.20e+05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Constraint violation....: 2.2351741790771488e-09 2.2351741790771488e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Overall NLP error.......: 2.2351741790771488e-09 2.2351741790771488e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.R101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.R101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in equality constraint Jacobian...: 102\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in Lagrangian Hessian.............: 72\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: 0 0.0000000e+00 3.37e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: 1 0.0000000e+00 3.37e+04 5.26e+00 -1.0 5.46e+04 - 4.79e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: 2 0.0000000e+00 3.37e+04 1.18e+01 -1.0 5.45e+04 - 6.18e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: 3 0.0000000e+00 3.36e+04 1.87e+01 -1.0 5.45e+04 - 6.78e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: 4 0.0000000e+00 3.36e+04 2.86e+01 -1.0 5.45e+04 - 9.90e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: 5 0.0000000e+00 3.36e+04 3.49e+01 -1.0 5.44e+04 - 6.24e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: 6 0.0000000e+00 3.35e+04 4.48e+01 -1.0 5.44e+04 - 9.91e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: 7 0.0000000e+00 3.35e+04 5.02e+01 -1.0 5.43e+04 - 5.46e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: 8 0.0000000e+00 3.35e+04 6.02e+01 -1.0 5.43e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: 9 0.0000000e+00 3.34e+04 6.57e+01 -1.0 5.43e+04 - 5.48e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: 10 0.0000000e+00 3.34e+04 7.57e+01 -1.0 5.42e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: 11 0.0000000e+00 1.22e+07 3.74e+00 -1.0 5.42e+04 - 5.51e-01 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: 12 0.0000000e+00 1.69e+05 7.89e+01 -1.0 7.67e+03 - 1.00e+00 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: 13 0.0000000e+00 4.20e+04 6.56e+01 -1.0 2.33e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: 14 0.0000000e+00 3.71e-05 4.35e-02 -1.7 4.20e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Number of Iterations....: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Constraint violation....: 1.2852738158978019e-08 3.7133693695068359e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Overall NLP error.......: 1.2852738158978019e-08 3.7133693695068359e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Number of objective function evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Number of objective gradient evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Number of equality constraint evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Number of equality constraint Jacobian evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Number of Lagrangian Hessian evaluations = 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.R101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.R101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.R101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 0 0.0000000e+00 5.79e+07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 1 0.0000000e+00 1.49e-08 0.00e+00 -1.0 5.94e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Constraint violation....: 1.4901161193847657e-09 1.4901161193847656e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Overall NLP error.......: 1.4901161193847657e-09 1.4901161193847656e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 0 0.0000000e+00 4.45e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 1 0.0000000e+00 1.14e-12 0.00e+00 -1.0 4.45e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Constraint violation....: 1.1368683772161603e-12 1.1368683772161603e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Overall NLP error.......: 1.1368683772161603e-12 1.1368683772161603e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.F101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.F101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: 0 0.0000000e+00 5.18e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: 1 0.0000000e+00 3.81e+04 6.09e+00 -1.0 1.66e+04 - 1.31e-01 6.60e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: 2 0.0000000e+00 9.85e+03 2.82e+01 -1.0 5.30e+03 - 8.83e-01 6.24e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: 3 0.0000000e+00 1.72e+02 1.97e+01 -1.0 2.29e+03 - 8.30e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: 4 0.0000000e+00 1.40e+00 2.53e+00 -1.0 1.54e+01 - 9.90e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: 5 0.0000000e+00 2.60e-06 7.26e+02 -1.0 1.27e-01 - 9.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Number of Iterations....: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Constraint violation....: 2.3414288502824821e-09 2.6022753445431590e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Overall NLP error.......: 2.3414288502824821e-09 2.6022753445431590e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Number of objective function evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Number of objective gradient evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Number of equality constraint evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Number of equality constraint Jacobian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Number of Lagrangian Hessian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.F101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.F101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.F101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.S101.purge_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.S101.recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in equality constraint Jacobian...: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Total number of variables............................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: variables with lower and upper bounds: 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Total number of equality constraints.................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: 0 0.0000000e+00 1.00e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: 1 0.0000000e+00 1.00e-04 1.14e-05 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: 2 0.0000000e+00 9.88e-07 1.04e-01 -1.0 1.00e-04 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Constraint violation....: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Overall NLP error.......: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.S101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.S101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 0 0.0000000e+00 7.35e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 1 0.0000000e+00 1.42e-13 0.00e+00 -1.0 7.35e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Constraint violation....: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Overall NLP error.......: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 0 0.0000000e+00 7.35e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 1 0.0000000e+00 1.42e-13 0.00e+00 -1.0 7.35e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Constraint violation....: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Overall NLP error.......: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.C101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.C101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in equality constraint Jacobian...: 74\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in Lagrangian Hessian.............: 63\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Total number of variables............................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Total number of equality constraints.................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: 0 0.0000000e+00 8.03e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: 1 0.0000000e+00 7.95e-01 5.18e-04 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: 2 0.0000000e+00 5.82e-11 9.67e-14 -1.0 9.90e-05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Constraint violation....: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Overall NLP error.......: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.C101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.C101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.C101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: 0 0.0000000e+00 1.78e-12 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Constraint violation....: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Overall NLP error.......: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: 0 0.0000000e+00 2.84e-14 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:09 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 0 0.0000000e+00 7.35e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 1 0.0000000e+00 1.42e-13 0.00e+00 -1.0 7.35e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Constraint violation....: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Overall NLP error.......: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: 0 0.0000000e+00 2.47e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: 1 0.0000000e+00 5.12e-13 0.00e+00 -1.0 7.72e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Constraint violation....: 5.1159076974727213e-13 5.1159076974727213e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Overall NLP error.......: 5.1159076974727213e-13 5.1159076974727213e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.mixed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.M101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in equality constraint Jacobian...: 117\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in Lagrangian Hessian.............: 65\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Total number of variables............................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Total number of equality constraints.................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: 0 0.0000000e+00 3.58e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: 1 0.0000000e+00 1.84e+03 3.49e+00 -1.0 5.83e+02 - 7.71e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: 2 0.0000000e+00 1.22e-01 1.01e+01 -1.0 5.51e+01 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: 3 0.0000000e+00 1.45e-06 3.74e+01 -1.0 2.11e-02 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Constraint violation....: 1.6400136363658114e-09 1.4528632164001465e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Overall NLP error.......: 1.6400136363658114e-09 1.4528632164001465e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.M101.toluene_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.M101.hydrogen_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.M101.vapor_recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 0 0.0000000e+00 3.96e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 1 0.0000000e+00 4.66e-10 0.00e+00 -1.0 3.96e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Constraint violation....: 4.6566128730773928e-11 4.6566128730773926e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Overall NLP error.......: 4.6566128730773928e-11 4.6566128730773926e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 0 0.0000000e+00 1.04e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 1 0.0000000e+00 1.07e-03 0.00e+00 -1.0 5.71e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 2 0.0000000e+00 4.05e-09 0.00e+00 -5.7 2.68e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Constraint violation....: 4.0522536437492818e-09 4.0522536437492818e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Overall NLP error.......: 4.0522536437492818e-09 4.0522536437492818e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.H101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.H101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: 0 0.0000000e+00 5.31e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: 1 0.0000000e+00 2.73e+04 1.13e+01 -1.0 9.78e+03 - 9.34e-02 5.26e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: 2 0.0000000e+00 1.30e+04 5.18e+00 -1.0 4.93e+03 - 9.90e-01 5.20e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: 3 0.0000000e+00 5.95e+03 1.15e+04 -1.0 2.43e+03 - 9.90e-01 5.38e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: 4 0.0000000e+00 8.99e+02 4.35e+08 -1.0 1.13e+03 - 9.92e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: 5 0.0000000e+00 4.96e+02 2.42e+08 -1.0 1.74e+01 - 1.00e+00 6.09e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: 6 0.0000000e+00 2.84e+01 4.10e+08 -1.0 6.78e+00 - 3.95e-02 4.96e-01f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: 7 0.0000000e+00 1.20e+01 6.19e+06 -1.0 3.42e+00 - 1.00e+00 4.98e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: 8 0.0000000e+00 1.65e+01 6.23e+08 -1.0 1.72e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: 9 0.0000000e+00 7.91e-02 2.99e+06 -1.0 1.68e-04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: 10 0.0000000e+00 3.28e-08 1.27e+00 -1.0 3.98e-08 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Number of Iterations....: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Constraint violation....: 6.5032986331031271e-12 3.2840034691616893e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Overall NLP error.......: 6.5032986331031271e-12 3.2840034691616893e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Number of objective function evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Number of objective gradient evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Number of equality constraint evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Number of equality constraint Jacobian evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Number of Lagrangian Hessian evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.H101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.H101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.H101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 0 0.0000000e+00 2.50e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 1 0.0000000e+00 9.09e-13 0.00e+00 -1.0 2.50e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Constraint violation....: 9.0949470177292824e-13 9.0949470177292824e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Overall NLP error.......: 9.0949470177292824e-13 9.0949470177292824e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 0 0.0000000e+00 6.19e+07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 1 0.0000000e+00 7.28e-12 0.00e+00 -1.0 6.19e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Constraint violation....: 7.2759576141834259e-12 7.2759576141834259e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Overall NLP error.......: 7.2759576141834259e-12 7.2759576141834259e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.R101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.R101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in equality constraint Jacobian...: 102\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in Lagrangian Hessian.............: 72\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: 0 0.0000000e+00 3.39e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: 1 0.0000000e+00 3.39e+04 4.68e+00 -1.0 5.65e+04 - 4.27e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: 2 0.0000000e+00 3.39e+04 1.11e+01 -1.0 5.65e+04 - 6.10e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: 3 0.0000000e+00 3.38e+04 1.74e+01 -1.0 5.64e+04 - 6.19e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: 4 0.0000000e+00 3.38e+04 2.74e+01 -1.0 5.64e+04 - 9.90e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: 5 0.0000000e+00 3.38e+04 3.19e+01 -1.0 5.63e+04 - 4.45e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: 6 0.0000000e+00 3.37e+04 4.18e+01 -1.0 5.63e+04 - 9.90e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: 7 0.0000000e+00 3.37e+04 4.62e+01 -1.0 5.62e+04 - 4.49e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: 8 0.0000000e+00 3.37e+04 5.62e+01 -1.0 5.62e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: 9 0.0000000e+00 3.36e+04 6.07e+01 -1.0 5.62e+04 - 4.50e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: 10 0.0000000e+00 3.36e+04 7.07e+01 -1.0 5.61e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: 11 0.0000000e+00 1.32e+07 5.75e+01 -1.0 5.61e+04 - 4.53e-01 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: 12 0.0000000e+00 1.83e+05 1.50e+02 -1.0 8.34e+03 - 1.00e+00 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: 13 0.0000000e+00 4.35e+04 8.07e+01 -1.0 2.35e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: 14 0.0000000e+00 3.90e-05 4.87e-02 -1.7 4.35e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Number of Iterations....: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Constraint violation....: 1.3508256430337923e-08 3.8973987102508545e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Overall NLP error.......: 1.3508256430337923e-08 3.8973987102508545e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Number of objective function evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Number of objective gradient evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Number of equality constraint evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Number of equality constraint Jacobian evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Number of Lagrangian Hessian evaluations = 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Total CPU secs in IPOPT (w/o function evaluations) = 0.005\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.R101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.R101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.R101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 0 0.0000000e+00 2.59e+06 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 1 0.0000000e+00 1.46e-11 0.00e+00 -1.0 2.92e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Constraint violation....: 1.4551915228366852e-11 1.4551915228366852e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Overall NLP error.......: 1.4551915228366852e-11 1.4551915228366852e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 0 0.0000000e+00 4.21e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 1 0.0000000e+00 4.55e-13 0.00e+00 -1.0 4.21e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Constraint violation....: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Overall NLP error.......: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.F101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.F101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: 0 0.0000000e+00 4.96e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: 1 0.0000000e+00 3.54e+04 5.12e+00 -1.0 3.23e+03 - 1.46e-01 6.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: 2 0.0000000e+00 9.51e+03 2.82e+01 -1.0 2.15e+03 - 8.67e-01 6.00e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: 3 0.0000000e+00 1.87e+02 2.35e+01 -1.0 7.01e+02 - 7.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: 4 0.0000000e+00 1.45e+00 2.84e+00 -1.0 1.47e+01 - 9.90e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: 5 0.0000000e+00 4.82e-07 8.12e+02 -1.0 1.14e-01 - 9.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Number of Iterations....: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Constraint violation....: 4.0148485686193228e-10 4.8150832299143076e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Overall NLP error.......: 4.0148485686193228e-10 4.8150832299143076e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Number of objective function evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Number of objective gradient evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Number of equality constraint evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Number of equality constraint Jacobian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Number of Lagrangian Hessian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.F101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.F101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.F101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.S101.purge_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.S101.recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in equality constraint Jacobian...: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Total number of variables............................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: variables with lower and upper bounds: 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Total number of equality constraints.................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: 0 0.0000000e+00 1.00e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: 1 0.0000000e+00 1.00e-04 1.14e-05 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: 2 0.0000000e+00 9.88e-07 1.04e-01 -1.0 1.00e-04 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Constraint violation....: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Overall NLP error.......: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.S101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.S101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 0 0.0000000e+00 3.19e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 1 0.0000000e+00 8.53e-14 0.00e+00 -1.0 3.19e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Constraint violation....: 8.5265128291212022e-14 8.5265128291212022e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Overall NLP error.......: 8.5265128291212022e-14 8.5265128291212022e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 0 0.0000000e+00 3.19e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 1 0.0000000e+00 8.53e-14 0.00e+00 -1.0 3.19e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Constraint violation....: 8.5265128291212022e-14 8.5265128291212022e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Overall NLP error.......: 8.5265128291212022e-14 8.5265128291212022e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.C101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.C101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in equality constraint Jacobian...: 74\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in Lagrangian Hessian.............: 63\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Total number of variables............................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Total number of equality constraints.................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: 0 0.0000000e+00 8.03e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: 1 0.0000000e+00 7.95e-01 5.18e-04 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: 2 0.0000000e+00 5.82e-11 9.67e-14 -1.0 9.90e-05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Constraint violation....: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Overall NLP error.......: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.C101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.C101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.C101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: 0 0.0000000e+00 1.78e-12 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Constraint violation....: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Overall NLP error.......: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: 0 0.0000000e+00 2.84e-14 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:10 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 0 0.0000000e+00 3.19e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 1 0.0000000e+00 8.53e-14 0.00e+00 -1.0 3.19e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Constraint violation....: 8.5265128291212022e-14 8.5265128291212022e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Overall NLP error.......: 8.5265128291212022e-14 8.5265128291212022e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: 0 0.0000000e+00 5.85e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: 1 0.0000000e+00 2.33e-10 0.00e+00 -1.0 5.85e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Constraint violation....: 2.3283064365386964e-11 2.3283064365386963e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Overall NLP error.......: 2.3283064365386964e-11 2.3283064365386963e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.mixed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in equality constraint Jacobian...: 117\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in Lagrangian Hessian.............: 65\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Total number of variables............................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Total number of equality constraints.................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: 0 0.0000000e+00 3.52e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: 1 0.0000000e+00 1.80e+03 3.46e+00 -1.0 5.77e+02 - 7.73e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: 2 0.0000000e+00 1.17e-01 1.01e+01 -1.0 5.46e+01 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: 3 0.0000000e+00 1.42e-06 3.74e+01 -1.0 2.10e-02 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Constraint violation....: 1.6267341737231732e-09 1.4230608940124512e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Overall NLP error.......: 1.6267341737231732e-09 1.4230608940124512e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101.toluene_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101.hydrogen_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101.vapor_recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 0 0.0000000e+00 6.40e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 1 0.0000000e+00 2.27e-13 0.00e+00 -1.0 1.81e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Constraint violation....: 2.2737367544323206e-13 2.2737367544323206e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Overall NLP error.......: 2.2737367544323206e-13 2.2737367544323206e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 0 0.0000000e+00 9.84e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 1 0.0000000e+00 4.65e-04 0.00e+00 -1.0 3.76e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 2 0.0000000e+00 7.66e-10 0.00e+00 -5.7 1.16e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Constraint violation....: 7.6579453889280558e-10 7.6579453889280558e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Overall NLP error.......: 7.6579453889280558e-10 7.6579453889280558e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.H101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.H101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: 0 0.0000000e+00 5.39e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: 1 0.0000000e+00 2.72e+04 1.17e+01 -1.0 9.60e+03 - 6.94e-02 5.28e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: 2 0.0000000e+00 1.28e+04 5.11e+00 -1.0 4.88e+03 - 9.90e-01 5.21e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: 3 0.0000000e+00 5.83e+03 1.16e+04 -1.0 2.41e+03 - 9.90e-01 5.38e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: 4 0.0000000e+00 9.55e+02 4.36e+08 -1.0 1.12e+03 - 9.92e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: 5 0.0000000e+00 5.22e+02 2.40e+08 -1.0 1.85e+01 - 1.00e+00 6.08e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: 6 0.0000000e+00 2.82e+01 4.08e+08 -1.0 7.23e+00 - 3.97e-02 4.96e-01f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: 7 0.0000000e+00 1.18e+01 6.14e+06 -1.0 3.64e+00 - 1.00e+00 4.98e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: 8 0.0000000e+00 1.74e+01 6.12e+08 -1.0 1.83e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: 9 0.0000000e+00 8.26e-02 2.90e+06 -1.0 1.68e-04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: 10 0.0000000e+00 3.65e-08 1.31e+00 -1.0 2.08e-08 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Number of Iterations....: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Constraint violation....: 7.2342852904786382e-12 3.6496203392744064e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Overall NLP error.......: 7.2342852904786382e-12 3.6496203392744064e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Number of objective function evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Number of objective gradient evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Number of equality constraint evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Number of equality constraint Jacobian evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Number of Lagrangian Hessian evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.H101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.H101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.H101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 0 0.0000000e+00 1.91e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 1 0.0000000e+00 4.55e-13 0.00e+00 -1.0 1.91e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Constraint violation....: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Overall NLP error.......: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 0 0.0000000e+00 6.44e+07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 1 0.0000000e+00 4.55e-13 0.00e+00 -1.0 6.44e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Constraint violation....: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Overall NLP error.......: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.R101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.R101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in equality constraint Jacobian...: 102\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in Lagrangian Hessian.............: 72\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: 0 0.0000000e+00 3.38e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: 1 0.0000000e+00 3.38e+04 5.12e+00 -1.0 5.51e+04 - 4.67e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: 2 0.0000000e+00 3.37e+04 1.16e+01 -1.0 5.50e+04 - 6.16e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: 3 0.0000000e+00 3.37e+04 1.84e+01 -1.0 5.50e+04 - 6.71e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: 4 0.0000000e+00 3.37e+04 2.84e+01 -1.0 5.49e+04 - 9.90e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: 5 0.0000000e+00 3.36e+04 3.41e+01 -1.0 5.49e+04 - 5.66e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: 6 0.0000000e+00 3.36e+04 4.40e+01 -1.0 5.49e+04 - 9.91e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: 7 0.0000000e+00 3.36e+04 4.92e+01 -1.0 5.48e+04 - 5.21e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: 8 0.0000000e+00 3.35e+04 5.92e+01 -1.0 5.48e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: 9 0.0000000e+00 3.35e+04 6.44e+01 -1.0 5.47e+04 - 5.22e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: 10 0.0000000e+00 3.35e+04 7.44e+01 -1.0 5.47e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: 11 0.0000000e+00 1.25e+07 1.48e+01 -1.0 5.47e+04 - 5.25e-01 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: 12 0.0000000e+00 1.73e+05 9.39e+01 -1.0 7.84e+03 - 1.00e+00 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: 13 0.0000000e+00 4.24e+04 6.91e+01 -1.0 2.33e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: 14 0.0000000e+00 3.77e-05 4.49e-02 -1.7 4.24e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Number of Iterations....: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Constraint violation....: 1.3044527347541834e-08 3.7662684917449951e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Overall NLP error.......: 1.3044527347541834e-08 3.7662684917449951e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Number of objective function evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Number of objective gradient evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Number of equality constraint evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Number of equality constraint Jacobian evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Number of Lagrangian Hessian evaluations = 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Total CPU secs in IPOPT (w/o function evaluations) = 0.006\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.R101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.R101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.R101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 0 0.0000000e+00 1.92e+06 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 1 0.0000000e+00 1.46e-11 0.00e+00 -1.0 2.17e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Constraint violation....: 1.4551915228366852e-11 1.4551915228366852e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Overall NLP error.......: 1.4551915228366852e-11 1.4551915228366852e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 0 0.0000000e+00 4.37e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 1 0.0000000e+00 7.39e-13 0.00e+00 -1.0 4.37e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Constraint violation....: 7.3896444519050419e-13 7.3896444519050419e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Overall NLP error.......: 7.3896444519050419e-13 7.3896444519050419e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.F101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.F101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: 0 0.0000000e+00 5.12e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: 1 0.0000000e+00 3.74e+04 5.83e+00 -1.0 3.26e+03 - 1.35e-01 6.68e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: 2 0.0000000e+00 9.79e+03 2.83e+01 -1.0 2.31e+03 - 8.78e-01 6.18e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: 3 0.0000000e+00 1.77e+02 2.07e+01 -1.0 7.29e+02 - 8.20e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: 4 0.0000000e+00 1.43e+00 2.59e+00 -1.0 1.53e+01 - 9.90e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: 5 0.0000000e+00 2.02e-06 7.46e+02 -1.0 1.25e-01 - 9.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Number of Iterations....: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Constraint violation....: 1.7885121523301191e-09 2.0237566786818206e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Overall NLP error.......: 1.7885121523301191e-09 2.0237566786818206e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Number of objective function evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Number of objective gradient evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Number of equality constraint evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Number of equality constraint Jacobian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Number of Lagrangian Hessian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.F101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.F101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.F101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.S101.purge_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.S101.recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in equality constraint Jacobian...: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Total number of variables............................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: variables with lower and upper bounds: 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Total number of equality constraints.................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: 0 0.0000000e+00 1.00e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: 1 0.0000000e+00 1.00e-04 1.14e-05 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: 2 0.0000000e+00 9.88e-07 1.04e-01 -1.0 1.00e-04 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Constraint violation....: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Overall NLP error.......: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.S101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.S101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 0 0.0000000e+00 2.40e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 1 0.0000000e+00 3.98e-13 0.00e+00 -1.0 2.40e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Constraint violation....: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Overall NLP error.......: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 0 0.0000000e+00 2.40e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 1 0.0000000e+00 3.98e-13 0.00e+00 -1.0 2.40e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Constraint violation....: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Overall NLP error.......: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.C101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.C101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in equality constraint Jacobian...: 74\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in Lagrangian Hessian.............: 63\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Total number of variables............................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Total number of equality constraints.................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: 0 0.0000000e+00 8.03e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: 1 0.0000000e+00 7.95e-01 5.18e-04 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: 2 0.0000000e+00 5.82e-11 9.67e-14 -1.0 9.90e-05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Constraint violation....: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Overall NLP error.......: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.C101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.C101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.C101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: 0 0.0000000e+00 1.78e-12 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Constraint violation....: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Overall NLP error.......: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: 0 0.0000000e+00 2.84e-14 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 0 0.0000000e+00 2.40e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 1 0.0000000e+00 3.98e-13 0.00e+00 -1.0 2.40e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Constraint violation....: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Overall NLP error.......: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:11 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: 0 0.0000000e+00 5.78e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: 1 0.0000000e+00 2.27e-13 0.00e+00 -1.0 5.78e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Constraint violation....: 2.2737367544323206e-13 2.2737367544323206e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Overall NLP error.......: 2.2737367544323206e-13 2.2737367544323206e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in equality constraint Jacobian...: 117\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in Lagrangian Hessian.............: 65\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Total number of variables............................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Total number of equality constraints.................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: 0 0.0000000e+00 3.55e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: 1 0.0000000e+00 1.82e+03 3.47e+00 -1.0 5.80e+02 - 7.72e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: 2 0.0000000e+00 1.20e-01 1.01e+01 -1.0 5.49e+01 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: 3 0.0000000e+00 1.43e-06 3.74e+01 -1.0 2.11e-02 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Constraint violation....: 1.6333739050444924e-09 1.4305114746093750e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Overall NLP error.......: 1.6333739050444924e-09 1.4305114746093750e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.toluene_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.hydrogen_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.vapor_recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 0 0.0000000e+00 3.35e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 1 0.0000000e+00 1.99e-13 0.00e+00 -1.0 3.35e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Constraint violation....: 1.9895196601282805e-13 1.9895196601282805e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Overall NLP error.......: 1.9895196601282805e-13 1.9895196601282805e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 0 0.0000000e+00 1.00e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 1 0.0000000e+00 1.28e-05 0.00e+00 -1.0 1.00e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 2 0.0000000e+00 9.09e-13 0.00e+00 -7.0 3.21e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Constraint violation....: 9.0949470177292824e-13 9.0949470177292824e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Overall NLP error.......: 9.0949470177292824e-13 9.0949470177292824e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.H101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.H101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: 0 0.0000000e+00 5.39e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: 1 0.0000000e+00 2.72e+04 1.17e+01 -1.0 9.61e+03 - 6.95e-02 5.28e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: 2 0.0000000e+00 1.28e+04 5.11e+00 -1.0 4.88e+03 - 9.90e-01 5.21e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: 3 0.0000000e+00 5.84e+03 1.16e+04 -1.0 2.41e+03 - 9.90e-01 5.38e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: 4 0.0000000e+00 9.56e+02 4.35e+08 -1.0 1.12e+03 - 9.92e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: 5 0.0000000e+00 5.23e+02 2.40e+08 -1.0 1.85e+01 - 1.00e+00 6.08e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: 6 0.0000000e+00 2.83e+01 4.08e+08 -1.0 7.22e+00 - 3.97e-02 4.96e-01f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: 7 0.0000000e+00 1.18e+01 6.15e+06 -1.0 3.64e+00 - 1.00e+00 4.98e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: 8 0.0000000e+00 1.74e+01 6.12e+08 -1.0 1.83e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: 9 0.0000000e+00 8.29e-02 2.91e+06 -1.0 1.68e-04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: 10 0.0000000e+00 3.67e-08 1.32e+00 -1.0 8.16e-09 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Number of Iterations....: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Constraint violation....: 7.2734060488714093e-12 3.6714482121169567e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Overall NLP error.......: 7.2734060488714093e-12 3.6714482121169567e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Number of objective function evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Number of objective gradient evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Number of equality constraint evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Number of equality constraint Jacobian evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Number of Lagrangian Hessian evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.H101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.H101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.H101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 0 0.0000000e+00 2.71e+00 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 1 0.0000000e+00 4.55e-13 0.00e+00 -1.0 2.71e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Constraint violation....: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Overall NLP error.......: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 0 0.0000000e+00 6.25e+07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 1 0.0000000e+00 3.18e-12 0.00e+00 -1.0 6.25e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Constraint violation....: 3.1832314562052488e-12 3.1832314562052488e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Overall NLP error.......: 3.1832314562052488e-12 3.1832314562052488e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.R101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.R101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in equality constraint Jacobian...: 102\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in Lagrangian Hessian.............: 72\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: 0 0.0000000e+00 3.38e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: 1 0.0000000e+00 3.38e+04 5.12e+00 -1.0 5.51e+04 - 4.66e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: 2 0.0000000e+00 3.37e+04 1.16e+01 -1.0 5.51e+04 - 6.16e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: 3 0.0000000e+00 3.37e+04 1.84e+01 -1.0 5.50e+04 - 6.71e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: 4 0.0000000e+00 3.37e+04 2.84e+01 -1.0 5.50e+04 - 9.90e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: 5 0.0000000e+00 3.36e+04 3.40e+01 -1.0 5.49e+04 - 5.65e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: 6 0.0000000e+00 3.36e+04 4.39e+01 -1.0 5.49e+04 - 9.91e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: 7 0.0000000e+00 3.36e+04 4.91e+01 -1.0 5.49e+04 - 5.20e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: 8 0.0000000e+00 3.35e+04 5.91e+01 -1.0 5.48e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: 9 0.0000000e+00 3.35e+04 6.43e+01 -1.0 5.48e+04 - 5.21e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: 10 0.0000000e+00 3.35e+04 7.43e+01 -1.0 5.47e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: 11 0.0000000e+00 1.25e+07 1.53e+01 -1.0 5.47e+04 - 5.24e-01 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: 12 0.0000000e+00 1.73e+05 9.46e+01 -1.0 7.85e+03 - 1.00e+00 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: 13 0.0000000e+00 4.24e+04 6.93e+01 -1.0 2.33e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: 14 0.0000000e+00 3.77e-05 4.50e-02 -1.7 4.24e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Number of Iterations....: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Constraint violation....: 1.3047389872744279e-08 3.7692487239837646e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Overall NLP error.......: 1.3047389872744279e-08 3.7692487239837646e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Number of objective function evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Number of objective gradient evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Number of equality constraint evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Number of equality constraint Jacobian evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Number of Lagrangian Hessian evaluations = 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.R101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.R101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.R101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 0 0.0000000e+00 4.28e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 1 0.0000000e+00 1.49e-08 0.00e+00 -1.0 4.51e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Constraint violation....: 1.4901161193847657e-09 1.4901161193847656e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Overall NLP error.......: 1.4901161193847657e-09 1.4901161193847656e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 0 0.0000000e+00 4.35e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 1 0.0000000e+00 4.55e-13 0.00e+00 -1.0 4.35e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Constraint violation....: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Overall NLP error.......: 4.5474735088646412e-13 4.5474735088646412e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.F101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.F101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: 0 0.0000000e+00 5.12e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: 1 0.0000000e+00 3.74e+04 5.83e+00 -1.0 3.26e+03 - 1.35e-01 6.68e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: 2 0.0000000e+00 9.80e+03 2.83e+01 -1.0 2.31e+03 - 8.78e-01 6.17e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: 3 0.0000000e+00 1.77e+02 2.07e+01 -1.0 7.30e+02 - 8.20e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: 4 0.0000000e+00 1.43e+00 2.59e+00 -1.0 1.53e+01 - 9.90e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: 5 0.0000000e+00 2.03e-06 7.46e+02 -1.0 1.25e-01 - 9.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Number of Iterations....: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Constraint violation....: 1.7944467911229722e-09 2.0295010472182184e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Overall NLP error.......: 1.7944467911229722e-09 2.0295010472182184e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Number of objective function evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Number of objective gradient evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Number of equality constraint evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Number of equality constraint Jacobian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Number of Lagrangian Hessian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.F101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.F101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.F101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.S101.purge_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.S101.recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in equality constraint Jacobian...: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Total number of variables............................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: variables with lower and upper bounds: 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Total number of equality constraints.................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: 0 0.0000000e+00 1.00e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: 1 0.0000000e+00 1.00e-04 1.14e-05 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: 2 0.0000000e+00 9.88e-07 1.04e-01 -1.0 1.00e-04 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Constraint violation....: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Overall NLP error.......: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.S101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.S101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 0 0.0000000e+00 2.23e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 1 0.0000000e+00 3.98e-13 0.00e+00 -1.7 2.23e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Constraint violation....: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Overall NLP error.......: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 0 0.0000000e+00 2.23e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 1 0.0000000e+00 3.98e-13 0.00e+00 -1.7 2.23e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Constraint violation....: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Overall NLP error.......: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.C101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.C101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in equality constraint Jacobian...: 74\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in Lagrangian Hessian.............: 63\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Total number of variables............................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Total number of equality constraints.................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: 0 0.0000000e+00 8.03e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: 1 0.0000000e+00 7.95e-01 5.18e-04 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: 2 0.0000000e+00 5.82e-11 9.67e-14 -1.0 9.90e-05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Constraint violation....: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Overall NLP error.......: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.C101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.C101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.C101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: 0 0.0000000e+00 1.78e-12 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Constraint violation....: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Overall NLP error.......: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: 0 0.0000000e+00 2.84e-14 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 0 0.0000000e+00 2.23e-01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 1 0.0000000e+00 3.98e-13 0.00e+00 -1.7 2.23e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Constraint violation....: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Overall NLP error.......: 3.9790393202565610e-13 3.9790393202565610e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: 0 0.0000000e+00 5.82e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: 1 0.0000000e+00 2.33e-10 0.00e+00 -1.0 5.82e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Constraint violation....: 2.3283064365386964e-11 2.3283064365386963e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Overall NLP error.......: 2.3283064365386964e-11 2.3283064365386963e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [DEBUG] idaes.solve.fs.M101.mixed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:12 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in equality constraint Jacobian...: 117\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in Lagrangian Hessian.............: 65\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Total number of variables............................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Total number of equality constraints.................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: 0 0.0000000e+00 3.55e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: 1 0.0000000e+00 1.82e+03 3.47e+00 -1.0 5.79e+02 - 7.72e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: 2 0.0000000e+00 1.19e-01 1.01e+01 -1.0 5.48e+01 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: 3 0.0000000e+00 1.45e-06 3.74e+01 -1.0 2.10e-02 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Constraint violation....: 1.6300540393838327e-09 1.4454126358032227e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Overall NLP error.......: 1.6300540393838327e-09 1.4454126358032227e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.M101.toluene_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.M101.hydrogen_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.M101.vapor_recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.H101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 0 0.0000000e+00 5.85e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: 1 0.0000000e+00 4.66e-10 0.00e+00 -1.0 5.85e-01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Constraint violation....: 4.6566128730773928e-11 4.6566128730773926e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Overall NLP error.......: 4.6566128730773928e-11 4.6566128730773926e-10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.H101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 0 0.0000000e+00 1.00e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 1 0.0000000e+00 4.77e-05 0.00e+00 -1.0 1.20e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: 2 0.0000000e+00 7.96e-12 0.00e+00 -5.7 1.19e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Constraint violation....: 7.9580786405131221e-12 7.9580786405131221e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Overall NLP error.......: 7.9580786405131221e-12 7.9580786405131221e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.H101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.H101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: 0 0.0000000e+00 5.40e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: 1 0.0000000e+00 2.72e+04 1.17e+01 -1.0 9.62e+03 - 6.95e-02 5.28e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: 2 0.0000000e+00 1.28e+04 5.11e+00 -1.0 4.89e+03 - 9.90e-01 5.21e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: 3 0.0000000e+00 5.84e+03 1.16e+04 -1.0 2.42e+03 - 9.90e-01 5.38e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: 4 0.0000000e+00 9.57e+02 4.35e+08 -1.0 1.12e+03 - 9.92e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: 5 0.0000000e+00 5.23e+02 2.40e+08 -1.0 1.85e+01 - 1.00e+00 6.08e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: 6 0.0000000e+00 2.83e+01 4.08e+08 -1.0 7.23e+00 - 3.97e-02 4.96e-01f 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: 7 0.0000000e+00 1.19e+01 6.15e+06 -1.0 3.64e+00 - 1.00e+00 4.98e-01h 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: 8 0.0000000e+00 1.75e+01 6.13e+08 -1.0 1.83e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: 9 0.0000000e+00 8.34e-02 2.93e+06 -1.0 1.68e-04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: 10 0.0000000e+00 3.72e-08 1.33e+00 -1.0 8.11e-08 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Number of Iterations....: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Constraint violation....: 7.3728511770380485e-12 3.7191057344898582e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Overall NLP error.......: 7.3728511770380485e-12 3.7191057344898582e-08\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Number of objective function evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Number of objective gradient evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Number of equality constraint evaluations = 16\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Number of equality constraint Jacobian evaluations = 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Number of Lagrangian Hessian evaluations = 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.H101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.H101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.H101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.R101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 0 0.0000000e+00 8.52e+00 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: 1 0.0000000e+00 1.36e-12 0.00e+00 -1.0 8.52e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Constraint violation....: 1.3642420526593924e-12 1.3642420526593924e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Overall NLP error.......: 1.3642420526593924e-12 1.3642420526593924e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.R101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 0 0.0000000e+00 6.26e+07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: 1 0.0000000e+00 7.45e-09 0.00e+00 -1.0 6.26e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Constraint violation....: 7.4505805969238285e-10 7.4505805969238281e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Overall NLP error.......: 7.4505805969238285e-10 7.4505805969238281e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.R101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.R101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in equality constraint Jacobian...: 102\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Number of nonzeros in Lagrangian Hessian.............: 72\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: 0 0.0000000e+00 3.38e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: 1 0.0000000e+00 3.38e+04 5.11e+00 -1.0 5.51e+04 - 4.66e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: 2 0.0000000e+00 3.37e+04 1.16e+01 -1.0 5.51e+04 - 6.16e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: 3 0.0000000e+00 3.37e+04 1.84e+01 -1.0 5.51e+04 - 6.71e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: 4 0.0000000e+00 3.37e+04 2.84e+01 -1.0 5.50e+04 - 9.90e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: 5 0.0000000e+00 3.36e+04 3.40e+01 -1.0 5.50e+04 - 5.64e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: 6 0.0000000e+00 3.36e+04 4.39e+01 -1.0 5.49e+04 - 9.91e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: 7 0.0000000e+00 3.36e+04 4.91e+01 -1.0 5.49e+04 - 5.20e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: 8 0.0000000e+00 3.35e+04 5.91e+01 -1.0 5.49e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: 9 0.0000000e+00 3.35e+04 6.43e+01 -1.0 5.48e+04 - 5.21e-01 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: 10 0.0000000e+00 3.35e+04 7.43e+01 -1.0 5.48e+04 - 1.00e+00 9.67e-04h 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: 11 0.0000000e+00 1.25e+07 1.59e+01 -1.0 5.47e+04 - 5.24e-01 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: 12 0.0000000e+00 1.73e+05 9.54e+01 -1.0 7.86e+03 - 1.00e+00 9.90e-01w 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: 13 0.0000000e+00 4.24e+04 6.95e+01 -1.0 2.33e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: 14 0.0000000e+00 3.78e-05 4.51e-02 -1.7 4.24e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Number of Iterations....: 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Constraint violation....: 1.3093190275983399e-08 3.7796795368194580e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Overall NLP error.......: 1.3093190275983399e-08 3.7796795368194580e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Number of objective function evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Number of objective gradient evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Number of equality constraint evaluations = 155\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Number of equality constraint Jacobian evaluations = 15\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Number of Lagrangian Hessian evaluations = 14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.R101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.R101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.R101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.F101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 0 0.0000000e+00 5.65e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: 1 0.0000000e+00 3.64e-12 0.00e+00 -1.0 5.73e+01 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Constraint violation....: 3.6379788070917130e-12 3.6379788070917130e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Overall NLP error.......: 3.6379788070917130e-12 3.6379788070917130e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.F101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 0 0.0000000e+00 4.35e+03 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: 1 0.0000000e+00 6.39e-13 0.00e+00 -1.0 4.35e+03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Constraint violation....: 6.3948846218409017e-13 6.3948846218409017e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Overall NLP error.......: 6.3948846218409017e-13 6.3948846218409017e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.F101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.F101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.F101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: 0 0.0000000e+00 5.13e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: 1 0.0000000e+00 3.75e+04 5.85e+00 -1.0 3.26e+03 - 1.34e-01 6.67e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: 2 0.0000000e+00 9.81e+03 2.83e+01 -1.0 2.31e+03 - 8.78e-01 6.17e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: 3 0.0000000e+00 1.77e+02 2.07e+01 -1.0 7.31e+02 - 8.20e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: 4 0.0000000e+00 1.43e+00 2.58e+00 -1.0 1.54e+01 - 9.90e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: 5 0.0000000e+00 2.07e-06 7.45e+02 -1.0 1.25e-01 - 9.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Number of Iterations....: 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Constraint violation....: 1.8325340066076841e-09 2.0688094082288444e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Overall NLP error.......: 1.8325340066076841e-09 2.0688094082288444e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Number of objective function evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Number of objective gradient evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Number of equality constraint evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Number of equality constraint Jacobian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Number of Lagrangian Hessian evaluations = 5\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.F101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.F101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.F101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.F101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.S101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.S101.purge_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.S101.purge_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.S101.purge_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.S101.recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.S101.recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.S101.recycle_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in equality constraint Jacobian...: 29\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Total number of variables............................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: variables with lower and upper bounds: 20\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Total number of equality constraints.................: 21\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: 0 0.0000000e+00 1.00e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: 1 0.0000000e+00 1.00e-04 1.14e-05 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: 2 0.0000000e+00 9.88e-07 1.04e-01 -1.0 1.00e-04 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Constraint violation....: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Overall NLP error.......: 9.8800099999998489e-07 9.8800099999998489e-07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.S101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.S101: Initialization Step 2 Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.S101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.C101.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 0 0.0000000e+00 7.88e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: 1 0.0000000e+00 1.42e-13 0.00e+00 -2.5 7.88e-02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Constraint violation....: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Overall NLP error.......: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.C101.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 0 0.0000000e+00 7.88e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: 1 0.0000000e+00 1.42e-13 0.00e+00 -2.5 7.88e-02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Constraint violation....: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Overall NLP error.......: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.C101.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.C101.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.C101: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in equality constraint Jacobian...: 74\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Number of nonzeros in Lagrangian Hessian.............: 63\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Total number of variables............................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Total number of equality constraints.................: 32\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: 0 0.0000000e+00 8.03e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: 1 0.0000000e+00 7.95e-01 5.18e-04 -1.0 1.00e-02 - 9.90e-01 9.90e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: 2 0.0000000e+00 5.82e-11 9.67e-14 -1.0 9.90e-05 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Number of Iterations....: 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Constraint violation....: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Overall NLP error.......: 3.1719263458133377e-12 5.8207660913467407e-11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Number of objective function evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Number of objective gradient evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Number of equality constraint evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Number of equality constraint Jacobian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Number of Lagrangian Hessian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.C101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.C101: Initialization Step 2 optimal - Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.C101.control_volume.properties_in: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.M101.toluene_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: 0 0.0000000e+00 1.78e-12 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Constraint violation....: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Overall NLP error.......: 1.7763568394002505e-12 1.7763568394002505e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.toluene_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.M101.hydrogen_feed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: 0 0.0000000e+00 2.84e-14 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Constraint violation....: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Overall NLP error.......: 2.8421709430404007e-14 2.8421709430404007e-14\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.hydrogen_feed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.M101.vapor_recycle_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 0 0.0000000e+00 7.88e-02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: 1 0.0000000e+00 1.42e-13 0.00e+00 -2.5 7.88e-02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Constraint violation....: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Overall NLP error.......: 1.4210854715202004e-13 1.4210854715202004e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.vapor_recycle_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.M101.mixed_state: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: 0 0.0000000e+00 5.81e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: 1 0.0000000e+00 1.56e-13 0.00e+00 -1.0 5.81e+02 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Constraint violation....: 1.5631940186722204e-13 1.5631940186722204e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Overall NLP error.......: 1.5631940186722204e-13 1.5631940186722204e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101.mixed_state: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.M101.mixed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [INFO] idaes.init.fs.M101.mixed_state: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in equality constraint Jacobian...: 117\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of nonzeros in Lagrangian Hessian.............: 65\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Total number of variables............................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: variables with lower and upper bounds: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Total number of equality constraints.................: 53\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: 0 0.0000000e+00 3.54e+02 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: 1 0.0000000e+00 1.81e+03 3.47e+00 -1.0 5.78e+02 - 7.72e-01 9.92e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: 2 0.0000000e+00 1.19e-01 1.01e+01 -1.0 5.47e+01 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: 3 0.0000000e+00 1.44e-06 3.74e+01 -1.0 2.10e-02 - 9.90e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of Iterations....: 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Constraint violation....: 1.6267341737231732e-09 1.4379620552062988e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Overall NLP error.......: 1.6267341737231732e-09 1.4379620552062988e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of objective function evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of objective gradient evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of equality constraint evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of equality constraint Jacobian evaluations = 4\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Number of Lagrangian Hessian evaluations = 3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:13 [DEBUG] idaes.solve.fs.M101: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [INFO] idaes.init.fs.M101.toluene_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [INFO] idaes.init.fs.M101.hydrogen_feed_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [INFO] idaes.init.fs.M101.vapor_recycle_state: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING: Wegstein failed to converge in 5 iterations\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [INFO] idaes.init.fs.F102.control_volume.properties_in: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [INFO] idaes.init.fs.F102.control_volume.properties_in: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of nonzeros in equality constraint Jacobian...: 18\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of nonzeros in Lagrangian Hessian.............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Total number of variables............................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Total number of equality constraints.................: 10\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: 0 0.0000000e+00 1.79e-12 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of Iterations....: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Constraint violation....: 1.7905676941154525e-12 1.7905676941154525e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Overall NLP error.......: 1.7905676941154525e-12 1.7905676941154525e-12\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of objective function evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of objective gradient evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of equality constraint evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of equality constraint Jacobian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Number of Lagrangian Hessian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_in: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [INFO] idaes.init.fs.F102.control_volume.properties_out: Initialization Step 1 - Dew and bubble points calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [INFO] idaes.init.fs.F102.control_volume.properties_out: Initialization Step 2 - Equilibrium temperature calculation completed.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of nonzeros in equality constraint Jacobian...: 31\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of nonzeros in Lagrangian Hessian.............: 11\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Total number of variables............................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: variables with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Total number of equality constraints.................: 17\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: 0 0.0000000e+00 1.88e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: 1 0.0000000e+00 3.41e-13 0.00e+00 -1.0 1.88e+04 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of Iterations....: 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Constraint violation....: 3.4106051316484809e-13 3.4106051316484809e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Overall NLP error.......: 3.4106051316484809e-13 3.4106051316484809e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of objective function evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of objective gradient evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of equality constraint evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of equality constraint Jacobian evaluations = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Number of Lagrangian Hessian evaluations = 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102.control_volume.properties_out: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [INFO] idaes.init.fs.F102.control_volume.properties_out: State Released.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [INFO] idaes.init.fs.F102.control_volume: Initialization Complete\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [INFO] idaes.init.fs.F102: Initialization Step 1 Complete.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Ipopt 3.13.2: nlp_scaling_method=gradient-based\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: tol=1e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: max_iter=200\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: This program contains Ipopt, a library for large-scale nonlinear optimization.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Ipopt is released as open source code under the Eclipse Public License (EPL).\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: For more information visit http://projects.coin-or.org/Ipopt\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: This version of Ipopt was compiled from source code available at\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: This version of Ipopt was compiled using HSL, a collection of Fortran codes\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: for large-scale scientific computation. All technical papers, sales and\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: publicity material resulting from use of the HSL codes within IPOPT must\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: contain the following acknowledgement:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: HSL, a collection of Fortran codes for large-scale scientific\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: computation. See http://www.hsl.rl.ac.uk.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: ******************************************************************************\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: This is Ipopt version 3.13.2, running with linear solver ma27.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Number of nonzeros in equality constraint Jacobian...: 124\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Number of nonzeros in inequality constraint Jacobian.: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Number of nonzeros in Lagrangian Hessian.............: 115\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Total number of variables............................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: variables with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: variables with lower and upper bounds: 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: variables with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Total number of equality constraints.................: 41\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Total number of inequality constraints...............: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: inequality constraints with only lower bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: inequality constraints with lower and upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: inequality constraints with only upper bounds: 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: 0 0.0000000e+00 9.03e+04 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: 1 0.0000000e+00 3.70e+04 6.71e+00 -1.0 2.03e+04 - 9.90e-01 7.88e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: 2 0.0000000e+00 7.96e+03 1.00e+02 -1.0 3.88e+03 - 8.89e-01 9.03e-01h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: 3 0.0000000e+00 4.57e+02 4.52e+04 -1.0 1.43e+03 - 9.12e-01 9.90e-01H 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: 4 0.0000000e+00 1.81e+01 1.55e+04 -1.0 9.26e+01 - 9.91e-01 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: 5 0.0000000e+00 6.31e-03 2.66e+02 -1.0 1.60e+00 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: 6 0.0000000e+00 2.56e-09 1.82e-02 -1.7 1.19e-03 - 1.00e+00 1.00e+00h 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Number of Iterations....: 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: (scaled) (unscaled)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Constraint violation....: 1.7905676941154525e-12 2.5611370801925659e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Overall NLP error.......: 1.7905676941154525e-12 2.5611370801925659e-09\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Number of objective function evaluations = 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Number of objective gradient evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Number of equality constraint evaluations = 9\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Number of inequality constraint evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Number of equality constraint Jacobian evaluations = 7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Number of inequality constraint Jacobian evaluations = 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Number of Lagrangian Hessian evaluations = 6\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: Total CPU secs in NLP function evaluations = 0.000\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: \n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [DEBUG] idaes.solve.fs.F102: EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-11-02 10:28:14 [INFO] idaes.init.fs.F102: Initialization Step 2 optimal - Optimal Solution Found.\n" + "WARNING: Wegstein failed to converge in 5 iterations\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:14 [INFO] idaes.init.fs.F102.control_volume.properties_in: State Released.\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.F102.control_volume.properties_in: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:28:14 [INFO] idaes.init.fs.F102: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:40:03 [INFO] idaes.init.fs.F102.control_volume.properties_out: Initialization Complete\n" ] } ], @@ -128072,7 +2192,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial_test.ipynb b/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial_test.ipynb index 41e38f50..6f19c2b2 100644 --- a/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial_test.ipynb +++ b/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial_test.ipynb @@ -1,434 +1,435 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Flowsheet Visualizer Tutorial\n", - "\n", - "Author: Dan Gunter \n", - "Maintainer: Dan Gunter \n", - "Updated: 2023-06-01 \n", - "\n", - "The IDAES Flowsheet Visualizer provides a web-based UI for visualization and inspection of an existing IDAES model.\n", - "## Outline\n", - "\n", - "- Introduction\n", - "- Example flowsheet\n", - "- Running the Flowsheet Visualizer\n", - "- Running from a script\n", - "- Further reading" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introduction\n", - "The IDAES Flowsheet Visualizer (FV) is a Python tool that provides a web-based visualization of any existing IDAES model or flowsheet. The visualization shows a diagram of the\n", - "flowsheet as well as a stream table. You can interact with the diagram and export\n", - "it as an image for inclusion in presentations or publications.\n", - "\n", - "This tutorial will show the basic steps of running the FV on an example\n", - "flowsheet, interacting with the resulting GUI, saving your work, and exporting\n", - "the diagram as an image. It will also show how the Visualizer can be updated\n", - "to reflect changes in the model components and/or variable values. The tutorial\n", - "will also show how to run the Visualizer from a Python script." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example flowsheet\n", - "This initial section creates an example flowsheet.\n", - "\n", - "### Setup\n", - "Module imports and any additional housekeeping needed\n", - "to initialize the code." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import idaes_examples.mod.tut.visualizer_tutorial as vistut\n", - "\n", - "vistut.quiet() # turn off default logging and most warnings\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from IPython.display import Markdown" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Create the flowsheet" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# use the pre-defined function to create the flowsheet\n", - "model = vistut.create_model()\n", - "\n", - "# description of the flowsheet we created\n", - "display(Markdown(vistut.function_markdown(vistut.create_model)))\n", - "\n", - "vistut.quiet()\n", - "\n", - "# initialize the flowsheet as a square problem (dof=0)\n", - "vistut.initialize_model(model)\n", - "\n", - "# verify that there are zero degrees of freedom\n", - "print(f\"DOF = {degrees_of_freedom(model)}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Running the Flowsheet Visualizer\n", - "In most cases, you will run the FV by calling the `visualize()` method attached to your flowsheet.\n", - "This function takes a number of optional arguments, which we will look at briefly later, and one required argument:\n", - "the **title** to give the visualization. Unless you give more information, this title also is used as the filename in which to save its current state.\n", - "\n", - "In the following, we start the FV with the title \"Hydrodealkylation\". This will pop up a new browser tab (and save the status in a file called _Hydrodealkylation.json_).\n", - "\n", - "
\n", - "After the visualizer starts, we recommend making its tab into its own browser window and viewing it side-by-side with this notebook window.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "import os\n", - "\n", - "if os.path.exists(\"Hydrodealkylation.json\"):\n", - " os.remove(\"Hydrodealkylation.json\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Optional arguments\n", - "The optional (keyword) arguments are documented in the base function, which can be found in `idaes.core.ui.fsvis.visualize`:\n", - "\n", - " * name: Name of flowsheet to display as the title of the visualization\n", - " * load_from_saved: If True load from saved file if any. Otherwise create\n", - " a new file or overwrite it (depending on 'overwrite' flag).\n", - " * save: Where to save the current flowsheet layout and values. If this argument is not specified,\n", - " \"``name``.json\" will be used (if this file already exists, a \"-``\" number will be added\n", - " between the name and the extension). If the value given is the boolean 'False', then nothing\n", - " will be saved. The boolean 'True' value is treated the same as unspecified.\n", - " * save_dir: If this argument is given, and ``save`` is not given or a relative path, then it will\n", - " be used as the directory to save the default or given file. The current working directory is\n", - " the default. If ``save`` is given and an absolute path, this argument is ignored.\n", - " * save_time_interval: The time interval that the UI application checks if any changes has occurred\n", - " in the graph for it to save the model. Default is 5 seconds\n", - " * overwrite: If True, and the file given by ``save`` exists, overwrite instead of creating a new\n", - " numbered file.\n", - " * browser: If true, open a browser\n", - " * port: Start listening on this port. If not given, find an open port.\n", - " * log_level: An IDAES logging level, which is a superset of the built-in `logging` module levels.\n", - " See the `idaes.logger` module for details\n", - " * quiet: If True, suppress printing any messages to standard output (console)\n", - " * loop_forever: If True, don't return but instead loop until a Control-C is received. Useful when\n", - " invoking this function at the end of a script." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Interacting with the visualizer\n", - "The first things you need to learn about the FV are how to manipulate the overall layout and control the view.\n", - "The UI should initially look something like the screenshot below:\n", - "![](\"fv1.png\") alt=\"Screenshot of Flowsheet Visualizer\"> \n", - "\n", - "
\n", - " As you can see, the FV has two main panels. We will call the top panel the diagram and the bottom panel the stream table.\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### View controls\n", - "Before looking at the two panels in detail, it helps to know some basic controls for making them easier to view.\n", - "\n", - "| Control | Description | Illustration |\n", - "|:----|:---------------------|:----:|\n", - "| Panel height | Change the height of the panels by grabbing the small handle in the lower right corner with your mouse. | ![](fv2.png) |\n", - "| Diagram size | Zoom in/out on the diagram with the magnifying glass \"+\" and \"-\" buttons in the upper-right corner of the top panel. The button labeled with two crossing arrows fits the diagram into the current panel height and width. | ![](fv3.png) |" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Rearranging the diagram\n", - "The diagram shown in the top panel is interactive. You can move the units shown there into different positions. Whatever arrangement you end up with will be saved for next time. The arcs (i.e., lines representing streams) connecting the units will automatically re-route themselves as you move them. Below is a summary of the different actions you can take when rearranging the diagram.\n", - "\n", - "|   |   |\n", - "|:--:|:--:|\n", - "| ![](fvr1.png)   |   ![](fvr2.png) |\n", - "| ![](fvr3.png)   |   ![](fvr4.png) |\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Stream table\n", - "The stream table panel shows the values of variables on all the streams between units, and also from units to outlets.\n", - "\n", - "### Stream table \"brushing\"\n", - "Brushing refers to the ability to have actions in one visual area influence the display in another. It is commonly used in statistics to show how points in one scatterplot correspond to their points in another, for the same samples. Here, we use it to link the position of a stream in the diagram with its variable values in the stream table.\n", - "#### Controls\n", - "\n", - "* Moving the mouse over an **arc** in the diagram → highlights the corresponding **column** in the stream table\n", - "* Moving the mouse over a **column** in the stream table → highlights the corresponding **arc** in the diagram\n", - "\n", - "![Illustration of stream table brushing](fvb1.png)\n", - " \n", - "#### Example\n", - "Stream table brushing is useful for answering questions like:\n", - "> How much benzene are we losing in the F101 vapor outlet stream?\n", - "\n", - "To answer this question, we will use some interactive elements of the stream table.\n", - "\n", - "1. Find the inlet of F101 on the diagram. Mouse over this to see the values for that stream highlighted in the stream table below. This is stream `s05`. Look across at the row for Benzene vapor (`flow_mol_phase_comp('Vap', 'benzene')`) and see that the value is $0.35384$\n", - "2. Find the vapor outlet of F101 by looking for the arc connecting to the splitter and compressor feedback loop. This is stream `s06`. Then look at the same row for the Benzene vapor mol fraction and see that the value is $0.14916$\n", - "3. Thus the amount of benzene lost is (in mole fractions) about $0.2$\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Showing and hiding streams\n", - "For complex diagrams, there are a lot of streams and the stream table does not fit in the window. To avoid having to scroll back and forth, there is the ability to \"hide\" selected streams in the stream table. \n", - "\n", - "* Click on the \"Hide Fields\" menu and select which fields to hide\n", - "* The mark will toggle between a check (shown) and open circle (hidden)\n", - "\n", - "For example, we can hide all the streams except the feeds and the flash inlets and outlets.\n", - "\n", - "![Illustration of stream table field hiding](fvst1.png)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Saving and loading\n", - "The current layout and status can be saved to a file, and this file can then be loaded when the model is viewed again. The main benefit is that interactive layout of the diagram is saved for re-use.\n", - "\n", - "#### File name\n", - "This file is named, by default, for the title of the visualizer (e.g., \"Hydrodealkylation\") with a \".json\" extension to indicate the data format and saved in the same directory as the Jupyter notebook. \n", - "\n", - "You can select a different filename and location when you start the visualization, e.g.\n", - "\n", - " model.fs.visualize(\"The Title\", save=\"thefilename.json\", save_dir=\"/path/to/save/the/file\")\n", - "\n", - "#### Reloading\n", - "To reload the saved layout, simply choose the same title (since the filename, by default, matches the title) or explicitly use the `save` and `save_dir` keywords for the `visualize()` function to select a previously saved file. This means you only need to manually lay out the diagram once. Of course, if you add new pieces to the flowsheet you will need to position them correctly (as discussed below)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exporting\n", - "\n", - "#### Exporting the diagram as an image\n", - "You can export an image of the flowsheet diagram in the [Scalable Vector Graphics (SVG)](https://www.w3.org/Graphics/SVG/) format, which can render without fuzziness at arbitrary sizes. Almost all presentation and drawing programs, including MS Word and Powerpoint, can use SVG images.\n", - "\n", - "From the top menu select _Export -> Flowsheet_. You will get a preview of the flowsheet that you can then download to a file.\n", - "#### Exporting the stream table as CSV\n", - "You can export the stream table as comma-separated values. From the top menu select _Export -> Stream Table_." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Updating when the flowsheet changes\n", - "The FV has a connection to the Python program that has the flowsheet (model) in memory. Therefore, when the underlying flowsheet changes, the visualization can be quickly updated to show the new state. This feature is particularly useful for interactive flowsheet creation and debugging in Jupyter Notebooks.\n", - "\n", - "To illustrate the feature, below is some IDAES modeling code that adds another Flash unit to the model, connecting the liquid outlet of the first flash unit to its inlet. There is a little more code that updates some of the output values of the model and sets initial values for this new unit, and then re-initializes the model.\n", - "\n", - "**After this code executes, the model will have a unit called \"F102\" connected to \"F101\".**" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# Add a second flash unit\n", - "from idaes.models.unit_models import Flash\n", - "from pyomo.network import Arc\n", - "from pyomo.environ import Expression, TransformationFactory\n", - "\n", - "m = model # alias\n", - "m.fs.F102 = Flash(\n", - " property_package=m.fs.thermo_params,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=True,\n", - ")\n", - "# connect to 1st flash unit\n", - "m.fs.s10 = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.F102.inlet)\n", - "# update expressions for purity and cost\n", - "m.fs.purity = Expression(\n", - " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " / (\n", - " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " + m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " )\n", - ")\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", - ")\n", - "# fix unit output and pressure drop\n", - "m.fs.F102.vap_outlet.temperature.fix(375)\n", - "m.fs.F102.deltaP.fix(-200000)\n", - "\n", - "# expand arcs\n", - "TransformationFactory(\"network.expand_arcs\").apply_to(m)\n", - "# re-initialize\n", - "_ = vistut.initialize_model(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
Since the FV is connected to the current state of the model in memory, simply hitting \"Refresh\" in the FV window will show the new flash unit in the diagram, and the new stream (liquid) in the stream table. We can then interactively rearrange the unit to be in the position we want in the diagram.
" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# v model.fs.visualize(\"Hydrodealkylation-new\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Showing new values\n", - "The previous step showed how a new unit in the flowsheet will be automatically added to the diagram. Similarly, if the values in the flowsheet change these will be reflected in the stream table. Below, we solve the initialized flowsheet.\n", - "To make comparison a little easier, we will open a second UI window with the new values (the old values will not be updated unless we decide to hit the \"Refresh\" button)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "When we look at the stream table, we can see the values in the stream between the first and second flash unit changing.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Running from a script\n", - "Finally, although all examples have been shown in a Jupyter Notebook, there is nothing preventing the use of the FV from within a plain Python script (or module).\n", - "\n", - "For example, the code to run this same tutorial as a Python script is also in a module.\n", - "If you have installed the IDAES examples, then you can do the following to import and run the module:\n", - "```\n", - "from idaes_examples.mod.tut import visualizer_tutorial\n", - "visualizer_tutorial.main()\n", - "```\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Further reading\n", - "\n", - "Reference documentation for the FV is available in the IDAES main documentation, online at https://idaes-pse.readthedocs.io/" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.9" - } + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Flowsheet Visualizer Tutorial\n", + "\n", + "Author: Dan Gunter \n", + "Maintainer: Dan Gunter \n", + "Updated: 2023-06-01 \n", + "\n", + "The IDAES Flowsheet Visualizer provides a web-based UI for visualization and inspection of an existing IDAES model.\n", + "## Outline\n", + "\n", + "- Introduction\n", + "- Example flowsheet\n", + "- Running the Flowsheet Visualizer\n", + "- Running from a script\n", + "- Further reading" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction\n", + "The IDAES Flowsheet Visualizer (FV) is a Python tool that provides a web-based visualization of any existing IDAES model or flowsheet. The visualization shows a diagram of the\n", + "flowsheet as well as a stream table. You can interact with the diagram and export\n", + "it as an image for inclusion in presentations or publications.\n", + "\n", + "This tutorial will show the basic steps of running the FV on an example\n", + "flowsheet, interacting with the resulting GUI, saving your work, and exporting\n", + "the diagram as an image. It will also show how the Visualizer can be updated\n", + "to reflect changes in the model components and/or variable values. The tutorial\n", + "will also show how to run the Visualizer from a Python script." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example flowsheet\n", + "This initial section creates an example flowsheet.\n", + "\n", + "### Setup\n", + "Module imports and any additional housekeeping needed\n", + "to initialize the code." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import idaes_examples.mod.tut.visualizer_tutorial as vistut\n", + "\n", + "vistut.quiet() # turn off default logging and most warnings\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from IPython.display import Markdown" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create the flowsheet" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# use the pre-defined function to create the flowsheet\n", + "model = vistut.create_model()\n", + "\n", + "# description of the flowsheet we created\n", + "display(Markdown(vistut.function_markdown(vistut.create_model)))\n", + "\n", + "vistut.quiet()\n", + "\n", + "# initialize the flowsheet as a square problem (dof=0)\n", + "vistut.initialize_model(model)\n", + "\n", + "# verify that there are zero degrees of freedom\n", + "print(f\"DOF = {degrees_of_freedom(model)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Running the Flowsheet Visualizer\n", + "In most cases, you will run the FV by calling the `visualize()` method attached to your flowsheet.\n", + "This function takes a number of optional arguments, which we will look at briefly later, and one required argument:\n", + "the **title** to give the visualization. Unless you give more information, this title also is used as the filename in which to save its current state.\n", + "\n", + "In the following, we start the FV with the title \"Hydrodealkylation\". This will pop up a new browser tab (and save the status in a file called _Hydrodealkylation.json_).\n", + "\n", + "
\n", + "After the visualizer starts, we recommend making its tab into its own browser window and viewing it side-by-side with this notebook window.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "if os.path.exists(\"Hydrodealkylation.json\"):\n", + " os.remove(\"Hydrodealkylation.json\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Optional arguments\n", + "The optional (keyword) arguments are documented in the base function, which can be found in `idaes.core.ui.fsvis.visualize`:\n", + "\n", + " * name: Name of flowsheet to display as the title of the visualization\n", + " * load_from_saved: If True load from saved file if any. Otherwise create\n", + " a new file or overwrite it (depending on 'overwrite' flag).\n", + " * save: Where to save the current flowsheet layout and values. If this argument is not specified,\n", + " \"``name``.json\" will be used (if this file already exists, a \"-``\" number will be added\n", + " between the name and the extension). If the value given is the boolean 'False', then nothing\n", + " will be saved. The boolean 'True' value is treated the same as unspecified.\n", + " * save_dir: If this argument is given, and ``save`` is not given or a relative path, then it will\n", + " be used as the directory to save the default or given file. The current working directory is\n", + " the default. If ``save`` is given and an absolute path, this argument is ignored.\n", + " * save_time_interval: The time interval that the UI application checks if any changes has occurred\n", + " in the graph for it to save the model. Default is 5 seconds\n", + " * overwrite: If True, and the file given by ``save`` exists, overwrite instead of creating a new\n", + " numbered file.\n", + " * browser: If true, open a browser\n", + " * port: Start listening on this port. If not given, find an open port.\n", + " * log_level: An IDAES logging level, which is a superset of the built-in `logging` module levels.\n", + " See the `idaes.logger` module for details\n", + " * quiet: If True, suppress printing any messages to standard output (console)\n", + " * loop_forever: If True, don't return but instead loop until a Control-C is received. Useful when\n", + " invoking this function at the end of a script." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Interacting with the visualizer\n", + "The first things you need to learn about the FV are how to manipulate the overall layout and control the view.\n", + "The UI should initially look something like the screenshot below:\n", + "![](\"fv1.png\") alt=\"Screenshot of Flowsheet Visualizer\"> \n", + "\n", + "
\n", + " As you can see, the FV has two main panels. We will call the top panel the diagram and the bottom panel the stream table.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### View controls\n", + "Before looking at the two panels in detail, it helps to know some basic controls for making them easier to view.\n", + "\n", + "| Control | Description | Illustration |\n", + "|:----|:---------------------|:----:|\n", + "| Panel height | Change the height of the panels by grabbing the small handle in the lower right corner with your mouse. | ![](fv2.png) |\n", + "| Diagram size | Zoom in/out on the diagram with the magnifying glass \"+\" and \"-\" buttons in the upper-right corner of the top panel. The button labeled with two crossing arrows fits the diagram into the current panel height and width. | ![](fv3.png) |" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Rearranging the diagram\n", + "The diagram shown in the top panel is interactive. You can move the units shown there into different positions. Whatever arrangement you end up with will be saved for next time. The arcs (i.e., lines representing streams) connecting the units will automatically re-route themselves as you move them. Below is a summary of the different actions you can take when rearranging the diagram.\n", + "\n", + "|   |   |\n", + "|:--:|:--:|\n", + "| ![](fvr1.png)   |   ![](fvr2.png) |\n", + "| ![](fvr3.png)   |   ![](fvr4.png) |\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Stream table\n", + "The stream table panel shows the values of variables on all the streams between units, and also from units to outlets.\n", + "\n", + "### Stream table \"brushing\"\n", + "Brushing refers to the ability to have actions in one visual area influence the display in another. It is commonly used in statistics to show how points in one scatterplot correspond to their points in another, for the same samples. Here, we use it to link the position of a stream in the diagram with its variable values in the stream table.\n", + "#### Controls\n", + "\n", + "* Moving the mouse over an **arc** in the diagram → highlights the corresponding **column** in the stream table\n", + "* Moving the mouse over a **column** in the stream table → highlights the corresponding **arc** in the diagram\n", + "\n", + "![Illustration of stream table brushing](fvb1.png)\n", + " \n", + "#### Example\n", + "Stream table brushing is useful for answering questions like:\n", + "> How much benzene are we losing in the F101 vapor outlet stream?\n", + "\n", + "To answer this question, we will use some interactive elements of the stream table.\n", + "\n", + "1. Find the inlet of F101 on the diagram. Mouse over this to see the values for that stream highlighted in the stream table below. This is stream `s05`. Look across at the row for Benzene vapor (`flow_mol_phase_comp('Vap', 'benzene')`) and see that the value is $0.35384$\n", + "2. Find the vapor outlet of F101 by looking for the arc connecting to the splitter and compressor feedback loop. This is stream `s06`. Then look at the same row for the Benzene vapor mol fraction and see that the value is $0.14916$\n", + "3. Thus the amount of benzene lost is (in mole fractions) about $0.2$\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Showing and hiding streams\n", + "For complex diagrams, there are a lot of streams and the stream table does not fit in the window. To avoid having to scroll back and forth, there is the ability to \"hide\" selected streams in the stream table. \n", + "\n", + "* Click on the \"Hide Fields\" menu and select which fields to hide\n", + "* The mark will toggle between a check (shown) and open circle (hidden)\n", + "\n", + "For example, we can hide all the streams except the feeds and the flash inlets and outlets.\n", + "\n", + "![Illustration of stream table field hiding](fvst1.png)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Saving and loading\n", + "The current layout and status can be saved to a file, and this file can then be loaded when the model is viewed again. The main benefit is that interactive layout of the diagram is saved for re-use.\n", + "\n", + "#### File name\n", + "This file is named, by default, for the title of the visualizer (e.g., \"Hydrodealkylation\") with a \".json\" extension to indicate the data format and saved in the same directory as the Jupyter notebook. \n", + "\n", + "You can select a different filename and location when you start the visualization, e.g.\n", + "\n", + " model.fs.visualize(\"The Title\", save=\"thefilename.json\", save_dir=\"/path/to/save/the/file\")\n", + "\n", + "#### Reloading\n", + "To reload the saved layout, simply choose the same title (since the filename, by default, matches the title) or explicitly use the `save` and `save_dir` keywords for the `visualize()` function to select a previously saved file. This means you only need to manually lay out the diagram once. Of course, if you add new pieces to the flowsheet you will need to position them correctly (as discussed below)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exporting\n", + "\n", + "#### Exporting the diagram as an image\n", + "You can export an image of the flowsheet diagram in the [Scalable Vector Graphics (SVG)](https://www.w3.org/Graphics/SVG/) format, which can render without fuzziness at arbitrary sizes. Almost all presentation and drawing programs, including MS Word and Powerpoint, can use SVG images.\n", + "\n", + "From the top menu select _Export -> Flowsheet_. You will get a preview of the flowsheet that you can then download to a file.\n", + "#### Exporting the stream table as CSV\n", + "You can export the stream table as comma-separated values. From the top menu select _Export -> Stream Table_." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Updating when the flowsheet changes\n", + "The FV has a connection to the Python program that has the flowsheet (model) in memory. Therefore, when the underlying flowsheet changes, the visualization can be quickly updated to show the new state. This feature is particularly useful for interactive flowsheet creation and debugging in Jupyter Notebooks.\n", + "\n", + "To illustrate the feature, below is some IDAES modeling code that adds another Flash unit to the model, connecting the liquid outlet of the first flash unit to its inlet. There is a little more code that updates some of the output values of the model and sets initial values for this new unit, and then re-initializes the model.\n", + "\n", + "**After this code executes, the model will have a unit called \"F102\" connected to \"F101\".**" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Add a second flash unit\n", + "from idaes.models.unit_models import Flash\n", + "from pyomo.network import Arc\n", + "from pyomo.environ import Expression, TransformationFactory\n", + "\n", + "m = model # alias\n", + "m.fs.F102 = Flash(\n", + " property_package=m.fs.thermo_params,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=True,\n", + ")\n", + "# connect to 1st flash unit\n", + "m.fs.s10 = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.F102.inlet)\n", + "# update expressions for purity and cost\n", + "m.fs.purity = Expression(\n", + " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " / (\n", + " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " + m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " )\n", + ")\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", + ")\n", + "# fix unit output and pressure drop\n", + "m.fs.F102.vap_outlet.temperature.fix(375)\n", + "m.fs.F102.deltaP.fix(-200000)\n", + "\n", + "# expand arcs\n", + "TransformationFactory(\"network.expand_arcs\").apply_to(m)\n", + "# re-initialize\n", + "_ = vistut.initialize_model(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
Since the FV is connected to the current state of the model in memory, simply hitting \"Refresh\" in the FV window will show the new flash unit in the diagram, and the new stream (liquid) in the stream table. We can then interactively rearrange the unit to be in the position we want in the diagram.
" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# v model.fs.visualize(\"Hydrodealkylation-new\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Showing new values\n", + "The previous step showed how a new unit in the flowsheet will be automatically added to the diagram. Similarly, if the values in the flowsheet change these will be reflected in the stream table. Below, we solve the initialized flowsheet.\n", + "To make comparison a little easier, we will open a second UI window with the new values (the old values will not be updated unless we decide to hit the \"Refresh\" button)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When we look at the stream table, we can see the values in the stream between the first and second flash unit changing.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Running from a script\n", + "Finally, although all examples have been shown in a Jupyter Notebook, there is nothing preventing the use of the FV from within a plain Python script (or module).\n", + "\n", + "For example, the code to run this same tutorial as a Python script is also in a module.\n", + "If you have installed the IDAES examples, then you can do the following to import and run the module:\n", + "```\n", + "from idaes_examples.mod.tut import visualizer_tutorial\n", + "visualizer_tutorial.main()\n", + "```\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Further reading\n", + "\n", + "Reference documentation for the FV is available in the IDAES main documentation, online at https://idaes-pse.readthedocs.io/" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial_usr.ipynb b/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial_usr.ipynb index 1893363a..5c404a1d 100644 --- a/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial_usr.ipynb +++ b/idaes_examples/notebooks/docs/tut/ui/visualizer_tutorial_usr.ipynb @@ -1,454 +1,455 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Flowsheet Visualizer Tutorial\n", - "\n", - "Author: Dan Gunter \n", - "Maintainer: Dan Gunter \n", - "Updated: 2023-06-01 \n", - "\n", - "The IDAES Flowsheet Visualizer provides a web-based UI for visualization and inspection of an existing IDAES model.\n", - "## Outline\n", - "\n", - "- Introduction\n", - "- Example flowsheet\n", - "- Running the Flowsheet Visualizer\n", - "- Running from a script\n", - "- Further reading" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introduction\n", - "The IDAES Flowsheet Visualizer (FV) is a Python tool that provides a web-based visualization of any existing IDAES model or flowsheet. The visualization shows a diagram of the\n", - "flowsheet as well as a stream table. You can interact with the diagram and export\n", - "it as an image for inclusion in presentations or publications.\n", - "\n", - "This tutorial will show the basic steps of running the FV on an example\n", - "flowsheet, interacting with the resulting GUI, saving your work, and exporting\n", - "the diagram as an image. It will also show how the Visualizer can be updated\n", - "to reflect changes in the model components and/or variable values. The tutorial\n", - "will also show how to run the Visualizer from a Python script." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example flowsheet\n", - "This initial section creates an example flowsheet.\n", - "\n", - "### Setup\n", - "Module imports and any additional housekeeping needed\n", - "to initialize the code." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import idaes_examples.mod.tut.visualizer_tutorial as vistut\n", - "\n", - "vistut.quiet() # turn off default logging and most warnings\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from IPython.display import Markdown" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Create the flowsheet" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# use the pre-defined function to create the flowsheet\n", - "model = vistut.create_model()\n", - "\n", - "# description of the flowsheet we created\n", - "display(Markdown(vistut.function_markdown(vistut.create_model)))\n", - "\n", - "vistut.quiet()\n", - "\n", - "# initialize the flowsheet as a square problem (dof=0)\n", - "vistut.initialize_model(model)\n", - "\n", - "# verify that there are zero degrees of freedom\n", - "print(f\"DOF = {degrees_of_freedom(model)}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Running the Flowsheet Visualizer\n", - "In most cases, you will run the FV by calling the `visualize()` method attached to your flowsheet.\n", - "This function takes a number of optional arguments, which we will look at briefly later, and one required argument:\n", - "the **title** to give the visualization. Unless you give more information, this title also is used as the filename in which to save its current state.\n", - "\n", - "In the following, we start the FV with the title \"Hydrodealkylation\". This will pop up a new browser tab (and save the status in a file called _Hydrodealkylation.json_).\n", - "\n", - "
\n", - "After the visualizer starts, we recommend making its tab into its own browser window and viewing it side-by-side with this notebook window.\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "tags": [ - "noauto" - ] - }, - "outputs": [], - "source": [ - "model.fs.visualize(\"Hydrodealkylation\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Optional arguments\n", - "The optional (keyword) arguments are documented in the base function, which can be found in `idaes.core.ui.fsvis.visualize`:\n", - "\n", - " * name: Name of flowsheet to display as the title of the visualization\n", - " * load_from_saved: If True load from saved file if any. Otherwise create\n", - " a new file or overwrite it (depending on 'overwrite' flag).\n", - " * save: Where to save the current flowsheet layout and values. If this argument is not specified,\n", - " \"``name``.json\" will be used (if this file already exists, a \"-``\" number will be added\n", - " between the name and the extension). If the value given is the boolean 'False', then nothing\n", - " will be saved. The boolean 'True' value is treated the same as unspecified.\n", - " * save_dir: If this argument is given, and ``save`` is not given or a relative path, then it will\n", - " be used as the directory to save the default or given file. The current working directory is\n", - " the default. If ``save`` is given and an absolute path, this argument is ignored.\n", - " * save_time_interval: The time interval that the UI application checks if any changes has occurred\n", - " in the graph for it to save the model. Default is 5 seconds\n", - " * overwrite: If True, and the file given by ``save`` exists, overwrite instead of creating a new\n", - " numbered file.\n", - " * browser: If true, open a browser\n", - " * port: Start listening on this port. If not given, find an open port.\n", - " * log_level: An IDAES logging level, which is a superset of the built-in `logging` module levels.\n", - " See the `idaes.logger` module for details\n", - " * quiet: If True, suppress printing any messages to standard output (console)\n", - " * loop_forever: If True, don't return but instead loop until a Control-C is received. Useful when\n", - " invoking this function at the end of a script." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Interacting with the visualizer\n", - "The first things you need to learn about the FV are how to manipulate the overall layout and control the view.\n", - "The UI should initially look something like the screenshot below:\n", - "![](\"fv1.png\") alt=\"Screenshot of Flowsheet Visualizer\"> \n", - "\n", - "
\n", - " As you can see, the FV has two main panels. We will call the top panel the diagram and the bottom panel the stream table.\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### View controls\n", - "Before looking at the two panels in detail, it helps to know some basic controls for making them easier to view.\n", - "\n", - "| Control | Description | Illustration |\n", - "|:----|:---------------------|:----:|\n", - "| Panel height | Change the height of the panels by grabbing the small handle in the lower right corner with your mouse. | ![](fv2.png) |\n", - "| Diagram size | Zoom in/out on the diagram with the magnifying glass \"+\" and \"-\" buttons in the upper-right corner of the top panel. The button labeled with two crossing arrows fits the diagram into the current panel height and width. | ![](fv3.png) |" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Rearranging the diagram\n", - "The diagram shown in the top panel is interactive. You can move the units shown there into different positions. Whatever arrangement you end up with will be saved for next time. The arcs (i.e., lines representing streams) connecting the units will automatically re-route themselves as you move them. Below is a summary of the different actions you can take when rearranging the diagram.\n", - "\n", - "|   |   |\n", - "|:--:|:--:|\n", - "| ![](fvr1.png)   |   ![](fvr2.png) |\n", - "| ![](fvr3.png)   |   ![](fvr4.png) |\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Stream table\n", - "The stream table panel shows the values of variables on all the streams between units, and also from units to outlets.\n", - "\n", - "### Stream table \"brushing\"\n", - "Brushing refers to the ability to have actions in one visual area influence the display in another. It is commonly used in statistics to show how points in one scatterplot correspond to their points in another, for the same samples. Here, we use it to link the position of a stream in the diagram with its variable values in the stream table.\n", - "#### Controls\n", - "\n", - "* Moving the mouse over an **arc** in the diagram → highlights the corresponding **column** in the stream table\n", - "* Moving the mouse over a **column** in the stream table → highlights the corresponding **arc** in the diagram\n", - "\n", - "![Illustration of stream table brushing](fvb1.png)\n", - " \n", - "#### Example\n", - "Stream table brushing is useful for answering questions like:\n", - "> How much benzene are we losing in the F101 vapor outlet stream?\n", - "\n", - "To answer this question, we will use some interactive elements of the stream table.\n", - "\n", - "1. Find the inlet of F101 on the diagram. Mouse over this to see the values for that stream highlighted in the stream table below. This is stream `s05`. Look across at the row for Benzene vapor (`flow_mol_phase_comp('Vap', 'benzene')`) and see that the value is $0.35384$\n", - "2. Find the vapor outlet of F101 by looking for the arc connecting to the splitter and compressor feedback loop. This is stream `s06`. Then look at the same row for the Benzene vapor mol fraction and see that the value is $0.14916$\n", - "3. Thus the amount of benzene lost is (in mole fractions) about $0.2$\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Showing and hiding streams\n", - "For complex diagrams, there are a lot of streams and the stream table does not fit in the window. To avoid having to scroll back and forth, there is the ability to \"hide\" selected streams in the stream table. \n", - "\n", - "* Click on the \"Hide Fields\" menu and select which fields to hide\n", - "* The mark will toggle between a check (shown) and open circle (hidden)\n", - "\n", - "For example, we can hide all the streams except the feeds and the flash inlets and outlets.\n", - "\n", - "![Illustration of stream table field hiding](fvst1.png)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Saving and loading\n", - "The current layout and status can be saved to a file, and this file can then be loaded when the model is viewed again. The main benefit is that interactive layout of the diagram is saved for re-use.\n", - "\n", - "#### File name\n", - "This file is named, by default, for the title of the visualizer (e.g., \"Hydrodealkylation\") with a \".json\" extension to indicate the data format and saved in the same directory as the Jupyter notebook. \n", - "\n", - "You can select a different filename and location when you start the visualization, e.g.\n", - "\n", - " model.fs.visualize(\"The Title\", save=\"thefilename.json\", save_dir=\"/path/to/save/the/file\")\n", - "\n", - "#### Reloading\n", - "To reload the saved layout, simply choose the same title (since the filename, by default, matches the title) or explicitly use the `save` and `save_dir` keywords for the `visualize()` function to select a previously saved file. This means you only need to manually lay out the diagram once. Of course, if you add new pieces to the flowsheet you will need to position them correctly (as discussed below)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exporting\n", - "\n", - "#### Exporting the diagram as an image\n", - "You can export an image of the flowsheet diagram in the [Scalable Vector Graphics (SVG)](https://www.w3.org/Graphics/SVG/) format, which can render without fuzziness at arbitrary sizes. Almost all presentation and drawing programs, including MS Word and Powerpoint, can use SVG images.\n", - "\n", - "From the top menu select _Export -> Flowsheet_. You will get a preview of the flowsheet that you can then download to a file.\n", - "#### Exporting the stream table as CSV\n", - "You can export the stream table as comma-separated values. From the top menu select _Export -> Stream Table_." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Updating when the flowsheet changes\n", - "The FV has a connection to the Python program that has the flowsheet (model) in memory. Therefore, when the underlying flowsheet changes, the visualization can be quickly updated to show the new state. This feature is particularly useful for interactive flowsheet creation and debugging in Jupyter Notebooks.\n", - "\n", - "To illustrate the feature, below is some IDAES modeling code that adds another Flash unit to the model, connecting the liquid outlet of the first flash unit to its inlet. There is a little more code that updates some of the output values of the model and sets initial values for this new unit, and then re-initializes the model.\n", - "\n", - "**After this code executes, the model will have a unit called \"F102\" connected to \"F101\".**" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# Add a second flash unit\n", - "from idaes.models.unit_models import Flash\n", - "from pyomo.network import Arc\n", - "from pyomo.environ import Expression, TransformationFactory\n", - "\n", - "m = model # alias\n", - "m.fs.F102 = Flash(\n", - " property_package=m.fs.thermo_params,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=True,\n", - ")\n", - "# connect to 1st flash unit\n", - "m.fs.s10 = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.F102.inlet)\n", - "# update expressions for purity and cost\n", - "m.fs.purity = Expression(\n", - " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " / (\n", - " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", - " + m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", - " )\n", - ")\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", - ")\n", - "# fix unit output and pressure drop\n", - "m.fs.F102.vap_outlet.temperature.fix(375)\n", - "m.fs.F102.deltaP.fix(-200000)\n", - "\n", - "# expand arcs\n", - "TransformationFactory(\"network.expand_arcs\").apply_to(m)\n", - "# re-initialize\n", - "_ = vistut.initialize_model(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
Since the FV is connected to the current state of the model in memory, simply hitting \"Refresh\" in the FV window will show the new flash unit in the diagram, and the new stream (liquid) in the stream table. We can then interactively rearrange the unit to be in the position we want in the diagram.
" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# v model.fs.visualize(\"Hydrodealkylation-new\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Showing new values\n", - "The previous step showed how a new unit in the flowsheet will be automatically added to the diagram. Similarly, if the values in the flowsheet change these will be reflected in the stream table. Below, we solve the initialized flowsheet.\n", - "To make comparison a little easier, we will open a second UI window with the new values (the old values will not be updated unless we decide to hit the \"Refresh\" button)." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "tags": [ - "noauto" - ] - }, - "outputs": [], - "source": [ - "# Create the solver object\n", - "from pyomo.environ import SolverFactory\n", - "\n", - "solver = SolverFactory(\"ipopt\")\n", - "solver.options = {\"tol\": 1e-6, \"max_iter\": 5000}\n", - "\n", - "# Solve the model\n", - "results = solver.solve(model, tee=False)\n", - "\n", - "# Open a second window\n", - "model.fs.visualize(\"HDA_solved\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "When we look at the stream table, we can see the values in the stream between the first and second flash unit changing.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Running from a script\n", - "Finally, although all examples have been shown in a Jupyter Notebook, there is nothing preventing the use of the FV from within a plain Python script (or module).\n", - "\n", - "For example, the code to run this same tutorial as a Python script is also in a module.\n", - "If you have installed the IDAES examples, then you can do the following to import and run the module:\n", - "```\n", - "from idaes_examples.mod.tut import visualizer_tutorial\n", - "visualizer_tutorial.main()\n", - "```\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Further reading\n", - "\n", - "Reference documentation for the FV is available in the IDAES main documentation, online at https://idaes-pse.readthedocs.io/" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.9" - } + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Flowsheet Visualizer Tutorial\n", + "\n", + "Author: Dan Gunter \n", + "Maintainer: Dan Gunter \n", + "Updated: 2023-06-01 \n", + "\n", + "The IDAES Flowsheet Visualizer provides a web-based UI for visualization and inspection of an existing IDAES model.\n", + "## Outline\n", + "\n", + "- Introduction\n", + "- Example flowsheet\n", + "- Running the Flowsheet Visualizer\n", + "- Running from a script\n", + "- Further reading" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction\n", + "The IDAES Flowsheet Visualizer (FV) is a Python tool that provides a web-based visualization of any existing IDAES model or flowsheet. The visualization shows a diagram of the\n", + "flowsheet as well as a stream table. You can interact with the diagram and export\n", + "it as an image for inclusion in presentations or publications.\n", + "\n", + "This tutorial will show the basic steps of running the FV on an example\n", + "flowsheet, interacting with the resulting GUI, saving your work, and exporting\n", + "the diagram as an image. It will also show how the Visualizer can be updated\n", + "to reflect changes in the model components and/or variable values. The tutorial\n", + "will also show how to run the Visualizer from a Python script." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example flowsheet\n", + "This initial section creates an example flowsheet.\n", + "\n", + "### Setup\n", + "Module imports and any additional housekeeping needed\n", + "to initialize the code." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import idaes_examples.mod.tut.visualizer_tutorial as vistut\n", + "\n", + "vistut.quiet() # turn off default logging and most warnings\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from IPython.display import Markdown" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create the flowsheet" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# use the pre-defined function to create the flowsheet\n", + "model = vistut.create_model()\n", + "\n", + "# description of the flowsheet we created\n", + "display(Markdown(vistut.function_markdown(vistut.create_model)))\n", + "\n", + "vistut.quiet()\n", + "\n", + "# initialize the flowsheet as a square problem (dof=0)\n", + "vistut.initialize_model(model)\n", + "\n", + "# verify that there are zero degrees of freedom\n", + "print(f\"DOF = {degrees_of_freedom(model)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Running the Flowsheet Visualizer\n", + "In most cases, you will run the FV by calling the `visualize()` method attached to your flowsheet.\n", + "This function takes a number of optional arguments, which we will look at briefly later, and one required argument:\n", + "the **title** to give the visualization. Unless you give more information, this title also is used as the filename in which to save its current state.\n", + "\n", + "In the following, we start the FV with the title \"Hydrodealkylation\". This will pop up a new browser tab (and save the status in a file called _Hydrodealkylation.json_).\n", + "\n", + "
\n", + "After the visualizer starts, we recommend making its tab into its own browser window and viewing it side-by-side with this notebook window.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [ + "noauto" + ] + }, + "outputs": [], + "source": [ + "model.fs.visualize(\"Hydrodealkylation\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Optional arguments\n", + "The optional (keyword) arguments are documented in the base function, which can be found in `idaes.core.ui.fsvis.visualize`:\n", + "\n", + " * name: Name of flowsheet to display as the title of the visualization\n", + " * load_from_saved: If True load from saved file if any. Otherwise create\n", + " a new file or overwrite it (depending on 'overwrite' flag).\n", + " * save: Where to save the current flowsheet layout and values. If this argument is not specified,\n", + " \"``name``.json\" will be used (if this file already exists, a \"-``\" number will be added\n", + " between the name and the extension). If the value given is the boolean 'False', then nothing\n", + " will be saved. The boolean 'True' value is treated the same as unspecified.\n", + " * save_dir: If this argument is given, and ``save`` is not given or a relative path, then it will\n", + " be used as the directory to save the default or given file. The current working directory is\n", + " the default. If ``save`` is given and an absolute path, this argument is ignored.\n", + " * save_time_interval: The time interval that the UI application checks if any changes has occurred\n", + " in the graph for it to save the model. Default is 5 seconds\n", + " * overwrite: If True, and the file given by ``save`` exists, overwrite instead of creating a new\n", + " numbered file.\n", + " * browser: If true, open a browser\n", + " * port: Start listening on this port. If not given, find an open port.\n", + " * log_level: An IDAES logging level, which is a superset of the built-in `logging` module levels.\n", + " See the `idaes.logger` module for details\n", + " * quiet: If True, suppress printing any messages to standard output (console)\n", + " * loop_forever: If True, don't return but instead loop until a Control-C is received. Useful when\n", + " invoking this function at the end of a script." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Interacting with the visualizer\n", + "The first things you need to learn about the FV are how to manipulate the overall layout and control the view.\n", + "The UI should initially look something like the screenshot below:\n", + "![](\"fv1.png\") alt=\"Screenshot of Flowsheet Visualizer\"> \n", + "\n", + "
\n", + " As you can see, the FV has two main panels. We will call the top panel the diagram and the bottom panel the stream table.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### View controls\n", + "Before looking at the two panels in detail, it helps to know some basic controls for making them easier to view.\n", + "\n", + "| Control | Description | Illustration |\n", + "|:----|:---------------------|:----:|\n", + "| Panel height | Change the height of the panels by grabbing the small handle in the lower right corner with your mouse. | ![](fv2.png) |\n", + "| Diagram size | Zoom in/out on the diagram with the magnifying glass \"+\" and \"-\" buttons in the upper-right corner of the top panel. The button labeled with two crossing arrows fits the diagram into the current panel height and width. | ![](fv3.png) |" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Rearranging the diagram\n", + "The diagram shown in the top panel is interactive. You can move the units shown there into different positions. Whatever arrangement you end up with will be saved for next time. The arcs (i.e., lines representing streams) connecting the units will automatically re-route themselves as you move them. Below is a summary of the different actions you can take when rearranging the diagram.\n", + "\n", + "|   |   |\n", + "|:--:|:--:|\n", + "| ![](fvr1.png)   |   ![](fvr2.png) |\n", + "| ![](fvr3.png)   |   ![](fvr4.png) |\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Stream table\n", + "The stream table panel shows the values of variables on all the streams between units, and also from units to outlets.\n", + "\n", + "### Stream table \"brushing\"\n", + "Brushing refers to the ability to have actions in one visual area influence the display in another. It is commonly used in statistics to show how points in one scatterplot correspond to their points in another, for the same samples. Here, we use it to link the position of a stream in the diagram with its variable values in the stream table.\n", + "#### Controls\n", + "\n", + "* Moving the mouse over an **arc** in the diagram → highlights the corresponding **column** in the stream table\n", + "* Moving the mouse over a **column** in the stream table → highlights the corresponding **arc** in the diagram\n", + "\n", + "![Illustration of stream table brushing](fvb1.png)\n", + " \n", + "#### Example\n", + "Stream table brushing is useful for answering questions like:\n", + "> How much benzene are we losing in the F101 vapor outlet stream?\n", + "\n", + "To answer this question, we will use some interactive elements of the stream table.\n", + "\n", + "1. Find the inlet of F101 on the diagram. Mouse over this to see the values for that stream highlighted in the stream table below. This is stream `s05`. Look across at the row for Benzene vapor (`flow_mol_phase_comp('Vap', 'benzene')`) and see that the value is $0.35384$\n", + "2. Find the vapor outlet of F101 by looking for the arc connecting to the splitter and compressor feedback loop. This is stream `s06`. Then look at the same row for the Benzene vapor mol fraction and see that the value is $0.14916$\n", + "3. Thus the amount of benzene lost is (in mole fractions) about $0.2$\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Showing and hiding streams\n", + "For complex diagrams, there are a lot of streams and the stream table does not fit in the window. To avoid having to scroll back and forth, there is the ability to \"hide\" selected streams in the stream table. \n", + "\n", + "* Click on the \"Hide Fields\" menu and select which fields to hide\n", + "* The mark will toggle between a check (shown) and open circle (hidden)\n", + "\n", + "For example, we can hide all the streams except the feeds and the flash inlets and outlets.\n", + "\n", + "![Illustration of stream table field hiding](fvst1.png)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Saving and loading\n", + "The current layout and status can be saved to a file, and this file can then be loaded when the model is viewed again. The main benefit is that interactive layout of the diagram is saved for re-use.\n", + "\n", + "#### File name\n", + "This file is named, by default, for the title of the visualizer (e.g., \"Hydrodealkylation\") with a \".json\" extension to indicate the data format and saved in the same directory as the Jupyter notebook. \n", + "\n", + "You can select a different filename and location when you start the visualization, e.g.\n", + "\n", + " model.fs.visualize(\"The Title\", save=\"thefilename.json\", save_dir=\"/path/to/save/the/file\")\n", + "\n", + "#### Reloading\n", + "To reload the saved layout, simply choose the same title (since the filename, by default, matches the title) or explicitly use the `save` and `save_dir` keywords for the `visualize()` function to select a previously saved file. This means you only need to manually lay out the diagram once. Of course, if you add new pieces to the flowsheet you will need to position them correctly (as discussed below)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exporting\n", + "\n", + "#### Exporting the diagram as an image\n", + "You can export an image of the flowsheet diagram in the [Scalable Vector Graphics (SVG)](https://www.w3.org/Graphics/SVG/) format, which can render without fuzziness at arbitrary sizes. Almost all presentation and drawing programs, including MS Word and Powerpoint, can use SVG images.\n", + "\n", + "From the top menu select _Export -> Flowsheet_. You will get a preview of the flowsheet that you can then download to a file.\n", + "#### Exporting the stream table as CSV\n", + "You can export the stream table as comma-separated values. From the top menu select _Export -> Stream Table_." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Updating when the flowsheet changes\n", + "The FV has a connection to the Python program that has the flowsheet (model) in memory. Therefore, when the underlying flowsheet changes, the visualization can be quickly updated to show the new state. This feature is particularly useful for interactive flowsheet creation and debugging in Jupyter Notebooks.\n", + "\n", + "To illustrate the feature, below is some IDAES modeling code that adds another Flash unit to the model, connecting the liquid outlet of the first flash unit to its inlet. There is a little more code that updates some of the output values of the model and sets initial values for this new unit, and then re-initializes the model.\n", + "\n", + "**After this code executes, the model will have a unit called \"F102\" connected to \"F101\".**" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Add a second flash unit\n", + "from idaes.models.unit_models import Flash\n", + "from pyomo.network import Arc\n", + "from pyomo.environ import Expression, TransformationFactory\n", + "\n", + "m = model # alias\n", + "m.fs.F102 = Flash(\n", + " property_package=m.fs.thermo_params,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=True,\n", + ")\n", + "# connect to 1st flash unit\n", + "m.fs.s10 = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.F102.inlet)\n", + "# update expressions for purity and cost\n", + "m.fs.purity = Expression(\n", + " expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " / (\n", + " m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"benzene\"]\n", + " + m.fs.F102.vap_outlet.flow_mol_phase_comp[0, \"Vap\", \"toluene\"]\n", + " )\n", + ")\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]\n", + ")\n", + "# fix unit output and pressure drop\n", + "m.fs.F102.vap_outlet.temperature.fix(375)\n", + "m.fs.F102.deltaP.fix(-200000)\n", + "\n", + "# expand arcs\n", + "TransformationFactory(\"network.expand_arcs\").apply_to(m)\n", + "# re-initialize\n", + "_ = vistut.initialize_model(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
Since the FV is connected to the current state of the model in memory, simply hitting \"Refresh\" in the FV window will show the new flash unit in the diagram, and the new stream (liquid) in the stream table. We can then interactively rearrange the unit to be in the position we want in the diagram.
" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# v model.fs.visualize(\"Hydrodealkylation-new\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Showing new values\n", + "The previous step showed how a new unit in the flowsheet will be automatically added to the diagram. Similarly, if the values in the flowsheet change these will be reflected in the stream table. Below, we solve the initialized flowsheet.\n", + "To make comparison a little easier, we will open a second UI window with the new values (the old values will not be updated unless we decide to hit the \"Refresh\" button)." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [ + "noauto" + ] + }, + "outputs": [], + "source": [ + "# Create the solver object\n", + "from pyomo.environ import SolverFactory\n", + "\n", + "solver = SolverFactory(\"ipopt\")\n", + "solver.options = {\"tol\": 1e-6, \"max_iter\": 5000}\n", + "\n", + "# Solve the model\n", + "results = solver.solve(model, tee=False)\n", + "\n", + "# Open a second window\n", + "model.fs.visualize(\"HDA_solved\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When we look at the stream table, we can see the values in the stream between the first and second flash unit changing.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Running from a script\n", + "Finally, although all examples have been shown in a Jupyter Notebook, there is nothing preventing the use of the FV from within a plain Python script (or module).\n", + "\n", + "For example, the code to run this same tutorial as a Python script is also in a module.\n", + "If you have installed the IDAES examples, then you can do the following to import and run the module:\n", + "```\n", + "from idaes_examples.mod.tut import visualizer_tutorial\n", + "visualizer_tutorial.main()\n", + "```\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Further reading\n", + "\n", + "Reference documentation for the FV is available in the IDAES main documentation, online at https://idaes-pse.readthedocs.io/" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model.ipynb b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model.ipynb index 7465fdda..1027ee5e 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model.ipynb @@ -1,5 +1,32 @@ { "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "3633308e", + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { "cell_type": "code", "execution_count": 1, diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model_doc.ipynb b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model_doc.ipynb index cdbbb12c..0dcaaf77 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model_doc.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model_doc.ipynb @@ -3,6 +3,32 @@ { "cell_type": "code", "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -27,7 +53,6 @@ "# Creating Custom Unit Model\n", "Author: Javal Vyas \n", "Maintainer: Javal Vyas \n", - "Updated: 2023-02-20\n", "\n", "This tutorial is a comprehensive step-wise procedure to build a custom unit model from scratch. This tutorial will include creating a property package, a custom unit model and testing them. For this tutorial we shall create a custom unit model for Liquid - Liquid Extraction. \n", "\n", @@ -57,12 +82,12 @@ "- Define State Block Data\n", "\n", "# 1.1 Importing necessary packages \n", - "Let us begin with the importing the necessary libraries where we will be using functionalities from IDAES and Pyomo. " + "Let us begin with importing the necessary libraries where we will be using functionalities from IDAES and Pyomo. " ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -115,7 +140,7 @@ "\n", "To construct this block, we begin by declaring a process block class using a Python decorator. One can learn more about `declare_process_block_class` [here](https://github.com/IDAES/idaes-pse/blob/eea1209077b75f7d940d8958362e69d4650c079d/idaes/core/base/process_block.py#L173). After constructing the process block, we define a build function which contains all the components that the property package would have. `super` function here is used to give access to methods and properties of a parent or sibling class and since this is used on the class `PhysicalParameterData` class, build has access to all the parent and sibling class methods. \n", "\n", - "The `PhysicalParameterBlock` then refers to the `state block`, in this case `OrgPhaseStateBlock` (which will be declared later), so that we can build a state block instance by only knowing the `PhysicalParameterBlock` we wish to use. Then we move on to list the number of phases in this property package. Then we assign the variable to the phase which follows a naming convention. Like here since the solvent is in the Organic phase, we will assign the Phase as OrganicPhase and the variable will be named Org as per the naming convention. The details of naming conventions can be found [here](https://github.com/IDAES/idaes-pse/blob/main/docs/explanations/conventions.rst). We will be following the same convention throughout the example. \n", + "The `PhysicalParameterBlock` then refers to the `state block`, in this case `OrgPhaseStateBlock` (which will be declared later), so that we can build a state block instance by only knowing the `PhysicalParameterBlock` we wish to use. Then we list the number of phases in this property package. Then we assign the variable to the phase which follows a naming convention. The solvent is in the Organic phase; we will assign the Phase as OrganicPhase, and the variable will be named Org as per the naming convention. The details of naming conventions can be found [here](https://github.com/IDAES/idaes-pse/blob/main/docs/explanations/conventions.rst). We will be following the same convention throughout the example. \n", " \n", "After defining the list of the phases, we move on to list the components and their type in the phase. It can be a solute or a solvent in the Organic phase. Thus, we define the component and assign it to either being a solute or a solvent. In this case, the salts are the solutes and Ethylene dibromide is the solvent. Next, we define the physical properties involved in the package, like the heat capacity and density of the solvent, the reference temperature, and the distribution factor that would govern the mass transfer from one phase into another. Additionally, a parameter, the `diffusion_factor`, is introduced. This factor plays a crucial role in governing mass transfer between phases, necessitating its definition within the state block.\n", "\n", @@ -126,7 +151,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -210,14 +235,14 @@ "\n", "Creating a State Block requires us to write two classes. The reason we write two classes is because of the inherent nature of how `declare_process_block_data` works. `declare_process_block_data` facilitates creating an `IndexedComponent` object which can handle multiple `ComponentData` objects which represent the component at each point in the indexing set. This makes it easier to build an instance of the model at each indexed point. However, State Blocks are slightly different, as they are always indexed (at least by time). Due to this, we often want to perform actions on all the elements of the indexed StateBlock all at once (rather than element by element).\n", "\n", - "The class `_OrganicStateBlock` is defined without the `declare_process_block_data` decorator and thus works as a traditional class and this facilitates performing a method on the class as a whole rather than individual elements of the indexed property blocks. In this class we define the `fix_initialization_states` function. `fix_initialization_states` function is to used to fix the state variable within the state block with the provided initial values (usually inlet conditions). It takes a `block` as the argument in which the state variables are to be fixed. It also takes `state_args` as an optional argument. `state_args` is a dictionary with the value for the state variables to be fixed. This function returns a dictionary indexed by the block, state variables and variable index indicating the fixed status of each variable before applying the function. \n", + "The class `_OrganicStateBlock` is defined without the `declare_process_block_data` decorator and thus works as a traditional class and this facilitates performing a method on the class as a whole rather than individual elements of the indexed property blocks. In this class we define the `fix_initialization_states` function. `fix_initialization_states` function is used to fix the state variable within the state block with the provided initial values (usually inlet conditions). It takes a `block` as the argument in which the state variables are to be fixed. It also takes `state_args` as an optional argument. `state_args` is a dictionary with the value for the state variables to be fixed. This function returns a dictionary indexed by the block, state variables and variable index indicating the fixed status of each variable before applying the function. \n", "\n", - "The above function comprise of the _OrganicStateBlock, next we shall see the construction of the OrgPhaseStateBlockData class." + "The above function comprise of the _OrganicStateBlock. Next, we shall see the construction of the OrgPhaseStateBlockData class." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -260,14 +285,14 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "@declare_process_block_class(\"OrgPhaseStateBlock\", block_class=_OrganicStateBlock)\n", "class OrgPhaseStateBlockData(StateBlockData):\n", " \"\"\"\n", - " An example property package for Organic phzase for liquid liquid extraction\n", + " An example property package for Organic phase for liquid liquid extraction\n", " \"\"\"\n", "\n", " def build(self):\n", @@ -364,12 +389,12 @@ "source": [ "# 2. Creating Aqueous Property Package\n", "\n", - "The structure of Aqueous Property Package mirrors that of the Organic Property Package we previously developed. We'll commence with an overview, importing the required libraries, followed by the creation of the physical property block and two state blocks. The distinctions in this package lie in the physical parameter values, and notably, the absence of the diffusion factor term, differentiating it from the prior package. The following code snippet should provide clarity on these distinctions." + "The structure of the Aqueous Property Package mirrors that of the Organic Property Package we previously developed. We'll commence with an overview, importing the required libraries, followed by the creation of the physical property block and two state blocks. The distinctions in this package lie in the physical parameter values, and notably, the absence of the diffusion factor term, differentiating it from the prior package. The following code snippet should provide clarity on these distinctions." ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -593,7 +618,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -633,26 +658,26 @@ "source": [ "## 3.2 Creating the unit model\n", "\n", - "Creating a unit model starts by creating a class called `LiqExtractionData` and use the `declare_process_block_class` decorator. The `LiqExtractionData` inherits the properties of `UnitModelBlockData` class, which allows us to create a control volume which is necessary for the unit model. After declaration of the class we proceed to define the relevant config arguments for the control volume. The config arguments includes the following properties:\n", + "Creating a unit model starts by creating a class called `LiqExtractionData` and using the `declare_process_block_class` decorator. The `LiqExtractionData` inherits the properties of the `UnitModelBlockData` class, which allows us to create a control volume that is necessary for the unit model. After declaration of the class we proceed to define the relevant config arguments for the control volume. The config arguments include the following properties:\n", "\n", "- `material_balance_type` - Indicates what type of mass balance should be constructed\n", "- `has_pressure_change` - Indicates whether terms for pressure change should be\n", "constructed\n", "- `has_phase_equilibrium` - Indicates whether terms for phase equilibrium should be\n", "constructed\n", - "- `Organic Property` - Property parameter object used to define property calculations\n", + "- `organic_property_package` - Property parameter object used to define property calculations\n", "for the Organic phase\n", - "- `Organic Property Arguments` - Arguments to use for constructing Organic phase properties\n", - "- `Aqueous Property` - Property parameter object used to define property calculations\n", + "- `organic_property_package_args` - Arguments to use for constructing Organic phase properties\n", + "- `aqueous_property_package` - Property parameter object used to define property calculations\n", "for the aqueous phase\n", - "- `Aqueous Property Arguments` - Arguments to use for constructing aqueous phase properties\n", + "- `aqueous_property_package_args` - Arguments to use for constructing aqueous phase properties\n", "\n", "As there are no pressure changes or reactions in this scenario, configuration arguments for these aspects are not included. However, additional details on configuration arguments can be found [here](https://github.com/IDAES/idaes-pse/blob/8948c6ce27d4c7f2c06b377a173f413599091998/idaes/models/unit_models/cstr.py)." ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -770,17 +795,17 @@ "source": [ "### Building the model\n", "\n", - "After constructing the `LiqExtractionData` block and defining the config arguments for the control block, the next step is to write a build function that incorporates control volume and establishes constraints on the control volume to achieve the desired mass transfer. The control volume serves as a pivotal component in the unit model construction, representing the volume in which the process unfolds.\n", + "After constructing the `LiqExtractionData` block and defining the config arguments for the control block, the next step is to write a build function that incorporates the control volume and establishes constraints on the control volume to achieve the desired mass transfer. The control volume serves as a pivotal component in the unit model construction, representing the volume in which the process unfolds.\n", "\n", "IDAES provides flexibility in choosing control volumes based on geometry, with options including 0D or 1D. In this instance, we opt for a 0D control volume, the most commonly used control volume. This choice is suitable for systems where there is a well-mixed volume of fluid or where spatial variations are deemed negligible.\n", "\n", "The control volume encompasses parameters from (1-8), and its equations are configured to satisfy the specified config arguments. For a more in-depth understanding, users are encouraged to refer to [this resource](https://github.com/IDAES/idaes-pse/blob/2f34dd3abc1bce5ba17c80939a01f9034e4fbeef/docs/reference_guides/core/control_volume_0d.rst). \n", "\n", - "The `build` function is initiated using the `super` function to gain access to methods and properties of a parent or sibling class, in this case, the `LiqExtractionData` class. Following the `super` function, checks are performed on the property packages to ensure the appropriate names for the solvents, such as 'Aq' for the aqueous phase and 'Org' for the Organic phase. An error is raised if these conditions are not met. Subsequently, a check is performed to ensure there is at least one common component between the two property packages that can be transferred from one phase to another.\n", + "The `build` function is initiated using the `super` function to gain access to methods and properties of a parent or sibling class, in this case, the `LiqExtractionData` class. Following the `super` function, checks are performed on the property packages to ensure the appropriate names for the solvents, such as 'Aq' for the aqueous phase and 'Org' for the organic phase. An error is raised if these conditions are not met. Subsequently, a check is performed to ensure there is at least one common component between the two property packages that can be transferred from one phase to another.\n", "\n", - "After these checks are completed without any exceptions raised, it is ensured that the property packages have the desired components with appropriate names. The next step is to create a control volume and assign it to a property package. Here, we initiate with the Organic phase and attach a 0D control volume to it. The control volume takes arguments about the dynamics of the block, and the property package, along with property package arguments. \n", + "After these checks are completed without any exceptions raised, it is ensured that the property packages have the desired components with appropriate names. The next step is to create a control volume and assign it to a property package. Here, we initiate with the organic phase and attach a 0D control volume to it. The control volume takes arguments about the dynamics of the block, and the property package, along with property package arguments. \n", "\n", - "The subsequent steps involve adding inlet and outlet state blocks to the control volume using the `add_state_blocks` function. This function takes arguments about the flow direction (defaulted to forward) and a flag for `has_phase_equilibrium`, which is read from the config. The control volume is now equipped with the inlet and outlet state blocks and has access to the Organic property package\n", + "The subsequent steps involve adding inlet and outlet state blocks to the control volume using the `add_state_blocks` function. This function takes arguments about the flow direction (defaulted to forward) and a flag for `has_phase_equilibrium`, which is read from the config. The control volume is now equipped with the inlet and outlet state blocks and has access to the organic property package\n", "\n", "Next, material balance equations are added to the control volume using the `add_material_balance` function, taking into account the type of material balance, `has_phase_equilibrium`, and the presence of `has_mass_transfer`. To understand this arguments further let us have a look at the material balance equation and how it is implemented in control volume. \n", "\n", @@ -801,9 +826,9 @@ "- e indicates element index\n", "- r indicates reaction name index\n", "\n", - "Here we shall see that $N_{transfer, t, p, j}$ is the term in the equation which is responsible for the mass transfer and the `mass_transfer_term` should only be equal to the amount being transferred and not include a material balance on our own. For a detailed description of the terms one should refer to the following [resource](https://github.com/IDAES/idaes-pse/blob/2f34dd3abc1bce5ba17c80939a01f9034e4fbeef/docs/reference_guides/core/control_volume_0d.rst)\n", + "Here we shall see that $N_{transfer, t, p, j}$ is the term in the equation which is responsible for the mass transfer and the `mass_transfer_term` should only be equal to the amount being transferred and not include a material balance on our own. For a detailed description of the terms one should refer to the following [resource.](https://github.com/IDAES/idaes-pse/blob/2f34dd3abc1bce5ba17c80939a01f9034e4fbeef/docs/reference_guides/core/control_volume_0d.rst)\n", "\n", - "This concludes the creation of organic phase control volume. Similar procedure is done for the aqueous phase control volume with aqueous property package. \n", + "This concludes the creation of the organic phase control volume. A similar procedure is done for the aqueous phase control volume with aqueous property package. \n", "\n", "Now, the unit model has two control volumes with appropriate configurations and material, momentum and energy balances. The next step is to check the basis of the two property packages. They should both have the same flow basis, and an error is raised if this is not the case.\n", "\n", @@ -811,14 +836,14 @@ "\n", "The subsequent steps involve writing unit-level constraints. A check if the basis is either molar or mass, and unit-level constraints are written accordingly. The first constraint pertains to the mass transfer term for the aqueous phase. The mass transfer term is equal to $mass\\_transfer\\_term_{aq} = (D_{i})\\frac{mass_{i}~in~aq~phase}{flowrate~of~aq~phase}$. The second constraint relates to the mass transfer term in the organic phase, which is the negative of the mass transfer term in the aqueous phase: $mass\\_transfer\\_term_{org} = - mass\\_transfer\\_term_{aq} $\n", "\n", - "Here $mass\\_transfer\\_term_{p}$ is the term indicating the amount of material being transferred from/to the phase and $D_{i}$ is the Distribution co-efficient for component i. \n", + "Here $mass\\_transfer\\_term_{p}$ is the term indicating the amount of material being transferred from/to the phase and $D_{i}$ is the Distribution coefficient for component i. \n", "\n", "This marks the completion of the build function, and the unit model is now equipped with the necessary process constraints. The subsequent steps involve writing the initialization routine." ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -836,7 +861,7 @@ " # Check phase lists match assumptions\n", " if self.config.aqueous_property_package.phase_list != [\"Aq\"]:\n", " raise ConfigurationError(\n", - " f\"{self.name} Liquid-Liquid Extractor model requires that the aquoues \"\n", + " f\"{self.name} Liquid-Liquid Extractor model requires that the aqueous \"\n", " f\"phase property package have a single phase named 'Aq'\"\n", " )\n", " if self.config.organic_property_package.phase_list != [\"Org\"]:\n", @@ -949,8 +974,6 @@ "\n", " if flow_basis == MaterialFlowBasis.mass:\n", " fb = \"flow_mass\"\n", - " elif flow_basis == MaterialFlowBasis.molar:\n", - " fb = \"flow_mole\"\n", " else:\n", " raise ConfigurationError(\n", " f\"{self.name} Liquid-Liquid Extractor only supports mass \"\n", @@ -1015,13 +1038,13 @@ "\n", "- Have precheck for structural singularity\n", "- Run incidence analysis on given block data and check matching.\n", - "- Call Block Triangularization solver on model.\n", + "- Call Block Triangularization solver on the model.\n", "- Call solve_strongly_connected_components on a given BlockData.\n", "\n", - "For more details about this initialization routine can be found [here](https://github.com/IDAES/idaes-pse/blob/c09433b9afed5ae2fe25c0ccdc732783324f0101/idaes/core/initialization/block_triangularization.py). \n", + "More details about this initialization routine can be found [here](https://github.com/IDAES/idaes-pse/blob/c09433b9afed5ae2fe25c0ccdc732783324f0101/idaes/core/initialization/block_triangularization.py). \n", "\n", "\n", - "This marks the conclusion of creating a custom unit model, for a more detailed explanation on creating a unit model refer [this resource](../../unit_models/custom_unit_models/custom_compressor_doc.md). The next sections will deal with the diagonistics and testing of the property package and unit model. " + "This marks the conclusion of creating a custom unit model, for a more detailed explanation on creating a unit model refer [this resource](../../unit_models/custom_unit_models/custom_compressor_doc.md). The next sections will deal with the diagnostics and testing of the property package and unit model. " ] }, { @@ -1046,18 +1069,13 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "import pyomo.environ as pyo\n", - "import idaes.core\n", - "import idaes.models.unit_models\n", - "from idaes.core.solvers import get_solver\n", - "import idaes.logger as idaeslog\n", - "from pyomo.network import Arc\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.initialization import InitializationStatus\n", + "from idaes.core import FlowsheetBlock\n", + "\n", "from idaes.core.initialization.block_triangularization import (\n", " BlockTriangularizationInitializer,\n", ")\n", @@ -1068,7 +1086,7 @@ "\n", "def build_model():\n", " m = pyo.ConcreteModel()\n", - " m.fs = idaes.core.FlowsheetBlock(dynamic=False)\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", " m.fs.org_properties = OrgPhase()\n", " m.fs.aq_properties = AqPhase()\n", "\n", @@ -1141,7 +1159,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -1156,7 +1174,7 @@ "\n", "Here's a breakdown of the steps to start with:\n", "\n", - "- `Instantiate Model:` Ensure you have an instance of the model with a degrees of freedom equal to 0.\n", + "- `Instantiate Model:` Ensure you have an instance of the model with degrees of freedom equal to 0.\n", "\n", "- `Create DiagnosticsToolbox Instance:` Next, instantiate a DiagnosticsToolbox object.\n", "\n", @@ -1169,7 +1187,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -1179,15 +1197,33 @@ "WARNING (W1001): Setting Var\n", "'fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[NaCl]' to a value\n", "`-0.1725` (float) not in domain NonNegativeReals.\n", - " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING (W1001): Setting Var\n", "'fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[KNO3]' to a value\n", "`-0.4` (float) not in domain NonNegativeReals.\n", - " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING (W1001): Setting Var\n", "'fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[CaSO4]' to a value\n", "`-0.05` (float) not in domain NonNegativeReals.\n", - " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "====================================================================================\n", "Model Statistics\n", "\n", @@ -1235,7 +1271,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -1310,10 +1346,17 @@ "Number of equality constraint Jacobian evaluations = 14\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 12\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", "Total CPU secs in NLP function evaluations = 0.000\n", "\n", "EXIT: Converged to a point of local infeasibility. Problem may be infeasible.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "WARNING: Loading a SolverResults object with a warning status into\n", "model.name=\"unknown\";\n", " - termination condition: infeasible\n", @@ -1324,10 +1367,10 @@ { "data": { "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 16, 'Number of variables': 16, 'Sense': 'unknown'}], 'Solver': [{'Status': 'warning', 'Message': 'Ipopt 3.13.2\\\\x3a Converged to a locally infeasible point. Problem may be infeasible.', 'Termination condition': 'infeasible', 'Id': 200, 'Error rc': 0, 'Time': 0.06552338600158691}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 16, 'Number of variables': 16, 'Sense': 'unknown'}], 'Solver': [{'Status': 'warning', 'Message': 'Ipopt 3.13.2\\\\x3a Converged to a locally infeasible point. Problem may be infeasible.', 'Termination condition': 'infeasible', 'Id': 200, 'Error rc': 0, 'Time': 0.0067138671875}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" ] }, - "execution_count": 13, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -1341,12 +1384,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The model is probably infeasible thus indicating numerical issues with the model. We should call the `report_numerical_issues()` function and check what the constraints/variables causing this issue. " + "The model is probably infeasible, indicating numerical issues with the model. We should call the `report_numerical_issues()` function and check the constraints/variables causing this issue. " ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -1375,6 +1418,7 @@ "Suggested next steps:\n", "\n", " display_constraints_with_large_residuals()\n", + " compute_infeasibility_explanation()\n", " display_variables_at_or_outside_bounds()\n", "\n", "====================================================================================\n" @@ -1402,7 +1446,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -1439,7 +1483,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -1468,12 +1512,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "As expected there are convergence issues with the constraints which have `conc_mass_comp` variable in them specifically in the aqeous phase. Now, let us investigate further by printing this constraints and checking the value of each term. Since this is an persistent issue across the components, we can focus on just one of the component to identify the issue. " + "As expected there are convergence issues with the constraints which have `conc_mass_comp` variable in them specifically in the aqueous phase. Now, let us investigate further by printing this constraints and checking the value of each term. Since this is an persistent issue across the components, we can focus on just one of the component to identify the issue. " ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -1493,7 +1537,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -1501,7 +1545,7 @@ "output_type": "stream", "text": [ "{Member of conc_mass_comp} : Component mass concentrations\n", - " Size=3, Index=fs.aq_properties.solutes, Units=g/l\n", + " Size=3, Index=fs.aq_properties.solute_set, Units=g/l\n", " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", " NaCl : 0 : 0.15 : None : True : True : NonNegativeReals\n", "flow_vol : Total volumetric flowrate\n", @@ -1509,7 +1553,7 @@ " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", " None : 0 : 100.0 : None : True : True : NonNegativeReals\n", "{Member of conc_mass_comp} : Component mass concentrations\n", - " Size=3, Index=fs.aq_properties.solutes, Units=g/l\n", + " Size=3, Index=fs.aq_properties.solute_set, Units=g/l\n", " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", " NaCl : 0 : 0.0 : None : False : False : NonNegativeReals\n", "flow_vol : Total volumetric flowrate\n", @@ -1542,7 +1586,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -1569,7 +1613,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -1591,12 +1635,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "After the corrective actions, we should check if this have made any structural issues, for this we would call `report_structural_issues()`" + "After the corrective actions, we should check if this has made any structural issues, for this we would call `report_structural_issues()`" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -1648,7 +1692,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -1715,16 +1759,17 @@ "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", "Total CPU secs in NLP function evaluations = 0.000\n", "\n", - "EXIT: Optimal Solution Found.\n" + "EXIT: Optimal Solution Found.\n", + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" ] }, { "data": { "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 16, 'Number of variables': 16, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.07779264450073242}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 16, 'Number of variables': 16, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.008719205856323242}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" ] }, - "execution_count": 22, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -1752,7 +1797,7 @@ "\n", "Testing is a crucial part of model development to ensure that the model works as expected, and remains reliable. Here's an overview of why we conduct testing:\n", "\n", - "1. `Verify Correctness`: Testing ensure that the model works as expected and meets the specified requirements. \n", + "1. `Verify Correctness`: Testing ensures that the model works as expected and meets the specified requirements. \n", "2. `Detect Bugs and Issues`: Testing helps in identifying bugs, errors, or unexpected behaviors in the code or model, allowing for timely fixes.\n", "3. `Ensure Reliability`: Testing improves the reliability and robustness of the software, reducing the risk of failures when the user uses it.\n", "4. `Support Changes`: Tests provide confidence when making changes or adding new features, ensuring that existing functionalities are not affected and work as they should.\n", @@ -1786,7 +1831,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -1844,12 +1889,12 @@ "\n", "2. Initialization Function Test: Check that state variables are not fixed before initialization and are released after initialization. This test ensures that the initialization process occurs as expected and that the state variables are appropriately managed throughout.\n", "\n", - "These unit tests provide comprehensive coverage for validating the functionality and behavior of the state block in the Aqueous property phase package. Similar tests can be written for the organic property package to ensure consistency and reliability across both packages." + "These unit tests provide comprehensive coverage for validating the functionality and behavior of the state block in the aqueous property phase package. Similar tests can be written for the organic property package to ensure consistency and reliability across both packages." ] }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -1905,7 +1950,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -1927,13 +1972,13 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "import pytest\n", "\n", - "import idaes.core\n", + "from idaes.core import FlowsheetBlock\n", "import idaes.models.unit_models\n", "from idaes.core.solvers import get_solver\n", "import idaes.logger as idaeslog\n", @@ -1956,7 +2001,7 @@ "@pytest.mark.unit\n", "def test_config():\n", " m = ConcreteModel()\n", - " m.fs = idaes.core.FlowsheetBlock(dynamic=False)\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", " m.fs.org_properties = OrgPhase()\n", " m.fs.aq_properties = AqPhase()\n", "\n", @@ -1990,7 +2035,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -1998,7 +2043,7 @@ " @pytest.fixture(scope=\"class\")\n", " def model(self):\n", " m = ConcreteModel()\n", - " m.fs = idaes.core.FlowsheetBlock(dynamic=False)\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", " m.fs.org_properties = OrgPhase()\n", " m.fs.aq_properties = AqPhase()\n", "\n", @@ -2087,7 +2132,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -2217,7 +2262,7 @@ "- Debugging the model using DiagnosticsToolbox\n", "- Writing tests for the unit model\n", "\n", - "By following the aforementioned procedure, one can create their own custom unit model. This would conclude the tutorial on creating custom unit model. " + "By following the aforementioned procedure, one can create their own custom unit model. This concludes the tutorial on creating a custom unit model. " ] } ], @@ -2237,9 +2282,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model_test.ipynb b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model_test.ipynb index f11bab48..5fdd9b0e 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model_test.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model_test.ipynb @@ -1,1964 +1,2263 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Creating Custom Unit Model\n", - "Author: Javal Vyas \n", - "Maintainer: Javal Vyas \n", - "Updated: 2023-02-20\n", - "\n", - "This tutorial is a comprehensive step-wise procedure to build a custom unit model from scratch. This tutorial will include creating a property package, a custom unit model and testing them. For this tutorial we shall create a custom unit model for Liquid - Liquid Extraction. \n", - "\n", - "The Liquid - Liquid Extractor model contains two immiscible fluids forming the two phases. One of the phases, say phase_1 has a high concentration of solutes which is to be separated. A mass transfer happens between the two phases and the solute is transferred from phase_1 to phase_2. This mass transfer is governed by a parameter called the distribution coefficient.\n", - "\n", - "After reviewing the working principles of the Liquid - Liquid Extractor, we shall proceed to create a custom unit model. We will require a property package for each phase, a custom unit model class and tests for the model and property packages.\n", - "\n", - "Before commencing the development of the model, we need to state some assumptions which the following unit model will be using. \n", - "- Steady-state only\n", - "- Organic phase property package has a single phase named Org\n", - "- Aqueous phase property package has a single phase named Aq\n", - "- Organic and Aqueous phase properties need not have the same component list. \n", - "\n", - "Thus as per the assumptions, we will be creating one property package for the aqueous phase (Aq), and the other for the Organic phase (Org). " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. Creating Organic Property Package\n", - "\n", - "Creating a property package is a 4 step process\n", - "- Import necessary libraries \n", - "- Creating Physical Parameter Data Block\n", - "- Define State Block\n", - "- Define State Block Data\n", - "\n", - "# 1.1 Importing necessary packages \n", - "Let us begin with the importing the necessary libraries where we will be using functionalities from IDAES and Pyomo. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Python libraries\n", - "import logging\n", - "\n", - "import idaes.logger as idaeslog\n", - "from idaes.core.util.initialization import fix_state_vars\n", - "\n", - "# Import Pyomo libraries\n", - "from pyomo.environ import (\n", - " Param,\n", - " Set,\n", - " Var,\n", - " NonNegativeReals,\n", - " units,\n", - " Expression,\n", - " PositiveReals,\n", - ")\n", - "\n", - "# Import IDAES cores\n", - "from idaes.core import (\n", - " declare_process_block_class,\n", - " MaterialFlowBasis,\n", - " PhysicalParameterBlock,\n", - " StateBlockData,\n", - " StateBlock,\n", - " MaterialBalanceType,\n", - " EnergyBalanceType,\n", - " Solute,\n", - " Solvent,\n", - " LiquidPhase,\n", - ")\n", - "from idaes.core.util.model_statistics import degrees_of_freedom" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1.2 Physical Parameter Data Block\n", - "\n", - "A `PhysicalParameterBlock` serves as the central point of reference for all aspects of the property package and needs to define several things about the package. These are summarized below:\n", - "\n", - "- Units of measurement\n", - "- What properties are supported and how they are implemented\n", - "- What components and phases are included in the packages\n", - "- All the global parameters necessary for calculating properties\n", - "- A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", - "\n", - "To construct this block, we begin by declaring a process block class using a Python decorator. One can learn more about `declare_process_block_class` [here](https://github.com/IDAES/idaes-pse/blob/eea1209077b75f7d940d8958362e69d4650c079d/idaes/core/base/process_block.py#L173). After constructing the process block, we define a build function which contains all the components that the property package would have. `super` function here is used to give access to methods and properties of a parent or sibling class and since this is used on the class `PhysicalParameterData` class, build has access to all the parent and sibling class methods. \n", - "\n", - "The `PhysicalParameterBlock` then refers to the `state block`, in this case `OrgPhaseStateBlock` (which will be declared later), so that we can build a state block instance by only knowing the `PhysicalParameterBlock` we wish to use. Then we move on to list the number of phases in this property package. Then we assign the variable to the phase which follows a naming convention. Like here since the solvent is in the Organic phase, we will assign the Phase as OrganicPhase and the variable will be named Org as per the naming convention. The details of naming conventions can be found [here](https://github.com/IDAES/idaes-pse/blob/main/docs/explanations/conventions.rst). We will be following the same convention throughout the example. \n", - " \n", - "After defining the list of the phases, we move on to list the components and their type in the phase. It can be a solute or a solvent in the Organic phase. Thus, we define the component and assign it to either being a solute or a solvent. In this case, the salts are the solutes and Ethylene dibromide is the solvent. Next, we define the physical properties involved in the package, like the heat capacity and density of the solvent, the reference temperature, and the distribution factor that would govern the mass transfer from one phase into another. Additionally, a parameter, the `diffusion_factor`, is introduced. This factor plays a crucial role in governing mass transfer between phases, necessitating its definition within the state block.\n", - "\n", - "The final step in creating the Physical Parameter Block is to declare a `classmethod` named `define_metadata`, which takes two arguments: a class (cls) and an instance of that class (obj). In this method, we will call the predefined method `add_default_units()`.\n", - "\n", - "- `obj.add_default_units()` sets the default units metadata for the property package, and here we define units to be used with this property package as default. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"OrgPhase\")\n", - "class PhysicalParameterData(PhysicalParameterBlock):\n", - " \"\"\"\n", - " Property Parameter Block Class\n", - "\n", - " Contains parameters and indexing sets associated with properties for\n", - " organic Phase\n", - "\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction.\n", - " \"\"\"\n", - " super().build()\n", - "\n", - " self._state_block_class = OrgPhaseStateBlock\n", - "\n", - " # List of valid phases in property package\n", - " self.Org = LiquidPhase()\n", - "\n", - " # Component list - a list of component identifiers\n", - " self.NaCl = Solute()\n", - " self.KNO3 = Solute()\n", - " self.CaSO4 = Solute()\n", - " self.solvent = (\n", - " Solvent()\n", - " ) # Solvent used here is ethylene dibromide (Organic Polar)\n", - "\n", - " # Heat capacity of solvent\n", - " self.cp_mass = Param(\n", - " mutable=True,\n", - " initialize=717.01,\n", - " doc=\"Specific heat capacity of solvent\",\n", - " units=units.J / units.kg / units.K,\n", - " )\n", - "\n", - " self.dens_mass = Param(\n", - " mutable=True,\n", - " initialize=2170,\n", - " doc=\"Density of ethylene dibromide\",\n", - " units=units.kg / units.m**3,\n", - " )\n", - " self.temperature_ref = Param(\n", - " within=PositiveReals,\n", - " mutable=True,\n", - " default=298.15,\n", - " doc=\"Reference temperature\",\n", - " units=units.K,\n", - " )\n", - " self.diffusion_factor = Param(\n", - " self.solute_set,\n", - " initialize={\"NaCl\": 2.15, \"KNO3\": 3, \"CaSO4\": 1.5},\n", - " within=PositiveReals,\n", - " mutable=True,\n", - " )\n", - "\n", - " @classmethod\n", - " def define_metadata(cls, obj):\n", - " obj.add_default_units(\n", - " {\n", - " \"time\": units.hour,\n", - " \"length\": units.m,\n", - " \"mass\": units.g,\n", - " \"amount\": units.mol,\n", - " \"temperature\": units.K,\n", - " }\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1.3 State Block\n", - "\n", - "After the `PhysicalParameterBlock` class has been created, the next step is to write the code necessary to create the State Blocks that will be used throughout the flowsheet. `StateBlock` contains all the information necessary to define the state of the system. This includes the state variables and constraints on those variables which are used to describe a state property like the enthalpy, material balance, etc.\n", - "\n", - "Creating a State Block requires us to write two classes. The reason we write two classes is because of the inherent nature of how `declare_process_block_data` works. `declare_process_block_data` facilitates creating an `IndexedComponent` object which can handle multiple `ComponentData` objects which represent the component at each point in the indexing set. This makes it easier to build an instance of the model at each indexed point. However, State Blocks are slightly different, as they are always indexed (at least by time). Due to this, we often want to perform actions on all the elements of the indexed StateBlock all at once (rather than element by element).\n", - "\n", - "The class `_OrganicStateBlock` is defined without the `declare_process_block_data` decorator and thus works as a traditional class and this facilitates performing a method on the class as a whole rather than individual elements of the indexed property blocks. In this class we define the `fix_initialization_states` function. `fix_initialization_states` function is to used to fix the state variable within the state block with the provided initial values (usually inlet conditions). It takes a `block` as the argument in which the state variables are to be fixed. It also takes `state_args` as an optional argument. `state_args` is a dictionary with the value for the state variables to be fixed. This function returns a dictionary indexed by the block, state variables and variable index indicating the fixed status of each variable before applying the function. \n", - "\n", - "The above function comprise of the _OrganicStateBlock, next we shall see the construction of the OrgPhaseStateBlockData class." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "class _OrganicStateBlock(StateBlock):\n", - " \"\"\"\n", - " This Class contains methods which should be applied to Property Blocks as a\n", - " whole, rather than individual elements of indexed Property Blocks.\n", - " \"\"\"\n", - "\n", - " def fix_initialization_states(self):\n", - " fix_state_vars(self)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The class `OrgPhaseStateBlockData` is designated with the `declare_process_block_class` decorator, named `OrgPhaseStateBlock`, and inherits the block class from `_OrganicStateBlock`. This inheritance allows `OrgPhaseStateBlockData` to leverage functions from `_OrganicStateBlock`. Following the class definition, a build function similar to the one used in the `PhysicalParameterData` block is employed. The super function is utilized to enable the utilization of functions from the parent or sibling class.\n", - "\n", - "The subsequent objective is to delineate the state variables, accomplished through the `_make_state_vars` method. This method encompasses all the essential state variables and associated data. For this particular property package, the required state variables are:\n", - "\n", - "- `flow_vol` - volumetric flow rate\n", - "- `conc_mass_comp` - mass fractions\n", - "- `pressure` - state pressure\n", - "- `temperature` - state temperature\n", - "\n", - "After establishing the state variables, the subsequent step involves setting up state properties as constraints. This includes specifying the relationships and limitations that dictate the system's behavior. The following properties need to be articulated:\n", - "\n", - "-`get_material_flow_terms`: quantifies the amount of material flow.\n", - "- `get_enthalpy_flow_terms`: quantifies the amount of enthalpy flow.\n", - "- `get_flow_rate`: details volumetric flow rates.\n", - "- `default_material_balance_type`: defines the kind of material balance to be used.\n", - "- `default_energy_balance_type`: defines the kind of energy balance to be used.\n", - "- `define_state_vars`: involves defining state variables with units, akin to the define_metadata function in the PhysicalParameterData block.\n", - "- `get_material_flow_basis`: establishes the basis on which state variables are measured, whether in mass or molar terms.\n", - "\n", - "These definitions mark the conclusion of the state block construction and thus the property package. For additional details on creating a property package, please refer to this [resource](../../properties/custom/custom_physical_property_packages_test.ipynb ).\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"OrgPhaseStateBlock\", block_class=_OrganicStateBlock)\n", - "class OrgPhaseStateBlockData(StateBlockData):\n", - " \"\"\"\n", - " An example property package for Organic phzase for liquid liquid extraction\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction\n", - " \"\"\"\n", - " super().build()\n", - " self._make_state_vars()\n", - "\n", - " def _make_state_vars(self):\n", - " self.flow_vol = Var(\n", - " initialize=1,\n", - " domain=NonNegativeReals,\n", - " doc=\"Total volumetric flowrate\",\n", - " units=units.L / units.hour,\n", - " )\n", - " self.conc_mass_comp = Var(\n", - " self.params.solute_set,\n", - " domain=NonNegativeReals,\n", - " initialize=1,\n", - " doc=\"Component mass concentrations\",\n", - " units=units.g / units.L,\n", - " )\n", - " self.pressure = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=1,\n", - " bounds=(1, 5),\n", - " units=units.atm,\n", - " doc=\"State pressure [atm]\",\n", - " )\n", - "\n", - " self.temperature = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=300,\n", - " bounds=(273, 373),\n", - " units=units.K,\n", - " doc=\"State temperature [K]\",\n", - " )\n", - "\n", - " def material_flow_expression(self, j):\n", - " if j == \"solvent\":\n", - " return self.flow_vol * self.params.dens_mass\n", - " else:\n", - " return self.flow_vol * self.conc_mass_comp[j]\n", - "\n", - " self.material_flow_expression = Expression(\n", - " self.component_list,\n", - " rule=material_flow_expression,\n", - " doc=\"Material flow terms\",\n", - " )\n", - "\n", - " def enthalpy_flow_expression(self):\n", - " return (\n", - " self.flow_vol\n", - " * self.params.dens_mass\n", - " * self.params.cp_mass\n", - " * (self.temperature - self.params.temperature_ref)\n", - " )\n", - "\n", - " self.enthalpy_flow_expression = Expression(\n", - " rule=enthalpy_flow_expression, doc=\"Enthalpy flow term\"\n", - " )\n", - "\n", - " def get_flow_rate(self):\n", - " return self.flow_vol\n", - "\n", - " def get_material_flow_terms(self, p, j):\n", - " return self.material_flow_expression[j]\n", - "\n", - " def get_enthalpy_flow_terms(self, p):\n", - " return self.enthalpy_flow_expression\n", - "\n", - " def default_material_balance_type(self):\n", - " return MaterialBalanceType.componentTotal\n", - "\n", - " def default_energy_balance_type(self):\n", - " return EnergyBalanceType.enthalpyTotal\n", - "\n", - " def define_state_vars(self):\n", - " return {\n", - " \"flow_vol\": self.flow_vol,\n", - " \"conc_mass_comp\": self.conc_mass_comp,\n", - " \"temperature\": self.temperature,\n", - " \"pressure\": self.pressure,\n", - " }\n", - "\n", - " def get_material_flow_basis(self):\n", - " return MaterialFlowBasis.mass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Creating Aqueous Property Package\n", - "\n", - "The structure of Aqueous Property Package mirrors that of the Organic Property Package we previously developed. We'll commence with an overview, importing the required libraries, followed by the creation of the physical property block and two state blocks. The distinctions in this package lie in the physical parameter values, and notably, the absence of the diffusion factor term, differentiating it from the prior package. The following code snippet should provide clarity on these distinctions." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Python libraries\n", - "import logging\n", - "\n", - "from idaes.core.util.initialization import fix_state_vars\n", - "\n", - "# Import Pyomo libraries\n", - "from pyomo.environ import (\n", - " Param,\n", - " Var,\n", - " NonNegativeReals,\n", - " units,\n", - " Expression,\n", - " PositiveReals,\n", - ")\n", - "\n", - "# Import IDAES cores\n", - "from idaes.core import (\n", - " declare_process_block_class,\n", - " MaterialFlowBasis,\n", - " PhysicalParameterBlock,\n", - " StateBlockData,\n", - " StateBlock,\n", - " MaterialBalanceType,\n", - " EnergyBalanceType,\n", - " Solute,\n", - " Solvent,\n", - " LiquidPhase,\n", - ")\n", - "\n", - "# Some more information about this module\n", - "__author__ = \"Javal Vyas\"\n", - "\n", - "\n", - "# Set up logger\n", - "_log = logging.getLogger(__name__)\n", - "\n", - "\n", - "@declare_process_block_class(\"AqPhase\")\n", - "class AqPhaseData(PhysicalParameterBlock):\n", - " \"\"\"\n", - " Property Parameter Block Class\n", - "\n", - " Contains parameters and indexing sets associated with properties for\n", - " aqueous Phase\n", - "\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction.\n", - " \"\"\"\n", - " super().build()\n", - "\n", - " self._state_block_class = AqPhaseStateBlock\n", - "\n", - " # List of valid phases in property package\n", - " self.Aq = LiquidPhase()\n", - "\n", - " # Component list - a list of component identifiers\n", - " self.NaCl = Solute()\n", - " self.KNO3 = Solute()\n", - " self.CaSO4 = Solute()\n", - " self.H2O = Solvent()\n", - "\n", - " # Heat capacity of solvent\n", - " self.cp_mass = Param(\n", - " mutable=True,\n", - " initialize=4182,\n", - " doc=\"Specific heat capacity of solvent\",\n", - " units=units.J / units.kg / units.K,\n", - " )\n", - "\n", - " self.dens_mass = Param(\n", - " mutable=True,\n", - " initialize=997,\n", - " doc=\"Density of ethylene dibromide\",\n", - " units=units.kg / units.m**3,\n", - " )\n", - " self.temperature_ref = Param(\n", - " within=PositiveReals,\n", - " mutable=True,\n", - " default=298.15,\n", - " doc=\"Reference temperature\",\n", - " units=units.K,\n", - " )\n", - "\n", - " @classmethod\n", - " def define_metadata(cls, obj):\n", - " obj.add_default_units(\n", - " {\n", - " \"time\": units.hour,\n", - " \"length\": units.m,\n", - " \"mass\": units.g,\n", - " \"amount\": units.mol,\n", - " \"temperature\": units.K,\n", - " }\n", - " )\n", - "\n", - "\n", - "class _AqueousStateBlock(StateBlock):\n", - " \"\"\"\n", - " This Class contains methods which should be applied to Property Blocks as a\n", - " whole, rather than individual elements of indexed Property Blocks.\n", - " \"\"\"\n", - "\n", - " def fix_initialization_states(self):\n", - " fix_state_vars(self)\n", - "\n", - "\n", - "@declare_process_block_class(\"AqPhaseStateBlock\", block_class=_AqueousStateBlock)\n", - "class AqPhaseStateBlockData(StateBlockData):\n", - " \"\"\"\n", - " An example property package for ideal gas properties with Gibbs energy\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction\n", - " \"\"\"\n", - " super().build()\n", - " self._make_state_vars()\n", - "\n", - " def _make_state_vars(self):\n", - " self.flow_vol = Var(\n", - " initialize=1,\n", - " domain=NonNegativeReals,\n", - " doc=\"Total volumetric flowrate\",\n", - " units=units.L / units.hour,\n", - " )\n", - "\n", - " self.conc_mass_comp = Var(\n", - " self.params.solute_set,\n", - " domain=NonNegativeReals,\n", - " initialize={\"NaCl\": 0.15, \"KNO3\": 0.2, \"CaSO4\": 0.1},\n", - " doc=\"Component mass concentrations\",\n", - " units=units.g / units.L,\n", - " )\n", - "\n", - " self.pressure = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=1,\n", - " bounds=(1, 5),\n", - " units=units.atm,\n", - " doc=\"State pressure [atm]\",\n", - " )\n", - "\n", - " self.temperature = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=300,\n", - " bounds=(273, 373),\n", - " units=units.K,\n", - " doc=\"State temperature [K]\",\n", - " )\n", - "\n", - " def material_flow_expression(self, j):\n", - " if j == \"H2O\":\n", - " return self.flow_vol * self.params.dens_mass\n", - " else:\n", - " return self.conc_mass_comp[j] * self.flow_vol\n", - "\n", - " self.material_flow_expression = Expression(\n", - " self.component_list,\n", - " rule=material_flow_expression,\n", - " doc=\"Material flow terms\",\n", - " )\n", - "\n", - " def enthalpy_flow_expression(self):\n", - " return (\n", - " self.flow_vol\n", - " * self.params.dens_mass\n", - " * self.params.cp_mass\n", - " * (self.temperature - self.params.temperature_ref)\n", - " )\n", - "\n", - " self.enthalpy_flow_expression = Expression(\n", - " rule=enthalpy_flow_expression, doc=\"Enthalpy flow term\"\n", - " )\n", - "\n", - " def get_flow_rate(self):\n", - " return self.flow_vol\n", - "\n", - " def get_material_flow_terms(self, p, j):\n", - " return self.material_flow_expression[j]\n", - "\n", - " def get_enthalpy_flow_terms(self, p):\n", - " return self.enthalpy_flow_expression\n", - "\n", - " def default_material_balance_type(self):\n", - " return MaterialBalanceType.componentTotal\n", - "\n", - " def default_energy_balance_type(self):\n", - " return EnergyBalanceType.enthalpyTotal\n", - "\n", - " def define_state_vars(self):\n", - " return {\n", - " \"flow_vol\": self.flow_vol,\n", - " \"conc_mass_comp\": self.conc_mass_comp,\n", - " \"temperature\": self.temperature,\n", - " \"pressure\": self.pressure,\n", - " }\n", - "\n", - " def get_material_flow_basis(self):\n", - " return MaterialFlowBasis.mass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3. Liquid Liquid Extractor Unit Model\n", - "\n", - "Following the creation of property packages, our next step is to develop a unit model that facilitates the mass transfer of solutes between phases. This involves importing necessary libraries, building the unit model, defining auxiliary functions, and establishing the initialization routine for the unit model.\n", - "\n", - "## 3.1 Importing necessary libraries\n", - "\n", - "Let's commence by importing the essential libraries from Pyomo and IDAES." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Pyomo libraries\n", - "from pyomo.common.config import ConfigBlock, ConfigValue, In, Bool\n", - "from pyomo.environ import (\n", - " value,\n", - " Constraint,\n", - " check_optimal_termination,\n", - ")\n", - "\n", - "# Import IDAES cores\n", - "from idaes.core import (\n", - " ControlVolume0DBlock,\n", - " declare_process_block_class,\n", - " MaterialBalanceType,\n", - " EnergyBalanceType,\n", - " MaterialFlowBasis,\n", - " MomentumBalanceType,\n", - " UnitModelBlockData,\n", - " useDefault,\n", - ")\n", - "from idaes.core.util.config import (\n", - " is_physical_parameter_block,\n", - " is_reaction_parameter_block,\n", - ")\n", - "\n", - "import idaes.logger as idaeslog\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.exceptions import ConfigurationError, InitializationError" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.2 Creating the unit model\n", - "\n", - "Creating a unit model starts by creating a class called `LiqExtractionData` and use the `declare_process_block_class` decorator. The `LiqExtractionData` inherits the properties of `UnitModelBlockData` class, which allows us to create a control volume which is necessary for the unit model. After declaration of the class we proceed to define the relevant config arguments for the control volume. The config arguments includes the following properties:\n", - "\n", - "- `material_balance_type` - Indicates what type of mass balance should be constructed\n", - "- `has_pressure_change` - Indicates whether terms for pressure change should be\n", - "constructed\n", - "- `has_phase_equilibrium` - Indicates whether terms for phase equilibrium should be\n", - "constructed\n", - "- `Organic Property` - Property parameter object used to define property calculations\n", - "for the Organic phase\n", - "- `Organic Property Arguments` - Arguments to use for constructing Organic phase properties\n", - "- `Aqueous Property` - Property parameter object used to define property calculations\n", - "for the aqueous phase\n", - "- `Aqueous Property Arguments` - Arguments to use for constructing aqueous phase properties\n", - "\n", - "As there are no pressure changes or reactions in this scenario, configuration arguments for these aspects are not included. However, additional details on configuration arguments can be found [here](https://github.com/IDAES/idaes-pse/blob/8948c6ce27d4c7f2c06b377a173f413599091998/idaes/models/unit_models/cstr.py)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"LiqExtraction\")\n", - "class LiqExtractionData(UnitModelBlockData):\n", - " \"\"\"\n", - " LiqExtraction Unit Model Class\n", - " \"\"\"\n", - "\n", - " CONFIG = UnitModelBlockData.CONFIG()\n", - "\n", - " CONFIG.declare(\n", - " \"material_balance_type\",\n", - " ConfigValue(\n", - " default=MaterialBalanceType.useDefault,\n", - " domain=In(MaterialBalanceType),\n", - " description=\"Material balance construction flag\",\n", - " doc=\"\"\"Indicates what type of mass balance should be constructed,\n", - " **default** - MaterialBalanceType.useDefault.\n", - " **Valid values:** {\n", - " **MaterialBalanceType.useDefault - refer to property package for default\n", - " balance type\n", - " **MaterialBalanceType.none** - exclude material balances,\n", - " **MaterialBalanceType.componentPhase** - use phase component balances,\n", - " **MaterialBalanceType.componentTotal** - use total component balances,\n", - " **MaterialBalanceType.elementTotal** - use total element balances,\n", - " **MaterialBalanceType.total** - use total material balance.}\"\"\",\n", - " ),\n", - " )\n", - " CONFIG.declare(\n", - " \"has_pressure_change\",\n", - " ConfigValue(\n", - " default=False,\n", - " domain=Bool,\n", - " description=\"Pressure change term construction flag\",\n", - " doc=\"\"\"Indicates whether terms for pressure change should be\n", - " constructed,\n", - " **default** - False.\n", - " **Valid values:** {\n", - " **True** - include pressure change terms,\n", - " **False** - exclude pressure change terms.}\"\"\",\n", - " ),\n", - " )\n", - " CONFIG.declare(\n", - " \"has_phase_equilibrium\",\n", - " ConfigValue(\n", - " default=False,\n", - " domain=Bool,\n", - " description=\"Phase equilibrium construction flag\",\n", - " doc=\"\"\"Indicates whether terms for phase equilibrium should be\n", - " constructed,\n", - " **default** = False.\n", - " **Valid values:** {\n", - " **True** - include phase equilibrium terms\n", - " **False** - exclude phase equilibrium terms.}\"\"\",\n", - " ),\n", - " )\n", - " CONFIG.declare(\n", - " \"organic_property_package\",\n", - " ConfigValue(\n", - " default=useDefault,\n", - " domain=is_physical_parameter_block,\n", - " description=\"Property package to use for organic phase\",\n", - " doc=\"\"\"Property parameter object used to define property calculations\n", - " for the organic phase,\n", - " **default** - useDefault.\n", - " **Valid values:** {\n", - " **useDefault** - use default package from parent model or flowsheet,\n", - " **PropertyParameterObject** - a PropertyParameterBlock object.}\"\"\",\n", - " ),\n", - " )\n", - " CONFIG.declare(\n", - " \"organic_property_package_args\",\n", - " ConfigBlock(\n", - " implicit=True,\n", - " description=\"Arguments to use for constructing organic phase properties\",\n", - " doc=\"\"\"A ConfigBlock with arguments to be passed to organic phase\n", - " property block(s) and used when constructing these,\n", - " **default** - None.\n", - " **Valid values:** {\n", - " see property package for documentation.}\"\"\",\n", - " ),\n", - " )\n", - " CONFIG.declare(\n", - " \"aqueous_property_package\",\n", - " ConfigValue(\n", - " default=useDefault,\n", - " domain=is_physical_parameter_block,\n", - " description=\"Property package to use for aqueous phase\",\n", - " doc=\"\"\"Property parameter object used to define property calculations\n", - " for the aqueous phase,\n", - " **default** - useDefault.\n", - " **Valid values:** {\n", - " **useDefault** - use default package from parent model or flowsheet,\n", - " **PropertyParameterObject** - a PropertyParameterBlock object.}\"\"\",\n", - " ),\n", - " )\n", - " CONFIG.declare(\n", - " \"aqueous_property_package_args\",\n", - " ConfigBlock(\n", - " implicit=True,\n", - " description=\"Arguments to use for constructing aqueous phase properties\",\n", - " doc=\"\"\"A ConfigBlock with arguments to be passed to aqueous phase\n", - " property block(s) and used when constructing these,\n", - " **default** - None.\n", - " **Valid values:** {\n", - " see property package for documentation.}\"\"\",\n", - " ),\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Building the model\n", - "\n", - "After constructing the `LiqExtractionData` block and defining the config arguments for the control block, the next step is to write a build function that incorporates control volume and establishes constraints on the control volume to achieve the desired mass transfer. The control volume serves as a pivotal component in the unit model construction, representing the volume in which the process unfolds.\n", - "\n", - "IDAES provides flexibility in choosing control volumes based on geometry, with options including 0D or 1D. In this instance, we opt for a 0D control volume, the most commonly used control volume. This choice is suitable for systems where there is a well-mixed volume of fluid or where spatial variations are deemed negligible.\n", - "\n", - "The control volume encompasses parameters from (1-8), and its equations are configured to satisfy the specified config arguments. For a more in-depth understanding, users are encouraged to refer to [this resource](https://github.com/IDAES/idaes-pse/blob/2f34dd3abc1bce5ba17c80939a01f9034e4fbeef/docs/reference_guides/core/control_volume_0d.rst). \n", - "\n", - "The `build` function is initiated using the `super` function to gain access to methods and properties of a parent or sibling class, in this case, the `LiqExtractionData` class. Following the `super` function, checks are performed on the property packages to ensure the appropriate names for the solvents, such as 'Aq' for the aqueous phase and 'Org' for the Organic phase. An error is raised if these conditions are not met. Subsequently, a check is performed to ensure there is at least one common component between the two property packages that can be transferred from one phase to another.\n", - "\n", - "After these checks are completed without any exceptions raised, it is ensured that the property packages have the desired components with appropriate names. The next step is to create a control volume and assign it to a property package. Here, we initiate with the Organic phase and attach a 0D control volume to it. The control volume takes arguments about the dynamics of the block, and the property package, along with property package arguments. \n", - "\n", - "The subsequent steps involve adding inlet and outlet state blocks to the control volume using the `add_state_blocks` function. This function takes arguments about the flow direction (defaulted to forward) and a flag for `has_phase_equilibrium`, which is read from the config. The control volume is now equipped with the inlet and outlet state blocks and has access to the Organic property package\n", - "\n", - "Next, material balance equations are added to the control volume using the `add_material_balance` function, taking into account the type of material balance, `has_phase_equilibrium`, and the presence of `has_mass_transfer`. To understand this arguments further let us have a look at the material balance equation and how it is implemented in control volume. \n", - "\n", - "$\\frac{\\partial M_{t, p, j}}{\\partial t} = F_{in, t, p, j} - F_{out, t, p, j} + N_{kinetic, t, p, j} + N_{equilibrium, t, p, j} + N_{pe, t, p, j} + N_{transfer, t, p, j} + N_{custom, t, p, j}$\n", - "\n", - "- $\\frac{\\partial M_{t, p, j}}{\\partial t}$ - Material accumulation\n", - "- $F_{in, t, p, j}$ - Flow into the control volume\n", - "- $F_{out, t, p, j}$ - Flow out of the control volume\n", - "- $N_{kinetic, t, p, j}$ - Rate of reaction generation\n", - "- $N_{equilibrium, t, p, j}$ - Equilibrium reaction generation\n", - "- $N_{pe, t, p, j}$ - Equilibrium reaction extent\n", - "- $N_{transfer, t, p, j}$ - Mass transfer\n", - "- $N_{custom, t, p, j}$ - User defined terms in material balance\n", - "\n", - "- t indicates time index\n", - "- p indicates phase index\n", - "- j indicates component index\n", - "- e indicates element index\n", - "- r indicates reaction name index\n", - "\n", - "Here we shall see that $N_{transfer, t, p, j}$ is the term in the equation which is responsible for the mass transfer and the `mass_transfer_term` should only be equal to the amount being transferred and not include a material balance on our own. For a detailed description of the terms one should refer to the following [resource](https://github.com/IDAES/idaes-pse/blob/2f34dd3abc1bce5ba17c80939a01f9034e4fbeef/docs/reference_guides/core/control_volume_0d.rst)\n", - "\n", - "This concludes the creation of organic phase control volume. Similar procedure is done for the aqueous phase control volume with aqueous property package. \n", - "\n", - "Now, the unit model has two control volumes with appropriate configurations and material, momentum and energy balances. The next step is to check the basis of the two property packages. They should both have the same flow basis, and an error is raised if this is not the case.\n", - "\n", - "Following this, the `add_inlet_ports` and `add_outlet_ports` functions are used to create inlet and outlet ports. These ports are named and assigned to each control volume, resulting in labeled inlet and outlet ports for each control volume.\n", - "\n", - "The subsequent steps involve writing unit-level constraints. A check if the basis is either molar or mass, and unit-level constraints are written accordingly. The first constraint pertains to the mass transfer term for the aqueous phase. The mass transfer term is equal to $mass\\_transfer\\_term_{aq} = (D_{i})\\frac{mass_{i}~in~aq~phase}{flowrate~of~aq~phase}$. The second constraint relates to the mass transfer term in the organic phase, which is the negative of the mass transfer term in the aqueous phase: $mass\\_transfer\\_term_{org} = - mass\\_transfer\\_term_{aq} $\n", - "\n", - "Here $mass\\_transfer\\_term_{p}$ is the term indicating the amount of material being transferred from/to the phase and $D_{i}$ is the Distribution co-efficient for component i. \n", - "\n", - "This marks the completion of the build function, and the unit model is now equipped with the necessary process constraints. The subsequent steps involve writing the initialization routine." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def build(self):\n", - " \"\"\"\n", - " Begin building model (pre-DAE transformation).\n", - " Args:\n", - " None\n", - " Returns:\n", - " None\n", - " \"\"\"\n", - " # Call UnitModel.build to setup dynamics\n", - " super().build()\n", - "\n", - " # Check phase lists match assumptions\n", - " if self.config.aqueous_property_package.phase_list != [\"Aq\"]:\n", - " raise ConfigurationError(\n", - " f\"{self.name} Liquid-Liquid Extractor model requires that the aquoues \"\n", - " f\"phase property package have a single phase named 'Aq'\"\n", - " )\n", - " if self.config.organic_property_package.phase_list != [\"Org\"]:\n", - " raise ConfigurationError(\n", - " f\"{self.name} Liquid-Liquid Extractor model requires that the organic \"\n", - " f\"phase property package have a single phase named 'Org'\"\n", - " )\n", - "\n", - " # Check for at least one common component in component lists\n", - " if not any(\n", - " j in self.config.aqueous_property_package.component_list\n", - " for j in self.config.organic_property_package.component_list\n", - " ):\n", - " raise ConfigurationError(\n", - " f\"{self.name} Liquid-Liquid Extractor model requires that the organic \"\n", - " f\"and aqueous phase property packages have at least one \"\n", - " f\"common component.\"\n", - " )\n", - "\n", - " self.organic_phase = ControlVolume0DBlock(\n", - " dynamic=self.config.dynamic,\n", - " property_package=self.config.organic_property_package,\n", - " property_package_args=self.config.organic_property_package_args,\n", - " )\n", - "\n", - " self.organic_phase.add_state_blocks(\n", - " has_phase_equilibrium=self.config.has_phase_equilibrium\n", - " )\n", - "\n", - " # Separate organic and aqueous phases means that phase equilibrium will\n", - " # be handled at the unit model level, thus has_phase_equilibrium is\n", - " # False, but has_mass_transfer is True.\n", - "\n", - " self.organic_phase.add_material_balances(\n", - " balance_type=self.config.material_balance_type,\n", - " has_phase_equilibrium=self.config.has_phase_equilibrium,\n", - " has_mass_transfer=True,\n", - " )\n", - " # ---------------------------------------------------------------------\n", - "\n", - " self.aqueous_phase = ControlVolume0DBlock(\n", - " dynamic=self.config.dynamic,\n", - " property_package=self.config.aqueous_property_package,\n", - " property_package_args=self.config.aqueous_property_package_args,\n", - " )\n", - "\n", - " self.aqueous_phase.add_state_blocks(\n", - " has_phase_equilibrium=self.config.has_phase_equilibrium\n", - " )\n", - "\n", - " # Separate liquid and aqueous phases means that phase equilibrium will\n", - " # be handled at the unit model level, thus has_phase_equilibrium is\n", - " # False, but has_mass_transfer is True.\n", - "\n", - " self.aqueous_phase.add_material_balances(\n", - " balance_type=self.config.material_balance_type,\n", - " # has_rate_reactions=False,\n", - " has_phase_equilibrium=self.config.has_phase_equilibrium,\n", - " has_mass_transfer=True,\n", - " )\n", - "\n", - " self.aqueous_phase.add_geometry()\n", - "\n", - " # ---------------------------------------------------------------------\n", - " # Check flow basis is compatible\n", - " t_init = self.flowsheet().time.first()\n", - " if (\n", - " self.aqueous_phase.properties_out[t_init].get_material_flow_basis()\n", - " != self.organic_phase.properties_out[t_init].get_material_flow_basis()\n", - " ):\n", - " raise ConfigurationError(\n", - " f\"{self.name} aqueous and organic property packages must use the \"\n", - " f\"same material flow basis.\"\n", - " )\n", - "\n", - " self.organic_phase.add_geometry()\n", - "\n", - " # Add Ports\n", - " self.add_inlet_port(\n", - " name=\"organic_inlet\", block=self.organic_phase, doc=\"Organic feed\"\n", - " )\n", - " self.add_inlet_port(\n", - " name=\"aqueous_inlet\", block=self.aqueous_phase, doc=\"Aqueous feed\"\n", - " )\n", - " self.add_outlet_port(\n", - " name=\"organic_outlet\", block=self.organic_phase, doc=\"Organic outlet\"\n", - " )\n", - " self.add_outlet_port(\n", - " name=\"aqueous_outlet\",\n", - " block=self.aqueous_phase,\n", - " doc=\"Aqueous outlet\",\n", - " )\n", - "\n", - " # ---------------------------------------------------------------------\n", - " # Add unit level constraints\n", - " # First, need the union and intersection of component lists\n", - " all_comps = (\n", - " self.aqueous_phase.properties_out.component_list\n", - " | self.organic_phase.properties_out.component_list\n", - " )\n", - " common_comps = (\n", - " self.aqueous_phase.properties_out.component_list\n", - " & self.organic_phase.properties_out.component_list\n", - " )\n", - "\n", - " # Get units for unit conversion\n", - " aunits = self.config.aqueous_property_package.get_metadata().get_derived_units\n", - " lunits = self.config.organic_property_package.get_metadata().get_derived_units\n", - " flow_basis = self.aqueous_phase.properties_out[t_init].get_material_flow_basis()\n", - "\n", - " if flow_basis == MaterialFlowBasis.mass:\n", - " fb = \"flow_mass\"\n", - " elif flow_basis == MaterialFlowBasis.molar:\n", - " fb = \"flow_mole\"\n", - " else:\n", - " raise ConfigurationError(\n", - " f\"{self.name} Liquid-Liquid Extractor only supports mass \"\n", - " f\"basis for MaterialFlowBasis.\"\n", - " )\n", - "\n", - " # Material balances\n", - " def rule_material_aq_balance(self, t, j):\n", - " if j in common_comps:\n", - " return self.aqueous_phase.mass_transfer_term[\n", - " t, \"Aq\", j\n", - " ] == -self.organic_phase.config.property_package.diffusion_factor[j] * (\n", - " self.aqueous_phase.properties_in[t].get_material_flow_terms(\"Aq\", j)\n", - " )\n", - " elif j in self.organic_phase.properties_out.component_list:\n", - " # No mass transfer term\n", - " # Set organic flowrate to an arbitrary small value\n", - " return self.organic_phase.mass_transfer_term[t, \"Org\", j] == 0 * lunits(fb)\n", - " elif j in self.aqueous_phase.properties_out.component_list:\n", - " # No mass transfer term\n", - " # Set aqueous flowrate to an arbitrary small value\n", - " return self.aqueous_phase.mass_transfer_term[t, \"Aq\", j] == 0 * aunits(fb)\n", - "\n", - " self.material_aq_balance = Constraint(\n", - " self.flowsheet().time,\n", - " self.aqueous_phase.properties_out.component_list,\n", - " rule=rule_material_aq_balance,\n", - " doc=\"Unit level material balances for Aq\",\n", - " )\n", - "\n", - " def rule_material_liq_balance(self, t, j):\n", - " if j in common_comps:\n", - " return (\n", - " self.organic_phase.mass_transfer_term[t, \"Org\", j]\n", - " == -self.aqueous_phase.mass_transfer_term[t, \"Aq\", j]\n", - " )\n", - " else:\n", - " # No mass transfer term\n", - " # Set organic flowrate to an arbitrary small value\n", - " return self.organic_phase.mass_transfer_term[t, \"Org\", j] == 0 * aunits(fb)\n", - "\n", - " self.material_org_balance = Constraint(\n", - " self.flowsheet().time,\n", - " self.organic_phase.properties_out.component_list,\n", - " rule=rule_material_liq_balance,\n", - " doc=\"Unit level material balances Org\",\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initialization Routine\n", - "\n", - "After writing the unit model it is crucial to initialize the model properly, as non-linear models may encounter local minima or infeasibility if not initialized properly. IDAES provides us with a few initialization routines which may not work for all the models, and in such cases the developer will have to define their own initialization routines. \n", - "\n", - "To create a custom initialization routine, model developers must create an initialize method as part of their model, and provide a sequence of steps intended to build up a feasible solution. Initialization routines generally make use of Pyomo’s tools for activating and deactivating constraints and often involve solving multiple sub-problems whilst building up an initial state.\n", - "\n", - "For this tutorial we would use the pre-defined initialization routine of `BlockTriangularizationInitializer` when initializing the model in the flowsheet. This Initializer should be suitable for most models, but may struggle to initialize\n", - "tightly coupled systems of equations. This method of initialization will follow the following workflow. \n", - "\n", - "- Have precheck for structural singularity\n", - "- Run incidence analysis on given block data and check matching.\n", - "- Call Block Triangularization solver on model.\n", - "- Call solve_strongly_connected_components on a given BlockData.\n", - "\n", - "For more details about this initialization routine can be found [here](https://github.com/IDAES/idaes-pse/blob/c09433b9afed5ae2fe25c0ccdc732783324f0101/idaes/core/initialization/block_triangularization.py). \n", - "\n", - "\n", - "This marks the conclusion of creating a custom unit model, for a more detailed explanation on creating a unit model refer [this resource](../../unit_models/custom_unit_models/custom_compressor_test.ipynb). The next sections will deal with the diagonistics and testing of the property package and unit model. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.3 Building a Flowsheet\n", - "\n", - "Once we have set up the unit model and its property packages, we can start building a flowsheet using them. In this tutorial, we're focusing on a simple flowsheet with just a liquid-liquid extractor. To create the flowsheet we follow the following steps:\n", - "\n", - "- Import necessary libraries\n", - "- Create a Pyomo model.\n", - "- Inside the model, create a flowsheet block.\n", - "- Assign property packages to the flowsheet block.\n", - "- Add the liquid-liquid extractor to the flowsheet block.\n", - "- Fix variable to make it a square problem\n", - "- Run an initialization process.\n", - "- Solve the flowsheet.\n", - "\n", - "Following these steps, we've built a basic flowsheet using Pyomo. For more details, refer to the [documentation](../../flowsheets/hda_flowsheet_with_distillation_test.ipynb).\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import pyomo.environ as pyo\n", - "import idaes.core\n", - "import idaes.models.unit_models\n", - "from idaes.core.solvers import get_solver\n", - "import idaes.logger as idaeslog\n", - "from pyomo.network import Arc\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.initialization import InitializationStatus\n", - "from idaes.core.initialization.block_triangularization import (\n", - " BlockTriangularizationInitializer,\n", - ")\n", - "from liquid_extraction.organic_property import OrgPhase\n", - "from liquid_extraction.aqueous_property import AqPhase\n", - "from liquid_extraction.liquid_liquid_extractor import LiqExtraction\n", - "\n", - "\n", - "def build_model():\n", - " m = pyo.ConcreteModel()\n", - " m.fs = idaes.core.FlowsheetBlock(dynamic=False)\n", - " m.fs.org_properties = OrgPhase()\n", - " m.fs.aq_properties = AqPhase()\n", - "\n", - " m.fs.lex = LiqExtraction(\n", - " dynamic=False,\n", - " has_pressure_change=False,\n", - " organic_property_package=m.fs.org_properties,\n", - " aqueous_property_package=m.fs.aq_properties,\n", - " )\n", - " return m\n", - "\n", - "\n", - "def fix_state_variables(m):\n", - " m.fs.lex.organic_inlet.flow_vol.fix(80 * pyo.units.L / pyo.units.hour)\n", - " m.fs.lex.organic_inlet.temperature.fix(300 * pyo.units.K)\n", - " m.fs.lex.organic_inlet.pressure.fix(1 * pyo.units.atm)\n", - " m.fs.lex.organic_inlet.conc_mass_comp[0, \"NaCl\"].fix(\n", - " 1e-5 * pyo.units.g / pyo.units.L\n", - " )\n", - " m.fs.lex.organic_inlet.conc_mass_comp[0, \"KNO3\"].fix(\n", - " 1e-5 * pyo.units.g / pyo.units.L\n", - " )\n", - " m.fs.lex.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fix(\n", - " 1e-5 * pyo.units.g / pyo.units.L\n", - " )\n", - "\n", - " m.fs.lex.aqueous_inlet.flow_vol.fix(100 * pyo.units.L / pyo.units.hour)\n", - " m.fs.lex.aqueous_inlet.temperature.fix(300 * pyo.units.K)\n", - " m.fs.lex.aqueous_inlet.pressure.fix(1 * pyo.units.atm)\n", - " m.fs.lex.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fix(\n", - " 0.15 * pyo.units.g / pyo.units.L\n", - " )\n", - " m.fs.lex.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fix(\n", - " 0.2 * pyo.units.g / pyo.units.L\n", - " )\n", - " m.fs.lex.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fix(\n", - " 0.1 * pyo.units.g / pyo.units.L\n", - " )\n", - "\n", - " return m\n", - "\n", - "\n", - "def initialize_model(m):\n", - " initializer = BlockTriangularizationInitializer()\n", - " initializer.initialize(m.fs.lex)\n", - " return m\n", - "\n", - "\n", - "def main():\n", - " m = build_model()\n", - " m = fix_state_variables(m)\n", - " m = initialize_model(m)\n", - " return m\n", - "\n", - "\n", - "if __name__ == main:\n", - " main()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4. Model Diagnostics using DiagnosticsToolbox\n", - "\n", - "Here, during initialization, we encounter warnings indicating that variables are being set to negative values, which is not expected behavior. These warnings suggest that there may be flaws in the model that require further investigation using the DiagnosticsToolbox from IDAES. A detailed notebook on using `DiagnosticsToolbox` can be found [here](../../diagnostics/degeneracy_hunter_test.ipynb).\n", - "\n", - "To proceed with investigating these issues, we need to import the DiagnosticsToolbox. We can gain a better understanding of its functionality by running the help function on it. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.util import DiagnosticsToolbox" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The help() function provides comprehensive information on the DiagnosticsToolbox and all its supported methods. However, it's essential to focus on the initial steps outlined at the beginning of the docstring to get started effectively.\n", - "\n", - "Here's a breakdown of the steps to start with:\n", - "\n", - "- `Instantiate Model:` Ensure you have an instance of the model with a degrees of freedom equal to 0.\n", - "\n", - "- `Create DiagnosticsToolbox Instance:` Next, instantiate a DiagnosticsToolbox object.\n", - "\n", - "- `Provide Model to DiagnosticsToolbox:` Pass the model instance to the DiagnosticsToolbox.\n", - "\n", - "- `Call report_structural_issues() Function:` Finally, call the report_structural_issues() function. This function will highlight any warnings in the model's structure, such as unit inconsistencies or other issues related to variables in the caution section.\n", - "\n", - "By following these steps, you can efficiently utilize the DiagnosticsToolbox to identify and address any structural issues or warnings in your model." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m = main()\n", - "dt = DiagnosticsToolbox(m)\n", - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Although no warnings were reported, it's important to note that there are 3 variables fixed to 0 and 10 unused variables, out of which 4 are fixed. As indicated in the output, the next step is to solve the model. After solving, you should call the report_numerical_issues() function. This function will help identify any numerical issues that may arise during the solution process." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "solver = pyo.SolverFactory(\"ipopt\")\n", - "solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The model is probably infeasible thus indicating numerical issues with the model. We should call the `report_numerical_issues()` function and check what the constraints/variables causing this issue. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dt.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this scenario, it's observed that the condition number of the Jacobian is high, indicating that the Jacobian is ill-conditioned. Additionally, there are 2 warnings related to constraints with large residuals and variables at or outside the bounds. The cautions mentioned in the output are also related to these warnings.\n", - "\n", - "As suggested, the next steps would be to:\n", - "\n", - "- Call the `display_variables_at_or_outside_bounds()` function to investigate variables at or outside the bounds.\n", - "\n", - "- Call the `display_constraints_with_large_residuals()` function to examine constraints with large residuals.\n", - "\n", - "These steps will help identify the underlying causes of the numerical issues and constraints violations, allowing for further analysis and potential resolution. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dt.display_variables_at_or_outside_bounds()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this scenario, there are a couple of issues to address:\n", - "\n", - "- The pressure variable is fixed to 1, which is its lower bound. This could potentially lead to numerical issues, although it may not affect the model significantly since there is no pressure change in the model. To mitigate this, consider adjusting the lower bound of the pressure variable to avoid having its value at or outside the bounds.\n", - "\n", - "- The more concerning issue is with the `conc_mass_comp` variable attempting to go below 0 in the output. This suggests that there may be constraints involving `conc_mass_comp` in the aqueous phase causing this behavior. To investigate further, it's recommended to call the `display_constraints_with_large_residuals()` function. This will provide insights into whether constraints involving `conc_mass_comp` are contributing to the convergence issue." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dt.display_constraints_with_large_residuals()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As expected there are convergence issues with the constraints which have `conc_mass_comp` variable in them specifically in the aqeous phase. Now, let us investigate further by printing this constraints and checking the value of each term. Since this is an persistent issue across the components, we can focus on just one of the component to identify the issue. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.lex.aqueous_phase.material_balances[0.0, \"NaCl\"].pprint()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.lex.aqueous_phase.properties_in[0.0].conc_mass_comp[\"NaCl\"].pprint()\n", - "m.fs.lex.aqueous_phase.properties_in[0.0].flow_vol.pprint()\n", - "m.fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[\"NaCl\"].pprint()\n", - "m.fs.lex.aqueous_phase.properties_out[0.0].flow_vol.pprint()\n", - "m.fs.lex.aqueous_phase.mass_transfer_term[0.0, \"Aq\", \"NaCl\"].pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It seems there is a discrepancy between the mass transfer term and the amount of input of NaCl. This can be inferred from the values where the input equals 15g/h and the `mass_transfer_term` equals -31.706g/h.\n", - "\n", - "To further investigate this issue, it's advisable to examine the `material_aq_balance` constraint within the unit model where the `mass_transfer_term` is defined. By printing out this constraint and analyzing its components, you can gain a better understanding of the discrepancy and take appropriate corrective actions." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.lex.material_aq_balance[0.0, \"NaCl\"].pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here the problem can be tracked down easily as there being a typing error while recording the distribution factor. The distribution factor here was wrongly written ignoring its magnitude which should have been 1e-2, but that was missed, thus adjusting the distribution factor parameter we should have this issue resolved. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.org_properties.diffusion_factor[\"NaCl\"] = (\n", - " m.fs.org_properties.diffusion_factor[\"NaCl\"] / 100\n", - ")\n", - "m.fs.org_properties.diffusion_factor[\"KNO3\"] = (\n", - " m.fs.org_properties.diffusion_factor[\"KNO3\"] / 100\n", - ")\n", - "m.fs.org_properties.diffusion_factor[\"CaSO4\"] = (\n", - " m.fs.org_properties.diffusion_factor[\"CaSO4\"] / 100\n", - ")\n", - "\n", - "m.fs.lex.organic_phase.properties_in[0.0].pressure.setlb(0.5)\n", - "m.fs.lex.organic_phase.properties_out[0.0].pressure.setlb(0.5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After the corrective actions, we should check if this have made any structural issues, for this we would call `report_structural_issues()`" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now since there are no warnings we can go ahead and solve the model and see if the results are optimal. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is a good sign that the model solved optimally and a solution was found. \n", - "\n", - "**NOTE:** It is a good practice to run the model through DiagnosticsToolbox regardless of the solver termination status. \n", - "\n", - "The next section we shall focus on testing the unit model. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 5. Testing\n", - "\n", - "Testing is a crucial part of model development to ensure that the model works as expected, and remains reliable. Here's an overview of why we conduct testing:\n", - "\n", - "1. `Verify Correctness`: Testing ensure that the model works as expected and meets the specified requirements. \n", - "2. `Detect Bugs and Issues`: Testing helps in identifying bugs, errors, or unexpected behaviors in the code or model, allowing for timely fixes.\n", - "3. `Ensure Reliability`: Testing improves the reliability and robustness of the software, reducing the risk of failures when the user uses it.\n", - "4. `Support Changes`: Tests provide confidence when making changes or adding new features, ensuring that existing functionalities are not affected and work as they should.\n", - "\n", - "There are typically 3 types of tests:\n", - "\n", - "1. `Unit tests`: Test runs quickly (under 2 seconds) and has no network/system dependencies. Uses only libraries installed by default with the software\n", - "2. `Component test`: Test may run more slowly (under 10 seconds, or so), e.g. it may run a solver or create a bunch of files. Like unit tests, it still shouldn't depend on special libraries or dependencies.\n", - "3. `Integration test`: Test may take a long time to run, and may have complex dependencies.\n", - "\n", - "The expectation is that unit tests should be run by developers rather frequently, component tests should be run by the continuous integration system before running code, and integration tests are run across the codebase regularly, but infrequently (e.g. daily).\n", - "\n", - "\n", - "As a developer, testing is a crucial aspect of ensuring the reliability and correctness of the unit model. The testing process involves both Unit tests and Component tests, and pytest is used as the testing framework. A typical test is marked with @pytest.mark.level, where the level indicates the depth or specificity of the testing. This is written in a file usually named as test_*.py or *_test.py. The test files have functions written in them with the appropriate level of test being conducted. \n", - "\n", - "For more detailed information on testing methodologies and procedures, developers are encouraged to refer to [this resource](https://idaes-pse.readthedocs.io/en/stable/reference_guides/developer/testing.html). The resource provides comprehensive guidance on the testing process and ensures that the unit model meets the required standards and functionality.\n", - "\n", - "## 5.1 Property package\n", - "### Unit Tests\n", - "\n", - "When writing tests for the Aqueous property phase package, it's essential to focus on key aspects to ensure the correctness and robustness of the implementation. Here are the areas to cover in the unit tests:\n", - "\n", - "1. Number of Config Dictionaries: Verify that the property phase package has the expected number of configuration dictionaries.\n", - "\n", - "2. State Block Class Name: Confirm that the correct state block class is associated with the Aqueous property phase package.\n", - "\n", - "3. Number of Phases: Check that the Aqueous property phase package defines the expected number of phases.\n", - "\n", - "4. Components in the Phase and Physical Parameter Values: Test that the components present in the Aqueous phase match the anticipated list. Additionally, validate that the physical parameter values (such as density, viscosity, etc.) are correctly defined.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import pytest\n", - "from pyomo.environ import ConcreteModel, Param, value, Var\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "from idaes.core import MaterialBalanceType, EnergyBalanceType\n", - "\n", - "from liquid_extraction.organic_property import OrgPhase\n", - "from liquid_extraction.aqueous_property import AqPhase\n", - "from liquid_extraction.liquid_liquid_extractor import LiqExtraction\n", - "from idaes.core.solvers import get_solver\n", - "\n", - "solver = get_solver()\n", - "\n", - "\n", - "class TestParamBlock(object):\n", - " @pytest.fixture(scope=\"class\")\n", - " def model(self):\n", - " model = ConcreteModel()\n", - " model.params = AqPhase()\n", - " return model\n", - "\n", - " @pytest.mark.unit\n", - " def test_config(self, model):\n", - " assert len(model.params.config) == 1\n", - "\n", - " @pytest.mark.unit\n", - " def test_build(self, model):\n", - " assert len(model.params.phase_list) == 1\n", - " for i in model.params.phase_list:\n", - " assert i == \"Aq\"\n", - "\n", - " assert len(model.params.component_list) == 4\n", - " for i in model.params.component_list:\n", - " assert i in [\"H2O\", \"NaCl\", \"KNO3\", \"CaSO4\"]\n", - "\n", - " assert isinstance(model.params.cp_mass, Param)\n", - " assert value(model.params.cp_mass) == 4182\n", - "\n", - " assert isinstance(model.params.dens_mass, Param)\n", - " assert value(model.params.dens_mass) == 997\n", - "\n", - " assert isinstance(model.params.temperature_ref, Param)\n", - " assert value(model.params.temperature_ref) == 298.15" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The next set of unit tests focuses on testing the build function in the state block. Here are the key aspects to cover in these tests:\n", - "\n", - "1. Existence and Initialized Values of State Variables: Verify that the state variables are correctly defined and initialized within the state block. This ensures that the state block is properly constructed and ready for initialization.\n", - "\n", - "2. Initialization Function Test: Check that state variables are not fixed before initialization and are released after initialization. This test ensures that the initialization process occurs as expected and that the state variables are appropriately managed throughout.\n", - "\n", - "These unit tests provide comprehensive coverage for validating the functionality and behavior of the state block in the Aqueous property phase package. Similar tests can be written for the organic property package to ensure consistency and reliability across both packages." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "class TestStateBlock(object):\n", - " @pytest.fixture(scope=\"class\")\n", - " def model(self):\n", - " model = ConcreteModel()\n", - " model.params = AqPhase()\n", - "\n", - " model.props = model.params.build_state_block([1])\n", - "\n", - " return model\n", - "\n", - " @pytest.mark.unit\n", - " def test_build(self, model):\n", - " assert isinstance(model.props[1].flow_vol, Var)\n", - " assert value(model.props[1].flow_vol) == 1\n", - "\n", - " assert isinstance(model.props[1].temperature, Var)\n", - " assert value(model.props[1].temperature) == 300\n", - "\n", - " assert isinstance(model.props[1].conc_mass_comp, Var)\n", - " assert len(model.props[1].conc_mass_comp) == 3\n", - "\n", - " @pytest.mark.unit\n", - " def test_initialize(self, model):\n", - " assert not model.props[1].flow_vol.fixed\n", - " assert not model.props[1].temperature.fixed\n", - " assert not model.props[1].pressure.fixed\n", - " for i in model.props[1].conc_mass_comp:\n", - " assert not model.props[1].conc_mass_comp[i].fixed\n", - "\n", - " model.props.initialize(hold_state=False, outlvl=1)\n", - "\n", - " assert not model.props[1].flow_vol.fixed\n", - " assert not model.props[1].temperature.fixed\n", - " assert not model.props[1].pressure.fixed\n", - " for i in model.props[1].conc_mass_comp:\n", - " assert not model.props[1].conc_mass_comp[i].fixed" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Component Tests\n", - "In the component test, we aim to ensure unit consistency across the entire property package. Unlike unit tests that focus on individual functions, component tests assess the coherence and consistency of the entire package. Here's what the component test will entail:\n", - "\n", - "Unit Consistency Check: Verify that all units used within the property package are consistent throughout. This involves checking that all parameters, variables, and equations within the package adhere to the same unit system, ensuring compatibility.\n", - "\n", - "By conducting a comprehensive component test, we can ensure that the property package functions as a cohesive unit, maintaining consistency and reliability across its entirety. This concludes our tests on the property package. Next we shall test the unit model. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@pytest.mark.component\n", - "def check_units(model):\n", - " model = ConcreteModel()\n", - " model.params = AqPhase()\n", - " assert_units_consistent(model)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Testing the property package without the triggering pytest" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.util.check_units import assert_units_consistent\n", - "\n", - "m = ConcreteModel()\n", - "m.params = AqPhase()\n", - "m.props = m.params.build_state_block([1])\n", - "assert_units_consistent(m)\n", - "\n", - "assert len(m.props[1].conc_mass_comp) == 3" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Similar tests are done for the Organic Phase as well" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.util.check_units import assert_units_consistent\n", - "\n", - "m = ConcreteModel()\n", - "m.params = OrgPhase()\n", - "m.props = m.params.build_state_block([1])\n", - "assert_units_consistent(m)\n", - "\n", - "assert len(m.props[1].conc_mass_comp) == 3" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 5.2 Unit Model\n", - "### Unit tests\n", - "Unit tests for the unit model encompass verifying the configuration arguments and the build function, similar to the approach taken for the property package. When testing the config arguments, we ensure that the correct number of arguments is provided and then match each argument with the expected one. This ensures that the unit model is properly configured and ready to operate as intended." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import pytest\n", - "\n", - "import idaes.core\n", - "import idaes.models.unit_models\n", - "from idaes.core.solvers import get_solver\n", - "import idaes.logger as idaeslog\n", - "\n", - "\n", - "from pyomo.environ import value, check_optimal_termination, units\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "from idaes.core.util.model_statistics import (\n", - " number_variables,\n", - " number_total_constraints,\n", - ")\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.initialization import (\n", - " SingleControlVolumeUnitInitializer,\n", - ")\n", - "\n", - "solver = get_solver()\n", - "\n", - "\n", - "@pytest.mark.unit\n", - "def test_config():\n", - " m = ConcreteModel()\n", - " m.fs = idaes.core.FlowsheetBlock(dynamic=False)\n", - " m.fs.org_properties = OrgPhase()\n", - " m.fs.aq_properties = AqPhase()\n", - "\n", - " m.fs.unit = LiqExtraction(\n", - " dynamic=False,\n", - " has_pressure_change=False,\n", - " organic_property_package=m.fs.org_properties,\n", - " aqueous_property_package=m.fs.aq_properties,\n", - " )\n", - "\n", - " # Check unit config arguments\n", - " assert len(m.fs.unit.config) == 9\n", - "\n", - " # Check for config arguments\n", - " assert m.fs.unit.config.material_balance_type == MaterialBalanceType.useDefault\n", - " assert not m.fs.unit.config.has_pressure_change\n", - " assert not m.fs.unit.config.has_phase_equilibrium\n", - " assert m.fs.unit.config.organic_property_package is m.fs.org_properties\n", - " assert m.fs.unit.config.aqueous_property_package is m.fs.aq_properties\n", - "\n", - " # Check for unit initializer\n", - " assert m.fs.unit.default_initializer is SingleControlVolumeUnitInitializer" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Testing the config arguments for the flowsheet\n", - "test_config()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In testing the build function, we verify whether the number of variables aligns with the intended values and also check for the existence of desired constraints within the unit model. This ensures that the unit model is constructed accurately and includes all the necessary variables and constraints required for its proper functioning." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "class TestBuild(object):\n", - " @pytest.fixture(scope=\"class\")\n", - " def model(self):\n", - " m = ConcreteModel()\n", - " m.fs = idaes.core.FlowsheetBlock(dynamic=False)\n", - " m.fs.org_properties = OrgPhase()\n", - " m.fs.aq_properties = AqPhase()\n", - "\n", - " m.fs.unit = LiqExtraction(\n", - " dynamic=False,\n", - " has_pressure_change=False,\n", - " organic_property_package=m.fs.org_properties,\n", - " aqueous_property_package=m.fs.aq_properties,\n", - " )\n", - "\n", - " m.fs.unit.organic_inlet.flow_vol.fix(80 * units.l / units.h)\n", - " m.fs.unit.organic_inlet.temperature.fix(300 * units.K)\n", - " m.fs.unit.organic_inlet.pressure.fix(1 * units.atm)\n", - " m.fs.unit.organic_inlet.conc_mass_comp[0, \"NaCl\"].fix(0 * units.g / units.l)\n", - " m.fs.unit.organic_inlet.conc_mass_comp[0, \"KNO3\"].fix(0 * units.g / units.l)\n", - " m.fs.unit.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0 * units.g / units.l)\n", - "\n", - " m.fs.unit.aqueous_inlet.flow_vol.fix(10 * units.l / units.h)\n", - " m.fs.unit.aqueous_inlet.temperature.fix(300 * units.K)\n", - " m.fs.unit.aqueous_inlet.pressure.fix(1 * units.atm)\n", - " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fix(0.15 * units.g / units.l)\n", - " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fix(0.2 * units.g / units.l)\n", - " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0.1 * units.g / units.l)\n", - "\n", - " return m\n", - "\n", - " @pytest.mark.build\n", - " @pytest.mark.unit\n", - " def test_build(self, model):\n", - "\n", - " assert hasattr(model.fs.unit, \"aqueous_inlet\")\n", - " assert len(model.fs.unit.aqueous_inlet.vars) == 4\n", - " assert hasattr(model.fs.unit.aqueous_inlet, \"flow_vol\")\n", - " assert hasattr(model.fs.unit.aqueous_inlet, \"conc_mass_comp\")\n", - " assert hasattr(model.fs.unit.aqueous_inlet, \"temperature\")\n", - " assert hasattr(model.fs.unit.aqueous_inlet, \"pressure\")\n", - "\n", - " assert hasattr(model.fs.unit, \"organic_inlet\")\n", - " assert len(model.fs.unit.organic_inlet.vars) == 4\n", - " assert hasattr(model.fs.unit.organic_inlet, \"flow_vol\")\n", - " assert hasattr(model.fs.unit.organic_inlet, \"conc_mass_comp\")\n", - " assert hasattr(model.fs.unit.organic_inlet, \"temperature\")\n", - " assert hasattr(model.fs.unit.organic_inlet, \"pressure\")\n", - "\n", - " assert hasattr(model.fs.unit, \"aqueous_outlet\")\n", - " assert len(model.fs.unit.aqueous_outlet.vars) == 4\n", - " assert hasattr(model.fs.unit.aqueous_outlet, \"flow_vol\")\n", - " assert hasattr(model.fs.unit.aqueous_outlet, \"conc_mass_comp\")\n", - " assert hasattr(model.fs.unit.aqueous_outlet, \"temperature\")\n", - " assert hasattr(model.fs.unit.aqueous_outlet, \"pressure\")\n", - "\n", - " assert hasattr(model.fs.unit, \"organic_outlet\")\n", - " assert len(model.fs.unit.organic_outlet.vars) == 4\n", - " assert hasattr(model.fs.unit.organic_outlet, \"flow_vol\")\n", - " assert hasattr(model.fs.unit.organic_outlet, \"conc_mass_comp\")\n", - " assert hasattr(model.fs.unit.organic_outlet, \"temperature\")\n", - " assert hasattr(model.fs.unit.organic_outlet, \"pressure\")\n", - "\n", - " assert hasattr(model.fs.unit, \"material_aq_balance\")\n", - " assert hasattr(model.fs.unit, \"material_org_balance\")\n", - "\n", - " assert number_variables(model) == 34\n", - " assert number_total_constraints(model) == 16" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Component tests\n", - "\n", - "During the component tests, we evaluate the performance of the unit model when integrated with the property package. This evaluation process typically involves several steps:\n", - "\n", - "1. Unit Consistency Check: Verify that the unit model maintains consistency in its units throughout the model. This ensures that all variables and constraints within the model adhere to the same unit system, guaranteeing compatibility.\n", - "\n", - "2. Termination Condition Verification: This involves checking whether the model terminates optimally with the given inlet conditions.\n", - "\n", - "3. Variable Value Assessment: Check the values of outlet variables against the expected values. To account for the numerical tolerance of the solvers, the values are compared using the approx function with a relative tolerance.\n", - "\n", - "4. Input Variable Stability Test: Verify that input variables, which should remain fixed during model operation, are not inadvertently unfixed or altered.\n", - "\n", - "5. Structural Issues: Verify that there are no structural issues with the model. \n", - "\n", - "By performing these checks, we conclude the testing for the unit model. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "class TestFlowsheet:\n", - " @pytest.fixture\n", - " def model(self):\n", - " m = ConcreteModel()\n", - " m.fs = idaes.core.FlowsheetBlock(dynamic=False)\n", - " m.fs.org_properties = OrgPhase()\n", - " m.fs.aq_properties = AqPhase()\n", - "\n", - " m.fs.unit = LiqExtraction(\n", - " dynamic=False,\n", - " has_pressure_change=False,\n", - " organic_property_package=m.fs.org_properties,\n", - " aqueous_property_package=m.fs.aq_properties,\n", - " )\n", - " m.fs.org_properties.diffusion_factor[\"NaCl\"] = (\n", - " m.fs.org_properties.diffusion_factor[\"NaCl\"] / 100\n", - " )\n", - " m.fs.org_properties.diffusion_factor[\"KNO3\"] = (\n", - " m.fs.org_properties.diffusion_factor[\"KNO3\"] / 100\n", - " )\n", - " m.fs.org_properties.diffusion_factor[\"CaSO4\"] = (\n", - " m.fs.org_properties.diffusion_factor[\"CaSO4\"] / 100\n", - " )\n", - "\n", - " m.fs.unit.organic_inlet.flow_vol.fix(80 * units.ml / units.min)\n", - " m.fs.unit.organic_inlet.temperature.fix(300 * units.K)\n", - " m.fs.unit.organic_inlet.pressure.fix(1 * units.atm)\n", - " m.fs.unit.organic_inlet.conc_mass_comp[0, \"NaCl\"].fix(0 * units.g / units.kg)\n", - " m.fs.unit.organic_inlet.conc_mass_comp[0, \"KNO3\"].fix(0 * units.g / units.kg)\n", - " m.fs.unit.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0 * units.g / units.kg)\n", - "\n", - " m.fs.unit.aqueous_inlet.flow_vol.fix(10 * units.ml / units.min)\n", - " m.fs.unit.aqueous_inlet.temperature.fix(300 * units.K)\n", - " m.fs.unit.aqueous_inlet.pressure.fix(1 * units.atm)\n", - " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fix(0.15 * units.g / units.kg)\n", - " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fix(0.2 * units.g / units.kg)\n", - " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0.1 * units.g / units.kg)\n", - "\n", - " return m\n", - "\n", - " @pytest.mark.component\n", - " def test_unit_model(self, model):\n", - " assert_units_consistent(model)\n", - " solver = get_solver()\n", - " results = solver.solve(model, tee=False)\n", - "\n", - " # Check for optimal termination\n", - " assert check_optimal_termination(results)\n", - "\n", - " # Checking for outlet flows\n", - " assert value(model.fs.unit.organic_outlet.flow_vol[0]) == pytest.approx(\n", - " 80.0, rel=1e-5\n", - " )\n", - " assert value(model.fs.unit.aqueous_outlet.flow_vol[0]) == pytest.approx(\n", - " 10.0, rel=1e-5\n", - " )\n", - "\n", - " # Checking for outlet mass_comp\n", - " assert value(\n", - " model.fs.unit.organic_outlet.conc_mass_comp[0, \"CaSO4\"]\n", - " ) == pytest.approx(0.000187499, rel=1e-5)\n", - " assert value(\n", - " model.fs.unit.organic_outlet.conc_mass_comp[0, \"KNO3\"]\n", - " ) == pytest.approx(0.000749999, rel=1e-5)\n", - " assert value(\n", - " model.fs.unit.organic_outlet.conc_mass_comp[0, \"NaCl\"]\n", - " ) == pytest.approx(0.000403124, rel=1e-5)\n", - " assert value(\n", - " model.fs.unit.aqueous_outlet.conc_mass_comp[0, \"CaSO4\"]\n", - " ) == pytest.approx(0.0985, rel=1e-5)\n", - " assert value(\n", - " model.fs.unit.aqueous_outlet.conc_mass_comp[0, \"KNO3\"]\n", - " ) == pytest.approx(0.194, rel=1e-5)\n", - " assert value(\n", - " model.fs.unit.aqueous_outlet.conc_mass_comp[0, \"NaCl\"]\n", - " ) == pytest.approx(0.146775, rel=1e-5)\n", - "\n", - " # Checking for outlet temperature\n", - " assert value(model.fs.unit.organic_outlet.temperature[0]) == pytest.approx(\n", - " 300, rel=1e-5\n", - " )\n", - " assert value(model.fs.unit.aqueous_outlet.temperature[0]) == pytest.approx(\n", - " 300, rel=1e-5\n", - " )\n", - "\n", - " # Checking for outlet pressure\n", - " assert value(model.fs.unit.organic_outlet.pressure[0]) == pytest.approx(\n", - " 1, rel=1e-5\n", - " )\n", - " assert value(model.fs.unit.aqueous_outlet.pressure[0]) == pytest.approx(\n", - " 1, rel=1e-5\n", - " )\n", - "\n", - " # Fixed state variables\n", - " assert model.fs.unit.organic_inlet.flow_vol[0].fixed\n", - " assert model.fs.unit.organic_inlet.conc_mass_comp[0, \"NaCl\"].fixed\n", - " assert model.fs.unit.organic_inlet.conc_mass_comp[0, \"KNO3\"].fixed\n", - " assert model.fs.unit.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fixed\n", - " assert model.fs.unit.organic_inlet.temperature[0].fixed\n", - " assert model.fs.unit.organic_inlet.pressure[0].fixed\n", - "\n", - " assert model.fs.unit.aqueous_inlet.flow_vol[0].fixed\n", - " assert model.fs.unit.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fixed\n", - " assert model.fs.unit.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fixed\n", - " assert model.fs.unit.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fixed\n", - " assert model.fs.unit.aqueous_inlet.temperature[0].fixed\n", - " assert model.fs.unit.aqueous_inlet.pressure[0].fixed\n", - "\n", - " @pytest.mark.component\n", - " def test_structural_issues(self, model):\n", - " dt = DiagnosticsToolbox(model)\n", - " dt.assert_no_structural_warnings()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Testing the consolidated flowsheet. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from liquid_extraction.liq_liq_extractor_flowsheet import (\n", - " build_model,\n", - " fix_initial_state,\n", - " initialize_model,\n", - " solve_model,\n", - ")\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.core.util import DiagnosticsToolbox\n", - "\n", - "m = pyo.ConcreteModel(name=\"NGFC no CCS\")\n", - "m.fs = FlowsheetBlock(dynamic=False)\n", - "build_model(m)\n", - "fix_initial_state(m)\n", - "initialize_model(m)\n", - "solve_model(m)\n", - "\n", - "assert_units_consistent(m)\n", - "assert value(m.fs.lex.organic_outlet.temperature[0]) == pytest.approx(300, rel=1e-5)\n", - "dt = DiagnosticsToolbox(m)\n", - "dt.assert_no_numerical_warnings()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this tutorial, we have covered the comprehensive process of creating a custom unit model from scratch. Let's recap the key steps we have undertaken:\n", - "\n", - "- Developing property package\n", - "- Constructing the unit model \n", - "- Creating a Flowsheet\n", - "- Debugging the model using DiagnosticsToolbox\n", - "- Writing tests for the unit model\n", - "\n", - "By following the aforementioned procedure, one can create their own custom unit model. This would conclude the tutorial on creating custom unit model. " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "idaes-pse", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating Custom Unit Model\n", + "Author: Javal Vyas \n", + "Maintainer: Javal Vyas \n", + "\n", + "This tutorial is a comprehensive step-wise procedure to build a custom unit model from scratch. This tutorial will include creating a property package, a custom unit model and testing them. For this tutorial we shall create a custom unit model for Liquid - Liquid Extraction. \n", + "\n", + "The Liquid - Liquid Extractor model contains two immiscible fluids forming the two phases. One of the phases, say phase_1 has a high concentration of solutes which is to be separated. A mass transfer happens between the two phases and the solute is transferred from phase_1 to phase_2. This mass transfer is governed by a parameter called the distribution coefficient.\n", + "\n", + "After reviewing the working principles of the Liquid - Liquid Extractor, we shall proceed to create a custom unit model. We will require a property package for each phase, a custom unit model class and tests for the model and property packages.\n", + "\n", + "Before commencing the development of the model, we need to state some assumptions which the following unit model will be using. \n", + "- Steady-state only\n", + "- Organic phase property package has a single phase named Org\n", + "- Aqueous phase property package has a single phase named Aq\n", + "- Organic and Aqueous phase properties need not have the same component list. \n", + "\n", + "Thus as per the assumptions, we will be creating one property package for the aqueous phase (Aq), and the other for the Organic phase (Org). " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1. Creating Organic Property Package\n", + "\n", + "Creating a property package is a 4 step process\n", + "- Import necessary libraries \n", + "- Creating Physical Parameter Data Block\n", + "- Define State Block\n", + "- Define State Block Data\n", + "\n", + "# 1.1 Importing necessary packages \n", + "Let us begin with importing the necessary libraries where we will be using functionalities from IDAES and Pyomo. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Python libraries\n", + "import logging\n", + "\n", + "import idaes.logger as idaeslog\n", + "from idaes.core.util.initialization import fix_state_vars\n", + "\n", + "# Import Pyomo libraries\n", + "from pyomo.environ import (\n", + " Param,\n", + " Set,\n", + " Var,\n", + " NonNegativeReals,\n", + " units,\n", + " Expression,\n", + " PositiveReals,\n", + ")\n", + "\n", + "# Import IDAES cores\n", + "from idaes.core import (\n", + " declare_process_block_class,\n", + " MaterialFlowBasis,\n", + " PhysicalParameterBlock,\n", + " StateBlockData,\n", + " StateBlock,\n", + " MaterialBalanceType,\n", + " EnergyBalanceType,\n", + " Solute,\n", + " Solvent,\n", + " LiquidPhase,\n", + ")\n", + "from idaes.core.util.model_statistics import degrees_of_freedom" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1.2 Physical Parameter Data Block\n", + "\n", + "A `PhysicalParameterBlock` serves as the central point of reference for all aspects of the property package and needs to define several things about the package. These are summarized below:\n", + "\n", + "- Units of measurement\n", + "- What properties are supported and how they are implemented\n", + "- What components and phases are included in the packages\n", + "- All the global parameters necessary for calculating properties\n", + "- A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", + "\n", + "To construct this block, we begin by declaring a process block class using a Python decorator. One can learn more about `declare_process_block_class` [here](https://github.com/IDAES/idaes-pse/blob/eea1209077b75f7d940d8958362e69d4650c079d/idaes/core/base/process_block.py#L173). After constructing the process block, we define a build function which contains all the components that the property package would have. `super` function here is used to give access to methods and properties of a parent or sibling class and since this is used on the class `PhysicalParameterData` class, build has access to all the parent and sibling class methods. \n", + "\n", + "The `PhysicalParameterBlock` then refers to the `state block`, in this case `OrgPhaseStateBlock` (which will be declared later), so that we can build a state block instance by only knowing the `PhysicalParameterBlock` we wish to use. Then we list the number of phases in this property package. Then we assign the variable to the phase which follows a naming convention. The solvent is in the Organic phase; we will assign the Phase as OrganicPhase, and the variable will be named Org as per the naming convention. The details of naming conventions can be found [here](https://github.com/IDAES/idaes-pse/blob/main/docs/explanations/conventions.rst). We will be following the same convention throughout the example. \n", + " \n", + "After defining the list of the phases, we move on to list the components and their type in the phase. It can be a solute or a solvent in the Organic phase. Thus, we define the component and assign it to either being a solute or a solvent. In this case, the salts are the solutes and Ethylene dibromide is the solvent. Next, we define the physical properties involved in the package, like the heat capacity and density of the solvent, the reference temperature, and the distribution factor that would govern the mass transfer from one phase into another. Additionally, a parameter, the `diffusion_factor`, is introduced. This factor plays a crucial role in governing mass transfer between phases, necessitating its definition within the state block.\n", + "\n", + "The final step in creating the Physical Parameter Block is to declare a `classmethod` named `define_metadata`, which takes two arguments: a class (cls) and an instance of that class (obj). In this method, we will call the predefined method `add_default_units()`.\n", + "\n", + "- `obj.add_default_units()` sets the default units metadata for the property package, and here we define units to be used with this property package as default. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"OrgPhase\")\n", + "class PhysicalParameterData(PhysicalParameterBlock):\n", + " \"\"\"\n", + " Property Parameter Block Class\n", + "\n", + " Contains parameters and indexing sets associated with properties for\n", + " organic Phase\n", + "\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction.\n", + " \"\"\"\n", + " super().build()\n", + "\n", + " self._state_block_class = OrgPhaseStateBlock\n", + "\n", + " # List of valid phases in property package\n", + " self.Org = LiquidPhase()\n", + "\n", + " # Component list - a list of component identifiers\n", + " self.NaCl = Solute()\n", + " self.KNO3 = Solute()\n", + " self.CaSO4 = Solute()\n", + " self.solvent = (\n", + " Solvent()\n", + " ) # Solvent used here is ethylene dibromide (Organic Polar)\n", + "\n", + " # Heat capacity of solvent\n", + " self.cp_mass = Param(\n", + " mutable=True,\n", + " initialize=717.01,\n", + " doc=\"Specific heat capacity of solvent\",\n", + " units=units.J / units.kg / units.K,\n", + " )\n", + "\n", + " self.dens_mass = Param(\n", + " mutable=True,\n", + " initialize=2170,\n", + " doc=\"Density of ethylene dibromide\",\n", + " units=units.kg / units.m**3,\n", + " )\n", + " self.temperature_ref = Param(\n", + " within=PositiveReals,\n", + " mutable=True,\n", + " default=298.15,\n", + " doc=\"Reference temperature\",\n", + " units=units.K,\n", + " )\n", + " self.diffusion_factor = Param(\n", + " self.solute_set,\n", + " initialize={\"NaCl\": 2.15, \"KNO3\": 3, \"CaSO4\": 1.5},\n", + " within=PositiveReals,\n", + " mutable=True,\n", + " )\n", + "\n", + " @classmethod\n", + " def define_metadata(cls, obj):\n", + " obj.add_default_units(\n", + " {\n", + " \"time\": units.hour,\n", + " \"length\": units.m,\n", + " \"mass\": units.g,\n", + " \"amount\": units.mol,\n", + " \"temperature\": units.K,\n", + " }\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1.3 State Block\n", + "\n", + "After the `PhysicalParameterBlock` class has been created, the next step is to write the code necessary to create the State Blocks that will be used throughout the flowsheet. `StateBlock` contains all the information necessary to define the state of the system. This includes the state variables and constraints on those variables which are used to describe a state property like the enthalpy, material balance, etc.\n", + "\n", + "Creating a State Block requires us to write two classes. The reason we write two classes is because of the inherent nature of how `declare_process_block_data` works. `declare_process_block_data` facilitates creating an `IndexedComponent` object which can handle multiple `ComponentData` objects which represent the component at each point in the indexing set. This makes it easier to build an instance of the model at each indexed point. However, State Blocks are slightly different, as they are always indexed (at least by time). Due to this, we often want to perform actions on all the elements of the indexed StateBlock all at once (rather than element by element).\n", + "\n", + "The class `_OrganicStateBlock` is defined without the `declare_process_block_data` decorator and thus works as a traditional class and this facilitates performing a method on the class as a whole rather than individual elements of the indexed property blocks. In this class we define the `fix_initialization_states` function. `fix_initialization_states` function is used to fix the state variable within the state block with the provided initial values (usually inlet conditions). It takes a `block` as the argument in which the state variables are to be fixed. It also takes `state_args` as an optional argument. `state_args` is a dictionary with the value for the state variables to be fixed. This function returns a dictionary indexed by the block, state variables and variable index indicating the fixed status of each variable before applying the function. \n", + "\n", + "The above function comprise of the _OrganicStateBlock. Next, we shall see the construction of the OrgPhaseStateBlockData class." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class _OrganicStateBlock(StateBlock):\n", + " \"\"\"\n", + " This Class contains methods which should be applied to Property Blocks as a\n", + " whole, rather than individual elements of indexed Property Blocks.\n", + " \"\"\"\n", + "\n", + " def fix_initialization_states(self):\n", + " fix_state_vars(self)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The class `OrgPhaseStateBlockData` is designated with the `declare_process_block_class` decorator, named `OrgPhaseStateBlock`, and inherits the block class from `_OrganicStateBlock`. This inheritance allows `OrgPhaseStateBlockData` to leverage functions from `_OrganicStateBlock`. Following the class definition, a build function similar to the one used in the `PhysicalParameterData` block is employed. The super function is utilized to enable the utilization of functions from the parent or sibling class.\n", + "\n", + "The subsequent objective is to delineate the state variables, accomplished through the `_make_state_vars` method. This method encompasses all the essential state variables and associated data. For this particular property package, the required state variables are:\n", + "\n", + "- `flow_vol` - volumetric flow rate\n", + "- `conc_mass_comp` - mass fractions\n", + "- `pressure` - state pressure\n", + "- `temperature` - state temperature\n", + "\n", + "After establishing the state variables, the subsequent step involves setting up state properties as constraints. This includes specifying the relationships and limitations that dictate the system's behavior. The following properties need to be articulated:\n", + "\n", + "-`get_material_flow_terms`: quantifies the amount of material flow.\n", + "- `get_enthalpy_flow_terms`: quantifies the amount of enthalpy flow.\n", + "- `get_flow_rate`: details volumetric flow rates.\n", + "- `default_material_balance_type`: defines the kind of material balance to be used.\n", + "- `default_energy_balance_type`: defines the kind of energy balance to be used.\n", + "- `define_state_vars`: involves defining state variables with units, akin to the define_metadata function in the PhysicalParameterData block.\n", + "- `get_material_flow_basis`: establishes the basis on which state variables are measured, whether in mass or molar terms.\n", + "\n", + "These definitions mark the conclusion of the state block construction and thus the property package. For additional details on creating a property package, please refer to this [resource](../../properties/custom/custom_physical_property_packages_test.ipynb ).\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"OrgPhaseStateBlock\", block_class=_OrganicStateBlock)\n", + "class OrgPhaseStateBlockData(StateBlockData):\n", + " \"\"\"\n", + " An example property package for Organic phase for liquid liquid extraction\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction\n", + " \"\"\"\n", + " super().build()\n", + " self._make_state_vars()\n", + "\n", + " def _make_state_vars(self):\n", + " self.flow_vol = Var(\n", + " initialize=1,\n", + " domain=NonNegativeReals,\n", + " doc=\"Total volumetric flowrate\",\n", + " units=units.L / units.hour,\n", + " )\n", + " self.conc_mass_comp = Var(\n", + " self.params.solute_set,\n", + " domain=NonNegativeReals,\n", + " initialize=1,\n", + " doc=\"Component mass concentrations\",\n", + " units=units.g / units.L,\n", + " )\n", + " self.pressure = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=1,\n", + " bounds=(1, 5),\n", + " units=units.atm,\n", + " doc=\"State pressure [atm]\",\n", + " )\n", + "\n", + " self.temperature = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=300,\n", + " bounds=(273, 373),\n", + " units=units.K,\n", + " doc=\"State temperature [K]\",\n", + " )\n", + "\n", + " def material_flow_expression(self, j):\n", + " if j == \"solvent\":\n", + " return self.flow_vol * self.params.dens_mass\n", + " else:\n", + " return self.flow_vol * self.conc_mass_comp[j]\n", + "\n", + " self.material_flow_expression = Expression(\n", + " self.component_list,\n", + " rule=material_flow_expression,\n", + " doc=\"Material flow terms\",\n", + " )\n", + "\n", + " def enthalpy_flow_expression(self):\n", + " return (\n", + " self.flow_vol\n", + " * self.params.dens_mass\n", + " * self.params.cp_mass\n", + " * (self.temperature - self.params.temperature_ref)\n", + " )\n", + "\n", + " self.enthalpy_flow_expression = Expression(\n", + " rule=enthalpy_flow_expression, doc=\"Enthalpy flow term\"\n", + " )\n", + "\n", + " def get_flow_rate(self):\n", + " return self.flow_vol\n", + "\n", + " def get_material_flow_terms(self, p, j):\n", + " return self.material_flow_expression[j]\n", + "\n", + " def get_enthalpy_flow_terms(self, p):\n", + " return self.enthalpy_flow_expression\n", + "\n", + " def default_material_balance_type(self):\n", + " return MaterialBalanceType.componentTotal\n", + "\n", + " def default_energy_balance_type(self):\n", + " return EnergyBalanceType.enthalpyTotal\n", + "\n", + " def define_state_vars(self):\n", + " return {\n", + " \"flow_vol\": self.flow_vol,\n", + " \"conc_mass_comp\": self.conc_mass_comp,\n", + " \"temperature\": self.temperature,\n", + " \"pressure\": self.pressure,\n", + " }\n", + "\n", + " def get_material_flow_basis(self):\n", + " return MaterialFlowBasis.mass" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Creating Aqueous Property Package\n", + "\n", + "The structure of the Aqueous Property Package mirrors that of the Organic Property Package we previously developed. We'll commence with an overview, importing the required libraries, followed by the creation of the physical property block and two state blocks. The distinctions in this package lie in the physical parameter values, and notably, the absence of the diffusion factor term, differentiating it from the prior package. The following code snippet should provide clarity on these distinctions." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Python libraries\n", + "import logging\n", + "\n", + "from idaes.core.util.initialization import fix_state_vars\n", + "\n", + "# Import Pyomo libraries\n", + "from pyomo.environ import (\n", + " Param,\n", + " Var,\n", + " NonNegativeReals,\n", + " units,\n", + " Expression,\n", + " PositiveReals,\n", + ")\n", + "\n", + "# Import IDAES cores\n", + "from idaes.core import (\n", + " declare_process_block_class,\n", + " MaterialFlowBasis,\n", + " PhysicalParameterBlock,\n", + " StateBlockData,\n", + " StateBlock,\n", + " MaterialBalanceType,\n", + " EnergyBalanceType,\n", + " Solute,\n", + " Solvent,\n", + " LiquidPhase,\n", + ")\n", + "\n", + "# Some more information about this module\n", + "__author__ = \"Javal Vyas\"\n", + "\n", + "\n", + "# Set up logger\n", + "_log = logging.getLogger(__name__)\n", + "\n", + "\n", + "@declare_process_block_class(\"AqPhase\")\n", + "class AqPhaseData(PhysicalParameterBlock):\n", + " \"\"\"\n", + " Property Parameter Block Class\n", + "\n", + " Contains parameters and indexing sets associated with properties for\n", + " aqueous Phase\n", + "\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction.\n", + " \"\"\"\n", + " super().build()\n", + "\n", + " self._state_block_class = AqPhaseStateBlock\n", + "\n", + " # List of valid phases in property package\n", + " self.Aq = LiquidPhase()\n", + "\n", + " # Component list - a list of component identifiers\n", + " self.NaCl = Solute()\n", + " self.KNO3 = Solute()\n", + " self.CaSO4 = Solute()\n", + " self.H2O = Solvent()\n", + "\n", + " # Heat capacity of solvent\n", + " self.cp_mass = Param(\n", + " mutable=True,\n", + " initialize=4182,\n", + " doc=\"Specific heat capacity of solvent\",\n", + " units=units.J / units.kg / units.K,\n", + " )\n", + "\n", + " self.dens_mass = Param(\n", + " mutable=True,\n", + " initialize=997,\n", + " doc=\"Density of ethylene dibromide\",\n", + " units=units.kg / units.m**3,\n", + " )\n", + " self.temperature_ref = Param(\n", + " within=PositiveReals,\n", + " mutable=True,\n", + " default=298.15,\n", + " doc=\"Reference temperature\",\n", + " units=units.K,\n", + " )\n", + "\n", + " @classmethod\n", + " def define_metadata(cls, obj):\n", + " obj.add_default_units(\n", + " {\n", + " \"time\": units.hour,\n", + " \"length\": units.m,\n", + " \"mass\": units.g,\n", + " \"amount\": units.mol,\n", + " \"temperature\": units.K,\n", + " }\n", + " )\n", + "\n", + "\n", + "class _AqueousStateBlock(StateBlock):\n", + " \"\"\"\n", + " This Class contains methods which should be applied to Property Blocks as a\n", + " whole, rather than individual elements of indexed Property Blocks.\n", + " \"\"\"\n", + "\n", + " def fix_initialization_states(self):\n", + " fix_state_vars(self)\n", + "\n", + "\n", + "@declare_process_block_class(\"AqPhaseStateBlock\", block_class=_AqueousStateBlock)\n", + "class AqPhaseStateBlockData(StateBlockData):\n", + " \"\"\"\n", + " An example property package for ideal gas properties with Gibbs energy\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction\n", + " \"\"\"\n", + " super().build()\n", + " self._make_state_vars()\n", + "\n", + " def _make_state_vars(self):\n", + " self.flow_vol = Var(\n", + " initialize=1,\n", + " domain=NonNegativeReals,\n", + " doc=\"Total volumetric flowrate\",\n", + " units=units.L / units.hour,\n", + " )\n", + "\n", + " self.conc_mass_comp = Var(\n", + " self.params.solute_set,\n", + " domain=NonNegativeReals,\n", + " initialize={\"NaCl\": 0.15, \"KNO3\": 0.2, \"CaSO4\": 0.1},\n", + " doc=\"Component mass concentrations\",\n", + " units=units.g / units.L,\n", + " )\n", + "\n", + " self.pressure = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=1,\n", + " bounds=(1, 5),\n", + " units=units.atm,\n", + " doc=\"State pressure [atm]\",\n", + " )\n", + "\n", + " self.temperature = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=300,\n", + " bounds=(273, 373),\n", + " units=units.K,\n", + " doc=\"State temperature [K]\",\n", + " )\n", + "\n", + " def material_flow_expression(self, j):\n", + " if j == \"H2O\":\n", + " return self.flow_vol * self.params.dens_mass\n", + " else:\n", + " return self.conc_mass_comp[j] * self.flow_vol\n", + "\n", + " self.material_flow_expression = Expression(\n", + " self.component_list,\n", + " rule=material_flow_expression,\n", + " doc=\"Material flow terms\",\n", + " )\n", + "\n", + " def enthalpy_flow_expression(self):\n", + " return (\n", + " self.flow_vol\n", + " * self.params.dens_mass\n", + " * self.params.cp_mass\n", + " * (self.temperature - self.params.temperature_ref)\n", + " )\n", + "\n", + " self.enthalpy_flow_expression = Expression(\n", + " rule=enthalpy_flow_expression, doc=\"Enthalpy flow term\"\n", + " )\n", + "\n", + " def get_flow_rate(self):\n", + " return self.flow_vol\n", + "\n", + " def get_material_flow_terms(self, p, j):\n", + " return self.material_flow_expression[j]\n", + "\n", + " def get_enthalpy_flow_terms(self, p):\n", + " return self.enthalpy_flow_expression\n", + "\n", + " def default_material_balance_type(self):\n", + " return MaterialBalanceType.componentTotal\n", + "\n", + " def default_energy_balance_type(self):\n", + " return EnergyBalanceType.enthalpyTotal\n", + "\n", + " def define_state_vars(self):\n", + " return {\n", + " \"flow_vol\": self.flow_vol,\n", + " \"conc_mass_comp\": self.conc_mass_comp,\n", + " \"temperature\": self.temperature,\n", + " \"pressure\": self.pressure,\n", + " }\n", + "\n", + " def get_material_flow_basis(self):\n", + " return MaterialFlowBasis.mass" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3. Liquid Liquid Extractor Unit Model\n", + "\n", + "Following the creation of property packages, our next step is to develop a unit model that facilitates the mass transfer of solutes between phases. This involves importing necessary libraries, building the unit model, defining auxiliary functions, and establishing the initialization routine for the unit model.\n", + "\n", + "## 3.1 Importing necessary libraries\n", + "\n", + "Let's commence by importing the essential libraries from Pyomo and IDAES." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Pyomo libraries\n", + "from pyomo.common.config import ConfigBlock, ConfigValue, In, Bool\n", + "from pyomo.environ import (\n", + " value,\n", + " Constraint,\n", + " check_optimal_termination,\n", + ")\n", + "\n", + "# Import IDAES cores\n", + "from idaes.core import (\n", + " ControlVolume0DBlock,\n", + " declare_process_block_class,\n", + " MaterialBalanceType,\n", + " EnergyBalanceType,\n", + " MaterialFlowBasis,\n", + " MomentumBalanceType,\n", + " UnitModelBlockData,\n", + " useDefault,\n", + ")\n", + "from idaes.core.util.config import (\n", + " is_physical_parameter_block,\n", + " is_reaction_parameter_block,\n", + ")\n", + "\n", + "import idaes.logger as idaeslog\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.exceptions import ConfigurationError, InitializationError" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.2 Creating the unit model\n", + "\n", + "Creating a unit model starts by creating a class called `LiqExtractionData` and using the `declare_process_block_class` decorator. The `LiqExtractionData` inherits the properties of the `UnitModelBlockData` class, which allows us to create a control volume that is necessary for the unit model. After declaration of the class we proceed to define the relevant config arguments for the control volume. The config arguments include the following properties:\n", + "\n", + "- `material_balance_type` - Indicates what type of mass balance should be constructed\n", + "- `has_pressure_change` - Indicates whether terms for pressure change should be\n", + "constructed\n", + "- `has_phase_equilibrium` - Indicates whether terms for phase equilibrium should be\n", + "constructed\n", + "- `organic_property_package` - Property parameter object used to define property calculations\n", + "for the Organic phase\n", + "- `organic_property_package_args` - Arguments to use for constructing Organic phase properties\n", + "- `aqueous_property_package` - Property parameter object used to define property calculations\n", + "for the aqueous phase\n", + "- `aqueous_property_package_args` - Arguments to use for constructing aqueous phase properties\n", + "\n", + "As there are no pressure changes or reactions in this scenario, configuration arguments for these aspects are not included. However, additional details on configuration arguments can be found [here](https://github.com/IDAES/idaes-pse/blob/8948c6ce27d4c7f2c06b377a173f413599091998/idaes/models/unit_models/cstr.py)." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"LiqExtraction\")\n", + "class LiqExtractionData(UnitModelBlockData):\n", + " \"\"\"\n", + " LiqExtraction Unit Model Class\n", + " \"\"\"\n", + "\n", + " CONFIG = UnitModelBlockData.CONFIG()\n", + "\n", + " CONFIG.declare(\n", + " \"material_balance_type\",\n", + " ConfigValue(\n", + " default=MaterialBalanceType.useDefault,\n", + " domain=In(MaterialBalanceType),\n", + " description=\"Material balance construction flag\",\n", + " doc=\"\"\"Indicates what type of mass balance should be constructed,\n", + " **default** - MaterialBalanceType.useDefault.\n", + " **Valid values:** {\n", + " **MaterialBalanceType.useDefault - refer to property package for default\n", + " balance type\n", + " **MaterialBalanceType.none** - exclude material balances,\n", + " **MaterialBalanceType.componentPhase** - use phase component balances,\n", + " **MaterialBalanceType.componentTotal** - use total component balances,\n", + " **MaterialBalanceType.elementTotal** - use total element balances,\n", + " **MaterialBalanceType.total** - use total material balance.}\"\"\",\n", + " ),\n", + " )\n", + " CONFIG.declare(\n", + " \"has_pressure_change\",\n", + " ConfigValue(\n", + " default=False,\n", + " domain=Bool,\n", + " description=\"Pressure change term construction flag\",\n", + " doc=\"\"\"Indicates whether terms for pressure change should be\n", + " constructed,\n", + " **default** - False.\n", + " **Valid values:** {\n", + " **True** - include pressure change terms,\n", + " **False** - exclude pressure change terms.}\"\"\",\n", + " ),\n", + " )\n", + " CONFIG.declare(\n", + " \"has_phase_equilibrium\",\n", + " ConfigValue(\n", + " default=False,\n", + " domain=Bool,\n", + " description=\"Phase equilibrium construction flag\",\n", + " doc=\"\"\"Indicates whether terms for phase equilibrium should be\n", + " constructed,\n", + " **default** = False.\n", + " **Valid values:** {\n", + " **True** - include phase equilibrium terms\n", + " **False** - exclude phase equilibrium terms.}\"\"\",\n", + " ),\n", + " )\n", + " CONFIG.declare(\n", + " \"organic_property_package\",\n", + " ConfigValue(\n", + " default=useDefault,\n", + " domain=is_physical_parameter_block,\n", + " description=\"Property package to use for organic phase\",\n", + " doc=\"\"\"Property parameter object used to define property calculations\n", + " for the organic phase,\n", + " **default** - useDefault.\n", + " **Valid values:** {\n", + " **useDefault** - use default package from parent model or flowsheet,\n", + " **PropertyParameterObject** - a PropertyParameterBlock object.}\"\"\",\n", + " ),\n", + " )\n", + " CONFIG.declare(\n", + " \"organic_property_package_args\",\n", + " ConfigBlock(\n", + " implicit=True,\n", + " description=\"Arguments to use for constructing organic phase properties\",\n", + " doc=\"\"\"A ConfigBlock with arguments to be passed to organic phase\n", + " property block(s) and used when constructing these,\n", + " **default** - None.\n", + " **Valid values:** {\n", + " see property package for documentation.}\"\"\",\n", + " ),\n", + " )\n", + " CONFIG.declare(\n", + " \"aqueous_property_package\",\n", + " ConfigValue(\n", + " default=useDefault,\n", + " domain=is_physical_parameter_block,\n", + " description=\"Property package to use for aqueous phase\",\n", + " doc=\"\"\"Property parameter object used to define property calculations\n", + " for the aqueous phase,\n", + " **default** - useDefault.\n", + " **Valid values:** {\n", + " **useDefault** - use default package from parent model or flowsheet,\n", + " **PropertyParameterObject** - a PropertyParameterBlock object.}\"\"\",\n", + " ),\n", + " )\n", + " CONFIG.declare(\n", + " \"aqueous_property_package_args\",\n", + " ConfigBlock(\n", + " implicit=True,\n", + " description=\"Arguments to use for constructing aqueous phase properties\",\n", + " doc=\"\"\"A ConfigBlock with arguments to be passed to aqueous phase\n", + " property block(s) and used when constructing these,\n", + " **default** - None.\n", + " **Valid values:** {\n", + " see property package for documentation.}\"\"\",\n", + " ),\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Building the model\n", + "\n", + "After constructing the `LiqExtractionData` block and defining the config arguments for the control block, the next step is to write a build function that incorporates the control volume and establishes constraints on the control volume to achieve the desired mass transfer. The control volume serves as a pivotal component in the unit model construction, representing the volume in which the process unfolds.\n", + "\n", + "IDAES provides flexibility in choosing control volumes based on geometry, with options including 0D or 1D. In this instance, we opt for a 0D control volume, the most commonly used control volume. This choice is suitable for systems where there is a well-mixed volume of fluid or where spatial variations are deemed negligible.\n", + "\n", + "The control volume encompasses parameters from (1-8), and its equations are configured to satisfy the specified config arguments. For a more in-depth understanding, users are encouraged to refer to [this resource](https://github.com/IDAES/idaes-pse/blob/2f34dd3abc1bce5ba17c80939a01f9034e4fbeef/docs/reference_guides/core/control_volume_0d.rst). \n", + "\n", + "The `build` function is initiated using the `super` function to gain access to methods and properties of a parent or sibling class, in this case, the `LiqExtractionData` class. Following the `super` function, checks are performed on the property packages to ensure the appropriate names for the solvents, such as 'Aq' for the aqueous phase and 'Org' for the organic phase. An error is raised if these conditions are not met. Subsequently, a check is performed to ensure there is at least one common component between the two property packages that can be transferred from one phase to another.\n", + "\n", + "After these checks are completed without any exceptions raised, it is ensured that the property packages have the desired components with appropriate names. The next step is to create a control volume and assign it to a property package. Here, we initiate with the organic phase and attach a 0D control volume to it. The control volume takes arguments about the dynamics of the block, and the property package, along with property package arguments. \n", + "\n", + "The subsequent steps involve adding inlet and outlet state blocks to the control volume using the `add_state_blocks` function. This function takes arguments about the flow direction (defaulted to forward) and a flag for `has_phase_equilibrium`, which is read from the config. The control volume is now equipped with the inlet and outlet state blocks and has access to the organic property package\n", + "\n", + "Next, material balance equations are added to the control volume using the `add_material_balance` function, taking into account the type of material balance, `has_phase_equilibrium`, and the presence of `has_mass_transfer`. To understand this arguments further let us have a look at the material balance equation and how it is implemented in control volume. \n", + "\n", + "$\\frac{\\partial M_{t, p, j}}{\\partial t} = F_{in, t, p, j} - F_{out, t, p, j} + N_{kinetic, t, p, j} + N_{equilibrium, t, p, j} + N_{pe, t, p, j} + N_{transfer, t, p, j} + N_{custom, t, p, j}$\n", + "\n", + "- $\\frac{\\partial M_{t, p, j}}{\\partial t}$ - Material accumulation\n", + "- $F_{in, t, p, j}$ - Flow into the control volume\n", + "- $F_{out, t, p, j}$ - Flow out of the control volume\n", + "- $N_{kinetic, t, p, j}$ - Rate of reaction generation\n", + "- $N_{equilibrium, t, p, j}$ - Equilibrium reaction generation\n", + "- $N_{pe, t, p, j}$ - Equilibrium reaction extent\n", + "- $N_{transfer, t, p, j}$ - Mass transfer\n", + "- $N_{custom, t, p, j}$ - User defined terms in material balance\n", + "\n", + "- t indicates time index\n", + "- p indicates phase index\n", + "- j indicates component index\n", + "- e indicates element index\n", + "- r indicates reaction name index\n", + "\n", + "Here we shall see that $N_{transfer, t, p, j}$ is the term in the equation which is responsible for the mass transfer and the `mass_transfer_term` should only be equal to the amount being transferred and not include a material balance on our own. For a detailed description of the terms one should refer to the following [resource.](https://github.com/IDAES/idaes-pse/blob/2f34dd3abc1bce5ba17c80939a01f9034e4fbeef/docs/reference_guides/core/control_volume_0d.rst)\n", + "\n", + "This concludes the creation of the organic phase control volume. A similar procedure is done for the aqueous phase control volume with aqueous property package. \n", + "\n", + "Now, the unit model has two control volumes with appropriate configurations and material, momentum and energy balances. The next step is to check the basis of the two property packages. They should both have the same flow basis, and an error is raised if this is not the case.\n", + "\n", + "Following this, the `add_inlet_ports` and `add_outlet_ports` functions are used to create inlet and outlet ports. These ports are named and assigned to each control volume, resulting in labeled inlet and outlet ports for each control volume.\n", + "\n", + "The subsequent steps involve writing unit-level constraints. A check if the basis is either molar or mass, and unit-level constraints are written accordingly. The first constraint pertains to the mass transfer term for the aqueous phase. The mass transfer term is equal to $mass\\_transfer\\_term_{aq} = (D_{i})\\frac{mass_{i}~in~aq~phase}{flowrate~of~aq~phase}$. The second constraint relates to the mass transfer term in the organic phase, which is the negative of the mass transfer term in the aqueous phase: $mass\\_transfer\\_term_{org} = - mass\\_transfer\\_term_{aq} $\n", + "\n", + "Here $mass\\_transfer\\_term_{p}$ is the term indicating the amount of material being transferred from/to the phase and $D_{i}$ is the Distribution coefficient for component i. \n", + "\n", + "This marks the completion of the build function, and the unit model is now equipped with the necessary process constraints. The subsequent steps involve writing the initialization routine." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def build(self):\n", + " \"\"\"\n", + " Begin building model (pre-DAE transformation).\n", + " Args:\n", + " None\n", + " Returns:\n", + " None\n", + " \"\"\"\n", + " # Call UnitModel.build to setup dynamics\n", + " super().build()\n", + "\n", + " # Check phase lists match assumptions\n", + " if self.config.aqueous_property_package.phase_list != [\"Aq\"]:\n", + " raise ConfigurationError(\n", + " f\"{self.name} Liquid-Liquid Extractor model requires that the aqueous \"\n", + " f\"phase property package have a single phase named 'Aq'\"\n", + " )\n", + " if self.config.organic_property_package.phase_list != [\"Org\"]:\n", + " raise ConfigurationError(\n", + " f\"{self.name} Liquid-Liquid Extractor model requires that the organic \"\n", + " f\"phase property package have a single phase named 'Org'\"\n", + " )\n", + "\n", + " # Check for at least one common component in component lists\n", + " if not any(\n", + " j in self.config.aqueous_property_package.component_list\n", + " for j in self.config.organic_property_package.component_list\n", + " ):\n", + " raise ConfigurationError(\n", + " f\"{self.name} Liquid-Liquid Extractor model requires that the organic \"\n", + " f\"and aqueous phase property packages have at least one \"\n", + " f\"common component.\"\n", + " )\n", + "\n", + " self.organic_phase = ControlVolume0DBlock(\n", + " dynamic=self.config.dynamic,\n", + " property_package=self.config.organic_property_package,\n", + " property_package_args=self.config.organic_property_package_args,\n", + " )\n", + "\n", + " self.organic_phase.add_state_blocks(\n", + " has_phase_equilibrium=self.config.has_phase_equilibrium\n", + " )\n", + "\n", + " # Separate organic and aqueous phases means that phase equilibrium will\n", + " # be handled at the unit model level, thus has_phase_equilibrium is\n", + " # False, but has_mass_transfer is True.\n", + "\n", + " self.organic_phase.add_material_balances(\n", + " balance_type=self.config.material_balance_type,\n", + " has_phase_equilibrium=self.config.has_phase_equilibrium,\n", + " has_mass_transfer=True,\n", + " )\n", + " # ---------------------------------------------------------------------\n", + "\n", + " self.aqueous_phase = ControlVolume0DBlock(\n", + " dynamic=self.config.dynamic,\n", + " property_package=self.config.aqueous_property_package,\n", + " property_package_args=self.config.aqueous_property_package_args,\n", + " )\n", + "\n", + " self.aqueous_phase.add_state_blocks(\n", + " has_phase_equilibrium=self.config.has_phase_equilibrium\n", + " )\n", + "\n", + " # Separate liquid and aqueous phases means that phase equilibrium will\n", + " # be handled at the unit model level, thus has_phase_equilibrium is\n", + " # False, but has_mass_transfer is True.\n", + "\n", + " self.aqueous_phase.add_material_balances(\n", + " balance_type=self.config.material_balance_type,\n", + " # has_rate_reactions=False,\n", + " has_phase_equilibrium=self.config.has_phase_equilibrium,\n", + " has_mass_transfer=True,\n", + " )\n", + "\n", + " self.aqueous_phase.add_geometry()\n", + "\n", + " # ---------------------------------------------------------------------\n", + " # Check flow basis is compatible\n", + " t_init = self.flowsheet().time.first()\n", + " if (\n", + " self.aqueous_phase.properties_out[t_init].get_material_flow_basis()\n", + " != self.organic_phase.properties_out[t_init].get_material_flow_basis()\n", + " ):\n", + " raise ConfigurationError(\n", + " f\"{self.name} aqueous and organic property packages must use the \"\n", + " f\"same material flow basis.\"\n", + " )\n", + "\n", + " self.organic_phase.add_geometry()\n", + "\n", + " # Add Ports\n", + " self.add_inlet_port(\n", + " name=\"organic_inlet\", block=self.organic_phase, doc=\"Organic feed\"\n", + " )\n", + " self.add_inlet_port(\n", + " name=\"aqueous_inlet\", block=self.aqueous_phase, doc=\"Aqueous feed\"\n", + " )\n", + " self.add_outlet_port(\n", + " name=\"organic_outlet\", block=self.organic_phase, doc=\"Organic outlet\"\n", + " )\n", + " self.add_outlet_port(\n", + " name=\"aqueous_outlet\",\n", + " block=self.aqueous_phase,\n", + " doc=\"Aqueous outlet\",\n", + " )\n", + "\n", + " # ---------------------------------------------------------------------\n", + " # Add unit level constraints\n", + " # First, need the union and intersection of component lists\n", + " all_comps = (\n", + " self.aqueous_phase.properties_out.component_list\n", + " | self.organic_phase.properties_out.component_list\n", + " )\n", + " common_comps = (\n", + " self.aqueous_phase.properties_out.component_list\n", + " & self.organic_phase.properties_out.component_list\n", + " )\n", + "\n", + " # Get units for unit conversion\n", + " aunits = self.config.aqueous_property_package.get_metadata().get_derived_units\n", + " lunits = self.config.organic_property_package.get_metadata().get_derived_units\n", + " flow_basis = self.aqueous_phase.properties_out[t_init].get_material_flow_basis()\n", + "\n", + " if flow_basis == MaterialFlowBasis.mass:\n", + " fb = \"flow_mass\"\n", + " else:\n", + " raise ConfigurationError(\n", + " f\"{self.name} Liquid-Liquid Extractor only supports mass \"\n", + " f\"basis for MaterialFlowBasis.\"\n", + " )\n", + "\n", + " # Material balances\n", + " def rule_material_aq_balance(self, t, j):\n", + " if j in common_comps:\n", + " return self.aqueous_phase.mass_transfer_term[\n", + " t, \"Aq\", j\n", + " ] == -self.organic_phase.config.property_package.diffusion_factor[j] * (\n", + " self.aqueous_phase.properties_in[t].get_material_flow_terms(\"Aq\", j)\n", + " )\n", + " elif j in self.organic_phase.properties_out.component_list:\n", + " # No mass transfer term\n", + " # Set organic flowrate to an arbitrary small value\n", + " return self.organic_phase.mass_transfer_term[t, \"Org\", j] == 0 * lunits(fb)\n", + " elif j in self.aqueous_phase.properties_out.component_list:\n", + " # No mass transfer term\n", + " # Set aqueous flowrate to an arbitrary small value\n", + " return self.aqueous_phase.mass_transfer_term[t, \"Aq\", j] == 0 * aunits(fb)\n", + "\n", + " self.material_aq_balance = Constraint(\n", + " self.flowsheet().time,\n", + " self.aqueous_phase.properties_out.component_list,\n", + " rule=rule_material_aq_balance,\n", + " doc=\"Unit level material balances for Aq\",\n", + " )\n", + "\n", + " def rule_material_liq_balance(self, t, j):\n", + " if j in common_comps:\n", + " return (\n", + " self.organic_phase.mass_transfer_term[t, \"Org\", j]\n", + " == -self.aqueous_phase.mass_transfer_term[t, \"Aq\", j]\n", + " )\n", + " else:\n", + " # No mass transfer term\n", + " # Set organic flowrate to an arbitrary small value\n", + " return self.organic_phase.mass_transfer_term[t, \"Org\", j] == 0 * aunits(fb)\n", + "\n", + " self.material_org_balance = Constraint(\n", + " self.flowsheet().time,\n", + " self.organic_phase.properties_out.component_list,\n", + " rule=rule_material_liq_balance,\n", + " doc=\"Unit level material balances Org\",\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Initialization Routine\n", + "\n", + "After writing the unit model it is crucial to initialize the model properly, as non-linear models may encounter local minima or infeasibility if not initialized properly. IDAES provides us with a few initialization routines which may not work for all the models, and in such cases the developer will have to define their own initialization routines. \n", + "\n", + "To create a custom initialization routine, model developers must create an initialize method as part of their model, and provide a sequence of steps intended to build up a feasible solution. Initialization routines generally make use of Pyomo\u2019s tools for activating and deactivating constraints and often involve solving multiple sub-problems whilst building up an initial state.\n", + "\n", + "For this tutorial we would use the pre-defined initialization routine of `BlockTriangularizationInitializer` when initializing the model in the flowsheet. This Initializer should be suitable for most models, but may struggle to initialize\n", + "tightly coupled systems of equations. This method of initialization will follow the following workflow. \n", + "\n", + "- Have precheck for structural singularity\n", + "- Run incidence analysis on given block data and check matching.\n", + "- Call Block Triangularization solver on the model.\n", + "- Call solve_strongly_connected_components on a given BlockData.\n", + "\n", + "More details about this initialization routine can be found [here](https://github.com/IDAES/idaes-pse/blob/c09433b9afed5ae2fe25c0ccdc732783324f0101/idaes/core/initialization/block_triangularization.py). \n", + "\n", + "\n", + "This marks the conclusion of creating a custom unit model, for a more detailed explanation on creating a unit model refer [this resource](../../unit_models/custom_unit_models/custom_compressor_test.ipynb). The next sections will deal with the diagnostics and testing of the property package and unit model. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.3 Building a Flowsheet\n", + "\n", + "Once we have set up the unit model and its property packages, we can start building a flowsheet using them. In this tutorial, we're focusing on a simple flowsheet with just a liquid-liquid extractor. To create the flowsheet we follow the following steps:\n", + "\n", + "- Import necessary libraries\n", + "- Create a Pyomo model.\n", + "- Inside the model, create a flowsheet block.\n", + "- Assign property packages to the flowsheet block.\n", + "- Add the liquid-liquid extractor to the flowsheet block.\n", + "- Fix variable to make it a square problem\n", + "- Run an initialization process.\n", + "- Solve the flowsheet.\n", + "\n", + "Following these steps, we've built a basic flowsheet using Pyomo. For more details, refer to the [documentation](../../flowsheets/hda_flowsheet_with_distillation_test.ipynb).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "import pyomo.environ as pyo\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "from idaes.core.initialization.block_triangularization import (\n", + " BlockTriangularizationInitializer,\n", + ")\n", + "from liquid_extraction.organic_property import OrgPhase\n", + "from liquid_extraction.aqueous_property import AqPhase\n", + "from liquid_extraction.liquid_liquid_extractor import LiqExtraction\n", + "\n", + "\n", + "def build_model():\n", + " m = pyo.ConcreteModel()\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + " m.fs.org_properties = OrgPhase()\n", + " m.fs.aq_properties = AqPhase()\n", + "\n", + " m.fs.lex = LiqExtraction(\n", + " dynamic=False,\n", + " has_pressure_change=False,\n", + " organic_property_package=m.fs.org_properties,\n", + " aqueous_property_package=m.fs.aq_properties,\n", + " )\n", + " return m\n", + "\n", + "\n", + "def fix_state_variables(m):\n", + " m.fs.lex.organic_inlet.flow_vol.fix(80 * pyo.units.L / pyo.units.hour)\n", + " m.fs.lex.organic_inlet.temperature.fix(300 * pyo.units.K)\n", + " m.fs.lex.organic_inlet.pressure.fix(1 * pyo.units.atm)\n", + " m.fs.lex.organic_inlet.conc_mass_comp[0, \"NaCl\"].fix(\n", + " 1e-5 * pyo.units.g / pyo.units.L\n", + " )\n", + " m.fs.lex.organic_inlet.conc_mass_comp[0, \"KNO3\"].fix(\n", + " 1e-5 * pyo.units.g / pyo.units.L\n", + " )\n", + " m.fs.lex.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fix(\n", + " 1e-5 * pyo.units.g / pyo.units.L\n", + " )\n", + "\n", + " m.fs.lex.aqueous_inlet.flow_vol.fix(100 * pyo.units.L / pyo.units.hour)\n", + " m.fs.lex.aqueous_inlet.temperature.fix(300 * pyo.units.K)\n", + " m.fs.lex.aqueous_inlet.pressure.fix(1 * pyo.units.atm)\n", + " m.fs.lex.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fix(\n", + " 0.15 * pyo.units.g / pyo.units.L\n", + " )\n", + " m.fs.lex.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fix(\n", + " 0.2 * pyo.units.g / pyo.units.L\n", + " )\n", + " m.fs.lex.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fix(\n", + " 0.1 * pyo.units.g / pyo.units.L\n", + " )\n", + "\n", + " return m\n", + "\n", + "\n", + "def initialize_model(m):\n", + " initializer = BlockTriangularizationInitializer()\n", + " initializer.initialize(m.fs.lex)\n", + " return m\n", + "\n", + "\n", + "def main():\n", + " m = build_model()\n", + " m = fix_state_variables(m)\n", + " m = initialize_model(m)\n", + " return m\n", + "\n", + "\n", + "if __name__ == main:\n", + " main()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4. Model Diagnostics using DiagnosticsToolbox\n", + "\n", + "Here, during initialization, we encounter warnings indicating that variables are being set to negative values, which is not expected behavior. These warnings suggest that there may be flaws in the model that require further investigation using the DiagnosticsToolbox from IDAES. A detailed notebook on using `DiagnosticsToolbox` can be found [here](../../diagnostics/degeneracy_hunter_test.ipynb).\n", + "\n", + "To proceed with investigating these issues, we need to import the DiagnosticsToolbox. We can gain a better understanding of its functionality by running the help function on it. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.util import DiagnosticsToolbox" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The help() function provides comprehensive information on the DiagnosticsToolbox and all its supported methods. However, it's essential to focus on the initial steps outlined at the beginning of the docstring to get started effectively.\n", + "\n", + "Here's a breakdown of the steps to start with:\n", + "\n", + "- `Instantiate Model:` Ensure you have an instance of the model with degrees of freedom equal to 0.\n", + "\n", + "- `Create DiagnosticsToolbox Instance:` Next, instantiate a DiagnosticsToolbox object.\n", + "\n", + "- `Provide Model to DiagnosticsToolbox:` Pass the model instance to the DiagnosticsToolbox.\n", + "\n", + "- `Call report_structural_issues() Function:` Finally, call the report_structural_issues() function. This function will highlight any warnings in the model's structure, such as unit inconsistencies or other issues related to variables in the caution section.\n", + "\n", + "By following these steps, you can efficiently utilize the DiagnosticsToolbox to identify and address any structural issues or warnings in your model." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING (W1001): Setting Var\n", + "'fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[NaCl]' to a value\n", + "`-0.1725` (float) not in domain NonNegativeReals.\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001\n", + "WARNING (W1001): Setting Var\n", + "'fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[KNO3]' to a value\n", + "`-0.4` (float) not in domain NonNegativeReals.\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001\n", + "WARNING (W1001): Setting Var\n", + "'fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[CaSO4]' to a value\n", + "`-0.05` (float) not in domain NonNegativeReals.\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001\n", + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 21 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 16 (External: 0)\n", + " Free Variables with only lower bounds: 8\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 0\n", + " Fixed Variables in Activated Constraints: 8 (External: 0)\n", + " Activated Equality Constraints: 16 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 Cautions\n", + "\n", + " Caution: 10 unused variables (4 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " Try to initialize/solve your model and then call report_numerical_issues()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m = main()\n", + "dt = DiagnosticsToolbox(m)\n", + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Although no warnings were reported, it's important to note that there are 3 variables fixed to 0 and 10 unused variables, out of which 4 are fixed. As indicated in the output, the next step is to solve the model. After solving, you should call the report_numerical_issues() function. This function will help identify any numerical issues that may arise during the solution process." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 33\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 14\n", + "\n", + "Total number of variables............................: 16\n", + " variables with only lower bounds: 8\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 16\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 4.10e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 4.00e+01 4.93e+01 -1.0 4.10e-01 - 9.91e-01 2.41e-02h 1\n", + " 2 0.0000000e+00 4.00e+01 2.03e+05 -1.0 4.00e-01 - 1.00e+00 2.47e-04h 1\n", + " 3r 0.0000000e+00 4.00e+01 1.00e+03 1.6 0.00e+00 - 0.00e+00 3.09e-07R 4\n", + " 4r 0.0000000e+00 4.00e+01 9.88e+04 1.6 3.68e+02 - 9.92e-01 2.29e-03f 1\n", + " 5r 0.0000000e+00 3.60e+01 3.03e+00 1.6 4.01e+00 - 1.00e+00 1.00e+00f 1\n", + " 6r 0.0000000e+00 3.69e+01 1.21e+01 -1.2 9.24e-01 - 9.69e-01 9.78e-01f 1\n", + " 7r 0.0000000e+00 3.70e+01 2.11e-01 -1.9 1.00e-01 - 9.97e-01 1.00e+00f 1\n", + " 8r 0.0000000e+00 3.78e+01 2.03e-02 -4.3 8.71e-01 - 9.71e-01 1.00e+00f 1\n", + " 9r 0.0000000e+00 3.80e+01 2.62e-04 -6.4 1.24e-01 - 9.99e-01 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10r 0.0000000e+00 3.81e+01 5.87e-09 -6.4 1.58e-01 - 1.00e+00 1.00e+00f 1\n", + " 11r 0.0000000e+00 3.91e+01 1.09e-05 -9.0 9.35e-01 - 9.68e-01 1.00e+00f 1\n", + "\n", + "Number of Iterations....: 11\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 5.1393961893966849e-07 5.1393961893966849e-07\n", + "Constraint violation....: 3.9105165554489545e+01 3.9105165554489545e+01\n", + "Complementarity.........: 9.0909090910996620e-10 9.0909090910996620e-10\n", + "Overall NLP error.......: 3.9105165554489545e+01 3.9105165554489545e+01\n", + "\n", + "\n", + "Number of objective function evaluations = 17\n", + "Number of objective gradient evaluations = 5\n", + "Number of equality constraint evaluations = 17\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 14\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 12\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Converged to a point of local infeasibility. Problem may be infeasible.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: infeasible\n", + " - message from solver: Ipopt 3.13.2\\x3a Converged to a locally infeasible\n", + " point. Problem may be infeasible.\n" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 16, 'Number of variables': 16, 'Sense': 'unknown'}], 'Solver': [{'Status': 'warning', 'Message': 'Ipopt 3.13.2\\\\x3a Converged to a locally infeasible point. Problem may be infeasible.', 'Termination condition': 'infeasible', 'Id': 200, 'Error rc': 0, 'Time': 0.06552338600158691}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver = pyo.SolverFactory(\"ipopt\")\n", + "solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The model is probably infeasible, indicating numerical issues with the model. We should call the `report_numerical_issues()` function and check the constraints/variables causing this issue. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 7.955E+03\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 WARNINGS\n", + "\n", + " WARNING: 6 Constraints with large residuals (>1.0E-05)\n", + " WARNING: 5 Variables at or outside bounds (tol=0.0E+00)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "3 Cautions\n", + "\n", + " Caution: 8 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 5 Variables with value close to zero (tol=1.0E-08)\n", + " Caution: 3 Variables with extreme value (<1.0E-04 or >1.0E+04)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_constraints_with_large_residuals()\n", + " display_variables_at_or_outside_bounds()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this scenario, it's observed that the condition number of the Jacobian is high, indicating that the Jacobian is ill-conditioned. Additionally, there are 2 warnings related to constraints with large residuals and variables at or outside the bounds. The cautions mentioned in the output are also related to these warnings.\n", + "\n", + "As suggested, the next steps would be to:\n", + "\n", + "- Call the `display_variables_at_or_outside_bounds()` function to investigate variables at or outside the bounds.\n", + "\n", + "- Call the `display_constraints_with_large_residuals()` function to examine constraints with large residuals.\n", + "\n", + "These steps will help identify the underlying causes of the numerical issues and constraints violations, allowing for further analysis and potential resolution. " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following variable(s) have values at or outside their bounds (tol=0.0E+00):\n", + "\n", + " fs.lex.organic_phase.properties_in[0.0].pressure (fixed): value=1.0 bounds=(1, 5)\n", + " fs.lex.organic_phase.properties_out[0.0].pressure (free): value=1 bounds=(1, 5)\n", + " fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[NaCl] (free): value=0.0 bounds=(0, None)\n", + " fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[KNO3] (free): value=0.0 bounds=(0, None)\n", + " fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[CaSO4] (free): value=0.0 bounds=(0, None)\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_variables_at_or_outside_bounds()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this scenario, there are a couple of issues to address:\n", + "\n", + "- The pressure variable is fixed to 1, which is its lower bound. This could potentially lead to numerical issues, although it may not affect the model significantly since there is no pressure change in the model. To mitigate this, consider adjusting the lower bound of the pressure variable to avoid having its value at or outside the bounds.\n", + "\n", + "- The more concerning issue is with the `conc_mass_comp` variable attempting to go below 0 in the output. This suggests that there may be constraints involving `conc_mass_comp` in the aqueous phase causing this behavior. To investigate further, it's recommended to call the `display_constraints_with_large_residuals()` function. This will provide insights into whether constraints involving `conc_mass_comp` are contributing to the convergence issue." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following constraint(s) have large residuals (>1.0E-05):\n", + "\n", + " fs.lex.material_aq_balance[0.0,NaCl]: 5.49716E-01\n", + " fs.lex.material_aq_balance[0.0,KNO3]: 8.94833E-01\n", + " fs.lex.material_aq_balance[0.0,CaSO4]: 5.48843E-02\n", + " fs.lex.aqueous_phase.material_balances[0.0,NaCl]: 1.67003E+01\n", + " fs.lex.aqueous_phase.material_balances[0.0,KNO3]: 3.91052E+01\n", + " fs.lex.aqueous_phase.material_balances[0.0,CaSO4]: 4.94512E+00\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_constraints_with_large_residuals()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected there are convergence issues with the constraints which have `conc_mass_comp` variable in them specifically in the aqueous phase. Now, let us investigate further by printing this constraints and checking the value of each term. Since this is an persistent issue across the components, we can focus on just one of the component to identify the issue. " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{Member of material_balances} : Material balances\n", + " Size=4, Index=fs._time*fs.aq_properties.component_list, Active=True\n", + " Key : Lower : Body : Upper : Active\n", + " (0.0, 'NaCl') : 0.0 : (fs.lex.aqueous_phase.properties_in[0.0].conc_mass_comp[NaCl]*fs.lex.aqueous_phase.properties_in[0.0].flow_vol) - (fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[NaCl]*fs.lex.aqueous_phase.properties_out[0.0].flow_vol) + fs.lex.aqueous_phase.mass_transfer_term[0.0,Aq,NaCl] : 0.0 : True\n" + ] + } + ], + "source": [ + "m.fs.lex.aqueous_phase.material_balances[0.0, \"NaCl\"].pprint()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{Member of conc_mass_comp} : Component mass concentrations\n", + " Size=3, Index=fs.aq_properties.solutes, Units=g/l\n", + " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", + " NaCl : 0 : 0.15 : None : True : True : NonNegativeReals\n", + "flow_vol : Total volumetric flowrate\n", + " Size=1, Index=None, Units=l/h\n", + " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", + " None : 0 : 100.0 : None : True : True : NonNegativeReals\n", + "{Member of conc_mass_comp} : Component mass concentrations\n", + " Size=3, Index=fs.aq_properties.solutes, Units=g/l\n", + " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", + " NaCl : 0 : 0.0 : None : False : False : NonNegativeReals\n", + "flow_vol : Total volumetric flowrate\n", + " Size=1, Index=None, Units=l/h\n", + " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", + " None : 0 : 100.0 : None : False : False : NonNegativeReals\n", + "{Member of mass_transfer_term} : Component material transfer into unit\n", + " Size=4, Index=fs._time*fs.aq_properties._phase_component_set, Units=g/h\n", + " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", + " (0.0, 'Aq', 'NaCl') : None : -31.700284300098897 : None : False : False : Reals\n" + ] + } + ], + "source": [ + "m.fs.lex.aqueous_phase.properties_in[0.0].conc_mass_comp[\"NaCl\"].pprint()\n", + "m.fs.lex.aqueous_phase.properties_in[0.0].flow_vol.pprint()\n", + "m.fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[\"NaCl\"].pprint()\n", + "m.fs.lex.aqueous_phase.properties_out[0.0].flow_vol.pprint()\n", + "m.fs.lex.aqueous_phase.mass_transfer_term[0.0, \"Aq\", \"NaCl\"].pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It seems there is a discrepancy between the mass transfer term and the amount of input of NaCl. This can be inferred from the values where the input equals 15g/h and the `mass_transfer_term` equals -31.706g/h.\n", + "\n", + "To further investigate this issue, it's advisable to examine the `material_aq_balance` constraint within the unit model where the `mass_transfer_term` is defined. By printing out this constraint and analyzing its components, you can gain a better understanding of the discrepancy and take appropriate corrective actions." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{Member of material_aq_balance} : Unit level material balances for Aq\n", + " Size=4, Index=fs._time*fs.aq_properties.component_list, Active=True\n", + " Key : Lower : Body : Upper : Active\n", + " (0.0, 'NaCl') : 0.0 : fs.lex.aqueous_phase.mass_transfer_term[0.0,Aq,NaCl] + fs.org_properties.diffusion_factor[NaCl]*(fs.lex.aqueous_phase.properties_in[0.0].conc_mass_comp[NaCl]*fs.lex.aqueous_phase.properties_in[0.0].flow_vol) : 0.0 : True\n" + ] + } + ], + "source": [ + "m.fs.lex.material_aq_balance[0.0, \"NaCl\"].pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here the problem can be tracked down easily as there being a typing error while recording the distribution factor. The distribution factor here was wrongly written ignoring its magnitude which should have been 1e-2, but that was missed, thus adjusting the distribution factor parameter we should have this issue resolved. " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.org_properties.diffusion_factor[\"NaCl\"] = (\n", + " m.fs.org_properties.diffusion_factor[\"NaCl\"] / 100\n", + ")\n", + "m.fs.org_properties.diffusion_factor[\"KNO3\"] = (\n", + " m.fs.org_properties.diffusion_factor[\"KNO3\"] / 100\n", + ")\n", + "m.fs.org_properties.diffusion_factor[\"CaSO4\"] = (\n", + " m.fs.org_properties.diffusion_factor[\"CaSO4\"] / 100\n", + ")\n", + "\n", + "m.fs.lex.organic_phase.properties_in[0.0].pressure.setlb(0.5)\n", + "m.fs.lex.organic_phase.properties_out[0.0].pressure.setlb(0.5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After the corrective actions, we should check if this has made any structural issues, for this we would call `report_structural_issues()`" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 21 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 16 (External: 0)\n", + " Free Variables with only lower bounds: 8\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 0\n", + " Fixed Variables in Activated Constraints: 8 (External: 0)\n", + " Activated Equality Constraints: 16 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 Cautions\n", + "\n", + " Caution: 10 unused variables (4 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " Try to initialize/solve your model and then call report_numerical_issues()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now since there are no warnings we can go ahead and solve the model and see if the results are optimal. " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 33\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 14\n", + "\n", + "Total number of variables............................: 16\n", + " variables with only lower bounds: 8\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 16\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 5.85e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 3.55e-15 8.41e+00 -1.0 5.85e+01 - 1.05e-01 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 3.5527136788005009e-15 3.5527136788005009e-15\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 3.5527136788005009e-15 3.5527136788005009e-15\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 16, 'Number of variables': 16, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.07779264450073242}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is a good sign that the model solved optimally and a solution was found. \n", + "\n", + "**NOTE:** It is a good practice to run the model through DiagnosticsToolbox regardless of the solver termination status. \n", + "\n", + "The next section we shall focus on testing the unit model. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 5. Testing\n", + "\n", + "Testing is a crucial part of model development to ensure that the model works as expected, and remains reliable. Here's an overview of why we conduct testing:\n", + "\n", + "1. `Verify Correctness`: Testing ensures that the model works as expected and meets the specified requirements. \n", + "2. `Detect Bugs and Issues`: Testing helps in identifying bugs, errors, or unexpected behaviors in the code or model, allowing for timely fixes.\n", + "3. `Ensure Reliability`: Testing improves the reliability and robustness of the software, reducing the risk of failures when the user uses it.\n", + "4. `Support Changes`: Tests provide confidence when making changes or adding new features, ensuring that existing functionalities are not affected and work as they should.\n", + "\n", + "There are typically 3 types of tests:\n", + "\n", + "1. `Unit tests`: Test runs quickly (under 2 seconds) and has no network/system dependencies. Uses only libraries installed by default with the software\n", + "2. `Component test`: Test may run more slowly (under 10 seconds, or so), e.g. it may run a solver or create a bunch of files. Like unit tests, it still shouldn't depend on special libraries or dependencies.\n", + "3. `Integration test`: Test may take a long time to run, and may have complex dependencies.\n", + "\n", + "The expectation is that unit tests should be run by developers rather frequently, component tests should be run by the continuous integration system before running code, and integration tests are run across the codebase regularly, but infrequently (e.g. daily).\n", + "\n", + "\n", + "As a developer, testing is a crucial aspect of ensuring the reliability and correctness of the unit model. The testing process involves both Unit tests and Component tests, and pytest is used as the testing framework. A typical test is marked with @pytest.mark.level, where the level indicates the depth or specificity of the testing. This is written in a file usually named as test_*.py or *_test.py. The test files have functions written in them with the appropriate level of test being conducted. \n", + "\n", + "For more detailed information on testing methodologies and procedures, developers are encouraged to refer to [this resource](https://idaes-pse.readthedocs.io/en/stable/reference_guides/developer/testing.html). The resource provides comprehensive guidance on the testing process and ensures that the unit model meets the required standards and functionality.\n", + "\n", + "## 5.1 Property package\n", + "### Unit Tests\n", + "\n", + "When writing tests for the Aqueous property phase package, it's essential to focus on key aspects to ensure the correctness and robustness of the implementation. Here are the areas to cover in the unit tests:\n", + "\n", + "1. Number of Config Dictionaries: Verify that the property phase package has the expected number of configuration dictionaries.\n", + "\n", + "2. State Block Class Name: Confirm that the correct state block class is associated with the Aqueous property phase package.\n", + "\n", + "3. Number of Phases: Check that the Aqueous property phase package defines the expected number of phases.\n", + "\n", + "4. Components in the Phase and Physical Parameter Values: Test that the components present in the Aqueous phase match the anticipated list. Additionally, validate that the physical parameter values (such as density, viscosity, etc.) are correctly defined.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "import pytest\n", + "from pyomo.environ import ConcreteModel, Param, value, Var\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "from idaes.core import MaterialBalanceType, EnergyBalanceType\n", + "\n", + "from liquid_extraction.organic_property import OrgPhase\n", + "from liquid_extraction.aqueous_property import AqPhase\n", + "from liquid_extraction.liquid_liquid_extractor import LiqExtraction\n", + "from idaes.core.solvers import get_solver\n", + "\n", + "solver = get_solver()\n", + "\n", + "\n", + "class TestParamBlock(object):\n", + " @pytest.fixture(scope=\"class\")\n", + " def model(self):\n", + " model = ConcreteModel()\n", + " model.params = AqPhase()\n", + " return model\n", + "\n", + " @pytest.mark.unit\n", + " def test_config(self, model):\n", + " assert len(model.params.config) == 1\n", + "\n", + " @pytest.mark.unit\n", + " def test_build(self, model):\n", + " assert len(model.params.phase_list) == 1\n", + " for i in model.params.phase_list:\n", + " assert i == \"Aq\"\n", + "\n", + " assert len(model.params.component_list) == 4\n", + " for i in model.params.component_list:\n", + " assert i in [\"H2O\", \"NaCl\", \"KNO3\", \"CaSO4\"]\n", + "\n", + " assert isinstance(model.params.cp_mass, Param)\n", + " assert value(model.params.cp_mass) == 4182\n", + "\n", + " assert isinstance(model.params.dens_mass, Param)\n", + " assert value(model.params.dens_mass) == 997\n", + "\n", + " assert isinstance(model.params.temperature_ref, Param)\n", + " assert value(model.params.temperature_ref) == 298.15" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The next set of unit tests focuses on testing the build function in the state block. Here are the key aspects to cover in these tests:\n", + "\n", + "1. Existence and Initialized Values of State Variables: Verify that the state variables are correctly defined and initialized within the state block. This ensures that the state block is properly constructed and ready for initialization.\n", + "\n", + "2. Initialization Function Test: Check that state variables are not fixed before initialization and are released after initialization. This test ensures that the initialization process occurs as expected and that the state variables are appropriately managed throughout.\n", + "\n", + "These unit tests provide comprehensive coverage for validating the functionality and behavior of the state block in the aqueous property phase package. Similar tests can be written for the organic property package to ensure consistency and reliability across both packages." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "class TestStateBlock(object):\n", + " @pytest.fixture(scope=\"class\")\n", + " def model(self):\n", + " model = ConcreteModel()\n", + " model.params = AqPhase()\n", + "\n", + " model.props = model.params.build_state_block([1])\n", + "\n", + " return model\n", + "\n", + " @pytest.mark.unit\n", + " def test_build(self, model):\n", + " assert isinstance(model.props[1].flow_vol, Var)\n", + " assert value(model.props[1].flow_vol) == 1\n", + "\n", + " assert isinstance(model.props[1].temperature, Var)\n", + " assert value(model.props[1].temperature) == 300\n", + "\n", + " assert isinstance(model.props[1].conc_mass_comp, Var)\n", + " assert len(model.props[1].conc_mass_comp) == 3\n", + "\n", + " @pytest.mark.unit\n", + " def test_initialize(self, model):\n", + " assert not model.props[1].flow_vol.fixed\n", + " assert not model.props[1].temperature.fixed\n", + " assert not model.props[1].pressure.fixed\n", + " for i in model.props[1].conc_mass_comp:\n", + " assert not model.props[1].conc_mass_comp[i].fixed\n", + "\n", + " model.props.initialize(hold_state=False, outlvl=1)\n", + "\n", + " assert not model.props[1].flow_vol.fixed\n", + " assert not model.props[1].temperature.fixed\n", + " assert not model.props[1].pressure.fixed\n", + " for i in model.props[1].conc_mass_comp:\n", + " assert not model.props[1].conc_mass_comp[i].fixed" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Component Tests\n", + "In the component test, we aim to ensure unit consistency across the entire property package. Unlike unit tests that focus on individual functions, component tests assess the coherence and consistency of the entire package. Here's what the component test will entail:\n", + "\n", + "Unit Consistency Check: Verify that all units used within the property package are consistent throughout. This involves checking that all parameters, variables, and equations within the package adhere to the same unit system, ensuring compatibility.\n", + "\n", + "By conducting a comprehensive component test, we can ensure that the property package functions as a cohesive unit, maintaining consistency and reliability across its entirety. This concludes our tests on the property package. Next we shall test the unit model. " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "@pytest.mark.component\n", + "def check_units(model):\n", + " model = ConcreteModel()\n", + " model.params = AqPhase()\n", + " assert_units_consistent(model)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 5.2 Unit Model\n", + "### Unit tests\n", + "Unit tests for the unit model encompass verifying the configuration arguments and the build function, similar to the approach taken for the property package. When testing the config arguments, we ensure that the correct number of arguments is provided and then match each argument with the expected one. This ensures that the unit model is properly configured and ready to operate as intended." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "import pytest\n", + "\n", + "from idaes.core import FlowsheetBlock\n", + "import idaes.models.unit_models\n", + "from idaes.core.solvers import get_solver\n", + "import idaes.logger as idaeslog\n", + "\n", + "\n", + "from pyomo.environ import value, check_optimal_termination, units\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "from idaes.core.util.model_statistics import (\n", + " number_variables,\n", + " number_total_constraints,\n", + ")\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.initialization import (\n", + " SingleControlVolumeUnitInitializer,\n", + ")\n", + "\n", + "solver = get_solver()\n", + "\n", + "\n", + "@pytest.mark.unit\n", + "def test_config():\n", + " m = ConcreteModel()\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + " m.fs.org_properties = OrgPhase()\n", + " m.fs.aq_properties = AqPhase()\n", + "\n", + " m.fs.unit = LiqExtraction(\n", + " dynamic=False,\n", + " has_pressure_change=False,\n", + " organic_property_package=m.fs.org_properties,\n", + " aqueous_property_package=m.fs.aq_properties,\n", + " )\n", + "\n", + " # Check unit config arguments\n", + " assert len(m.fs.unit.config) == 9\n", + "\n", + " # Check for config arguments\n", + " assert m.fs.unit.config.material_balance_type == MaterialBalanceType.useDefault\n", + " assert not m.fs.unit.config.has_pressure_change\n", + " assert not m.fs.unit.config.has_phase_equilibrium\n", + " assert m.fs.unit.config.organic_property_package is m.fs.org_properties\n", + " assert m.fs.unit.config.aqueous_property_package is m.fs.aq_properties\n", + "\n", + " # Check for unit initializer\n", + " assert m.fs.unit.default_initializer is SingleControlVolumeUnitInitializer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In testing the build function, we verify whether the number of variables aligns with the intended values and also check for the existence of desired constraints within the unit model. This ensures that the unit model is constructed accurately and includes all the necessary variables and constraints required for its proper functioning." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "class TestBuild(object):\n", + " @pytest.fixture(scope=\"class\")\n", + " def model(self):\n", + " m = ConcreteModel()\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + " m.fs.org_properties = OrgPhase()\n", + " m.fs.aq_properties = AqPhase()\n", + "\n", + " m.fs.unit = LiqExtraction(\n", + " dynamic=False,\n", + " has_pressure_change=False,\n", + " organic_property_package=m.fs.org_properties,\n", + " aqueous_property_package=m.fs.aq_properties,\n", + " )\n", + "\n", + " m.fs.unit.organic_inlet.flow_vol.fix(80 * units.l / units.h)\n", + " m.fs.unit.organic_inlet.temperature.fix(300 * units.K)\n", + " m.fs.unit.organic_inlet.pressure.fix(1 * units.atm)\n", + " m.fs.unit.organic_inlet.conc_mass_comp[0, \"NaCl\"].fix(0 * units.g / units.l)\n", + " m.fs.unit.organic_inlet.conc_mass_comp[0, \"KNO3\"].fix(0 * units.g / units.l)\n", + " m.fs.unit.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0 * units.g / units.l)\n", + "\n", + " m.fs.unit.aqueous_inlet.flow_vol.fix(10 * units.l / units.h)\n", + " m.fs.unit.aqueous_inlet.temperature.fix(300 * units.K)\n", + " m.fs.unit.aqueous_inlet.pressure.fix(1 * units.atm)\n", + " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fix(0.15 * units.g / units.l)\n", + " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fix(0.2 * units.g / units.l)\n", + " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0.1 * units.g / units.l)\n", + "\n", + " return m\n", + "\n", + " @pytest.mark.build\n", + " @pytest.mark.unit\n", + " def test_build(self, model):\n", + "\n", + " assert hasattr(model.fs.unit, \"aqueous_inlet\")\n", + " assert len(model.fs.unit.aqueous_inlet.vars) == 4\n", + " assert hasattr(model.fs.unit.aqueous_inlet, \"flow_vol\")\n", + " assert hasattr(model.fs.unit.aqueous_inlet, \"conc_mass_comp\")\n", + " assert hasattr(model.fs.unit.aqueous_inlet, \"temperature\")\n", + " assert hasattr(model.fs.unit.aqueous_inlet, \"pressure\")\n", + "\n", + " assert hasattr(model.fs.unit, \"organic_inlet\")\n", + " assert len(model.fs.unit.organic_inlet.vars) == 4\n", + " assert hasattr(model.fs.unit.organic_inlet, \"flow_vol\")\n", + " assert hasattr(model.fs.unit.organic_inlet, \"conc_mass_comp\")\n", + " assert hasattr(model.fs.unit.organic_inlet, \"temperature\")\n", + " assert hasattr(model.fs.unit.organic_inlet, \"pressure\")\n", + "\n", + " assert hasattr(model.fs.unit, \"aqueous_outlet\")\n", + " assert len(model.fs.unit.aqueous_outlet.vars) == 4\n", + " assert hasattr(model.fs.unit.aqueous_outlet, \"flow_vol\")\n", + " assert hasattr(model.fs.unit.aqueous_outlet, \"conc_mass_comp\")\n", + " assert hasattr(model.fs.unit.aqueous_outlet, \"temperature\")\n", + " assert hasattr(model.fs.unit.aqueous_outlet, \"pressure\")\n", + "\n", + " assert hasattr(model.fs.unit, \"organic_outlet\")\n", + " assert len(model.fs.unit.organic_outlet.vars) == 4\n", + " assert hasattr(model.fs.unit.organic_outlet, \"flow_vol\")\n", + " assert hasattr(model.fs.unit.organic_outlet, \"conc_mass_comp\")\n", + " assert hasattr(model.fs.unit.organic_outlet, \"temperature\")\n", + " assert hasattr(model.fs.unit.organic_outlet, \"pressure\")\n", + "\n", + " assert hasattr(model.fs.unit, \"material_aq_balance\")\n", + " assert hasattr(model.fs.unit, \"material_org_balance\")\n", + "\n", + " assert number_variables(model) == 34\n", + " assert number_total_constraints(model) == 16" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Component tests\n", + "\n", + "During the component tests, we evaluate the performance of the unit model when integrated with the property package. This evaluation process typically involves several steps:\n", + "\n", + "1. Unit Consistency Check: Verify that the unit model maintains consistency in its units throughout the model. This ensures that all variables and constraints within the model adhere to the same unit system, guaranteeing compatibility.\n", + "\n", + "2. Termination Condition Verification: This involves checking whether the model terminates optimally with the given inlet conditions.\n", + "\n", + "3. Variable Value Assessment: Check the values of outlet variables against the expected values. To account for the numerical tolerance of the solvers, the values are compared using the approx function with a relative tolerance.\n", + "\n", + "4. Input Variable Stability Test: Verify that input variables, which should remain fixed during model operation, are not inadvertently unfixed or altered.\n", + "\n", + "5. Structural Issues: Verify that there are no structural issues with the model. \n", + "\n", + "By performing these checks, we conclude the testing for the unit model. " + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "class TestFlowsheet:\n", + " @pytest.fixture\n", + " def model(self):\n", + " m = ConcreteModel()\n", + " m.fs = idaes.core.FlowsheetBlock(dynamic=False)\n", + " m.fs.org_properties = OrgPhase()\n", + " m.fs.aq_properties = AqPhase()\n", + "\n", + " m.fs.unit = LiqExtraction(\n", + " dynamic=False,\n", + " has_pressure_change=False,\n", + " organic_property_package=m.fs.org_properties,\n", + " aqueous_property_package=m.fs.aq_properties,\n", + " )\n", + " m.fs.org_properties.diffusion_factor[\"NaCl\"] = (\n", + " m.fs.org_properties.diffusion_factor[\"NaCl\"] / 100\n", + " )\n", + " m.fs.org_properties.diffusion_factor[\"KNO3\"] = (\n", + " m.fs.org_properties.diffusion_factor[\"KNO3\"] / 100\n", + " )\n", + " m.fs.org_properties.diffusion_factor[\"CaSO4\"] = (\n", + " m.fs.org_properties.diffusion_factor[\"CaSO4\"] / 100\n", + " )\n", + "\n", + " m.fs.unit.organic_inlet.flow_vol.fix(80 * units.ml / units.min)\n", + " m.fs.unit.organic_inlet.temperature.fix(300 * units.K)\n", + " m.fs.unit.organic_inlet.pressure.fix(1 * units.atm)\n", + " m.fs.unit.organic_inlet.conc_mass_comp[0, \"NaCl\"].fix(0 * units.g / units.kg)\n", + " m.fs.unit.organic_inlet.conc_mass_comp[0, \"KNO3\"].fix(0 * units.g / units.kg)\n", + " m.fs.unit.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0 * units.g / units.kg)\n", + "\n", + " m.fs.unit.aqueous_inlet.flow_vol.fix(10 * units.ml / units.min)\n", + " m.fs.unit.aqueous_inlet.temperature.fix(300 * units.K)\n", + " m.fs.unit.aqueous_inlet.pressure.fix(1 * units.atm)\n", + " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fix(0.15 * units.g / units.kg)\n", + " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fix(0.2 * units.g / units.kg)\n", + " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0.1 * units.g / units.kg)\n", + "\n", + " return m\n", + "\n", + " @pytest.mark.component\n", + " def test_unit_model(self, model):\n", + " assert_units_consistent(model)\n", + " solver = get_solver()\n", + " results = solver.solve(model, tee=False)\n", + "\n", + " # Check for optimal termination\n", + " assert check_optimal_termination(results)\n", + "\n", + " # Checking for outlet flows\n", + " assert value(model.fs.unit.organic_outlet.flow_vol[0]) == pytest.approx(\n", + " 80.0, rel=1e-5\n", + " )\n", + " assert value(model.fs.unit.aqueous_outlet.flow_vol[0]) == pytest.approx(\n", + " 10.0, rel=1e-5\n", + " )\n", + "\n", + " # Checking for outlet mass_comp\n", + " assert value(\n", + " model.fs.unit.organic_outlet.conc_mass_comp[0, \"CaSO4\"]\n", + " ) == pytest.approx(0.000187499, rel=1e-5)\n", + " assert value(\n", + " model.fs.unit.organic_outlet.conc_mass_comp[0, \"KNO3\"]\n", + " ) == pytest.approx(0.000749999, rel=1e-5)\n", + " assert value(\n", + " model.fs.unit.organic_outlet.conc_mass_comp[0, \"NaCl\"]\n", + " ) == pytest.approx(0.000403124, rel=1e-5)\n", + " assert value(\n", + " model.fs.unit.aqueous_outlet.conc_mass_comp[0, \"CaSO4\"]\n", + " ) == pytest.approx(0.0985, rel=1e-5)\n", + " assert value(\n", + " model.fs.unit.aqueous_outlet.conc_mass_comp[0, \"KNO3\"]\n", + " ) == pytest.approx(0.194, rel=1e-5)\n", + " assert value(\n", + " model.fs.unit.aqueous_outlet.conc_mass_comp[0, \"NaCl\"]\n", + " ) == pytest.approx(0.146775, rel=1e-5)\n", + "\n", + " # Checking for outlet temperature\n", + " assert value(model.fs.unit.organic_outlet.temperature[0]) == pytest.approx(\n", + " 300, rel=1e-5\n", + " )\n", + " assert value(model.fs.unit.aqueous_outlet.temperature[0]) == pytest.approx(\n", + " 300, rel=1e-5\n", + " )\n", + "\n", + " # Checking for outlet pressure\n", + " assert value(model.fs.unit.organic_outlet.pressure[0]) == pytest.approx(\n", + " 1, rel=1e-5\n", + " )\n", + " assert value(model.fs.unit.aqueous_outlet.pressure[0]) == pytest.approx(\n", + " 1, rel=1e-5\n", + " )\n", + "\n", + " # Fixed state variables\n", + " assert model.fs.unit.organic_inlet.flow_vol[0].fixed\n", + " assert model.fs.unit.organic_inlet.conc_mass_comp[0, \"NaCl\"].fixed\n", + " assert model.fs.unit.organic_inlet.conc_mass_comp[0, \"KNO3\"].fixed\n", + " assert model.fs.unit.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fixed\n", + " assert model.fs.unit.organic_inlet.temperature[0].fixed\n", + " assert model.fs.unit.organic_inlet.pressure[0].fixed\n", + "\n", + " assert model.fs.unit.aqueous_inlet.flow_vol[0].fixed\n", + " assert model.fs.unit.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fixed\n", + " assert model.fs.unit.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fixed\n", + " assert model.fs.unit.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fixed\n", + " assert model.fs.unit.aqueous_inlet.temperature[0].fixed\n", + " assert model.fs.unit.aqueous_inlet.pressure[0].fixed\n", + "\n", + " @pytest.mark.component\n", + " def test_structural_issues(self, model):\n", + " dt = DiagnosticsToolbox(model)\n", + " dt.assert_no_structural_warnings()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this tutorial, we have covered the comprehensive process of creating a custom unit model from scratch. Let's recap the key steps we have undertaken:\n", + "\n", + "- Developing property package\n", + "- Constructing the unit model \n", + "- Creating a Flowsheet\n", + "- Debugging the model using DiagnosticsToolbox\n", + "- Writing tests for the unit model\n", + "\n", + "By following the aforementioned procedure, one can create their own custom unit model. This concludes the tutorial on creating a custom unit model. " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "idaes-pse", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model_usr.ipynb b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model_usr.ipynb index 211052dd..9b790938 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model_usr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/creating_unit_model_usr.ipynb @@ -1,2245 +1,2263 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Creating Custom Unit Model\n", - "Author: Javal Vyas \n", - "Maintainer: Javal Vyas \n", - "Updated: 2023-02-20\n", - "\n", - "This tutorial is a comprehensive step-wise procedure to build a custom unit model from scratch. This tutorial will include creating a property package, a custom unit model and testing them. For this tutorial we shall create a custom unit model for Liquid - Liquid Extraction. \n", - "\n", - "The Liquid - Liquid Extractor model contains two immiscible fluids forming the two phases. One of the phases, say phase_1 has a high concentration of solutes which is to be separated. A mass transfer happens between the two phases and the solute is transferred from phase_1 to phase_2. This mass transfer is governed by a parameter called the distribution coefficient.\n", - "\n", - "After reviewing the working principles of the Liquid - Liquid Extractor, we shall proceed to create a custom unit model. We will require a property package for each phase, a custom unit model class and tests for the model and property packages.\n", - "\n", - "Before commencing the development of the model, we need to state some assumptions which the following unit model will be using. \n", - "- Steady-state only\n", - "- Organic phase property package has a single phase named Org\n", - "- Aqueous phase property package has a single phase named Aq\n", - "- Organic and Aqueous phase properties need not have the same component list. \n", - "\n", - "Thus as per the assumptions, we will be creating one property package for the aqueous phase (Aq), and the other for the Organic phase (Org). " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. Creating Organic Property Package\n", - "\n", - "Creating a property package is a 4 step process\n", - "- Import necessary libraries \n", - "- Creating Physical Parameter Data Block\n", - "- Define State Block\n", - "- Define State Block Data\n", - "\n", - "# 1.1 Importing necessary packages \n", - "Let us begin with the importing the necessary libraries where we will be using functionalities from IDAES and Pyomo. " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Python libraries\n", - "import logging\n", - "\n", - "import idaes.logger as idaeslog\n", - "from idaes.core.util.initialization import fix_state_vars\n", - "\n", - "# Import Pyomo libraries\n", - "from pyomo.environ import (\n", - " Param,\n", - " Set,\n", - " Var,\n", - " NonNegativeReals,\n", - " units,\n", - " Expression,\n", - " PositiveReals,\n", - ")\n", - "\n", - "# Import IDAES cores\n", - "from idaes.core import (\n", - " declare_process_block_class,\n", - " MaterialFlowBasis,\n", - " PhysicalParameterBlock,\n", - " StateBlockData,\n", - " StateBlock,\n", - " MaterialBalanceType,\n", - " EnergyBalanceType,\n", - " Solute,\n", - " Solvent,\n", - " LiquidPhase,\n", - ")\n", - "from idaes.core.util.model_statistics import degrees_of_freedom" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1.2 Physical Parameter Data Block\n", - "\n", - "A `PhysicalParameterBlock` serves as the central point of reference for all aspects of the property package and needs to define several things about the package. These are summarized below:\n", - "\n", - "- Units of measurement\n", - "- What properties are supported and how they are implemented\n", - "- What components and phases are included in the packages\n", - "- All the global parameters necessary for calculating properties\n", - "- A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", - "\n", - "To construct this block, we begin by declaring a process block class using a Python decorator. One can learn more about `declare_process_block_class` [here](https://github.com/IDAES/idaes-pse/blob/eea1209077b75f7d940d8958362e69d4650c079d/idaes/core/base/process_block.py#L173). After constructing the process block, we define a build function which contains all the components that the property package would have. `super` function here is used to give access to methods and properties of a parent or sibling class and since this is used on the class `PhysicalParameterData` class, build has access to all the parent and sibling class methods. \n", - "\n", - "The `PhysicalParameterBlock` then refers to the `state block`, in this case `OrgPhaseStateBlock` (which will be declared later), so that we can build a state block instance by only knowing the `PhysicalParameterBlock` we wish to use. Then we move on to list the number of phases in this property package. Then we assign the variable to the phase which follows a naming convention. Like here since the solvent is in the Organic phase, we will assign the Phase as OrganicPhase and the variable will be named Org as per the naming convention. The details of naming conventions can be found [here](https://github.com/IDAES/idaes-pse/blob/main/docs/explanations/conventions.rst). We will be following the same convention throughout the example. \n", - " \n", - "After defining the list of the phases, we move on to list the components and their type in the phase. It can be a solute or a solvent in the Organic phase. Thus, we define the component and assign it to either being a solute or a solvent. In this case, the salts are the solutes and Ethylene dibromide is the solvent. Next, we define the physical properties involved in the package, like the heat capacity and density of the solvent, the reference temperature, and the distribution factor that would govern the mass transfer from one phase into another. Additionally, a parameter, the `diffusion_factor`, is introduced. This factor plays a crucial role in governing mass transfer between phases, necessitating its definition within the state block.\n", - "\n", - "The final step in creating the Physical Parameter Block is to declare a `classmethod` named `define_metadata`, which takes two arguments: a class (cls) and an instance of that class (obj). In this method, we will call the predefined method `add_default_units()`.\n", - "\n", - "- `obj.add_default_units()` sets the default units metadata for the property package, and here we define units to be used with this property package as default. " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"OrgPhase\")\n", - "class PhysicalParameterData(PhysicalParameterBlock):\n", - " \"\"\"\n", - " Property Parameter Block Class\n", - "\n", - " Contains parameters and indexing sets associated with properties for\n", - " organic Phase\n", - "\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction.\n", - " \"\"\"\n", - " super().build()\n", - "\n", - " self._state_block_class = OrgPhaseStateBlock\n", - "\n", - " # List of valid phases in property package\n", - " self.Org = LiquidPhase()\n", - "\n", - " # Component list - a list of component identifiers\n", - " self.NaCl = Solute()\n", - " self.KNO3 = Solute()\n", - " self.CaSO4 = Solute()\n", - " self.solvent = (\n", - " Solvent()\n", - " ) # Solvent used here is ethylene dibromide (Organic Polar)\n", - "\n", - " # Heat capacity of solvent\n", - " self.cp_mass = Param(\n", - " mutable=True,\n", - " initialize=717.01,\n", - " doc=\"Specific heat capacity of solvent\",\n", - " units=units.J / units.kg / units.K,\n", - " )\n", - "\n", - " self.dens_mass = Param(\n", - " mutable=True,\n", - " initialize=2170,\n", - " doc=\"Density of ethylene dibromide\",\n", - " units=units.kg / units.m**3,\n", - " )\n", - " self.temperature_ref = Param(\n", - " within=PositiveReals,\n", - " mutable=True,\n", - " default=298.15,\n", - " doc=\"Reference temperature\",\n", - " units=units.K,\n", - " )\n", - " self.diffusion_factor = Param(\n", - " self.solute_set,\n", - " initialize={\"NaCl\": 2.15, \"KNO3\": 3, \"CaSO4\": 1.5},\n", - " within=PositiveReals,\n", - " mutable=True,\n", - " )\n", - "\n", - " @classmethod\n", - " def define_metadata(cls, obj):\n", - " obj.add_default_units(\n", - " {\n", - " \"time\": units.hour,\n", - " \"length\": units.m,\n", - " \"mass\": units.g,\n", - " \"amount\": units.mol,\n", - " \"temperature\": units.K,\n", - " }\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1.3 State Block\n", - "\n", - "After the `PhysicalParameterBlock` class has been created, the next step is to write the code necessary to create the State Blocks that will be used throughout the flowsheet. `StateBlock` contains all the information necessary to define the state of the system. This includes the state variables and constraints on those variables which are used to describe a state property like the enthalpy, material balance, etc.\n", - "\n", - "Creating a State Block requires us to write two classes. The reason we write two classes is because of the inherent nature of how `declare_process_block_data` works. `declare_process_block_data` facilitates creating an `IndexedComponent` object which can handle multiple `ComponentData` objects which represent the component at each point in the indexing set. This makes it easier to build an instance of the model at each indexed point. However, State Blocks are slightly different, as they are always indexed (at least by time). Due to this, we often want to perform actions on all the elements of the indexed StateBlock all at once (rather than element by element).\n", - "\n", - "The class `_OrganicStateBlock` is defined without the `declare_process_block_data` decorator and thus works as a traditional class and this facilitates performing a method on the class as a whole rather than individual elements of the indexed property blocks. In this class we define the `fix_initialization_states` function. `fix_initialization_states` function is to used to fix the state variable within the state block with the provided initial values (usually inlet conditions). It takes a `block` as the argument in which the state variables are to be fixed. It also takes `state_args` as an optional argument. `state_args` is a dictionary with the value for the state variables to be fixed. This function returns a dictionary indexed by the block, state variables and variable index indicating the fixed status of each variable before applying the function. \n", - "\n", - "The above function comprise of the _OrganicStateBlock, next we shall see the construction of the OrgPhaseStateBlockData class." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "class _OrganicStateBlock(StateBlock):\n", - " \"\"\"\n", - " This Class contains methods which should be applied to Property Blocks as a\n", - " whole, rather than individual elements of indexed Property Blocks.\n", - " \"\"\"\n", - "\n", - " def fix_initialization_states(self):\n", - " fix_state_vars(self)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The class `OrgPhaseStateBlockData` is designated with the `declare_process_block_class` decorator, named `OrgPhaseStateBlock`, and inherits the block class from `_OrganicStateBlock`. This inheritance allows `OrgPhaseStateBlockData` to leverage functions from `_OrganicStateBlock`. Following the class definition, a build function similar to the one used in the `PhysicalParameterData` block is employed. The super function is utilized to enable the utilization of functions from the parent or sibling class.\n", - "\n", - "The subsequent objective is to delineate the state variables, accomplished through the `_make_state_vars` method. This method encompasses all the essential state variables and associated data. For this particular property package, the required state variables are:\n", - "\n", - "- `flow_vol` - volumetric flow rate\n", - "- `conc_mass_comp` - mass fractions\n", - "- `pressure` - state pressure\n", - "- `temperature` - state temperature\n", - "\n", - "After establishing the state variables, the subsequent step involves setting up state properties as constraints. This includes specifying the relationships and limitations that dictate the system's behavior. The following properties need to be articulated:\n", - "\n", - "-`get_material_flow_terms`: quantifies the amount of material flow.\n", - "- `get_enthalpy_flow_terms`: quantifies the amount of enthalpy flow.\n", - "- `get_flow_rate`: details volumetric flow rates.\n", - "- `default_material_balance_type`: defines the kind of material balance to be used.\n", - "- `default_energy_balance_type`: defines the kind of energy balance to be used.\n", - "- `define_state_vars`: involves defining state variables with units, akin to the define_metadata function in the PhysicalParameterData block.\n", - "- `get_material_flow_basis`: establishes the basis on which state variables are measured, whether in mass or molar terms.\n", - "\n", - "These definitions mark the conclusion of the state block construction and thus the property package. For additional details on creating a property package, please refer to this [resource](../../properties/custom/custom_physical_property_packages_usr.ipynb ).\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"OrgPhaseStateBlock\", block_class=_OrganicStateBlock)\n", - "class OrgPhaseStateBlockData(StateBlockData):\n", - " \"\"\"\n", - " An example property package for Organic phzase for liquid liquid extraction\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction\n", - " \"\"\"\n", - " super().build()\n", - " self._make_state_vars()\n", - "\n", - " def _make_state_vars(self):\n", - " self.flow_vol = Var(\n", - " initialize=1,\n", - " domain=NonNegativeReals,\n", - " doc=\"Total volumetric flowrate\",\n", - " units=units.L / units.hour,\n", - " )\n", - " self.conc_mass_comp = Var(\n", - " self.params.solute_set,\n", - " domain=NonNegativeReals,\n", - " initialize=1,\n", - " doc=\"Component mass concentrations\",\n", - " units=units.g / units.L,\n", - " )\n", - " self.pressure = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=1,\n", - " bounds=(1, 5),\n", - " units=units.atm,\n", - " doc=\"State pressure [atm]\",\n", - " )\n", - "\n", - " self.temperature = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=300,\n", - " bounds=(273, 373),\n", - " units=units.K,\n", - " doc=\"State temperature [K]\",\n", - " )\n", - "\n", - " def material_flow_expression(self, j):\n", - " if j == \"solvent\":\n", - " return self.flow_vol * self.params.dens_mass\n", - " else:\n", - " return self.flow_vol * self.conc_mass_comp[j]\n", - "\n", - " self.material_flow_expression = Expression(\n", - " self.component_list,\n", - " rule=material_flow_expression,\n", - " doc=\"Material flow terms\",\n", - " )\n", - "\n", - " def enthalpy_flow_expression(self):\n", - " return (\n", - " self.flow_vol\n", - " * self.params.dens_mass\n", - " * self.params.cp_mass\n", - " * (self.temperature - self.params.temperature_ref)\n", - " )\n", - "\n", - " self.enthalpy_flow_expression = Expression(\n", - " rule=enthalpy_flow_expression, doc=\"Enthalpy flow term\"\n", - " )\n", - "\n", - " def get_flow_rate(self):\n", - " return self.flow_vol\n", - "\n", - " def get_material_flow_terms(self, p, j):\n", - " return self.material_flow_expression[j]\n", - "\n", - " def get_enthalpy_flow_terms(self, p):\n", - " return self.enthalpy_flow_expression\n", - "\n", - " def default_material_balance_type(self):\n", - " return MaterialBalanceType.componentTotal\n", - "\n", - " def default_energy_balance_type(self):\n", - " return EnergyBalanceType.enthalpyTotal\n", - "\n", - " def define_state_vars(self):\n", - " return {\n", - " \"flow_vol\": self.flow_vol,\n", - " \"conc_mass_comp\": self.conc_mass_comp,\n", - " \"temperature\": self.temperature,\n", - " \"pressure\": self.pressure,\n", - " }\n", - "\n", - " def get_material_flow_basis(self):\n", - " return MaterialFlowBasis.mass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Creating Aqueous Property Package\n", - "\n", - "The structure of Aqueous Property Package mirrors that of the Organic Property Package we previously developed. We'll commence with an overview, importing the required libraries, followed by the creation of the physical property block and two state blocks. The distinctions in this package lie in the physical parameter values, and notably, the absence of the diffusion factor term, differentiating it from the prior package. The following code snippet should provide clarity on these distinctions." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Python libraries\n", - "import logging\n", - "\n", - "from idaes.core.util.initialization import fix_state_vars\n", - "\n", - "# Import Pyomo libraries\n", - "from pyomo.environ import (\n", - " Param,\n", - " Var,\n", - " NonNegativeReals,\n", - " units,\n", - " Expression,\n", - " PositiveReals,\n", - ")\n", - "\n", - "# Import IDAES cores\n", - "from idaes.core import (\n", - " declare_process_block_class,\n", - " MaterialFlowBasis,\n", - " PhysicalParameterBlock,\n", - " StateBlockData,\n", - " StateBlock,\n", - " MaterialBalanceType,\n", - " EnergyBalanceType,\n", - " Solute,\n", - " Solvent,\n", - " LiquidPhase,\n", - ")\n", - "\n", - "# Some more information about this module\n", - "__author__ = \"Javal Vyas\"\n", - "\n", - "\n", - "# Set up logger\n", - "_log = logging.getLogger(__name__)\n", - "\n", - "\n", - "@declare_process_block_class(\"AqPhase\")\n", - "class AqPhaseData(PhysicalParameterBlock):\n", - " \"\"\"\n", - " Property Parameter Block Class\n", - "\n", - " Contains parameters and indexing sets associated with properties for\n", - " aqueous Phase\n", - "\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction.\n", - " \"\"\"\n", - " super().build()\n", - "\n", - " self._state_block_class = AqPhaseStateBlock\n", - "\n", - " # List of valid phases in property package\n", - " self.Aq = LiquidPhase()\n", - "\n", - " # Component list - a list of component identifiers\n", - " self.NaCl = Solute()\n", - " self.KNO3 = Solute()\n", - " self.CaSO4 = Solute()\n", - " self.H2O = Solvent()\n", - "\n", - " # Heat capacity of solvent\n", - " self.cp_mass = Param(\n", - " mutable=True,\n", - " initialize=4182,\n", - " doc=\"Specific heat capacity of solvent\",\n", - " units=units.J / units.kg / units.K,\n", - " )\n", - "\n", - " self.dens_mass = Param(\n", - " mutable=True,\n", - " initialize=997,\n", - " doc=\"Density of ethylene dibromide\",\n", - " units=units.kg / units.m**3,\n", - " )\n", - " self.temperature_ref = Param(\n", - " within=PositiveReals,\n", - " mutable=True,\n", - " default=298.15,\n", - " doc=\"Reference temperature\",\n", - " units=units.K,\n", - " )\n", - "\n", - " @classmethod\n", - " def define_metadata(cls, obj):\n", - " obj.add_default_units(\n", - " {\n", - " \"time\": units.hour,\n", - " \"length\": units.m,\n", - " \"mass\": units.g,\n", - " \"amount\": units.mol,\n", - " \"temperature\": units.K,\n", - " }\n", - " )\n", - "\n", - "\n", - "class _AqueousStateBlock(StateBlock):\n", - " \"\"\"\n", - " This Class contains methods which should be applied to Property Blocks as a\n", - " whole, rather than individual elements of indexed Property Blocks.\n", - " \"\"\"\n", - "\n", - " def fix_initialization_states(self):\n", - " fix_state_vars(self)\n", - "\n", - "\n", - "@declare_process_block_class(\"AqPhaseStateBlock\", block_class=_AqueousStateBlock)\n", - "class AqPhaseStateBlockData(StateBlockData):\n", - " \"\"\"\n", - " An example property package for ideal gas properties with Gibbs energy\n", - " \"\"\"\n", - "\n", - " def build(self):\n", - " \"\"\"\n", - " Callable method for Block construction\n", - " \"\"\"\n", - " super().build()\n", - " self._make_state_vars()\n", - "\n", - " def _make_state_vars(self):\n", - " self.flow_vol = Var(\n", - " initialize=1,\n", - " domain=NonNegativeReals,\n", - " doc=\"Total volumetric flowrate\",\n", - " units=units.L / units.hour,\n", - " )\n", - "\n", - " self.conc_mass_comp = Var(\n", - " self.params.solute_set,\n", - " domain=NonNegativeReals,\n", - " initialize={\"NaCl\": 0.15, \"KNO3\": 0.2, \"CaSO4\": 0.1},\n", - " doc=\"Component mass concentrations\",\n", - " units=units.g / units.L,\n", - " )\n", - "\n", - " self.pressure = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=1,\n", - " bounds=(1, 5),\n", - " units=units.atm,\n", - " doc=\"State pressure [atm]\",\n", - " )\n", - "\n", - " self.temperature = Var(\n", - " domain=NonNegativeReals,\n", - " initialize=300,\n", - " bounds=(273, 373),\n", - " units=units.K,\n", - " doc=\"State temperature [K]\",\n", - " )\n", - "\n", - " def material_flow_expression(self, j):\n", - " if j == \"H2O\":\n", - " return self.flow_vol * self.params.dens_mass\n", - " else:\n", - " return self.conc_mass_comp[j] * self.flow_vol\n", - "\n", - " self.material_flow_expression = Expression(\n", - " self.component_list,\n", - " rule=material_flow_expression,\n", - " doc=\"Material flow terms\",\n", - " )\n", - "\n", - " def enthalpy_flow_expression(self):\n", - " return (\n", - " self.flow_vol\n", - " * self.params.dens_mass\n", - " * self.params.cp_mass\n", - " * (self.temperature - self.params.temperature_ref)\n", - " )\n", - "\n", - " self.enthalpy_flow_expression = Expression(\n", - " rule=enthalpy_flow_expression, doc=\"Enthalpy flow term\"\n", - " )\n", - "\n", - " def get_flow_rate(self):\n", - " return self.flow_vol\n", - "\n", - " def get_material_flow_terms(self, p, j):\n", - " return self.material_flow_expression[j]\n", - "\n", - " def get_enthalpy_flow_terms(self, p):\n", - " return self.enthalpy_flow_expression\n", - "\n", - " def default_material_balance_type(self):\n", - " return MaterialBalanceType.componentTotal\n", - "\n", - " def default_energy_balance_type(self):\n", - " return EnergyBalanceType.enthalpyTotal\n", - "\n", - " def define_state_vars(self):\n", - " return {\n", - " \"flow_vol\": self.flow_vol,\n", - " \"conc_mass_comp\": self.conc_mass_comp,\n", - " \"temperature\": self.temperature,\n", - " \"pressure\": self.pressure,\n", - " }\n", - "\n", - " def get_material_flow_basis(self):\n", - " return MaterialFlowBasis.mass" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3. Liquid Liquid Extractor Unit Model\n", - "\n", - "Following the creation of property packages, our next step is to develop a unit model that facilitates the mass transfer of solutes between phases. This involves importing necessary libraries, building the unit model, defining auxiliary functions, and establishing the initialization routine for the unit model.\n", - "\n", - "## 3.1 Importing necessary libraries\n", - "\n", - "Let's commence by importing the essential libraries from Pyomo and IDAES." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Import Pyomo libraries\n", - "from pyomo.common.config import ConfigBlock, ConfigValue, In, Bool\n", - "from pyomo.environ import (\n", - " value,\n", - " Constraint,\n", - " check_optimal_termination,\n", - ")\n", - "\n", - "# Import IDAES cores\n", - "from idaes.core import (\n", - " ControlVolume0DBlock,\n", - " declare_process_block_class,\n", - " MaterialBalanceType,\n", - " EnergyBalanceType,\n", - " MaterialFlowBasis,\n", - " MomentumBalanceType,\n", - " UnitModelBlockData,\n", - " useDefault,\n", - ")\n", - "from idaes.core.util.config import (\n", - " is_physical_parameter_block,\n", - " is_reaction_parameter_block,\n", - ")\n", - "\n", - "import idaes.logger as idaeslog\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.exceptions import ConfigurationError, InitializationError" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.2 Creating the unit model\n", - "\n", - "Creating a unit model starts by creating a class called `LiqExtractionData` and use the `declare_process_block_class` decorator. The `LiqExtractionData` inherits the properties of `UnitModelBlockData` class, which allows us to create a control volume which is necessary for the unit model. After declaration of the class we proceed to define the relevant config arguments for the control volume. The config arguments includes the following properties:\n", - "\n", - "- `material_balance_type` - Indicates what type of mass balance should be constructed\n", - "- `has_pressure_change` - Indicates whether terms for pressure change should be\n", - "constructed\n", - "- `has_phase_equilibrium` - Indicates whether terms for phase equilibrium should be\n", - "constructed\n", - "- `Organic Property` - Property parameter object used to define property calculations\n", - "for the Organic phase\n", - "- `Organic Property Arguments` - Arguments to use for constructing Organic phase properties\n", - "- `Aqueous Property` - Property parameter object used to define property calculations\n", - "for the aqueous phase\n", - "- `Aqueous Property Arguments` - Arguments to use for constructing aqueous phase properties\n", - "\n", - "As there are no pressure changes or reactions in this scenario, configuration arguments for these aspects are not included. However, additional details on configuration arguments can be found [here](https://github.com/IDAES/idaes-pse/blob/8948c6ce27d4c7f2c06b377a173f413599091998/idaes/models/unit_models/cstr.py)." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"LiqExtraction\")\n", - "class LiqExtractionData(UnitModelBlockData):\n", - " \"\"\"\n", - " LiqExtraction Unit Model Class\n", - " \"\"\"\n", - "\n", - " CONFIG = UnitModelBlockData.CONFIG()\n", - "\n", - " CONFIG.declare(\n", - " \"material_balance_type\",\n", - " ConfigValue(\n", - " default=MaterialBalanceType.useDefault,\n", - " domain=In(MaterialBalanceType),\n", - " description=\"Material balance construction flag\",\n", - " doc=\"\"\"Indicates what type of mass balance should be constructed,\n", - " **default** - MaterialBalanceType.useDefault.\n", - " **Valid values:** {\n", - " **MaterialBalanceType.useDefault - refer to property package for default\n", - " balance type\n", - " **MaterialBalanceType.none** - exclude material balances,\n", - " **MaterialBalanceType.componentPhase** - use phase component balances,\n", - " **MaterialBalanceType.componentTotal** - use total component balances,\n", - " **MaterialBalanceType.elementTotal** - use total element balances,\n", - " **MaterialBalanceType.total** - use total material balance.}\"\"\",\n", - " ),\n", - " )\n", - " CONFIG.declare(\n", - " \"has_pressure_change\",\n", - " ConfigValue(\n", - " default=False,\n", - " domain=Bool,\n", - " description=\"Pressure change term construction flag\",\n", - " doc=\"\"\"Indicates whether terms for pressure change should be\n", - " constructed,\n", - " **default** - False.\n", - " **Valid values:** {\n", - " **True** - include pressure change terms,\n", - " **False** - exclude pressure change terms.}\"\"\",\n", - " ),\n", - " )\n", - " CONFIG.declare(\n", - " \"has_phase_equilibrium\",\n", - " ConfigValue(\n", - " default=False,\n", - " domain=Bool,\n", - " description=\"Phase equilibrium construction flag\",\n", - " doc=\"\"\"Indicates whether terms for phase equilibrium should be\n", - " constructed,\n", - " **default** = False.\n", - " **Valid values:** {\n", - " **True** - include phase equilibrium terms\n", - " **False** - exclude phase equilibrium terms.}\"\"\",\n", - " ),\n", - " )\n", - " CONFIG.declare(\n", - " \"organic_property_package\",\n", - " ConfigValue(\n", - " default=useDefault,\n", - " domain=is_physical_parameter_block,\n", - " description=\"Property package to use for organic phase\",\n", - " doc=\"\"\"Property parameter object used to define property calculations\n", - " for the organic phase,\n", - " **default** - useDefault.\n", - " **Valid values:** {\n", - " **useDefault** - use default package from parent model or flowsheet,\n", - " **PropertyParameterObject** - a PropertyParameterBlock object.}\"\"\",\n", - " ),\n", - " )\n", - " CONFIG.declare(\n", - " \"organic_property_package_args\",\n", - " ConfigBlock(\n", - " implicit=True,\n", - " description=\"Arguments to use for constructing organic phase properties\",\n", - " doc=\"\"\"A ConfigBlock with arguments to be passed to organic phase\n", - " property block(s) and used when constructing these,\n", - " **default** - None.\n", - " **Valid values:** {\n", - " see property package for documentation.}\"\"\",\n", - " ),\n", - " )\n", - " CONFIG.declare(\n", - " \"aqueous_property_package\",\n", - " ConfigValue(\n", - " default=useDefault,\n", - " domain=is_physical_parameter_block,\n", - " description=\"Property package to use for aqueous phase\",\n", - " doc=\"\"\"Property parameter object used to define property calculations\n", - " for the aqueous phase,\n", - " **default** - useDefault.\n", - " **Valid values:** {\n", - " **useDefault** - use default package from parent model or flowsheet,\n", - " **PropertyParameterObject** - a PropertyParameterBlock object.}\"\"\",\n", - " ),\n", - " )\n", - " CONFIG.declare(\n", - " \"aqueous_property_package_args\",\n", - " ConfigBlock(\n", - " implicit=True,\n", - " description=\"Arguments to use for constructing aqueous phase properties\",\n", - " doc=\"\"\"A ConfigBlock with arguments to be passed to aqueous phase\n", - " property block(s) and used when constructing these,\n", - " **default** - None.\n", - " **Valid values:** {\n", - " see property package for documentation.}\"\"\",\n", - " ),\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Building the model\n", - "\n", - "After constructing the `LiqExtractionData` block and defining the config arguments for the control block, the next step is to write a build function that incorporates control volume and establishes constraints on the control volume to achieve the desired mass transfer. The control volume serves as a pivotal component in the unit model construction, representing the volume in which the process unfolds.\n", - "\n", - "IDAES provides flexibility in choosing control volumes based on geometry, with options including 0D or 1D. In this instance, we opt for a 0D control volume, the most commonly used control volume. This choice is suitable for systems where there is a well-mixed volume of fluid or where spatial variations are deemed negligible.\n", - "\n", - "The control volume encompasses parameters from (1-8), and its equations are configured to satisfy the specified config arguments. For a more in-depth understanding, users are encouraged to refer to [this resource](https://github.com/IDAES/idaes-pse/blob/2f34dd3abc1bce5ba17c80939a01f9034e4fbeef/docs/reference_guides/core/control_volume_0d.rst). \n", - "\n", - "The `build` function is initiated using the `super` function to gain access to methods and properties of a parent or sibling class, in this case, the `LiqExtractionData` class. Following the `super` function, checks are performed on the property packages to ensure the appropriate names for the solvents, such as 'Aq' for the aqueous phase and 'Org' for the Organic phase. An error is raised if these conditions are not met. Subsequently, a check is performed to ensure there is at least one common component between the two property packages that can be transferred from one phase to another.\n", - "\n", - "After these checks are completed without any exceptions raised, it is ensured that the property packages have the desired components with appropriate names. The next step is to create a control volume and assign it to a property package. Here, we initiate with the Organic phase and attach a 0D control volume to it. The control volume takes arguments about the dynamics of the block, and the property package, along with property package arguments. \n", - "\n", - "The subsequent steps involve adding inlet and outlet state blocks to the control volume using the `add_state_blocks` function. This function takes arguments about the flow direction (defaulted to forward) and a flag for `has_phase_equilibrium`, which is read from the config. The control volume is now equipped with the inlet and outlet state blocks and has access to the Organic property package\n", - "\n", - "Next, material balance equations are added to the control volume using the `add_material_balance` function, taking into account the type of material balance, `has_phase_equilibrium`, and the presence of `has_mass_transfer`. To understand this arguments further let us have a look at the material balance equation and how it is implemented in control volume. \n", - "\n", - "$\\frac{\\partial M_{t, p, j}}{\\partial t} = F_{in, t, p, j} - F_{out, t, p, j} + N_{kinetic, t, p, j} + N_{equilibrium, t, p, j} + N_{pe, t, p, j} + N_{transfer, t, p, j} + N_{custom, t, p, j}$\n", - "\n", - "- $\\frac{\\partial M_{t, p, j}}{\\partial t}$ - Material accumulation\n", - "- $F_{in, t, p, j}$ - Flow into the control volume\n", - "- $F_{out, t, p, j}$ - Flow out of the control volume\n", - "- $N_{kinetic, t, p, j}$ - Rate of reaction generation\n", - "- $N_{equilibrium, t, p, j}$ - Equilibrium reaction generation\n", - "- $N_{pe, t, p, j}$ - Equilibrium reaction extent\n", - "- $N_{transfer, t, p, j}$ - Mass transfer\n", - "- $N_{custom, t, p, j}$ - User defined terms in material balance\n", - "\n", - "- t indicates time index\n", - "- p indicates phase index\n", - "- j indicates component index\n", - "- e indicates element index\n", - "- r indicates reaction name index\n", - "\n", - "Here we shall see that $N_{transfer, t, p, j}$ is the term in the equation which is responsible for the mass transfer and the `mass_transfer_term` should only be equal to the amount being transferred and not include a material balance on our own. For a detailed description of the terms one should refer to the following [resource](https://github.com/IDAES/idaes-pse/blob/2f34dd3abc1bce5ba17c80939a01f9034e4fbeef/docs/reference_guides/core/control_volume_0d.rst)\n", - "\n", - "This concludes the creation of organic phase control volume. Similar procedure is done for the aqueous phase control volume with aqueous property package. \n", - "\n", - "Now, the unit model has two control volumes with appropriate configurations and material, momentum and energy balances. The next step is to check the basis of the two property packages. They should both have the same flow basis, and an error is raised if this is not the case.\n", - "\n", - "Following this, the `add_inlet_ports` and `add_outlet_ports` functions are used to create inlet and outlet ports. These ports are named and assigned to each control volume, resulting in labeled inlet and outlet ports for each control volume.\n", - "\n", - "The subsequent steps involve writing unit-level constraints. A check if the basis is either molar or mass, and unit-level constraints are written accordingly. The first constraint pertains to the mass transfer term for the aqueous phase. The mass transfer term is equal to $mass\\_transfer\\_term_{aq} = (D_{i})\\frac{mass_{i}~in~aq~phase}{flowrate~of~aq~phase}$. The second constraint relates to the mass transfer term in the organic phase, which is the negative of the mass transfer term in the aqueous phase: $mass\\_transfer\\_term_{org} = - mass\\_transfer\\_term_{aq} $\n", - "\n", - "Here $mass\\_transfer\\_term_{p}$ is the term indicating the amount of material being transferred from/to the phase and $D_{i}$ is the Distribution co-efficient for component i. \n", - "\n", - "This marks the completion of the build function, and the unit model is now equipped with the necessary process constraints. The subsequent steps involve writing the initialization routine." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "def build(self):\n", - " \"\"\"\n", - " Begin building model (pre-DAE transformation).\n", - " Args:\n", - " None\n", - " Returns:\n", - " None\n", - " \"\"\"\n", - " # Call UnitModel.build to setup dynamics\n", - " super().build()\n", - "\n", - " # Check phase lists match assumptions\n", - " if self.config.aqueous_property_package.phase_list != [\"Aq\"]:\n", - " raise ConfigurationError(\n", - " f\"{self.name} Liquid-Liquid Extractor model requires that the aquoues \"\n", - " f\"phase property package have a single phase named 'Aq'\"\n", - " )\n", - " if self.config.organic_property_package.phase_list != [\"Org\"]:\n", - " raise ConfigurationError(\n", - " f\"{self.name} Liquid-Liquid Extractor model requires that the organic \"\n", - " f\"phase property package have a single phase named 'Org'\"\n", - " )\n", - "\n", - " # Check for at least one common component in component lists\n", - " if not any(\n", - " j in self.config.aqueous_property_package.component_list\n", - " for j in self.config.organic_property_package.component_list\n", - " ):\n", - " raise ConfigurationError(\n", - " f\"{self.name} Liquid-Liquid Extractor model requires that the organic \"\n", - " f\"and aqueous phase property packages have at least one \"\n", - " f\"common component.\"\n", - " )\n", - "\n", - " self.organic_phase = ControlVolume0DBlock(\n", - " dynamic=self.config.dynamic,\n", - " property_package=self.config.organic_property_package,\n", - " property_package_args=self.config.organic_property_package_args,\n", - " )\n", - "\n", - " self.organic_phase.add_state_blocks(\n", - " has_phase_equilibrium=self.config.has_phase_equilibrium\n", - " )\n", - "\n", - " # Separate organic and aqueous phases means that phase equilibrium will\n", - " # be handled at the unit model level, thus has_phase_equilibrium is\n", - " # False, but has_mass_transfer is True.\n", - "\n", - " self.organic_phase.add_material_balances(\n", - " balance_type=self.config.material_balance_type,\n", - " has_phase_equilibrium=self.config.has_phase_equilibrium,\n", - " has_mass_transfer=True,\n", - " )\n", - " # ---------------------------------------------------------------------\n", - "\n", - " self.aqueous_phase = ControlVolume0DBlock(\n", - " dynamic=self.config.dynamic,\n", - " property_package=self.config.aqueous_property_package,\n", - " property_package_args=self.config.aqueous_property_package_args,\n", - " )\n", - "\n", - " self.aqueous_phase.add_state_blocks(\n", - " has_phase_equilibrium=self.config.has_phase_equilibrium\n", - " )\n", - "\n", - " # Separate liquid and aqueous phases means that phase equilibrium will\n", - " # be handled at the unit model level, thus has_phase_equilibrium is\n", - " # False, but has_mass_transfer is True.\n", - "\n", - " self.aqueous_phase.add_material_balances(\n", - " balance_type=self.config.material_balance_type,\n", - " # has_rate_reactions=False,\n", - " has_phase_equilibrium=self.config.has_phase_equilibrium,\n", - " has_mass_transfer=True,\n", - " )\n", - "\n", - " self.aqueous_phase.add_geometry()\n", - "\n", - " # ---------------------------------------------------------------------\n", - " # Check flow basis is compatible\n", - " t_init = self.flowsheet().time.first()\n", - " if (\n", - " self.aqueous_phase.properties_out[t_init].get_material_flow_basis()\n", - " != self.organic_phase.properties_out[t_init].get_material_flow_basis()\n", - " ):\n", - " raise ConfigurationError(\n", - " f\"{self.name} aqueous and organic property packages must use the \"\n", - " f\"same material flow basis.\"\n", - " )\n", - "\n", - " self.organic_phase.add_geometry()\n", - "\n", - " # Add Ports\n", - " self.add_inlet_port(\n", - " name=\"organic_inlet\", block=self.organic_phase, doc=\"Organic feed\"\n", - " )\n", - " self.add_inlet_port(\n", - " name=\"aqueous_inlet\", block=self.aqueous_phase, doc=\"Aqueous feed\"\n", - " )\n", - " self.add_outlet_port(\n", - " name=\"organic_outlet\", block=self.organic_phase, doc=\"Organic outlet\"\n", - " )\n", - " self.add_outlet_port(\n", - " name=\"aqueous_outlet\",\n", - " block=self.aqueous_phase,\n", - " doc=\"Aqueous outlet\",\n", - " )\n", - "\n", - " # ---------------------------------------------------------------------\n", - " # Add unit level constraints\n", - " # First, need the union and intersection of component lists\n", - " all_comps = (\n", - " self.aqueous_phase.properties_out.component_list\n", - " | self.organic_phase.properties_out.component_list\n", - " )\n", - " common_comps = (\n", - " self.aqueous_phase.properties_out.component_list\n", - " & self.organic_phase.properties_out.component_list\n", - " )\n", - "\n", - " # Get units for unit conversion\n", - " aunits = self.config.aqueous_property_package.get_metadata().get_derived_units\n", - " lunits = self.config.organic_property_package.get_metadata().get_derived_units\n", - " flow_basis = self.aqueous_phase.properties_out[t_init].get_material_flow_basis()\n", - "\n", - " if flow_basis == MaterialFlowBasis.mass:\n", - " fb = \"flow_mass\"\n", - " elif flow_basis == MaterialFlowBasis.molar:\n", - " fb = \"flow_mole\"\n", - " else:\n", - " raise ConfigurationError(\n", - " f\"{self.name} Liquid-Liquid Extractor only supports mass \"\n", - " f\"basis for MaterialFlowBasis.\"\n", - " )\n", - "\n", - " # Material balances\n", - " def rule_material_aq_balance(self, t, j):\n", - " if j in common_comps:\n", - " return self.aqueous_phase.mass_transfer_term[\n", - " t, \"Aq\", j\n", - " ] == -self.organic_phase.config.property_package.diffusion_factor[j] * (\n", - " self.aqueous_phase.properties_in[t].get_material_flow_terms(\"Aq\", j)\n", - " )\n", - " elif j in self.organic_phase.properties_out.component_list:\n", - " # No mass transfer term\n", - " # Set organic flowrate to an arbitrary small value\n", - " return self.organic_phase.mass_transfer_term[t, \"Org\", j] == 0 * lunits(fb)\n", - " elif j in self.aqueous_phase.properties_out.component_list:\n", - " # No mass transfer term\n", - " # Set aqueous flowrate to an arbitrary small value\n", - " return self.aqueous_phase.mass_transfer_term[t, \"Aq\", j] == 0 * aunits(fb)\n", - "\n", - " self.material_aq_balance = Constraint(\n", - " self.flowsheet().time,\n", - " self.aqueous_phase.properties_out.component_list,\n", - " rule=rule_material_aq_balance,\n", - " doc=\"Unit level material balances for Aq\",\n", - " )\n", - "\n", - " def rule_material_liq_balance(self, t, j):\n", - " if j in common_comps:\n", - " return (\n", - " self.organic_phase.mass_transfer_term[t, \"Org\", j]\n", - " == -self.aqueous_phase.mass_transfer_term[t, \"Aq\", j]\n", - " )\n", - " else:\n", - " # No mass transfer term\n", - " # Set organic flowrate to an arbitrary small value\n", - " return self.organic_phase.mass_transfer_term[t, \"Org\", j] == 0 * aunits(fb)\n", - "\n", - " self.material_org_balance = Constraint(\n", - " self.flowsheet().time,\n", - " self.organic_phase.properties_out.component_list,\n", - " rule=rule_material_liq_balance,\n", - " doc=\"Unit level material balances Org\",\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initialization Routine\n", - "\n", - "After writing the unit model it is crucial to initialize the model properly, as non-linear models may encounter local minima or infeasibility if not initialized properly. IDAES provides us with a few initialization routines which may not work for all the models, and in such cases the developer will have to define their own initialization routines. \n", - "\n", - "To create a custom initialization routine, model developers must create an initialize method as part of their model, and provide a sequence of steps intended to build up a feasible solution. Initialization routines generally make use of Pyomo’s tools for activating and deactivating constraints and often involve solving multiple sub-problems whilst building up an initial state.\n", - "\n", - "For this tutorial we would use the pre-defined initialization routine of `BlockTriangularizationInitializer` when initializing the model in the flowsheet. This Initializer should be suitable for most models, but may struggle to initialize\n", - "tightly coupled systems of equations. This method of initialization will follow the following workflow. \n", - "\n", - "- Have precheck for structural singularity\n", - "- Run incidence analysis on given block data and check matching.\n", - "- Call Block Triangularization solver on model.\n", - "- Call solve_strongly_connected_components on a given BlockData.\n", - "\n", - "For more details about this initialization routine can be found [here](https://github.com/IDAES/idaes-pse/blob/c09433b9afed5ae2fe25c0ccdc732783324f0101/idaes/core/initialization/block_triangularization.py). \n", - "\n", - "\n", - "This marks the conclusion of creating a custom unit model, for a more detailed explanation on creating a unit model refer [this resource](../../unit_models/custom_unit_models/custom_compressor_usr.ipynb). The next sections will deal with the diagonistics and testing of the property package and unit model. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3.3 Building a Flowsheet\n", - "\n", - "Once we have set up the unit model and its property packages, we can start building a flowsheet using them. In this tutorial, we're focusing on a simple flowsheet with just a liquid-liquid extractor. To create the flowsheet we follow the following steps:\n", - "\n", - "- Import necessary libraries\n", - "- Create a Pyomo model.\n", - "- Inside the model, create a flowsheet block.\n", - "- Assign property packages to the flowsheet block.\n", - "- Add the liquid-liquid extractor to the flowsheet block.\n", - "- Fix variable to make it a square problem\n", - "- Run an initialization process.\n", - "- Solve the flowsheet.\n", - "\n", - "Following these steps, we've built a basic flowsheet using Pyomo. For more details, refer to the [documentation](../../flowsheets/hda_flowsheet_with_distillation_usr.ipynb).\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "import pyomo.environ as pyo\n", - "import idaes.core\n", - "import idaes.models.unit_models\n", - "from idaes.core.solvers import get_solver\n", - "import idaes.logger as idaeslog\n", - "from pyomo.network import Arc\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.initialization import InitializationStatus\n", - "from idaes.core.initialization.block_triangularization import (\n", - " BlockTriangularizationInitializer,\n", - ")\n", - "from liquid_extraction.organic_property import OrgPhase\n", - "from liquid_extraction.aqueous_property import AqPhase\n", - "from liquid_extraction.liquid_liquid_extractor import LiqExtraction\n", - "\n", - "\n", - "def build_model():\n", - " m = pyo.ConcreteModel()\n", - " m.fs = idaes.core.FlowsheetBlock(dynamic=False)\n", - " m.fs.org_properties = OrgPhase()\n", - " m.fs.aq_properties = AqPhase()\n", - "\n", - " m.fs.lex = LiqExtraction(\n", - " dynamic=False,\n", - " has_pressure_change=False,\n", - " organic_property_package=m.fs.org_properties,\n", - " aqueous_property_package=m.fs.aq_properties,\n", - " )\n", - " return m\n", - "\n", - "\n", - "def fix_state_variables(m):\n", - " m.fs.lex.organic_inlet.flow_vol.fix(80 * pyo.units.L / pyo.units.hour)\n", - " m.fs.lex.organic_inlet.temperature.fix(300 * pyo.units.K)\n", - " m.fs.lex.organic_inlet.pressure.fix(1 * pyo.units.atm)\n", - " m.fs.lex.organic_inlet.conc_mass_comp[0, \"NaCl\"].fix(\n", - " 1e-5 * pyo.units.g / pyo.units.L\n", - " )\n", - " m.fs.lex.organic_inlet.conc_mass_comp[0, \"KNO3\"].fix(\n", - " 1e-5 * pyo.units.g / pyo.units.L\n", - " )\n", - " m.fs.lex.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fix(\n", - " 1e-5 * pyo.units.g / pyo.units.L\n", - " )\n", - "\n", - " m.fs.lex.aqueous_inlet.flow_vol.fix(100 * pyo.units.L / pyo.units.hour)\n", - " m.fs.lex.aqueous_inlet.temperature.fix(300 * pyo.units.K)\n", - " m.fs.lex.aqueous_inlet.pressure.fix(1 * pyo.units.atm)\n", - " m.fs.lex.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fix(\n", - " 0.15 * pyo.units.g / pyo.units.L\n", - " )\n", - " m.fs.lex.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fix(\n", - " 0.2 * pyo.units.g / pyo.units.L\n", - " )\n", - " m.fs.lex.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fix(\n", - " 0.1 * pyo.units.g / pyo.units.L\n", - " )\n", - "\n", - " return m\n", - "\n", - "\n", - "def initialize_model(m):\n", - " initializer = BlockTriangularizationInitializer()\n", - " initializer.initialize(m.fs.lex)\n", - " return m\n", - "\n", - "\n", - "def main():\n", - " m = build_model()\n", - " m = fix_state_variables(m)\n", - " m = initialize_model(m)\n", - " return m\n", - "\n", - "\n", - "if __name__ == main:\n", - " main()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4. Model Diagnostics using DiagnosticsToolbox\n", - "\n", - "Here, during initialization, we encounter warnings indicating that variables are being set to negative values, which is not expected behavior. These warnings suggest that there may be flaws in the model that require further investigation using the DiagnosticsToolbox from IDAES. A detailed notebook on using `DiagnosticsToolbox` can be found [here](../../diagnostics/degeneracy_hunter_usr.ipynb).\n", - "\n", - "To proceed with investigating these issues, we need to import the DiagnosticsToolbox. We can gain a better understanding of its functionality by running the help function on it. " - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core.util import DiagnosticsToolbox" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The help() function provides comprehensive information on the DiagnosticsToolbox and all its supported methods. However, it's essential to focus on the initial steps outlined at the beginning of the docstring to get started effectively.\n", - "\n", - "Here's a breakdown of the steps to start with:\n", - "\n", - "- `Instantiate Model:` Ensure you have an instance of the model with a degrees of freedom equal to 0.\n", - "\n", - "- `Create DiagnosticsToolbox Instance:` Next, instantiate a DiagnosticsToolbox object.\n", - "\n", - "- `Provide Model to DiagnosticsToolbox:` Pass the model instance to the DiagnosticsToolbox.\n", - "\n", - "- `Call report_structural_issues() Function:` Finally, call the report_structural_issues() function. This function will highlight any warnings in the model's structure, such as unit inconsistencies or other issues related to variables in the caution section.\n", - "\n", - "By following these steps, you can efficiently utilize the DiagnosticsToolbox to identify and address any structural issues or warnings in your model." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ + "cells": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING (W1001): Setting Var\n", - "'fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[NaCl]' to a value\n", - "`-0.1725` (float) not in domain NonNegativeReals.\n", - " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001\n", - "WARNING (W1001): Setting Var\n", - "'fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[KNO3]' to a value\n", - "`-0.4` (float) not in domain NonNegativeReals.\n", - " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001\n", - "WARNING (W1001): Setting Var\n", - "'fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[CaSO4]' to a value\n", - "`-0.05` (float) not in domain NonNegativeReals.\n", - " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001\n", - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 21 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 16 (External: 0)\n", - " Free Variables with only lower bounds: 8\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 0\n", - " Fixed Variables in Activated Constraints: 8 (External: 0)\n", - " Activated Equality Constraints: 16 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "0 WARNINGS\n", - "\n", - " No warnings found!\n", - "\n", - "------------------------------------------------------------------------------------\n", - "1 Cautions\n", - "\n", - " Caution: 10 unused variables (4 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " Try to initialize/solve your model and then call report_numerical_issues()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "m = main()\n", - "dt = DiagnosticsToolbox(m)\n", - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Although no warnings were reported, it's important to note that there are 3 variables fixed to 0 and 10 unused variables, out of which 4 are fixed. As indicated in the output, the next step is to solve the model. After solving, you should call the report_numerical_issues() function. This function will help identify any numerical issues that may arise during the solution process." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 33\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 14\n", - "\n", - "Total number of variables............................: 16\n", - " variables with only lower bounds: 8\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 16\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 4.10e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 4.00e+01 4.93e+01 -1.0 4.10e-01 - 9.91e-01 2.41e-02h 1\n", - " 2 0.0000000e+00 4.00e+01 2.03e+05 -1.0 4.00e-01 - 1.00e+00 2.47e-04h 1\n", - " 3r 0.0000000e+00 4.00e+01 1.00e+03 1.6 0.00e+00 - 0.00e+00 3.09e-07R 4\n", - " 4r 0.0000000e+00 4.00e+01 9.88e+04 1.6 3.68e+02 - 9.92e-01 2.29e-03f 1\n", - " 5r 0.0000000e+00 3.60e+01 3.03e+00 1.6 4.01e+00 - 1.00e+00 1.00e+00f 1\n", - " 6r 0.0000000e+00 3.69e+01 1.21e+01 -1.2 9.24e-01 - 9.69e-01 9.78e-01f 1\n", - " 7r 0.0000000e+00 3.70e+01 2.11e-01 -1.9 1.00e-01 - 9.97e-01 1.00e+00f 1\n", - " 8r 0.0000000e+00 3.78e+01 2.03e-02 -4.3 8.71e-01 - 9.71e-01 1.00e+00f 1\n", - " 9r 0.0000000e+00 3.80e+01 2.62e-04 -6.4 1.24e-01 - 9.99e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10r 0.0000000e+00 3.81e+01 5.87e-09 -6.4 1.58e-01 - 1.00e+00 1.00e+00f 1\n", - " 11r 0.0000000e+00 3.91e+01 1.09e-05 -9.0 9.35e-01 - 9.68e-01 1.00e+00f 1\n", - "\n", - "Number of Iterations....: 11\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 5.1393961893966849e-07 5.1393961893966849e-07\n", - "Constraint violation....: 3.9105165554489545e+01 3.9105165554489545e+01\n", - "Complementarity.........: 9.0909090910996620e-10 9.0909090910996620e-10\n", - "Overall NLP error.......: 3.9105165554489545e+01 3.9105165554489545e+01\n", - "\n", - "\n", - "Number of objective function evaluations = 17\n", - "Number of objective gradient evaluations = 5\n", - "Number of equality constraint evaluations = 17\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 14\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 12\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Converged to a point of local infeasibility. Problem may be infeasible.\n", - "WARNING: Loading a SolverResults object with a warning status into\n", - "model.name=\"unknown\";\n", - " - termination condition: infeasible\n", - " - message from solver: Ipopt 3.13.2\\x3a Converged to a locally infeasible\n", - " point. Problem may be infeasible.\n" - ] + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "###############################################################################" + ] }, { - "data": { - "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 16, 'Number of variables': 16, 'Sense': 'unknown'}], 'Solver': [{'Status': 'warning', 'Message': 'Ipopt 3.13.2\\\\x3a Converged to a locally infeasible point. Problem may be infeasible.', 'Termination condition': 'infeasible', 'Id': 200, 'Error rc': 0, 'Time': 0.06552338600158691}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating Custom Unit Model\n", + "Author: Javal Vyas \n", + "Maintainer: Javal Vyas \n", + "\n", + "This tutorial is a comprehensive step-wise procedure to build a custom unit model from scratch. This tutorial will include creating a property package, a custom unit model and testing them. For this tutorial we shall create a custom unit model for Liquid - Liquid Extraction. \n", + "\n", + "The Liquid - Liquid Extractor model contains two immiscible fluids forming the two phases. One of the phases, say phase_1 has a high concentration of solutes which is to be separated. A mass transfer happens between the two phases and the solute is transferred from phase_1 to phase_2. This mass transfer is governed by a parameter called the distribution coefficient.\n", + "\n", + "After reviewing the working principles of the Liquid - Liquid Extractor, we shall proceed to create a custom unit model. We will require a property package for each phase, a custom unit model class and tests for the model and property packages.\n", + "\n", + "Before commencing the development of the model, we need to state some assumptions which the following unit model will be using. \n", + "- Steady-state only\n", + "- Organic phase property package has a single phase named Org\n", + "- Aqueous phase property package has a single phase named Aq\n", + "- Organic and Aqueous phase properties need not have the same component list. \n", + "\n", + "Thus as per the assumptions, we will be creating one property package for the aqueous phase (Aq), and the other for the Organic phase (Org). " ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "solver = pyo.SolverFactory(\"ipopt\")\n", - "solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The model is probably infeasible thus indicating numerical issues with the model. We should call the `report_numerical_issues()` function and check what the constraints/variables causing this issue. " - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Jacobian Condition Number: 7.955E+03\n", - "\n", - "------------------------------------------------------------------------------------\n", - "2 WARNINGS\n", - "\n", - " WARNING: 6 Constraints with large residuals (>1.0E-05)\n", - " WARNING: 5 Variables at or outside bounds (tol=0.0E+00)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "3 Cautions\n", - "\n", - " Caution: 8 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", - " Caution: 5 Variables with value close to zero (tol=1.0E-08)\n", - " Caution: 3 Variables with extreme value (<1.0E-04 or >1.0E+04)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " display_constraints_with_large_residuals()\n", - " display_variables_at_or_outside_bounds()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_numerical_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this scenario, it's observed that the condition number of the Jacobian is high, indicating that the Jacobian is ill-conditioned. Additionally, there are 2 warnings related to constraints with large residuals and variables at or outside the bounds. The cautions mentioned in the output are also related to these warnings.\n", - "\n", - "As suggested, the next steps would be to:\n", - "\n", - "- Call the `display_variables_at_or_outside_bounds()` function to investigate variables at or outside the bounds.\n", - "\n", - "- Call the `display_constraints_with_large_residuals()` function to examine constraints with large residuals.\n", - "\n", - "These steps will help identify the underlying causes of the numerical issues and constraints violations, allowing for further analysis and potential resolution. " - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1. Creating Organic Property Package\n", + "\n", + "Creating a property package is a 4 step process\n", + "- Import necessary libraries \n", + "- Creating Physical Parameter Data Block\n", + "- Define State Block\n", + "- Define State Block Data\n", + "\n", + "# 1.1 Importing necessary packages \n", + "Let us begin with importing the necessary libraries where we will be using functionalities from IDAES and Pyomo. " + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "The following variable(s) have values at or outside their bounds (tol=0.0E+00):\n", - "\n", - " fs.lex.organic_phase.properties_in[0.0].pressure (fixed): value=1.0 bounds=(1, 5)\n", - " fs.lex.organic_phase.properties_out[0.0].pressure (free): value=1 bounds=(1, 5)\n", - " fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[NaCl] (free): value=0.0 bounds=(0, None)\n", - " fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[KNO3] (free): value=0.0 bounds=(0, None)\n", - " fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[CaSO4] (free): value=0.0 bounds=(0, None)\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_variables_at_or_outside_bounds()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this scenario, there are a couple of issues to address:\n", - "\n", - "- The pressure variable is fixed to 1, which is its lower bound. This could potentially lead to numerical issues, although it may not affect the model significantly since there is no pressure change in the model. To mitigate this, consider adjusting the lower bound of the pressure variable to avoid having its value at or outside the bounds.\n", - "\n", - "- The more concerning issue is with the `conc_mass_comp` variable attempting to go below 0 in the output. This suggests that there may be constraints involving `conc_mass_comp` in the aqueous phase causing this behavior. To investigate further, it's recommended to call the `display_constraints_with_large_residuals()` function. This will provide insights into whether constraints involving `conc_mass_comp` are contributing to the convergence issue." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Python libraries\n", + "import logging\n", + "\n", + "import idaes.logger as idaeslog\n", + "from idaes.core.util.initialization import fix_state_vars\n", + "\n", + "# Import Pyomo libraries\n", + "from pyomo.environ import (\n", + " Param,\n", + " Set,\n", + " Var,\n", + " NonNegativeReals,\n", + " units,\n", + " Expression,\n", + " PositiveReals,\n", + ")\n", + "\n", + "# Import IDAES cores\n", + "from idaes.core import (\n", + " declare_process_block_class,\n", + " MaterialFlowBasis,\n", + " PhysicalParameterBlock,\n", + " StateBlockData,\n", + " StateBlock,\n", + " MaterialBalanceType,\n", + " EnergyBalanceType,\n", + " Solute,\n", + " Solvent,\n", + " LiquidPhase,\n", + ")\n", + "from idaes.core.util.model_statistics import degrees_of_freedom" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "The following constraint(s) have large residuals (>1.0E-05):\n", - "\n", - " fs.lex.material_aq_balance[0.0,NaCl]: 5.49716E-01\n", - " fs.lex.material_aq_balance[0.0,KNO3]: 8.94833E-01\n", - " fs.lex.material_aq_balance[0.0,CaSO4]: 5.48843E-02\n", - " fs.lex.aqueous_phase.material_balances[0.0,NaCl]: 1.67003E+01\n", - " fs.lex.aqueous_phase.material_balances[0.0,KNO3]: 3.91052E+01\n", - " fs.lex.aqueous_phase.material_balances[0.0,CaSO4]: 4.94512E+00\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.display_constraints_with_large_residuals()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As expected there are convergence issues with the constraints which have `conc_mass_comp` variable in them specifically in the aqeous phase. Now, let us investigate further by printing this constraints and checking the value of each term. Since this is an persistent issue across the components, we can focus on just one of the component to identify the issue. " - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1.2 Physical Parameter Data Block\n", + "\n", + "A `PhysicalParameterBlock` serves as the central point of reference for all aspects of the property package and needs to define several things about the package. These are summarized below:\n", + "\n", + "- Units of measurement\n", + "- What properties are supported and how they are implemented\n", + "- What components and phases are included in the packages\n", + "- All the global parameters necessary for calculating properties\n", + "- A reference to the associated State Block class, so that construction of the State Block components can be automated from the Physical Parameter Block\n", + "\n", + "To construct this block, we begin by declaring a process block class using a Python decorator. One can learn more about `declare_process_block_class` [here](https://github.com/IDAES/idaes-pse/blob/eea1209077b75f7d940d8958362e69d4650c079d/idaes/core/base/process_block.py#L173). After constructing the process block, we define a build function which contains all the components that the property package would have. `super` function here is used to give access to methods and properties of a parent or sibling class and since this is used on the class `PhysicalParameterData` class, build has access to all the parent and sibling class methods. \n", + "\n", + "The `PhysicalParameterBlock` then refers to the `state block`, in this case `OrgPhaseStateBlock` (which will be declared later), so that we can build a state block instance by only knowing the `PhysicalParameterBlock` we wish to use. Then we list the number of phases in this property package. Then we assign the variable to the phase which follows a naming convention. The solvent is in the Organic phase; we will assign the Phase as OrganicPhase, and the variable will be named Org as per the naming convention. The details of naming conventions can be found [here](https://github.com/IDAES/idaes-pse/blob/main/docs/explanations/conventions.rst). We will be following the same convention throughout the example. \n", + " \n", + "After defining the list of the phases, we move on to list the components and their type in the phase. It can be a solute or a solvent in the Organic phase. Thus, we define the component and assign it to either being a solute or a solvent. In this case, the salts are the solutes and Ethylene dibromide is the solvent. Next, we define the physical properties involved in the package, like the heat capacity and density of the solvent, the reference temperature, and the distribution factor that would govern the mass transfer from one phase into another. Additionally, a parameter, the `diffusion_factor`, is introduced. This factor plays a crucial role in governing mass transfer between phases, necessitating its definition within the state block.\n", + "\n", + "The final step in creating the Physical Parameter Block is to declare a `classmethod` named `define_metadata`, which takes two arguments: a class (cls) and an instance of that class (obj). In this method, we will call the predefined method `add_default_units()`.\n", + "\n", + "- `obj.add_default_units()` sets the default units metadata for the property package, and here we define units to be used with this property package as default. " + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "{Member of material_balances} : Material balances\n", - " Size=4, Index=fs._time*fs.aq_properties.component_list, Active=True\n", - " Key : Lower : Body : Upper : Active\n", - " (0.0, 'NaCl') : 0.0 : (fs.lex.aqueous_phase.properties_in[0.0].conc_mass_comp[NaCl]*fs.lex.aqueous_phase.properties_in[0.0].flow_vol) - (fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[NaCl]*fs.lex.aqueous_phase.properties_out[0.0].flow_vol) + fs.lex.aqueous_phase.mass_transfer_term[0.0,Aq,NaCl] : 0.0 : True\n" - ] - } - ], - "source": [ - "m.fs.lex.aqueous_phase.material_balances[0.0, \"NaCl\"].pprint()" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"OrgPhase\")\n", + "class PhysicalParameterData(PhysicalParameterBlock):\n", + " \"\"\"\n", + " Property Parameter Block Class\n", + "\n", + " Contains parameters and indexing sets associated with properties for\n", + " organic Phase\n", + "\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction.\n", + " \"\"\"\n", + " super().build()\n", + "\n", + " self._state_block_class = OrgPhaseStateBlock\n", + "\n", + " # List of valid phases in property package\n", + " self.Org = LiquidPhase()\n", + "\n", + " # Component list - a list of component identifiers\n", + " self.NaCl = Solute()\n", + " self.KNO3 = Solute()\n", + " self.CaSO4 = Solute()\n", + " self.solvent = (\n", + " Solvent()\n", + " ) # Solvent used here is ethylene dibromide (Organic Polar)\n", + "\n", + " # Heat capacity of solvent\n", + " self.cp_mass = Param(\n", + " mutable=True,\n", + " initialize=717.01,\n", + " doc=\"Specific heat capacity of solvent\",\n", + " units=units.J / units.kg / units.K,\n", + " )\n", + "\n", + " self.dens_mass = Param(\n", + " mutable=True,\n", + " initialize=2170,\n", + " doc=\"Density of ethylene dibromide\",\n", + " units=units.kg / units.m**3,\n", + " )\n", + " self.temperature_ref = Param(\n", + " within=PositiveReals,\n", + " mutable=True,\n", + " default=298.15,\n", + " doc=\"Reference temperature\",\n", + " units=units.K,\n", + " )\n", + " self.diffusion_factor = Param(\n", + " self.solute_set,\n", + " initialize={\"NaCl\": 2.15, \"KNO3\": 3, \"CaSO4\": 1.5},\n", + " within=PositiveReals,\n", + " mutable=True,\n", + " )\n", + "\n", + " @classmethod\n", + " def define_metadata(cls, obj):\n", + " obj.add_default_units(\n", + " {\n", + " \"time\": units.hour,\n", + " \"length\": units.m,\n", + " \"mass\": units.g,\n", + " \"amount\": units.mol,\n", + " \"temperature\": units.K,\n", + " }\n", + " )" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "{Member of conc_mass_comp} : Component mass concentrations\n", - " Size=3, Index=fs.aq_properties.solutes, Units=g/l\n", - " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", - " NaCl : 0 : 0.15 : None : True : True : NonNegativeReals\n", - "flow_vol : Total volumetric flowrate\n", - " Size=1, Index=None, Units=l/h\n", - " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", - " None : 0 : 100.0 : None : True : True : NonNegativeReals\n", - "{Member of conc_mass_comp} : Component mass concentrations\n", - " Size=3, Index=fs.aq_properties.solutes, Units=g/l\n", - " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", - " NaCl : 0 : 0.0 : None : False : False : NonNegativeReals\n", - "flow_vol : Total volumetric flowrate\n", - " Size=1, Index=None, Units=l/h\n", - " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", - " None : 0 : 100.0 : None : False : False : NonNegativeReals\n", - "{Member of mass_transfer_term} : Component material transfer into unit\n", - " Size=4, Index=fs._time*fs.aq_properties._phase_component_set, Units=g/h\n", - " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", - " (0.0, 'Aq', 'NaCl') : None : -31.700284300098897 : None : False : False : Reals\n" - ] - } - ], - "source": [ - "m.fs.lex.aqueous_phase.properties_in[0.0].conc_mass_comp[\"NaCl\"].pprint()\n", - "m.fs.lex.aqueous_phase.properties_in[0.0].flow_vol.pprint()\n", - "m.fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[\"NaCl\"].pprint()\n", - "m.fs.lex.aqueous_phase.properties_out[0.0].flow_vol.pprint()\n", - "m.fs.lex.aqueous_phase.mass_transfer_term[0.0, \"Aq\", \"NaCl\"].pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It seems there is a discrepancy between the mass transfer term and the amount of input of NaCl. This can be inferred from the values where the input equals 15g/h and the `mass_transfer_term` equals -31.706g/h.\n", - "\n", - "To further investigate this issue, it's advisable to examine the `material_aq_balance` constraint within the unit model where the `mass_transfer_term` is defined. By printing out this constraint and analyzing its components, you can gain a better understanding of the discrepancy and take appropriate corrective actions." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1.3 State Block\n", + "\n", + "After the `PhysicalParameterBlock` class has been created, the next step is to write the code necessary to create the State Blocks that will be used throughout the flowsheet. `StateBlock` contains all the information necessary to define the state of the system. This includes the state variables and constraints on those variables which are used to describe a state property like the enthalpy, material balance, etc.\n", + "\n", + "Creating a State Block requires us to write two classes. The reason we write two classes is because of the inherent nature of how `declare_process_block_data` works. `declare_process_block_data` facilitates creating an `IndexedComponent` object which can handle multiple `ComponentData` objects which represent the component at each point in the indexing set. This makes it easier to build an instance of the model at each indexed point. However, State Blocks are slightly different, as they are always indexed (at least by time). Due to this, we often want to perform actions on all the elements of the indexed StateBlock all at once (rather than element by element).\n", + "\n", + "The class `_OrganicStateBlock` is defined without the `declare_process_block_data` decorator and thus works as a traditional class and this facilitates performing a method on the class as a whole rather than individual elements of the indexed property blocks. In this class we define the `fix_initialization_states` function. `fix_initialization_states` function is used to fix the state variable within the state block with the provided initial values (usually inlet conditions). It takes a `block` as the argument in which the state variables are to be fixed. It also takes `state_args` as an optional argument. `state_args` is a dictionary with the value for the state variables to be fixed. This function returns a dictionary indexed by the block, state variables and variable index indicating the fixed status of each variable before applying the function. \n", + "\n", + "The above function comprise of the _OrganicStateBlock. Next, we shall see the construction of the OrgPhaseStateBlockData class." + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "{Member of material_aq_balance} : Unit level material balances for Aq\n", - " Size=4, Index=fs._time*fs.aq_properties.component_list, Active=True\n", - " Key : Lower : Body : Upper : Active\n", - " (0.0, 'NaCl') : 0.0 : fs.lex.aqueous_phase.mass_transfer_term[0.0,Aq,NaCl] + fs.org_properties.diffusion_factor[NaCl]*(fs.lex.aqueous_phase.properties_in[0.0].conc_mass_comp[NaCl]*fs.lex.aqueous_phase.properties_in[0.0].flow_vol) : 0.0 : True\n" - ] - } - ], - "source": [ - "m.fs.lex.material_aq_balance[0.0, \"NaCl\"].pprint()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here the problem can be tracked down easily as there being a typing error while recording the distribution factor. The distribution factor here was wrongly written ignoring its magnitude which should have been 1e-2, but that was missed, thus adjusting the distribution factor parameter we should have this issue resolved. " - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.org_properties.diffusion_factor[\"NaCl\"] = (\n", - " m.fs.org_properties.diffusion_factor[\"NaCl\"] / 100\n", - ")\n", - "m.fs.org_properties.diffusion_factor[\"KNO3\"] = (\n", - " m.fs.org_properties.diffusion_factor[\"KNO3\"] / 100\n", - ")\n", - "m.fs.org_properties.diffusion_factor[\"CaSO4\"] = (\n", - " m.fs.org_properties.diffusion_factor[\"CaSO4\"] / 100\n", - ")\n", - "\n", - "m.fs.lex.organic_phase.properties_in[0.0].pressure.setlb(0.5)\n", - "m.fs.lex.organic_phase.properties_out[0.0].pressure.setlb(0.5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After the corrective actions, we should check if this have made any structural issues, for this we would call `report_structural_issues()`" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class _OrganicStateBlock(StateBlock):\n", + " \"\"\"\n", + " This Class contains methods which should be applied to Property Blocks as a\n", + " whole, rather than individual elements of indexed Property Blocks.\n", + " \"\"\"\n", + "\n", + " def fix_initialization_states(self):\n", + " fix_state_vars(self)" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "====================================================================================\n", - "Model Statistics\n", - "\n", - " Activated Blocks: 21 (Deactivated: 0)\n", - " Free Variables in Activated Constraints: 16 (External: 0)\n", - " Free Variables with only lower bounds: 8\n", - " Free Variables with only upper bounds: 0\n", - " Free Variables with upper and lower bounds: 0\n", - " Fixed Variables in Activated Constraints: 8 (External: 0)\n", - " Activated Equality Constraints: 16 (Deactivated: 0)\n", - " Activated Inequality Constraints: 0 (Deactivated: 0)\n", - " Activated Objectives: 0 (Deactivated: 0)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "0 WARNINGS\n", - "\n", - " No warnings found!\n", - "\n", - "------------------------------------------------------------------------------------\n", - "1 Cautions\n", - "\n", - " Caution: 10 unused variables (4 fixed)\n", - "\n", - "------------------------------------------------------------------------------------\n", - "Suggested next steps:\n", - "\n", - " Try to initialize/solve your model and then call report_numerical_issues()\n", - "\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "dt.report_structural_issues()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now since there are no warnings we can go ahead and solve the model and see if the results are optimal. " - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The class `OrgPhaseStateBlockData` is designated with the `declare_process_block_class` decorator, named `OrgPhaseStateBlock`, and inherits the block class from `_OrganicStateBlock`. This inheritance allows `OrgPhaseStateBlockData` to leverage functions from `_OrganicStateBlock`. Following the class definition, a build function similar to the one used in the `PhysicalParameterData` block is employed. The super function is utilized to enable the utilization of functions from the parent or sibling class.\n", + "\n", + "The subsequent objective is to delineate the state variables, accomplished through the `_make_state_vars` method. This method encompasses all the essential state variables and associated data. For this particular property package, the required state variables are:\n", + "\n", + "- `flow_vol` - volumetric flow rate\n", + "- `conc_mass_comp` - mass fractions\n", + "- `pressure` - state pressure\n", + "- `temperature` - state temperature\n", + "\n", + "After establishing the state variables, the subsequent step involves setting up state properties as constraints. This includes specifying the relationships and limitations that dictate the system's behavior. The following properties need to be articulated:\n", + "\n", + "-`get_material_flow_terms`: quantifies the amount of material flow.\n", + "- `get_enthalpy_flow_terms`: quantifies the amount of enthalpy flow.\n", + "- `get_flow_rate`: details volumetric flow rates.\n", + "- `default_material_balance_type`: defines the kind of material balance to be used.\n", + "- `default_energy_balance_type`: defines the kind of energy balance to be used.\n", + "- `define_state_vars`: involves defining state variables with units, akin to the define_metadata function in the PhysicalParameterData block.\n", + "- `get_material_flow_basis`: establishes the basis on which state variables are measured, whether in mass or molar terms.\n", + "\n", + "These definitions mark the conclusion of the state block construction and thus the property package. For additional details on creating a property package, please refer to this [resource](../../properties/custom/custom_physical_property_packages_usr.ipynb ).\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"OrgPhaseStateBlock\", block_class=_OrganicStateBlock)\n", + "class OrgPhaseStateBlockData(StateBlockData):\n", + " \"\"\"\n", + " An example property package for Organic phase for liquid liquid extraction\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction\n", + " \"\"\"\n", + " super().build()\n", + " self._make_state_vars()\n", + "\n", + " def _make_state_vars(self):\n", + " self.flow_vol = Var(\n", + " initialize=1,\n", + " domain=NonNegativeReals,\n", + " doc=\"Total volumetric flowrate\",\n", + " units=units.L / units.hour,\n", + " )\n", + " self.conc_mass_comp = Var(\n", + " self.params.solute_set,\n", + " domain=NonNegativeReals,\n", + " initialize=1,\n", + " doc=\"Component mass concentrations\",\n", + " units=units.g / units.L,\n", + " )\n", + " self.pressure = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=1,\n", + " bounds=(1, 5),\n", + " units=units.atm,\n", + " doc=\"State pressure [atm]\",\n", + " )\n", + "\n", + " self.temperature = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=300,\n", + " bounds=(273, 373),\n", + " units=units.K,\n", + " doc=\"State temperature [K]\",\n", + " )\n", + "\n", + " def material_flow_expression(self, j):\n", + " if j == \"solvent\":\n", + " return self.flow_vol * self.params.dens_mass\n", + " else:\n", + " return self.flow_vol * self.conc_mass_comp[j]\n", + "\n", + " self.material_flow_expression = Expression(\n", + " self.component_list,\n", + " rule=material_flow_expression,\n", + " doc=\"Material flow terms\",\n", + " )\n", + "\n", + " def enthalpy_flow_expression(self):\n", + " return (\n", + " self.flow_vol\n", + " * self.params.dens_mass\n", + " * self.params.cp_mass\n", + " * (self.temperature - self.params.temperature_ref)\n", + " )\n", + "\n", + " self.enthalpy_flow_expression = Expression(\n", + " rule=enthalpy_flow_expression, doc=\"Enthalpy flow term\"\n", + " )\n", + "\n", + " def get_flow_rate(self):\n", + " return self.flow_vol\n", + "\n", + " def get_material_flow_terms(self, p, j):\n", + " return self.material_flow_expression[j]\n", + "\n", + " def get_enthalpy_flow_terms(self, p):\n", + " return self.enthalpy_flow_expression\n", + "\n", + " def default_material_balance_type(self):\n", + " return MaterialBalanceType.componentTotal\n", + "\n", + " def default_energy_balance_type(self):\n", + " return EnergyBalanceType.enthalpyTotal\n", + "\n", + " def define_state_vars(self):\n", + " return {\n", + " \"flow_vol\": self.flow_vol,\n", + " \"conc_mass_comp\": self.conc_mass_comp,\n", + " \"temperature\": self.temperature,\n", + " \"pressure\": self.pressure,\n", + " }\n", + "\n", + " def get_material_flow_basis(self):\n", + " return MaterialFlowBasis.mass" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Creating Aqueous Property Package\n", + "\n", + "The structure of the Aqueous Property Package mirrors that of the Organic Property Package we previously developed. We'll commence with an overview, importing the required libraries, followed by the creation of the physical property block and two state blocks. The distinctions in this package lie in the physical parameter values, and notably, the absence of the diffusion factor term, differentiating it from the prior package. The following code snippet should provide clarity on these distinctions." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Python libraries\n", + "import logging\n", + "\n", + "from idaes.core.util.initialization import fix_state_vars\n", + "\n", + "# Import Pyomo libraries\n", + "from pyomo.environ import (\n", + " Param,\n", + " Var,\n", + " NonNegativeReals,\n", + " units,\n", + " Expression,\n", + " PositiveReals,\n", + ")\n", + "\n", + "# Import IDAES cores\n", + "from idaes.core import (\n", + " declare_process_block_class,\n", + " MaterialFlowBasis,\n", + " PhysicalParameterBlock,\n", + " StateBlockData,\n", + " StateBlock,\n", + " MaterialBalanceType,\n", + " EnergyBalanceType,\n", + " Solute,\n", + " Solvent,\n", + " LiquidPhase,\n", + ")\n", + "\n", + "# Some more information about this module\n", + "__author__ = \"Javal Vyas\"\n", + "\n", + "\n", + "# Set up logger\n", + "_log = logging.getLogger(__name__)\n", + "\n", + "\n", + "@declare_process_block_class(\"AqPhase\")\n", + "class AqPhaseData(PhysicalParameterBlock):\n", + " \"\"\"\n", + " Property Parameter Block Class\n", + "\n", + " Contains parameters and indexing sets associated with properties for\n", + " aqueous Phase\n", + "\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction.\n", + " \"\"\"\n", + " super().build()\n", + "\n", + " self._state_block_class = AqPhaseStateBlock\n", + "\n", + " # List of valid phases in property package\n", + " self.Aq = LiquidPhase()\n", + "\n", + " # Component list - a list of component identifiers\n", + " self.NaCl = Solute()\n", + " self.KNO3 = Solute()\n", + " self.CaSO4 = Solute()\n", + " self.H2O = Solvent()\n", + "\n", + " # Heat capacity of solvent\n", + " self.cp_mass = Param(\n", + " mutable=True,\n", + " initialize=4182,\n", + " doc=\"Specific heat capacity of solvent\",\n", + " units=units.J / units.kg / units.K,\n", + " )\n", + "\n", + " self.dens_mass = Param(\n", + " mutable=True,\n", + " initialize=997,\n", + " doc=\"Density of ethylene dibromide\",\n", + " units=units.kg / units.m**3,\n", + " )\n", + " self.temperature_ref = Param(\n", + " within=PositiveReals,\n", + " mutable=True,\n", + " default=298.15,\n", + " doc=\"Reference temperature\",\n", + " units=units.K,\n", + " )\n", + "\n", + " @classmethod\n", + " def define_metadata(cls, obj):\n", + " obj.add_default_units(\n", + " {\n", + " \"time\": units.hour,\n", + " \"length\": units.m,\n", + " \"mass\": units.g,\n", + " \"amount\": units.mol,\n", + " \"temperature\": units.K,\n", + " }\n", + " )\n", + "\n", + "\n", + "class _AqueousStateBlock(StateBlock):\n", + " \"\"\"\n", + " This Class contains methods which should be applied to Property Blocks as a\n", + " whole, rather than individual elements of indexed Property Blocks.\n", + " \"\"\"\n", + "\n", + " def fix_initialization_states(self):\n", + " fix_state_vars(self)\n", + "\n", + "\n", + "@declare_process_block_class(\"AqPhaseStateBlock\", block_class=_AqueousStateBlock)\n", + "class AqPhaseStateBlockData(StateBlockData):\n", + " \"\"\"\n", + " An example property package for ideal gas properties with Gibbs energy\n", + " \"\"\"\n", + "\n", + " def build(self):\n", + " \"\"\"\n", + " Callable method for Block construction\n", + " \"\"\"\n", + " super().build()\n", + " self._make_state_vars()\n", + "\n", + " def _make_state_vars(self):\n", + " self.flow_vol = Var(\n", + " initialize=1,\n", + " domain=NonNegativeReals,\n", + " doc=\"Total volumetric flowrate\",\n", + " units=units.L / units.hour,\n", + " )\n", + "\n", + " self.conc_mass_comp = Var(\n", + " self.params.solute_set,\n", + " domain=NonNegativeReals,\n", + " initialize={\"NaCl\": 0.15, \"KNO3\": 0.2, \"CaSO4\": 0.1},\n", + " doc=\"Component mass concentrations\",\n", + " units=units.g / units.L,\n", + " )\n", + "\n", + " self.pressure = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=1,\n", + " bounds=(1, 5),\n", + " units=units.atm,\n", + " doc=\"State pressure [atm]\",\n", + " )\n", + "\n", + " self.temperature = Var(\n", + " domain=NonNegativeReals,\n", + " initialize=300,\n", + " bounds=(273, 373),\n", + " units=units.K,\n", + " doc=\"State temperature [K]\",\n", + " )\n", + "\n", + " def material_flow_expression(self, j):\n", + " if j == \"H2O\":\n", + " return self.flow_vol * self.params.dens_mass\n", + " else:\n", + " return self.conc_mass_comp[j] * self.flow_vol\n", + "\n", + " self.material_flow_expression = Expression(\n", + " self.component_list,\n", + " rule=material_flow_expression,\n", + " doc=\"Material flow terms\",\n", + " )\n", + "\n", + " def enthalpy_flow_expression(self):\n", + " return (\n", + " self.flow_vol\n", + " * self.params.dens_mass\n", + " * self.params.cp_mass\n", + " * (self.temperature - self.params.temperature_ref)\n", + " )\n", + "\n", + " self.enthalpy_flow_expression = Expression(\n", + " rule=enthalpy_flow_expression, doc=\"Enthalpy flow term\"\n", + " )\n", + "\n", + " def get_flow_rate(self):\n", + " return self.flow_vol\n", + "\n", + " def get_material_flow_terms(self, p, j):\n", + " return self.material_flow_expression[j]\n", + "\n", + " def get_enthalpy_flow_terms(self, p):\n", + " return self.enthalpy_flow_expression\n", + "\n", + " def default_material_balance_type(self):\n", + " return MaterialBalanceType.componentTotal\n", + "\n", + " def default_energy_balance_type(self):\n", + " return EnergyBalanceType.enthalpyTotal\n", + "\n", + " def define_state_vars(self):\n", + " return {\n", + " \"flow_vol\": self.flow_vol,\n", + " \"conc_mass_comp\": self.conc_mass_comp,\n", + " \"temperature\": self.temperature,\n", + " \"pressure\": self.pressure,\n", + " }\n", + "\n", + " def get_material_flow_basis(self):\n", + " return MaterialFlowBasis.mass" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3. Liquid Liquid Extractor Unit Model\n", + "\n", + "Following the creation of property packages, our next step is to develop a unit model that facilitates the mass transfer of solutes between phases. This involves importing necessary libraries, building the unit model, defining auxiliary functions, and establishing the initialization routine for the unit model.\n", + "\n", + "## 3.1 Importing necessary libraries\n", + "\n", + "Let's commence by importing the essential libraries from Pyomo and IDAES." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Import Pyomo libraries\n", + "from pyomo.common.config import ConfigBlock, ConfigValue, In, Bool\n", + "from pyomo.environ import (\n", + " value,\n", + " Constraint,\n", + " check_optimal_termination,\n", + ")\n", + "\n", + "# Import IDAES cores\n", + "from idaes.core import (\n", + " ControlVolume0DBlock,\n", + " declare_process_block_class,\n", + " MaterialBalanceType,\n", + " EnergyBalanceType,\n", + " MaterialFlowBasis,\n", + " MomentumBalanceType,\n", + " UnitModelBlockData,\n", + " useDefault,\n", + ")\n", + "from idaes.core.util.config import (\n", + " is_physical_parameter_block,\n", + " is_reaction_parameter_block,\n", + ")\n", + "\n", + "import idaes.logger as idaeslog\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.exceptions import ConfigurationError, InitializationError" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.2 Creating the unit model\n", + "\n", + "Creating a unit model starts by creating a class called `LiqExtractionData` and using the `declare_process_block_class` decorator. The `LiqExtractionData` inherits the properties of the `UnitModelBlockData` class, which allows us to create a control volume that is necessary for the unit model. After declaration of the class we proceed to define the relevant config arguments for the control volume. The config arguments include the following properties:\n", + "\n", + "- `material_balance_type` - Indicates what type of mass balance should be constructed\n", + "- `has_pressure_change` - Indicates whether terms for pressure change should be\n", + "constructed\n", + "- `has_phase_equilibrium` - Indicates whether terms for phase equilibrium should be\n", + "constructed\n", + "- `organic_property_package` - Property parameter object used to define property calculations\n", + "for the Organic phase\n", + "- `organic_property_package_args` - Arguments to use for constructing Organic phase properties\n", + "- `aqueous_property_package` - Property parameter object used to define property calculations\n", + "for the aqueous phase\n", + "- `aqueous_property_package_args` - Arguments to use for constructing aqueous phase properties\n", + "\n", + "As there are no pressure changes or reactions in this scenario, configuration arguments for these aspects are not included. However, additional details on configuration arguments can be found [here](https://github.com/IDAES/idaes-pse/blob/8948c6ce27d4c7f2c06b377a173f413599091998/idaes/models/unit_models/cstr.py)." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"LiqExtraction\")\n", + "class LiqExtractionData(UnitModelBlockData):\n", + " \"\"\"\n", + " LiqExtraction Unit Model Class\n", + " \"\"\"\n", + "\n", + " CONFIG = UnitModelBlockData.CONFIG()\n", + "\n", + " CONFIG.declare(\n", + " \"material_balance_type\",\n", + " ConfigValue(\n", + " default=MaterialBalanceType.useDefault,\n", + " domain=In(MaterialBalanceType),\n", + " description=\"Material balance construction flag\",\n", + " doc=\"\"\"Indicates what type of mass balance should be constructed,\n", + " **default** - MaterialBalanceType.useDefault.\n", + " **Valid values:** {\n", + " **MaterialBalanceType.useDefault - refer to property package for default\n", + " balance type\n", + " **MaterialBalanceType.none** - exclude material balances,\n", + " **MaterialBalanceType.componentPhase** - use phase component balances,\n", + " **MaterialBalanceType.componentTotal** - use total component balances,\n", + " **MaterialBalanceType.elementTotal** - use total element balances,\n", + " **MaterialBalanceType.total** - use total material balance.}\"\"\",\n", + " ),\n", + " )\n", + " CONFIG.declare(\n", + " \"has_pressure_change\",\n", + " ConfigValue(\n", + " default=False,\n", + " domain=Bool,\n", + " description=\"Pressure change term construction flag\",\n", + " doc=\"\"\"Indicates whether terms for pressure change should be\n", + " constructed,\n", + " **default** - False.\n", + " **Valid values:** {\n", + " **True** - include pressure change terms,\n", + " **False** - exclude pressure change terms.}\"\"\",\n", + " ),\n", + " )\n", + " CONFIG.declare(\n", + " \"has_phase_equilibrium\",\n", + " ConfigValue(\n", + " default=False,\n", + " domain=Bool,\n", + " description=\"Phase equilibrium construction flag\",\n", + " doc=\"\"\"Indicates whether terms for phase equilibrium should be\n", + " constructed,\n", + " **default** = False.\n", + " **Valid values:** {\n", + " **True** - include phase equilibrium terms\n", + " **False** - exclude phase equilibrium terms.}\"\"\",\n", + " ),\n", + " )\n", + " CONFIG.declare(\n", + " \"organic_property_package\",\n", + " ConfigValue(\n", + " default=useDefault,\n", + " domain=is_physical_parameter_block,\n", + " description=\"Property package to use for organic phase\",\n", + " doc=\"\"\"Property parameter object used to define property calculations\n", + " for the organic phase,\n", + " **default** - useDefault.\n", + " **Valid values:** {\n", + " **useDefault** - use default package from parent model or flowsheet,\n", + " **PropertyParameterObject** - a PropertyParameterBlock object.}\"\"\",\n", + " ),\n", + " )\n", + " CONFIG.declare(\n", + " \"organic_property_package_args\",\n", + " ConfigBlock(\n", + " implicit=True,\n", + " description=\"Arguments to use for constructing organic phase properties\",\n", + " doc=\"\"\"A ConfigBlock with arguments to be passed to organic phase\n", + " property block(s) and used when constructing these,\n", + " **default** - None.\n", + " **Valid values:** {\n", + " see property package for documentation.}\"\"\",\n", + " ),\n", + " )\n", + " CONFIG.declare(\n", + " \"aqueous_property_package\",\n", + " ConfigValue(\n", + " default=useDefault,\n", + " domain=is_physical_parameter_block,\n", + " description=\"Property package to use for aqueous phase\",\n", + " doc=\"\"\"Property parameter object used to define property calculations\n", + " for the aqueous phase,\n", + " **default** - useDefault.\n", + " **Valid values:** {\n", + " **useDefault** - use default package from parent model or flowsheet,\n", + " **PropertyParameterObject** - a PropertyParameterBlock object.}\"\"\",\n", + " ),\n", + " )\n", + " CONFIG.declare(\n", + " \"aqueous_property_package_args\",\n", + " ConfigBlock(\n", + " implicit=True,\n", + " description=\"Arguments to use for constructing aqueous phase properties\",\n", + " doc=\"\"\"A ConfigBlock with arguments to be passed to aqueous phase\n", + " property block(s) and used when constructing these,\n", + " **default** - None.\n", + " **Valid values:** {\n", + " see property package for documentation.}\"\"\",\n", + " ),\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Building the model\n", + "\n", + "After constructing the `LiqExtractionData` block and defining the config arguments for the control block, the next step is to write a build function that incorporates the control volume and establishes constraints on the control volume to achieve the desired mass transfer. The control volume serves as a pivotal component in the unit model construction, representing the volume in which the process unfolds.\n", + "\n", + "IDAES provides flexibility in choosing control volumes based on geometry, with options including 0D or 1D. In this instance, we opt for a 0D control volume, the most commonly used control volume. This choice is suitable for systems where there is a well-mixed volume of fluid or where spatial variations are deemed negligible.\n", + "\n", + "The control volume encompasses parameters from (1-8), and its equations are configured to satisfy the specified config arguments. For a more in-depth understanding, users are encouraged to refer to [this resource](https://github.com/IDAES/idaes-pse/blob/2f34dd3abc1bce5ba17c80939a01f9034e4fbeef/docs/reference_guides/core/control_volume_0d.rst). \n", + "\n", + "The `build` function is initiated using the `super` function to gain access to methods and properties of a parent or sibling class, in this case, the `LiqExtractionData` class. Following the `super` function, checks are performed on the property packages to ensure the appropriate names for the solvents, such as 'Aq' for the aqueous phase and 'Org' for the organic phase. An error is raised if these conditions are not met. Subsequently, a check is performed to ensure there is at least one common component between the two property packages that can be transferred from one phase to another.\n", + "\n", + "After these checks are completed without any exceptions raised, it is ensured that the property packages have the desired components with appropriate names. The next step is to create a control volume and assign it to a property package. Here, we initiate with the organic phase and attach a 0D control volume to it. The control volume takes arguments about the dynamics of the block, and the property package, along with property package arguments. \n", + "\n", + "The subsequent steps involve adding inlet and outlet state blocks to the control volume using the `add_state_blocks` function. This function takes arguments about the flow direction (defaulted to forward) and a flag for `has_phase_equilibrium`, which is read from the config. The control volume is now equipped with the inlet and outlet state blocks and has access to the organic property package\n", + "\n", + "Next, material balance equations are added to the control volume using the `add_material_balance` function, taking into account the type of material balance, `has_phase_equilibrium`, and the presence of `has_mass_transfer`. To understand this arguments further let us have a look at the material balance equation and how it is implemented in control volume. \n", + "\n", + "$\\frac{\\partial M_{t, p, j}}{\\partial t} = F_{in, t, p, j} - F_{out, t, p, j} + N_{kinetic, t, p, j} + N_{equilibrium, t, p, j} + N_{pe, t, p, j} + N_{transfer, t, p, j} + N_{custom, t, p, j}$\n", + "\n", + "- $\\frac{\\partial M_{t, p, j}}{\\partial t}$ - Material accumulation\n", + "- $F_{in, t, p, j}$ - Flow into the control volume\n", + "- $F_{out, t, p, j}$ - Flow out of the control volume\n", + "- $N_{kinetic, t, p, j}$ - Rate of reaction generation\n", + "- $N_{equilibrium, t, p, j}$ - Equilibrium reaction generation\n", + "- $N_{pe, t, p, j}$ - Equilibrium reaction extent\n", + "- $N_{transfer, t, p, j}$ - Mass transfer\n", + "- $N_{custom, t, p, j}$ - User defined terms in material balance\n", + "\n", + "- t indicates time index\n", + "- p indicates phase index\n", + "- j indicates component index\n", + "- e indicates element index\n", + "- r indicates reaction name index\n", + "\n", + "Here we shall see that $N_{transfer, t, p, j}$ is the term in the equation which is responsible for the mass transfer and the `mass_transfer_term` should only be equal to the amount being transferred and not include a material balance on our own. For a detailed description of the terms one should refer to the following [resource.](https://github.com/IDAES/idaes-pse/blob/2f34dd3abc1bce5ba17c80939a01f9034e4fbeef/docs/reference_guides/core/control_volume_0d.rst)\n", + "\n", + "This concludes the creation of the organic phase control volume. A similar procedure is done for the aqueous phase control volume with aqueous property package. \n", + "\n", + "Now, the unit model has two control volumes with appropriate configurations and material, momentum and energy balances. The next step is to check the basis of the two property packages. They should both have the same flow basis, and an error is raised if this is not the case.\n", + "\n", + "Following this, the `add_inlet_ports` and `add_outlet_ports` functions are used to create inlet and outlet ports. These ports are named and assigned to each control volume, resulting in labeled inlet and outlet ports for each control volume.\n", + "\n", + "The subsequent steps involve writing unit-level constraints. A check if the basis is either molar or mass, and unit-level constraints are written accordingly. The first constraint pertains to the mass transfer term for the aqueous phase. The mass transfer term is equal to $mass\\_transfer\\_term_{aq} = (D_{i})\\frac{mass_{i}~in~aq~phase}{flowrate~of~aq~phase}$. The second constraint relates to the mass transfer term in the organic phase, which is the negative of the mass transfer term in the aqueous phase: $mass\\_transfer\\_term_{org} = - mass\\_transfer\\_term_{aq} $\n", + "\n", + "Here $mass\\_transfer\\_term_{p}$ is the term indicating the amount of material being transferred from/to the phase and $D_{i}$ is the Distribution coefficient for component i. \n", + "\n", + "This marks the completion of the build function, and the unit model is now equipped with the necessary process constraints. The subsequent steps involve writing the initialization routine." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def build(self):\n", + " \"\"\"\n", + " Begin building model (pre-DAE transformation).\n", + " Args:\n", + " None\n", + " Returns:\n", + " None\n", + " \"\"\"\n", + " # Call UnitModel.build to setup dynamics\n", + " super().build()\n", + "\n", + " # Check phase lists match assumptions\n", + " if self.config.aqueous_property_package.phase_list != [\"Aq\"]:\n", + " raise ConfigurationError(\n", + " f\"{self.name} Liquid-Liquid Extractor model requires that the aqueous \"\n", + " f\"phase property package have a single phase named 'Aq'\"\n", + " )\n", + " if self.config.organic_property_package.phase_list != [\"Org\"]:\n", + " raise ConfigurationError(\n", + " f\"{self.name} Liquid-Liquid Extractor model requires that the organic \"\n", + " f\"phase property package have a single phase named 'Org'\"\n", + " )\n", + "\n", + " # Check for at least one common component in component lists\n", + " if not any(\n", + " j in self.config.aqueous_property_package.component_list\n", + " for j in self.config.organic_property_package.component_list\n", + " ):\n", + " raise ConfigurationError(\n", + " f\"{self.name} Liquid-Liquid Extractor model requires that the organic \"\n", + " f\"and aqueous phase property packages have at least one \"\n", + " f\"common component.\"\n", + " )\n", + "\n", + " self.organic_phase = ControlVolume0DBlock(\n", + " dynamic=self.config.dynamic,\n", + " property_package=self.config.organic_property_package,\n", + " property_package_args=self.config.organic_property_package_args,\n", + " )\n", + "\n", + " self.organic_phase.add_state_blocks(\n", + " has_phase_equilibrium=self.config.has_phase_equilibrium\n", + " )\n", + "\n", + " # Separate organic and aqueous phases means that phase equilibrium will\n", + " # be handled at the unit model level, thus has_phase_equilibrium is\n", + " # False, but has_mass_transfer is True.\n", + "\n", + " self.organic_phase.add_material_balances(\n", + " balance_type=self.config.material_balance_type,\n", + " has_phase_equilibrium=self.config.has_phase_equilibrium,\n", + " has_mass_transfer=True,\n", + " )\n", + " # ---------------------------------------------------------------------\n", + "\n", + " self.aqueous_phase = ControlVolume0DBlock(\n", + " dynamic=self.config.dynamic,\n", + " property_package=self.config.aqueous_property_package,\n", + " property_package_args=self.config.aqueous_property_package_args,\n", + " )\n", + "\n", + " self.aqueous_phase.add_state_blocks(\n", + " has_phase_equilibrium=self.config.has_phase_equilibrium\n", + " )\n", + "\n", + " # Separate liquid and aqueous phases means that phase equilibrium will\n", + " # be handled at the unit model level, thus has_phase_equilibrium is\n", + " # False, but has_mass_transfer is True.\n", + "\n", + " self.aqueous_phase.add_material_balances(\n", + " balance_type=self.config.material_balance_type,\n", + " # has_rate_reactions=False,\n", + " has_phase_equilibrium=self.config.has_phase_equilibrium,\n", + " has_mass_transfer=True,\n", + " )\n", + "\n", + " self.aqueous_phase.add_geometry()\n", + "\n", + " # ---------------------------------------------------------------------\n", + " # Check flow basis is compatible\n", + " t_init = self.flowsheet().time.first()\n", + " if (\n", + " self.aqueous_phase.properties_out[t_init].get_material_flow_basis()\n", + " != self.organic_phase.properties_out[t_init].get_material_flow_basis()\n", + " ):\n", + " raise ConfigurationError(\n", + " f\"{self.name} aqueous and organic property packages must use the \"\n", + " f\"same material flow basis.\"\n", + " )\n", + "\n", + " self.organic_phase.add_geometry()\n", + "\n", + " # Add Ports\n", + " self.add_inlet_port(\n", + " name=\"organic_inlet\", block=self.organic_phase, doc=\"Organic feed\"\n", + " )\n", + " self.add_inlet_port(\n", + " name=\"aqueous_inlet\", block=self.aqueous_phase, doc=\"Aqueous feed\"\n", + " )\n", + " self.add_outlet_port(\n", + " name=\"organic_outlet\", block=self.organic_phase, doc=\"Organic outlet\"\n", + " )\n", + " self.add_outlet_port(\n", + " name=\"aqueous_outlet\",\n", + " block=self.aqueous_phase,\n", + " doc=\"Aqueous outlet\",\n", + " )\n", + "\n", + " # ---------------------------------------------------------------------\n", + " # Add unit level constraints\n", + " # First, need the union and intersection of component lists\n", + " all_comps = (\n", + " self.aqueous_phase.properties_out.component_list\n", + " | self.organic_phase.properties_out.component_list\n", + " )\n", + " common_comps = (\n", + " self.aqueous_phase.properties_out.component_list\n", + " & self.organic_phase.properties_out.component_list\n", + " )\n", + "\n", + " # Get units for unit conversion\n", + " aunits = self.config.aqueous_property_package.get_metadata().get_derived_units\n", + " lunits = self.config.organic_property_package.get_metadata().get_derived_units\n", + " flow_basis = self.aqueous_phase.properties_out[t_init].get_material_flow_basis()\n", + "\n", + " if flow_basis == MaterialFlowBasis.mass:\n", + " fb = \"flow_mass\"\n", + " else:\n", + " raise ConfigurationError(\n", + " f\"{self.name} Liquid-Liquid Extractor only supports mass \"\n", + " f\"basis for MaterialFlowBasis.\"\n", + " )\n", + "\n", + " # Material balances\n", + " def rule_material_aq_balance(self, t, j):\n", + " if j in common_comps:\n", + " return self.aqueous_phase.mass_transfer_term[\n", + " t, \"Aq\", j\n", + " ] == -self.organic_phase.config.property_package.diffusion_factor[j] * (\n", + " self.aqueous_phase.properties_in[t].get_material_flow_terms(\"Aq\", j)\n", + " )\n", + " elif j in self.organic_phase.properties_out.component_list:\n", + " # No mass transfer term\n", + " # Set organic flowrate to an arbitrary small value\n", + " return self.organic_phase.mass_transfer_term[t, \"Org\", j] == 0 * lunits(fb)\n", + " elif j in self.aqueous_phase.properties_out.component_list:\n", + " # No mass transfer term\n", + " # Set aqueous flowrate to an arbitrary small value\n", + " return self.aqueous_phase.mass_transfer_term[t, \"Aq\", j] == 0 * aunits(fb)\n", + "\n", + " self.material_aq_balance = Constraint(\n", + " self.flowsheet().time,\n", + " self.aqueous_phase.properties_out.component_list,\n", + " rule=rule_material_aq_balance,\n", + " doc=\"Unit level material balances for Aq\",\n", + " )\n", + "\n", + " def rule_material_liq_balance(self, t, j):\n", + " if j in common_comps:\n", + " return (\n", + " self.organic_phase.mass_transfer_term[t, \"Org\", j]\n", + " == -self.aqueous_phase.mass_transfer_term[t, \"Aq\", j]\n", + " )\n", + " else:\n", + " # No mass transfer term\n", + " # Set organic flowrate to an arbitrary small value\n", + " return self.organic_phase.mass_transfer_term[t, \"Org\", j] == 0 * aunits(fb)\n", + "\n", + " self.material_org_balance = Constraint(\n", + " self.flowsheet().time,\n", + " self.organic_phase.properties_out.component_list,\n", + " rule=rule_material_liq_balance,\n", + " doc=\"Unit level material balances Org\",\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Initialization Routine\n", + "\n", + "After writing the unit model it is crucial to initialize the model properly, as non-linear models may encounter local minima or infeasibility if not initialized properly. IDAES provides us with a few initialization routines which may not work for all the models, and in such cases the developer will have to define their own initialization routines. \n", + "\n", + "To create a custom initialization routine, model developers must create an initialize method as part of their model, and provide a sequence of steps intended to build up a feasible solution. Initialization routines generally make use of Pyomo\u2019s tools for activating and deactivating constraints and often involve solving multiple sub-problems whilst building up an initial state.\n", + "\n", + "For this tutorial we would use the pre-defined initialization routine of `BlockTriangularizationInitializer` when initializing the model in the flowsheet. This Initializer should be suitable for most models, but may struggle to initialize\n", + "tightly coupled systems of equations. This method of initialization will follow the following workflow. \n", + "\n", + "- Have precheck for structural singularity\n", + "- Run incidence analysis on given block data and check matching.\n", + "- Call Block Triangularization solver on the model.\n", + "- Call solve_strongly_connected_components on a given BlockData.\n", + "\n", + "More details about this initialization routine can be found [here](https://github.com/IDAES/idaes-pse/blob/c09433b9afed5ae2fe25c0ccdc732783324f0101/idaes/core/initialization/block_triangularization.py). \n", + "\n", + "\n", + "This marks the conclusion of creating a custom unit model, for a more detailed explanation on creating a unit model refer [this resource](../../unit_models/custom_unit_models/custom_compressor_usr.ipynb). The next sections will deal with the diagnostics and testing of the property package and unit model. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.3 Building a Flowsheet\n", + "\n", + "Once we have set up the unit model and its property packages, we can start building a flowsheet using them. In this tutorial, we're focusing on a simple flowsheet with just a liquid-liquid extractor. To create the flowsheet we follow the following steps:\n", + "\n", + "- Import necessary libraries\n", + "- Create a Pyomo model.\n", + "- Inside the model, create a flowsheet block.\n", + "- Assign property packages to the flowsheet block.\n", + "- Add the liquid-liquid extractor to the flowsheet block.\n", + "- Fix variable to make it a square problem\n", + "- Run an initialization process.\n", + "- Solve the flowsheet.\n", + "\n", + "Following these steps, we've built a basic flowsheet using Pyomo. For more details, refer to the [documentation](../../flowsheets/hda_flowsheet_with_distillation_usr.ipynb).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "import pyomo.environ as pyo\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "from idaes.core.initialization.block_triangularization import (\n", + " BlockTriangularizationInitializer,\n", + ")\n", + "from liquid_extraction.organic_property import OrgPhase\n", + "from liquid_extraction.aqueous_property import AqPhase\n", + "from liquid_extraction.liquid_liquid_extractor import LiqExtraction\n", + "\n", + "\n", + "def build_model():\n", + " m = pyo.ConcreteModel()\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + " m.fs.org_properties = OrgPhase()\n", + " m.fs.aq_properties = AqPhase()\n", + "\n", + " m.fs.lex = LiqExtraction(\n", + " dynamic=False,\n", + " has_pressure_change=False,\n", + " organic_property_package=m.fs.org_properties,\n", + " aqueous_property_package=m.fs.aq_properties,\n", + " )\n", + " return m\n", + "\n", + "\n", + "def fix_state_variables(m):\n", + " m.fs.lex.organic_inlet.flow_vol.fix(80 * pyo.units.L / pyo.units.hour)\n", + " m.fs.lex.organic_inlet.temperature.fix(300 * pyo.units.K)\n", + " m.fs.lex.organic_inlet.pressure.fix(1 * pyo.units.atm)\n", + " m.fs.lex.organic_inlet.conc_mass_comp[0, \"NaCl\"].fix(\n", + " 1e-5 * pyo.units.g / pyo.units.L\n", + " )\n", + " m.fs.lex.organic_inlet.conc_mass_comp[0, \"KNO3\"].fix(\n", + " 1e-5 * pyo.units.g / pyo.units.L\n", + " )\n", + " m.fs.lex.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fix(\n", + " 1e-5 * pyo.units.g / pyo.units.L\n", + " )\n", + "\n", + " m.fs.lex.aqueous_inlet.flow_vol.fix(100 * pyo.units.L / pyo.units.hour)\n", + " m.fs.lex.aqueous_inlet.temperature.fix(300 * pyo.units.K)\n", + " m.fs.lex.aqueous_inlet.pressure.fix(1 * pyo.units.atm)\n", + " m.fs.lex.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fix(\n", + " 0.15 * pyo.units.g / pyo.units.L\n", + " )\n", + " m.fs.lex.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fix(\n", + " 0.2 * pyo.units.g / pyo.units.L\n", + " )\n", + " m.fs.lex.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fix(\n", + " 0.1 * pyo.units.g / pyo.units.L\n", + " )\n", + "\n", + " return m\n", + "\n", + "\n", + "def initialize_model(m):\n", + " initializer = BlockTriangularizationInitializer()\n", + " initializer.initialize(m.fs.lex)\n", + " return m\n", + "\n", + "\n", + "def main():\n", + " m = build_model()\n", + " m = fix_state_variables(m)\n", + " m = initialize_model(m)\n", + " return m\n", + "\n", + "\n", + "if __name__ == main:\n", + " main()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4. Model Diagnostics using DiagnosticsToolbox\n", + "\n", + "Here, during initialization, we encounter warnings indicating that variables are being set to negative values, which is not expected behavior. These warnings suggest that there may be flaws in the model that require further investigation using the DiagnosticsToolbox from IDAES. A detailed notebook on using `DiagnosticsToolbox` can be found [here](../../diagnostics/degeneracy_hunter_usr.ipynb).\n", + "\n", + "To proceed with investigating these issues, we need to import the DiagnosticsToolbox. We can gain a better understanding of its functionality by running the help function on it. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core.util import DiagnosticsToolbox" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The help() function provides comprehensive information on the DiagnosticsToolbox and all its supported methods. However, it's essential to focus on the initial steps outlined at the beginning of the docstring to get started effectively.\n", + "\n", + "Here's a breakdown of the steps to start with:\n", + "\n", + "- `Instantiate Model:` Ensure you have an instance of the model with degrees of freedom equal to 0.\n", + "\n", + "- `Create DiagnosticsToolbox Instance:` Next, instantiate a DiagnosticsToolbox object.\n", + "\n", + "- `Provide Model to DiagnosticsToolbox:` Pass the model instance to the DiagnosticsToolbox.\n", + "\n", + "- `Call report_structural_issues() Function:` Finally, call the report_structural_issues() function. This function will highlight any warnings in the model's structure, such as unit inconsistencies or other issues related to variables in the caution section.\n", + "\n", + "By following these steps, you can efficiently utilize the DiagnosticsToolbox to identify and address any structural issues or warnings in your model." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING (W1001): Setting Var\n", + "'fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[NaCl]' to a value\n", + "`-0.1725` (float) not in domain NonNegativeReals.\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001\n", + "WARNING (W1001): Setting Var\n", + "'fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[KNO3]' to a value\n", + "`-0.4` (float) not in domain NonNegativeReals.\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001\n", + "WARNING (W1001): Setting Var\n", + "'fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[CaSO4]' to a value\n", + "`-0.05` (float) not in domain NonNegativeReals.\n", + " See also https://pyomo.readthedocs.io/en/stable/errors.html#w1001\n", + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 21 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 16 (External: 0)\n", + " Free Variables with only lower bounds: 8\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 0\n", + " Fixed Variables in Activated Constraints: 8 (External: 0)\n", + " Activated Equality Constraints: 16 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 Cautions\n", + "\n", + " Caution: 10 unused variables (4 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " Try to initialize/solve your model and then call report_numerical_issues()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "m = main()\n", + "dt = DiagnosticsToolbox(m)\n", + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Although no warnings were reported, it's important to note that there are 3 variables fixed to 0 and 10 unused variables, out of which 4 are fixed. As indicated in the output, the next step is to solve the model. After solving, you should call the report_numerical_issues() function. This function will help identify any numerical issues that may arise during the solution process." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 33\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 14\n", + "\n", + "Total number of variables............................: 16\n", + " variables with only lower bounds: 8\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 16\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 4.10e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 4.00e+01 4.93e+01 -1.0 4.10e-01 - 9.91e-01 2.41e-02h 1\n", + " 2 0.0000000e+00 4.00e+01 2.03e+05 -1.0 4.00e-01 - 1.00e+00 2.47e-04h 1\n", + " 3r 0.0000000e+00 4.00e+01 1.00e+03 1.6 0.00e+00 - 0.00e+00 3.09e-07R 4\n", + " 4r 0.0000000e+00 4.00e+01 9.88e+04 1.6 3.68e+02 - 9.92e-01 2.29e-03f 1\n", + " 5r 0.0000000e+00 3.60e+01 3.03e+00 1.6 4.01e+00 - 1.00e+00 1.00e+00f 1\n", + " 6r 0.0000000e+00 3.69e+01 1.21e+01 -1.2 9.24e-01 - 9.69e-01 9.78e-01f 1\n", + " 7r 0.0000000e+00 3.70e+01 2.11e-01 -1.9 1.00e-01 - 9.97e-01 1.00e+00f 1\n", + " 8r 0.0000000e+00 3.78e+01 2.03e-02 -4.3 8.71e-01 - 9.71e-01 1.00e+00f 1\n", + " 9r 0.0000000e+00 3.80e+01 2.62e-04 -6.4 1.24e-01 - 9.99e-01 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10r 0.0000000e+00 3.81e+01 5.87e-09 -6.4 1.58e-01 - 1.00e+00 1.00e+00f 1\n", + " 11r 0.0000000e+00 3.91e+01 1.09e-05 -9.0 9.35e-01 - 9.68e-01 1.00e+00f 1\n", + "\n", + "Number of Iterations....: 11\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 5.1393961893966849e-07 5.1393961893966849e-07\n", + "Constraint violation....: 3.9105165554489545e+01 3.9105165554489545e+01\n", + "Complementarity.........: 9.0909090910996620e-10 9.0909090910996620e-10\n", + "Overall NLP error.......: 3.9105165554489545e+01 3.9105165554489545e+01\n", + "\n", + "\n", + "Number of objective function evaluations = 17\n", + "Number of objective gradient evaluations = 5\n", + "Number of equality constraint evaluations = 17\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 14\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 12\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Converged to a point of local infeasibility. Problem may be infeasible.\n", + "WARNING: Loading a SolverResults object with a warning status into\n", + "model.name=\"unknown\";\n", + " - termination condition: infeasible\n", + " - message from solver: Ipopt 3.13.2\\x3a Converged to a locally infeasible\n", + " point. Problem may be infeasible.\n" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 16, 'Number of variables': 16, 'Sense': 'unknown'}], 'Solver': [{'Status': 'warning', 'Message': 'Ipopt 3.13.2\\\\x3a Converged to a locally infeasible point. Problem may be infeasible.', 'Termination condition': 'infeasible', 'Id': 200, 'Error rc': 0, 'Time': 0.06552338600158691}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver = pyo.SolverFactory(\"ipopt\")\n", + "solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The model is probably infeasible, indicating numerical issues with the model. We should call the `report_numerical_issues()` function and check the constraints/variables causing this issue. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Jacobian Condition Number: 7.955E+03\n", + "\n", + "------------------------------------------------------------------------------------\n", + "2 WARNINGS\n", + "\n", + " WARNING: 6 Constraints with large residuals (>1.0E-05)\n", + " WARNING: 5 Variables at or outside bounds (tol=0.0E+00)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "3 Cautions\n", + "\n", + " Caution: 8 Variables with value close to their bounds (abs=1.0E-04, rel=1.0E-04)\n", + " Caution: 5 Variables with value close to zero (tol=1.0E-08)\n", + " Caution: 3 Variables with extreme value (<1.0E-04 or >1.0E+04)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " display_constraints_with_large_residuals()\n", + " display_variables_at_or_outside_bounds()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_numerical_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this scenario, it's observed that the condition number of the Jacobian is high, indicating that the Jacobian is ill-conditioned. Additionally, there are 2 warnings related to constraints with large residuals and variables at or outside the bounds. The cautions mentioned in the output are also related to these warnings.\n", + "\n", + "As suggested, the next steps would be to:\n", + "\n", + "- Call the `display_variables_at_or_outside_bounds()` function to investigate variables at or outside the bounds.\n", + "\n", + "- Call the `display_constraints_with_large_residuals()` function to examine constraints with large residuals.\n", + "\n", + "These steps will help identify the underlying causes of the numerical issues and constraints violations, allowing for further analysis and potential resolution. " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following variable(s) have values at or outside their bounds (tol=0.0E+00):\n", + "\n", + " fs.lex.organic_phase.properties_in[0.0].pressure (fixed): value=1.0 bounds=(1, 5)\n", + " fs.lex.organic_phase.properties_out[0.0].pressure (free): value=1 bounds=(1, 5)\n", + " fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[NaCl] (free): value=0.0 bounds=(0, None)\n", + " fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[KNO3] (free): value=0.0 bounds=(0, None)\n", + " fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[CaSO4] (free): value=0.0 bounds=(0, None)\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_variables_at_or_outside_bounds()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this scenario, there are a couple of issues to address:\n", + "\n", + "- The pressure variable is fixed to 1, which is its lower bound. This could potentially lead to numerical issues, although it may not affect the model significantly since there is no pressure change in the model. To mitigate this, consider adjusting the lower bound of the pressure variable to avoid having its value at or outside the bounds.\n", + "\n", + "- The more concerning issue is with the `conc_mass_comp` variable attempting to go below 0 in the output. This suggests that there may be constraints involving `conc_mass_comp` in the aqueous phase causing this behavior. To investigate further, it's recommended to call the `display_constraints_with_large_residuals()` function. This will provide insights into whether constraints involving `conc_mass_comp` are contributing to the convergence issue." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "The following constraint(s) have large residuals (>1.0E-05):\n", + "\n", + " fs.lex.material_aq_balance[0.0,NaCl]: 5.49716E-01\n", + " fs.lex.material_aq_balance[0.0,KNO3]: 8.94833E-01\n", + " fs.lex.material_aq_balance[0.0,CaSO4]: 5.48843E-02\n", + " fs.lex.aqueous_phase.material_balances[0.0,NaCl]: 1.67003E+01\n", + " fs.lex.aqueous_phase.material_balances[0.0,KNO3]: 3.91052E+01\n", + " fs.lex.aqueous_phase.material_balances[0.0,CaSO4]: 4.94512E+00\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.display_constraints_with_large_residuals()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected there are convergence issues with the constraints which have `conc_mass_comp` variable in them specifically in the aqueous phase. Now, let us investigate further by printing this constraints and checking the value of each term. Since this is an persistent issue across the components, we can focus on just one of the component to identify the issue. " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{Member of material_balances} : Material balances\n", + " Size=4, Index=fs._time*fs.aq_properties.component_list, Active=True\n", + " Key : Lower : Body : Upper : Active\n", + " (0.0, 'NaCl') : 0.0 : (fs.lex.aqueous_phase.properties_in[0.0].conc_mass_comp[NaCl]*fs.lex.aqueous_phase.properties_in[0.0].flow_vol) - (fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[NaCl]*fs.lex.aqueous_phase.properties_out[0.0].flow_vol) + fs.lex.aqueous_phase.mass_transfer_term[0.0,Aq,NaCl] : 0.0 : True\n" + ] + } + ], + "source": [ + "m.fs.lex.aqueous_phase.material_balances[0.0, \"NaCl\"].pprint()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{Member of conc_mass_comp} : Component mass concentrations\n", + " Size=3, Index=fs.aq_properties.solutes, Units=g/l\n", + " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", + " NaCl : 0 : 0.15 : None : True : True : NonNegativeReals\n", + "flow_vol : Total volumetric flowrate\n", + " Size=1, Index=None, Units=l/h\n", + " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", + " None : 0 : 100.0 : None : True : True : NonNegativeReals\n", + "{Member of conc_mass_comp} : Component mass concentrations\n", + " Size=3, Index=fs.aq_properties.solutes, Units=g/l\n", + " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", + " NaCl : 0 : 0.0 : None : False : False : NonNegativeReals\n", + "flow_vol : Total volumetric flowrate\n", + " Size=1, Index=None, Units=l/h\n", + " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", + " None : 0 : 100.0 : None : False : False : NonNegativeReals\n", + "{Member of mass_transfer_term} : Component material transfer into unit\n", + " Size=4, Index=fs._time*fs.aq_properties._phase_component_set, Units=g/h\n", + " Key : Lower : Value : Upper : Fixed : Stale : Domain\n", + " (0.0, 'Aq', 'NaCl') : None : -31.700284300098897 : None : False : False : Reals\n" + ] + } + ], + "source": [ + "m.fs.lex.aqueous_phase.properties_in[0.0].conc_mass_comp[\"NaCl\"].pprint()\n", + "m.fs.lex.aqueous_phase.properties_in[0.0].flow_vol.pprint()\n", + "m.fs.lex.aqueous_phase.properties_out[0.0].conc_mass_comp[\"NaCl\"].pprint()\n", + "m.fs.lex.aqueous_phase.properties_out[0.0].flow_vol.pprint()\n", + "m.fs.lex.aqueous_phase.mass_transfer_term[0.0, \"Aq\", \"NaCl\"].pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It seems there is a discrepancy between the mass transfer term and the amount of input of NaCl. This can be inferred from the values where the input equals 15g/h and the `mass_transfer_term` equals -31.706g/h.\n", + "\n", + "To further investigate this issue, it's advisable to examine the `material_aq_balance` constraint within the unit model where the `mass_transfer_term` is defined. By printing out this constraint and analyzing its components, you can gain a better understanding of the discrepancy and take appropriate corrective actions." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{Member of material_aq_balance} : Unit level material balances for Aq\n", + " Size=4, Index=fs._time*fs.aq_properties.component_list, Active=True\n", + " Key : Lower : Body : Upper : Active\n", + " (0.0, 'NaCl') : 0.0 : fs.lex.aqueous_phase.mass_transfer_term[0.0,Aq,NaCl] + fs.org_properties.diffusion_factor[NaCl]*(fs.lex.aqueous_phase.properties_in[0.0].conc_mass_comp[NaCl]*fs.lex.aqueous_phase.properties_in[0.0].flow_vol) : 0.0 : True\n" + ] + } + ], + "source": [ + "m.fs.lex.material_aq_balance[0.0, \"NaCl\"].pprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here the problem can be tracked down easily as there being a typing error while recording the distribution factor. The distribution factor here was wrongly written ignoring its magnitude which should have been 1e-2, but that was missed, thus adjusting the distribution factor parameter we should have this issue resolved. " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.org_properties.diffusion_factor[\"NaCl\"] = (\n", + " m.fs.org_properties.diffusion_factor[\"NaCl\"] / 100\n", + ")\n", + "m.fs.org_properties.diffusion_factor[\"KNO3\"] = (\n", + " m.fs.org_properties.diffusion_factor[\"KNO3\"] / 100\n", + ")\n", + "m.fs.org_properties.diffusion_factor[\"CaSO4\"] = (\n", + " m.fs.org_properties.diffusion_factor[\"CaSO4\"] / 100\n", + ")\n", + "\n", + "m.fs.lex.organic_phase.properties_in[0.0].pressure.setlb(0.5)\n", + "m.fs.lex.organic_phase.properties_out[0.0].pressure.setlb(0.5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After the corrective actions, we should check if this has made any structural issues, for this we would call `report_structural_issues()`" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "====================================================================================\n", + "Model Statistics\n", + "\n", + " Activated Blocks: 21 (Deactivated: 0)\n", + " Free Variables in Activated Constraints: 16 (External: 0)\n", + " Free Variables with only lower bounds: 8\n", + " Free Variables with only upper bounds: 0\n", + " Free Variables with upper and lower bounds: 0\n", + " Fixed Variables in Activated Constraints: 8 (External: 0)\n", + " Activated Equality Constraints: 16 (Deactivated: 0)\n", + " Activated Inequality Constraints: 0 (Deactivated: 0)\n", + " Activated Objectives: 0 (Deactivated: 0)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "0 WARNINGS\n", + "\n", + " No warnings found!\n", + "\n", + "------------------------------------------------------------------------------------\n", + "1 Cautions\n", + "\n", + " Caution: 10 unused variables (4 fixed)\n", + "\n", + "------------------------------------------------------------------------------------\n", + "Suggested next steps:\n", + "\n", + " Try to initialize/solve your model and then call report_numerical_issues()\n", + "\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "dt.report_structural_issues()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now since there are no warnings we can go ahead and solve the model and see if the results are optimal. " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: \n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 33\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 14\n", + "\n", + "Total number of variables............................: 16\n", + " variables with only lower bounds: 8\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 16\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 5.85e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 3.55e-15 8.41e+00 -1.0 5.85e+01 - 1.05e-01 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 1\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 3.5527136788005009e-15 3.5527136788005009e-15\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 3.5527136788005009e-15 3.5527136788005009e-15\n", + "\n", + "\n", + "Number of objective function evaluations = 2\n", + "Number of objective gradient evaluations = 2\n", + "Number of equality constraint evaluations = 2\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 2\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 1\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + }, + { + "data": { + "text/plain": [ + "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 16, 'Number of variables': 16, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.07779264450073242}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solver.solve(m, tee=True)" + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: \n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 33\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 14\n", - "\n", - "Total number of variables............................: 16\n", - " variables with only lower bounds: 8\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 16\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 5.85e+01 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 3.55e-15 8.41e+00 -1.0 5.85e+01 - 1.05e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 1\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 3.5527136788005009e-15 3.5527136788005009e-15\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 3.5527136788005009e-15 3.5527136788005009e-15\n", - "\n", - "\n", - "Number of objective function evaluations = 2\n", - "Number of objective gradient evaluations = 2\n", - "Number of equality constraint evaluations = 2\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 2\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 1\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is a good sign that the model solved optimally and a solution was found. \n", + "\n", + "**NOTE:** It is a good practice to run the model through DiagnosticsToolbox regardless of the solver termination status. \n", + "\n", + "The next section we shall focus on testing the unit model. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 5. Testing\n", + "\n", + "Testing is a crucial part of model development to ensure that the model works as expected, and remains reliable. Here's an overview of why we conduct testing:\n", + "\n", + "1. `Verify Correctness`: Testing ensures that the model works as expected and meets the specified requirements. \n", + "2. `Detect Bugs and Issues`: Testing helps in identifying bugs, errors, or unexpected behaviors in the code or model, allowing for timely fixes.\n", + "3. `Ensure Reliability`: Testing improves the reliability and robustness of the software, reducing the risk of failures when the user uses it.\n", + "4. `Support Changes`: Tests provide confidence when making changes or adding new features, ensuring that existing functionalities are not affected and work as they should.\n", + "\n", + "There are typically 3 types of tests:\n", + "\n", + "1. `Unit tests`: Test runs quickly (under 2 seconds) and has no network/system dependencies. Uses only libraries installed by default with the software\n", + "2. `Component test`: Test may run more slowly (under 10 seconds, or so), e.g. it may run a solver or create a bunch of files. Like unit tests, it still shouldn't depend on special libraries or dependencies.\n", + "3. `Integration test`: Test may take a long time to run, and may have complex dependencies.\n", + "\n", + "The expectation is that unit tests should be run by developers rather frequently, component tests should be run by the continuous integration system before running code, and integration tests are run across the codebase regularly, but infrequently (e.g. daily).\n", + "\n", + "\n", + "As a developer, testing is a crucial aspect of ensuring the reliability and correctness of the unit model. The testing process involves both Unit tests and Component tests, and pytest is used as the testing framework. A typical test is marked with @pytest.mark.level, where the level indicates the depth or specificity of the testing. This is written in a file usually named as test_*.py or *_test.py. The test files have functions written in them with the appropriate level of test being conducted. \n", + "\n", + "For more detailed information on testing methodologies and procedures, developers are encouraged to refer to [this resource](https://idaes-pse.readthedocs.io/en/stable/reference_guides/developer/testing.html). The resource provides comprehensive guidance on the testing process and ensures that the unit model meets the required standards and functionality.\n", + "\n", + "## 5.1 Property package\n", + "### Unit Tests\n", + "\n", + "When writing tests for the Aqueous property phase package, it's essential to focus on key aspects to ensure the correctness and robustness of the implementation. Here are the areas to cover in the unit tests:\n", + "\n", + "1. Number of Config Dictionaries: Verify that the property phase package has the expected number of configuration dictionaries.\n", + "\n", + "2. State Block Class Name: Confirm that the correct state block class is associated with the Aqueous property phase package.\n", + "\n", + "3. Number of Phases: Check that the Aqueous property phase package defines the expected number of phases.\n", + "\n", + "4. Components in the Phase and Physical Parameter Values: Test that the components present in the Aqueous phase match the anticipated list. Additionally, validate that the physical parameter values (such as density, viscosity, etc.) are correctly defined.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "import pytest\n", + "from pyomo.environ import ConcreteModel, Param, value, Var\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "from idaes.core import MaterialBalanceType, EnergyBalanceType\n", + "\n", + "from liquid_extraction.organic_property import OrgPhase\n", + "from liquid_extraction.aqueous_property import AqPhase\n", + "from liquid_extraction.liquid_liquid_extractor import LiqExtraction\n", + "from idaes.core.solvers import get_solver\n", + "\n", + "solver = get_solver()\n", + "\n", + "\n", + "class TestParamBlock(object):\n", + " @pytest.fixture(scope=\"class\")\n", + " def model(self):\n", + " model = ConcreteModel()\n", + " model.params = AqPhase()\n", + " return model\n", + "\n", + " @pytest.mark.unit\n", + " def test_config(self, model):\n", + " assert len(model.params.config) == 1\n", + "\n", + " @pytest.mark.unit\n", + " def test_build(self, model):\n", + " assert len(model.params.phase_list) == 1\n", + " for i in model.params.phase_list:\n", + " assert i == \"Aq\"\n", + "\n", + " assert len(model.params.component_list) == 4\n", + " for i in model.params.component_list:\n", + " assert i in [\"H2O\", \"NaCl\", \"KNO3\", \"CaSO4\"]\n", + "\n", + " assert isinstance(model.params.cp_mass, Param)\n", + " assert value(model.params.cp_mass) == 4182\n", + "\n", + " assert isinstance(model.params.dens_mass, Param)\n", + " assert value(model.params.dens_mass) == 997\n", + "\n", + " assert isinstance(model.params.temperature_ref, Param)\n", + " assert value(model.params.temperature_ref) == 298.15" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The next set of unit tests focuses on testing the build function in the state block. Here are the key aspects to cover in these tests:\n", + "\n", + "1. Existence and Initialized Values of State Variables: Verify that the state variables are correctly defined and initialized within the state block. This ensures that the state block is properly constructed and ready for initialization.\n", + "\n", + "2. Initialization Function Test: Check that state variables are not fixed before initialization and are released after initialization. This test ensures that the initialization process occurs as expected and that the state variables are appropriately managed throughout.\n", + "\n", + "These unit tests provide comprehensive coverage for validating the functionality and behavior of the state block in the aqueous property phase package. Similar tests can be written for the organic property package to ensure consistency and reliability across both packages." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "class TestStateBlock(object):\n", + " @pytest.fixture(scope=\"class\")\n", + " def model(self):\n", + " model = ConcreteModel()\n", + " model.params = AqPhase()\n", + "\n", + " model.props = model.params.build_state_block([1])\n", + "\n", + " return model\n", + "\n", + " @pytest.mark.unit\n", + " def test_build(self, model):\n", + " assert isinstance(model.props[1].flow_vol, Var)\n", + " assert value(model.props[1].flow_vol) == 1\n", + "\n", + " assert isinstance(model.props[1].temperature, Var)\n", + " assert value(model.props[1].temperature) == 300\n", + "\n", + " assert isinstance(model.props[1].conc_mass_comp, Var)\n", + " assert len(model.props[1].conc_mass_comp) == 3\n", + "\n", + " @pytest.mark.unit\n", + " def test_initialize(self, model):\n", + " assert not model.props[1].flow_vol.fixed\n", + " assert not model.props[1].temperature.fixed\n", + " assert not model.props[1].pressure.fixed\n", + " for i in model.props[1].conc_mass_comp:\n", + " assert not model.props[1].conc_mass_comp[i].fixed\n", + "\n", + " model.props.initialize(hold_state=False, outlvl=1)\n", + "\n", + " assert not model.props[1].flow_vol.fixed\n", + " assert not model.props[1].temperature.fixed\n", + " assert not model.props[1].pressure.fixed\n", + " for i in model.props[1].conc_mass_comp:\n", + " assert not model.props[1].conc_mass_comp[i].fixed" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Component Tests\n", + "In the component test, we aim to ensure unit consistency across the entire property package. Unlike unit tests that focus on individual functions, component tests assess the coherence and consistency of the entire package. Here's what the component test will entail:\n", + "\n", + "Unit Consistency Check: Verify that all units used within the property package are consistent throughout. This involves checking that all parameters, variables, and equations within the package adhere to the same unit system, ensuring compatibility.\n", + "\n", + "By conducting a comprehensive component test, we can ensure that the property package functions as a cohesive unit, maintaining consistency and reliability across its entirety. This concludes our tests on the property package. Next we shall test the unit model. " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "@pytest.mark.component\n", + "def check_units(model):\n", + " model = ConcreteModel()\n", + " model.params = AqPhase()\n", + " assert_units_consistent(model)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 5.2 Unit Model\n", + "### Unit tests\n", + "Unit tests for the unit model encompass verifying the configuration arguments and the build function, similar to the approach taken for the property package. When testing the config arguments, we ensure that the correct number of arguments is provided and then match each argument with the expected one. This ensures that the unit model is properly configured and ready to operate as intended." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "import pytest\n", + "\n", + "from idaes.core import FlowsheetBlock\n", + "import idaes.models.unit_models\n", + "from idaes.core.solvers import get_solver\n", + "import idaes.logger as idaeslog\n", + "\n", + "\n", + "from pyomo.environ import value, check_optimal_termination, units\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "from idaes.core.util.model_statistics import (\n", + " number_variables,\n", + " number_total_constraints,\n", + ")\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.initialization import (\n", + " SingleControlVolumeUnitInitializer,\n", + ")\n", + "\n", + "solver = get_solver()\n", + "\n", + "\n", + "@pytest.mark.unit\n", + "def test_config():\n", + " m = ConcreteModel()\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + " m.fs.org_properties = OrgPhase()\n", + " m.fs.aq_properties = AqPhase()\n", + "\n", + " m.fs.unit = LiqExtraction(\n", + " dynamic=False,\n", + " has_pressure_change=False,\n", + " organic_property_package=m.fs.org_properties,\n", + " aqueous_property_package=m.fs.aq_properties,\n", + " )\n", + "\n", + " # Check unit config arguments\n", + " assert len(m.fs.unit.config) == 9\n", + "\n", + " # Check for config arguments\n", + " assert m.fs.unit.config.material_balance_type == MaterialBalanceType.useDefault\n", + " assert not m.fs.unit.config.has_pressure_change\n", + " assert not m.fs.unit.config.has_phase_equilibrium\n", + " assert m.fs.unit.config.organic_property_package is m.fs.org_properties\n", + " assert m.fs.unit.config.aqueous_property_package is m.fs.aq_properties\n", + "\n", + " # Check for unit initializer\n", + " assert m.fs.unit.default_initializer is SingleControlVolumeUnitInitializer" + ] }, { - "data": { - "text/plain": [ - "{'Problem': [{'Lower bound': -inf, 'Upper bound': inf, 'Number of objectives': 1, 'Number of constraints': 16, 'Number of variables': 16, 'Sense': 'unknown'}], 'Solver': [{'Status': 'ok', 'Message': 'Ipopt 3.13.2\\\\x3a Optimal Solution Found', 'Termination condition': 'optimal', 'Id': 0, 'Error rc': 0, 'Time': 0.07779264450073242}], 'Solution': [OrderedDict([('number of solutions', 0), ('number of solutions displayed', 0)])]}" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In testing the build function, we verify whether the number of variables aligns with the intended values and also check for the existence of desired constraints within the unit model. This ensures that the unit model is constructed accurately and includes all the necessary variables and constraints required for its proper functioning." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "class TestBuild(object):\n", + " @pytest.fixture(scope=\"class\")\n", + " def model(self):\n", + " m = ConcreteModel()\n", + " m.fs = FlowsheetBlock(dynamic=False)\n", + " m.fs.org_properties = OrgPhase()\n", + " m.fs.aq_properties = AqPhase()\n", + "\n", + " m.fs.unit = LiqExtraction(\n", + " dynamic=False,\n", + " has_pressure_change=False,\n", + " organic_property_package=m.fs.org_properties,\n", + " aqueous_property_package=m.fs.aq_properties,\n", + " )\n", + "\n", + " m.fs.unit.organic_inlet.flow_vol.fix(80 * units.l / units.h)\n", + " m.fs.unit.organic_inlet.temperature.fix(300 * units.K)\n", + " m.fs.unit.organic_inlet.pressure.fix(1 * units.atm)\n", + " m.fs.unit.organic_inlet.conc_mass_comp[0, \"NaCl\"].fix(0 * units.g / units.l)\n", + " m.fs.unit.organic_inlet.conc_mass_comp[0, \"KNO3\"].fix(0 * units.g / units.l)\n", + " m.fs.unit.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0 * units.g / units.l)\n", + "\n", + " m.fs.unit.aqueous_inlet.flow_vol.fix(10 * units.l / units.h)\n", + " m.fs.unit.aqueous_inlet.temperature.fix(300 * units.K)\n", + " m.fs.unit.aqueous_inlet.pressure.fix(1 * units.atm)\n", + " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fix(0.15 * units.g / units.l)\n", + " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fix(0.2 * units.g / units.l)\n", + " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0.1 * units.g / units.l)\n", + "\n", + " return m\n", + "\n", + " @pytest.mark.build\n", + " @pytest.mark.unit\n", + " def test_build(self, model):\n", + "\n", + " assert hasattr(model.fs.unit, \"aqueous_inlet\")\n", + " assert len(model.fs.unit.aqueous_inlet.vars) == 4\n", + " assert hasattr(model.fs.unit.aqueous_inlet, \"flow_vol\")\n", + " assert hasattr(model.fs.unit.aqueous_inlet, \"conc_mass_comp\")\n", + " assert hasattr(model.fs.unit.aqueous_inlet, \"temperature\")\n", + " assert hasattr(model.fs.unit.aqueous_inlet, \"pressure\")\n", + "\n", + " assert hasattr(model.fs.unit, \"organic_inlet\")\n", + " assert len(model.fs.unit.organic_inlet.vars) == 4\n", + " assert hasattr(model.fs.unit.organic_inlet, \"flow_vol\")\n", + " assert hasattr(model.fs.unit.organic_inlet, \"conc_mass_comp\")\n", + " assert hasattr(model.fs.unit.organic_inlet, \"temperature\")\n", + " assert hasattr(model.fs.unit.organic_inlet, \"pressure\")\n", + "\n", + " assert hasattr(model.fs.unit, \"aqueous_outlet\")\n", + " assert len(model.fs.unit.aqueous_outlet.vars) == 4\n", + " assert hasattr(model.fs.unit.aqueous_outlet, \"flow_vol\")\n", + " assert hasattr(model.fs.unit.aqueous_outlet, \"conc_mass_comp\")\n", + " assert hasattr(model.fs.unit.aqueous_outlet, \"temperature\")\n", + " assert hasattr(model.fs.unit.aqueous_outlet, \"pressure\")\n", + "\n", + " assert hasattr(model.fs.unit, \"organic_outlet\")\n", + " assert len(model.fs.unit.organic_outlet.vars) == 4\n", + " assert hasattr(model.fs.unit.organic_outlet, \"flow_vol\")\n", + " assert hasattr(model.fs.unit.organic_outlet, \"conc_mass_comp\")\n", + " assert hasattr(model.fs.unit.organic_outlet, \"temperature\")\n", + " assert hasattr(model.fs.unit.organic_outlet, \"pressure\")\n", + "\n", + " assert hasattr(model.fs.unit, \"material_aq_balance\")\n", + " assert hasattr(model.fs.unit, \"material_org_balance\")\n", + "\n", + " assert number_variables(model) == 34\n", + " assert number_total_constraints(model) == 16" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Component tests\n", + "\n", + "During the component tests, we evaluate the performance of the unit model when integrated with the property package. This evaluation process typically involves several steps:\n", + "\n", + "1. Unit Consistency Check: Verify that the unit model maintains consistency in its units throughout the model. This ensures that all variables and constraints within the model adhere to the same unit system, guaranteeing compatibility.\n", + "\n", + "2. Termination Condition Verification: This involves checking whether the model terminates optimally with the given inlet conditions.\n", + "\n", + "3. Variable Value Assessment: Check the values of outlet variables against the expected values. To account for the numerical tolerance of the solvers, the values are compared using the approx function with a relative tolerance.\n", + "\n", + "4. Input Variable Stability Test: Verify that input variables, which should remain fixed during model operation, are not inadvertently unfixed or altered.\n", + "\n", + "5. Structural Issues: Verify that there are no structural issues with the model. \n", + "\n", + "By performing these checks, we conclude the testing for the unit model. " + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "class TestFlowsheet:\n", + " @pytest.fixture\n", + " def model(self):\n", + " m = ConcreteModel()\n", + " m.fs = idaes.core.FlowsheetBlock(dynamic=False)\n", + " m.fs.org_properties = OrgPhase()\n", + " m.fs.aq_properties = AqPhase()\n", + "\n", + " m.fs.unit = LiqExtraction(\n", + " dynamic=False,\n", + " has_pressure_change=False,\n", + " organic_property_package=m.fs.org_properties,\n", + " aqueous_property_package=m.fs.aq_properties,\n", + " )\n", + " m.fs.org_properties.diffusion_factor[\"NaCl\"] = (\n", + " m.fs.org_properties.diffusion_factor[\"NaCl\"] / 100\n", + " )\n", + " m.fs.org_properties.diffusion_factor[\"KNO3\"] = (\n", + " m.fs.org_properties.diffusion_factor[\"KNO3\"] / 100\n", + " )\n", + " m.fs.org_properties.diffusion_factor[\"CaSO4\"] = (\n", + " m.fs.org_properties.diffusion_factor[\"CaSO4\"] / 100\n", + " )\n", + "\n", + " m.fs.unit.organic_inlet.flow_vol.fix(80 * units.ml / units.min)\n", + " m.fs.unit.organic_inlet.temperature.fix(300 * units.K)\n", + " m.fs.unit.organic_inlet.pressure.fix(1 * units.atm)\n", + " m.fs.unit.organic_inlet.conc_mass_comp[0, \"NaCl\"].fix(0 * units.g / units.kg)\n", + " m.fs.unit.organic_inlet.conc_mass_comp[0, \"KNO3\"].fix(0 * units.g / units.kg)\n", + " m.fs.unit.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0 * units.g / units.kg)\n", + "\n", + " m.fs.unit.aqueous_inlet.flow_vol.fix(10 * units.ml / units.min)\n", + " m.fs.unit.aqueous_inlet.temperature.fix(300 * units.K)\n", + " m.fs.unit.aqueous_inlet.pressure.fix(1 * units.atm)\n", + " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fix(0.15 * units.g / units.kg)\n", + " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fix(0.2 * units.g / units.kg)\n", + " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0.1 * units.g / units.kg)\n", + "\n", + " return m\n", + "\n", + " @pytest.mark.component\n", + " def test_unit_model(self, model):\n", + " assert_units_consistent(model)\n", + " solver = get_solver()\n", + " results = solver.solve(model, tee=False)\n", + "\n", + " # Check for optimal termination\n", + " assert check_optimal_termination(results)\n", + "\n", + " # Checking for outlet flows\n", + " assert value(model.fs.unit.organic_outlet.flow_vol[0]) == pytest.approx(\n", + " 80.0, rel=1e-5\n", + " )\n", + " assert value(model.fs.unit.aqueous_outlet.flow_vol[0]) == pytest.approx(\n", + " 10.0, rel=1e-5\n", + " )\n", + "\n", + " # Checking for outlet mass_comp\n", + " assert value(\n", + " model.fs.unit.organic_outlet.conc_mass_comp[0, \"CaSO4\"]\n", + " ) == pytest.approx(0.000187499, rel=1e-5)\n", + " assert value(\n", + " model.fs.unit.organic_outlet.conc_mass_comp[0, \"KNO3\"]\n", + " ) == pytest.approx(0.000749999, rel=1e-5)\n", + " assert value(\n", + " model.fs.unit.organic_outlet.conc_mass_comp[0, \"NaCl\"]\n", + " ) == pytest.approx(0.000403124, rel=1e-5)\n", + " assert value(\n", + " model.fs.unit.aqueous_outlet.conc_mass_comp[0, \"CaSO4\"]\n", + " ) == pytest.approx(0.0985, rel=1e-5)\n", + " assert value(\n", + " model.fs.unit.aqueous_outlet.conc_mass_comp[0, \"KNO3\"]\n", + " ) == pytest.approx(0.194, rel=1e-5)\n", + " assert value(\n", + " model.fs.unit.aqueous_outlet.conc_mass_comp[0, \"NaCl\"]\n", + " ) == pytest.approx(0.146775, rel=1e-5)\n", + "\n", + " # Checking for outlet temperature\n", + " assert value(model.fs.unit.organic_outlet.temperature[0]) == pytest.approx(\n", + " 300, rel=1e-5\n", + " )\n", + " assert value(model.fs.unit.aqueous_outlet.temperature[0]) == pytest.approx(\n", + " 300, rel=1e-5\n", + " )\n", + "\n", + " # Checking for outlet pressure\n", + " assert value(model.fs.unit.organic_outlet.pressure[0]) == pytest.approx(\n", + " 1, rel=1e-5\n", + " )\n", + " assert value(model.fs.unit.aqueous_outlet.pressure[0]) == pytest.approx(\n", + " 1, rel=1e-5\n", + " )\n", + "\n", + " # Fixed state variables\n", + " assert model.fs.unit.organic_inlet.flow_vol[0].fixed\n", + " assert model.fs.unit.organic_inlet.conc_mass_comp[0, \"NaCl\"].fixed\n", + " assert model.fs.unit.organic_inlet.conc_mass_comp[0, \"KNO3\"].fixed\n", + " assert model.fs.unit.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fixed\n", + " assert model.fs.unit.organic_inlet.temperature[0].fixed\n", + " assert model.fs.unit.organic_inlet.pressure[0].fixed\n", + "\n", + " assert model.fs.unit.aqueous_inlet.flow_vol[0].fixed\n", + " assert model.fs.unit.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fixed\n", + " assert model.fs.unit.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fixed\n", + " assert model.fs.unit.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fixed\n", + " assert model.fs.unit.aqueous_inlet.temperature[0].fixed\n", + " assert model.fs.unit.aqueous_inlet.pressure[0].fixed\n", + "\n", + " @pytest.mark.component\n", + " def test_structural_issues(self, model):\n", + " dt = DiagnosticsToolbox(model)\n", + " dt.assert_no_structural_warnings()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this tutorial, we have covered the comprehensive process of creating a custom unit model from scratch. Let's recap the key steps we have undertaken:\n", + "\n", + "- Developing property package\n", + "- Constructing the unit model \n", + "- Creating a Flowsheet\n", + "- Debugging the model using DiagnosticsToolbox\n", + "- Writing tests for the unit model\n", + "\n", + "By following the aforementioned procedure, one can create their own custom unit model. This concludes the tutorial on creating a custom unit model. " ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" } - ], - "source": [ - "solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is a good sign that the model solved optimally and a solution was found. \n", - "\n", - "**NOTE:** It is a good practice to run the model through DiagnosticsToolbox regardless of the solver termination status. \n", - "\n", - "The next section we shall focus on testing the unit model. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 5. Testing\n", - "\n", - "Testing is a crucial part of model development to ensure that the model works as expected, and remains reliable. Here's an overview of why we conduct testing:\n", - "\n", - "1. `Verify Correctness`: Testing ensure that the model works as expected and meets the specified requirements. \n", - "2. `Detect Bugs and Issues`: Testing helps in identifying bugs, errors, or unexpected behaviors in the code or model, allowing for timely fixes.\n", - "3. `Ensure Reliability`: Testing improves the reliability and robustness of the software, reducing the risk of failures when the user uses it.\n", - "4. `Support Changes`: Tests provide confidence when making changes or adding new features, ensuring that existing functionalities are not affected and work as they should.\n", - "\n", - "There are typically 3 types of tests:\n", - "\n", - "1. `Unit tests`: Test runs quickly (under 2 seconds) and has no network/system dependencies. Uses only libraries installed by default with the software\n", - "2. `Component test`: Test may run more slowly (under 10 seconds, or so), e.g. it may run a solver or create a bunch of files. Like unit tests, it still shouldn't depend on special libraries or dependencies.\n", - "3. `Integration test`: Test may take a long time to run, and may have complex dependencies.\n", - "\n", - "The expectation is that unit tests should be run by developers rather frequently, component tests should be run by the continuous integration system before running code, and integration tests are run across the codebase regularly, but infrequently (e.g. daily).\n", - "\n", - "\n", - "As a developer, testing is a crucial aspect of ensuring the reliability and correctness of the unit model. The testing process involves both Unit tests and Component tests, and pytest is used as the testing framework. A typical test is marked with @pytest.mark.level, where the level indicates the depth or specificity of the testing. This is written in a file usually named as test_*.py or *_test.py. The test files have functions written in them with the appropriate level of test being conducted. \n", - "\n", - "For more detailed information on testing methodologies and procedures, developers are encouraged to refer to [this resource](https://idaes-pse.readthedocs.io/en/stable/reference_guides/developer/testing.html). The resource provides comprehensive guidance on the testing process and ensures that the unit model meets the required standards and functionality.\n", - "\n", - "## 5.1 Property package\n", - "### Unit Tests\n", - "\n", - "When writing tests for the Aqueous property phase package, it's essential to focus on key aspects to ensure the correctness and robustness of the implementation. Here are the areas to cover in the unit tests:\n", - "\n", - "1. Number of Config Dictionaries: Verify that the property phase package has the expected number of configuration dictionaries.\n", - "\n", - "2. State Block Class Name: Confirm that the correct state block class is associated with the Aqueous property phase package.\n", - "\n", - "3. Number of Phases: Check that the Aqueous property phase package defines the expected number of phases.\n", - "\n", - "4. Components in the Phase and Physical Parameter Values: Test that the components present in the Aqueous phase match the anticipated list. Additionally, validate that the physical parameter values (such as density, viscosity, etc.) are correctly defined.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "import pytest\n", - "from pyomo.environ import ConcreteModel, Param, value, Var\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "from idaes.core import MaterialBalanceType, EnergyBalanceType\n", - "\n", - "from liquid_extraction.organic_property import OrgPhase\n", - "from liquid_extraction.aqueous_property import AqPhase\n", - "from liquid_extraction.liquid_liquid_extractor import LiqExtraction\n", - "from idaes.core.solvers import get_solver\n", - "\n", - "solver = get_solver()\n", - "\n", - "\n", - "class TestParamBlock(object):\n", - " @pytest.fixture(scope=\"class\")\n", - " def model(self):\n", - " model = ConcreteModel()\n", - " model.params = AqPhase()\n", - " return model\n", - "\n", - " @pytest.mark.unit\n", - " def test_config(self, model):\n", - " assert len(model.params.config) == 1\n", - "\n", - " @pytest.mark.unit\n", - " def test_build(self, model):\n", - " assert len(model.params.phase_list) == 1\n", - " for i in model.params.phase_list:\n", - " assert i == \"Aq\"\n", - "\n", - " assert len(model.params.component_list) == 4\n", - " for i in model.params.component_list:\n", - " assert i in [\"H2O\", \"NaCl\", \"KNO3\", \"CaSO4\"]\n", - "\n", - " assert isinstance(model.params.cp_mass, Param)\n", - " assert value(model.params.cp_mass) == 4182\n", - "\n", - " assert isinstance(model.params.dens_mass, Param)\n", - " assert value(model.params.dens_mass) == 997\n", - "\n", - " assert isinstance(model.params.temperature_ref, Param)\n", - " assert value(model.params.temperature_ref) == 298.15" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The next set of unit tests focuses on testing the build function in the state block. Here are the key aspects to cover in these tests:\n", - "\n", - "1. Existence and Initialized Values of State Variables: Verify that the state variables are correctly defined and initialized within the state block. This ensures that the state block is properly constructed and ready for initialization.\n", - "\n", - "2. Initialization Function Test: Check that state variables are not fixed before initialization and are released after initialization. This test ensures that the initialization process occurs as expected and that the state variables are appropriately managed throughout.\n", - "\n", - "These unit tests provide comprehensive coverage for validating the functionality and behavior of the state block in the Aqueous property phase package. Similar tests can be written for the organic property package to ensure consistency and reliability across both packages." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "class TestStateBlock(object):\n", - " @pytest.fixture(scope=\"class\")\n", - " def model(self):\n", - " model = ConcreteModel()\n", - " model.params = AqPhase()\n", - "\n", - " model.props = model.params.build_state_block([1])\n", - "\n", - " return model\n", - "\n", - " @pytest.mark.unit\n", - " def test_build(self, model):\n", - " assert isinstance(model.props[1].flow_vol, Var)\n", - " assert value(model.props[1].flow_vol) == 1\n", - "\n", - " assert isinstance(model.props[1].temperature, Var)\n", - " assert value(model.props[1].temperature) == 300\n", - "\n", - " assert isinstance(model.props[1].conc_mass_comp, Var)\n", - " assert len(model.props[1].conc_mass_comp) == 3\n", - "\n", - " @pytest.mark.unit\n", - " def test_initialize(self, model):\n", - " assert not model.props[1].flow_vol.fixed\n", - " assert not model.props[1].temperature.fixed\n", - " assert not model.props[1].pressure.fixed\n", - " for i in model.props[1].conc_mass_comp:\n", - " assert not model.props[1].conc_mass_comp[i].fixed\n", - "\n", - " model.props.initialize(hold_state=False, outlvl=1)\n", - "\n", - " assert not model.props[1].flow_vol.fixed\n", - " assert not model.props[1].temperature.fixed\n", - " assert not model.props[1].pressure.fixed\n", - " for i in model.props[1].conc_mass_comp:\n", - " assert not model.props[1].conc_mass_comp[i].fixed" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Component Tests\n", - "In the component test, we aim to ensure unit consistency across the entire property package. Unlike unit tests that focus on individual functions, component tests assess the coherence and consistency of the entire package. Here's what the component test will entail:\n", - "\n", - "Unit Consistency Check: Verify that all units used within the property package are consistent throughout. This involves checking that all parameters, variables, and equations within the package adhere to the same unit system, ensuring compatibility.\n", - "\n", - "By conducting a comprehensive component test, we can ensure that the property package functions as a cohesive unit, maintaining consistency and reliability across its entirety. This concludes our tests on the property package. Next we shall test the unit model. " - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "@pytest.mark.component\n", - "def check_units(model):\n", - " model = ConcreteModel()\n", - " model.params = AqPhase()\n", - " assert_units_consistent(model)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 5.2 Unit Model\n", - "### Unit tests\n", - "Unit tests for the unit model encompass verifying the configuration arguments and the build function, similar to the approach taken for the property package. When testing the config arguments, we ensure that the correct number of arguments is provided and then match each argument with the expected one. This ensures that the unit model is properly configured and ready to operate as intended." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "import pytest\n", - "\n", - "import idaes.core\n", - "import idaes.models.unit_models\n", - "from idaes.core.solvers import get_solver\n", - "import idaes.logger as idaeslog\n", - "\n", - "\n", - "from pyomo.environ import value, check_optimal_termination, units\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "from idaes.core.util.model_statistics import (\n", - " number_variables,\n", - " number_total_constraints,\n", - ")\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.initialization import (\n", - " SingleControlVolumeUnitInitializer,\n", - ")\n", - "\n", - "solver = get_solver()\n", - "\n", - "\n", - "@pytest.mark.unit\n", - "def test_config():\n", - " m = ConcreteModel()\n", - " m.fs = idaes.core.FlowsheetBlock(dynamic=False)\n", - " m.fs.org_properties = OrgPhase()\n", - " m.fs.aq_properties = AqPhase()\n", - "\n", - " m.fs.unit = LiqExtraction(\n", - " dynamic=False,\n", - " has_pressure_change=False,\n", - " organic_property_package=m.fs.org_properties,\n", - " aqueous_property_package=m.fs.aq_properties,\n", - " )\n", - "\n", - " # Check unit config arguments\n", - " assert len(m.fs.unit.config) == 9\n", - "\n", - " # Check for config arguments\n", - " assert m.fs.unit.config.material_balance_type == MaterialBalanceType.useDefault\n", - " assert not m.fs.unit.config.has_pressure_change\n", - " assert not m.fs.unit.config.has_phase_equilibrium\n", - " assert m.fs.unit.config.organic_property_package is m.fs.org_properties\n", - " assert m.fs.unit.config.aqueous_property_package is m.fs.aq_properties\n", - "\n", - " # Check for unit initializer\n", - " assert m.fs.unit.default_initializer is SingleControlVolumeUnitInitializer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In testing the build function, we verify whether the number of variables aligns with the intended values and also check for the existence of desired constraints within the unit model. This ensures that the unit model is constructed accurately and includes all the necessary variables and constraints required for its proper functioning." - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "class TestBuild(object):\n", - " @pytest.fixture(scope=\"class\")\n", - " def model(self):\n", - " m = ConcreteModel()\n", - " m.fs = idaes.core.FlowsheetBlock(dynamic=False)\n", - " m.fs.org_properties = OrgPhase()\n", - " m.fs.aq_properties = AqPhase()\n", - "\n", - " m.fs.unit = LiqExtraction(\n", - " dynamic=False,\n", - " has_pressure_change=False,\n", - " organic_property_package=m.fs.org_properties,\n", - " aqueous_property_package=m.fs.aq_properties,\n", - " )\n", - "\n", - " m.fs.unit.organic_inlet.flow_vol.fix(80 * units.l / units.h)\n", - " m.fs.unit.organic_inlet.temperature.fix(300 * units.K)\n", - " m.fs.unit.organic_inlet.pressure.fix(1 * units.atm)\n", - " m.fs.unit.organic_inlet.conc_mass_comp[0, \"NaCl\"].fix(0 * units.g / units.l)\n", - " m.fs.unit.organic_inlet.conc_mass_comp[0, \"KNO3\"].fix(0 * units.g / units.l)\n", - " m.fs.unit.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0 * units.g / units.l)\n", - "\n", - " m.fs.unit.aqueous_inlet.flow_vol.fix(10 * units.l / units.h)\n", - " m.fs.unit.aqueous_inlet.temperature.fix(300 * units.K)\n", - " m.fs.unit.aqueous_inlet.pressure.fix(1 * units.atm)\n", - " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fix(0.15 * units.g / units.l)\n", - " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fix(0.2 * units.g / units.l)\n", - " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0.1 * units.g / units.l)\n", - "\n", - " return m\n", - "\n", - " @pytest.mark.build\n", - " @pytest.mark.unit\n", - " def test_build(self, model):\n", - "\n", - " assert hasattr(model.fs.unit, \"aqueous_inlet\")\n", - " assert len(model.fs.unit.aqueous_inlet.vars) == 4\n", - " assert hasattr(model.fs.unit.aqueous_inlet, \"flow_vol\")\n", - " assert hasattr(model.fs.unit.aqueous_inlet, \"conc_mass_comp\")\n", - " assert hasattr(model.fs.unit.aqueous_inlet, \"temperature\")\n", - " assert hasattr(model.fs.unit.aqueous_inlet, \"pressure\")\n", - "\n", - " assert hasattr(model.fs.unit, \"organic_inlet\")\n", - " assert len(model.fs.unit.organic_inlet.vars) == 4\n", - " assert hasattr(model.fs.unit.organic_inlet, \"flow_vol\")\n", - " assert hasattr(model.fs.unit.organic_inlet, \"conc_mass_comp\")\n", - " assert hasattr(model.fs.unit.organic_inlet, \"temperature\")\n", - " assert hasattr(model.fs.unit.organic_inlet, \"pressure\")\n", - "\n", - " assert hasattr(model.fs.unit, \"aqueous_outlet\")\n", - " assert len(model.fs.unit.aqueous_outlet.vars) == 4\n", - " assert hasattr(model.fs.unit.aqueous_outlet, \"flow_vol\")\n", - " assert hasattr(model.fs.unit.aqueous_outlet, \"conc_mass_comp\")\n", - " assert hasattr(model.fs.unit.aqueous_outlet, \"temperature\")\n", - " assert hasattr(model.fs.unit.aqueous_outlet, \"pressure\")\n", - "\n", - " assert hasattr(model.fs.unit, \"organic_outlet\")\n", - " assert len(model.fs.unit.organic_outlet.vars) == 4\n", - " assert hasattr(model.fs.unit.organic_outlet, \"flow_vol\")\n", - " assert hasattr(model.fs.unit.organic_outlet, \"conc_mass_comp\")\n", - " assert hasattr(model.fs.unit.organic_outlet, \"temperature\")\n", - " assert hasattr(model.fs.unit.organic_outlet, \"pressure\")\n", - "\n", - " assert hasattr(model.fs.unit, \"material_aq_balance\")\n", - " assert hasattr(model.fs.unit, \"material_org_balance\")\n", - "\n", - " assert number_variables(model) == 34\n", - " assert number_total_constraints(model) == 16" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Component tests\n", - "\n", - "During the component tests, we evaluate the performance of the unit model when integrated with the property package. This evaluation process typically involves several steps:\n", - "\n", - "1. Unit Consistency Check: Verify that the unit model maintains consistency in its units throughout the model. This ensures that all variables and constraints within the model adhere to the same unit system, guaranteeing compatibility.\n", - "\n", - "2. Termination Condition Verification: This involves checking whether the model terminates optimally with the given inlet conditions.\n", - "\n", - "3. Variable Value Assessment: Check the values of outlet variables against the expected values. To account for the numerical tolerance of the solvers, the values are compared using the approx function with a relative tolerance.\n", - "\n", - "4. Input Variable Stability Test: Verify that input variables, which should remain fixed during model operation, are not inadvertently unfixed or altered.\n", - "\n", - "5. Structural Issues: Verify that there are no structural issues with the model. \n", - "\n", - "By performing these checks, we conclude the testing for the unit model. " - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "class TestFlowsheet:\n", - " @pytest.fixture\n", - " def model(self):\n", - " m = ConcreteModel()\n", - " m.fs = idaes.core.FlowsheetBlock(dynamic=False)\n", - " m.fs.org_properties = OrgPhase()\n", - " m.fs.aq_properties = AqPhase()\n", - "\n", - " m.fs.unit = LiqExtraction(\n", - " dynamic=False,\n", - " has_pressure_change=False,\n", - " organic_property_package=m.fs.org_properties,\n", - " aqueous_property_package=m.fs.aq_properties,\n", - " )\n", - " m.fs.org_properties.diffusion_factor[\"NaCl\"] = (\n", - " m.fs.org_properties.diffusion_factor[\"NaCl\"] / 100\n", - " )\n", - " m.fs.org_properties.diffusion_factor[\"KNO3\"] = (\n", - " m.fs.org_properties.diffusion_factor[\"KNO3\"] / 100\n", - " )\n", - " m.fs.org_properties.diffusion_factor[\"CaSO4\"] = (\n", - " m.fs.org_properties.diffusion_factor[\"CaSO4\"] / 100\n", - " )\n", - "\n", - " m.fs.unit.organic_inlet.flow_vol.fix(80 * units.ml / units.min)\n", - " m.fs.unit.organic_inlet.temperature.fix(300 * units.K)\n", - " m.fs.unit.organic_inlet.pressure.fix(1 * units.atm)\n", - " m.fs.unit.organic_inlet.conc_mass_comp[0, \"NaCl\"].fix(0 * units.g / units.kg)\n", - " m.fs.unit.organic_inlet.conc_mass_comp[0, \"KNO3\"].fix(0 * units.g / units.kg)\n", - " m.fs.unit.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0 * units.g / units.kg)\n", - "\n", - " m.fs.unit.aqueous_inlet.flow_vol.fix(10 * units.ml / units.min)\n", - " m.fs.unit.aqueous_inlet.temperature.fix(300 * units.K)\n", - " m.fs.unit.aqueous_inlet.pressure.fix(1 * units.atm)\n", - " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fix(0.15 * units.g / units.kg)\n", - " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fix(0.2 * units.g / units.kg)\n", - " m.fs.unit.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fix(0.1 * units.g / units.kg)\n", - "\n", - " return m\n", - "\n", - " @pytest.mark.component\n", - " def test_unit_model(self, model):\n", - " assert_units_consistent(model)\n", - " solver = get_solver()\n", - " results = solver.solve(model, tee=False)\n", - "\n", - " # Check for optimal termination\n", - " assert check_optimal_termination(results)\n", - "\n", - " # Checking for outlet flows\n", - " assert value(model.fs.unit.organic_outlet.flow_vol[0]) == pytest.approx(\n", - " 80.0, rel=1e-5\n", - " )\n", - " assert value(model.fs.unit.aqueous_outlet.flow_vol[0]) == pytest.approx(\n", - " 10.0, rel=1e-5\n", - " )\n", - "\n", - " # Checking for outlet mass_comp\n", - " assert value(\n", - " model.fs.unit.organic_outlet.conc_mass_comp[0, \"CaSO4\"]\n", - " ) == pytest.approx(0.000187499, rel=1e-5)\n", - " assert value(\n", - " model.fs.unit.organic_outlet.conc_mass_comp[0, \"KNO3\"]\n", - " ) == pytest.approx(0.000749999, rel=1e-5)\n", - " assert value(\n", - " model.fs.unit.organic_outlet.conc_mass_comp[0, \"NaCl\"]\n", - " ) == pytest.approx(0.000403124, rel=1e-5)\n", - " assert value(\n", - " model.fs.unit.aqueous_outlet.conc_mass_comp[0, \"CaSO4\"]\n", - " ) == pytest.approx(0.0985, rel=1e-5)\n", - " assert value(\n", - " model.fs.unit.aqueous_outlet.conc_mass_comp[0, \"KNO3\"]\n", - " ) == pytest.approx(0.194, rel=1e-5)\n", - " assert value(\n", - " model.fs.unit.aqueous_outlet.conc_mass_comp[0, \"NaCl\"]\n", - " ) == pytest.approx(0.146775, rel=1e-5)\n", - "\n", - " # Checking for outlet temperature\n", - " assert value(model.fs.unit.organic_outlet.temperature[0]) == pytest.approx(\n", - " 300, rel=1e-5\n", - " )\n", - " assert value(model.fs.unit.aqueous_outlet.temperature[0]) == pytest.approx(\n", - " 300, rel=1e-5\n", - " )\n", - "\n", - " # Checking for outlet pressure\n", - " assert value(model.fs.unit.organic_outlet.pressure[0]) == pytest.approx(\n", - " 1, rel=1e-5\n", - " )\n", - " assert value(model.fs.unit.aqueous_outlet.pressure[0]) == pytest.approx(\n", - " 1, rel=1e-5\n", - " )\n", - "\n", - " # Fixed state variables\n", - " assert model.fs.unit.organic_inlet.flow_vol[0].fixed\n", - " assert model.fs.unit.organic_inlet.conc_mass_comp[0, \"NaCl\"].fixed\n", - " assert model.fs.unit.organic_inlet.conc_mass_comp[0, \"KNO3\"].fixed\n", - " assert model.fs.unit.organic_inlet.conc_mass_comp[0, \"CaSO4\"].fixed\n", - " assert model.fs.unit.organic_inlet.temperature[0].fixed\n", - " assert model.fs.unit.organic_inlet.pressure[0].fixed\n", - "\n", - " assert model.fs.unit.aqueous_inlet.flow_vol[0].fixed\n", - " assert model.fs.unit.aqueous_inlet.conc_mass_comp[0, \"NaCl\"].fixed\n", - " assert model.fs.unit.aqueous_inlet.conc_mass_comp[0, \"KNO3\"].fixed\n", - " assert model.fs.unit.aqueous_inlet.conc_mass_comp[0, \"CaSO4\"].fixed\n", - " assert model.fs.unit.aqueous_inlet.temperature[0].fixed\n", - " assert model.fs.unit.aqueous_inlet.pressure[0].fixed\n", - "\n", - " @pytest.mark.component\n", - " def test_structural_issues(self, model):\n", - " dt = DiagnosticsToolbox(model)\n", - " dt.assert_no_structural_warnings()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this tutorial, we have covered the comprehensive process of creating a custom unit model from scratch. Let's recap the key steps we have undertaken:\n", - "\n", - "- Developing property package\n", - "- Constructing the unit model \n", - "- Creating a Flowsheet\n", - "- Debugging the model using DiagnosticsToolbox\n", - "- Writing tests for the unit model\n", - "\n", - "By following the aforementioned procedure, one can create their own custom unit model. This would conclude the tutorial on creating custom unit model. " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "idaes-pse", - "language": "python", - "name": "python3" + ], + "metadata": { + "kernelspec": { + "display_name": "idaes-pse", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } - }, - "nbformat": 4, - "nbformat_minor": 3 -} + "nbformat": 4, + "nbformat_minor": 3 +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor.ipynb b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor.ipynb index 47f203dd..295a4a3b 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor_doc.ipynb b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor_doc.ipynb index 88f645ec..bc60cce2 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor_doc.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -391,9 +392,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor_test.ipynb b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor_test.ipynb index 2aa3d42f..c6cdf932 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor_test.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor_test.ipynb @@ -1,347 +1,348 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Custom Compressor Unit Model\n", - "Author: Andrew Lee \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-06-01\n", - "\n", - "To demonstrate creation of a new unit model, we will create a constant-heat-capacity ideal-gas isentropic compressor. This will be a simple textbook model. We will utilize the mass and energy balances provided by IDAES control volumes, but we will write our own isentropic constraint based off of equations 7.18 and 7.23 from \"Introduction to Chemical Engineering Thermodynamics\" by J.M. Smith, H.C. Van Ness, and M.M. Abbott. \n", - "\n", - "The outlet temperature of an ideal gas undergoing isentropic compression is given by \n", - "$$\n", - "t_{out} = t_{in} + \\frac{1}{\\eta} \\left(t_{in} \\left(\\frac{p_{out}}{p_{in}}\\right)^{\\frac{\\gamma - 1}{\\gamma}} - t_{in}\\right)\n", - "$$\n", - "where $p$ is pressure, $t$ is temperature, and $\\gamma$ is the ratio of constant pressure heat capacity to constant volume heat capacity." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will begin with relevant imports. We will need\n", - "\n", - "- Pyomo for writing our energy balance constraints\n", - "- ConfigBlocks for specifying options for our compressor\n", - "- ControlVolume0DBlocks for creating the appropriate state blocks for the inlet and outlet and for defining mas balances\n", - "- IdealParameterBlock which provides a simple ideal-gas property package.\n", - "- A few other helpful functions and enums from IDAES" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import pyomo.environ as pe\n", - "from pyomo.common.config import ConfigBlock, ConfigValue, In\n", - "from idaes.core import (\n", - " ControlVolume0DBlock,\n", - " declare_process_block_class,\n", - " EnergyBalanceType,\n", - " MomentumBalanceType,\n", - " MaterialBalanceType,\n", - " UnitModelBlockData,\n", - " useDefault,\n", - " FlowsheetBlock,\n", - ")\n", - "from idaes.core.util.config import is_physical_parameter_block\n", - "from idaes_examples.mod.methanol.methanol_param_VLE import PhysicalParameterBlock\n", - "from idaes.core.util.misc import add_object_reference" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we can write a function to create a control volume for our compressor. The control volume will define the inlet and outlet streams along with the appropriate state variables (specified by the property package). We will also use the control volume to create mass and energy balance constraints. \n", - "\n", - "Our function will take the compressor unit model object, the name of the control volume, and configuration options as arguments. Our compressor will only support steady-state models, so we will first ensure that ``dynamic`` and ``has_holdup`` are both ``False``.\n", - "\n", - "Next, we will create a 0D control volume. We are using a 0D control volume because our model does not depend on space. We then\n", - "\n", - "1. Attach the control volume to the compressor\n", - "2. Create the appropriate state blocks with the control volume (for the inlet and outlet streams)\n", - "3. Use the control volume to add mass balance constraints\n", - "4. Use the control volume to add energy balance constraints" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def make_control_volume(unit, name, config):\n", - " if config.dynamic is not False:\n", - " raise ValueError(\"IdealGasIsentropcCompressor does not support dynamics\")\n", - " if config.has_holdup is not False:\n", - " raise ValueError(\"IdealGasIsentropcCompressor does not support holdup\")\n", - "\n", - " control_volume = ControlVolume0DBlock(\n", - " property_package=config.property_package,\n", - " property_package_args=config.property_package_args,\n", - " )\n", - "\n", - " setattr(unit, name, control_volume)\n", - "\n", - " control_volume.add_state_blocks(has_phase_equilibrium=config.has_phase_equilibrium)\n", - " control_volume.add_material_balances(\n", - " balance_type=config.material_balance_type,\n", - " has_phase_equilibrium=config.has_phase_equilibrium,\n", - " )\n", - " control_volume.add_total_enthalpy_balances(\n", - " has_heat_of_reaction=False, has_heat_transfer=False, has_work_transfer=True\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we will write a function to add constraints to specify that the compressor is isentropic. \n", - "1. Create a ``pressure_ratio`` variable to represent $p_{out}/p_{in}$. The lower bound is $1$, because we only want to allow compression (and not expansion).\n", - "2. Create a ``ConstraintList`` to hold the constraints.\n", - "3. Add the ``ConstraintList`` to the compressor\n", - "4. Create the local variables ``inlet`` and ``outlet`` to reference the inlet and outlet state blocks.\n", - "5. Add a constraint relating the inlet pressure, outlet pressure, and pressure ratio variables:\n", - "\\begin{align}\n", - "p_{in} p_{ratio} = p_{out}\n", - "\\end{align}\n", - "6. Add a constraint relating the inlet and outlet temperatures:\n", - "\\begin{align}\n", - "& t_{out} = t_{in} + \\frac{1}{\\eta} \\left(t_{in} p_{ratio}^{\\frac{\\gamma - 1}{\\gamma}} - t_{in}\\right)\n", - "\\end{align}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def add_isentropic(unit, name, config):\n", - " unit.pressure_ratio = pe.Var(initialize=1.0, bounds=(1, None))\n", - " cons = pe.ConstraintList()\n", - " setattr(unit, name, cons)\n", - " inlet = unit.control_volume.properties_in[0.0]\n", - " outlet = unit.control_volume.properties_out[0.0]\n", - " gamma = inlet.params.gamma\n", - " cons.add(inlet.pressure * unit.pressure_ratio == outlet.pressure)\n", - " cons.add(\n", - " outlet.temperature\n", - " == (\n", - " inlet.temperature\n", - " + 1\n", - " / config.compressor_efficiency\n", - " * (\n", - " inlet.temperature * unit.pressure_ratio ** ((gamma - 1) / gamma)\n", - " - inlet.temperature\n", - " )\n", - " )\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We also need a function to specify configuration options for the compressor. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def make_compressor_config_block(config):\n", - " config.declare(\n", - " \"material_balance_type\",\n", - " ConfigValue(\n", - " default=MaterialBalanceType.componentPhase, domain=In(MaterialBalanceType)\n", - " ),\n", - " )\n", - " config.declare(\n", - " \"energy_balance_type\",\n", - " ConfigValue(\n", - " default=EnergyBalanceType.enthalpyTotal,\n", - " domain=In([EnergyBalanceType.enthalpyTotal]),\n", - " ),\n", - " )\n", - " config.declare(\n", - " \"momentum_balance_type\",\n", - " ConfigValue(\n", - " default=MomentumBalanceType.none, domain=In([MomentumBalanceType.none])\n", - " ),\n", - " )\n", - " config.declare(\n", - " \"has_phase_equilibrium\", ConfigValue(default=False, domain=In([False]))\n", - " )\n", - " config.declare(\n", - " \"has_pressure_change\", ConfigValue(default=False, domain=In([False]))\n", - " )\n", - " config.declare(\n", - " \"property_package\",\n", - " ConfigValue(default=useDefault, domain=is_physical_parameter_block),\n", - " )\n", - " config.declare(\"property_package_args\", ConfigBlock(implicit=True))\n", - " config.declare(\"compressor_efficiency\", ConfigValue(default=0.75, domain=float))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we can define the ideal-gas isentropic compressor. To do so, we create a class called ``IdealGasIsentropicCompressorData`` and use the ``declare_process_block_class`` decorator. For now, just consider the decorator to be boiler-plate. We then need to define the config block and write the ``build`` method. The ``build`` method should always call ``super``. Next, we simply call the functions we wrote to build the control volume, energy balance, and electricity requirement performance equation. Finally, we need to call ``self.add_inlet_port()`` and ``self.add_outlet_port()``. These methods need to be called in order to create the ports which are used for connecting the unit to other units." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"IdealGasIsentropicCompressor\")\n", - "class IdealGasIsentropicCompressorData(UnitModelBlockData):\n", - " CONFIG = UnitModelBlockData.CONFIG()\n", - " make_compressor_config_block(CONFIG)\n", - "\n", - " def build(self):\n", - " super(IdealGasIsentropicCompressorData, self).build()\n", - "\n", - " make_control_volume(self, \"control_volume\", self.config)\n", - " add_isentropic(self, \"isentropic\", self.config)\n", - "\n", - " self.add_inlet_port()\n", - " self.add_outlet_port()\n", - "\n", - " add_object_reference(self, \"work\", self.control_volume.work[0.0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The compressor model is complete and can now be used like other IDAES unit models. Note that the input temperature is in hectoKelvin, the input pressure is in MPa and energy units are in MJ. This is to simplify user input and is accounted for in the property package files; the standard unit definitions may be found in the metadata section at the end of the main parameter property package." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "m = pe.ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)\n", - "m.fs.properties = props = PhysicalParameterBlock(\n", - " Cp=0.038056, valid_phase=\"Vap\"\n", - ") # MJ/kmol-K\n", - "\n", - "m.fs.compressor = IdealGasIsentropicCompressor(\n", - " property_package=props, has_phase_equilibrium=False\n", - ")\n", - "m.fs.compressor.inlet.flow_mol.fix(1) # kmol\n", - "m.fs.compressor.inlet.mole_frac_comp[0, \"CH3OH\"].fix(0.25)\n", - "m.fs.compressor.inlet.mole_frac_comp[0, \"CH4\"].fix(0.25)\n", - "m.fs.compressor.inlet.mole_frac_comp[0, \"H2\"].fix(0.25)\n", - "m.fs.compressor.inlet.mole_frac_comp[0, \"CO\"].fix(0.25)\n", - "m.fs.compressor.inlet.pressure.fix(0.14) # MPa\n", - "m.fs.compressor.inlet.temperature.fix(2.9315) # hK [100K]\n", - "m.fs.compressor.outlet.pressure.fix(0.56) # MPa\n", - "\n", - "opt = pe.SolverFactory(\"ipopt\")\n", - "opt.options[\"linear_solver\"] = \"ma27\"\n", - "res = opt.solve(m, tee=True)\n", - "print(res.solver.termination_condition)\n", - "m.fs.compressor.outlet.display()\n", - "print(\"work: \", round(m.fs.compressor.work.value, 2), \" MJ\") # MJ" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "from pyomo.util.check_units import assert_units_consistent\n", - "\n", - "assert_units_consistent(m)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "import pytest\n", - "from pyomo.environ import TerminationCondition, value\n", - "\n", - "assert res.solver.termination_condition == TerminationCondition.optimal\n", - "assert value(m.fs.compressor.work) == pytest.approx(5.2616, abs=1e-2)" - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 3 + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Custom Compressor Unit Model\n", + "Author: Andrew Lee \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-06-01\n", + "\n", + "To demonstrate creation of a new unit model, we will create a constant-heat-capacity ideal-gas isentropic compressor. This will be a simple textbook model. We will utilize the mass and energy balances provided by IDAES control volumes, but we will write our own isentropic constraint based off of equations 7.18 and 7.23 from \"Introduction to Chemical Engineering Thermodynamics\" by J.M. Smith, H.C. Van Ness, and M.M. Abbott. \n", + "\n", + "The outlet temperature of an ideal gas undergoing isentropic compression is given by \n", + "$$\n", + "t_{out} = t_{in} + \\frac{1}{\\eta} \\left(t_{in} \\left(\\frac{p_{out}}{p_{in}}\\right)^{\\frac{\\gamma - 1}{\\gamma}} - t_{in}\\right)\n", + "$$\n", + "where $p$ is pressure, $t$ is temperature, and $\\gamma$ is the ratio of constant pressure heat capacity to constant volume heat capacity." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will begin with relevant imports. We will need\n", + "\n", + "- Pyomo for writing our energy balance constraints\n", + "- ConfigBlocks for specifying options for our compressor\n", + "- ControlVolume0DBlocks for creating the appropriate state blocks for the inlet and outlet and for defining mas balances\n", + "- IdealParameterBlock which provides a simple ideal-gas property package.\n", + "- A few other helpful functions and enums from IDAES" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pyomo.environ as pe\n", + "from pyomo.common.config import ConfigBlock, ConfigValue, In\n", + "from idaes.core import (\n", + " ControlVolume0DBlock,\n", + " declare_process_block_class,\n", + " EnergyBalanceType,\n", + " MomentumBalanceType,\n", + " MaterialBalanceType,\n", + " UnitModelBlockData,\n", + " useDefault,\n", + " FlowsheetBlock,\n", + ")\n", + "from idaes.core.util.config import is_physical_parameter_block\n", + "from idaes_examples.mod.methanol.methanol_param_VLE import PhysicalParameterBlock\n", + "from idaes.core.util.misc import add_object_reference" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we can write a function to create a control volume for our compressor. The control volume will define the inlet and outlet streams along with the appropriate state variables (specified by the property package). We will also use the control volume to create mass and energy balance constraints. \n", + "\n", + "Our function will take the compressor unit model object, the name of the control volume, and configuration options as arguments. Our compressor will only support steady-state models, so we will first ensure that ``dynamic`` and ``has_holdup`` are both ``False``.\n", + "\n", + "Next, we will create a 0D control volume. We are using a 0D control volume because our model does not depend on space. We then\n", + "\n", + "1. Attach the control volume to the compressor\n", + "2. Create the appropriate state blocks with the control volume (for the inlet and outlet streams)\n", + "3. Use the control volume to add mass balance constraints\n", + "4. Use the control volume to add energy balance constraints" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def make_control_volume(unit, name, config):\n", + " if config.dynamic is not False:\n", + " raise ValueError(\"IdealGasIsentropcCompressor does not support dynamics\")\n", + " if config.has_holdup is not False:\n", + " raise ValueError(\"IdealGasIsentropcCompressor does not support holdup\")\n", + "\n", + " control_volume = ControlVolume0DBlock(\n", + " property_package=config.property_package,\n", + " property_package_args=config.property_package_args,\n", + " )\n", + "\n", + " setattr(unit, name, control_volume)\n", + "\n", + " control_volume.add_state_blocks(has_phase_equilibrium=config.has_phase_equilibrium)\n", + " control_volume.add_material_balances(\n", + " balance_type=config.material_balance_type,\n", + " has_phase_equilibrium=config.has_phase_equilibrium,\n", + " )\n", + " control_volume.add_total_enthalpy_balances(\n", + " has_heat_of_reaction=False, has_heat_transfer=False, has_work_transfer=True\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we will write a function to add constraints to specify that the compressor is isentropic. \n", + "1. Create a ``pressure_ratio`` variable to represent $p_{out}/p_{in}$. The lower bound is $1$, because we only want to allow compression (and not expansion).\n", + "2. Create a ``ConstraintList`` to hold the constraints.\n", + "3. Add the ``ConstraintList`` to the compressor\n", + "4. Create the local variables ``inlet`` and ``outlet`` to reference the inlet and outlet state blocks.\n", + "5. Add a constraint relating the inlet pressure, outlet pressure, and pressure ratio variables:\n", + "\\begin{align}\n", + "p_{in} p_{ratio} = p_{out}\n", + "\\end{align}\n", + "6. Add a constraint relating the inlet and outlet temperatures:\n", + "\\begin{align}\n", + "& t_{out} = t_{in} + \\frac{1}{\\eta} \\left(t_{in} p_{ratio}^{\\frac{\\gamma - 1}{\\gamma}} - t_{in}\\right)\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def add_isentropic(unit, name, config):\n", + " unit.pressure_ratio = pe.Var(initialize=1.0, bounds=(1, None))\n", + " cons = pe.ConstraintList()\n", + " setattr(unit, name, cons)\n", + " inlet = unit.control_volume.properties_in[0.0]\n", + " outlet = unit.control_volume.properties_out[0.0]\n", + " gamma = inlet.params.gamma\n", + " cons.add(inlet.pressure * unit.pressure_ratio == outlet.pressure)\n", + " cons.add(\n", + " outlet.temperature\n", + " == (\n", + " inlet.temperature\n", + " + 1\n", + " / config.compressor_efficiency\n", + " * (\n", + " inlet.temperature * unit.pressure_ratio ** ((gamma - 1) / gamma)\n", + " - inlet.temperature\n", + " )\n", + " )\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also need a function to specify configuration options for the compressor. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def make_compressor_config_block(config):\n", + " config.declare(\n", + " \"material_balance_type\",\n", + " ConfigValue(\n", + " default=MaterialBalanceType.componentPhase, domain=In(MaterialBalanceType)\n", + " ),\n", + " )\n", + " config.declare(\n", + " \"energy_balance_type\",\n", + " ConfigValue(\n", + " default=EnergyBalanceType.enthalpyTotal,\n", + " domain=In([EnergyBalanceType.enthalpyTotal]),\n", + " ),\n", + " )\n", + " config.declare(\n", + " \"momentum_balance_type\",\n", + " ConfigValue(\n", + " default=MomentumBalanceType.none, domain=In([MomentumBalanceType.none])\n", + " ),\n", + " )\n", + " config.declare(\n", + " \"has_phase_equilibrium\", ConfigValue(default=False, domain=In([False]))\n", + " )\n", + " config.declare(\n", + " \"has_pressure_change\", ConfigValue(default=False, domain=In([False]))\n", + " )\n", + " config.declare(\n", + " \"property_package\",\n", + " ConfigValue(default=useDefault, domain=is_physical_parameter_block),\n", + " )\n", + " config.declare(\"property_package_args\", ConfigBlock(implicit=True))\n", + " config.declare(\"compressor_efficiency\", ConfigValue(default=0.75, domain=float))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we can define the ideal-gas isentropic compressor. To do so, we create a class called ``IdealGasIsentropicCompressorData`` and use the ``declare_process_block_class`` decorator. For now, just consider the decorator to be boiler-plate. We then need to define the config block and write the ``build`` method. The ``build`` method should always call ``super``. Next, we simply call the functions we wrote to build the control volume, energy balance, and electricity requirement performance equation. Finally, we need to call ``self.add_inlet_port()`` and ``self.add_outlet_port()``. These methods need to be called in order to create the ports which are used for connecting the unit to other units." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"IdealGasIsentropicCompressor\")\n", + "class IdealGasIsentropicCompressorData(UnitModelBlockData):\n", + " CONFIG = UnitModelBlockData.CONFIG()\n", + " make_compressor_config_block(CONFIG)\n", + "\n", + " def build(self):\n", + " super(IdealGasIsentropicCompressorData, self).build()\n", + "\n", + " make_control_volume(self, \"control_volume\", self.config)\n", + " add_isentropic(self, \"isentropic\", self.config)\n", + "\n", + " self.add_inlet_port()\n", + " self.add_outlet_port()\n", + "\n", + " add_object_reference(self, \"work\", self.control_volume.work[0.0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The compressor model is complete and can now be used like other IDAES unit models. Note that the input temperature is in hectoKelvin, the input pressure is in MPa and energy units are in MJ. This is to simplify user input and is accounted for in the property package files; the standard unit definitions may be found in the metadata section at the end of the main parameter property package." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "m = pe.ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)\n", + "m.fs.properties = props = PhysicalParameterBlock(\n", + " Cp=0.038056, valid_phase=\"Vap\"\n", + ") # MJ/kmol-K\n", + "\n", + "m.fs.compressor = IdealGasIsentropicCompressor(\n", + " property_package=props, has_phase_equilibrium=False\n", + ")\n", + "m.fs.compressor.inlet.flow_mol.fix(1) # kmol\n", + "m.fs.compressor.inlet.mole_frac_comp[0, \"CH3OH\"].fix(0.25)\n", + "m.fs.compressor.inlet.mole_frac_comp[0, \"CH4\"].fix(0.25)\n", + "m.fs.compressor.inlet.mole_frac_comp[0, \"H2\"].fix(0.25)\n", + "m.fs.compressor.inlet.mole_frac_comp[0, \"CO\"].fix(0.25)\n", + "m.fs.compressor.inlet.pressure.fix(0.14) # MPa\n", + "m.fs.compressor.inlet.temperature.fix(2.9315) # hK [100K]\n", + "m.fs.compressor.outlet.pressure.fix(0.56) # MPa\n", + "\n", + "opt = pe.SolverFactory(\"ipopt\")\n", + "opt.options[\"linear_solver\"] = \"ma27\"\n", + "res = opt.solve(m, tee=True)\n", + "print(res.solver.termination_condition)\n", + "m.fs.compressor.outlet.display()\n", + "print(\"work: \", round(m.fs.compressor.work.value, 2), \" MJ\") # MJ" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "from pyomo.util.check_units import assert_units_consistent\n", + "\n", + "assert_units_consistent(m)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "import pytest\n", + "from pyomo.environ import TerminationCondition, value\n", + "\n", + "assert res.solver.termination_condition == TerminationCondition.optimal\n", + "assert value(m.fs.compressor.work) == pytest.approx(5.2616, abs=1e-2)" + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor_usr.ipynb b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor_usr.ipynb index 7441542a..098d5a99 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor_usr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_compressor_usr.ipynb @@ -1,315 +1,316 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Custom Compressor Unit Model\n", - "Author: Andrew Lee \n", - "Maintainer: Andrew Lee \n", - "Updated: 2023-06-01\n", - "\n", - "To demonstrate creation of a new unit model, we will create a constant-heat-capacity ideal-gas isentropic compressor. This will be a simple textbook model. We will utilize the mass and energy balances provided by IDAES control volumes, but we will write our own isentropic constraint based off of equations 7.18 and 7.23 from \"Introduction to Chemical Engineering Thermodynamics\" by J.M. Smith, H.C. Van Ness, and M.M. Abbott. \n", - "\n", - "The outlet temperature of an ideal gas undergoing isentropic compression is given by \n", - "$$\n", - "t_{out} = t_{in} + \\frac{1}{\\eta} \\left(t_{in} \\left(\\frac{p_{out}}{p_{in}}\\right)^{\\frac{\\gamma - 1}{\\gamma}} - t_{in}\\right)\n", - "$$\n", - "where $p$ is pressure, $t$ is temperature, and $\\gamma$ is the ratio of constant pressure heat capacity to constant volume heat capacity." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will begin with relevant imports. We will need\n", - "\n", - "- Pyomo for writing our energy balance constraints\n", - "- ConfigBlocks for specifying options for our compressor\n", - "- ControlVolume0DBlocks for creating the appropriate state blocks for the inlet and outlet and for defining mas balances\n", - "- IdealParameterBlock which provides a simple ideal-gas property package.\n", - "- A few other helpful functions and enums from IDAES" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import pyomo.environ as pe\n", - "from pyomo.common.config import ConfigBlock, ConfigValue, In\n", - "from idaes.core import (\n", - " ControlVolume0DBlock,\n", - " declare_process_block_class,\n", - " EnergyBalanceType,\n", - " MomentumBalanceType,\n", - " MaterialBalanceType,\n", - " UnitModelBlockData,\n", - " useDefault,\n", - " FlowsheetBlock,\n", - ")\n", - "from idaes.core.util.config import is_physical_parameter_block\n", - "from idaes_examples.mod.methanol.methanol_param_VLE import PhysicalParameterBlock\n", - "from idaes.core.util.misc import add_object_reference" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we can write a function to create a control volume for our compressor. The control volume will define the inlet and outlet streams along with the appropriate state variables (specified by the property package). We will also use the control volume to create mass and energy balance constraints. \n", - "\n", - "Our function will take the compressor unit model object, the name of the control volume, and configuration options as arguments. Our compressor will only support steady-state models, so we will first ensure that ``dynamic`` and ``has_holdup`` are both ``False``.\n", - "\n", - "Next, we will create a 0D control volume. We are using a 0D control volume because our model does not depend on space. We then\n", - "\n", - "1. Attach the control volume to the compressor\n", - "2. Create the appropriate state blocks with the control volume (for the inlet and outlet streams)\n", - "3. Use the control volume to add mass balance constraints\n", - "4. Use the control volume to add energy balance constraints" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def make_control_volume(unit, name, config):\n", - " if config.dynamic is not False:\n", - " raise ValueError(\"IdealGasIsentropcCompressor does not support dynamics\")\n", - " if config.has_holdup is not False:\n", - " raise ValueError(\"IdealGasIsentropcCompressor does not support holdup\")\n", - "\n", - " control_volume = ControlVolume0DBlock(\n", - " property_package=config.property_package,\n", - " property_package_args=config.property_package_args,\n", - " )\n", - "\n", - " setattr(unit, name, control_volume)\n", - "\n", - " control_volume.add_state_blocks(has_phase_equilibrium=config.has_phase_equilibrium)\n", - " control_volume.add_material_balances(\n", - " balance_type=config.material_balance_type,\n", - " has_phase_equilibrium=config.has_phase_equilibrium,\n", - " )\n", - " control_volume.add_total_enthalpy_balances(\n", - " has_heat_of_reaction=False, has_heat_transfer=False, has_work_transfer=True\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, we will write a function to add constraints to specify that the compressor is isentropic. \n", - "1. Create a ``pressure_ratio`` variable to represent $p_{out}/p_{in}$. The lower bound is $1$, because we only want to allow compression (and not expansion).\n", - "2. Create a ``ConstraintList`` to hold the constraints.\n", - "3. Add the ``ConstraintList`` to the compressor\n", - "4. Create the local variables ``inlet`` and ``outlet`` to reference the inlet and outlet state blocks.\n", - "5. Add a constraint relating the inlet pressure, outlet pressure, and pressure ratio variables:\n", - "\\begin{align}\n", - "p_{in} p_{ratio} = p_{out}\n", - "\\end{align}\n", - "6. Add a constraint relating the inlet and outlet temperatures:\n", - "\\begin{align}\n", - "& t_{out} = t_{in} + \\frac{1}{\\eta} \\left(t_{in} p_{ratio}^{\\frac{\\gamma - 1}{\\gamma}} - t_{in}\\right)\n", - "\\end{align}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def add_isentropic(unit, name, config):\n", - " unit.pressure_ratio = pe.Var(initialize=1.0, bounds=(1, None))\n", - " cons = pe.ConstraintList()\n", - " setattr(unit, name, cons)\n", - " inlet = unit.control_volume.properties_in[0.0]\n", - " outlet = unit.control_volume.properties_out[0.0]\n", - " gamma = inlet.params.gamma\n", - " cons.add(inlet.pressure * unit.pressure_ratio == outlet.pressure)\n", - " cons.add(\n", - " outlet.temperature\n", - " == (\n", - " inlet.temperature\n", - " + 1\n", - " / config.compressor_efficiency\n", - " * (\n", - " inlet.temperature * unit.pressure_ratio ** ((gamma - 1) / gamma)\n", - " - inlet.temperature\n", - " )\n", - " )\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We also need a function to specify configuration options for the compressor. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def make_compressor_config_block(config):\n", - " config.declare(\n", - " \"material_balance_type\",\n", - " ConfigValue(\n", - " default=MaterialBalanceType.componentPhase, domain=In(MaterialBalanceType)\n", - " ),\n", - " )\n", - " config.declare(\n", - " \"energy_balance_type\",\n", - " ConfigValue(\n", - " default=EnergyBalanceType.enthalpyTotal,\n", - " domain=In([EnergyBalanceType.enthalpyTotal]),\n", - " ),\n", - " )\n", - " config.declare(\n", - " \"momentum_balance_type\",\n", - " ConfigValue(\n", - " default=MomentumBalanceType.none, domain=In([MomentumBalanceType.none])\n", - " ),\n", - " )\n", - " config.declare(\n", - " \"has_phase_equilibrium\", ConfigValue(default=False, domain=In([False]))\n", - " )\n", - " config.declare(\n", - " \"has_pressure_change\", ConfigValue(default=False, domain=In([False]))\n", - " )\n", - " config.declare(\n", - " \"property_package\",\n", - " ConfigValue(default=useDefault, domain=is_physical_parameter_block),\n", - " )\n", - " config.declare(\"property_package_args\", ConfigBlock(implicit=True))\n", - " config.declare(\"compressor_efficiency\", ConfigValue(default=0.75, domain=float))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we can define the ideal-gas isentropic compressor. To do so, we create a class called ``IdealGasIsentropicCompressorData`` and use the ``declare_process_block_class`` decorator. For now, just consider the decorator to be boiler-plate. We then need to define the config block and write the ``build`` method. The ``build`` method should always call ``super``. Next, we simply call the functions we wrote to build the control volume, energy balance, and electricity requirement performance equation. Finally, we need to call ``self.add_inlet_port()`` and ``self.add_outlet_port()``. These methods need to be called in order to create the ports which are used for connecting the unit to other units." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "@declare_process_block_class(\"IdealGasIsentropicCompressor\")\n", - "class IdealGasIsentropicCompressorData(UnitModelBlockData):\n", - " CONFIG = UnitModelBlockData.CONFIG()\n", - " make_compressor_config_block(CONFIG)\n", - "\n", - " def build(self):\n", - " super(IdealGasIsentropicCompressorData, self).build()\n", - "\n", - " make_control_volume(self, \"control_volume\", self.config)\n", - " add_isentropic(self, \"isentropic\", self.config)\n", - "\n", - " self.add_inlet_port()\n", - " self.add_outlet_port()\n", - "\n", - " add_object_reference(self, \"work\", self.control_volume.work[0.0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The compressor model is complete and can now be used like other IDAES unit models. Note that the input temperature is in hectoKelvin, the input pressure is in MPa and energy units are in MJ. This is to simplify user input and is accounted for in the property package files; the standard unit definitions may be found in the metadata section at the end of the main parameter property package." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "m = pe.ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)\n", - "m.fs.properties = props = PhysicalParameterBlock(\n", - " Cp=0.038056, valid_phase=\"Vap\"\n", - ") # MJ/kmol-K\n", - "\n", - "m.fs.compressor = IdealGasIsentropicCompressor(\n", - " property_package=props, has_phase_equilibrium=False\n", - ")\n", - "m.fs.compressor.inlet.flow_mol.fix(1) # kmol\n", - "m.fs.compressor.inlet.mole_frac_comp[0, \"CH3OH\"].fix(0.25)\n", - "m.fs.compressor.inlet.mole_frac_comp[0, \"CH4\"].fix(0.25)\n", - "m.fs.compressor.inlet.mole_frac_comp[0, \"H2\"].fix(0.25)\n", - "m.fs.compressor.inlet.mole_frac_comp[0, \"CO\"].fix(0.25)\n", - "m.fs.compressor.inlet.pressure.fix(0.14) # MPa\n", - "m.fs.compressor.inlet.temperature.fix(2.9315) # hK [100K]\n", - "m.fs.compressor.outlet.pressure.fix(0.56) # MPa\n", - "\n", - "opt = pe.SolverFactory(\"ipopt\")\n", - "opt.options[\"linear_solver\"] = \"ma27\"\n", - "res = opt.solve(m, tee=True)\n", - "print(res.solver.termination_condition)\n", - "m.fs.compressor.outlet.display()\n", - "print(\"work: \", round(m.fs.compressor.work.value, 2), \" MJ\") # MJ" - ] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 3 + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Custom Compressor Unit Model\n", + "Author: Andrew Lee \n", + "Maintainer: Andrew Lee \n", + "Updated: 2023-06-01\n", + "\n", + "To demonstrate creation of a new unit model, we will create a constant-heat-capacity ideal-gas isentropic compressor. This will be a simple textbook model. We will utilize the mass and energy balances provided by IDAES control volumes, but we will write our own isentropic constraint based off of equations 7.18 and 7.23 from \"Introduction to Chemical Engineering Thermodynamics\" by J.M. Smith, H.C. Van Ness, and M.M. Abbott. \n", + "\n", + "The outlet temperature of an ideal gas undergoing isentropic compression is given by \n", + "$$\n", + "t_{out} = t_{in} + \\frac{1}{\\eta} \\left(t_{in} \\left(\\frac{p_{out}}{p_{in}}\\right)^{\\frac{\\gamma - 1}{\\gamma}} - t_{in}\\right)\n", + "$$\n", + "where $p$ is pressure, $t$ is temperature, and $\\gamma$ is the ratio of constant pressure heat capacity to constant volume heat capacity." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will begin with relevant imports. We will need\n", + "\n", + "- Pyomo for writing our energy balance constraints\n", + "- ConfigBlocks for specifying options for our compressor\n", + "- ControlVolume0DBlocks for creating the appropriate state blocks for the inlet and outlet and for defining mas balances\n", + "- IdealParameterBlock which provides a simple ideal-gas property package.\n", + "- A few other helpful functions and enums from IDAES" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pyomo.environ as pe\n", + "from pyomo.common.config import ConfigBlock, ConfigValue, In\n", + "from idaes.core import (\n", + " ControlVolume0DBlock,\n", + " declare_process_block_class,\n", + " EnergyBalanceType,\n", + " MomentumBalanceType,\n", + " MaterialBalanceType,\n", + " UnitModelBlockData,\n", + " useDefault,\n", + " FlowsheetBlock,\n", + ")\n", + "from idaes.core.util.config import is_physical_parameter_block\n", + "from idaes_examples.mod.methanol.methanol_param_VLE import PhysicalParameterBlock\n", + "from idaes.core.util.misc import add_object_reference" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we can write a function to create a control volume for our compressor. The control volume will define the inlet and outlet streams along with the appropriate state variables (specified by the property package). We will also use the control volume to create mass and energy balance constraints. \n", + "\n", + "Our function will take the compressor unit model object, the name of the control volume, and configuration options as arguments. Our compressor will only support steady-state models, so we will first ensure that ``dynamic`` and ``has_holdup`` are both ``False``.\n", + "\n", + "Next, we will create a 0D control volume. We are using a 0D control volume because our model does not depend on space. We then\n", + "\n", + "1. Attach the control volume to the compressor\n", + "2. Create the appropriate state blocks with the control volume (for the inlet and outlet streams)\n", + "3. Use the control volume to add mass balance constraints\n", + "4. Use the control volume to add energy balance constraints" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def make_control_volume(unit, name, config):\n", + " if config.dynamic is not False:\n", + " raise ValueError(\"IdealGasIsentropcCompressor does not support dynamics\")\n", + " if config.has_holdup is not False:\n", + " raise ValueError(\"IdealGasIsentropcCompressor does not support holdup\")\n", + "\n", + " control_volume = ControlVolume0DBlock(\n", + " property_package=config.property_package,\n", + " property_package_args=config.property_package_args,\n", + " )\n", + "\n", + " setattr(unit, name, control_volume)\n", + "\n", + " control_volume.add_state_blocks(has_phase_equilibrium=config.has_phase_equilibrium)\n", + " control_volume.add_material_balances(\n", + " balance_type=config.material_balance_type,\n", + " has_phase_equilibrium=config.has_phase_equilibrium,\n", + " )\n", + " control_volume.add_total_enthalpy_balances(\n", + " has_heat_of_reaction=False, has_heat_transfer=False, has_work_transfer=True\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we will write a function to add constraints to specify that the compressor is isentropic. \n", + "1. Create a ``pressure_ratio`` variable to represent $p_{out}/p_{in}$. The lower bound is $1$, because we only want to allow compression (and not expansion).\n", + "2. Create a ``ConstraintList`` to hold the constraints.\n", + "3. Add the ``ConstraintList`` to the compressor\n", + "4. Create the local variables ``inlet`` and ``outlet`` to reference the inlet and outlet state blocks.\n", + "5. Add a constraint relating the inlet pressure, outlet pressure, and pressure ratio variables:\n", + "\\begin{align}\n", + "p_{in} p_{ratio} = p_{out}\n", + "\\end{align}\n", + "6. Add a constraint relating the inlet and outlet temperatures:\n", + "\\begin{align}\n", + "& t_{out} = t_{in} + \\frac{1}{\\eta} \\left(t_{in} p_{ratio}^{\\frac{\\gamma - 1}{\\gamma}} - t_{in}\\right)\n", + "\\end{align}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def add_isentropic(unit, name, config):\n", + " unit.pressure_ratio = pe.Var(initialize=1.0, bounds=(1, None))\n", + " cons = pe.ConstraintList()\n", + " setattr(unit, name, cons)\n", + " inlet = unit.control_volume.properties_in[0.0]\n", + " outlet = unit.control_volume.properties_out[0.0]\n", + " gamma = inlet.params.gamma\n", + " cons.add(inlet.pressure * unit.pressure_ratio == outlet.pressure)\n", + " cons.add(\n", + " outlet.temperature\n", + " == (\n", + " inlet.temperature\n", + " + 1\n", + " / config.compressor_efficiency\n", + " * (\n", + " inlet.temperature * unit.pressure_ratio ** ((gamma - 1) / gamma)\n", + " - inlet.temperature\n", + " )\n", + " )\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also need a function to specify configuration options for the compressor. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def make_compressor_config_block(config):\n", + " config.declare(\n", + " \"material_balance_type\",\n", + " ConfigValue(\n", + " default=MaterialBalanceType.componentPhase, domain=In(MaterialBalanceType)\n", + " ),\n", + " )\n", + " config.declare(\n", + " \"energy_balance_type\",\n", + " ConfigValue(\n", + " default=EnergyBalanceType.enthalpyTotal,\n", + " domain=In([EnergyBalanceType.enthalpyTotal]),\n", + " ),\n", + " )\n", + " config.declare(\n", + " \"momentum_balance_type\",\n", + " ConfigValue(\n", + " default=MomentumBalanceType.none, domain=In([MomentumBalanceType.none])\n", + " ),\n", + " )\n", + " config.declare(\n", + " \"has_phase_equilibrium\", ConfigValue(default=False, domain=In([False]))\n", + " )\n", + " config.declare(\n", + " \"has_pressure_change\", ConfigValue(default=False, domain=In([False]))\n", + " )\n", + " config.declare(\n", + " \"property_package\",\n", + " ConfigValue(default=useDefault, domain=is_physical_parameter_block),\n", + " )\n", + " config.declare(\"property_package_args\", ConfigBlock(implicit=True))\n", + " config.declare(\"compressor_efficiency\", ConfigValue(default=0.75, domain=float))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we can define the ideal-gas isentropic compressor. To do so, we create a class called ``IdealGasIsentropicCompressorData`` and use the ``declare_process_block_class`` decorator. For now, just consider the decorator to be boiler-plate. We then need to define the config block and write the ``build`` method. The ``build`` method should always call ``super``. Next, we simply call the functions we wrote to build the control volume, energy balance, and electricity requirement performance equation. Finally, we need to call ``self.add_inlet_port()`` and ``self.add_outlet_port()``. These methods need to be called in order to create the ports which are used for connecting the unit to other units." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@declare_process_block_class(\"IdealGasIsentropicCompressor\")\n", + "class IdealGasIsentropicCompressorData(UnitModelBlockData):\n", + " CONFIG = UnitModelBlockData.CONFIG()\n", + " make_compressor_config_block(CONFIG)\n", + "\n", + " def build(self):\n", + " super(IdealGasIsentropicCompressorData, self).build()\n", + "\n", + " make_control_volume(self, \"control_volume\", self.config)\n", + " add_isentropic(self, \"isentropic\", self.config)\n", + "\n", + " self.add_inlet_port()\n", + " self.add_outlet_port()\n", + "\n", + " add_object_reference(self, \"work\", self.control_volume.work[0.0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The compressor model is complete and can now be used like other IDAES unit models. Note that the input temperature is in hectoKelvin, the input pressure is in MPa and energy units are in MJ. This is to simplify user input and is accounted for in the property package files; the standard unit definitions may be found in the metadata section at the end of the main parameter property package." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "m = pe.ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)\n", + "m.fs.properties = props = PhysicalParameterBlock(\n", + " Cp=0.038056, valid_phase=\"Vap\"\n", + ") # MJ/kmol-K\n", + "\n", + "m.fs.compressor = IdealGasIsentropicCompressor(\n", + " property_package=props, has_phase_equilibrium=False\n", + ")\n", + "m.fs.compressor.inlet.flow_mol.fix(1) # kmol\n", + "m.fs.compressor.inlet.mole_frac_comp[0, \"CH3OH\"].fix(0.25)\n", + "m.fs.compressor.inlet.mole_frac_comp[0, \"CH4\"].fix(0.25)\n", + "m.fs.compressor.inlet.mole_frac_comp[0, \"H2\"].fix(0.25)\n", + "m.fs.compressor.inlet.mole_frac_comp[0, \"CO\"].fix(0.25)\n", + "m.fs.compressor.inlet.pressure.fix(0.14) # MPa\n", + "m.fs.compressor.inlet.temperature.fix(2.9315) # hK [100K]\n", + "m.fs.compressor.outlet.pressure.fix(0.56) # MPa\n", + "\n", + "opt = pe.SolverFactory(\"ipopt\")\n", + "opt.options[\"linear_solver\"] = \"ma27\"\n", + "res = opt.solve(m, tee=True)\n", + "print(res.solver.termination_condition)\n", + "m.fs.compressor.outlet.display()\n", + "print(\"work: \", round(m.fs.compressor.work.value, 2), \" MJ\") # MJ" + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater.ipynb b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater.ipynb index 746d13a5..66087c9d 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater_doc.ipynb b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater_doc.ipynb index fc220837..6161e8bc 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater_doc.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -212,7 +213,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater_test.ipynb b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater_test.ipynb index 899650a2..7ae398c4 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater_test.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater_usr.ipynb b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater_usr.ipynb index 6cb98088..be6a2de6 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater_usr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/custom_heater_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/aqueous_property.py b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/aqueous_property.py index c3b62e90..636ee763 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/aqueous_property.py +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/aqueous_property.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# # Import Python libraries diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/liq_liq_extractor_flowsheet.py b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/liq_liq_extractor_flowsheet.py index 2c611928..e939b28b 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/liq_liq_extractor_flowsheet.py +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/liq_liq_extractor_flowsheet.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# """ The below is an implementation of a flowsheet for liquid liquid extractor. diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/liquid_liquid_extractor.py b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/liquid_liquid_extractor.py index 99385b27..930d79ca 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/liquid_liquid_extractor.py +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/liquid_liquid_extractor.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# """ diff --git a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/organic_property.py b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/organic_property.py index 4c9102f9..750354c4 100644 --- a/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/organic_property.py +++ b/idaes_examples/notebooks/docs/unit_models/custom_unit_models/liquid_extraction/organic_property.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# # Import Python libraries diff --git a/idaes_examples/notebooks/docs/unit_models/operations/compressor.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/compressor.ipynb index f4e07086..1f59506f 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/compressor.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/compressor.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/operations/compressor_doc.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/compressor_doc.ipynb index d3f073fb..b3c9f520 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/compressor_doc.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/compressor_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -232,7 +233,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:30 [INFO] idaes.init.fs.compr_case_1: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:40:14 [INFO] idaes.init.fs.compr_case_1: Initialization Complete: optimal - Optimal Solution Found\n" ] } ], @@ -294,16 +295,16 @@ " inequality constraints with only upper bounds: 0\n", "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 2.38e-07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 0 0.0000000e+00 3.12e-11 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", "\n", "Number of Iterations....: 0\n", "\n", " (scaled) (unscaled)\n", "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 2.6180568054461275e-10 2.3841857910156250e-07\n", + "Constraint violation....: 3.1228353236656403e-11 3.1228353236656403e-11\n", "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.6180568054461275e-10 2.3841857910156250e-07\n", + "Overall NLP error.......: 3.1228353236656403e-11 3.1228353236656403e-11\n", "\n", "\n", "Number of objective function evaluations = 1\n", @@ -313,16 +314,10 @@ "Number of equality constraint Jacobian evaluations = 1\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", "Total CPU secs in NLP function evaluations = 0.000\n", "\n", - "EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "EXIT: Optimal Solution Found.\n", "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" ] } @@ -385,13 +380,7 @@ " Pressure Ratio : 3.8000 : dimensionless : False : (None, None)\n", "\n", "------------------------------------------------------------------------------------\n", - " Stream Table\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " Stream Table\n", " Units Inlet Outlet \n", " Molar Flow mole / second 91067. 91067.\n", " Mass Flow kilogram / second 4007.8 4007.8\n", @@ -523,7 +512,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:26:30 [INFO] idaes.init.fs.compr_case_2: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:40:14 [INFO] idaes.init.fs.compr_case_2: Initialization Complete: optimal - Optimal Solution Found\n" ] } ], @@ -604,7 +593,7 @@ "Number of equality constraint Jacobian evaluations = 1\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", "Total CPU secs in NLP function evaluations = 0.000\n", "\n", "EXIT: Optimal Solution Found.\n", @@ -705,9 +694,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/operations/compressor_test.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/compressor_test.ipynb index 7d354e12..270622a5 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/compressor_test.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/compressor_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -557,4 +558,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/operations/compressor_usr.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/compressor_usr.ipynb index 097aedb3..6b1843f3 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/compressor_usr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/compressor_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -431,4 +432,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/operations/eg_h2o_ideal.py b/idaes_examples/notebooks/docs/unit_models/operations/eg_h2o_ideal.py index 40607b83..14541461 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/eg_h2o_ideal.py +++ b/idaes_examples/notebooks/docs/unit_models/operations/eg_h2o_ideal.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# """ Phase equilibrium package for Ethylene Oxide hydrolysis to Ethylene Glycol diff --git a/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d.ipynb index d7f22f19..97e8e315 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d_doc.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d_doc.ipynb index bd16e69e..046f1321 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d_doc.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -245,105 +246,105 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:29 [INFO] idaes.init.fs.heat_exchanger.hot_side: Initialization Complete\n" + "2025-03-17 17:40:17 [INFO] idaes.init.fs.heat_exchanger.hot_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:29 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_in: Starting initialization\n" + "2025-03-17 17:40:17 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_in: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:30 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_in: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:40:17 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_in: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:30 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_in: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:40:17 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_in: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:30 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_in: State variable initialization completed.\n" + "2025-03-17 17:40:17 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_in: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:30 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_in: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:40:17 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_in: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:30 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:40:17 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_in: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:30 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_out: Starting initialization\n" + "2025-03-17 17:40:17 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_out: Starting initialization\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:30 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_out: Dew and bubble point initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:40:17 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_out: Bubble, dew, and critical point initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:30 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_out: Equilibrium temperature initialization completed.\n" + "2025-03-17 17:40:17 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_out: Equilibrium temperature initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:30 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_out: State variable initialization completed.\n" + "2025-03-17 17:40:17 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_out: State variable initialization completed.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:30 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_out: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:40:17 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_out: Phase equilibrium initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:30 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + "2025-03-17 17:40:17 [INFO] idaes.init.fs.heat_exchanger.cold_side.properties_out: Property initialization: optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:30 [INFO] idaes.init.fs.heat_exchanger.cold_side: Initialization Complete\n" + "2025-03-17 17:40:17 [INFO] idaes.init.fs.heat_exchanger.cold_side: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:25:30 [INFO] idaes.init.fs.heat_exchanger: Initialization Completed, optimal - Optimal Solution Found\n" + "2025-03-17 17:40:17 [INFO] idaes.init.fs.heat_exchanger: Initialization Completed, optimal - Optimal Solution Found\n" ] }, { @@ -351,7 +352,13 @@ "output_type": "stream", "text": [ "\n", - "====================================================================================\n", + "====================================================================================\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Unit : fs.heat_exchanger Time: 0.0\n", "------------------------------------------------------------------------------------\n", " Unit Performance\n", @@ -359,6 +366,8 @@ " Variables: \n", "\n", " Key : Value : Units : Fixed : Bounds\n", + " Delta T In : 80.757 : kelvin : False : (None, None)\n", + " Delta T Out : 23.124 : kelvin : False : (None, None)\n", " HX Area : 50.000 : meter ** 2 : True : (0, None)\n", " HX Coefficient : 500.00 : kilogram / kelvin / second ** 3 : True : (0, None)\n", " Heat Duty : 1.2985e+06 : watt : False : (None, None)\n", @@ -367,8 +376,6 @@ "\n", " Key : Value : Units\n", " Delta T Driving : 51.940 : kelvin\n", - " Delta T In : 80.757 : kelvin\n", - " Delta T Out : 23.124 : kelvin\n", "\n", "------------------------------------------------------------------------------------\n", " Stream Table\n", @@ -452,11 +459,17 @@ " Termination condition: optimal\n", " Id: 0\n", " Error rc: 0\n", - " Time: 0.05035805702209473\n", + " Time: 0.011766672134399414\n", "Solution: \n", "- number of solutions: 0\n", " number of solutions displayed: 0\n", - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "====================================================================================\n", "Unit : fs.heat_exchanger Time: 0.0\n", @@ -466,6 +479,8 @@ " Variables: \n", "\n", " Key : Value : Units : Fixed : Bounds\n", + " Delta T In : 78.730 : kelvin : False : (None, None)\n", + " Delta T Out : 10.000 : kelvin : False : (None, None)\n", " HX Area : 200.26 : meter ** 2 : False : (0, None)\n", " HX Coefficient : 500.00 : kilogram / kelvin / second ** 3 : True : (0, None)\n", " Heat Duty : 4.4423e+06 : watt : False : (None, None)\n", @@ -474,8 +489,6 @@ "\n", " Key : Value : Units\n", " Delta T Driving : 44.365 : kelvin\n", - " Delta T In : 78.730 : kelvin\n", - " Delta T Out : 10.000 : kelvin\n", "\n", "------------------------------------------------------------------------------------\n", " Stream Table\n", @@ -529,9 +542,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d_test.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d_test.ipynb index 573ea6df..050ed7cc 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d_test.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d_test.ipynb @@ -1,360 +1,361 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Heat Exchanger 0D Unit Model with Ideal & IAPWS Property Package\n", - "Author: Anuja Deshpande \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "![](heat_exchanger_4.svg)\n", - "\n", - "**Problem Statement**: In this example, we will be heating a benzene-toluene mixture using steam. \n", - "\n", - "**Tube Side Inlet**\n", - "\n", - "Flow Rate = 250 mol/s\n", - "\n", - "Mole fraction (Benzene) = 0.4\n", - "\n", - "Mole fraction (Toluene) = 0.6\n", - "\n", - "Pressure = 101325 Pa\n", - "\n", - "Temperature = 350 K\n", - "\n", - "**Shell Side Inlet**\n", - "\n", - "Flow Rate = 100 mol/s\n", - "\n", - "Mole fraction (Steam) = 1\n", - "\n", - "Pressure = 101325 Pa\n", - "\n", - "Temperature = 450 K\n", - "\n", - "This example will demonstrate the simulation of the 0D heat exchanger by fixing any 2 of the following degrees of freedom:\n", - "- heat transfer area\n", - "- overall heat transfer coefficient\n", - "- minimum approach temperature\n", - "\n", - "\n", - "IDAES documentation reference for heat exchanger 0D model: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/heat_exchanger.html" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Setting up the problem in IDAES**" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# Import pyomo package\n", - "from pyomo.environ import ConcreteModel, SolverFactory, Constraint, value, units\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog\n", - "\n", - "# Import the main FlowsheetBlock from IDAES. The flowsheet block will contain the unit model\n", - "from idaes.core import FlowsheetBlock\n", - "\n", - "# import the BTX property package to create a properties block for the flowsheet\n", - "from idaes.models.properties.activity_coeff_models import BTX_activity_coeff_VLE\n", - "\n", - "# Import the IAPWS property package to create a properties block for the flowsheet\n", - "from idaes.models.properties import iapws95\n", - "\n", - "from idaes.models.properties.iapws95 import htpx\n", - "\n", - "from idaes.models.properties.modular_properties import GenericParameterBlock\n", - "\n", - "from idaes.models.properties.modular_properties.examples.BT_ideal import configuration\n", - "\n", - "# Import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "\n", - "# Import a heat exchanger unit\n", - "from idaes.models.unit_models.heat_exchanger import (\n", - " HeatExchanger,\n", - " delta_temperature_amtd_callback,\n", - ")\n", - "\n", - "# Create the ConcreteModel and the FlowsheetBlock, and attach the flowsheet block to it.\n", - "m = ConcreteModel()\n", - "\n", - "# Steady State Model\n", - "m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - "# Setup property packages for shell and tube side\n", - "# Steam property package\n", - "m.fs.properties_shell = iapws95.Iapws95ParameterBlock()\n", - "\n", - "# BT ideal property package\n", - "m.fs.properties_tube = GenericParameterBlock(**configuration)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Create an instance of the heat exchanger unit, attaching it to the flowsheet\n", - "# Specify that the property package to be used with the heater is the one we created earlier.\n", - "m.fs.heat_exchanger = HeatExchanger(\n", - " delta_temperature_callback=delta_temperature_amtd_callback,\n", - " hot_side_name=\"shell\",\n", - " cold_side_name=\"tube\",\n", - " shell={\"property_package\": m.fs.properties_shell},\n", - " tube={\"property_package\": m.fs.properties_tube},\n", - ")\n", - "\n", - "# Call the degrees_of_freedom function, get initial DOF\n", - "DOF_initial = degrees_of_freedom(m)\n", - "print(\"The initial DOF is {0}\".format(DOF_initial))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert DOF_initial == 10" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "h = htpx(450 * units.K, P=101325 * units.Pa)\n", - "\n", - "# Fix the inlet conditions\n", - "m.fs.heat_exchanger.shell_inlet.flow_mol.fix(100) # mol/s\n", - "m.fs.heat_exchanger.shell_inlet.pressure.fix(101325)\n", - "m.fs.heat_exchanger.shell_inlet.enth_mol.fix(h) # J/mol\n", - "\n", - "DOF_initial = degrees_of_freedom(m)\n", - "print(\"The DOF is {0}\".format(DOF_initial))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.heat_exchanger.tube_inlet.flow_mol.fix(250) # mol/s\n", - "m.fs.heat_exchanger.tube_inlet.mole_frac_comp[0, \"benzene\"].fix(0.4)\n", - "m.fs.heat_exchanger.tube_inlet.mole_frac_comp[0, \"toluene\"].fix(0.6)\n", - "m.fs.heat_exchanger.tube_inlet.pressure.fix(101325) # Pa\n", - "m.fs.heat_exchanger.tube_inlet.temperature[0].fix(350) # K\n", - "\n", - "# Call the degrees_of_freedom function, get final DOF\n", - "DOF_final = degrees_of_freedom(m)\n", - "print(\"The DOF is {0}\".format(DOF_final))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Option 1: Fix overall HTC and the heat transfer area\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.heat_exchanger.area.fix(50) # m2\n", - "m.fs.heat_exchanger.overall_heat_transfer_coefficient[0].fix(500) # W/m2/K\n", - "\n", - "# Call the degrees_of_freedom function, get final DOF\n", - "DOF_final = degrees_of_freedom(m)\n", - "print(\"The DOF is {0}\".format(DOF_final))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert DOF_final == 0" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize the flowsheet, and set the output at WARNING\n", - "m.fs.heat_exchanger.initialize(outlvl=idaeslog.INFO)\n", - "\n", - "# Solve the simulation using ipopt\n", - "# Note: If the degrees of freedom = 0, we have a square problem\n", - "opt = SolverFactory(\"ipopt\")\n", - "solve_status = opt.solve(m)\n", - "\n", - "# Display a readable report\n", - "m.fs.heat_exchanger.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "from pyomo.opt import TerminationCondition, SolverStatus\n", - "import pytest\n", - "\n", - "# Check if termination condition is optimal\n", - "assert solve_status.solver.termination_condition == TerminationCondition.optimal\n", - "assert solve_status.solver.status == SolverStatus.ok\n", - "\n", - "assert value(m.fs.heat_exchanger.shell.properties_out[0].temperature) == pytest.approx(\n", - " 373.13, abs=1e-2, rel=1e-5\n", - ")\n", - "assert value(m.fs.heat_exchanger.tube.properties_out[0].temperature) == pytest.approx(\n", - " 369.24, abs=1e-2, rel=1e-5\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Option 2: Unfix area and fix shell side outlet temperature\n", - "\n", - "In the previous example, we fixed the heat exchanger area and overall heat transfer coefficient. However, given that the models in IDAES are equation oriented, we can fix the outlet variables. For example, we can fix the outlet temperature for the shell side and solve for the heat exchanger area that will satisfy that condition. \n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.heat_exchanger.area.unfix()\n", - "m.fs.heat_exchanger.shell_outlet.enth_mol.fix(htpx(360 * units.K, P=101325 * units.Pa))\n", - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "result = opt.solve(m)\n", - "\n", - "print(result)\n", - "\n", - "# Display a readable report\n", - "m.fs.heat_exchanger.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check if termination condition is optimal\n", - "assert solve_status.solver.termination_condition == TerminationCondition.optimal\n", - "assert solve_status.solver.status == SolverStatus.ok\n", - "\n", - "assert value(m.fs.heat_exchanger.area) == pytest.approx(200.26, abs=1e-2)\n", - "assert value(m.fs.heat_exchanger.tube.properties_out[0].temperature) == pytest.approx(\n", - " 371.27, abs=1e-2, rel=1e-5\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 3 + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Heat Exchanger 0D Unit Model with Ideal & IAPWS Property Package\n", + "Author: Anuja Deshpande \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "![](heat_exchanger_4.svg)\n", + "\n", + "**Problem Statement**: In this example, we will be heating a benzene-toluene mixture using steam. \n", + "\n", + "**Tube Side Inlet**\n", + "\n", + "Flow Rate = 250 mol/s\n", + "\n", + "Mole fraction (Benzene) = 0.4\n", + "\n", + "Mole fraction (Toluene) = 0.6\n", + "\n", + "Pressure = 101325 Pa\n", + "\n", + "Temperature = 350 K\n", + "\n", + "**Shell Side Inlet**\n", + "\n", + "Flow Rate = 100 mol/s\n", + "\n", + "Mole fraction (Steam) = 1\n", + "\n", + "Pressure = 101325 Pa\n", + "\n", + "Temperature = 450 K\n", + "\n", + "This example will demonstrate the simulation of the 0D heat exchanger by fixing any 2 of the following degrees of freedom:\n", + "- heat transfer area\n", + "- overall heat transfer coefficient\n", + "- minimum approach temperature\n", + "\n", + "\n", + "IDAES documentation reference for heat exchanger 0D model: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/heat_exchanger.html" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Setting up the problem in IDAES**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# Import pyomo package\n", + "from pyomo.environ import ConcreteModel, SolverFactory, Constraint, value, units\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog\n", + "\n", + "# Import the main FlowsheetBlock from IDAES. The flowsheet block will contain the unit model\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "# import the BTX property package to create a properties block for the flowsheet\n", + "from idaes.models.properties.activity_coeff_models import BTX_activity_coeff_VLE\n", + "\n", + "# Import the IAPWS property package to create a properties block for the flowsheet\n", + "from idaes.models.properties import iapws95\n", + "\n", + "from idaes.models.properties.iapws95 import htpx\n", + "\n", + "from idaes.models.properties.modular_properties import GenericParameterBlock\n", + "\n", + "from idaes.models.properties.modular_properties.examples.BT_ideal import configuration\n", + "\n", + "# Import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "\n", + "# Import a heat exchanger unit\n", + "from idaes.models.unit_models.heat_exchanger import (\n", + " HeatExchanger,\n", + " delta_temperature_amtd_callback,\n", + ")\n", + "\n", + "# Create the ConcreteModel and the FlowsheetBlock, and attach the flowsheet block to it.\n", + "m = ConcreteModel()\n", + "\n", + "# Steady State Model\n", + "m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + "# Setup property packages for shell and tube side\n", + "# Steam property package\n", + "m.fs.properties_shell = iapws95.Iapws95ParameterBlock()\n", + "\n", + "# BT ideal property package\n", + "m.fs.properties_tube = GenericParameterBlock(**configuration)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create an instance of the heat exchanger unit, attaching it to the flowsheet\n", + "# Specify that the property package to be used with the heater is the one we created earlier.\n", + "m.fs.heat_exchanger = HeatExchanger(\n", + " delta_temperature_callback=delta_temperature_amtd_callback,\n", + " hot_side_name=\"shell\",\n", + " cold_side_name=\"tube\",\n", + " shell={\"property_package\": m.fs.properties_shell},\n", + " tube={\"property_package\": m.fs.properties_tube},\n", + ")\n", + "\n", + "# Call the degrees_of_freedom function, get initial DOF\n", + "DOF_initial = degrees_of_freedom(m)\n", + "print(\"The initial DOF is {0}\".format(DOF_initial))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert DOF_initial == 10" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "h = htpx(450 * units.K, P=101325 * units.Pa)\n", + "\n", + "# Fix the inlet conditions\n", + "m.fs.heat_exchanger.shell_inlet.flow_mol.fix(100) # mol/s\n", + "m.fs.heat_exchanger.shell_inlet.pressure.fix(101325)\n", + "m.fs.heat_exchanger.shell_inlet.enth_mol.fix(h) # J/mol\n", + "\n", + "DOF_initial = degrees_of_freedom(m)\n", + "print(\"The DOF is {0}\".format(DOF_initial))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.heat_exchanger.tube_inlet.flow_mol.fix(250) # mol/s\n", + "m.fs.heat_exchanger.tube_inlet.mole_frac_comp[0, \"benzene\"].fix(0.4)\n", + "m.fs.heat_exchanger.tube_inlet.mole_frac_comp[0, \"toluene\"].fix(0.6)\n", + "m.fs.heat_exchanger.tube_inlet.pressure.fix(101325) # Pa\n", + "m.fs.heat_exchanger.tube_inlet.temperature[0].fix(350) # K\n", + "\n", + "# Call the degrees_of_freedom function, get final DOF\n", + "DOF_final = degrees_of_freedom(m)\n", + "print(\"The DOF is {0}\".format(DOF_final))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Option 1: Fix overall HTC and the heat transfer area\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.heat_exchanger.area.fix(50) # m2\n", + "m.fs.heat_exchanger.overall_heat_transfer_coefficient[0].fix(500) # W/m2/K\n", + "\n", + "# Call the degrees_of_freedom function, get final DOF\n", + "DOF_final = degrees_of_freedom(m)\n", + "print(\"The DOF is {0}\".format(DOF_final))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert DOF_final == 0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the flowsheet, and set the output at WARNING\n", + "m.fs.heat_exchanger.initialize(outlvl=idaeslog.INFO)\n", + "\n", + "# Solve the simulation using ipopt\n", + "# Note: If the degrees of freedom = 0, we have a square problem\n", + "opt = SolverFactory(\"ipopt\")\n", + "solve_status = opt.solve(m)\n", + "\n", + "# Display a readable report\n", + "m.fs.heat_exchanger.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "from pyomo.opt import TerminationCondition, SolverStatus\n", + "import pytest\n", + "\n", + "# Check if termination condition is optimal\n", + "assert solve_status.solver.termination_condition == TerminationCondition.optimal\n", + "assert solve_status.solver.status == SolverStatus.ok\n", + "\n", + "assert value(m.fs.heat_exchanger.shell.properties_out[0].temperature) == pytest.approx(\n", + " 373.13, abs=1e-2, rel=1e-5\n", + ")\n", + "assert value(m.fs.heat_exchanger.tube.properties_out[0].temperature) == pytest.approx(\n", + " 369.24, abs=1e-2, rel=1e-5\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Option 2: Unfix area and fix shell side outlet temperature\n", + "\n", + "In the previous example, we fixed the heat exchanger area and overall heat transfer coefficient. However, given that the models in IDAES are equation oriented, we can fix the outlet variables. For example, we can fix the outlet temperature for the shell side and solve for the heat exchanger area that will satisfy that condition. \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.heat_exchanger.area.unfix()\n", + "m.fs.heat_exchanger.shell_outlet.enth_mol.fix(htpx(360 * units.K, P=101325 * units.Pa))\n", + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "result = opt.solve(m)\n", + "\n", + "print(result)\n", + "\n", + "# Display a readable report\n", + "m.fs.heat_exchanger.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check if termination condition is optimal\n", + "assert solve_status.solver.termination_condition == TerminationCondition.optimal\n", + "assert solve_status.solver.status == SolverStatus.ok\n", + "\n", + "assert value(m.fs.heat_exchanger.area) == pytest.approx(200.26, abs=1e-2)\n", + "assert value(m.fs.heat_exchanger.tube.properties_out[0].temperature) == pytest.approx(\n", + " 371.27, abs=1e-2, rel=1e-5\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } diff --git a/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d_usr.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d_usr.ipynb index 03106f87..381bf0d4 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d_usr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/heat_exchanger_0d_usr.ipynb @@ -1,289 +1,290 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Heat Exchanger 0D Unit Model with Ideal & IAPWS Property Package\n", - "Author: Anuja Deshpande \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "![](heat_exchanger_4.svg)\n", - "\n", - "**Problem Statement**: In this example, we will be heating a benzene-toluene mixture using steam. \n", - "\n", - "**Tube Side Inlet**\n", - "\n", - "Flow Rate = 250 mol/s\n", - "\n", - "Mole fraction (Benzene) = 0.4\n", - "\n", - "Mole fraction (Toluene) = 0.6\n", - "\n", - "Pressure = 101325 Pa\n", - "\n", - "Temperature = 350 K\n", - "\n", - "**Shell Side Inlet**\n", - "\n", - "Flow Rate = 100 mol/s\n", - "\n", - "Mole fraction (Steam) = 1\n", - "\n", - "Pressure = 101325 Pa\n", - "\n", - "Temperature = 450 K\n", - "\n", - "This example will demonstrate the simulation of the 0D heat exchanger by fixing any 2 of the following degrees of freedom:\n", - "- heat transfer area\n", - "- overall heat transfer coefficient\n", - "- minimum approach temperature\n", - "\n", - "\n", - "IDAES documentation reference for heat exchanger 0D model: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/heat_exchanger.html" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Setting up the problem in IDAES**" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# Import pyomo package\n", - "from pyomo.environ import ConcreteModel, SolverFactory, Constraint, value, units\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog\n", - "\n", - "# Import the main FlowsheetBlock from IDAES. The flowsheet block will contain the unit model\n", - "from idaes.core import FlowsheetBlock\n", - "\n", - "# import the BTX property package to create a properties block for the flowsheet\n", - "from idaes.models.properties.activity_coeff_models import BTX_activity_coeff_VLE\n", - "\n", - "# Import the IAPWS property package to create a properties block for the flowsheet\n", - "from idaes.models.properties import iapws95\n", - "\n", - "from idaes.models.properties.iapws95 import htpx\n", - "\n", - "from idaes.models.properties.modular_properties import GenericParameterBlock\n", - "\n", - "from idaes.models.properties.modular_properties.examples.BT_ideal import configuration\n", - "\n", - "# Import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "\n", - "# Import a heat exchanger unit\n", - "from idaes.models.unit_models.heat_exchanger import (\n", - " HeatExchanger,\n", - " delta_temperature_amtd_callback,\n", - ")\n", - "\n", - "# Create the ConcreteModel and the FlowsheetBlock, and attach the flowsheet block to it.\n", - "m = ConcreteModel()\n", - "\n", - "# Steady State Model\n", - "m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - "# Setup property packages for shell and tube side\n", - "# Steam property package\n", - "m.fs.properties_shell = iapws95.Iapws95ParameterBlock()\n", - "\n", - "# BT ideal property package\n", - "m.fs.properties_tube = GenericParameterBlock(**configuration)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Create an instance of the heat exchanger unit, attaching it to the flowsheet\n", - "# Specify that the property package to be used with the heater is the one we created earlier.\n", - "m.fs.heat_exchanger = HeatExchanger(\n", - " delta_temperature_callback=delta_temperature_amtd_callback,\n", - " hot_side_name=\"shell\",\n", - " cold_side_name=\"tube\",\n", - " shell={\"property_package\": m.fs.properties_shell},\n", - " tube={\"property_package\": m.fs.properties_tube},\n", - ")\n", - "\n", - "# Call the degrees_of_freedom function, get initial DOF\n", - "DOF_initial = degrees_of_freedom(m)\n", - "print(\"The initial DOF is {0}\".format(DOF_initial))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "h = htpx(450 * units.K, P=101325 * units.Pa)\n", - "\n", - "# Fix the inlet conditions\n", - "m.fs.heat_exchanger.shell_inlet.flow_mol.fix(100) # mol/s\n", - "m.fs.heat_exchanger.shell_inlet.pressure.fix(101325)\n", - "m.fs.heat_exchanger.shell_inlet.enth_mol.fix(h) # J/mol\n", - "\n", - "DOF_initial = degrees_of_freedom(m)\n", - "print(\"The DOF is {0}\".format(DOF_initial))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.heat_exchanger.tube_inlet.flow_mol.fix(250) # mol/s\n", - "m.fs.heat_exchanger.tube_inlet.mole_frac_comp[0, \"benzene\"].fix(0.4)\n", - "m.fs.heat_exchanger.tube_inlet.mole_frac_comp[0, \"toluene\"].fix(0.6)\n", - "m.fs.heat_exchanger.tube_inlet.pressure.fix(101325) # Pa\n", - "m.fs.heat_exchanger.tube_inlet.temperature[0].fix(350) # K\n", - "\n", - "# Call the degrees_of_freedom function, get final DOF\n", - "DOF_final = degrees_of_freedom(m)\n", - "print(\"The DOF is {0}\".format(DOF_final))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Option 1: Fix overall HTC and the heat transfer area\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.heat_exchanger.area.fix(50) # m2\n", - "m.fs.heat_exchanger.overall_heat_transfer_coefficient[0].fix(500) # W/m2/K\n", - "\n", - "# Call the degrees_of_freedom function, get final DOF\n", - "DOF_final = degrees_of_freedom(m)\n", - "print(\"The DOF is {0}\".format(DOF_final))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize the flowsheet, and set the output at WARNING\n", - "m.fs.heat_exchanger.initialize(outlvl=idaeslog.INFO)\n", - "\n", - "# Solve the simulation using ipopt\n", - "# Note: If the degrees of freedom = 0, we have a square problem\n", - "opt = SolverFactory(\"ipopt\")\n", - "solve_status = opt.solve(m)\n", - "\n", - "# Display a readable report\n", - "m.fs.heat_exchanger.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Option 2: Unfix area and fix shell side outlet temperature\n", - "\n", - "In the previous example, we fixed the heat exchanger area and overall heat transfer coefficient. However, given that the models in IDAES are equation oriented, we can fix the outlet variables. For example, we can fix the outlet temperature for the shell side and solve for the heat exchanger area that will satisfy that condition. \n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.heat_exchanger.area.unfix()\n", - "m.fs.heat_exchanger.shell_outlet.enth_mol.fix(htpx(360 * units.K, P=101325 * units.Pa))\n", - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "result = opt.solve(m)\n", - "\n", - "print(result)\n", - "\n", - "# Display a readable report\n", - "m.fs.heat_exchanger.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 3 + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Heat Exchanger 0D Unit Model with Ideal & IAPWS Property Package\n", + "Author: Anuja Deshpande \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "![](heat_exchanger_4.svg)\n", + "\n", + "**Problem Statement**: In this example, we will be heating a benzene-toluene mixture using steam. \n", + "\n", + "**Tube Side Inlet**\n", + "\n", + "Flow Rate = 250 mol/s\n", + "\n", + "Mole fraction (Benzene) = 0.4\n", + "\n", + "Mole fraction (Toluene) = 0.6\n", + "\n", + "Pressure = 101325 Pa\n", + "\n", + "Temperature = 350 K\n", + "\n", + "**Shell Side Inlet**\n", + "\n", + "Flow Rate = 100 mol/s\n", + "\n", + "Mole fraction (Steam) = 1\n", + "\n", + "Pressure = 101325 Pa\n", + "\n", + "Temperature = 450 K\n", + "\n", + "This example will demonstrate the simulation of the 0D heat exchanger by fixing any 2 of the following degrees of freedom:\n", + "- heat transfer area\n", + "- overall heat transfer coefficient\n", + "- minimum approach temperature\n", + "\n", + "\n", + "IDAES documentation reference for heat exchanger 0D model: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/heat_exchanger.html" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Setting up the problem in IDAES**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# Import pyomo package\n", + "from pyomo.environ import ConcreteModel, SolverFactory, Constraint, value, units\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog\n", + "\n", + "# Import the main FlowsheetBlock from IDAES. The flowsheet block will contain the unit model\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "# import the BTX property package to create a properties block for the flowsheet\n", + "from idaes.models.properties.activity_coeff_models import BTX_activity_coeff_VLE\n", + "\n", + "# Import the IAPWS property package to create a properties block for the flowsheet\n", + "from idaes.models.properties import iapws95\n", + "\n", + "from idaes.models.properties.iapws95 import htpx\n", + "\n", + "from idaes.models.properties.modular_properties import GenericParameterBlock\n", + "\n", + "from idaes.models.properties.modular_properties.examples.BT_ideal import configuration\n", + "\n", + "# Import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "\n", + "# Import a heat exchanger unit\n", + "from idaes.models.unit_models.heat_exchanger import (\n", + " HeatExchanger,\n", + " delta_temperature_amtd_callback,\n", + ")\n", + "\n", + "# Create the ConcreteModel and the FlowsheetBlock, and attach the flowsheet block to it.\n", + "m = ConcreteModel()\n", + "\n", + "# Steady State Model\n", + "m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + "# Setup property packages for shell and tube side\n", + "# Steam property package\n", + "m.fs.properties_shell = iapws95.Iapws95ParameterBlock()\n", + "\n", + "# BT ideal property package\n", + "m.fs.properties_tube = GenericParameterBlock(**configuration)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create an instance of the heat exchanger unit, attaching it to the flowsheet\n", + "# Specify that the property package to be used with the heater is the one we created earlier.\n", + "m.fs.heat_exchanger = HeatExchanger(\n", + " delta_temperature_callback=delta_temperature_amtd_callback,\n", + " hot_side_name=\"shell\",\n", + " cold_side_name=\"tube\",\n", + " shell={\"property_package\": m.fs.properties_shell},\n", + " tube={\"property_package\": m.fs.properties_tube},\n", + ")\n", + "\n", + "# Call the degrees_of_freedom function, get initial DOF\n", + "DOF_initial = degrees_of_freedom(m)\n", + "print(\"The initial DOF is {0}\".format(DOF_initial))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "h = htpx(450 * units.K, P=101325 * units.Pa)\n", + "\n", + "# Fix the inlet conditions\n", + "m.fs.heat_exchanger.shell_inlet.flow_mol.fix(100) # mol/s\n", + "m.fs.heat_exchanger.shell_inlet.pressure.fix(101325)\n", + "m.fs.heat_exchanger.shell_inlet.enth_mol.fix(h) # J/mol\n", + "\n", + "DOF_initial = degrees_of_freedom(m)\n", + "print(\"The DOF is {0}\".format(DOF_initial))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.heat_exchanger.tube_inlet.flow_mol.fix(250) # mol/s\n", + "m.fs.heat_exchanger.tube_inlet.mole_frac_comp[0, \"benzene\"].fix(0.4)\n", + "m.fs.heat_exchanger.tube_inlet.mole_frac_comp[0, \"toluene\"].fix(0.6)\n", + "m.fs.heat_exchanger.tube_inlet.pressure.fix(101325) # Pa\n", + "m.fs.heat_exchanger.tube_inlet.temperature[0].fix(350) # K\n", + "\n", + "# Call the degrees_of_freedom function, get final DOF\n", + "DOF_final = degrees_of_freedom(m)\n", + "print(\"The DOF is {0}\".format(DOF_final))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Option 1: Fix overall HTC and the heat transfer area\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.heat_exchanger.area.fix(50) # m2\n", + "m.fs.heat_exchanger.overall_heat_transfer_coefficient[0].fix(500) # W/m2/K\n", + "\n", + "# Call the degrees_of_freedom function, get final DOF\n", + "DOF_final = degrees_of_freedom(m)\n", + "print(\"The DOF is {0}\".format(DOF_final))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the flowsheet, and set the output at WARNING\n", + "m.fs.heat_exchanger.initialize(outlvl=idaeslog.INFO)\n", + "\n", + "# Solve the simulation using ipopt\n", + "# Note: If the degrees of freedom = 0, we have a square problem\n", + "opt = SolverFactory(\"ipopt\")\n", + "solve_status = opt.solve(m)\n", + "\n", + "# Display a readable report\n", + "m.fs.heat_exchanger.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Option 2: Unfix area and fix shell side outlet temperature\n", + "\n", + "In the previous example, we fixed the heat exchanger area and overall heat transfer coefficient. However, given that the models in IDAES are equation oriented, we can fix the outlet variables. For example, we can fix the outlet temperature for the shell side and solve for the heat exchanger area that will satisfy that condition. \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.heat_exchanger.area.unfix()\n", + "m.fs.heat_exchanger.shell_outlet.enth_mol.fix(htpx(360 * units.K, P=101325 * units.Pa))\n", + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "result = opt.solve(m)\n", + "\n", + "print(result)\n", + "\n", + "# Display a readable report\n", + "m.fs.heat_exchanger.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } diff --git a/idaes_examples/notebooks/docs/unit_models/operations/heater.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/heater.ipynb index 5774adcb..f3e08dee 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/heater.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/heater.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/operations/heater_doc.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/heater_doc.ipynb index 65fc12f9..cec833a5 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/heater_doc.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/heater_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -205,112 +206,112 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater.control_volume.properties_in: Initialization Step 1 skipped.\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater.control_volume.properties_in: Initialization Step 1 skipped.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater.control_volume.properties_in: Initialization Step 2 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater.control_volume.properties_in: Initialization Step 3 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater.control_volume.properties_in: Initialization Step 4 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater.control_volume.properties_in: Initialization Step 5 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater.control_volume.properties_out: Initialization Step 1 skipped.\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater.control_volume.properties_out: Initialization Step 1 skipped.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater.control_volume.properties_out: Initialization Step 2 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater.control_volume.properties_out: Initialization Step 3 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater.control_volume.properties_out: Initialization Step 4 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater.control_volume.properties_out: Initialization Step 5 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater.control_volume.properties_out: State Released.\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater.control_volume.properties_out: State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater.control_volume: Initialization Complete\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater.control_volume: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater: Initialization Step 1 Complete.\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater: Initialization Step 1 Complete.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater: Initialization Step 2 optimal - Optimal Solution Found.\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater: Initialization Step 2 optimal - Optimal Solution Found.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater.control_volume.properties_in: State Released.\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater.control_volume.properties_in: State Released.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:10 [INFO] idaes.init.fs.heater: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:40:20 [INFO] idaes.init.fs.heater: Initialization Complete: optimal - Optimal Solution Found\n" ] } ], @@ -546,13 +547,7 @@ "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", "Total CPU secs in NLP function evaluations = 0.000\n", "\n", - "EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "EXIT: Optimal Solution Found.\n", "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" ] } @@ -671,16 +666,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAG2CAYAAAB4e1KRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMi0lEQVR4nO3deVyU5d4/8M8wDgjogKIwIIu7RmGSdnTKBRdARY8ptpgLmT9NQlMpM3usXFLMp9zK3OqoPeqxk2Kn3GBcQAtUxNygSEkFkSVFROU4DMP1+4PDnROQ7DNwf96vFy+Z67rmvq97vqAf71UhhBAgIiIikhkrc0+AiIiIyBwYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJbMGoLatm0LhUJR5issLAwA8ODBA4SFhcHJyQnNmjVDcHAwsrOzTZaRlpaGoKAg2NnZwdnZGXPmzEFRUZE5NoeIiIgaELOGoISEBGRmZkpfOp0OAPD8888DAGbPno3vv/8e33zzDWJjY3Hjxg2MHj1aer/RaERQUBAKCwsRFxeHrVu3YsuWLXj//ffNsj1ERETUcCgs6QGqs2bNwt69e3Hp0iXk5+ejdevW2LFjB8aMGQMA+OWXX/DYY48hPj4evXv3xoEDBzB8+HDcuHEDLi4uAID169dj7ty5+P3332FtbW3OzSEiIiIL1sTcEyhVWFiIbdu2ITw8HAqFAomJiTAYDBg8eLA0pmvXrvD09JRCUHx8PHx8fKQABACBgYEIDQ1FUlISfH19y12XXq+HXq+XXhcXFyM3NxdOTk5QKBR1t5FERERUa4QQuHv3Ltzc3GBlVfWDWxYTgr799lvk5eXhlVdeAQBkZWXB2toajo6OJuNcXFyQlZUljXk4AJX2l/ZVJCIiAgsXLqy9yRMREZHZpKenw93dvcrvs5gQ9OWXX2Lo0KFwc3Or83XNmzcP4eHh0us7d+7A09MTV65cQfPmzet8/XJmMBhw9OhRDBgwACqVytzTkT3Ww3KwFpaDtbAcj6rF3bt30a5du2r/220RIejatWs4dOgQIiMjpTaNRoPCwkLk5eWZ7A3Kzs6GRqORxpw6dcpkWaVXj5WOKY+NjQ1sbGzKtLds2RJqtbomm0KPYDAYYGdnBycnJ/7lYgFYD8vBWlgO1sJyPKoWpW3VPZXFIu4TtHnzZjg7OyMoKEhq69GjB1QqFQ4fPiy1paSkIC0tDVqtFgCg1Wpx4cIF5OTkSGN0Oh3UajW8vb3rbwOIiIiowTH7nqDi4mJs3rwZISEhaNLkj+k4ODhg8uTJCA8Pl/bQzJgxA1qtFr179wYABAQEwNvbGxMmTMDy5cuRlZWF+fPnIywsrNw9PURERESlzB6CDh06hLS0NLz66qtl+lauXAkrKysEBwdDr9cjMDAQn3/+udSvVCqxd+9ehIaGQqvVwt7eHiEhIVi0aFF9bgIRERE1QGYPQQEBAajoVkVNmzbF2rVrsXbt2grf7+Xlhf3799fV9IiIiKiRsohzgoiIiIjqG0MQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREclSE3NPgIiIiCyH0QgcPw5kZgKurkDfvoBSae5Z1Q2GICIiIgIAREYCM2cC16//0ebuDqxeDYwebb551RUeDiMiIiJERgJjxpgGIADIyChpj4w0z7zqEkMQERGRzBmNJXuAhCjbV9o2a1bJuMaEIYiIiEjmjh8vuwfoYUIA6ekl4xoThiAiIiKZy8ys3XENBUMQERGRzLm61u64hoJXhxEREclERZe/9+1bchVYRkb55wUpFCX9ffvW/5zrEvcEERERyUBkJNC2LTBgAPDyyyV/tm1b0q5UllwGD5QEnoeVvl61qvHdL8jsISgjIwPjx4+Hk5MTbG1t4ePjg9OnT0v9r7zyChQKhcnXkCFDTJaRm5uLcePGQa1Ww9HREZMnT8a9e/fqe1OIiIgsUmUufx89Gti1C2jTxnSMu3tJe2O8T5BZD4fdvn0bzz77LAYMGIADBw6gdevWuHTpElq0aGEybsiQIdi8ebP02sbGxqR/3LhxyMzMhE6ng8FgwKRJkzB16lTs2LGjXraDiIjIUj3q8neFouTy95EjS4LOyJG8Y3S9+Oijj+Dh4WEScNq1a1dmnI2NDTQaTbnL+Pnnn3Hw4EEkJCSgZ8+eAIBPP/0Uw4YNw8cffww3N7e6mTwREVEDUJXL3/38SgKPn199zc68zBqCvvvuOwQGBuL5559HbGws2rRpg9dffx1TpkwxGRcTEwNnZ2e0aNECAwcOxIcffggnJycAQHx8PBwdHaUABACDBw+GlZUVTp48iVGjRpVZr16vh16vl17n5+cDAAwGAwwGQ11sKv1X6efLz9kysB6Wg7WwHI2tFunpClTmn/v09CIYDOXsLjKjR9WipjUyawj67bffsG7dOoSHh+Pdd99FQkIC3njjDVhbWyMkJARAyaGw0aNHo127dkhNTcW7776LoUOHIj4+HkqlEllZWXB2djZZbpMmTdCyZUtkZWWVu96IiAgsXLiwTHt0dDTs7Oxqf0OpDJ1OZ+4p0ENYD8vBWliOxlKLa9ecAPSpxLgT2L//Vt1PqBoqqkVBQUGNlqsQoryjhPXD2toaPXv2RFxcnNT2xhtvICEhAfHx8eW+57fffkOHDh1w6NAhDBo0CEuXLsXWrVuRkpJiMs7Z2RkLFy5EaGhomWWUtyfIw8MDN2/ehFqtrqWto/IYDAbodDr4+/tDpVKZezqyx3pYDtbCcjS2WhiNQMeOTXDjBiCEoky/QiHQpg1w6VKRxZ3786ha5Ofno1WrVrhz5061/v02654gV1dXeHt7m7Q99thj2L17d4Xvad++PVq1aoXLly9j0KBB0Gg0yMnJMRlTVFSE3NzcCs8jsrGxKXNyNQCoVKpG8QPfEPCztiysh+VgLSxHY6mFSgWsWVNyFZhCYXqCdMnl7wqsXg00bWq521pRLWpaH7NeIv/ss8+W2YPz66+/wsvLq8L3XL9+Hbdu3YLrf29bqdVqkZeXh8TERGnMkSNHUFxcjF69etXNxImIiBoQOV7+Xhlm3RM0e/ZsPPPMM1i6dCleeOEFnDp1Chs3bsTGjRsBAPfu3cPChQsRHBwMjUaD1NRUvP322+jYsSMCAwMBlOw5GjJkCKZMmYL169fDYDBg+vTpeOmll3hlGBER0X/J7fL3yjBrCHr66aexZ88ezJs3D4sWLUK7du2watUqjBs3DgCgVCpx/vx5bN26FXl5eXBzc0NAQAAWL15scjhr+/btmD59OgYNGgQrKysEBwdjzZo15tosIiIiiySny98rw+zPDhs+fDiGDx9ebp+trS2ioqIeuYyWLVvyxohERERUJWZ/bAYRERGROTAEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsmT0EZWRkYPz48XBycoKtrS18fHxw+vRpqV8Igffffx+urq6wtbXF4MGDcenSJZNl5ObmYty4cVCr1XB0dMTkyZNx7969+t4UIiIiakDMGoJu376NZ599FiqVCgcOHEBycjI++eQTtGjRQhqzfPlyrFmzBuvXr8fJkydhb2+PwMBAPHjwQBozbtw4JCUlQafTYe/evTh27BimTp1qjk0iIiKiBqKJOVf+0UcfwcPDA5s3b5ba2rVrJ30vhMCqVaswf/58jBw5EgDw1VdfwcXFBd9++y1eeukl/Pzzzzh48CASEhLQs2dPAMCnn36KYcOG4eOPP4abm1v9bhQRERE1CGYNQd999x0CAwPx/PPPIzY2Fm3atMHrr7+OKVOmAACuXLmCrKwsDB48WHqPg4MDevXqhfj4eLz00kuIj4+Ho6OjFIAAYPDgwbCyssLJkycxatSoMuvV6/XQ6/XS6/z8fACAwWCAwWCoq80lQPp8+TlbBtbDcrAWloO1sByPqkVNa2TWEPTbb79h3bp1CA8Px7vvvouEhAS88cYbsLa2RkhICLKysgAALi4uJu9zcXGR+rKysuDs7GzS36RJE7Rs2VIa82cRERFYuHBhmfbo6GjY2dnVxqbRI+h0OnNPgR7CelgO1sJysBaWo6JaFBQU1Gi5Zg1BxcXF6NmzJ5YuXQoA8PX1xcWLF7F+/XqEhITU2XrnzZuH8PBw6XV+fj48PDwQEBAAtVpdZ+ulktSu0+ng7+8PlUpl7unIHuthOVgLy8FaWI5H1aL0SE51mTUEubq6wtvb26Ttsccew+7duwEAGo0GAJCdnQ1XV1dpTHZ2Nrp37y6NycnJMVlGUVERcnNzpff/mY2NDWxsbMq0q1Qq/sDXE37WloX1sBysheVgLSxHRbWoaX3MenXYs88+i5SUFJO2X3/9FV5eXgBKTpLWaDQ4fPiw1J+fn4+TJ09Cq9UCALRaLfLy8pCYmCiNOXLkCIqLi9GrV6962AoiIiJqiMy6J2j27Nl45plnsHTpUrzwwgs4deoUNm7ciI0bNwIAFAoFZs2ahQ8//BCdOnVCu3bt8N5778HNzQ3PPfccgJI9R0OGDMGUKVOwfv16GAwGTJ8+HS+99BKvDCMiIqIKmTUEPf3009izZw/mzZuHRYsWoV27dli1ahXGjRsnjXn77bdx//59TJ06FXl5eejTpw8OHjyIpk2bSmO2b9+O6dOnY9CgQbCyskJwcDDWrFljjk0iIiKiBsKsIQgAhg8fjuHDh1fYr1AosGjRIixatKjCMS1btsSOHTvqYnpERETUSJn9sRlERERE5sAQRERERLLEEERERESyxBBEREREssQQRERERLLEEERERESyxBBEREREsmT2+wQRERFVldEIHD8OZGYCrq5A376AUmnuWVFDwxBEREQNSmQkMHMmcP36H23u7sDq1cDo0eabFzU8PBxGREQNRmQkMGaMaQACgIyMkvbISPPMixomhiAiImoQjMaSPUBClO0rbZs1q2QcUWUwBBERUYNw/HjZPUAPEwJITy8ZR1QZDEFERNQgZGbW7jgihiAiImoQXF1rdxwRQxARETUIffuWXAWmUJTfr1AAHh4l44gqgyGIiIgaBKWy5DJ4oGwQKn29ahXvF0SVxxBEREQNxujRwK5dQJs2pu3u7iXtvE8QVQVvlkhERA3K6NHAyJG8YzTVHEMQERE1OEol4Odn7llQQ8fDYURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkS2YNQQsWLIBCoTD56tq1q9Tv5+dXpn/atGkmy0hLS0NQUBDs7Ozg7OyMOXPmoKioqL43hYiIiBoYsz9A9fHHH8ehQ4ek102amE5pypQpWLRokfTazs5O+t5oNCIoKAgajQZxcXHIzMzExIkToVKpsHTp0rqfPBERETVYZg9BTZo0gUajqbDfzs6uwv7o6GgkJyfj0KFDcHFxQffu3bF48WLMnTsXCxYsgLW1dV1Nm4iIiBo4s4egS5cuwc3NDU2bNoVWq0VERAQ8PT2l/u3bt2Pbtm3QaDQYMWIE3nvvPWlvUHx8PHx8fODi4iKNDwwMRGhoKJKSkuDr61vuOvV6PfR6vfQ6Pz8fAGAwGGAwGOpiM+m/Sj9ffs6WgfWwHKyF5WAtLMejalHTGpk1BPXq1QtbtmxBly5dkJmZiYULF6Jv3764ePEimjdvjpdffhleXl5wc3PD+fPnMXfuXKSkpCAyMhIAkJWVZRKAAEivs7KyKlxvREQEFi5cWKY9Ojra5HAb1R2dTmfuKdBDWA/LwVpYDtbCclRUi4KCghotVyGEEDVaQi3Ky8uDl5cXVqxYgcmTJ5fpP3LkCAYNGoTLly+jQ4cOmDp1Kq5du4aoqChpTEFBAezt7bF//34MHTq03PWUtyfIw8MDN2/ehFqtrv0NI4nBYIBOp4O/vz9UKpW5pyN7rIflYC0sB2thOR5Vi/z8fLRq1Qp37typ1r/fZj8c9jBHR0d07twZly9fLre/V69eACCFII1Gg1OnTpmMyc7OBoC/PM/IxsYGNjY2ZdpVKhV/4OsJP2vLwnpYDtbCcrAWlqOiWtS0PhZ1n6B79+4hNTUVrq6u5fafPXsWAKR+rVaLCxcuICcnRxqj0+mgVqvh7e1d5/MlIiKihsusIeitt95CbGwsrl69iri4OIwaNQpKpRJjx45FamoqFi9ejMTERFy9ehXfffcdJk6ciH79+qFbt24AgICAAHh7e2PChAk4d+4coqKiMH/+fISFhZW7p4eIiIiolFkPh12/fh1jx47FrVu30Lp1a/Tp0wcnTpxA69at8eDBAxw6dAirVq3C/fv34eHhgeDgYMyfP196v1KpxN69exEaGgqtVgt7e3uEhISY3FeIiIiIqDxmDUE7d+6ssM/DwwOxsbGPXIaXlxf2799fm9MiIiIiGbCoc4KIiIiI6gtDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyVKV7xOk1+tx8uRJXLt2DQUFBWjdujV8fX3Rrl27upgfERERUZ2odAj68ccfsXr1anz//fcwGAxwcHCAra0tcnNzodfr0b59e0ydOhXTpk1D8+bN63LORERERDVWqcNhf//73/Hiiy+ibdu2iI6Oxt27d3Hr1i1cv34dBQUFuHTpEubPn4/Dhw+jc+fO0Ol0dT1vIiKqgNEIxMQA//xnyZ9Go7lnRGSZKrUnKCgoCLt3767wkfXt27dH+/btERISguTkZGRmZtbqJImIqHIiI4GZM4Hr1/9oc3cHVq8GRo8237yILFGl9gS99tprFQagP/P29sagQYNqNCkiIqq6yEhgzBjTAAQAGRkl7ZGR5pkXkaWq9NVhISEh+Oqrr5CWllaX8yEiomowGkv2AAlRtq+0bdYsHhojelilQ9C1a9fw2muvoV27dujQoQP+3//7f9i+fTsPfRERWYDjx8vuAXqYEEB6esk4IipR6avDYmJioNfrERcXh5iYGMTExGDbtm0wGAzo1KkTBgwYgIEDB+L555+vy/kSEVE5Kvv/Uf6/legPVbpPkI2NDQYMGIABAwYAAB48eIC4uDgcOHAAGzduxMaNGxmCiIjMwNW1dscRyUGVb5YIAIWFhYiPj0dMTAyOHj2KkydPws3NDcHBwbU9PyIiqoS+fUuuAsvIKP+8IIWipL9v3/qfG5GlqnQIOnbsmEno8fT0RP/+/TF16lRs27YN7u7udTlPIiL6C0plyWXwY8aUBJ6Hg5BCUfLnqlUl44ioRKVDkJ+fHzw9PTF37lzs3LkTLi4udTkvIiKqotGjgV27yr9P0KpVvE8Q0Z9VOgS9/fbbiImJwaxZs7Bu3Tr0798ffn5+6N+/P1q1alWXcyQiokoaPRoYObLkKrDMzJJzgPr25R4govJUOgQtW7YMAHDv3j0cP34cMTExWL58OcaOHYvOnTujf//+GDBgAMaMGVNnkyUiokdTKgE/P3PPgsjyVfnE6GbNmmHo0KEYOnQoACA3NxcrVqzAp59+ivXr18PIO3ERERFRA1DlEFRcXIyEhATpXkE//vgj7t27B09PT4zmAWciIiJqICodgpYvXy6Fnrt376JNmzbw8/PDqlWrMGDAALRr164u50lERERUqyodglatWgU/Pz98/PHHGDBgADp27FiX8yIiIiKqU5UOQTdu3KjLeRARERHVq0o9QLWqT47PyMio1mSIiOTGaARiYoCdOxW4cMGJT3knqkeVCkFPP/00XnvtNSQkJFQ45s6dO9i0aROeeOIJ7N69u9YmSETUWEVGAm3bAgMGABMnNsF77/VBx45NEBlp7pkRyUOlDoclJydjyZIl8Pf3R9OmTdGjRw+4ubmhadOmuH37NpKTk5GUlISnnnoKy5cvx7Bhw+p63kREDVpkZMkjLv78nK8bN0rad+3iHZ6J6lql9gQ5OTlhxYoVyMzMxGeffYZOnTrh5s2buHTpEgBg3LhxSExMRHx8PAMQEdEjGI0lj7Yo70GnQpQ86GvWLPDQGFEdq1QIKmVra4sxY8Zg1apV2LNnDw4ePIht27bhzTffxBNPPFHllS9YsAAKhcLkq2vXrlL/gwcPEBYWBicnJzRr1gzBwcHIzs42WUZaWhqCgoJgZ2cHZ2dnzJkzB0VFRVWeCxFRfTl+3PTZXn8mBJCeXjKOiOpOlW+WWNsef/xxHDp0SHrdpMkfU5o9ezb27duHb775Bg4ODpg+fTpGjx6NH3/8EQBgNBoRFBQEjUaDuLg4ZGZmYuLEiVCpVFi6dGm9bwsRUWVkZtbuOCKqHrOHoCZNmkCj0ZRpv3PnDr788kvs2LEDAwcOBABs3rwZjz32GE6cOIHevXsjOjoaycnJOHToEFxcXNC9e3csXrwYc+fOxYIFC2BtbV3fm0NE9EiurrU7joiqx+wh6NKlS9JJ1lqtFhEREfD09ERiYiIMBgMGDx4sje3atSs8PT0RHx+P3r17Iz4+Hj4+PnBxcZHGBAYGIjQ0FElJSfD19S13nXq9Hnq9Xnqdn58PADAYDDAYDHW0pQRA+nz5OVsG1sM8evcG2rRpghs3/jgH6GEKhUCbNkDv3kVgaeoffy8sx6NqUdMamTUE9erVC1u2bEGXLl2QmZmJhQsXom/fvrh48SKysrJgbW0NR0dHk/e4uLggKysLAJCVlWUSgEr7S/sqEhERgYULF5Zpj46Ohp2dXQ23iipDp9OZewr0ENaj/o0f74qPPnoagADwcBASEAIYNy4BUVE8HmZO/L2wHBXVoqCgoEbLrXIIun//Puzt7Wu00lKlT6IHgG7duqFXr17w8vLCv/71L9ja2tbKOsozb948hIeHS6/z8/Ph4eGBgIAAqNXqOlsvlaR2nU4Hf39/qFQqc09H9lgP8xk2DHjqKSPCw5V4+P6y7u4Cn3xSjFGjfAGUvzeb6hZ/LyzHo2pReiSnuqocglxcXPDCCy/g1VdfRZ8+fWq08j9zdHRE586dcfnyZfj7+6OwsBB5eXkme4Oys7Olc4g0Gg1OnTplsozSq8fKO8+olI2NDWxsbMq0q1Qq/sDXE37WloX1MI8XXgCCg0uuAktPL8K1ayfw1lu90LQpa2EJ+HthOSqqRU3rU6VL5AFg27ZtyM3NxcCBA9G5c2csW7as1p4rdu/ePaSmpsLV1RU9evSASqXC4cOHpf6UlBSkpaVBq9UCALRaLS5cuICcnBxpjE6ng1qthre3d63MiYioLimVgJ8f8NJLAj4+t6BUmntGRPJR5RD03HPP4dtvv0VGRgamTZuGHTt2wMvLC8OHD0dkZGSV7tHz1ltvITY2FlevXkVcXBxGjRoFpVKJsWPHwsHBAZMnT0Z4eDiOHj2KxMRETJo0CVqtFr179wYABAQEwNvbGxMmTMC5c+cQFRWF+fPnIywsrNw9PURERESlqhyCSrVu3Rrh4eE4f/48VqxYgUOHDmHMmDFwc3PD+++/X6mTla5fv46xY8eiS5cueOGFF+Dk5IQTJ06gdevWAICVK1di+PDhCA4ORr9+/aDRaBD50EN1lEol9u7dC6VSCa1Wi/Hjx2PixIlYtGhRdTeLiIiIZKLaV4dlZ2dj69at2LJlC65du4YxY8Zg8uTJuH79Oj766COcOHEC0dHRf7mMnTt3/mV/06ZNsXbtWqxdu7bCMV5eXti/f3+1toGIiIjkq8ohKDIyEps3b0ZUVBS8vb3x+uuvY/z48SYnLz/zzDN47LHHanOeRERERLWqyiFo0qRJeOmll/Djjz/i6aefLneMm5sb/ud//qfGkyMiIiKqK1UOQZmZmY+8oaCtrS0++OCDak+KiIiIqK5V+cTo5s2bm1ySXurWrVtQ8tpOIiIiaiCqHIKEEOW26/V6PrCUiIiIGoxKHw5bs2YNAEChUOCLL75As2bNpD6j0Yhjx46ha9eutT9DIiIiojpQ6RC0cuVKACV7gtavX29y6Mva2hpt27bF+vXra3+GRERERHWg0iHoypUrAIABAwYgMjISLVq0qLNJEREREdW1Kl8ddvTo0bqYBxEREVG9qnIIevXVV/+y/x//+Ee1J0NERERUX6ocgm7fvm3y2mAw4OLFi8jLy8PAgQNrbWJEREREdanKIWjPnj1l2oqLixEaGooOHTrUyqSIiIiI6lq1nyJvshArK4SHh0tXkBERERFZuloJQQCQmpqKoqKi2locERERUZ2q8uGw8PBwk9dCCGRmZmLfvn0ICQmptYkRERER1aUqh6CffvrJ5LWVlRVat26NTz755JFXjhERERFZCt4niIiIiGSpyiEIAG7evImrV69CoVCgbdu2cHJyqu15EREREdWpKp0YnZSUhH79+sHFxQW9evXC3/72Nzg7O2PgwIFISUmpqzkSERER1bpK7wnKyspC//790bp1a6xYsQJdu3aFEALJycnYtGkT+vbti4sXL8LZ2bku50tERERUK6r0FHkvLy/8+OOPaNq0qdQ+ZMgQhIaGok+fPli5ciUiIiLqZKJEREREtanSh8N0Oh3mzp1rEoBK2draYs6cOYiKiqrVyRERERHVlUqHoN9++w1PPfVUhf09e/bEb7/9ViuTIiIiIqprlQ5Bd+/ehVqtrrC/efPmuHfvXq1MioiIiKiuVekS+bt375Z7OAwA8vPzIYSolUkRERER1bVKhyAhBDp37vyX/QqFolYmRURERFTXKh2CeKdoIiIiakwqHYL69+9fl/MgIiIiqldVumM0ERERUWPBEERERESyZDEhaNmyZVAoFJg1a5bU5ufnB4VCYfI1bdo0k/elpaUhKCgIdnZ2cHZ2xpw5c1BUVFTPsyciIqKGplpPka9tCQkJ2LBhA7p161amb8qUKVi0aJH02s7OTvreaDQiKCgIGo0GcXFxyMzMxMSJE6FSqbB06dJ6mTsRERE1TFXeE/Tqq6/i7t27Zdrv37+PV199tcoTuHfvHsaNG4dNmzahRYsWZfrt7Oyg0Wikr4dv2BgdHY3k5GRs27YN3bt3x9ChQ7F48WKsXbsWhYWFVZ4LERERyUeV9wRt3boVy5YtQ/PmzU3a//Of/+Crr77CP/7xjyotLywsDEFBQRg8eDA+/PDDMv3bt2/Htm3boNFoMGLECLz33nvS3qD4+Hj4+PjAxcVFGh8YGIjQ0FAkJSXB19e33HXq9Xro9XrpdX5+PgDAYDDAYDBUaf5UNaWfLz9ny8B6WA7WwnKwFpbjUbWoaY0qHYJK7wgthChz52ij0Yj9+/fD2dm5SivfuXMnzpw5g4SEhHL7X375ZXh5ecHNzQ3nz5/H3LlzkZKSgsjISABAVlaWSQACIL3OysqqcL0RERFYuHBhmfbo6GiTw21Ud3Q6nbmnQA9hPSwHa2E5WAvLUVEtCgoKarTcSocgR0dH6eTk8u4crVAoyg0WFUlPT8fMmTOh0+kqfBTH1KlTpe99fHzg6uqKQYMGITU1FR06dKj0uv5s3rx5CA8Pl17n5+fDw8MDAQEBf/l8NKo5g8EAnU4Hf39/qFQqc09H9lgPy8FaWA7WwnI8qhalR3Kqq0p3jBZCYODAgdi9ezdatmwp9VlbW0t7bCorMTEROTk5Jk+mNxqNOHbsGD777DPo9XoolUqT9/Tq1QsAcPnyZXTo0AEajQanTp0yGZOdnQ0A0Gg0Fa7bxsYGNjY2ZdpVKhV/4OsJP2vLwnpYDtbCcrAWlqOiWtS0PlW+Y/SVK1fg4eEBK6uaXV0/aNAgXLhwwaRt0qRJ6Nq1K+bOnVsmAAHA2bNnAQCurq4AAK1WiyVLliAnJ0c6FKfT6aBWq+Ht7V2j+REREVHjVuUTo728vACUHIdLS0srcxVWeZe5l6d58+Z44oknTNrs7e3h5OSEJ554AqmpqdixYweGDRsGJycnnD9/HrNnz0a/fv2kdQQEBMDb2xsTJkzA8uXLkZWVhfnz5yMsLKzcPT1EREREpaocgn7//XdMmjQJBw4cKLffaDTWeFJAySG2Q4cOYdWqVbh//z48PDwQHByM+fPnS2OUSiX27t2L0NBQaLVa2NvbIyQkxOS+QkRERETlqXIImjVrFvLy8nDy5En4+flhz549yM7OxocffohPPvmkRpOJiYmRvvfw8EBsbOwj3+Pl5YX9+/fXaL1EVHeMRuD4cSAzE3B1Bfr2Bco52k1EVO+qHIKOHDmCf//73+jZsyesrKzg5eUFf39/qNVqREREICgoqC7mSUQNUGQkMHMmcP36H23u7sDq1cDo0eabFxERUI07Rt+/f186CblFixb4/fffAZRcwn7mzJnanR0RNViRkcCYMaYBCAAyMkra/3u7LyIis6lyCOrSpQtSUlIAAE8++SQ2bNiAjIwMrF+/Xrpqi4jkzWgs2QMkRNm+0rZZs0rGERGZS5UPh82cOROZmZkAgA8++ABDhgzB9u3bYW1tjS1bttT2/IioATp+vOweoIcJAaSnl4zz86u3aRERmahyCBo/frz0fY8ePXDt2jX88ssv8PT0RKtWrWp1ckTUMP33/0m1No6IqC5U+46HhYWFSElJgbW1NZ566ikGICKSVPbIOI+gE5E5VTkEFRQUYPLkybCzs8Pjjz+OtLQ0AMCMGTOwbNmyWp8gETU8ffuWXAWmUJTfr1AAHh4l44iIzKXKIWjevHk4d+4cYmJiTB58OnjwYHz99de1OjkiapiUypLL4IGyQaj09apVvF8QEZlXlUPQt99+i88++wx9+vSB4qG/3R5//HGkpqbW6uSIqOEaPRrYtQto08a03d29pJ33CSIic6vWYzNK7xP0sPv375uEIiKi0aOBkSN5x2giskxV3hPUs2dP7Nu3T3pdGny++OILaLXa2psZETUKSmXJZfBjx5b8yQBERJaiynuCli5diqFDhyI5ORlFRUVYvXo1kpOTERcXV6lnfRERERFZgirvCerTpw/Onj2LoqIi+Pj4IDo6Gs7OzoiPj0ePHj3qYo5EREREta7Ke4IAoEOHDti0aVNtz4WIiIio3lQ6BOXn51dqnFqtrvZkiIiIiOpLpUOQo6PjX179JYSAQqGAkU9EJCIiogag0iHo6NGj0vdCCAwbNgxffPEF2vz5JiBEREREDUClQ1D//v1NXiuVSvTu3Rvt27ev9UkRERER1bVqP0CViIiIqCFjCCIiIiJZqlEI4mMyiIiIqKGq9DlBo//0tMMHDx5g2rRpsLe3N2mPjIysnZkRERER1aFKhyAHBweT1+PHj6/1yRBR3TEayz7IlIhIziodgjZv3lyX8yCiOhQZCcycCVy//kebuzvwyScK2NiYb15ERObEE6OJGrnISGDMGNMABAAZGcBLLykRH+9qnokREZkZQxBRI2Y0luwBEqJsX2nbl18+Ad7onYjkiCGIqBE7frzsHqCHCaHAzZt2+OEHXulJRPLDEETUiGVm1u44IqLGhCGIqBFzreTpPpUdR0TUmDAEETViffuWXAVW0X1NFQqBVq0K0KdPOScNERE1chYTgpYtWwaFQoFZs2ZJbQ8ePEBYWBicnJzQrFkzBAcHIzs72+R9aWlpCAoKgp2dHZydnTFnzhwUFRXV8+yJLJNSCaxeXfL9n4NQ6evJky9CqazfeRERWQKLCEEJCQnYsGEDunXrZtI+e/ZsfP/99/jmm28QGxuLGzdumNy52mg0IigoCIWFhYiLi8PWrVuxZcsWvP/++/W9CUQWa/RoYNcuoE0b03Z3d2DnTiO0Wp4QRETyZPYQdO/ePYwbNw6bNm1CixYtpPY7d+7gyy+/xIoVKzBw4ED06NEDmzdvRlxcHE6cOAEAiI6ORnJyMrZt24bu3btj6NChWLx4MdauXYvCwkJzbRKRxRk9Grh6FTh6FNixo+TPK1eAUaN4GIyI5MvsISgsLAxBQUEYPHiwSXtiYiIMBoNJe9euXeHp6Yn4+HgAQHx8PHx8fODi4iKNCQwMRH5+PpKSkupnA4gaCKUS8PMDxo4t+ZOHwIhI7ir92Iy6sHPnTpw5cwYJCQll+rKysmBtbQ1HR0eTdhcXF2RlZUljHg5Apf2lfRXR6/XQ6/XS6/z8fACAwWCAwWCo1rZQ5ZR+vvycLQPrYTlYC8vBWliOR9WipjUyWwhKT0/HzJkzodPp0LRp03pdd0REBBYuXFimPTo6GnZ2dvU6F7nS6XTmngI9hPWwHKyF5WAtLEdFtSgoKKjRcs0WghITE5GTk4OnnnpKajMajTh27Bg+++wzREVFobCwEHl5eSZ7g7Kzs6HRaAAAGo0Gp06dMllu6dVjpWPKM2/ePISHh0uv8/Pz4eHhgYCAAKjV6trYPKqAwWCATqeDv78/VCqVuacje6yH5WAtLAdrYTkeVYvSIznVZbYQNGjQIFy4cMGkbdKkSejatSvmzp0LDw8PqFQqHD58GMHBwQCAlJQUpKWlQavVAgC0Wi2WLFmCnJwcODs7AyhJi2q1Gt7e3hWu28bGBjblPDpbpVLxB76e8LO2LKyH5WAtLAdrYTkqqkVN62O2ENS8eXM88cQTJm329vZwcnKS2idPnozw8HC0bNkSarUaM2bMgFarRe/evQEAAQEB8Pb2xoQJE7B8+XJkZWVh/vz5CAsLKzfkEBEREZUy64nRj7Jy5UpYWVkhODgYer0egYGB+Pzzz6V+pVKJvXv3IjQ0FFqtFvb29ggJCcGiRYvMOGsiIiJqCCwqBMXExJi8btq0KdauXYu1a9dW+B4vLy/s37+/jmdGREREjY3Z7xNEREREZA4MQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkS03MPQEiczEagePHgcxMwNUV6NsXUCrNPSsiIqovDEEkS5GRwMyZwPXrf7S5uwOrVwOjR5tvXkREVH94OIxkJzISGDPGNAABQEZGSXtkpHnmRURE9cusIWjdunXo1q0b1Go11Go1tFotDhw4IPX7+flBoVCYfE2bNs1kGWlpaQgKCoKdnR2cnZ0xZ84cFBUV1femUANhNJbsARKibF9p26xZJeOIiKhxM+vhMHd3dyxbtgydOnWCEAJbt27FyJEj8dNPP+Hxxx8HAEyZMgWLFi2S3mNnZyd9bzQaERQUBI1Gg7i4OGRmZmLixIlQqVRYunRpvW8PWb7jx8vuAXqYEEB6esk4P796mxYREZmBWUPQiBEjTF4vWbIE69atw4kTJ6QQZGdnB41GU+77o6OjkZycjEOHDsHFxQXdu3fH4sWLMXfuXCxYsADW1tZ1vg3UsGRm1u44IiJquCzmnCCj0YidO3fi/v370Gq1Uvv27dvRqlUrPPHEE5g3bx4KCgqkvvj4ePj4+MDFxUVqCwwMRH5+PpKSkup1/tQwuLrW7jgiImq4zH512IULF6DVavHgwQM0a9YMe/bsgbe3NwDg5ZdfhpeXF9zc3HD+/HnMnTsXKSkpiPzvmatZWVkmAQiA9DorK6vCder1euj1eul1fn4+AMBgMMBgMNTq9pGp0s/XXJ9z795AmzZNcOMGIISiTL9CIdCmDdC7dxHk8KNg7nrQH1gLy8FaWI5H1aKmNTJ7COrSpQvOnj2LO3fuYNeuXQgJCUFsbCy8vb0xdepUaZyPjw9cXV0xaNAgpKamokOHDtVeZ0REBBYuXFimPTo62uScI6o7Op3ObOseP94VH330NAAB4OEgJCAEMG5cAqKi5HU8zJz1IFOsheVgLSxHRbV4+OhQdSiEKO86GfMZPHgwOnTogA0bNpTpu3//Ppo1a4aDBw8iMDAQ77//Pr777jucPXtWGnPlyhW0b98eZ86cga+vb7nrKG9PkIeHB27evAm1Wl3r20R/MBgM0Ol08Pf3h0qlMts89uxRIDxciYyMP0KQu7vAJ58YMWqURf1K1ClLqQexFpaEtbAcj6pFfn4+WrVqhTt37lTr32+z7wn6s+LiYpOA8rDSsOP63xM2tFotlixZgpycHDg7OwMoSYtqtVo6pFYeGxsb2NjYlGlXqVT8ga8n5v6sX3gBCA7+8x2jFVAqLe5Xol6Yux70B9bCcrAWlqOiWtS0Pmb9G3/evHkYOnQoPD09cffuXezYsQMxMTGIiopCamoqduzYgWHDhsHJyQnnz5/H7Nmz0a9fP3Tr1g0AEBAQAG9vb0yYMAHLly9HVlYW5s+fj7CwsHJDDtHDlEpeBk9EJGdmDUE5OTmYOHEiMjMz4eDggG7duiEqKgr+/v5IT0/HoUOHsGrVKty/fx8eHh4IDg7G/PnzpfcrlUrs3bsXoaGh0Gq1sLe3R0hIiMl9hYiIiIjKY9YQ9OWXX1bY5+HhgdjY2Ecuw8vLC/v376/NaREREZEMWMx9goiIiIjqE0MQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJUhNzT4AaFqMROH4cyMwEXF2Bvn0BpdLcsyIiIqo6hiCqtMhIYOZM4Pr1P9rc3YHVq4HRo803LyIiourg4TCqlMhIYMwY0wAEABkZJe2RkeaZFxERUXUxBNEjGY0le4CEKNtX2jZrVsk4IiKihoIhiB7p+PGye4AeJgSQnl4yjoiIqKFgCKJHysys3XFERESWwKwhaN26dejWrRvUajXUajW0Wi0OHDgg9T948ABhYWFwcnJCs2bNEBwcjOzsbJNlpKWlISgoCHZ2dnB2dsacOXNQVFRU35vSqLm61u44IiIiS2DWEOTu7o5ly5YhMTERp0+fxsCBAzFy5EgkJSUBAGbPno3vv/8e33zzDWJjY3Hjxg2MfugyJKPRiKCgIBQWFiIuLg5bt27Fli1b8P7775trkxqlvn1LrgJTKMrvVygAD4+ScURERA2FWUPQiBEjMGzYMHTq1AmdO3fGkiVL0KxZM5w4cQJ37tzBl19+iRUrVmDgwIHo0aMHNm/ejLi4OJw4cQIAEB0djeTkZGzbtg3du3fH0KFDsXjxYqxduxaFhYXm3LRGRaksuQweKBuESl+vWsX7BRERUcNiMfcJMhqN+Oabb3D//n1otVokJibCYDBg8ODB0piuXbvC09MT8fHx6N27N+Lj4+Hj4wMXFxdpTGBgIEJDQ5GUlARfX99y16XX66HX66XX+fn5AACDwQCDwVBHW9iwjRgB7NypQHi4EhkZfyShNm0EPvnEiBEjBCrz0ZV+vvycLQPrYTlYC8vBWliOR9WipjUyewi6cOECtFotHjx4gGbNmmHPnj3w9vbG2bNnYW1tDUdHR5PxLi4uyMrKAgBkZWWZBKDS/tK+ikRERGDhwoVl2qOjo2FnZ1fDLWq8bGyANWuA5GQn3L7dFC1aPIC39y0olcD+/VVblk6nq5tJUrWwHpaDtbAcrIXlqKgWBQUFNVqu2UNQly5dcPbsWdy5cwe7du1CSEgIYmNj63Sd8+bNQ3h4uPQ6Pz8fHh4eCAgIgFqtrtN1NwYjRlT/vQaDATqdDv7+/lCpVLU3KaoW1sNysBaWg7WwHI+qRemRnOoyewiytrZGx44dAQA9evRAQkICVq9ejRdffBGFhYXIy8sz2RuUnZ0NjUYDANBoNDh16pTJ8kqvHisdUx4bGxvY2NiUaVepVPyBryf8rC0L62E5WAvLwVpYjopqUdP6WNx9goqLi6HX69GjRw+oVCocPnxY6ktJSUFaWhq0Wi0AQKvV4sKFC8jJyZHG6HQ6qNVqeHt71/vciYiIqOEw656gefPmYejQofD09MTdu3exY8cOxMTEICoqCg4ODpg8eTLCw8PRsmVLqNVqzJgxA1qtFr179wYABAQEwNvbGxMmTMDy5cuRlZWF+fPnIywsrNw9PURERESlzBqCcnJyMHHiRGRmZsLBwQHdunVDVFQU/P39AQArV66ElZUVgoODodfrERgYiM8//1x6v1KpxN69exEaGgqtVgt7e3uEhIRg0aJF5tokIiIiaiDMGoK+/PLLv+xv2rQp1q5di7Vr11Y4xsvLC/uremkSERERyZ7FnRNEREREVB8YgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlpqYewKNhdEIHD8OZGYCrq5A376AUmnuWREREVFFGIJqQWQkMHMmcP36H23u7sDq1cDo0eabFxEREVWMh8NqKDISGDPGNAABQEZGSXtkpHnmRURERH/NrCEoIiICTz/9NJo3bw5nZ2c899xzSElJMRnj5+cHhUJh8jVt2jSTMWlpaQgKCoKdnR2cnZ0xZ84cFBUV1fn8jcaSPUBClO0rbZs1q2QcERERWRazhqDY2FiEhYXhxIkT0Ol0MBgMCAgIwP37903GTZkyBZmZmdLX8uXLpT6j0YigoCAUFhYiLi4OW7duxZYtW/D+++/X+fyPHy+7B+hhQgDp6SXjiIiIyLKY9ZyggwcPmrzesmULnJ2dkZiYiH79+kntdnZ20Gg05S4jOjoaycnJOHToEFxcXNC9e3csXrwYc+fOxYIFC2BtbV1n88/MrN1xREREVH8s6sToO3fuAABatmxp0r59+3Zs27YNGo0GI0aMwHvvvQc7OzsAQHx8PHx8fODi4iKNDwwMRGhoKJKSkuDr61tmPXq9Hnq9vsx6c3NzYTAYKj1fOzsFKvMR2tkV4datco6ZyZDBYEBBQQFu3boFlUpl7unIHuthOVgLy8FaWI5H1eLu3bsAAFHeeSmVYDEhqLi4GLNmzcKzzz6LJ554Qmp/+eWX4eXlBTc3N5w/fx5z585FSkoKIv97xnFWVpZJAAIgvc7Kyip3XREREVi4cGGZ9nbt2tXW5ph47rk6WSwRERGhJAw5ODhU+X0WE4LCwsJw8eJF/PDDDybtU6dOlb738fGBq6srBg0ahNTUVHTo0KFa65o3bx7Cw8Ol18XFxcjNzYWTkxMUCkX1NoAqJT8/Hx4eHkhPT4darTb3dGSP9bAcrIXlYC0sx6NqIYTA3bt34ebmVq3lW0QImj59Ovbu3Ytjx47B3d39L8f26tULAHD58mV06NABGo0Gp06dMhmTnZ0NABWeR2RjYwMbGxuTNkdHx2rOnqpDrVbzLxcLwnpYDtbCcrAWluOvalGdPUClzHp1mBAC06dPx549e3DkyJFKHY46e/YsAMDV1RUAoNVqceHCBeTk5EhjdDod1Go1vL2962TeRERE1PCZdU9QWFgYduzYgX//+99o3ry5dA6Pg4MDbG1tkZqaih07dmDYsGFwcnLC+fPnMXv2bPTr1w/dunUDAAQEBMDb2xsTJkzA8uXLkZWVhfnz5yMsLKzM3h4iIiKiUmbdE7Ru3TrcuXMHfn5+cHV1lb6+/vprAIC1tTUOHTqEgIAAdO3aFW+++SaCg4Px/fffS8tQKpXYu3cvlEoltFotxo8fj4kTJ2LRokXm2iz6CzY2Nvjggw8YUC0E62E5WAvLwVpYjrquhUJU97oyIiIiogaMzw4jIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIohpbt24dunXrJt3MSqvV4sCBAyZj4uPjMXDgQNjb20OtVqNfv374z3/+I/Xn5uZi3LhxUKvVcHR0xOTJk3Hv3r363pQGr6a1uHr1KiZPnox27drB1tYWHTp0wAcffIDCwkJzbE6DVxu/G6X0ej26d+8OhUIh3S+NKq+2arFv3z706tULtra2aNGiBZ7jc5GqrDZq8euvv2LkyJFo1aoV1Go1+vTpg6NHj1Z5LgxBVGPu7u5YtmwZEhMTcfr0aQwcOBAjR45EUlISgJIf5iFDhiAgIACnTp1CQkICpk+fDiurP378xo0bh6SkJOh0Ounu4Q8/MoUqp6a1+OWXX1BcXIwNGzYgKSkJK1euxPr16/Huu++ac7MarNr43Sj19ttvV/vRAFQ7tdi9ezcmTJiASZMm4dy5c/jxxx/x8ssvm2uTGqzaqMXw4cNRVFSEI0eOIDExEU8++SSGDx9e4TNDKySI6kCLFi3EF198IYQQolevXmL+/PkVjk1OThYAREJCgtR24MABoVAoREZGRp3PtbGrSi3Ks3z5ctGuXbu6mJosVace+/fvF127dhVJSUkCgPjpp5/qeJbyUJVaGAwG0aZNG2k81a6q1OL3338XAMSxY8ektvz8fAFA6HS6Kq2Xe4KoVhmNRuzcuRP379+HVqtFTk4OTp48CWdnZzzzzDNwcXFB//79TR6UGx8fD0dHR/Ts2VNqGzx4MKysrHDy5ElzbEajUJ1alOfOnTto2bJlPc268apuPbKzszFlyhT83//9H+zs7Mw0+8alOrU4c+YMMjIyYGVlBV9fX7i6umLo0KG4ePGiGbek4atOLZycnNClSxd89dVXuH//PoqKirBhwwY4OzujR48eVZtA9TIbkanz588Le3t7oVQqhYODg9i3b58QQoj4+HgBQLRs2VL84x//EGfOnBGzZs0S1tbW4tdffxVCCLFkyRLRuXPnMsts3bq1+Pzzz+t1OxqDmtTizy5duiTUarXYuHFjfW5Co1KTehQXF4shQ4aIxYsXCyGEuHLlCvcE1UBNavHPf/5TABCenp5i165d4vTp02Ls2LHCyclJ3Lp1y5yb1SDV9O+p9PR00aNHD6FQKIRSqRSurq7izJkzVZ4HQxDVCr1eLy5duiROnz4t3nnnHdGqVSuRlJQkfvzxRwFAzJs3z2S8j4+PeOedd4QQDEG1rSa1eNj169dFhw4dxOTJk+tr6o1STeqxevVq8eyzz4qioiIhBENQTdWkFtu3bxcAxIYNG6T+Bw8eiFatWon169fX63Y0BjWpRXFxsfj73/8uhg4dKn744QeRmJgoQkNDRZs2bcSNGzeqNA+zPkCVGg9ra2t07NgRANCjRw8kJCRg9erVeOeddwAA3t7eJuMfe+wxpKWlAQA0Gg1ycnJM+ouKipCbmwuNRlMPs29calKLUjdu3MCAAQPwzDPPYOPGjfUz8UaqJvU4cuQI4uPjyzw3qWfPnhg3bhy2bt1aD1vQeNSkFq6urmXG2NjYoH379mV+f+jRavp7sXfvXty+fRtqtRoA8Pnnn0On02Hr1q3SMiqD5wRRnSguLoZer0fbtm3h5uaGlJQUk/5ff/0VXl5eAACtVou8vDwkJiZK/UeOHEFxcTF69epVr/NujKpSCwDIyMiAn58fevTogc2bN5d7pRJVX1XqsWbNGpw7dw5nz57F2bNnsX//fgDA119/jSVLltT73BubqtSiR48esLGxMRljMBhw9epVk98fqp6q1KKgoAAAyvzdZGVlheLi4qqtuNb2bZFsvfPOOyI2NlZcuXJFnD9/XrzzzjtCoVCI6OhoIYQQK1euFGq1WnzzzTfi0qVLYv78+aJp06bi8uXL0jKGDBkifH19xcmTJ8UPP/wgOnXqJMaOHWuuTWqwalqL69evi44dO4pBgwaJ69evi8zMTOmLqq42fjcexsNh1VcbtZg5c6Zo06aNiIqKEr/88ouYPHmycHZ2Frm5uebarAapprX4/fffhZOTkxg9erQ4e/asSElJEW+99ZZQqVTi7NmzVZoLQxDV2Kuvviq8vLyEtbW1aN26tRg0aJD0w1wqIiJCuLu7Czs7O6HVasXx48dN+m/duiXGjh0rmjVrJtRqtZg0aZK4e/dufW5Go1DTWmzevFkAKPeLqq42fjcexhBUfbVRi8LCQvHmm28KZ2dn0bx5czF48GBx8eLF+tyMRqE2apGQkCACAgJEy5YtRfPmzUXv3r3F/v37qzwXhRBCVH3HFREREVHDxoP9REREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQUQkeeWVV/Dcc8+ZexpUS1JSUqDRaHD37t1Kv+fgwYPo3r171R8/QNQAMQQRNSDp6el49dVX4ebmBmtra3h5eWHmzJm4detWlZZz9epVKBQKnD17tkbziYmJgUKhQF5eXoVjXnnlFSgUigq/2rZtW6M5WKIFCxage/fu5p4G5s2bhxkzZqB58+YAyq/XjRs34OPjg379+uHOnTsYMmQIVCoVtm/fbqZZE9UfhiCiBuK3335Dz549cenSJfzzn//E5cuXsX79ehw+fBharRa5ubnmnmK5Vq9ejczMTOkLADZv3iy9TkhIMPMMK6+wsLBe1yeEQFFRUbXem5aWhr179+KVV16pcExqair69OkDLy8vREVFwcHBAUBJcF2zZk211kvUkDAEETUQYWFhsLa2RnR0NPr37w9PT08MHToUhw4dQkZGBv7nf/5HGqtQKPDtt9+avN/R0RFbtmwBALRr1w4A4OvrC4VCAT8/v3LXWVxcjIiICLRr1w62trZ48sknsWvXLgAle5MGDBgAAGjRogUUCkW5/+A6ODhAo9FIX6VzKX2dnZ2NoUOHolmzZnBxccGECRNw8+ZN6f1+fn6YMWMGZs2ahRYtWsDFxQWbNm3C/fv3MWnSJDRv3hwdO3bEgQMHpPeU7vHYt28funXrhqZNm6J37964ePGiydx++OEH9O3bF7a2tvDw8MAbb7yB+/fvS/1t27bF4sWLMXHiRKjVakydOhUAMHfuXHTu3Bl2dnZo37493nvvPRgMBgDAli1bsHDhQpw7d07a27Vly5Zy977l5eVBoVAgJibGZN4HDhyQnlr+ww8//GUdKvKvf/0LTz75JNq0aVNu//nz59GnTx9otVp8++23sLW1lfpGjBiB06dPIzU19S/XQdTQMQQRNQC5ubmIiorC66+/bvKPFQBoNBqMGzcOX3/9NSr7KMBTp04BAA4dOoTMzExERkaWOy4iIgJfffUV1q9fj6SkJMyePRvjx49HbGwsPDw8sHv3bgAl555kZmZi9erVVdquvLw8DBw4EL6+vjh9+jQOHjyI7OxsvPDCCybjtm7dilatWuHUqVOYMWMGQkND8fzzz+OZZ57BmTNnEBAQgAkTJqCgoMDkfXPmzMEnn3yChIQEtG7dGiNGjJDCSmpqKoYMGYLg4GCcP38eX3/9NX744QdMnz7dZBkff/wxnnzySfz000947733AADNmzfHli1bkJycjNWrV2PTpk1YuXIlAODFF1/Em2++iccff1za2/Xiiy9W6XN55513sGzZMvz888/o1q3bX9ahIsePH0fPnj3L7YuLi0P//v0RHByMbdu2oUmTJib9np6ecHFxwfHjx6s0b6IGp9qPgSWienPixAkBQOzZs6fc/hUrVggAIjs7Wwghyh3r4OAgNm/eLISo+GnkISEhYuTIkUIIIR48eCDs7OxEXFycyZjJkyeLsWPHCiGEOHr0qAAgbt++XelteXhuixcvFgEBASb96enpAoBISUkRQgjRv39/0adPH6m/qKhI2NvbiwkTJkhtmZmZAoCIj483mdfOnTulMbdu3RK2trbi66+/lrZj6tSpJus+fvy4sLKyEv/5z3+EEEJ4eXmJ55577pHb9L//+7+iR48e0usPPvhAPPnkkyZjyvvMb9++LQCIo0ePmsz722+/lcZUpg7lefLJJ8WiRYtM2kqXb21tbfL5lcfX11csWLDgL8cQNXRNyk1GRGSRRCX39NSGy5cvo6CgAP7+/ibthYWF8PX1rZV1nDt3DkePHkWzZs3K9KWmpqJz584AgG7dukntSqUSTk5O8PHxkdpcXFwAADk5OSbL0Gq10vctW7ZEly5d8PPPP0vrPn/+vMkJwEIIFBcX48qVK3jssccAoNy9KV9//TXWrFmD1NRU3Lt3D0VFRVCr1VXe/oo8vM7q1uE///kPmjZtWm7fyJEjsWfPHhw/fhx9+/Ytd4ytrW2ZPWtEjQ1DEFED0LFjRygUCvz8888YNWpUmf6ff/4ZLVq0QOvWrQGUnBP058BUehiosu7duwcA2LdvX5nzSmxsbKq0rL9ax4gRI/DRRx+V6XN1dZW+V6lUJn0KhcKkTaFQAECVLuu+d+8eXnvtNbzxxhtl+jw9PaXv7e3tTfri4+Mxbtw4LFy4EIGBgXBwcMDOnTvxySef/OX6rKxKzj54uC4V1eThdVa3Dq1atcLt27fL7duwYQPefvttDB06FPv370e/fv3KjMnNzZV+nogaK4YgogbAyckJ/v7++PzzzzF79myT84KysrKwfft2TJw4UQoDrVu3lq7EAoBLly6Z/K/e2toaAGA0Gitcp7e3N2xsbJCWlob+/fuXO6Yyy/krTz31FHbv3o22bduWOS+lNpw4cUIKNLdv38avv/4q7eF56qmnkJycjI4dO1ZpmXFxcfDy8jI5Ef3atWsmY6ytrct8JqWBIjMzU9qDU5lbFFSmDuXx9fVFcnJyuX0KhQIbN26ElZUVhg0bhn379pks+8GDB0hNTa21PX5EloonRhM1EJ999hn0ej0CAwNx7NgxpKen4+DBg/D390ebNm2wZMkSaezAgQPx2Wef4aeffsLp06cxbdo0kz0nzs7OsLW1lU5EvnPnTpn1NW/eHG+99RZmz56NrVu3IjU1FWfOnMGnn36KrVu3AgC8vLygUCiwd+9e/P7779Jei8oKCwtDbm4uxo4di4SEBKSmpiIqKgqTJk2qdrB62KJFi3D48GFcvHgRr7zyClq1aiXdDHLu3LmIi4vD9OnTcfbsWVy6dAn//ve/y5wY/WedOnVCWloadu7cidTUVKxZswZ79uwxGdO2bVtcuXIFZ8+exc2bN6HX62Fra4vevXtLJzzHxsZi/vz5j9yGytShPIGBgYiPj6/wc1QoFFi/fj0mTpyIYcOGSVeoASXh0cbGxuRwIlGjZN5TkoioKq5evSpCQkKEi4uLUKlUwsPDQ8yYMUPcvHnTZFxGRoYICAgQ9vb2olOnTmL//v0mJ0YLIcSmTZuEh4eHsLKyEv379xdCmJ4YLYQQxcXFYtWqVaJLly5CpVKJ1q1bi8DAQBEbGyuNWbRokdBoNEKhUIiQkJBHbgP+dNL2r7/+KkaNGiUcHR2Fra2t6Nq1q5g1a5YoLi4WQpScGD1z5kyTZXh5eYmVK1dWuNzSE4C///578fjjjwtra2vxt7/9TZw7d87kPadOnRL+/v6iWbNmwt7eXnTr1k0sWbLkL9cjhBBz5swRTk5OolmzZuLFF18UK1euFA4ODlL/gwcPRHBwsHB0dBQApM89OTlZaLVaYWtrK7p37y6io6PLPTH6zyeaV6YOf2YwGISbm5s4ePCg1Fbe8ouLi0VYWJiws7MTR44cEUIIMXXqVPHaa69VuGyixkIhRD2eaUlEVA9iYmIwYMAA3L59G46OjuaejtmsXbsW3333HaKioir9nps3b6JLly44ffq0dD8posaK5wQRETVSr732GvLy8nD37l3p0RmPcvXqVXz++ecMQCQL3BNERI0O9wQRUWUwBBEREZEs8eowIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSpf8PLoxTHljl4E8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAG2CAYAAAB4e1KRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATItJREFUeJzt3XlclOXeP/DPMA4I6ICiMCCLu0ZhknZ0ygUXQEWPKbaYC5k/TUJTKTN7rFxSzKfcytzqqD3qsZNip9xgXEALVMTcoEhJBZElRUTlOAzD9fuDw50TkOwzcH/erxcvmeu65r6ve76gH+9VIYQQICIiIpIZK3NPgIiIiMgcGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWzBqC2rZtC4VCUeYrLCwMAPDgwQOEhYXByckJzZo1Q3BwMLKzs02WkZaWhqCgINjZ2cHZ2Rlz5sxBUVGROTaHiIiIGhCzhqCEhARkZmZKXzqdDgDw/PPPAwBmz56N77//Ht988w1iY2Nx48YNjB49Wnq/0WhEUFAQCgsLERcXh61bt2LLli14//33zbI9RERE1HAoLOkBqrNmzcLevXtx6dIl5Ofno3Xr1tixYwfGjBkDAPjll1/w2GOPIT4+Hr1798aBAwcwfPhw3LhxAy4uLgCA9evXY+7cufj9999hbW1tzs0hIiIiC9bE3BMoVVhYiG3btiE8PBwKhQKJiYkwGAwYPHiwNKZr167w9PSUQlB8fDx8fHykAAQAgYGBCA0NRVJSEnx9fctdl16vh16vl14XFxcjNzcXTk5OUCgUdbeRREREVGuEELh79y7c3NxgZVX1g1sWE4K+/fZb5OXl4ZVXXgEAZGVlwdraGo6OjibjXFxckJWVJY15OACV9pf2VSQiIgILFy6svckTERGR2aSnp8Pd3b3K77OYEPTll19i6NChcHNzq/N1zZs3D+Hh4dLrO3fuwNPTE1euXEHz5s3rfP1yZjAYcPToUQwYMAAqlcrc05E91sNysBaWg7WwHI+qxd27d9GuXbtq/9ttESHo2rVrOHToECIjI6U2jUaDwsJC5OXlmewNys7OhkajkcacOnXKZFmlV4+VjimPjY0NbGxsyrS3bNkSarW6JptCj2AwGGBnZwcnJyf+5WIBWA/LwVpYDtbCcjyqFqVt1T2VxSLuE7R582Y4OzsjKChIauvRowdUKhUOHz4staWkpCAtLQ1arRYAoNVqceHCBeTk5EhjdDod1Go1vL29628DiIiIqMEx+56g4uJibN68GSEhIWjS5I/pODg4YPLkyQgPD5f20MyYMQNarRa9e/cGAAQEBMDb2xsTJkzA8uXLkZWVhfnz5yMsLKzcPT1EREREpcwegg4dOoS0tDS8+uqrZfpWrlwJKysrBAcHQ6/XIzAwEJ9//rnUr1QqsXfvXoSGhkKr1cLe3h4hISFYtGhRfW4CERERNUBmD0EBAQGo6FZFTZs2xdq1a7F27doK3+/l5YX9+/fX1fSIiIiokbKIc4KIiIiI6htDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJUhNzT4CIiIgsh9EIHD8OZGYCrq5A376AUmnuWdUNhiAiIiICAERGAjNnAtev/9Hm7g6sXg2MHm2+edUVHg4jIiIiREYCY8aYBiAAyMgoaY+MNM+86hJDEBERkcwZjSV7gIQo21faNmtWybjGhCGIiIhI5o4fL7sH6GFCAOnpJeMaE4YgIiIimcvMrN1xDQVDEBERkcy5utbuuIaCV4cRERHJREWXv/ftW3IVWEZG+ecFKRQl/X371v+c6xL3BBEREclAZCTQti0wYADw8sslf7ZtW9KuVJZcBg+UBJ6Hlb5etarx3S/I7CEoIyMD48ePh5OTE2xtbeHj44PTp09L/a+88goUCoXJ15AhQ0yWkZubi3HjxkGtVsPR0RGTJ0/GvXv36ntTiIiILFJlLn8fPRrYtQto08Z0jLt7SXtjvE+QWQ+H3b59G88++ywGDBiAAwcOoHXr1rh06RJatGhhMm7IkCHYvHmz9NrGxsakf9y4ccjMzIROp4PBYMCkSZMwdepU7Nixo162g4iIyFI96vJ3haLk8veRI0uCzsiRvGN0vfjoo4/g4eFhEnDatWtXZpyNjQ00Gk25y/j5559x8OBBJCQkoGfPngCATz/9FMOGDcPHH38MNze3upk8ERFRA1CVy9/9/EoCj59ffc3OvMwagr777jsEBgbi+eefR2xsLNq0aYPXX38dU6ZMMRkXExMDZ2dntGjRAgMHDsSHH34IJycnAEB8fDwcHR2lAAQAgwcPhpWVFU6ePIlRo0aVWa9er4der5de5+fnAwAMBgMMBkNdbCr9V+nny8/ZMrAeloO1sByNrRbp6QpU5p/79PQiGAzl7C4yo0fVoqY1MmsI+u2337Bu3TqEh4fj3XffRUJCAt544w1YW1sjJCQEQMmhsNGjR6Ndu3ZITU3Fu+++i6FDhyI+Ph5KpRJZWVlwdnY2WW6TJk3QsmVLZGVllbveiIgILFy4sEx7dHQ07Ozsan9DqQydTmfuKdBDWA/LwVpYjsZSi2vXnAD0qcS4E9i//1bdT6gaKqpFQUFBjZarEKK8o4T1w9raGj179kRcXJzU9sYbbyAhIQHx8fHlvue3335Dhw4dcOjQIQwaNAhLly7F1q1bkZKSYjLO2dkZCxcuRGhoaJlllLcnyMPDAzdv3oRara6lraPyGAwG6HQ6+Pv7Q6VSmXs6ssd6WA7WwnI0tloYjUDHjk1w4wYghKJMv0Ih0KYNcOlSkcWd+/OoWuTn56NVq1a4c+dOtf79NuueIFdXV3h7e5u0PfbYY9i9e3eF72nfvj1atWqFy5cvY9CgQdBoNMjJyTEZU1RUhNzc3ArPI7KxsSlzcjUAqFSqRvED3xDws7YsrIflYC0sR2OphUoFrFlTchWYQmF6gnTJ5e8KrF4NNG1qudtaUS1qWh+zXiL/7LPPltmD8+uvv8LLy6vC91y/fh23bt2C639vW6nVapGXl4fExERpzJEjR1BcXIxevXrVzcSJiIgaEDle/l4ZZt0TNHv2bDzzzDNYunQpXnjhBZw6dQobN27Exo0bAQD37t3DwoULERwcDI1Gg9TUVLz99tvo2LEjAgMDAZTsORoyZAimTJmC9evXw2AwYPr06XjppZd4ZRgREdF/ye3y98owawh6+umnsWfPHsybNw+LFi1Cu3btsGrVKowbNw4AoFQqcf78eWzduhV5eXlwc3NDQEAAFi9ebHI4a/v27Zg+fToGDRoEKysrBAcHY82aNebaLCIiIoskp8vfK8Pszw4bPnw4hg8fXm6fra0toqKiHrmMli1b8saIREREVCVmf2wGERERkTkwBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLJk9BGVkZGD8+PFwcnKCra0tfHx8cPr0aalfCIH3338frq6usLW1xeDBg3Hp0iWTZeTm5mLcuHFQq9VwdHTE5MmTce/evfreFCIiImpAzBqCbt++jWeffRYqlQoHDhxAcnIyPvnkE7Ro0UIas3z5cqxZswbr16/HyZMnYW9vj8DAQDx48EAaM27cOCQlJUGn02Hv3r04duwYpk6dao5NIiIiogaiiTlX/tFHH8HDwwObN2+W2tq1ayd9L4TAqlWrMH/+fIwcORIA8NVXX8HFxQXffvstXnrpJfz88884ePAgEhIS0LNnTwDAp59+imHDhuHjjz+Gm5tb/W4UERERNQhmDUHfffcdAgMD8fzzzyM2NhZt2rTB66+/jilTpgAArly5gqysLAwePFh6j4ODA3r16oX4+Hi89NJLiI+Ph6OjoxSAAGDw4MGwsrLCyZMnMWrUqDLr1ev10Ov10uv8/HwAgMFggMFgqKvNJUD6fPk5WwbWw3KwFpaDtbAcj6pFTWtk1hD022+/Yd26dQgPD8e7776LhIQEvPHGG7C2tkZISAiysrIAAC4uLibvc3FxkfqysrLg7Oxs0t+kSRO0bNlSGvNnERERWLhwYZn26Oho2NnZ1cam0SPodDpzT4EewnpYDtbCcrAWlqOiWhQUFNRouWYNQcXFxejZsyeWLl0KAPD19cXFixexfv16hISE1Nl6582bh/DwcOl1fn4+PDw8EBAQALVaXWfrpZLUrtPp4O/vD5VKZe7pyB7rYTlYC8vBWliOR9Wi9EhOdZk1BLm6usLb29uk7bHHHsPu3bsBABqNBgCQnZ0NV1dXaUx2dja6d+8ujcnJyTFZRlFREXJzc6X3/5mNjQ1sbGzKtKtUKv7A1xN+1paF9bAcrIXlYC0sR0W1qGl9zHp12LPPPouUlBSTtl9//RVeXl4ASk6S1mg0OHz4sNSfn5+PkydPQqvVAgC0Wi3y8vKQmJgojTly5AiKi4vRq1evetgKIiIiaojMuido9uzZeOaZZ7B06VK88MILOHXqFDZu3IiNGzcCABQKBWbNmoUPP/wQnTp1Qrt27fDee+/Bzc0Nzz33HICSPUdDhgzBlClTsH79ehgMBkyfPh0vvfQSrwwjIiKiCpk1BD399NPYs2cP5s2bh0WLFqFdu3ZYtWoVxo0bJ415++23cf/+fUydOhV5eXno06cPDh48iKZNm0pjtm/fjunTp2PQoEGwsrJCcHAw1qxZY45NIiIiogbCrCEIAIYPH47hw4dX2K9QKLBo0SIsWrSowjEtW7bEjh076mJ6RERE1EiZ/bEZRERERObAEERERESyxBBEREREssQQRERERLLEEERERESyxBBEREREssQQRERERLJk9vsEERERVZXRCBw/DmRmAq6uQN++gFJp7llRQ8MQREREDUpkJDBzJnD9+h9t7u7A6tXA6NHmmxc1PDwcRkREDUZkJDBmjGkAAoCMjJL2yEjzzIsaJoYgIiJqEIzGkj1AQpTtK22bNatkHFFlMAQREVGDcPx42T1ADxMCSE8vGUdUGQxBRETUIGRm1u44IoYgIiJqEFxda3ccEUMQERE1CH37llwFplCU369QAB4eJeOIKoMhiIiIGgSlsuQyeKBsECp9vWoV7xdElccQREREDcbo0cCuXUCbNqbt7u4l7bxPEFUFb5ZIREQNyujRwMiRvGM01RxDEBERNThKJeDnZ+5ZUEPHw2FEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEtmDUELFiyAQqEw+eratavU7+fnV6Z/2rRpJstIS0tDUFAQ7Ozs4OzsjDlz5qCoqKi+N4WIiIgaGLM/QPXxxx/HoUOHpNdNmphOacqUKVi0aJH02s7OTvreaDQiKCgIGo0GcXFxyMzMxMSJE6FSqbB06dK6nzwRERE1WGYPQU2aNIFGo6mw387OrsL+6OhoJCcn49ChQ3BxcUH37t2xePFizJ07FwsWLIC1tXVdTZuIiIgaOLOHoEuXLsHNzQ1NmzaFVqtFREQEPD09pf7t27dj27Zt0Gg0GDFiBN577z1pb1B8fDx8fHzg4uIijQ8MDERoaCiSkpLg6+tb7jr1ej30er30Oj8/HwBgMBhgMBjqYjPpv0o/X37OloH1sBysheVgLSzHo2pR0xqZNQT16tULW7ZsQZcuXZCZmYmFCxeib9++uHjxIpo3b46XX34ZXl5ecHNzw/nz5zF37lykpKQgMjISAJCVlWUSgABIr7Oysipcb0REBBYuXFimPTo62uRwG9UdnU5n7inQQ1gPy8FaWA7WwnJUVIuCgoIaLVchhBA1WkItysvLg5eXF1asWIHJkyeX6T9y5AgGDRqEy5cvo0OHDpg6dSquXbuGqKgoaUxBQQHs7e2xf/9+DB06tNz1lLcnyMPDAzdv3oRara79DSOJwWCATqeDv78/VCqVuacje6yH5WAtLAdrYTkeVYv8/Hy0atUKd+7cqda/32Y/HPYwR0dHdO7cGZcvXy63v1evXgAghSCNRoNTp06ZjMnOzgaAvzzPyMbGBjY2NmXaVSoVf+DrCT9ry8J6WA7WwnKwFpajolrUtD4WdZ+ge/fuITU1Fa6uruX2nz17FgCkfq1WiwsXLiAnJ0cao9PpoFar4e3tXefzJSIioobLrCHorbfeQmxsLK5evYq4uDiMGjUKSqUSY8eORWpqKhYvXozExERcvXoV3333HSZOnIh+/fqhW7duAICAgAB4e3tjwoQJOHfuHKKiojB//nyEhYWVu6eHiIiIqJRZD4ddv34dY8eOxa1bt9C6dWv06dMHJ06cQOvWrfHgwQMcOnQIq1atwv379+Hh4YHg4GDMnz9fer9SqcTevXsRGhoKrVYLe3t7hISEmNxXiIiIiKg8Zg1BO3furLDPw8MDsbGxj1yGl5cX9u/fX5vTIiIiIhmwqHOCiIiIiOoLQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREclSle8TpNfrcfLkSVy7dg0FBQVo3bo1fH190a5du7qYHxEREVGdqHQI+vHHH7F69Wp8//33MBgMcHBwgK2tLXJzc6HX69G+fXtMnToV06ZNQ/PmzetyzkREREQ1VqnDYX//+9/x4osvom3btoiOjsbdu3dx69YtXL9+HQUFBbh06RLmz5+Pw4cPo3PnztDpdHU9byIiqoDRCMTEAP/8Z8mfRqO5Z0RkmSq1JygoKAi7d++u8JH17du3R/v27RESEoLk5GRkZmbW6iSJiKhyIiOBmTOB69f/aHN3B1avBkaPNt+8iCxRpfYEvfbaaxUGoD/z9vbGoEGDajQpIiKqushIYMwY0wAEABkZJe2RkeaZF5GlqvTVYSEhIfjqq6+QlpZWl/MhIqJqMBpL9gAJUbavtG3WLB4aI3pYpUPQtWvX8Nprr6Fdu3bo0KED/t//+3/Yvn07D30REVmA48fL7gF6mBBAenrJOCIqUemrw2JiYqDX6xEXF4eYmBjExMRg27ZtMBgM6NSpEwYMGICBAwfi+eefr8v5EhFROSr7/1H+v5XoD1W6T5CNjQ0GDBiAAQMGAAAePHiAuLg4HDhwABs3bsTGjRsZgoiIzMDVtXbHEclBlW+WCACFhYWIj49HTEwMjh49ipMnT8LNzQ3BwcG1PT8iIqqEvn1LrgLLyCj/vCCFoqS/b9/6nxuRpap0CDp27JhJ6PH09ET//v0xdepUbNu2De7u7nU5TyIi+gtKZcll8GPGlASeh4OQQlHy56pVJeOIqESlQ5Cfnx88PT0xd+5c7Ny5Ey4uLnU5LyIiqqLRo4Fdu8q/T9CqVbxPENGfVToEvf3224iJicGsWbOwbt069O/fH35+fujfvz9atWpVl3MkIqJKGj0aGDmy5CqwzMySc4D69uUeIKLyVDoELVu2DABw7949HD9+HDExMVi+fDnGjh2Lzp07o3///hgwYADGjBlTZ5MlIqJHUyoBPz9zz4LI8lX5xOhmzZph6NChGDp0KAAgNzcXK1aswKeffor169fDyDtxERERUQNQ5RBUXFyMhIQE6V5BP/74I+7duwdPT0+M5gFnIiIiaiAqHYKWL18uhZ67d++iTZs28PPzw6pVqzBgwAC0a9euLudJREREVKsqHYJWrVoFPz8/fPzxxxgwYAA6duxYl/MiIiIiqlOVDkE3btyoy3kQERER1atKPUC1qk+Oz8jIqNZkiIjkxmgEYmKAnTsVuHDBiU95J6pHlQpBTz/9NF577TUkJCRUOObOnTvYtGkTnnjiCezevbvWJkhE1FhFRgJt2wIDBgATJzbBe+/1QceOTRAZae6ZEclDpQ6HJScnY8mSJfD390fTpk3Ro0cPuLm5oWnTprh9+zaSk5ORlJSEp556CsuXL8ewYcPqet5ERA1aZGTJIy7+/JyvGzdK2nft4h2eiepapfYEOTk5YcWKFcjMzMRnn32GTp064ebNm7h06RIAYNy4cUhMTER8fDwDEBHRIxiNJY+2KO9Bp0KUPOhr1izw0BhRHatUCCpla2uLMWPGYNWqVdizZw8OHjyIbdu24c0338QTTzxR5ZUvWLAACoXC5Ktr165S/4MHDxAWFgYnJyc0a9YMwcHByM7ONllGWloagoKCYGdnB2dnZ8yZMwdFRUVVngsRUX05ftz02V5/JgSQnl4yjojqTpVvlljbHn/8cRw6dEh63aTJH1OaPXs29u3bh2+++QYODg6YPn06Ro8ejR9//BEAYDQaERQUBI1Gg7i4OGRmZmLixIlQqVRYunRpvW8LEVFlZGbW7jgiqh6zh6AmTZpAo9GUab9z5w6+/PJL7NixAwMHDgQAbN68GY899hhOnDiB3r17Izo6GsnJyTh06BBcXFzQvXt3LF68GHPnzsWCBQtgbW1d35tDRPRIrq61O46IqsfsIejSpUvSSdZarRYRERHw9PREYmIiDAYDBg8eLI3t2rUrPD09ER8fj969eyM+Ph4+Pj5wcXGRxgQGBiI0NBRJSUnw9fUtd516vR56vV56nZ+fDwAwGAwwGAx1tKUEQPp8+TlbBtbDPHr3Btq0aYIbN/44B+hhCoVAmzZA795FYGnqH38vLMejalHTGpk1BPXq1QtbtmxBly5dkJmZiYULF6Jv3764ePEisrKyYG1tDUdHR5P3uLi4ICsrCwCQlZVlEoBK+0v7KhIREYGFCxeWaY+OjoadnV0Nt4oqQ6fTmXsK9BDWo/6NH++Kjz56GoAA8HAQEhACGDcuAVFRPB5mTvy9sBwV1aKgoKBGy61yCLp//z7s7e1rtNJSpU+iB4Bu3bqhV69e8PLywr/+9S/Y2trWyjrKM2/ePISHh0uv8/Pz4eHhgYCAAKjV6jpbL5Wkdp1OB39/f6hUKnNPR/ZYD/MZNgx46ikjwsOVePj+su7uAp98UoxRo3wBlL83m+oWfy8sx6NqUXokp7qqHIJcXFzwwgsv4NVXX0WfPn1qtPI/c3R0ROfOnXH58mX4+/ujsLAQeXl5JnuDsrOzpXOINBoNTp06ZbKM0qvHyjvPqJSNjQ1sbGzKtKtUKv7A1xN+1paF9TCPF14AgoNLrgJLTy/CtWsn8NZbvdC0KWthCfh7YTkqqkVN61OlS+QBYNu2bcjNzcXAgQPRuXNnLFu2rNaeK3bv3j2kpqbC1dUVPXr0gEqlwuHDh6X+lJQUpKWlQavVAgC0Wi0uXLiAnJwcaYxOp4NarYa3t3etzImIqC4plYCfH/DSSwI+PregVJp7RkTyUeUQ9Nxzz+Hbb79FRkYGpk2bhh07dsDLywvDhw9HZGRkle7R89ZbbyE2NhZXr15FXFwcRo0aBaVSibFjx8LBwQGTJ09GeHg4jh49isTEREyaNAlarRa9e/cGAAQEBMDb2xsTJkzAuXPnEBUVhfnz5yMsLKzcPT1EREREpaocgkq1bt0a4eHhOH/+PFasWIFDhw5hzJgxcHNzw/vvv1+pk5WuX7+OsWPHokuXLnjhhRfg5OSEEydOoHXr1gCAlStXYvjw4QgODka/fv2g0WgQ+dBDdZRKJfbu3QulUgmtVovx48dj4sSJWLRoUXU3i4iIiGSi2leHZWdnY+vWrdiyZQuuXbuGMWPGYPLkybh+/To++ugjnDhxAtHR0X+5jJ07d/5lf9OmTbF27VqsXbu2wjFeXl7Yv39/tbaBiIiI5KvKISgyMhKbN29GVFQUvL298frrr2P8+PEmJy8/88wzeOyxx2pznkRERES1qsohaNKkSXjppZfw448/4umnny53jJubG/7nf/6nxpMjIiIiqitVDkGZmZmPvKGgra0tPvjgg2pPioiIiKiuVfnE6ObNm5tckl7q1q1bUPLaTiIiImogqhyChBDltuv1ej6wlIiIiBqMSh8OW7NmDQBAoVDgiy++QLNmzaQ+o9GIY8eOoWvXrrU/QyIiIqI6UOkQtHLlSgAle4LWr19vcujL2toabdu2xfr162t/hkRERER1oNIh6MqVKwCAAQMGIDIyEi1atKizSRERERHVtSpfHXb06NG6mAcRERFRvapyCHr11Vf/sv8f//hHtSdDREREVF+qHIJu375t8tpgMODixYvIy8vDwIEDa21iRERERHWpyiFoz549ZdqKi4sRGhqKDh061MqkiIiIiOpatZ8ib7IQKyuEh4dLV5ARERERWbpaCUEAkJqaiqKiotpaHBEREVGdqvLhsPDwcJPXQghkZmZi3759CAkJqbWJEREREdWlKoegn376yeS1lZUVWrdujU8++eSRV44RERERWQreJ4iIiIhkqcohCABu3ryJq1evQqFQoG3btnBycqrteRERERHVqSqdGJ2UlIR+/frBxcUFvXr1wt/+9jc4Oztj4MCBSElJqas5EhEREdW6Su8JysrKQv/+/dG6dWusWLECXbt2hRACycnJ2LRpE/r27YuLFy/C2dm5LudLREREVCuq9BR5Ly8v/Pjjj2jatKnUPmTIEISGhqJPnz5YuXIlIiIi6mSiRERERLWp0ofDdDod5s6daxKAStna2mLOnDmIioqq1ckRERER1ZVKh6DffvsNTz31VIX9PXv2xG+//VYrkyIiIiKqa5UOQXfv3oVara6wv3nz5rh3716tTIqIiIiorlXpEvm7d++WezgMAPLz8yGEqJVJEREREdW1SocgIQQ6d+78l/0KhaJWJkVERERU1yodgninaCIiImpMKh2C+vfvX5fzICIiIqpXVbpjNBEREVFjwRBEREREsmQxIWjZsmVQKBSYNWuW1Obn5weFQmHyNW3aNJP3paWlISgoCHZ2dnB2dsacOXNQVFRUz7MnIiKihqZaT5GvbQkJCdiwYQO6detWpm/KlClYtGiR9NrOzk763mg0IigoCBqNBnFxccjMzMTEiROhUqmwdOnSepk7ERERNUxV3hP06quv4u7du2Xa79+/j1dffbXKE7h37x7GjRuHTZs2oUWLFmX67ezsoNFopK+Hb9gYHR2N5ORkbNu2Dd27d8fQoUOxePFirF27FoWFhVWeCxEREclHlfcEbd26FcuWLUPz5s1N2v/zn//gq6++wj/+8Y8qLS8sLAxBQUEYPHgwPvzwwzL927dvx7Zt26DRaDBixAi899570t6g+Ph4+Pj4wMXFRRofGBiI0NBQJCUlwdfXt9x16vV66PV66XV+fj4AwGAwwGAwVGn+VDWlny8/Z8vAelgO1sJysBaW41G1qGmNKh2CSu8ILYQoc+doo9GI/fv3w9nZuUor37lzJ86cOYOEhIRy+19++WV4eXnBzc0N58+fx9y5c5GSkoLIyEgAQFZWlkkAAiC9zsrKqnC9ERERWLhwYZn26Ohok8NtVHd0Op25p0APYT0sB2thOVgLy1FRLQoKCmq03EqHIEdHR+nk5PLuHK1QKMoNFhVJT0/HzJkzodPpKnwUx9SpU6XvfXx84OrqikGDBiE1NRUdOnSo9Lr+bN68eQgPD5de5+fnw8PDAwEBAX/5fDSqOYPBAJ1OB39/f6hUKnNPR/ZYD8vBWlgO1sJyPKoWpUdyqqtKd4wWQmDgwIHYvXs3WrZsKfVZW1tLe2wqKzExETk5OSZPpjcajTh27Bg+++wz6PV6KJVKk/f06tULAHD58mV06NABGo0Gp06dMhmTnZ0NANBoNBWu28bGBjY2NmXaVSoVf+DrCT9ry8J6WA7WwnKwFpajolrUtD5VvmP0lStX4OHhASurml1dP2jQIFy4cMGkbdKkSejatSvmzp1bJgABwNmzZwEArq6uAACtVoslS5YgJydHOhSn0+mgVqvh7e1do/kRERFR41blE6O9vLwAlByHS0tLK3MVVnmXuZenefPmeOKJJ0za7O3t4eTkhCeeeAKpqanYsWMHhg0bBicnJ5w/fx6zZ89Gv379pHUEBATA29sbEyZMwPLly5GVlYX58+cjLCys3D09RERERKWqHIJ+//13TJo0CQcOHCi332g01nhSQMkhtkOHDmHVqlW4f/8+PDw8EBwcjPnz50tjlEol9u7di9DQUGi1Wtjb2yMkJMTkvkJERERE5alyCJo1axby8vJw8uRJ+Pn5Yc+ePcjOzsaHH36ITz75pEaTiYmJkb738PBAbGzsI9/j5eWF/fv312i9RFR3jEbg+HEgMxNwdQX69gXKOdpNRFTvqhyCjhw5gn//+9/o2bMnrKys4OXlBX9/f6jVakRERCAoKKgu5klEDVBkJDBzJnD9+h9t7u7A6tXA6NHmmxcREVCNO0bfv39fOgm5RYsW+P333wGUXMJ+5syZ2p0dETVYkZHAmDGmAQgAMjJK2v97uy8iIrOpcgjq0qULUlJSAABPPvkkNmzYgIyMDKxfv166aouI5M1oLNkDJETZvtK2WbNKxhERmUuVD4fNnDkTmZmZAIAPPvgAQ4YMwfbt22FtbY0tW7bU9vyIqAE6frzsHqCHCQGkp5eM8/Ort2kREZmocggaP3689H2PHj1w7do1/PLLL/D09ESrVq1qdXJE1DD99/9JtTaOiKguVPuOh4WFhUhJSYG1tTWeeuopBiAiklT2yDiPoBOROVU5BBUUFGDy5Mmws7PD448/jrS0NADAjBkzsGzZslqfIBE1PH37llwFplCU369QAB4eJeOIiMylyiFo3rx5OHfuHGJiYkwefDp48GB8/fXXtTo5ImqYlMqSy+CBskGo9PWqVbxfEBGZV5VD0LfffovPPvsMffr0geKhv90ef/xxpKam1urkiKjhGj0a2LULaNPGtN3dvaSd9wkiInOr1mMzSu8T9LD79++bhCIiotGjgZEjecdoIrJMVd4T1LNnT+zbt096XRp8vvjiC2i12tqbGRE1CkplyWXwY8eW/MkARESWosp7gpYuXYqhQ4ciOTkZRUVFWL16NZKTkxEXF1epZ30RERERWYIq7wnq06cPzp49i6KiIvj4+CA6OhrOzs6Ij49Hjx496mKORERERLWuynuCAKBDhw7YtGlTbc+FiIiIqN5UOgTl5+dXapxara72ZIiIiIjqS6VDkKOj419e/SWEgEKhgJFPRCQiIqIGoNIh6OjRo9L3QggMGzYMX3zxBdr8+SYgRERERA1ApUNQ//79TV4rlUr07t0b7du3r/VJEREREdW1aj9AlYiIiKghYwgiIiIiWapRCOJjMoiIiKihqvQ5QaP/9LTDBw8eYNq0abC3tzdpj4yMrJ2ZEREREdWhSocgBwcHk9fjx4+v9ckQUd0xGss+yJSISM4qHYI2b95cl/MgojoUGQnMnAlcv/5Hm7s78MknCtjYmG9eRETmxBOjiRq5yEhgzBjTAAQAGRnASy8pER/vap6JERGZGUMQUSNmNJbsARKibF9p25dfPgHe6J2I5IghiKgRO3687B6ghwmhwM2bdvjhB17pSUTywxBE1IhlZtbuOCKixoQhiKgRc63k6T6VHUdE1JgwBBE1Yn37llwFVtF9TRUKgVatCtCnTzknDRERNXIWE4KWLVsGhUKBWbNmSW0PHjxAWFgYnJyc0KxZMwQHByM7O9vkfWlpaQgKCoKdnR2cnZ0xZ84cFBUV1fPsiSyTUgmsXl3y/Z+DUOnryZMvQqms33kREVkCiwhBCQkJ2LBhA7p162bSPnv2bHz//ff45ptvEBsbixs3bpjcudpoNCIoKAiFhYWIi4vD1q1bsWXLFrz//vv1vQlEFmv0aGDXLqBNG9N2d3dg504jtFqeEERE8mT2EHTv3j2MGzcOmzZtQosWLaT2O3fu4Msvv8SKFSswcOBA9OjRA5s3b0ZcXBxOnDgBAIiOjkZycjK2bduG7t27Y+jQoVi8eDHWrl2LwsJCc20SkcUZPRq4ehU4ehTYsaPkzytXgFGjeBiMiOTL7CEoLCwMQUFBGDx4sEl7YmIiDAaDSXvXrl3h6emJ+Ph4AEB8fDx8fHzg4uIijQkMDER+fj6SkpLqZwOIGgilEvDzA8aOLfmTh8CISO4q/diMurBz506cOXMGCQkJZfqysrJgbW0NR0dHk3YXFxdkZWVJYx4OQKX9pX0V0ev10Ov10uv8/HwAgMFggMFgqNa2UOWUfr78nC0D62E5WAvLwVpYjkfVoqY1MlsISk9Px8yZM6HT6dC0adN6XXdERAQWLlxYpj06Ohp2dnb1Ohe50ul05p4CPYT1sBysheVgLSxHRbUoKCio0XLNFoISExORk5ODp556SmozGo04duwYPvvsM0RFRaGwsBB5eXkme4Oys7Oh0WgAABqNBqdOnTJZbunVY6VjyjNv3jyEh4dLr/Pz8+Hh4YGAgACo1era2DyqgMFggE6ng7+/P1QqlbmnI3ush+VgLSwHa2E5HlWL0iM51WW2EDRo0CBcuHDBpG3SpEno2rUr5s6dCw8PD6hUKhw+fBjBwcEAgJSUFKSlpUGr1QIAtFotlixZgpycHDg7OwMoSYtqtRre3t4VrtvGxgY25Tw6W6VS8Qe+nvCztiysh+VgLSwHa2E5KqpFTetjthDUvHlzPPHEEyZt9vb2cHJyktonT56M8PBwtGzZEmq1GjNmzIBWq0Xv3r0BAAEBAfD29saECROwfPlyZGVlYf78+QgLCys35BARERGVMuuJ0Y+ycuVKWFlZITg4GHq9HoGBgfj888+lfqVSib179yI0NBRarRb29vYICQnBokWLzDhrIiIiaggsKgTFxMSYvG7atCnWrl2LtWvXVvgeLy8v7N+/v45nRkRERI2N2e8TRERERGQODEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEtNzD0BInMxGoHjx4HMTMDVFejbF1AqzT0rIiKqLwxBJEuRkcDMmcD163+0ubsDq1cDo0ebb15ERFR/eDiMZCcyEhgzxjQAAUBGRkl7ZKR55kVERPXLrCFo3bp16NatG9RqNdRqNbRaLQ4cOCD1+/n5QaFQmHxNmzbNZBlpaWkICgqCnZ0dnJ2dMWfOHBQVFdX3plADYTSW7AESomxfadusWSXjiIiocTPr4TB3d3csW7YMnTp1ghACW7duxciRI/HTTz/h8ccfBwBMmTIFixYtkt5jZ2cnfW80GhEUFASNRoO4uDhkZmZi4sSJUKlUWLp0ab1vD1m+48fL7gF6mBBAenrJOD+/epsWERGZgVlD0IgRI0xeL1myBOvWrcOJEyekEGRnZweNRlPu+6Ojo5GcnIxDhw7BxcUF3bt3x+LFizF37lwsWLAA1tbWdb4N1LBkZtbuOCIiargs5pwgo9GInTt34v79+9BqtVL79u3b0apVKzzxxBOYN28eCgoKpL74+Hj4+PjAxcVFagsMDER+fj6SkpLqdf7UMLi61u44IiJquMx+ddiFCxeg1Wrx4MEDNGvWDHv27IG3tzcA4OWXX4aXlxfc3Nxw/vx5zJ07FykpKYj875mrWVlZJgEIgPQ6KyurwnXq9Xro9XrpdX5+PgDAYDDAYDDU6vaRqdLP11yfc+/eQJs2TXDjBiCEoky/QiHQpg3Qu3cR5PCjYO560B9YC8vBWliOR9WipjUyewjq0qULzp49izt37mDXrl0ICQlBbGwsvL29MXXqVGmcj48PXF1dMWjQIKSmpqJDhw7VXmdERAQWLlxYpj06OtrknCOqOzqdzmzrHj/eFR999DQAAeDhICQgBDBuXAKiouR1PMyc9SBTrIXlYC0sR0W1ePjoUHUohCjvOhnzGTx4MDp06IANGzaU6bt//z6aNWuGgwcPIjAwEO+//z6+++47nD17Vhpz5coVtG/fHmfOnIGvr2+56yhvT5CHhwdu3rwJtVpd69tEfzAYDNDpdPD394dKpTLbPPbsUSA8XImMjD9CkLu7wCefGDFqlEX9StQpS6kHsRaWhLWwHI+qRX5+Plq1aoU7d+5U699vs+8J+rPi4mKTgPKw0rDj+t8TNrRaLZYsWYKcnBw4OzsDKEmLarVaOqRWHhsbG9jY2JRpV6lU/IGvJ+b+rF94AQgO/vMdoxVQKi3uV6JemLse9AfWwnKwFpajolrUtD5m/Rt/3rx5GDp0KDw9PXH37l3s2LEDMTExiIqKQmpqKnbs2IFhw4bByckJ58+fx+zZs9GvXz9069YNABAQEABvb29MmDABy5cvR1ZWFubPn4+wsLByQw7Rw5RKXgZPRCRnZg1BOTk5mDhxIjIzM+Hg4IBu3bohKioK/v7+SE9Px6FDh7Bq1Srcv38fHh4eCA4Oxvz586X3K5VK7N27F6GhodBqtbC3t0dISIjJfYWIiIiIymPWEPTll19W2Ofh4YHY2NhHLsPLywv79++vzWkRERGRDFjMfYKIiIiI6hNDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyVITc0+AGhajETh+HMjMBFxdgb59AaXS3LMiIiKqOoYgqrTISGDmTOD69T/a3N2B1auB0aPNNy8iIqLq4OEwqpTISGDMGNMABAAZGSXtkZHmmRcREVF1MQTRIxmNJXuAhCjbV9o2a1bJOCIiooaCIYge6fjxsnuAHiYEkJ5eMo6IiKihYAiiR8rMrN1xRERElsCsIWjdunXo1q0b1Go11Go1tFotDhw4IPU/ePAAYWFhcHJyQrNmzRAcHIzs7GyTZaSlpSEoKAh2dnZwdnbGnDlzUFRUVN+b0qi5utbuOCIiIktg1hDk7u6OZcuWITExEadPn8bAgQMxcuRIJCUlAQBmz56N77//Ht988w1iY2Nx48YNjH7oMiSj0YigoCAUFhYiLi4OW7duxZYtW/D++++ba5Mapb59S64CUyjK71coAA+PknFEREQNhVlD0IgRIzBs2DB06tQJnTt3xpIlS9CsWTOcOHECd+7cwZdffokVK1Zg4MCB6NGjBzZv3oy4uDicOHECABAdHY3k5GRs27YN3bt3x9ChQ7F48WKsXbsWhYWF5ty0RkWpLLkMHigbhEpfr1rF+wUREVHDYjH3CTIajfjmm29w//59aLVaJCYmwmAwYPDgwdKYrl27wtPTE/Hx8ejduzfi4+Ph4+MDFxcXaUxgYCBCQ0ORlJQEX1/fctel1+uh1+ul1/n5+QAAg8EAg8FQR1vYsI0YAezcqUB4uBIZGX8koTZtBD75xIgRIwQq89GVfr78nC0D62E5WAvLwVpYjkfVoqY1MnsIunDhArRaLR48eIBmzZphz5498Pb2xtmzZ2FtbQ1HR0eT8S4uLsjKygIAZGVlmQSg0v7SvopERERg4cKFZdqjo6NhZ2dXwy1qvGxsgDVrgORkJ9y+3RQtWjyAt/ctKJXA/v1VW5ZOp6ubSVK1sB6Wg7WwHKyF5aioFgUFBTVartlDUJcuXXD27FncuXMHu3btQkhICGJjY+t0nfPmzUN4eLj0Oj8/Hx4eHggICIBara7TdTcGI0ZU/70GgwE6nQ7+/v5QqVS1NymqFtbDcrAWloO1sByPqkXpkZzqMnsIsra2RseOHQEAPXr0QEJCAlavXo0XX3wRhYWFyMvLM9kblJ2dDY1GAwDQaDQ4deqUyfJKrx4rHVMeGxsb2NjYlGlXqVT8ga8n/KwtC+thOVgLy8FaWI6KalHT+ljcfYKKi4uh1+vRo0cPqFQqHD58WOpLSUlBWloatFotAECr1eLChQvIycmRxuh0OqjVanh7e9f73ImIiKjhMOueoHnz5mHo0KHw9PTE3bt3sWPHDsTExCAqKgoODg6YPHkywsPD0bJlS6jVasyYMQNarRa9e/cGAAQEBMDb2xsTJkzA8uXLkZWVhfnz5yMsLKzcPT1EREREpcwagnJycjBx4kRkZmbCwcEB3bp1Q1RUFPz9/QEAK1euhJWVFYKDg6HX6xEYGIjPP/9cer9SqcTevXsRGhoKrVYLe3t7hISEYNGiRebaJCIiImogzBqCvvzyy7/sb9q0KdauXYu1a9dWOMbLywv7q3ppEhEREcmexZ0TRERERFQfGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJaamHsCjYXRCBw/DmRmAq6uQN++gFJp7lkRERFRRRiCakFkJDBzJnD9+h9t7u7A6tXA6NHmmxcRERFVjIfDaigyEhgzxjQAAUBGRkl7ZKR55kVERER/zawhKCIiAk8//TSaN28OZ2dnPPfcc0hJSTEZ4+fnB4VCYfI1bdo0kzFpaWkICgqCnZ0dnJ2dMWfOHBQVFdX5/I3Gkj1AQpTtK22bNatkHBEREVkWs4ag2NhYhIWF4cSJE9DpdDAYDAgICMD9+/dNxk2ZMgWZmZnS1/Lly6U+o9GIoKAgFBYWIi4uDlu3bsWWLVvw/vvv1/n8jx8vuwfoYUIA6ekl44iIiMiymPWcoIMHD5q83rJlC5ydnZGYmIh+/fpJ7XZ2dtBoNOUuIzo6GsnJyTh06BBcXFzQvXt3LF68GHPnzsWCBQtgbW1dZ/PPzKzdcURERFR/LOrE6Dt37gAAWrZsadK+fft2bNu2DRqNBiNGjMB7770HOzs7AEB8fDx8fHzg4uIijQ8MDERoaCiSkpLg6+tbZj16vR56vb7MenNzc2EwGCo9Xzs7BSrzEdrZFeHWrXKOmcmQwWBAQUEBbt26BZVKZe7pyB7rYTlYC8vBWliOR9Xi7t27AABR3nkplWAxIai4uBizZs3Cs88+iyeeeEJqf/nll+Hl5QU3NzecP38ec+fORUpKCiL/e8ZxVlaWSQACIL3Oysoqd10RERFYuHBhmfZ27drV1uaYeO65OlksERERoSQMOTg4VPl9FhOCwsLCcPHiRfzwww8m7VOnTpW+9/HxgaurKwYNGoTU1FR06NChWuuaN28ewsPDpdfFxcXIzc2Fk5MTFApF9TaAKiU/Px8eHh5IT0+HWq0293Rkj/WwHKyF5WAtLMejaiGEwN27d+Hm5lat5VtECJo+fTr27t2LY8eOwd3d/S/H9urVCwBw+fJldOjQARqNBqdOnTIZk52dDQAVnkdkY2MDGxsbkzZHR8dqzp6qQ61W8y8XC8J6WA7WwnKwFpbjr2pRnT1Apcx6dZgQAtOnT8eePXtw5MiRSh2OOnv2LADA1dUVAKDVanHhwgXk5ORIY3Q6HdRqNby9vetk3kRERNTwmXVPUFhYGHbs2IF///vfaN68uXQOj4ODA2xtbZGamoodO3Zg2LBhcHJywvnz5zF79mz069cP3bp1AwAEBATA29sbEyZMwPLly5GVlYX58+cjLCyszN4eIiIiolJm3RO0bt063LlzB35+fnB1dZW+vv76awCAtbU1Dh06hICAAHTt2hVvvvkmgoOD8f3330vLUCqV2Lt3L5RKJbRaLcaPH4+JEydi0aJF5tos+gs2Njb44IMPGFAtBOthOVgLy8FaWI66roVCVPe6MiIiIqIGjM8OIyIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCKIaW7duHbp16ybdzEqr1eLAgQMmY+Lj4zFw4EDY29tDrVajX79++M9//iP15+bmYty4cVCr1XB0dMTkyZNx7969+t6UBq+mtbh69SomT56Mdu3awdbWFh06dMAHH3yAwsJCc2xOg1cbvxul9Ho9unfvDoVCId0vjSqvtmqxb98+9OrVC7a2tmjRogWe43ORqqw2avHrr79i5MiRaNWqFdRqNfr06YOjR49WeS4MQVRj7u7uWLZsGRITE3H69GkMHDgQI0eORFJSEoCSH+YhQ4YgICAAp06dQkJCAqZPnw4rqz9+/MaNG4ekpCTodDrp7uEPPzKFKqemtfjll19QXFyMDRs2ICkpCStXrsT69evx7rvvmnOzGqza+N0o9fbbb1f70QBUO7XYvXs3JkyYgEmTJuHcuXP48ccf8fLLL5trkxqs2qjF8OHDUVRUhCNHjiAxMRFPPvkkhg8fXuEzQyskiOpAixYtxBdffCGEEKJXr15i/vz5FY5NTk4WAERCQoLUduDAAaFQKERGRkadz7Wxq0otyrN8+XLRrl27upiaLFWnHvv37xddu3YVSUlJAoD46aef6niW8lCVWhgMBtGmTRtpPNWuqtTi999/FwDEsWPHpLb8/HwBQOh0uiqtl3uCqFYZjUbs3LkT9+/fh1arRU5ODk6ePAlnZ2c888wzcHFxQf/+/U0elBsfHw9HR0f07NlTahs8eDCsrKxw8uRJc2xGo1CdWpTnzp07aNmyZT3NuvGqbj2ys7MxZcoU/N///R/s7OzMNPvGpTq1OHPmDDIyMmBlZQVfX1+4urpi6NChuHjxohm3pOGrTi2cnJzQpUsXfPXVV7h//z6KioqwYcMGODs7o0ePHlWbQPUyG5Gp8+fPC3t7e6FUKoWDg4PYt2+fEEKI+Ph4AUC0bNlS/OMf/xBnzpwRs2bNEtbW1uLXX38VQgixZMkS0blz5zLLbN26tfj888/rdTsag5rU4s8uXbok1Gq12LhxY31uQqNSk3oUFxeLIUOGiMWLFwshhLhy5Qr3BNVATWrxz3/+UwAQnp6eYteuXeL06dNi7NixwsnJSdy6dcucm9Ug1fTvqfT0dNGjRw+hUCiEUqkUrq6u4syZM1WeB0MQ1Qq9Xi8uXbokTp8+Ld555x3RqlUrkZSUJH788UcBQMybN89kvI+Pj3jnnXeEEAxBta0mtXjY9evXRYcOHcTkyZPra+qNUk3qsXr1avHss8+KoqIiIQRDUE3VpBbbt28XAMSGDRuk/gcPHohWrVqJ9evX1+t2NAY1qUVxcbH4+9//LoYOHSp++OEHkZiYKEJDQ0WbNm3EjRs3qjQPsz5AlRoPa2trdOzYEQDQo0cPJCQkYPXq1XjnnXcAAN7e3ibjH3vsMaSlpQEANBoNcnJyTPqLioqQm5sLjUZTD7NvXGpSi1I3btzAgAED8Mwzz2Djxo31M/FGqib1OHLkCOLj48s8N6lnz54YN24ctm7dWg9b0HjUpBaurq5lxtjY2KB9+/Zlfn/o0Wr6e7F3717cvn0barUaAPD5559Dp9Nh69at0jIqg+cEUZ0oLi6GXq9H27Zt4ebmhpSUFJP+X3/9FV5eXgAArVaLvLw8JCYmSv1HjhxBcXExevXqVa/zboyqUgsAyMjIgJ+fH3r06IHNmzeXe6USVV9V6rFmzRqcO3cOZ8+exdmzZ7F//34AwNdff40lS5bU+9wbm6rUokePHrCxsTEZYzAYcPXqVZPfH6qeqtSioKAAAMr83WRlZYXi4uKqrbjW9m2RbL3zzjsiNjZWXLlyRZw/f1688847QqFQiOjoaCGEECtXrhRqtVp888034tKlS2L+/PmiadOm4vLly9IyhgwZInx9fcXJkyfFDz/8IDp16iTGjh1rrk1qsGpai+vXr4uOHTuKQYMGievXr4vMzEzpi6quNn43HsbDYdVXG7WYOXOmaNOmjYiKihK//PKLmDx5snB2dha5ubnm2qwGqaa1+P3334WTk5MYPXq0OHv2rEhJSRFvvfWWUKlU4uzZs1WaC0MQ1dirr74qvLy8hLW1tWjdurUYNGiQ9MNcKiIiQri7uws7Ozuh1WrF8ePHTfpv3bolxo4dK5o1aybUarWYNGmSuHv3bn1uRqNQ01ps3rxZACj3i6quNn43HsYQVH21UYvCwkLx5ptvCmdnZ9G8eXMxePBgcfHixfrcjEahNmqRkJAgAgICRMuWLUXz5s1F7969xf79+6s8F4UQQlR9xxURERFRw8aD/URERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEJHnllVfw3HPPmXsaVEtSUlKg0Whw9+7dSr/n4MGD6N69e9UfP0DUADEEETUg6enpePXVV+Hm5gZra2t4eXlh5syZuHXrVpWWc/XqVSgUCpw9e7ZG84mJiYFCoUBeXl6FY1555RUoFIoKv9q2bVujOViiBQsWoHv37uaeBubNm4cZM2agefPmAMqv140bN+Dj44N+/frhzp07GDJkCFQqFbZv326mWRPVH4Ygogbit99+Q8+ePXHp0iX885//xOXLl7F+/XocPnwYWq0Wubm55p5iuVavXo3MzEzpCwA2b94svU5ISDDzDCuvsLCwXtcnhEBRUVG13puWloa9e/filVdeqXBMamoq+vTpAy8vL0RFRcHBwQFASXBds2ZNtdZL1JAwBBE1EGFhYbC2tkZ0dDT69+8PT09PDB06FIcOHUJGRgb+53/+RxqrUCjw7bffmrzf0dERW7ZsAQC0a9cOAODr6wuFQgE/P79y11lcXIyIiAi0a9cOtra2ePLJJ7Fr1y4AJXuTBgwYAABo0aIFFApFuf/gOjg4QKPRSF+lcyl9nZ2djaFDh6JZs2ZwcXHBhAkTcPPmTen9fn5+mDFjBmbNmoUWLVrAxcUFmzZtwv379zFp0iQ0b94cHTt2xIEDB6T3lO7x2LdvH7p164amTZuid+/euHjxosncfvjhB/Tt2xe2trbw8PDAG2+8gfv370v9bdu2xeLFizFx4kSo1WpMnToVADB37lx07twZdnZ2aN++Pd577z0YDAYAwJYtW7Bw4UKcO3dO2tu1ZcuWcve+5eXlQaFQICYmxmTeBw4ckJ5a/sMPP/xlHSryr3/9C08++STatGlTbv/58+fRp08faLVafPvtt7C1tZX6RowYgdOnTyM1NfUv10HU0DEEETUAubm5iIqKwuuvv27yjxUAaDQajBs3Dl9//TUq+yjAU6dOAQAOHTqEzMxMREZGljsuIiICX331FdavX4+kpCTMnj0b48ePR2xsLDw8PLB7924AJeeeZGZmYvXq1VXarry8PAwcOBC+vr44ffo0Dh48iOzsbLzwwgsm47Zu3YpWrVrh1KlTmDFjBkJDQ/H888/jmWeewZkzZxAQEIAJEyagoKDA5H1z5szBJ598goSEBLRu3RojRoyQwkpqaiqGDBmC4OBgnD9/Hl9//TV++OEHTJ8+3WQZH3/8MZ588kn89NNPeO+99wAAzZs3x5YtW5CcnIzVq1dj06ZNWLlyJQDgxRdfxJtvvonHH39c2tv14osvVulzeeedd7Bs2TL8/PPP6Nat21/WoSLHjx9Hz549y+2Li4tD//79ERwcjG3btqFJkyYm/Z6ennBxccHx48erNG+iBqfaj4Elonpz4sQJAUDs2bOn3P4VK1YIACI7O1sIIcod6+DgIDZv3iyEqPhp5CEhIWLkyJFCCCEePHgg7OzsRFxcnMmYyZMni7FjxwohhDh69KgAIG7fvl3pbXl4bosXLxYBAQEm/enp6QKASElJEUII0b9/f9GnTx+pv6ioSNjb24sJEyZIbZmZmQKAiI+PN5nXzp07pTG3bt0Stra24uuvv5a2Y+rUqSbrPn78uLCyshL/+c9/hBBCeHl5ieeee+6R2/S///u/okePHtLrDz74QDz55JMmY8r7zG/fvi0AiKNHj5rM+9tvv5XGVKYO5XnyySfFokWLTNpKl29tbW3y+ZXH19dXLFiw4C/HEDV0TcpNRkRkkUQl9/TUhsuXL6OgoAD+/v4m7YWFhfD19a2VdZw7dw5Hjx5Fs2bNyvSlpqaic+fOAIBu3bpJ7UqlEk5OTvDx8ZHaXFxcAAA5OTkmy9BqtdL3LVu2RJcuXfDzzz9L6z5//rzJCcBCCBQXF+PKlSt47LHHAKDcvSlff/011qxZg9TUVNy7dw9FRUVQq9VV3v6KPLzO6tbhP//5D5o2bVpu38iRI7Fnzx4cP34cffv2LXeMra1tmT1rRI0NQxBRA9CxY0coFAr8/PPPGDVqVJn+n3/+GS1atEDr1q0BlJwT9OfAVHoYqLLu3bsHANi3b1+Z80psbGyqtKy/WseIESPw0UcflelzdXWVvlepVCZ9CoXCpE2hUABAlS7rvnfvHl577TW88cYbZfo8PT2l7+3t7U364uPjMW7cOCxcuBCBgYFwcHDAzp078cknn/zl+qysSs4+eLguFdXk4XVWtw6tWrXC7du3y+3bsGED3n77bQwdOhT79+9Hv379yozJzc2Vfp6IGiuGIKIGwMnJCf7+/vj8888xe/Zsk/OCsrKysH37dkycOFEKA61bt5auxAKAS5cumfyv3traGgBgNBorXKe3tzdsbGyQlpaG/v37lzumMsv5K0899RR2796Ntm3bljkvpTacOHFCCjS3b9/Gr7/+Ku3heeqpp5CcnIyOHTtWaZlxcXHw8vIyORH92rVrJmOsra3LfCalgSIzM1Pag1OZWxRUpg7l8fX1RXJycrl9CoUCGzduhJWVFYYNG4Z9+/aZLPvBgwdITU2ttT1+RJaKJ0YTNRCfffYZ9Ho9AgMDcezYMaSnp+PgwYPw9/dHmzZtsGTJEmnswIED8dlnn+Gnn37C6dOnMW3aNJM9J87OzrC1tZVORL5z506Z9TVv3hxvvfUWZs+eja1btyI1NRVnzpzBp59+iq1btwIAvLy8oFAosHfvXvz+++/SXovKCgsLQ25uLsaOHYuEhASkpqYiKioKkyZNqnawetiiRYtw+PBhXLx4Ea+88gpatWol3Qxy7ty5iIuLw/Tp03H27FlcunQJ//73v8ucGP1nnTp1QlpaGnbu3InU1FSsWbMGe/bsMRnTtm1bXLlyBWfPnsXNmzeh1+tha2uL3r17Syc8x8bGYv78+Y/chsrUoTyBgYGIj4+v8HNUKBRYv349Jk6ciGHDhklXqAEl4dHGxsbkcCJRo2TeU5KIqCquXr0qQkJChIuLi1CpVMLDw0PMmDFD3Lx502RcRkaGCAgIEPb29qJTp05i//79JidGCyHEpk2bhIeHh7CyshL9+/cXQpieGC2EEMXFxWLVqlWiS5cuQqVSidatW4vAwEARGxsrjVm0aJHQaDRCoVCIkJCQR24D/nTS9q+//ipGjRolHB0dha2trejatauYNWuWKC4uFkKUnBg9c+ZMk2V4eXmJlStXVrjc0hOAv//+e/H4448La2tr8be//U2cO3fO5D2nTp0S/v7+olmzZsLe3l5069ZNLFmy5C/XI4QQc+bMEU5OTqJZs2bixRdfFCtXrhQODg5S/4MHD0RwcLBwdHQUAKTPPTk5WWi1WmFrayu6d+8uoqOjyz0x+s8nmlemDn9mMBiEm5ubOHjwoNRW3vKLi4tFWFiYsLOzE0eOHBFCCDF16lTx2muvVbhsosZCIUQ9nmlJRFQPYmJiMGDAANy+fRuOjo7mno7ZrF27Ft999x2ioqIq/Z6bN2+iS5cuOH36tHQ/KaLGiucEERE1Uq+99hry8vJw9+5d6dEZj3L16lV8/vnnDEAkC9wTRESNDvcEEVFlMAQRERGRLPHqMCIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikqX/Dy6MUx5Y5eBPAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, - "metadata": { - "filenames": { - "image/png": "C:\\Users\\dkgun\\src\\dangunter\\examples\\idaes_examples\\notebooks\\_build\\jupyter_execute\\docs\\unit_models\\operations\\heater_doc_22_0.png" - } - }, + "metadata": {}, "output_type": "display_data" } ], @@ -721,9 +712,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/operations/heater_test.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/heater_test.ipynb index c845805c..5631fe61 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/heater_test.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/heater_test.ipynb @@ -1,475 +1,476 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Heater Unit Model with Ideal Property Package\n", - "Author: Anuja Deshpande \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "\n", - "![](heater_2.svg)\n", - "\n", - "In this tutorial, we will heat a liquid mixture of benzene-toluene using a simple heater unit model, and an ideal property package with the phases specified to liquid apriori. The inlet specifications are as follows:\n", - "\n", - "* Flow Rate = 1 kmol/hr\n", - "* Mole fraction (Benzene) = 0.4\n", - "* Mole fraction (Toluene) = 0.6\n", - "* Pressure = 101325 Pa\n", - "* Temperature = 353 K\n", - "\n", - "In addition to the inlet specifications, there is one additional unit level specification that needs to be set:\n", - "* Option 1: Specify the outlet temperature\n", - "* Option 2: Specify the heat duty\n", - "\n", - "Therefore, in this tutorial, we will simulate the following cases:\n", - "\n", - "* Case 1: Compute the heat duty (J/s) required to heat the mixture to 363 K.\n", - "* Case 2: Compute the outlet temperature of the mixture when fixing the heat duty to 2 J/s. \n", - "\n", - "IDAES documentation reference for heater model: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/heater.html" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setting up the problem in IDAES" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import objects from pyomo package\n", - "from pyomo.environ import ConcreteModel, SolverFactory, value\n", - "from pyomo.opt import TerminationCondition, SolverStatus\n", - "\n", - "# Import the main FlowsheetBlock from IDAES. The flowsheet block will contain the unit model\n", - "from idaes.core import FlowsheetBlock\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog\n", - "\n", - "# Create the ConcreteModel and the FlowsheetBlock, and attach the flowsheet block to it.\n", - "m = ConcreteModel()\n", - "\n", - "m.fs = FlowsheetBlock(\n", - " dynamic=False\n", - ") # dynamic or ss flowsheet needs to be specified here\n", - "\n", - "\n", - "# Import the BTX_ideal property package to create a properties block for the flowsheet\n", - "from idaes.models.properties.activity_coeff_models import BTX_activity_coeff_VLE\n", - "\n", - "# Add properties parameter block to the flowsheet with specifications\n", - "m.fs.properties = BTX_activity_coeff_VLE.BTXParameterBlock(\n", - " valid_phase=\"Liq\", activity_coeff_model=\"Ideal\"\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import heater unit model from the model library\n", - "from idaes.models.unit_models.heater import Heater\n", - "\n", - "# Create an instance of the heater unit, attaching it to the flowsheet\n", - "# Specify that the property package to be used with the heater is the one we created earlier.\n", - "m.fs.heater = Heater(property_package=m.fs.properties)\n", - "\n", - "# Import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", - "# DOF = Number of Model Variables - Number of Model Constraints\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "\n", - "\n", - "# Call the degrees_of_freedom function, get initial DOF\n", - "DOF_initial = degrees_of_freedom(m)\n", - "print(\"The initial DOF is {0}\".format(DOF_initial))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert DOF_initial == 6" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the BT stream inlet conditions\n", - "m.fs.heater.inlet.flow_mol.fix(\n", - " 1 * 1000 / 3600\n", - ") # converting to mol/s as unit basis is mol/s\n", - "m.fs.heater.inlet.mole_frac_comp[0, \"benzene\"].fix(0.4)\n", - "m.fs.heater.inlet.mole_frac_comp[0, \"toluene\"].fix(0.6)\n", - "m.fs.heater.inlet.pressure.fix(101325) # Pa\n", - "m.fs.heater.inlet.temperature.fix(353) # K" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Case 1: Fix Outlet Temperature" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.heater.outlet.temperature.fix(363)\n", - "# Call the degrees_of_freedom function, get final DOF\n", - "DOF_final = degrees_of_freedom(m)\n", - "print(\"The final DOF is {0}\".format(DOF_final))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert DOF_final == 0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Flowsheet Initialization\n", - "\n", - "IDAES includes pre-written initialization routines for all unit models.\n", - "The output from initialization can be set to 7 different levels depending on the details required by the user.\n", - "In general, when a particular output level is set, any information at that level and above gets picked up by logger. The default level taken by the logger is INFO. \n", - "More information on these levels can be found in the IDAES documentation: \n", - "https://idaes-pse.readthedocs.io/en/stable/reference_guides/logging.html" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize the flowsheet, and set the output at WARNING\n", - "m.fs.heater.initialize(outlvl=idaeslog.WARNING)\n", - "# From the output it can be inferred that since there are no errors or warnings encountered during initialization, nothing is displayed" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize the flowsheet, and set the output at INFO_HIGH\n", - "m.fs.heater.initialize(outlvl=idaeslog.INFO_HIGH)\n", - "# At INFO_HIGH level, details of all the initialization steps are displayed" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Obtaining Simulation Results" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Solve the simulation using ipopt\n", - "# Note: If the degrees of freedom = 0, we have a square problem\n", - "opt = SolverFactory(\"ipopt\")\n", - "solve_status = opt.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check if termination condition is optimal\n", - "assert solve_status.solver.termination_condition == TerminationCondition.optimal\n", - "assert solve_status.solver.status == SolverStatus.ok" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### View Results" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Display Heat Duty only\n", - "m.fs.heater.heat_duty.display()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Display a readable report\n", - "m.fs.heater.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "import pytest\n", - "\n", - "# Check results\n", - "assert m.fs.heater.heat_duty[0].value == pytest.approx(459.10, abs=1e-2)\n", - "\n", - "assert m.fs.heater.outlet.flow_mol[0].value == pytest.approx(0.27778, abs=1e-2)\n", - "assert m.fs.heater.outlet.mole_frac_comp[0, \"benzene\"].value == pytest.approx(\n", - " 0.4, abs=1e-3\n", - ")\n", - "assert m.fs.heater.outlet.mole_frac_comp[0, \"toluene\"].value == pytest.approx(\n", - " 0.6, abs=1e-3\n", - ")\n", - "assert m.fs.heater.outlet.temperature[0].value == pytest.approx(363, abs=1e-2)\n", - "assert m.fs.heater.outlet.pressure[0].value == pytest.approx(101325, abs=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Case 2: Fix Heat Duty" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix heat duty and solve the model\n", - "m.fs.heater.outlet.temperature.unfix()\n", - "m.fs.heater.heat_duty.fix(459.10147722222354)\n", - "solve_status = opt.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check if termination condition is optimal\n", - "assert solve_status.solver.termination_condition == TerminationCondition.optimal\n", - "assert solve_status.solver.status == SolverStatus.ok" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Display outlet temperature only\n", - "m.fs.heater.outlet.temperature.display()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Display a readable report\n", - "m.fs.heater.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check results\n", - "assert m.fs.heater.heat_duty[0].value == pytest.approx(459.10, abs=1e-2)\n", - "\n", - "assert m.fs.heater.outlet.flow_mol[0].value == pytest.approx(0.27778, abs=1e-2)\n", - "assert m.fs.heater.outlet.mole_frac_comp[0, \"benzene\"].value == pytest.approx(\n", - " 0.4, abs=1e-3\n", - ")\n", - "assert m.fs.heater.outlet.mole_frac_comp[0, \"toluene\"].value == pytest.approx(\n", - " 0.6, abs=1e-3\n", - ")\n", - "assert m.fs.heater.outlet.temperature[0].value == pytest.approx(363, abs=1e-2)\n", - "assert m.fs.heater.outlet.pressure[0].value == pytest.approx(101325, abs=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plotting Q vs. Outlet Temperature" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Heat Duty vs Outlet Temperature\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "\n", - "# Unfix the heat duty from case 2\n", - "m.fs.heater.heat_duty.unfix()\n", - "\n", - "# Create a list of outlet temperatures for which corresponding heat duty values need to be obtained\n", - "outlet_temp_fixed = [\n", - " 91.256405 + 273.15,\n", - " 90.828456 + 273.15,\n", - " 86.535145 + 273.15,\n", - " 89.383218 + 273.15,\n", - " 93.973657 + 273.15,\n", - " 85.377274 + 273.15,\n", - " 92.399101 + 273.15,\n", - " 94.151562 + 273.15,\n", - " 87.564579 + 273.15,\n", - " 88.767855 + 273.15,\n", - "]\n", - "\n", - "# Fix the outlet temperature values and solve the model to obtain the heat duties\n", - "heat_duty = []\n", - "for temp in outlet_temp_fixed:\n", - " m.fs.heater.outlet.temperature.fix(temp)\n", - " solve_status = opt.solve(m)\n", - " if solve_status.solver.termination_condition == TerminationCondition.optimal:\n", - " heat_duty.append(m.fs.heater.heat_duty[0].value)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Plotting the results\n", - "\n", - "plt.figure(\"Q vs. Temperature\")\n", - "plt.plot(outlet_temp_fixed, heat_duty, \"bo\")\n", - "plt.xlim(358.15, 368.15)\n", - "plt.ylim(250, 700)\n", - "plt.xlabel(\"Outlet Temperature (K)\")\n", - "plt.ylabel(\"Heat Duty (W)\")\n", - "plt.grid()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 3 + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Heater Unit Model with Ideal Property Package\n", + "Author: Anuja Deshpande \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "\n", + "![](heater_2.svg)\n", + "\n", + "In this tutorial, we will heat a liquid mixture of benzene-toluene using a simple heater unit model, and an ideal property package with the phases specified to liquid apriori. The inlet specifications are as follows:\n", + "\n", + "* Flow Rate = 1 kmol/hr\n", + "* Mole fraction (Benzene) = 0.4\n", + "* Mole fraction (Toluene) = 0.6\n", + "* Pressure = 101325 Pa\n", + "* Temperature = 353 K\n", + "\n", + "In addition to the inlet specifications, there is one additional unit level specification that needs to be set:\n", + "* Option 1: Specify the outlet temperature\n", + "* Option 2: Specify the heat duty\n", + "\n", + "Therefore, in this tutorial, we will simulate the following cases:\n", + "\n", + "* Case 1: Compute the heat duty (J/s) required to heat the mixture to 363 K.\n", + "* Case 2: Compute the outlet temperature of the mixture when fixing the heat duty to 2 J/s. \n", + "\n", + "IDAES documentation reference for heater model: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/heater.html" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting up the problem in IDAES" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import objects from pyomo package\n", + "from pyomo.environ import ConcreteModel, SolverFactory, value\n", + "from pyomo.opt import TerminationCondition, SolverStatus\n", + "\n", + "# Import the main FlowsheetBlock from IDAES. The flowsheet block will contain the unit model\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog\n", + "\n", + "# Create the ConcreteModel and the FlowsheetBlock, and attach the flowsheet block to it.\n", + "m = ConcreteModel()\n", + "\n", + "m.fs = FlowsheetBlock(\n", + " dynamic=False\n", + ") # dynamic or ss flowsheet needs to be specified here\n", + "\n", + "\n", + "# Import the BTX_ideal property package to create a properties block for the flowsheet\n", + "from idaes.models.properties.activity_coeff_models import BTX_activity_coeff_VLE\n", + "\n", + "# Add properties parameter block to the flowsheet with specifications\n", + "m.fs.properties = BTX_activity_coeff_VLE.BTXParameterBlock(\n", + " valid_phase=\"Liq\", activity_coeff_model=\"Ideal\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import heater unit model from the model library\n", + "from idaes.models.unit_models.heater import Heater\n", + "\n", + "# Create an instance of the heater unit, attaching it to the flowsheet\n", + "# Specify that the property package to be used with the heater is the one we created earlier.\n", + "m.fs.heater = Heater(property_package=m.fs.properties)\n", + "\n", + "# Import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", + "# DOF = Number of Model Variables - Number of Model Constraints\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "\n", + "\n", + "# Call the degrees_of_freedom function, get initial DOF\n", + "DOF_initial = degrees_of_freedom(m)\n", + "print(\"The initial DOF is {0}\".format(DOF_initial))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert DOF_initial == 6" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the BT stream inlet conditions\n", + "m.fs.heater.inlet.flow_mol.fix(\n", + " 1 * 1000 / 3600\n", + ") # converting to mol/s as unit basis is mol/s\n", + "m.fs.heater.inlet.mole_frac_comp[0, \"benzene\"].fix(0.4)\n", + "m.fs.heater.inlet.mole_frac_comp[0, \"toluene\"].fix(0.6)\n", + "m.fs.heater.inlet.pressure.fix(101325) # Pa\n", + "m.fs.heater.inlet.temperature.fix(353) # K" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Case 1: Fix Outlet Temperature" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.heater.outlet.temperature.fix(363)\n", + "# Call the degrees_of_freedom function, get final DOF\n", + "DOF_final = degrees_of_freedom(m)\n", + "print(\"The final DOF is {0}\".format(DOF_final))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert DOF_final == 0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Flowsheet Initialization\n", + "\n", + "IDAES includes pre-written initialization routines for all unit models.\n", + "The output from initialization can be set to 7 different levels depending on the details required by the user.\n", + "In general, when a particular output level is set, any information at that level and above gets picked up by logger. The default level taken by the logger is INFO. \n", + "More information on these levels can be found in the IDAES documentation: \n", + "https://idaes-pse.readthedocs.io/en/stable/reference_guides/logging.html" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the flowsheet, and set the output at WARNING\n", + "m.fs.heater.initialize(outlvl=idaeslog.WARNING)\n", + "# From the output it can be inferred that since there are no errors or warnings encountered during initialization, nothing is displayed" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the flowsheet, and set the output at INFO_HIGH\n", + "m.fs.heater.initialize(outlvl=idaeslog.INFO_HIGH)\n", + "# At INFO_HIGH level, details of all the initialization steps are displayed" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Obtaining Simulation Results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solve the simulation using ipopt\n", + "# Note: If the degrees of freedom = 0, we have a square problem\n", + "opt = SolverFactory(\"ipopt\")\n", + "solve_status = opt.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check if termination condition is optimal\n", + "assert solve_status.solver.termination_condition == TerminationCondition.optimal\n", + "assert solve_status.solver.status == SolverStatus.ok" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### View Results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Display Heat Duty only\n", + "m.fs.heater.heat_duty.display()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Display a readable report\n", + "m.fs.heater.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "import pytest\n", + "\n", + "# Check results\n", + "assert m.fs.heater.heat_duty[0].value == pytest.approx(459.10, abs=1e-2)\n", + "\n", + "assert m.fs.heater.outlet.flow_mol[0].value == pytest.approx(0.27778, abs=1e-2)\n", + "assert m.fs.heater.outlet.mole_frac_comp[0, \"benzene\"].value == pytest.approx(\n", + " 0.4, abs=1e-3\n", + ")\n", + "assert m.fs.heater.outlet.mole_frac_comp[0, \"toluene\"].value == pytest.approx(\n", + " 0.6, abs=1e-3\n", + ")\n", + "assert m.fs.heater.outlet.temperature[0].value == pytest.approx(363, abs=1e-2)\n", + "assert m.fs.heater.outlet.pressure[0].value == pytest.approx(101325, abs=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Case 2: Fix Heat Duty" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix heat duty and solve the model\n", + "m.fs.heater.outlet.temperature.unfix()\n", + "m.fs.heater.heat_duty.fix(459.10147722222354)\n", + "solve_status = opt.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check if termination condition is optimal\n", + "assert solve_status.solver.termination_condition == TerminationCondition.optimal\n", + "assert solve_status.solver.status == SolverStatus.ok" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Display outlet temperature only\n", + "m.fs.heater.outlet.temperature.display()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Display a readable report\n", + "m.fs.heater.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check results\n", + "assert m.fs.heater.heat_duty[0].value == pytest.approx(459.10, abs=1e-2)\n", + "\n", + "assert m.fs.heater.outlet.flow_mol[0].value == pytest.approx(0.27778, abs=1e-2)\n", + "assert m.fs.heater.outlet.mole_frac_comp[0, \"benzene\"].value == pytest.approx(\n", + " 0.4, abs=1e-3\n", + ")\n", + "assert m.fs.heater.outlet.mole_frac_comp[0, \"toluene\"].value == pytest.approx(\n", + " 0.6, abs=1e-3\n", + ")\n", + "assert m.fs.heater.outlet.temperature[0].value == pytest.approx(363, abs=1e-2)\n", + "assert m.fs.heater.outlet.pressure[0].value == pytest.approx(101325, abs=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting Q vs. Outlet Temperature" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Heat Duty vs Outlet Temperature\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "# Unfix the heat duty from case 2\n", + "m.fs.heater.heat_duty.unfix()\n", + "\n", + "# Create a list of outlet temperatures for which corresponding heat duty values need to be obtained\n", + "outlet_temp_fixed = [\n", + " 91.256405 + 273.15,\n", + " 90.828456 + 273.15,\n", + " 86.535145 + 273.15,\n", + " 89.383218 + 273.15,\n", + " 93.973657 + 273.15,\n", + " 85.377274 + 273.15,\n", + " 92.399101 + 273.15,\n", + " 94.151562 + 273.15,\n", + " 87.564579 + 273.15,\n", + " 88.767855 + 273.15,\n", + "]\n", + "\n", + "# Fix the outlet temperature values and solve the model to obtain the heat duties\n", + "heat_duty = []\n", + "for temp in outlet_temp_fixed:\n", + " m.fs.heater.outlet.temperature.fix(temp)\n", + " solve_status = opt.solve(m)\n", + " if solve_status.solver.termination_condition == TerminationCondition.optimal:\n", + " heat_duty.append(m.fs.heater.heat_duty[0].value)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Plotting the results\n", + "\n", + "plt.figure(\"Q vs. Temperature\")\n", + "plt.plot(outlet_temp_fixed, heat_duty, \"bo\")\n", + "plt.xlim(358.15, 368.15)\n", + "plt.ylim(250, 700)\n", + "plt.xlabel(\"Outlet Temperature (K)\")\n", + "plt.ylabel(\"Heat Duty (W)\")\n", + "plt.grid()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } diff --git a/idaes_examples/notebooks/docs/unit_models/operations/heater_usr.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/heater_usr.ipynb index ea1b4363..14c72d6a 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/heater_usr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/heater_usr.ipynb @@ -1,369 +1,370 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Heater Unit Model with Ideal Property Package\n", - "Author: Anuja Deshpande \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "\n", - "![](heater_2.svg)\n", - "\n", - "In this tutorial, we will heat a liquid mixture of benzene-toluene using a simple heater unit model, and an ideal property package with the phases specified to liquid apriori. The inlet specifications are as follows:\n", - "\n", - "* Flow Rate = 1 kmol/hr\n", - "* Mole fraction (Benzene) = 0.4\n", - "* Mole fraction (Toluene) = 0.6\n", - "* Pressure = 101325 Pa\n", - "* Temperature = 353 K\n", - "\n", - "In addition to the inlet specifications, there is one additional unit level specification that needs to be set:\n", - "* Option 1: Specify the outlet temperature\n", - "* Option 2: Specify the heat duty\n", - "\n", - "Therefore, in this tutorial, we will simulate the following cases:\n", - "\n", - "* Case 1: Compute the heat duty (J/s) required to heat the mixture to 363 K.\n", - "* Case 2: Compute the outlet temperature of the mixture when fixing the heat duty to 2 J/s. \n", - "\n", - "IDAES documentation reference for heater model: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/heater.html" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setting up the problem in IDAES" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import objects from pyomo package\n", - "from pyomo.environ import ConcreteModel, SolverFactory, value\n", - "from pyomo.opt import TerminationCondition, SolverStatus\n", - "\n", - "# Import the main FlowsheetBlock from IDAES. The flowsheet block will contain the unit model\n", - "from idaes.core import FlowsheetBlock\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog\n", - "\n", - "# Create the ConcreteModel and the FlowsheetBlock, and attach the flowsheet block to it.\n", - "m = ConcreteModel()\n", - "\n", - "m.fs = FlowsheetBlock(\n", - " dynamic=False\n", - ") # dynamic or ss flowsheet needs to be specified here\n", - "\n", - "\n", - "# Import the BTX_ideal property package to create a properties block for the flowsheet\n", - "from idaes.models.properties.activity_coeff_models import BTX_activity_coeff_VLE\n", - "\n", - "# Add properties parameter block to the flowsheet with specifications\n", - "m.fs.properties = BTX_activity_coeff_VLE.BTXParameterBlock(\n", - " valid_phase=\"Liq\", activity_coeff_model=\"Ideal\"\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import heater unit model from the model library\n", - "from idaes.models.unit_models.heater import Heater\n", - "\n", - "# Create an instance of the heater unit, attaching it to the flowsheet\n", - "# Specify that the property package to be used with the heater is the one we created earlier.\n", - "m.fs.heater = Heater(property_package=m.fs.properties)\n", - "\n", - "# Import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", - "# DOF = Number of Model Variables - Number of Model Constraints\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "\n", - "\n", - "# Call the degrees_of_freedom function, get initial DOF\n", - "DOF_initial = degrees_of_freedom(m)\n", - "print(\"The initial DOF is {0}\".format(DOF_initial))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the BT stream inlet conditions\n", - "m.fs.heater.inlet.flow_mol.fix(\n", - " 1 * 1000 / 3600\n", - ") # converting to mol/s as unit basis is mol/s\n", - "m.fs.heater.inlet.mole_frac_comp[0, \"benzene\"].fix(0.4)\n", - "m.fs.heater.inlet.mole_frac_comp[0, \"toluene\"].fix(0.6)\n", - "m.fs.heater.inlet.pressure.fix(101325) # Pa\n", - "m.fs.heater.inlet.temperature.fix(353) # K" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Case 1: Fix Outlet Temperature" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.heater.outlet.temperature.fix(363)\n", - "# Call the degrees_of_freedom function, get final DOF\n", - "DOF_final = degrees_of_freedom(m)\n", - "print(\"The final DOF is {0}\".format(DOF_final))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Flowsheet Initialization\n", - "\n", - "IDAES includes pre-written initialization routines for all unit models.\n", - "The output from initialization can be set to 7 different levels depending on the details required by the user.\n", - "In general, when a particular output level is set, any information at that level and above gets picked up by logger. The default level taken by the logger is INFO. \n", - "More information on these levels can be found in the IDAES documentation: \n", - "https://idaes-pse.readthedocs.io/en/stable/reference_guides/logging.html" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize the flowsheet, and set the output at WARNING\n", - "m.fs.heater.initialize(outlvl=idaeslog.WARNING)\n", - "# From the output it can be inferred that since there are no errors or warnings encountered during initialization, nothing is displayed" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize the flowsheet, and set the output at INFO_HIGH\n", - "m.fs.heater.initialize(outlvl=idaeslog.INFO_HIGH)\n", - "# At INFO_HIGH level, details of all the initialization steps are displayed" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Obtaining Simulation Results" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Solve the simulation using ipopt\n", - "# Note: If the degrees of freedom = 0, we have a square problem\n", - "opt = SolverFactory(\"ipopt\")\n", - "solve_status = opt.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### View Results" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Display Heat Duty only\n", - "m.fs.heater.heat_duty.display()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Display a readable report\n", - "m.fs.heater.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Case 2: Fix Heat Duty" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix heat duty and solve the model\n", - "m.fs.heater.outlet.temperature.unfix()\n", - "m.fs.heater.heat_duty.fix(459.10147722222354)\n", - "solve_status = opt.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Display outlet temperature only\n", - "m.fs.heater.outlet.temperature.display()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Display a readable report\n", - "m.fs.heater.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Plotting Q vs. Outlet Temperature" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Heat Duty vs Outlet Temperature\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "\n", - "# Unfix the heat duty from case 2\n", - "m.fs.heater.heat_duty.unfix()\n", - "\n", - "# Create a list of outlet temperatures for which corresponding heat duty values need to be obtained\n", - "outlet_temp_fixed = [\n", - " 91.256405 + 273.15,\n", - " 90.828456 + 273.15,\n", - " 86.535145 + 273.15,\n", - " 89.383218 + 273.15,\n", - " 93.973657 + 273.15,\n", - " 85.377274 + 273.15,\n", - " 92.399101 + 273.15,\n", - " 94.151562 + 273.15,\n", - " 87.564579 + 273.15,\n", - " 88.767855 + 273.15,\n", - "]\n", - "\n", - "# Fix the outlet temperature values and solve the model to obtain the heat duties\n", - "heat_duty = []\n", - "for temp in outlet_temp_fixed:\n", - " m.fs.heater.outlet.temperature.fix(temp)\n", - " solve_status = opt.solve(m)\n", - " if solve_status.solver.termination_condition == TerminationCondition.optimal:\n", - " heat_duty.append(m.fs.heater.heat_duty[0].value)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Plotting the results\n", - "\n", - "plt.figure(\"Q vs. Temperature\")\n", - "plt.plot(outlet_temp_fixed, heat_duty, \"bo\")\n", - "plt.xlim(358.15, 368.15)\n", - "plt.ylim(250, 700)\n", - "plt.xlabel(\"Outlet Temperature (K)\")\n", - "plt.ylabel(\"Heat Duty (W)\")\n", - "plt.grid()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 3 + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Heater Unit Model with Ideal Property Package\n", + "Author: Anuja Deshpande \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "\n", + "![](heater_2.svg)\n", + "\n", + "In this tutorial, we will heat a liquid mixture of benzene-toluene using a simple heater unit model, and an ideal property package with the phases specified to liquid apriori. The inlet specifications are as follows:\n", + "\n", + "* Flow Rate = 1 kmol/hr\n", + "* Mole fraction (Benzene) = 0.4\n", + "* Mole fraction (Toluene) = 0.6\n", + "* Pressure = 101325 Pa\n", + "* Temperature = 353 K\n", + "\n", + "In addition to the inlet specifications, there is one additional unit level specification that needs to be set:\n", + "* Option 1: Specify the outlet temperature\n", + "* Option 2: Specify the heat duty\n", + "\n", + "Therefore, in this tutorial, we will simulate the following cases:\n", + "\n", + "* Case 1: Compute the heat duty (J/s) required to heat the mixture to 363 K.\n", + "* Case 2: Compute the outlet temperature of the mixture when fixing the heat duty to 2 J/s. \n", + "\n", + "IDAES documentation reference for heater model: https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/generic/unit_models/heater.html" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting up the problem in IDAES" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import objects from pyomo package\n", + "from pyomo.environ import ConcreteModel, SolverFactory, value\n", + "from pyomo.opt import TerminationCondition, SolverStatus\n", + "\n", + "# Import the main FlowsheetBlock from IDAES. The flowsheet block will contain the unit model\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog\n", + "\n", + "# Create the ConcreteModel and the FlowsheetBlock, and attach the flowsheet block to it.\n", + "m = ConcreteModel()\n", + "\n", + "m.fs = FlowsheetBlock(\n", + " dynamic=False\n", + ") # dynamic or ss flowsheet needs to be specified here\n", + "\n", + "\n", + "# Import the BTX_ideal property package to create a properties block for the flowsheet\n", + "from idaes.models.properties.activity_coeff_models import BTX_activity_coeff_VLE\n", + "\n", + "# Add properties parameter block to the flowsheet with specifications\n", + "m.fs.properties = BTX_activity_coeff_VLE.BTXParameterBlock(\n", + " valid_phase=\"Liq\", activity_coeff_model=\"Ideal\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import heater unit model from the model library\n", + "from idaes.models.unit_models.heater import Heater\n", + "\n", + "# Create an instance of the heater unit, attaching it to the flowsheet\n", + "# Specify that the property package to be used with the heater is the one we created earlier.\n", + "m.fs.heater = Heater(property_package=m.fs.properties)\n", + "\n", + "# Import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", + "# DOF = Number of Model Variables - Number of Model Constraints\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "\n", + "\n", + "# Call the degrees_of_freedom function, get initial DOF\n", + "DOF_initial = degrees_of_freedom(m)\n", + "print(\"The initial DOF is {0}\".format(DOF_initial))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the BT stream inlet conditions\n", + "m.fs.heater.inlet.flow_mol.fix(\n", + " 1 * 1000 / 3600\n", + ") # converting to mol/s as unit basis is mol/s\n", + "m.fs.heater.inlet.mole_frac_comp[0, \"benzene\"].fix(0.4)\n", + "m.fs.heater.inlet.mole_frac_comp[0, \"toluene\"].fix(0.6)\n", + "m.fs.heater.inlet.pressure.fix(101325) # Pa\n", + "m.fs.heater.inlet.temperature.fix(353) # K" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Case 1: Fix Outlet Temperature" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.heater.outlet.temperature.fix(363)\n", + "# Call the degrees_of_freedom function, get final DOF\n", + "DOF_final = degrees_of_freedom(m)\n", + "print(\"The final DOF is {0}\".format(DOF_final))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Flowsheet Initialization\n", + "\n", + "IDAES includes pre-written initialization routines for all unit models.\n", + "The output from initialization can be set to 7 different levels depending on the details required by the user.\n", + "In general, when a particular output level is set, any information at that level and above gets picked up by logger. The default level taken by the logger is INFO. \n", + "More information on these levels can be found in the IDAES documentation: \n", + "https://idaes-pse.readthedocs.io/en/stable/reference_guides/logging.html" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the flowsheet, and set the output at WARNING\n", + "m.fs.heater.initialize(outlvl=idaeslog.WARNING)\n", + "# From the output it can be inferred that since there are no errors or warnings encountered during initialization, nothing is displayed" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the flowsheet, and set the output at INFO_HIGH\n", + "m.fs.heater.initialize(outlvl=idaeslog.INFO_HIGH)\n", + "# At INFO_HIGH level, details of all the initialization steps are displayed" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Obtaining Simulation Results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solve the simulation using ipopt\n", + "# Note: If the degrees of freedom = 0, we have a square problem\n", + "opt = SolverFactory(\"ipopt\")\n", + "solve_status = opt.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### View Results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Display Heat Duty only\n", + "m.fs.heater.heat_duty.display()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Display a readable report\n", + "m.fs.heater.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Case 2: Fix Heat Duty" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix heat duty and solve the model\n", + "m.fs.heater.outlet.temperature.unfix()\n", + "m.fs.heater.heat_duty.fix(459.10147722222354)\n", + "solve_status = opt.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Display outlet temperature only\n", + "m.fs.heater.outlet.temperature.display()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Display a readable report\n", + "m.fs.heater.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting Q vs. Outlet Temperature" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Heat Duty vs Outlet Temperature\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "# Unfix the heat duty from case 2\n", + "m.fs.heater.heat_duty.unfix()\n", + "\n", + "# Create a list of outlet temperatures for which corresponding heat duty values need to be obtained\n", + "outlet_temp_fixed = [\n", + " 91.256405 + 273.15,\n", + " 90.828456 + 273.15,\n", + " 86.535145 + 273.15,\n", + " 89.383218 + 273.15,\n", + " 93.973657 + 273.15,\n", + " 85.377274 + 273.15,\n", + " 92.399101 + 273.15,\n", + " 94.151562 + 273.15,\n", + " 87.564579 + 273.15,\n", + " 88.767855 + 273.15,\n", + "]\n", + "\n", + "# Fix the outlet temperature values and solve the model to obtain the heat duties\n", + "heat_duty = []\n", + "for temp in outlet_temp_fixed:\n", + " m.fs.heater.outlet.temperature.fix(temp)\n", + " solve_status = opt.solve(m)\n", + " if solve_status.solver.termination_condition == TerminationCondition.optimal:\n", + " heat_duty.append(m.fs.heater.heat_duty[0].value)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Plotting the results\n", + "\n", + "plt.figure(\"Q vs. Temperature\")\n", + "plt.plot(outlet_temp_fixed, heat_duty, \"bo\")\n", + "plt.xlim(358.15, 368.15)\n", + "plt.ylim(250, 700)\n", + "plt.xlabel(\"Outlet Temperature (K)\")\n", + "plt.ylabel(\"Heat Duty (W)\")\n", + "plt.grid()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } diff --git a/idaes_examples/notebooks/docs/unit_models/operations/mixer.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/mixer.ipynb index c7a7e2a2..96cade8e 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/mixer.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/mixer.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/operations/mixer_doc.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/mixer_doc.ipynb index 463d11e8..4d9b1705 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/mixer_doc.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/mixer_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -302,7 +303,7 @@ "Number of equality constraint Jacobian evaluations = 4\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", "Total CPU secs in NLP function evaluations = 0.000\n", "\n", "EXIT: Optimal Solution Found.\n", @@ -613,7 +614,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/unit_models/operations/mixer_test.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/mixer_test.ipynb index 9bb28c24..d39b8092 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/mixer_test.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/mixer_test.ipynb @@ -1,561 +1,562 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Mixer Unit Model with Ideal Property Package\n", - "Author: Anuja Deshpande \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "![](mixer.svg)\n", - "\n", - "## Learning Outcomes\n", - "\n", - "- Demonstrate use of the Mixer unit model in IDAES\n", - "- Demonstrate different options available\n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "In this example, we will be mixing liquid benzene and liquid toluene streams to form a mixture. The inlet conditions are as follows:\n", - "\n", - "**Stream 1:**\n", - "\n", - "Benzene Flow Rate = 100 mol/s\n", - "\n", - "Pressure = 101325 Pa \n", - "\n", - "Temperature = 353 K\n", - "\n", - "**Stream 2**\n", - "\n", - "Toluene Flow Rate = 100 mol/s\n", - "\n", - "Pressure = 202650 Pa \n", - "\n", - "Temperature = 356 K\n", - "\n", - "We will look at two cases in this tutorial:\n", - "\n", - "* Case 1: Specify the number of inlets to the mixer, and set the `momentum_mixing` type set to \"minimize\"\n", - "\n", - "* Case 2: Specify the inlet names, and set `momentum_mixing` type set to \"equality\" (in this case, pressure will be specified for only one inlet stream)\n", - "\n", - "**Note: \n", - "When the momentum mixing type is set to 'minimize', the mixed stream pressure takes the minimum value among all inlet stream pressures.\n", - "When the momentum mixing type is set to 'equality', the mixed stream, along with all inlet streams have the same value of pressure.**\n", - "\n", - "\n", - "For more details, please refer to the IDAES documentation: https://idaes-pse.readthedocs.io/en/stable" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setting up the problem in IDAES" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the following cell, we will be importing the necessary components from Pyomo and IDAES." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import objects from pyomo package\n", - "from pyomo.environ import ConcreteModel, SolverFactory, value\n", - "\n", - "# Import the main FlowsheetBlock from IDAES. The flowsheet block will contain the unit model\n", - "from idaes.core import FlowsheetBlock\n", - "\n", - "# Import the mixer unit model\n", - "from idaes.models.unit_models import Mixer, MomentumMixingType\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog\n", - "\n", - "# Import the BTX_ideal property package to create a properties block for the flowsheet\n", - "from idaes.models.properties.activity_coeff_models import BTX_activity_coeff_VLE\n", - "\n", - "# Import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", - "# DOF = Number of Model Variables - Number of Model Constraints\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "\n", - "# Create the ConcreteModel and the FlowsheetBlock objects, and attach the flowsheet block to it.\n", - "m = ConcreteModel()\n", - "\n", - "m.fs = FlowsheetBlock(\n", - " dynamic=False\n", - ") # dynamic or ss flowsheet needs to be specified here\n", - "\n", - "# Add properties parameter block to the flowsheet with specifications\n", - "m.fs.properties = BTX_activity_coeff_VLE.BTXParameterBlock(\n", - " valid_phase=\"Liq\", activity_coeff_model=\"Ideal\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Case 1:\n", - "\n", - "Specify the number of inlets to the mixer, and set the `momentum_mixing` type set to \"minimize\". " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Create an instance of the mixer unit, attaching it to the flowsheet\n", - "# Specify that the property package to be used with the mixer is the\n", - "# one we created earlier, the number of mixer inlets is 2, and momentum\n", - "# mixing type is minimize\n", - "\n", - "m.fs.mixer_1 = Mixer(\n", - " property_package=m.fs.properties,\n", - " num_inlets=2,\n", - " momentum_mixing_type=MomentumMixingType.minimize,\n", - ")\n", - "\n", - "# Call the degrees_of_freedom function, get initial DOF\n", - "DOF_initial = degrees_of_freedom(m)\n", - "print(\"The initial degrees of freedom is: {0}\".format(DOF_initial))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert DOF_initial == 10" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For case 1, we chose to specify only the number of inlets and names were not specified. When this option is selected, the inlets are named as \"inlet_1\", \"inlet_2\" and so on depending on the number of inlets specified. In the following cell, we will use this naming convention to specify the inlet conditions. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the inlet conditions\n", - "\n", - "# Benzene stream\n", - "m.fs.mixer_1.inlet_1.flow_mol.fix(100) # converting to mol/s as unit basis is mol/s\n", - "m.fs.mixer_1.inlet_1.mole_frac_comp[0, \"benzene\"].fix(1)\n", - "m.fs.mixer_1.inlet_1.mole_frac_comp[0, \"toluene\"].fix(0)\n", - "m.fs.mixer_1.inlet_1.pressure.fix(101325) # Pa\n", - "m.fs.mixer_1.inlet_1.temperature.fix(353) # K\n", - "\n", - "# Toluene stream\n", - "m.fs.mixer_1.inlet_2.flow_mol.fix(100) # converting to mol/s as unit basis is mol/s\n", - "m.fs.mixer_1.inlet_2.mole_frac_comp[0, \"benzene\"].fix(0)\n", - "m.fs.mixer_1.inlet_2.mole_frac_comp[0, \"toluene\"].fix(1)\n", - "m.fs.mixer_1.inlet_2.pressure.fix(202650) # Pa\n", - "m.fs.mixer_1.inlet_2.temperature.fix(356) # K\n", - "\n", - "# Call the degrees_of_freedom function, get final DOF\n", - "DOF_final = degrees_of_freedom(m)\n", - "print(\"The final degrees of freedom is: {0}\".format(DOF_final))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert DOF_final == 0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Flowsheet Initialization" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize the flowsheet, and set the output at WARNING\n", - "m.fs.mixer_1.initialize(outlvl=idaeslog.WARNING)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Obtaining Simulation Results" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Solve the simulation using ipopt\n", - "# Note: If the degrees of freedom = 0, we have a square problem\n", - "opt = SolverFactory(\"ipopt\")\n", - "result = opt.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "from pyomo.opt import TerminationCondition, SolverStatus\n", - "\n", - "# Check if termination condition is optimal\n", - "assert result.solver.termination_condition == TerminationCondition.optimal\n", - "assert result.solver.status == SolverStatus.ok" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### View Results" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Display output report\n", - "m.fs.mixer_1.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Energy Balance Validation\n", - "\n", - "molflow_1 = m.fs.mixer_1.inlet_1.flow_mol[0].value\n", - "molflow_2 = m.fs.mixer_1.inlet_2.flow_mol[0].value\n", - "benzene_1 = m.fs.mixer_1.inlet_1.mole_frac_comp[0, \"benzene\"].value\n", - "toluene_2 = m.fs.mixer_1.inlet_2.mole_frac_comp[0, \"toluene\"].value\n", - "\n", - "# total_enthalpy_in = molflow_1*benzene_1*molar_enthalpy_1 + molflow_2*toluene_2*molar_enthalpy_2\n", - "total_enthalpy_in1 = (\n", - " molflow_1 * m.fs.mixer_1.inlet_1_state[0].enth_mol_phase[\"Liq\"].value\n", - ")\n", - "total_enthalpy_in2 = (\n", - " molflow_2 * m.fs.mixer_1.inlet_2_state[0].enth_mol_phase[\"Liq\"].value\n", - ")\n", - "\n", - "molar_enthalpy_out = m.fs.mixer_1.mixed_state[0].enth_mol_phase[\"Liq\"].value\n", - "mole_flow_out = m.fs.mixer_1.outlet.flow_mol[0].value\n", - "total_enthalpy_out = mole_flow_out * molar_enthalpy_out" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "import pytest\n", - "\n", - "# Check results\n", - "assert mole_flow_out == pytest.approx(200, abs=1e-3)\n", - "assert m.fs.mixer_1.outlet.mole_frac_comp[0, \"benzene\"].value == pytest.approx(\n", - " 0.5, abs=1e-3\n", - ")\n", - "assert m.fs.mixer_1.outlet.mole_frac_comp[0, \"toluene\"].value == pytest.approx(\n", - " 0.5, abs=1e-3\n", - ")\n", - "assert m.fs.mixer_1.outlet.temperature[0].value == pytest.approx(354.61, abs=1e-2)\n", - "assert m.fs.mixer_1.outlet.pressure[0].value == pytest.approx(101325, abs=1)\n", - "assert total_enthalpy_out - total_enthalpy_in1 - total_enthalpy_in2 == pytest.approx(\n", - " 0, abs=1e-2\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Case 2\n", - "\n", - "For case 2, we will specify the inlet names for the two inlets, and set `momentum_mixing` type set to \"equality\" (in this case, pressure will be specified for only one inlet stream). We will name the 2 inlets as \"benzene_inlet\" and \"toluene_inlet\". " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Create an instance of another mixer unit, attaching it to the same flowsheet.\n", - "# Specify that the property package to be used with the mixer is the one we created earlier,\n", - "# inlet list is specified but names are specified, and momentum mixing type is equality\n", - "\n", - "m.fs.mixer_2 = Mixer(\n", - " property_package=m.fs.properties,\n", - " inlet_list=[\"benzene_inlet\", \"toluene_inlet\"],\n", - " momentum_mixing_type=MomentumMixingType.equality,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Check the required degrees of freedom\n", - "DOF_init = degrees_of_freedom(m.fs.mixer_2)\n", - "print(\"The initial degrees of freedom is: {0}\".format(DOF_init))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We see that the degrees of freedom has dropped by 1 to 9 when compared with case 1. This is because we selected the `momentum_mixing_type` as `MomentumMixingType.equality` which basically adds a constraint that equates the pressure between all inlets and the outlet. Therefore, when we specify the inlet confitions in the next cell, we will define the pressure for only the `benzene_inlet` stream. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert DOF_init == 9" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the stream inlet conditions\n", - "\n", - "# Benzene stream\n", - "m.fs.mixer_2.benzene_inlet.flow_mol.fix(\n", - " 100\n", - ") # converting to mol/s as unit basis is mol/s\n", - "m.fs.mixer_2.benzene_inlet.mole_frac_comp[0, \"benzene\"].fix(1)\n", - "m.fs.mixer_2.benzene_inlet.mole_frac_comp[0, \"toluene\"].fix(0)\n", - "m.fs.mixer_2.benzene_inlet.pressure.fix(\n", - " 101325\n", - ") # Pa , Another option is m1.fs.mixer2.inlet2.pressure.fix(202650)\n", - "m.fs.mixer_2.benzene_inlet.temperature.fix(353) # K\n", - "\n", - "# Toluene stream\n", - "m.fs.mixer_2.toluene_inlet.flow_mol.fix(\n", - " 100\n", - ") # converting to mol/s as unit basis is mol/s\n", - "m.fs.mixer_2.toluene_inlet.mole_frac_comp[0, \"benzene\"].fix(0)\n", - "m.fs.mixer_2.toluene_inlet.mole_frac_comp[0, \"toluene\"].fix(1)\n", - "m.fs.mixer_2.toluene_inlet.temperature.fix(356) # K\n", - "\n", - "DOF_final = degrees_of_freedom(m.fs.mixer_2)\n", - "print(\"The final degrees of freedom is: {0}\".format(DOF_final))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Flowsheet Initialization" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize the flowsheet, and set the output at WARNING\n", - "\n", - "m.fs.mixer_2.initialize(outlvl=idaeslog.WARNING)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Obtaining Simulation Results" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Solve the simulation using ipopt\n", - "# Note: If the degrees of freedom = 0, we have a square problem\n", - "opt = SolverFactory(\"ipopt\")\n", - "result = opt.solve(m.fs.mixer_2, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "from pyomo.opt import TerminationCondition, SolverStatus\n", - "\n", - "# Check if termination condition is optimal\n", - "assert result.solver.termination_condition == TerminationCondition.optimal\n", - "assert result.solver.status == SolverStatus.ok" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### View Results" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Display a readable report\n", - "m.fs.mixer_2.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check results\n", - "assert m.fs.mixer_2.outlet.flow_mol[0].value == pytest.approx(200, abs=1e-2)\n", - "assert m.fs.mixer_2.outlet.mole_frac_comp[0, \"benzene\"].value == pytest.approx(\n", - " 0.5, abs=1e-3\n", - ")\n", - "assert m.fs.mixer_2.outlet.mole_frac_comp[0, \"toluene\"].value == pytest.approx(\n", - " 0.5, abs=1e-3\n", - ")\n", - "assert m.fs.mixer_2.outlet.temperature[0].value == pytest.approx(354.61, abs=1e-2)\n", - "assert m.fs.mixer_2.outlet.pressure[0].value == pytest.approx(101325, abs=1)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Mixer Unit Model with Ideal Property Package\n", + "Author: Anuja Deshpande \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "![](mixer.svg)\n", + "\n", + "## Learning Outcomes\n", + "\n", + "- Demonstrate use of the Mixer unit model in IDAES\n", + "- Demonstrate different options available\n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "In this example, we will be mixing liquid benzene and liquid toluene streams to form a mixture. The inlet conditions are as follows:\n", + "\n", + "**Stream 1:**\n", + "\n", + "Benzene Flow Rate = 100 mol/s\n", + "\n", + "Pressure = 101325 Pa \n", + "\n", + "Temperature = 353 K\n", + "\n", + "**Stream 2**\n", + "\n", + "Toluene Flow Rate = 100 mol/s\n", + "\n", + "Pressure = 202650 Pa \n", + "\n", + "Temperature = 356 K\n", + "\n", + "We will look at two cases in this tutorial:\n", + "\n", + "* Case 1: Specify the number of inlets to the mixer, and set the `momentum_mixing` type set to \"minimize\"\n", + "\n", + "* Case 2: Specify the inlet names, and set `momentum_mixing` type set to \"equality\" (in this case, pressure will be specified for only one inlet stream)\n", + "\n", + "**Note: \n", + "When the momentum mixing type is set to 'minimize', the mixed stream pressure takes the minimum value among all inlet stream pressures.\n", + "When the momentum mixing type is set to 'equality', the mixed stream, along with all inlet streams have the same value of pressure.**\n", + "\n", + "\n", + "For more details, please refer to the IDAES documentation: https://idaes-pse.readthedocs.io/en/stable" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting up the problem in IDAES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the following cell, we will be importing the necessary components from Pyomo and IDAES." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import objects from pyomo package\n", + "from pyomo.environ import ConcreteModel, SolverFactory, value\n", + "\n", + "# Import the main FlowsheetBlock from IDAES. The flowsheet block will contain the unit model\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "# Import the mixer unit model\n", + "from idaes.models.unit_models import Mixer, MomentumMixingType\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog\n", + "\n", + "# Import the BTX_ideal property package to create a properties block for the flowsheet\n", + "from idaes.models.properties.activity_coeff_models import BTX_activity_coeff_VLE\n", + "\n", + "# Import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", + "# DOF = Number of Model Variables - Number of Model Constraints\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "\n", + "# Create the ConcreteModel and the FlowsheetBlock objects, and attach the flowsheet block to it.\n", + "m = ConcreteModel()\n", + "\n", + "m.fs = FlowsheetBlock(\n", + " dynamic=False\n", + ") # dynamic or ss flowsheet needs to be specified here\n", + "\n", + "# Add properties parameter block to the flowsheet with specifications\n", + "m.fs.properties = BTX_activity_coeff_VLE.BTXParameterBlock(\n", + " valid_phase=\"Liq\", activity_coeff_model=\"Ideal\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Case 1:\n", + "\n", + "Specify the number of inlets to the mixer, and set the `momentum_mixing` type set to \"minimize\". " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create an instance of the mixer unit, attaching it to the flowsheet\n", + "# Specify that the property package to be used with the mixer is the\n", + "# one we created earlier, the number of mixer inlets is 2, and momentum\n", + "# mixing type is minimize\n", + "\n", + "m.fs.mixer_1 = Mixer(\n", + " property_package=m.fs.properties,\n", + " num_inlets=2,\n", + " momentum_mixing_type=MomentumMixingType.minimize,\n", + ")\n", + "\n", + "# Call the degrees_of_freedom function, get initial DOF\n", + "DOF_initial = degrees_of_freedom(m)\n", + "print(\"The initial degrees of freedom is: {0}\".format(DOF_initial))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert DOF_initial == 10" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For case 1, we chose to specify only the number of inlets and names were not specified. When this option is selected, the inlets are named as \"inlet_1\", \"inlet_2\" and so on depending on the number of inlets specified. In the following cell, we will use this naming convention to specify the inlet conditions. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the inlet conditions\n", + "\n", + "# Benzene stream\n", + "m.fs.mixer_1.inlet_1.flow_mol.fix(100) # converting to mol/s as unit basis is mol/s\n", + "m.fs.mixer_1.inlet_1.mole_frac_comp[0, \"benzene\"].fix(1)\n", + "m.fs.mixer_1.inlet_1.mole_frac_comp[0, \"toluene\"].fix(0)\n", + "m.fs.mixer_1.inlet_1.pressure.fix(101325) # Pa\n", + "m.fs.mixer_1.inlet_1.temperature.fix(353) # K\n", + "\n", + "# Toluene stream\n", + "m.fs.mixer_1.inlet_2.flow_mol.fix(100) # converting to mol/s as unit basis is mol/s\n", + "m.fs.mixer_1.inlet_2.mole_frac_comp[0, \"benzene\"].fix(0)\n", + "m.fs.mixer_1.inlet_2.mole_frac_comp[0, \"toluene\"].fix(1)\n", + "m.fs.mixer_1.inlet_2.pressure.fix(202650) # Pa\n", + "m.fs.mixer_1.inlet_2.temperature.fix(356) # K\n", + "\n", + "# Call the degrees_of_freedom function, get final DOF\n", + "DOF_final = degrees_of_freedom(m)\n", + "print(\"The final degrees of freedom is: {0}\".format(DOF_final))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert DOF_final == 0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Flowsheet Initialization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the flowsheet, and set the output at WARNING\n", + "m.fs.mixer_1.initialize(outlvl=idaeslog.WARNING)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Obtaining Simulation Results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solve the simulation using ipopt\n", + "# Note: If the degrees of freedom = 0, we have a square problem\n", + "opt = SolverFactory(\"ipopt\")\n", + "result = opt.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "from pyomo.opt import TerminationCondition, SolverStatus\n", + "\n", + "# Check if termination condition is optimal\n", + "assert result.solver.termination_condition == TerminationCondition.optimal\n", + "assert result.solver.status == SolverStatus.ok" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### View Results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Display output report\n", + "m.fs.mixer_1.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Energy Balance Validation\n", + "\n", + "molflow_1 = m.fs.mixer_1.inlet_1.flow_mol[0].value\n", + "molflow_2 = m.fs.mixer_1.inlet_2.flow_mol[0].value\n", + "benzene_1 = m.fs.mixer_1.inlet_1.mole_frac_comp[0, \"benzene\"].value\n", + "toluene_2 = m.fs.mixer_1.inlet_2.mole_frac_comp[0, \"toluene\"].value\n", + "\n", + "# total_enthalpy_in = molflow_1*benzene_1*molar_enthalpy_1 + molflow_2*toluene_2*molar_enthalpy_2\n", + "total_enthalpy_in1 = (\n", + " molflow_1 * m.fs.mixer_1.inlet_1_state[0].enth_mol_phase[\"Liq\"].value\n", + ")\n", + "total_enthalpy_in2 = (\n", + " molflow_2 * m.fs.mixer_1.inlet_2_state[0].enth_mol_phase[\"Liq\"].value\n", + ")\n", + "\n", + "molar_enthalpy_out = m.fs.mixer_1.mixed_state[0].enth_mol_phase[\"Liq\"].value\n", + "mole_flow_out = m.fs.mixer_1.outlet.flow_mol[0].value\n", + "total_enthalpy_out = mole_flow_out * molar_enthalpy_out" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "import pytest\n", + "\n", + "# Check results\n", + "assert mole_flow_out == pytest.approx(200, abs=1e-3)\n", + "assert m.fs.mixer_1.outlet.mole_frac_comp[0, \"benzene\"].value == pytest.approx(\n", + " 0.5, abs=1e-3\n", + ")\n", + "assert m.fs.mixer_1.outlet.mole_frac_comp[0, \"toluene\"].value == pytest.approx(\n", + " 0.5, abs=1e-3\n", + ")\n", + "assert m.fs.mixer_1.outlet.temperature[0].value == pytest.approx(354.61, abs=1e-2)\n", + "assert m.fs.mixer_1.outlet.pressure[0].value == pytest.approx(101325, abs=1)\n", + "assert total_enthalpy_out - total_enthalpy_in1 - total_enthalpy_in2 == pytest.approx(\n", + " 0, abs=1e-2\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Case 2\n", + "\n", + "For case 2, we will specify the inlet names for the two inlets, and set `momentum_mixing` type set to \"equality\" (in this case, pressure will be specified for only one inlet stream). We will name the 2 inlets as \"benzene_inlet\" and \"toluene_inlet\". " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create an instance of another mixer unit, attaching it to the same flowsheet.\n", + "# Specify that the property package to be used with the mixer is the one we created earlier,\n", + "# inlet list is specified but names are specified, and momentum mixing type is equality\n", + "\n", + "m.fs.mixer_2 = Mixer(\n", + " property_package=m.fs.properties,\n", + " inlet_list=[\"benzene_inlet\", \"toluene_inlet\"],\n", + " momentum_mixing_type=MomentumMixingType.equality,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Check the required degrees of freedom\n", + "DOF_init = degrees_of_freedom(m.fs.mixer_2)\n", + "print(\"The initial degrees of freedom is: {0}\".format(DOF_init))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see that the degrees of freedom has dropped by 1 to 9 when compared with case 1. This is because we selected the `momentum_mixing_type` as `MomentumMixingType.equality` which basically adds a constraint that equates the pressure between all inlets and the outlet. Therefore, when we specify the inlet confitions in the next cell, we will define the pressure for only the `benzene_inlet` stream. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert DOF_init == 9" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the stream inlet conditions\n", + "\n", + "# Benzene stream\n", + "m.fs.mixer_2.benzene_inlet.flow_mol.fix(\n", + " 100\n", + ") # converting to mol/s as unit basis is mol/s\n", + "m.fs.mixer_2.benzene_inlet.mole_frac_comp[0, \"benzene\"].fix(1)\n", + "m.fs.mixer_2.benzene_inlet.mole_frac_comp[0, \"toluene\"].fix(0)\n", + "m.fs.mixer_2.benzene_inlet.pressure.fix(\n", + " 101325\n", + ") # Pa , Another option is m1.fs.mixer2.inlet2.pressure.fix(202650)\n", + "m.fs.mixer_2.benzene_inlet.temperature.fix(353) # K\n", + "\n", + "# Toluene stream\n", + "m.fs.mixer_2.toluene_inlet.flow_mol.fix(\n", + " 100\n", + ") # converting to mol/s as unit basis is mol/s\n", + "m.fs.mixer_2.toluene_inlet.mole_frac_comp[0, \"benzene\"].fix(0)\n", + "m.fs.mixer_2.toluene_inlet.mole_frac_comp[0, \"toluene\"].fix(1)\n", + "m.fs.mixer_2.toluene_inlet.temperature.fix(356) # K\n", + "\n", + "DOF_final = degrees_of_freedom(m.fs.mixer_2)\n", + "print(\"The final degrees of freedom is: {0}\".format(DOF_final))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Flowsheet Initialization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the flowsheet, and set the output at WARNING\n", + "\n", + "m.fs.mixer_2.initialize(outlvl=idaeslog.WARNING)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Obtaining Simulation Results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solve the simulation using ipopt\n", + "# Note: If the degrees of freedom = 0, we have a square problem\n", + "opt = SolverFactory(\"ipopt\")\n", + "result = opt.solve(m.fs.mixer_2, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "from pyomo.opt import TerminationCondition, SolverStatus\n", + "\n", + "# Check if termination condition is optimal\n", + "assert result.solver.termination_condition == TerminationCondition.optimal\n", + "assert result.solver.status == SolverStatus.ok" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### View Results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Display a readable report\n", + "m.fs.mixer_2.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check results\n", + "assert m.fs.mixer_2.outlet.flow_mol[0].value == pytest.approx(200, abs=1e-2)\n", + "assert m.fs.mixer_2.outlet.mole_frac_comp[0, \"benzene\"].value == pytest.approx(\n", + " 0.5, abs=1e-3\n", + ")\n", + "assert m.fs.mixer_2.outlet.mole_frac_comp[0, \"toluene\"].value == pytest.approx(\n", + " 0.5, abs=1e-3\n", + ")\n", + "assert m.fs.mixer_2.outlet.temperature[0].value == pytest.approx(354.61, abs=1e-2)\n", + "assert m.fs.mixer_2.outlet.pressure[0].value == pytest.approx(101325, abs=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/unit_models/operations/mixer_usr.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/mixer_usr.ipynb index 051e8bf0..972e47fa 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/mixer_usr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/mixer_usr.ipynb @@ -1,409 +1,410 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Mixer Unit Model with Ideal Property Package\n", - "Author: Anuja Deshpande \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "![](mixer.svg)\n", - "\n", - "## Learning Outcomes\n", - "\n", - "- Demonstrate use of the Mixer unit model in IDAES\n", - "- Demonstrate different options available\n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "In this example, we will be mixing liquid benzene and liquid toluene streams to form a mixture. The inlet conditions are as follows:\n", - "\n", - "**Stream 1:**\n", - "\n", - "Benzene Flow Rate = 100 mol/s\n", - "\n", - "Pressure = 101325 Pa \n", - "\n", - "Temperature = 353 K\n", - "\n", - "**Stream 2**\n", - "\n", - "Toluene Flow Rate = 100 mol/s\n", - "\n", - "Pressure = 202650 Pa \n", - "\n", - "Temperature = 356 K\n", - "\n", - "We will look at two cases in this tutorial:\n", - "\n", - "* Case 1: Specify the number of inlets to the mixer, and set the `momentum_mixing` type set to \"minimize\"\n", - "\n", - "* Case 2: Specify the inlet names, and set `momentum_mixing` type set to \"equality\" (in this case, pressure will be specified for only one inlet stream)\n", - "\n", - "**Note: \n", - "When the momentum mixing type is set to 'minimize', the mixed stream pressure takes the minimum value among all inlet stream pressures.\n", - "When the momentum mixing type is set to 'equality', the mixed stream, along with all inlet streams have the same value of pressure.**\n", - "\n", - "\n", - "For more details, please refer to the IDAES documentation: https://idaes-pse.readthedocs.io/en/stable" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setting up the problem in IDAES" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the following cell, we will be importing the necessary components from Pyomo and IDAES." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Import objects from pyomo package\n", - "from pyomo.environ import ConcreteModel, SolverFactory, value\n", - "\n", - "# Import the main FlowsheetBlock from IDAES. The flowsheet block will contain the unit model\n", - "from idaes.core import FlowsheetBlock\n", - "\n", - "# Import the mixer unit model\n", - "from idaes.models.unit_models import Mixer, MomentumMixingType\n", - "\n", - "# Import idaes logger to set output levels\n", - "import idaes.logger as idaeslog\n", - "\n", - "# Import the BTX_ideal property package to create a properties block for the flowsheet\n", - "from idaes.models.properties.activity_coeff_models import BTX_activity_coeff_VLE\n", - "\n", - "# Import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", - "# DOF = Number of Model Variables - Number of Model Constraints\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "\n", - "# Create the ConcreteModel and the FlowsheetBlock objects, and attach the flowsheet block to it.\n", - "m = ConcreteModel()\n", - "\n", - "m.fs = FlowsheetBlock(\n", - " dynamic=False\n", - ") # dynamic or ss flowsheet needs to be specified here\n", - "\n", - "# Add properties parameter block to the flowsheet with specifications\n", - "m.fs.properties = BTX_activity_coeff_VLE.BTXParameterBlock(\n", - " valid_phase=\"Liq\", activity_coeff_model=\"Ideal\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Case 1:\n", - "\n", - "Specify the number of inlets to the mixer, and set the `momentum_mixing` type set to \"minimize\". " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Create an instance of the mixer unit, attaching it to the flowsheet\n", - "# Specify that the property package to be used with the mixer is the\n", - "# one we created earlier, the number of mixer inlets is 2, and momentum\n", - "# mixing type is minimize\n", - "\n", - "m.fs.mixer_1 = Mixer(\n", - " property_package=m.fs.properties,\n", - " num_inlets=2,\n", - " momentum_mixing_type=MomentumMixingType.minimize,\n", - ")\n", - "\n", - "# Call the degrees_of_freedom function, get initial DOF\n", - "DOF_initial = degrees_of_freedom(m)\n", - "print(\"The initial degrees of freedom is: {0}\".format(DOF_initial))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For case 1, we chose to specify only the number of inlets and names were not specified. When this option is selected, the inlets are named as \"inlet_1\", \"inlet_2\" and so on depending on the number of inlets specified. In the following cell, we will use this naming convention to specify the inlet conditions. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the inlet conditions\n", - "\n", - "# Benzene stream\n", - "m.fs.mixer_1.inlet_1.flow_mol.fix(100) # converting to mol/s as unit basis is mol/s\n", - "m.fs.mixer_1.inlet_1.mole_frac_comp[0, \"benzene\"].fix(1)\n", - "m.fs.mixer_1.inlet_1.mole_frac_comp[0, \"toluene\"].fix(0)\n", - "m.fs.mixer_1.inlet_1.pressure.fix(101325) # Pa\n", - "m.fs.mixer_1.inlet_1.temperature.fix(353) # K\n", - "\n", - "# Toluene stream\n", - "m.fs.mixer_1.inlet_2.flow_mol.fix(100) # converting to mol/s as unit basis is mol/s\n", - "m.fs.mixer_1.inlet_2.mole_frac_comp[0, \"benzene\"].fix(0)\n", - "m.fs.mixer_1.inlet_2.mole_frac_comp[0, \"toluene\"].fix(1)\n", - "m.fs.mixer_1.inlet_2.pressure.fix(202650) # Pa\n", - "m.fs.mixer_1.inlet_2.temperature.fix(356) # K\n", - "\n", - "# Call the degrees_of_freedom function, get final DOF\n", - "DOF_final = degrees_of_freedom(m)\n", - "print(\"The final degrees of freedom is: {0}\".format(DOF_final))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Flowsheet Initialization" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize the flowsheet, and set the output at WARNING\n", - "m.fs.mixer_1.initialize(outlvl=idaeslog.WARNING)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Obtaining Simulation Results" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Solve the simulation using ipopt\n", - "# Note: If the degrees of freedom = 0, we have a square problem\n", - "opt = SolverFactory(\"ipopt\")\n", - "result = opt.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### View Results" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Display output report\n", - "m.fs.mixer_1.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Case 2\n", - "\n", - "For case 2, we will specify the inlet names for the two inlets, and set `momentum_mixing` type set to \"equality\" (in this case, pressure will be specified for only one inlet stream). We will name the 2 inlets as \"benzene_inlet\" and \"toluene_inlet\". " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Create an instance of another mixer unit, attaching it to the same flowsheet.\n", - "# Specify that the property package to be used with the mixer is the one we created earlier,\n", - "# inlet list is specified but names are specified, and momentum mixing type is equality\n", - "\n", - "m.fs.mixer_2 = Mixer(\n", - " property_package=m.fs.properties,\n", - " inlet_list=[\"benzene_inlet\", \"toluene_inlet\"],\n", - " momentum_mixing_type=MomentumMixingType.equality,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Check the required degrees of freedom\n", - "DOF_init = degrees_of_freedom(m.fs.mixer_2)\n", - "print(\"The initial degrees of freedom is: {0}\".format(DOF_init))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We see that the degrees of freedom has dropped by 1 to 9 when compared with case 1. This is because we selected the `momentum_mixing_type` as `MomentumMixingType.equality` which basically adds a constraint that equates the pressure between all inlets and the outlet. Therefore, when we specify the inlet confitions in the next cell, we will define the pressure for only the `benzene_inlet` stream. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Fix the stream inlet conditions\n", - "\n", - "# Benzene stream\n", - "m.fs.mixer_2.benzene_inlet.flow_mol.fix(\n", - " 100\n", - ") # converting to mol/s as unit basis is mol/s\n", - "m.fs.mixer_2.benzene_inlet.mole_frac_comp[0, \"benzene\"].fix(1)\n", - "m.fs.mixer_2.benzene_inlet.mole_frac_comp[0, \"toluene\"].fix(0)\n", - "m.fs.mixer_2.benzene_inlet.pressure.fix(\n", - " 101325\n", - ") # Pa , Another option is m1.fs.mixer2.inlet2.pressure.fix(202650)\n", - "m.fs.mixer_2.benzene_inlet.temperature.fix(353) # K\n", - "\n", - "# Toluene stream\n", - "m.fs.mixer_2.toluene_inlet.flow_mol.fix(\n", - " 100\n", - ") # converting to mol/s as unit basis is mol/s\n", - "m.fs.mixer_2.toluene_inlet.mole_frac_comp[0, \"benzene\"].fix(0)\n", - "m.fs.mixer_2.toluene_inlet.mole_frac_comp[0, \"toluene\"].fix(1)\n", - "m.fs.mixer_2.toluene_inlet.temperature.fix(356) # K\n", - "\n", - "DOF_final = degrees_of_freedom(m.fs.mixer_2)\n", - "print(\"The final degrees of freedom is: {0}\".format(DOF_final))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Flowsheet Initialization" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize the flowsheet, and set the output at WARNING\n", - "\n", - "m.fs.mixer_2.initialize(outlvl=idaeslog.WARNING)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Obtaining Simulation Results" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Solve the simulation using ipopt\n", - "# Note: If the degrees of freedom = 0, we have a square problem\n", - "opt = SolverFactory(\"ipopt\")\n", - "result = opt.solve(m.fs.mixer_2, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### View Results" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Display a readable report\n", - "m.fs.mixer_2.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Mixer Unit Model with Ideal Property Package\n", + "Author: Anuja Deshpande \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "![](mixer.svg)\n", + "\n", + "## Learning Outcomes\n", + "\n", + "- Demonstrate use of the Mixer unit model in IDAES\n", + "- Demonstrate different options available\n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "In this example, we will be mixing liquid benzene and liquid toluene streams to form a mixture. The inlet conditions are as follows:\n", + "\n", + "**Stream 1:**\n", + "\n", + "Benzene Flow Rate = 100 mol/s\n", + "\n", + "Pressure = 101325 Pa \n", + "\n", + "Temperature = 353 K\n", + "\n", + "**Stream 2**\n", + "\n", + "Toluene Flow Rate = 100 mol/s\n", + "\n", + "Pressure = 202650 Pa \n", + "\n", + "Temperature = 356 K\n", + "\n", + "We will look at two cases in this tutorial:\n", + "\n", + "* Case 1: Specify the number of inlets to the mixer, and set the `momentum_mixing` type set to \"minimize\"\n", + "\n", + "* Case 2: Specify the inlet names, and set `momentum_mixing` type set to \"equality\" (in this case, pressure will be specified for only one inlet stream)\n", + "\n", + "**Note: \n", + "When the momentum mixing type is set to 'minimize', the mixed stream pressure takes the minimum value among all inlet stream pressures.\n", + "When the momentum mixing type is set to 'equality', the mixed stream, along with all inlet streams have the same value of pressure.**\n", + "\n", + "\n", + "For more details, please refer to the IDAES documentation: https://idaes-pse.readthedocs.io/en/stable" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting up the problem in IDAES" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the following cell, we will be importing the necessary components from Pyomo and IDAES." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Import objects from pyomo package\n", + "from pyomo.environ import ConcreteModel, SolverFactory, value\n", + "\n", + "# Import the main FlowsheetBlock from IDAES. The flowsheet block will contain the unit model\n", + "from idaes.core import FlowsheetBlock\n", + "\n", + "# Import the mixer unit model\n", + "from idaes.models.unit_models import Mixer, MomentumMixingType\n", + "\n", + "# Import idaes logger to set output levels\n", + "import idaes.logger as idaeslog\n", + "\n", + "# Import the BTX_ideal property package to create a properties block for the flowsheet\n", + "from idaes.models.properties.activity_coeff_models import BTX_activity_coeff_VLE\n", + "\n", + "# Import the degrees_of_freedom function from the idaes.core.util.model_statistics package\n", + "# DOF = Number of Model Variables - Number of Model Constraints\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "\n", + "# Create the ConcreteModel and the FlowsheetBlock objects, and attach the flowsheet block to it.\n", + "m = ConcreteModel()\n", + "\n", + "m.fs = FlowsheetBlock(\n", + " dynamic=False\n", + ") # dynamic or ss flowsheet needs to be specified here\n", + "\n", + "# Add properties parameter block to the flowsheet with specifications\n", + "m.fs.properties = BTX_activity_coeff_VLE.BTXParameterBlock(\n", + " valid_phase=\"Liq\", activity_coeff_model=\"Ideal\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Case 1:\n", + "\n", + "Specify the number of inlets to the mixer, and set the `momentum_mixing` type set to \"minimize\". " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create an instance of the mixer unit, attaching it to the flowsheet\n", + "# Specify that the property package to be used with the mixer is the\n", + "# one we created earlier, the number of mixer inlets is 2, and momentum\n", + "# mixing type is minimize\n", + "\n", + "m.fs.mixer_1 = Mixer(\n", + " property_package=m.fs.properties,\n", + " num_inlets=2,\n", + " momentum_mixing_type=MomentumMixingType.minimize,\n", + ")\n", + "\n", + "# Call the degrees_of_freedom function, get initial DOF\n", + "DOF_initial = degrees_of_freedom(m)\n", + "print(\"The initial degrees of freedom is: {0}\".format(DOF_initial))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For case 1, we chose to specify only the number of inlets and names were not specified. When this option is selected, the inlets are named as \"inlet_1\", \"inlet_2\" and so on depending on the number of inlets specified. In the following cell, we will use this naming convention to specify the inlet conditions. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the inlet conditions\n", + "\n", + "# Benzene stream\n", + "m.fs.mixer_1.inlet_1.flow_mol.fix(100) # converting to mol/s as unit basis is mol/s\n", + "m.fs.mixer_1.inlet_1.mole_frac_comp[0, \"benzene\"].fix(1)\n", + "m.fs.mixer_1.inlet_1.mole_frac_comp[0, \"toluene\"].fix(0)\n", + "m.fs.mixer_1.inlet_1.pressure.fix(101325) # Pa\n", + "m.fs.mixer_1.inlet_1.temperature.fix(353) # K\n", + "\n", + "# Toluene stream\n", + "m.fs.mixer_1.inlet_2.flow_mol.fix(100) # converting to mol/s as unit basis is mol/s\n", + "m.fs.mixer_1.inlet_2.mole_frac_comp[0, \"benzene\"].fix(0)\n", + "m.fs.mixer_1.inlet_2.mole_frac_comp[0, \"toluene\"].fix(1)\n", + "m.fs.mixer_1.inlet_2.pressure.fix(202650) # Pa\n", + "m.fs.mixer_1.inlet_2.temperature.fix(356) # K\n", + "\n", + "# Call the degrees_of_freedom function, get final DOF\n", + "DOF_final = degrees_of_freedom(m)\n", + "print(\"The final degrees of freedom is: {0}\".format(DOF_final))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Flowsheet Initialization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the flowsheet, and set the output at WARNING\n", + "m.fs.mixer_1.initialize(outlvl=idaeslog.WARNING)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Obtaining Simulation Results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solve the simulation using ipopt\n", + "# Note: If the degrees of freedom = 0, we have a square problem\n", + "opt = SolverFactory(\"ipopt\")\n", + "result = opt.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### View Results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Display output report\n", + "m.fs.mixer_1.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Case 2\n", + "\n", + "For case 2, we will specify the inlet names for the two inlets, and set `momentum_mixing` type set to \"equality\" (in this case, pressure will be specified for only one inlet stream). We will name the 2 inlets as \"benzene_inlet\" and \"toluene_inlet\". " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create an instance of another mixer unit, attaching it to the same flowsheet.\n", + "# Specify that the property package to be used with the mixer is the one we created earlier,\n", + "# inlet list is specified but names are specified, and momentum mixing type is equality\n", + "\n", + "m.fs.mixer_2 = Mixer(\n", + " property_package=m.fs.properties,\n", + " inlet_list=[\"benzene_inlet\", \"toluene_inlet\"],\n", + " momentum_mixing_type=MomentumMixingType.equality,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Check the required degrees of freedom\n", + "DOF_init = degrees_of_freedom(m.fs.mixer_2)\n", + "print(\"The initial degrees of freedom is: {0}\".format(DOF_init))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see that the degrees of freedom has dropped by 1 to 9 when compared with case 1. This is because we selected the `momentum_mixing_type` as `MomentumMixingType.equality` which basically adds a constraint that equates the pressure between all inlets and the outlet. Therefore, when we specify the inlet confitions in the next cell, we will define the pressure for only the `benzene_inlet` stream. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Fix the stream inlet conditions\n", + "\n", + "# Benzene stream\n", + "m.fs.mixer_2.benzene_inlet.flow_mol.fix(\n", + " 100\n", + ") # converting to mol/s as unit basis is mol/s\n", + "m.fs.mixer_2.benzene_inlet.mole_frac_comp[0, \"benzene\"].fix(1)\n", + "m.fs.mixer_2.benzene_inlet.mole_frac_comp[0, \"toluene\"].fix(0)\n", + "m.fs.mixer_2.benzene_inlet.pressure.fix(\n", + " 101325\n", + ") # Pa , Another option is m1.fs.mixer2.inlet2.pressure.fix(202650)\n", + "m.fs.mixer_2.benzene_inlet.temperature.fix(353) # K\n", + "\n", + "# Toluene stream\n", + "m.fs.mixer_2.toluene_inlet.flow_mol.fix(\n", + " 100\n", + ") # converting to mol/s as unit basis is mol/s\n", + "m.fs.mixer_2.toluene_inlet.mole_frac_comp[0, \"benzene\"].fix(0)\n", + "m.fs.mixer_2.toluene_inlet.mole_frac_comp[0, \"toluene\"].fix(1)\n", + "m.fs.mixer_2.toluene_inlet.temperature.fix(356) # K\n", + "\n", + "DOF_final = degrees_of_freedom(m.fs.mixer_2)\n", + "print(\"The final degrees of freedom is: {0}\".format(DOF_final))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Flowsheet Initialization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the flowsheet, and set the output at WARNING\n", + "\n", + "m.fs.mixer_2.initialize(outlvl=idaeslog.WARNING)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Obtaining Simulation Results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Solve the simulation using ipopt\n", + "# Note: If the degrees of freedom = 0, we have a square problem\n", + "opt = SolverFactory(\"ipopt\")\n", + "result = opt.solve(m.fs.mixer_2, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### View Results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Display a readable report\n", + "m.fs.mixer_2.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/unit_models/operations/pump.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/pump.ipynb index 1fa67e77..8084266a 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/pump.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/pump.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/operations/pump_doc.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/pump_doc.ipynb index a03e1227..8e9f109d 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/pump_doc.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/pump_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -231,14 +232,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:15 [INFO] idaes.init.fs.pump_case_1.control_volume: Initialization Complete\n" + "2025-03-17 17:40:26 [INFO] idaes.init.fs.pump_case_1.control_volume: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:15 [INFO] idaes.init.fs.pump_case_1: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:40:26 [INFO] idaes.init.fs.pump_case_1: Initialization Complete: optimal - Optimal Solution Found\n" ] } ], @@ -301,16 +302,16 @@ "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", " 0 0.0000000e+00 7.89e-07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 6.55e-09 5.16e-07 -1.0 9.86e-07 - 9.90e-01 1.00e+00h 1\n", + " 1 0.0000000e+00 3.33e-08 5.16e-07 -1.0 9.86e-07 - 9.90e-01 1.00e+00h 1\n", "\n", "Number of Iterations....: 1\n", "\n", " (scaled) (unscaled)\n", "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 3.4603063846230464e-10 6.5483618527650833e-09\n", + "Constraint violation....: 1.7593735573373009e-09 3.3294782042503357e-08\n", "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 3.4603063846230464e-10 6.5483618527650833e-09\n", + "Overall NLP error.......: 1.7593735573373009e-09 3.3294782042503357e-08\n", "\n", "\n", "Number of objective function evaluations = 2\n", @@ -320,16 +321,10 @@ "Number of equality constraint Jacobian evaluations = 2\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 1\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.011\n", - "Total CPU secs in NLP function evaluations = 0.001\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.009\n", + "Total CPU secs in NLP function evaluations = 0.002\n", "\n", - "EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "EXIT: Optimal Solution Found.\n", "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" ] } @@ -379,13 +374,7 @@ " Pressure Ratio : 1.9869 : dimensionless : False : (None, None)\n", "\n", "------------------------------------------------------------------------------------\n", - " Stream Table\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " Stream Table\n", " Units Inlet Outlet \n", " Molar Flow mole / second 100.00 100.00\n", " Mass Flow kilogram / second 1.8015 1.8015\n", @@ -516,14 +505,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:15 [INFO] idaes.init.fs.pump_case_2.control_volume: Initialization Complete\n" + "2025-03-17 17:40:26 [INFO] idaes.init.fs.pump_case_2.control_volume: Initialization Complete\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:30:15 [INFO] idaes.init.fs.pump_case_2: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:40:26 [INFO] idaes.init.fs.pump_case_2: Initialization Complete: optimal - Optimal Solution Found\n" ] } ], @@ -586,16 +575,16 @@ "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", " 0 0.0000000e+00 7.89e-07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 6.55e-09 5.16e-07 -1.0 9.86e-07 - 9.90e-01 1.00e+00h 1\n", + " 1 0.0000000e+00 3.33e-08 5.16e-07 -1.0 9.86e-07 - 9.90e-01 1.00e+00h 1\n", "\n", "Number of Iterations....: 1\n", "\n", " (scaled) (unscaled)\n", "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 3.4603063846230464e-10 6.5483618527650833e-09\n", + "Constraint violation....: 1.7593735573373009e-09 3.3294782042503357e-08\n", "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 3.4603063846230464e-10 6.5483618527650833e-09\n", + "Overall NLP error.......: 1.7593735573373009e-09 3.3294782042503357e-08\n", "\n", "\n", "Number of objective function evaluations = 2\n", @@ -605,8 +594,8 @@ "Number of equality constraint Jacobian evaluations = 2\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 1\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.007\n", - "Total CPU secs in NLP function evaluations = 0.000\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.009\n", + "Total CPU secs in NLP function evaluations = 0.003\n", "\n", "EXIT: Optimal Solution Found.\n", "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" @@ -686,9 +675,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/operations/pump_test.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/pump_test.ipynb index f1ba0ff3..8dc44df4 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/pump_test.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/pump_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -535,4 +536,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/operations/pump_usr.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/pump_usr.ipynb index 15e6db9a..18360051 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/pump_usr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/pump_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -417,4 +418,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit.ipynb index 83a73858..09e0ff72 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit_doc.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit_doc.ipynb index 4a3fab04..238767f7 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit_doc.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit_doc.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "tags": [ "header", @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -75,7 +76,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -119,7 +120,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -151,7 +152,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -268,7 +269,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -330,7 +331,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -351,9 +352,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "11\n" + ] + } + ], "source": [ "print(degrees_of_freedom(m))" ] @@ -369,7 +378,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -393,7 +402,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -435,9 +444,267 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:29 [INFO] idaes.init.fs.WATER.properties: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:29 [INFO] idaes.init.fs.WATER.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:29 [INFO] idaes.init.fs.WATER.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:29 [INFO] idaes.init.fs.WATER: Initialization Complete.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:29 [INFO] idaes.init.fs.GLYCOL.properties: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:29 [INFO] idaes.init.fs.GLYCOL.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:29 [INFO] idaes.init.fs.GLYCOL.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:29 [INFO] idaes.init.fs.GLYCOL: Initialization Complete.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 11\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", + "\n", + "Total number of variables............................: 7\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 7\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.13e-16 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + "\n", + "Number of Iterations....: 0\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.1275702593849246e-16 1.1275702593849246e-16\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.1275702593849246e-16 1.1275702593849246e-16\n", + "\n", + "\n", + "Number of objective function evaluations = 1\n", + "Number of objective gradient evaluations = 1\n", + "Number of equality constraint evaluations = 1\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 1\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 0\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.000\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Custom initialization routine complete: Ipopt 3.13.2\\x3a Optimal Solution Found\n", + "2025-03-17 17:40:29 [INFO] idaes.init.fs.PERMEATE.properties: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:29 [INFO] idaes.init.fs.PERMEATE.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:29 [INFO] idaes.init.fs.PERMEATE.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:29 [INFO] idaes.init.fs.PERMEATE: Initialization Complete.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:29 [INFO] idaes.init.fs.RETENTATE.properties: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:29 [INFO] idaes.init.fs.RETENTATE.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:29 [INFO] idaes.init.fs.RETENTATE.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:29 [INFO] idaes.init.fs.RETENTATE: Initialization Complete.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 113\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 74\n", + "\n", + "Total number of variables............................: 47\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 33\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 47\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 7.42e+07 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 7.10e+05 2.45e+01 -1.0 1.01e+05 - 5.55e-01 9.90e-01h 1\n", + " 2 0.0000000e+00 2.30e+05 1.02e+02 -1.0 1.00e+03 - 7.67e-01 6.65e-01h 1\n", + " 3 0.0000000e+00 5.49e+03 6.43e+01 -1.0 1.57e+03 - 9.90e-01 9.90e-01h 1\n", + " 4 0.0000000e+00 7.38e+01 7.18e+02 -1.0 1.92e+03 - 9.90e-01 1.00e+00h 1\n", + " 5 0.0000000e+00 1.39e-03 1.95e+00 -1.0 1.76e+02 - 1.00e+00 1.00e+00h 1\n", + " 6 0.0000000e+00 3.38e-10 5.22e-03 -3.8 2.31e-01 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 6\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.6906692712481686e-10 3.3813385424963371e-10\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.6906692712481686e-10 3.3813385424963371e-10\n", + "\n", + "\n", + "Number of objective function evaluations = 7\n", + "Number of objective gradient evaluations = 7\n", + "Number of equality constraint evaluations = 7\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 7\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 6\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], "source": [ "# Add this to the imports\n", "from pyomo.util.calc_var_value import calculate_variable_from_constraint\n", @@ -521,9 +788,60 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.WATER Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Outlet \n", + " Molar Flowrate ('Liq', 'water') mole / second 0.34000\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 1.0000e-06\n", + " Temperature kelvin 318.15\n", + " Pressure pascal 1.0132e+05\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.GLYCOL Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Outlet \n", + " Molar Flowrate ('Liq', 'water') mole / second 1.0000e-06\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 0.66000\n", + " Temperature kelvin 318.15\n", + " Pressure pascal 1.0132e+05\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.PERMEATE Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet \n", + " Molar Flowrate ('Liq', 'water') mole / second 0.14259\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 0.00026675\n", + " Temperature kelvin 318.15\n", + " Pressure pascal 1300.0\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.RETENTATE Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet \n", + " Molar Flowrate ('Liq', 'water') mole / second 0.19742\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 0.65973\n", + " Temperature kelvin 318.15\n", + " Pressure pascal 1.0132e+05\n", + "====================================================================================\n" + ] + } + ], "source": [ "# print results\n", "\n", @@ -535,9 +853,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Inlet water mole fraction: 0.34000031999936\n", + "Permeate water mole fraction: 0.998132696792035\n", + "Separation factor: 1037.6188153503224\n", + "Condensation duty: 5.812711092458081 kW\n", + "Duty per mole water recovered: 0.011324013423286048 kW-h / mol\n" + ] + } + ], "source": [ "# separation factor for results analysis\n", "m.fs.inlet_water_frac = Expression(\n", @@ -574,7 +904,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -609,9 +939,98 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 121\n", + "Number of nonzeros in inequality constraint Jacobian.: 4\n", + "Number of nonzeros in Lagrangian Hessian.............: 88\n", + "\n", + "Total number of variables............................: 49\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 35\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 48\n", + "Total number of inequality constraints...............: 1\n", + " inequality constraints with only lower bounds: 1\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 -3.4000032e-01 7.26e+03 6.14e-02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 -3.7417153e-01 7.06e+02 3.96e+01 -1.0 4.48e-02 - 9.90e-01 8.90e-01h 1\n", + " 2 -5.0289931e-01 2.22e+02 1.14e+02 -1.0 2.30e-01 - 9.90e-01 6.53e-01h 1\n", + " 3 -6.1963465e-01 9.31e+00 1.14e+04 -1.0 1.37e-01 - 9.91e-01 9.93e-01h 1\n", + " 4 -6.1883656e-01 1.48e-02 1.01e+02 -1.0 1.25e-03 - 1.00e+00 9.99e-01h 1\n", + " 5 -6.1153811e-01 2.14e-04 7.97e+02 -1.0 8.51e-03 - 1.00e+00 1.00e+00f 1\n", + " 6 -6.1019822e-01 1.82e-06 1.48e+01 -1.0 1.56e-03 - 1.00e+00 1.00e+00h 1\n", + " 7 -7.3642396e-01 1.07e-02 2.29e+04 -2.5 1.47e-01 - 7.70e-01 1.00e+00f 1\n", + " 8 -8.1765759e-01 2.06e-02 9.69e+02 -2.5 1.47e-01 - 1.00e+00 6.43e-01f 1\n", + " 9 -8.3576879e-01 3.92e-03 4.60e+01 -2.5 2.11e-02 - 1.00e+00 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 -8.3954010e-01 1.75e-04 1.05e+00 -2.5 4.40e-03 - 1.00e+00 1.00e+00h 1\n", + " 11 -8.3930724e-01 8.95e-08 2.93e-03 -2.5 2.72e-04 - 1.00e+00 1.00e+00h 1\n", + " 12 -8.4239161e-01 6.13e-05 9.69e+01 -3.8 3.73e-03 - 1.00e+00 9.63e-01f 1\n", + " 13 -8.4225198e-01 7.39e-08 1.37e-02 -3.8 1.63e-04 - 1.00e+00 1.00e+00f 1\n", + " 14 -8.4225232e-01 5.82e-11 3.86e-08 -3.8 3.92e-07 - 1.00e+00 1.00e+00h 1\n", + " 15 -8.4240230e-01 1.51e-07 2.22e-02 -5.7 1.75e-04 - 1.00e+00 1.00e+00f 1\n", + " 16 -8.4240161e-01 9.09e-13 1.67e-08 -5.7 8.12e-07 - 1.00e+00 1.00e+00h 1\n", + " 17 -8.4240336e-01 9.09e-13 3.07e-06 -7.0 2.05e-06 - 1.00e+00 1.00e+00f 1\n", + " 18 -8.4240336e-01 5.82e-11 1.08e-12 -7.0 1.12e-10 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 18\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: -8.4240336294854945e-01 -8.4240336294854945e-01\n", + "Dual infeasibility......: 1.0800249583553523e-12 1.0800249583553523e-12\n", + "Constraint violation....: 1.2738317640843951e-14 5.8207660913467407e-11\n", + "Complementarity.........: 9.0909090917798691e-08 9.0909090917798691e-08\n", + "Overall NLP error.......: 9.0909090917798691e-08 9.0909090917798691e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 19\n", + "Number of objective gradient evaluations = 19\n", + "Number of equality constraint evaluations = 19\n", + "Number of inequality constraint evaluations = 19\n", + "Number of equality constraint Jacobian evaluations = 19\n", + "Number of inequality constraint Jacobian evaluations = 19\n", + "Number of Lagrangian Hessian evaluations = 18\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.001\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], "source": [ "# unfix inlet flows but fix total to prevent divergence during solve\n", "m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].unfix()\n", @@ -633,9 +1052,60 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.WATER Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Outlet \n", + " Molar Flowrate ('Liq', 'water') mole / second 0.84240\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 1.0000e-06\n", + " Temperature kelvin 318.15\n", + " Pressure pascal 1.0132e+05\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.GLYCOL Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Outlet \n", + " Molar Flowrate ('Liq', 'water') mole / second 1.0000e-06\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 0.15760\n", + " Temperature kelvin 318.15\n", + " Pressure pascal 1.0132e+05\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.PERMEATE Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet \n", + " Molar Flowrate ('Liq', 'water') mole / second 0.14259\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 0.00026675\n", + " Temperature kelvin 318.15\n", + " Pressure pascal 1300.0\n", + "====================================================================================\n", + "\n", + "====================================================================================\n", + "Unit : fs.RETENTATE Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet \n", + " Molar Flowrate ('Liq', 'water') mole / second 0.69982\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 0.15733\n", + " Temperature kelvin 318.15\n", + " Pressure pascal 1.0132e+05\n", + "====================================================================================\n" + ] + } + ], "source": [ "# print results\n", "\n", @@ -647,9 +1117,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Inlet water mole fraction: 0.8424033629485495\n", + "Permeate water mole fraction: 0.9981326967920352\n", + "Separation factor: 100.00006747653238\n", + "Condensation duty: 5.812711092447902 kW\n", + "Duty per mole water recovered: 0.011324013423286044 kW-h / mol\n" + ] + } + ], "source": [ "print(f\"Inlet water mole fraction: {value(m.fs.inlet_water_frac)}\")\n", "print(f\"Permeate water mole fraction: {value(m.fs.permeate_water_frac)}\")\n", @@ -662,7 +1144,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -720,7 +1202,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.11.11" } }, "nbformat": 4, diff --git a/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit_test.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit_test.ipynb index 4a3fab04..d20631c8 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit_test.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit_test.ipynb @@ -1,728 +1,729 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# IDAES Skeleton Unit Model\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "This notebook demonstrates usage of the IDAES Skeleton Unit Model, which provides a generic \"bare bones\" unit for user-defined models and custom variable and constraint sets. To allow maximum versatility, this unit may be defined as a surrogate model or a custom equation-oriented model. Users must add ports and variables that match connected models, and this is facilitated through a provided method to add port-variable sets.\n", - "\n", - "For users who wish to train surrogates with IDAES tools and insert obtained models into a flowsheet, see more detailed information on [IDAES Surrogate Tools](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/index.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. Motivation\n", - "\n", - "In many cases, a specific application requires a unique unit operation that does not exist in the IDAES repository. Custom user models may source from external scripts, import surrogate equations or use first-principles calculations. However, IDAES flowsheets adhere to a standardized modeling hierarchy and simple Pyomo models do not always follow these conventions. Additionally, simple flowsheet submodels often require integration with other IDAES unit models which requires consistency between corresponding port variables, stream properties and physical unit sets, as well as proper usage of `ControlVolume` blocks.\n", - "\n", - "The IDAES `SkeletonUnitModel` allows custom creation of user models blocks that do not require `ControlVolume` blocks, and enabling connection with standard IDAES unit models that do contain `ControlVolume` blocks. To motivate the usefulness and versatility of this tool, we will consider a simple pervaporation unit. The custom model does not require rigorous thermodynamic calculations contained in adjacent unit models, and using a Skeleton model allows definition of only required variables and constraints. The new block does require state variable connections for the inlet and outlet streams. We will demonstrate this scenario below to highlight the usage and benefits of the Skeleton model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Example - Pervaporation\n", - "\n", - "Pervaporation is a low-energy separation process, and is particularly advantageous over distillation for azeotropic solutions or aqueous mixtures of heavy alcohols. Ethylene glycol is more environmentally friendly than typical chloride- and bromide-based dessicants, and is a common choice for commercial recovery of water from flue gas via liquid spray columns. Due to ethylene glycol's high boiling point, diffusion-based water recovery is economically favorable compared to distillation-based processes. The following example and flux correlation are taken from the literature source below:\n", - "\n", - "Jennifer Runhong Du, Amit Chakma, X. Feng, Dehydration of ethylene glycol by pervaporation using poly(N,N-dimethylaminoethyl methacrylate)/polysulfone composite membranes, Separation and Purification Technology, Volume 64, Issue 1, 2008, Pages 63-70, ISSN 1383-5866, https://doi.org/10.1016/j.seppur.2008.08.004.\n", - "\n", - "The process is adapted from the literature, utilizing an inlet aqueous glycol feed circulated through a feed tank-membrane-feed tank recycle loop while permeate is continuously extracted by the membrane. To demonstrate the usefulness of the Skeleton model, we will model this system as a Mixer and custom Pervaporation unit per the diagram below and define the flux as an empirical custom mass balance term rather than requiring rigorous diffusion calculations. We will also circumvent the need for a vapor phase and VLE calculations by manually calculating the duty to condense and collect permeate vapor, and use correlations for steady-state fluxes to avoid a recycle requiring tear calculations.\n", - "\n", - "![](pervaporation_process.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.1 Pyomo and IDAES Imports\n", - "We will begin with relevant imports. We will need basic Pyomo and IDAES components:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import pytest\n", - "from pyomo.environ import (\n", - " check_optimal_termination,\n", - " ConcreteModel,\n", - " Constraint,\n", - " Expression,\n", - " Objective,\n", - " maximize,\n", - " Var,\n", - " Set,\n", - " TransformationFactory,\n", - " value,\n", - " exp,\n", - " units as pyunits,\n", - ")\n", - "from pyomo.network import Arc\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.models.unit_models import Feed, SkeletonUnitModel, Mixer, Product\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state\n", - "from idaes.core.solvers import get_solver\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "\n", - "# import thermophysical properties\n", - "import eg_h2o_ideal as thermo_props\n", - "from idaes.models.properties.modular_properties import GenericParameterBlock\n", - "from idaes.core.util.constants import Constants" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.2 Build Flowsheet\n", - "\n", - "We will build a simple model manually defining state variables relations entering and exiting the pervaporation unit. As shown below, we may define our pre-separation mixer as usual:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# build the flowsheet\n", - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - "m.fs.thermo_params = GenericParameterBlock(**thermo_props.config_dict)\n", - "\n", - "m.fs.WATER = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.GLYCOL = Feed(property_package=m.fs.thermo_params)\n", - "\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params, inlet_list=[\"water_feed\", \"glycol_feed\"]\n", - ")\n", - "\n", - "m.fs.RETENTATE = Product(property_package=m.fs.thermo_params)\n", - "m.fs.PERMEATE = Product(property_package=m.fs.thermo_params)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.2 Defining Skeleton Model and Connections\n", - "\n", - "Now that our flowsheet exists, we can manually define variables, units, constraints and ports for our custom pervaporation unit model. By using a Skeleton model, we avoid rigorous mass and energy balances and phase equilibrium which impact model tractability. Instead, we define state variable relations as below - note that we include the fluxes as outlet flow terms. In this model, the variables specify an `FpcTP` system where molar flow of each component, temperature and pressure are selected as state variables:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# define Skeleton model for pervaporation unit\n", - "m.fs.pervap = SkeletonUnitModel(dynamic=False)\n", - "m.fs.pervap.comp_list = Set(initialize=[\"water\", \"ethylene_glycol\"])\n", - "m.fs.pervap.phase_list = Set(initialize=[\"Liq\"])\n", - "\n", - "# input vars for skeleton\n", - "# m.fs.time is a pre-initialized Set belonging to the FlowsheetBlock; for dynamic=False, time=[0]\n", - "m.fs.pervap.flow_in = Var(\n", - " m.fs.time,\n", - " m.fs.pervap.phase_list,\n", - " m.fs.pervap.comp_list,\n", - " initialize=1.0,\n", - " units=pyunits.mol / pyunits.s,\n", - ")\n", - "m.fs.pervap.temperature_in = Var(m.fs.time, initialize=298.15, units=pyunits.K)\n", - "m.fs.pervap.pressure_in = Var(m.fs.time, initialize=101e3, units=pyunits.Pa)\n", - "\n", - "# output vars for skeleton\n", - "m.fs.pervap.perm_flow = Var(\n", - " m.fs.time,\n", - " m.fs.pervap.phase_list,\n", - " m.fs.pervap.comp_list,\n", - " initialize=1.0,\n", - " units=pyunits.mol / pyunits.s,\n", - ")\n", - "m.fs.pervap.ret_flow = Var(\n", - " m.fs.time,\n", - " m.fs.pervap.phase_list,\n", - " m.fs.pervap.comp_list,\n", - " initialize=1.0,\n", - " units=pyunits.mol / pyunits.s,\n", - ")\n", - "m.fs.pervap.temperature_out = Var(m.fs.time, initialize=298.15, units=pyunits.K)\n", - "m.fs.pervap.pressure_out = Var(m.fs.time, initialize=101e3, units=pyunits.Pa)\n", - "m.fs.pervap.vacuum = Var(m.fs.time, initialize=1.3e3, units=pyunits.Pa)\n", - "\n", - "# dictionaries relating state properties to custom variables\n", - "inlet_dict = {\n", - " \"flow_mol_phase_comp\": m.fs.pervap.flow_in,\n", - " \"temperature\": m.fs.pervap.temperature_in,\n", - " \"pressure\": m.fs.pervap.pressure_in,\n", - "}\n", - "retentate_dict = {\n", - " \"flow_mol_phase_comp\": m.fs.pervap.ret_flow,\n", - " \"temperature\": m.fs.pervap.temperature_out,\n", - " \"pressure\": m.fs.pervap.pressure_out,\n", - "}\n", - "permeate_dict = {\n", - " \"flow_mol_phase_comp\": m.fs.pervap.perm_flow,\n", - " \"temperature\": m.fs.pervap.temperature_out,\n", - " \"pressure\": m.fs.pervap.vacuum,\n", - "}\n", - "\n", - "m.fs.pervap.add_ports(name=\"inlet\", member_dict=inlet_dict)\n", - "m.fs.pervap.add_ports(name=\"retentate\", member_dict=retentate_dict)\n", - "m.fs.pervap.add_ports(name=\"permeate\", member_dict=permeate_dict)\n", - "\n", - "# internal vars for skeleton\n", - "energy_activation_dict = {\n", - " (0, \"Liq\", \"water\"): 51e3,\n", - " (0, \"Liq\", \"ethylene_glycol\"): 53e3,\n", - "}\n", - "m.fs.pervap.energy_activation = Var(\n", - " m.fs.time,\n", - " m.fs.pervap.phase_list,\n", - " m.fs.pervap.comp_list,\n", - " initialize=energy_activation_dict,\n", - " units=pyunits.J / pyunits.mol,\n", - ")\n", - "m.fs.pervap.energy_activation.fix()\n", - "\n", - "permeance_dict = {\n", - " (0, \"Liq\", \"water\"): 5611320,\n", - " (0, \"Liq\", \"ethylene_glycol\"): 22358.88,\n", - "} # calculated from literature data\n", - "m.fs.pervap.permeance = Var(\n", - " m.fs.time,\n", - " m.fs.pervap.phase_list,\n", - " m.fs.pervap.comp_list,\n", - " initialize=permeance_dict,\n", - " units=pyunits.mol / pyunits.s / pyunits.m**2,\n", - ")\n", - "m.fs.pervap.permeance.fix()\n", - "\n", - "m.fs.pervap.area = Var(m.fs.time, initialize=6, units=pyunits.m**2)\n", - "m.fs.pervap.area.fix()\n", - "\n", - "latent_heat_dict = {\n", - " (0, \"Liq\", \"water\"): 40.660e3,\n", - " (0, \"Liq\", \"ethylene_glycol\"): 56.9e3,\n", - "}\n", - "m.fs.pervap.latent_heat_of_vaporization = Var(\n", - " m.fs.time,\n", - " m.fs.pervap.phase_list,\n", - " m.fs.pervap.comp_list,\n", - " initialize=latent_heat_dict,\n", - " units=pyunits.J / pyunits.mol,\n", - ")\n", - "m.fs.pervap.latent_heat_of_vaporization.fix()\n", - "m.fs.pervap.heat_duty = Var(\n", - " m.fs.time, initialize=1, units=pyunits.J / pyunits.s\n", - ") # we will calculate this later" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's define our surrogate equations for flux and permeance, and link them to the port variables. Users can use this structure to write custom relations between inlet and outlet streams; for example, here we define the outlet flow of the pervaporation unit as a sum of the inlet flow and calculated recovery fluxes. By defining model constraints in lieu of rigorous mass balances, we add the flux as a custom mass balance term via an empirical correlation and calculate only the condensation duty rather than implementing full energy balance calculations:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Surrogate and first principles model equations\n", - "\n", - "# flux equation (gas constant is defined as J/mol-K)\n", - "\n", - "\n", - "def rule_permeate_flux(pervap, t, p, i):\n", - " return pervap.permeate.flow_mol_phase_comp[t, p, i] / pervap.area[t] == (\n", - " pervap.permeance[t, p, i]\n", - " * exp(\n", - " -pervap.energy_activation[t, p, i]\n", - " / (Constants.gas_constant * pervap.inlet.temperature[t])\n", - " )\n", - " )\n", - "\n", - "\n", - "m.fs.pervap.eq_permeate_flux = Constraint(\n", - " m.fs.time, m.fs.pervap.phase_list, m.fs.pervap.comp_list, rule=rule_permeate_flux\n", - ")\n", - "\n", - "# permeate condensation equation\n", - "# heat duty based on condensing all of permeate product vapor\n", - "# avoids the need for a Heater or HeatExchanger unit model\n", - "\n", - "\n", - "def rule_duty(pervap, t):\n", - " return pervap.heat_duty[t] == sum(\n", - " pervap.latent_heat_of_vaporization[t, p, i]\n", - " * pervap.permeate.flow_mol_phase_comp[t, p, i]\n", - " for p in pervap.phase_list\n", - " for i in pervap.comp_list\n", - " )\n", - "\n", - "\n", - "m.fs.pervap.eq_duty = Constraint(m.fs.time, rule=rule_duty)\n", - "\n", - "\n", - "# flow equation adding total recovery as a custom mass balance term\n", - "def rule_retentate_flow(pervap, t, p, i):\n", - " return pervap.retentate.flow_mol_phase_comp[t, p, i] == (\n", - " pervap.inlet.flow_mol_phase_comp[t, p, i]\n", - " - pervap.permeate.flow_mol_phase_comp[t, p, i]\n", - " )\n", - "\n", - "\n", - "m.fs.pervap.eq_retentate_flow = Constraint(\n", - " m.fs.time, m.fs.pervap.phase_list, m.fs.pervap.comp_list, rule=rule_retentate_flow\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, let's define the Arc connecting our two models (IDAES Mixer and custom Pervaporation) and build the flowsheet network:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s01 = Arc(source=m.fs.WATER.outlet, destination=m.fs.M101.water_feed)\n", - "m.fs.s02 = Arc(source=m.fs.GLYCOL.outlet, destination=m.fs.M101.glycol_feed)\n", - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.pervap.inlet)\n", - "m.fs.s04 = Arc(source=m.fs.pervap.permeate, destination=m.fs.PERMEATE.inlet)\n", - "m.fs.s05 = Arc(source=m.fs.pervap.retentate, destination=m.fs.RETENTATE.inlet)\n", - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's see how many degrees of freedom the flowsheet has:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.3 Inlet Specifications\n", - "\n", - "To obtain a square problem with zero degrees of freedom, we specify the inlet water flow, ethylene glycol flow, temperature and pressure for each feed stream, as well as the permeate stream pressure:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(0.34) # mol/s\n", - "m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(1e-6) # mol/s\n", - "m.fs.WATER.outlet.temperature.fix(318.15) # K\n", - "m.fs.WATER.outlet.pressure.fix(101.325e3) # Pa\n", - "\n", - "m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(1e-6) # mol/s\n", - "m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(0.66) # mol/s\n", - "m.fs.GLYCOL.outlet.temperature.fix(318.15) # K\n", - "m.fs.GLYCOL.outlet.pressure.fix(101.325e3) # Pa" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Additionally, we need to pass rules defining the temperature and pressure outlets of the pervaporation unit:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Add a constraint to calculate the outlet temperature.\n", - "# Here, assume outlet temperature is the same as inlet temperature for illustration\n", - "# in reality, temperature change from latent heat loss through membrane is negligible\n", - "\n", - "\n", - "def rule_temp_out(pervap, t):\n", - " return pervap.inlet.temperature[t] == pervap.retentate.temperature[t]\n", - "\n", - "\n", - "m.fs.pervap.temperature_out_calculation = Constraint(m.fs.time, rule=rule_temp_out)\n", - "\n", - "# Add a constraint to calculate the retentate pressure\n", - "# Here, assume the retentate pressure is the same as the inlet pressure for illustration\n", - "# in reality, pressure change from mass loss through membrane is negligible\n", - "\n", - "\n", - "def rule_pres_out(pervap, t):\n", - " return pervap.inlet.pressure[t] == pervap.retentate.pressure[t]\n", - "\n", - "\n", - "m.fs.pervap.pressure_out_calculation = Constraint(m.fs.time, rule=rule_pres_out)\n", - "\n", - "# fix permeate vacuum pressure\n", - "m.fs.PERMEATE.inlet.pressure.fix(1.3e3)\n", - "\n", - "assert degrees_of_freedom(m) == 0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.4 Custom Initialization\n", - "In addition to allowing custom variable and constraint definitions, the Skeleton model enables implementation of a custom initialization scheme. Complex unit operations may present unique tractability issues, and users have precise control over piecewise unit model solving." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Add this to the imports\n", - "from pyomo.util.calc_var_value import calculate_variable_from_constraint\n", - "\n", - "\n", - "def my_initialize(unit, **kwargs):\n", - " # Callback for user provided initialization sequence\n", - " # Fix the inlet state\n", - " unit.inlet.flow_mol_phase_comp.fix()\n", - " unit.inlet.pressure.fix()\n", - " unit.inlet.temperature.fix()\n", - "\n", - " # Calculate the values of the remaining variables\n", - " for t in m.fs.time:\n", - "\n", - " calculate_variable_from_constraint(\n", - " unit.permeate.flow_mol_phase_comp[t, \"Liq\", \"water\"],\n", - " unit.eq_permeate_flux[t, \"Liq\", \"water\"],\n", - " )\n", - "\n", - " calculate_variable_from_constraint(\n", - " unit.permeate.flow_mol_phase_comp[t, \"Liq\", \"ethylene_glycol\"],\n", - " unit.eq_permeate_flux[t, \"Liq\", \"ethylene_glycol\"],\n", - " )\n", - "\n", - " calculate_variable_from_constraint(unit.heat_duty[t], unit.eq_duty[t])\n", - "\n", - " calculate_variable_from_constraint(\n", - " unit.retentate.flow_mol_phase_comp[t, \"Liq\", \"water\"],\n", - " unit.eq_retentate_flow[t, \"Liq\", \"water\"],\n", - " )\n", - "\n", - " calculate_variable_from_constraint(\n", - " unit.retentate.flow_mol_phase_comp[t, \"Liq\", \"ethylene_glycol\"],\n", - " unit.eq_retentate_flow[t, \"Liq\", \"ethylene_glycol\"],\n", - " )\n", - "\n", - " calculate_variable_from_constraint(\n", - " unit.retentate.temperature[t], unit.temperature_out_calculation[t]\n", - " )\n", - "\n", - " calculate_variable_from_constraint(\n", - " unit.retentate.pressure[t], unit.pressure_out_calculation[t]\n", - " )\n", - "\n", - " assert degrees_of_freedom(unit) == 0\n", - " if degrees_of_freedom(unit) == 0:\n", - " res = solver.solve(unit, tee=True)\n", - " unit.inlet.flow_mol_phase_comp.unfix()\n", - " unit.inlet.temperature.unfix()\n", - " unit.inlet.pressure.unfix()\n", - " print(\"Custom initialization routine complete: \", res.solver.message)\n", - "\n", - "\n", - "solver = get_solver()\n", - "\n", - "m.fs.WATER.initialize()\n", - "propagate_state(m.fs.s01)\n", - "\n", - "m.fs.GLYCOL.initialize()\n", - "propagate_state(m.fs.s02)\n", - "\n", - "m.fs.pervap.config.initializer = my_initialize\n", - "my_initialize(m.fs.pervap)\n", - "propagate_state(m.fs.s03)\n", - "\n", - "m.fs.PERMEATE.initialize()\n", - "propagate_state(m.fs.s04)\n", - "\n", - "m.fs.RETENTATE.initialize()\n", - "\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's check the results:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# print results\n", - "\n", - "m.fs.WATER.report()\n", - "m.fs.GLYCOL.report()\n", - "m.fs.PERMEATE.report()\n", - "m.fs.RETENTATE.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# separation factor for results analysis\n", - "m.fs.inlet_water_frac = Expression(\n", - " expr=(\n", - " m.fs.pervap.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", - " / sum(\n", - " m.fs.pervap.inlet.flow_mol_phase_comp[0, \"Liq\", i]\n", - " for i in m.fs.pervap.comp_list\n", - " )\n", - " )\n", - ")\n", - "m.fs.permeate_water_frac = Expression(\n", - " expr=(\n", - " m.fs.pervap.permeate.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", - " / sum(\n", - " m.fs.pervap.permeate.flow_mol_phase_comp[0, \"Liq\", i]\n", - " for i in m.fs.pervap.comp_list\n", - " )\n", - " )\n", - ")\n", - "m.fs.separation_factor = Expression(\n", - " expr=(m.fs.permeate_water_frac / (1 - m.fs.permeate_water_frac))\n", - " / (m.fs.inlet_water_frac / (1 - m.fs.inlet_water_frac))\n", - ")\n", - "\n", - "print(f\"Inlet water mole fraction: {value(m.fs.inlet_water_frac)}\")\n", - "print(f\"Permeate water mole fraction: {value(m.fs.permeate_water_frac)}\")\n", - "print(f\"Separation factor: {value(m.fs.separation_factor)}\")\n", - "print(f\"Condensation duty: {value(m.fs.pervap.heat_duty[0]/1000)} kW\")\n", - "print(\n", - " f\"Duty per mole water recovered: {value(m.fs.pervap.heat_duty[0]/(1000*m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, 'Liq', 'water']*3600))} kW-h / mol\"\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# check results\n", - "assert check_optimal_termination(results)\n", - "assert_units_consistent(m)\n", - "\n", - "assert value(\n", - " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", - ") == pytest.approx(0.14258566, rel=1e-5)\n", - "assert value(\n", - " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", - ") == pytest.approx(0.000266748768, rel=1e-5)\n", - "assert value(\n", - " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", - ") == pytest.approx(0.19741534, rel=1e-5)\n", - "assert value(\n", - " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", - ") == pytest.approx(0.65973425, rel=1e-5)\n", - "assert value(m.fs.separation_factor) == pytest.approx(1037.6188, rel=1e-5)\n", - "assert value(m.fs.pervap.heat_duty[0]) == pytest.approx(5812.7111, rel=1e-5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3. Optimization\n", - "\n", - "Suppose we wish to characterize the membrane behavior by calculating the maximum inlet water mole fraction allowing a separation factor of at least 100 (typical value for high-efficiency separation processes such as gas separation of CO2/N2). We need to fix total inlet flow to ensure physically-sound solutions. We can quickly modify and resolve the model, and check some key results:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# unfix inlet flows but fix total to prevent divergence during solve\n", - "m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].unfix()\n", - "m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].unfix()\n", - "m.fs.total_flow = Constraint(\n", - " expr=m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", - " + m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", - " == 1 * pyunits.mol / pyunits.s\n", - ")\n", - "\n", - "# set criteria for separation factor\n", - "m.fs.sep_min = Constraint(expr=m.fs.separation_factor >= 100)\n", - "\n", - "# set objective - defaults to minimization\n", - "m.fs.obj = Objective(expr=m.fs.inlet_water_frac, sense=maximize)\n", - "\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# print results\n", - "\n", - "m.fs.WATER.report()\n", - "m.fs.GLYCOL.report()\n", - "m.fs.PERMEATE.report()\n", - "m.fs.RETENTATE.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(f\"Inlet water mole fraction: {value(m.fs.inlet_water_frac)}\")\n", - "print(f\"Permeate water mole fraction: {value(m.fs.permeate_water_frac)}\")\n", - "print(f\"Separation factor: {value(m.fs.separation_factor)}\")\n", - "print(f\"Condensation duty: {value(m.fs.pervap.heat_duty[0]/1000)} kW\")\n", - "print(\n", - " f\"Duty per mole water recovered: {value(m.fs.pervap.heat_duty[0]/(1000*m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, 'Liq', 'water']*3600))} kW-h / mol\"\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# check results\n", - "assert check_optimal_termination(results)\n", - "assert_units_consistent(m)\n", - "\n", - "assert value(\n", - " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", - ") == pytest.approx(0.14258566, rel=1e-5)\n", - "assert value(\n", - " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", - ") == pytest.approx(0.000266748768, rel=1e-5)\n", - "assert value(\n", - " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", - ") == pytest.approx(0.69981938, rel=1e-5)\n", - "assert value(\n", - " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", - ") == pytest.approx(0.15733020, rel=1e-5)\n", - "assert value(m.fs.separation_factor) == pytest.approx(100.000067, rel=1e-5)\n", - "assert value(m.fs.pervap.heat_duty[0]) == pytest.approx(5812.7111, rel=1e-5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4. Summary\n", - "\n", - "The IDAES Skeleton Unit Model is a powerful tool for implementing relatively simple first-princples, surrogate-based or empirical unit operations. More crucially, users can add their own custom models and integrate them into a larger IDAES flowsheet without adding control volumes or rigorous flow balance and equilibrium calculations when not required. The pervaporation example displays a case where all model equations are empirical correlations or simple manual calculations, with a small number of state variable and port connections, and the Skeleton model avoids complex calculations that impact model tractability. The example also demonstrates adding a custom initialization scheme to handle internally model degrees of freedom, a feature providing greater user control than with most IDAES unit models." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# IDAES Skeleton Unit Model\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "This notebook demonstrates usage of the IDAES Skeleton Unit Model, which provides a generic \"bare bones\" unit for user-defined models and custom variable and constraint sets. To allow maximum versatility, this unit may be defined as a surrogate model or a custom equation-oriented model. Users must add ports and variables that match connected models, and this is facilitated through a provided method to add port-variable sets.\n", + "\n", + "For users who wish to train surrogates with IDAES tools and insert obtained models into a flowsheet, see more detailed information on [IDAES Surrogate Tools](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/index.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1. Motivation\n", + "\n", + "In many cases, a specific application requires a unique unit operation that does not exist in the IDAES repository. Custom user models may source from external scripts, import surrogate equations or use first-principles calculations. However, IDAES flowsheets adhere to a standardized modeling hierarchy and simple Pyomo models do not always follow these conventions. Additionally, simple flowsheet submodels often require integration with other IDAES unit models which requires consistency between corresponding port variables, stream properties and physical unit sets, as well as proper usage of `ControlVolume` blocks.\n", + "\n", + "The IDAES `SkeletonUnitModel` allows custom creation of user models blocks that do not require `ControlVolume` blocks, and enabling connection with standard IDAES unit models that do contain `ControlVolume` blocks. To motivate the usefulness and versatility of this tool, we will consider a simple pervaporation unit. The custom model does not require rigorous thermodynamic calculations contained in adjacent unit models, and using a Skeleton model allows definition of only required variables and constraints. The new block does require state variable connections for the inlet and outlet streams. We will demonstrate this scenario below to highlight the usage and benefits of the Skeleton model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Example - Pervaporation\n", + "\n", + "Pervaporation is a low-energy separation process, and is particularly advantageous over distillation for azeotropic solutions or aqueous mixtures of heavy alcohols. Ethylene glycol is more environmentally friendly than typical chloride- and bromide-based dessicants, and is a common choice for commercial recovery of water from flue gas via liquid spray columns. Due to ethylene glycol's high boiling point, diffusion-based water recovery is economically favorable compared to distillation-based processes. The following example and flux correlation are taken from the literature source below:\n", + "\n", + "Jennifer Runhong Du, Amit Chakma, X. Feng, Dehydration of ethylene glycol by pervaporation using poly(N,N-dimethylaminoethyl methacrylate)/polysulfone composite membranes, Separation and Purification Technology, Volume 64, Issue 1, 2008, Pages 63-70, ISSN 1383-5866, https://doi.org/10.1016/j.seppur.2008.08.004.\n", + "\n", + "The process is adapted from the literature, utilizing an inlet aqueous glycol feed circulated through a feed tank-membrane-feed tank recycle loop while permeate is continuously extracted by the membrane. To demonstrate the usefulness of the Skeleton model, we will model this system as a Mixer and custom Pervaporation unit per the diagram below and define the flux as an empirical custom mass balance term rather than requiring rigorous diffusion calculations. We will also circumvent the need for a vapor phase and VLE calculations by manually calculating the duty to condense and collect permeate vapor, and use correlations for steady-state fluxes to avoid a recycle requiring tear calculations.\n", + "\n", + "![](pervaporation_process.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.1 Pyomo and IDAES Imports\n", + "We will begin with relevant imports. We will need basic Pyomo and IDAES components:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pytest\n", + "from pyomo.environ import (\n", + " check_optimal_termination,\n", + " ConcreteModel,\n", + " Constraint,\n", + " Expression,\n", + " Objective,\n", + " maximize,\n", + " Var,\n", + " Set,\n", + " TransformationFactory,\n", + " value,\n", + " exp,\n", + " units as pyunits,\n", + ")\n", + "from pyomo.network import Arc\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.models.unit_models import Feed, SkeletonUnitModel, Mixer, Product\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state\n", + "from idaes.core.solvers import get_solver\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "\n", + "# import thermophysical properties\n", + "import eg_h2o_ideal as thermo_props\n", + "from idaes.models.properties.modular_properties import GenericParameterBlock\n", + "from idaes.core.util.constants import Constants" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.2 Build Flowsheet\n", + "\n", + "We will build a simple model manually defining state variables relations entering and exiting the pervaporation unit. As shown below, we may define our pre-separation mixer as usual:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# build the flowsheet\n", + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + "m.fs.thermo_params = GenericParameterBlock(**thermo_props.config_dict)\n", + "\n", + "m.fs.WATER = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.GLYCOL = Feed(property_package=m.fs.thermo_params)\n", + "\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params, inlet_list=[\"water_feed\", \"glycol_feed\"]\n", + ")\n", + "\n", + "m.fs.RETENTATE = Product(property_package=m.fs.thermo_params)\n", + "m.fs.PERMEATE = Product(property_package=m.fs.thermo_params)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.2 Defining Skeleton Model and Connections\n", + "\n", + "Now that our flowsheet exists, we can manually define variables, units, constraints and ports for our custom pervaporation unit model. By using a Skeleton model, we avoid rigorous mass and energy balances and phase equilibrium which impact model tractability. Instead, we define state variable relations as below - note that we include the fluxes as outlet flow terms. In this model, the variables specify an `FpcTP` system where molar flow of each component, temperature and pressure are selected as state variables:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# define Skeleton model for pervaporation unit\n", + "m.fs.pervap = SkeletonUnitModel(dynamic=False)\n", + "m.fs.pervap.comp_list = Set(initialize=[\"water\", \"ethylene_glycol\"])\n", + "m.fs.pervap.phase_list = Set(initialize=[\"Liq\"])\n", + "\n", + "# input vars for skeleton\n", + "# m.fs.time is a pre-initialized Set belonging to the FlowsheetBlock; for dynamic=False, time=[0]\n", + "m.fs.pervap.flow_in = Var(\n", + " m.fs.time,\n", + " m.fs.pervap.phase_list,\n", + " m.fs.pervap.comp_list,\n", + " initialize=1.0,\n", + " units=pyunits.mol / pyunits.s,\n", + ")\n", + "m.fs.pervap.temperature_in = Var(m.fs.time, initialize=298.15, units=pyunits.K)\n", + "m.fs.pervap.pressure_in = Var(m.fs.time, initialize=101e3, units=pyunits.Pa)\n", + "\n", + "# output vars for skeleton\n", + "m.fs.pervap.perm_flow = Var(\n", + " m.fs.time,\n", + " m.fs.pervap.phase_list,\n", + " m.fs.pervap.comp_list,\n", + " initialize=1.0,\n", + " units=pyunits.mol / pyunits.s,\n", + ")\n", + "m.fs.pervap.ret_flow = Var(\n", + " m.fs.time,\n", + " m.fs.pervap.phase_list,\n", + " m.fs.pervap.comp_list,\n", + " initialize=1.0,\n", + " units=pyunits.mol / pyunits.s,\n", + ")\n", + "m.fs.pervap.temperature_out = Var(m.fs.time, initialize=298.15, units=pyunits.K)\n", + "m.fs.pervap.pressure_out = Var(m.fs.time, initialize=101e3, units=pyunits.Pa)\n", + "m.fs.pervap.vacuum = Var(m.fs.time, initialize=1.3e3, units=pyunits.Pa)\n", + "\n", + "# dictionaries relating state properties to custom variables\n", + "inlet_dict = {\n", + " \"flow_mol_phase_comp\": m.fs.pervap.flow_in,\n", + " \"temperature\": m.fs.pervap.temperature_in,\n", + " \"pressure\": m.fs.pervap.pressure_in,\n", + "}\n", + "retentate_dict = {\n", + " \"flow_mol_phase_comp\": m.fs.pervap.ret_flow,\n", + " \"temperature\": m.fs.pervap.temperature_out,\n", + " \"pressure\": m.fs.pervap.pressure_out,\n", + "}\n", + "permeate_dict = {\n", + " \"flow_mol_phase_comp\": m.fs.pervap.perm_flow,\n", + " \"temperature\": m.fs.pervap.temperature_out,\n", + " \"pressure\": m.fs.pervap.vacuum,\n", + "}\n", + "\n", + "m.fs.pervap.add_ports(name=\"inlet\", member_dict=inlet_dict)\n", + "m.fs.pervap.add_ports(name=\"retentate\", member_dict=retentate_dict)\n", + "m.fs.pervap.add_ports(name=\"permeate\", member_dict=permeate_dict)\n", + "\n", + "# internal vars for skeleton\n", + "energy_activation_dict = {\n", + " (0, \"Liq\", \"water\"): 51e3,\n", + " (0, \"Liq\", \"ethylene_glycol\"): 53e3,\n", + "}\n", + "m.fs.pervap.energy_activation = Var(\n", + " m.fs.time,\n", + " m.fs.pervap.phase_list,\n", + " m.fs.pervap.comp_list,\n", + " initialize=energy_activation_dict,\n", + " units=pyunits.J / pyunits.mol,\n", + ")\n", + "m.fs.pervap.energy_activation.fix()\n", + "\n", + "permeance_dict = {\n", + " (0, \"Liq\", \"water\"): 5611320,\n", + " (0, \"Liq\", \"ethylene_glycol\"): 22358.88,\n", + "} # calculated from literature data\n", + "m.fs.pervap.permeance = Var(\n", + " m.fs.time,\n", + " m.fs.pervap.phase_list,\n", + " m.fs.pervap.comp_list,\n", + " initialize=permeance_dict,\n", + " units=pyunits.mol / pyunits.s / pyunits.m**2,\n", + ")\n", + "m.fs.pervap.permeance.fix()\n", + "\n", + "m.fs.pervap.area = Var(m.fs.time, initialize=6, units=pyunits.m**2)\n", + "m.fs.pervap.area.fix()\n", + "\n", + "latent_heat_dict = {\n", + " (0, \"Liq\", \"water\"): 40.660e3,\n", + " (0, \"Liq\", \"ethylene_glycol\"): 56.9e3,\n", + "}\n", + "m.fs.pervap.latent_heat_of_vaporization = Var(\n", + " m.fs.time,\n", + " m.fs.pervap.phase_list,\n", + " m.fs.pervap.comp_list,\n", + " initialize=latent_heat_dict,\n", + " units=pyunits.J / pyunits.mol,\n", + ")\n", + "m.fs.pervap.latent_heat_of_vaporization.fix()\n", + "m.fs.pervap.heat_duty = Var(\n", + " m.fs.time, initialize=1, units=pyunits.J / pyunits.s\n", + ") # we will calculate this later" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's define our surrogate equations for flux and permeance, and link them to the port variables. Users can use this structure to write custom relations between inlet and outlet streams; for example, here we define the outlet flow of the pervaporation unit as a sum of the inlet flow and calculated recovery fluxes. By defining model constraints in lieu of rigorous mass balances, we add the flux as a custom mass balance term via an empirical correlation and calculate only the condensation duty rather than implementing full energy balance calculations:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Surrogate and first principles model equations\n", + "\n", + "# flux equation (gas constant is defined as J/mol-K)\n", + "\n", + "\n", + "def rule_permeate_flux(pervap, t, p, i):\n", + " return pervap.permeate.flow_mol_phase_comp[t, p, i] / pervap.area[t] == (\n", + " pervap.permeance[t, p, i]\n", + " * exp(\n", + " -pervap.energy_activation[t, p, i]\n", + " / (Constants.gas_constant * pervap.inlet.temperature[t])\n", + " )\n", + " )\n", + "\n", + "\n", + "m.fs.pervap.eq_permeate_flux = Constraint(\n", + " m.fs.time, m.fs.pervap.phase_list, m.fs.pervap.comp_list, rule=rule_permeate_flux\n", + ")\n", + "\n", + "# permeate condensation equation\n", + "# heat duty based on condensing all of permeate product vapor\n", + "# avoids the need for a Heater or HeatExchanger unit model\n", + "\n", + "\n", + "def rule_duty(pervap, t):\n", + " return pervap.heat_duty[t] == sum(\n", + " pervap.latent_heat_of_vaporization[t, p, i]\n", + " * pervap.permeate.flow_mol_phase_comp[t, p, i]\n", + " for p in pervap.phase_list\n", + " for i in pervap.comp_list\n", + " )\n", + "\n", + "\n", + "m.fs.pervap.eq_duty = Constraint(m.fs.time, rule=rule_duty)\n", + "\n", + "\n", + "# flow equation adding total recovery as a custom mass balance term\n", + "def rule_retentate_flow(pervap, t, p, i):\n", + " return pervap.retentate.flow_mol_phase_comp[t, p, i] == (\n", + " pervap.inlet.flow_mol_phase_comp[t, p, i]\n", + " - pervap.permeate.flow_mol_phase_comp[t, p, i]\n", + " )\n", + "\n", + "\n", + "m.fs.pervap.eq_retentate_flow = Constraint(\n", + " m.fs.time, m.fs.pervap.phase_list, m.fs.pervap.comp_list, rule=rule_retentate_flow\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, let's define the Arc connecting our two models (IDAES Mixer and custom Pervaporation) and build the flowsheet network:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s01 = Arc(source=m.fs.WATER.outlet, destination=m.fs.M101.water_feed)\n", + "m.fs.s02 = Arc(source=m.fs.GLYCOL.outlet, destination=m.fs.M101.glycol_feed)\n", + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.pervap.inlet)\n", + "m.fs.s04 = Arc(source=m.fs.pervap.permeate, destination=m.fs.PERMEATE.inlet)\n", + "m.fs.s05 = Arc(source=m.fs.pervap.retentate, destination=m.fs.RETENTATE.inlet)\n", + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see how many degrees of freedom the flowsheet has:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.3 Inlet Specifications\n", + "\n", + "To obtain a square problem with zero degrees of freedom, we specify the inlet water flow, ethylene glycol flow, temperature and pressure for each feed stream, as well as the permeate stream pressure:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(0.34) # mol/s\n", + "m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(1e-6) # mol/s\n", + "m.fs.WATER.outlet.temperature.fix(318.15) # K\n", + "m.fs.WATER.outlet.pressure.fix(101.325e3) # Pa\n", + "\n", + "m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(1e-6) # mol/s\n", + "m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(0.66) # mol/s\n", + "m.fs.GLYCOL.outlet.temperature.fix(318.15) # K\n", + "m.fs.GLYCOL.outlet.pressure.fix(101.325e3) # Pa" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Additionally, we need to pass rules defining the temperature and pressure outlets of the pervaporation unit:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Add a constraint to calculate the outlet temperature.\n", + "# Here, assume outlet temperature is the same as inlet temperature for illustration\n", + "# in reality, temperature change from latent heat loss through membrane is negligible\n", + "\n", + "\n", + "def rule_temp_out(pervap, t):\n", + " return pervap.inlet.temperature[t] == pervap.retentate.temperature[t]\n", + "\n", + "\n", + "m.fs.pervap.temperature_out_calculation = Constraint(m.fs.time, rule=rule_temp_out)\n", + "\n", + "# Add a constraint to calculate the retentate pressure\n", + "# Here, assume the retentate pressure is the same as the inlet pressure for illustration\n", + "# in reality, pressure change from mass loss through membrane is negligible\n", + "\n", + "\n", + "def rule_pres_out(pervap, t):\n", + " return pervap.inlet.pressure[t] == pervap.retentate.pressure[t]\n", + "\n", + "\n", + "m.fs.pervap.pressure_out_calculation = Constraint(m.fs.time, rule=rule_pres_out)\n", + "\n", + "# fix permeate vacuum pressure\n", + "m.fs.PERMEATE.inlet.pressure.fix(1.3e3)\n", + "\n", + "assert degrees_of_freedom(m) == 0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.4 Custom Initialization\n", + "In addition to allowing custom variable and constraint definitions, the Skeleton model enables implementation of a custom initialization scheme. Complex unit operations may present unique tractability issues, and users have precise control over piecewise unit model solving." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Add this to the imports\n", + "from pyomo.util.calc_var_value import calculate_variable_from_constraint\n", + "\n", + "\n", + "def my_initialize(unit, **kwargs):\n", + " # Callback for user provided initialization sequence\n", + " # Fix the inlet state\n", + " unit.inlet.flow_mol_phase_comp.fix()\n", + " unit.inlet.pressure.fix()\n", + " unit.inlet.temperature.fix()\n", + "\n", + " # Calculate the values of the remaining variables\n", + " for t in m.fs.time:\n", + "\n", + " calculate_variable_from_constraint(\n", + " unit.permeate.flow_mol_phase_comp[t, \"Liq\", \"water\"],\n", + " unit.eq_permeate_flux[t, \"Liq\", \"water\"],\n", + " )\n", + "\n", + " calculate_variable_from_constraint(\n", + " unit.permeate.flow_mol_phase_comp[t, \"Liq\", \"ethylene_glycol\"],\n", + " unit.eq_permeate_flux[t, \"Liq\", \"ethylene_glycol\"],\n", + " )\n", + "\n", + " calculate_variable_from_constraint(unit.heat_duty[t], unit.eq_duty[t])\n", + "\n", + " calculate_variable_from_constraint(\n", + " unit.retentate.flow_mol_phase_comp[t, \"Liq\", \"water\"],\n", + " unit.eq_retentate_flow[t, \"Liq\", \"water\"],\n", + " )\n", + "\n", + " calculate_variable_from_constraint(\n", + " unit.retentate.flow_mol_phase_comp[t, \"Liq\", \"ethylene_glycol\"],\n", + " unit.eq_retentate_flow[t, \"Liq\", \"ethylene_glycol\"],\n", + " )\n", + "\n", + " calculate_variable_from_constraint(\n", + " unit.retentate.temperature[t], unit.temperature_out_calculation[t]\n", + " )\n", + "\n", + " calculate_variable_from_constraint(\n", + " unit.retentate.pressure[t], unit.pressure_out_calculation[t]\n", + " )\n", + "\n", + " assert degrees_of_freedom(unit) == 0\n", + " if degrees_of_freedom(unit) == 0:\n", + " res = solver.solve(unit, tee=True)\n", + " unit.inlet.flow_mol_phase_comp.unfix()\n", + " unit.inlet.temperature.unfix()\n", + " unit.inlet.pressure.unfix()\n", + " print(\"Custom initialization routine complete: \", res.solver.message)\n", + "\n", + "\n", + "solver = get_solver()\n", + "\n", + "m.fs.WATER.initialize()\n", + "propagate_state(m.fs.s01)\n", + "\n", + "m.fs.GLYCOL.initialize()\n", + "propagate_state(m.fs.s02)\n", + "\n", + "m.fs.pervap.config.initializer = my_initialize\n", + "my_initialize(m.fs.pervap)\n", + "propagate_state(m.fs.s03)\n", + "\n", + "m.fs.PERMEATE.initialize()\n", + "propagate_state(m.fs.s04)\n", + "\n", + "m.fs.RETENTATE.initialize()\n", + "\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's check the results:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# print results\n", + "\n", + "m.fs.WATER.report()\n", + "m.fs.GLYCOL.report()\n", + "m.fs.PERMEATE.report()\n", + "m.fs.RETENTATE.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# separation factor for results analysis\n", + "m.fs.inlet_water_frac = Expression(\n", + " expr=(\n", + " m.fs.pervap.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", + " / sum(\n", + " m.fs.pervap.inlet.flow_mol_phase_comp[0, \"Liq\", i]\n", + " for i in m.fs.pervap.comp_list\n", + " )\n", + " )\n", + ")\n", + "m.fs.permeate_water_frac = Expression(\n", + " expr=(\n", + " m.fs.pervap.permeate.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", + " / sum(\n", + " m.fs.pervap.permeate.flow_mol_phase_comp[0, \"Liq\", i]\n", + " for i in m.fs.pervap.comp_list\n", + " )\n", + " )\n", + ")\n", + "m.fs.separation_factor = Expression(\n", + " expr=(m.fs.permeate_water_frac / (1 - m.fs.permeate_water_frac))\n", + " / (m.fs.inlet_water_frac / (1 - m.fs.inlet_water_frac))\n", + ")\n", + "\n", + "print(f\"Inlet water mole fraction: {value(m.fs.inlet_water_frac)}\")\n", + "print(f\"Permeate water mole fraction: {value(m.fs.permeate_water_frac)}\")\n", + "print(f\"Separation factor: {value(m.fs.separation_factor)}\")\n", + "print(f\"Condensation duty: {value(m.fs.pervap.heat_duty[0]/1000)} kW\")\n", + "print(\n", + " f\"Duty per mole water recovered: {value(m.fs.pervap.heat_duty[0]/(1000*m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, 'Liq', 'water']*3600))} kW-h / mol\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# check results\n", + "assert check_optimal_termination(results)\n", + "assert_units_consistent(m)\n", + "\n", + "assert value(\n", + " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", + ") == pytest.approx(0.14258566, rel=1e-5)\n", + "assert value(\n", + " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", + ") == pytest.approx(0.000266748768, rel=1e-5)\n", + "assert value(\n", + " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", + ") == pytest.approx(0.19741534, rel=1e-5)\n", + "assert value(\n", + " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", + ") == pytest.approx(0.65973425, rel=1e-5)\n", + "assert value(m.fs.separation_factor) == pytest.approx(1037.6188, rel=1e-5)\n", + "assert value(m.fs.pervap.heat_duty[0]) == pytest.approx(5812.7111, rel=1e-5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3. Optimization\n", + "\n", + "Suppose we wish to characterize the membrane behavior by calculating the maximum inlet water mole fraction allowing a separation factor of at least 100 (typical value for high-efficiency separation processes such as gas separation of CO2/N2). We need to fix total inlet flow to ensure physically-sound solutions. We can quickly modify and resolve the model, and check some key results:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# unfix inlet flows but fix total to prevent divergence during solve\n", + "m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].unfix()\n", + "m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].unfix()\n", + "m.fs.total_flow = Constraint(\n", + " expr=m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", + " + m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", + " == 1 * pyunits.mol / pyunits.s\n", + ")\n", + "\n", + "# set criteria for separation factor\n", + "m.fs.sep_min = Constraint(expr=m.fs.separation_factor >= 100)\n", + "\n", + "# set objective - defaults to minimization\n", + "m.fs.obj = Objective(expr=m.fs.inlet_water_frac, sense=maximize)\n", + "\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# print results\n", + "\n", + "m.fs.WATER.report()\n", + "m.fs.GLYCOL.report()\n", + "m.fs.PERMEATE.report()\n", + "m.fs.RETENTATE.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(f\"Inlet water mole fraction: {value(m.fs.inlet_water_frac)}\")\n", + "print(f\"Permeate water mole fraction: {value(m.fs.permeate_water_frac)}\")\n", + "print(f\"Separation factor: {value(m.fs.separation_factor)}\")\n", + "print(f\"Condensation duty: {value(m.fs.pervap.heat_duty[0]/1000)} kW\")\n", + "print(\n", + " f\"Duty per mole water recovered: {value(m.fs.pervap.heat_duty[0]/(1000*m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, 'Liq', 'water']*3600))} kW-h / mol\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# check results\n", + "assert check_optimal_termination(results)\n", + "assert_units_consistent(m)\n", + "\n", + "assert value(\n", + " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", + ") == pytest.approx(0.14258566, rel=1e-5)\n", + "assert value(\n", + " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", + ") == pytest.approx(0.000266748768, rel=1e-5)\n", + "assert value(\n", + " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", + ") == pytest.approx(0.69981938, rel=1e-5)\n", + "assert value(\n", + " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", + ") == pytest.approx(0.15733020, rel=1e-5)\n", + "assert value(m.fs.separation_factor) == pytest.approx(100.000067, rel=1e-5)\n", + "assert value(m.fs.pervap.heat_duty[0]) == pytest.approx(5812.7111, rel=1e-5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4. Summary\n", + "\n", + "The IDAES Skeleton Unit Model is a powerful tool for implementing relatively simple first-princples, surrogate-based or empirical unit operations. More crucially, users can add their own custom models and integrate them into a larger IDAES flowsheet without adding control volumes or rigorous flow balance and equilibrium calculations when not required. The pervaporation example displays a case where all model equations are empirical correlations or simple manual calculations, with a small number of state variable and port connections, and the Skeleton model avoids complex calculations that impact model tractability. The example also demonstrates adding a custom initialization scheme to handle internally model degrees of freedom, a feature providing greater user control than with most IDAES unit models." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit_usr.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit_usr.ipynb index 4a3fab04..d20631c8 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit_usr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/skeleton_unit_usr.ipynb @@ -1,728 +1,729 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# IDAES Skeleton Unit Model\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "This notebook demonstrates usage of the IDAES Skeleton Unit Model, which provides a generic \"bare bones\" unit for user-defined models and custom variable and constraint sets. To allow maximum versatility, this unit may be defined as a surrogate model or a custom equation-oriented model. Users must add ports and variables that match connected models, and this is facilitated through a provided method to add port-variable sets.\n", - "\n", - "For users who wish to train surrogates with IDAES tools and insert obtained models into a flowsheet, see more detailed information on [IDAES Surrogate Tools](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/index.html)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. Motivation\n", - "\n", - "In many cases, a specific application requires a unique unit operation that does not exist in the IDAES repository. Custom user models may source from external scripts, import surrogate equations or use first-principles calculations. However, IDAES flowsheets adhere to a standardized modeling hierarchy and simple Pyomo models do not always follow these conventions. Additionally, simple flowsheet submodels often require integration with other IDAES unit models which requires consistency between corresponding port variables, stream properties and physical unit sets, as well as proper usage of `ControlVolume` blocks.\n", - "\n", - "The IDAES `SkeletonUnitModel` allows custom creation of user models blocks that do not require `ControlVolume` blocks, and enabling connection with standard IDAES unit models that do contain `ControlVolume` blocks. To motivate the usefulness and versatility of this tool, we will consider a simple pervaporation unit. The custom model does not require rigorous thermodynamic calculations contained in adjacent unit models, and using a Skeleton model allows definition of only required variables and constraints. The new block does require state variable connections for the inlet and outlet streams. We will demonstrate this scenario below to highlight the usage and benefits of the Skeleton model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2. Example - Pervaporation\n", - "\n", - "Pervaporation is a low-energy separation process, and is particularly advantageous over distillation for azeotropic solutions or aqueous mixtures of heavy alcohols. Ethylene glycol is more environmentally friendly than typical chloride- and bromide-based dessicants, and is a common choice for commercial recovery of water from flue gas via liquid spray columns. Due to ethylene glycol's high boiling point, diffusion-based water recovery is economically favorable compared to distillation-based processes. The following example and flux correlation are taken from the literature source below:\n", - "\n", - "Jennifer Runhong Du, Amit Chakma, X. Feng, Dehydration of ethylene glycol by pervaporation using poly(N,N-dimethylaminoethyl methacrylate)/polysulfone composite membranes, Separation and Purification Technology, Volume 64, Issue 1, 2008, Pages 63-70, ISSN 1383-5866, https://doi.org/10.1016/j.seppur.2008.08.004.\n", - "\n", - "The process is adapted from the literature, utilizing an inlet aqueous glycol feed circulated through a feed tank-membrane-feed tank recycle loop while permeate is continuously extracted by the membrane. To demonstrate the usefulness of the Skeleton model, we will model this system as a Mixer and custom Pervaporation unit per the diagram below and define the flux as an empirical custom mass balance term rather than requiring rigorous diffusion calculations. We will also circumvent the need for a vapor phase and VLE calculations by manually calculating the duty to condense and collect permeate vapor, and use correlations for steady-state fluxes to avoid a recycle requiring tear calculations.\n", - "\n", - "![](pervaporation_process.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.1 Pyomo and IDAES Imports\n", - "We will begin with relevant imports. We will need basic Pyomo and IDAES components:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import pytest\n", - "from pyomo.environ import (\n", - " check_optimal_termination,\n", - " ConcreteModel,\n", - " Constraint,\n", - " Expression,\n", - " Objective,\n", - " maximize,\n", - " Var,\n", - " Set,\n", - " TransformationFactory,\n", - " value,\n", - " exp,\n", - " units as pyunits,\n", - ")\n", - "from pyomo.network import Arc\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.models.unit_models import Feed, SkeletonUnitModel, Mixer, Product\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state\n", - "from idaes.core.solvers import get_solver\n", - "from pyomo.util.check_units import assert_units_consistent\n", - "\n", - "# import thermophysical properties\n", - "import eg_h2o_ideal as thermo_props\n", - "from idaes.models.properties.modular_properties import GenericParameterBlock\n", - "from idaes.core.util.constants import Constants" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.2 Build Flowsheet\n", - "\n", - "We will build a simple model manually defining state variables relations entering and exiting the pervaporation unit. As shown below, we may define our pre-separation mixer as usual:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# build the flowsheet\n", - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)\n", - "\n", - "m.fs.thermo_params = GenericParameterBlock(**thermo_props.config_dict)\n", - "\n", - "m.fs.WATER = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.GLYCOL = Feed(property_package=m.fs.thermo_params)\n", - "\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params, inlet_list=[\"water_feed\", \"glycol_feed\"]\n", - ")\n", - "\n", - "m.fs.RETENTATE = Product(property_package=m.fs.thermo_params)\n", - "m.fs.PERMEATE = Product(property_package=m.fs.thermo_params)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.2 Defining Skeleton Model and Connections\n", - "\n", - "Now that our flowsheet exists, we can manually define variables, units, constraints and ports for our custom pervaporation unit model. By using a Skeleton model, we avoid rigorous mass and energy balances and phase equilibrium which impact model tractability. Instead, we define state variable relations as below - note that we include the fluxes as outlet flow terms. In this model, the variables specify an `FpcTP` system where molar flow of each component, temperature and pressure are selected as state variables:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# define Skeleton model for pervaporation unit\n", - "m.fs.pervap = SkeletonUnitModel(dynamic=False)\n", - "m.fs.pervap.comp_list = Set(initialize=[\"water\", \"ethylene_glycol\"])\n", - "m.fs.pervap.phase_list = Set(initialize=[\"Liq\"])\n", - "\n", - "# input vars for skeleton\n", - "# m.fs.time is a pre-initialized Set belonging to the FlowsheetBlock; for dynamic=False, time=[0]\n", - "m.fs.pervap.flow_in = Var(\n", - " m.fs.time,\n", - " m.fs.pervap.phase_list,\n", - " m.fs.pervap.comp_list,\n", - " initialize=1.0,\n", - " units=pyunits.mol / pyunits.s,\n", - ")\n", - "m.fs.pervap.temperature_in = Var(m.fs.time, initialize=298.15, units=pyunits.K)\n", - "m.fs.pervap.pressure_in = Var(m.fs.time, initialize=101e3, units=pyunits.Pa)\n", - "\n", - "# output vars for skeleton\n", - "m.fs.pervap.perm_flow = Var(\n", - " m.fs.time,\n", - " m.fs.pervap.phase_list,\n", - " m.fs.pervap.comp_list,\n", - " initialize=1.0,\n", - " units=pyunits.mol / pyunits.s,\n", - ")\n", - "m.fs.pervap.ret_flow = Var(\n", - " m.fs.time,\n", - " m.fs.pervap.phase_list,\n", - " m.fs.pervap.comp_list,\n", - " initialize=1.0,\n", - " units=pyunits.mol / pyunits.s,\n", - ")\n", - "m.fs.pervap.temperature_out = Var(m.fs.time, initialize=298.15, units=pyunits.K)\n", - "m.fs.pervap.pressure_out = Var(m.fs.time, initialize=101e3, units=pyunits.Pa)\n", - "m.fs.pervap.vacuum = Var(m.fs.time, initialize=1.3e3, units=pyunits.Pa)\n", - "\n", - "# dictionaries relating state properties to custom variables\n", - "inlet_dict = {\n", - " \"flow_mol_phase_comp\": m.fs.pervap.flow_in,\n", - " \"temperature\": m.fs.pervap.temperature_in,\n", - " \"pressure\": m.fs.pervap.pressure_in,\n", - "}\n", - "retentate_dict = {\n", - " \"flow_mol_phase_comp\": m.fs.pervap.ret_flow,\n", - " \"temperature\": m.fs.pervap.temperature_out,\n", - " \"pressure\": m.fs.pervap.pressure_out,\n", - "}\n", - "permeate_dict = {\n", - " \"flow_mol_phase_comp\": m.fs.pervap.perm_flow,\n", - " \"temperature\": m.fs.pervap.temperature_out,\n", - " \"pressure\": m.fs.pervap.vacuum,\n", - "}\n", - "\n", - "m.fs.pervap.add_ports(name=\"inlet\", member_dict=inlet_dict)\n", - "m.fs.pervap.add_ports(name=\"retentate\", member_dict=retentate_dict)\n", - "m.fs.pervap.add_ports(name=\"permeate\", member_dict=permeate_dict)\n", - "\n", - "# internal vars for skeleton\n", - "energy_activation_dict = {\n", - " (0, \"Liq\", \"water\"): 51e3,\n", - " (0, \"Liq\", \"ethylene_glycol\"): 53e3,\n", - "}\n", - "m.fs.pervap.energy_activation = Var(\n", - " m.fs.time,\n", - " m.fs.pervap.phase_list,\n", - " m.fs.pervap.comp_list,\n", - " initialize=energy_activation_dict,\n", - " units=pyunits.J / pyunits.mol,\n", - ")\n", - "m.fs.pervap.energy_activation.fix()\n", - "\n", - "permeance_dict = {\n", - " (0, \"Liq\", \"water\"): 5611320,\n", - " (0, \"Liq\", \"ethylene_glycol\"): 22358.88,\n", - "} # calculated from literature data\n", - "m.fs.pervap.permeance = Var(\n", - " m.fs.time,\n", - " m.fs.pervap.phase_list,\n", - " m.fs.pervap.comp_list,\n", - " initialize=permeance_dict,\n", - " units=pyunits.mol / pyunits.s / pyunits.m**2,\n", - ")\n", - "m.fs.pervap.permeance.fix()\n", - "\n", - "m.fs.pervap.area = Var(m.fs.time, initialize=6, units=pyunits.m**2)\n", - "m.fs.pervap.area.fix()\n", - "\n", - "latent_heat_dict = {\n", - " (0, \"Liq\", \"water\"): 40.660e3,\n", - " (0, \"Liq\", \"ethylene_glycol\"): 56.9e3,\n", - "}\n", - "m.fs.pervap.latent_heat_of_vaporization = Var(\n", - " m.fs.time,\n", - " m.fs.pervap.phase_list,\n", - " m.fs.pervap.comp_list,\n", - " initialize=latent_heat_dict,\n", - " units=pyunits.J / pyunits.mol,\n", - ")\n", - "m.fs.pervap.latent_heat_of_vaporization.fix()\n", - "m.fs.pervap.heat_duty = Var(\n", - " m.fs.time, initialize=1, units=pyunits.J / pyunits.s\n", - ") # we will calculate this later" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's define our surrogate equations for flux and permeance, and link them to the port variables. Users can use this structure to write custom relations between inlet and outlet streams; for example, here we define the outlet flow of the pervaporation unit as a sum of the inlet flow and calculated recovery fluxes. By defining model constraints in lieu of rigorous mass balances, we add the flux as a custom mass balance term via an empirical correlation and calculate only the condensation duty rather than implementing full energy balance calculations:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Surrogate and first principles model equations\n", - "\n", - "# flux equation (gas constant is defined as J/mol-K)\n", - "\n", - "\n", - "def rule_permeate_flux(pervap, t, p, i):\n", - " return pervap.permeate.flow_mol_phase_comp[t, p, i] / pervap.area[t] == (\n", - " pervap.permeance[t, p, i]\n", - " * exp(\n", - " -pervap.energy_activation[t, p, i]\n", - " / (Constants.gas_constant * pervap.inlet.temperature[t])\n", - " )\n", - " )\n", - "\n", - "\n", - "m.fs.pervap.eq_permeate_flux = Constraint(\n", - " m.fs.time, m.fs.pervap.phase_list, m.fs.pervap.comp_list, rule=rule_permeate_flux\n", - ")\n", - "\n", - "# permeate condensation equation\n", - "# heat duty based on condensing all of permeate product vapor\n", - "# avoids the need for a Heater or HeatExchanger unit model\n", - "\n", - "\n", - "def rule_duty(pervap, t):\n", - " return pervap.heat_duty[t] == sum(\n", - " pervap.latent_heat_of_vaporization[t, p, i]\n", - " * pervap.permeate.flow_mol_phase_comp[t, p, i]\n", - " for p in pervap.phase_list\n", - " for i in pervap.comp_list\n", - " )\n", - "\n", - "\n", - "m.fs.pervap.eq_duty = Constraint(m.fs.time, rule=rule_duty)\n", - "\n", - "\n", - "# flow equation adding total recovery as a custom mass balance term\n", - "def rule_retentate_flow(pervap, t, p, i):\n", - " return pervap.retentate.flow_mol_phase_comp[t, p, i] == (\n", - " pervap.inlet.flow_mol_phase_comp[t, p, i]\n", - " - pervap.permeate.flow_mol_phase_comp[t, p, i]\n", - " )\n", - "\n", - "\n", - "m.fs.pervap.eq_retentate_flow = Constraint(\n", - " m.fs.time, m.fs.pervap.phase_list, m.fs.pervap.comp_list, rule=rule_retentate_flow\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, let's define the Arc connecting our two models (IDAES Mixer and custom Pervaporation) and build the flowsheet network:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s01 = Arc(source=m.fs.WATER.outlet, destination=m.fs.M101.water_feed)\n", - "m.fs.s02 = Arc(source=m.fs.GLYCOL.outlet, destination=m.fs.M101.glycol_feed)\n", - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.pervap.inlet)\n", - "m.fs.s04 = Arc(source=m.fs.pervap.permeate, destination=m.fs.PERMEATE.inlet)\n", - "m.fs.s05 = Arc(source=m.fs.pervap.retentate, destination=m.fs.RETENTATE.inlet)\n", - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's see how many degrees of freedom the flowsheet has:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.3 Inlet Specifications\n", - "\n", - "To obtain a square problem with zero degrees of freedom, we specify the inlet water flow, ethylene glycol flow, temperature and pressure for each feed stream, as well as the permeate stream pressure:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(0.34) # mol/s\n", - "m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(1e-6) # mol/s\n", - "m.fs.WATER.outlet.temperature.fix(318.15) # K\n", - "m.fs.WATER.outlet.pressure.fix(101.325e3) # Pa\n", - "\n", - "m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(1e-6) # mol/s\n", - "m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(0.66) # mol/s\n", - "m.fs.GLYCOL.outlet.temperature.fix(318.15) # K\n", - "m.fs.GLYCOL.outlet.pressure.fix(101.325e3) # Pa" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Additionally, we need to pass rules defining the temperature and pressure outlets of the pervaporation unit:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Add a constraint to calculate the outlet temperature.\n", - "# Here, assume outlet temperature is the same as inlet temperature for illustration\n", - "# in reality, temperature change from latent heat loss through membrane is negligible\n", - "\n", - "\n", - "def rule_temp_out(pervap, t):\n", - " return pervap.inlet.temperature[t] == pervap.retentate.temperature[t]\n", - "\n", - "\n", - "m.fs.pervap.temperature_out_calculation = Constraint(m.fs.time, rule=rule_temp_out)\n", - "\n", - "# Add a constraint to calculate the retentate pressure\n", - "# Here, assume the retentate pressure is the same as the inlet pressure for illustration\n", - "# in reality, pressure change from mass loss through membrane is negligible\n", - "\n", - "\n", - "def rule_pres_out(pervap, t):\n", - " return pervap.inlet.pressure[t] == pervap.retentate.pressure[t]\n", - "\n", - "\n", - "m.fs.pervap.pressure_out_calculation = Constraint(m.fs.time, rule=rule_pres_out)\n", - "\n", - "# fix permeate vacuum pressure\n", - "m.fs.PERMEATE.inlet.pressure.fix(1.3e3)\n", - "\n", - "assert degrees_of_freedom(m) == 0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.4 Custom Initialization\n", - "In addition to allowing custom variable and constraint definitions, the Skeleton model enables implementation of a custom initialization scheme. Complex unit operations may present unique tractability issues, and users have precise control over piecewise unit model solving." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Add this to the imports\n", - "from pyomo.util.calc_var_value import calculate_variable_from_constraint\n", - "\n", - "\n", - "def my_initialize(unit, **kwargs):\n", - " # Callback for user provided initialization sequence\n", - " # Fix the inlet state\n", - " unit.inlet.flow_mol_phase_comp.fix()\n", - " unit.inlet.pressure.fix()\n", - " unit.inlet.temperature.fix()\n", - "\n", - " # Calculate the values of the remaining variables\n", - " for t in m.fs.time:\n", - "\n", - " calculate_variable_from_constraint(\n", - " unit.permeate.flow_mol_phase_comp[t, \"Liq\", \"water\"],\n", - " unit.eq_permeate_flux[t, \"Liq\", \"water\"],\n", - " )\n", - "\n", - " calculate_variable_from_constraint(\n", - " unit.permeate.flow_mol_phase_comp[t, \"Liq\", \"ethylene_glycol\"],\n", - " unit.eq_permeate_flux[t, \"Liq\", \"ethylene_glycol\"],\n", - " )\n", - "\n", - " calculate_variable_from_constraint(unit.heat_duty[t], unit.eq_duty[t])\n", - "\n", - " calculate_variable_from_constraint(\n", - " unit.retentate.flow_mol_phase_comp[t, \"Liq\", \"water\"],\n", - " unit.eq_retentate_flow[t, \"Liq\", \"water\"],\n", - " )\n", - "\n", - " calculate_variable_from_constraint(\n", - " unit.retentate.flow_mol_phase_comp[t, \"Liq\", \"ethylene_glycol\"],\n", - " unit.eq_retentate_flow[t, \"Liq\", \"ethylene_glycol\"],\n", - " )\n", - "\n", - " calculate_variable_from_constraint(\n", - " unit.retentate.temperature[t], unit.temperature_out_calculation[t]\n", - " )\n", - "\n", - " calculate_variable_from_constraint(\n", - " unit.retentate.pressure[t], unit.pressure_out_calculation[t]\n", - " )\n", - "\n", - " assert degrees_of_freedom(unit) == 0\n", - " if degrees_of_freedom(unit) == 0:\n", - " res = solver.solve(unit, tee=True)\n", - " unit.inlet.flow_mol_phase_comp.unfix()\n", - " unit.inlet.temperature.unfix()\n", - " unit.inlet.pressure.unfix()\n", - " print(\"Custom initialization routine complete: \", res.solver.message)\n", - "\n", - "\n", - "solver = get_solver()\n", - "\n", - "m.fs.WATER.initialize()\n", - "propagate_state(m.fs.s01)\n", - "\n", - "m.fs.GLYCOL.initialize()\n", - "propagate_state(m.fs.s02)\n", - "\n", - "m.fs.pervap.config.initializer = my_initialize\n", - "my_initialize(m.fs.pervap)\n", - "propagate_state(m.fs.s03)\n", - "\n", - "m.fs.PERMEATE.initialize()\n", - "propagate_state(m.fs.s04)\n", - "\n", - "m.fs.RETENTATE.initialize()\n", - "\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's check the results:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# print results\n", - "\n", - "m.fs.WATER.report()\n", - "m.fs.GLYCOL.report()\n", - "m.fs.PERMEATE.report()\n", - "m.fs.RETENTATE.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# separation factor for results analysis\n", - "m.fs.inlet_water_frac = Expression(\n", - " expr=(\n", - " m.fs.pervap.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", - " / sum(\n", - " m.fs.pervap.inlet.flow_mol_phase_comp[0, \"Liq\", i]\n", - " for i in m.fs.pervap.comp_list\n", - " )\n", - " )\n", - ")\n", - "m.fs.permeate_water_frac = Expression(\n", - " expr=(\n", - " m.fs.pervap.permeate.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", - " / sum(\n", - " m.fs.pervap.permeate.flow_mol_phase_comp[0, \"Liq\", i]\n", - " for i in m.fs.pervap.comp_list\n", - " )\n", - " )\n", - ")\n", - "m.fs.separation_factor = Expression(\n", - " expr=(m.fs.permeate_water_frac / (1 - m.fs.permeate_water_frac))\n", - " / (m.fs.inlet_water_frac / (1 - m.fs.inlet_water_frac))\n", - ")\n", - "\n", - "print(f\"Inlet water mole fraction: {value(m.fs.inlet_water_frac)}\")\n", - "print(f\"Permeate water mole fraction: {value(m.fs.permeate_water_frac)}\")\n", - "print(f\"Separation factor: {value(m.fs.separation_factor)}\")\n", - "print(f\"Condensation duty: {value(m.fs.pervap.heat_duty[0]/1000)} kW\")\n", - "print(\n", - " f\"Duty per mole water recovered: {value(m.fs.pervap.heat_duty[0]/(1000*m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, 'Liq', 'water']*3600))} kW-h / mol\"\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# check results\n", - "assert check_optimal_termination(results)\n", - "assert_units_consistent(m)\n", - "\n", - "assert value(\n", - " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", - ") == pytest.approx(0.14258566, rel=1e-5)\n", - "assert value(\n", - " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", - ") == pytest.approx(0.000266748768, rel=1e-5)\n", - "assert value(\n", - " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", - ") == pytest.approx(0.19741534, rel=1e-5)\n", - "assert value(\n", - " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", - ") == pytest.approx(0.65973425, rel=1e-5)\n", - "assert value(m.fs.separation_factor) == pytest.approx(1037.6188, rel=1e-5)\n", - "assert value(m.fs.pervap.heat_duty[0]) == pytest.approx(5812.7111, rel=1e-5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 3. Optimization\n", - "\n", - "Suppose we wish to characterize the membrane behavior by calculating the maximum inlet water mole fraction allowing a separation factor of at least 100 (typical value for high-efficiency separation processes such as gas separation of CO2/N2). We need to fix total inlet flow to ensure physically-sound solutions. We can quickly modify and resolve the model, and check some key results:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# unfix inlet flows but fix total to prevent divergence during solve\n", - "m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].unfix()\n", - "m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].unfix()\n", - "m.fs.total_flow = Constraint(\n", - " expr=m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", - " + m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", - " == 1 * pyunits.mol / pyunits.s\n", - ")\n", - "\n", - "# set criteria for separation factor\n", - "m.fs.sep_min = Constraint(expr=m.fs.separation_factor >= 100)\n", - "\n", - "# set objective - defaults to minimization\n", - "m.fs.obj = Objective(expr=m.fs.inlet_water_frac, sense=maximize)\n", - "\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# print results\n", - "\n", - "m.fs.WATER.report()\n", - "m.fs.GLYCOL.report()\n", - "m.fs.PERMEATE.report()\n", - "m.fs.RETENTATE.report()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(f\"Inlet water mole fraction: {value(m.fs.inlet_water_frac)}\")\n", - "print(f\"Permeate water mole fraction: {value(m.fs.permeate_water_frac)}\")\n", - "print(f\"Separation factor: {value(m.fs.separation_factor)}\")\n", - "print(f\"Condensation duty: {value(m.fs.pervap.heat_duty[0]/1000)} kW\")\n", - "print(\n", - " f\"Duty per mole water recovered: {value(m.fs.pervap.heat_duty[0]/(1000*m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, 'Liq', 'water']*3600))} kW-h / mol\"\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# check results\n", - "assert check_optimal_termination(results)\n", - "assert_units_consistent(m)\n", - "\n", - "assert value(\n", - " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", - ") == pytest.approx(0.14258566, rel=1e-5)\n", - "assert value(\n", - " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", - ") == pytest.approx(0.000266748768, rel=1e-5)\n", - "assert value(\n", - " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", - ") == pytest.approx(0.69981938, rel=1e-5)\n", - "assert value(\n", - " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", - ") == pytest.approx(0.15733020, rel=1e-5)\n", - "assert value(m.fs.separation_factor) == pytest.approx(100.000067, rel=1e-5)\n", - "assert value(m.fs.pervap.heat_duty[0]) == pytest.approx(5812.7111, rel=1e-5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 4. Summary\n", - "\n", - "The IDAES Skeleton Unit Model is a powerful tool for implementing relatively simple first-princples, surrogate-based or empirical unit operations. More crucially, users can add their own custom models and integrate them into a larger IDAES flowsheet without adding control volumes or rigorous flow balance and equilibrium calculations when not required. The pervaporation example displays a case where all model equations are empirical correlations or simple manual calculations, with a small number of state variable and port connections, and the Skeleton model avoids complex calculations that impact model tractability. The example also demonstrates adding a custom initialization scheme to handle internally model degrees of freedom, a feature providing greater user control than with most IDAES unit models." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# IDAES Skeleton Unit Model\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "This notebook demonstrates usage of the IDAES Skeleton Unit Model, which provides a generic \"bare bones\" unit for user-defined models and custom variable and constraint sets. To allow maximum versatility, this unit may be defined as a surrogate model or a custom equation-oriented model. Users must add ports and variables that match connected models, and this is facilitated through a provided method to add port-variable sets.\n", + "\n", + "For users who wish to train surrogates with IDAES tools and insert obtained models into a flowsheet, see more detailed information on [IDAES Surrogate Tools](https://idaes-pse.readthedocs.io/en/stable/explanations/modeling_extensions/surrogate/index.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1. Motivation\n", + "\n", + "In many cases, a specific application requires a unique unit operation that does not exist in the IDAES repository. Custom user models may source from external scripts, import surrogate equations or use first-principles calculations. However, IDAES flowsheets adhere to a standardized modeling hierarchy and simple Pyomo models do not always follow these conventions. Additionally, simple flowsheet submodels often require integration with other IDAES unit models which requires consistency between corresponding port variables, stream properties and physical unit sets, as well as proper usage of `ControlVolume` blocks.\n", + "\n", + "The IDAES `SkeletonUnitModel` allows custom creation of user models blocks that do not require `ControlVolume` blocks, and enabling connection with standard IDAES unit models that do contain `ControlVolume` blocks. To motivate the usefulness and versatility of this tool, we will consider a simple pervaporation unit. The custom model does not require rigorous thermodynamic calculations contained in adjacent unit models, and using a Skeleton model allows definition of only required variables and constraints. The new block does require state variable connections for the inlet and outlet streams. We will demonstrate this scenario below to highlight the usage and benefits of the Skeleton model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Example - Pervaporation\n", + "\n", + "Pervaporation is a low-energy separation process, and is particularly advantageous over distillation for azeotropic solutions or aqueous mixtures of heavy alcohols. Ethylene glycol is more environmentally friendly than typical chloride- and bromide-based dessicants, and is a common choice for commercial recovery of water from flue gas via liquid spray columns. Due to ethylene glycol's high boiling point, diffusion-based water recovery is economically favorable compared to distillation-based processes. The following example and flux correlation are taken from the literature source below:\n", + "\n", + "Jennifer Runhong Du, Amit Chakma, X. Feng, Dehydration of ethylene glycol by pervaporation using poly(N,N-dimethylaminoethyl methacrylate)/polysulfone composite membranes, Separation and Purification Technology, Volume 64, Issue 1, 2008, Pages 63-70, ISSN 1383-5866, https://doi.org/10.1016/j.seppur.2008.08.004.\n", + "\n", + "The process is adapted from the literature, utilizing an inlet aqueous glycol feed circulated through a feed tank-membrane-feed tank recycle loop while permeate is continuously extracted by the membrane. To demonstrate the usefulness of the Skeleton model, we will model this system as a Mixer and custom Pervaporation unit per the diagram below and define the flux as an empirical custom mass balance term rather than requiring rigorous diffusion calculations. We will also circumvent the need for a vapor phase and VLE calculations by manually calculating the duty to condense and collect permeate vapor, and use correlations for steady-state fluxes to avoid a recycle requiring tear calculations.\n", + "\n", + "![](pervaporation_process.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.1 Pyomo and IDAES Imports\n", + "We will begin with relevant imports. We will need basic Pyomo and IDAES components:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pytest\n", + "from pyomo.environ import (\n", + " check_optimal_termination,\n", + " ConcreteModel,\n", + " Constraint,\n", + " Expression,\n", + " Objective,\n", + " maximize,\n", + " Var,\n", + " Set,\n", + " TransformationFactory,\n", + " value,\n", + " exp,\n", + " units as pyunits,\n", + ")\n", + "from pyomo.network import Arc\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.models.unit_models import Feed, SkeletonUnitModel, Mixer, Product\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state\n", + "from idaes.core.solvers import get_solver\n", + "from pyomo.util.check_units import assert_units_consistent\n", + "\n", + "# import thermophysical properties\n", + "import eg_h2o_ideal as thermo_props\n", + "from idaes.models.properties.modular_properties import GenericParameterBlock\n", + "from idaes.core.util.constants import Constants" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.2 Build Flowsheet\n", + "\n", + "We will build a simple model manually defining state variables relations entering and exiting the pervaporation unit. As shown below, we may define our pre-separation mixer as usual:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# build the flowsheet\n", + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)\n", + "\n", + "m.fs.thermo_params = GenericParameterBlock(**thermo_props.config_dict)\n", + "\n", + "m.fs.WATER = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.GLYCOL = Feed(property_package=m.fs.thermo_params)\n", + "\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params, inlet_list=[\"water_feed\", \"glycol_feed\"]\n", + ")\n", + "\n", + "m.fs.RETENTATE = Product(property_package=m.fs.thermo_params)\n", + "m.fs.PERMEATE = Product(property_package=m.fs.thermo_params)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.2 Defining Skeleton Model and Connections\n", + "\n", + "Now that our flowsheet exists, we can manually define variables, units, constraints and ports for our custom pervaporation unit model. By using a Skeleton model, we avoid rigorous mass and energy balances and phase equilibrium which impact model tractability. Instead, we define state variable relations as below - note that we include the fluxes as outlet flow terms. In this model, the variables specify an `FpcTP` system where molar flow of each component, temperature and pressure are selected as state variables:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# define Skeleton model for pervaporation unit\n", + "m.fs.pervap = SkeletonUnitModel(dynamic=False)\n", + "m.fs.pervap.comp_list = Set(initialize=[\"water\", \"ethylene_glycol\"])\n", + "m.fs.pervap.phase_list = Set(initialize=[\"Liq\"])\n", + "\n", + "# input vars for skeleton\n", + "# m.fs.time is a pre-initialized Set belonging to the FlowsheetBlock; for dynamic=False, time=[0]\n", + "m.fs.pervap.flow_in = Var(\n", + " m.fs.time,\n", + " m.fs.pervap.phase_list,\n", + " m.fs.pervap.comp_list,\n", + " initialize=1.0,\n", + " units=pyunits.mol / pyunits.s,\n", + ")\n", + "m.fs.pervap.temperature_in = Var(m.fs.time, initialize=298.15, units=pyunits.K)\n", + "m.fs.pervap.pressure_in = Var(m.fs.time, initialize=101e3, units=pyunits.Pa)\n", + "\n", + "# output vars for skeleton\n", + "m.fs.pervap.perm_flow = Var(\n", + " m.fs.time,\n", + " m.fs.pervap.phase_list,\n", + " m.fs.pervap.comp_list,\n", + " initialize=1.0,\n", + " units=pyunits.mol / pyunits.s,\n", + ")\n", + "m.fs.pervap.ret_flow = Var(\n", + " m.fs.time,\n", + " m.fs.pervap.phase_list,\n", + " m.fs.pervap.comp_list,\n", + " initialize=1.0,\n", + " units=pyunits.mol / pyunits.s,\n", + ")\n", + "m.fs.pervap.temperature_out = Var(m.fs.time, initialize=298.15, units=pyunits.K)\n", + "m.fs.pervap.pressure_out = Var(m.fs.time, initialize=101e3, units=pyunits.Pa)\n", + "m.fs.pervap.vacuum = Var(m.fs.time, initialize=1.3e3, units=pyunits.Pa)\n", + "\n", + "# dictionaries relating state properties to custom variables\n", + "inlet_dict = {\n", + " \"flow_mol_phase_comp\": m.fs.pervap.flow_in,\n", + " \"temperature\": m.fs.pervap.temperature_in,\n", + " \"pressure\": m.fs.pervap.pressure_in,\n", + "}\n", + "retentate_dict = {\n", + " \"flow_mol_phase_comp\": m.fs.pervap.ret_flow,\n", + " \"temperature\": m.fs.pervap.temperature_out,\n", + " \"pressure\": m.fs.pervap.pressure_out,\n", + "}\n", + "permeate_dict = {\n", + " \"flow_mol_phase_comp\": m.fs.pervap.perm_flow,\n", + " \"temperature\": m.fs.pervap.temperature_out,\n", + " \"pressure\": m.fs.pervap.vacuum,\n", + "}\n", + "\n", + "m.fs.pervap.add_ports(name=\"inlet\", member_dict=inlet_dict)\n", + "m.fs.pervap.add_ports(name=\"retentate\", member_dict=retentate_dict)\n", + "m.fs.pervap.add_ports(name=\"permeate\", member_dict=permeate_dict)\n", + "\n", + "# internal vars for skeleton\n", + "energy_activation_dict = {\n", + " (0, \"Liq\", \"water\"): 51e3,\n", + " (0, \"Liq\", \"ethylene_glycol\"): 53e3,\n", + "}\n", + "m.fs.pervap.energy_activation = Var(\n", + " m.fs.time,\n", + " m.fs.pervap.phase_list,\n", + " m.fs.pervap.comp_list,\n", + " initialize=energy_activation_dict,\n", + " units=pyunits.J / pyunits.mol,\n", + ")\n", + "m.fs.pervap.energy_activation.fix()\n", + "\n", + "permeance_dict = {\n", + " (0, \"Liq\", \"water\"): 5611320,\n", + " (0, \"Liq\", \"ethylene_glycol\"): 22358.88,\n", + "} # calculated from literature data\n", + "m.fs.pervap.permeance = Var(\n", + " m.fs.time,\n", + " m.fs.pervap.phase_list,\n", + " m.fs.pervap.comp_list,\n", + " initialize=permeance_dict,\n", + " units=pyunits.mol / pyunits.s / pyunits.m**2,\n", + ")\n", + "m.fs.pervap.permeance.fix()\n", + "\n", + "m.fs.pervap.area = Var(m.fs.time, initialize=6, units=pyunits.m**2)\n", + "m.fs.pervap.area.fix()\n", + "\n", + "latent_heat_dict = {\n", + " (0, \"Liq\", \"water\"): 40.660e3,\n", + " (0, \"Liq\", \"ethylene_glycol\"): 56.9e3,\n", + "}\n", + "m.fs.pervap.latent_heat_of_vaporization = Var(\n", + " m.fs.time,\n", + " m.fs.pervap.phase_list,\n", + " m.fs.pervap.comp_list,\n", + " initialize=latent_heat_dict,\n", + " units=pyunits.J / pyunits.mol,\n", + ")\n", + "m.fs.pervap.latent_heat_of_vaporization.fix()\n", + "m.fs.pervap.heat_duty = Var(\n", + " m.fs.time, initialize=1, units=pyunits.J / pyunits.s\n", + ") # we will calculate this later" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's define our surrogate equations for flux and permeance, and link them to the port variables. Users can use this structure to write custom relations between inlet and outlet streams; for example, here we define the outlet flow of the pervaporation unit as a sum of the inlet flow and calculated recovery fluxes. By defining model constraints in lieu of rigorous mass balances, we add the flux as a custom mass balance term via an empirical correlation and calculate only the condensation duty rather than implementing full energy balance calculations:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Surrogate and first principles model equations\n", + "\n", + "# flux equation (gas constant is defined as J/mol-K)\n", + "\n", + "\n", + "def rule_permeate_flux(pervap, t, p, i):\n", + " return pervap.permeate.flow_mol_phase_comp[t, p, i] / pervap.area[t] == (\n", + " pervap.permeance[t, p, i]\n", + " * exp(\n", + " -pervap.energy_activation[t, p, i]\n", + " / (Constants.gas_constant * pervap.inlet.temperature[t])\n", + " )\n", + " )\n", + "\n", + "\n", + "m.fs.pervap.eq_permeate_flux = Constraint(\n", + " m.fs.time, m.fs.pervap.phase_list, m.fs.pervap.comp_list, rule=rule_permeate_flux\n", + ")\n", + "\n", + "# permeate condensation equation\n", + "# heat duty based on condensing all of permeate product vapor\n", + "# avoids the need for a Heater or HeatExchanger unit model\n", + "\n", + "\n", + "def rule_duty(pervap, t):\n", + " return pervap.heat_duty[t] == sum(\n", + " pervap.latent_heat_of_vaporization[t, p, i]\n", + " * pervap.permeate.flow_mol_phase_comp[t, p, i]\n", + " for p in pervap.phase_list\n", + " for i in pervap.comp_list\n", + " )\n", + "\n", + "\n", + "m.fs.pervap.eq_duty = Constraint(m.fs.time, rule=rule_duty)\n", + "\n", + "\n", + "# flow equation adding total recovery as a custom mass balance term\n", + "def rule_retentate_flow(pervap, t, p, i):\n", + " return pervap.retentate.flow_mol_phase_comp[t, p, i] == (\n", + " pervap.inlet.flow_mol_phase_comp[t, p, i]\n", + " - pervap.permeate.flow_mol_phase_comp[t, p, i]\n", + " )\n", + "\n", + "\n", + "m.fs.pervap.eq_retentate_flow = Constraint(\n", + " m.fs.time, m.fs.pervap.phase_list, m.fs.pervap.comp_list, rule=rule_retentate_flow\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, let's define the Arc connecting our two models (IDAES Mixer and custom Pervaporation) and build the flowsheet network:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s01 = Arc(source=m.fs.WATER.outlet, destination=m.fs.M101.water_feed)\n", + "m.fs.s02 = Arc(source=m.fs.GLYCOL.outlet, destination=m.fs.M101.glycol_feed)\n", + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.pervap.inlet)\n", + "m.fs.s04 = Arc(source=m.fs.pervap.permeate, destination=m.fs.PERMEATE.inlet)\n", + "m.fs.s05 = Arc(source=m.fs.pervap.retentate, destination=m.fs.RETENTATE.inlet)\n", + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see how many degrees of freedom the flowsheet has:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.3 Inlet Specifications\n", + "\n", + "To obtain a square problem with zero degrees of freedom, we specify the inlet water flow, ethylene glycol flow, temperature and pressure for each feed stream, as well as the permeate stream pressure:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(0.34) # mol/s\n", + "m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(1e-6) # mol/s\n", + "m.fs.WATER.outlet.temperature.fix(318.15) # K\n", + "m.fs.WATER.outlet.pressure.fix(101.325e3) # Pa\n", + "\n", + "m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(1e-6) # mol/s\n", + "m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(0.66) # mol/s\n", + "m.fs.GLYCOL.outlet.temperature.fix(318.15) # K\n", + "m.fs.GLYCOL.outlet.pressure.fix(101.325e3) # Pa" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Additionally, we need to pass rules defining the temperature and pressure outlets of the pervaporation unit:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Add a constraint to calculate the outlet temperature.\n", + "# Here, assume outlet temperature is the same as inlet temperature for illustration\n", + "# in reality, temperature change from latent heat loss through membrane is negligible\n", + "\n", + "\n", + "def rule_temp_out(pervap, t):\n", + " return pervap.inlet.temperature[t] == pervap.retentate.temperature[t]\n", + "\n", + "\n", + "m.fs.pervap.temperature_out_calculation = Constraint(m.fs.time, rule=rule_temp_out)\n", + "\n", + "# Add a constraint to calculate the retentate pressure\n", + "# Here, assume the retentate pressure is the same as the inlet pressure for illustration\n", + "# in reality, pressure change from mass loss through membrane is negligible\n", + "\n", + "\n", + "def rule_pres_out(pervap, t):\n", + " return pervap.inlet.pressure[t] == pervap.retentate.pressure[t]\n", + "\n", + "\n", + "m.fs.pervap.pressure_out_calculation = Constraint(m.fs.time, rule=rule_pres_out)\n", + "\n", + "# fix permeate vacuum pressure\n", + "m.fs.PERMEATE.inlet.pressure.fix(1.3e3)\n", + "\n", + "assert degrees_of_freedom(m) == 0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.4 Custom Initialization\n", + "In addition to allowing custom variable and constraint definitions, the Skeleton model enables implementation of a custom initialization scheme. Complex unit operations may present unique tractability issues, and users have precise control over piecewise unit model solving." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Add this to the imports\n", + "from pyomo.util.calc_var_value import calculate_variable_from_constraint\n", + "\n", + "\n", + "def my_initialize(unit, **kwargs):\n", + " # Callback for user provided initialization sequence\n", + " # Fix the inlet state\n", + " unit.inlet.flow_mol_phase_comp.fix()\n", + " unit.inlet.pressure.fix()\n", + " unit.inlet.temperature.fix()\n", + "\n", + " # Calculate the values of the remaining variables\n", + " for t in m.fs.time:\n", + "\n", + " calculate_variable_from_constraint(\n", + " unit.permeate.flow_mol_phase_comp[t, \"Liq\", \"water\"],\n", + " unit.eq_permeate_flux[t, \"Liq\", \"water\"],\n", + " )\n", + "\n", + " calculate_variable_from_constraint(\n", + " unit.permeate.flow_mol_phase_comp[t, \"Liq\", \"ethylene_glycol\"],\n", + " unit.eq_permeate_flux[t, \"Liq\", \"ethylene_glycol\"],\n", + " )\n", + "\n", + " calculate_variable_from_constraint(unit.heat_duty[t], unit.eq_duty[t])\n", + "\n", + " calculate_variable_from_constraint(\n", + " unit.retentate.flow_mol_phase_comp[t, \"Liq\", \"water\"],\n", + " unit.eq_retentate_flow[t, \"Liq\", \"water\"],\n", + " )\n", + "\n", + " calculate_variable_from_constraint(\n", + " unit.retentate.flow_mol_phase_comp[t, \"Liq\", \"ethylene_glycol\"],\n", + " unit.eq_retentate_flow[t, \"Liq\", \"ethylene_glycol\"],\n", + " )\n", + "\n", + " calculate_variable_from_constraint(\n", + " unit.retentate.temperature[t], unit.temperature_out_calculation[t]\n", + " )\n", + "\n", + " calculate_variable_from_constraint(\n", + " unit.retentate.pressure[t], unit.pressure_out_calculation[t]\n", + " )\n", + "\n", + " assert degrees_of_freedom(unit) == 0\n", + " if degrees_of_freedom(unit) == 0:\n", + " res = solver.solve(unit, tee=True)\n", + " unit.inlet.flow_mol_phase_comp.unfix()\n", + " unit.inlet.temperature.unfix()\n", + " unit.inlet.pressure.unfix()\n", + " print(\"Custom initialization routine complete: \", res.solver.message)\n", + "\n", + "\n", + "solver = get_solver()\n", + "\n", + "m.fs.WATER.initialize()\n", + "propagate_state(m.fs.s01)\n", + "\n", + "m.fs.GLYCOL.initialize()\n", + "propagate_state(m.fs.s02)\n", + "\n", + "m.fs.pervap.config.initializer = my_initialize\n", + "my_initialize(m.fs.pervap)\n", + "propagate_state(m.fs.s03)\n", + "\n", + "m.fs.PERMEATE.initialize()\n", + "propagate_state(m.fs.s04)\n", + "\n", + "m.fs.RETENTATE.initialize()\n", + "\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's check the results:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# print results\n", + "\n", + "m.fs.WATER.report()\n", + "m.fs.GLYCOL.report()\n", + "m.fs.PERMEATE.report()\n", + "m.fs.RETENTATE.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# separation factor for results analysis\n", + "m.fs.inlet_water_frac = Expression(\n", + " expr=(\n", + " m.fs.pervap.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", + " / sum(\n", + " m.fs.pervap.inlet.flow_mol_phase_comp[0, \"Liq\", i]\n", + " for i in m.fs.pervap.comp_list\n", + " )\n", + " )\n", + ")\n", + "m.fs.permeate_water_frac = Expression(\n", + " expr=(\n", + " m.fs.pervap.permeate.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", + " / sum(\n", + " m.fs.pervap.permeate.flow_mol_phase_comp[0, \"Liq\", i]\n", + " for i in m.fs.pervap.comp_list\n", + " )\n", + " )\n", + ")\n", + "m.fs.separation_factor = Expression(\n", + " expr=(m.fs.permeate_water_frac / (1 - m.fs.permeate_water_frac))\n", + " / (m.fs.inlet_water_frac / (1 - m.fs.inlet_water_frac))\n", + ")\n", + "\n", + "print(f\"Inlet water mole fraction: {value(m.fs.inlet_water_frac)}\")\n", + "print(f\"Permeate water mole fraction: {value(m.fs.permeate_water_frac)}\")\n", + "print(f\"Separation factor: {value(m.fs.separation_factor)}\")\n", + "print(f\"Condensation duty: {value(m.fs.pervap.heat_duty[0]/1000)} kW\")\n", + "print(\n", + " f\"Duty per mole water recovered: {value(m.fs.pervap.heat_duty[0]/(1000*m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, 'Liq', 'water']*3600))} kW-h / mol\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# check results\n", + "assert check_optimal_termination(results)\n", + "assert_units_consistent(m)\n", + "\n", + "assert value(\n", + " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", + ") == pytest.approx(0.14258566, rel=1e-5)\n", + "assert value(\n", + " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", + ") == pytest.approx(0.000266748768, rel=1e-5)\n", + "assert value(\n", + " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", + ") == pytest.approx(0.19741534, rel=1e-5)\n", + "assert value(\n", + " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", + ") == pytest.approx(0.65973425, rel=1e-5)\n", + "assert value(m.fs.separation_factor) == pytest.approx(1037.6188, rel=1e-5)\n", + "assert value(m.fs.pervap.heat_duty[0]) == pytest.approx(5812.7111, rel=1e-5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3. Optimization\n", + "\n", + "Suppose we wish to characterize the membrane behavior by calculating the maximum inlet water mole fraction allowing a separation factor of at least 100 (typical value for high-efficiency separation processes such as gas separation of CO2/N2). We need to fix total inlet flow to ensure physically-sound solutions. We can quickly modify and resolve the model, and check some key results:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# unfix inlet flows but fix total to prevent divergence during solve\n", + "m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].unfix()\n", + "m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].unfix()\n", + "m.fs.total_flow = Constraint(\n", + " expr=m.fs.WATER.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", + " + m.fs.GLYCOL.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", + " == 1 * pyunits.mol / pyunits.s\n", + ")\n", + "\n", + "# set criteria for separation factor\n", + "m.fs.sep_min = Constraint(expr=m.fs.separation_factor >= 100)\n", + "\n", + "# set objective - defaults to minimization\n", + "m.fs.obj = Objective(expr=m.fs.inlet_water_frac, sense=maximize)\n", + "\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# print results\n", + "\n", + "m.fs.WATER.report()\n", + "m.fs.GLYCOL.report()\n", + "m.fs.PERMEATE.report()\n", + "m.fs.RETENTATE.report()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(f\"Inlet water mole fraction: {value(m.fs.inlet_water_frac)}\")\n", + "print(f\"Permeate water mole fraction: {value(m.fs.permeate_water_frac)}\")\n", + "print(f\"Separation factor: {value(m.fs.separation_factor)}\")\n", + "print(f\"Condensation duty: {value(m.fs.pervap.heat_duty[0]/1000)} kW\")\n", + "print(\n", + " f\"Duty per mole water recovered: {value(m.fs.pervap.heat_duty[0]/(1000*m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, 'Liq', 'water']*3600))} kW-h / mol\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# check results\n", + "assert check_optimal_termination(results)\n", + "assert_units_consistent(m)\n", + "\n", + "assert value(\n", + " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", + ") == pytest.approx(0.14258566, rel=1e-5)\n", + "assert value(\n", + " m.fs.PERMEATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", + ") == pytest.approx(0.000266748768, rel=1e-5)\n", + "assert value(\n", + " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"water\"]\n", + ") == pytest.approx(0.69981938, rel=1e-5)\n", + "assert value(\n", + " m.fs.RETENTATE.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", + ") == pytest.approx(0.15733020, rel=1e-5)\n", + "assert value(m.fs.separation_factor) == pytest.approx(100.000067, rel=1e-5)\n", + "assert value(m.fs.pervap.heat_duty[0]) == pytest.approx(5812.7111, rel=1e-5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4. Summary\n", + "\n", + "The IDAES Skeleton Unit Model is a powerful tool for implementing relatively simple first-princples, surrogate-based or empirical unit operations. More crucially, users can add their own custom models and integrate them into a larger IDAES flowsheet without adding control volumes or rigorous flow balance and equilibrium calculations when not required. The pervaporation example displays a case where all model equations are empirical correlations or simple manual calculations, with a small number of state variable and port connections, and the Skeleton model avoids complex calculations that impact model tractability. The example also demonstrates adding a custom initialization scheme to handle internally model degrees of freedom, a feature providing greater user control than with most IDAES unit models." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/operations/tests/test_eg_h2o_ideal.py b/idaes_examples/notebooks/docs/unit_models/operations/tests/test_eg_h2o_ideal.py index 99bbcd25..578ab356 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/tests/test_eg_h2o_ideal.py +++ b/idaes_examples/notebooks/docs/unit_models/operations/tests/test_eg_h2o_ideal.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# """ Author: Brandon Paul diff --git a/idaes_examples/notebooks/docs/unit_models/operations/turbine.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/turbine.ipynb index 3979dd95..747d49ff 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/turbine.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/turbine.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/operations/turbine_doc.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/turbine_doc.ipynb index e2f39fcc..6299a9fa 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/turbine_doc.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/turbine_doc.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -232,7 +233,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:24:37 [INFO] idaes.init.fs.turbine_case_1: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:40:33 [INFO] idaes.init.fs.turbine_case_1: Initialization Complete: optimal - Optimal Solution Found\n" ] } ], @@ -314,16 +315,10 @@ "Number of equality constraint Jacobian evaluations = 2\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 1\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.008\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.009\n", "Total CPU secs in NLP function evaluations = 0.002\n", "\n", - "EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "EXIT: Optimal Solution Found.\n", "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" ] } @@ -526,7 +521,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-11-02 10:24:38 [INFO] idaes.init.fs.turbine_case_2: Initialization Complete: optimal - Optimal Solution Found\n" + "2025-03-17 17:40:33 [INFO] idaes.init.fs.turbine_case_2: Initialization Complete: optimal - Optimal Solution Found\n" ] } ], @@ -608,16 +603,10 @@ "Number of equality constraint Jacobian evaluations = 2\n", "Number of inequality constraint Jacobian evaluations = 0\n", "Number of Lagrangian Hessian evaluations = 1\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.009\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.007\n", "Total CPU secs in NLP function evaluations = 0.001\n", "\n", - "EXIT: Optimal Solution Found.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "EXIT: Optimal Solution Found.\n", "\b\b\b\b\b\b\b\b\b\b\b\b\b\b" ] } @@ -716,9 +705,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/operations/turbine_test.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/turbine_test.ipynb index d3fff7d0..3ff7dcca 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/turbine_test.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/turbine_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -549,4 +550,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/operations/turbine_usr.ipynb b/idaes_examples/notebooks/docs/unit_models/operations/turbine_usr.ipynb index bcebdfef..a7cd873e 100644 --- a/idaes_examples/notebooks/docs/unit_models/operations/turbine_usr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/operations/turbine_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -440,4 +441,4 @@ }, "nbformat": 4, "nbformat_minor": 3 -} +} \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/cstr.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/cstr.ipynb index 0d0fc742..a6606783 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/cstr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/cstr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/cstr_doc.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/cstr_doc.ipynb index 891c3495..e3fd5ed2 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/cstr_doc.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/cstr_doc.ipynb @@ -1,723 +1,1254 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Flowsheet Continuous Stirred Tank Reactor (CSTR) Simulation and Optimization of Ethylene Glycol Production\n", - "Author: Brandon Paul \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "## Learning Outcomes\n", - "\n", - "\n", - "- Call and implement the IDAES CSTR unit model\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "This example is adapted from Fogler, H.S., Elements of Chemical Reaction Engineering 5th ed., 2016, Prentice Hall, p. 157-160.\n", - "\n", - "Ethylene glycol (EG) is a high-demand chemical, with billions of pounds produced every year for applications such as vehicle anti-freeze. EG may be readily obtained from the hydrolysis of ethylene oxide in the presence of a catalytic intermediate. In this example, an aqueous solution of ethylene oxide hydrolizes after mixing with an aqueous solution of sulfuric acid catalyst:\n", - "\n", - "**C2H4O + H2O + H2SO4 \u2192 C2H6O2 + H2SO4**\n", - "\n", - "This reaction often occurs by two mechanisms, as the catalyst may bind to either reactant before the final hydrolysis step; we will simplify the reaction to a single step for this example.\n", - "\n", - "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing ethylene oxide and catalyst solutions of fixed concentrations to produce 200 MM lb/year of EG. As shown in the flowsheet, the process consists of a mixer M101 for the two inlet streams, a heater H101 to preheat the feed to the reaction temperature, and a CSTR unit R101 with an external cooling system to remove heat generated by the exothermic reaction. We will assume ideal solutions and thermodynamics for this flowsheet, as well as well-mixed liquid behavior (no vapor phase) in the reactor. The properties required for this module are available in the same directory:\n", - "\n", - "- egprod_ideal.py\n", - "- egprod_reaction.py\n", - "\n", - "The state variables chosen for the property package are **molar flows of each component by phase in each stream, temperature of each stream and pressure of each stream**. The components considered are: **ethylene oxide, water, sulfuric acid and ethylene glycol** and the process occurs in liquid phase only. Therefore, every stream has 4 flow variables, 1 temperature and 1 pressure variable. \n", - "\n", - "![](egprod_flowsheet.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Pyomo and IDAES components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages. Let us first import the following components from Pyomo:\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- ConcreteModel (to create the concrete model object)\n", - "- Expression (to evaluate values as a function of variables defined in the model)\n", - "- Objective (to define an objective function for optimization)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- Arc (to connect two unit models)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n", - "\n", - "From idaes, we will be needing the `FlowsheetBlock` and the following unit models:\n", - "- Mixer\n", - "- Heater\n", - "- CSTR\n", - "\n", - "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom, tools for model expressions and calling variable values, and built-in functions to define property packages, add unit containers to objects and define our initialization scheme.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " TransformationFactory,\n", - " value,\n", - " units as pyunits,\n", - ")\n", - "from pyomo.network import Arc\n", - "\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.models.properties.modular_properties import (\n", - " GenericParameterBlock,\n", - " GenericReactionParameterBlock,\n", - ")\n", - "from idaes.models.unit_models import Feed, Mixer, Heater, CSTR, Product\n", - "\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Thermophysical and Reaction Packages\n", - "\n", - "The final step is to import the thermophysical and reaction packages. We have created a custom thermophysical package that support ideal vapor and liquid behavior for this system, and in this case we will restrict it to ideal liquid behavior only.\n", - "\n", - "The reaction package here assumes Arrhenius kinetic behavior for the CSTR, for which $k_0$ and $E_a$ are known *a priori* (if unknown, they may be obtained using one of the parameter estimation tools within IDAES).\n", - "\n", - "$ r = -kVC_{EO} $, $ k = k_0 e^{(-E_a/RT)}$, with the variables as follows:\n", - "\n", - "$r$ - reaction rate extent in moles of ethylene oxide consumed per second; note that the traditional reaction rate would be given by $rate = r/V$ in moles per $m^3$ per second \n", - "$k$ - reaction rate constant per second \n", - "$V$ - volume of CSTR in $m^3$, note that this is *liquid volume* and not the *total volume* of the reactor itself \n", - "$C_{EO}$ - bulk concentration of ethylene oxide in moles per $m^3$ (the limiting reagent, since we assume excess catalyst and water) \n", - "$k_0$ - pre-exponential Arrhenius factor per second \n", - "$E_a$ - reaction activation energy in kJ per mole of ethylene oxide consumed \n", - "$R$ - gas constant in J/mol-K \n", - "$T$ - reactor temperature in K\n", - "\n", - "These calculations are contained within the property, reaction and unit model packages, and do not need to be entered into the flowsheet. More information on property estimation may be found in the IDAES documentation on [Parameter Estimation](https://idaes-pse.readthedocs.io/en/stable/how_to_guides/workflow/data_rec_parmest.html).\n", - "\n", - "ParamEst parameter estimation: \n", - "\n", - "Let us import the following modules from the same directory as this Jupyter notebook:\n", - "- egprod_ideal as thermo_props\n", - "- egprod_reaction as reaction_props" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import egprod_ideal as thermo_props\n", - "import egprod_reaction as reaction_props" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a `ConcreteModel` and add the flowsheet block. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need to add the property packages to the flowsheet. Unlike the basic [Flash unit model example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Tutorials/Basics/flash_unit_solution_testing_doc.md), where we only had a thermophysical property package, for this flowsheet we will also need to add a reaction property package. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) and [Modular Reaction Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-reaction-package-framework). The get_prop method for the natural gas property module automatically returns the correct dictionary using a component list argument. The GenericParameterBlock and GenericReactionParameterBlock methods build states blocks from passed parameter data; the reaction block unpacks using **reaction_props.config_dict to allow for optional or empty keyword arguments:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.thermo_params = GenericParameterBlock(**thermo_props.config_dict)\n", - "m.fs.reaction_params = GenericReactionParameterBlock(\n", - " property_package=m.fs.thermo_params, **reaction_props.config_dict\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding a `Mixer`, a `Heater` and a `CSTR`. Note that all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details on [IDAES Unit Models](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/index.html). For example, the `Mixer` is given a `list` consisting of names to the two inlets." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.OXIDE = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.ACID = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params, inlet_list=[\"reagent_feed\", \"catalyst_feed\"]\n", - ")\n", - "m.fs.H101 = Heater(\n", - " property_package=m.fs.thermo_params,\n", - " has_pressure_change=False,\n", - " has_phase_equilibrium=False,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101 = CSTR(\n", - " property_package=m.fs.thermo_params,\n", - " reaction_package=m.fs.reaction_params,\n", - " has_heat_of_reaction=True,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=False,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models Using Arcs\n", - "\n", - "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the `Mixer` to the inlet of the `Heater`, and the outlet of the `Heater` to the inlet of the `CSTR`. Additionally, we will connect the `Feed` and `Product` blocks to the flowsheet:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s01 = Arc(source=m.fs.OXIDE.outlet, destination=m.fs.M101.reagent_feed)\n", - "m.fs.s02 = Arc(source=m.fs.ACID.outlet, destination=m.fs.M101.catalyst_feed)\n", - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)\n", - "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", - "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have now connected the unit model block using the arcs. However, we also need to link the state variables on connected ports. Pyomo provides a convenient method `TransformationFactory` to write these equality constraints for us between two ports:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Expressions to Compute Operating Costs\n", - "\n", - "In this section, we will add a few Expressions that allows us to evaluate the performance. `Expressions` provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on `Expressions`, please refer to the [Pyomo Expression documentation]( https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html).\n", - "\n", - "For this flowsheet, we are interested in computing ethylene glycol production in millions of pounds per year, as well as the total costs due to cooling and heating utilities." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us first add an `Expression` to convert the product flow from mol/s to MM lb/year of ethylene glycol. We see that the molecular weight exists in the thermophysical property package, so we may use that value for our calculations." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.eg_prod = Expression(\n", - " expr=pyunits.convert(\n", - " m.fs.PROD.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", - " * m.fs.thermo_params.ethylene_glycol.mw, # MW defined in properties as kg/mol\n", - " to_units=pyunits.Mlb / pyunits.yr,\n", - " )\n", - ") # converting kg/s to MM lb/year" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let us add expressions to compute the reactor cooling cost (\\\\$/s) assuming a cost of 2.12E-5 \\\\$/kW, and the heating utility cost (\\\\$/s) assuming 2.2E-4 \\\\$/kW. Note that the heat duty is in units of watt (J/s). The total operating cost will be the sum of the two, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.cooling_cost = Expression(\n", - " expr=2.12e-8 * (-m.fs.R101.heat_duty[0])\n", - ") # the reaction is exothermic, so R101 duty is negative\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", - ") # the stream must be heated to T_rxn, so H101 duty is positive\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost))\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Feed Conditions\n", - "\n", - "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. We expect each stream to have 6 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (duty or conversion, since the inlet is also the outlet of H101). In this case, the reactor has an extra degree of freedom (reactor conversion or reactor volume) since we have not yet defined the CSTR performance equation. Therefore, we have 15 degrees of freedom to specify: temperature, pressure and flow of all four components on both streams; outlet heater temperature; reactor conversion and volume." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be fixing the feed stream to the conditions shown in the flowsheet above. As mentioned in other tutorials, the IDAES framework expects a time index value for every referenced internal stream or unit variable, even in steady-state systems with a single time point $ t = 0 $ (`t = [0]` is the default when creating a `FlowsheetBlock` without passing a `time_set` argument). The non-present components in each stream are assigned a very small non-zero value to help with convergence and initializing. Based on stoichiometric ratios for the reaction, 80% conversion and 200 MM lb/year (46.4 mol/s) of ethylene glycol, we will initialize our simulation with the following calculated values:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", - " 58.0 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", - " 39.6 * pyunits.mol / pyunits.s\n", - ") # calculated from 16.1 mol EO / cudm in stream\n", - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.OXIDE.outlet.temperature.fix(298.15 * pyunits.K)\n", - "m.fs.OXIDE.outlet.pressure.fix(1e5 * pyunits.Pa)\n", - "\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", - " 200 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", - " 0.334 * pyunits.mol / pyunits.s\n", - ") # calculated from 0.9 wt% SA in stream\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.ACID.outlet.temperature.fix(298.15 * pyunits.K)\n", - "m.fs.ACID.outlet.pressure.fix(1e5 * pyunits.Pa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Unit Model Specifications\n", - "\n", - "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us fix the outlet temperature of H101 to 328.15 K. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.fix(328.15 * pyunits.K)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We'll add constraints defining the reactor volume and conversion in relation to the stream properties. Particularly, we want to use our CSTR performance relation: \n", - "\n", - "$V = \\frac{v_0 X} {k(1-X)}$, where the `CSTR` reaction volume $V$ will be specified, the inlet volumetric flow $v_0$ is determined by stream properties, $k$ is calculated by the reaction package, and $X$ will be calculated. Reactor volume is commonly selected as a specification in simulation problems, and choosing conversion is often to perform reactor design.\n", - "\n", - "For the `CSTR`, we have to define the conversion in terms of ethylene oxide as well as the `CSTR` reaction volume. This requires us to create new variables and constraints relating reactor properties to stream properties. Note that the `CSTR` reaction volume variable (m.fs.R101.volume) does not need to be defined here since it is internally defined by the `CSTR` model. Additionally, the heat duty is not fixed, since the heat of reaction depends on the reactor conversion (through the extent of reaction and heat of reaction). We'll estimate 80% conversion for our initial flowsheet:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion = Var(\n", - " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", - ") # fraction\n", - "\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion\n", - " * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", - " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", - " )\n", - ")\n", - "\n", - "m.fs.R101.conversion.fix(0.80)\n", - "\n", - "m.fs.R101.volume.fix(5.538 * pyunits.m**3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we need to initialize the each unit operation in sequence to solve the flowsheet. As in best practice, unit operations are initialized or solved, and outlet properties are propagated to connected inlet streams via arc definitions as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize and solve each unit operation\n", - "m.fs.OXIDE.initialize()\n", - "propagate_state(arc=m.fs.s01)\n", - "\n", - "m.fs.ACID.initialize()\n", - "propagate_state(arc=m.fs.s01)\n", - "\n", - "m.fs.M101.initialize()\n", - "propagate_state(arc=m.fs.s03)\n", - "\n", - "m.fs.H101.initialize()\n", - "propagate_state(arc=m.fs.s04)\n", - "\n", - "m.fs.R101.initialize()\n", - "propagate_state(arc=m.fs.s05)\n", - "\n", - "m.fs.PROD.initialize()\n", - "\n", - "# set solver\n", - "solver = get_solver()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the Results of the Square Problem\n", - "\n", - "\n", - "What is the total operating cost? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this operating cost, what conversion did we achieve of ethylene oxide to ethylene glycol? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.report()\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")\n", - "print()\n", - "print(\n", - " f\"Assuming a 20% design factor for reactor volume,\"\n", - " f\"total CSTR volume required = {value(1.2*m.fs.R101.volume[0]):0.6f}\"\n", - " f\" m^3 = {value(pyunits.convert(1.2*m.fs.R101.volume[0], to_units=pyunits.gal)):0.6f} gal\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimizing Ethylene Glycol Production\n", - "\n", - "Now that the flowsheet has been squared and solved, we can run a small optimization problem to minimize our production costs. Suppose we require at least 200 million pounds/year of ethylene glycol produced and 90% conversion of ethylene oxide, allowing for variable reactor volume (considering operating/non-capital costs only) and reactor temperature (heater outlet)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now, as well as set bounds for the design variables:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.eg_prod_con = Constraint(\n", - " expr=m.fs.eg_prod >= 200 * pyunits.Mlb / pyunits.yr\n", - ") # MM lb/year\n", - "m.fs.R101.conversion.fix(0.90)\n", - "\n", - "m.fs.R101.volume.unfix()\n", - "m.fs.R101.volume.setlb(0 * pyunits.m**3)\n", - "m.fs.R101.volume.setub(pyunits.convert(5000 * pyunits.gal, to_units=pyunits.m**3))\n", - "\n", - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.H101.outlet.temperature[0].setlb(328.15 * pyunits.K)\n", - "m.fs.H101.outlet.temperature[0].setub(\n", - " 470.45 * pyunits.K\n", - ") # highest component boiling point (ethylene glycol)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")\n", - "\n", - "print()\n", - "print(\"Heater results\")\n", - "\n", - "m.fs.H101.report()\n", - "\n", - "print()\n", - "print(\"CSTR reactor results\")\n", - "\n", - "m.fs.R101.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables and design variables:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.6f} K\")\n", - "\n", - "print()\n", - "print(\n", - " f\"Assuming a 20% design factor for reactor volume,\"\n", - " f\"total CSTR volume required = {value(1.2*m.fs.R101.volume[0]):0.6f}\"\n", - " f\" m^3 = {value(pyunits.convert(1.2*m.fs.R101.volume[0], to_units=pyunits.gal)):0.6f} gal\"\n", - ")\n", - "\n", - "print()\n", - "print(f\"Ethylene glycol produced = {value(m.fs.eg_prod):0.6f} MM lb/year\")\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Flowsheet Continuous Stirred Tank Reactor (CSTR) Simulation and Optimization of Ethylene Glycol Production\n", + "Author: Brandon Paul \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "## Learning Outcomes\n", + "\n", + "\n", + "- Call and implement the IDAES CSTR unit model\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "This example is adapted from Fogler, H.S., Elements of Chemical Reaction Engineering 5th ed., 2016, Prentice Hall, p. 157-160.\n", + "\n", + "Ethylene glycol (EG) is a high-demand chemical, with billions of pounds produced every year for applications such as vehicle anti-freeze. EG may be readily obtained from the hydrolysis of ethylene oxide in the presence of a catalytic intermediate. In this example, an aqueous solution of ethylene oxide hydrolizes after mixing with an aqueous solution of sulfuric acid catalyst:\n", + "\n", + "**C2H4O + H2O + H2SO4 → C2H6O2 + H2SO4**\n", + "\n", + "This reaction often occurs by two mechanisms, as the catalyst may bind to either reactant before the final hydrolysis step; we will simplify the reaction to a single step for this example.\n", + "\n", + "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing ethylene oxide and catalyst solutions of fixed concentrations to produce 200 MM lb/year of EG. As shown in the flowsheet, the process consists of a mixer M101 for the two inlet streams, a heater H101 to preheat the feed to the reaction temperature, and a CSTR unit R101 with an external cooling system to remove heat generated by the exothermic reaction. We will assume ideal solutions and thermodynamics for this flowsheet, as well as well-mixed liquid behavior (no vapor phase) in the reactor. The properties required for this module are available in the same directory:\n", + "\n", + "- egprod_ideal.py\n", + "- egprod_reaction.py\n", + "\n", + "The state variables chosen for the property package are **molar flows of each component by phase in each stream, temperature of each stream and pressure of each stream**. The components considered are: **ethylene oxide, water, sulfuric acid and ethylene glycol** and the process occurs in liquid phase only. Therefore, every stream has 4 flow variables, 1 temperature and 1 pressure variable. \n", + "\n", + "![](egprod_flowsheet.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Pyomo and IDAES components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages. Let us first import the following components from Pyomo:\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- ConcreteModel (to create the concrete model object)\n", + "- Expression (to evaluate values as a function of variables defined in the model)\n", + "- Objective (to define an objective function for optimization)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- Arc (to connect two unit models)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n", + "\n", + "From idaes, we will be needing the `FlowsheetBlock` and the following unit models:\n", + "- Mixer\n", + "- Heater\n", + "- CSTR\n", + "\n", + "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom, tools for model expressions and calling variable values, and built-in functions to define property packages, add unit containers to objects and define our initialization scheme.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " TransformationFactory,\n", + " value,\n", + " units as pyunits,\n", + ")\n", + "from pyomo.network import Arc\n", + "\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.models.properties.modular_properties import (\n", + " GenericParameterBlock,\n", + " GenericReactionParameterBlock,\n", + ")\n", + "from idaes.models.unit_models import Feed, Mixer, Heater, CSTR, Product\n", + "\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Thermophysical and Reaction Packages\n", + "\n", + "The final step is to import the thermophysical and reaction packages. We have created a custom thermophysical package that support ideal vapor and liquid behavior for this system, and in this case we will restrict it to ideal liquid behavior only.\n", + "\n", + "The reaction package here assumes Arrhenius kinetic behavior for the CSTR, for which $k_0$ and $E_a$ are known *a priori* (if unknown, they may be obtained using one of the parameter estimation tools within IDAES).\n", + "\n", + "$ r = -kVC_{EO} $, $ k = k_0 e^{(-E_a/RT)}$, with the variables as follows:\n", + "\n", + "$r$ - reaction rate extent in moles of ethylene oxide consumed per second; note that the traditional reaction rate would be given by $rate = r/V$ in moles per $m^3$ per second \n", + "$k$ - reaction rate constant per second \n", + "$V$ - volume of CSTR in $m^3$, note that this is *liquid volume* and not the *total volume* of the reactor itself \n", + "$C_{EO}$ - bulk concentration of ethylene oxide in moles per $m^3$ (the limiting reagent, since we assume excess catalyst and water) \n", + "$k_0$ - pre-exponential Arrhenius factor per second \n", + "$E_a$ - reaction activation energy in kJ per mole of ethylene oxide consumed \n", + "$R$ - gas constant in J/mol-K \n", + "$T$ - reactor temperature in K\n", + "\n", + "These calculations are contained within the property, reaction and unit model packages, and do not need to be entered into the flowsheet. More information on property estimation may be found in the IDAES documentation on [Parameter Estimation](https://idaes-pse.readthedocs.io/en/stable/how_to_guides/workflow/data_rec_parmest.html).\n", + "\n", + "ParamEst parameter estimation: \n", + "\n", + "Let us import the following modules from the same directory as this Jupyter notebook:\n", + "- egprod_ideal as thermo_props\n", + "- egprod_reaction as reaction_props" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import egprod_ideal as thermo_props\n", + "import egprod_reaction as reaction_props" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a `ConcreteModel` and add the flowsheet block. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now need to add the property packages to the flowsheet. Unlike the basic [Flash unit model example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Tutorials/Basics/flash_unit_solution_testing_doc.md), where we only had a thermophysical property package, for this flowsheet we will also need to add a reaction property package. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) and [Modular Reaction Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-reaction-package-framework). The get_prop method for the natural gas property module automatically returns the correct dictionary using a component list argument. The GenericParameterBlock and GenericReactionParameterBlock methods build states blocks from passed parameter data; the reaction block unpacks using **reaction_props.config_dict to allow for optional or empty keyword arguments:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.thermo_params = GenericParameterBlock(**thermo_props.config_dict)\n", + "m.fs.reaction_params = GenericReactionParameterBlock(\n", + " property_package=m.fs.thermo_params, **reaction_props.config_dict\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding a `Mixer`, a `Heater` and a `CSTR`. Note that all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details on [IDAES Unit Models](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/index.html). For example, the `Mixer` is given a `list` consisting of names to the two inlets." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.OXIDE = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.ACID = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params, inlet_list=[\"reagent_feed\", \"catalyst_feed\"]\n", + ")\n", + "m.fs.H101 = Heater(\n", + " property_package=m.fs.thermo_params,\n", + " has_pressure_change=False,\n", + " has_phase_equilibrium=False,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101 = CSTR(\n", + " property_package=m.fs.thermo_params,\n", + " reaction_package=m.fs.reaction_params,\n", + " has_heat_of_reaction=True,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models Using Arcs\n", + "\n", + "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the `Mixer` to the inlet of the `Heater`, and the outlet of the `Heater` to the inlet of the `CSTR`. Additionally, we will connect the `Feed` and `Product` blocks to the flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s01 = Arc(source=m.fs.OXIDE.outlet, destination=m.fs.M101.reagent_feed)\n", + "m.fs.s02 = Arc(source=m.fs.ACID.outlet, destination=m.fs.M101.catalyst_feed)\n", + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)\n", + "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", + "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now connected the unit model block using the arcs. However, we also need to link the state variables on connected ports. Pyomo provides a convenient method `TransformationFactory` to write these equality constraints for us between two ports:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Expressions to Compute Operating Costs\n", + "\n", + "In this section, we will add a few Expressions that allows us to evaluate the performance. `Expressions` provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on `Expressions`, please refer to the [Pyomo Expression documentation]( https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html).\n", + "\n", + "For this flowsheet, we are interested in computing ethylene glycol production in millions of pounds per year, as well as the total costs due to cooling and heating utilities." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us first add an `Expression` to convert the product flow from mol/s to MM lb/year of ethylene glycol. We see that the molecular weight exists in the thermophysical property package, so we may use that value for our calculations." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.eg_prod = Expression(\n", + " expr=pyunits.convert(\n", + " m.fs.PROD.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", + " * m.fs.thermo_params.ethylene_glycol.mw, # MW defined in properties as kg/mol\n", + " to_units=pyunits.Mlb / pyunits.yr,\n", + " )\n", + ") # converting kg/s to MM lb/year" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let us add expressions to compute the reactor cooling cost (\\\\$/s) assuming a cost of 2.12E-5 \\\\$/kW, and the heating utility cost (\\\\$/s) assuming 2.2E-4 \\\\$/kW. Note that the heat duty is in units of watt (J/s). The total operating cost will be the sum of the two, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.cooling_cost = Expression(\n", + " expr=2.12e-8 * (-m.fs.R101.heat_duty[0])\n", + ") # the reaction is exothermic, so R101 duty is negative\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", + ") # the stream must be heated to T_rxn, so H101 duty is positive\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Feed Conditions\n", + "\n", + "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. We expect each stream to have 6 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (duty or conversion, since the inlet is also the outlet of H101). In this case, the reactor has an extra degree of freedom (reactor conversion or reactor volume) since we have not yet defined the CSTR performance equation. Therefore, we have 15 degrees of freedom to specify: temperature, pressure and flow of all four components on both streams; outlet heater temperature; reactor conversion and volume." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "15\n" + ] } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be fixing the feed stream to the conditions shown in the flowsheet above. As mentioned in other tutorials, the IDAES framework expects a time index value for every referenced internal stream or unit variable, even in steady-state systems with a single time point $ t = 0 $ (`t = [0]` is the default when creating a `FlowsheetBlock` without passing a `time_set` argument). The non-present components in each stream are assigned a very small non-zero value to help with convergence and initializing. Based on stoichiometric ratios for the reaction, 80% conversion and 200 MM lb/year (46.4 mol/s) of ethylene glycol, we will initialize our simulation with the following calculated values:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", + " 58.0 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", + " 39.6 * pyunits.mol / pyunits.s\n", + ") # calculated from 16.1 mol EO / cudm in stream\n", + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.OXIDE.outlet.temperature.fix(298.15 * pyunits.K)\n", + "m.fs.OXIDE.outlet.pressure.fix(1e5 * pyunits.Pa)\n", + "\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", + " 200 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", + " 0.334 * pyunits.mol / pyunits.s\n", + ") # calculated from 0.9 wt% SA in stream\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.ACID.outlet.temperature.fix(298.15 * pyunits.K)\n", + "m.fs.ACID.outlet.pressure.fix(1e5 * pyunits.Pa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Unit Model Specifications\n", + "\n", + "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us fix the outlet temperature of H101 to 328.15 K. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.fix(328.15 * pyunits.K)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll add constraints defining the reactor volume and conversion in relation to the stream properties. Particularly, we want to use our CSTR performance relation: \n", + "\n", + "$V = \\frac{v_0 X} {k(1-X)}$, where the `CSTR` reaction volume $V$ will be specified, the inlet volumetric flow $v_0$ is determined by stream properties, $k$ is calculated by the reaction package, and $X$ will be calculated. Reactor volume is commonly selected as a specification in simulation problems, and choosing conversion is often to perform reactor design.\n", + "\n", + "For the `CSTR`, we have to define the conversion in terms of ethylene oxide as well as the `CSTR` reaction volume. This requires us to create new variables and constraints relating reactor properties to stream properties. Note that the `CSTR` reaction volume variable (m.fs.R101.volume) does not need to be defined here since it is internally defined by the `CSTR` model. Additionally, the heat duty is not fixed, since the heat of reaction depends on the reactor conversion (through the extent of reaction and heat of reaction). We'll estimate 80% conversion for our initial flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion = Var(\n", + " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", + ") # fraction\n", + "\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion\n", + " * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", + " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", + " )\n", + ")\n", + "\n", + "m.fs.R101.conversion.fix(0.80)\n", + "\n", + "m.fs.R101.volume.fix(5.538 * pyunits.m**3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we need to initialize the each unit operation in sequence to solve the flowsheet. As in best practice, unit operations are initialized or solved, and outlet properties are propagated to connected inlet streams via arc definitions as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.OXIDE.properties: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.OXIDE.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.OXIDE.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.OXIDE: Initialization Complete.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.ACID.properties: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.ACID.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.ACID.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.ACID: Initialization Complete.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.M101.reagent_feed_state: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.M101.reagent_feed_state: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.M101.catalyst_feed_state: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.M101.catalyst_feed_state: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.R101.control_volume.reactions: Initialization Complete.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.PROD.properties: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.PROD.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.PROD.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:36 [INFO] idaes.init.fs.PROD: Initialization Complete.\n" + ] + } + ], + "source": [ + "# Initialize and solve each unit operation\n", + "m.fs.OXIDE.initialize()\n", + "propagate_state(arc=m.fs.s01)\n", + "\n", + "m.fs.ACID.initialize()\n", + "propagate_state(arc=m.fs.s01)\n", + "\n", + "m.fs.M101.initialize()\n", + "propagate_state(arc=m.fs.s03)\n", + "\n", + "m.fs.H101.initialize()\n", + "propagate_state(arc=m.fs.s04)\n", + "\n", + "m.fs.R101.initialize()\n", + "propagate_state(arc=m.fs.s05)\n", + "\n", + "m.fs.PROD.initialize()\n", + "\n", + "# set solver\n", + "solver = get_solver()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 345\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 393\n", + "\n", + "Total number of variables............................: 96\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 87\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 96\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.24e+06 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 3.01e+06 2.25e+01 -1.0 1.10e+07 - 6.77e-02 9.90e-01h 1\n", + " 2 0.0000000e+00 2.70e+04 2.90e+02 -1.0 9.65e+04 - 7.00e-01 9.90e-01h 1\n", + " 3 0.0000000e+00 2.70e+02 2.42e+03 -1.0 3.57e+04 - 9.65e-01 9.90e-01h 1\n", + " 4 0.0000000e+00 1.93e+00 3.24e+03 -1.0 2.93e+03 - 9.90e-01 9.92e-01h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 5 0.0000000e+00 1.62e-05 4.91e+03 -1.0 3.29e+01 - 9.91e-01 1.00e+00h 1\n", + "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", + "\n", + "Number of Iterations....: 5\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 1.6686893433829877e+06 1.6686893433829877e+06\n", + "Constraint violation....: 8.7029969081382703e-09 1.6207806766033173e-05\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 8.7029969081382703e-09 1.6686893433829877e+06\n", + "\n", + "\n", + "Number of objective function evaluations = 6\n", + "Number of objective gradient evaluations = 6\n", + "Number of equality constraint evaluations = 6\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 6\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 5\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the Results of the Square Problem\n", + "\n", + "\n", + "What is the total operating cost? " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $8.004012 million per year\n" + ] + } + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this operating cost, what conversion did we achieve of ethylene oxide to ethylene glycol? " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -5.8675e+06 : watt : False : (None, None)\n", + " Volume : 5.5380 : meter ** 3 : True : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Units Inlet Outlet \n", + " Molar Flowrate ('Liq', 'ethylene_oxide') mole / second 58.000 11.600\n", + " Molar Flowrate ('Liq', 'water') mole / second 239.60 193.20\n", + " Molar Flowrate ('Liq', 'sulfuric_acid') mole / second 0.33401 0.33401\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 2.0000e-05 46.400\n", + " Temperature kelvin 328.15 329.26\n", + " Pressure pascal 1.0000e+05 1.0000e+05\n", + "====================================================================================\n", + "\n", + "Conversion achieved = 80.0%\n", + "\n", + "Assuming a 20% design factor for reactor volume,total CSTR volume required = 6.645600 m^3 = 1755.581791 gal\n" + ] + } + ], + "source": [ + "m.fs.R101.report()\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")\n", + "print()\n", + "print(\n", + " f\"Assuming a 20% design factor for reactor volume,\"\n", + " f\"total CSTR volume required = {value(1.2*m.fs.R101.volume[0]):0.6f}\"\n", + " f\" m^3 = {value(pyunits.convert(1.2*m.fs.R101.volume[0], to_units=pyunits.gal)):0.6f} gal\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimizing Ethylene Glycol Production\n", + "\n", + "Now that the flowsheet has been squared and solved, we can run a small optimization problem to minimize our production costs. Suppose we require at least 200 million pounds/year of ethylene glycol produced and 90% conversion of ethylene oxide, allowing for variable reactor volume (considering operating/non-capital costs only) and reactor temperature (heater outlet)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now, as well as set bounds for the design variables:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.eg_prod_con = Constraint(\n", + " expr=m.fs.eg_prod >= 200 * pyunits.Mlb / pyunits.yr\n", + ") # MM lb/year\n", + "m.fs.R101.conversion.fix(0.90)\n", + "\n", + "m.fs.R101.volume.unfix()\n", + "m.fs.R101.volume.setlb(0 * pyunits.m**3)\n", + "m.fs.R101.volume.setub(pyunits.convert(5000 * pyunits.gal, to_units=pyunits.m**3))\n", + "\n", + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.H101.outlet.temperature[0].setlb(328.15 * pyunits.K)\n", + "m.fs.H101.outlet.temperature[0].setub(\n", + " 470.45 * pyunits.K\n", + ") # highest component boiling point (ethylene glycol)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 348\n", + "Number of nonzeros in inequality constraint Jacobian.: 1\n", + "Number of nonzeros in Lagrangian Hessian.............: 408\n", + "\n", + "Total number of variables............................: 98\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 89\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 96\n", + "Total number of inequality constraints...............: 1\n", + " inequality constraints with only lower bounds: 1\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 8.0040115e+06 1.74e+06 6.34e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 7.7527391e+06 1.74e+06 1.58e+01 -1.0 1.01e+10 - 1.05e-04 6.26e-06f 1\n", + " 2 7.3318298e+06 1.74e+06 8.38e+01 -1.0 6.50e+09 - 7.68e-05 1.06e-04f 1\n", + " 3 7.1963002e+06 1.74e+06 1.13e+02 -1.0 2.14e+09 - 2.88e-04 1.04e-04f 1\n", + " 4 7.1956623e+06 1.74e+06 1.30e+04 -1.0 3.21e+06 - 7.84e-02 3.62e-04f 1\n", + " 5 7.2878860e+06 1.61e+06 6.46e+04 -1.0 1.57e+06 - 1.30e-01 7.88e-02h 1\n", + " 6 8.3387605e+06 3.53e+04 1.73e+07 -1.0 1.41e+06 - 7.27e-01 9.90e-01h 1\n", + " 7 8.3196702e+06 3.65e+02 8.13e+05 -1.0 3.48e+04 - 9.84e-01 9.91e-01f 1\n", + " 8 8.3181815e+06 1.14e-01 5.33e+03 -1.0 2.47e+03 - 9.90e-01 1.00e+00f 1\n", + " 9 8.3181770e+06 8.75e-07 2.12e+03 -1.7 7.11e+00 - 9.91e-01 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 8.3181770e+06 1.49e-08 2.81e-07 -1.7 6.61e-05 - 1.00e+00 1.00e+00h 1\n", + " 11 8.3181770e+06 1.68e-08 3.47e-07 -5.7 3.56e-02 - 1.00e+00 1.00e+00f 1\n", + "\n", + "Number of Iterations....: 11\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 8.3181770063406546e+06 8.3181770063406546e+06\n", + "Dual infeasibility......: 3.4654545178966489e-07 3.4654545178966489e-07\n", + "Constraint violation....: 1.1657620996360177e-14 1.6763806343078613e-08\n", + "Complementarity.........: 1.8475611193718096e-06 1.8475611193718096e-06\n", + "Overall NLP error.......: 1.8402625221080294e-07 1.8475611193718096e-06\n", + "\n", + "\n", + "Number of objective function evaluations = 12\n", + "Number of objective gradient evaluations = 12\n", + "Number of equality constraint evaluations = 12\n", + "Number of inequality constraint evaluations = 12\n", + "Number of equality constraint Jacobian evaluations = 12\n", + "Number of inequality constraint Jacobian evaluations = 12\n", + "Number of Lagrangian Hessian evaluations = 11\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $8.318177 million per year\n", + "\n", + "Heater results\n", + "\n", + "====================================================================================\n", + "Unit : fs.H101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 6.9784e+05 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Molar Flowrate ('Liq', 'ethylene_oxide') mole / second 58.000 58.000\n", + " Molar Flowrate ('Liq', 'water') mole / second 239.60 239.60\n", + " Molar Flowrate ('Liq', 'sulfuric_acid') mole / second 0.33401 0.33401\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 2.0000e-05 2.0000e-05\n", + " Temperature kelvin 298.15 328.15\n", + " Pressure pascal 1.0000e+05 1.0000e+05\n", + "====================================================================================\n", + "\n", + "CSTR reactor results\n", + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -6.3821e+06 : watt : False : (None, None)\n", + " Volume : 18.927 : meter ** 3 : False : (0.0, 18.927058919999997)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Molar Flowrate ('Liq', 'ethylene_oxide') mole / second 58.000 5.8000\n", + " Molar Flowrate ('Liq', 'water') mole / second 239.60 187.40\n", + " Molar Flowrate ('Liq', 'sulfuric_acid') mole / second 0.33401 0.33401\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 2.0000e-05 52.200\n", + " Temperature kelvin 328.15 338.90\n", + " Pressure pascal 1.0000e+05 1.0000e+05\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")\n", + "\n", + "print()\n", + "print(\"Heater results\")\n", + "\n", + "m.fs.H101.report()\n", + "\n", + "print()\n", + "print(\"CSTR reactor results\")\n", + "\n", + "m.fs.R101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables and design variables:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal Values\n", + "\n", + "H101 outlet temperature = 328.150000 K\n", + "\n", + "Assuming a 20% design factor for reactor volume,total CSTR volume required = 22.712471 m^3 = 6000.000000 gal\n", + "\n", + "Ethylene glycol produced = 225.415471 MM lb/year\n", + "\n", + "Conversion achieved = 90.0%\n" + ] + } + ], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.6f} K\")\n", + "\n", + "print()\n", + "print(\n", + " f\"Assuming a 20% design factor for reactor volume,\"\n", + " f\"total CSTR volume required = {value(1.2*m.fs.R101.volume[0]):0.6f}\"\n", + " f\" m^3 = {value(pyunits.convert(1.2*m.fs.R101.volume[0], to_units=pyunits.gal)):0.6f} gal\"\n", + ")\n", + "\n", + "print()\n", + "print(f\"Ethylene glycol produced = {value(m.fs.eg_prod):0.6f} MM lb/year\")\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 3 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/cstr_test.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/cstr_test.ipynb index a77d3809..6c6b7cb0 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/cstr_test.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/cstr_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/cstr_usr.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/cstr_usr.ipynb index 946169b9..fb9b0cbe 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/cstr_usr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/cstr_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/egprod_ideal.py b/idaes_examples/notebooks/docs/unit_models/reactors/egprod_ideal.py index 1c18b1fc..402be7c0 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/egprod_ideal.py +++ b/idaes_examples/notebooks/docs/unit_models/reactors/egprod_ideal.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# """ Phase equilibrium package for Ethylene Oxide hydrolysis to Ethylene Glycol diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/egprod_reaction.py b/idaes_examples/notebooks/docs/unit_models/reactors/egprod_reaction.py index 47e15c10..208ff30c 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/egprod_reaction.py +++ b/idaes_examples/notebooks/docs/unit_models/reactors/egprod_reaction.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# """ Phase equilibrium package for Ethylene Oxide hydrolysis to Ethylene Glycol diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor.ipynb index e8b02ceb..06e3f97b 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor_doc.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor_doc.ipynb index bafa95cf..49f978cc 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor_doc.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor_doc.ipynb @@ -1,1098 +1,1357 @@ { - "cells": [ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Flowsheet Equilibrium Reactor Simulation and Optimization of Steam Methane Reforming\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "## Learning Outcomes\n", + "\n", + "\n", + "- Call and implement the IDAES EquilibriumReactor unit model\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "This example is adapted from S.Z. Abbas, V. Dupont, T. Mahmud, Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903\n", + "\n", + "Steam methane reforming (SMR) is one of the most common pathways for hydrogen production, taking advantage of chemical equilibria in natural gas systems. The process is typically done in two steps: methane reformation at a high temperature to partially oxidize methane, and water gas shift at a low temperature to complete the oxidation reaction:\n", + "\n", + "**CH4 + H2O → CO + 3H2** \n", + "**CO + H2O → CO2 + H2**\n", + "\n", + "This reaction is often carried out in two separate reactors to allow for different reaction temperatures and pressures; in this example, we will minimize operating cost for a single reactor.\n", + "\n", + "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing natural gas and steam feeds of fixed composition to produce hydrogen. As shown in the flowsheet, the process consists of a mixer M101 for the two inlet streams, a compressor to compress the feed to the reaction pressure, a heater H101 to heat the feed to the reaction temperature, and a EquilibriumReactor unit R101. We will use thermodynamic properties from the Peng-Robinson equation of state for this flowsheet.\n", + "\n", + "The state variables chosen for the property package are **total molar flows of each stream, temperature of each stream and pressure of each stream, and mole fractions of each component in each stream**. The components considered are: **CH4, H2O, CO, CO2, and H2** and the process occurs in vapor phase only. Therefore, every stream has 1 flow variable, 5 mole fraction variables, 1 temperature and 1 pressure variable. \n", + "\n", + "![](msr_flowsheet.png)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Pyomo and IDAES Components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages. Let us first import the following components from Pyomo:\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- ConcreteModel (to create the concrete model object)\n", + "- Expression (to evaluate values as a function of variables defined in the model)\n", + "- Objective (to define an objective function for optimization)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- Arc (to connect two unit models)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n", + "\n", + "From IDAES, we will be needing the `FlowsheetBlock` and the following unit models:\n", + "- Feed\n", + "- Mixer\n", + "- Compressor\n", + "- Heater\n", + "- EquilibriumReactor\n", + "- Product\n", + "\n", + "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom, tools for model expressions and calling variable values, and built-in functions to define property packages, add unit containers to objects and define our initialization scheme.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " TransformationFactory,\n", + " value,\n", + " units as pyunits,\n", + ")\n", + "from pyomo.network import Arc\n", + "\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.models.properties.modular_properties.base.generic_property import (\n", + " GenericParameterBlock,\n", + ")\n", + "from idaes.models.properties.modular_properties.base.generic_reaction import (\n", + " GenericReactionParameterBlock,\n", + ")\n", + "from idaes.models.unit_models import (\n", + " Feed,\n", + " Mixer,\n", + " Compressor,\n", + " Heater,\n", + " EquilibriumReactor,\n", + " Product,\n", + ")\n", + "\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Thermophysical and Reaction Packages\n", + "\n", + "The final step is to import the thermophysical and reaction packages. We will import natural gas properties from an existing IDAES module, and reaction properties from a custom module to describe equilibrium behavior. These configuration dictionaries provide parameter data that we will pass to the Modular Property Framework.\n", + "\n", + "The reaction package here assumes all reactions reach chemical equilibrium at the given conditions. \n", + "\n", + "${K_{eq}^{MSR}} = \\exp\\left(\\frac {-26830} {T} + 30.114\\right)$, ${K_{eq}^{WGS}} = \\exp\\left(\\frac {4400} {T} - 4.036\\right)$ with the reactor temperature $T$ in K. \n", + "The total reaction equilibrium constant is given by $K_{eq} = {K_{eq}^{MSR}}{K_{eq}^{WGS}}$.\n", + "\n", + "The correlations are taken from the following literature: \n", + "\n", + "Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903\n", + "\n", + "### Determining $k_{eq}^{ref}$\n", + "\n", + "As part of the parameter dictionary, users may define equilibrium reactions using a constant coefficient or built-in correlations for van't Hoff and Gibbs formulations. Using the literature correlations above for $k_{eq}$, we can easily calculate the necessary parameters to use the van't Hoff equilibrium constant form:\n", + "\n", + "For an empirical correlation $ln(k_{eq}) = f(T)$ for a catalyst (reaction) temperature $T$, we obtain $k_{eq}^{ref} = \\exp\\left({f(T_{eq}^{ref})}\\right)$. From the paper, we obtain a reference catalyst temperature of 973.15 K and reaction energies for the two reaction steps; these values exist in the reaction property parameter module in this same directory.\n", + "\n", + "These calculations are contained within the property, reaction and unit model packages, and do not need to be entered into the flowsheet. More information on property estimation may be found in the IDAES documentation on [Parameter Estimation](https://idaes-pse.readthedocs.io/en/stable/how_to_guides/workflow/data_rec_parmest.html).\n", + "\n", + "Let us import the following modules:\n", + "- natural_gas_PR as get_prop (method to get configuration dictionary)\n", + "- msr_reaction as reaction_props (contains configuration dictionary)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models_extra.power_generation.properties.natural_gas_PR import get_prop\n", + "import msr_reaction as reaction_props" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a `ConcreteModel` and add the flowsheet block. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now need to add the property packages to the flowsheet. Unlike the basic [Flash unit model example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Tutorials/Basics/flash_unit_solution_testing_doc.md), where we only had a thermophysical property package, for this flowsheet we will also need to add a reaction property package. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) and [Modular Reaction Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-reaction-package-framework). The `get_prop` method for the natural gas property module automatically returns the correct dictionary using a component list argument. The `GenericParameterBlock` and `GenericReactionParameterBlock` methods build states blocks from passed parameter data; the reaction block unpacks using `**reaction_props.config_dict` to allow for optional or empty keyword arguments:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "thermo_props_config_dict = get_prop(components=[\"CH4\", \"H2O\", \"H2\", \"CO\", \"CO2\"])\n", + "m.fs.thermo_params = GenericParameterBlock(**thermo_props_config_dict)\n", + "m.fs.reaction_params = GenericReactionParameterBlock(\n", + " property_package=m.fs.thermo_params, **reaction_props.config_dict\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding a `Mixer`, a `Compressor`, a `Heater` and an `EquilibriumReactor`. Note that all unit models should be explicitly defined with a given property package. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details on [IDAES Unit Models](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/index.html). For example, the `Mixer` is given a `list` consisting of names to the two inlets. Note that the `Compressor` is a `PressureChanger` assuming compression operation and with a fixed isentropic compressor efficiency as the default thermodynamic behavior." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.CH4 = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.H2O = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params, inlet_list=[\"methane_feed\", \"steam_feed\"]\n", + ")\n", + "m.fs.H101 = Heater(\n", + " property_package=m.fs.thermo_params,\n", + " has_pressure_change=False,\n", + " has_phase_equilibrium=False,\n", + ")\n", + "m.fs.C101 = Compressor(property_package=m.fs.thermo_params)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101 = EquilibriumReactor(\n", + " property_package=m.fs.thermo_params,\n", + " reaction_package=m.fs.reaction_params,\n", + " has_equilibrium_reactions=True,\n", + " has_rate_reactions=False,\n", + " has_heat_of_reaction=True,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models Using Arcs\n", + "\n", + "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a Pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the `Mixer` to the inlet of the `Compressor`, the outlet of the compressor `Compressor` to the inlet of the `Heater`, and the outlet of the `Heater` to the inlet of the `EquilibriumReactor`. Additionally, we will connect the `Feed` and `Product` blocks to the flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s01 = Arc(source=m.fs.CH4.outlet, destination=m.fs.M101.methane_feed)\n", + "m.fs.s02 = Arc(source=m.fs.H2O.outlet, destination=m.fs.M101.steam_feed)\n", + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.C101.inlet)\n", + "m.fs.s04 = Arc(source=m.fs.C101.outlet, destination=m.fs.H101.inlet)\n", + "m.fs.s05 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", + "m.fs.s06 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now connected the unit model block using the arcs. However, we also need to link the state variables on connected ports. Pyomo provides a convenient method `TransformationFactory` to write these equality constraints for us between two ports:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Expressions to Compute Operating Costs\n", + "\n", + "In this section, we will add a few `Expressions` that allow us to evaluate the performance. `Expressions` provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on `Expressions`, please refer to the [Pyomo Expression documentation](https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html).\n", + "\n", + "For this flowsheet, we are interested in computing hydrogen production in millions of pounds per year, as well as the total costs due to pressurizing, cooling, and heating utilities.\n", + "\n", + "Let us first add an `Expression` to convert the product flow from mol/s to MM lb/year of hydrogen. We see that the molecular weight exists in the thermophysical property package, so we may use that value for our calculations." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.hyd_prod = Expression(\n", + " expr=pyunits.convert(\n", + " m.fs.PROD.inlet.flow_mol[0]\n", + " * m.fs.PROD.inlet.mole_frac_comp[0, \"H2\"]\n", + " * m.fs.thermo_params.H2.mw, # MW defined in properties as kg/mol\n", + " to_units=pyunits.Mlb / pyunits.yr,\n", + " )\n", + ") # converting kg/s to MM lb/year" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let us add expressions to compute the reactor cooling cost (\\\\$/s) assuming a cost of 2.12E-5 \\\\$/kW, the compression cost (\\\\$/s) assuming 1.2E-3 \\\\$/kW, and the heating utility cost (\\\\$/s) assuming 2.2E-4 \\\\$/kW. Note that the heat duty is in units of Watt (J/s). The total operating cost will be the sum of the costs, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.cooling_cost = Expression(\n", + " expr=2.12e-8 * (m.fs.R101.heat_duty[0])\n", + ") # the reaction is endothermic, so R101 duty is positive\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", + ") # the stream must be heated to T_rxn, so H101 duty is positive\n", + "m.fs.compression_cost = Expression(\n", + " expr=1.2e-6 * m.fs.C101.work_isentropic[0]\n", + ") # the stream must be pressurized, so the C101 work is positive\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost + m.fs.compression_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Feed Conditions\n", + "\n", + "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. We expect each stream to have 8 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the compressor to have 2 (the pressure change and efficiency), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (conversion). Therefore, we have 20 degrees of freedom to specify: temperature, pressure, flow and mole fractions of all five components on both streams; compressor pressure change and efficiency; outlet heater temperature; and reactor conversion.\n", + "\n", + "Although the model has eight degrees of freedom per stream, the mole fractions are not all independent and the physical system only has seven. Each `StateBlock` sets a flag `defined_state` based on any remaining degrees of freedom; if this flag is set to `False` a `Constraint` is written to ensure all mole fractions sum to one. However, a fully specified system with `defined_state` set to `True` will not create this constraint and it is the responsibility of the user to set physically meaningful values, i.e. that all mole fractions are nonnegative and sum to one. While not necessary in this example, the [Custom Thermophysical Property Package Example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/Advanced/CustomProperties/custom_physical_property_packages_testing_doc.md) demonstrates adding a check before writing an additional constraint that may overspecify the system." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "20\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be fixing the feed stream to the conditions shown in the flowsheet above. As mentioned in other tutorials, the IDAES framework expects a time index value for every referenced internal stream or unit variable, even in steady-state systems with a single time point $ t = 0 $ (`t = [0]` is the default when creating a `FlowsheetBlock` without passing a `time_set` argument). The non-present components in each stream are assigned a very small non-zero value to help with convergence and initializing. Based on the literature source, we will initialize our simulation with the following values:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.CH4.outlet.mole_frac_comp[0, \"CH4\"].fix(1)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"H2O\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", + "m.fs.CH4.outlet.flow_mol.fix(75 * pyunits.mol / pyunits.s)\n", + "m.fs.CH4.outlet.temperature.fix(298.15 * pyunits.K)\n", + "m.fs.CH4.outlet.pressure.fix(1e5 * pyunits.Pa)\n", + "\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CH4\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"H2O\"].fix(1)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", + "m.fs.H2O.outlet.flow_mol.fix(234 * pyunits.mol / pyunits.s)\n", + "m.fs.H2O.outlet.temperature.fix(373.15 * pyunits.K)\n", + "m.fs.H2O.outlet.pressure.fix(1e5 * pyunits.Pa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Unit Model Specifications\n", + "\n", + "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. For the initial problem, let us fix the compressor outlet pressure to 2 bar for now, the efficiency to 0.90 (a common assumption for compressor units), and the heater outlet temperature to 500 K. We will unfix these values later to optimize the flowsheet." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.C101.outlet.pressure.fix(pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa))\n", + "m.fs.C101.efficiency_isentropic.fix(0.90)\n", + "m.fs.H101.outlet.temperature.fix(500 * pyunits.K)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `EquilibriumReactor` unit model calculates the amount of product and reactant based on the calculated equilibrium constant; therefore, we will specify a desired conversion and let the solver determine the reactor duty and heat transfer. For convenience, we will define the reactor conversion as the amount of methane that is converted." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion = Var(\n", + " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", + ") # fraction\n", + "\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion\n", + " * m.fs.R101.inlet.flow_mol[0]\n", + " * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol[0] * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", + " - m.fs.R101.outlet.flow_mol[0] * m.fs.R101.outlet.mole_frac_comp[0, \"CH4\"]\n", + " )\n", + ")\n", + "\n", + "m.fs.R101.conversion.fix(0.80)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Flowsheet Equilibrium Reactor Simulation and Optimization of Steam Methane Reforming\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "## Learning Outcomes\n", - "\n", - "\n", - "- Call and implement the IDAES EquilibriumReactor unit model\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "This example is adapted from S.Z. Abbas, V. Dupont, T. Mahmud, Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903\n", - "\n", - "Steam methane reforming (SMR) is one of the most common pathways for hydrogen production, taking advantage of chemical equilibria in natural gas systems. The process is typically done in two steps: methane reformation at a high temperature to partially oxidize methane, and water gas shift at a low temperature to complete the oxidation reaction:\n", - "\n", - "**CH4 + H2O \u2192 CO + 3H2** \n", - "**CO + H2O \u2192 CO2 + H2**\n", - "\n", - "This reaction is often carried out in two separate reactors to allow for different reaction temperatures and pressures; in this example, we will minimize operating cost for a single reactor.\n", - "\n", - "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing natural gas and steam feeds of fixed composition to produce hydrogen. As shown in the flowsheet, the process consists of a mixer M101 for the two inlet streams, a compressor to compress the feed to the reaction pressure, a heater H101 to heat the feed to the reaction temperature, and a EquilibriumReactor unit R101. We will use thermodynamic properties from the Peng-Robinson equation of state for this flowsheet.\n", - "\n", - "The state variables chosen for the property package are **total molar flows of each stream, temperature of each stream and pressure of each stream, and mole fractions of each component in each stream**. The components considered are: **CH4, H2O, CO, CO2, and H2** and the process occurs in vapor phase only. Therefore, every stream has 1 flow variable, 5 mole fraction variables, 1 temperature and 1 pressure variable. \n", - "\n", - "![](msr_flowsheet.png)\n" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we need to initialize each unit operation in sequence to solve the flowsheet. As in best practice, unit operations are initialized or solved, and outlet properties are propagated to connected inlet streams via arc definitions as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Pyomo and IDAES Components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages. Let us first import the following components from Pyomo:\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- ConcreteModel (to create the concrete model object)\n", - "- Expression (to evaluate values as a function of variables defined in the model)\n", - "- Objective (to define an objective function for optimization)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- Arc (to connect two unit models)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n", - "\n", - "From IDAES, we will be needing the `FlowsheetBlock` and the following unit models:\n", - "- Feed\n", - "- Mixer\n", - "- Compressor\n", - "- Heater\n", - "- EquilibriumReactor\n", - "- Product\n", - "\n", - "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom, tools for model expressions and calling variable values, and built-in functions to define property packages, add unit containers to objects and define our initialization scheme.\n" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:39 [INFO] idaes.init.fs.CH4.properties: Starting initialization\n" + ] }, { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " TransformationFactory,\n", - " value,\n", - " units as pyunits,\n", - ")\n", - "from pyomo.network import Arc\n", - "\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.models.properties.modular_properties.base.generic_property import (\n", - " GenericParameterBlock,\n", - ")\n", - "from idaes.models.properties.modular_properties.base.generic_reaction import (\n", - " GenericReactionParameterBlock,\n", - ")\n", - "from idaes.models.unit_models import (\n", - " Feed,\n", - " Mixer,\n", - " Compressor,\n", - " Heater,\n", - " EquilibriumReactor,\n", - " Product,\n", - ")\n", - "\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:39 [INFO] idaes.init.fs.CH4.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Thermophysical and Reaction Packages\n", - "\n", - "The final step is to import the thermophysical and reaction packages. We will import natural gas properties from an existing IDAES module, and reaction properties from a custom module to describe equilibrium behavior. These configuration dictionaries provide parameter data that we will pass to the Modular Property Framework.\n", - "\n", - "The reaction package here assumes all reactions reach chemical equilibrium at the given conditions. \n", - "\n", - "${K_{eq}^{MSR}} = \\exp\\left(\\frac {-26830} {T} + 30.114\\right)$, ${K_{eq}^{WGS}} = \\exp\\left(\\frac {4400} {T} - 4.036\\right)$ with the reactor temperature $T$ in K. \n", - "The total reaction equilibrium constant is given by $K_{eq} = {K_{eq}^{MSR}}{K_{eq}^{WGS}}$.\n", - "\n", - "The correlations are taken from the following literature: \n", - "\n", - "Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903\n", - "\n", - "### Determining $k_{eq}^{ref}$\n", - "\n", - "As part of the parameter dictionary, users may define equilibrium reactions using a constant coefficient or built-in correlations for van't Hoff and Gibbs formulations. Using the literature correlations above for $k_{eq}$, we can easily calculate the necessary parameters to use the van't Hoff equilibrium constant form:\n", - "\n", - "For an empirical correlation $ln(k_{eq}) = f(T)$ for a catalyst (reaction) temperature $T$, we obtain $k_{eq}^{ref} = \\exp\\left({f(T_{eq}^{ref})}\\right)$. From the paper, we obtain a reference catalyst temperature of 973.15 K and reaction energies for the two reaction steps; these values exist in the reaction property parameter module in this same directory.\n", - "\n", - "These calculations are contained within the property, reaction and unit model packages, and do not need to be entered into the flowsheet. More information on property estimation may be found in the IDAES documentation on [Parameter Estimation](https://idaes-pse.readthedocs.io/en/stable/how_to_guides/workflow/data_rec_parmest.html).\n", - "\n", - "Let us import the following modules:\n", - "- natural_gas_PR as get_prop (method to get configuration dictionary)\n", - "- msr_reaction as reaction_props (contains configuration dictionary)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:39 [INFO] idaes.init.fs.CH4.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models_extra.power_generation.properties.natural_gas_PR import get_prop\n", - "import msr_reaction as reaction_props" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:39 [INFO] idaes.init.fs.CH4: Initialization Complete.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a `ConcreteModel` and add the flowsheet block. " - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:39 [INFO] idaes.init.fs.H2O.properties: Starting initialization\n" + ] }, { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:39 [INFO] idaes.init.fs.H2O.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need to add the property packages to the flowsheet. Unlike the basic [Flash unit model example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Tutorials/Basics/flash_unit_solution_testing_doc.md), where we only had a thermophysical property package, for this flowsheet we will also need to add a reaction property package. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) and [Modular Reaction Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-reaction-package-framework). The `get_prop` method for the natural gas property module automatically returns the correct dictionary using a component list argument. The `GenericParameterBlock` and `GenericReactionParameterBlock` methods build states blocks from passed parameter data; the reaction block unpacks using `**reaction_props.config_dict` to allow for optional or empty keyword arguments:" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:39 [INFO] idaes.init.fs.H2O.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "thermo_props_config_dict = get_prop(components=[\"CH4\", \"H2O\", \"H2\", \"CO\", \"CO2\"])\n", - "m.fs.thermo_params = GenericParameterBlock(**thermo_props_config_dict)\n", - "m.fs.reaction_params = GenericReactionParameterBlock(\n", - " property_package=m.fs.thermo_params, **reaction_props.config_dict\n", - ")" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:39 [INFO] idaes.init.fs.H2O: Initialization Complete.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding a `Mixer`, a `Compressor`, a `Heater` and an `EquilibriumReactor`. Note that all unit models should be explicitly defined with a given property package. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details on [IDAES Unit Models](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/index.html). For example, the `Mixer` is given a `list` consisting of names to the two inlets. Note that the `Compressor` is a `PressureChanger` assuming compression operation and with a fixed isentropic compressor efficiency as the default thermodynamic behavior." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:39 [INFO] idaes.init.fs.M101.methane_feed_state: Starting initialization\n" + ] }, { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.CH4 = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.H2O = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params, inlet_list=[\"methane_feed\", \"steam_feed\"]\n", - ")\n", - "m.fs.H101 = Heater(\n", - " property_package=m.fs.thermo_params,\n", - " has_pressure_change=False,\n", - " has_phase_equilibrium=False,\n", - ")\n", - "m.fs.C101 = Compressor(property_package=m.fs.thermo_params)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:39 [INFO] idaes.init.fs.M101.methane_feed_state: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101 = EquilibriumReactor(\n", - " property_package=m.fs.thermo_params,\n", - " reaction_package=m.fs.reaction_params,\n", - " has_equilibrium_reactions=True,\n", - " has_rate_reactions=False,\n", - " has_heat_of_reaction=True,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=False,\n", - ")" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:39 [INFO] idaes.init.fs.M101.steam_feed_state: Starting initialization\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models Using Arcs\n", - "\n", - "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a Pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the `Mixer` to the inlet of the `Compressor`, the outlet of the compressor `Compressor` to the inlet of the `Heater`, and the outlet of the `Heater` to the inlet of the `EquilibriumReactor`. Additionally, we will connect the `Feed` and `Product` blocks to the flowsheet:" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.M101.steam_feed_state: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s01 = Arc(source=m.fs.CH4.outlet, destination=m.fs.M101.methane_feed)\n", - "m.fs.s02 = Arc(source=m.fs.H2O.outlet, destination=m.fs.M101.steam_feed)\n", - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.C101.inlet)\n", - "m.fs.s04 = Arc(source=m.fs.C101.outlet, destination=m.fs.H101.inlet)\n", - "m.fs.s05 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", - "m.fs.s06 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have now connected the unit model block using the arcs. However, we also need to link the state variables on connected ports. Pyomo provides a convenient method `TransformationFactory` to write these equality constraints for us between two ports:" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Expressions to Compute Operating Costs\n", - "\n", - "In this section, we will add a few `Expressions` that allow us to evaluate the performance. `Expressions` provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on `Expressions`, please refer to the [Pyomo Expression documentation](https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html).\n", - "\n", - "For this flowsheet, we are interested in computing hydrogen production in millions of pounds per year, as well as the total costs due to pressurizing, cooling, and heating utilities.\n", - "\n", - "Let us first add an `Expression` to convert the product flow from mol/s to MM lb/year of hydrogen. We see that the molecular weight exists in the thermophysical property package, so we may use that value for our calculations." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" + ] }, { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.hyd_prod = Expression(\n", - " expr=pyunits.convert(\n", - " m.fs.PROD.inlet.flow_mol[0]\n", - " * m.fs.PROD.inlet.mole_frac_comp[0, \"H2\"]\n", - " * m.fs.thermo_params.H2.mw, # MW defined in properties as kg/mol\n", - " to_units=pyunits.Mlb / pyunits.yr,\n", - " )\n", - ") # converting kg/s to MM lb/year" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.C101.control_volume.properties_in: Starting initialization\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let us add expressions to compute the reactor cooling cost (\\\\$/s) assuming a cost of 2.12E-5 \\\\$/kW, the compression cost (\\\\$/s) assuming 1.2E-3 \\\\$/kW, and the heating utility cost (\\\\$/s) assuming 2.2E-4 \\\\$/kW. Note that the heat duty is in units of Watt (J/s). The total operating cost will be the sum of the costs, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.C101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.cooling_cost = Expression(\n", - " expr=2.12e-8 * (m.fs.R101.heat_duty[0])\n", - ") # the reaction is endothermic, so R101 duty is positive\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", - ") # the stream must be heated to T_rxn, so H101 duty is positive\n", - "m.fs.compression_cost = Expression(\n", - " expr=1.2e-6 * m.fs.C101.work_isentropic[0]\n", - ") # the stream must be pressurized, so the C101 work is positive\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost + m.fs.compression_cost))\n", - ")" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.C101.control_volume.properties_out: Starting initialization\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Feed Conditions\n", - "\n", - "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. We expect each stream to have 8 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the compressor to have 2 (the pressure change and efficiency), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (conversion). Therefore, we have 20 degrees of freedom to specify: temperature, pressure, flow and mole fractions of all five components on both streams; compressor pressure change and efficiency; outlet heater temperature; and reactor conversion.\n", - "\n", - "Although the model has eight degrees of freedom per stream, the mole fractions are not all independent and the physical system only has seven. Each `StateBlock` sets a flag `defined_state` based on any remaining degrees of freedom; if this flag is set to `False` a `Constraint` is written to ensure all mole fractions sum to one. However, a fully specified system with `defined_state` set to `True` will not create this constraint and it is the responsibility of the user to set physically meaningful values, i.e. that all mole fractions are nonnegative and sum to one. While not necessary in this example, the [Custom Thermophysical Property Package Example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/Advanced/CustomProperties/custom_physical_property_packages_testing_doc.md) demonstrates adding a check before writing an additional constraint that may overspecify the system." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "20\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property package initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be fixing the feed stream to the conditions shown in the flowsheet above. As mentioned in other tutorials, the IDAES framework expects a time index value for every referenced internal stream or unit variable, even in steady-state systems with a single time point $ t = 0 $ (`t = [0]` is the default when creating a `FlowsheetBlock` without passing a `time_set` argument). The non-present components in each stream are assigned a very small non-zero value to help with convergence and initializing. Based on the literature source, we will initialize our simulation with the following values:" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.C101.properties_isentropic: Starting initialization\n" + ] }, { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.CH4.outlet.mole_frac_comp[0, \"CH4\"].fix(1)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"H2O\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", - "m.fs.CH4.outlet.flow_mol.fix(75 * pyunits.mol / pyunits.s)\n", - "m.fs.CH4.outlet.temperature.fix(298.15 * pyunits.K)\n", - "m.fs.CH4.outlet.pressure.fix(1e5 * pyunits.Pa)\n", - "\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CH4\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"H2O\"].fix(1)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", - "m.fs.H2O.outlet.flow_mol.fix(234 * pyunits.mol / pyunits.s)\n", - "m.fs.H2O.outlet.temperature.fix(373.15 * pyunits.K)\n", - "m.fs.H2O.outlet.pressure.fix(1e5 * pyunits.Pa)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.C101.properties_isentropic: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Unit Model Specifications\n", - "\n", - "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. For the initial problem, let us fix the compressor outlet pressure to 2 bar for now, the efficiency to 0.90 (a common assumption for compressor units), and the heater outlet temperature to 500 K. We will unfix these values later to optimize the flowsheet." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.C101.properties_isentropic: Property package initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.C101.outlet.pressure.fix(pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa))\n", - "m.fs.C101.efficiency_isentropic.fix(0.90)\n", - "m.fs.H101.outlet.temperature.fix(500 * pyunits.K)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `EquilibriumReactor` unit model calculates the amount of product and reactant based on the calculated equilibrium constant; therefore, we will specify a desired conversion and let the solver determine the reactor duty and heat transfer. For convenience, we will define the reactor conversion as the amount of methane that is converted." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n" + ] }, { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion = Var(\n", - " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", - ") # fraction\n", - "\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion\n", - " * m.fs.R101.inlet.flow_mol[0]\n", - " * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol[0] * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", - " - m.fs.R101.outlet.flow_mol[0] * m.fs.R101.outlet.mole_frac_comp[0, \"CH4\"]\n", - " )\n", - ")\n", - "\n", - "m.fs.R101.conversion.fix(0.80)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n" + ] }, { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we need to initialize each unit operation in sequence to solve the flowsheet. As in best practice, unit operations are initialized or solved, and outlet properties are propagated to connected inlet streams via arc definitions as follows:" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" + ] }, { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4.properties: Starting initialization\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4: Initialization Complete.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O.properties: Starting initialization\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O: Initialization Complete.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.M101.methane_feed_state: Starting initialization\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.M101.methane_feed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.M101.steam_feed_state: Starting initialization\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.steam_feed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.properties_isentropic: Starting initialization\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.properties_isentropic: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.properties_isentropic: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.reactions: Initialization Complete.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD.properties: Starting initialization\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD: Initialization Complete.\n" - ] - } - ], - "source": [ - "# Initialize and solve each unit operation\n", - "m.fs.CH4.initialize()\n", - "propagate_state(arc=m.fs.s01)\n", - "\n", - "m.fs.H2O.initialize()\n", - "propagate_state(arc=m.fs.s02)\n", - "\n", - "m.fs.M101.initialize()\n", - "propagate_state(arc=m.fs.s03)\n", - "\n", - "m.fs.C101.initialize()\n", - "propagate_state(arc=m.fs.s04)\n", - "\n", - "m.fs.H101.initialize()\n", - "propagate_state(arc=m.fs.s05)\n", - "\n", - "m.fs.R101.initialize()\n", - "propagate_state(arc=m.fs.s06)\n", - "\n", - "m.fs.PROD.initialize()\n", - "\n", - "# set solver\n", - "solver = get_solver()" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" + ] }, { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 562\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 477\n", - "\n", - "Total number of variables............................: 204\n", - " variables with only lower bounds: 13\n", - " variables with lower and upper bounds: 174\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 204\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 1.49e+06 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 1.35e+04 2.00e-01 -1.0 3.59e+00 - 9.90e-01 9.91e-01h 1\n", - " 2 0.0000000e+00 3.59e-04 9.99e+00 -1.0 3.56e+00 - 9.90e-01 1.00e+00h 1\n", - " 3 0.0000000e+00 2.12e-08 8.98e+01 -1.0 2.91e-04 - 9.90e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 2.8421709430404007e-14 2.1187588572502136e-08\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.8421709430404007e-14 2.1187588572502136e-08\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", - "Total CPU secs in NLP function evaluations = 0.001\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the Results of the Square Problem\n", - "\n", - "\n", - "What is the total operating cost? " - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "operating cost = $45.933 million per year\n" - ] - } - ], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this operating cost, what conversion did we achieve of methane to hydrogen?" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 2.7605e+07 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 429.02\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.034965\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.31487\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 0.51029\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 0.049157\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.090717\n", - " Temperature kelvin 500.00 868.56\n", - " Pressure pascal 2.0000e+05 2.0000e+05\n", - "====================================================================================\n", - "\n", - "Conversion achieved = 80.0%\n" - ] - } - ], - "source": [ - "m.fs.R101.report()\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.R101.control_volume.reactions: Initialization Complete.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimizing Hydrogen Production\n", - "\n", - "Now that the flowsheet has been squared and solved, we can run a small optimization problem to determine optimal conditions for producing hydrogen. Suppose we wish to find ideal conditions for the competing reactions. As mentioned earlier, the two reactions have competing equilibria - steam methane reformation occurs more readily at higher temperatures (500-700 C) while water gas shift occurs more readily at lower temperatures (300-400 C). We will allow for variable reactor temperature and pressure by freeing our heater and compressor specifications, and minimize cost to achieve 90% methane conversion. Since we assume an isentopic compressor, allowing compression will heat our feed stream and reduce or eliminate the required heater duty." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" + ] }, { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.PROD.properties: Starting initialization\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem until now, as well as set bounds for the design variables (reactor outlet temperature is set by state variable bounds in property package):" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.PROD.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion.fix(0.90)\n", - "\n", - "m.fs.C101.outlet.pressure.unfix()\n", - "m.fs.C101.outlet.pressure[0].setlb(\n", - " pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa)\n", - ") # pressurize to at least 2 bar\n", - "m.fs.C101.outlet.pressure[0].setub(\n", - " pyunits.convert(10 * pyunits.bar, to_units=pyunits.Pa)\n", - ") # at most, pressurize to 10 bar\n", - "\n", - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.H101.heat_duty[0].setlb(\n", - " 0 * pyunits.J / pyunits.s\n", - ") # outlet temperature is equal to or greater than inlet temperature\n", - "m.fs.H101.outlet.temperature[0].setub(1000 * pyunits.K) # at most, heat to 1000 K" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.PROD.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:40 [INFO] idaes.init.fs.PROD: Initialization Complete.\n" + ] + } + ], + "source": [ + "# Initialize and solve each unit operation\n", + "m.fs.CH4.initialize()\n", + "propagate_state(arc=m.fs.s01)\n", + "\n", + "m.fs.H2O.initialize()\n", + "propagate_state(arc=m.fs.s02)\n", + "\n", + "m.fs.M101.initialize()\n", + "propagate_state(arc=m.fs.s03)\n", + "\n", + "m.fs.C101.initialize()\n", + "propagate_state(arc=m.fs.s04)\n", + "\n", + "m.fs.H101.initialize()\n", + "propagate_state(arc=m.fs.s05)\n", + "\n", + "m.fs.R101.initialize()\n", + "propagate_state(arc=m.fs.s06)\n", + "\n", + "m.fs.PROD.initialize()\n", + "\n", + "# set solver\n", + "solver = get_solver()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 569\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 493\n", - "\n", - "Total number of variables............................: 206\n", - " variables with only lower bounds: 14\n", - " variables with lower and upper bounds: 176\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 204\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.5933014e+07 1.49e+06 3.46e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 4.5420427e+07 1.49e+06 1.33e+03 -1.0 1.08e+07 - 4.58e-01 5.96e-03f 1\n", - " 2 4.2830345e+07 8.68e+05 6.47e+06 -1.0 5.32e+06 - 8.03e-01 4.18e-01f 1\n", - " 3 4.3111576e+07 1.26e+05 1.06e+07 -1.0 2.54e+06 - 9.54e-01 8.85e-01h 1\n", - " 4 4.3307552e+07 2.24e+03 3.12e+05 -1.0 3.51e+05 - 9.89e-01 9.86e-01h 1\n", - " 5 4.3309118e+07 2.20e+01 3.08e+03 -1.0 2.69e+03 - 9.90e-01 9.90e-01h 1\n", - " 6 4.3309131e+07 5.77e-06 3.84e+01 -1.0 2.31e+01 - 9.92e-01 1.00e+00h 1\n", - " 7 4.3309131e+07 7.77e-09 4.84e-07 -2.5 1.97e-02 - 1.00e+00 1.00e+00f 1\n", - " 8 4.3309131e+07 1.63e-08 1.71e-06 -3.8 5.56e-04 - 1.00e+00 1.00e+00f 1\n", - " 9 4.3309131e+07 1.72e-08 1.31e-06 -5.7 3.08e-05 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 4.3309131e+07 2.20e-08 8.55e-07 -7.0 3.59e-07 - 1.00e+00 1.00e+00f 1\n", - "\n", - "Number of Iterations....: 10\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 4.3309130854568794e+07 4.3309130854568794e+07\n", - "Dual infeasibility......: 8.5488594337511447e-07 8.5488594337511447e-07\n", - "Constraint violation....: 1.4551915228366852e-11 2.2002495825290680e-08\n", - "Complementarity.........: 9.0909090913936433e-08 9.0909090913936433e-08\n", - "Overall NLP error.......: 9.0909090913936433e-08 8.5488594337511447e-07\n", - "\n", - "\n", - "Number of objective function evaluations = 11\n", - "Number of objective gradient evaluations = 11\n", - "Number of equality constraint evaluations = 11\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 11\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 10\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.008\n", - "Total CPU secs in NLP function evaluations = 0.003\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 562\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 477\n", + "\n", + "Total number of variables............................: 204\n", + " variables with only lower bounds: 13\n", + " variables with lower and upper bounds: 174\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 204\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.49e+06 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.35e+04 2.00e-01 -1.0 3.59e+00 - 9.90e-01 9.91e-01h 1\n", + " 2 0.0000000e+00 3.59e-04 9.99e+00 -1.0 3.56e+00 - 9.90e-01 1.00e+00h 1\n", + " 3 0.0000000e+00 2.24e-08 8.98e+01 -1.0 2.91e-04 - 9.90e-01 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.1641532182693481e-10 2.2351741790771484e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.1641532182693481e-10 2.2351741790771484e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the Results of the Square Problem\n", + "\n", + "\n", + "What is the total operating cost? " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "operating cost = $43.309 million per year\n", - "\n", - "Compressor results\n", - "\n", - "====================================================================================\n", - "Unit : fs.C101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.90000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 7.5471e+05 : watt : False : (None, None)\n", - " Pressure Change : 1.0000e+05 : pascal : False : (None, None)\n", - " Pressure Ratio : 2.0000 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 309.01\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", - " Temperature kelvin 353.80 423.34\n", - " Pressure pascal 1.0000e+05 2.0000e+05\n", - "====================================================================================\n", - "\n", - "Heater results\n", - "\n", - "====================================================================================\n", - "Unit : fs.H101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 5.8781e-09 : watt : False : (0.0, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 309.01\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", - " Temperature kelvin 423.34 423.34\n", - " Pressure pascal 2.0000e+05 2.0000e+05\n", - "====================================================================================\n", - "\n", - "Equilibrium reactor results\n", - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 3.2486e+07 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 444.02\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.016892\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.29075\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 0.54032\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 0.067801\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.084239\n", - " Temperature kelvin 423.34 910.04\n", - " Pressure pascal 2.0000e+05 2.0000e+05\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")\n", - "\n", - "print()\n", - "print(\"Compressor results\")\n", - "\n", - "m.fs.C101.report()\n", - "\n", - "print()\n", - "print(\"Heater results\")\n", - "\n", - "m.fs.H101.report()\n", - "\n", - "print()\n", - "print(\"Equilibrium reactor results\")\n", - "\n", - "m.fs.R101.report()" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $45.933 million per year\n" + ] + } + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this operating cost, what conversion did we achieve of methane to hydrogen?" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables and design variables:" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 2.7605e+07 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n" + ] }, { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal Values\n", - "\n", - "C101 outlet pressure = 0.200 MPa\n", - "\n", - "C101 outlet temperature = 423.345 K\n", - "\n", - "H101 outlet temperature = 423.345 K\n", - "\n", - "R101 outlet temperature = 910.044 K\n", - "\n", - "Hydrogen produced = 33.648 MM lb/year\n", - "\n", - "Conversion achieved = 90.0%\n" - ] - } - ], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(f\"C101 outlet pressure = {value(m.fs.C101.outlet.pressure[0])/1E6:0.3f} MPa\")\n", - "print()\n", - "\n", - "print(f\"C101 outlet temperature = {value(m.fs.C101.outlet.temperature[0]):0.3f} K\")\n", - "print()\n", - "\n", - "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.3f} K\")\n", - "\n", - "print()\n", - "print(f\"R101 outlet temperature = {value(m.fs.R101.outlet.temperature[0]):0.3f} K\")\n", - "\n", - "print()\n", - "print(f\"Hydrogen produced = {value(m.fs.hyd_prod):0.3f} MM lb/year\")\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 429.02\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.034965\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.31487\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 0.51029\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 0.049157\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.090717\n", + " Temperature kelvin 500.00 868.56\n", + " Pressure pascal 2.0000e+05 2.0000e+05\n", + "====================================================================================\n", + "\n", + "Conversion achieved = 80.0%\n" + ] + } + ], + "source": [ + "m.fs.R101.report()\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimizing Hydrogen Production\n", + "\n", + "Now that the flowsheet has been squared and solved, we can run a small optimization problem to determine optimal conditions for producing hydrogen. Suppose we wish to find ideal conditions for the competing reactions. As mentioned earlier, the two reactions have competing equilibria - steam methane reformation occurs more readily at higher temperatures (500-700 C) while water gas shift occurs more readily at lower temperatures (300-400 C). We will allow for variable reactor temperature and pressure by freeing our heater and compressor specifications, and minimize cost to achieve 90% methane conversion. Since we assume an isentopic compressor, allowing compression will heat our feed stream and reduce or eliminate the required heater duty." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem until now, as well as set bounds for the design variables (reactor outlet temperature is set by state variable bounds in property package):" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion.fix(0.90)\n", + "\n", + "m.fs.C101.outlet.pressure.unfix()\n", + "m.fs.C101.outlet.pressure[0].setlb(\n", + " pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa)\n", + ") # pressurize to at least 2 bar\n", + "m.fs.C101.outlet.pressure[0].setub(\n", + " pyunits.convert(10 * pyunits.bar, to_units=pyunits.Pa)\n", + ") # at most, pressurize to 10 bar\n", + "\n", + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.H101.heat_duty[0].setlb(\n", + " 0 * pyunits.J / pyunits.s\n", + ") # outlet temperature is equal to or greater than inlet temperature\n", + "m.fs.H101.outlet.temperature[0].setub(1000 * pyunits.K) # at most, heat to 1000 K" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n" + ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 569\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 493\n", + "\n", + "Total number of variables............................: 206\n", + " variables with only lower bounds: 14\n", + " variables with lower and upper bounds: 176\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 204\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 4.5933014e+07 1.49e+06 3.46e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 4.5420427e+07 1.49e+06 1.33e+03 -1.0 1.08e+07 - 4.58e-01 5.96e-03f 1\n", + " 2 4.2830345e+07 8.68e+05 6.47e+06 -1.0 5.32e+06 - 8.03e-01 4.18e-01f 1\n", + " 3 4.3111576e+07 1.26e+05 1.06e+07 -1.0 2.54e+06 - 9.54e-01 8.85e-01h 1\n", + " 4 4.3307552e+07 2.24e+03 3.12e+05 -1.0 3.51e+05 - 9.89e-01 9.86e-01h 1\n", + " 5 4.3309118e+07 2.20e+01 3.08e+03 -1.0 2.69e+03 - 9.90e-01 9.90e-01h 1\n", + " 6 4.3309131e+07 5.78e-06 3.84e+01 -1.0 2.31e+01 - 9.92e-01 1.00e+00h 1\n", + " 7 4.3309131e+07 1.12e-08 9.40e-07 -2.5 1.97e-02 - 1.00e+00 1.00e+00f 1\n", + " 8 4.3309131e+07 2.94e-08 8.99e-07 -3.8 5.56e-04 - 1.00e+00 1.00e+00f 1\n", + " 9 4.3309131e+07 3.59e-08 1.18e-06 -5.7 3.08e-05 - 1.00e+00 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 4.3309131e+07 7.22e-09 8.49e-07 -7.0 3.42e-07 - 1.00e+00 1.00e+00f 1\n", + "\n", + "Number of Iterations....: 10\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 4.3309130854568794e+07 4.3309130854568794e+07\n", + "Dual infeasibility......: 8.4896141664767067e-07 8.4896141664767067e-07\n", + "Constraint violation....: 1.4551915228366852e-11 7.2177499532699585e-09\n", + "Complementarity.........: 9.0909090913936446e-08 9.0909090913936446e-08\n", + "Overall NLP error.......: 9.0909090913936446e-08 8.4896141664767067e-07\n", + "\n", + "\n", + "Number of objective function evaluations = 11\n", + "Number of objective gradient evaluations = 11\n", + "Number of equality constraint evaluations = 11\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 11\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 10\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.005\n", + "Total CPU secs in NLP function evaluations = 0.004\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" + ], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $43.309 million per year\n", + "\n", + "Compressor results\n", + "\n", + "====================================================================================\n", + "Unit : fs.C101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.90000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 7.5471e+05 : watt : False : (None, None)\n", + " Pressure Change : 1.0000e+05 : pascal : False : (None, None)\n", + " Pressure Ratio : 2.0000 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 309.01\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", + " Temperature kelvin 353.80 423.34\n", + " Pressure pascal 1.0000e+05 2.0000e+05\n", + "====================================================================================\n", + "\n", + "Heater results\n", + "\n", + "====================================================================================\n", + "Unit : fs.H101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 5.8781e-09 : watt : False : (0.0, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 309.01\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", + " Temperature kelvin 423.34 423.34\n", + " Pressure pascal 2.0000e+05 2.0000e+05\n", + "====================================================================================\n", + "\n", + "Equilibrium reactor results\n", + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 3.2486e+07 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 444.02\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.016892\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.29075\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 0.54032\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 0.067801\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.084239\n", + " Temperature kelvin 423.34 910.04\n", + " Pressure pascal 2.0000e+05 2.0000e+05\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")\n", + "\n", + "print()\n", + "print(\"Compressor results\")\n", + "\n", + "m.fs.C101.report()\n", + "\n", + "print()\n", + "print(\"Heater results\")\n", + "\n", + "m.fs.H101.report()\n", + "\n", + "print()\n", + "print(\"Equilibrium reactor results\")\n", + "\n", + "m.fs.R101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables and design variables:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal Values\n", + "\n", + "C101 outlet pressure = 0.200 MPa\n", + "\n", + "C101 outlet temperature = 423.345 K\n", + "\n", + "H101 outlet temperature = 423.345 K\n", + "\n", + "R101 outlet temperature = 910.044 K\n", + "\n", + "Hydrogen produced = 33.648 MM lb/year\n", + "\n", + "Conversion achieved = 90.0%\n" + ] } + ], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(f\"C101 outlet pressure = {value(m.fs.C101.outlet.pressure[0])/1E6:0.3f} MPa\")\n", + "print()\n", + "\n", + "print(f\"C101 outlet temperature = {value(m.fs.C101.outlet.temperature[0]):0.3f} K\")\n", + "print()\n", + "\n", + "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.3f} K\")\n", + "\n", + "print()\n", + "print(f\"R101 outlet temperature = {value(m.fs.R101.outlet.temperature[0]):0.3f} K\")\n", + "\n", + "print()\n", + "print(f\"Hydrogen produced = {value(m.fs.hyd_prod):0.3f} MM lb/year\")\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 3 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor_test.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor_test.ipynb index a845483e..2c9dfece 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor_test.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor_test.ipynb @@ -1,1232 +1,1233 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Flowsheet Equilibrium Reactor Simulation and Optimization of Steam Methane Reforming\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "## Learning Outcomes\n", - "\n", - "\n", - "- Call and implement the IDAES EquilibriumReactor unit model\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "This example is adapted from S.Z. Abbas, V. Dupont, T. Mahmud, Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903\n", - "\n", - "Steam methane reforming (SMR) is one of the most common pathways for hydrogen production, taking advantage of chemical equilibria in natural gas systems. The process is typically done in two steps: methane reformation at a high temperature to partially oxidize methane, and water gas shift at a low temperature to complete the oxidation reaction:\n", - "\n", - "**CH4 + H2O \u2192 CO + 3H2** \n", - "**CO + H2O \u2192 CO2 + H2**\n", - "\n", - "This reaction is often carried out in two separate reactors to allow for different reaction temperatures and pressures; in this example, we will minimize operating cost for a single reactor.\n", - "\n", - "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing natural gas and steam feeds of fixed composition to produce hydrogen. As shown in the flowsheet, the process consists of a mixer M101 for the two inlet streams, a compressor to compress the feed to the reaction pressure, a heater H101 to heat the feed to the reaction temperature, and a EquilibriumReactor unit R101. We will use thermodynamic properties from the Peng-Robinson equation of state for this flowsheet.\n", - "\n", - "The state variables chosen for the property package are **total molar flows of each stream, temperature of each stream and pressure of each stream, and mole fractions of each component in each stream**. The components considered are: **CH4, H2O, CO, CO2, and H2** and the process occurs in vapor phase only. Therefore, every stream has 1 flow variable, 5 mole fraction variables, 1 temperature and 1 pressure variable. \n", - "\n", - "![](msr_flowsheet.png)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Pyomo and IDAES Components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages. Let us first import the following components from Pyomo:\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- ConcreteModel (to create the concrete model object)\n", - "- Expression (to evaluate values as a function of variables defined in the model)\n", - "- Objective (to define an objective function for optimization)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- Arc (to connect two unit models)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n", - "\n", - "From IDAES, we will be needing the `FlowsheetBlock` and the following unit models:\n", - "- Feed\n", - "- Mixer\n", - "- Compressor\n", - "- Heater\n", - "- EquilibriumReactor\n", - "- Product\n", - "\n", - "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom, tools for model expressions and calling variable values, and built-in functions to define property packages, add unit containers to objects and define our initialization scheme.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " TransformationFactory,\n", - " value,\n", - " units as pyunits,\n", - ")\n", - "from pyomo.network import Arc\n", - "\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.models.properties.modular_properties.base.generic_property import (\n", - " GenericParameterBlock,\n", - ")\n", - "from idaes.models.properties.modular_properties.base.generic_reaction import (\n", - " GenericReactionParameterBlock,\n", - ")\n", - "from idaes.models.unit_models import (\n", - " Feed,\n", - " Mixer,\n", - " Compressor,\n", - " Heater,\n", - " EquilibriumReactor,\n", - " Product,\n", - ")\n", - "\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Thermophysical and Reaction Packages\n", - "\n", - "The final step is to import the thermophysical and reaction packages. We will import natural gas properties from an existing IDAES module, and reaction properties from a custom module to describe equilibrium behavior. These configuration dictionaries provide parameter data that we will pass to the Modular Property Framework.\n", - "\n", - "The reaction package here assumes all reactions reach chemical equilibrium at the given conditions. \n", - "\n", - "${K_{eq}^{MSR}} = \\exp\\left(\\frac {-26830} {T} + 30.114\\right)$, ${K_{eq}^{WGS}} = \\exp\\left(\\frac {4400} {T} - 4.036\\right)$ with the reactor temperature $T$ in K. \n", - "The total reaction equilibrium constant is given by $K_{eq} = {K_{eq}^{MSR}}{K_{eq}^{WGS}}$.\n", - "\n", - "The correlations are taken from the following literature: \n", - "\n", - "Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903\n", - "\n", - "### Determining $k_{eq}^{ref}$\n", - "\n", - "As part of the parameter dictionary, users may define equilibrium reactions using a constant coefficient or built-in correlations for van't Hoff and Gibbs formulations. Using the literature correlations above for $k_{eq}$, we can easily calculate the necessary parameters to use the van't Hoff equilibrium constant form:\n", - "\n", - "For an empirical correlation $ln(k_{eq}) = f(T)$ for a catalyst (reaction) temperature $T$, we obtain $k_{eq}^{ref} = \\exp\\left({f(T_{eq}^{ref})}\\right)$. From the paper, we obtain a reference catalyst temperature of 973.15 K and reaction energies for the two reaction steps; these values exist in the reaction property parameter module in this same directory.\n", - "\n", - "These calculations are contained within the property, reaction and unit model packages, and do not need to be entered into the flowsheet. More information on property estimation may be found in the IDAES documentation on [Parameter Estimation](https://idaes-pse.readthedocs.io/en/stable/how_to_guides/workflow/data_rec_parmest.html).\n", - "\n", - "Let us import the following modules:\n", - "- natural_gas_PR as get_prop (method to get configuration dictionary)\n", - "- msr_reaction as reaction_props (contains configuration dictionary)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models_extra.power_generation.properties.natural_gas_PR import get_prop\n", - "import msr_reaction as reaction_props" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a `ConcreteModel` and add the flowsheet block. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need to add the property packages to the flowsheet. Unlike the basic [Flash unit model example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Tutorials/Basics/flash_unit_solution_testing_test.ipynb), where we only had a thermophysical property package, for this flowsheet we will also need to add a reaction property package. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) and [Modular Reaction Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-reaction-package-framework). The `get_prop` method for the natural gas property module automatically returns the correct dictionary using a component list argument. The `GenericParameterBlock` and `GenericReactionParameterBlock` methods build states blocks from passed parameter data; the reaction block unpacks using `**reaction_props.config_dict` to allow for optional or empty keyword arguments:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "thermo_props_config_dict = get_prop(components=[\"CH4\", \"H2O\", \"H2\", \"CO\", \"CO2\"])\n", - "m.fs.thermo_params = GenericParameterBlock(**thermo_props_config_dict)\n", - "m.fs.reaction_params = GenericReactionParameterBlock(\n", - " property_package=m.fs.thermo_params, **reaction_props.config_dict\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding a `Mixer`, a `Compressor`, a `Heater` and an `EquilibriumReactor`. Note that all unit models should be explicitly defined with a given property package. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details on [IDAES Unit Models](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/index.html). For example, the `Mixer` is given a `list` consisting of names to the two inlets. Note that the `Compressor` is a `PressureChanger` assuming compression operation and with a fixed isentropic compressor efficiency as the default thermodynamic behavior." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.CH4 = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.H2O = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params, inlet_list=[\"methane_feed\", \"steam_feed\"]\n", - ")\n", - "m.fs.H101 = Heater(\n", - " property_package=m.fs.thermo_params,\n", - " has_pressure_change=False,\n", - " has_phase_equilibrium=False,\n", - ")\n", - "m.fs.C101 = Compressor(property_package=m.fs.thermo_params)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101 = EquilibriumReactor(\n", - " property_package=m.fs.thermo_params,\n", - " reaction_package=m.fs.reaction_params,\n", - " has_equilibrium_reactions=True,\n", - " has_rate_reactions=False,\n", - " has_heat_of_reaction=True,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=False,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models Using Arcs\n", - "\n", - "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a Pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the `Mixer` to the inlet of the `Compressor`, the outlet of the compressor `Compressor` to the inlet of the `Heater`, and the outlet of the `Heater` to the inlet of the `EquilibriumReactor`. Additionally, we will connect the `Feed` and `Product` blocks to the flowsheet:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s01 = Arc(source=m.fs.CH4.outlet, destination=m.fs.M101.methane_feed)\n", - "m.fs.s02 = Arc(source=m.fs.H2O.outlet, destination=m.fs.M101.steam_feed)\n", - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.C101.inlet)\n", - "m.fs.s04 = Arc(source=m.fs.C101.outlet, destination=m.fs.H101.inlet)\n", - "m.fs.s05 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", - "m.fs.s06 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have now connected the unit model block using the arcs. However, we also need to link the state variables on connected ports. Pyomo provides a convenient method `TransformationFactory` to write these equality constraints for us between two ports:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Expressions to Compute Operating Costs\n", - "\n", - "In this section, we will add a few `Expressions` that allow us to evaluate the performance. `Expressions` provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on `Expressions`, please refer to the [Pyomo Expression documentation](https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html).\n", - "\n", - "For this flowsheet, we are interested in computing hydrogen production in millions of pounds per year, as well as the total costs due to pressurizing, cooling, and heating utilities.\n", - "\n", - "Let us first add an `Expression` to convert the product flow from mol/s to MM lb/year of hydrogen. We see that the molecular weight exists in the thermophysical property package, so we may use that value for our calculations." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.hyd_prod = Expression(\n", - " expr=pyunits.convert(\n", - " m.fs.PROD.inlet.flow_mol[0]\n", - " * m.fs.PROD.inlet.mole_frac_comp[0, \"H2\"]\n", - " * m.fs.thermo_params.H2.mw, # MW defined in properties as kg/mol\n", - " to_units=pyunits.Mlb / pyunits.yr,\n", - " )\n", - ") # converting kg/s to MM lb/year" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let us add expressions to compute the reactor cooling cost (\\\\$/s) assuming a cost of 2.12E-5 \\\\$/kW, the compression cost (\\\\$/s) assuming 1.2E-3 \\\\$/kW, and the heating utility cost (\\\\$/s) assuming 2.2E-4 \\\\$/kW. Note that the heat duty is in units of Watt (J/s). The total operating cost will be the sum of the costs, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.cooling_cost = Expression(\n", - " expr=2.12e-8 * (m.fs.R101.heat_duty[0])\n", - ") # the reaction is endothermic, so R101 duty is positive\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", - ") # the stream must be heated to T_rxn, so H101 duty is positive\n", - "m.fs.compression_cost = Expression(\n", - " expr=1.2e-6 * m.fs.C101.work_isentropic[0]\n", - ") # the stream must be pressurized, so the C101 work is positive\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost + m.fs.compression_cost))\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Feed Conditions\n", - "\n", - "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. We expect each stream to have 8 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the compressor to have 2 (the pressure change and efficiency), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (conversion). Therefore, we have 20 degrees of freedom to specify: temperature, pressure, flow and mole fractions of all five components on both streams; compressor pressure change and efficiency; outlet heater temperature; and reactor conversion.\n", - "\n", - "Although the model has eight degrees of freedom per stream, the mole fractions are not all independent and the physical system only has seven. Each `StateBlock` sets a flag `defined_state` based on any remaining degrees of freedom; if this flag is set to `False` a `Constraint` is written to ensure all mole fractions sum to one. However, a fully specified system with `defined_state` set to `True` will not create this constraint and it is the responsibility of the user to set physically meaningful values, i.e. that all mole fractions are nonnegative and sum to one. While not necessary in this example, the [Custom Thermophysical Property Package Example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/Advanced/CustomProperties/custom_physical_property_packages_testing_test.ipynb) demonstrates adding a check before writing an additional constraint that may overspecify the system." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "20\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check the degrees of freedom\n", - "assert degrees_of_freedom(m) == 20" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be fixing the feed stream to the conditions shown in the flowsheet above. As mentioned in other tutorials, the IDAES framework expects a time index value for every referenced internal stream or unit variable, even in steady-state systems with a single time point $ t = 0 $ (`t = [0]` is the default when creating a `FlowsheetBlock` without passing a `time_set` argument). The non-present components in each stream are assigned a very small non-zero value to help with convergence and initializing. Based on the literature source, we will initialize our simulation with the following values:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.CH4.outlet.mole_frac_comp[0, \"CH4\"].fix(1)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"H2O\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", - "m.fs.CH4.outlet.flow_mol.fix(75 * pyunits.mol / pyunits.s)\n", - "m.fs.CH4.outlet.temperature.fix(298.15 * pyunits.K)\n", - "m.fs.CH4.outlet.pressure.fix(1e5 * pyunits.Pa)\n", - "\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CH4\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"H2O\"].fix(1)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", - "m.fs.H2O.outlet.flow_mol.fix(234 * pyunits.mol / pyunits.s)\n", - "m.fs.H2O.outlet.temperature.fix(373.15 * pyunits.K)\n", - "m.fs.H2O.outlet.pressure.fix(1e5 * pyunits.Pa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Unit Model Specifications\n", - "\n", - "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. For the initial problem, let us fix the compressor outlet pressure to 2 bar for now, the efficiency to 0.90 (a common assumption for compressor units), and the heater outlet temperature to 500 K. We will unfix these values later to optimize the flowsheet." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.C101.outlet.pressure.fix(pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa))\n", - "m.fs.C101.efficiency_isentropic.fix(0.90)\n", - "m.fs.H101.outlet.temperature.fix(500 * pyunits.K)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `EquilibriumReactor` unit model calculates the amount of product and reactant based on the calculated equilibrium constant; therefore, we will specify a desired conversion and let the solver determine the reactor duty and heat transfer. For convenience, we will define the reactor conversion as the amount of methane that is converted." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion = Var(\n", - " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", - ") # fraction\n", - "\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion\n", - " * m.fs.R101.inlet.flow_mol[0]\n", - " * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol[0] * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", - " - m.fs.R101.outlet.flow_mol[0] * m.fs.R101.outlet.mole_frac_comp[0, \"CH4\"]\n", - " )\n", - ")\n", - "\n", - "m.fs.R101.conversion.fix(0.80)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check the degrees of freedom\n", - "assert degrees_of_freedom(m) == 0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we need to initialize each unit operation in sequence to solve the flowsheet. As in best practice, unit operations are initialized or solved, and outlet properties are propagated to connected inlet streams via arc definitions as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4.properties: Starting initialization\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4: Initialization Complete.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O.properties: Starting initialization\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O: Initialization Complete.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.M101.methane_feed_state: Starting initialization\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.M101.methane_feed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.M101.steam_feed_state: Starting initialization\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.steam_feed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.properties_isentropic: Starting initialization\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.properties_isentropic: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.properties_isentropic: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.reactions: Initialization Complete.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD.properties: Starting initialization\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD: Initialization Complete.\n" - ] - } - ], - "source": [ - "# Initialize and solve each unit operation\n", - "m.fs.CH4.initialize()\n", - "propagate_state(arc=m.fs.s01)\n", - "\n", - "m.fs.H2O.initialize()\n", - "propagate_state(arc=m.fs.s02)\n", - "\n", - "m.fs.M101.initialize()\n", - "propagate_state(arc=m.fs.s03)\n", - "\n", - "m.fs.C101.initialize()\n", - "propagate_state(arc=m.fs.s04)\n", - "\n", - "m.fs.H101.initialize()\n", - "propagate_state(arc=m.fs.s05)\n", - "\n", - "m.fs.R101.initialize()\n", - "propagate_state(arc=m.fs.s06)\n", - "\n", - "m.fs.PROD.initialize()\n", - "\n", - "# set solver\n", - "solver = get_solver()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 562\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 477\n", - "\n", - "Total number of variables............................: 204\n", - " variables with only lower bounds: 13\n", - " variables with lower and upper bounds: 174\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 204\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 1.49e+06 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 1.35e+04 2.00e-01 -1.0 3.59e+00 - 9.90e-01 9.91e-01h 1\n", - " 2 0.0000000e+00 3.59e-04 9.99e+00 -1.0 3.56e+00 - 9.90e-01 1.00e+00h 1\n", - " 3 0.0000000e+00 2.12e-08 8.98e+01 -1.0 2.91e-04 - 9.90e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 2.8421709430404007e-14 2.1187588572502136e-08\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.8421709430404007e-14 2.1187588572502136e-08\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", - "Total CPU secs in NLP function evaluations = 0.001\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check solver solve status\n", - "from pyomo.environ import TerminationCondition\n", - "\n", - "assert results.solver.termination_condition == TerminationCondition.optimal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the Results of the Square Problem\n", - "\n", - "\n", - "What is the total operating cost? " - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "operating cost = $45.933 million per year\n" - ] - } - ], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "import pytest\n", - "\n", - "assert value(m.fs.operating_cost) / 1e6 == pytest.approx(45.933, rel=1e-3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this operating cost, what conversion did we achieve of methane to hydrogen?" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 2.7605e+07 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 429.02\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.034965\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.31487\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 0.51029\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 0.049157\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.090717\n", - " Temperature kelvin 500.00 868.56\n", - " Pressure pascal 2.0000e+05 2.0000e+05\n", - "====================================================================================\n", - "\n", - "Conversion achieved = 80.0%\n" - ] - } - ], - "source": [ - "m.fs.R101.report()\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert value(m.fs.R101.conversion) == pytest.approx(0.800, rel=1e-3)\n", - "assert value(m.fs.R101.heat_duty[0]) / 1e6 == pytest.approx(27.605, rel=1e-3)\n", - "assert value(m.fs.R101.outlet.temperature[0]) / 1e2 == pytest.approx(8.6856, rel=1e-3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimizing Hydrogen Production\n", - "\n", - "Now that the flowsheet has been squared and solved, we can run a small optimization problem to determine optimal conditions for producing hydrogen. Suppose we wish to find ideal conditions for the competing reactions. As mentioned earlier, the two reactions have competing equilibria - steam methane reformation occurs more readily at higher temperatures (500-700 C) while water gas shift occurs more readily at lower temperatures (300-400 C). We will allow for variable reactor temperature and pressure by freeing our heater and compressor specifications, and minimize cost to achieve 90% methane conversion. Since we assume an isentopic compressor, allowing compression will heat our feed stream and reduce or eliminate the required heater duty." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem until now, as well as set bounds for the design variables (reactor outlet temperature is set by state variable bounds in property package):" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion.fix(0.90)\n", - "\n", - "m.fs.C101.outlet.pressure.unfix()\n", - "m.fs.C101.outlet.pressure[0].setlb(\n", - " pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa)\n", - ") # pressurize to at least 2 bar\n", - "m.fs.C101.outlet.pressure[0].setub(\n", - " pyunits.convert(10 * pyunits.bar, to_units=pyunits.Pa)\n", - ") # at most, pressurize to 10 bar\n", - "\n", - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.H101.heat_duty[0].setlb(\n", - " 0 * pyunits.J / pyunits.s\n", - ") # outlet temperature is equal to or greater than inlet temperature\n", - "m.fs.H101.outlet.temperature[0].setub(1000 * pyunits.K) # at most, heat to 1000 K" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert degrees_of_freedom(m) == 2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Flowsheet Equilibrium Reactor Simulation and Optimization of Steam Methane Reforming\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "## Learning Outcomes\n", + "\n", + "\n", + "- Call and implement the IDAES EquilibriumReactor unit model\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "This example is adapted from S.Z. Abbas, V. Dupont, T. Mahmud, Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903\n", + "\n", + "Steam methane reforming (SMR) is one of the most common pathways for hydrogen production, taking advantage of chemical equilibria in natural gas systems. The process is typically done in two steps: methane reformation at a high temperature to partially oxidize methane, and water gas shift at a low temperature to complete the oxidation reaction:\n", + "\n", + "**CH4 + H2O → CO + 3H2** \n", + "**CO + H2O → CO2 + H2**\n", + "\n", + "This reaction is often carried out in two separate reactors to allow for different reaction temperatures and pressures; in this example, we will minimize operating cost for a single reactor.\n", + "\n", + "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing natural gas and steam feeds of fixed composition to produce hydrogen. As shown in the flowsheet, the process consists of a mixer M101 for the two inlet streams, a compressor to compress the feed to the reaction pressure, a heater H101 to heat the feed to the reaction temperature, and a EquilibriumReactor unit R101. We will use thermodynamic properties from the Peng-Robinson equation of state for this flowsheet.\n", + "\n", + "The state variables chosen for the property package are **total molar flows of each stream, temperature of each stream and pressure of each stream, and mole fractions of each component in each stream**. The components considered are: **CH4, H2O, CO, CO2, and H2** and the process occurs in vapor phase only. Therefore, every stream has 1 flow variable, 5 mole fraction variables, 1 temperature and 1 pressure variable. \n", + "\n", + "![](msr_flowsheet.png)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Pyomo and IDAES Components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages. Let us first import the following components from Pyomo:\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- ConcreteModel (to create the concrete model object)\n", + "- Expression (to evaluate values as a function of variables defined in the model)\n", + "- Objective (to define an objective function for optimization)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- Arc (to connect two unit models)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n", + "\n", + "From IDAES, we will be needing the `FlowsheetBlock` and the following unit models:\n", + "- Feed\n", + "- Mixer\n", + "- Compressor\n", + "- Heater\n", + "- EquilibriumReactor\n", + "- Product\n", + "\n", + "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom, tools for model expressions and calling variable values, and built-in functions to define property packages, add unit containers to objects and define our initialization scheme.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " TransformationFactory,\n", + " value,\n", + " units as pyunits,\n", + ")\n", + "from pyomo.network import Arc\n", + "\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.models.properties.modular_properties.base.generic_property import (\n", + " GenericParameterBlock,\n", + ")\n", + "from idaes.models.properties.modular_properties.base.generic_reaction import (\n", + " GenericReactionParameterBlock,\n", + ")\n", + "from idaes.models.unit_models import (\n", + " Feed,\n", + " Mixer,\n", + " Compressor,\n", + " Heater,\n", + " EquilibriumReactor,\n", + " Product,\n", + ")\n", + "\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Thermophysical and Reaction Packages\n", + "\n", + "The final step is to import the thermophysical and reaction packages. We will import natural gas properties from an existing IDAES module, and reaction properties from a custom module to describe equilibrium behavior. These configuration dictionaries provide parameter data that we will pass to the Modular Property Framework.\n", + "\n", + "The reaction package here assumes all reactions reach chemical equilibrium at the given conditions. \n", + "\n", + "${K_{eq}^{MSR}} = \\exp\\left(\\frac {-26830} {T} + 30.114\\right)$, ${K_{eq}^{WGS}} = \\exp\\left(\\frac {4400} {T} - 4.036\\right)$ with the reactor temperature $T$ in K. \n", + "The total reaction equilibrium constant is given by $K_{eq} = {K_{eq}^{MSR}}{K_{eq}^{WGS}}$.\n", + "\n", + "The correlations are taken from the following literature: \n", + "\n", + "Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903\n", + "\n", + "### Determining $k_{eq}^{ref}$\n", + "\n", + "As part of the parameter dictionary, users may define equilibrium reactions using a constant coefficient or built-in correlations for van't Hoff and Gibbs formulations. Using the literature correlations above for $k_{eq}$, we can easily calculate the necessary parameters to use the van't Hoff equilibrium constant form:\n", + "\n", + "For an empirical correlation $ln(k_{eq}) = f(T)$ for a catalyst (reaction) temperature $T$, we obtain $k_{eq}^{ref} = \\exp\\left({f(T_{eq}^{ref})}\\right)$. From the paper, we obtain a reference catalyst temperature of 973.15 K and reaction energies for the two reaction steps; these values exist in the reaction property parameter module in this same directory.\n", + "\n", + "These calculations are contained within the property, reaction and unit model packages, and do not need to be entered into the flowsheet. More information on property estimation may be found in the IDAES documentation on [Parameter Estimation](https://idaes-pse.readthedocs.io/en/stable/how_to_guides/workflow/data_rec_parmest.html).\n", + "\n", + "Let us import the following modules:\n", + "- natural_gas_PR as get_prop (method to get configuration dictionary)\n", + "- msr_reaction as reaction_props (contains configuration dictionary)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models_extra.power_generation.properties.natural_gas_PR import get_prop\n", + "import msr_reaction as reaction_props" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a `ConcreteModel` and add the flowsheet block. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now need to add the property packages to the flowsheet. Unlike the basic [Flash unit model example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Tutorials/Basics/flash_unit_solution_testing_test.ipynb), where we only had a thermophysical property package, for this flowsheet we will also need to add a reaction property package. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) and [Modular Reaction Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-reaction-package-framework). The `get_prop` method for the natural gas property module automatically returns the correct dictionary using a component list argument. The `GenericParameterBlock` and `GenericReactionParameterBlock` methods build states blocks from passed parameter data; the reaction block unpacks using `**reaction_props.config_dict` to allow for optional or empty keyword arguments:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "thermo_props_config_dict = get_prop(components=[\"CH4\", \"H2O\", \"H2\", \"CO\", \"CO2\"])\n", + "m.fs.thermo_params = GenericParameterBlock(**thermo_props_config_dict)\n", + "m.fs.reaction_params = GenericReactionParameterBlock(\n", + " property_package=m.fs.thermo_params, **reaction_props.config_dict\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding a `Mixer`, a `Compressor`, a `Heater` and an `EquilibriumReactor`. Note that all unit models should be explicitly defined with a given property package. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details on [IDAES Unit Models](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/index.html). For example, the `Mixer` is given a `list` consisting of names to the two inlets. Note that the `Compressor` is a `PressureChanger` assuming compression operation and with a fixed isentropic compressor efficiency as the default thermodynamic behavior." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.CH4 = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.H2O = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params, inlet_list=[\"methane_feed\", \"steam_feed\"]\n", + ")\n", + "m.fs.H101 = Heater(\n", + " property_package=m.fs.thermo_params,\n", + " has_pressure_change=False,\n", + " has_phase_equilibrium=False,\n", + ")\n", + "m.fs.C101 = Compressor(property_package=m.fs.thermo_params)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101 = EquilibriumReactor(\n", + " property_package=m.fs.thermo_params,\n", + " reaction_package=m.fs.reaction_params,\n", + " has_equilibrium_reactions=True,\n", + " has_rate_reactions=False,\n", + " has_heat_of_reaction=True,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models Using Arcs\n", + "\n", + "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a Pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the `Mixer` to the inlet of the `Compressor`, the outlet of the compressor `Compressor` to the inlet of the `Heater`, and the outlet of the `Heater` to the inlet of the `EquilibriumReactor`. Additionally, we will connect the `Feed` and `Product` blocks to the flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s01 = Arc(source=m.fs.CH4.outlet, destination=m.fs.M101.methane_feed)\n", + "m.fs.s02 = Arc(source=m.fs.H2O.outlet, destination=m.fs.M101.steam_feed)\n", + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.C101.inlet)\n", + "m.fs.s04 = Arc(source=m.fs.C101.outlet, destination=m.fs.H101.inlet)\n", + "m.fs.s05 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", + "m.fs.s06 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now connected the unit model block using the arcs. However, we also need to link the state variables on connected ports. Pyomo provides a convenient method `TransformationFactory` to write these equality constraints for us between two ports:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Expressions to Compute Operating Costs\n", + "\n", + "In this section, we will add a few `Expressions` that allow us to evaluate the performance. `Expressions` provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on `Expressions`, please refer to the [Pyomo Expression documentation](https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html).\n", + "\n", + "For this flowsheet, we are interested in computing hydrogen production in millions of pounds per year, as well as the total costs due to pressurizing, cooling, and heating utilities.\n", + "\n", + "Let us first add an `Expression` to convert the product flow from mol/s to MM lb/year of hydrogen. We see that the molecular weight exists in the thermophysical property package, so we may use that value for our calculations." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.hyd_prod = Expression(\n", + " expr=pyunits.convert(\n", + " m.fs.PROD.inlet.flow_mol[0]\n", + " * m.fs.PROD.inlet.mole_frac_comp[0, \"H2\"]\n", + " * m.fs.thermo_params.H2.mw, # MW defined in properties as kg/mol\n", + " to_units=pyunits.Mlb / pyunits.yr,\n", + " )\n", + ") # converting kg/s to MM lb/year" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let us add expressions to compute the reactor cooling cost (\\\\$/s) assuming a cost of 2.12E-5 \\\\$/kW, the compression cost (\\\\$/s) assuming 1.2E-3 \\\\$/kW, and the heating utility cost (\\\\$/s) assuming 2.2E-4 \\\\$/kW. Note that the heat duty is in units of Watt (J/s). The total operating cost will be the sum of the costs, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.cooling_cost = Expression(\n", + " expr=2.12e-8 * (m.fs.R101.heat_duty[0])\n", + ") # the reaction is endothermic, so R101 duty is positive\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", + ") # the stream must be heated to T_rxn, so H101 duty is positive\n", + "m.fs.compression_cost = Expression(\n", + " expr=1.2e-6 * m.fs.C101.work_isentropic[0]\n", + ") # the stream must be pressurized, so the C101 work is positive\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost + m.fs.compression_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Feed Conditions\n", + "\n", + "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. We expect each stream to have 8 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the compressor to have 2 (the pressure change and efficiency), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (conversion). Therefore, we have 20 degrees of freedom to specify: temperature, pressure, flow and mole fractions of all five components on both streams; compressor pressure change and efficiency; outlet heater temperature; and reactor conversion.\n", + "\n", + "Although the model has eight degrees of freedom per stream, the mole fractions are not all independent and the physical system only has seven. Each `StateBlock` sets a flag `defined_state` based on any remaining degrees of freedom; if this flag is set to `False` a `Constraint` is written to ensure all mole fractions sum to one. However, a fully specified system with `defined_state` set to `True` will not create this constraint and it is the responsibility of the user to set physically meaningful values, i.e. that all mole fractions are nonnegative and sum to one. While not necessary in this example, the [Custom Thermophysical Property Package Example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/Advanced/CustomProperties/custom_physical_property_packages_testing_test.ipynb) demonstrates adding a check before writing an additional constraint that may overspecify the system." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 569\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 493\n", - "\n", - "Total number of variables............................: 206\n", - " variables with only lower bounds: 14\n", - " variables with lower and upper bounds: 176\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 204\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.5933014e+07 1.49e+06 3.46e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 4.5420427e+07 1.49e+06 1.33e+03 -1.0 1.08e+07 - 4.58e-01 5.96e-03f 1\n", - " 2 4.2830345e+07 8.68e+05 6.47e+06 -1.0 5.32e+06 - 8.03e-01 4.18e-01f 1\n", - " 3 4.3111576e+07 1.26e+05 1.06e+07 -1.0 2.54e+06 - 9.54e-01 8.85e-01h 1\n", - " 4 4.3307552e+07 2.24e+03 3.12e+05 -1.0 3.51e+05 - 9.89e-01 9.86e-01h 1\n", - " 5 4.3309118e+07 2.20e+01 3.08e+03 -1.0 2.69e+03 - 9.90e-01 9.90e-01h 1\n", - " 6 4.3309131e+07 5.77e-06 3.84e+01 -1.0 2.31e+01 - 9.92e-01 1.00e+00h 1\n", - " 7 4.3309131e+07 7.77e-09 4.84e-07 -2.5 1.97e-02 - 1.00e+00 1.00e+00f 1\n", - " 8 4.3309131e+07 1.63e-08 1.71e-06 -3.8 5.56e-04 - 1.00e+00 1.00e+00f 1\n", - " 9 4.3309131e+07 1.72e-08 1.31e-06 -5.7 3.08e-05 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 4.3309131e+07 2.20e-08 8.55e-07 -7.0 3.59e-07 - 1.00e+00 1.00e+00f 1\n", - "\n", - "Number of Iterations....: 10\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 4.3309130854568794e+07 4.3309130854568794e+07\n", - "Dual infeasibility......: 8.5488594337511447e-07 8.5488594337511447e-07\n", - "Constraint violation....: 1.4551915228366852e-11 2.2002495825290680e-08\n", - "Complementarity.........: 9.0909090913936433e-08 9.0909090913936433e-08\n", - "Overall NLP error.......: 9.0909090913936433e-08 8.5488594337511447e-07\n", - "\n", - "\n", - "Number of objective function evaluations = 11\n", - "Number of objective gradient evaluations = 11\n", - "Number of equality constraint evaluations = 11\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 11\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 10\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.008\n", - "Total CPU secs in NLP function evaluations = 0.003\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "20\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check the degrees of freedom\n", + "assert degrees_of_freedom(m) == 20" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be fixing the feed stream to the conditions shown in the flowsheet above. As mentioned in other tutorials, the IDAES framework expects a time index value for every referenced internal stream or unit variable, even in steady-state systems with a single time point $ t = 0 $ (`t = [0]` is the default when creating a `FlowsheetBlock` without passing a `time_set` argument). The non-present components in each stream are assigned a very small non-zero value to help with convergence and initializing. Based on the literature source, we will initialize our simulation with the following values:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.CH4.outlet.mole_frac_comp[0, \"CH4\"].fix(1)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"H2O\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", + "m.fs.CH4.outlet.flow_mol.fix(75 * pyunits.mol / pyunits.s)\n", + "m.fs.CH4.outlet.temperature.fix(298.15 * pyunits.K)\n", + "m.fs.CH4.outlet.pressure.fix(1e5 * pyunits.Pa)\n", + "\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CH4\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"H2O\"].fix(1)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", + "m.fs.H2O.outlet.flow_mol.fix(234 * pyunits.mol / pyunits.s)\n", + "m.fs.H2O.outlet.temperature.fix(373.15 * pyunits.K)\n", + "m.fs.H2O.outlet.pressure.fix(1e5 * pyunits.Pa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Unit Model Specifications\n", + "\n", + "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. For the initial problem, let us fix the compressor outlet pressure to 2 bar for now, the efficiency to 0.90 (a common assumption for compressor units), and the heater outlet temperature to 500 K. We will unfix these values later to optimize the flowsheet." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.C101.outlet.pressure.fix(pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa))\n", + "m.fs.C101.efficiency_isentropic.fix(0.90)\n", + "m.fs.H101.outlet.temperature.fix(500 * pyunits.K)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `EquilibriumReactor` unit model calculates the amount of product and reactant based on the calculated equilibrium constant; therefore, we will specify a desired conversion and let the solver determine the reactor duty and heat transfer. For convenience, we will define the reactor conversion as the amount of methane that is converted." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion = Var(\n", + " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", + ") # fraction\n", + "\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion\n", + " * m.fs.R101.inlet.flow_mol[0]\n", + " * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol[0] * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", + " - m.fs.R101.outlet.flow_mol[0] * m.fs.R101.outlet.mole_frac_comp[0, \"CH4\"]\n", + " )\n", + ")\n", + "\n", + "m.fs.R101.conversion.fix(0.80)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check for solver solve status\n", - "from pyomo.environ import TerminationCondition\n", - "\n", - "assert results.solver.termination_condition == TerminationCondition.optimal" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check the degrees of freedom\n", + "assert degrees_of_freedom(m) == 0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we need to initialize each unit operation in sequence to solve the flowsheet. As in best practice, unit operations are initialized or solved, and outlet properties are propagated to connected inlet streams via arc definitions as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "operating cost = $43.309 million per year\n", - "\n", - "Compressor results\n", - "\n", - "====================================================================================\n", - "Unit : fs.C101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.90000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 7.5471e+05 : watt : False : (None, None)\n", - " Pressure Change : 1.0000e+05 : pascal : False : (None, None)\n", - " Pressure Ratio : 2.0000 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 309.01\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", - " Temperature kelvin 353.80 423.34\n", - " Pressure pascal 1.0000e+05 2.0000e+05\n", - "====================================================================================\n", - "\n", - "Heater results\n", - "\n", - "====================================================================================\n", - "Unit : fs.H101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 5.8781e-09 : watt : False : (0.0, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 309.01\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", - " Temperature kelvin 423.34 423.34\n", - " Pressure pascal 2.0000e+05 2.0000e+05\n", - "====================================================================================\n", - "\n", - "Equilibrium reactor results\n", - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 3.2486e+07 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 444.02\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.016892\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.29075\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 0.54032\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 0.067801\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.084239\n", - " Temperature kelvin 423.34 910.04\n", - " Pressure pascal 2.0000e+05 2.0000e+05\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")\n", - "\n", - "print()\n", - "print(\"Compressor results\")\n", - "\n", - "m.fs.C101.report()\n", - "\n", - "print()\n", - "print(\"Heater results\")\n", - "\n", - "m.fs.H101.report()\n", - "\n", - "print()\n", - "print(\"Equilibrium reactor results\")\n", - "\n", - "m.fs.R101.report()" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4.properties: Starting initialization\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4.properties: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4.properties: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4: Initialization Complete.\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O.properties: Starting initialization\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O.properties: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O.properties: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O: Initialization Complete.\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.M101.methane_feed_state: Starting initialization\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.M101.methane_feed_state: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.M101.steam_feed_state: Starting initialization\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.steam_feed_state: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: Starting initialization\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Starting initialization\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.properties_isentropic: Starting initialization\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.properties_isentropic: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.properties_isentropic: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.reactions: Initialization Complete.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD.properties: Starting initialization\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD.properties: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD.properties: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD: Initialization Complete.\n" + ] + } + ], + "source": [ + "# Initialize and solve each unit operation\n", + "m.fs.CH4.initialize()\n", + "propagate_state(arc=m.fs.s01)\n", + "\n", + "m.fs.H2O.initialize()\n", + "propagate_state(arc=m.fs.s02)\n", + "\n", + "m.fs.M101.initialize()\n", + "propagate_state(arc=m.fs.s03)\n", + "\n", + "m.fs.C101.initialize()\n", + "propagate_state(arc=m.fs.s04)\n", + "\n", + "m.fs.H101.initialize()\n", + "propagate_state(arc=m.fs.s05)\n", + "\n", + "m.fs.R101.initialize()\n", + "propagate_state(arc=m.fs.s06)\n", + "\n", + "m.fs.PROD.initialize()\n", + "\n", + "# set solver\n", + "solver = get_solver()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert value(m.fs.operating_cost) / 1e6 == pytest.approx(43.309, rel=1e-3)" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 562\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 477\n", + "\n", + "Total number of variables............................: 204\n", + " variables with only lower bounds: 13\n", + " variables with lower and upper bounds: 174\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 204\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.49e+06 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.35e+04 2.00e-01 -1.0 3.59e+00 - 9.90e-01 9.91e-01h 1\n", + " 2 0.0000000e+00 3.59e-04 9.99e+00 -1.0 3.56e+00 - 9.90e-01 1.00e+00h 1\n", + " 3 0.0000000e+00 2.12e-08 8.98e+01 -1.0 2.91e-04 - 9.90e-01 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 2.8421709430404007e-14 2.1187588572502136e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 2.8421709430404007e-14 2.1187588572502136e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check solver solve status\n", + "from pyomo.environ import TerminationCondition\n", + "\n", + "assert results.solver.termination_condition == TerminationCondition.optimal" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the Results of the Square Problem\n", + "\n", + "\n", + "What is the total operating cost? " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables and design variables:" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $45.933 million per year\n" + ] + } + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "import pytest\n", + "\n", + "assert value(m.fs.operating_cost) / 1e6 == pytest.approx(45.933, rel=1e-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this operating cost, what conversion did we achieve of methane to hydrogen?" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal Values\n", - "\n", - "C101 outlet pressure = 0.200 MPa\n", - "\n", - "C101 outlet temperature = 423.345 K\n", - "\n", - "H101 outlet temperature = 423.345 K\n", - "\n", - "R101 outlet temperature = 910.044 K\n", - "\n", - "Hydrogen produced = 33.648 MM lb/year\n", - "\n", - "Conversion achieved = 90.0%\n" - ] - } - ], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(f\"C101 outlet pressure = {value(m.fs.C101.outlet.pressure[0])/1E6:0.3f} MPa\")\n", - "print()\n", - "\n", - "print(f\"C101 outlet temperature = {value(m.fs.C101.outlet.temperature[0]):0.3f} K\")\n", - "print()\n", - "\n", - "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.3f} K\")\n", - "\n", - "print()\n", - "print(f\"R101 outlet temperature = {value(m.fs.R101.outlet.temperature[0]):0.3f} K\")\n", - "\n", - "print()\n", - "print(f\"Hydrogen produced = {value(m.fs.hyd_prod):0.3f} MM lb/year\")\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 2.7605e+07 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 429.02\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.034965\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.31487\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 0.51029\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 0.049157\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.090717\n", + " Temperature kelvin 500.00 868.56\n", + " Pressure pascal 2.0000e+05 2.0000e+05\n", + "====================================================================================\n", + "\n", + "Conversion achieved = 80.0%\n" + ] + } + ], + "source": [ + "m.fs.R101.report()\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert value(m.fs.R101.conversion) == pytest.approx(0.800, rel=1e-3)\n", + "assert value(m.fs.R101.heat_duty[0]) / 1e6 == pytest.approx(27.605, rel=1e-3)\n", + "assert value(m.fs.R101.outlet.temperature[0]) / 1e2 == pytest.approx(8.6856, rel=1e-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimizing Hydrogen Production\n", + "\n", + "Now that the flowsheet has been squared and solved, we can run a small optimization problem to determine optimal conditions for producing hydrogen. Suppose we wish to find ideal conditions for the competing reactions. As mentioned earlier, the two reactions have competing equilibria - steam methane reformation occurs more readily at higher temperatures (500-700 C) while water gas shift occurs more readily at lower temperatures (300-400 C). We will allow for variable reactor temperature and pressure by freeing our heater and compressor specifications, and minimize cost to achieve 90% methane conversion. Since we assume an isentopic compressor, allowing compression will heat our feed stream and reduce or eliminate the required heater duty." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem until now, as well as set bounds for the design variables (reactor outlet temperature is set by state variable bounds in property package):" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion.fix(0.90)\n", + "\n", + "m.fs.C101.outlet.pressure.unfix()\n", + "m.fs.C101.outlet.pressure[0].setlb(\n", + " pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa)\n", + ") # pressurize to at least 2 bar\n", + "m.fs.C101.outlet.pressure[0].setub(\n", + " pyunits.convert(10 * pyunits.bar, to_units=pyunits.Pa)\n", + ") # at most, pressurize to 10 bar\n", + "\n", + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.H101.heat_duty[0].setlb(\n", + " 0 * pyunits.J / pyunits.s\n", + ") # outlet temperature is equal to or greater than inlet temperature\n", + "m.fs.H101.outlet.temperature[0].setub(1000 * pyunits.K) # at most, heat to 1000 K" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert degrees_of_freedom(m) == 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert value(m.fs.C101.outlet.pressure[0]) / 1e6 == pytest.approx(0.2000, rel=1e-3)\n", - "assert value(m.fs.C101.outlet.temperature[0]) / 100 == pytest.approx(4.23345, rel=1e-3)\n", - "assert value(m.fs.H101.outlet.temperature[0]) / 100 == pytest.approx(4.23345, rel=1e-3)\n", - "assert value(m.fs.R101.outlet.temperature[0]) / 100 == pytest.approx(9.10044, rel=1e-3)\n", - "assert value(m.fs.hyd_prod) == pytest.approx(33.648, rel=1e-3)\n", - "assert value(m.fs.R101.conversion) * 100 == pytest.approx(90.0, rel=1e-3)" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 569\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 493\n", + "\n", + "Total number of variables............................: 206\n", + " variables with only lower bounds: 14\n", + " variables with lower and upper bounds: 176\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 204\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 4.5933014e+07 1.49e+06 3.46e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 4.5420427e+07 1.49e+06 1.33e+03 -1.0 1.08e+07 - 4.58e-01 5.96e-03f 1\n", + " 2 4.2830345e+07 8.68e+05 6.47e+06 -1.0 5.32e+06 - 8.03e-01 4.18e-01f 1\n", + " 3 4.3111576e+07 1.26e+05 1.06e+07 -1.0 2.54e+06 - 9.54e-01 8.85e-01h 1\n", + " 4 4.3307552e+07 2.24e+03 3.12e+05 -1.0 3.51e+05 - 9.89e-01 9.86e-01h 1\n", + " 5 4.3309118e+07 2.20e+01 3.08e+03 -1.0 2.69e+03 - 9.90e-01 9.90e-01h 1\n", + " 6 4.3309131e+07 5.77e-06 3.84e+01 -1.0 2.31e+01 - 9.92e-01 1.00e+00h 1\n", + " 7 4.3309131e+07 7.77e-09 4.84e-07 -2.5 1.97e-02 - 1.00e+00 1.00e+00f 1\n", + " 8 4.3309131e+07 1.63e-08 1.71e-06 -3.8 5.56e-04 - 1.00e+00 1.00e+00f 1\n", + " 9 4.3309131e+07 1.72e-08 1.31e-06 -5.7 3.08e-05 - 1.00e+00 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 4.3309131e+07 2.20e-08 8.55e-07 -7.0 3.59e-07 - 1.00e+00 1.00e+00f 1\n", + "\n", + "Number of Iterations....: 10\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 4.3309130854568794e+07 4.3309130854568794e+07\n", + "Dual infeasibility......: 8.5488594337511447e-07 8.5488594337511447e-07\n", + "Constraint violation....: 1.4551915228366852e-11 2.2002495825290680e-08\n", + "Complementarity.........: 9.0909090913936433e-08 9.0909090913936433e-08\n", + "Overall NLP error.......: 9.0909090913936433e-08 8.5488594337511447e-07\n", + "\n", + "\n", + "Number of objective function evaluations = 11\n", + "Number of objective gradient evaluations = 11\n", + "Number of equality constraint evaluations = 11\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 11\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 10\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.008\n", + "Total CPU secs in NLP function evaluations = 0.003\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check for solver solve status\n", + "from pyomo.environ import TerminationCondition\n", + "\n", + "assert results.solver.termination_condition == TerminationCondition.optimal" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $43.309 million per year\n", + "\n", + "Compressor results\n", + "\n", + "====================================================================================\n", + "Unit : fs.C101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.90000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 7.5471e+05 : watt : False : (None, None)\n", + " Pressure Change : 1.0000e+05 : pascal : False : (None, None)\n", + " Pressure Ratio : 2.0000 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 309.01\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", + " Temperature kelvin 353.80 423.34\n", + " Pressure pascal 1.0000e+05 2.0000e+05\n", + "====================================================================================\n", + "\n", + "Heater results\n", + "\n", + "====================================================================================\n", + "Unit : fs.H101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 5.8781e-09 : watt : False : (0.0, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 309.01\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", + " Temperature kelvin 423.34 423.34\n", + " Pressure pascal 2.0000e+05 2.0000e+05\n", + "====================================================================================\n", + "\n", + "Equilibrium reactor results\n", + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 3.2486e+07 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 444.02\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.016892\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.29075\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 0.54032\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 0.067801\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.084239\n", + " Temperature kelvin 423.34 910.04\n", + " Pressure pascal 2.0000e+05 2.0000e+05\n", + "====================================================================================\n" + ] } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")\n", + "\n", + "print()\n", + "print(\"Compressor results\")\n", + "\n", + "m.fs.C101.report()\n", + "\n", + "print()\n", + "print(\"Heater results\")\n", + "\n", + "m.fs.H101.report()\n", + "\n", + "print()\n", + "print(\"Equilibrium reactor results\")\n", + "\n", + "m.fs.R101.report()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert value(m.fs.operating_cost) / 1e6 == pytest.approx(43.309, rel=1e-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables and design variables:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal Values\n", + "\n", + "C101 outlet pressure = 0.200 MPa\n", + "\n", + "C101 outlet temperature = 423.345 K\n", + "\n", + "H101 outlet temperature = 423.345 K\n", + "\n", + "R101 outlet temperature = 910.044 K\n", + "\n", + "Hydrogen produced = 33.648 MM lb/year\n", + "\n", + "Conversion achieved = 90.0%\n" + ] } + ], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(f\"C101 outlet pressure = {value(m.fs.C101.outlet.pressure[0])/1E6:0.3f} MPa\")\n", + "print()\n", + "\n", + "print(f\"C101 outlet temperature = {value(m.fs.C101.outlet.temperature[0]):0.3f} K\")\n", + "print()\n", + "\n", + "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.3f} K\")\n", + "\n", + "print()\n", + "print(f\"R101 outlet temperature = {value(m.fs.R101.outlet.temperature[0]):0.3f} K\")\n", + "\n", + "print()\n", + "print(f\"Hydrogen produced = {value(m.fs.hyd_prod):0.3f} MM lb/year\")\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert value(m.fs.C101.outlet.pressure[0]) / 1e6 == pytest.approx(0.2000, rel=1e-3)\n", + "assert value(m.fs.C101.outlet.temperature[0]) / 100 == pytest.approx(4.23345, rel=1e-3)\n", + "assert value(m.fs.H101.outlet.temperature[0]) / 100 == pytest.approx(4.23345, rel=1e-3)\n", + "assert value(m.fs.R101.outlet.temperature[0]) / 100 == pytest.approx(9.10044, rel=1e-3)\n", + "assert value(m.fs.hyd_prod) == pytest.approx(33.648, rel=1e-3)\n", + "assert value(m.fs.R101.conversion) * 100 == pytest.approx(90.0, rel=1e-3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor_usr.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor_usr.ipynb index 6185b931..939883ac 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor_usr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/equilibrium_reactor_usr.ipynb @@ -1,1098 +1,1099 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Flowsheet Equilibrium Reactor Simulation and Optimization of Steam Methane Reforming\n", - "Maintainer: Brandon Paul \n", - "Author: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "## Learning Outcomes\n", - "\n", - "\n", - "- Call and implement the IDAES EquilibriumReactor unit model\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "This example is adapted from S.Z. Abbas, V. Dupont, T. Mahmud, Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903\n", - "\n", - "Steam methane reforming (SMR) is one of the most common pathways for hydrogen production, taking advantage of chemical equilibria in natural gas systems. The process is typically done in two steps: methane reformation at a high temperature to partially oxidize methane, and water gas shift at a low temperature to complete the oxidation reaction:\n", - "\n", - "**CH4 + H2O \u2192 CO + 3H2** \n", - "**CO + H2O \u2192 CO2 + H2**\n", - "\n", - "This reaction is often carried out in two separate reactors to allow for different reaction temperatures and pressures; in this example, we will minimize operating cost for a single reactor.\n", - "\n", - "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing natural gas and steam feeds of fixed composition to produce hydrogen. As shown in the flowsheet, the process consists of a mixer M101 for the two inlet streams, a compressor to compress the feed to the reaction pressure, a heater H101 to heat the feed to the reaction temperature, and a EquilibriumReactor unit R101. We will use thermodynamic properties from the Peng-Robinson equation of state for this flowsheet.\n", - "\n", - "The state variables chosen for the property package are **total molar flows of each stream, temperature of each stream and pressure of each stream, and mole fractions of each component in each stream**. The components considered are: **CH4, H2O, CO, CO2, and H2** and the process occurs in vapor phase only. Therefore, every stream has 1 flow variable, 5 mole fraction variables, 1 temperature and 1 pressure variable. \n", - "\n", - "![](msr_flowsheet.png)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Pyomo and IDAES Components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages. Let us first import the following components from Pyomo:\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- ConcreteModel (to create the concrete model object)\n", - "- Expression (to evaluate values as a function of variables defined in the model)\n", - "- Objective (to define an objective function for optimization)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- Arc (to connect two unit models)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n", - "\n", - "From IDAES, we will be needing the `FlowsheetBlock` and the following unit models:\n", - "- Feed\n", - "- Mixer\n", - "- Compressor\n", - "- Heater\n", - "- EquilibriumReactor\n", - "- Product\n", - "\n", - "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom, tools for model expressions and calling variable values, and built-in functions to define property packages, add unit containers to objects and define our initialization scheme.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " TransformationFactory,\n", - " value,\n", - " units as pyunits,\n", - ")\n", - "from pyomo.network import Arc\n", - "\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.models.properties.modular_properties.base.generic_property import (\n", - " GenericParameterBlock,\n", - ")\n", - "from idaes.models.properties.modular_properties.base.generic_reaction import (\n", - " GenericReactionParameterBlock,\n", - ")\n", - "from idaes.models.unit_models import (\n", - " Feed,\n", - " Mixer,\n", - " Compressor,\n", - " Heater,\n", - " EquilibriumReactor,\n", - " Product,\n", - ")\n", - "\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Thermophysical and Reaction Packages\n", - "\n", - "The final step is to import the thermophysical and reaction packages. We will import natural gas properties from an existing IDAES module, and reaction properties from a custom module to describe equilibrium behavior. These configuration dictionaries provide parameter data that we will pass to the Modular Property Framework.\n", - "\n", - "The reaction package here assumes all reactions reach chemical equilibrium at the given conditions. \n", - "\n", - "${K_{eq}^{MSR}} = \\exp\\left(\\frac {-26830} {T} + 30.114\\right)$, ${K_{eq}^{WGS}} = \\exp\\left(\\frac {4400} {T} - 4.036\\right)$ with the reactor temperature $T$ in K. \n", - "The total reaction equilibrium constant is given by $K_{eq} = {K_{eq}^{MSR}}{K_{eq}^{WGS}}$.\n", - "\n", - "The correlations are taken from the following literature: \n", - "\n", - "Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903\n", - "\n", - "### Determining $k_{eq}^{ref}$\n", - "\n", - "As part of the parameter dictionary, users may define equilibrium reactions using a constant coefficient or built-in correlations for van't Hoff and Gibbs formulations. Using the literature correlations above for $k_{eq}$, we can easily calculate the necessary parameters to use the van't Hoff equilibrium constant form:\n", - "\n", - "For an empirical correlation $ln(k_{eq}) = f(T)$ for a catalyst (reaction) temperature $T$, we obtain $k_{eq}^{ref} = \\exp\\left({f(T_{eq}^{ref})}\\right)$. From the paper, we obtain a reference catalyst temperature of 973.15 K and reaction energies for the two reaction steps; these values exist in the reaction property parameter module in this same directory.\n", - "\n", - "These calculations are contained within the property, reaction and unit model packages, and do not need to be entered into the flowsheet. More information on property estimation may be found in the IDAES documentation on [Parameter Estimation](https://idaes-pse.readthedocs.io/en/stable/how_to_guides/workflow/data_rec_parmest.html).\n", - "\n", - "Let us import the following modules:\n", - "- natural_gas_PR as get_prop (method to get configuration dictionary)\n", - "- msr_reaction as reaction_props (contains configuration dictionary)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models_extra.power_generation.properties.natural_gas_PR import get_prop\n", - "import msr_reaction as reaction_props" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a `ConcreteModel` and add the flowsheet block. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need to add the property packages to the flowsheet. Unlike the basic [Flash unit model example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Tutorials/Basics/flash_unit_solution_testing_usr.ipynb), where we only had a thermophysical property package, for this flowsheet we will also need to add a reaction property package. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) and [Modular Reaction Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-reaction-package-framework). The `get_prop` method for the natural gas property module automatically returns the correct dictionary using a component list argument. The `GenericParameterBlock` and `GenericReactionParameterBlock` methods build states blocks from passed parameter data; the reaction block unpacks using `**reaction_props.config_dict` to allow for optional or empty keyword arguments:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "thermo_props_config_dict = get_prop(components=[\"CH4\", \"H2O\", \"H2\", \"CO\", \"CO2\"])\n", - "m.fs.thermo_params = GenericParameterBlock(**thermo_props_config_dict)\n", - "m.fs.reaction_params = GenericReactionParameterBlock(\n", - " property_package=m.fs.thermo_params, **reaction_props.config_dict\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding a `Mixer`, a `Compressor`, a `Heater` and an `EquilibriumReactor`. Note that all unit models should be explicitly defined with a given property package. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details on [IDAES Unit Models](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/index.html). For example, the `Mixer` is given a `list` consisting of names to the two inlets. Note that the `Compressor` is a `PressureChanger` assuming compression operation and with a fixed isentropic compressor efficiency as the default thermodynamic behavior." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.CH4 = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.H2O = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params, inlet_list=[\"methane_feed\", \"steam_feed\"]\n", - ")\n", - "m.fs.H101 = Heater(\n", - " property_package=m.fs.thermo_params,\n", - " has_pressure_change=False,\n", - " has_phase_equilibrium=False,\n", - ")\n", - "m.fs.C101 = Compressor(property_package=m.fs.thermo_params)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101 = EquilibriumReactor(\n", - " property_package=m.fs.thermo_params,\n", - " reaction_package=m.fs.reaction_params,\n", - " has_equilibrium_reactions=True,\n", - " has_rate_reactions=False,\n", - " has_heat_of_reaction=True,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=False,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models Using Arcs\n", - "\n", - "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a Pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the `Mixer` to the inlet of the `Compressor`, the outlet of the compressor `Compressor` to the inlet of the `Heater`, and the outlet of the `Heater` to the inlet of the `EquilibriumReactor`. Additionally, we will connect the `Feed` and `Product` blocks to the flowsheet:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s01 = Arc(source=m.fs.CH4.outlet, destination=m.fs.M101.methane_feed)\n", - "m.fs.s02 = Arc(source=m.fs.H2O.outlet, destination=m.fs.M101.steam_feed)\n", - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.C101.inlet)\n", - "m.fs.s04 = Arc(source=m.fs.C101.outlet, destination=m.fs.H101.inlet)\n", - "m.fs.s05 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", - "m.fs.s06 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have now connected the unit model block using the arcs. However, we also need to link the state variables on connected ports. Pyomo provides a convenient method `TransformationFactory` to write these equality constraints for us between two ports:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Expressions to Compute Operating Costs\n", - "\n", - "In this section, we will add a few `Expressions` that allow us to evaluate the performance. `Expressions` provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on `Expressions`, please refer to the [Pyomo Expression documentation](https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html).\n", - "\n", - "For this flowsheet, we are interested in computing hydrogen production in millions of pounds per year, as well as the total costs due to pressurizing, cooling, and heating utilities.\n", - "\n", - "Let us first add an `Expression` to convert the product flow from mol/s to MM lb/year of hydrogen. We see that the molecular weight exists in the thermophysical property package, so we may use that value for our calculations." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.hyd_prod = Expression(\n", - " expr=pyunits.convert(\n", - " m.fs.PROD.inlet.flow_mol[0]\n", - " * m.fs.PROD.inlet.mole_frac_comp[0, \"H2\"]\n", - " * m.fs.thermo_params.H2.mw, # MW defined in properties as kg/mol\n", - " to_units=pyunits.Mlb / pyunits.yr,\n", - " )\n", - ") # converting kg/s to MM lb/year" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let us add expressions to compute the reactor cooling cost (\\\\$/s) assuming a cost of 2.12E-5 \\\\$/kW, the compression cost (\\\\$/s) assuming 1.2E-3 \\\\$/kW, and the heating utility cost (\\\\$/s) assuming 2.2E-4 \\\\$/kW. Note that the heat duty is in units of Watt (J/s). The total operating cost will be the sum of the costs, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.cooling_cost = Expression(\n", - " expr=2.12e-8 * (m.fs.R101.heat_duty[0])\n", - ") # the reaction is endothermic, so R101 duty is positive\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", - ") # the stream must be heated to T_rxn, so H101 duty is positive\n", - "m.fs.compression_cost = Expression(\n", - " expr=1.2e-6 * m.fs.C101.work_isentropic[0]\n", - ") # the stream must be pressurized, so the C101 work is positive\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost + m.fs.compression_cost))\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Feed Conditions\n", - "\n", - "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. We expect each stream to have 8 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the compressor to have 2 (the pressure change and efficiency), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (conversion). Therefore, we have 20 degrees of freedom to specify: temperature, pressure, flow and mole fractions of all five components on both streams; compressor pressure change and efficiency; outlet heater temperature; and reactor conversion.\n", - "\n", - "Although the model has eight degrees of freedom per stream, the mole fractions are not all independent and the physical system only has seven. Each `StateBlock` sets a flag `defined_state` based on any remaining degrees of freedom; if this flag is set to `False` a `Constraint` is written to ensure all mole fractions sum to one. However, a fully specified system with `defined_state` set to `True` will not create this constraint and it is the responsibility of the user to set physically meaningful values, i.e. that all mole fractions are nonnegative and sum to one. While not necessary in this example, the [Custom Thermophysical Property Package Example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/Advanced/CustomProperties/custom_physical_property_packages_testing_usr.ipynb) demonstrates adding a check before writing an additional constraint that may overspecify the system." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "20\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be fixing the feed stream to the conditions shown in the flowsheet above. As mentioned in other tutorials, the IDAES framework expects a time index value for every referenced internal stream or unit variable, even in steady-state systems with a single time point $ t = 0 $ (`t = [0]` is the default when creating a `FlowsheetBlock` without passing a `time_set` argument). The non-present components in each stream are assigned a very small non-zero value to help with convergence and initializing. Based on the literature source, we will initialize our simulation with the following values:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.CH4.outlet.mole_frac_comp[0, \"CH4\"].fix(1)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"H2O\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", - "m.fs.CH4.outlet.flow_mol.fix(75 * pyunits.mol / pyunits.s)\n", - "m.fs.CH4.outlet.temperature.fix(298.15 * pyunits.K)\n", - "m.fs.CH4.outlet.pressure.fix(1e5 * pyunits.Pa)\n", - "\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CH4\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"H2O\"].fix(1)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", - "m.fs.H2O.outlet.flow_mol.fix(234 * pyunits.mol / pyunits.s)\n", - "m.fs.H2O.outlet.temperature.fix(373.15 * pyunits.K)\n", - "m.fs.H2O.outlet.pressure.fix(1e5 * pyunits.Pa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Unit Model Specifications\n", - "\n", - "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. For the initial problem, let us fix the compressor outlet pressure to 2 bar for now, the efficiency to 0.90 (a common assumption for compressor units), and the heater outlet temperature to 500 K. We will unfix these values later to optimize the flowsheet." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.C101.outlet.pressure.fix(pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa))\n", - "m.fs.C101.efficiency_isentropic.fix(0.90)\n", - "m.fs.H101.outlet.temperature.fix(500 * pyunits.K)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `EquilibriumReactor` unit model calculates the amount of product and reactant based on the calculated equilibrium constant; therefore, we will specify a desired conversion and let the solver determine the reactor duty and heat transfer. For convenience, we will define the reactor conversion as the amount of methane that is converted." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion = Var(\n", - " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", - ") # fraction\n", - "\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion\n", - " * m.fs.R101.inlet.flow_mol[0]\n", - " * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol[0] * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", - " - m.fs.R101.outlet.flow_mol[0] * m.fs.R101.outlet.mole_frac_comp[0, \"CH4\"]\n", - " )\n", - ")\n", - "\n", - "m.fs.R101.conversion.fix(0.80)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we need to initialize each unit operation in sequence to solve the flowsheet. As in best practice, unit operations are initialized or solved, and outlet properties are propagated to connected inlet streams via arc definitions as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4.properties: Starting initialization\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4: Initialization Complete.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O.properties: Starting initialization\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O: Initialization Complete.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.M101.methane_feed_state: Starting initialization\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.M101.methane_feed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:03 [INFO] idaes.init.fs.M101.steam_feed_state: Starting initialization\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.steam_feed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.properties_isentropic: Starting initialization\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.properties_isentropic: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.properties_isentropic: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.reactions: Initialization Complete.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD.properties: Starting initialization\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD: Initialization Complete.\n" - ] - } - ], - "source": [ - "# Initialize and solve each unit operation\n", - "m.fs.CH4.initialize()\n", - "propagate_state(arc=m.fs.s01)\n", - "\n", - "m.fs.H2O.initialize()\n", - "propagate_state(arc=m.fs.s02)\n", - "\n", - "m.fs.M101.initialize()\n", - "propagate_state(arc=m.fs.s03)\n", - "\n", - "m.fs.C101.initialize()\n", - "propagate_state(arc=m.fs.s04)\n", - "\n", - "m.fs.H101.initialize()\n", - "propagate_state(arc=m.fs.s05)\n", - "\n", - "m.fs.R101.initialize()\n", - "propagate_state(arc=m.fs.s06)\n", - "\n", - "m.fs.PROD.initialize()\n", - "\n", - "# set solver\n", - "solver = get_solver()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 562\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 477\n", - "\n", - "Total number of variables............................: 204\n", - " variables with only lower bounds: 13\n", - " variables with lower and upper bounds: 174\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 204\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 1.49e+06 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 1.35e+04 2.00e-01 -1.0 3.59e+00 - 9.90e-01 9.91e-01h 1\n", - " 2 0.0000000e+00 3.59e-04 9.99e+00 -1.0 3.56e+00 - 9.90e-01 1.00e+00h 1\n", - " 3 0.0000000e+00 2.12e-08 8.98e+01 -1.0 2.91e-04 - 9.90e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 2.8421709430404007e-14 2.1187588572502136e-08\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.8421709430404007e-14 2.1187588572502136e-08\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", - "Total CPU secs in NLP function evaluations = 0.001\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the Results of the Square Problem\n", - "\n", - "\n", - "What is the total operating cost? " - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "operating cost = $45.933 million per year\n" - ] - } - ], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this operating cost, what conversion did we achieve of methane to hydrogen?" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 2.7605e+07 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 429.02\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.034965\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.31487\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 0.51029\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 0.049157\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.090717\n", - " Temperature kelvin 500.00 868.56\n", - " Pressure pascal 2.0000e+05 2.0000e+05\n", - "====================================================================================\n", - "\n", - "Conversion achieved = 80.0%\n" - ] - } - ], - "source": [ - "m.fs.R101.report()\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimizing Hydrogen Production\n", - "\n", - "Now that the flowsheet has been squared and solved, we can run a small optimization problem to determine optimal conditions for producing hydrogen. Suppose we wish to find ideal conditions for the competing reactions. As mentioned earlier, the two reactions have competing equilibria - steam methane reformation occurs more readily at higher temperatures (500-700 C) while water gas shift occurs more readily at lower temperatures (300-400 C). We will allow for variable reactor temperature and pressure by freeing our heater and compressor specifications, and minimize cost to achieve 90% methane conversion. Since we assume an isentopic compressor, allowing compression will heat our feed stream and reduce or eliminate the required heater duty." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost)" - ] - }, + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Flowsheet Equilibrium Reactor Simulation and Optimization of Steam Methane Reforming\n", + "Maintainer: Brandon Paul \n", + "Author: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "## Learning Outcomes\n", + "\n", + "\n", + "- Call and implement the IDAES EquilibriumReactor unit model\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "This example is adapted from S.Z. Abbas, V. Dupont, T. Mahmud, Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903\n", + "\n", + "Steam methane reforming (SMR) is one of the most common pathways for hydrogen production, taking advantage of chemical equilibria in natural gas systems. The process is typically done in two steps: methane reformation at a high temperature to partially oxidize methane, and water gas shift at a low temperature to complete the oxidation reaction:\n", + "\n", + "**CH4 + H2O → CO + 3H2** \n", + "**CO + H2O → CO2 + H2**\n", + "\n", + "This reaction is often carried out in two separate reactors to allow for different reaction temperatures and pressures; in this example, we will minimize operating cost for a single reactor.\n", + "\n", + "The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing natural gas and steam feeds of fixed composition to produce hydrogen. As shown in the flowsheet, the process consists of a mixer M101 for the two inlet streams, a compressor to compress the feed to the reaction pressure, a heater H101 to heat the feed to the reaction temperature, and a EquilibriumReactor unit R101. We will use thermodynamic properties from the Peng-Robinson equation of state for this flowsheet.\n", + "\n", + "The state variables chosen for the property package are **total molar flows of each stream, temperature of each stream and pressure of each stream, and mole fractions of each component in each stream**. The components considered are: **CH4, H2O, CO, CO2, and H2** and the process occurs in vapor phase only. Therefore, every stream has 1 flow variable, 5 mole fraction variables, 1 temperature and 1 pressure variable. \n", + "\n", + "![](msr_flowsheet.png)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Pyomo and IDAES Components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages. Let us first import the following components from Pyomo:\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- ConcreteModel (to create the concrete model object)\n", + "- Expression (to evaluate values as a function of variables defined in the model)\n", + "- Objective (to define an objective function for optimization)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- Arc (to connect two unit models)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n", + "\n", + "From IDAES, we will be needing the `FlowsheetBlock` and the following unit models:\n", + "- Feed\n", + "- Mixer\n", + "- Compressor\n", + "- Heater\n", + "- EquilibriumReactor\n", + "- Product\n", + "\n", + "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom, tools for model expressions and calling variable values, and built-in functions to define property packages, add unit containers to objects and define our initialization scheme.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " TransformationFactory,\n", + " value,\n", + " units as pyunits,\n", + ")\n", + "from pyomo.network import Arc\n", + "\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.models.properties.modular_properties.base.generic_property import (\n", + " GenericParameterBlock,\n", + ")\n", + "from idaes.models.properties.modular_properties.base.generic_reaction import (\n", + " GenericReactionParameterBlock,\n", + ")\n", + "from idaes.models.unit_models import (\n", + " Feed,\n", + " Mixer,\n", + " Compressor,\n", + " Heater,\n", + " EquilibriumReactor,\n", + " Product,\n", + ")\n", + "\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Thermophysical and Reaction Packages\n", + "\n", + "The final step is to import the thermophysical and reaction packages. We will import natural gas properties from an existing IDAES module, and reaction properties from a custom module to describe equilibrium behavior. These configuration dictionaries provide parameter data that we will pass to the Modular Property Framework.\n", + "\n", + "The reaction package here assumes all reactions reach chemical equilibrium at the given conditions. \n", + "\n", + "${K_{eq}^{MSR}} = \\exp\\left(\\frac {-26830} {T} + 30.114\\right)$, ${K_{eq}^{WGS}} = \\exp\\left(\\frac {4400} {T} - 4.036\\right)$ with the reactor temperature $T$ in K. \n", + "The total reaction equilibrium constant is given by $K_{eq} = {K_{eq}^{MSR}}{K_{eq}^{WGS}}$.\n", + "\n", + "The correlations are taken from the following literature: \n", + "\n", + "Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903\n", + "\n", + "### Determining $k_{eq}^{ref}$\n", + "\n", + "As part of the parameter dictionary, users may define equilibrium reactions using a constant coefficient or built-in correlations for van't Hoff and Gibbs formulations. Using the literature correlations above for $k_{eq}$, we can easily calculate the necessary parameters to use the van't Hoff equilibrium constant form:\n", + "\n", + "For an empirical correlation $ln(k_{eq}) = f(T)$ for a catalyst (reaction) temperature $T$, we obtain $k_{eq}^{ref} = \\exp\\left({f(T_{eq}^{ref})}\\right)$. From the paper, we obtain a reference catalyst temperature of 973.15 K and reaction energies for the two reaction steps; these values exist in the reaction property parameter module in this same directory.\n", + "\n", + "These calculations are contained within the property, reaction and unit model packages, and do not need to be entered into the flowsheet. More information on property estimation may be found in the IDAES documentation on [Parameter Estimation](https://idaes-pse.readthedocs.io/en/stable/how_to_guides/workflow/data_rec_parmest.html).\n", + "\n", + "Let us import the following modules:\n", + "- natural_gas_PR as get_prop (method to get configuration dictionary)\n", + "- msr_reaction as reaction_props (contains configuration dictionary)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models_extra.power_generation.properties.natural_gas_PR import get_prop\n", + "import msr_reaction as reaction_props" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a `ConcreteModel` and add the flowsheet block. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now need to add the property packages to the flowsheet. Unlike the basic [Flash unit model example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Tutorials/Basics/flash_unit_solution_testing_usr.ipynb), where we only had a thermophysical property package, for this flowsheet we will also need to add a reaction property package. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) and [Modular Reaction Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-reaction-package-framework). The `get_prop` method for the natural gas property module automatically returns the correct dictionary using a component list argument. The `GenericParameterBlock` and `GenericReactionParameterBlock` methods build states blocks from passed parameter data; the reaction block unpacks using `**reaction_props.config_dict` to allow for optional or empty keyword arguments:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "thermo_props_config_dict = get_prop(components=[\"CH4\", \"H2O\", \"H2\", \"CO\", \"CO2\"])\n", + "m.fs.thermo_params = GenericParameterBlock(**thermo_props_config_dict)\n", + "m.fs.reaction_params = GenericReactionParameterBlock(\n", + " property_package=m.fs.thermo_params, **reaction_props.config_dict\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding a `Mixer`, a `Compressor`, a `Heater` and an `EquilibriumReactor`. Note that all unit models should be explicitly defined with a given property package. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details on [IDAES Unit Models](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/index.html). For example, the `Mixer` is given a `list` consisting of names to the two inlets. Note that the `Compressor` is a `PressureChanger` assuming compression operation and with a fixed isentropic compressor efficiency as the default thermodynamic behavior." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.CH4 = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.H2O = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params, inlet_list=[\"methane_feed\", \"steam_feed\"]\n", + ")\n", + "m.fs.H101 = Heater(\n", + " property_package=m.fs.thermo_params,\n", + " has_pressure_change=False,\n", + " has_phase_equilibrium=False,\n", + ")\n", + "m.fs.C101 = Compressor(property_package=m.fs.thermo_params)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101 = EquilibriumReactor(\n", + " property_package=m.fs.thermo_params,\n", + " reaction_package=m.fs.reaction_params,\n", + " has_equilibrium_reactions=True,\n", + " has_rate_reactions=False,\n", + " has_heat_of_reaction=True,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models Using Arcs\n", + "\n", + "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a Pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the `Mixer` to the inlet of the `Compressor`, the outlet of the compressor `Compressor` to the inlet of the `Heater`, and the outlet of the `Heater` to the inlet of the `EquilibriumReactor`. Additionally, we will connect the `Feed` and `Product` blocks to the flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s01 = Arc(source=m.fs.CH4.outlet, destination=m.fs.M101.methane_feed)\n", + "m.fs.s02 = Arc(source=m.fs.H2O.outlet, destination=m.fs.M101.steam_feed)\n", + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.C101.inlet)\n", + "m.fs.s04 = Arc(source=m.fs.C101.outlet, destination=m.fs.H101.inlet)\n", + "m.fs.s05 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", + "m.fs.s06 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now connected the unit model block using the arcs. However, we also need to link the state variables on connected ports. Pyomo provides a convenient method `TransformationFactory` to write these equality constraints for us between two ports:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Expressions to Compute Operating Costs\n", + "\n", + "In this section, we will add a few `Expressions` that allow us to evaluate the performance. `Expressions` provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on `Expressions`, please refer to the [Pyomo Expression documentation](https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html).\n", + "\n", + "For this flowsheet, we are interested in computing hydrogen production in millions of pounds per year, as well as the total costs due to pressurizing, cooling, and heating utilities.\n", + "\n", + "Let us first add an `Expression` to convert the product flow from mol/s to MM lb/year of hydrogen. We see that the molecular weight exists in the thermophysical property package, so we may use that value for our calculations." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.hyd_prod = Expression(\n", + " expr=pyunits.convert(\n", + " m.fs.PROD.inlet.flow_mol[0]\n", + " * m.fs.PROD.inlet.mole_frac_comp[0, \"H2\"]\n", + " * m.fs.thermo_params.H2.mw, # MW defined in properties as kg/mol\n", + " to_units=pyunits.Mlb / pyunits.yr,\n", + " )\n", + ") # converting kg/s to MM lb/year" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let us add expressions to compute the reactor cooling cost (\\\\$/s) assuming a cost of 2.12E-5 \\\\$/kW, the compression cost (\\\\$/s) assuming 1.2E-3 \\\\$/kW, and the heating utility cost (\\\\$/s) assuming 2.2E-4 \\\\$/kW. Note that the heat duty is in units of Watt (J/s). The total operating cost will be the sum of the costs, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.cooling_cost = Expression(\n", + " expr=2.12e-8 * (m.fs.R101.heat_duty[0])\n", + ") # the reaction is endothermic, so R101 duty is positive\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", + ") # the stream must be heated to T_rxn, so H101 duty is positive\n", + "m.fs.compression_cost = Expression(\n", + " expr=1.2e-6 * m.fs.C101.work_isentropic[0]\n", + ") # the stream must be pressurized, so the C101 work is positive\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost + m.fs.compression_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Feed Conditions\n", + "\n", + "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. We expect each stream to have 8 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the compressor to have 2 (the pressure change and efficiency), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (conversion). Therefore, we have 20 degrees of freedom to specify: temperature, pressure, flow and mole fractions of all five components on both streams; compressor pressure change and efficiency; outlet heater temperature; and reactor conversion.\n", + "\n", + "Although the model has eight degrees of freedom per stream, the mole fractions are not all independent and the physical system only has seven. Each `StateBlock` sets a flag `defined_state` based on any remaining degrees of freedom; if this flag is set to `False` a `Constraint` is written to ensure all mole fractions sum to one. However, a fully specified system with `defined_state` set to `True` will not create this constraint and it is the responsibility of the user to set physically meaningful values, i.e. that all mole fractions are nonnegative and sum to one. While not necessary in this example, the [Custom Thermophysical Property Package Example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/Advanced/CustomProperties/custom_physical_property_packages_testing_usr.ipynb) demonstrates adding a check before writing an additional constraint that may overspecify the system." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem until now, as well as set bounds for the design variables (reactor outlet temperature is set by state variable bounds in property package):" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "20\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be fixing the feed stream to the conditions shown in the flowsheet above. As mentioned in other tutorials, the IDAES framework expects a time index value for every referenced internal stream or unit variable, even in steady-state systems with a single time point $ t = 0 $ (`t = [0]` is the default when creating a `FlowsheetBlock` without passing a `time_set` argument). The non-present components in each stream are assigned a very small non-zero value to help with convergence and initializing. Based on the literature source, we will initialize our simulation with the following values:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.CH4.outlet.mole_frac_comp[0, \"CH4\"].fix(1)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"H2O\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", + "m.fs.CH4.outlet.flow_mol.fix(75 * pyunits.mol / pyunits.s)\n", + "m.fs.CH4.outlet.temperature.fix(298.15 * pyunits.K)\n", + "m.fs.CH4.outlet.pressure.fix(1e5 * pyunits.Pa)\n", + "\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CH4\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"H2O\"].fix(1)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", + "m.fs.H2O.outlet.flow_mol.fix(234 * pyunits.mol / pyunits.s)\n", + "m.fs.H2O.outlet.temperature.fix(373.15 * pyunits.K)\n", + "m.fs.H2O.outlet.pressure.fix(1e5 * pyunits.Pa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Unit Model Specifications\n", + "\n", + "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. For the initial problem, let us fix the compressor outlet pressure to 2 bar for now, the efficiency to 0.90 (a common assumption for compressor units), and the heater outlet temperature to 500 K. We will unfix these values later to optimize the flowsheet." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.C101.outlet.pressure.fix(pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa))\n", + "m.fs.C101.efficiency_isentropic.fix(0.90)\n", + "m.fs.H101.outlet.temperature.fix(500 * pyunits.K)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `EquilibriumReactor` unit model calculates the amount of product and reactant based on the calculated equilibrium constant; therefore, we will specify a desired conversion and let the solver determine the reactor duty and heat transfer. For convenience, we will define the reactor conversion as the amount of methane that is converted." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion = Var(\n", + " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", + ") # fraction\n", + "\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion\n", + " * m.fs.R101.inlet.flow_mol[0]\n", + " * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol[0] * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", + " - m.fs.R101.outlet.flow_mol[0] * m.fs.R101.outlet.mole_frac_comp[0, \"CH4\"]\n", + " )\n", + ")\n", + "\n", + "m.fs.R101.conversion.fix(0.80)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion.fix(0.90)\n", - "\n", - "m.fs.C101.outlet.pressure.unfix()\n", - "m.fs.C101.outlet.pressure[0].setlb(\n", - " pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa)\n", - ") # pressurize to at least 2 bar\n", - "m.fs.C101.outlet.pressure[0].setub(\n", - " pyunits.convert(10 * pyunits.bar, to_units=pyunits.Pa)\n", - ") # at most, pressurize to 10 bar\n", - "\n", - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.H101.heat_duty[0].setlb(\n", - " 0 * pyunits.J / pyunits.s\n", - ") # outlet temperature is equal to or greater than inlet temperature\n", - "m.fs.H101.outlet.temperature[0].setub(1000 * pyunits.K) # at most, heat to 1000 K" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we need to initialize each unit operation in sequence to solve the flowsheet. As in best practice, unit operations are initialized or solved, and outlet properties are propagated to connected inlet streams via arc definitions as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4.properties: Starting initialization\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4.properties: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4.properties: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.CH4: Initialization Complete.\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O.properties: Starting initialization\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O.properties: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O.properties: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.H2O: Initialization Complete.\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.M101.methane_feed_state: Starting initialization\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.M101.methane_feed_state: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:03 [INFO] idaes.init.fs.M101.steam_feed_state: Starting initialization\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.steam_feed_state: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: Starting initialization\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Starting initialization\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.properties_isentropic: Starting initialization\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.properties_isentropic: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:04 [INFO] idaes.init.fs.C101.properties_isentropic: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume.reactions: Initialization Complete.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD.properties: Starting initialization\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD.properties: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD.properties: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:08:05 [INFO] idaes.init.fs.PROD: Initialization Complete.\n" + ] + } + ], + "source": [ + "# Initialize and solve each unit operation\n", + "m.fs.CH4.initialize()\n", + "propagate_state(arc=m.fs.s01)\n", + "\n", + "m.fs.H2O.initialize()\n", + "propagate_state(arc=m.fs.s02)\n", + "\n", + "m.fs.M101.initialize()\n", + "propagate_state(arc=m.fs.s03)\n", + "\n", + "m.fs.C101.initialize()\n", + "propagate_state(arc=m.fs.s04)\n", + "\n", + "m.fs.H101.initialize()\n", + "propagate_state(arc=m.fs.s05)\n", + "\n", + "m.fs.R101.initialize()\n", + "propagate_state(arc=m.fs.s06)\n", + "\n", + "m.fs.PROD.initialize()\n", + "\n", + "# set solver\n", + "solver = get_solver()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 569\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 493\n", - "\n", - "Total number of variables............................: 206\n", - " variables with only lower bounds: 14\n", - " variables with lower and upper bounds: 176\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 204\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.5933014e+07 1.49e+06 3.46e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 4.5420427e+07 1.49e+06 1.33e+03 -1.0 1.08e+07 - 4.58e-01 5.96e-03f 1\n", - " 2 4.2830345e+07 8.68e+05 6.47e+06 -1.0 5.32e+06 - 8.03e-01 4.18e-01f 1\n", - " 3 4.3111576e+07 1.26e+05 1.06e+07 -1.0 2.54e+06 - 9.54e-01 8.85e-01h 1\n", - " 4 4.3307552e+07 2.24e+03 3.12e+05 -1.0 3.51e+05 - 9.89e-01 9.86e-01h 1\n", - " 5 4.3309118e+07 2.20e+01 3.08e+03 -1.0 2.69e+03 - 9.90e-01 9.90e-01h 1\n", - " 6 4.3309131e+07 5.77e-06 3.84e+01 -1.0 2.31e+01 - 9.92e-01 1.00e+00h 1\n", - " 7 4.3309131e+07 7.77e-09 4.84e-07 -2.5 1.97e-02 - 1.00e+00 1.00e+00f 1\n", - " 8 4.3309131e+07 1.63e-08 1.71e-06 -3.8 5.56e-04 - 1.00e+00 1.00e+00f 1\n", - " 9 4.3309131e+07 1.72e-08 1.31e-06 -5.7 3.08e-05 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 4.3309131e+07 2.20e-08 8.55e-07 -7.0 3.59e-07 - 1.00e+00 1.00e+00f 1\n", - "\n", - "Number of Iterations....: 10\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 4.3309130854568794e+07 4.3309130854568794e+07\n", - "Dual infeasibility......: 8.5488594337511447e-07 8.5488594337511447e-07\n", - "Constraint violation....: 1.4551915228366852e-11 2.2002495825290680e-08\n", - "Complementarity.........: 9.0909090913936433e-08 9.0909090913936433e-08\n", - "Overall NLP error.......: 9.0909090913936433e-08 8.5488594337511447e-07\n", - "\n", - "\n", - "Number of objective function evaluations = 11\n", - "Number of objective gradient evaluations = 11\n", - "Number of equality constraint evaluations = 11\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 11\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 10\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.008\n", - "Total CPU secs in NLP function evaluations = 0.003\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 562\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 477\n", + "\n", + "Total number of variables............................: 204\n", + " variables with only lower bounds: 13\n", + " variables with lower and upper bounds: 174\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 204\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.49e+06 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.35e+04 2.00e-01 -1.0 3.59e+00 - 9.90e-01 9.91e-01h 1\n", + " 2 0.0000000e+00 3.59e-04 9.99e+00 -1.0 3.56e+00 - 9.90e-01 1.00e+00h 1\n", + " 3 0.0000000e+00 2.12e-08 8.98e+01 -1.0 2.91e-04 - 9.90e-01 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 2.8421709430404007e-14 2.1187588572502136e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 2.8421709430404007e-14 2.1187588572502136e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the Results of the Square Problem\n", + "\n", + "\n", + "What is the total operating cost? " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "operating cost = $43.309 million per year\n", - "\n", - "Compressor results\n", - "\n", - "====================================================================================\n", - "Unit : fs.C101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.90000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 7.5471e+05 : watt : False : (None, None)\n", - " Pressure Change : 1.0000e+05 : pascal : False : (None, None)\n", - " Pressure Ratio : 2.0000 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 309.01\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", - " Temperature kelvin 353.80 423.34\n", - " Pressure pascal 1.0000e+05 2.0000e+05\n", - "====================================================================================\n", - "\n", - "Heater results\n", - "\n", - "====================================================================================\n", - "Unit : fs.H101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 5.8781e-09 : watt : False : (0.0, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 309.01\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", - " Temperature kelvin 423.34 423.34\n", - " Pressure pascal 2.0000e+05 2.0000e+05\n", - "====================================================================================\n", - "\n", - "Equilibrium reactor results\n", - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 3.2486e+07 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 444.02\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.016892\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.29075\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 0.54032\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 0.067801\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.084239\n", - " Temperature kelvin 423.34 910.04\n", - " Pressure pascal 2.0000e+05 2.0000e+05\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")\n", - "\n", - "print()\n", - "print(\"Compressor results\")\n", - "\n", - "m.fs.C101.report()\n", - "\n", - "print()\n", - "print(\"Heater results\")\n", - "\n", - "m.fs.H101.report()\n", - "\n", - "print()\n", - "print(\"Equilibrium reactor results\")\n", - "\n", - "m.fs.R101.report()" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $45.933 million per year\n" + ] + } + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this operating cost, what conversion did we achieve of methane to hydrogen?" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables and design variables:" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 2.7605e+07 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 429.02\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.034965\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.31487\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 0.51029\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 0.049157\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.090717\n", + " Temperature kelvin 500.00 868.56\n", + " Pressure pascal 2.0000e+05 2.0000e+05\n", + "====================================================================================\n", + "\n", + "Conversion achieved = 80.0%\n" + ] + } + ], + "source": [ + "m.fs.R101.report()\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimizing Hydrogen Production\n", + "\n", + "Now that the flowsheet has been squared and solved, we can run a small optimization problem to determine optimal conditions for producing hydrogen. Suppose we wish to find ideal conditions for the competing reactions. As mentioned earlier, the two reactions have competing equilibria - steam methane reformation occurs more readily at higher temperatures (500-700 C) while water gas shift occurs more readily at lower temperatures (300-400 C). We will allow for variable reactor temperature and pressure by freeing our heater and compressor specifications, and minimize cost to achieve 90% methane conversion. Since we assume an isentopic compressor, allowing compression will heat our feed stream and reduce or eliminate the required heater duty." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem until now, as well as set bounds for the design variables (reactor outlet temperature is set by state variable bounds in property package):" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion.fix(0.90)\n", + "\n", + "m.fs.C101.outlet.pressure.unfix()\n", + "m.fs.C101.outlet.pressure[0].setlb(\n", + " pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa)\n", + ") # pressurize to at least 2 bar\n", + "m.fs.C101.outlet.pressure[0].setub(\n", + " pyunits.convert(10 * pyunits.bar, to_units=pyunits.Pa)\n", + ") # at most, pressurize to 10 bar\n", + "\n", + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.H101.heat_duty[0].setlb(\n", + " 0 * pyunits.J / pyunits.s\n", + ") # outlet temperature is equal to or greater than inlet temperature\n", + "m.fs.H101.outlet.temperature[0].setub(1000 * pyunits.K) # at most, heat to 1000 K" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal Values\n", - "\n", - "C101 outlet pressure = 0.200 MPa\n", - "\n", - "C101 outlet temperature = 423.345 K\n", - "\n", - "H101 outlet temperature = 423.345 K\n", - "\n", - "R101 outlet temperature = 910.044 K\n", - "\n", - "Hydrogen produced = 33.648 MM lb/year\n", - "\n", - "Conversion achieved = 90.0%\n" - ] - } - ], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(f\"C101 outlet pressure = {value(m.fs.C101.outlet.pressure[0])/1E6:0.3f} MPa\")\n", - "print()\n", - "\n", - "print(f\"C101 outlet temperature = {value(m.fs.C101.outlet.temperature[0]):0.3f} K\")\n", - "print()\n", - "\n", - "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.3f} K\")\n", - "\n", - "print()\n", - "print(f\"R101 outlet temperature = {value(m.fs.R101.outlet.temperature[0]):0.3f} K\")\n", - "\n", - "print()\n", - "print(f\"Hydrogen produced = {value(m.fs.hyd_prod):0.3f} MM lb/year\")\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 569\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 493\n", + "\n", + "Total number of variables............................: 206\n", + " variables with only lower bounds: 14\n", + " variables with lower and upper bounds: 176\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 204\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 4.5933014e+07 1.49e+06 3.46e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 4.5420427e+07 1.49e+06 1.33e+03 -1.0 1.08e+07 - 4.58e-01 5.96e-03f 1\n", + " 2 4.2830345e+07 8.68e+05 6.47e+06 -1.0 5.32e+06 - 8.03e-01 4.18e-01f 1\n", + " 3 4.3111576e+07 1.26e+05 1.06e+07 -1.0 2.54e+06 - 9.54e-01 8.85e-01h 1\n", + " 4 4.3307552e+07 2.24e+03 3.12e+05 -1.0 3.51e+05 - 9.89e-01 9.86e-01h 1\n", + " 5 4.3309118e+07 2.20e+01 3.08e+03 -1.0 2.69e+03 - 9.90e-01 9.90e-01h 1\n", + " 6 4.3309131e+07 5.77e-06 3.84e+01 -1.0 2.31e+01 - 9.92e-01 1.00e+00h 1\n", + " 7 4.3309131e+07 7.77e-09 4.84e-07 -2.5 1.97e-02 - 1.00e+00 1.00e+00f 1\n", + " 8 4.3309131e+07 1.63e-08 1.71e-06 -3.8 5.56e-04 - 1.00e+00 1.00e+00f 1\n", + " 9 4.3309131e+07 1.72e-08 1.31e-06 -5.7 3.08e-05 - 1.00e+00 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 4.3309131e+07 2.20e-08 8.55e-07 -7.0 3.59e-07 - 1.00e+00 1.00e+00f 1\n", + "\n", + "Number of Iterations....: 10\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 4.3309130854568794e+07 4.3309130854568794e+07\n", + "Dual infeasibility......: 8.5488594337511447e-07 8.5488594337511447e-07\n", + "Constraint violation....: 1.4551915228366852e-11 2.2002495825290680e-08\n", + "Complementarity.........: 9.0909090913936433e-08 9.0909090913936433e-08\n", + "Overall NLP error.......: 9.0909090913936433e-08 8.5488594337511447e-07\n", + "\n", + "\n", + "Number of objective function evaluations = 11\n", + "Number of objective gradient evaluations = 11\n", + "Number of equality constraint evaluations = 11\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 11\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 10\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.008\n", + "Total CPU secs in NLP function evaluations = 0.003\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $43.309 million per year\n", + "\n", + "Compressor results\n", + "\n", + "====================================================================================\n", + "Unit : fs.C101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.90000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 7.5471e+05 : watt : False : (None, None)\n", + " Pressure Change : 1.0000e+05 : pascal : False : (None, None)\n", + " Pressure Ratio : 2.0000 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 309.01\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", + " Temperature kelvin 353.80 423.34\n", + " Pressure pascal 1.0000e+05 2.0000e+05\n", + "====================================================================================\n", + "\n", + "Heater results\n", + "\n", + "====================================================================================\n", + "Unit : fs.H101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 5.8781e-09 : watt : False : (0.0, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 309.01\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", + " Temperature kelvin 423.34 423.34\n", + " Pressure pascal 2.0000e+05 2.0000e+05\n", + "====================================================================================\n", + "\n", + "Equilibrium reactor results\n", + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 3.2486e+07 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 444.02\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.016892\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.29075\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 0.54032\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 0.067801\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.084239\n", + " Temperature kelvin 423.34 910.04\n", + " Pressure pascal 2.0000e+05 2.0000e+05\n", + "====================================================================================\n" + ] } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")\n", + "\n", + "print()\n", + "print(\"Compressor results\")\n", + "\n", + "m.fs.C101.report()\n", + "\n", + "print()\n", + "print(\"Heater results\")\n", + "\n", + "m.fs.H101.report()\n", + "\n", + "print()\n", + "print(\"Equilibrium reactor results\")\n", + "\n", + "m.fs.R101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables and design variables:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal Values\n", + "\n", + "C101 outlet pressure = 0.200 MPa\n", + "\n", + "C101 outlet temperature = 423.345 K\n", + "\n", + "H101 outlet temperature = 423.345 K\n", + "\n", + "R101 outlet temperature = 910.044 K\n", + "\n", + "Hydrogen produced = 33.648 MM lb/year\n", + "\n", + "Conversion achieved = 90.0%\n" + ] } + ], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(f\"C101 outlet pressure = {value(m.fs.C101.outlet.pressure[0])/1E6:0.3f} MPa\")\n", + "print()\n", + "\n", + "print(f\"C101 outlet temperature = {value(m.fs.C101.outlet.temperature[0]):0.3f} K\")\n", + "print()\n", + "\n", + "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.3f} K\")\n", + "\n", + "print()\n", + "print(f\"R101 outlet temperature = {value(m.fs.R101.outlet.temperature[0]):0.3f} K\")\n", + "\n", + "print()\n", + "print(f\"Hydrogen produced = {value(m.fs.hyd_prod):0.3f} MM lb/year\")\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor.ipynb index da52dcfb..4b7109b3 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, @@ -61,8 +62,7 @@ "\n", "The state variables chosen for the property package are **total molar flows of each stream, temperature of each stream and pressure of each stream, and mole fractions of each component in each stream**. The components considered are: **CH4, H2O, CO, CO2, and H2** and the process occurs in vapor phase only. Therefore, every stream has 1 flow variable, 5 mole fraction variables, 1 temperature and 1 pressure variable. \n", "\n", - "![](msr_flowsheet.png)\n", - "" + "![](msr_flowsheet.png)\n" ] }, { diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor_doc.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor_doc.ipynb index 069a9a84..254789c7 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor_doc.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor_doc.ipynb @@ -1,1049 +1,1296 @@ { - "cells": [ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Flowsheet Gibbs Reactor Simulation and Optimization of Steam Methane Reforming\n", + "Author: Brandon Paul \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "## Learning Outcomes\n", + "\n", + "\n", + "- Call and implement the IDAES GibbsReactor unit model\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Following the previous example of [Steam Methane Reformation in an Equilibrium Reactor](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/UnitModels/Reactors/equilibrium_reactor_testing_doc.md), this example solves the flowsheet using a Gibbs Reactor instead. The steam methane reformation example is adapted from S.Z. Abbas, V. Dupont, T. Mahmud, Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903. Typically, the process follows the chemical equations below:\n", + "\n", + "**CH4 + H2O → CO + 3H2** \n", + "**CO + H2O → CO2 + H2**\n", + "\n", + "However, the GibbsReactor unit model solves the equilibrium by minimizing Gibbs free energy. Conveniently, this eliminates the need for a reaction package although a thermophysical package is still required.\n", + "\n", + "The flowsheet that we will be using for this module is shown below with the stream conditions. As in the prior example, we will be processing natural gas and steam feeds of fixed composition to produce hydrogen. The process consists of a mixer M101 for the two inlet streams, a compressor to compress the feed to the reaction pressure, a heater H101 to heat the feed to the reaction temperature, and a GibbsReactor unit R101. We will use thermophysical properties following the Peng-Robinsion cubic equation of state for this flowsheet.\n", + "\n", + "The state variables chosen for the property package are **total molar flows of each stream, temperature of each stream and pressure of each stream, and mole fractions of each component in each stream**. The components considered are: **CH4, H2O, CO, CO2, and H2** and the process occurs in vapor phase only. Therefore, every stream has 1 flow variable, 5 mole fraction variables, 1 temperature and 1 pressure variable. \n", + "\n", + "![](msr_flowsheet.png)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Pyomo and IDAES Components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages, as well as some utility tools to build the flowsheet. For further details on these components, please refer to the [Pyomo documentation]( https://pyomo.readthedocs.io/en/stable/).\n", + "\n", + "From IDAES, we will be needing the `FlowsheetBlock` and the following unit models:\n", + "- Feed\n", + "- Mixer\n", + "- Compressor\n", + "- Heater\n", + "- GibbsReactor\n", + "- Product" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " TransformationFactory,\n", + " value,\n", + " units as pyunits,\n", + ")\n", + "from pyomo.network import Arc\n", + "\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.models.properties.modular_properties import GenericParameterBlock\n", + "from idaes.models.unit_models import (\n", + " Feed,\n", + " Mixer,\n", + " Compressor,\n", + " Heater,\n", + " GibbsReactor,\n", + " Product,\n", + ")\n", + "\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Thermophysical Package\n", + "\n", + "As mentioned earlier, the `GibbsReactor` does not require a reaction package.\n", + "\n", + "Let us import the following module from the IDAES library:\n", + "- natural_gas_PR as get_prop (method to get configuration dictionary)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models_extra.power_generation.properties.natural_gas_PR import get_prop" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "Let us create a `ConcreteModel` and add the flowsheet block. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now need to add the property packages to the flowsheet. Unlike the previous example, we do not need to add a reaction package for the reactor model to calculate results. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) to build a state block for the parameter dictionary." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "thermo_props_config_dict = get_prop(components=[\"CH4\", \"H2O\", \"H2\", \"CO\", \"CO2\"])\n", + "m.fs.thermo_params = GenericParameterBlock(**thermo_props_config_dict)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.CH4 = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.H2O = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params, inlet_list=[\"methane_feed\", \"steam_feed\"]\n", + ")\n", + "m.fs.H101 = Heater(\n", + " property_package=m.fs.thermo_params,\n", + " has_pressure_change=False,\n", + " has_phase_equilibrium=False,\n", + ")\n", + "m.fs.C101 = Compressor(property_package=m.fs.thermo_params)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101 = GibbsReactor(\n", + " property_package=m.fs.thermo_params,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models Using Arcs\n", + "\n", + "We have now added all the unit models we need to the flowsheet. Let us connect the unit models by defining and building each `Arc`:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s01 = Arc(source=m.fs.CH4.outlet, destination=m.fs.M101.methane_feed)\n", + "m.fs.s02 = Arc(source=m.fs.H2O.outlet, destination=m.fs.M101.steam_feed)\n", + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.C101.inlet)\n", + "m.fs.s04 = Arc(source=m.fs.C101.outlet, destination=m.fs.H101.inlet)\n", + "m.fs.s05 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", + "m.fs.s06 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we can use Pyomo's `TransformationFactory` to write the equality constraints on each Arc:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Expressions to Compute Operating Costs\n", + "\n", + "For this flowsheet, we are interested in computing hydrogen production in millions of pounds per year, as well as the total costs due to pressurizing, cooling, and heating utilities:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us add `Expressions` to convert the product flow from mol/s to MM lb/year of hydrogen, and to calculate the cooling, heating and compression operating costs. The total operating cost will be the sum of the costs, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.hyd_prod = Expression(\n", + " expr=pyunits.convert(\n", + " m.fs.PROD.inlet.flow_mol[0]\n", + " * m.fs.PROD.inlet.mole_frac_comp[0, \"H2\"]\n", + " * m.fs.thermo_params.H2.mw, # MW defined in properties as kg/mol\n", + " to_units=pyunits.Mlb / pyunits.yr,\n", + " )\n", + ") # converting kg/s to MM lb/year" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.cooling_cost = Expression(\n", + " expr=0.212e-7 * (m.fs.R101.heat_duty[0])\n", + ") # the reaction is endothermic, so R101 duty is positive\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", + ") # the stream must be heated to T_rxn, so H101 duty is positive\n", + "m.fs.compression_cost = Expression(\n", + " expr=0.12e-5 * m.fs.C101.work_isentropic[0]\n", + ") # the stream must be pressurized, so the C101 work is positive\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost + m.fs.compression_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Feed Conditions\n", + "\n", + "We expect each stream to have 8 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the compressor to have 2 (the pressure change and efficiency), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (conversion). Therefore, we have 20 degrees of freedom to specify: temperature, pressure, flow and mole fractions of all five components on both streams; compressor pressure change and efficiency; outlet heater temperature; and reactor conversion." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "20\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Based on the literature source, we will initialize our simulation with the following values:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.CH4.outlet.mole_frac_comp[0, \"CH4\"].fix(1)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"H2O\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", + "m.fs.CH4.outlet.flow_mol.fix(75 * pyunits.mol / pyunits.s)\n", + "m.fs.CH4.outlet.temperature.fix(298.15 * pyunits.K)\n", + "m.fs.CH4.outlet.pressure.fix(1e5 * pyunits.Pa)\n", + "\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CH4\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"H2O\"].fix(1)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", + "m.fs.H2O.outlet.flow_mol.fix(234 * pyunits.mol / pyunits.s)\n", + "m.fs.H2O.outlet.temperature.fix(373.15 * pyunits.K)\n", + "m.fs.H2O.outlet.pressure.fix(1e5 * pyunits.Pa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Unit Model Specifications\n", + "\n", + "For the initial problem, let us fix the compressor outlet pressure to 2 bar for now, the efficiency to 0.90 (a common assumption for compressor units), and the heater outlet temperature to 500 K. We will unfix these values later to optimize the flowsheet." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.C101.outlet.pressure.fix(pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa))\n", + "m.fs.C101.efficiency_isentropic.fix(0.90)\n", + "m.fs.H101.outlet.temperature.fix(500 * pyunits.K)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `GibbsReactor` unit model calculates the amount of product and reactant based on the free energy minimization; therefore, we will specify a desired conversion and let the solver determine the reactor duty and heat transfer. For convenience, we will define the reactor conversion as the amount of methane that is converted." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion = Var(\n", + " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", + ") # fraction\n", + "\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion\n", + " * m.fs.R101.inlet.flow_mol[0]\n", + " * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol[0] * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", + " - m.fs.R101.outlet.flow_mol[0] * m.fs.R101.outlet.mole_frac_comp[0, \"CH4\"]\n", + " )\n", + ")\n", + "\n", + "m.fs.R101.conversion.fix(0.80)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Flowsheet Gibbs Reactor Simulation and Optimization of Steam Methane Reforming\n", - "Author: Brandon Paul \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "## Learning Outcomes\n", - "\n", - "\n", - "- Call and implement the IDAES GibbsReactor unit model\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Following the previous example of [Steam Methane Reformation in an Equilibrium Reactor](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/UnitModels/Reactors/equilibrium_reactor_testing_doc.md), this example solves the flowsheet using a Gibbs Reactor instead. The steam methane reformation example is adapted from S.Z. Abbas, V. Dupont, T. Mahmud, Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903. Typically, the process follows the chemical equations below:\n", - "\n", - "**CH4 + H2O \u2192 CO + 3H2** \n", - "**CO + H2O \u2192 CO2 + H2**\n", - "\n", - "However, the GibbsReactor unit model solves the equilibrium by minimizing Gibbs free energy. Conveniently, this eliminates the need for a reaction package although a thermophysical package is still required.\n", - "\n", - "The flowsheet that we will be using for this module is shown below with the stream conditions. As in the prior example, we will be processing natural gas and steam feeds of fixed composition to produce hydrogen. The process consists of a mixer M101 for the two inlet streams, a compressor to compress the feed to the reaction pressure, a heater H101 to heat the feed to the reaction temperature, and a GibbsReactor unit R101. We will use thermophysical properties following the Peng-Robinsion cubic equation of state for this flowsheet.\n", - "\n", - "The state variables chosen for the property package are **total molar flows of each stream, temperature of each stream and pressure of each stream, and mole fractions of each component in each stream**. The components considered are: **CH4, H2O, CO, CO2, and H2** and the process occurs in vapor phase only. Therefore, every stream has 1 flow variable, 5 mole fraction variables, 1 temperature and 1 pressure variable. \n", - "\n", - "![](msr_flowsheet.png)\n" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we need to initialize the each unit operation and propagate the outlet results in sequence to solve the flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Pyomo and IDAES Components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages, as well as some utility tools to build the flowsheet. For further details on these components, please refer to the [Pyomo documentation]( https://pyomo.readthedocs.io/en/stable/).\n", - "\n", - "From IDAES, we will be needing the `FlowsheetBlock` and the following unit models:\n", - "- Feed\n", - "- Mixer\n", - "- Compressor\n", - "- Heater\n", - "- GibbsReactor\n", - "- Product" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.CH4.properties: Starting initialization\n" + ] }, { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " TransformationFactory,\n", - " value,\n", - " units as pyunits,\n", - ")\n", - "from pyomo.network import Arc\n", - "\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.models.properties.modular_properties import GenericParameterBlock\n", - "from idaes.models.unit_models import (\n", - " Feed,\n", - " Mixer,\n", - " Compressor,\n", - " Heater,\n", - " GibbsReactor,\n", - " Product,\n", - ")\n", - "\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.CH4.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Thermophysical Package\n", - "\n", - "As mentioned earlier, the `GibbsReactor` does not require a reaction package.\n", - "\n", - "Let us import the following module from the IDAES library:\n", - "- natural_gas_PR as get_prop (method to get configuration dictionary)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.CH4.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models_extra.power_generation.properties.natural_gas_PR import get_prop" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.CH4: Initialization Complete.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "Let us create a `ConcreteModel` and add the flowsheet block. " - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.H2O.properties: Starting initialization\n" + ] }, { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.H2O.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need to add the property packages to the flowsheet. Unlike the previous example, we do not need to add a reaction package for the reactor model to calculate results. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) to build a state block for the parameter dictionary." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.H2O.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "thermo_props_config_dict = get_prop(components=[\"CH4\", \"H2O\", \"H2\", \"CO\", \"CO2\"])\n", - "m.fs.thermo_params = GenericParameterBlock(**thermo_props_config_dict)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.H2O: Initialization Complete.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet:" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.M101.methane_feed_state: Starting initialization\n" + ] }, { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.CH4 = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.H2O = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params, inlet_list=[\"methane_feed\", \"steam_feed\"]\n", - ")\n", - "m.fs.H101 = Heater(\n", - " property_package=m.fs.thermo_params,\n", - " has_pressure_change=False,\n", - " has_phase_equilibrium=False,\n", - ")\n", - "m.fs.C101 = Compressor(property_package=m.fs.thermo_params)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.M101.methane_feed_state: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101 = GibbsReactor(\n", - " property_package=m.fs.thermo_params,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=False,\n", - ")" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.M101.steam_feed_state: Starting initialization\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models Using Arcs\n", - "\n", - "We have now added all the unit models we need to the flowsheet. Let us connect the unit models by defining and building each `Arc`:" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.M101.steam_feed_state: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s01 = Arc(source=m.fs.CH4.outlet, destination=m.fs.M101.methane_feed)\n", - "m.fs.s02 = Arc(source=m.fs.H2O.outlet, destination=m.fs.M101.steam_feed)\n", - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.C101.inlet)\n", - "m.fs.s04 = Arc(source=m.fs.C101.outlet, destination=m.fs.H101.inlet)\n", - "m.fs.s05 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", - "m.fs.s06 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we can use Pyomo's `TransformationFactory` to write the equality constraints on each Arc:" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Expressions to Compute Operating Costs\n", - "\n", - "For this flowsheet, we are interested in computing hydrogen production in millions of pounds per year, as well as the total costs due to pressurizing, cooling, and heating utilities:" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us add `Expressions` to convert the product flow from mol/s to MM lb/year of hydrogen, and to calculate the cooling, heating and compression operating costs. The total operating cost will be the sum of the costs, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.C101.control_volume.properties_in: Starting initialization\n" + ] }, { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.hyd_prod = Expression(\n", - " expr=pyunits.convert(\n", - " m.fs.PROD.inlet.flow_mol[0]\n", - " * m.fs.PROD.inlet.mole_frac_comp[0, \"H2\"]\n", - " * m.fs.thermo_params.H2.mw, # MW defined in properties as kg/mol\n", - " to_units=pyunits.Mlb / pyunits.yr,\n", - " )\n", - ") # converting kg/s to MM lb/year" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.C101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.cooling_cost = Expression(\n", - " expr=0.212e-7 * (m.fs.R101.heat_duty[0])\n", - ") # the reaction is endothermic, so R101 duty is positive\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", - ") # the stream must be heated to T_rxn, so H101 duty is positive\n", - "m.fs.compression_cost = Expression(\n", - " expr=0.12e-5 * m.fs.C101.work_isentropic[0]\n", - ") # the stream must be pressurized, so the C101 work is positive\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost + m.fs.compression_cost))\n", - ")" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.C101.control_volume.properties_out: Starting initialization\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Feed Conditions\n", - "\n", - "We expect each stream to have 8 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the compressor to have 2 (the pressure change and efficiency), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (conversion). Therefore, we have 20 degrees of freedom to specify: temperature, pressure, flow and mole fractions of all five components on both streams; compressor pressure change and efficiency; outlet heater temperature; and reactor conversion." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "20\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property package initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Based on the literature source, we will initialize our simulation with the following values:" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:43 [INFO] idaes.init.fs.C101.properties_isentropic: Starting initialization\n" + ] }, { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.CH4.outlet.mole_frac_comp[0, \"CH4\"].fix(1)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"H2O\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", - "m.fs.CH4.outlet.flow_mol.fix(75 * pyunits.mol / pyunits.s)\n", - "m.fs.CH4.outlet.temperature.fix(298.15 * pyunits.K)\n", - "m.fs.CH4.outlet.pressure.fix(1e5 * pyunits.Pa)\n", - "\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CH4\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"H2O\"].fix(1)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", - "m.fs.H2O.outlet.flow_mol.fix(234 * pyunits.mol / pyunits.s)\n", - "m.fs.H2O.outlet.temperature.fix(373.15 * pyunits.K)\n", - "m.fs.H2O.outlet.pressure.fix(1e5 * pyunits.Pa)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.C101.properties_isentropic: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Unit Model Specifications\n", - "\n", - "For the initial problem, let us fix the compressor outlet pressure to 2 bar for now, the efficiency to 0.90 (a common assumption for compressor units), and the heater outlet temperature to 500 K. We will unfix these values later to optimize the flowsheet." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.C101.properties_isentropic: Property package initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.C101.outlet.pressure.fix(pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa))\n", - "m.fs.C101.efficiency_isentropic.fix(0.90)\n", - "m.fs.H101.outlet.temperature.fix(500 * pyunits.K)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `GibbsReactor` unit model calculates the amount of product and reactant based on the free energy minimization; therefore, we will specify a desired conversion and let the solver determine the reactor duty and heat transfer. For convenience, we will define the reactor conversion as the amount of methane that is converted." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n" + ] }, { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion = Var(\n", - " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", - ") # fraction\n", - "\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion\n", - " * m.fs.R101.inlet.flow_mol[0]\n", - " * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol[0] * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", - " - m.fs.R101.outlet.flow_mol[0] * m.fs.R101.outlet.mole_frac_comp[0, \"CH4\"]\n", - " )\n", - ")\n", - "\n", - "m.fs.R101.conversion.fix(0.80)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n" + ] }, { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we need to initialize the each unit operation and propagate the outlet results in sequence to solve the flowsheet:" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" + ] }, { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4.properties: Starting initialization\n", - "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4: Initialization Complete.\n", - "2024-05-23 06:07:53 [INFO] idaes.init.fs.H2O.properties: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.H2O.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.H2O.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.H2O: Initialization Complete.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.methane_feed_state: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.methane_feed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.steam_feed_state: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.steam_feed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.properties_isentropic: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.properties_isentropic: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.properties_isentropic: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n", - "2024-05-23 06:07:56 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD.properties: Starting initialization\n", - "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD: Initialization Complete.\n" - ] - } - ], - "source": [ - "# Initialize and solve each unit operation\n", - "m.fs.CH4.initialize()\n", - "propagate_state(arc=m.fs.s01)\n", - "\n", - "m.fs.H2O.initialize()\n", - "propagate_state(arc=m.fs.s02)\n", - "\n", - "m.fs.M101.initialize()\n", - "propagate_state(arc=m.fs.s03)\n", - "\n", - "m.fs.C101.initialize()\n", - "propagate_state(arc=m.fs.s04)\n", - "\n", - "m.fs.H101.initialize()\n", - "propagate_state(arc=m.fs.s05)\n", - "\n", - "m.fs.R101.initialize()\n", - "propagate_state(arc=m.fs.s06)\n", - "\n", - "m.fs.PROD.initialize()\n", - "\n", - "# set solver\n", - "solver = get_solver()" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" + ] }, { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 591\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 490\n", - "\n", - "Total number of variables............................: 203\n", - " variables with only lower bounds: 13\n", - " variables with lower and upper bounds: 179\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 203\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 1.49e+06 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 1.35e+04 2.00e-01 -1.0 3.59e+00 - 9.90e-01 9.91e-01h 1\n", - " 2 0.0000000e+00 3.59e-04 9.99e+00 -1.0 3.56e+00 - 9.90e-01 1.00e+00h 1\n", - " 3 0.0000000e+00 2.60e-08 8.98e+01 -1.0 2.91e-04 - 9.90e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 7.6029602259665645e-13 2.5960616767406464e-08\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 7.6029602259665645e-13 2.5960616767406464e-08\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the Results of the Square Problem\n", - "\n", - "\n", - "What is the total operating cost? " - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "operating cost = $39.958 million per year\n" - ] - } - ], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this operating cost, what conversion did we achieve of methane to hydrogen?" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.7819e+07 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 429.02\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.034965\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.32532\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 0.49984\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 0.059609\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.080265\n", - " Temperature kelvin 500.00 920.80\n", - " Pressure pascal 2.0000e+05 2.0000e+05\n", - "====================================================================================\n", - "\n", - "Conversion achieved = 80.0%\n" - ] - } - ], - "source": [ - "m.fs.R101.report()\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimizing Hydrogen Production\n", - "\n", - "Now that the flowsheet has been squared and solved, we can run a small optimization problem to determine optimal conditions for producing hydrogen. Suppose we wish to find ideal conditions for the competing reactions. The GibbsReactor does not drive equilibrium forward based on temperature, so we will see small amounts of intermediate components present in the product stream. We will allow for variable reactor temperature and pressure by freeing our heater and compressor specifications, and minimize cost to achieve 90% methane conversion. Since we assume an isentopic compressor, allowing compression will heat our feed stream and reduce or eliminate the required heater duty." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.PROD.properties: Starting initialization\n" + ] }, { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.PROD.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem until now, as well as set bounds for the design variables (reactor outlet temperature is set by state variable bounds in property package):" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.PROD.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] }, { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion.fix(0.90)\n", - "\n", - "m.fs.C101.outlet.pressure.unfix()\n", - "m.fs.C101.outlet.pressure[0].setlb(\n", - " pyunits.convert(1 * pyunits.bar, to_units=pyunits.Pa)\n", - ") # equals inlet pressure\n", - "m.fs.C101.outlet.pressure[0].setlb(\n", - " pyunits.convert(10 * pyunits.bar, to_units=pyunits.Pa)\n", - ") # at most, pressurize to 1 bar\n", - "\n", - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.H101.heat_duty[0].setlb(\n", - " 0 * pyunits.J / pyunits.s\n", - ") # ensures outlet is equal to or greater than inlet temperature\n", - "m.fs.H101.outlet.temperature[0].setub(1000 * pyunits.K) # at most, heat to 1000 K" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:44 [INFO] idaes.init.fs.PROD: Initialization Complete.\n" + ] + } + ], + "source": [ + "# Initialize and solve each unit operation\n", + "m.fs.CH4.initialize()\n", + "propagate_state(arc=m.fs.s01)\n", + "\n", + "m.fs.H2O.initialize()\n", + "propagate_state(arc=m.fs.s02)\n", + "\n", + "m.fs.M101.initialize()\n", + "propagate_state(arc=m.fs.s03)\n", + "\n", + "m.fs.C101.initialize()\n", + "propagate_state(arc=m.fs.s04)\n", + "\n", + "m.fs.H101.initialize()\n", + "propagate_state(arc=m.fs.s05)\n", + "\n", + "m.fs.R101.initialize()\n", + "propagate_state(arc=m.fs.s06)\n", + "\n", + "m.fs.PROD.initialize()\n", + "\n", + "# set solver\n", + "solver = get_solver()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 591\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 490\n", + "\n", + "Total number of variables............................: 203\n", + " variables with only lower bounds: 13\n", + " variables with lower and upper bounds: 179\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 203\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.49e+06 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.35e+04 2.00e-01 -1.0 3.59e+00 - 9.90e-01 9.91e-01h 1\n", + " 2 0.0000000e+00 3.59e-04 9.99e+00 -1.0 3.56e+00 - 9.90e-01 1.00e+00h 1\n", + " 3 0.0000000e+00 2.12e-08 8.98e+01 -1.0 2.91e-04 - 9.90e-01 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 1.1404440338949848e-12 2.1187588572502136e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.1404440338949848e-12 2.1187588572502136e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the Results of the Square Problem\n", + "\n", + "\n", + "What is the total operating cost? " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 598\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 506\n", - "\n", - "Total number of variables............................: 205\n", - " variables with only lower bounds: 14\n", - " variables with lower and upper bounds: 181\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 203\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 3.9958388e+07 1.49e+06 3.46e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 3.8920063e+07 1.48e+06 1.52e+03 -1.0 7.19e+06 - 3.91e-01 6.43e-03f 1\n", - " 2 7.0948609e+07 1.15e+06 1.86e+06 -1.0 4.83e+06 - 1.51e-01 2.26e-01h 1\n", - " 3 1.0553921e+08 5.23e+05 1.04e+07 -1.0 2.42e+06 - 3.41e-01 5.67e-01h 1\n", - " 4 1.0874890e+08 1.58e+05 7.64e+06 -1.0 8.45e+05 - 7.09e-01 7.11e-01h 1\n", - " 5 1.0751027e+08 1.51e+04 1.67e+06 -1.0 2.97e+05 - 9.49e-01 9.09e-01f 1\n", - " 6 1.0721898e+08 5.95e+00 9.98e+03 -1.0 3.47e+04 - 9.90e-01 1.00e+00f 1\n", - " 7 1.0721794e+08 3.43e-05 8.84e+01 -1.0 1.59e+02 - 9.90e-01 1.00e+00f 1\n", - " 8 1.0721794e+08 1.90e-08 7.14e-01 -1.0 1.43e-02 - 9.92e-01 1.00e+00h 1\n", - " 9 1.0721794e+08 7.55e-09 1.53e-06 -2.5 1.72e-02 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.0721794e+08 2.10e-08 1.59e-06 -3.8 4.73e-04 - 1.00e+00 1.00e+00f 1\n", - " 11 1.0721794e+08 1.12e-08 2.07e-06 -5.7 2.63e-05 - 1.00e+00 1.00e+00f 1\n", - " 12 1.0721794e+08 3.57e-08 1.65e-06 -7.0 3.14e-07 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 12\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.0721793780338226e+08 1.0721793780338226e+08\n", - "Dual infeasibility......: 1.6485091371912918e-06 1.6485091371912918e-06\n", - "Constraint violation....: 4.6566128730773926e-10 3.5680419252624450e-08\n", - "Complementarity.........: 9.0909090914354020e-08 9.0909090914354020e-08\n", - "Overall NLP error.......: 9.0909090914354020e-08 1.6485091371912918e-06\n", - "\n", - "\n", - "Number of objective function evaluations = 13\n", - "Number of objective gradient evaluations = 13\n", - "Number of equality constraint evaluations = 13\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 13\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 12\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", - "Total CPU secs in NLP function evaluations = 0.011\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $39.958 million per year\n" + ] + } + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this operating cost, what conversion did we achieve of methane to hydrogen?" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "operating cost = $107.218 million per year\n", - "\n", - "Compressor results\n", - "\n", - "====================================================================================\n", - "Unit : fs.C101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.90000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 3.0334e+06 : watt : False : (None, None)\n", - " Pressure Change : 9.0000e+05 : pascal : False : (None, None)\n", - " Pressure Ratio : 10.000 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 309.01\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", - " Temperature kelvin 353.80 619.25\n", - " Pressure pascal 1.0000e+05 1.0000e+06\n", - "====================================================================================\n", - "\n", - "Heater results\n", - "\n", - "====================================================================================\n", - "Unit : fs.H101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 5.8781e-09 : watt : False : (0.0, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 309.01\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", - " Temperature kelvin 619.25 619.25\n", - " Pressure pascal 1.0000e+06 1.0000e+06\n", - "====================================================================================\n", - "\n", - "Gibbs reactor results\n", - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 2.1076e+07 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 444.02\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.016892\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.31609\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 0.51498\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 0.093140\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.058900\n", - " Temperature kelvin 619.25 1087.4\n", - " Pressure pascal 1.0000e+06 1.0000e+06\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")\n", - "\n", - "print()\n", - "print(\"Compressor results\")\n", - "\n", - "m.fs.C101.report()\n", - "\n", - "print()\n", - "print(\"Heater results\")\n", - "\n", - "m.fs.H101.report()\n", - "\n", - "print()\n", - "print(\"Gibbs reactor results\")\n", - "\n", - "m.fs.R101.report()" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.7819e+07 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 429.02\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.034965\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.32532\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 0.49984\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 0.059609\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.080265\n", + " Temperature kelvin 500.00 920.80\n", + " Pressure pascal 2.0000e+05 2.0000e+05\n", + "====================================================================================\n", + "\n", + "Conversion achieved = 80.0%\n" + ] + } + ], + "source": [ + "m.fs.R101.report()\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimizing Hydrogen Production\n", + "\n", + "Now that the flowsheet has been squared and solved, we can run a small optimization problem to determine optimal conditions for producing hydrogen. Suppose we wish to find ideal conditions for the competing reactions. The GibbsReactor does not drive equilibrium forward based on temperature, so we will see small amounts of intermediate components present in the product stream. We will allow for variable reactor temperature and pressure by freeing our heater and compressor specifications, and minimize cost to achieve 90% methane conversion. Since we assume an isentopic compressor, allowing compression will heat our feed stream and reduce or eliminate the required heater duty." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem until now, as well as set bounds for the design variables (reactor outlet temperature is set by state variable bounds in property package):" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion.fix(0.90)\n", + "\n", + "m.fs.C101.outlet.pressure.unfix()\n", + "m.fs.C101.outlet.pressure[0].setlb(\n", + " pyunits.convert(1 * pyunits.bar, to_units=pyunits.Pa)\n", + ") # equals inlet pressure\n", + "m.fs.C101.outlet.pressure[0].setlb(\n", + " pyunits.convert(10 * pyunits.bar, to_units=pyunits.Pa)\n", + ") # at most, pressurize to 1 bar\n", + "\n", + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.H101.heat_duty[0].setlb(\n", + " 0 * pyunits.J / pyunits.s\n", + ") # ensures outlet is equal to or greater than inlet temperature\n", + "m.fs.H101.outlet.temperature[0].setub(1000 * pyunits.K) # at most, heat to 1000 K" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables and design variables:" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n" + ] }, { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal Values\n", - "\n", - "C101 outlet pressure = 1.000 MPa\n", - "\n", - "C101 outlet temperature = 619.248 K\n", - "\n", - "H101 outlet temperature = 619.248 K\n", - "\n", - "R101 outlet temperature = 1087.385 K\n", - "\n", - "Hydrogen produced = 32.070 MM lb/year\n", - "\n", - "Conversion achieved = 90.0%\n" - ] - } - ], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(f\"C101 outlet pressure = {value(m.fs.C101.outlet.pressure[0])/1E6:0.3f} MPa\")\n", - "print()\n", - "\n", - "print(f\"C101 outlet temperature = {value(m.fs.C101.outlet.temperature[0]):0.3f} K\")\n", - "print()\n", - "\n", - "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.3f} K\")\n", - "\n", - "print()\n", - "print(f\"R101 outlet temperature = {value(m.fs.R101.outlet.temperature[0]):0.3f} K\")\n", - "\n", - "print()\n", - "print(f\"Hydrogen produced = {value(m.fs.hyd_prod):0.3f} MM lb/year\")\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 598\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 506\n", + "\n", + "Total number of variables............................: 205\n", + " variables with only lower bounds: 14\n", + " variables with lower and upper bounds: 181\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 203\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 3.9958388e+07 1.49e+06 3.46e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 3.8920063e+07 1.48e+06 1.52e+03 -1.0 7.19e+06 - 3.91e-01 6.43e-03f 1\n", + " 2 7.0948609e+07 1.15e+06 1.86e+06 -1.0 4.83e+06 - 1.51e-01 2.26e-01h 1\n", + " 3 1.0553921e+08 5.23e+05 1.04e+07 -1.0 2.42e+06 - 3.41e-01 5.67e-01h 1\n", + " 4 1.0874890e+08 1.58e+05 7.64e+06 -1.0 8.45e+05 - 7.09e-01 7.11e-01h 1\n", + " 5 1.0751027e+08 1.51e+04 1.67e+06 -1.0 2.97e+05 - 9.49e-01 9.09e-01f 1\n", + " 6 1.0721898e+08 5.95e+00 9.98e+03 -1.0 3.47e+04 - 9.90e-01 1.00e+00f 1\n", + " 7 1.0721794e+08 3.43e-05 8.84e+01 -1.0 1.59e+02 - 9.90e-01 1.00e+00f 1\n", + " 8 1.0721794e+08 1.90e-08 7.14e-01 -1.0 1.43e-02 - 9.92e-01 1.00e+00h 1\n", + " 9 1.0721794e+08 1.77e-08 9.40e-07 -2.5 1.72e-02 - 1.00e+00 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 1.0721794e+08 1.21e-08 1.13e-06 -3.8 4.73e-04 - 1.00e+00 1.00e+00f 1\n", + " 11 1.0721794e+08 1.07e-08 2.07e-06 -5.7 2.62e-05 - 1.00e+00 1.00e+00f 1\n", + " 12 1.0721794e+08 1.65e-08 7.36e-07 -7.0 3.26e-07 - 1.00e+00 1.00e+00f 1\n", + "\n", + "Number of Iterations....: 12\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 1.0721793780338211e+08 1.0721793780338211e+08\n", + "Dual infeasibility......: 7.3567665382433322e-07 7.3567665382433322e-07\n", + "Constraint violation....: 1.5205920451933327e-12 1.6473644925842347e-08\n", + "Complementarity.........: 9.0909090914354020e-08 9.0909090914354020e-08\n", + "Overall NLP error.......: 9.0909090914354020e-08 7.3567665382433322e-07\n", + "\n", + "\n", + "Number of objective function evaluations = 13\n", + "Number of objective gradient evaluations = 13\n", + "Number of equality constraint evaluations = 13\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 13\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 12\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.008\n", + "Total CPU secs in NLP function evaluations = 0.007\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $107.218 million per year\n", + "\n", + "Compressor results\n", + "\n", + "====================================================================================\n", + "Unit : fs.C101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.90000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 3.0334e+06 : watt : False : (None, None)\n", + " Pressure Change : 9.0000e+05 : pascal : False : (None, None)\n", + " Pressure Ratio : 10.000 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 309.01\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", + " Temperature kelvin 353.80 619.25\n", + " Pressure pascal 1.0000e+05 1.0000e+06\n", + "====================================================================================\n", + "\n", + "Heater results\n", + "\n", + "====================================================================================\n", + "Unit : fs.H101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 5.8781e-09 : watt : False : (0.0, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 309.01\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", + " Temperature kelvin 619.25 619.25\n", + " Pressure pascal 1.0000e+06 1.0000e+06\n", + "====================================================================================\n", + "\n", + "Gibbs reactor results\n", + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 2.1076e+07 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 444.02\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.016892\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.31609\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 0.51498\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 0.093140\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.058900\n", + " Temperature kelvin 619.25 1087.4\n", + " Pressure pascal 1.0000e+06 1.0000e+06\n", + "====================================================================================\n" + ] } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")\n", + "\n", + "print()\n", + "print(\"Compressor results\")\n", + "\n", + "m.fs.C101.report()\n", + "\n", + "print()\n", + "print(\"Heater results\")\n", + "\n", + "m.fs.H101.report()\n", + "\n", + "print()\n", + "print(\"Gibbs reactor results\")\n", + "\n", + "m.fs.R101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables and design variables:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal Values\n", + "\n", + "C101 outlet pressure = 1.000 MPa\n", + "\n", + "C101 outlet temperature = 619.248 K\n", + "\n", + "H101 outlet temperature = 619.248 K\n", + "\n", + "R101 outlet temperature = 1087.385 K\n", + "\n", + "Hydrogen produced = 32.070 MM lb/year\n", + "\n", + "Conversion achieved = 90.0%\n" + ] } + ], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(f\"C101 outlet pressure = {value(m.fs.C101.outlet.pressure[0])/1E6:0.3f} MPa\")\n", + "print()\n", + "\n", + "print(f\"C101 outlet temperature = {value(m.fs.C101.outlet.temperature[0]):0.3f} K\")\n", + "print()\n", + "\n", + "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.3f} K\")\n", + "\n", + "print()\n", + "print(f\"R101 outlet temperature = {value(m.fs.R101.outlet.temperature[0]):0.3f} K\")\n", + "\n", + "print()\n", + "print(f\"Hydrogen produced = {value(m.fs.hyd_prod):0.3f} MM lb/year\")\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 3 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor_test.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor_test.ipynb index 7a9cba50..2dd90dfe 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor_test.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor_test.ipynb @@ -1,1183 +1,1184 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Flowsheet Gibbs Reactor Simulation and Optimization of Steam Methane Reforming\n", - "Author: Brandon Paul \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "## Learning Outcomes\n", - "\n", - "\n", - "- Call and implement the IDAES GibbsReactor unit model\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Following the previous example of [Steam Methane Reformation in an Equilibrium Reactor](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/UnitModels/Reactors/equilibrium_reactor_testing_test.ipynb), this example solves the flowsheet using a Gibbs Reactor instead. The steam methane reformation example is adapted from S.Z. Abbas, V. Dupont, T. Mahmud, Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903. Typically, the process follows the chemical equations below:\n", - "\n", - "**CH4 + H2O \u2192 CO + 3H2** \n", - "**CO + H2O \u2192 CO2 + H2**\n", - "\n", - "However, the GibbsReactor unit model solves the equilibrium by minimizing Gibbs free energy. Conveniently, this eliminates the need for a reaction package although a thermophysical package is still required.\n", - "\n", - "The flowsheet that we will be using for this module is shown below with the stream conditions. As in the prior example, we will be processing natural gas and steam feeds of fixed composition to produce hydrogen. The process consists of a mixer M101 for the two inlet streams, a compressor to compress the feed to the reaction pressure, a heater H101 to heat the feed to the reaction temperature, and a GibbsReactor unit R101. We will use thermophysical properties following the Peng-Robinsion cubic equation of state for this flowsheet.\n", - "\n", - "The state variables chosen for the property package are **total molar flows of each stream, temperature of each stream and pressure of each stream, and mole fractions of each component in each stream**. The components considered are: **CH4, H2O, CO, CO2, and H2** and the process occurs in vapor phase only. Therefore, every stream has 1 flow variable, 5 mole fraction variables, 1 temperature and 1 pressure variable. \n", - "\n", - "![](msr_flowsheet.png)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Pyomo and IDAES Components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages, as well as some utility tools to build the flowsheet. For further details on these components, please refer to the [Pyomo documentation]( https://pyomo.readthedocs.io/en/stable/).\n", - "\n", - "From IDAES, we will be needing the `FlowsheetBlock` and the following unit models:\n", - "- Feed\n", - "- Mixer\n", - "- Compressor\n", - "- Heater\n", - "- GibbsReactor\n", - "- Product" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " TransformationFactory,\n", - " value,\n", - " units as pyunits,\n", - ")\n", - "from pyomo.network import Arc\n", - "\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.models.properties.modular_properties import GenericParameterBlock\n", - "from idaes.models.unit_models import (\n", - " Feed,\n", - " Mixer,\n", - " Compressor,\n", - " Heater,\n", - " GibbsReactor,\n", - " Product,\n", - ")\n", - "\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Thermophysical Package\n", - "\n", - "As mentioned earlier, the `GibbsReactor` does not require a reaction package.\n", - "\n", - "Let us import the following module from the IDAES library:\n", - "- natural_gas_PR as get_prop (method to get configuration dictionary)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models_extra.power_generation.properties.natural_gas_PR import get_prop" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "Let us create a `ConcreteModel` and add the flowsheet block. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need to add the property packages to the flowsheet. Unlike the previous example, we do not need to add a reaction package for the reactor model to calculate results. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) to build a state block for the parameter dictionary." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "thermo_props_config_dict = get_prop(components=[\"CH4\", \"H2O\", \"H2\", \"CO\", \"CO2\"])\n", - "m.fs.thermo_params = GenericParameterBlock(**thermo_props_config_dict)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.CH4 = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.H2O = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params, inlet_list=[\"methane_feed\", \"steam_feed\"]\n", - ")\n", - "m.fs.H101 = Heater(\n", - " property_package=m.fs.thermo_params,\n", - " has_pressure_change=False,\n", - " has_phase_equilibrium=False,\n", - ")\n", - "m.fs.C101 = Compressor(property_package=m.fs.thermo_params)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101 = GibbsReactor(\n", - " property_package=m.fs.thermo_params,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=False,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models Using Arcs\n", - "\n", - "We have now added all the unit models we need to the flowsheet. Let us connect the unit models by defining and building each `Arc`:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s01 = Arc(source=m.fs.CH4.outlet, destination=m.fs.M101.methane_feed)\n", - "m.fs.s02 = Arc(source=m.fs.H2O.outlet, destination=m.fs.M101.steam_feed)\n", - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.C101.inlet)\n", - "m.fs.s04 = Arc(source=m.fs.C101.outlet, destination=m.fs.H101.inlet)\n", - "m.fs.s05 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", - "m.fs.s06 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we can use Pyomo's `TransformationFactory` to write the equality constraints on each Arc:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Expressions to Compute Operating Costs\n", - "\n", - "For this flowsheet, we are interested in computing hydrogen production in millions of pounds per year, as well as the total costs due to pressurizing, cooling, and heating utilities:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us add `Expressions` to convert the product flow from mol/s to MM lb/year of hydrogen, and to calculate the cooling, heating and compression operating costs. The total operating cost will be the sum of the costs, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.hyd_prod = Expression(\n", - " expr=pyunits.convert(\n", - " m.fs.PROD.inlet.flow_mol[0]\n", - " * m.fs.PROD.inlet.mole_frac_comp[0, \"H2\"]\n", - " * m.fs.thermo_params.H2.mw, # MW defined in properties as kg/mol\n", - " to_units=pyunits.Mlb / pyunits.yr,\n", - " )\n", - ") # converting kg/s to MM lb/year" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.cooling_cost = Expression(\n", - " expr=0.212e-7 * (m.fs.R101.heat_duty[0])\n", - ") # the reaction is endothermic, so R101 duty is positive\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", - ") # the stream must be heated to T_rxn, so H101 duty is positive\n", - "m.fs.compression_cost = Expression(\n", - " expr=0.12e-5 * m.fs.C101.work_isentropic[0]\n", - ") # the stream must be pressurized, so the C101 work is positive\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost + m.fs.compression_cost))\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Feed Conditions\n", - "\n", - "We expect each stream to have 8 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the compressor to have 2 (the pressure change and efficiency), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (conversion). Therefore, we have 20 degrees of freedom to specify: temperature, pressure, flow and mole fractions of all five components on both streams; compressor pressure change and efficiency; outlet heater temperature; and reactor conversion." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "20\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check the degrees of freedom\n", - "assert degrees_of_freedom(m) == 20" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Based on the literature source, we will initialize our simulation with the following values:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.CH4.outlet.mole_frac_comp[0, \"CH4\"].fix(1)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"H2O\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", - "m.fs.CH4.outlet.flow_mol.fix(75 * pyunits.mol / pyunits.s)\n", - "m.fs.CH4.outlet.temperature.fix(298.15 * pyunits.K)\n", - "m.fs.CH4.outlet.pressure.fix(1e5 * pyunits.Pa)\n", - "\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CH4\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"H2O\"].fix(1)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", - "m.fs.H2O.outlet.flow_mol.fix(234 * pyunits.mol / pyunits.s)\n", - "m.fs.H2O.outlet.temperature.fix(373.15 * pyunits.K)\n", - "m.fs.H2O.outlet.pressure.fix(1e5 * pyunits.Pa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Unit Model Specifications\n", - "\n", - "For the initial problem, let us fix the compressor outlet pressure to 2 bar for now, the efficiency to 0.90 (a common assumption for compressor units), and the heater outlet temperature to 500 K. We will unfix these values later to optimize the flowsheet." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.C101.outlet.pressure.fix(pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa))\n", - "m.fs.C101.efficiency_isentropic.fix(0.90)\n", - "m.fs.H101.outlet.temperature.fix(500 * pyunits.K)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `GibbsReactor` unit model calculates the amount of product and reactant based on the free energy minimization; therefore, we will specify a desired conversion and let the solver determine the reactor duty and heat transfer. For convenience, we will define the reactor conversion as the amount of methane that is converted." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion = Var(\n", - " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", - ") # fraction\n", - "\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion\n", - " * m.fs.R101.inlet.flow_mol[0]\n", - " * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol[0] * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", - " - m.fs.R101.outlet.flow_mol[0] * m.fs.R101.outlet.mole_frac_comp[0, \"CH4\"]\n", - " )\n", - ")\n", - "\n", - "m.fs.R101.conversion.fix(0.80)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check the degrees of freedom\n", - "assert degrees_of_freedom(m) == 0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we need to initialize the each unit operation and propagate the outlet results in sequence to solve the flowsheet:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4.properties: Starting initialization\n", - "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4: Initialization Complete.\n", - "2024-05-23 06:07:53 [INFO] idaes.init.fs.H2O.properties: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.H2O.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.H2O.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.H2O: Initialization Complete.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.methane_feed_state: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.methane_feed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.steam_feed_state: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.steam_feed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.properties_isentropic: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.properties_isentropic: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.properties_isentropic: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n", - "2024-05-23 06:07:56 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD.properties: Starting initialization\n", - "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD: Initialization Complete.\n" - ] - } - ], - "source": [ - "# Initialize and solve each unit operation\n", - "m.fs.CH4.initialize()\n", - "propagate_state(arc=m.fs.s01)\n", - "\n", - "m.fs.H2O.initialize()\n", - "propagate_state(arc=m.fs.s02)\n", - "\n", - "m.fs.M101.initialize()\n", - "propagate_state(arc=m.fs.s03)\n", - "\n", - "m.fs.C101.initialize()\n", - "propagate_state(arc=m.fs.s04)\n", - "\n", - "m.fs.H101.initialize()\n", - "propagate_state(arc=m.fs.s05)\n", - "\n", - "m.fs.R101.initialize()\n", - "propagate_state(arc=m.fs.s06)\n", - "\n", - "m.fs.PROD.initialize()\n", - "\n", - "# set solver\n", - "solver = get_solver()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 591\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 490\n", - "\n", - "Total number of variables............................: 203\n", - " variables with only lower bounds: 13\n", - " variables with lower and upper bounds: 179\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 203\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 1.49e+06 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 1.35e+04 2.00e-01 -1.0 3.59e+00 - 9.90e-01 9.91e-01h 1\n", - " 2 0.0000000e+00 3.59e-04 9.99e+00 -1.0 3.56e+00 - 9.90e-01 1.00e+00h 1\n", - " 3 0.0000000e+00 2.60e-08 8.98e+01 -1.0 2.91e-04 - 9.90e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 7.6029602259665645e-13 2.5960616767406464e-08\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 7.6029602259665645e-13 2.5960616767406464e-08\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check solver solve status\n", - "from pyomo.environ import TerminationCondition\n", - "\n", - "assert results.solver.termination_condition == TerminationCondition.optimal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the Results of the Square Problem\n", - "\n", - "\n", - "What is the total operating cost? " - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "operating cost = $39.958 million per year\n" - ] - } - ], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "import pytest\n", - "\n", - "assert value(m.fs.operating_cost) / 1e6 == pytest.approx(39.958, rel=1e-3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this operating cost, what conversion did we achieve of methane to hydrogen?" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.7819e+07 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 429.02\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.034965\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.32532\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 0.49984\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 0.059609\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.080265\n", - " Temperature kelvin 500.00 920.80\n", - " Pressure pascal 2.0000e+05 2.0000e+05\n", - "====================================================================================\n", - "\n", - "Conversion achieved = 80.0%\n" - ] - } - ], - "source": [ - "m.fs.R101.report()\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert value(m.fs.R101.conversion) == pytest.approx(0.800, rel=1e-3)\n", - "assert value(m.fs.R101.heat_duty[0]) / 1e6 == pytest.approx(17.819, rel=1e-3)\n", - "assert value(m.fs.R101.outlet.temperature[0]) / 1e2 == pytest.approx(9.208, rel=1e-3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimizing Hydrogen Production\n", - "\n", - "Now that the flowsheet has been squared and solved, we can run a small optimization problem to determine optimal conditions for producing hydrogen. Suppose we wish to find ideal conditions for the competing reactions. The GibbsReactor does not drive equilibrium forward based on temperature, so we will see small amounts of intermediate components present in the product stream. We will allow for variable reactor temperature and pressure by freeing our heater and compressor specifications, and minimize cost to achieve 90% methane conversion. Since we assume an isentopic compressor, allowing compression will heat our feed stream and reduce or eliminate the required heater duty." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem until now, as well as set bounds for the design variables (reactor outlet temperature is set by state variable bounds in property package):" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion.fix(0.90)\n", - "\n", - "m.fs.C101.outlet.pressure.unfix()\n", - "m.fs.C101.outlet.pressure[0].setlb(\n", - " pyunits.convert(1 * pyunits.bar, to_units=pyunits.Pa)\n", - ") # equals inlet pressure\n", - "m.fs.C101.outlet.pressure[0].setlb(\n", - " pyunits.convert(10 * pyunits.bar, to_units=pyunits.Pa)\n", - ") # at most, pressurize to 1 bar\n", - "\n", - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.H101.heat_duty[0].setlb(\n", - " 0 * pyunits.J / pyunits.s\n", - ") # ensures outlet is equal to or greater than inlet temperature\n", - "m.fs.H101.outlet.temperature[0].setub(1000 * pyunits.K) # at most, heat to 1000 K" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert degrees_of_freedom(m) == 2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Flowsheet Gibbs Reactor Simulation and Optimization of Steam Methane Reforming\n", + "Author: Brandon Paul \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "## Learning Outcomes\n", + "\n", + "\n", + "- Call and implement the IDAES GibbsReactor unit model\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Following the previous example of [Steam Methane Reformation in an Equilibrium Reactor](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/UnitModels/Reactors/equilibrium_reactor_testing_test.ipynb), this example solves the flowsheet using a Gibbs Reactor instead. The steam methane reformation example is adapted from S.Z. Abbas, V. Dupont, T. Mahmud, Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903. Typically, the process follows the chemical equations below:\n", + "\n", + "**CH4 + H2O → CO + 3H2** \n", + "**CO + H2O → CO2 + H2**\n", + "\n", + "However, the GibbsReactor unit model solves the equilibrium by minimizing Gibbs free energy. Conveniently, this eliminates the need for a reaction package although a thermophysical package is still required.\n", + "\n", + "The flowsheet that we will be using for this module is shown below with the stream conditions. As in the prior example, we will be processing natural gas and steam feeds of fixed composition to produce hydrogen. The process consists of a mixer M101 for the two inlet streams, a compressor to compress the feed to the reaction pressure, a heater H101 to heat the feed to the reaction temperature, and a GibbsReactor unit R101. We will use thermophysical properties following the Peng-Robinsion cubic equation of state for this flowsheet.\n", + "\n", + "The state variables chosen for the property package are **total molar flows of each stream, temperature of each stream and pressure of each stream, and mole fractions of each component in each stream**. The components considered are: **CH4, H2O, CO, CO2, and H2** and the process occurs in vapor phase only. Therefore, every stream has 1 flow variable, 5 mole fraction variables, 1 temperature and 1 pressure variable. \n", + "\n", + "![](msr_flowsheet.png)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Pyomo and IDAES Components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages, as well as some utility tools to build the flowsheet. For further details on these components, please refer to the [Pyomo documentation]( https://pyomo.readthedocs.io/en/stable/).\n", + "\n", + "From IDAES, we will be needing the `FlowsheetBlock` and the following unit models:\n", + "- Feed\n", + "- Mixer\n", + "- Compressor\n", + "- Heater\n", + "- GibbsReactor\n", + "- Product" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " TransformationFactory,\n", + " value,\n", + " units as pyunits,\n", + ")\n", + "from pyomo.network import Arc\n", + "\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.models.properties.modular_properties import GenericParameterBlock\n", + "from idaes.models.unit_models import (\n", + " Feed,\n", + " Mixer,\n", + " Compressor,\n", + " Heater,\n", + " GibbsReactor,\n", + " Product,\n", + ")\n", + "\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Thermophysical Package\n", + "\n", + "As mentioned earlier, the `GibbsReactor` does not require a reaction package.\n", + "\n", + "Let us import the following module from the IDAES library:\n", + "- natural_gas_PR as get_prop (method to get configuration dictionary)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models_extra.power_generation.properties.natural_gas_PR import get_prop" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "Let us create a `ConcreteModel` and add the flowsheet block. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now need to add the property packages to the flowsheet. Unlike the previous example, we do not need to add a reaction package for the reactor model to calculate results. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) to build a state block for the parameter dictionary." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "thermo_props_config_dict = get_prop(components=[\"CH4\", \"H2O\", \"H2\", \"CO\", \"CO2\"])\n", + "m.fs.thermo_params = GenericParameterBlock(**thermo_props_config_dict)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.CH4 = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.H2O = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params, inlet_list=[\"methane_feed\", \"steam_feed\"]\n", + ")\n", + "m.fs.H101 = Heater(\n", + " property_package=m.fs.thermo_params,\n", + " has_pressure_change=False,\n", + " has_phase_equilibrium=False,\n", + ")\n", + "m.fs.C101 = Compressor(property_package=m.fs.thermo_params)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101 = GibbsReactor(\n", + " property_package=m.fs.thermo_params,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models Using Arcs\n", + "\n", + "We have now added all the unit models we need to the flowsheet. Let us connect the unit models by defining and building each `Arc`:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s01 = Arc(source=m.fs.CH4.outlet, destination=m.fs.M101.methane_feed)\n", + "m.fs.s02 = Arc(source=m.fs.H2O.outlet, destination=m.fs.M101.steam_feed)\n", + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.C101.inlet)\n", + "m.fs.s04 = Arc(source=m.fs.C101.outlet, destination=m.fs.H101.inlet)\n", + "m.fs.s05 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", + "m.fs.s06 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we can use Pyomo's `TransformationFactory` to write the equality constraints on each Arc:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Expressions to Compute Operating Costs\n", + "\n", + "For this flowsheet, we are interested in computing hydrogen production in millions of pounds per year, as well as the total costs due to pressurizing, cooling, and heating utilities:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us add `Expressions` to convert the product flow from mol/s to MM lb/year of hydrogen, and to calculate the cooling, heating and compression operating costs. The total operating cost will be the sum of the costs, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.hyd_prod = Expression(\n", + " expr=pyunits.convert(\n", + " m.fs.PROD.inlet.flow_mol[0]\n", + " * m.fs.PROD.inlet.mole_frac_comp[0, \"H2\"]\n", + " * m.fs.thermo_params.H2.mw, # MW defined in properties as kg/mol\n", + " to_units=pyunits.Mlb / pyunits.yr,\n", + " )\n", + ") # converting kg/s to MM lb/year" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.cooling_cost = Expression(\n", + " expr=0.212e-7 * (m.fs.R101.heat_duty[0])\n", + ") # the reaction is endothermic, so R101 duty is positive\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", + ") # the stream must be heated to T_rxn, so H101 duty is positive\n", + "m.fs.compression_cost = Expression(\n", + " expr=0.12e-5 * m.fs.C101.work_isentropic[0]\n", + ") # the stream must be pressurized, so the C101 work is positive\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost + m.fs.compression_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Feed Conditions\n", + "\n", + "We expect each stream to have 8 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the compressor to have 2 (the pressure change and efficiency), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (conversion). Therefore, we have 20 degrees of freedom to specify: temperature, pressure, flow and mole fractions of all five components on both streams; compressor pressure change and efficiency; outlet heater temperature; and reactor conversion." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 598\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 506\n", - "\n", - "Total number of variables............................: 205\n", - " variables with only lower bounds: 14\n", - " variables with lower and upper bounds: 181\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 203\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 3.9958388e+07 1.49e+06 3.46e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 3.8920063e+07 1.48e+06 1.52e+03 -1.0 7.19e+06 - 3.91e-01 6.43e-03f 1\n", - " 2 7.0948609e+07 1.15e+06 1.86e+06 -1.0 4.83e+06 - 1.51e-01 2.26e-01h 1\n", - " 3 1.0553921e+08 5.23e+05 1.04e+07 -1.0 2.42e+06 - 3.41e-01 5.67e-01h 1\n", - " 4 1.0874890e+08 1.58e+05 7.64e+06 -1.0 8.45e+05 - 7.09e-01 7.11e-01h 1\n", - " 5 1.0751027e+08 1.51e+04 1.67e+06 -1.0 2.97e+05 - 9.49e-01 9.09e-01f 1\n", - " 6 1.0721898e+08 5.95e+00 9.98e+03 -1.0 3.47e+04 - 9.90e-01 1.00e+00f 1\n", - " 7 1.0721794e+08 3.43e-05 8.84e+01 -1.0 1.59e+02 - 9.90e-01 1.00e+00f 1\n", - " 8 1.0721794e+08 1.90e-08 7.14e-01 -1.0 1.43e-02 - 9.92e-01 1.00e+00h 1\n", - " 9 1.0721794e+08 7.55e-09 1.53e-06 -2.5 1.72e-02 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.0721794e+08 2.10e-08 1.59e-06 -3.8 4.73e-04 - 1.00e+00 1.00e+00f 1\n", - " 11 1.0721794e+08 1.12e-08 2.07e-06 -5.7 2.63e-05 - 1.00e+00 1.00e+00f 1\n", - " 12 1.0721794e+08 3.57e-08 1.65e-06 -7.0 3.14e-07 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 12\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.0721793780338226e+08 1.0721793780338226e+08\n", - "Dual infeasibility......: 1.6485091371912918e-06 1.6485091371912918e-06\n", - "Constraint violation....: 4.6566128730773926e-10 3.5680419252624450e-08\n", - "Complementarity.........: 9.0909090914354020e-08 9.0909090914354020e-08\n", - "Overall NLP error.......: 9.0909090914354020e-08 1.6485091371912918e-06\n", - "\n", - "\n", - "Number of objective function evaluations = 13\n", - "Number of objective gradient evaluations = 13\n", - "Number of equality constraint evaluations = 13\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 13\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 12\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", - "Total CPU secs in NLP function evaluations = 0.011\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "20\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check the degrees of freedom\n", + "assert degrees_of_freedom(m) == 20" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Based on the literature source, we will initialize our simulation with the following values:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.CH4.outlet.mole_frac_comp[0, \"CH4\"].fix(1)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"H2O\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", + "m.fs.CH4.outlet.flow_mol.fix(75 * pyunits.mol / pyunits.s)\n", + "m.fs.CH4.outlet.temperature.fix(298.15 * pyunits.K)\n", + "m.fs.CH4.outlet.pressure.fix(1e5 * pyunits.Pa)\n", + "\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CH4\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"H2O\"].fix(1)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", + "m.fs.H2O.outlet.flow_mol.fix(234 * pyunits.mol / pyunits.s)\n", + "m.fs.H2O.outlet.temperature.fix(373.15 * pyunits.K)\n", + "m.fs.H2O.outlet.pressure.fix(1e5 * pyunits.Pa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Unit Model Specifications\n", + "\n", + "For the initial problem, let us fix the compressor outlet pressure to 2 bar for now, the efficiency to 0.90 (a common assumption for compressor units), and the heater outlet temperature to 500 K. We will unfix these values later to optimize the flowsheet." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.C101.outlet.pressure.fix(pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa))\n", + "m.fs.C101.efficiency_isentropic.fix(0.90)\n", + "m.fs.H101.outlet.temperature.fix(500 * pyunits.K)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `GibbsReactor` unit model calculates the amount of product and reactant based on the free energy minimization; therefore, we will specify a desired conversion and let the solver determine the reactor duty and heat transfer. For convenience, we will define the reactor conversion as the amount of methane that is converted." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion = Var(\n", + " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", + ") # fraction\n", + "\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion\n", + " * m.fs.R101.inlet.flow_mol[0]\n", + " * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol[0] * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", + " - m.fs.R101.outlet.flow_mol[0] * m.fs.R101.outlet.mole_frac_comp[0, \"CH4\"]\n", + " )\n", + ")\n", + "\n", + "m.fs.R101.conversion.fix(0.80)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check for solver solve status\n", - "from pyomo.environ import TerminationCondition\n", - "\n", - "assert results.solver.termination_condition == TerminationCondition.optimal" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check the degrees of freedom\n", + "assert degrees_of_freedom(m) == 0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we need to initialize the each unit operation and propagate the outlet results in sequence to solve the flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "operating cost = $107.218 million per year\n", - "\n", - "Compressor results\n", - "\n", - "====================================================================================\n", - "Unit : fs.C101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.90000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 3.0334e+06 : watt : False : (None, None)\n", - " Pressure Change : 9.0000e+05 : pascal : False : (None, None)\n", - " Pressure Ratio : 10.000 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 309.01\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", - " Temperature kelvin 353.80 619.25\n", - " Pressure pascal 1.0000e+05 1.0000e+06\n", - "====================================================================================\n", - "\n", - "Heater results\n", - "\n", - "====================================================================================\n", - "Unit : fs.H101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 5.8781e-09 : watt : False : (0.0, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 309.01\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", - " Temperature kelvin 619.25 619.25\n", - " Pressure pascal 1.0000e+06 1.0000e+06\n", - "====================================================================================\n", - "\n", - "Gibbs reactor results\n", - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 2.1076e+07 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 444.02\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.016892\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.31609\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 0.51498\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 0.093140\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.058900\n", - " Temperature kelvin 619.25 1087.4\n", - " Pressure pascal 1.0000e+06 1.0000e+06\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")\n", - "\n", - "print()\n", - "print(\"Compressor results\")\n", - "\n", - "m.fs.C101.report()\n", - "\n", - "print()\n", - "print(\"Heater results\")\n", - "\n", - "m.fs.H101.report()\n", - "\n", - "print()\n", - "print(\"Gibbs reactor results\")\n", - "\n", - "m.fs.R101.report()" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4.properties: Starting initialization\n", + "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4.properties: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4.properties: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4: Initialization Complete.\n", + "2024-05-23 06:07:53 [INFO] idaes.init.fs.H2O.properties: Starting initialization\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.H2O.properties: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.H2O.properties: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.H2O: Initialization Complete.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.methane_feed_state: Starting initialization\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.methane_feed_state: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.steam_feed_state: Starting initialization\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.steam_feed_state: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_in: Starting initialization\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_out: Starting initialization\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.properties_isentropic: Starting initialization\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.properties_isentropic: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.properties_isentropic: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n", + "2024-05-23 06:07:56 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD.properties: Starting initialization\n", + "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD.properties: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD.properties: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD: Initialization Complete.\n" + ] + } + ], + "source": [ + "# Initialize and solve each unit operation\n", + "m.fs.CH4.initialize()\n", + "propagate_state(arc=m.fs.s01)\n", + "\n", + "m.fs.H2O.initialize()\n", + "propagate_state(arc=m.fs.s02)\n", + "\n", + "m.fs.M101.initialize()\n", + "propagate_state(arc=m.fs.s03)\n", + "\n", + "m.fs.C101.initialize()\n", + "propagate_state(arc=m.fs.s04)\n", + "\n", + "m.fs.H101.initialize()\n", + "propagate_state(arc=m.fs.s05)\n", + "\n", + "m.fs.R101.initialize()\n", + "propagate_state(arc=m.fs.s06)\n", + "\n", + "m.fs.PROD.initialize()\n", + "\n", + "# set solver\n", + "solver = get_solver()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert value(m.fs.operating_cost) / 1e6 == pytest.approx(107.218, rel=1e-3)" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 591\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 490\n", + "\n", + "Total number of variables............................: 203\n", + " variables with only lower bounds: 13\n", + " variables with lower and upper bounds: 179\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 203\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.49e+06 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.35e+04 2.00e-01 -1.0 3.59e+00 - 9.90e-01 9.91e-01h 1\n", + " 2 0.0000000e+00 3.59e-04 9.99e+00 -1.0 3.56e+00 - 9.90e-01 1.00e+00h 1\n", + " 3 0.0000000e+00 2.60e-08 8.98e+01 -1.0 2.91e-04 - 9.90e-01 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 7.6029602259665645e-13 2.5960616767406464e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 7.6029602259665645e-13 2.5960616767406464e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check solver solve status\n", + "from pyomo.environ import TerminationCondition\n", + "\n", + "assert results.solver.termination_condition == TerminationCondition.optimal" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the Results of the Square Problem\n", + "\n", + "\n", + "What is the total operating cost? " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables and design variables:" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $39.958 million per year\n" + ] + } + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "import pytest\n", + "\n", + "assert value(m.fs.operating_cost) / 1e6 == pytest.approx(39.958, rel=1e-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this operating cost, what conversion did we achieve of methane to hydrogen?" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal Values\n", - "\n", - "C101 outlet pressure = 1.000 MPa\n", - "\n", - "C101 outlet temperature = 619.248 K\n", - "\n", - "H101 outlet temperature = 619.248 K\n", - "\n", - "R101 outlet temperature = 1087.385 K\n", - "\n", - "Hydrogen produced = 32.070 MM lb/year\n", - "\n", - "Conversion achieved = 90.0%\n" - ] - } - ], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(f\"C101 outlet pressure = {value(m.fs.C101.outlet.pressure[0])/1E6:0.3f} MPa\")\n", - "print()\n", - "\n", - "print(f\"C101 outlet temperature = {value(m.fs.C101.outlet.temperature[0]):0.3f} K\")\n", - "print()\n", - "\n", - "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.3f} K\")\n", - "\n", - "print()\n", - "print(f\"R101 outlet temperature = {value(m.fs.R101.outlet.temperature[0]):0.3f} K\")\n", - "\n", - "print()\n", - "print(f\"Hydrogen produced = {value(m.fs.hyd_prod):0.3f} MM lb/year\")\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.7819e+07 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 429.02\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.034965\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.32532\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 0.49984\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 0.059609\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.080265\n", + " Temperature kelvin 500.00 920.80\n", + " Pressure pascal 2.0000e+05 2.0000e+05\n", + "====================================================================================\n", + "\n", + "Conversion achieved = 80.0%\n" + ] + } + ], + "source": [ + "m.fs.R101.report()\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert value(m.fs.R101.conversion) == pytest.approx(0.800, rel=1e-3)\n", + "assert value(m.fs.R101.heat_duty[0]) / 1e6 == pytest.approx(17.819, rel=1e-3)\n", + "assert value(m.fs.R101.outlet.temperature[0]) / 1e2 == pytest.approx(9.208, rel=1e-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimizing Hydrogen Production\n", + "\n", + "Now that the flowsheet has been squared and solved, we can run a small optimization problem to determine optimal conditions for producing hydrogen. Suppose we wish to find ideal conditions for the competing reactions. The GibbsReactor does not drive equilibrium forward based on temperature, so we will see small amounts of intermediate components present in the product stream. We will allow for variable reactor temperature and pressure by freeing our heater and compressor specifications, and minimize cost to achieve 90% methane conversion. Since we assume an isentopic compressor, allowing compression will heat our feed stream and reduce or eliminate the required heater duty." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem until now, as well as set bounds for the design variables (reactor outlet temperature is set by state variable bounds in property package):" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion.fix(0.90)\n", + "\n", + "m.fs.C101.outlet.pressure.unfix()\n", + "m.fs.C101.outlet.pressure[0].setlb(\n", + " pyunits.convert(1 * pyunits.bar, to_units=pyunits.Pa)\n", + ") # equals inlet pressure\n", + "m.fs.C101.outlet.pressure[0].setlb(\n", + " pyunits.convert(10 * pyunits.bar, to_units=pyunits.Pa)\n", + ") # at most, pressurize to 1 bar\n", + "\n", + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.H101.heat_duty[0].setlb(\n", + " 0 * pyunits.J / pyunits.s\n", + ") # ensures outlet is equal to or greater than inlet temperature\n", + "m.fs.H101.outlet.temperature[0].setub(1000 * pyunits.K) # at most, heat to 1000 K" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert degrees_of_freedom(m) == 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert value(m.fs.C101.outlet.pressure[0]) / 1e6 == pytest.approx(1.000, rel=1e-3)\n", - "assert value(m.fs.C101.outlet.temperature[0]) / 100 == pytest.approx(6.19248, rel=1e-3)\n", - "assert value(m.fs.H101.outlet.temperature[0]) / 100 == pytest.approx(6.19248, rel=1e-3)\n", - "assert value(m.fs.R101.outlet.temperature[0]) / 100 == pytest.approx(10.8738, rel=1e-3)\n", - "assert value(m.fs.hyd_prod) == pytest.approx(32.070, rel=1e-3)\n", - "assert value(m.fs.R101.conversion) * 100 == pytest.approx(90.0, rel=1e-3)" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 598\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 506\n", + "\n", + "Total number of variables............................: 205\n", + " variables with only lower bounds: 14\n", + " variables with lower and upper bounds: 181\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 203\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 3.9958388e+07 1.49e+06 3.46e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 3.8920063e+07 1.48e+06 1.52e+03 -1.0 7.19e+06 - 3.91e-01 6.43e-03f 1\n", + " 2 7.0948609e+07 1.15e+06 1.86e+06 -1.0 4.83e+06 - 1.51e-01 2.26e-01h 1\n", + " 3 1.0553921e+08 5.23e+05 1.04e+07 -1.0 2.42e+06 - 3.41e-01 5.67e-01h 1\n", + " 4 1.0874890e+08 1.58e+05 7.64e+06 -1.0 8.45e+05 - 7.09e-01 7.11e-01h 1\n", + " 5 1.0751027e+08 1.51e+04 1.67e+06 -1.0 2.97e+05 - 9.49e-01 9.09e-01f 1\n", + " 6 1.0721898e+08 5.95e+00 9.98e+03 -1.0 3.47e+04 - 9.90e-01 1.00e+00f 1\n", + " 7 1.0721794e+08 3.43e-05 8.84e+01 -1.0 1.59e+02 - 9.90e-01 1.00e+00f 1\n", + " 8 1.0721794e+08 1.90e-08 7.14e-01 -1.0 1.43e-02 - 9.92e-01 1.00e+00h 1\n", + " 9 1.0721794e+08 7.55e-09 1.53e-06 -2.5 1.72e-02 - 1.00e+00 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 1.0721794e+08 2.10e-08 1.59e-06 -3.8 4.73e-04 - 1.00e+00 1.00e+00f 1\n", + " 11 1.0721794e+08 1.12e-08 2.07e-06 -5.7 2.63e-05 - 1.00e+00 1.00e+00f 1\n", + " 12 1.0721794e+08 3.57e-08 1.65e-06 -7.0 3.14e-07 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 12\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 1.0721793780338226e+08 1.0721793780338226e+08\n", + "Dual infeasibility......: 1.6485091371912918e-06 1.6485091371912918e-06\n", + "Constraint violation....: 4.6566128730773926e-10 3.5680419252624450e-08\n", + "Complementarity.........: 9.0909090914354020e-08 9.0909090914354020e-08\n", + "Overall NLP error.......: 9.0909090914354020e-08 1.6485091371912918e-06\n", + "\n", + "\n", + "Number of objective function evaluations = 13\n", + "Number of objective gradient evaluations = 13\n", + "Number of equality constraint evaluations = 13\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 13\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 12\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", + "Total CPU secs in NLP function evaluations = 0.011\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check for solver solve status\n", + "from pyomo.environ import TerminationCondition\n", + "\n", + "assert results.solver.termination_condition == TerminationCondition.optimal" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $107.218 million per year\n", + "\n", + "Compressor results\n", + "\n", + "====================================================================================\n", + "Unit : fs.C101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.90000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 3.0334e+06 : watt : False : (None, None)\n", + " Pressure Change : 9.0000e+05 : pascal : False : (None, None)\n", + " Pressure Ratio : 10.000 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 309.01\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", + " Temperature kelvin 353.80 619.25\n", + " Pressure pascal 1.0000e+05 1.0000e+06\n", + "====================================================================================\n", + "\n", + "Heater results\n", + "\n", + "====================================================================================\n", + "Unit : fs.H101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 5.8781e-09 : watt : False : (0.0, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 309.01\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", + " Temperature kelvin 619.25 619.25\n", + " Pressure pascal 1.0000e+06 1.0000e+06\n", + "====================================================================================\n", + "\n", + "Gibbs reactor results\n", + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 2.1076e+07 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 444.02\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.016892\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.31609\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 0.51498\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 0.093140\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.058900\n", + " Temperature kelvin 619.25 1087.4\n", + " Pressure pascal 1.0000e+06 1.0000e+06\n", + "====================================================================================\n" + ] } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")\n", + "\n", + "print()\n", + "print(\"Compressor results\")\n", + "\n", + "m.fs.C101.report()\n", + "\n", + "print()\n", + "print(\"Heater results\")\n", + "\n", + "m.fs.H101.report()\n", + "\n", + "print()\n", + "print(\"Gibbs reactor results\")\n", + "\n", + "m.fs.R101.report()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert value(m.fs.operating_cost) / 1e6 == pytest.approx(107.218, rel=1e-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables and design variables:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal Values\n", + "\n", + "C101 outlet pressure = 1.000 MPa\n", + "\n", + "C101 outlet temperature = 619.248 K\n", + "\n", + "H101 outlet temperature = 619.248 K\n", + "\n", + "R101 outlet temperature = 1087.385 K\n", + "\n", + "Hydrogen produced = 32.070 MM lb/year\n", + "\n", + "Conversion achieved = 90.0%\n" + ] } + ], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(f\"C101 outlet pressure = {value(m.fs.C101.outlet.pressure[0])/1E6:0.3f} MPa\")\n", + "print()\n", + "\n", + "print(f\"C101 outlet temperature = {value(m.fs.C101.outlet.temperature[0]):0.3f} K\")\n", + "print()\n", + "\n", + "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.3f} K\")\n", + "\n", + "print()\n", + "print(f\"R101 outlet temperature = {value(m.fs.R101.outlet.temperature[0]):0.3f} K\")\n", + "\n", + "print()\n", + "print(f\"Hydrogen produced = {value(m.fs.hyd_prod):0.3f} MM lb/year\")\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert value(m.fs.C101.outlet.pressure[0]) / 1e6 == pytest.approx(1.000, rel=1e-3)\n", + "assert value(m.fs.C101.outlet.temperature[0]) / 100 == pytest.approx(6.19248, rel=1e-3)\n", + "assert value(m.fs.H101.outlet.temperature[0]) / 100 == pytest.approx(6.19248, rel=1e-3)\n", + "assert value(m.fs.R101.outlet.temperature[0]) / 100 == pytest.approx(10.8738, rel=1e-3)\n", + "assert value(m.fs.hyd_prod) == pytest.approx(32.070, rel=1e-3)\n", + "assert value(m.fs.R101.conversion) * 100 == pytest.approx(90.0, rel=1e-3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor_usr.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor_usr.ipynb index b7984618..25a67591 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor_usr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/gibbs_reactor_usr.ipynb @@ -1,1049 +1,1050 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Flowsheet Gibbs Reactor Simulation and Optimization of Steam Methane Reforming\n", - "Author: Brandon Paul \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "## Learning Outcomes\n", - "\n", - "\n", - "- Call and implement the IDAES GibbsReactor unit model\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Following the previous example of [Steam Methane Reformation in an Equilibrium Reactor](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/UnitModels/Reactors/equilibrium_reactor_testing_usr.ipynb), this example solves the flowsheet using a Gibbs Reactor instead. The steam methane reformation example is adapted from S.Z. Abbas, V. Dupont, T. Mahmud, Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903. Typically, the process follows the chemical equations below:\n", - "\n", - "**CH4 + H2O \u2192 CO + 3H2** \n", - "**CO + H2O \u2192 CO2 + H2**\n", - "\n", - "However, the GibbsReactor unit model solves the equilibrium by minimizing Gibbs free energy. Conveniently, this eliminates the need for a reaction package although a thermophysical package is still required.\n", - "\n", - "The flowsheet that we will be using for this module is shown below with the stream conditions. As in the prior example, we will be processing natural gas and steam feeds of fixed composition to produce hydrogen. The process consists of a mixer M101 for the two inlet streams, a compressor to compress the feed to the reaction pressure, a heater H101 to heat the feed to the reaction temperature, and a GibbsReactor unit R101. We will use thermophysical properties following the Peng-Robinsion cubic equation of state for this flowsheet.\n", - "\n", - "The state variables chosen for the property package are **total molar flows of each stream, temperature of each stream and pressure of each stream, and mole fractions of each component in each stream**. The components considered are: **CH4, H2O, CO, CO2, and H2** and the process occurs in vapor phase only. Therefore, every stream has 1 flow variable, 5 mole fraction variables, 1 temperature and 1 pressure variable. \n", - "\n", - "![](msr_flowsheet.png)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Pyomo and IDAES Components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages, as well as some utility tools to build the flowsheet. For further details on these components, please refer to the [Pyomo documentation]( https://pyomo.readthedocs.io/en/stable/).\n", - "\n", - "From IDAES, we will be needing the `FlowsheetBlock` and the following unit models:\n", - "- Feed\n", - "- Mixer\n", - "- Compressor\n", - "- Heater\n", - "- GibbsReactor\n", - "- Product" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " TransformationFactory,\n", - " value,\n", - " units as pyunits,\n", - ")\n", - "from pyomo.network import Arc\n", - "\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.models.properties.modular_properties import GenericParameterBlock\n", - "from idaes.models.unit_models import (\n", - " Feed,\n", - " Mixer,\n", - " Compressor,\n", - " Heater,\n", - " GibbsReactor,\n", - " Product,\n", - ")\n", - "\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Thermophysical Package\n", - "\n", - "As mentioned earlier, the `GibbsReactor` does not require a reaction package.\n", - "\n", - "Let us import the following module from the IDAES library:\n", - "- natural_gas_PR as get_prop (method to get configuration dictionary)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models_extra.power_generation.properties.natural_gas_PR import get_prop" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "Let us create a `ConcreteModel` and add the flowsheet block. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need to add the property packages to the flowsheet. Unlike the previous example, we do not need to add a reaction package for the reactor model to calculate results. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) to build a state block for the parameter dictionary." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "thermo_props_config_dict = get_prop(components=[\"CH4\", \"H2O\", \"H2\", \"CO\", \"CO2\"])\n", - "m.fs.thermo_params = GenericParameterBlock(**thermo_props_config_dict)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.CH4 = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.H2O = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params, inlet_list=[\"methane_feed\", \"steam_feed\"]\n", - ")\n", - "m.fs.H101 = Heater(\n", - " property_package=m.fs.thermo_params,\n", - " has_pressure_change=False,\n", - " has_phase_equilibrium=False,\n", - ")\n", - "m.fs.C101 = Compressor(property_package=m.fs.thermo_params)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101 = GibbsReactor(\n", - " property_package=m.fs.thermo_params,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=False,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models Using Arcs\n", - "\n", - "We have now added all the unit models we need to the flowsheet. Let us connect the unit models by defining and building each `Arc`:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s01 = Arc(source=m.fs.CH4.outlet, destination=m.fs.M101.methane_feed)\n", - "m.fs.s02 = Arc(source=m.fs.H2O.outlet, destination=m.fs.M101.steam_feed)\n", - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.C101.inlet)\n", - "m.fs.s04 = Arc(source=m.fs.C101.outlet, destination=m.fs.H101.inlet)\n", - "m.fs.s05 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", - "m.fs.s06 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we can use Pyomo's `TransformationFactory` to write the equality constraints on each Arc:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Expressions to Compute Operating Costs\n", - "\n", - "For this flowsheet, we are interested in computing hydrogen production in millions of pounds per year, as well as the total costs due to pressurizing, cooling, and heating utilities:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us add `Expressions` to convert the product flow from mol/s to MM lb/year of hydrogen, and to calculate the cooling, heating and compression operating costs. The total operating cost will be the sum of the costs, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.hyd_prod = Expression(\n", - " expr=pyunits.convert(\n", - " m.fs.PROD.inlet.flow_mol[0]\n", - " * m.fs.PROD.inlet.mole_frac_comp[0, \"H2\"]\n", - " * m.fs.thermo_params.H2.mw, # MW defined in properties as kg/mol\n", - " to_units=pyunits.Mlb / pyunits.yr,\n", - " )\n", - ") # converting kg/s to MM lb/year" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.cooling_cost = Expression(\n", - " expr=0.212e-7 * (m.fs.R101.heat_duty[0])\n", - ") # the reaction is endothermic, so R101 duty is positive\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", - ") # the stream must be heated to T_rxn, so H101 duty is positive\n", - "m.fs.compression_cost = Expression(\n", - " expr=0.12e-5 * m.fs.C101.work_isentropic[0]\n", - ") # the stream must be pressurized, so the C101 work is positive\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost + m.fs.compression_cost))\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Feed Conditions\n", - "\n", - "We expect each stream to have 8 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the compressor to have 2 (the pressure change and efficiency), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (conversion). Therefore, we have 20 degrees of freedom to specify: temperature, pressure, flow and mole fractions of all five components on both streams; compressor pressure change and efficiency; outlet heater temperature; and reactor conversion." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "20\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Based on the literature source, we will initialize our simulation with the following values:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.CH4.outlet.mole_frac_comp[0, \"CH4\"].fix(1)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"H2O\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", - "m.fs.CH4.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", - "m.fs.CH4.outlet.flow_mol.fix(75 * pyunits.mol / pyunits.s)\n", - "m.fs.CH4.outlet.temperature.fix(298.15 * pyunits.K)\n", - "m.fs.CH4.outlet.pressure.fix(1e5 * pyunits.Pa)\n", - "\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CH4\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"H2O\"].fix(1)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", - "m.fs.H2O.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", - "m.fs.H2O.outlet.flow_mol.fix(234 * pyunits.mol / pyunits.s)\n", - "m.fs.H2O.outlet.temperature.fix(373.15 * pyunits.K)\n", - "m.fs.H2O.outlet.pressure.fix(1e5 * pyunits.Pa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Unit Model Specifications\n", - "\n", - "For the initial problem, let us fix the compressor outlet pressure to 2 bar for now, the efficiency to 0.90 (a common assumption for compressor units), and the heater outlet temperature to 500 K. We will unfix these values later to optimize the flowsheet." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.C101.outlet.pressure.fix(pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa))\n", - "m.fs.C101.efficiency_isentropic.fix(0.90)\n", - "m.fs.H101.outlet.temperature.fix(500 * pyunits.K)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `GibbsReactor` unit model calculates the amount of product and reactant based on the free energy minimization; therefore, we will specify a desired conversion and let the solver determine the reactor duty and heat transfer. For convenience, we will define the reactor conversion as the amount of methane that is converted." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion = Var(\n", - " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", - ") # fraction\n", - "\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion\n", - " * m.fs.R101.inlet.flow_mol[0]\n", - " * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol[0] * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", - " - m.fs.R101.outlet.flow_mol[0] * m.fs.R101.outlet.mole_frac_comp[0, \"CH4\"]\n", - " )\n", - ")\n", - "\n", - "m.fs.R101.conversion.fix(0.80)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0\n" - ] - } - ], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we need to initialize the each unit operation and propagate the outlet results in sequence to solve the flowsheet:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4.properties: Starting initialization\n", - "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4: Initialization Complete.\n", - "2024-05-23 06:07:53 [INFO] idaes.init.fs.H2O.properties: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.H2O.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.H2O.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.H2O: Initialization Complete.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.methane_feed_state: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.methane_feed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.steam_feed_state: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.steam_feed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.properties_isentropic: Starting initialization\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.properties_isentropic: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.properties_isentropic: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n", - "2024-05-23 06:07:56 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n", - "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD.properties: Starting initialization\n", - "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD.properties: Property initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD.properties: Property package initialization: optimal - Optimal Solution Found.\n", - "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD: Initialization Complete.\n" - ] - } - ], - "source": [ - "# Initialize and solve each unit operation\n", - "m.fs.CH4.initialize()\n", - "propagate_state(arc=m.fs.s01)\n", - "\n", - "m.fs.H2O.initialize()\n", - "propagate_state(arc=m.fs.s02)\n", - "\n", - "m.fs.M101.initialize()\n", - "propagate_state(arc=m.fs.s03)\n", - "\n", - "m.fs.C101.initialize()\n", - "propagate_state(arc=m.fs.s04)\n", - "\n", - "m.fs.H101.initialize()\n", - "propagate_state(arc=m.fs.s05)\n", - "\n", - "m.fs.R101.initialize()\n", - "propagate_state(arc=m.fs.s06)\n", - "\n", - "m.fs.PROD.initialize()\n", - "\n", - "# set solver\n", - "solver = get_solver()" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 591\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 490\n", - "\n", - "Total number of variables............................: 203\n", - " variables with only lower bounds: 13\n", - " variables with lower and upper bounds: 179\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 203\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 0.0000000e+00 1.49e+06 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 0.0000000e+00 1.35e+04 2.00e-01 -1.0 3.59e+00 - 9.90e-01 9.91e-01h 1\n", - " 2 0.0000000e+00 3.59e-04 9.99e+00 -1.0 3.56e+00 - 9.90e-01 1.00e+00h 1\n", - " 3 0.0000000e+00 2.60e-08 8.98e+01 -1.0 2.91e-04 - 9.90e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 3\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Constraint violation....: 7.6029602259665645e-13 2.5960616767406464e-08\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 7.6029602259665645e-13 2.5960616767406464e-08\n", - "\n", - "\n", - "Number of objective function evaluations = 4\n", - "Number of objective gradient evaluations = 4\n", - "Number of equality constraint evaluations = 4\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 4\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 3\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", - "Total CPU secs in NLP function evaluations = 0.000\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the Results of the Square Problem\n", - "\n", - "\n", - "What is the total operating cost? " - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "operating cost = $39.958 million per year\n" - ] - } - ], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this operating cost, what conversion did we achieve of methane to hydrogen?" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 1.7819e+07 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 429.02\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.034965\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.32532\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 0.49984\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 0.059609\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.080265\n", - " Temperature kelvin 500.00 920.80\n", - " Pressure pascal 2.0000e+05 2.0000e+05\n", - "====================================================================================\n", - "\n", - "Conversion achieved = 80.0%\n" - ] - } - ], - "source": [ - "m.fs.R101.report()\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimizing Hydrogen Production\n", - "\n", - "Now that the flowsheet has been squared and solved, we can run a small optimization problem to determine optimal conditions for producing hydrogen. Suppose we wish to find ideal conditions for the competing reactions. The GibbsReactor does not drive equilibrium forward based on temperature, so we will see small amounts of intermediate components present in the product stream. We will allow for variable reactor temperature and pressure by freeing our heater and compressor specifications, and minimize cost to achieve 90% methane conversion. Since we assume an isentopic compressor, allowing compression will heat our feed stream and reduce or eliminate the required heater duty." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost)" - ] - }, + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Flowsheet Gibbs Reactor Simulation and Optimization of Steam Methane Reforming\n", + "Author: Brandon Paul \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "## Learning Outcomes\n", + "\n", + "\n", + "- Call and implement the IDAES GibbsReactor unit model\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Following the previous example of [Steam Methane Reformation in an Equilibrium Reactor](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/UnitModels/Reactors/equilibrium_reactor_testing_usr.ipynb), this example solves the flowsheet using a Gibbs Reactor instead. The steam methane reformation example is adapted from S.Z. Abbas, V. Dupont, T. Mahmud, Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int. J. Hydrogen Energy, 42 (2017), pp. 2889-2903. Typically, the process follows the chemical equations below:\n", + "\n", + "**CH4 + H2O → CO + 3H2** \n", + "**CO + H2O → CO2 + H2**\n", + "\n", + "However, the GibbsReactor unit model solves the equilibrium by minimizing Gibbs free energy. Conveniently, this eliminates the need for a reaction package although a thermophysical package is still required.\n", + "\n", + "The flowsheet that we will be using for this module is shown below with the stream conditions. As in the prior example, we will be processing natural gas and steam feeds of fixed composition to produce hydrogen. The process consists of a mixer M101 for the two inlet streams, a compressor to compress the feed to the reaction pressure, a heater H101 to heat the feed to the reaction temperature, and a GibbsReactor unit R101. We will use thermophysical properties following the Peng-Robinsion cubic equation of state for this flowsheet.\n", + "\n", + "The state variables chosen for the property package are **total molar flows of each stream, temperature of each stream and pressure of each stream, and mole fractions of each component in each stream**. The components considered are: **CH4, H2O, CO, CO2, and H2** and the process occurs in vapor phase only. Therefore, every stream has 1 flow variable, 5 mole fraction variables, 1 temperature and 1 pressure variable. \n", + "\n", + "![](msr_flowsheet.png)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Pyomo and IDAES Components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages, as well as some utility tools to build the flowsheet. For further details on these components, please refer to the [Pyomo documentation]( https://pyomo.readthedocs.io/en/stable/).\n", + "\n", + "From IDAES, we will be needing the `FlowsheetBlock` and the following unit models:\n", + "- Feed\n", + "- Mixer\n", + "- Compressor\n", + "- Heater\n", + "- GibbsReactor\n", + "- Product" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " TransformationFactory,\n", + " value,\n", + " units as pyunits,\n", + ")\n", + "from pyomo.network import Arc\n", + "\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.models.properties.modular_properties import GenericParameterBlock\n", + "from idaes.models.unit_models import (\n", + " Feed,\n", + " Mixer,\n", + " Compressor,\n", + " Heater,\n", + " GibbsReactor,\n", + " Product,\n", + ")\n", + "\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Thermophysical Package\n", + "\n", + "As mentioned earlier, the `GibbsReactor` does not require a reaction package.\n", + "\n", + "Let us import the following module from the IDAES library:\n", + "- natural_gas_PR as get_prop (method to get configuration dictionary)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models_extra.power_generation.properties.natural_gas_PR import get_prop" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "Let us create a `ConcreteModel` and add the flowsheet block. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now need to add the property packages to the flowsheet. Unlike the previous example, we do not need to add a reaction package for the reactor model to calculate results. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) to build a state block for the parameter dictionary." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "thermo_props_config_dict = get_prop(components=[\"CH4\", \"H2O\", \"H2\", \"CO\", \"CO2\"])\n", + "m.fs.thermo_params = GenericParameterBlock(**thermo_props_config_dict)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.CH4 = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.H2O = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params, inlet_list=[\"methane_feed\", \"steam_feed\"]\n", + ")\n", + "m.fs.H101 = Heater(\n", + " property_package=m.fs.thermo_params,\n", + " has_pressure_change=False,\n", + " has_phase_equilibrium=False,\n", + ")\n", + "m.fs.C101 = Compressor(property_package=m.fs.thermo_params)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101 = GibbsReactor(\n", + " property_package=m.fs.thermo_params,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models Using Arcs\n", + "\n", + "We have now added all the unit models we need to the flowsheet. Let us connect the unit models by defining and building each `Arc`:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s01 = Arc(source=m.fs.CH4.outlet, destination=m.fs.M101.methane_feed)\n", + "m.fs.s02 = Arc(source=m.fs.H2O.outlet, destination=m.fs.M101.steam_feed)\n", + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.C101.inlet)\n", + "m.fs.s04 = Arc(source=m.fs.C101.outlet, destination=m.fs.H101.inlet)\n", + "m.fs.s05 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", + "m.fs.s06 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we can use Pyomo's `TransformationFactory` to write the equality constraints on each Arc:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Expressions to Compute Operating Costs\n", + "\n", + "For this flowsheet, we are interested in computing hydrogen production in millions of pounds per year, as well as the total costs due to pressurizing, cooling, and heating utilities:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us add `Expressions` to convert the product flow from mol/s to MM lb/year of hydrogen, and to calculate the cooling, heating and compression operating costs. The total operating cost will be the sum of the costs, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.hyd_prod = Expression(\n", + " expr=pyunits.convert(\n", + " m.fs.PROD.inlet.flow_mol[0]\n", + " * m.fs.PROD.inlet.mole_frac_comp[0, \"H2\"]\n", + " * m.fs.thermo_params.H2.mw, # MW defined in properties as kg/mol\n", + " to_units=pyunits.Mlb / pyunits.yr,\n", + " )\n", + ") # converting kg/s to MM lb/year" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.cooling_cost = Expression(\n", + " expr=0.212e-7 * (m.fs.R101.heat_duty[0])\n", + ") # the reaction is endothermic, so R101 duty is positive\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", + ") # the stream must be heated to T_rxn, so H101 duty is positive\n", + "m.fs.compression_cost = Expression(\n", + " expr=0.12e-5 * m.fs.C101.work_isentropic[0]\n", + ") # the stream must be pressurized, so the C101 work is positive\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost + m.fs.compression_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Feed Conditions\n", + "\n", + "We expect each stream to have 8 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the compressor to have 2 (the pressure change and efficiency), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (conversion). Therefore, we have 20 degrees of freedom to specify: temperature, pressure, flow and mole fractions of all five components on both streams; compressor pressure change and efficiency; outlet heater temperature; and reactor conversion." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem until now, as well as set bounds for the design variables (reactor outlet temperature is set by state variable bounds in property package):" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "20\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Based on the literature source, we will initialize our simulation with the following values:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.CH4.outlet.mole_frac_comp[0, \"CH4\"].fix(1)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"H2O\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", + "m.fs.CH4.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", + "m.fs.CH4.outlet.flow_mol.fix(75 * pyunits.mol / pyunits.s)\n", + "m.fs.CH4.outlet.temperature.fix(298.15 * pyunits.K)\n", + "m.fs.CH4.outlet.pressure.fix(1e5 * pyunits.Pa)\n", + "\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CH4\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"H2O\"].fix(1)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"H2\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CO\"].fix(1e-5)\n", + "m.fs.H2O.outlet.mole_frac_comp[0, \"CO2\"].fix(1e-5)\n", + "m.fs.H2O.outlet.flow_mol.fix(234 * pyunits.mol / pyunits.s)\n", + "m.fs.H2O.outlet.temperature.fix(373.15 * pyunits.K)\n", + "m.fs.H2O.outlet.pressure.fix(1e5 * pyunits.Pa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Unit Model Specifications\n", + "\n", + "For the initial problem, let us fix the compressor outlet pressure to 2 bar for now, the efficiency to 0.90 (a common assumption for compressor units), and the heater outlet temperature to 500 K. We will unfix these values later to optimize the flowsheet." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.C101.outlet.pressure.fix(pyunits.convert(2 * pyunits.bar, to_units=pyunits.Pa))\n", + "m.fs.C101.efficiency_isentropic.fix(0.90)\n", + "m.fs.H101.outlet.temperature.fix(500 * pyunits.K)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `GibbsReactor` unit model calculates the amount of product and reactant based on the free energy minimization; therefore, we will specify a desired conversion and let the solver determine the reactor duty and heat transfer. For convenience, we will define the reactor conversion as the amount of methane that is converted." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion = Var(\n", + " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", + ") # fraction\n", + "\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion\n", + " * m.fs.R101.inlet.flow_mol[0]\n", + " * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol[0] * m.fs.R101.inlet.mole_frac_comp[0, \"CH4\"]\n", + " - m.fs.R101.outlet.flow_mol[0] * m.fs.R101.outlet.mole_frac_comp[0, \"CH4\"]\n", + " )\n", + ")\n", + "\n", + "m.fs.R101.conversion.fix(0.80)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion.fix(0.90)\n", - "\n", - "m.fs.C101.outlet.pressure.unfix()\n", - "m.fs.C101.outlet.pressure[0].setlb(\n", - " pyunits.convert(1 * pyunits.bar, to_units=pyunits.Pa)\n", - ") # equals inlet pressure\n", - "m.fs.C101.outlet.pressure[0].setlb(\n", - " pyunits.convert(10 * pyunits.bar, to_units=pyunits.Pa)\n", - ") # at most, pressurize to 1 bar\n", - "\n", - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.H101.heat_duty[0].setlb(\n", - " 0 * pyunits.J / pyunits.s\n", - ") # ensures outlet is equal to or greater than inlet temperature\n", - "m.fs.H101.outlet.temperature[0].setub(1000 * pyunits.K) # at most, heat to 1000 K" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we need to initialize the each unit operation and propagate the outlet results in sequence to solve the flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4.properties: Starting initialization\n", + "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4.properties: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4.properties: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:53 [INFO] idaes.init.fs.CH4: Initialization Complete.\n", + "2024-05-23 06:07:53 [INFO] idaes.init.fs.H2O.properties: Starting initialization\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.H2O.properties: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.H2O.properties: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.H2O: Initialization Complete.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.methane_feed_state: Starting initialization\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.methane_feed_state: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.steam_feed_state: Starting initialization\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.steam_feed_state: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_in: Starting initialization\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_out: Starting initialization\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.control_volume.properties_out: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.properties_isentropic: Starting initialization\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.properties_isentropic: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:54 [INFO] idaes.init.fs.C101.properties_isentropic: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.C101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:55 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n", + "2024-05-23 06:07:56 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n", + "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD.properties: Starting initialization\n", + "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD.properties: Property initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD.properties: Property package initialization: optimal - Optimal Solution Found.\n", + "2024-05-23 06:07:56 [INFO] idaes.init.fs.PROD: Initialization Complete.\n" + ] + } + ], + "source": [ + "# Initialize and solve each unit operation\n", + "m.fs.CH4.initialize()\n", + "propagate_state(arc=m.fs.s01)\n", + "\n", + "m.fs.H2O.initialize()\n", + "propagate_state(arc=m.fs.s02)\n", + "\n", + "m.fs.M101.initialize()\n", + "propagate_state(arc=m.fs.s03)\n", + "\n", + "m.fs.C101.initialize()\n", + "propagate_state(arc=m.fs.s04)\n", + "\n", + "m.fs.H101.initialize()\n", + "propagate_state(arc=m.fs.s05)\n", + "\n", + "m.fs.R101.initialize()\n", + "propagate_state(arc=m.fs.s06)\n", + "\n", + "m.fs.PROD.initialize()\n", + "\n", + "# set solver\n", + "solver = get_solver()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", - "tol=1e-06\n", - "max_iter=200\n", - "\n", - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit http://projects.coin-or.org/Ipopt\n", - "\n", - "This version of Ipopt was compiled from source code available at\n", - " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", - " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", - " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", - "\n", - "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", - " for large-scale scientific computation. All technical papers, sales and\n", - " publicity material resulting from use of the HSL codes within IPOPT must\n", - " contain the following acknowledgement:\n", - " HSL, a collection of Fortran codes for large-scale scientific\n", - " computation. See http://www.hsl.rl.ac.uk.\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.13.2, running with linear solver ma27.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 598\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 506\n", - "\n", - "Total number of variables............................: 205\n", - " variables with only lower bounds: 14\n", - " variables with lower and upper bounds: 181\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 203\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 3.9958388e+07 1.49e+06 3.46e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 3.8920063e+07 1.48e+06 1.52e+03 -1.0 7.19e+06 - 3.91e-01 6.43e-03f 1\n", - " 2 7.0948609e+07 1.15e+06 1.86e+06 -1.0 4.83e+06 - 1.51e-01 2.26e-01h 1\n", - " 3 1.0553921e+08 5.23e+05 1.04e+07 -1.0 2.42e+06 - 3.41e-01 5.67e-01h 1\n", - " 4 1.0874890e+08 1.58e+05 7.64e+06 -1.0 8.45e+05 - 7.09e-01 7.11e-01h 1\n", - " 5 1.0751027e+08 1.51e+04 1.67e+06 -1.0 2.97e+05 - 9.49e-01 9.09e-01f 1\n", - " 6 1.0721898e+08 5.95e+00 9.98e+03 -1.0 3.47e+04 - 9.90e-01 1.00e+00f 1\n", - " 7 1.0721794e+08 3.43e-05 8.84e+01 -1.0 1.59e+02 - 9.90e-01 1.00e+00f 1\n", - " 8 1.0721794e+08 1.90e-08 7.14e-01 -1.0 1.43e-02 - 9.92e-01 1.00e+00h 1\n", - " 9 1.0721794e+08 7.55e-09 1.53e-06 -2.5 1.72e-02 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.0721794e+08 2.10e-08 1.59e-06 -3.8 4.73e-04 - 1.00e+00 1.00e+00f 1\n", - " 11 1.0721794e+08 1.12e-08 2.07e-06 -5.7 2.63e-05 - 1.00e+00 1.00e+00f 1\n", - " 12 1.0721794e+08 3.57e-08 1.65e-06 -7.0 3.14e-07 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 12\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.0721793780338226e+08 1.0721793780338226e+08\n", - "Dual infeasibility......: 1.6485091371912918e-06 1.6485091371912918e-06\n", - "Constraint violation....: 4.6566128730773926e-10 3.5680419252624450e-08\n", - "Complementarity.........: 9.0909090914354020e-08 9.0909090914354020e-08\n", - "Overall NLP error.......: 9.0909090914354020e-08 1.6485091371912918e-06\n", - "\n", - "\n", - "Number of objective function evaluations = 13\n", - "Number of objective gradient evaluations = 13\n", - "Number of equality constraint evaluations = 13\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 13\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 12\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", - "Total CPU secs in NLP function evaluations = 0.011\n", - "\n", - "EXIT: Optimal Solution Found.\n" - ] - } - ], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 591\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 490\n", + "\n", + "Total number of variables............................: 203\n", + " variables with only lower bounds: 13\n", + " variables with lower and upper bounds: 179\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 203\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.49e+06 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 1.35e+04 2.00e-01 -1.0 3.59e+00 - 9.90e-01 9.91e-01h 1\n", + " 2 0.0000000e+00 3.59e-04 9.99e+00 -1.0 3.56e+00 - 9.90e-01 1.00e+00h 1\n", + " 3 0.0000000e+00 2.60e-08 8.98e+01 -1.0 2.91e-04 - 9.90e-01 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 3\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Constraint violation....: 7.6029602259665645e-13 2.5960616767406464e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 7.6029602259665645e-13 2.5960616767406464e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 4\n", + "Number of objective gradient evaluations = 4\n", + "Number of equality constraint evaluations = 4\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 4\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 3\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the Results of the Square Problem\n", + "\n", + "\n", + "What is the total operating cost? " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "operating cost = $107.218 million per year\n", - "\n", - "Compressor results\n", - "\n", - "====================================================================================\n", - "Unit : fs.C101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Isentropic Efficiency : 0.90000 : dimensionless : True : (None, None)\n", - " Mechanical Work : 3.0334e+06 : watt : False : (None, None)\n", - " Pressure Change : 9.0000e+05 : pascal : False : (None, None)\n", - " Pressure Ratio : 10.000 : dimensionless : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 309.01\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", - " Temperature kelvin 353.80 619.25\n", - " Pressure pascal 1.0000e+05 1.0000e+06\n", - "====================================================================================\n", - "\n", - "Heater results\n", - "\n", - "====================================================================================\n", - "Unit : fs.H101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 5.8781e-09 : watt : False : (0.0, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 309.01\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", - " Temperature kelvin 619.25 619.25\n", - " Pressure pascal 1.0000e+06 1.0000e+06\n", - "====================================================================================\n", - "\n", - "Gibbs reactor results\n", - "\n", - "====================================================================================\n", - "Unit : fs.R101 Time: 0.0\n", - "------------------------------------------------------------------------------------\n", - " Unit Performance\n", - "\n", - " Variables: \n", - "\n", - " Key : Value : Units : Fixed : Bounds\n", - " Heat Duty : 2.1076e+07 : watt : False : (None, None)\n", - "\n", - "------------------------------------------------------------------------------------\n", - " Stream Table\n", - " Units Inlet Outlet \n", - " Total Molar Flowrate mole / second 309.01 444.02\n", - " Total Mole Fraction CH4 dimensionless 0.24272 0.016892\n", - " Total Mole Fraction H2O dimensionless 0.75725 0.31609\n", - " Total Mole Fraction H2 dimensionless 9.9996e-06 0.51498\n", - " Total Mole Fraction CO dimensionless 9.9996e-06 0.093140\n", - " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.058900\n", - " Temperature kelvin 619.25 1087.4\n", - " Pressure pascal 1.0000e+06 1.0000e+06\n", - "====================================================================================\n" - ] - } - ], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")\n", - "\n", - "print()\n", - "print(\"Compressor results\")\n", - "\n", - "m.fs.C101.report()\n", - "\n", - "print()\n", - "print(\"Heater results\")\n", - "\n", - "m.fs.H101.report()\n", - "\n", - "print()\n", - "print(\"Gibbs reactor results\")\n", - "\n", - "m.fs.R101.report()" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $39.958 million per year\n" + ] + } + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this operating cost, what conversion did we achieve of methane to hydrogen?" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables and design variables:" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 1.7819e+07 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 429.02\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.034965\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.32532\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 0.49984\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 0.059609\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.080265\n", + " Temperature kelvin 500.00 920.80\n", + " Pressure pascal 2.0000e+05 2.0000e+05\n", + "====================================================================================\n", + "\n", + "Conversion achieved = 80.0%\n" + ] + } + ], + "source": [ + "m.fs.R101.report()\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimizing Hydrogen Production\n", + "\n", + "Now that the flowsheet has been squared and solved, we can run a small optimization problem to determine optimal conditions for producing hydrogen. Suppose we wish to find ideal conditions for the competing reactions. The GibbsReactor does not drive equilibrium forward based on temperature, so we will see small amounts of intermediate components present in the product stream. We will allow for variable reactor temperature and pressure by freeing our heater and compressor specifications, and minimize cost to achieve 90% methane conversion. Since we assume an isentopic compressor, allowing compression will heat our feed stream and reduce or eliminate the required heater duty." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem until now, as well as set bounds for the design variables (reactor outlet temperature is set by state variable bounds in property package):" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion.fix(0.90)\n", + "\n", + "m.fs.C101.outlet.pressure.unfix()\n", + "m.fs.C101.outlet.pressure[0].setlb(\n", + " pyunits.convert(1 * pyunits.bar, to_units=pyunits.Pa)\n", + ") # equals inlet pressure\n", + "m.fs.C101.outlet.pressure[0].setlb(\n", + " pyunits.convert(10 * pyunits.bar, to_units=pyunits.Pa)\n", + ") # at most, pressurize to 1 bar\n", + "\n", + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.H101.heat_duty[0].setlb(\n", + " 0 * pyunits.J / pyunits.s\n", + ") # ensures outlet is equal to or greater than inlet temperature\n", + "m.fs.H101.outlet.temperature[0].setub(1000 * pyunits.K) # at most, heat to 1000 K" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal Values\n", - "\n", - "C101 outlet pressure = 1.000 MPa\n", - "\n", - "C101 outlet temperature = 619.248 K\n", - "\n", - "H101 outlet temperature = 619.248 K\n", - "\n", - "R101 outlet temperature = 1087.385 K\n", - "\n", - "Hydrogen produced = 32.070 MM lb/year\n", - "\n", - "Conversion achieved = 90.0%\n" - ] - } - ], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(f\"C101 outlet pressure = {value(m.fs.C101.outlet.pressure[0])/1E6:0.3f} MPa\")\n", - "print()\n", - "\n", - "print(f\"C101 outlet temperature = {value(m.fs.C101.outlet.temperature[0]):0.3f} K\")\n", - "print()\n", - "\n", - "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.3f} K\")\n", - "\n", - "print()\n", - "print(f\"R101 outlet temperature = {value(m.fs.R101.outlet.temperature[0]):0.3f} K\")\n", - "\n", - "print()\n", - "print(f\"Hydrogen produced = {value(m.fs.hyd_prod):0.3f} MM lb/year\")\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 598\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 506\n", + "\n", + "Total number of variables............................: 205\n", + " variables with only lower bounds: 14\n", + " variables with lower and upper bounds: 181\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 203\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 3.9958388e+07 1.49e+06 3.46e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 3.8920063e+07 1.48e+06 1.52e+03 -1.0 7.19e+06 - 3.91e-01 6.43e-03f 1\n", + " 2 7.0948609e+07 1.15e+06 1.86e+06 -1.0 4.83e+06 - 1.51e-01 2.26e-01h 1\n", + " 3 1.0553921e+08 5.23e+05 1.04e+07 -1.0 2.42e+06 - 3.41e-01 5.67e-01h 1\n", + " 4 1.0874890e+08 1.58e+05 7.64e+06 -1.0 8.45e+05 - 7.09e-01 7.11e-01h 1\n", + " 5 1.0751027e+08 1.51e+04 1.67e+06 -1.0 2.97e+05 - 9.49e-01 9.09e-01f 1\n", + " 6 1.0721898e+08 5.95e+00 9.98e+03 -1.0 3.47e+04 - 9.90e-01 1.00e+00f 1\n", + " 7 1.0721794e+08 3.43e-05 8.84e+01 -1.0 1.59e+02 - 9.90e-01 1.00e+00f 1\n", + " 8 1.0721794e+08 1.90e-08 7.14e-01 -1.0 1.43e-02 - 9.92e-01 1.00e+00h 1\n", + " 9 1.0721794e+08 7.55e-09 1.53e-06 -2.5 1.72e-02 - 1.00e+00 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 1.0721794e+08 2.10e-08 1.59e-06 -3.8 4.73e-04 - 1.00e+00 1.00e+00f 1\n", + " 11 1.0721794e+08 1.12e-08 2.07e-06 -5.7 2.63e-05 - 1.00e+00 1.00e+00f 1\n", + " 12 1.0721794e+08 3.57e-08 1.65e-06 -7.0 3.14e-07 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 12\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 1.0721793780338226e+08 1.0721793780338226e+08\n", + "Dual infeasibility......: 1.6485091371912918e-06 1.6485091371912918e-06\n", + "Constraint violation....: 4.6566128730773926e-10 3.5680419252624450e-08\n", + "Complementarity.........: 9.0909090914354020e-08 9.0909090914354020e-08\n", + "Overall NLP error.......: 9.0909090914354020e-08 1.6485091371912918e-06\n", + "\n", + "\n", + "Number of objective function evaluations = 13\n", + "Number of objective gradient evaluations = 13\n", + "Number of equality constraint evaluations = 13\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 13\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 12\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.004\n", + "Total CPU secs in NLP function evaluations = 0.011\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $107.218 million per year\n", + "\n", + "Compressor results\n", + "\n", + "====================================================================================\n", + "Unit : fs.C101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Isentropic Efficiency : 0.90000 : dimensionless : True : (None, None)\n", + " Mechanical Work : 3.0334e+06 : watt : False : (None, None)\n", + " Pressure Change : 9.0000e+05 : pascal : False : (None, None)\n", + " Pressure Ratio : 10.000 : dimensionless : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 309.01\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", + " Temperature kelvin 353.80 619.25\n", + " Pressure pascal 1.0000e+05 1.0000e+06\n", + "====================================================================================\n", + "\n", + "Heater results\n", + "\n", + "====================================================================================\n", + "Unit : fs.H101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 5.8781e-09 : watt : False : (0.0, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 309.01\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.24272\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.75725\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 9.9996e-06\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 9.9996e-06\n", + " Temperature kelvin 619.25 619.25\n", + " Pressure pascal 1.0000e+06 1.0000e+06\n", + "====================================================================================\n", + "\n", + "Gibbs reactor results\n", + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 2.1076e+07 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Total Molar Flowrate mole / second 309.01 444.02\n", + " Total Mole Fraction CH4 dimensionless 0.24272 0.016892\n", + " Total Mole Fraction H2O dimensionless 0.75725 0.31609\n", + " Total Mole Fraction H2 dimensionless 9.9996e-06 0.51498\n", + " Total Mole Fraction CO dimensionless 9.9996e-06 0.093140\n", + " Total Mole Fraction CO2 dimensionless 9.9996e-06 0.058900\n", + " Temperature kelvin 619.25 1087.4\n", + " Pressure pascal 1.0000e+06 1.0000e+06\n", + "====================================================================================\n" + ] } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.3f} million per year\")\n", + "\n", + "print()\n", + "print(\"Compressor results\")\n", + "\n", + "m.fs.C101.report()\n", + "\n", + "print()\n", + "print(\"Heater results\")\n", + "\n", + "m.fs.H101.report()\n", + "\n", + "print()\n", + "print(\"Gibbs reactor results\")\n", + "\n", + "m.fs.R101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables and design variables:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal Values\n", + "\n", + "C101 outlet pressure = 1.000 MPa\n", + "\n", + "C101 outlet temperature = 619.248 K\n", + "\n", + "H101 outlet temperature = 619.248 K\n", + "\n", + "R101 outlet temperature = 1087.385 K\n", + "\n", + "Hydrogen produced = 32.070 MM lb/year\n", + "\n", + "Conversion achieved = 90.0%\n" + ] } + ], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(f\"C101 outlet pressure = {value(m.fs.C101.outlet.pressure[0])/1E6:0.3f} MPa\")\n", + "print()\n", + "\n", + "print(f\"C101 outlet temperature = {value(m.fs.C101.outlet.temperature[0]):0.3f} K\")\n", + "print()\n", + "\n", + "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.3f} K\")\n", + "\n", + "print()\n", + "print(f\"R101 outlet temperature = {value(m.fs.R101.outlet.temperature[0]):0.3f} K\")\n", + "\n", + "print()\n", + "print(f\"Hydrogen produced = {value(m.fs.hyd_prod):0.3f} MM lb/year\")\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 3 -} \ No newline at end of file + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 3 +} diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/msr_reaction.py b/idaes_examples/notebooks/docs/unit_models/reactors/msr_reaction.py index e8a70eba..7a265ac2 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/msr_reaction.py +++ b/idaes_examples/notebooks/docs/unit_models/reactors/msr_reaction.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# """ Property package for Methane Steam Reforming and Water Gas Shift diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor.ipynb index 989a3458..c3277436 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor.ipynb @@ -1,980 +1,981 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Flowsheet Plug Flow Reactor (PFR) Simulation and Optimization of Ethylene Glycol Production\n", - "Author: Andrew Lee \n", - "Maintainer: Andrew Lee \n", - "\n", - "\n", - "## Learning Outcomes\n", - "\n", - "\n", - "- Call and implement the IDAES PFR unit model\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Following the previous example implementing a [Continuous Stirred Tank Reactor (CSTR) unit model](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/UnitModels/Reactors/cstr_testing.ipynb), we can alter the flowsheet to use a plug flow reactor (PFR). As before, this example is adapted from Fogler, H.S., Elements of Chemical Reaction Engineering 5th ed., 2016, Prentice Hall, p. 157-160 with the following chemical reaction, property packages and flowsheet. Unlike a CSTR which assumes well-mixed liquid behavior, the concentration profiles will vary spatially in one dimension. In actuality, following start-up flow reactor exhibit dynamic behavior as they approach a steady-state equilibrium; we will assume our system has already achieved steady-state behavior. The state variables chosen for the property package are **molar flows of each component by phase in each stream, temperature of each stream and pressure of each stream**. The components considered are: **ethylene oxide, water, sulfuric acid and ethylene glycol** and the process occurs in liquid phase only. Therefore, every stream has 4 flow variables, 1 temperature and 1 pressure variable.\n", - "\n", - "Chemical reaction:\n", - "\n", - "**C2H4O + H2O + H2SO4 → C2H6O2 + H2SO4**\n", - "\n", - "Property Packages:\n", - "\n", - "- egprod_ideal.py\n", - "- egprod_reaction.py\n", - "\n", - "Flowsheet\n", - "\n", - "![](egprod_flowsheet.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Pyomo and IDAES components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages. Let us first import the following components from Pyomo:\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- ConcreteModel (to create the concrete model object)\n", - "- Expression (to evaluate values as a function of variables defined in the model)\n", - "- Objective (to define an objective function for optimization)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- Arc (to connect two unit models)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n", - "\n", - "From idaes, we will be needing the `FlowsheetBlock` and the following unit models:\n", - "- Mixer\n", - "- Heater\n", - "- PFR\n", - "\n", - "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom, tools for model expressions and calling variable values, and built-in functions to define property packages, add unit containers to objects and define our initialization scheme.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " TransformationFactory,\n", - " value,\n", - " units as pyunits,\n", - ")\n", - "from pyomo.network import Arc\n", - "\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.models.properties.modular_properties import (\n", - " GenericParameterBlock,\n", - " GenericReactionParameterBlock,\n", - ")\n", - "from idaes.models.unit_models import Feed, Mixer, Heater, PFR, Product\n", - "\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Thermophysical and Reaction Packages\n", - "\n", - "The final step is to import the thermophysical and reaction packages. We have created a custom thermophysical package that support ideal vapor and liquid behavior for this system, and in this case we will restrict it to ideal liquid behavior only.\n", - "\n", - "The reaction package here assumes Arrhenius kinetic behavior for the PFR, for which $k_0$ and $E_a$ are known *a priori* (if unknown, they may be obtained using one of the parameter estimation tools within IDAES).\n", - "\n", - "$ r = -kVC_{EO} $, $ k = k_0 e^{(-E_a/RT)}$, with the variables as follows:\n", - "\n", - "$r$ - reaction rate extent in moles of ethylene oxide consumed per second; note that the traditional reaction rate would be given by $rate = r/V$ in moles per $m^3$ per second \n", - "$k$ - reaction rate constant per second \n", - "$V$ - volume of PFR in $m^3$, note that this is *liquid volume* and not the *total volume* of the reactor itself \n", - "$C_{EO}$ - bulk concentration of ethylene oxide in moles per $m^3$ (the limiting reagent, since we assume excess catalyst and water) \n", - "$k_0$ - pre-exponential Arrhenius factor per second \n", - "$E_a$ - reaction activation energy in kJ per mole of ethylene oxide consumed \n", - "$R$ - gas constant in J/mol-K \n", - "$T$ - reactor temperature in K\n", - "\n", - "These calculations are contained within the property, reaction and unit model packages, and do not need to be entered into the flowsheet. More information on property estimation may be found in the IDAES documentation on [Parameter Estimation](https://idaes-pse.readthedocs.io/en/stable/how_to_guides/workflow/data_rec_parmest.html).\n", - "\n", - "Let us import the following modules from the same directory as this Jupyter notebook:\n", - "- egprod_ideal as thermo_props\n", - "- egprod_reaction as reaction_props" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import egprod_ideal as thermo_props\n", - "import egprod_reaction as reaction_props" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need to add the property packages to the flowsheet. Unlike the basic [Flash unit model example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Tutorials/Basics/flash_unit_solution_testing.ipynb), where we only had a thermophysical property package, for this flowsheet we will also need to add a reaction property package. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) and [Modular Reaction Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-reaction-package-framework). The get_prop method for the natural gas property module automatically returns the correct dictionary using a component list argument. The GenericParameterBlock and GenericReactionParameterBlock methods build states blocks from passed parameter data; the reaction block unpacks using **reaction_props.config_dict to allow for optional or empty keyword arguments:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.thermo_params = GenericParameterBlock(**thermo_props.config_dict)\n", - "m.fs.reaction_params = GenericReactionParameterBlock(\n", - " property_package=m.fs.thermo_params, **reaction_props.config_dict\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding a `Mixer`, a `Heater` and a `PFR`. Note that all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details on [IDAES Unit Models](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/index.html). For example, the `Mixer` is given a `list` consisting of names to the two inlets." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.OXIDE = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.ACID = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params, inlet_list=[\"reagent_feed\", \"catalyst_feed\"]\n", - ")\n", - "m.fs.H101 = Heater(\n", - " property_package=m.fs.thermo_params,\n", - " has_pressure_change=False,\n", - " has_phase_equilibrium=False,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "m.fs.R101 = PFR(\n", - " property_package=m.fs.thermo_params,\n", - " reaction_package=m.fs.reaction_params,\n", - " has_equilibrium_reactions=False,\n", - " has_heat_of_reaction=True,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=False,\n", - " transformation_method=\"dae.finite_difference\",\n", - " transformation_scheme=\"BACKWARD\",\n", - " finite_elements=20,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models Using Arcs\n", - "\n", - "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the `Mixer` to the inlet of the `Heater`, and the outlet of the `Heater` to the inlet of the `PFR`. Additionally, we will connect the `Feed` and `Product` blocks to the flowsheet:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s01 = Arc(source=m.fs.OXIDE.outlet, destination=m.fs.M101.reagent_feed)\n", - "m.fs.s02 = Arc(source=m.fs.ACID.outlet, destination=m.fs.M101.catalyst_feed)\n", - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)\n", - "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", - "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have now connected the unit model block using the arcs. However, we also need to link the state variables on connected ports. Pyomo provides a convenient method `TransformationFactory` to write these equality constraints for us between two ports:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Expressions to Compute Operating Costs\n", - "\n", - "In this section, we will add a few Expressions that allows us to evaluate the performance. `Expressions` provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on `Expressions`, please refer to the [Pyomo Expression documentation]( https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html).\n", - "\n", - "For this flowsheet, we are interested in computing ethylene glycol production in millions of pounds per year, as well as the total costs due to cooling and heating utilities." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us first add an `Expression` to convert the product flow from mol/s to MM lb/year of ethylene glycol. We see that the molecular weight exists in the thermophysical property package, so we may use that value for our calculations." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.eg_prod = Expression(\n", - " expr=pyunits.convert(\n", - " m.fs.PROD.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", - " * m.fs.thermo_params.ethylene_glycol.mw, # MW defined in properties as kg/mol\n", - " to_units=pyunits.Mlb / pyunits.yr,\n", - " )\n", - ") # converting kg/s to MM lb/year" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let us add expressions to compute the reactor cooling cost (\\\\$/s) assuming a cost of 2.12E-5 \\\\$/kW, and the heating utility cost (\\\\$/s) assuming 2.2E-4 \\\\$/kW. To calculate cooling cost, it is important to note that the heat duty is not constant throughout the reactor's length and is expressed in terms of heat per length (J/m/s). This is why we utilize the trapezoid rule to calculate the total heat duty of the reactor:$Q=\\Delta x\\big(\\sum_{k=1}^{N-1}(Q_k)+\\frac{Q_N+Q_0}{2}\\big)$ \n", - "where k is the subinterval in the length domain, N is the number of intervals, and $\\Delta x$ is the length of the interval.\n", - "Note that the heat duty is in units of watt (J/s). The total operating cost will be the sum of the two, expressed in \\\\$/year, assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.cooling_cost = Expression(\n", - " expr=2.12e-8\n", - " * m.fs.R101.length\n", - " / m.fs.R101.config.finite_elements\n", - " * (\n", - " -sum(\n", - " m.fs.R101.heat_duty[0, k]\n", - " for k in m.fs.R101.control_volume.length_domain\n", - " if 0.0 <= k < 1.0\n", - " )\n", - " )\n", - " - (\n", - " value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", - " - value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)])\n", - " )\n", - " / 2\n", - ") # the reaction is exothermic, so R101 duty is negative\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", - ") # the stream must be heated to T_rxn, so H101 duty is positive\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost))\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Feed Conditions\n", - "\n", - "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. We expect each stream to have 6 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 2 unit specifications and 1 specification for each finite element. Therefore, we have 35 degrees of freedom to specify: temperature, pressure and flow of all four components on both streams; outlet heater temperature; a reactor property such as conversion or heat duty at each finite element; reactor volume and reactor length." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check the degrees of freedom\n", - "assert degrees_of_freedom(m) == 35" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be fixing the feed stream to the conditions shown in the flowsheet above. As mentioned in other tutorials, the IDAES framework expects a time index value for every referenced internal stream or unit variable, even in steady-state systems with a single time point $ t = 0 $ (`t = [0]` is the default when creating a `FlowsheetBlock` without passing a `time_set` argument). The non-present components in each stream are assigned a very small non-zero value to help with convergence and initializing. Based on stoichiometric ratios for the reaction, 80% conversion and 200 MM lb/year (46.4 mol/s) of ethylene glycol, we will initialize our simulation with the following calculated values:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", - " 58.0 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", - " 39.6 * pyunits.mol / pyunits.s\n", - ") # calculated from 16.1 mol EO / cudm in stream\n", - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.OXIDE.outlet.temperature.fix(298.15 * pyunits.K)\n", - "m.fs.OXIDE.outlet.pressure.fix(1e5 * pyunits.Pa)\n", - "\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", - " 200 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", - " 0.334 * pyunits.mol / pyunits.s\n", - ") # calculated from 0.9 wt% SA in stream\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.ACID.outlet.temperature.fix(298.15 * pyunits.K)\n", - "m.fs.ACID.outlet.pressure.fix(1e5 * pyunits.Pa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Unit Model Specifications\n", - "\n", - "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us fix the outlet temperature of H101 to 328.15 K. " - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.fix(328.15 * pyunits.K)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the `PFR`, we have to define the conversion in terms of ethylene oxide. Note that the `PFR` reaction volume variable (m.fs.R101.volume) does not need to be defined here since it is internally defined by the `PFR` model. We'll estimate 50% conversion for our initial flowsheet:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "m.fs.R101.conversion = Var(\n", - " bounds=(0, 1), initialize=0.80, units=pyunits.dimensionless\n", - ") # fraction\n", - "\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion\n", - " * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", - " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", - " )\n", - ")\n", - "\n", - "for x in m.fs.R101.control_volume.length_domain:\n", - " if x == 0:\n", - " continue\n", - " m.fs.R101.control_volume.properties[0, x].temperature.fix(\n", - " 328.15 * pyunits.K\n", - " ) # equal inlet reactor temperature\n", - "\n", - "m.fs.R101.conversion.fix(0.5)\n", - "\n", - "m.fs.R101.length.fix(1 * pyunits.m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we did not place a specification on reactor duty, the solver may try positive values to increase the reaction temperature and rate. To prevent the optimization from diverging, we need to set an upper bound restricting heat flow to cooling only:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.heat_duty.setub(\n", - " 0 * pyunits.J / pyunits.m / pyunits.s\n", - ") # heat duty is only used for cooling" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check the degrees of freedom\n", - "assert degrees_of_freedom(m) == 0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we need to initialize the each unit operation in sequence to solve the flowsheet. As in best practice, unit operations are initialized or solved, and outlet properties are propagated to connected inlet streams via arc definitions as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize and solve each unit operation\n", - "m.fs.OXIDE.initialize()\n", - "propagate_state(arc=m.fs.s01)\n", - "\n", - "m.fs.ACID.initialize()\n", - "propagate_state(arc=m.fs.s01)\n", - "\n", - "m.fs.M101.initialize()\n", - "propagate_state(arc=m.fs.s03)\n", - "\n", - "m.fs.H101.initialize()\n", - "propagate_state(arc=m.fs.s04)\n", - "\n", - "m.fs.R101.initialize()\n", - "propagate_state(arc=m.fs.s05)\n", - "\n", - "m.fs.PROD.initialize()\n", - "\n", - "# set solver\n", - "solver = get_solver()" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check solver solve status\n", - "from pyomo.environ import TerminationCondition\n", - "\n", - "assert results.solver.termination_condition == TerminationCondition.optimal" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the Results of the Square Problem\n", - "\n", - "\n", - "What is the total operating cost? " - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "import pytest\n", - "\n", - "assert value(m.fs.operating_cost) / 1e6 == pytest.approx(6.589, rel=1e-5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this operating cost, what conversion did we achieve of ethylene oxide to ethylene glycol? " - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.report()\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")\n", - "print()\n", - "print(\n", - " f\"Total heat duty required = \"\n", - " f\"\"\"{(value(m.fs.R101.length) / value(m.fs.R101.config.finite_elements) * \n", - " (value(sum(m.fs.R101.heat_duty[0, k] for k in m.fs.R101.control_volume.length_domain if 0.0 <= k < 1.0))\n", - " + (value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", - " + value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)]))/2))/1e6:0.6f}\"\"\"\n", - " f\" MJ\"\n", - ")\n", - "print()\n", - "print(f\"Tube area required = {value(m.fs.R101.area):0.6f} m^2\")\n", - "print()\n", - "print(f\"Tube length required = {value(m.fs.R101.length):0.6f} m\")\n", - "print()\n", - "print(f\"Tube volume required = {value(m.fs.R101.volume):0.6f} m^3\")" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert value(m.fs.R101.conversion) == pytest.approx(0.5000, rel=1e-5)\n", - "assert value(m.fs.R101.area) == pytest.approx(0.987071, rel=1e-5)\n", - "assert (\n", - " value(m.fs.R101.length)\n", - " / value(m.fs.R101.config.finite_elements)\n", - " * value(\n", - " sum(\n", - " m.fs.R101.heat_duty[0, k]\n", - " for k in m.fs.R101.control_volume.length_domain\n", - " if 0.0 <= k < 1.0\n", - " )\n", - " )\n", - " + (\n", - " value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", - " + value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)])\n", - " )\n", - " / 2\n", - ") / 1e6 == pytest.approx(-4.881815, rel=1e-5)\n", - "assert value(m.fs.R101.outlet.temperature[0]) / 1e2 == pytest.approx(3.2815, rel=1e-5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimizing Ethylene Glycol Production\n", - "\n", - "Now that the flowsheet has been squared and solved, we can run a small optimization problem to minimize our production costs. Suppose we require at least 200 million pounds/year of ethylene glycol produced and 90% conversion of ethylene oxide, allowing for variable reactor volume (considering operating/non-capital costs only) and reactor temperature (heater outlet)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now, as well as set bounds for the design variables:" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.eg_prod_con = Constraint(\n", - " expr=m.fs.eg_prod >= 200 * pyunits.Mlb / pyunits.yr\n", - ") # MM lb/year\n", - "m.fs.R101.conversion.fix(0.90)\n", - "\n", - "m.fs.R101.volume.setlb(0 * pyunits.m**3)\n", - "m.fs.R101.volume.setub(pyunits.convert(5000 * pyunits.gal, to_units=pyunits.m**3))\n", - "\n", - "m.fs.R101.length.unfix()\n", - "m.fs.R101.length.setlb(0 * pyunits.m)\n", - "m.fs.R101.length.setub(5 * pyunits.m)\n", - "\n", - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.H101.outlet.temperature[0].setlb(328.15 * pyunits.K)\n", - "m.fs.H101.outlet.temperature[0].setub(\n", - " 470.45 * pyunits.K\n", - ") # highest component boiling point (ethylene glycol)\n", - "\n", - "for x in m.fs.R101.control_volume.length_domain:\n", - " if x == 0:\n", - " continue\n", - " m.fs.R101.control_volume.properties[\n", - " 0, x\n", - " ].temperature.unfix() # allow for temperature change in each finite element" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert degrees_of_freedom(m) == 22 # 2 unit variables and 20 finite element variables" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Check for solver solve status\n", - "from pyomo.environ import TerminationCondition\n", - "\n", - "assert results.solver.termination_condition == TerminationCondition.optimal" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")\n", - "\n", - "print()\n", - "print(\"Heater results\")\n", - "\n", - "m.fs.H101.report()\n", - "\n", - "print()\n", - "print(\"PFR reactor results\")\n", - "\n", - "m.fs.R101.report()" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert value(m.fs.operating_cost) / 1e6 == pytest.approx(4.421530, rel=1e-5)\n", - "assert value(m.fs.R101.area) == pytest.approx(2.9300, rel=1e-5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables and design variables:" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.6f} K\")\n", - "\n", - "print()\n", - "print(\n", - " \"Total heat duty required = \",\n", - " f\"\"\"{(value(m.fs.R101.length) / value(m.fs.R101.config.finite_elements) * (value(sum(m.fs.R101.heat_duty[0, k] for k in m.fs.R101.control_volume.length_domain if 0.0 <= k < 1.0))\n", - " + (value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", - " + value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)]))/2))/1e6:0.6f}\"\"\"\n", - " f\" MJ\",\n", - ")\n", - "print()\n", - "print(f\"Tube area required = {value(m.fs.R101.area):0.6f} m^2\")\n", - "\n", - "print()\n", - "print(f\"Tube length required = {value(m.fs.R101.length):0.6f} m\")\n", - "\n", - "print()\n", - "print(\n", - " f\"Assuming a 20% design factor for reactor volume,\"\n", - " f\"total CSTR volume required = {value(1.2*m.fs.R101.volume):0.6f}\"\n", - " f\" m^3 = {value(pyunits.convert(1.2*m.fs.R101.volume, to_units=pyunits.gal)):0.6f} gal\"\n", - ")\n", - "\n", - "print()\n", - "print(f\"Ethylene glycol produced = {value(m.fs.eg_prod):0.6f} MM lb/year\")\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "assert value(m.fs.H101.outlet.temperature[0]) / 100 == pytest.approx(3.2815, rel=1e-5)\n", - "assert (\n", - " value(m.fs.R101.length)\n", - " / value(m.fs.R101.config.finite_elements)\n", - " * (\n", - " value(\n", - " sum(\n", - " m.fs.R101.heat_duty[0, k]\n", - " for k in m.fs.R101.control_volume.length_domain\n", - " if 0.0 <= k < 1.0\n", - " )\n", - " )\n", - " + (\n", - " value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", - " + value(\n", - " m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)]\n", - " )\n", - " )\n", - " / 2\n", - " )\n", - ") / 1e6 == pytest.approx(-3.789565, rel=1e-5)\n", - "assert value(m.fs.R101.area) == pytest.approx(2.930001, rel=1e-5)\n", - "assert value(m.fs.R101.control_volume.length) == pytest.approx(4.982470, rel=1e-5)\n", - "assert value(m.fs.R101.volume * 1.2) == pytest.approx(17.518369, rel=1e-5)\n", - "assert value(m.fs.eg_prod) == pytest.approx(225.415471, rel=1e-5)\n", - "assert value(m.fs.R101.conversion) * 100 == pytest.approx(90.000, rel=1e-5)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" - } - }, - "nbformat": 4, - "nbformat_minor": 4 + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Flowsheet Plug Flow Reactor (PFR) Simulation and Optimization of Ethylene Glycol Production\n", + "Author: Andrew Lee \n", + "Maintainer: Andrew Lee \n", + "\n", + "\n", + "## Learning Outcomes\n", + "\n", + "\n", + "- Call and implement the IDAES PFR unit model\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Following the previous example implementing a [Continuous Stirred Tank Reactor (CSTR) unit model](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/UnitModels/Reactors/cstr_testing.ipynb), we can alter the flowsheet to use a plug flow reactor (PFR). As before, this example is adapted from Fogler, H.S., Elements of Chemical Reaction Engineering 5th ed., 2016, Prentice Hall, p. 157-160 with the following chemical reaction, property packages and flowsheet. Unlike a CSTR which assumes well-mixed liquid behavior, the concentration profiles will vary spatially in one dimension. In actuality, following start-up flow reactor exhibit dynamic behavior as they approach a steady-state equilibrium; we will assume our system has already achieved steady-state behavior. The state variables chosen for the property package are **molar flows of each component by phase in each stream, temperature of each stream and pressure of each stream**. The components considered are: **ethylene oxide, water, sulfuric acid and ethylene glycol** and the process occurs in liquid phase only. Therefore, every stream has 4 flow variables, 1 temperature and 1 pressure variable.\n", + "\n", + "Chemical reaction:\n", + "\n", + "**C2H4O + H2O + H2SO4 → C2H6O2 + H2SO4**\n", + "\n", + "Property Packages:\n", + "\n", + "- egprod_ideal.py\n", + "- egprod_reaction.py\n", + "\n", + "Flowsheet\n", + "\n", + "![](egprod_flowsheet.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Pyomo and IDAES components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages. Let us first import the following components from Pyomo:\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- ConcreteModel (to create the concrete model object)\n", + "- Expression (to evaluate values as a function of variables defined in the model)\n", + "- Objective (to define an objective function for optimization)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- Arc (to connect two unit models)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n", + "\n", + "From idaes, we will be needing the `FlowsheetBlock` and the following unit models:\n", + "- Mixer\n", + "- Heater\n", + "- PFR\n", + "\n", + "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom, tools for model expressions and calling variable values, and built-in functions to define property packages, add unit containers to objects and define our initialization scheme.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " TransformationFactory,\n", + " value,\n", + " units as pyunits,\n", + ")\n", + "from pyomo.network import Arc\n", + "\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.models.properties.modular_properties import (\n", + " GenericParameterBlock,\n", + " GenericReactionParameterBlock,\n", + ")\n", + "from idaes.models.unit_models import Feed, Mixer, Heater, PFR, Product\n", + "\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Thermophysical and Reaction Packages\n", + "\n", + "The final step is to import the thermophysical and reaction packages. We have created a custom thermophysical package that support ideal vapor and liquid behavior for this system, and in this case we will restrict it to ideal liquid behavior only.\n", + "\n", + "The reaction package here assumes Arrhenius kinetic behavior for the PFR, for which $k_0$ and $E_a$ are known *a priori* (if unknown, they may be obtained using one of the parameter estimation tools within IDAES).\n", + "\n", + "$ r = -kVC_{EO} $, $ k = k_0 e^{(-E_a/RT)}$, with the variables as follows:\n", + "\n", + "$r$ - reaction rate extent in moles of ethylene oxide consumed per second; note that the traditional reaction rate would be given by $rate = r/V$ in moles per $m^3$ per second \n", + "$k$ - reaction rate constant per second \n", + "$V$ - volume of PFR in $m^3$, note that this is *liquid volume* and not the *total volume* of the reactor itself \n", + "$C_{EO}$ - bulk concentration of ethylene oxide in moles per $m^3$ (the limiting reagent, since we assume excess catalyst and water) \n", + "$k_0$ - pre-exponential Arrhenius factor per second \n", + "$E_a$ - reaction activation energy in kJ per mole of ethylene oxide consumed \n", + "$R$ - gas constant in J/mol-K \n", + "$T$ - reactor temperature in K\n", + "\n", + "These calculations are contained within the property, reaction and unit model packages, and do not need to be entered into the flowsheet. More information on property estimation may be found in the IDAES documentation on [Parameter Estimation](https://idaes-pse.readthedocs.io/en/stable/how_to_guides/workflow/data_rec_parmest.html).\n", + "\n", + "Let us import the following modules from the same directory as this Jupyter notebook:\n", + "- egprod_ideal as thermo_props\n", + "- egprod_reaction as reaction_props" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import egprod_ideal as thermo_props\n", + "import egprod_reaction as reaction_props" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now need to add the property packages to the flowsheet. Unlike the basic [Flash unit model example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Tutorials/Basics/flash_unit_solution_testing.ipynb), where we only had a thermophysical property package, for this flowsheet we will also need to add a reaction property package. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) and [Modular Reaction Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-reaction-package-framework). The get_prop method for the natural gas property module automatically returns the correct dictionary using a component list argument. The GenericParameterBlock and GenericReactionParameterBlock methods build states blocks from passed parameter data; the reaction block unpacks using **reaction_props.config_dict to allow for optional or empty keyword arguments:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.thermo_params = GenericParameterBlock(**thermo_props.config_dict)\n", + "m.fs.reaction_params = GenericReactionParameterBlock(\n", + " property_package=m.fs.thermo_params, **reaction_props.config_dict\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding a `Mixer`, a `Heater` and a `PFR`. Note that all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details on [IDAES Unit Models](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/index.html). For example, the `Mixer` is given a `list` consisting of names to the two inlets." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.OXIDE = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.ACID = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params, inlet_list=[\"reagent_feed\", \"catalyst_feed\"]\n", + ")\n", + "m.fs.H101 = Heater(\n", + " property_package=m.fs.thermo_params,\n", + " has_pressure_change=False,\n", + " has_phase_equilibrium=False,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "m.fs.R101 = PFR(\n", + " property_package=m.fs.thermo_params,\n", + " reaction_package=m.fs.reaction_params,\n", + " has_equilibrium_reactions=False,\n", + " has_heat_of_reaction=True,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=False,\n", + " transformation_method=\"dae.finite_difference\",\n", + " transformation_scheme=\"BACKWARD\",\n", + " finite_elements=20,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models Using Arcs\n", + "\n", + "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the `Mixer` to the inlet of the `Heater`, and the outlet of the `Heater` to the inlet of the `PFR`. Additionally, we will connect the `Feed` and `Product` blocks to the flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s01 = Arc(source=m.fs.OXIDE.outlet, destination=m.fs.M101.reagent_feed)\n", + "m.fs.s02 = Arc(source=m.fs.ACID.outlet, destination=m.fs.M101.catalyst_feed)\n", + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)\n", + "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", + "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now connected the unit model block using the arcs. However, we also need to link the state variables on connected ports. Pyomo provides a convenient method `TransformationFactory` to write these equality constraints for us between two ports:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Expressions to Compute Operating Costs\n", + "\n", + "In this section, we will add a few Expressions that allows us to evaluate the performance. `Expressions` provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on `Expressions`, please refer to the [Pyomo Expression documentation]( https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html).\n", + "\n", + "For this flowsheet, we are interested in computing ethylene glycol production in millions of pounds per year, as well as the total costs due to cooling and heating utilities." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us first add an `Expression` to convert the product flow from mol/s to MM lb/year of ethylene glycol. We see that the molecular weight exists in the thermophysical property package, so we may use that value for our calculations." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.eg_prod = Expression(\n", + " expr=pyunits.convert(\n", + " m.fs.PROD.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", + " * m.fs.thermo_params.ethylene_glycol.mw, # MW defined in properties as kg/mol\n", + " to_units=pyunits.Mlb / pyunits.yr,\n", + " )\n", + ") # converting kg/s to MM lb/year" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let us add expressions to compute the reactor cooling cost (\\\\$/s) assuming a cost of 2.12E-5 \\\\$/kW, and the heating utility cost (\\\\$/s) assuming 2.2E-4 \\\\$/kW. To calculate cooling cost, it is important to note that the heat duty is not constant throughout the reactor's length and is expressed in terms of heat per length (J/m/s). This is why we utilize the trapezoid rule to calculate the total heat duty of the reactor:$Q=\\Delta x\\big(\\sum_{k=1}^{N-1}(Q_k)+\\frac{Q_N+Q_0}{2}\\big)$ \n", + "where k is the subinterval in the length domain, N is the number of intervals, and $\\Delta x$ is the length of the interval.\n", + "Note that the heat duty is in units of watt (J/s). The total operating cost will be the sum of the two, expressed in \\\\$/year, assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.cooling_cost = Expression(\n", + " expr=2.12e-8\n", + " * m.fs.R101.length\n", + " / m.fs.R101.config.finite_elements\n", + " * (\n", + " -sum(\n", + " m.fs.R101.heat_duty[0, k]\n", + " for k in m.fs.R101.control_volume.length_domain\n", + " if 0.0 <= k < 1.0\n", + " )\n", + " )\n", + " - (\n", + " value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", + " - value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)])\n", + " )\n", + " / 2\n", + ") # the reaction is exothermic, so R101 duty is negative\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", + ") # the stream must be heated to T_rxn, so H101 duty is positive\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Feed Conditions\n", + "\n", + "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. We expect each stream to have 6 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 2 unit specifications and 1 specification for each finite element. Therefore, we have 35 degrees of freedom to specify: temperature, pressure and flow of all four components on both streams; outlet heater temperature; a reactor property such as conversion or heat duty at each finite element; reactor volume and reactor length." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check the degrees of freedom\n", + "assert degrees_of_freedom(m) == 35" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be fixing the feed stream to the conditions shown in the flowsheet above. As mentioned in other tutorials, the IDAES framework expects a time index value for every referenced internal stream or unit variable, even in steady-state systems with a single time point $ t = 0 $ (`t = [0]` is the default when creating a `FlowsheetBlock` without passing a `time_set` argument). The non-present components in each stream are assigned a very small non-zero value to help with convergence and initializing. Based on stoichiometric ratios for the reaction, 80% conversion and 200 MM lb/year (46.4 mol/s) of ethylene glycol, we will initialize our simulation with the following calculated values:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", + " 58.0 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", + " 39.6 * pyunits.mol / pyunits.s\n", + ") # calculated from 16.1 mol EO / cudm in stream\n", + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.OXIDE.outlet.temperature.fix(298.15 * pyunits.K)\n", + "m.fs.OXIDE.outlet.pressure.fix(1e5 * pyunits.Pa)\n", + "\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", + " 200 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", + " 0.334 * pyunits.mol / pyunits.s\n", + ") # calculated from 0.9 wt% SA in stream\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.ACID.outlet.temperature.fix(298.15 * pyunits.K)\n", + "m.fs.ACID.outlet.pressure.fix(1e5 * pyunits.Pa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Unit Model Specifications\n", + "\n", + "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us fix the outlet temperature of H101 to 328.15 K. " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.fix(328.15 * pyunits.K)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the `PFR`, we have to define the conversion in terms of ethylene oxide. Note that the `PFR` reaction volume variable (m.fs.R101.volume) does not need to be defined here since it is internally defined by the `PFR` model. We'll estimate 50% conversion for our initial flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "m.fs.R101.conversion = Var(\n", + " bounds=(0, 1), initialize=0.80, units=pyunits.dimensionless\n", + ") # fraction\n", + "\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion\n", + " * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", + " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", + " )\n", + ")\n", + "\n", + "for x in m.fs.R101.control_volume.length_domain:\n", + " if x == 0:\n", + " continue\n", + " m.fs.R101.control_volume.properties[0, x].temperature.fix(\n", + " 328.15 * pyunits.K\n", + " ) # equal inlet reactor temperature\n", + "\n", + "m.fs.R101.conversion.fix(0.5)\n", + "\n", + "m.fs.R101.length.fix(1 * pyunits.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we did not place a specification on reactor duty, the solver may try positive values to increase the reaction temperature and rate. To prevent the optimization from diverging, we need to set an upper bound restricting heat flow to cooling only:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.heat_duty.setub(\n", + " 0 * pyunits.J / pyunits.m / pyunits.s\n", + ") # heat duty is only used for cooling" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check the degrees of freedom\n", + "assert degrees_of_freedom(m) == 0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we need to initialize the each unit operation in sequence to solve the flowsheet. As in best practice, unit operations are initialized or solved, and outlet properties are propagated to connected inlet streams via arc definitions as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize and solve each unit operation\n", + "m.fs.OXIDE.initialize()\n", + "propagate_state(arc=m.fs.s01)\n", + "\n", + "m.fs.ACID.initialize()\n", + "propagate_state(arc=m.fs.s01)\n", + "\n", + "m.fs.M101.initialize()\n", + "propagate_state(arc=m.fs.s03)\n", + "\n", + "m.fs.H101.initialize()\n", + "propagate_state(arc=m.fs.s04)\n", + "\n", + "m.fs.R101.initialize()\n", + "propagate_state(arc=m.fs.s05)\n", + "\n", + "m.fs.PROD.initialize()\n", + "\n", + "# set solver\n", + "solver = get_solver()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check solver solve status\n", + "from pyomo.environ import TerminationCondition\n", + "\n", + "assert results.solver.termination_condition == TerminationCondition.optimal" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the Results of the Square Problem\n", + "\n", + "\n", + "What is the total operating cost? " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "import pytest\n", + "\n", + "assert value(m.fs.operating_cost) / 1e6 == pytest.approx(6.589, rel=1e-5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this operating cost, what conversion did we achieve of ethylene oxide to ethylene glycol? " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.report()\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")\n", + "print()\n", + "print(\n", + " f\"Total heat duty required = \"\n", + " f\"\"\"{(value(m.fs.R101.length) / value(m.fs.R101.config.finite_elements) * \n", + " (value(sum(m.fs.R101.heat_duty[0, k] for k in m.fs.R101.control_volume.length_domain if 0.0 <= k < 1.0))\n", + " + (value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", + " + value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)]))/2))/1e6:0.6f}\"\"\"\n", + " f\" MJ\"\n", + ")\n", + "print()\n", + "print(f\"Tube area required = {value(m.fs.R101.area):0.6f} m^2\")\n", + "print()\n", + "print(f\"Tube length required = {value(m.fs.R101.length):0.6f} m\")\n", + "print()\n", + "print(f\"Tube volume required = {value(m.fs.R101.volume):0.6f} m^3\")" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert value(m.fs.R101.conversion) == pytest.approx(0.5000, rel=1e-5)\n", + "assert value(m.fs.R101.area) == pytest.approx(0.987071, rel=1e-5)\n", + "assert (\n", + " value(m.fs.R101.length)\n", + " / value(m.fs.R101.config.finite_elements)\n", + " * value(\n", + " sum(\n", + " m.fs.R101.heat_duty[0, k]\n", + " for k in m.fs.R101.control_volume.length_domain\n", + " if 0.0 <= k < 1.0\n", + " )\n", + " )\n", + " + (\n", + " value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", + " + value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)])\n", + " )\n", + " / 2\n", + ") / 1e6 == pytest.approx(-4.881815, rel=1e-5)\n", + "assert value(m.fs.R101.outlet.temperature[0]) / 1e2 == pytest.approx(3.2815, rel=1e-5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimizing Ethylene Glycol Production\n", + "\n", + "Now that the flowsheet has been squared and solved, we can run a small optimization problem to minimize our production costs. Suppose we require at least 200 million pounds/year of ethylene glycol produced and 90% conversion of ethylene oxide, allowing for variable reactor volume (considering operating/non-capital costs only) and reactor temperature (heater outlet)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now, as well as set bounds for the design variables:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.eg_prod_con = Constraint(\n", + " expr=m.fs.eg_prod >= 200 * pyunits.Mlb / pyunits.yr\n", + ") # MM lb/year\n", + "m.fs.R101.conversion.fix(0.90)\n", + "\n", + "m.fs.R101.volume.setlb(0 * pyunits.m**3)\n", + "m.fs.R101.volume.setub(pyunits.convert(5000 * pyunits.gal, to_units=pyunits.m**3))\n", + "\n", + "m.fs.R101.length.unfix()\n", + "m.fs.R101.length.setlb(0 * pyunits.m)\n", + "m.fs.R101.length.setub(5 * pyunits.m)\n", + "\n", + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.H101.outlet.temperature[0].setlb(328.15 * pyunits.K)\n", + "m.fs.H101.outlet.temperature[0].setub(\n", + " 470.45 * pyunits.K\n", + ") # highest component boiling point (ethylene glycol)\n", + "\n", + "for x in m.fs.R101.control_volume.length_domain:\n", + " if x == 0:\n", + " continue\n", + " m.fs.R101.control_volume.properties[\n", + " 0, x\n", + " ].temperature.unfix() # allow for temperature change in each finite element" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert degrees_of_freedom(m) == 22 # 2 unit variables and 20 finite element variables" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Check for solver solve status\n", + "from pyomo.environ import TerminationCondition\n", + "\n", + "assert results.solver.termination_condition == TerminationCondition.optimal" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")\n", + "\n", + "print()\n", + "print(\"Heater results\")\n", + "\n", + "m.fs.H101.report()\n", + "\n", + "print()\n", + "print(\"PFR reactor results\")\n", + "\n", + "m.fs.R101.report()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert value(m.fs.operating_cost) / 1e6 == pytest.approx(4.421530, rel=1e-5)\n", + "assert value(m.fs.R101.area) == pytest.approx(2.9300, rel=1e-5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables and design variables:" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.6f} K\")\n", + "\n", + "print()\n", + "print(\n", + " \"Total heat duty required = \",\n", + " f\"\"\"{(value(m.fs.R101.length) / value(m.fs.R101.config.finite_elements) * (value(sum(m.fs.R101.heat_duty[0, k] for k in m.fs.R101.control_volume.length_domain if 0.0 <= k < 1.0))\n", + " + (value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", + " + value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)]))/2))/1e6:0.6f}\"\"\"\n", + " f\" MJ\",\n", + ")\n", + "print()\n", + "print(f\"Tube area required = {value(m.fs.R101.area):0.6f} m^2\")\n", + "\n", + "print()\n", + "print(f\"Tube length required = {value(m.fs.R101.length):0.6f} m\")\n", + "\n", + "print()\n", + "print(\n", + " f\"Assuming a 20% design factor for reactor volume,\"\n", + " f\"total CSTR volume required = {value(1.2*m.fs.R101.volume):0.6f}\"\n", + " f\" m^3 = {value(pyunits.convert(1.2*m.fs.R101.volume, to_units=pyunits.gal)):0.6f} gal\"\n", + ")\n", + "\n", + "print()\n", + "print(f\"Ethylene glycol produced = {value(m.fs.eg_prod):0.6f} MM lb/year\")\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "assert value(m.fs.H101.outlet.temperature[0]) / 100 == pytest.approx(3.2815, rel=1e-5)\n", + "assert (\n", + " value(m.fs.R101.length)\n", + " / value(m.fs.R101.config.finite_elements)\n", + " * (\n", + " value(\n", + " sum(\n", + " m.fs.R101.heat_duty[0, k]\n", + " for k in m.fs.R101.control_volume.length_domain\n", + " if 0.0 <= k < 1.0\n", + " )\n", + " )\n", + " + (\n", + " value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", + " + value(\n", + " m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)]\n", + " )\n", + " )\n", + " / 2\n", + " )\n", + ") / 1e6 == pytest.approx(-3.789565, rel=1e-5)\n", + "assert value(m.fs.R101.area) == pytest.approx(2.930001, rel=1e-5)\n", + "assert value(m.fs.R101.control_volume.length) == pytest.approx(4.982470, rel=1e-5)\n", + "assert value(m.fs.R101.volume * 1.2) == pytest.approx(17.518369, rel=1e-5)\n", + "assert value(m.fs.eg_prod) == pytest.approx(225.415471, rel=1e-5)\n", + "assert value(m.fs.R101.conversion) * 100 == pytest.approx(90.000, rel=1e-5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor_doc.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor_doc.ipynb index 05620386..3d9622f9 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor_doc.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor_doc.ipynb @@ -1,809 +1,1495 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Flowsheet Plug Flow Reactor (PFR) Simulation and Optimization of Ethylene Glycol Production\n", - "Author: Andrew Lee \n", - "Maintainer: Andrew Lee \n", - "\n", - "\n", - "## Learning Outcomes\n", - "\n", - "\n", - "- Call and implement the IDAES PFR unit model\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Following the previous example implementing a [Continuous Stirred Tank Reactor (CSTR) unit model](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/UnitModels/Reactors/cstr_testing_doc.md), we can alter the flowsheet to use a plug flow reactor (PFR). As before, this example is adapted from Fogler, H.S., Elements of Chemical Reaction Engineering 5th ed., 2016, Prentice Hall, p. 157-160 with the following chemical reaction, property packages and flowsheet. Unlike a CSTR which assumes well-mixed liquid behavior, the concentration profiles will vary spatially in one dimension. In actuality, following start-up flow reactor exhibit dynamic behavior as they approach a steady-state equilibrium; we will assume our system has already achieved steady-state behavior. The state variables chosen for the property package are **molar flows of each component by phase in each stream, temperature of each stream and pressure of each stream**. The components considered are: **ethylene oxide, water, sulfuric acid and ethylene glycol** and the process occurs in liquid phase only. Therefore, every stream has 4 flow variables, 1 temperature and 1 pressure variable.\n", - "\n", - "Chemical reaction:\n", - "\n", - "**C2H4O + H2O + H2SO4 \u2192 C2H6O2 + H2SO4**\n", - "\n", - "Property Packages:\n", - "\n", - "- egprod_ideal.py\n", - "- egprod_reaction.py\n", - "\n", - "Flowsheet\n", - "\n", - "![](egprod_flowsheet.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Pyomo and IDAES components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages. Let us first import the following components from Pyomo:\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- ConcreteModel (to create the concrete model object)\n", - "- Expression (to evaluate values as a function of variables defined in the model)\n", - "- Objective (to define an objective function for optimization)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- Arc (to connect two unit models)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n", - "\n", - "From idaes, we will be needing the `FlowsheetBlock` and the following unit models:\n", - "- Mixer\n", - "- Heater\n", - "- PFR\n", - "\n", - "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom, tools for model expressions and calling variable values, and built-in functions to define property packages, add unit containers to objects and define our initialization scheme.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " TransformationFactory,\n", - " value,\n", - " units as pyunits,\n", - ")\n", - "from pyomo.network import Arc\n", - "\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.models.properties.modular_properties import (\n", - " GenericParameterBlock,\n", - " GenericReactionParameterBlock,\n", - ")\n", - "from idaes.models.unit_models import Feed, Mixer, Heater, PFR, Product\n", - "\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Thermophysical and Reaction Packages\n", - "\n", - "The final step is to import the thermophysical and reaction packages. We have created a custom thermophysical package that support ideal vapor and liquid behavior for this system, and in this case we will restrict it to ideal liquid behavior only.\n", - "\n", - "The reaction package here assumes Arrhenius kinetic behavior for the PFR, for which $k_0$ and $E_a$ are known *a priori* (if unknown, they may be obtained using one of the parameter estimation tools within IDAES).\n", - "\n", - "$ r = -kVC_{EO} $, $ k = k_0 e^{(-E_a/RT)}$, with the variables as follows:\n", - "\n", - "$r$ - reaction rate extent in moles of ethylene oxide consumed per second; note that the traditional reaction rate would be given by $rate = r/V$ in moles per $m^3$ per second \n", - "$k$ - reaction rate constant per second \n", - "$V$ - volume of PFR in $m^3$, note that this is *liquid volume* and not the *total volume* of the reactor itself \n", - "$C_{EO}$ - bulk concentration of ethylene oxide in moles per $m^3$ (the limiting reagent, since we assume excess catalyst and water) \n", - "$k_0$ - pre-exponential Arrhenius factor per second \n", - "$E_a$ - reaction activation energy in kJ per mole of ethylene oxide consumed \n", - "$R$ - gas constant in J/mol-K \n", - "$T$ - reactor temperature in K\n", - "\n", - "These calculations are contained within the property, reaction and unit model packages, and do not need to be entered into the flowsheet. More information on property estimation may be found in the IDAES documentation on [Parameter Estimation](https://idaes-pse.readthedocs.io/en/stable/how_to_guides/workflow/data_rec_parmest.html).\n", - "\n", - "Let us import the following modules from the same directory as this Jupyter notebook:\n", - "- egprod_ideal as thermo_props\n", - "- egprod_reaction as reaction_props" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import egprod_ideal as thermo_props\n", - "import egprod_reaction as reaction_props" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need to add the property packages to the flowsheet. Unlike the basic [Flash unit model example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Tutorials/Basics/flash_unit_solution_testing_doc.md), where we only had a thermophysical property package, for this flowsheet we will also need to add a reaction property package. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) and [Modular Reaction Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-reaction-package-framework). The get_prop method for the natural gas property module automatically returns the correct dictionary using a component list argument. The GenericParameterBlock and GenericReactionParameterBlock methods build states blocks from passed parameter data; the reaction block unpacks using **reaction_props.config_dict to allow for optional or empty keyword arguments:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.thermo_params = GenericParameterBlock(**thermo_props.config_dict)\n", - "m.fs.reaction_params = GenericReactionParameterBlock(\n", - " property_package=m.fs.thermo_params, **reaction_props.config_dict\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding a `Mixer`, a `Heater` and a `PFR`. Note that all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details on [IDAES Unit Models](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/index.html). For example, the `Mixer` is given a `list` consisting of names to the two inlets." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.OXIDE = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.ACID = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params, inlet_list=[\"reagent_feed\", \"catalyst_feed\"]\n", - ")\n", - "m.fs.H101 = Heater(\n", - " property_package=m.fs.thermo_params,\n", - " has_pressure_change=False,\n", - " has_phase_equilibrium=False,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "m.fs.R101 = PFR(\n", - " property_package=m.fs.thermo_params,\n", - " reaction_package=m.fs.reaction_params,\n", - " has_equilibrium_reactions=False,\n", - " has_heat_of_reaction=True,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=False,\n", - " transformation_method=\"dae.finite_difference\",\n", - " transformation_scheme=\"BACKWARD\",\n", - " finite_elements=20,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models Using Arcs\n", - "\n", - "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the `Mixer` to the inlet of the `Heater`, and the outlet of the `Heater` to the inlet of the `PFR`. Additionally, we will connect the `Feed` and `Product` blocks to the flowsheet:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s01 = Arc(source=m.fs.OXIDE.outlet, destination=m.fs.M101.reagent_feed)\n", - "m.fs.s02 = Arc(source=m.fs.ACID.outlet, destination=m.fs.M101.catalyst_feed)\n", - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)\n", - "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", - "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have now connected the unit model block using the arcs. However, we also need to link the state variables on connected ports. Pyomo provides a convenient method `TransformationFactory` to write these equality constraints for us between two ports:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Expressions to Compute Operating Costs\n", - "\n", - "In this section, we will add a few Expressions that allows us to evaluate the performance. `Expressions` provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on `Expressions`, please refer to the [Pyomo Expression documentation]( https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html).\n", - "\n", - "For this flowsheet, we are interested in computing ethylene glycol production in millions of pounds per year, as well as the total costs due to cooling and heating utilities." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us first add an `Expression` to convert the product flow from mol/s to MM lb/year of ethylene glycol. We see that the molecular weight exists in the thermophysical property package, so we may use that value for our calculations." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.eg_prod = Expression(\n", - " expr=pyunits.convert(\n", - " m.fs.PROD.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", - " * m.fs.thermo_params.ethylene_glycol.mw, # MW defined in properties as kg/mol\n", - " to_units=pyunits.Mlb / pyunits.yr,\n", - " )\n", - ") # converting kg/s to MM lb/year" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let us add expressions to compute the reactor cooling cost (\\\\$/s) assuming a cost of 2.12E-5 \\\\$/kW, and the heating utility cost (\\\\$/s) assuming 2.2E-4 \\\\$/kW. To calculate cooling cost, it is important to note that the heat duty is not constant throughout the reactor's length and is expressed in terms of heat per length (J/m/s). This is why we utilize the trapezoid rule to calculate the total heat duty of the reactor:$Q=\\Delta x\\big(\\sum_{k=1}^{N-1}(Q_k)+\\frac{Q_N+Q_0}{2}\\big)$ \n", - "where k is the subinterval in the length domain, N is the number of intervals, and $\\Delta x$ is the length of the interval.\n", - "Note that the heat duty is in units of watt (J/s). The total operating cost will be the sum of the two, expressed in \\\\$/year, assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.cooling_cost = Expression(\n", - " expr=2.12e-8\n", - " * m.fs.R101.length\n", - " / m.fs.R101.config.finite_elements\n", - " * (\n", - " -sum(\n", - " m.fs.R101.heat_duty[0, k]\n", - " for k in m.fs.R101.control_volume.length_domain\n", - " if 0.0 <= k < 1.0\n", - " )\n", - " )\n", - " - (\n", - " value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", - " - value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)])\n", - " )\n", - " / 2\n", - ") # the reaction is exothermic, so R101 duty is negative\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", - ") # the stream must be heated to T_rxn, so H101 duty is positive\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost))\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Feed Conditions\n", - "\n", - "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. We expect each stream to have 6 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 2 unit specifications and 1 specification for each finite element. Therefore, we have 35 degrees of freedom to specify: temperature, pressure and flow of all four components on both streams; outlet heater temperature; a reactor property such as conversion or heat duty at each finite element; reactor volume and reactor length." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be fixing the feed stream to the conditions shown in the flowsheet above. As mentioned in other tutorials, the IDAES framework expects a time index value for every referenced internal stream or unit variable, even in steady-state systems with a single time point $ t = 0 $ (`t = [0]` is the default when creating a `FlowsheetBlock` without passing a `time_set` argument). The non-present components in each stream are assigned a very small non-zero value to help with convergence and initializing. Based on stoichiometric ratios for the reaction, 80% conversion and 200 MM lb/year (46.4 mol/s) of ethylene glycol, we will initialize our simulation with the following calculated values:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", - " 58.0 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", - " 39.6 * pyunits.mol / pyunits.s\n", - ") # calculated from 16.1 mol EO / cudm in stream\n", - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.OXIDE.outlet.temperature.fix(298.15 * pyunits.K)\n", - "m.fs.OXIDE.outlet.pressure.fix(1e5 * pyunits.Pa)\n", - "\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", - " 200 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", - " 0.334 * pyunits.mol / pyunits.s\n", - ") # calculated from 0.9 wt% SA in stream\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.ACID.outlet.temperature.fix(298.15 * pyunits.K)\n", - "m.fs.ACID.outlet.pressure.fix(1e5 * pyunits.Pa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Unit Model Specifications\n", - "\n", - "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us fix the outlet temperature of H101 to 328.15 K. " - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.fix(328.15 * pyunits.K)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the `PFR`, we have to define the conversion in terms of ethylene oxide. Note that the `PFR` reaction volume variable (m.fs.R101.volume) does not need to be defined here since it is internally defined by the `PFR` model. We'll estimate 50% conversion for our initial flowsheet:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "m.fs.R101.conversion = Var(\n", - " bounds=(0, 1), initialize=0.80, units=pyunits.dimensionless\n", - ") # fraction\n", - "\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion\n", - " * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", - " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", - " )\n", - ")\n", - "\n", - "for x in m.fs.R101.control_volume.length_domain:\n", - " if x == 0:\n", - " continue\n", - " m.fs.R101.control_volume.properties[0, x].temperature.fix(\n", - " 328.15 * pyunits.K\n", - " ) # equal inlet reactor temperature\n", - "\n", - "m.fs.R101.conversion.fix(0.5)\n", - "\n", - "m.fs.R101.length.fix(1 * pyunits.m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we did not place a specification on reactor duty, the solver may try positive values to increase the reaction temperature and rate. To prevent the optimization from diverging, we need to set an upper bound restricting heat flow to cooling only:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.heat_duty.setub(\n", - " 0 * pyunits.J / pyunits.m / pyunits.s\n", - ") # heat duty is only used for cooling" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we need to initialize the each unit operation in sequence to solve the flowsheet. As in best practice, unit operations are initialized or solved, and outlet properties are propagated to connected inlet streams via arc definitions as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize and solve each unit operation\n", - "m.fs.OXIDE.initialize()\n", - "propagate_state(arc=m.fs.s01)\n", - "\n", - "m.fs.ACID.initialize()\n", - "propagate_state(arc=m.fs.s01)\n", - "\n", - "m.fs.M101.initialize()\n", - "propagate_state(arc=m.fs.s03)\n", - "\n", - "m.fs.H101.initialize()\n", - "propagate_state(arc=m.fs.s04)\n", - "\n", - "m.fs.R101.initialize()\n", - "propagate_state(arc=m.fs.s05)\n", - "\n", - "m.fs.PROD.initialize()\n", - "\n", - "# set solver\n", - "solver = get_solver()" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the Results of the Square Problem\n", - "\n", - "\n", - "What is the total operating cost? " - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this operating cost, what conversion did we achieve of ethylene oxide to ethylene glycol? " - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.report()\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")\n", - "print()\n", - "print(\n", - " f\"Total heat duty required = \"\n", - " f\"\"\"{(value(m.fs.R101.length) / value(m.fs.R101.config.finite_elements) * \n", - " (value(sum(m.fs.R101.heat_duty[0, k] for k in m.fs.R101.control_volume.length_domain if 0.0 <= k < 1.0))\n", - " + (value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", - " + value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)]))/2))/1e6:0.6f}\"\"\"\n", - " f\" MJ\"\n", - ")\n", - "print()\n", - "print(f\"Tube area required = {value(m.fs.R101.area):0.6f} m^2\")\n", - "print()\n", - "print(f\"Tube length required = {value(m.fs.R101.length):0.6f} m\")\n", - "print()\n", - "print(f\"Tube volume required = {value(m.fs.R101.volume):0.6f} m^3\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimizing Ethylene Glycol Production\n", - "\n", - "Now that the flowsheet has been squared and solved, we can run a small optimization problem to minimize our production costs. Suppose we require at least 200 million pounds/year of ethylene glycol produced and 90% conversion of ethylene oxide, allowing for variable reactor volume (considering operating/non-capital costs only) and reactor temperature (heater outlet)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now, as well as set bounds for the design variables:" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.eg_prod_con = Constraint(\n", - " expr=m.fs.eg_prod >= 200 * pyunits.Mlb / pyunits.yr\n", - ") # MM lb/year\n", - "m.fs.R101.conversion.fix(0.90)\n", - "\n", - "m.fs.R101.volume.setlb(0 * pyunits.m**3)\n", - "m.fs.R101.volume.setub(pyunits.convert(5000 * pyunits.gal, to_units=pyunits.m**3))\n", - "\n", - "m.fs.R101.length.unfix()\n", - "m.fs.R101.length.setlb(0 * pyunits.m)\n", - "m.fs.R101.length.setub(5 * pyunits.m)\n", - "\n", - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.H101.outlet.temperature[0].setlb(328.15 * pyunits.K)\n", - "m.fs.H101.outlet.temperature[0].setub(\n", - " 470.45 * pyunits.K\n", - ") # highest component boiling point (ethylene glycol)\n", - "\n", - "for x in m.fs.R101.control_volume.length_domain:\n", - " if x == 0:\n", - " continue\n", - " m.fs.R101.control_volume.properties[\n", - " 0, x\n", - " ].temperature.unfix() # allow for temperature change in each finite element" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")\n", - "\n", - "print()\n", - "print(\"Heater results\")\n", - "\n", - "m.fs.H101.report()\n", - "\n", - "print()\n", - "print(\"PFR reactor results\")\n", - "\n", - "m.fs.R101.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables and design variables:" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.6f} K\")\n", - "\n", - "print()\n", - "print(\n", - " \"Total heat duty required = \",\n", - " f\"\"\"{(value(m.fs.R101.length) / value(m.fs.R101.config.finite_elements) * (value(sum(m.fs.R101.heat_duty[0, k] for k in m.fs.R101.control_volume.length_domain if 0.0 <= k < 1.0))\n", - " + (value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", - " + value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)]))/2))/1e6:0.6f}\"\"\"\n", - " f\" MJ\",\n", - ")\n", - "print()\n", - "print(f\"Tube area required = {value(m.fs.R101.area):0.6f} m^2\")\n", - "\n", - "print()\n", - "print(f\"Tube length required = {value(m.fs.R101.length):0.6f} m\")\n", - "\n", - "print()\n", - "print(\n", - " f\"Assuming a 20% design factor for reactor volume,\"\n", - " f\"total CSTR volume required = {value(1.2*m.fs.R101.volume):0.6f}\"\n", - " f\" m^3 = {value(pyunits.convert(1.2*m.fs.R101.volume, to_units=pyunits.gal)):0.6f} gal\"\n", - ")\n", - "\n", - "print()\n", - "print(f\"Ethylene glycol produced = {value(m.fs.eg_prod):0.6f} MM lb/year\")\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Flowsheet Plug Flow Reactor (PFR) Simulation and Optimization of Ethylene Glycol Production\n", + "Author: Andrew Lee \n", + "Maintainer: Andrew Lee \n", + "\n", + "\n", + "## Learning Outcomes\n", + "\n", + "\n", + "- Call and implement the IDAES PFR unit model\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Following the previous example implementing a [Continuous Stirred Tank Reactor (CSTR) unit model](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/UnitModels/Reactors/cstr_testing_doc.md), we can alter the flowsheet to use a plug flow reactor (PFR). As before, this example is adapted from Fogler, H.S., Elements of Chemical Reaction Engineering 5th ed., 2016, Prentice Hall, p. 157-160 with the following chemical reaction, property packages and flowsheet. Unlike a CSTR which assumes well-mixed liquid behavior, the concentration profiles will vary spatially in one dimension. In actuality, following start-up flow reactor exhibit dynamic behavior as they approach a steady-state equilibrium; we will assume our system has already achieved steady-state behavior. The state variables chosen for the property package are **molar flows of each component by phase in each stream, temperature of each stream and pressure of each stream**. The components considered are: **ethylene oxide, water, sulfuric acid and ethylene glycol** and the process occurs in liquid phase only. Therefore, every stream has 4 flow variables, 1 temperature and 1 pressure variable.\n", + "\n", + "Chemical reaction:\n", + "\n", + "**C2H4O + H2O + H2SO4 → C2H6O2 + H2SO4**\n", + "\n", + "Property Packages:\n", + "\n", + "- egprod_ideal.py\n", + "- egprod_reaction.py\n", + "\n", + "Flowsheet\n", + "\n", + "![](egprod_flowsheet.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Pyomo and IDAES components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages. Let us first import the following components from Pyomo:\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- ConcreteModel (to create the concrete model object)\n", + "- Expression (to evaluate values as a function of variables defined in the model)\n", + "- Objective (to define an objective function for optimization)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- Arc (to connect two unit models)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n", + "\n", + "From idaes, we will be needing the `FlowsheetBlock` and the following unit models:\n", + "- Mixer\n", + "- Heater\n", + "- PFR\n", + "\n", + "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom, tools for model expressions and calling variable values, and built-in functions to define property packages, add unit containers to objects and define our initialization scheme.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " TransformationFactory,\n", + " value,\n", + " units as pyunits,\n", + ")\n", + "from pyomo.network import Arc\n", + "\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.models.properties.modular_properties import (\n", + " GenericParameterBlock,\n", + " GenericReactionParameterBlock,\n", + ")\n", + "from idaes.models.unit_models import Feed, Mixer, Heater, PFR, Product\n", + "\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Thermophysical and Reaction Packages\n", + "\n", + "The final step is to import the thermophysical and reaction packages. We have created a custom thermophysical package that support ideal vapor and liquid behavior for this system, and in this case we will restrict it to ideal liquid behavior only.\n", + "\n", + "The reaction package here assumes Arrhenius kinetic behavior for the PFR, for which $k_0$ and $E_a$ are known *a priori* (if unknown, they may be obtained using one of the parameter estimation tools within IDAES).\n", + "\n", + "$ r = -kVC_{EO} $, $ k = k_0 e^{(-E_a/RT)}$, with the variables as follows:\n", + "\n", + "$r$ - reaction rate extent in moles of ethylene oxide consumed per second; note that the traditional reaction rate would be given by $rate = r/V$ in moles per $m^3$ per second \n", + "$k$ - reaction rate constant per second \n", + "$V$ - volume of PFR in $m^3$, note that this is *liquid volume* and not the *total volume* of the reactor itself \n", + "$C_{EO}$ - bulk concentration of ethylene oxide in moles per $m^3$ (the limiting reagent, since we assume excess catalyst and water) \n", + "$k_0$ - pre-exponential Arrhenius factor per second \n", + "$E_a$ - reaction activation energy in kJ per mole of ethylene oxide consumed \n", + "$R$ - gas constant in J/mol-K \n", + "$T$ - reactor temperature in K\n", + "\n", + "These calculations are contained within the property, reaction and unit model packages, and do not need to be entered into the flowsheet. More information on property estimation may be found in the IDAES documentation on [Parameter Estimation](https://idaes-pse.readthedocs.io/en/stable/how_to_guides/workflow/data_rec_parmest.html).\n", + "\n", + "Let us import the following modules from the same directory as this Jupyter notebook:\n", + "- egprod_ideal as thermo_props\n", + "- egprod_reaction as reaction_props" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import egprod_ideal as thermo_props\n", + "import egprod_reaction as reaction_props" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now need to add the property packages to the flowsheet. Unlike the basic [Flash unit model example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Tutorials/Basics/flash_unit_solution_testing_doc.md), where we only had a thermophysical property package, for this flowsheet we will also need to add a reaction property package. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) and [Modular Reaction Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-reaction-package-framework). The get_prop method for the natural gas property module automatically returns the correct dictionary using a component list argument. The GenericParameterBlock and GenericReactionParameterBlock methods build states blocks from passed parameter data; the reaction block unpacks using **reaction_props.config_dict to allow for optional or empty keyword arguments:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.thermo_params = GenericParameterBlock(**thermo_props.config_dict)\n", + "m.fs.reaction_params = GenericReactionParameterBlock(\n", + " property_package=m.fs.thermo_params, **reaction_props.config_dict\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding a `Mixer`, a `Heater` and a `PFR`. Note that all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details on [IDAES Unit Models](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/index.html). For example, the `Mixer` is given a `list` consisting of names to the two inlets." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.OXIDE = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.ACID = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params, inlet_list=[\"reagent_feed\", \"catalyst_feed\"]\n", + ")\n", + "m.fs.H101 = Heater(\n", + " property_package=m.fs.thermo_params,\n", + " has_pressure_change=False,\n", + " has_phase_equilibrium=False,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "m.fs.R101 = PFR(\n", + " property_package=m.fs.thermo_params,\n", + " reaction_package=m.fs.reaction_params,\n", + " has_equilibrium_reactions=False,\n", + " has_heat_of_reaction=True,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=False,\n", + " transformation_method=\"dae.finite_difference\",\n", + " transformation_scheme=\"BACKWARD\",\n", + " finite_elements=20,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models Using Arcs\n", + "\n", + "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the `Mixer` to the inlet of the `Heater`, and the outlet of the `Heater` to the inlet of the `PFR`. Additionally, we will connect the `Feed` and `Product` blocks to the flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s01 = Arc(source=m.fs.OXIDE.outlet, destination=m.fs.M101.reagent_feed)\n", + "m.fs.s02 = Arc(source=m.fs.ACID.outlet, destination=m.fs.M101.catalyst_feed)\n", + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)\n", + "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", + "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now connected the unit model block using the arcs. However, we also need to link the state variables on connected ports. Pyomo provides a convenient method `TransformationFactory` to write these equality constraints for us between two ports:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Expressions to Compute Operating Costs\n", + "\n", + "In this section, we will add a few Expressions that allows us to evaluate the performance. `Expressions` provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on `Expressions`, please refer to the [Pyomo Expression documentation]( https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html).\n", + "\n", + "For this flowsheet, we are interested in computing ethylene glycol production in millions of pounds per year, as well as the total costs due to cooling and heating utilities." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us first add an `Expression` to convert the product flow from mol/s to MM lb/year of ethylene glycol. We see that the molecular weight exists in the thermophysical property package, so we may use that value for our calculations." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.eg_prod = Expression(\n", + " expr=pyunits.convert(\n", + " m.fs.PROD.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", + " * m.fs.thermo_params.ethylene_glycol.mw, # MW defined in properties as kg/mol\n", + " to_units=pyunits.Mlb / pyunits.yr,\n", + " )\n", + ") # converting kg/s to MM lb/year" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let us add expressions to compute the reactor cooling cost (\\\\$/s) assuming a cost of 2.12E-5 \\\\$/kW, and the heating utility cost (\\\\$/s) assuming 2.2E-4 \\\\$/kW. To calculate cooling cost, it is important to note that the heat duty is not constant throughout the reactor's length and is expressed in terms of heat per length (J/m/s). This is why we utilize the trapezoid rule to calculate the total heat duty of the reactor:$Q=\\Delta x\\big(\\sum_{k=1}^{N-1}(Q_k)+\\frac{Q_N+Q_0}{2}\\big)$ \n", + "where k is the subinterval in the length domain, N is the number of intervals, and $\\Delta x$ is the length of the interval.\n", + "Note that the heat duty is in units of watt (J/s). The total operating cost will be the sum of the two, expressed in \\\\$/year, assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.cooling_cost = Expression(\n", + " expr=2.12e-8\n", + " * m.fs.R101.length\n", + " / m.fs.R101.config.finite_elements\n", + " * (\n", + " -sum(\n", + " m.fs.R101.heat_duty[0, k]\n", + " for k in m.fs.R101.control_volume.length_domain\n", + " if 0.0 <= k < 1.0\n", + " )\n", + " )\n", + " - (\n", + " value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", + " - value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)])\n", + " )\n", + " / 2\n", + ") # the reaction is exothermic, so R101 duty is negative\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", + ") # the stream must be heated to T_rxn, so H101 duty is positive\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Feed Conditions\n", + "\n", + "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. We expect each stream to have 6 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 2 unit specifications and 1 specification for each finite element. Therefore, we have 35 degrees of freedom to specify: temperature, pressure and flow of all four components on both streams; outlet heater temperature; a reactor property such as conversion or heat duty at each finite element; reactor volume and reactor length." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "35\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be fixing the feed stream to the conditions shown in the flowsheet above. As mentioned in other tutorials, the IDAES framework expects a time index value for every referenced internal stream or unit variable, even in steady-state systems with a single time point $ t = 0 $ (`t = [0]` is the default when creating a `FlowsheetBlock` without passing a `time_set` argument). The non-present components in each stream are assigned a very small non-zero value to help with convergence and initializing. Based on stoichiometric ratios for the reaction, 80% conversion and 200 MM lb/year (46.4 mol/s) of ethylene glycol, we will initialize our simulation with the following calculated values:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", + " 58.0 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", + " 39.6 * pyunits.mol / pyunits.s\n", + ") # calculated from 16.1 mol EO / cudm in stream\n", + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.OXIDE.outlet.temperature.fix(298.15 * pyunits.K)\n", + "m.fs.OXIDE.outlet.pressure.fix(1e5 * pyunits.Pa)\n", + "\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", + " 200 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", + " 0.334 * pyunits.mol / pyunits.s\n", + ") # calculated from 0.9 wt% SA in stream\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.ACID.outlet.temperature.fix(298.15 * pyunits.K)\n", + "m.fs.ACID.outlet.pressure.fix(1e5 * pyunits.Pa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Unit Model Specifications\n", + "\n", + "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us fix the outlet temperature of H101 to 328.15 K. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.fix(328.15 * pyunits.K)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the `PFR`, we have to define the conversion in terms of ethylene oxide. Note that the `PFR` reaction volume variable (m.fs.R101.volume) does not need to be defined here since it is internally defined by the `PFR` model. We'll estimate 50% conversion for our initial flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "m.fs.R101.conversion = Var(\n", + " bounds=(0, 1), initialize=0.80, units=pyunits.dimensionless\n", + ") # fraction\n", + "\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion\n", + " * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", + " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", + " )\n", + ")\n", + "\n", + "for x in m.fs.R101.control_volume.length_domain:\n", + " if x == 0:\n", + " continue\n", + " m.fs.R101.control_volume.properties[0, x].temperature.fix(\n", + " 328.15 * pyunits.K\n", + " ) # equal inlet reactor temperature\n", + "\n", + "m.fs.R101.conversion.fix(0.5)\n", + "\n", + "m.fs.R101.length.fix(1 * pyunits.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we did not place a specification on reactor duty, the solver may try positive values to increase the reaction temperature and rate. To prevent the optimization from diverging, we need to set an upper bound restricting heat flow to cooling only:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.heat_duty.setub(\n", + " 0 * pyunits.J / pyunits.m / pyunits.s\n", + ") # heat duty is only used for cooling" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] + } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we need to initialize the each unit operation in sequence to solve the flowsheet. As in best practice, unit operations are initialized or solved, and outlet properties are propagated to connected inlet streams via arc definitions as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.OXIDE.properties: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.OXIDE.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.OXIDE.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.OXIDE: Initialization Complete.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.ACID.properties: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.ACID.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.ACID.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.ACID: Initialization Complete.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.M101.reagent_feed_state: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.M101.reagent_feed_state: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.M101.catalyst_feed_state: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.M101.catalyst_feed_state: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.R101.control_volume.properties: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.R101.control_volume.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.R101.control_volume.reactions: Initialization Complete.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.PROD.properties: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.PROD.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.PROD.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:47 [INFO] idaes.init.fs.PROD: Initialization Complete.\n" + ] + } + ], + "source": [ + "# Initialize and solve each unit operation\n", + "m.fs.OXIDE.initialize()\n", + "propagate_state(arc=m.fs.s01)\n", + "\n", + "m.fs.ACID.initialize()\n", + "propagate_state(arc=m.fs.s01)\n", + "\n", + "m.fs.M101.initialize()\n", + "propagate_state(arc=m.fs.s03)\n", + "\n", + "m.fs.H101.initialize()\n", + "propagate_state(arc=m.fs.s04)\n", + "\n", + "m.fs.R101.initialize()\n", + "propagate_state(arc=m.fs.s05)\n", + "\n", + "m.fs.PROD.initialize()\n", + "\n", + "# set solver\n", + "solver = get_solver()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 1923\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 1323\n", + "\n", + "Total number of variables............................: 608\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 257\n", + " variables with only upper bounds: 20\n", + "Total number of equality constraints.................: 608\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.24e+06 1.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 1 0.0000000e+00 1.55e+07 2.12e+05 -1.0 1.11e+08 - 2.85e-01 9.90e-01f 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 2 0.0000000e+00 2.43e+05 5.37e+03 -1.0 1.11e+06 - 8.25e-01 9.90e-01h 1\n", + " 3 0.0000000e+00 2.41e+03 5.69e+01 -1.0 1.11e+04 - 9.90e-01 9.90e-01h 1\n", + " 4 0.0000000e+00 1.83e+01 3.21e+03 -1.0 1.10e+02 - 9.90e-01 9.92e-01h 1\n", + " 5 0.0000000e+00 3.09e-07 4.89e+03 -1.0 8.35e-01 - 9.91e-01 1.00e+00h 1\n", + "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", + "\n", + "Number of Iterations....: 5\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 1.6686898244612168e+06 1.6686898244612168e+06\n", + "Constraint violation....: 3.0919909477233887e-07 3.0919909477233887e-07\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 3.0919909477233887e-07 1.6686898244612168e+06\n", + "\n", + "\n", + "Number of objective function evaluations = 6\n", + "Number of objective gradient evaluations = 6\n", + "Number of equality constraint evaluations = 6\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 6\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 5\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.011\n", + "Total CPU secs in NLP function evaluations = 0.001\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the Results of the Square Problem\n", + "\n", + "\n", + "What is the total operating cost? " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $6.589014 million per year\n" + ] } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this operating cost, what conversion did we achieve of ethylene oxide to ethylene glycol? " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Area : 0.98707 : meter ** 2 : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Units Inlet Outlet \n", + " Molar Flowrate ('Liq', 'ethylene_oxide') mole / second 58.000 29.000\n", + " Molar Flowrate ('Liq', 'water') mole / second 239.60 210.60\n", + " Molar Flowrate ('Liq', 'sulfuric_acid') mole / second 0.33401 0.33401\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 2.0000e-05 29.000\n", + " Temperature kelvin 328.15 328.15\n", + " Pressure pascal 1.0000e+05 1.0000e+05\n", + "====================================================================================\n", + "\n", + "Conversion achieved = 50.0%\n", + "\n", + "Total heat duty required = -3.616582 MJ\n", + "\n", + "Tube area required = 0.987071 m^2\n", + "\n", + "Tube length required = 1.000000 m\n", + "\n", + "Tube volume required = 0.987071 m^3\n" + ] } + ], + "source": [ + "m.fs.R101.report()\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")\n", + "print()\n", + "print(\n", + " f\"Total heat duty required = \"\n", + " f\"\"\"{(value(m.fs.R101.length) / value(m.fs.R101.config.finite_elements) * \n", + " (value(sum(m.fs.R101.heat_duty[0, k] for k in m.fs.R101.control_volume.length_domain if 0.0 <= k < 1.0))\n", + " + (value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", + " + value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)]))/2))/1e6:0.6f}\"\"\"\n", + " f\" MJ\"\n", + ")\n", + "print()\n", + "print(f\"Tube area required = {value(m.fs.R101.area):0.6f} m^2\")\n", + "print()\n", + "print(f\"Tube length required = {value(m.fs.R101.length):0.6f} m\")\n", + "print()\n", + "print(f\"Tube volume required = {value(m.fs.R101.volume):0.6f} m^3\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimizing Ethylene Glycol Production\n", + "\n", + "Now that the flowsheet has been squared and solved, we can run a small optimization problem to minimize our production costs. Suppose we require at least 200 million pounds/year of ethylene glycol produced and 90% conversion of ethylene oxide, allowing for variable reactor volume (considering operating/non-capital costs only) and reactor temperature (heater outlet)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now, as well as set bounds for the design variables:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.eg_prod_con = Constraint(\n", + " expr=m.fs.eg_prod >= 200 * pyunits.Mlb / pyunits.yr\n", + ") # MM lb/year\n", + "m.fs.R101.conversion.fix(0.90)\n", + "\n", + "m.fs.R101.volume.setlb(0 * pyunits.m**3)\n", + "m.fs.R101.volume.setub(pyunits.convert(5000 * pyunits.gal, to_units=pyunits.m**3))\n", + "\n", + "m.fs.R101.length.unfix()\n", + "m.fs.R101.length.setlb(0 * pyunits.m)\n", + "m.fs.R101.length.setub(5 * pyunits.m)\n", + "\n", + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.H101.outlet.temperature[0].setlb(328.15 * pyunits.K)\n", + "m.fs.H101.outlet.temperature[0].setub(\n", + " 470.45 * pyunits.K\n", + ") # highest component boiling point (ethylene glycol)\n", + "\n", + "for x in m.fs.R101.control_volume.length_domain:\n", + " if x == 0:\n", + " continue\n", + " m.fs.R101.control_volume.properties[\n", + " 0, x\n", + " ].temperature.unfix() # allow for temperature change in each finite element" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 2067\n", + "Number of nonzeros in inequality constraint Jacobian.: 1\n", + "Number of nonzeros in Lagrangian Hessian.............: 1886\n", + "\n", + "Total number of variables............................: 631\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 280\n", + " variables with only upper bounds: 21\n", + "Total number of equality constraints.................: 608\n", + "Total number of inequality constraints...............: 1\n", + " inequality constraints with only lower bounds: 1\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 6.5890144e+06 3.50e+06 1.00e+02 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 6.7059537e+06 2.91e+06 8.32e+01 -1.0 2.08e+06 - 7.82e-02 1.70e-01h 1\n", + " 2 8.4754506e+06 8.20e+04 2.59e+02 -1.0 2.00e+06 - 3.84e-01 9.90e-01H 1\n", + " 3 8.5040982e+06 3.11e+03 7.65e+01 -1.0 3.92e+05 - 9.34e-01 9.91e-01h 1\n", + " 4 8.3384488e+06 4.84e+04 1.42e+04 -1.0 2.10e+07 - 1.88e-01 6.90e-02f 4\n", + " 5 8.3415720e+06 5.62e+00 1.74e+06 -1.0 1.23e+04 -4.0 4.92e-01 1.00e+00h 1\n", + " 6 8.3410277e+06 1.47e-02 1.60e+04 -1.0 1.35e+03 -4.5 9.90e-01 1.00e+00h 1\n", + " 7 8.3410335e+06 4.53e-07 1.58e+02 -1.0 2.07e+02 -5.0 9.90e-01 1.00e+00f 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 8 8.1642024e+06 5.58e+04 1.51e+02 -1.0 5.96e+07 - 4.33e-02 2.38e-02f 3\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 9 7.9601638e+06 1.53e+05 1.47e+02 -1.0 2.01e+08 - 3.09e-02 6.55e-03f 2\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 7.9944681e+06 7.58e+02 5.54e+05 -1.0 3.55e+04 -5.4 1.98e-01 1.00e+00h 1\n", + " 11 7.9909260e+06 6.67e-01 8.30e+03 -1.0 5.71e+03 -5.9 1.00e+00 1.00e+00h 1\n", + " 12 7.9907050e+06 7.35e-05 2.17e+00 -1.0 5.29e+02 -6.4 1.00e+00 1.00e+00f 1\n", + " 13 7.9898995e+06 1.05e-03 6.64e-03 -3.8 1.52e+02 -6.9 1.00e+00 1.00e+00f 1\n", + " 14 7.9874742e+06 9.47e-03 6.47e-04 -3.8 4.59e+02 -7.3 1.00e+00 1.00e+00f 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 15 7.9801953e+06 8.53e-02 1.91e-04 -5.7 1.38e+03 -7.8 1.00e+00 1.00e+00f 1\n", + " 16 7.9681969e+06 2.70e-01 5.59e-04 -5.7 4.13e+03 -8.3 1.00e+00 5.50e-01f 1\n", + " 17 7.9681103e+06 1.90e-01 4.78e+00 -5.7 1.25e+03 -8.8 1.00e+00 3.20e-01h 1\n", + " 18 7.9673275e+06 5.67e-01 7.69e-02 -5.7 3.24e+03 -9.2 1.00e+00 1.00e+00f 1\n", + " 19 7.9650200e+06 5.09e+00 1.18e-03 -5.7 9.70e+03 -9.7 1.00e+00 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 20 7.9581018e+06 4.59e+01 1.06e-02 -5.7 2.91e+04 -10.2 1.00e+00 1.00e+00f 1\n", + " 21 7.9373665e+06 4.13e+02 9.20e-02 -5.7 8.75e+04 -10.7 1.00e+00 1.00e+00f 1\n", + " 22 7.9053826e+06 1.19e+03 2.54e-01 -5.7 2.64e+05 -11.2 1.00e+00 5.15e-01f 1\n", + " 23 7.9053825e+06 1.19e+03 1.01e+00 -5.7 2.12e+05 -11.6 1.00e+00 1.51e-05h 1\n", + " 24 7.8793665e+06 3.15e+03 6.40e+00 -5.7 6.33e+05 -12.1 1.00e+00 1.00e+00f 1\n", + " 25 7.7729606e+06 6.83e+04 2.55e+00 -5.7 2.26e+06 -12.6 1.00e+00 1.00e+00f 1\n", + " 26 7.7234737e+06 9.24e+04 3.17e+00 -5.7 2.68e+07 -13.1 6.92e-01 2.72e-02f 1\n", + " 27 7.6836742e+06 7.11e+04 2.33e+00 -5.7 2.89e+06 -12.6 1.00e+00 2.90e-01h 1\n", + " 28 7.6836472e+06 7.11e+04 2.33e+00 -5.7 1.68e+07 -13.1 1.00e+00 4.18e-05h 1\n", + " 29 7.6441379e+06 5.91e+04 2.13e+00 -5.7 2.77e+06 -12.7 1.00e+00 3.53e-01h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 30 7.6438379e+06 5.91e+04 2.13e+00 -5.7 1.56e+07 -13.2 1.00e+00 6.15e-04h 1\n", + " 31 7.6055360e+06 5.59e+04 1.63e+00 -5.7 2.67e+06 -12.7 1.00e+00 4.17e-01h 1\n", + " 32 7.6047544e+06 5.58e+04 1.63e+00 -5.7 1.42e+07 -13.2 1.00e+00 2.13e-03h 1\n", + " 33 7.5683106e+06 5.88e+04 1.18e+00 -5.7 2.59e+06 -12.8 1.00e+00 4.80e-01h 1\n", + " 34 7.5676139e+06 5.87e+04 1.17e+00 -5.7 1.28e+07 -13.3 1.00e+00 2.56e-03h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 35 7.5324643e+06 6.64e+04 1.06e+00 -5.7 2.50e+06 -12.8 1.00e+00 5.62e-01h 1\n", + " 36 7.5321898e+06 6.63e+04 1.05e+00 -5.7 1.14e+07 -13.3 1.00e+00 1.37e-03h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 37 7.4975271e+06 7.83e+04 1.12e+00 -5.7 2.40e+06 -12.9 1.00e+00 6.73e-01h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 38 7.4974468e+06 7.82e+04 1.12e+00 -5.7 1.00e+07 -13.4 1.00e+00 5.40e-04h 1\n", + " 39 7.4626011e+06 9.39e+04 1.23e+00 -5.7 2.28e+06 -12.9 1.00e+00 8.13e-01h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 40 7.4625682e+06 9.38e+04 1.23e+00 -5.7 8.67e+06 -13.4 1.00e+00 2.86e-04h 1\n", + " 41 7.4257032e+06 1.16e+05 1.36e+00 -5.7 2.15e+06 -13.0 1.00e+00 9.91e-01h 1\n", + " 42 7.4256642e+06 1.16e+05 1.36e+00 -5.7 9.51e+06 -13.5 1.00e+00 3.92e-04h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 43 7.3923708e+06 1.13e+05 1.09e+00 -5.7 2.63e+06 -13.0 1.00e+00 1.00e+00h 1\n", + " 44 7.3835672e+06 1.18e+05 1.09e+00 -5.7 1.39e+07 -13.5 1.00e+00 3.68e-02h 1\n", + " 45 7.3447536e+06 1.73e+05 1.89e+00 -5.7 3.69e+06 -13.1 1.00e+00 1.00e+00h 1\n", + " 46 7.2794144e+06 3.97e+05 5.08e+00 -5.7 3.42e+07 -13.6 8.37e-01 1.28e-01h 1\n", + " 47 7.1836803e+06 5.67e+05 1.18e+01 -5.7 7.77e+06 -13.2 1.00e+00 1.00e+00h 1\n", + " 48 7.1642452e+06 9.81e+04 8.21e-01 -5.7 3.48e+06 -12.7 1.00e+00 9.29e-01h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 49 6.8513444e+06 9.88e+05 1.56e+01 -5.7 1.69e+07 -13.2 1.00e+00 6.85e-01f 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 50 6.7933193e+06 9.39e+04 5.66e+00 -5.7 6.24e+06 -12.8 1.00e+00 1.00e+00h 1\n", + " 51 6.4367558e+06 4.74e+05 7.96e+00 -5.7 2.76e+07 -13.3 1.00e+00 3.62e-01f 1\n", + " 52 6.4367197e+06 4.74e+05 7.96e+00 -5.7 1.95e+08 -13.7 1.23e-02 6.50e-06h 1\n", + " 53 5.7085573e+06 1.56e+05 5.82e+02 -5.7 3.26e+07 -13.3 3.83e-02 8.77e-01f 1\n", + " 54 5.6258506e+06 1.54e+05 5.68e+02 -5.7 8.59e+07 -13.8 2.52e-01 2.34e-02f 1\n", + " 55 5.0191648e+06 2.10e+05 5.30e+02 -5.7 2.78e+08 -14.3 1.70e-02 5.35e-02f 1\n", + " 56 5.0191357e+06 2.10e+05 5.30e+02 -5.7 1.72e+10 - 3.83e-03 4.84e-08f 1\n", + " 57 4.9655024e+06 2.10e+05 5.30e+02 -5.7 1.35e+10 - 5.69e-03 1.12e-04f 1\n", + " 58 4.8687934e+06 2.10e+05 5.29e+02 -5.7 1.62e+09 - 7.98e-02 1.60e-03f 1\n", + " 59 4.8687391e+06 2.10e+05 5.29e+02 -5.7 9.14e+08 - 1.24e-01 1.66e-06h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 60 4.7738071e+06 2.11e+05 5.27e+02 -5.7 9.41e+08 - 1.33e-08 2.92e-03f 1\n", + " 61 4.7737999e+06 2.11e+05 5.27e+02 -5.7 9.46e+05 -12.0 5.86e-01 5.36e-05h 1\n", + " 62 4.7641413e+06 1.83e+05 4.56e+02 -5.7 4.23e+05 -11.6 6.87e-01 1.36e-01h 1\n", + " 63 4.7406167e+06 1.49e+05 3.75e+02 -5.7 1.07e+06 -12.1 7.76e-01 1.82e-01h 1\n", + " 64 4.7078824e+06 6.14e+04 1.55e+02 -5.7 5.52e+05 -11.7 7.68e-01 5.90e-01h 1\n", + " 65 4.6930261e+06 5.24e+04 1.33e+02 -5.7 1.15e+06 -12.1 9.03e-01 1.47e-01h 1\n", + " 66 4.6703240e+06 5.24e+04 1.33e+02 -5.7 2.77e+11 - 8.46e-09 2.52e-06f 1\n", + " 67 4.6703200e+06 5.24e+04 1.33e+02 -5.7 6.58e+06 -12.6 3.59e-06 1.04e-05h 1\n", + " 68 4.6703175e+06 5.24e+04 1.33e+02 -5.7 1.38e+07 -13.1 1.03e-01 5.51e-06f 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 69 4.6315831e+06 5.24e+04 1.32e+02 -5.7 1.07e+09 - 8.92e-02 1.11e-03f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 70 4.6315829e+06 5.24e+04 1.32e+02 -5.7 4.58e+06 -12.7 5.74e-01 8.86e-07h 2\n", + " 71 4.5662699e+06 5.23e+04 1.32e+02 -5.7 8.61e+08 - 1.26e-01 2.33e-03f 1\n", + " 72 4.4663666e+06 5.07e+04 1.28e+02 -5.7 1.04e+08 - 2.48e-03 3.07e-02f 1\n", + " 73 4.4482155e+06 5.06e+04 1.28e+02 -5.7 1.79e+08 - 4.82e-03 3.05e-03f 1\n", + " 74 4.4215601e+06 4.95e+04 1.25e+02 -5.7 4.38e+07 - 5.72e-03 2.40e-02f 1\n", + " 75 4.4215563e+06 4.54e+04 1.14e+02 -5.7 6.87e+05 - 9.99e-01 8.35e-02h 1\n", + " 76 4.4215319e+06 2.27e+05 1.60e+00 -5.7 1.25e+06 - 1.00e+00 1.00e+00f 1\n", + " 77 4.4215311e+06 1.50e+01 1.04e-02 -5.7 5.87e+04 - 9.99e-01 1.00e+00h 1\n", + " 78 4.4215311e+06 4.71e+02 1.42e-02 -5.7 1.68e+05 -13.1 1.00e+00 1.00e+00h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 79 4.4215310e+06 3.62e-03 4.02e-03 -5.7 4.58e+02 -12.7 9.96e-01 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 80 4.4215310e+06 2.46e+05 3.71e-03 -5.7 1.51e+07 - 9.95e-01 9.26e-02h 1\n", + " 81 4.4215310e+06 3.27e+03 4.82e-04 -5.7 2.76e+05 - 8.11e-01 1.00e+00h 1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 82 4.4215310e+06 2.85e+02 1.58e-05 -5.7 2.70e+05 - 1.00e+00 1.00e+00h 1\n", + " 83 4.4215310e+06 3.75e-01 7.37e-08 -5.7 7.05e+03 - 1.00e+00 1.00e+00h 1\n", + " 84 4.4215310e+06 5.32e-03 6.75e-11 -5.7 1.14e+03 - 1.00e+00 1.00e+00h 1\n", + " 85 4.4215302e+06 3.10e-07 3.75e-10 -8.6 2.39e+01 - 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 85\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 2.0399370128875694e+02 4.4215302056112001e+06\n", + "Dual infeasibility......: 3.7511146302236229e-10 8.1304797831804192e-06\n", + "Constraint violation....: 3.0989758670330048e-07 3.0989758670330048e-07\n", + "Complementarity.........: 2.5107403638322330e-09 5.4419887903388504e-05\n", + "Overall NLP error.......: 3.0989758670330048e-07 5.4419887903388504e-05\n", + "\n", + "\n", + "Number of objective function evaluations = 100\n", + "Number of objective gradient evaluations = 86\n", + "Number of equality constraint evaluations = 100\n", + "Number of inequality constraint evaluations = 100\n", + "Number of equality constraint Jacobian evaluations = 86\n", + "Number of inequality constraint Jacobian evaluations = 86\n", + "Number of Lagrangian Hessian evaluations = 85\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.220\n", + "Total CPU secs in NLP function evaluations = 0.022\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $4.421530 million per year\n", + "\n", + "Heater results\n", + "\n", + "====================================================================================\n", + "Unit : fs.H101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 6.9784e+05 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Molar Flowrate ('Liq', 'ethylene_oxide') mole / second 58.000 58.000\n", + " Molar Flowrate ('Liq', 'water') mole / second 239.60 239.60\n", + " Molar Flowrate ('Liq', 'sulfuric_acid') mole / second 0.33401 0.33401\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 2.0000e-05 2.0000e-05\n", + " Temperature kelvin 298.15 328.15\n", + " Pressure pascal 1.0000e+05 1.0000e+05\n", + "====================================================================================\n", + "\n", + "PFR reactor results\n", + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Area : 2.9300 : meter ** 2 : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Molar Flowrate ('Liq', 'ethylene_oxide') mole / second 58.000 5.8000\n", + " Molar Flowrate ('Liq', 'water') mole / second 239.60 187.40\n", + " Molar Flowrate ('Liq', 'sulfuric_acid') mole / second 0.33401 0.33401\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 2.0000e-05 52.200\n", + " Temperature kelvin 328.15 286.11\n", + " Pressure pascal 1.0000e+05 1.0000e+05\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")\n", + "\n", + "print()\n", + "print(\"Heater results\")\n", + "\n", + "m.fs.H101.report()\n", + "\n", + "print()\n", + "print(\"PFR reactor results\")\n", + "\n", + "m.fs.R101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables and design variables:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal Values\n", + "\n", + "H101 outlet temperature = 328.150000 K\n", + "\n", + "Total heat duty required = -3.789584 MJ\n", + "\n", + "Tube area required = 2.930000 m^2\n", + "\n", + "Tube length required = 4.982471 m\n", + "\n", + "Assuming a 20% design factor for reactor volume,total CSTR volume required = 17.518364 m^3 = 4627.862142 gal\n", + "\n", + "Ethylene glycol produced = 225.415471 MM lb/year\n", + "\n", + "Conversion achieved = 90.0%\n" + ] + } + ], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.6f} K\")\n", + "\n", + "print()\n", + "print(\n", + " \"Total heat duty required = \",\n", + " f\"\"\"{(value(m.fs.R101.length) / value(m.fs.R101.config.finite_elements) * (value(sum(m.fs.R101.heat_duty[0, k] for k in m.fs.R101.control_volume.length_domain if 0.0 <= k < 1.0))\n", + " + (value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(1)])\n", + " + value(m.fs.R101.heat_duty[0, m.fs.R101.control_volume.length_domain.at(-1)]))/2))/1e6:0.6f}\"\"\"\n", + " f\" MJ\",\n", + ")\n", + "print()\n", + "print(f\"Tube area required = {value(m.fs.R101.area):0.6f} m^2\")\n", + "\n", + "print()\n", + "print(f\"Tube length required = {value(m.fs.R101.length):0.6f} m\")\n", + "\n", + "print()\n", + "print(\n", + " f\"Assuming a 20% design factor for reactor volume,\"\n", + " f\"total CSTR volume required = {value(1.2*m.fs.R101.volume):0.6f}\"\n", + " f\" m^3 = {value(pyunits.convert(1.2*m.fs.R101.volume, to_units=pyunits.gal)):0.6f} gal\"\n", + ")\n", + "\n", + "print()\n", + "print(f\"Ethylene glycol produced = {value(m.fs.eg_prod):0.6f} MM lb/year\")\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 3 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor_test.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor_test.ipynb index 76d32312..bfcc247e 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor_test.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor_usr.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor_usr.ipynb index 30984465..db4aeb49 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor_usr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/plug_flow_reactor_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor.ipynb index b0ed3611..b250015c 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor_doc.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor_doc.ipynb index 99443416..a3276966 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor_doc.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor_doc.ipynb @@ -1,693 +1,1216 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "# Flowsheet Stoichiometric Reactor Simulation and Optimization of Ethylene Glycol Production\n", - "Author: Brandon Paul \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "## Learning Outcomes\n", - "\n", - "\n", - "- Call and implement the IDAES StochiometricReactor unit model\n", - "- Construct a steady-state flowsheet using the IDAES unit model library\n", - "- Connecting unit models in a flowsheet using Arcs\n", - "- Fomulate and solve an optimization problem\n", - " - Defining an objective function\n", - " - Setting variable bounds\n", - " - Adding additional constraints \n", - "\n", - "\n", - "## Problem Statement\n", - "\n", - "Following the previous example implementing a [Continuous Stirred Tank Reactor (CSTR) unit model](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/UnitModels/Reactors/cstr_testing_doc.md), we can alter the flowsheet to use a stochiometric (or yield) reactor. As before, this example is adapted from Fogler, H.S., Elements of Chemical Reaction Engineering 5th ed., 2016, Prentice Hall, p. 157-160 with the following chemical reaction, property packages and flowsheet. Unlike the previous two reactors which apply performance equations to calculate reaction extent, this simplified reactor model neglects all geometric properties and allows the user to specify a yield per reaction. The state variables chosen for the property package are **molar flows of each component by phase in each stream, temperature of each stream and pressure of each stream**. The components considered are: **ethylene oxide, water, sulfuric acid and ethylene glycol** and the process occurs in liquid phase only. Therefore, every stream has 4 flow variables, 1 temperature and 1 pressure variable.\n", - "\n", - "Chemical reaction:\n", - "\n", - "**C2H4O + H2O + H2SO4 \u2192 C2H6O2 + H2SO4**\n", - "\n", - "Property Packages:\n", - "\n", - "- egprod_ideal.py\n", - "- egprod_reaction.py\n", - "\n", - "Flowsheet:\n", - "\n", - "![](egprod_flowsheet.png)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Pyomo and IDAES components\n", - "\n", - "\n", - "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages. Let us first import the following components from Pyomo:\n", - "- Constraint (to write constraints)\n", - "- Var (to declare variables)\n", - "- ConcreteModel (to create the concrete model object)\n", - "- Expression (to evaluate values as a function of variables defined in the model)\n", - "- Objective (to define an objective function for optimization)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- Arc (to connect two unit models)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n", - "\n", - "From idaes, we will be needing the `FlowsheetBlock` and the following unit models:\n", - "- Mixer\n", - "- Heater\n", - "- StoichiometricReactor\n", - "\n", - "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom, tools for model expressions and calling variable values, and built-in functions to define property packages, add unit containers to objects and define our initialization scheme.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " Constraint,\n", - " Var,\n", - " ConcreteModel,\n", - " Expression,\n", - " Objective,\n", - " TransformationFactory,\n", - " value,\n", - " units as pyunits,\n", - ")\n", - "from pyomo.network import Arc\n", - "\n", - "from idaes.core import FlowsheetBlock\n", - "from idaes.models.properties.modular_properties.base.generic_property import (\n", - " GenericParameterBlock,\n", - ")\n", - "from idaes.models.properties.modular_properties.base.generic_reaction import (\n", - " GenericReactionParameterBlock,\n", - ")\n", - "from idaes.models.unit_models import Feed, Mixer, Heater, StoichiometricReactor, Product\n", - "\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "from idaes.core.util.initialization import propagate_state" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importing Required Thermophysical and Reaction Packages\n", - "\n", - "The final step is to import the thermophysical and reaction packages. We have created a custom thermophysical package that support ideal vapor and liquid behavior for this system, and in this case we will restrict it to ideal liquid behavior only. \n", - "\n", - "Let us import the following modules from the same directory as this Jupyter notebook:\n", - "- egprod_ideal as thermo_props\n", - "- egprod_reaction as reaction_props" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import egprod_ideal as thermo_props\n", - "import egprod_reaction as reaction_props" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Constructing the Flowsheet\n", - "\n", - "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()\n", - "m.fs = FlowsheetBlock(dynamic=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need to add the property packages to the flowsheet. Unlike the basic [Flash unit model example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Tutorials/Basics/flash_unit_solution_testing_doc.md), where we only had a thermophysical property package, for this flowsheet we will also need to add a reaction property package. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) and [Modular Reaction Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-reaction-package-framework). The get_prop method for the natural gas property module automatically returns the correct dictionary using a component list argument. The GenericParameterBlock and GenericReactionParameterBlock methods build states blocks from passed parameter data; the reaction block unpacks using **reaction_props.config_dict to allow for optional or empty keyword arguments:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.thermo_params = GenericParameterBlock(**thermo_props.config_dict)\n", - "m.fs.reaction_params = GenericReactionParameterBlock(\n", - " property_package=m.fs.thermo_params, **reaction_props.config_dict\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Unit Models\n", - "\n", - "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding a `Mixer`, a `Heater` and a `StoichiometricReactor`. Note that all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details on [IDAES Unit Models](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/index.html). For example, the `Mixer` is given a `list` consisting of names to the two inlets." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "m.fs.OXIDE = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.ACID = Feed(property_package=m.fs.thermo_params)\n", - "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", - "m.fs.M101 = Mixer(\n", - " property_package=m.fs.thermo_params, inlet_list=[\"reagent_feed\", \"catalyst_feed\"]\n", - ")\n", - "m.fs.H101 = Heater(\n", - " property_package=m.fs.thermo_params,\n", - " has_pressure_change=False,\n", - " has_phase_equilibrium=False,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101 = StoichiometricReactor(\n", - " property_package=m.fs.thermo_params,\n", - " reaction_package=m.fs.reaction_params,\n", - " has_heat_of_reaction=True,\n", - " has_heat_transfer=True,\n", - " has_pressure_change=False,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Connecting Unit Models Using Arcs\n", - "\n", - "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the `Mixer` to the inlet of the `Heater`, and the outlet of the `Heater` to the inlet of the `StoichiometricReactor`. Additionally, we will connect the `Feed` and `Product` blocks to the flowsheet:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.s01 = Arc(source=m.fs.OXIDE.outlet, destination=m.fs.M101.reagent_feed)\n", - "m.fs.s02 = Arc(source=m.fs.ACID.outlet, destination=m.fs.M101.catalyst_feed)\n", - "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)\n", - "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", - "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have now connected the unit model block using the arcs. However, we also need to link the state variables on connected ports. Pyomo provides a convenient method `TransformationFactory` to write these equality constraints for us between two ports:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "TransformationFactory(\"network.expand_arcs\").apply_to(m)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding Expressions to Compute Operating Costs\n", - "\n", - "In this section, we will add a few Expressions that allows us to evaluate the performance. `Expressions` provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on `Expressions`, please refer to the [Pyomo Expression documentation]( https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html).\n", - "\n", - "For this flowsheet, we are interested in computing ethylene glycol production in millions of pounds per year, as well as the total costs due to cooling and heating utilities." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us first add an `Expression` to convert the product flow from mol/s to MM lb/year of ethylene glycol. We see that the molecular weight exists in the thermophysical property package, so we may use that value for our calculations." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.eg_prod = Expression(\n", - " expr=pyunits.convert(\n", - " m.fs.PROD.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", - " * m.fs.thermo_params.ethylene_glycol.mw, # MW defined in properties as kg/mol\n", - " to_units=pyunits.Mlb / pyunits.yr,\n", - " )\n", - ") # converting kg/s to MM lb/year" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let us add expressions to compute the reactor cooling cost (\\\\$/s) assuming a cost of 2.12E-5 \\\\$/kW, and the heating utility cost (\\\\$/s) assuming 2.2E-4 \\\\$/kW. Note that the heat duty is in units of watt (J/s). The total operating cost will be the sum of the two, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.cooling_cost = Expression(\n", - " expr=2.12e-8 * (-m.fs.R101.heat_duty[0])\n", - ") # the reaction is exothermic, so R101 duty is negative\n", - "m.fs.heating_cost = Expression(\n", - " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", - ") # the stream must be heated to T_rxn, so H101 duty is positive\n", - "m.fs.operating_cost = Expression(\n", - " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost))\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Feed Conditions\n", - "\n", - "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. We expect each stream to have 6 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (duty or overall conversion, since the inlet is also the outlet of H101). In this case, the reactor has an extra degree of freedom since we have not yet defined the yield of the sole rate-kinetics reaction. Therefore, we have 15 degrees of freedom to specify: temperature, pressure and flow of all four components on both streams; outlet heater temperature; reactor conversion and duty." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now be fixing the feed stream to the conditions shown in the flowsheet above. As mentioned in other tutorials, the IDAES framework expects a time index value for every referenced internal stream or unit variable, even in steady-state systems with a single time point $ t = 0 $ (`t = [0]` is the default when creating a `FlowsheetBlock` without passing a `time_set` argument). The non-present components in each stream are assigned a very small non-zero value to help with convergence and initializing. Based on stoichiometric ratios for the reaction, 80% conversion and 200 MM lb/year (46.4 mol/s) of ethylene glycol, we will initialize our simulation with the following calculated values:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", - " 58.0 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", - " 39.6 * pyunits.mol / pyunits.s\n", - ") # calculated from 16.1 mol EO / cudm in stream\n", - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.OXIDE.outlet.temperature.fix(298.15 * pyunits.K)\n", - "m.fs.OXIDE.outlet.pressure.fix(1e5 * pyunits.Pa)\n", - "\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", - " 200 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", - " 0.334 * pyunits.mol / pyunits.s\n", - ") # calculated from 0.9 wt% SA in stream\n", - "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", - " 1e-5 * pyunits.mol / pyunits.s\n", - ")\n", - "m.fs.ACID.outlet.temperature.fix(298.15 * pyunits.K)\n", - "m.fs.ACID.outlet.pressure.fix(1e5 * pyunits.Pa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fixing Unit Model Specifications\n", - "\n", - "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us fix the outlet temperature of H101 to 328.15 K. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.H101.outlet.temperature.fix(328.15 * pyunits.K)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will need to specify both initial reactant extent (conversion or yield) and heat duty values (these are the only two free variables to choose from). The reaction extent can be specified directly, as a molar or mass yield ratio of product to a particular reactant, or fractional conversion of a particular reactant. Here, we choose fractional conversion in terms of ethylene oxide. Since heat duty and the outlet reactor temperature are interdependent, we can choose to specify this quantity instead. While the reaction kinetic parameters exist in the property package, we also do not need to add a rate constant expression since generation is explicitly defined through the conversion/yield. Note that our initial problem will solve with zero *temperature change* but will be infeasible with zero *heat duty*; this is due to the heat of reaction enforced by allowing heat transfer and mandating a non-zero conversion." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.conversion = Var(\n", - " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", - ") # fraction\n", - "\n", - "m.fs.R101.conv_constraint = Constraint(\n", - " expr=m.fs.R101.conversion\n", - " * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", - " == (\n", - " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", - " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", - " )\n", - ")\n", - "\n", - "m.fs.R101.conversion.fix(0.80)\n", - "\n", - "m.fs.R101.outlet.temperature.fix(328.15 * pyunits.K) # equal inlet reactor temperature" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(degrees_of_freedom(m))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we need to initialize the each unit operation in sequence to solve the flowsheet. As in best practice, unit operations are initialized or solved, and outlet properties are propagated to connected inlet streams via arc definitions as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize and solve each unit operation\n", - "m.fs.OXIDE.initialize()\n", - "propagate_state(arc=m.fs.s01)\n", - "\n", - "m.fs.ACID.initialize()\n", - "propagate_state(arc=m.fs.s01)\n", - "\n", - "m.fs.M101.initialize()\n", - "propagate_state(arc=m.fs.s03)\n", - "\n", - "m.fs.H101.initialize()\n", - "propagate_state(arc=m.fs.s04)\n", - "\n", - "m.fs.R101.initialize()\n", - "propagate_state(arc=m.fs.s05)\n", - "\n", - "m.fs.PROD.initialize()\n", - "\n", - "# set solver\n", - "solver = get_solver()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "# Solve the model\n", - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analyze the Results of the Square Problem\n", - "\n", - "\n", - "What is the total operating cost? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this operating cost, what conversion did we achieve of ethylene oxide to ethylene glycol? " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.R101.report()\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimizing Ethylene Glycol Production\n", - "\n", - "Now that the flowsheet has been squared and solved, we can run a small optimization problem to minimize our production costs. Suppose we require at least 200 million pounds/year of ethylene glycol produced and 90% conversion of ethylene oxide, allowing for variable and reactor temperature (heater outlet)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us declare our objective function for this problem. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.objective = Objective(expr=m.fs.operating_cost)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now, as well as set bounds for the design variables (reactor outlet temperature is set by state variable bounds in property package):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.fs.eg_prod_con = Constraint(\n", - " expr=m.fs.eg_prod >= 200 * pyunits.Mlb / pyunits.yr\n", - ") # MM lb/year\n", - "m.fs.R101.conversion.fix(0.90)\n", - "\n", - "m.fs.H101.outlet.temperature.unfix()\n", - "m.fs.H101.outlet.temperature[0].setlb(328.15 * pyunits.K)\n", - "m.fs.H101.outlet.temperature[0].setub(\n", - " 470.45 * pyunits.K\n", - ") # highest component boiling point (ethylene glycol)\n", - "\n", - "m.fs.R101.outlet.temperature.unfix()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "We have now defined the optimization problem and we are now ready to solve this problem. \n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "results = solver.solve(m, tee=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")\n", - "\n", - "print()\n", - "print(\"Heater results\")\n", - "\n", - "m.fs.H101.report()\n", - "\n", - "print()\n", - "print(\"Stoichiometric reactor results\")\n", - "\n", - "m.fs.R101.report()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Display optimal values for the decision variables and design variables:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Optimal Values\")\n", - "print()\n", - "\n", - "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.6f} K\")\n", - "\n", - "print()\n", - "print(f\"R101 outlet temperature = {value(m.fs.R101.outlet.temperature[0]):0.6f} K\")\n", - "\n", - "print()\n", - "print(f\"Ethylene glycol produced = {value(m.fs.eg_prod):0.6f} MM lb/year\")\n", - "\n", - "print()\n", - "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# Flowsheet Stoichiometric Reactor Simulation and Optimization of Ethylene Glycol Production\n", + "Author: Brandon Paul \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "## Learning Outcomes\n", + "\n", + "\n", + "- Call and implement the IDAES StochiometricReactor unit model\n", + "- Construct a steady-state flowsheet using the IDAES unit model library\n", + "- Connecting unit models in a flowsheet using Arcs\n", + "- Fomulate and solve an optimization problem\n", + " - Defining an objective function\n", + " - Setting variable bounds\n", + " - Adding additional constraints \n", + "\n", + "\n", + "## Problem Statement\n", + "\n", + "Following the previous example implementing a [Continuous Stirred Tank Reactor (CSTR) unit model](http://localhost:8888/notebooks/GitHub/examples-pse/src/Examples/UnitModels/Reactors/cstr_testing_doc.md), we can alter the flowsheet to use a stochiometric (or yield) reactor. As before, this example is adapted from Fogler, H.S., Elements of Chemical Reaction Engineering 5th ed., 2016, Prentice Hall, p. 157-160 with the following chemical reaction, property packages and flowsheet. Unlike the previous two reactors which apply performance equations to calculate reaction extent, this simplified reactor model neglects all geometric properties and allows the user to specify a yield per reaction. The state variables chosen for the property package are **molar flows of each component by phase in each stream, temperature of each stream and pressure of each stream**. The components considered are: **ethylene oxide, water, sulfuric acid and ethylene glycol** and the process occurs in liquid phase only. Therefore, every stream has 4 flow variables, 1 temperature and 1 pressure variable.\n", + "\n", + "Chemical reaction:\n", + "\n", + "**C2H4O + H2O + H2SO4 → C2H6O2 + H2SO4**\n", + "\n", + "Property Packages:\n", + "\n", + "- egprod_ideal.py\n", + "- egprod_reaction.py\n", + "\n", + "Flowsheet:\n", + "\n", + "![](egprod_flowsheet.png)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Pyomo and IDAES components\n", + "\n", + "\n", + "To construct a flowsheet, we will need several components from the Pyomo and IDAES packages. Let us first import the following components from Pyomo:\n", + "- Constraint (to write constraints)\n", + "- Var (to declare variables)\n", + "- ConcreteModel (to create the concrete model object)\n", + "- Expression (to evaluate values as a function of variables defined in the model)\n", + "- Objective (to define an objective function for optimization)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- Arc (to connect two unit models)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/stable/\n", + "\n", + "From idaes, we will be needing the `FlowsheetBlock` and the following unit models:\n", + "- Mixer\n", + "- Heater\n", + "- StoichiometricReactor\n", + "\n", + "We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom, tools for model expressions and calling variable values, and built-in functions to define property packages, add unit containers to objects and define our initialization scheme.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " Constraint,\n", + " Var,\n", + " ConcreteModel,\n", + " Expression,\n", + " Objective,\n", + " TransformationFactory,\n", + " value,\n", + " units as pyunits,\n", + ")\n", + "from pyomo.network import Arc\n", + "\n", + "from idaes.core import FlowsheetBlock\n", + "from idaes.models.properties.modular_properties.base.generic_property import (\n", + " GenericParameterBlock,\n", + ")\n", + "from idaes.models.properties.modular_properties.base.generic_reaction import (\n", + " GenericReactionParameterBlock,\n", + ")\n", + "from idaes.models.unit_models import Feed, Mixer, Heater, StoichiometricReactor, Product\n", + "\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "from idaes.core.util.initialization import propagate_state" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Required Thermophysical and Reaction Packages\n", + "\n", + "The final step is to import the thermophysical and reaction packages. We have created a custom thermophysical package that support ideal vapor and liquid behavior for this system, and in this case we will restrict it to ideal liquid behavior only. \n", + "\n", + "Let us import the following modules from the same directory as this Jupyter notebook:\n", + "- egprod_ideal as thermo_props\n", + "- egprod_reaction as reaction_props" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import egprod_ideal as thermo_props\n", + "import egprod_reaction as reaction_props" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constructing the Flowsheet\n", + "\n", + "We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()\n", + "m.fs = FlowsheetBlock(dynamic=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now need to add the property packages to the flowsheet. Unlike the basic [Flash unit model example](http://localhost:8888/notebooks/GitHub/examples-pse/src/Tutorials/Basics/flash_unit_solution_testing_doc.md), where we only had a thermophysical property package, for this flowsheet we will also need to add a reaction property package. We will use the [Modular Property Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-property-package-framework) and [Modular Reaction Framework](https://idaes-pse.readthedocs.io/en/stable/explanations/components/property_package/index.html#generic-reaction-package-framework). The get_prop method for the natural gas property module automatically returns the correct dictionary using a component list argument. The GenericParameterBlock and GenericReactionParameterBlock methods build states blocks from passed parameter data; the reaction block unpacks using **reaction_props.config_dict to allow for optional or empty keyword arguments:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.thermo_params = GenericParameterBlock(**thermo_props.config_dict)\n", + "m.fs.reaction_params = GenericReactionParameterBlock(\n", + " property_package=m.fs.thermo_params, **reaction_props.config_dict\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Unit Models\n", + "\n", + "Let us start adding the unit models we have imported to the flowsheet. Here, we are adding a `Mixer`, a `Heater` and a `StoichiometricReactor`. Note that all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details on [IDAES Unit Models](https://idaes-pse.readthedocs.io/en/stable/reference_guides/model_libraries/index.html). For example, the `Mixer` is given a `list` consisting of names to the two inlets." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "m.fs.OXIDE = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.ACID = Feed(property_package=m.fs.thermo_params)\n", + "m.fs.PROD = Product(property_package=m.fs.thermo_params)\n", + "m.fs.M101 = Mixer(\n", + " property_package=m.fs.thermo_params, inlet_list=[\"reagent_feed\", \"catalyst_feed\"]\n", + ")\n", + "m.fs.H101 = Heater(\n", + " property_package=m.fs.thermo_params,\n", + " has_pressure_change=False,\n", + " has_phase_equilibrium=False,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101 = StoichiometricReactor(\n", + " property_package=m.fs.thermo_params,\n", + " reaction_package=m.fs.reaction_params,\n", + " has_heat_of_reaction=True,\n", + " has_heat_transfer=True,\n", + " has_pressure_change=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Connecting Unit Models Using Arcs\n", + "\n", + "We have now added all the unit models we need to the flowsheet. However, we have not yet specified how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the `Mixer` to the inlet of the `Heater`, and the outlet of the `Heater` to the inlet of the `StoichiometricReactor`. Additionally, we will connect the `Feed` and `Product` blocks to the flowsheet:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.s01 = Arc(source=m.fs.OXIDE.outlet, destination=m.fs.M101.reagent_feed)\n", + "m.fs.s02 = Arc(source=m.fs.ACID.outlet, destination=m.fs.M101.catalyst_feed)\n", + "m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet)\n", + "m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet)\n", + "m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.PROD.inlet)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now connected the unit model block using the arcs. However, we also need to link the state variables on connected ports. Pyomo provides a convenient method `TransformationFactory` to write these equality constraints for us between two ports:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "TransformationFactory(\"network.expand_arcs\").apply_to(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Expressions to Compute Operating Costs\n", + "\n", + "In this section, we will add a few Expressions that allows us to evaluate the performance. `Expressions` provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on `Expressions`, please refer to the [Pyomo Expression documentation]( https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/Expressions.html).\n", + "\n", + "For this flowsheet, we are interested in computing ethylene glycol production in millions of pounds per year, as well as the total costs due to cooling and heating utilities." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us first add an `Expression` to convert the product flow from mol/s to MM lb/year of ethylene glycol. We see that the molecular weight exists in the thermophysical property package, so we may use that value for our calculations." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.eg_prod = Expression(\n", + " expr=pyunits.convert(\n", + " m.fs.PROD.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"]\n", + " * m.fs.thermo_params.ethylene_glycol.mw, # MW defined in properties as kg/mol\n", + " to_units=pyunits.Mlb / pyunits.yr,\n", + " )\n", + ") # converting kg/s to MM lb/year" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let us add expressions to compute the reactor cooling cost (\\\\$/s) assuming a cost of 2.12E-5 \\\\$/kW, and the heating utility cost (\\\\$/s) assuming 2.2E-4 \\\\$/kW. Note that the heat duty is in units of watt (J/s). The total operating cost will be the sum of the two, expressed in \\\\$/year assuming 8000 operating hours per year (~10\\% downtime, which is fairly common for small scale chemical plants):" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.cooling_cost = Expression(\n", + " expr=2.12e-8 * (-m.fs.R101.heat_duty[0])\n", + ") # the reaction is exothermic, so R101 duty is negative\n", + "m.fs.heating_cost = Expression(\n", + " expr=2.2e-7 * m.fs.H101.heat_duty[0]\n", + ") # the stream must be heated to T_rxn, so H101 duty is positive\n", + "m.fs.operating_cost = Expression(\n", + " expr=(3600 * 8000 * (m.fs.heating_cost + m.fs.cooling_cost))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Feed Conditions\n", + "\n", + "Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. We expect each stream to have 6 degrees of freedom, the mixer to have 0 (after both streams are accounted for), the heater to have 1 (just the duty, since the inlet is also the outlet of M101), and the reactor to have 1 (duty or overall conversion, since the inlet is also the outlet of H101). In this case, the reactor has an extra degree of freedom since we have not yet defined the yield of the sole rate-kinetics reaction. Therefore, we have 15 degrees of freedom to specify: temperature, pressure and flow of all four components on both streams; outlet heater temperature; reactor conversion and duty." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "15\n" + ] } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now be fixing the feed stream to the conditions shown in the flowsheet above. As mentioned in other tutorials, the IDAES framework expects a time index value for every referenced internal stream or unit variable, even in steady-state systems with a single time point $ t = 0 $ (`t = [0]` is the default when creating a `FlowsheetBlock` without passing a `time_set` argument). The non-present components in each stream are assigned a very small non-zero value to help with convergence and initializing. Based on stoichiometric ratios for the reaction, 80% conversion and 200 MM lb/year (46.4 mol/s) of ethylene glycol, we will initialize our simulation with the following calculated values:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", + " 58.0 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", + " 39.6 * pyunits.mol / pyunits.s\n", + ") # calculated from 16.1 mol EO / cudm in stream\n", + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.OXIDE.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.OXIDE.outlet.temperature.fix(298.15 * pyunits.K)\n", + "m.fs.OXIDE.outlet.pressure.fix(1e5 * pyunits.Pa)\n", + "\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"water\"].fix(\n", + " 200 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"sulfuric_acid\"].fix(\n", + " 0.334 * pyunits.mol / pyunits.s\n", + ") # calculated from 0.9 wt% SA in stream\n", + "m.fs.ACID.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_glycol\"].fix(\n", + " 1e-5 * pyunits.mol / pyunits.s\n", + ")\n", + "m.fs.ACID.outlet.temperature.fix(298.15 * pyunits.K)\n", + "m.fs.ACID.outlet.pressure.fix(1e5 * pyunits.Pa)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fixing Unit Model Specifications\n", + "\n", + "Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us fix the outlet temperature of H101 to 328.15 K. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.H101.outlet.temperature.fix(328.15 * pyunits.K)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will need to specify both initial reactant extent (conversion or yield) and heat duty values (these are the only two free variables to choose from). The reaction extent can be specified directly, as a molar or mass yield ratio of product to a particular reactant, or fractional conversion of a particular reactant. Here, we choose fractional conversion in terms of ethylene oxide. Since heat duty and the outlet reactor temperature are interdependent, we can choose to specify this quantity instead. While the reaction kinetic parameters exist in the property package, we also do not need to add a rate constant expression since generation is explicitly defined through the conversion/yield. Note that our initial problem will solve with zero *temperature change* but will be infeasible with zero *heat duty*; this is due to the heat of reaction enforced by allowing heat transfer and mandating a non-zero conversion." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.R101.conversion = Var(\n", + " initialize=0.80, bounds=(0, 1), units=pyunits.dimensionless\n", + ") # fraction\n", + "\n", + "m.fs.R101.conv_constraint = Constraint(\n", + " expr=m.fs.R101.conversion\n", + " * m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", + " == (\n", + " m.fs.R101.inlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", + " - m.fs.R101.outlet.flow_mol_phase_comp[0, \"Liq\", \"ethylene_oxide\"]\n", + " )\n", + ")\n", + "\n", + "m.fs.R101.conversion.fix(0.80)\n", + "\n", + "m.fs.R101.outlet.temperature.fix(328.15 * pyunits.K) # equal inlet reactor temperature" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For initialization, we solve a square problem (degrees of freedom = 0). Let's check the degrees of freedom below:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] } + ], + "source": [ + "print(degrees_of_freedom(m))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we need to initialize the each unit operation in sequence to solve the flowsheet. As in best practice, unit operations are initialized or solved, and outlet properties are propagated to connected inlet streams via arc definitions as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:50 [INFO] idaes.init.fs.OXIDE.properties: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:50 [INFO] idaes.init.fs.OXIDE.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:50 [INFO] idaes.init.fs.OXIDE.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:50 [INFO] idaes.init.fs.OXIDE: Initialization Complete.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:50 [INFO] idaes.init.fs.ACID.properties: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:50 [INFO] idaes.init.fs.ACID.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:50 [INFO] idaes.init.fs.ACID.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:50 [INFO] idaes.init.fs.ACID: Initialization Complete.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:50 [INFO] idaes.init.fs.M101.reagent_feed_state: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:50 [INFO] idaes.init.fs.M101.reagent_feed_state: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:50 [INFO] idaes.init.fs.M101.catalyst_feed_state: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.M101.catalyst_feed_state: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.M101.mixed_state: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.M101.mixed_state: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.M101.mixed_state: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.M101: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.H101.control_volume.properties_in: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.H101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.H101.control_volume.properties_out: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.H101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.H101.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.H101: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.R101.control_volume.properties_in: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.R101.control_volume.properties_in: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.R101.control_volume.properties_out: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.R101.control_volume.properties_out: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.R101.control_volume.reactions: Initialization Complete.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.R101.control_volume: Initialization Complete\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.R101: Initialization Complete: optimal - Optimal Solution Found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.PROD.properties: Starting initialization\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.PROD.properties: Property initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.PROD.properties: Property package initialization: optimal - Optimal Solution Found.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-03-17 17:40:51 [INFO] idaes.init.fs.PROD: Initialization Complete.\n" + ] + } + ], + "source": [ + "# Initialize and solve each unit operation\n", + "m.fs.OXIDE.initialize()\n", + "propagate_state(arc=m.fs.s01)\n", + "\n", + "m.fs.ACID.initialize()\n", + "propagate_state(arc=m.fs.s01)\n", + "\n", + "m.fs.M101.initialize()\n", + "propagate_state(arc=m.fs.s03)\n", + "\n", + "m.fs.H101.initialize()\n", + "propagate_state(arc=m.fs.s04)\n", + "\n", + "m.fs.R101.initialize()\n", + "propagate_state(arc=m.fs.s05)\n", + "\n", + "m.fs.PROD.initialize()\n", + "\n", + "# set solver\n", + "solver = get_solver()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 337\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 383\n", + "\n", + "Total number of variables............................: 95\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 86\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 95\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 0.0000000e+00 1.24e+06 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 0.0000000e+00 2.80e+06 1.28e+01 -1.0 1.02e+07 - 6.77e-02 9.90e-01h 1\n", + " 2 0.0000000e+00 1.86e+04 2.90e+02 -1.0 1.02e+05 - 7.00e-01 9.90e-01h 1\n", + " 3 0.0000000e+00 1.93e+02 1.44e+01 -1.0 1.02e+03 - 9.90e-01 9.90e-01h 1\n", + " 4 0.0000000e+00 1.47e+00 3.18e+03 -1.0 1.00e+01 - 9.90e-01 9.92e-01h 1\n", + " 5 0.0000000e+00 5.96e-08 3.34e+03 -1.0 7.63e-02 - 9.94e-01 1.00e+00h 1\n", + "Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n", + "\n", + "Number of Iterations....: 5\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Dual infeasibility......: 1.6686898422600192e+06 1.6686898422600192e+06\n", + "Constraint violation....: 1.9895196601282805e-13 5.9604644775390625e-08\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 1.9895196601282805e-13 1.6686898422600192e+06\n", + "\n", + "\n", + "Number of objective function evaluations = 6\n", + "Number of objective gradient evaluations = 6\n", + "Number of equality constraint evaluations = 6\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 6\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 5\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.002\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "# Solve the model\n", + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analyze the Results of the Square Problem\n", + "\n", + "\n", + "What is the total operating cost? " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $8.019605 million per year\n" + ] + } + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this operating cost, what conversion did we achieve of ethylene oxide to ethylene glycol? " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -5.8931e+06 : watt : False : (None, None)\n", + " Reaction Extent [R1] : 46.400 : mole / second : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Units Inlet Outlet \n", + " Molar Flowrate ('Liq', 'ethylene_oxide') mole / second 58.000 11.600\n", + " Molar Flowrate ('Liq', 'water') mole / second 239.60 193.20\n", + " Molar Flowrate ('Liq', 'sulfuric_acid') mole / second 0.33401 0.33401\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 2.0000e-05 46.400\n", + " Temperature kelvin 328.15 328.15\n", + " Pressure pascal 1.0000e+05 1.0000e+05\n", + "====================================================================================\n", + "\n", + "Conversion achieved = 80.0%\n" + ] + } + ], + "source": [ + "m.fs.R101.report()\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimizing Ethylene Glycol Production\n", + "\n", + "Now that the flowsheet has been squared and solved, we can run a small optimization problem to minimize our production costs. Suppose we require at least 200 million pounds/year of ethylene glycol produced and 90% conversion of ethylene oxide, allowing for variable and reactor temperature (heater outlet)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us declare our objective function for this problem. " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.objective = Objective(expr=m.fs.operating_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we need to add the design constraints and unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now, as well as set bounds for the design variables (reactor outlet temperature is set by state variable bounds in property package):" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "m.fs.eg_prod_con = Constraint(\n", + " expr=m.fs.eg_prod >= 200 * pyunits.Mlb / pyunits.yr\n", + ") # MM lb/year\n", + "m.fs.R101.conversion.fix(0.90)\n", + "\n", + "m.fs.H101.outlet.temperature.unfix()\n", + "m.fs.H101.outlet.temperature[0].setlb(328.15 * pyunits.K)\n", + "m.fs.H101.outlet.temperature[0].setub(\n", + " 470.45 * pyunits.K\n", + ") # highest component boiling point (ethylene glycol)\n", + "\n", + "m.fs.R101.outlet.temperature.unfix()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "We have now defined the optimization problem and we are now ready to solve this problem. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ipopt 3.13.2: nlp_scaling_method=gradient-based\n", + "tol=1e-06\n", + "max_iter=200\n", + "\n", + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit http://projects.coin-or.org/Ipopt\n", + "\n", + "This version of Ipopt was compiled from source code available at\n", + " https://github.com/IDAES/Ipopt as part of the Institute for the Design of\n", + " Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE\n", + " Framework) Copyright (c) 2018-2019. See https://github.com/IDAES/idaes-pse.\n", + "\n", + "This version of Ipopt was compiled using HSL, a collection of Fortran codes\n", + " for large-scale scientific computation. All technical papers, sales and\n", + " publicity material resulting from use of the HSL codes within IPOPT must\n", + " contain the following acknowledgement:\n", + " HSL, a collection of Fortran codes for large-scale scientific\n", + " computation. See http://www.hsl.rl.ac.uk.\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.13.2, running with linear solver ma27.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 341\n", + "Number of nonzeros in inequality constraint Jacobian.: 1\n", + "Number of nonzeros in Lagrangian Hessian.............: 403\n", + "\n", + "Total number of variables............................: 97\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 88\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 95\n", + "Total number of inequality constraints...............: 1\n", + " inequality constraints with only lower bounds: 1\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 8.0196054e+06 1.74e+06 6.34e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 7.7629238e+06 1.74e+06 3.17e+01 -1.0 1.15e+10 - 2.05e-04 6.26e-06f 1\n", + " 2 6.1434461e+06 1.86e+06 6.26e+02 -1.0 1.33e+10 - 9.73e-05 2.00e-04f 1\n", + " 3 6.0659620e+06 1.86e+06 1.56e+03 -1.0 4.69e+08 - 9.60e-03 2.71e-04f 1\n", + " 4 6.0710959e+06 1.84e+06 1.28e+04 -1.0 5.10e+05 - 7.87e-02 9.76e-03h 1\n", + " 5 6.1245821e+06 1.68e+06 2.22e+04 -1.0 6.34e+05 - 1.58e-01 8.92e-02h 1\n", + " 6 6.6655990e+06 2.55e+04 3.27e+04 -1.0 5.78e+05 - 8.93e-01 9.90e-01h 1\n", + " 7 6.6706813e+06 2.41e+02 3.10e+02 -1.0 5.23e+03 - 9.90e-01 9.91e-01h 1\n", + " 8 6.6707292e+06 2.37e-04 1.09e+03 -1.0 4.89e+01 - 9.90e-01 1.00e+00h 1\n", + " 9 6.6707289e+06 2.98e-08 1.95e+02 -2.5 3.32e-01 - 9.98e-01 1.00e+00f 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 6.6707289e+06 2.42e-08 1.87e-07 -2.5 2.78e-06 - 1.00e+00 1.00e+00h 1\n", + " 11 6.6707289e+06 2.79e-09 3.69e-07 -5.7 9.67e-03 - 1.00e+00 1.00e+00f 1\n", + "\n", + "Number of Iterations....: 11\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 6.6707289104388300e+06 6.6707289104388300e+06\n", + "Dual infeasibility......: 3.6871028773460129e-07 3.6871028773460129e-07\n", + "Constraint violation....: 7.1054273576010019e-15 2.7939677238464355e-09\n", + "Complementarity.........: 1.8450200502283614e-06 1.8450200502283614e-06\n", + "Overall NLP error.......: 1.8334287948259664e-07 1.8450200502283614e-06\n", + "\n", + "\n", + "Number of objective function evaluations = 12\n", + "Number of objective gradient evaluations = 12\n", + "Number of equality constraint evaluations = 12\n", + "Number of inequality constraint evaluations = 12\n", + "Number of equality constraint Jacobian evaluations = 12\n", + "Number of inequality constraint Jacobian evaluations = 12\n", + "Number of Lagrangian Hessian evaluations = 11\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 0.003\n", + "Total CPU secs in NLP function evaluations = 0.000\n", + "\n", + "EXIT: Optimal Solution Found.\n" + ] + } + ], + "source": [ + "results = solver.solve(m, tee=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "operating cost = $6.670729 million per year\n", + "\n", + "Heater results\n", + "\n", + "====================================================================================\n", + "Unit : fs.H101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : 6.9784e+05 : watt : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Molar Flowrate ('Liq', 'ethylene_oxide') mole / second 58.000 58.000\n", + " Molar Flowrate ('Liq', 'water') mole / second 239.60 239.60\n", + " Molar Flowrate ('Liq', 'sulfuric_acid') mole / second 0.33401 0.33401\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 2.0000e-05 2.0000e-05\n", + " Temperature kelvin 298.15 328.15\n", + " Pressure pascal 1.0000e+05 1.0000e+05\n", + "====================================================================================\n", + "\n", + "Stoichiometric reactor results\n", + "\n", + "====================================================================================\n", + "Unit : fs.R101 Time: 0.0\n", + "------------------------------------------------------------------------------------\n", + " Unit Performance\n", + "\n", + " Variables: \n", + "\n", + " Key : Value : Units : Fixed : Bounds\n", + " Heat Duty : -3.6838e+06 : watt : False : (None, None)\n", + " Reaction Extent [R1] : 52.200 : mole / second : False : (None, None)\n", + "\n", + "------------------------------------------------------------------------------------\n", + " Stream Table\n", + " Units Inlet Outlet \n", + " Molar Flowrate ('Liq', 'ethylene_oxide') mole / second 58.000 5.8000\n", + " Molar Flowrate ('Liq', 'water') mole / second 239.60 187.40\n", + " Molar Flowrate ('Liq', 'sulfuric_acid') mole / second 0.33401 0.33401\n", + " Molar Flowrate ('Liq', 'ethylene_glycol') mole / second 2.0000e-05 52.200\n", + " Temperature kelvin 328.15 450.00\n", + " Pressure pascal 1.0000e+05 1.0000e+05\n", + "====================================================================================\n" + ] + } + ], + "source": [ + "print(f\"operating cost = ${value(m.fs.operating_cost)/1e6:0.6f} million per year\")\n", + "\n", + "print()\n", + "print(\"Heater results\")\n", + "\n", + "m.fs.H101.report()\n", + "\n", + "print()\n", + "print(\"Stoichiometric reactor results\")\n", + "\n", + "m.fs.R101.report()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Display optimal values for the decision variables and design variables:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal Values\n", + "\n", + "H101 outlet temperature = 328.150000 K\n", + "\n", + "R101 outlet temperature = 450.000000 K\n", + "\n", + "Ethylene glycol produced = 225.415471 MM lb/year\n", + "\n", + "Conversion achieved = 90.0%\n" + ] + } + ], + "source": [ + "print(\"Optimal Values\")\n", + "print()\n", + "\n", + "print(f\"H101 outlet temperature = {value(m.fs.H101.outlet.temperature[0]):0.6f} K\")\n", + "\n", + "print()\n", + "print(f\"R101 outlet temperature = {value(m.fs.R101.outlet.temperature[0]):0.6f} K\")\n", + "\n", + "print()\n", + "print(f\"Ethylene glycol produced = {value(m.fs.eg_prod):0.6f} MM lb/year\")\n", + "\n", + "print()\n", + "print(f\"Conversion achieved = {value(m.fs.R101.conversion):.1%}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 3 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } \ No newline at end of file diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor_test.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor_test.ipynb index 675c7fea..419c61a7 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor_test.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor_test.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor_usr.ipynb b/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor_usr.ipynb index 5660e55a..9fd66919 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor_usr.ipynb +++ b/idaes_examples/notebooks/docs/unit_models/reactors/stoichiometric_reactor_usr.ipynb @@ -16,12 +16,13 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, diff --git a/idaes_examples/notebooks/docs/unit_models/reactors/tests/test_egprod_ideal.py b/idaes_examples/notebooks/docs/unit_models/reactors/tests/test_egprod_ideal.py index 7b9ca054..09a26d2c 100644 --- a/idaes_examples/notebooks/docs/unit_models/reactors/tests/test_egprod_ideal.py +++ b/idaes_examples/notebooks/docs/unit_models/reactors/tests/test_egprod_ideal.py @@ -3,12 +3,13 @@ # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES). # -# Copyright (c) 2018-2023 by the software owners: The Regents of the +# Copyright (c) 2018-2025 by the software owners: The Regents of the # University of California, through Lawrence Berkeley National Laboratory, # National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon # University, West Virginia University Research Corporation, et al. # All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md # for full copyright and license information. +# ################################################################################# """ Author: Brandon Paul diff --git a/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed.ipynb b/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed.ipynb index f90e547b..136d2230 100644 --- a/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed.ipynb +++ b/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "id": "481b550a", "metadata": { "tags": [ "header", @@ -16,17 +17,19 @@ "# Framework (IDAES IP) was produced under the DOE Institute for the\n", "# Design of Advanced Energy Systems (IDAES).\n", "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", "# University of California, through Lawrence Berkeley National Laboratory,\n", "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", "# University, West Virginia University Research Corporation, et al.\n", "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", "# for full copyright and license information.\n", + "#\n", "###############################################################################" ] }, { "cell_type": "markdown", + "id": "05567d94", "metadata": {}, "source": [ "# CO2 Adsorption Desorption simulation example with a 1D Fixed Bed model\n", @@ -46,6 +49,7 @@ }, { "cell_type": "markdown", + "id": "88cfff26", "metadata": {}, "source": [ "## Cycle details\n", @@ -65,6 +69,7 @@ }, { "cell_type": "markdown", + "id": "56f43c68", "metadata": {}, "source": [ "## Notes\n", @@ -77,6 +82,7 @@ }, { "cell_type": "markdown", + "id": "fbd1f882", "metadata": {}, "source": [ "# Step 1: Import relevant libraries and packages" @@ -84,6 +90,7 @@ }, { "cell_type": "markdown", + "id": "b597bf97", "metadata": {}, "source": [ "### Import python libraries\n", @@ -95,6 +102,7 @@ { "cell_type": "code", "execution_count": 1, + "id": "e98d4d62", "metadata": {}, "outputs": [], "source": [ @@ -104,6 +112,7 @@ }, { "cell_type": "markdown", + "id": "fdbfcdeb", "metadata": {}, "source": [ "\n", @@ -123,6 +132,7 @@ { "cell_type": "code", "execution_count": 2, + "id": "78d543e6", "metadata": {}, "outputs": [], "source": [ @@ -138,6 +148,7 @@ }, { "cell_type": "markdown", + "id": "7d9f3a59", "metadata": {}, "source": [ "### Import IDAES core components\n", @@ -159,6 +170,7 @@ { "cell_type": "code", "execution_count": 3, + "id": "ed955425", "metadata": {}, "outputs": [], "source": [ @@ -173,6 +185,7 @@ }, { "cell_type": "markdown", + "id": "f93fe356", "metadata": {}, "source": [ "### Import IDAES unit models and NETL 32D property packages\n", @@ -185,6 +198,7 @@ { "cell_type": "code", "execution_count": 4, + "id": "fbdb0eb1", "metadata": {}, "outputs": [], "source": [ @@ -202,6 +216,7 @@ }, { "cell_type": "markdown", + "id": "053bbc78", "metadata": {}, "source": [ "### Import custom libraries and functions\n", @@ -219,6 +234,7 @@ { "cell_type": "code", "execution_count": 5, + "id": "31dae66f", "metadata": {}, "outputs": [], "source": [ @@ -233,6 +249,7 @@ }, { "cell_type": "markdown", + "id": "61b42aa6", "metadata": {}, "source": [ "#### Create a Function to Build the Flowsheet\n", @@ -248,6 +265,7 @@ { "cell_type": "code", "execution_count": 6, + "id": "f74bda4b", "metadata": {}, "outputs": [], "source": [ @@ -287,6 +305,7 @@ }, { "cell_type": "markdown", + "id": "6ba1b0f5", "metadata": {}, "source": [ "#### Create a Function to Fix the Flowsheet Conditions\n", @@ -304,6 +323,7 @@ { "cell_type": "code", "execution_count": 7, + "id": "6cd31b89", "metadata": {}, "outputs": [], "source": [ @@ -387,6 +407,7 @@ }, { "cell_type": "markdown", + "id": "2e807852", "metadata": {}, "source": [ "# Step 2: Setup and run simulation\n", @@ -395,6 +416,7 @@ }, { "cell_type": "markdown", + "id": "45ad2103", "metadata": {}, "source": [ "#### Create concrete model\n", @@ -404,6 +426,7 @@ { "cell_type": "code", "execution_count": 8, + "id": "119ab860", "metadata": {}, "outputs": [], "source": [ @@ -412,6 +435,7 @@ }, { "cell_type": "markdown", + "id": "89645871", "metadata": {}, "source": [ "#### Setup solver for initialization\n", @@ -421,6 +445,7 @@ { "cell_type": "code", "execution_count": 9, + "id": "9d5ffd80", "metadata": {}, "outputs": [], "source": [ @@ -438,6 +463,7 @@ }, { "cell_type": "markdown", + "id": "59bfe6a2", "metadata": {}, "source": [ "#### Set spatial elements and design variables for adsorption and desorption simulations\n", @@ -447,6 +473,7 @@ { "cell_type": "code", "execution_count": 10, + "id": "ea0d8523", "metadata": {}, "outputs": [], "source": [ @@ -460,6 +487,7 @@ }, { "cell_type": "markdown", + "id": "59ca3c96", "metadata": {}, "source": [ "## Adsorption simulation\n", @@ -468,6 +496,7 @@ }, { "cell_type": "markdown", + "id": "265c3bb3", "metadata": {}, "source": [ "### Setup simulation horizon and create time set\n", @@ -477,6 +506,7 @@ { "cell_type": "code", "execution_count": 11, + "id": "545640af", "metadata": {}, "outputs": [], "source": [ @@ -492,6 +522,7 @@ { "cell_type": "code", "execution_count": 11, + "id": "91dd7499", "metadata": { "tags": [ "testing" @@ -505,6 +536,7 @@ }, { "cell_type": "markdown", + "id": "544b63c3", "metadata": {}, "source": [ "### Initial conditions for gas and solid phases\n", @@ -514,6 +546,7 @@ { "cell_type": "code", "execution_count": 12, + "id": "650fba0e", "metadata": {}, "outputs": [], "source": [ @@ -549,6 +582,7 @@ }, { "cell_type": "markdown", + "id": "988437df", "metadata": {}, "source": [ "### Setup the adsorption model\n", @@ -558,6 +592,7 @@ { "cell_type": "code", "execution_count": 13, + "id": "9296c7c0", "metadata": {}, "outputs": [], "source": [ @@ -579,6 +614,7 @@ }, { "cell_type": "markdown", + "id": "e37d6deb", "metadata": {}, "source": [ "### Adsorption model - initialize and solve\n", @@ -587,6 +623,7 @@ }, { "cell_type": "markdown", + "id": "03cf66de", "metadata": {}, "source": [ "#### Apply scaling transformation\n", @@ -596,6 +633,7 @@ { "cell_type": "code", "execution_count": 14, + "id": "e871cd0f", "metadata": {}, "outputs": [], "source": [ @@ -604,6 +642,7 @@ }, { "cell_type": "markdown", + "id": "8e2d9ce8", "metadata": {}, "source": [ "#### Initialize model\n", @@ -613,6 +652,7 @@ { "cell_type": "code", "execution_count": 15, + "id": "396f52ce", "metadata": {}, "outputs": [], "source": [ @@ -638,6 +678,7 @@ }, { "cell_type": "markdown", + "id": "0358562f", "metadata": {}, "source": [ "#### PETSc integrator\n", @@ -647,6 +688,7 @@ { "cell_type": "code", "execution_count": 16, + "id": "1f67cb73", "metadata": { "scrolled": true }, @@ -693,6 +735,7 @@ }, { "cell_type": "markdown", + "id": "717938a9", "metadata": {}, "source": [ "### Plot the adsorption simulation results\n", @@ -701,6 +744,7 @@ }, { "cell_type": "markdown", + "id": "edabf0bf", "metadata": {}, "source": [ "In the temporal plots below, quantities are reported as functions of time and contoured for six points along the length of the bed. The time and spatial dimensions are exchanged in the spatial plots, with quantities reported as functions of length and contoured for five time points.\n", @@ -717,6 +761,7 @@ { "cell_type": "code", "execution_count": 17, + "id": "da090871", "metadata": {}, "outputs": [], "source": [ @@ -727,6 +772,7 @@ { "cell_type": "code", "execution_count": 18, + "id": "f239c25c", "metadata": {}, "outputs": [], "source": [ @@ -736,6 +782,7 @@ }, { "cell_type": "markdown", + "id": "4d82b006", "metadata": {}, "source": [ "## Desorption simulation\n", @@ -744,6 +791,7 @@ }, { "cell_type": "markdown", + "id": "42848d1d", "metadata": {}, "source": [ "### Setup simulation horizon and create time set\n", @@ -753,6 +801,7 @@ { "cell_type": "code", "execution_count": 19, + "id": "5c34482e", "metadata": {}, "outputs": [], "source": [ @@ -767,6 +816,7 @@ }, { "cell_type": "markdown", + "id": "eb1c4558", "metadata": {}, "source": [ "### Initial and boundary conditions for gas phase\n", @@ -776,6 +826,7 @@ { "cell_type": "code", "execution_count": 20, + "id": "59d85b8f", "metadata": {}, "outputs": [], "source": [ @@ -792,6 +843,7 @@ }, { "cell_type": "markdown", + "id": "505dd3dc", "metadata": {}, "source": [ "### Setup the desorption model\n", @@ -801,6 +853,7 @@ { "cell_type": "code", "execution_count": 21, + "id": "57b65754", "metadata": {}, "outputs": [], "source": [ @@ -811,6 +864,7 @@ { "cell_type": "code", "execution_count": 22, + "id": "2b501245", "metadata": {}, "outputs": [], "source": [ @@ -824,6 +878,7 @@ }, { "cell_type": "markdown", + "id": "7c48cc94", "metadata": {}, "source": [ "### Desorption model - initialize and solve\n", @@ -832,6 +887,7 @@ }, { "cell_type": "markdown", + "id": "735277bd", "metadata": {}, "source": [ "##### Copy values from adsorption model to desorption model\n", @@ -841,6 +897,7 @@ { "cell_type": "code", "execution_count": 23, + "id": "f924efd2", "metadata": {}, "outputs": [], "source": [ @@ -869,6 +926,7 @@ }, { "cell_type": "markdown", + "id": "877f239c", "metadata": {}, "source": [ "#### Fix initial and boundary conditions\n", @@ -878,6 +936,7 @@ { "cell_type": "code", "execution_count": 24, + "id": "f5968589", "metadata": {}, "outputs": [], "source": [ @@ -891,6 +950,7 @@ }, { "cell_type": "markdown", + "id": "ecdf94af", "metadata": {}, "source": [ "#### Calculate scaling of desorption model\n", @@ -900,6 +960,7 @@ { "cell_type": "code", "execution_count": 25, + "id": "3a486a39", "metadata": {}, "outputs": [], "source": [ @@ -908,6 +969,7 @@ }, { "cell_type": "markdown", + "id": "0c3da468", "metadata": {}, "source": [ "#### Initialize desorption model\n", @@ -917,6 +979,7 @@ { "cell_type": "code", "execution_count": 26, + "id": "4b6e53d2", "metadata": {}, "outputs": [], "source": [ @@ -940,6 +1003,7 @@ }, { "cell_type": "markdown", + "id": "f788f262", "metadata": {}, "source": [ "#### Setup PETSc integrator and simulate desorption step\n", @@ -949,6 +1013,7 @@ { "cell_type": "code", "execution_count": 27, + "id": "45eb63d6", "metadata": {}, "outputs": [], "source": [ @@ -990,6 +1055,7 @@ }, { "cell_type": "markdown", + "id": "578acb67", "metadata": {}, "source": [ "### Plot the desorption simulation results\n", @@ -1007,6 +1073,7 @@ { "cell_type": "code", "execution_count": 28, + "id": "24d1e750", "metadata": {}, "outputs": [], "source": [ @@ -1017,6 +1084,7 @@ { "cell_type": "code", "execution_count": 29, + "id": "67a1ca0d", "metadata": {}, "outputs": [], "source": [ @@ -1026,6 +1094,7 @@ }, { "cell_type": "markdown", + "id": "885a1f4c", "metadata": {}, "source": [ "## Step 3: Generate performance results" @@ -1034,6 +1103,7 @@ { "cell_type": "code", "execution_count": 30, + "id": "c97aadd6", "metadata": {}, "outputs": [], "source": [ @@ -1046,6 +1116,7 @@ { "cell_type": "code", "execution_count": 31, + "id": "79c69d29", "metadata": {}, "outputs": [], "source": [ @@ -1059,6 +1130,7 @@ }, { "cell_type": "markdown", + "id": "399c7878", "metadata": {}, "source": [ "## Simulation time results" @@ -1067,6 +1139,7 @@ { "cell_type": "code", "execution_count": 32, + "id": "2eab1bfb", "metadata": {}, "outputs": [], "source": [ @@ -1087,6 +1160,7 @@ }, { "cell_type": "markdown", + "id": "31cb38a0", "metadata": {}, "source": [ "# Summary\n", @@ -1096,6 +1170,7 @@ { "cell_type": "code", "execution_count": null, + "id": "4a5885bf", "metadata": {}, "outputs": [], "source": [] diff --git a/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed_doc.ipynb b/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed_doc.ipynb index 8440fb43..d9db9cc5 100644 --- a/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed_doc.ipynb +++ b/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed_doc.ipynb @@ -1,1112 +1,1113 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# CO2 Adsorption Desorption simulation example with a 1D Fixed Bed model\n", - "Author: Chinedu Okoli, Anca Ostace, Brandon Paul \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "This jupyter notebook shows an example of a CO2 Adsorption Desorption cycle with the IDAES 1D FixedBed model. The IDAES 1D FixedBed model is a dynamic and axially varying reactor/adsorption model which is able to model the gas and solid interactions of the modeled species in detail. The sorbent used for this example is the NETL_32D sorbent with its details and parameters obtained from the following references: \n", - "- A. Lee, D.C. Miller, A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber, Ind. Eng. Chem. Res. 52 (2013) 469–484\n", - "- Lee, A.; Mebane, D.; Fauth, D. J.; Miller, D. C. A Model for the Adsorption Kinetics of CO2 on Amine-Impregnated Mesoporous Sorbents in the Presence of Water. Presented at the 28th International Pittsburgh Coal Conference, Pittsburgh, PA, 2011.\n", - "\n", - "The notebook demonstrates how to use the IDAES 1DFixedBed model for an adsorption/desorption application with distinct adsorption and desorption steps. This example leverages custom libraries and functions specific to the NETL_32D solid sorbent and associated gas phase properties and surface reactions. In this system, the silicon monoxide (SiO(s)) sorbent reduces carbon dioxide (CO2(g)) to carbamate (denoted Car(s)) while simultaneously absorbing water vapor (H2O(g)) to produce a solid solution-state hydrate (H2O(s)). The solid phase is considered a one-dimensional domain with three regions for bubble, cloud wake and emulsion properties for bubbling bed systems; in the case of a fixed bed reactor non-bulk gas behavior is neglected and assumed to be homogeneous everywhere not near the solid surface.\n", - "\n", - "The notebook also shows how to simulate the adsorption and desorption steps using the PETSc integrator. PETSc leverages nonlinear equation and differential algebraic equation solvers to solve time-trajectory problems. These solvers are applicable for systems with zero degrees of freedom, such as a fully-specified bed reactor model. See https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html#petsc-utilities for more details." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Cycle details\n", - "The system contains the following equipment and stream properties:\n", - "- Bed height: 9 m\n", - "- Bed diameter: 1 m\n", - "- Adsorption time: 30 hrs\n", - "- Desorption time: 2 hrs\n", - "- Adsorption temperature: 303.15 K\n", - "- Desorption temperature: 470 K\n", - "- Flue gas inlet conditions (Temperature and mole fractions obtained from NETL baseline report. Exhibit 5-22 B31B case)\n", - " - Temperature: 315 K\n", - " - Pressure: 106.5 kPa\n", - " - Flowrate: 3.544 mol/s\n", - " - Mole fractions: CO2: 0.0408, H2O: 0.0875, N2: 0.7517, O2: 0.12" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Notes\n", - "Some additional information regarding the problem:\n", - "- Isothermal conditions: heat duty requirements of each step are calculated from gas and sorbent properties, i.e., loading, density, heat of adsorption, and heat capacity\n", - "- Heating and cooling modes not modeled in detail: cycle times are assumed negligible in comparison to adsorption and desorption\n", - "- Adsorption and desorption steps are modeled in different flowsheets\n", - "- Initial condition (except temperature) of sorbent in desorption step is set to final condition of sorbent in adsorption step" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 1: Import relevant libraries and packages" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import python libraries\n", - "\n", - "- numpy (numerical python library which provides numerical computing tools)\n", - "- time (time python library which will be used to track the simulation time)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import time" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Import Pyomo packages\n", - "For the flowsheet, we will need several components from the pyomo libraries.\n", - "\n", - "- ConcreteModel (to create the Pyomo model that will contain the IDAES flowsheet)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- SolverFactory (to solve the problem)\n", - "- Var (to create a Pyomo variable)\n", - "- value (to return the numerical value of Pyomo objects such as variables, constraints or expressions)\n", - "- units (to handle units in Pyomo and IDAES)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/latest/" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " ConcreteModel,\n", - " TransformationFactory,\n", - " SolverFactory,\n", - " Var,\n", - " value,\n", - " units as pyunits,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import IDAES core components\n", - "\n", - "To build, initialize, and solve IDAES flowsheets we will need several core components/utilities:\n", - "\n", - "- FlowsheetBlock (the flowsheet block contains idaes properties, time, and unit models)\n", - "- EnergyBalanceType (to specify the energy balance type)\n", - "- petsc (PETSc integrator)\n", - "- get_solver (IDAES solver utility)\n", - "- iscale (is used to apply scaling factors in variables and constraints)\n", - "- propagate_state (is used to initialize models, propagating the state variables from one unit model to another)\n", - "- degrees_of_freedom (useful for debugging, this method returns the DOF of the model)\n", - "- idaeslog (is used to set output messages like warnings or errors)\n", - "\n", - "For further details on these components, please refer to the IDAES documentation: https://idaes-pse.readthedocs.io/en/latest/" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core import FlowsheetBlock, EnergyBalanceType\n", - "import idaes.core.solvers.petsc as petsc # PETSc utilities module\n", - "from idaes.core.util import scaling as iscale\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "import idaes.logger as idaeslog\n", - "import logging" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import IDAES unit models and NETL 32D property packages\n", - "\n", - "To build the IDAES flowsheet for the CO2 Adsorption Desorption example, we will need the following: \n", - "1) the 1D Fixed Bed unit model \n", - "2) the NETL 32D property package" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models_extra.gas_solid_contactors.unit_models.fixed_bed_1D import FixedBed1D\n", - "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_gas_phase_thermo import (\n", - " GasPhaseParameterBlock,\n", - ")\n", - "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_solid_phase_thermo import (\n", - " SolidPhaseParameterBlock,\n", - ")\n", - "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_adsorption_reactions import (\n", - " HeteroReactionParameterBlock,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import custom libraries and functions\n", - "To simplify and automate this example at the flowsheet level, several custom methods were defined in an external script. The methods are custom, and as such are imported separately from the set of IDAES and Pyomo methods above. These utility functions perform a variety of numerical and reporting tasks:\n", - "\n", - "- heat_computation (used to calculate the heat requirements of the CO2 Adsorption Desorption cycle)\n", - "- performance_results (used to evaluate the performance of the CO2 Adsorption Desorption cycle)\n", - "- results_summary (provides summarized results of the CO2 Adsorption Desorption cycle)\n", - "- plot_results_temporal (plots the temporal profiles of the flowsheet simulation)\n", - "- plot_results_spatial (plots the spatial profiles of the flowsheet simulation)\n", - "- fb_model_setup (function that builds the 1D FixedBed model)\n", - "- fb_fixed_conditions (function that fixes the initial and boundary conditions of the 1D FixedBed model)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes_examples.mod.co2_adsorption_desorption.simulation_utilities import (\n", - " heat_computation,\n", - " performance_results,\n", - " results_summary,\n", - " plot_results_temporal,\n", - " plot_results_spatial,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Create a Function to Build the Flowsheet\n", - "\n", - "The function \"fb_model_setup\" below builds instances of the 1D FixedBed model for the adsorption and desorption simulations. While the effort required to define the reactor is low in terms of lines of code, we will need to do this for both the adsorption and desorption steps. Therefore, defining this setup as a single function will make later steps easier to follow. As arguments it takes the following:\n", - "1) The flowsheet block of the simulation, i.e., the adsorption flowsheet \n", - "2) The number of time finite elements \n", - "3) The number of spatial finite elements \n", - "\n", - "It returns a flowsheet object which contains an instance of the 1D FixedBed model" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "def fb_model_setup(\n", - " fs,\n", - " ntfe, # number of time finite elements\n", - " nxfe, # number of space finite elements\n", - "):\n", - "\n", - " # Set up thermo props and reaction props\n", - " fs.gas_properties = GasPhaseParameterBlock()\n", - " fs.solid_properties = SolidPhaseParameterBlock()\n", - "\n", - " fs.hetero_reactions = HeteroReactionParameterBlock(\n", - " solid_property_package=fs.solid_properties,\n", - " gas_property_package=fs.gas_properties,\n", - " )\n", - "\n", - " fs.FB = FixedBed1D(\n", - " finite_elements=nxfe,\n", - " transformation_method=\"dae.finite_difference\",\n", - " energy_balance_type=EnergyBalanceType.none,\n", - " pressure_drop_type=\"ergun_correlation\",\n", - " gas_phase_config={\"property_package\": fs.gas_properties},\n", - " solid_phase_config={\n", - " \"property_package\": fs.solid_properties,\n", - " \"reaction_package\": fs.hetero_reactions,\n", - " },\n", - " )\n", - "\n", - " # Discretize time domain\n", - " fs.discretizer = TransformationFactory(\"dae.finite_difference\")\n", - " fs.discretizer.apply_to(fs, nfe=ntfe, wrt=fs.time, scheme=\"BACKWARD\")\n", - "\n", - " return fs" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Create a Function to Fix the Flowsheet Conditions\n", - "\n", - "The function \"fb_fix_conditions\" fixes the initial and boundary conditions of an instance of the 1D FixedBed model. It also has checks to ensure that the degrees of freedom are zero, and that the velocity into the bed is less than the minimum fluidization velocity of the bed. Similarly to the function above, we will need to run this for the adsorption and desorption steps, and it is clearer to define the code once as a single function here. As arguments it takes the following:\n", - "1) The flowsheet block of the simulation, i.e., the adsorption flowsheet \n", - "2) The reactor bed diameter \n", - "3) The reactor bed height \n", - "4) A dictionary of gas phase state data for which the gas phase state variables of the model should be fixed to \n", - "5) A dictionary of solid phase state data for which the solid phase state variables of the model should be fixed to. If None, the solid phase state variables are fixed to their current values. \n", - "\n", - "No object is returned by this function." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "def fb_fix_conditions(\n", - " fs, bed_diameter, bed_height, gas_phase_state_dict, solid_phase_state_dict=None\n", - "):\n", - " # Fix bed geometry variables\n", - " fs.FB.bed_diameter.fix(bed_diameter) # m\n", - " fs.FB.bed_height.fix(bed_height) # m\n", - "\n", - " # Fix boundary values for gas for all time\n", - " blk = fs.FB\n", - " for t in fs.time:\n", - " # Gas values\n", - " blk.gas_inlet.flow_mol[t].fix(gas_phase_state_dict[\"flow_mol\"])\n", - " blk.gas_inlet.temperature[t].fix(gas_phase_state_dict[\"temperature\"])\n", - " blk.gas_inlet.pressure[t].fix(gas_phase_state_dict[\"pressure\"])\n", - " for j, val in gas_phase_state_dict[\"mole_frac_comp\"].items():\n", - " blk.gas_inlet.mole_frac_comp[t, j].fix(val)\n", - "\n", - " # Specify gas phase and solid phase initial conditions for all space\n", - " t0 = fs.time.first()\n", - " for x in blk.length_domain:\n", - " blk.gas_phase.properties[t0, x].flow_mol.fix(gas_phase_state_dict[\"flow_mol\"])\n", - " blk.gas_phase.properties[t0, x].temperature.fix(\n", - " gas_phase_state_dict[\"temperature\"]\n", - " ) # K\n", - " for j, val in gas_phase_state_dict[\"mole_frac_comp\"].items():\n", - " blk.gas_phase.properties[t0, x].mole_frac_comp[j].fix(val)\n", - "\n", - " if solid_phase_state_dict is None:\n", - " # Fix to existing values if dict is empty\n", - " blk.solid_properties[t0, x].dens_mass_particle.fix()\n", - " blk.solid_properties[t0, x].temperature.fix()\n", - " blk.solid_properties[t0, x].mass_frac_comp[:].fix()\n", - " else:\n", - " blk.solid_properties[t0, x].dens_mass_particle.fix(\n", - " solid_phase_state_dict[\"dens_mass_particle\"]\n", - " )\n", - " blk.solid_properties[t0, x].temperature.fix(\n", - " solid_phase_state_dict[\"temperature\"]\n", - " )\n", - " for j, val in solid_phase_state_dict[\"mass_frac_comp\"].items():\n", - " blk.solid_properties[t0, x].mass_frac_comp[j].fix(val)\n", - "\n", - " dof = degrees_of_freedom(fs)\n", - "\n", - " print(\"degrees of freedom = \", dof)\n", - " try:\n", - " assert degrees_of_freedom(fs) == 0\n", - " except AssertionError:\n", - " print(\"Degrees of freedom is not equal to zero. This is unexpected.\")\n", - " raise\n", - "\n", - " # Assert that inlet gas velocity is less than v_mf\n", - " # Use solid temperature as the thermal mass of solid >> than that of gas\n", - " pi = 3.14 # [-]\n", - " R = 8.314 # Gas constant [J/mol/K]\n", - "\n", - " @blk.Expression(doc=\"gas inlet velocity, m/s\")\n", - " def gas_inlet_velocity(blk):\n", - " v_gas_inlet = (\n", - " blk.gas_inlet.flow_mol[0] / (pi * value(blk.bed_diameter**2) / 4)\n", - " ) * (R * blk.solid_properties[0, 0].temperature / blk.gas_inlet.pressure[0])\n", - " return v_gas_inlet\n", - "\n", - " v_mf = value( # minimum fluidization velocity [m/s]\n", - " blk.solid_properties[t0, 0]._params.velocity_mf\n", - " )\n", - " print(\"inlet gas velocity = \", value(blk.gas_inlet_velocity), \" m/s\")\n", - " print(\"min. fluid velocity = \", v_mf, \" m/s\")\n", - " try:\n", - " assert value(blk.gas_inlet_velocity) <= v_mf\n", - " except AssertionError:\n", - " print(\n", - " \"The inlet gas velocity is greater than the minimum fluidization velocity. \"\n", - " \"This is unexpected for a Fixed Bed.\"\n", - " )\n", - " raise" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 2: Setup and run simulation\n", - "Now that the system properties and all required utility functions are defined, we will build the model itself." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Create concrete model\n", - "First, create the model object:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Setup solver for initialization\n", - "We limit the maximum number of iterations and apply appropriate scaling for the linear solver for initialization:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# Solver arguments\n", - "optarg = {\n", - " \"max_iter\": 100,\n", - " \"nlp_scaling_method\": \"user-scaling\",\n", - " \"linear_solver\": \"ma27\",\n", - "}\n", - "\n", - "# Create a solver\n", - "solver = get_solver(\"ipopt\")\n", - "solver.options = optarg" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Set spatial elements and design variables for adsorption and desorption simulations\n", - "Let's define the size of the system:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# Number of spatial elements\n", - "nxfe = 50\n", - "\n", - "# Design variables for static and dynamic models\n", - "bed_diameter = 9 # m\n", - "bed_height = 1 # m" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adsorption simulation\n", - "First, we will run the adsorption step by defining the simulation domain, add initial conditions, and set up and solve the model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Setup simulation horizon and create time set\n", - "We specify the time discretization to an exact set of temporal points according to the problem horizon:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# Time horizon\n", - "horizon = 108000 # s\n", - "\n", - "# Create time_set list\n", - "t_element_size = horizon / 4 # s\n", - "ntfe = int(horizon / t_element_size)\n", - "time_set = list(np.linspace(0, horizon, ntfe + 1))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initial conditions for gas and solid phases\n", - "Next, we set reasoanble initial conditions for the gas and solid phases at time = 0, with a constant adsorption temperature:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# Flue gas inlet conditions to adsorption system (flue gas stream) -\n", - "# Temperature and mole fractions obtained from NETL baseline report.\n", - "# Exhibit 5-22 B31B case.\n", - "adsorption_temperature = 303.15 # K\n", - "\n", - "# Dictionary of initial and boundary conditions for gas phase\n", - "gas_phase_state_dict_ads = {\n", - " \"flow_mol\": 3.544, # mol/s\n", - " \"temperature\": adsorption_temperature, # K\n", - " \"pressure\": 1.2452e5, # Pa\n", - " \"mole_frac_comp\": { # [-]\n", - " \"CO2\": 0.0408,\n", - " \"H2O\": 0.0875,\n", - " \"N2\": 0.7517,\n", - " \"O2\": 0.12,\n", - " },\n", - "}\n", - "\n", - "# Dictionary of initial conditions for solid phase\n", - "solid_phase_state_dict_ads = {\n", - " \"dens_mass_particle\": 442, # kg/m3\n", - " \"temperature\": adsorption_temperature, # K\n", - " \"mass_frac_comp\": { # [-]\n", - " \"H2O_s\": 1e-8,\n", - " \"Car\": 1e-8,\n", - " \"SiO\": 1,\n", - " },\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Setup the adsorption model\n", - "Then, we call our previously defined methods to build the model and fix initial conditions:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "# Create the adsorption flowsheet\n", - "m.fs_ads = FlowsheetBlock(dynamic=True, time_set=time_set, time_units=pyunits.s)\n", - "\n", - "# Setup an instance of the 1D FixedBed model for the adsorption simulation\n", - "m.fs_ads = fb_model_setup(m.fs_ads, ntfe, nxfe)\n", - "\n", - "# Fix initial and boundary conditions\n", - "fb_fix_conditions(\n", - " m.fs_ads,\n", - " bed_diameter,\n", - " bed_height,\n", - " gas_phase_state_dict_ads,\n", - " solid_phase_state_dict_ads,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Adsorption model - initialize and solve\n", - "Finally for the adsorption model, we initialize and solve." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Apply scaling transformation\n", - "We first scale the model variables and equations to reduce ill-conditioning and improve its convergence properties:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "iscale.calculate_scaling_factors(m.fs_ads)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Initialize model\n", - "The model initialization is done with the block triangularization initialization method in the 1D FixedBed model as this is faster than using the traditional sequential heirarchichal initialization approach. See the 1D FixedBed model and documentation for more details on this method." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "# Run start time\n", - "t_start_ads = time.time()\n", - "\n", - "# Initialize model\n", - "calc_var_kwds = {\"eps\": 1e-5}\n", - "m.fs_ads.FB.block_triangularization_initialize(\n", - " gas_phase_state_args=gas_phase_state_dict_ads,\n", - " solid_phase_state_args=solid_phase_state_dict_ads,\n", - " outlvl=idaeslog.DEBUG,\n", - " solver=solver,\n", - " calc_var_kwds=calc_var_kwds,\n", - ")\n", - "\n", - "# Run end time\n", - "t_end_ads = time.time()\n", - "\n", - "# Initialization time\n", - "adsorption_initialization_time = value(t_end_ads - t_start_ads)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### PETSc integrator\n", - "As mentioned earlier, the PETSc integrator is used for simulating the time trajectory. After starting the clock and instantiating the time variables, PETSc performs and element-wise discretization to define and solve the dynamic system of equations. See https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html#petsc-utilities for more details.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "petscsolvelog = idaeslog.getSolveLogger(\"petsc-dae\")\n", - "petscsolvelog.setLevel(logging.WARNING) # comment this line to see PETSc solver output\n", - "\n", - "# Run start time\n", - "t_start_ads = time.time()\n", - "\n", - "# Setup PETSc integrator and simulate adsorption flowsheet\n", - "m.fs_ads.time_var = Var(m.fs_ads.time)\n", - "m.fs_ads.time_var[0].fix(m.fs_ads.time.first())\n", - "\n", - "result_ads = petsc.petsc_dae_by_time_element(\n", - " m.fs_ads,\n", - " time=m.fs_ads.time,\n", - " timevar=m.fs_ads.time_var,\n", - " keepfiles=True,\n", - " symbolic_solver_labels=True,\n", - " skip_initial=False,\n", - " ts_options={\n", - " \"--ts_type\": \"beuler\", # backward euler integration\n", - " \"--ts_dt\": 200, # set initial step to 200\n", - " \"--ts_rtol\": 20,\n", - " \"--ts_monitor\": \"\",\n", - " \"--ts_save_trajectory\": 1,\n", - " \"--ksp_rtol\": 1e-10,\n", - " \"--snes_type\": \"newtontr\", # newton trust region non-linear solver\n", - " \"--ts_monitor\": \"\",\n", - " \"--ts_save_trajectory\": 1,\n", - " \"--ts_max_snes_failures\": 1000,\n", - " },\n", - ")\n", - "tj_ads = result_ads.trajectory # trajectory data\n", - "\n", - "# Run end time\n", - "t_end_ads = time.time()\n", - "\n", - "# Initialization time\n", - "adsorption_simulation_time = value(t_end_ads - t_start_ads)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plot the adsorption simulation results\n", - "After running the adsorption simulation, the dynamic profiles are plotted." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the temporal plots below, quantities are reported as functions of time and contoured for six points along the length of the bed. The time and spatial dimensions are exchanged in the spatial plots, with quantities reported as functions of length and contoured for five time points.\n", - "\n", - "The gas flowrate is constant at the inlet and decreases over the length of the bed as CO2 is removed from the gas. At each spatial point, the CO2 content of the gas increases over time as the bed becomes more saturated with CO2 and the mass transfer driving force decreases. Assessing the two gas flowrate plots, adsorption occurs steadily over time with a much larger capture rate in the initial spatial region; this region grows from 10% to 25% of the bed length as the bed becomes more saturated with CO2 over time.\n", - "\n", - "The bed pressure stays relatively constant over time, and exhibits a linear drop over the length of the reactor. There are no temporal or spatial gradients in gas or solid temperature.\n", - "\n", - "The saturation trend is strongly apparent in the composition trends. The CO2 content of the gas quickly drops from the initial concentration over the length of the bed, and steadily rises over time as the driving force of mass transfer decreases. Water vapor concentration in the gas follows a similar trend.\n", - "\n", - "Following the solid-state reaction, the concentration of carbmate steadily increases over time with formation skewing heavily towards the initial spatial region of the bed. The spatial contours of the temporal carbamate composition plot cross as a result of the solid reaction rate heavily favoring the initial section of the bed and suddenly dropping about at about 20% of the reactor length. The mass fraction and mol/kg plots differ slightly due to water and CO2 absorbing at different rates, but otherwise demonstrate similar trends." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "# Plot temporal result profiles\n", - "plot_results_temporal(m.fs_ads, tj_ads)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "# Plot spatial result profiles\n", - "plot_results_spatial(m.fs_ads, tj_ads)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Desorption simulation\n", - "The desorption simulation begins when the adsorption simulation ends. It uses the final state of the sorbent (besides temperature which is set at the desorption temperature) in the adsorption mode as the initial state of the sorbent in the desorption mode." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Setup simulation horizon and create time set\n", - "As in the adsorption simulation, we first specify the time discretization:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "# Space and time discretization arguments\n", - "horizon = 7200 # s\n", - "\n", - "# Setup for PETSc run\n", - "t_element_size = horizon # s\n", - "ntfe = int(horizon / t_element_size)\n", - "time_set = list(np.linspace(0, horizon, ntfe + 1))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initial and boundary conditions for gas phase\n", - "- The initial conditions of the solid phase will be copied from the final conditions of the model in the adsorption simulation." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "# Desorption operating conditions\n", - "desorption_temperature = 470 # K\n", - "\n", - "gas_phase_state_dict_des = {\n", - " \"flow_mol\": 10, # mol/s\n", - " \"temperature\": desorption_temperature, # K\n", - " \"pressure\": 1.06525e5, # Pa\n", - " \"mole_frac_comp\": {\"CO2\": 1e-8, \"H2O\": 1, \"N2\": 1e-8, \"O2\": 1e-8}, # [-]\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Setup the desorption model\n", - "Then, we build the model and fix initial conditions:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "# Create the desorption flowsheet\n", - "m.fs_des = FlowsheetBlock(dynamic=True, time_set=time_set, time_units=pyunits.s)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "# Setup an instance of the 1D FixedBed model for the desorption simulation\n", - "m.fs_des = fb_model_setup(\n", - " m.fs_des,\n", - " ntfe,\n", - " nxfe,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Desorption model - initialize and solve\n", - "Finally for the desorption model, we initialize and solve." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### Copy values from adsorption model to desorption model\n", - "Copy state values of solid phase (besides temperature) from last time point in adsorption model to all time point in desorption model. Also set temperature state variable of desorption model to desorption temperature." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "blk_des = m.fs_des.FB\n", - "tf_ads = tj_ads.time[-1] # Get final time from adsorption trajectory results\n", - "tf_ads_index = tj_ads.time.index(tf_ads) # Get index at final time\n", - "component_list = blk_des.config.solid_phase_config.property_package.component_list\n", - "\n", - "for t in m.fs_des.time:\n", - " for x in blk_des.length_domain:\n", - " blk_des.solid_properties[t, x].temperature.set_value(desorption_temperature)\n", - " blk_des.solid_properties[t, x].dens_mass_particle.set_value(\n", - " tj_ads.get_vec(m.fs_ads.FB.solid_properties[tf_ads, x].dens_mass_particle)[\n", - " tf_ads_index\n", - " ]\n", - " )\n", - " for j in component_list:\n", - " blk_des.solid_properties[t, x].mass_frac_comp[j].set_value(\n", - " value(\n", - " tj_ads.get_vec(\n", - " m.fs_ads.FB.solid_properties[tf_ads, x].mass_frac_comp[j]\n", - " )[tf_ads_index]\n", - " )\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Fix initial and boundary conditions\n", - "We fix the conditions from the final adsorption model state as our new initial conditions for the desorption model:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "fb_fix_conditions(\n", - " m.fs_des,\n", - " bed_diameter,\n", - " bed_height,\n", - " gas_phase_state_dict_des,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Calculate scaling of desorption model\n", - "Then, we apply scaling to the model:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "iscale.calculate_scaling_factors(m.fs_des)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Initialize desorption model\n", - "The desorption model initialization is done with the block triangularization initialization method, as was done with the adsorption model." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "# Run start time\n", - "t_start_des = time.time()\n", - "\n", - "# Initialize model\n", - "m.fs_des.FB.block_triangularization_initialize(\n", - " gas_phase_state_args=gas_phase_state_dict_des,\n", - " outlvl=idaeslog.DEBUG,\n", - " solver=solver,\n", - " calc_var_kwds=calc_var_kwds,\n", - ")\n", - "\n", - "# Run end time\n", - "t_end_des = time.time()\n", - "\n", - "# Initialization time\n", - "desorption_initialization_time = value(t_end_des - t_start_des)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Setup PETSc integrator and simulate desorption step\n", - "Now that the model is fully defined, we can call the PETSc integrator to simulate the dynamics of the problem:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "# Run start time\n", - "t_start_des = time.time()\n", - "\n", - "# Setup PETSc integrator and simulate desorption flowsheet\n", - "m.fs_des.time_var = Var(m.fs_des.time)\n", - "m.fs_des.time_var[0].fix(m.fs_des.time.first())\n", - "\n", - "result_des = petsc.petsc_dae_by_time_element(\n", - " m.fs_des,\n", - " time=m.fs_des.time,\n", - " timevar=m.fs_des.time_var,\n", - " keepfiles=True,\n", - " symbolic_solver_labels=True,\n", - " skip_initial=False,\n", - " ts_options={\n", - " \"--ts_type\": \"beuler\", # backward euler integration\n", - " \"--ts_dt\": 200, # set initial step to 200\n", - " \"--ts_rtol\": 20,\n", - " \"--ts_monitor\": \"\",\n", - " \"--ts_save_trajectory\": 1,\n", - " \"--ksp_rtol\": 1e-10,\n", - " \"--snes_type\": \"newtontr\", # newton trust region non-linear solver\n", - " \"--ts_monitor\": \"\",\n", - " \"--ts_save_trajectory\": 1,\n", - " \"--ts_max_snes_failures\": 1000,\n", - " },\n", - ")\n", - "tj_des = result_des.trajectory # trajectory data\n", - "\n", - "# Run end time\n", - "t_end_des = time.time()\n", - "\n", - "# Initialization time\n", - "desorption_simulation_time = value(t_end_des - t_start_des)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plot the desorption simulation results\n", - "Similar to the results of the adsorption model, the plots below are presented as temporal plots with spatial contours and spatial plots with time contours to fully capture the model trends.\n", - "\n", - "The gas flowrate spikes initially as large quantities of CO2 are recovered, and then the flowrate drops rapidly as the CO2 is carried away. An interesting note is that this occurs over the same time period everywhere across the length of the bed, peaking around 1000 seconds into the simulation. In the spatial plot, the peak is missed between the first and second contours; instead, the spatial plots captures a similar shifting inflection point around 10-25% of the way into the bed as the mass transfer driving force suddenly decreases.\n", - "\n", - "The bed pressure drops suddenly as CO2 is initially desorbed from the bed, and a steady state is reached at larger time points. As in the adsorption case, the desorption results show no temporal or spatial gradients in gas or solid temperature.\n", - "\n", - "The CO2 content of the gas sharply rises initially, and steadily decreases as CO2 is carried away in the sweep gas. A greater amount of CO2 is recovered closer to the reactor inlet. As the sweep gas is nearly pure water vapor, the water concentration in the gas sharply drops as CO2 is desorbed from the bed and recovers to near unity towards the temporal end of the simulation.\n", - "\n", - "Carbamate disappears quickly as CO2 is recovered and the hydrate is broken down, occurring evenly across the length of the reactor bed." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "# Plot temporal result profiles\n", - "plot_results_temporal(m.fs_des, tj_des)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "# Plot spatial result profiles\n", - "plot_results_spatial(m.fs_ads, tj_ads)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 3: Generate performance results" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "###########################################################################\n", - "# Heat requirements\n", - "###########################################################################\n", - "heat_computation(m, tj_ads, tj_des, adsorption_temperature, desorption_temperature)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "###########################################################################\n", - "# Performance results\n", - "###########################################################################\n", - "performance_results(m, tj_ads, tj_des)\n", - "\n", - "results_summary(m, adsorption_temperature, desorption_temperature)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Simulation time results" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Adsorption initialization time: \", adsorption_initialization_time, \" s\")\n", - "print(\"Adsorption simulation time: \", adsorption_simulation_time, \" s\")\n", - "print()\n", - "print(\"Desorption initialization time: \", desorption_initialization_time, \" s\")\n", - "print(\"Desorption simulation time: \", desorption_simulation_time, \" s\")\n", - "print()\n", - "total_simulation_time = (\n", - " adsorption_initialization_time\n", - " + adsorption_simulation_time\n", - " + desorption_initialization_time\n", - " + desorption_simulation_time\n", - ")\n", - "print(\"Total simulation time: \", total_simulation_time, \" s\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Summary\n", - "This example demonstrates implementation of the 1D FixedBed model within IDAES. External property packages for multiple phase domains and interfaces, as well as mass transfer and reaction properties, were integrated into two simulations. The simulations are connected via their final (adsorption) and initial (desorption) states, and each utilizes the PETSc integrator to calculate temporal profiles over the spatial domains." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CO2 Adsorption Desorption simulation example with a 1D Fixed Bed model\n", + "Author: Chinedu Okoli, Anca Ostace, Brandon Paul \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "This jupyter notebook shows an example of a CO2 Adsorption Desorption cycle with the IDAES 1D FixedBed model. The IDAES 1D FixedBed model is a dynamic and axially varying reactor/adsorption model which is able to model the gas and solid interactions of the modeled species in detail. The sorbent used for this example is the NETL_32D sorbent with its details and parameters obtained from the following references: \n", + "- A. Lee, D.C. Miller, A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber, Ind. Eng. Chem. Res. 52 (2013) 469–484\n", + "- Lee, A.; Mebane, D.; Fauth, D. J.; Miller, D. C. A Model for the Adsorption Kinetics of CO2 on Amine-Impregnated Mesoporous Sorbents in the Presence of Water. Presented at the 28th International Pittsburgh Coal Conference, Pittsburgh, PA, 2011.\n", + "\n", + "The notebook demonstrates how to use the IDAES 1DFixedBed model for an adsorption/desorption application with distinct adsorption and desorption steps. This example leverages custom libraries and functions specific to the NETL_32D solid sorbent and associated gas phase properties and surface reactions. In this system, the silicon monoxide (SiO(s)) sorbent reduces carbon dioxide (CO2(g)) to carbamate (denoted Car(s)) while simultaneously absorbing water vapor (H2O(g)) to produce a solid solution-state hydrate (H2O(s)). The solid phase is considered a one-dimensional domain with three regions for bubble, cloud wake and emulsion properties for bubbling bed systems; in the case of a fixed bed reactor non-bulk gas behavior is neglected and assumed to be homogeneous everywhere not near the solid surface.\n", + "\n", + "The notebook also shows how to simulate the adsorption and desorption steps using the PETSc integrator. PETSc leverages nonlinear equation and differential algebraic equation solvers to solve time-trajectory problems. These solvers are applicable for systems with zero degrees of freedom, such as a fully-specified bed reactor model. See https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html#petsc-utilities for more details." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cycle details\n", + "The system contains the following equipment and stream properties:\n", + "- Bed height: 9 m\n", + "- Bed diameter: 1 m\n", + "- Adsorption time: 30 hrs\n", + "- Desorption time: 2 hrs\n", + "- Adsorption temperature: 303.15 K\n", + "- Desorption temperature: 470 K\n", + "- Flue gas inlet conditions (Temperature and mole fractions obtained from NETL baseline report. Exhibit 5-22 B31B case)\n", + " - Temperature: 315 K\n", + " - Pressure: 106.5 kPa\n", + " - Flowrate: 3.544 mol/s\n", + " - Mole fractions: CO2: 0.0408, H2O: 0.0875, N2: 0.7517, O2: 0.12" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Notes\n", + "Some additional information regarding the problem:\n", + "- Isothermal conditions: heat duty requirements of each step are calculated from gas and sorbent properties, i.e., loading, density, heat of adsorption, and heat capacity\n", + "- Heating and cooling modes not modeled in detail: cycle times are assumed negligible in comparison to adsorption and desorption\n", + "- Adsorption and desorption steps are modeled in different flowsheets\n", + "- Initial condition (except temperature) of sorbent in desorption step is set to final condition of sorbent in adsorption step" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Import relevant libraries and packages" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import python libraries\n", + "\n", + "- numpy (numerical python library which provides numerical computing tools)\n", + "- time (time python library which will be used to track the simulation time)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### Import Pyomo packages\n", + "For the flowsheet, we will need several components from the pyomo libraries.\n", + "\n", + "- ConcreteModel (to create the Pyomo model that will contain the IDAES flowsheet)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- SolverFactory (to solve the problem)\n", + "- Var (to create a Pyomo variable)\n", + "- value (to return the numerical value of Pyomo objects such as variables, constraints or expressions)\n", + "- units (to handle units in Pyomo and IDAES)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/latest/" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " ConcreteModel,\n", + " TransformationFactory,\n", + " SolverFactory,\n", + " Var,\n", + " value,\n", + " units as pyunits,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import IDAES core components\n", + "\n", + "To build, initialize, and solve IDAES flowsheets we will need several core components/utilities:\n", + "\n", + "- FlowsheetBlock (the flowsheet block contains idaes properties, time, and unit models)\n", + "- EnergyBalanceType (to specify the energy balance type)\n", + "- petsc (PETSc integrator)\n", + "- get_solver (IDAES solver utility)\n", + "- iscale (is used to apply scaling factors in variables and constraints)\n", + "- propagate_state (is used to initialize models, propagating the state variables from one unit model to another)\n", + "- degrees_of_freedom (useful for debugging, this method returns the DOF of the model)\n", + "- idaeslog (is used to set output messages like warnings or errors)\n", + "\n", + "For further details on these components, please refer to the IDAES documentation: https://idaes-pse.readthedocs.io/en/latest/" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core import FlowsheetBlock, EnergyBalanceType\n", + "import idaes.core.solvers.petsc as petsc # PETSc utilities module\n", + "from idaes.core.util import scaling as iscale\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "import idaes.logger as idaeslog\n", + "import logging" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import IDAES unit models and NETL 32D property packages\n", + "\n", + "To build the IDAES flowsheet for the CO2 Adsorption Desorption example, we will need the following: \n", + "1) the 1D Fixed Bed unit model \n", + "2) the NETL 32D property package" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models_extra.gas_solid_contactors.unit_models.fixed_bed_1D import FixedBed1D\n", + "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_gas_phase_thermo import (\n", + " GasPhaseParameterBlock,\n", + ")\n", + "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_solid_phase_thermo import (\n", + " SolidPhaseParameterBlock,\n", + ")\n", + "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_adsorption_reactions import (\n", + " HeteroReactionParameterBlock,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import custom libraries and functions\n", + "To simplify and automate this example at the flowsheet level, several custom methods were defined in an external script. The methods are custom, and as such are imported separately from the set of IDAES and Pyomo methods above. These utility functions perform a variety of numerical and reporting tasks:\n", + "\n", + "- heat_computation (used to calculate the heat requirements of the CO2 Adsorption Desorption cycle)\n", + "- performance_results (used to evaluate the performance of the CO2 Adsorption Desorption cycle)\n", + "- results_summary (provides summarized results of the CO2 Adsorption Desorption cycle)\n", + "- plot_results_temporal (plots the temporal profiles of the flowsheet simulation)\n", + "- plot_results_spatial (plots the spatial profiles of the flowsheet simulation)\n", + "- fb_model_setup (function that builds the 1D FixedBed model)\n", + "- fb_fixed_conditions (function that fixes the initial and boundary conditions of the 1D FixedBed model)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes_examples.mod.co2_adsorption_desorption.simulation_utilities import (\n", + " heat_computation,\n", + " performance_results,\n", + " results_summary,\n", + " plot_results_temporal,\n", + " plot_results_spatial,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a Function to Build the Flowsheet\n", + "\n", + "The function \"fb_model_setup\" below builds instances of the 1D FixedBed model for the adsorption and desorption simulations. While the effort required to define the reactor is low in terms of lines of code, we will need to do this for both the adsorption and desorption steps. Therefore, defining this setup as a single function will make later steps easier to follow. As arguments it takes the following:\n", + "1) The flowsheet block of the simulation, i.e., the adsorption flowsheet \n", + "2) The number of time finite elements \n", + "3) The number of spatial finite elements \n", + "\n", + "It returns a flowsheet object which contains an instance of the 1D FixedBed model" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def fb_model_setup(\n", + " fs,\n", + " ntfe, # number of time finite elements\n", + " nxfe, # number of space finite elements\n", + "):\n", + "\n", + " # Set up thermo props and reaction props\n", + " fs.gas_properties = GasPhaseParameterBlock()\n", + " fs.solid_properties = SolidPhaseParameterBlock()\n", + "\n", + " fs.hetero_reactions = HeteroReactionParameterBlock(\n", + " solid_property_package=fs.solid_properties,\n", + " gas_property_package=fs.gas_properties,\n", + " )\n", + "\n", + " fs.FB = FixedBed1D(\n", + " finite_elements=nxfe,\n", + " transformation_method=\"dae.finite_difference\",\n", + " energy_balance_type=EnergyBalanceType.none,\n", + " pressure_drop_type=\"ergun_correlation\",\n", + " gas_phase_config={\"property_package\": fs.gas_properties},\n", + " solid_phase_config={\n", + " \"property_package\": fs.solid_properties,\n", + " \"reaction_package\": fs.hetero_reactions,\n", + " },\n", + " )\n", + "\n", + " # Discretize time domain\n", + " fs.discretizer = TransformationFactory(\"dae.finite_difference\")\n", + " fs.discretizer.apply_to(fs, nfe=ntfe, wrt=fs.time, scheme=\"BACKWARD\")\n", + "\n", + " return fs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a Function to Fix the Flowsheet Conditions\n", + "\n", + "The function \"fb_fix_conditions\" fixes the initial and boundary conditions of an instance of the 1D FixedBed model. It also has checks to ensure that the degrees of freedom are zero, and that the velocity into the bed is less than the minimum fluidization velocity of the bed. Similarly to the function above, we will need to run this for the adsorption and desorption steps, and it is clearer to define the code once as a single function here. As arguments it takes the following:\n", + "1) The flowsheet block of the simulation, i.e., the adsorption flowsheet \n", + "2) The reactor bed diameter \n", + "3) The reactor bed height \n", + "4) A dictionary of gas phase state data for which the gas phase state variables of the model should be fixed to \n", + "5) A dictionary of solid phase state data for which the solid phase state variables of the model should be fixed to. If None, the solid phase state variables are fixed to their current values. \n", + "\n", + "No object is returned by this function." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def fb_fix_conditions(\n", + " fs, bed_diameter, bed_height, gas_phase_state_dict, solid_phase_state_dict=None\n", + "):\n", + " # Fix bed geometry variables\n", + " fs.FB.bed_diameter.fix(bed_diameter) # m\n", + " fs.FB.bed_height.fix(bed_height) # m\n", + "\n", + " # Fix boundary values for gas for all time\n", + " blk = fs.FB\n", + " for t in fs.time:\n", + " # Gas values\n", + " blk.gas_inlet.flow_mol[t].fix(gas_phase_state_dict[\"flow_mol\"])\n", + " blk.gas_inlet.temperature[t].fix(gas_phase_state_dict[\"temperature\"])\n", + " blk.gas_inlet.pressure[t].fix(gas_phase_state_dict[\"pressure\"])\n", + " for j, val in gas_phase_state_dict[\"mole_frac_comp\"].items():\n", + " blk.gas_inlet.mole_frac_comp[t, j].fix(val)\n", + "\n", + " # Specify gas phase and solid phase initial conditions for all space\n", + " t0 = fs.time.first()\n", + " for x in blk.length_domain:\n", + " blk.gas_phase.properties[t0, x].flow_mol.fix(gas_phase_state_dict[\"flow_mol\"])\n", + " blk.gas_phase.properties[t0, x].temperature.fix(\n", + " gas_phase_state_dict[\"temperature\"]\n", + " ) # K\n", + " for j, val in gas_phase_state_dict[\"mole_frac_comp\"].items():\n", + " blk.gas_phase.properties[t0, x].mole_frac_comp[j].fix(val)\n", + "\n", + " if solid_phase_state_dict is None:\n", + " # Fix to existing values if dict is empty\n", + " blk.solid_properties[t0, x].dens_mass_particle.fix()\n", + " blk.solid_properties[t0, x].temperature.fix()\n", + " blk.solid_properties[t0, x].mass_frac_comp[:].fix()\n", + " else:\n", + " blk.solid_properties[t0, x].dens_mass_particle.fix(\n", + " solid_phase_state_dict[\"dens_mass_particle\"]\n", + " )\n", + " blk.solid_properties[t0, x].temperature.fix(\n", + " solid_phase_state_dict[\"temperature\"]\n", + " )\n", + " for j, val in solid_phase_state_dict[\"mass_frac_comp\"].items():\n", + " blk.solid_properties[t0, x].mass_frac_comp[j].fix(val)\n", + "\n", + " dof = degrees_of_freedom(fs)\n", + "\n", + " print(\"degrees of freedom = \", dof)\n", + " try:\n", + " assert degrees_of_freedom(fs) == 0\n", + " except AssertionError:\n", + " print(\"Degrees of freedom is not equal to zero. This is unexpected.\")\n", + " raise\n", + "\n", + " # Assert that inlet gas velocity is less than v_mf\n", + " # Use solid temperature as the thermal mass of solid >> than that of gas\n", + " pi = 3.14 # [-]\n", + " R = 8.314 # Gas constant [J/mol/K]\n", + "\n", + " @blk.Expression(doc=\"gas inlet velocity, m/s\")\n", + " def gas_inlet_velocity(blk):\n", + " v_gas_inlet = (\n", + " blk.gas_inlet.flow_mol[0] / (pi * value(blk.bed_diameter**2) / 4)\n", + " ) * (R * blk.solid_properties[0, 0].temperature / blk.gas_inlet.pressure[0])\n", + " return v_gas_inlet\n", + "\n", + " v_mf = value( # minimum fluidization velocity [m/s]\n", + " blk.solid_properties[t0, 0]._params.velocity_mf\n", + " )\n", + " print(\"inlet gas velocity = \", value(blk.gas_inlet_velocity), \" m/s\")\n", + " print(\"min. fluid velocity = \", v_mf, \" m/s\")\n", + " try:\n", + " assert value(blk.gas_inlet_velocity) <= v_mf\n", + " except AssertionError:\n", + " print(\n", + " \"The inlet gas velocity is greater than the minimum fluidization velocity. \"\n", + " \"This is unexpected for a Fixed Bed.\"\n", + " )\n", + " raise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2: Setup and run simulation\n", + "Now that the system properties and all required utility functions are defined, we will build the model itself." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create concrete model\n", + "First, create the model object:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Setup solver for initialization\n", + "We limit the maximum number of iterations and apply appropriate scaling for the linear solver for initialization:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Solver arguments\n", + "optarg = {\n", + " \"max_iter\": 100,\n", + " \"nlp_scaling_method\": \"user-scaling\",\n", + " \"linear_solver\": \"ma27\",\n", + "}\n", + "\n", + "# Create a solver\n", + "solver = get_solver(\"ipopt\")\n", + "solver.options = optarg" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Set spatial elements and design variables for adsorption and desorption simulations\n", + "Let's define the size of the system:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Number of spatial elements\n", + "nxfe = 50\n", + "\n", + "# Design variables for static and dynamic models\n", + "bed_diameter = 9 # m\n", + "bed_height = 1 # m" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adsorption simulation\n", + "First, we will run the adsorption step by defining the simulation domain, add initial conditions, and set up and solve the model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup simulation horizon and create time set\n", + "We specify the time discretization to an exact set of temporal points according to the problem horizon:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Time horizon\n", + "horizon = 108000 # s\n", + "\n", + "# Create time_set list\n", + "t_element_size = horizon / 4 # s\n", + "ntfe = int(horizon / t_element_size)\n", + "time_set = list(np.linspace(0, horizon, ntfe + 1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Initial conditions for gas and solid phases\n", + "Next, we set reasoanble initial conditions for the gas and solid phases at time = 0, with a constant adsorption temperature:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Flue gas inlet conditions to adsorption system (flue gas stream) -\n", + "# Temperature and mole fractions obtained from NETL baseline report.\n", + "# Exhibit 5-22 B31B case.\n", + "adsorption_temperature = 303.15 # K\n", + "\n", + "# Dictionary of initial and boundary conditions for gas phase\n", + "gas_phase_state_dict_ads = {\n", + " \"flow_mol\": 3.544, # mol/s\n", + " \"temperature\": adsorption_temperature, # K\n", + " \"pressure\": 1.2452e5, # Pa\n", + " \"mole_frac_comp\": { # [-]\n", + " \"CO2\": 0.0408,\n", + " \"H2O\": 0.0875,\n", + " \"N2\": 0.7517,\n", + " \"O2\": 0.12,\n", + " },\n", + "}\n", + "\n", + "# Dictionary of initial conditions for solid phase\n", + "solid_phase_state_dict_ads = {\n", + " \"dens_mass_particle\": 442, # kg/m3\n", + " \"temperature\": adsorption_temperature, # K\n", + " \"mass_frac_comp\": { # [-]\n", + " \"H2O_s\": 1e-8,\n", + " \"Car\": 1e-8,\n", + " \"SiO\": 1,\n", + " },\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup the adsorption model\n", + "Then, we call our previously defined methods to build the model and fix initial conditions:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Create the adsorption flowsheet\n", + "m.fs_ads = FlowsheetBlock(dynamic=True, time_set=time_set, time_units=pyunits.s)\n", + "\n", + "# Setup an instance of the 1D FixedBed model for the adsorption simulation\n", + "m.fs_ads = fb_model_setup(m.fs_ads, ntfe, nxfe)\n", + "\n", + "# Fix initial and boundary conditions\n", + "fb_fix_conditions(\n", + " m.fs_ads,\n", + " bed_diameter,\n", + " bed_height,\n", + " gas_phase_state_dict_ads,\n", + " solid_phase_state_dict_ads,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adsorption model - initialize and solve\n", + "Finally for the adsorption model, we initialize and solve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Apply scaling transformation\n", + "We first scale the model variables and equations to reduce ill-conditioning and improve its convergence properties:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "iscale.calculate_scaling_factors(m.fs_ads)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Initialize model\n", + "The model initialization is done with the block triangularization initialization method in the 1D FixedBed model as this is faster than using the traditional sequential heirarchichal initialization approach. See the 1D FixedBed model and documentation for more details on this method." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# Run start time\n", + "t_start_ads = time.time()\n", + "\n", + "# Initialize model\n", + "calc_var_kwds = {\"eps\": 1e-5}\n", + "m.fs_ads.FB.block_triangularization_initialize(\n", + " gas_phase_state_args=gas_phase_state_dict_ads,\n", + " solid_phase_state_args=solid_phase_state_dict_ads,\n", + " outlvl=idaeslog.DEBUG,\n", + " solver=solver,\n", + " calc_var_kwds=calc_var_kwds,\n", + ")\n", + "\n", + "# Run end time\n", + "t_end_ads = time.time()\n", + "\n", + "# Initialization time\n", + "adsorption_initialization_time = value(t_end_ads - t_start_ads)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### PETSc integrator\n", + "As mentioned earlier, the PETSc integrator is used for simulating the time trajectory. After starting the clock and instantiating the time variables, PETSc performs and element-wise discretization to define and solve the dynamic system of equations. See https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html#petsc-utilities for more details.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "petscsolvelog = idaeslog.getSolveLogger(\"petsc-dae\")\n", + "petscsolvelog.setLevel(logging.WARNING) # comment this line to see PETSc solver output\n", + "\n", + "# Run start time\n", + "t_start_ads = time.time()\n", + "\n", + "# Setup PETSc integrator and simulate adsorption flowsheet\n", + "m.fs_ads.time_var = Var(m.fs_ads.time)\n", + "m.fs_ads.time_var[0].fix(m.fs_ads.time.first())\n", + "\n", + "result_ads = petsc.petsc_dae_by_time_element(\n", + " m.fs_ads,\n", + " time=m.fs_ads.time,\n", + " timevar=m.fs_ads.time_var,\n", + " keepfiles=True,\n", + " symbolic_solver_labels=True,\n", + " skip_initial=False,\n", + " ts_options={\n", + " \"--ts_type\": \"beuler\", # backward euler integration\n", + " \"--ts_dt\": 200, # set initial step to 200\n", + " \"--ts_rtol\": 20,\n", + " \"--ts_monitor\": \"\",\n", + " \"--ts_save_trajectory\": 1,\n", + " \"--ksp_rtol\": 1e-10,\n", + " \"--snes_type\": \"newtontr\", # newton trust region non-linear solver\n", + " \"--ts_monitor\": \"\",\n", + " \"--ts_save_trajectory\": 1,\n", + " \"--ts_max_snes_failures\": 1000,\n", + " },\n", + ")\n", + "tj_ads = result_ads.trajectory # trajectory data\n", + "\n", + "# Run end time\n", + "t_end_ads = time.time()\n", + "\n", + "# Initialization time\n", + "adsorption_simulation_time = value(t_end_ads - t_start_ads)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot the adsorption simulation results\n", + "After running the adsorption simulation, the dynamic profiles are plotted." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the temporal plots below, quantities are reported as functions of time and contoured for six points along the length of the bed. The time and spatial dimensions are exchanged in the spatial plots, with quantities reported as functions of length and contoured for five time points.\n", + "\n", + "The gas flowrate is constant at the inlet and decreases over the length of the bed as CO2 is removed from the gas. At each spatial point, the CO2 content of the gas increases over time as the bed becomes more saturated with CO2 and the mass transfer driving force decreases. Assessing the two gas flowrate plots, adsorption occurs steadily over time with a much larger capture rate in the initial spatial region; this region grows from 10% to 25% of the bed length as the bed becomes more saturated with CO2 over time.\n", + "\n", + "The bed pressure stays relatively constant over time, and exhibits a linear drop over the length of the reactor. There are no temporal or spatial gradients in gas or solid temperature.\n", + "\n", + "The saturation trend is strongly apparent in the composition trends. The CO2 content of the gas quickly drops from the initial concentration over the length of the bed, and steadily rises over time as the driving force of mass transfer decreases. Water vapor concentration in the gas follows a similar trend.\n", + "\n", + "Following the solid-state reaction, the concentration of carbmate steadily increases over time with formation skewing heavily towards the initial spatial region of the bed. The spatial contours of the temporal carbamate composition plot cross as a result of the solid reaction rate heavily favoring the initial section of the bed and suddenly dropping about at about 20% of the reactor length. The mass fraction and mol/kg plots differ slightly due to water and CO2 absorbing at different rates, but otherwise demonstrate similar trends." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Plot temporal result profiles\n", + "plot_results_temporal(m.fs_ads, tj_ads)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Plot spatial result profiles\n", + "plot_results_spatial(m.fs_ads, tj_ads)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Desorption simulation\n", + "The desorption simulation begins when the adsorption simulation ends. It uses the final state of the sorbent (besides temperature which is set at the desorption temperature) in the adsorption mode as the initial state of the sorbent in the desorption mode." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup simulation horizon and create time set\n", + "As in the adsorption simulation, we first specify the time discretization:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "# Space and time discretization arguments\n", + "horizon = 7200 # s\n", + "\n", + "# Setup for PETSc run\n", + "t_element_size = horizon # s\n", + "ntfe = int(horizon / t_element_size)\n", + "time_set = list(np.linspace(0, horizon, ntfe + 1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Initial and boundary conditions for gas phase\n", + "- The initial conditions of the solid phase will be copied from the final conditions of the model in the adsorption simulation." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# Desorption operating conditions\n", + "desorption_temperature = 470 # K\n", + "\n", + "gas_phase_state_dict_des = {\n", + " \"flow_mol\": 10, # mol/s\n", + " \"temperature\": desorption_temperature, # K\n", + " \"pressure\": 1.06525e5, # Pa\n", + " \"mole_frac_comp\": {\"CO2\": 1e-8, \"H2O\": 1, \"N2\": 1e-8, \"O2\": 1e-8}, # [-]\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup the desorption model\n", + "Then, we build the model and fix initial conditions:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# Create the desorption flowsheet\n", + "m.fs_des = FlowsheetBlock(dynamic=True, time_set=time_set, time_units=pyunits.s)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "# Setup an instance of the 1D FixedBed model for the desorption simulation\n", + "m.fs_des = fb_model_setup(\n", + " m.fs_des,\n", + " ntfe,\n", + " nxfe,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Desorption model - initialize and solve\n", + "Finally for the desorption model, we initialize and solve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Copy values from adsorption model to desorption model\n", + "Copy state values of solid phase (besides temperature) from last time point in adsorption model to all time point in desorption model. Also set temperature state variable of desorption model to desorption temperature." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "blk_des = m.fs_des.FB\n", + "tf_ads = tj_ads.time[-1] # Get final time from adsorption trajectory results\n", + "tf_ads_index = tj_ads.time.index(tf_ads) # Get index at final time\n", + "component_list = blk_des.config.solid_phase_config.property_package.component_list\n", + "\n", + "for t in m.fs_des.time:\n", + " for x in blk_des.length_domain:\n", + " blk_des.solid_properties[t, x].temperature.set_value(desorption_temperature)\n", + " blk_des.solid_properties[t, x].dens_mass_particle.set_value(\n", + " tj_ads.get_vec(m.fs_ads.FB.solid_properties[tf_ads, x].dens_mass_particle)[\n", + " tf_ads_index\n", + " ]\n", + " )\n", + " for j in component_list:\n", + " blk_des.solid_properties[t, x].mass_frac_comp[j].set_value(\n", + " value(\n", + " tj_ads.get_vec(\n", + " m.fs_ads.FB.solid_properties[tf_ads, x].mass_frac_comp[j]\n", + " )[tf_ads_index]\n", + " )\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Fix initial and boundary conditions\n", + "We fix the conditions from the final adsorption model state as our new initial conditions for the desorption model:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "fb_fix_conditions(\n", + " m.fs_des,\n", + " bed_diameter,\n", + " bed_height,\n", + " gas_phase_state_dict_des,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Calculate scaling of desorption model\n", + "Then, we apply scaling to the model:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "iscale.calculate_scaling_factors(m.fs_des)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Initialize desorption model\n", + "The desorption model initialization is done with the block triangularization initialization method, as was done with the adsorption model." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# Run start time\n", + "t_start_des = time.time()\n", + "\n", + "# Initialize model\n", + "m.fs_des.FB.block_triangularization_initialize(\n", + " gas_phase_state_args=gas_phase_state_dict_des,\n", + " outlvl=idaeslog.DEBUG,\n", + " solver=solver,\n", + " calc_var_kwds=calc_var_kwds,\n", + ")\n", + "\n", + "# Run end time\n", + "t_end_des = time.time()\n", + "\n", + "# Initialization time\n", + "desorption_initialization_time = value(t_end_des - t_start_des)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Setup PETSc integrator and simulate desorption step\n", + "Now that the model is fully defined, we can call the PETSc integrator to simulate the dynamics of the problem:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# Run start time\n", + "t_start_des = time.time()\n", + "\n", + "# Setup PETSc integrator and simulate desorption flowsheet\n", + "m.fs_des.time_var = Var(m.fs_des.time)\n", + "m.fs_des.time_var[0].fix(m.fs_des.time.first())\n", + "\n", + "result_des = petsc.petsc_dae_by_time_element(\n", + " m.fs_des,\n", + " time=m.fs_des.time,\n", + " timevar=m.fs_des.time_var,\n", + " keepfiles=True,\n", + " symbolic_solver_labels=True,\n", + " skip_initial=False,\n", + " ts_options={\n", + " \"--ts_type\": \"beuler\", # backward euler integration\n", + " \"--ts_dt\": 200, # set initial step to 200\n", + " \"--ts_rtol\": 20,\n", + " \"--ts_monitor\": \"\",\n", + " \"--ts_save_trajectory\": 1,\n", + " \"--ksp_rtol\": 1e-10,\n", + " \"--snes_type\": \"newtontr\", # newton trust region non-linear solver\n", + " \"--ts_monitor\": \"\",\n", + " \"--ts_save_trajectory\": 1,\n", + " \"--ts_max_snes_failures\": 1000,\n", + " },\n", + ")\n", + "tj_des = result_des.trajectory # trajectory data\n", + "\n", + "# Run end time\n", + "t_end_des = time.time()\n", + "\n", + "# Initialization time\n", + "desorption_simulation_time = value(t_end_des - t_start_des)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot the desorption simulation results\n", + "Similar to the results of the adsorption model, the plots below are presented as temporal plots with spatial contours and spatial plots with time contours to fully capture the model trends.\n", + "\n", + "The gas flowrate spikes initially as large quantities of CO2 are recovered, and then the flowrate drops rapidly as the CO2 is carried away. An interesting note is that this occurs over the same time period everywhere across the length of the bed, peaking around 1000 seconds into the simulation. In the spatial plot, the peak is missed between the first and second contours; instead, the spatial plots captures a similar shifting inflection point around 10-25% of the way into the bed as the mass transfer driving force suddenly decreases.\n", + "\n", + "The bed pressure drops suddenly as CO2 is initially desorbed from the bed, and a steady state is reached at larger time points. As in the adsorption case, the desorption results show no temporal or spatial gradients in gas or solid temperature.\n", + "\n", + "The CO2 content of the gas sharply rises initially, and steadily decreases as CO2 is carried away in the sweep gas. A greater amount of CO2 is recovered closer to the reactor inlet. As the sweep gas is nearly pure water vapor, the water concentration in the gas sharply drops as CO2 is desorbed from the bed and recovers to near unity towards the temporal end of the simulation.\n", + "\n", + "Carbamate disappears quickly as CO2 is recovered and the hydrate is broken down, occurring evenly across the length of the reactor bed." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "# Plot temporal result profiles\n", + "plot_results_temporal(m.fs_des, tj_des)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "# Plot spatial result profiles\n", + "plot_results_spatial(m.fs_ads, tj_ads)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3: Generate performance results" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "###########################################################################\n", + "# Heat requirements\n", + "###########################################################################\n", + "heat_computation(m, tj_ads, tj_des, adsorption_temperature, desorption_temperature)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "###########################################################################\n", + "# Performance results\n", + "###########################################################################\n", + "performance_results(m, tj_ads, tj_des)\n", + "\n", + "results_summary(m, adsorption_temperature, desorption_temperature)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulation time results" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Adsorption initialization time: \", adsorption_initialization_time, \" s\")\n", + "print(\"Adsorption simulation time: \", adsorption_simulation_time, \" s\")\n", + "print()\n", + "print(\"Desorption initialization time: \", desorption_initialization_time, \" s\")\n", + "print(\"Desorption simulation time: \", desorption_simulation_time, \" s\")\n", + "print()\n", + "total_simulation_time = (\n", + " adsorption_initialization_time\n", + " + adsorption_simulation_time\n", + " + desorption_initialization_time\n", + " + desorption_simulation_time\n", + ")\n", + "print(\"Total simulation time: \", total_simulation_time, \" s\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Summary\n", + "This example demonstrates implementation of the 1D FixedBed model within IDAES. External property packages for multiple phase domains and interfaces, as well as mass transfer and reaction properties, were integrated into two simulations. The simulations are connected via their final (adsorption) and initial (desorption) states, and each utilizes the PETSc integrator to calculate temporal profiles over the spatial domains." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } diff --git a/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed_test.ipynb b/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed_test.ipynb index 0b57769a..bdfe15f8 100644 --- a/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed_test.ipynb +++ b/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed_test.ipynb @@ -1,1126 +1,1127 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# CO2 Adsorption Desorption simulation example with a 1D Fixed Bed model\n", - "Author: Chinedu Okoli, Anca Ostace, Brandon Paul \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "This jupyter notebook shows an example of a CO2 Adsorption Desorption cycle with the IDAES 1D FixedBed model. The IDAES 1D FixedBed model is a dynamic and axially varying reactor/adsorption model which is able to model the gas and solid interactions of the modeled species in detail. The sorbent used for this example is the NETL_32D sorbent with its details and parameters obtained from the following references: \n", - "- A. Lee, D.C. Miller, A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber, Ind. Eng. Chem. Res. 52 (2013) 469–484\n", - "- Lee, A.; Mebane, D.; Fauth, D. J.; Miller, D. C. A Model for the Adsorption Kinetics of CO2 on Amine-Impregnated Mesoporous Sorbents in the Presence of Water. Presented at the 28th International Pittsburgh Coal Conference, Pittsburgh, PA, 2011.\n", - "\n", - "The notebook demonstrates how to use the IDAES 1DFixedBed model for an adsorption/desorption application with distinct adsorption and desorption steps. This example leverages custom libraries and functions specific to the NETL_32D solid sorbent and associated gas phase properties and surface reactions. In this system, the silicon monoxide (SiO(s)) sorbent reduces carbon dioxide (CO2(g)) to carbamate (denoted Car(s)) while simultaneously absorbing water vapor (H2O(g)) to produce a solid solution-state hydrate (H2O(s)). The solid phase is considered a one-dimensional domain with three regions for bubble, cloud wake and emulsion properties for bubbling bed systems; in the case of a fixed bed reactor non-bulk gas behavior is neglected and assumed to be homogeneous everywhere not near the solid surface.\n", - "\n", - "The notebook also shows how to simulate the adsorption and desorption steps using the PETSc integrator. PETSc leverages nonlinear equation and differential algebraic equation solvers to solve time-trajectory problems. These solvers are applicable for systems with zero degrees of freedom, such as a fully-specified bed reactor model. See https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html#petsc-utilities for more details." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Cycle details\n", - "The system contains the following equipment and stream properties:\n", - "- Bed height: 9 m\n", - "- Bed diameter: 1 m\n", - "- Adsorption time: 30 hrs\n", - "- Desorption time: 2 hrs\n", - "- Adsorption temperature: 303.15 K\n", - "- Desorption temperature: 470 K\n", - "- Flue gas inlet conditions (Temperature and mole fractions obtained from NETL baseline report. Exhibit 5-22 B31B case)\n", - " - Temperature: 315 K\n", - " - Pressure: 106.5 kPa\n", - " - Flowrate: 3.544 mol/s\n", - " - Mole fractions: CO2: 0.0408, H2O: 0.0875, N2: 0.7517, O2: 0.12" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Notes\n", - "Some additional information regarding the problem:\n", - "- Isothermal conditions: heat duty requirements of each step are calculated from gas and sorbent properties, i.e., loading, density, heat of adsorption, and heat capacity\n", - "- Heating and cooling modes not modeled in detail: cycle times are assumed negligible in comparison to adsorption and desorption\n", - "- Adsorption and desorption steps are modeled in different flowsheets\n", - "- Initial condition (except temperature) of sorbent in desorption step is set to final condition of sorbent in adsorption step" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 1: Import relevant libraries and packages" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import python libraries\n", - "\n", - "- numpy (numerical python library which provides numerical computing tools)\n", - "- time (time python library which will be used to track the simulation time)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import time" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Import Pyomo packages\n", - "For the flowsheet, we will need several components from the pyomo libraries.\n", - "\n", - "- ConcreteModel (to create the Pyomo model that will contain the IDAES flowsheet)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- SolverFactory (to solve the problem)\n", - "- Var (to create a Pyomo variable)\n", - "- value (to return the numerical value of Pyomo objects such as variables, constraints or expressions)\n", - "- units (to handle units in Pyomo and IDAES)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/latest/" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " ConcreteModel,\n", - " TransformationFactory,\n", - " SolverFactory,\n", - " Var,\n", - " value,\n", - " units as pyunits,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import IDAES core components\n", - "\n", - "To build, initialize, and solve IDAES flowsheets we will need several core components/utilities:\n", - "\n", - "- FlowsheetBlock (the flowsheet block contains idaes properties, time, and unit models)\n", - "- EnergyBalanceType (to specify the energy balance type)\n", - "- petsc (PETSc integrator)\n", - "- get_solver (IDAES solver utility)\n", - "- iscale (is used to apply scaling factors in variables and constraints)\n", - "- propagate_state (is used to initialize models, propagating the state variables from one unit model to another)\n", - "- degrees_of_freedom (useful for debugging, this method returns the DOF of the model)\n", - "- idaeslog (is used to set output messages like warnings or errors)\n", - "\n", - "For further details on these components, please refer to the IDAES documentation: https://idaes-pse.readthedocs.io/en/latest/" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core import FlowsheetBlock, EnergyBalanceType\n", - "import idaes.core.solvers.petsc as petsc # PETSc utilities module\n", - "from idaes.core.util import scaling as iscale\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "import idaes.logger as idaeslog\n", - "import logging" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import IDAES unit models and NETL 32D property packages\n", - "\n", - "To build the IDAES flowsheet for the CO2 Adsorption Desorption example, we will need the following: \n", - "1) the 1D Fixed Bed unit model \n", - "2) the NETL 32D property package" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models_extra.gas_solid_contactors.unit_models.fixed_bed_1D import FixedBed1D\n", - "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_gas_phase_thermo import (\n", - " GasPhaseParameterBlock,\n", - ")\n", - "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_solid_phase_thermo import (\n", - " SolidPhaseParameterBlock,\n", - ")\n", - "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_adsorption_reactions import (\n", - " HeteroReactionParameterBlock,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import custom libraries and functions\n", - "To simplify and automate this example at the flowsheet level, several custom methods were defined in an external script. The methods are custom, and as such are imported separately from the set of IDAES and Pyomo methods above. These utility functions perform a variety of numerical and reporting tasks:\n", - "\n", - "- heat_computation (used to calculate the heat requirements of the CO2 Adsorption Desorption cycle)\n", - "- performance_results (used to evaluate the performance of the CO2 Adsorption Desorption cycle)\n", - "- results_summary (provides summarized results of the CO2 Adsorption Desorption cycle)\n", - "- plot_results_temporal (plots the temporal profiles of the flowsheet simulation)\n", - "- plot_results_spatial (plots the spatial profiles of the flowsheet simulation)\n", - "- fb_model_setup (function that builds the 1D FixedBed model)\n", - "- fb_fixed_conditions (function that fixes the initial and boundary conditions of the 1D FixedBed model)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes_examples.mod.co2_adsorption_desorption.simulation_utilities import (\n", - " heat_computation,\n", - " performance_results,\n", - " results_summary,\n", - " plot_results_temporal,\n", - " plot_results_spatial,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Create a Function to Build the Flowsheet\n", - "\n", - "The function \"fb_model_setup\" below builds instances of the 1D FixedBed model for the adsorption and desorption simulations. While the effort required to define the reactor is low in terms of lines of code, we will need to do this for both the adsorption and desorption steps. Therefore, defining this setup as a single function will make later steps easier to follow. As arguments it takes the following:\n", - "1) The flowsheet block of the simulation, i.e., the adsorption flowsheet \n", - "2) The number of time finite elements \n", - "3) The number of spatial finite elements \n", - "\n", - "It returns a flowsheet object which contains an instance of the 1D FixedBed model" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "def fb_model_setup(\n", - " fs,\n", - " ntfe, # number of time finite elements\n", - " nxfe, # number of space finite elements\n", - "):\n", - "\n", - " # Set up thermo props and reaction props\n", - " fs.gas_properties = GasPhaseParameterBlock()\n", - " fs.solid_properties = SolidPhaseParameterBlock()\n", - "\n", - " fs.hetero_reactions = HeteroReactionParameterBlock(\n", - " solid_property_package=fs.solid_properties,\n", - " gas_property_package=fs.gas_properties,\n", - " )\n", - "\n", - " fs.FB = FixedBed1D(\n", - " finite_elements=nxfe,\n", - " transformation_method=\"dae.finite_difference\",\n", - " energy_balance_type=EnergyBalanceType.none,\n", - " pressure_drop_type=\"ergun_correlation\",\n", - " gas_phase_config={\"property_package\": fs.gas_properties},\n", - " solid_phase_config={\n", - " \"property_package\": fs.solid_properties,\n", - " \"reaction_package\": fs.hetero_reactions,\n", - " },\n", - " )\n", - "\n", - " # Discretize time domain\n", - " fs.discretizer = TransformationFactory(\"dae.finite_difference\")\n", - " fs.discretizer.apply_to(fs, nfe=ntfe, wrt=fs.time, scheme=\"BACKWARD\")\n", - "\n", - " return fs" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Create a Function to Fix the Flowsheet Conditions\n", - "\n", - "The function \"fb_fix_conditions\" fixes the initial and boundary conditions of an instance of the 1D FixedBed model. It also has checks to ensure that the degrees of freedom are zero, and that the velocity into the bed is less than the minimum fluidization velocity of the bed. Similarly to the function above, we will need to run this for the adsorption and desorption steps, and it is clearer to define the code once as a single function here. As arguments it takes the following:\n", - "1) The flowsheet block of the simulation, i.e., the adsorption flowsheet \n", - "2) The reactor bed diameter \n", - "3) The reactor bed height \n", - "4) A dictionary of gas phase state data for which the gas phase state variables of the model should be fixed to \n", - "5) A dictionary of solid phase state data for which the solid phase state variables of the model should be fixed to. If None, the solid phase state variables are fixed to their current values. \n", - "\n", - "No object is returned by this function." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "def fb_fix_conditions(\n", - " fs, bed_diameter, bed_height, gas_phase_state_dict, solid_phase_state_dict=None\n", - "):\n", - " # Fix bed geometry variables\n", - " fs.FB.bed_diameter.fix(bed_diameter) # m\n", - " fs.FB.bed_height.fix(bed_height) # m\n", - "\n", - " # Fix boundary values for gas for all time\n", - " blk = fs.FB\n", - " for t in fs.time:\n", - " # Gas values\n", - " blk.gas_inlet.flow_mol[t].fix(gas_phase_state_dict[\"flow_mol\"])\n", - " blk.gas_inlet.temperature[t].fix(gas_phase_state_dict[\"temperature\"])\n", - " blk.gas_inlet.pressure[t].fix(gas_phase_state_dict[\"pressure\"])\n", - " for j, val in gas_phase_state_dict[\"mole_frac_comp\"].items():\n", - " blk.gas_inlet.mole_frac_comp[t, j].fix(val)\n", - "\n", - " # Specify gas phase and solid phase initial conditions for all space\n", - " t0 = fs.time.first()\n", - " for x in blk.length_domain:\n", - " blk.gas_phase.properties[t0, x].flow_mol.fix(gas_phase_state_dict[\"flow_mol\"])\n", - " blk.gas_phase.properties[t0, x].temperature.fix(\n", - " gas_phase_state_dict[\"temperature\"]\n", - " ) # K\n", - " for j, val in gas_phase_state_dict[\"mole_frac_comp\"].items():\n", - " blk.gas_phase.properties[t0, x].mole_frac_comp[j].fix(val)\n", - "\n", - " if solid_phase_state_dict is None:\n", - " # Fix to existing values if dict is empty\n", - " blk.solid_properties[t0, x].dens_mass_particle.fix()\n", - " blk.solid_properties[t0, x].temperature.fix()\n", - " blk.solid_properties[t0, x].mass_frac_comp[:].fix()\n", - " else:\n", - " blk.solid_properties[t0, x].dens_mass_particle.fix(\n", - " solid_phase_state_dict[\"dens_mass_particle\"]\n", - " )\n", - " blk.solid_properties[t0, x].temperature.fix(\n", - " solid_phase_state_dict[\"temperature\"]\n", - " )\n", - " for j, val in solid_phase_state_dict[\"mass_frac_comp\"].items():\n", - " blk.solid_properties[t0, x].mass_frac_comp[j].fix(val)\n", - "\n", - " dof = degrees_of_freedom(fs)\n", - "\n", - " print(\"degrees of freedom = \", dof)\n", - " try:\n", - " assert degrees_of_freedom(fs) == 0\n", - " except AssertionError:\n", - " print(\"Degrees of freedom is not equal to zero. This is unexpected.\")\n", - " raise\n", - "\n", - " # Assert that inlet gas velocity is less than v_mf\n", - " # Use solid temperature as the thermal mass of solid >> than that of gas\n", - " pi = 3.14 # [-]\n", - " R = 8.314 # Gas constant [J/mol/K]\n", - "\n", - " @blk.Expression(doc=\"gas inlet velocity, m/s\")\n", - " def gas_inlet_velocity(blk):\n", - " v_gas_inlet = (\n", - " blk.gas_inlet.flow_mol[0] / (pi * value(blk.bed_diameter**2) / 4)\n", - " ) * (R * blk.solid_properties[0, 0].temperature / blk.gas_inlet.pressure[0])\n", - " return v_gas_inlet\n", - "\n", - " v_mf = value( # minimum fluidization velocity [m/s]\n", - " blk.solid_properties[t0, 0]._params.velocity_mf\n", - " )\n", - " print(\"inlet gas velocity = \", value(blk.gas_inlet_velocity), \" m/s\")\n", - " print(\"min. fluid velocity = \", v_mf, \" m/s\")\n", - " try:\n", - " assert value(blk.gas_inlet_velocity) <= v_mf\n", - " except AssertionError:\n", - " print(\n", - " \"The inlet gas velocity is greater than the minimum fluidization velocity. \"\n", - " \"This is unexpected for a Fixed Bed.\"\n", - " )\n", - " raise" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 2: Setup and run simulation\n", - "Now that the system properties and all required utility functions are defined, we will build the model itself." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Create concrete model\n", - "First, create the model object:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Setup solver for initialization\n", - "We limit the maximum number of iterations and apply appropriate scaling for the linear solver for initialization:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# Solver arguments\n", - "optarg = {\n", - " \"max_iter\": 100,\n", - " \"nlp_scaling_method\": \"user-scaling\",\n", - " \"linear_solver\": \"ma27\",\n", - "}\n", - "\n", - "# Create a solver\n", - "solver = get_solver(\"ipopt\")\n", - "solver.options = optarg" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Set spatial elements and design variables for adsorption and desorption simulations\n", - "Let's define the size of the system:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# Number of spatial elements\n", - "nxfe = 50\n", - "\n", - "# Design variables for static and dynamic models\n", - "bed_diameter = 9 # m\n", - "bed_height = 1 # m" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adsorption simulation\n", - "First, we will run the adsorption step by defining the simulation domain, add initial conditions, and set up and solve the model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Setup simulation horizon and create time set\n", - "We specify the time discretization to an exact set of temporal points according to the problem horizon:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# Time horizon\n", - "horizon = 108000 # s\n", - "\n", - "# Create time_set list\n", - "t_element_size = horizon / 4 # s\n", - "ntfe = int(horizon / t_element_size)\n", - "time_set = list(np.linspace(0, horizon, ntfe + 1))" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "tags": [ - "testing" - ] - }, - "outputs": [], - "source": [ - "# Reduce time horizon to speed up testing\n", - "horizon /= 10" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initial conditions for gas and solid phases\n", - "Next, we set reasoanble initial conditions for the gas and solid phases at time = 0, with a constant adsorption temperature:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# Flue gas inlet conditions to adsorption system (flue gas stream) -\n", - "# Temperature and mole fractions obtained from NETL baseline report.\n", - "# Exhibit 5-22 B31B case.\n", - "adsorption_temperature = 303.15 # K\n", - "\n", - "# Dictionary of initial and boundary conditions for gas phase\n", - "gas_phase_state_dict_ads = {\n", - " \"flow_mol\": 3.544, # mol/s\n", - " \"temperature\": adsorption_temperature, # K\n", - " \"pressure\": 1.2452e5, # Pa\n", - " \"mole_frac_comp\": { # [-]\n", - " \"CO2\": 0.0408,\n", - " \"H2O\": 0.0875,\n", - " \"N2\": 0.7517,\n", - " \"O2\": 0.12,\n", - " },\n", - "}\n", - "\n", - "# Dictionary of initial conditions for solid phase\n", - "solid_phase_state_dict_ads = {\n", - " \"dens_mass_particle\": 442, # kg/m3\n", - " \"temperature\": adsorption_temperature, # K\n", - " \"mass_frac_comp\": { # [-]\n", - " \"H2O_s\": 1e-8,\n", - " \"Car\": 1e-8,\n", - " \"SiO\": 1,\n", - " },\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Setup the adsorption model\n", - "Then, we call our previously defined methods to build the model and fix initial conditions:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "# Create the adsorption flowsheet\n", - "m.fs_ads = FlowsheetBlock(dynamic=True, time_set=time_set, time_units=pyunits.s)\n", - "\n", - "# Setup an instance of the 1D FixedBed model for the adsorption simulation\n", - "m.fs_ads = fb_model_setup(m.fs_ads, ntfe, nxfe)\n", - "\n", - "# Fix initial and boundary conditions\n", - "fb_fix_conditions(\n", - " m.fs_ads,\n", - " bed_diameter,\n", - " bed_height,\n", - " gas_phase_state_dict_ads,\n", - " solid_phase_state_dict_ads,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Adsorption model - initialize and solve\n", - "Finally for the adsorption model, we initialize and solve." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Apply scaling transformation\n", - "We first scale the model variables and equations to reduce ill-conditioning and improve its convergence properties:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "iscale.calculate_scaling_factors(m.fs_ads)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Initialize model\n", - "The model initialization is done with the block triangularization initialization method in the 1D FixedBed model as this is faster than using the traditional sequential heirarchichal initialization approach. See the 1D FixedBed model and documentation for more details on this method." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "# Run start time\n", - "t_start_ads = time.time()\n", - "\n", - "# Initialize model\n", - "calc_var_kwds = {\"eps\": 1e-5}\n", - "m.fs_ads.FB.block_triangularization_initialize(\n", - " gas_phase_state_args=gas_phase_state_dict_ads,\n", - " solid_phase_state_args=solid_phase_state_dict_ads,\n", - " outlvl=idaeslog.DEBUG,\n", - " solver=solver,\n", - " calc_var_kwds=calc_var_kwds,\n", - ")\n", - "\n", - "# Run end time\n", - "t_end_ads = time.time()\n", - "\n", - "# Initialization time\n", - "adsorption_initialization_time = value(t_end_ads - t_start_ads)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### PETSc integrator\n", - "As mentioned earlier, the PETSc integrator is used for simulating the time trajectory. After starting the clock and instantiating the time variables, PETSc performs and element-wise discretization to define and solve the dynamic system of equations. See https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html#petsc-utilities for more details.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "petscsolvelog = idaeslog.getSolveLogger(\"petsc-dae\")\n", - "petscsolvelog.setLevel(logging.WARNING) # comment this line to see PETSc solver output\n", - "\n", - "# Run start time\n", - "t_start_ads = time.time()\n", - "\n", - "# Setup PETSc integrator and simulate adsorption flowsheet\n", - "m.fs_ads.time_var = Var(m.fs_ads.time)\n", - "m.fs_ads.time_var[0].fix(m.fs_ads.time.first())\n", - "\n", - "result_ads = petsc.petsc_dae_by_time_element(\n", - " m.fs_ads,\n", - " time=m.fs_ads.time,\n", - " timevar=m.fs_ads.time_var,\n", - " keepfiles=True,\n", - " symbolic_solver_labels=True,\n", - " skip_initial=False,\n", - " ts_options={\n", - " \"--ts_type\": \"beuler\", # backward euler integration\n", - " \"--ts_dt\": 200, # set initial step to 200\n", - " \"--ts_rtol\": 20,\n", - " \"--ts_monitor\": \"\",\n", - " \"--ts_save_trajectory\": 1,\n", - " \"--ksp_rtol\": 1e-10,\n", - " \"--snes_type\": \"newtontr\", # newton trust region non-linear solver\n", - " \"--ts_monitor\": \"\",\n", - " \"--ts_save_trajectory\": 1,\n", - " \"--ts_max_snes_failures\": 1000,\n", - " },\n", - ")\n", - "tj_ads = result_ads.trajectory # trajectory data\n", - "\n", - "# Run end time\n", - "t_end_ads = time.time()\n", - "\n", - "# Initialization time\n", - "adsorption_simulation_time = value(t_end_ads - t_start_ads)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plot the adsorption simulation results\n", - "After running the adsorption simulation, the dynamic profiles are plotted." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the temporal plots below, quantities are reported as functions of time and contoured for six points along the length of the bed. The time and spatial dimensions are exchanged in the spatial plots, with quantities reported as functions of length and contoured for five time points.\n", - "\n", - "The gas flowrate is constant at the inlet and decreases over the length of the bed as CO2 is removed from the gas. At each spatial point, the CO2 content of the gas increases over time as the bed becomes more saturated with CO2 and the mass transfer driving force decreases. Assessing the two gas flowrate plots, adsorption occurs steadily over time with a much larger capture rate in the initial spatial region; this region grows from 10% to 25% of the bed length as the bed becomes more saturated with CO2 over time.\n", - "\n", - "The bed pressure stays relatively constant over time, and exhibits a linear drop over the length of the reactor. There are no temporal or spatial gradients in gas or solid temperature.\n", - "\n", - "The saturation trend is strongly apparent in the composition trends. The CO2 content of the gas quickly drops from the initial concentration over the length of the bed, and steadily rises over time as the driving force of mass transfer decreases. Water vapor concentration in the gas follows a similar trend.\n", - "\n", - "Following the solid-state reaction, the concentration of carbmate steadily increases over time with formation skewing heavily towards the initial spatial region of the bed. The spatial contours of the temporal carbamate composition plot cross as a result of the solid reaction rate heavily favoring the initial section of the bed and suddenly dropping about at about 20% of the reactor length. The mass fraction and mol/kg plots differ slightly due to water and CO2 absorbing at different rates, but otherwise demonstrate similar trends." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "# Plot temporal result profiles\n", - "plot_results_temporal(m.fs_ads, tj_ads)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "# Plot spatial result profiles\n", - "plot_results_spatial(m.fs_ads, tj_ads)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Desorption simulation\n", - "The desorption simulation begins when the adsorption simulation ends. It uses the final state of the sorbent (besides temperature which is set at the desorption temperature) in the adsorption mode as the initial state of the sorbent in the desorption mode." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Setup simulation horizon and create time set\n", - "As in the adsorption simulation, we first specify the time discretization:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "# Space and time discretization arguments\n", - "horizon = 7200 # s\n", - "\n", - "# Setup for PETSc run\n", - "t_element_size = horizon # s\n", - "ntfe = int(horizon / t_element_size)\n", - "time_set = list(np.linspace(0, horizon, ntfe + 1))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initial and boundary conditions for gas phase\n", - "- The initial conditions of the solid phase will be copied from the final conditions of the model in the adsorption simulation." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "# Desorption operating conditions\n", - "desorption_temperature = 470 # K\n", - "\n", - "gas_phase_state_dict_des = {\n", - " \"flow_mol\": 10, # mol/s\n", - " \"temperature\": desorption_temperature, # K\n", - " \"pressure\": 1.06525e5, # Pa\n", - " \"mole_frac_comp\": {\"CO2\": 1e-8, \"H2O\": 1, \"N2\": 1e-8, \"O2\": 1e-8}, # [-]\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Setup the desorption model\n", - "Then, we build the model and fix initial conditions:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "# Create the desorption flowsheet\n", - "m.fs_des = FlowsheetBlock(dynamic=True, time_set=time_set, time_units=pyunits.s)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "# Setup an instance of the 1D FixedBed model for the desorption simulation\n", - "m.fs_des = fb_model_setup(\n", - " m.fs_des,\n", - " ntfe,\n", - " nxfe,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Desorption model - initialize and solve\n", - "Finally for the desorption model, we initialize and solve." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### Copy values from adsorption model to desorption model\n", - "Copy state values of solid phase (besides temperature) from last time point in adsorption model to all time point in desorption model. Also set temperature state variable of desorption model to desorption temperature." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "blk_des = m.fs_des.FB\n", - "tf_ads = tj_ads.time[-1] # Get final time from adsorption trajectory results\n", - "tf_ads_index = tj_ads.time.index(tf_ads) # Get index at final time\n", - "component_list = blk_des.config.solid_phase_config.property_package.component_list\n", - "\n", - "for t in m.fs_des.time:\n", - " for x in blk_des.length_domain:\n", - " blk_des.solid_properties[t, x].temperature.set_value(desorption_temperature)\n", - " blk_des.solid_properties[t, x].dens_mass_particle.set_value(\n", - " tj_ads.get_vec(m.fs_ads.FB.solid_properties[tf_ads, x].dens_mass_particle)[\n", - " tf_ads_index\n", - " ]\n", - " )\n", - " for j in component_list:\n", - " blk_des.solid_properties[t, x].mass_frac_comp[j].set_value(\n", - " value(\n", - " tj_ads.get_vec(\n", - " m.fs_ads.FB.solid_properties[tf_ads, x].mass_frac_comp[j]\n", - " )[tf_ads_index]\n", - " )\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Fix initial and boundary conditions\n", - "We fix the conditions from the final adsorption model state as our new initial conditions for the desorption model:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "fb_fix_conditions(\n", - " m.fs_des,\n", - " bed_diameter,\n", - " bed_height,\n", - " gas_phase_state_dict_des,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Calculate scaling of desorption model\n", - "Then, we apply scaling to the model:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "iscale.calculate_scaling_factors(m.fs_des)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Initialize desorption model\n", - "The desorption model initialization is done with the block triangularization initialization method, as was done with the adsorption model." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "# Run start time\n", - "t_start_des = time.time()\n", - "\n", - "# Initialize model\n", - "m.fs_des.FB.block_triangularization_initialize(\n", - " gas_phase_state_args=gas_phase_state_dict_des,\n", - " outlvl=idaeslog.DEBUG,\n", - " solver=solver,\n", - " calc_var_kwds=calc_var_kwds,\n", - ")\n", - "\n", - "# Run end time\n", - "t_end_des = time.time()\n", - "\n", - "# Initialization time\n", - "desorption_initialization_time = value(t_end_des - t_start_des)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Setup PETSc integrator and simulate desorption step\n", - "Now that the model is fully defined, we can call the PETSc integrator to simulate the dynamics of the problem:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "# Run start time\n", - "t_start_des = time.time()\n", - "\n", - "# Setup PETSc integrator and simulate desorption flowsheet\n", - "m.fs_des.time_var = Var(m.fs_des.time)\n", - "m.fs_des.time_var[0].fix(m.fs_des.time.first())\n", - "\n", - "result_des = petsc.petsc_dae_by_time_element(\n", - " m.fs_des,\n", - " time=m.fs_des.time,\n", - " timevar=m.fs_des.time_var,\n", - " keepfiles=True,\n", - " symbolic_solver_labels=True,\n", - " skip_initial=False,\n", - " ts_options={\n", - " \"--ts_type\": \"beuler\", # backward euler integration\n", - " \"--ts_dt\": 200, # set initial step to 200\n", - " \"--ts_rtol\": 20,\n", - " \"--ts_monitor\": \"\",\n", - " \"--ts_save_trajectory\": 1,\n", - " \"--ksp_rtol\": 1e-10,\n", - " \"--snes_type\": \"newtontr\", # newton trust region non-linear solver\n", - " \"--ts_monitor\": \"\",\n", - " \"--ts_save_trajectory\": 1,\n", - " \"--ts_max_snes_failures\": 1000,\n", - " },\n", - ")\n", - "tj_des = result_des.trajectory # trajectory data\n", - "\n", - "# Run end time\n", - "t_end_des = time.time()\n", - "\n", - "# Initialization time\n", - "desorption_simulation_time = value(t_end_des - t_start_des)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plot the desorption simulation results\n", - "Similar to the results of the adsorption model, the plots below are presented as temporal plots with spatial contours and spatial plots with time contours to fully capture the model trends.\n", - "\n", - "The gas flowrate spikes initially as large quantities of CO2 are recovered, and then the flowrate drops rapidly as the CO2 is carried away. An interesting note is that this occurs over the same time period everywhere across the length of the bed, peaking around 1000 seconds into the simulation. In the spatial plot, the peak is missed between the first and second contours; instead, the spatial plots captures a similar shifting inflection point around 10-25% of the way into the bed as the mass transfer driving force suddenly decreases.\n", - "\n", - "The bed pressure drops suddenly as CO2 is initially desorbed from the bed, and a steady state is reached at larger time points. As in the adsorption case, the desorption results show no temporal or spatial gradients in gas or solid temperature.\n", - "\n", - "The CO2 content of the gas sharply rises initially, and steadily decreases as CO2 is carried away in the sweep gas. A greater amount of CO2 is recovered closer to the reactor inlet. As the sweep gas is nearly pure water vapor, the water concentration in the gas sharply drops as CO2 is desorbed from the bed and recovers to near unity towards the temporal end of the simulation.\n", - "\n", - "Carbamate disappears quickly as CO2 is recovered and the hydrate is broken down, occurring evenly across the length of the reactor bed." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "# Plot temporal result profiles\n", - "plot_results_temporal(m.fs_des, tj_des)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "# Plot spatial result profiles\n", - "plot_results_spatial(m.fs_ads, tj_ads)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 3: Generate performance results" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "###########################################################################\n", - "# Heat requirements\n", - "###########################################################################\n", - "heat_computation(m, tj_ads, tj_des, adsorption_temperature, desorption_temperature)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "###########################################################################\n", - "# Performance results\n", - "###########################################################################\n", - "performance_results(m, tj_ads, tj_des)\n", - "\n", - "results_summary(m, adsorption_temperature, desorption_temperature)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Simulation time results" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Adsorption initialization time: \", adsorption_initialization_time, \" s\")\n", - "print(\"Adsorption simulation time: \", adsorption_simulation_time, \" s\")\n", - "print()\n", - "print(\"Desorption initialization time: \", desorption_initialization_time, \" s\")\n", - "print(\"Desorption simulation time: \", desorption_simulation_time, \" s\")\n", - "print()\n", - "total_simulation_time = (\n", - " adsorption_initialization_time\n", - " + adsorption_simulation_time\n", - " + desorption_initialization_time\n", - " + desorption_simulation_time\n", - ")\n", - "print(\"Total simulation time: \", total_simulation_time, \" s\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Summary\n", - "This example demonstrates implementation of the 1D FixedBed model within IDAES. External property packages for multiple phase domains and interfaces, as well as mass transfer and reaction properties, were integrated into two simulations. The simulations are connected via their final (adsorption) and initial (desorption) states, and each utilizes the PETSc integrator to calculate temporal profiles over the spatial domains." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CO2 Adsorption Desorption simulation example with a 1D Fixed Bed model\n", + "Author: Chinedu Okoli, Anca Ostace, Brandon Paul \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "This jupyter notebook shows an example of a CO2 Adsorption Desorption cycle with the IDAES 1D FixedBed model. The IDAES 1D FixedBed model is a dynamic and axially varying reactor/adsorption model which is able to model the gas and solid interactions of the modeled species in detail. The sorbent used for this example is the NETL_32D sorbent with its details and parameters obtained from the following references: \n", + "- A. Lee, D.C. Miller, A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber, Ind. Eng. Chem. Res. 52 (2013) 469–484\n", + "- Lee, A.; Mebane, D.; Fauth, D. J.; Miller, D. C. A Model for the Adsorption Kinetics of CO2 on Amine-Impregnated Mesoporous Sorbents in the Presence of Water. Presented at the 28th International Pittsburgh Coal Conference, Pittsburgh, PA, 2011.\n", + "\n", + "The notebook demonstrates how to use the IDAES 1DFixedBed model for an adsorption/desorption application with distinct adsorption and desorption steps. This example leverages custom libraries and functions specific to the NETL_32D solid sorbent and associated gas phase properties and surface reactions. In this system, the silicon monoxide (SiO(s)) sorbent reduces carbon dioxide (CO2(g)) to carbamate (denoted Car(s)) while simultaneously absorbing water vapor (H2O(g)) to produce a solid solution-state hydrate (H2O(s)). The solid phase is considered a one-dimensional domain with three regions for bubble, cloud wake and emulsion properties for bubbling bed systems; in the case of a fixed bed reactor non-bulk gas behavior is neglected and assumed to be homogeneous everywhere not near the solid surface.\n", + "\n", + "The notebook also shows how to simulate the adsorption and desorption steps using the PETSc integrator. PETSc leverages nonlinear equation and differential algebraic equation solvers to solve time-trajectory problems. These solvers are applicable for systems with zero degrees of freedom, such as a fully-specified bed reactor model. See https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html#petsc-utilities for more details." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cycle details\n", + "The system contains the following equipment and stream properties:\n", + "- Bed height: 9 m\n", + "- Bed diameter: 1 m\n", + "- Adsorption time: 30 hrs\n", + "- Desorption time: 2 hrs\n", + "- Adsorption temperature: 303.15 K\n", + "- Desorption temperature: 470 K\n", + "- Flue gas inlet conditions (Temperature and mole fractions obtained from NETL baseline report. Exhibit 5-22 B31B case)\n", + " - Temperature: 315 K\n", + " - Pressure: 106.5 kPa\n", + " - Flowrate: 3.544 mol/s\n", + " - Mole fractions: CO2: 0.0408, H2O: 0.0875, N2: 0.7517, O2: 0.12" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Notes\n", + "Some additional information regarding the problem:\n", + "- Isothermal conditions: heat duty requirements of each step are calculated from gas and sorbent properties, i.e., loading, density, heat of adsorption, and heat capacity\n", + "- Heating and cooling modes not modeled in detail: cycle times are assumed negligible in comparison to adsorption and desorption\n", + "- Adsorption and desorption steps are modeled in different flowsheets\n", + "- Initial condition (except temperature) of sorbent in desorption step is set to final condition of sorbent in adsorption step" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Import relevant libraries and packages" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import python libraries\n", + "\n", + "- numpy (numerical python library which provides numerical computing tools)\n", + "- time (time python library which will be used to track the simulation time)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### Import Pyomo packages\n", + "For the flowsheet, we will need several components from the pyomo libraries.\n", + "\n", + "- ConcreteModel (to create the Pyomo model that will contain the IDAES flowsheet)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- SolverFactory (to solve the problem)\n", + "- Var (to create a Pyomo variable)\n", + "- value (to return the numerical value of Pyomo objects such as variables, constraints or expressions)\n", + "- units (to handle units in Pyomo and IDAES)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/latest/" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " ConcreteModel,\n", + " TransformationFactory,\n", + " SolverFactory,\n", + " Var,\n", + " value,\n", + " units as pyunits,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import IDAES core components\n", + "\n", + "To build, initialize, and solve IDAES flowsheets we will need several core components/utilities:\n", + "\n", + "- FlowsheetBlock (the flowsheet block contains idaes properties, time, and unit models)\n", + "- EnergyBalanceType (to specify the energy balance type)\n", + "- petsc (PETSc integrator)\n", + "- get_solver (IDAES solver utility)\n", + "- iscale (is used to apply scaling factors in variables and constraints)\n", + "- propagate_state (is used to initialize models, propagating the state variables from one unit model to another)\n", + "- degrees_of_freedom (useful for debugging, this method returns the DOF of the model)\n", + "- idaeslog (is used to set output messages like warnings or errors)\n", + "\n", + "For further details on these components, please refer to the IDAES documentation: https://idaes-pse.readthedocs.io/en/latest/" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core import FlowsheetBlock, EnergyBalanceType\n", + "import idaes.core.solvers.petsc as petsc # PETSc utilities module\n", + "from idaes.core.util import scaling as iscale\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "import idaes.logger as idaeslog\n", + "import logging" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import IDAES unit models and NETL 32D property packages\n", + "\n", + "To build the IDAES flowsheet for the CO2 Adsorption Desorption example, we will need the following: \n", + "1) the 1D Fixed Bed unit model \n", + "2) the NETL 32D property package" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models_extra.gas_solid_contactors.unit_models.fixed_bed_1D import FixedBed1D\n", + "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_gas_phase_thermo import (\n", + " GasPhaseParameterBlock,\n", + ")\n", + "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_solid_phase_thermo import (\n", + " SolidPhaseParameterBlock,\n", + ")\n", + "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_adsorption_reactions import (\n", + " HeteroReactionParameterBlock,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import custom libraries and functions\n", + "To simplify and automate this example at the flowsheet level, several custom methods were defined in an external script. The methods are custom, and as such are imported separately from the set of IDAES and Pyomo methods above. These utility functions perform a variety of numerical and reporting tasks:\n", + "\n", + "- heat_computation (used to calculate the heat requirements of the CO2 Adsorption Desorption cycle)\n", + "- performance_results (used to evaluate the performance of the CO2 Adsorption Desorption cycle)\n", + "- results_summary (provides summarized results of the CO2 Adsorption Desorption cycle)\n", + "- plot_results_temporal (plots the temporal profiles of the flowsheet simulation)\n", + "- plot_results_spatial (plots the spatial profiles of the flowsheet simulation)\n", + "- fb_model_setup (function that builds the 1D FixedBed model)\n", + "- fb_fixed_conditions (function that fixes the initial and boundary conditions of the 1D FixedBed model)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes_examples.mod.co2_adsorption_desorption.simulation_utilities import (\n", + " heat_computation,\n", + " performance_results,\n", + " results_summary,\n", + " plot_results_temporal,\n", + " plot_results_spatial,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a Function to Build the Flowsheet\n", + "\n", + "The function \"fb_model_setup\" below builds instances of the 1D FixedBed model for the adsorption and desorption simulations. While the effort required to define the reactor is low in terms of lines of code, we will need to do this for both the adsorption and desorption steps. Therefore, defining this setup as a single function will make later steps easier to follow. As arguments it takes the following:\n", + "1) The flowsheet block of the simulation, i.e., the adsorption flowsheet \n", + "2) The number of time finite elements \n", + "3) The number of spatial finite elements \n", + "\n", + "It returns a flowsheet object which contains an instance of the 1D FixedBed model" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def fb_model_setup(\n", + " fs,\n", + " ntfe, # number of time finite elements\n", + " nxfe, # number of space finite elements\n", + "):\n", + "\n", + " # Set up thermo props and reaction props\n", + " fs.gas_properties = GasPhaseParameterBlock()\n", + " fs.solid_properties = SolidPhaseParameterBlock()\n", + "\n", + " fs.hetero_reactions = HeteroReactionParameterBlock(\n", + " solid_property_package=fs.solid_properties,\n", + " gas_property_package=fs.gas_properties,\n", + " )\n", + "\n", + " fs.FB = FixedBed1D(\n", + " finite_elements=nxfe,\n", + " transformation_method=\"dae.finite_difference\",\n", + " energy_balance_type=EnergyBalanceType.none,\n", + " pressure_drop_type=\"ergun_correlation\",\n", + " gas_phase_config={\"property_package\": fs.gas_properties},\n", + " solid_phase_config={\n", + " \"property_package\": fs.solid_properties,\n", + " \"reaction_package\": fs.hetero_reactions,\n", + " },\n", + " )\n", + "\n", + " # Discretize time domain\n", + " fs.discretizer = TransformationFactory(\"dae.finite_difference\")\n", + " fs.discretizer.apply_to(fs, nfe=ntfe, wrt=fs.time, scheme=\"BACKWARD\")\n", + "\n", + " return fs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a Function to Fix the Flowsheet Conditions\n", + "\n", + "The function \"fb_fix_conditions\" fixes the initial and boundary conditions of an instance of the 1D FixedBed model. It also has checks to ensure that the degrees of freedom are zero, and that the velocity into the bed is less than the minimum fluidization velocity of the bed. Similarly to the function above, we will need to run this for the adsorption and desorption steps, and it is clearer to define the code once as a single function here. As arguments it takes the following:\n", + "1) The flowsheet block of the simulation, i.e., the adsorption flowsheet \n", + "2) The reactor bed diameter \n", + "3) The reactor bed height \n", + "4) A dictionary of gas phase state data for which the gas phase state variables of the model should be fixed to \n", + "5) A dictionary of solid phase state data for which the solid phase state variables of the model should be fixed to. If None, the solid phase state variables are fixed to their current values. \n", + "\n", + "No object is returned by this function." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def fb_fix_conditions(\n", + " fs, bed_diameter, bed_height, gas_phase_state_dict, solid_phase_state_dict=None\n", + "):\n", + " # Fix bed geometry variables\n", + " fs.FB.bed_diameter.fix(bed_diameter) # m\n", + " fs.FB.bed_height.fix(bed_height) # m\n", + "\n", + " # Fix boundary values for gas for all time\n", + " blk = fs.FB\n", + " for t in fs.time:\n", + " # Gas values\n", + " blk.gas_inlet.flow_mol[t].fix(gas_phase_state_dict[\"flow_mol\"])\n", + " blk.gas_inlet.temperature[t].fix(gas_phase_state_dict[\"temperature\"])\n", + " blk.gas_inlet.pressure[t].fix(gas_phase_state_dict[\"pressure\"])\n", + " for j, val in gas_phase_state_dict[\"mole_frac_comp\"].items():\n", + " blk.gas_inlet.mole_frac_comp[t, j].fix(val)\n", + "\n", + " # Specify gas phase and solid phase initial conditions for all space\n", + " t0 = fs.time.first()\n", + " for x in blk.length_domain:\n", + " blk.gas_phase.properties[t0, x].flow_mol.fix(gas_phase_state_dict[\"flow_mol\"])\n", + " blk.gas_phase.properties[t0, x].temperature.fix(\n", + " gas_phase_state_dict[\"temperature\"]\n", + " ) # K\n", + " for j, val in gas_phase_state_dict[\"mole_frac_comp\"].items():\n", + " blk.gas_phase.properties[t0, x].mole_frac_comp[j].fix(val)\n", + "\n", + " if solid_phase_state_dict is None:\n", + " # Fix to existing values if dict is empty\n", + " blk.solid_properties[t0, x].dens_mass_particle.fix()\n", + " blk.solid_properties[t0, x].temperature.fix()\n", + " blk.solid_properties[t0, x].mass_frac_comp[:].fix()\n", + " else:\n", + " blk.solid_properties[t0, x].dens_mass_particle.fix(\n", + " solid_phase_state_dict[\"dens_mass_particle\"]\n", + " )\n", + " blk.solid_properties[t0, x].temperature.fix(\n", + " solid_phase_state_dict[\"temperature\"]\n", + " )\n", + " for j, val in solid_phase_state_dict[\"mass_frac_comp\"].items():\n", + " blk.solid_properties[t0, x].mass_frac_comp[j].fix(val)\n", + "\n", + " dof = degrees_of_freedom(fs)\n", + "\n", + " print(\"degrees of freedom = \", dof)\n", + " try:\n", + " assert degrees_of_freedom(fs) == 0\n", + " except AssertionError:\n", + " print(\"Degrees of freedom is not equal to zero. This is unexpected.\")\n", + " raise\n", + "\n", + " # Assert that inlet gas velocity is less than v_mf\n", + " # Use solid temperature as the thermal mass of solid >> than that of gas\n", + " pi = 3.14 # [-]\n", + " R = 8.314 # Gas constant [J/mol/K]\n", + "\n", + " @blk.Expression(doc=\"gas inlet velocity, m/s\")\n", + " def gas_inlet_velocity(blk):\n", + " v_gas_inlet = (\n", + " blk.gas_inlet.flow_mol[0] / (pi * value(blk.bed_diameter**2) / 4)\n", + " ) * (R * blk.solid_properties[0, 0].temperature / blk.gas_inlet.pressure[0])\n", + " return v_gas_inlet\n", + "\n", + " v_mf = value( # minimum fluidization velocity [m/s]\n", + " blk.solid_properties[t0, 0]._params.velocity_mf\n", + " )\n", + " print(\"inlet gas velocity = \", value(blk.gas_inlet_velocity), \" m/s\")\n", + " print(\"min. fluid velocity = \", v_mf, \" m/s\")\n", + " try:\n", + " assert value(blk.gas_inlet_velocity) <= v_mf\n", + " except AssertionError:\n", + " print(\n", + " \"The inlet gas velocity is greater than the minimum fluidization velocity. \"\n", + " \"This is unexpected for a Fixed Bed.\"\n", + " )\n", + " raise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2: Setup and run simulation\n", + "Now that the system properties and all required utility functions are defined, we will build the model itself." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create concrete model\n", + "First, create the model object:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Setup solver for initialization\n", + "We limit the maximum number of iterations and apply appropriate scaling for the linear solver for initialization:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Solver arguments\n", + "optarg = {\n", + " \"max_iter\": 100,\n", + " \"nlp_scaling_method\": \"user-scaling\",\n", + " \"linear_solver\": \"ma27\",\n", + "}\n", + "\n", + "# Create a solver\n", + "solver = get_solver(\"ipopt\")\n", + "solver.options = optarg" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Set spatial elements and design variables for adsorption and desorption simulations\n", + "Let's define the size of the system:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Number of spatial elements\n", + "nxfe = 50\n", + "\n", + "# Design variables for static and dynamic models\n", + "bed_diameter = 9 # m\n", + "bed_height = 1 # m" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adsorption simulation\n", + "First, we will run the adsorption step by defining the simulation domain, add initial conditions, and set up and solve the model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup simulation horizon and create time set\n", + "We specify the time discretization to an exact set of temporal points according to the problem horizon:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Time horizon\n", + "horizon = 108000 # s\n", + "\n", + "# Create time_set list\n", + "t_element_size = horizon / 4 # s\n", + "ntfe = int(horizon / t_element_size)\n", + "time_set = list(np.linspace(0, horizon, ntfe + 1))" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [ + "testing" + ] + }, + "outputs": [], + "source": [ + "# Reduce time horizon to speed up testing\n", + "horizon /= 10" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Initial conditions for gas and solid phases\n", + "Next, we set reasoanble initial conditions for the gas and solid phases at time = 0, with a constant adsorption temperature:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Flue gas inlet conditions to adsorption system (flue gas stream) -\n", + "# Temperature and mole fractions obtained from NETL baseline report.\n", + "# Exhibit 5-22 B31B case.\n", + "adsorption_temperature = 303.15 # K\n", + "\n", + "# Dictionary of initial and boundary conditions for gas phase\n", + "gas_phase_state_dict_ads = {\n", + " \"flow_mol\": 3.544, # mol/s\n", + " \"temperature\": adsorption_temperature, # K\n", + " \"pressure\": 1.2452e5, # Pa\n", + " \"mole_frac_comp\": { # [-]\n", + " \"CO2\": 0.0408,\n", + " \"H2O\": 0.0875,\n", + " \"N2\": 0.7517,\n", + " \"O2\": 0.12,\n", + " },\n", + "}\n", + "\n", + "# Dictionary of initial conditions for solid phase\n", + "solid_phase_state_dict_ads = {\n", + " \"dens_mass_particle\": 442, # kg/m3\n", + " \"temperature\": adsorption_temperature, # K\n", + " \"mass_frac_comp\": { # [-]\n", + " \"H2O_s\": 1e-8,\n", + " \"Car\": 1e-8,\n", + " \"SiO\": 1,\n", + " },\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup the adsorption model\n", + "Then, we call our previously defined methods to build the model and fix initial conditions:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Create the adsorption flowsheet\n", + "m.fs_ads = FlowsheetBlock(dynamic=True, time_set=time_set, time_units=pyunits.s)\n", + "\n", + "# Setup an instance of the 1D FixedBed model for the adsorption simulation\n", + "m.fs_ads = fb_model_setup(m.fs_ads, ntfe, nxfe)\n", + "\n", + "# Fix initial and boundary conditions\n", + "fb_fix_conditions(\n", + " m.fs_ads,\n", + " bed_diameter,\n", + " bed_height,\n", + " gas_phase_state_dict_ads,\n", + " solid_phase_state_dict_ads,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adsorption model - initialize and solve\n", + "Finally for the adsorption model, we initialize and solve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Apply scaling transformation\n", + "We first scale the model variables and equations to reduce ill-conditioning and improve its convergence properties:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "iscale.calculate_scaling_factors(m.fs_ads)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Initialize model\n", + "The model initialization is done with the block triangularization initialization method in the 1D FixedBed model as this is faster than using the traditional sequential heirarchichal initialization approach. See the 1D FixedBed model and documentation for more details on this method." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# Run start time\n", + "t_start_ads = time.time()\n", + "\n", + "# Initialize model\n", + "calc_var_kwds = {\"eps\": 1e-5}\n", + "m.fs_ads.FB.block_triangularization_initialize(\n", + " gas_phase_state_args=gas_phase_state_dict_ads,\n", + " solid_phase_state_args=solid_phase_state_dict_ads,\n", + " outlvl=idaeslog.DEBUG,\n", + " solver=solver,\n", + " calc_var_kwds=calc_var_kwds,\n", + ")\n", + "\n", + "# Run end time\n", + "t_end_ads = time.time()\n", + "\n", + "# Initialization time\n", + "adsorption_initialization_time = value(t_end_ads - t_start_ads)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### PETSc integrator\n", + "As mentioned earlier, the PETSc integrator is used for simulating the time trajectory. After starting the clock and instantiating the time variables, PETSc performs and element-wise discretization to define and solve the dynamic system of equations. See https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html#petsc-utilities for more details.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "petscsolvelog = idaeslog.getSolveLogger(\"petsc-dae\")\n", + "petscsolvelog.setLevel(logging.WARNING) # comment this line to see PETSc solver output\n", + "\n", + "# Run start time\n", + "t_start_ads = time.time()\n", + "\n", + "# Setup PETSc integrator and simulate adsorption flowsheet\n", + "m.fs_ads.time_var = Var(m.fs_ads.time)\n", + "m.fs_ads.time_var[0].fix(m.fs_ads.time.first())\n", + "\n", + "result_ads = petsc.petsc_dae_by_time_element(\n", + " m.fs_ads,\n", + " time=m.fs_ads.time,\n", + " timevar=m.fs_ads.time_var,\n", + " keepfiles=True,\n", + " symbolic_solver_labels=True,\n", + " skip_initial=False,\n", + " ts_options={\n", + " \"--ts_type\": \"beuler\", # backward euler integration\n", + " \"--ts_dt\": 200, # set initial step to 200\n", + " \"--ts_rtol\": 20,\n", + " \"--ts_monitor\": \"\",\n", + " \"--ts_save_trajectory\": 1,\n", + " \"--ksp_rtol\": 1e-10,\n", + " \"--snes_type\": \"newtontr\", # newton trust region non-linear solver\n", + " \"--ts_monitor\": \"\",\n", + " \"--ts_save_trajectory\": 1,\n", + " \"--ts_max_snes_failures\": 1000,\n", + " },\n", + ")\n", + "tj_ads = result_ads.trajectory # trajectory data\n", + "\n", + "# Run end time\n", + "t_end_ads = time.time()\n", + "\n", + "# Initialization time\n", + "adsorption_simulation_time = value(t_end_ads - t_start_ads)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot the adsorption simulation results\n", + "After running the adsorption simulation, the dynamic profiles are plotted." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the temporal plots below, quantities are reported as functions of time and contoured for six points along the length of the bed. The time and spatial dimensions are exchanged in the spatial plots, with quantities reported as functions of length and contoured for five time points.\n", + "\n", + "The gas flowrate is constant at the inlet and decreases over the length of the bed as CO2 is removed from the gas. At each spatial point, the CO2 content of the gas increases over time as the bed becomes more saturated with CO2 and the mass transfer driving force decreases. Assessing the two gas flowrate plots, adsorption occurs steadily over time with a much larger capture rate in the initial spatial region; this region grows from 10% to 25% of the bed length as the bed becomes more saturated with CO2 over time.\n", + "\n", + "The bed pressure stays relatively constant over time, and exhibits a linear drop over the length of the reactor. There are no temporal or spatial gradients in gas or solid temperature.\n", + "\n", + "The saturation trend is strongly apparent in the composition trends. The CO2 content of the gas quickly drops from the initial concentration over the length of the bed, and steadily rises over time as the driving force of mass transfer decreases. Water vapor concentration in the gas follows a similar trend.\n", + "\n", + "Following the solid-state reaction, the concentration of carbmate steadily increases over time with formation skewing heavily towards the initial spatial region of the bed. The spatial contours of the temporal carbamate composition plot cross as a result of the solid reaction rate heavily favoring the initial section of the bed and suddenly dropping about at about 20% of the reactor length. The mass fraction and mol/kg plots differ slightly due to water and CO2 absorbing at different rates, but otherwise demonstrate similar trends." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Plot temporal result profiles\n", + "plot_results_temporal(m.fs_ads, tj_ads)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Plot spatial result profiles\n", + "plot_results_spatial(m.fs_ads, tj_ads)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Desorption simulation\n", + "The desorption simulation begins when the adsorption simulation ends. It uses the final state of the sorbent (besides temperature which is set at the desorption temperature) in the adsorption mode as the initial state of the sorbent in the desorption mode." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup simulation horizon and create time set\n", + "As in the adsorption simulation, we first specify the time discretization:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "# Space and time discretization arguments\n", + "horizon = 7200 # s\n", + "\n", + "# Setup for PETSc run\n", + "t_element_size = horizon # s\n", + "ntfe = int(horizon / t_element_size)\n", + "time_set = list(np.linspace(0, horizon, ntfe + 1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Initial and boundary conditions for gas phase\n", + "- The initial conditions of the solid phase will be copied from the final conditions of the model in the adsorption simulation." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# Desorption operating conditions\n", + "desorption_temperature = 470 # K\n", + "\n", + "gas_phase_state_dict_des = {\n", + " \"flow_mol\": 10, # mol/s\n", + " \"temperature\": desorption_temperature, # K\n", + " \"pressure\": 1.06525e5, # Pa\n", + " \"mole_frac_comp\": {\"CO2\": 1e-8, \"H2O\": 1, \"N2\": 1e-8, \"O2\": 1e-8}, # [-]\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup the desorption model\n", + "Then, we build the model and fix initial conditions:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# Create the desorption flowsheet\n", + "m.fs_des = FlowsheetBlock(dynamic=True, time_set=time_set, time_units=pyunits.s)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "# Setup an instance of the 1D FixedBed model for the desorption simulation\n", + "m.fs_des = fb_model_setup(\n", + " m.fs_des,\n", + " ntfe,\n", + " nxfe,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Desorption model - initialize and solve\n", + "Finally for the desorption model, we initialize and solve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Copy values from adsorption model to desorption model\n", + "Copy state values of solid phase (besides temperature) from last time point in adsorption model to all time point in desorption model. Also set temperature state variable of desorption model to desorption temperature." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "blk_des = m.fs_des.FB\n", + "tf_ads = tj_ads.time[-1] # Get final time from adsorption trajectory results\n", + "tf_ads_index = tj_ads.time.index(tf_ads) # Get index at final time\n", + "component_list = blk_des.config.solid_phase_config.property_package.component_list\n", + "\n", + "for t in m.fs_des.time:\n", + " for x in blk_des.length_domain:\n", + " blk_des.solid_properties[t, x].temperature.set_value(desorption_temperature)\n", + " blk_des.solid_properties[t, x].dens_mass_particle.set_value(\n", + " tj_ads.get_vec(m.fs_ads.FB.solid_properties[tf_ads, x].dens_mass_particle)[\n", + " tf_ads_index\n", + " ]\n", + " )\n", + " for j in component_list:\n", + " blk_des.solid_properties[t, x].mass_frac_comp[j].set_value(\n", + " value(\n", + " tj_ads.get_vec(\n", + " m.fs_ads.FB.solid_properties[tf_ads, x].mass_frac_comp[j]\n", + " )[tf_ads_index]\n", + " )\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Fix initial and boundary conditions\n", + "We fix the conditions from the final adsorption model state as our new initial conditions for the desorption model:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "fb_fix_conditions(\n", + " m.fs_des,\n", + " bed_diameter,\n", + " bed_height,\n", + " gas_phase_state_dict_des,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Calculate scaling of desorption model\n", + "Then, we apply scaling to the model:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "iscale.calculate_scaling_factors(m.fs_des)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Initialize desorption model\n", + "The desorption model initialization is done with the block triangularization initialization method, as was done with the adsorption model." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# Run start time\n", + "t_start_des = time.time()\n", + "\n", + "# Initialize model\n", + "m.fs_des.FB.block_triangularization_initialize(\n", + " gas_phase_state_args=gas_phase_state_dict_des,\n", + " outlvl=idaeslog.DEBUG,\n", + " solver=solver,\n", + " calc_var_kwds=calc_var_kwds,\n", + ")\n", + "\n", + "# Run end time\n", + "t_end_des = time.time()\n", + "\n", + "# Initialization time\n", + "desorption_initialization_time = value(t_end_des - t_start_des)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Setup PETSc integrator and simulate desorption step\n", + "Now that the model is fully defined, we can call the PETSc integrator to simulate the dynamics of the problem:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# Run start time\n", + "t_start_des = time.time()\n", + "\n", + "# Setup PETSc integrator and simulate desorption flowsheet\n", + "m.fs_des.time_var = Var(m.fs_des.time)\n", + "m.fs_des.time_var[0].fix(m.fs_des.time.first())\n", + "\n", + "result_des = petsc.petsc_dae_by_time_element(\n", + " m.fs_des,\n", + " time=m.fs_des.time,\n", + " timevar=m.fs_des.time_var,\n", + " keepfiles=True,\n", + " symbolic_solver_labels=True,\n", + " skip_initial=False,\n", + " ts_options={\n", + " \"--ts_type\": \"beuler\", # backward euler integration\n", + " \"--ts_dt\": 200, # set initial step to 200\n", + " \"--ts_rtol\": 20,\n", + " \"--ts_monitor\": \"\",\n", + " \"--ts_save_trajectory\": 1,\n", + " \"--ksp_rtol\": 1e-10,\n", + " \"--snes_type\": \"newtontr\", # newton trust region non-linear solver\n", + " \"--ts_monitor\": \"\",\n", + " \"--ts_save_trajectory\": 1,\n", + " \"--ts_max_snes_failures\": 1000,\n", + " },\n", + ")\n", + "tj_des = result_des.trajectory # trajectory data\n", + "\n", + "# Run end time\n", + "t_end_des = time.time()\n", + "\n", + "# Initialization time\n", + "desorption_simulation_time = value(t_end_des - t_start_des)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot the desorption simulation results\n", + "Similar to the results of the adsorption model, the plots below are presented as temporal plots with spatial contours and spatial plots with time contours to fully capture the model trends.\n", + "\n", + "The gas flowrate spikes initially as large quantities of CO2 are recovered, and then the flowrate drops rapidly as the CO2 is carried away. An interesting note is that this occurs over the same time period everywhere across the length of the bed, peaking around 1000 seconds into the simulation. In the spatial plot, the peak is missed between the first and second contours; instead, the spatial plots captures a similar shifting inflection point around 10-25% of the way into the bed as the mass transfer driving force suddenly decreases.\n", + "\n", + "The bed pressure drops suddenly as CO2 is initially desorbed from the bed, and a steady state is reached at larger time points. As in the adsorption case, the desorption results show no temporal or spatial gradients in gas or solid temperature.\n", + "\n", + "The CO2 content of the gas sharply rises initially, and steadily decreases as CO2 is carried away in the sweep gas. A greater amount of CO2 is recovered closer to the reactor inlet. As the sweep gas is nearly pure water vapor, the water concentration in the gas sharply drops as CO2 is desorbed from the bed and recovers to near unity towards the temporal end of the simulation.\n", + "\n", + "Carbamate disappears quickly as CO2 is recovered and the hydrate is broken down, occurring evenly across the length of the reactor bed." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "# Plot temporal result profiles\n", + "plot_results_temporal(m.fs_des, tj_des)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "# Plot spatial result profiles\n", + "plot_results_spatial(m.fs_ads, tj_ads)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3: Generate performance results" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "###########################################################################\n", + "# Heat requirements\n", + "###########################################################################\n", + "heat_computation(m, tj_ads, tj_des, adsorption_temperature, desorption_temperature)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "###########################################################################\n", + "# Performance results\n", + "###########################################################################\n", + "performance_results(m, tj_ads, tj_des)\n", + "\n", + "results_summary(m, adsorption_temperature, desorption_temperature)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulation time results" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Adsorption initialization time: \", adsorption_initialization_time, \" s\")\n", + "print(\"Adsorption simulation time: \", adsorption_simulation_time, \" s\")\n", + "print()\n", + "print(\"Desorption initialization time: \", desorption_initialization_time, \" s\")\n", + "print(\"Desorption simulation time: \", desorption_simulation_time, \" s\")\n", + "print()\n", + "total_simulation_time = (\n", + " adsorption_initialization_time\n", + " + adsorption_simulation_time\n", + " + desorption_initialization_time\n", + " + desorption_simulation_time\n", + ")\n", + "print(\"Total simulation time: \", total_simulation_time, \" s\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Summary\n", + "This example demonstrates implementation of the 1D FixedBed model within IDAES. External property packages for multiple phase domains and interfaces, as well as mass transfer and reaction properties, were integrated into two simulations. The simulations are connected via their final (adsorption) and initial (desorption) states, and each utilizes the PETSc integrator to calculate temporal profiles over the spatial domains." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 } diff --git a/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed_usr.ipynb b/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed_usr.ipynb index 8440fb43..d9db9cc5 100644 --- a/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed_usr.ipynb +++ b/idaes_examples/notebooks/held/flowsheets/CO2_adsorption_desorption/CO2_Adsorption_Desorption_1DFixedBed_usr.ipynb @@ -1,1112 +1,1113 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "tags": [ - "header", - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "###############################################################################\n", - "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", - "# Framework (IDAES IP) was produced under the DOE Institute for the\n", - "# Design of Advanced Energy Systems (IDAES).\n", - "#\n", - "# Copyright (c) 2018-2023 by the software owners: The Regents of the\n", - "# University of California, through Lawrence Berkeley National Laboratory,\n", - "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", - "# University, West Virginia University Research Corporation, et al.\n", - "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", - "# for full copyright and license information.\n", - "###############################################################################" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# CO2 Adsorption Desorption simulation example with a 1D Fixed Bed model\n", - "Author: Chinedu Okoli, Anca Ostace, Brandon Paul \n", - "Maintainer: Brandon Paul \n", - "Updated: 2023-06-01 \n", - "\n", - "\n", - "This jupyter notebook shows an example of a CO2 Adsorption Desorption cycle with the IDAES 1D FixedBed model. The IDAES 1D FixedBed model is a dynamic and axially varying reactor/adsorption model which is able to model the gas and solid interactions of the modeled species in detail. The sorbent used for this example is the NETL_32D sorbent with its details and parameters obtained from the following references: \n", - "- A. Lee, D.C. Miller, A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber, Ind. Eng. Chem. Res. 52 (2013) 469–484\n", - "- Lee, A.; Mebane, D.; Fauth, D. J.; Miller, D. C. A Model for the Adsorption Kinetics of CO2 on Amine-Impregnated Mesoporous Sorbents in the Presence of Water. Presented at the 28th International Pittsburgh Coal Conference, Pittsburgh, PA, 2011.\n", - "\n", - "The notebook demonstrates how to use the IDAES 1DFixedBed model for an adsorption/desorption application with distinct adsorption and desorption steps. This example leverages custom libraries and functions specific to the NETL_32D solid sorbent and associated gas phase properties and surface reactions. In this system, the silicon monoxide (SiO(s)) sorbent reduces carbon dioxide (CO2(g)) to carbamate (denoted Car(s)) while simultaneously absorbing water vapor (H2O(g)) to produce a solid solution-state hydrate (H2O(s)). The solid phase is considered a one-dimensional domain with three regions for bubble, cloud wake and emulsion properties for bubbling bed systems; in the case of a fixed bed reactor non-bulk gas behavior is neglected and assumed to be homogeneous everywhere not near the solid surface.\n", - "\n", - "The notebook also shows how to simulate the adsorption and desorption steps using the PETSc integrator. PETSc leverages nonlinear equation and differential algebraic equation solvers to solve time-trajectory problems. These solvers are applicable for systems with zero degrees of freedom, such as a fully-specified bed reactor model. See https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html#petsc-utilities for more details." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Cycle details\n", - "The system contains the following equipment and stream properties:\n", - "- Bed height: 9 m\n", - "- Bed diameter: 1 m\n", - "- Adsorption time: 30 hrs\n", - "- Desorption time: 2 hrs\n", - "- Adsorption temperature: 303.15 K\n", - "- Desorption temperature: 470 K\n", - "- Flue gas inlet conditions (Temperature and mole fractions obtained from NETL baseline report. Exhibit 5-22 B31B case)\n", - " - Temperature: 315 K\n", - " - Pressure: 106.5 kPa\n", - " - Flowrate: 3.544 mol/s\n", - " - Mole fractions: CO2: 0.0408, H2O: 0.0875, N2: 0.7517, O2: 0.12" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Notes\n", - "Some additional information regarding the problem:\n", - "- Isothermal conditions: heat duty requirements of each step are calculated from gas and sorbent properties, i.e., loading, density, heat of adsorption, and heat capacity\n", - "- Heating and cooling modes not modeled in detail: cycle times are assumed negligible in comparison to adsorption and desorption\n", - "- Adsorption and desorption steps are modeled in different flowsheets\n", - "- Initial condition (except temperature) of sorbent in desorption step is set to final condition of sorbent in adsorption step" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 1: Import relevant libraries and packages" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import python libraries\n", - "\n", - "- numpy (numerical python library which provides numerical computing tools)\n", - "- time (time python library which will be used to track the simulation time)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import time" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Import Pyomo packages\n", - "For the flowsheet, we will need several components from the pyomo libraries.\n", - "\n", - "- ConcreteModel (to create the Pyomo model that will contain the IDAES flowsheet)\n", - "- TransformationFactory (to apply certain transformations)\n", - "- SolverFactory (to solve the problem)\n", - "- Var (to create a Pyomo variable)\n", - "- value (to return the numerical value of Pyomo objects such as variables, constraints or expressions)\n", - "- units (to handle units in Pyomo and IDAES)\n", - "\n", - "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/latest/" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from pyomo.environ import (\n", - " ConcreteModel,\n", - " TransformationFactory,\n", - " SolverFactory,\n", - " Var,\n", - " value,\n", - " units as pyunits,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import IDAES core components\n", - "\n", - "To build, initialize, and solve IDAES flowsheets we will need several core components/utilities:\n", - "\n", - "- FlowsheetBlock (the flowsheet block contains idaes properties, time, and unit models)\n", - "- EnergyBalanceType (to specify the energy balance type)\n", - "- petsc (PETSc integrator)\n", - "- get_solver (IDAES solver utility)\n", - "- iscale (is used to apply scaling factors in variables and constraints)\n", - "- propagate_state (is used to initialize models, propagating the state variables from one unit model to another)\n", - "- degrees_of_freedom (useful for debugging, this method returns the DOF of the model)\n", - "- idaeslog (is used to set output messages like warnings or errors)\n", - "\n", - "For further details on these components, please refer to the IDAES documentation: https://idaes-pse.readthedocs.io/en/latest/" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.core import FlowsheetBlock, EnergyBalanceType\n", - "import idaes.core.solvers.petsc as petsc # PETSc utilities module\n", - "from idaes.core.util import scaling as iscale\n", - "from idaes.core.solvers import get_solver\n", - "from idaes.core.util.model_statistics import degrees_of_freedom\n", - "import idaes.logger as idaeslog\n", - "import logging" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import IDAES unit models and NETL 32D property packages\n", - "\n", - "To build the IDAES flowsheet for the CO2 Adsorption Desorption example, we will need the following: \n", - "1) the 1D Fixed Bed unit model \n", - "2) the NETL 32D property package" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes.models_extra.gas_solid_contactors.unit_models.fixed_bed_1D import FixedBed1D\n", - "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_gas_phase_thermo import (\n", - " GasPhaseParameterBlock,\n", - ")\n", - "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_solid_phase_thermo import (\n", - " SolidPhaseParameterBlock,\n", - ")\n", - "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_adsorption_reactions import (\n", - " HeteroReactionParameterBlock,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Import custom libraries and functions\n", - "To simplify and automate this example at the flowsheet level, several custom methods were defined in an external script. The methods are custom, and as such are imported separately from the set of IDAES and Pyomo methods above. These utility functions perform a variety of numerical and reporting tasks:\n", - "\n", - "- heat_computation (used to calculate the heat requirements of the CO2 Adsorption Desorption cycle)\n", - "- performance_results (used to evaluate the performance of the CO2 Adsorption Desorption cycle)\n", - "- results_summary (provides summarized results of the CO2 Adsorption Desorption cycle)\n", - "- plot_results_temporal (plots the temporal profiles of the flowsheet simulation)\n", - "- plot_results_spatial (plots the spatial profiles of the flowsheet simulation)\n", - "- fb_model_setup (function that builds the 1D FixedBed model)\n", - "- fb_fixed_conditions (function that fixes the initial and boundary conditions of the 1D FixedBed model)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from idaes_examples.mod.co2_adsorption_desorption.simulation_utilities import (\n", - " heat_computation,\n", - " performance_results,\n", - " results_summary,\n", - " plot_results_temporal,\n", - " plot_results_spatial,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Create a Function to Build the Flowsheet\n", - "\n", - "The function \"fb_model_setup\" below builds instances of the 1D FixedBed model for the adsorption and desorption simulations. While the effort required to define the reactor is low in terms of lines of code, we will need to do this for both the adsorption and desorption steps. Therefore, defining this setup as a single function will make later steps easier to follow. As arguments it takes the following:\n", - "1) The flowsheet block of the simulation, i.e., the adsorption flowsheet \n", - "2) The number of time finite elements \n", - "3) The number of spatial finite elements \n", - "\n", - "It returns a flowsheet object which contains an instance of the 1D FixedBed model" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "def fb_model_setup(\n", - " fs,\n", - " ntfe, # number of time finite elements\n", - " nxfe, # number of space finite elements\n", - "):\n", - "\n", - " # Set up thermo props and reaction props\n", - " fs.gas_properties = GasPhaseParameterBlock()\n", - " fs.solid_properties = SolidPhaseParameterBlock()\n", - "\n", - " fs.hetero_reactions = HeteroReactionParameterBlock(\n", - " solid_property_package=fs.solid_properties,\n", - " gas_property_package=fs.gas_properties,\n", - " )\n", - "\n", - " fs.FB = FixedBed1D(\n", - " finite_elements=nxfe,\n", - " transformation_method=\"dae.finite_difference\",\n", - " energy_balance_type=EnergyBalanceType.none,\n", - " pressure_drop_type=\"ergun_correlation\",\n", - " gas_phase_config={\"property_package\": fs.gas_properties},\n", - " solid_phase_config={\n", - " \"property_package\": fs.solid_properties,\n", - " \"reaction_package\": fs.hetero_reactions,\n", - " },\n", - " )\n", - "\n", - " # Discretize time domain\n", - " fs.discretizer = TransformationFactory(\"dae.finite_difference\")\n", - " fs.discretizer.apply_to(fs, nfe=ntfe, wrt=fs.time, scheme=\"BACKWARD\")\n", - "\n", - " return fs" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Create a Function to Fix the Flowsheet Conditions\n", - "\n", - "The function \"fb_fix_conditions\" fixes the initial and boundary conditions of an instance of the 1D FixedBed model. It also has checks to ensure that the degrees of freedom are zero, and that the velocity into the bed is less than the minimum fluidization velocity of the bed. Similarly to the function above, we will need to run this for the adsorption and desorption steps, and it is clearer to define the code once as a single function here. As arguments it takes the following:\n", - "1) The flowsheet block of the simulation, i.e., the adsorption flowsheet \n", - "2) The reactor bed diameter \n", - "3) The reactor bed height \n", - "4) A dictionary of gas phase state data for which the gas phase state variables of the model should be fixed to \n", - "5) A dictionary of solid phase state data for which the solid phase state variables of the model should be fixed to. If None, the solid phase state variables are fixed to their current values. \n", - "\n", - "No object is returned by this function." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "def fb_fix_conditions(\n", - " fs, bed_diameter, bed_height, gas_phase_state_dict, solid_phase_state_dict=None\n", - "):\n", - " # Fix bed geometry variables\n", - " fs.FB.bed_diameter.fix(bed_diameter) # m\n", - " fs.FB.bed_height.fix(bed_height) # m\n", - "\n", - " # Fix boundary values for gas for all time\n", - " blk = fs.FB\n", - " for t in fs.time:\n", - " # Gas values\n", - " blk.gas_inlet.flow_mol[t].fix(gas_phase_state_dict[\"flow_mol\"])\n", - " blk.gas_inlet.temperature[t].fix(gas_phase_state_dict[\"temperature\"])\n", - " blk.gas_inlet.pressure[t].fix(gas_phase_state_dict[\"pressure\"])\n", - " for j, val in gas_phase_state_dict[\"mole_frac_comp\"].items():\n", - " blk.gas_inlet.mole_frac_comp[t, j].fix(val)\n", - "\n", - " # Specify gas phase and solid phase initial conditions for all space\n", - " t0 = fs.time.first()\n", - " for x in blk.length_domain:\n", - " blk.gas_phase.properties[t0, x].flow_mol.fix(gas_phase_state_dict[\"flow_mol\"])\n", - " blk.gas_phase.properties[t0, x].temperature.fix(\n", - " gas_phase_state_dict[\"temperature\"]\n", - " ) # K\n", - " for j, val in gas_phase_state_dict[\"mole_frac_comp\"].items():\n", - " blk.gas_phase.properties[t0, x].mole_frac_comp[j].fix(val)\n", - "\n", - " if solid_phase_state_dict is None:\n", - " # Fix to existing values if dict is empty\n", - " blk.solid_properties[t0, x].dens_mass_particle.fix()\n", - " blk.solid_properties[t0, x].temperature.fix()\n", - " blk.solid_properties[t0, x].mass_frac_comp[:].fix()\n", - " else:\n", - " blk.solid_properties[t0, x].dens_mass_particle.fix(\n", - " solid_phase_state_dict[\"dens_mass_particle\"]\n", - " )\n", - " blk.solid_properties[t0, x].temperature.fix(\n", - " solid_phase_state_dict[\"temperature\"]\n", - " )\n", - " for j, val in solid_phase_state_dict[\"mass_frac_comp\"].items():\n", - " blk.solid_properties[t0, x].mass_frac_comp[j].fix(val)\n", - "\n", - " dof = degrees_of_freedom(fs)\n", - "\n", - " print(\"degrees of freedom = \", dof)\n", - " try:\n", - " assert degrees_of_freedom(fs) == 0\n", - " except AssertionError:\n", - " print(\"Degrees of freedom is not equal to zero. This is unexpected.\")\n", - " raise\n", - "\n", - " # Assert that inlet gas velocity is less than v_mf\n", - " # Use solid temperature as the thermal mass of solid >> than that of gas\n", - " pi = 3.14 # [-]\n", - " R = 8.314 # Gas constant [J/mol/K]\n", - "\n", - " @blk.Expression(doc=\"gas inlet velocity, m/s\")\n", - " def gas_inlet_velocity(blk):\n", - " v_gas_inlet = (\n", - " blk.gas_inlet.flow_mol[0] / (pi * value(blk.bed_diameter**2) / 4)\n", - " ) * (R * blk.solid_properties[0, 0].temperature / blk.gas_inlet.pressure[0])\n", - " return v_gas_inlet\n", - "\n", - " v_mf = value( # minimum fluidization velocity [m/s]\n", - " blk.solid_properties[t0, 0]._params.velocity_mf\n", - " )\n", - " print(\"inlet gas velocity = \", value(blk.gas_inlet_velocity), \" m/s\")\n", - " print(\"min. fluid velocity = \", v_mf, \" m/s\")\n", - " try:\n", - " assert value(blk.gas_inlet_velocity) <= v_mf\n", - " except AssertionError:\n", - " print(\n", - " \"The inlet gas velocity is greater than the minimum fluidization velocity. \"\n", - " \"This is unexpected for a Fixed Bed.\"\n", - " )\n", - " raise" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Step 2: Setup and run simulation\n", - "Now that the system properties and all required utility functions are defined, we will build the model itself." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Create concrete model\n", - "First, create the model object:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "m = ConcreteModel()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Setup solver for initialization\n", - "We limit the maximum number of iterations and apply appropriate scaling for the linear solver for initialization:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# Solver arguments\n", - "optarg = {\n", - " \"max_iter\": 100,\n", - " \"nlp_scaling_method\": \"user-scaling\",\n", - " \"linear_solver\": \"ma27\",\n", - "}\n", - "\n", - "# Create a solver\n", - "solver = get_solver(\"ipopt\")\n", - "solver.options = optarg" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Set spatial elements and design variables for adsorption and desorption simulations\n", - "Let's define the size of the system:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# Number of spatial elements\n", - "nxfe = 50\n", - "\n", - "# Design variables for static and dynamic models\n", - "bed_diameter = 9 # m\n", - "bed_height = 1 # m" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adsorption simulation\n", - "First, we will run the adsorption step by defining the simulation domain, add initial conditions, and set up and solve the model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Setup simulation horizon and create time set\n", - "We specify the time discretization to an exact set of temporal points according to the problem horizon:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# Time horizon\n", - "horizon = 108000 # s\n", - "\n", - "# Create time_set list\n", - "t_element_size = horizon / 4 # s\n", - "ntfe = int(horizon / t_element_size)\n", - "time_set = list(np.linspace(0, horizon, ntfe + 1))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initial conditions for gas and solid phases\n", - "Next, we set reasoanble initial conditions for the gas and solid phases at time = 0, with a constant adsorption temperature:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# Flue gas inlet conditions to adsorption system (flue gas stream) -\n", - "# Temperature and mole fractions obtained from NETL baseline report.\n", - "# Exhibit 5-22 B31B case.\n", - "adsorption_temperature = 303.15 # K\n", - "\n", - "# Dictionary of initial and boundary conditions for gas phase\n", - "gas_phase_state_dict_ads = {\n", - " \"flow_mol\": 3.544, # mol/s\n", - " \"temperature\": adsorption_temperature, # K\n", - " \"pressure\": 1.2452e5, # Pa\n", - " \"mole_frac_comp\": { # [-]\n", - " \"CO2\": 0.0408,\n", - " \"H2O\": 0.0875,\n", - " \"N2\": 0.7517,\n", - " \"O2\": 0.12,\n", - " },\n", - "}\n", - "\n", - "# Dictionary of initial conditions for solid phase\n", - "solid_phase_state_dict_ads = {\n", - " \"dens_mass_particle\": 442, # kg/m3\n", - " \"temperature\": adsorption_temperature, # K\n", - " \"mass_frac_comp\": { # [-]\n", - " \"H2O_s\": 1e-8,\n", - " \"Car\": 1e-8,\n", - " \"SiO\": 1,\n", - " },\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Setup the adsorption model\n", - "Then, we call our previously defined methods to build the model and fix initial conditions:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "# Create the adsorption flowsheet\n", - "m.fs_ads = FlowsheetBlock(dynamic=True, time_set=time_set, time_units=pyunits.s)\n", - "\n", - "# Setup an instance of the 1D FixedBed model for the adsorption simulation\n", - "m.fs_ads = fb_model_setup(m.fs_ads, ntfe, nxfe)\n", - "\n", - "# Fix initial and boundary conditions\n", - "fb_fix_conditions(\n", - " m.fs_ads,\n", - " bed_diameter,\n", - " bed_height,\n", - " gas_phase_state_dict_ads,\n", - " solid_phase_state_dict_ads,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Adsorption model - initialize and solve\n", - "Finally for the adsorption model, we initialize and solve." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Apply scaling transformation\n", - "We first scale the model variables and equations to reduce ill-conditioning and improve its convergence properties:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "iscale.calculate_scaling_factors(m.fs_ads)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Initialize model\n", - "The model initialization is done with the block triangularization initialization method in the 1D FixedBed model as this is faster than using the traditional sequential heirarchichal initialization approach. See the 1D FixedBed model and documentation for more details on this method." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "# Run start time\n", - "t_start_ads = time.time()\n", - "\n", - "# Initialize model\n", - "calc_var_kwds = {\"eps\": 1e-5}\n", - "m.fs_ads.FB.block_triangularization_initialize(\n", - " gas_phase_state_args=gas_phase_state_dict_ads,\n", - " solid_phase_state_args=solid_phase_state_dict_ads,\n", - " outlvl=idaeslog.DEBUG,\n", - " solver=solver,\n", - " calc_var_kwds=calc_var_kwds,\n", - ")\n", - "\n", - "# Run end time\n", - "t_end_ads = time.time()\n", - "\n", - "# Initialization time\n", - "adsorption_initialization_time = value(t_end_ads - t_start_ads)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### PETSc integrator\n", - "As mentioned earlier, the PETSc integrator is used for simulating the time trajectory. After starting the clock and instantiating the time variables, PETSc performs and element-wise discretization to define and solve the dynamic system of equations. See https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html#petsc-utilities for more details.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "petscsolvelog = idaeslog.getSolveLogger(\"petsc-dae\")\n", - "petscsolvelog.setLevel(logging.WARNING) # comment this line to see PETSc solver output\n", - "\n", - "# Run start time\n", - "t_start_ads = time.time()\n", - "\n", - "# Setup PETSc integrator and simulate adsorption flowsheet\n", - "m.fs_ads.time_var = Var(m.fs_ads.time)\n", - "m.fs_ads.time_var[0].fix(m.fs_ads.time.first())\n", - "\n", - "result_ads = petsc.petsc_dae_by_time_element(\n", - " m.fs_ads,\n", - " time=m.fs_ads.time,\n", - " timevar=m.fs_ads.time_var,\n", - " keepfiles=True,\n", - " symbolic_solver_labels=True,\n", - " skip_initial=False,\n", - " ts_options={\n", - " \"--ts_type\": \"beuler\", # backward euler integration\n", - " \"--ts_dt\": 200, # set initial step to 200\n", - " \"--ts_rtol\": 20,\n", - " \"--ts_monitor\": \"\",\n", - " \"--ts_save_trajectory\": 1,\n", - " \"--ksp_rtol\": 1e-10,\n", - " \"--snes_type\": \"newtontr\", # newton trust region non-linear solver\n", - " \"--ts_monitor\": \"\",\n", - " \"--ts_save_trajectory\": 1,\n", - " \"--ts_max_snes_failures\": 1000,\n", - " },\n", - ")\n", - "tj_ads = result_ads.trajectory # trajectory data\n", - "\n", - "# Run end time\n", - "t_end_ads = time.time()\n", - "\n", - "# Initialization time\n", - "adsorption_simulation_time = value(t_end_ads - t_start_ads)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plot the adsorption simulation results\n", - "After running the adsorption simulation, the dynamic profiles are plotted." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the temporal plots below, quantities are reported as functions of time and contoured for six points along the length of the bed. The time and spatial dimensions are exchanged in the spatial plots, with quantities reported as functions of length and contoured for five time points.\n", - "\n", - "The gas flowrate is constant at the inlet and decreases over the length of the bed as CO2 is removed from the gas. At each spatial point, the CO2 content of the gas increases over time as the bed becomes more saturated with CO2 and the mass transfer driving force decreases. Assessing the two gas flowrate plots, adsorption occurs steadily over time with a much larger capture rate in the initial spatial region; this region grows from 10% to 25% of the bed length as the bed becomes more saturated with CO2 over time.\n", - "\n", - "The bed pressure stays relatively constant over time, and exhibits a linear drop over the length of the reactor. There are no temporal or spatial gradients in gas or solid temperature.\n", - "\n", - "The saturation trend is strongly apparent in the composition trends. The CO2 content of the gas quickly drops from the initial concentration over the length of the bed, and steadily rises over time as the driving force of mass transfer decreases. Water vapor concentration in the gas follows a similar trend.\n", - "\n", - "Following the solid-state reaction, the concentration of carbmate steadily increases over time with formation skewing heavily towards the initial spatial region of the bed. The spatial contours of the temporal carbamate composition plot cross as a result of the solid reaction rate heavily favoring the initial section of the bed and suddenly dropping about at about 20% of the reactor length. The mass fraction and mol/kg plots differ slightly due to water and CO2 absorbing at different rates, but otherwise demonstrate similar trends." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "# Plot temporal result profiles\n", - "plot_results_temporal(m.fs_ads, tj_ads)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "# Plot spatial result profiles\n", - "plot_results_spatial(m.fs_ads, tj_ads)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Desorption simulation\n", - "The desorption simulation begins when the adsorption simulation ends. It uses the final state of the sorbent (besides temperature which is set at the desorption temperature) in the adsorption mode as the initial state of the sorbent in the desorption mode." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Setup simulation horizon and create time set\n", - "As in the adsorption simulation, we first specify the time discretization:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "# Space and time discretization arguments\n", - "horizon = 7200 # s\n", - "\n", - "# Setup for PETSc run\n", - "t_element_size = horizon # s\n", - "ntfe = int(horizon / t_element_size)\n", - "time_set = list(np.linspace(0, horizon, ntfe + 1))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initial and boundary conditions for gas phase\n", - "- The initial conditions of the solid phase will be copied from the final conditions of the model in the adsorption simulation." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "# Desorption operating conditions\n", - "desorption_temperature = 470 # K\n", - "\n", - "gas_phase_state_dict_des = {\n", - " \"flow_mol\": 10, # mol/s\n", - " \"temperature\": desorption_temperature, # K\n", - " \"pressure\": 1.06525e5, # Pa\n", - " \"mole_frac_comp\": {\"CO2\": 1e-8, \"H2O\": 1, \"N2\": 1e-8, \"O2\": 1e-8}, # [-]\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Setup the desorption model\n", - "Then, we build the model and fix initial conditions:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "# Create the desorption flowsheet\n", - "m.fs_des = FlowsheetBlock(dynamic=True, time_set=time_set, time_units=pyunits.s)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "# Setup an instance of the 1D FixedBed model for the desorption simulation\n", - "m.fs_des = fb_model_setup(\n", - " m.fs_des,\n", - " ntfe,\n", - " nxfe,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Desorption model - initialize and solve\n", - "Finally for the desorption model, we initialize and solve." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### Copy values from adsorption model to desorption model\n", - "Copy state values of solid phase (besides temperature) from last time point in adsorption model to all time point in desorption model. Also set temperature state variable of desorption model to desorption temperature." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "blk_des = m.fs_des.FB\n", - "tf_ads = tj_ads.time[-1] # Get final time from adsorption trajectory results\n", - "tf_ads_index = tj_ads.time.index(tf_ads) # Get index at final time\n", - "component_list = blk_des.config.solid_phase_config.property_package.component_list\n", - "\n", - "for t in m.fs_des.time:\n", - " for x in blk_des.length_domain:\n", - " blk_des.solid_properties[t, x].temperature.set_value(desorption_temperature)\n", - " blk_des.solid_properties[t, x].dens_mass_particle.set_value(\n", - " tj_ads.get_vec(m.fs_ads.FB.solid_properties[tf_ads, x].dens_mass_particle)[\n", - " tf_ads_index\n", - " ]\n", - " )\n", - " for j in component_list:\n", - " blk_des.solid_properties[t, x].mass_frac_comp[j].set_value(\n", - " value(\n", - " tj_ads.get_vec(\n", - " m.fs_ads.FB.solid_properties[tf_ads, x].mass_frac_comp[j]\n", - " )[tf_ads_index]\n", - " )\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Fix initial and boundary conditions\n", - "We fix the conditions from the final adsorption model state as our new initial conditions for the desorption model:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "fb_fix_conditions(\n", - " m.fs_des,\n", - " bed_diameter,\n", - " bed_height,\n", - " gas_phase_state_dict_des,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Calculate scaling of desorption model\n", - "Then, we apply scaling to the model:" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "iscale.calculate_scaling_factors(m.fs_des)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Initialize desorption model\n", - "The desorption model initialization is done with the block triangularization initialization method, as was done with the adsorption model." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "# Run start time\n", - "t_start_des = time.time()\n", - "\n", - "# Initialize model\n", - "m.fs_des.FB.block_triangularization_initialize(\n", - " gas_phase_state_args=gas_phase_state_dict_des,\n", - " outlvl=idaeslog.DEBUG,\n", - " solver=solver,\n", - " calc_var_kwds=calc_var_kwds,\n", - ")\n", - "\n", - "# Run end time\n", - "t_end_des = time.time()\n", - "\n", - "# Initialization time\n", - "desorption_initialization_time = value(t_end_des - t_start_des)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Setup PETSc integrator and simulate desorption step\n", - "Now that the model is fully defined, we can call the PETSc integrator to simulate the dynamics of the problem:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "# Run start time\n", - "t_start_des = time.time()\n", - "\n", - "# Setup PETSc integrator and simulate desorption flowsheet\n", - "m.fs_des.time_var = Var(m.fs_des.time)\n", - "m.fs_des.time_var[0].fix(m.fs_des.time.first())\n", - "\n", - "result_des = petsc.petsc_dae_by_time_element(\n", - " m.fs_des,\n", - " time=m.fs_des.time,\n", - " timevar=m.fs_des.time_var,\n", - " keepfiles=True,\n", - " symbolic_solver_labels=True,\n", - " skip_initial=False,\n", - " ts_options={\n", - " \"--ts_type\": \"beuler\", # backward euler integration\n", - " \"--ts_dt\": 200, # set initial step to 200\n", - " \"--ts_rtol\": 20,\n", - " \"--ts_monitor\": \"\",\n", - " \"--ts_save_trajectory\": 1,\n", - " \"--ksp_rtol\": 1e-10,\n", - " \"--snes_type\": \"newtontr\", # newton trust region non-linear solver\n", - " \"--ts_monitor\": \"\",\n", - " \"--ts_save_trajectory\": 1,\n", - " \"--ts_max_snes_failures\": 1000,\n", - " },\n", - ")\n", - "tj_des = result_des.trajectory # trajectory data\n", - "\n", - "# Run end time\n", - "t_end_des = time.time()\n", - "\n", - "# Initialization time\n", - "desorption_simulation_time = value(t_end_des - t_start_des)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Plot the desorption simulation results\n", - "Similar to the results of the adsorption model, the plots below are presented as temporal plots with spatial contours and spatial plots with time contours to fully capture the model trends.\n", - "\n", - "The gas flowrate spikes initially as large quantities of CO2 are recovered, and then the flowrate drops rapidly as the CO2 is carried away. An interesting note is that this occurs over the same time period everywhere across the length of the bed, peaking around 1000 seconds into the simulation. In the spatial plot, the peak is missed between the first and second contours; instead, the spatial plots captures a similar shifting inflection point around 10-25% of the way into the bed as the mass transfer driving force suddenly decreases.\n", - "\n", - "The bed pressure drops suddenly as CO2 is initially desorbed from the bed, and a steady state is reached at larger time points. As in the adsorption case, the desorption results show no temporal or spatial gradients in gas or solid temperature.\n", - "\n", - "The CO2 content of the gas sharply rises initially, and steadily decreases as CO2 is carried away in the sweep gas. A greater amount of CO2 is recovered closer to the reactor inlet. As the sweep gas is nearly pure water vapor, the water concentration in the gas sharply drops as CO2 is desorbed from the bed and recovers to near unity towards the temporal end of the simulation.\n", - "\n", - "Carbamate disappears quickly as CO2 is recovered and the hydrate is broken down, occurring evenly across the length of the reactor bed." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "# Plot temporal result profiles\n", - "plot_results_temporal(m.fs_des, tj_des)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "# Plot spatial result profiles\n", - "plot_results_spatial(m.fs_ads, tj_ads)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 3: Generate performance results" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "###########################################################################\n", - "# Heat requirements\n", - "###########################################################################\n", - "heat_computation(m, tj_ads, tj_des, adsorption_temperature, desorption_temperature)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "###########################################################################\n", - "# Performance results\n", - "###########################################################################\n", - "performance_results(m, tj_ads, tj_des)\n", - "\n", - "results_summary(m, adsorption_temperature, desorption_temperature)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Simulation time results" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"Adsorption initialization time: \", adsorption_initialization_time, \" s\")\n", - "print(\"Adsorption simulation time: \", adsorption_simulation_time, \" s\")\n", - "print()\n", - "print(\"Desorption initialization time: \", desorption_initialization_time, \" s\")\n", - "print(\"Desorption simulation time: \", desorption_simulation_time, \" s\")\n", - "print()\n", - "total_simulation_time = (\n", - " adsorption_initialization_time\n", - " + adsorption_simulation_time\n", - " + desorption_initialization_time\n", - " + desorption_simulation_time\n", - ")\n", - "print(\"Total simulation time: \", total_simulation_time, \" s\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Summary\n", - "This example demonstrates implementation of the 1D FixedBed model within IDAES. External property packages for multiple phase domains and interfaces, as well as mass transfer and reaction properties, were integrated into two simulations. The simulations are connected via their final (adsorption) and initial (desorption) states, and each utilizes the PETSc integrator to calculate temporal profiles over the spatial domains." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "celltoolbar": "Tags", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.12" - } - }, - "nbformat": 4, - "nbformat_minor": 3 + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "header", + "hide-cell" + ] + }, + "outputs": [], + "source": [ + "###############################################################################\n", + "# The Institute for the Design of Advanced Energy Systems Integrated Platform\n", + "# Framework (IDAES IP) was produced under the DOE Institute for the\n", + "# Design of Advanced Energy Systems (IDAES).\n", + "#\n", + "# Copyright (c) 2018-2025 by the software owners: The Regents of the\n", + "# University of California, through Lawrence Berkeley National Laboratory,\n", + "# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon\n", + "# University, West Virginia University Research Corporation, et al.\n", + "# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md\n", + "# for full copyright and license information.\n", + "#\n", + "###############################################################################" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CO2 Adsorption Desorption simulation example with a 1D Fixed Bed model\n", + "Author: Chinedu Okoli, Anca Ostace, Brandon Paul \n", + "Maintainer: Brandon Paul \n", + "Updated: 2023-06-01 \n", + "\n", + "\n", + "This jupyter notebook shows an example of a CO2 Adsorption Desorption cycle with the IDAES 1D FixedBed model. The IDAES 1D FixedBed model is a dynamic and axially varying reactor/adsorption model which is able to model the gas and solid interactions of the modeled species in detail. The sorbent used for this example is the NETL_32D sorbent with its details and parameters obtained from the following references: \n", + "- A. Lee, D.C. Miller, A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber, Ind. Eng. Chem. Res. 52 (2013) 469–484\n", + "- Lee, A.; Mebane, D.; Fauth, D. J.; Miller, D. C. A Model for the Adsorption Kinetics of CO2 on Amine-Impregnated Mesoporous Sorbents in the Presence of Water. Presented at the 28th International Pittsburgh Coal Conference, Pittsburgh, PA, 2011.\n", + "\n", + "The notebook demonstrates how to use the IDAES 1DFixedBed model for an adsorption/desorption application with distinct adsorption and desorption steps. This example leverages custom libraries and functions specific to the NETL_32D solid sorbent and associated gas phase properties and surface reactions. In this system, the silicon monoxide (SiO(s)) sorbent reduces carbon dioxide (CO2(g)) to carbamate (denoted Car(s)) while simultaneously absorbing water vapor (H2O(g)) to produce a solid solution-state hydrate (H2O(s)). The solid phase is considered a one-dimensional domain with three regions for bubble, cloud wake and emulsion properties for bubbling bed systems; in the case of a fixed bed reactor non-bulk gas behavior is neglected and assumed to be homogeneous everywhere not near the solid surface.\n", + "\n", + "The notebook also shows how to simulate the adsorption and desorption steps using the PETSc integrator. PETSc leverages nonlinear equation and differential algebraic equation solvers to solve time-trajectory problems. These solvers are applicable for systems with zero degrees of freedom, such as a fully-specified bed reactor model. See https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html#petsc-utilities for more details." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cycle details\n", + "The system contains the following equipment and stream properties:\n", + "- Bed height: 9 m\n", + "- Bed diameter: 1 m\n", + "- Adsorption time: 30 hrs\n", + "- Desorption time: 2 hrs\n", + "- Adsorption temperature: 303.15 K\n", + "- Desorption temperature: 470 K\n", + "- Flue gas inlet conditions (Temperature and mole fractions obtained from NETL baseline report. Exhibit 5-22 B31B case)\n", + " - Temperature: 315 K\n", + " - Pressure: 106.5 kPa\n", + " - Flowrate: 3.544 mol/s\n", + " - Mole fractions: CO2: 0.0408, H2O: 0.0875, N2: 0.7517, O2: 0.12" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Notes\n", + "Some additional information regarding the problem:\n", + "- Isothermal conditions: heat duty requirements of each step are calculated from gas and sorbent properties, i.e., loading, density, heat of adsorption, and heat capacity\n", + "- Heating and cooling modes not modeled in detail: cycle times are assumed negligible in comparison to adsorption and desorption\n", + "- Adsorption and desorption steps are modeled in different flowsheets\n", + "- Initial condition (except temperature) of sorbent in desorption step is set to final condition of sorbent in adsorption step" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Import relevant libraries and packages" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import python libraries\n", + "\n", + "- numpy (numerical python library which provides numerical computing tools)\n", + "- time (time python library which will be used to track the simulation time)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### Import Pyomo packages\n", + "For the flowsheet, we will need several components from the pyomo libraries.\n", + "\n", + "- ConcreteModel (to create the Pyomo model that will contain the IDAES flowsheet)\n", + "- TransformationFactory (to apply certain transformations)\n", + "- SolverFactory (to solve the problem)\n", + "- Var (to create a Pyomo variable)\n", + "- value (to return the numerical value of Pyomo objects such as variables, constraints or expressions)\n", + "- units (to handle units in Pyomo and IDAES)\n", + "\n", + "For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/latest/" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pyomo.environ import (\n", + " ConcreteModel,\n", + " TransformationFactory,\n", + " SolverFactory,\n", + " Var,\n", + " value,\n", + " units as pyunits,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import IDAES core components\n", + "\n", + "To build, initialize, and solve IDAES flowsheets we will need several core components/utilities:\n", + "\n", + "- FlowsheetBlock (the flowsheet block contains idaes properties, time, and unit models)\n", + "- EnergyBalanceType (to specify the energy balance type)\n", + "- petsc (PETSc integrator)\n", + "- get_solver (IDAES solver utility)\n", + "- iscale (is used to apply scaling factors in variables and constraints)\n", + "- propagate_state (is used to initialize models, propagating the state variables from one unit model to another)\n", + "- degrees_of_freedom (useful for debugging, this method returns the DOF of the model)\n", + "- idaeslog (is used to set output messages like warnings or errors)\n", + "\n", + "For further details on these components, please refer to the IDAES documentation: https://idaes-pse.readthedocs.io/en/latest/" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.core import FlowsheetBlock, EnergyBalanceType\n", + "import idaes.core.solvers.petsc as petsc # PETSc utilities module\n", + "from idaes.core.util import scaling as iscale\n", + "from idaes.core.solvers import get_solver\n", + "from idaes.core.util.model_statistics import degrees_of_freedom\n", + "import idaes.logger as idaeslog\n", + "import logging" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import IDAES unit models and NETL 32D property packages\n", + "\n", + "To build the IDAES flowsheet for the CO2 Adsorption Desorption example, we will need the following: \n", + "1) the 1D Fixed Bed unit model \n", + "2) the NETL 32D property package" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes.models_extra.gas_solid_contactors.unit_models.fixed_bed_1D import FixedBed1D\n", + "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_gas_phase_thermo import (\n", + " GasPhaseParameterBlock,\n", + ")\n", + "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_solid_phase_thermo import (\n", + " SolidPhaseParameterBlock,\n", + ")\n", + "from idaes_examples.mod.co2_adsorption_desorption.NETL_32D_adsorption_reactions import (\n", + " HeteroReactionParameterBlock,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import custom libraries and functions\n", + "To simplify and automate this example at the flowsheet level, several custom methods were defined in an external script. The methods are custom, and as such are imported separately from the set of IDAES and Pyomo methods above. These utility functions perform a variety of numerical and reporting tasks:\n", + "\n", + "- heat_computation (used to calculate the heat requirements of the CO2 Adsorption Desorption cycle)\n", + "- performance_results (used to evaluate the performance of the CO2 Adsorption Desorption cycle)\n", + "- results_summary (provides summarized results of the CO2 Adsorption Desorption cycle)\n", + "- plot_results_temporal (plots the temporal profiles of the flowsheet simulation)\n", + "- plot_results_spatial (plots the spatial profiles of the flowsheet simulation)\n", + "- fb_model_setup (function that builds the 1D FixedBed model)\n", + "- fb_fixed_conditions (function that fixes the initial and boundary conditions of the 1D FixedBed model)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from idaes_examples.mod.co2_adsorption_desorption.simulation_utilities import (\n", + " heat_computation,\n", + " performance_results,\n", + " results_summary,\n", + " plot_results_temporal,\n", + " plot_results_spatial,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a Function to Build the Flowsheet\n", + "\n", + "The function \"fb_model_setup\" below builds instances of the 1D FixedBed model for the adsorption and desorption simulations. While the effort required to define the reactor is low in terms of lines of code, we will need to do this for both the adsorption and desorption steps. Therefore, defining this setup as a single function will make later steps easier to follow. As arguments it takes the following:\n", + "1) The flowsheet block of the simulation, i.e., the adsorption flowsheet \n", + "2) The number of time finite elements \n", + "3) The number of spatial finite elements \n", + "\n", + "It returns a flowsheet object which contains an instance of the 1D FixedBed model" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def fb_model_setup(\n", + " fs,\n", + " ntfe, # number of time finite elements\n", + " nxfe, # number of space finite elements\n", + "):\n", + "\n", + " # Set up thermo props and reaction props\n", + " fs.gas_properties = GasPhaseParameterBlock()\n", + " fs.solid_properties = SolidPhaseParameterBlock()\n", + "\n", + " fs.hetero_reactions = HeteroReactionParameterBlock(\n", + " solid_property_package=fs.solid_properties,\n", + " gas_property_package=fs.gas_properties,\n", + " )\n", + "\n", + " fs.FB = FixedBed1D(\n", + " finite_elements=nxfe,\n", + " transformation_method=\"dae.finite_difference\",\n", + " energy_balance_type=EnergyBalanceType.none,\n", + " pressure_drop_type=\"ergun_correlation\",\n", + " gas_phase_config={\"property_package\": fs.gas_properties},\n", + " solid_phase_config={\n", + " \"property_package\": fs.solid_properties,\n", + " \"reaction_package\": fs.hetero_reactions,\n", + " },\n", + " )\n", + "\n", + " # Discretize time domain\n", + " fs.discretizer = TransformationFactory(\"dae.finite_difference\")\n", + " fs.discretizer.apply_to(fs, nfe=ntfe, wrt=fs.time, scheme=\"BACKWARD\")\n", + "\n", + " return fs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a Function to Fix the Flowsheet Conditions\n", + "\n", + "The function \"fb_fix_conditions\" fixes the initial and boundary conditions of an instance of the 1D FixedBed model. It also has checks to ensure that the degrees of freedom are zero, and that the velocity into the bed is less than the minimum fluidization velocity of the bed. Similarly to the function above, we will need to run this for the adsorption and desorption steps, and it is clearer to define the code once as a single function here. As arguments it takes the following:\n", + "1) The flowsheet block of the simulation, i.e., the adsorption flowsheet \n", + "2) The reactor bed diameter \n", + "3) The reactor bed height \n", + "4) A dictionary of gas phase state data for which the gas phase state variables of the model should be fixed to \n", + "5) A dictionary of solid phase state data for which the solid phase state variables of the model should be fixed to. If None, the solid phase state variables are fixed to their current values. \n", + "\n", + "No object is returned by this function." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def fb_fix_conditions(\n", + " fs, bed_diameter, bed_height, gas_phase_state_dict, solid_phase_state_dict=None\n", + "):\n", + " # Fix bed geometry variables\n", + " fs.FB.bed_diameter.fix(bed_diameter) # m\n", + " fs.FB.bed_height.fix(bed_height) # m\n", + "\n", + " # Fix boundary values for gas for all time\n", + " blk = fs.FB\n", + " for t in fs.time:\n", + " # Gas values\n", + " blk.gas_inlet.flow_mol[t].fix(gas_phase_state_dict[\"flow_mol\"])\n", + " blk.gas_inlet.temperature[t].fix(gas_phase_state_dict[\"temperature\"])\n", + " blk.gas_inlet.pressure[t].fix(gas_phase_state_dict[\"pressure\"])\n", + " for j, val in gas_phase_state_dict[\"mole_frac_comp\"].items():\n", + " blk.gas_inlet.mole_frac_comp[t, j].fix(val)\n", + "\n", + " # Specify gas phase and solid phase initial conditions for all space\n", + " t0 = fs.time.first()\n", + " for x in blk.length_domain:\n", + " blk.gas_phase.properties[t0, x].flow_mol.fix(gas_phase_state_dict[\"flow_mol\"])\n", + " blk.gas_phase.properties[t0, x].temperature.fix(\n", + " gas_phase_state_dict[\"temperature\"]\n", + " ) # K\n", + " for j, val in gas_phase_state_dict[\"mole_frac_comp\"].items():\n", + " blk.gas_phase.properties[t0, x].mole_frac_comp[j].fix(val)\n", + "\n", + " if solid_phase_state_dict is None:\n", + " # Fix to existing values if dict is empty\n", + " blk.solid_properties[t0, x].dens_mass_particle.fix()\n", + " blk.solid_properties[t0, x].temperature.fix()\n", + " blk.solid_properties[t0, x].mass_frac_comp[:].fix()\n", + " else:\n", + " blk.solid_properties[t0, x].dens_mass_particle.fix(\n", + " solid_phase_state_dict[\"dens_mass_particle\"]\n", + " )\n", + " blk.solid_properties[t0, x].temperature.fix(\n", + " solid_phase_state_dict[\"temperature\"]\n", + " )\n", + " for j, val in solid_phase_state_dict[\"mass_frac_comp\"].items():\n", + " blk.solid_properties[t0, x].mass_frac_comp[j].fix(val)\n", + "\n", + " dof = degrees_of_freedom(fs)\n", + "\n", + " print(\"degrees of freedom = \", dof)\n", + " try:\n", + " assert degrees_of_freedom(fs) == 0\n", + " except AssertionError:\n", + " print(\"Degrees of freedom is not equal to zero. This is unexpected.\")\n", + " raise\n", + "\n", + " # Assert that inlet gas velocity is less than v_mf\n", + " # Use solid temperature as the thermal mass of solid >> than that of gas\n", + " pi = 3.14 # [-]\n", + " R = 8.314 # Gas constant [J/mol/K]\n", + "\n", + " @blk.Expression(doc=\"gas inlet velocity, m/s\")\n", + " def gas_inlet_velocity(blk):\n", + " v_gas_inlet = (\n", + " blk.gas_inlet.flow_mol[0] / (pi * value(blk.bed_diameter**2) / 4)\n", + " ) * (R * blk.solid_properties[0, 0].temperature / blk.gas_inlet.pressure[0])\n", + " return v_gas_inlet\n", + "\n", + " v_mf = value( # minimum fluidization velocity [m/s]\n", + " blk.solid_properties[t0, 0]._params.velocity_mf\n", + " )\n", + " print(\"inlet gas velocity = \", value(blk.gas_inlet_velocity), \" m/s\")\n", + " print(\"min. fluid velocity = \", v_mf, \" m/s\")\n", + " try:\n", + " assert value(blk.gas_inlet_velocity) <= v_mf\n", + " except AssertionError:\n", + " print(\n", + " \"The inlet gas velocity is greater than the minimum fluidization velocity. \"\n", + " \"This is unexpected for a Fixed Bed.\"\n", + " )\n", + " raise" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2: Setup and run simulation\n", + "Now that the system properties and all required utility functions are defined, we will build the model itself." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create concrete model\n", + "First, create the model object:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "m = ConcreteModel()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Setup solver for initialization\n", + "We limit the maximum number of iterations and apply appropriate scaling for the linear solver for initialization:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Solver arguments\n", + "optarg = {\n", + " \"max_iter\": 100,\n", + " \"nlp_scaling_method\": \"user-scaling\",\n", + " \"linear_solver\": \"ma27\",\n", + "}\n", + "\n", + "# Create a solver\n", + "solver = get_solver(\"ipopt\")\n", + "solver.options = optarg" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Set spatial elements and design variables for adsorption and desorption simulations\n", + "Let's define the size of the system:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Number of spatial elements\n", + "nxfe = 50\n", + "\n", + "# Design variables for static and dynamic models\n", + "bed_diameter = 9 # m\n", + "bed_height = 1 # m" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adsorption simulation\n", + "First, we will run the adsorption step by defining the simulation domain, add initial conditions, and set up and solve the model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup simulation horizon and create time set\n", + "We specify the time discretization to an exact set of temporal points according to the problem horizon:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Time horizon\n", + "horizon = 108000 # s\n", + "\n", + "# Create time_set list\n", + "t_element_size = horizon / 4 # s\n", + "ntfe = int(horizon / t_element_size)\n", + "time_set = list(np.linspace(0, horizon, ntfe + 1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Initial conditions for gas and solid phases\n", + "Next, we set reasoanble initial conditions for the gas and solid phases at time = 0, with a constant adsorption temperature:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Flue gas inlet conditions to adsorption system (flue gas stream) -\n", + "# Temperature and mole fractions obtained from NETL baseline report.\n", + "# Exhibit 5-22 B31B case.\n", + "adsorption_temperature = 303.15 # K\n", + "\n", + "# Dictionary of initial and boundary conditions for gas phase\n", + "gas_phase_state_dict_ads = {\n", + " \"flow_mol\": 3.544, # mol/s\n", + " \"temperature\": adsorption_temperature, # K\n", + " \"pressure\": 1.2452e5, # Pa\n", + " \"mole_frac_comp\": { # [-]\n", + " \"CO2\": 0.0408,\n", + " \"H2O\": 0.0875,\n", + " \"N2\": 0.7517,\n", + " \"O2\": 0.12,\n", + " },\n", + "}\n", + "\n", + "# Dictionary of initial conditions for solid phase\n", + "solid_phase_state_dict_ads = {\n", + " \"dens_mass_particle\": 442, # kg/m3\n", + " \"temperature\": adsorption_temperature, # K\n", + " \"mass_frac_comp\": { # [-]\n", + " \"H2O_s\": 1e-8,\n", + " \"Car\": 1e-8,\n", + " \"SiO\": 1,\n", + " },\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup the adsorption model\n", + "Then, we call our previously defined methods to build the model and fix initial conditions:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Create the adsorption flowsheet\n", + "m.fs_ads = FlowsheetBlock(dynamic=True, time_set=time_set, time_units=pyunits.s)\n", + "\n", + "# Setup an instance of the 1D FixedBed model for the adsorption simulation\n", + "m.fs_ads = fb_model_setup(m.fs_ads, ntfe, nxfe)\n", + "\n", + "# Fix initial and boundary conditions\n", + "fb_fix_conditions(\n", + " m.fs_ads,\n", + " bed_diameter,\n", + " bed_height,\n", + " gas_phase_state_dict_ads,\n", + " solid_phase_state_dict_ads,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adsorption model - initialize and solve\n", + "Finally for the adsorption model, we initialize and solve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Apply scaling transformation\n", + "We first scale the model variables and equations to reduce ill-conditioning and improve its convergence properties:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "iscale.calculate_scaling_factors(m.fs_ads)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Initialize model\n", + "The model initialization is done with the block triangularization initialization method in the 1D FixedBed model as this is faster than using the traditional sequential heirarchichal initialization approach. See the 1D FixedBed model and documentation for more details on this method." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# Run start time\n", + "t_start_ads = time.time()\n", + "\n", + "# Initialize model\n", + "calc_var_kwds = {\"eps\": 1e-5}\n", + "m.fs_ads.FB.block_triangularization_initialize(\n", + " gas_phase_state_args=gas_phase_state_dict_ads,\n", + " solid_phase_state_args=solid_phase_state_dict_ads,\n", + " outlvl=idaeslog.DEBUG,\n", + " solver=solver,\n", + " calc_var_kwds=calc_var_kwds,\n", + ")\n", + "\n", + "# Run end time\n", + "t_end_ads = time.time()\n", + "\n", + "# Initialization time\n", + "adsorption_initialization_time = value(t_end_ads - t_start_ads)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### PETSc integrator\n", + "As mentioned earlier, the PETSc integrator is used for simulating the time trajectory. After starting the clock and instantiating the time variables, PETSc performs and element-wise discretization to define and solve the dynamic system of equations. See https://idaes-pse.readthedocs.io/en/stable/reference_guides/core/solvers.html#petsc-utilities for more details.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "petscsolvelog = idaeslog.getSolveLogger(\"petsc-dae\")\n", + "petscsolvelog.setLevel(logging.WARNING) # comment this line to see PETSc solver output\n", + "\n", + "# Run start time\n", + "t_start_ads = time.time()\n", + "\n", + "# Setup PETSc integrator and simulate adsorption flowsheet\n", + "m.fs_ads.time_var = Var(m.fs_ads.time)\n", + "m.fs_ads.time_var[0].fix(m.fs_ads.time.first())\n", + "\n", + "result_ads = petsc.petsc_dae_by_time_element(\n", + " m.fs_ads,\n", + " time=m.fs_ads.time,\n", + " timevar=m.fs_ads.time_var,\n", + " keepfiles=True,\n", + " symbolic_solver_labels=True,\n", + " skip_initial=False,\n", + " ts_options={\n", + " \"--ts_type\": \"beuler\", # backward euler integration\n", + " \"--ts_dt\": 200, # set initial step to 200\n", + " \"--ts_rtol\": 20,\n", + " \"--ts_monitor\": \"\",\n", + " \"--ts_save_trajectory\": 1,\n", + " \"--ksp_rtol\": 1e-10,\n", + " \"--snes_type\": \"newtontr\", # newton trust region non-linear solver\n", + " \"--ts_monitor\": \"\",\n", + " \"--ts_save_trajectory\": 1,\n", + " \"--ts_max_snes_failures\": 1000,\n", + " },\n", + ")\n", + "tj_ads = result_ads.trajectory # trajectory data\n", + "\n", + "# Run end time\n", + "t_end_ads = time.time()\n", + "\n", + "# Initialization time\n", + "adsorption_simulation_time = value(t_end_ads - t_start_ads)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot the adsorption simulation results\n", + "After running the adsorption simulation, the dynamic profiles are plotted." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the temporal plots below, quantities are reported as functions of time and contoured for six points along the length of the bed. The time and spatial dimensions are exchanged in the spatial plots, with quantities reported as functions of length and contoured for five time points.\n", + "\n", + "The gas flowrate is constant at the inlet and decreases over the length of the bed as CO2 is removed from the gas. At each spatial point, the CO2 content of the gas increases over time as the bed becomes more saturated with CO2 and the mass transfer driving force decreases. Assessing the two gas flowrate plots, adsorption occurs steadily over time with a much larger capture rate in the initial spatial region; this region grows from 10% to 25% of the bed length as the bed becomes more saturated with CO2 over time.\n", + "\n", + "The bed pressure stays relatively constant over time, and exhibits a linear drop over the length of the reactor. There are no temporal or spatial gradients in gas or solid temperature.\n", + "\n", + "The saturation trend is strongly apparent in the composition trends. The CO2 content of the gas quickly drops from the initial concentration over the length of the bed, and steadily rises over time as the driving force of mass transfer decreases. Water vapor concentration in the gas follows a similar trend.\n", + "\n", + "Following the solid-state reaction, the concentration of carbmate steadily increases over time with formation skewing heavily towards the initial spatial region of the bed. The spatial contours of the temporal carbamate composition plot cross as a result of the solid reaction rate heavily favoring the initial section of the bed and suddenly dropping about at about 20% of the reactor length. The mass fraction and mol/kg plots differ slightly due to water and CO2 absorbing at different rates, but otherwise demonstrate similar trends." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Plot temporal result profiles\n", + "plot_results_temporal(m.fs_ads, tj_ads)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Plot spatial result profiles\n", + "plot_results_spatial(m.fs_ads, tj_ads)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Desorption simulation\n", + "The desorption simulation begins when the adsorption simulation ends. It uses the final state of the sorbent (besides temperature which is set at the desorption temperature) in the adsorption mode as the initial state of the sorbent in the desorption mode." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup simulation horizon and create time set\n", + "As in the adsorption simulation, we first specify the time discretization:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "# Space and time discretization arguments\n", + "horizon = 7200 # s\n", + "\n", + "# Setup for PETSc run\n", + "t_element_size = horizon # s\n", + "ntfe = int(horizon / t_element_size)\n", + "time_set = list(np.linspace(0, horizon, ntfe + 1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Initial and boundary conditions for gas phase\n", + "- The initial conditions of the solid phase will be copied from the final conditions of the model in the adsorption simulation." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# Desorption operating conditions\n", + "desorption_temperature = 470 # K\n", + "\n", + "gas_phase_state_dict_des = {\n", + " \"flow_mol\": 10, # mol/s\n", + " \"temperature\": desorption_temperature, # K\n", + " \"pressure\": 1.06525e5, # Pa\n", + " \"mole_frac_comp\": {\"CO2\": 1e-8, \"H2O\": 1, \"N2\": 1e-8, \"O2\": 1e-8}, # [-]\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup the desorption model\n", + "Then, we build the model and fix initial conditions:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# Create the desorption flowsheet\n", + "m.fs_des = FlowsheetBlock(dynamic=True, time_set=time_set, time_units=pyunits.s)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "# Setup an instance of the 1D FixedBed model for the desorption simulation\n", + "m.fs_des = fb_model_setup(\n", + " m.fs_des,\n", + " ntfe,\n", + " nxfe,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Desorption model - initialize and solve\n", + "Finally for the desorption model, we initialize and solve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Copy values from adsorption model to desorption model\n", + "Copy state values of solid phase (besides temperature) from last time point in adsorption model to all time point in desorption model. Also set temperature state variable of desorption model to desorption temperature." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "blk_des = m.fs_des.FB\n", + "tf_ads = tj_ads.time[-1] # Get final time from adsorption trajectory results\n", + "tf_ads_index = tj_ads.time.index(tf_ads) # Get index at final time\n", + "component_list = blk_des.config.solid_phase_config.property_package.component_list\n", + "\n", + "for t in m.fs_des.time:\n", + " for x in blk_des.length_domain:\n", + " blk_des.solid_properties[t, x].temperature.set_value(desorption_temperature)\n", + " blk_des.solid_properties[t, x].dens_mass_particle.set_value(\n", + " tj_ads.get_vec(m.fs_ads.FB.solid_properties[tf_ads, x].dens_mass_particle)[\n", + " tf_ads_index\n", + " ]\n", + " )\n", + " for j in component_list:\n", + " blk_des.solid_properties[t, x].mass_frac_comp[j].set_value(\n", + " value(\n", + " tj_ads.get_vec(\n", + " m.fs_ads.FB.solid_properties[tf_ads, x].mass_frac_comp[j]\n", + " )[tf_ads_index]\n", + " )\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Fix initial and boundary conditions\n", + "We fix the conditions from the final adsorption model state as our new initial conditions for the desorption model:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "fb_fix_conditions(\n", + " m.fs_des,\n", + " bed_diameter,\n", + " bed_height,\n", + " gas_phase_state_dict_des,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Calculate scaling of desorption model\n", + "Then, we apply scaling to the model:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "iscale.calculate_scaling_factors(m.fs_des)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Initialize desorption model\n", + "The desorption model initialization is done with the block triangularization initialization method, as was done with the adsorption model." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# Run start time\n", + "t_start_des = time.time()\n", + "\n", + "# Initialize model\n", + "m.fs_des.FB.block_triangularization_initialize(\n", + " gas_phase_state_args=gas_phase_state_dict_des,\n", + " outlvl=idaeslog.DEBUG,\n", + " solver=solver,\n", + " calc_var_kwds=calc_var_kwds,\n", + ")\n", + "\n", + "# Run end time\n", + "t_end_des = time.time()\n", + "\n", + "# Initialization time\n", + "desorption_initialization_time = value(t_end_des - t_start_des)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Setup PETSc integrator and simulate desorption step\n", + "Now that the model is fully defined, we can call the PETSc integrator to simulate the dynamics of the problem:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# Run start time\n", + "t_start_des = time.time()\n", + "\n", + "# Setup PETSc integrator and simulate desorption flowsheet\n", + "m.fs_des.time_var = Var(m.fs_des.time)\n", + "m.fs_des.time_var[0].fix(m.fs_des.time.first())\n", + "\n", + "result_des = petsc.petsc_dae_by_time_element(\n", + " m.fs_des,\n", + " time=m.fs_des.time,\n", + " timevar=m.fs_des.time_var,\n", + " keepfiles=True,\n", + " symbolic_solver_labels=True,\n", + " skip_initial=False,\n", + " ts_options={\n", + " \"--ts_type\": \"beuler\", # backward euler integration\n", + " \"--ts_dt\": 200, # set initial step to 200\n", + " \"--ts_rtol\": 20,\n", + " \"--ts_monitor\": \"\",\n", + " \"--ts_save_trajectory\": 1,\n", + " \"--ksp_rtol\": 1e-10,\n", + " \"--snes_type\": \"newtontr\", # newton trust region non-linear solver\n", + " \"--ts_monitor\": \"\",\n", + " \"--ts_save_trajectory\": 1,\n", + " \"--ts_max_snes_failures\": 1000,\n", + " },\n", + ")\n", + "tj_des = result_des.trajectory # trajectory data\n", + "\n", + "# Run end time\n", + "t_end_des = time.time()\n", + "\n", + "# Initialization time\n", + "desorption_simulation_time = value(t_end_des - t_start_des)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot the desorption simulation results\n", + "Similar to the results of the adsorption model, the plots below are presented as temporal plots with spatial contours and spatial plots with time contours to fully capture the model trends.\n", + "\n", + "The gas flowrate spikes initially as large quantities of CO2 are recovered, and then the flowrate drops rapidly as the CO2 is carried away. An interesting note is that this occurs over the same time period everywhere across the length of the bed, peaking around 1000 seconds into the simulation. In the spatial plot, the peak is missed between the first and second contours; instead, the spatial plots captures a similar shifting inflection point around 10-25% of the way into the bed as the mass transfer driving force suddenly decreases.\n", + "\n", + "The bed pressure drops suddenly as CO2 is initially desorbed from the bed, and a steady state is reached at larger time points. As in the adsorption case, the desorption results show no temporal or spatial gradients in gas or solid temperature.\n", + "\n", + "The CO2 content of the gas sharply rises initially, and steadily decreases as CO2 is carried away in the sweep gas. A greater amount of CO2 is recovered closer to the reactor inlet. As the sweep gas is nearly pure water vapor, the water concentration in the gas sharply drops as CO2 is desorbed from the bed and recovers to near unity towards the temporal end of the simulation.\n", + "\n", + "Carbamate disappears quickly as CO2 is recovered and the hydrate is broken down, occurring evenly across the length of the reactor bed." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "# Plot temporal result profiles\n", + "plot_results_temporal(m.fs_des, tj_des)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "# Plot spatial result profiles\n", + "plot_results_spatial(m.fs_ads, tj_ads)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3: Generate performance results" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "###########################################################################\n", + "# Heat requirements\n", + "###########################################################################\n", + "heat_computation(m, tj_ads, tj_des, adsorption_temperature, desorption_temperature)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "###########################################################################\n", + "# Performance results\n", + "###########################################################################\n", + "performance_results(m, tj_ads, tj_des)\n", + "\n", + "results_summary(m, adsorption_temperature, desorption_temperature)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulation time results" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Adsorption initialization time: \", adsorption_initialization_time, \" s\")\n", + "print(\"Adsorption simulation time: \", adsorption_simulation_time, \" s\")\n", + "print()\n", + "print(\"Desorption initialization time: \", desorption_initialization_time, \" s\")\n", + "print(\"Desorption simulation time: \", desorption_simulation_time, \" s\")\n", + "print()\n", + "total_simulation_time = (\n", + " adsorption_initialization_time\n", + " + adsorption_simulation_time\n", + " + desorption_initialization_time\n", + " + desorption_simulation_time\n", + ")\n", + "print(\"Total simulation time: \", total_simulation_time, \" s\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Summary\n", + "This example demonstrates implementation of the 1D FixedBed model within IDAES. External property packages for multiple phase domains and interfaces, as well as mass transfer and reaction properties, were integrated into two simulations. The simulations are connected via their final (adsorption) and initial (desorption) states, and each utilizes the PETSc integrator to calculate temporal profiles over the spatial domains." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + } + }, + "nbformat": 4, + "nbformat_minor": 3 }